

Slot 3: Advanced Graph RAG Approaches

ISWC 2024

Part 1: Introduction

Graph RAG with Semantic Clustering

- This approach leverages clustering algorithms to group similar entities and concepts within the knowledge graph.
- This clustering enhances the retrieval process by allowing the system to identify related information even when there is no direct match between the user's query and the graph's entities.
- For instance, if a user asks about "electric vehicles," the system could retrieve information related to "Tesla," "Nissan Leaf," and "sustainable transportation" by recognizing their shared cluster membership within the knowledge graph

GraphRAG

From Microsoft

A Graph RAG Approach to Query-Focused Summarization

- Naive RAG Issue: Fails on global questions like "What are the main themes in the dataset?"
- Graph RAG Approach:
 - Extract knowledge graph from raw text
 - Build a community hierarchy
 - Generate community summaries
- Improved comprehensiveness and diversity of generated answers on large datasets

An LLM-generated knowledge graph built using GPT-4 Turbo, Microsoft, https://microsoft.github.io/graphrag/

A Graph RAG Approach to Query-Focused Summarization

- Execute the indexing pipeline to extract and construct the knowledge graph.
- Convert artifacts into RDF triples, mapping them according to the ontology.
- Perform semantic searches within the RDF graph to retrieve detailed entity information.
- Extract relevant subgraphs for focused and efficient querying.

GraphRAG: LLM-Derived Knowledge Graphs for RAG, YouTube, uploaded by Alex Chao, May 4, 2024. Available at: https://youtu.be/r09tJfON6kE

Part 2: G-Indexing

Creating a Knowledge Graph with LLMs for RAG systems

Indexing Pipeline

Knowledge Graph Construction:

- LLM-Based: Automatically identify entities and relationships.
- Iterative Gleaning: Multi-round processing ensures completeness.

Community Summarization:

- Detect communities in the graph (e.g., using Leiden algorithm).
- Summarize each community for answering questions.

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S., & Larson, J. (2024). From local to global: A graph RAG approach to query-focused summarization. arXiv. https://arxiv.org/abs/2404.16130

- Phase 1: Compose TextUnits
 - Transform input documents into TextUnits

- Phase 2: Graph Extraction
 - Entity & Relationship Extraction
 - A list of entities with a name, type, and description
 - A list of relationships with a source, target, and description
 - Entity & Relationship Summarization
 - Summarize these lists into a single description per entity and relationship

- Phase 3: Graph Augmentation
 - Community Detection: Generate a hierarchy of entity communities using the Hierarchical Leiden Algorithm
 - Graph Embedding: Generate a vector representation of our graph using the Node2Vec algorithm

- Phase 4: Community Summarization
 - Generate Community Reports: Generate a summary of each community using the LLM
 - Summarize Community Reports: Each community report is then summarized via the LLM for shorthand use
 - Community Embedding: Generate a vector representation of communities

- Phase 5: Document Processing
 - Link to TextUnits: Link each document to the text-units that were created in the first phase
 - Document Embedding: Generate a document embedding by averaging tokenweighted, non-overlapping chunks to capture document relationships

Running the Indexing pipeline

python -m graphrag.index --root ./ragtest

Indexing pipeline execution in GraphRAG, Microsoft, https://microsoft.github.io/graphrag/

Knowledge Graph Visualization

- Artifacts from the Indexing Pipeline
 - The outputs of the indexing pipeline are a set of Parquet files, which serve as the knowledge base for the subsequent retrieval stage.
- For a quick overview of the graph structure, visit <u>GraphRAG-Visualizer</u>.

The resulting knowledge graph visualization from GraphRAG, shown in the GraphRAG Visualizer.

Part 3: RDF Adaptions

Adapting GraphRAG Artifacts to RDF

RDF Adaptions

We follow the steps below to transform GraphRAG artifacts into RDF.

Data Ingestion: Read Parquet files into Pandas Data Frames. RDF Graph Initialization: Set up the RDF graph using rdflib. Ontology Definition: Define classes and properties in RDF. Mapping Nodes and Relationships to RDF: Convert each node and its relationships into RDF triples. Serializing the RDF Graph: Export the RDF graph in turtle format.

Ontology Visualization

Source	Relationship	Target
Entity	RELATES	Entity
Entity	IN_COMMUNITY	Community
Document	HAS_TEXTUNIT	TextUnit
Community	HAS_COMMUNITYRE PORT	CommunityReport
CommunityReport	HAS_FINDING	Finding
TextUnit	REFERENCES_ENTITY	Entity

Visualization of the RDF Graph Ontology

Part 4: G-Retrieval & G-Generation

Using SPARQL with Knowledge Graphs for RAG

Local Search

- Entity-based Reasoning
- Local Search Method: Augments LLM context by combining structured knowledge graph data with unstructured input documents.
- Entity Extraction Process:
 - Identify Entities: Extracts entities from the knowledge graph related to the query.
 - Access Points: Uses these entities to retrieve connected details, relationships, and relevant text from input documents.
- Ideal for Entity-Specific Queries: Suitable for questions about specific entities, such as "What are the healing properties of chamomile?"

Local Search Dataflow, Microsoft, https://microsoft.github.io/graphrag/query/local_search/

Global Search

- Whole Dataset Reasoning
- Global Search Method: Aggregates information from community reports in the knowledge graph.
- Map-Reduce Process:
 - **Map** Step: Breaks down reports into smaller chunks to generate intermediate responses.
 - Reduce Step: Combines key points to form a final summary.
- Ideal for Overview Queries: Useful for questions like "What are the top 5 themes?" or queries requiring a broad dataset overview.

Global Search Dataflow, Microsoft, https://microsoft.github.io/graphrag/query/global_search/

Hands-On 1

Adapting Graph RAG Artifacts to RDF Knowledge Graph

Hands-On 2

Using SPARQL with a Knowledge Graph for RAG