Введение в анализ данных

Домашнее задание 3.

Правила:

- Дедлайн 17 мая 23:59. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту <u>mipt.stats@yandex.ru</u> (mailto:%60mipt.stats@yandex.ru), указав тему письма "[номер группы] Фамилия Имя Задание 3". Квадратные скобки обязательны.
- Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 3.N.ipynb и 3.N.pdf, где N -- ваш номер из таблицы с оценками. pdf-версию можно сделать с помощью Ctrl+P. Пожалуйста, посмотрите ее полностью перед отправкой. Если что-то существенное не напечатается в pdf, то баллы могут быть снижены.
- Решения, размещенные на каких-либо интернет-ресурсах, не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- Для выполнения задания используйте этот ноутбук в качестве основы, ничего не удаляя из него.
- Если код будет не понятен проверяющему, оценка может быть снижена.
- Никакой код при проверке запускаться не будет.

Баллы за задание:

Легкая часть (достаточно на "хор"):

• Задача 1 -- 3 балла

Сложная часть (необходимо на "отл"):

- Задача 2 -- 2 балла
- Задача 3 -- 10 баллов
- Задача 4 -- 4 балла

Баллы за разные части суммируются отдельно, нормируются впоследствии также отдельно. Иначе говоря, 1 балл за легкую часть может быть не равен 1 баллу за сложную часть.

In [128]:

1 import numpy as np

2 import scipy.stats as sps

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 **import** seaborn **as** sns

6 **from** datetime **import** datetime

import plotly.graph_objects as go

Легкая часть

Перед выполнением этой части настоятельно рекомендуется посмотреть ноутбук с лекции про закон больших чисел.

Задача 1.

В этой задаче нужно визуализировать центральную предельную теорему.

а). Пусть ξ_1,\ldots,ξ_n --- независимые случайные величины из распределения $Exp(\lambda)$. Согласно центральной предельной теореме выполнена сходимость $Z_n=rac{X_n-\mathsf{E} X_n}{\sqrt{\mathsf{D} X_n}}\stackrel{d}{\longrightarrow} \mathcal{N}(0,1),$

$$Z_n = \frac{X_n - \mathsf{E} X_n}{\sqrt{\mathsf{D} X_n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1),$$

где $X_n = \sum_{i=1}^n \xi_i$. Вам нужно убедиться в этом, сгенерировав множество наборов

случайных величин и посчитав по каждому из наборов величину Z_n в зависимости от размера набора.

Сгенерируйте 500 наборов случайных величин $\xi_1^j,\dots,\xi_{300}^j$ из распределения

Exp(1) . По каждому из них посчитайте сумму $X_{jn}=\sum\limits_{i=1}^{n}\xi_{i}^{j}$ для $1\leqslant n\leqslant 300$, то

есть сумма первых n величин j-го набора. Для этого среднего посчитайте величину

$$Z_{jn} = \frac{X_{jn} - \mathsf{E} X_{jn}}{\sqrt{\mathsf{D} X_{jn}}}.$$

```
In [132]:
            1
              size = 300
            2
               count = 500
            3
              sample = sps.expon.rvs(size=(count, size))
            4
            5
              cum_mean = sample.cumsum(axis=1)
            7
              Z = (cum\_mean-(np.arange(size)+1))/((np.arange(size)+1)**(1/2))
Out[132]: array([[-0.84055627, -0.96066614, -0.8894683 , ...,
                                                                  0.65459265,
                    0.60937763,
                                 0.60657818],
                  [-0.3493728, -0.72390111, -0.55642761, ..., 1.3827036,
                    1.59510574, 1.54237357],
                  [ 0.300328 , -0.10933274,
                                               0.10831863, \ldots, -0.58955722,
                   -0.63100117, -0.6777571],
                  [-0.17147225, 0.31530217,
                                               0.17279743, ..., -1.2204834 ,
                   -1.22573488, -1.21277473],
                                               2.97799436, ..., -1.00378007,
                  [ 1.63374143, 3.63232019,
                   -1.05006344, -1.01489333],
                  [ 2.66953467, 1.20389996, 0.71172081, ..., -1.47416207, -1.50040091, -1.52735035]])
```

