Data Science for Engineers

Week 2

- 1. Are the vectors $\begin{bmatrix} -2\\4 \end{bmatrix}$, $\begin{bmatrix} 7\\-2 \end{bmatrix}$ and $\begin{bmatrix} 3\\-6 \end{bmatrix}$ linearly independent?
 - (a) Yes
 - (b) No

Answer: (b)

- 2. Does the set, $S = \{(1,1), (1,2)\}$ spans \mathbb{R}^2 ?
 - (a) Yes
 - (b) No

Answer: (a)

3. Consider the following system of linear equations of the form Ax = b:

$$2x - 3y + 6z = 14$$

$$x + y - 2z = -3$$

Which among the following are correct?

- (a) $\begin{bmatrix} 1 \\ -4 \\ 0 \end{bmatrix}$ is a solution to Ax = b
- (b) $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ is a solution to Ax = b
- (c) $\begin{bmatrix} 1 \\ -4 \\ 0 \end{bmatrix}$ is a solution to Ax = 0
- (d) $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ is a solution to Ax = 0

Answer: (a, d)

4. Consider the following system of linear equation:

$$x + y + z = -2$$

$$x + 2y - z = 1$$

$$2x + ay + bz = 2$$

- (i) Find the conditions on a and b for which the above system has no solution.
 - (a) 2a + b 6 = 0
 - (b) $a \neq 4, 2a + b 6 = 0$
 - (c) a = 4, b = -2
 - (d) $2a + b 6 \neq 0$

Answer: (b)

- (ii) Find the conditions on a and b for which the above system has a unique solution.
 - (a) 2a + b 6 = 0
 - (b) $a \neq 4, 2a + b 6 = 0$
 - (c) a = 4, b = -2
 - (d) $2a + b 6 \neq 0$

Answer: (d)

- (iii) Find the conditions on a and b for which the above system has infite number of solutions.
 - (a) 2a + b 6 = 0
 - (b) $a \neq 4, 2a + b 6 = 0$
 - (c) a = 4, b = -2
 - (d) $2a + b 6 \neq 0$

Answer: (c)

5. In solving the system Ax = b in the variables x_1, x_2, x_3 and x_4 , Gaussian elimination on the Augmented matrix $[A \mid b]$ led to the following row echelon form

$$\begin{pmatrix}
1 & 0 & 0 & 3 & 2 \\
0 & 1 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 1/3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

- (i) Identify the number of free variable from the above rwo echelon matrix.
 - (a) 0
 - (b) 1
 - (c) 2

(d) 3

Answer: (b)

- (ii) Which among the following is correct for the above system Ax = b?
 - (a) It has infinite number of solutions.
 - (b) It has a unique solution.
 - (c) It has no solution.

Answer: (a)

- 6. For what values of a are matrix $A = \begin{bmatrix} a & 1 \\ -2 & a+3 \end{bmatrix}$ not invertible?
 - (a) a = 1
 - (b) a = -2
 - (c) a = -1
 - (d) a = 2

Answer: (b, c)

- 7. Which among the following is true for the determinant of a matrix?
 - (a) The determinant of a diagonal matrix is the product of its diagonal entries.
 - (b) If one row of a matrix is a scalar multiple of another, the determinant is 1.
 - (c) If one row of a matrix is a scalar multiple of another, the determinant is 0.
 - (d) The determinant of a permutation matrix can only be 1.

Answer: (a, c)

- 8. Which among the following are the eigenvalues of matrix $A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{pmatrix}$?
 - (a) 1, 3, -3
 - (b) 1, 3, 3
 - (c) -1, 3, 3
 - (d) 1, -3, -3

Answer: (d)

9. Find the nullity of $A = \begin{bmatrix} 1 & -3 & -2 & 4 \\ 1 & -3 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$.

Answer: 2

- (a) 9
- (b) 0
- (c) 81
- (d) 18

Answer: (b)