FERIENKURS EXPERIMENTALPHYSIK 4 2010

Probeklausur

1 Allgemeine Fragen

- a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt?
- b) Was versteht man unter der Heisenbergschen Unschärferelation für Ort und Impuls?
- c) Wie werden Bosonen und Fermionen definiert und was besagt das Pauli-Prinzip?
- d) Erklären Sie die Quantenzahlen n, l, m. Welche Rolle spielen sie im Wasserstoffatom?
- e) Was versteht man allgemein unter einem Satz von guten Quantenzahlen? Was sind die guten Quantenzahlen für ein einfaches, wasserstoffähnliches Atom ohne und mit Berücksichtigung der Spin-Bahn-Kopplung?
- f) Nennen Sie mindestens zwei Gründe, weshalb stationäre Zustände in der Quantenmechanik eine so wichtige Rolle spielen.
- g) Was ist die Bedeutung der Wellenfunktion in der Quantenmechanik?
- h) Wie lauten die Auswahlregeln für elektrische Dipolübergänge?
- i) Wie lauten die Energie-Eigenwerte E_n des eindimensionalen harmonischen Oszillators im stationären Zustand?
- j) Was versteht man unter entarteten Energieniveaus?

Sie sollten für die Beantwortung der Fragen nicht zu viel Zeit aufwenden. Kurze und prägnante Antworten reichen völlig!

2 Potentialmulde

Gegeben sei eine rechteckförmige Potentialmulde der Breite b>0 und der Tiefe $-V_0$ mit $V_0>0$

$$V(x) = \begin{cases} 0 & x < 0 \text{ (Bereich I)} \\ -V_0 & 0 < x < b \text{ (Bereich III)} \\ 0 & x > b \text{ (Bereich III)} \end{cases}$$

Eine ebene Materiewelle (Energie E>0, Masse m) treffe von links auf diese Potentialmulde. Der Betrag des Wellenvektors in den drei Bereichen soll mit $k_{\rm I}$, $k_{\rm II}$ bzw. $k_{\rm III}$ bezeichnet werden.

- a) Die Energie E des Teilchens sei nun fest vorgegeben. Berechnen Sie die Muldentiefe V_0 in Abhängigkeit der Energie E, so dass gilt: $k_{\rm II}=4k_{\rm I}$.
- b) Die Muldentiefe erfüllt nun die Bedingung aus a) (d.h. $k_{\rm II}=4k_{\rm I}$). Geben Sie für alle drei Bereiche I, II und III die zugehörigen, resultierenden Ortswellenfunktionen $\phi_{\rm I}(x)$, $\phi_{\rm II}(x)$ und $\phi_{\rm III}(x)$ mit allgemeinen Amplitudenkoeffizienten an. Hinweis: Verwenden Sie für die ebene Teilchenwelle die komplexe Schreibweise und überlegen Sie, welche Wellenkomponenten in den jeweiligen Bereichen auftreten.
- c) Stellen Sie die Gleichungen auf, welche die Ermittlung der Amplitudenkoeffizienten aus b) erlauben.
- d) Betrachten Sie nun zusätzlich den Spezialfall $\lambda_{\rm I} = b/2$, wobei $\lambda_{\rm I}$ die Materiewellenlänge im Bereich I bezeichnet. Berechnen Sie die Wahrscheinlichkeit T, mit der das Teilchen die Potentialmulde überwindet.

3 Zeemann-Effekt

Der atomare Übergang $7^3S_1 \rightarrow 6^3P_2$ in Quecksilber entspricht einer Wellenlänge von $\lambda = 546.10$ nm.

- a) Welcher Zeeman-Effekt liegt vor, der normale, oder der anomale?
- b) Berechnen Sie die Landé-Faktoren g_j der beiden Zustände und bestimmen Sie die Aufspaltung des Levels 6^3P_2 Levels, wenn das 7^3S_1 Level mit $\Delta E = 3 \cdot 10^{-5}$ eV aufspaltet.
- c) Skizzieren Sie ein Termschema, dass diese Aufspaltung zeigt und zeichnen Sie die mit der Auswahlregel $\Delta m_j=0,\pm 1$ erlaubten Übergänge ein.

