Section 11.7 - Fields of Fractions

Construction (fractions out of a domain). For an integral domain R set

$$\operatorname{Frac}(R) = \left\{ \frac{a}{b} \mid a, b \in R, \ b \neq 0 \right\} / \sim, \quad \frac{a}{b} \sim \frac{c}{d} \iff ad = bc.$$

Addition $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$ and multiplication $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ make it a field. The natural map $R \hookrightarrow \operatorname{Frac}(R)$ sends $a \mapsto a/1$.

Why care? Every domain can be "upgraded" to a field so we can divide by non-zero elements during proofs and computations. When to use: Turning lemmas proved in R into field statements or vice versa.

Walk-through Example 1

Question. Show that the only integers that turn into units (invertible elements) inside $\mathbb{Z} \hookrightarrow \mathbb{Q}$ are ± 1 . \triangleright Recall definition: a unit u satisfies $uu^{-1} = 1$. \triangleright In \mathbb{Q} , the inverse of an integer $n \neq 0$ is 1/n.

 $\triangleright 1/n \in \mathbb{Z} \implies n = \pm 1$. (All other inverses are non-integral.)

Section 12.3 - Gauss's Lemma

Primitive polynomial. A non-zero $f = \sum a_k x^k \in R[x]$ is primitive if $gcd(a_0, \dots, a_n) = 1$ in R. Primitive polynomial. A non-zero $f = \sum_a a_k x^n \in R[x]$ is primitive it gcd(a_0, \dots, a_n) = 1 in R. Why care? "Primitive" means "coefficients share no common factor" — handy for irreducibility tricks. Gauss's lemma (UFD version). If R is a UFD then

• the product of two primitive polys is primitive;
• f is irreducible in $R[x] \iff f$ is primitive and irreducible in Frac(R)[x]. When to use: Proving irreducibility over \mathbb{Z} by reducing to $\mathbb{Q}[x]$ or finite fields.

Walk-through Example 2

Show $x^3 + 2x + 2 \in \mathbb{Z}[x]$ is irreducible.

Show $x + 2x + y \ge x \ge |x|$ is instantone. \Rightarrow Check primitivity: coefficients 1,0,2,2 have $\gcd = 1$. \Rightarrow Reduce $\gcd 2: x^3 + 2x + 2 \equiv x^3$ in $\mathbb{F}_2[x]$. \Rightarrow Over \mathbb{F}_2 , the only linear factor of x^3 is x, but that leaves x^2 , which is not a new non-unit factor. \triangleright Hence no degree-1 factor irreducible in $\mathbb{Z}[x]$ by Gauss

Matrices over General Rings

 $M_{n \times m}(R)$, $n \times m$ matrices with entries in R. Why care? Lets us transport linear-algebra intuition to non-field coefficients. Determinant (square case), Multilinear, alternating map $\det: M_n(R) \to R$ with $\det I = 1$. Substitution trick. Prove identity over the polynomial ring $\mathbb{Z}[t_{ij}]$, then substitute. Cayley-Hamilton. Every square matrix over a commutative ring annihilates its own characteristic polynomial $p_A(t)$. When to use: To bound powers of A, prove minimal polynomials, etc.

Walk-through Example 5

Show $\det(A)\det(B) = \det(AB)$ for integer matrices. \lor Work in $R = \mathbb{Z}[\{t_{ij}\}, \{s_{ij}\}]$. \lor Use the usual cofactor-expansion proof. \lor Substitute $t_{ij} \to A_{ij}, s_{ij} \to B_{ij}$.

Section 14.2 – Free Modules

Free module of rank n, Direct sum $R^{\oplus n}$ with basis e_1, \ldots, e_n .

Why care? Acts like "Zⁿ" or "Fⁿ" but over any ring.

Universal mapping property. Giving images of the basis vectors completely determines an R-linear map out of a free module.

