Chapter 8 Adding a Disk

Disk Interface

> SCSI

- Small Computer Systems Interface
- High performance and reliability

> IDE

- Integrated Drive Electronics
- Low cost
- Become acceptable for enterprise with the help of RAID technology

> USB

- Universal Serial Bus
- Convenient to use

Disk Interface – SCSI Interface Evolution

Version	Freq.	Width	Speed	Length	Diff.
SCSI-1	5MHz	8 bits	5MB/s	6m	25m
SCSI-2	5MHz	8 bits	5MB/s	6m	25m
SCSI-2 Fast	10MHz	8 bits	10MB/s	3m	25m
SCSI-2 Fast Wide	10MHz	16 bits	20MB/s	3m	25m
Ultra SCSI	20MHz	8 bits	20MB/s	1.5m	25m
Ultra Wide SCSI	20MHz	16 bits	40MB/s	1.5m	25m
Ultra2 SCSI	40MHz	16 bits	80MB/s	-	12m
Ultra160 SCSI	80MHz	16 bits	160MB/s	-	12m
Ultra320 SCSI	160MHz	16 bits	320MB/s	-	12m

Disk Interface – SCSI Interface Connector

Centronics

50 pins, SCSI-1/2, external

Ribbon connector (female)

50 pins, SCSI-1/2, internal

Mini-micro, aka HD50

50 pins, SCSI-2, external

Wide mini-micro, aka HD68

68 pins, SCSI-2/3, int/ext

SCA-2

80 pins, SCSI-3, internal

Disk Interface – SCSI Interface

- > Daisy chain on SCSI bus
 - Most external devices have two SCSI ports
 - Terminator
- > Each SCSI device has a SCSI ID

Disk Interface - IDE

- > ATA (AT Attachment)
 - ATA2
 - · PIO, DMA
 - LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - ATAPI (ATA Packet Interface)
 - · CDROM, TAP
 - Only one device can be active at a time
 - SCSI support overlapping commands, command queuing, scatter-gather I/O
 - Master-Slave
 - 40-pin ribbon cable

Disk Geometry (1)

- > sector
 - Individual data block
- > track
 - circle
- > cylinder
 - circle on all platters
- > Position
 - CHS
 - Cylinder, Head, Sector

Disk Geometry (2)

>40G HD

- 16384 cylinders, 80 heads
- 63 sectors per track, 512 bytes per sector
- -512 * 63 * 16384 * 80 = 42,278,584,320 bytes
- -1KB = 1024 bytes
- -1MB = 1024 KB = 1,048,576 bytes
- -1GB = 1024 MB = 1,073,741,824bytes
- -42,278,584,320 / 1,073,741,824 = 39.375 GB

Disk Installation Procedure (1)

- The procedure involves the following steps:
 - Connecting the disk to the computer
 - IDE: master/slave
 - SCSI: ID, terminator
 - power
 - Creating device files
 - /dev
 - /dev/MAKEDEV ad0
 - Formatting the disk
 - Low-level format
 - > Address information and timing marks on platters
 - > bad sectors
 - Manufacturer diagnostic utility

Disk Installation Procedure (2)

Partitioning and Labeling the disk

- Allow the disk to be treated as a group of independent data area
- root, home, swap partitions
- Suggestion:
 - > /var, /tmp → separate partition
 - > Make a copy of root filesystem for emergency

Establishing logical volumes

- Combine multiple partitions into a logical volume
- Software RAID technology
 - > FreeBSD (Vinum)
 - > Linux (Linux LVM)
 - > Sun (Solstice Disk Suite)

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - Use "newfs" to install a filesystem for a partition
 - Filesystem components
 - > A set of inode storage cells
 - > A set of data blocks
 - > A set of superblocks
 - > A map of the disk blocks in the filesystem
 - > A block usage summary

Disk Installation Procedure (4)

Superblock contents

- > The length of a disk block
- > Inode table's size and location
- > Disk block map
- > Usage information
- > Other filesystem's parameters

sync system call

> Flush the cashed superblocks in-memory copy to the permanent place in disk

Disk Installation Procedure (5)

