DOI: 10.2478/aicu-2013-0018

HARMONIC 1-TYPE CURVES AND WEAK BIHARMONIC CURVES IN LORENTZIAN 3-SPACE

BY

H. KOCAYİĞİT, M. ÖNDER and H.H. HACISALİHOĞLU

Abstract. In this paper, we give definitions and characterizations of harmonic 1-type and weak biharmonic curves by using the mean curvature vector field of a Frenet curve in the Lorentzian 3-space L^3 . We also study weak biharmonic curves whose mean curvature vector fields are in the kernel of normal Laplacian ∇^{\perp} . We give some theorems for them in L^3 . Moreover, we give some characterizations and results for a Frenet curve in the same space.

Mathematics Subject Classification 2010: 53A35, 53C50.

Key words: harmonic 1-type curve, weak biharmonic curve, geodesic, helix, degenerate helix.

1. Introduction and preliminaries

Chen and Ishikawa have classified the Biharmonic curves in pseudo-Euclidean space E_v^n . They have obtained that every biharmonic curve lies in a 3-dimensional totally geodesic subspace. Thus, it suffices to classify biharmonic curves in a semi-Euclidean 3-space (see Chen and Ishikawa [2]). Kocayiğit and Hacisalihoğlu [13] have given the characterizations of harmonic and biharmonic curves in Euclidean 3-space. Also, they have studied the characterizations of 1-type and biharmonic curves in Lorentzian 3-space L^3 and found the relationships between the curvature and the torsion of these curves (see Kocayiğit and Hacisalihoğlu [12]).

In this paper, we give the characterizations of harmonic 1-type and weak biharmonic curves in semi-Euclidean 3-space in terms of curvature and torsion. Firstly, according to normal Levi-Civita connection, we point out the general differential equations characterizing Frenet curves (both non-null and null) in Lorentzian 3-space L^3 . Moreover, we classify the special curves from the differential equations. More precisely, we show that a circular helix is a harmonic 1-type curve in L^3 and a pseudo circle (degenerate helix) is a weak biharmonic curve in the same space. In the final section, we give some theorems, corollaries and propositions.

Let now introduce a brief summary of the Lorentzian 3-space L^3 .

Let (M,g) be a time-oriented Lorentz 3-manifold. Let $\gamma: I \to M$ be a unit speed curve on M. Namely, the velocity vector filed γ' satisfies $g(\gamma',\gamma')=\varepsilon_1=\pm 1$, where g shows the Lorentzian metric given by $g(a,b)=-a_1b_1+a_2b_2+a_3b_3$ for the vectors $a=(a_1,a_2,a_3),\ b=(b_1,b_2,b_3)\in L^3$. The constant ε_1 is called the causal character of γ . Then, a unit speed curve γ is said to be spacelike or timelike if its causal character is 1 or -1, respectively. A unit speed curve γ is called geodesic if $\nabla_{\gamma'}\gamma'=0$, where ∇ is the Levi-Civita connection of (M,g). Moreover, the curve γ is also said to be a geodesic if $\nabla_{\gamma'}\gamma'=0$, where ∇^\perp is the normal Levi-Civita connection of (M,g). A unit speed curve γ is said to be a Frenet curve if $g(\gamma'',\gamma'')\neq 0$. Like Euclidean geometry, every Frenet curve γ on (M,g) admits an othonormal Frenet frame field $\{V_1,V_2,V_3\}$ along γ such that $V_1=\gamma'(s)$ and $\{V_1,V_2,V_3\}$ satisfies the following Frenet-Serret formula (see Izumiya and Takiyama [8,9] and Kobayashi [11]):

(1.1)
$$\begin{bmatrix} \nabla_{\gamma'} V_1 \\ \nabla_{\gamma'} V_2 \\ \nabla_{\gamma'} V_3 \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon_2 \kappa & 0 \\ -\varepsilon_1 \kappa & 0 & -\varepsilon_3 \tau \\ 0 & \varepsilon_2 \tau & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}.$$

The functions $\kappa \geq 0$ and τ are called the curvature and torsion, respectively. The vector fields V_1, V_2, V_3 are called tangent vector field, principle normal vector field and binormal vector field of γ , respectively. The constants ε_2 and ε_3 are defined by

$$\varepsilon_i = g(V_i, V_i), \quad i = 2, 3,$$

and called second causal character and third causal character of γ , respectively. Note that

$$\varepsilon_3 = -\varepsilon_1 \varepsilon_2.$$

As in the case of Riemannian geometry, a Frenet curve γ is a geodesic if and only if $\kappa=0$. A circular helix is a Frenet curve whose curvature

and torsion are constants. A Frenet curve with constant curvature and zero torsion is called a pseudo circle. Pseudo circles are regarded as degenerate helices. Helices, which are not circles, are frequently called proper helices.

Here we use the normal Laplacian.

Let $\gamma: I \to M$ be a curve parametrized by the arclength on Lorentz 3-manifold M. Denote by $\{V_1, V_2, V_3\}$ the Frenet frame of γ as before. The normal bundle $\chi^{\perp}(\gamma(I))$ of the curve γ is given by

$$\chi^{\perp}(\gamma(I)) = Sp\{V_2(s), V_3(s)\}.$$

The normal connection $\nabla_{\gamma'}^{\perp}$ of γ is

(1.4)
$$\nabla_{\gamma'}^{\perp} : \chi^{\perp} (\gamma(I)) \to \chi^{\perp} (\gamma(I))$$

$$\nabla_{\gamma'}^{\perp} \xi = \nabla_{\gamma'} \xi - g \left(\nabla_{\gamma'} \xi, V_1 \right) V_1, \quad \forall \xi \in \chi^{\perp} (\gamma(I)).$$

 $\nabla_{\gamma'}^{\perp}\xi$ is called normal component of $\nabla_{\gamma'}\xi$. According to (1.4), the Frenet-Serret formulas are given by

(1.5)
$$\nabla^{\perp}_{\gamma'} V_2 = -\varepsilon_3 \tau V_3, \quad \nabla^{\perp}_{\gamma'} V_3 = \varepsilon_2 \tau V_2.$$

Let us denote the normal Laplace-Beltrami operator by Δ^{\perp} of γ and mean curvature vector field along γ by H. The mean curvature vector field H of a unit speed curve γ is $H = \varepsilon_1 \nabla_{\gamma'} \gamma'$. If γ is a Frenet curve, then H is given by

(1.6)
$$H = -\varepsilon_3 \kappa V_2,$$

where κ is the curvature of γ .

The normal Laplacian operator of γ is defined by

(1.7)
$$\Delta^{\perp} = -\varepsilon_1 \left(\nabla_{\gamma'}^{\perp} \right)^2 = -\varepsilon_1 \nabla_{\gamma'}^{\perp} \nabla_{\gamma'}^{\perp}$$

(see Chen and Ishikawa [3], Ferrandez, Lucas and Merono [4] and Ikawa [7]).

To close this section, we recall the notion of harmonic 1-type and weak biharmonicity for unit speed curves.

Definition 1.1. A unit speed curve $\gamma:I\to M$ on a Lorentz 3-manifold M is said to be harmonic 1-type if

$$(1.8) \Delta^{\perp} \mathbf{H} = \lambda \mathbf{H}$$

holds (Kiliç [10]).

Definition 1.2. A unit speed curve $\gamma:I\to M$ on a Lorentz 3-manifold M is said to be weak biharmonic if

$$\Delta^{\perp} \mathbf{H} = 0,$$

holds (Kiliç [10]).

112

Definition 1.3. A unit speed curve $\gamma: I \to M$ on a Lorentz 3-manifold M is said to be a general helix if $\frac{\kappa}{\tau}$ is constant but κ and τ are not constant (Hacisalihoğlu and Öztürk [5,6]).

2. Harmonic 1-type non-null curves and weak biharmonic non-null curves on Lorentzian 3-manifolds

In this section, we give the characterizations of harmonic 1-type and weak biharmonic non-null curves in Lorentzian 3-space.

Theorem 2.1. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). Then, along the curve $\gamma, \Delta^{\perp}H = \lambda H$ holds if and only if

(2.1)
$$\varepsilon_1 \varepsilon_2 \kappa \tau^2 - \varepsilon_1 \varepsilon_3 \kappa'' = \varepsilon_3 \lambda \kappa, \ 2\kappa' \tau + \kappa \tau' = 0.$$

Proof. From (1.5), (1.6) and (1.7) we get

(2.2)
$$\Delta^{\perp} \mathbf{H} = (-\varepsilon_1 \varepsilon_2 \kappa \tau^2 + \varepsilon_1 \varepsilon_3 \kappa'') V_2 - (2\kappa' \tau + \kappa \tau') V_3.$$

Then, from (2.2) and (1.8) we have

$$(2.3) \qquad (-\varepsilon_1 \varepsilon_2 \kappa \tau^2 + \varepsilon_1 \varepsilon_3 \kappa'') V_2 - (2\kappa' \tau + \kappa \tau') V_3 = \varepsilon_3 \lambda \kappa V_2.$$

According to (2.3), the equations (2.1) are obtained. Conversely, the equations (2.1) satisfy the equation (1.8).

