Representing a Circle or a Sphere with NURBS

David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Created: January 13, 2003 Last Modified: April 24, 2015

Contents

1	Intr	coduction	2
2	Rep	presenting a Circle	3
	2.1	Quarter of a Circle	3
		2.1.1 Degree 2	3
		2.1.2 Degree 4	3
	2.2	Half a Circle	4
	2.3	Full Circle	4
3	Rep	presenting a Sphere	6
	3.1	One Octant of a Sphere	6
		3.1.1 Degree 2	6
		3.1.2 Degree 4	6
	3.2	A Hemisphere	7
	3.3	Full Sphere	8

This is just a brief note on representing circles and spheres with NURBS. For more information about NURBS, a good engineering-style approach to NURBS is [1]. An excellent book covering the mathematics and modeling with splines is [2]. A more mathematically advanced presentation is [3].

1 Introduction

A NURBS curve in 2D is generated by a homogeneous B-spline curve in 3D,

$$(\bar{x}(u), \bar{y}(u), w(u)) = \sum_{i=0}^{n} N_{i,d}(u)w_i(\mathbf{C}_i, 1)$$
(1)

where the 3D curve has n+1 control points (\mathbf{C}_i , 1) [the \mathbf{C}_i are 2-tuples], n+1 weights w_i , and degree d with $1 \leq d \leq n$. The functions $N_{i,d}(u)$ are the B-spline basis functions, which are defined recursively and require selection of a sequence of nondecreasing scalars u_i for $0 \leq i \leq n+d+1$. Each u_i is called a knot and the total sequence is called a knot vector. The basis function that starts the recursive definition is

$$N_{i,0}(u) = \begin{cases} 1, & u_i \le u < u_{i+1} \\ 0, & \text{otherwise} \end{cases}$$
 (2)

for $0 \le i \le n + d$. The recursion is

$$N_{i,j}(u) = \frac{u - u_i}{u_{i+j} - u_i} N_{i,j-1}(u) + \frac{u_{i+j+1} - u}{u_{i+j+1} - u_{i+1}} N_{i+1,j-1}(u)$$
(3)

for $1 \le j \le d$ and $0 \le i \le n + d - j$. Equation (1) uses only the final evaluations in the recursion, $N_{i,d}(u)$ for which j = d and $0 \le i \le n$. The 2D curve is obtained by the perspective division,

$$(x(u), y(u)) = (\bar{x}(u), \bar{y}(u))/w(u)$$
 (4)

In the section on circle representations, I will discuss NURBS curves that produce circular arcs; each curve will be listed with its n, d, u_i , \mathbf{C}_i , and w_i .

A tensor-product NURBS surface in 3D is generated by a homogeneous B-spline surface in 4D,

$$(\bar{x}(u,v),\bar{y}(u,v),\bar{z}(u,v),w(u,v)) = \sum_{i_0=0}^{n_0} \sum_{i_1=0}^{n_1} N_{i_0,d_0}(u) N_{i_1,d_1}(v) w_{i_0i_1}(\mathbf{C}_{i_0i_1},1)$$
(5)

where the 4D surface has an $(n_0 + 1) \times (n_1 + 1)$ array of control points $(\mathbf{C}_{i_0 i_1}, 1)$ [the $\mathbf{C}_{i_0 i_1}$ are 3-tuples], an $(n_0 + 1) \times (n_1 + 1)$ array of weights $w_{i_0 i_1}$, and degrees d_0 and d_1 with $1 \le d_0 \le n_0$ and $1 \le d_1 \le n_1$. The functions $N_{i_0,d_0}(u)$ and $N_{i_1,d_1}(v)$ each have a knot vector and are B-spline basis functions generated by equations (2) and (3). The 3D surface is obtained by the perspective division,

$$(x(u,v), y(u,v), z(u,v)) = (\bar{x}(u,v), \bar{y}(u,v), \bar{z}(u,v))/w(u,v)$$
(6)

In the section on sphere representations, I will discuss NURBS surfaces that produce spherical regions; each surface will be listed with its n_0 , n_1 , d_0 , d_1 , u_i , v_i , $\mathbf{C}_{i_0i_1}$, and $w_{i_0i_1}$.

