Lecture notes4

February 23, 2021

MATH310 - Lecture notes4

1.1 Pseudo-inverse

Definition (the pseudoinverse of a matrix A with full rank)

The pseudo-inverse of a $m \times n$ matrix A with full rank r = n (n is the number of columns in A) is denoted A^+ and defined as

$$A^+ = (A^t A)^{-1} A^t.$$

Note that A^+ is $n \times m$ and has the property $A^+A = I_n$.

Exercise 1:

Use the "thin" SVD of $A = U\Sigma V^t$ to show that

$$A^+ = V \Sigma^{-1} U^t.$$

Exercise 2:

Show that the least squares solution of $A\mathbf{x} = \mathbf{b}$ is

$$\hat{\mathbf{x}} = A^{+}\mathbf{b}$$

when A has full rank.

The minimum norm solution of underdetermined systems

If rank(A) = r < n we say that A is rank-deficient.

We say that linear systems $A\mathbf{x} = \mathbf{b}$ with rank-deficient coefficient matrices are underdetermined.

Definition (the pseudoinverse of any matrix)

Lets extend the definition of the pseudo-inverse to also include matrices $A = U_r \Sigma_r V_r^t = \sum_{i=1}^r \sigma_i \mathbf{v}_i \mathbf{u}_i^t$ of any $\underline{\operatorname{rank}} r$ based on the result of exercise 1:

$$A = U_r \Sigma_r V_r^t = \sum_{i=1}^r \sigma_i \mathbf{v}_i \mathbf{u}$$

$$A^+ = V_r \Sigma_r^{-1} U_r^t = \sum_{i=1}^r \sigma_i^{-1} \mathbf{v}_i \mathbf{u}_i^t.$$

Underdetermined systems can still be solved, but there is no longer a unique solution $\hat{\mathbf{x}}$.

However

Theorem (Minimum norm solution)

If rank(A) = r < n, then there are infinitely many least squares solutions of $A\mathbf{x} = \mathbf{b}$. Among all the least squares solutions, the particular solution

$$\mathbf{x}_0 = V_r \left(\sum_r^{-1} U_r^t \mathbf{b} \right) = A^+ \mathbf{b}$$

has the smallest possible norm.

Proof:

It is clear that $\mathbf{x}_0 \in span(V_r) = Col(A^t)$, i.e. the solution \mathbf{x}_0 is a linear combination of the right singular vectors $\mathbf{V}_r = A^t U_r \Sigma_r^{-1}$ that are all linear combinations of the rows in A. The assumption r < n implies that the null-space $Nul(A) \neq \{0\}$ (dim(Nul(A) = n - r).

Let $\hat{\mathbf{x}} \neq \hat{\mathbf{x}}_0$ be any least squares solution, i.e. $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto Col(A). Then $A\hat{\mathbf{x}} = \mathbf{b} = A\mathbf{x}_0$ and therefore $A(\hat{\mathbf{x}} - \mathbf{x}_0) = \hat{\mathbf{b}} - \hat{\mathbf{b}} = \mathbf{0}$, i.e. $\hat{\mathbf{x}} - \mathbf{x}_0 \in Nul(A)$. The latter means that $(\hat{\mathbf{x}} - \mathbf{x}_0)$ is orthogonal both to the rows in A, as well as every linear combination of these rows, such as \mathbf{x}_0 .

Therefore, by Pythagoras theorem we have
$$\|\hat{\mathbf{x}}\|^2 = \|(\hat{\mathbf{x}} - \mathbf{x}_0) + \mathbf{x}_0\|^2 = \|\hat{\mathbf{x}} - \mathbf{x}_0\|^2 + \|\mathbf{x}_0\|^2 \gg \|\mathbf{x}_0\|^2.$$

Finally we note that for any vector $\mathbf{n} \in Nul(A)$, $\hat{\mathbf{x}} = \mathbf{x}_0 + \mathbf{n}$ is a least squares solution because $A\hat{\mathbf{x}} = A(\mathbf{x}_0 + \mathbf{n}) = A\mathbf{x}_0 + A\mathbf{n} = \hat{\mathbf{b}} + \mathbf{0} = \hat{\mathbf{b}}$, and because $Nul(A) \neq \{\mathbf{0}\}$ there are infinitely many choices for \mathbf{n} .

Exercise 3:

Verify that $\mathbf{x}_0 = V_r \Sigma_r^{-1} U_r^t \mathbf{b}$ above really is a least squres solution of $A\mathbf{x} = \mathbf{b}$ when rank(A) = r < n.

1.3 The condition number of a matrix and poorly conditioned systems

If $A = \sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^t = U_r \Sigma_r V_r^t$ has rank r, the associated matrix (operator) norm $||A||_2$ defined as the supremum of $||A\mathbf{x}||_2$ over all unit vectors $\mathbf{x} \in \mathbb{S}^{n-1} = \{\mathbf{x} | \mathbf{x}^t \mathbf{x} = 1\} \subseteq \mathbb{R}^n$.

Because the unit sphere $\mathbb{S}^{n-1} \subseteq \mathbb{R}^n$ is a compact set (a set that is closed and bounded in the mathematical sense), and the function $f(\mathbf{x}) = ||A\mathbf{x}||_2$ is continuous, there is a particular choice $\mathbf{x}_0 \in \mathbb{S}^{n-1}$ that produces the supremum, i.e.

$$||A||_2 = ||A\mathbf{x}_0||_2.$$

Because any candidate unit vector $\mathbf{x} = \sum_{i=1}^{r} c_i \mathbf{v} = V_r \mathbf{c}$ must be a linear combination of the right singular vectors from the reduced SVD of A, we have

$$\|A\mathbf{x}\|_2^2 = \mathbf{x}^t A^t A \mathbf{x} = \mathbf{c}^t V_r^t A^t A V_r \mathbf{c} = \mathbf{c}^t V_r^t V_r \Sigma_r U_r^t U_r \Sigma_r V_r^t V_r \mathbf{c} = \mathbf{c}^t \Sigma_r^2 \mathbf{c} = \sum_{i=1}^r c_i^2 \sigma_i^2 \le \sum_{i=1}^r c_i^2 \sigma_1^2 = \sigma_1^2 \sum_{i=1}^r c_i^2 = \sigma_1^2.$$

Consequently, by choosing $\mathbf{x}_0 = \mathbf{v}_1$ (the right singular vector associated with the largest singular value σ_1), we obtain the maximum value defining the matrix operator norm $||A||_2 = \sqrt{||A\mathbf{x}_0||_2^2} = \sigma_1$.

Hence, the matrix norms of A and A^+ are

$$||A||_2 = \sigma_1$$

$$||A^+||_2 = \sigma_r^{-1}$$

and the **condition number** of A can be expressed in terms of these norms as

$$\kappa(A) = ||A||_2 ||A^+||_2 = \frac{\sigma_1}{\sigma_r}.$$

The Julia-script "Condition_number.jl" demonstrates some unfavourable consequences for the solution of a system $A\mathbf{x} = \mathbf{b}$ when A has a large condition number. Such systems are called poorly conditioned.

1.4 Rank k regularization

,

Definition (Truncated pseudo-inverse)

By omitting the terms in $\sum_{i=1}^{n} \sigma_i \mathbf{u}_i \mathbf{v}_i^t$ associated with some of the smaller singular values, we obtain a truncated pseudoinverse. By keeping the k first terms the associated truncated pseudo-inverse of rank k is

$$A_k^+ = V_k \Sigma_k^{-1} U_k^t = \sum_{i=1}^k \sigma_i^{-1} \mathbf{v}_i \mathbf{u}_i^t.$$

Definition (rank k regularized solution)

$$\mathbf{x} = A_k^+ \mathbf{b}$$

is called the rank k regularized solution of $A\mathbf{x} = \mathbf{b}$.

,

The rank k regularized solution of $A\mathbf{x} = \mathbf{b}$ (a.k.a. reduced rank regression) is closely related to the so-called principal component regression (PCR) based on the first k principal components of the coefficient matrix A (were we assume that all the columns are centred to have mean values equal to 0).

