

01076009

องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี Computer Organization and Assembly Language

Arithmetic

Binary Representation

• พื้นฐานของระบบคอมพิวเตอร์คือ เลขฐาน 2

0101 1000 0001 0101 0010 1110 1110 0111

Most significant bit

Least significant bit

• ลำดับเลขฐาน 2 ข้างต้น แทนตัวเลข

$$0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + ... + 1 \times 2^{0}$$

 เลขฐาน 2 ขนาด 32 บิต สามารถแทนค่าได้ 2³² ตัวเลข (กรณีที่เป็นแบบ unsigned หรือตัวเลขทุกตัวเป็นจำนวนบวก)

Negative Number

• แต่ถ้าเราต้องการแทนค[่]าให้ได้ทั้งจำนวนบวกและจำนวนลบแล้ว เราก็จะแทนได้เพียง จำนวนบวก 2³¹ ตัว (รวม 0) และจำนวนลบอีก 2³¹ ตัว

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = 0_{ten}
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten}
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = -2^{31}
1000 0000 0000 0000 0000 0000 0001<sub>two</sub> = -(2^{31} - 1)
1000 0000 0000 0000 0000 0000 0010_{two} = -(2^{31} - 2)
1111 1111 1111 1111 1111 1111 1110 _{two} = -2
1111 1111 1111 1111 1111 1111 1111 1111 = -1
```

2's Complement


