# 그래<u>프를 이용한 기계 학습</u> #3 검색 엔진에서는 그래프를 어떻게 활용할까?

신기정 (KAIST AI대학원)

- 1. 페이지랭크의 배경
- 2. 페이지랭크의 정의
- 3. 페이지랭크의 계산
- 4. 실습: 나무 위키 검색 엔진

## 1. 페이지랭크의 배경

- 1.1 웹과 그래프
- 1.2 구글 이전의 검색 엔진



### 1.1 웹과 그래프

#### 웹은 웹페이지와 하이퍼링크로 구성된 거대한 방향성 있는 그래프입니다

웹페이지는 정점에 해당합니다 웹페이지가 포함하는 하이퍼링크는 해당 웹페이지에서 나가는 간선에 해당합니다 단, 웹페이지는 추가적으로 키워드 정보를 포함하고 있습니다



© NAVER Connect Foundation



## 1.2 구글 이전의 검색 엔진

#### 첫번째 시도는 웹을 거대한 디렉토리로 정리하는 것이었습니다

웹페이지의 수가 증가함에 따라서 카테고리의 수와 깊이도 무한정 커지는 문제가 있습니다 참고로 현재는 수십억 ~ 수백억 개의 웹페이지가 있는 것으로 알려져 있습니다 또한, 카테고리 구분이 모호한 경우가 많아, 저장과 검색에 어려움이 있습니다





## 1.2 구글 이전의 검색 엔진

#### 두번째 시도는 웹페이지에 포함된 키워드에 의존한 검색 엔진입니다

사용자가 입력한 키워드에 대해, 해당 키워드를 (여러 번) 포함한 웹페이지를 반환합니다

하지만, 이 방법은 악의적인 웹페이지에 취약하다는 단점이 있습니다 예를 들어, 성인 사이트에 '축구'라는 키워드를 (보이지 않도록) 여러 번 포함하게 되면, '축구'를 검색했을 때 해당 성인 사이트가 결과로 나올 수 있습니다



## 1.2 구글 이전의 검색 엔진

#### Q. 사용자 키워드와 <mark>관련성</mark>이 높고 <mark>신뢰</mark>할 수 있는 웹페이지를 어떻게 찾을 수 있을까요?

A. 구글의 창업자인 래리 페이지(Larry Page)와 세르게이 브린(Sergey Brin)은 *The PageRank Citation Ranking: Bringing Order to the Web* 라는 제목의 논문을 통해 이 질문에 답합니다 당시 둘은 스탠포드 대학의 박사과정 학생이었습니다



래리 페이지(Larry Page)와 세르게이 브린(Sergey Brin)

## 1. 페이지랭크의 정의

1.1 페이지랭크의 정의: 투표 관점

1.2 페이지랭크의 정의: 임의 보행 관점



페이지랭크의 핵심 아이디어는 투표입니다 즉, 투표를 통해 사용자 키워드와 <mark>관련성</mark>이 높고 신뢰할 수 있는 웹페이지를 찾습니다

투표의 주체는 바로 웹페이지입니다 웹페이지는 하이퍼링크를 통해 투표를 합니다





페이지랭크의 핵심 아이디어는 투표입니다 즉, 투표를 통해 사용자 키워드와 <mark>관련성</mark>이 높고 <mark>신뢰</mark>할 수 있는 웹페이지를 찾습니다

투표의 주체는 바로 웹페이지입니다 웹페이지는 하이퍼링크를 통해 투표를 합니다

사용자 키워드를 포함한 웹페이지들을 고려합시다 웹페이지 u가 v로의 하이퍼링크를 포함한다면?

u의 작성자가 판단하기에 v가 관련성이 높고 신뢰할 수 있다는 것을 의미합니다 즉, u가 v에게 투표했다고 할 수 생각할 수 있습니다



#### 즉, 들어오는 간선이 많을 수록 신뢰할 수 있다는 뜻입니다

논문을 고를 때도 마찬가지입니다 사람들은 많이 인용된 논문을 더 많이 신뢰합니다



#### 즉, 들어오는 간선이 많을 수록 신뢰할 수 있다는 뜻입니다

Q. 그런데 들어오는 간선의 수를 세는 것만으로 충분할까요?

#### A. 아닙니다. 악용될 소지가 있습니다

웹페이지를 여러 개 만들어서 간선의 수를 부풀릴 수 있습니다 즉, 관련성과 신뢰도가 높아 보이도록 조작할 수 있습니다

오른쪽 그림은 제가 연구를 통해 찾아낸 웹 그래프의 일부입니다 완벽한 대칭성 등, 인위적으로 만들어진 것으로 의심됩니다





12

#### 이런 식의 악용은 온라인 소셜 네트워크에서도 흔히 발견됩니다





#### Q. 이런 악용을 막으려면 어떻게 해야 할까요?

A. 이런 악용에 의한 효과를 줄이기 위해, 페이지랭크에서는 가중 투표를 합니다 즉, 관련성이 높고 신뢰할 수 있는 웹사이트의 투표를 더 중요하게 간주합니다 반면, 그렇지 않은 웹사이트들의 투표는 덜 중요하게 간주합니다 악용이 없는 경우에도 사용할 수 있는 합리적인 투표 방법입니다

Q. 이런 악용을 막으려면 어떻게 해야 할까요?

A. 이런 악용에 의한 효과를 줄이기 위해, 페이지랭크에서는 가중 투표를 합니다 즉, 관련성이 높고 신뢰할 수 있는 웹사이트의 투표를 더 중요하게 간주합니다 반면, 그렇지 않은 웹사이트들의 투표는 덜 중요하게 간주합니다 악용이 없는 경우에도 사용할 수 있는 합리적인 투표 방법입니다

Q. 잠깐, 관련성과 신뢰성은 저희가 투표를 통해 측정하려는 것 아니었나요? 출력을 입력으로 사용하자는 이야기처럼 들리는데요?

A. 그렇습니다. 재귀(Recursion), 즉 연립방정식 풀이를 통해 가능합니다.

#### 측정하려는 웹페이지의 관련성 및 신뢰도를 페이지랭크 점수라고 부릅시다

각 웹페이지는 각각의 나가는 이웃에게

자신의 페이지랭크 점수 만큼의 가중치로 투표를 합니다 나가는 이웃의 수

오른쪽 예시에서 웹페이지 j는 웹페이지 x,y,z에게 각각 가중치  $\frac{r_j}{3}$ 으로 투표를 합니다  $r_j$ 는 웹페이지 j의 페이지랭크 점수를 의미합니다





16

#### 측정하려는 웹페이지의 관련성 및 신뢰도를 페이지랭크 점수라고 부릅시다

각 웹페이지의 페이지랭크 점수는 받은 투표의 가중치 합으로 정의됩니다

오른쪽 예시에서 웹페이지 j의 페이지랭크 점수  $\mathbf{r}_{i}$ 는 다음과 같습니다

 $r_j = r_i/3 + r_k/4$ 

페이지랭크 점수의 정의는 다음과 같습니다

$$r_j = \sum_{i \in N_{in}(j)} \frac{r_i}{d_{out}(i)}$$



boostcamp Al Tech

#### 측정하려는 웹페이지의 관련성 및 신뢰도를 페이지랭크 점수라고 부릅시다

오른쪽 예시에서의 정점 별 페이지랭크 식은 다음과 같습니다

$$r_y = r_y/2 + r_a/2$$
 $r_a = r_y/2 + r_m$ 
 $r_m = r_a/2$ 

변수 3개 식이 3개이므로 연립방정식을 통해 풀 수 있습니다 구체적인 계산은 뒤에서 자세히 설명합니다



## 2.2 페이지랭크의 정의: 임의 보행 관점

#### 페이지랭크는 임의 보행(Random Walk)의 관점에서도 정의할 수 있습니다

임의 보행을 통해 웹을 서핑하는 <mark>웹서퍼</mark>를 가정합시다 즉, 웹서퍼는 현재 웹페이지에 있는 하이퍼링크 중 하나를 균일한 확률로 클릭하는 방식으로 웹을 서핑합니다

웹서퍼가 t번째 방문한 웹페이지가 웹페이지 i일 확률을  $p_i(t)$ 라고 합시다 그러면 p(t)는 길이가 웹페이지 수와 같은 확률분포 벡터가 됩니다



그러면 아래 식이 성립합니다

$$p_j(t+1) = \sum_{i \in N_{in}(j)} \frac{p_i(t)}{d_{out}(i)}$$



## 2.2 페이지랭크의 정의: 임의 보행 관점

#### 페이지랭크는 임의 보행(Random Walk)의 관점에서도 정의할 수 있습니다

웹서퍼가 이 과정을 무한히 반복하고 나면, 즉 t가 무한히 커지면, 확률 분포는 p(t)는 수렴하게 됩니다

다시 말해 p(t) = p(t+1) = p이 성립하게 됩니다 수렴한 확률 분포 p는 정상 분포(Stationary Distribution)이라고 부릅니다 그러면 앞서 소개한 수식을 아래와 같이 바꿀 수 있습니다

$$p_j(t+1) = \sum_{i \in N_{in}(i)} \frac{p_i(t)}{d_{out}(i)} \qquad \Box \qquad p_j = \sum_{i \in N_{in}(j)} \frac{p_i}{d_{out}(i)}$$

잠깐, 이 수식 좀 익숙하지 않나요?



