TEMA 5. EVALUACIÓN DE SISTEMAS DE RI

Contenidos

- 1. Objetivo de la evaluación
- Eficacia en RI
- 3. Relevancia
- 4. Colecciones de test
- 5. Métricas para la eficacia.
 - 5.1. Evaluar resultados de RI no ordenados.
 - 5.2. Evaluar resultados de RI ordenados.

Bibliografía

A Introduction to Information Retrieval:

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Cambridge University Press, **2009**.

Capítulo 8

Speech and Language Processing: International Version, 2/E.

Daniel Jurafsky, James H. Martin.

Pearson International Edition, 2009. ISBN-10: 0135041961.

Capítulo 23

1. OBJETIVO DE LA EVALUACIÓN

Objetivo de la evaluación

Comparar sistemas entre sí.

¿Qué podemos comparar?

- Eficacia (precisión y cobertura).
- Eficiencia (temporal y espacial).
- Satisfacción del usuario (interfaz, modo de presentación de resultados, etc.).

2. EFICACIA EN RI

¿Cómo medir la eficacia en RI?

- Necesitamos una colección de test consistente en tres elementos:
 - Una colección de documentos.
 - 2. Un conjunto de consultas.
 - 3. Un conjunto de juicios de relevancia.*

*(gold standard o ground truth o judgment of relevance)

Ajuste del rendimiento del sistema

- Cálculo de pesos (parámetros) para ajustar el rendimiento del sistema.
- Incorrecto: evaluar un sistema tomando la colección sobre la que se han ajustado los parámetros para maximizar su rendimiento.
- Correcto: utilizar una colección de desarrollo para entrenar y ajustar los parámetros, y otra colección para evaluar el rendimiento imparcial.

3. RELEVANCIA

¿Cómo expresar la relevancia?

- Forma estándar: valoración binaria de si es relevante o no relevante para cada par consulta-documento.
- Otras alternativas, considerar una relevancia dentro de una escala, como documentos altamente relevantes o marginalmente relevantes u otras.

Ejemplo- Listas de consultas evaluadas (Colección Times)

1.

- KENNEDY ADMINISTRATION PRESSURE ON NGO DINH DIEM TO STOP SUPPRESSING THE BUDDHISTS.
- Documentos relevantes: 268 288 304 308 323 326 334.

2.

- EFFORTS OF AMBASSADOR HENRY CABOT LODGE TO GET VIET NAM'S PRESIDENT DIEM TO CHANGE HIS POLICIES OF POLITICAL REPRESSION.
- Documentos relevantes: 326 334

donde cada documento relevante de una consulta tiene el mismo grado de relevancia.

4. COLECCIONES DE TEST

¿Cómo construir Colecciones de test?

 Tradicional: se estudia la relevancia de cada documento para cada consulta.

- Pooling (en competiciones): sólo se estudia la relevancia de los documentos devueltos por los participantes del concurso.
 - Ventaja: permite trabajar con colecciones de gran volumen de documentos.
 - Desventaja: no se sabe la relevancia de todos los documentos.

Colecciones de test más extendidas:

- TREC Ad Hoc track

 (primeras 8 evaluaciones del TREC entre 1992 y 1999): 1.89 millones de documentos y juicios de relevancia para 450 consultas.
- La mejor subcolección, más consistente, la constituyen TREC's 6-8 con 150 consultas sobre 528.000 artículos. http://trec.nist.gov

Colecciones de test más extendidas:

 CLEF- Conference and Labs of the Evaluation Forum (Cross Language Evaluation Forum)

http://www.clef-initiative.eu/

Promover la investigación, la innovación y el desarrollo de sistemas de acceso a la información con énfasis en la información multilingüe y multimodal.

 Reuters-21578, una colección de documentos (inicialmente con 21.578 artículos que amplió a 806.791) diseñada para tareas de clasificación de texto.

5. MÉTRICAS PARA LA EFICACIA

- 5.1. Evaluar resultados de RI no ordenados.
- 5.2. Evaluar resultados de RI ordenados.

Métricas para la eficacia

La forma de evaluación depende de si el conjunto de documentos resultante de la recuperación esta ordenado o no (ranked or unranked).

