CPE 186 Computer Hardware Design

EMC – Cabling and Shielding

Dr. Pang

Capacitive Coupling Between Two Conductors

FIGURE. Capacitive coupling between two conductors.

An Ideal Shielded Conductor

$$V_S = \left(\frac{C_{1S}}{C_{1S} + C_{SG}}\right) V_1.$$
$$V_N = V_S.$$

FIGURE. Capacitive coupling with shield placed around receptor conductor.

If, however, the shield is grounded, the voltage VS = 0, so VN = VS = 0.

FIGURE. Capacitive coupling when center conductor extends beyond shield; shield grounded at one point.

Even if the shield is grounded, there is now a noise voltage coupled to conductor 2. Its magnitude is expressed as follows:

$$V_N = \frac{C_{12}}{C_{12} + C_{2G} + C_{2S}} V_1.$$

Good Electric Field Shielding

- (1) Minimize the length of the center conductor that extends beyond the shield;
- (2) Provide a good ground on the shield;
- (3) A single ground connection makes a good shield ground, provided the cable is not longer than one twentieth of a wavelength;
- (4) On longer cables, multiple grounds may be necessary.

REDUCING CAPACITANCE-COUPLED NOISE

- Reduce Level of High dV/dt Noise Sources
- Use Proper Grounding Schemes for Cable Shields
- Reduce Stray Capacitance
 - Equalize Input Lead Lengths
 - Keep Traces Short
 - Use Signal-Ground Signal-Routing Schemes
- Use Grounded Conductive Faraday Shields to Protect Against Electric Fields

Magnetic Coupling Between Two Circuits

FIGURE. Magnetic coupling between two circuits.

FIGURE. Magnetic coupling when a shield is placed around the receptor conductor.

Equivalent Circuit of Shielded Conductor

Figure . Equivalent circuit of shielded conductor.

FIGURE. Noise voltage in center conductor of coaxial cable because of shield current.

$$V_{N} = \left(\frac{j\omega}{j\omega + R_{S}/L_{S}}\right)V_{S}$$

Cut-off frequency:

$$\omega_c = \frac{R_S}{L_S} \qquad f_c = \frac{R_S}{2\pi L_S}$$

Measured Values of Shield Cutoff Frequency

TABLE. Measured Values of Sheild Cutoff Frequency f_c .

Cable	Impedance (Ω)	Cutoff Frequency (kHz)	Five Times Cutoff Frequency (kHz)	Remarks
Coaxial cable				
RG-6A	75	0.6	3.0	Double shielded
RG-213	50	0.7	3.5	
RG-214	50	0.7	3.5	Double shielded
RG-62A	93	1.5	7.5	
RG-59C	75	1.6	8.0	
RG-58C	50	2.0	10.0	
Shielded twisted pair				
754E	125	0.8	4.0	Double shielded
24 Ga.	_	2.2	11.0	
22 Ga. ^a	_	7.0	35.0	Aluminum-foil shield
Shielded single				
24 Ga.	_	4.0	20.0	

Magnetic Flux

When a current I flows through a conductor, it produces a magnetic flux Φ , which is proportional to the current. The constant of proportionality is the inductance L; hence, we can write

$$\phi_T = LI$$
,

where Φ_T is the total magnetic flux and I is the current producing the flux. self-inductance of a conductor :

$$L = \frac{\phi_T}{I}$$
.

The inductance depends on the geometry of the circuit and the magnetic properties of the media containing the field.

Mutual Inductance

When current flow in one circuit produces a flux in a second circuit, there is a mutual inductance M_{12} between circuits 1 and 2 defined as

$$M_{12} = \frac{\phi_{12}}{I_1}.$$

The symbol ϕ_{12} represents the flux in circuit 2 because of the current I_1 in circuit 1.

The magnetic Flux Density B

the magnetic flux density B at a distance r from a long current-carrying conductor as

$$B = \frac{\mu I}{2\pi r},$$

 μ the permeability of the medium (material)

Calculate the mutual inductance between the two nested coplaner loops:

The magnetic flux produced by the current in conductor 1 crossing the loop between conductors 3 and 4 is

$$\phi_{12} = \int_a^b \frac{\mu I_1}{2\pi r} dr = \frac{\mu I_1}{2\pi} \ln\left(\frac{b}{a}\right).$$

Mutual Inductance

Dividing ϕ_{12} by I_1 and substituting $4\pi \times 10^{-7}$ H/m for μ , we obtain as the mutual inductance in H/m

$$M = 4 \times 10^{-7} \ln \left(\frac{b}{a}\right)$$

Example:

f = 10MHz $I_1 = 100\mu A$

 $a = 10 \mu m$ $b = 3000 \mu m$

 $V_N=14mV$

REDUCING MAGNETICALLY-COUPLED NOISE

- Careful Routing of Wiring
- Use Conductive Screens for HF Magnetic Shields
- Use High Permeability Shields for LF Magnetic Fields (mu-Metal)
- Reduce Loop Area of Receiver
 - Twisted Pair Wiring
 - Physical Wire Placement
 - Orientation of Circuit to Interference
- Reduce Noise Sources
 - Twisted Pair Wiring
 - Driven Shields