We claim:

1. A mixture, comprising

5 a) a compound of the formula I

$$X_m$$
 A

in which

X is halogen, C₁-C₄-alkyl or trifluoromethyl;

m is 0 or 1;

10

15

20

25

30

- Q is C(=CH-CH₃)-COOCH₃, C(=CH-OCH₃)-COOCH₃, C(=N-OCH₃)-COOCH₃ or N(-OCH₃)-COOCH₃;
- A is -O-B, -CH₂O-B, -OCH₂-B, -CH=CH-B, -C=C-B, -CH₂O-N=C(R¹)-B or -CH₂O-N=C(R¹)-C(R²)=N-OR³, where
- B is phenyl, naphthyl, 5-membered or 6-membered hetaryl or 5-membered or 6-membered heterocyclyl which contains one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms, where the ring systems are unsubstituted or substituted by one to three radicals R^a:
 - Ra is cyano, nitro, amino, aminocarbonyl, aminothiocarbonyl, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfoxyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkyloxycarbonyl, C₁-C₆-alkylthio, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkylaminothiocarbonyl, di-C₁-C₆-alkylaminothiocarbonyl, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, phenyl, phenoxy, benzyl, benzyloxy, 5- or 6-membered heterocyclyl, 5- or 6-membered hetaryl, 5- or 6-membered hetaryloxy, C(=NOR')-OR" or OC(R')₂-C(R")=NOR",

where the cyclic radicals for their part are unsubstituted or substituted by one to three radicals R^b:

5

R^b is cyano, nitro, halogen, amino, aminocarbonyl, aminothiocarbonyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylsulfoxyl, C₃-C₆-cycloalkyl, C₁-C₆-alkylsulfoxyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, C₁-C₆-alkylamino, C₁-C₆-alkylamino, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkylaminothiocarbonyl, C₁-C₆-alkylaminothiocarbonyl, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, phenyl, phenoxy, phenylthio, benzyl, benzyloxy, 5- or 6-membered hetaryloxy or C(=NOR')-OR";

15

10

R' is hydrogen, cyano, C₁-C₆-alkyl, C₃-C₆-cycloalkyl or C₁-C₄-haloalkyl;

20

R" is hydrogen, C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkinyl, C₁-C₄-haloalkyl, C₃-C₆-haloalkenyl or C₃-C₆-haloalkinyl;

R¹ is hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy;

25

R² is phenyl, phenylcarbonyl, phenylsulfonyl, 5- or 6-membered hetaryl, 5- or 6-membered hetarylcarbonyl or 5- or 6-membered hetarylsulfonyl, where the ring systems are unsubstituted or substituted by one to three radicals R^a,

30

is C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, C_1 - C_{10} -alkylcarbonyl, C_2 - C_{10} -alkenylcarbonyl, C_3 - C_{10} -alkinylcarbonyl, C_1 - C_{10} -alkylsulfonyl or C(R')=NOR", where the hydrocarbon radicals of these groups are unsubstituted or substituted by one to three radicals R^c :

35

R° is cyano, nitro, amino, aminocarbonyl, aminothiocarbonyl, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfoxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, di-C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminothiocarbonyl, di-C₁-C₆-

alkylaminothiocarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, 5- or 6-membered heterocyclyl, 5- or 6-membered heterocyclyloxy, benzyl, benzyloxy, phenyl, phenoxy, phenylthio, 5- or 6-membered hetaryloxy or hetarylthio, where the cyclic groups for their part may be partially of fully halogenated or may carry one to three radicals R^a ; and

10

5

R³ is hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkinyl, where the hydrocarbon radicals of these groups may be unsubstituted or substituted by one to three radicals R^c;

and

15

- b) one or more ethylene modulators (II) selected from the group consisting of:
 - ethylene biosynthesis inhibitors which inhibit the conversion of Sadenosyl-L-methionine into 1-aminocyclopropane-1-carboxylic acid (ACC), such as derivatives of vinylglycine, hydroxylamines, oxime ether derivatives;

