Srovnání výrokové a predikátové logiky Syntax predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu

PREDIKÁTOVÁ LOGIKA

PřF JU, Jana Kalová, 2024

Výroková logika -> predikátová logika 0. řádu

- zjišťuje pravdivost jednoduchých a složených výroků
- neumožňuje formalizaci vlastností a vztahů mezi objekty
- lze přiřadit pravdivostní hodnotu
- 2ⁿ možností pro výslednou p.h.
 (časová náročnost je exponenciání, ale p.h. lze ověřit)

Výroková logika -> predikátová logika 0. řádu

- zjišťuje pravdivost jednoduchých a složených výroků
- neumožňuje formalizaci vlastností a vztahů mezi objekty
- Ize přiřadit pravdivostní hodnotu
- 2ⁿ možností pro výslednou p.h.
 (časová náročnost je exponenciání, ale p.h. lze ověřit)

Predikátová logika 1. řádu (její prostředky jsou obsaženy ve všech programovacích jazycích)

- umožňuje vybudování matematických teorií a vět
- pracuje s výrokovými formami
- umožňuje zformalizovat některé úsudky, které nelze postihnout prostředky výrokové logiky
- existuje více interpretací záleží na realizaci, nelze ověřit p.h.

Predikát - vyjadřuje vlastnosti objektů a vztahy mezi nimi

Predikát - vyjadřuje vlastnosti objektů a vztahy mezi nimi

 predikát "je student"- můžeme použít k určení, zda nějaký objekt (např. osoba) splňuje tuto vlastnost

Predikát - vyjadřuje vlastnosti objektů a vztahy mezi nimi

- predikát "je student"- můžeme použít k určení, zda nějaký objekt (např. osoba) splňuje tuto vlastnost
- z jednoduchého výroku vznikne vynecháním alespoň jednoho iména objektu
 - např.: 3 < 10 (výrok)....x < 10 (výroková forma)

Predikát - vyjadřuje vlastnosti objektů a vztahy mezi nimi

- predikát "je student"- můžeme použít k určení, zda nějaký objekt (např. osoba) splňuje tuto vlastnost
- z jednoduchého výroku vznikne vynecháním alespoň jednoho jména objektu např.: 3 < 10 (výrok)....x < 10 (výroková forma)
- predikátová logika prvního řádu umožňuje používat kvantifikátory a predikáty, což umožňuje formulovat složitější tvrzení a vztahy

Výroková logika

PLATÍ

NFPI ATÍ

Výroková logika

PLATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NFPI ATÍ

Výroková logika

PLATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NFPI ATÍ

 sémantický důsledek (korektnost): Jestliže tvrzení vyplývá z premis, pak z nich výrokově logicky vyplývá.

Výroková logika

PLATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NFPI ATÍ

- sémantický důsledek (korektnost): Jestliže tvrzení vyplývá z premis, pak z nich výrokově logicky vyplývá.
- Existují tvrzení, která jsou pravdivá, ale neplynou z výrokové logiky (např. složitější sylogismy).

Sylogismus - podle Aristotela jediná logicky správná forma úsudku

Sylogismus je druh deduktivního tvrzení, ve kterém je závěr odvozen ze dvou předpokladů (premis).

Pokud jsou premisy správné, musí být správný i závěr.

Sylogismus - podle Aristotela jediná logicky správná forma úsudku

Sylogismus je druh deduktivního tvrzení, ve kterém je závěr odvozen ze dvou předpokladů (premis).

Pokud jsou premisy správné, musí být správný i závěr.

Hlavní části sylogismu:
 velká premisa – např. "Všichni lidé jsou smrtelní."
 malá premisa – např. "Sokrates je člověk."
 závěr – tedy "Sokrates je smrtelný."

Sylogismus - podle Aristotela jediná logicky správná forma úsudku

Sylogismus je druh deduktivního tvrzení, ve kterém je závěr odvozen ze dvou předpokladů (premis).

Pokud jsou premisy správné, musí být správný i závěr.

- Hlavní části sylogismu:
 velká premisa např. "Všichni lidé jsou smrtelní."
 malá premisa např. "Sokrates je člověk."
 závěr tedy "Sokrates je smrtelný."
- Výroková logika nedokáže analyzovat strukturu složitějších vět obsahujících kvantifikátory (všichni) a predikáty (je smrtelný).

