The Stability of Theories from Categoricity to their Spectrum

Alexander Johnson

April 24, 2018

This is an expository thesis in mathematical logic.

This is an expository thesis in mathematical logic.

- First Order Logic
- Set Theory
- Model Theory

We say a theory T is *complete* if and only if T proves either φ or $\neg \varphi$ for every sentence φ in its language.

We say a theory T is *complete* if and only if T proves either φ or $\neg \varphi$ for every sentence φ in its language.

Examples

Dense Linear Orders (DLO), Algebraically Closed Fields of Characteristic 0 (ACF₀), Real Closed Fields (RCF)

We say a theory T is *complete* if and only if T proves either φ or $\neg \varphi$ for every sentence φ in its language.

Examples

Dense Linear Orders (DLO), Algebraically Closed Fields of Characteristic 0 (ACF₀), Real Closed Fields (RCF)

Definition

A tuple $\mathfrak{A}=(A,\mathcal{I})$ models φ (written $\mathfrak{A}\models\varphi$) if and only if φ holds true when relativized to A via \mathcal{I} . We write $\mathfrak{A}\models T$ if and only if $\mathfrak{A}\models\varphi$ for every $\varphi\in T$ and say \mathfrak{A} is a model of T.

We say a theory T is *complete* if and only if T proves either φ or $\neg \varphi$ for every sentence φ in its language.

Examples

Dense Linear Orders (DLO), Algebraically Closed Fields of Characteristic 0 (ACF₀), Real Closed Fields (RCF)

Definition

A tuple $\mathfrak{A}=(A,\mathcal{I})$ models φ (written $\mathfrak{A}\models\varphi$) if and only if φ holds true when relativized to A via \mathcal{I} . We write $\mathfrak{A}\models\mathcal{T}$ if and only if $\mathfrak{A}\models\varphi$ for every $\varphi\in\mathcal{T}$ and say \mathfrak{A} is a model of \mathcal{T} .

Examples

 $(\mathbb{Q},<)\models \mathsf{DLO}\ (\mathbb{C},0,1,+,*)\models \mathsf{ACF_0}\ (\mathbb{R},0,1,+,*,<)\models \mathsf{RCF}$

Suppose T is a consistent theory in a countable language. If T has an infinite model, then T has models of all infinite cardinalities.

Suppose T is a consistent theory in a countable language. If T has an infinite model, then T has models of all infinite cardinalities.

Examples

There exist infinite models of DLO, ACF₀, and RCF of all sizes. More surprisingly, $\mathbb N$ is an infinite model for number theory. It follows that there exist uncountable models of number theory.

Suppose T is a consistent theory in a countable language. If T has an infinite model, then T has models of all infinite cardinalities.

Examples

There exist infinite models of DLO, ACF₀, and RCF of all sizes. More surprisingly, $\mathbb N$ is an infinite model for number theory. It follows that there exist uncountable models of number theory.

Question

Up to isomorphism, how many models of ${\cal T}$ can there be of a given cardinality κ ?

Suppose T is a consistent theory in a countable language. If T has an infinite model, then T has models of all infinite cardinalities.

Examples

There exist infinite models of DLO, ACF₀, and RCF of all sizes. More surprisingly, $\mathbb N$ is an infinite model for number theory. It follows that there exist uncountable models of number theory.

Question

Up to isomorphism, how many models of ${\cal T}$ can there be of a given cardinality κ ?

Definition

If T has exactly one model up to isomorphism of size κ , we say T is *categorical* in power κ .

Examples

1 Any two equinumerous models of $T = \emptyset$ are isomorphic.

Examples

- **1** Any two equinumerous models of $T = \emptyset$ are isomorphic.
- Any two countable DLOs are isomorphic, (back and forth argument.) But categoricity fails in every uncountable power, (concatenate different orders.)

Examples

- **①** Any two equinumerous models of $T = \emptyset$ are isomorphic.
- Any two countable DLOs are isomorphic, (back and forth argument.) But categoricity fails in every uncountable power, (concatenate different orders.)
- ⓐ Any two equinumerous uncountable ACF₀ are isomorphic, (recur on transcendence basis.) But the algebraics $\mathbb{A} \subseteq \mathbb{C}$ and (the algebraic closure of) $\mathbb{A}[\pi]$ are clearly not isomorphic.

