Verified double-hashing hash map

Martin Vassor

DSLab, EPFL

January 12, 2017

Outline

Introduction

Implementation

Modifications
Performance evaluation
Performance results

Verification

What to prove? Proof steps

Conclusion

Hash Table software Remaining work Side effects

Outline

Introduction

Implementation

Modifications
Performance evaluation

Verification

What to prove? Proof steps

Conclusion

Hash Table software Remaining work Side effects

Naive hash table

Naive hash table

Naive hash table

Double hashing

Double hashing

Double hashing

Provided implementation

- ▶ A naive implementation
- ▶ findEmpty, findKey perform the loops.

Provided verification

Example: successful search of key3

Provided verification

Example: unsuccessful search of key4

Provided verification

Part before and after " $\forall i.not_my_key(i) = true$ " provided.

For insertion:

- ► Same idea
- ► Property: findEmpty

Outline

Introduction

Implementation

Modifications
Performance evaluation
Performance results

Verification

What to prove? Proof steps

Conclusion

Hash Table software Remaining work Side effects

Modifications

▶ 64 bits hashes.

offset	entry
--------	-------

Except type changes, only for loops modified.

Performance evaluation

- ▶ Build a benchmark tool.
- ► Size, number of accesses, load, read/write ratio, etc...
- ▶ Converter to C file.
- ▶ First warms-up, then measures when target load is reached.

test_load.sh length read_ratio load1 [load2...]

Evaluation cases

- ▶ Worst case: searching a non existing element.
- 1. Allow searching non existing element.
- 2. Search only existing element.

Result

Result – only existing

Outline

Introduction

Implementation

Modifications
Performance evaluation

Verification

What to prove? Proof steps

Conclusion

Hash Table software Remaining work Side effects

What to prove?

Goal: show that increment by offset covers all the map.

- ▶ Not always true (chinese remainder theorem).
- ▶ Requires: offset and capacity coprime (gcd = 1) (necessary and sufficient).

What to prove?

Insert key4: $h_1(\text{key4}) = 5$, $h_2(\text{key4}) = 2$: search empty?

Proof steps

If the number of iteration is less than the capacity:

- ▶ Build and updated a list<option<nat>> with the same pattern.
- ► Each cell is:
 - \triangleright some(n) if accessed after n iterations.
 - ▶ none if not accessed.
- ▶ Apply Chinese Remainder Theorem.
- ▶ Deduce that only none are updated to some.
- ▶ Hence, the number of some is the number of iteration.
- ▶ For capacity iteration, all cells are some.

Proof steps

If some(n), then prop(start+offset*n % capa).

_	
-2, iter=7)	none
	some(4)
offset=2	some(1)
stripe(capacity=7, of	some(5)
	some(2)
	none
	some(3)
Ω	

prop(2) holds
(0) 1 11
prop(3) holds
prop(4) holds
prop(4) noids
prop(5) holds
prop (e) notae
prop(7) holds

Proof steps

_	
iter=7)	some(7)
•	some(4)
7, offset=2	some(1)
	some(5)
city=	some(2)
tripe(capacity=7	some(6)
	some(3)

```
\Rightarrow \mathtt{count\_some} = \mathtt{iter} = 7
```

 \Rightarrow All cells are some.

Chinese Remainder Theorem

- ▶ Requires to compute *gcd* and prove its properties.
- ▶ Almost proved.
- ▶ Last assumption: Coprime factorization lemma $(a \perp c \land b \perp c \Rightarrow (a \cdot b) \perp c)$.

Outline

Introduction

Implementation

Modifications
Performance evaluation
Performance results

Verification

What to prove?
Proof steps

Conclusion

Hash Table software Remaining work Side effects

Hash-Table software

- ▶ Efficient (when key is present).
- ► Formally verified.
- ▶ Requires capacity and offset coprime.

Remaining work

- ▶ Coprime factorization lemma: $a \bot c \land b \bot c \Rightarrow (a \cdot b) \bot c$
- ► Logical operations (shift and bitwise_and)
- ▶ Some typing errors

Side effects

- ▶ 6 commits in Verifast tree (long long support).
- ▶ 9 issues on Verifast.
- ▶ A random access sequence generator & benchmark.

Q&A