Sylogismus - podle Aristotela jediná logicky správná forma úsudku

Sylogismus je druh deduktivního tvrzení, ve kterém je závěr odvozen ze dvou předpokladů (premis).

Pokud jsou premisy správné, musí být správný i závěr.

- Hlavní části sylogismu: velká premisa – např. "Všichni lidé jsou smrtelní." malá premisa – např. "Sokrates je člověk." závěr – tedy "Sokrates je smrtelný."
- Výroková logika nedokáže analyzovat strukturu složitějších vět obsahujících kvantifikátory (všichni) a predikáty (ie smrtelný).
- Aristoteles (4.stol.př.n.l.) významný řecký filosof a vědec, nřisněl k mnoha oblastem včetně logiky

Výroková logika - modus ponens

Modus ponens je deduktivní pravidlo výrokové logiky s pevnou strukturou - 2 premisy a závěr.

Modus ponens je v širším smyslu speciální případ sylogismu. Je užší a specifičtější, zatímco sylogismus pokrývá více variant deduktivních závěrů.

Výroková logika - modus ponens

Modus ponens je deduktivní pravidlo výrokové logiky s pevnou strukturou - 2 premisy a závěr.

Modus ponens je v širším smyslu speciální případ sylogismu. Je užší a specifičtější, zatímco sylogismus pokrývá více variant deduktivních závěrů.

Struktura modus ponens
 Premisa 1: Pokud P, pak Q.
 např. Pokud je software aktualizován, pak se zvyšuje jeho bezpečnost.

Premisa 2: P

Software byl aktualizován.

Závěr: Q

- Bezpečnost software se zvýšila.

Výroková logika - logické klamy

Výroková logika může vést k logickým klamům, k demagogiím nebo k dezinformacím, když se pravidla logiky aplikují nesprávně nebo když jsou premisy formulovány nejasně. Logické klamy vznikají, když se z chybných nebo neúplných premis snažíme vyvodit závěry, které nejsou pravdivé. Logické klamy jsou nebezpečné v diskuzích a rozhodování, protože se často intuitivně zdají přesvědčivé.

Výroková logika - logické klamy

Výroková logika může vést k logickým klamům, k demagogiím nebo k dezinformacím, když se pravidla logiky aplikují nesprávně nebo když jsou premisy formulovány nejasně. Logické klamy vznikají, když se z chybných nebo neúplných premis snažíme vyvodit závěry, které nejsou pravdivé. Logické klamy jsou nebezpečné v diskuzích a rozhodování, protože se často intuitivně zdají přesvědčivé.

 Výroková logika může být zneužita, když jsou premisy špatně formulovány nebo když se neaplikují správně.

Výroková logika - logické klamy

Výroková logika může vést k logickým klamům, k demagogiím nebo k dezinformacím, když se pravidla logiky aplikují nesprávně nebo když jsou premisy formulovány nejasně. Logické klamy vznikají, když se z chybných nebo neúplných premis snažíme vyvodit závěry, které nejsou pravdivé. Logické klamy jsou nebezpečné v diskuzích a rozhodování, protože se často intuitivně zdají přesvědčivé.

- Výroková logika může být zneužita, když jsou premisy špatně formulovány nebo když se neaplikují správně.
- Vědomí těchto klamů pomáhá při kritickém myšlení a posuzování argumentů v diskusích a debatách.

Výroková logika - logické klamy - příklad Post hoc ergo propter hoc

Hokejisté se rozhodli neholit po celou dobu turnaje, protože věří, že právě to jim přinese štěstí a zajistí vítězství. Pokaždé, když se touto strategií řídí, nakonec vyhrají.

Výroková logika - logické klamy - příklad Post hoc ergo propter hoc

Hokejisté se rozhodli neholit po celou dobu turnaje, protože věří, že právě to jim přinese štěstí a zajistí vítězství. Pokaždé, když se touto strategií řídí, nakonec vyhrají.

 Mohli by tedy usuzovat, že neholení je příčinou jejich úspěchu.

Výroková logika - logické klamy - příklad Post hoc ergo propter hoc

Hokejisté se rozhodli neholit po celou dobu turnaje, protože věří, že právě to jim přinese štěstí a zajistí vítězství. Pokaždé, když se touto strategií řídí, nakonec vyhrají.

