PredictFX: Exchange Rate Prediction

End-to-End MLOps Pipeline (Maturity Level 2 to 3) for Monthly USD/CAD Forecasting

Team Members: 1) Harshavardhan Gadila 2) Aditya Rajpurohit

Demo site https://harshavardhangadila.com — plots & live inference- data.

Public repo: https://github.com/Harshav88/Team-Singularity

Abstract

USD/CAD reflects oil prices, rate-differentials, and cross-border trade, making it an excellent test-bed for macro-aware time-series forecasting. We assemble sixteen monthly indicators from FRED (eight U.S., eight Canadian) and daily FX closes from Yahoo Finance over 2011-01 → 2025-04. After forward-filling and magnitude scaling, we benchmark six neural architectures: Multilayer Perceptron (MLP), TabNet, plain LSTM, Temporal Convolutional Network (TCN), Seq2Seq LSTM, and an Attention-enhanced LSTM. An 80 / 20 chronological split preserves temporal integrity; the target column is zero-masked at inference to avoid leakage. Best test-set errors are MAE 0.028 ¢ / RMSE 0.044 ¢ (MLP) and 0.030 ¢ / 0.047 ¢ (Seq2Seq). We wrap the workflow in a Vertex AI scheduled pipeline that (i) polls FRED each night, (ii) retrains when fresh data arrive, (iii) registers models in MLflow, and (iv) pushes the champion image to Cloud Run. A Gradio front-end served on <harshavardhangadila.com> displays actual-vs-predicted curves, attention heat-maps, and TabNet feature masks. TensorBoard logs, experiment metadata, and CI/CD logs (GitHub Actions + Cloud Build) satisfy MLOps maturity level 2—automated, repeatable training with manual but low-friction deployment. The project demonstrates that lightweight deep learning plus disciplined MLOps delivers accurate, explainable, and continuously-updated FX forecasts suitable for treasury risk management and macro research.

1. Introduction

Foreign-exchange volatility affects commodity exporters, importers, and retail remitters alike. While the classic random-walk often beats naïve econometric models, practitioners know that interest-rate parity and inflation gaps influence USD/CAD on monthly horizons. We posit that non-linear deep learners, supplied with curated macro features, outperform both statistical baselines and price-only LSTMs. Our deliverable is a **production-grade MLOps pipeline**—not merely a notebook—showing reproducible training, automated retraining, continuous evaluation, and a public demo site.

2. Related

- **Econometric roots** Meese & Rogoff (1983) established the random-walk dominance; subsequent cointegration models add CPI and rate spread.
- Deep learning on FX ticks Bao et al. (2017) used CNN-LSTM on high-frequency EUR/USD;
 Zhang & Yan (2020) introduced transformer-based sequence tagging.
- Macro-aware nets Few studies fuse low-frequency fundamentals with deep nets. Kwon (2023) applied TabNet to KRW/USD but without MLOps rigor. Our work differs by (i) integrating six architectures in a uniform pipeline, (ii) publishing all artifacts, and (iii) delivering Vertex-Al automated training.

3. Data

Category U.S. series (FRED ID) Canada series (FRED ID)

Policy rates FEDFUNDS IRSTCB01CAM156N

Inflation CPIAUCSL CANCPIALLMINMEI

Category U.S. series (FRED ID) Canada series (FRED ID)

Unemployment UNRATE LRUNTTTTCAM156S

10-yr yield DGS10 IRLTLT01CAM156N

Exports (\$ B) **EXPGS** XTEXVA01CAQ667S

Imports (\$ B) **IMPGS** XTIMVA01CAQ667S

House-price index CSUSHPINSA QCAR628BIS

Retail spend (\$ B) PCEC NCPHISAXDCCAQ

Forex data: Yahoo CAD=X daily close → monthly last-value.

Pre-processing: forward-fill, convert raw \$ to billions, MinMax scaling. *Split*: 2011-02 \rightarrow 2022-04 train, 2022-05 \rightarrow 2025-04 test (172 rows total).

4. Methods

4.1 Feature engineering

- 1. **Static matrix** for TabNet/MLP: one row = one month.
- 2. **Sliding windows** (length 6) for sequence models, target = t + 1.
- 3. **Leakage guard**: drop/zero FX column during test inference.

4.2 Model

Model	Config	Motivation
TabNet	3 decision steps, N_d = 8	interpretable masks for tabular data
MLP	$128 \rightarrow 64 \rightarrow 32$ dense, ReLU	fast, strong baseline
Plain LSTM	64 units, return_seq False	compare to price-only nets
TCN	4 blocks, kernel 3, dilation {1,2,4,8}	long receptive field, parallel
Seq2Seq LSTM	Enc 128, Dec 64, RepeatVector 3	multi-step forecast

Attn-LSTM LSTM 64 + additive attention accuracy + explainability

All optimise MSE, Adam, EarlyStopping(patience 10) prevents over-fit. Hyper-parameter choices, loss curves.

5 Experiments

5.1 Metrics

Model	MAE (¢)	RMSE (¢)	Params
MLP	0.028	0.044	12 k
Seq2Seq LSTM	0.030	0.047	96 k
Attn-LSTM	0.061	0.066	38 k
TCN	0.072	0.083	44 k
LSTM	0.089	0.102	26 k

Model MAE (¢) RMSE (¢) Params

TabNet 0.140 0.155 21 k

5.2 Visualisation

TabNet – TabNet model: USD CAD Prediction vs Actual

Seq2Seq_LSTM - Seq2Seq LSTM: USD CAD Prediction vs Actual

MLP.png - Multilayer Perceptron: USD CAD Prediction vs Actual

Attention_LSTM - Attention-Enhanced LSTM: USD CAD Prediction vs Actual

Macro Economic Indicators - plots for various indicators USA vs CANADA

5.3 Ablation study

Variant MAE Observation

Window 3 (Seq2Seq) +0.012 shorter context hurts

Drop CPI features +0.018 inflation gap critical

Drop export/import +0.004 minor impact

5.4 Comparison with published baselines

Random-walk MAE on same test window = 0.089; our best model beats it by 68 %.

6 MLOps Implementation

6.1 Pipeline architecture

FRED/Yahoo API Data \rightarrow Vertex Al Jupyter Notebook (Cloud Run) -> DropBox to store plots -> Frontend React website to display(https://harshavardhangadila.com/)

 $\{ \text{ Vertex Al Pipeline} - \text{ Scheduler } \} \text{ to Run on } \mathbf{1}^{\text{st}} \text{ of every month. The above flow continuous i.e..,}$ Automated training and predictions.

6.2 MLOps maturity level in between 2 to 3

- · Automated, reproducible training
- Centralised experiment tracking (MLflow)
- Manual but one-click deployment (Cloud Run revision)

7. Front-End & UX

https (SSL) secured website to avoid malicious/wrong plots/Graphs injection (https://harshavardhangadila.com/) developed using ReactJS and deployed on cloud.

8. Conclusion

Deep learning, when carefully engineered macro inputs, can beat naïve and econometric FX baselines. A simple MLP suffices for near-term accuracy, but attention and Seq2Seq nets offer interpretability and multi-step power. The Vertex-AI pipeline ensures models retrain automatically as new macro prints arrive, maintaining relevance without manual ops effort. Future work targets Informer and Temporal Fusion Transformer for even longer contexts, real-time data ingestion (daily), and drift-triggered autorollbacks (MLOps Level 3 to 4).