Otras distribuciones multivariadas

José A. Perusquía Cortés

Análisis Multivariado Semestre 2025-II

Distribuciones elípticas y esféricas

Grupo

Definición 1

Un conjunto no vacío, G, de transformaciones de ${\mathcal X}$ en si mismo se dice que es un grupo si satisface

- 1. Dados $g_1, g_2 \in G$ entonces, $g_1g_2 \in G$
- 2. Dados $g_1, g_2, g_3 \in G$, entonces $(g_1g_2)g_3 = g_1(g_2g_3)$
- 3. Existe una transformación identidad, $e \in G$, tal que eg = ge = g
- 4.Para todo $g \in G$ existe $g^{-1} \in G$ tal que $gg^{-1} = g^{-1}g = e$.

Definición 2

Dos puntos $x_1, x_2 \in \mathcal{X}$ son equivalentes con respecto a G si existe $g \in G$ tal que $x_2 = gx_1$, denotado como $x_1 \sim x_2 \pmod{G}$ y forma una relación de equivalencia.

Grupo

Definición 3

Una función, f(x), es invariante con respecto a G si se cumple que f(gx) = f(x) para todo $x \in \mathcal{X}$ y para toda $g \in G$

Definición 4

Una función, f(x), es invariante maximal con respecto a G si

- 1. fes invariante
- $2. f(x_1) = f(x_2) \text{ implica que } x_1 \sim x_2 \pmod{G}$

Grupo

Teorema 1

Sea f(x) una función que es invariante maximal con respecto a G, entonces h(x) es invariante con respecto a G, si y solo si, h es función de f

Observación 1

Si $\mathcal{X} = \mathbb{R}^n$ y se considera al grupo de matrices ortogonales, $G = \mathcal{O}(n)$, entonces $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ es una función invariante maximal

Distribuciones esféricas

Definición 5

Un vector aleatorio \mathbf{y} tiene una distribución esférica si para toda $\Gamma \in \mathcal{O}(n)$ se tiene que $\mathbf{y} \stackrel{d}{=} \Gamma \mathbf{y}$

Teorema 2

Un vector aleatorio \mathbf{y} tiene una distribución esférica, si y solo si, su función característica $\phi_{\mathbf{y}}(t)$, satisface alguna de estas condiciones equivalentes

- 1. $\phi_{\mathbf{y}}(\Gamma^T t) = \phi_{\mathbf{y}}(t)$ paratoda $\Gamma \in \mathcal{O}(n)$
- 2. Existe una función escalar (generador característico) $\varphi(\cdot)$, tal que $\phi_y(t) = \varphi(t^T t)$

Proposición 1

Sea un vector aleatorio $\mathbf{y} \sim S_n(\phi)$ entonces, $\mathbf{y} \stackrel{d}{=} r\mathbf{u}^{(n)}$, donde r es una variable positiva y $\mathbf{u}^{(n)}$ es un vector que se distribuye uniformemente en la esfera unitaria en \mathbb{R}^n independiente de r

Observación 2

Una densidad esférica puede representarse en coordenadas polares mediante la transformación

$$y_1 = r \sin(\theta_1)$$

$$y_2 = r \cos(\theta_1) \sin(\theta_2)$$

$$y_3 = r \cos(\theta_1) \cos(\theta_2) \sin(\theta_3)$$

$$\vdots$$

$$y_{p-1} = r \cos(\theta_1) \cos(\theta_2) \cdots \cos(\theta_{p-2}) \sin(\theta_{p-1})$$

$$y_p = r \cos(\theta_1) \cos(\theta_2) \cdots \cos(\theta_{p-2}) \cos(\theta_{p-1})$$

donde

► Para
$$i \in 1,...,p-2$$
 se tiene que $-\frac{\pi}{2} < \theta_i \le \frac{\pi}{2}$ y $-\pi < \theta_{p-1} \le \pi$
 ► $0 \le r < \infty$

Proposición 2

La densidad de $(R, \Theta_1, ..., \Theta_{p-1})$ es

$$r^{p-1}\cos(\theta_1)^{p-2}\cos(\theta_2)^{p-3}\cdots\cos(\theta_{p-2})g(r^2)$$

