Numerical Linear Algebra

Kevin Corcoran

February 12, 2022

Contents

2:	Assignment 2							
1	Part 1	1						
	1.1 Output for Trace, Gaussian Elimination, LU decomposition a	and						
	Two norm of Error in solution to $AX = B \dots \dots \dots$							
	1.2 Plane Equation	4						
2	Part 2	5						
	2.1 Schur decomposition of a symmetric matrix							
	2.2 Stability of Gaussian elimination							
	2.3 Diagonal entries of a symmetric positive definite matrix							
	2.4 LU decomposition of a block matrix							
	2.4.1 Verify the formula	6						
	2.4.2 Show $D = A_{22} - A_{21}A_{11}^{-1}A_{12}$ after n steps of Gaussi	ian						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
	2.5 $\mathbf{A}\mathbf{x} = \mathbf{b}$ complex valued	7						
	2.5.1 Modify problem	7						
	2.5.2 Compare storage and number of floating point operati	ions 7						
2:	2: Assignment 2							
	. 112219		Wed 02 Feb 2022 20:27					
1	Part 1							
1.:								
	Two norm of Error in solution to $AX = B$							
A	ı							
	4 x 4							
	2.0000 1.0000 1.0000 0.0000							
	4.0000 3.0000 3.0000 1.0000							
	8.0000 7.0000 9.0000 5.0000							
	6.0000 7.0000 9.0000 8.0000							

Trace of A

```
22.000000000000000
Norm column:
  10.954451150103322
Norm column:
                        2
  10.392304845413264
Norm column:
                        3
  13.114877048604001
Norm column:
                        4
  9.4868329805051381
В
   4 x
    3.0000
             0.0000
                         1.0000
                                   0.9000
                                               2.1000
                                                          3.1416
    6.0000
             -2.0000
                         1.0000
                                   10.4000
                                            -491.2000
                                                          -4.7124
   10.0000
              2.0000
                         0.0000
                                   -20.2000
                                              0.1200
                                                           2.2440
             10.0000
                         -5.0000
                                   -5.1200
    1.0000
                                             -51.3000
                                                          2.3562
matrix A after gauss
     х
    8.0000
              7.0000
                         9.0000
                                    5.0000
    0.0000
               1.7500
                         2.2500
                                    4.2500
    0.0000
               0.0000
                         -0.8571
                                    -0.2857
    0.0000
               0.0000
                         0.0000
                                    0.6667
matrix B after gauss
   4 x
                                  -20.2000
   10.0000
             2.0000
                         0.0000
                                               0.1200
                                                          2.2440
   -6.5000
              8.5000
                         -5.0000
                                   10.0300
                                             -51.3900
                                                          0.6732
   -0.8571
             -0.5714
                         -0.4286
                                    23.3657
                                            -505.9429
                                                          -5.6420
   -2.0000
              3.3333
                         -1.0000
                                    2.4600
                                             148.6933
                                                          4.7498
F
solution X to AX = B
   4 x
             6
   -0.0000
              3.5000
                         0.2500
                                   -2.0050
                                              360.2700
                                                          10.6309
   1.0000
             -6.0000
                         -0.5000
                                    33.4000 -1234.3600
                                                         -22.3277
```

-28.4900

3.6900

515.9200

223.0400

1.0000

-1.5000

2.0000

-3.0000

-1.0000

5.0000

4.2075

7.1247

Error Matrix

4	x	6				
-0.	0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000

Two norm of columns of error matrix

Norm column: 1
2.6645352591003757E-015
Norm column: 2
2.5727487310015434E-015
Norm column: 3
9.0153937873535153E-015
Norm column: 4
2.9913803108461275E-013
Norm column: 5
3.6757338276243205E-013
Norm column: 6
7.3777640556099254E-015

A before LU

4 2	ζ	4			
2.000	00	1.0	000	1.0000	0.0000
4.000	00	3.0	000	3.0000	1.0000
8.000	00	7.0	000	9.0000	5.0000
6.000	00	7.0	000	9.0000	8.0000

A after LU

4	х	4		
8.	0000	7.0000	9.0000	5.0000
0.	7500	1.7500	2.2500	4.2500
0.	5000	-0.2857	-0.8571	-0.2857
0.	2500	-0.4286	0.3333	0.6667

Permutation vector

4 3 4 2 1

1 PART 1

3

Solution AX = B using LU decomposition:

4	X	6				
-(0.000	3.5000	0.2500	-2.0050	360.2700	10.6309
1	1.0000	-6.0000	-0.5000	33.4000	-1234.3600	-22.3277
2	2.0000	-1.0000	1.0000	-28.4900	515.9200	4.2075
-3	3.0000	5.0000	-1.5000	3.6900	223.0400	7.1247

Two norm of error matrix using LU decomposition

Norm column: 1
8.8817841970012523E-016
Norm column: 2
3.6620534388177900E-015
Norm column: 3
1.8322380275993532E-014
Norm column: 4
2.1609931492617831E-013
Norm column: 5
3.8138914537411967E-013
Norm column: 6
7.3777640556099254E-015

