Exploration of Potential Improvements to INVASE

Detailed Comparison of TPR and FDR

Table 5.1: Comparison between the revised loss functions and INVASE

Methods	(Mean, Std)	Synethetic Datasets					
		A.1	A.2	A.3	A.4	A.5	A.6
INVASE	TPR	(100, 0)	(100,0)	(100, 0)	(100, 0)	(73, 28)	(72, 28)
	FDR	(0, 0)	(0, 0)	(0, 0)	(39, 18)	(23, 16)	(5, 13)
Direct Replacement Version Loss	TPR	(100, 0)	(100, 0)	(91, 12)	(97, 13)	(83, 20)	(73, 25)
	FDR	(0, 0)	(0, 0)	(0, 0.7)	(13, 24)	(19, 18)	(7, 15)
Percentage	TPR	(100, 0)	(100, 0)	(71, 17)	(100, 0)	(71, 25)	(90, 10)
Version Loss	FDR	(0, 0)	(0, 0)	(0, 0)	(41, 16)	(23, 16)	(44, 7)

Attempts: Activation: ReLU or Selu; Policy: Post-Training Selection Policy (I = 10k, m = 100, r = 500,

k=7) or Early Stop Policy ($\delta=3e-3, T=5$); Maximum Iterations: 10k

Hyperparameters: INVASE: $\lambda = 0$ to 1, step 0.1; Direct Replacement Version Loss: $\lambda^* = 0$ to 1, step 0.1;

Percentage Version Loss: $\mu = 0.5, 1, 2, 3, 5, 7, 9$.

- ◆ Direct Replacement Version Loss achieves best performance
 - Especially for Syn A.4 A.6
 - Much better in FDR
- ◆ Performance on TPR & FDR:
 - Direct replacement > INVASE > Percentage
- ◆ Performance on sensitivity:
 - Percentage > Direct replacement > INVASE
- ◆ Taking both aspects into consideration
 - → Choose Direct Replacement Version Loss

Exploration of Potential Improvements to INVASE

Detailed Comparison of TPR and FDR

- ◆ Direct Replacement Version Loss achieves best performance
 - Especially for Syn A.4 A.6

Table 5.1: Comparison between the revised loss functions and INVASE. Much better in FDR

Methods	(Mean, Std)	Synethetic Datasets		◆ Pe	erformance on TPR & FDR:		
		A.1	A.2	A.3	A.4	A.5	A.6
INVASE	TPR	(100, 0)	(100,0)	(100, 0)	(100, 0)	(73, 28)	(5) replacement > INVASE > Percentage
INVASE	FDR	(0, 0)	(0, 0)	(0, 0)	(39, 18)	$(23, 16)^{\circ}$	(5, 13) replacement > hvAsE > refeemage
Direct Replacement	TPR	(100, 0)	(100, 0)	(91, 12)	(97, 13)	(83, 20)	(73, 25)
Version Loss	FDR	(0, 0)	(0, 0)	(0, 0.7)	(13,24)	(19,18)	erformance on sensitivity:
Percentage	TPR	(100, 0)	(100, 0)	(71, 17)	(100, 0)	(71, 25)	(90, 10)
Version Loss	FDR	(0, 0)	(0, 0)	(0, 0)	(41, 16)	(23, 16)	<u>Percentage</u> > Direct replacement > INVASE

Attempts: Activation: ReLU or Selu; Policy: Post-Training Selection Policy (I = 10k, m = 100, r = 500, k = 7) or Early Stop Policy ($\delta = 3e - 3$, T = 5); Maximum Iterations: 10k

Hyperparameters: *INVASE*: $\lambda = 0$ to 1, step 0.1; **Direct Replacement Version Loss**: $\lambda^* = 0$ to 1, step 0.1;

Percentage Version Loss: $\mu = 0.5, 1, 2, 3, 5, 7, 9$.

- ◆ Taking both aspects into consideration
 - → Choose Direct Replacement Version Loss

Exploration of Potential Improvements to INVASE

Analysis of Incorporating Response Variables + Direct Replacement version

