IUT de Bordeaux

Département Informatique

M2201 – Graphes et Langages

Éléments de Théorie des Langages – Partie 1

- Introduction générale : alphabets, mots et langages
- Langages rationnels

Alphabet, mot sur un alphabet (1)

Un alphabet est un ensemble (fini) A de symboles appelés lettres.

Un **mot m** sur un alphabet **A** est une séquence (finie) de lettres prises dans **A** : $\mathbf{m} = \mathbf{a_1} \dots \mathbf{a_k}$. Ce mot est de **longueur** (nombre de lettres) $\mathbf{k} : |\mathbf{m}| = \mathbf{k}$.

Il existe un unique mot de longueur nulle, le mot vide, noté ϵ .

On note A^* l'ensemble de tous les mots construits sur l'alphabet A. On note A^n l'ensemble des mots de A^* de longueur n.

En particulier, $A^0 = \{ \varepsilon \}$ (et donc $A^0 \neq \emptyset$!) et $A^1 = A$.

Alphabet, mot sur un alphabet (2)

Soit a une lettre de A et m un mot de A^* . Le **nombre** d'occurrences de la lettre a dans m, noté $|m|_a$, est le nombre de fois où la lettre a apparaît dans m.

Notons que $|\varepsilon| = 0$ et, pour toute lettre a, $|\varepsilon|_a = 0$.

Exemples.

$$A_1 = \{ 0, 1 \}$$
 $m_1 = 00101011, m_2 = 1101$
 $|m_1| = 8, |m_2|_1 = 3$

Alphabet, mot sur un alphabet (3)

```
A_2 = \{ a, b, c \}
        m_3 = baba, m_4 = bac
         |m_4| = 3, |m_3|_a = |m_3|_b = 2
A_3 = \{0, ..., 9, +, -, *, :, (, )\}
        m_5 = (12 + 4) * (71 - 14:5)
         |m_5| = 16
A_{4} = \{ \text{ si, alors, sinon, >, a, b, } \leftarrow, +, 0, 1, ... \}
        m_6 = si a > b + 1 alors a \leftarrow 0 sinon b \leftarrow 10
         |m_6| = 15
```

Concaténation de mots

Soient \mathbf{u} et \mathbf{v} deux mots de \mathbf{A}^* . La concaténation de \mathbf{u} et \mathbf{v} est le mot, noté $\mathbf{u}.\mathbf{v}$ ou plus simplement $\mathbf{u}\mathbf{v}$, obtenu en « collant » le mot \mathbf{v} à la suite de \mathbf{u} . Ainsi, $|\mathbf{u}\mathbf{v}| = |\mathbf{u}| + |\mathbf{v}|$ et, pour toute lettre \mathbf{a} , $|\mathbf{u}\mathbf{v}|_a = |\mathbf{u}|_a + |\mathbf{v}|_a$. On notera \mathbf{u}^n le mot $\mathbf{u}.\mathbf{u}.....\mathbf{u}$ (n fois), avec $\mathbf{u}^0 = \mathbf{\epsilon}$.

Exemple.
$$u = aba, v = ca, uv = abaca, u^2 = abaaba |u| = 3, |v| = 2, |uv| = 5, |u^2| = 6$$

Pour tous mots **u**, **v** et **w**, nous avons :

- \triangleright $\varepsilon u = u\varepsilon = u (\varepsilon \text{ est élément neutre})$
- u.vw = uv.w = uvw (associativité)
- > mais, en général, **uv** ≠ **vu** (non commutativité)

Préfixes, suffixes et facteurs

Soient **u** et **v** deux mots de **A***.

Le mot \mathbf{u} est un préfixe du mot \mathbf{v} s'il existe un mot \mathbf{w} de \mathbf{A}^* tel que $\mathbf{v} = \mathbf{u}\mathbf{w}$.

De façon similaire, le mot \mathbf{w} est un suffixe du mot \mathbf{v} s'il existe un mot u de \mathbf{A}^* tel que $\mathbf{v} = \mathbf{u}\mathbf{w}$.

Le mot \mathbf{u} est un facteur du mot \mathbf{v} s'il existe deux mots $\mathbf{w_1}$ et $\mathbf{w_2}$ de \mathbf{A}^* tels que $\mathbf{v} = \mathbf{w_1} \mathbf{u} \mathbf{w_2}$.

Exemples.

- aba est un préfixe (et un facteur) de abacabac : abacabac
- bac est un *suffixe* (et un *facteur*) de abacabac : abacabac
- > aca est un facteur de abacabac : abacabac

Quelques propriétés...

Proposition 1. Si u, v et w sont trois mots de A*, alors

Lemme de Levi. Si \mathbf{u} et \mathbf{v} sont tous deux préfixes de \mathbf{w} , alors \mathbf{u} est préfixe de \mathbf{v} , ou \mathbf{v} est préfixe de \mathbf{u} (les deux si $\mathbf{u} = \mathbf{v}$).

Théorème (de commutation). Si **u** et **v** commutent (c'est-à-dire sont tels que **uv = vu**), alors **u** et **v** sont deux *puissances* d'un même facteur :

uv = vu \Leftrightarrow il existe un mot f de A* et deux entiers p et q, p,q \geq 0,tels que u = f^p et v = f^q.

Preuve du théorème de commutation...

- \succ (\Leftarrow) Si $\mathbf{u} = \mathbf{f}^{\mathbf{p}}$ et $\mathbf{v} = \mathbf{f}^{\mathbf{q}}$, alors $\mathbf{u}\mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{f}^{\mathbf{p}+\mathbf{q}}$.
- \rightarrow (\Rightarrow) Par récurrence sur N = |u| + |v|:
 - si N = 0, alors $u = v = \varepsilon$ et donc $u = v = u^0$.
 - si $\mathbf{u} = \varepsilon$, alors $\mathbf{u} = \mathbf{v}^0$ et $\mathbf{v} = \mathbf{v}^1$ (similaire si $\mathbf{v} = \varepsilon$).
 - si |u| = |v| > 0, alors uv = vu entraîne u = v, par le Lemme de Levi, et donc u = v = u¹.
 - sinon, comme u et v sont préfixes de uv = vu, l'un est préfixe de l'autre (Lemme de Levi).
 - Supposons, sans perte de généralité, que v = uw.
 - On a donc $uv = vu \Rightarrow u(uw) = (uw)u$, c'est-à-dire uuw = uwu, et donc uw = wu (Proposition 1).
 - L'hypothèse de récurrence permet alors de conclure.

Langages (1)

Un langage L sur un alphabet A est un sous-ensemble, fini ou infini, de A*.

Par exemple, sur l'alphabet **A** = {**a**, **b**}, on peut définir les langages suivants :

- $L_1 = A^2 = \{ aa, ab, ba, bb \},$
- L₂ = { mots d'au plus quatre lettres ayant autant de a que de b }
 - = {ε, ab, ba, aabb, abab, abba, baab, baba, bbaa},
- L₃ = { mots ayant deux fois plus de a que de b }
 (ce langage est infini).

Langages (2)

Autres exemples:

 \rightarrow A = { a, ..., z } L = { mots de la langue française } > A = { mots de la langue française } L = { phrases correctes } > A = { ... } L = { programmes C++ syntaxiquement corrects } > etc.

Opérations sur les langages (1)

Soit **A** un alphabet. On définit les opérations suivantes sur les langages définis sur **A*** :

Union.

```
L_1 \cup L_2 = \{ m \in A^* / (m \in L_1) \text{ ou } (m \in L_2) \}
Exemple. \{ a, ba, ac \} \cup \{ b, c, ba, a \} = \{ a, b, c, ba, ac \}
```

Intersection.

```
L_1 \cap L_2 = \{ m \in A^* / (m \in L_1) \text{ et } (m \in L_2) \}
Exemple. \{ a, ba, ac \} \cap \{ b, c, ba, a \} = \{ a, ba \}
```

Produit (de concaténation).

```
L_1.L_2 = L_1L_2 = \{m \in A^*/m = m_1m_2, m_1 \in L_1 \text{ et } m_2 \in L_2\}

Exemple. \{a, b, ba\}. \{b, ab\} = \{ab, aab, bb, bab, baab\}
```

Opérations sur les langages (2)

Puissance.

```
L_0 = \{ \epsilon \}
                    L^n = \{ m \in A^* / m = m_1 m_2 ... m_n \}
       avec m_i \in L pour tout i, 1 \le i \le n, pour tout n \ge 1
Exemple. \{a, ba\}^2 = \{aa, aba, baa, baba\}
Étoile et "plus".
                         L^* = L^0 \cup L^1 \cup ... \cup L^n \cup ...
                        L^{+} = L^{1} \cup L^{2} \cup ... \cup L^{n} \cup ...
Exemples. \{a, bc\}^* = \{\varepsilon, a, bc, abc, bca, aaa, aabc...\}
                  { a, bc } + = { a, bc, abc, bca, aaa, aabc... }
\Rightarrow Observons que L<sup>+</sup> = L.L*
```