

Karol Żak

Software Engineer (AI & ML)
CSE | Commercial Software Engineering
Microsoft

MicroscopelT

Computer Vision

Deep Learning

Removing cranes with deep learning

Can we do something about it?

Manually - Photoshop

Cool. But how to automate it?

Remove it

Put something in its place

Put something in its place

Some results

How we did it?

Finding the cranes

Olaf Ronneberger, Philipp Fischer, Thomas Brox

U-Net: Convolutional Networks for Biomedical Image Segmentation

2015

arXiv:1505.04597

Vanilla U-Net

Our best U-Net

- 5 layers
- Padding in conv layers

- 6 layers
- No padding in conv layers

How did it go?

Our best U-Net-like mean IoU

Our best U-Net-like mean IoU

good? bad?

Our best U-Net-like mean IoU

900d? bad? (ツ)/

Our best U-Net-like mean IoU +3.99% over vanilla (51.56%)

Our best U-Net-like mean IoU +3.99% over vanilla (51.56%) results look good

The dataset

Dataset

917 cityscapes

(with and without cranes)

Annotated manually

2 iterrations:

v1 – large brush

v2 – smaller brush

What's wrong in this picture?

original network's human annotator

Redo the dataset!

+2.63%mean IOU $48.9\% \rightarrow 51.5\%$ Vanilla U-Net old vs new dataset

Running multiple trainings to find the best model

~5000 hours

of NC6 VM instances with Tesla K-80 GPU

$$\sim$$
700 epochs = \sim 1.5-2 days

for the best model to train

We used Azure Batch AI to run our training jobs

Azure Batch Al

Azure Batch Al

Replace cranes with something valid

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa

Globally and Locally Consistent Image Completion

2017

ACM Transaction on Graphics (Proc. of SIGGRAPH 2017)

Promising

Ooops...

What does Photoshop do?

Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.

PatchMatch: A randomized correspondence algorithm for structural image editing

2009

ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3), 2009.

G'MIC

https://gmic.eu/

Open Source

Used by GIMP for Content-Aware Fill

Good results!

Mostly...

Postprocessing tricks

Cables were hard – original picture

Cables were hard – mask without postprocessing

Cables were hard – results from GMIC v1

Cables were hard – mask with postprocessing

Cables were hard – results from GMIC v2

Cables were hard – original picture

Key takeaways

1. Don't trust papers

2. Data is key

3. Classic methods still have their place

Questions?

Karol Żak

Software Engineer (AI & ML) Microsoft

CSE | Commercial Software Engineering

Thank you!