Exploratory Data Analysis & Data Cleaning, Feature Extraction

In this section, I checked variables and their properties. Try to get insight about the data enough to train a useful model. Then, I cleared outliers, handled missing data, and get dummy variables of categorical data.

You can find descriptions of the data from README.md.

Notebook Structure

- Exploring Data
 - Continuous Variables Relationship with Income
 - Categorical Variables Relationship with Income
- Handling Missing Data
 - Explore Missing Data
 - Filling Null Values Which has Meaning
- Encoding Data

```
In [1]: from pathlib import Path
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from src.utils import html_table, categories_show

raw_data_dir = Path('../data/raw/')
    processed_data_dir = Path('../data/processed/')
    file_name = 'adult.csv'
    file_path = raw_data_dir / file_name
```

Exploring Data

Our outcome variable is 'income'. We will try to estimate person has +50k income or not.

```
In [2]: df = pd.read_csv(file_path)
    df.info()
    df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

Data	COTAMMIS (COCAT	is cordinis).	
#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

Out[2]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	1
0	90	?	77053	HS-grad	9	Widowed	?	Not-in- family	W
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in- family	W
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	В
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	W
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	W

In [3]: df.describe()

Out[3]:

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

```
In [4]: sns.countplot(data=df, x='income')
```

Out[4]: <AxesSubplot: xlabel='income', ylabel='count'>

Continuous Variables Relationship with Income

I inspect variables and check the most correlated continuous variables on the variable which will be predicted(DV). We can see below 4 continuous variables correlated with income has more than 0.2 r value so it seems like we can fit a suitable model even just by using them.

Out[5]:		age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	iı
	income	0.234037	-0.009463	0.335154	0.223329	0.150526	0.229689	1.(
	education.num	0.036527	-0.043195	1.000000	0.122630	0.079923	0.148123	0.3
	age	1.000000	-0.076646	0.036527	0.077674	0.057775	0.068756	0.7
	hours.per.week	0.068756	-0.018768	0.148123	0.078409	0.054256	1.000000	0.7
	capital.gain	0.077674	0.000432	0.122630	1.000000	-0.031615	0.078409	0.2
	capital.loss	0.057775	-0.010252	0.079923	-0.031615	1.000000	0.054256	0.
	fnlwgt	-0.076646	1.000000	-0.043195	0.000432	-0.010252	-0.018768	-0.(


```
In [7]: cont_df = df.select_dtypes(exclude='object')
    cont_df['income'] = df['income']
    sns.pairplot(data=cont_df, hue='income')
```

Out[7]: <seaborn.axisgrid.PairGrid at 0x24280331870>

Categorical Variables Relationship with Income

Because the data was unbalanced to see which variable how much contributed to each class I get and plot the percentage in this class.

```
In [8]: obj_cols = list(df.select_dtypes('object').columns)
    obj_cols.remove('income')
    obj_cols.remove('native.country')
    print(obj_cols)
    print('Num of categorical cols: ', len(obj_cols))

    ['workclass', 'education', 'marital.status', 'occupation', 'relationship', 'race', 'sex']
    Num of categorical cols: 7
In [9]: figures = {}
```

```
for col in obj_cols:
    fig, ax = plt.subplots(dpi=100)
    figures[col] = {'fig': fig, 'ax': ax}
    count_incomes = df.groupby('income')[col].count()
    def apply_percentage(s):
        if s.iloc[0] == '<=50K':
            return s.count() / count_incomes['<=50K']</pre>
        return s.count() / count_incomes['>50K']
    percentage_incomes = df.groupby(['income', col])['income'].agg(
        apply_percentage).to_frame()
    percentage_incomes.columns = ['Percentage']
    index_names = tuple(zip(*percentage_incomes.index))
    percentage_incomes['income'] = index_names[0]
    percentage_incomes[col] = index_names[1]
    percentage_incomes.reset_index(drop=True, inplace=True)
    sns.barplot(data=percentage_incomes, x='income', y='Percentage', hue=col,
                ax=figures[col]['ax'])
    figures[col]['ax'].legend(loc='best', bbox_to_anchor=(1., 0., 0., 1.))
    figures[col]['ax'].set_title(col)
plt.show()
```


Handling Missing Data

Explore Missing Data

```
In [10]: object_df = df.select_dtypes('object')
    numeric_df = df.select_dtypes(exclude=['object'])
In [11]: df.isnull().sum().sort_values(ascending=False)
```