2 Representing a Circle

Several representations are provided for a quarter of a circle in the first quadrant. A representation is also provided for half a circle. All these representation use the same knot pattern involving only the repeated zeros and ones at the beginning and end of the knot array. Finally, a representation for a full circle is created from that of the half circle by introducing a repeated knot of one-half that has the effect of splicing together two regular NURBS surfaces.

2.1 Quarter of a Circle

Consider the quarter circle in the first quadrant, $x^2 + y^2 = 1$ with $x \ge 0$ and $y \ge 0$.

2.1.1 Degree 2

A quadrant of a circle can be represented as a NURBS curve of degree 2. The curve is $x^2 + y^2 = 1$, $x \ge 0$, $y \ge 0$. The general parameterization is

$$(x(u), y(u)) = \frac{w_0(1-u)^2(1,0) + w_1 2u(1-u)(1,1) + w_2 u^2(0,1)}{w_0(1-u)^2 + w_1 2u(1-u) + w_2 u^2}$$
(7)

for $u \in [0, 1]$. The requirement that $x^2 + y^2 = 1$ leads to the weights constraint $2w_1^2 = w_0w_2$. The choice of weights $w_0 = 1$, $w_1 = 1$, and $w_2 = 2$ leads to a commonly mentioned parameterization

$$(x(u), y(u)) = \frac{(1 - u^2, 2u)}{1 + u^2} \tag{8}$$

If you were to tessellate the curve with an odd number of uniform samples of u, say $u_i = i/(2n)$ for $0 \le i \le 2n$, then the resulting polyline is not symmetric about the midpoint u = 1/2. To obtain a symmetric tessellation you need to choose $w_0 = w_2$. The weight constraint then implies $w_0 = w_1\sqrt{2}$. The parameterization is then

$$(x(u), y(u)) = \frac{(\sqrt{2}(1-u)^2 + 2u(1-u), 2u(1-u) + \sqrt{2}u^2)}{\sqrt{2}(1-u)^2 + 2u(1-u) + \sqrt{2}u^2}$$
(9)

In either case we have a ratio of quadratic polynomials.

The NURBS parameters are the following. There are 3 control points, so n = 2. The degree is d = 2. The knot vector is $\{u_0, u_1, u_2, u_3, u_4, u_5\} = \{0, 0, 0, 1, 1, 1\}$. The control values are $\mathbf{C}_0 = (1, 0)$, $\mathbf{C}_1 = (1, 1)$, and $\mathbf{C}_2 = (0, 1)$. The weights are w_0, w_1 , and w_2 subject to the constraint $2w_1^2 = w_0w_2$.

2.1.2 Degree 4

An algebraic construction of the same type produces a ratio of quartic polynomials. The control points and control weights are required to be symmetric to obtain a tessellation that is symmetric about its midpoint. By the homogeneity in the weights, we have one degree of freedom. We can choose $w_0 = 1$, effectively dividing the numerator and denominator by w_0 if it were not 1.

$$(x(u),y(u)) = \frac{(1-u)^4(1,0) + 4(1-u)^3uw_1(x_1,y_1) + 6(1-u)^2u^2w_2(x_2,x_2) + 4(1-u)u^3w_1(y_1,x_1) + u^4(0,1)}{(1-u)^4 + 4(1-u)^3uw_1 + 6(1-u)^2u^2w_2 + 4(1-u)u^3w_1 + u^4}$$
(10)

