Exercices de maths MPSI-MP

Hadrien CHALANDON

Table des matières

Ι	Ex	tercices de MPSI	11			
1	Rai	sonnement, ensembles, applications et relations	13			
	1.1	Raisonnements	13			
	1.2	Ensembles	13			
	1.3	Applications et relations	14			
	1.4	Digressions et exercices supplémentaires	14			
2	Réels, complexes, trigonométrie, sommes et produits					
	2.1	Compléments sur les réels	15			
	2.2	Complexes et trigonométrie	15			
	2.3	Sommes et produits	16			
	2.4	Digressions et exercices supplémentaires	16			
3	Fonctions usuelles : Dérivées, Intégrales, équations différentielles					
	3.1	Dérivées	17			
	3.2	Intégrales	17			
	3.3	Équations différentielles	17			
4	Sui	Suites, limites, continuité				
	4.1	Suites	19			
	4.2	Continuité	19			
5	Dérivation					
	5.1	Fonctions dérivables	21			
	5.2	Convexité	21			
6	Analyse asymptotique					
	6.1	Analyse asymptotique des suites	23			
	6.2	Développements limités	23			
7	Structures algébriques					
	7.1	Groupes	25			
	7.2	Anneaux et corps				
	7.3	Digressions et exercices supplémentaires	25			

8	Arithmétique	27
	8.1 Divisibilité, PGCD, PPCM	
	8.2 Nombres premiers	
	8.3 Digressions et exercices supplémentaires	27
9	Polynômes et fractions rationnelles	29
	9.1 Polynômes	29
	9.2 Fraction rationnelles	29
	9.3 Digressions et exercices supplémentaires	29
10	Algèbre linéaire de base	31
	10.1 Sous-espaces et applications linéaires	31
	10.2 Dimension finie	31
11	Matrices	33
	Manifeed	00
12	Uniforme continuité, intégration	35
13	Séries	37
14	Groupe symétrique et déterminants	39
	14.1 Groupe symétrique	39
	14.2 Déterminants	39
15	Espaces vectoriels préhilbertiens	41
16	Dénombrement	43
1 💆	D. 1.1394	4 -
17	Probabilités	45
II	Exercices de MP	47
18	Rappels et compléments d'analyse	49
	18.1 Sous-ensembles de \mathbb{R}	49
19	Intégrales généralisées	51
10	integrates generalisees	01
20	Suites et séries de fonctions	53
21	Intégrales à paramètre	55
22	Structures algébriques	57
	22.1 Groupes	57
	22.2 Anneaux et corps	58
	22.3 Digressions et exercices supplémentaires	58

TABLE	DES	MATIÈRES	

23 Topologie 23.1 Topologie des espaces vectoriels normés	59 59
24 Compléments d'algèbre linéaire	61
25 Réduction des endomorphismes	63
26 Probabilités de spé 26.1 Dénombrabilité	
27 Fonctions vectorielles	67
28 Séries entières 28.1 Séries Génératrices en Dénombrement	69 69
29 Espaces euclidiens 29.1 Isométries et matrices orthogonales	71
30 Équations différentielles linéaires	73
31 Calcul différentiel	7 5
III Astuces	77
IV Solutions : MPSI	7 9
V Solutions : MP	81
VI Annexe : trucs utiles en général	83
A Liste non exhaustive de symboles utilisés en mathématiques A.1 Alphabet grec	86
B Formulaire	87
B.1 Inégalités à connaître	87 87

Introduction

Ce livre est une collection d'exercices de maths de prépa MPSI-MP/MP*. S'il est conçu pour des élèves de MPSI et de MP, d'autres filières de prépa peuvent l'utiliser.

Le but du livre est de regrouper un maximum d'exercices intéressants. Des digressions offrant plus de perspectives sur les maths hors programme de prépa sont insérées dans les sections appropriées. Ces digressions peuvent procurer du pur plaisir mathématique et (peut-être) servir pour les concours X-ENS (attention cependant à bien connaître ce qui et ce qui n'est pas au programme pour éviter de perdre des points en utilisant des résultats hors programme) ou comme inspiration pour un TIPE de maths.

Les exercices sont regroupés plus par thème que par chapitre (par exemple, les chapitres espaces vectoriels normés et espaces vectoriels normés de dimension finie sont regroupés dans la section « Topologie »).

Certains exercices plus durs ont des astuces (données dans la partie « Astuces ») pour éviter de regarder directement la correction (ainsi, faire ces exercices se rapproche d'une khôlle ou d'un oral où l'examinateur donne des pistes de réflexion).