Theorem 2.2. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). Then, along the curve $\gamma, \Delta^{\perp}H = \lambda H$ holds if γ is a circular helix, where

$$\lambda = -\tau^2.$$

Proof. Since γ is a circular helix, the curvatures κ and τ are constants. Then (2.1) holds and we have $\lambda = -\tau^2$. From that $\Delta^{\perp}H = \lambda H$ is satisfied. \square

Corollary 2.1. Let γ be a non-null Frenet curve on Lorentzian 3-manifold (M, g). Then γ is harmonic 1-type if γ is a circular helix.

Theorem 2.3. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). Then, γ is weak biharmonic curve if and only if

(2.5)
$$\varepsilon_1 \varepsilon_2 \kappa \tau^2 - \varepsilon_1 \varepsilon_3 \kappa'' = 0, \ 2\kappa' \tau + \kappa \tau' = 0.$$

Proof. Since γ is weak biharmonic, $\Delta^{\perp}H = 0$ holds. From Theorem 2.1, we have (2.5). Conversely, the Equations (2.5) satisfy the equation $\Delta^{\perp}H = 0$. Thus, γ is weak biharmonic curve.

Corollary 2.2. Let γ be a non-null Frenet curve on Lorentzian 3-manifold (M,g). Then γ is weak biharmonic if γ is a pseudo circle (degenerate helix).

Example 2.1. Let consider the spacelike curve $\gamma(s)$ given by the parametrization

$$\gamma(s) = \left(a \cosh \frac{s}{\sqrt{a^2 + b^2}}, \ a \sinh \frac{s}{\sqrt{a^2 + b^2}}, \ \frac{bs}{\sqrt{a^2 + b^2}}\right); \ a, b > 0.$$

Frenet vectors of $\gamma(s)$ are found as follows

$$V_1(s) = \frac{1}{\sqrt{a^2 + b^2}} \left(a \sinh \frac{s}{\sqrt{a^2 + b^2}}, \ a \cosh \frac{s}{\sqrt{a^2 + b^2}}, \ b \right),$$

$$V_2(s) = \left(\cosh \frac{s}{\sqrt{a^2 + b^2}}, \ \sinh \frac{s}{\sqrt{a^2 + b^2}}, \ 0 \right),$$

$$V_3(s) = \frac{1}{\sqrt{a^2 + b^2}} \left(b \sinh \frac{s}{\sqrt{a^2 + b^2}}, \ b \cosh \frac{s}{\sqrt{a^2 + b^2}}, \ -a \right).$$

Then, curvature and torsion of $\gamma(s)$ are

$$\kappa = \frac{a}{a^2 + b^2}, \quad \tau = -\frac{b}{a^2 + b^2},$$

respectively. From (1.6) the mean curvature vector field of $\gamma(s)$ is

$$H(s) = -\frac{a}{a^2 + b^2} \left(\cosh \frac{s}{\sqrt{a^2 + b^2}}, \sinh \frac{s}{\sqrt{a^2 + b^2}}, 0 \right).$$

Then by using (1.7) we have

$$\Delta^\perp \mathbf{H} = \frac{ab^2}{(a^2+b^2)^3} \left(\cosh\frac{s}{\sqrt{a^2+b^2}}, \ \sinh\frac{s}{\sqrt{a^2+b^2}}, \ 0\right),$$

which gives us $\Delta^{\perp}H(s) = \frac{-b^2}{(a^2+b^2)^2}H(s)$. By Definition 1.1 we have that $\gamma(s)$ is harmonic 1-type curve with $\lambda = \frac{-b^2}{(a^2+b^2)^2}$. Moreover, it is easily seen that (2.1) holds.

Furthermore, since κ and τ are constants, $\gamma(s)$ is a spacelike circular helix. Then by Theorem 2.2 we have $\lambda = -\tau^2$ which can be seen from the obtained equalities of λ and τ .

Example 2.2. Let now consider timelike curve $\gamma(s)$ given by $\gamma(s) = (\sinh s, \cosh s, 0)$ which is a pseudo-circle. Then Frenet vectors of $\gamma(s)$ are

$$V_1(s) = (\cosh s, \sinh s, 0), \quad V_2(s) = (\sinh s, \cosh s, 0), \quad V_3(s) = (0, 0, 1)$$

and curvature and torsion are $\kappa=1,\,\tau=0$ respectively. From (1.6) the mean curvature vector field of $\gamma(s)$ is $H(s)=-(\sinh s,\cosh s,0)$. Then by using (1.7) we have $\Delta^{\perp}\mathbf{H}=0$ which gives us that $\gamma(s)$ is weak-biharmonic timelike circle(degenerate timelike helix) and it is easily seen that (2.5) holds.

3. General characterizations for a non-null Frenet curve and some results

In this section, we give the general characterizations of a Frenet curve by means of the mean curvature vector H and Frenet vectors.

Theorem 3.1. Let γ be a unit speed non-null Frenet curve on Lorentzian 3-manifold (M,g). According to the normal connection, the following equation holds

(3.1)
$$\Delta^{\perp} \mathbf{H} + \lambda \nabla_{\gamma'}^{\perp} \mathbf{H} + \mu \mathbf{H} = 0,$$

where

(3.2)
$$\lambda = \frac{2\kappa'\tau + \kappa\tau'}{\kappa\tau}, \quad \mu = \frac{\kappa\tau^2 + \varepsilon_1\kappa''}{\kappa} - \lambda\frac{\kappa'}{\kappa}.$$

Proof. By (2.2), (1.6) and Frenet formulas (1.5) we get

(3.3)
$$\Delta^{\perp} \mathbf{H} = (-\varepsilon_1 \varepsilon_2 \kappa \tau^2 + \varepsilon_1 \varepsilon_3 \kappa'') V_2 - (2\kappa' \tau + \kappa \tau') V_3$$

and

(3.4)
$$\nabla_{\gamma'}^{\perp} H = -\varepsilon_3 \kappa' V_2 + \kappa \tau V_3.$$

Furthermore, from (1.5) and (1.6) we have

(3.5)
$$V_2 = -\varepsilon_3 \frac{1}{\kappa} H, \quad V_3 = \frac{1}{\tau} \left[\left(\frac{1}{\kappa} \right)' H + \frac{1}{\kappa} \nabla^{\perp} H \right].$$

Substituting the equations (3.5) into the (3.4) we have $\Delta^{\perp}H + \lambda \nabla_{\gamma'}^{\perp}H + \mu H =$ 0 where $\lambda = \frac{2\kappa'\tau + \kappa\tau'}{\kappa\tau}$, $\mu = \frac{\kappa\tau^2 + \varepsilon_1\kappa''}{\kappa} - \lambda\frac{\kappa'}{\kappa}$. From Theorem 3.1 we have the following corollaries:

Corollary 3.1. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular helix, then according to the normal connection, $\Delta^{\perp}H + \tau^{2}H = 0$ holds.

Proof. The proof is clear from
$$(3.1)$$
 and (3.2) .

Corollary 3.2. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general helix, then according to the normal connection, $\Delta^{\perp}H + \lambda \nabla^{\perp}_{\gamma'}H + \mu H = 0$ holds, where

$$\lambda = 3 \frac{\kappa'}{\kappa}, \quad \mu = \frac{\kappa \tau^2 + \varepsilon_1 \kappa''}{\kappa} - 3 \left(\frac{\kappa'}{\kappa}\right)^2.$$

Proof. The proof can be easily seen from (3.1) and (3.2). From Corollary 3.2 we can find the following result.

Result 3.1. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,q). Then according to the normal connection

i) If γ is a timelike general helix, then

$$\Delta^{\perp} \mathbf{H} + 3 \frac{\kappa'}{\kappa} \nabla_{\gamma'}^{\perp} \mathbf{H} + \left[\frac{\kappa \tau^2 - \kappa''}{\kappa} - 3 \left(\frac{\kappa'}{\kappa} \right)^2 \right] \mathbf{H} = 0$$

holds.

ii) If γ is a spacelike general helix, then

$$\Delta^{\perp} H + 3 \frac{\kappa'}{\kappa} \nabla_{\gamma'}^{\perp} H + \left[\frac{\kappa \tau^2 + \kappa''}{\kappa} - 3 \left(\frac{\kappa'}{\kappa} \right)^2 \right] H = 0.$$

When the curve γ is a geodesic we have Theorem 2.3 again, i.e., γ is a weak biharmonic curve.

Theorem 3.2. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). According to the normal connection, γ satisfies the following differential equation

(3.6)
$$\tau \left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 - \tau' \nabla_{\gamma'}^{\perp} V_2 - \varepsilon_1 \tau^3 V_2 = 0.$$

Proof. From the Frenet formulas (1.5) we have

(3.7)
$$\left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 = \varepsilon_1 \tau^2 V_2 - \varepsilon_3 \tau' V_3$$

and since $V_3 = -\varepsilon_3 \frac{1}{\tau} \nabla_{\gamma'}^{\perp} V_2$, from (3.7) we have the equation (3.6). From Theorem 3.2 we have the following corollary.

Corollary 3.3. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular helix then the following equation holds $\left(\nabla^{\perp}_{\gamma'}\right)^2 V_2 - \varepsilon_1 \tau^2 V_2 = 0$.

Proof. The proof is clear from (3.6).

Result 3.2. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M, g).

- i) If γ is a timelike circular helix then $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 + \tau^2 V_2 = 0$ holds.
- ii) If γ is a spacelike circular helix then $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 \tau^2 V_2 = 0$ holds.

