Návrh

Vision Lab – fyzikálne experimenty

Skupina SEJ2

Soňa Senkovičová, Erik Szalay, Jozef Kubík, Juraj Vetrák

11.11.2018

Obsah dokumentu

1. UVOD	3
1.1 Účel dokumentu 1.2 Používané definície, akronymy a skratky	3
2. ŠPECIFIKÁCIA VONKAJŠÍCH INTERFEJSOV	3
3. FORMÁTY SÚBOROV	3
 3.1 Aktuálna snímka z webovej kamery v pozastavenom zázname – PNG 3.2 Aktuálny záznam grafu - JPG 3.3 Export dokumentu z pozastaveného záznamu – PDF 3.4 Export štatistických údajov z pozastaveného záznamu – CSV 3.5 Import aj export konfiguračného súboru - TXT 	3 4 4 4 4
4. POUŽÍVATEĽSKÉ ROZHRANIE	5
5. NÁVRH IMPLEMENTÁCIE	7
5.1 Prehľad používaných technológií 5.1.1 Programovací jazyk 5.1.2 Knižnica pre manipuláciu s počítačovou grafikou 5.1.3 Knižnice pre tvorbu užívateľského prostredia 5.2 Architektúra aplikácie 5.3 Diagramy 5.3.1 Triedny diagram 5.3.2 Komponentový diagram 5.3.3 Stavový diagram 5.3.4 Sekvenčný diagram	7 7 8 8 9 9 9 9
5.4 ROZDELENIE NA ČASTI (MODULY) 5.5 CIEľOVÉ PROSTREDENIE NASADENIA DO RREVÁDZKY	10

1. Úvod

1.1 Účel dokumentu

Účelom tohto dokumentu je ...

1.2 Používané definície, akronymy a skratky

Na tejto sekcii sa momentálne pracuje.

2. Špecifikácia vonkajších interfejsov

Na tejto sekcii sa momentálne pracuje.

3. Formáty súborov – prerobiť na AKO, nie ČO

3.1 Aktuálna snímka z webovej kamery v pozastavenom zázname – PNG

Aktuálna snímka v pozastavenom zázname z webovej kamery sa pri zvolení možnosti expertovania "dokumentu" [3.3] uloží do vývojarom špecifikovaného priečinka vo formáte PNG a použije sa pri tvorbe "dokumentu".

3.2 Aktuálny záznam grafu - JPG

V pozastavenom zázname sa nachádza graf, ktorý popisuje aktuálny stav sledovaného objektu. Ten sa vyexportuje vo formáte JPG s bielym/transparentným pozadím a uloží do vývojarom nastaveného priečinka a použije sa pri tvorbe "dokumentu" [3.3].

3.3 Export dokumentu z pozastaveného záznamu – PDF

Pozastavený záznam pri zvolení možnosti exportovania "dokumentu" vytvorí nový PDF súbor s nadpisom, ktorý prečíta z užívateľského vstupu. Pod neho vloží dátum a čas merania. Už uloženú snímku z webovej kamery vo formáte PNG [3.1] vloží pod nadpis a dátum zhruba vo veľkosti 1/3 A4 (presná veľkosť v px?). Pod túto snímku bude umiestnený zaznamenaný graf [3.2] tiež zhruba vo veľkosti 1/3 A4 (presná veľkosť v px?). Vo zvyšnej časti dokumentu sa bude nachádzať užívateľom zadaný komentár k meraniu, ktorý si aplikácia prečíta z textového poľa. Na záver sa otvorí prehliadač súborov s možnosťou uložiť tento dokument na ľubovoľné, užívateľom zvolené miesto v počítači.

3.4 Export štatistických údajov z pozastaveného záznamu – CSV

Po zvolení možnosti exportovania štatistických údajov sa vytvorí CSV súbor, ktorý bude obsahovať čiarkou oddelené údaje, ktoré si zvolil užívateľ pri grafe v checkboxoch. Otvorí sa prehliadač súborov s možnosťou uložiť tento CSV dokument na ľubovoľné, užívateľom zvolené miesto v počítači.

3.5 Import aj export konfiguračného súboru - TXT

Aplikácia bude mať (nie len) pri prvom spustení k dispozícii konfiguračný súbor so základnými nastaveniami webovej kamery v súlade s predpokladmi používania aplikácie, a to vo formáte TXT (formát TXT súboru ešte upresniť detailne). Ak užívateľ v aplikácii zmenil/prispôsobil nastavenia svojej kamery pre svoje potreby, tieto nastavenia sa uložia do ďalšieho konfiguračného súboru a budú k dispozícii v prípade identifikácie danej konkrétnej kamery, čím sa automaticky nastaví už predtým zvolená konfigurácia a odpadne nutnosť znova nastavovať tú istú kameru. Exportovaná konfigurácia sa uloží do vývojarom vybratého priečinka a taktiež do formátu TXT.

