

EXPLORING WHAT POWERBI CAN DO IN EXCEL 28TH NOVEMBER, 2020 5:00PM

BUSINESS INTELLIGENCE WORKFLOW TOOLS ARE ALL AVAILABLE DIRECTLY IN EXCEL

COURSE OUTLINE

- 1 Power Excel
 - Power Query/Power Pivot workflow and key benefits vs. "traditional" Excel
- 2 Power Query
 - Types of data connectors, query editing tools, loading options, etc.
- 3 Data Model
 - Excel Data Model interface, normalization, table relationships, hierarchies, etc.
- **4** Power Pivot
 - Power Pivots vs. "normal" pivots, calculated columns vs. measures, row & filter context, etc.
- **5** Common DAX Functions
 - Basic syntax, math & stats functions, filter functions, time intelligence tools, etc.

"THE BEST THING TO HAPPEN TO EXCEL IN 20 YEARS"

*Quote by Bill Jelen (aka "Mr. Excel")

- Import and analyze MILLIONS of rows of data in Excel
 - Access data from virtually anywhere (database tables, flat files, cloud services, folders, etc.)
- Quickly build models to blend and analyze data across sources
 - Instantly connect sources and analyze holistic performance across your entire data model
- Create fully automated data shaping and loading procedures
 - Connect to databases and watch data flow through your model with the click of a button
- Define calculated measures using Data Analysis Expressions (DAX)
 - No more redundant A1-style "grid" formulas; DAX expressions are flexible, powerful and portable

WHEN TO USE POWER QUERY & POWER PIVOT

Use **Power Query** and **Power Pivot** when you want to...

- 1 Analyze more data than can fit into a worksheet
- 2 Create connections to databases or external sources
- 3 Blend data across multiple large tables
- 4. Automate the process of loading and shaping your data
- 5 Unleash the full business intelligence capabilities of Excel

RAW DATA

Flat files (csv, txt), Excel tables, databases (SQL, Azure), folders, streaming sources, web data, etc.

RAW DATA

Flat files (csv, txt), Excel tables, databases (SQL, Azure), folders, streaming sources, web data, etc.

POWER QUERY

(aka "Get & Transform")

Connect to sources, import data, and apply shaping and transformation tools (ETL)

RAW DATA

Flat files (csv, txt), Excel tables, databases (SQL, Azure), folders, streaming sources, web data, etc.

DATA MODEL

Create table relationships, add calculated columns, define hierarchies and perspectives, etc.

POWER QUERY

(aka "Get & Transform")

Connect to sources, import data, and apply shaping and transformation tools (ETL)

RAW DATA

Flat files (csv, txt), Excel tables, databases (SQL, Azure), folders, streaming sources, web data, etc.

DATA MODEL

Create table relationships, add calculated columns, define hierarchies and perspectives, etc.

POWER QUERY

(aka "Get & Transform")

Connect to sources, import data, and apply shaping and transformation tools (ETL)

POWER PIVOT

Explore and analyze the entire data model, and create powerful measures using Data Analysis Expressions (DAX)

NORMAL PIVOT

 Can analyze data from one table at a time; multiple tables must be flattened or "stitched" together with cell functions

NORMAL PIVOT

 Can analyze data from one table at a time; multiple tables must be flattened or "stitched" together with cell functions

POWER PIVOT

 Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions

NORMAL PIVOT

- Can analyze data from one table at a time;
 multiple tables must be flattened or
 "stitched" together with cell functions
- Restricted to the data capacity of a single
 Excel worksheet (1,048,576 rows)

POWER PIVOT

 Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions

NORMAL PIVOT

- Can analyze data from one table at a time;
 multiple tables must be flattened or
 "stitched" together with cell functions
- Restricted to the data capacity of a single
 Excel worksheet (1,048,576 rows)

- Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions
- Virtually unlimited data capacity as tables are compressed outside of normal worksheets

NORMAL PIVOT

- Can analyze data from one table at a time;
 multiple tables must be flattened or
 "stitched" together with cell functions
- Restricted to the data capacity of a single
 Excel worksheet (1,048,576 rows)
- Limited to relatively basic calculated fields, using a sub-set of Excel functions

- Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions
- Virtually unlimited data capacity as tables are compressed outside of normal worksheets

NORMAL PIVOT

- Can analyze data from one table at a time;
 multiple tables must be flattened or
 "stitched" together with cell functions
- Restricted to the data capacity of a single
 Excel worksheet (1,048,576 rows)
- Limited to relatively basic calculated fields, using a sub-set of Excel functions

- Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions
- Virtually unlimited data capacity as tables are compressed outside of normal worksheets
- Performs complex calculations using Data Analysis Expressions (DAX)

NORMAL PIVOT

- Can analyze data from one table at a time;
 multiple tables must be flattened or
 "stitched" together with cell functions
- Restricted to the data capacity of a single
 Excel worksheet (1,048,576 rows)
- Limited to relatively basic calculated fields, using a sub-set of Excel functions

POWER PIVOT

- Can analyze an entire data model, consisting of multiple tables connected via relationships rather than cell functions
- Virtually unlimited data capacity as tables are compressed outside of normal worksheets
- Performs complex calculations using Data Analysis Expressions (DAX)

NOTE: It's not the *PivotTable* itself that's different; it's the *data behind it*

PivotTables

PivotCharts

Power Map/ Power View

CUBE Functions

"POWER EXCEL"

POWER BI

PivotTables

PivotCharts

Power Map/ Power View

CUBE Functions

Report View

Custom
Visualization Tools
(R-Visuals, Bookmarks,
Interactions, etc)

Publishing &
Collaboration Options
(Power BI Service)

"POWER EXCEL"

POWER BI

PivotTables

PivotCharts

Power Map/ Power View

CUBE Functions

Data Shaping (Power Query)

Data Modeling (Power Pivot)

Calculated Fields (DAX)

Report View

Custom
Visualization Tools
(R-Visuals, Bookmarks,
Interactions, etc)

Publishing & Collaboration Options (Power BI Service)

"Power Excel" and Power BI are built on top of the **exact same engine!**

 Power BI takes the same data shaping, modeling and analytics capabilities and adds new reporting and publishing tools

"Power Excel" and Power BI are built on top of the **exact same engine!**

- Power BI takes the same data shaping, modeling and analytics capabilities and adds *new reporting and publishing tools*
- Transitioning is easy; you can import an entire data model directly from Excel!

Power Query (aka "Get & Transform") allows you to:

Connect to data across a wide range of sources

- Connect to data across a wide range of sources
- Filter, shape, append and transform raw data for further analysis and modeling

- Connect to data across a wide range of sources
- Filter, shape, append and transform raw data for further analysis and modeling
- Create stored procedures to automate your data prep (like a macro!)

- Connect to data across a wide range of sources
- Filter, shape, append and transform raw data for further analysis and modeling
- Create stored procedures to automate your data prep (like a macro!)

- Connect to data across a wide range of sources
- Filter, shape, append and transform raw data for further analysis and modeling
- Create stored procedures to automate your data prep (like a macro!)

TYPES OF DATA CONNECTIONS

TYPES OF DATA CONNECTIONS

TYPES OF DATA CONNECTIONS

THE QUERY EDITOR

THE QUERY EDITOR

THE QUERY EDITOR

THE QUERY EDITOR

THE QUERY EDITOR

THE QUERY EDITOR

Access the **Query Editor** by creating a new query and choosing the "Edit" option, or by launching the Workbook Queries pane (**Data** > **Show Queries**) and right-clicking an existing query to edit

– The **TRANSFORM** tab includes tools to **modify existing columns** (splitting/grouping, transposing, extracting text, etc.

- The **TRANSFORM** tab includes tools to **modify existing columns** (splitting/grouping, transposing, extracting text, etc.

The **ADD COLUMN** tools **create new columns** based on conditional rules, text operations, calculations, dates, etc.

Keep or remove columns

Tip: use the "Remove Other Columns" option if you always want a specific set

Keep or remove rows

Tip: use the "Remove Duplicates" option to create a new lookup table from scratch

Copy

Remove

Remove Other Columns

Duplicate Column

Remove Duplicates

Remove Errors

Change Type

Replace Errors...

Unpivot Columns

Unpivot Other Columns

Transform
Replace Values...

Group By...

Rename...

Drill Down

Add as New Query

12/29/1996

12/27/1996

12/31/1996 12/26/1996 48

Move

Gpearls

*Copyright 2020, Gpearls Data Analytics, https://gpearls.com.ng

Tip: use the "Remove Duplicates"

option to create a new lookup

table from scratch

Gpearls

Tip: Use "Trim" to eliminate leading & trailing spaces,

or "Clean" to remove non-printable characters

Format a text column to upper, lower or proper case, or add a prefix or suffix

Tip: Use "Trim" to eliminate leading & trailing spaces, or "Clean" to remove non-printable characters

Statistics functions allow you to evaluate basic stats for the selected column (sum, min/max, average, count, countdistinct, etc)

Note: These tools return a SINGLE value, and are commonly used to explore a table rather than prepare it for loading

Note: These tools return a SINGLE value, and are commonly used to explore a table rather than prepare it for loading

Gpearls

Statistics functions allow you to evaluate basic stats for the selected column (sum, min/max, average, count, countdistinct, etc)

Note: These tools return a SINGLE value, and are commonly used to explore a table rather than prepare it for loading

Standard, Scientific and **Trigonometry** tools allow you to apply standard operations (addition, multiplication, division, etc.) or more advanced calculations (power, logarithm, sine, tangent, etc) to each value in a column

Note: Unlike the Statistics options, these tools are applied to each individual grow in the table laytics,

Statistics functions allow you to evaluate basic stats for the selected column (sum, min/max, average, count, countdistinct, etc)

Note: These tools return a SINGLE value, and are commonly used to explore a table rather than prepare it for loading

Standard, Scientific and **Trigonometry** tools allow you to apply standard operations (addition, multiplication, division, etc.) or more advanced calculations (power, logarithm, sine, tangent, etc) to each value in a column

Note: Unlike the Statistics options, these tools are applied to each individual rows in the table alytics,

https://gpearls.com.ng

DATE-SPECIFIC TOOLS

DATE-SPECIFIC TOOLS

DATE-SPECIFIC TOOLS

Date & Time tools are relatively straight-forward, and include the following options:

- Age: Difference between the current time and the date in each row
- Date Only: Removes the time component of a date/time field
- Year/Month/Quarter/Week/Day: Extracts individual components from a date field (Time-specific options include Hour, Minute, Second, etc.)
- **Earliest/Latest:** Evaluates the earliest or latest date from a column as a single value (can only be accessed from the "Transform" menu)

Note: You will almost always want to perform these operations from the "Add Column" menu to build out new fields, rather than transforming an individual date/time column

CREATING A BASIC CALENDAR TABLE

CREATING A BASIC CALENDAR TABLE

CREATING A BASIC CALENDAR TABLE

Use pre-defined **Date** options in the "**Add Column**" menu to quickly build out a calendar table from a list of dates

₩,	iii date ▼	1 ² ₃ Year ▼	1 ² ₃ Month ▼	1 ² ₃ Quarter ▼	1 ² ₃ WeekOfYear ▼	A ^B _C Day Name ▼
1	1/1/1997	1997	1	1	1	Wednesday
2	1/2/1997	1997	1	1	1	Thursday
3	1/3/1997	1997	1	1	1	Friday
4	1/4/1997	1997	1	1	1	Saturday
5	1/5/1997	1997	1	1	2	Sunday
6	1/6/1997	1997	1	1	2	Monday
7	1/7/1997	1997	1	1	2	Tuesday
8	1/8/1997	1997	1	1	2	Wednesday
9	1/9/1997	1997	1	1	2	Thursday
10	1/10/1997	1997	1	1	2	Friday
11	1/11/1997	1997	1	1	2	Saturday
12	1/12/1997	1997	1	1	3	Sunday
13	1/13/1997	1997	1	1	3	Monday
14	1/14/1997	1997	1	1	3	Tuesday
15	1/15/1997	1997	1	1	3	Wednesday
16	1/16/1997	1997	1	1	3	Thursday
17	1/17/1997	1997	1	1	3	Friday
18	1/18/1997	1997	1	1	3	Saturday
19	1/19/1997	1997	1	1	4	Sunday
20	1/20/1997	1997	1	1	4	Monday
21	1/21/1997	1997	1	1	4	Tuesday
22	1/22/1997	1997	1	1	4	Wednesday
23	1/23/1997	1997	1	1	4	Thursday

16

17

18

19

20

21

23

1/16/1997

1/17/1997

1/18/1997

1/19/1997 1/20/1997

1/21/1997

1/22/1997

1/23/1997

ADDING A CONDITIONAL COLUMN

ADDING A CONDITIONAL COLUMN

Conditional Columns allow you to define new fields based on logical rules and conditions (*IF/THEN statements*)

ADDING A CONDITIONAL COLUMN

Conditional Columns allow you to define new fields based on logical rules and conditions (*IF/THEN statements*)

In this case we're creating a new conditional column called "Order Size", which depends on the values in the "quantity" column, as follows:

- If quantity >5, Order Size = "Large"
- If quantity is from 2-5, Order Size = "Medium"
- If quantity =1, Order Size = "Small"
- Otherwise Order Size = "Other"

MERGING QUERIES

MERGING QUERIES

MERGING QUERIES

- Merging queries allows you to join tables based on a common column (like VLOOKUP)
- In this case we're merging the FoodMart_Transactions_1997 table with the Product_Lookup table, which share a "product_id" column

TIP: Merging **adds columns** to an existing table

APPENDING QUERIES

APPENDING QUERIES

APPENDING QUERIES

- Appending queries allows you to combine (or stack) tables that share a common structure and set of columns
- FoodMart_Transactions_1998 table to the FoodMart_Transactions_1997 table, since they contain the same set of columns and data types

TIP: Appending **adds rows** to an existing table

DEMO

GET DATA FROM:

CSV: <u>FROM DESKTOP</u>

FOLDER: FROM DESKTOP

• WEB:

HTTPS://COVID19.NCDC.GOV.NG/

• HTTPS://EN.WIKIPEDIA.ORG/WIKI/TEMPL
ATE:COVID-19 PANDEMIC DATA

GITHUB:

HTTPS://GITHUB.COM/GPEARLS/DATA

ODATA FEED:

HTTPS://SERVICES.ODATA.ORG/NORTHWIND/NORTHWIND.SVC/

PERFORMANCE TRANSFORMATION IN QUERY EDITOR:

- NUMBER
- TEXT
- DATE
- APPEND
- MERGE
- FOLDER REFERENCE FOR MERGE ACTION

A "Power" Pivot is just like a normal PivotTable, except it sits on top of an entire data model rather than a single table or range. This allows you to:

A "Power" Pivot is just like a normal PivotTable, except it sits on top of an entire data model rather than a single table or range. This allows you to:

 Explore massive datasets consisting of multiple sources and tables, using familiar, user-friendly PivotTable tools and options

A "Power" Pivot is just like a normal PivotTable, except it sits on top of an entire data model rather than a single table or range. This allows you to:

- Explore massive datasets consisting of multiple sources and tables, using familiar, user-friendly PivotTable tools and options
- Create powerful and flexible calculations using Data Analysis Expressions (DAX)

A "Power" Pivot is just like a normal PivotTable, except it sits on top of an entire data model rather than a single table or range. This allows you to:

- Explore massive datasets consisting of multiple sources and tables, using familiar, user-friendly PivotTable tools and options
- Create powerful and flexible calculations using Data Analysis Expressions (DAX)

The **Power Pivot** tab includes tools to manage the data model and define new measures

(Note: you may need to enable this tab by selecting File > Options > Add-Ins > Manage COM Add-Ins)

CREATING A "POWER" PIVOT TABLE

Option #2: From the *Insert > PivotTable* dialog box

Gpearls

*Copyright 2020, Gpearls Data Analytics, https://gpearls.com.ng

MEET EXCEL'S DATA MODEL

The **Data Model** provides simple and intuitive tools for building relational databases directly in Excel. With the data model you can:

The **Data Model** provides simple and intuitive tools for building relational databases directly in Excel. With the data model you can:

Manage massive datasets that can't fit into worksheets

The **Data Model** provides simple and intuitive tools for building relational databases directly in Excel. With the data model you can:

- Manage massive datasets that can't fit into worksheets
- Create table relationships to blend data across multiple sources

The **Data Model** provides simple and intuitive tools for building relational databases directly in Excel. With the data model you can:

- Manage massive datasets that can't fit into worksheets
- Create table relationships to blend data across multiple sources
- Define custom hierarchies and perspectives

The **Data Model** provides simple and intuitive tools for building relational databases directly in Excel. With the data model you can:

- Manage massive datasets that can't fit into worksheets
- Create table relationships to blend data across multiple sources
- Define custom hierarchies and perspectives

Access the **Data Model** through the **Power Pivot** tab or the **Data** tab

(Note: you may need to enable the Power Pivot tab via File > Options > Add-Ins > Manage COM Add-Ins)

THE DATA MODEL WINDOW

The **Data Model** opens in a separate Excel window, where you can view your data tables, calculate new measures, and define table relationships

Note: Closing the Data Model window does NOT close your Excel workbook

DEMO

LET'S EXPLORE THE FLOW FROM POWER QUERY TO POWER PIVOT

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

MATH & STATS Functions

Basic **aggregation** functions as well as "**iterators**" evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- RELATED
- RELATEDTABLE
- DISTINCT
- VALUES
- EARLIER/EARLIEST
- HASONEVALUE
- HASONEFILTER
- ISFILTERED
- USERELATIONSHIP

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- RELATED
- RELATEDTABLE
- DISTINCT
- VALUES
- EARLIER/EARLIEST
- HASONEVALUE
- HASONEFILTER
- ISFILTERED
- USERELATIONSHIP

DATE & TIMEFunctions

Basic date and time functions as well as advanced time intelligence operations

Common Examples:

- DATEDIFF
- YEARFRAC
- YEAR/MONTH/DAY
- HOUR/MINUTE/SECOND
- TODAY/NOW
- WEEKDAY/WEEKNUM

MATH & STATS Functions

Basic **aggregation**functions as well as
"**iterators**" evaluated at
the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- RELATED
- RELATEDTABLE
- DISTINCT
- VALUES
- EARLIER/EARLIEST
- HASONEVALUE
- HASONEFILTER
- ISFILTERED
- USERELATIONSHIP

DATE & TIMEFunctions

Basic date and time functions as well as advanced time intelligence operations

Common Examples:

- DATEDIFF
- YEARFRAC
- YEAR/MONTH/DAY
- HOUR/MINUTE/SECOND
- TODAY/NOW
- WEEKDAY/WEEKNUM

Time Intelligence Functions:

- DATESYTD
- DATESQTD
- DATESMTD
- DATEADD
- DATESINPERIOD

MATH & STATS Functions

Basic **aggregation** functions as well as **"iterators"** evaluated at the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- RELATED
- RELATEDTABLE
- DISTINCT
- VALUES
- EARLIER/EARLIEST
- HASONEVALUE
- HASONEFILTER
- ISFILTERED
- USERELATIONSHIP

DATE & TIMEFunctions

Basic date and time functions as well as advanced time intelligence operations

Common Examples:

- DATEDIFF
- YEARFRAC
- YEAR/MONTH/DAY
- HOUR/MINUTE/SECOND
- TODAY/NOW
- WEEKDAY/WEEKNUM

Time Intelligence Functions:

- DATESYTD
- DATESQTD
- DATESMTD
- DATEADD
- DATESINPERIOD

MATH & STATS Functions

Basic **aggregation**functions as well as
"**iterators**" evaluated at
the row-level

Common Examples:

- SUM
- AVERAGE
- MAX/MIN
- DIVIDE
- COUNT/COUNTA
- COUNTROWS
- DISTINCTCOUNT

Iterator Functions:

- SUMX
- AVERAGEX
- MAXX/MINX
- RANKX
- COUNTX

LOGICAL Functions

Functions for returning information about values in a given conditional expression

Common Examples:

- IF
- IFERROR
- AND
- OR
- NOT
- SWITCH
- TRUE
- FALSE

TEXT Functions

Functions to manipulate text strings or control formats for dates, times or numbers

Common Examples:

- CONCATENATE
- FORMAT
- LEFT/MID/RIGHT
- UPPER/LOWER
- PROPER
- LEN
- SEARCH/FIND
- REPLACE
- REPT
- SUBSTITUTE
- TRIM
- UNICHAR

FILTER Functions

Lookup functions based on related tables and **filtering** functions for dynamic calculations

Common Examples:

- CALCULATE
- FILTER
- ALL
- ALLEXCEPT
- RELATED
- RELATEDTABLE
- DISTINCT
- VALUES
- EARLIER/EARLIEST
- HASONEVALUE
- HASONEFILTER
- ISFILTERED
- USERELATIONSHIP

DATE & TIMEFunctions

Basic date and time functions as well as advanced time intelligence operations

Common Examples:

- DATEDIFF
- YEARFRAC
- YEAR/MONTH/DAY
- HOUR/MINUTE/SECOND
- TODAY/NOW
- WEEKDAY/WEEKNUM

Time Intelligence Functions:

- DATESYTD
- DATESQTD
- DATESMTD
- DATEADD
- DATESINPERIOD

*Note: This is NOT a comprehensive list (does not include trigonometry functions, parent/child functions, information functions, or other less common functions)

DAX SYNTAX

Total Quantity: =SUM(Transactions[quantity])

DAX SYNTAX

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK

Total Quantity: =SUM(Transactions[quantity])

DAX SYNTAX

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK

Total Quantity: =SUM(Transactions[quantity])

FUNCTION NAME

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK Referenced
TABLE NAME

Total Quantity: =SUM(Transactions[quantity])

FUNCTION NAME

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK Referenced
TABLE NAME
COLUMN NAME

Total Quantity: =SUM(Transactions[quantity])

FUNCTION NAME

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK Referenced
Referenced
COLUMN NAME

Table N

Total Quantity: =SUM(Transactions[quantity])

FUNCTION NAME

This is a "fully qualified" column, since it's preceded by the table name

Note: Table names with spaces must be surrounded by **single quotes**:

- Without a space: **Transactions**[quantity]
- With a space: 'Transactions Table' [quantity]

MEASURE NAME

 Note: Measures are always surrounded in brackets (i.e. [Total Quantity]) when referenced in formulas, so spaces are OK Referenced
TABLE NAME
COLUMN NAME

Total Quantity: =SUM(Transactions[quantity])

FUNCTION NAME

This is a "fully qualified" column, since it's preceeded by the table name

Note: Table names with spaces must be surrounded by **single quotes**:

- Without a space: **Transactions**[quantity]
- With a space: 'Transactions Table' [quantity]

For **column** references, use the fully qualified name (i.e. **Table[Column]**) For **measure** references, just use the measure name (i.e. **[Measure]**)

Evaluates the sum of a column

=SUM(<column>)

SUM()

Evaluates the sum of a column

=SUM(<column>)

AVERAGE()

Returns the average (arithmetic mean) of all the numbers in a column

=AVERAGE(<column>)

SUM()

Evaluates the sum of a column

=SUM(<column>)

AVERAGE()

Returns the average (arithmetic mean) of all the numbers in a column

=AVERAGE(<column>)

MAX()

Returns the largest value in a column or between two scalar expressions

=MAX(<column>) *or* **=MAX**(<exp1>, <exp2>)

SUM()

Evaluates the sum of a column

=SUM(<column>)

AVERAGE()

Returns the average (arithmetic mean) of all the numbers in a column

=AVERAGE(<column>)

MAX()