Для каждого j нанесите на один график зависимость Z_{jn} от n. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.05. Сходятся ли значения Z_{in} к какой-либо константе?

```
In [226]: 1 plt.figure(figsize=(16, 10))
2
3 for i in range(samples_count):
4    plt.plot(np.arange(size) + 1, Z[i], color='green', alpha=0.
5 plt.xlabel('Количество случайных величин')
6 plt.ylabel('$Z_{jn}$')
7 plt.title('Зависимость $Z_{jn}$ от количества CB')
8 plt.xlim((0, size))
```

Out[226]: (0, 300)

Type *Markdown* and LaTeX: α^2

Для n=300 по набору случайных величин $Z_{1,300},\ldots,Z_{500,300}$ постройте гистограмму. Похожа ли она на плотность распределения $\mathcal{N}(0,1)$ (ее тоже постройте на том же графике)? Не забудьте сделать легенду.

```
In [215]:
            1
               plt.figure(figsize=(16, 10))
            2
            3
              n = 300
               grid = np.linspace(-5, 5, 500)
            4
            5
               zero = np.zeros(500)
               plt.scatter(Z[:, n-1],
            7
                   zero,
            8
                   alpha=0.5,
                   label='Точки распределения',
            9
                   color='green'
           10
           11
               plt.hist(Z[:, n-1],
           12
           13
                   bins=20,
                   alpha=0.5,
           14
           15
                   density=True,
           16
                   color='green',
           17
           18
               plt.plot(grid,
           19
                   sps.norm(0, 1).pdf(grid),
           20
                   color='green',
           21
                   linewidth=3,
           22
                   label='Плотность случайной величины'
           23
               )
           24
           25
               plt.title('Гистограмма для $Z_{1,n},...,Z_{500,n}$')
           26
               plt.legend(('Плотность нормального распределения',
                            'Точки распределения', 'Гистограмма выборки'))
           27
           28
               plt.show()
```


Вывод: действительно, точки выбрки хорошо ложаться на нормальное распределение.

b). Выполните те же действия для распределений U(0,1) и Pois(1).

```
In [227]:
               Usample = sps.uniform(0, 1).rvs(size=(count, size))
            2
            3
              Ucum_mean = Usample.cumsum(axis=1)
            4
            5
              Z = (Ucum\_mean - (np.arange(size) + 1)*sps.uniform(0, 1) \setminus
            6
                    .mean())/(((np.arange(size)+1) * sps.uniform(0, 1) 
            7
                                var())**(1/2)
            8
              plt.figure(figsize=(16, 10))
            9
               for i in range(count):
                   plt.plot(np.arange(size)+1, Z[i], color='orange',
           10
           11
                            alpha=0.05)
           12
               plt.xlabel('Количество случайных величин')
           13
               plt.ylabel('$Z_{jn}$')
               plt.title('Зависимость $Z_{jn}$ от количества CB для $U(0, 1)$'
           14
           15
               plt.xlim((0, size))
           16
               plt.show()
```



```
In [228]:
            1
               plt.figure(figsize=(16, 10))
            2
            3
              n = 300
               grid = np.linspace(-5, 5, 500)
            4
            5
               zero = np.zeros(500)
               plt.scatter(Z[:, n-1],
            7
                   zero,
            8
                   alpha=0.5,
            9
                   label='Точки распределения',
                   color='orange'
           10
           11
               plt.hist(Z[:, n-1],
           12
           13
                   bins=20,
                   alpha=0.5,
           14
           15
                   density=True,
           16
                   color='orange',
           17
           18
               plt.plot(grid,
           19
                   sps.norm(0, 1).pdf(grid),
           20
                   color='orange',
           21
                   linewidth=3,
           22
                   label='Плотность случайной величины'
           23
               )
           24
               plt.title('Гистограмма для $U(0,1)$')
           25
           26
               plt.legend(('Плотность нормального распределения',
                            'Точки распределения', 'Гистограмма выборки'))
           27
           28
               plt.show()
```



```
In [232]:
            1
              size = 300
            2
               count = 500
            3
              Psample = sps.poisson(mu=1).rvs(size=(count, size))
            4
            5
              Pcum_mean = Psample.cumsum(axis=1)
            6
            7
              Z = (Pcum_mean - (np.arange(size) + 1)*sps.poisson(mu=1) \
                    .mean())/(((np.arange(size)+1)*sps.poisson(mu=1) \
            8
                               .var())**(1/2))
            9
           10
           11
              plt.figure(figsize=(16, 10))
              for i in range(count):
           12
           13
                   plt.plot(np.arange(size) + 1, Z[i], color='red', alpha=0.05
              plt.xlabel('Количество случайных величин')
           14
              plt.ylabel('$Z_{jn}$')
           15
           16
              plt.title('Зависимость $Z_{jn}$ от количества CB для $Pois(1)$'
           17
              plt.xlim((0, size))
              plt.show()
           18
```



```
In [233]:
            1
               plt.figure(figsize=(16, 10))
            2
            3
              n = 300
               grid = np.linspace(-5, 5, 500)
            4
            5
               zero = np.zeros(500)
               plt.scatter(Z[:, n-1],
            7
                   zero,
            8
                   alpha=0.5,
                   label='Точки распределения',
            9
                   color='red'
           10
           11
               plt.hist(Z[:, n-1],
           12
           13
                   bins=20,
                   alpha=0.5,
           14
           15
                   density=True,
           16
                   color='red',
           17
           18
               plt.plot(grid,
           19
                   sps.norm(0, 1).pdf(grid),
                   color='red',
           20
           21
                   linewidth=3,
                   label='Плотность случайной величины'
           22
           23
               )
           24
               plt.title('Гистограмма для $Pois(1)$')
           25
           26
               plt.legend(('Плотность нормального распределения',
                            'Точки распределения', 'Гистограмма выборки'))
           27
           28
               plt.show()
```


Сделайте вывод о смысле центральной предельной теоремы. Подтверждают ли сделанные эксперименты теоретические свойства?

Type *Markdown* and LaTeX: α^2

Вывод: при большом количестве одинаково распределенных, независимых случайных величин выполняется Центральная Предельная Теорема. Полученные распределения стремятся к нормальному.

Сложная часть

Задача 2.

В этой задаче нужно визуализировать закон повторого логарифма.

а). Пусть ξ_1,\ldots,ξ_n --- независимые случайные величины из равномерного распределения на $\{-1,1\}$. Согласно закону повторного логарифма траектория суммы $S_n=\xi_1+\ldots+\xi_n$ при увеличении n с вероятностью 1 бесконечное число раз пересекает границу $\pm(1-\varepsilon)\sqrt{2n\log\log n}, \varepsilon>0$, и лишь конечное число раз пересекает границу $\pm(1+\varepsilon)\sqrt{2n\log\log n}, \varepsilon>0$. Вам нужно убедиться в этом, сгенерировав множество наборов случайных величин и посчитав по каждому из наборов сумму в зависимости от размера набора.

Сгенерируйте 500 наборов случайных величин $\xi_1^j,\dots,\xi_{300}^j$ из распределения Bern(1/2). По каждому из них посчитайте среднее $S_{jn}=\sum_{i=1}^n \xi_i^j$ для $1\leqslant n\leqslant 300$, то есть сумму по первым n величинам j-го набора.

Для каждого j нанесите на один график зависимость S_{jn} от n. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.05.

```
In [241]:
            1
               plt.figure(figsize=(16, 10))
            2
            3
               for i in range(count):
            4
                   plt.plot(np.arange(size) + 1,
            5
                             Bcum_mean[i],
            6
                             color='blue',
                             alpha=0.05)
            7
            8
               plt.xlabel('Количество случайных величин')
            9
               plt.ylabel('$S_{jn}$')
           10
               plt.title('Зависимость $S_{jn}$ от количества CB для $Bern(0.5)
           11
               plt.xlim((0, size))
           12
           13
               plt.show()
```