Walk-through Example 6

Why do any two bases have the same size? \triangleright Suppose bases $\{e_i\}_{i=1}^n$ and $\{f_j\}_{j=1}^m$. \triangleright Map $e_i \mapsto f_i$ (extend by 0 if m > n) to get a surjection $R^{\oplus n} \twoheadrightarrow R^{\oplus m}$. \triangleright Surjection $m \le n$. Swap roles $n \le m$. Hence n = m.

Section 14.6 – Noetherian Rings

Noetherian. Every ascending chain of ideals eventually stabilises. Why care? Guarantees there are "only finitely many generators" hiding in infinite-looking objects. Hilbert basis theorem. If R Noetherian, then R[x] is Noetherian.

Walk-through Example 7

Prove $\mathbb{Z}[x_1,\dots,x_n]$ is Noetherian. \triangleright Base: \mathbb{Z} is Noetherian (every ideal $\langle d \rangle$ is principal). \triangleright Induction: assume $\mathbb{Z}[x_1,\dots,x_{k-1}]$ Noetherian. \triangleright Apply Hilbert one more variable is still Noetherian. \triangleright Reach k=n. Done.

Walk-through Example 9

Classify groups of order $360 = 2^3 \cdot 3^2 \cdot 5$. \triangleright Break into 2-, 3-, and 5-parts via CRT. \triangleright 23-part: $\mathbb{Z}/8$, $\mathbb{Z}/4 \oplus \mathbb{Z}/2$, $\mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$. \triangleright 3²-part: $\mathbb{Z}/9$, $\mathbb{Z}/3 \oplus \mathbb{Z}/3$. \triangleright 5-part fixed: $\mathbb{Z}/5$. \triangleright Combine each 2-choice with each 3-choice and $\mathbb{Z}/5$.

Walk-through Example 10 (outline)

Rational canonical form for $A \in M_n(F)$. \triangleright View F^n as an F[x]-module via $x \cdot v = Av$. \triangleright Apply structure theorem to decompose into cyclic submodules. \triangleright Translate each cyclic piece into a companion matrix block.

Problem 1. Show that the ideal (2,x) in $\mathbb{Z}[x]$ cannot be generated by a single element

Key idea: Reduce mod 2 and compare generators Recipe:

1. Assume (2, x) = (g(x)) for some $g \in \mathbb{Z}[x]$.

2. Pass to $\mathbb{F}_2[x]$ by reducing coefficients mod 2; (2, x) becomes (x).

3. A principal ideal (\bar{g}) equals $(x) \implies \bar{g} = u \, x$, where $u \in \mathbb{F}_2^{\times}$.

4. Lift back: g(x) = xh(x) + 2k(x) with h(0) odd.

5. Show $x \notin (g)$ by evaluating any combination a(x)g(x) at x = 0.

Solution: Suppose (2, x) = (g). In $\mathbb{F}_2[x]$ we have $(\bar{g}) = (x)$, so $\bar{g} = ux$ with $u \in \mathbb{F}_2^{\times}$. Hence g = xh + 2k for some $h, k \in \mathbb{Z}[x]$ and h(0) odd. If $x \in (g)$ there is $a(x) \in \mathbb{Z}[x]$ such that a(x)g(x) = x. Set x = 0

$$0 = a(0) g(0) = a(0) 2k(0) \implies 2 \mid x$$

impossible. Therefore (2,x) is not principal. \square

Problem 2. Let F be a field. Describe all ring homomorphisms $\varphi: F[x] \to F$ that restrict to the identity on F.

Key idea: A homomorphism out of a polynomial ring is determined by the image of x.

Recipe: Pick any $a \in F$ and define $\varphi_a(\sum c_i x^i) = \sum c_i a^i$.

Solution: For every $a \in F$, the "evaluation at a" map φ_a is a homomorphism and satisfies $\varphi_a|_F = \mathrm{id}$. Conversely, φ is such a homomorphism, set $a:=\varphi(x)\in F$; the universal property of F[x] forces $\varphi=\varphi_a$. Thus the set of all homomorphisms is $\{\varphi_a \mid a \in F\}$. \square

Problem 3. Let $A, B \in F^{n \times n}$ be diagonalizable. Is there always a single $P \in GL_n(F)$ with PAP^{-1} and PBP^{-1} both diagonal?

