# Freescale Semiconductor

**Product Brief** 

9S12XDFAMPP Rev. 2.14, 7-Nov-2005

# MC9S12XD Family

16-bit Microprocessor Family (covers MC9S12XD64 through MC9S12XDP512 and MC3S12XDT256/MC3S12XDG128)

#### Introduction

Targeted at automotive multiplexing applications, the MC9S12XD Family will deliver 32-bit performance with all the advantages and efficiencies of a 16-bit MCU. The S12X is designed to retain the low cost, low power consumption, excellent EMC performance and code-size efficiency advantages enjoyed by users of Freescale's previous 16-bit MC9S12 MCU family.

Based around an enhanced S12 core, the MC9S12XD Family will deliver two to five times the performance of a 25 MHz S12 whilst retaining a high degree of pin and code compatibility with the original S12D - family.

The MC9S12XD Family features the performance boosting XGATE co-processor. The XGATE, which is programmable in "C" language, has an instruction set which is optimized for data movement, logic and bit manipulation instructions. It runs at twice the bus frequency of the S12X and off-loads the CPU by providing high speed data transfer (and data processing) between any peripheral module, RAM and I/O ports. This is particularly useful in applications such as automotive gateways where there are multiple busses carrying heavy data traffic which would otherwise exert a heavy interrupt/processing load on the CPU.



#### Features

The MC9S12XD Family will feature an enhanced MSCAN module which, when used in conjunction with XGATE, delivers FullCAN performance with virtually unlimited number of mailboxes and retains backwards compatibility with the MSCAN module featured on previous S12 products.

Memory options will range from 64 Kbytes to 512 Kbytes of Freescale's industry-leading, full automotive spec SG-Flash with additional integrated EEPROM.

In addition to the rich S12 peripheral set, the MC9S12XD Family will feature more RAM, extra A/D channels, new timer features and additional LIN-compatible SCI ports compared with the original S12 D-Family. The MC9S12XD Family also features a new flexible interrupt handler which allows multilevel nested interrupts.

The MC9S12XD Family has full 16-bit data paths throughout. The non-multiplexed expanded bus interface available on the 144-pin versions allows an easy interface to external memories. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. System power consumption is further improved with the new "fast exit from STOP mode" feature and an ultra low power wakeup timer.

In addition to the I/O ports available in each module, up to 25 further I/O ports are available with interrupt capability allowing wakeup from STOP or WAIT mode.

The MC9S12XD Family will be available in 144-pin LQFP (with optional external bus), 112-pin, and 80-pin options.

#### **Features**

Features of the MC9S12XD Family are listed here. Please see Table 1 for memory options and Table 2 for the peripheral features that are available on the different family members.

# 16-bit CPU12X

- · Upward compatible with MC9S12 instruction set
- Enhanced indexed addressing
- Additional (superset) instructions to improve 32-bit calculations and semaphore handling
- Access large data segments independent of PPAGE
- Eight levels of nested interrupt
- Flexible assignment of interrupt sources to each interrupt level.

#### Enhanced Interrupt Module

- One non-maskable high priority interrupt (XIRQ)
- Wakeup interrupt inputs
  - IRQ and non-maskable XIRQ

- Programmable, high performance I/O co-processor module up to 80 MIPS RISC performance
- Transfers data to or from all peripherals and RAM without CPU intervention or CPU wait states
- Performs logical, shifts, arithmetic, and bit operations on data

#### **XGATE**

- Enables FullCAN capability when used in conjunction with MSCAN module
- Full LIN master or slave capability when used in conjunction with the six integrated LIN SCI modules
- Can interrupt the HCS12X CPU signalling transfer completion
- Triggers from any hardware module as well as from the CPU possible
- 64K, 128K, 256K, 384K and 512K byte Flash
- 128K and 256K ROM
- · Flash General Features
  - Erase sector size 1024 bytes
  - Automated program and erase algorithm
  - Fast sector erase and word program operation
  - 2-stage command pipeline for faster multi-word program times
  - Sector erase abort feature for critical interrupt response
  - Protection scheme to prevent accidental program or erase
  - Security option to prevent unauthorized access
  - Code integrity check using built-in data compression
  - Sense-amp margin level setting for reads
- 1K, 2K, 4K byte EEPROM
  - Small erase sector (4 bytes)
  - Automated program and erase algorithm
  - Fast sector erase and word program operation
  - 2-stage command pipeline for faster multi-word program times
  - Sector erase abort feature for critical interrupt response
  - Protection scheme to prevent accidental program or erase
- 4K, 8K, 12K, 14K, 16K, 20K, 32K Byte RAM