Для трех различных n по набору случайных величин $S_{1,n},\ldots,S_{500,n}$ постройте графих доли тех величин, которые выходят за порог $\pm c\sqrt{2n\log\log n}$ при изменении c от 0.5 до 1.5. Графики стройте в строчку с помощью plt subplot .

```
In [389]:
            1
               plt.figure(figsize=(16, 5))
            2
            3
               for n, step in zip([100, 200, 299], range(1, 4)):
            4
                   plt.subplot(1, 3, step)
            5
                   S = Bcum_mean[:, n]
                   c = np.linspace(0.5, 1.5, 200)
            6
            7
                   x = np.array(list(map(lambda index:(abs(S)>index*((2*n*np \
            8
                                                                      .log(np \
                                                                      .log(n)))**
            9
                                           .sum(), c))) / 500
           10
           11
                   plt.title('$n$={}'.format(n))
           12
                   plt.plot(c, x)
                   plt.xlabel('$c$')
           13
           14
                   plt.ylabel('Доля CB за порогом')
```


Сделайте вывод о смысле закона повторного логарифма. Подтверждают ли сделанные эксперименты теоретические свойства?

Type *Markdown* and LaTeX: α^2

Закон повторного логарифма определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.

Вывод: теорема подтверждается. В Эксперименте так и получилось, что последовательность не сходится к нулю, но оснается в конечных пределах.

Задача 3.

В этой задаче нужно проявить и визуализировать свое творчество.

Общий принцип:

- Придумать какую-либо цель исследования, поставить вопрос или гипотезы
- Собрать необходимый набор данных "руками" или с помощью кода.
- Сделать простой анализ полученного датасета в этом ноутбуке.
- Сделать вывод.

Основные требования к данным:

- Все собранные данные необходимо представить в виде одной или нескольких таблиц формата csv или xls. Эти файлы должны легко считываться при помощи pandas. Все эти файлы необходимо прислать вместе с решением на почту.
- По строкам таблиц должны располагаться исследуемые объекты, например, люди. Одному объекту соответствует одна строка. По столбцам должны располагаться свойства объекта, например, пол, возраст.
- При сборе данных "руками" вы самостоятельно выбираете количество исследуемых объектов исходя из времени, которое необходимо на это потратить. Рассчитываемое время -- 2-3 часа.
- При сборе данных с помощью кода ограничивайте себя только размером доступных данных, которые можно скачать за 2-3 часа или 10000 объектами.
- Во всех случаях количество исследуемых объектов должно быть **не менее 30**. Количество свойств объектов -- **не менее двух**.

Основные требования к исследованию:

- Заранее необходимо четко определиться с вопросом, который вы хотите исследовать. Например, "хочу исследовать взаимосвязь двух свойств".
- При анализе необходимо провести полную визуализацию данных. Все графики должны быть оформлены грамотно.
- Подумайте, как вы можете применить полученные математические знания по курсу теории вероятностей для анализа собранных данных?
- Примените их если это возможно. Например, у вас не должно возникнуть проблем с тем, чтобы посчитать среднее, подкрепив корректность такого подхода соответствующей теоремой. А взаимосвязь двух свойств вы вряд ли сейчас сможете оценить по данным.
- Полноценные выводы.

Ниже перечислены некоторые идеи, но вы можете придумать свою.

- Исследование характеристик и вкусовых качеств овощей/фруктов/ягод. В качестве свойств можно рассмотреть высоту объекта, радиус в разрезе, цвет, тип, вкусовую оценку, дату покупки, дату употребления.
- Исследование характеристик листьев деревьев. В качестве свойств можно рассмотреть длину и ширину листа, цвет, тип растения.
- Характеристики товаров в интернет-магазине, включая рейтинг.
- Музыкальные исполнители и песни. В качестве свойств можно рассмотреть рейтинг артиста, количество треков, количество ремиксов, количество коллабораций.

- Кинофильмы, мультфильмы, аниме.
- Анализ новостных лент. На сайте https://www.similarweb.com/) можно посмотреть статистику различных издательств, на основе чего придумать правило оценки степени "доверия" изданию. Исследуйте, какие новости первым публикует издание с наибольшим значением доверия? Опросите знакомых об отношении к этим новостям.
- Анализ данных пабликов ВК.
- Анализ схожести сайтов или блогов по частоте упоминания какой-либо темы.

