6 Integration

6.1 The Riemann integral

Definition 6.1. Let $a, b \in \mathbb{R}$, a < b. A partition of the interval [a, b] is a finite ordered set $P = (x_0, x_1, \dots, x_n)$ of points in [a, b] such that $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. The intervals $[x_{i-1}, x_i]$ $(i = 1, \dots, n)$ are called subintervals of the partition P.

The *norm* of P is $||P|| = \max\{x_1 - x_0, x_1 - x_2, \dots, x_n - x_{n-1}\}$ (that is, the length of the largest subinterval of the partition P).

Suppose that, for each $i=1,\ldots,n,\,\xi_i$ has been chosen in each subinterval $[x_{i-1},x_i]$ and denote $\xi=(\xi_1,\ldots,\xi_n)$. Then (P,ξ) is called a *tagged partition* of [a,b].

Definition 6.2. Let $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ and (P, ξ) a tagged partition of [a, b] (as in Definition 6.1). Then the sum

$$\sigma(f; P, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

is called the *Riemann sum* of f corresponding to the tagged partition (P, ξ) .

Definition 6.3. Let $a, b \in \mathbb{R}$, a < b and $f : [a, b] \to \mathbb{R}$. We say that f is Riemann integrable on [a, b] if there exists $I \in \mathbb{R}$ such that

$$\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 \text{ s.t. } \forall (P, \xi) \text{ tagged partition of } [a, b] \text{ with } ||P|| < \delta_{\varepsilon}, |\sigma(f; P, \xi) - I| < \varepsilon.$$

The family of all Riemann integrable functions on [a, b] is denoted by $\mathcal{R}[a, b]$.

If $f \in \mathcal{R}[a, b]$, then $I \in \mathbb{R}$ (given above) is uniquely determined and called the *Riemann integral* (or definite integral) of f on [a, b], and we write

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} f.$$

Theorem 6.1 (First Fundamental Theorem of Calculus). Let $a, b \in \mathbb{R}$, a < b and $f \in \mathcal{R}[a, b]$. Define $F : [a, b] \to \mathbb{R}$,

$$F(t) = \int_{a}^{t} f.$$

Then F is continuous. Moreover, if f is continuous at $c \in [a,b]$, then F is differentiable at c and F'(c) = f(c).

Theorem 6.2 (Second Fundamental Theorem of Calculus, Leibniz-Newton Formula). Let $a, b \in \mathbb{R}$, a < b and $f \in \mathcal{R}[a, b]$. If $F : [a, b] \to \mathbb{R}$ is an antiderivative of f, then

$$\int_{a}^{b} f = F(b) - F(a).$$

6.2 Improper integrals

Definition 6.4. Let $J \subseteq \mathbb{R}$ be an interval and $f: J \to \mathbb{R}$. We say that f is *locally Riemann integrable* on J if for any $a, b \in J$ with a < b the function f is Riemann integrable on [a, b].

Definition 6.5. Let $a \in \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$ with a < b and $f : [a,b) \to \mathbb{R}$ a locally Riemann integrable function on [a,b). We say that f is improperly integrable on [a,b) if the limit $\lim_{\substack{t \to b \\ t < b}} \int_a^t f(x) dx$ exists in \mathbb{R} . In this case this limit is called the improper integral of f on [a,b) and is denoted, if $b \in \mathbb{R}$, by $\int_a^{b-0} f(x) dx$ and, if $b = +\infty$, by $\int_a^{+\infty} f(x) dx$.

Definition 6.6. Let $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R}$ with a < b and $f : (a, b] \to \mathbb{R}$ a locally Riemann integrable function on (a, b]. We say that f is improperly integrable on (a, b] if the limit $\lim_{\substack{t \to a \\ t > a}} \int_t^b f(x) dx$ exists in \mathbb{R} . In this case this limit is called the improper integral of f on (a, b] and is denoted, if $a \in \mathbb{R}$, by $\int_{a+0}^b f(x) dx$ and, if $a = -\infty$, by $\int_{-\infty}^b f(x) dx$.

