

Sumário

- Motivação
- Codificação e compressão de dados multimédia
- *Streaming*
- H.323
- SIP
- Conclusões

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

VoIP

Motivação

- Convergência de redes telefónica e de dados
 - 1980~ Início da digitalização das comunicações de voz (*backbone*)
 - Até 198x: rede telefónica pública usada fundamentalmente para a transmissão de voz e utilização pontual para a transmissão de dados
 - 1990-2000 - Crescimento progressivo do volume de dados
 - 199x - Primeiras redes ISDN (RDIS - Rede digital com integração de serviços)
 - Serviços RDIS ultrapassados pelo advento de banda larga (DSL)
 - 1999 - Volumes de tráfego de dados e voz semelhantes
 - 2002 - Tráfego de dados é uma ordem de grandeza superior ao tráfego de voz
 - Situação actual: crescimento moderado do tráfego de voz, crescimento exponencial do tráfego de dados em redes IP

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

VoIP

Motivação

- Situação actual
 - Transmissão de dados excedem largamente a transmissão de voz
 - Facturas de voz são (ainda) largamente superiores à da transmissão de dados
 - Larguras de banda elevada permitem melhoria significativas de QoS
- Consequências
 - Operadores exclusivos de dados (maioritariamente, redes IP) interessados em transportar voz como forma de aumentar a sua facturação
 - Ex: COLT telecom
 - Detentores de redes locais ou WAN interessados em transportar voz nos seus circuitos dedicados de voz como forma de reduzir a sua facturação
 - Ex: RCTS/FCCN
 - Operadores tradicionais de voz interessados em acompanhar o processo de forma a “não perder barco”
- Soluções
 - Técnicas de transmissão de voz sobre IP - VoIP

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Dados multimédia

Digitalização, codificação e compressão de dados

- Transmissão de dados multimédia
 - Codificação digital
 - Amostragem e quantificação
 - Amostragem deve ser realizada pelo menos a 2x a frequência máxima do sinal
 - A amplitude de cada amostra deve ser digitalizada com um número finito de bits
- Taxas de transmissão
 - Qualidade de CD
 - Frequência audível ~ 20Khz
 - Amostragem de cada canal: 44.1Khz
 - Digitalização a 16 bits
 - $2 \times 44.100 \times 16 = 1.345\text{Mbps}$
 - Qualidade telefónica (PCM)
 - Frequência voz ~ 4Khz
 - Amostragem mono 8Khz
 - Digitalização a 8 bits
 - $2 \times 4000 \times 8 = 64\text{Kbp}$

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Dados multimédia

Digitalização, codificação e compressão de dados

- Codificadores de fala (codec's)
 - Codificadores de forma de onda
 - PCM 64Kbps
 - ADPCM 32-16Kbps
 - Codificação da diferença de amplitudes
 - Codificadores paramétricos
 - Baseados em modelos paramétricos de produção da fala, desenvolvidos a partir de modelos das cordas vocais e do tracto vocal
 - Permitem reduzir drasticamente as taxas de transmissão
 - CELP - ITU G728, 8-16kbps
 - GSM - RPE, híbrido, 13Kbps
 - G723.1 - 6.3Kbps, 5.3Kbps
- Codificadores música
 - Codificação perceptual
 - CD (~1.345Mbps)
 - mp3 (Fraunhofer, Thomson) ~ 128Kbps
 - Vorbis (projecto open source)

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Dados multimédia

Digitalização, codificação e compressão de dados

- Codificação de imagem
 - Digitalização simples
 - Resolução PAL 576x480 pixel
 - Cada pixel quantificado em 256 níveis / cor primária 8+8+8 = 24 bits
 - 25 Frames /s
 - $576 \times 480 \times 24 \times 25 = 158.2 \text{ Mbps}$
 - 1 hora ~ 70 Gbytes
 - Compressão
 - Imagens fixas
 - JPEG - Codificação perceptual por blocos baseada na DCT
 - Taxa de compressão ~1:20
 - Vídeo
 - Princípios essenciais:
 - » Redundância temporal
 - » Segmentação de imagem
 - » Codificação diferencial entre frames consecutivos
 - ITU H.261/H.263 (Vídeo conferência, múltiplos de 64Kbps)
 - MPEG 1 (compatível NTSC) - 1.2Mbps
 - MPEG 2 (NTSC, PAL, DVD, HDTV) - até 4-8Mbps (HDTV)

