YTU – Fen Edebiyat Fakültesi		NOT TABLOSU						
	Soru ve Cevap Kağı	dı	1. q	2. q	3.q	4.0		TOPLAM
Adı-Soyadı								
Öğrenci Numarası		Grup No						
Bölümü					Tarib		2	1.04.2017
Dersin Adı	MAT1320 Lineer (Cebir	Sina	ıv Süres	i 90	dk	Sinav Yeri	
Dersi veren Öğretim Üyesinin Adı Soyadı	anunun <i>Öğrenci Disiplin Yö</i>				1	mza		-towak uma

1-)
$$\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1+d \end{vmatrix} = abcd \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

eşitliğini determinant özelliklerini kullanarak ispatlayınız.

2-) a) n tek sayı olmak üzere her nxn mertebeli anti simetrik matrisin determinantının sıfır olduğunu gösteriniz (Örnek verilmeyecektir).

b) $x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 6x_6 = 0$ lineer denklem sistemini çözünüz.

mertebeli ontisimetale matris ,a) A nxn A' = -A|AT | = |-A | us IATI = IAI idi. |AT = (-1) |A| $(-1)_{\nu} = -1$ n tek seyr ise esitligi ancak IAI=0 iain seplani $|A^T| = -|A|$ b) x1+2x2+3x3+4x4+5x5+6x6=0 Sign with : [X1=X2=X3=X4=X5=X6=0] [1 2 3 4 5 6 0] A STATE OF n-r=6-1=5 keyfi bilinmeyere bépli sonsut cotom T=PA=PAB=1 n=6X1=-2a-3b-4c-5d-6e X2=01 ×3= b Xy=C X5 = d X6= e

3-)
$$A^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -7 & -2 & 3 \\ -2 & 1 & 2 \end{pmatrix}$$
 ve $A^{-1}B = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ matrisleri veriliyor. Buna göre $AX = B$ lineer denklem sistemini yazınız (Lineer denklem sistemi çözülmeyecektir).

4)
$$x+y-z=2 \\ x+2y+z=3$$

lineer denklem sisteminin

$$2x+10y+(\lambda^2-2)z = \lambda+16$$

i) tek çözümünün,

ii) sonsuz çözümünün,

iii) çözümsüz olması için

λ nın alması gereken değerleri irdeleyiniz.

$$= \frac{3}{3} \begin{vmatrix} -1 & 0 & b \\ 0 & -1 & c \\ 0 & 2 & a \times -1 \end{vmatrix} = \frac{3}{3} \begin{vmatrix} -1 & 0 & b \\ 0 & -1 & c \\ 0 & 2 & a \times +b -1 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & C \\ Z & ax+by-1 \end{vmatrix} = 0$$

YTÜ – Fer		Not Tablosu							
Butunleme	Sınavı Soru ve Cevap Kağıdı	1. S		3. S	4. S	Toplam			
Adı Soyadı									
Numarası	Grup no								
Bölümü				Tarih	12	.06.2019			
Dersin Adı	MAT1320 LİNEER CEBİR	Süre	80 dk.		Smif				
Öğretim Üyesi			Ìmza	Mark					

$$x - y + 2z = 5$$

S1) $kx+2y-3z=-6$ lineer denklem sisteminin hangi k değerleri için $3x+y+kz=3$

a) Çözümü yoktur?

4(c) k\$\frac{4}{2}-4,0\frac{2}{2} igin rank A=rank(A;B)=degisten sayısı=3 olduğundan tek qözüm vardır.

YTU - Faculty of Arts and Sciences		Score Table					
	Questions and Solutions Sheet	1. Q	2. Q	3. Q	4. Q	TOTAL	
Name-Surname							
Number	Group No						
Department				Date		02.05.2019	
Course	MAT1320 Linear Algebra	I	Ouration	80 min.	Room		
Lecturer	AND THE PERSON NAMED OF TH			Sign	ature		

Students, who cheat in the exam or attempt to this, are sentenced with suspension of one semester or two semesters according to the Article 9 of the Student Discipline Ordinance (No. 2547) of Higher Education Council (YÖK).

