84D 27581

T-29-23

2N4400/FTSO4400 2N4401/FTSO4401

Small Signal General Purpose **Amplifiers & Switches**

VCEO ... 40 V (Min)

h_{FE} ... 100-300 @ 150 mA (2N/FTSO4401); 40 (Min) @ 500 mA (2N/FTSO4401)

ton ... 35 ns (Max) @ 150 mA

toff ... 255 ns (Max) @ 150 mA

Complements ... 2N4402, 2N4403

PACKAGE

2N4400 TO-92 TO-92

2N4401

TO-236AA/AB FTSO4400

TO-236AA/AB FTSO4401

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature -55° C to 150° C Operating Junction Temperature 150° C

Power Dissipation (Notes 2 & 3)

Collector Current

Total Dissipation at 2N **FTSO** 0.625 W 0.350 W* 25° C Ambient Temperature

25° C Case Temperature

Voltages & Currents V_{CEO} Collector to Emitter Voltage 40 V (Note 4) 60 V V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage 6.0 V

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

1.0 W

600 mA

		4400		4401			
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO(sus)}	Collector to Emitter Sustaining Voltage (Note 5)	40		40		٧	$I_{C} = 1.0 \text{ mA}, I_{B} = 0$
ВУсво	Collector to Base Breakdown Voltage	60		60		٧	$I_{C} = 100 \ \mu A, \ I_{E} = 0$
BV _{EBO}	Emitter to Base Breakdown Voltage	6.0		6.0		٧	$I_E = 100 \ \mu A, I_C = 0$
Icex	Collector Cutoff Current		100		100	nA	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$
l _{BL}	Base Reverse Current		100		100	nA	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$

NOTES:

These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

These are sleady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8.0 mW/° C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/° C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).

Rating refers to a high current point where collector to emitter voltage is lowest.

Pulse conditions: length = 300 μ s; duty cycle \leq 2%.

For product family characteristic curves, refer to Curve Set T145.

84D 27582

2N4400/FTSO4400 2N4401/FTSO4401

T-29-23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

		4400		4401		UNITS	TEST CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	
h _{FE}	DC Current Gain	20 40		20 40 80			$I_C = 100 \ \mu A, \ V_{CE} = 1.0 \ V$ $I_C = 1.0 \ mA, \ V_{CE} = 1.0 \ V$ $I_C = 10 \ mA, \ V_{CE} = 1.0 \ V$
h _{FE}	DC Pulse Current Gain (Note 5)	50 20	150	100 40	300		$I_{C} = 150$ mA, $V_{CE} = 1.0$ V $I_{C} = 500$ mA, $V_{CE} = 2.0$ V
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		0.4 0.75		0.4 0.75	>>	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 5)	0.75	0.95 1.2	0.75	0.95 1.2	>>	l _C = 150 mA, l _B = 15 mA l _C = 500 mA, l _B = 50 mA
Ссь	Collector to Base Capacitance		6.5		6.5	pF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ k}$
Сер	Emitter to Base Capacitance		30		30	pF	$V_{BE} = 0.5 \text{ V}, I_{C} = 0, f = 100 \text{ k}$
hre	Small Signal Current Gain	20	250	40	500		$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz
h _{ie}	Input Impedance	0.5	7.5	1.0	15	kΩ	$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz
hoe	Output Admittance	1.0	30	1.0	30	μmhos	$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz
h _{re}	Voltage Feedback Ratio	0.1	8.0	0.1	8.0	x10-⁴	$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz
f _T	Current Gain Bandwidth Product	200		250		MHz	$I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$
t _d	Turn On Delay Time (test circuit no. 559)		15		15	ns	$I_{C} = 150 \text{ mA}, V_{CC} = 30 \text{ V},$ $I_{B1} = 15 \text{ mA}$
t _r	Rise Time (test circuit no. 559)		20		20	ns	$I_{c} = 150 \text{ mA}, V_{cc} = 30 \text{ V},$ $I_{B1} = 15 \text{ mA}$
ts	Storage Time (test circuit no. 560)		225		225	ns	$I_{C} = 150 \text{ mA}, V_{CC} = 30 \text{ V},$ $I_{B1} = I_{B2} = 15 \text{ mA}$
tı	Fall Time (test circuit no. 560)		30		30	ns	$I_C = 150 \text{ mA}, V_{CC} = 30 \text{ V},$ $I_{B1} = I_{B2} = 15 \text{ mA}$

