AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1.-115. (Canceled).

116. (New) A method of intracellular delivery into tumor cells of taxol or a camptothecin derivative of formula

wherein: R_7 is a $-C(R_{11})=N-O_{(n)}R_{10}$ group, wherein R_{10} is hydrogen or a C_1-C_5 alkyl or C_2-C_5 alkenyl group, linear or branched or C_3-C_{10} cycloalkyl, group or a linear or branched (C_3-C_{10}) cycloalkyl - (C_1-C_5) alkyl group, or C_6-C_{14} aryl, or a linear or branched (C_6-C_{14}) aryl - (C_1-C_5) alkyl group, or a heterocyclic or linear or branched heterocyclo - (C_1-C_5) alkyl group, said heterocyclic group containing at least a heteroatom selected from the group consisting of nitrogen atom, optionally substituted with a (C_1-C_5) alkyl group, and/or oxygen and/or sulfur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo-alkyl groups, being optionally substituted with other groups selected from the group consisting of: halogen, hydroxy, C_1-C_5 alkyl, C_1-C_5 alkoxy, phenyl, cyano, nitro, -NR₁₂R₁₃, wherein R₁₂ and R₁₃, which may be the same or different, are hydrogen, linear or branched (C_1-C_5) alkyl; a

pharmaceutically acceptable ester of the -COOH group; or the-CONR₁₄R₁₅ group, wherein R₁₄ and R₁₅, which may be the same or different, are hydrogen or linear or branched (C₁-C₅) alkyl; or

 R_{10} is a (C₆-C₁₀) aroyl residue optionally substituted by one or more groups selected from the group consisting of: halogen, hydroxy, linear or branched (C₁-C₅) alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₆R₁₇, wherein R₁₆ and R₁₇, which may be the same or different, is hydrogen, linear or branched (C₁-C₈) alkyl;

n is the number 0 or 1;

 R_{11} is hydrogen, linear or branched C_1 - C_5 alkyl, linear or branched C_2 - C_5 alkenyl, C_3 - C_{10} cycloalkyl, $(C_3$ - $C_{10})$ cycloalkyl - linear or branched $(C_1$ - $C_5)$ alkyl, C_6 - C_{14} aryl, $(C_6$ - $C_{14})$ aryl - linear or branched alkyl $(C_1$ - $C_5)$;

 R_8 and R_9 , which may be the same or different are hydrogen, hydroxy, linear or branched C_1 - C_5 alkoxy;

their N_1 -oxides, their single isomers, in particular the syn and anti isomers of the-C(R_{11})=N-O_(n) R_{10} group, their enantiomers, diastereoisomers and admixtures, the pharmaceutically acceptable salts thereof;

using a liposome comprising a compound of formula (II)

(II)

where:

R₃ is an acyl chain selected from the group consisting of palmitoyl and stearoyl;

 R_4 is an alkyl chain selected from the group consisting of undecyl and tetradecyl; and X^- is the anion of a pharmacologically acceptable acid,

- 117. (New) The method according to claim 116, in which X⁻ is selected from the group consisting of chloride; bromide; iodide; aspartate; acid aspartate; citrate; acid citrate; tartrate; acid tartrate; phosphate; acid phosphate; fumarate; acid fumarate; glycerophosphate; glucose phosphate; lactate; maleate; acid maleate; mucate; orotate; oxalate; acid oxalate; sulphate; acid sulphate; trichloroacetate; trifluoroacetate; methane sulphonate; pamoate and acid pamoate.
- 118. (New) The method according to claim 116, in which the compound of formula (II) is selected from the group consisting of palmitoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride tetradecyl ester; palmitoyl L-carnitine chloride tetradecyl ester.
- 119. (New) The method according to claim 116, in which said derivative of camptothecin is selected from the group consisting of 7-benzyloxyiminomethylcamptothecin or 7-t-butoxyiminomethylcamptothecin.
- 120. (New) The method according to claim 116, in which the liposome additionally contains helper lipids.
- 121. (New) The method according to claim 120, in which said helper lipid is selected from the group consisting of cholesterol, 1-palmitoyl-2-oleoyl phosphatidyl choline or dioleyl phosphatidyl choline.
- 122. (New) A composition comprising a liposome comprising a compound of formula
 (II)