Counter-example (recipe):

• Put $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (already diagonal). • Put $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (diagonalizable via the Hadamard matrix).

• $AB \neq BA$; non-commuting diagonalizable matrices cannot be simultaneously diagonalized.

Section 12.4 - Eisenstein Criterion

Eisenstein. For $f = \sum_{k=0}^{n} a_k x^k \in \mathbb{Z}[x]$, a prime p with

$$p \nmid a_n, \quad p \mid a_k \ (k < n), \quad p^2 \nmid a_0$$

makes f irreducible in $\mathbb{Q}[x].$ Why care? A quick irreducibility test—look for "one prime rules them all"

Three-step recipe

Clear denominators so f ∈ Z[x] and primitive.
 Hunt for a prime p meeting Eisenstein's divisibility pattern.
 Conclude irreducibility (or try a different p if needed).

Walk-through Example 3

 $\begin{array}{l} \text{Prove } g(x) = x^4 + 10x + 5 \text{ is irreducible.} \\ \triangleright \text{ Already primitive } (\gcd = 1). \\ \triangleright \text{ Try } p = 5 \text{ : coefficients } (1,0,0,10,5). \\ \triangleright \text{ Check: } 5 \nmid 1,5 \mid 0,0,10,5^2 = 25 \nmid 5. \text{ Criterion satisfied } \text{ irreducible.} \end{array}$

Section 14.1 - Basic Module Language

R-module. An abelian group M with scalar multiplication $R \times M \to M$ obeying distributive laws. Why care? Generalises vector spaces where the "scalars" live in any ring R. Key terms (quick list).

Submodule: closed under + and scalar-mult.

Quotient: M/N is the cosets of N.

Hom: Hom_R(M, N) are R-linear maps.

Cyclic: generated by one element, $M \cong R/I$.

Nakayama (nilpotent ideal form). If M finitely generated and JM = M for a nilpotent ideal J ($J^k = 0$), then M = 0. When to use: Recognising "nothing hides inside" when a nilpotent ideal acts surjectively.

Mini-exercise 4 (submodules in \mathbb{Z}_8)

 $\begin{array}{l} \text{Take } R = \mathbb{Z}_8, \, M = R. \\ \rhd \ 2M = \{0,2,4,6\} \ -- \ \text{not everything} \ \ 2M \neq M. \\ \rhd \ 4M = \{0,4\} \subsetneq 2M. \ \ \text{Visualise} \ 4M \subset 2M \subset M \end{array}$

Section 14.4 – Smith Normal Form (SNF)

For a PID R and $A \in M_{m \times n}(R)$, \exists invertible U, V s.t.

$$UAV = diag(d_1, ..., d_r, 0, ..., 0), d_i \mid d_{i+1}.$$

Why care? Diagonalising over $\mathbb Z$ or F[x] reads off invariants for abelian groups or linear maps

Walk-through Example 8

SNF of $\begin{pmatrix} 4 & 6 \\ 2 & 8 \end{pmatrix}$ over \mathbb{Z} .

▷ Row-reduce: subtract $2 \times \text{ row } 2 \text{ from row } 1 \to \begin{pmatrix} 0 & -10 \\ 2 & 8 \end{pmatrix}$

 $\triangleright \text{ Swap columns: } \rightarrow \begin{pmatrix} -10 & 0 \\ 8 & 2 \end{pmatrix}$

 $\triangleright \gcd(-10,8) = 2$; perform column ops $\rightarrow \begin{pmatrix} 2 & 0 \\ 0 & 10 \end{pmatrix}$

 $\begin{array}{l} \rhd \mbox{ Hence SNF is diag}(2,10). \\ \rhd \mbox{ Module quotient } \mathbb{Z}^2/A\mathbb{Z}^2 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/10. \end{array}$

Sections 14.7-14.8 - Modules over a PID

Structure theorem. Every finitely generated R-module (PID) breaks into

$$R^{\oplus r} \oplus \bigoplus_{i} R/(p_i^{e_i}).$$

 $Why\ care?$ Master key for classifying finite abelian groups and rational canonical form.

