Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz
Projekt A
Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej
$x \in (-\infty, +\infty)$ oraz czasu $t \in [0, t_{\text{max}}],$
warunek początkowy $U(x,0) = \frac{1}{2\sqrt{\pi D\tau}} \exp\left(-\frac{x^2}{4D\tau}\right)$, gdzie $\tau << t_{\text{max}}$, oraz
warunki brzegowe $U(-\infty, t) = 0$, $U(+\infty, t) = 0$.
Zagadnienie to może opisywać transport dyfuzyjny, w ośrodku nieskończonym, substancji o współczynniku dyfuzji D , początkowo zlokalizowanej w pobliżu płaszczyzny $x=0$.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \frac{1}{2\sqrt{\pi D(\tau+t)}} \exp\left[-\frac{x^2}{4D(\tau+t)}\right]$.
Do obliczeń numerycznych przedział nieskończony x należy zastąpić przedziałem skończonym $[-a, a]$, gdzie
$a \ge 6\sqrt{D(\tau + t_{\max})}$.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość $\lambda=D$ $\delta t/h^2$, możliwie najbliższą $\lambda=0.4$ dla metody bezpośredniej lub $\lambda=1$ dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać. Do zaliczenia projektu należy wykonać:
(1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla $t_{\rm max}$, w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników. (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t . Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.
Algorytmy: Dyskretyzacja: Rozwiązanie algebraicznych układów równań liniowych:

☐ Dekompozycja LU macierzy pełnej

☐ Metoda iteracyjna Gaussa-Seidela

☐ Algorytm Thomasa

☐ Klasyczna metoda bezpośrednia

☐ Metoda pośrednia Cranka-Nicolson

☐ Metoda pośrednia Laasonen

Parametry:

 $t_{\text{max}} = 2, \ \tau = 0.1, D = 1.$

<u>Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz</u> <u>Projekt B</u>
Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej $x \in [0,+\infty)$
oraz czasu $t \in [0, t_{\text{max}}],$ warunek początkowy $U(x,0) = 1$, oraz
warunki brzegowe $U(0, t) = 0$, $U(+\infty, t) = 1$.
Zagadnienie to może opisywać transport ciepła, w pręcie pół-nieskończonym, o współczynniku transportu ciepła D , po raptownym obniżeniu temperatury na jednym końcu pręta w chwili $t = 0$.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t)=\operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$, gdzie $\operatorname{erf}(z)$ jest tzw. funkcją błędu:
$\operatorname{erf}\left(z\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-w^{2}) \ dw.$
Do obliczeń numerycznych przedział nieskończony x należy zastąpić przedziałem skończonym $[0, a]$, gdzie
$a \ge 6\sqrt{Dt_{\max}}$. Do obliczenia funkcji erf(z) z dokładnością bliską dokładności maszynowej dla zmiennych typu
double należy zastosować pakiet CALERF udostępniony przez prowadzącego zajęcia.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość $\lambda=D$ $\delta t/h^2$, możliwie najbliższą $\lambda=0.4$ dla metody bezpośredniej lub $\lambda=1$ dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać.
<u>Do zaliczenia projektu należy wykonać:</u> (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla <i>t</i> _{max} , w funkcji kroku przestrzennego <i>h</i> (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
 (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie

Rozwiązanie algebraicznych układów równań liniowych:

☐ Dekompozycja LU macierzy pełnej

☐ Metoda iteracyjna Gaussa-Seidela

☐ Algorytm Thomasa

obserwowane zmiany błędu w czasie.

<u>Dyskretyzacja:</u>

☐ Klasyczna metoda bezpośrednia

☐ Metoda pośrednia Cranka-Nicolson

☐ Metoda pośrednia Laasonen

Algorytmy:

Parametry: $t_{\text{max}} = 2$, D = 1.

