

NTE4511B & NTE4511BT Integrated Circuit CMOS, BCD-to-Seven Segment Latch/Decoder/Driver

Description:

The NTE4511B (16–Lead DIP) and NTE4511BT (SOIC–16) BCD–to–seven segment latch/decoder/drivers are constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4–bit storage latch, an 8421 BCD–to–seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn–off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven–segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.), display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features:

- Low Logic Circuit Power Dissipation
- High-Current Sourcing Outputs (Up to 25mA)
- Latching Storage of Code
- Blanking Input
- Lamp Test Provision
- Readout Blanking on All Illegal Input Combinations
- Lamp Intensity Modulation Capability
- Time Share (Multiplexing) Facility
- Supply Voltage Range = 3Vcd to 10Vdc
- Capable of Driving Two Low-Power TTL Loads, One Low-Power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

Absolute Maximum Ratings: (Voltages Referenced to V_{SS}, Note 1)

DC Supply Voltage, V _{DD}	-0.5 to +18.0V
Input Voltage (All Inputs), V _{in}	$.5 \text{ to V}_{DD} + 0.5 \text{V}$
DC Current Drain (Per Pin), I	
Maximum Output Drive Current (Source) Per Output, IOHmax	25mA
Maximum Continuous Output Power (Source) Per Output (Note 2), POHmax	50mW
Operating Temperature Range, T _A	-55 to +125°C
Storage Temperature Range, T _{stq}	-65 to +150°C

Note 1. These devices contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. A destructive high current mode may occur if V_{in} and V_{out} is not constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Due to the sourcing capability of these circuits, damage can occur to the device if V_{DD} is applied, and the outputs are shorted to V_{SS} and are at a logical 1 (See Absolute Maximum Ratings)

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

Note 2. P_{OH} max = I_{OH} ($V_{DD} - V_{OH}$)

<u>Electrical Characteristics:</u> (Voltages referenced to V_{SS}, Note 3)

		V _{DD}	-55	5°C	+25°C			+125°C		
Parameter	Symbol	VDD	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	V _{OL}	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
$V_{in} = V_{DD}$ or 0		10	_	0.05	-	0	0.05	-	0.05	Vdc
		15	_	0.05	-	0	0.05	-	0.05	Vdc
"1" Level	V _{OH}	5.0	4.1	_	4.1	4.57	_	4.1	_	Vdc
$V_{in} = 0$ or V_{DD}		10	9.1	-	9.1	9.58	_	9.1	_	Vdc
		15	14.1	-	14.1	14.59	-	14.1	-	Vdc
Input Voltage (Note 5) "0" Level (V _O = 3.8 or 0.5Vdc)	V _{IL}	5.0	-	1.5	_	2.25	1.5	-	1.5	Vdc
(V _O = 8.8 or 1.0Vdc)		10	_	3.0	_	4.50	3.0	_	3.0	Vdc
(V _O = 13.8 or 1.5Vdc)		15	_	4.0	_	6.75	4.0	_	4.0	Vdc
"1" Level (V _O = 0.5 or 3.8Vdc)	V _{IH}	5.0	3.5	_	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 8.8Vdc)		10	7.0	-	7.0	5.50	_	7.0	_	Vdc
(V _O = 1.5 or 13.8Vdc)		15	11.0	-	11.0	8.25	-	11.0	-	Vdc
Output Drive Voltage Source (I _{OH} = 0mAdc)	V _{OH}	5.0	4.10	_	4.10	4.57	_	4.1	_	Vdc
(I _{OH} = 5.0mAdc)			_	-	_	4.24	_	-	-	Vdc
(I _{OH} = 10mAdc)			3.90	-	3.90	4.12	_	3.5	-	Vdc
(I _{OH} = 15mAdc)			_	_	_	3.94	_	_	_	Vdc
(I _{OH} = 20mAdc)			3.40	-	3.40	3.75	_	3.0	-	Vdc
(I _{OH} = 25mAdc)			_	_	-	3.54	_	_	_	Vdc
(I _{OH} = 0mAdc)		10	9.10	_	9.10	9.58	_	9.1	_	Vdc
(I _{OH} = 5.0mAdc)			_	_	_	9.26	_	_	_	Vdc
(I _{OH} = 10mAdc)			9.00	_	9.00	9.17	_	8.6	_	Vdc
(I _{OH} = 15mAdc)			_	_	_	9.04	_	_	_	Vdc
(I _{OH} = 20mAdc)			8.60	_	8.60	8.90	_	8.2	_	Vdc
(I _{OH} = 25mAdc)			_	_	_	8.75	_	_	_	Vdc
(I _{OH} = 0mAdc)		15	14.1	-	14.1	14.59	_	14.1	_	Vdc
(I _{OH} = 5.0mAdc)			_	_	_	14.27	_	_	_	Vdc
(I _{OH} = 10mAdc)			14.0	_	14.0	14.18	_	13.6	_	Vdc
(I _{OH} = 15mAdc)			_	_	_	14.07	_	_	_	Vdc
(I _{OH} = 20mAdc)			13.6	_	13.6	13.95	_	13.2	_	Vdc
(I _{OH} = 25mAdc)			_	-	-	13.80	-	-	-	Vdc

- Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 4. The formulas given are for the typical characteristics only at +25°C.
- Note 5. Noise immunity specified for worst-case input combination. Noise margin for both "1" and "0" = 1.0 Vdc min @ V_{DD} = 5 Vdc 2.0Vdc min @ V_{DD} = 10 Vdc 2.5Vdc min @ V_{DD} = 15 Vdc

Note 6. To calculate total supply current at loads other than 50pF:

 $I_T(C_1) = I_T(50pF) + 3.5 \times 10^{-3}(C_1 - 50) V_{DD}f$

where: I_T is in μA (per package), C_L in pF, V_{DD} in volts and f in kHz is input frequency.

<u>Electrical Characteristics (Cont'd):</u> (Voltages referenced to V_{SS}, Note 3)

		V _{DD}	−55°C		+25°C			+12			
Parameter	Symbol		Min	Max	Min	Тур	Max	Min	Max	Unit	
Output Drive Current Sink (V _{OL} = 0.4Vdc)	I _{OL}	5.0	0.64	-	0.51	0.88	_	0.36	_	mAdc	
$(V_{OL} = 0.5Vdc)$		10	1.6	_	1.3	2.25	_	0.9	_	mAdc	
(V _{OL} = 1.5Vdc)		15	4.2	_	3.4	8.8	_	2.4	_	mAdc	
Input Current	l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±0.1	μAdc	
Input Capacitance (V _{IN} = 0)	C _{in}	_	_	_	_	5.0	7.5	_	_	рF	
Quiescent Current	I _{DD}	5.0	_	5.0	_	0.005	5.0	_	150	μAdc	
(Per Package)		10	_	10	-	0.010	10	_	300	μAdc	
		15	_	15	-	0.015	15	_	600	μAdc	
Total Supply Current (Dynamic plus Quiescent,	I _T	5.0	$I_T = (1.9\mu\text{A/kHz}) \text{ f} + I_{DD}$						μAdc		
Per Package, C _L = 50pF on All Outputs, All Buffers		10	$I_{T} = (3.8\mu\text{A/kHz}) \text{ f} + I_{DD}$							μAdc	
Switching Note 4, Note 6)		15	$I_T = (6.7\mu\text{A/kHz}) \text{ f} + I_{DD}$								

- Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 4. The formulas given are for the typical characteristics only at +25°C.
- Note 5. Noise immunity specified for worst–case input combination. Noise margin for both "1" and "0" = 1.0Vdc min @ V_{DD} = 5Vdc 2.0Vdc min @ V_{DD} = 10Vdc

2.0Vdc min @ V_{DD} = 10Vdc 2.5Vdc min @ V_{DD} = 15Vdc

Note 6. To calculate total supply current at loads other than 50pF:

 $I_T(C_L) = I_T(50pF) + 3.5 \times 10^{-3}(C_L -50) V_{DD}f$

where: I_T is in μA (per package), C_L in pF, V_{DD} in volts and f in kHz is input frequency.

Switching Characteristics: ($C_L = 50pF$, $T_A = +25$ °C, Note 3)

Parameter	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Output Rise Time	t _{TLH,}					
$t_{TLH} = (1.5 \text{ns/pf}) C_L + 50 \text{ns}$		5.0	_	40	80	ns
$t_{TLH} = (0.75 \text{ns/pf}) C_L + 37.5 \text{ns}$		10	-	30	60	ns
$t_{TLH} = (0.55 \text{ns/pf}) C_L + 37.5 \text{ns}$		15	_	25	60	ns
Output Fall Time	t _{THL}					
$t_{THL} = (1.5 \text{ns/pf}) C_L + 50 \text{ns}$		5.0	_	125	250	ns
$t_{THL} = (0.75 \text{ns/pf}) C_L + 37.5 \text{ns}$		10	_	75	150	ns
$t_{THL} = (0.55 \text{ns/pf}) C_L + 37.5 \text{ns}$		15	_	65	130	ns
Data Propagation Delay Time	t _{PLH}					
$t_{PLH} = (0.40 \text{ns/pf}) C_L + 620 \text{ns}$		5.0	_	640	1280	ns
$t_{PLH} = (0.25 \text{ns/pf}) C_L + 237.5 \text{ns}$		10	_	250	500	ns
$t_{PLH} = (0.20 \text{ns/pf}) C_L + 165 \text{ns}$		15	_	175	350	ns
$t_{PHL} = (1.3 \text{ns/pf}) C_L + 655 \text{ns}$	t _{PHL}	5.0	_	720	1440	ns
$t_{PHL} = (0.60 \text{ns/pf}) C_L + 260 \text{ns}$		10	_	290	580	ns
$t_{PHL} = (0.35 \text{ns/pf}) C_L + 182.5 \text{ns}$		15	_	200	400	ns

- Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 4. The formulas given are for the typical characteristics only at +25°C.

Switching Characteristics (Cont'd): $(C_L = 50pF, T_A = +25^{\circ}C, Note 3)$

Parameter	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Blank Propagation Delay Time t _{PLH} = (0.30ns/pf) C _L + 305ns	t _{PLH}	5.0	_	600	750	ns
$t_{PLH} = (0.25 \text{ns/pf}) C_L + 117.5 \text{ns}$		10	_	200	300	ns
$t_{PLH} = (0.15 \text{ns/pf}) C_L + 92.5 \text{ns}$		15	_	150	220	ns
$t_{PHL} = (0.85 \text{ns/pf}) C_L + 442.5 \text{ns}$	t _{PHL}	5.0	_	485	970	ns
$t_{PHL} = (0.45 \text{ns/pf}) C_L + 177.5 \text{ns}$		10	_	200	400	ns
$t_{PHL} = (0.35 \text{ns/pf}) C_L + 142.5 \text{ns}$		15	_	160	320	ns
Lamp Test Propagation Delay Time t _{PLH} = (0.45ns/pf) C _L + 290.5ns	t _{PLH}	5.0	_	313	625	ns
$t_{PLH} = (0.25 \text{ns/pf}) C_L + 112.5 \text{ns}$		10	_	125	250	ns
$t_{PLH} = (0.20 \text{ns/pf}) C_L + 80 \text{ns}$		15	_	90	180	ns
t _{PHL} = (1.3ns/pf) C _L + 248ns	t _{PHL}	5.0	_	313	625	ns
$t_{PHL} = (0.45 \text{ns/pf}) C_L + 102.5 \text{ns}$		10	_	125	250	ns
$t_{PHL} = (0.35 \text{ns/pf}) C_L + 72.5 \text{ns}$		15	-	90	180	ns
Setup Time	tsu	5.0	180	90	_	ns
		10	76	38	-	ns
		15	40	20	_	ns
Hold Time	th	5.0	0	-90	_	ns
		10	0	-38	_	ns
		15	0	-20	_	ns
Latch Enable Pulse Width	t_{WL}	5.0	520	260	_	ns
		10	220	110	-	ns
		15	130	65	_	ns

Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.

Note 4. The formulas given are for the typical characteristics only at $+25^{\circ}$ C.

Truth Table:

			Inputs				Outputs							
LE	BI	LT	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Χ	0	Χ	Χ	Χ	Χ	1	1	1	1	1	1	1	8
Х	0	1	Χ	Χ	Χ	Χ	0	0	0	0	0	0	0	Blank
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	0	1	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	1	0	0	0	0	0	0	0	Blank
1	1	1	Х	Χ	Χ	Χ				*				*

X = Don't Care

* Depends upon the BCD code previously applied when LE = 0