- Mohli by tedy usuzovat, že neholení je příčinou jejich úspěchu.
- Mezi holením a vítězstvím může být pouze korelace, nikoli příčinná souvislost.

Výroková logika - logické klamy - příklad Post hoc ergo propter hoc

Hokejisté se rozhodli neholit po celou dobu turnaje, protože věří, že právě to jim přinese štěstí a zajistí vítězství. Pokaždé, když se touto strategií řídí, nakonec vyhrají.

- Mohli by tedy usuzovat, že neholení je příčinou jejich úspěchu.
- Mezi holením a vítězstvím může být pouze korelace, nikoli příčinná souvislost.
- Tento klam vychází z předpokladu, že pokud se událost A stane před událostí B, událost A musela být příčinou B.

Sémantika predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu

Výroková logika vs. predikátová logika 1. řádu

Výroková logika - logické klamy - příklad Ad hominem

Nemůžete věřit, co říká Tomáš o zabezpečení sítě; není to absolvent IT oboru.

Výroková logika - logické klamy - příklad Ad hominem

Nemůžete věřit, co říká Tomáš o zabezpečení sítě; není to absolvent IT oboru.

 V tomto příkladu se útočí na osobní kvalifikaci Tomáše místo toho, aby se hodnotil obsah jeho tvrzení. I když Tomáš není z IT oboru, může mít validní nebo dobře podložené informace o zabezpečení sítě.

Výroková logika - logické klamy - příklad Ad hominem

Nemůžete věřit, co říká Tomáš o zabezpečení sítě; není to absolvent IT oboru.

- V tomto příkladu se útočí na osobní kvalifikaci Tomáše místo toho, aby se hodnotil obsah jeho tvrzení. I když Tomáš není z IT oboru, může mít validní nebo dobře podložené informace o zabezpečení sítě.
- Tento typ klamu přehlíží argumenty samotné a místo toho je odmítá na základě osobních rysů nebo kvalifikací, což vede k nespravedlivému a nelogickému závěru.

Výroková logika - logické klamy - příklad Falešné dilema

Buď jsi s námi, nebo jsi proti nám.

Výroková logika - logické klamy - příklad Falešné dilema

Buď jsi s námi, nebo jsi proti nám.

 Tímto tvrzením se opomíjí, že mohou existovat další postoje nebo názory mezi těmito dvěma extrémy.

Výroková logika - logické klamy - příklad Předčasná generalizace

Dva zaměstnanci v naší firmě si stěžovali na nový software, takže ten software musí být špatný.

Výroková logika - logické klamy - příklad Předčasná generalizace

Dva zaměstnanci v naší firmě si stěžovali na nový software, takže ten software musí být špatný.

 Taková generalizace ignoruje rozdílné zkušenosti ostatních uživatelů.

Výroková logika - logické klamy - příklad Slippery slope ("Kluzký svah")

Pokud povolíme studentům používat mobilní telefony ve třídě, brzy nebudou mít žádnou disciplínu a nakonec se školství úplně zhroutí.

Výroková logika - logické klamy - příklad Slippery slope ("Kluzký svah")

Pokud povolíme studentům používat mobilní telefony ve třídě, brzy nebudou mít žádnou disciplínu a nakonec se školství úplně zhroutí.

 Tento klam tvrdí, že malá událost povede k řetězci událostí s katastrofickými následky, aniž by bylo prokázáno, že takový důsledek skutečně nastane. Syntax predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu

Výroková logika vs. predikátová logika 1. řádu

Výroková logika - logické klamy - příklad - Klamná analogie

Vzdělávání by mělo fungovat jako trh – čím více konkurence mezi školami, tím lepší vzdělání studenti dostanou.

Výroková logika - logické klamy - příklad - Klamná analogie

Vzdělávání by mělo fungovat jako trh – čím více konkurence mezi školami, tím lepší vzdělání studenti dostanou.

 Zatímco trh skutečně často zlepšuje kvalitu komerčních produktů díky konkurenci, vzdělávací systém má řadu odlišností (zájmy studentů, sociální a ekonomické faktory, veřejný zájem na dostupnosti vzdělání pro všechny...), které z něj dělají systém, který nemusí fungovat stejně jako trh s produkty.

