Indice

1	Lambda expression	2
2	stream	5

Lambda expression

Per comprendere ed usare le lambda, bisogna partire dalle interfacce.

Un'interfaccia è un meccanismo per definire un *contratto* tra due parti, il fornitore del servizio (l'interfaccia stessa) e le classi che vogliono che i loro oggetti siano utilizzabili con quel servizio.

Prendiamo ad esempio l'interfaccia Comparable<T>, avente un metodo, compareTo(T o), che restiruisce un intero e assicura di confrontare solo oggetti dello stesso tipo.

Se una classe decidesse di implementare questa interfaccia, quindi fornire un'implementazione del metodo, allora i suoi oggetti potrebbero essere ordinati da java.

Il contratto è che x.compareTo(y) deve restituire:

- un intero positivo se x viene dopo di y;
- un intero negativo nel caso contrario;
- 0 altrimenti.

Ad esempio, la classe String, implementa di suo questa interfaccia e implementa compareTo con il confronto lessicografico.

Questo spezzone di codice funziona in quanto Arrays.sort riesce a ordinare oggetti la cui classe implementa Comparable e, come detto prima, String la implementa.

```
String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends); // friends is now ["Mary", "Paul", "Peter"]
System.out.println(Arrays.toString(friends));
```

Così come potremmo ordinare oggetti Employee in base al loro nome

```
public class Employee implements Comparable<Employee> {
   private String name;

   @Override
   public int compareTo(Employee other) {
      return name.compareTo(other.getName());
   }
}
```

dove, in questo caso, il compareTo di Employee delega il confronto al compareTo di String.

Se volessimo ordinare Employee/String con un altro criterio, non potremmo farlo in quanto non sarebbe possibile definire due metodi compareTo e non sarebbe possibile modificare la classe java.

Esiste una variante di Arrays.sort che oltre ad accettare una lista da ordinare, accetta un'altra interfaccia, Comparator<T>, avente un metodo compare(T o1, T o2) che restituisce un intero.

Quindi per definire un nuovo criterio, dovremo definire una nuova classe, che implementa Comparator, e passarla al metodo Arrays.sort.

```
public class SortDemo {
    public static void main(String[] args) {
        String[] friends = new String[] { "Peter", "Paul", "Mary" };
        Arrays.sort(friends, new LengthComparator());
        // [Paul, Mary, Peter]
        System.out.println(Arrays.toString(friends));
    }
}
...
class LengthComparator implements Comparator<String> {
    public int compare(String first, String second) {
        return first.length() - second.length();
    }
}
```

Se il metodo di confronto ci servisse solo in quel punto di SortDemo, saremmo comunque costretti a definire una classe e istanziarla.

Per questo motivo ci sono le classi anonime, un meccanismo che riduce la verbosità del codice

• che permette di dichiarare e istanziare una classe allo stesso tempo;

- sono simile alle classi locali, solo che non hanno un nome;
- la loro invocazione avviene come quella di un costruttore, solo che al suo interno c'è una classe vera e propria.

```
public class SortDemo {
    public static void main(String[] args) {
        String[] friends = new String[] { "Peter", "Paul", "Mary" };
        Arrays.sort(friends, new Comparator<String>() {
            public int compare(String first, String second) {
                return first.length() - second.length();
            }
        });
        // [Paul, Mary, Peter]
        System.out.println(Arrays.toString(friends));
    }
}
```

Quindi, fino ad ora, abbiamo visto due interfacce, avente un singolo metodo, il contratto che stiamo usando dipende dal quel singolo metodo e se non ci fosse bisogno di mantenersi uno stato per implementare quel metodo, allora sarebbe più comodo poter specificare solo quel singolo blocco di codice invece di creare una classe che implementa l'interfaccia e istanziarla o creare una classe anonima.

E' un blocco di codice che può essere passato, assegnato, restituito in modo da essere eseguito in un secondo momento, una o più volte.

I valori gestiti sono funzioni e non oggetti, in java una funzione èun'istanza di un oggetto che implementa una certa interfaccia.

Nell'esempio di LengthComparator, a noi basterebbe dire che, per confrontare due stringhe, bisogna usare il blocco di codice di compare, specificando che first e second sono oggetti di tipo String.

Quindi dovremmo passare ad Arrays.sort una funzione che, dato due oggetti String, restiruisce first.length() - second.length().

In java, la sintassi per definire questa funzione è

```
(String first, String second) -> first.length() - second.length()
```

che risulta essere la nostra lambda expression.

Quindi, nel metodo di Arrays.sort, invece di passare un'istaza di una classe che implementa Comparator o una classe anonima, gli passiamo la lambda.

```
public class SortDemo {
   public static void main(String[] args) {
       String[] friends = new String[] { "Peter", "Paul", "Mary" };
       Arrays.sort(friends, new Comparator<String>() {
           public int compare(String first, String second) {
               return first.length() - second.length();
           }
       });
       // [Paul, Mary, Peter]
       System.out.println(Arrays.toString(friends));
   }
}
public class SortDemo {
   public static void main(String[] args) {
       String[] friends = new String[] { "Peter", "Paul", "Mary" };
       Arrays.sort(friends, (String first, String second) -> first.length() - second.length());
       // [Paul, Mary, Peter]
       System.out.println(Arrays.toString(friends));
   }
}
```

Il body di una lambda viene eseguito non quando viene passata al metodo sort ma quando bisogna effetivamente confrontare gli oggetto (stessa cosa per i parametri della lambda), si dice esecuzione differita e se avesse bisogno di più righe allora si usa le parentesi graffe e il return.

Java può inferire il tipo dei parametri della lambda dal contesto, in tal caso si possono omettere i tipi, stessa cosa per il tipo di ritorno anche se qui java fa un controllo che sia utilizzabile nel contesto in cui viene usata la lambda. Si può assegnare/passare una lambda quando ci si aspetta un oggetto di tipo interfaccia che

- ha un singolo metodo astratto;
- purché la lambda sia compatibile con tale metodo , considerando il tipo dei parametri della lambda che devono essere compatibili coi parametri del metodo e del tipo inferito del body della lambda che deve essere compatibile col tipo di ritorno del metodo.

Una tale interfaccia è detta $interfaccia \, funzionale$ o SAM (Single Abstract Method).blob

stream