The Functional Machine Calculus Semantics

Chris Barrett, Guy McCusker, Willem Heijltjes University of Bath

Overview: Functional Machine Calculus

Part I: Confluence for reader/writer effects

- Global state, probabilistic/non-deterministic choice, I/O
- Express both CBN and CBV semantics

Part II: Preserves good properties of λ -calculus:

- Simple types guarantee strong normalisation
- Cartesian closed categorical semantics (free)
- Domain theoretic semantics

Problem: Effectful λ -calculi are Non-confluent

$$M, N ::= x \mid MN \mid \lambda x.M$$

$$(\lambda x.M)N \to_{\beta} M\{N/x\} \qquad N$$

Problem: Effectful λ -calculi are Non-confluent

Part I: Overview

Desiderata: a confluent calculus which can express both CBN and CBV semantics of reader/writer effects

Solution: generalize the λ -calculus with

- Sequencing: CBN and CBV translations which preserve operational semantics
- Locations: Effects and higher-order computation unified: operationally, syntactically, equationally (beta)

λ -calculus

$$M, N ::= x \mid MN \mid \lambda x.M$$

$$S := \epsilon \mid S \cdot M$$

$$\frac{(S , MN)}{(S \cdot N, M)} = \frac{(S \cdot N, \lambda x.M)}{(S , M\{N/x\})}$$

$$M$$

$$(\lambda x.M)N \rightarrow_{\beta} M\{N/x\}$$

$$N$$

$$\exists \beta^{*}$$

$$D$$

$$\exists \beta^{*}$$

λ -calculus

$$S ::= \epsilon \mid S \cdot M$$

$$\frac{(S, N, M)}{(S \cdot N, M)} = \frac{(S \cdot N, \langle x \rangle \cdot M)}{(S, N, M)}$$

$$[N]. \langle x \rangle. M \rightarrow_{\beta} \{N/x\}M \qquad N \qquad N'$$

$$\exists \beta^* \qquad \qquad \beta \qquad N'$$

Sequential λ -calculus

$$S ::= \epsilon \mid S \cdot M$$

$$\frac{(S, N, M)}{(S \cdot N, M)} = \frac{(S \cdot N, \langle x \rangle \cdot M)}{(S, N, M)}$$

$$[N]. \langle x \rangle. M \rightarrow_{eta} \{N/x\}M$$
 N N \mathbb{R}^{β} \mathbb{R}^{β} \mathbb{R}^{β}

Sequential λ -calculus

Sequencing and Substitution

Capture-avoiding sequencing N; M:

```
\begin{array}{l} \star \; ; M = M \\ [P].\,N\, ; M = [P].\,(N\, ; M) \\ x.\,N\, ; M = x.\,(N\, ; M) \\ \langle x \rangle.\,N\, ; M = \langle x \rangle.\,(N\, ; M) \\ \end{array} \qquad \qquad x \notin \mathsf{fv}(M) \end{array}
```

Capture-avoiding substitution $\{N/x\}M$:

$$\{P/x\} \star = \star$$

$$\{P/x\} x. M = P; \{P/x\} M$$

$$\{P/x\} y. M = y. \{P/x\} M \qquad x \neq y$$

$$\dots$$

Sequential λ -calculus

$$M, N ::=$$
 $x \mid MN \mid \lambda x.M$
 $M, N ::=$ $x.* \mid [N].M \mid \langle x \rangle.M$
 $M, N ::= * \mid x.M \mid [N].M \mid \langle x \rangle.M$
 $M, N ::= * \mid x.M \mid [N]a.M \mid a\langle x \rangle.M$
 $S ::= \epsilon \mid S \cdot M \quad S_A ::= \{S_a \mid a \in A\}$
 $\frac{(S_A; S_a, [N]a.M)}{(S_A; S_a \cdot N, a\langle x \rangle.M)}$
 $\frac{(S_A; S_a, N, M)}{(S_A; S_a, N, a\langle x \rangle.M)}$