Definition 6.7. Let $a, b \in \mathbb{R}$ with a < b and $f : (a, b) \to \mathbb{R}$ a locally Riemann integrable function on (a, b). We say that f is *improperly integrable on* (a, b) if there exists $c \in (a, b)$ such that f is improperly integrable both on (a, c] and on [c, b). In this case the *improper integral of* f on (a, b) is defined in the following way:

$$\begin{split} &\text{if } a,b\in\mathbb{R}: \int_{a+0}^{b-0}f(x)dx = \int_{a+0}^{c}f(x)dx + \int_{c}^{b-0}f(x)dx,\\ &\text{if } a\in\mathbb{R}, b=+\infty: \int_{a+0}^{+\infty}f(x)dx = \int_{a+0}^{c}f(x)dx + \int_{c}^{+\infty}f(x)dx,\\ &\text{if } a=-\infty, b\in\mathbb{R}: \int_{-\infty}^{b-0}f(x)dx = \int_{-\infty}^{c}f(x)dx + \int_{c}^{b-0}f(x)dx,\\ &\text{if } a=-\infty, b=+\infty: \int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{c}f(x)dx + \int_{c}^{+\infty}f(x)dx, \end{split}$$

Remark 6.1. Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b) \to \mathbb{R}$. The expression $\int_a^{b-0} f(x)dx$ is also called an improper integral which is said to *converge* if f is improperly integrable on [a, b) and to *diverge* otherwise. In a similar way one defines convergence and divergence for improper integrals in the cases considered in Definitions 6.6, 6.7.

Theorem 6.3 (Comparison Test for Improper Integrals). Let $a \in \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$ with a < b and $f, g : [a, b) \to \mathbb{R}$ be locally Riemann integrable functions on [a, b) satisfying

$$\exists c \in [a, b) \ s.t. \ \forall x \in [c, b), \ 0 \le f(x) \le g(x). \tag{1}$$

- (i) If q is improperly integrable on [a,b), then f is improperly integrable on [a,b).
- (ii) If f is not improperly integrable on [a,b), then g is not improperly integrable on [a,b).

Remark 6.2. If in Theorem 6.3, f and g are additionally nonnegative and satisfy instead of (1) the following condition

$$\exists \alpha, \beta > 0, \exists c \in [a, b) \text{ s.t. } \forall x \in [c, b), \alpha g(x) \leq f(x) \leq \beta g(x),$$

then f is improperly integrable on [a,b) if and only if g is improperly integrable on [a,b).

Corollary 6.1. Let $a, b \in \mathbb{R}$ with a < b, $f : [a,b) \to [0,+\infty)$ be a locally Riemann integrable function on [a,b) and $p \in \mathbb{R}$ such that the limit $L = \lim_{\substack{x \to b \\ x < b}} (b-x)^p f(x)$ exists.

- (i) If p < 1 and $L < +\infty$, then f is improperly integrable on [a, b).
- (ii) If $p \ge 1$ and L > 0, then f is not improperly integrable on [a,b).

Corollary 6.2. Let $a, b \in \mathbb{R}$ with a < b, $f : (a, b] \to [0, +\infty)$ be a locally Riemann integrable function on [a, b) and $p \in \mathbb{R}$ such that the limit $L = \lim_{x \to a} (x - a)^p f(x)$ exists.

- (i) If p < 1 and $L < +\infty$, then f is improperly integrable on (a, b].
- (ii) If $p \ge 1$ and L > 0, then f is not improperly integrable on (a, b].

Corollary 6.3. Let $a \in \mathbb{R}$, $f: [a, +\infty) \to [0, +\infty)$ be a locally Riemann integrable function on $[a, +\infty)$ and $p \in \mathbb{R}$ such that the limit $L = \lim_{x \to \infty} x^p f(x)$ exists.

- (i) If p > 1 and $L < +\infty$, then f is improperly integrable on $[a, +\infty)$.
- (ii) If $p \le 1$ and L > 0, then f is not improperly integrable on $[a, +\infty]$.

Theorem 6.4 (Integral Test for Convergence of Series). Let $m \in \mathbb{N}$ and $f : [m, +\infty) \to [0, +\infty)$ be a decreasing function. Then f is improperly integrable on $[m, +\infty)$ if and only if the series $\sum_{n \geq m} f(n)$ is convergent.

6.3 Multiple integrals

Definition 6.8. A set $A \subseteq \mathbb{R}^n$ is called a nondegenerate compact interval in \mathbb{R}^n if there exist $a_i, b_i \in \mathbb{R}$, $a_i < b_i$, i = 1, ..., n such that $A = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n]$.

