GEOMETRIA (CENNI)

PUNTI

punti			
$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	distanza tra due punti $A(x_1, y_1), B(x_2, y_2)$		
$x_M = \frac{x_1 + x_2}{2}$ $y_M = \frac{y_1 + y_2}{2}$	coordinate del punto medio $M(x_M, y_M)$ tra due punti $A(x_1, y_1), B(x_2, y_2)$		
$x_G = \frac{x_1 + x_2 + x_3}{3}$ $y_G = \frac{y_1 + y_2 + y_3}{3}$	coordinate del baricentro $G(x_G, y_G)$ di un triangolo di vertici $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$		

il baricentro $G(x_G,y_G)$ di un triangolo è il punto di incontro delle mediane. Le sue coordinate sono:

$$x_{G} = \frac{x_{1} + x_{2} + x_{3}}{3}$$
 $y_{G} = \frac{y_{1} + y_{2} + y_{3}}{3}$

inversamente: note le coordinate di due vertici del triangolo e del suo baricentro, le coordinate del terzo vertice sono:

$$x_3 = 3x_G - x_1 - x_2$$
 $y_3 = 3y_G - y_1 - y_2$

• Retta

retta				
ax + by + c = 0 forma implicita	equazione della retta	↑		
$y = mx + q$ $m = -\frac{a}{b}$ e $q = -\frac{c}{b}$ forma esplicita	m è il coefficiente angolare	q	1	
$\frac{x}{p} + \frac{y}{q} = 1$ forma segmentaria	q è l'intersezione con l'asse delle y p è l'intersezione con l'asse delle x	p	m	
$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$	coefficiente angolare della retta pa	ssante per due punti A	$A(x_1, y_1), B(x_2, y_2)$	
$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$	equazione della retta passante per	due punti $A(x_1, y_1)$,	$B(x_2,y_2)$	
$y-y_0=m(x-x_0)$	equazione della retta passante per di coefficiente angolare m	un punto $P(x_0, y_0)$		
$m_r = m_s$	condizioni di parallelism o tra due rette r ed s			
$egin{aligned} m{m_r} = -1/m{m_s} & ext{oppure} & m{m_r}\cdotm{m_s} = -1 \end{aligned}$	condizioni di perpendicolarità tra due rette r ed s			
$ \left\{ \begin{array}{l} equazione \ di \ r \\ equazione \ di \ s \end{array} \right. \rightarrow \left. x_0, y_0 \right. \rightarrow P(x_0, y_0) $	punto $P(x_0, y_0)$ di intersezione tra due rette r ed s		$P(x_0,y_0)$	
$d = \frac{ ax_0 + by_0 + c }{\sqrt{a^2 + b^2}}$ retta in forma implicita	distanza di un punto $P(x_0, y_0)$	d ,	$P(x_0,y_0)$	
$d=rac{ y_0-mx_0-q }{\sqrt{m^2+1}}$ retta in forma esplicita	da una retta r		r	
$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$	equazione delle bisettrici degli angoli formati da due rette r , s r : $a_1x + b_1y + c_1 = 0$ s : $a_2x + b_2y + c_2 = 0$		s b ₁	
$tg \alpha = \frac{m_r - m_s}{1 + m_r m_s}$	tangente dell' angolo formato da due rette r ed s di coefficiente angolare m_r ed m_s			

fasci di rette

Un fascio di rette è l'insieme delle rette del piano aventi in comune un **punto** oppure una **direzione**

fascio proprio

è l'insieme delle rette del piano passanti per uno stesso ${\bf punto}~{\bf C}$ detto ${\bf centro}~{\bf del}~{\bf fascio}$

è l'insieme delle rette del piano aventi una **direzione** comune, cioè aventi lo stesso coefficiente angolare

come si presenta l'equazione di un fascio

l'equazione di un fascio di rette si presenta come quella di una retta (generalmente in forma implicita) nella quale compare, oltre alle incognite x ed y, almeno una volta anche un'altra lettera $(k, h, t, m, p \dots)$ detta parametro

Esempio:

$$2kx - 3y + 5 = 0$$

$$3(2t-1)x + (2t-1)y + 3t - 5 = 0$$

classificazione di un fascio di rette data l'equazione del fascio, per classificarlo bisogna: • calcolare il coefficiente angolare $m=-\frac{a}{b}$ • se m contiene il parametro k il fascio è proprio • se il parametro si semplifica, il fascio è improprio esempio per un fascio di rette proprio $2kx - (3k-1)y - 5 = 0 \rightarrow m = \frac{2k}{(3k-1)}$ $3(2k-1)x + (2k-1)y + 3 = 0 \rightarrow m = -3\frac{(2k-1)}{(2k-1)} = -3$

rette generatrici di un fascio

- le rette generatrici di un fascio sono le rette che danno origine al fascio e sono sempre due
- nel caso di fascio proprio le rette generatrici sono incidenti
- nel caso di fascio improprio le rette generatrici sono parallele

ricerca delle equazioni delle rette generatrici di un fascio (3k+1)x-(k-1)y-5k-3=0• dato il fascio di rette, si sviluppano i calcoli k (3x-y-5)+x+y-3=0• si raccoglie a fattor comune il parametro k• le due parti così ottenute rappresentano le equazioni delle rette generatrici del fascio

ricerca del centro $C(x_0,y_0)$ di un fascio proprio di rette			
$ \begin{cases} equazione \ di \ r \\ equazione \ di \ s \end{cases} \rightarrow x_0 , y_0 \rightarrow C(x_0, y_0) $	 si mettono a sistema le equazioni delle due rette generatrici o di due generiche rette del fascio le soluzioni del sistema rappresentano le coordinate del centro del fascio C(x₀, y₀) 		

come scriver e l'equazione di un fascio di rette			
$k m{r} + m{s} = 0$ equazione del fascio di rette date le due rette generatr $m{r}$ ed $m{s}$			
$y-y_0=m(x-x_0)$ equazione del fascio di rette proprio noto il centro $C(x_0,y_0)$			
y = mx + q	equazione del fascio di rette improprio noto il coefficiente angolare <i>m</i>		

• Proprietà comuni a tutte le coniche

proprietà comuni a tutte le coniche

condizione di appartenenza di un punto $P_0(x_0,y_0)$ ad una retta $\mathbf r$ o ad una conica $\mathbf r$

per verificare se un dato punto $P_0(x_0,y_0)$ appartiene ad una retta ${\bf r}$ oppure ad una conica ${\bf r}$

- si sostituiscono le coordinate di P_0 , x_0 e y_0 , in ${\bf r}$ o in ${\bf \Gamma}$
- si sviluppano i calcoli. Se si ottiene un'identità, il punto P_0 appartiene alla retta o alla conica

per verificare se una retta è secante, tangente o esterna ad una conica Γ bisogna:

- ricavare la y dell'equazione della retta e sostituirla nell'equazione della conica
- ullet sviluppare i calcoli ed ordinare l'equazione rispetto alla $oldsymbol{x}$
- dell'equazione di II grado così ottenuta calcolare il $\Delta=b^2-4ac$ oppure, se b è pari, il $\frac{\Delta}{4}=\left(\frac{b}{2}\right)^2-ac$
- verificare il segno del Δ
- se $\Delta > 0$ la retta è **secante** alla conica. Si hanno 2 intersezioni reali e distinte cioè **2 punti in comune**
 - se $\Delta=0$ la retta è **tangente** alla conica. Si hanno 2 intersezioni reali e coincidenti cioè **1 punto in comune**
 - se $\Delta < 0$ la retta è **esterna** alla conica. Non si ha nessuna intersezione reale cioè **nessun punto in comune**

ricerca delle equazioni delle rette tangenti ad una conica				
tangenti da un punto esterno $P_0(x_0,y_0)$	tangenti parallele ad una retta di coefficiente angolare m			
 si scrive l'equazione del fascio di rette <i>proprio</i> di centro P₀(x₀, y₀): y - y₀ = m(x - x₀) si ricava la y dall'equazione del fascio di rette 	• si scrive l'equazione del fascio di rette <i>improprio</i> di coefficiente angolare m assegnato: $y = mx + q$			
si sostituisce la y trovata nell'equazione della conica	si sostituisce la y trovata nell'equazione della conica			
• si sviluppano i calcoli e si ordina rispetto alla ${\it x}$ ottenendo un'equazione di II grado in ${\it x}$	• si sviluppano i calcoli e si ordina rispetto alla $m{x}$ ottenendo un'equazione di II grado in $m{x}$			
• si ricava il Δ o il $\Delta/4$ e lo si impone uguale a 0: $\Delta = 0$ ottenendo una equazione di II grado nell'incognita m	• si ricava il Δ o il $\Delta/4$ e lo si impone uguale a 0: $\Delta = 0$ ottenendo una equazione di I o II grado nell'incognita q			
• si risolve l'equazione in m ottenendo $m{m_1}$ ed $m{m_2}$	• si risolve l'equazione in $m{q}$ ottenendo $m{q_1}$ e $m{q_2}$			
• si sostituiscono uno alla volta i valori m_1 ed m_2 nell'equazione iniziale del fascio ottenendo le equazioni delle due rette tangenti	$ullet$ si sostituiscono uno alla volta i valori $m{q_1}$ e $m{q_2}$ nell'equazione iniziale del fascio ottenendo le equazioni delle due rette tangenti			