Let the denominator of this fraction be named w(u). To be a circle, we need $x(u)^2 + y(u)^2 = 1$. Using Mathematica 10.1 [4], this equation forces $x_1 = 1$ and generates 3 functionally independent equations in the 4 unknowns w_1 , w_2 , x_2 , and y_1 :

$$4w_1^2y_1^2 + 3w_2(x_2 - 1) = 0$$

$$1 - y_1 + 6w_2(1 - x_2 - x_2y_1) = 0$$

$$32w_1^2y_1 + 36w_2^2x_2^2 - 16w_1^2 - 18w_2^2 - 1 = 0$$
(11)

Thus, we have at least one more degree of freedom and there are infinitely many solutions. For example, if we choose $w_1 = 1$, then there are 2 possibilities for the remaining parameters: $(y_1, x_2, w_2) = (1/(2\sqrt{2}), 1 - \sqrt{2}/8, 2\sqrt{2}/3)$ and $(y_1, x_2, w_2) = (\sqrt{2}-1, (44\sqrt{2}-1)/79, (16-7\sqrt{2})/6)$. With these choices, Mathematica 10.1 verified that $x(u)^2 + y(u)^2 = 1$ and parametric plots of (x(u), y(u)) were indeed quarter circles. Mathematica 10.1 also symbolically generated solutions to the constraints when asked to solve for y_1, x_2 , and w_2 in terms of w_1 .

The NURBS parameters are the following. There are 5 control points, so n = 4. The degree is d = 4. The knot vector has 10 components with $u_i = 0$ for $0 \le i \le 4$ and $u_i = 1$ for $5 \le i \le 9$. Assuming the constraints of equation (11) are satisfied, the control values are $\mathbf{C}_0 = (1,0)$, $\mathbf{C}_1 = (x_1,y_1)$, $\mathbf{C}_2 = (x_2,x_2)$, $\mathbf{C}_3 = (y_1,x_1)$, and $\mathbf{C}_4 = (0,1)$ and the weights are $w_0 = w_4 = 1$, w_2 , and $w_1 = w_3$.

2.2 Half a Circle

I discuss a symmetric parameterization of the half circle $x^2 + y^2 = 1$ for $x \ge 0$. The NURBS curve has degree 3. The control values are chosen to be (0,1), $(\alpha,1)$, $(\alpha,-1)$ and (0,-1) and the weights are chosen to be $w_0 = w_3 = 1$ and $w_1 = w_2 = \omega$, where α and ω must be chosen so that we indeed obtain a half circle. The curve is

$$(x(u), y(u)) = \frac{(1-u)^3(0,1) + 3u(1-u)^2\omega(\alpha, 1) + 3u^2(1-u)\omega(\alpha, -1) + u^3(0, -1)}{(1-u)^3 + 3u(1-u)^2\omega + 3u^2(1-u)\omega + u^3}$$
(12)

Symbolic manipulation of $x(u)^2 + y(u)^2 = 1$ leads to the constraints $\omega = 1/3$ and $\alpha^2 = 4$. Because we want the half circle where x > 0, we choose $\alpha = 2$.

The NURBS parameters are the following. There are 4 control points, so n=3. The degree is d=3. The knot vector has 8 components with $u_i=0$ for $0 \le i \le 3$ and $u_i=1$ for $4 \le i \le 7$. The control values are $\mathbf{C}_0=(1,0)$, $\mathbf{C}_1=(2,1)$, $\mathbf{C}_2=(2,-1)$, and $\mathbf{C}_3=(0,-1)$. The weights are $w_0=w_3=1$ and $w_1=w_2=1/3$.

2.3 Full Circle

The full-circle curve can be obtained by splicing together two half-circle curves as constructed in the previous section (d=3). The 7 control values (n=6) are in the clockwise order (1,0), (2,1), (2,-1), (0,-1), (-2,-1), (-2,1), and (1,0). Observe that the first and last controls are duplicated in order to close the curve. The splicing occurs at the control value (0,-1). Rather than duplicate the control, the splicing is accomplished by choosing an interior knot of 1/2 with multiplicity 3; the knots are $u_i = 0$ for $0 \le i \le 3$, $u_i = 1/2$ for 1/2 for 1/2 and 1/2 for 1/2 for

Equation (2) provides the initial functions for starting the recursion. These are $N_{i,0}(u) = 0$ for $i \in \{0, 1, 2, 4, 5, 7, 8, 9\}$ and

$$N_{3,0}(u) = \{1, u \in [0, 1/2); 0, u \in [1/2, 1)\}$$

$$N_{6,0}(u) = \{0, u \in [0, 1/2); 1, u \in [1/2, 1)\}$$
(13)

For j = 1, equation (3) produces $N_{i,1}(u) = 0$ for $i \in \{0, 1, 4, 7, 8\}$ and

$$\begin{array}{lll} N_{2,1}(u) & = & \{1-2u, & u \in [0,1/2); & 0, & u \in [1/2,1)\} \\ N_{3,1}(u) & = & \{2u, & u \in [0,1/2); & 0, & u \in [1/2,1)\} \\ N_{5,1}(u) & = & \{0, & u \in [0,1/2); & 2-2u, & u \in [1/2,1)\} \\ N_{6,1}(u) & = & \{0, & u \in [0,1/2); & 2u-1, & u \in [1/2,1)\} \end{array}$$

$$(14)$$

For j = 2, equation (3) produces $N_{2,2}(u) = 0$, $N_{7,2}(u) = 0$, and

For j = 3, equation (3) produces

The last set of functions, $N_{i,3}(u)$, are what are used in the NURBS curve definition. Observe that the only function that has nonzero expressions for both $u \in [0, 1/2)$ and $u \in [1/2, 1)$ is $N_{3,3}(u)$. This is where the splicing occurs. The weights are the same as in the half-circle case. Table 1 summarizes the control points and weights.

Table 1. The control points, weights, and intervals of the domain for the circle.

controls	(0, 1)	(2, 1)	(2, -1)	(0, -1)	(-2, -1)	(-2,1)	(0, -1)
weights	1	1/3	1/3	1	1/3	1/3	1
$u \in [0,1/2)$	$(1-2u)^3$	$3(2u)(1-2u)^2$	$3(2u)^2(1-2u)$	$(2u)^{3}$	0	0	0
$u \in [1/2,1)$	0	0	0	$(2-2u)^3$	$3(2u-1)(2-2u)^2$	$3(2u-1)^2(2-2u)$	$(2u-1)^3$

For $u \in [0, 1/2)$, the NURBS curve has nonzero weights only for the first four control points. For $u \in [1/2, 1)$, the NURBS curve has nonzero weights only for the last four control points.

3 Representing a Sphere

3.1 One Octant of a Sphere

3.1.1 Degree 2

An octant of a sphere can be represented as a triangular NURBS surface patch of degree 4. A simple parameterization of $x^2 + y^2 + z^2 = 1$ can be made by setting $r^2 = x^2 + y^2$. The sphere is then $r^2 + z^2 = 1$. Now apply the parameterization for a circle,

$$(r,z) = \frac{(1-u^2, 2u)}{1+u^2}$$

But $(x/r)^2 + (y/r)^2 = 1$, so another application of the parameterization for a circle is

$$\frac{(x,y)}{r} = \frac{(1-v^2,2v)}{1+v^2}$$

Combining these produces

$$(x(u,v),y(u,v),z(u,v)) = \frac{((1-u^2)(1-v^2),(1-u^2)2v,2u(1+v^2))}{(1+u^2)(1+v^2)}$$

The components are ratios of quartic polynomials. The domain is $u \ge 0$, $v \ge 0$, and $u+v \le 1$. In barycentric coordinates, set w = 1 - u - v so that u+v+w=1 with u,v, and w nonnegative. In this setting, you can think of the octant of the sphere as a mapping from the uvw-triangle with vertices (1,0,0), (0,1,0), and (0,0,1). Although a valid parameterization, a symmetric subdivision of the uvw-triangle does not lead to a symmetric tessellation of the sphere.

