

Statistics Ex 7.2 Q5

Answer:

Let the assume mean be A = 25.

$marks(x_i)$:	frequency (f_i) :	$d_i = x_i - A$	$f_i d_i$
		$d_i = x_i - A$ $= x_i - 25$	
15	5	-10	-50
20	8	-5	-40
22	11	-3	-33
24	20	-1	-20
25	23	0	0
30	18	5	90
33	13	8	104
38	3	13	39
45	1	20	20
	$\sum f_i = 102$		$\sum f_i d_i = 110$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have $N=\sum f_i=102,\;\sum f_id_i=110\,\mathrm{and}\,A=25$.

Putting the values in the above formula, we get

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 25 + \frac{1}{102} \times (110)$$

$$= 25 + \frac{110}{102}$$

$$= 25 + 1.078$$

$$= 26.078$$

$$\approx 26.08 \text{ (approximate)}$$

Hence, the average number of marks is 26.08.

Statistics Ex 7.2 Q6

Answer:

Let the assume mean be A = 4.

No. of students absent (x_i) :	No. of days (f_i) :	$d_i = x_i - A$	$f_i d_i$
		$= x_i - 4$	
0	1	-4	-4
1	4	-3	-12
2	10	-2	-20
3	50	-1	-20 -50
4	34	0	0
5	15	1	15
6	4	2	8
7	2	3	6
	$\sum_{i} f_{i} = 120$		$\sum f_i d_i = -5$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have
$$N = \sum f_i = 120$$
, $\sum_{i=1}^{i-1} f_i d_i = -57$ and $A = 4$.

Putting the values in the above formula,

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 4 + \frac{1}{120} \times (-57)$$

$$= 4 - \frac{57}{120}$$

$$= 4 - 0.475$$

$$= 3.525$$

$$\approx 3.53 \text{ (approximate)}$$

Hence, the mean number of students absent per day is approximately 3.53.

********* END *******