AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation

Ray D. Zimmerman February 24, 2010*

Matpower Technical Note 2

c 2010 Power Systems Engineering Research Center (Pserc) ${\rm All~Rights~Reserved}$

^{*}First draft February 29, 2008

CONTENTS CONTENTS

Contents

1	Not	Notation 4								
2	Intr	oducti	tion			5				
3	Voltages									
	3.1	Bus V	V oltages			. 6				
		3.1.1	First Derivatives							
		3.1.2	Second Derivatives							
	3.2	Branc	ch Voltages							
		3.2.1	First Derivatives							
4	Rus	Inject	tions			7				
7	4.1		olex Current Injections			-				
		4 1 1		•	•	. , 7				
	4.2		olex Power Injections							
	7.2	4.2.1	First Derivatives							
		4.2.2	Second Derivatives							
_	_									
5		nch Fl				11				
	5.1		olex Currents							
		5.1.1	First Derivatives							
		5.1.2								
	5.2		olex Power Flows							
		5.2.1	First Derivatives							
		5.2.2	Second Derivatives							
	5.3	Squared Current Magnitudes								
		5.3.1	First Derivatives			. 16				
		5.3.2	Second Derivatives			. 16				
	5.4	Square	red Apparent Power Magnitudes			. 17				
		5.4.1	First Derivatives			. 17				
		5.4.2	Second Derivatives			. 17				
	5.5	Square	red Real Power Magnitudes			. 18				
		5.5.1	First Derivatives			. 18				
		5.5.2								

CONTENTS CONTENTS

6	Ger	neralize	ed AC OPF Costs	19				
	6.1	Polynomial Generator Costs						
		6.1.1	First Derivatives	. 20				
		6.1.2	Second Derivatives	. 20				
	6.2	Piecev	wise Linear Generator Costs	. 20				
		6.2.1	First Derivatives	. 21				
		6.2.2	Second Derivatives	. 21				
	6.3	General Cost Term						
		6.3.1	First Derivatives	. 22				
		6.3.2	Second Derivatives	. 23				
	6.4	Full Cost Function						
		6.4.1	First Derivatives	. 23				
		6.4.2	Second Derivatives	. 23				
7	Lag	rangia	an of the AC OPF	24				
	_	•	Derivatives	. 24				
	7.2	Second	d Derivatives	. 25				

1 Notation

number of buses, generators, branches, respectively n_b ; n_q ; n_l bus voltage magnitude and angle at bus i $|V_i|_{i=1}^{\infty}$ complex bus voltage at bus i, that is $|v_i|e^{j\theta_i}$ V_i \mathcal{V} : $n_b \times 1$ vectors of bus voltage magnitudes and angles V $n_b \times 1$ vector of complex bus voltages v_i $n_b \times 1$ vector of complex bus current injections $I_{\rm bus}$ $I^f:I^t$ $n_l \times 1$ vectors of complex branch current injections, from and to ends $S_{\rm bus}$ $n_b \times 1$ vector of complex bus power injections $S^f:S^t$ $n_l \times 1$ vectors of complex branch power ows, from and to ends S_a $n_q \times 1$ vector of generator complex power injections real and reactive power ows/injections, S = P + jQP;QM:Nreal and imaginary parts of current ows/injections, I = M + jN $Y_{\rm bus}$ $n_b \times n_b$ system bus admittance matrix Y_f $n_l \times n_b$ system branch admittance matrix, from end Y_t $n_l \times n_b$ system branch admittance matrix, to end C_q $n_b \times n_a$ generator connection matrix $(i;j)^{th}$ element is 1 if generator j is located at bus i, 0 otherwise $n_l \times n_b$ branch connection matrices, from and to ends, C_f ; C_t $(i;j)^{th}$ element is 1 if from end, or to end, respectively, of branch i is connected to bus j, 0 otherwise [A]diagonal matrix with vector A on the diagonal A^{T} (non-conjugate) transpose of matrix A Α complex conjugate of A $n \times 1$ vector of all ones $\mathbf{1}_n$

2 Introduction

The purpose of this document is to show how the AC power balance and ow equations used in power ow and optimal power ow computations can be expressed in terms of complex matrices, and how their rst and second derivatives can be computed e ciently using complex sparse matrix manipulations. Similarly, the derivatives of the generalized AC OPF cost function used by Matpower and the corresponding OPF Lagrangian function are developed.

We will be looking at complex functions of the real valued vector

$$X = \begin{bmatrix} V \\ P_g \\ Q_g \end{bmatrix} \tag{1}$$

For a complex scalar function $f: \mathbb{R}^n \to \mathbb{C}$ of a real vector $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^\mathsf{T}$, we use the following notation for the rst derivatives (transpose of the gradient)

$$f_X = \frac{\mathscr{Q}f}{\mathscr{Q}X} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$
 (2)

The matrix of second partial derivatives, the Hessian of f, is

$$f_{XX} = \frac{\mathscr{Q}^2 f}{\mathscr{Q} X^2} = \frac{\mathscr{Q}}{\mathscr{Q} X} \left(\frac{\mathscr{Q} f}{\mathscr{Q} X} \right)^{\mathsf{T}} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$
(3)

For a complex vector function $F: \mathbb{R}^n \to \mathbb{C}^m$ of a vector X, where

$$F(X) = \begin{bmatrix} f_1(X) & f_2(X) & \cdots & f_m(X) \end{bmatrix}^\mathsf{T} \tag{4}$$

the rst derivatives form the Jacobian matrix, where row i is the transpose of the gradient of f_i

$$F_X = \frac{\mathscr{C}F}{\mathscr{C}X} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
 (5)

In these derivations, the full 3-dimensional set of second partial derivatives of F will not be computed. Instead a matrix of partial derivatives will be formed by computing

the Jacobian of the vector function obtained by multiplying the transpose of the Jacobian of F by a vector $\,$, using the following notation

$$F_{XX}(\) = \frac{@}{@X} \left(F_X^{\mathsf{T}} \ \right) \tag{6}$$

Just to clarify the notation, if Y and Z are subvectors of X, then

$$F_{YZ}(\) = \frac{\mathscr{Q}}{\mathscr{Q}Z} \left(F_Y^{\mathsf{T}} \ \right) \tag{7}$$

