	$Kbrac{d^2h}{dx^2}+R=0$ Boundary conditions:	(
	$-Kbrac{dh(x)}{dx}=0\ , \qquad x=0=\Gamma_2$ $h(x)=h_{\Gamma_1}\ , \qquad x=L=\Gamma_1$ Closed-form solution:	(
	$h(x)=h_L+\frac{R(L^2-x^2)}{2~K~b}$ Spatial derivatives of hydraulic head obtained from differentiation: $\frac{dh}{dx}=-\frac{R~x}{K~b},\qquad \frac{d^2h}{dx^2}=-\frac{R}{K~b}$	(
[72] :	<pre>from IPython.display import HTML, display def set_background(color): script = ("var cell = this.closest('.code_cell');" "var editor = cell.querySelector('.input_area');" "editor.style.background='{}';"</pre>	
[94]:	<pre>"this.parentNode.removeChild(this)").format(color) display(HTML(''.format(script))) from warnings import filterwarnings filterwarnings("ignore", category=DeprecationWarning) import numpy as np</pre>	
	<pre>def h(x, K, R, b, L, BClh): return R/K/2./b*(L**2x**2.) K, R, b, L, BClh, ocol = 10., 1e-1/1000., 10., 10000., 0., 5000 X = np.arange(L) H0 = np.array([h(x, K, R, b, L, BClh) for x in X]) %matplotlib inline</pre>	
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., H0, 'k', mfc='none', label='forward solution, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>	
	40 forward solution, analytical forward solution, analytical forward solution analytical	
	1. Direct sensitivity	(!
[74]:	$\frac{\partial h(x')}{\partial K} = \frac{R\left(x^2 - L^2\right)}{2\;K^2\;b}$ $\text{dhdK} = [\text{R/K**2./2./b*}(\text{x**2L**2.}) \;\; \text{for} \; \text{x in X}]$ $\text{benchmark} = \text{dhdK[ocol]}$ % matplotlib inline	(1
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='direct sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	0 direct sensitivity, analytical direct sen	
[75]:	x (km)	
	2. Perturbation sensitivity $\frac{\partial h(x')}{\partial K} \approx \frac{h(x,K+\Delta K) - h(x,K)}{\Delta K}$	(1 (1 (1
[76]:	<pre>2a. Analytical dpar = 1e-4 H0 = np.array([h(x, K, R, b, L, BClh) for x in X]) H1 = np.array([h(x, K+K*dpar, R, b, L, BClh) for x in X]) dhdK = (H1-H0)/(K*dpar)</pre>	
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$')</pre>	
	plt.legend(); O perturbation sensitivity, analytical Yes -2	
[77]:	0 2 4 6 8 10 x(km) set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[ocol], benchmark))	
[93] :	-3.749625 (-3.750000) 2b. Semi-analytical from os import getcwd, chdir cwd = getcwd() chdir(r'//timml') import timml	
	<pre>chdir(cwd) M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.) timml.StripAreaSink(M0, 0., L, R) M0.solve(silent=True)</pre>	
	<pre>### H0 = M0.headalongline(X, 0.).flatten() ###################################</pre>	
	plt.ylabel('\$h\$ (m)') plt.legend(loc=3); 40 \$\hat{\mathref{E}}{20}\$	
[79] :	0 2 4 6 8 10 x (km) M1 = timml.Model3D(kaq=K+K*dpar, z=[0., -b])	
	<pre>timml.ImpLineDoublet1D(M1, xld=0.) timml.HeadLineSink1D(M1, xls=L, hls=0.) timml.StripAreaSink(M1, 0., L, R) M1.solve(silent=True) H1 = M1.headalongline(X, 0.).flatten() dhdK = (H1-H0)/(K*dpar)</pre> <pre>%matplotlib inline</pre>	
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, semi-analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	0 perturbation sensitivity, semi-analytical -2	
[80]:	0 2 4 6 8 10 x(km) set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[ocol], benchmark)) -3.749625 (-3.750000)	
95]:	<pre>2c. Numerical import flopy nrow, ncol = 1, int(L)</pre>	
