Turbulence

Nguyễn Quản Bá Hồng 1

July 2, 2022

Contents

1	Fluid	Mecl	hanics 101
	1.1 [0	CFD]	The k - ϵ Turbulence Model
	1	.1.1	Overview
	1	.1.2	The Eddy Viscosity Hypothesis
	1	.1.3	Mixing Length Models
	1	.1.4	Van Driest Mixing Model
	1	.1.5	The Scale of Turbulence
	1	.1.6	Transport Equation for k
	1	.1.7	Transport Equation for ϵ
	1	.1.8	Model Coefficients
	1	.1.9	Damping Functions
	1	.1.10	The Damping Function f_{μ}
	1	.1.11	The Damping Function f_1
			The Damping Function f_2
			Summary

Chapter 1

Fluid Mechanics 101

1.1 [CFD] The k- ϵ Turbulence Model

Aidan Wimshurst, CFD Fundamentals, Jun 2019.

1.1.1 Overview

What is the standard k- ϵ model? How has the model evolved over time & what variant am I using? What are the damping functions & why are they needed? What are the high-Re & low-Re formulations of the k- ϵ model?

1.1.2 The Eddy Viscosity Hypothesis

The Reynolds Stress in the RANS equation needs to be modeled to close the equations:

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \left[\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^\top) \right] + \rho \mathbf{g} - \nabla \left(\frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \right) - \underbrace{\nabla \cdot \left(\overline{\rho \mathbf{u}' \mathbf{u}'} \right)}_{\text{Revnolds-stress}}.$$

The most common approach is the Boussinesq hypothesis

$$\underbrace{-\overline{\rho \mathbf{u}' \mathbf{u}'}}_{\text{Reynolds stress}} = \mu_t \underbrace{(\nabla \mathbf{u} + (\nabla \mathbf{u})^\top)}_{\text{Mean Velocity Gradients}} - \frac{2}{3} \rho k \mathbf{I} - \frac{2}{3} (\nabla \cdot \mathbf{u}) \mathbf{I}.$$

So μ_t needs to be calculated to close the equations.

1.1.3 Mixing Length Models

Older models used a mixing length l_m approach to calculate the eddy viscosity μ_t : $\mu_t = \rho k^{1/2} l_m$ or $\mu_t = \rho l_m^2 |\partial_y U|$. The Prandtl mixing length hypothesis supposes that $l_m = \kappa y$, $\kappa = 0.41$. The wall blocks the maximum size of the eddies.

1.1.4 Van Driest Mixing Model

The viscosity in the viscous sub-layer dampens the eddies & reduces their size. The Van Driest model accounts for this damping: $l_m = \kappa y \left[1 - \exp(-y^+/A^+)\right]$, $A^+ = 26.0$.

1.1.5 The Scale of Turbulence

The mixing length is specified algebraically, $\mu_t = \rho k^{1/2} l_m$. We would like to solve a transport equation instead. Instead of l_m , solve for ϵ : $\mu_t = C_\mu \frac{\rho k^2}{\epsilon}$. Note. We can calculate the mixing length from the turbulence dissipation rate. $l_m = \frac{C_\mu k^{3/2}}{\epsilon}$.

1.1.6 Transport Equation for k

The transport equation for k is the same in RNG, realizable & standard k- ϵ models

$$\underbrace{\partial_t(\rho k)}_{\text{Time}} + \underbrace{\nabla \cdot (\rho \mathbf{u} k)}_{\text{Convection}} = \underbrace{\nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \nabla k \right]}_{\text{Diffusion}} + \underbrace{P_k + P_b - \rho \epsilon + S_k}_{\text{Sources+Sinks}}.$$

 P_k is the production due to mean velocity shear. P_b is the production due to buoyancy. S_k is a user-defined source.

1.1.7 Transport Equation for ϵ

$$\underbrace{\partial_t(\rho\epsilon)}_{\text{Time}} + \underbrace{\nabla \cdot \left(\rho \mathbf{u}\epsilon\right)}_{\text{Convection}} = \underbrace{\nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_\epsilon}\right) \nabla \epsilon\right]}_{\text{Diffusion}} + \underbrace{C_1 \frac{\epsilon}{k} (P_k + C_3 P_b) - C_2 \rho \frac{\epsilon^2}{k} + S_\epsilon}_{\text{Source+Sinks}}.$$

The model coefficients $C_1, C_2, \& C_3$ vary between models. Once the transport equations for $k \& \epsilon$ have been solved, we can compute μ_t by $\mu_t = C_\mu \frac{\rho k^2}{\epsilon}$.

1.1.8 Model Coefficients

The model coefficients for the standard k- ϵ model have evolved through time.

