ECE368: Probabilistic Reasoning

Aman Bhargava

January-April 2021

Contents

	0.1	Introduction and Course Information	1
1	Rev	view Topics	2
	1.1	Review of Probability Functions	2
	1.2	Expectation, Correlation, and Independence	3
	1.3	Laws of Large Numbers	4
2	Par	ameter Estimation	5
	2.1	Estimation Terminology	5
	2.2	Maximum Likelihood Estimation	5
	2.3	Frequentist vs. Bayesian Statistics	6
	2.4	Maximum a Posteri Estimation (MAP)	6
		2.4.1 Picking a Prior Distribution	7
	2.5	Conditional Expectation Estimator	7
	2.6	Bayesian Least Mean Square Estimator (LMS)	8
3	Hyp	pothesis Testing	9
	3.1	Likelihood Ratio Test	9
	3.2	Bayesian Hypothesis Testing	10
	3.3	Gaussian Vector Distribution	10
		3.3.1 Eigen Analysis of Gaussian Vectors	11
	3.4	Gaussian Estimation	11
		3.4.1 Maximum Likelihood	12
		3.4.2 MAP Estimation	12
4	Sta	tistical Machine Learning	13
	4.1	Naive Bayesian Classifier	13
	4.2		14
	4.3		14
	4.4		15
	4.5	·	16

0.1 Introduction and Course Information

Course Information

• Professors: Prof. Saeideh Parsaei Fard and Prof. Foad Sohrabi

• Course: Engineering Science, Machine Intelligence Option

• Term: 2021 Winter

Main Course Topics

• Vector, temporal, and spatial models.

• Classification and regression model training.

• Bayesian statistics, frequentist statistics.

Review Topics

See ECE286 notes for further reference

1.1 Review of Probability Functions

Probability Mass Function: For discrete random variables, $P_X(x)$ denotes the probability that random variable X takes on value x.

Probability Density Function: For continuous random variables, the probability $\Pr\{X \in [x_1, x_2]\}$ is given by $\int_{x_1}^{x_2} f_X(x) dx$. Joint PMF's and PDF's are similarly defined.

Marginal Probability Distributions: Given joing PMF $P_{X,Y}(x,y)$ or PDF $f_{X,Y}(x,y)$, we can marginalize them as follows:

$$P_X(x) = \sum_{y \in Y} P_{X,Y}(x,y)$$
 (1.1)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
 (1.2)

Conditional Probability Functions:

$$P_{Y|X}(y,x) = \frac{P_{X,Y}(x,y)}{P_X(x)}$$
 (1.3)

Prior Probability: Probability **before** an additional observation is made (hence prior). Example: $P_X(x)$.

Posterior Probability: Probability **after** an observation is made (hence posterior). Example: $P_{X|Y}(x,y)$.

Bayes Rule:

$$P(B|A) = P(A|B)\frac{P(B)}{P(A)}$$
(1.4)

1.2 Expectation, Correlation, and Independence

Expectation Value: $\mathbb{E}[x] = \sum_{x \in X} P_X(x) = \int_{-\infty}^{\infty} x f_X(x) dx$

Law or Large Numbers: $\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^N x_i = \mathbb{E}[X]$

Variance:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[x])^2]$$

$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
(1.5)

Covariance:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \mathbb{E}_{XY}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(1.6)

Correlation Coefficient:

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}}$$
(1.7)

- $\bullet \ \rho_{XY} \in [-1,1]$
- $\rho > 0$ indicates positive correlation (line of best fit has positive slope).
- $\rho < 0$ indicates negative correlation.
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ iff X, Y are uncorrelated.

Independence

Theorem 1 Independence Random variables X, Y are independent iff

$$P_{XY}(x,y) = P_X(x) \cdot P_Y(y) \tag{1.8}$$

This also means that $\rho_{XY} = 0$, P(X|Y) = P(X), etc.

1.3 Laws of Large Numbers

Weak Law: Sample mean converges to the mean.

