How to efficiently encode chromatic natural images in the retina

David St-Amand, Greg Field and John Pearson

Neurobiology Department, Duke University, Durham, NC, USA

Introduction

- Efficient coding: Sensory systems should remove redundancies in their inputs, subject to metabolic costs (Barlow, 1961)
- Efficient coding models have been especially successful at explaining how populations of neurons should encode achromatic natural images (Atick & Redlich, 1990; Karklin & Simoncelli, 2011; Jun et al., 2021)
- Many neurons in the retina (especially in the fovea) encode the difference between Long, Medium and Short cones. This color-opponency strategy has previously been shown to be efficient (Buchsbaum & Gottschalk, 1983; Atick & Redlich, 1992). However, how a population of retinal ganglion cells should encode different color-opponent signals is less well understood.

W_i = Weights for color channel j

z = Distance from receptive field center

d_i = Relative usage of color channel j at the receptive field center

a_i = Size of receptive field <u>center</u> for color channel j

b_i = Size of receptive field <u>surround</u> for color channel j

c_i = Relative usage of color channel j at the receptive field <u>surround</u>

We trained the model to efficiently encode natural images (12x12x3)

from the Kyoto Natural Images Dataset in 498 different neurons

Results Model neurons have both chromatic and Mutual information converges after achromatic center-surround receptive fields about ~200k epochs **Epochs** Very strong correlation between L and M cone inputs (d parameter; r = 0.88) Relative L cone inputs S inputs (d parameter) are mildly correlated with L and M inputs (r = 0.36 and 0.4) Relative L cone inputs Relative M cone inputs PCA shows that most of the variance in receptive fields is achromatic PC1: 69.5 % PC2: 26.3 % PC3: 1.7 % PC4: 1.2 % Long cones Short cones Medium cones Distance from RF center (pixels)

Discussion

Previous experiments have shown that:

- 80% of retinal ganglion cells (RGCs) are midget cells (red-green)
- 10% of RGCs are bistratified ganglion cells (blue-yellow)
- 10% of RGCs are parasol cells (black-white)
- In the fovea, midget cells are red-green opponent
- In the <u>periphery</u>, midget cells are not red-green opponent and instead sum both L and M cone inputs

Midget cells in Fovea

ON pathway OFF

Midget cells in Periphery

Bistratified ganglion cells

ON pathway

OFF pathway

Therefore, our findings:

- Explain why midget cells in the periphery, but not in the fovea, are efficient
- Suggest that achromatic receptive fields might encode more information than chromatic receptive fields

References

Atick, J. J., & Redlich, A. N. (1990). Towards a theory of early visual processing. *Neural computation*, *2*(3), 308-320.

Atick, J. J., Li, Z., & Redlich, A. N. (1992). Understanding retinal color coding from first principles. *Neural computation*, *4*(4), 559-572.

Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. *Sensory communication*, 1(01), 217-233.

Buchsbaum, G., & Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. *Proceedings of the Royal society of London. Series B. Biological sciences*, *220*(1218), 89-113.

Jun, N. Y., Field, G. D., & Pearson, J. (2021). Scene statistics and noise determine the relative arrangement of receptive field mosaics. *Proceedings of the National Academy of Sciences*, *118*(39), e2105115118.

Karklin, Y., & Simoncelli, E. (2011). Efficient coding of natural images with a population of noisy linear-nonlinear neurons. *Advances in neural information processing systems*, 24.