

INDEPENDENT SET OF REAL VECTORS

Why

We want to capture the useful properties of the standard basis vectors.

Definition

A set of vectors $\{v_1, \ldots, v_k\} \subset \mathbf{R}^n$ is independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_k = 0.$$

Notice that independence is a property of a set of vectors, not of any vector in particular. Another way of saying this is that no vector can be represented as a linear combination of another.

Unique representation

Suppose v_1, \ldots, v_k are independent and we have

$$x = \sum_{i=1}^{k} \alpha_i v_i$$
 and $x = \sum_{i=1}^{k} \beta_i v_i$.

Then

$$0 = x - x = \sum_{i=1}^{n} (\alpha_i - \beta_i) v_k.$$

Using the definition of independence, we conclude $\alpha_i - \beta_i = 0$ for i = 1, ..., k. Consequently, $\alpha_i = \beta_i$. In other words, if x can be represented as a linear combination of the vectors $v_1, ..., v_k$, that representation is unique. We have shown that independence implies uniqueness? What of the converse?

We show that lack of independence gives a lack of uniqueness. Suppose there exists $\alpha_1, \ldots, \alpha_k$, not all zero, so that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0.$$

In particular, suppose $\alpha_i \neq 0$. Then we have

$$v_i = (1/\alpha_i) \sum_{j \neq i} \alpha_j v_j.$$

Suppose x can be written as a linear combination of v_1, \ldots, v_k . In other words, there are β_1, \ldots, β_k so that

$$x = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k$$

