Analysis of city council meeting minutes

Institut des Sciences du Digital, Management et Cognition Université de Lorraine

October 11, 2024

Oyetunji Abioye, Alberto Lorente Galé, Mina Oulhen and Ziyan Xu

- Project Overview
- Tasks
- Approaches

Project Overview

Datapolitics Project

- **Objective**: Develop an automated detector to identify and categorize projects implemented by local authorities.
- Scope: Examine around 20,000 geothermal energy PDF documents from the past five years. Ensure the methodology can be applied to various local projects

Data Overview

- doc_id: Unique identifier for each document.
- url: Original source URL of the document.
- cache: Link to the cached PDF version.
- fulltext: Link to the plain text version of the document.
- nature: Automatically classified document type (e.g., deliberation, minutes).
- published: Publication date of the document.
- entity_name: Name of the local authority responsible for the document.
- entity_type: Type of the entity (e.g., municipality, intercommunality).
- **geo_path**: Hierarchical administrative path indicating the geographical scope.

- Project Overview
- 2 Tasks
- 3 Approaches

Tasks

Filtering and Classification Process

- First Level: Binary Filter
 - Concerns a Geothermal Project
 - Unrelated to a Geothermal Project
- Second Level: Project Stages
 - Idea/Wish
 - Preliminary Studies
 - Budget Voted for the Definitive Project
 - Implementation in Progress
 - Implementation Completed
- Final Level: Data Extraction
 - Initial Budget
 - Final Cost
 - Estimated Duration
 - Actual Duration

- Project Overview
- Tasks
- 3 Approaches

Almost 20.000 documents with no annotated target variable.

Options to deal with the annotation process:

- Manual annotation.
- Prompting.
- Generating the annotation via clustering with LLM Embeddings [3].

Dataset	Embed.	Best Alg.	F1S	ARI	$_{\mathrm{HS}}$	SS	$_{\mathrm{CHI}}$	Total
DS1	TF-IDF	k-means	0.67	0.38	0.46	0.016	4	0/5
	BERT	Spectral	0.85	0.60	0.63	0.118	25	3/5
	OpenAI	k-means	0.84	0.59	0.64	0.066	13	1/5
	LLaMA-2	k-means	0.41	0.09	0.17	0.112	49	1/5
	Falcon	k-means	0.74	0.39	0.48	0.111	34	0/5
DS2	TF-IDF	Spectral	0.82	0.63	0.58	0.028	8	0/5
	BERT	AHC	0.74	0.58	0.53	0.152	37	0/5
	OpenAI	AHC	0.90	0.79	0.75	0.070	19	3/5
	LLaMA-2	k-means	0.51	0.21	0.25	0.137	69	0/5
	Falcon	k-means++	0.45	0.26	0.30	0.170	85	2/5
DS3	TF-IDF	Spectral	0.35	0.13	0.28	-0.002	37	0/5
	BERT	k-means	0.43	0.25	0.44	0.048	412	0/5
	OpenAI	k-means	0.69	0.52	0.66	0.035	213	3/5
	LLaMA-2	AHC	0.17	0.11	0.26	0.025	264	0/5
	Falcon	k-means	0.26	0.15	0.30	0.071	1120	2/5
DS4	TF-IDF	k-means	0.29	0.13	0.48	0.034	17	0/5
	BERT	k-means	0.35	0.24	0.55	0.072	61	1/5
	OpenAI	k-means	0.38	0.26	0.58	0.053	42	3/5
	LLaMA-2	k-means	0.21	0.11	0.40	0.053	88	0/5
	Falcon	k-means++	0.27	0.16	0.48	0.071	92	1/5

Results from Petukhova et al. (2024)

Next step: train the classifier

Considerations when training the classifier with automatically generated labels:

- Validating the labels generated: manual and automatic approaches.
- Training with label noise [4].

RAG (Retrieval-Augmented Generation) Workflow: A Simplified View

Why and How to use RAG in our project

WHY RAG?

- Handling Document Complexity
 The large volume of documents is diverse in format and content.
- Relevant NLP Tasks
 Ensures high-quality, contextually accurate results for tasks like classification and extraction.

HOW TO USE RAG

- Application in Our Project:
 - Document Filtering: Use the retriever to pull relevant documents from a dataset of 20,000 PDFs.
 - Classification and Stage Identification: Use the generator to classify document stages.
 - Information Extraction: Extract budget and timelines conditioned on relevant document sections.

References: Lewis et al. (2020)[2], Izacard & Grave (2021)[1]

References

G. IZACARD & E. GRAVE - "Leveraging passage retrieval with generative models for open domain question answering", in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (Online) (P. Merlo, J. Tiedemann & R. Tsarfaty, éds.), Association for Computational Linguistics, 2021, p. 874–880.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Tau Yih, T. Rocktäschel, S. RIEDEL & D. KIELA - "Retrieval-augmented generation for knowledge-intensive nlp tasks", 2021.

A. Petukhova, J. P. Matos-Carvalho & N. Fachada – "Text clustering with Ilm embeddings", 2024.

H. SONG, M. KIM, D. PARK, Y. SHIN & J.-G. LEE - "Learning from noisy labels with deep neural networks: A survey", 2022.