Kombinatorik

Henrik Tscherny

9. November 2021

1

Inhaltsverzeichnis

1 Graphen

	1.1	Matchings
2	Dua 2.1 2.2	lität 6 Dualität in der linearen Algebra
1	G	raphen
No	tatio	n/Definition
	es	Tenge aller k-elementigen Teilmengen von S: $\binom{S}{k}$ gilt: $\left \binom{S}{k}\right = \binom{ S }{k}$ raph: $G = (V, E)$
		omplementärer Graph: $\bar{G} = (V, \binom{V}{2} \setminus E)$ gilt: $\bar{\bar{G}} = G$ (tausche Kanten mit nicht-Kanten)
	• K	notenmenge: $V(G)$
	• K	antenmenge: $E(G) \subseteq {V \choose 2}$
	• Na	achbarschaft: $N(s) = \{n \in V(G) \mid \{n, s\} \in E(G), s \in S \subseteq V(G)\}$
	• G	rad von v in G: $deg_G(v) = N(v) $
	• k-	regulärer G: $\forall v \in V(G)$: $deg_G(v) = k$ (Jeder Knoten hat den Grad k)

- Graphen-Isomorphie: $f: V(G) \to V(H)$ mit $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$ und f Bijektion
- Subgraph: $V(H) \subseteq V(G)$, $E(H) \subseteq E(G) \cap \binom{V(H)}{2}$ $\cap \binom{V(H)}{2} = \text{keine neuen Kanten (solche nicht in G) erlaubt}$
- induzierter Subgraph: Enthält der Subgraph H einen Knoten auf G so enthält H auch alle mit diesem Knoten in Verbindung stehenden Kanten aus G, sofern der jeweilige Partnerknoten ebenfalls in H liegt
 E(H) = E(G) ∩ (V(H))
 man schreibt G[V] für den Subgraph G induziert durch die Knotenmenge V Sei G x der Subgraph von G induziert durch V(G) \ {x}
- Walk: Weg von einem Knoten zu einem anderen offen: Startpunkt ≠ Endpunkt, geschlossen: Startpunkt = Endpunkt
- Pfad: Ein weg ohne Schleifen mit der Länge 1
- Verbundener Graph: Es ex. ein Walk von jeden jedem zu jedem Knoten Ein Graph G ist verbunden gdw. er nicht als disjunkte Vereinigung von zwei nicht-leeren Teilgraphen erzeugt werden kann
- k-verbundener Graph: Es existiert für alle $a, b \in V$ k paarweise unabhängige Pfade von a nach b

Spezielle Graphen

- Clique (vollst. Graph): $K_n = G = (V, E)$ mit $V := \{1, ..., n\}, E = {V \choose 2}$ es gilt: $\bar{K}_n = I_n$
- Unabhängiger Graph: $I_n = G = (V, E)$ mit $V = \{1, ..., n\}$ $E = \emptyset$ es gilt: $\bar{I}_n = K_n$

- Graph mit Pfad der Länge n: $P_n = G = (V, E)$ mit $V = \{1, ..., n\}$ $E = \{\{1, 2\}, \{2, 3\}, \{n 1, n\}\}$
- Graph mit Kreis der Länge n $C_n = G = (V, E)$ mit $V = \{1, ..., n-1\}$ $E = \{\{i, j\} | (i-j) \equiv 1 \pmod{n}\}$ (n Knoten und n Kanten)

Färbbarkeit

- k-Färbbarkeit: f: V(G) → {0, ..., k − 1}, sodass
 f(u) ≠ f(v) ∀{u, v} ∈ E(g)
 direkt miteinander Verbundene Knoten haben unterschiedliche Farben
- Lemma: Jeder endliche Graph G ist bipartit gdw. er keine Kreise ungerader Länge enthält

Bäume

- Ein Graph ohne Kreise ist ein Wald
- Ein Verbundener Graph ohne Kreise ist ein Baum
- Ein Wald ist eine disjunkte Vereinigung von Bäumen
- Jeder Baum ist bipartit
- Folgende Definitionen sind Äquivalent:
 - G ist ein Baum
 - |E| = |V| 1
 - $|E| \le |V| 1$
 - G hat maximal viele Kanten ohne Kreise zu enthalten
 - G hat minimal viele Kanten und ist zusammenhängend
 - für alle Knoten in G existiert paarweise ein eindeutiger Pfad

1.1 Matchings

Definitionen

- Ein Matching ist eine Teilmenge der Kantenmenge von G, sodass diese paarweise disjunkt sind, d.h. jeder nur max. einen Partner hat (∀u, v ∈ M : u ∩ v = Ø)
- gilt 2|M| = |V|, d.h. es gibt doppelt so viele Knoten wie Kanten in M (jeder hat genau einen Partner, d.h. jeder Knoten wurde gematched), dann ist es ein **perfektes Matching**
- für jeden bipartiten k-regulären Graphen mit $k \ge 1$ gibt es ein perfektes Matching
- für $\{x, y\} \in M$ heißt y der **Partner** von x
- Sei $S \subseteq V(G)$, dann ist M ein Matching in S wenn für jedes $s \in S$, s in M vorkommt, d.h. jeder Knoten aus S kommt in einer Kante von M vor
- Ein Pfad bzgl. M heißt **alternierend**, wenn er abwechselnd Kanten über $E(G) \setminus M$ und M verläuft
- Ein alternierender Pfad heißt **augmentierend** wenn Start und Endpunkt keinen Partner in M haben

