추천시스템 입문하기

"과거의 기법부터 최신 기법까지 살펴보기"

카이스트

김현우

Contents

- 0. 추천시스템 이해
- 추천시스템 개요
- 기업에서의 추천시스템
- 과거의 추천시스템
- 1. 컨텐츠기반추천
- 컨텐츠 기반 모델 이론
- TF-IDF 모델
- 유사도 함수
- 2. 협업필터링
- KNN
- SGD
- ALS

- 3. 평가 함수
- Accuracy, Rmse, F1 Score
- MAP
- NDCG
- 4. 분석 실습
- 브런치 사용자를 위한 글 추천대회
- Data Exploratory Analysis
- Baseline Recommendation
- Contents Based Recommendation
- Collaborative filtering Recommendation

- 5. 그 외
- 도전 분야

본인 소개

김현우

카이스트, 산업 및 시스템 공학과

TEAM-EDA 블로그

Recommender System KR 페이스북 그룹 운영진

깃허브: https://github.com/choco9966/T-academy-Recommendation

Recommender System KR

Recommender System KR

Recommender System KR 페이스북 그룹 운영진

가입자: 1200명 (2020.12.16 기준)

본인 소개

Hyun woo kim

Student at Hanyang Univ.

Bucheon-si, Gyeonggi-do, South Korea

Joined 3 years ago · last seen in the past day

O in https://eda-ai-lab.tistory.com/

Followers 117
Following 40

Home Competitions (18) Datasets (4) Notebooks (44) Discussion (424) Organizations Account •••

Edit Profile

Competiti Expert	ons	\$
Current Ran 1777 of 151,762		hest Rank
0	6	2
IEEE-CIS F a year ago Top 1%		25 th of 6381
Santander 2 years ag Top 1%		38 th of 8802

40th

of 2426

Microsoft Malw...

2 years ago

Top 2%

	Datasets Contributor		
	Unranked		
0	0	0	
T Acaden 4 months a	the state of the s	5 votes	
ensemble 2 years ag		0 votes	
	Gstore_v1 2 years ago		

Notebook Expert	(S	S.
326 of 150,03		nest Rank
3	5	12
antander 2 years a		163 votes
UBG Dat 2 years a		121 votes
ouse Pric	ce Pre	100

\$
est Rank
109
109 votes
33 votes
20 votes

0 본인 소개

2020	1th Place, Prediction of the period of sale of used cars	KB Capital
2020	2nd Place, Winter tire Demand Forecast in Germany	Hankook Tire
2020	2nd Place, Detect Abnormal Transactions in Mobile Environments	Pay Letter
2020	2nd Place, AI Based Plant Segmentation with Aerial Photography	KOFPI
2020	3rd Place, Game Bot Detection in AION	kisa
2020	2nd Place, Korea Landmark Classification	
2020	5th Place, Nowcast Prediction	Korea Hydro
2020	Stil Ptace, Nowcast Prediction	Nuclear Power Co.
2019	4th Place, Fire Prediction in Gimhae	LH Co.
2019	3rd Place, Prediction Jeju Bus Passengers	Jeju Technopark
2019	5th Place, Automotive network intrusion detection	Kisa
2019	4th Place, Brunch Recommendation Competition	Kakao
2019	1st Place, Prediction the real price of apartments	Zigbang
2018	1st Place, Data Visualization Challenge of Credit Card transaction	Banksalad
2018	1st Place, Bigcontest2018	Shinhan Bank

00 추천시스템 이해

추천시스템의 개요

추천시스템은 **사용자(user)**에게 **상품(item)**을 제안하는 소프트웨어 도구 이자 기술입니다. 이러한 제안은 어떤 상품을 구매할 지, 어떤 음악을 들을지 또는 어떤 온라인 뉴스를 읽을지와 같은 다양한 의사결정과 연관있습니다.

어떤 사용자에게 어떤 상품을 어떻게 추천할지에 대해 이해

기업에서의 추천시스템

ਂ 당근마켓

당근마켓에서의 추천 사례

- 다른 사람들이 <mark>같이 본 상품</mark> 추천

관심 1 - 채팅 0

관심 0 · 채팅 0

관심 1 - 채팅 7

기업에서의 추천시스템

❤ 카카오 (브런치)

카카오에서의 추천 사례

- 해당 글과 <mark>유사한 글을</mark> 추천

실전 이탈 예측 모델링을 위한 세 가지 고려 사항 #1

gimmesilver

게임 데이터 분석을 업으로 하고 있습니다.

구독자 903

'옷 잘 입는 사람'이란

옷 입기에서 소통을 아는 사람 #1 '입도'하는 음악 언젠 가부터 음악이 경쟁이 되어버렸다. 그래서 음악을 접하게 되는 현장은 얼마나 빠른 시간 내에 청각을 자극하느나 …

처유리

아끼면 똥 되는 것 4가지

아껠 것은 따로 있다는 영문 글은 여기에서: 4 things that will become s'** if you don't use enough 사랑도 받 아본 놈이 줄줄 안다고, 센치해지는 밤이면 통생과 두털…

by Yoona Kim

여자가 봐도 예쁜 여자들

비 오는 일요일 오후, 카페에서 글을 쓰고 있었다. 센터해 진 기분과 혼자라는 외로움이 합쳐지면 나쁜 버릇이 발동 하는데, 그것은 앞테이블의 대화를 엿든는 것이다. 엿~~

by 단대표 이지원입니다

데이터 사이언스로 커리어 체 인지를 생각한다면

이 글은 Some Thoughts on Mid-Career Switching Into Data Science라는 제목의 기사의 번역본과 그에 대 한 제 의견입니다. 공감되는 부분이 많아 번역해보았습…

by Carmen

[카카오AI리포트]세상을 바 꾸고 싶다면,딥러닝_김남주

전세계적으로 연구 본격화된지 불과 및 넌. 공개 연구로 함께 희망을 구현 | 카카오는 Al에 대한 사회적 관심을 높 이는 동시에, 다양한 논의의 재료로 Al가 쓰일 수 있기…

向 카카오 정책산업 연구

데이터 분석가에게 필요한 것

데이터 분석가의 필요충분조건은? 취업준비라 하면 보 통 자소서를 쓰고 인죄성 준비를 하고 또 면접을 준비하는 과정을 띄울리게 된다. 하지만 데이터 분야를 준비하며 …

bu Joe

파레토와 롱테일의 법칙

인터넷의 발전 (아마존, 넷플릭스 등)

 ਂ 롱테일의 법칙

하위 80%가 상위 20%의 가치보다 크다.

파레토와 롱테일의 법칙

상위 20%가 80%의 가치를 창출한다.

하위 80%가 상위 20%의 가치보다 크다.

아마<mark>존</mark>이 서점에서 팔지 않는 책을 온라인에서 많이 판매

최규민, [추천아놀자] 제1회 추천시스템이란 https://Blog.vcnc.co.kr/43

추천시스템의 역사

Apriori 알고리즘 연관상품추천

Spark를 이용한 빅데이터

- FP-Growth
- Matrix Factorization

개인화 추천시스템

- Factorization Machine
- Hierarchical RNN
- 강화학습 + Re-Ranking
- 딥러닝

2005 ~ 2010 | 2010 ~ 2015 | 2013 ~ 2017 | 2015 ~ 2017

2017 ~

협업 필터링

- SVD
- 2006~2009년 넷플릭스 추천대회

딥러닝을 이용한 추천시스템

- 협업필터링 + 딥러닝
- Item2Vec, Doc2Vec
- YouTube Recommendation
- Wide & Deep Model

연관분석(Association Analysis)

정의

물기반의 모델로서 상품과 상품사이에 어떤 <mark>연관</mark>이 있는지 찾아내는 알고리즘입니다. 이러한 연관은 2가지 형태로 존재합니다.

〉 연관의 정의?

- 첫번째, **얼마나(frequent) 같이** 구매가 되는가?
- 두번째, A아이템을 구매하는 사람이 B아이템을 구매하는가? 라는 규칙을 찾아내는 형태입니다. 어떤 상품들이 한 장바구니 안에 담기는 지 살피는 모습과 비슷하기 때매 장바구니 분석이라고 표현하기도 합니다.

⊗ 예시

가장 유명한 일화로는 월마트에서 맥주를 구매할 때 기저귀를 같이 구매하는 경향이 크다는 것을 밝혀서 둘을 함께 진열하는 전략을 세우기도 했습니다.

연관분석(Association Analysis) - 규칙평가지표

Support (지지도)

For the rule
$$A \rightarrow B$$
,
 $support(A) = P(A)$

$$confidence(A \rightarrow B) = \frac{P(A, B)}{P(A)}$$

$$lift(A \rightarrow B) = \frac{P(A, B)}{P(A) \cdot P(B)}$$

두 사건이 동시에 얼마나 발생하는지 비율, 독립성을 측정

연관분석(Association Analysis) - 규칙 생성

가능한 모든 경우의 수를 탐색해서 지지도, 신뢰도, 향상도가 높은 규칙들을 찾아내는 방식

상품이 4개일 때, 전체 경우의 수

- 4C1:4

- 4C2:6

- 4C3:4

- 4C4:1

전체 경우의 수: 4+6+4+1=15

연관분석(Association Analysis) - 문제점

♥ 문제점

아이템의 증가에 따른 규칙의 수의 증가가 기하급수적으로 증가

아이템이 100개인 경우에는 규칙의 수가 1.26 * 10^30

Apriori 알고리즘

Apriori

A priori 원리는 아이템셋의 증가를 줄이기 위한 방법입니다. 기본적인 아이디어는 "빈번한 아이템셋은 하위 아이템셋 또한 빈번할 것이다 " 입니다. 즉, "빈번하지 않은 아이템셋은 하위 아이템셋 또한 빈번하지 않다 " 를 이용해서 아이템셋의 증가를 줄이는 방법입니다.

아이디어

{2, 3}의 지지도 > {0, 2, 3}, {1, 2, 3}의 지지도

- P(item 2, item 3) > P(item 0, item 2, item 3)
- P(item 2, item 3) > P(item 1, item 2, item 3)

Apriori 알고리즘

Apriori

- 1. k개의 item을 가지고 단일항목집단 생성 (one-item frequent set)
- 2. 단일항목집단에서 최소 지지도(support) 이상의 항목만 선택
- 3. 2에서 선택된 항목만을 대상으로 2개항목집단 생성
- 4. 2개항목집단에서 최소 지지도 혹은 신뢰도 이상의 항목만 선택
- 5. 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

Apriori 알고리즘 - 데이터

데이터 (Implicit Feedback)

거래 번호	상품 목록
0	우유, 기저귀, 쥬스
1	양상추, 기저귀, 맥주
2	우유, 양상추, 기저귀, 맥주
3	양상추, 맥주

거래번호	우유	양상추	기저귀	쥬스	맥주	
0	1	0	1	1	0	
1	0	1	1	0	1	4
2	1	1	1	0	1	
3	0	1	0	0	1	

Matrix으로 변형 : Sparse Matrix (희소행렬)

거래번호	우유	양상추	기저귀	쥬스	맥주
0	1	0	1	1	0
1	0	1	1	0	1
2	1	1	1	0	1
3	0	1	0	0	1

- 1. 5개의 item을 가지고 단일항목집단 생성 (one-item frequent set): 우유, 양상추, 기저귀, 맥주, 쥬스
- 2. 단일항목집단에서 최소 지지도(support) 이상의 항목만 선택 (예: 최소지지도 0.5)

P(우유): 0.5

P(양상추): 0.75

P(기저귀): 0.75

P(쥬스) : 0.25

P(맥주): 0.75

거래번호	우유	양상추	기저귀	쥬스	맥주
0	1	0	1	1	0
1	0	1	1	0	1
2	1	1	1	0	1
3	0	1	0	0	1

3. 2에서 선택된 항목만을 대상으로 2개항목집단 생성 {우유, 양상추, 기저귀, 맥주} {우유, 양상추}, {우유, 기저귀}, {우유, 맥주}, {양상추, 기저귀}, {양상추, 맥주}, {기저귀, 맥주}

4. 2개항목집단에서 최소 지지도 이상의 항목만 선택 {우유, 양상추} : 0.25 {우유, 기저귀} : 0.5 {우유, 맥주} : 0.25 {양상추, 기저귀} : 0.5 {양상추, 맥주} : 0.75 {기저귀, 맥주} : 0.5

거래번호	우유	양상추	기저귀	쥬스	맥주
0	1	0	1	1	0
1	0	1	1	0	1
2	1	1	1	0	1
3	0	1	0	0	1

- 5. 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복
- {우유}, {양상추}, {기저귀}, {맥주}
- {우유, 기저귀}, {양상추, 기저귀}, {양상추, 맥주}, {기저귀, 맥주}
- {양상추, 기저귀, 맥주}

⊗ 예시

5. 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

위의 예시는 Support를 바탕으로 진행했지만, Confidence와 Lift를 이용해서도 진행 가능하고 함께 사용가능

- {우유}, {양상추}, {기저귀}, {맥주}
- {우유, 기저귀}, {양상추, 기저귀}, {양상추, 맥주},{기저귀, 맥주}
- {양상추, 기저귀, 맥주}

Apriori 알고리즘 - 장단점

- 원리가 간단하여 사용자가 쉽게 이해할 수 있고 의미를 파악할 수 있음
- 유의한 연관성을 갖는 구매패턴을 찾아줌

- 데이터가 클 경우 (item이 많은 경우)에 속도가 느리고 연산량이 많음
- 실제 사용시에 많은 연관상품들이 나타나는 단점이 있음

Apriori 알고리즘 코드

```
⊗ 코드
```

Apriori 알고리즘 코드

⊗ 코드

```
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
te_ary = te.fit(data).transform(data)
df = pd.DataFrame(te_ary, columns=te.columns_)
df
```

	기저귀	맥주	양상추	우유	쥬스
0	True	False	False	True	True
1	True	True	True	False	False
2	True	True	True	True	False
3	False	True	True	False	False

Wall time: 9.97 ms

itemsets	support	
(기저귀)	0.75	0
(맥주)	0.75	1
(양상추)	0.75	2
(우유)	0.50	3
(맥주, 기저귀)	0.50	4
(양상추, 기저귀)	0.50	5
(우유, 기저귀)	0.50	6
(양상추, 맥주)	0.75	7
(양상추, 맥주, 기저귀)	0.50	8

FP-Growth

FP Growth는 이전에 언급한 A Priori의 속도측면의 단점을 개선한 알고리즘입니다. Apriori와 비슷한 성능을 내지만 FP Tree라는 구조를 사용해서 따른 속도를 가진다는게 장점입니다. 하지만, 동일하게 발생하는 아이템 셋(frequent itemsets)을 찾는데는 좋지만 아이템간의 연관성을 찾는 것은 어렵다는 단점이 있습니다.

✓ 원리

- 1. 모든 거래를 확인하여, 각 아이템마다의 지지도(support)를 계산하고 최소 지지도이상의 아이템만 선택
- 2. 모든 거래에서 빈도가 높은 아이템 순서대로 순서를 정렬
- 3. 부모 노드를 중심으로 거래를 자식노드로 추가해주면서 tree를 생성
- 4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 기존의 노드에서 확장
- 5. 위의 과정을 모든 거래에 대해 반복하여 FP TREE를 만들고 최소 지지도 이상의 패턴만을 추출

0

FP-Growth 알고리즘

거래번호	우유	양상추	기저귀	쥬스	맥주
0	1	0	1	1	0
1	0	1	1	0	1
2	1	1	1	0	1
3	0	1	0	0	1

- 1. 모든 거래를 확인하여, 각 아이템마다의 지지도(support)를 계산하고 최소 지지도이상의 아이템만 선택
- 2. 모든 거래에서 빈도가 높은 아이템 순서대로 순서를 정렬

거래번호	아이템
0	<mark>우유, 기저귀, 쥬스</mark>
1	양상추, 기저귀, 맥주
2	우유, 양상추, 기저귀, 맥주
3	양상추, 맥주

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

쥬스가 삭제되고, 빈도가 높은 {양상추, 기저귀, 맥주} -> {우유} 순서대로 정렬

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

3. 부모 노드를 중심으로 거래를 자식노드로 추가해주면서 tree를 생성

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

4. <mark>새로운 아이템이 나올 경우에는 부모노드부터 시작</mark>하고, 그렇지 않으면 기존의 노드에서 확장

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주 , 우유
3	양상추, 맥주

4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 <mark>기존의 노드에서 확장</mark>

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추 , 기저귀, 맥주
2	양상추 , 기저귀, 맥주, 우유
3	양상추 , 맥주

4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 <mark>기존의 노드에서 확장</mark>

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	
맥주	0.75	
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

- 5. 지지도가 낮은 순서부터 시작하여, 조건부 패턴을 생성 (우유)
- {양상추, 기저귀, 맥주}: 2
- {기저귀}:1

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

- {양상추, 기저귀}: 2

- {양상추}:1

0

FP-Growth 알고리즘

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	{}
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

6. 모든 아이템에 대해서 반복 (양상추)

FP-Growth 알고리즘

아이템	지지도	Conditional Pattern bases
기저귀	0.75	{양상추} : 2
양상추	0.75	{}
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

6. 모든 아이템에 대해서 반복 (기저귀)

- {양상추}:2

FP-Growth 알고리즘

♥ 예시

7. Conditional Pattern bases를 기반으로 패턴 생성

아이템	지지도	Conditional Pattern bases
기저귀	0.75	{양상추}: 2
양상추	0.75	{}
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

→ "기저귀를 구매했을 경우" ──── "양상추를 구매했을 경우" "맥주를 구매했을 경우" ---→ "양상추를 구매했을 경우"

FP-Growth 알고리즘 - 장단점

- Apriori 알고리즘보다 빠르고 2번의 탐색만 필요로 함
- 후보 Itemsets 을 생성할 필요없이 진행 가능

- 대용량의 데이터셋에서 메모리를 효율적으로 사용하지 않음
- Apriori 알고리즘에 비해서 설계하기 어려움
- 지지도의 계산이 FP-Tree가 만들어지고 나서야 가능함

FP-Growth 알고리즘 코드

⊗ 코드

0

FP-Growth 알고리즘 코드

⊗ 코드

```
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
te_ary = te.fit(data).transform(data)
df = pd.DataFrame(te_ary, columns=te.columns_)
df
```

	기저귀	맥주	양상추	우유	쥬스
0	True	False	False	True	True
1	True	True	True	False	False
2	True	True	True	True	False
3	False	True	True	False	False

itameate

Wall time: 9.97 ms

Wall time: 1.99 ms

eunnort

	suppo	nι	itemsets
(0.7	75	(기저귀)
•	0.9	50	(우유)
2	2 0.7	75	(양상추)
:	3 0.7	75	(맥주)
4	1 0.5	50	(맥주, 기저귀)
	5 0.	50	(양상추, 기저귀)
(6 0.	50	(양상추, 맥주, 기저귀)
7	7 0.	50	(우유, 기저귀)
8	3 0.7	75	(양상추, 맥주)

01 컨텐츠 기반 추천

컨텐츠 기반 추천시스템은 사용자가 이전에 구매한 상품중에서 좋아하는 상품들과 **유사한 상품들**을 추천하는 방법입니다.

