CAPÍTULO II

NOÇÕES TOPOLÓGICAS EM R

1. Distância e vizinhanças

Ao número real não negativo d(x, y) = |x - y| chama-se *distância* entre os números reais $x \in y$. São imediatas as seguintes propriedades:

```
P1: d(x, y) = 0 \Leftrightarrow x = y;

P2: d(x, y) = d(y, x) (simetria);

P3: d(x, y) \le d(x, z) + d(z, y) (designal dade triangular).
```

A propriedade **P3** pode demonstrar-se como segue, utilizando a desigualdade modular da soma : $d(x, y) = |x - y| = |(x - z) + (z - y)| \le |x - z| + |z - y| \le d(x, z) + d(z, y)$

Dado o real $a \in \mathbf{R}$ e sendo $\varepsilon > 0$ ao conjunto (intervalo),

$$V_{\varepsilon}(a) = \{ x : d(x, a) < \varepsilon \} = \{ x : |x - a| < \varepsilon \} =] a - \varepsilon, a + \varepsilon [$$

chama-se vizinhança de a com raio ε . São óbvias as seguintes propriedades :

P4:
$$\varepsilon < \delta \Rightarrow V_{\varepsilon}(a) \subset V_{\delta}(a)$$
;
P5: $\bigcap_{\varepsilon > 0} V_{\varepsilon}(a) = \{a\}$; $a \neq b \Rightarrow \exists \varepsilon > 0 : V_{\varepsilon}(a) \cap V_{\varepsilon}(b) = \emptyset$.

2. Conceitos topológicos básicos

Definem-se seguidamente os conceitos topológicos mais importantes:

- a) Diz-se que $a \in \mathbf{R}$ é ponto interior de um conjunto $A \subseteq \mathbf{R}$ se e só se existe uma certa $V_{\varepsilon}(a)$ contida no conjunto A. O conjunto dos pontos interiores de um conjunto A designa-se por interior do conjunto e representa-se por INT A, podendo evidentemente ser INT $A = \emptyset$ (nada obriga a que um dado conjunto tenha pontos interiores).
- **b)** Diz-se que $a \in \mathbf{R}$ é *ponto fronteiro* de um conjunto $A \subseteq \mathbf{R}$ se e só se em qualquer $V_{\varepsilon}(a)$ existem pontos do conjunto A e pontos do complementar de A. O conjunto dos pontos fronteiros de um conjunto A designa-se por *fronteira* do conjunto e representa-se por FRONTA, podendo evidentemente ser $FRONTA = \emptyset$.
- c) Diz-se que $a \in \mathbf{R}$ é *ponto exterior* ao conjunto $A \subseteq \mathbf{R}$ se e só se existe uma certa $V_{\varepsilon}(a)$ contida no complementar do conjunto A. O conjunto dos pontos exteriores ao conjunto A designa-se por *exterior* do conjunto e representa-se por EXTA, podendo evidentemente ser $EXTA = \emptyset$.

- **d)** Diz-se que $a \in \mathbf{R}$ é *ponto de acumulação* de um conjunto $A \subseteq \mathbf{R}$ se e só se em qualquer $V_{\mathcal{E}}(a)$ existe pelo menos um ponto de A distinto de a. O conjunto dos pontos de acumulação de A chama-se *derivado* de A e representa-se por A', podendo evidentemente ser $A' = \emptyset$.
- e) Chama-se *aderência* ou *fecho* do conjunto A à união do seu interior com a sua fronteira, ou seja, $Ad A = INT A \cup FRONT A$. Excepto no caso de A ser vazio, temse sempre $Ad A \neq \emptyset$.
- f) Um conjunto $A \subseteq \mathbf{R}$ diz-se *aberto* se e só se coincide com o seu interior, ou seja, A = INTA. Dado que em qualquer caso (A aberto ou não) sempre se tem $INTA \subseteq A$, para provar que A é aberto bastará provar que $A \subseteq INTA$.
- **g)** Um conjunto $A \subseteq \mathbf{R}$ diz-se *fechado* se e só se coincide com a sua aderência, ou seja, se e só se, $A = Ad A = INT A \cup FRONT A$.

A partir destes conceitos básicos podemos enunciar uma série de propriedades, a maioria com demonstração muito simples, sem no entanto termos a preocupação de exaustividade. Algumas outras serão apresentadas como exercício no final do capítulo. Vejamos então:

P6:
$$INT A \cup FRONT A \cup EXT A = \mathbf{R}$$

<u>Demonstração</u>: É evidente, dadas as definições de interior, fronteira e exterior de um conjunto; qualquer ponto de espaço respeita uma e uma só das definições a), b) ou c).

P7:
$$EXT A = INT \overline{A}$$

<u>Demonstração</u>: É também evidente, dado que um ponto $a \in EXT$ A se e só se existe uma $V_{\varepsilon}(a)$ contida no complementar de A e tal equivale a ter-se $a \in INT$ \overline{A} .