Výroková logika - logické klamy - příklad - Klamná analogie

Vzdělávání by mělo fungovat jako trh – čím více konkurence mezi školami, tím lepší vzdělání studenti dostanou.

- Zatímco trh skutečně často zlepšuje kvalitu komerčních produktů díky konkurenci, vzdělávací systém má řadu odlišností (zájmy studentů, sociální a ekonomické faktory, veřejný zájem na dostupnosti vzdělání pro všechny...), které z něj dělají systém, který nemusí fungovat stejně jako trh s produkty.
- Klamná analogie spočívá v porovnávání dvou situací nebo objektů, které mají určité podobnosti, ale nejsou dostatečně srovnatelné, což vede k chybnému závěru.
 Bez dostatečného zdůvodnění tvrdí, že má-li jeden nějakou vlastnost, musí ji mít i drubý.

Sémantika predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu

Výroková logika vs. predikátová logika 1. řádu

Výroková logika

PLATÍ

NFPI ATÍ

Výroková logika

PI ATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NEPLATÍ

Výroková logika

PI ATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NEPLATÍ

 sémantický důsledek (korektnost): Jestliže tvrzení vyplývá z premis, pak z nich výrokově logicky vyplývá.

Výroková logika

PI ATÍ

 logická dedukce (úplnost): Jestliže tvrzení výrokově logicky vyplývá z premis, pak z nich vyplývá.

NEPLATÍ

- sémantický důsledek (korektnost): Jestliže tvrzení vyplývá z premis, pak z nich výrokově logicky vyplývá.
- Existují tvrzení, která jsou pravdivá, ale neplynou z výrokové logiky (např. složitější sylogismy).

V predikátové logice 1. řádu platí kromě Modus ponens další pravidla.

Predikátová logika 1. řádu - pravidlo generalizace - zavádí obecný kvantifikátor \forall - zobecněná \land pro ∞ def. obor

Příklad:

Všechna čísla tvaru n(n-1), kde $n \in N$, jsou dělitelná dvěma.

Sémantika predikátové logiky 1. řádu Sémantika predikátové logiky 1. řádu

Výroková logika vs. predikátová logika 1. řádu

V predikátové logice 1. řádu platí kromě Modus ponens další pravidla.

Predikátová logika 1. řádu - pravidlo generalizace - zavádí obecný kvantifikátor \forall - zobecněná \land pro ∞ def. obor

Příklad:

Všechna čísla tvaru n(n-1), kde $n \in N$, jsou dělitelná dvěma.

 je důležitým nástrojem pro vytváření deduktivních závěrů a je klíčové pro formulaci hypotéz ve vědeckém výzkumu

V predikátové logice 1. řádu platí kromě Modus ponens další pravidla.

Predikátová logika 1. řádu - pravidlo generalizace - zavádí obecný kvantifikátor \forall - zobecněná \land pro ∞ def. obor

Příklad:

Všechna čísla tvaru n(n-1), kde $n \in N$, jsou dělitelná dvěma.

- je důležitým nástrojem pro vytváření deduktivních závěrů a je klíčové pro formulaci hypotéz ve vědeckém výzkumu
- z konkrétních případů se odvodí obecný závěr (pokud je tvrzení pravdivé pro libovolný prvek množiny, můžeme odvodit, že je pravdivé pro všechny její prvky)

V predikátové logice 1. řádu platí kromě Modus ponens další pravidla.

Predikátová logika 1. řádu - pravidlo generalizace - zavádí obecný kvantifikátor \forall - zobecněná \land pro ∞ def. obor

Příklad:

Všechna čísla tvaru n(n-1), kde $n \in N$, jsou dělitelná dvěma.

- je důležitým nástrojem pro vytváření deduktivních závěrů a je klíčové pro formulaci hypotéz ve vědeckém výzkumu
- z konkrétních případů se odvodí obecný závěr (pokud je tvrzení pravdivé pro libovolný prvek množiny, můžeme odvodit, že je pravdivé pro všechny její prvky)
- generalizace musí být podložena dostatečnými důkazy, aby se zabránilo klamu předčasné generalizace

Predikátová logika 1. řádu - pravidlo specializace - zavádí existenční kvantifikátor \exists - zobecněná \lor pro ∞ def. obor

Příklad:

Obecné tvrzení: Všechna sudá čísla jsou dělitelná dvěma.