Q1)
$$x+2y+3z = 4$$

 $y+2z-w = 4$
 $y-5w = 0$
 $2x-z-2w = 2$

In the given lineer system, find the value of the variable y using Cramer's rule. [25 p]

$$\Delta = \begin{vmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 1 & 0 & -5 \\
2 & 0 & -1 & -2
\end{vmatrix} = \begin{vmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 1 & 0 & -5 \\
2 & 0 & -1 & -2
\end{vmatrix} = \begin{vmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 1 & 2 & -1 \\
0 & -4 & -7 & -2
\end{vmatrix} = \begin{vmatrix}
1 & 2 & -1 \\
0 & 1 & 2 & -1 \\
0 & -4 & -7 & -2
\end{vmatrix} = -(-44 - (-28)) = 16$$

$$Y = \frac{\Delta y}{\Delta} = \frac{1}{16} \begin{vmatrix}
1 & 4 & 3 & 0 \\
0 & 2 & -1 & -2 \\
0 & -6 & -7
\end{vmatrix} = \frac{5}{16} \begin{vmatrix}
1 & 4 & 3 \\
0 & -6 & -7
\end{vmatrix} = \frac{5}{16} \begin{vmatrix}
1 & 4 & 3 \\
0 & -6 & -7
\end{vmatrix} = \frac{5}{16} (-28 - (-12))$$

WEÜ E.	YTÜ – Fen-Edebiyat Fakültesi,			Not Tablosu				
	Soru ve Cevap Kağıdı			1. S	2. S	3. S	4. S	Toplam
Adı Soyadı								
Numarası		Grup no						
Bölümü						Tarih	22.0	5.2019
Dersin Adı	MAT1320 LİNEER	CEBİR		Süre	80 dk.		Sinif	
Öğratim Üvari					İmza			10 and 10 and
YÖK'ün 2547 savılı K	l anunun <i>Öğrenci Disiplin Yöne.</i> fiili işleyenler bir veya iki yar	tmeliğinin 9. Ma	addesi ola	in "Sinavla	rda kopya	yapmak vi	e yaptırnı	ak veya
S1) $2x - y$ $3x - 2y$ çözünüz. [25		,	t c		-		1	
	1	$=\begin{vmatrix} 1\\3\\5\end{vmatrix}$	0 0	-3 -2 -5	= -(-	-15+	10)=	5 ± 0
Adj	$ \frac{1}{191} Adig A $ $ A = \begin{bmatrix} 1 & 1 & 1 \\ 5 & -2 & -7 \end{bmatrix} $			5 10 5	-2 -7 -3			
A-1=	115 1 - 115 2 · -115 1	-2/5 -7/5 -3/5]	1					
AX=	B => X=A-	B.						
X= 315 115 -115	1 -2/5 2 -7/5 1 -3/5]	1 -2 =	-15 -15-15	2-4-	निक मिन मिन	[3 3 8	

1-)
$$\begin{vmatrix} 1+a_1 & a_2 & a_3 \\ a_1 & 1+a_2 & a_3 \end{vmatrix} = 1+a_1+a_2+a_3$$
 olduğunu $\begin{vmatrix} a_1 & a_2 & 1+a_3 \\ a_1 & a_2 & 1+a_3 \end{vmatrix}$ gösteriniz.

