If the possible values of (X, Y) are finite or countably infinite, (X, Y) is called a two-dimensional discrete RV. When (X, Y) is a two-dimensional discrete RVthe possible values of (X, Y) may be represented as (x_i, y_j) , i = 1, 2, ..., m, ...; j > 11, 2, ..., n, ...

If (X, Y) can assume all values in a specified region R in the xy-plane, (X, Y)is called a two-dimensional continuous RV.

Probability Function of (X, Y)

If (X, Y) is a two-dimensional discrete RV such that $P(x = x_i, y = y_j) = p_{ij}$, then p_{ij} is called the probability mass function or simply the probability function of (X, Y) provided the following conditions are satisfied.

(i) $p_{ij} \ge 0$, for all i and j

(ii)
$$\sum_{j} \sum_{i} p_{ij} = 1$$

The set of triples $\{x_i, y_i, p_{ij}\}$, i = 1, 2, ..., m, ..., j = 1, 2, ..., n, ..., is called the joint probability distribution of (X, Y).

Joint Probability Density Function

If (X, Y) is a two-dimensional continuous RV such that.

$$P\left\{x - \frac{\mathrm{d}x}{2} \le X \le x + \frac{\mathrm{d}x}{2} \text{ and } y - \frac{\mathrm{d}y}{2} \le Y \le y + \frac{\mathrm{d}y}{2}\right\} = f(x, y) \, \mathrm{d}x \, \mathrm{d}y, \text{ then } f(x, y) \text{ is}$$
called the joint of of (X, Y)

called the joint pdf of (X, Y), provided f(x, y) satisfies the following conditions.

(i) $f(x, y) \ge 0$, for all $(x, y) \in R$, where R is the range space.

(ii)
$$\iint\limits_R f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1.$$

Moreover if D is a subspace of the range space $R, P\{(X, Y) \in D\}$ is defined as

$$P\{(X, Y) \in D\} = \iint_D f(x, y) dx dy$$
. In particular

$$P\{(X, Y) \in D\} = \iint_D f(x, y) dx dy. \text{ In particular}$$

$$P\{a \le X \le b, c \le Y \le d\} = \iint_c \int_a^b f(x, y) dx dy$$

Cumulative Distribution Function

If (X, Y) is a two-dimensional RV (discrete or continuous), then F(x, y) = $P\{X \le x \text{ and } Y \le y\}$ is called the cdf of (X, Y). In the discrete case,

$$F(x, y) = \sum_{j} \sum_{i} p_{ij}$$

$$y_{j} \le y \ x_{i} \le x$$
In the continuous case,

$$F(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) dx dy$$

properties of F(x, y)

- (i) $F(-\infty, y) = 0 = F(x, -\infty)$ and $F(\infty, \infty) = 1$
- (ii) $P\{a < X < b, Y \le y\} = F(b, y) F(a, y)$
- (iii) $P\{X \le x, c < Y < d\} = F(x, d) F(x, c)$
- (iv) $P\{a < X < b, c < Y < d\} = F(b, d) F(a, d) F(b, c) + F(a, c)$
- (v) At points of continuity of f(x, y)

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$$

Marginal Probability Distribution

$$P(X = x_i) = P\{(X = x_i \text{ and } Y = y_1) \text{ or } (X = x_i \text{ and } Y = y_2) \text{ or etc.}\}$$

= $p_{i1} + p_{i2} + \dots = \sum_i p_{ij}$

 $P(X = x_i) = \sum_j p_{ij}$ is called the marginal probability function of X. It is defined

for $X = x_1, x_2, ...$ and denoted as P_{i*} . The collection of pairs $\{x_i, p_{i*}\}, i = 1, 2, 3, ...$ is called the *marginal probability distribution of X*.

Similarly the collection of pairs $\{y_j, p_{*j}\}, j = 1, 2, 3, ...$ is called the marginal

probability distribution of Y, where $p_{*j} = \frac{\sum}{i} P_{ij} = P(Y = y_j)$.