4. Používateľské rozhranie

obr. 4.1 - hlavná obrazovka

obr. 4.2 - spustené meranie

obr. 4.3 - exportovanie údajov

obr. 4.4 - nastavenie grafu a kyvadla

obr. 4.5 - nastavenie webovej kamery

Aplikácia umožňuje sledovať záznam pohybu kyvadla a zároveň sledovať vybraný údaj (obr 4.1). Užívateľ má možnosť zastaviť a znovu spustiť záznam (obr. 4.2). Môže si vyexportovať údaje do formátov CSV (štatistické údaje) alebo PDF (rozsiahlejší dokument [3.3] (obr 4.3). Užívateľ si vie nastaviť, ktorý údaj chce pozorovať. Vedľa vie zadať hmotnosť závažia, dĺžku lanka a gravitačné zrýchlenie oblasti v ktorej je. Pomocou scrollbaru sa dá sledovať aj história grafu. Graf sa dá priblížiť alebo oddialiť (obr 4.4). Užívatelia majú možnosť nastaviť rozlíšenie a expozíciu kamery. Okrem toho vedia nastaviť aj frekvenciu snímania (obr 4.5).

5. Návrh implementácie

V tejto sekcii je podrobne popísaný návrh celkovej implementácie softvéru pozostávajúci z prehľadu používaných technológií, detailného popisu softvérovej architektúry, nakreslených diagramov popisujúcich funkčnosť aplikácie, rozdelenie na časti (moduly) a popis cieľového prostredia pri nasadení do prevádzky.

5.1 Prehľad používaných technológií

5.1.1 Programovací jazyk

Ako programovací jazyk bol zvolený C++, keďže predstavuje základný jazyk pre knižnicu OpenCV, ktorá bola použitá pre manipuláciu s kamerou a počítačovou grafikou.

C++ je objektovo orientovaný programovací jazyk so širokým spektrom dostupných knižníc. Keďže C++ predstavuje rozšírenú verziu C, ktorá je pomerne nízkoúrovňová, poskytuje oveľa väčšiu rýchlosť oproti vysokoúrovňovým jazykom ako Python alebo Java.

5.1.2 Knižnica pre manipuláciu s počítačovou grafikou

OpenCV (Open Source Computer Vision, https://opencv.org/) je knižnica pre manipuláciu s obrázkami a real-time videom. Je napísaná v C++, ktorý je aj jej primárnym interface jazykom.

OpenCV spracováva video ako sadu obrázkov (frameov). Tieto obrázky sú transformované do matice Mat, ktorá sa skladá z 2 častí:

- hlavičku (header) obsahuje informácie o veľkosti (počet riadkov a stĺpcov), formát, v akom je obrázok uložený (napr. RGB alebo HSV), počet bitov pre každú hodnotu, či je signed, koľko hodnôt je na jeden pixel a pod.
- samotnú maticu (resp. pointer na ňu), ktorá predstavuje 2D pole s hodnotami, ktoré reprezentujú farbu každého bodu

Aby sa optimalizovala práca s veľkým objemom dát, Mat reálne obsahuje len header a pointer na samotné dáta, čím umožňuje zdieľanie rovnakých dát medzi metódami. Pointer môže ukazovať len na časť veľkého obrázka.

Manipulácia s videom v OpenCV je zabezpečená prostredníctvom triedy VideoCapture. Táto trieda umožňuje načítavanie videa zo súboru alebo z video-streamu a jeho transformáciu na jednotlivé frame-y, ako aj samotné ovládanie kamery a jej atribútov.

Modul highgui (High-level GUI and Media I/O) umožňuje základnú komunikáciu s GUI. Umožňuje zobrazovanie obrázkov aj framov z videa, buď v pôvodnej alebo upravenej verzii (napr. po zvýraznení určitého objektu alebo jeho stredu).

OpenCV obsahuje veľké množstvo metód na spracovanie obrázkov, vrátane štrukturálnej analýzy obrázkov a identifikácie objektov, ktorá dokážu identifikovať objekty rôznych tvarov (napr. funkcia moments vie identifikovať polygonálne objekty do 3. rádu). fitEllipse nájde elipsu obkolesujúcu 2D objekt.

5.1.3 Knižnice pre tvorbu užívateľského prostredia

Pre tvorbu užívateľského prostredia bola zvolená knižnica Microsoft Foundation Class (MFC) library. Ide o C++ knižnicu od Microsoftu (msdn.microsoft.com/en-us/library/d06h2x6e.aspx) pre vývoj desktopových aplikácií pre Windows.

Samotná MFC obaľuje časti tried Windows API v C++, vrátane funkcionalít, ktoré jej umožňujú využívať štandardný aplikačný framework. Obsahuje triedy pre ovládanie mnohých Windows objektov, predefinovaných okien a štandardných kontrolných prvkov.

5.2 Architektúra aplikácie

Na tejto sekcii sa momentálne pracuje.

5.3 Diagramy

5.3.1 Triedny diagram

Na tejto sekcii sa momentálne pracuje.

5.3.2 Komponentový diagram

Na tejto sekcii sa momentálne pracuje.

5.3.3 Stavový diagram

obr 5.3.3 - Stavový diagram

5.3.4 Sekvenčný diagram

Na tejto sekcii sa momentálne pracuje.

5.4 Rozdelenie na časti (moduly)

Na tejto sekcii sa momentálne pracuje.

5.5 Cieľové prostredenie nasadenia do prevádzky

Na tejto sekcii sa momentálne pracuje.