$$[N]a. a\langle x\rangle. M \longrightarrow_{\beta} \{N/x\}M$$

$$[N]a. b\langle x\rangle. M \longrightarrow_{\pi} b\langle x\rangle. [N]a. M$$

M, N	::=	x	$\mid MN$	$ \lambda x.M $
M, N	::=	$x.\star$	[N]. M	$ \langle x\rangle.M$
M,N	::= ★	x. M	[N]. M	$ \langle x\rangle.M$
M,N	::= ★	x. M	[N]a.M	$ a\langle x\rangle. M$
S	$:= \epsilon \mid $	$S \cdot M$ S	$S_A ::= \{S_a \mid$	$a \in A$ }
$(S_A;S_A)$	$_{a}$, $\left[N ight]$	a.M	$(S_A; S_a \cdot N$	$, a\langle x\rangle.M$
$\overline{(S_A;S_A)}$	$a \cdot N$,	M)	$\overline{(S_A;S_a)}$	$, \{N/x\}M$
		Operation	onal	Equational
$@/\lambda$		push/p	ор	β
input				
output				
state				

M, N ::	=	x	MN	$ \lambda x.M $			
M, N ::	=	$x.\star$	[N]. M	$ \langle x \rangle. M$			
M,N ::	= *	x. M	[N]. M	$ \langle x \rangle. M$			
M,N ::	= *	x. M	[N]a.M	$ a\langle x\rangle.M$			
$S ::= \epsilon \mid S \cdot M \qquad S_A ::= \{ S_a \mid a \in A \}$							
$(S_A;S_a$, $[N]a$.	M) ($S_A ; S_a \cdot N$	$, a\langle x\rangle.M$			
$(S_A; S_a \cdot S_$	N ,	\overline{M}) $\overline{(}$	$S_A ; S_a$	$\overline{\ ,\ \{N/x\}M\)}$			

	Operational	Equational
$@/\lambda$	push/pop	β
input	pop from stream	$eta\pi$
output	push to stream	$eta\pi$
state	push/pop on stack of depth one	$eta\pi$

 $\beta\pi\text{-reduction}$ captures algebraic effect equations

Example: Encoding Effects

```
rand set get write
\operatorname{rnd}\langle x \rangle. [x] \quad \langle x \rangle. [x]c \quad c\langle x \rangle. [x]c. [x]c. [x] \quad \langle x \rangle. [x] out
\operatorname{rnd}(\mathbb{Z}) \Rightarrow \mathbb{Z} \quad \mathbb{Z} c(\mathbb{Z}) \Rightarrow c(\mathbb{Z}) \quad c(\mathbb{Z}) \Rightarrow c(\mathbb{Z}) \mathbb{Z} \quad \mathbb{Z} \Rightarrow \operatorname{out}(\mathbb{Z})
             (S_A; S_{\lambda} \cdot M; \epsilon_c \cdot N; \langle x \rangle. c \langle \rangle. [x]c.)
             \overline{(\ S_A\ ;\, S_\lambda \qquad ;\, \epsilon_c \cdot N\ ;} \qquad c\langle \_ 
angle. [M]c\ )
            egin{array}{cccc} (S_A \; ; \; S_\lambda & \; ; \; \epsilon_c \; \; ; & \; [M]c \; ) \ (S_A \; ; \; S_\lambda & \; ; \; \epsilon_c \cdot M \; ; & \star \; ) \end{array}
                (S_A; S_{\lambda} ; \epsilon_c \cdot N; c\langle x \rangle. [x]c. [x])
                (S_A; S_{\lambda} ; \epsilon_c ; [N]c.[N])
               (S_A; S_{\lambda} ; \epsilon_c \cdot N; [N])
                (S_A : S_{\lambda} \cdot N : \epsilon_c \cdot N : \star)
```

Part II: Overview

Part I: Confluence for reader/writer effects

- Sequencing: express both CBN and CBV behaviour
- Locations: unify operational semantics, syntax, reduction of effects and higher-order computation – recovering confluence

Part II: Preserving good properties of λ -calculus

- Simple types guarantee strong normalisation
- Categorical semantics
- Domain theoretic semantics

Simple Types and Termination

$$\tau ::= \stackrel{\leftarrow}{\sigma}_A \Rightarrow \stackrel{\rightarrow}{\tau}_A \mid \alpha \in \Sigma_0 \qquad \stackrel{\rightarrow}{\tau} ::= \tau_n \dots \tau_1 \qquad \stackrel{\rightarrow}{\tau}_A ::= \{ \stackrel{\rightarrow}{\tau}_a \mid a \in A \}$$

