A guided tour on Riemannian methods for BCI with pyRiemann

In collaboration with S. Chevallier, A. Gramfort, and Q. Barthélemy

INTRODUCTION

OVERVIEW

USE CASES

PERSPECTIVES

A typical BCI system is decomposed into three parts: recording, encoding, and classification

The RG framework fixes an adequate form of encoding and a way of classifying data

INTRODUCTION

We encode the statistical features of the recording into a spatial covariance matrix

And then the classification is carried out on a set of matrices $\mathcal{D} = \{(C_1, y_1), \dots, (C_N, y_N)\}$

$$\mathcal{D} = \left\{ (oldsymbol{C}_1, y_1), \ldots, (oldsymbol{C}_N, y_N)
ight\}$$

Consider the following python script using MOABB and pyRiemann

```
# choose dataset
dataset = Weibo2014()
# choose paradigm
paradigm = LeftRightImagery()
# extract epochs from the dataset following the paradigm setup
X, labels, meta = paradigm.get_data(dataset=dataset, subjects=[1])
                                                                        note the scikit-learn API
# estimate covariance matrices from the epochs
covs = Covariances(estimator='lwf').fit_transform(X)
```

How should we train a classifier based on covs and labels?

→ Naïve idea: use a nearest centroid classifier based on Euclidean distance of matrices

How should we train a classifier based on covs and labels?

Naïve idea: use a nearest centroid classifier based on Euclidean distance of matrices

$$\mathcal{D} = \left\{ (\boldsymbol{C}_1^{(\ell)}, \texttt{left}), \dots, (\boldsymbol{C}_N^{(\ell)}, \texttt{left}), (\boldsymbol{C}_1^{(r)}, \texttt{right}), (\boldsymbol{C}_N^{(r)}, \texttt{right}) \right\}$$

How should we train a classifier based on covs and labels?

Naïve idea: use a nearest centroid classifier based on Euclidean distance of matrices

$$\mathcal{D} = \left\{ (\boldsymbol{C}_1^{(\ell)}, \texttt{left}), \dots, (\boldsymbol{C}_N^{(\ell)}, \texttt{left}), (\boldsymbol{C}_1^{(r)}, \texttt{right}), (\boldsymbol{C}_N^{(r)}, \texttt{right}) \right\}$$

Each point represents the covariance matrix of the signal recorded in a BCI epoch

Compare the Euclidean distance of ? to each centroid and choose the smallest

In pyRiemann this is called the Minimum Distance to Mean (MDM) classifier

pipeline = make_pipeline(Covariances(estimator='lwf'), MDM(metric='euclid'))

Consider the following python script using MOABB and pyRiemann

```
# choose which datasets to consider from MOABB
datasets = [Weibo2014(), Zhou2016()]
paradigm = LeftRightImagery()
# instantiate the pipelines
pipelines = {}
pipelines['cov-mdm-euc'] = make_pipeline(
Covariances(estimator='lwf'), MDM(metric='euclid'))
# setup the evaluation procedure
evaluation = WithinSessionEvaluation(
      paradigm=paradigm,
      datasets=datasets,
      overwrite=True)
# run the valuation process
results = evaluation.process(pipelines)
```


The problem with this approach is that we loose the **structure** of the covariance matrices

Covariance matrices are symmetric positive definite matrices and have a lot of structure

The Riemannian framework handles these matrices respecting their intrinsic geometry

This means we should use MDM with a Riemannian distance between matrices!

Consider the following python script using MOABB and pyRiemann

```
# choose which datasets to consider from MOABB
datasets = [Weibo2014(), Zhou2016()]
paradigm = LeftRightImagery()
# instantiate the pipelines
pipelines = {}
pipelines['cov-mdm-euc'] = make_pipeline(
Covariances(estimator='lwf'), MDM(metric='euclid'))
pipelines['cov-mdm-rie'] = make_pipeline(
Covariances(estimator='lwf'), MDM(metric='riemann'))
pipelines['cov-tsp-lda'] = make_pipeline(
Covariances(estimator='lwf'),
TSclassifier(metric='riemann'))
```


RG is a theoretical framework that has demonstrated quite good results in practice!

→ All three competitions (and many others!) were won using tools from RG 🤝

The brain behind all this?

Alexandre Barachant https://alexandre.barachant.org/

→ Yep, the same guy who started MOABB...

The success of RG methods in BCI pushed Alex to consolidate his codes into a package...

pip install pyriemann

From its inception in 2015 to now, many people made important contributions to the code

The current core team of developers is...