```
\begin{array}{c} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1_{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ 1_{two} = 1_{ten} \\ & \dots \\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 11111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 11111\ 11111\ 1111\ 1111\ 1111
```

เหตุใด การแทนเลขจำนวนลบด้วย 2's Complement จึงเป็นที่นิยม?
ลองพิจารณา ผลรวมของ 1 กับ -2 ซึ่งได้ผลลัพธ์เป็น -1
และพิจารณา ผลรวมของ 2 and -1 ซึ่งได้ผลลัพธ์เป็น +1
จะเห็นว่าในรูปแบบนี้ สามารถแสดงผลลัพธ์ของการบวกได้ โดยต้องแปลงอะไรเพิ่มเติมอีก

$$x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$$

2's Complement

ผลรวมของของจำนวน X ใดๆ กับจำนวน Invert ของ X (x') จะได้เท่ากับตัวเลขฐาน 2 ที่เป็น 1 หมด (-1) เสมอ

$$x + x' = -1$$
 $x' + 1 = -x$ จากสมการนี้ เราสามารถสร้างค่าลบของจำนวนใดๆ
 $-x = x' + 1$ โดยการกลับทุกบิตและบวกด้วย 1 ได้

และในทำนองเดียวกัน ผลรวมของ X กับ –X ก็จะได้เท่ากับตัวเลขฐาน 2 ที่เป็น 0 ทั้งหมด โดยมีตัวทด 1

Example

• จงคำนวนเลข 2's Complement ของเลขฐาน 10 ต่อไปนี้ 5, -5, 6

Signed / Unsigned

- จากคำสั่ง ARM ที่กล่าวมาในครั้งก่อน จะเห็นว่าในในระดับ Hardware จะมอง
 ข้อมูลจำนวนเต็มออกเป็น 2 แบบ คือ
 - Unsigned (ในภาษาซีจะกำหนดชนิดเป็น unsigned int) โดยตัวเลขจะเป็น บวก ทั้งหมด และบิตซ้ายสุดจะเป็นส่วนหนึ่งของค่าข้อมูล
 - Signed (ในภาษาซีจะกำหนดชนิดเป็น signed int หรือ int) โดยตัวเลขสามารถ เป็นได้ทั้ง บวกและลบ ซึ่งบิตซ้ายสุดจะทำหน้าที่บอกว่าเป็นจำนวนลบหรือไม่
- ในการประมวลผล เราต้องคำนึงถึงความแตกต่างระหว่างการแทนค่าทั้งสองแบบ นี้เสมอ และควรทราบว่าหากไม่มีการใช้ตัวเลขที่เป็นลบ ก็ควรมองแบบ Unsigned เนื่องจากจะสามารถแทนจำนวนเลขได้มากกว่า

Example

• เช่นคำสั่ง

CMP r0, #0
BLE exit
MOV r0, #1

exit:

- สมมติให้ r0 มีตัวเลข 1111 01...01
- คำถาม คือ หลังจากการทำงานนี้ r0 จะมีค่าเป็นเท่าไร
- แล้วหากใช้คำสั่ง BLS แทน BLE จะเกิดอะไรขึ้น

Sign Extension

- ข้อมูลตัวเลขที่เก็บในหน่วยความจำ ปกติใน ARM จะใช้ 4 ไบต์ต่อข้อมูล
- แต่ในกรณีที่ข้อมูลมีขนาดเล็ก อาจจะใช้พื้นที่น้อยกว่านั้น เช่น 2 ไบต์ หรือ 1 ไบต์ ในการเก็บ เพื่อประหยัดหน่วยความจำ
- สมมติว่าเก็บข้อมูล 16 บิต ค่าเป็น -1 ก็คือ FF FFh
- แต่เมื่อจะโหลดเข้ามาใน register เพื่อประมวลผล รีจิสเตอร์ของ ARM เป็น 32 บิตทั้งหมด ดังนั้นหากโหลดเข้ามาตรงๆ ก็จะกลายเป็น 00 00 FF FFh ซึ่งทำให้ ค่า -1 หายไป
- ดังนั้นจึงต้องมีการทำ sign extension เมื่อมีการโหลดข้อมูลแบบ signed ขนาด 8 หรือ 16 บิต เข้ามา โดยการ copy บิตซ้ายสุดมายังบิตอื่นๆ ด้วย เช่น FF FFh จะเป็น FF FF FFh (ARM จะมีคำสั่ง LDRSB และ LDRSH)

Addition and Subtraction

- สำหรับการบวก จะคล้ายกับการบวกเลขฐาน 10 ทั่วไป คือ ถ้ามีการทดก็จะบวก เข้าไปที่หลักหน้า
- สำหรับการลบก็ยังคงใช้การบวก เช่น จาก A –B ก็เปลี่ยนเป็น A + (-B) การสร้าง
 –B ก็ใช้วิธีการ 2's Compliment โดยการกลับบิต แล้วบวก 1 เข้าไป

Source: H&P textbook

Overflows

- Overflows คือ เหตุการณ์ที่ขนาดของ register ไม่พอที่จะใส่ขนาดของผลลัพธ์
- สำหรับตัวเลขแบบ Unsigned นั้น Overflow จะเกิดขึ้นเมื่อตัวทดหลักสุดท้าย ไม่สามารถรองรับได้ (บางครั้งเรียก Underflow)
- สำหรับการตัวเลขแบบ Signed นั้น Overflow จะเกิดขึ้นเมื่อ MSB (Most Significant Bit) ของผลลัพธ์แตกต่างจาก MSB ของข้อมูลเริ่มต้น
 - เมื่อบวกเลขจำนวนบวก 2 จำนวน แต่ได้ผลลัพธ์เป็นลบ
 - มื่อบวกเลขจำนวนลบ 2 จำนวน แต่ได้ผลลัพธ์เป็นบวก
 - ผลลัพธ์ของจำนวนบวก กับ จำนวนลบ จะไม่มีทางเกิด Overflow ได้

Overflows

- สมมติว่าเป็นข้อมูลขนาด 8 บิต เพื่อให้เข้าใจง่าย
 - กรณี Unsigned
 - A = 1000 0000, B = 1000 0000
 - ผลลัพธ์จะได้เท่ากับ 1 0000 0000 ซึ่ง Overflow
 - กรณี Signed
 - A = 0100 0000, B = 0100 0000
 - ผลลัพธ์จะได้เท่ากับ 1000 0000 ซึ่งจะเห็นว่าทั้งคู่เป็นเลข<mark>บวก</mark> แต่ผลลัพธ์เป็น<mark>ลบ</mark>
 - A = 1000 0001, B = 1000 0001
 - ผลลัพธ์จะได้เท่ากับ 1 0000 0010 ซึ่งเป็นเลขลบ (ตัดตัวทด) แต่ผลลัพธ์จะเป็นบวก
 - A = 1111 1111 (-1), B = 0000 0001 (1)
 - ผลลัพธ์จะได้ 1 0000 0000 ซึ่งเมื่อตัดตัวทดไป จะได้ค่า 0 ซึ่งไม่ Overflow

Exercise

• กำหนดให้ตัวเลขแบบ Unsigned 8 บิต 2 จำนวน ให้หาว่า 69 – 90 เกิด Overflow หรือ Underflow หรือไม่