PISANO et al Appl. No. 10/624,645 April 27, 2009

$$H_3C$$
 H_3C
 $X^ X^ X^$

where:

R₃ is an acyl chain selected from the group consisting of palmitoyl and stearoyl;
R₄ is an alkyl chain selected from the group consisting of undecyl and tetradecyl;
and

X is the anion of a pharmacologically acceptable acid, said liposome comprising taxol or a camptothecin derivative of formula

wherein: R_7 is a $-C(R_{11})=N-O_{(n)}R_{10}$ group, wherein R_{10} is hydrogen or a C_1-C_5 alkyl or C_2-C_5 alkenyl group, linear or branched or C_3-C_{10} cycloalkyl, group or a linear or branched (C_3-C_{10}) cycloalkyl - (C_1-C_5) alkyl group, or C_6-C_{14} aryl, or a linear or branched (C_6-C_{14}) aryl - (C_1-C_5) alkyl group, or a heterocyclic or linear or branched heterocyclo - (C_1-C_5) alkyl group, said heterocyclic group containing at least a heteroatom selected from the group consisting of nitrogen atom, optionally substituted with a (C_1-C_5) alkyl group, and/or oxygen and/or sulfur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo-alkyl groups, being optionally substituted with other groups selected from the group consisting of:

halogen, hydroxy, C₁-C₅ alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₂R₁₃, wherein R₁₂ and R₁₃, which may be the same or different, are hydrogen, linear or branched (C₁-C₅) alkyl; a pharmaceutically acceptable ester of the -COOH group; or the-CONR₁₄R₁₅ group, wherein R₁₄ and R₁₅, which may be the same or different, are hydrogen or linear or branched (C₁-C₅) alkyl; or

 R_{10} is a (C_6-C_{10}) aroyl residue optionally substituted by one or more groups selected from the group consisting of: halogen, hydroxy, linear or branched (C_1-C_5) alkyl, C_1-C_5 alkoxy, phenyl, cyano, nitro, $-NR_{16}R_{17}$, wherein R_{16} and R_{17} , which may be the same or different, are hydrogen, linear or branched (C_1-C_8) alkyl;

n is the number 0 or 1;

 R_{11} is hydrogen, linear or branched C_1 - C_5 alkyl, linear or branched C_2 - C_5 alkenyl, C_3 - C_{10} cycloalkyl, $(C_3$ - $C_{10})$ cycloalkyl - linear or branched $(C_1$ - $C_5)$ alkyl, C_6 - C_{14} aryl, $(C_6$ - $C_{14})$ aryl - linear or branched alkyl $(C_1$ - $C_5)$;

R₈ and R₉, which may be the same or different is hydrogen, hydroxy, linear or branched C₁-C₅ alkoxy;

their N_1 -oxides, their single isomers, in particular the syn and anti isomers of the— $C(R_{11})=N-O_{(n)}R_{10}$ group, their enantiomers, diastereoisomers and admixtures, the pharmaceutically acceptable salts thereof.

123. (New) The composition according to claim 122, in which X⁻ is selected from the group consisting of chloride; bromide; iodide; aspartate; acid aspartate; citrate; acid citrate; tartrate; acid tartrate; phosphate; acid phosphate; fumarate; acid fumarate; glycerophosphate; glucose phosphate; lactate; maleate; acid maleate; mucate; orotate; oxalate; acid oxalate; sulphate; acid sulphate; trichloroacetate; trifluoroacetate; methane sulphonate; pamoate and acid pamoate.

