

Mathematical foundations for machine learning

July 29, 2019

Machine Learning - Learning from data

Approach:

- 1 Extraction of features and representation as vectors
- **2** Application of methods from linear algebra, stochastics, ..., to learn from data
- 3 Application of learned model

Example: *k*-nearest-neighbours-classification

- training data and corresponding labels are given
- a previously unknown data point (test data) ϑ receives the label of its k nearest neighbors

A set of training data is given (red and blue). Using $k{\rm NN}$ to classify the previously unknown data point (green). Which label will be assigned for $k\in 1,2,5$?

Table of Contents

- 1 Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- **4** Diagonalizable Matrices
- **5** Symmetric Matrices
- 6 Differential Calculus

Vector Spaces

Definition. Let K be a field. A set V together with two operations:

vector addition

$$\dot{+}: V \times V \rightarrow V$$

$$(\vartheta,\omega)\mapsto\vartheta\dotplus\omega$$

and scalar multiplication

$$\cdot: K \times V \to V$$

$$(\lambda, \vartheta) \mapsto \lambda \cdot \vartheta$$

is called vector space, if

- $(V, \dot{+})$ forms an abelian group with an identity element called zero vector $\mathbf{0}$.
- $\forall \vartheta, \omega \in V$ and $\forall \lambda, \mu \in K$ it is the case that:
 - i) $\lambda(\mu\vartheta) = (\lambda\mu)\vartheta$ (associative)
 - ii) $1\vartheta = \vartheta$ (identity element)
 - iii) $\lambda(\vartheta + \omega) = \lambda\vartheta + \lambda\omega$, $(\lambda + \mu)\vartheta = \lambda\vartheta + \mu\vartheta$ (distributive)

Linear Combination

Definition. Let V be a K-vector space, $\vartheta_1, \ldots, \vartheta_n \in V$, $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_n \in K$.

Then $\forall \vartheta \in V$ that can be represented as

$$\vartheta = \lambda_1 \vartheta_1 + \ldots + \lambda_n \vartheta_n,$$

 ϑ is defined as a linear combination of $\vartheta_1, \ldots, \vartheta_n$.

Linear Independence

Definition. Let V be a K-vector space. A set of vectors $\vartheta_1, \ldots, \vartheta_n \in V$ is called linearly independent, if from

$$\lambda_1, \ldots, \lambda_n \in K$$
 and $\lambda_1 \vartheta_1 + \ldots + \lambda_n \vartheta_n = 0$

it follows that

$$\lambda_1 = \ldots = \lambda_n = 0.$$

If no vector in the set is a linear combination of the other vectors.

Table of Contents

- 1 Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- 4 Diagonalizable Matrices
- **5** Symmetric Matrices
- 6 Differential Calculus

Inner Product

Definition. Let V be a \mathbb{R} -vector space. An inner product on V defines a mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ with the following properties:

- i) bilinear: $\langle \lambda \vartheta, \omega \rangle = \lambda \langle \vartheta, \omega \rangle = \langle \vartheta, \lambda \omega \rangle$, $\langle \vartheta + \upsilon, \omega \rangle = \langle \vartheta, \omega \rangle + \langle \upsilon, \omega \rangle$, $\langle \vartheta, \omega + \upsilon \rangle = \langle \vartheta, \omega \rangle + \langle \vartheta, \upsilon \rangle$
- ii) symmetric: $\langle \vartheta, \omega \rangle = \langle \omega, \vartheta \rangle$
- iii) positive definite: $\langle \vartheta, \vartheta \rangle \geq 0$ and $\langle \vartheta, \vartheta \rangle = 0 \Leftrightarrow \vartheta = 0$

$$\forall \upsilon, \vartheta, \omega \in V \text{ and } \lambda \in \mathbb{R}$$

Inner Product: Example

• dot product on \mathbb{R}^n :

$$\langle \mathbf{x}, \mathbf{y} \rangle := x_1 y_1 + \ldots + x_n y_n = \mathbf{x}^{\top} \mathbf{y}$$
 $(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n)$

• inner product on \mathbb{R}^n with $\lambda_1, \ldots, \lambda_n \geq 0$:

$$\langle \mathbf{x}, \mathbf{y} \rangle := \lambda_1 x_1 y_1 + \ldots + \lambda_n x_n y_n \qquad (\mathbf{x}, \mathbf{y} \in \mathbb{R}^n)$$

• inner product on $\mathcal{F} = L_2(X) = \{f: X \to \mathbb{R} \mid \int_X f(x)^2 dx < \infty \}, \text{ the space of quadratic integrable functions on a compact } X \subset \mathbb{R}^n$

$$\langle f, g \rangle := \int_{Y} f(x)g(x)dx \qquad (f, g \in \mathcal{F})$$

Norm - Length of a vector

Definition. Let V be a $\mathbb{R}-$ vector space. A **norm** is a mapping $\|\cdot\|:V\to\mathbb{R}^+$ with the following properties

