Принцип сжимающих отображений

Работаем в $E=\mathbb{R}^n$ - пространство точек с n координатами. E - аффинное пространство, а \vec{E} – его присоединенное линейное пространство, состоящее из векторов, натянутых на точки E.

Определение 0.1. Пусть L - это векторное пространство, u на нем задано отображение $\|\cdot\|: L \longrightarrow \mathbb{R}$ такое, что:

- 1. $\forall x \in L \longmapsto ||x|| \geqslant 0$. A maxime $||x|| = 0 \Longleftrightarrow x = 0$;
- 2. $\forall x \in L \& \forall \lambda \in \mathbb{R} \longmapsto ||\lambda x|| = |\lambda| \cdot ||x||$;
- 3. $\forall x, y \in L \longmapsto ||x+y|| \leq ||x|| + ||y||$ неравенство треугольника.

Tогда данное отображение называется нормой, а пространство L нормированным.

Пример 0.1. Приведем пример норм. Пусть $a(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Тогда норму можно определить, допустим, так:

$$||a||_1 = \sqrt{\sum_{j=1}^n x_j^2}.$$

Или так:

$$||a||_2 = \max_{j=1,\dots,n} |x_j|.$$

И тогда можно ввести понятие эквивалентности норм.

Определение 0.2. Пусть снова L - линейное пространство. Тогда нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на L называются эквивалентными, если $\exists C_1, C_2 > 0 : \forall x \in L \longmapsto C_1 \|x\|_1 \leqslant \|x\|_2 \leqslant C_2 \|x\|_1$.

Как видно, для определенных выше двух норм это соотношение удовлетворяется.

Утверждение 0.1. В конечномерном линейном пространстве все нормы эквивалентны.

Рассмотрим множество функций, непрерывных на отрезке [a;b] для некоторых неравных $a,b\in\mathbb{R}$ и обозначим данное множество C[a;b]. Понятно, что C[a;b] является линейным пространством. Тогда введем на нем норму.

Определение 0.3. Нормой функции $f(x) \in C[a;b]$ будем называть число

$$||f(x)|| = \max_{x \in [a:b]} |f(x)|.$$

Определение 0.4. Набор функций $f_1(x), f_2(x), \dots, f_n(x) \in C[a; b]$ будем называть векторфункцией и обозначать $f(x) = \vec{f}(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$.

Определение 0.5. Вектор-функция f(x) называется непрерывной (дифференцируемой, непрерывно дифференцируемой и т.п.), если все ее компоненты непрерывны (дифференцируемы, непрерывно дифференцируемы и т.п.).

Определение 0.6. *Модулем вектор-функции* f(x) *назовем число*

$$|f(x)| = \sqrt{\sum_{j=1}^{n} f_j^2(x)}.$$

Норму вектор-функции можно определить как

$$||f(x)||_1 = \max_{x \in [a;b]} |f(x)|.$$

Или же как

$$||f(x)||_2 = \max_{j=1,\dots,n} \max_{x \in [a:b]} f_j(x).$$

Понятно, что эти две нормы эквивалентны.

Определение 0.7. Пусть имеется функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$, где $f_n(x) \in C[a;b]$ - линейное пространство функций с нормой (1 или 2 – неважно). Тогда говорят, что данная последовательность сходится к функции f(x) по норме, если:

$$\lim_{n\to\infty} ||f_n(x) - f(x)|| = 0.$$

Аналогично все то же самое и точно так же определяется и для вектор-функций $f(x) = \vec{f}(x) \in C[a;b]^n$.

Определение 0.8. Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ называется фундаментальной, если:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \geqslant N \ \& \ \forall m \geqslant N \longmapsto ||f_n(x) - f_m(x)|| < \varepsilon.$$

Определение 0.9. Функциональное пространство L называется полным по [данной] норме, если любая фундаментальная функциональная последовательность данного пространства сходится по норме к функции из этого же пространства L.

Теорема 0.1. Функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Доказательство. Возьмем произвольную функциональную последовательность $\{f_n(x)\}_{n=1}^{\infty}$ из нашего пространства непрерывных функции. Тогда из определения фундаментальности следует, что $||f_n(x) - f_m(x)|| < \varepsilon$.

Однако
$$|f_n(x) - f_m(x)| \le ||f_n(x) - f_m(x)|| < \varepsilon \ \forall x \in [a; b].$$

А значит, последовательность $f_n(x)$ сходится к некоторой f(x), причем равномерно на [a;b] (числовая последовательность $||f_n(x)||$ мажорирует функциональную последовательность $f_n(x)$).

Так как $f_n(x) \in C[a;b]$ – непрерывны $\forall n \in \mathbb{N}$, и последовательность сходится равномерно на [a;b], то предельная функция f(x) также является непрерывной на [a;b], а значит, $f(x) \in C[a;b]$.

Таким образом, последовательность $\{f_n(x)\}_{n=1}^\infty$ сходится к $f(x) \in C[a;b]$. В силу произвольности $\{f_n(x)\}_{n=1}^\infty$ заключаем, что функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Определение 0.10. Полное нормированное линейное пространство называется Банаховым. Обозначается В.

Определение 0.11. Функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ называется сходящемся по норме, если последовательность его частичных сумм $S_n(x) = \sum_{k=1}^n f_k(x)$ является сходящейся по норме.

Определение 0.12. Пусть $\forall x \in M \subseteq B$ определен элемент $Ax \in B$. Тогда говорят, что на множестве B задан оператор A с областью определения M.

Будем рассматривать уравнение x = Ax.

Определение 0.13. *Множество* $M \subseteq B$ называется ограниченным, если $\exists C > 0$ такое, $\forall x \in M \longmapsto ||x|| \leqslant C.$

Определение 0.14. Оператор A называется сжатием на M, если:

- 1. $\forall x \in M \longmapsto Ax \in M$:
- 2. $\exists k \in (0,1): \forall x, y \in M \longmapsto ||Ax Ay|| \leqslant k||x y||.$

Теорема 0.2 (Принцип сжимающих отображений). Пусть множество $M \subseteq B$ является ограниченным и замкнутым, а оператор A является сжатием. Тогда решение уравнения x = Ax существует и единственно.

Доказательство. Будем использовать итерационный метод, согласно которому мы выбираем начальное x_0 , а затем строим последовательность $x_n = Ax_{n-1}$. Тогда, если $\exists \lim_{n \to \infty} x_n = Ax_{n-1}$ x и $\exists \lim_{n \to \infty} Ax_n = Ax$, то x = Ax.

Пусть $x_n = S_n = x_0 + (x_1 - x_0) + \ldots + (x_n - x_{n-1})$. Докажем, что $||x_{n+1} - x_n|| \le 2Ck^n$ для некоторого C > 0, ограничивающего последовательность x_n . Сделаем это индукции.

База индукции: $||x_1 - x_0|| \le ||x_1|| + ||x_0|| \le 2C$.

Предположим, что $||x_n - x_{n-1}|| \leq 2Ck^{n-1}$. Тогда получаем, что $||x_{n+1} - x_n|| = ||Ax_n - x_n||$ $||Ax_{n-1}|| \le k||x_n - x_{n-1}|| \le 2Ck^n.$

И получаем, что $x_0 + \sum\limits_{j=1}^{\infty} (x_j - x_{j-1}) \leqslant x_0 + \sum\limits_{j=1}^{\infty} 2Ck^{n-1} < \infty.$ А значит $\exists \lim_{n \to \infty} x_n = x.$ А поскольку M замкнуто, то $x \in M.$

Теперь рассмотрим разность $||Ax_n - Ax|| \le k||x_n - x|| \xrightarrow[n \to \infty]{} 0$. Это означает, что $\exists \lim Ax_n = Ax.$

 $\stackrel{n\to\infty}{\text{Учитывая}}$, что $x_{n+1}=Ax_n$, то, перейдя к пределу с обеих частей равенства, мы получаем, что итерационный метод сходится к решению уравнения x = Ax. И таким образом, доказано существование решения. Теперь докажем его единственность.

Пойдем от противного: пусть x и y – два разных решения. Тогда $||x-y|| = ||Ax-Ay|| \leqslant$ $k\|x-y\|$. Учитывая, что $k \in (0;1)$, то данная ситуация возможна тогда и только тогда, когда ||x-y|| = 0. Следовательно, x = y, что противоречит тому, что это два разных решения. Итак, теорема доказана.