



# Improving Generative Flow Networks with Path Regularization

Anh Do, Duy Dinh, Tan Nguyen, Khuong Nguyen, Stanley Osher, Nhat Ho University of Texas, Austin

University of California, Los Angeles

**FPT Software AI Center** 

**Fanmeng Wang** 

2023-6-21

#### **Outline**

- > Introduction
- ➤ Background: GFlowNets & Optimal Transport Distance
- ➤ Method: Path Regularization via Optimal Transport
- > Experiment
- > Conclusion



- ➤ Background: GFlowNets & Optimal Transport Distance
- > Method: Path Regularization via Optimal Transport
- > Experiment
- Conclusion







- ➤ Generative Flow Networks (GFlowNets) are recently proposed models for learning stochastic policies that generate compositional objects by sequences of actions with the probability proportional to a given reward function.
- The central problems of GFlowNets are how to improve **exploration** and **generalization**.
- In this paper, we propose to train the GFlowNets with an additional **path** regularization via OT to deal with above problems.





- ➤ Background: GFlowNets & Optimal Transport Distance
- > Method: Path Regularization via Optimal Transport
- > Experiment
- Conclusion



#### **■ GFlowNets:** some basic concepts

Compositional Space X, where each object  $x \in X$  can be constructed from the source state  $s_0$  and ends in the final state  $s_f$  by taking a sequence of discrete actions from the action space A (e.g. a molecule can generated fragment by fragment).



A directed acyclic graph G

node -> state

edge -> action

 $\triangleright$  A complete trajectory  $\tau$ , which is a sequence of transitions from  $s_0$  to  $s_f$ .

$$\tau = (s_0 \to s_1 \to \dots \to s_n = x \to s_f)$$

<sup>\*</sup> Bengio E, Jain M, Korablyov M, et al. Flow network based generative models for non-iterative diverse candidate generation[J]. Advances in Neural Information Processing Systems, 2021, 34: 27381-27394.



#### **■ GFlowNets: Flows**

- $\triangleright$  A **trajectory flow** is a nonnegative function, which represents the probability mass of each complete trajectory  $\tau$
- $\triangleright$  The flow through each state:  $F(s) = \sum_{\tau \in \mathcal{T}, s \in \tau} F(\tau)$
- $\triangleright$  The flow through each edge:  $F(s \to s') = \sum_{\tau \in T. s \to s' \in \tau} F(\tau)$
- $\triangleright$  The forward transition probabilities (forward policy):  $P_F(s'|s) := F(s \to s')/F(s)$
- $\triangleright$  The backward transition probabilities (backward policy):  $P_B(s|s') := F(s \to s')/F(s')$







#### **■ GFlowNets:** Learning Objective

- ➤ A GFlowNet can perfectly generate objects proportional to their rewards.
- $\triangleright$  In other words, the probability from the source state  $s_0$  to the final state  $s_f$  is proportional to the given reward.







#### **■** Optimal Transport Distance

For two discrete probability measures  $\alpha$  and  $\beta$  over some space X

The set of transportation plans or joint probability distributions can be defined as:

$$\Pi\left(\boldsymbol{\alpha},\boldsymbol{\beta}\right) = \left\{\boldsymbol{\pi} \in \mathbb{R}_{+}^{k \times l} : \boldsymbol{\pi} \mathbb{1}_{l} = \boldsymbol{\alpha}, \boldsymbol{\pi}^{\top} \mathbb{1}_{k} = \boldsymbol{\beta}\right\}$$

 $\triangleright$  The Kantorovich **optimal transport** between  $\alpha$  and  $\beta$  is defined as follows:

$$\mathrm{OT}_{\mathbf{C}}\left(oldsymbol{lpha},oldsymbol{eta}
ight):=\min_{\pi\in\Pi\left(oldsymbol{lpha},oldsymbol{eta}
ight)}\langle\mathbf{C},\pi
angle$$

where C is given cost matrix



- ➤ Background: GFlowNets & Optimal Transport Distance
- ➤ Method: Path Regularization via Optimal Transport







#### Discrete distance -> OT distance -> Path Regularization

#### ■ Directed distance in the GFlowNet

- We define a new **directed distance** between two arbitrary states in the GFlowNet, which is used as **transportation cost** to compute OT distance.
- Note: the directed distance from a state s to another state s' is designed to be inversely proportional to the probability of going from s to s'
- Let  $\tau = (s = s0 \rightarrow s1 \rightarrow ... \rightarrow sn = s')$  be the sequence of transitions from s to s' where  $s_t \rightarrow s_{t+1}$  can be a **forward or backward transition** (i.e., the given DAG can be considered an undirected connected graph), the **directed distance** from s to s' is defined as follows:

$$d(s, s') := \min_{\tau = (s \to \dots \to s')} -\log(P(\tau \mid s))$$

i.e., the shortest path from s to s'