Examples

- **①** Any two equinumerous models of $T = \emptyset$ are isomorphic.
- Any two countable DLOs are isomorphic, (back and forth argument.) But categoricity fails in every uncountable power, (concatenate different orders.)
- ⓐ Any two equinumerous uncountable ACF₀ are isomorphic, (recur on transcendence basis.) But the algebraics $\mathbb{A} \subseteq \mathbb{C}$ and (the algebraic closure of) $\mathbb{A}[\pi]$ are clearly not isomorphic.
- The theory RCF $(=Th(\mathbb{R}))$ fails categoricity in all infinite powers, (one can form Archimedean and non-Archimedean RCFs at each power by a compactness argument.)

Background Morley's Theorem Stability

• Categoricity in every infinite power (e.g. $T = \emptyset$)

- Categoricity in every infinite power (e.g. $T = \emptyset$)
- Categoricity in only the countable power (e.g. DLO)

- Categoricity in every infinite power (e.g. $T = \emptyset$)
- Categoricity in only the countable power (e.g. DLO)
- 3 Categoricity in only (all) uncountable powers (e.g. ACF₀)

- Categoricity in every infinite power (e.g. $T = \emptyset$)
- Categoricity in only the countable power (e.g. DLO)
- 3 Categoricity in only (all) uncountable powers (e.g. ACF₀)
- Categoricity in no infinite powers (e.g. RCF)

- Categoricity in every infinite power (e.g. $T = \emptyset$)
- Categoricity in only the countable power (e.g. DLO)
- 3 Categoricity in only (all) uncountable powers (e.g. ACF₀)
- Categoricity in no infinite powers (e.g. RCF)

Question

Must every complete theory in a countable language fall into one of these four categories?

The answer is yes!

The answer is yes!

Morley's Categoricity Theorem (1965)

Suppose T is a complete theory in a countable language. If T is categorical in some uncountable power, then T is categorical in every uncountable power.

The answer is yes!

Morley's Categoricity Theorem (1965)

Suppose T is a complete theory in a countable language. If T is categorical in some uncountable power, then T is categorical in every uncountable power.

We will sketch a proof.

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result.

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result.

Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result. Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

First map a_0 to b_0 .

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result. Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

Now map b_1 to any point in A respecting order, (WLOG a_1 .)

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result.

Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

Next take the first point in A not yet mapped to, and map it into B respecting order.

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result. Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

Recur until both A and B are exhausted.

First, we consider a simpler problem: uniqueness of countable DLOs. This will motivate a more general result. Suppose we have two countable DLOs $A = \{a_n \mid n \in \mathbb{N}\}$ (red) and $B = \{b_n \mid n \in \mathbb{N}\}$ (blue). We define an isomorphism by recursion.

Recur until both A and B are exhausted.

Definition

A type p is a set of formulas $\varphi(v)$ perhaps sharing a free variable v in common such that any finite subset is realizable in some model.

Definition

A type p is a set of formulas $\varphi(v)$ perhaps sharing a free variable v in common such that any finite subset is realizable in some model.

Example

The type $\{v \neq 0, v \neq 1, v \neq 2, ...\}$ is finitely realizable in \mathbb{N} .

Definition

A type p is a set of formulas $\varphi(v)$ perhaps sharing a free variable v in common such that any finite subset is realizable in some model.

Example

The type $\{v \neq 0, v \neq 1, v \neq 2, \dots\}$ is finitely realizable in \mathbb{N} .

Definition

A model $\mathfrak A$ is κ -saturated if and only if every type p in $<\kappa$ parameters is realized in $\mathfrak A$.

When we said "respects order", we really meant "satisfies a certain set of formulas with parameters".

Definition

A type p is a set of formulas $\varphi(v)$ perhaps sharing a free variable v in common such that any finite subset is realizable in some model.

Example

The type $\{v \neq 0, v \neq 1, v \neq 2, \dots\}$ is finitely realizable in \mathbb{N} .

Definition

A model $\mathfrak A$ is κ -saturated if and only if every type p in $<\kappa$ parameters is realized in $\mathfrak A$.

Examples

(Q,<) is $\aleph_0\text{-saturated.}$ (C,0,1,+,*) is $2^{\aleph_0}\text{-saturated,}$ (|C| = 2^{\aleph_0} .)

Definition

If a model $\mathfrak A$ is $|\mathfrak A|$ -saturated, we say that the model is *saturated*.

Definition

If a model $\mathfrak A$ is $|\mathfrak A|$ -saturated, we say that the model is *saturated*.

This is the maximum amount of saturation. The model realizes all consistent types without too many parameters.

Definition

If a model $\mathfrak A$ is $|\mathfrak A|$ -saturated, we say that the model is *saturated*.

This is the maximum amount of saturation. The model realizes all consistent types without too many parameters.

Uniqueness of Saturated Models

If ${\mathfrak A}$ and ${\mathfrak B}$ are saturated models of the same power, then ${\mathfrak A}\cong {\mathfrak B}.$

Definition

If a model $\mathfrak A$ is $|\mathfrak A|$ -saturated, we say that the model is *saturated*.

