Searching

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

Balanced tree: any path from the root to a leaf has length $\lceil \log_2(N+1) \rceil$ (in terms of the number of nodes on the path).

Balanced tree: any path from the root to a leaf has length $\lceil \log_2(N+1) \rceil$ (in terms of the number of nodes on the path).

Maintaining *perfect* balance during additions and removals sounds highly expensive: Do we have to check the lengths of all paths and correct?

Balanced tree: any path from the root to a leaf has length $\lceil \log_2(N+1) \rceil$ (in terms of the number of nodes on the path).

Maintaining *perfect* balance during additions and removals sounds highly expensive: Do we have to check the lengths of all paths and correct?

A *balanced* binary search tree with N = 4 nodes

Consider removing "or".

Balanced tree: any path from the root to a leaf has length $\lceil \log_2(N+1) \rceil$ (in terms of the number of nodes on the path).

Maintaining *perfect* balance during additions and removals sounds highly expensive: Do we have to check the lengths of all paths and correct?

A *balanced* binary search tree with N = 4 nodes

Consider removing "or": paths are now too long!

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v by *only* making changes *locally* along a path from root to the node holding v.

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v by *only* making changes *locally* along a path from root to the node holding v.

2-3 search trees

In a 2-3 tree, there are two types of nodes:

Two-nodes that hold one key value k and two children l and r.

Three-nodes that hold two key values k_1 , k_2 and three children c_0 , c_1 , and c_2 .

Furthermore, all leaf nodes in a 2-3 tree must have the *same* distance to the root.

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v by *only* making changes *locally* along a path from root to the node holding v.

2-3 search trees

In a 2-3 tree, there are two types of nodes:

Two-nodes that hold one key value k and two children l and r. l holds values < k and r holds values > k.

Three-nodes that hold two key values k_1 , k_2 and three children c_0 , c_1 , and c_2 . c_0 holds values $< k_1$, c_1 holds values $> k_1$, $< k_2$, and c_2 holds values $> k_2$.

Furthermore, all leaf nodes in a 2-3 tree must have the *same* distance to the root.

Consider adding "juice", "bee", and "zoo"

Consider adding "juice", "bee", and "zoo"

1. Search for "juice": we find the leaf *two-node n* holding "just".

Consider adding "juice", "bee", and "zoo"

- 1. Search for "juice": we find the leaf *two-node n* holding "just".
- 2. We can turn node *n* into a *three-node*.

Consider adding "juice", "bee", and "zoo"

- 1. Search for "juice": we find the leaf *two-node n* holding "just".
- 2. We can turn node *n* into a *three-node*.

Consider adding "juice", "bee", and "zoo"

1. Search for "bee": we find the leaf *three-node n* holding "a" and "is".

Consider adding "juice", "bee", and "zoo"

- 1. Search for "bee": we find the leaf *three-node n* holding "a" and "is".
- 2. We can turn the key values "a", "bee", "is" into a tree of two-nodes with root r.

Consider adding "juice", "bee", and "zoo"

- 1. Search for "bee": we find the leaf *three-node n* holding "a" and "is".
- 2. We can turn the key values "a", "bee", "is" into a tree of two-nodes with root r.
- 3. Remove *n* and merge root *r* with the parent *p* of *n*: the merged node will have three key values "bee", "it", "not".

Consider adding "juice", "bee", and "zoo"

- 1. Search for "bee": we find the leaf *three-node n* holding "a" and "is".
- 2. We can turn the key values "a", "bee", "is" into a tree of two-nodes with root r.
- 3. Remove *n* and merge root *r* with the parent *p* of *n*: the merged node will have three key values "bee", "it", "not".
- 4. Represent these keys by a tree of two-nodes.

Consider adding "juice", "bee", and "zoo"

- 1. Search for "bee": we find the leaf *three-node n* holding "a" and "is".
- 2. We can turn the key values "a", "bee", "is" into a tree of two-nodes with root r.
- 3. Remove *n* and merge root *r* with the parent *p* of *n*: the merged node will have three key values "bee", "it", "not".
- 4. Represent these keys by a tree of two-nodes.

Consider adding "juice", "bee", and "zoo"

1. Search for "zoo": we find the leaf *three-node n* holding "or" and "word".

Consider adding "juice", "bee", and "zoo"

- 1. Search for "zoo": we find the leaf *three-node n* holding "or" and "word".
- 2. We can turn the key values "or", "word", "zoo" into a tree of two-nodes with root r.

Consider adding "juice", "bee", and "zoo"

- 1. Search for "zoo": we find the leaf *three-node n* holding "or" and "word".
- 2. We can turn the key values "or", "word", "zoo" into a tree of two-nodes with root r.
- 3. Remove *n* and merge root *r* with the parent *p* of *n*: the merged node will have two key values "not" and "word".

Consider adding "juice", "bee", and "zoo"

- 1. Search for "zoo": we find the leaf *three-node n* holding "or" and "word".
- 2. We can turn the key values "or", "word", "zoo" into a tree of two-nodes with root r.
- 3. Remove *n* and merge root *r* with the parent *p* of *n*: the merged node will have two key values "not" and "word".