# **Memory Options**

MC9S12XD Family, Rev. 2.14

#### **Features**

- Loop control Pierce oscillator using a 0.5 MHz to 16 MHz crystal
- Option for full-swing Pierce without internal feedback resistor using a 0.5 MHz to 40 MHz crystal
- · Current gain control on amplitude output
  - Signal with low harmonic distortion
  - Low power
  - Good noise immunity
  - Eliminates need for external current limiting resistor
- Transconductance sized for optimum start-up margin for typical crystals
- · Clock monitor
- Phase-locked-loop clock frequency multiplier
  - Reference divider
  - Automatic bandwidth control mode for low-jitter operation
  - Automatic frequency lock detector

## Clock and Reset Generator (CRG)

Oscillator (OSC LCP)

- Fast wakeup from STOP in self clock mode for power saving and immediate program execution
- Computer operating properly (COP) watchdog with optional safety window to initialize timeout counter
- Real time interrupt for task scheduling purposes or cyclic wakeup from low power modes
- · System reset generation
- 16 bit data
- Support for external WAIT input or internal wait cycles to adapt MCU speed to peripheral speed requirements

# Non-Multiplexed External Bus (144 Pin package only)

- Up to four chip select outputs to select 16K, 1M, 2M and 4M byte address spaces
- Supports glue-less interface to popular asynchronous RAMs and Flash devices
- External address space 4M byte for data and program space

|                         | <ul> <li>Up to two independent ADC converters (see Table 2)</li> </ul>                   |
|-------------------------|------------------------------------------------------------------------------------------|
|                         | 8-bit or 10-bit resolution                                                               |
|                         | <ul> <li>Multiplexer for 16 analog input channels</li> </ul>                             |
|                         | <ul> <li>7 μs, 10-bit single conversion time</li> </ul>                                  |
| Analog-to-Digital       | Programmable sample time                                                                 |
| Converter (ATD)         | <ul> <li>Left/right, signed/unsigned result data</li> </ul>                              |
|                         | Continuous conversion mode                                                               |
|                         | Multiple channel scans                                                                   |
|                         | <ul> <li>External and internal conversion trigger capability</li> </ul>                  |
|                         | Pins can also be used as digital I/O                                                     |
|                         | Eight 16-bit channels for input capture or output compare                                |
|                         | One 16-bit free-running counter with 8-bit precision prescaler                           |
|                         | One 16-bit modulus down counter with 8-bit precision prescaler                           |
| <b>Enhanced Capture</b> | Four 8-bit or two 16-bit pulse accumulators                                              |
| Timer (ECT)             | Four channels have enhanced input capture capabilities:                                  |
|                         | <ul> <li>Delay counter for noise immunity</li> </ul>                                     |
|                         | <ul> <li>16-bit capture buffer</li> </ul>                                                |
|                         | <ul> <li>8-bit pulse accumulator buffer</li> </ul>                                       |
|                         | <ul> <li>Four channel x 24-bit modulus down-count timers</li> </ul>                      |
| Periodic Interrupt      | Timeout interrupt                                                                        |
| Timer (PIT)             | Timeout peripheral trigger                                                               |
|                         | Start of timers can be aligned                                                           |
|                         | <ul> <li>Eight channel x 8-bit or four channel x 16-bit pulse width modulator</li> </ul> |
| Pulse Width             | <ul> <li>Programmable period and duty cycle per channel</li> </ul>                       |
| Modulator (PWM)         | Center-aligned or left-aligned outputs                                                   |
|                         |                                                                                          |

Programmable clock select logic with a wide range of frequencies

MC9S12XD Family, Rev. 2.14

#### Features

| • | Up to five | <b>MSCAN</b> | modules ( | see | Table 2 | ) |
|---|------------|--------------|-----------|-----|---------|---|
|---|------------|--------------|-----------|-----|---------|---|

- CAN 2.0 A, B software compatible
  - Standard and extended data frames
  - 0–8 bytes data length
  - Programmable bit rate up to 1 Mbps
- Five receive buffers with FIFO storage scheme
- Three transmit buffers with internal prioritization

## Multi-scalable Controller Area Networks (MSCAN)

- Flexible identifier acceptance filter programmable as:
  - 2 x 32-bit
  - 4 x 16-bit
  - 8 x 8-bit
- Wakeup with integrated low-pass filter option
- · Loop back for self test
- Listen-only mode to monitor CAN bus
- Bus-off recovery by software intervention or automatically
- 16-bit time stamp of transmitted/received messages
- FullCAN capability when used in conjunction with XGATE

### Up to three SPI modules (see Table 2)

• Full-duplex or single-wire bidirectional

## Serial Peripheral Interface (SPI)

- Double-buffered transmit and receive
- Master or slave mode
- MSB-first or LSB-first shifting
- Serial clock phase and polarity options
- Up to six SCI modules (see Table 2)
- Full-duplex or single wire operation
- Standard mark/space non-return-to-zero (NRZ) format
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths

## Serial Communication Interfaces (SCI)

- 13-bit baud rate selection
- Programmable character length
- Programmable polarity for transmitter and receiver
- · Receive wakeup on active edge
- Break detect and transmit collision detect supporting LIN

| • | Up to two IIC modules (see Table 2) |
|---|-------------------------------------|
|   | Commetible with IOC Due atomalend   |