Returns the largest value in a column or between two scalar expressions

=MAX(<column>) *or* **=MAX**(<exp1>, <exp2>)

MIN()

Returns the smallest value in a column or between two scalar expressions

=MIN(<column>) *or* **=MIN**(<exp1>, <exp2>)

SUM()

Evaluates the sum of a column

=SUM(<column>)

AVERAGE()

Returns the average (arithmetic mean) of all the numbers in a column

=AVERAGE(<column>)

MAX()

Returns the largest value in a column or between two scalar expressions

=MAX(<column>) *or* **=MAX**(<exp1>, <exp2>)

MIN()

Returns the smallest value in a column or between two scalar expressions

=MIN(<column>) *or* **=MIN**(<exp1>, <exp2>)

DIVIDE()

Performs division and returns the alternate result (or blank) if div/0

=DIVIDE(<numerator>, <denominator>, <other>)

COUNTROWS()

Counts the number of rows in the specified table, or a table defined by an expression

=COUNTROWS()

COUNTROWS()

Counts the number of rows in the specified table, or a table defined by an expression

=COUNTROWS()

COUNT()

Counts the number of cells in a column that contain numbers

=COUNT(<column>)

COUNTROWS()

Counts the number of rows in the specified table, or a table defined by an expression

=COUNTROWS()

COUNT()

Counts the number of cells in a column that contain numbers

=COUNT(<column>)

COUNTA()

Counts the number of non-empty cells in a column (numerical and non-numerical)

=COUNTA(<column>)

COUNTROWS()

Counts the number of rows in the specified table, or a table defined by an expression

=COUNTROWS()

COUNT()

Counts the number of cells in a column that contain numbers

=COUNT(<column>)

COUNTA()

Counts the number of non-empty cells in a column (numerical and non-numerical)

=COUNTA(<column>)

DISTINCTCOUNT()

Counts the number of different cells in a column of numbers

=DISTINCTCOUNT(<column>)

IF()

Checks if a given condition is met, and returns one value if the condition is TRUE, and another if the condition is FALSE

=**IF**(<logical test>, <value_if_true>, <value_if_false>)

IF()

Checks if a given condition is met, and returns one value if the condition is TRUE, and another if the condition is FALSE

=**IF**(<logical test>, <value_if_true>, <value_if_false>)

IFERROR()

Evaluates an expression and returns a specified value if the expression returns an error, otherwise returns the expression itself

=**IFERROR**(value, value_if_error)

IF()

Checks if a given condition is met, and returns one value if the condition is TRUE, and another if the condition is FALSE

=**IF**(<logical test>, <value_if_true>, <value_if_false>)

IFERROR()

Evaluates an expression and returns a specified value if the expression returns an error, otherwise returns the expression itself

=**IFERROR**(value, value_if_error)

AND()

Checks whether both arguments are TRUE, and returns TRUE if both arguments are TRUE, otherwise returns FALSE

=AND(<logical1>, <logical2>)

IF()

Checks if a given condition is met, and returns one value if the condition is TRUE, and another if the condition is FALSE

=IF(<logical test>, <value_if_true>, <value_if_false>)

IFERROR()

Evaluates an expression and returns a specified value if the expression returns an error, otherwise returns the expression itself

=**IFERROR**(value, value_if_error)

AND()

Checks whether both arguments are TRUE, and returns TRUE if both arguments are TRUE, otherwise returns FALSE

=AND(<logical1>, <logical2>)

OR()

Checks whether one of the arguments is TRUE to return TRUE, and returns FALSE if both arguments are FALSE

=OR (<logical1>, <logical2>)

IF()

Checks if a given condition is met, and returns one value if the condition is TRUE, and another if the condition is FALSE

=IF(<logical test>, <value_if_true>, <value_if_false>)

IFERROR()

Evaluates an expression and returns a specified value if the expression returns an error, otherwise returns the expression itself

=**IFERROR**(value, value_if_error)

AND()

Checks whether both arguments are TRUE, and returns TRUE if both arguments are TRUE, otherwise returns FALSE

=AND(<logical1>, <logical2>)

OR()

Checks whether one of the arguments is TRUE to return TRUE, and returns FALSE if both arguments are FALSE

=OR (<logical1>, <logical2>)

Note: Use the **&&** and **||** operators if you want to include more than two conditions!

