Álgebra Linear Contra-Ataca

Prof. Afonso Paiva

Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP - São Carlos

Cálculo Numérico - SME0104

Operações Elementares Matrizes

Notação: vamos denotar por $\mathcal{M}(m,n)$ o conjunto das matrizes reais com m linhas e n colunas.

$$\mathbf{A} \in \mathcal{M}(m,n) \iff \mathbf{A} = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{n2} & \cdots & a_{mn} \end{bmatrix}$$

Notação: vamos denotar por $\mathcal{M}(m,n)$ o conjunto das matrizes reais com m linhas e n colunas.

$$\mathbf{A} \in \mathcal{M}(m,n) \iff \mathbf{A} = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{n2} & \cdots & a_{mn} \end{bmatrix}$$

(M1) transposta: $\mathcal{M}(m,n) \to \mathcal{M}(n,m)$

$$\left[\quad \mathbf{C} = \mathbf{A}^{\top} \quad \Rightarrow \quad c_{ij} = a_{ji} \quad \right]$$

Operações Elementares Matrizes

(M2) adição:
$$\mathcal{M}(m,n) \times \mathcal{M}(m,n) \to \mathcal{M}(m,n)$$

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \quad \Rightarrow \quad c_{ij} = a_{ij} + b_{ij}$$

(M2) adição: $\mathcal{M}(m,n) \times \mathcal{M}(m,n) \to \mathcal{M}(m,n)$

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \quad \Rightarrow \quad c_{ij} = a_{ij} + b_{ij}$$

(M3) multiplicação por um escalar: $\mathbb{R} \times \mathcal{M}(m,n) \to \mathcal{M}(m,n)$

$$\mathbf{C} = \lambda \, \mathbf{A} \quad \Rightarrow \quad c_{ij} = \lambda \, a_{ij}$$

Operações Elementares Matrizes

(M4) multiplicação de matrizes: $\mathcal{M}(m,p) \times \mathcal{M}(p,n) \to \mathcal{M}(m,n)$

$$\begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mi} & \cdots & c_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mi} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{mi} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m1} & \cdots & b_{mi} & \cdots & b_{mn} \end{bmatrix}$$

Operações Elementares Matrizes

(M4) multiplicação de matrizes: $\mathcal{M}(m,p) \times \mathcal{M}(p,n) \to \mathcal{M}(m,n)$

$$\begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{p1} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \quad \Rightarrow \quad c_{ij} = \sum_{k=1}^{p} a_{ik} \, b_{kj}$$

(M4) multiplicação de matrizes: $\mathcal{M}(m,p) \times \mathcal{M}(p,n) \to \mathcal{M}(m,n)$

$$\begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mi} & \cdots & c_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{p1} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \quad \Rightarrow \quad c_{ij} = \sum_{k=1}^{p} a_{ik} \, b_{kj}$$

Por convenção: $\sum_{k=i}^{j} u_k \equiv 0 \iff i > j$

Operações Elementares Vetores

$$\mathbf{v} \in \mathbb{R}^n \iff \mathbf{v} = (v_1, v_2, \dots, v_n)^{\top}$$

Vetores

$$\mathbf{v} \in \mathbb{R}^n \iff \mathbf{v} = (v_1, v_2, \dots, v_n)^{\top}$$

Vetores

$$\mathbf{v} \in \mathbb{R}^n \iff \mathbf{v} = (v_1, v_2, \dots, v_n)^{\top}$$

(V1) adição:
$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

$$\mathbf{u} = \mathbf{v} + \mathbf{w} \quad \Rightarrow \quad u_i = v_i + w_i$$

Vetores

$$\mathbf{v} \in \mathbb{R}^n \iff \mathbf{v} = (v_1, v_2, \dots, v_n)^{\top}$$

(V1) adição: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

$$\mathbf{u} = \mathbf{v} + \mathbf{w} \quad \Rightarrow \quad u_i = v_i + w_i$$

(V2) multiplicação por um escalar: $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$

$$\mathbf{u} = \lambda \, \mathbf{v} \quad \Rightarrow \quad u_i = \lambda \, v_i$$

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a \mathbb{R}) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

• comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a R) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

- \blacksquare comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$:
- **associatividade**: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) e(\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v})$;