Definition 6.9. Let $A = [a_1, b_1] \times [a_2, b_2]$ be a nondegenerate compact interval in \mathbb{R}^2 . If (x_0, x_1, \dots, x_p) and (y_0, y_1, \dots, y_q) are partitions of $[a_1, b_1]$ and $[a_2, b_2]$, respectively, then

$$P = \{A_{ij} \mid i = 1, \dots, p, j = 1, \dots, q\},\$$

where $A_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$, is a partition of A.

The norm of P, denoted by ||P||, is the length of the largest diagonal of any $A_{i,j}$, $i = 1, \ldots, p$, $j = 1, \ldots, q$.

Suppose that, for each $i = 1, ..., p, j = 1, ..., q, (x_{ij}^*, y_{ij}^*)$ has been chosen in each A_{ij} and denote $\xi = ((x_{ij}^*, y_{ij}^*))_{\substack{1 \le i \le p \\ 1 \le j \le q}}$. Then (P, ξ) is called a tagged partition of A.

Definition 6.10. Let A be a nondegenerate compact interval in \mathbb{R}^2 , $f: A \to \mathbb{R}$ and (P, ξ) a tagged partition of A (as in Definition 6.9). Then the sum

$$\sigma(f; P, \xi) = \sum_{i=1}^{p} \sum_{j=1}^{q} f(x_{ij}^*, y_{ij}^*)(x_i - x_{i-1})(y_j - y_{j-1})$$

is called the *Riemann sum* of f corresponding to the tagged partition (P, ξ) .

Definition 6.11. Let A be a nondegenerate compact interval in \mathbb{R}^2 and $f: A \to \mathbb{R}$. We say that f is Riemann integrable on A if there exists $I \in \mathbb{R}$ such that

$$\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 \text{ s.t. } \forall (P, \xi) \text{ tagged partition of } A \text{ with } ||P|| < \delta_{\varepsilon}, |\sigma(f; P, \xi) - I| < \varepsilon.$$

The family of all Riemann integrable functions on A is denoted by $\mathcal{R}(A)$.

If $f \in \mathcal{R}(A)$, then $I \in \mathbb{R}$ (given above) is uniquely determined and called the *Riemann integral* (or double integral) of f on A, and we write

$$I = \iint_A f(x, y) \, dx \, dy.$$

Remark 6.3. (i) Let A be a nondegenerate compact interval in \mathbb{R}^n and $f: A \to \mathbb{R}$. In a similar way as above, one can define the *Riemann integral* (or *multiple integral*) of f on A, denoted by $\int \cdots \int_A f(x_1, \ldots, x_n) dx_1 \ldots dx_n$.

If n = 3, we have a triple integral and we write $\iiint_A f(x, y, z) dx dy dz$.

(ii) Let $M \subseteq \mathbb{R}^n$ be nonempty, A be a nondegenerate compact interval in \mathbb{R}^n with $M \subseteq A$ and $f: M \to \mathbb{R}$. Define $f': A \to \mathbb{R}$ by

$$f'(x) = \begin{cases} f(x), & \text{if } x \in M, \\ 0, & \text{if } x \in A \setminus M. \end{cases}$$

If f' is Riemann integrable on A, then we say that f is Riemann integrable on M and we define the Riemann integral (or multiple integral) of f on M by

$$\int \cdots \int_M f(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int_A f'(x_1, \dots, x_n) dx_1 \dots dx_n.$$

Note that this definition does not depend on the choice of A.

6.3.1 Computing multiple integrals

Theorem 6.5. Let $A = [a_1, b_1] \times ... \times [a_n, b_n]$ be a nondegenerate compact interval in \mathbb{R}^n and $f : A \to \mathbb{R}$ be continuous. Then

(i) f is Riemann integrable on A.

(ii)
$$\int \cdots \int_A f(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \cdots \left(\int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \right) \dots dx_2 \right) dx_1,$$
where one can choose any of the iterated integrals.

Remark 6.4. Alternative notation for the above iterated integral:

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} \cdots \int_{a_n}^{b_n} f(x_1, \dots, x_n) \, dx_n \dots dx_2 \, dx_1, \qquad \int_{a_1}^{b_1} dx_1 \, \int_{a_2}^{b_2} dx_2 \, \cdots \, \int_{a_n}^{b_n} f(x_1, \dots, x_n) \, dx_n.$$