Il est très très vivement conseillé de ne pas regarder la correction (ou les astuces) d'un exercice avant de l'avoir longuement cherché. Si vous êtes en prépa, votre ou vos prof(s) vous ont probablement déjà prévenus.

Ce livre suppose le cours de prépa déjà connu et aucun rappel n'est en général fourni. Ce livre n'est pas non plus un substitut pour des TDs avec un prof en chair et en os. Il est probablement mieux utilisé pour réviser ou comme supplément de TD.

Si vous êtes prof/TDman/peut-importe comment vous vous désignez, oui, vous pouvez chourrer des exos d'ici, personne vous jugera.

- Vous avez un exercice que vous pensez qui est bien et vous voudriez le voir ajouté au livre?
- Vous pensez qu'un exercice est bien trop dur et a besoin d'une astuce?
- Vous avez trouvé une erreur?
- Vous avez envie de me traiter de noms d'oiseaux?

Si vous avez répondu « oui » à au moins $\frac{1}{2}$ question ci-dessus alors contactez moi! //mettre addresse mail maths

Comment utiliser ce livre

- Les exercices ne sont pas nécessairement à faire dans l'ordre.
- Les exercices comportant une astuce sont marqués d'une étoile (\star) .

• Certains exercices utilisent des résultats d'exercices précédents. Si l'exercice dont on utilise les résultats n'est pas dans le même chapitre, alors l'exercice utilisé est soit mentionné dans l'énoncé, soit (s'il n'est pas strictement nécessaire ou jugé retrouvable) précisé dans la partie « astuces ».

Table des matières

Première partie Exercices de MPSI

Raisonnement, ensembles, applications et relations

1.1 Raisonnements

Les trois exercices suivants sont extrêmement classiques.

Exercice 1.1.1. Montrer que $\sqrt{2}$ est irrationnel (bonus : généraliser).

Exercice 1.1.2. Soit $n \in \mathbb{Z}$. Montrer que si n^2 est impair, n l'est aussi.

Exercice 1.1.3. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$$

1. Montrer que

$$\exists a \in \mathbb{R}, \forall n \in \mathbb{Z}, f(n) = an$$

2. En déduire que

$$\forall r \in \mathbb{Q}, f(r) = ar$$

3. Prolonger ce résultat en

$$\forall x \in \mathbb{R}, f(x) = ax$$

(il est possible que cette question demande du cours qui n'a pas encore été vu; si c'est le cas, attendre le cours sur les nombres réels)

Exercice 1.1.4. Montrer que

$$\forall n \in \mathbb{N}^*, 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

1.2 Ensembles

Exercice 1.2.1 (Théorème de Cantor). Soit E un ensemble. Montrer qu'il n'existe pas de surjection de E dans $\mathcal{P}(E)$.

1.3 Applications et relations

Exercice 1.3.1. Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Soit $f: \mathcal{P}(E) \rightarrow \mathcal{P}(A) \cap \mathcal{P}(B)$ $X \mapsto (X \cap A, X \cap B)$

- 1. Donner une condition nécessaire et suffisante pour que f soit injective.
- 2. Même question pour que f soit surjective.

Exercice 1.3.2. Soit $f: \mathbb{N} \to \mathbb{N}$ une bijection.

- 1. Montrer que $\lim_{n\to+\infty} f(n) = +\infty$.
- 2. Le résultat subsiste-t-il si on suppose seulement f injective? Surjective?

1.4 Digressions et exercices supplémentaires

Exercice 1.4.1. Soit E un ensemble et \mathcal{R} une relation binaire sur E réflexive et transitive (on dit que \mathcal{R} est un $pr\'{e}ordre$).

1. Montrer que la relation binaire sur $E \sim$ définie par

$$\forall x, y \in E, (x \sim y) \iff (x\mathcal{R}y \land y\mathcal{R}x)$$

est une relation d'équivalence.

2. Montrer que la relation binaire \leq définie sur l'ensemble E/\sim par

$$\forall \overline{x}, \overline{y} \in E/_{\sim}, (\overline{x} \leq \overline{y}) \iff (x\mathcal{R}y)$$

est bien définie (ne dépend pas du choix du représentant) et est une relation d'ordre.

