Data Science Project Portfolio

Yumi Kim

1. Industrial Bank of Korea customers' log analysis project.

 $(2019.05 \sim 2019.06)$

- **Background:** Increasing usage of smart banking application drives the need to come up with digital marketing plans.
- **Objective:** Cluster the customers who purchased financial products with their log data and come up with marketing plans for each of the groups based on their behavioral patterns.
- **Dataset**: 1) 2.6 million customers' 170 million rows of log data, each of the customers' 2) private information and 3) account transaction data.

Project Timeline

Week 1 ~ Week 4	Week 5	Week 6
Feature Selection/	Modeling	Develop
EDA / Preprocessing	(Clustering)	Marketing Plans

Process

- ① Feature Selection / EDA / Preprocessing.
 - · Visualized the difference in the behavioral activities between customers who purchased the product and customers who did not.
 - Developed a total of 80 features that captures the behavioral activities before purchasing a product
 - Calculated each of the customers' stay time and number of visits (per page / per time frame)
 - Conducted min-max normalization, one hot encoding, label encoding, sin (cos) encoding according to the characteristics of the features

② Modeling

- · K-Means, K-Means ++, DBSCAN
- · Constructed an elbow point visualization for K-Means model
- · Silhouette evaluation for the result (0.4 accuracy)

3 Marketing Insight

- · Distinguish 5 clusters with their gender and age
- Derived push alarm message for each of the groups from persona analysis
 Ex) Mid age men tend to visit coupon page 8 to 31 days before purchasing a deposit product. Therefore, recommend mid age men with deposit products who visits coupon page.

2. Forecast stock return with ARIMA / regression analysis (2018.11 ~ 2018.12)

- · Github Code / Presentation Slides
- **Background:** Find the factors that impacts the stock price and make investment decision with portfolio optimization
- **Objective:** Forecast 2019 stock return for companies that comprise Dow Jones Index
- **Dataset:** 41 companies' monthly stock return, google trend data, dollar index, PMI, Federal Reserve, and unemployment rate from 2004 Jan to 2018 Nov.

· Process

Step 1 Collect data

Step 2 Set investment strategy:

- Initial investment is \$100,000, and profits from the backtesting period are reinvested.
- Forecast 1 year forward return every year on December 1st and select top 5 companies with highest expected return.
 Optimize portfolio on the maximum sharpe ratio point.

Step 3 (Data from 2004 Jan – 2013 Dec) ARIMA modeling: Forecast 1-year forward values for the 5 factors Regression modeling: Predict companies' 1-year forward return by regression analysis with the factors predicted from ARIMA modeling. Step 4 (Data from 2013 Dec – 2018 Nov) Backtesting: Repeat step 3 for each of the year Step 5 Investment decision for 2019

• **Evaluation** (4-years period of backtesting)

① Annual return (based on initial investment)

2014	2015	2016	2017	2018
5.8%	17.1%	21.3%	39.2%	12.6%

② Detail

	2013-12-01	2014-12-01	2015-12-01	2016-12-01	2017-12-01	2018-12-01
Current Portf olio (weight %)	C (47%) BAC (43%) AIG (5%) AA (0%) CAT (0%)	BAC (53%) AIG (37%) TRV (0%) C (0%) AA (0%)	AIG (74%) C (19%) HON (0%) AA (0%) TRV (0%)	AIG (60%) HON (17%) AA (12%) TRV (0%) C (0%)	AIG (42%) AA (35%) HON (14%) TRV (0%) C (0%)	X (Sell everything)
Gain	X (initial investment)	\$5,834	\$11,308	\$4,110	\$ 17,956	x
Loss	X (initial investm ent)	х	x	x	х	\$26,567

3. Recommendation engine for movies (2019.08 ~2019.09)

- · Github Code
- **Objective:** Predict the ratings of the movies for each of the users with deep learning recommendation system.
- · Dataset: Movielens
- **Process:** Applied model from the Neural Collaborative Filtering paper and made latent vectors for users and movies and concatenated the vectors.

4. Plant image classification (2019.03)

- · Github Code
- **Objective:** Predict 12 different classes with the plant image.
- · Dataset: Kaggle Plant Seedings Classification
- Process: Processed the image by deleting redundant background and conducted CNN modeling with keras library.

