

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

Unit 4: Cache Optimization

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 5: Advanced Architecture

```
Unit 1: Basic Processor Architecture and Design
Unit 2: Pipelined Processor and Design
Unit 3: Memory
Unit 4: Input/Output Device Design
3-C
Introduction to Cache Optimization
Reduce Miss Rate
Reduce Miss Penalty
4<sup>th</sup>-Optimization: Multilevel Caches to Reduce Miss Penalty
5<sup>th</sup>-Optimization: Giving priority to Read misses over Write misses to
Reduce Hit Time
```


6th Optimization: Reduce Hit Time

Avoid Address Translation In Cache Indexing To Reduce Hit Time

6th Optimization: Reduce Hit Time

Avoid Address Translation In Cache Indexing To Reduce Hit Time

What is the Problem?

Accessing data from Cache involve:

- Indexing
- Tagging

Converting Virtual Address to Physical Address take some time.

Solution ©

Virtually Indexed & Physically Tagged

- Do not wait for VA to PA translation.
- Extract Index information from Virtual Address
- Extract Tag Information from the Physical Address.

Physically Indexed and Physically Tagged (PIPT)

CPU generate VA

TLB is referred to check if required Frame present or not

PA is generated

Cache is Indexed and Tagged using PA

==

Tagging

Virtually Indexed and Physically Tagged

Frame# ---Index---- Offset

Hit or

Miss

==

L1 28 Bits Frame #

41 (28+13) Bits Virtual Address

19 Bits TAG, 16 Cache Index, 6 Bits Word

To CPU

L2 Cache

512 Bits Data

To CPU

19 Bits Tag,

- 8 KB (2¹³) Direct Mapped L1 Cache
- Block Size = 64 Bytes (2⁶ words)
- 4 MB Direct Mapped L2 Cache
- 2^22/2^6= 2^16

6th Optimization : Optimized to Improve the Hit Time

- Modified Specification for Cache
- 64 bit Virtual Address
- 41 bit Physical Address
- 16 KB (2^14)Page Size
- 2 Way, 256 Entry TLB
- 16 KB (2^13) Direct Mapped L1 Cache
- Block Size = 64 Bytes (2^6 words)
- 4 MB, 4 Way, L2 Cache
- 2²/₂/₆x 2² = 2¹

Think About It?

Why Can't we Virtually Index and Virtually TAG?

Reference

Next Session

Input & Output devices

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu

9829935135

What is the Problem?

Accessing data from Cache involve:

- Indexing
- Tagging

Converting Virtual Address to Physical Address take some time.

Solution © Example:

6th Optimization: Reduce Miss Time

Avoid Address Translation In Cache Indexing To Reduce Hit Time

Solution ©

Do not wait for VA to PA translation.

Extract Index information from Virtual Address

Extract Tag Information from the Physical Address.

6th Optimization facilitate Virtual Indexing and Physically Tagging (VIPT)