Deleting values from a 2-3 tree

1. Deleting a value from a leaf three-node n.

Deleting values from a 2-3 tree

1. Deleting a value from a leaf three-node *n*. Straightforward: replace the node *n* by a two-node.

- Deleting a value from a leaf three-node *n*.
 Straightforward: replace the node *n* by a two-node.
- 2. Deleting a value from a leaf two-node.

- Deleting a value from a leaf three-node *n*.
 Straightforward: replace the node *n* by a two-node.
- Deleting a value from a leaf two-node.
 Complex: borrow an adjacent value from the parent, recursively if the parent itself is a two-node.

- Deleting a value from a leaf three-node *n*.
 Straightforward: replace the node *n* by a two-node.
- Deleting a value from a leaf two-node.
 Complex: borrow an adjacent value from the parent, recursively if the parent itself is a two-node.
- 3. Deleting an internal value.

- Deleting a value from a leaf three-node *n*.
 Straightforward: replace the node *n* by a two-node.
- 2. Deleting a value from a leaf two-node. Complex: borrow an adjacent value from the parent, recursively if the parent itself is a two-node.
- Deleting an internal value.
 Complex: replace value by the succeeding value (a leaf value), remove that leaf value.

- 2-3 trees have *at least* two children per internal node:
- 2-3 trees can be *compacter* (in their height) than balanced search trees!

- 2-3 trees have *at least* two children per internal node:
- 2-3 trees can be *compacter* (in their height) than balanced search trees!
- 2-3 trees require *complex* tree algorithms, however:
- e.g., separate code to deal with two-nodes and three-nodes.

- 2-3 trees have *at least* two children per internal node:
- 2-3 trees can be *compacter* (in their height) than balanced search trees!
- 2-3 trees require *complex* tree algorithms, however: e.g., separate code to deal with two-nodes and three-nodes.
- 2-3 trees are *costly* for very large values: when adding or removing values, other values are moved around in memory!

- 2-3 trees have *at least* two children per internal node:
- 2-3 trees can be *compacter* (in their height) than balanced search trees!
- 2-3 trees require *complex* tree algorithms, however: e.g., separate code to deal with two-nodes and three-nodes.
- 2-3 trees are *costly* for very large values: when adding or removing values, other values are moved around in memory!
- 2-3 trees can be generalized to (k-2k)-trees that are even compacter: these (k-2k)-trees are at the basis of external memory data structures, e.g., B+trees that are widely used in file systems and large-scale databases.

From 2-3 trees to *left-leaning* red-black trees

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

From 2-3 trees to *left-leaning* red-black trees

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

► Two-nodes are already binary search tree nodes.

From 2-3 trees to *left-leaning* red-black trees

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

► Two-nodes are already binary search tree nodes.

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

- ► Two-nodes are already binary search tree nodes.
- ► Three-nodes can be replaced by a binary search tree structure with two nodes.

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

- ► Two-nodes are already binary search tree nodes.
- ► Three-nodes can be replaced by a binary search tree structure with two nodes.

4/1

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

- ► Two-nodes are already binary search tree nodes.
- ► Three-nodes can be replaced by a binary search tree structure with two nodes.

Reusing the addition and removal algorithms from 2-3 trees We need some way to identify when a binary search tree structure *represents* a three-node.

Question: How can we simplify 2-3 trees?

Idea: Turn 2-3 tree nodes into binary search tree structures.

- ► Two-nodes are already binary search tree nodes.
- ► Three-nodes can be replaced by a binary search tree structure with two nodes.

Reusing the addition and removal algorithms from 2-3 trees We need some way to identify when a binary search tree structure *represents* a three-node.

→ Mark the added left-leaning node (with the color red).

A 2-3 tree

An equivalent left-leaning red-black tree

An equivalent left-leaning red-black tree

Some usefull properties

- 1. Every path from root to leaf has at-most $log_2(N)$ unmarked nodes.
- 2. Every path from root to leaf has the same number of *unmarked* nodes.
- 3. No marked nodes "touch" each other.

An equivalent left-leaning red-black tree

Some usefull properties (that we have to maintain)

- 1. Every path from root to leaf has at-most $log_2(N)$ unmarked nodes.
- 2. Every path from root to leaf has the same number of *unmarked* nodes.
- 3. No marked nodes "touch" each other.

Consider adding "juice", "kid", "ism", "bee", and "now"

1. Search for "juice": we find the leaf *two-node n* holding "just".

- 1. Search for "juice": we find the leaf *two-node n* holding "just".
- 2. We can turn node n into a *three-node*.

Consider adding "juice", "kid", "ism", "bee", and "now"

1. Search for "kid": we find the leaf *two-node n* holding "just".

- 1. Search for "kid": we find the leaf *two-node n* holding "just".
- 2. We can turn node *n* into a *three-node*, but simply adding "kid" will not do so!

- 1. Search for "kid": we find the leaf *two-node n* holding "just".
- 2. We can turn node *n* into a *three-node*, but simply adding "kid" will not do so!
- 3. We can *rotate left* around n to make a proper three-node.

- 1. Search for "kid": we find the leaf *two-node n* holding "just".
- 2. We can turn node *n* into a *three-node*, but simply adding "kid" will not do so!
- 3. We can *rotate left* around n to make a proper three-node.

Consider adding "juice", "kid", "ism", "bee", and "now"

1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).

- 1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).
- 2. We can turn node n into a *three-node*, but simply adding "ism" will not do so!

- 1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).
- 2. We can turn node *n* into a *three-node*, but simply adding "ism" will not do so!
- 3. Push color toward parent p of n: now marked nodes "touch" each other.

- 1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).
- 2. We can turn node *n* into a *three-node*, but simply adding "ism" will not do so!
- 3. Push color toward parent p of n: now marked nodes "touch" each other.
- 4. We can *rotate right* around the parent of p toward fixing the marked nodes.

- 1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).
- 2. We can turn node n into a *three-node*, but simply adding "ism" will not do so!
- 3. Push color toward parent p of n: now marked nodes "touch" each other.
- 4. We can *rotate right* around the parent of p toward fixing the marked nodes.

- 1. Search for "ism": we find the node *n* holding "is" (part of a *three-node*).
- 2. We can turn node *n* into a *three-node*, but simply adding "ism" will not do so!
- 3. Push color toward parent p of n: now marked nodes "touch" each other.
- 4. We can *rotate right* around the parent of *p* toward fixing the marked nodes.
- 5. Push color toward parent of p (roots stay unmarked).

Consider adding "juice", "kid", "ism", "bee", and "now"

1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.
- 3. We can *rotate left* around n to turn this case into a previous case!

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.
- 3. We can *rotate left* around n to turn this case into a previous case!

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.
- 3. We can *rotate left* around n to turn this case into a previous case!
- 4. Marked nodes "touch" each other: we rotate right around the node holding "is".

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.
- 3. We can *rotate left* around n to turn this case into a previous case!
- 4. Marked nodes "touch" each other: we rotate right around the node holding "is".

- 1. Search for "bee": we find the node *n* holding "a" (part of a *three-node*).
- 2. Simply adding "bee" invalidates the entire structure.
- 3. We can *rotate left* around n to turn this case into a previous case!
- 4. Marked nodes "touch" each other: we rotate right around the node holding "is".
- 5. Push color toward parent.

Consider adding "juice", "kid", "ism", "bee", and "now"

1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).

- 1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).
- 2. Simply adding "nor" invalidates the entire structure.

- 1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).
- 2. Simply adding "nor" invalidates the entire structure.
- 3. This is a previous case: *rotate right*.

- 1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).
- 2. Simply adding "nor" invalidates the entire structure.
- 3. This is a previous case: *rotate right*.

- 1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).
- 2. Simply adding "nor" invalidates the entire structure.
- 3. This is a previous case: rotate right.
- 4. Push color up.

- 1. Search for "nor": we find the node *n* holding "or" (part of a *three-node*).
- 2. Simply adding "nor" invalidates the entire structure.
- 3. This is a previous case: rotate right.
- 4. Push color up.
- 5. Push color up (roots stay unmarked).

The rotate left and rotate right operations

Rotate operations affect node markings.

Can be implemented using *only* pointer manipulation.

Consider a minimum value v at node n with parent p

ightharpoonup is marked and has no children.

Consider a minimum value v at node n with parent p

n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.

Consider a minimum value v at node n with parent p

n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- ightharpoonup is marked and has one (right) child node r.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- n is marked and has one (right) child node r.
 Simple: Replace n by r, which has zero consequences on the structure of the tree.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- n is marked and has one (right) child node r.
 Simple: Replace n by r, which has zero consequences on the structure of the tree.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- n is marked and has one (right) child node r.
 Simple: Replace n by r, which has zero consequences on the structure of the tree.
- ▶ *n* is *not* marked.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- n is marked and has one (right) child node r.
 Simple: Replace n by r, which has zero consequences on the structure of the tree.
- ▶ n is *not* marked → Complex: Removing n invalidates the structure of the tree.

- n is marked and has no children.Simple: Removing has zero consequences on the structure of the tree.
- n is marked and has one (right) child node r.
 Simple: Replace n by r, which has zero consequences on the structure of the tree.
- ▶ n is not marked \rightarrow Complex: Removing n invalidates the structure of the tree. *Idea*: Ensure that n is marked.

Consider a minimum value v at node n with parent p

Idea: Ensure that *n* is marked.

- ▶ We can *introduce* marked nodes at the root of the tree.
- ▶ We can push marked nodes down the tree using *rotates* toward the minimum value.

Consider a minimum value v at node n with parent p

Idea: Ensure that *n* is marked.

- ▶ We can *introduce* marked nodes at the root of the tree.
- ▶ We can push marked nodes down the tree using *rotates* toward the minimum value.

We have seen the reverse while *adding* values.

Consider a minimum value v at node n with parent p

Generalization: Remove arbitrary values.

- ► Replace arbitrary values by their successor.
- ▶ Removing successor: generalize the methods to remove the minimum from a tree.