One common operation encountered in these derivations is the element-wise multiplication of a vector \boldsymbol{A} by a vector \boldsymbol{B} to form a new vector \boldsymbol{C} of the same dimension, which can be expressed in either of the following forms

$$C = [A]B = [B]A \tag{8}$$

It is useful to note that the derivative of such a vector can be calculated by the chain rule as

$$C_X = \frac{@C}{@X} = [A] \frac{@B}{@X} + [B] \frac{@A}{@X} = [A] B_X + [B] A_X$$
(9)

3 Voltages

3.1 Bus Voltages

V is the $n_b \times 1$ vector of complex bus voltages. The element for bus i is $v_i = |v_i|e^{j\theta_i}$. V and are the vectors of bus voltage magnitudes and angles. Let

$$E = [\mathcal{V}]^{-1} V \tag{10}$$

3.1.1 First Derivatives

$$V_{\Theta} = \frac{@V}{@} = j[V] \tag{11}$$

$$V_{\mathcal{V}} = \frac{\mathscr{Q}V}{\mathscr{Q}\mathcal{V}} = [V][\mathcal{V}]^{-1} = [E]$$
 (12)

$$E_{\Theta} = \frac{\mathscr{Q}E}{\mathscr{Q}} = j[E] \tag{13}$$

$$E_V = \frac{\mathscr{Q}E}{\mathscr{Q}V} = 0 \tag{14}$$

Second Derivatives

It may be useful in later derivations to note that

$$V_{VV}(\) = \frac{@}{@V} \left(\frac{@V}{@V}^{\mathsf{T}} \right) = [\] E_V = 0$$
 (15)

3.2 **Branch Voltages**

The $n_l \times 1$ vectors of complex voltages at the from and to ends of all branches are, respectively

$$V_f = C_f V \tag{16}$$

$$V_t = C_t V \tag{17}$$

$$V_t = C_t V (17)$$

3.2.1 First Derivatives

$$\frac{@V_f}{@} = C_f \frac{@V}{@} = jC_f[V]$$
 (18)

$$\frac{@V_f}{@V} = C_f \frac{@V}{@V} = C_f [V] [V]^{-1} = C_f [E]$$
(19)

Bus Injections 4

Complex Current Injections 4.1

$$I_{\rm bus} = Y_{\rm bus} V \tag{20}$$

4.1.1 First Derivatives

$$\frac{@I_{\text{bus}}}{@X} = \left[\frac{\partial I_{\text{bus}}}{\partial \Theta} \quad \frac{\partial I_{\text{bus}}}{\partial V} \quad 0 \quad 0 \right]$$
 (21)

$$\frac{@I_{\text{bus}}}{@} = Y_{\text{bus}} \frac{@V}{@} = j Y_{\text{bus}} [V]$$
 (22)

$$\frac{@I_{\text{bus}}}{@V} = Y_{\text{bus}} \frac{@V}{@V} = Y_{\text{bus}} [V] [V]^{-1} = Y_{\text{bus}} [E]$$
(23)

4.2 Complex Power Injections

Consider the complex power balance equation, $G^s(X) = 0$, where

$$G^{s}(X) = S_{\text{bus}} + S_d - C_q S_q \tag{24}$$

and

$$S_{\text{bus}} = [V] I_{\text{bus}} \tag{25}$$

4.2.1 First Derivatives

$$G_X^s = \frac{\mathscr{Q}G^s}{\mathscr{Q}X} = \begin{bmatrix} G_\Theta^s & G_V^s & G_{P_g}^s & G_{Q_g}^s \end{bmatrix}$$
 (26)

$$G_{\Theta}^{s} = \frac{\mathscr{Q}S_{\text{bus}}}{\mathscr{Q}} = [I_{\text{bus}}] \frac{\mathscr{Q}V}{\mathscr{Q}} + [V] \frac{\mathscr{Q}I_{\text{bus}}}{\mathscr{Q}}$$
 (27)

$$= [I_{\text{bus}}] j [V] + [V] (j Y_{\text{bus}} [V])$$
 (28)

$$= j[V]([I_{\text{bus}}] - Y_{\text{bus}}[V])$$
 (29)

$$G_V^s = \frac{\mathscr{Q}S_{\text{bus}}}{\mathscr{Q}V} = [I_{\text{bus}}] \frac{\mathscr{Q}V}{\mathscr{Q}V} + [V] \frac{\mathscr{Q}I_{\text{bus}}}{\mathscr{Q}V}$$
 (30)

$$= [I_{\text{bus}}][E] + [V] Y_{\text{bus}}[E]$$
 (31)

$$= [V]([I_{\text{bus}}] + Y_{\text{bus}}[V])[V]^{-1}$$
 (32)

$$G_{P_q}^s = -C_g (33)$$

$$G_{Q_g}^s = -j C_g \tag{34}$$

4.2.2 Second Derivatives

$$G_{XX}^{s}(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(G_{X}^{s}\right)$$
 (35)

$$G_{\Theta\Theta}^{s}(\) = \frac{\mathscr{Q}}{\mathscr{Q}}\left(G_{\Theta}^{s}^{\mathsf{T}}\right)$$
 (37)

$$= \frac{\mathscr{Q}}{\mathscr{Q}} \left(j \left([I_{\text{bus}}] - [V] Y_{\text{bus}}^{\mathsf{T}} \right) [V] \right)$$
 (38)

$$= j \frac{\mathscr{Q}}{\mathscr{Q}} \left([I_{\text{bus}}][V] - [V] Y_{\text{bus}}^{\mathsf{T}}[V] \right)$$
(39)

$$= \int \left([V][] \underbrace{(-jY_{\text{bus}}[V])}_{\frac{\partial I_{\text{bus}}^*}{\partial \Theta}} + [I_{\text{bus}}][] \underbrace{(j[V])}_{\frac{\partial V}{\partial \Theta}} \right)$$

$$-[V]Y_{\text{bus}}^{\mathsf{T}}[]\underbrace{(j[V])}_{\frac{\partial V}{\partial \Theta}} - [Y_{\text{bus}}^{\mathsf{T}}[V]]\underbrace{(-j[V])}_{\frac{\partial V^*}{\partial \Theta}}$$
(40)

$$= [V] (Y_{\text{bus}}^{\text{T}}[V]] - [Y_{\text{bus}}^{\text{T}}[V]] + [][V] (Y_{\text{bus}}^{\text{T}}[V] - [I_{\text{bus}}^{\text{T}}])$$
(41)

$$= \mathcal{E} + \mathcal{F} \tag{42}$$

$$G_{V\Theta}^{s}() = \frac{\mathscr{Q}}{\mathscr{Q}}(G_{V}^{s\mathsf{T}})$$
 (43)

$$= \frac{\mathscr{Q}}{\mathscr{Q}} \left([E] [I_{\text{bus}}] + [E] Y_{\text{bus}}^{\mathsf{T}} [V] \right) \tag{44}$$

$$= [E][\underbrace{](-jY_{\text{bus}}[V])}_{\underbrace{\partial I_{\text{bus}}^*}_{\partial \Omega}} + [I_{\text{bus}}][\underbrace{]j[E]}_{\underbrace{\partial E}_{\partial \Theta}}$$

+
$$[E] Y_{\text{bus}}^{\mathsf{T}} [] \underbrace{j[V]}_{\frac{\partial V}{\partial \Theta}} + [Y_{\text{bus}}^{\mathsf{T}} [V]] \underbrace{(-j[E])}_{\frac{\partial E^*}{\partial \Theta}}$$
 (45)

$$= j \left([E] \left(Y_{\text{bus}}^{\mathsf{T}} [V] [] - [Y_{\text{bus}}^{\mathsf{T}} [V]] \right) - [] [E] \left(Y_{\text{bus}}^{\mathsf{T}} [V] - [I_{\text{bus}}] \right) \right)$$
(46)

$$= j \left[\mathcal{V} \right]^{-1} \left(\left[V \right] \left(Y_{\text{bus}}^{\mathsf{T}} \left[V \right] \right] - \left[Y_{\text{bus}}^{\mathsf{T}} \left[V \right] \right] \right)$$

$$-[][V](Y_{\text{bus}}[V] - [I_{\text{bus}}]))$$
 (47)

$$= j\mathcal{G}(\mathcal{E} - \mathcal{F}) \tag{48}$$

$$G_{\Theta V}^{s}(\) = \frac{\mathscr{Q}}{\mathscr{Q} \mathcal{V}} \left(G_{\Theta}^{s \mathsf{T}} \right)$$

$$= j \left(\left([\][V] Y_{\text{bus}} - \left[Y_{\text{bus}}^{\mathsf{T}} [V] \] \right) [V] \right)$$

$$- \left([V\] Y_{\text{bus}}^{\mathsf{T}} - I_{\text{bus}} \right) [V] [\] \right) [\mathcal{V}]^{-1}$$

$$(50)$$

$$= G_{V\Theta}^{s}^{\mathsf{T}}(\) \tag{51}$$

$$G_{VV}^{s}(\) = \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}}\left(G_{V}^{s\,\mathsf{T}}\right)$$
 (52)

$$= \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}} \left([E] [I_{\text{bus}}] + [E] Y_{\text{bus}}^{\mathsf{T}} [V] \right)$$

$$= [E] \left[\underbrace{I_{\text{bus}}}_{\mathcal{U}_{\text{bus}}^{*}} + [I_{\text{bus}}] \underbrace{I_{\text{bus}}}_{\mathcal{Q}\mathcal{V}} + [I_{\text{$$

$$+ [E] Y_{\text{bus}}^{\mathsf{T}} [] \underbrace{[E]}_{\frac{\partial V}{\partial \mathcal{V}}} + [Y_{\text{bus}}^{\mathsf{T}} [V]] \underbrace{] \underbrace{0}_{\frac{\partial E^*}{\partial \mathcal{V}}}$$
 (54)

$$= [V]^{-1} ([][V] Y_{\text{bus}} [V] + [V] Y_{\text{bus}}^{T} [V] []) [V]^{-1}$$
 (55)

$$= \mathcal{G}(\mathcal{C} + \mathcal{C}^{\mathsf{T}})\mathcal{G} \tag{56}$$

Computational savings can be achieved by storing and reusing certain intermediate terms during the computation of these second derivatives, as follows:

$$\mathcal{A} = [][V] \tag{57}$$

$$\mathcal{B} = Y_{\text{bus}}[V] \tag{58}$$

$$C = AB \tag{59}$$

$$\mathcal{D} = Y_{\text{bus}}^{\text{T}}[V] \tag{60}$$

$$\mathcal{E} = [V](\mathcal{D}[] - [\mathcal{D}]) \tag{61}$$

$$\mathcal{F} = \mathcal{C} - \mathcal{A}[I_{\text{bus}}] = j[]G_{\Theta}^{s}$$

$$\mathcal{G} = [\mathcal{V}]^{-1}$$
(62)

$$\mathcal{G} = [\mathcal{V}]^{-1} \tag{63}$$

$$G^{s}_{\Theta\Theta}(\) = \mathcal{E} + \mathcal{F}$$
 (64)

$$G_{V\Theta}^{s}(\) = j\mathcal{G}(\mathcal{E} - \mathcal{F})$$
 (65)

$$G_{\Theta V}^{s}(\) = G_{V\Theta}^{s}^{\mathsf{T}}(\)$$
 (66)

$$G_{VV}^{s}(\) = \mathcal{G}(\mathcal{C} + \mathcal{C}^{\mathsf{T}})\mathcal{G}$$
 (67)

5 **Branch Flows**

Consider the line ow constraints of the form H(X) < 0. This section examines 3 variations based on the square of the magnitude of the current, apparent power and real power, respectively. The relationships are derived rst for the complex ows at the from ends of the branches. Derivations for the to end are identical (i.e. just replace all f sub/super-scripts with t).

Complex Currents 5.1

$$I^f = Y_f V \tag{68}$$

$$I^t = Y_t V \tag{69}$$

$$I^t = Y_t V (69)$$

First Derivatives 5.1.1

$$I_X^f = \frac{@I^f}{@X} = \left[\begin{array}{ccc} I_\Theta^f & I_V^f & I_{P_g}^f & I_{Q_g}^f \end{array} \right]$$
 (70)

$$I_{\Theta}^{f} = Y_{f}\left(\frac{@V}{@}\right) = jY_{f}[V]$$
 (71)

$$I_{V}^{f} = Y_{f}\left(\frac{@V}{@V}\right) = Y_{f}[V][V]^{-1} = Y_{f}[E]$$
 (72)

$$I_{P_g}^f = 0$$
 (73)
 $I_{Q_g}^f = 0$ (74)

$$I_{Q_a}^f = 0 (74)$$

5.1.2 Second Derivatives

$$I_{XX}^{f}(\) = \frac{@}{@X} \left(I_{X}^{f^{\mathsf{T}}}\right) \tag{75}$$

$$I_{\Theta\Theta}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}}\left(I_{\Theta}^{f\mathsf{T}}\ \right)$$
 (77)

$$= \frac{@}{@} \left(j \left[V \right] Y_f^{\mathsf{T}} \right) \tag{78}$$

$$= - \left[Y_f^{\mathsf{T}} \right] [V] \tag{79}$$

$$I_{V\Theta}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}}\left(I_{V}^{f\mathsf{T}}\right)$$
 (80)

$$= \frac{\mathscr{Q}}{\mathscr{Q}} \left([E] Y_f^{\mathsf{T}} \right) \tag{81}$$

$$= j \left[Y_f^{\mathsf{T}} \right] [E] \tag{82}$$

$$= -j I_{\Theta\Theta}^f() [\mathcal{V}]^{-1} \tag{83}$$

$$I_{\Theta V}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q} \mathcal{V}} \left(I_{\Theta}^{f^{\mathsf{T}}}\right)$$
 (84)

$$= \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}} \left(j \left[V \right] Y_f^{\mathsf{T}} \right) \tag{85}$$

$$= j \left[Y_f^{\mathsf{T}} \right] [E] \tag{86}$$

$$= I_{V\Theta}^{f}(\) \tag{87}$$

$$I_{VV}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}}\left(I_{V}^{f^{\mathsf{T}}}\right)$$
 (88)

$$= \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}}\left([E] Y_f^{\mathsf{T}}\right) \tag{89}$$

$$= 0 (90)$$

5.2 Complex Power Flows

$$S^{f} = [V_f] I^{f}$$

$$S^{t} = [V_t] I^{t}$$

$$(91)$$

$$S^t = [V_t] I^t (92)$$

5.2.1 First Derivatives

$$S_X^f = \frac{\mathscr{Q}S^f}{\mathscr{Q}X} = \left[S_\Theta^f \quad S_V^f \quad S_{P_g}^f \quad S_{Q_g}^f \right] \tag{93}$$

$$= \left[I^f\right] \frac{@V_f}{@X} + \left[V_f\right] \frac{@I^f}{@X} \tag{94}$$

$$S_{\Theta}^{f} = \left[I^{f} \right] \frac{@V_{f}}{@} + \left[V_{f} \right] \frac{@I^{f}}{@}$$
 (95)

$$= \left[I^{f} \right] j C_{f} [V] + [C_{f} V] (j Y_{f} [V])$$
 (96)

$$= j([I^f] C_f[V] - [C_fV] Y_f[V])$$
 (97)

$$S_{V}^{f} = \left[I^{f}\right] \frac{@V_{f}}{@V} + \left[V_{f}\right] \frac{@I^{f}}{@V}$$
(98)

$$= \left[I^f \right] C_f[E] + \left[C_f V \right] Y_f[E]$$
 (99)

$$S_{P_q}^f = 0 ag{100}$$

$$S_{Q_a}^f = 0 ag{101}$$

5.2.2 Second Derivatives

$$S_{XX}^f(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(S_X^f \right) \tag{102}$$

$$S_{\Theta\Theta}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}} \left(S_{\Theta}^{f\mathsf{T}} \right) \tag{104}$$

$$= \frac{\mathscr{Q}}{\mathscr{Q}} \left(j \left([V] C_f^{\mathsf{T}} \left[I^f \right] - [V] Y_f^{\mathsf{T}} \left[C_f V \right] \right) \right)$$
 (105)

$$= j \frac{\mathscr{Q}}{\mathscr{Q}} \left([V] C_f^{\mathsf{T}} \left[I^f \right] - [V] Y_f^{\mathsf{T}} \left[C_f V \right] \right)$$
 (106)

$$= \int \left([V] C_f^{\mathsf{T}} [\] \underbrace{\left(-j Y_f [V] \right)}_{\frac{\partial I^{f^*}}{\partial \Theta}} + \left[C_f^{\mathsf{T}} [I^f] \right] \underbrace{j [V]}_{\frac{\partial V}{\partial \Theta}} \right)$$

$$-[V]Y_{f}^{\mathsf{T}}[]C_{f}\underbrace{j[V]}_{\frac{\partial V}{\partial \Theta}} - [Y_{f}^{\mathsf{T}}[C_{f}V]]\underbrace{(-j[V])}_{\frac{\partial V^{*}}{\partial \Theta}}$$
(107)

$$= [V] Y_{f}^{\mathsf{T}}[] C_{f}[V] + [V] C_{f}^{\mathsf{T}}[] Y_{f} [V] - [Y_{f}^{\mathsf{T}}[] C_{f}V] [V] - [C_{f}^{\mathsf{T}}[] Y_{f} V] [V]$$
(108)

$$= \mathcal{F}_f - \mathcal{D}_f - \mathcal{E}_f \tag{109}$$

$$S_{V\Theta}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}}\left(S_{V}^{f\mathsf{T}}\right) \tag{110}$$

$$= \frac{\mathscr{Q}}{\mathscr{Q}} \left([E] C_f^{\mathsf{T}} \left[I^f \right] + [E] Y_f^{\mathsf{T}} [C_f V] \right)$$
 (111)

$$= [E] C_f^{\mathsf{T}} [] \underbrace{(-j Y_f [V])}_{\frac{\partial I f^*}{\partial \Omega}} + [C_f^{\mathsf{T}} [I^f]] \underbrace{] \underbrace{j [E]}_{\frac{\partial E}{\partial \Theta}}$$

$$+ [E] Y_f^{\mathsf{T}} [] C_f \underbrace{j[V]}_{\frac{\partial V}{\partial \Theta}} + [Y_f^{\mathsf{T}} [C_f V]] \underbrace{] \underbrace{(-j[E])}_{\frac{\partial E^*}{\partial \Theta}}$$
(112)

$$= j \left([E] Y_f^{\mathsf{T}}[] C_f[V] - [E] C_f^{\mathsf{T}}[] Y_f [V] - [Y_f^{\mathsf{T}}[] C_f^{\mathsf{T}}[] Y_f [V] + [C_f^{\mathsf{T}}[] Y_f [V]] [E] \right)$$
(113)