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a \mathbb{R}) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

- **comutatividade**: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- associatividade: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) e(\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v})$;
- **elemento neutro**: existe um vetor $\overline{0} \in V$, tal que $\mathbf{v} + \overline{0} = \overline{0} + \mathbf{v} = \mathbf{v}$ para todo $\mathbf{v} \in V$;

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a \mathbb{R}) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

- **•** comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- associatividade: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) e(\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v})$;
- **elemento neutro**: existe um vetor $\overline{0} \in V$, tal que $\mathbf{v} + \overline{0} = \overline{0} + \mathbf{v} = \mathbf{v}$ para todo $\mathbf{v} \in V$;
- inverso aditivo: para cada vetor $\mathbf{v} \in V$ existe um vetor $-\mathbf{v} \in V$, tal que $-\mathbf{v} + \mathbf{v} = \mathbf{v} + (-\mathbf{v}) = \overline{0}$;

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a \mathbb{R}) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

- \blacksquare comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- **associatividade**: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) e(\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v})$;
- **elemento neutro**: existe um vetor $\overline{0} \in V$, tal que $\mathbf{v} + \overline{0} = \overline{0} + \mathbf{v} = \mathbf{v}$ para todo $\mathbf{v} \in V$;
- **inverso aditivo**: para cada vetor $\mathbf{v} \in V$ existe um vetor $-\mathbf{v} \in V$, tal *que* $-\mathbf{v} + \mathbf{v} = \mathbf{v} + (-\mathbf{v}) = \overline{0}$;
- distributiva: $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v} e \alpha(\mathbf{u} + \mathbf{v}) = \alpha\mathbf{u} + \alpha\mathbf{v}$;

Definição (espaço vetorial)

Um espaço vetorial V é um conjunto que possui definidas as operações de soma e de produto (multiplicação por escalar pertencente a \mathbb{R}) e fechado com respeito a elas. Essas operações devem satisfazer, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, as seguintes propriedades:

- \blacksquare comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- **associatividade**: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) e(\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v})$;
- **elemento neutro**: existe um vetor $\overline{0} \in V$, tal que $\mathbf{v} + \overline{0} = \overline{0} + \mathbf{v} = \mathbf{v}$ para todo $\mathbf{v} \in V$;
- **inverso aditivo**: para cada vetor $\mathbf{v} \in V$ existe um vetor $-\mathbf{v} \in V$, tal *que* $-\mathbf{v} + \mathbf{v} = \mathbf{v} + (-\mathbf{v}) = \overline{0}$;
- distributiva: $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v} e \alpha(\mathbf{u} + \mathbf{v}) = \alpha\mathbf{u} + \alpha\mathbf{v}$;
- \blacksquare multiplicação por 1: $1 \cdot v = v$.

Definição (subespaço vetorial)

Um subespaço vetorial de V é um subconjunto S \subset *V que satisfaz as seguintes propriedades:*

- $\blacksquare \overline{0} \in S$;
- se $\mathbf{u}, \mathbf{v} \in S$ então $\mathbf{u} + \mathbf{v} \in S$;
- $se \mathbf{v} \in S$ então $\alpha \mathbf{v} \in S$, para todo $\alpha \in \mathbb{R}$.

7 / 27

Definição (subespaço vetorial)

Um subespaço vetorial de V é um subconjunto S \subset *V que satisfaz as seguintes propriedades:*

- $\overline{0} \in S$;
- \blacksquare se $\mathbf{u}, \mathbf{v} \in S$ então $\mathbf{u} + \mathbf{v} \in S$;
- $se \mathbf{v} \in S$ então $\alpha \mathbf{v} \in S$, para todo $\alpha \in \mathbb{R}$.

Teorema

Todo subespaço vetorial é um espaço vetorial.

7 / 27

Exemplo 1

 $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ é um espaço vetorial. Os hiperplanos de \mathbb{R}^n que passam pela origem são subespaços vetoriais de \mathbb{R}^n .

8 / 27

Exemplo 1

 $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ é um espaço vetorial. Os hiperplanos de \mathbb{R}^n que passam pela origem são subespaços vetoriais de \mathbb{R}^n .

