Математический анализ

Бабин Руслан, Пономарев Николай Курс Широкова Н. А.

осень 2021 г.

Оглавление

глава 1

Вещественные числа

1.1. Обозначения и нотация

В дальнейшем множество будем понимать как совокупность объектов, называемых его элементами. Приведенное высказывание не является определением, однако в дальнейшем при операциях с конкретными множествами, математический контекст рассматриваемые множества определяет.

Если a, b – некие элементы, A – множество, то запись $a \in A$ означает, что a принадлежит множеству A; запись $b \notin A$ означает, что элемент b не принадлежит множеству A.

Символ \forall означает высказывание «для всякого», далее всегда будет следовать текст конкретизирующий это высказывание.

Символ \exists означает высказывание «существует» и также будет задан математическим контекстом.

Запись $A\Rightarrow B$ или $B\Leftarrow A$ означает «из A следует B»; запись $A\Leftrightarrow B$ означает «A эквивалентно B».

Множества A и B называются совпадающими, что записывают формулой A=B, если $(\forall a\in A)\Rightarrow (a\in B)$ и $(\forall b\in B)\Rightarrow (b\in A)$; приведенная формальная запись означает, что A=B в том и только в том случае, когда они состоят из одних и тех же элементов.

Если множества A и B не совпадают, то пишут $A \neq B$.

Определяют также пустое множество, в котором нет элементов, которое будем обозначать символом \varnothing .

Запись $A \subset B$ читается «A содержится в B» и означает, что ($\forall a \in A$) $\Rightarrow (a \in B)$. Полагаем, что $\emptyset \subset A$ для любого множества A. Понятно,

ОТР

$$A = B \Leftrightarrow (A \subset B)$$
 и $(B \subset A)$.

В дальнейшем при рассмотрении сразу нескольких множеств в качестве синонима слова «множество» будем использовать слова «семейство», «класс», «совокупность».

1.2. Операции над множествами

Объединением $A \cup B$ множеств A и B будем называть множество:

$$(a \in A \cup B) \Leftrightarrow (a \in A)$$
 или $(a \in B)$.

Если множество A задается каким-то условием, обозначим его «условие», то для задания множества A будем использовать обозначение

$$A = \{a:$$
 «условие» на $a\}$

Пример.

$$A_1 \cup A_2 = \{a: a \in A_1$$
или $a \in A_2\}$

Если имеется произвольное непустое множество I и $\forall \alpha \in I$ имеется множество $A_{\alpha},$ то

$$\bigcup_{a\in I}A_{\alpha}=\{a:\exists\alpha\in I \text{ такое, что } a\in A_{\alpha}\}$$

Пересечением $A \cap B$ назовем множество

$$A\cap B=\{a:(a\in A)$$
 и $(a\in B)\}.$

Если элементов a, принадлежащих A и B, не существует, пишем

$$A \cap B = \emptyset$$

и называем A и B дизъюнктивными. Если есть непустое множество I, то, предполагая, что $\forall \alpha \in I \exists A_{\alpha}$, Полагаем

$$\bigcap_{\alpha \in I} A_\alpha = \{a : \forall \alpha \in I \quad a \in A_\alpha\}$$

B, называется множество

$$AB = \{a : a \in A, a \notin B\}$$

3

Теорема 1.1. Предположим, что имеется непустое множество I и для любого $\alpha \in I$ имеется множество A_{α} . Справедливы следующие формулы:

$$B \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cap A_{\alpha}) \tag{1.1}$$

$$B \cup \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \cup A_{\alpha}) \tag{1.2}$$

$$B \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (B \setminus A_{\alpha}) \tag{1.3}$$

$$B \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (B \cup A_{\alpha}) \tag{1.4}$$

Доказательство. Докажем $(\ref{eq:continuous})$, остальные соотношения доказываются аналогично. Обозначим левую часть $(\ref{eq:continuous})$ через C, а правую через D. Если $a \in C$, то $a \in B$ и $a \in \bigcup_{\alpha \in I} A_{\alpha}$, т.е. $\exists \alpha_0 \in I$, такое что $a \in A_{\alpha}$, тогда $a \in B \cap A_{\alpha_0}$, $a \in \bigcup_{\alpha \in I} (B \cap A_{\alpha})$, $a \in D$, то есть $C \subset D$. Если $b \in D$, то $\exists \alpha_1 \in I$ такое что $b \in B \cap A_{\alpha_1}$, то есть $b \in B$ и $b \in A_{\alpha_1}$, тогда $b \in \bigcup_{\alpha \in I} A_{\alpha}$, $b \in B \cap \bigcup_{\alpha \in I} A_{\alpha}$, т.е. $b \in C$ и $D \subset C$, т.е. C = D, что и требовалось доказать.

1.3. Определение вещественных чисел по Р.Дедекинду

Далее будем считать известными натуральные числа, множество которых всегда обозначается через \mathbb{N} , множество целых чисел \mathbb{Z} , множество рациональных чисел \mathbb{Q} . Считаем, что свойства арифметических действий с числами из \mathbb{Q} и свойства, связанные с упорядочиванием рациональных чисел по возрастанию, известны.

Определение 1.1. Пусть α - непустое множество, состоящее из рациональных чисел. Будем называть множество α сечением, если выполняются следующие условия:

- 1. $\alpha \neq \mathbb{Q}$
- 2. Если $p \in \alpha, q \in \alpha, q < p$, то $q \in \alpha$

3. В α нет наибольшего числа, т.е. не существует $p_0 \in \alpha$, такого что $\forall p \in \alpha$ выполнено $p \leq p_0$

Утверждение 1.1. Пусть α – сечение. Если $q \in \mathbb{Q}, p \in \alpha, q \notin \alpha$, то p < q.

Доказательство. Из условия следует, что $p \neq q$. Если бы выполнялось q < p, то по п.2 определения сечения $q \in \alpha$, чего нет. Следовательно p > q, чтд.

Термин 1.1. Пусть α – сечение. Числа из \mathbb{Q} , принадлежащие α , называются нижними числами сечения α , а числа из \mathbb{Q} , не принадлежащие α , называются верхними числами сечения α .

Сопоставим теперь $\forall z \in \mathbb{Q}$ сечение, которое будем обозначать z^* . Далее запись $A \stackrel{def}{=} B$ означает, что объект A определяется через объект B. Полагаем:

$$z^* = \{ p \in \mathbb{Q} : p < z \} \tag{1.5}$$

Запись (??) является сокращением формальной записи (??)

$$z^* = \{ p : p \in \mathbb{Q} \land p < z \} \tag{1.6}$$

Проверим, что z^* – сечение. z-1 < z, т.е. $z-1 \in z^*$, множество z^* непустое. $z+1>z, z+1 \notin z^*, z^* \neq \mathbb{Q}$. Если $p \in z^* \wedge q \in \mathbb{Q}, q < p$, то $q . Если <math>p_1 \in z^*$, то $p_1 < z$; пусть $p_2 = \frac{p_1 + z}{2}$, тогда $p_1 < p_2 < z, p_2 \in z^*$, т.е. в z^* нет наибольшего числа.

Определение 1.2. Множество всех сечений будет называться множеством вещественных чисел, а любое конкретное сечение будем называть вещественным числом. Обозначаем множество вещественных чисел \mathbb{R} .

Приведенный подход к определению вещественных чисел принадлежит немецкому математику Р. Дедекинду, поэтому сечения называются сечениями множества рациональных чисел по Дедекинду.

1.4. Упорядочивание по возрастанию и арифметические действия над $\mathbb R$ числами

Определение 1.3. Пишем $\alpha < \beta$, говорим, что α меньше β , если $\exists p \in \mathbb{Q}$, т.ч. $p \in \beta \land p \notin \alpha$. Пишем $\alpha \leq \beta$, говорим, что α не превосходит β , если $\alpha < \beta \lor \alpha = \beta$.

5

Теорема 1.2. Пусть α , β – сечения. Тогда либо $\alpha < \beta$, либо $\alpha = \beta$, либо $\alpha > \beta$.

Доказательство. Если $\alpha=\beta$, то определение влечёт, что не может быть при этом $\alpha<\beta$ или $\alpha>\beta$. Пусть $\alpha\neq\beta$. Докажем, что выполнено только одно соотношение $\alpha<\beta$ или $\alpha>\beta$. Предположим, что выполнены оба, т.е. $\alpha<\beta$ и $\beta<\alpha$. Тогда $(\alpha<\beta)\Rightarrow (\exists p\in\mathbb{Q}|p\in\beta,p\notin\alpha);$ $(\beta<\alpha)\Rightarrow (\exists q\in\mathbb{Q}|q\in\alpha,q\notin\beta)$. По утверждению из предыдущей лекции $(p\in\beta,q\notin\beta)\Rightarrow p< q; (q\in\alpha,p\notin\alpha)\Rightarrow q< p$ – получили противоречие.

Таким образом, $\alpha < \beta$ и $\beta < \alpha$ вместе не могут выполняться. Но, если $\alpha \neq \beta$, то в каком-то из этих множеств, например в β имеется элемент $r \in \mathbb{Q}$, не принадлежащий α , тогда по определению имеем $\alpha < \beta$. Аналогично для $\beta < \alpha$. Следовательно, в случае $\alpha \neq \beta$ обязательно выполнится только одно условие $\alpha < \beta$ или $\beta < \alpha$. Теорема доказана.

Теорема 1.3. Теорема о трех сечениях. Пусть α, β, γ – сечения. Если $\alpha < \beta \wedge \beta < \gamma$, то $\alpha < \gamma$.

Доказательство. $(\alpha < \beta) \Rightarrow (\exists p \in \mathbb{Q} | p \in \beta, p \notin \alpha); (\beta < \gamma) \Rightarrow (\exists q \in \mathbb{Q} | q \in \gamma, q \notin \beta)$. Далее, $(p \in \beta, q \notin \beta) \Rightarrow$ по утверждению из прошлой лекции p < q. Поскольку $p \notin \alpha$, то тогда и $q \notin \alpha$, в противоположном случае по свойству 2 в определении сечения было бы и $p \in \alpha$. Таким образом, $q \in \gamma, q \notin \alpha$, т.е. $\alpha < \gamma$. Теорема доказана.

Определение 1.4. Сумма вещественных чисел = сумма сечений.

Теорема 1.4. Пусть α и β – сечения, γ – множество рациональных чисел r, m.ч. r=p+q, где $p\in \alpha$ - произвольное число, $q\in \beta$ - произвольное число. Тогда γ – сечение.

Доказательство. Поскольку $\alpha \neq \emptyset$, $\beta \neq \emptyset$, то $\gamma \neq \emptyset$. Поскольку $\alpha \neq \mathbb{Q}, \beta \neq \mathbb{Q}$, то $\exists s \in \mathbb{Q}, s \notin \alpha$ и $\exists t \in \mathbb{Q}, t \notin \beta$. Пусть $p \in \alpha, q \in \beta$. По удтверждению из прошлой лекции $(p \in \alpha, s \notin \alpha) \Rightarrow (p < s); (q \in \beta, t \notin \beta) \Rightarrow (q < t)$. Отсюда следует, что $p + q < s + t \ \forall p \in \alpha \land \forall q \in \beta$, т.ч. $\forall r \in \gamma$ выполнено r < s + t, т.е. $s + t \notin \gamma$, т.е. $\gamma \neq \mathbb{Q}$ – проверен п.1 в определении сечения.