출처: Recommender Systems Handbook, Francesco Ricci

Represented Items

Items을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

Text

이번 글에서는 기존의 RNN Basics에 이어서 PyTorch로 RNN를 구현하는 것에 대해서 심화적으로 배워보도록 하겠습니다. 이번 글은 EDWITH에서 진행하는 파이토치로 시작하는 딥러닝 기초를 토대로 하였고 같이 스터디하는 팀원분들의 자료를 바탕으로 작 성하였습니다. Cross entropy loss에 대한 이론적인 설명은 hyuwk님의 블로그와 ratsgo님의 블로그를 참고하였습니다.

Image 목차

- 'Hihello' proble
- Data Setting one hot enc
- Cross entropy le
- Code run
- 'longseq' exam
- RNN timeseries

Represented Items

Items을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

Represented Items

Items을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

벡터1부터 N까지 자신과 유사한 벡터를 추출

⋉ 유클리디안 유사도

- 문서간의 유사도를 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

유클리디안 유사도 = 1 / (유클리디안 거리 + 1e-05)

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{(\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q})} = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p} \cdot \mathbf{q}}.$$

$$\frac{1}{\sqrt{1^2 + 1^2} + 1e - 5} = 0.707$$

[장점]

- 계산하기가 쉬움

[단점]

- p와 q의 분포가 다르거나 범위가 다른 경우에 상관성을 놓침

ਂ 코사인 유사도

- 문서간의 유사도를 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	9
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

```
from sklearn.metrics.pairwise import cosine_similarity
 2 cosine_similarity(countvect_df, countvect_df)
array([[1.
                   , 0.66666667, <del>0.</del>
                               , 0.47140452, 0.
       [0.66666667, 1.
                   , 0.47140452, 1.
```

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

$$\frac{1+1}{\sqrt{1^2+1^2+1^2}\cdot\sqrt{1^2+1^2+1^2}} = 0.6667$$

[장점]

벡터의 크기가 중요하지 않은 경우에 거리를 측정하기 위한 메트릭으로 사용. (예 : 문서내에서 단어의 빈도수 - 문서들의 길이가 고르지 않더라도 <u>문서내에서 얼마나 나왔는지라는 비율</u>를 확인하기 때문에 상관없음.)

[단점]

벡터의 크기가 중요한 경우에 대해서 잘 작동하지 않음

- ⋉ 유클리디안 유사도 vs 코사인 유사도
- 문서간의 유사도를 계산 (유클리디안 유사도)

- 문서간의 유사도를 계산 (코사인 유사도)

ਂ 피어슨 유사도

- 문서간의 유사도를 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

$$r_{XY} = rac{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight) \left(Y_{i} - \overline{Y}
ight)}{\sqrt{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight)^{2}} \sqrt{\sum_{i}^{n} \left(Y_{i} - \overline{Y}
ight)^{2}}}$$

$$\frac{1+1}{\sqrt{6(\frac{1}{3})^2 + 3(\frac{2}{3})^2} \cdot \sqrt{6(\frac{1}{3})^2 + 3(\frac{2}{3})^2}} = 0.5$$

- 문서간의 유사도를 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

$$J(A,B) = \frac{|A\cap B|}{|A\cup B|} = \frac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

$$\frac{2}{3+3-2} = 0.5$$

♥ 그외

- Euclidean 유사도
- Sorensen 유사도
- 🖺 Soergel 유사도
- P Lorentzian 유사도
- 🗎 Canberra 유사도
- 🖺 WaveHedges 유사도
- 🗋 Motyka 유사도
- 🖺 Kulczynski 유사도
- Ruzicka 유사도

- Dice 유사도
- 🗎 Cosine 유사도
- Jaccard 유사도
- 🖺 hellinger 유사도
- 🖺 Sq-chord 유사도
- 🖺 Sq-kai 유사도
- 🖺 Divergence 유사도
- Clark 유사도
- Topsoe 유사도
- 🗋 Jensen-Diff 유사도
- From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. ['nan_euclidean'] but it does not yet support sparse matrices.
- From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs.

Represented Items

Items을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

Represented Items

ltems을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

정의

TF-IDF는 특정 문서 내에 특정 단어가 얼마나 자주 등장하는 지를 의미하는 **단어 빈도(TF)**와 전체 문서에서 특정 단어가 얼마나 자주 등장하는지를 의미하는 역문서 빈도(DF)를 통해서 "다른 문서에서는 등장하지 않지만 특정 문서에서만 자주 등장하는 단어 "를 찿아서 문서 내 단어의 가중치를 계산하는 방법입니다.

용도로는 문서의 핵심어를 추출, 문서들 사이의 유사도를 계산, 검색 결과의 중요도를 정하는 작업등에 활용할 수 있습니다.

특정 문서 d에서의 특정 단어 t의 등장 횟수

특정 단어 t가 등장한 문서의 수

 \bigotimes IDF(d, t)

DF(t)에 반비례하는 수

$$idf(d,t) = log(\frac{n}{1 + df(t)})$$

TF(d, t) * IDF(d, t) = TF-IDF(d, t)

딥러닝을 이용한 자연어 처리 입문, TF-IDF

☑ TF-IDF를 사용하는 이유

{I like this movie. I love this movie. It was the best movie I've ever seen.} {I don't like this movie. This is the worst movie I've ever seen.}

- 1. Item이라는 컨텐츠를 벡터으로 "Feature Extract" 과정을 수행해준다.
- 2. 빈도수를 기반으로 많이 나오는 중요한 단어들을 잡아준다. 이러한 방법을 Counter Vectorizer 라고한다.
- 3. 하지만, Counter Vectorizer는 단순 빈도만을 계산하기에 조사, 관사처럼 의미는 없지만 문장에 많이 등장하는 단어들도 높게 쳐주는 한계가 있다. 이러한 단어들에는 패널티를 줘서 적절하게 중요한 단어만을 잡아내는 게 TF-IDF 기법이다.

문서	내용
0	먹고 싶은 사과
1	먹고 싶은 바나나
2	길고 노란 바나나 바나나
3	저는 과일이 좋아요

※ 알고리즘

- 문서내 단어의 TF 값 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

- 단어의 DF 값 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
총합	1	1	1	2	3	1	2	1	1

문서내용0먹고 싶은 사과1먹고 싶은 바나나2길고 노란 바나나 바나나3저는 과일이 좋아요

- 문서내 단어의 IDF 값 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
총합	1	1	1	2	3	1	2	1	1

단어	IDF(역 문서 빈도)
과일이	In(4/(1+1)) = 0.693147
길고	In(4/(1+1)) = 0.693147
노란	In(4/(1+1)) = 0.693147
먹고	In(4/(2+1)) = 0.287682
바나나	ln(4/(3+1)) = 0
사과	ln(4/(1+1)) = 0.693147
싶은	In(4/(2+1)) = 0.287682
저는	ln(4/(1+1)) = 0.693147
좋아요	In(4/(1+1)) = 0.693147

$$idf(d,t) = log(\frac{n}{1+df(t)})$$

딥러닝을 이용한 자연어 처리 입문, TF-IDF

문서내용0먹고 싶은 사과1먹고 싶은 바나나2길고 노란 바나나 바나나3저는 과일이 좋아요

※ 알고리즘

- 문서내 단어의 TF * IDF 값 계산

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	0.287682	0	0.693147	0.287682	0	0
문서2	0	0	0	0.287682	0	0	0.287682	0	0
문서3	0	0.693147	0.693147	0	0	0	0	0	0
문서4	0.693147	0	0	0	0	0	0	0.693147	0.693147

※ 알고리즘

- 문서간의 유사도를 계산

	문서1	문서2	문서3	문서4
문서1	1	0.5061	0	0
문서2	0.5061	1	0	0
문서3	0	0	1	0
문서4	0	0	0	1

문서	내용
0	먹고 싶은 사과
1	먹고 싶은 바나나
2	길고 노란 바나나 바나나
3	저는 과일이 좋아요

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} \times \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

1

TF-IDF

⊗ 코드

```
docs = [
     "먹고 싶은 사과",
     "먹고 싶은 바다다".
     '길고 노란 바다다 바다다'.
     '저는 과일이 좋아요'
 6 ]
 1 from sklearn.feature_extraction.text import IfidfVectorizer
 3 tfidy = IfidfVectorizer(use_idf=True, smooth_idf=False, norm=None).fit(docs)
 4 | tfidv_df = pd.DataFrame(tfidv.transform(docs).toarray())
 5 tfidv_df
       0
0 0.000000 0.000000 0.000000 1.693147 0.000000 2.386294 1.693147 0.000000 0.000000
1 0.000000 0.000000 0.000000 1.693147 1.693147 0.000000 1.693147
                                                      0.000000 0.000000
2 0.000000 2.386294 2.386294 0.000000 3.386294 0.000000 0.0000000
                                                      0.000000 0.000000
1 print(sorted(tfidv.vocabulary_))
['과일이', '길고', '노란', '먹고', '바나나', '사과', '싶은', '저는', '좋아요']
```

The formula that is used to compute the tf-idf for a term t of a document d in a document set is tf-idf(t, d) = tf(t, d) * idf(t), and the idf is computed as idf(t) = log [n / df(t)] + 1 (if ``smooth_idf=False``), where n is the total number of documents in the document set and df(t) is the document frequency of t; the document frequency is the number of documents in the document set that contain the term t. The effect of adding "1" to the idf in the equation above is that terms with zero idf, i.e., terms that occur in all documents in a training set, will not be entirely ignored. (Note that the idf formula above differs from the standard textbook notation that defines the idf as idf(t) = log [n / (df(t) + 1)]).

- 직관적인 해석이 가능함

✓ 단점

- 대규모 말뭉치를 다룰 때 메모리상의 문제가 발생
 - 높은 차원을 가짐
 - 매우 sparse한 형태의 데이터임

Represent Items

ltems을 벡터 형태로 표현. 도메인에 따라 다른 방법이 적용

Text

이번 글에서는 기존의 RNN Basics에 이어서 PyTorch로 RNN를 구현하는 것에 대해서 심화적으로 배워보도록 하겠습니다. 이번 글은 EDWITH에서 진행하는 파이토치로 시작하는 딥러닝 기초를 토대로 하였고 같이 스터디하는 팀원분들의 자료를 바탕으로 작 성하였습니다. Cross entropy loss에 대한 이론적인 설명은 hyuwk님의 블로그와 ratsgo님의 블로그를 참고하였습니다.

목차

- 'Hihello' proble
- Data Setting one hot ence
- Cross entropy lo
- Code run
- 'longseq' examı
- · RNN timeseries

딥러닝을 이용한 자연어 처리 입문, Word2Vec

ਂ 통계기반의 방법 단점

- 대규모 말뭉치를 다룰 때 메모리상의 문제가 발생
 - 높은 차원을 가짐, 매우 sparse한 형태의 데이터임
 - 예) 100만개의 문서를 다루는 경우: 100만개의 문서에 등장한 모든 단어를 추출해야하고 이때 단어의 수는 1문서당 새로운 단어가 10개면, 1000만개정도의 말뭉치가 형성됨. 즉, 100만 x 1000만의 매트릭스가 형성
- 한번에 학습 데이터 전체를 진행함
 - 큰 작업을 처리하기 어려움
 - GPU와 같은 병렬처리를 기대하기 힘듬
- 학습을 통해서 개선하기가 어려움

추론기반의 방법 (Word2Vec)

추론: **주변 단어(맥락)**이 주어졌을 때 **"?"**에 무슨 단어(**중심단어**)가 들어가는지를 추측하는 작업 예) you say goodbye and I say hello.

밑바닥부터 시작하는 딥러닝2

정의

Word2Vec은 단어간 유사도를 반영하여 단어를 벡터로 바꿔주는 임베딩 방법론입니다. 원-핫벡터 형태의 sparse matrix 이 가지는 단점을 해소하고자 저차원의 공간에 벡터로 매핑하는 것이 특징입니다. Word2Vec은 "비슷한 위치에 등장하는 단어들은 비슷한 의미를 가진다 "라는 가정을 통해서 학습을 진행합니다. 저차원에 학습된 단어의 의미를 분산하여 표현하기에 단어 간 유사도를 계산할 수 있습니다.

추천시스템에서는 단어를 구매 상품으로 바꿔서 구매한 패턴에 Word2Vec을 적용해서 비슷한 상품을 찾을 수 있습니다.

딥러닝을 이용한 자연어 처리 입문, Word2Vec

Word2Vec - CBOW

알고리즘

CBOW는 <mark>주변에 있는 단어들을</mark> 가지고, <mark>중간에 있는 단어들을</mark> 예측하는 방법입니다. 반대로, Skip-Gram은 중간에 있는 단어로 주변 단어들을 예측하는 방법입니다.

예) you say goodbye and I say hello.

- 주변 단어 : 주변에 있는 단어 (you, goodbye)
- 중심 단어 : 중간에 있는 단어 (say)
- 윈도우 크기: 주변을 몇 칸까지 볼 지에 대한 크기 (1)

Word2Vec - CBOW

추론기반의 방법 (Word2Vec)

추론기반의 방법 (Word2Vec)

- 1. One Hot Vector 형태의 입력값을 받는다.
 - You -> [Say] 예측
 - Goodbye -> [Say] 예측
 - 주변 단어: 주변에 있는 단어 (you, goodbye)
 - 중심 단어: 중간에 있는 단어 (say)
 - 윈도우 크기: 주변을 몇 칸까지 볼 지에 대한 크기 (1), 만일, 윈도우 크기가 2이면 you, goodbye, and를 통해서 [Say]를 예측

you? goodbye and I say hello.

CBOW 모델
you ? goodbye and I say hello.

추론기반의 방법 (Word2Vec)

2. One Hot Vector 형태의 입력값을 Win과 곱

```
import numpy as np
    # 입력값은 원-핫 벡터형태를 가짐
   input1 = np.array([[1, 0, 0, 0, 0, 0, 0]]) # You
   input2 = np.array([[0, 0, 1, 0, 0, 0, 0]]) # goodbye
    #(입력 x 차원의 크기) - 차원의 크기는 사용자가 선정
 2 \mid \Psi_{in} = \text{np.random.randn}(7, 3)
                                 초기의 Weight는 랜덤한 값으로 정해짐
 1 | h_1 = np.matmul(input1, ₩_in) # 은닉총의 값
 2 h_2 = np.matmul(input2, ₩_in) # 은닉총의 값
   |print((h_1+h_2)/2)
[[0.20274156 0.10486586 0.34333331]]
```

CBOW 모델

you? goodbye and I say hello.

추론기반의 방법 (Word2Vec)

- 3. Hidden state의 값을 W_out과 곱해서 Score를 추출한다.
- 4. Score에 Softmax를 취해서 각 단어가 나올 확률을 계산한다.

추론기반의 방법 (Word2Vec)

v : prediction

5. 정답과 Corss Entropy Loss 를 계산

- Pred: [0.174 **0.1222** 0.0988 0.1765 0.2168 0.1134 0.0982]

```
# Cross Entropy Loss # 4 - Ans: [0,1,0,0,0,0] - Loss: 2.1019
```

t : target ''' delta = 1e-7 *# log의 내부가 0이 되는 것을 방지*

y.shape[0]으로 나눠주는 이유는 배치 사이즈 반영
return -np.sum(t * np.log(y + delta)) / y.shape[0]

1 cross_entropy_error(pred, [0, 1, 0, 0, 0, 0, 0])

2.101924544240407

cross-entropy =
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{k} t_{i,j} \log(p_{i,j})$$

CBOW 모델

밑바닥부터 시작하는 딥러닝2

CBOW 모델

CBOW 모델

you ? goodbye and I say hello.

추론기반의 방법 (Word2Vec)

6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트

- Softmax의 Backpropagation 값 (Pi yi)
 - ds: [0.174 -0.8778 0.0988 0.1765 0.2168 0.1134 0.0982]
 - dw_out(Delta for W_out) = np.outer(Hidden Layer, ds)

```
# ds (Delta for W_out) 계산
   |dW_out = np.outer(h, ds)|
    print(np.round(dW_out, 4))
                 0.02
[[ 0.0353 -0.178
                          0.0358
                                  0.044
                                           0.023
                                                   0.0199]
[ 0.0182 -0.0921  0.0104
                          0.0185
                                  0.0227
                                          0.0119
                                                   0.0103]
[ 0.0597 -0.3014
                  0.0339
                          0.0606
                                  0.0744
                                          0.0389
                                                   0.0337]]
```

추론기반의 방법 (Word2Vec)

6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트 - da = [-0.3732 1.0494 1.2529]

```
1 da = np.dot(ds, W_out.T)
2 print(np.round(da, 4))
[[-0.3732 1.0494 1.2529]]
```

밑바닥부터 시작하는 딥러닝2

CBOW 모델

- CBOW 모델

you? goodbye and I say hello.

추론기반의 방법 (Word2Vec)

6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트

- W_in_new = W_in - learing_rate * dw_in


```
dw_1 = np.round(np.outer(np.array([[1,0,0,0,0,0,0]]), (da/2)), 4)
 2 print(dw_1)
[[-0.1866]
           0.5247
                   0.6264]
[-0.
 [-0.
 [-0.
 [-0.
 [-0.
 [-0.
    dw_2 = np.round(np.outer(np.array([[0,0,1,0,0,0,0]]), (da/2)), 4)
 2 print(dw_2)
[[-0]
                   0.
[-0.
[-0.1866 0.5247 0.6264]
 [-0.
 [-0.
 [-0.
 [-0.
                          ]]
```

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_in_new = W_in learing_rate * dw_in

```
learning_rate = 1
 2 | W_in_new = W_in - learning_rate * dw_1
 3 | W_in_new = W_in_new - learning_rate * dw_2
 4 print(np.round(W in new, 4))
-0.0261
        1.4564 0.5001]
[ 0.3037 -0.4666 -0.0778]
                                         수정된 W in
         0.1681
                0.4108)
[-0.9173 0.6615 0.383]
[-0.1627 -0.2639 -0.3442]
[ 0.6816 -0.3252 -0.8528]]
   print(np.round(W_in, 4))
[[ 0.2884
         0.1516 0.1381]
         1.4564 0.5001]
[-0.0261]
                                          원본 W in
         0.0581 0.5486]
[-1.0541]
         0.1681 0.41081
[-0.9173 0.6615 0.383]
[-0.1627 -0.2639 -0.3442]
 [ 0.6816 -0.3252 -0.8528]]
```

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_out_new = W_out learing_rate * dw_out

```
| learnoutg_rate = 1
 2 | W_out_new = W_out - learnoutg_rate * dW_out
 3 print(np.round(W_out_new, 4))
[[-0.3421 -0.1997 1.786 -3.0867 -1.1163 -0.3515 -0.2393]
[ 0.7465 -0.1937 0.3428 1.775
                                 0.6387 0.3337 1.3281]
 [ 1.309 -0.868 -0.7845 0.015
                                 0.3448 -1.5788 1.3178]]
    print(np.round(dW_out, 4))
[[ 0.0353 -0.178
                          0.0358
                                  0.044
                                          0.023
                                                  0.0199]
                  0.02
 [ 0.0182 -0.0921
                  0.0104
                          0.0185
                                  0.0227
                                          0.0119
                                                  0.0103]
 [ 0.0597 -0.3014 0.0339
                          0.0606
                                 0.0744
                                          0.0389
                                                 0.0337]]
```