Consider a minimum value v at node n with parent p

Removal is possible with only local tree modifications along the path from root to value.

Consider a minimum value v at node n with parent p

Removal is possible with only local tree modifications along the path from root to value.

Many minute details to deal with in a plethora of cases.

Conclusion: Left-leaning red-black trees

Some usefull properties (that we can maintain)

- 1. Every path from root to leaf has at-most $log_2(N)$ unmarked nodes.
- 2. Every path from root to leaf has the same number of *unmarked* nodes.
- 3. No marked nodes "touch" each other.

Conclusion: Left-leaning red-black trees

Some usefull properties (that we can maintain)

- 1. Every path from root to leaf has at-most $log_2(N)$ unmarked nodes.
- 2. Every path from root to leaf has the same number of *unmarked* nodes.
- 3. No marked nodes "touch" each other.

Paths from root to leafs have length *at-most* $2 \log_2(N)$: all operations of interest in worst-case $\Theta(\log_2(N))$.

Final notes on binary search trees

We looked at *left-leaning* red-black trees.

In practice, one typically uses ordinary red-back trees:

Very similar, just *more cases* to consider when adding or removing values.

Final notes on binary search trees

We looked at *left-leaning* red-black trees.

In practice, one typically uses ordinary red-back trees:

Very similar, just *more cases* to consider when adding or removing values.

	C++	Java
Set Dictionary	std::set std::map	java.util.TreeSet java.util.TreeMap
Set (duplicates) Dictionary (duplicates)	std::multiset std::multimap	

Final notes on binary search trees

We looked at *left-leaning* red-black trees.

In practice, one typically uses ordinary red-back trees:

Very similar, just *more cases* to consider when adding or removing values.

	C++	Java
Set Dictionary	std::set std::map	java.util.TreeSet java.util.TreeMap
Set (duplicates) Dictionary (duplicates)	<pre>std::multiset std::multimap</pre>	

Variants of search trees are used everywhere: file systems, database systems, ...

Faster sets and dictionaries: beyond $log_2(N)$

Consider the following variant of WORDCOUNT

Algorithm GradeCount(*stream*):

Input: *stream* is a sequence of grades, each in 0, ..., 10.

- 1: $grades := [0 \mid 0 \le i \le 10].$
- 2: **for all** grade *g* from *stream* **do**
- 3: grades[g] := grades[g] + 1.
- 4: output each pair $(i \mapsto grades[i]), 0 \le i \le 10$.

Result: output a histogram of the grades in *stream*.

Faster sets and dictionaries: beyond $log_2(N)$

Consider the following variant of WORDCOUNT

Algorithm GradeCount(*stream*):

Input: *stream* is a sequence of grades, each in 0, . . . , 10.

- 1: $grades := [0 \mid 0 \le i \le 10].$
- 2: **for all** grade *g* from *stream* **do**
- 3: grades[g] := grades[g] + 1.
- 4: output each pair $(i \mapsto grades[i]), 0 \le i \le 10$.

Result: output a histogram of the grades in *stream*.

grades is an array that essentially serves as a dictionary in which grades are keys and a grade-count is the associated value.

Faster sets and dictionaries: beyond $log_2(N)$

Consider the following variant of WORDCOUNT

Algorithm GradeCount(*stream*):

Input: *stream* is a sequence of grades, each in 0, . . . , 10.

- 1: $grades := [0 \mid 0 \le i \le 10].$
- 2: **for all** grade *g* from *stream* **do**
- 3: grades[g] := grades[g] + 1.
- 4: output each pair $(i \mapsto grades[i]), 0 \le i \le 10$.

Result: output a histogram of the grades in *stream*.

grades is an array that essentially serves as a dictionary in which grades are keys and a grade-count is the associated value.

Worst-case complexity only $\Theta(|stream|)$.

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

An array L[0...N) maps *positions* 0,...,N onto values.

For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries

Given an arbitrary set of *keys* \mathcal{K} , we need a function $h: \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions.

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries

Given an arbitrary set of *keys* \mathcal{K} , we need a function $h: \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions \to a *hash function*.

Toward using arrays as dictionaries L[0...10): 0: 1: 2: 3: 4: 5: 6: 7: 8: 9:

Consider
$$h : Strings \rightarrow \{0, \dots 9\}$$
 with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

L	[0				10):	
---	----	--	--	--	------	--

0:

1:

2:

3:

4:

6:

7:

8:

5:

9:

Consider $h : Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j','t'	9

W	h(w)
"a"	
word"	
"is"	
"just"	
"or"	
"it"	
"not"	

L[0...10):
0:
1:
2:

3:

4:

5:

6: 7:

8:

9:

Consider h: Strings $\rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
" <mark>a</mark> "	0
"word"	
"is"	
"just"	
"or"	
"it"	
"not"	

L[0...10): 0: a

1:

3:

4:

5:

6: 7:

8: 9:

Consider $h : Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
"a"	0
word"	2
"is"	
"just"	
"or"	
"it"	
"not"	

L[0...10): 0: a 1: 2: word 3: 4: 5: 6: 7:

8:

9:

Consider $h: Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
"a"	0
"word"	2
"is"	8
"just"	
"or"	
"it"	
"not"	

L[010)		
0:	a	
1:		
2:	word	
3:		
4:		
5:		
6:		
7:		
8:	is	
9:		

Consider $h: Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j','t'	9

W	h(w)
"a"	0
"word"	2
"is"	8
"just"	9
"or"	
"it"	
"not"	

L[0...10):

0: a 1:

2: word 3:

4:

5:

6: 7:

8:

9:

is

just

Consider $h : Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

h(w)
0
2
8
9
4

L[0...10):

0: a

2: word

3:

4:

5:

6:

7:

8:

9:

or

is just

Consider $h: Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
"a"	0
"word"	2
"is"	8
"just"	9
"or"	4
"it"	8
"not"	

L	[010):
0:	a	
1:		
2:	word	
3:		
4:	or	
5:		
6:		
7:		
8:	is	it?
9:	just	

Consider $h : Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
"a"	0
"word"	2
"is"	8
"just"	9
"or"	4
"it"	8
"not"	

Consider $h: Strings \rightarrow \{0, \dots 9\}$ with

First character	h(v)
'a', 'k', 'u'	0
'b', '1', 'v'	1
'c', 'm', 'w'	2
'd', 'n', 'x'	3
'e', 'o', 'y'	4
'f', 'p', 'z'	5
'g', 'q'	6
'h', 'r'	7
'i', 's'	8
'j', 't'	9

W	h(w)
"a"	0
"word"	2
"is"	8
"just"	9
"or"	4
"it"	8
"not"	3

L[0...10):

0: a 1:

2: word

3:

5:

6: 7:

8:

9:

4: or

not

is just

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries Given an arbitrary set of *keys* \mathcal{K} , we need a function $h : \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions \to a *hash function*.

We want to *prevent* collisions

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries

Given an arbitrary set of *keys* \mathcal{K} , we need a function $h: \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions \to a *hash function*.

We want to *prevent* collisions

- What if |K| is very large? For example, the number of strings is infinite.
- What if N is very small?
 For example, to save memory when we only aim to store a few keys.

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries

Given an arbitrary set of *keys* \mathcal{K} , we need a function $h : \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions \to a *hash function*.

We want to *prevent* collisions

- What if |K| is very large?
 For example, the number of strings is infinite.
- What if N is very small?
 For example, to save memory when we only aim to store a few keys.

We also want "cheap" hash functions to maximize performance.

An array L[0...N) maps *positions* 0,...,N onto values. For sets: the value could be the key itself.

Very resitrictive: most *keys* are not integers in a very small range. For example, keys could be strings "a", "word", "is", "just", "or", "it", "not".

Generalizing array-dictionaries

Given an arbitrary set of *keys* \mathcal{K} , we need a function $h : \mathcal{K} \to \{0, ..., N-1\}$ that maps these keys to array positions \to a *hash function*.

We have to deal with collisions

- What if |K| is very large?
 For example, the number of strings is infinite.
- What if N is very small?
 For example, to save memory when we only aim to store a few keys.

We also want "cheap" hash functions to maximize performance.

Hash tables

A *hash table* is a data structure that uses a *hash function* that maps *values* to array positions that can *hold that value*.

Hash tables

A hash table is a data structure that uses a hash function that maps values to array positions that can hold that value.

The way a hash table *holds values* is determined by how the table deals with *collisions*: Typically determines the design of the data structure.

Hash tables

A hash table is a data structure that uses a hash function that maps values to array positions that can hold that value.

The way a hash table *holds values* is determined by how the table deals with *collisions*: Typically determines the design of the data structure.

We will look at two main flavors of hash tables:

Chaining Use a linked list to store *collisions*.

Linear probing Store *collisions* consecutively in the array.

Let $h: \mathcal{K} \to \{0, \dots, N-1\}$ be a hash function. We *assume* that the hash function distributes the values in \mathcal{K} uniformly and independently among the positions $\{0, \dots, N-1\}$.

Let $h: \mathcal{K} \to \{0, ..., N-1\}$ be a hash function.

We assume that the hash function distributes the values in K uniformly and independently among the positions $\{0, ..., N-1\}$.

For any two distinct values $v_1, v_2 \in \mathcal{K}$, we have $h(v_1) = h(v_2)$ with a probability of $\frac{1}{N}$.

Let $h: \mathcal{K} \to \{0, \dots, N-1\}$ be a hash function. We *assume* that the hash function distributes the values in \mathcal{K} uniformly and independently among the positions $\{0, \dots, N-1\}$.

For any two distinct values $v_1, v_2 \in \mathcal{K}$, we have $h(v_1) = h(v_2)$ with a probability of $\frac{1}{N}$.

Using this assumption, we can analyze the *expected behavior* of hash tables.

Let $h: \mathcal{K} \to \{0, \dots, N-1\}$ be a hash function. We *assume* that the hash function distributes the values in \mathcal{K} uniformly and independently among the positions $\{0, \dots, N-1\}$.

For any two distinct values $v_1, v_2 \in \mathcal{K}$, we have $h(v_1) = h(v_2)$ with a probability of $\frac{1}{N}$.

