Concept definitions from Elements of Programming

Alexander Stepanov Paul McJones

April 28, 2011

Introduction

This is a summary of the concept definitions from *Elements of Programming*, published by Addison-Wesley Professional in June 2009. For more information, see www.elementsofprogramming.com.

Chapter 1: Foundations

```
Regular(T) \triangleq
```

T's computational basis includes equality, assignment, destructor, default constructor, copy constructor, total ordering (or default total ordering) and underlying type.

 $FunctionalProcedure(F) \triangleq$

F is a *regular* procedure defined on regular types: replacing its inputs with equal objects results in equal output objects.

```
\begin{array}{l} \textit{UnaryFunction}(\mathsf{F}) \triangleq \\ & \textit{FunctionalProcedure}(\mathsf{F}) \\ \land \; \mathsf{Arity}(\mathsf{F}) = 1 \\ \land \; \mathsf{Domain}: \; \textit{UnaryFunction} \to \textit{Regular} \\ & \mathsf{F} \mapsto \mathsf{InputType}(\mathsf{F},0) \\ \\ \textit{HomogeneousFunction}(\mathsf{F}) \triangleq \\ & \textit{FunctionalProcedure}(\mathsf{F}) \\ \land \; \mathsf{Arity}(\mathsf{F}) > 0 \\ \land \; (\forall i,j \in \mathbb{N})(i,j < \mathsf{Arity}(\mathsf{F})) \Rightarrow (\mathsf{InputType}(\mathsf{F},i) = \mathsf{InputType}(\mathsf{F},j)) \\ \land \; \mathsf{Domain}: \; \textit{HomogeneousFunction} \to \textit{Regular} \\ & \mathsf{F} \mapsto \mathsf{InputType}(\mathsf{F},0) \\ \\ \textbf{property}(\mathsf{F}: \; \textit{UnaryFunction}) \\ \text{regular\_unary\_function} : \mathsf{F} \\ \end{array}
```

```
f \mapsto (\forall f' \in F)(\forall x, x' \in \mathsf{Domain}(F)) \\ (f = f' \land x = x') \Rightarrow (f(x) = f'(x'))
```

Chapter 2: Transformations and Their Orbits

```
Predicate(P) \triangleq
      FunctionalProcedure(P)
   \wedge Codomain(P) = bool
HomogeneousPredicate(P) \triangleq
      Predicate(P)
   \land HomogeneousFunction(P)
UnaryPredicate(P) \triangleq
      Predicate(P)
   \land UnaryFunction(P)
Operation(Op) \triangleq
      HomogeneousFunction(Op)
   \land Codomain(Op) = Domain(Op)
Transformation(F) \triangleq
       Operation(F)
   \land UnaryFunction(F)
   \land DistanceType : Transformation \rightarrow Integer
```

Chapter 3: Associative Operations

```
\begin{split} \textit{BinaryOperation}(\mathsf{Op}) &\triangleq \\ \textit{Operation}(\mathsf{Op}) \\ &\wedge \mathsf{Arity}(\mathsf{Op}) = 2 \\ \textbf{property}(\mathsf{Op}: \textit{BinaryOperation}) \\ \mathsf{associative}: \mathsf{Op} \\ \mathsf{op} &\mapsto (\forall a, b, c \in \mathsf{Domain}(\mathsf{op})) \, \mathsf{op}(\mathsf{op}(a, b), c) = \mathsf{op}(a, \mathsf{op}(b, c)) \\ \textit{Integer}(I) &\triangleq \\ \mathsf{successor}: I \to I \\ n \mapsto n+1 \\ &\wedge \mathsf{predecessor}: I \to I \\ n \mapsto n-1 \\ &\wedge \mathsf{twice}: I \to I \\ n \mapsto n+n \\ &\wedge \mathsf{half\_nonnegative}: I \to I \\ n \mapsto |n/2|, \text{ where } n \geqslant 0 \end{split}
```

```
\land binary_scale_down_nonnegative : I \times I \rightarrow I
         (n,k) \mapsto \lfloor n/2^k \rfloor, where n,k \geqslant 0
\land binary_scale_up_nonnegative : I \times I \rightarrow I
         (n, k) \mapsto 2^k n, where n, k \ge 0
\land positive : I \rightarrow bool
         n \mapsto n > 0
\land negative : I \rightarrow bool
         n \mapsto n < 0
\land zero : I \rightarrow bool
         n \mapsto n = 0
\wedge one : I \rightarrow bool
         n \mapsto n = 1
\land \  \, \mathsf{even} : I \to \mathsf{bool}
         n \mapsto (n \mod 2) = 0
\land \mathsf{odd} : I \to \mathsf{bool}
         n \mapsto (n \mod 2) \neq 0
```

Chapter 4: Linear Orderings

```
Relation(Op) \triangleq
         HomogeneousPredicate(Op)
    \wedge Arity(Op) = 2
property(R : Relation)
transitive: R
    r \mapsto (\forall \alpha, b, c \in \mathsf{Domain}(R)) \, (r(\alpha, b) \land r(b, c) \Rightarrow r(\alpha, c))
property(R : Relation)
strict: R
    r \mapsto (\forall \alpha \in \mathsf{Domain}(R)) \neg r(\alpha, \alpha)
property(R : Relation)
reflexive: R
    r \mapsto (\forall \alpha \in \mathsf{Domain}(R)) \, r(\alpha, \alpha)
property(R : Relation)
symmetric: R
    r \mapsto (\forall a, b \in \mathsf{Domain}(R)) (r(a, b) \Rightarrow r(b, a))
property(R: Relation)
asymmetric: R
    r \mapsto (\forall a, b \in \mathsf{Domain}(R)) (r(a, b) \Rightarrow \neg r(b, a))
property(R: Relation)
equivalence: R
    r \mapsto \mathsf{transitive}(r) \land \mathsf{reflexive}(r) \land \mathsf{symmetric}(r)
```

```
property(F: UnaryFunction, R: Relation)
    requires(Domain(F) = Domain(R))
key_function : F \times R
    (f, r) \mapsto (\forall a, b \in \mathsf{Domain}(F)) (r(a, b) \Leftrightarrow f(a) = f(b))
property(R : Relation)
total_ordering: R
    r \mapsto \mathsf{transitive}(r) \land
       (\forall a, b \in \mathsf{Domain}(\mathsf{R})) exactly one of the following holds:
             r(a, b), r(b, a), \text{ or } a = b
property(R : Relation)
total_ordering: R
    r \mapsto \mathsf{transitive}(r) \land 
       (\forall a, b \in \mathsf{Domain}(R)) exactly one of the following holds:
             r(a, b), r(b, a), \text{ or } a = b
property(R : Relation, E : Relation) requires(Domain(R) = Domain(E))
weak_ordering: R
    r \mapsto \mathsf{transitive}(r) \land (\exists e \in \mathsf{E}) \, \mathsf{equivalence}(e) \land 
              (\forall a, b \in \mathsf{Domain}(\mathsf{R})) exactly one of the following holds:
                    r(a, b), r(b, a), or e(a, b)
TotallyOrdered(T) \triangleq
        Regular(T)
    \land <: \mathsf{T} \times \mathsf{T} \to \mathsf{bool}
    \land total_ordering(<)
```

Chapter 5: Ordered Algebraic Structures

```
 \begin{aligned} & \textbf{property}(T: \textit{Regular}, \mathsf{Op}: \textit{BinaryOperation}) \\ & \textbf{requires}(T = \mathsf{Domain}(\mathsf{Op})) \\ & \mathsf{identity\_element}: T \times \mathsf{Op} \\ & (e, \mathsf{op}) \mapsto (\forall \alpha \in \mathsf{T}) \, \mathsf{op}(\alpha, e) = \mathsf{op}(e, \alpha) = \alpha \\ & \textbf{property}(F: \textit{Transformation}, T: \textit{Regular}, \mathsf{Op}: \textit{BinaryOperation}) \\ & \textbf{requires}(\mathsf{Domain}(F) = \mathsf{T} = \mathsf{Domain}(\mathsf{Op})) \\ & \mathsf{inverse\_operation}: F \times \mathsf{T} \times \mathsf{Op} \\ & (\mathsf{inv}, e, \mathsf{op}) \mapsto (\forall \alpha \in \mathsf{T}) \, \mathsf{op}(\alpha, \mathsf{inv}(\alpha)) = \mathsf{op}(\mathsf{inv}(\alpha), \alpha) = e \\ & \textbf{property}(\mathsf{Op}: \textit{BinaryOperation}) \\ & \mathsf{commutative}: \mathsf{Op} \\ & \mathsf{op} \mapsto (\forall \alpha, b \in \mathsf{Domain}(\mathsf{Op})) \, \mathsf{op}(\alpha, b) = \mathsf{op}(b, \alpha) \\ & \textit{AdditiveSemigroup}(T) \triangleq \\ & \textit{Regular}(T) \\ & \land +: \mathsf{T} \times \mathsf{T} \to \mathsf{T} \end{aligned}
```

```
\land associative(+)
    \land commutative(+)
MultiplicativeSemigroup(T) \triangleq
         Regular(T)
    \wedge \ \cdot : T \times T \to T
    \land associative(\cdot)
AdditiveMonoid(T) \triangleq
         AdditiveSemigroup(T)
    \land 0 \in \mathsf{T}
    \wedge identity_element(0, +)
MultiplicativeMonoid(T) \triangleq
         Multiplicative Semigroup(T)
    \land 1 \in \mathsf{T}
    \land identity_element(1, \cdot)
AdditiveGroup(T) \triangleq
        AdditiveMonoid(T)
    \wedge \ -: \mathsf{T} \to \mathsf{T}
    \wedge inverse_operation(unary -, 0, +)
    \wedge \ -: \mathsf{T} \times \mathsf{T} \to \mathsf{T}
             (a, b) \mapsto a + (-b)
MultiplicativeGroup(T) \triangleq
        \textit{Multiplicative} Monoid(\mathsf{T})
    \land multiplicative_inverse : T \rightarrow T
    \land inverse_operation(multiplicative_inverse, 1, \cdot)
    \land /: T \times T \rightarrow T
             (a, b) \mapsto a \cdot \mathsf{multiplicative\_inverse}(b)
Semiring(T) \triangleq
        AdditiveMonoid(T)
    \land MultiplicativeMonoid(T)
    \land 0 \neq 1
    \wedge (\forall \alpha \in \mathsf{T}) \, 0 \cdot \alpha = \alpha \cdot 0 = 0
    \land (\forall a, b, c \in T)
                   \alpha \cdot (b+c) = \alpha \cdot b + \alpha \cdot c
               \wedge \ (b+c) \cdot a = b \cdot a + c \cdot a
CommutativeSemiring(T) \triangleq
         Semiring(T)
    \land commutative(\cdot)
Ring(\mathsf{T}) \triangleq
         AdditiveGroup(T)
    \land Semiring(T)
```

