

Diplôme de Qualification en Physique Radiologique et Médicale

Faisceaux de photons de haute énergie : étude de la variation relative de la dose absorbée et détermination de la dose absorbée de référence

Fiche n°3

Alexandre RINTAUD

Encadrants:

Alexandra Moigner et Anthony Alexis Physiciens médicaux, Centre René Gauducheau ICO, Saint Herblain

Table des matières

1	Intr	oducti	ion	2
2	Mat	tériels	et méthodes	2
	2.1	Dose a	absolue	2
		2.1.1	Facteurs correctifs	2
			Pression et température	2
			Polarisation	2
			Recombinaisons ioniques	3
			Humidité	3
		2.1.2	Protocole TRS-277	3
		2.1.3	Protocole TRS-398	3
	2.2	Dose r	relative	4
3	Rés	ultats		5
	3.1	Dose a	absolue	5
		3.1.1	Détermination des facteurs correctifs	5
	3.2	Dose r	relative	5
R	éfére	nces		7

1 Introduction

La radiothérapie externe utilise, de manière prépondérante, les faisceux de photons de haute énergie afin de traiter des cellules cancéreuse tout en épargnant le plus possible les tissus sains. Dans cette optique, la connaissance précise des caractéristiques dosimétriques ainsi que les incertitudes associées de l'accélérateur utilisé sont nécessaires.

Ce rapport traitera des faisceaux de photons utilisés en radiothérapie. Premièrement, sera étudié l'influence de certains paramètres d'acquisition sur la dose relative. De plus, nous avons mesurée la dose absolue dans les conditions de référence en s'appuyant sur les protocoles internationaux fournis par l'Agence Internationale de l'Énerige Atomique (AIEA).

2 Matériels et méthodes

2.1 Dose absolue

Cette partie est consacrée à la mesure de la dose absorbée dans les conditions de référence, telles que décrites dans le protocole TRS-398 de l'AIEA. De plus, nous développerons également la méthodologie du protocole TRS-277.

2.1.1 Facteurs correctifs

L'utilisation d'une chambre d'ionnisation à cavité d'air étanche engendre une fluctuation de la réponse du système de mesure en fonction de plusieurs paramètres. Il faut donc appliquer une correction de la mesure :

$$M_{Q'} = M_Q \times k_{T,P} \times k_{pol} \times k_{rec} \times k_H \tag{1}$$

Avec M_Q la charge mesurée sur l'électromètre, $k_{T,P}$ le facteur correctif de la pression et de la température, k_{pol} le facteur correctif de la polarisation de la chambre, k_{rec} le facteur correctif de la recombinaison ionique

Pression et température Le facteur $k_{T,P}$ permet de corriger de la pression et de la température et se calcule de la manière suivante :

$$k_{T,P} = \frac{P_0 T}{T_0 P} \tag{2}$$

Avec P_0 et T_0 la pression et la température de référence, respectivement égales à 1013,25 hPa et 273,15 K, P et T sont la pression et la température de la salle lors de la mesure.

Polarisation Ce facteur correctif, noté k_{pol} , permet de corriger de l'effet de la polarité appliquée à la chambre lors de la mesure

$$k_{pol} = \frac{|M_{+}| + |M_{-}|}{2M} \tag{3}$$

Avec M_+ et M_- les charges mesurées pour les tensions V_+ et V_- respectivement et M est la réponse pour la tension utilisée en clinique.

Recombinaisons ioniques Le facteur de recombinaison permet de corriger la réponse de la chambre d'ionisation sur le nombre de charges collectées. La mesure est sous estimée car des paires d'ions sont recombinées et ne rentre pas en compte dans la mesure.

$$k_{rec} = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2$$
 (4)

Avec M_1 et M_2 les réponses aux tensions V_1 et V_2 respectivement, et a_0 , a_1 et a_2 sont les facteurs tabulés en fonction du rapport $\frac{V_1}{V_2}$.

Humidité Ce facteur est égale à 1 lorsque l'humidité de la salle est comprise entre 20% et 80%, sinon il faut lui attribuer la valeur de 0,997.

2.1.2 Protocole TRS-277

$$D_{eau,Q} = M_Q N_{K_{air,Co}} k_{att} k_m (1-g) \left(\frac{S}{\rho}\right)_{air}^{eau} p_u p_{cel}$$

$$\tag{5}$$

Avec:

- M_O la charge mesurée par la chambre
- $N_{K_{air,Co}}$ le coefficient d'étalonnage de la chambre en kerma dans l'air pour un faisceau de 60 Co
- k_{att} le facteur corrigeant de l'atténuation et de la diffusion dues à la paroi de la chambre
- k_m le facteur correctif de la non-équivalence à l'air de la paroi et du capuchon de mise en équilibre électronique
- $\bullet \; g$ la fraction d'énergie per due par radiation (rayonnement de freinage des particules secondaires)
- $\left(\frac{S}{\rho}\right)_{air}^{eau}$ le rapport des pouvoirs d'arrêt massiques de l'air sur l'air pour les particules primaires
- p_u facteur de correction de perturbation
- p_{cel} facteur de correction de l'électrode centrale

Le facteur p_u peut se décomposer en un produit de facteurs :

$$p_{u,Q} = p_{wall,Q} p_{cav,Q} p_{dist,Q} \tag{6}$$

Avec:

- $p_{wall,Q}$ facteur correctif de la non équivalence à l'eau de la paroi
- $p_{cav,Q}$ facteur corrigeant de la non homogénéité de la cavité
- $p_{dist, Q}$ facteur permettant de corriger le déplacement d'un volume d'eau provoqué par la présence de la chambre

2.1.3 Protocole TRS-398

Le protocole TRS 398 de l'AIEA [2] permet de calculer la dose absorbée dans l'eau dans les conditions de référence tout en simplifiant le formalisme de calcul du TRS 277.

$$D_{eau,Q} = M_{Q'} \times N_{D_{eau},Q_0} \times k_{Q,Q_0} \tag{7}$$

Avec:

• $M_{Q'}$ la mesure de la charge corrigée des facteurs $k_{T,P}$ k_{pol} k_{rec} et k_H

- $\bullet~N_{D_{eau},\,Q_0}$ le coefficient d'étalonnage de la chambre en dose dans l'eau à l'aide d'un faisceau de qualité Q_0
- $\bullet \ k_{Q,\,Q_0}$ le coefficient de correction de la qualité faisceau

$$k_{Q,Q_0} = \frac{N_{D_{eau},Q}}{N_{D_{eau},Q_0}} = \frac{D_{air,Q} \left[\left(\frac{S}{\rho} \right)_{air}^{eau} \right]_Q p_Q M_{Q_0}}{D_{air,Q_0} \left[\left(\frac{S}{\rho} \right)_{air}^{eau} \right]_{Q_0} p_{Q_0} M_Q}$$
(8)

2.2 Dose relative

3 Résultats

3.1 Dose absolue

3.1.1 Détermination des facteurs correctifs

Le calcul des différents facteurs de correction de la mesure ont été calculés par les formules 2, 3 et 4 (pour la pression et la température, la polarité et la recombinaison ionique) dont les résultats sont indiqués dans les tableaux 1 et 2. Concernant la recombinaison ionique, les coefficients a_0 , a_1 et a_2 sont indiqués dans le tableau 3.

Température (K)	Pression (hPa)	k_{TP}	
21	1015	1,0017	

TABLE 1 – Calcul du k_{TP}

	X6				X23			
Tension (V)	400	100	-400	-100	400	100	-400	-100
Charge 1 (nC)	29,69	29,50	29,80	29,61	36,64	36,15	36,78	36,28
Charge 2 (nC)	29,7	$29,\!52$	$29,\!82$	$29,\!59$	36,62	$36,\!10$	36,75	$36,\!25$
Charge 3 (nC)	29,73	$29,\!55$	29,80	29,61	36,61	36,08	36,73	36,21
Charge moyenne (nC)	29,71	$29,\!52$	$29,\!81$	29,60	36,62	$36,\!11$	36,75	$36,\!25$
$\mathbf{k_{rec}}$	1,0020				1,0046			
$ m k_{ m pol}400V$	1,0019				1,0019			
$ m k_{ m pol}100V$	1,0014			1,0019				
Écart relatif k_{pol} %	0,05			0				

TABLE 2 – Série de mesures avec la pour le calcul du k_{rec} et du k_{pol} pour des faisceaux de photons de 6 MV et 23 MV (Clinac 2)

$\frac{\mathrm{V_1}}{\mathrm{V_2}}$	$\mathbf{a_0}$	$\mathbf{a_1}$	$\mathbf{a_2}$	
4	1,022	-0,363	0,341	

Table 3 – Facteurs tabulés correspondant au rapport $\frac{V_1}{V_2}$

3.2 Dose relative

3.2 Dose relative 3 RÉSULTATS

	X	. 6	X23		
	10 cm	20 cm	10 cm	20 cm	
	29,7	19,7	36,58	28,6	
	29,66	19,67	36,57	$28,\!54$	
	29,66	19,66	36,58	$28,\!51$	
	29,69	19,7	36,57	$28,\!52$	
Charges (nC)	29,66	19,66	36,58	$28,\!52$	
	29,63	19,65	36,62	$28,\!53$	
	29,63	19,66	36,58	$28,\!53$	
	29,63	19,68	36,6	$28,\!53$	
	29,64	19,65	36,58	$28,\!54$	
	29,69	19,66	36,59	$28,\!53$	
Charge moyenne (nC)	29,66	19,67	36,59	28,54	
$\mathrm{TPR}^{20}_{10} \; \mathrm{mesur\acute{e}}$	0,663		0,780		
TPR_{10}^{20} recette	0,664		0,781		
Écart relatif (%)	0,1	125	0,133		

TABLE 4 – Résultats de la mesure du TPR_{10}^{20} pour des faisceaux de photons de 6 MV et de 23 MV (Clinac 2)

	X	6	X23		
	Farmer Pinpoint		Farmer	Poipoint	
Charge moyenne (nC)	29,66	0,675	36,59	0,8311	
$ m N_{D_{eau},Q_{0}}(Gy/nC)$	$5,356 \times 10^{-2}$	2,344	$5,356 \times 10^{-2}$	2,344	
$\mathbf{k}_{\mathbf{Q},\mathbf{Q_0}}$	0,9966		0,9767		
Dose mesurée (Gy)	1,592	$1,\!596$	1,93	1,930	
Dose recette (Gy)	1,5	89	1,90)7	
Écart relatif (%)	0,18	0,41	1,18	1,21	

Table 5 – Résultats de la dose absolue dans les conditions de référence avec les chambre Farmer et Pinpoint pour des faisceaux de $6~\mathrm{MV}$ et $23~\mathrm{MV}$ (Clinac 2)

FIGURE 1 – Comparaison entre le rendement en profondeur et le rapport tissus maximum pour un faisceau de photons de 6 MV (à gauche) et un faisceau de 23 MV (à droite)

RÉFÉRENCES RÉFÉRENCES

Références

[1] Absorbed Dose Determination in Photon and Electron Beams. Number 277 in Technical Reports Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 1996.

[2] Absorbed Dose Determination in External Beam Radiotherapy. Number 398 in Technical Reports Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2001.

A. RINTAUD ICO NANTES 7