2022-01-10 Optics in functional programming Tony Zorman or Categorical perspective Tu Dresden

References

C. Pastro, R. Street Doubles for Monoidal Categories (2008)

B. Milewski: Profunctor Optics: The Categorical View (2017)

M. Riley: Categories of Optics (2018)

Clarke et.al.: Profunctor optics, a categorical update (2020)

B. Clarke, D. Elkins, J. G.; bbons; F. Loregian, B. Hilewski, E. Pillmore, M. Román

		Λαί	ve	Ď	efi	niti	οŇ					•	•				•	•			•	•	•	•			•	•	•		0	•	•	
٠	۰	For		he	res	; f	oP	H		talk	٠ ۲	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	٠	•			٠		٠	۰
							•						•			•				•	W)	, (o.co	» MC	plet	e.	Ço	mpl	efe	cl	ose Cate	d	•	
۰	۰	٠		،). ه	<i>L</i> .	iş	a _. (clos	sed	Ca	(46	? <u>;</u> 0	/N	Ça	460	$\int_{\mathbf{O}_L}$	J.	•	٠		1	(5	J.	met Ol	(IMC) W.C) W.C	ido	ido X()	e M	(rate	ans:		۰
	•	•				•		•			•												•						: "J			J	j	
٠	۰	٠	٠			٠	٠	٠		•	٠	۰			۰		•			٠	۰	۰	٠	٠	٠		۰	٠			•	•	•	
0	۰	۰	۰	•	۰	0	۰	۰	۰	۰	0	0	۰	۰		۰	۰	۰	۰	۰	0	۰	۰	۰	0	۰	۰	0	۰	•	0	۰	۰	۰
	0	0										۰											۰		۰		0			۰	۰	•	0	

. .

.

.

. .

. .

. .

A native Definition	
For the rest of this talk	
.) L is a closed cartesian category (symmetric)monoidal, L a (monoidal) M - category	
L'a (monoidal) M-category	
DOP IN CACL A Pens Brown S to A consists of	
Def Let $S,A \in \mathcal{L}$. A lens from S to A consists of get: $S \rightarrow A$, put: $S \times A \rightarrow S$.	
Def A lawful lens is a lens from S to A, such that the following diagrams commute:	
$S \xrightarrow{\Delta} S \times S \qquad S \times A \xrightarrow{Put} S \qquad S \times A \times A \xrightarrow{Put} S \times A$	
idx get T ₁₃	
$S \leftarrow Put$ $S \times A$ $T_2 \longrightarrow A$ $S \times A \longrightarrow Put$	

(0	, (o)	end	اج ا	:	•	•		How	۸.:	Lop	* L	. –	•	Set		•	•	•		•	•	•	•			•	•	•	•	•	•	•	•			
Let	P:	$\mathcal{L}^{\circ g}$, ×	L -	•	> Se	41	be o	a P	rofi	mct	70					P	: L	+	> L						•	•	•	•	•			•	•		
		۰	۰	۰	۰	0	۰	۰		0	۰	۰	٠	0		۰	۰	•	۰		0	۰	۰		۰	0	0	0			۰	۰	۰		0	
	۰	۰			•	0											•				0					۰	۰				•	۰	•			
	٠	٠			٠	۰			٠	٠	•			٠	٠	•	٠			٠	٠	٠				٠	٠	٠	٠	٠	٠	٠				
	۰	۰	٠	۰	۰	0	٠	٠	۰	•	۰	٠	٠	0	۰	۰	٠	•	٠	۰	۰	۰	۰	٠	٠	۰	0	0	0	۰	۰	۰	•	۰	0	
	٠	۰	•	•	•	۰	٠	•	۰	٠	٠	•		۰	٠	٠	•	•	•	٠	۰	•	٠		٠	۰	۰	۰	۰	٠	•	۰	•	•	۰	
	•	•				•				•	•			•	•	•	•			•	•	•				•	•	•	•			•	•		•	
	۰	٠			۰	•	٠	٠						۰		•	۰			۰	0	٠				٠	۰	۰	۰		۰	•	•	۰	٠	
	0	٠	•	•	0	•	۰	•			•	۰	۰	۰			0	٠	•	0	0	•	۰	•	•	•	۰	۰	۰		0	•	۰	•	٠	
	•	•				•																														
	۰	۰	٠	٠	٠	0	۰	٠	۰	۰	۰	۰	٠	•	۰	۰	٠	•	٠	۰	0	۰	۰	٠	٠	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	