Exemplo 2

O conjunto $\mathcal{M}(n,n)$ das matrizes reais quadradas de ordem n é um espaço vetorial. O conjunto das matrizes simétricas de ordem n é um subspaço vetorial de $\mathcal{M}(n,n)$.

Exemplo 1

 $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ é um espaço vetorial. Os hiperplanos de \mathbb{R}^n que passam pela origem são subespaços vetoriais de \mathbb{R}^n .

Exemplo 2

O conjunto $\mathcal{M}(n,n)$ das matrizes reais quadradas de ordem n é um espaço vetorial. O conjunto das matrizes simétricas de ordem n é um subspaço vetorial de $\mathcal{M}(n,n)$.

Exemplo 3

Seja $\mathcal{F}(\mathbb{R};\mathbb{R})$ o conjunto de todas as funções $f:\mathbb{R}\to\mathbb{R}$. Então são subspaços de $\mathcal{F}(\mathbb{R};\mathbb{R})$:

$$\mathcal{P}_n \subset \mathcal{P} \subset \mathcal{C}^{\infty}(\mathbb{R}) \subset \mathcal{C}^k(\mathbb{R}) \subset \mathcal{C}^0(\mathbb{R})$$

Definição (conjunto L.I.)

Um conjunto $\mathcal{B} = \{ \varphi_1, \varphi_2, \dots \varphi_n \} \subset V$ é dito linearmente independente (L.I.) se

$$\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \cdots + \alpha_n \varphi_n = \overline{0} \quad \Rightarrow \quad \alpha_1 = \cdots = \alpha_n = 0.$$

Definição (conjunto L.I.)

Um conjunto $\mathcal{B} = \{\varphi_1, \varphi_2, \dots \varphi_n\} \subset V$ é dito linearmente independente (L.I.) se

$$\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \cdots + \alpha_n \varphi_n = \overline{0} \quad \Rightarrow \quad \alpha_1 = \cdots = \alpha_n = 0.$$

Definição (base de espaço vetorial)

Um conjunto $\mathcal{B} = \{\varphi_1, \dots, \varphi_n\} \subset V$ é uma base de um espaço vetorial V se for L.I. e gerar V. Isto é, todo vetor $\mathbf{v} \in V$ é escrito, de forma única, como combinação linear dos elementos de B:

$$\mathbf{v} = \alpha_1 \varphi_1 + \cdots + \alpha_n \varphi_n .$$

Definição (dimensão)

A dimensão de um espaço vetorial V, denotada por dim(V), é o número máximo de elementos L.I. nele contido.

Definição (dimensão)

A dimensão de um espaço vetorial V, denotada por dim(V), é o número máximo de elementos L.I. nele contido.

Teorema

Todo espaço vetorial de dimensão $n < \infty$ tem uma base.

Definição (dimensão)

A dimensão de um espaço vetorial V, denotada por dim(V), é o número máximo de elementos L.I. nele contido.

Teorema

Todo espaço vetorial de dimensão $n < \infty$ tem uma base.

Definição

Se para qualquer conjunto de vetores de V sempre é possível encontrar um vetor L.I. à este conjunto, então dizemos que $dim(V) = \infty$.

Exemplo 4

Seja $V = \mathbb{R}^n$. Uma base para $V \in \mathcal{B} = \{e_1, e_2, \dots, e_n\} \subset \mathbb{R}^n$, onde

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow i$$

Ainda, $dim(\mathbb{R}^n) = n$.

Exemplo 5

Seja $V = \mathcal{M}(m, n)$, uma base para V é o conjunto $\mathcal{B} = \{E_{11}, \dots, E_{mn}\} \subset \mathcal{M}(m, n)$, onde:

$$E_{ij} = \begin{bmatrix} 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ \vdots & 0 & \vdots \\ \vdots & 0 & \vdots \\ \vdots & 0 & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \leftarrow i$$

Ainda, $dim(\mathcal{M}(m, n)) = m \cdot n$.

Exemplo 6

Se $V = \mathcal{C}(\mathbb{R})$, então $dim(V) = \infty$.