— Theorem : Successful Termination

$$\vdash M : \overset{\leftarrow}{\sigma}_A \Rightarrow \overset{\rightarrow}{\tau}_A \text{ then } \forall S_A : \overset{\rightarrow}{\sigma}_A . \exists T_A : \overset{\leftarrow}{\tau}_A . \frac{\left(\begin{array}{ccc} S_A & , & M \end{array} \right)}{\left(\begin{array}{ccc} T_A & , & \star \end{array} \right)}$$

Strong Normalisation: Gandy-style Proof

— Definition : Interpretation [-] of types and terms ——

$$\label{eq:definition} \begin{split} \llbracket \overleftarrow{\sigma}_A \Rightarrow \overrightarrow{\tau}_A \rrbracket &= \{ \text{non-strict} \text{ monotone } f : \llbracket \overrightarrow{\sigma}_A \rrbracket \to \mathbb{N} \times \llbracket \overrightarrow{\tau}_A \rrbracket \} \end{split}$$
 with extensional partial order

Extract measure: $\lfloor - \rfloor : \llbracket au \rrbracket \to \mathbb{N}$

— Theorem: Strong Normalisation

$$\Gamma \vdash M \to_{\beta\pi} M'$$
 implies $\lfloor \llbracket M \rrbracket \rfloor >_{\mathbb{N}} \lfloor \llbracket M' \rrbracket \rfloor$

Categorical Semantics

— Definition : $FMC(\Sigma)/$??

- Objects: memory types $\overrightarrow{\tau}_A$ over Σ_0 ,
- Morphisms: closed terms $M: \overline{\sigma}_A \Rightarrow \overrightarrow{\tau}_A$ over Σ_1 , mod ??
- ullet Composition: M; N with identity \star

Categorical Semantics

—— Definition : $FMC(\Sigma)/\sim$

- Objects: memory types $\vec{\tau}_A$ over Σ_0 ,
- Morphisms: closed terms $M: \overleftarrow{\sigma}_A \Rightarrow \overrightarrow{\tau}_A$ over Σ_1 , mod \sim
- Composition: M; N with identity \star

— Definition : Machine Equivalence (\sim) -

Terms equivalent if equivalent inputs result in equivalent outputs:

$$M \sim M' : \stackrel{\leftarrow}{\sigma}_A \Rightarrow \stackrel{\rightarrow}{\tau}_A \stackrel{\Delta}{=} \forall S_A \sim S'_A : \stackrel{\rightarrow}{\sigma}_A . (S_A, M) \Downarrow \sim (S'_A, M') \Downarrow : \stackrel{\rightarrow}{\tau}_A$$

— Theorem : Cartesian Closure

 $\mathsf{FMC}(\Sigma)/\sim$ is Cartesian closed.

Type system assumes uniformity of locations

Cartesian Category: String Diagrams

Cartesian Closed Category: String Diagrams

Effectful String Diagrams

Categorical Semantics

We can define an equational theory $=_{\operatorname{eqn}} \subset \ (\sim)$ such that:

- Definition : $FMC(\Sigma)/=_{eqn}$
 - Objects: memory types $\vec{\tau}_A$ over Σ_0 ,
 - Morphisms: closed terms $M: \overset{\leftarrow}{\sigma}_A \Rightarrow \overset{\rightarrow}{\tau}_A$ over Σ_1 , mod $=_{\mathsf{eqn}}$
 - Composition: M; N with identity \star

— Theorem : Free Cartesian Closure

 $\mathsf{FMC}(\Sigma)/=_{\mathsf{eqn}}$ is the free Cartesian closed category over Σ

Type system assumes uniformity of locations

Domain Theory: Extending Scott-style Semantics

Interpret terms in domain D of stack transformers:

$$D \cong D^{\mathbb{N}} \to TD^{\mathbb{N}},$$

Sequencing: $D \times D \rightarrow D$ as Kleisli composition

$$\begin{split} D \text{ reflexive} : D &\cong D^{\mathbb{N}} \to TD^{\mathbb{N}} \\ &\cong (D^{\mathbb{N}} \times D) \to TD^{\mathbb{N}} \\ &\cong D \to (D^{\mathbb{N}} \to TD^{\mathbb{N}}) \\ &\cong D \to D \end{split}$$

Locations: let T be state monad

Summary: Functional Machine Calculus

- An operational refinement of λ -calculus; semantically sensible
- Can express both CBN and CBV semantics of reader/writer effects, with confluent reduction
- Preserves good properties: simple types, strong normalisation, categorical and domain theoretic semantics