Я решил собирать данные через телеграм-бота. Преимущества:

- Универсальность. Работает на всех платформах, где есть телеграм.
- Гибкость. Можно собирать более сложные данные, чем с помощью опросников.
- Дальнейшее использование. После регистрации можно получить нужную информацию, в моем случае о футбольном клубе.
- Хранилище. В структуру бота можно встроить СУБД, которая может хранить много данных, опросник не может.

Сам бот https://github.com/koshak98/Bot_Python. Рекомендую прочитать README.md

Сконвертируем получанные в • csv формат.

Прочитаем собранные данные.

Out[390]:

User id		Name	Club id	Age
0	0	Максим	1	20
1	1	Алексей	1	19
2	2	Александр	2	1000
3	3	Глеб	3	30
4	4	Антон	4	20

- User id id регистрации конкретного пользователя.
- Name только имя (first name) пользователя.
- Club id id клуба. Пока нам неважно что это за клуб.
- Age возраст регистрирующегося.

Построим график, возраста клуба от клуба.

Видим ярко выраженный выброс: для втрого клуба есть болельщик с возрастом 1000. Уберем такие выбросы и построим тот же график.

```
In [392]:
            1
               df_footbal = df_footbal.loc[df_footbal['Age'] <= 150]</pre>
               plt.figure(figsize=(15, 4))
            2
            3
               plot = plt.scatter(df_footbal.loc[:, 'Club id'],
                                   df_footbal.loc[:, 'Age'],
            4
            5
                                   s=50, c='blue', alpha=0.3)
            6
               plt.xlabel('Клубы')
            7
               plt.ylabel('Возраст болельщика')
               plt.title('Зависимость Возраста болельщика от клуба')
               plt.show()
            9
```


- **Цель** установить зависимость между возрастом болельщиков и клубом, за который они переживают.
- Гипотиза существует зависимоть между возрастом болельщиков и клубом. Это зависимость следует из успешности клуба в то или иное время. В этом же период болельщик и начинает переживать за клуб.

```
In [393]: 1 plt.subplots(figsize=(10, 8))
2 corr = df_footbal.corr()
3 sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool),
4 cmap=sns.diverging_palette(220, 10, as_cmap=True),
5 square=True)
6
7 plt.title('Тепловая карта корреляции')
```

Out[393]: Text(0.5, 1.0, 'Тепловая карта корреляции')

Вывод: матрица корреляции показывает, что User id почти наверное не зависит ни от клуба ни от возраста. Логично, нет поводов полагать, что болельщики одного клуба отвечали подряд. Но такое возможно, например, если ссылку на бота скинули как раз таки в беседе болельщиков определленого клуба, тогда они бы отвечали подряд. Но такого для моего бота не случилось. А вот с Club id не все так очевидно: есть небольшая корреляция с Age.

Продолжим исследование. Посмотрим на основные параметры наших данных.

```
df_footbal.Age.describe()
In [39]:
Out[39]: count
                   77.000000
          mean
                   21,922078
                    5.438087
          std
                   13.000000
          min
          25%
                   19.000000
          50%
                   20.000000
          75%
                   24,000000
          max
                   45.000000
         Name: Age, dtype: float64
```

Основной контингент для моего бота --- это студенты 1, 2, 3 курсов. Однако есть и представители других возрастных категорий.

Посмотрим конкретно для каждого клуба на ящики с умами.

```
In [42]:
              plt.figure(figsize=(15, 6))
           1
           2
           3
              plt.subplot(111)
           4
              sns.boxplot(x='Club id',
           5
                           y='Age',
                           data=df_footbal,
           6
           7
                           palette='Set2')
           8
              plt.ylim(0, 50)
              plt.ylabel('Возраст')
           9
              plt.xlabel('Клубы')
          10
              plt.title('Возраст болельщиков по клубам')
          11
```

Out[42]: Text(0.5, 1.0, 'Возраст болельщиков по клубам')

Все данные ложаться компактно, причем не по одному уровню для каждого клуба. Также значение дисперсии не велико. Из этого можно сделать вывод, что возраст болельщика связан с конкретным клубом.