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Transmissão de dados multimédia

- Transmissão “*convencional*”
 - Armazenamento do sinal em ficheiro
 - Transmissão de ficheiros usando serviços ao nível da aplicação (http, ftp, scp, p2p...)
 - Incompatível com soluções de tempo real
- *Alternativa: Streaming*
 - Suporte: RTP, *Real Time Protocol* (RFC 3550)
 - Problemas
 - Perda de pacotes
 - Técnicas de codificação do sinal e sequenciação de pacotes têm um impacto significativo na qualidade da transmissão

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Streaming: RTP

- *Real Time Protocol*
 - Protocolo ao nível da aplicação
 - Objectivo
 - Multiplexagem de diversos *streams* de dados numa única ligação UDP
 - Suportado em UDP

- Pacotes RTP

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

RTCP

- *Real Time Protocol*
 - Transmissão de dados
- *Real Time Control Protocol*
 - Sincronização, controlo e interface de utilizador
 - Controlo de fluxo de dados
 - Informação de retorno sobre QoS observada
 - Sincronização entre fluxos de dados distintos
 - Informação complementar sobre os vários fluxos de dados RTP
 - Portos usados
 - RTP -> porto n
 - RTCP -> porto $n+1$

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Norma H.323

- Recomendação da ITU
 - Objectivo
 - Viabilização e normalização de serviços de video conferência
 - Versão 1 (1996)
Visual Telephone Systems and Equipment for Local Area Networks which Provide a Non-Guaranteed Quality of Service
 - Modelo orientado para utilização de video conferência em redes locais
 - Versão 2 (1998)
Packet based multimedia communication systems
 - Motivada pelo desenvolvimento de VoIP e pela necessidade de incluir mecanismos de interoperabilidade com redes telefónicas públicas
 - (...)
 - Versão 5 (Julho de 2003)

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Família H.32x

- Outras recomendações ITU da família H.323:
 - H.320 - Video telefonia sobre ISDN (RDIS)
 - H.321 - Video telefonia sobre B-ISDN, ATM
 - H.322 - Video telefonia sobre LANs com QoS
 - H.324 - Video telefonia sobre rede pública telefónica

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Norma H.323

- Modelo
 - Integração de componentes, protocolos e serviços necessários para estabelecer comunicações multimédia sobre redes de pacotes.

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H.323 - Arquitectura

- Um conjunto de terminais H.323 pode ser agrupado numa zona, controlada por um *gatekeeper* específico
- Integração com a rede telefónica comutada tem lugar por meio de um *gateway* específico

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Componentes H.323

- G.7xx - Codecs de audio
 - Mínimo: G.711 (PCM)
 - Opcionais: outros codecs de áudio e vídeo
- H.245 - Controlo
 - Negociação de algoritmos e taxa de transmissão
 - Abertura e fecho dos canais de transmissão
 - Controlo de fluxo
 - (...)
- H.225 - Sinalização
 - RAS - Comunicação com o *gatekeeper*
 - (Registration/Admission/Status)
 - Q.931 - Sinalização e controlo em RDIS e Telefonia convencional
- RTP, RTCP - *Streaming de dados*

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Componentes H.323

- Pilha de protocolos H.323

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H.323: *gatekeeper*

- Componente opcional
 - Caso não esteja presente, a ligação é estabelecida directamente entre terminais H.323
 - No início da chamada, o terminal realiza um *broadcast* no porto 1718 para detectar a presença de um *gatekeeper* rede local
- Caso exista, controla os terminais H.323 da zona sob a sua jurisdição
 - Funções obrigatórias:
 - Tradução de endereços
 - E.164 <-> IP
 - Controlo de largura de banda
 - Gestão de zona
 - Funções opcionais:
 - Controlo de sinalização H.225
 - Autorização de acesso
 - Gestão
 - Encaminhamento de chamadas,

