Lemma 4. The function det $A_{n;3}$ has the same sign as δ_n in some neighborhood of the triangular boundary of the region $0 < x_1 < x_2 < 1$. Hence, it is negative in this neighborhood if $n \le 472$ and positive si $n \ge 473$.

The proof follows by an analysis of the dominant terms in different pieces of the boundary.

Lemma 5. In the Newtonian case if $456 \le n \le 472$, the function $A_n(x, \sqrt{x})$ vanishes at least once on each of the intervals (0, 0.098) and (0.098, 1). If $473 \le n \le 874$, the function $A_n(x, \sqrt{x})$ vanishes at least once on each of the intervals (0, 0.97) and (0.97, 1).

Proof of Lemma 5 We must study the roots in the interval (0,1) of the equation

$$\det A_{n;3}(x,\sqrt{x}) = \delta_n^3 + p_n(x,\sqrt{x})\delta_n + q_n(x,\sqrt{x}) = 0,$$

where

$$p_n(x, \sqrt{x}) = -k_n(x)k_n(1/x) - 2k_n(\sqrt{x})k_n(1/\sqrt{x})$$

$$q_n(x, \sqrt{x}) = k_n(x)k_n(1/\sqrt{x})^2 + k_n(1/x)k_n(\sqrt{x})^2.$$

From the analysis of $p_n(x, \sqrt{x})$ and $q_n(x, \sqrt{x})$ for x close to 0 and x close to 1 it follows that if $n \leq 472$ (resp. $n \geq 473$) the determinant $A_{n;3}(x, \sqrt{x})$ is negative (resp. positive) in a neighborhood of x = 0 and x = 1.

Hence, to prove the Lemma, it is enough to check numerically that

- for each integer $456 \le n \le 472$, $A_{n,3}(0.098, \sqrt{0.098})$ is positive.
- for each integer $473 \le n \le 874$, $A_{n:3}(0.97, \sqrt{0.97})$ is negative.

This amounts to a finite number of checks.

The question of the positivity of the masses is more involved. In fact, not all the (x_1, x_2) for which det $A_{n,3}(x_1, x_2) = 0$ have corresponding masses such that all of them are positive.

The figure below displays curves in (x_1, x_2) for which det $A_{n;3}(x_1, x_2) = 0$ for the admissible range of n. The curve for n = 456 looks like a small ellipse around $P = (0.098, \sqrt{0.098})$, while the one for n = 874 looks like a small ellipse around $Q = (0.97, \sqrt{0.97})$. The last curve of index 1 around P has n = 472, while the first curve of index 1 around Q has n = 473.