P8:
$$FRONT A = FRONT \overline{A}$$

<u>Demonstração</u>: Basta atender à definição: $a \in FRONT$ A se e só se em qualquer $V_{\varepsilon}(a)$ existem pontos de A e pontos de \overline{A} , o que equivale a ser $a \in FRONT$ \overline{A} .

P9: Se
$$A \subseteq B$$
, então $A' \subseteq B'$

<u>Demonstração</u>: Tomando $a \in A'$, tem-se que em qualquer vizinhança de a existe pelo menos um ponto de A distinto de a e, portanto, dado ter-se $A \subseteq B$, também existe pelo menos um ponto de B distinto desse mesmo a, ou seja, $a \in B'$.

P10:
$$(A \cup B)' = A' \cup B'$$

<u>Demonstração</u>: Por ser $A \subseteq (A \cup B)$ e $B \subseteq (A \cup B)$, a propriedade **P9** garante que $A' \subseteq (A \cup B)'$ e $B' \subseteq (A \cup B)'$ o que implica a inclusão,

$$A' \cup B' \subset (A \cup B)'$$
,

faltando portanto provar a inclusão contrária para se poder considerar provada a igualdade do enunciado. Provemos então que $(A \cup B)' \subseteq A' \cup B'$. Deveremos provar que,

$$a \in (A \cup B)' \Rightarrow a \in A' \cup B'$$
,

mas no caso presente torna-se mais fácil provar a implicação equivalente,

$$a \notin A' \cup B' \Rightarrow a \notin (A \cup B)'$$
.

Para tal, considere-se $a \notin A' \cup B'$, ou seja, $a \notin A'$ e $a \notin B'$; existe então uma $V_{\varepsilon}(a)$ sem pontos de A para além do próprio a e existe uma outra $V_{\delta}(a)$ sem pontos de B para além do próprio a; tomando $\theta = \min\{\varepsilon, \delta\}$ em $V_{\theta}(a)$ não se encontram pontos nem de A nem de B, para além do próprio a; então existe uma vizinhança de a sem pontos de $A \cup B$ para além do próprio a, ou seja, $a \notin (A \cup B)'$, como se queria provar.

P11: As vizinhanças $V_{\varepsilon}(a)$ são conjuntos abertos

<u>Demonstração</u>: Dado $b \in V_{\varepsilon}(a)$, tem-se $d(a, b) < \varepsilon$. Tomando,

$$\delta = \varepsilon - d(a, b) > 0$$
.

vejamos que $V_{\delta}(b) \subseteq V_{\varepsilon}(a)$. Com efeito, usando as propriedades **P2** e **P3**,

$$\begin{split} x \in \mathrm{V}_{\delta}(b) \ \Rightarrow \ d(x,b) < \delta = \ \varepsilon - d(a,b) \ \Rightarrow \ d(x,b) + \ d(a,b) < \ \varepsilon \ \Rightarrow \\ \Rightarrow \ d(x,a) < \varepsilon \ \Rightarrow x \ \in \mathrm{V}_{\varepsilon}(a) \,. \end{split}$$

Por definição de ponto interior conclui-se assim que $b \in INT$ $V_{\varepsilon}(a)$, ou seja, $V_{\varepsilon}(a) \subseteq INT$ $V_{\varepsilon}(a)$ o que chega para garantir a igualdade $V_{\varepsilon}(a) = INT$ $V_{\varepsilon}(a)$. Em conclusão, $V_{\varepsilon}(a)$ é um conjunto aberto como se queria provar.

P12 : Sendo A um conjunto qualquer, INT A é um conjunto aberto

<u>Demonstração</u>: Basta provar que $INT A \subseteq INT (INT A)$, pois tal chega para garantir que INT A = INT (INT A), ou seja que INT A é um conjunto aberto.

Para tal notemos que $A \subseteq B \Rightarrow INT A \subseteq INT B$ implicação que é praticamente evidente e cuja justificação se deixa ao cuidado do leitor.

Então,

$$a \in INTA \Rightarrow \exists V_{\varepsilon}(a) : V_{\varepsilon}(a) \subseteq A \Rightarrow \exists V_{\varepsilon}(a) : INT V_{\varepsilon}(a) \subseteq INTA$$

Como o conjunto $V_{\varepsilon}(a)$ é aberto (ver propriedade P11) tem-se *INT* $V_{\varepsilon}(a) = V_{\varepsilon}(a)$ e portanto,

$$a \in INTA \Rightarrow \exists V_{\varepsilon}(a) : V_{\varepsilon}(a) \subseteq INTA \Rightarrow a \in INT(INTA),$$

ou seja, $INTA \subseteq INT(INTA)$ como se queria provar.