20

ethylene biosynthesis inhibitors which block the conversion of ACC into ethylene, selected from the group consisting of: Co⁺⁺ or Ni⁺⁺ ions in plant-available forms; phenolic radical scavengers such as *n*-propyl gallate; polyamines, such as putrescine, spermine or spermidine; structural analogs of ACC, such as α-aminoisobutyric acid or L-aminocyclopropene-1-carboxylic acid; salicylic acid or acibenzolar-S-methyl; structural analogs of ascorbic acid which act as inhibitors of ACC oxidase, such as prohexadione-Ca or trinexapac-ethyl; and triazolyl compounds such as paclobutrazol or uniconazole as inhibitors of cytochrome P-450-dependent monooxygenases whose main action is to block the biosynthesisof gibberellins;

25

30

o inhibitors of the action of ethylene selected from the group consisting of: structural analogs of ethylene such as 1-methylcyclopropene or 2,5-norbornadiene and 3-amino-1,2,4-triazole or Ag⁺⁺ ions

- in a weight ratio of I to II of from 20: 1 to 0.05: 1.
- A mixture as claimed in claim 1 where the compound of the formula I is a stro-bilurin derivative selected from the group consisting of azoxystrobin, dimoxy-strobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, trifloxy-strobin, picoxystrobin or pyraclostrobin.

- A mixture as claimed in claim 1 where the compound of the formula I is pyraclo-3. strobin.
- A mixture as claimed in claim 1 where the ethylene modulators are Co⁺⁺ ions. 5 4. aminoethoxyvinylglycine, aminooxyacetic acid, prohexadione-Ca, trinexapacethyl, α-aminoisobutyric acid, salicylic acid or 3-amino-1,2,4-triazole.
 - A mixture as claimed in claim 1 where the ethylene modulators are Co⁺⁺ ions. 5.

10

- A mixture as claimed in claim 1 where the ethylene modulators is prohexadione-6. Ca.
- A mixture as claimed in claim 1 where the ethylene modulator is salicylic acid. 7.

15

- A mixture as claimed in claim 1 where the ethylene modulators are prohexadione-8. Ca together with Co⁺⁺ ions.
- A mixture as claimed in any of claims 1 to 8 which additionally comprises an azole 9. III selected from the group consisting of bromoconazole, cyproconazole, epoxi-20 conazole, fenbuconazole, fluquiconazole, flusilazole, metconazole, myclobutanil, propiconazole, prochloraz, prothioconazole, tebuconazole or triticonazole.
- 10. A mixture as claimed in any of claims 1 to 9 which additionally comprises a surfac-25 tant selected from the group consisting of: polyoxyethylene sorbitan monolaurate, alkylphenoxy polyethoxy ethanol, fatty alcohol, fatty alcohol alkoxylate and sodium dodecylsulfate.
- 11. A method for controlling rust infections in legumes, which comprises treating the 30 above-ground plant parts of the legumes with an aqueous preparation of a mixture as claimed in any of claims 1 to 10.
 - 12. A process as claimed in claim 11, wherein rust infection on leaves and fruits of soya plants is controlled.

- 13. A process as claimed in claim 11, wherein the rust infection is caused by Phakopsora pachyrhizi and/or Phakopsora meibomiae.
- 14. A process for increasing the yield and quality of legumes by using mixtures as 40 claimed in any of claims 1 to 10.

WO 2005/044002 PCT/EP2004/012514

24

- 15. A method for increasing the yield and quality of legumes applying an effective amount of a mixture as claimed in any of claims 1 to 10.
- 16. A method for reducing the ethylene evolution of plants by applying an effective amount of a mixture as claimed in claims 1 to 10.

- 17. A method for reducing undesired defoliation of crop plants by applying an effective amount of a mixture as claimed in claims 1 to 10.
- 10 18. A method for controlling harmful plant pathogens by applying an effective amount of Co⁺⁺ ions in plant-available form.