Corollary 3.4. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general helix then according to the normal connection the following equality holds $\kappa \left(\nabla^{\perp}_{\gamma'}\right)^2 V_2 - \kappa' \nabla^{\perp}_{\gamma'} V_2 - \varepsilon_1 \kappa \tau^2 V_2 = 0$.

Proof. Since γ is a general helix, by taking $\frac{\kappa}{\tau} = const.$, i.e., $\tau' = \frac{\kappa'}{\kappa}\tau$, from (3.6) the proof follows immediately.

Result 3.3. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). Then

i) If γ is a timelike general helix, then $\kappa \left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 - \kappa' \nabla_{\gamma'}^{\perp} V_2 + \kappa \tau^2 V_2 = 0$, holds.

ii) If γ is a spacelike general helix, then $\kappa \left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 - \kappa' \nabla_{\gamma'}^{\perp} V_2 - \kappa \tau^2 V_2 = 0$, holds.

Theorem 3.3. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). According to the normal connection, γ satisfies the following differential equation

(3.8)
$$\tau \left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 - \tau' \nabla_{\gamma'}^{\perp} V_3 - \varepsilon_1 \tau^3 V_3 = 0.$$

Proof. From the Frenet formulas (1.5) we have

(3.9)
$$\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 = \varepsilon_2 \tau' V_2 - \varepsilon_2 \varepsilon_3 \tau^2 V_3$$

and since $V_2 = \varepsilon_2 \frac{1}{\tau} \nabla_{\gamma}^{\perp} V_3$, from (3.9) we have the equation (3.8).

From Theorem 3.3 we have the following corollary.

Corollary 3.5. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular helix then the following equation holds, $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 - \varepsilon_1 \tau^2 V_3 = 0$.

Proof. By (3.8), the proof can be easily seen.

Result 3.4. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M, g).

- i) If γ is a timelike circular helix then $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 + \tau^2 V_3 = 0$ holds.
- ii) If γ is a spacelike circular helix then $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 \tau^2 V_3 = 0$ holds.

Corollary 3.6. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general helix then according to the normal connection the following equality holds

$$\kappa \left(\nabla_{\gamma'}^{\perp} \right)^2 V_3 + \kappa' \nabla_{\gamma'}^{\perp} V_3 - \varepsilon_1 \kappa \tau^2 V_3 = 0.$$

Proof. Since γ is a general helix, by taking $\frac{\kappa}{\tau} = const.$, i.e., $\tau' = \frac{\kappa'}{\kappa}\tau$ from (3.8) the proof is straightforward.

Result 3.5. Let γ be an arclength parametrized non-null Frenet curve on Lorentzian 3-manifold (M,g). Then

- i) If γ is a timelike general helix, then $\kappa \left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 + \kappa' \nabla_{\gamma'}^{\perp} V_3 + \kappa \tau^2 V_3 = 0$ holds.
- ii) If γ is a spacelike general helix, then $\kappa(\nabla_{\gamma'}^{\perp})^2V_3 + \kappa' \nabla_{\gamma'}^{\perp}V_3 \kappa\tau^2V_3 = 0$ holds.

Example 3.1. For the timelike curve $\gamma(s)$ given by the parametrization

$$\gamma(s) = \left(\frac{s^2}{2} + s, \frac{s^2}{2}, \frac{2\sqrt{2}}{3}s^{3/2}\right); \ (s \neq 0),$$

the Frenet vectors are obtained as follows,

$$V_1(s) = (s+1, s, \sqrt{2s}), V_2(s) = (\sqrt{2s}, \sqrt{2s}, 1), V_3(s) = \left(1, 1, \frac{1}{\sqrt{2s}}\right),$$

and, curvature and torsion functions are $\kappa=\frac{\sqrt{2}}{2\sqrt{s}},\ \tau=\frac{\sqrt{2}}{2\sqrt{s}}$, respectively. From (1.6) the mean curvature vector field of $\gamma(s)$ is

$$H(s) = \left(-\frac{\sqrt{2}}{s}, -\frac{\sqrt{2}}{s}, -\frac{1}{s^{3/2}}\right).$$

Then we have the followings

$$\Delta^{\perp} \mathbf{H} = \left(\frac{2s-3}{4s^2}, \ \frac{2s-6}{4s^2}, \ \frac{\sqrt{2}(2s-3)}{8s^{5/2}}\right), \ \nabla^{\perp}_{\gamma'} \mathbf{H} = \left(\frac{1}{2s}, \ \frac{1}{2s}, \ \frac{\sqrt{2}}{4s^{3/2}}\right).$$

Thus it is obtained that (3.1) holds for $\lambda = -\frac{3}{2s}$, $\mu = \frac{\sqrt{2}(2s-3)-6\sqrt{s}}{8s^{5/2}}$. Similarly, Frenet vector V_2 satisfies equation (3.6) and equation (3.8) holds for the Frenet vector V_3 .

Moreover, we have that $\frac{\kappa}{\tau}$ is constant i.e., $\gamma(s)$ is a general timelike helix. Then it is obvious that $\gamma(s)$ satisfies the conditions of Corollary 3.2, Result 3.1 (i), Corollary 3.4, Result 3.3 (i) and Result 3.5 (i).

4. Harmonic 1-type null curves and weak biharmonic null curves on Lorentzian 3-manifolds

Let γ be a curve on Lorentzian 3-manifold (M,g). Then, the curve γ is

called a null curve if $g(V_1, V_1) = 0$. By a Cartan frame $\{V_1, V_2, V_3\}$ of γ we mean a family of vector fields $V_1 = V_1(s)$, $V_2 = V_2(s)$, $V_3 = V_3(s)$ along the curve γ satisfying the following conditions:

$$\gamma'(s) = V_1, \quad g(V_1, V_1) = g(V_2, V_2) = 0, \quad g(V_1, V_2) = -1,$$

 $g(V_1, V_3) = g(V_2, V_3) = 0, \quad g(V_3, V_3) = 1,$

(4.1)
$$\begin{bmatrix} \nabla_{\gamma'} V_1 \\ \nabla_{\gamma'} V_2 \\ \nabla_{\gamma'} V_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \kappa \\ 0 & 0 & \tau \\ \tau & \kappa & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix},$$

where κ and τ are called the curvature and torsion of γ , respectively (IKAWA [7]). Here V_1 and V_2 are null vectors and V_3 is a unit spacelike vector.

According to (1.4)

(4.2)
$$\nabla_{\gamma'}^{\perp} V_2 = \tau V_3, \quad \nabla_{\gamma'}^{\perp} V_3 = \kappa V_2.$$

Let us denote by H the mean curvature vector field of γ and by the normal Laplace-Beltrami operator Δ^{\perp} of γ . Then the mean curvature vector field H is defined by

and the normal Laplacian operator along γ is given by

(4.4)
$$\Delta^{\perp} = -\left(\nabla_{\gamma'}^{\perp}\right)^2 = -\nabla_{\gamma'}^{\perp}\nabla_{\gamma'}^{\perp}$$

(see Chen and Ishikawa [2,3]).

Theorem 4.1. Let γ be a null Frenet curve on Lorentzian 3-manifold (M, g). Then, along the curve $\gamma, \Delta^{\perp}H = \lambda H$ holds if and only if

(4.5)
$$\kappa^2 \tau + \kappa'' = -\lambda \kappa, \quad \kappa' \kappa = 0.$$

Proof. From (4.2), (4.3) and (4.4) we get

(4.6)
$$\Delta^{\perp} \mathbf{H} = -3\kappa \kappa' V_2 - (\kappa^2 \tau + \kappa'') V_3.$$

By (4.3) and (1.8), we have

$$(4.7) -3\kappa\kappa' V_2 - (\kappa^2 \tau + \kappa'') V_3 = \lambda \kappa V_3.$$

According to (4.7), the equations (4.5) are obtained. \Box Conversely, the equations (4.5) satisfy the equation $\Delta^{\perp}H = \lambda H$.

Theorem 4.2. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). Then, along the curve $\gamma, \Delta^{\perp}H = \lambda H$ holds if and only if γ is a null curve with constant curvature, where $\lambda = -\kappa \tau$.

Proof. From Theorem 4.1, we have (4.5). Since γ is a Frenet curve, $\kappa \neq 0$. Thus (4.5) shows that κ is a constant and $\lambda = -\kappa \tau$. Thus γ is a null curve with constant curvature.

Conversely, since γ is a null curve with constant curvature and $\lambda = -\kappa \tau$, $\Delta^{\perp} H = \lambda H$ is satisfied.

Corollary 4.1. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). Then, γ is harmonic 1-type if and only if γ is a null curve with constant curvature.

Theorem 4.3. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). Then, along the curve $\gamma, \Delta^{\perp}H = 0$ holds if and only if

$$(4.8) \kappa^2 \tau + \kappa'' = 0, \quad \kappa' \kappa = 0.$$

Proof. From Theorem 4.1 we have (4.8). Conversely, (4.8) satisfy the equation $\Delta^{\perp}H = 0$.

Theorem 4.4. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). Then, along the curve $\gamma, \Delta^{\perp}H = 0$ holds if and only if γ is a pseudo null circle (degenerate null helix).

Proof. From Theorem 4.3, we have (4.8). Since γ is a Frenet curve, $\kappa \neq 0$. Thus, the equations (4.8) show that γ is e degenerate null helix.

