Mục lục

1	Chuan bị				
	1.1	Kiến thức giải tích	1		
	1.2	Sai số làm tròn và số học máy tính	3		
	1.3	Thuật toán và sự hội tụ	3		
	1.4	MATLAB: ngôn ngữ tính toán và lập trình	3		
	1.5	MATLAB: giải tích và đại số	5		
2	Giải	phương trình một biến	19		
	2.1	Phương pháp chia đôi	19		
	2.2	Phương pháp Newton và mở rộng	22		
	2.3	Lặp điểm bất động	27		
	2.4	Phân tích sai số của các phương pháp lặp	31		
	2.5	Tăng tốc độ hội tụ	31		
	2.6	Nghiệm của đa thức và phương pháp Müller	32		
3	Nội suy và xấp xỉ bằng đa thức				
	3.1	Nội suy tổng quát	33		
	3.2	Đa thức nội suy	34		
	3.3	Xấp xỉ số liệu và phương pháp Neville	38		
	3.4	Sai phân chia	39		
	3.5	Nội suy Hermite	42		
	3.6	Nội suy spline bậc ba	42		
	3.7	Đường cong tham số	42		
4	Đạo hàm và tích phân bằng số				
	4.1	Đạo hàm bằng số	44		
	4.2	Ngoại suy Richardson	48		
	4.3	Tích phân bằng số	48		
	4.4	Tích phân Romberg	54		
	4.5	Phương pháp cầu phương thích ứng	54		

ii Mục lục

	4.6	Cầu phương Gauss	54		
	4.7	Tích phân bội	54		
	4.8	Tích phân suy rộng	54		
5	Bài	toán giá trị ban đầu của phương trình vi phân thường	55		
	5.1	Lý thuyết cơ bản về bài toán giá trị ban đầu	56		
	5.2	Phương pháp Picard	57		
	5.3	Phương pháp chuỗi Taylor	60		
	5.4	Phương pháp Euler	63		
	5.5	Phương pháp Taylor bậc cao	66		
	5.6	Phương pháp Runge-Kutta	66		
	5.7	Điều khiển sai số và phương pháp Runge-Kutta-Fehlberg	70		
	5.8	Phương pháp đa bước	70		
	5.9	Phương pháp đa bước với bước nhảy biến thiên	70		
	5.10	Phương pháp ngoại suy	70		
	5.11	Phương trình cấp cao và hệ phương trình vi phân	70		
	5.12	! Sự ổn định	70		
	5.13	Phương trình vi phân cứng	70		
6	Phương pháp trực tiếp giải hệ phương trình tuyến tính				
	6.1	Hệ phương trình tuyến tính	71		
	6.2	Chiến thuật chốt	72		
	6.3	Đại số tuyến tính và ma trận nghịch đảo	72		
	6.4	Định thức của ma trận	72		
	6.5	Phân tích ma trận	72		
	6.6	Các dạng ma trận đặc biệt	72		
7	Kỹ t	huật lặp trong đại số tuyến tính	73		
	7.1	Chuẩn của véctơ và ma trận	73		
	7.2	Giá trị riêng và véctơ riêng	75		
	7.3	Lặp điểm bất động	75		
	7.4	Kỹ thuật lặp Jacobi và Gauss–Seidel	79		
	7.5	Ma trận nghịch đảo	81		
	7.6	Kỹ thuật giảm dư giải hệ tuyến tính	82		
	7.7	Giới hạn sai số và tinh chỉnh phép lặp	82		
	7.8	Phương pháp gradient liên hợp	82		
8	Lý t	huyết xấp xỉ	83		
	8.1	Xấp xỉ bình phương nhỏ nhất	83		
	8.2	Đa thức trực giao và xấp xỉ bình phương nhỏ nhất	88		