5.1. Evaluar resultados de RI no ordenados.

Dos métricas muy extendidas en el área de la RI, precisión y cobertura (en inglés, precision y recall):

precision (P) en IR sirve para medir la fracción de documentos recuperados que son relevantes.

P= nº de docs relevantes recuperados/ nº de docs recuperados

recall (R) en IR se define como la fracción de documentos relevantes que son recuperados.

R= nº de docs relevantes recuperados/ nº de docs relevantes en la colección

Otra manera de presentar estas métricas

	Relevante	No relevante
Recuperado	true positives (tp)	false positives (fp)
No Recuperado	false negatives (fn)	true negatives (tn)

Precision P = tp/(tp + fp)

Recall R = tp/(tp + fn)

 F-Medida (F-measure o media armónica ponderada) es otra métrica que combina la precisión y la cobertura según un parámetro β.

$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 Si $\beta = 1$
$$F_1 = \frac{2PR}{P + R}$$

- Si β <1 se da mayor importancia a la Precision
- Si β >1 se le da mayor importancia al Recall.

Ejercicio #1: Hay un total de 20 documentos relevantes en la colección. El sistema devuelve 8 relevantes y 10 no relevantes.

	Relevante	No relevante
Recuperado	8 tp	10 fp
No Recuperado	12 fn	tn

Calcula la Precision, el Recall y la F₁-medida

5.2. Evaluar resultados de RI ordenados.

- La Precision, el Recall, y la F-medida son medidas basadas en conjuntos de documentos no ordenados.
- Necesitamos extender estas medidas, o definir otras nuevas si queremos mostrar los k documentos de la parte superior de la lista ordenada de documentos recuperados (ranking).
- La métrica debería preferir un sistema de RI que ponga más arriba los documentos relevantes.

Curva precision-recall

 La curva (línea azul) tendrá forma de sierra debido a que si el (k+1)-ésimo documento recuperado no es relevante la cobertura es la misma que la de los k documentos del tope pero la precisión descenderá.

 Una manera de suavizar estos dientes es calculando la precisión interpolada (línea roja).

5.2.1. Precisión interpolada

Definición (Manning et al., 2009-Cap.8):

 P_{interp} a un cierto nivel de recall r se define como la precisión más alta que se encuentra para cualquier nivel de recall $r' \ge r$:

$$p_{interp}(r) = \max_{r' \ge r} p(r')$$

5.2.1. Precisión interpolada

Aunque toda la curva interpolada puede ser informativa, generalmente se trabaja con un número bajo de valores.

Una forma habitual es la introducida en el TREC.

Precisión interpolada en 11 niveles de recall:

Para cada valor de recall estándar i desde 0.0 a 1.0 con incrementos de 0.1, se toma la precisión máxima obtenida en cualquier valor de recall real mayor o igual a i.

Ejercicio#2.

Para la consulta Q1 tenemos 4 documentos relevantes. Calcula Precision&Recall Reales e Interpolados.

Tabla Precision&Recall Reales:

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	Yes	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	4/6	4/7	4/8	4/9	4/10
Recall	0.25	0.25	0.50	0.50	0.75	1.00	1.00	1.00	1.00	1.00

Tabla Precision&Recall Interpoladas:

Precision	1	1	1	2/3	2/3	2/3	4/6 = 2/3	4/6	4/6	4/6	4/6
Recall	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

Para r' € [0.5-1] ≥ r=0.3 max P(r') = $\frac{2}{3}$

Ejercicio#3.

Para la consulta Q2 tenemos 5 documentos relevantes. Calcula Precision&Recall Reales e Interpolados.

Tabla Precision&Recall Reales

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	No	No	No	No	No
Precision										_
Recall										

5.2.2 Promedio interpolado

11-puntos de precisión promedia interpolada

Cuando se dispone de más de una consulta:

- Para cada consulta, la precisión interpolada se mide en los 11 niveles de Recall de 0.0, 0.1, 0.2,..., 1.0.
- Para cada nivel de recall se calcula la media aritmética de la precisión interpolada a ese nivel de recall para cada consulta en la colección de test.