Model	σ_k	σ_{ϵ}	C_1	C_2	C_{μ}
Jones & Launder (1972)	1.0	1.3	1.55	2.0	0.09
Launder & Spalding (1974)	1.0	1.3	1.44	1.92	0.09
Launder & Sharma (1974)	1.0	1.3	1.44	1.92	0.09

The Launder & Sharma (1974) coefficients are the most up-to-date. They are used Fluent, OpenFOAM, CFX & Star.

1.1.9 Damping Functions

In the mixing length model, the mixing length was damped close to the wall (to account for viscosity) $l_m = \kappa y \left[1 - \exp(-y^+/A^+)\right]$, $A^+ = 26.0$. In the k- ϵ model, the model coefficients $C_1, C_2, \& C_\mu$ are damped. The damping functions are termed $f_1, f_2, \& f_\mu$. Hence, the equations can be applied in the viscous sub-layer ($y^+ < 5$). This is called a low-Re formulation.

$$f_1 = 1, \ f_2 = 1 - 0.3 \exp(-\text{Re}_T^2), \ f_\mu = \exp\left(-\frac{3.4}{\left(1 + \frac{\text{Re}_T}{50}\right)^2}\right).$$

Re_T is the turbulent Reynolds number Re_T = $\frac{\rho k^2}{\mu \epsilon}$. Re_T is the Reynolds number that characterizes the strength of the near wall turbulence relative to viscosity

$$\operatorname{Re}_T = \frac{\operatorname{Turbulent Forces}}{\operatorname{Viscous Forces}} = \frac{\rho k^{1/2} l_m}{\mu} \text{ i.e. } \sim \frac{\rho U L}{\mu}.$$

Substitute for the mixing length $\text{Re}_T = \frac{\rho k^{1/2}}{\mu} \frac{k^{3/2}}{\epsilon} = \frac{\rho k^2}{\mu \epsilon}$. When Re_T is small, viscous effects dominate. Re_T is small when we are in the viscous sub-layer (a low-Re formulation).

1.1.10 The Damping Function f_{μ}

In a low-Re formulation the turbulent/eddy viscosity is computed from $k \& \epsilon$: $\mu_t = f_\mu C_\mu \frac{\rho k^2}{\epsilon}$. Launder & Sharma (1974) propose: $f_\mu = \exp\left(-\frac{3.4}{\left(1+\frac{\mathrm{Re}_T}{50}\right)^2}\right)$. Physically, the damping function is reducing the turbulent viscosity μ_t in every cell in the mesh (not just wall adjacent cell). Hence, the laminar viscosity will dominate the diffusion term in the momentum equations: $\cdots + \nabla \cdot \left[(\mu + \mu_t)(\nabla \mathbf{u} + (\nabla \mathbf{u})^\top) \right] + \cdots$. The damping function is applied to every cell in the mesh. Far from the wall, $f_\mu = 1$ & we return to the high-Re formulation.

1.1.11 The Damping Function f_1

The damping function f_1 is applied to the production of ϵ :

$$\partial_t(\rho\epsilon) + \nabla \cdot (\rho \mathbf{u}\epsilon) = \nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_\epsilon} \right) \nabla \epsilon \right] + C_1 \frac{\epsilon}{k} (f_1 P_k + C_3 P_b) - C_2 \rho \frac{\epsilon^2}{k} + S_\epsilon.$$

Launder & Jones (1972) find no noticeable improvement in implementing a damping function for f_1 . $f_1 = 1$.

1.1.12 The Damping Function f_2

The damping function f_2 is applied to the dissipation of ϵ

$$\partial_t(\rho\epsilon) + \nabla \cdot (\rho \mathbf{u}\epsilon) = \nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_\epsilon} \right) \nabla \epsilon \right] + C_1 \frac{\epsilon}{k} (P_k + C_3 P_b) - f_2 C_2 \rho \frac{\epsilon^2}{k} + S_\epsilon.$$

Physically, f_2 reduces the dissipation of ϵ near the wall. Hence we got more dissipation of k near the wall. This is the expected action of viscosity. $f_2 = 1 - 0.3 \exp(-\text{Re}_T^2)$.

1.1.13 **Summary**

In a low-Re formulation, damping functions are applied to the model coefficients C_{μ}, C_1 , & C_2 . Hence, we can resolve the mesh down to the viscous sub-layer ($y^+ < 5$). Nowadays, the k- ω SST model is preferred for these applications. Hence, the k- ϵ model is usually preferred for high-Re application ($y^+ > 30$), where separation, reattachment are not present. Refs.

- W. P. Jones, B. E. Launder. The prediction of laminarization with a 2-equation model of turbulence. *Int. Journal of Heat & Mass Transfer*, 1972.
- B. E. Launder, D. B. Spalding. The numerical computation of turbulent flows. Comp. Methods in App. Mech & Engineering, 1974.
- B. E. Launder, B. I. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat & Mass Transfer, 1974.

Bibliography

[]