Пусть $r \in \gamma$, s < r. Тогда $r = p + q, p \in \alpha, q \in \beta$. Пусть t = s - q, тогда t < r - q = (p + q) - q = p, из $p \in \alpha$ и $t < \alpha$ следует $t \in \alpha$, т.е. $s = t + q, t \in \alpha, q \in \beta$, т.е. $s \in \gamma$ – проверен п.2 в определении сечения.

Пусть $r \in \gamma, r = p+q, p \in \alpha, q \in \beta$. По п.3 определения сечения $\exists p_1 \in \alpha, p_1 > p$, тогда $r_1 = p_1 + q > p + q = r$, в γ нет наибольшего элемента, проверен п.3 определения сечения.

Теорема доказана.

Определение 1.5. Сечение γ , построенное в предыдущей теореме, называется суммой сечений α и β .

Поскольку вещественные числа определены как сечения, то вещественное число γ называют суммой вещественных чисед α и β , пишут $\gamma = \alpha + \beta$.

Свойства сложения

Теорема 1.5. Пусть α, β, γ – вещественные числа. Тогда:

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

3.
$$\alpha + 0^* = \alpha$$

Доказательство. Пункты 1 и 2 следуют из определения сложения и свойств сложения рациональных чисел. Докажем п.3.

Пусть $r \in \alpha + 0^*$, тогда r = p + q, $p \in \alpha, q \in 0^*$, т.е. q < 0, поэтому r = p + q < p, тогда $r \in \alpha$ по условию 2 определения сечений, т.ч. $\alpha + 0^* \subset \alpha$, если мы делаем акцент на том, что $\alpha + 0^*$ и α – множества. Пусть теперь $t \in \alpha$. Выберем s > t, но $s \in \alpha$, что возможно по п.3 определения сечений. Полагаем $q_0 = t - s$, тогда $t - s < 0 \Rightarrow t - s \in 0^*, t = s + (t - s) \in \alpha + 0^*$, т.е. $\alpha \subset \alpha + 0^*$, тогда $\alpha = \alpha + 0^*$. Теорема доказана.

Теорема 1.6. Теорема о разности верхних и нижних чисел сечения. Пусть α – сечение, и пусть $r \in \mathbb{Q}, r > 0$. Тогда $\exists p \in \mathbb{Q}, \exists q \in \mathbb{Q},$ такие что $p \in \alpha, q \notin \alpha, q$ не является наименьшим из верхних чисел α и q - p = r.

Доказательство. Возьмем $s \in \alpha$, и пусть $s_n = s + nr, s_0 = s, n = 0, 1, ...$. Найдется m_0 , т.ч. $s_{m_0} \notin \alpha$: если бы $s_n \in \alpha \forall n \in \mathbb{N}$, то возьмем $\forall t \in \mathbb{Q}, t > s$. По свойствам рациональных чисел $\exists n_0$ т.ч. $s = n_0 r > t$, и тогда $s_{n_0} \in \alpha \Rightarrow t \in \alpha$, т.е. $\alpha = \mathbb{Q}$ в силу произвольности t, что противоречит условию 1.

Таким образом, $\exists m_0 \in \mathbb{N}$, т.ч. $s_{m_0} \notin \alpha$. Поскольку $s_0 \in \alpha$, то имеется максимальное $m \in \mathbb{N}$, т.ч. $s_m \in \alpha, m < m_0$, тогда $s_{m+1} \notin \alpha$. Если

 s_{m+1} не является минимальным из верхних чисел сечения, то полагаем $p=s_m, q=s_{m+1}$, тогда $q-p=s_{m+1}-s_m=(s+(m+1)r)-(s+mr)=r$. Если же s_{m+1} является наименьшим из верхних чисел сечения, то пусть $p=s_m+\frac{r}{2}, q=s_{m+1}+\frac{r}{2}, q-p=r, q>s_{m+1}\Rightarrow q\notin\alpha, s_{m+1}$ – наименьшее из верхних чисел α и $p=s_m+\frac{r}{2}=s+mr+\frac{r}{2}< s+(m+1)r$, поэтому $p\in\alpha$. Теорема доказана.

Существование противоположного числа

Теорема 1.7. Пусть α - вещественное число. Тогда существует единственное число β такое, что $\alpha + \beta = 0^*$

Доказательство. Вначале докажем единственность β . Предположим, что $\exists \beta_0$ т.ч. $\alpha + \beta_0 = 0^*$. Тогда, по теореме о свойствах сложения имеем

$$\beta_0 = 0^* + \beta_0 = (\alpha + \beta) + \beta_0 = (\beta + \alpha) + \beta_0 = \beta + (\alpha + \beta_0) = \beta + 0^* = \beta$$
 т.е. β - единственный, если существует.

Найдем теперь какое-то β , т.ч. $\alpha + \beta = 0^*$. Пусть β – множество всех рациональных чисел таких, что -p является верхним числом α , но не наименьшим из верхним чисел.

Проверим, что β – сечение (= вещественное число). Взяв любое верхнее не наименьшее число t сечения α , полагая p=-t, имеем $p\in\beta$, т.е. $\beta\neq\varnothing$. Взяв любое $s\in\alpha$, получаем, что $-s\notin\beta$, т.к. $-(-s)=s\in\alpha$, s - нижнее число α , т.е. $\beta\neq\mathbb{Q}$ – проверено условие 1.

Если $p \in \beta$, $q \in \mathbb{Q}$ и q < p, то -q > -p, -p – верхнее число $\alpha \Rightarrow -q$ – верхнее число α и -q – не наименьшее верхнее в α , т.е. $q \in \beta$ – проверено условие 2.

Если $p \in \beta$, то -p – врехнее число α и \exists верхнее число α , обозначим его -q, т.ч. -q < -p; пусть $-z = ^{def} - \frac{q+p}{2}$, тогда -z > -q, т.е. -z -верхнее число в α и не наименьшее, поэтому $z \in \beta$. Поскольку -z < -p, то z > p, в β нет наибольшего – проверено условие 3. Таким образом β — сечение

Проверка свойства $\alpha+\beta=0^*$ Пусть $p\in\alpha+\beta$, тогда $p=q+z, q\in\alpha, z\in\beta; z\in\beta\Rightarrow-z\notin\alpha$, тогда $q\in\alpha\Rightarrow q<-z, q+z<0, p<0, p\in0^*$, т.е. $\alpha+\beta\subset0^*$, если трактовать $\alpha,\beta,0^*$ как множества.

Пусть $p \in 0^*$, тогда p < 0. По теореме о разности верхних и нижних чисел сечения $\exists q \in \alpha, s \notin \alpha, s$ не является наименьшим верхним числом α , т.ч. s-q=-p. Поскольку $-s \in \beta$, то тогда $p=q-s=q+(-s) \in \alpha+\beta$, т.е. $0^* \subset \alpha+\beta$; в итоге $0^*=\alpha+\beta$, теорема доказана.

Определение 1.6. Вещественное число β , построенное в предыдущей теореме обозначается $-\alpha$, и называется числом, противоположным α .

Утверждение 1.2. О сохранении неравенства. Пусть $\beta < \gamma$, тогда $\alpha + \beta < \alpha + \gamma$. В частности, если $0^* < \gamma, 0^* < \alpha$, то $(\alpha = 0^* + \alpha < \alpha + \gamma, 0^* < \alpha) \Rightarrow 0^* < \alpha + \gamma$.

Доказательство. Из определения сложения вещественных чисел следует, что $\alpha + \beta \le \alpha + \gamma$. Если было бы $\alpha + \beta = \alpha + \gamma$, то тогда

$$\beta = 0^* + \beta = ((-\alpha) + \alpha) + \gamma = 0^* + \gamma = \gamma$$

, что противоречит условию. Утверждение доказано.

Определение разности вещественных чисел

Теорема 1.8. Пусть α, β – вещественные числа. тогда существует единственное вещественное число $\gamma | \alpha + \beta = \gamma$.

Доказательство. Полагаем $\gamma = \beta + (-\alpha)$. Тогда $\alpha + \gamma = \alpha + (\beta + (-\alpha)) = \alpha + ((-\alpha) + \beta) = (\alpha + (-\alpha)) + \beta = 0^* + \beta = \beta$.

Если бы существовало $\gamma_1|\alpha+\gamma_1=\beta$, то если бы $\gamma\neq\gamma_1$, то тогда либо $\gamma<\gamma_1$, либо $\gamma_1<\gamma$. Не уменьшая общности, считаем $\gamma<\gamma_1$. Тогда по удтверждению о сохранении неравенства мы получаем $\alpha+\gamma<\alpha+\gamma_1$, но $\alpha+\gamma=\beta, \alpha+\gamma_1=\beta$, противоречие.

Итак, вещественное число γ одно. Оно называется разностью β и α , $\gamma=\beta-\alpha$.

Определение 1.7. $|\alpha|$. Полагаем

$$|\alpha| = \begin{cases} \alpha, & \alpha \ge 0^* \\ -\alpha, & \alpha < 0^* \end{cases}$$

Утверждение 1.3. $|\alpha| \geq 0^* \forall \alpha \in \mathbb{R}$

Доказательство. Если $\alpha \geq 0^*$, это следует из определения $|\alpha|$. Пусть $\alpha < 0^*$, тогда $\alpha \neq 0^*$ и, если неверно, что $\alpha > 0^*$. то $-\alpha < 0^*$. По удтверждению о сохранении неравенства тогда бы выполнялось $\alpha + (-\alpha) < \alpha + 0^* = \alpha$, но $\alpha < 0^*$, тогда $\alpha + (-\alpha) < 0^*$, $0^* < 0^*$, что невозможно. Итак $|\alpha| \geq 0^*$. Из определения видно, что $|\alpha| = 0^* \Leftrightarrow \alpha = 0^*$. Удтверждение доказано.

Теорема 1.9.
$$p^* < \alpha, p \in \mathbb{Q}.p^* < \alpha \Leftrightarrow p \in \alpha, p \in \mathbb{Q}$$

Доказательство. Пусть $p \in \alpha; p \notin p^* \Rightarrow p^* < \alpha$. Пусть теперь $p^* < \alpha$, тогада $\exists q \in \mathbb{Q} | q \notin p^*$, т.е. $q \geq p$, и $q \in \alpha$. Тогда $p \in \alpha$. Теорема доказана.