	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	
	<pre>flopy.modflow.ModflowOc(M0, stress_period_data={(0,0): ['save head', 'save budget']}) M0.write_input() success, buff = M0.run_model(silent=True) H0 = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
	<pre>plt.subplots(figsize=[8,2]) plt.plot(X/1000., H0, 'k', mfc='none', label='forward solution, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>	
	40 forward solution, numerical 0 2 4 6 8 10 x (km)	
82]:	<pre>M1 = M0 flopy.modflow.ModflowLpf(M1, hk=K+K*dpar, vka=-999., ss=-999., sy=-999., ipakcb=53) M1.write_input() success, buff = M1.run_model(silent=True) H1 = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] dhdK = (H1-H0)/(K*dpar)</pre>	
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$')</pre>	
	plt.legend(); O perturbation sensitivity, numerical	
83]:	-4 -	
	-3.753662 (-3.750000) 3. Adjoint sensitivity	
	$\frac{\partial h(x')}{\partial K} = \int\limits_X \psi_1^*(x) \; b \; \frac{d^2 h(x)}{dx^2} \; dx$ Governing equation:	(1
	$Kbrac{d\psi_1^*}{dx}+rac{1}{2Kb}\delta(x-x')=0$ Boundary conditions: $-Kbrac{d\psi_1^*(x)}{dx}=0\ , \qquad x=0=\Gamma_2$	(1
	$\psi_1^*(x)=0\ , \qquad x=U=\Gamma_1$ Closed-form solution:	(1)
[96] :	$\psi_1^*(x) = \frac{1}{2Kb} \big[H\left(x'-x\right) \left(L-x'\right) + H\left(x-x'\right) \left(L-x\right) \big]$ def a(x, xp, K, b, L):	(2
	<pre>a = L-xp return a/K/b A = np.array([a(x, 4500., K, b, L) for x in X]) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
	<pre>plt.subplots(figsize=[8,2]) plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	
	40 - 20 adjoint solution, analytical 0 2 4 6 8 10 x (km)	
[85]:	<pre>3a. Analytical dhdK = [np.sum(np.array([a(x, xp, K, b, L) for x in X])*b*-R/(K*b)) for xp in X[::1000]] %matplotlib inline</pre>	
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X[::1000]/1000., dhdK, 'k', mfc='none', label='adjoint sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	-1 adjoint sensitivity, analytical adjoint sensitivity, analytical	
[86]:	x (km)	
[87]:	<pre>3b. Semi-analytical M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.) timml.LineSink1D(M0, xls=float(ocol), sigls=-1.) M0.solve(silent=True)</pre>	
	<pre>A = M0.headalongline(X, 0.).flatten() %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, semi-analytical') plt xlabel('Sys (km)')</pre>	
	plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);	
971:	adjoint solution, semi-analytical 0 2 4 6 8 10 x (km)	
[97] :	<pre>dhdK = np.empty(0) for xp in X[::1000]: M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.) timml.LineSink1D(M0, xls=xp, sigls=-1.) M0.solve(silent=True) A = M0.headalongline(X, 0.).flatten() dhdK = np.append(dhdK, np.sum(A*b*-R/(K*b)))</pre>	
	<pre>dhdK = np.append(dhdK, np.sum(A*b*-R/(K*b))) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X[::1000][1:]/1000., dhdK[1:], 'k', mfc='none', label='adjoint sensitivity, semi-analyticaplt.xlabel('\$x\$ (km)')</pre>	al')
[89]:	-4 -5 -1 2 3 4 5 6 7 8 9 x(km) set_background('rgba(0, 200, 0, 0.2)')	
	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[int(np.where(X[::1000]==float(ocol))[0])], benchmark)) -3.750250 (-3.750000) 3c. Numerical, continuous M0 = flopy.modflow.Modflow(modelname='model', exe name='/mf2005.exe')</pre>	
