BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 1

Ε	lementary Set Theory: Basic Notation	2
	Sets	. 3
	Common Notation	
	The Sample Space:	
	Events:	
		. •
Ε	lementary Set Theory: Set Operations	7
	Union	. 8
	Intersection	
	Complementation	
	Difference	
	Symmetric Difference	
	Disjoint Union	
	Properties of the Union/Intersection	
	Countable Unions/Intersections	
	Uncountable Unions/Intersections	
	DeMorgan's Rule:	
	Proof of DeMorgan's Rule (2 sets):	
	Proof of DeMorgan's Rule (2 sets)	
	Proof of Delviorgan's Rule (continued)	18
Li	imit Sets	20
	Limsup and Liminf of Sets	_
	Limit of Sets	
	More Examples.	
	Monotonicity	2/

Sets

- Sets:
 - Sets are basic concepts in mathematics and probability.
 - · Crudely defined as: "a collection of some elements".
 - Usually denoted with a capital letter (e.g. A, B, S)
- Special sets:
 - N = Natural numbers (1, 2, 3, 4, ...)
 - \mathbb{Z} = Integers (0, +1, -1, +2, -2, ...)
 - Q = Rational numbers
 - \mathbb{R} = Real numbers

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 3 / 24

Common Notation

- Ø: empty set
- $w \in A$: w is an element of the set A
- $\{w\} \subset A$ or $\{w\} \subseteq A$: the set consisting of the singleton $w \in A$ is a subset of A
- (a,b), where $a,b \in \mathbb{R}$, is the set of real numbers between (but not including) a and b
- [a,b], where $a,b \in \mathbb{R}$, is the set of real numbers between and including a and b
- [a,b), where $a,b \in \mathbb{R}$, is the set of real numbers between and including a but not b
- (a,b], where $a,b \in \mathbb{R}$, is the set of real numbers between and including b but not a
- $\{w : \text{a statement}\}$: the set of elements w for which the statement holds. Example: the open interval (a,b) can be defined as $\{w : a < w < b\}$.
- A=B if A and B contain exactly the same elements (this can be shown by showing (1) $A\subset B$ and (2) $B\subset A$)

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 4 / 24

The Sample Space:

- Need to define an "abstract space", often denoted by Ω , as a non-empty set of all the elements concerned. These elements are called "points" and often denoted with lower case letter
- In probability we often use Ω to denote the **sample space**, which is the collection of all possible distinct realizations of a non-deterministic experiment. (Usually idealized)
- Choice of sample space is the first stem in formulating a probabilistic model for an experiment. Examples of sample spaces:
 - 1. Draw a card from a deck of 52 cards: $\Omega = \{1, 2, \dots, 52\}$, which is a **finite** sample space
 - 2. Toss a coin until one gets two successive heads and record the number of tosses performed: $\Omega = \{2, 3, 4, ..., \infty\}$, which is a **countably infinite** sample space.
 - 3. Two components in an electrical system record their failure times: $\Omega = \{(x,y) : x \ge 0, y \ge 0\}$, which is an **uncountably infinite** sample space.

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 5 / 24

Events:

- An event is always a subset of Ω, "events"
- ... but not all subsets are necessarily events!
- If Ω is countable (i.e. finite or countably infinite), then any subset of Ω is an event
- If Ω is uncountable, we cannot handle all possible subsets (not all are events). Instead, we restrict events to be a "well-behaved" class of subsets. More on this later.
- Individual points in Ω are called "simple events"

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 6 / 24

Elementary Set Theory: Set Operations

7 / 24

Union

Definition: For two sets A and B, their **union** is denoted as $A \cup B = \{w : w \in A \text{ or } w \in B\}$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 8 / 24

Intersection

Definition: For two sets A and B, their **intersection** is denoted as $A \cap B = \{w : w \in A \text{ and } w \in B\}$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 9 / 24

Definition: For a set A in Ω , the complement of A (w.r.t. Ω) is denoted by $A^c = \{w \in \Omega : w \notin A\}$

Note: One can show that under complementation, \subset and \supset are swapped.

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 10 / 24

Difference

Definition: For two sets A and B, their **difference** is denoted as

 $A-B=\{w:w\in A,w\not\in B\}=A\cap B^c$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 11 / 24

Symmetric Difference

Definition: For two sets A and B, their **symmetric difference** is denoted as

 $A\Delta B = (A-B) \cup (B-A) = \{w: w \in \text{ exactly one of } A \text{ and } B\}$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 12 / 24

Disjoint Union

Definition: Two sets A and B are called **disjoint** if $A \cap B = \phi$.

