МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по учебной практике

Тема: Задача о назначениях

	Решоткин А.С
	Докучаев Р.А.
	Крицын Д.Р.
Студенты гр. 0304	Козиков А.Е.
Руководитель	Жангиров Т.Р.

Санкт-Петербург 2022

ЗАДАНИЕ

на учебную практику

Студенты Решоткин А.С., Докучаев Р.А., Крицын Д.Р., Коз	иков А.Е.			
Группа 0304				
Тема практики: Задача о назначениях.				
Задание на практику:				
Пусть имеется N работ и N кандидатов на выполнение этих	работ, причем			
назначение j-й работы i-му кандидату требует затрат $c_{ij} > 0$.				
Необходимо назначить каждому кандидату по работе, чтобы минимизировать				
суммарные затраты. Причем каждый кандидат может быть назначен на одну				
работу, а каждая работа может выполняться только одним кандидатом.				
Сроки прохождения практики: 29.06.2022 – 12.07.2022				
Дата сдачи отчета: 2.07.2022				
Дата защиты отчета: 2.07.2022				
	Решоткин А.С.			
	Докучаев Р.А Крицын Д,Р,			
Студенты	Козиков А.Е.			
Руководитель	Жангиров Т.Р.			

АННОТАЦИЯ

Целью работы является знакомство и применение на практике генетических алгоритмов, а также их оптимизаций, для решения поставленной задачи о назначениях. Генетические алгоритмы — это адаптивные методы поиска, которые в последнее время используются для решения задач оптимизации. В них используются как аналог механизма генетического наследования, так и аналог естественного отбора. При этом сохраняется биологическая терминология в упрощенном виде и основные понятия линейной алгебры.

СОДЕРЖАНИЕ

	Введение	5
1.	Итерация 2	6
1.1.	Скетч с GUI, который планируется реализовать.	7
1.2.	Описание сценариев взаимодействия пользователя с програм-	7
	мой	
1.3	Определение и обоснование параметров модификации ГА для	
	решения задачи.	
	Заключение	9
	Список использованных источников	10

ВВЕДЕНИЕ

Целью работы является программная реализация решения поставленной оптимизационной задачи на языке C++ с использованием ГА. Основными задачами выполнения работы являются: формирование прототипа GUI и выбор метода решения задачи, частичная реализация программы, в которой присутствует GUI и реализовано хранения данных и основные элементы ГА. Также создана инструкция по сборке и запуску программы. На конечной итерации должна быть выполнена цель работы, а именно программа должна полностью работать вместе с её графической частью, ГА должен гарантированно находить решения.

1. Итерация 2

1.1. Скетч с GUI, который планируется реализовать.

- X	Democratic Province	- X
Настройка: Ввод значений:	Пошаговая визуализация:	
Овыбрать файл О ввести в программе	Начальная популяция:	
	Особи	
Параметры ГА:	Триспособленность	
Размер начальной популяции:	Выбор родителей:	
Критерий остановки:	Особи	
Коэффициент влияния:	Вероятность	
Плотность мутации:	Кроссинговер:	
Количество особей при элитарном отборе:	Родители	
	Потомки	
- X		- x
Ввод данных:	Пошаговая визуализация:	
Введите значение N	nomal oban brisyamisaquin.	
	мутации:	
кандидаты:	До мутации	
Работы:	После мутации	
1	Новая популяция:	
	Особи	
	лучшая особь:	
	К ответу >>	аг >
	- X	
Результат:		
Распределение работ:		
Работник		
Работа		
Суммарные		
затраты:		
	Задать новые данные	

1.2. Описание сценариев взаимодействия пользователя с программой

Возможный сценарий взаимодействия пользователя с программой представлен ниже.

- 1) Пользователь запускает программу.
- 2) Пользователю предоставляется выбор: ввести данные из файла или ввести данные в меню.
- 3) Если пользователь выбирает ввод данных из файла, то программа проверяет корректность введенных данных и запускает алгоритм, выводя промежуточные итерации в виде таблицы.
- 4) Если пользователь выбирает ввод данных в меню, то программа соответственно проверяет наличие всех необходимых данных для решения задачи, а затем решает задачу в соответствии с алгоритмом, выводя промежуточные результаты в виде таблицы.
- 5) Пользователь на выходе получает ответ на задачу в виде таблицы.

1.3 Определение и обоснование параметров модификации ГА для решения задачи.

Пробные решения для генетического алгоритма (хромосомы) представлены в виде перестановок, которые будут переведены в числа в факториальной системе счисления при помощи кода Лемера, которые затем будут переведены в двоичную систему счисления.

Оператор выбора родителей - метод рулетки. Выбор обоснован тем, что при настройке макропараметров можно настроить формулу отбора, изменив влияние приспособленности на выбор родителей: это может быть полезно, так как расположение и количество локальных минимумов зависят от поданной на вход матрицы затрат.

Оператор рекомбинации (кроссинговера) - многоточечный кроссинговер. В отличие от кроссинговера с фиксированным количеством точек, такой метод

позволяет лучше адаптироваться к разным размерностям входной матрицы затрат, в то же время не затрачивая много времени на генерацию случайной двоичной строки, как в методе однородного кроссинговера.

Оператор мутации - мутация с использованием понятия плотности. В отличие от двоичной мутации, работает без особых отличий для двоичных строк разной размерности, что хорошо подходит для данной задачи (размерность матрицы затрат заранее неизвестна).

Оператор отбора в новую популяцию - элитарный отбор в сочетании с отбором усечением. Выбор обоснован тем, что содержимое поданной на вход матрицы заранее неизвестно, и при не сильно отличающихся значениях элементов такой матрицы элитарный отбор не будет терять решения, сошедшиеся к локальным экстремумам, которых может быть довольно много. При этом слишком неперспективные решения рассматривать нет особого смысла - лучше отсечь их и попытаться выйти из локального минимума за счёт выбора случайных хорошо приспособленных особей через отбор усечением и их дальнейшей мутации.

ЗАКЛЮЧЕНИЕ

На второй итерации практики удалось создать скетч с графическим интерфейсом, который будет в программе, определить сценарий взаимодействия пользователя с программой, определить и обосновать модификации ГА, которые были выбраны для решения поставленной задачи.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Панченко Т.В. Учебно-методическое пособие "Генетический алгоритмы".