5.2.3 Medir la eficacia mediante un único valor

- ➤ Mean Average Precision (MAP)
- >R-Precision
- ➤ Precision-at-*k*

Mean Average Precision (MAP)

- Proporciona una medida única de calidad en todos los niveles de recall.
- Para una consulta simple la *Precisión media* es el promedio del valor de precisión obtenido después de que cada documento relevante sea recuperado en la lista ordenada de documentos recuperados.
- Si algún documento relevante no se recupera entonces el valor de precisión que sumaremos para promediar será 0.
- Tenemos que conocer a priori nº de docs. relevantes.

Ejemplo. Consulta con 5 documentos relevantes en las posiciones 1, 3, 6, 10 y 15

Obtendriamos precisiones de 1, 0.66, 0.5, 0.4, 0.3 entonces la precisión media de la consulta sería:

$$P_{media} = \frac{1 + 0.66 + 0.5 + 0.4 + 0.3}{5} = 0.57$$

- Esta medida favorece a los sistemas que devuelven los documentos relevantes en las primeras posiciones de la lista ordenada.
- El valor de MAP para una colección de test es la media aritmética de los valores de precisión promedio para las consultas individuales.
- > No se eligen niveles fijos de recall, y no hay ninguna interpolación.

- Sea $\{d_1, \ldots, d_{mj}\}$ el conjunto de documentos relevantes para una consulta $q_i \in Q$.
- Sea R_{jk} es el conjunto resultante de la recuperación ordenada desde el primer resultado hasta llegar al documento relevante d_k, entonces MAP(Q) será:

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$$

Ejercicio#5. Para cada consulta Q1 y Q2 calcula Precisión media y MAP del conjunto.

Tabla Precision&Recall Reales Q1 (4 docs. relevantes)

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	Yes	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	4/6	4/7	4/8	4/9	4/10
Recall	0.25	0.25	0.50	0.50	0.75	1.00	1.00	1.00	1.00	1.00

Tabla Precision&Recall Reales Q2 (5 docs. relevantes)

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	No	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	3/6	3/7	3/8	3/9	3/10
Recall	0.2	0.2	0.4	0.4	0.6	0.6	0.6	0.6	0.6	0.6

- Precision media Q1 =
- Precision media Q2 =
- MAP =

R-Precision

- •Sea R el <u>número total de documentos relevantes para</u> una consulta,
- •R-Precision será el número total de documentos relevantes encontrados entre los *R* primeros documentos devueltos, dividido por *R*.
- También se puede calcular la media de R-Precision entre un conjunto de preguntas.

Ejemplo.

Si hay 20 documentos relevantes para una pregunta, y entre los primeros 20 documentos devueltos se encuentran 10 documentos relevantes, este valor sería:

$$R - \text{Precision} = \frac{10}{20} = 0.5$$

Ejercicio#6. Para cada consulta Q1 y Q2 calcula R-Precision y R-Precision media.

Tabla Precision&Recall Reales Q1 (4 docs. relevantes)

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	Yes	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	4/6	4/7	4/8	4/9	4/10
Recall	0.25	0.25	0.50	0.50	0.75	1.00	1.00	1.00	1.00	1.00

Tabla Precision&Recall Reales Q2 (5 docs. relevantes)

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	No	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	3/6	3/7	3/8	3/9	3/10
Recall	0.2	0.2	0.4	0.4	0.6	0.6	0.6	0.6	0.6	0.6

Q1: Total de documentos relevantes=4.

R-Precision para Q2 =

Q2: Total de documentos relevantes=5.

R-Precision para Q1=

Q1 + Q2: Media de R-Precision para Q1 y Q2 =

Precision-at-k

Precision-at-k: Precisión de los k primeros documentos recuperados (nºdocs relevantes encontrados entre los k docs vistos)

- Precisión a un nivel de recuperación fijo.
- Apropriado para búsquedas en web: la mayoría de usuarios espera encontrar lo que busca en la primera o segunda página.
- Ventaja: no es necesario saber de antemano el total de docs relevantes para cada consulta.
- Desventaja: es la métrica menos estable, no promedia bien, y arbitrariedad al tomar el parámetro de k.

Ejemplo,

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Yes	No	Yes	No	Yes	Yes	No	No	No	No
Precision	1/1	1/2	2/3	2/4	3/5	4/6	4/7	4/8	4/9	4/10
Recall	0.25	0.25	0.50	0.50	0.75	1.00	1.00	1.00	1.00	1.00

Precision at 5 = 3/5Precision at 10 = 4/10