Statistical inference - Course Project: Part 1

• Author: Anderson Hitoshi Uyekita

• Date: 2022-07-02

Synopsis

This exercise aims to show the power of the central limit theorem (CLT), comparing simulation results with theoretical expectations. The activity is based on a sample of 1,000 means generated by 40 numbers (with an exponential distribution profile with lambda 0.2). Then comparing those values (the sample and theoretical) to prove the CLT. As a result, a graph was plotted showing the sample's normality, confirming the CLT.

1. Objectivies

- Show the sample mean and compare it to the theoretical mean of the distribution.
- Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.
- Show that the distribution is approximately normal.

2. Requeriments and Settings

Please find the requirements and Settings to reproduce this experiment in the APPENDIX section.

3. Parameters

According to Part 1 of the Course Project, the parameters of this assignment should be:

```
# Parameters
simulations <- 1000; sample_size <- 40; lambda <- 0.2</pre>
```

Preparing data to make an analysis:

```
raw_sample_exponential <- replicate(simulations, rexp(sample_size, lambda))
sample_exponential <- apply(raw_sample_exponential, 2, mean)</pre>
```

The dataset created is a vector with 1000 of "means".

4. Sample Mean versus Theoretical Mean

Theoretical Mean: The Theoretical mean of a exponential distribution rate is the inverse of lambda

```
theoretical_mean = 1 / lambda
```

So in this exercise the theorical mean is 5.

Sample Mean: The sample mean is showed bellow

```
sample_mean <- mean(sample_exponential)</pre>
```

The sample mean is 5.007542.

Conclusions Based on the results above, those means are very close due to the great amount of samples and simulations. This exercise shows the application of the Central Limit Theorem.

5. Sample Variance versus Theoretical Variance

To calculate the variance is necessary one step before calculating the standard deviation. Thus, this section is divided into 2 parts.

Theoretical Standard Deviation: The standard deviation is calculated analytically as follow

```
theoretical_sd <- (1/lambda)/(sqrt(sample_size))</pre>
```

So in this exercise the theorical standard deviantion is 0.7905694.

Sample Standard Deviation: The sample standard deviation is showed bellow

```
sample_sd <- sd(sample_exponential)</pre>
```

The sample standard deviation is 0.774678.

Using the standard deviation calculated above. It is possible to calculate the variances.

Theoretical Variance: The Variance is the square of the standard deviation

```
theoretical_varicane <- theoretical_sd^2</pre>
```

So in this exercise the theorical variance is 0.625.

Sample Variance:

```
sample_variance <- sd(sample_exponential)</pre>
```

The sample variance is 0.774678.

Conclusions Based on the results above, those variances are very close due to the great amount of samples and simulations. This exercise shows the application of the Central Limit Theorem.

6. Show that the distribution is approximately normal

Using graphs this question could be easily answered

```
lines(density(sample_exponential), lwd=2, col="red")

# Theoretical center of distribution. In other words, the theretical mean.
abline(v=1/lambda, col="red", lwd=2)

# Theoretical density of the averages of the simulations samples
xfit <- seq(min(sample_exponential), max(sample_exponential), length=100)
yfit <- dnorm(xfit, mean=1/lambda, sd=(1/lambda/sqrt(sample_size)))

# Draw a line of Theoretical
lines(xfit, yfit, pch=20, col="blue", lty=4, lwd=2)

# Add legend in the histogram
legend('topright', c("simulation", "theoretical"), lty=c(1,2), col=c("red", "blue"), lwd=2)</pre>
```

Comparison of simulation results and theoretical expected (lambda=(

Conclusions The simulation is approximately normal. The graphic shows a histogram and a density line of a theoretical distribution, those informations are very close. Due to the central limit theorem, the averages of samples follow normal distribution.

APPENDIX

In order to reproduce this Course Project in any environment, please find below the Packages, Seed definition and SessionInfo().

Requirements

```
# Loading libraries
library(ggplot2)

# Force results to be in English
Sys.setlocale("LC_ALL", "English")

# Set seed
set.seed(2022)
```

Session Info

```
## R version 4.2.0 (2022-04-22 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22000)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC CTYPE=English United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.1252
## system code page: 65001
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                   base
##
## other attached packages:
## [1] ggplot2_3.3.6
##
## loaded via a namespace (and not attached):
   [1] highr 0.9
                        pillar_1.7.0
                                         compiler_4.2.0
                                                           tools 4.2.0
## [5] digest_0.6.29
                        lubridate_1.8.0 evaluate_0.15
                                                           lifecycle_1.0.1
                        gtable_0.3.0
## [9] tibble 3.1.7
                                         pkgconfig_2.0.3 rlang_1.0.3
## [13] cli_3.3.0
                        DBI_1.1.3
                                         rstudioapi_0.13 yaml_2.3.5
## [17] xfun 0.31
                        fastmap_1.1.0
                                         withr 2.5.0
                                                           stringr 1.4.0
## [21] dplyr_1.0.9
                        knitr 1.39.3
                                          generics_0.1.2
                                                          vctrs_0.4.1
## [25] grid_4.2.0
                        tidyselect_1.1.2 glue_1.6.2
                                                           R6_2.5.1
## [29] fansi_1.0.3
                        rmarkdown_2.14
                                         purrr_0.3.4
                                                           magrittr_2.0.3
## [33] scales_1.2.0
                        ellipsis_0.3.2 htmltools_0.5.2 assertthat_0.2.1
## [37] colorspace_2.0-3 utf8_1.2.2
                                         stringi_1.7.6
                                                          munsell_0.5.0
## [41] crayon_1.5.1
```