Time Hybrids

Lamda Days 2024

Luc Duponcheel

Time Hybrids nova science publishers

A New Generic Theory of Reality Fred Van Oystaeyen

Generic Theory

Generic Theory

theory of theories

Generic Theory

- theory of theories
- partially unifying framework theory where theories fit into

partially unifying framework theory where theories of reality fit into

- partially unifying framework theory where theories of reality fit into
 - relativity theory

- partially unifying framework theory where theories of reality fit into
 - relativity theory
 - quantum theory

- partially unifying framework theory where theories of reality fit into
 - relativity theory
 - quantum theory
- until now no unifying theory for them has been agreed upon

• declares features

- declares features
- defines laws that come with those declared features

- declares features
- defines laws that come with those declared features
- also defines features in terms of declared and defined features

Implementation

Implementation

• defines declared features of a specification

Implementation

- defines declared features of a specification
- provides proofs of the laws that come with those declared features

Description (as a painting)

Description (as a painting)

• below is an informal description of a pipe

Description (as a painting)

below is an informal description of a pipe

well, not really, does it?

Description (as a computational simulation)

Description (as a computational simulation)

 this TED talk of Stephen Wolfram is about a, mathematically well-founded, description of reality that, maybe, can, somehow, be seen as an implementation of the specification of the generic theory of Fred Van Oystaeyen

• relativity theory resp. quantum theory is a macro theory resp. micro theory, but where do micro and macro end?

- relativity theory resp. quantum theory is a macro theory resp. micro theory, but where do micro and macro end?
- traditionally, mathematics is used to deal with that in a continous, analytic way, using shrinking limits of time intervals

- relativity theory resp. quantum theory is a macro theory resp. micro theory, but where do micro and macro end?
- traditionally, mathematics is used to deal with that in a continous, analytic way, using shrinking limits of time intervals
- recently, mathematics is used to deal with that in a discrete, algebraic way

Discrete

Discrete

 Stephen Wolfram's mathematics uses an expanding limit of a time interval starting at some time moment (think of a big bang of graph rewriting without specific rules), recall that it is an implementation

Discrete

- Stephen Wolfram's mathematics uses an expanding limit of a time interval starting at some time moment (think of a big bang of graph rewriting without specific rules), recall that it is an implementation
- Fred Van Oystaeyen's approach also goes for a discrete, algebraic way (if only because of the observational minimal Planck time unit!) but makes no concrete choices, recall that it is a specification

 Category Theory is a partially unifying framework theory where theories of mathematics fit into

- Category Theory is a partially unifying framework theory where theories of mathematics fit into
 - probability

- Category Theory is a partially unifying framework theory where theories of mathematics fit into
 - probability
 - geometry (topology)

- Category Theory is a partially unifying framework theory where theories of mathematics fit into
 - probability
 - geometry (topology)
 - others

- Category Theory is a partially unifying framework theory where theories of mathematics fit into
 - probability
 - geometry (topology)
 - others
- Category theory is, just like reality, compositional

Virtual Topology

Virtual Topology

 Fred Van Oystayen's Virtual Topology is, as far as I know, the most abstract (read: simplest) generic geometry as far as being useful for modeling reality

Virtual Topology

- Fred Van Oystayen's Virtual Topology is, as far as I know, the most abstract (read: simplest) generic geometry as far as being useful for modeling reality
- Virtual Topology is pointfree (cfr Category Theory)

 Mathematical notation (in this case the one used for Physics) can kill you

- Mathematical notation (in this case the one used for Physics) can kill you
- Natural language notation can confuse you

- Mathematical notation (in this case the one used for Physics) can kill you
- Natural language notation can confuse you
 - many words used for one concept without explanantion

- Mathematical notation (in this case the one used for Physics) can kill you
- Natural language notation can confuse you
 - many words used for one concept without explanantion
 - one word used for many concepts without defining context

- Mathematical notation (in this case the one used for Physics) can kill you
- Natural language notation can confuse you
 - many words used for one concept without explanantion
 - one word used for many concepts without defining context
- Program language notation is required to be precise and, therefore may be somewhat verbose, but the benefit is that it is checked by a type system

trait Time[Moment: Arbitrary: Ordered]

trait Time[Moment: Arbitrary: Ordered]

• this allows us to

trait Time[Moment: Arbitrary: Ordered]

- this allows us to
 - write statements involving arbitrary time moments

trait Time[Moment: Arbitrary: Ordered]

- this allows us to
 - write statements involving arbitrary time moments
 - state that one time moment is before another one

Universe

```
trait Universe[
 Set[_]: Sets,
 Morphism[_, _]: Category: ActingUponFunction,
 Moment: Time,
  State: [_] =>> VirtualTopology[
   Set,
   State
 ]: [_] =>> Functor[
    [_, _] =>> MomentMorphism,
   Morphism,
    [ ] =>> State
```


• this allows us to

- this allows us to
 - write statements using topological features of universe states

- this allows us to
 - write statements using topological features of universe states
 - write statements relating time moment transitions, to universe state morphisms (think of an dynamic, expanding universe)

BtcComposition

```
trait BtcComposition[BTC[_, _]]:
  extension [Z, Y, X](y2x: BTC[Y, X])
  def 'o'(z2y: BTC[Z, Y]): BTC[Z, X]
```


BtcCompositionLaws

```
trait CompositionLaws[L[_]: Law]:

def associativity[Z, Y, X, W]
    : BTC[X, W] => BTC[Y, X] => BTC[Z, Y] => L[BTC[Z, W]] =
    x2w => y2x => z2y =>
    { (x2w 'o' y2x) 'o' z2y } '=' { x2w 'o' (y2x 'o' z2y) }
```


BtcUnit

```
trait BtcUnit[BTC[_, _]]:
```

 $\ \, \text{def i[Z]: BTC[Z, Z]}$

Category

```
trait Category[BTC[_, _]]
  extends BtcComposition[BTC], BtcUnit[BTC]:
```


CategoryLaws

```
trait CategoryLaws[L[_]: Law]:

def leftIdentity[Z, Y]: BTC[Z, Y] => L[BTC[Z, Y]] =
    z2y => { i 'o' z2y } '=' { z2y }

def rightIdentity[Z, Y]: BTC[Z, Y] => L[BTC[Z, Y]] =
    z2y => { z2y 'o' i } '=' { z2y }
```


More Information

https://github.com/LucDuponcheelAtGitHub/timeHybrids

THANKS FOR ATTENDING