SWITCH & SWITCH(TRUE)

SWITCH()

Evaluates an expression against a list of values and returns one of multiple possible result expressions

=SWITCH(<expression>, <value1>, <result1>, <value2>, <result2>, ... <else>)

Any DAX expression that returns a single scalar value, evaluated multiple times (for each row/constant)

Examples:

- Calendar_Lookup[month_num]
- Product_Lookup[product_brand]

List of values produced by the expression, each paired with a result to return for rows/cases that match

Examples:

```
=SWITCH(Calendar_Lookup[month_num],
```

1, "January",

2, "February",

etc...

=SWITCH(TRUE(),

```
[retail_price]<5, "Low Price",
AND([retail_price>=5, [retail_price]<20), "Med Price",
AND([retail_price>=20, [retail_price]<50), "High Price"
"Premium Price")</pre>
```

Value returned if the expression doesn't match any value argument

*Copyright 2020, Gpearls Data Analytics, https://gpearls.com.ng

RELATED

RELATED()

Returns related values in each row of a table using relationships with other tables

=RELATED(<column>)

The column that contains the values you want to retrieve

Examples:

- Product_Lookup[product_brand]
- Store Lookup[store country]

CALCULATE()

Evaluates a given expression or formula under a set of defined filters

CALCULATE()

Evaluates a given expression or formula under a set of defined filters

=CALCULATE(<expression>, <filter1>, <filter2>,...)

CALCULATE()

Evaluates a given expression or formula under a set of defined filters

=CALCULATE(<expression>, <filter1>, <filter2>,...)

Name of an existing measure or a formula for a valid measure

Examples:

- [Total Transactions]
- SUM(Transactions[quantity])

CALCULATE()

Evaluates a given expression or formula under a set of defined filters

=CALCULATE(<expression>, <filter1>, <filter2>,...)

Name of an existing measure or a formula for a valid measure

Examples:

- [Total Transactions]
- SUM(Transactions[quantity])

List of simple Boolean (True/False) filter expressions (note: these require simple, fixed values; you cannot create filters based on measures)

CALCULATE()

Evaluates a given expression or formula under a set of defined filters

=CALCULATE(<expression>, <filter1>, <filter2>,...)

Name of an existing measure or a formula for a valid measure

Examples:

- [Total Transactions]
- SUM(Transactions[quantity])

List of simple Boolean (True/False) filter expressions (note: these require simple, fixed values; you cannot create filters based on measures)

Examples:

- Store_Lookup[store_country]="USA"
- Calendar[Year]=1998
- Transactions[quantity]>=5

CREATE CALCULATED COLUMN (DEMO)

Table: Calendar Lookup

Weekend Quarter_Name Year_Month

Table: Store_Lookup supermarket_size store_street_num years_since_remodel

End_Of_Month

Table: Transactions
Retail_price

Table: Product Lookup product_price_cat

Table: Customer_Lookup

Age
education_level
customer_priority
New_Country
house_num
membership_level

CREATE MEASURES:(DEMO)

Table: Product Lookup

Avg Retail Price: \$2.12

Unique Products: 1,560

Recyclable Products: 873

Max Retail Price: \$3.98

Min Retail Price: \$0.50

Table: Customer Lookup

Average Age: 75.1

Total Customers: 10,281

Unique Cities: 108

Table: Product Lookup

Quantity Returned: 8,289

Return Rate: 1.0%

Table: Transactions

Total Quantity: 833,489

Weekend Transactions: 76,608

Weekday Transactions: 193,112

Profit: \$1,052,819

Total Revenue (Measure):

\$1,764,546

Total Cost: \$711,728

Total Transactions: 269,720

USA Transactions: 180,823

USA Transactions FILTER: 180,823

USA Transaction %: 67.04%

Low-Fat Quantity Sold: 294,748

Low Fat Sales %: 35.36%

SOURCES

