

1.	Representa el nº 234 ₁₀ en binario, octal, hexadecimal, representando los pasos de cada
	operación: (Ej: $5_{10} = 5:2=2R1 \ 2:2=1R0 =>101$) (Ej2: $11010_2=(011)(010)=32_8$)
	(Ej3: 0111001011 ₂ =(0001)(1100)(1011)=1CB ₁₆)

- 2. Calcula el equivalente decimal y hexadecimal de 246_{8.}, <u>representando los pasos en cada operación</u>.
- 3. Calcula el equivalente decimal de E5A₁₆, representando los pasos en cada operación.
- 4. Obtén las representaciones equivalentes en octal y hexadecimal del nº binario: 100100011110101111, representando los pasos en cada operación.
- 5. Representa el nº 127₁₀ en binario, octal, hexadecimal, representando los pasos en cada operación.
- 6. Dado el nº binario 1 0111 0110 0100 1101, calcula su equivalente octal y hexadecimal, representando los pasos en cada operación.

7. Completa la tabla de direcciones IP

DECIMAL	BINARIO	HEXADECIMAL
192.168.10.11	1100 0000. 1010 1000. 0000 1010	C0.A8.0A
10.242.28.255	0000 1010. 1111 0010. 0001 1100	0A.F2.1C
90246.120	0101 1010 1111 0110. 0111 1000	5A.2B.F6.78
30.11190	0001 1110. 0110 1111 0101 1010	1E.6F.92.5A
15115.189	0000 1111. 1011 1010. 0111 0011. 1011 1101	0F73.BD
74.43120	0100 1010. 0010 1011. 1111 0110. 0111 1000	4A.2B78
50	0001 0010 1110 0111	7D

- 8. Realiza las siguientes operaciones lógicas (bit a bit):
 - a. **NOT** 11010001

1	1	0	1	0	0	0	1

b. 11000101 AND 11010101

1	1	0	0	0	1	0	1
1	1	0	1	0	1	0	1

c. 10101011 NAND 11100111

1	0	1	0	1	0	1	1
1	1	1	0	0	1	1	1

d. 11010001 **OR** 11101101

1	1	0	1	0	0	0	1
1	1	1	0	1	1	0	1

- 9. El estándar actual que permite codificar cualquier idioma al medio informático se llama:
 - a. ASCII
 - b. ISO-8859-1 (Latin 1)
 - c. UNICODE
- 10. Si se tiene un disco duro de 900 GiB, ¿cuántos Gibits almacena? ¿y cuántos MiB?
- 11. ¿Cuántos GiB son 1 TiB?
- 12. ¿Cuántos GB son 1 TB?