- 124. (New) The composition according to claim 122, in which the compound of formula (II) is selected from the group consisting of palmitoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride tetradecyl ester; palmitoyl L-carnitine chloride tetradecyl ester.
- 125. (New) The composition according to claim 122, in which the liposome additionally contains helper lipids.
- 126. (New) The composition according to claim 125, in which said helper lipid is selected from the group consisting of cholesterol, 1-palmitoyl-2-oleoyl phosphatidyl choline or dioleyl phosphatidyl choline.
- 127. (New) The composition according to claim 122, in which the composition is administered orally, parenterally, intravenously, intramuscularly, subcutaneously, transdermally or in the form of a nasal mouth spray.
- 128. (New) A method of transporting an antitumor drug to the target organ of a subject in need of antitumor treatment, wherein said drug is selected from the group consisting of taxol or a camptothecin derivative of formula

wherein: R_7 is a $-C(R_{11})=N-O_{(n)}R_{10}$ group, wherein R_{10} is hydrogen or a C_1-C_5 alkyl or C_2-C_5 alkenyl group, linear or branched or C_3-C_{10} cycloalkyl, group or a linear or branched (C_3-C_{10}) cycloalkyl - (C_1-C_5) alkyl group, or C_6-C_{14} aryl, or a linear or branched (C_6-C_{14}) aryl - (C_1-C_5)

C₅) alkyl group, or a heterocyclic or linear or branched heterocyclo - (C₁-C₅) alkyl group, said heterocyclic group containing at least a heteroatom selected from the group consisting of nitrogen atom, optionally substituted with a (C₁-C₅) alkyl group, and/or oxygen and/or sulfur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo-alkyl groups, being optionally substituted with other groups selected from the group consisting of: halogen, hydroxy, C₁-C₅ alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₂R₁₃, wherein R₁₂ and R₁₃, which may be the same or different, are hydrogen, linear or branched (C₁-C₅) alkyl; a pharmaceutically acceptable ester of the -COOH group; or the-CONR₁₄R₁₅ group, wherein R₁₄ and R₁₅, which may be the same or different, are hydrogen or linear or branched (C₁-C₅) alkyl; or

 R_{10} is a (C₆-C₁₀) aroyl residue optionally substituted by one or more groups selected from the group consisting of: halogen, hydroxy, linear or branched (C₁-C₅) alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₆R₁₇, wherein R₁₆ and R₁₇, which may be the same or different, are hydrogen, linear or branched (C₁-C₈) alkyl;

n is the number 0 or 1;

 R_{11} is hydrogen, linear or branched C_1 - C_5 alkyl, linear or branched C_2 - C_5 alkenyl, C_3 - C_{10} cycloalkyl, $(C_3$ - $C_{10})$ cycloalkyl - linear or branched $(C_1$ - $C_5)$ alkyl, C_6 - C_{14} aryl, $(C_6$ - $C_{14})$ aryl - linear or branched alkyl $(C_1$ - $C_5)$;

 R_8 and R_9 , which may be the same or different are hydrogen, hydroxy, linear or branched C_1 - C_5 alkoxy;

their N_1 -oxides, their single isomers, in particular the syn and anti isomers of the-C(R_{11})=N-O_(n) R_{10} group, their enantiomers, diastereoisomers and admixtures, the pharmaceutically acceptable salts thereof; PISANO et al Appl. No. 10/624,645 April 27, 2009

said method comprising encapsulating said antitumor drug into a liposome comprising a compound of formula (II)

(II)

where:

R₃ is an acyl chain selected from the group consisting of palmitoyl and stearoyl;

R₄ is an alkyl chain selected from the group consisting of undecyl and tetradecyl; and

X⁻ is the anion of a pharmacologically acceptable acid, to obtain a liposome containing said antitumor drug,

and

administering said liposome to said subject.

129. (New) The method according to claim 128, in which X- is selected from the group consisting of chloride; bromide; iodide; aspartate; acid aspartate; citrate; acid citrate; tartrate; acid tartrate; phosphate; acid phosphate; fumarate; acid fumarate; glycerophosphate; glucose phosphate; lactate; maleate; acid maleate; mucate; orotate; oxalate; acid oxalate; sulphate; acid sulphate; trichloroacetate; trifluoroacetate; methane sulphonate; pamoate and acid pamoate.