Réels, complexes, trigonométrie, sommes et produits

2.1 Compléments sur les réels

Quelques exercices sur la manipulation de la borne supérieure :

Exercice 2.1.1. Soient $A, B \subset \mathbb{R}$ majorées non vides. Montrer que $\sup(A + B)$ existe et que $\sup(A + B) = \sup(A) + \sup(B)$.

Exercice 2.1.2. Soient $A, B \subset \mathbb{R}^+$ majorées. Montrer que $A \times B$ est majorée et que $\sup(A \times B) = \sup(A) \times \sup(B)$.

Exercice 2.1.3. Soit $A \subset \mathbb{R}$ bornée. Soit $\lambda \in \mathbb{R}$.

- Montrer que si $\lambda \geq 0$, $\sup(\lambda A) = \lambda \sup(A)$.
- Montrer que si $\lambda < 0$, $\sup(\lambda A) = \lambda \inf(A)$.

Exercice 2.1.4. Soit $f:[0,1] \to [0,1]$ continue. Montrer que f admet un point fixe.

2.2 Complexes et trigonométrie

Exercice 2.2.1. Calculer $\cos\left(\frac{\pi}{8}\right)$.

Exercice 2.2.2. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{\omega \in \mathbb{U}_n} \omega$.

Exercice 2.2.3. Montrer que pour $x \in \mathbb{R}^*$:

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \operatorname{sgn}(x)\frac{\pi}{2}$$

Où sgn(x) est le signe de x.

2.3 Sommes et produits

Exercice 2.3.1. Calculer

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

Exercice 2.3.2. Trouver les suites $(u_n)_{n\geq 1}$ de nombres réels strictement positifs telles que

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n u_k^3 = \left(\sum_{k=1}^n u_k\right)^2$$

2.4 Digressions et exercices supplémentaires

Fonctions usuelles : Dérivées, Intégrales, équations différentielles

- 3.1 Dérivées
- 3.2 Intégrales
- 3.3 Équations différentielles

18CHAPITRE 3. FONCTIONS USUELLES : DÉRIVÉES, INTÉGRALES, ÉQUATIONS DIFFÉRE

Suites, limites, continuité

4.1 Suites

Exercice 4.1.1. Soit α un irrationnel

4.2 Continuité

Exercice 4.2.1. Soit $f \in \mathcal{C}([0,1],\mathbb{C})$. Montrer que

$$\sum_{k=0}^{+\infty} (-1)^k \int_0^1 t^k f(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{1+t} \, \mathrm{d}t$$

Dans l'éventualité où vous avez un doute, la somme jusqu'à l'infini est la limite des sommes finies, $\sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$. Il faut prouver qu'elle existe.

Dérivation

- 5.1 Fonctions dérivables
- 5.2 Convexité

Analyse asymptotique

- 6.1 Analyse asymptotique des suites
- 6.2 Développements limités

Structures algébriques

7.1 Groupes

Exercice 7.1.1.

Exercice 7.1.2. Soit G un groupe fini d'ordre pair. Montrer qu'il existe $x \in G$ différent de e tel que $x^2 = e$.

Exercice 7.1.3. Soit G un groupe fini et f un endomorphisme de G tel que

$$|\{x \in G \mid f(x) = x^{-1}\}| > \frac{|G|}{2}$$

Montrer que f est une involution (c'est-à-dire que $f \circ f = \mathrm{Id}_G$).

7.2 Anneaux et corps

7.3 Digressions et exercices supplémentaires

Exercice 7.3.1. Soit E un ensemble fini muni d'une loi de composition interne associative (E est donc un magma associatif). Montrer l'existence de $x \in E$ tel que $x^2 = x$.

Arithmétique

- 8.1 Divisibilité, PGCD, PPCM
- 8.2 Nombres premiers

Exercice 8.2.1. Calculer, pour $n \in \mathbb{N}$, $v_2(5^{2^n} - 1)$.

8.3 Digressions et exercices supplémentaires

Polynômes et fractions rationnelles

- 9.1 Polynômes
- 9.2 Fraction rationnelles
- 9.3 Digressions et exercices supplémentaires

Algèbre linéaire de base

10.1 Sous-espaces et applications linéaires

Exercice 10.1.1. Soient F, G des sous-espaces de E. Montrer que $F \cup G$ est un sous-espace de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 10.1.2. Soit $u \in \mathcal{L}(E)$ de rang 1.

- 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $u^2 = \lambda u$.
- 2. En déduire que pour $a \in \mathbb{K} \setminus 0, \lambda, u a \operatorname{Id} \in \operatorname{Gl}(E)$.