Теперь подробно для каждого клуба поймем закономпрности. Для этого прочитаем таблицу с клубами.

Out [394]:

	Club id	Club name
0	1	Real Madrid
1	2	Barcelona
2	3	Manchester United
3	4	Manchester City
4	5	Chelsea
5	6	Bayern
6	7	Juventus

С мерджим все таблицы по Club id

Out[395]:

	User id	Name	Club id	Age
Club name				
Real Madrid	0	Максим	1	20
Real Madrid	1	Алексей	1	19
Real Madrid	11	Ира	1	19
Real Madrid	15	Илья	1	21
Real Madrid	20	Максим	1	20

Оставим лишь нужные столбцы.

Out[396]:

	Club name	Count
0	Barcelona	24
1	Bayern	4
2	Chelsea	6
3	Juventus	7
4	Manchester City	5
5	Manchester United	10
6	Real Madrid	21

Построим гистограмму количества болельщиков от клуба.

Out[196]: Text(0.5, 1.0, 'Количество болельщиков по клубам')

Как видим больше всего люди болеют за Реал Мадрид и Барселону. За два самых престижных клуба в истории.

Так как мы уже определили, что есть некоторая зависимость между возрастом болельщика и его клубом, то найдем средний возраст болельщика по клубу.

```
In [397]:
            1
              df_final = pd.merge(df_final, df_final_copy \
            2
                                    .set index('Club name'),
            3
                                    on='Club name', how='inner') \
               .loc[:, ['Name', 'Age', 'Count']]
            4
               df_final.groupby(by=['Club name']).Age.mean()
            5
Out[397]: Club name
                                21.125000
          Barcelona
          Bayern
                                24.750000
          Chelsea
                                21.333333
          Juventus
                                17.571429
          Manchester City
                                18.400000
          Manchester United
                                30.400000
          Real Madrid
                                20.714286
          Name: Age, dtype: float64
```

Вывод: исходя из исследования, можно утверждать, что существует зависимость между возрастом болельщика и клубом за который он болеет.

- Заметим, что средний возраст болельщиков Manchester United значительно выше, чем средний возраст болельщиков Manchester City хотя оба клуба из одного города. Такой резкий скачок связан с тем, что успех Manchester United приходится на конец 90-ых начало 00-ых, а прогресс Manchester City начался с приходом в этот клуб денег в 2010-ых годах.
- Среди болельщиков Juventus есть и очень молодые и зрелые. Пик популярность Juventus приходится на 00-ые года (этим объясняется старые) и переходом супер зверды мирового футбола Криштиану Роналду в 2018 году (этим объясняется приток молодых болельщиков).
- Real Madrid и Barcelona являются самыми популярными клубами в мировом футболе среди болельщиков. Средний возраст невелик. Это связанно с тем, что Real Madrid недавно выиграл 3 Лиги Чемпионов подряд, а Barcelona доминировала на протяжении нескольких лет в 2010-ых.

Дополнительный вывод: самым популярным клубом в мире является Real Madrid об этом, например можно почитать здесь

https://www.championat.com/business/article-3316565-samye-populjarnye-klubyevropy-real-barselona-manchester-junajted.html (https://www.championat.com/business/article-3316565-samye-populjarnye-klubyevropy-real-barselona-manchester-junajted.html). Однако забавным фактом является то, что Real Madrid в России занимает лишь второе место по популярности, уступая Barcelona . Это я заметил и из личного опыта и из статистики по боту. Почему так произошло в России, ведь Real Madrid и титулование и богаче и медийние? В этом и заключается основная причина не любви российских болельщиков к Real Madrid. Как мы знаем роскошь и чрезмерная демонстрация преимущества над своими соперниками, чем так славится Real Madrid , в России подвергается наибольшей критике со стороны обычных среднестатистических граждан, потому что этой же роскошью зачастую злоупотребляют "высшие" слои общества России: от богатых футболистов до чиновников. С другой стороны появляется другой гранд из сепаратистской, борющейся за свои права и независимость, каталонской Барселоны. Barcelona является неким антиподом Real Madrid. Принятно говорить, что Real Madrid поддерживают аристократы, а Barcelona обычные работяги. Этот принцип в таком виде и дошел до российских болельщиков: стабильности, роскоши, аристократичности и чистокровью болельщики предпочитают борьбу за права, равенство уровня жизни и анархизм.

