2. Agile SysAdmin: Networking and Systems Administration

Instructor: Julián García-Sotoca Pascual

Storage, Databases and Backups

Indice

- Storage, Databases and Backups
 - Sistema de ficheros
 - Discos, filesystems y LVM
 - Backup
 - o BBDD

Indice

- Storage, Databases and Backups
 - Sistema de ficheros
 - Discos, filesystems y LVM
 - Backup
 - o BBDD

Storage - Sistema de Ficheros

- Para administrar sistemas Linux se debe familiarizar con los directorios por defecto
- Estos directorios están organizados de una forma similar siguiendo el estándar FHS (Filesystem Hierarchy Standard)
- Se puede consultar desde la línea de comandos con: "man 7 hier"

Storage - Sistema de Ficheros

https://studywarehouse.com/ubuntu-linux-file-system-layout/

Storage - Sistema de Ficheros

Directorio	Descripción
1	Directorio Raíz. Es donde el árbol del sistema de ficheros comienza
/bin	Ubicación de los ejecutables necesarios para arrancar y reparar el sistema.
/boot	Contiene todos los ficheros y directorios necesarios para el arranque del kernel de Linux
/dev	Ficheros de dispositivos usados para acceder a ellos.
/etc	Contiene ficheros de configuración usados por programas y servicios.
/home	Usado para almacenar el directorio personal de los usuarios
/lib, /lib64	Librerías compartidas que son usadas por programas en /boot, /bin y /sbin
/media, /mnt	Directorios que se usan para montar dispositivos en el árbol del sistema de ficheros
/opt	Paquetes opcionales que se pueden instalar en el servidor
/proc	Usado por el sistema de ficheros proc, dando acceso a información del kernel
/root	Directorio personal del usuario root
/run	Contiene información especifica de usuarios y procesos que se han creado desde el último arranque
/sbin	Similar a /bin pero con comandos avanzados que no suelen ser necesarios por usuarios normales
/sys	Usado como interfaz para dispositivos hardware gestionados por el kernel y sus procesos asociados
/tmp	Contiene ficheros temporales que se vaciarán durante el arranque sin ninguna advertencia
/usr	Directorio que contiene ficheros de programas, librerías y documentación.
/var	Directorio que contiene ficheros que variarán de tamaño dinámicamente, como ficheros de log, colas de impresión o buzones de correo.

Storage - Montaje

- Muchas veces oiremos el concepto de "mounts" trabajando con sistemas Linux
- La jerarquía se representa con el directorio root (/) como punto inicial
- La jerarquía puede ser distribuida sobre diferentes dispositivos
- Montar dispositivos permite organizar el sistema de ficheros de forma flexible, pudiendo evitar situaciones como:
 - gran actividad en un área afecte a todo el sistema
 - todos los ficheros con el mismo grado de seguridad
 - Ilenado de todo el disco

Storage - Montaje

- Lo normal es organizar el sistema de ficheros en diferentes dispositivos, como particiones.
- Al configurar un dispositivo como un punto de montaje se puede especificar opciones para cambiar el comportamiento
- Normalmente se suelen separar los siguientes directorios:
 - /boot: requiere información esencial durante el arranque
 - /var: varía muy dinámicamente. Si se llena no afecta al resto del sistema
 - /home: por seguridad se suele montar a parte
 - /usr: contiene ficheros del sistema operativo, separándolo se puede garantizar el montaje como solo lectura

Storage - Montaje

- Para verificar los dispositivos que tenemos montados podemos usar el comando mount o el comando df
- Con mount podemos montar también dispositivos manualmente
- Con umount los podremos desmontar

```
mount -t iso9660 /dev/cdrom /mnt/cdrom
mount -t ntfs /dev/hda2 /mnt/winXP
umount /mnt/cdrom
```

 En el fichero /etc/fstab se describen los dispositivos que se deben montar en el arranque

Indice

- Storage, Databases and Backups
 - Sistema de ficheros
 - Discos, filesystems y LVM
 - Backup
 - o BBDD

- En servidores físicos podremos distinguir entre discos internos del servidor y discos externos
- El tipo de disco interno a instalar variará en función de la controladora: IDE, SCSI, SATA, SSD, etc
- Los discos externos normalmente se instalan en cabinas o Arrays de alto rendimiento y alta disponibilidad. Estas cabinas permiten configurar RAIDs y presentar un volumen (LUN) al servidor normalmente por una interfaz de fibra o iSCSI. El sistema operativo lo ve como si fuese un disco mas.
- En cualquier de los casos el disco debe estar particionado.