P13: $AdA = A \cup A'$

<u>Demonstração</u>: Dado $a \in Ad A$, poderá ser $a \in A$ ou $a \notin A$. Se for $a \in A$, teremos $a \in A \cup A'$. Se for $a \notin A$, o ponto a não pode ser interior do conjunto A, logo necessariamente $a \in FRONTA$ e então em qualquer $V_{\mathcal{E}}(a)$ existe pelo menos um ponto do conjunto A que não pode ser o próprio a dado estarmos a considerar o caso $a \notin A$; então, por definição de ponto de acumulação, $a \in A'$, ou seja, também neste caso se tem $a \in A \cup A'$. Em conclusão: $Ad A \subseteq A \cup A'$.

Para provar a inclusão contrária tome-se $a \in A \cup A'$ e vejamos que igualmente $a \in Ad$ A. Se for $a \in A$, tem-se evidentemente $a \in Ad$ A. Se for $a \notin A$, necessariamente $a \in A'$, logo em qualquer $V_{\varepsilon}(a)$ existe o ponto a que pertence ao complementar do conjunto A e pelo menos um ponto do conjunto A, ou seja, $a \in FRONT$ A e portanto também neste caso $a \in Ad$ A.

P14: O conjunto A é fechado se e só se $A' \subseteq A$

<u>Demonstração</u>: Sendo A fechado então, por definição, A = Ad A = A \cup A' donde resulta $A' \subseteq A$. Por outro lado, sendo $A' \subseteq A$ tem-se Ad A = A \cup A' = A, ou seja, o conjunto A é fechado.

P15 : O derivado e a aderência ou fecho de um qualquer conjunto A são conjuntos fechados

<u>Demonstração</u>: Vejamos primeiro o caso do derivado. Pela propriedade **P14**, basta provar que $(A')' \subseteq A'$. Dado $x \in (A')'$, em qualquer $V_{\varepsilon}(x)$ existe pelo menos um ponto $y \neq x$ pertencente ao conjunto A'. Por ser $y \in A'$, por seu lado, em qualquer $V_{\delta}(y)$ existe um $z \neq y$ pertencente ao conjunto A. Tomando em particular,

$$\delta = \min \left\{ \varepsilon - d(y, x) ; d(y, x) \right\},\,$$

resulta $d(z,y) < \delta \le \varepsilon - d(y,x)$, ou seja, $d(z,x) \le d(z,y) + d(y,x) < \varepsilon$, assim se concluindo que $z \in V_{\varepsilon}(x)$. Se se provar que $z \ne x$, fica provado que em $V_{\varepsilon}(x)$ - qualquer - existe sempre pelo menos um $z \ne x$ pertencente ao conjunto A, ou seja, fica provado que $x \in A'$, assim se demonstrando a inclusão $(A')' \subseteq A'$, ou seja, que A' é fechado. Ora, atendendo à definição do particular δ considerado, resulta $\delta \le d(y,x) \le d(y,z) + d(z,x)$; e dado que $d(y,z) = d(z,y) < \delta$, sai d(z,x) > 0 ou seja $z \ne x$.

Vejamos agora que também a aderência ou fecho de um conjunto A é sempre um conjunto fechado. Dado que $Ad A = A \cup A'$ (ver propriedade **P13**) e atendendo à igualdade estabelecida na propriedade **P10**, tem-se, considerando a inclusão já provada, $(A')' \subseteq A'$,

$$[AdA]' = (A \cup A')' = A' \cup (A')' \subseteq A' \cup A' = A' \subseteq AdA,$$

o que permite concluir que o conjunto Ad A é um conjunto fechado.

P16 : Um conjunto A é fechado se e só se o seu complementar \overline{A} for aberto. Um conjunto A é aberto se e só se o seu complementar \overline{A} for fechado.

Demonstração: Admita-se que A é fechado e demonstre-se que \overline{A} é aberto. Tomando $x \in \overline{A}$ existe uma vizinhança desse x sem nenhum ponto de A: com efeito, se em qualquer vizinhança do ponto x existisse pelo menos um ponto do conjunto A, tal ponto não poderia ser o próprio x (porque x pertence ao complementar de A) e então poderia concluir-se que o ponto x era ponto de acumulação de A; mas como o conjunto A é fechado por hipótese, tal ponto x pertenceria então ao conjunto A (lembre-se que ser A fechado equivale a $A' \subseteq A$) e não a \overline{A} como se admitiu inicialmente. Ora se existe uma vizinhança de x sem nenhum ponto de A, tal significa que essa vizinhança está contida no complementar de A, ou seja, existe uma $V_{\varepsilon}(x) \subseteq \overline{A}$, assim se provando que,

$$x \in \overline{A} \Rightarrow \exists V_{\varepsilon}(x) : V_{\varepsilon}(x) \subseteq \overline{A} \Rightarrow x \in INT \overline{A}$$

significando esta implicação que $\overline{A} \subseteq \mathit{INT} \ \overline{A}$, ou ainda, que \overline{A} é um conjunto aberto.

