LISTA 8

- 1) Fie K un corp, K' un subcorp al lui K şi V un K-spaţiu vectorial de dimensiune $n \in \mathbb{N}$. Să se arate că, folosind operaţiile din corpul K şi faptul că K' este subcorp în K, grupul (K, +) poate fi organizat ca un spaţiu vectorial peste K' şi că dacă $\dim_{K'} K = m \ (m \in \mathbb{N}^*)$ atunci $\dim_{K'} V = mn$.
- 2) Fie $p \in \mathbb{N}$ un număr prim. Să se arate că operațiile uzuale de adunare și înmulțire înzestrează pe

$$V = \{ a + b\sqrt[3]{p} + c\sqrt[3]{p^2} \mid a, b, c \in \mathbb{Q} \}$$

cu o structură de Q-spațiu vectorial și să se determine o bază și dimensiunea acestui spațiu vectorial.

3) Fie K un corp comutativ, $V=M_2(K)$. Să se arate că

$$V_1 = \left\{ \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \mid a, b, c \in K \right\} \text{ si } V_2 = \left\{ \left(\begin{array}{cc} 0 & a \\ -a & b \end{array} \right) \mid a, b \in K \right\}$$

sunt subspații ale lui V și să se găsească dimensiunile lui $V_1,\,V_2,\,V_1+V_2$ și $V_1\cap V_2$.

- 4) Fie V un K-spațiu vectorial de dimensiune 3 și V_1, V_2 două subspații diferite de dimensiune 2. Să se arate că $V_1 \cap V_2$ are dimensiunea 1. Care este semnificația geometrică în cazul $K = \mathbb{R}, V = \mathbb{R}^3$?
- 5) Fie V un K-spațiu vectorial de dimensiune $n \in \mathbb{N}^*$ și V_1, V_2 subspații ale lui V. Să se arate că dacă dim $V_1 = n 1$ și $V_2 \nsubseteq V_1$ atunci

$$\dim(V_1 \cap V_2) = \dim V_2 - 1$$
 și $V_1 + V_2 = V$.

6) Fie V un K-spațiu vectorial de dimensiune finită și V_1, V_2 subspații ale lui V care verifică egalitatea

$$\dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1.$$

Să se arate că $V_1 \subseteq V_2$ sau $V_2 \subseteq V_1$.

7) Fie f și g endomorfisme ale unui K-spațiu vectorial V de dimensiune finită. Dacă f+g este un automorfism al lui V și $f\circ g$ este endomorfismul nul atunci

$$\dim V = \dim f(V) + \dim g(V).$$

- 8) a) Fie V_1, V_2 două K-spații vectoriale de dimensiune finită cu dim $V_1 = \dim V_2$ și $f: V_1 \to V_2$ o transformare liniară. Să se arate că următoarele afirmații sunt echivalente:
 - i) f este injectivă;
 - ii) f este surjectivă;
 - iii) f este izomorfism.
- b) Să se arate că, în cazul spațiilor vectoriale de dimensiune infinită, condițiile din problema anterioară nu sunt echivalente.
- 9) a) Să se determine numărul bazelor ordonate ale următoarelor spații vectoriale: $Z_2(Z_2)^2$; $Z_3(Z_3)^2$; $Z_3(Z_3)^3$.
- b) Fie K un corp finit cu q elemente și V un K-spațiu vectorial de dimensiune $n \in \mathbb{N}^*$. Să se determine:
- i) numărul bazelor ordonate ale lui V;
- ii) ordinul grupului $GL_n(K)$.

- 10) Fie K un corp finit cu q elemente, V un K-spațiu vectorial de dimensiune $n \in \mathbb{N}^*, \, k \in \{0,1,\dots,n\}$ și $G_n^k(q)$ numărul subspațiilor lui V care au dimensiunea k. Numerele $G_n^k(q)$ se numesc numerele lui Gaussasociate lui V.Să se arate că:

$$\begin{array}{l} \text{i) } G_n^0(q) = 1 = G_n^n(q); \\ \text{ii) } G_n^k(q) = \frac{(q^n-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)\cdots(q-1)}, \text{ pentru } k \in \{1,\dots,n-1\}; \\ \text{iii) } G_n^k(q) = G_n^{n-k}(q), \text{ pentru } k \in \{0,1,\dots,n\}; \\ \text{iv) } G_n^k(q) = q^k G_{n-1}^k(q) + G_{n-1}^{k-1}(q), \text{ pentru } k \in \{1,\dots,n-1\}. \end{array}$$