Definition 6.12. A set $M \subseteq \mathbb{R}^2$ is called

- simple w.r.t. the y-axis: if there exist $a, b \in \mathbb{R}$, a < b and $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ continuous functions with $\varphi_1 \leq \varphi_2$ such that $M = \{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq b, \varphi_1(x) \leq y \leq \varphi_2(x)\}$.
- simple w.r.t. the x-axis: if there exist $c, d \in \mathbb{R}, c < d$ and $\psi_1, \psi_2 : [c, d] \to \mathbb{R}$ continuous functions with $\psi_1 \leq \psi_2$ such that $M = \{(x, y) \in \mathbb{R}^2 \mid c \leq y \leq d, \psi_1(y) \leq x \leq \psi_2(y)\}.$

Theorem 6.6. Let $M \subseteq \mathbb{R}^2$ and $f: M \to \mathbb{R}$ a continuous function. If M is simple w.r.t. the y-axis (as in Definition 6.12), then f is Riemann integrable on M and

$$\iint_{M} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) \, dy \, dx.$$

If M is simple w.r.t. the x-axis (as in Definition 6.12), then f is Riemann integrable on M and

$$\iint_{M} f(x,y) \, dx \, dy = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) \, dx \, dy.$$

1.11 Tabel de integrale nedefinite

Peste tot in acest tabel J este un interval $\subset \mathbb{R}$

Constitution of the last of th		
1.	$f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^n; \ n \in \mathbb{N}$	$\int x^n \mathrm{d}x = \frac{x^{n+1}}{n+1} + \mathfrak{C}.$
2.	$f: J \to \mathbb{R}; \ J \subset (0, \infty)$ $f(x) = x^{\dot{a}}; \ a \in \mathbb{R} \setminus \{-1\}$	$\int x^a \mathrm{d}x = \frac{x^{a+1}}{a+1} + \varepsilon.$
3.	$f: \mathbf{R} \to \mathbf{R}$ $f(x) = a^{x}; \ a \in \mathbf{R}^{*}_{+} \setminus \{1\}$	$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + \varepsilon.$
4.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R}^*$ $f(x) = \frac{1}{x}$	$\int \frac{1}{x} \mathrm{d}x = \ln x + \mathfrak{C}.$
5.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R} \setminus \{-a, \ a\}$ $f(x) = \frac{1}{x^2 - a^2}, \{a \neq 0\}$	$\int \frac{1}{x^2 - a^2} \mathrm{d}x = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + \varepsilon$
6.	$f: \mathbf{R} \to \mathbf{R}$ $f(x) = \frac{1}{x^2 + a^2}; \ a \neq 0$	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + \varepsilon.$
7.	$f: \mathbf{R} \to \mathbf{R}$ $f(x) = \sin x$	$\int \sin x \mathrm{d}x = -\cos x + \mathfrak{C}.$
8.	$f: \mathbf{R} \to \mathbf{R}$ $f(x) = \cos x$	$\int \cos x \mathrm{d}x = \sin x + \mathfrak{C}.$
9.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R} \setminus \left\{ (2k+1) \frac{\pi}{2} \right\}$	$k \in \mathbb{Z}$
	$f(x) = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} \mathrm{d}x = \mathrm{tg} \ x + e.$
10.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ $f(x) = \frac{1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\mathrm{ctg} x + \mathfrak{E}.$
11.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R} \setminus \left\{ (2k + 1) \ \frac{\pi}{2} \ \middle \ f(x) = \operatorname{tg} x \right\}$	$, k \in \mathbb{Z} $ $\int \operatorname{tg} x \mathrm{d} x = -\ln \cos x + \mathfrak{C}.$
12.	$f: J \to \mathbb{R}; \ J \subset \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ $f(x) = \operatorname{ctg} x$	$\int \operatorname{ctg} x \mathrm{d}x = \ln \sin x + \mathfrak{C}.$
13.	$f: \mathbf{R} \to \mathbf{R}$ $f(x) = \frac{1}{\sqrt{x^2 + a^2}}; a \neq 0$	$\int \frac{1}{\sqrt{x^2 + a^2}} \mathrm{d}x = \ln(x + \sqrt{x^2 + a^2}) + \mathfrak{C}.$
4.	$f: J \to \mathbb{R} \begin{cases} J \subset (-\infty, -a) \\ \text{sau} \\ J \subset (a, \infty) \end{cases}$	
	$f(x) = \frac{1}{\sqrt{x^2 - a^2}}$	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln x + \sqrt{x^2 - a^2} + \varepsilon.$
5.	$f: J \to \mathbf{R}; \ J \subset (-a, a), a > 0,$ $f(x) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \arcsin \frac{x}{a} + \mathfrak{C}.$
		·