Sơ đồ nén MP3

 Số hóa bằng cách lấy mẫu theo khoảng. Tạo ra một dãy số thực

$$s_1, s_2, \ldots, s_T$$

Ví dụ, với tốc độ 44,100 mẫu trên giây, bản giao hưởng 50 phút có

$$T = 50 \times 60 \times 44,100 \approx 130$$
 triệu.

- 2. **Lượng hóa.** Xấp xỉ s_i bởi giá trị gần nhất thuộc tập hữu hạn Γ .
- 3. **Mã hóa.** Xâu $s_1 s_2 \dots s_T$ trên bảng chữ Γ được mã hóa ở dạng nhị phân. (Dùng mã Huffman)

Mã hóa

Ký hiệu	Số lần xuất hiện
A	70 triệu
B	3 triệu
C	20 triệu
D	37 triệu

- ▶ Bảng chữ $\Gamma = \{A, B, C, D\}$ và T = 130 triệu.
- Nếu mã hóa dùng 2 bit cho mỗi ký hiệu, ví dụ $A \to 00, \qquad B \to 01, \qquad C \to 10, \qquad D \to 11$ ta cần 260 megabits.
- Liệu ta có thể dùng mã độ dài thay đổi để giảm kích thước bản mã?

Mã độ dài thay đổi

- Dùng các dãy bit độ dài khác nhau để mã hóa các chữ cái.
- Chữ cái xuất hiện thường xuyên hơn sẽ được mã bằng dãy bit ngắn hơn.
- Vấn đề: Làm thế nào xác định được mỗi chữ bắt đầu và kết thúc ở đâu trong dãy bit.?

Ví dụ

Cách mã hóa

$$A \rightarrow 0, \qquad C \rightarrow 01, \qquad D \rightarrow 11, \qquad B \rightarrow 001$$

gây ra nhập nhằng khi giải mã

$$001 \to AC$$
$$001 \to B$$

Mã tiền tố

Định nghĩa

Mã tiền tố là tập xâu thỏa mãn không có xâu nào là khúc đầu của xâu khác.

Symbol	Codeword
A	0
B	100
C	101
D	11

Hãy giải mã dãy bit 10100100?

Kích thước bản mã

Ký hiệu	Số lần xuất hiện	Từ mã
A	70 triệu	0
B	3 triệu	100
C	20 triệu	101
D	37 triệu	11

Kích thước bản mã

$$= (1\times 70 + 3\times 3 + 3\times 20 + 2\times 37) \text{ megabits}$$

$$= 213 \text{ megabits}$$

 \blacktriangleright Cải thiện 17% so với 260 megabits khi dùng mã độ dài cố định.

Bài toán

Cho n ký hiệu có tần suất

$$f_1, f_2, \ldots, f_n$$
.

Hãy tìm cây ở đó mỗi lá ứng với một ký hiệu và có chi phí cực tiểu.

Chi phí của cây $=\sum_{i=1}^n f_i \cdot (\mathrm{độ} \; \mathrm{sâu} \; \mathrm{k\acute{y}} \; \mathrm{hiệu} \; \mathrm{th\acute{u}} \; i \; \mathrm{trong} \; \mathrm{cây})$

Hãy tính chi phí của cây sau.

Chi phí của cây
$$=\sum_{i=1}^n f_i\cdot (\mathrm{đ\phi}$$
 sâu ký hiệu thứ i trong cây)

- ightharpoonup Tần suất nút **lá** là f_i .
- ► Tần suất *nút trong* là tổng tần suất của các *lá* con cháu của nó.

Mênh đề

Chi phí của cây là tổng tần suất của mọi nút ngoại trừ nút gốc.

Tối ưu hàm chi phí

Chi phí của cây
$$=\sum_{i=1}^n f_i \cdot (\operatorname{do} \operatorname{sâu} \operatorname{của} \operatorname{ký} \operatorname{hiệu} \operatorname{thứ} i \operatorname{trong} \operatorname{cây})$$

Nhân xét

Hai ký hiệu với tần suất nhỏ nhất sẽ phải ở đáy của cây tối ưu.

Xây dựng cây một cách tham lam

- ▶ Tìm hai ký hiệu có tần suất nhỏ nhất, gọi là i và j, và tạo nút cha của chúng với tần suất $f_i + f_j$. Để đơn giản ký hiệu, ta giả sử chúng là f_1 và f_2 .
- Mọi cây trong đó f_1 và f_2 là nút lá anh em có chi phí f_1+f_2 cộng với chi phí cho cây gồm n-1 nút lá của các tần suất:

$$(f_1+f_2), f_3, f_4,\ldots,f_n.$$

Ta đưa về bài toán kích thước nhỏ hơn. Ta loại bỏ f_1 và f_2 khỏi dãy tần suất và thêm (f_1+f_2) vào, và **lặp lại**.

Xây dựng cây một cách tham lam

Hình: Loại f_1,f_2 và thêm f_1+f_2 vào dãy tần suất.

```
procedure Huffman(f)
Input: mång f[1 \cdots n] của các tần suất
Output: Môt cây mã hóa với n lá
Xét H là hàng đợi ưu tiên của các số nguyên, thứ tư
bởi f
for i = 1 to n: insert(H, i)
for k = n + 1 to 2n - 1:
    i = deletemin(H), j = deletemin(H)
    Tao môt nút đánh số k với các con là i,j
    f[k] = f[i] + f[j]
    insert(H, k)
```