10.2 Dimension finie

Chapitre 11 Matrices

Uniforme continuité, intégration

Séries

Groupe symétrique et déterminants

Notations.

• Pour $n \in \mathbb{N}$, le groupe symétrique d'ordre n sera noté \mathfrak{S}_n .

14.1 Groupe symétrique

Exercice 14.1.1. Soit E un ensemble fini. Soit $f: E \to E$ une involution (c'est-à-dire $f \circ f = \mathrm{Id}_E$). On pose $P = \{x \in E \mid f(x) = x\}$. Montrer que $\mathrm{Card}(P) \equiv \mathrm{Card}(E)$ [2].

14.2 Déterminants

Espaces vectoriels préhilbertiens

Dénombrement

Probabilités

Deuxième partie Exercices de MP

Rappels et compléments d'analyse

18.1 Sous-ensembles de \mathbb{R}

On replace cet exercice classique ici :

Exercice 18.1.1. Soit $G \subset \mathbb{R}$ un sous-groupe de $(\mathbb{R}, +)$. Montrer que ou bien G est de la forme $a\mathbb{Z}$ avec $a \in \mathbb{R}$, ou bien G est dense dans \mathbb{R} .

De ce résultat utile découlent quelques applications :

Exercice 18.1.2. Soit $H = a\mathbb{Z} + b\mathbb{Z}$ avec $(a, b) \in \mathbb{R} \times \mathbb{R}^*$. Montrer que H est dense dans \mathbb{R} si et seulement si $\frac{a}{b} \notin \mathbb{Q}$.

Exercice 18.1.3. Que dire d'une fonction continue $f: \mathbb{R} \to \mathbb{R}$ admettant 1 et $\sqrt{2}$ comme périodes?

Exercice 18.1.4. Caractériser les sous-groupes de (\mathbb{U}, \times) .

Chapitre 19 Intégrales généralisées

Suites et séries de fonctions

Chapitre 21 Intégrales à paramètre

Structures algébriques

22.1 Groupes

Notations.

- On considérera des groupes d'élément neutre e.
- Quand la loi de composition interne d'un groupe n'est pas précisée, on adoptera la notation multiplicative : x * y sera noté xy et l'inverse de x est x^{-1} .
- L'ordre d'un élément $x \in G$ sera noté o(x).

L'exercice classique par excellence sur les groupes est le théorème de Lagrange sur les groupes finis. Ce théorème n'est pas au programme de CPGE mais son utilisation dans d'autres exercices sur les groupes est commune.

Exercice 22.1.1 (Théorème de Lagrange). Soit G un groupe fini. Soit H un sous-groupe de G. Montrer que $Card(H) \mid Card(G)$.

Le corollaire du théorème de Lagrange est un résultat au programme de MP. La preuve n'est cependant exigible que dans le cas abélien. Le théorème de Lagrange permet de donner une démonstration générale de son corollaire.

Exercice 22.1.2 (Corollaire du théorème de Lagrange). Soit G un groupe fini. Soit $x \in G$. Montrer que $x^{\operatorname{Card}(G)} = e$.

Ces relations de divisibilité dans les groupes finis les lient à des notions d'arithmétique.

Exercice 22.1.3. Soit G un groupe fini d'ordre p premier. Que dire de la structure de G?

Exercice 22.1.4. Soit G un groupe. On pose $\mathcal{Z}(G) = \{x \in G \mid \forall y \in G, xy = yx\}$ le centre de G. Montrer que $\mathcal{Z}(G)$ est un sous-groupe de G.

Exercice 22.1.5. Soit G un groupe abélien.

- 1. Soient $a, b \in G$ d'ordres finis. Montrer que o(ab) est d'ordre fini et que si $o(a) \wedge o(b) = 1$, alors o(ab) = o(a)o(b).
- 2. Le résultat subsiste-t-il si G n'est plus abélien?

Exercice 22.1.6. Soit G un groupe fini non commutatif. Montrer que la probabilité que deux éléments de G choisis au hasard (uniformément) commutent est inférieure à 5/8.

22.2 Anneaux et corps

Exercice 22.2.1. Soit K un corps fini.

22.3 Digressions et exercices supplémentaires

En prépa, on a tendance à définir un corps comme étant commutatif. Certains auteurs ne demandent pas cette hypothèse d'un corps. Cependant, un corps fini est toujours commutatif (Théorème de Wedderburn).