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H.323: *gatekeeper*

- *gatekeeper*: estrutura global

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

H.323: *gateway*

- Interligação com redes e terminais não compatíveis co H.323 (e.g., rede telefónica pública)
 - Tradução de protocolos para estabelecimento e controlo da ligação
 - Dispositivo independente ou integrado no *gatekeeper*
 - Suporte dos protocolos necessários do lado da rede pública (ISDN, SS7)

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

H.323: protocolo

- Exemplo: estabelecimento de uma ligação H.323
 - Utilização de *gatekeeper*
 - Sinalização directa entre terminais

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H.323: protocolo

- Exemplo: estabelecimento de uma ligação H.323
 - Sinalização de controlo H.245

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H.323:

protocolo

- Exemplo: estabelecimento de uma ligação H.323
 - Fluxo de dados

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

H323:

protocolo

- Exemplo: estabelecimento de uma ligação H.323
 - Utilização de *gatekeeper*
 - Sinalização directa entre terminais

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Interligação entre terminais não H.323

Gatekeeper Address Translation: Every GW needs to know about the GK, not about all other GWs

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

H.323: MCU

- MCU - Multipoint Control Unit
 - Permite a ligação de três ou mais terminais H.323 para estabelecer uma conferência multi-ponto
 - O MCU é um dispositivo opcional só necessário se o estabelecimento de conferências multi-ponto

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

H.323: sumário

- H.323
 - Concebido no âmbito da ITU
 - Norma completa e bem estabelecida
 - Reduzidos problemas de compatibilidade entre equipamentos
 - Suportada pela maioria dos equipamentos comerciais de videoconferência
 - Especificação complexa (1.400 páginas) e pouco modular
 - Interoperabilidade com outros componentes de SW reduzida
 - Reduzidas possibilidades de adaptação a novas aplicações

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

SIP

Princípios gerais

- SIP - *Session Initiation Protocol*
 - Desenvolvido pelo IETF (RFC 3261)
- Objectivos fundamentais
 - Simplicidade (RFC 3261 -> 250 páginas)
 - Modularidade
 - Suportar o estabelecimento de qualquer tipo de ligação multimédia pela Internet
 - Gestão de sessões genéricas
 - Integração simples com as aplicações e serviços existentes, nomeadamente web e html
 - Suporte de sessões simples, múltiplas e *multicast*
 - Suporte de serviços de localização e redirecionamento
 - Definido ao nível da aplicação e independente do nível de transporte

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

SIP

Protocolos complementares e características

- Modularidade
 - SIP apenas estabelece apenas a *possibilidade* de comunicação
 - Outros protocolos são necessários para realizar a comunicação
- Protocolos complementares usados com SIP
 - RTP, *Real Time Protocol*
 - Transmissão de dados
 - SDP, *Session Description Protocol*
 - Descrição e codificação das características dos terminais participantes
- Mensagens SIP
 - Texto simples
 - Baseadas no protocolo *http*
- Arquitectura
 - Modelo distribuído (implícito no modelo IP...)
 - Sinalização *end-to-end*
 - Independente da rede física
 - Flexibilidade e escalabilidade

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

URIs

- Identificação de entidades intervenientes
(utilizadores ou entidades)
 - URIs - *Uniform Resource Identifiers*
- Forma geral:
 - sip:username@domain
 - Possibilidade de adição de argumentos
- Exemplos
 - sip:fms@ist.utl.pt
 - sip:voicemail@xpto.com?subject=callme
 - tel:+1234567890
 - sip:+351218417799@gateway.pt;user=phone
- A utilização de URIs permite a integração simples em documentos web, e-mail, etc.

