

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

2. Grammars

$$S \to Ab,$$

 $A \to aAb,$
 $A \to \lambda.$
 $L = \{a^n b^{n+1} : n \ge 0\}$

$$S \rightarrow SS,$$

 $S \rightarrow \lambda,$
 $S \rightarrow aSb,$
 $S \rightarrow bSa$
 $L = \{w : n_a(w) = n_b(w)\}$

2. Grammars

 \triangleright Two grammars G_1 and G_2 are equivalent if they generate the same language, that is, if $L(G_1) = L(G_2)$

Consider the grammar $G_1 = (\{A, S\}, \{a, b\}, S, P_1)$, with P_1 consisting of the productions

$$S \to aAb|\lambda$$
,

$$A \to aAb|\lambda$$
.

$$L(G_1) = \{a^n b^n : n \ge 0\}.$$

3. Automata

> An automaton is an abstract model of a digital computer

Example

Find a grammar that generates the language

$$L = \{ww^R : w \in \{a, b\}^+\}.$$

Find grammars for the following languages on $\Sigma = \{a\}$.

- (a) $L = \{w : |w| \mod 3 > 0\}.$
- **(b)** $L = \{w : |w| \mod 3 = 2\}.$
- (c) $w = \{|w| \mod 5 = 0\}.$

Example

Let $\Sigma = \{a, b\}$. For each of the following languages, find a grammar that generates it.

- (a) $L_1 = \{a^n b^m : n \ge 0, m < n\}.$
- **(b)** $L_2 = \{a^{3n}b^{2n} : n \ge 2\}.$

Finite Automata

Finite Automata

- □ This type of automaton is characterized by:
 - 1. Having no temporary storage
 - 2. An input file cannot be rewritten
 - 3. A finite amount of information can be retained in the control unit by placing the unit into a specific state
 - Since the number of such states is finite, a finite automaton can only deal with situations in which the information to be stored at any time is strictly bounded

Deterministic Finite Accepter

A deterministic finite accepter or dfa is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F),$$

where

Q is a finite set of **internal states**,

 Σ is a finite set of symbols called the **input alphabet**,

 $\delta: Q \times \Sigma \to Q$ is a total function called the **transition function**,

 $q_0 \in Q$ is the **initial state**,

 $F \subseteq Q$ is a set of **final states**.

- $lue{}$ The transitions from one internal state to another are governed by the transition function δ
 - For example, if $\delta(q_0, a) = q_1$ then if the dfa is in state q_0 and the current input symbol is a, the dfa will go into state q_1

Deterministic Finite Accepter

- □ Transition graphs are used to visualize and represent finite automata
 - > Vertices represent states
 - > Edges represent transitions
 - > The labels on the vertices are the names of the states
 - > The labels on the edges are the current values of the input symbol
- Example

