Álgebra homológica, día 10

Alexey Beshenov (cadadr@gmail.com)

19 de agosto de 2016

1. Resoluciones proyectivas

1.1. Definición. Sea **A** una categoría abeliana. Se dice que en **A** hay **suficientes objetos proyectivos** si para cada $M \in \mathbf{A}$ existe un epimorfismo $P \twoheadrightarrow M$ desde algún objeto proyectivo P.

Esto significa que cada objeto de la categoría es un cociente de un objeto proyectivo: $M \cong P/K$ donde K es el núcleo de un epimorfismo $P \twoheadrightarrow M$. En particular, en la categoría R-**Mód** hay suficientes objetos proyectivos:

1.2. Observación. Para cada R-módulo M existe un epimorfismo P ->> M desde algún R-módulo proyectivo.

Demostración. Para cada módulo M sea X un conjunto de sus generadores. Podemos considerar el módulo libre $R \langle X \rangle$ y el epimorfismo correspondiente $R \langle X \rangle \twoheadrightarrow M$ (que simplemente aplica $x \in X$ a x). No importa si M no es finitamente generado, por ejemplo siempre se puede tomar X = M. Cada modulo libre es proyectivo.

1.3. Definición. Sea $M \in \mathbf{A}$ un objeto. Entonces su **resolución proyectiva** es un complejo P^{\bullet} formado por objetos proyectivos, con cuasi-isomorfismo de complejos $\epsilon \colon P^{\bullet} \to M$, donde M es el complejo correspondiente concentrado en el grado 0:

$$\cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^{0} \longrightarrow 0 \longrightarrow \cdots$$

$$\text{cuasi-iso} \bigvee_{\epsilon} \epsilon$$

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow \cdots$$

Se ve que es la misma cosa que una sucesión exacta

$$\cdots \to P^{-2} \to P^{-1} \to P^0 \xrightarrow{\epsilon} M \to 0$$

donde cada P^n es proyectivo. La numeración P^0 , P^{-1} , P^{-2} , ... es un poco rara y sirve solo para que el complejo P^{\bullet} sea co-homológico (con diferenciales que incrementan el grado).

1.4. Ejemplo. Cada grupo abeliano A puede ser representado como F/R donde F es un grupo abeliano libre y R es su subgrupo de relaciones (que es también libre, como subgrupo de un grupo libre). Por lo tanto, los \mathbb{Z} -módulos tienen resoluciones proyectivas muy sencillas de la forma

$$0 \to R \to F \to A \to 0$$

Por ejemplo, $\mathbb{Z}/n\mathbb{Z}$ no es proyectivo, pero tiene una resolución proyectiva

$$0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

•

La cohomología $H^n(P^{\bullet})$ es, por la definición, poco interesante:

$$H^n(P^{\bullet}) \cong \begin{cases} M, & n = 0, \\ 0, & n \neq 0. \end{cases}$$

Sin embargo, en un rato las resoluciones nos van a servir para calcular funtores derivados. Antes de todo, tenemos que ver que resoluciones proyectivas siempre existen y, en cierto sentido, son únicas.

1.5. Observación. Si A es una categoría abeliana con suficientes objetos proyectivos (por ejemplo, la categoría de R-módulos), entonces para cada objeto $M \in A$ existe una resolución proyectiva.

Demostración. Vamos a construir paso a paso una sucesión exacta

$$\cdots \to P^{-2} \xrightarrow{d^{-2}} P^{-1} \xrightarrow{d^{-1}} P^0 \xrightarrow{\epsilon} M \to 0$$

Primero, escojamos un epimorfismo $\epsilon\colon P^0 \twoheadrightarrow M$ desde un objeto proyectivo P^0 . Este epimorfismo tiene algún núcleo $\iota^0\colon \ker \epsilon \rightarrowtail P^0$. Luego, existe un epimorfismo $\epsilon^{-1}\colon P^{-1} \twoheadrightarrow \ker \epsilon$, donde P^{-1} es otro módulo libre. Este epimorfismo también tiene algún núcleo, etcétera. Así inductivamente construimos un diagrama

$$\ker \epsilon^{-2} \qquad \qquad \ker \epsilon$$

$$e^{-3} \qquad \qquad e^{-1} \qquad \qquad e^{0}$$

$$\cdots \qquad P^{-3} \qquad \qquad P^{-2} \qquad \qquad P^{-2} \qquad \qquad P^{-1} \qquad \qquad P^{-1} \qquad \qquad P^{0} \qquad \stackrel{\epsilon}{\longrightarrow} \qquad M$$

$$\ker \epsilon^{-1} \qquad \qquad \ker \epsilon^{-1}$$

Definamos $d^n := \iota^{n+1} \circ \epsilon^n$. Se ve que todo esto da una resolución de M.

