structure-based carving

Description

주어진 바이너리 파일에서 플래그를 찾아보세요! 힌트는 압축 패스워드는 ZIP 구조 어딘가에... 입니다.

사용한 도구

HxD

Background

zip 파일 구조

 크게 3개의 파일 구조 (Local File Header, Central Directory, End of Central directory record)로 이루어짐

• Local File Header

- 。 ZIP 파일 구조에서 압축된 각 파일에 대한 정보를 담는 부분
- 압축 전후 파일 크기, 파일 수정 시간, CRC-32 체크섬, 파일이름 지역 포인터, 압축 해제시 필요한 아카이브 버전 등 포함

File Name

- 。 압축된 파일 이름 형식에 대한 임의의 길이와 바이트 순서 표시
- 파일 이름의 길이는 65536 문자 초과 불가

File Data

- 。 임의의 길이로 구성된 바이트 배열 형태로 압축된 파일 컨텐츠
- 。 파일이 비거나 디렉토리 포함시 이 배열 사용 X
- 하지만 그 다음 Local File Header 제목은 해당 파일이나 디렉토리 설명

Central Directory

Local File Header의 확장 데이터 뷰 제공

Local File Header의 포함된 데이터를 더하여 파일 속성, 구조에 대한 로컬 기준 가짐

End of central directory record

- 。 모든 아카이브의 싱글 템플릿으로 제공하며 아카이브의 종료 작성
- 포함된 데이터에서 가장 중요한 데이터는 Central Directory 블록의 시작과 로컬 참조의 시작, 아카이브 레코드들의 숫자임

zip 파일 동작 원리

- 1. ZIP파일을 실행 하면 먼저 End of Central Directory 로 들어감
- 2. 그리고 End of Central Directory 에 존재 하는 값인 Central Header Offset 에 존재 하는 Offset으로 이동
- 3. Central Header Offset에 들어있는 값을 따라 이동을 해보면 Central Directory 시작 Offset으로 감
- 4. Central Directory의 맨위 부터 아래로 내려오면서 내부에 존재하는 Central Header 의 개수를 구별하면서 Central Directory에 존재하는 Local Header Offset에 들어있는 값을 확인
- 5. 확인한 Local Header Offset의 값을 바탕으로 Local Header 시작 Offset으로 감
- 6. Local Header Offset 으로 간 뒤 해당 File Data로 이동함으로서 zip파일 사용자가 zip파일 내부 압축 데이터를 확인

Local File Header 구조

https://velog.io/@sooboon/ZIP-%ED%8C%8C%EC%9D%BC-%EA%B5%AC%EC%A1%B0

필드	크기	설명
Signature	4 바이트	시그니처 (0x04034b50, 리틀엔 - 50 4B 03 04)
Version	2 바이트	압축 해제 시 필요한 버전
Flags	2 바이트	바이트 식별자
		비트 00: 암호화된 파일
		비트 01: 압축 옵션
		비트 02: 압축 옵션
		비트 03: 데이터 설명자

필드	크기	설명
		비트 04: 향상된 디플레이션
		비트 05: 패치된 압축 데이터
		비트 06: 강력한 암호화
		비트 07-10: 사용되지 않음
		비트 11: 언어 인코딩
		비트 12: 예약됨
		비트 13: 마스크 헤더 값
		비트 14-15: 예약됨
Compression method	2 바이트	압축 유형 선택 (보통 0x08 Deflated 사용)
		00: 압축 없음
		01: 수축
		02: 압축 계수 1로 감소
		03: 압축 계수 2로 감소
		04: 압축 계수 3으로 감소
		05: 압축 계수 4로 감소
		06: 내파됨
		07: 예약 됨
		08: 수축됨
		09: 향상 수축됨
		10: PKWare DCL 내파됨
		11: 예약 됨
		12: BZIP2를 사용하여 압축됨
		13: 예약됨
		14: LZMA
		15-17: 예약됨
		18: IBM TERSE를 사용하여 압축됨
		19: IBM LZ77 z
		98: PPMd 버전 I, Rev 1