2-)
$$x-y+2z=8$$

 $3x+y-z=1$
 $2x+3y+z=16$ sistemini çozunuz.

$$\begin{vmatrix} 2-1 \\ 0-1 \\ 2-1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 1 & -1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 4 & -7 \\ 2 & 5 & -3 \end{vmatrix} = \begin{vmatrix} 4-7 \\ 5-3 \end{vmatrix} = -12+35$$

$$= 23/1$$

$$x = \frac{\Delta_1}{\Delta} = \frac{\begin{vmatrix} 8 & -1 & 2 \\ 1 & 1 & -1 \\ 16 & 3 & 1 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 0 & -9 & 10 \\ 1 & 1 & -1 \\ 0 & -13 & 17 \end{vmatrix}}{23} = \frac{\begin{vmatrix} -1 & 9 & 10 \\ 1 & -13 & 17 \end{vmatrix}}{23} = \frac{1}{23} = \frac{1$$

$$y = \frac{\Delta 2}{\Delta} = \frac{\begin{vmatrix} 1 & 8 & 2 \\ 3 & 1 & -1 \\ 2 & 16 & 1 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 & 8 & 2 \\ 0 & -23 & -1 \\ 0 & 0 & -3 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 - 23 & -7 \\ 0 & -3 \end{vmatrix}}{23} = \frac{3.285}{23}$$

$$= 3.48$$

$$2 = \frac{\Delta_3}{\Delta} = \frac{\begin{vmatrix} 1 & -1 & 8 \\ 1 & 2 & 3 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 & 0 & 9 \\ 1 & 2 & 3 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 & 0 & 9 \\ 1 & 2 & 3 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 & 9 \\ 1 & 2 & 3 \end{vmatrix}}{23} = \frac{\begin{vmatrix} 1 & 9 \\ 23$$

x=1, y=3, 2=5 bulumir.

S4) Hangi k değerleri için

$$x + 2y + 3z = 4$$

$$2x + ky + 8z = 5$$

$$x + 3y + kz = 1$$

lineer denklem sisteminin

- (a) çözümü yoktur?
- (b) sonsuz çözümü vardır?
- (c) tek çözümü vardır? [30 p]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 8 \\ 1 & 3 & k \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
 A & B \\
 & B \\
 & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 & A & B \\
 &$$

$$2 - (k-4)(k-3) = 2 - (k^2 - 7k + 12)$$

$$= -k^2 + 7k - 10$$

$$= -(k^2 - 7k + 10)$$

$$= -(k-2)(k-5)$$

$$3 - (k-4)(-3) = -3(1-k+4) = 3(k-5)$$

(a) k=2 iqin rank(A)=2, rank(A;B)=3. Fözüm yoktur. (5) (b) k=5 iqin rank(A)=rank(A;B)=2 < 3=Degişken sayısı. Sonsuz çözüm (5) $(c) <math>k \notin \{2,5\}$ iqin rank(A)=rank(A;B)=Degişken sayısı=3. Tek çözüm (5)

S2)
$$A = \begin{bmatrix} -2 & 3 & 4 \\ 3 & 1 & -2 \\ 2 & 6 & 4 \end{bmatrix}$$
 matrisinin tersini ek matris yardımıyla bulunuz. [25 p]

$$ek(A) = \begin{bmatrix} +\begin{vmatrix} 3 & -2 \\ -\begin{vmatrix} 3 & -2 \\ 2 & 4 \end{vmatrix} & -\begin{vmatrix} 3 & 4 \\ 6 & 4 \end{vmatrix} & +\begin{vmatrix} 3 & 4 \\ 1 & -2 \end{vmatrix} \\ -\begin{vmatrix} 2 & 4 \\ 2 & 4 \end{vmatrix} & -\begin{vmatrix} -2 & 4 \\ 2 & 4 \end{vmatrix} & -\begin{vmatrix} -2 & 4 \\ 3 & -2 \end{vmatrix} = \begin{bmatrix} 16 & 12 & -10 \\ -16 & -16 & 8 \\ 16 & 18 & -11 \end{bmatrix}$$

$$\begin{vmatrix} +\begin{vmatrix} 3 & 1 \\ 2 & 6 \end{vmatrix} & -\begin{vmatrix} -2 & 3 \\ 2 & 6 \end{vmatrix} & +\begin{vmatrix} -2 & 3 \\ 3 & 1 \end{vmatrix}$$

$$det(A) = \begin{bmatrix} -2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 16 \\ -16 \\ 16 \end{bmatrix} = -16.$$

