Training Large Language Models

Scaling Laws and Chinchilla

Learning goals

- Understand Chinchilla
- Understand the various scaling laws

NUMBER OF PARAMETERS: NOTATION

- Up to now in this chapter: number of parameters = P
- From now on: number of parameters = N

SCALING LAWS PROPOSED BY KAPLAN ET AL. (2020)

► Kaplan et al. (2020)

- Performance depends strongly on scale, weakly on model shape
 - Scale means: parameters N, data D, and compute C
 - Shape means: depth and width
- Smooth power laws
 - Performance has power-law relation with each factor N, D, C
 - When not bottlenecked by the other two
 - Trend spanning more than six orders of magnitude
- Universality of overfitting
 - Performance enters regime of diminishing returns if N or D held fixed while the other increases

SCALING LAWS PROPOSED BY KAPLAN ET AL. (2020)

- Universality of training
 - Training curves follow predictable power-laws
 - Their parameters are roughly independent of model size
 - It is possible to predict by extrapolating the early part of the training curve
- Transfer improves with test performance
 - When evaluating on text with different distribution from training text, results are strongly correlated to those on the validation set
 - Transfer to different distribution incurs a constant penalty but improves in line with performance on training set
- Sample efficiency
 - Large models are more sample-efficient than small models
 - They reach same performance with fewer optimization steps

POWER LAW (GPT3 PAPER)

SCALING LAWS

- Convergence is inefficient
 - When C is fixed but N and D are not, optimal performance is achived by training very large models and stopping significantly short of convergence
- Optimal batch size
 - Claim: "Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only, and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million tokens at convergence for the largest models we can train."
 - gradient noise scale = a measure of the signal-to-noise ratio of gradient across training examples

Claim: Larger language models will perform better and be more sample efficient than current models.

OPTIMAL BATCH SIZE

Figure 3: Larger batch sizes yield estimated gradients that are closer to the true gradient, on average. Larger step sizes can be used when the estimated gradient is closer to the true gradient, so more progress can be made per step. **Left:** A large step size used with a small batch size can lead to instability, as illustrated for a quadratic loss. **Right:** Equation 2.6 predicts that the 'turning point' after which larger batch sizes become less helpful is the noise scale B, where the training speed drops to 50% of the maximum possible.

OPTIMAL BATCH SIZE

Figure 3: Larger batch sizes yield estimated gradients that are closer to the true gradient, on average. Larger step sizes can be used when the estimated gradient is closer to the true gradient, so more progress can be made per step. Left: A large step size used with a small batch size can lead to instability, as illustrated for a quadratic loss. Right: Equation [2.6] predicts that the 'turning point' after which larger batch sizes become less helpful is the noise scale B, where the training speed drops to 50% of the maximum possible.

- ullet Estimate gradient as accurately as possible o large batch
- ullet Increase training speed as much as possible o large step size
- Based on the estimated gradient, choose a step size such that the cost of the landing position does not deviate too much from the cost of the ideal landing position → small step size
- Exploit stochasticity (epoch batches would not be a good thing even if we could compute them efficiently) → small step size

SCALING LAW FOR NEXT WORD PREDICTION

- BASE OF LOGARITHM
- $L(N, D) = 1.61 + \frac{406.4}{N^{0.34}} + \frac{410.7}{D^{0.28}}$
- L(N, D) is cross entropy on new text

COMPUTE-OPTIMAL LLMs

Given a fixed FLOPs budget, how should we trade-off model size and text size to optimize performance? • Hoffmann et al., 2022

- Find N and D so that FLOPs(N, D) = C and L(N, D) is minimal
- Empirically estimated N and D based on 400 models.
 - Ranging from 70 M to 16 B parameters
 - Trained on 5 B to 400 B tokens
- Different results from those of ► Kaplan et al., 2020
- Results verified using Chinchilla
 - Chinchilla has 70 B parameters and is trained on 1.4 T tokens
 - 4x less parameters and 4x more tokens than Gopher
 - Chinchilla outruns Gopher and has reduced memory footprint and inference cost

COMPUTE-OPTIMAL LLMs: ARE GPT3 ETC TOO LARGE?

COMPUTE-OPTIMAL LLMs (2)

Given a fixed FLOPs budget, how should one trade off model size and the number of training tokens? We find that all three methods predict that current large models should be substantially smaller and therefore trained much longer than is currently done. Based on our estimated compute-optimal frontier, we predict that for the compute budget used to train Gopher, an optimal model should be 4 times smaller, while being training on 4 times more tokens. We verify this by training a more compute-optimal 70B model, called Chinchilla, on 1.4 trillion tokens. Not only does Chinchilla outperform its much larger counterpart. Gopher, but its reduced model size reduces inference cost considerably and greatly facilitates downstream uses on smaller hardware. The energy cost of a large language model is amortized through its usage for inference and fine-tuning. The benefits of a more optimally trained smaller model, therefore, extend beyond the immediate benefits of its improved performance.