추론기반의 방법 (Word2Vec)

7. 위의 과정을 다른 문맥에 대해서도 수행

#1	you	say	goodbye	and	I	say	hello	
#2	you	say	goodbye	and	1	say	hello	
#3	you	say	goodbye	and	1	say	hello	
#4	you	say	goodbye	and	T	say	hello	
#5	you	say	goodbye	and	1	say	hello	
#6	you	say	goodbye	and	1	say	hello	
#7	you	say	goodbye	and	1	say	hello	
#8	you	say	goodbye	and	1	say	hello	

- 입력: You, goodbye -> 출력: Say (6까지의 스탭)

- 입력:say, and -> 출력:goodbye

- 입력:goodbye, I-> 출력:and

- 입력: and, say -> 출력: I

- 입력: I, hello -> 출력: Say

CBOW 모델

추론기반의 방법 (Word2Vec)

윈도우의 크기에 따라 데이터 셋 생성

#1	you	say	goodbye	and	I	say	hello	
#2	you	say	goodbye	and	-	say	hello	
#3	you	say	goodbye	and	1	say	hello	
#4	you	say	goodbye	and	T	say	hello	
#5	you	say	goodbye	and	T	say	hello	
#6	you	say	goodbye	and	1	say	hello	
#7	you	say	goodbye	and	I	say	hello	
#8	you	say	goodbye	and	1	say	hello	

원래는 #1부터 진행해야하나 이해의 편의상 #2부터 진행

딥러닝을 이용한 자연어 처리 입문, Word2Vec 밑바닥부터 시작하는 딥러닝2

추론기반의 방법 (Word2Vec)

- 1. One Hot Vector 형태의 입력값을 받는다.
 - [say]-> [you] 예측
 - [say]-> [goodbye] 예측
 - 주변 단어 : 주변에 있는 단어 (you, goodbye)
 - 중심 단어: 중간에 있는 단어 (say)
 - 윈도우 크기: 주변을 몇 칸까지 볼 지에 대한 크기 (1), 만일, 윈도우 크기가 2이면 [say]를 통해 you, goodbye, and를 예측

추론기반의 방법 (Word2Vec)

2. One Hot Vector 형태의 입력값을 Win과 곱

```
import numpy as np
   # 입력값은 원-핫 벡터형태를 가짐
   input = np.array([[0, 1, 0, 0, 0, 0, 0]]) # say
   |output1 = np.array([[1, 0, 0, 0, 0, 0, 0]]) # you
   |output2 = np.array([[0, 0, 1, 0, 0, 0, 0]]) # you
   |#(입력 x 차원의 크기) - 차원의 크기는 사용자가 선정
 2 |## 초기의 Weight는 랜덤하게 결정됨
 3 \mid \Psi_{in} = np.random.randn(7, 3)
  |h = np.matmul(input, W_in) # 은닉총의 값
   print(h)
[[ 1.73019885  0.25404839 -1.17196824]]
```

skip-gram 모델

? say

추론기반의 방법 (Word2Vec)

- 3. Hidden state의 값을 W_out과 곱해서 Score를 추출한다.
- 4. Score에 Softmax를 취해서 각 단어가 나올 확률을 계산한다.

추론기반의 방법 (Word2Vec)

- 5. 정답과 Corss Entropy Loss 를 계산
- Pred: [[0.1127 0.0112 0.5074 0.0046 0.0084 0.01 0.3457]]
- Ans: [1, 0, 1, 0, 0, 0, 0]
 - 한번에 업데이트를 진행

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- 두 개의 Answer에 대해서 오차를 더함

```
1 ds1 = np.round(pred - output1, 4)

2 ds2 = np.round(pred - output2, 4)

3 ds = ds1 + ds2

4 print(ds)

[[-0.7746 0.0224 0.0148 0.0092 0.0168 0.02 0.6914]]
```

skip-gram 모델

? say

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_out에 대해 역전파값을 계산

```
dw_out = np.round(np.outer(h, ds), 4)
    print(dw_out)
[[-1.3402
          0.0388
                  0.0256 0.0159
                                 0.0291
                                          0.0346
                                                 1.1963]
                                  0.0043
 [-0.1968
          0.0057
                  0.0038
                          0.0023
                                          0.0051
                                                  0.17561
 [ 0.9078 -0.0263 -0.0173 -0.0108 -0.0197 -0.0234 -0.8103]]
```

skip-gram 모델

? say

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_in에 대해 역전파값을 계산

```
da = np.dot(ds, W_out.T)
   print(np.round(da, 4))
[[ 0.8017 -0.4194  0.5604]]
    dw_{in} = np.outer(np.array([[0,1,0,0,0,0,0]]), da)
    print(np.round(dw_in, 4))
[[ 0.
 [ 0.8017 -0.4194  0.5604]
 [ 0.
 ΓΟ.
 [ 0.
 [0.
 [ 0.
```

skip-gram 모델

? say

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_in에 대해서 Update 진행

```
learning_rate = 1
    W_in_new = W_in - learning_rate * dw_in
 3 | print(np.round(W_in_new, 4))
[[ 0.1781 -0.5404 -0.0841]
 [ 0.9285  0.6734 -1.7324]
  0.62
          0.4294 0.487 ]
  0.6782
          0.1089
                  0.48051
 [ 1.4623
         1.6662
                  1.04561
 [-0.31 -0.4486 0.2929]
 [-0.5184 -1.7401 -1.5444]]
    print(np.round(W_in, 4))
[[ 0.1781 -0.5404 -0.0841]
 [ 1.7302 0.254 -1.172 ]
          0.4294 0.487 ]
  0.62
  0.6782
          0.1089
                  0.48051
         1.6662
 [ 1.4623
                  1.04561
 [-0.31]
         -0.4486 0.29291
 [-0.5184 -1.7401 -1.5444]]
```

skip-gram 모델

say

추론기반의 방법 (Word2Vec)

- 6. 5에서 계산한 Loss를 가지고 Backpropagation 과정을 통해서 Weight를 업데이트
- W_out에 대해서 Update 진행

skip-gram 모델

say

7. 위의 과정을 다른 문맥에 대해서도 수행

#1	you	say	goodbye	and	1	say	hello	
#2	you	say	goodbye	and	Ι	say	hello	
#3	you	say	goodbye	and	_	say	hello	•
#4	you	say	goodbye	and	_	say	hello	
#5	you	say	goodbye	and	_	say	hello	
#6	you	say	goodbye	and	Τ	say	hello	•
#7	you	say	goodbye	and	1	say	hello	
#8	you	say	goodbye	and	1	say	hello	

- 입력: say -> 출력: You, goodbye(6까지의 스탭)

- 입력:goodbye -> 출력:say, and

- 입력: and -> 출력: goodbye, I

- 입력: I -> 출력: and, say

- 입력: say -> 출력: I, hello

gensim 패키지의 Word2Vec을 이용

class gensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), max_final_vocab=None) ¶

```
from gensim.models import Word2Vec

docs = [
    'you say goodbye and I say hello .'

sentences = [list(sentence.split(' ')) for sentence in docs]

model = Word2Vec(size=3, window=1, min_count=1, sg=1)

model.build_vocab(sentences)
model.wv.most_similar("say")

[('and', 0.8423022627830505),
    ('hello', 0.6423846483230591),
    ('goodbye', 0.45526981353759766),
    ('I', 0.2640129029750824),
    ('.', -0.09787103533744812),
    ('you', -0.9029324054718018)]
```

컨텐츠 기반 모델

- 협업필터링은 다른 사용자들의 평점이 필요한 반면에, 자신의 평점만을 가지고 추천시스템을 만들 수 있음
- item의 feature를 통해서 추천을 하기에 추천이 된 이유를 설명하기 용이함
- 사용자가 평점을 매기지 않은 새로운 item이 들어올 경우에도 추천이 가능함

- item의 feature을 추출해야 하고 이를 통해서 추천하기때문에 제대로 feature을 추출하지 못하면 정확도가 낮음. 그렇기에 Domain Knowledge가 분석시에 필요할 수도 있음
- 기존의 item과 유사한 item 위주로만 추천하기에 새로운 장르의 item을 추천하기 어려움
- 새로운 사용자에 대해서 충분한 평점이 쌓이기 전까지는 추천하기 힘든

02 협업 필터링

협업필터링 개요

협업필터링은 사용자의 구매 패턴이나 평점을 가지고 다른 사람들의 구매 패턴, 평점을 통해서 추천을 하는 방법입니다. 추가적인 사용자의 개인정보나 아이템의 정보가 없이도 추천할 수 있는게 큰 장점이며 2006부터 2009년동안 열린 Netflix Prize Competition에서 우승한 알고리즘으로 유명새를 떨쳤습니다.

- 1. 최근접 이웃기반
- 2. 잠재 요인기반

Neighborhood based method

정의

Neighborhood based Collaborative Filtering은 메모리 기반 알고리즘으로 협업 필터링을 위해 개발된 초기 알고리즘입니다.

