XFS for Linux

Christoph Hellwig LST e.V. hch@lst.de

http://verein.lst.de/~hch/

What exactly is a filesystem?

Organization of disk space

- □We have a big disk and want to store small data items on them
- □ Files and directories used to organize

In UNIX everything is a stream of bytes

- ☐ More complex file defintion in other OSes
- □ Devices are also presented in the filesystem
- □Linux takes it to the extreme (lots of virtual filesystems)

So where does XFS fit exactl?

Three generation of UNIX filesystems:

- □v7 / sysv / coherent / minix
- □ffs / ext2
- □vxfs / jfs / xfs (/reiserfs)

Features of the 3rd generation UNIX filesystems

- □Intent logging / journaling
- □ Flexible metadata structures
- □ Dynamic inode allocations
- □ Extents

A little bit of history

- Back in Stoneage (1993)
 - □Berkely FFS was state of the art
 - □IRIX had EFS (FFS + Extents)
- Limitations
- □Small file sizes (2 GB)
- □Small filesystem sizes (8 GB)
- ☐ Statically allocated metadata
- □Long recovery times
- □ Very slow operation on big directories
- □ No extentended attributes
- □Not very suitable for media streaming

All this is addressed by XFS

<add marketing blurbs here>

XFS Features (1)

- □XFS uses B+ trees extensively instead of linear structures
 - Olocate free space
 - oindex directory entries
 - omanage file extents
 - okeep track of the locations of file index information
- □XFS is a fully 64-bit file system
 - ○64bit variables for global counters
 - ○64bit disk addresses
 - ○64bit inode numbers (not useable under Linux)
 - 18 million terabytes theoretical max filesystem size

XFS Features (2)

- □ Partitioned into Allocation Groups
 - oeach AG manages its own free space and inodes
 - oprovides scalability and parallelism within the file system
 - Olimits the size of the structures needed to track this information
 - oallows many internal pointers to be 32-bits
 - ○AGs typically range in size from 0.5 to 4GB
 - ofiles and directories are not limited to a single AG.

XFS Features (3)

- □ Sophisticated support utilities
 - ofast mkfs (make a file system)
 - odump and restore (utilities for backup)
 - oxfsrepair to fix corrupt filesystem
 - oxfs_fsr (XFS defragmenter)
 - oxfsdb (XFS debug)
 - oxfscheck (XFS check)
 - oxfs_growfs (enlarges filesystems online)

Porting XFS to Linux (1) - Basics

Why?

- □Linux had the same issues (in 1999)
- □SGI wants to sell Linux Servers
- □SGI wants to be credible in the OSS Community

How?

- □Kernel code is not portable
- □ Either rewrite or add a glue layer
- □XFS port started with lots of glue
- ☐ More and more native interfaces used

Porting XFS to Linux (2) - Glue layers

Linvfs

- ☐ Maps Linux file/inode ops to IRIX vnode/vfs ops
- □Nowdays very small

Pagebuf

□ Implements an IRIX-like buffercache ontop of the linux pagecache

The support/ directory

□ Implements IRIX helpers ontop of linux ones

Porting XFS to Linux (3) - Mismatches

- □ioctl vs fnctl
 - OXFS has many fcntl on IRIX
 - Linux doesn't allow fs-specific fcntls
 - OUse ioctls instead
- □ Credentials
 - OIRIX passed down credentials to the fs
 - •Fs has to do access checking by itself
 - OLinux does access checks in the VFS
 - Solution: empty struct cred

Porting XFS to Linux (4) - Refinements

- □ Direct use of Linux data structures
 - Passing down dentry
 - ostruct statfs vs statvfs
- □ Duplicate code removal
 - OLinux does _much_ more work in common code
 - ○About 2000 LOC gone
- □Use the generic I/O code
 - Early versions uses pagebuf-based I/O path
 - ONow uses generic Linux routines
 - ODelalloc was hard to fit into this model

Volume Manager Integration

- □Linux filesystems traditionally use fixed size I/O requests
 - OMakes volume managers a lot easier
 - ○Too much overhead
- □ Linux 2.5 allows variable sized I/O requests
 - Exactly what XFS needs
 - ONot properly handled by all drivers for a long time
- □Linux 2.4 needs hacks
 - OGuess whether a Volume Manager is used
 - The vary_io extension would help XFS