• Parabola

parabola

La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso \pmb{F} detto fuoco e da una retta data \pmb{d} detta direttrice:

$$\overline{PF} = Pd$$

parabola con asse di simmetria parallelo all'asse y

parabola con asse di simmetria parallelo all'asse x

$y = ax^2 + bx + c$	equazione completa	$x = ay^2 + by + c$
$V\left(\frac{-b}{2a};\frac{-\Delta}{4a}\right) \qquad \Delta = b^2 - 4ac$	coordinate del vertice	$V\left(\frac{-\Delta}{4a};\frac{-b}{2a}\right) \qquad \Delta = b^2 - 4ac$
$F\left(\frac{-b}{2a};\frac{1-\Delta}{4a}\right)$	coordinate del fuoco	$F\left(\frac{1-\Delta}{4a};\frac{-b}{2a}\right)$
$x = \frac{-b}{2a}$	equazione dell' asse	$y = \frac{-b}{2a}$
$y = \frac{-1 - \Delta}{4a}$	equazione della direttrice	$x = \frac{-1 - \Delta}{4a}$
$\frac{y_0+y}{2}=ax_0\cdot x+b\frac{x_0+x}{2}+c$	equazione della retta tangente alla parabola in un suo punto $P_0(x_0,y_0)$ detta formula di sdoppiamento	$\frac{x_0+x}{2}=ay_0\cdot y+b\frac{y_0+y}{2}+c$
$\mathcal{A} = \frac{2}{3}\mathcal{R}$ con \mathcal{R} area del rettangolo circoscritto al segmento parabolico	area del segmento parabolico	

Circonferenza

circonferenza

La circonferenza è il luogo geometrico dei punti del piano equidistanti da un punto fisso C detto centro:

 $\overline{PC} = r$

$x^2 + y^2 + ax + by + c = 0$	equazione completa
-------------------------------	--------------------

$$C(\alpha, \beta) \qquad \alpha = -a/2 \\ \beta = -b/2$$

coordinate del **centro** C

$$r = \sqrt{\alpha^2 + \beta^2 - c}$$

relazione del **raggio** r

$$(x-\alpha)^2+(y-\beta)^2=r^2$$

equazione della circonferenza di centro $C(\alpha,\beta)$ e raggio r

$$x_0 \cdot x + y_0 \cdot y + a \frac{x_0 + x}{2} + b \frac{y_0 + y}{2} + c = 0$$

equazione della retta tangente alla circonferenza in un **suo** punto $P_0(x_0, y_0)$ detta formula di **sdoppiamento**

$$(a_1-a_2)x+(b_1-b_2)y+c_1-c_2=0$$

equazione dell'asse radicale di due circonferenze

$$a = 0$$
$$x^2 + y^2 + by + c = 0$$

$$b = 0$$
$$x^2 + y^2 + ax + c = 0$$

$$c = 0$$
$$x^2 + y^2 + ax + by = 0$$

$$a = c = 0$$
$$x^2 + y^2 + by = 0$$

$$b = c = 0$$
$$x^2 + y^2 + ax = 0$$

$$a = b = 0$$
$$x^2 + y^2 = r^2$$

se a = b = c = 0 la circonferenza si riduce al punto O(0,0) origine degli assi cartesiani

posizioni reciproche di due circonferenze

 $C_1C_2 = R + r$ tangenti esterne

 $R-r < C_1C_2 < R+r$ secanti

 $C_1C_2 = R - r$ tangenti interne

 $C_1C_2 < R - r$ interne

 $C_1C_2 = 0$ concentriche

alcune formule sul cerchio e sulla circonferenza

area del cerchio

 $\mathcal{A}=\boldsymbol{\pi}\cdot\boldsymbol{r}^2$

circonferenza

circonferenza $l = 2 \cdot \pi \cdot r$

settore circolare

0 0 A

B

 $A = \frac{\pi \cdot r^2 \cdot \alpha}{360^{\circ}}$

 $A = A_{settore\ circolare} - A_{triangoloAOB}$

ellisse

L'ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi F₁ e F₂ detti fuochi è costante:

$$\overline{PF_1} + \overline{PF_2} = costante$$

ellisse con i fuochi sull'asse x

ellisse con i fuochi sull'asse y

				•	
	$\overline{PF_1} + \overline{PF_2} = 2a$			$\overline{PF_1} + \overline{PF_2} = 2b$	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	a > b	equazione in forma canonica		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	a < b
2a		lunghezza asse maggiore		2b	
2b		lunghezza asse minore		2a	
2c		distanza focale 2c			
$c^2 = a^2 - b^2$		relazione tra i parametri a, b, c $c^2 = b^2 - a^2$			
$F_1(-c; 0)$	$F_2(c; 0)$	coordinate dei fuochi		$F_1(0;-c)$	$F_2(0;c)$
$e=\frac{c}{a}$	0 < <i>e</i> < 1	eccentricità		$e=\frac{c}{b}$	0 < <i>e</i> < 1
$b^2x_0x + a^2y_0y$	$a=a^2b^2$		etta tangente alla to $P_0(x_0, y_0)$ detta	$b^2x_0x + a^2y_0y = a^2$	$^2b^2$

ellisse traslata

ellisse nel **suo** punto $P_0(x_0, y_0)$ detta formula di sdoppiamento

l'ellisse si dice traslata se gli assi X e Y del suo sistema di riferimento sono paralleli agli assi cartesiani x e y

0	$(\alpha,$	B)
		15
		-

coordinate del centro dell'ellisse

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$$

equazione dell'ellisse riferita al sistema XOY

area e lunghezza dell'ellisse

$$A = \pi ab$$

per a=b l'ellisse diventa una circonferenza e la formula diventa quella dell'area del cerchio $\mathcal{A} = \pi r^2$

$$l = \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)} \right]$$

la lunghezza si calcola solo come sviluppo in serie di un integrale curvilineo: un buon valore approssimato è dato dalla formula del matematico indiano Ramanujan

Iperbole

iperbole

L'iperbole è il luogo geometrico dei punti del piano tali che la differenza in valore assoluto delle distanze da due punti fissi F_1 e F_2 detti fuochi è costante:

$$|\overline{PF_1} - \overline{PF_2}| = costante$$

iperbole con i fuochi sull'asse x		iperbole con i fuochi sull'asse y			
$ \overline{PF_1} - \overline{PF_2} = 2\alpha$		$ \overline{PF_1} - \overline{PF_2} = 2b$			
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	equazione in f	orma canonica	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = $	-1	
2a	lunghezza as	sse trasverso	2b		
2b	lunghezza asse non trasverso		2a		
2c	distanza focale		2c		
$c^2 = a^2 + b^2$	relazione tra i parametri a, b, c		$c^2=a^2+b$,2	
$F_1(-c; 0)$ $F_2(c; 0)$	coordinate dei fuochi		$F_1(0;-c)$		$F_2(0; c)$
$y = \pm \frac{b}{a}x$	equazione degli asintoti		$y=\pm\frac{b}{a}x$		
$e = \frac{c}{a}$ $e > 1$	eccentricità		$e = \frac{c}{b}$		e > 1
$b^2 x_0 x - a^2 y_0 y = a^2 b^2$	equazione della retta tangente alla iperbole nel suo punto $P_0(x_0, y_0)$ detta formula di sdoppiamento		$b^2x_0x-a^2$	$y_0y = -a$	a^2b^2

iperbole equilatera: a = b				
$x^2 - y^2 = a^2$ equazione $x^2 - y^2 = -a^2$				
$c^2=2a^2$		relazione tra a, c	$c^2=2a^2$	
$F_1(-c; 0)$	$F_2(c; 0)$	coordinate dei fuochi	$F_1(0;-c)$	$F_2(0; c)$
y = -x	y = x	equazione degli asintoti	y = -x	y = x

\ \N_E/	iperbole equilatera ruotata di ±45°	\ M /
F ₁ k > 0	equazione $oldsymbol{xy} = oldsymbol{k}$	F ₂ k < 0
$F_1(-\sqrt{2k};-\sqrt{2k})$ $F_2(\sqrt{2k};\sqrt{2k})$	coordinate dei fuochi	$F_1(-\sqrt{-2k};\sqrt{-2k})$ $F_2(\sqrt{-2k};-\sqrt{-2k})$

iperbole equilatera ruotata e traslata detta funzione omografica					
y ↑ O' x	equazione	$y = \frac{ax + b}{cx + d}$	$c \neq 0$ $ad - bc \neq 0$		
	coordinate di O'	$O'\left(-\frac{d}{c};\frac{a}{c}\right)$			
	equazione degli asintoti	$x=-\frac{d}{c}$	$y = \frac{a}{c}$		