

SOUTENANCE PROJET 6

Classifiez automatiquement des biens de consommation

GAUTHIER RAULT PARCOURS DATA SCIENTIST CHEZ OPENCLASSROOMS

EVALUATEUR MONSIEUR PASCAL FARES

"I'IA et le traitement du langage naturel pourraient bien rendre Internet beaucoup plus utile qu'il ne l'est aujourd'hui" Par Vint CERF

ORDRE DU JOUR

Explication des prétraitements et des résultats du clustering - 10 min

Conclusions et recommandations du moteur de classification - 5 min

Discussion - 5-10 min

MARKETPLACE

OUVERTURE DE LA PROBLÉMATIQUE

Place de marché : marketplace e-commerce

Vendeurs : articles avec photo et description

Attribution manuelle : fastidieuse et peu fiable

Perspective de passage à l'échelle

Objectifs principaux:

- Automatiser l'attribution d'une catégorie d'un article
- Etudier la faisabilité d'un moteur de classification

Moyens pour y parvenir:

- Mise à disposition de 2 datasets associés du site d'e-commerce flipkart.com :
 - données textuelles
 - données d'images

Données textuelles au format .csv

1 050 produits avec 15 variables descriptives

Data #	columns (total 15 column Column	Non-Null Count	Dtype
0	uniq_id	1050 non-null	object
1	crawl_timestamp	1050 non-null	object
2	product_url	1050 non-null	object
3	product_name	1050 non-null	object
4	product_category_tree	1050 non-null	object
5	pid	1050 non-null	object
6	retail_price	1049 non-null	float64
7	discounted_price	1049 non-null	float64
8	image	1050 non-null	object
9	is_FK_Advantage_product	1050 non-null	bool
10	description	1050 non-null	object
11	product_rating	1050 non-null	object
12	overall_rating	1050 non-null	object
13	brand	712 non-null	object
14	<pre>product_specifications</pre>	1049 non-null	object

raw_corpus[:1000]

'Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral Curtain, Elegance Polyester Multicolor Abstract Eyelet Door Curtain (213 cm in Height, Pack of 2) Price: Rs. 899 This curtain enhances the look of the interiors. This curt ain is made from 100% high quality polyester fabric. It features an eyelet style stitch with Metal Ring. It makes the room envir onment romantic and loving. This curtain is ant— wrinkle and anti shrinkage and have elegant apparance. Give your home a bright and modernistic appeal with these designs. The surreal attention is sure to steal hearts. These contemporary eyelet and valance curtains slide smoothly so when you draw them apart first thing in the morning to welcome the bright sun rays you want to wish good morning to the whole world and when you draw them close in the evening, you create the most special moments of joyous beauty given by the soothing prints. Bring home the elegant curtain that softly filters light in your room so that you '

Données textuelles au format .csv

duplicates et données manquantes

	781	101
uniq_id	9924fba9b2a738e5a141995952e73104	c7fcd0d983a51283e58b806f065cc920
crawl_timestamp	2015-12-12 11:46:53 +0000	2016-01-04 00:20:04 +0000
product_url	http://www.flipkart.com/perucci-pc-222-decker	http://www.flipkart.com/diviniti-mdf-color-rel
product_name	Perucci PC-222 Decker Analog Watch - For Men	Diviniti MDF Color Religious Wall Hanging Size
product_category_tree	["Watches >> Wrist Watches >> Perucci Wrist Wa	["Home Decor & Festive Needs >> Table Decor &
pid	WATE6XU7GKU8KMGZ	SHIEBWNUB6QGHNGD
retail_price	1900.0	13400.0
discounted_price	290.0	13400.0
image	9924fba9b2a738e5a141995952e73104.jpg	c7fcd0d983a51283e58b806f065cc920.jpg
is_FK_Advantage_product	False	False
description	Perucci PC-222 Decker Analog Watch - For Men	Buy Diviniti MDF Color Religious Wall Hanging
product_rating	No rating available	No rating available
overall_rating	No rating available	No rating available
brand	NaN	Diviniti
product_specifications	$ \{ "product_specification" => [\{ "key" => "Chronograp \\$	{"product_specification"=>[{"key"=>"Brand", "v
primary_category	Watches	Home Decor & Festive Needs
processed_text	perucci decker analog watch men buy perucci de	buy diviniti mdf color wall hanging size radha
length_processed_text	34	31
processed_text_dl	perucci decker analog watch for men buy perucc	buy diviniti mdf color wall hanging size radha

data.isna().sum()		
uniq_id	0	
crawl_timestamp	0	
product_url	0	
product_name	0	
product_category_tree	0	
pid	0	
retail_price	1	
discounted_price	1	
image	0	
is_FK_Advantage_product	0	
description	0	
product_rating	0	
overall_rating	0	
brand	338	
product_specifications	1	
primary_category	0	
processed_text	0	
length_processed_text	0	
processed_text_dl	0	
dtype: int64		

