PERANCANGAN DAN REALISASI ANTENA TEKSTIL UNTUK APLIKASI GPS PADA PEKERJA TAMBANG PADA FREKUENSI 1.575 GHZ

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

DAFFA RIZKY AMRAN 6705184115

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Telekomunikasi merupakan salah satu bidang yang memegan peranan penting pada saat ini, baik kebutuhan informasi maupun komunikasi. Perkembangan telekomunikasi juga terus berkembang salah satunya untuk bidang navigasi. Salah satu aplikasinya adalah GPS (Global Positioning System) yang menggunakan teknologi telekomunikasi satelit untuk memberikan informasi navigasi. Masih banyak perusahaan dalam bidang tambang yang kurang memperhatikan keselamatan kerja para pekerjanya. Banyaknya kasus yang menyatakan bahwa para pekerja tambang yang tertimbun tanah longsor dan tidak dapat ditemukan keberadaannya.

Maka dari itu penulis terinspirasi untuk membuat sebuah antena untuk aplikasi GPS pada pekerja tambang. Antena yang cocok untuk tujuan ini biasanya memiliki bahan tekstil sebagai substratnya. Antena seperti itu disebut sebagai wearable textile antenna yang memiliki bobot ringan dan dapat digunakan pada pakaian. Wearable textile antenna merupakan suatu jenis antena yang dirancang khusus untuk diintegrasikan pada pakaian dan perlengkapan yang digunakan seharihari. Salah satu model wearable textile antenna yang dapat diterapkan berbentuk antena mikrostrip, yaitu antena yang berbentuk papan (board) dan mampu bekerja pada frekuensi yang cukup tinggi, salah satunya pada frekuensi 1.575 GHz. Dimana frekuensi ini merupakan frekuensi yang digunakan pada aplikasi GPS. Antena mikrostrip terdiri dari patch sebagai pemancar, substrat dielektrik, dan groundplane.

Dengan melihat kondisi keselamatan pekerja tambang yang sulit ditemukan saat berada di lapangan, maka antena yang akan dirancang pada tugas akhir ini berupa antena tekstil yang subtratnya berupa *aramid fabric* yang tahan terhadap basah dan panas. Sedangkan patch dan groundplane menggunakan bahan *woven copper* sebagai bahan yang bisa diradiasikan.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul	Penulis	Tahun	Jenis Antena	Hasil	Resume
No 1	Perancangan,Simulasi dan Realisasi Antena Fleksibel untuk Aplikasi Komunikasi Radio Militer pada Frekuensi 2350 MHz	Penulis I Made Aditya Yogaswara	Tahun 2012	Microstrip Flexibel	Hasil f = 2.35 GHz VSWR = 1.569 Gain = 6.39 dBi BW = 50 Mhz Polaradiasi = Omnidirectional Polarisasi = Elips	-Antena dirancang menggunakan metode sputtering yaitu proses pelapisan suatu material ke atas permukaan suatu subtrat. -Antena juga dirancang menggunakan teknik antena printed monopole dimana bagian patch dan groundplane nya di print di bagian subtrat. -Antena wearable tersebut termasuk antena fleksibel dan memiliki kelenturan serta ringan saat ditempelkan pada pakaian.
						-Menggunakan bahan mika plastik (polycarbonate)
						sebagai subtrat dan alumunium sebgai patch dan groundplane.

						-Percobaan pada saat proses simulasi dilakukan sebanyak 6 kali dan perubahan yang paling serting terjadi pada bagian lebar groundplae,lebar strip dan panjang strip. -Hasil perancangan dan simulasi cukup berbeda dari segi Gain, Impedansi dan Polaradiasi disebabkan oleh segi bahan ataupun saat tahap perancangan. -Penggunaan pertinax sebagai holder memberkan pengaruh kurang maksimal terhadap performansi antena, ketebalan patch dan pabrifikasinya juga mempengaruhi performansi tsb.
2	Perancangan dan Realisasi Antena Tekstil 2.45 Ghz untuk Komunikasi antar Pasukan Pemadam Kebakaran	Imelda Septrina	2014	Microstrip Textile	f = 2.45 GHz VSWR = 1.381 (Free Space) dan 3.271 (Clothes) Gain = 2.655 dBi (Free Space) dan 3.271 (Clothes) Polaradiasi = Omnidirectional (Free Space) dan Elips	 Antena dilakukan fabrifikasi dengan cara menjahit antara patch, subtract dengan groundplane. Antenna menggunakan bahan aramid fabric (polymide) sebantak 4 lapis sebagai subtrat dan bahan zelt electro textile (copper)