In the continuous case,

$$P\{x - \frac{1}{2} dx \le X \le x + \frac{1}{2} dx, -\infty < Y < \infty\}$$

$$= \int_{-\infty}^{\infty} \int_{x - \frac{1}{2} dx}^{x + \frac{1}{2} dx} f(x, y) dx dy$$

$$= \left[\int_{-\infty}^{\infty} f(x, y) \, dy \right] dx \left[\text{since } f(x, y) \text{ may be treated a constant in} \right]$$

$$(x - 1/2 dx, x + 1/2 dx)$$

$$= f_X(x) dx, \text{ say}$$

 $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ is called the marginal density of X.

Similarly, $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$ is called the marginal density of Y.

Note
$$P(a \le X \le b) = P(a \le X \le b, -\infty < Y < \infty)$$

$$= \int_{-\infty}^{\infty} \int_{a}^{b} f(x, y) dx dy$$

$$= \int_{a}^{b} \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx = \int_{a}^{b} f_{X}(x) dx$$
Similarly, $P(c \le Y \le d) = \int_{c}^{d} f_{Y}(y) dy$

Conditional Probability Distribution

 $P\{X = x_i/Y = y_j\} = \frac{P\{X = x_i \mid Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{*j}} \text{ is called } the \ conditional \ probability}$

function of X, given that $Y = y_i$

The collection of pairs, $\left\{x_{i,} \frac{p_{ij}}{p_{*j}}\right\}$ i = 1, 2, 3, ...,

is called the conditional probability distribution of X, given $Y = y_j$.

Similarly, the collection of pairs, $\left\{Y_{j}, \frac{p_{ij}}{p_{i*}}\right\}$, j = 1, 2, 3, ..., is called the *conditional probability distribution of Y given X = x_i*. In the continuous case,

P $\left\{ x - \frac{1}{2} dx \le X < x + \frac{1}{2} dx / Y = y \right\}$

$$= P\left\{x - \frac{1}{2} dx \le X \le x + \frac{1}{2} dx / y - \frac{1}{2} dy \le Y \le y + \frac{1}{2} dy\right\}$$

$$=\frac{f(x, y) dx dy}{f_Y(y) dy} = \left\{\frac{f(x, y)}{f_Y(y)}\right\} dx.$$

 $\frac{f(x, y)}{f_Y(y)}$ is called the conditional density of X, given Y, and is denoted by f(x/y).

Similarly, $\frac{f(x, y)}{f_X(y)}$ is called the conditional density of Y, given X, and is denoted by f(y/x).

Independent RVs

If (X, Y) is a two-dimensional discrete RV such that $P\{X = x_i/y = y_j\} = P(X = x_i)$ i.e., $\frac{p_{ij}}{p_{*j}} = p_{i*}$, i.e., $p_{ij} = p_{i*} \times p_{*j}$ for all i, j then X and Y are said to be independent RVs.

Similarly if (X, Y) is a two-dimensional continuous RV such that $f(x, y) = f_X(x) \times f_Y(y)$, then X and Y are said to be independent RVs.

Random Vectors

Sometimes we may have to be concerned with Random experiments whose outcomes will have 3 or more simultaneous numerical characteristics. To study the outcomes of such random experiments we require knowledge of *n-dimensional random variables* or *random vectors*. For example, the location of a space vehicle in a cartesian co-ordinate system is a three-dimensional random vector.

Most of the concepts introduced above for the two-dimensional case can be extended to the n-dimensional one.

Definitions: A vector $X: [X_1, X_2, ..., X_n]$ whose components X_i are RVs is called a random vector. $(X_1, X_2, ..., X_n)$ can assume all values in some region R_n of the n-dimensional space. R_n is called the range space.

The joint distribution function of (X_1, X_2, \dots, X_n) is defined as $F(x_1, x_2, \dots, x_n)$ = $P[X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n]$

The joint pdf of $(X_1, X_2, ..., X_n)$ is defined as $f(x_1, x_2, ..., x_n)$

$$= \frac{\partial^n F(x_1, x_2 \cdots x_n)}{\partial x_1 \cdot \partial x_2 \cdots \partial x_n}$$
 and satisfies the following conditions.

(i)
$$f(x_1, x_2, ..., x_n) \ge 0$$
, for all $(x_1, x_2, ..., x_n)$

(ii)
$$\iiint_{R_n} \cdots \int f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n = 1$$

(iii)
$$P[(X_1, X_2, ..., X_n) \in D] = \iint_D ... \int f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n \text{ where } D$$

is a subset of the range space R_n .