Definition: For two disjoint sets A and B, their **disjoint union** is denoted as $A \cup B = A + B$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 13 / 24

Properties of the Union/Intersection

For sets A_1 , A_2 , A_3 :

• Properties of Union:

1. Associative: $(A_1 \cup A_2) \cup A_3 = A_1 \cup (A_2 \cup A_3)$

2. Distributive: $(A_1 \cup A_2) \cap A_3 = (A_1 \cap A_3) \cup (A_1 \cap A_3)$

3. Commutative: $A_1 \cup A_2 = A_2 \cup A_1$

Properties of Intersection:

1. Associative: $(A_1 \cap A_2) \cap A_3 = A_1 \cap (A_2 \cap A_3)$

2. Distributive: $(A_1 \cap A_2) \cup A_3 = (A_1 \cup A_3) \cap (A_1 \cup A_3)$

3. Commutative: $A_1 \cap A_2 = A_2 \cap A_1$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 14 / 24

Countable Unions/Intersections

• Finite sequence of sets: Let $\{A_1, \ldots, A_k\}$ be a finite sequence of k sets in Ω . We define

$$\sup_{1\leq n\leq k}A_n=\bigcup_{n=1}^kA_n=\{w:w\in A_n \text{ for some } 1\leq n\leq k\}$$

$$\inf_{1\leq n\leq k}A_n=\bigcap_{n=1}^kA_n=\{w:w\in A_n \text{ for any } 1\leq n\leq k\}$$

• Countable sequence of sets: Let $\{A_n\}$ be an infinite sequence of sets in Ω . We define

$$\sup_{n\geq 1}A_n=\bigcup_{n=1}^\infty A_n=\{w:w\in A_n \text{ for some } n\}$$

$$\inf_{n\geq 1} A_n = \bigcap_{n=1}^{\infty} A_n = \{w : w \in A_n \text{ for any } n \geq 1\}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 15 / 24

Uncountable Unions/Intersections

We extend the intersection over a set of integers to any arbitrary set:

Definition: For $\{A_t, t \in T\}$, where T is a (possibly uncountable) index set, $\bigcup_{t \in T} A_t = \{w : w \in A_t \text{ for some } t \in T\}$. The definition for intersection is similar.

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 16 / 24

DeMorgan's Rule:

DeMorgan's Rule (for 2 sets):

$$(A \cup B)^c = A^c \cap B^c$$

and

$$(A \cap B)^c = A^c \cup B^c$$

DeMorgan's Rule (general):

$$\left(\bigcup_{t \in T} A_t\right)^c = \bigcap_{t \in T} A_t^c$$

and

$$\left(\bigcap_{t \in T} A_t\right)^c = \bigcup_{t \in T} A_t^c$$

where T is any index set (finite, countably infinite, uncountably infinite).

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 17 / 24

$(A \cap B)^c = A^c \cup$	$\cup B^c$		
Proof:			
BIOS 660/BIOS 672 (3 Credits)	Notes 1 – 18 / 24		
Proof of DeMorgan's Rule (continued):			

BIOS 660/BIOS 672 (3 Credits)

The proof that $(A \cup B)^c = A^c \cap B^c$ is similar.

Notes 1 - 19 / 24

Limit Sets 20 / 24

Limsup and Liminf of Sets

• **Definition:** Let $\{A_n\}$ be a sequence of sets in Ω . Define

$$A^* = \limsup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

and

$$A_* = \liminf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

these are the upper and lower limits of the sequence.

- Theorem: (a) w ∈ lim sup_n A_n if and only if w is in infinitely many of the A_n.
 (b) w ∈ lim inf_n A_n if and only if there is an m such that w ∈ A_n for all n ≥ m (i.e. w is in all but the first m) [Proof omitted]
- Theorem: $\liminf_n A_n \subset \limsup_n A_n$ (proof for homework)

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 21 / 24

Limit of Sets

If $\limsup A_n = \liminf A_n$ then we say that $\{A_n\}$ is convergent and write $\lim_{n\to\infty} A_n = \limsup A_n = \liminf A_n$

Example: let $\Omega = [0, 1], A_n = [0, 1/n]$ if n is even and $A_n = [1 - 1/n, 1)$ if n is odd.

- Then by definition $A_* = \emptyset$ and $A^* = \{0\}$.
- Since $A_* \neq A^*$, then $\lim A_n$ does not exist.
- On the other hand, if we let $A_n = [0, 1/n]$ for all n, then $A_* = A^* = \{0\}$ and the limit exists.

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 22 / 24

More Examples

What is A_* and A^* for:

- Example: let $\Omega=\{0,1\}$, then consider the sequence $\{0\},\{1\},\{0\},\{1\},\{0\},\dots$
- Example: let $\Omega = \mathbb{Z}$, Consider the sequence of sets: $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{0,1\}$, $\{0\}$, $\{$
- Example: let $\Omega = \mathbb{Z}$, Consider the sequence of sets: $\{0\}$, $\{0,1\}$, $\{0,1,2\}$, $\{0,1,2,3\}$, $\{0,1,2,3,4,\}$, . . .
- Example: let $\Omega = [0, 1], A_n = [0, 1/n]$ if n is even and $A_n = [1 1/n, 1)$ if n is odd.

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 23 / 24

Monotonicity

- Monotonicity: A monotine sequence of sets is defined as:
 - $\{A_n\}$ is called monotone increasing iff $A_n \subset A_{n+1}$ for any n
 - $\{A_n\}$ is called monotone decreasing iff $A_n \supset A_{n+1}$ for any n
- Theorem: A monotone sequence of sets is convergent
 Proof for increasing sequence:

BIOS 660/BIOS 672 (3 Credits)

Notes 1 - 24 / 24