```
0100 0101 - 0101 1010 = 1110 1011 ->
Underflow
```

กำหนดให้ตัวเลขแบบ Unsigned 8 บิต 2 จำนวน ให้หาว่า 102 – 44 เกิด
 Overflow หรือ Underflow หรือไม่

```
01100110 - 00101100 = 00111010 ->
ไม่ Error
```

Exercise

• กำหนดให้ตัวเลขแบบ Signed 8 บิต 2 จำนวน ให้หาว่า 200 + 103 เกิด Overflow หรือ Underflow หรือไม่

```
200 = -56 (1100 1000)
1100 1000 + 0110 0111 = 1 0010 1111 (=47<sub>10</sub>) -> ไม่
```

• กำ**หนดให้ตา**ใลขแบบ Signed 8 บิต 2 จำนวน ให้หาว่า 247 + 237 เกิด Overflow หรือ Underflow หรือไม่

Multiplication

Multiplicand Multiplier $\begin{array}{c} 1000_{\text{ten}} \\ \text{x} \quad 1001_{\text{ten}} \end{array}$

1000

0000

0000

1000

Product

 1001000_{ten}

การทำงานในแต่ละ Step

- 1. พิจารณาบิตสุดท้ายของตัวคูณ (Multiplier)
- 2. ถ้าบิตมีค่าเป็น 1 ให้บวกตัวตั้ง (Multiplicand) เข้ากับผลลัพธ์ (Product)
- 3. Shift ตัวตั้งไป 1 หลัก (ทางซ้าย)
- 4. Shift ตัวคูณไป 1 หลัก (ทางขวา)
- 5. กลับไปทำขั้นตอนที่ 1 จนกว่าจะหมด

Multiplication

- 1010 × 1001
 - บิตสุดท้าย = 1 -> บวกตัวตั้งเข้ากับผลลัพธ์ = 1010
 - Shift Left ตัวตั้งไป 1 หลัก = 10100
 - Shift Right ตัวคูณไป 1 หลัก = 100
 - บิตสุดท้าย = 0 ไม่บวก
 - Shift Left ตัวตั้งไป 1 หลัก = 101000
 - Shift Right ตัวคูณไป 1 หลัก = 10
 - บิตสุดท้าย = 0 ไม่บวก
 - Shift Left ตัวตั้งไป 1 หลัก = 1010000
 - Shift Right ตัวคูณไป 1 หลัก = 1
 - บิตสุดท้าย = 1 -> บวกตัวตั้งเข้ากับผลลัพธ์ = 1011010 เป็นคำตอบสุดท้าย

Multiplication

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Exercise

• ตามตัวอย่างตารางใน Slide ก่อนหน้านี้ ให้แสดงการคูณของ 44₁₀ กับ 55₁₀

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	11011 <mark>1</mark>	0010 1100	0000 0000
1	1a: 1 -> Prod = Prod + <u>Mcand</u>	110111	0010 1100	0010 1100
	2: Shift Left Multiplicand	110111	0101 1000	0010 1100
	3: Shift Right Multiplier	011011	0101 1000	0010 1100
2	1a: 1 -> Prod = Prod + Mcand	0 11 01 1	0101 1000	1000 0100
	2: Shift Left Multiplicand	011011	1011 0000	1000 0100
	3: Shift Right Multiplier	001101	1011 0000	1000 0100
3	1a: 1 -> Prod = Prod + <u>Mcand</u>	00 11 0 1	1011 0000	1 0011 0100
	2: Shift Left Multiplicand	001101	1 0110 0000	1 0011 0100
	3: Shift Right Multiplier	000110	1 0110 0000	1 0011 0100
4	1: 0 -> No Operation	000110	1 0110 0000	1 0011 0100
	2: Shift Left Multiplicand	000110	10 1100 0000	1 0011 0100
	3: Shift Right Multiplier	000011	10 1100 0000	1 0011 0100