Admita-se agora que \overline{A} é aberto e demonstre-se que então A é fechado, ou seja, demonstre-se que $A' \subseteq A$. Tomando $a \notin A$ tem-se $a \in \overline{A}$ e dado que por hipótese \overline{A} é aberto, existe uma vizinhança de a contida no conjunto \overline{A} o que implica que esse ponto a não pode ser ponto de acumulação de A. Provou-se então que $a \notin A \Rightarrow a \notin A'$ equivalendo esta implicação a ser $A' \subseteq A$. Está demonstrado o que se pretendia.

Para provar que o conjunto A é aberto se e só se \overline{A} for fechado (segunda parte da propriedade), basta notar que pela primeira parte da propriedade o conjunto $B = \overline{A}$ será fechado se e só se $\overline{B} = A$ for aberto.

P17 : A união de um qualquer número de conjuntos abertos é um conjunto aberto. A intersecção de um qualquer número de conjuntos fechados é um conjunto fechado.

<u>Demonstração</u>: Sejam A_{α} conjuntos abertos em número finito ou infinito. Para provar que a união dos A_{α} é aberto teremos de provar que, $\bigcup_{\alpha} A_{\alpha} \subseteq INT \ (\bigcup_{\alpha} A_{\alpha})$.

Ora, dado um qualquer $a \in \bigcup_{\alpha} A_{\alpha}$ tem-se que esse ponto a pertence pelo menos a um dos A_{α} ; como esse A_{α} a que o ponto a pertence é um conjunto aberto, existirá uma V_{ε} (a) contida em A_{α} e portanto essa mesma vizinhança estará contida em $\bigcup_{\alpha} A_{\alpha}$, ou seja, o ponto a pertencerá a INT ($\bigcup_{\alpha} A_{\alpha}$). Fica assim provada a inclusão desejada, isto é , fica provado que a união dos abertos A_{α} é igualmente um conjunto aberto.

Quanto à intersecção de um número qualquer de conjuntos fechados F_{α} note-se que,

$$\overline{\bigcap_{\alpha} F_{\alpha}} = \bigcup_{\alpha} \overline{F_{\alpha}} \quad (2^{\text{a}} \text{ lei de De Morgan})$$

e que os conjuntos $\overline{F_{\alpha}}$ são abertos (complementares de conjuntos fechados). Pela primeira parte da propriedade, já demonstrada, conclui-se que o conjunto $\overline{\bigcap_{\alpha} F_{\alpha}}$ é aberto e portanto o respectivo conjunto complementar $\bigcap_{\alpha} F_{\alpha}$ é fechado.

P18 : A intersecção de um número finito de conjuntos abertos é um conjunto aberto. A reunião de um número finito de conjuntos fechados é um conjunto fechado.

<u>Demonstração</u>: Vejamos em primeiro lugar o caso da reunião de um número finito de conjuntos fechados. Bastará considerar o caso de dois conjuntos, pois por indução finita poderemos facilmente passar ao caso de mais de dois conjuntos (mas em número finito). Sendo F e G conjuntos fechados, tem-se, usando as propriedades **P10** e **P14**,

$$(F \cup G)' = F' \cup G' \subset F \cup G$$
,

o que prova que a união de F e G é também um conjunto fechado.

Vejamos agora o caso da intersecção de dois conjuntos abertos (para mais de dois, mas em número finito, procede-se por indução). Sendo A e B conjuntos abertos, tem-se que \overline{A} e \overline{B} são fechados e, portanto, $\overline{A} \cup \overline{B}$ é fechado; então o complementar de $\overline{A} \cup \overline{B}$, que é precisamente $A \cap B$, é aberto.

Convirá esclarecer que a reunião de uma infinidade de conjuntos fechados pode não ser um conjunto fechado e, do mesmo modo, a intersecção de uma infinidade de conjuntos abertos pode não ser um conjunto aberto. É fácil encontrar exemplos que mostram essa possibilidade. A este propósito a propriedade seguinte é elucidativa:

P19 : Qualquer conjunto fechado é a intersecção de uma infinidade numerável de conjuntos abertos. Qualquer conjunto aberto é a união de uma infinidade numerável de conjuntos fechados.

<u>Demonstração</u>: Vejamos em primeiro lugar o caso de um conjunto fechado F. Com r número racional positivo, definam-se os conjuntos,

$$I_r = \{ x : \exists a \in F \text{ tal que } d(x, a) < r \},$$

que como veremos de seguida são todos abertos. Com efeito, dado um $x \in I_r$ existirá um $a \in F$ tal que d(x, a) < r. Fixando $\varepsilon = r - d(x, a) > 0$, prova-se que $V_{\varepsilon}(x) \subseteq I_r$; de facto, sendo $y \in V_{\varepsilon}(x)$, tem-se $d(y, x) < \varepsilon = r - d(x, a)$, donde resulta,

$$d(y, a) \le d(y, x) + d(x, a) < r,$$

ou seja, $y \in I_r$.

