Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Определить минимальную степень/среднюю степень/максимальную степень вершины в неориентированном графе.

Выполнил: Н. А. Жерко

Студент группы 321702

Проверил: Н. В. Малиновская

Содержание

1	Введение	2
2	Список понятий	2
3	Тестовые примеры	4
	3.1 Tect 1:	4
	3.2 Tect 2	4
	3.3 Tect 3	5
4	Пример работы алгоритма в семантической памяти	6
	4.1 Краткое описание:	6
	4.2 Демонстрация на тесте 4:	6
5	Заключение	9

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти минимальное и среднее расстояние между периферийными вершинами неориентированного графа.

2 Список понятий

- 1. Граф совокупность непустого множества вершин и множества пар вершин (рёбер)
- 2. **Неориентированный граф**(абсолютное понятие)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен
 - (а) Вершина (относительное понятие, ролевое отношение);
 - (b) Связка (относительное понятие, ролевое отношение).

Рис. 1: Абсолютное понятие неориентированного графа.

3. Степень (валентность) вершины графа - количество рёбер графа G, инцидентных вершине х.

Рис. 2: Понятие степени вершины.

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме.

3.1 Tect 1:

Вход:

Необходимо определить минимальную степень вершины неорентированного графа

Рис. 3: Вход теста 1.

Выход: Будет выясненно:

Минимальная степень вершины неорентированного графа: 2

3.2 Tect 2

Вход: Необходимо определить максимальную степень вершины неорентированного графа

Рис. 4: Вход теста 2.

Выход: Будет выясненно:

Максимальная степень вершины неорентированного графа: 4

3.3 Тест 3

Вход: Необходимо определить максимальную степень вершины неорентированного графа

Рис. 5: Вход теста 3.

Выход: Средняя степень вершины неорентированного графа: Средняя степень вершины = (2 * E) / V,где E - кол-во ребер,а V - кол-во вершин. Откуда средняя степень вершины = 2.8

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Создаем список ребер, вершин и переменные, каждое из которых будет хранить свое значение
- 2. Проверяем вершины по очереди и изменяем значение min и max если необходимо
- 3. По формуле рассчитываем среднюю степеть вершины

4.2 Демонстрация на тесте 4:

Рис. 6: Вход теста 4.

1. Вершина 1 - степень 2,Вершина 2 - степень 3,Вершина 3 - степень 4,Вершина 4 - степень 3,Вершина 5 - степень 2, $\min=0,\max=0$ (переменные будут хранить значение минимальной и маскимальной степен вершины);

Рис. 7: Действие 2.

2. У вершины один 2 ребра,меняется зачение min=2,max=2.

Рис. 8: Действие 2.

3. У вершины два 3 ребра,
меняется зачение $\max = 3, \min$ - не изченяется.

Рис. 9: Действие 2.

4. У вершины три 4 ребра,
меняется зачение $\max = 4, \min$ - не изменяется.

Рис. 10: Действие 2.

5. У вершины четыре 3 ребра,
зачение \max, \min - не изченяется.

Рис. 11: Действие 2.

6. У вершины пять 2 ребра,зачение тах,тіп - не изченяется.

Рис. 12: Действие 2.

7. Средняя степень вершины = (2 * E) / V,где E - кол-во ребер(7),а V - кол-во вершин(5). Откуда средняя степень вершины = 2.8

5 Заключение

В заключении у нас получилось формализовать поставленную задачу. Мы определили минимальную степень/среднюю степень/максимальную степень вершины в неориентированном графе. Реализовали алгоритм его нахождения, который работает на любом неориентированном графе.