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Sessão SIP simples

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

SIP Componentes da infraestrutura

- *User agents*

Dispositivo físico ou SW instalado num terminal IP

- UAC - user agent client
- UAS - user agent server

- *Proxy servers*

– Encaminhamento de mensagens de sessão para o destino ou *proxy “mais próximo”* do destino

– Autenticação e *accounting*

– Tipo de proxies

- *Stateless* - Simples encaminhadores de mensagens
- *Statefull* - Mantêm o estado de cada transacção

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

SIP

Componentes da infraestrutura (2)

- *Registrar*

- Serviço onde cada terminal/utilizador se regista para ser acessível
- O registo integra uma base de dados com a correspondência entre o URI e a localização actual do utilizador
 - Ex:
 - sip:fms@ist.utl.pt <-> sip:193.132.128.60:5345

- *Redirect server*

- Entidade que recebe uma solicitação para um dado destino e, após consulta da BD de registos, devolve uma lista com as possíveis localizações do destinatário.
- Um servidor SIP pode fazer *proxy* ou *redirect* do pedido
 - A operação efectiva em cada caso depende da configuração do servidor

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

SIP: Registo

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

SIP: operação em modo proxy

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Encadeamento de servidores

- Frequentemente, existe também um proxy local que gere as chamadas de saída
 - Lógica de estabelecimento da chamada
 - Gestão e travessia de *firewalls*
 - Gestão de encaminhamentos/custos
 - Terminais IP devem conhecer o número do servidor
- Os servidores podem ser encadeados de forma arbitrária ou de forma hierárquica

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Encadeamento de servidores

*Em certos casos (accounting, NAT, ...) A mensagem de fim de sessão (bye) deve ser encaminhado pelo proxy e não directamente

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Mensagens SIP

- Estrutura baseada no protocolo HTTP
 - INVITE
 - Início da sessão
 - Cabeçalho descreve detalhes da sessão
 - ACK
 - Confirma o estabelecimento de uma sessão por INVITE
 - BYE
 - Termina a sessão
 - CANCEL
 - Cancela um INVITE pendente
 - OPTIONS
 - Permite interrogar as capacidades do terminal
 - REGISTER
 - Associa um endereço permanente a uma localização específica

Existem extensões e adições a estes métodos básicos

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Resposta a mensagens SIP

- Estrutura das respostas inspirada no protocolo HTTP
 - 1yz Informativas
 - 100 Trying
 - 180 Ringing
 - 181 Call Is Being Forwarded
 - 2yz Sucesso
 - 200 OK
 - 3yz Redirecção
 - 300 Multiple choices
 - 301 Moved Permanently
 - 302 Moved Temporarily
 - 305 Use proxy
 - 4yz Erros
 - 400 Bad Request
 - 401 Unauthorized
 - 402 Payment Required
 - 403 Forbidden
 - 404 Not Found
 - 5yz Erro de servidor
 - 501 Not Implemented
 - 502 Bad Gateway
 - 503 Service Unavailable
 - 504 Server Time-out
 - 6yz Erros globais
 - 600 Busy Everywhere
 - 603 Decline
 - 604 Does Not Exist Anywhere
 - 606 Not Acceptable

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Resposta a mensagens SIP

- 5yz Erro de servidor
 - 501 Not Implemented
 - 502 Bad Gateway
 - 503 Service Unavailable
 - 504 Server Time-out
- 6yz Erros globais
 - 600 Busy Everywhere
 - 603 Decline
 - 604 Does Not Exist Anywhere
 - 606 Not Acceptable

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Protocolo

- Exemplo: ligação com proxy simples

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Mensagem SIP exemplo

```
INVITE sip:7170@iptel.org SIP/2.0
Via: SIP/2.0/UDP 195.37.77.100:5040;rport
Max-Forwards: 10
From: "jiri" <sip:jiri@iptel.org>;tag=76ff7a07-c091-4192-84a0-d56e91fe104f
To: <sip:jiri@bat.iptel.org>
Call-ID: d10815e0-bf17-4afa-8412-d9130a793d96@213.20.128.35
CSeq: 2 INVITE
Contact: <sip:213.20.128.35:9315>
User-Agent: Windows RTC/1.0
Proxy-Authorization: Digest username="jiri", realm="iptel.org",
algorithm="MD5", uri="sip:jiri@bat.iptel.org",
nonce="3cef753900000001771328f5ae1b8b7f0d742dalfeb5753c",
response="53fe98db10e1074
b03b3e06438bda70f"
Content-Type: application/sdp
Content-Length: 451

v=0
o=jku2 0 0 IN IP4 213.20.128.35
s=session
c=IN IP4 213.20.128.35
b=CT:1000
t=0 0
m=audio 54742 RTP/AVP 97 111 112 6 0 8 4 5 3 101
a=rtpmap:97 red/8000
(...)
```