<u>Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz</u> <u>Projekt C</u>
Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej $x \in [0,+\infty)$
oraz czasu $t \in [0, t_{\text{max}}],$ warunek początkowy $U(x,0) = 0$, oraz
warunki brzegowe $U(0,t) = 1$, $U(+\infty,t) = 0$.
Zagadnienie to może opisywać transport ciepła, w pręcie pół-nieskończonym, o współczynniku transportu ciepła D , po raptownym podwyższeniu temperatury na jednym końcu pręta w chwili $t = 0$.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$, gdzie $\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)$, a $\operatorname{erf}(z)$
jest tzw. funkcją błędu: erf $(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-w^2) dw$.
Do obliczeń numerycznych przedział nieskończony x należy zastąpić przedziałem skończonym $[0, a]$, gdzie
$a \ge 6\sqrt{Dt_{\max}}$. Do obliczenia funkcji erf(z) z dokładnością bliską dokładności maszynowej dla zmiennych typu
double należy zastosować pakiet CALERF udostępniony przez prowadzącego zajęcia.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość $\lambda = D \delta t/h^2$, możliwie najbliższą $\lambda = 0.4$ dla metody bezpośredniej lub $\lambda = 1$ dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać.
<u>Do zaliczenia projektu należy wykonać:</u> (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla t_{max} , w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
 (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie

Rozwiązanie algebraicznych układów równań liniowych:

☐ Dekompozycja LU macierzy pełnej

☐ Metoda iteracyjna Gaussa-Seidela

☐ Algorytm Thomasa

obserwowane zmiany błędu w czasie.

<u>Dyskretyzacja:</u>

☐ Klasyczna metoda bezpośrednia

☐ Metoda pośrednia Cranka-Nicolson

☐ Metoda pośrednia Laasonen

Algorytmy:

Parametry: $t_{\text{max}} = 2$, D = 1.

- teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepsza dokładność rozwiazania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
- (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą).
- (3) Wykresy zależności maksymalnej wartości bezwzglednej błedu w funkcji czasu t. Należy wyjaśnić ewentualnie

obserwowane zmiany błędu w czasie.		
Algorytmy:		
Dyskretyzacja:	Rozwiązanie algebraicznych układów równań liniowych:	
☐ Klasyczna metoda bezpośrednia	☐ Dekompozycja LU macierzy pełnej	
☐ Metoda pośrednia Laasonen	☐ Algorytm Thomasa	
☐ Metoda pośrednia Cranka-Nicolson	☐ Metoda iteracyjna Gaussa-Seidela	
Parametry:		
$t_{\text{max}} = 2$, $r = 1$, $a = 10$, $D = 1$.		

Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz
Projekt E
Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej
$x \in (-\infty, +\infty)$ oraz czasu $t \in [0, t_{\text{max}}],$
warunek początkowy $U(x,0) = \begin{cases} 1 & dla \ x < 0 \\ 0 & dla \ x \ge 0 \end{cases}$, oraz
warunki brzegowe $U(-\infty, t) = 1$, $U(+\infty, t) = 0$.
Zagadnienie to może opisywać transport ciepła, w ośrodku nieskończonym o współczynniku transportu ciepła D , po raptownym zetknięciu dwóch połówek ośrodka o różnej temperaturze, w chwili $t=0$.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$, gdzie $\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)$, a $\operatorname{erf}(z)$
jest tzw. funkcją błędu: erf $(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-w^2) dw$.
Do obliczeń numerycznych przedział nieskończony x należy zastąpić przedziałem skończonym $[-a, a]$, gdzie
$a \ge 6\sqrt{Dt_{\text{max}}}$. Do obliczenia funkcji erfc (z) z dokładnością bliską dokładności maszynowej dla zmiennych typu
double należy zastosować pakiet CALERF udostępniony przez prowadzącego zajęcia.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość $\lambda = D \delta t/h^2$, możliwie najbliższą $\lambda = 0.4$ dla metody bezpośredniej lub $\lambda = 1$ dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać.
Do zaliczenia projektu należy wykonać: (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla $t_{\rm max}$, w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.

- (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu *t* z całego przedziału *t* (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą).
- (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.

