TEORIA KATEGORII

SERIA 4: KATEGORIE KARTEZJAŃSKO-DOMKNIĘTE

Problem 1. Niech \mathbb{C} będzie kategorią CCC. Pokazać, że $\tilde{f} = f^A \circ \eta$, gdzie dla $f: Z \times A \to B$ strzałka $\tilde{f}: Z \to B^A$ oznaca transpozycję, $f^A: (Z \times A)^A \to B^A$ oraz $\eta: Z \to (Z \times A)^A$ są zdefiniowane jak na wykładzie.

Problem 2. Pokazać, że w dowolnej kategorii, która jest CCC zachodzi:

- $\bullet \ (A \times B)^C \cong A^C \times B^C,$ $\bullet \ (A^B)^C \cong A^{B \times C}.$

Problem 3. Czy kategoria Mon jest CCC?

Problem 4. Pokazać, że kategoria ωCPO jest CCC, natomiast kategoria ωCPO $_{\perp}$ nie jest CCC.

Problem 5. Pokazać, że kategoria wszystkich małych kategorii i funktorów Cat jest CCC, gdzie $C^{D} = Fun(C, D).$

¹⁰ grudnia 2020

 $^{^1\}mathrm{Poset}~(P,\leqslant)$ nazywamy ωCPO jeśli każdy przeliczalny łańcuch $x_1\leqslant x_2\leqslant\dots$ ma supremum. Przekształcenie $f: P \to Q$, które zachowuje porządek między dwoma posetami (P, \leqslant) i (Q, \leqslant) , które dodatkowo są ωCPO nazywamy ciąglym, jeśli zachowuje suprema przeliczalnych łańchuchów, tj. $f(\bigvee_{i \in \mathbb{N}} x_i) = \bigvee_i f(x_i)$ dla każdego $x_1 \leqslant x_2 \leqslant \ldots$ Posety, które spełniają własność ωCPO wraz z ciągłymi przekształceniami jako morfizmami tworzą kategorię oznaczaną przez ω CPO.

Poset (P,\leqslant) , który jest ωCPO nazywamy punktowym, jeśli istnieje w nim element najmniejszy $\bot\in P$. Punktowe ωCPO tworzą kategorię w której strzałkami są wszystkie ciągłe przekształcenia dodatkowo zachowujące element najmniejszy, tj. $h(\perp) = \perp$. Tę kategorię oznaczamy przez $\omega \mathsf{CPO}_{\perp}$.