数据结构与算法

Data Structure and Algorithm

XVIII. 图论 II

授课人: Kevin Feng

翻译 : 梁少华

Review

- * 数据结构与算法
- * 数学回顾
- *数组
- *数组列表
- * 搜索和排列
- *递归与迭代
- *二进制搜索

- *分而治之
- *链接列表
- *散列表
- *****树
- *堆
- **★**图论-BFS,DFS

概述

- 连通分支
- 单路径最短路径
 - Dijkstra 算法
 - Bellman-Ford 算法
 - A* 算法
- 生成树

连通图

- 在无向图中,若从顶点v到顶点w之间存在路径,则顶点v和w是连通的
- 在有向图中,连接顶点v和顶点w的路径中所有的变都必须同向。
- 如果图中任意两点都是连通的,那么图被称作连通图。

V	id[]		
0	0		
1	0		
2	0		
3	0		
4	0		
5	0		
6	0		
7	1		
8	1		
9	2		
10	2		
11	2		
12	2		

Goal: Partition vertices into connected components

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

最短路径

- 从 V0 到 V4
- 让我们试试 BFS

Queue: ¥0 V1

Queue: V0 V1 V2

- 发现 V4
- 我们完成了吗?

● BFS是否适用于所有图表?

作为地图的地理地图

- 图中缺少了什么?
 - 距离
- 还有什么?
 - 速度限制
 - 交通
 - 登机交叉延误

- ⊙ BFS能够找到从圣地亚哥到旧金山的最短路径?
- BFS不考虑边缘权重,只考虑边缘数量

单源最短路径问题

- 给定一个图 G = (V, E)和一个V中的"源"顶点u,V中的一个"目标"顶点v,找到从u到v的最小代价路径.
- 给定图G = (V, E)和V中的"源"顶点s,求出从s到V中每个顶点的最小代价路径.

Dijkstra's 算法

● 回顾 BFS

- 如何跟踪下一步搜索的位置?
- 使用队列

● Dijkstra's 算法

- 贪婪
- 使用优先级队列
- 列表中添加元素{元素,优先级},并从另一端删除最高优先级项
- 入队→添加一个{元素,优先级}
- 队列→删除最高优先级的元素
- 优先级队列通常使用"堆"来实现,并可以优先考虑低值(Min-Heap)或大值(Max-Heap)

粗略的想法

- Maintain an estimate d[v] of the length $\delta(s, v)$ of the shortest path for each vertex v
- Always $d[v] \ge \delta(s, v)$ and d[v] equals the length of a known path
 - (d[v]= ∞ if we have no paths so far)
- Initially d[s]=0 and all the other d[v] values are set to ∞ . The algorithm will then process the vertices one by one in some order.
 - The processed vertex's estimate will be validated as being real shortest distance, i.e. $d[v] = \delta(s, v)$
- Here "processing a vertex u" means finding new paths and updating d[v] for all $v \in Adj[u]$ if necessary. The process by which an estimate is updated is called relaxation.
- When all vertices have been processed,
 - $d[v] = \delta(s, v)$ for all v
- Question 1: How does the algorithm find new paths and do the relaxation?
- Question 2: In which order does the algorithm process the vertices one by one?

粗略的答案

- Question 1: How does the algorithm find new paths and do the relaxation?
- Answer: Finding new paths. When processing a vertex u, the algorithm will examine all vertices $v \in Adj[u]$. For each vertex $v \in Adj[u]$, a new path from s to v is found (path from s to v + new edge).
 - We use Greedy algorithm. For each vertex $v \in Adj[u]$. The next vertex processed is always a vertex $v \in Adj[u]$ for which d[u] is minimum
 - that is, we take the unprocessed vertex that is closest (by our estimate) to
- Question 2: In which order does the algorithm process the vertices one by one?
- Answer: Relaxation. If the length of the new path s to v is shorter than d[v], then update d[v] to the length of this new path.

Dijkstra's 算法

Dijkstra's 挑战

• 负数会怎么样?

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

• 我们试试

Re-weighting. Adding a constant to every edge weight also doesn't work.

Adding 9 to each edge changes the shortest path because it adds 9 to each segment, wrong thing to do for paths with many segments.

负循环

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observations.

- If negative cycle C on path from s to t, then shortest path can be made arbitrarily negative by spinning around cycle
- There exists a shortest s-t path that is simple.

Worse news: need a different problem

Bellman-Ford 算法

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

```
for (int i = 0; i < G.V(); i++)
  for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v))
      relax(e);</pre>
pass i (relax each edge)
```

- 时间复杂度?
- 暴力解法
- O (EV)

Bellman-Ford 改进

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

寻找负循环

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

负循环应用

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros } \Rightarrow 1,012.206 \text{ Canadian dollars } \Rightarrow $1,007.14497.$

Dijkstra 局限性

- Dijkstra is BFS
- 并可能到达凤凰城, 达拉斯, 丹佛和盐湖城
- Dijkstra只考虑距离信号源的距离

A* 算法

- Dijkstra's 算法
 - 是基于优先级队列排序
 - G(n):从起始顶点到顶点n的距离
- 我们也应该考虑距离目标
- A* 算法
 - G(n):从起始顶点到顶点n的距离
 - H(n):从顶点n到目标顶点的启发式估计成本
 - F(n) = g(n) + h(n)
 - Dijkstra可以看作h(n) = 0的特例
 - 保证找到最短路径如果估计永远不是高估
 - 在前面的例子中,
 - 低估:使用直线距离
 - 这很容易计算,我们有经度和纬度
 - 只是改变优先功能

数据结构与算法

Data Structure and Algorithm

XVIII. 图论II 结束

授课人: Kevin Feng

翻译: 梁少华