Time Difference and Q Learning

- Introduction to bootstrapped reinforcement learning
- The time difference model
- SARSA for policy improvement
- n-step TD
- n-step SARSA
- On-policy vs. off-policy algorithms
- Introduction to Q-learning
- Double Q-learning

The Reinforcement Learning Agent

Introduction to Bootstrapping RL Algorithms

Model Type	Backup Type	On/Off Policy	On/Off-Line
Bandit Agent	None	On policy	Online
Dynamic Programming	Full	On policy	Offline
Monte Carlo RL	Complete	On policy	Offline
Time Difference RL	Partial	On policy	Online
Q-Learning	Partial	Off policy	Online

Introduction to Bootstrapping RL Algorithms

- Monte Carlo RL uses complete backups
 - MC RL cannot update values until end of an episode
- What is the alternative?
- Reinforcement learning with bootstrapping!
 - Bootstrap algorithms can update online
- On-policy vs. off-policy
 - Basic TD learning is on-policy and updates the policy used for control
 - In off policy Q-learning, agent follows a behavior policy and updates a target policy

Time difference

- Time differing is an algorithm unique to RL
- TD RL uses partial backups
- TD RL uses bootstrapping to update values

$$NewValue = OldValue + LearningRate * ErrorTerm$$

• The **TD error term** is the difference between the return and the state-value:

$$\delta_t = \left[G_t - V_t(S_t) \right]$$

• The TD update is then:

$$V_{t+1}(S_t) = V_t(S_t) + \alpha \left[G_t - V_t(S_t) \right]$$

Time difference

• The TD update is:

$$V_{t+1}(S_t) = V_t(S_t) + \alpha \left[G_t - V_t(S_t) \right]$$

• The one-step TD error:

$$\delta_t = R_{t+1} + V_{t+1}(S_{t+1}) - V_t(S_t)$$

 R_{t+1} = the return for the next time step

 $V_t(S_t)$ = is the state-value at time step t

 $V_{t+1}(S_{t+1})$ = the bootstrap state-value for the successor state, S_{t+1}

Using the one-step bootstrap value for the return gives:

$$V_{t+1}(S_t) = V_t(S_t) + \alpha \left[R_{t+1} + V_{t+1}(S_{t+1}) - V_t(S_t) \right]$$

Time difference

• The one-step TD update is:

$$V_{t+1}(S_t) = V_t(S_t) + \alpha \left[R_{t+1} + V_{t+1}(S_{t+1}) - V_t(S_t) \right]$$

- This TD update algorithm is know as TD(0) since the value update is computed immediately on the step
- The TD(0) backup diagram:
 - s = the starting state
 - a = action in starting state
 - r = the reward on transition to successor state s'
 - compute δ_t using state-value $V_{t+1}(S_{t+1})$ lookup to bootstrap
 - Compute $V_{t+1}(S_t)$
- Compared to DP the TD(0) backup only uses one value: is a partial backup

State-Action-Reward-State-Action; SARSA

- How to construct a policy improvement or control algorithm with time differencing?
- The SARSA(0) algorithm computes **1-step action-value estimates** using the **bootstrap update relation**:

$$Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_t(S_{t+1}, A_{t+1}) - Q_t(S_t, A_t) \right]$$
 Where,

 $Q_t(S_t, A_t)$ = is the action value in state S given action A at step t

 $Q_t(S_{t+1}, A_{t+1}) = \text{action-value of successor action}, A'_{t+1}$, from the successor state, S_{t+1}

 R_{t+1} = is the reward for the next time step.

$$\delta_t = R_{t+1} + \gamma Q_t(S_{t+1}, A_{t+1}) - Q_t(S_t, A_t) = \text{TD error}$$

 α = the learning rate

 γ = discount factor.

State-Action-Reward-State-Action; SARSA

$$Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_t(S_{t+1}, A_{t+1}) - Q_t(S_t, A_t) \right]$$

What does the SARSA backup diagram look like?

- Start in state s
- Take action a
- Receive reward, r, and transition to state s'
- Take action, a', and lookup $Q(S'_{t}, A_{t+1})$
- Compute δ_t
- Find action-value update Q(S_{t+1},A_{t+1})

Multi-Step Time differencing

The TD update is:

$$V_{t+1}(S_t) = V_t(S_t) + \alpha \left[G_t - V_t(S_t) \right]$$

Using the one-step bootstrap value for the return is:

$$G_t = R_{t+1} + \gamma V_t(S_{t+1})$$

• A two-step bootstrap value of the return can be formulated:

$$G_{t:t+2} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V_{t+1}(S_{t+2})$$