∠d]:	<pre>flopy.modflow.ModflowDis(M0, nlay=1, nrow=1, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b, something perlen=1., nstp=1) flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])</pre>	_
	<pre>flopy.modflow.ModflowOc(M0, stress_period_data={(0,0): ['save head', 'save budget']}) M0.write_input() success, buff = M0.run_model(silent=True) A = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
	<pre>import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	
	40 - 20 adjoint solution, numerical 0 2 4 6 8 10 x (km)	
91]:	x (km)	
	<pre>success, buff = M1.run_model(silent=True) A = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] dhdK = np.append(dhdK, np.sum(A*b*-R/(K*b))) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt f,s = plt.subplots(figsize=[8,2])</pre>	
	<pre>plt.plot(X[::1000]/1000., dhdK, 'k', mfc='none', label='adjoint sensitivity, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre> -1 adjoint sensitivity, numerical	
	-2	
92]:	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[int(np.where(X[::1000]==float(ocol))[0])], benchmark)) -3.749250 (-3.750000) 3d. Numerical, discrete</pre>	
[]:		
[]:	<pre>import flopy from os import system nrow, ncol = 1, 10000 M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	, stear
	<pre>perlen=1., nstp=1) flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])</pre>	
	<pre>M0.write_input() #success, buff = M0.run_model(silent=True) system('mf2005_stream.exe < model.in') h = np.reshape(flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:], [1,ncol]) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
[] ^	<pre>plt.subplots(figsize=[8,2]) plt.plot(X/1000., h[0, range(500, np.shape(h)[1], 1000)], 'ko', mfc='none', label='forward solution plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend();</pre> <pre>print(h[0, range(500, np.shape(h)[1], 1000)])</pre>	n, nume
	<pre>h = h.T Assemble A matrix and RHS vector: CR = np.reshape(np.loadtxt('CR.arr').flatten(), [1,ncol]) CR = np.vstack([np.zeros(ncol),</pre>	
	<pre>CR = np.hstack([np.zeros([nrow+2,1]), CR, np.zeros([nrow+2,1])]) CC = np.zeros(np.shape(CR)) A = np.zeros([nrow*ncol, nrow*ncol]) i = 0 for r in range(1, nrow+1): for c in range(1, ncol+1): if r==nrow and c==ncol: continue if i-ocol > -1:</pre>	
	<pre>if i-ocol > -1: A[i, i-ocol] = CC[r-1,c] if i-1 > -1: A[i, i-1] = CR[r,c-1] A[i, i] = -CC[r-1,c]-CR[r,c-1]-CC[r,c]-CR[r,c] if i+1 < nrow*ncol-1: A[i, i+1] = CR[r,c] if i+ocol < nrow*ncol-1:</pre>	
[]:	<pre>if i+ocol < nrow*ncol-1:</pre>	
	<pre>system('mf2005_stream.exe < model.in') h = np.reshape(flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:], [1,ncol]).T CR = np.reshape(np.loadtxt('CR.arr').flatten(), [1,ncol]) CR = np.vstack([np.zeros(ncol),</pre>	
	<pre>A = np.zeros([nrow*ncol, nrow*ncol]) i = 0 for r in range(1, nrow+1): for c in range(1, ncol+1): if i-1 > -1: A[i,i-1] = CR[r,c-1] A[i,i] = -CR[r,c-1]-CR[r,c] if i+1 < nrow*ncol-1: A[i,i+1] = CR[r,c]</pre>	
	A[i,i+1] = CR[r,c] $i +=1$ $A[-1,-1] = 0$. $A0 = A$ $A1 = 10$ $A1 = 10$	
[]:	<pre>nrow, ncol, ocol = 1, 10000, 5000 M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	
[]:	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	
	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	
	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	
[]:	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b</pre>	