 $CommutativeRing(T) \triangleq$

```
AdditiveGroup(T)
   \land CommutativeSemiring(T)
Semimodule(T, S) \triangleq
       AdditiveMonoid(T)
   \land CommutativeSemiring(S)
   \wedge \cdot : S \times T \to T
   \land (\forall \alpha, \beta \in S)(\forall \alpha, b \in T)
              \alpha \cdot (\beta \cdot \alpha) = (\alpha \cdot \beta) \cdot \alpha
             (\alpha + \beta) \cdot \alpha = \alpha \cdot \alpha + \beta \cdot \alpha
             \alpha \cdot (a + b) = \alpha \cdot a + \alpha \cdot b
                     1 \cdot a = a
Module(T, S) \triangleq
       Semimodule(T, S)
   \wedge AdditiveGroup(T)
   \land Ring(S)
OrderedAdditiveSemigroup(T) \triangleq
       AdditiveSemigroup(T)
   \land TotallyOrdered(T)
   \land (\forall a, b, c \in T) \ a < b \Rightarrow a + c < b + c
OrderedAdditiveMonoid(T) \triangleq
        OrderedAdditiveSemigroup(T)
   \land AdditiveMonoid(T)
OrderedAdditiveGroup(T) \triangleq
        OrderedAdditiveMonoid(T)
   \land \ \mathit{AdditiveGroup}(\mathsf{T})
CancellableMonoid(T) \triangleq
       OrderedAdditiveMonoid(T)
   \wedge -: T \times T \to T
   \land (\forall a, b \in T) b \leq a \Rightarrow a - b \text{ is defined } \land (a - b) + b = a
template<typename T>
      requires(CancellableMonoid(T))
T slow_remainder(T a, T b)
      // Precondition: a \ge 0 \land b > 0
      while (b \le a) a = a - b;
      return a;
}
ArchimedeanMonoid(T) \triangleq
        Cancellable Monoid(T)
   \land (\forall a, b \in T) (a \ge 0 \land b > 0) \Rightarrow slow\_remainder(a, b) terminates
   \land QuotientType : ArchimedeanMonoid \rightarrow Integer
```

```
HalvableMonoid(T) \triangleq
        Archimedean Monoid(T)
    \wedge half : T \rightarrow T
    \land (\forall a, b \in T) (b > 0 \land a = b + b) \Rightarrow \mathsf{half}(a) = b
template<typename T>
      requires(ArchimedeanMonoid(T))
T subtractive_gcd_nonzero(T a, T b)
      // Precondition: a > 0 \land b > 0
      while (true) {
             if (b < a)
                                  a = a - b;
             else if (a < b) b = b - a;
             else
                                       return a;
      }
}
EuclideanMonoid(T) \triangleq
        Archimedean Monoid(T)
    \land (\forall a, b \in T) (a > 0 \land b > 0) \Rightarrow subtractive\_gcd\_nonzero(a, b) terminates
EuclideanSemiring(T) \triangleq
        Commutative Semiring(T)
    \land NormType: EuclideanSemiring \rightarrow Integer
   \land \ w: T \to \mathsf{NormType}(T)
    \wedge (\forall \alpha \in \mathsf{T}) \, \mathsf{w}(\alpha) \geqslant 0
    \land (\forall \alpha \in T) w(\alpha) = 0 \Leftrightarrow \alpha = 0
    \land (\forall a, b \in T) b \neq 0 \Rightarrow w(a \cdot b) \geqslant w(a)
    \land \ \ \mathsf{remainder} : \mathsf{T} \times \mathsf{T} \to \mathsf{T}
    \land quotient : T \times T \rightarrow T
    \land (\forall a, b \in T) \ b \neq 0 \Rightarrow a = \mathsf{quotient}(a, b) \cdot b + \mathsf{remainder}(a, b)
    \land (\forall a, b \in T) b \neq 0 \Rightarrow w(remainder(a, b)) < w(b)
EuclideanSemimodule(T, S) \triangleq
        Semimodule(T, S)
    \wedge remainder : T \times T \rightarrow T
    \land quotient : T \times T \rightarrow S
    \land (\forall a, b \in T) \ b \neq 0 \Rightarrow a = \mathsf{quotient}(a, b) \cdot b + \mathsf{remainder}(a, b)
    \land (\forall a, b \in T) (a \neq 0 \lor b \neq 0) \Rightarrow \gcd(a, b) \text{ terminates}
template<typename T, typename S>
      requires(EuclideanSemimodule(T, S))
T gcd(T a, T b)
      // Precondition: \neg(a = 0 \land b = 0)
      while (true) {
             if (b == T(0)) return a;
             a = remainder(a, b);
```

```
if (a == T(0)) return b;
           b = remainder(b, a);
     }
}
ArchimedeanGroup(T) \triangleq
       Archimedean Monoid(T)
   \land AdditiveGroup(T)
DiscreteArchimedeanSemiring(T) \triangleq
       Commutative Semiring(T)
   \land ArchimedeanMonoid(T)
   \land (\forall a, b, c \in T) \ a < b \land 0 < c \Rightarrow a \cdot c < b \cdot c
   \land \neg (\exists \alpha \in \mathsf{T}) \ 0 < \alpha < 1
NonnegativeDiscreteArchimedeanSemiring(T) \triangleq
       DiscreteArchimedeanSemiring(T)
   \land (\forall a \in T) 0 \leq a
DiscreteArchimedeanRinq(T) \triangleq
       DiscreteArchimedeanSemiring(T)
   \wedge AdditiveGroup(T)
```