- **1.6. Ejercicio.** Termine la demostración: verifique que la sucesión es exacta ("im $d^{n-1} = \ker d^n$ " para cada n; es una caza de diagramas sencilla).
- **1.7. Ejercicio.** Sea P un objeto proyectivo. Recuerde que esto es equivalente a la siguiente propiedad de extensión:

$$\begin{array}{c}
P \\
\downarrow \\
M \longrightarrow N
\end{array}$$

0) Deduzca la siguiente propiedad: si P es proyectivo y tenemos un diagrama conmutativo

$$P = 0$$

$$M' \longrightarrow M \longrightarrow M'$$

donde la fila $M' \to M \to M''$ es exacta y la composición $P \to M \to M''$ es el morfismo cero, entonces existe un morfismo $P \to M'$ tal que el diagrama conmuta:

1) Sea P un objeto proyectivo. Supongamos que en el diagrama

la fila $M' \to M \to M''$ es exacta y además $d^2 \circ f \circ d = 0$. Entonces existe un morfismo $f' \colon P \to M'$ tal que $f \circ d = d^1 \circ f'$:

2) Sea P un objeto proyectivo. Supongamos que en el siguiente diagrama (¡no necesariamente conmutativo!) tenemos $d^2 \circ h \circ d = d^2 \circ s$ y la fila $M' \to M \to M''$ es exacta:

Entonces existe un morfismo $h': P \to M'$ tal que

$$d^1 \circ h' + h \circ d = s$$

1.8. Proposición. Sea $P^{\bullet} M$ una resolución proyectiva de M y $Q^{\bullet} M$ otro complejo exacto (en particular, $Q^{\bullet} M$ puede ser una resolución proyectiva de N). Entonces cada morfismo f M N induce un morfismo de complejos $f^{\bullet} P^{\bullet} Q^{\bullet}$ tal que $f_0^* H^0(P^{\bullet}) H^0(Q^{\bullet})$ coincide con f M N. Además, f^{\bullet} es único salvo homotopía.

Demostración. Tenemos el siguiente diagrama conmutativo donde las filas son exactas:

$$\cdots \longrightarrow P^{-2} \xrightarrow{d^{-2}} P^{-1} \xrightarrow{d^{-1}} P^{0} \xrightarrow{\epsilon} M \longrightarrow 0$$

$$\downarrow f$$

$$\cdots \longrightarrow Q^{-2} \xrightarrow{\partial^{-2}} Q^{-1} \xrightarrow{\partial^{-1}} Q^{0} \xrightarrow{\epsilon'} N \longrightarrow 0$$

El punto 1) del ejercicio 1.7 nos permite construir inductivamente morfismos $f^n \colon P^n \to Q^n$ que dan el diagrama conmutativo

$$\cdots \longrightarrow P^{-2} \xrightarrow{d^{-2}} P^{-1} \xrightarrow{d^{-1}} P^{0} \xrightarrow{\epsilon} M \longrightarrow 0$$

$$\downarrow f^{-2} \qquad \downarrow f^{-1} \qquad \downarrow f^{0} \qquad \downarrow f$$

$$\downarrow f \qquad \downarrow f$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$\downarrow f \qquad$$

Este f^{\bullet} no es necesariamente único, pero si existe otro morfismo de complejos $g^{\bullet} : P^{\bullet} \to Q^{\bullet}$, entonces podemos aplicar el punto 2) del ejercicio 1.7 a los morfismos $s^n := f^n - g^n$ para obtener h^n tales que

$$s^n = h^{n+1} \circ d^n + \partial^{n-1} \circ h^n.$$

1.9. Ejercicio. *Provea los detalles necesarios.*

1.10. Corolario. La resolución proyectiva $P^{\bullet} \rightarrow M$ está definida de modo único salvo homotopía de complejos.