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Resposta SIP: exemplo

```
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.30:5060;received=66.87.48.68
From: sip:sip2@iptel.org
To: sip:sip2@iptel.org;tag=794fe65c16edfdf45da4fc39a5d2867c.b713
Call-ID: 2443936363@192.168.1.30
CSeq: 63629 REGISTER
Contact: <sip:sip2@66.87.48.68:5060;transport=udp>;q=0.00;expires=120
Server: Sip EXpress router (0.8.11pre2lxrc (i386/linux))
Content-Length: 0
Warning: 392 195.37.77.101:5060 "Noisy feedback tells:
pid=5110 req_src_ip=66.87.48.68 req_src_port=5060 in_uri=sip:iptel.org
out_uri=sip:iptel.org via_cnt==1"
```

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Tipos de NAT

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Tipos de NAT (2)

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

Serviço enum

- Como estabelecer a ligação entre duas redes SIP remotas e desconhecidas entre si?

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

SIP: temas complementares

- Programação SIP
 - Call control APIs
- QoS
 - Não previsto, mas acomodável por pré-condições
- Mobilidade de dispositivos
 - Integração com mobile IP, com terminais 3G, etc
- Segurança
- NAT boxes
 - ALG, FCP,...
- (...)

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Comparação de SIP e H.323

- H.323
 - ITU
 - Bem definido
 - Monolítico
 - Pouco expansível
 - Compatível com PSTN
 - Complexo
 - Standard de facto, largamente implementado
 - Endereçamento host/tel
 - Dependente da camada de transporte
- SIP
 - IETF
 - Só especifica sessões
 - Modular
 - Expansível
 - Compatível com PSTN
 - Simples
 - Pouco divulgado, mas em expansão
 - Endereçamento URI
 - Independente da camada de transporte

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Implementações e software *open source*

- SER (SIP Express Router)
 - Implementação completa de um servidor SIP, incluindo
 - Registrar
 - Proxy server
 - Redirect server
 - FCP
 - <http://www.iptel.com>
- Asterisk
 - PBX completo em Linux
 - Suporta Voice mail, IVR, Call queuing, vários standards de sinalização
 - Integração PSTN, suporte interfaces para linhas T1 e E1
 - Suporta H.323 e SIP
 - <http://www.asterik.org>

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Conclusões

- VoIP
 - Realidade de facto
 - Vide Skype!
 - Previsível o aparecimento de mais operadores com serviços de VoIP e de *gateway*
 - Integração e convergência de redes de voz e dados é inevitável
 - Simplificação na gestão das redes internas
 - Fundamental preparar a RCTS
- Considerações comerciais
 - Pouco provável que as telecom permitam que a sua factura global seja reduzida a médio prazo pela introdução de serviços de VoIP
 - No entanto, é óbvio que a introdução de VoIP permitirá, no mínimo, a obtenção de mais e melhor serviço a custos constantes

Tecnologias de Redes de Comunicações

Fernando Mira da Silva

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

MEGACO

- MGCP e MEGACO/H.248
 - MGCP - Media Gateway Control Protocol (IETF)
 - MEGACO/H.248 - (ITU)
 - Protocolo desenvolvido conjuntamente pelo IETF e ITU
- Objectivo
 - Suporte de uma arquitectura em que controlo e serviço de chamadas pode ser adicionado centralmente a uma rede VoIP.
 - Gestão de sinalização
 - Isolamento funcional de terminais (media gateway) dos sistemas de controlo (media control gateway)
 - O desenvolvimento de estruturas centralizadas permite reduzir a complexidade e custo dos terminais

Fernando Mira da Silva

Tecnologias de Redes de Comunicações

MEGACO

Fernando Mira da Silva

Tecnologias de Redes de Comunicações