- Compatible with I2C Bus standard
- Multi-master operation
- Software programmable for one of 256 different serial clock frequencies
- Software selectable acknowledge bit
- Interrupt driven byte-by-byte data transfer

#### Inter IC Module (IIC)

- Arbitration lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- · Start and stop signal generation/detection
- Repeated start signal generation
- · Acknowledge bit generation/detection
- · Bus busy detection
- supports 400 Kbps

# Background Debug (BDM)

- Background debug controller (BDM) with single-wire interface
  - Non-intrusive memory access commands
  - Supports in-circuit programming of on-chip non-volatile memory
  - Supports security
- Four comparators A, B, C and D
  - Each can monitor CPU or XGATE busses
  - A and C compares 23-bit address bus and 16-bit data bus with mask register
  - B and D compares 23-bit address bus only
  - Three modes: simple address/data match, inside address range or outside address range
- 64 x 64-bit circular trace buffer to capture change-of-flow addresses or address and data of every access
- Tag-type or force-type hardware breakpoint requests

# **System Protection**

Debugger (XDBG)

- Power-on reset (POR)
- illegal address detection with reset
- · Low-voltage detection with interrupt or reset

# Input/Output

- up to 117 general-purpose input/output (I/O) pins depending on the package option and 2 input-only pins
- · Hysteresis and configurable pullup/pulldown device on all input pins
- · Configurable drive strength on all output pins

MC9S12XD Family, Rev. 2.14

#### **Features**

# **Package Options**

- 144-pin low-profile quad flat-pack (LQFP)
- 112-pin low-profile quad flat-pack (LQFP)
- 80-pin quad flat-pack (QFP)
- Ambient temperature range -40°C to 125°C
- Temperature options:
  - -40°C to 85°C
  - -40°C to 105°C-40°C to 125°C
- **Operating Conditions**
- Supply voltage 3.15V to 5.5V
- Internal voltage regulator providing 2.5 V logic supply
  - 40 MHz maximum CPU bus frequency in single chip mode
  - 80 MHz maximum XGATE bus frequency

MC9S12XD Family Block Diagram



MC9S12XD Family, Rev. 2.14

Table 1. Package and Memory Options of MC9S12XD Family Members

| Device     | Package  | Flash | RAM  | EEPROM | ROM  |
|------------|----------|-------|------|--------|------|
| 9S12XDP512 | 144 LQFP |       | 32K  |        |      |
| 9312707312 | 112 LQFP |       |      |        |      |
|            | 144 LQFP | 512K  |      |        |      |
| 9S12XDT512 | 112 LQFP |       | 20K  |        |      |
|            | 80 QFP   |       |      |        |      |
|            | 144 LQFP |       |      |        |      |
| 9S12XDT384 | 112 LQFP | 384K  | 20K  |        |      |
|            | 80 QFP   |       |      |        |      |
|            | 144 LQFP |       |      | 4K     |      |
| 9S12XDQ256 | 112 LQFP |       |      |        |      |
|            | 80 QFP   |       | 16K  |        |      |
|            | 144 LQFP |       | TOK  |        |      |
| 9S12XDT256 | 112 LQFP | 256K  |      |        |      |
|            | 80 QFP   |       |      |        |      |
|            | 144 LQFP |       |      |        |      |
| 9S12XD256  | 112 LQFP |       | 14K  |        |      |
|            | 80 QFP   |       |      |        |      |
|            | 144 LQFP |       |      |        |      |
| 3S12XDT256 | 112 LQFP |       | 16K  | (1)    | 256K |
|            | 80 QFP   |       |      |        |      |
| 9S12XDG128 | 112 LQFP | 128K  |      | 2K     |      |
| 9012/00120 | 80 QFP   | 12010 | 12K  | ZIX    |      |
| 3S12XDG128 | 112 LQFP |       | 1211 | (1)    | 128K |
| 3312ADG120 | 80 QFP   |       |      | (-)    | 1201 |
| 9S12XD128  | 112 LQFP | 1201/ | 0 k⁄ | 2K     |      |
| 3012/0120  | 80 QFP   | 128K  | 8K   | 2K     |      |
| 9S12XD64   | 80 QFP   | 64K   | 4K   | 1K     |      |

NOTES:

1. No EEPROM is available on ROM versions.

### MC9S12XD Family Block Diagram

Table 2. Peripheral Options of MC9S12XD Family Members

| Device     | Package | XGATE              | CAN | SCI | SPI | IIC | ECT | PIT | A/D                 | I/O |
|------------|---------|--------------------|-----|-----|-----|-----|-----|-----|---------------------|-----|
| 0040VDD540 | 144LQFP |                    | 5   | 6   | 3   | 2   | 8   | 4   | 2/24                | 119 |
| 9S12XDP512 | 112LQFP |                    | 5   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 144LQFP |                    | 3   | 6   | 3   | 1   | 8   | 4   | 2/24                | 119 |
| 9S12XDT512 | 112LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   |                    | 3   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
|            | 144LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/24                | 119 |
| 9S12XDT384 | 112LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   |                    | 3   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
|            | 144LQFP |                    | 4   | 4   | 3   | 1   | 8   | 4   | 2/24                | 119 |
| 9S12XDQ256 | 112LQFP | V05                | 4   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   | yes                | 4   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
|            | 144LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/24                | 119 |
| 9S12XDT256 | 112LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   |                    | 3   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
|            | 144LQFP |                    | 1   | 4   | 2   | 1   | 8   | 4   | 2/24                | 119 |
| 9S12XD256  | 112LQFP |                    | 1   | 4   | 2   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   |                    | 1   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
|            | 144LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/24                | 119 |
| 3S12XDT256 | 112LQFP |                    | 3   | 4   | 3   | 1   | 8   | 4   | 2/16                | 91  |
|            | 80QFP   |                    | 3   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
| 9S12XDG128 | 112LQFP |                    | 2   | 2   | 2   | 1   | 8   | 4   | 1/16 <sup>(2)</sup> | 91  |
| 9512ADG126 | 80QFP   |                    | 2   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
| 2042VDC420 | 112LQFP |                    | 2   | 2   | 2   | 1   | 8   | 4   | 1/16 <sup>(2)</sup> | 91  |
| 3S12XDG128 | 80QFP   | yes <sup>(1)</sup> | 2   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
| 0040VD400  | 112LQFP |                    | 1   | 2   | 2   | 1   | 8   | 4   | 1/16 <sup>(2)</sup> | 91  |
| 9S12XD128  | 80QFP   |                    | 1   | 2   | 2   | 1   | 8   | 4   | 1/8                 | 59  |
| 9S12XD64   | 80QFP   |                    | 1   | 2   | 2   | 1   | 8   | 2   | 1/8                 | 59  |

NOTES:
1. Can execute code only from RAM
2. ATD1 routed to PAD00-15 instead of PAD08-23.

#### Pinout explanations:

- A/D is the number of modules/total number of A/D channels.
- I/O is the sum of ports capable to act as digital input or output.
  - 144 Pin Packages:

```
Port A = 8, B = 8, C=8, D=8, E = 6 + 2 input only,
H = 8, J = 7, K = 8, M = 8, P = 8, S = 8, T = 8, PAD = 24
25 inputs provide Interrupt capability (H = 8, P = 8, J = 7, IRQ, XIRQ)
```

- 112 Pin Packages:

```
Port A = 8, B = 8, E = 6 + 2 input only, H = 8, J = 4, K = 7, M = 8, P = 8, S = 8, T = 8, PAD = 16 22 inputs provide Interrupt capability (H = 8, P = 8, J = 4, IRQ, XIRQ)
```

80 Pin Packages:

```
Port A = 8, B = 8, E = 6 + 2 input only, J = 2, M = 6, P = 7, S = 4, T = 8, PAD = 8 11 inputs provide Interrupt capability (P= 7, J = 2, IRQ, XIRQ)
```

- CANO can be routed under software control from PM[1:0] to pins PM[3:2] or PM[5:4] or PJ[7:6].
- · CAN4 pins are shared between IIC0 pins.
- CAN4 can be routed under software control from PJ[7:6] to pins PM[5:4] or PM[7:6].
- Versions with 5 CAN modules will have CAN0, CAN1, CAN2, CAN3 and CAN4
- Versions with 4 CAN modules will have CAN0, CAN1, CAN2 and CAN4
- Versions with 3 CAN modules will have CAN0, CAN1 and CAN4.
- Versions with 2 CAN modules will have CAN0 and CAN4.
- Versions with 1 CAN modules will have CAN0
- Versions with 2 SPI modules will have SPI0 and SPI1.
- Versions with 4 SCI modules will have SCI0, SCI1, SCI2 and SCI4.
- Versions with 2 SCI modules will have SCI0 and SCI1.
- Versions with 1 IIC module will have IIC0.
- SPI0 can be routed to either Ports PS[7:4] or PM[5:2].
- SPI1 pins are shared with PWM[3:0]; In 144 and 112-pin versions, SPI1 can be routed under software control to PH[3:0].
- SPI2 pins are shared with PWM[7:4]; In 144 and 112-pin versions, SPI2 can be routed under software control to PH[7:4]. In 80-pin packages, SS-signal of SPI2 is not bonded out!