D

3469674 FAIRCHILD SEMICONDUCTOR

84D 27583

FAIRCHILD
A Schlumberger Company

2N4402/FTSO4402 2N4403/FTSO4403

PNP Small Signal General Purpose Amplifiers & Switches

T-29-23

V_{CEO} ... -40 V (Min)

h_{FE} ... 100-300 @ 150 mA (2N/FTSO4403),
 20 (Min) @ 500 mA (2N/FTSO4403)

t_{on} ... 35 ns (Max) @ 150 mA

• t_{off} ... 255 ns (Max) @ 150 mA

• Complements ... 2N4400, 2N4401

PACKAGE

2N4402

TO-92

2N4403 FTSO4402

TO-92

FTSO4402

TO-236AA/AB

TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature -55° C to 150° C Operating Junction Temperature 150° C

Power Dissipation (Notes 2 & 3)

Total Dissipation at 2N FTSO 25° C Ambient Temperature 0.625 W 0.350 W*

25° C Case Temperature 1.0 W

Voltages & Currents

V_{CEO} Collector to Emitter Voltage -40 V

(Note 4)

V_{CBO} Collector to Base Voltage -40 V V_{EBO} Emitter to Base Voltage -5.0 V I_C Collector Current 600 mA

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

							, , , ,
SYMBOL	CUADACTEDIOTIO	1	102		103		
STIVIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO(sus)}	Collector to Emitter Sustaining Voltage (Note 5)	-4 0		-40		V	I _C = 1.0 mA, I _B = 0
BV _{CBO}	Collector to Base Breakdown Voltage	-40		-40		٧	$I_{C} = 100 \ \mu\text{A}, \ I_{E} = 0$
BV _{EBO}	Emitter to Base Breakdown Voltage	-5.0		5.0		٧	$I_E = 100 \ \mu A, \ I_C = 0$
ICEX	Collector Reverse Current		100		100	nA	$V_{CE} = -35 \text{ V}, V_{EB} = -0.4 \text{ V}$
I _{BL}	Base Reverse Current		100		100	пA	$V_{CE} = -35 \text{ V}, V_{EB} = -0.4 \text{ V}$

NOTES:

These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8 0 mW/° C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/° C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).