The length of the trajectory τ



Discrete distance -> OT distance -> Path Regularization

## ■ Optimal transport formulation of the path regularization

Give **two neighbor states** s and s' in trajectory  $\tau$ , **the forward policy**  $P_F(\cdot|s)$  is a discrete probability measure supported by Child(s) =  $\{u_1, ..., u_k\}$  and  $P_F(\cdot|s')$  is a discrete probability measure supported by Child(s') =  $\{v_1, ..., v_l\}$ .

 $\triangleright$  The **OT distance** between  $P_F(\cdot|s)$  and  $P_F(\cdot|s')$  can be defined as:

$$OT_{\mathbf{C}}(P_{F}(\cdot|s), P_{F}(\cdot|s')) := \min_{\pi \in \prod(P_{F}(\cdot|s), P_{F}(\cdot|s'))} \langle \mathbf{C}, \pi \rangle 
\Pi(P_{F}(\cdot|s), P_{F}(\cdot|s')) := \{ \pi \in \mathbb{R}_{+}^{k \times l} : \pi \mathbb{1}_{l} = P_{F}(\cdot|s), \pi^{\top} \mathbb{1}_{k} = P_{F}(\cdot|s') \} 
C_{ij} = c(u_{i}, v_{j}) := d(u_{i}, v_{j}) = \min_{\tau = (u_{i} \to \dots \to v_{j})} -\log(P(\tau \mid u_{i}))$$

The cost matrix C can be calculated in practice by approximating as follows:

$$\mathbf{C}_{ij} = \begin{cases} 0, & \text{if } u_i \equiv v_j \\ \min\left(-\log(P_B(s\mid u_i)P_F(s'\mid s)P_F(v_j\mid s')), -\log(P(v_j\mid u_i))\right), & \text{else if } u_i \equiv v_j \\ -\log(P_B(s\mid u_i)P_F(s'\mid s)P_F(v_j\mid s')), & \text{otherwise.} \end{cases}$$





#### Discrete distance -> OT distance -> Path Regularization

## ■ Optimal transport formulation of the path regularization

Give **two neighbor states** s and s' in trajectory  $\tau$ , **the forward policy**  $P_F(\cdot|s)$  is a discrete probability measure supported by Child(s) =  $\{u_1, ..., u_k\}$  and  $P_F(\cdot|s')$  is a discrete probability measure supported by Child(s') =  $\{v_1, ..., v_l\}$ .

 $\triangleright$  For any complete trajectory  $\tau$ , we define the path regularization via OT as follows:

$$\mathcal{L}_{OT}(\tau) := \sum_{t=0}^{n-1} OT_{\mathbf{C}_{t;\theta}} \left( P_F(\cdot|s_t;\theta), P_F(\cdot|s_{t+1};\theta) \right)$$

 $\triangleright$  If  $\pi_{\theta}$  is the training policy, then **the trajectory loss** is updated:

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \nabla_{\theta} (\mathcal{L}_{TB}(\tau) + \lambda \mathcal{L}_{OT}(\tau))$$

where  $\lambda \in \mathbb{R}$ ,  $\lambda > 0$  indicates that we want to **minimize** the path regularization to to improve the generalization and,  $\lambda < 0$  indicates that we want to **maximize** the path regularization to generate more diverse and novel candidates.



#### Discrete distance -> OT distance -> Path Regularization

#### Upper bound of optimal transport distance

- $\triangleright$  Our path regularization's definition requires computing the OT distances for all edges in the trajectory  $\tau$ , which imposes a heavy burden on the computing
- To overcome this problem, we propose the **upper bound** of the OT distance:

$$\begin{split} \text{OT}_{\mathbf{C}}\left(P_{F}(\cdot|s_{t}), P_{F}(\cdot|s_{t+1})\right) &:= \min_{\pi \in \prod(P_{F}(\cdot|s_{t}), P_{F}(\cdot|s_{t+1}))} \langle \mathbf{C}, \pi \rangle \\ &\leq \sum_{i} \sum_{j} \pi_{ij} \mathbf{C}_{ij} \\ &\leq -\sum_{i} \sum_{j} \pi_{ij} \log\left(P_{B}(s_{t}|u_{i})P_{F}(s_{t+1}|s_{t})P_{F}(v_{j}|s_{t+1})\right) \\ &= -\sum_{i} \sum_{j} \pi_{ij} \log\left(P_{B}(s_{t}|u_{i})\right) - \sum_{i} \sum_{j} \pi_{ij} \log\left(P_{F}(s_{t+1}|s_{t})\right) - \sum_{i} \sum_{j} \pi_{ij} \log\left(P_{F}(v_{j}|s_{t+1})\right)\right) \\ &= -\sum_{i} \log\left(P_{B}(s_{t}|u_{i})\right) \sum_{j} \pi_{ij} - \log\left(P_{F}(s_{t+1}|s_{t})\right) \sum_{i} \sum_{j} \pi_{ij} - \sum_{i} \log\left(P_{F}(v_{j}|s_{t+1})\right) \sum_{j} \pi_{ij} \\ &= -\sum_{i} \log\left(P_{B}(s_{t}|u_{i})\right) P_{F}(u_{i}|s_{t}) - \log\left(P_{F}(s_{t+1}|s_{t})\right) - \sum_{j} \log\left(P_{F}(v_{j}|s_{t+1})\right) P_{F}(v_{j}|s_{t+1}) \\ &= \sum_{u \in \text{Child}(s_{t})} P_{F}(u|s_{t}) \log(P_{B}(s_{t}|u)) - \log(P_{F}(s_{t+1}|s_{t})) + \mathbf{H}(P_{F}(.|s_{t+1}). \end{split}$$





#### Discrete distance -> OT distance -> Path Regularization

#### ■ Upper bound of optimal transport distance

> Since the path regularization via OT can be difined as follows:

$$\mathcal{L}_{OT}(\tau) := \sum_{t=0}^{n-1} OT_{\mathbf{C}_{t;\theta}} \left( P_F(\cdot|s_t;\theta), P_F(\cdot|s_{t+1};\theta) \right).$$

> The path regularization via OT can be upper bound by:

$$\mathcal{L}_{\textit{UB}}(\tau) := \sum_{t=0}^{n-1} \left[ \sum_{u \in \textit{Child}(s_t)} P_F(u|s_t) \log(P_B(s_t|u)) - \log(P_F(s_{t+1}|s_t)) + \mathbf{H}(P_F(\cdot|s_{t+1})) \right].$$

$$\sum_{t=0}^{n-1} -\log(P_F(s_{t+1}|s_t)) = -\log\left(\prod_{t=0}^{n-1} P_F(s_{t+1}|s_t)\right) = -\log(P(\tau))$$



- ➤ Background: GFlowNets & Optimal Transport Distance
- > Method: Path Regularization via Optimal Transport
- > Experiment
- Conclusion





#### **■** Hyper-grid Environment

This task aims to evaluates the **generalization ability** of the GFlowNet to guess and sample unvisited modes of the interested distribution.



Figure 2: Results on the 4-D (upper) and 8-D (lower) hyper-grid environment. Left: Number of modes found during training. Right: KL divergence between the true and empirical distribution.

The GFlowNet model trained by minimizing the path regularization via OT and the upper bound both performer well in improving generalization ability.





#### ■ Synthetic Discrete Probabilistic Modeling tasks

Training the GFlowNet with either **minimizing** the path regularization via OT (Min OT) or via the **upper bound** (UB OT) gains the better **NLL** and **MMD** scores than the baseline and Max OT.