(Co) ends	$Hom : \mathcal{L}^{op} \times \mathcal{L} \longrightarrow Set$)	
et $P: \mathcal{L}^{op} \times \mathcal{L} \longrightarrow Set$	ce a profunctor		$P: \mathcal{L} \to \mathcal{L}$
Def A wedge comprise as well as a family $\omega_c: \mathcal{D} \longrightarrow \mathcal{P}(C)$	s an object Deset, of maps		A coverage y: P=D is the formal
$U_{c}: \mathcal{D} \longrightarrow \mathcal{P}(C)$	C) for all CEL		
such that $\stackrel{\omega_c}{\mathbb{D}} $			$P(c c) \xrightarrow{P(c R)} P(c' c')$
$\begin{array}{c} \omega_{cl} \\ \gamma(c',c') \end{array}$	5(c'C ₁)		$P(\zeta,C)$ $P(\zeta,C)$ $\frac{\delta_{C}}{\delta_{C}}$
commutes, for all f			commutes, for all $f: C \longrightarrow C'$.
		• •	

. .

. .

(Co) ends Hom $\mathcal{L}^{op} \times \mathcal{L} \longrightarrow Set$	•			
Let $P: \mathcal{L}^{op} \times \mathcal{L} \longrightarrow Set$ be a profunctor $P: \mathcal{L} \longrightarrow \mathcal{L}$	•	•	 	
Def A wedge comprises an object $D \in Set$, A caucage $\gamma:P \Rightarrow D$ is the formal $U_c:D \rightarrow P(C,C)$, for all $C \in \mathcal{L}$ $U_c:P(C,C) \rightarrow D$				4
$\omega_{c}: \mathcal{D} \longrightarrow \mathcal{P}(\mathcal{C},\mathcal{C})$, for all $\mathcal{C} \in \mathcal{L}$ $\chi_{c}: \mathcal{P}(\mathcal{C},\mathcal{C}) \longrightarrow \mathcal{D}$			 •	
such that $D \xrightarrow{\bowtie_c} P(c,c)$ S.I. $P(c',c) \xrightarrow{P(c',k)} P(c',c')$	٠		 	
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $	۰	۰	 	
$P(C,C) \xrightarrow{P(C,C)} P(C,C)$ commutes, for all $f: C \rightarrow C'$. commutes, for all $f: C \rightarrow C'$.	•			
Def A morphism of wedges between $\omega:D=0$? and $\omega_2:E=0$? is a map $f:D\to E$ such that for all $C\in L$ we have				
		۰		
$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $		•		

.

Ċ) (nd:	S -	- ¥	70	760	il.	枞	5 ł	w	٩				٠														٠				
ę	Ån	en	.	s o	terv	nina	.l	ധര	dge						•	A coe	nd;	· ·s : 0.1	n in	itial c)ory60	dge	:						•	•	•	•	
	۰				٠				v	0			۰			r:5=	ه ک	s. ļ .	• \ /				۰		۰	۰	۰	0	0				
۰	۰				۰	۰		۰		۰	۰	٠	۰		•	Y: P=	°D -11,	л : € →	0. At	}:X→Y	۰	0	•	۰	۰	۰	۰	0	0	•	۰		
۰	٠	٠	•	• •	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	P(Y,	x) - ?((4, <i>y</i>)	P((XX	٠	۰	٠	٠	٠	٠	٠	٠	۰	۰	٠	۰	
۰	٠	۰	•	• •	۰	٠	٠	٠	۰	٠	٠	٠	٠	٠	•	P(Y.P)	` ',	•		1	١٠.	۰	٠	٠	٠	٠	٠	٠	۰	٠	•	۰	
۰	۰	0	•	• •	۰	۰	٠	۰	۰	٠	٠	٠	٠	۰	•	0(1)		Ly .	•	f. x -	0%	۰	۰	٠	٠	٠	٠	٠	۰	۰	۰	۰	
۰	۰	0		• •		۰	۰	۰	0	۰	۰	۰	٠	۰	۰	-P(Y,	Y }• -	 >	- (٠, ٧٠,] -	۰	۰	۰	۰	٠	٠	۰	۰	۰	۰	۰	
		•							•								_	· .	-	→ <u>,</u> ,				•									
	•	•			٠					•					٠			°0 y	•					•					۰				
							٠			٠		۰											0	٠	٠								
							٠				٠												0		٠								
•	•	۰			۰	۰	٠	٠	٠		٠	٠			٠			٠			۰		٠						٠	٠	٠	٠	

.