Falta provar que a intersecção dos conjuntos abertos I_r é igual ao conjunto fechado F, devendo notar-se que os conjuntos I_r são em infinidade numerável (são tantos quantos os racionais positivos que já sabemos serem em infinidade numerável). Para tal notemos que:

- a) O conjunto F está contido em qualquer I_r , tal resultando imediatamente do modo como se definem os conjuntos I_r ;
- b) De a) resulta logo que,

$$F \subseteq \bigcap_{r \in O^+} I_r ;$$

c) Note-se agora que, sendo $x \notin F$, tem-se $x \in \overline{F}$ e como \overline{F} é um conjunto aberto (dado que F é fechado) existe uma $V_{\varepsilon}(x)$ contida em \overline{F} , ou seja, nessa $V_{\varepsilon}(x)$ não há pontos do conjunto F; então, sendo F um racional positivo menor que F, nenhum ponto F0 é tal que F1 e tal que F2 e caso contrário esse F3 seria um ponto de F4 pertencente a F5 e tal que o ponto F6 y que vimos considerando não pertence aos F7 com racionais F8 e m conclusão,

$$x \notin F \Rightarrow x \notin \bigcap_{r \in Q^+} I_r$$
,

o que equivale a ser $\bigcap_{r \in O^+} I_r \subseteq F$;

d) As inclusões demonstradas em b) e em c) permitem concluir que $\bigcap_{r \in \mathcal{Q}^+} I_r = F$,

igualdade que se pretendia demonstrar.

O caso de um conjunto aberto A é agora imediato: o complementar de A é fechado, logo é a intersecção de uma infinidade numerável de conjuntos abertos, como acabou de demonstrar-se. Mas então o conjunto A será a reunião de uma infinidade numerável de complementares de conjuntos abertos (2^a lei de De Morgan); ou seja, o conjunto A será a reunião de uma infinidade numerável de conjuntos fechados (dado que os complementares dos abertos são fechados).

P20 : A condição necessária e suficiente para que \underline{a} seja ponto de acumulação de um conjunto A é que em qualquer vizinhança desse ponto se encontrem infinitos pontos de A

<u>Demonstração</u>: A condição é obviamente suficiente: se em cada vizinhança do ponto se encontrarem infinitos pontos do conjunto, encontra-se pelo menos um ponto do conjunto e portanto, por definição, trata-se de um ponto de acumulação do conjunto em causa.

Vejamos que a condição é igualmente necessária. Admita-se que a é ponto de acumulação do conjunto A. Se em certa $V_{\varepsilon}(a)$ apenas se encontrarem finitos pontos do conjunto, sejam x_1 , x_2 , ..., x_k os pontos de A distintos de a que se encontram naquela vizinhança. Fixando agora,

$$\delta = Min \{ d(x_1, a) ; d(x_2, a) ; ... ; d(x_k, a) \} > 0 ,$$

vê-se de imediato que em $V_{\delta}(a)$ não existem pontos do conjunto A para além eventualmente do próprio a: com efeito, se algum $y \neq a$ pertencesse ao conjunto A e igualmente a $V_{\delta}(a)$, ter-se-ia $d(y,a) < \delta < \varepsilon$ e portanto esse y pertenceria igualmente a $V_{\varepsilon}(a)$; o ponto y referido seria então um dos x_j (j=1,2,...,k) o que obrigaria a ser $d(y,a) \geq \delta$, dado o modo como se definiu o valor δ . Mas se em $V_{\delta}(a)$ não existem pontos do conjunto A para além eventualmente do próprio a, conclui-se que o ponto a não pode ser ponto de acumulação do conjunto A. Chega-se assim a uma contradição: se tomarmos um ponto de acumulação de um conjunto A e admitirmos a existência de uma vizinhança desse ponto onde apenas haja um número finito de pontos do conjunto, conclui-se que tal ponto não pode ser ponto de acumulação desse conjunto. Tal significa que, sendo a ponto de acumulação de A, então necessariamente em qualquer vizinhança desse ponto existem infinitos pontos do conjunto.

Corolário 1 : Os conjuntos finitos não admitem pontos de acumulação

Corolário 2 : É condição necessária de existência de pontos de acumulação de um conjunto, que este seja um conjunto infinito.

3. Teorema de Bolzano-Weierstrass

Estuda-se seguidamente um importante teorema que assegura que qualquer subconjunto de ${\bf R}$ que seja limitado e infinito admite pelo menos um ponto de acumulação.

Teorema 1 : Qualquer conjunto de números reais que seja limitado e infinito admite pelo menos um ponto de acumulação (Bolzano - Weierstrass).

<u>Demonstração</u>: Sejam a e b, respectivamente, um minorante e um majorante do conjunto A. Represente-se por X o conjunto dos números $x \in [a, b]$ que tenham à sua direita (sejam excedidos por) uma infinidade de elementos do conjunto A. Claro que X é não vazio porque pelo menos $a \in X$ (o ponto a, minorante de A, tem à sua

direita infinitos elementos do conjunto A que por hipótese é infinito). Por outro lado, X é majorado, sendo por exemplo o real b um seu majorante (nenhum elemento de X excede b, porque à direita desse b não há elementos do conjunto A). Por ser X majorado, admite supremo, seja ele λ .

Vejamos agora que o referido supremo λ é ponto de acumulação do conjunto A, o que concluirá a demonstração do teorema. Dada uma qualquer $V_{\varepsilon}(\lambda) = \lambda - \varepsilon$, $\lambda + \varepsilon$,

- a) À direita de λ ε há elementos de X, caso contrário λ ε seria um majorante de X inferior ao respectivo supremo;
- b) Logo, à direita de λ ε existem infinitos elementos de A;
- c) À direita de $\lambda + \varepsilon$ não pode haver uma infinidade de elementos de A, caso contrário $\lambda + \varepsilon \in X$ o que seria contrário ao facto de λ ser o supremo de X; logo,
- d) Em $V_{\varepsilon}(\lambda) = \lambda \varepsilon$, $\lambda + \varepsilon$ [tem de haver uma infinidade de elementos de A.

Assim se conclui que $\lambda \in A'$ como se pretendia provar.

4. Conjuntos limitados

Conhece-se já o conceito de conjunto limitado, relativamente aos subconjuntos $A \subseteq \mathbf{R}$. Este conceito define-se, como se sabe, à custa dos conceitos de majorante e minorante os quais, por sua vez, pressupõem a existência de uma relação de ordem em \mathbf{R} . Tem-se a seguinte propriedade :

P21 : Um conjunto $A \subseteq \mathbf{R}$ é limitado se e só se existe um real $a \in \mathbf{R}$ e um $\varepsilon > 0$ tal $A \subseteq V_{\varepsilon}(a)$.

<u>Demonstração</u>: A condição é necessária. Se $A \subseteq \mathbf{R}$ é limitado, sejam μ , $\lambda \in \mathbf{R}$, respectivamente, o ínfimo e o supremo de A. Fazendo,

$$a = \frac{\mu + \lambda}{2}$$
 e $\varepsilon > \lambda - a$

conclui-se imediatamente que $A \subseteq V_{\varepsilon}(a)$. A condição é igualmente suficiente, pois de $A \subseteq V_{\varepsilon}(a)$ tira-se imediatamente que o conjunto A é majorado e minorado.

Vejamos seguidamente algumas propriedades de fácil demonstração:

P22: A união de um número finito de conjuntos limitados é um conjunto limitado

<u>Demonstração</u>: Sejam A_i , i=1,2,...,k, conjuntos limitados. Existem $V_{\varepsilon_i}(a_i)$ tais que $A_i \subseteq V_{\varepsilon_i}(a_i)$. Passando a considerar $A=A_1 \cup A_2 \cup ... \cup A_k$, fixe-se um qualquer $a \in \mathbf{R}$ e seja $\varepsilon = m\acute{a}x \ \varepsilon_i + m\acute{a}x \ d(a_i,a)$; conclui-se com facilidade que $A \subseteq V_{\varepsilon}(a)$, ou seja o conjunto A é igualmente limitado.

P23: A intersecção de conjuntos limitados (em qualquer número) é um conjunto limitado.

<u>Demonstração</u>: Basta notar que o subconjunto de um conjunto limitado é igualmente limitado e que a intersecção de conjuntos é sempre um subconjunto de qualquer um deles.

P24: O derivado e o fecho de um conjunto limitado são conjuntos limitados

Demonstração: Basta fazer a demonstração para o derivado, porque sendo o derivado limitado, como o fecho (ou aderência) é a união do conjunto com o seu derivado ele é igualmente limitado (propriedade **P22**). Seja A limitado e vejamos então que A' é igualmente limitado. Seja $V_{\varepsilon}(a)$ a vizinhança que contém A e vejamos então que $A' \subseteq V_{2\varepsilon}(a)$, o que provará ser A' igualmente limitado. Dado um qualquer $y \in A'$, tem-se que em $V_{\varepsilon}(y)$ existe pelo menos um $x_{\varepsilon} \neq y$ que pertence a A, logo também a $V_{\varepsilon}(a)$; então por ser x_{ε} pertencente a $V_{\varepsilon}(a)$ e $V_{\varepsilon}(y)$, tem-se $d(y,a) \leq d(y,x_{\varepsilon}) + d(x_{\varepsilon},a) < 2\varepsilon$, ou seja $y \in V_{2\varepsilon}(a)$; em conclusão, $A' \subseteq V_{2\varepsilon}(a)$ como se queria provar.

No teorema seguinte estudam-se propriedades importantes dos conjuntos majorados e minorados.

Teorema 2 : Sendo A majorado em \mathbf{R} , o respectivo supremo λ ou é elemento do conjunto (e nesse caso é o máximo do conjunto), ou é ponto de acumulação do conjunto, podendo também ser uma coisa e outra. Do mesmo modo, sendo A minorado em \mathbf{R} , o respectivo ínfimo μ ou é elemento do conjunto (e nesse caso é o mínimo do conjunto), ou é ponto de acumulação do conjunto, podendo também ser uma coisa e outra

<u>Demonstração</u> : Faremos a demonstração para o caso do supremo, valendo para o ínfimo uma argumentação semelhante.

Se $\lambda = Sup \ A \in A$, tem-se $\lambda = M \acute{a}x \ A$. Se pelo contrário for $\lambda = Sup \ A \notin A$, então no intervalo] $\lambda - \varepsilon$, λ [deverá existir pelo menos um $x \in A$, caso contrário ter-se-ia $x \le \lambda - \varepsilon$ para todo o $x \in A$ e então o número $\lambda - \varepsilon$ seria um majorante de A inferior ao respectivo supremo; mas então em qualquer $V_{\varepsilon}(\lambda) = \lambda - \varepsilon$, $\lambda + \varepsilon$ [deverá existir pelo menos um $x \in A$ distinto de λ , ou seja, λ deverá ser ponto de acumulação de A.

Refira-se ainda, para terminar a demonstração, que é possível ser ao mesmo tempo $\lambda = Sup \ A \in A$ e $\lambda = Sup \ A \in A'$, como acontece por exemplo no caso do conjunto A = [-1, 2].

Corolário 1 : Sendo A um conjunto fechado, se for majorado tem máximo; se for minorado tem mínimo; se for limitado tem máximo e mínimo

<u>Demonstração</u> : Resulta de imediato do teorema anterior atendendo a que se A for fechado, então $A'\subseteq A$.

5. Ampliação de R. Pontos impróprios

Tendo em vista simplificar certos enunciados no âmbito da teoria dos limites é usual ampliar o conjunto **R** considerando mais dois símbolos, a saber $+\infty$ (mais infinito) e $-\infty$ (menos infinito), genericamente designados por pontos impróprios ou pontos infinitos.

A relação de ordem em \mathbf{R} é ampliada de modo a abranger os novos símbolos, considerando-se as seguintes convenções:

a)
$$-\infty < x < +\infty$$
, qualquer que seja $x \in \mathbb{R}$;
b) $-\infty < +\infty$.

Neste quadro, qualquer conjunto $X \subseteq \mathbf{R}$ tem supremo, finito ou real se for majorado em \mathbf{R} ou $+\infty$ se o não for ; do mesmo modo qualquer subconjunto de \mathbf{R} tem ínfimo, finito ou real se for minorado em \mathbf{R} ou $-\infty$ se o não for.

Definem-se também as vizinhanças (em relação a **R**) dos dois pontos impróprios, do modo seguinte:

$$V_{\varepsilon}(+\infty) = \frac{1}{\varepsilon}, +\infty$$
 [e $V_{\varepsilon}(-\infty) = \frac{1}{\varepsilon}, -\frac{1}{\varepsilon}$ [.

Os pontos impróprios podem então ser pontos de acumulação (impróprios) dos conjuntos $X \subseteq \mathbf{R}$ mas, em qualquer caso, no derivado X' não se incluem os eventuais pontos impróprios de acumulação. A definição é a seguinte: diz-se $que +\infty$ $(-\infty)$ é ponto impróprio de acumulação de X se só se em qualquer $V_{\varepsilon}(+\infty)$ [$V_{\varepsilon}(-\infty)$] se encontra pelo menos um ponto $x \in X$.

6. Exercícios

1 - Mostre que,

a) INT
$$A = A - (\overline{A})';$$

b) FRONT
$$A = [A \cap (\overline{A})'] \cup [A' \cap (\overline{A})];$$

c) EXT
$$A = \overline{A} - A'$$
;

d)
$$INT(A \cap B) = (INT \ A) \cap (INT \ B)$$
.

2 - Mostre que se *FRONT* $A = \emptyset$, então A é um conjunto aberto.

3 - Um conjunto $A \subseteq \mathbf{R}$ diz-se denso se e só se $A \subseteq A'$ e diz-se perfeito se e só se A = A' (ou seja, se e só se for denso e fechado). Prove que,

a) Sendo A_{α} conjuntos densos, em qualquer número, então $\bigcup_{\alpha} A_{\alpha}$ é igualmente um conjunto denso;

b) Sendo A denso, então A' e Ad (A) são perfeitos;

c*) A união de todos os conjuntos densos contidos num conjunto fechado é um conjunto perfeito;

d*) Sendo P a união de todos os conjuntos densos contidos num conjunto fechado F, então se for $A \neq \emptyset$ e $A \subseteq F - P$, o conjunto A não pode ser denso.

4 - Chama-se *distância* do ponto *a* ao conjunto *A* ao número real ,

$$d(a,A) = Inf \left\{ d(a,x) : x \in A \right\}.$$

a) Mostre que d(a, A) existe sempre (finita);

b*) Mostre que $d(a, A) = 0 \iff a \in AdA$.

5 - Determine o interior, o fecho e o derivado de cada um dos subconjuntos de R:

a)
$$A = [0, 2] \cup [3, 5[\cup \{6, 7\};$$

b)
$$B = [1, 2] \cap \mathbf{Q}$$
.

 ${\bf 6}$ - Determine o interior, a fronteira, o derivado e o fecho de cada um dos subconjuntos de ${\bf R}$:

a)
$$A = \left\{ \begin{array}{c} \frac{n}{n^2 + 1} : n \in \mathbb{N} \end{array} \right\} \cup \left[\begin{array}{c} 4/3 \end{array}, 3/2 \left[\begin{array}{c} 0 \end{array} \right\} \left[\begin{array}{c} \frac{n+1}{n} \end{array} \right] : n \in \mathbb{N} \right\};$$

b)
$$B = \{ 1 + (-1)^n : \frac{n+2}{n+1} : n \in \mathbb{N} \} ;$$

c)
$$C = \{ n^{(-1)^n} : n \in \mathbb{N} \};$$

d)
$$D = \{ n^{(-1)^m} : n, m \in \mathbb{N} \};$$

e)
$$E = \{ m + 1/n : m, n \in \mathbb{N} \} ;$$

f)
$$F = \{ 1/m + 1/n : m, n \in \mathbb{N} \}$$
.

7 - Quando possível dê exemplos de um subconjunto em R que :

- a) Seja finito, não vazio e aberto;
- b) Seja fechado, mas não limitado;
- c) Seja igual ao seu derivado;
- d) Seja igual à sua fronteira;
- e) Tenha por exterior um conjunto limitado;
- f) Seja um subconjunto próprio do seu derivado.
- 8 Mostre que em R um conjunto aberto não pode ter máximo nem mínimo.

RESPOSTAS

5 - a)
$$INT \ A = \] \ 0 \ , \ 2 \ [\ \cup \] \ 3 \ , \ 5 \ [\ , \ Ad \ A = \ [\ 0 \ , \ 2 \] \ \cup \ [\ 3 \ , \ 5 \] \ \cup \ \{ \ 6 \ , \ 7 \ \} \ ,$$

$$A' = \ [\ 0 \ , \ 2 \] \ \cup \ [\ 3 \ , \ 5 \] \ ;$$

$$b) \ INT \ B = \varnothing \ , \ B' = Ad \ B = \ [\ 1 \ , \ 2 \] \ .$$

6 - a)
$$INT A = \frac{1}{4} \frac{4}{3}, \frac{3}{2} [$$

FRONT
$$A = \left\{ \frac{n}{n^2 + 1} : n \in \mathbb{N} \right\} \cup \left\{ \frac{n+1}{n} : n \in \mathbb{N} \right\} \cup \left\{ 0, 1 \right\},$$

 $A' = \left[\frac{4}{3}, \frac{3}{2} \right] \cup \left\{ 0, 1 \right\}, AdA = A \cup \left\{ 0, 1 \right\};$

b) INT
$$B = \emptyset$$
, FRONT $B = B \cup \{0, 2\}$, $B' = \{0, 2\}$, Ad $B = FRONT B$;

c) INT
$$C = \emptyset$$
, FRONT $C = C \cup \{0\}$, $C' = \{0\}$, Ad $C = FRONT$ C ;

d) INT
$$D = \emptyset$$
, FRONT $D = D \cup \{0\}$, $D' = \{0\}$, Ad $D = FRONT D$;

e) INT
$$E = \emptyset$$
, FRONT $E = E \cup \mathbb{N}$, $E' = \mathbb{N}$, Ad $E = FRONT$ E;

f) INT
$$F = \emptyset$$
, FRONT $F = F \cup \{0\}$,

$$F' = \{1/m : m \in \mathbb{N} \} \cup \{0\}, AdF = FRONTF.$$

7 - a) Impossível ; **b)** Por exemplo, $[1, +\infty[$; **c)** Por exemplo, $[R, +\infty[$; **d)** Por exem