| Metrix | Method          | 2spirals | 8gaussians | circles | moons   | pinwheel | swissroll | checkerboard |
|--------|-----------------|----------|------------|---------|---------|----------|-----------|--------------|
| NLL ↓  | PCD             | 20.094   | 19.991     | 20.565  | 19.763  | 19.593   | 20.172    | 21.214       |
|        | ALOE            | 20.295   | 20.350     | 20.565  | 19.287  | 19.821   | 20.160    | 54.653       |
|        | ALOE +          | 20.062   | 19.984     | 20.570  | 19.743  | 19.576   | 20.170    | 21.142       |
|        | EB-GFN (paper)  | 20.050   | 19.982     | 20.546  | 19.732  | 19.554   | 20.146    | 20.696       |
|        | EB-GFN          | 20.0679  | 19.9862    | 20.5598 | 19.7324 | 19.5735  | 20.1599   | 20.6839      |
|        | EB-GFN + Max OT | 20.0673  | 19.9857    | 20.5599 | 19.7319 | 19.5714  | 20.1597   | 20.6837      |
|        | EB-GFN + UB OT  | 20.0651  | 19.9854    | 20.5600 | 19.7305 | 19.5707  | 20.1596   | 20.6836      |
|        | EB-GFN + Min OT | 20.0640  | 19.9855    | 20.5598 | 19.7308 | 19.5699  | 20.1595   | 20.6831      |
| MMD↓   | PCD             | 2.160    | 0.954      | 0.188   | 0.962   | 0.505    | 1.382     | 2.831        |
|        | ALOE            | 21.926   | 107.320    | 0.497   | 26.894  | 39.091   | 0.471     | 61.562       |
|        | ALOE +          | 0.149    | 0.078      | 0.636   | 0.516   | 1.746    | 0.718     | 12.138       |
|        | EB-GFN (paper)  | 0.583    | 0.531      | 0.305   | 0.121   | 0.492    | 0.274     | 1.206        |
|        | EB-GFN          | 0.3012   | 0.0408     | -0.1724 | -0.1744 | 0.2056   | 0.1555    | -0.0986      |
|        | EB-GFN + Max OT | 0.3258   | 0.0197     | -0.1919 | -0.0456 | 0.1377   | 0.0763    | -0.0903      |
|        | EB-GFN + UB OT  | 0.2902   | 0.0102     | -0.2819 | -0.1253 | 0.1561   | 0.0257    | -0.0923      |
|        | EB-GFN + Min OT | 0.1816   | 0.0343     | -0.2775 | -0.1966 | 0.1220   | 0.1334    | -0.1071      |

Table 4: Results on the Synthetic EB-GFN tasks. The negative log-likelihood (NLL) and MMD are displayed in units of  $1 \times 10^{-4}$ . ALOE+ uses a 30 larger parametrization than ALOE and EB-GFN. We only take into account the the reproduce results of EB-GFN when comparing with our methods (Min OT, Max OT, and UB OT).

<sup>\*</sup> Zhang D, Malkin N, Liu Z, et al. Generative flow networks for discrete probabilistic modeling[C]//International Conference on Machine Learning. PMLR, 2022: 26412-26428.





#### **■** Biological Sequences Design

The experiments are conducted in the multi-round active learning setting, with the goal of generating a diverse set of useful candidates after evaluation rounds.

|                                                                              | Performance                                                                          | Diversity                                                                         | Novelty                                                                          |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| DynaPPO<br>COMs<br>GFlowNet-AL (paper)                                       | $\begin{array}{c} 0.938 \pm 0.009 \\ 0.761 \pm 0.009 \\ 0.932 \pm 0.002 \end{array}$ | $\begin{array}{c} 12.12 \pm 1.71 \\ 19.38 \pm 0.14 \\ 22.34 \pm 1.24 \end{array}$ | $\begin{array}{c} 9.31 \pm 0.69 \\ 26.47 \pm 1.30 \\ 28.44 \pm 1.32 \end{array}$ |
| GFlowNet-AL<br>GFlowNet+Min OT-AL<br>GFlowNet+UB OT-AL<br>GFlowNet+Max OT-AL | $0.874 \pm 0.022$<br>$0.847 \pm 0.033$<br>$0.828 \pm 0.022$<br>$0.917 \pm 0.003$     | $31.98 \pm 2.27$ $20.32 \pm 7.38$ $29.89 \pm 2.80$ $31.56 \pm 2.43$               | $23.91 \pm 1.87$ $23.63 \pm 1.66$ $24.16 \pm 1.75$ $28.86 \pm 0.96$              |

Table 1: Results on the AMP task with K = 100.