알고리즘

- 1. User-based collaborative filtering 사용자의 구매 패턴(평점)과 유사한 사용자를 찿아서 추천 리스트 생성
- 2. Item-based collaborative filtering 특정 사용자가 준 점수간의 유사한 상품을 찾아서 추천 리스트 생성

K Nearest Neighbors

가장 근접한 K 명의 Neighbors를 통해서 예측하는 방법

데이터 (Explicit Feedback)

유저가 자신의 선호도를 직접 표현한 데이터

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6
사용자1	7	6	7	4	5	4
사용자2	6	7	?	4	3	4
사용자3	?	3	3	1	1	?
사용자4	1	2	2	3	3	4
사용자5	1	?	1	2	3	3

User Based Collaborative Filtering

유저가 자신의 선호도를 집적적으로 표현한 데이터

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6	평균	Cosine(i, 3)	Pearson(i, 3)
사용자1	7	6	7	4	5	4	5.5	0.956	0.894
사용자2	6	7	?	4	3	4	4.8	0.981	0.939
사용자3	?	3	3	1	1	?	2	1.0	1.0
사용자4	1	2	2	3	3	4	2.5	0.789	-1.0
사용자5	1	?	1	2	3	3	2	0.645	-0.817

User Based Collaborative Filtering

유저가 자신의 선호도를 집적적으로 표현한 데이터

	평균	Cosine(i, 3)	Pearson(i, 3)
사용자1	5.5	0.956	0.894
사용자2	4.8	0.981	0.939
사용자3	2	1.0	1.0
사용자4	2.5	0.789	-1.0
사용자5	2	0.645	-0.817

$$\hat{r}_{uj} = \mu_u + \frac{\sum_{v \in P_u(j)} \operatorname{Sim}(u, v) \cdot s_{vj}}{\sum_{v \in P_u(j)} |\operatorname{Sim}(u, v)|} = \mu_u + \frac{\sum_{v \in P_u(j)} \operatorname{Sim}(u, v) \cdot (r_{vj} - \mu_v)}{\sum_{v \in P_u(j)} |\operatorname{Sim}(u, v)|}$$

$$\operatorname{Cosine}(1, 3) = \frac{6 * 3 + 7 * 3 + 4 * 1 + 5 * 1}{\sqrt{6^2 + 7^2 + 4^2 + 5^2} \cdot \sqrt{3^2 + 3^2 + 1^2 + 1^2}} = 0.956$$

$$\operatorname{Pearson}(1, 3) = \frac{(6 - 5.5) * (3 - 2) + (7 - 5.5) * (3 - 2) + (4 - 5.5) * (1 - 2) + (5 - 5.5) * (1 - 2)}{\sqrt{1.5^2 + 1.5^2 + (-1.5)^2 + (-0.5)^2} \cdot \sqrt{1^2 + 1^2 + (-1)^2 + (-1)^2}} = 0.894$$

☑ User Based Collaborative Filtering 유저가 자신의 선호도를 집적적으로 표현한 데이터

	아이템1	아이템6	평균	Pearson(i, 3)
사용자1	7	4	5.5	0.894
사용자2	6	4	4.8	0.939
사용자3	3.35	0.86	2	1.0
사용자4	1	4	2.5	-1.0
사용자5	1	3	2	-0.817

$$\hat{r}_{31} = \frac{7 * 0.894 + 6 * 0.939}{0.894 + 0.939} \approx 6.49$$

$$\hat{r}_{36} = \frac{4 * 0.894 + 4 * 0.939}{0.894 + 0.939} = 4$$

사용자1의 아이템1의 평점 - 사용자1의 평균 평점
$$\hat{r}_{31} = 2 + \frac{1.5*0.894 + 1.2*0.939}{0.894 + 0.939} \approx 3.35$$

$$\hat{r}_{36} = 2 + \frac{-1.5*0.894 - 0.8*0.939}{0.894 + 0.939} \approx 0.86$$
 사용자3의 평균 평점

Item Based Collaborative Filtering

유저가 자신의 선호도를 집적적으로 표현한 데이터

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6	평균
사용자1	7	6	7	4	5	4	5.5
사용자2	6	7	?	4	3	4	4.8
사용자3	?	3	3	1	1	?	2
사용자4	1	2	2	3	3	4	2.5
사용자5	1	?	1	2	3	3	2

☑ Item Based Collaborative Filtering 유저가 자신의 선호도를 집적적으로 표현한 데이터

$$AdjustedCosine(1,3) = \frac{1.5*1.5 + (-1.5)*(-0.5) + (-1)*(-1)}{\sqrt{1.5^2 + (-1.5)^2 + (-1)^2} \cdot \sqrt{1.5^2 + (-0.5)^2 + (-1)^2}} = 0.912$$

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6	평균
사용자1	1.5	0.5	1.5	-1.5	-0.5	-1.5	5.5
사용자2	1.2	2.2	?	-0.8	-1.8	-0.8	4.8
사용자3	?	1	1	-1	-1	?	2
사용자4	-1.5	-0.5	-0.5	0.5	0.5	1.5	2.5
사용자5	-1	?	-1	0	1	1	2
Cosine(1, j)	1	0.735	0.912	-0.848	-0.813	-0.990	
Cosine(6, j)	-0.990	-0.622	-0.912	0.829	0.730	1	

Item Based Collaborative Filtering

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6
사용자1	7	6	7	4	5	4
사용자2	6	7	?	4	3	4
사용자3	3	3	3	1	1	1
사용자4	1	2	2	3	3	4
사용자5	1	?	1	2	3	3
Cosine(1, j)	1	0.735	0.912	-0.848	-0.813	-0.990
Cosine(6, j)	-0.990	-0.622	-0.912	0.829	0.730	1

$$\hat{r}_{31} = \frac{3 * 0.735 + 3 * 0.912}{0.735 + 0.912} = 3$$

$$\hat{r}_{36} = \frac{1 * 0.829 + 1 * 0.730}{0.829 + 0.730} = 1$$

Neighborhood based method

- 간단하고 직관적인 접근 방식 때문에 구현 및 디버그가 쉬움
- 특정 Item을 추천하는 이유를 정당화하기 쉽고 Item 기반 방법의 해석 가능성이 두드러짐
- 추천 리스트에 새로운 item과 user가 추가되어도 상대적으로 안정적

- User 기반 방법의 시간, 속도, 메모리가 많이 필요
- 희소성 때문에 제한된 범위가 있음
 - John의 Top-K 에만 관심이 있음
 - John과 비슷한 이웃중에서 아무도 해리포터를 평가하지 않으면, John의 해리포터에 대한 등급 예측을 제공할 수가 없음

Latent Factor Collaborative Filtering

Neighboorhood vs Latent Factor

Neighborhood Model

Latent Model

Latent Factor Collaborative Filtering

잠재 요인 협업 필터링은 Rating Matrix에서 빈 공간을 채우기 위해서 사용자와 상품을 잘 표현하는 차원 (Latent Factor)을 찾는 방법입니다. 잘 알려진 행렬 분해는 추천 시스템에서 사용되는 협업 필터링 알고리즘의 한 종류입니다. 행렬 분해 알고리즘은 사용자-아이템 상호 작용 행렬을 두 개의 저 차원 직사각형 행렬의 곱으로 분해하여 작동합니다. 이 방법은 Netflix 챌린지에서 널리 알려지게되었습니다

Matrix Factorization Principles

사용자의 잠재요인과 아이템의 잠재요인을 내적해서 평점 매트릭스를 계산

$$R \approx UV^T$$

SVD

정의

고유값 분해(eigen value Decomposition)와 같은 행렬을 대각화 하는 방법

$$R = U\Sigma V^T$$

U: (m, m), R의 left singular 벡터로 구성된 직교행렬 V: (n, n), R의 right singular 벡터로 구성된 직교행렬 Σ: (m, n), 주 대각성분이 √λi인 직사각 대각행렬(Singular value)

- 데이터에 결측치가 없어야 함
- 대부분의 현업 데이터는 Sparse한 데이터

고유값 분해(eigen value Decomposition)와 같은 행렬을 대각화 하는 방법

Minimize
$$J = \frac{1}{2}||R - UV^T||^2$$
 subject to:

No constraints on U and V $S = \{(i, j) : r_{ij} \text{ is observed}\}$

Minimize
$$J = \frac{1}{2} \sum_{(i,j) \in S} e_{ij}^2 = \frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} - \sum_{s=1}^k u_{is} \cdot v_{js} \right)^2$$
 subject to:

No constraints on U and V

Gradient Descent에 의해 편미분 된 값

$$\frac{\partial J}{\partial u_{iq}} = \sum_{j:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
= \sum_{j:(i,j)\in S} (e_{ij})(-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
\frac{\partial J}{\partial v_{jq}} = \sum_{i:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}
= \sum_{i:(i,j)\in S} (e_{ij})(-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

Regularization

고유값 분해(eigen value Decomposition)와 같은 행렬을 대각화 하는 방법

$$\begin{aligned} \text{Minimize } J &= \frac{1}{2} \sum_{(i,j) \in S} e_{ij}^2 + \frac{\lambda}{2} \sum_{i=1}^m \sum_{s=1}^k u_{is}^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{s=1}^k v_{js}^2 \\ &= \frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} - \sum_{s=1}^k u_{is} \cdot v_{js} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^m \sum_{s=1}^k u_{is}^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{s=1}^k v_{js}^2 \end{aligned}$$

Gradient Descent에 의해 편미분 된 값

$$\frac{\partial J}{\partial u_{iq}} = \sum_{j:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-v_{jq}) + \lambda u_{iq} \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
= \sum_{j:(i,j)\in S} (e_{ij})(-v_{jq}) + \lambda u_{iq} \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
\frac{\partial J}{\partial v_{jq}} = \sum_{i:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-u_{iq}) + \lambda v_{jq} \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}
= \sum_{i:(i,j)\in S} (e_{ij})(-u_{iq}) + \lambda v_{jq} \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

$$u_{iq} \Leftarrow u_{iq} + \alpha \left(\sum_{j:(i,j) \in S} e_{ij} \cdot v_{jq} - \lambda \cdot u_{iq} \right) \quad \forall q \in \{1 \dots k\}$$
$$v_{jq} \Leftarrow v_{jq} + \alpha \left(\sum_{i:(i,j) \in S} e_{ij} \cdot u_{iq} - \lambda \cdot v_{jq} \right) \quad \forall q \in \{1 \dots k\}$$