Algorytmy:	
<u>Dyskretyzacja:</u>	Rozwiązanie algebraicznych układów równań liniowych:
☐ Klasyczna metoda bezpośrednia	☐ Dekompozycja LU macierzy pełnej
☐ Metoda pośrednia Laasonen	☐ Algorytm Thomasa
☐ Metoda pośrednia Cranka-Nicolson	☐ Metoda iteracyjna Gaussa-Seidela
Parametry:	

 $t_{\text{max}} = 2, D = 1.$

- (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla $t_{\rm max}$, w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
- (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu *t* z całego przedziału *t* (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą).
- (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu *t*. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.

Algorytmy:

Dyskretyzacja:

Rozwiązanie algebraicznych układów równań liniowych:

Dklasyczna metoda bezpośrednia
Dekompozycja LU macierzy pełnej
Algorytm Thomasa
Algorytm Thomasa
Metoda pośrednia Cranka-Nicolson
Metoda iteracyjna Gaussa-Seidela

Parametry:

 $t_{\text{max}} = 1, b = 0.1, D = 1.$

- (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla $t_{\rm max}$, w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników.
- (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu *t* z całego przedziału *t* (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą).
- (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu *t*. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.

azanie algebraicznych układów równań liniowych: pozycja LU macierzy pełnej
•
JOZYCJA LO IIIACIEIZY PEIIIEJ
m Thomasa
iteracyjna Gaussa-Seidela
a

Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej $x \in [0, 1]$
oraz czasu $t \in [0, t_{\text{max}}],$
warunek początkowy $U(x,0) = \sin(\pi x)$, oraz
warunki brzegowe $U(0,t) = 0$, $U(1,t) = 0$.
Zagadnienie to może opisywać ucieczkę, wskutek transportu dyfuzyjnego, substancji o współczynniku dyfuzji <i>D</i> , początkowo nierównomiernie rozłożonej w membranie o grubości 1 i przenikalnych ściankach.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \exp(-\pi^2 Dt) \sin(\pi x)$.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość λ = D δt/h², możliwie najbliższą λ = 0.4 dla metody bezpośredniej lub λ = 1 dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać. Do zaliczenia projektu należy wykonać: (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla t _{max} , w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników. (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.
Algorytmy:
Dyskretyzacja: Rozwiązanie algebraicznych układów równań liniowych:
□ Klasyczna metoda bezpośrednia□ Dekompozycja LU macierzy pełnej□ Metoda pośrednia Laasonen□ Algorytm Thomasa
☐ Metoda pośrednia Cranka-Nicolson ☐ Metoda iteracyjna Gaussa-Seidela
Parametry: $t_{\text{max}} = 0.5, D = 1.$

Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz

Projekt H

Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz
Projekt I
Zagadnienie z warunkiem początkowym i brzegowym obejmuje: $\frac{\partial U(x,t)}{\partial t} = D \left[\frac{\partial^2 U(x,t)}{\partial x^2} + \pi^2 \sin(\pi x) \right], \text{ określone dla współrzędnej}$ przestrzennej $x \in [0,1]$ oraz czasu $t \in [0,t_{\text{max}}],$ warunek początkowy $U(x,0) = 0$, oraz warunki brzegowe $U(0,t) = 0$, $U(1,t) = 0$. Zagadnienie to może opisywać powstanie stanu ustalonego dla stężenia substancji o współczynniku dyfuzji D , w membranie o grubości 1 i przenikalnych ściankach, w wyniku ucieczki substancji z membrany wskutek transportu dyfuzyjnego, oraz powstawania tej substancji wewnątrz membrany. Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = \left[1 - \exp\left(-\pi^2 D t\right)\right] \sin(\pi x)$.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość λ = D δl/h², możliwie najbliższą λ = 0.4 dla metody bezpośredniej lub λ = 1 dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać. Do zaliczenia projektu należy wykonać: (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla t _{max} , w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników. (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.
Algorytmy: Dyskretyzacja: Rozwiązanie algebraicznych układów równań liniowych: □ Klasyczna metoda bezpośrednia □ Dekompozycja LU macierzy pełnej □ Metoda pośrednia Laasonen □ Algorytm Thomasa □ Metoda pośrednia Cranka-Nicolson □ Metoda iteracyjna Gaussa-Seidela Parametry: $t_{\text{max}} = 0.5, D = 1.$

