Empirical Bayesian spatial models using mgcv

Sophie Lee

PHID meeting, 2nd December, 2021

Empirical Bayesian vs fully Bayesian

Generalised additive models

$$g(y_i) = \beta_0 + \sum_{j=1}^n \beta_j X_{ij} \left(+ \sum_{k=1}^m f_k(Z_i) \right)$$

Cubic spline

Thin plate spline

Wood, 2017, CRC press

Bayesian framing of GAMs

- To avoid overfitting the data, REstricted Maximum Likelihood (REML) produces a smoothing penalty λ when fitting smooth functions
- Prior belief: $f_k(Z_i)$ is more smooth than wiggly

$$g(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j X_{ij} + \sum_{k=1}^{m} f_k(Z_i)$$

• λ is estimated using the data, therefore our approach is empirical rather than fully Bayesian

Bayesian framing of GAMs

$$g(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j X_{ij} + \sum_{k=1}^{m} f_k(Z_i)$$

• Smooth functions are estimated as a linear combination of basis functions $(b_j(Z_i))$ and coefficients:

$$f_k(Z_i) = \sum_{j=n+1}^{p} b_j(Z_i)\beta_j$$

• We assume that β s have a zero mean Gaussian prior with precision proportional to the smoothing penalty

Bayesian framing of GAMs

• Continuing this Bayesian view, the posterior distribution of β s is:

$$\beta | y, \lambda \sim N(\hat{\beta}, V_{\beta})$$

• We can simulate from this distribution using coefficient estimates $(\hat{\beta})$ and the precision matrix (V_{β}) from mgcv model outputs

 From this we can produce credible intervals for the coefficient estimates and combine these with linear predictors to produce estimates of the outcome

Simulating from the posterior

$$g(y_i) = \beta_0 + \sum_{j=1}^n \beta_j X_{ij} + \sum_{k=1}^m f_k(Z_i)$$

= $\beta_0 + \sum_{j=1}^n \beta_j X_{ij} + \sum_{j=n+1}^p b_j(Z_i)\beta_j$

- Smooth functions are linear combinations of basis functions and etas
- Basis functions for each observation can be extracted and combined with simulated β s in the same way observed covariates (X_i) can be
- This produces simulations from the posterior of the response

Fully Bayesian spatial models

Lee S.A. et al., 2021, J. R. Soc. Interface

Neighbourhood-based:

Distance-based:

Human movement (air travel):

Empirical Bayesian spatial models

 Apply a thin plate spline to coordinates to produce a spatially smoothed plane

- Less rigid, context specific
- Under this approach, the smooth has the same structure (and interpretation) as random effects

Extra reading/references

- Wood, S.N., 2017. Generalized additive models: an introduction with R. CRC press.
- Fahrmeir, L., Kneib, T. and Lang, S., 2004. Penalized structured additive regression for space-time data: a Bayesian perspective. *Statistica Sinica*, pp.731-761.
- Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(1), pp.3-36.
- Lee, S.A., Economou, T., de Castro Catão, R., Barcellos, C. and Lowe, R., (in press).
 The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil.