

FOAIE DE CATALOG

B1uSC-SOT523

Cuprins

Date Generale B1uSC-SOT523	2
Descriere	2
Aplicații posibile	
1. Diagrama bloc și schema electrică	
2. Specificații tehnice finale ale produsului	
3. Configurație de simulare a variației curentului de ieșire	5
4. Implementare la nivel de mască	6
5. Caracteristici de performanță	7
6. Performanțe Tehnologice	
7. Dimensiunile capsulei	11

Date Generale B1uSC-SOT523

• Tip: Blauschild

• Tehnologie: CMOS 500 nm

• Curent de ieșire: 1.012 [µA]

• Tensiune maximă de alimentare: 5 [V]

• Tensiunea minimă de alimentare: 1.81 [V]

• Gama de temperatură: -40 ÷ 125 [°C]

Descriere

Circuitul realizat prezintă arhitectura unei surse de curent de tip Blauschild implementată într-o tehnologie CMOS de 500nm și cunoscută în domeniul circuitelor analogice pentru un raport optim între simplitate și performanțe.

În configurația propusă, aceasta este implementată pentru generarea unui curent stabil de tip CTAT (*eng.* Complementary to Absolute Temperature), care prezintă o dependență negativă de temperatură.

Avantajul principal este simplitatea circuitului, având un număr redus de componente atât active, cât și pasive, deci implicit și un consum redus de putere.

Poate fi adaptată cu ușurință în foarte multe aplicații analogice ca circuit de polarizare în funcție de cerințele acestora.

Aplicații posibile

- Referințe de curent
- Amplificatoare operationale
- Circuite de polarizare
- Stabilizatoare
- Convertoare AD/DA
- Oscilatoare

1. Diagrama bloc și schema electrică

OUT- ieșirea sursei de curent, care poate polariza alt dispozitiv electronic

Curentul de referință este dat de $VGS_{N1}/R3$. Tensiunea VGS scade cu temperatura (-2mV/C), iar R3 este o rezistență de polisiliciu care are o dependență pozitivă de temperatură. R3 fiind la numitor, aceasta dependență se inversează și rezultă un curent care scade cu temperatura (CTAT).

2. Specificații tehnice finale ale produsului

Parametru	Descriere	Condiții	Min.	Nom.	Max.	Unitate
$V_{ m DD}$	Gama de alimentare	Temp. = 27 °C	1.810	2.020	5	V
IQ	Curentul total consumat	Temp. = $27 ^{\circ}$ C $V_{DD} = Nom$.	n/a	3.430	n/a	μА
I _{OUT}	Gama de variație a I_{OUT} cu V_{DD}	Temp. = 27 °C $V_{DD} = Min. \leftarrow \rightarrow Max.$	0.909	1.012	1.012	μΑ
SVDD	Sensibilitatea I _{OUT} în funcție de V _{DD}	Temp. = 27 °C	n/a	0.069	n/a	μA/V
I _{OUT}	Gama de variație a I _{OUT} cu temperatura	Temp. = -40 °C \longleftrightarrow 125 °C $\lor_{DD} = 5 \lor$.	0.732	1.010	1.210	μΑ
TC	Coeficient de variație cu temperatura	$V_{DD} = 5V$	n/a	-2.89	n/a	nA/ºC
m	Media din simularea Monte Carlo	Temp. = $27 ^{\circ}$ C $V_{DD} = Nom$.	n/a	1.005	n/a	μА
σ	Deviația standard din simularea Monte Carlo	Temp. = $27 ^{\circ}$ C $V_{DD} = Nom$.	n/a	0.120	n/a	μΑ
I _{OUT}	Gama de variație a I _{OUT} cu procesul	Temp. = $27 ^{\circ}$ C $V_{DD} = Nom$.	0.650	1.012	1.370	μА
Vout	Tensiunea maximă de ieșire	Temp. = -40 °C \longleftrightarrow 125 °C $V_{DD} = 5 \text{ V}$	4.850	4.880	4.910	V
	Nr. total de dispozitive	Schemă electrică inițială	n/a	25	n/a	n/a
Arie	din schemă	Schemă electrică la nivel de mască*	n/a	42	n/a	n/a

^{*}Pentru etapa de implementare la nivel de mască (*eng.* layout), au fost aduse modificări schemei electrice asupra lățimii canalului și a multiplicităților (menținând produsul w*m constant, w rămâne neschimbat) pentru ca tehnicile de minimizare/optimizare a ariei, precum și cele de împerechere (*eng.* matching) să poată fi aplicate, de unde și numărul crescut de dispozitive.

FOAIE DE CATALOG Blusc-sot523

3. Configurație de simulare a variației curentului de ieșire

Scopul simulării este de a observa comportamentul curentului de ieșire (I_OUT) în funcție de variația tensiunii de alimentare aplicate la intrare (V1). Circuitul testat include sursa de curent B1uSC-SOT523 conectată la o sursă de tensiune alternativă, iar la ieșire este plasată o rezistență de sarcină pentru a permite măsurarea curentului.

Acest test ajută la confirmarea faptului că sursa de curent se comportă ideal sau aproape ideal, menținând curentul constant în ciuda variației sarcinii sau a VDD.

4. Implementare la nivel de mască

• Coordonatele implementării la nivel de mască

Region : ((0.0 0.0) (150.55 0.0) (150.55 126.74) (0.0 126.74))

TotalArea= 19080.707000

⇒ Blocul ocupă o suprafață totală de 0.019 mm²

5. Caracteristici de performanță

• Curentul de ieșire în raport cu tensiunea de alimentare

Variația curentului de ieșire în raport cu sarcina

• Curentul consumat

• Curentul de ieșire în funcție de temperatură

• Histograma Monte Carlo a curentului de ieșire

FOAIE DE CATALOG Blusc-sot523

6. Performanțe Tehnologice

Parametru	Tip	Valoare inițială	Valoare finală	Pas / 1 pct	Puncte
VTO dev/gauss NMOS	NMOS	10m	4m	3m	2
VTO dev/gauss PMOS	PMOS	10m	4m	3m	2
VTO lot/gauss NMOS	NMOS	40m	20m	10m	2
RPOLY TC1	RPOLY	900u	700u	100u	2
RPOLY lot/gauss	RPOLY	0.15	0.09	0.03	2
TOTAL					10

Tabelul prezintă comparația parametrilor relevanți ai sursei de curent înainte și după aplicarea procesului tehnologic. Se observă că variația parametrilor din etapa de tehnologie a condus la îmbunătățirea performanțelor circuitului, în special în ceea ce privește rezultatele obținute în urma simulărilor Monte Carlo (media și deviația standard a distribuției gaussiene a curentului de ieșire). Aceste rezultate confirmă faptul că etapa de tehnologie a fost eficientă și a contribuit la optimizarea funcționării sursei de curent.

Nr. crt.	Parametri	Date inițiale	Date finale	Observații
1	VDD (nominal)	2.02 V	2.02 V	Neschimbat
2	IQ (curent total consumat)	3.43 μΑ	3.43 μΑ	Neschimbat
3	IOUT (la VDD nominal)	1.01 μΑ	1.0121 μΑ	Ușor crescut
4	Sensibilitate IOUT vs VDD	0.07	0.0693	Mai mică, deci mai stabil
5	IOUT variatie cu temperatura	0.717 – 1.2 μΑ	0.732 – 1.21 μΑ	Variație mai mică cu temperatura
6	Coef. variatie temperatură (TC)	-0.0029 μΑ/°C	-0.00289 μA/°C	Ușor îmbunătățit
7	Monte Carlo – medie (m)	1.01 μΑ	1.005 μΑ	Mai aproape de 1 μA
8	Monte Carlo – deviaţie (σ)	0.17 μΑ	0.12 μΑ	Mult mai mică ⇒ distribuţie mai strânsă
9	IOUT variatie cu proces (±3σ)	$0.5 - 1.52 \mu A$	0.65 – 1.37 μΑ	Variație mult redusă
10	VOUT max. (la VDD = 5 V)	4.90 V	4.88 V	Mică scădere, dar în limite

7. Dimensiunile capsulei

SOT523					
Dim	Min	Max	Тур		
A1	0.00	0.10	0.05		
A2	0.60	0.80	0.75		
A3	0.45	0.65	0.50		
b	0.15	0.30	0.22		
С	0.10	0.20	0.12		
D	1.50	1.70	1.60		
E	1.45	1.75	1.60		
E1	0.75	0.85	0.80		
е	0.50 BSC				
e1	0.90	1.10	1.00		
L	0.20	0.40	0.33		
а	0.		8°		
All Dimensions in mm					