Transfer Learning в NLР Лекция 3

Seq2seq pre-training

План занятия

- 1. Напоминание о seq2seq
- 2. BART ещё одна модель для self-supervised learning
- 3. Т5 сформулируем все задачи, как seq2seq

Напоминание

Seq2Seq — задача NLP, в которой нужно по входному тексту получить выходной текст.

Напоминание

Seq2Seq — задача NLP, в которой нужно по входному тексту получить выходной текст.

BART — комбинация BERT и GPT

1. Суммаризация

	CNN/DailyMail			
	R1	R2	RL	
Lead-3	40.42	17.62	36.67	
PTGEN (See et al., 2017)	36.44	15.66	33.42	
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	
UniLM	43.33	20.21	40.51	
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	
BART	44.16	21.28	40.90	

- 1. Суммаризация
- 2. Машинный перевод

	CN	N/Dail	yMail	
	R1	R2	RL	
Lead-3	40.42	17.62	36.67	
PTGEN (See et al., 2017)	36.44	15.66	33.42	
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	
UniLM	43.33	20.21	40.51	
BERTSUMABS (Liu & Lapata, 2019)	41.72	19 20	2076	
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19 —		
BART	44.16	21		RO-EN
			Baseline	36.80
			Fixed BART	36.29
			Tuned BART	37.96

- 1. Суммаризация
- 2. Машинный перевод
- 3. Диалоговое моделирование

	CN	N/Dai	lyMail			
	R1	R2	•			
Lead-3	40.42	17.6	2 36.67			
PTGEN (See et al., 2017)	36.44	15.6	6 33.42			
PTGEN+COV (See et al., 2017)	39.53	17.2	8 36.38			
UniLM	43.33	20.2	1 40.51			
BERTSUMABS (Liu & Lapata, 2019)	41.72	19 2	0 2076			
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19 -				
BART	44.16	21			RO-I	EN_
			Baseline	;	36.8	80
			Fixed B	ART	36.2	29
			Tuned B			06
				7	Conv	
				Valid l	F1	Valid PPL
Sec	q2Seq	+ At	tention	16.02	2	35.07
Be	st Syst	em		19.09	9	17.51
BA	RT			20.72	2	11.85

- 1. Суммаризация
- 2. Машинный перевод
- 3. Диалоговое моделирование
- 4. Question Answering

					CNI	N/Daily	Mail					
						R1	R2	RL				
	Lead-3					40.42	17.62	36.67				
]	PTGEN (See et al., 2017)						15.66	33.42				
]	PTGEN+COV (See et al., 2017)					39.53	17.28	36.38				
	UniLM					43.33	20.21	40.51				
	BERTSUMABS (Liu & Lapata, 2019)					41.72	19 20	20 76				
	BERTSU	JMEXTA	ABS (Lit	ı & Lapata,	2019)	42.13	15 —			RO-	EN	
]	BART					44.16	21			KO-	EIN	
				100000			— _E	Baseline		36.	80	
Best Extractive		23.5	3.1	17.5			F	ixed B	ART	36.	29	
Language Mod	.el	27.8	4.7	23.1			_	uned B		37.96		
Seq2Seq		28.3	5.1	22.8				uneu B	AKI	37.		
Seq2Seq Multi	task	28.9	5.4	23.1						Con	vAI2	
BART		30.6	6.2	24.3					Valid	lF1	Valid	PPL
					Sec	2Seq	+ Atte	ention	16.0	02	35.	07
					Bes	st Syst	em		19.0	9	17.	51
					BA	RT			20.7	72	11.	85

T5 — Text-to-Text Transfer Transformer

Обучим encoder-decoder трансформер восстанавливать целые куски текста

Pre-training этап

Обучим encoder-decoder трансформер восстанавливать целые куски текста

Pre-training этап

Обучим encoder-decoder трансформер восстанавливать целые куски текста

Pre-training этап

Влияние различных вариантов стратегий и подходов

- 1. Размеры и содержание датасетов
- 2. Количество шагов обучения
- 3. Сравнение с multitask learning
- 4. Маскирование vs Span Replacement vs Выбрасывание токенов
- 5. Shared параметры внутри encoder-decoder
- 6. ...

Получили SOTA результат почти везде

Обучили модель в нескольких вариациях:

- Т5-small (60 млн.)
- Т5-base (220 млн.)
- Т5-large (770 млн.)
- T5-3B
- T5-11B

	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
Model	Average	Matthew'	s Accurac	y F1	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1^{a}	93.6^{b}	91.5^{b}	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1 .	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^c	90.7^{b}	91.3^{a}	91.0^a	99.2^a	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92.2	91.9	96.9	92.8	94.5
	SQuAD		SuperGLU	E Bool		CB	COPA
Model	EM	F1	Average	Accura	cy F1	Accuracy	Accuracy
Previous best	90.1^{a}	95.5^{a}	84.6^{d}	87.1	90.5^d	95.2^{d}	90.6^{d}
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8
	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
Model	F1a	EM	F1	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	84.4^d	52.5^{d}	90.6^{d}	90.0^{d}	88.2^{d}	69.9^{d}	89.0^{d}
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.1	63.3	94.1	93.4	92.5	76.9	93.8
	WMT Enl				CNN/DM	CNN/DM	CNN/DM
Model	BLEU	BLE	EU E	BLEU	ROUGE-1	ROUGE-2	ROUGE-L
revious best	33.8^e	43.		38.5^{f}	43.47^{g}	20.30^{g}	40.63^{g}
75-Small	26.7	36.		26.8	41.12	19.56	38.35
Γ5-Base	30.9	41.		28.0	42.05	20.34	39.40
`5-Large	32.0	41.		28.1	42.50	20.68	39.75
Г5-3B	31.8	42.		28.2	42.72	21.02	39.94
Γ5-11B	32.1	43.	4	28.1	43.52	21.55	40.69

Получили SOTA результат почти везде

Обучили модель в нескольких вариациях:

- Т5-small (60 млн.)
- Т5-base (220 млн.)
- Т5-large (770 млн.)
- T5-3B
- T5-11B

	90.3	71.6	97.5	92.8	90.4	93.1	92.8
		90.7^{b}					
	75.1		92.2	91.9		92.8	94.5
	91.26	96.22	88.9	91.2		96.8	94.8
	88.1			93.4		76.9	93.8
	WMT Enl			AT EnRo			
Model	BLEU	BLE					
revious best	33.8°	43.	8 ^e	38.5^{f}			
75-Small	26.7	36.	0	26.8			
Γ5-Base	30.9	41.	2	28.0			
Γ5-Large	32.0	41.	5	28.1			
Г5-3В	31.8	42.	6	28.2			
Γ5-11B	32.1	43.	4	28.1	43.52	21.55	40.69

Итоги занятия

1. Вспомнили, что такое seq2seq-задачи, и привели несколько примеров.

Итоги занятия

- 1. Вспомнили, что такое seq2seq-задачи, и привели несколько примеров.
- 2. Познакомились с архитектурой BART, которая позволяет применять transfer learning для seq2seq-задач и узнали о способах зашумления текста в случае BART.

Итоги занятия

- 1. Вспомнили, что такое seq2seq-задачи, и привели несколько примеров.
- 2. Познакомились с архитектурой BART, которая позволяет применять transfer learning для seq2seq-задач и узнали о способах зашумления текста в случае BART.
- 3. Узнали, что такое Т5 и каким способом обучалась эта модель