Explict Feedback 된 형태의 4명의 유저에 대한 3개의 아이템에 대한 평점 Matrix

Rating Matrix

?	3	2
5	1	2
4	2	1
2	?	4

1. User Latent 와 Item Latent의 임의로 초기화

np.dot

User Latent (U)

0.5756	1.4534
-0.199	-1.218
2.7297	0.48
-0.039	-2.506

Item Latent (V)의 Transpose

0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

=

-0.2819	0.6663	1.4981
0.3403	-0.8728	-0.8421
0.8384	-2.5933	4.2008
0.8354	-2.2043	-1.1928

2. Gradient Descent 진행

1.4534
-1.218
0.48
-2.506

0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

	↓	
?	3	2
5	1	2
4	2	1
2	?	4

▼		
-0.2819	0.6663	1.4981
0.3403	-0.8728	-0.8421
0.8384	-2.5933	4.2008
0.8354	-2.2043	-1.1928

Error: 3 - 0.6663 = 2.3337

dUser = -2.3337*[-1.1078, 0.8972] + 0.01 *[0.5756, 1.4534]

dltem = -2.3337*[0.5756, 1.4534] + 0.01*[-1.1078, 0.8972]

$$\frac{\partial J}{\partial u_{iq}} = \sum_{j:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-v_{jq}) + \lambda u_{iq} \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
= \sum_{j:(i,j)\in S} (e_{ij})(-v_{jq}) + \lambda u_{iq} \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}
\frac{\partial J}{\partial v_{jq}} = \sum_{i:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-u_{iq}) + \lambda v_{jq} \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}
= \sum_{i:(i,j)\in S} (e_{ij})(-u_{iq}) + \lambda v_{jq} \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

♥ 예시

0.57561.4534-0.199-1.2182.72970.48-0.039-2.506

0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

2. Gradient Descent 진행

Error: 3 - 0.6663 = 2.3337 dUser = -2.3337*[-1.1078, 0.8972] + 0.01 * [0.5756, 1.4534]

dltem = -2.3337*[0.5756, 1.4534] + 0.01*[-1.1078, 0.8972]

Updated User Latent = [0.5756, 1.4534] - Learning rate * dUser [0.446, 1.5574] = [0.5756, 1.4534] - 0.05 * [2.591, -2.0793]

Updated Item Latent = [-1.1078, 0.8972] - Learning rate * dItem [-1.0401, 1.0663] = [-1.1078, 0.8972] - 0.05 * [-1.3544, -3.3828]

0.4461.5574-0.199-1.2182.72970.48-0.039-2.506

 0.3668
 -1.0401
 1.4593

 -0.3392
 1.0663
 0.4528

-0.3647	1.1967	1.3560
0.3403	-0.8728	-0.8421
0.8384	-2.5933	4.2008
0.8354	-2.2043	-1.1928

2

SGD

0.3668	-1.0401	1.4729
-0.3392	1.0663	0.5027

- 3. 모든 평점에 대해서 반복 (epoch: 1)
- ?를 제외한 모든 평점에 대해서 진행

?	3	2
5	1	2
4	2	1
2	?	4

-0.3522	1.1628	1.5157
0.3403	-1.0924	-0.9057
0.8384	-2.3273	4.2620
0.8354	-2.6308	-1.3184

0.4928	1.5711
-0.113	-1.296
2.7297	0.48
-0.039	-2.506

0.3203	-1.0401	1.4729
-0.6230	1.0663	0.5027

- 3. 모든 평점에 대해서 반복 (epoch: 1) ?를 제외한 모든 평점에 대해서 진행

?	3	2
5	1	2
4	2	1
2	?	4

-0.8209	1.1628	1.5157
0.7715	-1.2650	-0.8190
0.5752	-2.3273	4.2619
1.5482	-2.6308	-1.3184

0.4927	1.5711
-0.015	-1.101
2.3345	0.5363
0.2363	-2.464

0.7858	-0.4137	1.0724
-0.6250	1.0040	-0.3381

- 3. 모든 평점에 대해서 반복 (epoch: 1) ?를 제외한 모든 평점에 대해서 진행

?	3	2
5	1	2
4	2	1
2	?	4

-0.5947	1.3736	-0.0028
0.6763	-1.0994	0.3561
1.4991	-0.4721	2.3222
1.7260	-2.5722	1.0869

2

SGD

4. 2~3의 과정을 10번 반복 (epoch: 10)

?	3	2
5	1	2
4	2	1
2	?	4

평점이 높은 1번 상품은 1번 유저에게 추천 o

2.7458	2.4147	0.3873
4.2476	0.5806	2.8256
3.9181	2.3825	1.3030
2.4323	-1.9994	3.2637

평점이 낮은 2번 상품은 4번 유저에게 추천 x

1.6462	1.0993
1.6740	-1.072
2.0550	0.6342
0.3135	-2.663

2.1118	0.8951	0.9768
-0.6646	0.8560	-1.1103

협업필터링 - SGD

- 매우 유연한 모델로 다른 Loss function을 사용할 수 있음
- parallelized가 가능함

✓ 단점

- 수렴까지 속도가 매우 느림

정의

기존의 SGD가 두개의 행렬(User Latent, Item Latent)을 동시에 최적화하는 방법이라면, ALS는 두 행렬 중 하나를 고정시키고 다른 하나의 행렬을 순차적으로 반복하면서 최적화 하는 방법입니다. 이렇게 하면, 기존의 최적화 문제가 convex 형태로 바뀌기에 수렴된 행렬을 찾을 수 있는 장점이 있습니다.

- 1. 초기 아이템, 사용자 행렬을 초기화
- 아이템 행렬을 고정하고 사용자 행렬을 최적화
- 사용자 행렬을 고정하고 아이템 행렬을 최적화
- 4. 위의 2, 3 과정을 반복

기존의 SGD가 두개의 행렬(User Latent, Item Latent)을 동시에 최적화하는 방법이라면, ALS는 두 행렬 중하나를 고정시키고 다른 하나의 행렬을 순차적으로 반복하면서 최적화 하는 방법입니다. 이렇게 하면, 기존의 최적화 문제가 convex 형태로 바뀌기에 수렴된 행렬을 찾을 수 있는 장점이 있습니다.

$$||y - X\beta||_2$$
 $\beta = (X^T X)^{-1} X^T y$

$$\forall u_i: J(u_i) = ||R_i - u_i \times V^T||_2 + \lambda \cdot ||u_i||_2$$

$$\forall v_j: J(v_j) = ||R_i - U \times v_j^T||_2 + \lambda \cdot ||v_j||_2$$

$$u_i = (V^T \times V + \lambda I)^{-1} \times V^T \times R_i.$$

$$v_j = (U^T \times U + \lambda I)^{-1} \times U^T \times R_{.j}$$

0	3	2
5	1	2
4	2	1
2	0	4

?의 경우는 모두 0으로 바꿔줍니다.

출처: Codelog (통계쟁이 엔지니어), Matrix Factorization에 대해 이해, Alternating Least Square (ALS) 이해

♥ 알고리즘

1. 초기 아이템, 사용자 행렬을 초기화

User Latent

0.5756	1.4534
-0.199	-1.218
2.7297	0.48
-0.039	-2.506

Item Latent 의 Transpose

0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

알고리즘

2. 아이템 행렬을 고정하고 사용자 행렬을 최적화 $u_i = (V^T \times V + \lambda I)^{-1} \times V^T \times R_i$.

0.3151	3.2962
1.1118	0.5423
0.3225	0.9144
2.1187	1.8521

모든 Row에 대해서 진행
$$u_1 = (V^T \times V + \lambda I)^{-1} \times V^T \times R_1 = [0.3151, 3.2962]$$

♥ 알고리즘

3. 사용자 행렬을 고정하고 아이템 행렬을 최적화 $v_j = (U^T \times U + \lambda I)^{-1} \times U^T \times R_{.j}$

1.9557	-0.090
-0.525	0.9939
1.5017	0.4663

모든 Row에 대해서 진행
$$v_1 = (U^T \times U + \lambda I)^{-1} \times U^T \times R_{\cdot 1} = [1.9557, -0.0900]$$

❤ 알고리즘

4. 2와 3의 과정을 설정한 Iterations 만큼 반복

◈ 코드

implicit 패키지의 ALS를 사용

```
1 from implicit.evaluation import *
 2 from implicitials import AlternatingLeastSquares as ALS
 3 from implicit.bpr import BayesianPersonalizedRanking as BPR
 4 import scipy
    R = scipy.sparse.csr_matrix(np.array([[0, 3, 2],
                                           [5, 1, 2],
                                           [4, 2, 1],
                                           [2, 0, 4]]))
    als_model = ALS(factors=2, regularization=0.01, iterations = 10)
 2 als_model.fit(R.T)
                                           10/10 [00:44<00:00, 4.45s/it]
100%
  1 | np.dot(als_model.user_factors, als_model.item_factors.T)
array([[0.16003628, 1.0713842 , 0.85777044],
       [0.97194386, 0.78128916, 1.143041 ],
       [0.96414506, 0.91053617, 1.2301167],
       [1.1111488 , 0.3173616 , 0.897782 ]], dtype=float32)
```

```
print("user factors")
print(als_model.user_factors)

print("#nltem factors")
print(als_model.item_factors.T)

user factors
[[0.5168162 2.7060897]
[2.3859909 3.6030152]
[2.384663 3.877818 ]
[2.652012 2.8285315]]

Item factors
[[ 0.44694868 -0.38000512 0.00056835]
[-0.02622014 0.46849036 0.3168693 ]]
```


- 도메인 지식이 필요하지 않음
- 사용자의 새로운 흥미를 발견하기 좋음
- 시작단계의 모델로 선택하기 좋음 (추가적인 문맥정보등의 필요가 없음)

✓ 단점

- 새로운 아이템에 대해서 다루기가 힘듬
- side features (고객의 개인정보, 아이템의 추가정보)를 포함시키기 어려움

협업필터링 - ALS

- SGD보다 수렴속도가 빠름
- parallelized가 가능함

✓ 단점

- 오직 Loss Squares만 사용가능

ਂ 평가함수를 다양하게 알아야 하는 이유?