Observación 3

Las variables aleatorias $R, \Theta_1, ..., \Theta_{p-1}$ son independientes

Proposición 3

La distribución marginal de R es

$$\frac{2\pi^{\frac{p}{2}}r^{p-1}g(r^2)}{\Gamma\left(\frac{p}{2}\right)}$$

Proposición 4

La distribución marginal de Θ_i para $i \in 1, ..., p-2$ está dada por

$$\frac{\Gamma\left(\frac{p-i}{2}\right)\cos(\theta_i)^{p-i-1}}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{p-i-1}{2}\right)}$$

y Θ_{p-1} es una variable aleatoria uniforme, con densidad,

$$\frac{1}{2\pi}$$

Distribuciones elípticas

Definición 6

Decimos que el vector aleatorio \mathbf{x} tiene una distribución elíptica con parámetros ν y Λ , denotado por $\mathbf{x} \sim EC_n(\nu, \Lambda, \phi)$, si

$$\mathbf{x} \stackrel{d}{=} \nu + \mathbf{A}^T \mathbf{y}, \qquad \mathbf{y} \sim S_k(\boldsymbol{\phi})$$

donde $\mathbf{A}_{k \times n}$ es una matriz tal que $\mathbf{A}^T \mathbf{A} = \Lambda$ y donde $\mathrm{ran}(\Lambda) = k$

Observación 4

Una condición necesaria para que exista la densidad es que $\operatorname{ran}(\Lambda) = n$

Distribuciones elípticas

Definición 7

Decimos que el vector aleatorio \mathbf{x} tiene una distribución elíptica, denotado por $\mathbf{x} \sim EC(\nu, \Lambda, g)$, si su densidad está dada por

$$|\Lambda|^{-\frac{1}{2}}g\left[(\mathbf{x}-\nu)^{T}\Lambda^{-1}(\mathbf{x}-\nu)\right],$$

donde
$$\Lambda > 0$$
, $g(\cdot) \ge 0$ y $\int g(\mathbf{y}^T \mathbf{y}) d\mathbf{y} = 1$.

Observación 5

Si \mathbf{C} es una matriz no singular tal que $\mathbf{C}^T \Lambda^{-1} \mathbf{C} = \mathbf{I}$, y considerando la transformación $\mathbf{x} - \nu = \mathbf{C} \mathbf{y}$, entonces el vector aleatorio \mathbf{y} tiene densidad,

$$g(\mathbf{y}^T\mathbf{y})$$

Proposición 5

Sea $\mathbf{x} \sim EC_n(\nu, \Lambda, g)$ entonces,

1.
$$\mathbb{E}(\mathbf{x}) = \nu$$

$$2. \operatorname{Var}(\mathbf{x}) = \frac{\mathbb{E}(r^2)\Lambda}{n}$$

$$3. \mathbf{z} = \mathbf{D}\mathbf{x} + \mu \sim EC_n(\mu + \mathbf{D}^T \nu, \mathbf{D}^T \Lambda \mathbf{D}, g_1)$$

4. Si consideramos la partición

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \nu = \begin{pmatrix} \nu^{(1)} \\ \nu^{(2)} \end{pmatrix} \qquad \Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}$$

entonces,
$$\mathbf{x}^{(1)} \sim EC_n\left(\nu^{(1)}, \Lambda_{11}, g_2\right)$$

Familia de Kotz

La familia de Kotz está caracterizada por la función

$$g(u) = C_n u^{N-1} \exp(-ru^s)$$
 $r, s > 0$ $2N + n > 2$,

y C_n es la constante de normalización.

Observación 6

La densidad está dada por

$$C_n |\Lambda|^{-\frac{1}{2}} \left[(\mathbf{x} - \nu)^T \Lambda^{-1} (\mathbf{x} - \nu) \right]^{N-1} \exp \left\{ -r \left[(x - \nu)^T \Lambda^{-1} (x - \nu) \right]^s \right\}$$

- Si N=1 , s=1 y r=.5 obtenemos la distribución normal multivariada
- Familia útil cuando el supuesto de normalidad no es aplicable

Familia de Pearson del tipo VII

La familia de Pearson del tipo VII está caracterizada por la función

$$g(u) = C_n \left(1 + \frac{u}{m} \right)^{-N} \qquad m > 0 \qquad N > \frac{n}{2},$$

y C_n es la constante de normalización.

