

Sensor Ecosystem for Controlling Agriculture - SECA

Advisor: Prof. Marcelino Santos **Mentor**: Francisco Simplício

Challenge ID: 16

Filipe Piçarra
Francisco Apolinário
Guilherme Barros
Hugo Dezerto
Matilde Sardinha
Nuno Abreu

Meetings

Network

BLE	LoRa
< 100 m	> 10 km
No additional hardware	Additional LoRa transceiver

GSM: Dependente do material

Energy Management

Auxiliary Nodes:

- Initial decision: Solar Panels (dropped)
- Current decision: regular batteries

Central Node:

- Initial decision: Solar Panels
- Current decision: Solar Panels vs. direct connection to the grid

Computer Vision

Two portions:

- Finding a framework that does something
 - https://github.com/tensorflow/ examples
- Change that framework to fit our specifications
 - https://github.com/cpaolini/t omatoleaf

WebApp - Backend

- Full time server to Host Databases and Web Application.
- Created Databases to Allow multiple users with multiple Nodes to have their Data stored.
- Build API to support front-end services.

WebApp – Frontend

- Webapp developed in Flask + Bootstrap
- Login page completed
- Page with node information dispalyed:
 - Battery voltage
 - Luminosity
 - Soil humidity
 - Air humidity
 - Air temperature

Tomato

Website

- Home
- Project
- Blog
- About
- Contact

Corrected Schedule