4. Rating refers to a high current point where collector to emitter voltage is lowest.

5. Pulse conditions: length = 300 μ s; duty cycle < 2%.

6. For product family characteristic curves, refer to Curve Set T212.

84D 27584

2N4402/FTSO4402 2N4403/FTSO4403

T-29-23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

		440	2 MAX	44 MIN	03 MAX	UNITS	TEST CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	MAA		IVIAA	<u> </u>	$I_{C} = 100 \mu A, V_{CE} = 1.0 \text{ V}$
h _{FE}	DC Current Gain	30 50		30 60 100			$I_{c} = 1.0 \text{ mA}, V_{ce} = -1.0 \text{ V}$ $I_{c} = 10 \text{ mA}, V_{ce} = -1.0 \text{ V}$
h _{FE}	DC Pulse Current Gain (Note 5)	50 20	150	100 20	300		$I_{C} = 150$ mA, $V_{CE} = -2.0$ V $I_{C} = 500$ mA, $V_{CE} = -2.0$ V
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		-0.4 -0.75		-0.4 -0.75	V V	$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 5)	-0.75	-0.95 -1.3	-0.75	-0.95 -1.3	V	l _C = 150 mA, l _B = 15 mA l _C = 500 mA, l _B = 50 mA
	Collector to Base Capacitance		8.5		8.5	pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = 140 \text{ k}$
Ссь			30	 	30	pF	$V_{EB} = -0.5 \text{ V}, I_C = 0, f = 140 \text{ k}$
C _{eb}	Emitter to Base Capacitance Small Signal Current Gain	30	250	60	500		$I_{C} = 1.0 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 1.0 kHz
h _{ie}	Input Impedance	0.75	7.5	1.5	15	kΩ	$I_{C} = 1.0 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 1.0 kHz
hoe	Output Admittance	1.0	100	1.0	100	μmhos	$I_C = 1.0 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 1.0 kHz
h _{re}	Voltage Feedback Ratio	0.1	8.0	0.1	8.0	x10-4	$I_{c} = 1.0 \text{ mA}, V_{ce} = -10 \text{ V},$ f = 1.0 kHz
fr	Current Gain Bandwidth Product	150	 	200		MHz	$I_{C} = 20 \text{ mA}, V_{CE} = -10 \text{ V},$ f = 100 MHz
t _d	Turn On Delay Time		15		15	ns	I _C = 150 mA, V _{CC} = -30 V I _{B1} = 15 mA
tr	(test circuit no. 557) Rise Time (test circuit no. 557)	-	20		20	ns	$I_{c} = 150 \text{ mA}, V_{cc} = -30 \text{ V}$ $I_{B1} = 15 \text{ mA}$
ts	Storage Time	 	225		225	ns	$I_{C} = 150 \text{ mA}, V_{CC} = -30 \text{ M}$ $I_{B1} = I_{B2} = 15 \text{ mA}$
t _f	(test circuit no. 558) Fall Time (test circuit no. 558)	-	30		30	ns	$I_{c} = 150 \text{ mA}, V_{cc} = -30 \text{ M}$ $I_{B1} = I_{B2} = 15 \text{ mA}$

84D 27585

D __

2N4409/FTSO4409 2N4410/FTSO4410

NPN Neon Display Tube Drivers

T. 29.23

V_{CEO} ... 80 V (Min) (2N/FTSO4410)

h_{FE} ... 60 V (Min) @ 1.0 and 10 mA

• Complements ... MPSA55, MPSA56

PACKAGE

2N4409 2N4410 TO-92 TO-92

FTSO4409

TO-236AA/AB

FTSO4410

TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature -55° to 150° C Operating Junction Temperature 150° C

150- C

Power Dissipation (Notes 2 & 3)

 Total Dissipation at
 2N
 FTSO

 25° C Ambient Temperature
 0.625 W
 0.350 W*

 25° C Case Temperature
 1.0 W

 Voltages & Currents
 4409
 4410

 V_{CEO} Collector to Emitter Voltage
 50 V
 80 V

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

	4409 4410		10				
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO}	Collector to Emitter Breakdown Voltage	50		80		٧	$I_{C} = 1.0 \text{ mA}, I_{B} = 0$
BV _{CEX}	Collector to Emitter Breakdown Voltage	80		120		٧	$I_{\text{C}} = 500~\mu\text{A},~V_{\text{BB}} = -5.0~\text{V},$ $R_{\text{BE}} = 8.2~\text{k}\Omega$
ВУсво	Collector to Base Breakdown Voltage	80		120		٧	$I_{C} = 10 \ \mu A, \ I_{E} = 0$
ВVево	Emitter to Base Breakdown Voltage	5.0		5.0		٧	$I_E = 10 \ \mu A, \ I_C = 0$
I _{EBO}	Emitter Cutoff Current		100		100	nA	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$

NOTES:

These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

4. Rating refers to a high current point where collector to emitter voltage is lowest.

Pulse conditions: length = 300 μs; duty cycle = 1%.

For product family characteristic curves, refer to Curve Set T147.

These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8 0 mW/° C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/° C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).