Mục lục iii

	8.3	Đa thức Chebyshev và [Economization] chuối lũy thừa	88
	8.4	Xấp xỉ hàm hữu tỷ	88
	8.5	Xấp xỉ đa thức lượng giác	88
	8.6	Biến đổi Fourier nhanh	88
9	Xấp	xỉ giá trị riêng	89
	9.1	Đại số tuyến tính và giá trị riêng	89
	9.2	Ma trận trực giao và biến đổi đồng dạng	89
	9.3	Phương pháp lũy thừa	89
	9.4	Phương pháp Householder	89
	9.5	Thuật toán QR	89
	9.6	Phân tích giá trị kỳ dị	89
10	Nghi	ệm số của hệ phương trình phi tuyến	90
	10.1	Điểm bất động của hàm nhiều biến	90
	10.2	Phương pháp Newton	91
	10.3	Phương pháp tựa Newton	91
	10.4	Phương pháp độ dốc nhất	91
	10.5	Đồng luân và các phương pháp mở rộng	91
11	Bài t	oán giá trị biên của phương trình vi phân thường	92
	11.1	Phương pháp bắn tuyến tính	92
	11.2	Phương pháp bắn cho bài toán phi tuyến	92
	11.3	Phương pháp sai phân hữu hạn cho bài toán tuyến tính	92
	11.4	Phương pháp sai phân hữu hạn cho bài toán phi tuyến	93
	11.5	Phương pháp Rayleigh-Ritz	93
12	Nghi	ệm số của phương trình đạo hàm riêng	94
	12.1	Phương trình đạo hàm riêng Elliptic	94
	12.2	Phương trình đạo hàm riêng Parabolic	95
	12.3	Phương trình đạo hàm riêng Hyperbolic	95
	12 /	Giới thiệu về phương pháp phần tử hữu hạn	۵F

Chương 8

Lý thuyết xấp xỉ

8.1 Xấp xỉ bình phương nhỏ nhất

8.1.1 Bài toán tổng quát

Xét $(V, <\cdot, \cdot>)$ là không gian Euclide có tích vô hướng < f, g> và chuẩn $\|f\|=\sqrt{< f, f>}$. Trong V cho không gian con W có cơ sở $\{f_1, f_2, \dots, f_n\}$ và $f\notin W$. Tîm $P\in W$ sao cho $\|f-P\|=\min_{Q\in W}\|f-Q\|$.

P gọi là xấp xỉ tốt nhất của f bởi không gian W, giá trị nhỏ nhất ở trên gọi là sai số của xấp xỉ.

Ta có

$$P=\sum_{i=1}^{n}c_{i}f_{i}.$$

Xét

$$G(c) = ||f - P||^{2} = \langle f - \sum_{i=1}^{n} c_{i} f_{i}, f - \sum_{i=1}^{n} c_{i} f_{i} \rangle$$

$$= ||f||^{2} - 2 \sum_{i=1}^{n} \langle f, f_{i} \rangle c_{i} + \sum_{i=1}^{n} \sum_{i=1}^{n} \langle f_{i}, f_{j} \rangle c_{i} c_{j}$$

Đặt

$$a_{ii} = \langle f_i, f_i \rangle, \ b_i = \langle f, f_i \rangle$$
 (8.1)

ta có $a_{ij} = a_{ji}$ và

$$\frac{\partial G}{\partial c_i} = -2b_i + 2a_{ii}c_i + 2\sum_{j \neq i} a_{ij}c_j = -2b_i + 2\sum_{j=1}^n a_{ij}c_j.$$

G(c) đạt cực tiểu thì c là điểm dừng

$$\frac{\partial G}{\partial c_i} = 0, \ \forall i = \overline{1, n} \Rightarrow \sum_{j=1}^n a_{ij}c_j = b_i \ \forall i = \overline{1, n}.$$

Đặt
$$A = (a_{ij})_n$$
, $b = (b_1, b_2, ..., b_n)$ thì
$$Ac = b \tag{8.2}$$

Hệ $\{f_1, f_2, ..., f_n\}$ độc lập tuyến tính nên A là ma trận đối xứng xác định dương. Khi đó det $A \neq 0$, suy ra hệ trên có nghiệm duy nhất.

Hơn nữa, $\frac{\partial^2 G}{\partial c_i \partial c_j} = 2a_{ij}$, $\forall i, j = \overline{1, n}$, nên ma trận $\left(\frac{\partial^2 G}{\partial c_i \partial c_j}\right)_{i,j=\overline{1,n}} = 2A$ xác định dương. Vậy nghiệm duy nhất trên là cực tiểu của G(c).

8.1.2 Xấp xỉ hàm rời rạc

V là không gian hàm xác định tại các điểm x_1, x_2, \dots, x_N có tích vô hướng và chuẩn:

$$\langle f, g \rangle = \sum_{k=1}^{N} f(x_k) g(x_k), ||f|| = \sqrt{\sum_{k=1}^{N} f^2(x_k)}.$$

Khi đó

$$a_{ij} = \sum_{k=1}^{N} f_i(x_k) f_j(x_k), \ b_i = \sum_{k=1}^{N} y_k f_i(x_k), \ i, j = \overline{1, n}$$
 (8.3)

và sai số
$$||f - P|| = \sqrt{\sum_{k=1}^{N} [y_k - P(x_k)]^2}$$
.

Ví dụ 8.1. Tìm xấp xỉ bình phương nhỏ nhất của hàm số y = f(x) có giá trị trong bảng

bởi không gian hàm có cơ sở $\{1, x, \ln x\}$ và đánh giá sai số của xấp xỉ.

Giải. Lập bảng tính

1
 1
 1
 1
 1

$$x$$
 1
 1.3
 1.7
 2

 $\ln x$
 0
 0.262364
 0.530628
 0.693147

 P
 3.51173
 3.96557
 4.64125
 5.18146

 $f - P$
 -0.01173
 0.03443
 -0.04125
 0.01854

Gọi xấp xỉ cần tìm $P(x) = a \cdot 1 + bx + c \ln x$. Ta có hệ

$$\begin{bmatrix} 4 & 6 & 1.48614 \\ 6 & 9.58 & 2.62944 \\ 1.48614 & 2.62944 & 0.830854 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 17.3 \\ 26.92 \\ \hline 7.09471 \end{bmatrix} \Rightarrow \begin{cases} a = 1.24243 \\ b = 2.2693 \\ c = -0.864993 \end{cases}$$

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

trong đó, ta tính chi tiết vài giá trị:

```
a_{23} = \langle x, \ln x \rangle = 1 \cdot 0 + 1.3 \cdot 0.262364 + 1.7 \cdot 0.530628 + 2 \cdot 0.693147 = 2.62944

b_3 = \langle f, \ln x \rangle = 3.5 \cdot 0 + 4 \cdot 0.262364 + 4.6 \cdot 0.530628 + 5.2 \cdot 0.693147

= 7.09471.
```

Ta được P(x) = 1.24243 + 2.2693x - 0.864993 ln x. Quay lại bảng trên để hoàn tất hai hàng cuối.

Sai số của xấp xỉ

$$\sqrt{(-0.01173)^2 + 0.03443^2 + (-0.04125)^2 + 0.01854^2} = 0.0580325.$$

```
1 X = [1, 1.3, 1.7, 2]
Y = [3.5, 4, 4.6, 5.2]
3 syms x
4 cs = [1, x, log(x)]
V = zeros(3, 4)
6 for i = 1:3
      for k = 1:4
7
           V(i, k) = subs(cs(i), X(k));
8
9
      end
10 end
  V
11
12 A = zeros(3, 3)
13 b = zeros(3, 1)
14 for i = 1:3
      for j = 1:3
15
           A(i, j) = dot(V(i, :), V(j, :));
16
17
      end
      b(i) = dot(V(i, :), Y);
18
19 end
20
21
  b
22 hs = linsolve(A, b)
P = vpa(dot(hs, cs), 6)
Yp = vpa(subs(P, X), 6)
d = vpa(Y - Yp, 6)
e = vpa(norm(d), 6)
```

Ví dụ 8.2. Tìm xấp xỉ bình phương nhỏ nhất của hàm số z = f(x, y) có giá trị trong bảng

bởi đa thức bậc nhất (hai biến) và đánh giá sai số của xấp xỉ.