Données textuelles au format.csv

```
Catégories
            data['product_category_tree'].nunique()
            642
           data['primary_category'].nunique()
data['primary_category'].unique()
array(['Home Furnishing', 'Baby Care', 'Watches',
       'Home Decor & Festive Needs', 'Kitchen & Dining',
       'Beauty and Personal Care', 'Computers'], dtype=object)
```


Données textuelles au format .csv

Répartition des 7 catégories

data.groupby(by='primary_category').count()					
	uniq_id	crawl_timestamp	product_url	product_name	
primary_category					
Baby Care	150	150	150	150	
Beauty and Personal Care	150	150	150	150	
Computers	150	150	150	150	
Home Decor & Festive Needs	150	150	150	150	
Home Furnishing	150	150	150	150	
Kitchen & Dining	150	150	150	150	
Watches	150	150	150	150	

Données images au format .jpg

1 050 images (une image/produit)

Watches

Kitchen and dining

Computers

Analyse des données textuelles - Bag of words

Utilisation de NLTK pour filtrer les informations avec de la valeur dans le document :

- Texte en minuscule
- Tokenization
- suppression des stopwords
- suppression des mots rares (apparaisse 1 seul fois)
- suppression des mots trop court (au moins 3 lettres)
- · suppression des caractères numériques
- Stemming ou lemmatization

2 méthodes utilisées:

- CountVectorizer
- Tf-idf

CountVectorizer

T-SNE des clustering des produits

Tf-idf

(term frequency-inverse document frequency)

Analyse des données textuelles - word embedding

USE (Universal Sentence Encoder)

BERT

(Bidirectional Encoder Representations

from Transformers)

Analyse des données textuelles - Bag of words

Réalisation d'un bag of visual words

- Scale-invariant feature transform (SIFT) : algorithme permettant de définir les points d'intérêts d'une image (descripteurs)
- Ces points correspondent à des bords ou coins d'une image : zones autour desquelles ont observe de fortes variations d'intensité ou de couleur des pixels, qui indiquent donc la jonction entre des objets différents sur l'image
- Les descripteurs constituent des vecteurs qui décrivent le voisinage de la feature à laquelle ils sont associés
- Les descripteurs du SIFT ont l'avantage d'être invariant ts par rotation, par changement d'échelle et par exposition
- La taille du vecteur de chacun des descripteur est identique, en revanche le nombre de descripteurs varie pour chacune des images, il n'est donc pas possible d'utiliser directement les descripteurs comme features pour une classification
- Afin de pallier cela, nous avons appliqué un « bag of visual words »
 - Clustering des descripteurs via un KMeans (k = racine carrée du nombre total de descripteurs)
 - Pour chaque image nous allons déterminer le nombre de descripteurs par cluster: chaque image disposera donc d'un vecteur de taille k avec pour valeurs le nombre d'occurrences pour chacun des clusters
- Ces vecteurs seront nos features finales auxquelles nous appliqueront les étapes décrites précédemment afin d'obtenir un ARI

SIFT (Scale-invariant feature transform)

T-SNE des catégories réelles

T-SNE avec clusters

CNN

T-SNE avec les classes réelles

T-SNE avec clusters

Classement ARI des différentes méthodes

Type de méthode	Structure	ARI score
CountVectorizer	Bag of words	0,41
Tf-idf	Bag of words	0,46
Word2vec	Word embedding statique	0,27
USE	Sentence embedding	0,42
BERT	Word embedding dynamique	0,32
SIFT	Descripteurs	0,05
CNN - VGG16	Réseau de neurones convolutif CNN	0,47

Tf-idf

CNN avec VGG16

CONCLUSION

- L'étude de faisabilité du moteur de classification donne des résultats encourageants
- Nous obtenons des ARI supérieurs à 0,45 aussi bien pour l'analyse du texte que d'images
- Nous pouvons considérer la mise en œuvre d'un moteur de classification automatique avec des algorithmes supervisés entraînés sur notre jeu de données et optimisés

- Il est probable que même après entraînement et optimisation, nous n'obtiendrons pas de classifications parfaites et des erreurs de classifications seront présentes
- L'analyse a été réalisée sur la base des catégories larges de produits.
 L'utilisation des sous-catégories n'est pas réaliste.

AXES D'AMÉLIORATIONS DE L'ÉTUDE

- 1. Coupler l'analyse NLP et CV
- 2. Faire du fine-tuning

- 3. Discuter avec les métiers pour reconfigurer les catégories/sous catégories en utilisant la Classification non supervisé via Kmeans puis supervisé
- 4. Utiliser la LDA (Latent Dirichlet Allocation) pour la réduction de dimension
- 5. Utiliser SpaCy, Glove ou FastText pour les données textuelles
- 6. Utiliser ORB / SURF, VGG19 RESNET50 pour les données images
- 7. Utiliser les algorithmes GAN (Generative adversarial networks)
- 8. Augmenter la taille du dataset d'apprentissage

MERCI POUR VOTRE ÉCOUTE ET ATTENTION