Introduction to MATLAB

Anuja Nagare

(DJ Sanghvi College of Engineering – IT Dept)

Session 1

Introduction to MATLAB

▶ MATrix LABoratory

High level programming language

▶ Basic <u>Building Block</u>: **Matrix**

► Fundamental <u>Data Type</u>: Array

Introduction to MATLAB

- MATLAB supports following Platforms:
 - Windows
 - Linux
 - Unix
 - Mac

http://www.mathworks.com

Print 'Welcome To MATLAB'

Find sum of two numbers

Escape Characters: \n, \t, \b

Specifiers: %c, %d, %f, %g, %s, %u

General MATLAB Commands

help	lists HELP topics
who	lists variables currently in workspace
whos	lists variables currently in workspace with their size
clc	Clear command window.
clear	removes all variables from workspace
clear all	removes all variables, functions
exit	exit from MATLAB.

Script File

Creating Script File

File \rightarrow New \rightarrow Script **Or** Ctrl + N

Saving a script file

File \rightarrow Save **Or** Ctrl + S

Executing a script file

Debug → Save file and Run **Or** F5

Operators

- Arithmetic Operators
 - +, -, *, /, ^

- Relational Operators
 - <, >, <=, >=, ==, ~=

- Logical Operators
 - ▶ &, |, ~, xor

Input radius of circle and find area

Input distance in km and convert into m, cm, inches, feet

IF statement

```
if expression
 statements
elseif expression
 statements
else
 statements
end
```


Example: To find if entered letter is vowel

```
a=input('enter a value: ','s');
if a=='a'||a=='e'||a=='i'||a=='o'||a=='u'
'Vowel'
elseif a=='A'||a=='E'||a=='I'||a=='O'||a=='U'
'Vowel'
else
'Not a Vowel'
end
```


Input a number,
If the no is divisible by 5 & not divisible by
10 then print 'I' otherwise '0' using if else

Input salary to calculate bonus: if s>50000=25% if 25000<s<50000 = 40% and if s<25000 = 50% using if else

SWITCH statement

```
switch switch expr
       case case_expr,
        statement, ..., statement
       case {case exprl, case expr2,...}
         statement, ..., statement
       otherwise,
        statement, ..., statement
end
```


Example: To find if entered letter is vowel

```
a=input('enter a value: ','s');
switch a
        case {'a','A'}
         disp('Vowel')
        case {'e', 'E'}
         disp('Vowel')
        case {'i','I'}
         disp('Vowel')
```

```
case {'o','O'}
        disp('Vowel')
       case {'u','U'}
        disp('Vowel')
       otherwise
        disp('Not a Vowel')
end
```


- Write a menu driven program using switch-case to find area of the following shapes:
 - Circle
 - Triangle
 - Rectangle

Based on the option input the required parameters and calculate the corresponding area

FOR statement

```
for variable = Initialization: Update statement: Condition
 statement,
  statement
end
```

Example: Factorial of a number

```
a=input('enter a value: ');
f=I;
for i=1:1:a
   f=f*i;
end
```


Input a number and print table of that no. using for loop.

While statement

while expression statement

•

•

statement

end

Example: Factorial of a number

```
a=input('enter a value: ');
f=1;
while (a \sim = 0)
   f=f*a:
   a=a-1;
end
```

Input a no. and Find if it is a palindrome or not

Exponential, Logarithms, Trigonometric Functions

- **Exponential Function:**
 - exp(x)

- **Logarithm Functions:**
 - $\triangleright \log(x), \log 10(x)$

- Trigonometric Functions:
 - sin, cos, tan, sec, csc, cot

Example

 e^3

exp(3)

 $\log_{10}(e^3)$

logI0(exp(3))

sin | 11 6 sin(pi/6)

Session 2

Working with Arrays

- Vector
 - Array is of I-row or I-column

- **Matrix**
 - Array with M-rows & N-columns

Matrix

- Row Matrix
- Column Matrix

- ▶ Continuation :
 - ▶ Ellipsis (...)

Column Matrix

3

Row Matrix

Arithmetic Operators

Array Operators

+	Addition
-	Subtraction
*	Multiplication
./	Division
•	Exponentiation

Matrix Operators

+	Addition
-	Subtraction
*	Multiplication
1	Division
٨	Exponentiation

Array addition, multiplication, division, subtraction

Matrix addition, multiplication, division, subtraction,

\ Left Division

Used to solve matrix equation

- > x=A\b
- Same as x=inv(A).b

To solve Ax=b

A=[1:3;4:6;7:9]

- Perform following:
 - A(row, column)
 - Size
 - Length
 - ▶ Sub-matrix

- Transpose
- Inverse
- Append row or column

Do the following operation on matrix G.

$$G = \begin{bmatrix} 2 & 6 & 0 & 0 & 0 & 0 \\ 3 & 9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 5 & 3 \end{bmatrix}$$

- Delete last row and last column of matrix
- Extract first 4x4 sub matrix from G
- Replace G(5, 5) with 4
- What do you get when you type G(13) and hit return
- What happens if you type G(12, 1) = 1 and hit return.

