## Models of outcome and choice: The logit model

Silje Synnøve Lyder Hermansen

November 14, 2019

### Table of Contents

#### A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Let's examplify with coins

Model assessment: How well is reality described?

How well do I discriminate?

#### Section 1

A latent variable approach to GLMs

## Many outcomes are not continuous

# OLS assumes a continuous dependent variable. But many phenomena in the social sciences are not like that.

- ➤ Vote choice, civil conflict onset, legislator performance, court rulings, time to compliance, etc.
- ▶ What phenomena are you interested in?
- ⇒ OK. Let's strategize.

## All regressions are linear(ized)

# The basic formulation in any regression describes a linear relationship between $x_i$ and $y_i$ :

$$y_i = \alpha + \beta x_i + \epsilon_i \tag{1}$$

- ▶ When  $x_i$  increases with one unit,  $y_i$  increases with  $\beta$  units.
- ▶ If that relationship is not linear, we have to make it so:
  - $\triangleright$  by recoding the  $x_i$
  - ▶ by recoding the  $y_i$  → we *linearize*.

#### A latent variable

### A linear(ized) model requires a continuious dependent variable.

- ▶ Imagine we are interested in unobservable variable,  $z_i$ , that describes our propensity towards something.
- Above a certain threshold  $(\tau)$  of  $z_i$ , observability kicks in and we can see  $y_i$ .
- ▶ The regression coefficients ( $\beta$ ) in GLMs describe that relationship.
- ⇒ The latent variable approach is useful when interpreting the results.

## Example: The binomial model

#### The logit model is a perfect example:

$$y_i = \begin{cases} 1 & \Leftrightarrow & z_i > \tau \\ 0 & \Leftrightarrow & z_i \leqslant \tau \end{cases} \tag{2}$$

- ▶ The probability  $(z_i)$  of an outcome  $y_i$  is continuous.
- Above a certain probability  $(\tau)$ , we observe a positive outcome  $(y_i = 1)$ .
- $\Rightarrow$  but how do we set the value of  $\tau$ ?

#### From latent variable to descrete outcomes

#### Statistical theory helps us describe how $z_i$ leads to $y_i$ .

- ▶ What kind of process generated our data?  $\rightarrow$  data generating process (DGP)
- ightharpoonup How can we best describe it? ightharpoonup choice of *probability distribution* (in GLM)

## The three components of GLMs

#### When fitting the model, we need to make three choices:

- ▶ A linear predictor:  $\beta x_i$ .
- A probability distribution: they're all in the exponential family
- A recoding strategy

## The three components of GLMs

## In R this translates to two additional arguments compared to your usual OLS.

- ▶ A linear predictor:  $\rightarrow$  (y  $\sim$  x).
- ▶ A probability distribution: → (family =)
- A recoding strategy → (link = ).

## Latent variable approach for interpretation

- ▶ The latent variable approach is useful when interpreting results.
- ► That's when we map *from* the latent variable *to* the observed outcome.
- ⇒ When estimating the model, we have to go the other way 'round.

### Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Let's examplify with coins

Model assessment: How well is reality described?

How well do I discriminate?

### Section 2

Recoding: How do we get from a binary to a continuous variable?

#### Data structure

# We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- classes of observations: e.g.: rats in a cage, coin tosses...
- case-based: e.g.: legislator votes, Brexit...

#### Data structure

# We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- Classes of observations: e.g.: rats in a cage, coin tosses... → the closest to the latent continuous variable.
- case-based: e.g.: legislator votes, Brexit...
- $\Rightarrow$  we know the number of successes and trials in a cage/class/stratum. That's our starting point.

#### Let's start with the odds

Despite binary outcomes, we want a continuous variable that is unbounded at both ends. We define a stratum and start comparing:

- Odds: Compare number of successes with number of failures within a stratum→ continuous but highly skewed.
- ightharpoonup Logtransform the odds ightarrow continuous and bell shaped.

## Let's examplify with rats

We kept a 1000 rats in a cage and a number of them died (failure) while others are still alive (success). How can we model this?

#### We calculate the odds

## We calculate the odds of surviving in a cage in a 1000 cages

► Let's consider a series of 1000 trials where we let the successes go from complete failure (success = 0) to complete success (success = 1000)

```
success = 0:1000
tries = 1000
#remember: failure = tries - success
odds <- success/(tries - success)
hist(odds, breaks = 100, col = "blue")
hist(log(odds), breaks = 101, col = "blue")</pre>
```

plot(log(odds), success, type = "1")

#### Let's start with the odds

## We get a continuous but skewed variable.



## Now, let's logtransform the odds

### We get a nice, bellshaped curve.



## Now, let's logtransform the odds

This, we can run regressions on!

## The famous S shape

We can plot the logodds of success against the number of successes or their probability (it's the same).



## Probability distributions for binary variables

# There are two, closely related probability distributions for binary outcomes:

- ▶ The binomial distribution: B(n, p)
  - p is the probability of success tells where on the x-axis (trials) the distribution is placed.
  - n is the number of trials and defines the precision (width) of the distribution.
- ▶ The Bernoulli distribution: Ber(p): when we only have only one trial.

### Subsection 2

Why all the fuzz? Why not OLS?