Quick Corollaries

- Finite abelian group \cong direct sum of p-power cyclic pieces.
- Any matrix over a field is similar to a block diagonal of companion matrices.

60-Second Reference Table

Topic	Mnemonic / What to remember
Field of fracs	"Clear denom \rightarrow fractions behave like \mathbb{Q} ."
Gauss lemma	Primitive + irreducible over field implies irreducible over ring.
Eisenstein	Find one prime doing all the divisibility work.
Modules basics	Think "vector spaces w/o division"; sub-/quotient; Nakayama kills nilpotent.
Determinant	$\det(AB) = \det A \det B$; Cayley–Hamilton $p_A(A) = 0$.
Free modules	Basis size is invariant; linear maps (double arrow) matrices.
Noetherian	"Chains stop"; Hilbert: add a variable, still stops.
SNF	PID-Gaussian elimination → diagonal divisibility chain.
PID modules	Free part + torsion part, unique shape.

Problem 4. Same set-up as Problem 3, but assume AB = BA

Key idea: Commuting diagonalizable matrices are simultaneously diagonalizable

Recipe:

1. Work in an algebraic closure if needed.

2. Pick an eigenbasis of A; with AB = BA, each eigenspace of A is B-stable, so B acts on it and is diagonalizable

3. Repeat recursively to build a common eigenbasis.

Solution: There exists P whose columns form a joint eigenbasis; then PAP^{-1} and PBP^{-1} are both diagonal.

Problem 5. (Jordan/Chevalley decomposition) For $A \in \mathbb{C}^{n \times n}$, show A = D + N with D diagonalizable, Nnilpotent, and DN = ND

Recipe:

nilpotent

1. Put $A = SJS^{-1}$, where J is the Jordan canonical form.

2. Split $J = \text{diag}(\lambda_i) + N_J$ (strictly upper part is nilpotent).

3. Set $D = S \operatorname{diag}(\lambda_i) S^{-1}$, $N = S N_J S^{-1}$.

Solution: D is similar to a diagonal matrix \Rightarrow diagonalizable. N_J is nilpotent $\Rightarrow N$ nilpotent and nilpotent Jordan parts commute, so do D and N. Uniqueness follows from spectral projectio

Problem 6. Let $f: V \to V$ be linear and define $f \oplus f$ on $V \oplus V$ by $(f \oplus f)(v, w) = (f(v), f(w))$.

(a) Triangularizability. f ⊕ f is upper triangularizable ⇔ f is, because the block matrix f0 of has the same Jordan blocks as f (just doubled).
(b) Diagonalizability. Same reasoning: f ⊕ f diagonalizable ⇔ every Jordan block of f has size 1 ⇔ f diagonalizable.
(c) Jordan blocks. Each Jordan block J_k(λ) of size k for f gives two identical blocks J_k(λ) for f ⊕ f.

Problem 7. Units in $(\mathbb{Z}/4\mathbb{Z})[x]$. **Key idea:** In R[x] a polynomial is a unit iff its constant term is a unit in R and the remaining coefficients are

Recipe: • Units of $\mathbb{Z}/4\mathbb{Z}$ are 1, 3; nilpotent element is 2 (since $2^2 =$ • Write f(x) = u + 2g(x) with $u \in \{1, 3\}, g(x) \in (\mathbb{Z}/4\mathbb{Z})[x]$.

 $(\mathbb{Z}/4\mathbb{Z})[x]^{\times} = \{ u + 2g(x) \mid u \in \{1, 3\}, \ g(x) \in (\mathbb{Z}/4\mathbb{Z})[x] \}.$

Problem 8. Characteristic polynomial of a nilpotent matrix. Answer & Reasoning: If N is $n \times n$ and nilpotent, its only eigenvalue is 0, so $\chi_N(t) = t^n$