1.5 不变子群和商群

不变子群的定义

定义一:

设H为G的一个子群,若 $\forall g_{\alpha} \in G$,都有

$$g_{\alpha}H = Hg_{\alpha}$$

则称 H 为 G 的不变子群。

定义二:

设 H 为 G 的一个子群,若 H 中任意元素的共轭元素还在 H 中,即 $\forall g_{\alpha} \in G, h_{\beta} \in H$ 都有

$$g_{lpha}h_{eta}g_{lpha}^{-1}=h_{\gamma}\in H$$

则称 H 为 G 的不变子群。

- $\{e\}$ 和 G 本身都是 G 的不变子群。
- 若 G 的一个子群是 Abel 子群(子群中的任意元素与 G 中的元素都满足交换律),则它一定是 G 的不变子群。 C_6 群是 Abel 群,它的两个非平庸子群 $\{C_6^3, C_6^6 = e\}$ 和 $\{C_6^2, C_6^4, C_6^6 = e\}$ 都是 C_6 群的不变子群。

不变子群的性质

- 不变子群的左右陪集相同 (定义一)。
- 若子群 H 中的任意一个元素的共轭元素仍在 H 中,则 H 为不变子群。
- 不变子群由多个类构成; 若一个子群由多个类构成, 则其一定为不变子群。
- 指数为 2 的子群必为不变子群。(设有限群 G 的阶数为 n_G ,其子群 H 的阶数为 n_H , n_G/n_H 称为子群 H 的阶数)

商群的定义

设 H 为群 G 的不变子群,则 H 及其陪集串

$$\{\phi_0 = H, \ \phi_1 = s_1 H, \cdots, \phi_{k-1} = s_{k-1} H\}, \ s_i \in G$$

构成一个新的群,称为群 G 关于不变子群 H 的商群,记为

G/H

商群的乘法由群 G 的乘法来确定:

$$\phi_i\phi_j\equiv\{(s_ih_lpha)(s_jh_eta)|h_lpha,h_eta\in H\}$$

$$\phi_i \phi_j = s_i H s_j H = s_i s_j H H = s_i s_j H = g_{\alpha} H$$

验证商群满足群的定义:

- 封闭性: $\forall \phi_i, \phi_i \in G/H, \phi_i \phi_i = g_{\alpha}H = \phi_m \in G/H$
- 恒元: H

$$H(s_iH) = s_iHH = s_iH$$

• 逆元:

$$orall s_i H \in G/H, (s_i H)(s_i^{-1} H) = s_i s_i^{-1} H H = H$$

• 结合律:

 $(\phi_i\phi_j)\phi_k = (s_iHs_jH)s_kH = \{[(s_ih_\alpha)(s_jh_\beta)](s_kh_\gamma)|\forall h_\alpha, h_\beta, h_\gamma \in H\} = \{(s_ih_\alpha)[(s_jh_\beta)(s_kh_\gamma)]|\forall h_\alpha, h_\beta, h_\gamma \in H\} = s_iH(s_jHs_kH) = \phi_i(M)$ 例子: C_6 群有两个非平庸不变子群 $C_3 = \{e, C_6^2, C_6^4\}$ 和 $C_2 = \{e, C_6^3\}$,因此有两个商群:

$$\begin{split} \mathbf{C}_6/\mathbf{C}_3 &= \{\phi_0 = \mathbf{C}_3 = \{e, C_6^2, C_6^4\}, \;\; \phi_1 = C_6^1\mathbf{C}_3 = \{C_6^1, C_6^3, C_6^5\}\} \\ \mathbf{C}_6/\mathbf{C}_2 &= \{\phi_0 = \mathbf{C}_2 = \{e, C_6^3\}, \;\; \phi_1 = C_6^1\mathbf{C}_2 = \{C_6^1, C_6^4\}, \;\; \phi_2 = C_6^2\mathbf{C}_2 = \{C_6^2, C_6^5\}\} \end{split}$$

1.6 同态与同构

同构

设 $G=\{g_{\alpha}\}$ 和 $G=\{g_{\alpha}'\}$ 为两个群,群元之间存在——对应关系 $g_{\alpha}\longleftrightarrow g_{\alpha}'$,并且为满射,且 G 中任意两个元素的乘积也按相同的对应关系对应于 G' 中相应两个元素的乘积,则称 G 和 G' 同构,记为 $G\cong G'$

符号语言表述:

$$g_{\alpha} \longleftrightarrow g'_{\alpha}$$

若
$$g_{lpha}\longleftrightarrow g'_{lpha}, g_{eta}\longleftrightarrow g'_{eta}$$
,则 $g_{lpha}g_{eta}\longleftrightarrow g'_{lpha}g'_{eta}$

两个同构的群具有相同的乘法表。若两个群的乘法表相同,则它们一定同构。

- 阶为同一素数的两个群同构
- 无限群也存在同构,如 $SO(2) \cong U(1)$, U(1) 群的群元 $g'(\theta) = e^{i\theta}$ 可以作为 SO(2) 群的一维表示。

$$\mathrm{SO}(2): g(heta) = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}, \ \ \mathrm{U}(1): g'(heta) = \mathrm{e}^{\mathrm{i} heta}$$

——对应关系:

$$g(\theta) \longleftrightarrow g'(\theta) \Longrightarrow g(\theta_1)g(\theta_2) = g(\theta_1 + \theta_2) \longleftrightarrow g'(\theta_1 + \theta_2) = g'(\theta_1)g'(\theta_2)$$

于是 $SO(2) \cong U(1)$

 D_3 关于其不变子群 $H = \{e, d, f\}$ 的商群 D_3/H 与 C_2 群同构。

$$D_3/H = \{H = \{e, d, f\}, aH = \{a, b, c\}\}\$$

——对应关系:

$$H \longleftrightarrow e, \ aH \longleftrightarrow C_2^1$$

可以验证乘积的对应关系:

$$H \cdot aH = aH \longleftrightarrow C_2^1 = e \cdot C_2^1$$
 $aH \cdot aH = H \longleftrightarrow C_2^1 \cdot C_2^1 = e$

于是:

$$D_3/H \cong C_2$$

不满足同构条件的例子:

4 阶循环群 C_4 和时空反演群 $V_4=\{e, au,\sigma,
ho\}$ (e 代表恒元,au 代表时间反演, σ 代表空间反演,ho 代表时空反演)

 V_4 群可用四阶矩阵表示:

$$e = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}, \ \ \tau = \begin{bmatrix} -1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}, \ \ \sigma = \begin{bmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{bmatrix}, \ \ \rho = \begin{bmatrix} -1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{bmatrix}$$

从群元的阶就能看出二者不同构。

当群元的阶不同时, 群的乘法表结构就不同, 两个群就不可能同构。

同态

设 $G = \{g_{im}\}$ 与 $G' = \{g'_i\}$ 之间有多一对应关系,且为满射,且群 G 中任意两个元素的乘积也按相同的对应关系对应于 G' 中相应两个元素的乘积,即:

 $g_{im} \longrightarrow g_i'$

若 $g_{im}\longrightarrow g_i',g_{jn}\longrightarrow g_j'$,则 $g_{im}g_{jn}\longrightarrow g_i'g_j'$

则称 $G \ni G'$ 同态,记为:

$$G \simeq G'$$

• 若
$$G \simeq G'$$
,则 $e \mapsto e'$, $q^{-1} \mapsto q'^{-1}$

证明恒元对应关系:

设 $g_{im} \mapsto g'_i, e \mapsto f'$

一方面,由 $G \simeq G'$ 有 $g_{im}e \mapsto g_i'f'$

另一方面, $g_{im}e = g_{im} \mapsto g'_i$

于是: $g'_i f' = g'_i \Longrightarrow f' = e$

证明逆元对应关系:

设 $G \simeq G', e \mapsto e', g \mapsto g', g^{-1} \mapsto h'$

一方面, $gg^{-1}\mapsto g'h'$

另一方面, $gg^{-1}=e\mapsto e'$

$$g'h' = e' \Longrightarrow h' = g'^{-1}$$

同态核

设 $G \simeq G'$,则 G 中所有与 e' 对应的元素的集合称为同态关系的同态核,记为:

$$I = \{i_l\}$$

同态核定理

若 $G \simeq G'$, I 为同态核 , 则 I 为 G 的不变子群。

证明:

先证 I 为子群:

封闭性: $\forall i_l, i_k \in I, i_l i_k \mapsto e' e' = e'$, 于是 $i_l i_k \in I$

逆元在 I 中: $\forall i_l \in I, i_l^{-1} \mapsto e'^{-1} = e'$, 于是 $i_l^{-1} \in I$

再证 I 为不变子群:

 $i_l\mapsto e'$,设 $g_{im}\in G\mapsto g_i'\in G'$,则 $g_{im}^{-1}\mapsto g_i'^{-1}$

$$g_{im}i_lg_{im}^{-1}\mapsto g_i'e'g_i'^{-1}=e'$$

于是 $g_{im}i_lg_{im}^{-1}\in I$,因此 I 是 G 的不变子群。

定理1

若 H 为群 G 的不变子群,则 $G\simeq G/H$,其中 $G/H=\{s_0H=H,s_1H,s_2H,\cdots,s_{k-1}H\}=\{s_iH\}$

证明:

建立对应关系为: 若 $g_{im}=s_ih_m\in s_iH$,则 $g_{im}\mapsto s_iH$

设 $g_{im} \in s_i H, g_{jm} \in s_j H$,则对应关系为:

 $g_{im}\mapsto s_iH, g_{jm}\mapsto s_jH$

由于:

 $g_{im}g_{jn}\in (s_iH)(s_jH)$

于是:

 $g_{im}g_{jn}\mapsto (s_iH)(s_jH)$

定理2

若 $G \simeq G'$,则 $G/I \cong G'$,I 为同态核。