# **Pin Assignments**

Table 3. Port and Peripheral Availability by Package Option

| Port                                  | 144 LQFP | 112 LQFP | 80 QFP |
|---------------------------------------|----------|----------|--------|
| Port AD/ADC Channels                  | 24/24    | 16/16    | 8/8    |
| Port A pins                           | 8        | 8        | 8      |
| Port B pins                           | 8        | 8        | 8      |
| Port C pins                           | 8        | 0        | 0      |
| Port D pins                           | 8        | 0        | 0      |
| Port E pins incl. IRQ/XIRQ input only | 8        | 8        | 8      |
| Port H pins                           | 8        | 8        | 0      |
| Port J pins                           | 7        | 4        | 2      |
| Port K pins                           | 8        | 7        | 0      |
| Port M pins                           | 8        | 8        | 6      |
| Port P pins                           | 8        | 8        | 7      |
| Port S pins                           | 8        | 8        | 4      |
| Port T pins                           | 8        | 8        | 8      |
| Sum of Ports                          | 119      | 91       | 59     |
| VDDX/VSSX                             | 4/4      | 3/3      | 2/2    |

Table 4. Peripheral–Port Cross Reference<sup>(1)</sup>

|       | CANO | CAN1 | CAN2 | CAN3 | CAN4 | SCIO | SCI1 | SC12 | SC13 | SCI4 | SCI5 | SP10 | SP11 | SP12 | IIC0 | IIC1 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| PJ1:0 |      |      |      |      |      |      |      | Х    |      |      |      |      |      |      |      |      |
| PJ3:2 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| PJ5:4 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | Χ    |
| PJ7:6 | 0    |      |      |      | Х    |      |      |      |      |      |      |      |      |      | Х    |      |
| PM1:0 | Х    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| PM3:2 | 0    | Х    |      |      |      |      |      |      |      |      |      | 0    |      |      |      |      |
| PM5:4 | 0    |      | Х    |      |      |      |      |      |      |      |      | 0    |      |      |      |      |
| PM7:6 |      |      |      | Х    | 0    |      |      |      | Х    |      |      |      |      |      |      |      |
| PS1:0 |      |      |      |      |      | Х    |      |      |      |      |      |      |      |      |      |      |
| PS3:2 |      |      |      |      |      |      | Х    |      |      |      |      |      |      |      |      |      |
| PS7:4 |      |      |      |      |      |      |      |      |      |      |      | Х    |      |      |      |      |
| PH3:0 |      |      |      |      |      |      |      |      |      |      |      |      | 0    |      |      |      |

Table 4. Peripheral–Port Cross Reference<sup>(1)</sup>

|       | CANO | CAN1 | CAN2 | CAN3 | CAN4 | SCIO | SCI1 | SCI2 | SCI3 | SC14 | SCIS | SPI0 | SPI1 | SPI2 | 0011 | IIC1 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| PH5:4 |      |      |      |      |      |      |      |      |      | Х    |      |      |      | 0    |      |      |
| PH7:6 |      |      |      |      |      |      |      |      |      |      | Х    |      |      | 0    |      |      |
| PP3:0 |      |      |      |      |      |      |      |      |      |      |      |      | Х    |      |      |      |
| PP7:4 |      |      |      |      |      |      |      |      |      |      |      |      |      | Х    |      |      |

Table 5. Pin-Out Summary<sup>(1)</sup>

| LQFP<br>144 | LQFP<br>112 | QFP<br>80 | Pin  | 2nd<br>Function | 3rd<br>Function | 4th<br>Function | 5th<br>Function |
|-------------|-------------|-----------|------|-----------------|-----------------|-----------------|-----------------|
| 1           | 1           | 1         | PP3  | KWP3            | PWM3            | SS1             |                 |
| 2           | 2           | 2         | PP2  | KWP2            | PWM2            | SCK1            |                 |
| 3           | 3           | 3         | PP1  | KWP1            | PWM1            | MOSI1           |                 |
| 4           | 4           | 4         | PP0  | KWP0            | PWM0            | MISO1           |                 |
| 5           |             |           | PJ2  | KWJ2            | CS1             |                 |                 |
| 6           |             |           | PK6  | ADDR22          | NOACC           |                 |                 |
| 7           | 5           |           | PK3  | ADDR19          |                 |                 |                 |
| 8           | 6           |           | PK2  | ADDR18          | IQSTAT2         |                 |                 |
| 9           | 7           |           | PK1  | ADDR17          | IQSTAT1         |                 |                 |
| 10          | 8           |           | PK0  | ADDR16          | IQSTAT0         |                 |                 |
| 11          | 9           | 5         | PT0  | IOC0            |                 |                 |                 |
| 12          | 10          | 6         | PT1  | IOC1            |                 |                 |                 |
| 13          | 11          | 7         | PT2  | IOC2            |                 |                 |                 |
| 14          | 12          | 8         | PT3  | IOC3            |                 |                 |                 |
| 15          | 13          | 9         | VDD1 |                 |                 |                 |                 |
| 16          | 14          | 10        | VSS1 |                 |                 |                 |                 |
| 17          | 15          | 11        | PT4  | IOC4            |                 |                 |                 |
| 18          | 16          | 12        | PT5  | IOC5            |                 |                 |                 |
| 19          | 17          | 13        | PT6  | IOC6            |                 |                 |                 |
| 20          | 18          | 14        | PT7  | IOC7            |                 |                 |                 |
| 21          | 19          |           | PK5  | ADDR21          |                 |                 |                 |
| 22          | 20          |           | PK4  | ADDR20          |                 |                 |                 |
| 23          | 21          |           | PJ1  | KWJ1            | TXD2            |                 |                 |
| 24          | 22          |           | PJ0  | KWJ0            | RXD2            |                 |                 |