$$= j \left[\mathcal{V} \right]^{-1} \left(\left[V \right] Y_f^{\mathsf{T}} \left[\right] C_f \left[V \right] - \left[V \right] C_f^{\mathsf{T}} \left[\right] Y_f \left[V \right] \right]$$

$$-\left[Y_f^{\mathsf{T}}[\]C_fV\right][V\]+\left[C_f^{\mathsf{T}}[\]Y_f\ V\][V]\right) \tag{114}$$

$$= j\mathcal{G}(\mathcal{B}_f - \mathcal{B}_f^{\mathsf{T}} - \mathcal{D}_f + \mathcal{E}_f)$$
 (115)

$$S_{\Theta V}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q} \mathcal{V}} \left(S_{\Theta}^{f^{\mathsf{T}}} \right)$$
 (116)

$$= j\left(\left[V\right]C_f{}^{\mathsf{T}}\left[\right]Y_f\left[V\right] - \left[V\right]Y_f{}^{\mathsf{T}}\left[\right]C_f\left[V\right] \right.$$

$$-\left[Y_f^{\mathsf{T}}[\]C_fV\right][V\]+\left[C_f^{\mathsf{T}}[\]Y_f\ V\][V]\right)[V]^{-1} \tag{117}$$

$$= S_{V\Theta}^{f \mathsf{T}}(\) \tag{118}$$

$$S_{VV}^{f}(\) = \frac{@}{@\mathcal{V}}\left(S_{V}^{f^{\mathsf{T}}}\right)$$
 (119)

$$= \frac{\mathscr{Q}}{\mathscr{Q}\mathcal{V}} \left([E] C_f^{\mathsf{T}} \left[I^f \right] + [E] Y_f^{\mathsf{T}} [C_f V] \right)$$

$$= [E] C_f^{\mathsf{T}} \left[\underbrace{] Y_f \left[E \right]}_{\frac{\partial I^{f^*}}{\partial \mathcal{V}}} + \left[C_f^{\mathsf{T}} \left[I^f \right] \right] \underbrace{\underbrace{0}_{\frac{\partial E}{\partial \mathcal{V}}}}_{\frac{\partial E}{\partial \mathcal{V}}}$$

$$(120)$$

$$+ [E] Y_f^{\mathsf{T}} [] C_f \underbrace{[E]}_{\frac{\partial V}{\partial V}} + [Y_f^{\mathsf{T}} [C_f V]] \underbrace{] \underbrace{0}_{\frac{\partial E^*}{\partial V}}$$
 (121)

$$= [V]^{-1} ([V] Y_f^{\mathsf{T}} [] C_f [V] + [V] C_f^{\mathsf{T}} [] Y_f [V]) [V]^{-1}$$
 (122)

$$= \mathcal{G}\mathcal{F}_f\mathcal{G} \tag{123}$$

Computational savings can be achieved by storing and reusing certain intermediate terms during the computation of these second derivatives, as follows:

$$\mathcal{A}_f = Y_f^{\mathsf{T}}[]C_f \tag{124}$$

$$\mathcal{B}_f = [V] \mathcal{A}_f [V] \tag{125}$$

$$\mathcal{D}_f = [\mathcal{A}_f V][V] \tag{126}$$

$$\mathcal{E}_f = \left[\mathcal{A}_f^{\mathsf{T}} V \right] [V] \tag{127}$$

$$\mathcal{F}_{f} = \mathcal{B}_{f} + \mathcal{B}_{f}^{\mathsf{T}}$$

$$\mathcal{G} = [\mathcal{V}]^{-1}$$
(128)

$$\mathcal{G} = [\mathcal{V}]^{-1} \tag{129}$$

$$S_{\Theta\Theta}^f(\) = \mathcal{F}_f - \mathcal{D}_f - \mathcal{E}_f$$
 (130)

$$S_{V\Theta}^{f}(\) = j\mathcal{G}(\mathcal{B}_{f} - \mathcal{B}_{f}^{\mathsf{T}} - \mathcal{D}_{f} + \mathcal{E}_{f})$$
 (131)

$$S_{\Theta V}^{f}(\) = S_{V\Theta}^{f}^{\mathsf{T}}(\) \tag{132}$$

$$S_{VV}^f(\) = \mathcal{G}\mathcal{F}_f\mathcal{G} \tag{133}$$

Squared Current Magnitudes 5.3

Let $I_{\rm max}^2$ denote the vector of the squares of the current magnitude limits. Then the ow constraint function H(X) can be de ned in terms of the square of the current magnitudes as follows:

$$H^f(X) = \left[I^f\right]I^f - I_{\max}^2 \tag{134}$$

$$= \left[\mathcal{M}^f \right] \mathcal{M}^f + \left[\mathcal{N}^f \right] \mathcal{N}^f - I_{\text{max}}^2 \tag{135}$$

where $I^f = M^f + j N^f$.

5.3.1 First Derivatives

$$\mathcal{H}_X^f = \left[I^f \right] I_X^f + \left[I^f \right] I_X^f \tag{136}$$

$$= \left[I^f \right] I_X^f + \left(\left[I^f \right] I_X^f \right) \tag{137}$$

$$= 2 \cdot \Re \left\{ \left[I^f \right] I_X^f \right\} \tag{138}$$

$$= \left[M^f - j N^f \right] \left(M_X^f + j N_X^f \right) + \left[M^f + j N^f \right] \left(M_X^f - j N_X^f \right) \tag{139}$$

$$= 2\left(\left[M^f\right]M_X^f + \left[N^f\right]N_X^f\right) \tag{140}$$

$$= 2\left(\Re\left\{\left[I^f\right]\right\}\Re\left\{I_X^f\right\} + \Im\left\{\left[I^f\right]\right\}\Im\left\{I_X^f\right\}\right) \tag{141}$$

