Statistical Learning and Data mining

Homework 1

M052040003 鍾冠毅

8.a. See the appendix.

8.b.

	row.names	X	Private	Apps
1	Abilene Christian University	Abilene Christian University	Yes	1660
2	Adelphi University	Adelphi University	Yes	2186
3	Adrian College	Adrian College	Yes	1428
4	Agnes Scott College	Agnes Scott College	Yes	417
5	Alaska Pacific University	Alaska Pacific University	Yes	193
6	Albertson College	Albertson College	Yes	587
7	Albertus Magnus College Albertus Magnus College			353
8	Albion College Albion College		Yes	1899
9	Albright College Albright College		Yes	1038
10	Alderson-Broaddus College	Alderson-Broaddus College	Yes	582
11	Alfred University	Alfred University	Yes	1732
12	Allegheny College	Allegheny College	Yes	2652
13	Allentown Coll. of St. Francis de Sales	Allentown Coll. of St. Francis de Sales	Yes	1179
14	Alma College	Alma College	Yes	1267
15	Alverno College	Alverno College	Yes	494
16	American International College	American International College	Yes	1420
17	Amherst College	Amherst College	Yes	4302
18	Anderson University	Anderson University	Yes	1216
19	Andrews University	Andrews University	Yes	1130

	row.names	Private	Apps	Accept	Enroll	Top10perc	Top25perc
1	Abilene Christian University	Yes	1660	1232	721	23	52
2	Adelphi University	Yes	2186	1924	512	16	29
3	Adrian College	Yes	1428	1097	336	22	50
4	Agnes Scott College	Yes	417	349	137	60	89
5	Alaska Pacific University	Yes	193	146	55	16	44
6	Albertson College	Yes	587	479	158	38	62
7	Albertus Magnus College	Yes	353	340	103	17	45
8	Albion College	Yes	1899	1720	489	37	68
9	Albright College	Yes	1038	839	227	30	63
10	Alderson-Broaddus College	Yes	582	498	172	21	44
11	Alfred University	Yes	1732	1425	472	37	75
12	Allegheny College	Yes	2652	1900	484	44	77
13	Allentown Coll. of St. Francis de Sales	Yes	1179	780	290	38	64
14	Alma College	Yes	1267	1080	385	44	73
15	Alverno College	Yes	494	313	157	23	46
16	American International College	Yes	1420	1093	220	9	22
17	Amherst College	Yes	4302	992	418	83	96
18	Anderson University	Yes	1216	908	423	19	40
19	Andrews University	Yes	1130	704	322	14	23

> summary(college[, 2:length(college[1,])]) Top10perc Apps Accept Enroll Top25perc Min. : 72 Min. : 1.00 Min. : 81 Min. : 35 Min. : 9.0 1st Qu.: 604 1st Qu.: 242 1st Qu.: 776 1st Qu.:15.00 1st Qu.: 41.0 Median : 1558 Median: 1110 Median: 434 Median: 54.0 Median :23.00 Mean : 2019 3rd Qu.: 2424 Mean : 3002 Mean : 780 Mean :27.56 Mean : 55.8 3rd Qu.: 3624 3rd Qu.: 902 3rd Qu.:35.00 3rd Qu.: 69.0 Max. :96.00 Max. :48094 Max. :26330 Max. :6392 Max. :100.0 F. Undergrad P. Undergrad Outstate Room.Board Min. : 139 1st Qu.: 992 Min. : 2340 Min. :1780 Min. : 1.0 1st Qu.: 95.0 1st Qu.: 7320 1st Qu.:3597 Median : 353.0 Median: 9990 Median: 1707 Median:4200 Mean :4358 Mean : 3700 Mean :10441 Mean : 855.3 3rd Qu.:12925 3rd Qu.:5050 3rd Qu.: 4005 3rd Qu.: 967.0 Max. :31643 Max. :21836.0 Max. :8124 Max. :21700 PhD Books Personal Terminal Min. : 96.0 Min. : 250 Min. : 8.00 Min. : 24.0 1st Qu.: 62.00 1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 71.0 Median : 500.0 Median :1200 Median : 75.00 Median: 82.0 Mean : 549.4 Mean :1341 Mean : 72.66 Mean : 79.7 3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00 3rd Qu.: 92.0 Max. :2340.0 Max. :6800 Max. :103.00 Max. :100.0 perc.alumni S.F.Ratio Expend Grad.Rate Min. : 2.50 Min. : 0.00 Min. : 3186 Min. : 10.00 1st Qu.:11.50 1st Qu.:13.00 1st Qu.: 6751 1st Qu.: 53.00 Median :21.00 Median: 8377 Median : 65.00 Median :13.60 Mean : 9660 Mean :14.09 Mean :22.74 Mean : 65.46 3rd Qu.:16.50 3rd Qu.:31.00 3rd Qu.:10830 3rd Qu.: 78.00 Max. :39.80 Max. :64.00 Max. :56233 Max. :118.00

(ii)

- (vi) 從(ii)圖中可以發現,某幾對變數明顯呈正相關。進一步的研究除了可以 討論兩兩變數之間的關係以外,亦可以使用群集分析,將相似數值表現 的學校歸唯一類,並進一步探討之間的關係。由(iii)、(iv)之兩盒鬚圖可 以發現,在 Private 與 Elite 兩個變數中,yes 的 outstate 都明顯比 no 多, 若要進一步了解是否有顯著差異,則可以使用假設檢定之結果作為判斷 依據。
- 9.a. Quantitative: mpg, displacement, horsepower, weight, acceleration, year Qualitative: cylinders, origin, name

9.b.

9.c.

> Auto.bc

	min	max	range	mean	sd
mpg	9	46.6	37.6	23.51587	7.825804
displacement	68	455.0	387.0	193.53275	104.379583
horsepower	46	230.0	184.0	104.46939	38.491160
weight	1613	5140.0	3527.0	2970.26196	847.904119
acceleration	8	24.8	16.8	15.55567	2.749995
year	70	82.0	12.0	75.99496	3.690005

9.d.

> Auto.dd

	min	max	range	mean	sd
mpg	11.0			24.43863	
displacement	68.0	455.0	387.0	187.04984	99.635385
horsepower	46.0	230.0	184.0	100.95584	35.895567
weight	1649.0	4997.0	3348.0	2933.96262	810.642938
acceleration	8.5	24.8	16.3	15.72305	2.680514
year	70.0	82.0	12.0	77.15265	3.111230

range 與 sd 因為樣本數減少而下降, mean 之增減則無依定規則。

可以發現汽缸的數量影響其他述職的表現,以排氣量來說汽缸的數量越多, 其值越高。由年份來看,五汽缸的年份較其他汽缸數之車輛新,可以推估五汽缸 引擎較晚被發明與應用。另外,汽缸數越高並不代表加速越快,但是馬力可能有 較好的表現。

以來原來說,來源一的汽車在排氣量、馬力普遍有較好的表現,但是車身重 量也比較高。

9.f. 預測模型可以使用線性迴歸預測。

```
> mpg.lm <- lm(mpg ~ factor(cylinders) + displacement + horsepower
+ + weight + acceleration + year + factor(origin))
> summary(mpg.lm)
call:
lm(formula = mpg ~ factor(cylinders) + displacement + horsepower +
    weight + acceleration + year + factor(origin))
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-8.6797 -1.9373 -0.0678 1.6711 12.7756
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -2.208e+01 4.541e+00 -4.862 1.70e-06 ***
factor(cylinders)4 6.722e+00 1.654e+00 4.064 5.85e-05 ***
factor(cylinders)5 7.078e+00 2.516e+00 2.813 0.00516 **
factor(cylinders)6 3.351e+00 1.824e+00 1.837 0.06701 .
factor(cylinders)8 5.099e+00 2.109e+00 2.418 0.01607 *
                   1.870e-02 7.222e-03 2.590 0.00997 **
displacement
                    -3.490e-02 1.323e-02 -2.639 0.00866 **
horsepower
                   -5.780e-03 6.315e-04 -9.154 < 2e-16 ***
2.598e-02 9.304e-02 0.279 0.78021
7.370e-01 4.892e-02 15.064 < 2e-16 ***
weight
acceleration
year
factor(origin)2
                   1.764e+00 5.513e-01 3.200 0.00149 **
factor(origin)3
                     2.617e+00 5.272e-01 4.964 1.04e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.098 on 380 degrees of freedom (5 observations deleted due to missingness) Multiple R-squared: 0.8469, Adjusted R-squared: 0.8425 F-statistic: 191.1 on 11 and 380 DF, p-value: < 2.2e-16

可以看到大部分的變數,對於 mpg 有顯著之影響,若要有更佳的預測模型, 則可以選用其他廣義線性迴歸,並選用 stepwise 等方法挑選解釋變數。

The Boston data frame has 506 rows and 14 columns.