## Distributions in OLS and maximum likelihood

- ▶ In OLS: The residuals must be normally distributed (but not the  $y_i$ )
- ▶ In ML: The z<sub>i</sub> must follow a known probability distribution.
- ⇒ This what allows us to translate the latent variable to outcomes.

## What happens if I run OLS on binary outcomes?

- ▶ The model predicts out of the possible bounderies
  - Predictions are wrong.
    - Regression coefficients are wrong.
    - Standard errors are wrong.
- $\triangleright$  The relationship between  $x_i$  and  $y_i$  is constant across all values.
- ⇒ This last element has a bearing for the interpretation.

Binary to continuous

Back and forth

#### Subsection 3

Back and forth: Logistic and logit transformation



## The logit transformation

When we go from outcomes to latent variable we use the logit transformation.

$$logit(p) = log(\frac{p}{1-p}) \tag{3}$$

⇒ This what R does when estimating our model

## The logistic transformation

When we go from the latent variable to outcomes we use the logistic transformation.

$$logit^{-1}(logodds) = \frac{exp(logodds)}{1 + exp(logodds)} = \frac{1}{1 + exp(-logodds)}$$
(4)

⇒ This what we do when interpreting our model

### Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Let's examplify with coins

Model assessment: How well is reality described?

How well do I discriminate?

Interpretation Example with coins

Section 3

Interpretation: So... what did I find?

Subsection 1

Let's examplify with coins

## Let's examplify with coins

What are the logodds for observing two heads after two tosses?

## Let's examplify with coins

#### What are the logodds for observing two heads after two tosses?

- Probability :  $Pr(y_i = 1) = \frac{1}{2} \times \frac{1}{2}$
- ► Odds:  $Odds(y_i = 1) = \frac{Pr(y_i = 1)}{1 Pr(y_i = 1)}$
- Logodds:  $Logodds(y_i = 1) = log(odds(y_i = 1))$

## Let's examplify with coins

Here is my answer:

```
#Probability:
p = 1/4
## [1] 0.25
#Odds:
odds = p/(1-p)
odds
## [1] 0.3333333
#Logodds
logodds = log(odds)
logodds
## [1] -1.098612
```

# Relative risk

- -1.0986123, great! What does that tell us? Not much.
  - But let's compare with another coin:
  - ▶ We have two probabilities: Cage 1:  $\frac{1}{4}$  and Cage 2:  $\frac{2}{4}$
  - ▶ Relative risk/odds ratio: 0.25/0.5 = 0.5.

# My three stages of interpretation

#### I go through tree stages of interpretation

- Inspect the marginal effects from regression table
  - Logodds: check direction and significance.
    - Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- Formulate scenarios using point estimates (in text)
- Formulate more scenarios with uncertainty using graphics.

# The regression table

# I interpret the regression coefficient itself

- Logodds: check direction and significance.
- Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- $\Rightarrow$  A first stab to test hypotheses.

### Predicted values

# If you believe the model describes reality appropriately, you can learn more about it by interpreting more thoroughly

- Odds ratios are notoriously hard to understand.
- ▶ The effect depends on the value of  $y_i$  and all the other xs.
- ⇒ Interpret the predicted values

# Formulate scenarios using point estimates (in text)

ightharpoonup Take an all-else-equal approach: Let one x change and keep all others constant (on a typical value).

Find the typical representative of two x values and set the other xs accordingly.

⇒ Which one you use depends on your objective: A theoretical point, assess effect of intervention on groups...

# Predicted values (graphic)

## Formulate scenarios using point estimates and put them on speed

- Predict y values for the entire range of x and plot it.
- Simulate confidence and plot that too.
- You can do this for two scenarios.
- ⇒ You get a sense of the actual differences in the data.

# Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failure

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Let's examplify with coins

Model assessment: How well is reality described?

How well do I discriminate?

# Section 4

Model assessment: How well is reality described?

#### Model assessment

# Model assessments aim to gauge how well we describe the data (i.e. the y).

- comparison between predicted and observed values (as in OLS).
- mapping outcomes to the recoded, "latent" variable (GLM).
- ⇒ You have a few additional "tricks" to the standard OLS assessment.

#### Brier score

Describes the "average size" of the residuals.

$$B_b \equiv \frac{1}{n} \sum_{i=1}^n (\hat{\theta}_i - y_i)^2 \tag{5}$$

⇒ Lower scores imply better predictions.

### How well do I discriminate?

The real question for logits is how well do I distinguish 0s from **1s.**⇒ Several strategies.

# Table comparison

# The real question for logits is how well do I distinguish 0s from 1s.

- ightharpoonup Table (e.g. 2 imes 2) with proportion of predicted against observed values for 0s and 1s
- ▶ It is  $\chi^2$  distributed (ref. the Hosmer-Lemeshow test)
- $\Rightarrow$  But how do I set the cut values (the  $\tau$ )?

#### The ROC curve

# The ROC lets the cut values vary and displays how wrong we are on each side (true positive vs. false positive).

- ► A model with good predictions has a curve tending towards the upper left corner.
- ▶ The actual cut value depends on our priorities
- ⇒ The graphic is useful in and of itself

# The separation plot

The separation plot show how the densit of observed "successes" increases as our predicted values increase.

⇒ Another graphic that is useful in and of itself