Wydział FiIS	Imię i nazwisko 1. Piotr Kowale 2. Marcin Polo	czyk	Rok IV	Grupa 2	Zespół 2		
LABORATORIUM DETEKCJI PROMIENIOWANIA	Temat Badanie licznika półprzewodnikowego						
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA		
3.11.2016	30.11.2016						

1 Wstęp teoretyczny

pruda piotr

2 Przebieg ćwiczenia

- Sprawdzamy poprawność podłączenia układu pomiarowego.
- \bullet Wykonujemy pomiar widma ^{55}Fe dla rosnących wartości napięcia polarywacji.
- Zamiast detektora, pod układ pomiarowy podpinamy generator sygnałów.
- Ustawiamy generator tak, aby generował sygnał testowy, czyli prostokątny o częstotliwości 100 Hz.
- Mierzymy odpowiedź analizatora, przy ustalonym czasie pomiaru, na sygnały testowe dla różnych amplitud generowanego sygnału.
- Odłączamy generator sygnałów.
- Ponownie mierzymy widmo ^{55}Fe , dla $U_{bias} = 200V$ oraz t = 300s.
- Do pomierzonego widma fitujemy funkcję gaussa, i zapisujemy wyniki.
- Analogicznie mierzymy i dopasowywujemy widmo dla $^{109}Cd,$ dla $U_{bias}=200V$ oraz t=300s.
- Pomierzyliśmy analogiczne i dopasowaliśmy gaussa dla widma srebra, ale przez niedopatrzenie, zapisaliśmy tylko wyniki fitu.

3 Wyniki

3.1 Pomiar ze źródłem Fe-55.

Rysunek 1: Widmo żelaza dla napięć polaryzacji 40V, 60V, 80V, 100V, 120V, 140V, 160V, 200V.

Rysunek 2: Widmo żelaza przy podanym napięciu 60V.

Rysunek 3: Widmo żelaza przy podanym napięciu 80V.

Rysunek 4: Widmo żelaza przy podanym napięciu 100V.

Rysunek 5: Widmo żelaza przy podanym napięciu 120V.

Rysunek 6: Widmo żelaza przy podanym napięciu 140V.

Rysunek 7: Widmo żelaza przy podanym napięciu 160V.

Rysunek 8: Widmo żelaza przy podanym napięciu 200V.

3.2 Pomiar z generatorem sygnałów.

Do danych dopasowano prostą(2) i na tej podstawie obliczono amplitudę odpowiadającą kanałowi 1424. Otrzymano $A=205,7 \mathrm{mV}$. Następnie obliczono ładunek zebrany na kondensatorze separującym generator z analizatorem. Czynnik $\frac{1}{45}$ wynika z dzielnika napięcia w układzie, natomiast C_f to pojemność tego kondensatora.

$$Q = \frac{A}{45} \cdot C_f = \frac{0,2057}{45} \cdot 5,75 \cdot 10^{-14} [\text{C}] = 2,62 \cdot 10^{-16} [\text{C}]$$

Dzieląc ten ładunek przez ładunek elektronu otrzymujemy ilość par jakie pojawiłyby się w detektorze w tym kanale.

$$N_0 = Q/e = 1643,04$$

Ostatecznie biorąc średnią ważoną linii $K_{\alpha 1}$ i $K_{\alpha 2}$ manganu ze źródła żelaza

$$K_{\alpha1\&2} = \frac{5,898*100+5,887*50}{150} [keV] = 5,8943 [keV]$$

i dzieląc tę wartość przez ${\cal N}_0$ otrzymujemy pracę wyjścia w detektorze:

$$W = \frac{K_{\alpha 1 \& 2}}{N_0} = 3,587[eV]. \tag{1}$$

Jest to wartość zgodna z oczekiwaną wartością 3,6eV.

$$K = 7529(99)[1/V] \cdot A - 125(65) \tag{2}$$

Rysunek 9: Pomiar z podłączonym generatorem sygnałów.

3.3 Pomiar współczynnika Fano

$$\sigma_{cak.}^2 = \sigma_{detektor}^2 + \sigma_{szum}^2 \tag{3}$$

$$\sigma_{detektor}^2 = F \cdot N_0 \tag{4}$$

Przy użyciu generatora sygnałów zmierzono również szerokość połówkową odpowiadającą kanałowi 1424:

$$FWHM_{qen} = 46,92.$$

Założono przy tym, że odpowiada to wariancji szumu w równaniu(3), czyli

$$\sigma_{szum} = \frac{46,92}{2,35} = 19,966 \text{ kanału}.$$

Zmierzono również szerokość połówkową żelaza i otrzymano

$$FWHM_{Fe} = 55, 34.$$

Założono, że odpowiada to σ_{cak} , więc

$$\sigma_{cak.} = \frac{55,34}{2,35} = 23,549$$
 kanału.

Implikuje to, że $\sigma_{detektor}^2=155,91$ kanału. Korzystając ze wzoru na współczynnik Fano (4) otrzymujemy

 $F = \frac{\sigma_{detektor}^2}{N_0} = \frac{155,91}{1643,04} = 0,095.$

Po zaokrągleniu do dzięsiątej częsći po przecinku otrzymujemy dokładnie spodziewaną wartość 0,1.

4 Wnioski

5 Dane pomiarowe

Tabela 1: Pomiary pików i ich szerokości połówkowych. Źródłem było Fe-55.

	k_{lpha}		k_{β}		
U[V]	peak	FWHM	peak	FWHM	
200	1425,31	56,14	1565,58	52,93	
160	$1425,\!11$	54,3	1563,44	$36,\!29$	
140	1424,3	51,79	1562,68	44,91	
120	$1424,\!21$	54,79	$1565,\!34$	$51,\!33$	
100	$1423,\!45$	58,1	1558,64	44,7	
80	1423,45	$74,\!27$	_	-	

Tabela 2: Pomiary piku w zależności od amplitudy sygnału z generatora.

U[V]	peak
0,1	724,86
0,2	1434,81
0,3	2144,72
0,4	2852,89
0,5	3565,12
0,6	$4279,\!57$
0,7	5024,68
0,8	5858,06
0,9	6731,72
1	7542,63

Literatura

[1] Skrypt Ćwiczenia laboratoryjne z jądrowych metod pomiarowych dostępny pod adresem: http://winntbg.bg.agh.edu.pl/skrypty3/0364/dziunikowski-kalita.pdf