► G=[2 6 0 0 0 0;3 9 0 0 0 0;0 0 1 2 0 0;0 0 3 4 0 0;0 0 0 -5 5;0 0 0 0 5 3];

 \bullet G(5,5)=4;

Utility matrices & Functions

- Zeros = creates zeros matrix
- Ones = creates ones matrix
- Eye = creates identity
 matrix
- Rand = creates randommatrix

- rot90 = Rotate 90°
- FlipIr = flip left to right
- Flipud = flip up to down
- Tril = extract lower triangle
- Triu = extract upper triangle

Round -off functions

- ▶ Floor = round towards nearest lower int
- Ceil = round towards nearest higher int
- Round = round towards nearest int
- ▶ Rem = remainder
- ▶ Sign = sign
- Fix = round towards zero

Example

▶ Equation of st line: y=mx+c

Where, m and c are constants given as m=0.5; c=-2

And x co-ordinates are given as follows x= 0, 1.5, 3, 4, 5, 7, 9, 10

>> x = [0, 1.5, 3, 4, 5, 7, 9, 10]

>> y=m*x+c

Plot: Linear plot

plot(X,Y)	plots vector Y versus vector X
plot(Y)	plots the columns of Y versus their index
plot(X,Y,S)	where S is a character string made
plot(X ,Y,'c+:')	plots a cyan dotted line with a plus at each
	data point
plot(X,Y, 'y-',X,Y,	plots the data twice, with a solid yellow
'go')	line interpolating green circles at the data
	points

Linearly Spaced Values

>> linspace(0,10,5)

```
ans =
```

0 2.5000 5.0000 7.5000 10.0000

Plot3 function

Example

Plot the circular helix

$$0 \le t \le 20$$

$$x(t)=\sin(t)$$

$$y(t) = cos(t)$$

$$z(t)=t$$


```
t=linspace(0,20,100);
x=sin(t);
y=cos(t);
z=t;
plot3(x,y,z)
```


Overlay plots

Example

$$0 \le x \le \Pi$$

$$y = \cos(x)$$

$$z = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

Line Function

- Syntax
 - ▶ line(X,Y)

▶ line(X,Y,Z,'PropertyName',proper tyvalue,...)

Line Style

Symbol	Line Style
	Solid line (default)
'	Dashed line
•	Dotted line
— .	Dash-dot line
none	No line

Line Width

Width is given in points

I point = $\frac{1}{72}$ inch

▶ Default value = 0.5 points

Marker

Marker Specifier	Description
'+'	Plus sign
'o'	Circle
'* '	Asterisk
•	Point
'x'	Cross
'square' or 's'	Square
'diamond' or 'd'	Diamond
'v'	Downward-pointing triangle

Marker

Marker Specifier	Description
' \ '	Upward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'pentagram' or 'p'	Five-pointed star (pentagram)
'hexagram' or 'h'	Six-pointed star (hexagram)
'none'	No marker (default)

Tutorial 9

Plot the circle using line function

$$0 \le t \le 20$$

$$x(t)=\sin(t)$$

$$y(t)=cos(t)$$

```
t=linspace(0,20,100);
x=sin(t); y=cos(t);
line(x,y,'Marker','o','Color','r','LineWidth',4,'
  LineStyle','-')
%axis([-| | -| |]);axis('equal')
title('Circle of unit radius');
```

Write a script file for animating the circular motion of a bead

Step I:

```
clc; clear; close;
t=linspace(0,2*pi,1000);
x=cos(t); y=sin(t);
hbead=line(x(10),y(10),'marker','o','markersize',30,'erase','xor');
axis([-| | -| |]);axis('equal')
title('Circle of unit radius');
```

Xdata

Vector of x-coordinates defining the line

YData and ZData must be the <u>same</u> length and have the <u>same number of</u> rows

YData

Vector of y-coordinates defining the line

XData and ZData must be the <u>same</u> length and have the <u>same number of</u> rows

Erase Mode

normal | none | xor | background

- Controls the technique MATLAB uses
 - To draw line objects and
 - ▶ To erase line objects

Step 2:

```
for i=2:length(t)
    set(hbead,'xdata',x(i),'ydata',y(i))
    drawnow
end
```


set Function

Handles Graphics object properties

set(H, 'PropertyName', Property Value,...)

Drawnow function

Causes figure windows & their children to <u>update</u>

Flushes system event queue


```
clc; clear; close;
t=linspace(0,2*pi,1000);
x=cos(t); y=sin(t);
hbead=line(x(10),y(10),'marker','o','markersize',30,'erase','xor');
axis([-| | -| |]);axis('square')
for i=2:length(t)
   set(hbead, 'xdata', x(i), 'ydata', y(i))
   drawnow
end
```

Tutorial 10

▶ Plot $Y = \sin(X)$, $0 \le X \le 2\Pi$ taking 100 linearly spaced points in given interval.

Label axes & put "plot created by your name" in title.


```
x=linspace(0,2*pi,100);
y=\sin(x);
plot(x,y)
xlabel('x axis')
ylabel('y axis')
title('plot created by Anuja')
```


Creating & Executing Executing Function File

Function

Syntax:

```
function [out1, out2, ...] = myfun(in1, in2, ...)
```


Example: Factorial of a number

```
function [f]=factr(n);
                             else
                                f=i*factr(i-1);
clc;
                             end
for i=0:n
                             end
if i==0
   f=1;
```


I/O functions

fopen	Opens an existing file or creates A new file
fclose	Closes an open file
fprintf	Writes formatted data to A file
fscanf	Reads formatted data from A file

Tutorial 11 Copy content from 1 file to other file

```
clc
fid = fopen('work I.txt','w');
fid | = fopen('testa | .txt','r');
a=fscanf(fid1,'%s');
fprintf(fid,'%s',a);
fclose(fid);
fclose(fid1);
```


Creating GUI

File \rightarrow New \rightarrow GUI \rightarrow blank GUI \rightarrow ok

Tutorial 12

Create a simple calculator

Toolboxes

- Curve Fitting Toolbox
- Statistics Toolbox

- Aerospace Toolbox
- Partial Differential Equation Toolbox
- Signal Processing Toolbox

