Title: Almost exponential decay of quantum resonance states and Paley-Wiener type estimates in Gevrey spaces

Abstract: Let H_0 be a self-adjoint operator in some Hilbert space, and let λ_0 be a (possibly degenerate) eigenvalue of H_0 embedded in its essential spectrum $\sigma_{\rm ess}(H_0)$ with corresponding eigenprojection Π_0 . For small $|\kappa|$, let $H(\kappa)$ be a family of perturbed Hamiltonians, which is analytic in a generalized Balslev-Combes sense. The corrections to exponential decay in

$$\Pi_0 e^{-itH(\kappa)} g(H(\kappa)) \Pi_0 = D(\kappa) e^{-ith(\kappa)} D(\kappa) + \mathcal{R}(\kappa, t)$$

will be discussed, where $D(\kappa)=\Pi_0+O(\kappa^2)$ $(\kappa\to 0)$ and $h(\kappa)$ is some family of in general non self-adjoint bounded operators with $\mathrm{Ran}h(\kappa)=\mathrm{Ran}\Pi_0$, leaving $\mathrm{Ran}\Pi_0$ invariant, and $0\le g\le 1$ is a cut-off function with $g(\lambda_0)=1$ and sufficiently small support. The main result is a sharp estimate of the remainder $\mathcal{R}(\kappa,t)$ in terms of the Gevrey index $a>1,\ b>0$ of $g\in\Gamma^{a,b}(\mathbb{R})$: $\|\mathcal{R}(\kappa,t)\|\le O(\kappa^2)\,e^{-Ct^{\frac{1}{a}}}$ $(t\ge 0,\ C< ab^{-\frac{1}{a}},\ \kappa\to 0)$. This is joint work with M. Klein.