평가함수는 추천시스템의 모델을 생성하고 해당 모델이 얼마나 잘 추천하고 있는지에 대해서 평가를 도와주는 함수입니다. 도메인이나 목적에 따라서 다른 평가 함수를 도입해서 얼마나 잘 추천이 되는지 평가하는게 중요합니다. 예를들어, 영화평점의 경우에서는 두가지 형태로 평가를 할 수 있습니다.

- 내가 추천해준 영화를 고객이 봤나?
- 내가 추천해준 영화를 고객이 높은 점수로 평점을 줬나?

분명 위의 2가지는 다릅니다. 1번의 경우 단순히 보기만하면 추천에 성공했다고 하지만, 실제 고객의 만족도는 낮을 수 있습니다. 반대로 2의 경우는 고객의 만족도까지 고려해서 평가를 한 것입니다. 이러한 성질은 추천을 진행할때에도 차이가 생깁니다.

Accuracy

$$\mathtt{accuracy}(y, \hat{y}) = \frac{1}{n_{\mathrm{samples}}} \sum_{i=0}^{n_{\mathrm{samples}}-1} 1(\hat{y}_i = y_i)$$

- 내가 추천해준 영화를 고객이 봤나? Vs 보지 않았나?
- 내가 추천해주는 영화를 많이 볼수록 추천하지 않은 영화를 보지 않을수록 정확도는 상승
- 하지만, 추천하지 않은 영화의 수는 추천한 영화의 수에 비해 굉장히 많고 편향된 결과를 얻을 수 있음

그래서, 추천해준 영화 중 본 영화로만 평가를 매겨줘야합니다. 근데, 이렇게 해도 문제가 하나 있습니다. 그러면 모든 상품을 추천해주면 정확도는 무조건 1이 나옵니다. 상위 n개의 상품만 추천한다고 했을때 어느정도의 정확도를 얻는지 판단하는게 제일 정확한 값을 얻을 수 있습니다.

⊗ F1−Score

출처: https://blog.naver.com/wideeyed/221531940245

3

평가함수

⊗ F1−Score

- F1은 Precision과 Recall의 역수를 더한값을 분모로 2를 분자로 가지는 평가함수입니다.
 - Precision은 실제 본 영화의 수 대비 추천했는데 본 영화의 수를 의미합니다.
 - Recall은 실제 추천한 영화의 수 대비 추천했는데 본 영화의 수를 의미합니다.
- 위 2가지 함수를 함께 봄으로서 추천을 통해 맞춘 영화의 비율과 추천을 안해서 안볼 영화를 맞춘 비율을 적절하게 조절하는 평가함수입니다.

출처: https://blog.naver.com/wideeyed/221531940245

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- Accuracy: 내가 추천해준 영화를 고객이 봤나? Vs 보지 않았나?
- RMSE : 추천한 평점이 얼마나 다를지? (영화추천의 경우 사용자가 5를 평가하는 경우를 얼마나 잘 맞출지)

위의 경우에서 Accuracy와 RMSE의 평가는 굉장히 다릅니다. Accuracy의 경우 단순 볼까? 안볼까에 대한 평가만 진행하고, 사용자의 반응에 대해서는 크게 궁금해하지 않습니다. (예를들어, 영화를 구매하고 보자마자 재미없어서 나간것도 추천에 성공한 것으로 반영됩니다.) 이러한 반응까지 잘 반영해야 하는게 중요합니다.

Dunalalan	True Positive		True Positive
Precision =	Actual Results	or	True Positive + False Positive

Recommendations	Precision @k's	AP@3
[0, 0, 1]	[0, 0, 1/3]	(1/3)*(1/3) = 0.11
[0, 1, 1]	[0, 1/2, 2/3]	(1/3)[1/2 + 2/3] = 0.38
[1, 1, 0]	[1/1, 2/2, 2/3]	(1/3)[1/1 + 2/2 + 2/3] = 0.89
[1, 1, 1]	[1/1, 2/2, 3/3]	(1/3)[1 + 2/2 + 3/3] = 1

- Recommendations: 추천을 했는데 맞은 경우 1, 틀리면 0
- AP: Precision @k's를 평균낸 값 (추천한 K개의 영화의 Precision을 평균)
- MAP@4: 4명의 사용자의 AP를 평균낸 값 (Precision을 평균낸 AP를 4명의 사용자에 대해 평균)

MAP의 경우 추천의 순서에 따라서 값이 차이가 납니다. 또한, 상위 k개의 추천에 대해서만 평가하기에 k를 바꿔가면서 상위 몇 개를 추천하는게 좋을지도 결정할 수 있습니다.

참고자료 : <u>링크</u>

NDCG (Normalized Discounted Cumulative Gain): ranking quality measure, 검색 알고리즘에서 성과를 측정하는 평가 메트릭입니다.

추천엔진은 user와 연관있는 documents의 집합을 추천해주기때문에, 단순히 문서 검색 작업을 수행한다고 생각할 수 있습니다. (검색과 관련있는 문서들을 추천) 따라서 NDCG를 사용하여 추천엔진을 평가할 수 있습니다. NDCG를 이해하기 위해서는 Cumulative Gain과 Discounted Cumulative Gain을 이해할 필요가 있습니다.

relevance scores: calculated based on the positive and negative feedback we expect an ad to receive from its target audience

Cumulative Gain(CG) =
$$\sum_{i=1}^{n} relevance_i$$

$$Set A = [2, 3, 3, 1, 2]$$

$$Set B = [3, 3, 2, 2, 1]$$

$$CG_A = 2 + 3 + 3 + 1 + 2 = 11$$

$$CG_B = 3 + 3 + 2 + 2 + 1 = 11$$

눈으로 봤을 때, B가 A보다 나은 추천 결과인것을 알지만 CG의 관점에서는 둘은 똑같습니다. 이러한 점을 보완하기 위해서 문서의 위치에 따른 Score를 반영해 줄 필요가 있습니다.

$$DCG = \sum_{i=1}^{n} \frac{relevance_i}{\log_2(i+1)}$$

$$DCG_A \ = \ \tfrac{2}{log_2(1+1)} + \tfrac{3}{log_2(2+1)} + \tfrac{3}{log_2(3+1)} + \tfrac{1}{log_2(4+1)} + \ \tfrac{2}{log_2(5+1)} \approx 6.64$$

$$DCG_B \ = \ \tfrac{3}{log_2(1+1)} + \tfrac{3}{log_2(2+1)} + \tfrac{2}{log_2(3+1)} + \tfrac{2}{log_2(4+1)} + \ \tfrac{1}{log_2(5+1)} \approx 7.14$$

$$DCG_A < DCG_B$$

평가함수

W NDCG

DCG는 추천결과의 위치를 고려할 때 좋은 척도로 보이지만 완벽하지는 않습니다. 그 이유는 다양한 요인에 따라 권장 사항 수가 사용자마다 다를 수 있는데, DCG는 권장 사항의 수에 따라 결과가 달라지기 때문입니다. 그에 따라 상한과 하한이 적절한 점수가 필요하므로 모든 추천 점수를 평균하여 최종 점수를 보고 정규화 할 필요가 있습니다. 이를 반영한게 NDCG입니다.

- 사람마다 추천해주는 개수가 다를 수 있으니 이를 반영해줘야한다.
- DCG에 Normalize 를 수행해서 NDCG를 사용

3 평가함수

Recommendations Order = [2, 3, 3, 1, 2]

 $Ideal\ Order = [3, 3, 2, 2, 1]$

$$DCG = \frac{2}{log_2(1+1)} + \frac{3}{log_2(2+1)} + \frac{3}{log_2(3+1)} + \frac{1}{log_2(4+1)} + \frac{2}{log_2(5+1)} \approx 6.64$$

$$iDCG \ = \ \tfrac{3}{log_2(1+1)} + \tfrac{3}{log_2(2+1)} + \tfrac{2}{log_2(3+1)} + \tfrac{2}{log_2(4+1)} + \ \tfrac{1}{log_2(5+1)} \approx 7.14$$

$$NDCG = \frac{DCG}{iDCG} = \frac{6.64}{7.14} \approx 0.93$$

04 실습

실습 환경

실습 환경

05 도전 과제

딥러닝

출처: Deep Neural Networks for YouTube Recommendations (2016)

Variational Autoencoders for Collaborative Filtering

Factorization Machine

출처: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)

강화학습

Figure 2: Deep Reinforcement Recommendation System

출처: DRN: A Deep Reinforcement Learning Framework for News Recommendation

6 참고자료

1. Word2vec

밑바닥 부터 시작하는 딥러닝 딥러닝을 이용한 자연어 처리 입문 ratsgo, Word2vec

An implementation guide to Word2Vec using NumPy and Google Sheets, Drerek chai

2. Matrix Factorization

<u>굿, 추천 알고리즘 - SVD (Singular Value Decomposition)</u>

<u>Codelog (통계쟁이 엔지니어), Matrix Factorization에 대해 이해, Alternating Least Square (ALS) 이해</u>

<u>Developer and Analyst, YW & YY. Matrix Factorization 설명 및 논분 리뷰</u>

<u>JuHyung Son, 추천 시스템 들어가기 (Collaborative Filtering, Singular Value Decomposition)</u>

감사합니다