implies that either there is some i_0 such that $\lambda_{i_0} > 0$ or there is some j_0 such that $\mu_{j_0} > 0$, so we have $\epsilon_{i_0} > 0$ or $\xi_{j_0} > 0$, which means that at least one point is misclassified. Thus Problem (SVM_{s5}) should only be used when the sets $\{u_i\}$ and $\{v_j\}$ are *not* linearly separable.

We can use the fact that the duality gap is 0 to find η . We have

$$\frac{1}{2}w^{\top}w + \frac{b^{2}}{2} - \nu\eta + K_{s}(\epsilon^{\top}\epsilon + \xi^{\top}\xi)$$

$$= -\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} X^{\top}X + \begin{pmatrix} \mathbf{1}_{p}\mathbf{1}_{p}^{\top} & -\mathbf{1}_{p}\mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q}\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}\mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{1}{2K_{s}}I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix},$$

so we get

$$\nu \eta = K_s(\epsilon^{\mathsf{T}} \epsilon + \xi^{\mathsf{T}} \xi) + (\lambda^{\mathsf{T}} \quad \mu^{\mathsf{T}}) \left(X^{\mathsf{T}} X + \begin{pmatrix} \mathbf{1}_p \mathbf{1}_p^{\mathsf{T}} & -\mathbf{1}_p \mathbf{1}_q^{\mathsf{T}} \\ -\mathbf{1}_q \mathbf{1}_p^{\mathsf{T}} & \mathbf{1}_q \mathbf{1}_q^{\mathsf{T}} \end{pmatrix} + \frac{1}{4K_s} I_{p+q} \right) \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \\
= (\lambda^{\mathsf{T}} \quad \mu^{\mathsf{T}}) \left(X^{\mathsf{T}} X + \begin{pmatrix} \mathbf{1}_p \mathbf{1}_p^{\mathsf{T}} & -\mathbf{1}_p \mathbf{1}_q^{\mathsf{T}} \\ -\mathbf{1}_q \mathbf{1}_p^{\mathsf{T}} & \mathbf{1}_q \mathbf{1}_q^{\mathsf{T}} \end{pmatrix} + \frac{1}{2K_s} I_{p+q} \right) \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$

The above confirms that at optimality we have $\eta \geq 0$.

Remark: If we do not assume that $K_s = 1/(p+q)$, then the above formula must be replaced by

$$(p+q)K_s\nu\eta = \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \begin{pmatrix} X^\top X + \begin{pmatrix} \mathbf{1}_p \mathbf{1}_p^\top & -\mathbf{1}_p \mathbf{1}_q^\top \\ -\mathbf{1}_q \mathbf{1}_p^\top & \mathbf{1}_q \mathbf{1}_q^\top \end{pmatrix} + \frac{1}{2K_s} I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$

There is a version of Theorem 54.8 stating that for a fixed K_s , the solution to Problem (SVM_{s5}) is unique and independent of the value of ν .

Theorem 54.9. For K_s and ν fixed, if Problem (SVM_{s5}) succeeds then it has a unique solution. If Problem (SVM_{s5}) succeeds and returns $(\lambda, \mu, \eta, w, b)$ for the value ν and $(\lambda^{\kappa}, \mu^{\kappa}, \eta^{\kappa}, w^{\kappa}, b^{\kappa})$ for the value $\kappa \nu$ with $\kappa > 0$, then

$$\lambda^{\kappa} = \kappa \lambda, \ \mu^{\kappa} = \kappa \mu, \ \eta^{\kappa} = \kappa \eta, \ w^{\kappa} = \kappa w, \ b^{\kappa} = \kappa b.$$

As a consequence, $\delta = \eta / \|w\| = \eta^{\kappa} / \|w^{\kappa}\| = \delta^{\kappa}$, and the hyperplanes $H_{w,b}$, $H_{w,b+\eta}$ and $H_{w,b-\eta}$ are independent of ν .

Proof. The proof is an easy adaptation of the proof of Theorem 54.8 so we only give a sketch. The two crucial points are that the matrix

$$P = X^{\top}X + \begin{pmatrix} \mathbf{1}_{p}\mathbf{1}_{p}^{\top} & -\mathbf{1}_{p}\mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q}\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}\mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{1}{2K_{s}}I_{p+q}$$

is symmetric positive definite and that we have the single equational constraint

$$\mathbf{1}_p^{\top} \lambda + \mathbf{1}_q^{\top} \mu = (p+q) K_s \nu$$