```
Usage
```

Boston

Format

This data frame contains the following columns:

crim

per capita crime rate by town.

zn

proportion of residential land zoned for lots over 25,000 sq.ft.

indus

proportion of non-retail business acres per town.

chas

Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox

nitrogen oxides concentration (parts per 10 million).

rm

average number of rooms per dwelling.

age

proportion of owner-occupied units built prior to 1940.

dis

weighted mean of distances to five Boston employment centres.

rad

index of accessibility to radial highways.

tax

full-value property-tax rate per \\$10,000.

ptratio

pupil-teacher ratio by town.

black

1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.

lstat

lower status of the population (percent).

medv

median value of owner-occupied homes in \\$1000s.

除了幾對變數有明顯的正相關、負相關之線性關係以外,age 與 Istat 兩變數之分散圖可以發現,age 越高 Istat 的值與範圍即越高,若要進行迴歸分析,則建議對 Istat 取 log 後,降低同 age 之 Istat 數值變異,避免 R-square 太小。另外以最右下角兩變數 Istat 與 medv,其關係可能不僅是負相關,亦有可能有倒數關係或指數關係,可以另外以其他廣義線性迴歸分析該數據。

10.c.

對 age 取對數,對 dis 取對數或是倒數,都有可能有較高的線性關係。

Crime rates 大多呈城市偏低,多在 10 以内,但是也不少城市有屬於離群值, 遠高於 10,最多有超過 60 的城鎮。稅率的部分約介於 200 至 700,且無離群值。 師生比的部分大多介於 14 至 22 之間,有兩個城鎮屬於偏低之離群值。

10.e. 35 suburbs.

10.f. 19.5 p/t

10.g. suburb no. 399 and no. 406 有最低的 median value of owner-occupied homes.

```
> Boston[c(399, 406), ]
      crim zn indus chas
                           nox
                                  rm age
                                            dis rad tax ptratio black lstat medv
                                                            20.2 396.90 30.59
399 38.3518 0 18.1
                       0 0.693 5.453 100 1.4896 24 666
406 67.9208 0 18.1
                        0 0.693 5.683 100 1.4254 24 666
                                                            20.2 384.97 22.98
> summary(Boston)
      crim
                          zn
                                         indus
                                                          chas
Min.
       : 0.00632
                   Min.
                             0.00
                                     Min.
                                          : 0.46
                                                    Min.
                                                           :0.00000
                                                                       Min.
                                                                             :0.3850
                                                                       1st Qu.:0.4490
                                                    1st Qu.:0.00000
1st Qu.: 0.08204
                   1st Qu.:
                             0.00
                                     1st Qu.: 5.19
Median : 0.25651
                   Median: 0.00
                                     Median: 9.69
                                                    Median :0.00000
                                                                       Median :0.5380
Mean
        : 3.61352
                   Mean
                           : 11.36
                                     Mean
                                           :11.14
                                                    Mean
                                                           :0.06917
                                                                       Mean
                                                                              :0.5547
 3rd Qu.: 3.67708
                    3rd Qu.: 12.50
                                     3rd Qu.:18.10
                                                     3rd Qu.: 0.00000
                                                                       3rd Qu.: 0.6240
Max.
       :88.97620
                   Max.
                          :100.00
                                     Max.
                                           :27.74
                                                    Max.
                                                           :1.00000
                                                                       мах.
                                                                              :0.8710
                                                       rad
                                      dis
      rm
                     age
                                                                         tax
                       : 2.90
                                                                           :187.0
                Min.
                                        : 1.130
                                                         : 1.000
Min.
       :3.561
                                  Min.
                                                   Min.
                                                                    Min.
1st Qu.:5.886
                1st Qu.: 45.02
                                  1st Qu.: 2.100
                                                   1st Qu.: 4.000
                                                                    1st Qu.:279.0
Median :6.208
                Median: 77.50
                                  Median: 3.207
                                                   Median : 5.000
                                                                    Median :330.0
                       : 68.57
                                                          : 9.549
Mean
       :6.285
                Mean
                                  Mean
                                        : 3.795
                                                   Mean
                                                                    Mean
                                                                          :408.2
3rd Qu.:6.623
                 3rd Qu.: 94.08
                                  3rd Qu.: 5.188
                                                   3rd Qu.:24.000
                                                                    3rd Qu.:666.0
       :8.780
                       :100.00
Max.
                Max.
                                  Max.
                                       :12.127
                                                   Max.
                                                          :24.000
                                                                    Max.
                                                                          :711.0
                    b1ack
                                     lstat
   ptratio
                                                      medv
                                       : 1.73
                      : 0.32
                                                        : 5.00
Min.
       :12.60
                Min.
                                  Min.
                                                  Min.
 1st Qu.:17.40
                1st Qu.:375.38
                                  1st Qu.: 6.95
                                                  1st Qu.:17.02
Median :19.05
                Median :391.44
                                  Median :11.36
                                                  Median :21.20
Mean :18.46
                Mean :356.67
                                  Mean :12.65
                                                  Mean :22.53
 3rd Qu.:20.20
                 3rd Qu.:396.23
                                  3rd Qu.:16.95
                                                  3rd Qu.:25.00
       :22.00
                       :396.90
                                  Max.
                                       :37.97
                                                  Max.
                                                        :50.00
                Max.
```

兩城鎮皆大於 Q3:crim、indus、nox、age、rad、tax、ptratio、black、lstat 兩城鎮皆大於 Q1:zn、chas、rm、medv 10.h.

>7: 64 suburbs >8: 13 suburbs