- Una partición es la especificación de los límites dentro de los cuales se creará el sistema de ficheros
- La tabla de particiones se guarda en el primer sector del disco (primeros 512 bytes) en el MBR
- El MBR además contiene el firmware necesario para arrancar el sistema
- En el MBR solo se podían crear 4 particiones de hasta 2TiB.
- Para poder solventar esta limitación, una de esas 4 particiones se marca como extendida. Las particiones extendidas pueden tener hasta 15 particiones lógicas

- Debido a las limitaciones del sistema MBR se desarrolló el GPT, usado en la mayoría de servidores y ordenadores actualmente
- GPT: GUID Partition table. Tiene los siguientes beneficios:
 - El tamaño máximo de la partición es 8ZiB
 - Hasta 128 particiones
 - No se necesita distinguir el tipo de partición
 - Usa un Global Unique ID (GUID) para identificar particiones
 - Hay una copia de la tabla de particiones al final del disco

- Para trabajar con particiones necesitamos acceder al dispositivo.
- En linux los discos se identifican de la siguiente manera:

Nombre del dispositivo	Descripción	
/dev/sdX	Disco con driver SCSI. Usado por discos SCSI y SATA y también en máquinas virtuales en VMware	
/dev/hdX	Antiguos discos IDE. Raramente se encuentran ya	
/dev/vdX	Disco en una máquina virtual KVM	
/dev/xvdX	Disco en una máquina virtual Xen	
Donde X: a,b,c		

Cuando un disco se particiona, se añade un identificador de la partición:

root@ubuntu:~# ls /dev/sda*


```
Disk /dev/sda: 238,5 GiB, 256060514304 bytes, 500118192 sectors
Disk model: Micron 1100 MTFD
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: qpt
Disk identifier: EFE759D3-4FA2-4F81-ABAD-F82D38A83F1F
Device
              Start
                          End Sectors
                                         Size Type
/dev/sda1
               2048
                                 532480 260M EFI System
                       534527
/dev/sda2
              534528
                       567295
                                  32768 16M Microsoft reserved
/dev/sda3
             567296 217395047 216827752 103,4G Microsoft basic data
/dev/sda4 498356224 500117503 1761280 860M Windows recovery environment
/dev/sda5 217395200 498356223 280961024 134G Linux filesystem
```

```
Disk /dev/sda: 10.8 GiB, 11534336000 bytes, 22528000 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x43efadf8
                            End Sectors Size Id Type
Device
           Boot Start
/dev/sda1
                  2048
                                 497664 243M 83 Linux
                        499711
/dev/sda2
               501758 22525951 22024194 10.5G 5 Extended
/dev/sda5
                501760 22525951 22024192 10.5G 8e Linux LVM
```


- La partición por sí sola no es útil, se necesita formatear.
- Los formatos más comunes de sistema de ficheros son:

Sistema de Ficheros	Descripción
XFS	Sistema de archivos de alto rendimiento. Por defecto en RHEL 7
Ext4	Sistema de archivos transaccional con varias mejoras respecto a Ext3. Por defecto en CentOS y Ubuntu.
Ext3	Versión previa a Ext4, con ciertas limitaciones y prácticamente sin uso.
BtrFS	Se preveía introducir muchas mejoras respecto a Ext4 pero de momento no se ha publicado una versión estable.
NTFS	Sistema de archivos de sistemas Windows
VFAT	Sistema de archivos de antiguos sistemas Windows. También se usa en discos USB.
ZFS	Gran capacidad e integración de concepto de sistema de fichero y administrador de volúmenes

Para formatear una partición se usa el comando mkfs.*

Para editar las propiedades de un FS podemos usar tune2fs (ext4) o xfs_admin (XFS)

Partición de SWAP:

- La SWAP es un espacio de disco usado para memoria virtual, emulando RAM en disco.
- Se puede usar un fichero, pero en linux se suele utilizar una partición en exclusiva
- El kernel de linux es muy eficiente en la gestión de la memoria y cuando hay páginas en memoria que no se han usado recientemente las mueve a la SWAP.