This is the maximum amount of saturation. The model realizes all consistent types without too many parameters.

Uniqueness of Saturated Models

If ${\mathfrak A}$ and ${\mathfrak B}$ are saturated models of the same power, then ${\mathfrak A}\cong {\mathfrak B}.$

The proof uses transfinite recursion for the uncountable case, but otherwise is exactly the same as for countable DLOs!

Theorem

Every uncountable model of *T* is *saturated*.

Theorem

Every uncountable model of *T* is *saturated*.

Lemma 1

T has an \aleph_1 -saturated model of power κ .

Theorem

Every uncountable model of T is saturated.

Lemma 1

T has an \aleph_1 -saturated model of power κ .

This is a straightforward recursion using the fact that uncountably categorical theories have few types.

Theorem

Every uncountable model of T is saturated.

Lemma 1

T has an \aleph_1 -saturated model of power κ .

This is a straightforward recursion using the fact that uncountably categorical theories have few types.

Lemma 2

If T has an uncountable model that is not saturated, then T has a model of power κ that is not \aleph_1 -saturated.

Theorem

Every uncountable model of T is *saturated*.

Lemma 1

T has an \aleph_1 -saturated model of power κ .

This is a straightforward recursion using the fact that uncountably categorical theories have few types.

Lemma 2

If T has an uncountable model that is not saturated, then T has a model of power κ that is not \aleph_1 -saturated.

This contradiction finishes our sketch of Morley's Theorem.

Notation

Let $\mathbf{S}(X,\mathfrak{A})$ be the set of all complete types, perhaps with parameters in $X\subseteq A$, realized in \mathfrak{A} .

Notation

Let $\mathbf{S}(X,\mathfrak{A})$ be the set of all complete types, perhaps with parameters in $X\subseteq A$, realized in \mathfrak{A} .

We always have the type $\{v=a\}$ for $a\in X$, so $|\mathbf{S}(X,\mathfrak{A})|\geq |X|$.

Notation

Let $\mathbf{S}(X,\mathfrak{A})$ be the set of all complete types, perhaps with parameters in $X\subseteq A$, realized in \mathfrak{A} .

We always have the type $\{v = a\}$ for $a \in X$, so $|\mathbf{S}(X, \mathfrak{A})| \ge |X|$.

Definition

If $|\mathbf{S}(X,\mathfrak{A})| \leq \lambda$ for any $|X| \leq \lambda$, we say \mathfrak{A} is λ -stable.

Notation

Let $\mathbf{S}(X,\mathfrak{A})$ be the set of all complete types, perhaps with parameters in $X\subseteq A$, realized in \mathfrak{A} .

We always have the type $\{v = a\}$ for $a \in X$, so $|\mathbf{S}(X, \mathfrak{A})| \ge |X|$.

Definition

If $|\mathbf{S}(X,\mathfrak{A})| \leq \lambda$ for any $|X| \leq \lambda$, we say \mathfrak{A} is λ -stable.

Definition

If every model of T is λ -stable, we say T is λ -stable.

- $p(v) \supset \{v = a_k\}$
- $p(v) \supset \{vRa_k\}$

- $p(v) \supset \{v = a_k\}$
- $p(v) \supset \{vRa_k\}$
- $p(v) \supset \{\neg vRa_0, \neg vRa_2, \neg vRa_2, \dots\}$

Consider an equivalence relation R with infinitely many infinite equivalence classes. Given any countable parameter set $\{a_n \mid n \in \mathbb{N}\}$, the following are the only possible types:

- $p(v) \supset \{v = a_k\}$
- $p(v) \supset \{vRa_k\}$
- $p(v) \supset \{\neg vRa_0, \neg vRa_2, \neg vRa_2, \dots\}$

This amounts to $\aleph_0 + \aleph_0 + 1 = \aleph_0$ complete types. The defining theory of R is \aleph_0 -stable.

Consider an equivalence relation R with infinitely many infinite equivalence classes. Given any countable parameter set $\{a_n \mid n \in \mathbb{N}\}$, the following are the only possible types:

- $p(v) \supset \{v = a_k\}$
- $p(v) \supset \{vRa_k\}$
- $p(v) \supset \{\neg vRa_0, \neg vRa_2, \neg vRa_2, \dots\}$

This amounts to $\aleph_0 + \aleph_0 + 1 = \aleph_0$ complete types. The defining theory of R is \aleph_0 -stable.

