EMF EQUATION OF AN ALTERNATORS.

Let

Z= no of conductors / Phase

Z= 2T; T= no of turns/phase.

P= no of poles.

f= frequency of induced emp in Hz.

\$ = flex / Pole in iob.

N= rotor speed in spm.

kd = destribution factor.

Kc (6) kp = cail span factor (6) Potch factor.

kf = form factor = 1:11

Pine taken to complete one revolution is $dt = \frac{60}{N}$ seconds.

In one revolution of ector, each stator conductor is cut by a flux = $d\phi$ = $p\phi$ we bear.

Average empirished/conductor = $\frac{d\phi}{dt} = \frac{p\phi}{60/N} = \frac{p}{60}N$

to a know that $N = \frac{120 + 1}{P}$ on substituting the value of N

there are I conductors in series/ph, then average Value of emf/phase = of $\emptyset * Z = a \not = * a T$ (°; Z=0T) Average emp/phase = 4 \$ \$ T volls.

3ms value of emf/ph = form factor * average value

= 1.11 ×44 ØT

Rms value of emp/Ph = [4.44 \$ pt volts].

* This is the actual value of emf if coil is full portched

* But if the wags are distributed and the wile are deshort pritched then, the emp equation is

multiplied by two factors ke and kd.

: Emf/ph = 4.AA * kc * Kd * f DT volts.

E = 4 kg kc kd f pt volle

kd = em in distributed rodg where enj in concentrated codg.

kd = Sim m 8/2 m sm 8/2

m: no of stats / pole / phase.

B = angulæ displacement between stots.

$$\beta = \frac{180}{n}$$
 , $n = \frac{\text{slob}}{\text{Pole}}$

$$k_c = \cos \frac{\alpha}{2}$$

(or)
$$\alpha = \beta \times no \text{ of a lots by which the wills are short pitched.}$$

Adrantages of short pilch coils.

- (i) Less copper is lequered
- (in) Eliminates high frequency. formonics. Waveform is more

PROBLEMS :-

blm 1 % -

The asmálure of a 3 of alternator has 120 slots. The alternator has 8 poles. Calculate its destribution factor.

$$m = 8$$
; no of slot = 130; $m = 8$; $m = 8$ $m = 8$

$$\beta = \frac{180}{h}$$
; $n = 8 lob / pole = \frac{180}{8} = 15$