필드	크기	설명	
File modification time	2 바이트	마지막 파일 수정 시간	
		비트 00-04: 초를 2로 나눈 값	
		비트 05-10: 분	
		비트 11-15: 시간	
File modification date	2 바이트	마지막 파일 수정 날짜	
		비트 00-04: 일	
		비트 05-08: 월	
		비트 09-15: 1980년부터 연도	
Crc-32 checksum	4 바이트	파일 내용의 오류 체크	
		이 필드가 작성되지 않을 경우 압축 프로그램은 손상된 파일 로 간주 압축해제 거부	
Compressed size	4 바이트	압축된 데이터의 바이트 크기	
Uncompressed size	4 바이트	원본 데이터의 바이트 크기	
File name length	2 바이트	파일 이름의 길이	
Extra field length	2 바이트	추가 예약 필드로 사용 X	
File name	가변 크기	상대 경로를 포함하는 파일의 이름	
Extra field	가변 크기	추가 정보 저장하는데 사용	
		이 필드는 헤더와 데이터 쌍의 순서로 구성	
		여기서 헤더는 2 바이트 식별자와 2 바이트 데이터로 사이즈 필드를 가짐	

1. HxD로 binary 파일 분석

문제를 다운받으면 carving_target.bin 이라는 바이너리 파일이 존재한다.

Zip 구조 어딘가에 패스워드가 존재하니 zip의 시그니처인 50 4B 03 04를 찾아봤다.

오프셋	잘라내기 (16진수)	잘라내기 (텍스트)
FSIBUL	C2 EF DF B7 F3 EA 39 DB UE DB AU 14 BD E9 FE U3 30 4B U3 U4 UA UU UU U8 U8 UU 93 4C 90	AID-0eYU.U .72ep.PKL-WY.
F517AE	92 EF 80 92 00 4F 9D 25 87 B4 8F 9C FA 16 FC 07 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	′ï€′.O.%‡´.œú.ü. PK •L–W-F
F51CE1	B3 73 7A EB EF F8 FE 20 B7 E0 ED 8A DA 76 FF 07 50 4B 03 04 0A 00 00 08 08 00 95 4C 96 5	³szëïøþ ∙àíŠÚvÿ. PK •L–W´À
F5227E	89 D2 C4 FE 3F 86 48 ED DB 3F 3B 5E 83 D7 E0 5F 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	‰ÒÄþ?†HíÛ?;^ƒ×à _PK •L−W
F522B1	61 2F 62 69 74 70 61 74 74 65 72 6E 73 2F 03 00 50 4B 03 04 0A 00 00 08 08 00 95 4C 96 5	a/bitpatterns/PKL-W
F522E9	70 61 74 74 65 72 6E 73 2F 69 6E 66 6F 2F 03 00 50 4B 03 04 0A 00 00 08 08 00 95 4C 96 5	patterns/info/ PK •L–Wß'
F52CAF	C2 A6 B4 76 3A 9F 62 90 18 06 C6 CB D1 CB D1 9F 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	¦´v:ŸbÆËÑËÑŸ PK •L–Wqû
F530A5	8D 6B 3C 08 61 DD 74 5F 1F C3 49 53 BE 04 BF 01 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	.k<.aÝtÃIS¾.¿. PK L–WÈR
F535CF	1F 45 B0 C0 43 DD 58 08 2D 1D 63 BD 75 E8 FF 07 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	.E°ÀCÝXc½uèÿ. PK •L–Wí>
F538DD	9C 9E EE 41 DA F5 68 80 ED 51 AA 2B B1 71 FE 03 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	œžîAÚõh€íQª+±qþ. PK •L−W[¾
F54465	58 73 25 D8 F7 59 D5 53 47 48 B0 8E 3C 1C FC 17 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	Xs%Ø÷YÕSGH°Ž<.ü. PK •L–W.
F5482C	93 EE 01 45 75 7C 4E 2A 41 E4 DB BE BF C5 7F 03 50 4B 03 04 0A 00 00 08 08 00 95 4C 96 5	"î.Eu N*AäÛ¾¿Å PK •L–W³d
F54E0F	01 8B A2 B6 35 81 B0 82 3C 1C 6A 2B 0F C3 7F 01 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	.<¢¶5.°,<.j+.Ã PK •L–WLŽ
F551A3	83 F1 83 19 FA 6B D0 DB B6 DB EE A9 31 9E BD 7F 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	fñf.úkĐÛ¶Ûî©1ž½. PK •L–WeÁ
F5542C	20 F3 5E FA 6E 95 7B C9 EF F4 48 08 5E 7A FF 00 50 4B 03 04 0A 00 00 08 08 00 95 4C 96 5	ó^ún•{ÉïôH.^zÿ. PK •L–W‡
F55679	55 48 A3 DB 51 5F EA B3 A4 38 64 69 F0 37 78 05 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	UH£ÛQ_곤8dið7x. PKL –W©¡
F56430	E4 A4 B0 C9 43 DC EA 4E D2 E9 0A EF F7 07 FF 05 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	䤰ÉCÜêNÒé.ï÷.ÿ. PK •L–W©t
F568C6	2D 39 3A 35 DE 17 0A 9F F4 75 38 83 6F 82 FF 00 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	-9:5PŸôu8fo,ÿ. PK •L–WvÉ
F56E04	6F EO CA AA 7C 16 5C 37 2A A5 B2 55 F5 DC FD 17 50 4B 03 04 0A 00 00 08 08 00 95 4C 96	oàʪ .₩7*¥²UõÜý. PK •L–W、†

