CS 225: Data Structures

Homework 2

Group D1

Last Modified on March 4, 2022

Members	
Name	Student ID
Li Rong	3200110523
Zhong Tiantian	3200110643
Zhou Ruidi	3200111303
Jiang Wenhan	3200111016

PLEASE TURN OVER FOR OUR ANSWERS.

CS 225: Data Structures

Homework 2

Last Modified on
March 4, 2022

Ex. 1 Our Answer.

We define two operations: checking-in (happens at arrival date) and checking-out (happens at departure date). Let the priority of checking-out is higher than checking-in, if they happen on the same day. Then one single booking will contain a checking-in and a checking-out.

In order to maximize the use rate of hotel rooms, we assume the hotel only handle with check-ins in the afternoon and departures in the morning (i.e. A departure always happens earlier than an arrival, if they are on the same date).

Algorithm 1: Hotel Room Check

```
/* NOTE: Sort is a modified version of QuickSort, sorting the operation with the two
      criteria: 1. from earlier date to later; 2. on the same day, arrivals are put after
      departures. */
  /* It outputs a list of operations with a member prop indicating whether the operation
      is arrival or departure. This tagging process is also completed in Sort. */
1 if k < 0 then
     print("Bad Hotel!!!!!! GIVE MY MONEY BACK!!!!!"")
3 end
4 sortedOps ← Sort (bookings.arrivalDate, bookings.departureDate)
5 foreach operation(i) in sortedOps do
      if operation(i).prop = arrival then
         if numInUse = k then
            print("Insufficient Rooms!")
 8
            Exit Algorithm
         end
10
         else
11
            numInUse \leftarrow numInUse + 1
12
         end
13
     end
14
      else
15
         if numInUse = 0 then
16
            print("Bad testing engineer! I will fire you!")
17
            Exit Algorithm
18
19
         numInUse \leftarrow numInUse - 1
20
      end
21
22 end
```

23 print("Sufficient Rooms! Good Hotel! Rate you 5 stars

By sorting them respectively, we can generate a sequence of operation. Perform it operation by operation and trace the number of rooms in use on each day. If the number exceeds the largest capacity *k*-rooms, then the demands cannot be satisfied. Otherwise they will be satisfied.

The algorithm is described in Algorithm 1.

Group D1 -2-

Ex. 2 Our Answer.

- (i) Firstly set x equals to e'_i , then $\prod_{i=1}^n (x e'_i)$ should be equal to zero. If P(x) equals to zero, then the value of
 - $\prod_{i=1}^{n} (x e_i)$ should be zero as well, which means there is one item in $[e_1, ..., e_{ni}]$ whose value is equal to e'_i .

Apply this method repeatedly for x from e'_1 to e'_{ni} , we can obtain the conclusion that if the polynomial holds for $[e'_1,...,e'_{ni}]$, then $[e_1,...,e_{ni}]$ is a permutation of it.

We can do the same things for $[e_1,...,e_{ni}]$, which provides the conclusion that $[e'_1,...,e'_{ni}]$ is the permutation of $[e_1,...,e_{ni}]$. To sum up, the condition that this polynomial holds, is the necessary sufficient condition.

(ii) p-1 should be larger or equal than e_{ni} and n, assume the largest value among $[e_1,...,e_{ni},e'_1,...,e'_{ni}]$ is e_{ni} . To ensure $P(x) \mod p \equiv 0$, the value of x, e_i , e'_i should be the same. since $[e_1,...,e_{ni}]$ is not the permutation of $[e'_1,...,e'_{ni}]$, the values that e_n equals to e'_n is less than the number of he items in $[e_1,...,e_{ni}]$. Besides, x is less than p-1. So, the possibility K that the result of evaluation is zero is less than $\frac{n}{p-1}$.

Meanwhile, p-1 should be also larger than $\frac{n}{\varepsilon}$, which shows $\varepsilon \ge \frac{n}{p-1}$. To sum up, the possibility K is at most ε

Group D1 -3-

CS 225: Data Structures

Homework 2

Last Modified on
March 4, 2022

Ex. 3 Our Answer.

(i) Denoting the original stack S, and the two additional stacks S_1 and S_2 . The process can be described as Algorithm 2.

Algorithm 2: Reverse stack

```
1 while S is not empty do2 | S_1.push (S.pop_top)3 end4 while S_1 is not empty do5 | S_2.push (S_1.pop_top)6 end7 while S_2 is not empty do8 | S.push(S_2.pop_top)9 end
```

(ii) Denoting the original stack S, and the queue Q. The process can be described as Algorithm 3.

Algorithm 3: Reverse stack again

```
while S is not empty do
Q.append(S.pop_top)
number of the state o
```

(iii) Assuming we have N elements $\{e_1, e_2, \dots, e_N\}$ and two stacks S_A and S_B . The initial status of S_A is denoted as S_{A0} . The elements $e_i (1 \le i \le N)$ are placed in S_A initially.

The thing is, we try to copy S_A into S_B with the order of elements unchanged (making $S'_B = S_{A0}$); and then by popping each element in S'_B out and pushing back in S_A , we make the top element of S'_B ? the bottom one of the S'_A , i.e. the *i*-th in S'_B becomes the (n-i+1)-th in S'_A . Finally S'_A is the reversed from its original.

Define an operation MOVE, which one by one pops the top (n-1) elements from S_A and pushes them into S_B , and store the n-th element (the bottom one) in the extra variable temp. The operation is described in Procedure MOVE.

Before MOVE(i-1) is called, which indicates i times of calling MOVE, we will get the original stack with elements $[e_1, \dots, e_{i-1}]$ (from top to bottom) and the extra stack with $[e_i, \dots, e_n]$. Since a stack satisfies LIFO principle, and keep iterating and calling MOVE(n), MOVE(n-1), ..., MOVE(n) we will finally get $S_B = S_{A0}$. Then pop all elements in S_B'' and push them back to S_A'' , we obtain S_A'' is the reverse of S_B'' , i.e. the reverse of S_{A0} . Algorithm 4 describes the whole operation.

Group D1 -4-

CS 225: Data Structures

Homework 2

Last Modified on
March 4, 2022

Procedure MOVE(n)

```
/* Denoting S_A as OriginalStack and S_B ExtraStack. */
  /* We are to copy the front n-1 elements into ExtraStack, reversely. */
  /* Before MOVE(n) is called, OriginalStack has n elements. */
1 if n = 1 then
     ExtraStack.push(OriginalStack.pop_top)
     Exit call
4 end
5 while OriginalStack is not empty do
6 ExtraStack.push(OriginalStack.pop_top)
7 end
  /* Now we store the last element popped into ExtraVar. */
8 ExtraVar ← ExtraStack.pop_top
9 numElementsPopped \leftarrow 0
while numElementsPopped < n \, do
OriginalStack.push(ExtraStack.pop_top)
12 end
13 ExtraStack.push(ExtraVar)
14 Call MOVE (n-1)
```

Algorithm 4: Reverse the Stack

```
/* Denoting S_A as OriginalStack and S_B ExtraStack. */

1 n \leftarrow OriginalStack.numitem

2 Call MOVE(n)

3 while ExtraStack is not empty do

4 | OriginalStack.push(ExtraStack.pop_top)

5 end
```

Group D1 -5-