|                                                                              | Performance                                                                                                                                                         | Diversity                                                                                                                                                           | Novelty                                                                                                                                                             |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DynaPPO COMs BO-qEI CbAS MINs CMA-ES AmortizedBO GFlowNet-AL (paper)         | $\begin{array}{c} 0.58 \pm 0.02 \\ 0.74 \pm 0.04 \\ 0.44 \pm 0.05 \\ 0.45 \pm 0.14 \\ 0.40 \pm 0.14 \\ 0.47 \pm 0.12 \\ 0.62 \pm 0.01 \\ 0.84 \pm 0.05 \end{array}$ | $\begin{array}{c} 5.18 \pm 0.04 \\ 4.36 \pm 0.24 \\ 4.78 \pm 0.17 \\ 5.35 \pm 0.16 \\ 5.57 \pm 0.15 \\ 4.89 \pm 0.01 \\ 4.97 \pm 0.06 \\ 4.53 \pm 0.46 \end{array}$ | $\begin{array}{c} 0.83 \pm 0.03 \\ 1.16 \pm 0.11 \\ 0.62 \pm 0.23 \\ 0.46 \pm 0.04 \\ 0.36 \pm 0.00 \\ 0.64 \pm 0.21 \\ 1.00 \pm 0.57 \\ 2.12 \pm 0.04 \end{array}$ |
| GFlowNet-AL<br>GFlowNet+Min OT-AL<br>GFlowNet+UB OT-AL<br>GFlowNet+Max OT-AL | $\begin{array}{c} 0.83 \pm 0.01 \\ 0.82 \pm 0.01 \\ 0.83 \pm 0.01 \\ 0.85 \pm 0.02 \end{array}$                                                                     | $\begin{array}{c} 4.66 \pm 0.08 \\ 4.72 \pm 0.10 \\ 4.68 \pm 0.10 \\ 4.52 \pm 0.18 \end{array}$                                                                     | $\begin{array}{c} 1.14 \pm 0.03 \\ 1.13 \pm 0.04 \\ 1.14 \pm 0.05 \\ 1.21 \pm 0.10 \end{array}$                                                                     |

Table 2: Results on the TF Bind 8 task with K = 128.

<sup>\*</sup> Jain M, Bengio E, Hernandez-Garcia A, et al. Biological sequence design with gflownets[C]//International Conference on Machine Learning. PMLR, 2022: 9786-9801.





#### **■** Biological Sequences Design

The experiments are conducted in the multi-round active learning setting, with the goal of generating a diverse set of useful candidates after evaluation rounds.

|                     | Performance         | Diversity         | Novelty           |
|---------------------|---------------------|-------------------|-------------------|
| DynaPPO             | $0.794\pm0.002$     | $206.19 \pm 0.19$ | $203.20 \pm 0.47$ |
| COMs                | $0.831 \pm 0.003$   | $204.14 \pm 0.14$ | $201.64 \pm 0.42$ |
| BO-qEI              | $0.045 \pm 0.003$   | $139.89 \pm 0.18$ | $203.60 \pm 0.06$ |
| CbAS                | $0.817 \pm 0.012$   | $5.42 \pm 0.18$   | $1.81 \pm 0.16$   |
| MINs                | $0.761 \pm 0.007$   | $5.39 \pm 0.00$   | $2.42 \pm 0.00$   |
| CMA-ES              | $0.063 \pm 0.003$   | $201.43 \pm 0.12$ | $203.82 \pm 0.09$ |
| AmortizedBO         | $0.051 \pm 0.001$   | $205.32 \pm 0.12$ | $202.34 \pm 0.25$ |
| GFlowNet-AL (paper) | $0.853 \pm 0.004$   | $211.51 \pm 0.73$ | $210.56 \pm 0.82$ |
| GFlowNet-AL         | $0.8232 \pm 0.0001$ | $218.54 \pm 7.88$ | $222.05 \pm 5.49$ |
| GFlowNet+Min OT-AL  | $0.8231 \pm 0.0001$ | $182.03 \pm 0.25$ | $220.56 \pm 2.02$ |
| GFlowNet+UB OT-AL   | $0.8232 \pm 0.0001$ | $221.64 \pm 0.11$ | $218.02 \pm 0.79$ |
| GFlowNet+Max OT-AL  | $0.8233 \pm 0.0001$ | $225.00 \pm 3.76$ | $242.11 \pm 1.44$ |

Table 3: Results on the GFP task with K = 128.

The GFlowNet-AL model trained by maximizing the path regularization via OT performs well in generating more diverse and novel candidates.



- ➤ Background: GFlowNets & Optimal Transport Distance
- > Method: Path Regularization via Optimal Transport
- > Experiment
- > Conclusion







- ➤ We propose to train the GFlowNet with an additional path regularization via Optimal Transport that places prior constraints on the underlying structure of the GFlowNet.
- We derive an efficient implementation of the regularization by finding its closedform solutions in specific cases and a meaningful upper bound that can be used as an approximation when we want to minimize the regularization term.
- Experiments have shown that minimizing the path regularization via OT improves the GFlowNet's generalization while maximizing the path regularization via OT enhances the exploration ability of the GFlowNet.







Fanmeng Wang 2023-6-21