	-0)	enc	ks.	÷	fc	7 70	60	L.	朴	2 f	ime																						
Def										v		•		٠	•	A. C	Dew C	d is	s an	initi	al c	ory60	lge	:		•		•	•	•	•		•
Note	ation	-	The	.ev	νd	ني	: E	=0	7	W:W	2 be			۰		A	.0 -0][_	.:€ → D	A6.1	-,0	٠	•	•			•	٠		۰	•	٠	٠
	d	(evo	led	by		٠		٠		0000	ds.				٠						√ 1°						. (Ends		¥¥.	P((4, k) -
	٠	۰		٠ (١	c (·)	•	٠		٠ ((CEL P(C	٠,		•	٠	P(Y.	Л Г. Х	J. —	$\xrightarrow{(\chi,\beta)}$	/ (X,	.,)		•	•	٠	•	. (Den	ds:	JX.	B()	χ, λ)	-
	٠	۰	. J	εĹ		٠	٠	۰	٠	.)	.9(c	10)		٠	۰	-0(Ţ ∪ γ	1 -	<u>-</u> Y .	1	х' _	0%	٠	٠	۰	٠	٠	٠	۰	٠	٠	٠	۰
																-1	- \	r 			, u												
	۰	0	0	٠	۰	٠	٠	۰	۰	٠	٠			۰	۰				-8y -	•	. '	۰			۰	٠			٠	۰	٠	٠	۰
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	•			٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	۰
	٠	0	0	۰	۰	٠	٠	۰	۰	۰	٠	• •	•	۰	۰	•	٠	٠		•	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	٠	۰	۰
	۰																																
	۰	۰	٠	٠	٠	۰	۰	۰	۰	٠	٠			٠			٠			۰	٠	٠		٠	٠	٠		٠	٠	۰	٠	٠	٠

(Co) ends - for real this time	
Def An end is a terminal wedge. A coend is an initial cowedge:	
Notation The end $\omega : E \Rightarrow P$ will be	
(cel	- Ends : \\. \P(\x,\text{\chi}) \\. \Coends : \(\x,\text{\chi}\) \\.
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	
Let $F,G: \mathcal{L} \to Set$ be functors. Then	
$\int_{C \in \mathcal{L}} Set(FC,GC) \cong Nat(F,G).$	
Proof-idea: For any wedge $\omega: D \Rightarrow Set(F_{G},G)$ we have $\Rightarrow D \xrightarrow{\omega_{c}} Set(F_{G},G_{G})$ $D \xrightarrow{\omega_{c}} Set(F_{G},G_{G}) \Rightarrow \omega_{d,C} \text{ is natural, for}$ $\{\omega_{d,C}\} \xrightarrow{\sim} Nat(F_{G},G_{G})$	
$ \begin{array}{ccc} $	
$Set(FC,GC) \xrightarrow{v(FC,GC)} $ $\Rightarrow \{\omega_{d,-} d \in D \} \cong Nat(F,G) $ which is what we wanted.	

Ninja Yoneda

Lemma: For a profunctor P: L +> L there are isomorphisms

 $Set\left(\int_{-C}^{C} P(C,C), D\right) \cong \int_{-C}^{C} Set(P(C,C), D),$

 $Set(D, \sum_{C \in L} P(C,C)) \cong \int Set(D, P(C,C)).$

P(C,C) = lim P,

 $C' \longrightarrow D'$

where $P^{\epsilon}: t_{\omega} L \rightarrow Set$ is a functor and) $Ob(t_{\omega} L) = Arrows \ \ \ \ C \rightarrow C'$ in L

Proof-idea We have

.) an arrow from f to g is a commutative diagram

Ninja Yoneda

Lemma: For a profunctor
$$P: L + L$$
 the isomorphisms

Set $(P(C,C), D) \cong Set(P(C,C), C)$

Set $(D, P(C,C)) \cong Set(D, P(C,C))$

Proof-idea We have
$$P(C,C) \cong \lim_{C \in L} P^{c},$$
where $P^{c}: L L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and $P^{c}: L \to L \to Set$ is a functor and

 $C' \longrightarrow D'$.