- i) $\|\vartheta\| \ge 0$ and $\|\vartheta\| = 0 \Leftrightarrow \vartheta = 0$
- ii) $\|\vartheta + \omega\| \le \|\vartheta\| + \|\omega\|$ (triangle inequality)
- **iii)** $\|\lambda\vartheta\| = |\lambda|\|\vartheta\|$

$$\forall \vartheta, \omega \in V, \ \lambda \in \mathbb{R}$$

examples on \mathbb{R}^n :

- 2-norm $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- 1-norm $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- max-norm $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

1. We can generalize these norms to the p-norm

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

For p=1 we get the taxicab norm, for p=2 we get the Euclidean norm.

Show that as p approaches ∞ the p-norm approaches the infinity norm or maximum norm.

$$\lim_{p\to\infty} \|\mathbf{x}\|_p = \max_i |x_i|$$

Hint: take lower and upper bounds.

1. In the xy-plane sketch all points for which the 2-Norm is 1.

$$C_2 := \{(x,y)^T \in \mathbb{R}^2 | \|(x,y)^T\|_2 = x^2 + y^2 = 1\}.$$

2. Sketch all points for which the 1-Norm is 1.

$$C_1 := \{(x, y)^T \in \mathbb{R}^2 | \|(x, y)^T\|_1 = |x| + |y| = 1\}.$$

3. Sketch all points for which the ∞ -Norm is 1.

$$C_{\infty} := \{(x, y)^T \in \mathbb{R}^2 | \|(x, y)^T\|_{\infty} = \max(|x|, |y|) = 1\}.$$

Euclidean Vector Spaces

Definition. A \mathbb{R} -vector space together with an inner product $(V, \langle \cdot, \cdot \rangle)$ is defined as an euclidean vector space.

In an euclidean vector space the norm is introduced by the euclidean norm:

$$\|\cdot\|:V\to\mathbb{R}^+$$
 $\|v\|=\sqrt{\langle v,v\rangle}$

Orthogonal Vectors

Definition. Two vectors ϑ, ω of an euclidean vector space are called orthogonal to each other $(\vartheta \perp \omega)$ if $\langle \vartheta, \omega \rangle = 0$.

Definition. A set of vectors $\vartheta_1, \dots, \vartheta_n$ of an euclidean vector space builds an **orthonormal set** if $\|\vartheta_i\| = 1 \forall i$ and $\vartheta_i \perp \vartheta_j$ for $i \neq j$.

Table of Contents

- 1 Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- 4 Diagonalizable Matrices
- **5** Symmetric Matrices
- 6 Differential Calculus

Matrices

Definition. A real $m \times n$ matrix is an array of $m \cdot n$ elements of \mathbb{R} with the following pattern:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}$$

where $a_{i,j}$ are the coefficients of the matrix.

Imagine the \mathbb{R}^2 space with unit vectors $i = (1,0)^T$ and $j = (0,1)^T$

• What do these matrices do to space:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1.5 & 0 \\ 0 & 2 \end{pmatrix}$$

• What matrices correspond to these transformations

Determinant

Theorem and Definition. There exists exactly one mapping $\det : \mathbb{R}^{n \times n} \to \mathbb{R}, \ A \mapsto \det(A)$ with

- i) det is linear in each row (in each column)
- ii) If the (column-) rank is smaller than n, the det(A) = 0
- iii) $\det(I_n) = 1$

This mapping is called determinant

Determinant

The determinant of a quadratic matrix is a number. What does it mean?

- absolute value: the volume of a parallelotope spannend by the row/column vectors of the matrix
- sign: orientation of the parallelotope

Imagine the \mathbb{R}^2 space with unit vectors $i = (1,0)^T$ and $j = (0,1)^T$

What are the deterinantes of the matrice that transform space in the following ways?

Matrix Examples

Determinant

Let $A, B \in \mathbb{R}^{n \times n}$ be two quadratic matrices and $\lambda \in \mathbb{R}$

- If A is a triangle matrix, then the determinant is the product of the elements along the main diagonal of A.
- A is invertible if and only if $\det A \neq 0$.
- $\det AB = \det A \det B$
- $\det A^{-1} = (\det A)^{-1}$
- $\det A = \det A^T$
- $\det \lambda A = \lambda^n \det A$

•
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Rank

Definition. The column/row rank of a matrix is the maximum number of linearly independent columns/rows.