```
Out[11]: age
                            0
         workclass
                            0
          fnlwgt
                            0
                            0
          education
          education.num
                            0
          marital.status
                            0
          occupation
                            0
          relationship
                            0
                            0
          race
                            0
          sex
          capital.gain
                            0
          capital.loss
                            0
          hours.per.week
                            0
                            0
          native.country
          income
                            0
          dtype: int64
In [12]: (df.select_dtypes(exclude=['object']) == 0).sum().sort_values(ascending=False)
Out[12]: capital.loss
                            31042
          capital.gain
                            29849
                                 0
          age
          fnlwgt
                                 0
                                 0
          education.num
          hours.per.week
                                 0
          dtype: int64
In [13]: categories_show(object_df)
                        0
          native.country 42
              education 16
             occupation 15
              workclass
                        7
           marital.status
            relationship
```

5

2

2

race

sex

income

		1	2	3	4	5	6	7			
native.country	y United- States	?	Mexico	Greece	Vietnam	China	Taiwan	India			
education	n HS-grad	Some- college	7th-8th	10th	Doctorate	Prof- school	Bachelors	Masters			
occupation	n ?	Exec- managerial	Machine- op-inspct	Prof- specialty	Other- service	Adm- clerical	Craft- repair	Transport- moving			
workclass	s ?	Private	State-gov	Federal- gov	Self-emp- not-inc	Self- emp-inc	Local- gov	Without- pay			
marital.status	s Widowed	Divorced	Separated	Never- married	Married- civ- spouse	Married- spouse- absent	Married- AF- spouse	NaN			
relationship	Not-in- family	Unmarried	Own- child	Other- relative	Husband	Wife	NaN	NaN			
race	e White	Black	Asian- Pac- Islander	Other	Amer- Indian- Eskimo	NaN	NaN	NaN			
sex	x Female	Male	NaN	NaN	NaN	NaN	NaN	NaN			
income	e <=50K	>50K	NaN	NaN	NaN	NaN	NaN	NaN			
<pre>df == '?').sum().sort_values(ascending=False)</pre>											
occupation workclass native.coun age fnlwgt education education.ne marital.sta relationshi race sex capital.gai capital.los hours.per.w	um () tus () p () n () s () eek ()	5									

In [16]: df.isnull().sum().sort_values(ascending=False)

```
Out[16]: occupation
                            1843
         workclass
                            1836
          native.country
                             583
          age
                                0
          fnlwgt
                                0
          education
                                0
          education.num
                                0
         marital.status
                                0
          relationship
                                0
                                0
          race
          sex
                                0
                                0
          capital.gain
                                0
          capital.loss
                                0
          hours.per.week
          income
                                0
          dtype: int64
```

Filling Null Values Which has Meaning

```
In [17]: sns.countplot(data=df.isnull(), x='occupation', hue='workclass')
```

Out[17]: <AxesSubplot: xlabel='occupation', ylabel='count'>


```
In [18]: sns.countplot(data=df.isnull(), x='occupation', hue='native.country')
```

Out[18]: <AxesSubplot: xlabel='occupation', ylabel='count'>

In [19]: df[df['occupation'].isnull() & ~df['workclass'].isnull()]

Out[19]:		age workclass		fnlwgt	education	education.num	marital.status	occupation	relationship	
	8874	18	Never- worked	206359	10th	6	Never-married	None	Own-chile	
	13675	23	Never- worked	188535	7th-8th	4	Divorced	None	Not-in famil	
	17089	17	Never- worked	237272	10th	6	Never-married	None	Own-chile	
	21934	18	Never- worked	157131	11th	7	Never-married	None	Own-child	
	24483	20	Never- worked	462294	Some- college	10	Never-married	None	Own-chile	
	32331	30	Never- worked	176673	HS-grad	9	Married-civ- spouse	None	Wife	
	32338	18	Never- worked	153663	Some- college	10	Never-married	None	Own-chile	

```
In [20]: df['occupation'].fillna('no-occupation', inplace=True)
    df['workclass'].fillna('Never-worked', inplace=True)
```

In [21]: df.select_dtypes('object').isnull().sum()

```
Out[21]: workclass
        education
        marital.status
                          0
        occupation
                           0
        relationship
                          0
         race
                           0
                           0
         sex
         native.country 583
                           0
         income
        dtype: int64
```

In [22]: df[df['native.country'].isna()]

relationship	occupation	marital.status	education.num	education	fnlwgt	workclass	age	
Unmarried	Craft-repair	Never-married	10	Some- college	70037	Private	41	9
Not-in famil _!	Handlers- cleaners	Never-married	12	Assoc- acdm	119592	Private	22	18
Husband	Machine- op-inspct	Married-civ- spouse	11	Assoc-voc	226355	Self-emp- inc	60	65
Husband	Prof- specialty	Married-civ- spouse	15	Prof- school	218490	Self-emp- not-inc	39	86
Husband	Prof- specialty	Married-civ- spouse	15	Prof- school	156996	Federal- gov	43	87
								•••
Husband	Sales	Married-civ- spouse	14	Masters	71556	Self-emp- inc	44	32459
Not-in famil	Prof- specialty	Never-married	16	Doctorate	181974	Self-emp- inc	58	32476
Own-child	Sales	Divorced	9	HS-grad	217597	Self-emp- not-inc	42	32498
Husband	Prof- specialty	Married-civ- spouse	9	HS-grad	107302	Private	39	32515
Unmarried	no- occupation	Divorced	11	Assoc-voc	120478	Never- worked	81	32528

583 rows × 15 columns

```
In [23]: df['native.country'].fillna('others', inplace=True)
In [24]: df.select_dtypes('object').isnull().sum()
```

```
Out[24]: workclass
                             0
          education
          marital.status
                             0
          occupation
                             0
          relationship
                             0
                             0
          race
                             0
          sex
                             0
          native.country
                             0
          income
          dtype: int64
In [25]: categories_show(df.select_dtypes('object'))
                         0
          native.country 42
              education 16
             occupation 15
              workclass
                        8
                         7
           marital.status
            relationship
                         6
                         5
                   race
                         2
                   sex
```

income

2

0	1	2	3	4	5	6

native.country	United- States	others	Mexico	Greece	Vietnam	China	Taiwan	Ind
education	HS-grad	Some- college	7th-8th	10th	Doctorate	Prof- school	Bachelors	Maste
occupation	no- occupation	Exec- managerial	Machine- op-inspct	Prof- specialty	Other- service	Adm- clerical	Craft- repair	Transpor movir
workclass	Never- worked	Private	State-gov	Federal- gov	Self-emp- not-inc	Self- emp-inc	Local- gov	Withou pa
marital.status	Widowed	Divorced	Separated	Never- married	Married- civ- spouse	Married- spouse- absent	Married- AF- spouse	Na
relationship	Not-in- family	Unmarried	Own- child	Other- relative	Husband	Wife	NaN	Na
race	White	Black	Asian- Pac- Islander	Other	Amer- Indian- Eskimo	NaN	NaN	Na
sex	Female	Male	NaN	NaN	NaN	NaN	NaN	Na
income	<=50K	>50K	NaN	NaN	NaN	NaN	NaN	Na

Encoding Data

In this section, I implemented one hot encoding and got dummy variables for categorical data.

```
Out[27]:
            income
         0
                0
         2
                0
         3
                0
         4
                0
In [28]: from sklearn.preprocessing import OneHotEncoder
         enc = OneHotEncoder(handle_unknown='ignore', sparse=False)
         enc.fit(object_df)
Out[28]:
                                OneHotEncoder
         OneHotEncoder(handle_unknown='ignore', sparse=False)
In [29]: df_objects_dummies = enc.transform(object_df)
```

df_objects_dummies[0:5, :]

```
0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0.],
       0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0.],
       0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0.,
       0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0.],
       [0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0.],
       0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 0., 0.]])
In [30]:
   df_encoded = pd.concat(
     (numeric_df, pd.DataFrame(df_objects_dummies), target_var), axis=1)
    df_encoded.info()
    df_encoded.head()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 32561 entries, 0 to 32560
    Columns: 108 entries, age to income
```

dtypes: float64(101), int64(6), uint8(1)

memory usage: 26.6 MB

Out[30]:		age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	0	1	2	3	•••	9
	0	90	77053	9	0	4356	40	0.0	0.0	1.0	0.0		0
	1	82	132870	9	0	4356	18	0.0	0.0	0.0	1.0		0
	2	66	186061	10	0	4356	40	0.0	0.0	1.0	0.0		0
	3	54	140359	4	0	3900	40	0.0	0.0	0.0	1.0		0
	4	41	264663	10	0	3900	40	0.0	0.0	0.0	1.0		0

5 rows × 108 columns

```
In [31]: df_encoded.to_csv(processed_data_dir / file_name, index=False)
In [32]: import joblib
    joblib.dump(enc, '../models/featurebuild/0.1-onehotencoder.joblib')
```

Out[32]: ['../models/featurebuild/0.1-onehotencoder.joblib']