Hardness of Computing Fault Tolerance.

David Ponarovsky

June 22, 2025

Introduction

- ▶ Brief overview of the topic
- ► Importance and relevance
- Objectives of the presentation

Key Points

- ▶ Main point 1
- ► Main point 2
- ► Main point 3

Nosiy Circuit.

Threshoold Theorem.

Pippenger's Construction.

Encode each bit with the repetition code $0 \mapsto 0^m$, $1 \mapsto 1^m$. Now observe that any logical operation, without decoding, can be made in O(1) depth.

For example, $OR(\bar{x}, \bar{y})$ can be computed by applying in parallel $OR(x_i, y_i)$ for each i.

The 'Decoding' trick.

Instead of completely decoding, we would apply only a single step of partial decoding. We assume that in each code block the bits are partitioned into random disjoint triples, and we will apply a local correction to each of the triples by majority.

Claim

There are constants $\alpha, \eta \in (0,1)$ such that for any bit string x at a distance $\leq \alpha n$ from the code (Repetition Code), one cycle of local correction on x yields x' such that:

$$d(x',C) \leq d(x,C)$$

The 'Decoding' trick.

Suppose that a bit obserb a bit flip with probability p. So in expectation we expect that entire bolck at length n will absorb pn flips.

$$\eta (\beta + p) n \le \beta n$$

$$\beta \ge \frac{p}{1 - \eta}$$

From now on, we will assume that the graphs are bipartite and we will denote the right and the left vertices by V^- and V^+ . Notice that such expanders near Ramanujan exist, see for example [?]. The partition into two subsets enable us to come with a simple efficient decoder.

Expanders code are known for having good decoders, beneath, in $\ref{eq:condense}$, we introduce a procedure to reduce an error. In overall, we alternately let to the right and then the left vertices to correct their own local view. In Theorem 1 we prove that when the applied error has size at most βn , for some constant β then the error's weight reduced by $\frac{1}{2}$. Repeating over the procedure $\Theta(\log(n))$ times completely correct the error.

We will call to the first stage, when only the right vertices suggest correction the right round, and to the second stage a left round. For the whole procedure, we will call a single correction round.

Data:
$$x \in \mathbb{F}_2^n$$

Result: $\arg\min\{y \in C : |y+x|\}$
if $d(y,C) < 1$

The Franch's Construction.

Figure: Caption for the image

Figure: Caption for the image

Figure: Caption for the image