Hledání kořenů rovnic jedné reálné proměnné – Newtonova metoda –

Michal Čihák

26. října 2011

Newtonova metoda (metoda tečen)

- využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce v blízkém okolí daného bodu
- v metodě sečen jsme pracovali se sečnami grafu funkce tečna grafu funkce je limitním případem sečny

Newtonova metoda (metoda tečen)

- využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce v blízkém okolí daného bodu
- v metodě sečen jsme pracovali se sečnami grafu funkce tečna grafu funkce je limitním případem sečny

Algoritmus Newtonovy metody

Předpokládejme, že p_0 je počáteční aproximace pro kořen p rovnice f(x)=0 a že f'(x) existuje v intervalu obsahujícím všechny aproximace kořenu p. Směrnice tečny grafu funkce f v bodě $[p_0,f(p_0)]$ je $f'(p_0)$ a tedy rovnice tečny grafu funkce f v bodě $[p_0,f(p_0)]$ je

$$y = f(p_0) + f'(p_0)(x - p_0).$$

Algoritmus Newtonovy metody

Hodnota p_1 (další iterace) se určí jako průsečík tečny grafu funkce f v bodě $[p_0,f(p_0)]$ s osou x soustavy souřadnic. Do předchozí rovnice tedy dosadíme y=0

$$0 = f(p_0) + f'(p_0)(x - p_0)$$

a rovnici vyřešíme (vyjádříme neznámou x)

Algoritmus Newtonovy metody

$$x = p_0 - \frac{f(p_0)}{f'(p_0)},$$

za předpokladu, že $f'(p_0) \neq 0$. Získanou hodnotu označíme p_1 . Stejným způsobem určíme aproximaci p_2 z aproximace p_1 , atd.

Algoritmus Newtonovy metody – shrnutí

Pro n>1 se aproximace p_{n+1} hodnoty kořenu rovnice f(x)=0 vypočítá z aproximace p_n pomocí vztahu

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Newtonova metoda

Pro ukončení algoritmu Newtonovy metody používáme dvě kritéria:

- 1. hodnota $|p_n p_{n-1}|$ klesne pod předem danou toleranci TOL
- 2. počet iterací algoritmu překročí předem danou mez N_0 (pojistka propřípad, že by metoda nekonvergovala)

Newtonova metoda

Pro ukončení algoritmu Newtonovy metody používáme dvě kritéria:

- 1. hodnota $|p_n p_{n-1}|$ klesne pod předem danou toleranci TOL
- 2. počet iterací algoritmu překročí předem danou mez N_0 (pojistka pro případ, že by metoda nekonvergovala)

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ s tolerancí $0{,}0005.$ Počáteční aproximace je $p_0=1.$

Zadání: Najděte kořen rovnice $x^3 + 4x^2 - 10 = 0$ s tolerancí 0,0005. Počáteční aproximace je $p_0 = 1$.

 $\check{\it Re}\check{\it seni}$: Nejprve určíme první derivaci funkce $f(x)=x^3+4x^2-10$

$$f'(x) = 3x^2 + 8x.$$

Poté postupně vypočítáme p_1, p_2, \ldots

n	p_n	$f(p_n)$
1 2	1.4545454545 1.3689004011	1.5401953418 0.0607196886
$\frac{3}{4}$	$\begin{array}{c} 1.3652366002 \\ 1.3652300134 \end{array}$	0.0001087706 0.00000000004

Zadání: Najděte kořen rovnice $x^3 + 4x^2 - 10 = 0$ s tolerancí 0,0005. Počáteční aproximace je $p_0 = 1$.

Řešení: Nejprve určíme první derivaci funkce $f(x) = x^3 + 4x^2 - 10$

$$f'(x) = 3x^2 + 8x.$$

Poté postupně vypočítáme p_1, p_2, \ldots

n	p_n	$f(p_n)$
1	1.4545454545	1.5401953418
2	1.3689004011	0.0607196886
3	1.3652366002	0.0001087706
4	1.3652300134	0.00000000004

Všimněte si, že $|p_4-p_3|=0.0000065868$, což je hodnota výrazně menší než daná hodnota TOL.

- Newtonova metoda je úspěšná za předpokladu, že derivace funkce f je nenulová v aproximacích kořenu p.)
- Je-li f' spojitá, pak je pro bezpečné fungování metody nutné, aby $f'(p) \neq 0$ a aby byla zvolena dostatečně přesná počáteční aproximace kořenu p.
- Kořen p rovnice f(x)=0, pro který platí $f'(p)\neq 0$ se nazývá jednoduchý.
- Není-li kořen p rovnice f(x)=0 jednoduchý, může Newtonova metoda i přesto konvergovat, konvergence je ale mnohem pomalejší.

- Newtonova metoda je úspěšná za předpokladu, že derivace funkce f je nenulová v aproximacích kořenu p.)
- Je-li f' spojitá, pak je pro bezpečné fungování metody nutné, aby $f'(p) \neq 0$ a aby byla zvolena dostatečně přesná počáteční aproximace kořenu p.
- Kořen p rovnice f(x)=0, pro který platí $f'(p)\neq 0$ se nazývá jednoduchý.
- Není-li kořen p rovnice f(x)=0 jednoduchý, může Newtonova metoda i přesto konvergovat, konvergence je ale mnohem pomalejší

- Newtonova metoda je úspěšná za předpokladu, že derivace funkce f je nenulová v aproximacích kořenu p.)
- Je-li f' spojitá, pak je pro bezpečné fungování metody nutné, aby $f'(p) \neq 0$ a aby byla zvolena dostatečně přesná počáteční aproximace kořenu p.
- Kořen p rovnice f(x)=0, pro který platí $f'(p)\neq 0$ se nazývá jednoduchý.
- Není-li kořen p rovnice f(x)=0 jednoduchý, může Newtonova metoda i přesto konvergovat, konvergence je ale mnohem pomalejší

- Newtonova metoda je úspěšná za předpokladu, že derivace funkce f je nenulová v aproximacích kořenu p.)
- Je-li f' spojitá, pak je pro bezpečné fungování metody nutné, aby $f'(p) \neq 0$ a aby byla zvolena dostatečně přesná počáteční aproximace kořenu p.
- Kořen p rovnice f(x)=0, pro který platí $f'(p)\neq 0$ se nazývá jednoduchý.
- Není-li kořen p rovnice f(x)=0 jednoduchý, může Newtonova metoda i přesto konvergovat, konvergence je ale mnohem pomalejší.

Příklad: Kořen p=0 rovnice $f(x)=e^x-x-1=0$ není jednoduchý, protože $f(0)=e^0-0-1=0$ a také $f'(0)=e^0-1=0$. Z tabulky je vidět, že Newtonova metoda konverguje ke kořenu p=0 výrazně pomaleji než v předchozím příkladu.

Příklad: Kořen p=0 rovnice $f(x)=e^x-x-1=0$ není jednoduchý, protože $f(0)=e^0-0-1=0$ a také $f'(0)=e^0-1=0$. Z tabulky je vidět, že Newtonova metoda konverguje ke kořenu p=0 výrazně pomaleji než v předchozím příkladu.

n	p_n	n	p_n
0	1.0	9	2.7750×10^{-3}
1	0.58198	10	1.3881×10^{-3}
2	0.31906	11	6.9411×10^{-4}
3	0.16800	12	3.4703×10^{-4}
4	0.08635	13	1.7416×10^{-4}
5	0.04380	14	8.8041×10^{-5}
6	0.02206		
7	0.01107		
8	0.005545		