3.1.2 Degree 4

Another parameterization is provided in [3]. This one chooses symmetric control points and symmetric weights,

$$(x(u,v),y(u,v),z(u,v)) = \frac{\sum_{i=0}^{4} \sum_{j=0}^{4-i} w_{i,j,4-i-j} \mathbf{P}_{i,j,4-i-j} B_{i,j}(u,v)}{\sum_{i=0}^{4} \sum_{j=0}^{4-i} w_{i,j,4-i-j} B_{i,j}(u,v)}$$

where

$$B_{i,j}(u,v) = \frac{4!}{i!j!(4-i-j)!} u^i v^j (1-u-v)^{4-i-j}, \quad u \ge 0, \quad v \ge 0, \quad u+v \le 1$$

are the Bernstein polynomials. The control points $\mathbf{P}_{i,j,k}$ are defined in terms of three constants $a_0 = (\sqrt{3}-1)/\sqrt{3}$, $a_1 = (\sqrt{3}+1)/(2\sqrt{3})$, and $a_2 = 1 - (5-\sqrt{2})(7-\sqrt{3})/46$,

The control weights $w_{i,j,k}$ are defined in terms of four constants, $b_0 = 4\sqrt{3}(\sqrt{3}-1)$, $b_1 = 3\sqrt{2}$, $b_2 = 4$, and $b_3 = \sqrt{2}(3+2\sqrt{2}-\sqrt{3})/\sqrt{3}$,

Both the numerator and denominator polynomial are quartic polynomials. Notice that each boundary curve of the triangle patch is a quartic polynomial of one variable that is exactly what was shown earlier for a quadrant of a circle.

3.2 A Hemisphere

The construction of a hemisphere as a NURBS surface of degree 3 in each of u and v is similar to that for the half circle. For the half circle, we had control points at the circular poles (0,1) and (0,-1), each with associated weight 1. We postulated two other control points, $(\alpha, \pm 1)$ and determined that $\alpha = 2$ and that the weight w = 1/3.

The idea extends to 3D. We will select two control points at the circular poles (0,0,1) and (0,0,-1). We can add control points of the form $(2,0,\pm 1)$ to form a hemicircle; each point has an associated weight 1/3. Now we can add more control points of the form $(2,\beta,\pm 1)$ to extrude the hemicircle to a hemisphere; each point has an associated weight w. To obtain a tensor product surface, we need a rectangular array of control points. The poles account for 2 and the other points account for 8. To pinch off the surface at the poles, we can require each pole to occur 4 times. We then have 16 control points to work with. Symbolic manipulation to force $x(u)^2 + y(u)^2 + z(u)^2 = 1$ leads to $\beta^2 = 16$ and w = 1/9. Choose the hemisphere where $y \ge 0$, so $\beta = 4$.

The knot vectors are the standard uniform ones, $u_i = v_i = 0$ for $0 \le i \le 3$ and $u_i = v_i = 1$ for $4 \le i \le 7$. Table 2 lists the control points, weights, and basis functions.

Table 2. The control points, weights, and basis functions for the half sphere. Each cell has the control point C_{ij} and the weight w_{ij} . The basis function corresponding to that term is formed from the polynomials that tag the row and column.

	$(1-u)^3$	$3(1-u)^2u$	$3(1-u)u^2$	u^3
$(1-v)^3$	(0,0,1), 1	(0,0,1), 1/3	(0,0,1), 1/3	(0,0,1), 1
$3(1-v)^2v$	(2,0,1), 1/3	(2,4,1), 1/9	(-2,4,1), 1/9	(-2,0,1), 1/3
$3(1-v)v^2$	(2,0,-1), 1/3	(2,4,-1), 1/9	(-2,4,-1), 1/9	(-2,0,-1), 1/3
v^3	(0,0,-1), 1	(0,0,-1), 1/3	(0,0,-1), 1/3	(0,0,-1), 1

Mathematica 10.1 was used to verify symbolically that $x^2 + y^2 + z^2 = 1$.