Using this assumption, we can analyze the *expected behavior* of hash tables.

Some settings allow a collision-free hash function: perfect hashing. For example: the hash function h(i) = i we used in GradeCount.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

```
Idea: the hash table is an array of linked lists, the i-th linked list holding all values v with h(v) = i.
```

```
Contains value v Look up the linked list S at L[h(v)], search v in S (e.g., using a LINEARSEARCH variant).
```

Adding value v Look up the linked list S at L[h(v)], add v to S if $v \notin S$ (sets do not have duplicates).

Removing value v Look up the linked list S at L[h(v)], remove v from S if $v \in S$.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	
"word"	
"is"	
"just"	
"or"	
"it"	
"not"	

L[07):		
0:	@null	
1:	@null	
2:	@null	
3:	@null	
4:	@null	
5:	@null	
6:	@null	

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
" <mark>a</mark> "	0
"word"	
"is"	
"just"	
"or"	
"it"	
"not"	

L[0...7): @123A 0: @null 1: @null @null @null 4: @null 5: @null 6:

@123A: item: "a"

next: @null

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"is"	
"just"	
"or"	
"it"	
"not"	

@123A: item: "a" L[0...7): next: @null @123A 0: @4FDE: item: "word" **@4FDE** next: @null @null @null 3: @null 4: @null 5: @null 6:

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"is"	1
"just"	
"or"	
"it"	
"not"	

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	$h(\mathbf{w})$
"a"	0
"word"	1
"is"	1
"just"	2
"or"	
"it"	
"not"	

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"is"	1
"just"	2
"or"	0
"it"	
"not"	

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"is"	1
"just"	2
"or"	0
"it"	1
"not"	

Idea: the hash table is an array of linked lists, @C362: @123A: the *i*-th linked list holding all values v with h(v) = i. item: "or" item: "a" L[0...7): next: @123A next: @null $h: Strings \rightarrow \{0, \dots 6\}$ @C362 0: @A128: @312C: @4FDF: First character h(v) $h(\mathbf{w})$ item: "it" item: "is" W item: "word" @A128 1: next: @312C next: @4FDE next: @null "a" 'a', 'h', 'o', 'v' 0 0 @9ACD "b', 'i', 'p', 'w' "word" @9ACD: "is" "c', 'i', 'a', 'x' @null item: "just" "d', 'k', 'r', 'v' 3 "just" next: @null @null "or" "e'. '1'. 's'. 'z' 4 0 "it" "f'. 'm'. 't' 5 5: @null @F@@2: "not" "g', 'n', 'u' 6 6 item: "not" @F002 6: next: @null

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

Consider a hash table with N positions, holding M values.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

Consider a hash table with N positions, holding M values.

► On average, each linked list holds $\frac{M}{N}$ values.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

- ► On average, each linked list holds $\frac{M}{N}$ values.
- ► If the uniform hashing assumption holds, then adding or removing random values will cost an expected $\Theta\left(1 + \frac{M}{N}\right)$.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

- ► On average, each linked list holds $\frac{M}{N}$ values.
- ► If the uniform hashing assumption holds, then adding or removing random values will cost an expected $\Theta\left(1 + \frac{M}{N}\right)$.
- ▶ Worst-case: $\Theta(N)$ (all values end up in a single linked list).

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

- ► On average, each linked list holds $\frac{M}{N}$ values.
- ► If the uniform hashing assumption holds, then adding or removing random values will cost an expected $\Theta\left(1 + \frac{M}{N}\right)$.
- ▶ Worst-case: $\Theta(N)$ (all values end up in a single linked list).
- For somewhat decent hash functions and N > M, adding and removing values are $\Theta(1)$ in practice.

Idea: the hash table is an array of linked lists, the *i*-th linked list holding all values v with h(v) = i.

Analysis

- ► On average, each linked list holds $\frac{M}{N}$ values.
- ► If the uniform hashing assumption holds, then adding or removing random values will cost an expected $\Theta\left(1 + \frac{M}{N}\right)$.
- ▶ Worst-case: $\Theta(N)$ (all values end up in a single linked list).
- For somewhat decent hash functions and N > M, adding and removing values are $\Theta(1)$ in practice.
- Bad hash functions exist.
 For example, the hash function we used in our examples.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

```
Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with wrap around: position 0 comes right after the last position.
```

```
Contains value v Inspect each consecutive non-free position j starting at h(v), return if L[j] = v holds for any such position.

Adding value v Look up the first free position j \ge h(v) in L, set L[j] := v if we did not find v in any of the inspected positions.
```

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

```
Contains value v Inspect each consecutive non-free position j starting at h(v), return if L[j] = v holds for any such position.

Adding value v Look up the first free position j \ge h(v) in L, set L[j] := v if we did not find v in any of the inspected positions.
```

How to remove a value? Removing values breaks consecutive sequences of non-free positions!