MC9S12XD Family, Rev. 2.14

NOTES:
1. X denotes the reset condition and O denotes a possible rerouting under software control

# Pin Assignments

Table 5. Pin-Out Summary<sup>(1)</sup>

| LQFP<br>144 | LQFP<br>112 | QFP<br>80 | Pin    | 2nd<br>Function | 3rd<br>Function | 4th<br>Function | 5th<br>Function |
|-------------|-------------|-----------|--------|-----------------|-----------------|-----------------|-----------------|
| 25          | 23          | 15        | BKGD   | MODC            |                 |                 |                 |
| 26          |             |           | VDDX2  |                 |                 |                 |                 |
| 27          |             |           | VSSX2  |                 |                 |                 |                 |
| 28          |             |           | PC0    | DATA8           |                 |                 |                 |
| 29          |             |           | PC1    | DATA9           |                 |                 |                 |
| 30          |             |           | PC2    | DATA10          |                 |                 |                 |
| 31          |             |           | PC3    | DATA11          |                 |                 |                 |
| 32          | 24          | 16        | PB0    | ADDR0           | UDS             |                 |                 |
| 33          | 25          | 17        | PB1    | ADDR1           |                 |                 |                 |
| 34          | 26          | 18        | PB2    | ADDR2           |                 |                 |                 |
| 35          | 27          | 19        | PB3    | ADDR3           |                 |                 |                 |
| 36          | 28          | 20        | PB4    | ADDR4           |                 |                 |                 |
| 37          | 29          | 21        | PB5    | ADDR5           |                 |                 |                 |
| 38          | 30          | 22        | PB6    | ADDR6           |                 |                 |                 |
| 39          | 31          | 23        | PB7    | ADDR7           |                 |                 |                 |
| 40          |             |           | PC4    | DATA12          |                 |                 |                 |
| 41          |             |           | PC5    | DATA13          |                 |                 |                 |
| 42          |             |           | PC6    | DATA14          |                 |                 |                 |
| 43          |             |           | PC7    | DATA15          |                 |                 |                 |
| 44          | 32          |           | PH7    | KWH7            | SS2             | TXD5            |                 |
| 45          | 33          |           | PH6    | KWH6            | SCK2            | RXD5            |                 |
| 46          | 34          |           | PH5    | KWH5            | MOSI2           | TXD4            |                 |
| 47          | 35          |           | PH4    | KWH4            | MISO2           | RXD4            |                 |
| 48          | 36          | 24        | PE7    | XCLKS           | ECLKX2          |                 |                 |
| 49          | 37          | 25        | PE6    | MODB            | TAGHI           |                 |                 |
| 50          | 38          | 26        | PE5    | MODA            | TAGLO           | RE              |                 |
| 51          | 39          | 27        | PE4    | ECLK            |                 |                 |                 |
| 52          | 40          | 28        | VSSR   |                 |                 |                 |                 |
| 53          | 41          | 29        | VDDR   |                 |                 |                 |                 |
| 54          | 42          | 30        | RESET  |                 |                 |                 |                 |
| 55          | 43          | 31        | VDDPLL |                 |                 |                 |                 |
| 56          | 44          | 32        | XFC    |                 |                 |                 |                 |
| 57          | 45          | 33        | VSSPLL |                 |                 |                 |                 |
| 58          | 46          | 34        | EXTAL  |                 |                 |                 |                 |
| 59          | 47          | 35        | XTAL   |                 |                 |                 |                 |
| 60          | 48          | 36        | TEST   |                 |                 |                 |                 |
| 61          | 49          |           | PH3    | KWH3            | SS1             | TXD7            |                 |