3.3 Full Sphere

A full sphere can be formed from two hemispheres by splicing in a manner similar to that for generating a circle from two half circles. The *u*-knot vector is the standard uniform one with $u_i = 0$ for $0 \le i \le 3$ and $u_i = 1$ for $4 \le 7$. However, the *v*-knot vector has 11 elements with $v_i = 0$ for $0 \le i \le 3$, $v_i = 1/2$ for $4 \le i \le 6$, and $v_i = 1$ for $7 \le i \le 10$. Tables 3 and 4 show the control points, weights, and B-spline functions.

Table 3. The control points, weights, and basis functions for the sphere when $v \in [0, 1/2)$. The basis function corresponding to that term is formed from the polynomials that tag the row and column.

	$(1-2v)^3$	$3(2v)(1-2v)^2$	$3(2v)^2(1-2v)$	$(2v)^3$	0	0	0
$(1-u)^3$	(0,0,1),1	(0,0,1),1/3	(0,0,1),1/3	(0,0,1),1	(0,0,1),1/3	(0,0,1),1/3	(0,0,1),1
$3(1-u)^2u$	(2,0,1),1/3,	(2,4,1),1/9	(-2,4,1),1/9	(-2,0,1),1/3	(-2, -4, 1), 1/9	(2, -4, 1), 1/9	(2,0,1),1/3
$3(1-u)u^2$	(2,0,-1),1/3,	(2,4,-1),1/9	(-2,4,-1),1/9	(-2,0,-1),1/3	(-2, -4, -1), 1/9	(2,-4,-1),1/9	(2,0,-1),1/3
u^3	(0,0,-1),1	(0,0,-1),1/3	(0,0,-1),1/3	(0,0,-1),1	(0,0,-1),1/3	(0,0,-1),1/3	(0,0,-1),1

Table 4. The control points, weights, and basis functions for the sphere when $v \in [1/2, 1)$. The basis function corresponding to that term is formed from the polynomials that tag the row and column.

	0	0	0	$(2-2v)^3$	$3(2v-1)(2-2v)^2$	$3(2v-1)^2(2-2v)$	$(2v-1)^3$
$(1-u)^3$	(0,0,1),1	(0,0,1),1/3	(0,0,1),1/3	(0,0,1),1	(0,0,1),1/3	(0,0,1),1/3	(0,0,1),1
$3(1-u)^2u$	(2,0,1),1/3,	(2,4,1),1/9	(-2,4,1),1/9	(-2,0,1),1/3	(-2, -4, 1), 1/9	(2, -4, 1), 1/9	(2,0,1),1/3
$3(1-u)u^2$	(2,0,-1),1/3,	(2,4,-1),1/9	(-2,4,-1),1/9	(-2,0,-1),1/3	(-2, -4, -1), 1/9	(2, -4, -1), 1/9	(2,0,-1),1/3
u^3	(0,0,-1),1	(0,0,-1),1/3	(0,0,-1),1/3	(0,0,-1),1	(0,0,-1),1/3	(0,0,-1),1/3	(0,0,-1),1

The control points (0,0,1) and (0,0,-1) each occur 7 times to pinch off the surface at the poles. The control points (2,0,1) and (2,0,-1) each occur 2 times to wrap the surface around the up-axis.

References

- [1] David F. Rogers, An Introduction to NURBS with Historical Perspective, Morgan Kaufmann Publishers, San Francisco, CA, 2001
- [2] Elaine Cohen, Richard F. Riesenfeld, and Gershon Elber, Geometric Modeling with Splines: An Introduction, AK Peters Ltd., Natick, MA, 2001
- [3] Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press, San Diego, CA, 1990
- [4] Wolfram Research, Inc., Mathematica, Version 10.1, Champaign, IL, 2015