CIRCUITI MULTI OUTPUT

Ci sono circuiti che hanno più input e più output, avendo più tabelle della verità. Su carta per convenzione quando si sovrappongono 2 nodi, essi sono collegati solamente se disegnati in questo modo:

È invece non collegato se sovrapposto in questo modo :

Come già detto, un circuito multi output ha più tabelle della verità.

А3	A2	A1	Α0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0

Nella tabella della verità il bit più a sinistra è quello più significativo, vuol dire che se un bit a sinistra di un altro vale 1, quell'altro non condizionerà in nessun modo l'output della tabella, in questo caso che il valore sia 0 o 1 non ci importa, tale concetto viene definito **DON'T CARE**, e possiamo inserire il simbolo X nella tabella della verità al posto degli input che non influiscono sugli output. Per esempio:

A3	A2	A1	A0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Х	0	0	1	0
0	0	1	Х	0	0	1	0
0	1	Х	Х	0	1	0	0
0	1	Х	Х	0	1	0	0
0	1	Х	Х	0	1	0	0

CIRCUITI MULTI OUTPUT

Ε	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Il Floating è un componente il quale output può essere 0 o 1, è come se aprisse o chiudesse un interruttore.

Tristate Buffer

