





LIBRARY  
OF THE  
UNIVERSITY  
OF ILLINOIS

630.7  
I<sup>l</sup>6b  
no. 574-590  
cop. 2

AGRICULTURE

**NOTICE: Return or renew all Library Materials! The Minimum Fee for each Lost Book is \$50.00.**

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.  
To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

DEC 20 2004

L161—O-1096







# *Experimental* **CORN HYBRIDS**

## **1954 TESTS**

**By R. W. Jugenheimer**

Bulletin 584 · UNIVERSITY OF ILLINOIS  
AGRICULTURAL EXPERIMENT STATION

**Location of regular  
experimental-hybrid  
test fields**



## CONTENTS

|                                                                               | Page     |           |
|-------------------------------------------------------------------------------|----------|-----------|
| <b>MATERIAL TESTED . . . . .</b>                                              | <b>3</b> |           |
| <b>MEASURING PERFORMANCE . . . . .</b>                                        | <b>6</b> |           |
| <b>RESULTS OF THE TESTS . . . . .</b>                                         | <b>7</b> |           |
| <b>NORTHERN ILLINOIS</b>                                                      |          |           |
| Double crosses (Table 2) . . . . .                                            | 10       |           |
| Single and double crosses (Table 3) . . . . .                                 | 13       |           |
| <b>NORTH-CENTRAL ILLINOIS</b>                                                 |          |           |
| Double crosses (Table 4) . . . . .                                            | 14       |           |
| Three-way and double crosses (Table 5) . . . . .                              | 17       |           |
| <b>CENTRAL ILLINOIS</b>                                                       |          |           |
| Double crosses (Table 6) . . . . .                                            | 18       |           |
| Single and double crosses (Table 7) . . . . .                                 | 21       |           |
| Three-way and double crosses (Table 8) . . . . .                              | 22       |           |
| Blight-resistant three-way crosses (Table 9) . . . . .                        | 23       |           |
| <b>SOUTH-CENTRAL ILLINOIS</b>                                                 |          |           |
| Double crosses (Table 10) . . . . .                                           | 25       |           |
| Three-way and double crosses (Table 11) . . . . .                             | 27       |           |
| <b>DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX (Table 12)</b> . . . . . |          | <b>29</b> |

*Acknowledgment is due W. T. Schwenk and Sons, Edwards, for providing land for one of the tests, and to Dr. W. C. Jacob, Professor of Agronomy, for valuable computational and statistical assistance.*

# **EXPERIMENTAL CORN HYBRIDS:**

## **1954 TESTS**

By R. W. JUGENHEIMER, Professor of Plant Genetics and  
Corn Research Coordinator

**T**HIS REPORT summarizes the results of tests of experimental corn hybrids conducted in 1954 by this Station. Trials were made at four locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, and in Fayette county in south-central Illinois. These four locations are representative of the soil, rainfall, and length of growing season in their respective areas.

Hybrids were compared for yield, maturity, resistance to lodging, and other agronomic characters. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1954 performance of hybrids available in commercial quantities to farmers is reported in Bulletin 585 of this Station.

### **MATERIAL TESTED**

One hundred forty-seven different double-cross hybrids were grown at the four locations. Most of the Illinois hybrids were developed by the author. The seed was produced by controlled hand-pollination.

Two sets of single crosses and four sets of three-way crosses differing in maturity were tested in 1954. One set of single crosses (Table 3) and all sets of three-way crosses (Tables 5, 8, 9, and 11) are a part of the "uniform" tests conducted cooperatively by corn-belt states, including Illinois, and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Single crosses whose performance

is reported in Table 7 were developed by the Illinois Station and tested only in Illinois.

The following individuals are responsible at the present time for collecting seed of inbred lines, making the crosses, and distributing crossed seed of the entries in the uniform tests: E. C. Rossman (Michigan), N. P. Neal (Wisconsin), and G. H. Stringfield (Ohio) — Table 3; J. H. Lonnquist (Nebraska), R. W. Jugenheimer (Illinois), and G. F. Sprague (Iowa) — Tables 5 and 8; M. T. Jenkins (U. S. Department of Agriculture), A. M. Brunson (Indiana), and A. J. Ullstrup (Indiana) — Table 9; L. A. Tatum (Kansas), W. R. Findley (U. S. Department of Agriculture), and M. S. Zuber (Missouri) — Table 11.

The University of Illinois does not produce hybrid seed corn in commercial quantities. If a hybrid gives satisfactory performance, the parental lines are released for use by seedsmen. Hybrids that include new inbred lines are produced under the "delayed release" program adopted by most of the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. After a satisfactory probationary period of two to five years, a new line is released to the public.

Table 12 (see pages 29 to 32) lists the double-cross hybrids whose performance is shown in this report and the tables in which each appears. It also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent in the production of a hybrid.

Illinois yellow hybrids are numbered consecutively below 2000 and above 6000. White hybrids are numbered in the 2000 series; these are usually followed by the letter *W*. Hybrids that have performed well after wide testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21; those in the 800 series correspond to U. S. 13; and hybrids in the 900 series to Illinois 448.

The letter *A* or *B* following an Illinois hybrid number indi-

cates that the combination of inbred lines making up the hybrid has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was  $(1 \times 2) (3 \times 4)$ , the letter *A* following the number means that the hybrid was put together  $(1 \times 3) (2 \times 4)$ , the letter *B*,  $(1 \times 4) (2 \times 3)$ . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Performance of three-way and single-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and to farmers. Characteristics of single crosses such as yield, standability, seed size, shape, and quality definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible double-cross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines:  $A \times B$ ,  $A \times C$ ,  $A \times D$ ,  $B \times C$ ,  $B \times D$ , and  $C \times D$ . The average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses  $A \times C$ ,  $A \times D$ ,  $B \times C$ , and  $B \times D$  give the predicted yield of double cross  $(A \times B) (C \times D)$ . The procedure in predicting acre yields of two hybrids is shown on page 78 of Illinois Agricultural Experiment Station Bulletin 543.

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seed parent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses.

The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is shown below. The three-way-cross data are taken from Table 5. One hybrid is much more promising than the other hybrid.

**(Oh28xOh43)(B38xWF9)**

|                 | Percent                |                       |
|-----------------|------------------------|-----------------------|
|                 | Bushels<br>per<br>acre | of<br>erect<br>plants |
| (Oh28×Oh43)×B38 | 119                    | 93                    |
| (Oh28×Oh43)×WF9 | 106                    | 92                    |
|                 | 2   225                | 2   185               |
| Prediction      | 112.5                  | 92.5                  |

**(Oh28xOh43)(N9206xOh5)**

|                   | Percent                |                       |
|-------------------|------------------------|-----------------------|
|                   | Bushels<br>per<br>acre | of<br>erect<br>plants |
| (Oh28×Oh43)×N9206 | 99                     | 58                    |
| (Oh28×Oh43)×Oh5   | 96                     | 77                    |
|                   | 2   195                | 2   135               |
| Prediction        | 97.5                   | 67.5                  |

## MEASURING PERFORMANCE

All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2 x 5 hills in area. Six kernels were planted in hills spaced 40 inches apart. The plots were thinned to four plants per hill at DeKalb, Peoria, and Champaign, and to three per hill at Brownstown.

