Chapitre 0

Pourcentages

I. Proportions

On considère une population E d'individus.

On appelle effectif de la population E, le nombre d'individus de E, on le note $n_{\rm E}$.

Une sous-population A de E est une partie de la population de E : on a donc $n_A \leq n_E$.

Définition

La proportion (ou fréquence) d'une sous-population A dans la population E (ou proportion des individus de A parmi ceux de E) est le nombre noté p donné par :

$$p = \frac{n_{\rm A}}{n_{\rm E}}$$

où E est dite la population de référence.

Remarques:

- Une proportion est (en général) un nombre compris entre 0 et 1.
- Une proportion est souvent exprimée en pourcentage. Le pourcentage est la fraction de dénominateur 100 et n'est qu'une des écritures possibles d'un nombre décimal.

II. Proportion d'une proportion

Propriété

On considère 3 populations A, E et F où A est une sous-population de E et E une sous-population de F. Si p est la proportion de E dans F et p' celle de A dans E, alors la proportion P de A dans F est :

$$P = p \times p'$$

Représentation:

III. Taux d'évolution et coefficient multiplicateur

On considère deux valeurs numériques réelles strictement positives V_I et V_F. La valeur V_I est la valeur initiale et V_F la valeur finale.

Evolution et pourcentages

Définition

On appelle ${\bf taux}$ d'évolution de V_I à $V_F,$ le nombre T défini par :

$$T = \frac{V_F - V_I}{V_I}$$

Remarques:

- Un taux d'évolution n'a pas d'unité et peut être donné sous forme de fraction, sous forme décimale ou sous forme de pourcentage;
- Un taux d'évolution positif est un taux d'augmentation et un taux d'évolution négatif est un taux de diminution ou de baisse.
- Un taux d'évolution s'exprime toujours par rapport à la valeur initiale.

2. Coefficient multiplicateur

Définition

On appelle coefficient multiplicateur de V_I à V_F le nombre CM tel que : $V_I \times CM = V_F$.

$$Ainsi: CM = \frac{V_F}{V_I}$$

Propriété

Soit T le taux d'évolution entre V_I et V_F . Ainsi : CM = 1 + T

Remarques:

- Le coefficient multiplicateur est strictement positif.
- Un coefficient multiplicateur supérieur à 1 correspond à une hausse.
- Un coefficient multiplicateur inférieur à 1 correspond à une baisse.

Propriété

Soit CM le coefficient multiplicateur tel que $V_I \times CM = V_F$. Le taux d'évolution entre les valeurs V_I et V_F est : $T = \frac{V_F - V_I}{V_I}$

Indice 3.

Définition

Soit V_1 et V_2 la valeur initiale et la valeur finale d'une grandeur.

On définit l'indice base 100 de cette grandeur en associant :

- $$\begin{split} \bullet & \text{ à V_1 l'indice $I_1=100$}\,; \\ \bullet & \text{ à V_2 l'indice I_2 tel que } \frac{I_2}{I_1} = \frac{V_2}{V_1} = CM. \end{split}$$

Valeurs	V_1	V_2
Indices	$I_1 = 100$	I_2

Remarques:

- Le taux d'évolution entre les indices I₁ et I₂ est le même que celui entre les valeurs V₁ et V₂;
- Le tableau précédent est un tableau de proportionnalité.

IV. Evolutions successives et évolution réciproque

1. Succession de deux évolutions

Définition

Soit T_1 le taux d'évolution entre deux valeurs V_0 à V_1 et T_2 le taux d'évolution entre les valeurs V_1 à V_2 L'évolution globale de V_0 à V_2 , noté T_G , a pour coefficient multiplicateur CM_G avec :

$$\mathrm{CM}_{\mathrm{G}} = \mathrm{CM}_1 \times \mathrm{CM}_2$$

2. Evolution réciproque

Définition

Soit T le taux d'évolution entre deux valeurs V_I à V_F et CM son coefficient multiplicateur associé. L'évolution T' de V_F à V_I est appelé le taux d'évolution réciproque de T dont le coefficient multiplicateur CM' associé est :

$$CM' = \frac{1}{CM'}$$

Remarques:

- Deux évolutions sont réciproques lorsque le coefficient multiplicateur global de ces évolutions vaut 1;
- Le taux d'évolution réciproque de V_F à V_I vérifie l'égalité : $1+T'=\frac{1}{1+T}$;
- \bullet Une hausse de T % n'est pas compensée par une baisse de T %.