5/3/23, 10:46 PM HW4

Mason Wheeler

5/3/2023

EE 242, Assignment 4

1.

Computing the convolution x(t) * h(t):

1. x(t): \$\$\mathbf{x}(t) = \begin{cases}

2. h(t): h

Convolution formula:

$$(\mathbf{x}*\mathbf{h})(au) = \int_{-\infty}^{\infty} \mathbf{x}(t) \mathbf{h}(au - t) dt$$

Considering the different cases for the convolution:

- For au < -3, the functions do not overlap, so the convolution is 0.
- For $-3 < \tau < -2$:

$$(\mathbf{x} * \mathbf{h})(au) = \int_{ au+2}^0 \mathbf{x}(t) \mathbf{h}(au - t) dt$$
 $(\mathbf{x} * \mathbf{h})(au) = \int_{ au+2}^0 dt$ $(\mathbf{x} * \mathbf{h})(au) = au + 2$

• For $-2 \le \tau < -1$:

$$(\mathbf{x}*\mathbf{h})(au) = \int_{ au+2}^1 \mathbf{x}(t) \mathbf{h}(au-t) dt$$

 $(\mathbf{x}*\mathbf{h})(au) = \int_{ au+2}^1 dt$

$$(\mathbf{x} * \mathbf{h})(\tau) = 3 + \tau$$

• For $-1 < \tau < 0$:

$$egin{align} (\mathbf{x}*\mathbf{h})(au) &= \int_0^{ au+2} \mathbf{x}(t) \mathbf{h}(au-t) dt \ & (\mathbf{x}*\mathbf{h})(au) &= \int_0^{ au+2} dt \ & (\mathbf{x}*\mathbf{h})(au) &= au+2 \end{aligned}$$

• For $0 \le \tau < 1$:

$$(\mathbf{x} * \mathbf{h})(\tau) = \int_{\tau-2}^{1} (1-t)\mathbf{h}(\tau-t)dt$$
 $(\mathbf{x} * \mathbf{h})(\tau) = \int_{\tau-2}^{1} (1-t)dt$

 $$$(\mathbf{x} * \mathbf{h})(tau) = \frac{1}{2}(3 - tau)(1 + tau)$

2.

We can analyze the given impulse responses:

a)
$$h[n] = (2)^n * u[n-2]u[n+2]$$

- (i) Causal: Since the impulse response is 0 for n < 2 and non-zero for $n \ge 2$, the system is causal.
- (ii) Stable: The impulse response has an exponential growth term (2)^n, which makes the system unstable.

b)
$$h[n] = (n * (0.5)^n) * u[n-1]$$

- (i) Causal: Since the impulse response is 0 for n < 1 and non-zero for $n \ge 1$, the system is causal.
- (ii) Stable: The impulse response has an exponential decay term (0.5)^n, which makes the system stable.

c)
$$h(t) = sin(t+1)u(t-1) + cos(t-1)u(-t+1)$$

(i) Causal: Since the impulse response is 0 for t < 1, the system is causal.

5/3/23, 10:46 PM HW4

(ii) Stable: Both sine and cosine functions are bounded between -1 and 1, so the system is stable.

d)
$$h(t) = e^{-5|t|}$$

- (i) Causal: The impulse response is non-zero for all t, so the system is non-causal.
- (ii) Stable: The impulse response has an exponential decay term e^{-5|t|}, which makes the system stable.

3.

We can analyze the given impulse responses and determine their stability by converting them to polar form:

a)
$$h[n] = \left(rac{1}{2} + jrac{2}{3}
ight)^n u[n]$$

In polar form: $h[n] =
ho^n e^{j heta n} u[n]$

where
$$ho=\sqrt{\left(rac{1}{2}
ight)^2+\left(rac{2}{3}
ight)^2}=rac{\sqrt{13}}{6}$$
 and $heta= an^{-1}\!\left(rac{2}{3}
ight)$

Since $\rho < 1$ and u[n] is causal, the system is **stable**.

b)
$$h[n]=\left(rac{1}{2}+jrac{2}{3}
ight)^nu[-n]$$

In polar form: $h[n] =
ho^n e^{j heta n} u[-n]$

where ρ and θ are the same as in part (a).

Since ho < 1 and u[-n] is non-causal, the system is **unstable**.

c)
$$h(t)=e^{\left(rac{1}{2}-jrac{2}{3}
ight)t}u(t)$$

In polar form: $h(t)=e^{(rac{1}{2}t)}e^{-jrac{2}{3}t}u(t)$

Since the exponential term $e^{\frac{1}{2}t}$ has a positive exponent and u(t) is causal, the system is **unstable**.

d)
$$h(t)=e^{\left(rac{1}{2}-jrac{2}{3}
ight)t}u(-t)$$

In polar form: $h(t)=e^{(rac{1}{2}t)}e^{-jrac{2}{3}t}u(-t)$

Since the exponential term $e^{\frac{1}{2}t}$ has a positive exponent and u(-t) is non-causal, the system is **unstable**.