1008개의 검색 결과가 나왔다 → 검색 범위를 좁힐 필요성 존재 → zip 파일 구조를 알아야함

zip 시그니처 뒤에 이어지는 숫자를 알기 위해선 압축 생성 버전과 Flags, Compression method 정도를 알아야한다.

압축 생성 버전: 14 (일반적으로 쓰이는 버전)

Flags: 00 (암호화 된 파일)

압축 유형: 08 or 09 (일반적으로 쓰이는 유형)

2. 50 4B 03 04 14 00 08 / 50 4B 03 04 14 00 09 검색

50 4B 03 04 14 00 08 검색 - 39개의 결과

체크섬 검색 (39개의 검색 결과)				
오프셋	잘라내기 (16진수)	잘라내기 (텍스트)		
102DEB1	01 00 3E 00 00 00 BD D3 01 00 00 00 4A 4D 01 00 50 4B 03 04 14 00 08 08 08 00 00 00 51	>½óJM PK .QW		
102DFE0	50 4B 07 08 4C 90 33 6B E8 00 00 00 4B 01 00 00 50 4B 03 04 14 00 08 08 08 00 00 00 51 5	PKL.3kèK PK QW		
102EA16	50 4B 07 08 33 8C D4 C2 DC 09 00 00 61 13 00 00 50 4B 03 04 14 00 08 08 08 00 00 00 51	PK3ŒÔÂÜa PK QW		
102ED14	50 4B 07 08 5D C5 7B 94 A7 02 00 00 61 04 00 00 50 4B 03 04 14 00 08 08 08 00 00 00 51	PK]Å{"§a PK QW		
102F588	50 4B 07 08 8C 26 CD C0 22 08 00 00 DA 10 00 00 50 4B 03 04 14 00 08 08 08 00 00 00 51	PKŒ <u>Í</u> À"Ú PK QW		
1005500	FO 4D 07 00 44 06 00 00 F0 00 00 00 74 46 00 00 F0 4D 00 04 44 00 00 00 00 00 00 F4	DIC 4 #00 - DIC OW		

50 4B 03 04 14 00 09 검색 - 1개의 결과 → 20240421로 시작하는 png 파일 존재 → 추출

아래로 내리다보면 password 비밀번호를 발견할 수 있다.

3. 50 4B 03 04 14 00 09로 시작하는 부분 추출

추출 후 a1b2c3d4e5f6을 입력하여 압축을 해제하면 flag 이미지 파일이 나온다.

DH{Y0uKn0wZ1p\$TrUC7ur3?}

FLAG

DH{Y0uKn0wZ1p\$TrUC7ur3?}