General information including dates of planting and harvesting is given in Table 1. Lattice-square designs were used to ob-

**Table 1.—GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1954**

| County <sup>a</sup> | Section<br>of state | Number<br>of repli-<br>cations | Number<br>of hills<br>per plot | Plants<br>per<br>hill | Date of— |                 |
|---------------------|---------------------|--------------------------------|--------------------------------|-----------------------|----------|-----------------|
|                     |                     |                                |                                |                       | Planting | Har-<br>vesting |
| DeKalb.....         | Northern            | 4                              | 10                             | 4                     | May 13   | Oct. 19         |
| Peoria.....         | North-Central       | 4                              | 10                             | 4                     | May 17   | Oct. 14         |
| Champaign....       | Central             | 4                              | 10                             | 4                     | May 11   | Nov. 4          |
| Fayette.....        | South-Central       | 4                              | 10                             | 3                     | May 18   | Nov. 9          |

<sup>a</sup> The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, and in Fayette county near Brownstown.

tain the data reported in Tables 2, 3, 4, 6, 7, and 10. The data in Tables 5, 8, 9, and 11 were obtained in randomized blocks. Four replications were grown of each entry.

## RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 11. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or more years therefore deserve the most weight when the results are studied.

Hybrids are listed in the tables in the order of their yield. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. The crop from one replication of each entry at each location was shelled to determine the shelling percentage and moisture percentage. The percentage of moisture in the shelled grain was obtained with a Steinlite moisture meter. Erect plants at harvest and stand were determined from actual counts on all replications of each test.

Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

$$\text{Corrected weight} = \text{Field weight} \times \frac{\left( \frac{\text{Number of hills}}{\text{per plot}} \right) - (0.3 \times \text{Number of missing})}{\left( \frac{\text{Number of hills}}{\text{per plot}} \right) - (\text{Number of missing})}$$

This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure a figure may be obtained that represents the number of bushels by which two entries must differ in yielding ability before they can be considered

significantly different. Note, for example, in Table 2E that unless any two entries differ by at least 10 bushels per acre there is no statistical difference between them in yielding ability.

The season was favorable for corn at DeKalb and Peoria. The growing season at Urbana was hot and dry, with resulting low yields. Yields were unusually low at Brownstown because of the extremely hot and dry growing season.

The following double crosses were average or better in yield and standability, and average or earlier in maturity as measured by the percent of moisture in the grain. The hybrids are arranged in order of yield.

#### *Northern Illinois*

Five-year average (Table 2A) — Ill. 1289, Ill. 1555A, Ill. 1559B, Ill. 1557, Ill. 1560A.

Four-year average (Table 2B) — Ill. 1289, AES 702, Ill. 1555A, Ill. 1557, Ill. 1558, Ill. 1559B, Ill. 1279.

Three-year average (Table 2C) — Ill. 1277, Ill. 1279, Ill. 1555A.

Two-year average (Table 2D) — Ill. 1289, Ill. 1555A, Ill. 1279.

1954 results (Table 2E) — Ill. 21, Ill. 1555A, AES 702, Ill. 1289, Ill. 2247W, Ill. 1279, Ill. 101, Ill. 1864, Ill. 1560A.

#### *North-Central Illinois*

Five-year average (Table 4A) — Ill. 1555A, Ill. 1560A.

Four-year average (Table 4B) — Ill. 274-1, Ill. 1575, Ill. 1555A.

Three-year average (Table 4C) — Ill. 274-1, Ill. 1575, Ill. 1555A, Ill. 1277.

Two-year average (Table 4D) — Ill. 1332, Ill. 274-1, Ill. 1511, Ill. 1555A, Ill. 1575.

1954 results (Table 4E) — Ill. 1511, Ill. 1332, Ill. 1919, Ill. 1617, Ill. 1905, Ill. 274-1, Ill. 1875, Ill. 1914, Ill. 1555A, Ill. 1896A.

#### *Central Illinois*

Five-year average (Table 6A) — Ill. 1332, Ill. 972A-1.

Four-year average (Table 6B) — Ill. 1511, Ill. 1421, Ill. 1332, Ill. 972A-1, Ill. 1777.

Three-year average (Table 6C) — Ill. 1332, AES 801, Ill. 972A-1, AES 802.

Two-year average (Table 6D) — Ill. 1332, AES 802, AES 801, Ill. 21, Ohio 4808.

1954 results (Table 6E) — Ill. 1896, Ill. 1913, Ill. 1919, Ill. 1911, Ill. 1777, Ill. 1332, Ill. 1908, Ill. 1915, Ill. 1909, AES 801, Ill. 21.

#### *South-Central Illinois*

Five-year average (Table 10A) — Ill. 1539A, Ill. 1349, Ill. 1332.

Four-year average (Table 10B) — Ill. 1332, Ill. 1656, Ill. 1349, Ill. 1539A.

Three-year average (Table 10C) — Ill. 1656, Ill. 1332, Ill. 1349.

Two-year average (Table 10D) — Ill. 1859, Ill. 2246W, Ill. 1332, Ill. 1656, Ill. 6076, AES 803, Ill. 1349, Ill. 1893.

1954 results (Table 10E) — Ill. 1656, Ill. 1332, Ill. 1859, Ill. 1539A, Ill. 1856, Ill. 1852, Ill. 2246W, Ill. 1349, Ill. 1893, Mo. 804, Ill. 1771, AES 805, Ill. 1914, Ill. 1896.

