Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms, 3^a edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise_de_algoritmos

Problema de ordenação

Problema de ordenação

Algoritmo	pior	melhor	caso	complexidade
	caso	caso	médio	de espaço
Insertion-sort	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n)$
Merge-sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n)$
Selection-sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$
Heap-sort	7	7	7	$\Theta(n)$
Quick-sort	:	:	:	$\Theta(n)$
Counting-sort				
Radix-sort	?	?	?	?
Bucket-sort				

Insertion-sort recursivo

Insertion-sort recursivo

```
Insertion-Sort(A, n)

1 se n \ge 2

2 então Insertion-Sort(A, n - 1)

3 chave = A[i]

4 j = n - 1

5 enquanto (j > 0) e (A[j] > chave)

6 faça A[j + 1] = A[j]

7 j = j - 1

8 A[j + 1] = chave
```

Análise do Insertion-sort recursivo

Quantas comparações e quantas trocas o algoritmo executa no pior caso?

Análise do Insertion-sort recursivo

Tanto o número de comparações quanto o de trocas é dado pela recorrência:

$$T(n) = \begin{cases} 0 & \text{, se } n = 1 \\ T(n-1) + n & \text{, se } n > 1 \end{cases}$$

 $\Theta(n^2)$ comparações e trocas são executadas no pior caso.

Algoritmo Selection-Sort Iterativo

Algoritmo Selection-Sort

```
Selection-Sort(A, n) custo

1 para i = 1 até n - 1 faça

2 min = i

3 para j = i + 1 até n faça

4 se A[j] < A[min] então

5 min = j

6 A[i] \leftrightarrow A[min]
```

Algoritmo Selection-Sort

```
Selection-Sort(A, n)
                                                             custo
     para i = 1 até n - 1 faça
                                                             \Theta(n)
1
                                                             \Theta(n)
         min = i
                                                             \Theta(n^2)
3
         para j = i + 1 até n faça
                                                             \Theta(n^2)
             se A[j] < A[min] então
4
                                                             \Theta(n^2)
                 min = j
5
                                                             \Theta(n^2)
         A[i] \leftrightarrow A[min]
6
                                                             Total: \Theta(n^2)
```

Portanto, a complexidade do algoritmo é $\Theta(n^2)$

- \triangleright Complexidade de pior caso (elementos em ordem decrescente): $\Theta(n^2)$, com $\Theta(n^2)$ comparações e $\Theta(n)$ trocas.
- \triangleright Complexidade de melhor caso (elementos em ordem crescente): $\Theta(n^2)$
- \triangleright Complexidade de caso médio (vetor aleatório): $\Theta(n^2)$

 \triangleright Complexidade de espaço: $\Theta(n)$, pois comparações e trocas são efetuadas diretamente no vetor.

Note que o Selection-Sort realiza mais comparações que o Insertion-Sort, mas menos trocas.

Invariante:

O vetor $A[1 \cdots i-1]$ está ordenado e $A[1 \cdots i-1] < A[i \cdots n]$

A partir desta informação valiosa demonstre a corretude do algoritmo Selection-Sort

```
Selection-Sort(A, i, n)

1 se i < n então

2 min = i

3 para j = i + 1 até n faça

4 se A[j] < A[min] então min = j

5 t = A[min]

6 A[min] = A[i]

7 A[i] = t

8 Selection-Sort(A, i + 1, n)
```

Quantas comparações e quantas trocas o algoritmo executa no pior caso?

O número de comparações é dado pela recorrência:

$$T(n) = \begin{cases} 0 & \text{, se } n = 1 \\ T(n-1) + \Theta(n) & \text{, se } n > 1 \end{cases}$$

 $\Theta(n^2)$ comparações são executadas no pior caso.

O número de trocas é dado pela recorrência:

$$T(n) = \begin{cases} 0 & \text{, se } n = 1 \\ T(n-1) + \Theta(1) & \text{, se } n > 1 \end{cases}$$

 $\Theta(n)$ trocas são executadas no pior caso.

Insertion-Sort e Selection-Sort têm a mesma complexidade assintótica, porém em situações em que a operação de troca é muito custosa, é preferível utilizar Selection-Sort. Ordenação por intercalação

Ordenação por intercalação

```
Merge-Sort(A, p, r)

1 se p < idr

2 então q \leftarrow \lfloor \frac{p+r}{2} \rfloor

3 Merge-Sort(A, p, q)

4 Merge-Sort(A, q + 1, r)

5 Merge(A, p, q, r)
```

Já analisamos a complexidade deste algoritmo, lembra?

Algoritmo Tim-Sort

Algoritmo Tim-Sort

Desenvolvido por Tim Peters em 2002 para a linguagem Python

É um algoritmo de ordenação híbrido de Merge Sort e Insertion-Sort

- \triangleright Complexidade de pior caso: $\Theta(n \log n)$
- \triangleright Complexidade de melhor caso: $\Theta(n)$
- \triangleright Complexidade de caso médio: $\Theta(n \log n)$

Algoritmo Bogo-Sort

Algoritmo Bogo-Sort

É um algoritmo de ordenação perversamente ineficiente

É um algoritmo probabilístico por natureza

Para ordenar os n elementos distintos a complexidade esperada é $O(n \cdot n!)$

Não é utilizada na prática, mas útil em disciplinas de análise de algoritmos

Obrigado