Se $S = \mathcal{P}_n(\mathbb{R}) \subset V$, então dim(S) = n + 1. Uma base para S seria

$$\mathcal{B} = \{x^i : i = 0, ..., n\} = \{1, x, x^2, ..., x^n\}$$

É fácil verificar que todo polinômio $p \in \mathcal{P}_n$, de grau $\leq n$, pode ser escrito como

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n$$

que é uma combinação linear dos elementos de \mathcal{B} .

Definição (produto interno)

Uma aplicação $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{R}$ é um produto interno se satisfaz as seguintes propriedades:

■ bilinearidade:

$$\langle \mathbf{v}, \alpha \mathbf{w} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{z} \rangle$$
$$\langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{z} \rangle + \beta \langle \mathbf{w}, \mathbf{z} \rangle,$$

$$\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V;$$

Definição (produto interno)

Uma aplicação $\langle \cdot, \cdot \rangle: V \times V \to \mathbb{R}$ é um produto interno se satisfaz as seguintes propriedades:

■ bilinearidade:

$$\langle \mathbf{v}, \alpha \mathbf{w} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{z} \rangle$$
$$\langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{z} \rangle + \beta \langle \mathbf{w}, \mathbf{z} \rangle,$$

$$\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V;$$

■ comutatividade (simetria):

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle \quad \forall \ \mathbf{v}, \mathbf{w} \in V ;$$

Definição (produto interno)

Uma aplicação $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ é um produto interno se satisfaz as seguintes propriedades:

■ bilinearidade:

$$\langle \mathbf{v}, \alpha \mathbf{w} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{z} \rangle$$
$$\langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{z} \rangle + \beta \langle \mathbf{w}, \mathbf{z} \rangle,$$

 $\forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V;$

■ comutatividade (simetria):

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle \quad \forall \ \mathbf{v}, \mathbf{w} \in V ;$$

positividade:

$$\langle \mathbf{v}, \mathbf{v} \rangle \ge 0 \quad \forall \, \mathbf{v}, \quad e \quad \langle \mathbf{v}, \mathbf{v} \rangle = 0 \iff \mathbf{v} = \overline{0}$$

Exemplo 7

No \mathbb{R}^n , o *produto interno usual* (produto escalar) dos vetores $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$ é definido por:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^{\top} \mathbf{y}$$

Exemplo 7

No \mathbb{R}^n , o *produto interno usual* (produto escalar) dos vetores $\mathbf{x} = (x_1, x_2, \dots, x_n)^\top$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)^\top$ é definido por:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^{\top} \mathbf{y}$$

Exemplo 8

No espaço $\mathcal{M}(n,n)$, um exemplo de produto interno entre as matrizes $\mathbf{A}, \mathbf{B} \in \mathcal{M}(n,n)$ é dado por:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij}$$

Produto Interno

Exemplo 9

No espaço $\mathcal{C}([a,b])$ (espaço das funções contínuas no intervalo [a,b]), um exemplo de produto interno entre as funções contínuas $f,g:[a,b]\to\mathbb{R}$ é dado por:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

Norma

Definição (norma)

Seja V um espaço vetorial. Uma aplicação $\|\cdot\|:V\longrightarrow \mathbb{R}$ que satisfaz:

$$\|\mathbf{v}\| \geq 0, \quad \forall \mathbf{v} \in V$$

$$\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \overline{0}$$

$$\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|, \quad \forall \mathbf{v} \in V \quad e \quad \forall \lambda \in \mathbb{R};$$

$$\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|, \quad \forall \mathbf{v}, \mathbf{w} \in V$$

é dita norma em V.

Norma

Definição (norma)

Seja V um espaço vetorial. Uma aplicação $\|\cdot\|:V\longrightarrow \mathbb{R}$ que satisfaz:

$$\begin{aligned} \|\mathbf{v}\| & \geq & 0, & \forall \, \mathbf{v} \in V \\ \|\mathbf{v}\| & = & 0 \Leftrightarrow \mathbf{v} = \overline{0} \\ \|\lambda \mathbf{v}\| & = & |\lambda| \|\mathbf{v}\|, & \forall \, \mathbf{v} \in V \quad e \quad \forall \lambda \in \mathbb{R}; \\ \|\mathbf{v} + \mathbf{w}\| & \leq & \|\mathbf{v}\| + \|\mathbf{w}\|, & \forall \, \mathbf{v}, \mathbf{w} \in V \end{aligned}$$

é dita norma em V.