Topologie

- 23.1 Topologie des espaces vectoriels normés
- 23.2 Topologie des espaces vectoriels normés de dimension finie
- 23.3 Séries vectorielles
- 23.4 Digressions et exercices supplémentaires

Compléments d'algèbre linéaire

Réduction des endomorphismes

Exercice 25.0.1. Soit E un \mathbb{C} -espace vectoriel de dimension finie.

Probabilités de spé

- 26.1 Dénombrabilité
- 26.2 Variables aléatoires discrètes

Fonctions vectorielles

Exercice 27.0.1 (Une Démonstration du Théorème de Cayley-Hamilton). On se place sur $\mathbb C$

On assimilera ici \mathbb{C} et $\mathbb{C}I_n$ où $n \in \mathbb{N}$, et on note $A^{-1} = \frac{1}{A}$ même pour une matrice. On prend $A \in M_n(\mathbb{C})$

- 1. Montrer que pour $z \in \mathbb{C}$ suffisamment grand, $\det(z-A) \neq 0$
- 2. En déduire que pour r assez grand, l'intégrale

$$\int_{-\pi}^{+\pi} \frac{(re^{i\theta})^{k+1}}{re^{i\theta} - A} \frac{d\theta}{2\pi}$$

a un sens.

3. Montrer que si A est suffisamment 'petite' :

$$\frac{1}{1-A} = \sum_{k=0}^{+\infty} A^k$$

- 4. En déduire la valeur de l'intégrale de la question 2.
- 5. Calculer $\chi_A(A)$. Quel résultat retrouve-t-on?

Séries entières

28.1 Séries Génératrices en Dénombrement

Exercice 28.1.1 (Des Partitions d'un Ensemble fini). On note b_n le nombre de partitions d'un ensemble à n éléments.

- 1. Calculer b_0, \ldots, b_3
- 2. Trouver une relation de récurrence entre les b_n
- 3. Exprimer $\sum_{n=0}^{\infty} b_n \frac{x^n}{n!}$
- 4. Donner une expression de b_n

Espaces euclidiens

29.1 Isométries et matrices orthogonales

29.2 Endomorphismes autoadjoints positifs, définis positifs

Exercice 29.2.1 (Racine carrée d'un endomorphisme positif). Soit u un endomorphisme autoadjoint positif de E.

- 1. Montrer qu'il existe v endomorphisme autoadjoint positif de E tel que $v^2=u$ et que si u est défini positif, v l'est aussi.
- 2. Montrer que $v \in \mathbb{R}[u]$.

Exercice 29.2.2 (Décomposition polaire). Soit $u \in Gl(E)$. Montrer qu'il existe un unique couple $(o, s) \in \mathcal{O}(E) \times \mathcal{S}^{++}(E)$ tel que u = os.

29.3 Digressions et exercices supplémentaires

Chapitre 30

Équations différentielles linéaires

Chapitre 31
Calcul différentiel

Troisième partie Astuces

Quatrième partie

Solutions: MPSI

Cinquième partie

Solutions : MP

Sixième partie

Annexe : trucs utiles en général

Annexe A

Liste non exhaustive de symboles utilisés en mathématiques

A.1 Alphabet grec

Caractère	Nom	Utilisation
$A\alpha$	Alpha	α : variable (souvent coefficient)
		A : pas utilisé
$B\beta$	Bêta	78
$\Gamma\gamma$	Gamma	778
$\Delta\delta$	Delta	18744
$\mathrm{E}\varepsilon$	Epsilon	788
$\mathrm{Z}\zeta$	Zêta	
$_{ m H\eta}$	Êta	
$\Theta\theta$	Thêta	
$I\iota$	Iota	
$K\kappa$	Kappa	
$\Lambda\lambda$	Lambda	
$M\mu$	Mu	
$N\nu$	Nu	
Ξξ	Xi	
Oo	Omicron	
$\Pi\pi$	Pi	
$P\rho$	Rho	
$\Sigma \sigma$	Sigma	
$T\tau$	Tau	
Υυ	Upsilon	
$\Phi \varphi$	Phi	
Χχ	Chi	
$\Psi\psi$	Psi	
$\Omega \omega$	Omega	

86ANNEXE A. LISTE NON EXHAUSTIVE DE SYMBOLES UTILISÉS EN MATHÉMATIQUES

- A.2 Algèbre
- A.3 Analyse

Annexe B

Formulaire

- B.1 Inégalités à connaître
- B.2 Formules célèbres