VILLE DE LIÈGE

Institut de Technologie Enseignement de Promotion sociale

Année académique 2021 – 2022

Développement d'un codec audio AAC : optimisation de l'algorithme MDCT pour l'architecture ARM

Étudiante :

Laura Binacchi

Lieu de stage :

EVS Broadcast EquipmentRue du Bois Saint-Jean 13, 4102 Ougrée

Maître de stage :

Bernard ThilmantSoftware Engineer

Épreuve intégrée présentée pour l'obtention du diplôme de BACHELIER.E EN INFORMATIQUE ET SYSTÈMES FINALITÉ: INFORMATIQUE INDUSTRIELLE

Table des matières

	Introduction	1
1	EVS Broadcast Equipment	1
	1.1 L'entreprise en quelques infos	. 1
	1.2 Le serveur XT	
2	L'encodage audionumérique : généralités	2
	2.1 Le son	. 2
	2.2 La numérisation d'un signal	
3	Les codec audio	2
	3.1 Définition d'un codec	. 2
	3.2 Historique des normes MPEG	
4	Le codec AAC	2
	4.1 Présentation générale	. 2
	4.2 Le bloc MDCT	
5	Développement de la MDCT	2
	5.1 Formule mathématique	. 2
	5.2 Fenêtre utilisée (autres paramètres?)	
	5.3 Algorithme de référence	
6	Optimisations algorithmiques	2
	6.1 Appel à un algorithme de FFT (nombres complexes)	. 2
	6.2 Réduction de la fenêtre d'entrée	
	6.3 Arithmétique fixed point	. 2
7	Optimisations à l'architecture ARM	2
	7.1 Spécificités de l'architecture ARMv8	. 2
	7.2 Utilisation de la FFT de la librairie Ne10	. 2
	7.3 Utilisation des fonctions Neon SIMD (intrinsic)	. 2
8	Résultats	2
	8.1 Protocole de validation	. 2
	8.2 Gain en performance	
	8.3 Perte de précision	
	Conclusion	3
	Références	3

Remerciements

Introduction

Développement d'une solution de software embarqué sur processeur ARM pour encodage audio AAC optimisé aux applications d'EVS :

- Prise de connaissance de l'encodage AAC et de l'environnement EVS qui utilise ce type de format;
- Prise de connaissance des résultats des optimisations possibles du modèle psycho-acoustique développé par EVS:
- Développement du code en C ou Assembler pour l'encodage AAC sur plateforme ARM;
- Test du système et documentation de son implémentation.s possibles du modèle psycho-acoustique développé par EVS;
- Développement du code en C ou Assembler pour l'encodage AAC sur plateforme ARM;
- Test du système et documentation de son implémentation.

1 EVS Broadcast Equipment

1.1 L'entreprise en quelques infos

1.2 Le serveur XT

EVS développe et commercialise de nombreux produits allant des serveurs de production aux interfaces permettant d'exploiter des données audio-visuelles ou de monitorer des systèmes de production[1]. Le serveur de production live XT est un des produits emblématiques d'EVS. Il permet de stocker de grandes quantités de données audio-visuelles et d'y accéder en temps réel afin de répondre aux besoins de la production en live. Par exemple, la remote LSM (*Live Slow Motion* permet d'accéder aux contenus des serveurs XT afin de créer les ralentis pour lesquels EVS est célèbre dans le monde.

Figure 1 – Vues avant et arrière (en configuration IP) de l'XT-VIA

2 L'encodage audionumérique : généralités

- 2.1 Le son
- 2.2 La numérisation d'un signal
- 3 Les codec audio
- 3.1 Définition d'un codec
- 3.2 Historique des normes MPEG
- 4 Le codec AAC
- 4.1 Présentation générale
- 4.2 Le bloc MDCT
- 5 Développement de la MDCT
- 5.1 Formule mathématique
- 5.2 Fenêtre utilisée (autres paramètres?)
- 5.3 Algorithme de référence
- 6 Optimisations algorithmiques
- 6.1 Appel à un algorithme de FFT (nombres complexes)
- 6.2 Réduction de la fenêtre d'entrée
- 6.3 Arithmétique fixed point
- 7 Optimisations à l'architecture ARM
- 7.1 Spécificités de l'architecture ARMv8
- 7.2 Utilisation de la FFT de la librairie Ne10
- 7.3 Utilisation des fonctions Neon SIMD (intrinsic)
- 8 Résultats
- 8.1 Protocole de validation
- 8.2 Gain en performance
- 8.3 Perte de précision

Conclusion

Références

[1] EVS Website, "Page de présentation des produits commercialisés par evs." [https://evs.com/products], consulté le 21 avril 2022.