CHINCHILLA AND THE OTHER LLMs

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

► Source: Hoffmann et al., 2022

Model	Layers	Number Heads	Key/Value Size	$\mathbf{d}_{\text{model}}$	Max LR	Batch Size
Gopher 280B	80	128	128	16,384	4×10^{-5}	$3M \rightarrow 6M$
Chinchilla 70B	80	64	128	8,192	1×10^{-4}	$1.5\text{M} \rightarrow 3\text{M}$

CHINCHILLA OUTPERFORMS OTHER LLMs: MMLU

Random	25.0%
Average human rater	34.5%
GPT-3 5-shot	43.9%
Gopher 5-shot	60.0%
Chinchilla 5-shot	67.6%
Average human expert performance	89.8%
June 2022 Forecast	57.1%
June 2023 Forecast	63.4%

CHINCHILLA OUTPERFORMS OTHER LLMs: QA

	Method	Chinchilla	Gopher	GPT-3	SOTA (open book)
Natural Questions (dev)	0-shot	16.6%	10.1%	14.6%	
	5-shot	31.5%	24.5%	-	54.4%
	64-shot	35.5%	28.2%	29.9%	
TriviaQA (unfiltered, test)	0-shot	67.0%	52.8%	64.3 %	
	5-shot	73.2%	63.6%	-	-
	64-shot	72.3%	61.3%	71.2%	
TriviaQA (filtered, dev)	0-shot	55.4%	43.5%	-	
	5-shot	64.1%	57.0%	-	72.5%
	64-shot	64.6%	57.2%	-	

SCALING LAWS: DISCUSSION

Question: Any doubts?

DOUBTS ABOUT SCALING (1)

● (► Reuters

- Ilya Sutskever, co-founder of Al labs Safe Superintelligence (SSI) and OpenAl, told Reuters recently that results from scaling up pre-training – the phase of training an Al model that use s a vast amount of unlabeled data to understand language patterns and structures – have plateaued.
- But now, some of the most prominent AI scientists are speaking out on the limitations of this "bigger is better" philosophy.
- "The 2010s were the age of scaling, now we're back in the age of wonder and discovery once again. Everyone is looking for the next thing," Sutskever said. "Scaling the right thing matters more now than ever."

DOUBTS ABOUT SCALING (2)

- ► The Verge
 - I've heard that the model (December Gemini release) isn't showing the performance gains the Demis Hassabis-led team had hoped for ...
- Andrew Ng's news letter: "Orion's improvement over GPT-4 was far smaller than that from GPT-3 to GPT-4.", "Anthropic's schedule for ... Claude 3.5 Opus ... has slipped. It hasn't shown the expected performance given its size and cost ...", "OpenAl found that pretraining Orion on synthetic data made it too much like earlier models ...",

EPOCH AI PROJECTIONS

IT'S NOT SIMPLY BRUTE-FORCE SCALING (1)

Data

- If you run out of data, then increase # epochs
- The Stack v2 already contais all public code! arxiv.org/abs/2305.16264
- data quality/model size tradeoff: Training a smaller model on a smaller high-quality dataset may be better than training a huge model on a huge medium-quality dataset.
- For higher quality datasets, allocate more compute to model size. arxiv.org/abs/2401.02954
- See Stanford CS25: StarCoder Use Case

IT'S NOT SIMPLY BRUTE-FORCE SCALING (2)

- Scaling laws ignore cost per (input/output) token
 - Even if a humongous model gives me the best possible performance, cost per token may be prohibitively expensive.
 - Example: Llama models are small-ish because that's the size that makes economic sense right now.
 - The latest models cost as much as \$100 million to train, and this number could reach \$100 billion within a few years, according to Anthropic's Dario Amodei. Rising costs could lead companies to reallocate their gargantuan training budgets and researchers to focus on more cost-effective, application-specific approaches. (Andrew Ng)

SCALING: TRAIN/TEST TRADEOFF

Fig. 9. The trade-off between train-time compute and test-time compute. Each dotted line gives the minimum train-test compute required for a certain Elo on a 9×9 board

SHIFT AWAY FROM SCALING TOWARDS TEST TIME / SYSTEMS APPROACHES

- When investing more test-time compute, small models can outperform much larger models
- Many recent innovations (all implemented in o1?) were not about scaling.
 - Train on synthetic data (e.g., chain of thought)
 - Reflection
 - Test-time adaptation
- Focus more on compound/integrated systems with many smaller components rather than a single gargantuan end-to-end monolithic model.

IF THERE'S ONE THING YOU SHOULD TAKE AWAY (1)

IF THERE'S ONE THING YOU SHOULD TAKE AWAY (1)

As compute rises exponentially (left), the optimal loss for different transformer sizes (70M to 10B) changes nearly linearly. Optimal transformer size (center) and optimal dataset size measured in tokens (right) increases proportionally with increased compute. Image: "Training Compute-Optimal Large Language Models," Hoffmann, Borgeaud, Mensch, et al. (2022)

IF THERE'S ONE THING YOU SHOULD TAKE AWAY (2)

- The original scaling laws were exclusively about (pre)training:
 What is the best model I can train given constraints such as compute budget.
- This has shifted to "joint optimization" of training and testing: even
 if a trillion parameter model is the optimal model given training
 constraints, a much smaller model may be preferable since its so
 much cheaper at inference time.
- Trend towards systems of smaller models, trend away from a single huge monolithic model.