Strong Law: If $\{x_i\}$ are independent, identically distributed (i.i.d.) random variables with mean μ , then the **probability of** the sample mean $= \mu$ is 1 as $n \to \infty$.

Parameter Estimation

2.1 Estimation Terminology

- $\hat{\theta}_n$ is an **estimator** of some unknown parameter θ .
- Estimation Error: $\hat{\theta}_n \theta$
- Bias of estimator: $\mathbb{E}[\hat{\theta}_n] \theta$
 - **Unbiased** estimator: Bias= $0 = \mathbb{E}[\hat{\theta}_n] \theta$.
 - Asymptotically Unbiased: $\lim_{n\to\infty} \mathbb{E}[\hat{\theta}_n] = \theta$ for all θ .
- Consistency: Estimator is consistent if $\lim_{n\to\infty} \hat{\theta}_n = \theta$.

2.2 Maximum Likelihood Estimation

Framing: Let random variable $\vec{X} = [X_1, X_2, ..., X_n]$ be defined by either

- 1. Joint PMF $P_{\vec{X}}(\vec{x}; \theta)$
- 2. Joint PDF $f_{\vec{X}}(\vec{x}; \theta)$

 \vec{x} is a series of measurements.

Maximum Likelihood Estimation: The ML estimate of model parameter θ is

$$\hat{\theta}_n = \operatorname{argmax}_{\theta} P_{\vec{X}}(\vec{x}; \theta) \tag{2.1}$$

Independent, identically distributed case: If each $x_i \in \vec{x}$ are independent and identically distributed, then

$$P_{\vec{X}}(\vec{x};\theta) = \prod_{i=1}^{n} P_X(x_i;\theta)$$
(2.2)

Which we can convert to a summation by taking the **log-likelihood** (recall that logarithm is monotonically increasing, so maximizing log-likelihood is equialent to maximizing likelihood).

$$\hat{\theta}_n = \arg\max_{\theta} \left(\sum_{i=1}^n \log P_X(x_i; \theta) \right) \tag{2.3}$$

2.3 Frequentist vs. Bayesian Statistics

Frequentist: In **classical statistics**, probability is taken to be approximately equal to the **frequency of events**. Model parameters are assumed to have some deterministic, fixed value (even though they might be unknown).

Bayesian Statistics: Model parameters are treated as random variables with their own distributions.

- Generally the more modern approach.
- We are most interested in the **joint probability distribution** of model parameters and model arguments (e.g., $f_x(x, \theta)$).
- Main criticism: probabilities are assigned to unrepeatable events (arguably violates the definition of probability as the limit of event frequency).

2.4 Maximum a Posteri Estimation (MAP)

$$\hat{\theta}_{map} = \arg \max_{\theta} f_{\theta|x}(\theta|x)$$

$$= \arg \max_{\theta} f_{X|\theta}(x|\theta) \frac{f_{\theta}(\theta)}{f_{X}(x)}$$
(2.4)

Where $f_{\theta}(\theta)$ is the **prior distribution** of model parameter.

• If $f_{\theta}(\theta)$ is uniform, we will still get the same answer as a **maximum** likelihood estimation.

2.4.1 Picking a Prior Distribution

Best Practice: Pick a distribution of the same form as $f_{X|\theta}(x|\theta)$ (called "conjugate pair").

Beta Distribution: Used for binomial distribution.

• Binomial distribution:

$$P_{X=k|\theta} = \binom{n}{k} \theta^k (1-\theta)^{n-k} \tag{2.5}$$

where

 $-\theta$: Probability of success on each Bernoulli trial.

-n: Total number of trials.

-k: Total number of successful trials.

• Beta Distribution:

$$f_{\theta}(\theta; \alpha, \beta) = \begin{cases} c\theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & \text{for } \theta \in [0, 1] \\ 0 & \text{else} \end{cases}$$
 (2.6)

Where

 $-\alpha, \beta$ are customizable parameters.

$$-c = [\Gamma(\alpha + \beta)]/[\Gamma(\alpha)\Gamma(\beta)]$$

$$- \Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du$$

$$-\Gamma(x+1) = x\Gamma(x)$$
 for all $x \in \mathbb{R}$.

$$-\Gamma(n+1) = n!$$
 for integer n .

$$- : c = \frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!}$$
 for integer α, β .

$$-\mu_f = \mathbb{E}[f_\theta(\theta)] = \frac{\alpha}{\alpha + \beta}$$

– Maximum likelihood $\arg \max_{\theta} f_{\theta}(\theta) = \frac{\alpha - 1}{\alpha + \beta - 2}$

2.5 Conditional Expectation Estimator

Key Idea: Find the **expected value** for the estimator given your observations.

$$\hat{\theta}_{conditional expectation} = \mathbb{E}[\theta | \vec{X} = \vec{x}] = \int_{-\infty}^{\infty} \theta f_{\theta | \vec{x}}(\theta | \vec{x})$$
 (2.7)

2.6 Bayesian Least Mean Square Estimator (LMS)

Key Idea: To estimate random variable model parameter θ , we find

$$\hat{\theta}_{LMS} = \arg\min_{\hat{\theta}} \mathbb{E}[(\theta - \hat{\theta})^2]$$
 (2.8)

- $\hat{\theta}_{LMS} = \mathbb{E}[\theta]$ achieves the goal.
- Equivalently: We can also find

$$\hat{\theta}_{LMS} = \arg\min_{\hat{\theta}} (\mathbb{E}[\theta - \hat{\theta}])^2$$
 (2.9)

Hypothesis Testing

Goal: Given two hypotheses H_0, H_1 and observation $\mathbf{x} = (x_0, \dots, x_n)$, we wish to decide which hypothesis is **better**.

Error Types: These are generally with respect to H_0 , or the "null hypothesis".

- Type I: False rejection. We reject hypothesis H_i despite it being the correct one.
- Type II: False acceptance. We accept hypothesis H_i despite it being false.

3.1 Likelihood Ratio Test

$$\mathbb{L}(\boldsymbol{x}) = \frac{P_x(\boldsymbol{x}; H_1)}{P_x(\boldsymbol{x}; H_0)} \leq z$$
(3.1)

If $\mathbb{L}(\boldsymbol{x}) > z$, we accept H_1 . Else, we accept H_0 . z = 1 corresponds to the maximum likelihood decision rule.

Neyman-Pearson Lemma: We let α represent the probability of false rejection and β represent the probability of false acceptance (i.e., type I and type II error probability respectively).

$$P(\mathbb{L}(\boldsymbol{x}) > z; H_0) = \alpha \tag{3.2}$$

$$P(\mathbb{L}(\boldsymbol{x}) \le z; H_1) = \beta \tag{3.3}$$

There is a direct tradeoff between α and β – they are inversely proportional (i.e., we cannot get better overall confidence "for free" with the same data).

There is equivalence between selecting some likelihood cutoff z and some γ for $\boldsymbol{x} \leqslant \gamma$.

3.2 Bayesian Hypothesis Testing

The likelihood ratio test is essentially a **maximum likelihood** method. Bayesian hypothesis testing is equivalent to **maximum a posteri** methods.

- Goal: Choose the most probable hypothesis given the data.
- Given: Hypotheses $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_M\}$, data $\boldsymbol{x} = (x_1, \dots, x_n)$.
- Method: Select the optimal hypothesis based on

$$\hat{\theta} = \arg \max_{\theta \in \boldsymbol{\theta}} P(\theta | \boldsymbol{x})
= \arg \max_{\theta \in \boldsymbol{\theta}} P(\boldsymbol{x} | \theta) P(\theta)$$
(3.4)

By maintaining \boldsymbol{x} as a free variable in these computations, the rejector regions \mathcal{R} for \boldsymbol{x} can be found relatively easily.

3.3 Gaussian Vector Distribution

Scalar Gaussian Normal Distribution:

$$f_x(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

$$\Leftrightarrow x \sim \mathcal{N}(\mu, \sigma^2)$$
(3.5)

Gaussian Vector

$$f_{\vec{x}}(\vec{x}; \vec{\mu}, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp\left[\frac{-1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})\right]$$
(3.6)

Where

- D is the dimension of the vectors x.
- $\vec{\mu} \in \mathbb{R}^D$ is the mean vector.

$$-\vec{\mu} = \mathbb{E}[\vec{x}]$$

• $\Sigma \in \mathbb{R}^{D \times D}$ is the covariance matrix. It is **positive semidefinite**.

$$- \Sigma = \mathbb{E}[(\vec{x} - \vec{\mu})(\vec{x} - \vec{\mu})^T]$$

3.3.1 Eigen Analysis of Gaussian Vectors

From ECE367: All PSD matrices A have **orthogonal** eigenvectors. We can also arbitrarily scale them to be ortho**normal**.

$$A = Q\Lambda Q^T \tag{3.7}$$

Where each column of Q is an eigenvector and $\Lambda=$ diag(eigen values). $QQ^T=I$ and $Q^T=Q^{-1}$ by orthonormalcy.

Applying to Gaussian Vectors: We note the term $\frac{-1}{2}(\vec{x}-\vec{\mu})^T \Sigma^{-1}(\vec{x}-\vec{\mu})$. Since Σ is PSD we can decompose it into

$$\Sigma = Q\Lambda Q^T$$

$$\Sigma^{-1} = Q\Lambda^{-1}Q^T$$
(3.8)

We define a helper variable \vec{y} as follows:

$$\vec{y} \equiv Q^{T}(\vec{x} - \vec{\mu})$$

$$\Rightarrow \vec{y}^{T} = (\vec{x} - \vec{\mu})^{T} Q$$

$$\Rightarrow (\vec{x} - \vec{\mu})^{T} \Sigma^{-1} (\vec{x} - \vec{\mu}) = \vec{y}^{T} Q^{T} \Sigma^{-1} Q \vec{y}$$

$$= \vec{y}^{T} \Lambda^{-1} \vec{y}^{T}$$
(3.9)

The big payoff is that \vec{y} is a random variable with a **diagonal** covariance matrix (i.e., independent components). \vec{y} also has zero mean!

$$f_y(\vec{y}) = \frac{1}{(2\pi)^{D/2}|\Lambda|^{1/2}} \exp\left(\frac{-1}{2}\vec{y}^T \Lambda^T \vec{y}\right)$$

$$= \prod_{i=1}^{D} \frac{1}{\sqrt{2\pi\lambda_i}} \exp\left[\frac{-y_i^2}{2\lambda_i}\right]$$
(3.10)

3.4 Gaussian Estimation

Given: Observations $x_i \in \mathbb{R}$ where we know that were generated by $x_i = \theta + w_i$ and $w_i \sim \mathcal{N}(0, \sigma_i^2)$. In other words, each x_i is a "measure" of the same mean value θ , but there is some zero-mean noise w_i with variance σ_i^2 . Note that each data point has its own variance.

Goal: Estimate θ .

3.4.1 Maximum Likelihood

$$\hat{\theta}_{ML} = \arg\max_{\theta} f_x(\vec{x}; \theta)$$

$$= \arg\max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[\frac{-1(x-\theta)^2}{2\sigma_i^2}\right]$$

$$\hat{\theta}_{ML} = \frac{\sum_{i=1}^n \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$
(3.11)

Intuitively, this corresponds to a weighted sum of each x_i . Weight is proportional to $\frac{1}{\sigma_i^2}$, which corresponds to "certainty" in the validity of the data point in representing θ .

3.4.2 MAP Estimation

We assume a **conjugate prior** distribution for $\theta \sim \mathcal{N}(x_0, \sigma_0^2)$. Conveniently enough, these x_0, σ_0 are functionally identical to just having another data point!

$$\hat{\theta}_{MAP} = \arg\max_{\theta} f_{\theta}(\theta) f(x|theta)$$

$$= \dots$$

$$\hat{\theta}_{MAP} = \frac{\sum_{i=0}^{n} \frac{x_{i}}{\sigma_{i}^{2}}}{\sum_{i=0}^{n} \frac{1}{\sigma_{i}^{2}}}$$
(3.12)

Note that the sums now start at zero to incorporate the prior distribution's information!

Statistical Machine Learning

4.1 Naive Bayesian Classifier

Technically this was in the first half, but it fits well to motivate LDA and QDA.

Goal: Let $\theta \in \{1, 2\}$ be the class of data points $\vec{x} \in \mathbb{R}^n$. We wish to find $P(\theta|\vec{x})$.

Naive Bayesian Assumption: Each component of \vec{x} is independent with respect to class θ . By the probability axioms relating to independence,

$$P_{\vec{x}|\theta}(\vec{x}|\theta) = \prod_{i=1}^{n} P_{x_i|\theta}(x_i|\theta)$$
(4.1)

Classification Equations:

$$P(\theta|\vec{x}) = \frac{P(\theta) \prod_{i=1}^{n} P_{x_i|\theta}(x_i|\theta)}{P(\vec{x})}$$
(4.2)

Where $P(\vec{x}) = \sum_{\theta} [P(\theta) \prod_{i=1}^{n} P_{x_i|\theta}(x_i|\theta)]$

$$P(\theta = 1) \prod_{i=1}^{n} P_{x_i|\theta}(x_i|\theta = 1) \leq P(\theta = 2) \prod_{i=1}^{n} P_{x_i|\theta}(x|\theta = 2)$$
 (4.3)

Bag of words: For classifying text, we choose a set of W of the most common words. In our vectors \vec{x} , each index x_i corresponds to whether word

 w_i appears in the given text.

$$P_{x_i|\theta}(x_i = w_d|\theta = j) = \frac{\text{occurrences of } w_i \text{ in set } j}{\text{total words in set } j}$$
 (4.4)

Laplace Smoothing: Even if we perform the computation in the log domain, we might run into a $P_{x_i|theta}(x_i|\theta) = 0$ if we lack a datapoint (word occurrence) for a given class. Laplace smoothing simply appends the vocabulary set W to each class (i.e., all words in the set occur at least once a priori).

4.2 Linear Discriminant Analysis (LDA)

Goal: Create algorithm LDA: $\vec{x}_i \to c_i$ where \vec{x}_i is a data point and $c_i \in C$ is the class it belongs to.

General Methodology: We use Bayesian hypothesis testing with variable classes we model with normal distributions. An important simplifying assumption is that each class c has different $\vec{\mu}_c$ BUT they all have the same Σ . This is what makes our decision boundaries linear!

Classification Equations:

- 1. $\hat{y}(\vec{x}) = \arg\max_{c \in C} \beta_c^T \vec{x} + \gamma_c$ where
 - $\beta_c = \Sigma^{-1} \mu_c$
 - $\pi_c = P(c)$ (prior probability of class c)
 - $\gamma_c = \log(\pi_c) \frac{1}{2}\mu_c^T \Sigma^{-1} \mu_c$
- 2. Posterior probability of class c:

$$P(c|\vec{x}) = \frac{\exp(\beta_c^T x + \gamma_c)}{\sum_{c' \in C} \exp(\beta_{c'}^T x + \gamma_{c'})}$$
(4.5)

4.3 Quadratic Discriminant Analysis (QDA)

Goal: Same as LDA.

Assumptions: We are given μ_c, Σ_c, π_c for each class, and each $\vec{x}_i \sim \mathcal{N}(\mu_c, \Sigma_c)$ for some $c \in C$.

Classification Equations:

$$\hat{y}(\vec{x}) = \arg\max_{c \in C} [\log(\tilde{\pi}_c) - \frac{1}{2} (x - \mu_c)^T \Sigma_c^{-1} (x - \mu_c)]$$
 (4.6)

Where $\tilde{\pi}_c = \frac{1}{(2\pi)^{D/2} |\Sigma_c|^{1/2}} \pi_i$

$$P(c|x) = \pi_c \frac{1}{(2\pi)^{D/2} |\Sigma_c|^{1/2}} \exp(\frac{-1}{2} (x - \mu_c)^T \Sigma^{-1} (x - \mu_c)) \frac{1}{P(x)}$$
(4.7)

Where P(x) is given by

$$P(x) = \sum_{c' \in C} P(x|c')P(c')$$

$$= \sum_{c' \in C} \mathcal{N}(x; \mu_c, \Sigma_c)P(c')$$
(4.8)

Calculating μ_c, Σ_c The maximum likelihood estimation of these are as follows:

$$\hat{\mu}_c = \frac{1}{n} \sum_{i=1}^n x_i \ \forall x_i \in c \tag{4.9}$$

$$\hat{\Sigma}_c^{ML} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_c)(x_i - \hat{\mu}_c)^T \ \forall x_i \in c$$
 (4.10)

PROBLEM: $\hat{\Sigma}_c^{ML}$ is a biased estimator. For the D=1 case, $\mathbb{E}[\hat{\sigma}_c^{ML}] = \frac{n-1}{n}\sigma^2$. To correct, we use the following:

$$\hat{\Sigma}_c^{corrected} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu}_c)(x_i - \hat{\mu}_c)^T \ \forall x_i \in c$$
 (4.11)

The primary problem with these sorts of classifiers is that Σ has high dimensionality. If we use the same Σ for all classes, we get LDA. If we force Σ_c to be diagonal, we get a naive Bayesian classifier.

4.4 General Bayesian Inference on Gaussian Vectors

Given: We know that $\vec{z} \sim \mathcal{N}(\vec{\mu}, \Sigma)$. We know the value of only part of the \vec{z} vector, and want to determine the probability distribution and ML/M-LE/MMSE estimation for the remaining indices we don't know.

$$\vec{z} = \begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix} \tag{4.12}$$

We are given the value of \vec{y} and want to know \vec{x} .

Key Tools:

$$\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix} \tag{4.13}$$

Where $\Sigma_{xy} = \mathbb{E}[(x - \mu_x)(x - \mu_x)^T].$

- The maximum of a Gaussian is at the mean!
- $f_{x|y} \sim \mathcal{N}$
- $\hat{x}_{MAP} = \hat{x}_{MMSE,LMS} = \mathbb{E}[\vec{x}|\vec{y}]$

Results:

$$f_{x|y}(x|y) \sim \mathcal{N}(\mu_{x|y}, \Sigma_{x|y})$$
 (4.14)

Where

$$\mu_{x|y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$
 (4.15)

$$\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx} \tag{4.16}$$

Which is pretty cool, especially considering that $\hat{x}_{MAP,MMSE} = \mu_{x|y}$ is now linear with \vec{y} . We can think of $\Sigma_{x|y}$ as the "remaining uncertainty" in \vec{x} after we receive information \vec{y} .

4.5 Linear Gaussian Systems

Given: $P(x) \sim \mathcal{N}(\mu_x, \Sigma_x)$. y = Ax + b + z where

- A is a known matrix.
- \bullet b is a known vector.
- $z \sim \mathcal{N}(0, \Sigma_z)$
- x, z are independent.

Goal: We observe y. What are our estimates \hat{x}_{MAP} , \hat{x}_{MMSE} that correspond to this particular y?

Solution: Unsurprisingly, x, y have Gaussian distributions.

$$\hat{x}_{MAP,MMSE} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$
 (4.17)

Where

$$\mu_y = A\mu_x + b \tag{4.18}$$

$$\Sigma_{xy} = \Sigma_x A^T \tag{4.19}$$

$$\Sigma_{yy} = A\Sigma_x A^T + \Sigma_z \tag{4.20}$$

$$\Sigma_{x|y} = (\Sigma_x^{-1} + A^T \Sigma_z^{-1} A)^{-1}$$
(4.21)