Conversely, since γ is e degenerate null helix, κ is a constant and $\tau = 0$. Thus the equations (4.8) satisfy the equation $\Delta^{\perp}H = 0$.

Corollary 4.2. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). Then γ is a weak biharmonic if and only if γ is a pseudo null circle (degenerate null helix).

Example 4.1. Let consider the parametrized null curve $\gamma(s)$ given by $\gamma(s) = \left(\frac{1}{2}\sinh 2s, \ \frac{1}{2}\cosh 2s, \ s\right)$, (see Balgetir, Bektaş and Inoguchi [1]). Then, Frenet vectors of $\gamma(s)$ are obtained as follows

$$V_1(s) = \gamma'(s) = (\cosh 2s, \sinh 2s, 1),$$

$$V_2(s) = \left(\frac{1}{2}\cosh 2s, \frac{1}{2}\sinh 2s, -\frac{1}{2}\right),$$

$$V_3(s) = (\sinh 2s, \cosh 2s, 0).$$

The curvature and torsion of $\gamma(s)$ are $\kappa=2, \tau=-1$ respectively. From (4.3) mean curvature vector field of $\gamma(s)$ is $H(s) = (2\sinh 2s, \cosh 2s, 0)$. Then, by considering (4.4) we have $\Delta^{\perp}H = 2H$ which gives that $\gamma(s)$ is harmonic 1-type null curve and it is clear that $\gamma(s)$ satisfies the condition of Theorem 4.1, Theorem 4.2 and Corollary 4.1.

5. General characterizations for a null Frenet curve and some results

In this section, we give the general characterizations of a null Frenet curve by means of the mean curvature vector H and Frenet vectors according to the normal Laplacian operator Δ^{\perp} and the normal connection ∇^{\perp} .

Theorem 5.1. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,q). According to the normal connection, the following equation holds

(5.1)
$$\Delta^{\perp} \mathbf{H} + \lambda \nabla_{\gamma'}^{\perp} \mathbf{H} + \mu \mathbf{H} = 0,$$

where

(5.2)
$$\lambda = 3\frac{\kappa'}{\kappa}, \quad \mu = \frac{\kappa^2 \tau + \kappa''}{\kappa} - 3\left(\frac{\kappa'}{\kappa}\right)^2.$$

Proof. By (4.6), (4.3) and Frenet formulas (4.1)-(4.2), we get

(5.3)
$$\Delta^{\perp} \mathbf{H} = -3\kappa \kappa' V_2 - (\kappa^2 \tau + \kappa'') V_3,$$

(5.4)
$$\nabla_{\gamma'}^{\perp} H = \kappa^2 V_2 + \kappa' V_3.$$

Furthermore, from (4.2) and (4.3) we have

(5.5)
$$V_3 = \frac{1}{\kappa} H, \quad V_2 = \frac{1}{\tau} \left[\left(\frac{1}{\kappa} \right)' H + \frac{1}{\kappa} \nabla^{\perp} H \right].$$

Substituting the equations (5.5) into the (5.4) we have $\Delta^{\perp}H + \lambda \nabla_{\gamma'}^{\perp}H + \mu H = 0$, where $\lambda = 3\frac{\kappa'}{\kappa}$, $\mu = \frac{\kappa^2 \tau + \kappa''}{\kappa} - 3(\frac{\kappa'}{\kappa})^2$. From Theorem 5.1 we have the following corollaries:

Corollary 5.1. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular null helix, then according to the normal connection $\Delta^{\perp} \mathbf{H} + \kappa \tau \mathbf{H} = 0 \text{ holds.}$

Proof. The proof is clear from (5.1) and (5.2).

Corollary 5.2. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general null helix then according to the normal connection the following equality holds $\Delta^{\perp}H + \lambda \nabla^{\perp}_{\gamma'}H + \mu H = 0$, where

$$\lambda = 3 \frac{\kappa'}{\kappa}, \quad \mu = \frac{\kappa^2}{\kappa'} \tau' + \frac{\kappa''}{\kappa} - 3 \left(\frac{\kappa'}{\kappa}\right)^2.$$

Proof. By taking $\tau = \frac{\kappa}{\kappa'}\tau'$, the proof can be easily seen from (5.1) and (5.2).

Theorem 5.2. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). According to the normal connection, γ satisfies the following differential equation

(5.6)
$$\tau \left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 - \tau' \nabla_{\gamma'}^{\perp} V_2 - \kappa \tau^2 V_2 = 0.$$

Proof. From the Frenet formulas (4.2) we have

(5.7)
$$\left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 = \kappa \tau V_2 + \tau' V_3$$

and since $V_3 = \frac{1}{\tau} \nabla_{\gamma'}^{\perp} V_2$, from (5.7) we have the equation (5.6).

