# Bioinformatics CS300 The Great Review

Fall 2017
Oliver Bonham-Carter

# Course Summary



\subsection\*{\textbf{Academic Bulletin Description}}

An introduction to the development and application of methods, from the computational and information sciences, for the investigation of biological phenomena. In this interdisciplinary course, students integrate computational techniques with biological knowledge to develop and use analytical tools for extracting, organizing, and interpreting information from genetic sequence data. Often participating in team-based and hands-on activities, students implement and apply useful bioinformatics algorithms. During a weekly laboratory session students employ cutting-edge software tools and programming environments to complete projects, reporting on their results through both written assignments and oral presentations. Prerequisites: BIO 221 and FSBIO 201, or CMPSC 111. Distribution Requirements: QR, SP.



### Course Objectives

\subsection\*{\textbf{Course Objectives}}

Students successfully completing this class will have developed: \begin{enumerate}

\item A "big-picture" view of bioinformatics.

\item An understanding of the objectives and limitations of bioinformatics.

\item An understanding of the biological foundations of bioinformatics (genes and genomes, gene expression, etc.).

\item An understanding of the computational foundations of bioinformatics (programming, databases, etc.).

\item An understanding of how genetic information is obtained and processed.

\item The ability to use basic bioinformatics software tools to study genetic information.
\end{enumerate}



How Did We Meet Our Objectives?



Let's go back and revisit some of our discussions and slides.



# We Started With ...

# The Central Dogma Of Biology









Proteins provide structure and carry out many essential activities in a cell.

## **Transcription**



- Transcribe specific regions of DNA genes
  - Human genome ~25,000 genes (just 1.5% of genome)
- RNA is the direct product of transcribing a gene (DNA)
  - DNA -> RNA
  - same language (nucleotides)





#### The Genetic Code: RNA into Protein

- Triplet code
  - · Combinations of three nucleotides code for one amino acid
  - Three nucleotides = codon
- Redundancy
  - Sometimes >1 codon codes for same amino acid
  - 20 amino acids, 64 possible codons

#### Start and Stop codons

- First codon of many transcripts is "AUG", which codes for methionine
- Codons UAA, UAG, and UGA indicate the end of the transcript

| 1st  |                    |                                        |     | 2nd               | base               |                       | 310                |                    |   |  |  |  |  |
|------|--------------------|----------------------------------------|-----|-------------------|--------------------|-----------------------|--------------------|--------------------|---|--|--|--|--|
| base |                    | Т                                      |     | С                 |                    | A                     |                    | G                  |   |  |  |  |  |
|      | TTT                | (Phe/F) Phenylalanine  (Leu/L) Leucine | тст | (Ser/S) Serine    | TAT                | (Tyr/Y) Tyrosine      | TGT                | (Cys/C) Cysteine   | Т |  |  |  |  |
| т    | TTC                |                                        | TCC |                   | TAC                |                       | TGC                | (Cys/C) Cysteine   | С |  |  |  |  |
| '    | TTA                |                                        | TCA |                   | TAA <sup>[B]</sup> | Stop (Ochre)          | TGA <sup>[B]</sup> | Stop (Opal)        | Α |  |  |  |  |
|      | TTG                |                                        | TCG |                   | TAG <sup>[B]</sup> | Stop (Amber)          | TGG                | (Trp/W) Tryptophan | G |  |  |  |  |
|      | CTT                |                                        | ССТ | (Pro/P) Proline   | CAT                | (His/H) Histidine     | CGT                | (Arg/R) Arginine   | Т |  |  |  |  |
| С    | CTC                |                                        | ccc |                   | CAC                |                       | CGC                |                    | С |  |  |  |  |
| C    | CTA                |                                        | CCA |                   | CAA                | (Gln/Q) Glutamine     | CGA                |                    | Α |  |  |  |  |
|      | CTG                |                                        | CCG |                   | CAG                |                       | CGG                |                    | G |  |  |  |  |
|      | ATT                |                                        | ACT | (Thr/T) Threonine | AAT                | (Asn/N) Asparagine    | AGT                | (Ser/S) Serine     | Т |  |  |  |  |
| Α    | ATC                | (Ile/I) Isoleucine                     | ACC |                   | AAC                | (Asil/N) Asparagille  | AGC                | (Sel/S) Sellile    | С |  |  |  |  |
| ^    | ATA                |                                        | ACA |                   | AAA                | (Lys/K) Lysine        | AGA                | (Ara/D) Arcinina   | Α |  |  |  |  |
|      | ATG <sup>[A]</sup> | (Met/M) Methionine                     | ACG |                   | AAG                | (Lys/K) Lysine        | AGG                | (Arg/R) Arginine   | G |  |  |  |  |
|      | GTT                |                                        | GCT |                   | GAT                | (Asp/D) Aspartic acid | GGT                |                    | Т |  |  |  |  |
| G    | GTC                | (Val/V) Valine                         | GCC | (Ala/A) Alanina   | GAC                | (ASP/D) ASPARIIC acid | GGC                | (Gly/G) Glysins    | С |  |  |  |  |
| G    | GTA                |                                        | GCA | (Ala/A) Alanine   | GAA                | (Glu/E) Glutamic acid | GGA                | (Gly/G) Glycine    | Α |  |  |  |  |
|      | GTG                |                                        | GCG |                   | GAG                |                       | GGG                |                    | G |  |  |  |  |

Standard genetic code



#### **Translation**

 The information from DNA is rewritten in a new language: RNA





# We Talked About...

# Data Generation: Or where the data comes from for research in bioinformatics



### Course Outline





# Computation

#### Python – overall view

| Learning curve                                       | 00000 | Easy to learn, yet powerf                                                    |
|------------------------------------------------------|-------|------------------------------------------------------------------------------|
| Readibility of a python program                      | 00000 |                                                                              |
| Community,<br>availability of open<br>source modules | 0000  | (for bioinformatics, CPAN sligthly bigger)                                   |
| Programming paradigms                                | 00000 | Multi paradigm (Object Oriented, structured, functional, etc)                |
| Execution speed                                      | 999   | Interpreted language;<br>importance of programm<br>effort over computer effo |

#### Notes:

- This talk is full of tables like this
- They only reflect <u>my</u> opinion (biologist with 3-4 years experience)





# Computation: How to Use













# We Talked About...

# Databases: Places where data is stored for further research



# Course Outline



#### Biological Data and Databases



- •To learn how to use a Web-based genomic databases and tools.
- •To understand the types of information stores in genomic databases.
- To learn how to use different interfaces to find and retrieve genomic information.
- Write Python program to find patterns (start and stop codons) in DNA sequences

#### **Biological Databases**



Sign in to NCDI

Search

| S NCBI Resources ☑ How To                        | <b>&gt;</b> ✓                   |                             |                                         |                   |
|--------------------------------------------------|---------------------------------|-----------------------------|-----------------------------------------|-------------------|
| National Center for<br>Biotechnology Information | atabases 💠                      |                             |                                         |                   |
| NCBI Home                                        | Welcome to NC                   | ВІ                          |                                         | Popular Resources |
| Resource List (A-Z)                              | The National Center fo          | r Biotechnology Information | on advances science and                 | PubMed            |
| All Resources                                    | health by providing acc         | cess to biomedical and ger  | nomic information.                      | Bookshelf         |
| Chemicals & Bioassays                            | About the NCBI   Mis            | ssion   Organization   NCB  | I News & Blog                           | PubMed Central    |
| Data & Software                                  |                                 |                             |                                         | PubMed Health     |
| DNA & RNA                                        | Submit                          | Download                    | Learn                                   | BLAST             |
| Domains & Structures                             | Deposit data or                 | Transfer NCBI data          | Find help                               | Nucleotide        |
| Genes & Expression                               | manuscripts into NCBI databases | to your computer            | documents, attend<br>a class or watch a | Genome            |
| Genetics & Medicine                              | INCDI databases                 | _                           | tutorial                                | SNP               |
| Genomes & Maps                                   |                                 | -                           |                                         | Gene              |
| Homology                                         |                                 |                             |                                         | Protein           |
| Literature                                       |                                 |                             |                                         | PubChem           |
| Proteins                                         |                                 |                             |                                         |                   |

#### **Develop**

Use NCBI APIs and code libraries to build applications

#### **Analyze**

Identify an NCBI tool for your data analysis task



#### Research

Explore NCBI research and collaborative projects

#### NCBI News & Blog

NCBI to assist in Southern California genomics hackathon in January

30 Nov 2017

From January 10-12, 2018, the NCBI will help with a bioinformatics backathon in

December 6th NCBI Minute: Keeping Current and Getting Help with NCBI Resources

30 Nov 2017

In the next NCRI Minute on Wednesday

November 28th NCBI Minute: An update

**NCBI** Browser

Sequence Analysis

**Training & Tutorials** 

**Taxonomy** 

Variation









The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.







Getting started



UniProt data

**Q** Text search

Our basic text search allows you to search all the resources available

★ Download latest release
 Get the UniProt data

**UniProt Browser** 



# We Talked About...

# Data Manipulation: How we begin to find meaning in the data



## Course Outline





#### **Data Manipulation**

- •To become familiar with tools that can be used to manipulate sequences in a variety of ways and make basic comparisons between sequences
- Understand the structure and orientation of string representations of DNA and protein sequences
- •Gain experience with string manipulation using Python and its application to DNA and protein sequence data.
- •Understand how genetic information is computationally decided and appreciate the important complications in working with sequences (introns/exons, start codons, template/nontemplate strand orientation, etc)



#### Databases...

#### Filter by<sup>i</sup>

Reviewed (556,196)
Swiss-Prot

Unreviewed (98,705,220)

#### Popular organisms

Human (161,042)

Rice (122,677)

A. thaliana (89,135)

Mouse (83,100)

Zebrafish (59,673)

Other organisms



#### View by

#### Results table

Taxonomy

Keywords

Gene Ontology

| 8 | BLAST = | Align <b>L</b> Downloa | ıd ⊕     | Add to basket                | <b>1</b> to <b>2</b> ! | <b>5</b> of <b>99,261,</b> 4                                        |          |
|---|---------|------------------------|----------|------------------------------|------------------------|---------------------------------------------------------------------|----------|
| > | Entry 🔷 | Entry name 🗢           |          | rotein names 🗘 💟             | Gene names 🗣           | Organism 🕏                                                          | Length 🕏 |
|   | Q91G88  | 006L_IIV6              | <u> </u> | omain-containing             | IIV6-006L              | Invertebrate iridescent virus 6 (IIV-6) (Chilo iridescent virus)    | 352      |
|   | Q6GZW6  | 009L_FRG3G             | <b>}</b> | Putative helicase<br>009L    | FV3-009L               | Frog virus 3<br>(isolate Goorha)<br>(FV-3)                          | 948      |
|   | Q91G70  | 026R_IIV6              |          | Uncharacterized protein 026R | IIV6-026R              | Invertebrate iridescent virus 6 (IIV-6) (Chilo iridescent virus)    | 59       |
|   | Q6GZU9  | 027R_FRG3G             | <b>₽</b> | Uncharacterized protein 027R | FV3-027R               | Frog virus 3<br>(isolate Goorha)<br>(FV-3)                          | 970      |
|   | Q197D7  | 023R_IIV3              |          | Uncharacterized protein 023R | IIV3-023R              | Invertebrate iridescent virus 3 (IIV-3) (Mosquito iridescent virus) | 106      |
|   | Q91G65  | 032R_IIV6              | <b>}</b> | Uncharacterized protein 032R | IIV6-032R              | Invertebrate iridescent virus                                       | 100      |
|   | Q6GZU3  | 033R_FRG3G             | <b>Ş</b> | Transmembrane protein 033R   | JniProt                | Brow                                                                | ser      |





#### Homo sapiens genomic DNA, chromosome 21q

GenBank: BA000005.3

**FASTA** Graphics

Go to: ✓

LOCUS BA00005 33543332 bp DNA linear CON 12-JUL-2008

Homo sapiens genomic DNA, chromosome 21g. DEFINITION

ACCESSION BA00005 VERSION BA000005.3

KEYWORDS

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;

Catarrhini: Hominidae: Homo.

REFERENCE

#### Homo sapiens genomic DNA, chromosome 21q

GenBank: BA000005.3 GenBank Graphics

>BA000005.3 Homo sapiens genomic DNA, chromosome 21g CATGTTTCCACTTACAGATCCTTCAAAAAGAGTGTTTCAAAACTGCTCTATGAAAAGGAATGTTCAAC TTCCATTTTCTCTATAAGCCTCAAAGCTGTCCAAATGTCCACTTGCAGATACTACAAAAAGAGTGTTT AAAGTGCTCAATGAAAAGGAATGTTCAGCTCTGTGAGTTAAATGCAAACATCACAAATAAGTTTCTGA ATGCTTCTGTCTAGTTTTTATGGGAAGATAATTCCGTGTCCAGCGAAGGCTTCAAAGCTTTCAAAATA' GAATGTGCACATCACAAAGAAGTTTCTGAGAATGCCTTCAGTCTGGTTTTTATGTGAAGATATTCCCT'

| Wolcoulo processing |             |                        |            |              |  |  |  |  |  |
|---------------------|-------------|------------------------|------------|--------------|--|--|--|--|--|
| Feature key         | Position(s) | Description            | Actions    | Graphical vi |  |  |  |  |  |
| Transit peptide i   | 1 - 77      | Mitochondrion          |            |              |  |  |  |  |  |
|                     |             | Sequence analysis      |            |              |  |  |  |  |  |
|                     |             | <b>⊕</b> A             | dd 🔧 BLAST |              |  |  |  |  |  |
| Chain i             | 78 - 581    | Serine/threonine-prote | ein kinase |              |  |  |  |  |  |
| (PRO_0000024369)    |             | PINK1, mitochondrial   | dd 🔧 BLAST |              |  |  |  |  |  |

#### Amino acid modifications

| Feature<br>key     | Position(s) | Description<br>Actions                         | Graphical view |
|--------------------|-------------|------------------------------------------------|----------------|
| Modified residue i | 228         | Phosphoserine; by autocatalysis  1 Publication |                |
| Modified residue i | 402         | Phosphoserine; by autocatalysis  1 Publication |                |



#### **Tools from Databases**

| N | U.S. National I                              | ibrary of Medicine                    | > NCBI                    |                                   |                        |            |       |
|---|----------------------------------------------|---------------------------------------|---------------------------|-----------------------------------|------------------------|------------|-------|
|   | BLAST ® » blast                              | tn suite                              |                           | Hon                               | ne Recei               | nt Results | Saved |
|   |                                              |                                       | Sta                       | I Nucleotide BLAST                |                        |            |       |
|   | blastn blastp blastx                         | tblastn tblastx                       |                           |                                   |                        |            |       |
|   | Enter Query Se                               | BLAS                                  | TN programs search nuc    | eleotide databases using a nucl   | eotide query. <u>n</u> | nore       |       |
|   |                                              | mber(s), gi(s), or FAS                | TA sequence(s) 😡          | Clear                             | Query                  | subrange 🕢 |       |
|   | BA000005.3                                   | ( ), ( ),                             |                           |                                   | From                   |            |       |
|   |                                              |                                       |                           |                                   |                        |            |       |
|   |                                              |                                       |                           |                                   | То                     |            |       |
|   | Or, upload file Job Title  Align two or more |                                       | nosen 😢                   | 9                                 | <u>A</u>               |            |       |
|   | Choose Search                                | Set                                   |                           |                                   |                        |            |       |
|   | Database                                     | Human genomic +                       | transcript Mouse g        | enomic + transcript Other         | rs (nr etc.):          |            |       |
|   |                                              | Nucleotide collection (               | (nr/nt)                   | <b>○ ②</b>                        |                        |            |       |
|   | Organism<br>Optional                         | Enter organism name or                | idcompletions will be sug | gested Exclude                    | +                      |            |       |
|   |                                              | Enter organism commo                  | n name, binomial, or tax  | id. Only 20 top taxa will be show | vn 🔞                   |            |       |
|   | Exclude<br>Optional                          | ☐ Models (XM/XP)                      | Uncultured/environm       | ental sample sequences            |                        |            |       |
|   | Limit to<br>Optional                         | <ul> <li>Sequences from ty</li> </ul> | pe material               |                                   |                        |            |       |
|   | Entrez Query                                 |                                       |                           | You Tube Create co                | ustom databa           | <u>se</u>  |       |
|   | Optional                                     | Enter an Entrez query t               | o limit search 🕝          |                                   |                        |            |       |



# We Talked About...

Sequence Alignment:
Comparing sequences
to discover similarities
and differences







# Alignment to Compare ...



- DNA sequences
- Genes
- Proteins
- Organisms



- Why do we compare these things?
- What is there to learn when we find that two things are the same? Not the same?

# Sequence Alignment



#### **DNA - Nucleotides**

- To understand the value of aligning genes and recognize the practical applications of this technique.
- To gain familiarity with the use of Web-based alignment tools to explore sequence similarity and understand how to modify their parameters.
- To know how the Needleman-Wunsch algorithm optimally aligns any two sequences.
- Understand how the Needleman-Wunsch algorithm can be modified to yield other alignments.



#### Example

#### Alignment score = 0

Let:

Match = +1

Mismatch = 0

Gap = -1

|          |    | С  | Α  | С  | G  | Т  | А  | Т  |
|----------|----|----|----|----|----|----|----|----|
| <b>—</b> |    | -1 | -2 | -3 | -4 | -5 | -6 | -7 |
| С        | -1 | V  | 0  | 1  | -2 | -3 | -4 | -5 |
| G        | -2 | 0  |    | 0  | 10 | -1 | -2 | -3 |
| С        | -3 | -1 | 0  | 2  | 1  | 8  | -1 | -2 |
| Α        | -4 | -2 | 0  | 1  | 2  | 1  |    | 0  |

**CACGTAT** 

**CACGTAT** 

**CACGTAT** 

--CGCA-

C--GCA-

CGC--A-



#### Pairwise Alignment Similarity and Relatedness

#### Alignment of a gene from two closely related viruses

Hemagglutinin gene from virus A: ATGAACGCAATACTCGTAGTT...

Hemagglutinin gene from virus B: ATGAAGGCAATACTAGTAGTT...

**Few Mismatches** 

#### Alignment of a gene from two distantly related viruses

Hemagglutinin gene from virus A: ATGAACGCAATACTCGTAGTT...

Hemagglutinin gene from virus C:

Lots of Mismatches



# Sequence Alignment



#### Protein – Amino Acids

- Understand the use of a substitution matrix to score amino acid similarity in a protein sequence alignment.
- Gain experience using protein alignment to develop hypotheses about protein function based on sequence similarity.
- Know how protein alignment differs algorithmically from DNA alignment.
- Know how substitution matrix is developed and how different matrices might be used to produce better alignments in particular situations.



## **Comparing Protein**

 Two proteins (wildtype, non-wildtype) are compared to find causes of disorder.





Unhealthy



# Aligning Sequences To Locate Mutations

- A natural process that changes the DNA sequence
- A common process
  - during replication of the human genome a "typo" occurs every 100,000 or so nucleotides
  - that's about 120,000 typos each time one of our cells divides
  - most are repaired





# We Talked About...

# Genome annotation: Finding relevant regions in sequences









ALLEGHENY COLLEGE

- Alignment-based
- Sequence-based
- Content-based
- Probabilistic

 Be able to combine contentbased and probabilistic methods of gene discovery to identify the most probable locations of introns and exons in a eukaryotic DNA sequence







Locate genes for proteins in sequences.

#### Genome Assembly Annotation

| Type | Name       | RefSeq            | INSDC          | Size (Mb) | GC%  | Protein | tRNA | Other RNA | Gene | Pseudogene |
|------|------------|-------------------|----------------|-----------|------|---------|------|-----------|------|------------|
|      | master WGS | NZ_BBIY00000000.1 | BBIY00000000.1 | 0.74      | 27.6 | 901     | 27   | -         | 928  | -          |

#### Genome Region



https://www.ncbi.nlm.nih.gov/genome/browse/









#### We Talked About...

Protein Prediction:
Determining what protein exist in a sequence and how they might behave.









ALLEGHENY COLLEGE

- •Know how to use available tools to examine the experimentally determined structures of proteins and visualize structural an functional features
- •Appreciate the value and limitations of predicting 3-D structure from sequence alone







- Protein must fold correctly to function
- Misfolded proteins
  - Accumulation Huntington's and Parkinson's disease
  - Tagged for degradation emphysema, cystic fibrosis
    - Pharmaceutical chaperones fold mutated proteins to render them functional
- Antiviral drug development
  - Antibiotics vs antivirals
    - Bacteria cells
    - Viruses invade host's cells







Bacteria

Virus



#### Protein DataBase (PDB)

- Database for 3-D structural data of large biological molecules
- https://www.rcsb.org/
- Data is viewable using jmol.







#### In Closing ...

# Bioinformatics is diverse and exciting!

#### **Bioinformatics Accomplishments**



- ✓ A "big-picture" view of bioinformatics.
- ✓ An understanding of the objectives and limitations of bioinformatics.
- ✓ An understanding of the biological foundations of bioinformatics (genes and genomes, gene expression, etc.).









- An understanding of the computational foundations of bioinformatics (programming, databases, etc.).
- An understanding of how genetic information is obtained and processed.
- The ability to use basic bioinformatics software tools to study genetic information.



#### What's Next?

Bioinformatics could provide you with a satisfying career and plenty of room to advance



## The Value of the Bioinformatics Skills

## There is a great need for Bioinformaticians!



#### Skills in Careers



- Biologists:
  - Computational skills
  - Mathematical /statistical
  - Programming for Automation



- BioMedical skills
- Understanding of biological systems and mechanisms
- Early detection of disease by data
- Modeling of therapeutic remedies
- Others



#### Skills in Careers

ALLEGHENY COLLEGE

- Software (bioinformatics) engineer
- Research scientist in biotechnology
- Data scientist
- Project manager (pharmaceuticals, medical, etc)
- Computational immunologist
- Medical doctor (in clinical and research applications)







#### Avg. Wages For Related Jobs

## High Paying Careers



- Biological science teachers, postsecondary
- Biomedical engineers
- Biological technicians
- Biological scientists, all other



#### High Paying Careers

#### Bioinformatics Research Scientist Salaries

36,327 Salaries Updated Aug 10, 2015



https://www.glassdoor.com/Salaries/bioinformatics-research-scientist-salary-SRCH\_KO0,33.htm



#### High Paying Careers



https://www.glassdoor.com/Salaries/bioinformatics-scientist-salary-SRCH\_KO0,24.htm



#### **Bioinformatician Jobs**

- Research scientist
- Bioinformatician
- Bioinformatics programmer
- Software Developer
- Analyst
- Statistician
- Physician
- Project manager
- Database developer and administrator
- Technical assistant and technical sales representative
- or any jobs where biologists are currently hired

(some of these may require graduate education)



## Bioinformatics Jobs and Internships

#### Resources

http://www.iscb.org/iscb-careers-job-database

http://www.bioinformatics.org/jobs/

http://www.bioplanet.com/

http://www.bio-itworld.com/BioIT/JobOpenings.aspx

http://www.biospace.com/

www.glassdoor.com

http://www.jobs-salary.com/jobs.php?

Campus Resources



### The Value of the Bioinformatics Skills



## In Bioinformatics, there is ...



# SU MUG