Definição (norma induzida)

$$\|v\| = \sqrt{\langle v,v\rangle}$$

Norma

Definição (norma)

Seja V um espaço vetorial. Uma aplicação $\|\cdot\|:V\longrightarrow \mathbb{R}$ que satisfaz:

$$\begin{aligned} \|\mathbf{v}\| & \geq & 0, & \forall \, \mathbf{v} \in V \\ \|\mathbf{v}\| & = & 0 \Leftrightarrow \mathbf{v} = \overline{0} \\ \|\lambda \mathbf{v}\| & = & |\lambda| \|\mathbf{v}\|, & \forall \, \mathbf{v} \in V \quad e \quad \forall \lambda \in \mathbb{R}; \\ \|\mathbf{v} + \mathbf{w}\| & \leq & \|\mathbf{v}\| + \|\mathbf{w}\|, & \forall \, \mathbf{v}, \mathbf{w} \in V \end{aligned}$$

é dita norma em V.

Definição (norma induzida)

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Desigualdade de Cauchy-Schwarz:

São exemplos de normas em \mathbb{R}^n :

1 norma do máximo

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i|\}$$

São exemplos de normas em \mathbb{R}^n :

1 norma do máximo

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i|\}$$

2 norma da soma

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

São exemplos de normas em \mathbb{R}^n :

1 norma do máximo

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i|\}$$

2 norma da soma

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

3 norma euclidiana

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$

São exemplos de normas em \mathbb{R}^n :

1 norma do máximo

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i|\}$$

norma da soma

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

3 norma euclidiana

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$

Em particular, a norma $\|\cdot\|_2$ provém do produto interno

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$$

Seja
$$\mathbf{x} = (1, 2, -5)^{\top}$$

Seja
$$\mathbf{x} = (1, 2, -5)^{\top}$$

Seja
$$\mathbf{x} = (1, 2, -5)^{\top}$$

$$||\mathbf{x}||_1 = |1| + |2| + |-5| = 8$$

Seja
$$\mathbf{x} = (1, 2, -5)^{\top}$$

$$\|\mathbf{x}\|_1 = |1| + |2| + |-5| = 8$$

3
$$\|\mathbf{x}\|_2 = \sqrt{1^2 + 2^2 + (-5)^2} = \sqrt{30} \approx 5.48$$

Seja
$$\mathbf{x} = (1, 2, -5)^{\top}$$

$$\|\mathbf{x}\|_{\infty} = \max\{|1|, |2|, |-5|\} = 5$$

$$\|\mathbf{x}\|_1 = |1| + |2| + |-5| = 8$$

3
$$\|\mathbf{x}\|_2 = \sqrt{1^2 + 2^2 + (-5)^2} = \sqrt{30} \approx 5.48$$


```
y = norm(x,inf);
y = norm(x,1);
y = norm(x,2); (ou simplesmente norm(x))
```

São exemplos de normas em $\mathcal{M}(m,n)$:

1 norma linha

$$\|\mathbf{A}\|_{\infty} = \max_{i=1,\dots,m} \{\sum_{j=1}^{n} |a_{ij}|\}$$

São exemplos de normas em $\mathcal{M}(m, n)$:

1 norma linha

$$\|\mathbf{A}\|_{\infty} = \max_{i=1,...,m} \{ \sum_{j=1}^{n} |a_{ij}| \}$$

2 norma coluna

$$\|\mathbf{A}\|_1 = \max_{j=1,\dots,n} \{\sum_{i=1}^m |a_{ij}|\}$$

São exemplos de normas em $\mathcal{M}(m,n)$:

1 norma linha

$$\|\mathbf{A}\|_{\infty} = \max_{i=1,\dots,m} \{\sum_{j=1}^{n} |a_{ij}|\}$$

2 norma coluna

$$\|\mathbf{A}\|_1 = \max_{j=1,\dots,n} \{\sum_{i=1}^m |a_{ij}|\}$$

3 norma de Frobenius

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

São exemplos de normas em $\mathcal{M}(m,n)$:

1 norma linha

$$\|\mathbf{A}\|_{\infty} = \max_{i=1,...,m} \{ \sum_{j=1}^{n} |a_{ij}| \}$$

norma coluna

$$\|\mathbf{A}\|_1 = \max_{j=1,\dots,n} \{\sum_{i=1}^m |a_{ij}|\}$$

norma de Frobenius

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

Em particular, essas normas satisfazem a propriedade

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ -2 & 1 & 1 \\ 4 & 0 & 2 \end{bmatrix}$$

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ -2 & 1 & 1 \\ 4 & 0 & 2 \end{bmatrix}$$

$$\|\mathbf{A}\|_{\infty} = \max\{4,4,6\} = 6$$

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ -2 & 1 & 1 \\ 4 & 0 & 2 \end{bmatrix}$$

2
$$\|\mathbf{A}\|_1 = \max\{7, 1, 6\} = 7$$

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ -2 & 1 & 1 \\ 4 & 0 & 2 \end{bmatrix}$$

- $\|\mathbf{A}\|_{\infty} = \max\{4,4,6\} = 6$
- **2** $\|\mathbf{A}\|_1 = \max\{7, 1, 6\} = 7$
- 3 $\|\mathbf{A}\|_F = \sqrt{1^2 + (-3)^2 + (-2)^2 + 1^2 + 1^2 + 4^2 + 2^2} = \sqrt{36} = 6$

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 \\ -2 & 1 & 1 \\ 4 & 0 & 2 \end{bmatrix}$$

$$\|\mathbf{A}\|_{\infty} = \max\{4,4,6\} = 6$$

2
$$\|\mathbf{A}\|_1 = \max\{7, 1, 6\} = 7$$

3
$$\|\mathbf{A}\|_F = \sqrt{1^2 + (-3)^2 + (-2)^2 + 1^2 + 1^2 + 4^2 + 2^2} = \sqrt{36} = 6$$


```
y = norm(A,inf);
y = norm(A,1);
y = norm(A,'fro');
```

Normas de Função

São exemplos de normas em C([a,b]):

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

$$||f||_1 = \int_a^b |f(x)| dx$$

$$||f||_2 = \left(\int_a^b |f(x)|^2\right)^{\frac{1}{2}}$$

Normas de Função

São exemplos de normas em C([a, b]):

1
$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

$$||f||_1 = \int_a^b |f(x)| \, dx$$

$$||f||_2 = \left(\int_a^b |f(x)|^2\right)^{\frac{1}{2}}$$

Em particular, a norma $\|\cdot\|_2$ provém do produto interno

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$

Normas Equivalentes

Definição (normas equivalentes)

Duas normas $\|\cdot\|_a$ e $\|\cdot\|_b$ são equivalentes, se existirem constantes positivas c_1 e c_2 tais que

$$c_1 \|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq c_2 \|\mathbf{x}\|_a, \quad \forall \mathbf{x} \in V.$$

Normas Equivalentes

Definição (normas equivalentes)

Duas normas $\|\cdot\|_a$ e $\|\cdot\|_b$ são equivalentes, se existirem constantes positivas c_1 e c_2 tais que

$$c_1 \|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq c_2 \|\mathbf{x}\|_a$$
, $\forall \mathbf{x} \in V$.

Exemplo 12

Normas equivalentes em \mathbb{R}^n :

- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$
- $||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n} ||\mathbf{x}||_2$

Normas Equivalentes

Definição (normas equivalentes)

Duas normas $\|\cdot\|_a$ e $\|\cdot\|_b$ são equivalentes, se existirem constantes positivas c_1 e c_2 tais que

$$c_1 \|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq c_2 \|\mathbf{x}\|_a$$
, $\forall \mathbf{x} \in V$.

Exemplo 12

Normas equivalentes em \mathbb{R}^n :

- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$
- $||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n} ||\mathbf{x}||_2$

Teorema (equivalência de normas)

Se V é um espaço vetorial de dimensão finita munido de norma, então todas as normas de V são equivalentes.