Chapter 6: Iterators

```
Readable(T) \triangleq
        Regular(T)
    \land ValueType : Readable \rightarrow Regular
    \land source : T \rightarrow ValueType(T)
Iterator(T) \triangleq
        Regular(T)
    \land DistanceType : Iterator \rightarrow Integer
    \wedge successor : T \rightarrow T

∧ successor is not necessarily regular

property(I : Iterator)
\mathsf{weak\_range}: I \times \mathsf{DistanceType}(I)
    (f, n) \mapsto (\forall i \in \mathsf{DistanceType}(I))
                     (0 \leqslant i \leqslant n) \Rightarrow successor^{i}(f) is defined
property(I : Iterator, N : Integer)
counted\_range: I \times N
    (f, n) \mapsto \mathsf{weak\_range}(f, n) \land
                     (\forall i, j \in N) (0 \leqslant i < j \leqslant n) \Rightarrow
                                      successor^{i}(f) \neq successor^{j}(f)
```

```
property(I : Iterator)
bounded\_range:I\times I
    (f, l) \mapsto (\exists k \in \mathsf{DistanceType}(I)) \mathsf{counted\_range}(f, k) \land \mathsf{successor}^k(f) = l
property(I : Readable)
   requires(Iterator(I))
readable_bounded_range : I \times I
    (f, l) \mapsto \mathsf{bounded\_range}(f, l) \land (\forall i \in [f, l)) \mathsf{source}(i)  is defined
property(Op : BinaryOperation)
partially_associative : Op
    op \mapsto (\forall a, b, c \in Domain(op))
                If op(a, b) and op(b, c) are defined,
                op(op(a,b),c) and op(a,op(b,c))) are defined
                and are equal.
ForwardIterator(T) \triangleq
        Iterator(T)

∧ regular_unary_function(successor)

IndexedIterator(T) \triangleq
       ForwardIterator(T)
   \wedge +: T \times DistanceType(T) \rightarrow T
   \wedge -: T \times T \rightarrow \mathsf{DistanceType}(T)
   \wedge + takes constant time
   \wedge – takes constant time
BidirectionalIterator(T) \triangleq
        ForwardIterator(T)
   \land predecessor : T \rightarrow T
   △ predecessor takes constant time
   \land (\forall i \in T) \operatorname{successor}(i) \text{ is defined} \Rightarrow
                     predecessor(successor(i)) is defined and equals i
   \land (\forall i \in T) \text{ predecessor}(i) \text{ is defined} \Rightarrow
                    successor(predecessor(i)) is defined and equals i
RandomAccessIterator(T) \triangleq
        IndexedIterator(T) \land BidirectionalIterator(T)
   \land TotallyOrdered(T)
   \land (\forall i, j \in T) i < j \Leftrightarrow i \prec j
   \land DifferenceType : RandomAccessIterator \rightarrow Integer
   \wedge +: T \times DifferenceType(T) \rightarrow T
   \wedge -: T \times DifferenceType(T) \rightarrow T
   \wedge -: T \times T \rightarrow \mathsf{DifferenceType}(T)
   \wedge < takes constant time
   \wedge – between an iterator and an integer takes constant time
```