UUIDs o Etiquetas:

- En servidores donde la topología de almacenamiento es dinámica, el nombre de los dispositivos puede cambiar.
- Por ello, las nuevas versiones usan UUID para identificar discos
- Con el comando blkid podemos obtener el UUID de las particiones:

```
[vagrant@centos ~]$ sudo blkid
/dev/sda1: UUID="f52f361a-da1a-4ea0-8c7f-ca2706e86b46" TYPE="xfs"
[vagrant@centos ~]$ cat /etc/fstab

#
# /etc/fstab
# Created by anaconda on Thu Feb 28 20:50:01 2019
#
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
UUID=f52f361a-da1a-4ea0-8c7f-ca2706e86b46 / xfs defaults 0 0
/swapfile none swap defaults 0 0
```


Automontaje - fstab

• En el fstab se definen 6 campos para montar automáticamente particiones:

Campo	Descripción
Dispositivo	El dispositivo a montar: nombre del dispositivo, UUID o etiqueta
Punto de Montaje	Directorio donde se montará
Tipo	El tipo de filesystem: ext4, xfs, etc
Opciones	opciones de montaje: rw, ro, defaults
Soporte a Dump	Requerido por algunas soluciones de backup
Chequeo automático	Especifica si el sistema de ficheros se debe chequear durante el arranque. Normalmente se deshabilita para todas las particiones a excepción del /.

RAID: Redundant Array of Independent Disks

- Combinación de pequeños discos para formar un dispositivo con mejor rendimiento y redundancia
- La información se distribuye sobre varios discos en función de la técnica usada.
 - Mejoran la velocidad
 - Aumentan la capacidad
 - Minimizan la pérdida de datos en caso de fallo físico

RAID: Redundant Array of Independent Disks

- Tipos:
 - Firmware: RAID configurable desde la BIOS del sistema
 - Hardware: gestiona independientemente el array del sistema donde se instala
 - Software: el RAID se implementa a nivel del Kernel. Es la solución más barata.

RAID: Redundant Array of Independent Disks

- Niveles:
 - RAID 0 o stripe. Los datos se escriben en bloques en todos los discos del raid. No tiene redundancia.
 - RAID 1 o mirror. Los datos se replican entre los discos
 - RAID 4: usa un disco de paridad. Este disco es un cuello de botella y no se suele usar este nivel.
 - RAID 5: escribe la paridad de forma distribuida entre todos los discos.
 - RAID 6: crea un complejo sistema de paridad para poder recuperar de la pérdida de dos discos de un array
 - RAID 10: combinación de RAID 0 y RAID 1

RAID 0+1

RAID 10

LVM - Linux Volume Manager

- Permite fácilmente implementar RAID por software
- Los discos se asignan a uno o varios volúmenes físicos. Deben estar particionados como tipo LVM.
- Los volúmenes físicos se combinan en grupos de volúmenes
- Los grupos de volúmenes se dividen en volúmenes lógicos que son asignados a puntos de montaje.
- Si uno de estos volúmenes lógicos necesita ser ampliado se puede asignar espacio libre del grupo.

