1. Write a procedure that should swap the values of AX in and DX in such a way that whatever is stored in AX, after swapping DX would hold reverse of it, and vice versa. (For instance, given that AX = ABCDh, DX = 7654h, after swapping: AX = 4567h and DX = DCBA). Make use of stack and Shift/Rotate instructions only. [4 Points]

```
XCHG
         AH, AL
         AH, 4
ROL
ROL
         AL,4
PUSH
         ΑX
XCHG
         DH, DL
ROL
         DH, 4
         DL, 4
ROL
PUSH
         DX
POP
         ΑX
POP
         DX
```

2. What does EAX contain after execution of following instructions?

[2 Points]

```
MOV EAX, 01h
MOV EBX, 03h
MOV ECX, 10h
L1: SHL EAX, 1
DEC ECX
SUB EBX, 1
LOOPNE L1
```

EAX = 00000008h

3. Copy the second last element (second most recent) of the stack into ECX without disturbing ESP. [2 Points]

MOV ECX, [ESP+4]

4. Given that multi-level encryption is implemented in the following code. Provide encrypted values in AX/AL after each encryption and write down working decryption key for each encryption. [4 Points]

```
MOV AL, 04h
MOV CL, AL
; encryption1
CBW
INC AH
XOR AX, 04h ; AX?
; encryption2
ROL AH, CL
DEC CL
SHL AX, CL
TEST AX, 0ffffh ;AX?
```

SHR AX, CL INC CL ROR AH, CL ; decryption1 XOR AX, 04h DEC AH

5. Using recursion, calculate and display the 11th positioned to 15th positioned elements of Fibonacci Series, also draw out the stack (stack frame) for your code. [4+2 Points]

FREE REPONSE