1.5. Произведение вещественных чисел

Теорема 1.10. Пусть α , $\alpha \geq 0^*$, u β , $\beta \geq 0^*$ - вещественные числа. Обозначим через γ следующее множество рациональных чисел: если $p \in \mathbb{Q}, p < 0$, то $p \in \gamma$; если $p = st, s \in \alpha, t \in \beta$ u $s \geq 0, t \geq 0$, то $p \in \gamma$. Другие рациональные числа в множество γ не входят. Если $\alpha = 0^* \vee \beta = 0^*$, то γ по определению состоит только из чисел $p \in \mathbb{Q}, p < 0$. Тогда γ - сечение.

Доказательство. Поскольку $(\forall p \in \mathbb{Q}, p < 0) \Rightarrow p \in \gamma$, то γ непусто; если $\alpha = 0^* \lor \beta = 0^*$, то $(\forall q > 0) \Rightarrow q \notin \gamma$, в этом случае $\gamma \neq \mathbb{Q}$; если $\alpha > 0^* \land \beta > 0^*$, то пусть $u \notin \alpha, v \notin \beta$, тогда $u > 0 \land v > 0$ и $(\forall s \in \alpha, s \geq 0 \land \forall t \in \beta, t \geq 0) \Rightarrow (s < u \land t < v) \Rightarrow st < uv$, т.е. $uv \notin \gamma$, т.е. всегда $\gamma \neq \mathbb{Q}$. Если $\alpha = 0^* \lor \beta = 0^*$, то из определения γ в этом случае следуют условия 2 и 3; если $\alpha > 0^* \land \beta > 0^*$, то пусть $p \in \gamma, p > 0, 0 \leq q < p$; Пусть $p = st, s > 0, t > 0, s \in \alpha, t \in \beta$. Если q = 0, то $0 = 0 * t, 0 \in \alpha, 0 \in \gamma$; если q > 0, то $\frac{q}{p} \cdot t < t$, поэтому $\frac{q}{p} \cdot t \in \beta$, тогда $s \cdot \frac{q}{p} \cdot t \in \gamma$, но $s \cdot \frac{q}{p} \cdot t = \frac{q}{p} st = \frac{q}{p} \cdot p = q$, т.е. $q \in \gamma$; если p = st, s > 0, t > 0, то возьмем $s_1 > s, s_1 \in \alpha$, тогда $s_1 t \in \gamma s_1 t > p$.

Определение 1.8. Пусть $\alpha, \beta \in \mathbb{R}$. Полагаем

$$\alpha\beta \stackrel{def}{=} \begin{cases} -(|\alpha||\beta|) & \alpha < 0^*, \beta \ge 0^* \\ -(|\alpha||\beta|) & \alpha \ge 0^*, \beta < 0^* \\ (|\alpha||\beta|) & \alpha < 0^*, \beta < 0^* \end{cases}$$

Теорема 1.11. Справедливы следующие свойства:

- 1. $\alpha\beta = \beta\alpha$:
- 2. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$;
- 3. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$;
- 4. $\alpha \cdot 0^* = 0^*$;
- 5. $\alpha\beta = 0^* \Leftrightarrow \alpha = 0^* \lor \beta = 0^*$;
- 6. $\alpha \cdot 1^* = \alpha$:
- 7. $\alpha < \beta, \gamma > 0^* \Rightarrow \alpha \gamma < \beta \gamma$

Доказательство. Следуем из определения суммы и произведения и из соотвествующих свойств рациональных чисел. ■

Теорема 1.12. Если $\alpha \neq 0^*$, то $\forall \beta \in \mathbb{R} \exists ! : \alpha \gamma = \beta$.

Доказательство. Аналогично доказательству существования и единственности $-\alpha$ и $\beta - \alpha$; в данном случае вначале проверяем, что $\exists \delta : \alpha \delta = 1^*$, затем полагают $\gamma = \beta \delta$.

Обозначение 1.1. $\gamma = \frac{\beta}{\alpha}, \delta = \frac{1}{\alpha}, \gamma$ - частное вещественных чисел β, α, δ - обратное к α число. Отметим также связь действий над сечениями и рациональными числами.

Теорема 1.13. Пусть $p, q \in \mathbb{Q}$. Тогда $p^* + q^* = (p+q)^*, (pq)^* = p^*q^*, p^* < q^* \Leftrightarrow p < q$.

Доказательство. Доказывается аналогично предыдущим теоремам.

Теорема 1.14. О плотности рациональных сечений в \mathbb{R} . Пусть $\alpha, \beta \in \mathbb{R}, \alpha < \beta$. Тогда $\exists r^*, r \in \mathbb{Q} : \alpha < r^* < \beta$.

Доказательство. $(\alpha < \beta) \Rightarrow \exists p \in \mathbb{Q} : p \in \beta, p \notin \alpha$. Выберем $r > p, r \in \beta$. Тогда в силу $r \notin r^*$ имеем $r^* < \beta$; поскольку $p \notin \alpha, p < r$, то $p \in r^*$, поэтому $\alpha < r^*$.

1.6. Теоема Дедекинда, супремумы и инфимумы.

Определение 1.9. Будем говорить, что в множестве вещественных чисел $\mathbb R$ определено сечение, если имеются множества $A \subset \mathbb R \wedge B \subset \mathbb R$ со следующими свойствами.

- 1. $A \neq 0^*, B \neq 0^*, A \neq \mathbb{R}, B \neq \mathbb{R}$
- $A \cup B = \mathbb{R}$
- 3. $A \cap B = \emptyset$
- 4. Если $\alpha \in A, \beta \in B$, то $\alpha < \beta$

При этом множество A называется нижним классом сечения, и числа $\alpha \in A$ называются нижними числами, а множество B называется верхним классом сечения, и числа $\beta \in B$ называются верхними числами сечения.

Теорема 1.15. Теорема Дедекинда. Пусть имееется сечение (A, B)множеества \mathbb{R} . Тогда существует единственное число $\gamma: \alpha < \gamma \forall \alpha \in \mathbb{R}$ $A \wedge \gamma \leq \beta \forall \beta \in B$. При этом реализуется только одна возможность: либо в A и $\gamma \in A$ и является максимальным числом, либо $\gamma \in B$ и γ является минимальным числом в В.

Доказательство. Прежде всего проверим, что $(\gamma \in A) \Rightarrow \gamma$ - максимальное число в A, в B нет минимального или $(\gamma \in B) \Rightarrow \gamma$ - минимальное в B, в A нет максимального. Проверим первое из этих утверждений, второе доказывается аналогично. Мы пока предполагаем, что число (или числа) γ , удволетворяющие заключению теоремы, существуют. Предположим, что, наряду с $\gamma \in A$, γ - максимальное в $A, \exists \gamma_1 \in \beta, \gamma_1$ - минимальное число в B. Тогда условие $4 \Rightarrow \gamma < \gamma_1$. По теореме о плотности рациональных сечений $\exists r^* : \gamma < r^* < \gamma_1$. Тогда по предположению о минимальности γ_1 в B имеем $r^* \notin B$, но в силу условий 2 и 3 тогда получаем, что $r^* \in \mathbb{R} \setminus B = A$, т.к. $\mathbb{R} \setminus B = A$. В силу преположения о максимальности γ в A из $r^* > \gamma \Rightarrow r^* \notin A$, т.е. $r^* \in \mathbb{R} \setminus A = B$, т.е. $r^* \in A \cap B$, что противоречит условию 3 сечения. Таким образом, γ_1 не существует и в B нет наименьшего числа. Докажем теперь, что γ существует. (Оперируем с сечениями рациональных чисел, другой трактовки у нас пока нет). Полагаем $\gamma \stackrel{def}{=}$ {множество всех рациональных чисел p т.ч. для какого-то $\alpha \in A, p \in \alpha$ }. По-другому это определение можно записать так:

$$\gamma = \bigcap_{\alpha \in A} \alpha$$

Поскольку α - множество, и мы рассматриваем объединение указанных объектов. Проверим, что γ - сечение \mathbb{Q} . Поскольку $A \neq \emptyset$, тогда $\exists p \in \mathbb{Q}$ $\alpha, p \in \gamma$, т.е. $\gamma \neq \emptyset$. Далее $B \neq \emptyset$, поэтому $\exists \beta \in B, \beta \notin A \land \beta > \alpha \forall \alpha \in A$ по условию 4 сечения \mathbb{R} . Возьмем $q \in \mathbb{Q}$, $q \notin \beta$, тогда $q \notin \alpha$, если $q \in A$, поскольку в противном случае, если бы $q \in \alpha$, то $q^* < \alpha, \alpha < \beta, q^* < \beta$, но $q \notin \beta \Rightarrow q^* \geq \beta$ - противоречие. Таким образом, $q \notin \alpha \forall \alpha \in A$, т.е. $q \notin \gamma, \gamma \neq \mathbb{Q}$ - проверено условие 1 сечения \mathbb{Q} . Если $p \in \gamma \land q < p$, то по определению $\gamma \exists \alpha \in A : p \in \alpha$, но тогда и $q \in \alpha$, т.е. $q \in \gamma$ - проверено условие 2 сечения \mathbb{Q} . Если $p \in \gamma$, то $\exists \alpha \in A : p \in \alpha$, тогда $\exists q > p, q \in \alpha$, т.е. $q \in \gamma$ - проверено условие 3 сечения $\mathbb Q$. Таким образом, γ - сечение \mathbb{Q} . Из определения γ следует, что $\alpha \subset \gamma \forall \alpha \in A$, т.е. $\alpha \leq \gamma \forall \alpha \in A$. Докажем, что $\forall \beta \in B\beta \geq \gamma$. Предположим, что это не так, тогда $\exists \beta_0 \in B: \beta_0 < \gamma$. Тогда $\exists p \in \mathbb{Q}: p \in \gamma$, но $p \notin \beta_0$. Но если $p \in \gamma$, то $\exists \alpha_0 \in A : p \in \alpha_0$, что влечёт $\beta_0 < \alpha_0$, а это противоречит условию 4 сечения \mathbb{R} .

Определение 1.10. Пусть $E \subset \mathbb{R}, E \neq \emptyset$. Множество E называется ограниченным сверху, если $\exists b \in \mathbb{R} : \forall a \in E$ выполнено $a \leq b$; число b называют верхней границей множества E; множество E называют ограниченным снизу, если $\exists c \in \mathbb{R} : \forall a \in E$, выполнено $a \geq c$; число c называют нижней границей множества E.

Множество E называют ограниченным, если оно ограниченно и снизу, и сверху.

Число b_0 называют точной верхней границей E или супремумом E, обозначается b=supE, если b_0 - верхняя граница E и $\forall b_1 < b_0$ b_1 не является верхней границей E.

Число c_0 называется точной нижней границей E или инфимумом E, обозначается $c_0=infE$, если c_0 - нижняя граница E и $\forall c_1>c_0$ c_1 не является нижней границей E.

Теорема 1.16. О существовании супремума и инфимума. Пусть $E \subset \mathbb{R}, E \neq \emptyset, E$ - ограничено сверху. Тогда $\exists sup E$. Пусть $E \subset \mathbb{R}, E \neq \emptyset, E$ - ограничено снизу. Тогда $\exists inf E$.