130. (New) The method according to claim 128, in which the compound of formula (II) is selected from the group consisting of palmitoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride tetradecyl ester; palmitoyl L-carnitine chloride tetradecyl ester.

- 131. (New) The method according to claim 128, in which said derivative of camptothecin is selected from the group consisting of 7-benzyloxyiminomethylcamptothecin or 7-t-butoxyiminomethylcamptothecin.
- 132. (New) The method according to claim 128, in which the liposome additionally contains helper lipids.
- 133. (New) The method according to claim 132, in which said helper lipid is selected from the group consisting of cholesterol, 1-palmitoyl-2-oleoyl phosphatidyl choline or dioleyl phosphatidyl choline.
- 134. (New) The method according to claim 128, wherein said antitumor drug is 7-t-butoxyiminomethylcamptothecin and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 135. (New) The method according to claim 128, wherein said antitumor drug is taxol and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 136. (New) The method according to claim 128, wherein said liposome is administered orally, parenterally, intravenously, intramuscularly, subcutaneously, transdermally or in the form of a nasal or mouth spray.
 - 137. (New) The method according to claim 128, wherein lungs are said target organ.
 - 138. (New) The method according to claim 116, wherein said liposome is in the form of a dry powder.
 - 139. (New) The method according to claim 116, wherein said liposome is adsorbed on an inert support.
- 140. (New) The method according to claim 139, wherein the inert support is selected from the group consisting of sorbitol, threhalose and mannitol.

- 141. (New) The composition according to claim 122, wherein said liposome is in the form of a dry powder.
- 142. (New) The method according to claim 122, wherein said liposome is adsorbed on an inert support.
- 143. (New) The method according to claim 142, wherein the inert support is selected from the group consisting of sorbitol, threhalose, lactose and mannitol.
- 144. (New) The method according to claim 128, wherein said liposome is in the form of a dry powder.
- 145. (New) The method according to claim 128, wherein said liposome is adsorbed on an inert support.
 - 146. (New) The method according to claim 145, wherein the inert support is selected from the group consisting of sorbitol, threhalose and mannitol.
- 147. (New) A method of transporting an antitumor drug to the lungs of a subject in need of antitumor treatment, wherein said drug is selected from the group consisting of taxol or a camptothecin derivative of formula

wherein: R_7 is a $-C(R_{11})=N-O_{(n)}R_{10}$ group, wherein R_{10} is hydrogen or a C_1-C_5 alkyl or C_2-C_5 alkenyl group, linear or branched or C_3-C_{10} cycloalkyl, group or a linear or branched (C_3-C_{10}) cycloalkyl - (C_1-C_5) alkyl group, or C_6-C_{14} aryl, or a linear or branched (C_6-C_{14}) aryl - (C_1-C_5)

C₅) alkyl group, or a heterocyclic or linear or branched heterocyclo - (C₁-C₅) alkyl group, said heterocyclic group containing at least a heteroatom selected from the group consisting of nitrogen atom, optionally substituted with a (C₁-C₅) alkyl group, and/or oxygen and/or sulfur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo-alkyl groups, being optionally substituted with other groups selected from the group consisting of: halogen, hydroxy, C₁-C₅ alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₂R₁₃, wherein R₁₂ and R₁₃, which may be the same or different, are hydrogen, linear or branched (C₁-C₅) alkyl; a pharmaceutically acceptable ester of the -COOH group; or the-CONR₁₄R₁₅ group, wherein R₁₄ and R₁₅, which may be the same or different, are hydrogen or linear or branched (C₁-C₅) alkyl; or

 R_{10} is a (C₆-C₁₀) aroyl residue optionally substituted by one or more groups selected from the group consisting of: halogen, hydroxy, linear or branched (C₁-C₅) alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₆R₁₇, wherein R₁₆ and R₁₇, which may be the same or different, are hydrogen, linear or branched (C₁-C₈) alkyl;

n is the number 0 or 1;