Chapter 7: Coordinate Structures

```
BifurcateCoordinate(T) \triangleq
       Regular(T)
   \land WeightType: BifurcateCoordinate \rightarrow Integer
   \land empty : T \rightarrow bool
   \land has_left_successor : T \rightarrow bool
   \land has_right_successor : T \rightarrow bool
   \land \  \, \mathsf{left\_successor} : \mathsf{T} \to \mathsf{T}
   \land right_successor : T \rightarrow T
   \land (\forall i, j \in T) (left\_successor(i) = j \lor right\_successor(i) = j) \Rightarrow \neg empty(j)
property(C : BifurcateCoordinate)
tree: C
   x \mapsto the descendants of x form a tree
Bidirectional Bifurcate Coordinate(T) \triangleq
       BifurcateCoordinate(T)
   \land has_predecessor : T \rightarrow bool
   \land (\forall i \in T) \neg empty(i) \Rightarrow has\_predecessor(i) is defined
   \land predecessor : T \rightarrow T
   \land (\forall i \in T) \text{ has\_left\_successor}(i) \Rightarrow
         predecessor(left_successor(i)) is defined and equals i
   \land (\forall i \in T) \text{ has\_right\_successor}(i) \Rightarrow
         predecessor(right_successor(i)) is defined and equals i
   \land (\forall i \in T) \text{ has\_predecessor}(i) \Rightarrow
         is\_left\_successor(i) \lor is\_right\_successor(i)
template<typename T>
      requires(BidirectionalBifurcateCoordinate(T))
bool is_left_successor(T j)
      // Precondition: has_predecessor(j)
     T i = predecessor(j);
     return has_left_successor(i) && left_successor(i) == j;
}
template<typename T>
     requires(BidirectionalBifurcateCoordinate(T))
bool is_right_successor(T j)
      // Precondition: has_predecessor(j)
     T i = predecessor(j);
     return has_right_successor(i) && right_successor(i) == j;
}
property(C : Readable)
  requires(BifurcateCoordinate(C))
```

```
readable_tree : C x \mapsto \mathsf{tree}(x) \land (\forall y \in C) \, \mathsf{reachable}(x,y) \Rightarrow \mathsf{source}(y) \, \mathsf{is} \, \mathsf{defined}
```

Chapter 8: Coordinates with Mutable Successors

```
ForwardLinker(S) \triangleq
        IteratorType: ForwardLinker \rightarrow ForwardIterator
    \wedge Let I = IteratorType(S) in:
                  (\forall s \in S) (s : I \times I \rightarrow void)
              \land (\forall s \in S) (\forall i, j \in I) \text{ if successor}(i) \text{ is defined},
                      then s(i, j) establishes successor(i) = j
BackwardLinker(S) \triangleq
        lteratorType: BackwardLinker \rightarrow BidirectionalIterator
    \wedge Let I = IteratorType(S) in:
                  (\forall s \in S) (s : I \times I \rightarrow void)
              \land (\forall s \in S) (\forall i, j \in I) if predecessor(j) is defined,
                       then s(i, j) establishes i = predecessor(j)
BidirectionalLinker(S) \triangleq ForwardLinker(S) \land BackwardLinker(S)
property(I: Iterator)
\mathsf{disjoint}: I \times I \times I \times I
    (f0, l0, f1, l1) \mapsto (\forall i \in I) \neg (i \in [f0, l0) \land i \in [f1, l1))
LinkedBifurcateCoordinate(T) \triangleq
        BifurcateCoordinate(T)
    \land set_left_successor : T \times T \rightarrow void
               (i, j) \mapsto \text{ establishes left\_successor}(i) = j
    \land set_right_successor : T \times T \rightarrow void
               (i, j) \mapsto \text{ establishes right\_successor}(i) = j
EmptyLinkedBifurcateCoordinate(T) \triangleq
        LinkedBifurcateCoordinate(T)
    \wedge empty(T())<sup>1</sup>
    \land \neg empty(i) \Rightarrow
            left_successor(i) and right_successor(i) are defined
    \land \neg empty(i) \Rightarrow
            (\neg has\_left\_successor(i) \Leftrightarrow empty(left\_successor(i)))
    \land \neg empty(i) \Rightarrow
           (\neg has\_right\_successor(i) \Leftrightarrow empty(right\_successor(i)))
```

 $^{^{1}}$ In other words, empty is true on the default constructed value and possibly on other values as well.