Giải. $P(x, y) = a + bx + cy (cơ sở {1, x, y}).$

$$\begin{bmatrix} 5 & -2.1 & -4.6 \\ -2.1 & 38.69 & 17.98 \\ -4.6 & 17.98 & 20.92 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.1 \\ 28.29 \\ -26.44 \end{bmatrix} \Rightarrow \begin{cases} a = -2.54722 \\ b = 2.39859 \\ c = -3.88546 \end{cases}$$

Sai số $||f - P|| = \sqrt{0.0583935^2 + 0.0043924^2 + \dots + 0.0737505^2} = 0.130596.$

```
X = [-0.7, 1.7, -4.9, 3.1, -1.3]
Y = [-2.9, -1.1, -2.9, 1.5, 0.8]
Z = [7.1, 5.8, -3.1, -1, -8.7]
4 syms x y
5 cs = [1, x, y]
V = zeros(3, 5)
7 for i = 1:3
   for k = 1:5
          V(i, k) = subs(cs(i), [x, y], [X(k), Y(k)]);
10
     end
11 end
12 V
13 A = zeros(3, 3)
b = zeros(3, 1)
15 for i = 1:3
for j = 1:3
          A(i, j) = dot(V(i, :), V(j, :));
17
18
      b(i) = dot(V(i, :), Z);
19
20 end
```

```
21 A
22 b

23 hs = linsolve(A, b)
24 P = vpa(dot(hs, cs), 6)

25 Zp = zeros(1, 5)
26 for k = 1:5
27 Zp(k) = vpa(subs(P, [x, y], [X(k), Y(k)]), 6);

end
29 Zp

30 d = vpa(Z - Zp, 6)
31 e = vpa(norm(d), 6)
```

8.1.3 Xấp xỉ hàm khả tích

Cho $V = \{f \mid \int_{a}^{b} f^{2}(x) dx < \infty\}$. Trên V xét tích vô hướng và chuẩn:

$$\langle f, g \rangle = \int_{a}^{b} f(x) g(x) dx, ||f|| = \sqrt{\int_{a}^{b} f^{2}(x) dx}$$
 (8.4)

Ví dụ 8.3. Tìm xấp xỉ bình phương nhỏ nhất của $f(x) = \sin x$ trên [0, 1] bởi không gian hàm có cơ sở $\{1, x, e^x\}$. Đánh giá sai số của xấp xỉ.

Giải. Gọi xấp xỉ cần tìm $P(x) = a \cdot 1 + bx + ce^x$. Ta có hệ:

$$\begin{bmatrix} 1 & 0.5 & 1.71828 \\ 0.5 & 0.333333 & \boxed{1} \\ 1.71828 & 1 & 3.19453 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.459698 \\ 0.301169 \\ \boxed{0.909331} \end{bmatrix} \Rightarrow \begin{cases} a = 0.278208 \\ b = 1.33291 \\ c = -0.282237 \end{cases}$$

trong đó, chẳng hạn

$$a_{23} = \langle x, e^x \rangle = \int_0^1 x e^x dx = 1$$

 $b_3 = \langle \sin x, e^x \rangle = \int_0^1 e^x \sin x dx = 0.909331.$

$$\Rightarrow P(x) = 0.278208 \cdot 1 + 1.33291x - 0.282237e^{x}.$$
Sai số $||f - P|| = \sqrt{\int_{0}^{1} [f(x) - P(x)]^{2} dx} = 0.00125824.$

thinhnd@huce.edu.vn

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

```
syms x
f = sin(x)
cs = [1 + 0*x, x, exp(x)] % biểu thức xuất hiện biến thì mới
lấy được tích phân

4 A = vpa(int(cs' * cs, 0, 1), 6)
b = vpa(int(f * cs, 0, 1), 6)
6 hs = vpa(linsolve(A, b'), 6)
7 P = vpa(dot(hs, cs), 6)
vpa(sqrt(int((f - P)^2, 0, 1)), 6)
8.2 Đa thức trực giao và xấp xỉ bình phương nhỏ nhất
```

- 8.3 Đa thức Chebyshev và [Economization] chuỗi lũy thừa
- 8.4 Xấp xỉ hàm hữu tỷ
- 8.5 Xấp xỉ đa thức lượng giác
- 8.6 Biến đổi Fourier nhanh

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Richard L. Burden, Douglas J. Faires **and** Annette M. Burden. *Numerical Analysis*. phiên bản 10. Cengage Learning, 2016. 918 trang.
- [3] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [4] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.

Tài liệu tham khảo