MC9S12XD Family, Rev. 2.14

Table 5. Pin-Out Summary<sup>(1)</sup>

| LQFP<br>144 | LQFP<br>112 | QFP<br>80 | Pin   | 2nd<br>Function | 3rd<br>Function | 4th<br>Function | 5th<br>Function |
|-------------|-------------|-----------|-------|-----------------|-----------------|-----------------|-----------------|
| 62          | 50          |           | PH2   | KWH2            | SCK1            | RXD7            |                 |
| 63          | 51          |           | PH1   | KWH1            | MOSI1           | TXD6            |                 |
| 64          | 52          |           | PH0   | KWH0            | MISO1           | RXD6            |                 |
| 65          |             |           | PD0   | DATA0           |                 |                 |                 |
| 66          |             |           | PD1   | DATA1           |                 |                 |                 |
| 67          |             |           | PD2   | DATA2           |                 |                 |                 |
| 68          |             |           | PD3   | DATA3           |                 |                 |                 |
| 69          | 53          | 37        | PE3   | LSTRB           | LDS             | EROMCTL         |                 |
| 70          | 54          | 38        | PE2   | RW              | WE              |                 |                 |
| 71          | 55          | 39        | PE1   | ĪRQ             |                 |                 |                 |
| 72          | 56          | 40        | PE0   | XIRQ            |                 |                 |                 |
| 73          | 57          | 41        | PA0   | ADDR8           |                 |                 |                 |
| 74          | 58          | 42        | PA1   | ADDR9           |                 |                 |                 |
| 75          | 59          | 43        | PA2   | ADDR10          |                 |                 |                 |
| 76          | 60          | 44        | PA3   | ADDR11          |                 |                 |                 |
| 77          | 61          | 45        | PA4   | ADDR12          |                 |                 |                 |
| 78          | 62          | 46        | PA5   | ADDR13          |                 |                 |                 |
| 79          | 63          | 47        | PA6   | ADDR14          |                 |                 |                 |
| 80          | 64          | 48        | PA7   | ADDR15          |                 |                 |                 |
| 81          |             |           | VDDX3 |                 |                 |                 |                 |
| 82          |             |           | VDDX3 |                 |                 |                 |                 |
| 83          |             |           | PD4   | DATA4           |                 |                 |                 |
| 84          |             |           | PD5   | DATA5           |                 |                 |                 |
| 85          |             |           | PD6   | DATA6           |                 |                 |                 |
| 86          |             |           | PD7   | DATA7           |                 |                 |                 |
| 87          | 65          | 49        | VDD2  |                 |                 |                 |                 |
| 88          | 66          | 50        | VSS2  |                 |                 |                 |                 |
| 89          | 67          | 51        | PAD00 | AN0             |                 |                 |                 |
| 90          | 68          |           | PAD08 | AN8             |                 |                 |                 |
| 91          | 69          | 52        | PAD01 | AN1             |                 |                 |                 |
| 92          | 70          |           | PAD09 | AN9             |                 |                 |                 |
| 93          | 71          | 53        | PAD02 | AN2             |                 |                 |                 |
| 94          | 72          |           | PAD10 | AN8             |                 |                 |                 |
| 95          | 73          | 54        | PAD03 | AN3             |                 |                 |                 |
| 96          | 74          |           | PAD11 | AN11            |                 |                 |                 |
| 97          | 75          | 55        | PAD04 | AN4             |                 |                 |                 |
| 98          | 76          |           | PAD12 | AN12            |                 |                 |                 |

# Pin Assignments

Table 5. Pin-Out Summary<sup>(1)</sup>

| LQFP<br>144 | LQFP<br>112 | QFP<br>80 | Pin    | 2nd<br>Function | 3rd<br>Function | 4th<br>Function | 5th<br>Function |
|-------------|-------------|-----------|--------|-----------------|-----------------|-----------------|-----------------|
| 99          | 77          | 56        | PAD05  | AN5             |                 |                 |                 |
| 100         | 78          |           | PAD13  | AN13            |                 |                 |                 |
| 101         | 79          | 57        | PAD06  | AN6             |                 |                 |                 |
| 102         | 80          |           | PAD14  | AN14            |                 |                 |                 |
| 103         | 81          | 58        | PAD07  | AN7             |                 |                 |                 |
| 104         | 82          |           | PAD15  | AN15            |                 |                 |                 |
| 105         |             |           | PAD16  | AN16            |                 |                 |                 |
| 106         |             |           | PAD17  | AN17            |                 |                 |                 |
| 107         | 83          | 59        | VDDA   |                 |                 |                 |                 |
| 108         | 84          | 60        | VRH    |                 |                 |                 |                 |
| 109         | 85          | 61        | VRL    |                 |                 |                 |                 |
| 110         | 86          | 62        | VSSA   |                 |                 |                 |                 |
| 111         |             |           | PAD18  | AN18            |                 |                 |                 |
| 112         |             |           | PAD19  | AN19            |                 |                 |                 |
| 113         |             |           | PAD20  | AN20            |                 |                 |                 |
| 114         |             |           | PAD21  | AN21            |                 |                 |                 |
| 115         |             |           | PAD22  | AN22            |                 |                 |                 |
| 116         |             |           | PAD23  | AN23            |                 |                 |                 |
| 117         | 87          |           | PM7    | TXCAN3          | TXCAN4          | TXD3            |                 |
| 118         | 88          |           | PM6    | RXCAN3          | RXCAN4          | RXD3            |                 |
| 119         | 89          | 63        | PS0    | RXD0            |                 |                 |                 |
| 120         | 90          | 64        | PS1    | TXD0            |                 |                 |                 |
| 121         | 91          | 65        | PS2    | RXD1            |                 |                 |                 |
| 122         | 92          | 66        | PS3    | TXD1            |                 |                 |                 |
| 123         | 93          |           | PS4    | MISO0           |                 |                 |                 |
| 124         | 94          |           | PS5    | MOSI0           |                 |                 |                 |
| 125         | 95          |           | PS6    | SCK0            |                 |                 |                 |
| 126         | 96          |           | PS7    | SS0             |                 |                 |                 |
| 127         | 97          | 67        | VREGEN |                 |                 |                 |                 |
| 128         | 98          | 68        | PJ7    | KWJ7            | TXCAN4          | SCL0            |                 |
| 129         | 99          | 69        | PJ6    | KWJ6            | RXCAN4          | SDA0            |                 |
| 130         |             |           | PJ5    | KWJ5            | SCL1            | CS2             |                 |
| 131         |             |           | PJ4    | KWJ4            | SDA1            | CS0             |                 |
| 132         | 100         | 70        | PM5    | TXCAN2          | TXCAN0          | TXCAN4          | SCK0            |
| 133         | 101         | 71        | PM4    | RXCAN2          | RXCAN0          | RXCAN4          | MOSI0           |
| 134         | 102         | 72        | PM3    | TXCAN1          | TXCAN0          | SS0             |                 |
| 135         | 103         | 73        | PM2    | RXCAN1          | RXCAN0          | MISO0           |                 |