Lemma: For a profunctor P: L +> L there are isomorphisms Set $(\bigcap_{c \in L} P(C, c), D) \cong \int_{C \in L} Set(P(C, c), D),$ $Set(D, \sum_{C \in L} P(C,C)) \cong \int Set(D, P(C,C)).$.) an arrow from f to g is a commutative diagram Theorem (Ninja Yoneda) For any functor $F: \mathcal{L}^{op} \longrightarrow Set$, we have $FX \cong \int_{C} FC \times \Gamma(X,C)$

Ninja Yoneda Lemma: For a profunctor P: L +> L there are isomorphisms

Set $(\int_{C} P(C,C), D) \cong \int_{C} Set(P(C,C), D),$ Set $(D, \int_{C \in \mathcal{L}} P(C,C)) \cong \int_{C \in \mathcal{L}} Set(D, P(C,C)).$ Proof-idea We have P(c,c) = lim Pt, where $P^{\tau}: t_{\omega} \mathcal{L} \to Set$ is a functor and 1) Ob($t_{\omega} \mathcal{L}$) = $\Delta rrows \ \ \ \mathcal{C} \to \mathcal{C}'$ in \mathcal{L} ...) an arrow from f to g is a commutative diagram $C_1 \longrightarrow D_1 \cdots$

Theorem (Ninja Yoneda) For any functor $F:\mathcal{L}^{op} \to \mathsf{Set}$, we have $FX \cong \int FC \times L(X,C)$ Proof For all YE Set we have Set() FC x L(X,C), Y) ≈ Set(Fc x L(X, c), Y) =) Set(L(X, C), Set(FC,Y))

= Not (L (X;-); Set (F-, Y))

= Set (FX, Y) _

Example: closure conversion

Example: closure conversion

let
$$x = 42$$

in $(\Delta y. (+xy))$: $N \rightarrow N$

 $\dots : \mathbb{N} \to \mathbb{N} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots$

in
$$[\{1\times]$$
 : $\{x:N\}\times (\{x:N\}\times N\to N)$

Example: closure conversion

 $M \leftarrow M \cong ((M \leftarrow M) \times T) \times T . T \subseteq M \longrightarrow M$

. : N→ N

$$: \{x: M\} \times (\{x: M\} \times M \rightarrow M)$$

">> "Pick " F ":= - × (N → "N) and X = 1".

Optics - the existential encoding

Def/Theorem (Pastro-Street)

There is a functor

Optic: SMCat -> SMCat

Optic (S,A) = \ w(S, M&A) x w(H&A,S).

that sends a symmetric monoidal category (or, 0, 1) to the category Optical of optics, where an optic from S to A is an element of

An optic is a pair of maps l: S→MOA T: MOA→S

((f & A).l, r)~ (l, r. (f & A))

for some f: M -> M.

The composite ((,r) . (l',r') is

- ((MOL).L', ('. (MOF)).

Lenses as existential optics

Let $(\mathcal{L}, \times, 1)$ be cartesian closed Then we have

Lens $(A,S) := \mathcal{L}(S,A) \times \mathcal{L}(S \times A,S)$.

Lenses as existential optics Let $(\mathcal{L}, \times, 1)$ be cartesian closed. Then we have

Lens
$$(A, S) := \mathcal{L}(S, A) \times \mathcal{L}(S \times A, S)$$
.

A computation yields the desired result:

$$\int_{C} \mathcal{L}(S,C\times A) \times \mathcal{L}(C\times A,S)$$

 $\mathcal{L}(S,A) \times \mathcal{L}(S \times A,S)$

get: S - A

= Optic s.x

put: S×A →S

The fundamental theorem of optics

There is an equivalence of categories

Tamba = [Optica, Set]

The fundamental theorem of optics

There is an equivalence of categories

$$\int_{P \in Tomb} Set(P(A,A),P(S,S)) \cong Optic(A,S)$$

The prafunctor representation theorem