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

First character	h(v)	w h(w)
'a', 'h', 'o', 'v'	0	"a"
"b', 'i', 'p', 'w'	1	"word"
"c', 'j', 'q', 'x'	2	"just"
"d', 'k', 'r', 'y'	3	"is"
"e', '1', 's', 'z'	4	"or"
"f', 'm', 't'	5	"not"
"g', 'n', 'u'	6	"now"

<i>L</i> [n				7	١.	
<i>-</i> [U	•	•	•	′	٦٠	

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	
"just"	
"is"	
"or"	
"not"	
"now"	

L[07):			
0:	"a"		
1:			
2:			
3:			
4:			
5:			
6:			

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"just"	
"is"	
"or"	
"not"	
"now"	

L[0...7): 0: 1: word 2: 3: 4: 5: 6:

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"just"	2
"is"	
"or"	
"not"	
"now"	

L[07)		
0:	"a"	
1:	"word"	
2:	"just"	
3:		
4:		
5:		
6:		

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"just"	2
"is"	1
"or"	
"not"	
"now"	

10 1	ast posit	
I	$L[0\dots 7)$:
0:	"a"	
1:	"word"	Occupied!
2:	"just"	Coccupied
3:	"is"	
4:		
5:		
6.		

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i.

At-or-after with wrap around: position 0 comes right after the last position.

First character	h(v)	W	h(w)
'a', 'h', 'o', 'v'	0	"a"	0
"b', 'i', 'p', 'w'	1	"word"	1
"c', 'j', 'q', 'x'	2	"just"	2
"d', 'k', 'r', 'y'	3	"is"	1
"e', '1', 's', 'z'	4	"or"	0
"f', 'm', 't'	5	"not"	
"g', 'n', 'u'	6	"now"	

	ast posit	
I	$L[0\dots 7]$:
0:	"a"	
1:	"word"	Occupied!
2:	"just"	Occupied.
3:	"is"	
4:	"or"	
5:		
6:		

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"just"	2
"is"	1
"or"	0
"not"	6
"now"	

L[0...7): "a" 0: "word" 1: "just" 2: "is" 3: "or" 4: 5: "not" 6:

Idea: the hash table holds all values directly,

the value v will be stored at the first free position at-or-after h(v) = i.

At-or-after with wrap around: position 0 comes right after the last position.

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

W	h(w)
"a"	0
"word"	1
"just"	2
"is"	1
"or"	0
"not"	6
"now"	6

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

Consider removing "word", by simply erasing the value.

L[07)		
0:	"a"	
1:	"word"	
2:	"just"	
3:	"is"	
4:	"or"	
5:	"nor"	
6:	"not"	

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

Consider removing "word", by simply erasing the value.

L[07)		
0:	"a"	
1:		
2:	"just"	
3:	"is"	
4:	"or"	
5:	"nor"	
6:	"not"	

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i.

At-or-after with wrap around: position 0 comes right after the last position.

 $h: Strings \rightarrow \{0, \dots 6\}$

First character	h(v)
'a', 'h', 'o', 'v'	0
"b', 'i', 'p', 'w'	1
"c', 'j', 'q', 'x'	2
"d', 'k', 'r', 'y'	3
"e', '1', 's', 'z'	4
"f', 'm', 't'	5
"g', 'n', 'u'	6

Consider removing "word", by simply erasing the value.

How can we find "just", "is", "or", "nor"?

At wrong positions!

```
Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with wrap around: position 0 comes right after the last position.
```

```
Contains value v Inspect each consecutive non-free position j starting at h(v), return if L[j] = v holds for any such position.

Adding value v Look up the first free position j \ge h(v) in L, set L[j] := v if we did not find v in any of the inspected positions.
```

How to remove a value at position j?

Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position *j*.

Option 2 set L[j] := REMOVED with REMOVED a special-purpose value. When searching: REMOVED is unequal to any value.

```
Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with wrap around: position 0 comes right after the last position.
```

```
Contains value v Inspect each consecutive non-free position j starting at h(v), return if L[j] = v holds for any such position.

Adding value v Look up the first free position j \ge h(v) in L, set L[j] := v if we did not find v in any of the inspected positions.
```

How to remove a value at position j?

Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position *j*.

Option 2 set L[j] := Removed with Removed a special-purpose value. When searching: Removed is unequal to any value.

Option 1 is costlier during removal, but cheaper afterwards.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

$h: Strings \rightarrow \{0$, 6}		
First character	h(v)		(
'a', 'la', 'a', '…'		Consider removing "word",	
'a', 'h', 'o', 'v'	0	by simply erasing the value.	
"b', 'i', 'p', 'w'	1	, , , ,	4
"c', 'j', 'q', 'x'	2	How can we find	3
"d', 'k', 'r', 'y'	3	"just", "is", "or", "nor"?	
"e', '1', 's', 'z'	4	just, is, or, nor:	4
"f', 'm', 't'	5	Option 1.	E
"g', 'n', 'u'	6	We reinsert these three values.	•
			6

L[0...7): "a" 0: 1: "just" 2: "is" 3: "or" 4: "nor" 5: "not" 6:

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

$h: Strings \rightarrow \{0$, 6}	
First character	h(v)	,
"a', 'h', 'o', 'v'	0	Consider removing "word",
"b', 'i', 'p', 'w'	1	by simply erasing the value.
"c', 'j', 'q', 'x'	2	How can we find
"d', 'k', 'r', 'y'	3	"just", "is", "or", "nor"?
"e', '1', 's', 'z'	4	just, is, or, nor.
"f', 'm', 't'	5	Option 1.
"g', 'n', 'u'	6	We reinsert these three values.