And we have a reference to cite when using pyRiemann in your research 69

→ Barachant et al. (2023) – https://zenodo.org/record/7642689

INTRODUCTION

OVERVIEW

USE CASES

PERSPECTIVES

pyRiemann is based on the scikit-learn API and has many functionalities such as

Spatial filtering

CSP, Xdawn, SPoC, etc

SPD Matrices Estimation

Covariances, Hankel, etc

Classification

MDM, kNN, TSClassifier, etc

Transfer Learning

Parallel transport, RPA, MDWM

see pyriemann.readthedocs.io/en/latest/api.html for more

It is easy to use scikit-learn functions (e.g. KFold, GridSearchCV, etc)

Suppose you want to classify MI data using the RG framework

```
# choose the dataset from MOABB
dataset = BNCI2014001()
# instantiate the paradigm that goes with the dataset
paradigm = LeftRightImagery()
# get the epochs
X, y, meta = paradigm.get_data(dataset, subjects=[1])
# estimate the covariances
covs = Covariances(estimator='lwf').fit_transform(X)
# instantiate the classifier
clf = MDM(metric='riemann')
# run 5-fold cross-validation
kf = KFold(n_splits=5); scr = []
for train_idx, test_idx in kf.split(covs):
      covs_train, y_train = covs[train_idx], y[train_idx]
      covs_test, y_test = covs[test_idx], y[test_idx]
      clf.fit(covs_train, y_train)
      scr.append(clf.score(covs_test, y_test))
print(np.mean(scr))
```

Note that for MI we can estimate all of the covariances upfront

Run the usual KFold cross validation using tools from scikit-learn

Suppose you want to classify P300 data using the RG framework

```
# choose the dataset from MOABB
dataset = bi2012(Training=True, Online=False)
# instantiate the paradigm that goes with the dataset
paradigm = P300()
# get the epochs
X, y, meta = paradigm.get_data(dataset, subjects=[1])
# instantiate the classification pipeline
pipeline = make_pipeline(
      XdawnCovariances(nfilter=4, estimator='lwf'),
      TSclassifier(metric='riemann', clf=LDA()))
# run 5-fold cross-validation
kf = KFold(n_splits=5); scr = []
for train_idx, test_idx in kf.split(X):
      X_train, y_train = X[train_idx], y[train_idx]
      X_test, y_test = X[test_idx], y[test_idx]
      pipeline.fit(X_train, y_train)
      scr.append(pipeline.score(X_test, y_test))
print(np.mean(scr))
```

Use the pipeline constructor from scikit-learn

Note that for P300 the covariances are estimated inside the CV folds

pyRiemann functions are based on fundamental concepts from RG for SPD matrices such as

geodesic path
$$oldsymbol{C}(\gamma) = oldsymbol{A}^{1/2} igg(oldsymbol{A}^{-1/2} oldsymbol{B} oldsymbol{A}^{-1/2} igg)^{\gamma} oldsymbol{A}^{1/2}$$

walk over the geodesic between A and B C = []for gamma in np.linspace(0, 1, 100): C.append(geodesic_riemann(A, B, gamma))

Geodesic path for 2x2 SPD matrices

geodesic distance

$$\delta_R^2(\boldsymbol{A}, \boldsymbol{C}(\gamma)) = \|\log(\boldsymbol{A}^{-1/2}\boldsymbol{C}(\gamma)\boldsymbol{A}^{-1/2})\|_F^2$$

calculate the distances d = [distance_riemann(A, Ci) for Ci in C] pyRiemann has also other types of distances between SPD matrices

pyRiemann functions are based on fundamental concepts from RG for SPD matrices such as

geometric mean

$$m{M} = \underset{m{X} \in \mathcal{P}(2)}{\operatorname{argmin}} \sum_{i=1}^{N} \delta_{R}^{2}(m{C}_{i}, m{X})$$

calculate the geometric mean
M = mean_riemann(C)

Geometric mean of a set of 2x2 SPD matrices

tangent space mapping

We can directly use scikit-learn classifiers on the tangent vectors

We can also do some more sophisticated operations on the SPD manifold not related to BCI

```
# get samples from a Riemannian Gaussian
samples = sample_gaussian_spd(
      n_matrices=n_matrices,
      mean=mean,
      sigma=sigma,
       random_state=random_state)
# use spectral embedding to visualize data
lapl = SpectralEmbedding(
      metric='riemann',
      n_components=2)
embd = lapl.fit_transform(X=samples)
```


The Riemannian Gaussian can be used to generate synthetic data and validate new classifiers Spectral embedding can be used to study, for example, the presence of outliers in the data

INTRODUCTION

OVERVIEW

USE CASES

PERSPECTIVES

pyRiemann can be used to detect the most discriminative frequency band for motor imagery

Example available at pyRiemann/examples/motor-imagery/plot_frequency_band_selection.py

We can easily combine SPD and functional connectivity features for BCI using pyRiemann

Example available at pyRiemann/examples/motor-imagery/plot_ensemble_coherence.py

SPD matrices of EEG artifacts are statistical outliers that can be easily detected in pyRiemann

Example available at pyRiemann/examples/motor-imagery/plot_detect_riemannian_potato_EEG.py

INTRODUCTION

OVERVIEW

USE CASES

PERSPECTIVES

PERSPECTIVES

pyRiemann has ~25k lines of code but there's still so much more that can be included

- Methods for regression tasks in the SPD manifold (e.g. for brain-age estimation)
- Handling Hermitian positive definite (HPD) matrices as well (e.g. for radar applications)
- Geometry-aware methods for dimensionality reduction of SPD matrices
- Ensemble methods for transfer learning, i.e. multi-source subject calibration

And much more!

Don't hesitate to **FORK** the repo, **CODE** your feature, and **CONTRIBUTE** to pyRiemann

Thanks for your attention!