5	1a: 1 -> Prod = Prod + Mcand	000011	10 1100 0000	11 1111 0 1 00
	2: Shift Left Multiplicand	000011	101 1000 0000	11 1111 0100
	3: Shift Right Multiplier	000001	101 1000 0000	11 1111 0100
6	1a: 1 -> Prod = Prod + Mcand	000001	101 1000 0000	1001 0111 0100
	2: Shift Left Multiplicand	000001	1011 0000 0000	1001 0111 0100
	3: Shift Right Multiplier	000000	1011 0000 0000	1001 0111 0100

- การทำงานในแต่ละ Step
 - พิจารณาบิตสุดท้ายของตัวคูณ (Multiplier)
 - ถ้าบิตมีค่าเป็น 1 ให้บวกตัวตั้ง (Multiplicand) เข้ากับผลลัพธ์ (Product)
 - Shift ตัวตั้งไป 1 หลัก (ทางซ้าย) และ Shift ตัวคูณไป 1 หลัก (ทางขวา) 3.
 - กลับไปทำขั้นตอนที่ 1 จนกว่าจะหมด 4.

• รอบที่ 1

รอบที่ 2

รอบที่ 3

• รอบที่ 4

Final

Exercise

• ให้แสดงการคูณของ 44₁₀ กับ 55₁₀ โดยแสดงข้อมูลใน register ในแต่ละ step

Iteration	Multiplier	Multiplicand	Product
1	110111	0010 1100	0000 0000
2	011011	0101 1000	1000 0100
3	001101	1011 0000	1 0011 0100
4	000110	1 0110 0000	1 0011 0100
5	000011	10 1100 0000	11 1111 0100
6	000001	101 1000 0000	1001 0111 0100

- สมมติว่าใน Hardware ตามรูป ใช้ Clock กำกับการทำงาน โดย 1 Clock เป็น การสั่งให้ทำงาน 1 การทำงาน หากต้องการคูณตัวเลข 32 บิต จะใช้กี่ Clock ใน การทำงาน
- มีขั้นตอนใดที่สามารถรวมเข้าด้วยกันได้บ้าง
- หลังจากรวมแล้ว เหลือกี่ Clock ต่อการคูณตัวเลข 32 บิต 2 จำนวน

🖣 เพื่อให้สามารถทำงานได้เร็วขึ้น จึงมีการปรับปรุง Hardware ตามรูป

- ALU กับ ตัวตั้งยังเหมือนเดิม มีการรวมตัวคูณกับผลลัพธ์เข้าด้วยกัน
- ในแต่ละ step Product + Multiplier = 64 บิต โดย Product จะเพิ่มขึ้นเรื่อยๆ ครั้ง ละ 1 บิต แต่ Multiplier จะลดลงเรื่อยๆ ครั้งละ 1 บิต สุดท้าย Product = 64 บิต

• รอบที่ 1 บิตขวาสุดของตัวคูณ คือ 1 ดังนั้นจะสั่งให้บวก และ write ผลลัพธ์ลงใน Product (ในฝั่ง 32 บิต) จากนั้นสั่ง shift

• รอบที่ 2 บิตขวาสุดของตัวคูณ คือ 0 จะไม่บวกและ write ผลลัพธ์ลงใน Product (ในฝั่ง 32 บิต) จากนั้นสั่ง shift

• รอบที่ 3 บิตขวาสุดของตัวคูณ คือ 0 จะไม่บวกและ write ผลลัพธ์ลงใน Product (ในฝั่ง 32 บิต) จากนั้นสั่ง shift

• รอบที่ 4 บิตขวาสุดของตัวคูณ คือ 1 ดังนั้นจะสั่งให้บวก และ write ผลลัพธ์ลงใน Product (ในฝั่ง 32 บิต) จากนั้นสั่ง shift

ผลลัพธ์สุดท้าย

Exercise

• ให้แสดงการคูณของ 44₁₀ กับ 55₁₀ โดยแสดงข้อมูลใน register ในแต่ละ step

Iteration	Multiplicand	Product
1	0010 1100	0000 0000 0011 0111
2	0010 1100	1000 0100 0001 1011
3	0010 1100	1001 1010 0000 1101
4	0010 1100	1001 1010 0000 0110
5	0010 1100	1111 1101 0000 0011
6	0010 1100	1001 0111 0100 0001
7	0010 1100	1001 0111 0100 0000

- Hardware ที่สร้างใหม่ มีการทำงานที่เร็วขึ้น มีวงจรน้อยลง
- นอกจากนั้นยังสามารถทำงานกับตัวเลขแบบ Signed ได้ (ในรูปแบบ 2's Compliment)
- อาจจะเปลี่ยนจากลบเป็นบวก แล้วเมื่อคูณแล้วค่อยเอาเครื่องหมายใส่กลับเข้าไป
- โดยทั่วไป ผลลัพธ์ของการคูณ 32 บิต จะไม่เกิน 64 บิต แต่สำหรับ ARM จะมี 2 คำสั่ง
 - MUL เมื่อคูณแล้วผลลัพธ์ต้องไม่เกิน 32 บิต
 - MULL เมื่อคูณแล้วผลลัพธ์จะเป็น 64 บิต ดังนั้นต้องใช้รีจิสเตอร์ในการเก็บ 2 ตัว เช่น UMULL R1,R4,R2,R3; R4,R1:=R2*R3

Fast Multiplication

- ใน Hardware ก่อนหน้านี้ จำเป็นต้องมี สัญญาณ clock กำกับ เพื่อให้แน่ใจได้ ว่าการบวกจะเกิดขึ้นก่อน shift
- แต่เนื่องจากทำทีละบิต ดังนั้นจึงเลี่ยง
 ไม่ได้ที่จะต้องใช้ clock จำนวนมากใน
 การทำงาน
- สำหรับ Hardware แบบ fast multiplication นี้ จะทำทุกบิตพร้อมๆ กัน ทำให้ลดจำนวน clock ไปมาก
- แต่ก็แลกมาด้วย จำนวน transistor

Fast Multiplication

Fast Multiplication

- จาก Hardware ข้างต้น (s.27) จะเห็นว่าจะต้องมี Adder Module ถึง 32 หน่วย
- แต่เราสามารถลดจำนวนหน่วยได้ โดยจัดเรียงการทำงานเสียใหม่ ดังนี้

Division

$$\begin{array}{c|c} & \underline{1001_{ten}} & \textbf{Quotient} \\ \hline \textbf{Divisor} & 1000_{ten} & 1001010_{ten} & \textbf{Dividend} \\ \hline & \underline{-1000} \\ & 10 \\ & 101 \\ & 1010 \\ \hline & \underline{-1000} \\ & 10_{ten} & \textbf{Remainder} \end{array}$$

- การทำงานในแต่ละ Step
 - Shift ตัวหารทางขวา และเปรียบเทียบกับตัวตั้ง
 - ถ้าตัวหารยังคงมีค่ามากกว่า ให้ shift 0 เข้าไปที่ผลลัพธ์
 - ถ้าตัวหารน้อยกว่า ให้ทำการลบ แล้วสร้างตัวตั้งตัวใหม่ และ shift 1 เข้าไปที่ผลลัพธ์

Division

Divisor 1000 1001010 Quotient Dividend

- การทำงานในแต่ละ Step
 - Shift ตัวหารทางขวา และเปรียบเทียบกับตัวตั้ง
 - ถ้าตัวหารยังคงมีค่ามากกว่า ให้ shift 0 เข้าไปที่ผลลัพธ์
 - ถ้าตัวหารน้อยกว่า ให้ทำการลบ แล้วสร้างตัวตั้งตัวใหม่ และ shift 1 เข้าไปที่ผลลัพธ์

Division

Divide Example

• Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111
	Rem < 0 → +Div, shift 0 into Q	0000	0010 0000	0000 0111
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 → shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

Exercise

• ให้แสดงการหาร 40_{10} ด้วย 19_{10} ตามตัวอย่างใน slide ก่อนหน้า

Iteration	Step	Quotient	Divisor	Reminder
0	Initial Values		0001 0011 0000 0000	0010 1000
1	Reminder = Reminder - Divisor		0001 0011 0000 0000	< 0
	Reminder < 0 -> Shift 0 into Q	0		
	Shift Divisor Right		0000 1001 1000 0000	0010 1000