L[07):		
0:	"a"	
1:	"is"	
2:	"just"	
3:	"or"	
4:	"nor"	
5:		
6:	"not"	

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with *N* positions, holding *M* values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with *N* positions, holding *M* values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α .

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with *N* positions, holding *M* values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α and the probability that *j* consecutive positions hold a value is at-most α^j .

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with *N* positions, holding *M* values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

- If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α and the probability that *j* consecutive positions hold a value is at-most α^j .
- ► To find a non-existing value (adding), we expect to inspect at-most

$$1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^N$$

positions.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with *N* positions, holding *M* values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

- If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α and the probability that *j* consecutive positions hold a value is at-most α^{j} .
- ► To find a non-existing value (adding), we expect to inspect at-most

$$1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^N \le \sum_{i=0}^{\infty} \alpha^i$$

positions.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with N positions, holding M values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

- If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α and the probability that *j* consecutive positions hold a value is at-most α^j .
- ► To find a non-existing value (adding), we expect to inspect at-most

$$1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^N \le \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}$$

positions.

Idea: the hash table holds all values directly, the value v will be stored at the first free position at-or-after h(v) = i. At-or-after with *wrap around*: position 0 comes right after the last position.

Analysis

Consider a hash table with N positions, holding M values. Let $\alpha = \frac{M}{N}$ be the *fill factor*.

- If the uniform hashing assumption holds, then the *i*-th position holds a value with probability α and the probability that *j* consecutive positions hold a value is at-most α^{j} .
- ► To find a non-existing value (adding), we expect to inspect at-most

$$1 + \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^N \le \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}$$

positions.

► To find an existing value (*removing*), we expect to inspect at-most $\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha} \right)$ positions.

For somewhat decent hash functions and $N \gg M$, adding and removing values are $\Theta(1)$ in practice.

Hash tables provide a balance between memory usage and runtime cost:

- With mostly-empty tables (high memory usage), collisions are expected to be rare (low runtime cost).
- With mostly-full tables (low memory usage), collisions are expected to be frequent (high runtime cost).

Hash tables provide a balance between memory usage and runtime cost:

- With mostly-empty tables (high memory usage), collisions are expected to be rare (low runtime cost).
- With mostly-full tables (low memory usage), collisions are expected to be frequent (high runtime cost).

In practice, one typically *resizes* the hash table when it gets too full.

Hash tables provide a balance between memory usage and runtime cost:

- With mostly-empty tables (high memory usage), collisions are expected to be rare (low runtime cost).
- ► With mostly-full tables (low memory usage), collisions are expected to be frequent (high runtime cost).

In practice, one typically *resizes* the hash table when it gets too full.

This requires a family of hash functions $h_N : \mathcal{K} \to \{0, ..., N-1\}$.

Hash tables provide a balance between memory usage and runtime cost:

- With mostly-empty tables (high memory usage), collisions are expected to be rare (low runtime cost).
- With mostly-full tables (low memory usage), collisions are expected to be frequent (high runtime cost).

In practice, one typically *resizes* the hash table when it gets too full.

This requires a *family of hash functions* $h_N : \mathcal{K} \to \{0, ..., N-1\}$.

Let *M* be the *maximum size* of arrays in your system.

Let $h: \mathcal{K} \to \{0, ..., M-1\}$ be a hash function. One way to obtain $h_N, 0 \le N \le M$, is via

$$h_N(i) = h(i) \mod N.$$

Final notes on hash tables

Most dynamic hash tables are implemented on top of dynamic arrays using *chaining*. *Linear probing* is especially usefull for *constant tables*.

Final notes on hash tables

Most dynamic hash tables are implemented on top of dynamic arrays using *chaining*. *Linear probing* is especially usefull for *constant tables*.

	C++	Java
Set Dictionary	<pre>std::unordered_set (C++11) std::unordered_map (C++11)</pre>	java.util.HashSet java.util.HashMap
Set (duplicates) Dictionary (duplicates)	<pre>std::unordered_multiset(C++11) std::unordered_multimap(C++11)</pre>	

	Cost	Ordered	Principle
Dynamic Arrays	$\Theta(N)$	No	
Ordered Dynamic Array ^a	$\Theta(\log_2(N)), \Theta(N)$	Yes	BinarySearch
Binary Search Trees	$\Theta(\log_2(N))$	Yes	Red-Black Trees.
Hash Tables	Expected $\Theta(1)^b$	No	Chaining.

 $[^]a$ Supported in C++23 via std::flat_set (set), std::flat_map (dictionary), std::flat_multiset (set, with duplicates), and std::flat_multimap (dictionary, with duplicates).

 $^{{}^}b\mathsf{For}$ somewhat decent hash functions and large enough hash table.

