Link-preserving channel assignment game for wireless mesh networks

Li-Hsing Yen, Bo-Rong Ye

SIMULATION PROGRAM

Outline

- Introduction
- Implementation of LPIM
- Simulation
- Conclusion

Introduction

Link-Preserving Interference-Minimization (LPIM)

- >A channel assign game
- Exact potential game
 => always stabilizes
- ➤ Link-Preserving

Define of the game

Players: the set of mesh stations, $P = \{p_1, p_2, ..., p_n\}$

Channels: set of orthogonal channels, $C = \{k_1, k_2, ..., k_m\}$

Strategy: $s_i = (c_1^i, c_2^i, ..., c_m^i)$ for p_i , where $c_j^i = 1$ or 0 indicating whether p_i assigns channel k_j to one of its

Number of interface: $r_i = \min(r_{max}, |N_i|)$, N_i number of neighbor, r_{max} max number of interface

Assume the number of available channels is at least as many as the number of interfaces

Impact of co-channel interference.

 s_i . s_j : the number of common channels assigned by both p_i and p_j

$$I_i(S) = -\sum_{p_j \in N_i} (s_i \cdot s_j)$$

Gains of connectivity

$$L_{i(S)} = \Sigma_{p_j \in N_i} C_i(s_i . s_j),$$

Where
$$C_i(\mathbf{s}_i, \mathbf{s}_j) = \begin{cases} -|N_i| & \text{if } \mathbf{s}_i \cdot \mathbf{s}_j = 0 \\ 0 & \text{otherwise} \end{cases}$$

For a particular strategy profile S

Combining previous two formula

 β : a constant, where $\beta > r_{max}$

$$t_i(S) = \beta L_i(S) + I_i(S)$$

Utility and Potential function

Utility:

$$u_i(S) = t_i(S) + \sum_{p_j \in N_i} t_j(S)$$

Potential function:

$$\phi(S) = \sum_{i} t_i(S)$$

Utility example (1/2)

$$L_1(S) = 0 + 0 + (-3) = -3$$

$$I_1(S) = (-1) + (-1) + 0 = -2$$

$$t_1(S) = 5 \times (-3) + (-2) = -17, \beta = 5$$

$$u_i(S) = -17 + (-1) + (-1) + (-5) = -24$$

Utility example (2/2)

$$L_1(S) = 0 + 0 + 0 = 0$$

$$I_1(S) = (-1) + (-1) + (-2) = -4$$

$$t_1(S) = 5 \times (0) + (-4) = -4, \beta = 5$$

$$u_i(S) = -4 + (-1) + (-1) + (-2) = -8$$

Exact potential game

Not affected by p_i 's move

$$\phi(\bar{S}) - \phi(S) = t_i(\bar{S}) - t_i(S) + \sum_{p_j \in N_i} (t_j(\bar{S}) - t_j(S)) + \sum_{p_j \in P \setminus N_i} (t_j(\bar{S}) - t_j(S))$$

$$= t_i(\bar{S}) - t_i(S) + \sum_{p_j \in N_i} (t_j(\bar{S}) - t_j(S))$$

$$= u_i(\bar{S}) - u_i(S)$$

Best-response rule and Nash equilibrium

Player p_i selects strategy s_i^* only if

$$s_i^* = \underset{s_i \in S_i}{\operatorname{arg}} \max_{u_i(s_i, s_{-i})} u_i(s_i, s_{-i})$$

Nash equilibrium $S=(s_1,s_2,\ldots,s_n)$ Not unique

If
$$u_i(s_i, s_{-i}) \ge u_i(s_i^*, s_{-i})$$
, $\forall i \in \{1, 2, \dots, n\}$
$$\forall s_i^* \in S_i$$

Link-Preserving

Highest interference value of p_i :

ence value of
$$p_i$$
:
$$r_i = \min(r_{max}, |N_i|)$$

$$I_i(S) = -\sum_{p_j \in N_i} \min(r_i, r_j) \ge -r_{\max} |N_i|$$

 P_i no common channel on some neighbors :

$$L_i(S) \le -|N_i| \Rightarrow \beta L_i(S) \le -\beta |N_i| < -r_{\max} |N_i|$$

$$\beta > r_{\max}$$

LPIM(PP)

- > A variant of LPIM
- ➤ Considers only the impact of interference
- ➤ Adheres to the Pigeonhole principle
- ➤ Exact potential game
- ➤ New utility function:

$$u_i(S) = -\sum_{p_j \in N_i} (s_i \cdot s_j)$$

$$c_k^i = 0, \forall \ p_i \in P \ and \ k > \min_{p_j \in N_i} \{r_i + r_j - 1\}$$

Implementation of LPIM

UML

Flow Chart for finding BP of p_i

Flow Chart for finding Nash equilibrium

Simulation

A five-station mesh network example

Fig. A five-station mesh network

- \triangleright 5 stations($p_1 \cdot p_2 \dots p_5$)
- Max number of interfaces: 3
- Number of channel: 7

Best-reply path

Step	s_1	s_2	s_3	s_4	s_5
0	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$
1	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 4, 5\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$
2	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\overline{\{1,4,5\}}$	$\{2, 4, 6\}$	$\{1, 2, 3\}$
3	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 4, 5\}$	$\overline{\{2,4,6\}}$	$\{3, 5, 6\}$
4	$\{2, 5, 7\}$	$\{1, 2, 3\}$	$\{1, 4, 5\}$	$\{2, 4, 6\}$	$\overline{\{3,5,6\}}$

Both strategy profile are Nash equilibrium

Fig. Best-reply path in LPIM

Best-reply path(PP)

Fig. Best-reply path in LPIM(PP)

Simulation

- ➤ Simulations on unit disk graphs
- \triangleright Area: 1000 m X 1000 m = 1000,000 m^2
- ➤ Randomly placed n mesh nodes
- $r_{\max} = 3$
- ➤ Communication range = 200 m
- Total number of Channel: m

Fig. Unit disk graph model

Simulation – interference vs. channels

Node: 50

 r_{max} : 3

Channel: 3-9

≥lower is better

Simulation – interference vs. nodes

➤ Node: 50-100 (step 10)

 r_{max} : 3

➤ Channel: 7

▶ lower is better

Conclusions

- ✓ A non-cooperative game design for the channel assignment problem in WMNs
- ✓ First non-cooperative game approach that ensures link connectivity
- ✓ Eventually enters a Nash equilibrium regardless of initial channel configuration
- ✓ Link-preserving
- ✓ This approach generally better than the other approaches when a moderate number of channels are available

Thank you for your attention