2	Reminder = Reminder - Divisor		0000 1001 1000 0000	< 0
	Reminder < 0 -> Shift 0 into Q	00		
	Shift Divisor Right		0000 0100 1100 0000	0010 1000
3	Reminder = Reminder - Divisor		0000 0100 1100 0000	< 0
	Reminder < 0 -> Shift 0 into Q	000		
	Shift Divisor Right		0000 0010 0110 0000	0010 1000
4	Reminder = Reminder - Divisor		0000 0010 0110 0000	< 0
	Reminder < 0 -> Shift 0 into Q	0000		
	Shift Divisor Right		0000 0001 0011 0000	0010 1000

Exercise

• ให้แสดงการหาร 40_{10} ด้วย 19_{10} ตามตัวอย่างใน slide ก่อนหน้า

Iteration	Step	Quotient	Divisor	Reminder
5	Reminder = Reminder - Divisor		0000 0001 0011 0000	< 0
	Reminder < 0 -> Shift 0 into Q	00000		
	Shift Divisor Right		0000 0000 1001 1000	0010 1000
6	Reminder = Reminder - Divisor		0000 0000 1001 1000	< 0
	Reminder < 0 -> Shift 0 into Q	000000		
	Shift Divisor Right		0000 0000 0100 1100	0010 1000
7	Reminder = Reminder - Divisor		0000 0000 0100 1100	< 0
	Reminder < 0 -> Shift 0 into Q	0000000		
	Shift Divisor Right		0000 0000 0010 0110	0010 1000
8	Reminder = Reminder - Divisor		0000 0000 0010 0110	10
	Reminder > 0 -> Shift 1 into Q	00000001		
	Shift Divisor Right		0000 0000 0001 0011	10
9	Reminder = Reminder - Divisor		0000 0000 0001 0011	< 0
	Reminder < 0 -> Shift 0 into Q	000000010		
	Shift Divisor Right		0000 0000 0000 0100	10

Hardware for Division

การตรวจสอบว่าตัวตั้งมีค่ามากกว่าตัวหารหรือยังจะใช้การลบ ถ้าลบแล้วได้เครื่องหมาย
 เป็นลบ แสดงว่าไม่พอ ก็จะมีการบวกตัวหารกลับเข้าไป

Efficient Division

Divisions involving negatives

• ในการหารเลขที่เป็นลบนั้น วิธีการที่ง่ายที่สุด คือ เอาเครื่องหมายออกก่อน แล้วค่อยใส่กลับไปทีหลัง

Dividend = Quotient x Divisor + Remainder

+7 div +2	Quo = +3	Rem = +1
-7 div +2	Quo = -3	Rem = -1
+7 div -2	Quo = -3	Rem = +1
-7 div -2	Quo = +3	Rem = -1

- หลักการ : ตัวตั้งและเศษ จะมีเครื่องหมายเหมือนกัน
- ผลลัพธ์จะเป็นลบ ถ้าตัวตั้งและตัวหารมีเครื่องหมายต่างกัน

Exercise

• ให้แสดงการหาร 40_{10} ด้วย 18_{10} โดยแสดงข้อมูลใน register ในแต่ละ step

Iteration	Quotient	Divisor	Reminder
0		0001 0011 0000 0000	0010 1000
1	0	0000 1001 1000 0000	0010 1000
2	00	0000 0100 1100 0000	0010 1000
3	000	0000 0010 0110 0000	0010 1000
4	0000	0000 0001 0011 0000	0010 1000
5	00000	0000 0000 1001 1000	0010 1000
6	000000	0000 0000 0100 1100	0010 1000
7	0000000	0000 0000 0010 0110	0010 1000
8	00000001	0000 0000 0001 0011	10
9	000000010	0000 0000 0000 0100	10

For your attention