Table 2.—DOUBLE CROSSES OF ILLINOIS 1277 MATURITY  
Tested in Northern Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Rank<br>in<br>yield | Entry | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|

A—Five-year averages, 1950-1954

|    |             | bu. | perct. | perct. | perct. | perct. | in. |
|----|-------------|-----|--------|--------|--------|--------|-----|
| 1  | Ill. 1289.  | 101 | 24     | 78     | 96     | 98     | 36  |
| 2  | Ill. 1277.  | 99  | 24     | 78     | 94     | 98     | 39  |
| 3  | Ill. 1575.  | 99  | 26     | 78     | 97     | 99     | 39  |
| 4  | Ill. 1555A. | 98  | 21     | 80     | 96     | 97     | 38  |
| 5  | Ill. 1559B. | 98  | 23     | 78     | 98     | 98     | 33  |
| 6  | Ill. 1557.  | 98  | 24     | 76     | 98     | 96     | 35  |
| 7  | Ill. 1560A. | 97  | 23     | 79     | 100    | 98     | 36  |
| 8  | Ill. 1279.  | 97  | 24     | 78     | 95     | 98     | 39  |
| 9  | Ill. 1280.  | 97  | 24     | 78     | 95     | 97     | 37  |
| 10 | Ill. 1290.  | 97  | 25     | 78     | 95     | 95     | 39  |
| 11 | Ill. 1091A. | 96  | 26     | 77     | 96     | 98     | 40  |
| 12 | Ill. 1558.  | 95  | 26     | 76     | 98     | 97     | 34  |
| 13 | Ill. 101.   | 94  | 24     | 77     | 97     | 97     | 37  |
| 14 | Ill. 21.    | 94  | 27     | 76     | 94     | 98     | 46  |
| 15 | Ill. 1375.  | 92  | 23     | 78     | 96     | 98     | 35  |
| 16 | Ill. 1595.  | 92  | 24     | 77     | 97     | 98     | 41  |
|    | Average.    | 96  | 24     | 78     | 96     | 98     | 38  |

B—Four-year averages, 1951-1954

|    |             |     |    |    |     |    |    |
|----|-------------|-----|----|----|-----|----|----|
| 1  | Ill. 1493.  | 109 | 26 | 79 | 98  | 97 | 40 |
| 2  | Ill. 1289.  | 108 | 24 | 78 | 96  | 97 | 36 |
| 3  | Ill. 1575.  | 108 | 27 | 77 | 97  | 98 | 40 |
| 4  | Ill. 1277.  | 107 | 24 | 78 | 95  | 97 | 40 |
| 5  | AES 702.    | 107 | 24 | 75 | 96  | 99 | 42 |
| 6  | Ill. 1555A. | 106 | 22 | 80 | 96  | 98 | 41 |
| 7  | Ill. 1280.  | 106 | 24 | 78 | 95  | 97 | 38 |
| 8  | Ill. 1557.  | 106 | 24 | 76 | 98  | 96 | 36 |
| 9  | Ill. 21.    | 106 | 26 | 76 | 94  | 97 | 48 |
| 10 | Ill. 1558.  | 105 | 25 | 77 | 98  | 97 | 36 |
| 11 | Ill. 1559B. | 104 | 24 | 78 | 98  | 98 | 35 |
| 12 | Ill. 1279.  | 104 | 25 | 78 | 96  | 98 | 39 |
| 13 | Ill. 1290.  | 104 | 25 | 78 | 94  | 96 | 39 |
| 14 | Ill. 101.   | 104 | 26 | 78 | 97  | 98 | 38 |
| 15 | Ill. 1560A. | 103 | 24 | 78 | 100 | 98 | 37 |
| 16 | Ill. 1091A. | 103 | 27 | 77 | 95  | 97 | 40 |
| 17 | Ill. 1281.  | 102 | 26 | 78 | 96  | 97 | 36 |
| 18 | Ill. 1585.  | 101 | 24 | 77 | 94  | 94 | 37 |
| 19 | Ohio K24.   | 100 | 22 | 80 | 95  | 95 | 37 |
| 20 | Ill. 1579.  | 100 | 24 | 79 | 97  | 98 | 34 |
| 21 | Ill. 1595.  | 99  | 25 | 77 | 97  | 97 | 42 |
| 22 | Ill. 1375.  | 98  | 24 | 78 | 96  | 98 | 34 |
|    | Average.    | 104 | 25 | 78 | 96  | 97 | 38 |

(Table is continued on next page)

Table 2.—Continued

| Rank<br>in<br>yield                       | Entry       | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|-------------------------------------------|-------------|---------------|---------------------------|----------|-----------------|-------|---------------|
| <b>C — Three-year averages, 1952-1954</b> |             |               |                           |          |                 |       |               |
| 1                                         | Ill. 21.    | 120           | 22                        | 79       | 95              | 97    | 47            |
| 2                                         | Ill. 1575.  | 120           | 23                        | 79       | 99              | 98    | 40            |
| 3                                         | Ill. 1277.  | 119           | 21                        | 79       | 96              | 97    | 39            |
| 4                                         | AES 702.    | 119           | 23                        | 77       | 97              | 98    | 41            |
| 5                                         | Ill. 1493.  | 118           | 23                        | 77       | 98              | 97    | 38            |
| 6                                         | Ill. 1289.  | 118           | 25                        | 78       | 96              | 97    | 37            |
| 7                                         | Ill. 1279.  | 117           | 20                        | 79       | 96              | 98    | 38            |
| 8                                         | Ill. 1280.  | 117           | 21                        | 80       | 95              | 95    | 38            |
| 9                                         | Ill. 101.   | 117           | 22                        | 80       | 97              | 99    | 37            |
| 10                                        | I.S.P. 2.   | 117           | 24                        | 76       | 99              | 99    | 37            |
| 11                                        | Ill. 1557.  | 116           | 23                        | 78       | 98              | 96    | 37            |
| 12                                        | Ill. 1559B. | 115           | 22                        | 80       | 98              | 98    | 36            |
| 13                                        | Ill. 1558.  | 115           | 22                        | 78       | 98              | 96    | 36            |
| 14                                        | Ill. 1091A. | 115           | 23                        | 78       | 95              | 96    | 41            |
| 15                                        | Ill. 1555A. | 114           | 20                        | 81       | 97              | 97    | 41            |
| 16                                        | Ill. 1290.  | 114           | 22                        | 79       | 95              | 95    | 38            |
| 17                                        | Ill. 1281.  | 113           | 22                        | 78       | 97              | 97    | 37            |
| 18                                        | Ill. 1560A. | 112           | 21                        | 78       | 99              | 97    | 37            |
| 19                                        | Ill. 1585.  | 111           | 21                        | 78       | 93              | 94    | 37            |
| 20                                        | Ind. 0421.  | 109           | 19                        | 81       | 97              | 99    | 37            |
| 21                                        | Ill. 1579.  | 109           | 20                        | 79       | 96              | 96    | 34            |
| 22                                        | Ill. 1595.  | 109           | 21                        | 77       | 98              | 98    | 41            |
| 23                                        | Ohio K24.   | 108           | 20                        | 80       | 97              | 95    | 36            |
| 24                                        | Ill. 1800.  | 108           | 21                        | 79       | 97              | 97    | 36            |
| 25                                        | Ill. 1799.  | 107           | 19                        | 81       | 98              | 100   | 38            |
| 26                                        | Ill. 1802.  | 107           | 20                        | 80       | 98              | 96    | 38            |
| 27                                        | Ill. 1375.  | 107           | 20                        | 80       | 96              | 97    | 35            |
| 28                                        | AES 610.    | 105           | 20                        | 80       | 93              | 96    | 31            |
| 29                                        | Ohio M15.   | 101           | 19                        | 82       | 91              | 96    | 42            |
| Average.                                  |             | 113           | 21                        | 79       | 96              | 97    | 38            |

D — Two-year averages, 1953-1954

|    |             |     |    |    |    |     |    |
|----|-------------|-----|----|----|----|-----|----|
| 1  | Ill. 1902.  | 132 | 22 | 79 | 92 | 100 | 40 |
| 2  | Ill. 1575.  | 126 | 23 | 80 | 98 | 98  | 40 |
| 3  | Ill. 21.    | 124 | 21 | 79 | 94 | 96  | 46 |
| 4  | Ill. 1277.  | 124 | 22 | 80 | 95 | 96  | 39 |
| 5  | Ill. 1493.  | 124 | 23 | 79 | 98 | 96  | 38 |
| 6  | Ill. 1861.  | 123 | 20 | 82 | 94 | 98  | 37 |
| 7  | Ill. 1559B. | 123 | 22 | 81 | 97 | 99  | 36 |
| 8  | Ill. 1289.  | 122 | 21 | 79 | 96 | 97  | 36 |
| 9  | Ill. 101.   | 122 | 22 | 81 | 96 | 98  | 36 |
| 10 | Ill. 1863.  | 122 | 23 | 80 | 96 | 98  | 34 |
| 11 | Ill. 1557.  | 122 | 23 | 79 | 96 | 96  | 36 |
| 12 | Ill. 1555A. | 120 | 20 | 82 | 96 | 96  | 40 |
| 13 | Ill. 1279.  | 120 | 20 | 80 | 95 | 98  | 37 |
| 14 | Ill. 1281.  | 120 | 22 | 80 | 96 | 96  | 36 |
| 15 | Ill. 1091A. | 120 | 22 | 78 | 93 | 96  | 40 |
| 16 | AES 702.    | 120 | 22 | 77 | 96 | 98  | 40 |
| 17 | Ill. 1865.  | 118 | 22 | 80 | 96 | 96  | 34 |
| 18 | Ill. 1866.  | 118 | 22 | 80 | 94 | 97  | 36 |
| 19 | Ill. 1280.  | 118 | 22 | 80 | 93 | 96  | 37 |
| 20 | Ill. 1585.  | 117 | 21 | 80 | 90 | 97  | 36 |
| 21 | I.S.P. 2.   | 117 | 24 | 77 | 98 | 99  | 36 |
| 22 | Ind. 0421.  | 116 | 20 | 82 | 96 | 98  | 37 |
| 23 | Ill. 1560A. | 116 | 20 | 79 | 99 | 96  | 36 |
| 24 | Ill. 1290.  | 116 | 22 | 80 | 94 | 94  | 38 |
| 25 | Ill. 1558.  | 116 | 22 | 78 | 97 | 96  | 34 |
| 26 | Ill. 1864.  | 115 | 20 | 82 | 96 | 98  | 32 |
| 27 | Ill. 1375.  | 114 | 20 | 81 | 95 | 98  | 35 |
| 28 | Ill. 1595.  | 114 | 22 | 79 | 97 | 96  | 40 |
| 29 | Ill. 6074.  | 114 | 24 | 80 | 90 | 96  | 42 |
| 30 | Ill. 1862.  | 113 | 21 | 80 | 96 | 94  | 31 |

(Table is concluded on next page)