Observación 7

- 1. Si N = (n + m)/2 recuperamos la distribución t-multivariada
- 2. Si m = 1 y N = (n + 1)/2 recuperamos la distribución Cauchy multivariada

Distribución t multivariada

Distribución t multivariada

Definición 8

Se dice que \mathbf{x} sigue una distribución t multivariada, denotado por $\mathbf{x} \sim Mt_n(m, \nu, \Lambda)$ si su densidad está dada por

$$f(\mathbf{x}) = \frac{\Gamma\left(\frac{n+m}{2}\right)}{(\pi m)^{\frac{n}{2}}\Gamma\left(\frac{m}{2}\right)} |\Lambda|^{-\frac{1}{2}} \left(1 + m^{-1}(\mathbf{x} - \nu)^T \Lambda^{-1}(\mathbf{x} - \mu)\right)^{-\frac{n+m}{2}}$$

En R podemos usar la librería mytnorm (por default en escala logarítmica)

Simulaciones

t multivariada

Normal multivariada

Curvas de nivel

t multivariada

Normal multivariada

Distribución Cauchy multivariada

Distribución Cauchy multivariada

Definición 9

Se dice que ${\bf x}$ sigue una distribución Cauchy multivariada, denotado por ${\bf x} \sim MC_n(\nu,\Lambda)$ si su densidad está dada por

$$f(\mathbf{x}) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} |\Lambda|^{-\frac{1}{2}} \left(1 + (\mathbf{x} - \nu)^T \Lambda^{-1} (\mathbf{x} - \mu)\right)^{-\frac{n+1}{2}}$$

Observación 8

Si $\nu=0$ y $\Sigma=\mathbf{I}$ se recupera la distribución Cauchy multivariada estándar, $\mathbf{x}\sim MC_n(\mathbf{0},\mathbf{I})$, con densidad dada por

$$f(\mathbf{x}) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \left(1 + \mathbf{x}^T \mathbf{x}\right)^{-\frac{n+1}{2}}$$

Simulaciones

Cauchy multivariada

Normal multivariada

Curvas de nivel

Cauchy multivariada

Normal multivariada

Distribución Dirichlet

Distribución Dirichlet

Definición 9

Se dice que x sigue una distribución Dirichlet, denotado por $\mathbf{x} \sim Dir(\alpha)$ si su densidad está dada por

$$f(\mathbf{x}) = \frac{\Gamma\left(\sum_{i=1}^{p} \alpha_i\right)}{\prod_{i=1}^{p} \Gamma(\alpha_i)} \frac{p}{\prod_{i=1}^{p} x_i^{\alpha_i - 1}}$$

donde $\alpha_i > 0$ para toda i

- Distribución continua y generalización de la distribución beta
- Soporte en el simplex (p-1)-dimensional

$$\left\{ \mathbf{x} \in [0,1]^p : \sum_i x_i = 1 \right\}$$

Construcción

Proposición 6

Sean $y_i \sim Ga(\alpha_i, \theta)$ una colección de variables aleatorias independientes entonces $V = \sum y_i \sim Ga(\alpha_0, \theta)$ y

$$(x_1, ..., x_p) = \left(\frac{y_1}{V}, ..., \frac{y_p}{V}\right) \sim Dir(\alpha_1, ..., \alpha_p)$$

$$\operatorname{donde} \alpha_0 = \sum_i \alpha_i$$

Simulaciones y curvas de nivel

Distribución multinomial

Distribución multinomial

Definición 9

Se dice que \mathbf{x} sigue una distribución multinomial, denotado por $\mathbf{x} \sim Multinomial(\alpha, N)$ si su densidad está dada por

$$\mathbb{P}(\mathbf{x} = \mathbf{n}) = \frac{N!}{n_1! \cdots n_p!} \prod_{i=1}^{p} \alpha_i^{n_i}$$

$$\operatorname{donde} N \in \mathbb{N}, \alpha_i \in (0,1), \, \mathbf{y} \, \sum \alpha_i = 1$$

- Distribución discreta y generalización de la distribución binomial
- Soporte

$$\left\{ \mathbf{x} \in \mathbb{N}^p : \sum_{i} x_i = N \right\}$$