UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2023/2 Prova da área I

1-2	3	4	Total

Nome:	Cartão:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas (dissertativas)

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares;

 $\vec{F} = \vec{F}(x,y,z)$ e $\vec{G} = \vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	$\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:

Curvatura, torção e aceleração:			
Nome	Fórmula		
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$		
Vetor binormal	$\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ }$		
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$		
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}'''(t)\ ^2}$		
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $		
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$		
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$		

Equações de Frenet-Serret:

1 3		e rremee ser	
$\frac{d\vec{T}}{ds}$	=	$\kappa ar{\Lambda}$	Ť
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$	$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=	$-\tau$	$\vec{ m V}$

• Questão 1 (0.6 ponto cada item) Considerando a trajetória parametrizada pela seguinte função vetorial:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + \cos(2t)\vec{k}, \ 0 \le t \le \frac{\pi}{2}$$

e a correspondente curva C, está correto:

(A) tangente unitário em $t = \frac{\pi}{4}$:

()
$$\frac{1}{\sqrt{5}} \left(-\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j} - 2\vec{k} \right)$$

()
$$\frac{1}{\sqrt{5}} \left(\frac{\sqrt{2}}{2} \vec{i} + \frac{\sqrt{2}}{2} \vec{j} - 2 \vec{k} \right)$$

()
$$\frac{1}{\sqrt{5}} \left(-\frac{\sqrt{2}}{2}\vec{i} - \frac{\sqrt{2}}{2}\vec{j} - 2\vec{k} \right)$$

()
$$\frac{1}{\sqrt{2}} \left(-\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j} - 2\vec{k} \right)$$

()
$$-\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j} - 2\vec{k}$$

() nenhuma das anteriores

(C) curvatura em $t = \frac{\pi}{4}$:

- $() \frac{1}{\sqrt{5}}$
- $(\)\ \frac{1}{\sqrt{2}}$
- () $\sqrt{5}$
- $(\)\ \frac{1}{5}$
- () nenhuma das anteriores

(E) aceleração normal em $t = \frac{\pi}{4}$:

- $(\)\ \frac{1}{5}$
- () 1
- () $\sqrt{5}$
- $(\)\ \frac{1}{\sqrt{5}}$
- () 5

() nenhuma das anteriores

(G) comprimento da curva C:

()
$$L = \int_0^{\frac{\pi}{2}} \sqrt{1 + \sin^2(2t)} dt$$

()
$$L = \int_0^{\frac{\pi}{2}} (1 + \sin^2(2t))^{3/2} dt$$

()
$$L = \int_0^{\frac{\pi}{2}} (1 + 4 \operatorname{sen}^2(2t))^{3/2} dt$$

()
$$L = \int_0^{\frac{\pi}{2}} (1 + 2\sin(2t))dt$$

() nenhuma das anteriores

(B) aceleração em
$$t = \frac{\pi}{4}$$
:
() $\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j} + \vec{k}$

$$(\)\ \frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$$

$$() \frac{2}{2}\vec{i} + \frac{2}{2}\vec{j}$$

$$() -\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$$

$$() -\frac{\sqrt{2}}{2}\vec{i} - \frac{\sqrt{2}}{2}\vec{j} - 4\vec{k}$$

$$() -\frac{\sqrt{2}}{2}\vec{i} - \frac{\sqrt{2}}{2}\vec{j} + 4\vec{k}$$

$$() -\frac{\sqrt{2}}{2}\vec{i} - \frac{\sqrt{2}}{2}\vec{j} - \vec{k}$$

$$() \text{ nenhuma das anteriores}$$

$$(\)\ -\frac{\sqrt{2}}{2}\vec{i}-\frac{\sqrt{2}}{2}\vec{j}+4\vec{k}$$

$$(\)\ -\frac{\sqrt{2}}{2}\vec{i} - \frac{\sqrt{2}}{2}\vec{j} - \vec{k}$$

(D) torção em $t = \frac{\pi}{4}$:

- () nenhuma das anteriores

(F) aceleração tangencial em $t = \frac{\pi}{4}$:

- () $\frac{1}{\sqrt{5}}$ () $\frac{1}{5}$

() nenhuma das anteriores

• Q	uestão 2	(0.6)	ponto	cada item) Considerando	a superfície	parametrizada
-----	----------	-------	-------	-----------	----------------	--------------	---------------

$$\vec{r} = -4v\cos(u)\vec{i} + 3v\sin(u)\vec{j} + 4v\vec{k}, 0 \le u \le 2\pi, 0 \le v \le 2$$

no ponto em que $u=\frac{\pi}{2},\,v=1,$ é correto:

(A) vetor normal unitário \vec{N} :

$$()$$
 $\frac{1}{\sqrt{2}} \left(\vec{i} - \vec{k} \right)$

$$(\quad) \quad \frac{1}{\sqrt{2}} \left(\vec{i} + \vec{k} \right)$$

$$() \frac{1}{\sqrt{3}} \left(\vec{i} - \vec{j} + \vec{k} \right)$$

$$(\quad) \quad \frac{1}{5} \left(4\vec{j} + 3\vec{k} \right)$$

$$\left(\ \ \right) \ \frac{1}{5} \left(-4\vec{j} + 3\vec{k} \right)$$

() nenhuma das anteriores

()
$$4(y-3) - 3(z-4) = 0$$

() $4(y-3) + 3(z-4) = 0$
() $(y-3) - (z-4) = 0$
() $(y-3) + (z-4) = 0$
() $(x-4) - (z-4) = 0$

()
$$4(y-3) + 3(z-4) = 0$$

$$(y-3)-(z-4)=0$$

$$(y-3)+(z-4)=0$$

$$(x-4)-(z-4)=0$$

() nenhuma das anteriores

- (B) equação cartesiana do plano tan- (C) denominação mais adequada para a superfície toda:
 - () parabolóide elíptico
 - () parabolóide hiperbólico
 - () cone elíptico
 - () hiperbolóide de uma folha
 - () hiperbolóide de duas folhas
 - () nenhuma das anteriores

- Questão 3. Seja o campo vetorial $\vec{F}(x,y,z) = (x-y)\vec{i} + (y-x)\vec{j} + (z-x)\vec{k}$. Seja S a superfície cônica representada ao lado (observe que $0 \le z \le 2$) e seja o disco $D = \{(x, y, 2) : x^2 + y^2 \le 2^2\}$, orientado no sentido z positivo (como superfície). Observe que a uni \tilde{a} o de S com D limita um sólido (volume) que denotaremos por
- (a) (1.0pt) Obtenha o fluxo de \vec{F} através do disco D.
- (b) (1.0pt) Obtenha o fluxo de \vec{F} através da superfície
 S depois de aplicar o Teorema do Divergente no volume G.

• Questao 4. Considere o campo vetorial $F = (3yz^2 + z + 1)i + 3xz^2j + (6xyz + x)k$ e a curva C dada por
$\vec{r}(t) = \exp(t-1)\vec{i} + (t^2 + 2t)\vec{j} + t^4\vec{k} , 0 \le t \le 1.$
(a)(0.5pt) Mostre que \vec{F} é irrotacional.
(b)(0.5pt) Obtenha o potencial de \vec{F} , isto é, o campo escalar ϕ tal que $\vec{F} = \vec{\nabla} \phi$ ou justifique que não existe.
(c)(1.0pt) Obtenha o valor da integral de trabalho $\int_C \vec{F} \cdot d\vec{r}$.
JC
-

Bom Trabalho.