 R_{11} is hydrogen, linear or branched C_1 - C_5 alkyl, linear or branched C_2 - C_5 alkenyl, C_3 - C_{10} cycloalkyl, $(C_3$ - $C_{10})$ cycloalkyl - linear or branched $(C_1$ - $C_5)$ alkyl, C_6 - C_{14} aryl, $(C_6$ - $C_{14})$ aryl - linear or branched alkyl $(C_1$ - $C_5)$;

 R_8 and R_9 , which may be the same or different are hydrogen, hydroxy, linear or branched C_1 - C_5 alkoxy;

their N_1 -oxides, their single isomers, in particular the syn and anti isomers of the— $C(R_{11})=N-O_{(n)}R_{10}$ group, their enantiomers, diastereoisomers and admixtures, the pharmaceutically acceptable salts thereof;

PISANO et al Appl. No. 10/624,645 April 27, 2009

said method comprising encapsulating said antitumor drug into a liposome comprising a compound of formula (II)

(II)

where:

R₃ is an acyl chain selected from the group consisting of palmitoyl and stearoyl;

R₄ is an alkyl chain selected from the group consisting of undecyl and tetradecyl; and

X⁻ is the anion of a pharmacologically acceptable acid, to obtain a liposome containing said antitumor drug,

and

administering said liposome to said subject.

148. (New) The method according to claim 147, in which X⁻ is selected from the group consisting of chloride; bromide; iodide; aspartate; acid aspartate; citrate; acid citrate; tartrate; acid tartrate; phosphate; acid phosphate; fumarate; acid fumarate; glycerophosphate; glucose phosphate; lactate; maleate; acid maleate; mucate; orotate; oxalate; acid oxalate; sulphate; acid sulphate; trichloroacetate; trifluoroacetate; methane sulphonate; pamoate and acid pamoate.

149. (New) The method according to claim 147, in which the compound of formula (II) is selected from the group consisting of palmitoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride undecyl ester; stearoyl L-carnitine chloride tetradecyl ester; palmitoyl L-carnitine chloride tetradecyl ester.

- 150. (New) The method according to claim 147, in which said derivative of camptothecin is selected from the group consisting of 7-benzyloxyiminomethylcamptothecin or 7-t-butoxyiminomethylcamptothecin.
- 151. (New) The method according to claim 147, in which the liposome additionally contains helper lipids.
- 152. (New) The method according to claim 151, in which said helper lipid is selected from the group consisting of cholesterol, 1-palmitoyl-2-oleoyl phosphatidyl choline or dioleyl phosphatidyl choline.
- 153. (New) The method according to claim 147, wherein said antitumor drug is 7-t-butoxyiminomethylcamptothecin and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 154. (New) The method according to claim 147, wherein said antitumor drug is taxol and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 155. (New) The method according to claim 147, wherein said liposome is administered orally, parenterally, intravenously, intramuscularly, subcutaneously, transdermally or in the form of a nasal or mouth spray.
- 156. (New) A method of intracellular delivery of an antitumor drug into tumor cells to the lungs of a subject in need of antitumor treatment, wherein said drug is selected from the group consisting of taxol or a camptothecin derivative of formula

wherein: R₇ is a –C(R₁₁)=N-O_(n)R₁₀ group, wherein R₁₀ is hydrogen or a C₁-C₅ alkyl or C₂-C₅ alkenyl group, linear or branched or C₃-C₁₀ cycloalkyl, group or a linear or branched (C₃-C₁₀) cycloalkyl - (C₁-C₅) alkyl group, or C₆-C₁₄ aryl, or a linear or branched (C₆-C₁₄) aryl - (C₁-C₅) alkyl group, or a heterocyclic or linear or branched heterocyclo - (C₁-C₅) alkyl group, said heterocyclic group containing at least a heteroatom selected from the group consisting of nitrogen atom, optionally substituted with a (C₁-C₅) alkyl group, and/or oxygen and/or sulfur; said alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, aryl, aryl-alkyl, heterocyclic or heterocyclo-alkyl groups, being optionally substituted with other groups selected from the group consisting of: halogen, hydroxy, C₁-C₅ alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₂R₁₃, wherein R₁₂ and R₁₃, which may be the same or different, are hydrogen, linear or branched (C₁-C₅) alkyl; a pharmaceutically acceptable ester of the –COOH group; or the–CONR₁₄R₁₅ group, wherein R₁₄ and R₁₅, which may be the same or different, are hydrogen or linear or branched (C₁-C₅) alkyl; or