```
> Boston[no.rm8, ]
      crim zn indus chas
                            nox
                                   rm age
                                             dis rad tax ptratio black lstat medv
98 0.12083 0 2.89 0 0.4450 8.069 76.0 3.4952 2 276
                                                            18.0 396.90 4.21 38.7
                                                   5 403
164 1.51902 0 19.58
                       1 0.6050 8.375 93.9 2.1620
                                                            14.7 388.45
                                                                         3.32 50.0
                                                  4 224
                                                            14.7 390.55
205 0.02009 95 2.68
                      0 0.4161 8.034 31.9 5.1180
                                                                         2.88 50.0
225 0.31533 0 6.20 0 0.5040 8.266 78.3 2.8944 8 307
                                                            17.4 385.05 4.14 44.8
226 0.52693 0 6.20
                       0 0.5040 8.725 83.0 2.8944
                                                   8 307
                                                            17.4 382.00
                                                                         4.63 50.0
                     0 0.5040 8.040 86.5 3.2157
227 0.38214 0 6.20
                                                   8 307
                                                            17.4 387.38
                                                                        3.13 37.6
                      0 0.5070 8.337 73.3 3.8384
0 0.5070 8.247 70.4 3.6519
                                                   8 307
233 0.57529 0 6.20
                                                            17.4 385.91
                                                                         2.47 41.7
234 0.33147 0 6.20
                                                  8 307
                                                            17.4 378.95
                                                                         3.95 48.3
254 0.36894 22 5.86
                       0 0.4310 8.259 8.4 8.9067
                                                   7 330
                                                            19.1 396.90 3.54 42.8
258 0.61154 20
               3.97
                       0 0.6470 8.704 86.9 1.8010
                                                   5 264
                                                            13.0 389.70
                                                                         5.12 50.0
263 0.52014 20 3.97
                       0 0.6470 8.398 91.5 2.2885
                                                   5 264
                                                            13.0 386.86
                                                                         5.91 48.8
268 0.57834 20 3.97
                      0 0.5750 8.297 67.0 2.4216
                                                   5 264
                                                            13.0 384.54
                                                                         7.44 50.0
                     1 0.7180 8.780 82.9 1.9047 24 666
                                                            20.2 354.55
365 3.47428 0 18.10
                                                                         5.29 21.9
```

Black 的值皆大於平均值 356.67, 甚至接近 Q3 值 396.9。Istat 大多小於 Q1。 Age 除了 no.254 以外,其他都偏高。

Appendix

8

```
### 8.a ###
college <- read.csv("College.csv", header = T, sep =",")
attach(college)

### 8.b ###
row.names(college) <- college[,1]
fix(college)

college <- college[,-1]
fix(college)

### 8.c ###
# (i) #
summary(college[, 2:length(college[1,])])</pre>
```

```
# (ii) #
par(mfrow = c(1,1))
pairs(college[,1:10])
# (iii) #
plot(Outstate~Private)
# (iv) #
Elite <- rep("No", nrow(college))</pre>
Elite[college$Top10perc >50] <- "Yes"
Elite <- as.vector(Elite)</pre>
summary(college)
college <- data.frame(college, Elite)</pre>
plot(Outstate ~ factor(Elite), xlab="Elite")
# (v) #
length(college[1,])
par(mfrow = c(3,3))
college.v <- names(college)</pre>
for (k in 2:18) {
  hist(college[,k], main = college.v[k], xlab = " ")
}
par(mfrow = c(1,1))
# (vi) #
########## 9 #############
Auto <- read.csv("Auto.csv", header = T, sep =",")
attach(Auto)
### 9.a ###
# quantitative:
# quatlitative: cylinders, origin, name
```

