A KLEIMAN CRITERION FOR STACK QUOTIENTS

PATRICK LEI

ABSTRACT. This is a talk about 2211.09218 in the preprint seminar at Columbia University.

1. Introduction

1.1. **Classical Kleiman criterion.** The Kleiman criterion determines when a divisor on a projective variety X is ample in terms of its intersections with curves in X.

Theorem 1.1 (Kleiman). Let X be a projective variety over \mathbb{C} . Then let NE(X) be the cone spanned by effective curve classes in $N_1(X)_{\mathbb{R}}$. A divisor D on X is ample if and only if

$$D \cdot \gamma > 0$$

for all $\gamma \in \overline{NE(X)} \setminus 0$.

This theorem says that the ample cone is the interior of the the nef cone. If γ is represented by a smooth curve C, then $\mathcal{O}_X(D)$ is ample on C, so its higher cohomology vanishes, and then the Riemann-Roch formula reduces to

$$h^0(\mathcal{O}_C(D)) = \deg_C D - g(C) + 1 > 0,$$

and so D has positive degree on C.

1.2. **Variation of GIT.** Let G be a reductive group acting on X. If we want to construct a "quotient" of X by G as a scheme, we must fix a G-equivariant line bundle and consider the GIT quotient

$$X /\!\!/_L G := X^{ss}(L) /\!\!/ G$$
.

Clearly if L, L' have the same semistable locus, then the GIT quotient (schemes) are isomorphic, but the converse is not necessarily true.

Example 1.2. Consider the action of $(\mathbb{C}^{\times})^2$ on \mathbb{C}^3 by

$$t\cdot x=(t_1^2x_1,t_1t_2x_2,t_2x_3).$$

Now let $\theta_1 = (4,2)$ and $\theta_2 = (2,4)$. In the first case, the semistable locus has either $(x,y) \neq (0,0)$ or $(x,z) \neq (0,0)$, so we remove the y and z axes and obtain the GIT quotient stack

$$[\mathbb{C}^3 \mathop{/\!\!/}_{\theta_1} (\mathbb{C}^\times)^2] = [\mathbb{P}^1/\mu_2].$$

Date: February 1, 2023.

PATRICK LEI

2

In the second case, the semistable locus has either $(x, z) \neq (0, 0)$ or $(y, z) \neq (0, 0)$, so we remove the x and y axes and obtain the GIT quotient stack

$$[\mathbb{C}^3 /\!/_{\theta_2} (\mathbb{C}^{\times})^2] = \mathbb{P}(2,1).$$

Both stacks have coarse moduli space \mathbb{P}^1 , so the GIT quotient varieties $\mathbb{C}^3 /\!\!/ \mathfrak{g}_i (\mathbb{C}^\times)^2$ are isomorphic for i=1,2.

We will now establish some notation. Recall that there is an equivariant first Chern class c_1^G which sits inside the exact sequence

$$0 \to Pic_0(X) \to Pic^G(X) \xrightarrow{c_1^G} H^2_G(X, \mathbb{Z})$$

and denote $NS^G(X) := Pic^G(X)/Pic_0(X)$. Note that if L and L' determine the same class in $NS^G(X)$, then they have the same semistable locus, which can be seen using localization.

Denote the ample cone of G-linearized ample line bundles by $\operatorname{Amp}^G(X) \subset \operatorname{NS}^G(X)_{\mathbb{Q}}$ and then denote by $C^G(X)$ the cone containing G-linearized ample line bundles with $X^{\operatorname{ss}}(L)$ nonempty. We will call these classes G-*ample*. Now, for $L \in C^G(X)$, define

$$C(L) \coloneqq \left\{ L' \in C^G(X) \: | \: X^{ss}(L) \subset X^{ss}(L') \right\}$$

and its relative interior (due to Ressayre)

$$C^{\circ}(L) := \Big\{ L' \in C^{G}(X) \mid X^{ss}(L) = X^{ss}(L) \Big\}.$$

2. Quasimaps

Let $L \in Pic^{G}(X)$ be ample.

Definition 2.1. An L-stable quasimap from a smooth curve C to [X/G] is a morphism

$$f: C \rightarrow [X/G]$$

such that $f^{-1}([X^{ss}/L])$ is dense.

Given such a quasimap, for any G-equivariant line bundle N on X, we can consider the degree

$$\deg f^*([N/G]),$$

and the map

$$(N \mapsto \deg f^*([N/G])) \in \operatorname{Hom}(NS^G(X), \mathbb{Z})$$

is called the *degree* of f. We will call the cone generated by all $\beta \in \text{Hom}(NS^G(X), \mathbb{Z})$ that can be realized as degrees of L-stable quasimaps

$$NE(L) \subset Hom(NS^G(X), \mathbb{Q}).$$

Proposition 2.2. *If* $f: C \to [X/G]$ *is an* L-stable quasimap, then $deg f^*[L/G] \ge 0$.

Proof. We can assume that C is connected. Then there exists $c \in C$ mapping to $[X^{ss}(L)/G]$. We can then lift f(c) to $x \in X^{ss}(L)$. But now by definition of semistability, there exists some m > 0 and $s \in \Gamma(X, L^m)^G$ such that $s(x) \neq 0$. But now

$$f^*[L^m/G]$$

has a nonzero section $f^*(s)$, and thus it has non-negative degree on C.

Corollary 2.3. $C(L) \subset NE(L)^{\vee}$.

3. Main result

3.1. For projective X. Now we want to relate the weights $\mu^L(x,\lambda)$ to the degrees of quasimaps. Fix $\lambda\colon \mathbb{C}^\times\to G$ and a semistable point $x\in X^{ss}(L)$. Because X is proper, there exists a morphism $\overline{\lambda}\colon \mathbb{C}\to X$ extending $t\mapsto \lambda(t)x$. Now define the map

$$\widetilde{\varphi}_{\lambda,x}\colon \mathbb{C}^2\setminus\{0\}\to X \qquad (s,t)\mapsto \overline{\lambda}(t).$$

This is clearly \mathbb{C}^{\times} -equivariant (with respect to the scaling action on \mathbb{C}^2 and the action of λ on X), and so we obtain a stable quasimap

$$\phi_{\lambda,x} \colon \mathbb{P}^1 \to [X/G].$$

Lemma 3.1. For any $N \in Pic^G(X)$,

$$deg\, \varphi_{\lambda,x}^*(N) = \mu^N(x,\lambda).$$

Proof. Note that $\phi_{\lambda,x}$ factors through the projection onto the second factor $\pi_2 \colon \mathbb{C}^2 \setminus 0 \to \mathbb{C}$, and then we simply need to compute the weight of the action of \mathbb{C}^\times on N at the origin of $[\mathbb{C}/\mathbb{C}^\times]$.

Proposition 3.2. Suppose $L, N \in Amp^G(X)$ such that $N \notin C(L)$. Then there exists an L-stable quasimap $f \colon C \to [X/G]$ such that $\deg f^*[N/G] < 0$.

Proof. Consider the morphism
$$\phi_{\lambda,x}$$
 for some $x \in X^{ss}(L) \setminus X^{ss}(N)$.

Now we may state the main result, which is proven using the preceeding discussion.

Theorem 3.3. Let L be a G-ample line bundle on X. Then

$$C^{\circ}(L) = relint(NE(L)^{\vee}) \cap Amp^{G}(X).$$

3.2. **Quotients of vector spaces.** We can extend these results to quotients of vector spaces by embedding $V \subset \mathbb{P}(V \oplus \mathbb{C})$, where the extra copy of \mathbb{C} carries the trivial representation of G. Then for a character $\theta \in \text{Hom}(G, \mathbb{C}^{\times})$, denote its GIT equivalence class by $A(\theta)$. The main result in the context of quotients of vector spaces is stated below.

Proposition 3.4. Suppose that $(\operatorname{Sym}^{\bullet} V^{\vee})^{\mathsf{G}} = \mathbb{C}$. Then for any $\theta \in \operatorname{Hom}(\mathsf{G}, \mathbb{C}^{\times})$, $A(\theta) = \operatorname{relint}(\operatorname{NE}(\theta)^{\vee})$.