Theorem. column rank = row rank

Matrix Inverse

Definition. A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible (regular, non-singular), if there is another matrix A^{-1} , such that

$$AA^{-1} = A^{-1}A = I_n.$$

Useful properties:

- A is invertible if and only if rank(A) = n
- $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$
- $\bullet \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$

- **3.** For every square $n \times n$ Matrix A:
 - rank(A) = $n \Rightarrow A$ is invertible, but there are invertible A with rank(A) $\neq n$
 - A is invertible \Rightarrow rank(A) = n, but there is an A with rank A = n, which is not invertible.
 - \blacksquare rank $A = n \Leftrightarrow A$ is invertible
- **4.** The rank of the matrix $\begin{pmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{pmatrix}$ is

3

Trace

Definition and Theorem. The trace of a quadratic matrix $C \in \mathbb{R}^{n \times n}$ is the sum of its elements in the main diagonal.

$$\operatorname{Tr}(C) = \sum_{i}^{n} c_{ii}$$

for $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$

$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$

Matrix Transpose

Definition. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The matrix transpose of A is defined as:

$$A^{\top} = (a_{ij})^{\top} = a_{ji} \text{ for } \begin{cases} i = 1, \dots, m \\ j = 1, \dots, n. \end{cases}$$

It holds that:

i)
$$(A + B)^{\top} = A^{\top} + B^{\top}$$

ii)
$$(\lambda \cdot A)^{\top} = \lambda \cdot A^{\top}$$

iii)
$$(A \cdot C)^{\top} = C^{\top} \cdot A^{\top}$$

Special Matrices

Let $A \in \mathbb{R}^{n \times n}$ be a quadratic, real matrix.

- A is orthogonal if AA^T = A^TA = I_n.
 Orthogonal matrices represent reflections and rotations in space.
- A is symmetric if $A = A^T$.
- A is anti symmetric if $A = -A^T$.
- A is diagonal if all elements except for those in the main diagonal are 0.

Let $R \in \mathbb{R}^{n \times n}$ be an orthogonal matrix that is to say $RR^T = R^TR = I$. Show that the dot product of two vectors is invariant to a multiplication with R which means that for all $\mathbf{x}, \mathbf{y} \in R^n$ it is the case that

$$\langle R\mathbf{x}, R\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$
.

Table of Contents

- 1 Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- 4 Diagonalizable Matrices
- **5** Symmetric Matrices
- **6** Differential Calculus

Eigenvalues & Eigenvectors

Definition. An eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ to an eigenvalue $\lambda \in \mathbb{C}$ is a vector $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$ such that

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Calculation

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then for every eigenvector \mathbf{v} it holds that

$$A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow (A - \lambda I)\mathbf{v} = 0$$

- $\Rightarrow (A \lambda I)$ has to be singular
 - **1.** Calculate the eigenvalues as the roots of the characteristic polynomial $P(\lambda) := \det(A \lambda I)$.
 - **2.** Find for every real eigenvalue λ_i a basis of the vector space $\{\mathbf{v} \in \mathbb{R}^n | (A \lambda_i I)\mathbf{v} = 0\}.$

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix:

- there is at most *n* real eigenvalues and at most *n* linearly independent eigenvectors.
- there can be less than *n* linearly independent eigenvectors, even if there are *n* real roots of the characteristic polynomial.
- pairwise eigenvectors which differ in their corresponding eigenvalues are linearly independent.
- A has n differing eigenvalues ⇒ A has n linearly independent eigenvectors.

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix and $p \in \mathbb{N}$. Then A and A^p will have

- the same eigenvectors and eigenvalues
- the same eigenvalues, but not necessarily the same eigenvectors
- the same eigenvectors, but not necessarily the same eigenvalues.

Table of Contents

- 1 Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- **4** Diagonalizable Matrices
- **5** Symmetric Matrices
- 6 Differential Calculus

Diagonalizable Matrices

Definition. A square matrix $A \in \mathbb{R}^{n \times n}$ is called diagonalizable, if there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$, such that

$$\Lambda = S^{-1}AS.$$

 $A = S\Lambda S^{-1}$ is also called eigendecomposition of A.

considerable properties:

- A has n linearly independent eigenvectors

 ⇔ A diagonalizable
- the columns of S are the eigenvectors of A, the diagonal of Λ contains the corresponding eigenvalues.

Properties of diagonalizable matrices

Let $A \in \mathbb{R}^{n \times n}$ be diagonalizable with $A = S \Lambda S^{-1}$.