Ventajas:

- Flexibilidad: se eliminan las restricciones que tiene los dispositivos físicos
- Snapshots (instantáneas): permite almacenar el estado actual de un volumen lógico
- Tolerancia a fallos: un disco es fácilmente reemplazable

Indice

- Storage, Databases and Backups
 - Sistema de ficheros
 - Discos, filesystems y LVM
 - Backup
 - o BBDD

- Para la realización de backup tenemos dos opciones:
 - utilizar herramientas de alguna solución propietaria de backup
 - utilizar las herramientas que proporciona GNU/Linux
- Las principales herramientas de archivado son:
 - o tar
 - o cpio
 - \circ dd
- Estas herramientas agrupan los ficheros en un único archivo que luego se puede mover fácilmente a otro medio.
- Los archivos generados se pueden comprimir mediante gzip o bzip2 para ocupar menos espacio.

TAR:

 Es una herramienta muy compleja en la que siempre hay que pasarle un comando y algunos modificadores

Comando	Abreviatura	Descripción
create	-C	Crea un archivo
concatenate	-A	Añade un fichero tar a un archivo
append	-r	Añade ficheros normales a un archivo
update	-u	Añade ficheros nuevos a los que hay en el archivo
diff	-d	Compara un archivo con ficheros en el disco
list	-t	Lista el contenido de un archivo
extrat	-x	Extrae ficheros de un archivo

TAR:

Modificador	Abreviatura	Descripción
directory dir	-C	cambia al directorio dir antes de realizar alguna operación
file file	-f	usa el fichero file como el fichero de archivado
listed-incremental file	-g	realiza un archivado incremental
one-file-system	-1	Únicamente trabaja con una partición
same-premissions	-р	preserva la información de permisos
absolute-paths	-P	Retiene la ruta absoluta de los ficheros
verbose	-V	Lista todos los ficheros que trata
verify	-W	Verifica el archivo después de escribirlo
exclude file		Excluye file del archivo
exclude-from file	-X	Excluye ficheros listados en file
gzip	-Z	Procesa el archivo con gzip
bzip2	-j	Procesa el archivo con bzip2

TAR:

- ejemplos:
 - crear un archivo

```
root@ubuntu:/var# tar cvfz /tmp/logs.tgz ./log
```

extraer un archivo

```
root@ubuntu:/tmp# tar xvfz logs.tgz
```

Mostrar el contenido:

```
root@ubuntu:/tmp# tar tzvf logs.tgz
```


CPIO:

- Programa similar al tar pero difiere en la forma de operar
- Para realizar una copia se utiliza la opción -o
- Para extraer de un archivo se utiliza la opción -i
- Ejemplos:

```
$ find ./my-work | cpio -o > /media/usb/my-work.cpio
$ find ./my-work | cpio -o | gzip > /media/usb/my-work.cpio.gz
$ cpio -i < /media/usb/my-work.cpio
$ gunzip -c /media/usb/my-work.cpio.gz | cpio -i</pre>
```


DD:

- Herramienta de copia de muy bajo nivel.
- Se le da como entrada una partición y como salida puede ser otra partición, una unidad externa o un fichero.
- El inconveniente principal es que hace copia de toda la partición, incluyendo el espacio vacío.
- Ejemplo:

```
root@ubuntu:/tmp# dd if=/dev/sda1 of=/tmp/backup_file.img bs=1024 count=720 720+0 records in 720+0 records out 737280 bytes (737 kB, 720 KiB) copied, 0.0143422 s, 51.4 MB/s
```


Indice

- Storage, Databases and Backups
 - Sistema de ficheros
 - Discos, filesystems y LVM
 - Backup
 - o BBDD

Existen multitud de motores de bases de datos. Principalmente los podremos diferenciar entre:

- Relacionales: se basan el concepto de tablas e implementan el estándar SQL (cada motor aporta sus modificaciones)
- No Relacionales: se basan en el almacenamiento de documentos sin estructura. También conocidas como NoSQL

https://medium.com/@mark.rethana/introduction-to-nosql-databases-c5b43f3ca1cc

edureka!

https://www.edureka.co/blog/sql-vs-nosql-db/

https://asesoftware.com/site/en/como-se-aplica-el-teorema-cap-y-el-reto-de-la-escalabilidad-en-las-rdbms-y-nosql/

https://asesoftware.com/site/en/como-se-aplica-el-teorema-cap-y-el-reto-de-la-escalabilidad-en-las-rdbms-y-nosql/

https://medium.com/rabiprasadpadhy/google-spanner-a-newsgl-journey-or-beginning-of-the-end-of-the-nosgl-era-3785be8e5c38

Cualquiera de ellas se pueden instalar en Linux aunque básicamente veremos 2:

- MariaDB: fork de MySQL y la BBDD por defecto en el las distribuciones derivadas de Red Hat
- MongoDB: BBDD NoSQL con muy buen rendimiento orientada al almacenamiento de ficheros json.

