Uni IT Security Notes

Felix Pojtinger

June 6, 2021

Contents

Uni IT Security Notes	2
Basics	2
Security Mindset	2
Security Objectives	2
Attacks, Threats and Vulnerabilities	2
Threat Identification	2
Security Frameworks	3
Network Specific Threat Examples	3
STRIDE: Attacks on a Multi-User System	3
Security policies	3
Malware	3
Networking	4
TCP Overview	4
TCP Connection Establishment	4
IP Security Issues	4
TCP Security Issues	5
Port Scanning	5
TCP Protection Mechanisms	5
Session Hijacking	6
RST Attacks (In-Connection DoS)	6
Blind IP Spoofing	6
Perimeter Defense in Pratice	6
Architecture Recommendations	6
Application in Networking	7
Stateless Packet Filter	7
Stateful Packet Filters	8
Stateful Firewalls	8
Application Layer Proxies	8
Application Level Gateways	9

Uni IT Security Notes

Basics

Security Mindset

- Focus on weaknesses, not on features
- Don't rely on the "good case"
- Anticipate what an attacker could do to a system
- Weight security against user experience and privacy

Security Objectives

- Confidentiality/conf
 - Nobody but the legitimate receiver can read a message
 - Third party cannot gain access to communication patterns
- Integrity/int: The contents of communication can't be changed
- Authenticity/authN
 - Entity Authentication: Communication partners can prove their respective identity to one another
 - Message Authentication: It can be verified that a message is authentic (unaltered and sent by the correct entity)
- Authorization/authZ
 - Service or information is only available to those who have correct access rights
 - Depends on authentication being set up
- Non-Repudiation/nRep: A sender cannot deny having sent a message or used a service
- Availability/avail: Service is available with sufficient performance
- Access Control/ac: Access to services and information is controlled
- Privacy/priv
 - Restricted access to identity-related data
 - Anonymity
 - Pseudonymity

Attacks, Threats and Vulnerabilities

- Attacker: A person who has the skill and motivation to carry out an attack: The steps needed to carry out an attack
- Vulnerability: Some characteristics of the target that can result in a security breach
- Threat: Combination of an attacker, an attack vector and a vulnerability
- Attack: A threat that has been realized and has caused a security breach

Threat Identification

• Define **system boundaries**: What is part of your system, what is not?

- Define **security objectives**: What is important for your system to be secure?
- List all threats you can think of: Brainstorming and discussion with experts
- Use conventions:
 - Similar threat models
 - Requirement specifications
 - How to break or circumvent the specifications
 - Note security assumptions of the system
 - Be careful with perimeter security: What if perimeter has been breached?
 - Note possible, but not yet exploitable vulnerabilities

Security Frameworks

Network Specific Threat Examples

- Remote Attacks
- Eavesdropping: Sniffing of information
- Altering information
- Spoofing
- DoS
- Session hijacking
- Viruses attacking clients
- Spam
- Phishing
- Data trails/privacy leaks

STRIDE: Attacks on a Multi-User System

- Spoofing of Identity
- Tampering with Information
- Repudiation
- Information Disclosure
- DoS
- Escalation of Privileges

Security policies

- Classification of system states into "allowed" and "forbidden" states
- Secure system: Is only in allowed states
- Breached system: Is in forbidden state

Malware

- Performs unwanted functions
- Often runs without user's consent

- Telemetry (often hidden in proprietary software behind EULAs)
- Backdoors

Networking

TCP Overview

- Characteristics
 - Reliable
 - Connection-Oriented
 - Full-Duplex
 - Layer atop IP
 - Connection management: Setup, Release and Abort
 - Ordered delivery (package sequence control)
 - Repetition of lost packets
 - End-to-End ACKs
 - Checksum in header
- Identified by a 5-tuple
 - Source IP
 - Destination IP
 - Transport Protocol
 - Source Port
 - Destination Port

TCP Connection Establishment

- Virtual connection between two systems
- 3-Way-Handshake with connection states

An example connection from the client to the server:

<client></client>					<server></server>
[Closed]					[Closed]
[SYN Sent]		SEQ=x	CTL=SYN	=>	
	<=	SEQ=y	CTL=SYN+ACK	ACK=x+1	[avv p · 1]
		SEQ=x+1	CTL=ACK	ACK=y+1 =>	[SYN Received]
[Established]				J =	[Established]

IP Security Issues

- IP header doesn't have confidentiality or integrity protection
 - Faking the sender address is easy to do
 - Traffic can be analyzed by sniffing packet headers
- IP payload doesn't have confidentiality or integrity protection
 - Eavesdropping is possible by sniffing packets

- Loose coupling with lower layers:
 - Easy to divert traffic
 - Availability can be easily attacked
 - Confidentiality and integrity can't be guaranteed
- Unprotected error signaling via ICMP: Fake error messages can affect availability
- DNS is insecure; i.e. DNS spoofing

TCP Security Issues

- TCP header doesn't have confidentiality or integrity protection
- Session hijacking
 - When sniffing session details, attacker can impersonate a peer in a TCP connection
 - Attackers can guess session details and attack remotely using spoofed IP addresses
- RST attack: Attackers can reset/abort attacks by injecting packets with the RST flag
- Port scanning
 - Find out open ports
 - Determine software running on port
- SYN flooding
 - Overload system resources by initializing many connections and not pursuing them