Specializace: Číslo 6 je dělitelné dvěma.

Predikátová logika 1. řádu - pravidlo specializace - zavádí existenční kvantifikátor \exists - zobecněná \lor pro ∞ def. obor

Příklad:

Obecné tvrzení: Všechna sudá čísla jsou dělitelná dvěma. Specializace: Číslo 6 je dělitelné dvěma.

 z obecného tvrzení nebo pravidla lze získat závěr pro konkrétní případ

Predikátová logika 1. řádu - pravidlo specializace - zavádí existenční kvantifikátor \exists - zobecněná \lor pro ∞ def. obor

Příklad:

Obecné tvrzení: Všechna sudá čísla jsou dělitelná dvěma. Specializace: Číslo 6 je dělitelné dvěma.

- z obecného tvrzení nebo pravidla lze získat závěr pro konkrétní případ
- umožňuje formulovat specifické závěry z obecných pravidel

Sémantika predikátové logiky 1. řádu

Výroková logika vs. predikátová logika 1. řádu

Predikátová logika 1. řádu - existenční kvantifikátor \exists

Existenční kvantifikátor je symbol ∃ používaný v predikátové logice k vyjádření, že existuje alespoň jeden prvek, který splňuje danou vlastnost nebo podmínku.

Predikátová logika 1. řádu - existenční kvantifikátor \exists

Existenční kvantifikátor je symbol ∃ používaný v predikátové logice k vyjádření, že existuje alespoň jeden prvek, který splňuje danou vlastnost nebo podmínku.

 z obecného tvrzení nebo pravidla lze získat závěr pro konkrétní případ

Predikátová logika 1. řádu - existenční kvantifikátor 3

Existenční kvantifikátor je symbol ∃ používaný v predikátové logice k vyjádření, že existuje alespoň jeden prvek, který splňuje danou vlastnost nebo podmínku.

- z obecného tvrzení nebo pravidla lze získat závěr pro konkrétní případ
- tento kvantifikátor umožňuje formulovat tvrzení o existenci konkrétních objektů, které vyhovují určitým podmínkám

Predikátová logika 1. řádu - existenční kvantifikátor 3

Existenční kvantifikátor je symbol \exists používaný v predikátové logice k vyjádření, že existuje alespoň jeden prvek, který splňuje danou vlastnost nebo podmínku.

- z obecného tvrzení nebo pravidla lze získat závěr pro konkrétní případ
- tento kvantifikátor umožňuje formulovat tvrzení o existenci konkrétních objektů, které vyhovují určitým podmínkám
- jeho použití je užitečné při zobecňování tvrzení, kde není potřeba, aby nějakou podmínku splňovaly všechny prvky, což je odlišné od univerzálního (obecného, velkého) kvantifikátoru ∀

Predikátová logika 1. řádu

umožňuje vybudování matematických teorií a vět

- umožňuje vybudování matematických teorií a vět
- pracuje s výrokovými formami

- umožňuje vybudování matematických teorií a vět
- pracuje s výrokovými formami
- umožňuje zformalizovat některé úsudky, které nelze postihnout prostředky výrokové logiky

- umožňuje vybudování matematických teorií a vět
- pracuje s výrokovými formami
- umožňuje zformalizovat některé úsudky, které nelze postihnout prostředky výrokové logiky
- existuje více interpretací, nelze ověřit pravdivostní hodnotu

- umožňuje vybudování matematických teorií a vět
- pracuje s výrokovými formami
- umožňuje zformalizovat některé úsudky, které nelze postihnout prostředky výrokové logiky
- existuje více interpretací, nelze ověřit pravdivostní hodnotu
- plně přijímá výsledky výrokové logiky, navíc analýzou jednoduchých výroků pomocí kvantifikátorů a proměnných lze odvodit platnost některých výroků, které samotná výroková logika nedokáže popsat nebo vyhodnotit

 konstanty - jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U
- logické spojky negace, implikace (a další odvozené)

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U
- logické spojky negace, implikace (a další odvozené)
- kvantifikátory obecný, existenční

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U
- logické spojky negace, implikace (a další odvozené)
- kvantifikátory obecný, existenční
- relace predikáty popisující vztahy mezi objekty (=, ≤ ...)