		(Clothes)	sebagai patch dan
		,	groundplane
		$SAR = 7.212 \times 10^{-8} \text{ w/kg}$	
			-Antenna digunakan sebagai
			mic pada sisi transmitter dan
			speaker atau portable radio
			pada sisi receiver dan
			menggunakan komunikasi
			= =
			point to point.
			-Bentuk antena mikrostrip
			patch rectangular yang dibuat
			mirip dengan antena
			mikrostrip monoplole dengan
			groundplane yang tidak
			penuh.
			-Dilakukan simulasi sebanyak
			2 kali pada aplikasi <i>CST Suite</i>
			Studio untuk mendapatkan
			hasil yang diinginkan.
			-Dilakukan uji pengukuran
			saat antena basah dan
			hasilnya masih memenuhi
			dengan spesifikasi yang
			ditentukan.
			anemakan.
			-Terjadi penyimpangan nilai
			parameter yang diinginkan
			saat proses simulasi dan
			perancangan disebabkan oleh
			1
			proses pabrifikasi yang sulit

						dengan menggunting dan menjahit bahan tekstil untuk dijadikan desain antena dan juga ketidaksesuaian ukuran saat pabrifikasi juga mempengaruhi. -Nilai VSWR, Bandwidth, Impedansi dan Gain saat digunakan dibaju jauh lebih baik dibandingkan saat kondisi free space. Hal ini menunjukan bahwa tubuh manusia memiliki sifat lossy dan dapat memantulkan medan listrik. -Polaradiasi antena berubah saat kondisi free space yaitu omnidireksional menjadi bidireksional saat digunakan pada pakaian. Hal ini diakibatkan karena sebagian energi elektromagnetik diserap oleh tubuh manusia.
3	A Review of Textile and Cloth Fabric Wearable Antennas	Ankita Priya, Ayush Kumar, Brajlata Chauhan	2015	Microstrip Textile	$VSWR \le 2$ $RL \ge -10 \text{ dB}$	-Pada jurnal tersebut dijelaskan bahwa antena wearable dibuat dengan cara ditenun. -Bahan yang digunakan pada

		antena adalah copper untuk
		patch dan groundplanenya
		sedangkan untuk subtratnya
		menggunakan bahan tekstil.
		-Pada jurnal juga dijelaskan
		beberapa bahan subtrat
		beserta dielektrik konstan
		pada kain, seperti wash
		cotton(1.51), polyester (1.44),
		jeans cotton (1.67), bed
		sheet/floor spread (1.46).
		SP12 (1.19).
		-Dijelaskan juga bahwa
		antena kain dapat digunakan
		untuk telemedis, yaitu
		pemantauan kesehatan jarak
		jauh yang pada era sekarang
		dapat menggunakan internet
		atau jaringan 3G. Dapat
		digunakan juga untuk
		keperluan militer, seperti
		pada topi, lengan, pinggang,
		dada, dan sepatu.
		adda, dan bepara.
		- Analisis bahan tekstil yang
		tepat harus dilakukan untuk
		mengoptimalkan perolehan
		dan bandwidth antena.
		Antena wearable memiliki
		banyak aplikasi terutama
		untuk desain array antena
		uniak desam array antena

						portabel.
4	Antena Mikrostrip Bahan Tekstil Frekuensi 2.45 Ghz untuk Aplikasi Telemedis	Nopian Teguh Susyanto, Trasma Yunita, Levy Olivia Nur	2018	Microstrip Textile	f = 2.45 GHz VSWR = 1.40 (free space) dan 1.50 (on body) Gain = 5.03 dB BW = 168 MHz (free space) dan 150 Mhz (on body) Polaradiasi = unidirectional Polarisasi = Elips	- Antena yang dirancang merupakan antena mikrostrip patch sirkular. Kelebihan patch sirkular adalah pembuatannya yang mudah,murah dan menghabsilkan bandwidth yang lebih besar. Kekurangannya adalah memiliki gain yang lebih kecil. -Antena menggunakan metode stacked subtrate yaitu metode penumpukan subtrate yang merupakan salah satu metode optimasi untuk meningkatkan nilai bandwidth. -Antena juga menggunakan metode inset-fed yaitu penambahan slot di sisi kiri dan kanan dari pencatuan yang merupakan metode dalam optimasi matching impedance sehingga dapat menghasilkan VSWR yang lebih baik.

						-Pada proses pabrifikasinya menggunakan lem putih berbahan dasar polyvinil Acotas (PVAc) yang ditempatkan diantara subtrat agar hasil simulasi sesuai dengan pabrifikasi. -Antena pada saat posisi free space memiliki nilai VSWR, Bandwidth, Gain dan Frnt to Back Ratio (FBR) yang lebih baik dibandingkan saat dipasangkan pada on body. Hal ini disebabkan karena tubuh menyerap sebagian gelombang elektromagnetik.
5	Perancangan dan Realisasi Antena Plester pada Frekuensi 2.45 Ghz untuk Komunikasi Wireless Body Area Network	Mega Shatila	2014	Body Worn Antenna	$f = 2.45 \text{ GHz}$ $VSWR < 1.5$ $Gain \geq 2.5 dB$ $SAR \leq 1.6 \text{ W/kg}$ $Polaradiasi = unidirectional$	-Body Worn Antena digunakan pada suatu sistem yang dapat melakukan penginderaan, pengolahan, menggerakan dan melakukan komunikasi serta memiliki kemampuan untuk menyimpan data, dan bisa digunakan pada bidang kesehatan. -Antena yang digunakan adalah off-body, dimana

						antena yang dirancang diinginkan agar menjadi suatu antena pemancar yang dapat berkomunikasi dengan antena yang ada disekitar tubuh dengan jarak jangkauan 1 – 10 meter. -Antena memiliki nilai yang lebih baik saat diletakan pada tubuh dibandingkan saat <i>free space</i> . Dikarenakan jaringan tubuh memiliki sifat <i>lossy</i> dan dapat memantulkan medan listrik. -Pada saat antena dalam kondisi bending maka <i>VSWR</i> yang dihasilkan akan semakin besar, oleh karena itu antena sebaiknya ditempel pada permukaan tangan yang rata.
6	Truncated Patch Antenna on Jute Textile for Wireless Power Transmission at 2.45 GHz	Kais Zeouga, Lotfi Osman, Ali Gharsallah	2018	Microstrip Textile	$f = 2.45 \text{ GHz}$ $VSWR \le 1.5$ $RL = -24.46 \text{ dB}$ $Gain = 1.98 \text{ dB}$ $BW = 117 \text{ Mhz}$	 Antena yang dirancang menggunakan substrat kain goni. Dilakukan pula percobaan saat layer pada kain goni ditambah. Dan didapatkan hasil bahwa nilai gainnya bertambah. Selain itu,

					Polarisasi = Circular	dilakukan pula pengujian ke beberapa bahan kain lainnya seperti denim, kordura, katun, dan polyester. - Berdasarkan hasil percobaan, antenna yang dibuat dari tekstil sintesis memiliki gain yang lebih baik karena nilai tangent loss yang rendah. Sedang kain goni merupakan tekstil alami yang menghasilkan badwidth yang besar namun gainnya rendah.
7	A Miniature UHF Rectangular Microstrip RFID Tag Antenna for Aluminium Can Application	Mohd Aziz Aris, Ermeey Abd. Kadir, Mohamad Yusof Mat Zain, 1 1 1 Zairi Ismael Rizman, Nur Hafizah Rabi'ah Husin	2013	Microstrip	f = 2.45 GHz $VSWR = 1.36$ $Return Loss = -16.294 dB$ $Gain = 5.735 dB$ $Bandwidth = 0.02 Ghz$	- Antena yang dirancang memiliki bentuk patch persegi dan berbahan dasar aluminium. -Antena digunakan untuk aplikasi <i>Radio Frequency Identification (RFID)</i> . Dimana <i>RFID</i> berfungsi untuk mengindetifikasi dan memperoleh data dari development dengan cara menghubungkan antena ke perangkat <i>microwave</i> , dan tidak perlu seseorang untuk mengkontrol dalam jarak dekat maupun jauh.

						-Tidak dibutuhkan <i>bandwidth</i> yang lebar untuk perangkat <i>RFID</i> karena akan membuat data lebih aman pada <i>bandwidth</i> yang sempit.
8	Perancangan Antena Tekstil Tiga Slot Untuk Peralatan IoT Wearable Bidang Medis	Rofan Aziz, Karsid, Dedi Suwandi, Basari	2018	Wearable IoT	f = 2.45 GHz RL = -26.51 dB Gain = 2.409 dBi BW = 2.58 Ghz	- Pada penelitian ini pemilihan kain flanel yang digunakan untuk bahan substrat dan copper tape karena bahanbahan tersebut sangat mudah didapatkan di Indonesia dan harganya murah. - Wearable IoT bidang medis saat ini berkembang dengan pesat. Selain kecepatan transfer data, pemilihan jenis antena juga menjadi isu utama. Pemilihan bahan tekstil yang digunakan untuk antena karena fleksibel, mudah didapatkan dan murah.
9	Wearable Textile Antenna For Gps Application	Dr.S.Shanthi, Dr. T. Jayasankar, Prasad Jones Christydass,Dr. P. Maheswara Venkatesh	2019	Microstrip Textile	$f = 1.575 \text{ GHz}$ $VSWR \le 2$	- Antena dirancang menggunakan teknologi GPS, ZigBee dan RFID, digunakan untuk memantau pergerakan

					RL ≥ -10 dB	seseorang dan memastikan keselamatannya. -Antena wearable dirancang dengan patch sirkular dan menggunakan bahan cotton tetapi memiliki sedikit matching impedance. Solusinya adalah dengan melakukan metode inset feed untuk mengimbangi matching impedance.
10	Antena Tekstil Segi Empat dan AMC pada Frekuensi 2.45 Ghz untuk Aplikasi Kesehatan	Adha Suhariyono, Trasma Yunita, Levy Olivia Nur	2018	Microstrip Textile	f = 2.45 GHz VSWR < 1,6 BW = 145 MHz (off-body) dan 127 MHz (on-body) Gain = 9.08 dB (off-body) dan 9.02 (on-body)	- Antena akan dibuat menjadi antena mikrostrip patch rectangular dengan menggunakan bahan cordura fabric yang tahan air dan flexible untuk dipasang dipakaian sebagai subtrat dan copper tape untuk patch dan groundplane. -Untuk meningkatkan kemampuan antena tersebut ditambahkan AMC, AMC (artificial magnetic conductor) sendiri merupakan antena yang digunakan untuk menekan gelombang permukaan, hal ini bertujuan untuk pengurangi interferensi

		antara gelombang permukaan
		dengan radiasi utama dari
		antena.
		-Teknik catuan yang
		digunakan adalah strip line
		yaitu teknik catuan yang
		langsung menghubungkan
		dengan patch.
		-Untuk teknik optimasinya
		dipilih metode inset feed.
		metode inset feed adalah
		metode pengaturan impedansi
		dengan konfigurasi catuan
		planar. Pengaturan impedansi
		ini dimaksudkan untuk
		mencapai matching
		<i>impedance</i> yang lebih baik.
		Hal ini juga berkaitan dengan
		salah satu cara untuk
		meningkatkan bandwidth,
		karena pada dasarnya sifat
		antena mikrostrip memiliki
		bandwidth yang sempit.
		D 11 AMC
		-Penambahan AMC juga
		berpengaruh terhadap
		perubahan nilai seperti nilai
		bandwitdh antena menjadi 90
		MHz, gain antena menjadi
		9.18 dBi, dan juga

						berpengaruh terhadap pola radiasi, yang disebabkan oleh efek reflector AMC dan Penambahan inset feed pada antena mikrostrip setelah optimasi, berperngaruh pada pergeseran nilai frekuensi kerja dan membuat nilai VSWR menjadi lebih baik.
11	Pengembangan Antena Fleksibel Mikrostrip Bowtie	Levy Olivia Nur, Muhammad Fathan Hizbuddin, Bambang Setia Nugroho	2019	Microstrip Flexible	f = 2.45 GHz VSWR = 1.4 RL = -21.68 dB Gain = 2,38 dBi (normal) dan 4.4 dBi (bending) BW = 350 MHz	-Antena yang dirancang merupakan antena mikrostrip dengan patch berbentuk bowtie dengan menambahkan elemen parasitik disamping catuan. antena Patch bowtie merupakan pengembangan dari antena bowtie yang masuk dalam jenis antena dipole Kelebihan bentuk bowtie yaitu mempunyai radiator besar dan menghasilkan frekuensi kerja yang sama pada kedua sisinya. -Pengukuran dilakukan dalam kondisi normal dan bending untuk mengetahui apakah antena tersebut dapat bekerja dengan baik atau tidak dalam kondisi bending.

	T		
			-Faktor yang diuji kelengkungan adalah antena dilengkungkan dengan tabung diameter 7 cm, 9 cm dan 14 cm. Pada pengujian body centric dilakukan uji pada bagian kepala sebagai phantom dengan mengevaluasi nilai SAR. Faktor kelengkungan sangat berpengaruh pada antena yang akan diimplentasikan pada tubuh manusia. Perancangan antena ditujukan mengikuti bentuk tubuh untuk memudahan penggunaan. Untuk mendemonstrasikan kondisi bending pada tubuh, tabung silinder digunakan untuk pengujian kelengkungan sebanyak 3 buah tabung dengan ukuran yang berbeda. Kelengkungan
			yang berbeda. Kelengkungan berpengaruh pada beamwidth,
			semakin antena melengkung, beamwidth semakin besar dan gain menjadi kecil.
			-Antena dapat bekerja dengan baik pada kondisi normal sedangkan pada kondisi

						bending mengalami penurunan gain. Pola radiasi pada kondisi lengkung tidak berdampak secara signifikan. Performansi VSWR dan return loss dalam kondisi lengkung tidak mengalami perubahan yang signifikan sehingga masih dapat bekerja dengan baik pada kondisi lengkung, ola radiasi pada body centric mengalami perubahan arah yang cukup signifikan dan gain pada antena body centric mengalami kenaikan
12	Location Tracking System using Wearable On-Body GPS Antenna	Thennarasan Sabapathy, Mohd Amirudin Mustapha, Muzammil Jusoh, Shakhirul Mat Salleh, Ping Jack Soh	2016	Microstrip	$f = 1.575 \text{ GHz}$ $VSWR \leq 2$ $RL = -254.24 \text{ dB}$ $BW = 1.538 - 1.622 \text{ GHz}$ (84 MHz) $Polaradiasi = Unidirectional$	- Dirancang sebuah antena untuk tracking GPS dan ditempelkan pada tubuh manusia. -Menggunakan teknologi GPS, RFID dan ZigBee, antena kemudian dihubungkan dengan modul GPS dan Arduino mega mikrokontroller, Mikrokontroler diprogram untuk menangkap data GPS dan mengirimkannya ke sistem pemantauan lokal

						melalui modul RF yang beroperasi pada frekuensi 2,4 GHz. Lalu dimonitoring oleh visual basic software. Sistem ini dioperasikan untuk cakupan hingga jarak 1 km dan menggunakan antena penguat agar semakin baik pancarannya.
13	Wearable Antennas for Remote Health Care Monitoring Systems	Laura Corchia, Giuseppina Monti, Egidio De Benedetto, and Luciano Tarricone	2017	Microstrip	f = 2.53 GHz	- Antena ini dirancang dengan tujuan utuk pemantauan kesehatan jarak jauh terhadap lansia. Dan dalam realiasinya, antenna berfungsi sebagai transceiver/ receiver, kemudian dilengkapi dengan modul untuk mengirim dan menerima data, mikrokontroler untuk memproses data yang diterima dari sensor, sensor, dan juga catu daya. - Wearable antenna berbahan dasar denim εr= 1.67 dengan ketebalan = 0.5mm dan patchnya berbentuk logo. Untuk patchnya sendiri

						menggunakan copper tape.
14	Pengaruh Penekukan Antena Mikrostrip 2.4 Ghz sebagai Perangkat Wearable terhadap Karakteristiknya	Shelasih Winalisa	2019	Microstrip	f = 2.4 GHz $VSWR = 1.4$ $RL = -26.009 dB$ $Gain = -8,99 dB$ $Polaradiasi = Unidirectional$	-Antena yang digunakan adalah antena mikrostrip patch rectangularDan dapat diamati bahwa hasil VSWR pada saat pengukuran lebih besar dibandingkan dengan hasil simulasiDilakukan 5 skenario penekukan pada simulasi di Software dan divalidasi menggunakan pengukuran lapangan dengan bidang vertikal yang diperumpamakan dengan jari jari 20, 25, 50, 100, dan 200 milimeter pada antenaPengujian dilakukan dengan 2 skenario penekukan pada sumbu vertikal dan sumbu HorizontalHasil minimum VSWR dan return loss medan H antena dengan pemodelan lebar dimensi groundplane yang ditekuk bergeser kearah frekuensi yang semakin besar yang mungkin diakibatkan oleh adanya perubahan dimensi groundplane pada

	Perancangan Antena Mikrostrip Ultra Wide				f = 3.1 – 10.6 (Ultra Wide Band)	membuat gain antenna mengecil, hal ini dikarenakan daya terima yang hilang karena tekukan diantena mengakibatkan luas patch sebagai pemancar menyempit ada saat antena ditekuk pada bidang vertikal maka VSWR yang bernilai kecil akan bergeser diatas frekuensi 2,4 GHz sedangkan jika ditekuk pada bidang horizontal maka VSWR yang bernilai kecil akan bergeser kearah frekuensi dibawah 2,4 GHz. -Dilakukan simulasi antena mikrostrip dengan 3 bahan dasar tekstil yaitu, Felt,
15	Band dengan Material Tekstil untuk Aplikasi Wireless Body Area Networks	Ashadi Amir	2019	Microstrip	$VSWR \le 2$ $RL \ge -10 \text{ dB}$ $Gain = 1 - 7 \text{ dBi}$	Denim, Cotton sebagai subtrate nya. Sedangkan copper sebagai patch dan groundplanenya.

	BW ≥ 500 Mhz	- Sistem Ultra Wide Band (UWB) memiliki bandwidth yang lebar (≥500 MHz) yang memungkinkan untuk digunakan dalam proses rekonstruksi citra karena dapat menghasilkan gambar dengan resolusi yang tinggi. -Digunakan pemilihan bahan tekstil dikarenakan memiliki karakteristik dielektrik yang rendah yang dapat mengurangi kerugian pada gelombang permukaan dan meningkatkan impedansi bandwidth dari antena.
		- Penggunaan bahan felt dan denim menghasilkan bandwidth yang lebih lebar yaitu 3900 MHz dan 2600 MHz yang merupakan salah satu kriteria dari aplikasi UWB. Nilai gain berada pada rentang 1 – 7 dBi. Penggunaan bahan fleece menghasilkan gain yang lebih tinggi dibandingkan dengan material yang lain yaitu sekitar 6.51 dBi pada

Г				0 1 1 10 F CTT
				frekuensi resonansi 8.5 GHz.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan antena mikrostrip tekstil untuk komunikasi pekerja tambang yang bekerja pada frekuensi 2.45 Ghz.

Gambar 1. 1. Flowchart Perancangan Antena Tekstil untuk Aplikasi GPS pada Pekerja Tambang

Pada flowchart diatas dijelaskan bahwa sebelum melakukan perancangan pada *Software CST Microwave Studio* harus menentukan spesifikasi desain antena serta melakukan perhitungan dimensi dari antena yang akan dirancang terlebih dahulu setelah itu lakukan perancangan pada *CST Microwave Studio*. Setelah melakukan perancangan perhatikan *VSWR*, *RL* dan parameter antena lainnya yang telah di dapatkan dari perancangan, jika parameter sudah sesuai dengan ketentuan yang diharapkan maka lanjutkan ke tahap pencetakan antena kemudian lakukan pengukuran dan setelah itu antena siap digunakan, jika parameter yang didapatkan

tidak	sesuai dengan	ketentuan	yang	diharapkan	maka l	lakukan	optimalisasi	simulasi
anten	a.							

Referensi

- Adha Suhariyono, T. Y. (2018). ANTENA TEKSTIL SEGI EMPAT DAN AMC PADA FREKUENSI 2.45 GHz UNTUK APLIKASI KESEHATAN. *e-Proceeding of Engineering : Vol.5, No.1 Maret 2018*, 372-378.
- Amir, A. (2019). PERANCANGAN ANTENA MIKROSTRIP ULTRA WIDE BAND DENGAN MATERIAL TEKSTIL UNTUK APLIKASI WIRELESS BODY AREA NETWORKS. *PATRIA ARTHA Technological Journal*, 11-16.
- Ankita Priya, A. K. (2015). A Review of Textile and Cloth Fabric Wearable Antennas . *International Journal of Computer Applications*, 1-5.
- Kais Zeouga, L. O. (2018). Truncated Patch Antenna on Jute Textile for Wireless Power

 Transmission at 2.45 GHz. (IJACSA) International Journal of Advanced Computer Science and Applications Vol. 9, No. 1, 2018, 301-305.
- Laura Corchia, G. M. (2017). Wearable Antennas for Remote Health Care Monitoring Systems.

 International Journal of Antennas and Propagation Volume 2017, 1-11.
- Levy Olivia Nur, M. F. (2019). Pengembangan Antena Fleksibel Mikrostrip Bowtie. *TELKA, Vol.5, No.2, November 2019*, 130-138.
- Mega Shatila, I. H. (2014). PERANCANGAN DAN REALISASI ANTENA PLASTER PADA FREKUENSI 2.45 GHZ UNTUK KOMUNIKASI WIRELESS BODY AREA NETWORK. *Tugas Akhir Telkom University, Tahun 2014*, 1-54.
- Mohd Aziz Aris, E. A. (2013). A Miniature UHF Rectangular Microstrip RFID Tag Antenna for Aluminium Can Application. World Applied Sciences Journal 23 (Enhancing Emerging Market Competitiveness in the Global Economy), 96-102.
- Nopian Teguh Susyanto, T. Y. (2018). ANTENA MIKROSTRIP BAHAN TEKSTIL FREKUENSI 2,45 GHz UNTUK APLIKASI TELEMEDIS. Seminar Nasional Sains dan Teknologi 2018, 1-11.
- Rofan Aziz, K. D. (2018). Perancangan Antena Tekstil Tiga Slot Untuk Peralatan IoT . Seminar Nasional Microwave, Antena dan Propagasi (SMAP) 2018 Unpak, 21-23.
- Septrina, I. (2014). PERANCANGAN DAN REALISASI ANTENA TEKSTIL 2.45 GHZ UNTUK
 KOMUNIKASI ANTAR PASUKAN PEMADAM KEBAKARA. *Tugas Akhir Telkom University, Tahun 2014,* 1-50.
- Winalisa, S. (2019). PENGARUH PENEKUKAN ANTENA MIKROSTRIP 2,4 GHz SEBAGAI PERANGKAT WEARABLE TERHADAP KARAKTERISTIKNYA. *Tugas Akhir Telkom University, Tahun 2019*, 1-72.

Yogaswara, I. M. (2012). PERANCANGAN, SIMULASI, DAN REALISASI ANTENA FLEKSIBEL UNTUK APLIKASI KOMUNIKASI RADIO MILITER PADA FREKUENSI 2350 MHZ. *Tugas Akhir Telkom University, Tahun 2012*, 1-82.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 10 Desember 2020

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : RDL

Nama: Radial Anwar, S.Si., M.Sc., Ph.D.

CALON PEMBIMBING 2

Kode : PRAK-2

Nama : Dr.Ir Yuyu Wahyu, M.T

Menyatakan bersedia menjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705184115

Nama : Daffa Rizky Amran

Prodi / Peminatan : D3TT/ANT (contoh: MI / SDV)

: Perancangan dan Realisasi Antena Tekstil untuk Aplikasi GPS pada Pekerja

Calon Judul PA Tambang pada Frekuensi 1.575 GHz

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

20201210

Radial Anwar

Calon Pembimbing 2

Yuvu Wahvu

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk

: 6705184115

Dosen Wali Program Studi : HPT / HASANAH PUTRI

Mahasiswa) Nama

: DAFFA RIZKY AMRAN

: D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	AB
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	А
2	DMH1A2	OLAH RAGA	SPORT	2	AB
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	В
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	А
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
		Jumlah SKS		81	3.64
	01	3.04			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai		
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	А		
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ		
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	А		
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А		
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB		
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А		
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А		
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ		
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А		
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB		
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB		
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А		
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А		
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	А		
	Jumlah SKS						

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3E1	HEI	HEI	1	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	Jum	16			

Jumlah SKS	: 81 SKS		IPK : 3.64
Tingkat III	: 81 SKS	Belum Lulus	IPK : 3.64
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.64
Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.49

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 11 Desember 2020 01:24:47 oleh DAFFA RIZKY AMRAN