Interesting XFS Features

- □ Direct I/O
 - OAllows to perform non-cached, direct to userspace I/O
 - Ported to Linux together with XFS
 - Independent implementation in Linux 2.4.10
 - OXFS ported to generic framework
 - Still advantages over generic implementation
- □ Delayed Allocation
 - Overy important for XFS performance
 - OIRIX buffercache rewritten around it
 - ODifficult to fit into 2.4 VM
 - ○2.5 way of buffer writeout helps a lot
 - ○Same concept used on 2.4 now too

Data Migration API - DMAPI

- □ A horrible X/Open standard for HSM
 - ostill used a lot (Cray/SGI DMF, Veritas, IBM)
- □XFS is the only Linux filesystem with DMAPI support
 - Othere was an OpenXDSM project, but it's dead now
- □ DMAPI is incompatible with Linux mount semantics
 - oneed to take special care when mounting
 - Othus not part of XFS in Linus' 2.5 tree, only in SGI's tree

Opensourceing XFS

- □ Licensing questions
 - Opensource or not?
 - Community doesn't care about proprtary drivers
 - Filesystem API changes a lot
 - ONot GPL-compatible code won't be merged into mainline
- □ Enncumbrance review
 - Contact as much as possible original hackers
 - ○Compare with other codebases (SVR4, BSD, ..)
 - ⊳keywords search
 - ▶ prototype comparism
 - Very few matches found and corrected
 - busually removal of uneeded code

IRIX vs Linux

- □Two different codebases
 - ocore code is kept in sync
- □ Performance hard to compare due to different hardware
 - oprobably faster on Linux for smaller I/O
 - oprobably faster on IRIX for really large I/O
- ☐ Guranteed rate I/O only avaible on IRIX
 - Obecomes possible with Linux 2.6
- □ Some features were in Linux before IRIX
 - ogroup quotas
 - ○v2 log format

Currenst Status

- □XFS 1.3
 - ○4th prerelease is out now
 - onative byteorder incore extents
 - osupport for sector sizes != 512
 - Olots of speedups
- □Linux 2.4
 - opart of Alan Cox's tree now
 - orequired patches slowly go to Marcelo
- □Linux 2.5
 - Olagging a little bit behind 2.4 sometimes
 - OXFS takes advantage of lots of 2.5 core changes
- □xfsprogs
 - oincluded in all major Linux distributions except Red Hat
 - oported to FreeBSD, Darwin and IRIX (again)

Future

- □ Case insensitive support
 - obig speedup for samba
- □Inode reclaim
 - oallows to free space occupied by inodes again
- □ Performance tuning (especially on 2.5)

Why you want to use XFS

- ☐ Stable, mature codebase
 - oldest journaling filesystem available on Linux
- □ Very good performance for large IOS
- □ Designed for large systems
- □DMAPI support
- □Good support for ACLs / EAs
- □Same disk format as on IRIX

Why you don't want to use XFS

□No data journaling

□ Baselines when hacking fs code :)

XFS/Linux Release History

Ш

0

- ▶2000/03/30 Linux XFS source code officially available
- ▶2000/06/23 Usenix 2000 XFS pre-beta iso Image
- ▶2000/09/22 XFS Beta Release
- ▶2001/05/01 XFS 1.0 Release
- ▶2001/07/10 XFS 1.0.1 Release
- ▶2001/09/27 Mandrake 8.1 is available with native XFS support.
- ▶2001/11/16 XFS 1.0.2 Release
- ▶2002/04/17 XFS 1.1 Release
- ▶2002/04/18 SuSE 8.0 is available, with XFS filesystem support.
- ▶2002/09/16 XFS is merged into Linus' 2.5 development tree.
- ⊳2003/02/11 XFS 1.2 Release
- ▷2003/04/28 XFS is now in Alan Cox's 2.4.21-rc1-ac3 kernel.
- ▶2003/07/?? XFS 1.3 Release

Ressources

□XFS/Linux homepage

ohttp://oss.sgi.com/projects/xfs/