Softcores

Sistemas embarcados II

Prof. Renan Augusto Starke

Instituto Federal de Santa Catarina — IFSC Campus Florianópolis renan.starke@ifsc.edu.br

20 de julho de 2016

Ministério da Educação Secretaria de Educação Profissional e Tecnológica INSTITUTO FEDERAL DE SANTA CATARINA

Introdução

Um sistema embarcado poder ser modelado, implementado e sintetizado através de uma linguagem de descrição de hardware

No nosso caso: VHDL

- Construir um sistema embarcado com FPGA envolve:
 - análise dos requisitos do sistema
 - projeto de hardware
 - projeto de software

Sistema com processador/microcontrolador

Sistema básico:

- Processador
- Memória
- Entrada e saída
 - Pinos de propósito geral
 - Comunicação
 - **–** ...
- Temporização
- Programação e depuração

Sistema com Dispositivo Lógico Programável (PLD)

Sistema básico:

- Componentes usuário
- Componentes licenciados (IPs)
- Máquinas de estado
- Entrada e saída
 - Pinos de propósito geral
 - Comunicação
 - ..
- Temporização
- Síntese e simulação

Sistema com PLD e software

Sistema básico:

- ► Processador (Softcore IP)
 - Programação e depuração
- ► PLD
 - Componentes usuário
 - Componentes licenciados (IPs)
 - Temporização
 - Síntese e simulação
- Entrada e saída

Análise de requisitos

Questões:

- Qual é o desempeno computacional que a aplicação requer?
- Quanto de banda ou throughput a aplicação requer?
- Quais são as interfaces necessárias?
- ► A aplicação necessita de software multithreaded?

Baseando-se nestas questões:

- Que tipo de processador será necessário?
- Quais componentes e de que tipo.
- É necessário o uso de sistema operacional de tempo real?
- Lógica de aceleração para:
 - DMA?
 - Instruções especiais de DSP?

Fluxo de desenvolvimento

Prof. Renan (IFSC)

- Componentes necessários para o sistema:
 - Núcleo
 - Memória interna de dados.
 - Memória interna de instruções
 - Entrada e saída
- Outros componentes de hardware:
 - Conexão com a entrada e saída: botões, LEDS, ...
 - Hardware de comunicação (UART, Ethernet, ...)
 - Filtros de DSP
 - Multiplicadores
 - Unidades MAC
 - **–** ...

Exemplo: RISCV

RISCV

RISC-V é uma nova arquitetura de conjunto de instruções (ISA) que foi originalmente projetada para dar suporte à comunidade científica em pesquisas voltadas a arquiteturas de computadores e também para ensino.

31	25	24 20	19	15 14 12	11 7	6	0
funct	7	rs2	rs1	funct3	rd	opcode	R-type
				·			
imm[11:0]			rs1	funct3	rd	opcode	I-type
imm[11]	.:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
imm[31:12]					rd	opcode	U-type

Instruções

- Clonar https://github.com/xtarke/riscv-multicycle.git
- Projeto de hardware:
 - Abrir o projeto no diretório risv-multicycle/sint/de10_lite
 - Sintetizar o hardware e gravar configuração na FPGA
- Software:
 - Eclipse File new Project C/C++ MakeFile with Existing Code
 - Browse Selecionar dir riscv-multicycle/tests/ Toolchain (none)
 - Clicar c/ direito sobre o projeto Show in Local Terminal here
 - Digitar Make
- Gravar Software:
 - Quartus: Tools In System memory content editor
 - Edit Import file from file
 - Selecionar arquivo quartus.hex no dir riscv-multicycle/tests/

Integração Hardware e Software

► Faça a integração do conversor decimal para 7-segmentos

Desenvolva um contador de 16-bits em software mostrando os valores nos displays de 7-segmentos.