Demostración. Sean $P^{\bullet} woheadrightarrow M$ y $Q^{\bullet} woheadrightarrow M$ dos resoluciones proyectivas de M. Entonces existen morfismos de complejos $f^{\bullet} \colon P^{\bullet} \to Q^{\bullet}$ y $g^{\bullet} \colon Q^{\bullet} \to P^{\bullet}$ que inducen en H^{0} el morfismo $\mathrm{id}_{M} \colon M \to M$. Luego, las composiciones $g^{\bullet} \circ f^{\bullet}$ y $f^{\bullet} \circ g^{\bullet}$ deben ser equivalentes por una homotopía de cadenas a los morfismos identidades $P^{\bullet} \to P^{\bullet}$ y $Q^{\bullet} \to Q^{\bullet}$.

2. Resoluciones inyectivas

2.1. Definición. Sea **A** una categoría abeliana. Se dice que en **A** hay **suficientes objetos inyectivos** si para cada $M \in \mathbf{A}$ existe un monomorfismo $M \mapsto I$ hacia algún objeto inyectivo I.

Esto significa que cada objeto de la categoría es un sub-objeto de un objeto invectivo: $M \subset I$.

2.2. Hecho. Hay suficientes R-módulos inyectivos; es decir, para cada R-módulo M existe un R-módulo inyectivo I tal que M es un submódulo de I.

Este resultado es un poco más técnico que la existencia de suficientes proyectivos en *R***-Mód**, así que vamos a postponer su demostración a la siguiente sección.

2.3. Definición. Para un objeto $M \in \mathbf{A}$ su **resolución inyectiva** es un complejo I^{\bullet} formado por objetos inyectivos, con cuasi-isomorfismo de complejos $\iota \colon M \to I^{\bullet}$:

$$\cdots \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \downarrow \text{cuasi-iso}$$

$$\cdots \longrightarrow 0 \longrightarrow I^0 \longrightarrow I^1 \longrightarrow I^2 \longrightarrow \cdots$$

Se ve que esto corresponde a una sucesión exacta

$$0 \to M \xrightarrow{\iota} I^0 \to I^1 \to I^2 \to \cdots$$

donde I^n son invectivos.

2.4. Ejemplo. Z no es un Z-módulo inyectivo, pero tiene una resolución inyectiva

$$0 \to \mathbb{Z} \to \mathbb{Q} \twoheadrightarrow \mathbb{Q}/\mathbb{Z} \to 0$$

Los grupos \mathbb{Q} y \mathbb{Q}/\mathbb{Z} son divisibles y por lo tanto inyectivos.

2.5. Observación. Si **A** es una categoría abeliana con suficientes objetos inyectivos (por ejemplo, la categoría de R-módulos), entonces para cada objeto M existe una resolución inyectiva.

Demostración. Podemos usar la construcción similar a la de 1.5:

2.6. Ejercicio. Provea los detalles a la demostración de arriba. Verifique que la sucesión obtenida es exacta ("im $d^n = \ker d^{n+1}$ " para cada n).

Como en el caso de las resoluciones proyectivas, las resoluciones inyectivas son únicas salvo homotopía:

2.7. Proposición. Sean $M \rightarrow I^{\bullet}$ y $N \rightarrow J^{\bullet}$ algunas resoluciones inyectivas. Entonces cada morfismo de complejos $f \colon M \rightarrow N$ induce un morfismo $f^{\bullet} \colon I^{\bullet} \rightarrow J^{\bullet}$ tal que $f_*^0 \colon H^0(I^{\bullet}) \rightarrow H^0(J^*)$ coincide con $f \colon M \rightarrow N$. Este f^{\bullet} es único salvo homotopía.

En particular, resolución inyectiva $M \rightarrow I^{\bullet}$ está definida de modo único salvo homotopía de complejos.

3. Suficientes *R*-módulos inyectivos

Como hemos visto, hay suficientes R-módulos proyectivos: para cada R-módulo M existe un R-módulo proyectivo P junto con un epimorfismo P M. La demostración era muy fácil porque se podía considerar el R-módulo libre apropiado $R \langle X \rangle$. La situación con módulos inyectivos es más sutil: no es tan obvio cómo a partir de un R-módulo M se puede construir un R-módulo inyectivo I tal que $M \subset I$ es su submódulo. Hay dos métodos diferentes para demostrar que hay suficientes inyectivos: uno es construirlos directamente y otro es demostrar que la categoría R-**Mód** satisface ciertos axiomas adicionales que se tratan de productos infinitos (les recuerdo que los axiomas básicas de categorías abelianas se tratan solo de productos finitos $M \oplus N$) y usar un teorema general del artículo de Tohoku de Grothendieck. El último método fue descubierto para demostrar que la categoría de haces de R-módulos tiene suficientes objetos inyectivos (y en general no tiene suficientes objetos proyectivos). Para nuestros objetivos va a ser suficiente el método explícito porque no nos interesan otras categorías abelianas, sino solamente la de R-módulos.

3.1. Definición. Si *M* es un *R*-módulo, sea

$$\widehat{M} := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$$

el grupo de homomorfismos de grupos abelianos $f: M \to \mathbb{Q}/\mathbb{Z}$ con acción de R definida por $(r \cdot f)(x) := f(r \cdot x)$.

 \mathbb{Q}/\mathbb{Z} es un grupo abeliano inyectivo, lo que significa que el funtor contravariante $\mathrm{Hom}_{\mathbb{Z}}(-,\mathbb{Q}/\mathbb{Z})$ es exacto (visto como un funtor con valores en \mathbf{Ab} o en R- $\mathbf{Mód}$, gracias a la estructura de R- $\mathbf{módulo}$ sobre $\mathrm{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$ definida arriba). Entonces tenemos la siguiente

3.2. Observación. *Tenemos un funtor exacto contravariante*

$$\widehat{\cdot}$$
: R -Mód $^{\circ} \rightarrow R$ -Mód.

Notamos que tenemos un isomorfismo natural en M

$$\widehat{M} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{\underline{Hom}}_{\mathbb{R}}(M, \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})),$$

(es decir, isomorfismo de funtores $\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{Q}/\mathbb{Z}) \cong \operatorname{\underline{Hom}}_{\mathbb{R}}(-,\operatorname{Hom}_{\mathbb{Z}}(\mathbb{R},\mathbb{Q}/\mathbb{Z}))$), lo que significa que $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{R},\mathbb{Q}/\mathbb{Z})$ es un \mathbb{R} -módulo inyectivo.

3.3. Observación. Si $M \neq 0$, entonces $\widehat{M} \neq 0$. Es decir, si $M \neq 0$, entonces existe un morfismo de grupos abelianos no trivial $M \to \mathbb{Q}/\mathbb{Z}$.

Demostración. Si $M \neq 0$, entonces M contiene un subgrupo abeliano cíclico no trivial $M' \subset M$, donde $M' \cong \mathbb{Z}$ o $\mathbb{Z}/n\mathbb{Z}$. Luego, como el grupo \mathbb{Q}/\mathbb{Z} es inyectivo, el monomorfismo $M' \mapsto M$ induce un epimorfismo $\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) \twoheadrightarrow \operatorname{Hom}_{\mathbb{Z}}(M',\mathbb{Q}/\mathbb{Z})$. Entonces es suficiente encontrar algún homomorfismo no trivial $\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ o $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$. En el primer caso, tenemos $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z}$, y entonces hay un montón de homomorfismos no triviales; en el segundo caso $1 \mapsto [1/n]$ define correctamente un homomorfismo no trivial. ■

El funtor $\widehat{\cdot}$: R-Mód \rightarrow R-Mód es exacto y contravariante, de donde el funtor $\widehat{\cdot}$ es exacto covariante R-Mód \rightarrow R-Mód. Para cada M consideremos el morfismo de evaluación

^{*}Como siempre, si R no es conmutativo, la acción correcta es por la derecha: para un R-módulo izquierdo M el R-módulo \widehat{M} es naturalmente derecho.

$$\eta_M \colon M \to \widehat{\widehat{M}} = \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}), \mathbb{Q}/\mathbb{Z}),
x \mapsto (f \mapsto f(x)).$$

Se ve que estos morfismos son naturales: cada morfismo de R-módulos $f \colon M \to N$ induce un diagrama conmutativo

$$M \xrightarrow{\eta_{M}} \widehat{\widehat{M}}$$

$$f \downarrow \qquad \qquad \downarrow \widehat{\widehat{f}}$$

$$N \xrightarrow{\eta_{N}} \widehat{\widehat{N}}$$

3.4. Observación. Para cada R-módulo M el morfismo natural $\eta_M \colon M \to \widehat{\widehat{M}}$ es mono.

Demostración. Sea $i: K \to M$ el núcleo de η_M . Tenemos que ver que K = 0. Gracias a 3.3, es suficiente demostrar que $\widehat{K} = 0$. El funtor $\widehat{\hat{\cdot}}$ es exacto, y entonces induce un monomorfismo $\widehat{\hat{i}}: \widehat{\widehat{K}} \to \widehat{\widehat{M}}$. Tenemos un diagrama conmutativo

$$\begin{array}{ccc}
K & \xrightarrow{\eta_K} & \widehat{\widehat{K}} \\
\downarrow & & & \downarrow \\
i & & & \downarrow \widehat{\widehat{i}} \\
M & \xrightarrow{\eta_M} & \widehat{\widehat{M}}
\end{array}$$

Tenemos $\widehat{\hat{i}} \circ \eta_K = \eta_M \circ i = 0$ y $\widehat{\hat{i}}$ es mono, y entonces $\eta_K = 0$. Pero esto implica que $\widehat{K} = 0$. De hecho, si $\widehat{K} \neq 0$, de donde existe un morfismo $f \colon K \to \mathbb{Q}/\mathbb{Z}$ tal que $f(x) \neq 0$ para algún $x \in K$. Pero en este caso $\eta_K(x)(f) \neq 0$ que contradice el hecho que $\eta_K = 0$.

Ahora estamos listos para demostrar que en la categoría de *R*-módulos hay suficientes objetos inyectivos:

3.5. Proposición. Para cualquier R-módulo M existe un monomorfismo $M \rightarrow I$ donde I es un R-módulo inyectivo.

Demostración. Consideremos el R-módulo \widehat{M} . Existe un epimorfismo $R\langle X\rangle \twoheadrightarrow \widehat{M}$ desde algún R-módulo libre con generadores X. El funtor $\widehat{\cdot}$ es contravariante exacto, entonces tememos un monomorfismo

$$\widehat{\widehat{M}} \rightarrowtail \widehat{R\langle X \rangle}$$

Además, como hemos visto, $M \mapsto \widehat{M}$, entonces nos falta solo demostrar que $\widehat{R(X)}$ es inyectivo. Pero

$$\widehat{R\langle X\rangle} = \operatorname{Hom}_{\mathbb{Z}}(R\langle X\rangle, \mathbb{Q}/\mathbb{Z}) \cong \underline{\operatorname{Hom}}_{R}(R\langle X\rangle, \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})) \cong \prod_{x \in X} \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})$$

es un producto de R-módulos inyectivos.

3.6. Ejercicio. Demuestre que de hecho, el funtor $\widehat{\cdot}$ es adjunto a sí mismo (ya que puede ser visto como un funtor $R\text{-M\'od}^\circ \to R\text{-M\'od} \circ R\text{-M\'od} \to R\text{-M\'od}^\circ$) y $\eta_M \colon M \to \widehat{M}$ es precisamente la unidad de la adjunción. En general, si $F \colon \mathbf{A} \to \mathbf{B}$ es adjunto por la izquierda a $G \colon \mathbf{B} \to \mathbf{A}$, entonces

- 1) si F es exacto, entonces G preserva objetos inyectivos,
- 2) si G es exacto, entonces F preserva objetos proyectivos.

En efecto, por ejemplo, en el primer caso, si $I \in \mathbf{B}$ es inyectivo, entonces

$$\operatorname{Hom}_{\mathbf{A}}(-,G(I)) \cong \operatorname{Hom}_{\mathbf{B}}(F(-),I) \colon \mathbf{A}^{\circ} \to \mathbf{Ab}$$

es exacto, siendo la composición de un funtor exacto $F \colon \mathbf{A}^{\circ} \to \mathbf{B}^{\circ}$ con un funtor exacto $\operatorname{Hom}_{\mathbf{B}}(-,I) \colon \mathbf{B}^{\circ} \to \mathbf{Ab}$. En nuestro caso, el funtor contravariante $\widehat{\cdot}$ es exacto y adjunto a sí mismo, y entonces preserva los objetos proyectivos en la categoría opuesta R- $\mathbf{Mód}^{\circ}$; en otras palabras, convierte cada R- $\mathbf{módulo}$ proyectivo en inyectivo. En particular, $\widehat{R\langle X\rangle}$ es inyectivo.