- Setting up automatic mounting
 - mount
 - > Bring the new partition to the filesystem tree
 - > mount point can be any directory
 - > % mount /dev/ad1s1e /home2
 - Automount at boot time
 - > /etc/fstab
 - > % mount -t cd9600 -o ro,noauto /dev/acd0c /cdrom

tytsai@qkmj:/etc> less fstab								
# Device	Mountpoint	FStype	Options	Dump	Pass#			
/dev/ad0s1b	none	swap	SW	0	0			
/dev/ad2s1b	none	swap	SW	0	0			
/dev/ad0s1a	/	ufs	rw	1	1			
/dev/acd0c	/cdrom	cd9660	ro,noauto	0	0			
proc	/proc	procfs	rw	0	0			
/dev/ad2s1a	/backup	ufs	rw,noauto	1	1			
ccduty:/bsdhome	/bsdhome	nfs	rw,noauto	0	0			

Disk Installation Procedure (6)

- Setting up swapping on swap partitions
 - swapon command

fsck – check and repair filesystem (1)

- > System crash will cause
 - Inconsistency between memory image and disk contents
- > fsck -p
 - Examine all local filesystem listed in /etc/fstab at boot time
 - Automatically correct the following damages:
 - Unreferenced inodes
 - Inexplicably large link counts
 - Unused data blocks not recorded in block maps
 - Data blocks listed as free but used in file
 - Incorrect summary information in the superblock

fsck – check and repair filesystem (2)

- > Run fsck in manual to fix serious damages
 - Blocks claimed by more than one file
 - Blocks claimed outside the range of the filesystem
 - Link counts that are too small
 - Blocks that are not accounted for
 - Directories that refer to unallocated inodes
 - Other errors
- > fsck will suggest you the action to perform
 - Delete, repair, ...

Adding a disk to FreeBSD (1)

1. Check disk connection

> Look system boot message

ad3: 16383MB < Virtual HD> [33288/16/63] at ata1-slave WDMA2

2. Use /stand/sysinstall to install the new HD

- > Configure → Fdisk → Label
- > Don't forget to "W" the actions

3. Make mount point and mount it

- > % mkdir /home2
- > % mount -t ufs /dev/ad3s1e /home2
- > % df

4. Edit /etc/fstab

Adding a disk to FreeBSD (2)

- If you forget to enable soft-update when you add the disk
 - % umount /home2
 - % tunefs -n enable /dev/ad3s1e
 - % mount -t ufs /dev/ad3s1e /home2
 - % mount

/dev/ad0s1a on / (ufs, local, soft-updates)
/dev/ad1s1e on /home (ufs, local, soft-updates)
procfs on /proc (procfs, local)
/dev/ad3s1e on /home2 (ufs, local, soft-updates)

RAID (1)

- > Redundant Array of Inexpensive Disks
 - A method to combine several physical hard drives into one logical unit
- Depending on the type of RAID, it has the following benefits:
 - Fault tolerance
 - Higher throughput
 - Real-time data recovery
- > RAID 0, 1, 0+1, 5

RAID (2)

> Hardware RAID

- There is a dedicate controller to take over the whole business
- RAID Configuration Utility after BIOS
 - Create RAID array, build Array

> Software RAID

- FreeBSD (Vinum)
- Linux (Linux LVM)
- Sun (Solstice Disk Suite)

RAID 0

- > Stripped data intro several disks
- > Minimum number of drives: 2
- > Advantage
 - Performance increase in proportional to n theoretically
 - Simple to implement
- > Disadvantage
 - No fault tolerance
- > Recommended applications
 - Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

RAID 1

- > Mirror data into several disks
- > Minimum number of drives: 2
- > Advantage
 - 100% redundancy of data
- > Disadvantage
 - 100% storage overage
 - Moderately slower write performance
- > Recommended application
 - Application requiring very high availability (such as home)

RAID 0+1

- > Combine RAID 0 and RAID 1
- > Minimum number of drives: 4

RAID 5

- Independent Disk with distributed parity blocks
- > Minimum number of drives: 3
- > Advantage
 - Highest read data rate
 - Medium write data rate
- > Disadvantage
 - Disk failure has a medium impact on throughput
 - Complex controller design
 - When one disk failed, you have to rebuild the RAID array