Задача 4.

Некоторые студенты второго курса ФИВТ понадеявшись на отмену учета посещения занятий по курсу "Введение в анализ данных" решили дудосить гуглопросники. Команда "Физтех.Статистики" без особых проблем смогла разделить результаты опроса на спамовые и настоящие, а также установить круг подозреваемых. Теперь это предлагается сделать вам как начинающим аналитикам.

Вам выдаются результаты нескольких опросов.

- 1. Необходимо для каждой строки понять, является ли результат спамовым или настоящим. Результаты анализа необходимо прислать на почту вместе с решением.
- 2. Какими общими характеристиками обладают спамовые записи? Как часто они происходят?

```
In [377]: 1 df_5 = pd.read_excel('Данные к ДЗ 3/Лекция 5 марта.xlsx') 2 df_5.head()
```

Out [377]:

Фамилия Имя	Группа	Отметка времени	
Иванин Евгений	Другая	0 2020-03-05 18:07:33.041	0
Чернов Андрей	825	1 2020-03-05 19:17:02.696	1
Чуров Дима	811	2 2020-03-05 19:17:03.071	2
Жуков Павел	824	3 2020-03-05 19:17:03.192	3
Мальцев Дмитрий	813	4 2020-03-05 19:17:04.713	4

```
In [378]: 1 df_30 = pd.read_excel('Данные к ДЗ 3/Лекция 30 апреля.xlsx') 2 df_30.head()
```

Out [378]:

_	Отметка времени	ФИО	Группа
	0 2020-04-30 19:18:38.415	Астафуров Евгений Олегович	812
	1 2020-04-30 19:18:41.251	Севец Владислав Сергеевич	Б05-825
	2 2020-04-30 19:18:41.327	Голяр Димитрис Георгиевич	Б05-826
	3 2020-04-30 19:18:42.195	ГУСЕВ РОМАН ЕВГЕНЬЕВИЧ	823
	4 2020-04-30 19:18:42.683	Богданов Сергей Владимирович	Б05-821

Заметим, что merge надо делать по ФИО, однако во второй таблице есть отчество. Оставим только фамилию.

Out [399]:

Группа	ФИО	Отметка времени	
812	Астафуров Евгений	2020-04-30 19:18:38.415	0
Б05-825	Севец Владислав	2020-04-30 19:18:41.251	1
Б05-826	Голяр Димитрис	2 2020-04-30 19:18:41.327	2
823	ГУСЕВ РОМАН	3 2020-04-30 19:18:42.195	3
Б05-821	Богданов Сергей	1 2020-04-30 19:18:42.683	4

Out[380]:

Отметка времени_х	Группа_х	Фамилия Имя	Отметка времени_у	ФИО	Группа_у
2020-03-05 18:07:33.041	Другая	Иванин Евгений	NaT	NaN	NaN
2020-03-05 19:17:02.696	825	Чернов Андрей	2020-04-30 19:18:56.430	Чернов Андрей	825
2020-03-05 19:17:03.071	811	Чуров Дима	NaT	NaN	NaN
2020-03-05 19:17:03.192	824	Жуков Павел	2020-04-30 19:18:45.420	Жуков Павел	824
2020-03-05 19:17:04.713	813	Мальцев Дмитрий	2020-04-30 20:30:09.053	Мальцев Дмитрий	Б05-813
	времени_х 2020-03-05 18:07:33.041 2020-03-05 19:17:02.696 2020-03-05 19:17:03.071 2020-03-05 19:17:03.192 2020-03-05	времени_х Группа_х 2020-03-05 18:07:33.041 Другая 2020-03-05 19:17:02.696 825 2020-03-05 19:17:03.071 811 2020-03-05 19:17:03.192 824 2020-03-05 19:17:03.192 813	времени_х Группа_х Имя 2020-03-05 18:07:33.041 Другая Иванин Евгений 2020-03-05 19:17:02.696 825 Чернов Андрей 2020-03-05 19:17:03.071 811 Чуров Дима 2020-03-05 19:17:03.192 824 Жуков Павел 2020-03-05 19:17:03.192 Мальцев	времени_хГруппа_хИмявремени_у2020-03-05 18:07:33.041ДругаяИванин ЕвгенийNаТ2020-03-05 19:17:02.696825Чернов Андрей2020-04-30 19:18:56.4302020-03-05 19:17:03.071811Чуров ДимаNаТ2020-03-05 19:17:03.192824Жуков Павел2020-04-30 19:18:45.4202020-03-05 2020-03-05813Мальцев2020-04-30	времени_х Группа_х Имя времени_у ФИО 2020-03-05 18:07:33.041 Другая Иванин Евгений NаТ NаN 2020-03-05 19:17:02.696 825 Чернов Андрей 2020-04-30 19:18:56.430 Чернов Андрей 2020-03-05 19:17:03.071 811 Чуров Дима NаТ NаN 2020-03-05 19:17:03.192 824 Жуков Павел 2020-04-30 19:18:45.420 Жуков Павел 2020-03-05 19:17:03.192 813 Мальцев 2020-04-30 19:18:45.420 Жуков Павел