- Después de la compra de MySQL por parte de Oracle, la comunidad forkeó el proyecto y liberó el motor MariaDB.
- La mayoría de distribuciones incluyen MariaDB en sus repositorios
- Para poder usarlo debemos instalar el cliente, el servidor y probablemente las herramientas de desarrollo
- Es posible que se encuentren muchas referencias a MySQL en los ficheros de configuración de MariaDB al ser un derivado.

Instalación:

- Normalmente usaremos el gestor de paquetes para instalar los paquetes mariadb, mariadb-server
- Habilitaremos el servicio con systematl start mariado y systematle enable mariado.
- Una vez instalado lanzaremos el comando "mysql_secure_installation" que aplicará opciones de seguridad como:
 - contraseña de root
 - eliminar usuarios anónimos
 - deshabilitar login remoto de root,

Equivalente al "mysql_secure_installation":

```
myql --user=root <<_EOF_
UPDATE mysql.user SET Password=PASSWORD('${db_root_password}') WHERE User='root';
DELETE FROM mysql.user WHERE User=";
DELETE FROM mysql.user WHERE User='root' AND Host NOT IN ('localhost', '127.0.0.1', '::1');
DROP DATABASE IF EXISTS test;
DELETE FROM mysql.db WHERE Db='test' OR Db='test\\_%';
FLUSH PRIVILEGES;
_EOF_</pre>
```

Automating 'mysql secure installation' - Notes to self

Configuración:

- El fichero de configuración es /etc/my.cnf
- El fichero se divide en secciones
- en la sección mysqld se especifican parámetros generales como la red y el puerto

Verificación:

 Una vez instalada y configurada se puede loguear mediante el comando: mysql -u root -p

SQL:

- Una vez conectado al motor de BBDD ya se pueden lanzar ciertos comandos SQL:
 - show databases;
 - use database_name;
 - create database database_name;
 - show tables;
 - describe table_name;

Usuarios:

- Los usuarios se almacenan en la tabla user en la BBDD mysql
- Solo un usuarios con privilegios en esa tabla podrá crear usuarios
- Normalmente se incluye el @hostname para filtrar desde donde se conecta un usuario
- Ejemplo: CREATE USER julian@localhost IDENTIFIED BY 'keepcoding';
- Para borrar un usuario se ejecuta: DROP USER julian@localhost;
- Un usuario recién creado no tendrá privilegios para hacer nada.
 Con GRANT se dan permisos granularmente en diferentes objetos.

Backup y restauración:

- El backup puede ser:
 - Físico: se copian los ficheros y directorios de la BBDD, pero tiene que estar parada. Se pueden realizar con snapshots de I VM.
 - Lógico: se obtienen los datos consultando a la bbdd. Es relativamente más lento pero se puede hacer backup en caliente y el backup es portable.
- Para hacer backup y restaurar se utiliza el comando mysqldump.

- Base de datos NoSQL orientado a documentos
- En lugar de guardar datos en tablas guarda estructuras de datos BSON (similar a JSON)
- A diferencia de los sistemas SQL, el esquema es dinámico, haciendo que la integración de datos sea más fácil y rápida

- Permite la realización de consultas filtrando por campos específicos, con una notación similar a las empleadas en JavaScript.
- También permite la creación de índices para mejorar el rendimiento en la ejecución de determinadas consultas
- Permite establecer fácilmente mecanismos de replicación y balanceo de carga

Replicación

Particionado (Sharding)

¿Preguntas?

GRACIAS www.keepcoding.io