From Theorem 5.2 we have the following corollary.

Corollary 5.3. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular null helix then the following equation holds $(\nabla^{\perp}_{\gamma'})^2 V_2 - \kappa \tau V_2 = 0$.

Proof. The proof is clear from (5.6).

Corollary 5.4. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general null helix then according to the normal connection the following equality holds $\kappa \left(\nabla_{\gamma'}^{\perp}\right)^2 V_2 - \kappa' \nabla_{\gamma'}^{\perp} V_2 - \kappa^2 \tau V_2 = 0$.

Proof. Since γ is a general helix, by taking $\frac{\kappa}{\tau} = const.$ i.e., $\tau' = \frac{\kappa'}{\kappa}\tau$, from (5.6) the proof follows immediately.

Theorem 5.3. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). According to the normal connection, γ satisfies the following differential equation

(5.8)
$$\kappa \left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 - \kappa' \nabla_{\gamma'}^{\perp} V_3 - \kappa^2 \tau V_3 = 0.$$

Proof. From the Frenet formulas (4.2) we have

(5.9)
$$\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 = \kappa' V_2 + \kappa \tau V_3$$

and since $V_2 = \frac{1}{\kappa} \nabla_{\gamma'}^{\perp} V_3$, from (5.9) we have the equation (5.8). \square From Theorem 5.3 we have the following corollary.

Corollary 5.5. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a circular null helix then the following equation holds, $\left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 - \kappa \tau V_3 = 0$.

Proof. By (5.8), the proof can be easily seen.

Corollary 5.6. Let γ be a null Frenet curve on Lorentzian 3-manifold (M,g). If γ is a general null helix then according to the normal connection the following equality holds $\tau \left(\nabla_{\gamma'}^{\perp}\right)^2 V_3 - \tau' \nabla_{\gamma'}^{\perp} V_3 - \kappa \tau^2 V_3 = 0$.

Proof. Since γ is a general helix, by taking $\frac{\kappa}{\tau} = const.$ i.e., $\tau' = \frac{\kappa'}{\kappa}\tau$ from (5.8) the proof is straightforward.

The null curve $\gamma(s)$ given in Example 4.1 can be taken as an example of Section 5. It is easily seen that $\gamma(s)$ satisfies all conditions given in theorems and corollaries of this section.

REFERENCES

- 1. Balgetir, H.; Bektaş, M.; Inoguchi, J. Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat., 23 (2004/05), 7–13.
- 2. Chen, B.-Y.; Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (1991), 323–347.

- 3. Chen, B.-Y.; Ishikawa, S. Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52 (1998), 167–185.
- FERRÁNDEZ, A.; LUCAS, P.; MEROÑO, M.A. Biharmonic Hopf cylinders, Rocky Mountain J. Math., 28 (1998), 957–975.
- 5. Hacisalihoglu, H.H.; Öztürk, R. On the characterization of inclined curves in E^n I., Tensor (N.S.), 64 (2003), 157–162.
- 6. Hacisalihoglu, H.H.; Öztürk, R. On the characterization of inclined curves in E^n II., Tensor (N.S.), 64 (2003), 163–169.
- IKAWA, T. On curves and submanifolds in an indefinite-Riemannian manifold, Tsukuba J. Math., 9 (1985), 353–371.
- 8. IZUMIYA, S.; TAKIYAMA, A. A time-like surface in Minkowski 3-space which contains pseudocircles, Proc. Edinburgh Math. Soc., 40 (1997), 127–136.
- 9. IZUMIYA, S.; TAKIYAMA, A. A time-like surface in Minkowski 3-space which contains light-like lines, J. Geom., 64 (1999), 95–101.
- 10. KILIÇ, B. Finite type curves and surfaces, Ph. Thesis, University of Hacettepe, 2002.
- 11. Kobayashi, O. Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math., 6 (1983), 297–309.
- 12. Kocayigit, H.; Hacisalihoğlu, H.H. 1-type and biharmonic Frenet curves in Lorentzian 3-space, Iran. J. Sci. Technol. Trans. A Sci., 33 (2009), 159–168.
- 13. Kocayigit, H.; Hacisalihoğlu, H.H. 1-type curves and biharmonic curves in Euclidean 3-space, Int. Electron. J. Geom., 4 (2011), 97–101.

Received: 18.VII.2011 Revised: 2.XI.2011 Accepted: 23.XI.2011 Celal Bayar University,
Faculty of Science and Arts,
Department of Mathematics,
Muradiye Campus, Manisa,
TURKEY
huseyin.kocayigit@cbu.edu.tr
mehmet.onder@cbu.edu.tr

Ankara University,
Faculty of Science,
Department of Mathematics,
Tandoğan, Ankara,
TURKEY
hacisali@science.ankara.edu.tr