O halde,
$$A^{-1} = \frac{1}{\det(A)} \operatorname{ek}(A) = \begin{bmatrix} -1 & -3/4 & 5/8 \\ 1 & 1 & -1/2 \\ -1 & -9/8 & 11/46 \end{bmatrix}$$

S3) Hangi
$$k$$
 değerleri için $A = \begin{bmatrix} 1 & -1 & k & 2 \\ 2 & k & 1 & -1 \\ -1 & 1 & -k & k \\ -2 & 1 & k & k \end{bmatrix}$ matrisinin tersi yoktur? [25 p]

A kare matrisinin tersinin almaması için gerek ve yeter sort det(A)=0 almasıdır. (5)

$$det(A) = \begin{vmatrix} 1 & -1 & k & 2 \\ 2 & k & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & k & 2 \\ 0 & k+2 & 1-2k & -5 \\ -1 & 1 & -k & k & -2S_1+S_2 \rightarrow S_2 & 0 & 0 & 0 & k+2 \\ -2 & 1 & k & k & S_1+S_2 \rightarrow S_2 & 0 & -1 & 3k & k+4 \\ 2S_1+S_4 \rightarrow S_4 & 2S_1+S_4 & 2S_1+S_2 & 2S$$

$$= \begin{vmatrix} k+2 & 1-2k & -5 \\ 0 & 0 & k+2 \end{vmatrix}$$

$$\begin{vmatrix} -1 & 3k & k+4 \end{vmatrix}$$

$$=-(k+2)\cdot\begin{vmatrix}k+2 & 1-2k\\-1 & 3k\end{vmatrix}$$

$$= -(k+2) \cdot (3k^2 + 6k + 1 - 2k)$$

$$= -(k+2) \cdot (3k^2 + 4k + 1)$$

$$= -(k+2) \cdot (3k+1)(k+1)$$

$$= -(k+2) \cdot (3k+1)(k+1)$$

$$det(A) = 0 \iff k = -\frac{1}{3}$$
 veya $k = -\frac{1}{3}$ veya $k = -1$.

O halde, $k \in \{-2, -1, -\frac{1}{3}\}$ isin A matrisinin tersi yoktur.

$$-(3k^3+10k^2+9k+2)=0$$

2-a) $\{f_1, f_2, f_3\}$, \mathbb{R}^3 de lineer bağımsız bir küme ve A bir involüt matris olsun. $\{Af_1, Af_2, Af_3\}$ kümesinin de

2-a)
$$\{f_1, f_2, f_3\}$$
, \mathbb{R}^3 de lineer bagimsiz bir kilme ve A on into a lineer bagimsiz olacağını gösteriniz.

Cıfı $+C_2$ f_2 $+C_3$ f_3 = 0 = 0 C_1 = C_2 = C_3 = 0

A involut = $A^2 = I$

b) $n \times n$ mertebeden bir A kare matrisinin inversi varsa tektir. İspatlayınız. (Örnek verilmeyecektir.)

