## ANALYSIS QUALIFYING EXAMINATION AUGUST 1994.

Throughout this examination, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure m on the real line  $\mathbb{R}$ , and  $L^p$  of an interval to  $L^p$  of that interval with respect to Lebesgue measure on that interval. Integrals w.r.t. Lebesgue measure will be denoted by  $\int f dx$ . Problems one through eight are 10 points each. Problem 9 is 20 points.

- 1. Let  $E, K \subset \mathbb{R}^2$  with E closed and K compact with respect to the Euclidean metric d and assume that  $E \cap K = \emptyset$ .
  - a. Let  $f(x) = d(x, E) = \inf\{d(x, y) : y \in E\}$ . Prove that  $|f(x) f(y)| \le d(x, y)$ .
  - Show that there exists  $\lambda > 0$  such that  $d(x,y) \ge \lambda$  for all  $x \in K$  and all  $y \in E$ .
- 2. Let  $E \subset \mathbb{R}$  with  $m^*(E) > 0$  and let  $0 < \lambda < 1$ . Prove that there exists a < b such that  $m^*(E \cap (a,b)) > \lambda(b-a)$ .
- 3. Let f be an increasing, continuous function on [a, b].
  - a. Show that f(x) = F(x) + g(x), where F and g are increasing, F is absolutely continuous, g is singular and both F and g are continuous.
  - b. Show that  $\int_a^b f'(x) dx = \int_a^b F'(x) dx$ .
  - 4. Suppose  $(g_n)$  is a sequence of measurable functions on [0,1] such that  $0 \le g_n \le$  and for  $k=0,1,\ldots$  we have

$$\lim_{n\to\infty} \int_0^1 x^k g_n(x) \, dx = \frac{1}{2} \int_0^1 x^k \, dx = \frac{1}{2(k+1)}.$$

Prove that

$$\lim_{n\to\infty}\int_0^1 f(x)g_n(x)\,dx = \frac{\mathrm{i}}{2}\int_0^1 f(x)dx$$

for all  $f \in L_1([0,1])$ .

- 5. Let  $f,g \in L_1([0,1])$ . Prove that h(x,y) = f(x)g(y) is measurable with respect to the product measure,  $h \in L_1([0,1] \times [0,1])$  and  $\iint h(x,y) dxdy = \iint f(x) dx \iint g(y) dy$
- - 7. Let  $G \subset \mathbb{C}$  be a region and let  $\langle f_n \rangle$  be a sequence of holomorphic functions on ( which converges uniformly on every compact subset of G to a function f. Prove th f is holomorphic on G.
  - 8. Let f be an entire function on  $\mathbb C$  and assume that  $|f(z)| \leq A|z|^k + B$  for so constants A, B, integer k and all  $z \in \mathbb C$ . Prove that f is a polynomial.

9. True or False. Prove, disprove or give a counterexample.

a. Let f be an entire function such that  $\operatorname{Re} f(z) \geq 0$  for all z. Then f is constant.

b.  $L_2(\mathbb{R}) \subset \{g+h: g \in L_1(\mathbb{R}), h \in L_\infty(\mathbb{R})\}$ .

c. If  $f_n \in L_1[0,1]$  and  $\int_0^1 |f_n| dx \to 0$ , then there exists  $g \in L_1[0,1]$  such that  $|f_n| \le g$ .

d. If  $\gamma$  is the curve in the picture below,  $G = \mathbb{C} \setminus \{0,1\}$ , and f is holomorphic on

G, then  $\int_{\gamma} f(z) dz = 0$ .