 R_{10} is a (C₆-C₁₀) aroyl residue optionally substituted by one or more groups selected from the group consisting of: halogen, hydroxy, linear or branched (C₁-C₅) alkyl, C₁-C₅ alkoxy, phenyl, cyano, nitro, -NR₁₆R₁₇, wherein R₁₆ and R₁₇, which may be the same or different, are hydrogen, linear or branched (C₁-C₈) alkyl;

n is the number 0 or 1;

 R_{11} is hydrogen, linear or branched C_1 - C_5 alkyl, linear or branched C_2 - C_5 alkenyl, C_3 - C_{10} cycloalkyl, $(C_3$ - $C_{10})$ cycloalkyl - linear or branched $(C_1$ - $C_5)$ alkyl, C_6 - C_{14} aryl, $(C_6$ - $C_{14})$ aryl - linear or branched alkyl $(C_1$ - $C_5)$;

R₈ and R₉, which may be the same or different are hydrogen, hydroxy, linear or branched C₁-C₅ alkoxy;

their N_1 -oxides, their single isomers, in particular the syn and anti isomers of the-C(R_{11})=N-O_(n) R_{10} group, their enantiomers, diastereoisomers and admixtures, the pharmaceutically acceptable salts thereof;

said method comprising encapsulating said antitumor drug into a liposome comprising a compound of formula (II)

$$H_3C$$
 H_3C
 X
 O
 $R4$
 $R3$

(II)

where:

i. R₃ is palmitoyl and R₄ is undecyl; or

ii. R₃ is stearoyl and R₄ is undecyl; or

iii. R₃ is stearoyl and R₄ is tetradecyl; or

iv. R_3 is palmitoyl and R_4 is undecyl;

and

X is the anion of a pharmacologically acceptable acid, to obtain a liposome containing said antitumor drug,

and

administering said liposome to said subject.

- 157. (New) The method according to claim 156, in which X⁻ is selected from the group consisting of chloride; bromide; iodide; aspartate; acid aspartate; citrate; acid citrate; tartrate; acid tartrate; phosphate; acid phosphate; fumarate; acid fumarate; glycerophosphate; glucose phosphate; lactate; maleate; acid maleate; mucate; orotate; oxalate; acid oxalate; sulphate; acid sulphate; trichloroacetate; trifluoroacetate; methane sulphonate; pamoate and acid pamoate.
- 158. (New) The method according to claim 156, in which said derivative of camptothecin is selected from the group consisting of 7-benzyloxyiminomethylcamptothecin or 7-t-butoxyiminomethylcamptothecin.
- 159. (New) The method according to claim 156, in which the liposome additionally contains helper lipids.
- 160. (New) The method according to claim 159, in which said helper lipid is selected from the group consisting of cholesterol, 1-palmitoyl-2-oleoyl phosphatidyl choline or dioleyl phosphatidyl choline.
- 161. (New) The method according to claim 156, wherein said antitumor drug is 7-t-butoxyiminomethylcamptothecin and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 162. (New) The method according to claim 156, wherein said antitumor drug is taxol and said liposome comprises the compound palmitoyl L-carnitine undecyl ester.
- 163. (New) The method according to claim 156, wherein said liposome is administered orally, parenterally, intravenously, intramuscularly, subcutaneously, transdermally or in the form of a nasal or mouth spray.