1.5 Principal component regression (PCR)

Recall that for principal component analysis (PCA) we assume that the data matrix $X \in \mathbb{R}^{m \times n}$ has rank r, and that each X-column is arranged according to a common ordering of observations of corresponding real-valued random vectors with mean zero.

The data matrix is always assumed to be centered, i.e. the mean of each X-column is equal to 0 (zero).

From the SVD of the data matrix $X = U_r \Sigma_r V_r^t$ we have:

- The right singular vectors \mathbf{v}_i $(i=1,\cdots,r)$ from the columns of V_r define the principal components directions (also known as the loadings) of X.
- The left singular vectors \mathbf{u}_i $(i=1,\cdots,r)$ from the columns of U_r define the normalized principal components, and the associated vectors $\mathbf{t}_i = \sigma_i \mathbf{u}_i = X \mathbf{v}_i$ are called the principal component scores of X.

The truncated rank k pseudo-inverse of X is $X_k^+ = V_k \Sigma_k^{-1} U_k^t = \sum_{i=1}^k \sigma_i^{-1} \mathbf{v}_i \mathbf{u}_i^t$

For a data matrix $X \in \mathbb{R}^{m \times n}$ and response vector $\mathbf{y} = \begin{bmatrix} y_2 \\ \vdots \\ \vdots \end{bmatrix} \in \mathbb{R}^m$ the corresponding k-component

principal component regression (PCR) coefficients are defined as the rank k solution

$$\hat{\beta}_k = X_k^+ \mathbf{y} = X_k^+ \mathbf{y}_0.$$

of the system $X\beta = \mathbf{y}_0$, where $\mathbf{y}_0 = \mathbf{y} - \bar{y}$, $(\bar{y} = \frac{1}{m} \sum_{i=1}^m y_i)$ is the mean centered version of \mathbf{y} . To predict the response value \hat{y} for a new datapoint (sample) $\mathbf{x}^t \in \mathbb{R}^n$ based on the k-component

PCR-model we also include a constant term $\beta_{0,k}$ to calculate

$$\hat{y} = \beta_{0,k} + \mathbf{x}^{\dagger} \hat{\beta}_{k}$$

 $\hat{y} = \beta_{0,k} + \mathbf{x} \hat{\beta}_k$ for $\beta_{0,k} = \bar{y} - \bar{\mathbf{x}}^t \hat{\beta}_k$ where $\bar{\mathbf{x}}^t$ is the (row) vector of column means used for centering of the data matrix X and $\bar{y} = \frac{1}{m} \sum_{i=1}^m y_i$. Note that for the particular choice $\mathbf{x} = \bar{\mathbf{x}}$ we obtain the prediction

$$\hat{y} = \beta_{0,k} + \bar{\mathbf{x}}^t \hat{\beta}_k = \bar{y} - \bar{\mathbf{x}}^t \hat{\beta}_k + \bar{\mathbf{x}}^t \hat{\beta}_k = \bar{y},$$

i.e. from the mean of the observed X-data we predict the mean of the observed y-data.

Exercise 4:

Let
$$M_k = [\mathbf{u}_0 \ \mathbf{u}_1 \cdots \mathbf{u}_k] \in \mathbb{R}^{m \times (k+1)}$$
, where $\mathbf{u}_0 = \frac{1}{\sqrt{m}} \mathbf{1} = \begin{bmatrix} \frac{1}{\sqrt{m}} \\ \frac{1}{\sqrt{m}} \\ \vdots \\ \frac{1}{\sqrt{m}} \end{bmatrix}$ is the constant vector of norm 1 in

 \mathbb{R}^m .

- a) Explain why $M_k^t M_k = I_{k+1}$.
- b) The projection mapping onto the column space $Col(M_k)$ is given by $H_k = M_k M_k^t$. Verify that the projection $\hat{\mathbf{y}} = H_k \mathbf{y}$ of \mathbf{y} onto $Col(M_k)$ is identical to the fitted values for the X-data of the k-component PCR model:

$$\hat{\mathbf{y}} = \mathbf{1}\beta_{0,k} + X_1 \hat{\beta}_k,$$

where $X_1 = \mathbf{1}\bar{\mathbf{x}}^t + X$ is the uncentered version of the $m \times n$ data matrix X.