Table 2.—Concluded

| Rank<br>in<br>yield                                 | Entry                   | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand  | Ear<br>height | Dropped<br>ears |
|-----------------------------------------------------|-------------------------|---------------|---------------------------|----------|-----------------|--------|---------------|-----------------|
| <b>D — Two-year averages, 1953-1954 (concluded)</b> |                         |               |                           |          |                 |        |               |                 |
|                                                     |                         | bu.           | perct.                    | perct.   | perct.          | perct. | in.           | perct.          |
| 31                                                  | Ill. 1579.              | 111           | 21                        | 80       | 94              | 96     | 34            | ...             |
| 32                                                  | Ill. 1799.              | 110           | 19                        | 82       | 96              | 99     | 38            | ...             |
| 33                                                  | Ohio K24.               | 110           | 20                        | 82       | 96              | 94     | 36            | ...             |
| 34                                                  | Ill. 1802.              | 110           | 20                        | 80       | 98              | 98     | 36            | ...             |
| 35                                                  | Ill. 1800.              | 108           | 21                        | 80       | 95              | 97     | 34            | ...             |
| 36                                                  | AES 610.                | 106           | 20                        | 82       | 90              | 95     | 32            | ...             |
| 37                                                  | Ohio M15.               | 104           | 20                        | 82       | 88              | 96     | 41            | ...             |
|                                                     | Average.                | 117           | 21                        | 80       | 95              | 97     | 37            | ...             |
| <b>E — 1954 results (4 replications)</b>            |                         |               |                           |          |                 |        |               |                 |
| 1                                                   | Ill. 1902.              | 149           | 27                        | 78       | 90              | 100    | 41            | 0               |
| 2                                                   | M14×WF9.                | 140           | 25                        | 78       | 90              | 98     | 36            | 0               |
| 3                                                   | Ill. 1861.              | 140           | 23                        | 80       | 89              | 99     | 36            | 3.2             |
| 4                                                   | Ill. 1281.              | 139           | 27                        | 79       | 95              | 99     | 41            | 1.2             |
| 5                                                   | Ill. 1559B.             | 138           | 27                        | 77       | 96              | 99     | 39            | .7              |
| 6                                                   | Ill. 1575.              | 137           | 28                        | 77       | 96              | 97     | 43            | 2.0             |
| 7                                                   | Ill. 21.                | 137           | 25                        | 77       | 93              | 96     | 46            | 3.4             |
| 8                                                   | Ill. 1555A.             | 137           | 26                        | 79       | 96              | 94     | 40            | 3.3             |
| 9                                                   | Ill. 1493.              | 137           | 28                        | 78       | 97              | 92     | 41            | 0               |
| 10                                                  | AES 702.                | 136           | 26                        | 77       | 95              | 99     | 39            | 3.8             |
| 11                                                  | Ill. 1557.              | 136           | 28                        | 77       | 94              | 98     | 38            | .6              |
| 12                                                  | Ill. 1289.              | 135           | 26                        | 77       | 92              | 98     | 39            | 4.9             |
| 13                                                  | Ill. 2247W.             | 134           | 25                        | 78       | 93              | 94     | 42            | 3.1             |
| 14                                                  | Ill. 1279.              | 133           | 25                        | 78       | 92              | 97     | 38            | 3.3             |
| 15                                                  | Iowa 4630.              | 133           | 24                        | 79       | 88              | 96     | 36            | 2.6             |
| 16                                                  | Ill. 1277.              | 133           | 26                        | 79       | 91              | 94     | 42            | 5.3             |
| 17                                                  | Ill. 101.               | 131           | 26                        | 79       | 95              | 97     | 39            | 4.2             |
| 18                                                  | Ill. 1866.              | 129           | 27                        | 78       | 90              | 94     | 38            | .7              |
| 19                                                  | Ill. 1864.              | 128           | 24                        | 78       | 95              | 96     | 32            | 5.8             |
| 20                                                  | Ill. 1091A.             | 128           | 27                        | 77       | 90              | 97     | 42            | 2.9             |
| 21                                                  | I.S.P. 2.               | 127           | 28                        | 76       | 97              | 100    | 35            | 1.4             |
| 22                                                  | Ill. 1560A.             | 127           | 24                        | 77       | 98              | 96     | 38            | 1.2             |
| 23                                                  | Ill. 1290.              | 127           | 27                        | 78       | 88              | 94     | 39            | 2.8             |
| 24                                                  | Ill. 1595.              | 127           | 28                        | 79       | 95              | 97     | 43            | .7              |
| 25                                                  | Ill. 1903.              | 126           | 24                        | 77       | 97              | 96     | 40            | 2.7             |
| 26                                                  | Ill. 1585.              | 126           | 26                        | 78       | 88              | 95     | 38            | 3.8             |
| 27                                                  | Ill. 1375.              | 126           | 25                        | 79       | 91              | 96     | 38            | 2.6             |
| 28                                                  | Ind. 0421.              | 126           | 25                        | 80       | 93              | 98     | 38            | 3.5             |
| 29                                                  | Ill. 1280.              | 125           | 26                        | 79       | 87              | 94     | 37            | 3.3             |
| 30                                                  | Ill. 1863.              | 125           | 28                        | 79       | 94              | 97     | 33            | 1.5             |
| 31                                                  | AES 510.                | 124           | 23                        | 80       | 93              | 93     | 39            | 2.1             |
| 32                                                  | Ill. 6015.              | 123           | 32                        | 75       | 83              | 95     | 62            | .6              |
| 33                                                  | Ill. 1865.              | 122           | 27                        | 78       | 93              | 98     | 34            | 3.1             |
| 34                                                  | Ill. 1579.              | 122           | 25                        | 78       | 90              | 96     | 35            | 1.9             |
| 35                                                  | Ill. 6074.              | 121           | 29                        | 78       | 88              | 94     | 42            | 2.0             |
| 36                                                  | Ill. 1799.              | 121           | 22                        | 79       | 93              | 99     | 39            | 3.1             |
| 37                                                  | Ill. 6052.              | 120           | 32                        | 76       | 87              | 94     | 51            | .6              |
| 38                                                  | Ill. 1558.              | 120           | 26                        | 76       | 95              | 93     | 36            | 2.2             |
| 39                                                  | Ill. 1802.              | 120           | 24                        | 78       | 97              | 96     | 38            | 2.6             |
| 40                                                  | Ill. 1862.              | 119           | 25                        | 79       | 92              | 88     | 30            | 1.9             |
| 41                                                  | Ohio K24.               | 119           | 23                        | 80       | 94              | 93     | 37            | 3.9             |
| 42                                                  | Minn. 40.               | 119           | 23                        | 78       | 92              | 94     | 38            | 0               |
| 43                                                  | Iowa 4558.              | 117           | 22                        | 80       | 89              | 92     | 35            | 4.3             |
| 44                                                  | Minn. 4.                | 117           | 23                        | 80       | 92              | 92     | 40            | 3.3             |
| 45                                                  | Ill. 1800.              | 117           | 26                        | 78       | 90              | 96     | 35            | 2.6             |
| 46                                                  | AES 610.                | 116           | 23                        | 80       | 84              | 95     | 34            | 1.4             |
| 47                                                  | Ohio M15.               | 112           | 24                        | 82       | 84              | 95     | 43            | 3.9             |
| 48                                                  | Ill. 6062.              | 103           | 33                        | 75       | 86              | 96     | 55            | 1.7             |
| 49                                                  | Ohio 5305.              | 97            | 22                        | 78       | 96              | 91     | 38            | .8              |
|                                                     | Average.                | 127           | 26                        | 78       | 92              | 96     | 39            | 2.4             |
|                                                     | Significant difference. | 10            | ..                        | ..       | 7               | 8      | 4             | ...             |

