Exercices de Physique

Feuille 1

- 1. Soit $\mathbf{u} = (1, 2, 3), \mathbf{v} = (-1, 2, -3)$ et $\mathbf{w} = (-5, -1, 2)$ trois vecteurs. Calculer
 - (a) $\mathbf{u} + \mathbf{v} + \mathbf{w}$,
 - (b) 2u 5v 3w,
 - (c) $\langle \mathbf{u}, \mathbf{v} \rangle$,
 - (d) $\langle \mathbf{u}, \mathbf{w} \rangle$,
 - (e) $\langle \mathbf{w}, \mathbf{v} \rangle$,
 - (f) $\langle \mathbf{u} + \mathbf{v} + \mathbf{w}, 2\mathbf{u} 5\mathbf{v} 3\mathbf{w} \rangle$,
 - (g) $\|\mathbf{u}\|$, $\|\mathbf{w}\|$ et $\|\mathbf{w}\|$,
 - (h) $\|\mathbf{u} + \mathbf{v} + \mathbf{w}\|$ et $\|2\mathbf{u} 5\mathbf{v} 3\mathbf{w}\|$,
 - (i) L'angle θ entre le vecteur \mathbf{u} et le vecteur \mathbf{v} ,
 - (j) L'angle θ entre le vecteur \mathbf{u} et le vecteur \mathbf{w} ,
 - (k) L'angle θ entre le vecteur \mathbf{v} et le vecteur \mathbf{w} ,
- 2. Soit $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (-1, 2, -3)$ et $\mathbf{w} = (-5, -1, 2)$ trois vecteurs. Trouvez trois nombres réelles λ, μ et γ telles que l'égalité

$$\lambda \mathbf{u} + \mu \mathbf{v} + \gamma \mathbf{w} = (1, 1, 1)$$

soit vérifié.

3. Soit $\mathbf{u}=(1,2,3)$ et $\mathbf{v}=(-1,0,2)$. Trouvez un nombre réelle λ telle que la distance entre le vecteur $\lambda \mathbf{u}$ et le vecteur \mathbf{v} :

$$\|\lambda \mathbf{u} - \mathbf{v}\|^2$$

soit la plus petite posible.

4. Soit ${\bf u}=(1,2,3),\,{\bf v}=(-1,2,-3)$ et ${\bf w}=(0,8,0)$ trois vecteurs. Trouvez deux nombres réelles λ et μ telles que l'égalité

$$\lambda \mathbf{u} + \mu \mathbf{v} = \mathbf{w}$$

soit vérifié.