Mathematische Anwendersysteme Einführung in Sage

Jochen Schulz, Cristoph Rügge

01.03.2010

Klausur

Aufgabe	1	2	3	4	5	6	8	Summe
Mögl. Pkt.	4	2	3	2	8	5	5	29
Erreichte Pkt.								

Bitte eintragen:

Nachname:	
Vorname:	
Studiengang:	
Semester:	
Immatrikulationsnummer:	

Hinweise:

- Die Klausur beginnt um 10.00 Uhr und endet um 11.30 Uhr.
- Benötigte Hilfsmittel sind Stift und Papier.
- Erlaubte Hilfsmittel sind gedruckte sowie handgeschriebene Notizen oder Skripte.
- Benutzen Sie zum Aufschreiben der Aufgaben Sage-Syntax.

Aufgabe 1

4 Punkte

- Definieren Sie in Sage eine Liste, ein Tuple, ein Dictionary und eine Menge (Set).
- Geben Sie jeweils eine kurze Erklärung zum Datentyp. Geben Sie 4 Operationen an, die Sie nur mit jeweils einen der genannten Datentypen durchführen können.

Aufgabe 2

2 Punkte

Welche Möglichkeiten stehen zur Verfügung um die Gleichheit bei einer Gleichung des Typs Ausdruck1 == Ausdruck2 zu überprüfen ?

Aufgabe 3

3 Punkte

Erklären Sie welche Vor- und Nachteile die Darstellung mit rationalen Zahlen im Vergleich zu reellen Zahlen hat.

Aufgabe 4

2 Punkte

Schreiben sie eine Funktion mit def, die folgende Funktion berechnet:

$$f(s) = \int_0^1 e^{-st} \sin(t^2) dt$$

Aufgabe 5

8 Punkte

Schreiben Sie eine Abfolge von Befehlen die mit einer gegebenen unbekannten Funktion $f: \mathbb{R} \to \mathbb{R}$ eine Kurvendiskussion durchführt, ohne dass Sie die Befehlsfolge noch an die Funktion anpassen müssten. Dabei sollen folgende Schritte bearbeitet werden:

- Untersuchen Sei das Verhalten von f(x) für $x \to \pm \infty$.
- Finden Sie die Nullstellen.
- Berechnen Sie die Extremstellen und stellen Sie fest ob es sich um Maxima oder Minima handelt. Geben Sie jeweils auch den Funktionswert mit aus.

Aufgabe 6

5 Punkte

Schreiben Sie eine Funktion mit Input-Variablen x_0 und TOL, die die Folge

$$x_{n+1} = x_n - \frac{x_n^2 - 5}{2x_n}, \quad n \in \mathbb{N}$$

berechnet und abbricht, wenn $|x_n - x_{n-1}| \le TOL$ ist. Die Funktion soll x_n und das zugehörige n zurückgeben.

Aufgabe 7

5 Punkte

Schreiben Sie ohne Verwendung der Funktion max eine Sage-Prozedur, die aus einer Liste von Zahlen die größte Zahl zurückliefert (Typenüberprüfung braucht nicht durchgeführt zu werden).