• all eigenvalues \neq 0 \Leftrightarrow A is invertible and

$$A^{-1} = (S \Lambda S^{-1})^{-1} = S \Lambda^{-1} S^{-1}$$

• simplify diagonalization by exponentiation of *A*:

$$A^p = S\Lambda^p S^{-1}$$
 für $p \in \mathbb{N}$

- the determinant is the product of the eigenvalues.
- the trace is the sum of the eigenvalues.

Table of Contents

- Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- 4 Diagonalizable Matrices
- **6** Symmetric Matrices
- **6** Differential Calculus

Symmetric Matrices

For every symmetric matrix $A \in \mathbb{R}^{n \times n}$ it is the case:

- its eigenvalues are real.
- there are always *n* orthogonal eigenvectors.
- A can be decomposed into

$$A = U \Lambda U^T$$

where U is an orthogonal matrix with eigenvectors as columns and Λ is the diagonal matrix with the corresponding eigenvalues on its diagonal.

Positive Definiteness

Definition. a square matrix $A \in \mathbb{R}^{n \times n}$ is called

```
positive definite if \mathbf{v}^T A \mathbf{v} > 0 positive semidefinite if \mathbf{v}^T A \mathbf{v} \geq 0 negative definite if \mathbf{v}^T A \mathbf{v} < 0 negative semidefinite if \mathbf{v}^T A \mathbf{v} \leq 0 \forall \mathbf{v} \in \mathbb{R}^n \setminus \{0\}
```

Theorem. For every symmetric matrix A:

```
A positive definite \Leftrightarrow all eigenvalues > 0 \Leftrightarrow all eigenvalues \geq 0 \Leftrightarrow all eigenvalues \leq 0 \Leftrightarrow all eigenvalues < 0
```


 Many important equations for calculating matrices:
 K. B. Petersen, M. S. Pedersen (2007) The Matrix Cookbook.

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274

Table of Contents

- Euclidean Vector Spaces
- 2 Matrices
- 3 Eigenvalues & Eigenvectors
- 4 Diagonalizable Matrices
- **5** Symmetric Matrices
- **6** Differential Calculus

Definition. $f : \mathbb{R} \supset J \to \mathbb{R}$ is called differentiable in $x_0 \in J$, if

$$f'(x) := \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$
 exists in \mathbb{R}

f'(x) is called derivative of f in x. f is differentiable on J, if it is differentiable for all $x \in J$. alternatively: h := y - x

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example. $n \in \mathbb{N}, f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} (2x + h)$$

$$= 2x$$

Geometric Interpretation.

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} \frac{f(x) - f(x_0)}{f(x) - f(x_0)}$$

slope of secant

slope of tangent

Rules of Differentiation I

Theorem. Let $f,g:V\to\mathbb{R}$ in $x\in V$ be differentiable functions and $\lambda\in\mathbb{R}$. Then the functions $f+g,\lambda f,f\cdot g$ in x are differentiable and the following rules apply:

i) linearity

$$(f+g)'(x) = f'(x) + g'(x)$$
$$(\lambda f)'(x) = \lambda f'(x)$$

ii) product rule

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$

(we can also derive the rule for integration by parts from this:)

$$[f(x) \cdot g(x)]_a^b = \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx$$

Rules of Differentiation II

Theorem. If it is also the case that $g(\varphi) \neq 0 \ \forall \varphi \in V$, it follows that $(f/g): V \to \mathbb{R}$ in x is differentiable and the following rule applies:

iii) quotient rule

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

or just apply product rule (and chain rule)

$$(f(x)g(x)^{-1})' = f'(x)g(x)^{-1} + f(x)(-1)g(x)^{-2}g'(x)$$
$$= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2}$$

Rules of Differentiation III

Theorem. Let $f: V \to \mathbb{R}$ and $g: W \to \mathbb{R}$ be functions with $f(V) \subset W$, where f is differentiable in $x \in V$ and g is differentiable in $y := f(x) \in W$. Then the composite function $g \circ f: V \to \mathbb{R}$ is differentiable in x and the following rule applies:

iv) chain rule

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

Exercise 9

We consider two functions f and g which transform an input vector $\mathbf{x} = (x_1, \dots, x_d)^{\top} \in \mathbb{R}^d$ into a scalar: $f(\mathbf{x}) = \mathbf{u}^{\top}\mathbf{x}, \ \mathbf{u} = (u_1, \dots, u_d)^{\top} \in \mathbb{R}^d$ and $g(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{x}$.

- Compute the partial derivative of f with respect to one entry x_j $(j \in \{1, 2, \dots, d\})$, that is $\frac{\partial f(\mathbf{x})}{\partial x_j}$
- Compute the gradient $\nabla g(\mathbf{x}) = \left(\frac{\partial g(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial g(\mathbf{x})}{\partial x_d}\right)^{\top}$ for g.