```
### 9.b.c ###
Auto.bc <- data.frame(matrix(NA, 9,5))
names(Auto.bc) <- c("min", "max", "range", "mean", "sd")</pre>
row.names(Auto.bc) <- names(Auto)</pre>
Auto.bc <- Auto.bc[-9, ]
for (k in 1:length(Auto[1,])) {
  if (is.numeric(Auto[ ,k])==TRUE){
     Auto.bc[k, 1] <- range(Auto[,k])[1]
     Auto.bc[k, 2] \leftarrow range(Auto[,k])[2]
     Auto.bc[k, 3] \leftarrow range(Auto[,k])[2] - range(Auto[,k])[1]
     Auto.bc[k, 4] <- mean(Auto[,k])
     Auto.bc[k, 5] <- sd(Auto[,k])
  }
}
HP <- Auto$horsepower
for (k in 1:397) {
  if(is.na(HP[k]==TRUE)){
     HP \leftarrow HP[-k]
  }
}
Auto.bc[4,1] <- min(HP)
Auto.bc[4,2] \leftarrow max(HP)
Auto.bc[4,3] <- max(HP) - min(HP)
Auto.bc[4,4] < -mean(HP)
Auto.bc[4,5] <- sd(HP)
Auto.bc <- Auto.bc[-c(2,8), ]
### 9.d ###
Auto.d <- Auto[-c(10:85),]
Auto.dd <- data.frame(matrix(NA, 9,5))
names(Auto.dd) <- c("min", "max", "range", "mean", "sd")</pre>
row.names(Auto.dd) <- names(Auto.d)
Auto.dd <- Auto.dd[-9, ]
```

```
for (k in 1:length(Auto.d[1,])) {
  if (is.numeric(Auto.d[,k])==TRUE){
     Auto.dd[k, 1] \leftarrow range(Auto.d[,k])[1]
     Auto.dd[k, 2] \leftarrow range(Auto.d[,k])[2]
     Auto.dd[k, 3] \leftarrow range(Auto.d[,k])[2] - range(Auto.d[,k])[1]
     Auto.dd[k, 4] <- mean(Auto.d[,k])
     Auto.dd[k, 5] <- sd(Auto.d[,k])
  }
}
HP.d <- Auto.d$horsepower
for (k in 1:length(Auto.d[,1])) {
  if(is.na(HP.d[k]==TRUE)){
     HP.d \leftarrow HP.d[-k]
  }
}
Auto.dd[4,1] \leftarrow min(HP.d)
Auto.dd[4,2] <- max(HP.d)
Auto.dd[4,3] \leftarrow max(HP.d) - min(HP.d)
Auto.dd[4,4] \leftarrow mean(HP.d)
Auto.dd[4,5] <- sd(HP.d)
Auto.dd <- Auto.dd[-c(2,8), ]
### 9.e ###
par(mfrow = c(1,1))
pairs(Auto[,-9])
par(mfrow = c(2,3))
for (k in c(1,3,4,5,6,7)) {
  plot(Auto[,k]~ factor(origin),
         xlab = "origin", ylab = " ", main =names(Auto)[k],
         col = c(7, 8, 11)
}
```

```
par(mfrow = c(2,3))
for (k in c(1,3,4,5,6,7)) {
  plot(Auto[,k]~ factor(cylinders),
        xlab = "cylinders", ylab = " ", main =names(Auto)[k],
        col = c(11,7,8,5,6)
}
### 9.f ###
mpg.lm <- lm(mpg ~ factor(cylinders) + displacement + horsepower
    + weight + acceleration + year + factor(origin))
summary(mpg.lm)
########### 10 ############
### 10.a ###
library(MASS)
Boston <- Boston
attach(Boston)
?Boston
### 10.b ###
pairs(Boston)
### 10.c ###
### 10.d ###
par(mfrow=c(1,3))
boxplot(crim, main="crime rates")
boxplot(tax, main="tax rates")
boxplot(ptratio, main=" Pupil-teacher ratios")
```

```
### 10.e ###
sum(chas)
### 10.f ###
median(Boston$ptratio)
### 10.g ###
for (k in 1:506) {
  if (Boston$medv[k]==min(Boston$medv)){
    print(k)
  }
}
Boston[c(399, 406), ]
summary(Boston)
### 10.h ###
rm7 <- array(NA, 0)
for (k in 1:506) {
  if (Boston$rm[k]>7){
    rm7[length(rm7)+1] <- Boston$rm[k]
  }
}
length(rm7)
rm8 <- array(NA, 0)
no.rm8 <- array(NA, 0)
for (k in 1:506) {
  if (Boston$rm[k]>8){
    rm8[length(rm8)+1] <- Boston$rm[k]
    no.rm8[length(no.rm8)+1] <- k
  }
}
length(rm8)
Boston[no.rm8,]
```