Out[381]:

	Группа_х	Фамилия Имя	Отметка времени_х	Отметка времени_у
1	825	Чернов Андрей	2020-03-05 19:17:02.696	2020-04-30 19:18:56.430
3	824	Жуков Павел	2020-03-05 19:17:03.192	2020-04-30 19:18:45.420
4	813	Мальцев Дмитрий	2020-03-05 19:17:04.713	2020-04-30 20:30:09.053
5	821	Наговицин Марк	2020-03-05 19:17:05.699	2020-04-30 19:18:42.965
6	825	Халилов Адель	2020-03-05 19:17:06.558	2020-04-30 19:18:45.249

Out[382]:

Фамилия Имя_right	Фамилия Имя_left	Группа	Отметка времени	
NaN	Иванин Евгений	Другая	2020-03-05 18:07:33.041	0 20
Чернов Андрей	Чернов Андрей	825	2020-03-05 19:17:02.696	1 20
NaN	Чуров Дима	811	2020-03-05 19:17:03.071	2 20
Жуков Павел	Жуков Павел	824	2020-03-05 19:17:03.192	3 20
Мальцев Дмитрий	Мальцев Дмитрий	813	2020-03-05 19:17:04.713	4 20

Там, где NAN будем считать за спам

```
spam = df_5[['Фамилия Имя_right']].isna()
In [383]:
              spam.rename(columns={'Фамилия Имя_right': 'spam'},
            2
            3
                           inplace=True)
              df_5 = df_5.join(spam)
              df_5 = df_5.loc[:, ['Отметка времени',
            5
                                   'Группа',
            6
            7
                                   'Фамилия Имя_left',
            8
                                    'spam']]
              df_5.head()
```

Out[383]:

	Отметка времени	Группа	Фамилия Имя_left	spam
0	2020-03-05 18:07:33.041	Другая	Иванин Евгений	True
1	2020-03-05 19:17:02.696	825	Чернов Андрей	False
2	2020-03-05 19:17:03.071	811	Чуров Дима	True
3	2020-03-05 19:17:03.192	824	Жуков Павел	False
4	2020-03-05 19:17:04.713	813	Мальцев Дмитрий	False

```
plt.figure(figsize=(16, 10))
In [386]:
            1
               plot_df = df_5[1:800]
            2
               plt.hist(plot_df[plot_df.spam]['Отметка времени'],
            3
            4
                         bins=120,
            5
                        alpha=0.5,
                        color='red',
            6
            7
                         density=True)
            8
               plt.hist(plot_df[plot_df.spam == False]['Отметка времени'], bin
            9
                         alpha=0.5,
           10
                        color='blue',
                        density=True)
           11
               plt.xlabel('Отметка времени')
           12
               plt.legend(['Спам', 'Валидные записи'])
           13
               plt.show()
           14
```


Вывод: спамы есть и их активность достигалась в прожесутке от 19:19:00 до 19:20:45.