Port Scanning

- Objective: Collect information
 - Installed services
 - Software versions
 - OS
 - Firewall
- Enumeration based on port
 - Well-known ports (i.e. SSH \rightarrow 22)
 - Invalid connection requests: Different way of error handling can be used to fingerprint the OS
- Possible scanning methods
 - TCP connect scan
 - Half-open scan
 - SYN-ACK scan
 - ACK scan

TCP Protection Mechanisms

- SYN flood protection
 - Limit rate of SYN packets
 - SYN cookies (RFC 4987)

- * Limit resources
- * Half-open connections are not stored in the connection table but instead as a hash in the ISN
- * Only if the 3rd ACK handshake packet matches the sequence number, the connection is added to the connection table
- * Server does not need to maintain any state information on halfopen connections: Resources can't be exhausted
- Connections are only accepted if the sequence numbers are within a certain range of acceptable values (attackers would have to sniff sequence numbers or guess them)

Session Hijacking

- Attacker takes over existing connection between two peers
- Requirement: Attacker has to sniff or guess sequence numbers of the connection correctly

RST Attacks (In-Connection DoS)

Inject packet with RST flag into ongoing connection: Connection has to be aborted immediately

Blind IP Spoofing

Firewall is configured to only allow one source IP address and destination IP address (A \rightarrow B).

To circumvent this restriction:

- 1. Attackers starts DoS attack on A to prevent A from sending RST packets to B
- 2. Attacker sends TCP connection setup packet with A's source IP address to B $\,$
- 3. B sends SYN+ACK packet to A, but can't respond due to DoS
- 4. Attacker sends TCP connection ACK packet to B with ACK matching the initial sequence number chosen by B (which has to be guessed, as B sent the SYN+ACK packet to A, not the attacker)

Only works if B uses a predicable algorithm for it's ISN and packet filters aren't in place.

Perimeter Defense in Pratice

Architecture Recommendations

- Known from medieval cities, castles etc.
- Definition of system boundary between "inside" and "outside"
- Different threat models for inside and outside
 - Inside: Trusted

- Outside: Untrusted
- Objectives
 - Create said boundary
 - Only a defined set of communication relations is allowed
 - Special security checks
 - Limited number of interconnection points
 - Simpler to manage and audit than a completely open architecture
- Problems
 - Requires intelligent selection of system boundaries
 - May require multiple levels of perimeters
 - No system/user in the "trusted inside" can truly be trusted

Application in Networking

- Installing security devices at the network border
- Seperation of network areas into inside/outside
- Prevent sensistive information from being sent to the outside (view the system in the inside as the potential, probably unintentional attacker)
- Multiple levels can increase security
- But: Perimeter security is not sufficient on its own!
 - The will probably be additional non-secured paths into the network (i.e. ssh ¬R)
 - Some malicious traffic might look like "normal" traffic and can pass

Stateless Packet Filter

- Access Control List (ACL): Applies set of rules to each incoming packets
- Discards (denies, blocks) or forwards (allows, permits) packets based on ACL
- Typically configured by IP and TCP/UDP header fields
- Stateless inspection: Established connections can only be detected with the ACK control flag
- Can be easy to misconfigure by forgetting essential protocols
 - DNS
 - ICMP
- Advantages
 - Fast/High throughput
 - Simple to realize
 - Software-based, can be added as a package
 - Simple to configure
- Disadvantages
 - Inflexible
 - Many attacks can only be detected using stateful filtering
 - Rules and their priorities can easily get confusing
- Default discard policy
 - Block everything which is not explicitly allowed (allowlist)

- Issue: The security policy has to be revised for each new protocol or service
- This rule must come last/have the lowest priority, behind all "allowing" rules

Stateful Packet Filters

- Store connection states
- Can make decisions based on
 - TCP connections
 - UDP replies to previous outgoing packet with same IP:Port relation ("UDP Connection")
 - Application protocol states
- Similar to application layer gates/proxy firewalls, but less intruding in communication
- Rules can be more specific than in stateless packet filters
- Rules are easier to enforce, i.e. incoming TCP packets don't have to be allowed in because they have ACK set

Stateful Firewalls

- Tries to fix the problems of stateless inspection
 - To many packets have to be allowed by default (ACK \rightarrow No SYN-scanning protection)
 - Protocols like FTP or SIP, which dynamically allocate port numbers, can't be filtered securely
- Create state per TCP or UDP flow
 - Source and Destination IP:Port
 - Protocol
 - Connection state
- A packet which is not associated with a state is dropped immediately
- Packets which belong to a previously established TCP/UDP "connection" are allowed to pass without further checks
- State tables have to be cleaned up periodically to prevent resource starvation

Application Layer Proxies

- Protected host during connection establishment
- Different kinds
 - Application level
 - Circuit level
 - Forward proxy (client-side)
 - Reverse proxy (server-side)

Application Level Gateways

- Conversion between different application layer protocols
- Evaluation up to OSI layer 7
 - Protocol verification
 - Authentication
 - Malware scanning
 - Spam filtering
 - Attack pattern filtering
- Advantage: Security policies can be enforced at application level
- Disadvantage: Computing and memory performance requirements