TSL1803PCT

27

CLAIMS

- A composition comprising:
 - (A) a silicone oil, and
 - (B) a heat conductive filler,

with the provisos that component (A) is selected from the group consisting of silicone oils described by a general formula (A_1) ; silicone oils described by a general formula (A_2) ; silicone oils described by a general formula (A_3) ; mixtures of at least two of formulae (A_1) , (A_2) , and (A_3) ; and a hydrosilylation reaction mixtures of formula (A_1) and formula (A_3) , where

formula (A_1) is

$$[R_a^1R_{(3-a)}^2SiO(R_b^1R_{(2-b)}^2SiO)_m(R_2^2SiO)_n]_cSiR_{(4-(c+d))}^2(OR_a^3)_a$$

formula (A_2) is

$$R^{2}$$
 $Si-O$ $Si-O$ $Si-R^{4}$ $SiR^{2}_{(3-d)}(OR^{3})_{d}$ R^{2} R^{2} R^{2} R^{2} R^{3} R^{2} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{4} R^{2} R^{4} R^{2} R^{4} R^{2} R^{4} R^{4}

formula (A₃) is $[H_cR^2_{(3-c)}SiO(R^2_2SiO)_n]_eSiR^2_{[4-(c+d)]}(OR^3)_d$, where

all instances of \mathbf{R}^1 are identical or different monovalent hydrocarbon groups with aliphatically unsaturated bonds,

all instances of R² are identical or different monovalent hydrocarbon groups that do not have aliphatically unsaturated bonds,

R3 stands for alkyl, alkoxyalkyl, alkenyl, or acyl,

"a" is an integer of 0 to 3,

"b" is 1 or 2.

"c" is an integer of 1 to 3,

"d" is an integer of 1 to 3,

"c+d" is an integer of 2 to 4,

"m" is an integer of 0 or greater,

"n" is an integer of 0 or greater,

with the proviso that "m" is 1 or greater when "a" is 0,

R⁴ is an oxygen atom or divalent hydrocarbon group,

"p" is an integer of 5 or greater, and

P.30

TSL1803PCT

28

"e" is an integer of 1 to 3, and component (B) is surface treated with component (A).

- 2. The composition of claim 1, where component (B) is an alumina powder.
- 3. The composition of claim 1, where component (B) is selected from component (B₁) orcomponent (B2), where
- (B₁) is a quasi-spherical alumina powder with an average particle size of 0.1 to 20 μm;
 - (B_2) is a mixture of (B_{21}) and (B_{22}) , where
 - (B21) is a quasi-spherical alumina powder with an average particle size of greater than 5 to 50 μ m, and
 - (B₂₂) is a quasi-spherical or irregular-shaped alumina powder with an average particle size of 0.1 to 5 μ m.
- The composition of claim 3, where component (B2) is 30 to 90 wt% of component (B_{21}) and 10 to 70 wt% of component (B_{22}) .
- The composition of claim 1, where content of component (B) is 500 to 3,500 parts 5. by weight per 100, parts by weight of component (A).
- 6. The composition of claim 1, where component (A) is a silicone oil selected from the group consisting of formula (A₁) and formula (A₃), and the composition further comprises (C) a component increasing the viscosity of component (A) via a hydrosilylation reaction, with the proviso that component (C) does not contain silicone oils corresponding to component (A).
- Use of the composition of any of claims 1 to 6 to provide heat dissipation for an electronic component.