Title

D. Zack Garza

August 27, 2019

Contents

1	Note	es	1
	1.1	Group Theory	1
	1.2	Linear Algebra	2

1 Notes

1.1 Group Theory

Sylow Theorems: Write $|G| = p^n m$ where m / p, S_p a sylow-p subgroup, and n_p the number of sylow-p subgroups.

- $\forall p^n \mid |G|$, there exists a subgroup of size p^n .
 - Corollary: $\forall p \mid |G|$, there exists an element of order p.
- All sylow-p subgroups are conjugate for a given p.
 - Corollary: $n_p = 1 \implies S_p \leq G$
- $n_p \mid m$
- $n_p \equiv 1 \mod p$
- $n_p = [F : N(S_p)]$ where N is the normalizer.

Useful facts:

- $\mathbb{Z}_p, \mathbb{Z}_q \subset G \Longrightarrow \mathbb{Z}_p \cap \mathbb{Z}_q = \mathbb{Z}_{(p,q)}$, so coprime order subgroups are disjoint. $(p,q) = 1 \Longrightarrow \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$
- Characterizing direct products: $G \cong H \times K$ when
 - $-G = HK = \{hk \ni h \in H, k \in K\}$
 - $-H\cap K=\{e\}\subset G$
 - $-H, K \leq G$
 - * Can relax to only $H \leq G$ to get a semidirect product instead

Semidirect Products:

$$G = N \rtimes_{\phi} H$$
 where

$$\phi: H \to \operatorname{Aut}(N)$$

 $h \mapsto h(\cdot)h^{-1}$

Note $\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}^n)^{\times} \cong \mathbb{Z}^{\varphi(n)}$ where φ is the totient function.

Class Equation:

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x_i \text{ from} \\ \text{each conjugacy class}}} [G: C_G(x_i)]$$

where $C_G(x)$ is the centralizer of x, given by $C_G(x) = \{g \ni [g, x] = e\}$.

Fields: $GF(p^n)$ is obtained as $\frac{\mathbb{F}_p}{\langle f \rangle}$ where $f \in \mathbb{F}_p[x]$ is irreducible of degree n.

Eisenstein's Criterion: If $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in \mathbb{Q}[x]$ and $\exists p$ such that both $p \mid a_n$ and $p^2 \mid a_0$ but $p \mid a_{i \neq n}$, then f is irreducible.

1.2 Linear Algebra

Finding the minimal polynomial m(x) of A:

- 1. Find the characteristic polynomai $\chi(x)$; this annihilates A by Cayley-Hamilton. Then $m(x) \mid \chi(x)$, so just test the finitely many products of irreducible factors.
- 2. Pick any **v** and compute T**v**, T^2 **v**, $\cdots T^k$ **v** until a linear dependence is introduced. Write this as p(T) = 0; then $\chi(x)$ p(x).

Proof that when A_i are diagonalizable, $\{A_i\}$ commutes \iff A,B are simultaneously diagonalizable: induction on number of operators

- A_n is diagonalizable, so $V = \bigoplus E_i$ a sum of eigenspaces
- Restrict all n-1 operators A to E_n .
 - The commuted in V so they commute here too
 - (Lemma) They were diagonalizable in V, so they're diagonalizable here too
 - $-\implies$ they're simultaneously diagonalizable by I.H.
- But these eigenvectors for the A_i are all in E_n , so they're eigenvectors for A_n too.
- Can do this for each eigenspace.
- Full Details: here