

INFO20003 Database Systems

https://powcoder.com

Add Renata Borovica-Gajic

Lecture 13

Query Optimization Part I

Remember this? Components of a DBMS

MILLBOUKNE

This is one of several possible architectures; each system has its own slight variations.

MIELBOURNE

- Overview
- Query optimization Assignment Project Exam Help
- Cost estimations://powcoder.com

Add WeChat powcoder

Readings: Chapter 12 and 15, Ramakrishnan & Gehrke, Database Systems

Query Processing Workflow: Review

MELBOURNE

- Typically there are many ways of executing a given query, all giving the same answer
- Cost of alternative methods often varies enormously
- Query optimization aims to find the execution strategy with the lowest cost

https://powcoder.com

- We will cover: Add WeChat powcoder
 - -Relational algebra equivalences
 - -Cost estimation

Result size estimation and reduction factors

-Enumeration of alternative plans

MELBOURNE

- A tree, with relational algebra operators as nodes and access paths as leaves
- Each operator labeled with a choice of algorithm
 SELECT sname from Sailors NATURAL JOIN Reserves
 WHARE by the Monday Project Exam Help

MIELBOUKNE

- Overview
- Query optimization Assignment Project Exam Help
- Cost estimatihttps://powcoder.com

Add WeChat powcoder

Readings: Chapter 15, Ramakrishnan & Gehrke, Database Systems

MELBOURNE A Familiar Schema for Examples

MELBOURNE

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Boats (bid: integer, bname: string, color: string)
Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Query Optimization Overview

MIELBOUKNE

```
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5
Assignment Project Exam Help
```

Query optimizations: epswcoder.com

- 1. Query first brokendin Met Ghoodk powcoder
- 2. Each block converted to relational algebra
- 3. Then, for each block, several alternative query plans are considered
- 4. Plan with the lowest estimated cost is selected

Step 1: Break query into query blocks

MELBOURNE

- Query block is any statement starting with select
- Query block = unit of optimization
- Typically inner most block is optimized first, then moving towards and Project Exam Help

THE UNIVERSITY OF | Step 2: Convert query block into relational algebra expression

Query:

SELECT S.sid

FROM Sailors For Reserve Proports Exam Help
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = "red"

https://powcoder.com

Add WeChat powcoder

Relational algebra:

$$\pi_{\text{S.sid}}(\sigma_{\text{B.color} = \text{``red''}}(\text{Sailors} \bowtie \text{Reserves} \bowtie \text{Boats}))$$

MELBOURNE Step 3: Relational Algebra Equivalences

• Selections:
$$\sigma_{c_1 \wedge \cdots \wedge c_n}(R) \equiv \sigma_{c_1}\left(\cdots\left(\sigma_{c_n}(R)\right)\right)$$
 (Cascade)

Assignment) Project Example (Commute)

• Projections:
$$\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_n}(R)))$$
 (Cascade)

Add WeChat powcoder

 a_i is a set of attributes of R and $a_i \subseteq a_{i+1}$ for $i = 1 \dots n-1$

 These equivalences allow us to 'push' selections and projections ahead of joins. MELBOURNE

Selection:

$$\sigma_{age < 18 \text{ }^{\land} \text{ rating} > 5}$$
 (Sailors)

$$\leftrightarrow \sigma_{\text{rating}>5} (\sigma_{\text{age}<18} (\text{Sailors}))$$

https://powcoder.com

Projection:

$$\pi_{\text{age,rating}}$$
 (Sailors) $\leftarrow \pi_{\text{age}}$ (Sailors) $\leftarrow \pi_{\text{age}}$ (Sailors)

$$\pi_{\text{age,rating}} \text{ (Sailors)} \longleftrightarrow \pi_{\text{age,rating}} \left(\pi_{\text{age,rating,sid}} \text{ (Sailors)} \right)$$

MELBOURNE Another Equivalence

 A projection commutes with a selection that only uses attributes retained by the projection

$$\pi_{age, \ rating, \ sid} (\sigma_{age<18 \ \land \ rating>5} (Sailors)) \\ \leftrightarrow \sigma_{age<18 \ \land \ rating>5} (\pi_{age, \ rating, \ sid} (Sailors)) \\ \leftarrow \sigma_{age<18 \ \land \ rating>5} (\pi_{age, \ rating, \ sid} (Sailors)) \\ \xrightarrow{Add \ WeChat \ powcoder} \\ \pi_{age, \ sid} (\sigma_{age<18 \ \land \ rating>5} (Sailors)) \\ \xrightarrow{\leftarrow \sigma_{age<18 \ \land \ rating>5} (\pi_{age, \ sid} (Sailors))} ?$$

Equivalences Involving Joins

MILLBOURNE

$$R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$$
 (Associative)
 $(R \bowtie S) \equiv (S \bowtie R)$ (Commutative)
https://powcoder.com

