Theory and Technology of Semiconductor Devices Assignment 2

Dr. Shooshtari

Due: Dec 22

Problem 1 Doing an Arsenic diffusion on a p-type wafer with background doping of $10^{17}cm^{-3}$ with limited amount of Arsenic (constant-total-dopant) of $10^{14}cm^{-2}$ at $1100^{\circ}C$ for 1.5 hours, find the surface concentration and junction depth.

Note: $D = 2.07 \times 10^{-14} \ cm^2/s$ for Arsenic at $1100^{\circ}C$

Problem 2 A two-step Boron diffusion is used on an n-type wafer to form a p-type region; first 30 minutes with constant surface concentration of $1.1 \times 10^{20} cm^{-3}$ at $900^{\circ}C$ followed by 4 hours (the constant-total step) at $1100^{\circ}C$. find (a) junction depth and (b) the gradient of concentration for $x = x_i$ at the end of each step and (c) the square concentration at the end of step 2 Note: $900^{\circ}C \rightarrow D = 1.45 \times 10^{-15}~cm^2/s$ $1100^{\circ}C \rightarrow D = 2.96 \times 10^{-13}~cm^2/s$

Note: solving step 2 has Bonus mark (not required)