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U
- logické spojky negace, implikace (a další odvozené)
- kvantifikátory obecný, existenční
- relace predikáty popisující vztahy mezi objekty $(=, \leq ...)$
- funkce každé n-tici prvků (argumentů) přiřazuje jediný prvek jako výsledek např.: pokud f(x, y) reprezentuje součin, pak f(2,5) = 10

- konstanty jména objektů, prvky definičního oboru = UNIVERZUM (univerzální množina U)
- proměnné zastupují jméno libovolného objektu z U
- logické spojky negace, implikace (a další odvozené)
- kvantifikátory obecný, existenční
- relace predikáty popisující vztahy mezi objekty $(=, \leq ...)$
- funkce každé n-tici prvků (argumentů) přiřazuje jediný prvek jako výsledek např.: pokud f(x, y) reprezentuje součin, pak f(2,5) = 10
- termy kombinují proměnné a funkce

Arita

Arita

Každý predikátový a funkční symbol má svou ARITU (arita je přirozené číslo *n*).

nulární predikát (n=0) - výrok ve výrokové logice

Arita

- nulární predikát (n=0) výrok ve výrokové logice
- unární predikát (n=1) vyjadřuje nějakou vlastnost (např. parita celého čísla sude(n))

Arita

- nulární predikát (n=0) výrok ve výrokové logice
- unární predikát (n=1) vyjadřuje nějakou vlastnost (např. parita celého čísla sude(n))
- binární predikát (n=2) např. pokud P(x, y) znamená
 x > y, pak P(4,3) vrací p.h. 1

Arita

- nulární predikát (n=0) výrok ve výrokové logice
- unární predikát (n=1) vyjadřuje nějakou vlastnost (např. parita celého čísla sude(n))
- binární predikát (n=2) např. pokud P(x, y) znamená
 x > y, pak P(4,3) vrací p.h. 1
- ternární funkce (n=3) např. $pyth(x, y, z) : x^2 + y^2 = z^2$

Význam formulí

Význam formulí

Existuje více interpretací termů.

Význam formulí

- Existuje více interpretací termů.
- Interpretace je způsob, jak přiřadit specifické významy jednotlivým symbolům.

Význam formulí

- Existuje více interpretací termů.
- Interpretace je způsob, jak přiřadit specifické významy jednotlivým symbolům.
- Interpretace je dvojice < U, [|-|] >, U je univerzum, [|-|] je přiřazení.
 - např.: [|a|] = 0 ... přiřadí proměnné a číslo 0 (a je tedy konstanta)

Význam formulí

- Existuje více interpretací termů.
- Interpretace je způsob, jak přiřadit specifické významy jednotlivým symbolům.
- Interpretace je dvojice < U, [|-|]>, U je univerzum, [|-|] je přiřazení.
 - např.: [|a|] = 0 ... přiřadí proměnné a číslo 0 (a je tedy konstanta)
- Predikátová logika nepopisuje konkrétní obsah, ale nabízí strukturu, která může být aplikována na různé situace.

Splnitelnost formulí

Splnitelnost formulí

 Proměnné ve výrokové logice nabývají pouze dvou pravdivostních hodnot. V predikátové logice je situace složitější.

Splnitelnost formulí

 Proměnné ve výrokové logice nabývají pouze dvou pravdivostních hodnot. V predikátové logice je situace složitější.

Splnitelnost formulí:

Tautologie - splněna pro každou z možných interpretací. Kontradikce - není splněna pro žádnou z možných interpretací.

Splnitelná formule - je splněna alespoň pro jednu z interpretací.

1) Kvantifikátory

x ... je člověk

P ... predikát - být hodný člověk

Otázka: Jaký je význam zápisů a) $(\forall x)P(x)$, b) $(\exists x)P(x)$?

1) Kvantifikátory

x ... je člověk

P ... predikát - být hodný člověk

Otázka: Jaký je význam zápisů a) $(\forall x)P(x)$, b) $(\exists x)P(x)$?

Řešení:

a) (∀x)P(x) ... všichni lidé jsou hodní

1) Kvantifikátory

x ... je člověk

P ... predikát - být hodný člověk

Otázka: Jaký je význam zápisů a) $(\forall x)P(x)$, b) $(\exists x)P(x)$?