MC9S12XD Family, Rev. 2.14

Table 5. Pin-Out Summary<sup>(1)</sup>

| LQFP<br>144 | LQFP<br>112 | QFP<br>80 | Pin   | 2nd<br>Function | 3rd<br>Function | 4th<br>Function | 5th<br>Function |
|-------------|-------------|-----------|-------|-----------------|-----------------|-----------------|-----------------|
| 136         | 104         | 74        | PM1   | TXCAN0          |                 |                 |                 |
| 137         | 105         | 75        | PM0   | RXCAN0          |                 |                 |                 |
| 138         | 106         | 76        | VSSX1 |                 |                 |                 |                 |
| 139         | 107         | 77        | VDDX1 |                 |                 |                 |                 |
| 140         | 108         |           | PK7   | ROMCTL          | EWAIT           |                 |                 |
| 141         | 109         | 78        | PP7   | KWP7            | PWM7            | SCK2            |                 |
| 142         | 110         |           | PP6   | KWP6            | PWM6            | SS2             |                 |
| 143         | 111         | 79        | PP5   | KWP5            | PWM5            | MOSI2           |                 |
| 144         | 112         | 80        | PP4   | KWP4            | PWM4            | MISO2           |                 |

NOTES:
1. Table shows a superset of pin functions. Not all functions are available on all derivatives



Figure 1. MC9S12XD Family Pin Assignments for 144-pin LQFP Package

MC9S12XD Family, Rev. 2.14



Figure 2. MC9S12XD Family Pin Assignments for 112-pin LQFP Package



Figure 3. MC9S12XD Family Pin Assignments for 80-pin QFP Package

MC9S12XD Family, Rev. 2.14

# **Memory Maps**



Figure 4. MC9S12XD-Family Memory Map<sup>1</sup>

MC9S12XD Family, Rev. 2.14

<sup>1.</sup> The memory Map shows the memory sizes of DP512 part. For memory configuration of other parts see Table 1.



Figure 5. MC9S12XD-Family Flash Configuration<sup>1, 2, 3, 4, 5</sup>

MC9S12XD Family, Rev. 2.14

<sup>1.</sup> XGATE read access to Flash not possible on DG128/D128 and D64

<sup>2.</sup> Program Pages available on DT384 are \$E0 - \$E7 and \$F0 - \$FF

<sup>3.</sup> Program Pages available on DQ256/D256 are \$E0 - \$E7 and \$F8 - \$FF

<sup>4.</sup> Shared XGATE/CPU area on DP512/DT512/DT384 at global address \$78\_0800 to \$78\_FFFF (30Kbyte)

<sup>5.</sup> Shared XGATE/CPU area on DQ256/D256 at global address \$78\_0800 to \$79\_3FFF (46Kbyte)

# **Mechanical Package Dimensions**



Figure 6. 144-pin LQFP Mechanical Dimensions (case no. 918-03)

MC9S12XD Family, Rev. 2.14

#### **Mechanical Package Dimensions**



Figure 7. 112-pin LQFP Mechanical Dimensions (case no. 987)



Figure 8. 80-pin QFP Mechanical Dimensions (case no. 841B)

#### How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

**USA/Europe or Locations Not Listed:** 

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

**Europe, Middle East, and Africa:** Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080 support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005, All rights reserved.