Доказательство. Докажем существование супремума, существование инфимума доказывается аналогично. Определим сечение (A,B) в $\mathbb R$ следующим образом: множество A состоит из всех $\alpha \in \mathbb R: \exists x \in E \land x > \alpha,$ $B = \mathbb R \setminus A$. Из определения A следует, что $\forall \alpha \in A$ число α не является верхней границей E. Поскольку A ограничено сверху, то $A \neq \mathbb R$, а $E \neq \varnothing \Rightarrow A \neq \varnothing$, т.к. если $x_0 \in E$, то $x_0 - 1^* < x_0, x_0 - 1^* \in A$.

Если $\beta \in B$, то, по определению A, $\nexists x \in E : x > \beta$, ибо иначе было бы $\beta \in A$, т.е. $\forall x \in E$ имеем $x \leq \beta$, т.е. β - верхняя граница E для $\forall \beta \in B$. Условия 1-3 сечения $\mathbb R$ для (A,B) проверены.

Проверим условие 4. Пусть $\alpha \in A, \beta \in B$. Тогда $\exists x_0 \in E : x_0 > \alpha$, но $\beta \geq x_0$, т.е. $\beta > \alpha$ - условие 4 проверено.

Пусть $\gamma \in \mathbb{R}$ - число, определяемое сечением (A,B) по теореме Дедекинда. Проверим, что $\gamma \notin A$. Если бы $\gamma \in A$, то $\exists x_1 \in E : x_1 > \gamma$. Выберем $r^* : \gamma < r^* < x_1$, тогда $r^* \in A$ по определению $A, r^* > \gamma$, т.е. γ - не наибольшее число в A, что противоречит теореме Дедекинда. Следовательно, $\gamma \in B$, т.е. γ - верхняя граница E и γ - наименьшее число в B по теореме Дедекинда, т.е. $\forall \gamma_1 < \gamma, \gamma_1$ не является элементом B, т.е. $\gamma_1 \in A$, тогда $\exists x_2 \in E : x_2 > x_1$, т.е. γ_1 - не верхняя граница E. Таким образом γ - точная верхняя граница E.

1.7. Десятичные дроби, определение корня, степени, экспонент и логарифма

Определение 1.11. Пусть $E \neq \emptyset$, $G \neq \emptyset$ - множества. Отображением $F: E \to G$ будем называть правило, по котором $\forall x \in E$ сопоставляется $F(x) \in G$. Оторбражение задается набором E, G, F. Далее в качестве синонима слова "отображение" будем использовать слово "функция" или "G-значная функция, определенная на E". Отображение F называется инъективным или инъекцией, если из $x, y \in E, x \neq y \Rightarrow F(x) \neq F(y)$; отображение F называется сюръективным или сюръекцией, если $\forall q \in G \exists x \in E: F(x) = q$; отображение F называется биективным или биекцией, если оно одновременно инъективно и сюръективно. Мы будем обозначать биекцию так: $F: E \longleftrightarrow G$.

Определение 1.12. Множество X называется счетным, если существует биекция $F: \mathbb{N} \longleftrightarrow X$, \mathbb{N} - множество натуральных чисел. Исторически счетные множества обозначаются так: $F(n) = x_n, x_n \in X, n \in \mathbb{N}$. Последовательностью будем называть любое отображение $f: \mathbb{N} \to Y$, при этом обычно ее обозначают $y_1, y_2, \dots y_n$, или $\{y_n\}_{n=1}^{\infty}$. Говорят при этом, что определена последовательность множества Y.

Теорема 1.17. Объединение конечного или счетного множества попарно дизъюнктных счетных множеств счетно.

Доказательство. Пусть $X_k = \{a_{k1}, a_{k2}, ...\}$, где k = 1, ..., n или k = 1, 2, ...; укажем способ нумерации $\bigcup_{k=1}^n X_k$ или $\bigcup_{k \in \mathbb{N}} X_k$. Учтем, что если $k \neq 1$, то $a_{ki} \neq a_{kj}$, а если k = 1, но $i \neq j$, то $a_{ki} \neq a_{kj}$. В случае k = 1, ..., n запишем элементы a_{kj} в таблицу:

и будем "перенумеровывать" получившееся объединение $\bigcup_{k=1}^n X_k$ змейкой: $a_{11} \to a_{21} \to ... \to a_{n1} \to a_{n2} \to a_{n-12} \to ...$

В случае $\bigcup_{k\in\mathbb{N}} X_k$ укажем перенумерацию: $a_{11}\to a_{21}\to a_{12}\to a_{13}\to a_{22}\to a_{31}\to\dots$

При этом в каждом из двух случаев получаем перенумерацию всего объединения. ■

Утверждение 1.4. Пусть X - счетное множество, $Y \subset X$, Y - бесконечное множество (т.е. в нем не конечное множество элементов). Тогда Y - счетное.

Доказательство. Пусть $X=\{x_1,x_2,...\}\ \forall y\in Y\exists n:y=x_n.$ Пусть $k\stackrel{def}{=}\{n\in\mathbb{N}:\exists y\in Y:y=x_n\}.$ Пусть n_1 - минимальное число в множества K, тогда $\exists y\in Y:y=x_{n_1},$ положим $1\longleftrightarrow y,$ т.е. присвоим y номер 1, считаем его $y_1.$ Пусть $K_1=K\setminus n_1,$ тогда $K\neq\emptyset,$ т.к. K бесконечное множество, пусть $n_2\in K_1$ - минимальное число; $\exists y_2\in Y:y_2=x_{n_2},$ положим $K_2=K_1\setminus n_2,$ и т.д. Таким образом мы построим биекцию $\mathbb{N}\longleftrightarrow Y.$

Следствие 1.1. Пусть $Y = \bigcup_{k=1}^n X_k$ или $Y = \bigcup_{k \in \mathbb{N}} X_k$, где X_k - счетны, но необязательно дизъюнктны. Тогда Y счетно.

Доказательство. Слудует из теоремы и утверждения.

Сопоставление вещественным числам десятичных разложений

Будем рассматривать только $\alpha>0^*$, случай $\alpha<0^*$ получается добавлением знака "—".

Прежде всего биективно сопоставляем любому натуральному числу n сечения n^* , для n считаем известным его десятичное представление. Для $n^* < x < (n+1)*, n \ge 0, n \in \mathbb{Z}$, положим $\alpha = x - n^*$, тогда $0^* < \alpha < 1^*$. Определим

$$E \stackrel{def}{=} \left\{ \left(\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_k}{10^k} \right)^* : 0 \le a_j \le 9, 1 \le j \le k, k \ge 1, \\ \left(\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_k}{10^k} \right)^* \le \alpha \right\}$$

Теорема 1.18. $\alpha = supE$

Доказательство. Определение E показывает, что множество $E \neq \emptyset$, т.к. $0^* \in E$, и ограничено сверху, поэтому $\exists supE \stackrel{def}{=} \beta, \beta \leq \alpha$, поскольку α - верхняя граница E. Предположим, что $\alpha > \beta$. Тогда $\exists r_1 \in \mathbb{Q} : \beta < r_1^* < \alpha \land \exists r_2 \in \mathbb{Q} : r_1^* < r_2^* < \alpha$. Пусть $t = r_2^* - r_1^*$. Выберем $k_0 \in \mathbb{N}$ так, чтобы $k^* > \frac{1}{t}$, тогда $\left((10^{k_0})^* > k_0^* > \frac{1}{t}\right) \Leftrightarrow \left(\frac{1}{10^{k_0}}\right)^* < \left(\frac{1}{k_0}\right)^* < t$. По определению числа $\beta \exists q = \frac{a_1}{10} + \frac{a_2}{10^2} + \ldots + \frac{a_{k_1}}{10^{k_1}}$, т.ч. $q^* > \beta - \frac{1}{10^{k_0}} \Leftrightarrow \beta < q^* + \frac{1}{10^{k_0}}$. Считаем, что $k_1 \geq k_0$, если это не так, то полагаем

 $a_{k_1+1}=...=a_{k_0}=0$, что даёт возможность этому предположению. Считаем также, что k_0 выбрано так, чтобы $\alpha+\left(\frac{1}{10^{k_0}}\right)<1$.

Если бы выполнялось соотношение $q^* + \left(\frac{1}{10^{k_0}}\right)^* > \alpha, q^* \le \beta$, что влечёт неравенство

$$\left(q^* + \left(\frac{1}{10^{k_0}}\right)^*\right) - q^* > \alpha - \beta > r_2^* - r_1^* = t$$

т.е.
$$\left(\frac{1}{10^{k_0}}\right)^* > t$$
, что противоречит выбору k_0 , т.е. $\alpha = \beta$.

Пользуясь теоремой, сопоставим $\alpha, 0 < \alpha < 1$, последовательность $\{a_k\}_{k=1}^\infty, a_k \in \{0,1,\dots,9\}$

Обозначение 1.2. В дальнейшем полагаем

$$[a,b] \stackrel{def}{=} x \in \mathbb{R} : a \le x \le b$$

$$(a,b) \stackrel{def}{=} x \in \mathbb{R} : a < x < b$$

$$[a,b) \stackrel{def}{=} x \in \mathbb{R} : a \le x < b$$

$$(a,b) \stackrel{def}{=} x \in \mathbb{R} : a < x \le b$$

Новым по сравнению со школой является исопльзование построенных по Дедекинду вещественных чисел.

Определим теперь числа $a_k(\alpha) \in \{0,1,\dots,9\}$ и $P_k(\alpha) \in \mathbb{Q}$. Из $0 < \alpha < 1$ следует, что \exists единственный промежуток вида $\left[0,\frac{1}{10}\right)^*, \left[\frac{1}{10},\frac{2}{10}\right)^*,\dots \left[\frac{9}{10},1\right)^*,$ которому принадлежит α . Пусть $\alpha \in \left[\left(\frac{a_1(\alpha)}{10}\right)^*,\left(\frac{a_1(\alpha)+1}{10}\right)^*\right)$, что дает $a_1(\alpha)$ и пусть $P_1(\alpha) \stackrel{def}{=} \frac{a_1(\alpha)}{10}$. Далее \exists единственный промежуток $\left[\frac{a_1(\alpha)}{10} + \frac{a_2(\alpha)}{10^2},\frac{a_1(\alpha)}{10} + \frac{a_2(\alpha)+1}{10^2}\right)$, т.ч. $\alpha \in \left[\left(\frac{a_1(\alpha)}{10}\right)^* + \left(\frac{a_2(\alpha)}{10^2}\right)^*,\left(\frac{a_1(\alpha)}{10}\right)^* + \left(\frac{a_2(\alpha)+1}{10^2}\right)^*\right)$, что задает $a_2(\alpha)$, и полагаем $p_2(\alpha) = \frac{a_1(\alpha)}{10} + \frac{a_2(\alpha)}{10^2}$. Если уже определили $a_1(\alpha),\dots,a_k(\alpha)$, и $P_k(\alpha) = \frac{a_1(\alpha)}{10} + \frac{a_2(\alpha)}{10^2} + \dots + \frac{a_k(\alpha)}{10^k}$, то существует онинстроин и проможиток.

$$\left[P_k(\alpha) + \frac{a_{k+1}(\alpha)}{10^{k+1}}, P_k(\alpha) + \frac{a_{k+1}(\alpha) + 1}{10^{k+1}}\right)$$

такой что

$$\alpha \in \left[P_k(\alpha) + \left(\frac{a_{k+1}(\alpha)}{10^{k+1}}\right)^*, \left(P_k(\alpha)\right)^* + \left(\frac{a_{k+1}(\alpha) + 1}{10^{k+1}}\right)^*\right)$$

тогда полагаем $P_{k+1}(\alpha)=P_k(\alpha)+\frac{a_{k+1}(\alpha)+1}{10^{k+1}}.$ Из построения следует, что $\forall k=1,2,...$ выполнено $P_k^*(\alpha)\leq \alpha<$ $P_k^*(\alpha) + \left(\frac{1}{10^k}\right)^*$. Положим $E_0 \stackrel{def}{=} \left\{r^* \in \mathbb{Q} : \exists k \in \mathbb{N} : r^* = \left(P_k^*(\alpha)\right)^*\right\}$

Утверждение 1.5. $\alpha = supE_0$

 $\alpha_0 \stackrel{def}{=} supE_0 \leq supE = \alpha$. Тогда имеем неравенства, справедливые

$$P_k^*(\alpha) \le \alpha_0 \le \alpha < P_k^*(\alpha) + \left(\frac{1}{10^k}\right)^* \Rightarrow 0 \le \alpha - \alpha_0 \le \left(\frac{1}{10^k}\right)^* \tag{1.7}$$

Если бы $\alpha - \alpha_0 > 0$, то можно найти $k_0 : \alpha - \alpha_0 > \left(\frac{1}{10^{k_0}}\right)^*$, что противоречит соотношению ?? при $k \ge k_0$.

В результате предыдущих рассуждений построено отображение $A(\alpha): \alpha \to a_1(\alpha), a_2(\alpha), \dots$ из промежутка (0;1) в множество последовательностей, состоящих из элементов $0, 1, \dots, 9$, что можно трактовать, как бесконечную десятичную дробь.

Утверждение 1.6. Отображение $A(\alpha)$ интективно.

Доказательство. Пусть $0<\alpha_1<\alpha_2<1,\alpha_1,\alpha_2\in\mathbb{R}.$ Выберем минимальное k_0 такое, что $\alpha_2-\alpha_1\geq\left(\frac{1}{10^{k_0}}\right)^*.$ Если $k_0=1,$ то $a_1(\alpha_1)< a_1(\alpha_2),$ поэтому $A(\alpha_1)\neq A(\alpha_2).$ Если $k_0>1$ и $\exists j,1\leq j\leq k_0-1:a_j(\alpha_1)\neq$ $a_j(\alpha_2),$ то $A(\alpha_1) \neq A(\alpha_2);$ если же $a_j(\alpha_1) = a_j(\alpha_2), 1 \leq j \leq k_0-1,$ то $a_{k_0}(\alpha_1) < a_{k_0}(\alpha_2)$ и $A(\alpha_1) \neq A(\alpha_2)$.

Начиная с этого момента будем трактовать вещественное число также как \pm (натуральное число + бесконечная десятичная дробь), поэтому не будем ставить знак у рациональных чисел. Важно заметить все привычне свойства вещественных чисел строго определены и обоснованы, если их определяют как сечения. Пока речь шла только об арифметических действиях и неравенствах, в которых вещественные числа участвуют.

Существование корня из вещественного числа

Теорема 1.19. Пусть $x > 0, n \ge 2, n \in \mathbb{N}$. Тогда $\exists ! a > 0 : a^n = x$.

Доказательство. Проверим единственность числа a, если оно существует. Пусть $a_0^n = x, a_0 > 0$, тогда $0 = a^n - a_0^n = (a - a_0) * A$, где $A = (a^{n-1} + a^{n-2}a_0 + ... + a_0^n)$. Поскольку A > 0, то $(a - a_0) = 0 * \frac{1}{A} = 0, a = a_0$.

Определение 1.13. Полагаем $0! \stackrel{def}{=} 1, 1! \stackrel{def}{=} 1, n! \stackrel{def}{=} 1 \cdot 2 \cdot \ldots \cdot n,$ $C_n^m \stackrel{def}{=} \frac{n!}{(n-m)!m!}, 0 \leq m \leq n;$ или $C_n^m = C_n^{n-m}, C_n^0 = 1, C_n^1 = n.$

Бином Ньютона: пусть $n \geq 2; a,b \in \mathbb{R},$ тогда $(a+b)^n = a^n + C_n^1 a^{n-1} b + \ldots + C_n^{n-1} a b^{n-1} + b^n.$

Пусть $E=\{t\in\mathbb{R}: t>0, t^n\leq x\}$. Если $t_0\stackrel{def}{=}\frac{x}{1+x}$, то $t_0>0, t_0<1, t_0^n=t_0^{n-1}*t_0<1^{n-1}\cdot t_0< x$, т.е. $E\neq\varnothing$; если $t_1=1+x$, то $t_1>1$, $t_1^n=t_1^{n-1}*t_1>1^{n-1}\cdot t_1>x$, поэтому $t_1\notin E$ и является верхней границей E, т.е. $\exists sup E$. Утверждаетсяя, что a=sup E. Предположим, что $b\stackrel{def}{=}sup E, b^n< x$. Выберем 0< h<1 и также

$$h < \frac{x - b^n}{(1+b)^n - b^n} \tag{1.8}$$

Тогда

$$\begin{split} (b+h)^n &= b^n + C_n^1 b^{n-1} h + \ldots + C_n^{n-1} b h^{n-1} + h^n < \\ b^n + C_n^1 b^{n-1} h + \ldots + C_n^{n-1} b h + h &= b^n + h (C_n^1 b^{n-1} + \ldots + C_n^{n-1} b + h) = \\ b^n + h \left((1+b)^n - 1 \right) \overset{??}{<} b^n + x - b^n = x \end{split}$$

т.е. $b+h \in E$, что противоречит тому, что b-E. Предположим, что $b^n > x$. Выберем 0 < v < 1, v < b и

$$v < \frac{b^n - x}{(1+b)^n - b^n} \tag{1.9}$$

Тогда

$$\begin{split} (b-v)^n &= b^n - C_n^1 b^{n-1} v + C_n^2 b^{n-2} v^2 - \ldots + (-1)^{n-1} C_n^{n-1} b v^{n-1} + (-1)^n v^n = \\ b^n - v (C_n^1 b^{n-1} + C_n^2 b^{n-2} v^1 - \ldots + (-1)^{n-1} C_n^{n-1} b v^{n-1} + (-1)^n v^{n-1}) \geq \\ b^n - v (C_n^1 b^{n-1} + C_n^2 b^{n-2} v^1 + \ldots + C_n^{n-1} b v^{n-1} + v^{n-1}) > \\ b^n - v (C_n^1 b^{n-1} + C_n^2 b^{n-2} + \ldots + C_n^{n-1} b + 1) = b^n - v ((1+b)^n - b^n) \stackrel{??}{>} b^n - (b^n - x) = x \end{split}$$

т.е. b-v - верхняя граница E, что противоречит тому, что $b=\sup E$. Итак, $b^n=x, b=a$.

Далее приводится определение степени и логарифма без доказательств.

Определение 1.14. $a^r, a>0, r\in\mathbb{Q}$: если $r=\frac{p}{q}, q\in\mathbb{N}, p\in\mathbb{Z}$, то полагаем $a^r\stackrel{def}{=}\left(a^{\frac{1}{q}}\right)^p$. При r>0 полагаем $0^r=0$.

Определение 1.15. $a^{\alpha}, a > 1, \alpha \in \mathbb{R}: E = \{a^r : r \in \mathbb{Q}, r \leq \alpha\},$ тогда $a^{\alpha} = supE.$ $1^{\alpha} = 1 \forall \alpha \in \mathbb{R}.$ Если 0 < a < 1, то $a^{\alpha} \stackrel{def}{=} \left(\frac{1}{a}\right)^{-\alpha}$

Определение 1.16. $log_ab, a>0, a\neq 1, b>0$: если a>1, то $E=\{x\in\mathbb{R}: a^x\leq b\}$, тогда $log_ab=supE$; если 0< a<1, то $log_ab\stackrel{def}{=}-log_{\frac{1}{a}}b$.

Теорема 1.20. Для выражений a^{α} , $log_a b$ справедливы все равнее встречающиеся в школьном курсе утверждения.

глава 2

Пределы

2.1. Общее определение предела последовательности

Определение 2.1. Пусть $E \neq \emptyset$, \exists по крайней мере 2 точки $x_1, x_2 \in E$. Множество E называется метрическим пространством, если $\forall x, y \in E$ определена функция $\rho(x,y)$, удовлетворяющая следующим свойствам:

- 1. $\rho(x,y) \ge 0$; $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in E\rho(x, z) \leq \rho(x, y) + \rho(y, z)$

Функцию ρ называют метрикой, заданной на E, а $\rho(x,y)$ называют расстоянием в E между x,y. Соотношение 3 называется неравенством треугольника в E. Точка $a \in E$ называется точкой сгущения множества E, если $\forall \epsilon > 0 \exists x_{\epsilon} \in E : x_{\epsilon} \neq a \land \rho(x_{\epsilon},a) < \epsilon$. Точка $b \in E$ называется изолированной точкой множества E, если $\exists \epsilon_0 > 0 : \forall x \in E, x \neq b$, выполнено $\rho(x,b) \geq \epsilon_0$. Последовательностью $\{v_n\}_{n=1}^{\infty}$ в E называется отображение $F : \mathbb{N} \to E, F(n) = v_n$.

Определение 2.2. Пусть E - метрическое пространство с метрикой $\rho,\ a\in E$ - точка сгущения, $\left\{v_n\right\}_{n=1}^{\infty}, v_n\in E,$ - последовательность в E. Говорят, что v_n стремится к a при n, стремящимся к бесконечности, пишут $v_n \to a$, или, что равносильно, что предел v_n при n, стремящемся к бесконечности, равен a, пишут $\lim_{n\to\infty}v_n=a$, если

$$\forall \epsilon > 0 \exists N \in \mathbb{N} : \forall n > N \rho(v_n, a) < \epsilon \tag{2.1}$$

Теорема 2.1. О единственности предела. Пусть E - метрическое пространство с метрикой ρ , $\left\{v_n\right\}_{n=1}^{\infty}$ - последовательность элементов E и предположим, что $v_n \to a_1$ и $v_n \to a_2$, $a_1, a_2 \in E$. Тогда $a_1 = a_2$

Доказательство. Предположим, что $a_1 \neq a_2$, тогда $\rho(a_1,a_2) \stackrel{def}{=} \delta > 0$. Положим $\epsilon = \frac{\delta}{4}$. Тогда $\exists N_1: \forall n > N_1 \rho(v_n,a_1) < \epsilon$ и $\exists N_2: \forall n > N_2 \rho(v_n,a_2) < \epsilon$. Пусть $n_0 = N_1 + N_2 + 1$, тогда $n_0 > N_1, n_0 > N_2$, поэтому $\rho(v_{n_0},a_1) < \epsilon \wedge \rho(v_{n_0},a_2) < \epsilon$. Тогда получаем

$$\rho(a_1,a_2) \leq \rho(a_1,v_{n_0}) + \rho(v_{n_0},a_2) < \epsilon + \epsilon = 2\epsilon = \delta/2 < \delta$$

что противоречит выбору δ .

Теорема 2.2. Об ограниченности последовательности, имеющей предел. Пусть E - метрическое пространство с метрикой ρ , $\{v_n\}_{n=1}^{\infty}$ - последовательность элементов E и $v_n \underset{n \to \infty}{\to} a$. Тогда $\exists M > 0 : \forall n \in N$ имеем соотношение

$$\rho(v_n, a) \le M \tag{2.2}$$

Доказательство. Выберем $\epsilon=1$, тогда $\exists N_0: \forall n>N_0 \rho(v_n,a)<1$. Пусть $M_1=\max(\rho(v_1,a),\dots,\rho(v_{N_0},a))$. Тогда для $M=\max(M_1,1)$ соотношение $\ref{eq:max}$ выполнено $\forall n\in\mathbb{N}$.

2.2. Предел числовой последовательности

Множество вещественных чисел является метрическим пространством: для $a,b\in\mathbb{R}$ положим $\rho(a,b)\stackrel{def}{=}|a-b|$, нужные свойства следуют из свойства модуля. Поэтому, если $\left\{x_n\right\}_{n=1}^\infty$ - последовательность в $\mathbb{R},a\in\mathbb{R},$ то общее определение предела переносится так:

$$x_n \underset{n \to \infty}{\longrightarrow} a$$
, если $\forall \epsilon > 0 \exists N \in \mathbb{N} : \forall n > N |x_n - a| < \epsilon$

Если $x_n \underset{n \to \infty}{\to} a, a \in \mathbb{R}$, то по теореме об ограниченности последовательности, имеющей предел, $\exists M: |x_n-a| \leq M \forall n$. Тогда

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| \le M + |a| \forall n \tag{2.3}$$

2.3. Расширение множества вещественных чисел

Добавим к множеству \mathbb{R} два элемента, $\{+\infty\}$, $\{-\infty\}$. Полагаем, что по определению, $a<+\infty \forall a\in\mathbb{R}, -\infty < a \forall a\in\mathbb{R}, -\infty < +\infty$.

2.4. Определение бесконечных пределов

Пусть $\{y_n\}_{n=1}^{\infty}$ - последовательность вещественных чисел. Говорят, что y_n стремится к $+\infty$, пишут $y_n \underset{n \to \infty}{\to} +\infty$, или, что предел y_n равен $+\infty$ при n, стремящемся к бесконечности. Пишут $\lim_{n \to \infty} y_n = +\infty$, если $\forall K > 0 \exists N : \forall n > N y_n > K$.

Аналогично, для последовательности $\left\{t_n\right\}_{n=1}^\infty$ $t_n \to -\infty$ или $\lim_{n\to\infty} t_n = -\infty$, если $\forall L < 0 \exists N_1: \forall n > N_1 t_n < L$.

Если предел некоторой последовательности вещественное число, то говорят, что её конечен, а если равен $\pm \infty$, то говорят, что предел бесконечен.

Теорема 2.3. Критерий Коши существования конечного предела последовательности. Пусть $\{x_n\}_{n=1}^{\infty}$ - последовательность вещественных чисел. Для того, чтобы эта последовательность имела конечный предел, необходимо и достаточно, чтобы $\forall \epsilon > 0 \exists N \in \mathbb{N}: \forall n_1 > N, n_2 > N$ выполнялось соотношение

$$|x_{n_2} - x_{n_1}| < \epsilon \tag{2.4}$$

Доказательство. Достаточность. Построим сечение \mathbb{R} с нижним классом A и верхним классом A' следующим образом: $\alpha \in A \Leftrightarrow \exists N_{\alpha}$, зависящее от α , т.ч. $\forall n > N_{\alpha}$ выполнено

$$x_n > \alpha \tag{2.5}$$

 $A' \stackrel{def}{=} R \setminus A.$

Проверим, что $A \neq \emptyset$: возьмем $\epsilon=1$, тогда $\ref{eq:sphere}$ $\Rightarrow \exists N_1: \forall n_1, n_2>N_1$ выполнено $|x_{n_2}-x_{n_1}|<1$, что эквивалентно соотношению

$$x_{n_1} - 1 < x_{n_2} < x_{n_1} + 1 (2.6)$$

Положим $n_1=N_1+1$, тогда $\ref{eq:n_1}$ выполнено при $n_2\geq n_1$, т.е. $x_{n_1}-1\in A$. Поскольку правое неравенство в $\ref{eq:n_1}$ тоже выполнено при $n_2\geq N_1+1$, то определение $\ref{eq:n_1}\Rightarrow x_{n_1}+1\notin A$, т.е. $x_{n_1}+1\in A'$, т.е. $A\neq \mathbb{R}$.

Определение $A, A' \Rightarrow A \cup A' = \mathbb{R}, A \cap A' = \emptyset$.

Возьмем $\forall \alpha \in A, \forall \beta \in A'.$ Тогда $\ref{eq:constraint} ?? \Rightarrow \exists N_\alpha : \forall n > N_\alpha$ выполнено $\ref{eq:constraint} ??$. Поскольку $\beta \notin A$, то $\exists n_0 > N_\alpha : x_{n_0} \leq \beta$, поскольку в противоположном случае при отсутсвии такого n_0 из $\ref{eq:constraint} ?? \Rightarrow \beta \in A$, что неверно. Таким образом

$$\alpha < x_{n_0} \le \beta \Rightarrow \alpha < \beta$$

Итак, A,A' - сечения $\mathbb R$. По теореме Дедекинда $\exists \gamma: \forall \alpha \in A\alpha \leq \gamma \land \forall \beta \in A'\gamma \leq \beta$. Возьмем $\forall \epsilon>0$, тогда $\gamma-\frac{\epsilon}{2}\in A, \gamma+\frac{\epsilon}{2}\in A'$. Выберем N_2 так, чтобы при $\forall n_1,n_2>N_2$ выполнялось

$$|x_{n_1} - x_{n_2}| \le \frac{\epsilon}{2} \tag{2.7}$$

Поскольку $\gamma - \frac{\epsilon}{2} \in A$, то $\exists N_3 : \forall n > N_3$ выполняется

$$x_n > \gamma - \frac{\epsilon}{2} \tag{2.8}$$

Не уменьшая общности, считаем, что $N_3 \ge N_2$.

Поскольку $\gamma + \frac{\epsilon}{2} \in A'$, то

$$\exists n' > N_3 : x_{n'} \le \gamma + \frac{\epsilon}{2} \tag{2.9}$$

Положим теперь N=n', тогда $??,??\Rightarrow$

$$\left(\gamma - \frac{\epsilon}{2} < x_{n'} \le \gamma + \frac{\epsilon}{2}\right) \Rightarrow |x_{n'} - \gamma| \le \frac{\epsilon}{2} \tag{2.10}$$

Теперь ?? и ?? при n > N = n' влекут:

$$|x_n - \gamma| = |(x_n - x_{n'}) + (x_{n'} - \gamma)| \le |x_n - x_{n'}| + |x_{n'} - \gamma| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad (2.11)$$

Т.е. из определения предела $x_n \underset{n \to \infty}{\to} \gamma$. Достаточность доказана. Доказательство необходимости. Пусть $x_n \underset{n \to \infty}{\to} a, a \in \mathbb{R}$, тогда $\forall \epsilon >$ $0\exists N: \forall n>N$ выполнено

$$|x_n - a| < \frac{\epsilon}{2} \tag{2.12}$$

Возьмем $\forall n_1, n_2 > N$, тогда ?? \Rightarrow

$$|x_{n_2}-x_{n_1}|=|(x_{n_2}-a)-(x_{n_2}-a)|\leq |x_{n_2}-a|+|x_{n_2}-a|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Необходимость доказана.

2.5. Предельные переходы в арифметических действиях

Далее для сокращения вместо $x_n \underset{n \to \infty}{\to} a$ пишем $x_n \to a$. Далее $a, b, \ldots \in \mathbb{R}$.

23

Теорема 2.4. 1. Пусть $x_n = a, n \ge 1 \Rightarrow x_n \to a$

2. Пусть
$$x_n \to a, c \in \mathbb{R} \Rightarrow cx_n \to ca$$

3. Пусть
$$x_n \to a, y_n \to b \Rightarrow x_n + y_n \to a + b$$

4. Пусть
$$x_n \to a, y_n \to b \Rightarrow x_n y_n \to ab$$

5. Hycmo
$$x_n \to a, a \neq 0, x_n \neq 0 \forall n \Rightarrow \frac{1}{x_n} \to \frac{1}{a}$$

6.
$$\Pi ycm v \ x_n \to a, a \neq 0, x_n \neq 0 \forall n, y_n \to b \Rightarrow \frac{y_n}{x_n} \to \frac{b}{a}$$

Доказательство. 1) следует из определения.

Для 2): возьмем $\forall \epsilon>0, \exists N: \forall n>N, |x_n-a|<\epsilon,$ что влечет $|c||x_n-a|<(|c|+1)\epsilon, |cx_n-ca|<(|c|+1)\epsilon.$ Поскольку $\epsilon>0$ произвольно, то и $(|c|+1)\epsilon$ произвольно.

Для 3): возьмем $\forall \epsilon>0, \exists N_1: \forall n>N_1, |x_n-a|<\frac{\epsilon}{2}, \exists N_2: \forall n>N_2|y_n-b|<\frac{\epsilon}{2},$ пусть $N=\max(N_1,N_2), \forall n>N$ имеем:

$$|(x_n+y_n)-(a+b)|\leq |x_n-a|+|y_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Для 4): $x_ny_n-ab=(xn-a)yn+a(y_n-b).$ Поскольку $y_n\to b,$ то $\exists M>0: |y_n|\leq M \forall n.$ Возьмем $\forall \epsilon>0, \exists N_1: \forall n>N_1|x_n-a|<\epsilon \land \exists N_2: \forall n>N_2|y_n-b|<\epsilon; N=\stackrel{def}{=} max(N_1,N_2)\Rightarrow \forall n>N\Rightarrow$

$$|x_ny_n-ab|\leq |x_n-a|y_n+|a||y_n-b|<\epsilon*M+|a|*\epsilon=(M+|a|)\epsilon$$

Выражение $(M+|a|)\epsilon$ может быть выбрано произвольным >0 вместе с ϵ .

