Lecture 3: Measures of spread and central tendency

Jacob M. Montgomery

Quantitative Political Methodology

Lecture 3

Class business

- ► Make sure you review online materials before lab
- Problem set 1 is due on Wed.

Facebook and survey

- Sign up for our Facebook group: https://www.facebook.com/groups/1071702902960687/
- ► Take the class survey! Can't assign teams until you all do.

https:

//wustl.az1.qualtrics.com/jfe/form/SV_6rpSYD3xxmbRe5v

Roadmap

Last time:

- Populations vs. samples
- Why sample?
- ► How to sample
- Problems in surveys

This time:

- Visualizing data
- Measures of central tendency and spread

Pie charts = mostly aweful

FIGURE 6.4a
Federal Spending by Category, 2010 (percent)

Source: Budget of the U.S. Government, Fiscal Year 2011

(Klass 2012)

Bar charts - more useful

FIGURE 6.4b
Federal Expenditures by Function, 2010 (Billions)

Histograms – usually good

Figure 3. Distribution of Individual Legislators' Abortion Votes
Over Entire Career

(Adams 1997)

Making a histogram

	State	Median Income
1	Alabama	40489
2	Alaska	66953
3	Arizona	48745
4	Arkansas	37823
5	California	58931
6	Colorado	55430
7	Connecticut	67034
8	Delaware	56860
50	Wisconsin	49993
51	Wyoming	52664
52	Puerto Rico	18314

Making a histogram

Class	Count
\$0-\$9,999	0
\$10,000-\$19,999	1
\$20,000-\$29,999	0
\$30,000-\$39,999	3
\$40,000-\$49,999	27
\$50,000-\$59,999	14
\$60,000-\$69,999	7
\$70,000-\$79,999	0

Binning can be evil

(Ken Schultz)

Line plots are often useful

Credit: NASA Earth Observatory/Robert Simmon

Data Sources: NASA Goddard Institute for Space Studies, NOAA National Climatic Data Center, Met Office Hadley Centre/Climatic Research Unit, and the Japanese Meteorological Agency.

(NASA 2011)

Can also be misleading

Can also be misleading

(Nyhan 2005)

Looking at distributions of data

- General impressions (pattern, deviations)
- ► Shape'' (symmetric, skewed, bell-shaped," bimodal, etc.)
- Center'' (midpoint")
- "Spread" (range)
- Outliers'' (outside overall pattern")

Our first statistics - the mighty mean

n = Sample size

 $y_1, y_2, \dots, y_n =$ Observations

Our first statistics – the mighty mean

$$n =$$
 Sample size

$$y_1, y_2, \dots, y_n =$$
 Observations

$$\bar{y} = \frac{y_1 + y_2 + \ldots + y_n}{n} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Our first statistics – the mighty mean

$$n =$$
Sample size

$$y_1, y_2, \dots, y_n =$$
 Observations

$$\bar{y} = \frac{y_1 + y_2 + \ldots + y_n}{n} = \frac{1}{n} \sum_{i=1}^n y_i \equiv \frac{1}{n} \sum y_i$$

Test tip

Grand mean of two samples $\bar{y} = \frac{n_1\bar{y}_1 + n_2\bar{y}_2}{n_1 + n_2}$

$$\bar{y} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2}{n_1 + n_2}$$

Test tip

Grand mean of two samples

es
$$\bar{y} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2}{n_1 + n_2}$$

What if I had j samples? $\bar{y} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2 + ... + n_j \bar{y}_j}{n_1 + n_2 + ... + n_i}$

Finding the median of grouped data

Test tip: Find the median of grouped data

Category	Frequency	Percentage	Cumulative %
Agree Strongly	6	7.4	7.69
Agree	27	33.3	40.7
Neither agree nor disagree	18	22.2	63.0
Disagree	19	23.5	86.4
Disagree Strongly	11	13.6	100.00

Standard deviation:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

Standard deviation:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

 One standard deviation will be equal to something in original units (e.g., 2 inches)

Standard deviation:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

- One standard deviation will be equal to something in original units (e.g., 2 inches)
- ▶ $S \ge 0$ Why?

Standard deviation:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

- ► One standard deviation will be equal to something in original units (e.g., 2 inches)
- ▶ $S \ge 0$ Why?
- S = 0 only if y is a constant.

Test tip on calculating variance

Уi	$(y_i - \bar{y})$	$(y_i - \bar{y})^2$
0	-5	25
4	-1	1
4	-1	1
5	0	0
7	2	4
10	5	25
$\sum y_i = 30$	$\sum (y_i - \bar{y}) = 0$	$\sum (y_i - \bar{y})^2 = 56$
$\bar{y} = 5$		

►
$$S^2 = \frac{56}{5} = 11.2$$

► $S = \sqrt{11.2} = 3.3$

A little visulaization

Quantiles

- **▶** (55, 84, 65, 54, 61, 67, 80, 59, 81, 82)
- 54 55 59 61 65 67 80 81 82 84
- ▶ Median = $\frac{67-65}{2}$
- ▶ 50% of the data is at or above, and (100-50)% is at or below

Quantiles in R

It turns out that calculate percentiles is a more nuanced topic than I realized.

- ▶ R includes nine different methods for calculating percentiles
- We want to use

```
## 25% 75%
## 59 81
```

Quantiles in R

It turns out that calculate percentiles is a more nuanced topic than I realized.

- ▶ R includes nine different methods for calculating percentiles
- We want to use

```
## 25% 75%
## 59 81
```

- For more information: tolstoy.newcastle.edu.au/R/e17/help/att-1067/Quartiles_in_R.pdf

Looking forward