Normas Consistentes

Definição (normas consistentes)

Uma norma de matriz $\|\cdot\|_m$ é consistente com uma norma de vetor $\|\cdot\|_v$ se

$$\|\mathbf{A}\mathbf{x}\|_{v} \leq \|\mathbf{A}\|_{m} \|\mathbf{x}\|_{v}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}.$$

Normas Consistentes

Definição (normas consistentes)

Uma norma de matriz $\|\cdot\|_m$ é consistente com uma norma de vetor $\|\cdot\|_v$ se

$$\|\mathbf{A}\mathbf{x}\|_{v} \leq \|\mathbf{A}\|_{m} \|\mathbf{x}\|_{v}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}.$$

Exemplo 13

Normas consistentes em $\mathcal{M}(m,n)$:

- $\|\mathbf{A}\mathbf{v}\|_1 < \|\mathbf{A}\|_1 \|\mathbf{v}\|_1$
- $\|\mathbf{A}\mathbf{v}\|_{\infty} < \|\mathbf{A}\|_{\infty} \|\mathbf{v}\|_{\infty}$
- $\|\mathbf{A}\mathbf{v}\|_{2} \leq \|\mathbf{A}\|_{F} \|\mathbf{v}\|_{2}$

Definição (distância)

Uma aplicação dist : $V \times V \to \mathbb{R}$ é chamada de distância se:

$$\begin{aligned} \operatorname{dist}(\mathbf{v}, \mathbf{w}) &= \operatorname{dist}(\mathbf{w}, \mathbf{v}), & \forall \mathbf{v}, \mathbf{w} \in V \\ \operatorname{dist}(\mathbf{v}, \mathbf{w}) &\geq 0, & \forall \mathbf{v}, \mathbf{w} \in V \\ \operatorname{dist}(\mathbf{v}, \mathbf{w}) &= 0 &\Leftrightarrow \mathbf{v} &= \mathbf{w} \\ \operatorname{dist}(\mathbf{v}, \mathbf{z}) &\leq \operatorname{dist}(\mathbf{v}, \mathbf{w}) + \operatorname{dist}(\mathbf{w}, \mathbf{z}), & \forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V \end{aligned}$$

Definição (distância)

Uma aplicação dist : $V \times V \rightarrow \mathbb{R}$ *é chamada de distância se*:

$$\begin{aligned} \operatorname{dist}(\mathbf{v}, \mathbf{w}) &= \operatorname{dist}(\mathbf{w}, \mathbf{v}), & \forall \, \mathbf{v}, \mathbf{w} \in V \\ \operatorname{dist}(\mathbf{v}, \mathbf{w}) &\geq 0, & \forall \, \mathbf{v}, \mathbf{w} \in V \\ \operatorname{dist}(\mathbf{v}, \mathbf{w}) &= 0 &\Leftrightarrow \mathbf{v} &= \mathbf{w} \\ \operatorname{dist}(\mathbf{v}, \mathbf{z}) &\leq \operatorname{dist}(\mathbf{v}, \mathbf{w}) + \operatorname{dist}(\mathbf{w}, \mathbf{z}), & \forall \, \mathbf{v}, \mathbf{w}, \mathbf{z} \in V \end{aligned}$$

Teorema

 $Se \| \cdot \|$ é norma, então $dist(\mathbf{v}, \mathbf{w}) = \| \mathbf{v} - \mathbf{w} \|$ é uma distância.

Exemplo 14

São exemplos de distâncias no \mathbb{R}^n :

1 dist
$$(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_1 = \sum_{i=1}^n |x_i - y_i|$$

2 dist(x,y) =
$$\|\mathbf{x} - \mathbf{y}\|_2 = \left[\sum_{i=1}^n (x_i - y_i)^2\right]^{\frac{1}{2}}$$

3
$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i - y_i|\}$$

Exemplo 14

São exemplos de distâncias no \mathbb{R}^n :

1 dist
$$(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_1 = \sum_{i=1}^n |x_i - y_i|$$

2 dist
$$(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \left[\sum_{i=1}^n (x_i - y_i)^2\right]^{\frac{1}{2}}$$

3
$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{i=1,\dots,n} \{|x_i - y_i|\}$$

Exemplo 15

Vejamos como ficaria o *disco unitário* $C = \{ \mathbf{p} = (x, y) : \operatorname{dist}(\mathbf{p}, \overline{0}) = 1 \}$ em cada uma das distâncias acima:

2
$$C_2 = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1\}$$

$$C_3 = \{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} = 1\}$$