Lemma

Sei P ein augmentierender Pfad und $M' = M\Delta P$, dann ist M' wieder ein Matching und |M'| > |M|

Lemma von Berge

Sei G ein endlicher Graph und M ein Matching in G. M ist **maximal** gdw. es **keine augmentieren Pfade in G bzgl. M gibt** *Beweis*:

• TODO

Heiratssatz

Ein bipartiter Graph G hat ein Matching $A \subseteq V(G)$ gdw. $\forall S \subseteq A : |N(S)| \ge |S|$ mögliche Darstellungen:

- als Funktion
 - Sei $A = (A_i)_{i \in I}$ eine Menge von endlichen Mengen
 - Gibt es eine *injektive Auswahlfunktion* $f: I \to \bigcup_{i \in I} A_i$, sodass $\forall i \in I \ f(i) \in A_i$ gilt ?
 - Hall-Bedingung: $I_0 \subseteq I$: $\Bigl|\bigcup_{i \in I_0} A_i \Bigr| \! \geq |I_0|$
- als Realbeispiel
 - Sei I eine Menge von Frauen
 - Sei X eine Menge von Männern, welche mit diesen Frauen befreundet sind
 - Lassen sich die Frauen mit den Männern so verheiraten, dass jede Frau einen befreundeten Mann heiratet
 - Note: Es gibt nur Monogame Beziehungen
 - Notwendige Bedingung: je k Frauen müssen mit mindestens k Männern befreundet sein (Hall-Bedingung)

- Graphentheoretisch
 - Sei G ein bipartiter Graph
 - Seien A, B Bipartionen von G, d.h. $A \cup B = G$ und $A \cap B = \emptyset$
 - Es gilt nun durch die Bipartitheit, dass jeder Nachbar eines Knotens aus A zu B gehört
 - Gibt es ein Matching in dem alle Knoten aus A vorkommen?
- aus dem Heiratssatz folgt ebenso:
 - Sei F eine Menge an endlichen Teilmengen einer Menge X
 - F hat einen **Durchschnitt** gdw. F die Hall-Bedingung erfüllt
 - Beweis:
 - * TODO

Satz von König

Sei G ein endlicher bipartiter Graph, dann ist die **Größe des größten Matchings** in G **gleich** der **minimalen Anzahl an Überdeckungen** in G **Überdeckung**

- U ist eine Teilmenge der Knotenmenge V, wobei jede Kante aus G einen Knoten in G enthält
- $U \subseteq V(G)$ mit $\forall e \in E(G) : e \in V(U)$
- kurz: alle Knoten von G müssen mit U abgedeckt werden

Beweis

• TODO

2 Dualität

Die Essenz dualer Probleme liegt darin, dass immer gezeigt werden kann, dass sofern ein Sachverhalt gilt, ein dazu dualer Sachverhalt gilt und umgekehrt $(P) \Rightarrow \neg (D)$ und $\neg (P) \Rightarrow (D)$

2.1 Dualität in der linearen Algebra

Sei $A \in \mathbb{R}^{m \times n}$, $x = (x_1, ..., x_n)$ und $b \in \mathbb{R}^m$ Dann ist die Gleichung Ax = b unerfüllbar gdw. das System $(A|b)^{\mathsf{T}}y = (0, ..., 0, 1)^{\mathsf{T}}$ erfüllbar ist Beweis

- (⇐)
 - TODO
- (⇒)
 - TODO

2.2 gewichtete Matchings

Sei G=(V,E) ein Graph wobei $\forall e \in E(G)$ zusätzlich ein Gewicht $w_e \in \mathbb{R}$ festgelegt wird

Das **Gewicht eines Matchings** ist dann $w(M) := \sum_{e \in M} w_e$

Suche nach einem Matching mit maximalem Gewicht

Dazu wird das Matchingproblem in G in ein LP umgeformt:

$$\bullet \ \forall e \in E(G) \, | \, x_e = \left\{ \begin{array}{l} x_e = 0, \quad e \not \in M \\ x_e = 1, \quad e \in M \end{array} \right.$$

- x_e gibt also an ob eine Kante e in G im Matching M liegt
- Damit erhält man folgende **objective function**: $w(x) = \sum_{e \in M} w_e x_e$
 - \rightarrow nur die Gewichte der ausgewählten Kanten ($x_e = 1$) werden summiert
- Nebenbedingung: $w(M) = \sum_{\substack{e \in E(G) \\ v \in e}} x_1 = 1$
 - → jeder Knoten taucht nur in genau einer Kante in M auf

2.3 Relaxation