84D 27586

40 27586

2N4409/FTSO4409 2N4410/FTSO4410

T-29-23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

		44	09	44	110		·
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
Ісво	Collector Cutoff Current		1.0		10	nA nA μA	$V_{CB} = 60 \text{ V}, I_E = 0$ $V_{CB} = 100 \text{ V}, I_E = 0$ $V_{CB} = 60 \text{ V}, I_E = 0, T_A = 100^{\circ} \text{ C}$
h _{FE}	DC Current Gain	60		60	1.0	μΑ	$V_{CB} = 100 \text{ V}, I_E = 0, T_A = 100^{\circ} \text{ C}$ $I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$
h _{FE}	DC Pulse Current Gain (Note 5)	60	400	60	400		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$
V _{CE(sat)}	Collector to Emitter Saturation Voltage		0.2		0.2	V	$I_C = 1.0 \text{ mA}, I_B = 0.1 \text{ mA}$
VBEIONI	Base to Emitter "On" Voltage		0.8		0.8	٧	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$
V _{BE(sat)}	Base to Emitter Saturation Voltage		0.8		0.8	V	$I_C = 1.0 \text{ mA}, I_B = 0.1 \text{ mA}$
Ссь	Collector to Base Capacitance		12		12	pF	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 140 \text{ kHz}$
Ceb	Emitter to Base Capacitance		50		50	pF	$V_{EB} = 0.5 \text{ V}, I_C = 0, f = 100 \text{ kHz}$
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	2.0	10	2.0	10		$l_{c} = 10 \text{ mA}, V_{GE} = 10 \text{ V},$ f = 30 MHz

84D · 27587

2N4896 **NPN Power**

84

T-29.23

PACKAGE

V_{CE(sat)} ... 0.7 V @ I_C = 2.0 A
 Low Leakage ... I_{CES} (Max) μ 100 μA @ T_C = 150° C

2N4896

TO-39

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature

-65°C to 200°C

Operating Junction Temperature

200°C

Power Dissipation (Notes 2 & 3)

Total Dissipation at

25° C Ambient Temperature

0.8 W

25°C Case Temperature 100°C Case Temperature

4.0 W

Voltages & Currents

V_{CEO} Collector to Emitter Voltage

60 V

(Note 4)

V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage

120 V 6.0 V

Collector Current

5.0 A

lc **Base Current** la

1.0 A

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 7)

					· · · · · · · · · · · · · · · · · · ·
SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
I _{EBO}	Emitter Cutoff Current		1,0 1.0	μA mA	$V_{EB} = 4.0 \text{ V}, I_{E} = 0$ $V_{EB} = 6.0 \text{ V}, I_{C} = 0$
I _{CES}	Collector Cutoff Current		0.1 1.0 1.0	mA mA μA	$egin{array}{lll} V_{CE} = 60 \ V, \ V_{BE} = 0, \ T_A = 150^{\circ} \ C \\ V_{CE} = 120 \ V, \ V_{BE} = 0 \\ V_{CE} = 60 \ V, \ V_{BE} = 0 \\ \end{array}$
h _{FE}	DC Current Gain (Note 5)	100 35	300		$I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}$ $I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}, T_A = -55^{\circ}\text{ C}$
V _{CEO(sus)}	Collector to Emitter Sustaining Voltage (Notes 4 & 5)	60		٧	$I_{C} = 50 \text{ mA}, I_{B} = 0$
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Notes 5 & 6))		1.0	٧	$I_C = 5.0 \text{ mA}, I_B = 0.5 \text{ A}$
V _{BE(sat)}	Base to Emitter Saturation Voltage (Notes 5 & 6)		1.6	٧	$I_C = 5.0 \text{ mA}, I_B = 0.5 \text{ A}$

NOTES:

- These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
- These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- These ratings give a maximum junction temperature of 200°C and junction-to-case thermal resistance of 25°C/W (derating factor of 40 mW/°C); junction-to-ambient thermal resistance of 219° C/W (derating factor of 4.57 mW/° C).
- Rating refers to a high current point where collector to emitter voltage is lowest.
- Pulse conditions: length = 300 µs; duty cycle = 1%.
- Point of measurement: 1/4" from header,
- For product family characteristic curves, refer to Curve Set T145.