Laboratorium komputerowe z przedmiotu "Metody Numeryczne", Wykład: dr hab. inż. L.Bieniasz
Projekt J
Zagadnienie z warunkiem początkowym i brzegowym obejmuje:
<u>równanie różniczkowe cząstkowe</u> $\frac{\partial U(x,t)}{\partial t} = D \frac{\partial^2 U(x,t)}{\partial x^2}$, określone dla współrzędnej przestrzennej $x \in [0,1]$
oraz czasu $t \in [0, t_{\text{max}}]$, warunek początkowy $U(x,0) = 1 + \cos(\pi x)$, oraz
<u>warunki brzegowe</u> $\frac{\partial U(0,t)}{\partial x} = 0$, $\frac{\partial U(1,t)}{\partial x} = 0$.
Zagadnienie to może opisywać wyrównywanie się różnic stężeń, wskutek transportu dyfuzyjnego, substancji o współczynniku dyfuzji <i>D</i> , początkowo nierównomiernie rozłożonej w membranie o grubości 1 i nieprzenikalnych ściankach.
Rozwiązanie analityczne tego zagadnienia ma postać: $U(x,t) = 1 + \exp(-\pi^2 Dt) \cos(\pi x)$.
Należy rozwiązać to zagadnienie stosując zaznaczoną niżej kombinację algorytmów numerycznych oraz podane wartości parametrów. Należy przyjąć ustaloną wartość λ = D δ/h², możliwie najbliższą λ = 0.4 dla metody bezpośredniej lub λ = 1 dla metod pośrednich (uwaga na ograniczenia stabilności numerycznej!). Rozwiązania numeryczne należy porównać z analitycznymi i wyznaczyć błędy bezwzględne rozwiązań numerycznych. Jeżeli poniżej zaznaczono dwa alternatywne algorytmy, to wówczas w programie należy zrealizować oba, a uzyskane wyniki porównać. Do zaliczenia projektu należy wykonać: (1) Wykresy zależności maksymalnej wartości bezwzględnej błędu obserwowanej dla t _{max} , w funkcji kroku przestrzennego h (najlepiej w skali logarytmicznej, o ile to możliwe). Należy sprawdzić, czy zależność jest zgodna z teoretycznym rzędem dokładności i wyjaśnić ewentualne niezgodności. Do dalszych wykresów należy dobrać krok czasowy (i przestrzenny) tak, aby uzyskać możliwie jak najlepszą dokładność rozwiązania w czasie obliczeń nie przekraczającym około jednej minuty, dla najszybszego z rozważanych wariantów obliczeń. Wyniki numeryczne oraz rozwiązania analityczne i błędy odpowiadające tej sytuacji należy zapisać w zbiorze, w postaci sformatowanej umożliwiającej przeglądanie wyników. (2) Wykresy rozwiązań numerycznych i analitycznych dla kilku wybranych wartości czasu t z całego przedziału t (rozwiązania numeryczne punktami, rozwiązania analityczne linią ciągłą). (3) Wykresy zależności maksymalnej wartości bezwzględnej błędu w funkcji czasu t. Należy wyjaśnić ewentualnie obserwowane zmiany błędu w czasie.
Algorytmy: Dyskretyzacja: Netoda pośrednia Laasonen Metoda pośrednia Cranka-Nicolson Rozwiązanie algebraicznych układów równań liniowych: Dekompozycja LU macierzy pełnej Algorytm Thomasa Metoda iteracyjna Gaussa-Seidela
Parametry: $t_{\text{max}} = 0.5, D = 1.$