5.3.2 Second Derivatives

$$H_{XX}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{142}$$

$$H_{XX}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{144}$$

$$= \frac{\mathscr{Q}}{\mathscr{Q}X} \left(I_X^{f \mathsf{T}} \left[I^f \right] + I_X^{f \mathsf{T}} \left[I^f \right] \right) \tag{145}$$

$$= I_{XX}^{f}(\left[I^{f}\right]) + I_{X}^{f\mathsf{T}}\left[I^{f}\right] + I_{XX}^{f}\left(\left[I^{f}\right]\right) + I_{X}^{f\mathsf{T}}\left[I^{f}\right]$$
(146)

$$= 2 \cdot \Re \left\{ I_{XX}^f \left(\begin{bmatrix} I^f \end{bmatrix} \right) + I_X^{f^{\mathsf{T}}} \left[\right] I_X^f \right\}$$
 (147)

$$H_{\Theta\Theta}^{f}(\) = 2 \cdot \Re \left\{ I_{\Theta\Theta}^{f}(\left[I^{f}\right]\) + I_{\Theta}^{f^{\mathsf{T}}}[\]I_{\Theta}^{f} \right\}$$
 (148)

$$H_{V\Theta}^{f}(\) = 2 \cdot \Re \left\{ I_{V\Theta}^{f}(\left[I^{f}\right]\) + I_{V}^{f\mathsf{T}}[\] I_{\Theta}^{f} \right\}$$
 (149)

$$\mathcal{H}_{\Theta V}^{f}(\) = 2 \cdot \Re \left\{ I_{\Theta V}^{f}(\left[I^{f}\right]\) + I_{\Theta}^{f\mathsf{T}}\left[\ \right] I_{V}^{f} \right\} \tag{150}$$

$$H_{VV}^{f}(\) = 2 \cdot \Re \left\{ I_{VV}^{f}(\left[I^{f}\right]\) + I_{V}^{f^{\mathsf{T}}}[\] I_{V}^{f} \right\}$$
 (151)

5.4 Squared Apparent Power Magnitudes

Let S^2_{\max} denote the vector of the squares of the apparent power ow limits. Then the ow constraint function H(X) can be de ned in terms of the square of the apparent power ows as follows:

$$H^f(X) = \left[S^f \right] S^f - S_{\text{max}}^2 \tag{152}$$

$$= [P^f] P^f + [Q^f] Q^f - S_{\max}^2$$
 (153)

where $S^f = P^f + jQ^f$.

5.4.1 First Derivatives

$$\mathcal{H}_X^f = \left[S^f \right] S_X^f + \left[S^f \right] S_X^f \tag{154}$$

$$= \left[S^f \right] S_X^f + \left(\left[S^f \right] S_X^f \right) \tag{155}$$

$$= 2 \cdot \Re \left\{ \left[S^f \right] S_X^f \right\} \tag{156}$$

$$= \left[P^f - jQ^f\right] \left(P_X^f + jQ_X^f\right) + \left[P^f + jQ^f\right] \left(P_X^f - jQ_X^f\right) \tag{157}$$

$$= 2\left(\left[P^f\right]P_X^f + \left[Q^f\right]Q_X^f\right) \tag{158}$$

$$= 2\left(\Re\left\{\left[S^{f}\right]\right\}\Re\left\{S_{X}^{f}\right\} + \Im\left\{\left[S^{f}\right]\right\}\Im\left\{S_{X}^{f}\right\}\right)$$
(159)

5.4.2 Second Derivatives

$$H_{XX}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{160}$$

$$H_{XX}^{f}(\) = \frac{@}{@X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{162}$$

$$= \frac{\mathscr{Q}}{\mathscr{Q}X} \left(S_X^{f \mathsf{T}} \left[S^f \right] + S_X^{f \mathsf{T}} \left[S^f \right] \right) \tag{163}$$

$$= S_{XX}^{f}(\left\lceil S^{f} \right\rceil) + S_{X}^{f^{\mathsf{T}}}[\left\rceil S_{X}^{f} + S_{XX}^{f}\left(\left[S^{f}\right]\right]) + S_{X}^{f^{\mathsf{T}}}[\left\rceil S_{X}^{f}\left(164\right)]$$

$$= 2 \cdot \Re \left\{ S_{XX}^f \left(\left[S^f \right] \right) + S_X^{f^{\mathsf{T}}} \left[\right] S_X^f \right\}$$
 (165)

$$\mathcal{H}_{\Theta\Theta}^{f}(\) = 2 \cdot \Re \left\{ S_{\Theta\Theta}^{f}(\left[S^{f}\right]\) + S_{\Theta}^{f\mathsf{T}}[\] S_{\Theta}^{f} \right\}$$
 (166)

$$H_{V\Theta}^{f}(\) = 2 \cdot \Re \left\{ S_{V\Theta}^{f}(\left[S^{f}\right]\) + S_{V}^{f^{\mathsf{T}}}[\] S_{\Theta}^{f} \right\}$$
 (167)

$$H_{\Theta V}^{f}(\) = 2 \cdot \Re \left\{ S_{\Theta V}^{f}(\left[S^{f}\right]\) + S_{\Theta}^{f^{\mathsf{T}}}[\] S_{V}^{f} \right\}$$
 (168)

$$H_{VV}^{f}(\) = 2 \cdot \Re \left\{ S_{VV}^{f}(\left[S^{f}\right]\) + S_{V}^{f^{\mathsf{T}}}[\]S_{V}^{f} \right\}$$
 (169)

5.5 Squared Real Power Magnitudes

Let P_{max}^2 denote the vector of the squares of the real power ow limits. Then the ow constraint function H(X) can be de ned in terms of the square of the real power ows as follows:

$$H^{f}(X) = \left[\Re\left\{S^{f}\right\}\right]\Re\left\{S^{f}\right\} - P_{\max}^{2}$$
(170)

$$= \left[P^f \right] P^f - P_{\text{max}}^2 \tag{171}$$

5.5.1 First Derivatives

$$H_X^f = 2 \left[P^f \right] P_X^f \tag{172}$$

$$= 2\left(\Re\left\{\left[S^f\right]\right\}\Re\left\{S_X^f\right\}\right) \tag{173}$$

5.5.2 Second Derivatives

$$H_{XX}^{f}(\) = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{174}$$

$$H_{XX}^{f}(\) = \frac{@}{@X} \left(H_{X}^{f^{\mathsf{T}}} \right) \tag{176}$$

$$= \frac{@}{@X} \left(2P_X^{f^{\mathsf{T}}} \left[P^f \right] \right) \tag{177}$$

$$= 2\left(P_{XX}^f([P^f]) + P_X^{f^T}[]P_X^f\right) \tag{178}$$

$$= 2\left(\Re\left\{S_{XX}^{f}(\left[\Re\left\{S^{f}\right\}\right]\right)\right\} + \Re\left\{S_{X}^{f}\right\}\left[\right]\Re\left\{S_{X}^{f}\right\}\right)$$
 (179)

$$H_{\Theta\Theta}^{f}(\) = 2\left(\Re\left\{S_{\Theta\Theta}^{f}(\left[\Re\left\{S^{f}\right\}\right]\)\right\} + \Re\left\{S_{\Theta}^{f\mathsf{T}}\right\}\left[\ \right]\Re\left\{S_{\Theta}^{f}\right\}\right) \tag{180}$$

$$H_{V\Theta}^{f}(\) = 2\left(\Re\left\{S_{V\Theta}^{f}(\left[\Re\left\{S^{f}\right\}\right]\)\right\} + \Re\left\{S_{V}^{f\mathsf{T}}\right\}\left[\ \right]\Re\left\{S_{\Theta}^{f}\right\}\right) \tag{181}$$

$$\mathcal{H}_{\Theta V}^{f}(\) = 2\left(\Re\left\{S_{\Theta V}^{f}(\left[\Re\left\{S^{f}\right\}\right]\)\right\} + \Re\left\{S_{\Theta}^{f\mathsf{T}}\right\}\left[\ \right]\Re\left\{S_{V}^{f}\right\}\right) \tag{182}$$

$$H_{VV}^{f}(\) = 2\left(\Re\left\{S_{VV}^{f}(\left[\Re\left\{S^{f}\right\}\right]\)\right\} + \Re\left\{S_{V}^{f^{\mathsf{T}}}\right\}\left[\ \right]\Re\left\{S_{V}^{f}\right\}\right) \tag{183}$$

6 Generalized AC OPF Costs

The generalized cost function for the AC OPF consists of three parts,

$$f(X) = f^{a}(X) + f^{b}(X) + f^{c}(X)$$
(184)

expressed as functions of the full set of optimization variables.

$$X = \begin{bmatrix} V \\ P_g \\ Q_g \\ Y \\ Z \end{bmatrix}$$
 (185)

where Y is the $n_y \times 1$ vector of cost variables associated with piecewise linear generator costs and Z is an $n_z \times 1$ vector of additional linearly constrained user variables.

6.1 Polynomial Generator Costs

Let $f_P^i(p_g^i)$ and $f_Q^i(q_g^i)$ be polynomial cost functions for real and reactive power for generator i and F^P and F^Q be the $n_g \times 1$ vectors of these costs.

$$F^{P}(P_g) = \begin{bmatrix} f_P^1(p_g^1) \\ \vdots \\ f_P^{n_g}(p_g^{n_g}) \end{bmatrix}$$
 (186)

$$F^{Q}(Q_g) = \begin{bmatrix} f_Q^1(q_g^1) \\ \vdots \\ f_Q^{n_g}(q_g^{n_g}) \end{bmatrix}$$
 (187)

$$f^{a}(X) = \mathbf{1}_{n_{g}}^{\mathsf{T}} \left(F^{P}(P_{g}) + F^{Q}(Q_{g}) \right)$$
 (188)

6.1.1 First Derivatives

We will use $F^{P^{\emptyset}}$ and $F^{P^{\emptyset}}$ to represent the vectors of rst and second derivatives of each of these real power cost functions with respect to the corresponding generator output. Likewise for the reactive power costs.

$$f_X^a = \frac{\mathscr{C}f^a}{\mathscr{C}X}$$

$$= \left[f_{\Theta}^a f_V^a f_{P_g}^a f_{Q_g}^a f_Y^a f_Z^a \right]$$

$$= \left[0 \ 0 \ (F^{P^{\emptyset}})^{\mathsf{T}} \ (F^{Q^{\emptyset}})^{\mathsf{T}} \ 0 \ 0 \right]$$

$$(189)$$

$$= \left[\begin{array}{cccc} f_{\Theta}^{a} & f_{V}^{a} & f_{P_{a}}^{a} & f_{Q_{a}}^{a} & f_{Y}^{a} & f_{Z}^{a} \end{array} \right] \tag{190}$$

$$= \left[0 \ 0 \ (F^{P^{\ell}})^{\mathsf{T}} \ (F^{Q^{\ell}})^{\mathsf{T}} \ 0 \ 0 \right]$$
 (191)

Second Derivatives 6.1.2

$$f_{XX}^a = \frac{\mathscr{Q} f_X^{a \, \mathsf{T}}}{\mathscr{Q} X} \tag{192}$$

where

$$f_{P_g P_g}^a = \left[F^{P^{\emptyset \emptyset}} \right] \tag{194}$$

$$f_{P_g P_g}^a = \left[F^{P^{\emptyset}} \right]$$

$$f_{Q_g Q_g}^a = \left[F^{Q^{\emptyset}} \right]$$
(194)

Piecewise Linear Generator Costs 6.2

$$f^b(X) = \mathbf{1}_{n_y}^\mathsf{T} Y \tag{196}$$

6.2.1 First Derivatives

$$f_{X}^{b} = \frac{\mathscr{E}f^{b}}{\mathscr{E}X}$$

$$= \left[f_{\Theta}^{b} f_{V}^{b} f_{P_{g}}^{b} f_{Q_{g}}^{b} f_{Y}^{b} f_{Z}^{b} \right]$$

$$= \left[0 \ 0 \ 0 \ 0 \ \mathbf{1}_{n_{y}}^{\mathsf{T}} \ 0 \right]$$
(197)
$$(198)$$

$$= \left[\begin{array}{cccc} f_{\Theta}^b & f_V^b & f_{P_q}^b & f_{Q_q}^b & f_Y^b & f_Z^b \end{array} \right] \tag{198}$$

6.2.2 Second Derivatives

$$f_{XX}^b = 0 (200)$$

6.3 General Cost Term

Let the general cost be de ned in terms of the $n_w \times n_w$ matrix H^w and $n_w \times 1$ vector C^w of coe cients and the parameters specified in the $n_w imes n_x$ matrix ${\cal N}$ and the $n_w \times 1$ vectors D, \hat{R} , K, and M. The parameters N and \hat{R} provide a linear transformation and shift to the full set of optimization variables X, resulting in a new set of variables R.

$$R = \mathcal{N}X - \widehat{R} \tag{201}$$

Each element of K speci es the size of a \dead zone" in which the cost is zero for the corresponding element of R. The elements k_i are used to de ne $n_w \times 1$ vectors U, K and R, where

$$u_i = \begin{cases} 0; & -k_i \le r_i \le k_i \\ 1; & \text{otherwise} \end{cases}$$
 (202)

$$k_{i} = \begin{cases} k_{i}; & r_{i} < -k_{i} \\ 0; & -k_{i} \leq r_{i} \leq k_{i} \\ -k_{i}; & r_{i} > k_{i} \end{cases}$$
 (203)

The \dead zone" costs are zeroed by multiplying by [U]. The remaining elements are shifted toward zero by the size of the \dead zone" by adding K, before applying a cost.

$$R = R + K \tag{204}$$

Each element of D speci es whether to apply a linear or quadratic function to the corresponding element of R. This can be done via two more $n_w \times 1$ vectors, D^L and D^Q , de ned as follows

$$d_i^L = \begin{cases} 1; & d_i = 1 \\ 0; & \text{otherwise} \end{cases}$$
 (205)

$$d_i^Q = \begin{cases} 1; & d_i = 2 \\ 0; & \text{otherwise} \end{cases}$$
 (206)

The result is scaled by the corresponding element of \mathcal{M} to form a new $n_w \times 1$ vector

$$W = [\mathcal{M}][U]([D^L] + [D^Q][R])R$$
(207)

$$= (\mathcal{D}_{\perp} + \mathcal{D}_{\mathcal{O}}[R]) R \tag{208}$$

where

$$\mathcal{D}_{L} = [\mathcal{M}][U] \left[\mathcal{D}^{L} \right] \tag{209}$$

$$\mathcal{D}_{\mathcal{Q}} = [\mathcal{M}][U][D^{\mathcal{Q}}] \tag{210}$$

The full general cost term is then expressed as a quadratic function of W as follows

$$f^{c}(X) = \frac{1}{2}W^{\mathsf{T}}H^{w}W + C^{w\mathsf{T}}W$$
 (211)

6.3.1 First Derivatives

For simplicity of derivation and computation, we de ned A and B as follows

$$\mathcal{A} = W_{\bar{R}} = \frac{@W}{@R} = \mathcal{D}_{L} + 2\mathcal{D}_{Q}[R]$$
 (212)

$$\mathcal{B} = f_W^c = \frac{\mathscr{Q}f^c}{\mathscr{Q}W} = W^{\mathsf{T}}H^w + C^{w\mathsf{T}}$$
 (213)

$$R_X = \frac{@R}{@X} = \mathcal{N} \tag{214}$$

$$W_X = \frac{@W}{@X} = W_{\bar{R}} \cdot R_X$$

$$= \mathcal{A}\mathcal{N}$$
(215)
$$= \mathcal{A}\mathcal{N}$$

$$= \mathcal{A}\mathcal{N} \tag{216}$$

$$f_X^c = \frac{\mathscr{Q}f^c}{\mathscr{Q}X} = f_W^c \cdot W_X \tag{217}$$

$$= \mathcal{BAN} \tag{218}$$

6.3.2 Second Derivatives

$$f_{XX}^c = \frac{\mathscr{Q}}{\mathscr{Q}X} \left(f_X^c \right) \tag{219}$$

$$= \frac{\mathscr{Q}}{\mathscr{Q}X} \left(\mathcal{N}^{\mathsf{T}} \mathcal{A} \mathcal{B}^{\mathsf{T}} \right) \tag{220}$$

$$= \mathcal{N}^{\mathsf{T}} \left(\mathcal{A} \frac{@}{@X} \left(H^{w} W + C^{w} \right) + 2 \mathcal{D}_{\mathcal{Q}} \left[\mathcal{B}^{\mathsf{T}} \right] \frac{@R}{@X} \right)$$
 (221)

$$= \mathcal{N}^{\mathsf{T}} \left(\mathcal{A} H^{w} W_{X} + 2 \mathcal{D}_{\mathcal{Q}} \left[\mathcal{B}^{\mathsf{T}} \right] R_{X} \right) \tag{222}$$

$$= \mathcal{N}^{\mathsf{T}} \left(\mathcal{A} H^{w} \mathcal{A} + 2 \mathcal{D}_{\mathcal{Q}} \left[\mathcal{B}^{\mathsf{T}} \right] \right) \mathcal{N}$$
 (223)

6.4 Full Cost Function

$$f(X) = f^{a}(X) + f^{b}(X) + f^{c}(X)$$
 (224)

$$= \mathbf{1}_{n_g}^{\mathsf{T}} \left(F^P(P_g) + F^Q(Q_g) \right) + \mathbf{1}_{n_y}^{\mathsf{T}} Y + \frac{1}{2} W^{\mathsf{T}} H^w W + C^{w\mathsf{T}} W$$
 (225)

6.4.1 First Derivatives

$$f_X = \frac{\mathscr{Q}f}{\mathscr{Q}X} = f_X^a + f_X^b + f_X^c \tag{226}$$

$$= \begin{bmatrix} 0 & 0 & (F^{P^{\emptyset}})^{\mathsf{T}} & (F^{Q^{\emptyset}})^{\mathsf{T}} & \mathbf{1}_{n_{y}}^{\mathsf{T}} & 0 \end{bmatrix} + \mathcal{BAN}$$
 (227)

6.4.2 Second Derivatives

Lagrangian of the AC OPF 7

Consider the following AC OPF problem formulation, where X is de ned as in (185), f is the generalized cost function described above, and $\mathcal X$ represents the reduced form of X, consisting of only , V, P_g and Q_g , without Y and Z.

$$\min_{X} f(X) \tag{230}$$

subject to

$$G(X) = 0$$
 (231)
 $H(X) \le 0$ (232)

$$H(X) \leq 0 \tag{232}$$

where

$$G(X) = \begin{bmatrix} \Re\{G^s(\mathcal{X})\} \\ \Im\{G^s(\mathcal{X})\} \\ A_E X - B_E \end{bmatrix}$$

 $(X_0) = (X_0) = (X_0$

and

$$H(X) = As 90504_E$$

11.9552 Tf,dJ/257 11.901 Tf

and

$$H_X = \begin{bmatrix} H_X^f & 0 & 0 \\ H_X^t & 0 & 0 \\ & A_I \end{bmatrix} = \begin{bmatrix} H_\Theta^f & H_V^f & 0 & 0 & 0 & 0 \\ H_\Theta^t & H_V^t & 0 & 0 & 0 & 0 \\ & & A_I & & \end{bmatrix}$$
(241)

7.2 Second Derivatives

$$\mathcal{L}_{XX}(X; ;) = f_{XX} + G_{XX}() + H_{XX}()$$
 (242)

where

and