1.2 Plane Equation

The equation of a plane can be solved for a, b, c, d using the points A(1, 2, 3), B(-3, 2, 5), and $C(\pi, e, -\sqrt{2})$, by solving the following equation for

$$a + 2b + 3c + d = 0$$
$$-3a + 2b + 5c + d = 0$$
$$\pi a + eb - \sqrt{2}c + d = 0$$

matrix after gauss

3	х	4		
3.	1416	2.7183	-1.4142	1.0000
0.	0000	4.5958	3.6495	1.9549
0.	0000	0.0000	2.5491	0.1990

Part 2 $\mathbf{2}$

Schur decomposition of a symmetric matrix

If $A \in \mathbb{C}^{m \times m}$, then there exists a unitary matrix Q and an upper triangular matrix U such that $A = QUQ^*$.

If A is (real) symmetric then

 $A = QUQ^T = QU^TQ^T = A^T.$ $U = U^T.$

This implies

and the only way this can happen is if U = D is diagonal, so the Schur decomposition implies that A is orthogonally diagonalizable

$$A = QDQ^T.$$

where the columns of Q form an eigenbasis for A, and Q^T is the change of basis matrix that transforms A into a diagonal matrix D of eigenvalues of A.

Theory wal

2.2 Stability of Gaussian elimination

Consider

$$\begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Multiply the last row by c so that $c\varepsilon \gg 1$, then swapping row one with row two. The augmented system becomes

$$\begin{pmatrix} c\varepsilon & c & c \\ 1 & 1 & 2 \end{pmatrix}.$$

the elimination step

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & 1 - \frac{1}{\varepsilon} & 2 - \frac{1}{\varepsilon} \end{pmatrix}.$$

which is numerically equivalent to

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & -\varepsilon^{-1} & \varepsilon^{-1} \end{pmatrix}.$$

and leads to the incorrect solution

$$y = \frac{-\varepsilon^{-1}}{-\varepsilon^{-1}} = 1$$
 $x = \frac{1-1}{\varepsilon} = 0.$

The issue partial pivoting hoped to correct was reintroduced by scaling the row with a smaller pivot. How would you in press the reflection

2.3 Diagonal entries of a symmetric positive definite matrix

If A is symmetric positive definite then for all v

$$v^T A v > 0.$$

Considering the standard basis vectors e_j

$$e_i^T A e_i = a_{ii}$$
.

Since any vector v can be written as a linear combination of these basis vectors

written as a linear combination of these basis vectors

then

$$v^T A v = \sum_{j=1}^{\infty} \mathcal{I}_j v_j^2 > 0.$$

implies $a_{jj} > 0$

med this.

LU decomposition of a block matrix

Verify the formula

$$\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ -A_{21}A_{11}^{-1}A_{11} + A_{21} & -A_{21}A_{11}^{-1}A_{12} + A_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}$$

Show $D = A_{22} - A_{21}A_{11}^{-1}A_{12}$ after n steps of Gaussian elimina-2.4.2

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}.$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}.$$

$$\text{Theorem of the } I$$

$$\text{Theorem of } I$$

$$\text{T$$

where

$$E_n \dots E_1 = \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} & I \end{pmatrix} \dots \begin{pmatrix} I & 0 \\ R_1 A_{11}^{-1} & I \end{pmatrix}$$

$$= \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} + \dots + R_1 A_{11}^{-1} & I \end{pmatrix}$$

$$= \begin{pmatrix} I & 0 \\ (R_n + \dots + R_1) A_{11}^{-1} & I \end{pmatrix}$$

$$= \begin{pmatrix} I & 0 \\ -A_{21} A_{11}^{-1} & I \end{pmatrix}$$

which is exactly what we used to verify the formula in (2.4.1)

2.5Ax = b complex valued

Modify problem 2.5.1

Decompose $A = A_1 + iA_2$ and $b = b_1 + ib_2$ then

$$Ax = b$$
$$(A_1 + iA_2)x = b_1 + ib_2$$

This negled 3 cross owns e.g. (iAr)(ixz) is real.

equating the real and imaginary parts this is equivalent to solving

$$A_1 x_1 = b_1 \qquad A_2 x_2 = b_2.$$

where $x_1 = \text{Re}(x)$, $x_2 = \text{Im}(x)$, and both systems are real

Total ZMXZM

2.5.2 Compare storage and number of floating point operations

Consider complex numbers a_{ij}/a_{jj} used in Gaussian elimination

Division Consider complex

$$\frac{a_{ij}}{a_{jj}} = \frac{(a,b)}{(c,d)} = \frac{(ac+bd, -ad+bc)}{c^2 + d^2}.$$

this introduces 6 multiplications and 3 additions, compared to just 1 operation if they were real. The storage requirements for the complex case Ax = b is the same as for the two systems $A_1x_1 = b_1$ and $A_2x_2 = b_2$.

nd cost of the vasion? -7 cosion?

Wrong, by considered w/ por a considered.