**Table 3.—SINGLE AND DOUBLE CROSSES  
OF ILLINOIS 1277 MATURITY  
Tested in Northern Illinois, 1954**

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Code                    | Entry                       | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling      | Erect<br>plants | Stand         | Ear<br>height | Dropped<br>ears |
|-------------------------|-----------------------------|---------------|---------------------------|---------------|-----------------|---------------|---------------|-----------------|
| <b>A—Single crosses</b> |                             |               |                           |               |                 |               |               |                 |
|                         |                             | <i>bu.</i>    | <i>perct.</i>             | <i>perct.</i> | <i>perct.</i>   | <i>perct.</i> | <i>in.</i>    | <i>perct.</i>   |
| 1                       | M14×B14.....                | 149           | 25                        | 81            | 97              | 94            | 38            | 0               |
| 2                       | M14×B21.....                | 131           | 25                        | 80            | 88              | 97            | 37            | 2.0             |
| 3                       | M14×A223.....               | 114           | 23                        | 79            | 85              | 97            | 34            | 1.2             |
| 4                       | B14×B21.....                | 121           | 30                        | 79            | 83              | 97            | 45            | 1.3             |
| 5                       | B14×A223.....               | 138           | 22                        | 80            | 99              | 94            | 36            | .7              |
| 6                       | B21×A223.....               | 126           | 23                        | 79            | 97              | 90            | 37            | 1.2             |
| 7                       | A239×M14.....               | 134           | 24                        | 81            | 98              | 97            | 39            | 0               |
| 8                       | A239×B14.....               | 129           | 24                        | 83            | 100             | 99            | 40            | 0               |
| 9                       | A239×B21.....               | 108           | 22                        | 82            | 97              | 89            | 37            | .8              |
| 11                      | A295×M14.....               | 119           | 25                        | 77            | 93              | 98            | 36            | .6              |
| 12                      | <b>A295×B14.....</b>        | 142           | 24                        | 79            | 97              | 93            | 42            | 0               |
| 13                      | A295×B21.....               | 124           | 23                        | 78            | 92              | 86            | 40            | .6              |
| 14                      | A295×A223.....              | 107           | 21                        | 77            | 94              | 98            | 38            | 8.1             |
| 15                      | A295×A239.....              | 124           | 21                        | 79            | 88              | 98            | 41            | 0               |
| 16                      | A297×M14.....               | 122           | 22                        | 80            | 96              | 97            | 40            | 0               |
| 17                      | A297×B14.....               | 139           | 24                        | 81            | 100             | 95            | 42            | 0               |
| 18                      | A297×B21.....               | 143           | 22                        | 81            | 92              | 100           | 43            | 5.1             |
| 19                      | A297×A223.....              | 112           | 22                        | 81            | 96              | 98            | 38            | .6              |
| 20                      | A297×A239.....              | 115           | 22                        | 82            | 98              | 98            | 39            | .7              |
| 21                      | A297×A295.....              | 115           | 22                        | 79            | 93              | 96            | 41            | 3.8             |
| 22                      | <b>A545×M14.....</b>        | 136           | 24                        | 81            | 95              | 96            | 38            | 0               |
| 23                      | A545×B14.....               | 135           | 27                        | 82            | 99              | 96            | 45            | 0               |
| 24                      | A545×B21.....               | 134           | 25                        | 82            | 95              | 88            | 40            | 0               |
| 25                      | A545×A223.....              | 118           | 23                        | 78            | 94              | 100           | 35            | .6              |
| 26                      | A545×A239.....              | 139           | 24                        | 81            | 93              | 96            | 42            | .6              |
| 27                      | A545×A295.....              | 125           | 23                        | 74            | 92              | 99            | 40            | .6              |
| 28                      | <b>A545×A297.....</b>       | 131           | 24                        | 80            | 96              | 100           | 43            | 0               |
| 29                      | Oh26A×M14.....              | 126           | 24                        | 79            | 85              | 96            | 41            | 0               |
| 30                      | Oh26A×B14.....              | 138           | 25                        | 78            | 99              | 95            | 42            | 0               |
| 31                      | Oh26A×B21.....              | 121           | 23                        | 80            | 96              | 86            | 40            | 1.3             |
| 32                      | Oh26A×A223.....             | 118           | 20                        | 81            | 99              | 83            | 37            | 0               |
| 33                      | Oh26A×A239.....             | 122           | 22                        | 80            | 94              | 87            | 38            | 0               |
| 34                      | Oh26A×A295.....             | 115           | 22                        | 75            | 99              | 96            | 39            | 0               |
| 35                      | Oh26A×A297.....             | 123           | 22                        | 80            | 96              | 98            | 38            | 1.9             |
| 36                      | Oh26A×A545.....             | 138           | 26                        | 79            | 98              | 99            | 44            | 2.1             |
| 37                      | <b>W64A×M14.....</b>        | 135           | 23                        | 78            | 96              | 98            | 33            | .6              |
| 38                      | W64A×B14.....               | 144           | 26                        | 79            | 99              | 97            | 37            | .7              |
| 39                      | W64A×B21.....               | 115           | 22                        | 78            | 90              | 83            | 35            | 1.5             |
| 40                      | W64A×A223.....              | 126           | 23                        | 78            | 98              | 96            | 35            | 3.2             |
| 41                      | W64A×A239.....              | 120           | 22                        | 78            | 97              | 98            | 36            | .7              |
| 42                      | W64A×A295.....              | 123           | 25                        | 76            | 95              | 96            | 37            | 1.9             |
| 43                      | <b>W64A×A297.....</b>       | 135           | 23                        | 78            | 98              | 97            | 40            | 1.2             |
| 44                      | W64A×A545.....              | 136           | 27                        | 78            | 97              | 93            | 37            | 1.3             |
| 45                      | W64A×Oh26A.....             | 110           | 24                        | 77            | 97              | 89            | 36            | 0               |
|                         | Average.....                | 127           | 24                        | 79            | 95              | 95            | 39            | 1.0             |
|                         | Significant difference..... | 12            | ..                        | ..            | 6               | 12            | 3             | ...             |

**B—Double crosses**

|                             |     |    |    |    |    |    |     |
|-----------------------------|-----|----|----|----|----|----|-----|
| Ill. 1863.....              | 143 | 27 | 79 | 96 | 99 | 35 | 2.0 |
| AES 702.....                | 139 | 27 | 76 | 94 | 98 | 44 | 3.2 |
| Ill. 1289.....              | 134 | 28 | 78 | 99 | 98 | 38 | 1.3 |
| Ohio K24.....               | 123 | 24 | 80 | 93 | 95 | 36 | 3.5 |
| Ill. 1800.....              | 118 | 25 | 77 | 92 | 91 | 37 | .6  |
| Average.....                | 131 | 26 | 78 | 95 | 96 | 38 | 2.1 |
| Significant difference..... | 12  | .. | .. | 6  | 12 | 3  | ... |

**Table 4.— DOUBLE CROSSES OF ILLINOIS 21 MATURITY  
Tested in North-Central Illinois, 1950-1954**

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Rank<br>in<br>yield | Entry | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|

**A — Five-year averages, 1950-1954**

|   |                 | bu. | perct. | perct. | perct. | perct. | in. |
|---|-----------------|-----|--------|--------|--------|--------|-----|
| 1 | Ill. 1555A..... | 91  | 17     | 84     | 94     | 97     | 38  |
| 2 | Ill. 1560A..... | 90  | 18     | 81     | 97     | 98     | 37  |
| 3 | Ill. 1290.....  | 90  | 19     | 82     | 93     | 96     | 39  |
| 4 | Ill. 1277.....  | 90  | 20     | 82     | 93     | 98     | 39  |
| 5 | Ill. 1575.....  | 90  | 21     | 80     | 96     | 99     | 40  |
| 6 | Ill. 1280.....  | 89  | 19     | 82     | 91     | 97     | 37  |
|   | Average.....    | 90  | 19     | 82     | 94     | 98     | 38  |

**B — Four-year averages, 1951-1954**

|    |                  |     |    |    |    |    |    |
|----|------------------|-----|----|----|----|----|----|
| 1  | Ill. 1511.....   | 104 | 20 | 83 | 92 | 89 | 48 |
| 2  | Ill. 972A-1..... | 104 | 20 | 82 | 91 | 95 | 45 |
| 3  | Ill. 1617.....   | 103 | 20 | 79 | 91 | 96 | 44 |
| 4  | Ill. 1332.....   | 101 | 19 | 82 | 91 | 97 | 46 |
| 5  | Ill. 1570.....   | 101 | 21 | 79 | 88 | 99 | 48 |
| 6  | Ill. 274-1.....  | 100 | 19 | 81 | 94 | 97 | 46 |
| 7  | Ill. 1575.....   | 99  | 20 | 80 | 95 | 99 | 41 |
| 8  | Ill. 1555A.....  | 97  | 17 | 84 | 93 | 98 | 40 |
| 9  | Ill. 1277.....   | 96  | 20 | 83 | 93 | 97 | 40 |
| 10 | AES 805.....     | 96  | 21 | 78 | 96 | 93 | 43 |
| 11 | Ill. 1760.....   | 96  | 22 | 78 | 94 | 95 | 44 |
| 12 | Ill. 1280.....   | 95  | 18 | 83 | 90 | 97 | 38 |
| 13 | Ill. 1290.....   | 94  | 18 | 82 | 92 | 94 | 39 |
| 14 | Ill. 1560A.....  | 94  | 18 | 81 | 96 | 98 | 38 |
| 15 | AES 702.....     | 92  | 20 | 78 | 91 | 97 | 42 |
| 16 | Iowa 4297.....   | 87  | 19 | 82 | 94 | 91 | 40 |
|    | Average.....     | 97  | 20 | 81 | 93 | 96 | 43 |