Chapter 9: Copying

```
Writable(T) \triangleq
           ValueType: Writable \rightarrow Regular
       \land (\forall x \in T) (\forall v \in ValueType(T)) sink(x) \leftarrow v \text{ is a well-formed statement}
   property(T : Writable, U : Readable)
        requires(ValueType(T) = ValueType(U))
   aliased : T \times U
        (x,y) \mapsto \operatorname{sink}(x) is defined \wedge
                     source(y) is defined \land
                     (\forall \nu \in \mathsf{ValueType}(\mathsf{T})) \, \mathsf{sink}(\kappa) \leftarrow \nu \, \mathsf{establishes} \, \mathsf{source}(y) = \nu
   Mutable(T) \triangleq
            Readable(T) \wedge Writable(T)
       \land (\forall x \in T) \operatorname{sink}(x) \text{ is defined} \Leftrightarrow \operatorname{source}(x) \text{ is defined}
       \land (\forall x \in \mathsf{T}) \operatorname{sink}(x) \text{ is defined} \Rightarrow \operatorname{aliased}(x, x)
       \land deref : T \rightarrow ValueType(T)&
       \land (\forall x \in T) \operatorname{sink}(x) \text{ is defined} \Leftrightarrow \operatorname{deref}(x) \text{ is defined}
   property(I: Writable)
      requires(Iterator(I))
   writable\_bounded\_range: I \times I
        (f, l) \mapsto \mathsf{bounded\_range}(f, l) \land (\forall i \in [f, l)) \mathsf{sink}(i) \text{ is defined}
writable_weak_range and writable_counted_range are defined similarly.
   property(I : Mutable)
      requires(ForwardIterator(I))
   mutable\_bounded\_range : I \times I
        (f, l) \mapsto \mathsf{bounded\_range}(f, l) \land (\forall i \in [f, l)) \mathsf{sink}(i)  is defined
mutable_weak_range and mutable_counted_range are defined similarly.
   property(I : Readable, O : Writable)
      requires(Iterator(I) \wedge Iterator(O))
   not_overlapped_forward : I \times I \times O \times O
        (f_i, l_i, f_o, l_o) \mapsto
           readable_bounded_range(f_i, l_i) \land
           writable_bounded_range(f_0, l_0) \wedge
           (\forall k_i \in [f_i, l_i))(\forall k_o \in [f_o, l_o))
                  aliased(k_o, k_i) \Rightarrow k_i - f_i \leqslant k_o - f_o
   property(I : Readable, O : Writable)
      requires(Iterator(I) \land Iterator(O))
   not_overlapped_backward : I \times I \times O \times O
        (f_i, l_i, f_o, l_o) \mapsto
           readable\_bounded\_range(f_i, l_i) \land
           writable_bounded_range(f_o, l_o) \land
```

```
(\forall k_i \in [f_i, l_i))(\forall k_o \in [f_o, l_o))
              \mathsf{aliased}(k_o, k_i) \Rightarrow l_i - k_i \leqslant l_o - k_o
property(I : Readable, O : Writable)
   requires(Iterator(I) \wedge Iterator(O))
not\_overlapped : I \times I \times O \times O
    (f_i, l_i, f_o, l_o) \mapsto
        readable_bounded_range(f_i, l_i) \land
        writable_bounded_range(f_o, l_o) \land
        (\forall k_i \in [f_i, l_i)) (\forall k_o \in [f_o, l_o)) \neg aliased(k_o, k_i)
property(T : Writable, U : Writable)
    requires(ValueType(T) = ValueType(U))
write\_aliased: T \times U
    (x,y) \mapsto \operatorname{sink}(x) is defined \wedge \operatorname{sink}(y) is defined \wedge
                  (\forall V \in Readable) (\forall v \in V) \text{ aliased}(x, v) \Leftrightarrow \text{aliased}(y, v)
property(O_0 : Writable, O_1 : Writable)
   requires(Iterator(O_0) \wedge Iterator(O_1))
\mathsf{not\_write\_overlapped}: O_0 \times O_0 \times O_1 \times O_1
    (f_0, l_0, f_1, l_1) \mapsto
        \mathsf{writable\_bounded\_range}(\mathsf{f}_0, \mathsf{l}_0) \, \land \,
        writable_bounded_range(f_1, l_1) \land
        (\forall k_0 \in [f_0, l_0))(\forall k_1 \in [f_1, l_1)) \neg write\_aliased(k_0, k_1)
property(I : Readable, O : Writable, N : Integer)
   requires(Iterator(I) \land Iterator(O))
backward_offset : I \times I \times O \times O \times N
    (f_i, l_i, f_o, l_o, n) \mapsto
        readable\_bounded\_range(f_i, l_i) \land
        n \geqslant 0 \land
        writable_bounded_range(f_0, l_0) \land
        (\forall k_i \in [f_i, l_i))(\forall k_o \in [f_o, l_o))
              \mathsf{aliased}(k_o, k_i) \Rightarrow k_i - f_i + n \leqslant k_o - f_o
property(I : Readable, O : Writable, N : Integer)
   requires(Iterator(I) \land Iterator(O))
forward\_offset: I \times I \times O \times O \times N
    (f_i, l_i, f_o, l_o, n) \mapsto
        readable_bounded_range(f_i, l_i) \land
        n \geqslant 0 \land
        writable_bounded_range(f_0, l_0) \wedge
        (\forall k_i \in [f_i, l_i))(\forall k_o \in [f_o, l_o))
              \mathsf{aliased}(k_o,k_i) \Rightarrow l_i - k_i + n \leqslant l_o - k_o
```

Chapter 10: Rearrangements

Chapter 11: Partition and Merging

```
\begin{split} \textbf{property}(I: \textit{ForwardIterator}, N: \textit{Integer}, R: \textit{Relation}) \\ \textbf{requires}(\textit{Mutable}(I) \land \mathsf{ValueType}(I) = \mathsf{Domain}(R)) \\ \texttt{mergeable}: I \times N \times I \times N \times R \\ (f_0, n_0, f_1, n_1, r) \mapsto f_0 + n_0 = f_1 \land \\ \texttt{mutable\_counted\_range}(f_0, n_0 + n_1) \land \\ \texttt{weak\_ordering}(r) \land \\ \texttt{increasing\_counted\_range}(f_0, n_0, r) \land \\ \texttt{increasing\_counted\_range}(f_1, n_1, r) \end{split}
```

Chapter 12: Composite Objects

```
Linearizable(W) \triangleq
         Regular(W)
    \land IteratorType: Linearizable \rightarrow Iterator
    \land ValueType: Linearizable \rightarrow Regular
                  W \mapsto \mathsf{ValueType}(\mathsf{IteratorType}(W))
    \land SizeType: Linearizable \rightarrow Integer
                 W \mapsto \mathsf{DistanceType}(\mathsf{IteratorType}(W))
    \land begin : W \rightarrow \mathsf{IteratorType}(W)
    \land end : W \rightarrow \mathsf{IteratorType}(W)
    \land size : W \rightarrow \mathsf{SizeType}(W)
                 x \mapsto \operatorname{end}(x) - \operatorname{begin}(x)
    \wedge empty : W \rightarrow \mathsf{bool}
                 x \mapsto \mathsf{begin}(x) = \mathsf{end}(x)
    \land []: W \times \mathsf{SizeType}(W) \rightarrow \mathsf{ValueType}(W) \&
                 (w, i) \mapsto \mathsf{deref}(\mathsf{begin}(w) + i)
Sequence(S) \triangleq
         Linearizable(S)
    \land (\forall s \in S) (\forall i \in [\mathsf{begin}(s), \mathsf{end}(s))) \mathsf{deref}(i) \mathsf{ is a part of } s
    \land =: S \times S \rightarrow \mathsf{bool}
                 (s, s') \mapsto lexicographical\_equal(
                                    begin(s), end(s), begin(s'), end(s')
    \land <: S \times S \rightarrow \mathsf{bool}
                  (s, s') \mapsto lexicographical_less(
                                    begin(s), end(s), begin(s'), end(s')
```

\mathbf{Index}

\cdot (product)	$Archimedean Group, {\color{red} 8}$
in multiplicative semigroup, 5	Archimedean Monoid, 6
in semimodule, 6	BackwardLinker, 11
,	$Bidirectional Bifurcate Coordinate, {\color{red}10}$
AdditiveGroup concept, 5	BidirectionalIterator, 9
Additive Monoid concept, 5	BidirectionalLinker, 11
$Additive Semigroup \text{ concept}, \frac{4}{}$	Bifurcate Coordinate, 10
algorithm	BinaryOperation, 2
gcd, 8	CancellableMonoid, 6
is_left_successor, 10	$Commutative Ring, \frac{5}{5}$
is_right_successor, 10	$Commutative Semiring, \frac{5}{5}$
slow_remainder, 6	Discrete Archimedean Ring, 8
subtractive_gcd_nonzero, 7	Discrete Archimedean Semiring, 8
aliased property, 12	EmptyLinkedBifurcateCoordinate, 11
Archimedean Group concept, 8	Euclidean Monoid, 7
Archimedean Monoid concept, 6	Euclidean Semimodule, 7
associative operation, 9	Euclidean Semiring, 7
associative property, 2	$ForwardIterator, \frac{9}{9}$
partially_associative, 9	ForwardLinker, 11
asymmetric property, 3	Functional Procedure, 1
	Halvable Monoid, 7
backward_offset property, 13	HomogeneousFunction, 1
BackwardLinker concept, 11	Homogeneous Predicate, 2
begin	IndexedIterator, 9
for $Linearizable$, $\frac{14}{}$	Integer, 2
$Bidirectional Bifurcate Coordinate\ {\tt concept},$	Iterator, 8
10	Linearizable, 14
$Bidirectional Iterator \ concept, \ 9$	LinkedBifurcateCoordinate, 11
BidirectionalLinker concept, 11	$Module, \frac{6}{6}$
$Bifurcate Coordinate \text{ concept}, \frac{10}{2}$	MultiplicativeGroup, 5
binary_scale_down_nonnegative, 3	Multiplicative Monoid, 5
binary_scale_up_nonnegative, 3	$Multiplicative Semigroup, {f 5}$
BinaryOperation concept, 2	$Mutable, \frac{12}{}$
bounded_range property, 9	Nonnegative Discrete Archimedean Semiring,
	8
CancellableMonoid concept, 6	Operation, 2
commutative property, 4	OrderedAdditiveGroup, 6
CommutativeRing concept, 5	OrderedAdditiveMonoid, 6
CommutativeSemiring concept, 5	OrderedAdditiveSemigroup, 6
concept	Predicate, 2
AdditiveGroup, 5	RandomAccessIterator, 9
AdditiveMonoid, 5	Readable, 8
$Additive Semigroup, {\color{red} 4}$	Regular, 1
	J 1

