George Mason University Department of Mathematical Sciences

Math 125: Discrete Math
Dr. Morris
Fall 2024 — Section 006
November 14, 2024
Practice Exam # 2

Matteo Costagliola

(Student ID: G01488318)

Given

Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 3, 5, 7\}$. Find:

- (a) $A \times B$
- (b) $\mathcal{P}(A)$, the power set of A

Solution

- (a) $A \times B = \{(1,1), (1,3), (1,5), (1,7), (2,1), (2,3), (2,5), (2,7), (3,1), (3,3), (3,5), (3,7)\}$
- (b) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Problem 2

Given

Prove or give a counterexample to the statement: For all sets $A, B, C, (A-B) \cup C =$ $A - (B \cap C)$.

Solution

We propose a counterexample: Let $A = \{1\}, B = \{2\}, \text{ and } C = \emptyset$

$$(A - B) \cup C =$$

$$A - B = 1$$

$$(A-B)\cup C=\{\emptyset,1\}$$

$$A - (B \cap C) =$$

$$B \cap C = \emptyset$$

$$A - (B \cap C) = 1$$

Thus we have $\{\emptyset, \{1\}\} \neq 1$.

Given

Let $f = \{(a,a),(b,c),(c,b)\}$ and $g = \{(a,c),(b,c),(c,a)\}$ be two functions from $\{a,b,c\}$ to $\{a,b,c\}.$

- (a) Find f^{-1} . Does g have an inverse?
- (b) Find $g \circ f$.

Solution

(a.1)
$$f^{-1} = \{(a, a), (c, b), (b, c)\}$$

- (a.2) No g does not have an inverse as g is not a bijective function.
 - (b) $g \circ f = \{(a, c), (b, a), (c, c)\}$

Problem 4

Given

Define $f: \{x \in \mathbb{R} \mid x > 0\} \mapsto \{y \in \mathbb{R} \mid y > 1\}$ by $f(x) = 1 + \frac{1}{x}$.

- (a) Show that f is one-to-one and onto.
- (b) Find the inverse function $f^{-1}(x)$.

Solution

(a.1) Proof: f is one-to-one.

Let $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$, then by the definition of f

$$1 + \frac{1}{x_1} = 1 + \frac{1}{x_2}$$

Then, by simple algebra

$$\frac{1}{x_1} = \frac{1}{x_2}, \ x_1 = x_2$$

Thus we have that f is one-to-one.

(a.2) **Proof:** f is onto.

Let y be an element of the range of f such that there exists an x where f(x) = y.

Then by the rule of f

$$y = 1 + \frac{1}{x}$$
, $y - 1 = \frac{1}{x}$, $x = \frac{1}{y - 1}$

Plugging x into f(x) = y gives

$$f(\frac{1}{y-1}) = 1 + \frac{1}{\frac{1}{y-1}} = 1 + y - 1 = y = y$$

Thus f is onto.

(b) $f^{-1} =$

$$y = 1 + \frac{1}{x}, \ x = 1 + \frac{1}{y}, \ x - 1 = \frac{1}{y}, \ y = \frac{1}{x - 1}$$

$$f^{-1} = \frac{1}{x - 1}$$

Problem 5

Given

Define a transitive relation R on \mathbb{Z} by xRy if and only if 3 divides x-y. Prove that R is transitive.

Solution

Proof: R is transitive.

Let $x, y, x \in R$ such that xRy and yRz. Then by the definition of R we have

$$x - y = 3m$$
 for some integer m

$$y - z = 3l$$
 for some integer l

For R to be transitive we must have xRz, so we solve the second equation for y and substitute this into the first equation.

$$y = 3l + z$$

$$x - (3l + z) = 3m, \ x - 3l - z = 3m$$

$$x - z = 3m + 3l, x - z = 3(m + l), \text{ where } (m + l) \in \mathbb{Z}$$

Thus R is transitive.

Problem 6

Given

Let $R = \{(1,2), (2,1), (2,2), (1,1), (3,3)\}$ be a relation on $\{1,2,3,4\}$. For each of the properties: reflexivity, symmetry, transitivity, antisymmetry, state whether or not R has the property.

Solution

R is not reflexive as $(4,4) \notin R$.

R is symmetric as $(a,b) \in R$ if (b,a) is in R.

R is transitive as $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$.

R is not antisymmetric as $(1,2) \in R$ and $(2,1) \in R$ but $1 \neq 2$.

Given

Let $A = \{a, b, c, d\}$ and let $R = \{(a, a), (a, c), (b, b), (c, c), (c, a), (d, d)\}$

- (a) Prove that R is an equivalence relation on A.
- (b) What are the equivalence classes for R?

Solution

- (a) R is reflexive as $\forall x \in A, (x, x) \in R$. R is symmetric as $\forall (x, y) \in R, (y, x) \in R$. R is transitive as $\forall x, y, x \in R, (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$.
- (b) The equivalence classes for R are as follows

$$\{a,c\},\ \{b\},\ \{d\}$$

Problem 8

Given

Consider the following partial order on

 ${a,b,c,d}: (a,a), (b,b), (c,c), (a,b), (a,c), (d,c), (d,d).$

- (a) Draw the Hasse diagram of the partial order.
- (b) List the minimal and the least elements.

Solution

(b) The minimal elements are: a and c, as no elements are below these. There is no least element in this partial order.

Given

- (a) How many odd integers are there from 3000 through 9999?
- (b) How many odd integers from 3000 through 9999 have distinct digits?

Solution

- (a) N(9999 3000) = 7000, $\frac{7000}{2} = 3500$, thus there are 3500 odd integers from 3000 to 9999.
- (b) We will divide this problem into two cases. First, consider if the last digit is 1. This leaves us with 7 choices for the first digit, 8 choices for the second, and 7 choices for the third. For a total of 392 integers. For the second case, consider numbers ending with 3,5,7, and 9. There are 4 choices for the last digit, 6 choices for the first, 8 choices for the second, and 7 choices for the third. For a total of 1334 integers. Giving a total between the two cases of 1736 odd integers with distinct digits between 3000 and 9999.

Problem 10

Given

Suppose that A, B, and C are sets and that N(A) = 28, N(B) = 26, N(C) = 14, $N(A \cap B) = 8$, $N(A \cap C) = 4N(B \cap C) = 3$, and $N(A \cap B \cap C) = 2$. What is $N(A \cup B \cup C)$?

Solution

 $N(A \cup B \cup C) = 28 + 26 + 14 - 8 - 4 - 3 + 2 = 55.$