**C — Three-year averages, 1952-1954**

|    |                  |     |    |    |    |    |    |
|----|------------------|-----|----|----|----|----|----|
| 1  | Ill. 1819.....   | 106 | 18 | 81 | 89 | 98 | 45 |
| 2  | AES 806.....     | 105 | 22 | 80 | 89 | 97 | 44 |
| 3  | Ill. 1511.....   | 104 | 19 | 83 | 91 | 86 | 50 |
| 4  | Ill. 972A-1..... | 104 | 21 | 81 | 90 | 95 | 49 |
| 5  | Ill. 1332.....   | 102 | 19 | 82 | 90 | 96 | 48 |
| 6  | Ill. 1570.....   | 102 | 20 | 79 | 86 | 98 | 50 |
| 7  | Ill. 274-1.....  | 101 | 19 | 82 | 93 | 97 | 47 |
| 8  | Ill. 1617.....   | 101 | 19 | 79 | 89 | 92 | 45 |
| 9  | Ill. 1814.....   | 100 | 21 | 81 | 94 | 96 | 40 |
| 10 | Ill. 1575.....   | 99  | 19 | 80 | 94 | 98 | 42 |
| 11 | Ill. 1831.....   | 99  | 20 | 81 | 94 | 96 | 41 |
| 12 | Ill. 1555A.....  | 98  | 16 | 85 | 93 | 97 | 42 |
| 13 | Ill. 1277.....   | 97  | 19 | 83 | 92 | 97 | 42 |
| 14 | Ill. 1560A.....  | 95  | 17 | 82 | 96 | 97 | 40 |
| 15 | Ill. 1826.....   | 95  | 20 | 81 | 92 | 98 | 39 |
| 16 | Ill. 1760.....   | 95  | 21 | 78 | 92 | 94 | 44 |
| 17 | Ill. 1813.....   | 94  | 23 | 79 | 95 | 94 | 45 |
| 18 | Ill. 1280.....   | 93  | 18 | 82 | 87 | 96 | 39 |
| 19 | AES 805.....     | 93  | 21 | 78 | 95 | 91 | 44 |
| 20 | Ill. 1290.....   | 92  | 18 | 83 | 89 | 94 | 41 |
| 21 | Ind. 1405.....   | 91  | 19 | 80 | 95 | 92 | 38 |
| 22 | AES 702.....     | 89  | 20 | 78 | 89 | 97 | 43 |
| 23 | Iowa 4297.....   | 85  | 18 | 82 | 92 | 90 | 41 |
|    | Average.....     | 97  | 19 | 81 | 92 | 95 | 43 |

(Table is continued on next page)

Table 4.—Continued

| Rank<br>in<br>yield | Entry | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Dropped<br>ears |
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|

## D — Two-year averages, 1953-1954

|    |                  | bu. | perct. | perct. | perct. | perct. | in. | perct. |
|----|------------------|-----|--------|--------|--------|--------|-----|--------|
| 1  | AES 806.....     | 100 | 21     | 80     | 86     | 96     | 42  | ...    |
| 2  | III. 1819.....   | 98  | 18     | 82     | 84     | 96     | 41  | ...    |
| 3  | III. 1570.....   | 95  | 19     | 80     | 81     | 97     | 46  | ...    |
| 4  | III. 1332.....   | 94  | 18     | 83     | 89     | 94     | 45  | ...    |
| 5  | III. 1875.....   | 94  | 19     | 80     | 92     | 92     | 47  | ...    |
| 6  | III. 972A-1..... | 94  | 20     | 81     | 86     | 92     | 46  | ...    |
| 7  | III. 274-1.....  | 93  | 18     | 82     | 91     | 96     | 43  | ...    |
| 8  | III. 1511.....   | 92  | 18     | 84     | 89     | 78     | 46  | ...    |
| 9  | III. 1617.....   | 92  | 18     | 80     | 88     | 96     | 44  | ...    |
| 10 | III. 1831.....   | 92  | 20     | 82     | 94     | 94     | 38  | ...    |
| 11 | III. 1896A.....  | 91  | 18     | 80     | 88     | 98     | 40  | ...    |
| 12 | III. 1555A.....  | 90  | 16     | 84     | 90     | 96     | 40  | ...    |
| 13 | III. 1575.....   | 90  | 18     | 81     | 91     | 98     | 39  | ...    |
| 14 | III. 1814.....   | 90  | 19     | 82     | 92     | 97     | 38  | ...    |
| 15 | III. 1868.....   | 90  | 19     | 81     | 94     | 94     | 40  | ...    |
| 16 | III. 1277.....   | 89  | 18     | 84     | 88     | 96     | 38  | ...    |
| 17 | III. 2247W.....  | 88  | 18     | 81     | 80     | 95     | 42  | ...    |
| 18 | III. 1560A.....  | 87  | 16     | 82     | 94     | 96     | 36  | ...    |
| 19 | III. 1813.....   | 87  | 22     | 79     | 92     | 96     | 42  | ...    |
| 20 | III. 1826.....   | 86  | 19     | 82     | 90     | 98     | 36  | ...    |
| 21 | III. 1760.....   | 86  | 20     | 78     | 89     | 91     | 42  | ...    |
| 22 | III. 1280.....   | 84  | 16     | 82     | 82     | 95     | 35  | ...    |
| 23 | III. 1290.....   | 84  | 17     | 82     | 88     | 91     | 38  | ...    |
| 24 | Ind. 1405.....   | 84  | 18     | 82     | 93     | 93     | 35  | ...    |
| 25 | III. 1864.....   | 83  | 16     | 82     | 93     | 94     | 36  | ...    |
| 26 | III. 1863.....   | 82  | 18     | 82     | 94     | 95     | 36  | ...    |
| 27 | III. 1873.....   | 82  | 18     | 80     | 94     | 94     | 36  | ...    |
| 28 | AES 702.....     | 82  | 18     | 80     | 86     | 96     | 40  | ...    |
| 29 | AES 805.....     | 82  | 20     | 78     | 93     | 87     | 42  | ...    |
| 30 | Iowa 4297.....   | 74  | 18     | 82     | 92     | 86     | 38  | ...    |
|    | Average.....     | 88  | 18     | 81     | 89     | 94     | 40  | ...    |

