$9_{15} (K9a_{10})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{19} + u^{18} + \dots - u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{19} + u^{18} - 2u^{17} - 3u^{16} + 6u^{15} + 8u^{14} - 8u^{13} - 13u^{12} + 11u^{11} + 17u^{10} - 10u^9 - 15u^8 + 8u^7 + 10u^6 - 4u^5 - 2u^4 + 3u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{13} + 2u^{11} - 5u^{9} + 6u^{7} - 6u^{5} + 4u^{3} - u \\ u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{18} - 12u^{16} - 4u^{15} + 32u^{14} + 8u^{13} - 56u^{12} - 20u^{11} + 72u^{10} + 24u^9 - 76u^8 - 24u^7 + 52u^6 + 12u^5 - 24u^4 - 4u^3 + 4u^2 - 8u + 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{19} - 5u^{18} + \dots + 2u - 1$
c_{3}, c_{7}	$u^{19} - u^{18} + \dots + u^2 - 1$
c_5, c_8	$u^{19} + 7u^{18} + \dots + 2u - 1$
c_{6}, c_{9}	$u^{19} + u^{18} + \dots + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{19} + 19y^{18} + \dots + 10y - 1$
c_3, c_7	$y^{19} - 5y^{18} + \dots + 2y - 1$
c_5, c_8	$y^{19} + 11y^{18} + \dots + 42y - 1$
c_{6}, c_{9}	$y^{19} + 7y^{18} + \dots + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.964317 + 0.230449I	3.62212 - 0.16816I	10.16829 + 0.91431I
u = -0.964317 - 0.230449I	3.62212 + 0.16816I	10.16829 - 0.91431I
u = 0.978202 + 0.313897I	3.12958 + 5.52702I	8.42794 - 7.00248I
u = 0.978202 - 0.313897I	3.12958 - 5.52702I	8.42794 + 7.00248I
u = 0.820272 + 0.802988I	-2.83381 + 1.53005I	4.20605 - 2.54963I
u = 0.820272 - 0.802988I	-2.83381 - 1.53005I	4.20605 + 2.54963I
u = -0.809650 + 0.858173I	-4.41408 + 3.71612I	1.80100 - 2.45937I
u = -0.809650 - 0.858173I	-4.41408 - 3.71612I	1.80100 + 2.45937I
u = 0.635698 + 0.450549I	-1.41106 + 1.72326I	0.18035 - 5.18112I
u = 0.635698 - 0.450549I	-1.41106 - 1.72326I	0.18035 + 5.18112I
u = 0.949254 + 0.773576I	-2.43770 + 4.39903I	4.93348 - 2.80289I
u = 0.949254 - 0.773576I	-2.43770 - 4.39903I	4.93348 + 2.80289I
u = -0.903405 + 0.838368I	-8.30762 - 3.11880I	-1.58624 + 2.69239I
u = -0.903405 - 0.838368I	-8.30762 + 3.11880I	-1.58624 - 2.69239I
u = -0.975971 + 0.799116I	-3.89635 - 9.88550I	2.86128 + 7.31129I
u = -0.975971 - 0.799116I	-3.89635 + 9.88550I	2.86128 - 7.31129I
u = -0.667698	0.907373	11.4720
u = 0.103765 + 0.589022I	0.46836 - 2.32534I	2.27174 + 3.09456I
u = 0.103765 - 0.589022I	0.46836 + 2.32534I	2.27174 - 3.09456I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{19} - 5u^{18} + \dots + 2u - 1$
c_3, c_7	$u^{19} - u^{18} + \dots + u^2 - 1$
c_5, c_8	$u^{19} + 7u^{18} + \dots + 2u - 1$
c_{6}, c_{9}	$u^{19} + u^{18} + \dots + 2u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{19} + 19y^{18} + \dots + 10y - 1$
c_3, c_7	$y^{19} - 5y^{18} + \dots + 2y - 1$
c_5, c_8	$y^{19} + 11y^{18} + \dots + 42y - 1$
c_{6}, c_{9}	$y^{19} + 7y^{18} + \dots + 2y - 1$