- a) (∀x)P(x) ... všichni lidé jsou hodní
- b) (∃x)P(x) ... někteří lidé jsou hodní

2) Syntax

Napište formuli predikátové logiky odpovídající následující větě (použijte predikátové symboly uvedené v textu): Někdo má hudební sluch (S) a někdo nemá hudební sluch.

2) Syntax

Napište formuli predikátové logiky odpovídající následující větě (použijte predikátové symboly uvedené v textu): Někdo má hudební sluch (S) a někdo nemá hudební sluch.

Řešení:

 $\bullet ((\exists x)S(x)) \wedge ((\exists x)\neg S(x))$

3) Formalizace

Zapište formálně:

Je-li přirozené číslo sudé, pak jeho následník je číslo liché. Číslo 2 je sudé. Následník čísla 2 je číslo liché.

3) Formalizace

Zapište formálně:

Je-li přirozené číslo sudé, pak jeho následník je číslo liché. Číslo 2 je sudé. Následník čísla 2 je číslo liché.

Řešení:

 Predikáty: sudé přiroz. číslo ... S, liché přiroz. číslo ... L Konstanta: 2

Funkce: f: $n \rightarrow n + 1$

3) Formalizace

Zapište formálně:

Je-li přirozené číslo sudé, pak jeho následník je číslo liché. Číslo 2 je sudé. Následník čísla 2 je číslo liché.

Řešení:

 Predikáty: sudé přiroz. číslo ... S, liché přiroz. číslo ... L Konstanta: 2

Funkce: f: $n \rightarrow n + 1$

Formální zápis:

$$(\forall x)S(x) \implies L(f(x))$$

S(2)

L(f(2))

4) Sémantika

Nechť P je unární predikátový symbol, f je unární funkční symbol, a je konstanta. Je dána interpretace < U, [|-|]>, kde U je množina všech přirozených čísel,

 $[|P|]: \{2n; n \in N_0\}$, tj. predikát P odpovídá vlastnosti být sudý, $[|f|]: n \to n^3$, tj. funkce f odpovídá umocnění na třetí,

[|a|] = 2.

Rozhodněte o pravdivosti P(f(a)).

4) Sémantika

Nechť P je unární predikátový symbol, f je unární funkční symbol, a je konstanta. Je dána interpretace < U, [|-|]>, kde U je množina všech přirozených čísel,

 $[|P|]: \{2n; n \in N_0\}$, tj. predikát P odpovídá vlastnosti být sudý, $[|f|]: n \to n^3$, tj. funkce f odpovídá umocnění na třetí,

[|a|] = 2.

Rozhodněte o pravdivosti P(f(a)).

Řešení:

• $f(a) = f(2) = 2^3 = 8$ $P(f(a)) = P(f(2)) = P(2^3) = P(8)...8$ je sudé číslo P(f(a)) platí

5) Sémantika

Rozhodněte, zda formule je pravdivá v oboru *N*, *R*:

a)
$$(\exists z)(\forall x)z \leq x$$

b)
$$(\forall x)(\exists z)z \leq x$$

5) Sémantika

Rozhodněte, zda formule je pravdivá v oboru *N*, *R*:

- a) $(\exists z)(\forall x)z \leq x$
- b) $(\forall x)(\exists z)z \leq x$

Řešení:

 a) v oboru N: ano, existuje nejmenší přirozené číslo, v oboru R: ne, nelze určit nejmenší reálné číslo

5) Sémantika

Rozhodněte, zda formule je pravdivá v oboru *N*, *R*:

- a) $(\exists z)(\forall x)z \leq x$
- b) $(\forall x)(\exists z)z \leq x$

- a) v oboru N: ano, existuje nejmenší přirozené číslo, v oboru R: ne, nelze určit nejmenší reálné číslo
- b) v oboru N i R ano, pro každé přirozené i reálné číslo x existuje číslo z menší nebo rovno než x

5) Sémantika

Rozhodněte, zda formule je pravdivá v oboru *N*, *R*:

- a) $(\exists z)(\forall x)z \leq x$
- b) $(\forall x)(\exists z)z \leq x$

- a) v oboru N: ano, existuje nejmenší přirozené číslo, v oboru R: ne, nelze určit nejmenší reálné číslo
- b) v oboru N i R ano, pro každé přirozené i reálné číslo x existuje číslo z menší nebo rovno než x
- pozor na pořadí kvantifikátorů