## E — 1954 results (4 replications)

|    |                  |     |    |    |    |     |    |      |
|----|------------------|-----|----|----|----|-----|----|------|
| 1  | AES 806.....     | 107 | 23 | 80 | 88 | 100 | 40 | 1.5  |
| 2  | III. 972A-1..... | 107 | 22 | 80 | 85 | 99  | 46 | 3.3  |
| 3  | III. 1912.....   | 107 | 21 | 81 | 79 | 97  | 42 | 3.6  |
| 4  | III. 1819.....   | 107 | 22 | 80 | 79 | 99  | 43 | 7.2  |
| 5  | III. 1511.....   | 106 | 21 | 82 | 85 | 98  | 47 | 15.5 |
| 6  | III. 1332.....   | 105 | 20 | 82 | 86 | 100 | 43 | 3.9  |
| 7  | III. 1570.....   | 105 | 22 | 80 | 77 | 98  | 45 | 1.3  |
| 8  | III. 1919.....   | 104 | 20 | 80 | 86 | 99  | 44 | 3.7  |
| 9  | III. 1617.....   | 104 | 20 | 79 | 84 | 100 | 43 | .6   |
| 10 | III. 1905.....   | 104 | 21 | 77 | 83 | 99  | 46 | 3.8  |
| 11 | III. 274-1.....  | 103 | 20 | 82 | 86 | 99  | 44 | .7   |
| 12 | III. 1918.....   | 103 | 22 | 81 | 81 | 98  | 44 | 3.8  |
| 13 | III. 1875.....   | 103 | 21 | 80 | 92 | 100 | 47 | 9.2  |
| 14 | III. 1906.....   | 102 | 21 | 79 | 77 | 100 | 45 | 4.4  |
| 15 | III. 1913.....   | 101 | 20 | 83 | 74 | 98  | 44 | 3.3  |
| 16 | III. 1908.....   | 100 | 20 | 82 | 75 | 99  | 44 | 2.7  |
| 17 | III. 1915.....   | 99  | 22 | 80 | 85 | 99  | 42 | 5.6  |
| 18 | III. 1910.....   | 98  | 20 | 83 | 73 | 99  | 44 | 2.8  |
| 19 | III. 1904.....   | 98  | 21 | 79 | 60 | 98  | 46 | 2.7  |
| 20 | III. 1914.....   | 98  | 21 | 79 | 85 | 99  | 45 | 4.0  |

(Table is concluded on next page)

Table 4.—Concluded

| Rank<br>in<br>yield               | Entry                       | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Dropped<br>ears |
|-----------------------------------|-----------------------------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|
| E — 1954 results (4 replications) |                             |               |                           |          |                 |       |               |                 |
| 21                                | Ill. 6021.....              | 98            | 23                        | 78       | 63              | 100   | 51            | 5.0             |
| 22                                | Ill. 1916.....              | 97            | 20                        | 82       | 68              | 99    | 46            | 3.9             |
| 23                                | Ill. 1555A.....             | 97            | 19                        | 82       | 89              | 98    | 42            | 3.8             |
| 24                                | Ill. 1917.....              | 97            | 19                        | 82       | 77              | 96    | 43            | .7              |
| 25                                | Ill. 1896A.....             | 96            | 20                        | 80       | 84              | 97    | 39            | 4.6             |
| 26                                | Ill. 1814.....              | 96            | 22                        | 80       | 85              | 100   | 39            | 3.2             |
| 27                                | Ill. 1575.....              | 95            | 22                        | 79       | 92              | 99    | 42            | 3.8             |
| 28                                | Ill. 1277.....              | 94            | 20                        | 83       | 85              | 97    | 41            | .7              |
| 29                                | Ill. 2247W.....             | 93            | 20                        | 80       | 77              | 99    | 42            | 3.4             |
| 30                                | Ill. 1868.....              | 93            | 22                        | 80       | 93              | 99    | 42            | 4.7             |
| 31                                | Ill. 1911.....              | 93            | 20                        | 80       | 80              | 98    | 46            | 7.1             |
| 32                                | Ohio 3247.....              | 92            | 20                        | 83       | 79              | 100   | 35            | 3.8             |
| 33                                | Ill. 1290.....              | 92            | 20                        | 81       | 79              | 98    | 40            | 1.9             |
| 34                                | Ill. 1831.....              | 92            | 24                        | 81       | 91              | 99    | 38            | 4.3             |
| 35                                | Ind. 1405.....              | 92            | 20                        | 81       | 88              | 97    | 37            | 4.6             |
| 36                                | Ill. 1760.....              | 91            | 23                        | 77       | 87              | 99    | 41            | 5.1             |
| 37                                | Ill. 1560A.....             | 89            | 19                        | 79       | 91              | 100   | 39            | 1.2             |
| 38                                | Ill. 1909.....              | 88            | 20                        | 80       | 76              | 95    | 43            | 5.2             |
| 39                                | Ill. 1280.....              | 88            | 19                        | 80       | 78              | 99    | 34            | 6.0             |
| 40                                | Ill. 1826.....              | 88            | 21                        | 80       | 89              | 99    | 36            | 2.0             |
| 41                                | Ill. 1813.....              | 87            | 24                        | 77       | 90              | 99    | 42            | 2.0             |
| 42                                | Ind. 2401.....              | 86            | 21                        | 80       | 89              | 99    | 37            | 4.2             |
| 43                                | Ill. 1903.....              | 86            | 20                        | 80       | 91              | 97    | 39            | 2.7             |
| 44                                | Ill. 1864.....              | 85            | 19                        | 81       | 88              | 100   | 35            | 2.6             |
| 45                                | AES 702.....                | 84            | 21                        | 79       | 88              | 98    | 40            | 2.0             |
| 46                                | Ill. 1863.....              | 81            | 22                        | 80       | 91              | 99    | 37            | 3.8             |
| 47                                | AES 805.....                | 79            | 22                        | 75       | 92              | 96    | 41            | 3.6             |
| 48                                | Ill. 1873.....              | 77            | 22                        | 77       | 93              | 100   | 36            | 4.9             |
| 49                                | Iowa 4297.....              | 73            | 21                        | 80       | 86              | 97    | 38            | 7.1             |
|                                   | Average.....                | 95            | 21                        | 80       | 83              | 99    | 42            | 3.9             |
|                                   | Significant difference..... | 8             | ..                        | ..       | 12              | 3     | 4             | ...             |

**Table 5.—THREE-WAY AND DOUBLE CROSSES  
OF ILLINOIS 21 MATURITY  
Tested in North-Central Illinois, 1954**

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Code                                               | Entry                       | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Dropped<br>ears |
|----------------------------------------------------|-----------------------------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|
| <b>A — Inbred lines crossed with (B14 × WF9)</b>   |                             |               |                           |          |                 |       |               |                 |
| 1                                                  | <b>B38.</b>                 | 96            | 19                        | 76       | 98              | 97    | 41            | 3.5             |
| 2                                                  | C103.                       | 76            | 22                        | 73       | 97              | 99    | 42            | 9.3             |
| 3                                                  | