MATH 6337: Homework 12 Solutions

9.1. Use Minkowski's integral inequality to prove (9.1): if $1 \leq p \leq \infty$, $f \in L^p(\mathbb{R}^n)$, and $g \in L^1(\mathbb{R}^n)$, then $f * g \in L^p(\mathbb{R}^n)$ and $||f * g||_p \leq ||f||_p ||g||_1$.

Solution. The cases of $p = 1, \infty$ can be dealt with as in the text. For 1 , Minkowski's integral inequality states that

$$\left\| \int f(x,y) \, dx \right\|_{p} \le \int \left\| f(x,y) \right\|_{p} \, dx,$$

where the norms are taken with respect to the y-variable. Letting F(x,y) = f(y-x)g(x), we have

$$f * g(y) = \int F(x, y) dx,$$

SO

$$||f * g||_p = \left| \left| \int F(x,y) \, dx \right| \right|_p \le \int ||f(y-x)g(x)||_p \, dx = \int |g(x)| \, ||f(y-x)||_p \, dx = ||f||_p \, ||g||_1.$$

The penultimate equality follows because g is a function of x, but the norm is taken with respect to y. The last equality follows because integrals over \mathbb{R}^n are invariant under translations.

9.3. Show that if $f \in L^p(\mathbb{R}^n)$ and $K \in L^q(\mathbb{R}^n)$, $1 \le p \le \infty$ and 1/p + 1/q = 1, then f * K is bounded and continuous in \mathbb{R}^n .

Solution. By Young's convolution theorem (see Problem 9.2), $||f*K||_{\infty} \leq ||f||_p ||K||_q < +\infty$, so f*K is bounded by $c = ||f*K||_{\infty}$ a.e. in \mathbb{R}^n . (Showing that f*K is continuous will prove that f*K is bounded everywhere by c.)

If 1 , then by Hölder's inequality

$$|f*K(x+h)-f*K(x)| \leq \int |f(t)| \left|K(x+h-t)-K(x-t)\right| dt \leq \left|\left|f\right|\right|_{p} \left|\left|\widetilde{K}(t-h)-\widetilde{K}(t)\right|\right|_{q},$$

where $\widetilde{K}(t) = K(x-t)$. Since $\widetilde{K} \in L^q$, we have by continuity in L^q that $\left|\left|\widetilde{K}(t-h) - \widetilde{K}(t)\right|\right|_q \to 0$ as $|h| \to 0$. Since $||f||_p < +\infty$, we've proven continuity of f * K.

If p = 1 (so that $q = +\infty$), then switch the roles of K and f:

$$|f * K(x+h) - f * K(x)| \le \int |K(t)| |f(x+h-t) - f(x-t)| dt \le ||K||_{\infty} \left| \left| \widetilde{f}(t-h) - \widetilde{f}(t) \right| \right|_{1} \to 0.$$

П

9.5. Let G, G_1 be bounded open subsets of \mathbb{R}^n such that $\overline{G_1} \subset G$. Construct a function $h \in C_0^{\infty}$ such that h = 1 in G_1 and h = 0 outside G. [Hint: Choose an open G_2 such that $\overline{G_1} \subset G_2$ and $\overline{G_2} \subset G$. Let $h = \mathbb{1}_{G_2} * K$ for a $K \in C^{\infty}$ with suitably small support and $\int K = 1$.

Solution. Let

$$K(x) = Ce^{-1/(1-|x|^2)} \mathbb{1}_{B_1(0)},$$

where C is chosen so that $\int K = 1$. Choose $\varepsilon < \min(\operatorname{dist}(G_1, \partial G_2), \operatorname{dist}(G_2, \partial G))$, and define $K_{\varepsilon} = \frac{1}{\varepsilon^n} K(x/\varepsilon)$, so that $\int K_{\varepsilon} = 1$. Also, supp $K_{\varepsilon} = \overline{B_{\varepsilon}(0)}$ and $K_{\varepsilon} \in C_0^{\infty}$.

Choose G_2 as described in the hint, and define $h(x) = \mathbb{1}_{G_2} * K_{\varepsilon}(x)$. Since $\mathbb{1}_{G_2} \in L^1$ (as G_2 is bounded) and $K \in C_0^{\infty}$, we have $h \in C_0^{\infty}$. Also, for $x \in G_1$, we have

$$h(x) = \int_{\mathbb{R}^n} \mathbb{1}_{G_2}(x - t)K(t) dt = \int_{B_{\varepsilon}(0)} \mathbb{1}_{G_2}(x - t)K(t) dt = \int_{B_{\varepsilon}(0)} K(t) dt = 1$$

since $\mathbb{1}_{(G_2)}(x-t)=1$ for such points and $|t|<\varepsilon$; if $x\notin G$, then we have

$$h(x) = \int_{\mathbb{R}^n} \mathbb{1}_{G_2}(x-t)K(t) dt = \int_{B_{\varepsilon}(0)} \mathbb{1}_{G_2}(x-t)K(t) dt = 0$$

since $\mathbb{1}_{G_2}(x-t)=0$ for such points and $|t|<\varepsilon$.

9.9. The maximal function is defined as $f^*(x) = \sup |Q|^{-1} \int_Q |f|$, where the supremum is taken over cubes Q with center x. Let $f^{**}(x)$ be defined similarly, but with the supremum taken over all Q containing x. Thus, $f^*(x) \leq f^{**}(x)$. Show that there is a positive constant c depending only on the dimension such that $f^{**}(x) \leq cf^*(x)$.

Solution. Write $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$. For each i = 1, ..., n let $\delta_i = \max(x_i - a_i, b_i - x_i)$, and let $\delta = \max_i \delta_i$. Let Q' be the cube centered at x with each side length 2δ : then $Q \subset Q'$, so

$$\int_{Q} |f| \le \int_{Q'} |f| \,,$$

and $|Q'| \leq 2^n |Q|$, so

$$\frac{1}{|Q|} \int_{Q} |f| \le \frac{2^n}{|Q'|} \int_{Q'} |f|.$$

So, for every Q containing x, there exists Q' centered at x such that the above holds. Thus, $f^{**}(x) \leq 2^n f^*(x)$.