1 September 4th, 2019

1.1 NP-Completeness of Finding Large Itemsets

The problem of finding all "large" itemsets is equivelent to finding all "large" J-itemsets for each positive integer J. (for our case this is finding J-itemsets with support ≥ 3).

However, this problem is NP-Complete, as it is equivelent to solving the **Balanced** Complete bipartite Subgraph, a known NP-Complete problem.

Definition 1.1. The **Balanced Complete Bipartitie Subgraph** is as follows:

- Instance: Given a bipartite graph G = (V, E) and positive integer $K \leq |V|$
- Question: Are there two disjoint subsets $V_1, V_2 \subseteq V$ such that $|V_1| = |V_2| = K$ and such that, for each $u \in V_1$ and each $v \in V_2$, $(u, v) \in E$.

Figure 1: $V_1 = \{A, B, C\}, V_2 = \{E, F, G\}$ for the left, no such V_1, V_2 exists for the right

The reduction from the graph problem to the itemset problem is as follows:

- For each vertex in V_1 , create a transaction
- For each vertex in V_2 , create a item
- For each edge (u, v), create a purchase of item v in transaction u
- We have f = K and J = K

Remark 1.2 — In other words, solving the graph problem is equivelent to the itemset problem, i.e. is there a K-frequent itemset of size K. Since this is a restriction of the itemset problem, if we can solve the itemset problem, we can solve the Balanced Complete Bipartite Subgraph problem. As such, the itemset problem is also NP-Complete, since BCBS is NP-Complete.

Remark 1.3 — NP-Complete means that there is no polynomial time algorithm to solve it (unless P=NP).

1.2 Algorithm Aprior

This algorithm starts with "large" 1-itemsets, and iteratively builds "large" itemsets with bigger sizes (1-itemsets \rightarrow 2-itemset \rightarrow ...). It can be described as follows:

- Start with $L_1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$, i.e. the large 1-itemsets.
- From L_1 , generate candidates for large 2-itemsets, C_2 .
- From C_2 , check and keep the large 2-itemsets, L_2 .
- Repeat

To generate candidates for "large" n-itemsets from L_{n-1} , we can take note of the following properties:

Theorem 1.4

If an itemset S is large, then any proper subset of S must be large.

Proof. Note that the proper subsets of S are a relaxed version of S. Since we are relaxing the constraint, this property must be true.

Theorem 1.5

If an itemset S is NOT large, then any proper superset of S must NOT be large.

Proof. Similarly, since the proper supersets are restricted versions of S, if S is not large, then any proper supersets of S must not be large, since it's even more restricted.

Example 1.6

 $\{B, C, E\}$ is large, thus $\{B, C\}, \{C, E\}, \{C\}$ are all large (not exabstive).

Using these properties, we can split the generation step into two steps: Suppose we know that the itemset B, C and the itemset B, E are large (i.e. in L_2)