## 2.2 페이지랭크의 정의: 임의 보행 관점

#### 투표 관점에서 정의한 페이지 랭크 점수는 임의 보행 관점에서의 정상 분포와 동일합니다

투표 관점에서 정의한 페이지랭크 점수 r

$$r_j = \sum_{i \in N_{in}(j)} \frac{r_i}{d_{out}(i)}$$

임의 보행 관점에서 정의한 정상 분포p

$$p_j = \sum_{i \in N_{in}(j)} \frac{p_i}{d_{out}(i)}$$

## 3. 페이지랭크의 계산

3.1 페이지랭크의 계산: 반복곱

3.2 문제점과 해결 방법



## 3.1 페이지랭크의 계산: 반복곱

#### 페이지랭크 점수의 계산에는 반복곱(Power Iteration)을 사용합니다

반복곱은 다음 세 단계로 구성됩니다

- (1) 각 웹페이지 i의 페이지랭크 점수  $r_i^{(0)}$  를 동일하게  $\frac{1}{웹페이지의수}$  로 초기화합니다
- (2) 아래 식을 이용하여 각 웹페이지의 페이지랭크 점수를 갱신합니다.

$$r_j^{(t+1)} = \sum_{i \in N_{in}(j)} \frac{r_i^{(t)}}{d_{out}(i)}$$

(3) 페이지랭크 점수가 수렴하였으면 종료합니다. 아닌 경우 (2)로 돌아갑니다

## 3.1 페이지랭크의 계산: 반복곱

#### 페이지랭크 점수의 계산에는 반복곱(Power Iteration)을 사용합니다

#### 반복곱 예시:

$$r_y$$
 1/3  
 $r_a$  = 1/3  
 $r_m$  1/3

반복: (

$$r_j = \sum_{i \in N_{in}(j)} \frac{r_i}{d_{out}(i)}$$



## 3.1 페이지랭크의 계산: 반복곱

#### 페이지랭크 점수의 계산에는 반복곱(Power Iteration)을 사용합니다

#### 반복곱 예시:

$$r_y$$
 1/3 | 1/3 | 5/12 | 9/24 | 6/15 |  $r_a = 1/3$  | 3/6 | 1/3 | 11/24 | ... | 6/15 |  $r_m$  1/3 | 1/6 | 3/12 | 1/6 | 3/15 |  $t = 1/3$  | 3 |  $t = 1/3$  | 3/15 |  $t = 1/3$  | 3 |  $t = 1/3$  | 3 |  $t = 1/3$  |  $t =$ 



$$r_j = \sum_{i \in N_{in}(j)} \frac{r_i}{d_{out}(i)}$$

#### 앞선 예시에서는 <mark>반복곱</mark>이 잘 동작하는 것을 알겠습니다 그런데…

Q1. 반복곱이 항상 수렴하는 것을 보장할 수 있나요?

Q2. 반복곱이 "합리적인" 점수로 수렴하는 것을 보장할 수 있나요?

#### Q1. 반복곱이 항상 수렴하는 것을 보장할 수 있나요?

정답은 '아니오' 입니다

오른쪽 예시에서 페이지랭크 점수는 수렴하지 않습니다

| $r_a$   | 1/3 | 0   | 0   | 0   |     |
|---------|-----|-----|-----|-----|-----|
| $r_b =$ | 1/3 | 2/3 | 1/3 | 2/3 | ••• |
| $r_c$   | 1/3 | 1/3 | 2/3 | 1/3 |     |
| 반복:     | 0   | 1   | 2   | 3   |     |



#### Q1. 반복곱이 항상 수렴하는 것을 보장할 수 있나요?

정답은 '아니오' 입니다

오른쪽 예시에서 페이지랭크 점수는 수렴하지 않습니다

| $r_a$   | 1/3 | 0   | 0   | 0   |       |
|---------|-----|-----|-----|-----|-------|
| $r_b =$ | 1/3 | 2/3 | 1/3 | 2/3 | • • • |
| $r_c$   | 1/3 | 1/3 | 2/3 | 1/3 |       |
| 반복:     | 0   | 1   | 2   | 3   |       |

들어오는 간선은 있지만 나가는 간선은 없는 정점 집합인 스파이더 트랩(Spider Trap)에 의한 문제입니다



#### Q2. 반복곱이 "합리적인" 점수로 수렴하는 것을 보장할 수 있나요?

정답은 '아니오' 입니다



오른쪽 예시에서 페이지랭크 점수는 0으로 수렴합니다

| $r_a$   | 1/2 |     | 0 | 0 |       |
|---------|-----|-----|---|---|-------|
| $r_b =$ | 1/2 | 1/2 | 0 | 0 | • • • |
| 반복:     | 0   | 1   | 2 | 3 |       |

들어오는 간선은 있지만 나가는 간선은 없는 **막다른 정점(Dead End)**에 의한 문제입니다

#### Q2. 반복곱이 "합리적인" 점수로 수렴하는 것을 보장할 수 있나요?

정답은 '아니오' 입니다

오른쪽 예시에서 페이지랭크 점수는 0으로 수렴합니다

| $r_a$   | 1/2 | 0   | 0 | 0 |     |
|---------|-----|-----|---|---|-----|
| $r_b =$ | 1/2 | 1/2 | 0 | 0 | ••• |
| 반복:     | 0   | 1   | 2 | 3 |     |

들어오는 간선은 있지만 나가는 간선은 없는 **막다른 정점(Dead End)**에 의한 문제입니다



#### 문제 해결을 위해 순간이동(Teleport)을 도입합니다

임의 보행 관점에서, 웹을 서핑하는 <mark>웹서퍼</mark>의 행동을 다음과 같이 수정합니다

- (1) 현재 웹페이지에 하이퍼링크가 없다면, 임의의 웹페이지로 순간이동 합니다
- (2) 현재 웹페이지에 하이퍼링크가 있다면, 앞면이 나올 확률이  $\alpha$ 인 동전을 던집니다
- (3) 앞면이라면, 하이퍼링크 중 하나를 균일한 확률로 선택해 클릭합니다
- (4) 뒷면이라면, 임의의 웹페이지로 순간이동 합니다

(1)과 (4)의 임의의 웹페이지는 전체 웹페이지들 중에 하나를 균일확률로 선택합니다 순간이동에 의해서 스파이더 트랩이나 막다른 정점에 갇히는 일이 없어졌습니다  $\alpha$ 를 감폭 비율(Damping Factor)이라고 부르며 값으로 보통 0.8 정도를 사용합니다





#### 순간이동 도입은 페이지랭크 점수 계산을 다음과 같이 바꿉니다

- (1) 각 막다른 정점에서 (자신을 포함) 모든 다른 정점으로 가는 간선을 추가합니다
- (2) 아래 수식을 사용하여 반복곱을 수행합니다.

$$r_j = \sum_{i \in N_{in}(j)} \left( \alpha \frac{r_i}{d_{out}(i)} \right) + (1 - \alpha) \frac{1}{|V|}$$

|V|는 전체 웹페이지의 수를 의미합니다 파란색 부분은 하이퍼링크를 따라 정점 j에 도착할 확률을 의미합니다 빨간색 부분은 순간이동을 통해 정점 j에 도착할 확률을 의미합니다

#### 수정된 페이지랭크 점수 예시



boostcamp Al Tech

## 4. (실습) 나무위키 검색 엔진

- 4.1 나무위키 데이터 소개
- 4.2 데이터 불러오기
- 4.3 검색 1단계: 부분그래프 구성
- 4.4 검색 2단계: 페이지랭크 점수 측정



## 4.1 나무위키 데이터 소개

#### 나무위키란?

나무위키는 서브컬쳐에 특화된 위키피디아 사이트입니다 문서들이 하이퍼링크를 통해 연결되어 있습니다







## 4.1 나무위키 데이터 소개

#### 다음의 나무위키 데이터를 수집하여 제공합니다

가수와 관련된 내용으로 한정하였습니다

1.5만 개의 정점, 17만 개의 간선, 27만개의 키워드로 구성되어 있습니다



## 4.1 나무위키 데이터 소개

#### 구체적인 파일 이름과 형식은 다음과 같습니다

vertices.txt: 문서 목록입니다.

- 각 줄이 "[문서 식별자]₩n" 형태입니다

vertex2name.txt: 문서의 제목 목록입니다.

- 각 줄이 "[문서 식별자] ||| [제목]₩n" 형태입니다

edge.txt: 하이퍼링크 목록입니다.

- 각 줄이 "[나가는 문서 식별자] [들어오는 문서 식별자]₩n" 형태입니다

keyword.txt: 키워드 목록입니다.

- 각 줄이 "[키워드 식별자] ||| [키워드] ₩n" 형태입니다

v2k.txt: 문서 별 포함된 키워드 목록입니다.

- 각 줄이 "[문서 식별자] ||| [키워드1 식별자] [키워드2 식별자] ··· ₩n" 형태입니다

k2v.txt: 키워드 별 해당 키워드가 포함된 문서 목록입니다

- 각 줄이 "[키워드 식별자] ||| [문서1 식별자] [문서2 식별자] ··· ₩n" 형태입니다



#### 필요한 라이브러리를 읽어옵니다

```
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import os
import os.path as osp
import sys
```

```
# 실습에 필요한 데이터셋을 읽어서 저장합니다.
print("###### Read Graphs #####")
path_v2n = osp.abspath(osp.join(os.getcwd(), 'drive/MyDrive/data/wiki/vertex2name.txt'))
path_edges = osp.abspath(osp.join(os.getcwd(), 'drive/MyDrive/data/wiki/edges.txt'))
path_keyword = osp.abspath(osp.join(os.getcwd(), 'drive/MyDrive/data/wiki/keyword.txt'))
path_k2v = osp.abspath(osp.join(os.getcwd(), 'drive/MyDrive/data/wiki/k2v.txt'))

G = nx.DiGraph()
f = open(path_edges)
for line in f:
    v1, v2 = map(int, line.split())
    G.add_edge(v1, v2)
```



```
print("##### Read keyword #####")
keywords = {}
f = open(path_keyword)
for line in f:
    num, k = line.split(" ||| ")
    k = k.rstrip()
    num = int(num)
    keywords[k] = num
```

```
print("##### Read keyword to vertex #####")
k2v={}
f = open(path_k2v)
for line in f:
    k, v = line.split(" ||| ")
    k = int(k)
    v = v.rstrip()
    v = v.split()
    v = list(map(int, v))
    k2v[k] = v
```



```
print("##### Read vertex to name #####")
v2n = {}
f = open(path_v2n)
for line in f:
    v, n = line.split(" ||| ")
    v = int(v)
    n = n.rstrip()
    v2n[v] = n
```



## 4.3 검색 1단계: 부분그래프 구성

boostcamp Al Tech

#### 주어진 검색어가 포함된 문서들로 구성된 부분그래프(Subgraph)를 구성합니다

```
# 검색어로 사용할 키워드를 입력으로 받아서, 그 키워드를 포함한
# 문서들로 이루어진 부분 그래프(subgraph) H를 추출합니다.
print("##### Mapping Subgraphs for each keyword ######")
search = "걸스데이"
print("Search : %s" % search)
key = keywords[search]
sub vertices = k2v[key]
H = G.subgraph(sub vertices)
print(len(H.nodes))
###### Mapping Subgraphs for each keyword ######
Search : 걸스데이
301
```

43

## 5.4 검색 2단계: 페이지랭크 점수 측정

## 구성된 부분그래프(Subgraph)에서 페이지랭크를 수행하여 문서 별 점수를 계산합니다 문서들을 페이지랭크 점수 역순으로 정렬하여 출력합니다

```
# subgraph H에 대해서 pagerank 알고리즘을 시행합니다.
print("##### PageRank Algorithm ######")
pr = nx.pagerank(H, alpha = 0.9)
res = [key for (key, value) in sorted(pr.items(), key=lambda x:x[1], reverse=True)]
for item in res:
   print(v2n[item])
###### PageRank Algorithm ######
걸스데이.
민아(걸스데이)
유라(걸스데이)
소진(걸스데이)
달샤벳
```

© NAVER Connect Foundation

boostcamp Al Tech

## 3강 정리

#### 1. 페이지랭크의 배경

- 디렉토리, 키워드 기반 검색 엔진의 한계

#### 2. 페이지랭크의 정의

- 투표 관점: 하이퍼링크를 통한 가중 투표
- 임의 보행 관점: 웹서퍼가 각 웹페이지를 방문할 확률

#### 3. 페이지랭크의 계산

- \_ 반복곱
- 스파이더 트랩 및 막다른 정점 문제를 해결하기 위한 순간 이동

#### 4. (실습) 나무위키 검색 엔진

