Задача 3. Да се докаже, че за всеки две множества A и B е изпълнено, че $A \backslash B = A \backslash (A \cap B)$.

Доказателство:

Нека A и B са произволни множества.

 (\subseteq) Нека $x\in A\setminus B$ е произволен елемент. Следователно $x\in A$ и $x\not\in B$. Тогава $x\not\in A\cap B$ и $x\in A$. От тук следва, че $x\in A\setminus (A\cap B)$. Тъй като избрахме x да е произволен елемент, то $A\setminus B\subseteq A\setminus (A\cap B)$.

 (\supseteq) Нека $y \in A \setminus (A \cap B)$ е произволен елемент. Следователно $y \in A$ и $y \notin A \cap B \Rightarrow y \notin B$ (тъй като, ако $y \in B$, то $y \in A \cap B$, а това не е вярно). Тъй като избрахме y да е произволен елемент, то $A \setminus B \supseteq A \setminus (A \cap B)$.

Следователно от (\subseteq) и (\supseteq) следва, че за всеки две множества A и B е изпълнено, че $A \backslash B = A \backslash (A \cap B)$.

П