Special Properties of Gradient Descent with Large Learning Rates

Denis Grachev

May 29, 2023

Abstract

This article is an overview of the work [MJS23] with some additional experiments. The work focuses on theoretical proof of escaping local minima with large learning rates in optimization minimization with some special functions.

1 Main results

Usage of large learning rate is often explained by intuition of escaping local minima. In this work a class C_l of functions is constructed wich have at least two minima $(x^{\dagger} \text{ and } x_*)$ and with a large learning rate GD with random initialization converges to x_* almost surely, but with smaller learning rate there is strictly positive probability of converging to x^{\dagger}

2 Theoretical Analysis

For analysis optimization minimization problem using full-batch gradient descent with random initialization was taken:

$$f_* := \min_{x \in \mathbb{R}^d} f(x).$$

f is supposed to be L-smooth over regions of the landscape so that the gradient does not change too sharply. Also we would require sharpness of some regions of f around local minima using μ -one-point-strongly-convexity (OPSC) with respect to x_* over M.

Definition 2.1 (*L*-smoothness). A function $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth $\Leftrightarrow f$ is differentiable and $\exists L : \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \ \forall x, y \in \mathbb{R}^d$

Definition 2.2 (μ -one-point-strongly-convex (OPSC) with respect to x_* over M). A function $f: \mathbb{R}^d \to \mathbb{R}$ is μ -one-point-strongly-convex (OPSC) with respect to x_* over M if it is differentiable and

$$\exists \mu > 0 : \langle \nabla f(x), x - x_* \rangle \ge \mu ||x - x_*||^2, \ \forall x \in M.$$

Lemma 2.1. Let f be a function that is L_{global} -smooth with a globl minimum x_* . Assume there exists a local minimum x^{\dagger} around which

- f is μ^{\dagger} -OPSC woth respect to x^{\dagger} over a set M that contains x^{\dagger} with diameter r.
- Let P(M) be a ball around x^{\dagger} with radius r_P excluding points M. f is $L < L_{\text{global}}$ -smooth in P(M) and μ_* -OPSC with respect to x_* , such as $\mu^{\dagger} > \frac{2L^2}{\mu_*}$. r_P depends on $r, \gamma, L_{\text{global}}$.
- $||x_* x^{\dagger}|| > \tau$, where τ depends on μ_*, r, γ . Then using learning rate $\frac{2}{\mu^{\dagger}} < \gamma < \frac{\mu_*}{L^2}$ GD escape M and reach a point closer to x_* than $||x^{\dagger} - x_*|| - r$ almost surely.

Proof.

Figure 1: Illustation of regions from lemma 2.1

Theorem 2.2. Let C_l be the set of functions such as f is L-smooth and μ_* -OPSC with respect to the global minima x_* except n a region M that contains local minima x^{\dagger} and satisfies lemma 2.1.

- Gradient descent initialized randomly inside M with kearning rate $\gamma < \frac{\mu^\dagger}{L_{\rm global}^2}$ converges to x^\dagger almost surely.
- Gradient descent initialized randomly in arbitary set $W: \mathcal{L}(W) > 0$ with learning rate $\frac{2}{\mu^{\dagger}} < gamma \leq \frac{\mu_*}{L^2}$ converges to x_* almost surely.

Proof.

Lemma 2.3. Take gradient descent initialized randomly in set W with learning rate $\gamma \leq \frac{1}{2L}$. Let $X \subset \mathbb{R}^d$ arbitary set of points in the landscape, f is L-smooth over $\mathbb{R}^d \setminus X$. Probabilty of encountering any point of X in first T steps of gradient descent is at most $2^{(T+1)d} \frac{\mathcal{L}(X)}{\mathcal{L}(W)}$.

Proof. \Box

Theorem 2.4. Let X be an arbitary set of points, f is μ_* -OPSC with respect to a minima $x_* \notin X$ over $\mathbb{R}^d \setminus X$. Let $c_X := \inf \{ \|x - x_*\| \mid x \in X \}$ and $r_W := \sup \{ \|x - x_*\| \mid x \in W \}$. The probability of not encountering ant points of X during gradient descent with learning ratee $\gamma \leq \frac{\mu_*}{L^2}$ is at least $1 - \frac{r_W}{c_X} \frac{1}{\log_2(1-\gamma\mu_*)} \frac{\mathcal{L}(X)}{\mathcal{L}(W)} 2^d$ if $c_X \leq r_W$ and 1 otherwise.

Proof. \Box

Proposition

Take the case of SGD

$$x_{t+1} := x_t - \gamma \left(\nabla f(x_t) + \xi_t \right),\,$$

where ξ_t considered to be Uniform $(-\sigma, \sigma)$.

Proposition 2.5. Consider SGD on the function from figure 1, starting close to x^{\dagger} . If the learning rate is sufficiently small the iterations will never converge to x_* nor to a small region around it, regardless of the magnitude of the noise. If the learning rate is large enough and stochastic noise satisfies certain bounds, SGD will converge to x_* from any starting point.

Proof. \Box

References

[MJS23] Amirkeivan Mohtashami, Martin Jaggi, and Sebastian Stich. Special properties of gradient descent with large learning rates, 2023.