84D 27588

2N4896

T.29-23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 7)

LECTRICAL	CHARACTERIOTICS (==	7 34131	MAX	UNITS	TEST CONDITIONS
SYMBOL	CHARACTERISTIC	MIN			V _{CB} = 10 V, I _E = 0, f = 0.14 MHz
Сов	Output Capacitance		80	pF	
Cib	Input Capacitance		500	pF	$V_{EB} = 0.5 \text{ V}, I_C = 0, f = 0.14 \text{ MHz}$
h _{fe}	Magnitude of Common Emitter Small Signal Current Gain	4.0			$I_C = 0.5 \text{ A}, V_{CE} = 5.0 \text{ V}, f = 20 \text{ MHz}$
	Turn On Delay Time		50	ns	$I_{\rm C} = 5.0 \text{ A}, I_{\rm B1} = 0.5 \text{ A}$
t _d	Rise Time		300	ns	$I_{C} = 5.0 \text{ A}, I_{B1} = 0.5 \text{ A}$
			350	ns	$I_C = 5.0 \text{ A}, I_{B1} = I_{B2} = 0.5 \text{ A}$
t _s	Storage Time		300	ns	$I_C = 5.0 \text{ A}, I_{B1} = I_{B2} = 0.5 \text{ A}$
t _f	Fall Time		300	113	10 0.0 / 1, 12, 02

84D 27595

2N5220/FTSO5220

NPN Small Signal General Purpose Complementary Amplifiers

T-29-23

V_{CEO} ... 15 V (Min)

PACKAGE

h_{FE} ... 30-600 @ 50 mA

2N5220

TO92-1

V_{CE(sat)} ... 0.5 V (max) @ 150 mA

FTSO5220 TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature

-55° C to 150° C

Operating Junction Temperature

150°C

Power Dissipation (Notes 2 & 3)

Total Dissipation at

FTSO 2N

25° C Ambient Temperature

0.350 W* 0.625 W

25°C Case Temperature

1.0 W

Voltages & Currents

V_{CEO} Collector to Emitter Voltage

15 V

(Note 4)

15 V

V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage

3.0 V

Collector Current

500 mA

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted) (Note 6)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO}	Collector to Emitter Breakdown Voltage (Note 5)	15		V	I _C = 10 mA, I _B = 0
ВУсво	Collector to Base Breakdown Voltage	15		٧	$I_C = 100 \ \mu A_1 \ I_E = 0$
BVEBO	Emitter to Base Breakdown Voltage	3.0		v	$I_E = 100 \ \mu A, I_C = 0$
I _{EBO}	Emitter Cutoff Current		100	nA	$V_{EB} = 3.0 \text{ V, } I_{C} = 0$
Ісво	Collector Cutoff Current		100	nA	V _{CB} = 10 V, I _E = 0
h _{FE}	DC Current Gain (Note 5)	25 30	600		$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}$
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		0.5	V	I _C = 150 mA, I _B = 15 mA
VBE(sat)	Base to Emitter Saturation Voltage (Note 5)		1.1	V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$
Ссь	Collector to Base Capacitance		10	pF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
h _{fe}	Small Signal Current Gain	30	1800		$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ I}$
fτ	Current Gain Bandwidth Product	100		MHz	I _C = 20 mA, V _{CE} = 10 V

NOTES:

These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Rating refers to a high current point where collector to emitter voltage is lowest.

Pulse conditions: length = 300 μ s; duty cycle < 2%.

For product family characteristic curves, refer to Curve Set T145.

These ratings give a maximum junction temperature of 150°C and (TO-92) junction-to-case thermal resistance of 125°C/W (derating factor of 8.0 mW/°C); junction-to-ambient thermal resistance of 200°C/W (derating factor of 5.0 mW/°C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).