$$A \cdot B = B \cdot A = I_n$$

$$A \cdot D = D \cdot A = I_n$$

$$A \cdot B = I_n$$

$$A \cdot B = I_n$$

$$D \cdot A \cdot B = D \cdot I_n$$

$$I_n \cdot B = D$$

$$B = D$$

$$D$$

1. Vize Sina	-Edebiyat Fakültesi, ıv Soru ve Cevap Kağıdı		1	Not Tablo	su	-
		1. S	2. S	3. S	4. S	Toplam
dı Soyadı						
lumarası	Grup no					
ölümü				Tarih	12.0	4.2019
ersin Adı	MAT1320 LİNEER CEBİR	Süre	80 dk.		Sinif	
gretim Üyesi			Îmza			
ına teşebbüs etmek"	anunun <i>Öğrenci Disiplin Yönetmeliğinin</i> 9. Maddesi fiili işleyenler bir veya iki yarıyıl uzaklaştırma cez	olan "Sınavla	rda kopya	yapmak v	e yaptırmı	ak veya
A ortogona A ters sin O halde,	I olduğundan $AA^{T}=In$ olu netrik olduğundan $A^{T}=-A$ $A\cdot(-A)=In$, $-A^{2}=In$ ve ekilde, $B^{2}=-In$ elde edil $AB^{2}=ABAB=AABB=ABB=ABB=ABB=ABB=ABB=ABB=ABB=$	olur (3) dolayisiy) a A		olur.	3
Dolayisiyla	Aile B degisme li olduğundan AB matrisi involut matri ve 3 ortogonal ise [Ai	stic. = A-1 = B-1	47	3	arma, m _a inggant tanahanan	
Ave B	ters simetrik ise {	$A^{T} = -F$ $B^{T} = -1$	7 3	dir		
	= = = = = = = = = = = = = = = = = = =	AAB A(-A) (AAT) = (AAT) = In. I	188	5-1)		
AB in	olut matristic alsine (2) (AB)					

Bütünleme S	debiyat Fakültesi, ınav Soru ve Cevap Kağıdı		T	NOT TABLOSU			
Adı Soyadı	Cora ve Cevap Kagidi	1. S	2. S	3. S	4. S	. TOPLAM	
Öğrenci Numarası	Grup No						
Bölümü	Sidpito						
Dersin Adı	MAT1320 Lineer Cebir			Tarih	1.	05/07/2017	
Dersi veren Öğretim	MAT1320 Lineer Cebir	5	üre	90 dk	Sinav	Yeri	
Üyesinin Adı Soyadı					ıza		
buna teşebbüs etmek"	anunun <i>Öğrenci Disiplin Yönetmeliğinin</i> 9. M fiili işleyenler bir veya iki yarıyıl uzaklaştırı	addesi olan	"Sınavlar	da kopya y	apmak ve j	vaptırmak veya	
	ayeyeme, on veya iki yariyii uzakiaştiri	ia cezasi aiii	lar.	West Control	and the second		
a-b+c $a+$	$c \cdots a+c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+c \cdots a+c$						
	determinantini, d	eterminant	ın özelli	klerini ku	ıllanarak	hesaplayınız	
a+c $a+$	$c \cdots a-b+c\Big _{n\times n}$						
		2+0					
00 +00	a-b+c	176			(9)	
197116-6	a-b+C · (ntc			0		
	: atc			-			
na+nc-k	a+c	2-5+	cl,	OXI			
	11 0+1		a+	- 1			
x+nc-h)	1 a+c.	1	at	- 1		1	
	1 4-546		out	C		(6)	
	11 atc -		a-b	+0	nxo		
	1 - 4+2						
				- "	1		
11	10000000000000000000000000000000000000	,	0#				
ytuc-p)	10 -b 0		0				
	100-6-		0			(-)	
	10000		0			(2)	
	1 9 11 1		_	5/0	XA		
	1000						
	1 1 6	71					
atro-b)	1-8				1		
	0 -0.	,		1	6		
				(1)		
		+-					
	0 0	2/n-	1) 46	1-1)			
	1-0-0 0-0-0 0-0-0	C.	7	-)			
	b) (-b) 10	0	01	1	. 100	-h)(-h)	
nathr.	-b)(-b) 10	1	0	= (1)	0(7116	Basari	

(5)

b) A ve B değişmeli matris olduğuna göre A² ve B³ matrislerinin değişmeli olduklarını gösteriniz. (Örverilmeyecektir.)

$$A \cdot B = B \cdot A = 3$$
 $A^2 \cdot B^3 = B^3 \cdot A^2$

$$= B^3. A^2 L$$