Для 5): $\exists N_1: \forall n>N_1 \ |x_n-a|<rac{|a|}{2},$ тогда $\forall n>N_1$ имеем:

$$|x_n| = |(x_n - a) + a| \ge |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2}$$

т.е. при $n>N_1$ $\frac{1}{x_n}<\frac{2}{|a|},$ $\frac{1}{x_n}-\frac{1}{a}=\frac{a-x_n}{x_na}.$ Возьмем $\forall \epsilon>0, \exists N_2: \forall n>N_2$ $|x_n-a|<\epsilon,$ пусть $N=\max(N_1,N_2).$ При n>N имеем:

$$\left| \frac{1}{x_n} - \frac{1}{a} \right| = \frac{|a - x_n|}{|x_n||a|} < \frac{2}{|a|} \cdot \frac{1}{|a|} \epsilon = \frac{2}{a^2} \epsilon$$

 $\frac{2}{c^2}\epsilon$ может быть любым положительным числом.

Для 6)
$$\frac{y_n}{x_n} = \frac{1}{x_n} \cdot y_n$$
, тогда 4) и 5) \Rightarrow 6).

2.6. Переход к пределу в неравенствах

Теорема 2.5. О двух миллиционерах??

- 1. $\Pi ycmb \ x_n \leq y_n \forall n, x_n \to a, y_n \to b; a, b \in \mathbb{R} \Rightarrow a \leq b$
- 2. Пусть $x_n \leq y_n \leq z_n \forall n, x_n \to a, z_n \to a, a \in \mathbb{R} \Rightarrow y_n \to a$

Доказательство. 1. Пусть $a>b, a-b=\delta>0 \Rightarrow \exists N_1: \forall n>N_1 \mid x_n-a\mid \leq \frac{\delta}{4}, \exists N_2: \forall n>N_2 \mid y_n-b\mid <\frac{\delta}{4},$ возьмем $n_0=N_1+N_2+1 \Rightarrow$

$$x_{n_0} > a - \frac{\delta}{4} = b + \delta - \frac{\delta}{4} = b + \frac{3}{4}\delta = (b + \frac{\delta}{4}) + \frac{\delta}{2} > y_{n_0} + \frac{\delta}{2} > x_{n_0}$$

что противоречит условию.

2. Возьмем $\forall \epsilon>0, \exists N_1: \forall n< N_1 \ |x_n-a|<\epsilon, \exists N_2: \forall n>N_2 \ |z_n-a|<\epsilon,$ тогда для $N=max(N_1,N_2)$ имеем при n>N

$$a - \epsilon < x_n \le y_n \le z_n < a + e \Rightarrow |y_n - a| < \epsilon$$

Термин 2.1. Если $x_n \to 0$, то говорят, что $\{x_n\}_{n=1}^{+\infty}$ бесконечно малая; если $|y_n| \to +\infty$, то говорят, что последовательность $\{y_n\}_{n=1}^{+\infty}$ бесконечно большая.

Утверждение 2.1. Пусть последовательность $\{y_n\}_{n=1}^{+\infty}$ бесконечно большая, $y_n \neq 0 \, \forall n, x_n = \frac{1}{y_n}$. Тогда $\{x_n\}_{n=1}^{+\infty}$ бесконечно малая последовательность. Пусть $\{x_n\}_{n=1}^{+\infty}$ бесконечно малая последовательность, $x_n \neq 0 \, \forall n, y_n = \frac{1}{x_n}$. Тогда $\{y_n\}_{n=1}^{+\infty}$ бесконечно большая последовательность.

Доказательство. Докажем первое, второе доказывается аналогично. Возьмем $\forall \epsilon>0$, пусть $L=1/\epsilon$. Тогда $\exists N:\forall n>N\;|y_n|>L$, но $|y_n|>L\Leftrightarrow \frac{1}{|y_n|}<\frac{1}{L}=\epsilon$, т.е. $|x_n-0|=|x_n|=\frac{1}{|y_n|}<\epsilon$

2.7. Предельные переходы и бесконечные пределы

Дополнение к предельным переходам в арифметических действиях

Теорема 2.6. Справедливы следующие утвреждения:

2.7. ПРЕДЕЛЬНЫЕ ПЕРЕХОДЫ И БЕСКОНЕЧНЫЕ ПРЕДЕЛЬ

1.
$$c > 0, x_n \to +\infty, y_n \to -\infty \Rightarrow cx_n \to +\infty, cy_n \to -\infty; d < 0, dx_n \to -\infty dy_n \to +\infty$$

3.
$$x_n \to +\infty, y_n \to a > 0, z_n \to b < 0 \Rightarrow x_n y_n \to +\infty, x_n z_n \to -\infty$$

 $u_n \to -\infty, v_n \to c > 0, w_n \to d < 0 \Rightarrow u_n v_n \to -\infty, u_n w_n \to +\infty$
 $x_n \to +\infty, t_n \to +\infty, s_n \to -\infty \Rightarrow x_n t_n \to +\infty, x_n s_n \to -\infty$
 $u_n \to -\infty, v_n \to -\infty \Rightarrow u_n v_n \to +\infty;$

Дополнение к предельным переходам в неравенствах

Теорема 2.7. Справедливы следующие утверждения:

1. Пусть
$$x_n \leq y_n \forall n, x_n \to a \in \overline{\mathbb{R}}, y_n \to b \in \overline{\mathbb{R}} \Rightarrow a \leq b$$

2. Пусть
$$x_n \leq y_n \leq z_n \forall n, x_n \to a \in \overline{\mathbb{R}}, z_n \to a \in \overline{\mathbb{R}} \Rightarrow y_n \to a$$

Доказательство. Доказательство приведенных выше теорем проще доказательств соответсвующих теорем для конечных пределов и в дальнейшем курсе не используются, поэтому будут приняты без доказательства.

Определение 2.3. Последовательность $\{x_n\}_{n=1}^{+\infty}$ называется возрастающей, если $x_n \leq x_{n+1} \forall n$; последовательность $\{y_n\}_{n=1}^{+\infty}$ называется строго возрастающей, если $y_n < y_{n+1} \forall n$. Последовательность $\{u_n\}_{n=1}^{+\infty}$ называется убывающей, если $u_n \geq u_{n+1} \forall n$; последовательность $\{v_n\}_{n=1}^{+\infty}$ называется строго убывающей, если $v_n > v_{n+1} \forall n$. Последовательность $\{t_n\}_{n=1}^{+\infty}$ называется монотонной, если она возрастающая или убывающая; последовательность $\{w_n\}_{n=1}^{+\infty}$ называется строго монотонной, если она строго возрастающая или строго убывающая.

Теорема 2.8. 1. Пусть $\{x_n\}_{n=1}^{+\infty}$ - монотонная последовательность. Тогда $\exists \lim_{n\to\infty} x_n \in \overline{\mathbb{R}}$

- 2. Пусть $\{y_n\}_{n=1}^{+\infty}$ возрастающая. Тогда $\lim_{n\to\infty}y_n\in\mathbb{R}\Leftrightarrow\exists M\in\mathbb{R}:y_n\leq M\forall n$
- 3. Пусть $\{u_n\}_{n=1}^{+\infty}$ убывающая. Тогда $\lim_{n\to\infty}u_n\in\mathbb{R}\Leftrightarrow \exists K\in\mathbb{R}:u_n\geq K \forall n$

- 4. Пусть $\{v_n\}_{n=1}^{+\infty}$ строго возрастающая $u\lim_{n\to\infty}v_n\in\mathbb{R}$. Тогда $v_n<\lim_{n\to\infty}v_n\forall n$
- 5. Пусть $\{w_n\}_{n=1}^{+\infty}$ строго убывающая и $\lim_{n\to\infty}w_n\in\mathbb{R}$. Тогда $w_n>\lim_{n\to\infty}w_n\forall n$

Доказательство. Доказательство соотношений 1), 2), 4). Предположим, что последовательность $\{y_n\}_{n=1}^{+\infty}$ неограничена сверху. Возьмем $\forall L>0,\$ тогда $\exists N: y_N>L\Rightarrow \forall n>N\ y_n\geq y_{n-1}\geq ...\geq y_N>L\Rightarrow y_n\underset{n\to\infty}{\to}+\infty.$ Предположим, что $\{y_n\}_{n=1}^{+\infty}$ ограничена сверху, т.е. $\exists M: y_n \leq M \forall n$. Пусть $E = \{y \in \mathbb{R}: \exists n: y = y_n\}$. Тогда множество E непусто и ограничено сверху, M - его верхняя граница. Пусть $a=\sup E$. Тогда $y_n \leq a \forall n$. Возьмем $\epsilon>0$, тогда $a-\epsilon$ не верхняя граница E, тогда $\exists N: y_N > a - \epsilon$. Тогда при $\forall n > N$ имеем $y_n \ge y_{n-1} \ge ... \ge y_N > a - \epsilon, y_n \le a$, т.е. $|y_n - a| < \epsilon$, т.е. $y_n \underset{n \to \infty}{\to} a.$ Утверждение 1) для возрастающей последовательности и достаточность в утверждении 2) доказаны. Необходимость в утверждении 2) следует из ограниченности последовательности, имеющей конечный предел. Для доказательства 4) пишем $(y_n < y_{n+1} \le \lim_{n \to \infty} y_n)$, $(v_n < v_{n+1} \le \lim_{n \to \infty} v_n)$. Доказательство утверждений 1), 3), 5) следуют из того, что если u_n - убывающая, то $y_n \stackrel{def}{=} -u_n$ - возрастающая, если w_n - строго убывающая, то $v_n \stackrel{def}{=} -w_n$ - строго возрастающая, и далее применим утверждения 1), 2), 4).

Теорема 2.9. Теорема о вложенных промежутках. Пусть $[a_{n+1},b_{n+1}]\subset [a_n,b_n], n=1,2,\ldots,n;\ b_n-a_n\underset{n\to\infty}{\to} 0.$ Тогда $\exists !\ c\in \mathbb{R}: c\in [a_n,b_n] \forall n.$

Замечание. Условие замкнутости промежутков существенно: имеем $\left(0,\frac{1}{n+1}\right]\subset \left(0,\frac{1}{n}\right],\frac{1}{n}-0=\frac{1}{n}\underset{n\to\infty}{\longrightarrow}0,$ но $\bigcap_{n=1}^{\infty}\left(0,\frac{1}{n}\right]\neq\varnothing.$

Доказательство. Имеем неравенство $a_n < b_n \le b_{n-1} \le ... \le b_1, b_n > a_n \ge a_{n-1} \ge ... \ge a_1 \forall n$, т.е. $a_n \le b_1 \forall n, b_n \ge a_1 \forall n$. Тогда в силу возрастания $\{a_n\}_{n=1}^{+\infty}$ и убывания $\{b_n\}_{n=1}^{+\infty}$ по предыдущей теореме $\exists c_1 = \lim_{n\to\infty} a_n; \exists c_2 = \lim_{n\to\infty} b_n; c_1, c_2 \in \mathbb{R}$. По свойству перехода к пределу в неравенстве имеем:

$$a_n < b_n \Rightarrow lim_{n \to \infty} a_n \leq lim_{n \to \infty} b_n \Rightarrow c_1 \leq c_2$$

По доказательству предыдущей теоремы имеем $a_n \leq c_1 \forall n; b_n \geq c_2 \forall n,$ поэтому $0 \leq c_2 - c_1 \leq b_n - a_n,$ тогда

$$0 \le c_2 - c_1 \le \lim_{n \to \infty} (b_n - a_n) = 0 \Rightarrow c_1 = c_2 \stackrel{def}{=} c$$

2.8. ЧИСЛО е 27

Тогда имеем $a_n \le c \le b_n$, т.е. $c \in [a_n, b_n]$. Если бы $\exists c_0 \in [a_n, b_n] \forall n$, то $|c_0 - c| \le b_n - a_n, |c_0 - c| \le \lim_{n \to \infty} (b_n - a_n) = 0$, т.е. c - единственно.

2.8. Число *е*

Теорема 2.10. Пусть $x_n = \left(1 + \frac{1}{n}\right)^n, y_n = \left(1 + \frac{1}{n}\right)^{n+1}, n = 1, 2, \dots$ Тогда $\{x_n\}_{n=1}^{+\infty}$ строго возрастает, y_n строго убывает, $\exists lim_{n \to \infty} x_n = lim_{n \to \infty} y_n \stackrel{def}{=} e \wedge x_n < e < y_n \forall n, \ e \ частности \ 2 < e < 3.$

Замечание. Вычислено, что e = 2,718...

Доказательство. Докажем строгое возрастание $\{x_n\}_{n=1}^{+\infty}$. Считаем $n \ge 3$, при n=1, n=2 - явные вычисления. Применяя бином Ньютона, имеем:

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1^n + \sum_{k=1}^{n-1} C_n^k \cdot 1^{n-k} \cdot \frac{1}{n^k} + \frac{1}{n^n} = 1 + C_n^1 \cdot \frac{1}{n} + \sum_{k=2}^{n-1} C_n^k \cdot \frac{1}{n^k} + \frac{1}{n^n} = 2 + \sum_{k=2}^{n-1} \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} + \frac{1}{n^n} \quad (2.13)$$

Преобразуем отдельно:

$$\frac{n!}{k!(n-k)!} \frac{1}{n^k} = \frac{n(n-1)\dots(n-k+1)(n-k)!}{k!(n-k)!n^k} = \frac{n(n-1)(n-k+1)}{k!n^k} = \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \quad (2.14)$$

$$\frac{1}{n^n} = \frac{n!}{n^n} \cdot \frac{1}{n!} = \frac{(n-1)!}{n^{n-1}} \cdot \frac{1}{n!} = \frac{1}{n!} \left(1 - \frac{1}{n} \right) \cdot \left(1 - \frac{2}{n} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n} \right)$$
(2.15)

Тогда соотношения ??, ??, ?? влекут

$$x_n = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{k-1}{n} \right)$$
 (2.16)

Тогда ?? ⇒

$$x_{n+1} = 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right)$$
 (2.17)

Поскольку $1-\frac{e}{n}<1-\frac{e}{n+1}, 1\leq e\leq n-1,$ и в $\ref{1}$ есть ещё одно слагаемое по сравнению с $x_n,$ то $x_n< x_{n+1}$

Докажем строгое убывание y_n . Пусть $n \ge 0$.

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{n}{n+1} \cdot \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^n} = \frac{n}{n+1} \left(\frac{n}{n-1}\right)^n \left(\frac{n+1}{n}\right)^n = \frac{n}{n+1} \frac{n^{2n}}{(n^2-1)^n} = \frac{n}{n+1} \left(\frac{n^2}{n^2-1}\right)^n = \frac{n}{n+1} \left(1 + \frac{1}{n^2-1}\right)^n \quad (2.18)$$

Применяя бином Ньютона к выражению $(1+x)^n, x>0, n\geq 2$, имеем $(1+x)^n=1^n+C_n^11^{n-1}x+...=1+nx+...$, где многоточие означает положительные слагаемые, поэтому получаем неравенство Бернулли:

$$(1+x)^n > 1 + nx, n \ge 2, x > 0 (2.19)$$

Применим ?? к ?? с $x = \frac{1}{n^2-1}$. Тогда ??, ?? \Rightarrow

$$\frac{y_{n-1}}{y_n} > \frac{n}{n+1} \left(1 + \frac{n}{n^2 - 1} \right) = \frac{n(n^2 + n - 1)}{(n+1)(n^2 - 1)} = \frac{n^3 + n^2 - n}{n^3 + n^2 - n - 1} > 1$$

Строгое убывание $\{y_n\}_{n=1}^{+\infty}$ доказано.

Далее,

$$y_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right)x_n$$
 (2.20)

?? $\Rightarrow y_n > x_n, y_n - x_n = \frac{1}{n} x_n$. Теперь доказано, что $x_n < x_{n+1} < y_{n+1} < y_n$, т.е. $[x_{n+1}, y_{n+1}] \subset [x_n, y_n], 0 < x_n < y_n < y_{n-1} < y_5 < 3, n \geq 5 \Rightarrow y_n - x_n < \frac{3}{n}, n \geq 5 \Rightarrow y_n - x_n \overset{\rightarrow}{\to} 0$

К мромежуткам $[x_n,y_n]$ применим теорему о вложенных промежутках, тогда $\exists !e \in [x_n,y_n] \forall n$, из доказательства теоремы о вложенных промежутках следует, что $e = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. По утверждениям 4 и 5 теоремы о пределах монотонных последовательностей в силу строгого возрастания $\{x_n\}_{n=1}^{+\infty}$ и строгого убывания $\{y_n\}_{n=1}^{+\infty}$ имеем $x_n < e < y_n \forall n$

2.9. Подпоследовательности

Определение 2.4. Пусть $F: \mathbb{N} \to \mathbb{R}$ - последовательность, $\phi: \mathbb{N} \to \mathbb{N}$ - инъективное отображение и $\phi(n) < \phi(m), n < m$. Подпоследовательностью последовательности F называется $G \stackrel{def}{=} F(\phi): \mathbb{N} \to \mathbb{R}$. G - тоже последовательность.

В приведенном определении фигурируют последовательности вещественных чисел, но определение сохраняется, если рассматривать любую последовательность $F: \mathbb{N} \to E$ из элементов множества E, подпоследовательность будет определяяться как суперпозиция $F(\phi): \mathbb{N} \to E$.

Исторически сложившееся обозначение подпоследовательности следующее. Обозначают $\phi(k)=n_k$, тогда, если $F(n)=x_n$, то $F(\phi(k))=x_{n_k}$, т.е. рассматриваются элементы с номерами $x_{n_1},x_{n_2},\ldots,x_{n_k},\ldots$, стандартное обозначение $\{x_{n_k}\}_{k=1}^{+\infty}$ и говорят, что подпоследовательность выбрана из последовательности, т.е. выбраны номера $n_1,n_2,\ldots;n_1 < n_2 < \ldots < n_k < \ldots$, и рассматриваются элементы x_{n_k} только с этими номерами.

Утверждение 2.2. Предположим, что $x_n \underset{n \to \infty}{\to} a, a \in \overline{\mathbb{R}}, \{x_{n_k}\}_{k=1}^{+\infty}$ - подпоследотвальность. Тогда $x_{n_k} \underset{k \to \infty}{\to} a$.

Доказательство. Для $a \in \mathbb{R}$, для $a = \pm \infty$ аналогично. Поскольку $n_1 < n_2 < \ldots < n_k < \ldots$, то $n_k \geq k$; возьмем $\epsilon > 0$ и пусть $N: \forall n > N \ |x_n - a| < \epsilon$. Тогда $\forall k > N$ имеем $n_k \geq k > N$, поэтому $\forall k > N |x_{n_k} - a| < \epsilon$.

Теорема 2.11. Принцип выбора Больцано — Вейерштрасса. Пусть $\{x_n\}_{n=1}^{+\infty}$ - последовательность $M>0, |x_n|\leq M \forall n$. Тогда $\exists a,a\in [-M,M]$ и подпоследовательность $\{x_{n_k}\}_{k=1}^{+\infty}: x_{n_k} \underset{k\to\infty}{\to} a$.

Доказательство. Положим $a_1=-M, b_1=M, c_1=0=\frac{a_1+b_1}{2}$. Тогда либо для $[a_1,c_1]$, либо для $[c_1,b_1]$, либо для обоих, выполнено следующее утверждение 1: существует бесконечно много номеров n таких, что x_n принадлежит x_n лежит на этом промежутке. Пусть $[a_2,b_2]$ - именно этот промежуток, $n_1:x_{n_1}\in[a_2,b_2]$. Здесь либо $a_2=a_1,\ b_2=c_1,$ либо $a_2=c_1,\ b_2=b_1.$ Пусть $c_2=\frac{a_2+b_2}{2}.$ Тогда либо для $[a_2,c_2],$ либо для $[c_2,b_2],$ либо для обоих выполнено утверждение 2: существует бесконечно много номеров $n>n_1:x_n$ лежит на этом промежутке. Пусть $[a_3,b_3]$ именно этот промежуток, т.е. либо $a_3=a_2,\ b_3=c_2,$ либо $a_3=c_2,\ b_3=b_2,$ и пусть $x_{n_2}\in[a_3,b_3], n_2>n_1.$ Далее по индкуции пусть уже выбраны $[a_k,b_k],n_{k-1}>n_{k-2}.$ Пусть $c_k=\frac{a_k+b_k}{2}.$ Для $[a_k,c_k]$

или для $[c_k,b_k]$, или для обоих выполнено утверждение k: существует бесконечно много номеров $n>n_{k-1}:x_n$ лежит на этом промежутке. Пусть $[a_{k+1},b_{k+1}]$ этот промежуток, т.е. либо $a_{k+1}=a_k,b_{k+1}=c_k$, либо $a_{k+1}=c_k,b_{k+1}=b_k$, и пусть $x_{n_k}\in[a_{k+1},b_{k+1}],n_k>n_{k-1}$.

Построена последовательность $\{x_{n_k}\}_{k=1}^{+\infty}$ и последовательность вложенных промежутков ... $[a_{k+1},b_{k+1}]\subset [a_k,b_k]\subset ...\subset [a_1,b_1]$, при этом

$$b_k - a_k = \frac{2M}{2^{k-1}} = 2^{-k+1} M \underset{k \to \infty}{\to} 0$$

По теореме о вложенных промежутках $\exists a \in [a_k,b_k] \forall k,a_k \to a, b_k \to a$, при этом $x_{n_k} \in [a_{k+1},b_{k+1}]$, т.е. $a_{k+1} \leq x_{n_k} \leq b_{k+1}$.

По утверждению 2 теоремы о переходе к пределу в неравенстве $x_n \underset{k \to \infty}{\to} a.$