4 Hyperfeinstruktur

Wie groß ist das durch das 1s-Elektron am Ort des Protons ($I=1/2, g_I=5.58$) im Wasserstoffatom verursachte Magnetfeld, wenn die Hyperfeinstruktur ($\lambda=21$ cm) im 1s-Zustand durch die beiden Einstellungen des Kernspins erklärt wird?

5 Betazerfall von Tritium

Beim β^- -Zerfall zerfällt in einem Atomkern ein Neutron in ein Proton, ein Elektron und ein Elektronantineutrino $(n \to p^+ + e^- + \bar{\nu}_e)$. Ein radioaktives Tritiumatom ³H wandelt sich durch den Betazerfall in ein ³He⁺-Ion um. Die Wellenfunktion des Hüllenelektrons, das sich vor dem Zerfall im Grundzustand befindet, bleibe beim Zerfall ungestört. Wie groß ist die Wahrscheinlichkeit P, dass sich das Hüllenelektron des ³He⁺-Ions bei einer Messung im 1s-Zustand befindet? In einem wasserstoffähnlichen Atom lautet die Wellenfunktion für ein Elektron im Grundzustand

$$\psi_Z = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-\frac{Zr}{a_0}}$$

Folgendes Integral könnte hilfreich sein

$$\int_{0}^{\infty} \mathrm{d}r \, r^{n} \mathrm{e}^{-ar} = \frac{n!}{a^{n+1}}$$

6 Helium

- a) Skizzieren Sie das Energiespektrum von Helium bis zu den F-Zuständen. Erklären Sie die Nomenklatur der vorkommenden Zustände. Beobachtet man beim Para-Helium eine Feinstruktur? Auf welche Spinkopplung kann man deshalb beim Para-Helium folgern?
- b) Welche Hauptquantenzahl hat der niedrigste Energiezustand der beiden Konfigurationen? Warum gibt es keinen 1^3S_1 -Zustand?
- c) Zeichnen Sie in das Energiespektrum bis zu den F-Zuständen alle möglichen optischen Dipolübergänge ein.

7 Mehrelektronenatome

- a) Betrachten Sie die Konfiguration $1s^22s^22p3d$ von Kohlenstoff und bestimmen Sie die spektroskopischen Symbole $^{2S+1}L_J$, in die diese durch Coulomb-Abstoßung der Elektronen und Spin-Bahn-Kopplung zerfällt. Welche Dimension hat die Konfiguration?
- b) Die Grundzustandskonfiguration von zweifach ionisiertem Europium $\mathrm{Eu^{2+}}$ ist $[\mathrm{Xe}]4f^7$. Bestimmen Sie gemäß den Hund'schen Regeln das $^{2S+1}L_J$ -Symbol des Grundzustands von $\mathrm{Eu^{2+}}$. In wie viele Zeeman-Komponenten spaltet der Grundzustand auf, wenn man ein schwaches B-Feld anlegt und durch welche Quantenzahl werden die Zeeman-Komponenten charakterisiert?
- c) Geben Sie die vollständige Liste der spektroskopischen Symbole $^{2S+1}L_J$ an, von denen aus ein elektrischer Dipolübergang in den Grundzustand von Eu²⁺ möglich ist. (Die Paritätsauswahlregel braucht nicht berücksichtigt zu werden)

8 Lithiummoleküle

Lithium kommt als zwei Isotopen vor, ⁶Li und ⁷Li, mit jeweils 3 Protonen und 3 bzw. 4 Neutronen. Der Gleichgewichtsabstand r_0 in den Molekülen H⁶Li und H⁷Li sei gleich groß. Die Frequenz ν entspreche dem Übergang zwischen den Rotationszuständen j=1 und j=0. Experimentell wird zwischen beiden Molekülsorten ein Frequenzunterschied $\Delta\nu=\nu(\mathrm{H}^6\mathrm{Li})-\nu(\mathrm{H}^7\mathrm{Li})=10^{10}$ Hz beobachtet. Die Moleküle sollen als starre Rotatoren betrachtet werden.

- a) Berechnen Sie den Gleichgewichtsabstand r_0 .
- b) Berechnen Sie für beide Molekülsorten die Energie des Übergangs von j=1 nach j=0.