Relation, 3	Integer concept, 2
$Ring, \frac{5}{2}$	inverse_operation property, 4
Semimodule, 6	is_left_successor algorithm, 10
Semiring, 5	is_right_successor algorithm, 10
$Sequence, \frac{14}{}$	Iterator concept, 8
TotallyOrdered, 4	IteratorType type function, 11, 14
$Transformation, \frac{2}{2}$	
UnaryFunction, 1	Linearizable concept, 14
$UnaryPredicate, \frac{2}{2}$	$Linked Bifurcate Coordinate \ concept, \ 11$
Writable, 12	
counted_range property, 8	mergeable property, 14
G 1 1 <i>V</i> ,	Module concept, 6
deref, 12	MultiplicativeGroup concept, 5
DifferenceType type function, 9	MultiplicativeMonoid concept, 5
Discrete Archimedean Ring concept, 8	MultiplicativeSemigroup concept, 5
Discrete Archimedean Semiring concept,	Mutable concept, 12
8	mutable_bounded_range property, 12
disjoint property, 11	mutable_counted_range property, 12
DistanceType type function, 2, 8	mutable_weak_range property, 12
Domain type function, 1	
	negative, 3
empty	Nonnegative Discrete Archimedean Semiring
for $Linearizable$, 14	concept, 8
EmptyLinkedBifurcateCoordinate con-	not_overlapped property, 13
cept, 11	not_overlapped_backward property, 12
end	not_overlapped_forward property, 12
for $Linearizable$, 14	not_write_overlapped property, 13
equivalence property, 3	odd, 3
EuclideanMonoid concept, 7	one, 3
EuclideanSemimodule concept, 7	Operation concept, 2
EuclideanSemiring concept, 7	OrderedAdditiveGroup concept, 6
even, 3	OrderedAdditiveMonoid concept, 6
6 1 66 1 10	OrderedAdditiveSemigroup concept, 6
forward_offset property, 13	OracreaAdditiveSemigroup concept, o
ForwardIterator concept, 9	partially_associative property, 9
ForwardLinker concept, 11	positive, 3
FunctionalProcedure concept, 1	predecessor
	of integer, 2
gcd algorithm, 8	of iterator, 9
half_nonnegative, 2	Predicate concept, 2
HalvableMonoid concept, 7	product (·)
HomogeneousFunction concept, 1	in multiplicative semigroup, 5
HomogeneousPredicate concept, 2	in semimodule, 6
110mogeneousi reascuse concept, 2	property
identity_element property, 4	aliased, 12
IndexedIterator concept, 9	associative, 2

asymmetric, 3	regular_unary_function property, 1
backward_offset, 13	Relation concept, 3
bounded_range, 9	remainder
commutative, 4	in Euclidean semimodule, 7
counted_range, 8	in Euclidean semiring, 7
disjoint, 11	Ring concept, 5
equivalence, 3	
forward_offset, 13	Semimodule concept, 6
identity_element, 4	Semiring concept, 5
inverse_operation, 4	Sequence concept, 14
mergeable, 14	sink, <u>12</u>
mutable_bounded_range, 12	size
mutable_counted_range, 12	for $Linearizable$, $\frac{14}{}$
mutable_weak_range, 12	SizeType type function, 14
not_overlapped, 13	slow_remainder algorithm, 6
not_overlapped_backward, 12	source, 8
not_overlapped_forward, 12	strict property, 3
not_write_overlapped, 13	subtractive_gcd_nonzero algorithm, 7
partially_associative, 9	successor
readable_bounded_range, 9	of integer, 2
readable_tree, 11	of iterator, 8
reflexive, 3	symmetric property, 3
regular_unary_function, 1	
strict, 3	total_ordering property, 4
symmetric, 3	TotallyOrdered concept, 4
total_ordering, 4	Transformation concept, 2
transitive, 3	transitive property, 3
tree, 10	tree property, 10
weak_ordering, 4	twice, 2
weak_range, 8	type function
writable_bounded_range, 12	DifferenceType, 9
writable_bounded_range, 12 writable_counted_range, 12	DistanceType, $\frac{2}{8}$
writable_counted_range, 12 writable_weak_range, 12	Domain, 1
write_aliased, 13	IteratorType, 11 , 14
write_anased, 15	QuotientType, 6
quotient	SizeType, 14
in Euclidean semimodule, 7	ValueType, 8, 12, 14
in Euclidean semiring, 7	WeightType, 10
QuotientType type function, 6	
Quotient type type function,	UnaryFunction concept, 1
RandomAccessIterator concept, 9	UnaryPredicate concept, 2
Readable concept, 8	
readable_bounded_range property, 9	ValueType type function, 8, 12, 14
readable_tree property, 11	wools and aring somet 4
reflexive property, 3	weak_ordering property, 4
Regular concept, 1	weak_range property, 8
<i>g</i>	WeightType type function, 10

```
Writable concept, 12
writable_bounded_range property, 12
writable_counted_range property, 12
writable_weak_range property, 12
write_aliased property, 13
zero, 3
```