Examples

ACF₀ is ℵ₀-stable (types express roots or non-roots)

Consider an equivalence relation R with infinitely many infinite equivalence classes. Given any countable parameter set $\{a_n \mid n \in \mathbb{N}\}$, the following are the only possible types:

- $p(v) \supset \{v = a_k\}$
- $p(v) \supset \{vRa_k\}$
- $p(v) \supset \{\neg vRa_0, \neg vRa_2, \neg vRa_2, \dots\}$

This amounts to $\aleph_0 + \aleph_0 + 1 = \aleph_0$ complete types. The defining theory of R is \aleph_0 -stable.

Examples

- ACF_0 is \aleph_0 -stable (types express roots or non-roots)
- *DLO* is not stable in any power. A countable dense set can define uncountably many Dedekind cuts.

Theorem

Suppose a countable theory T is categorical in some uncountable power. Then T is κ -stable for all κ .

Theorem

Suppose a countable theory T is categorical in some uncountable power. Then T is κ -stable for all κ .

This allows us to construct saturated models easily! Such a nice property inspires the following question:

Theorem

Suppose a countable theory T is categorical in some uncountable power. Then T is κ -stable for all κ .

This allows us to construct saturated models easily! Such a nice property inspires the following question:

Question

Suppose T is stable in some λ . In what other powers is T stable?

Theorem

Suppose a countable theory T is categorical in some uncountable power. Then T is κ -stable for all κ .

This allows us to construct saturated models easily! Such a nice property inspires the following question:

Question

Suppose T is stable in some λ . In what other powers is T stable?

Even when T is countable, the answer is complex.

Theorem

Suppose T is a complete countable \aleph_0 -stable theory. Then T is κ -stable for all κ .

Theorem

Suppose T is a complete countable \aleph_0 -stable theory. Then T is κ -stable for all κ .

For arbitrary theories, we get the following more complex result:

Theorem

Suppose T is a complete countable \aleph_0 -stable theory. Then T is κ -stable for all κ .

For arbitrary theories, we get the following more complex result:

Theorem

If a complete theory T is unstable in some $\lambda = \lambda^{|T|}$, then T is unstable in every infinite power.

Theorem

Suppose T is a complete countable \aleph_0 -stable theory. Then T is κ -stable for all κ .

For arbitrary theories, we get the following more complex result:

Theorem

If a complete theory T is unstable in some $\lambda = \lambda^{|T|}$, then T is unstable in every infinite power.

For example, $\lambda=2^{|T|}$ satisfies this equation when |T| is infinite, $(2^{|T|})^{|T|}=2^{|T|\cdot|T|}=2^{|T|}$.

Background Morley's Theorem Stability

The full answer to this question is known as the Stability Spectrum Theorem, (stated here in a weaker form.)

The full answer to this question is known as the Stability Spectrum Theorem, (stated here in a weaker form.)

The Stability Spectrum Theorem (Shelah \sim 1970)

Suppose T is stable in some least power μ_0 . Then there exists a cardinal $\kappa(T)$ for which T is stable in μ if and only if $\mu = \mu_0 + \mu^{<\kappa(T)}$.

The full answer to this question is known as the Stability Spectrum Theorem, (stated here in a weaker form.)

The Stability Spectrum Theorem (Shelah \sim 1970)

Suppose T is stable in some least power μ_0 . Then there exists a cardinal $\kappa(T)$ for which T is stable in μ if and only if $\mu = \mu_0 + \mu^{<\kappa(T)}$.

(In general we define $\mu^{<\kappa} = \sup_{\lambda < \kappa} \mu^{\lambda}$.)

The full answer to this question is known as the Stability Spectrum Theorem, (stated here in a weaker form.)

The Stability Spectrum Theorem (Shelah $\sim\!$ 1970)

Suppose T is stable in some least power μ_0 . Then there exists a cardinal $\kappa(T)$ for which T is stable in μ if and only if $\mu = \mu_0 + \mu^{<\kappa(T)}$.

(In general we define $\mu^{<\kappa} = \sup_{\lambda < \kappa} \mu^{\lambda}$.)

The proof takes quite a lot of machinery. A very course sketch is that we define a tree of types with a certain "forking" property allowing us to contradict stability if the tree grows to a certain size.

I thank my sponsors

Professor McDonald and Professor Henckell

and the rest of my committee

Professor Poimenidou and Professor Kottke

for their support and bravery! I am also very grateful for the guidance of Professor Malliaris (University of Chicago) throughout this project.

Selected Bibliography

M. Morley.

"Categoricity in Power."

Transactions of the American Mathematical Society 114, no. 2 (1965): 514-538.

S. Shelah.

Classification Theory.

North-Holland Publishing Co., Amsterdam, second edition, 1990.