Add WeChat powcoder

These equivalences allow us to choose different join orders

MELBOURNE Mixing Joins with Selections & Projections

Converting selection + cross-product to join

$$\sigma_{S.sid = R.sid}$$
 (Sailors x Reserves)

Selection on just attributes of S commutes with R S

$$\sigma_{S.age<18}$$
 (Sailors $M_{S.sid=R.sid}$ Reserves)

$$\longleftrightarrow (\sigma_{S.age<18} \text{ (Sailors))} \\ \searrow_{S.sid = R.sid}^{Add WeChat powcoder}$$

We can also "push down" projection (but be careful...)

$$\pi_{S.\text{sname}}$$
 (Sailors $\bowtie_{S.\text{sid} = R.\text{sid}}$ Reserves)

$$\leftrightarrow \pi_{S.sname}(\pi_{sname,sid}(Sailors)) \bowtie_{S.sid = R.sid} \pi_{sid}(Reserves))$$

MELBOURNE

- Overview
- Query optimization Assignment Project Exam Help
- Cost estimations://powcoder.com

Add WeChat powcoder

Readings: Chapter 15, Ramakrishnan & Gehrke, Database Systems

Recall: Query Optimization Overview

MICLIOURNE

- 1. Query first broken into "blocks"
- 2. Each block converted to relational algebra
- 3. Then, for each block, several alternative query plans are considered .
- 4. Plan with lowest estimated cost is selected

Cost-based Query Sub-System

MIELBOUKNE

- For each plan considered, must estimate cost:
 - -Must estimate size of result for each operation in tree
 - Use information about input relations (from the system catalogs), and apply rules (discussed next)
 - catalogs), and apply rules (discussed next)

 -Must estimate cost of each operation in plan tree
 - •Depends on input cardinalities er.com
 - •We've already discussed how to estimate the cost of operations (sequential stant, index scare; joins)
 - Next time we will calculate the cost of entire plans...

Statistics and Catalogs

MELBOURNE

- To decide on the cost, the optimizer needs information about the relations and indexes involved. This information is stored in the system catalogs.
- Catalogs typicallymontatin Patjeats Exam Help
 - -# tuples (NTuples) and # pages (NPages) per relation
 - -# distinct key values with the way of the control of the control
 - -low/high key values (<u>Low/High</u>) for each index (or relation attribute)
 - -Index height (Heighte) Were each the weeker
 - -# index pages (NPages(I)) for each index
- Statistics in catalogs are updated periodically

Result size estimation

MIZILIBOURNIE

SELECT attribute list
FROM relation list
WHERE predicate1 AND ... AND predicate_k

Consider a query block:

- Maximum number of tuples in the result is the product of the cardinalities of relations in the FRQM clause
- Reduction factor (RF) associated with each predicate reflects the impact of the predicate in reducing the result size. RF is also called selectivity.

Result size estimation calculations

MELBOURNE

Single table selection:

ResultSize =
$$NTuples(R) \prod_{i=1..n} RF_i$$

Assignment Project Exam Help

Joins (over k tables):

https://powcoder.com

ResultSize =
$$\prod_{j \in Add} NTuples(R_i) \prod_{j \in Add} RF_i$$

 If there are no selections (no predicates), reduction factors are simply ignored, i.e. they are ==1

Calculating Reduction Factors(RF)

MELBOURNE

- Depend on the type of the predicate:
 - Col = value
 RF = 1/NKeys(Col)
 - 2. Col > value Assignment Project Exam Help RF = (High(Col) value) / (High(Col) Low(Col)) https://powcoder.com
 - 3. Col < value RF = (val – Ļბო(Çბλ))ტ((Ḥigh(ნას) ისტო(Col))
 - 4. Col_A = Col_B (for joins)
 RF = 1/ (Max (NKeys(Col_A), NKeys(Col_B)))
 - 5. In no information about Nkeys or interval, use a "magic number" 1/10 RF = 1/10

MIELBOUKNE

Sailors (S): NTuples(S) = 1000, Nkeys(rating) = 10 interval [1-10], age interval [0-100], Nkeys(sid)=1000

SELECT * FROM Sailors WHERE rating = 3 AND age > 50;

Assignment Project Exam Help

https://powcoder.com

NTuples(S) = 1000

RF(rating) = 1/10 = 0. Add WeChat powcoder RF(age) = (100-50)/(100-0) = 0.5

ResultSize = NTuples(S)*RF(rating)*RF(age)

= 1000*0.1*0.5= 50 tuples

MELBOUKNE

- What is query optimization/describe steps?
- Equivalence classes
- Result size estimation

Assignment Project Exam Help

 Important for Assignment 3 as well https://powcoder.com

Add WeChat powcoder

MELBOURNE

- Query optimization Part II
 - Plan enumeration

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder