$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{2k^2(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 (r_1+r_5) (t_1+t_3))}$	$\frac{6 k^2 (r_1 + r_5) + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

£1 -				$\frac{1}{t_1}$
φ,	0	0	0	- <u></u>
$\tau_{0}^{\#2} \ \sigma_{0}^{\#1}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

Source constraints				
Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$ \tau_{1}^{\#1\alpha} == 0 $	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{l}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:				

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	-i $\sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2}kt_3$	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1} \dagger$

$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta} \ f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

					3)		
$f_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_+^2} _{lpha eta} f$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} (2 r_{1} + r_{5}) - \frac{t_{1}}{2} $	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha \beta$	$\omega_1^{#2} + \alpha^{\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\sharp 1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Lagrangian density $\begin{array}{l} -\frac{1}{3}t_{1}\,\omega_{,}^{\alpha\prime\prime}\,\omega_{\kappa\alpha}^{\kappa}+\frac{2}{3}t_{3}\,\omega_{,}^{\alpha\prime\prime}\,\omega_{\kappa\alpha}^{\kappa}-t_{1}\,\omega_{,\kappa\lambda}^{\lambda}\,\omega_{\kappa\lambda}^{\prime}+f^{\alpha\beta}\,\tau_{\alpha\beta}+\\ \omega^{\alpha\beta\chi}\,\sigma_{\alpha\beta\chi}^{\kappa}-r_{5}\partial_{,\nu}^{\kappa\lambda}^{\prime}\partial_{,\lambda}^{\alpha}-\frac{2}{3}r_{1}\,\partial^{\beta}\omega_{\beta\alpha}^{\kappa}\partial_{\beta}\omega_{\beta\beta}^{\kappa}-\frac{2}{3}r_{1}\,\partial_{\theta}\omega_{\beta\beta}^{\kappa}+\\ \frac{2}{3}r_{1}\,\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\,\partial_{\kappa}^{\kappa}+r_{5}\,\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}^{\kappa}+r_{5}\,\partial_{\theta}\omega_{\lambda}^{\alpha}^{\kappa}-\frac{2}{3}r_{1}\,\partial_{\theta}\omega_{\beta\beta}^{\kappa}+\\ \frac{2}{3}r_{1}\,\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\,\partial_{\kappa}^{\kappa}+r_{5}\,\partial_{\alpha}\omega_{\lambda}^{\kappa}\partial_{\kappa}^{\kappa}+r_{5}\,\partial_{\theta}\omega_{\lambda}^{\alpha}\partial_{\kappa}^{\kappa}-r_{5}\,\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}^{\kappa}+\\ \frac{1}{3}t_{1}\,\omega_{\kappa\alpha}^{\alpha}\,\partial^{\kappa}f_{1}'-\frac{2}{3}t_{3}\,\partial_{\alpha}f_{\alpha}^{\alpha}\partial^{\kappa}f_{1}'+\frac{1}{3}t_{1}\,\omega_{\kappa\lambda}^{\lambda}\,\partial^{\kappa}f_{1}'+\frac{2}{3}t_{3}\,\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f_{1}'+\\ \frac{1}{3}t_{1}\,\omega_{\kappa\alpha}^{\alpha}\,\partial^{\kappa}f_{1}'-\frac{2}{3}t_{3}\,\partial_{\alpha}f_{\alpha}^{\alpha}\partial^{\kappa}f_{1}'+\frac{1}{3}t_{3}\,\partial_{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{1}'+\frac{2}{3}t_{3}\,\partial_{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{1}'+\\ \frac{2}{3}t_{1}\,\omega_{\kappa\beta}^{\alpha}\,\partial^{\kappa}f_{1}'-\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{2}{3}t_{3}\,\partial_{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{2}{3}t_{3}\,\partial_{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{2}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\\ \frac{2}{3}t_{3}\,\omega_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1}\,\partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}'+\frac{1}{3}t_{1$

Massive particle				
Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$			
Spin:	1			
Parity:	Odd			

Massive particle				
Pole residue:	$-\frac{1}{r_1} > 0$			
Polarisations:	5			
Square mass:	$-\frac{t_1}{2r_1} > 0$			
Spin:	2			
Parity:	Odd			

(No massless particles)