• Where $V_{t+n-1}(S_{t+n})$ is the bootstrapping value

Multi-Step Time differencing

Two-step bootstrap of the return value:

$$G_{t:t+2} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V_{t+1}(S_{t+2})$$

• Can generalize to an n-step bootstrap return value:

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n})$$

The state-value update is then:

$$V_{t+n}(S_t) = V_{t+n-1}(S_t) + \alpha \left[G_{t:t+n} - V_{t+n-1}(S_t) \right], \ 0 \le t < T$$

• Where the **n-step TD error** is: $\delta_t = G_{t:t+n} - V_{t+n-1}(S_t)$

Multi-Step Time differencing

- The n-step TD value is intermediate between TD(0) and Monte Carlo
- Advantages of n-step TD state-value:
 - N-step methods have better convergence properties than TD(0)
 - Compared to MC, n-step methods work online
- Disadvantages of n-step TD state-value:
 - N-step TD delays the value update
 - N-step TD has higher variance compared to TD(0)

N-step SARSA for Control

- Can easily formulate a n-step SARSA control algorithm
- Start with the n-step return:

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q_{t+n-1}(S_{t+n}, A_{t+n}), \ n \ge 1, 0 \le t < T - n$$

The action-value update becomes:

$$Q_{t+n}(S_t, A_t) = Q_{t+n-1}(S_t, A_t) + \alpha \left[G_{t:t+n} - Q_{t+n-1}(S_t, A_t) \right], \ 0 \le t < T$$

• Where the TD error is given as, $\delta_t = G_{t:t+n} - Q_{t+n-1}(S_t, A_t)$

N-step SARSA for Control

What do the n-step backup diagrams look like?

On-Policy vs. Off-Policy Control

- So far, we have focused on on-policy control algorithms
 - Agent behavior determined by policy being improved
 - Algorithms use one policy
- But, off-policy control is possible
 - Agent actions determined by behavior policy
 - Learning (policy improvement) performed on target policy

On-Policy vs. Off-Policy Control

- Advantages of off-policy control algorithms
 - Data generated for learning from following behavior policy
 - No specific exploration steps
 - Can provide operational safety
- Disadvantages of off-policy control algorithms
 - Data samples follow behavior policy distribution
 - Some samples of target distribution have low probability
 - Off-policy algorithm generally slower to converge than on-policy
 - Off-policy algorithm has higher variance than on-policy

Off-Policy Control with Q-Learning

- Q-learning is a widely used off-policy control algorithm
- The action-value update is computed as:

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

• Where the TD error is:

$$\delta_t = R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)$$

 max_a = the maximum operator applied to all possible actions in state S_{t+1}

 $Q(S_t, A_t)$ = is the action value in state S given action A

 R_{t+1} = is the reward for the next time step

 α = the learning rate

 γ = discount factor

Off-Policy Control with Q-Learning

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

What does the Q-learning backup diagram look like?

- Agent takes action a
- Transition to state s
- Take action, a', with maximum estimated actionvalue, $max_a Q(S_{t+1}, a)$
- \bullet δt is computed

Off-Policy Control with Q-Learning

Why is Q-learning an off-policy algorithm?

- Actions of on-policy algorithm is determined by policy, $\pi(S_t, A_t)$
- But, Q-learning action is $max_a Q(S_{t+1}, a)$
- Q-learning does not follow policy, and is therefore, off-policy

Double Q-Learning

Q-learning algorithm is biased

- The $max_a Q(S_{t+1}, a)$ operation picks largest action-value
- Small amounts of error in $Q(S_{t+1}, a)$ affects outcome
- Picking largest action-value is an optimistic operation
- Sources of errors in $Q(S_{t+1}, a)$
 - Noise in data e.g. reward
 - Estimates of action-value function more on this later
 - Rounding error
 - etc

Double Q-Learning

Solution to bias in Q-learning algorithm?

- Double Q-learning
- Uses two estimates of action-value, $Q_1(S_{t+1},a)$ and $Q_2(S_t,A_t)$

Estimate of $Q_1(S_{t+1}, a)$ uses action $argmax_a Q_1(S_{t+1}, a)$

$$Q_1(S_t, A_t) = Q_1(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_2(S_{t+1}, argmax_a Q_1(S_{t+1}, a)) - Q_1(S_t, A_t) \right]$$

Estimate of $Q_2(S_t, A_t)$ uses action $argmax_a Q_1(S_{t+1}, a)$

$$Q_2(S_t, A_t) = Q_2(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_1 \left(S_{t+1}, argmax_a Q_2(S_{t+1}, a) \right) - Q_2(S_t, A_t) \right]$$

Each update uses the max value of the other to a create an unbiased estimate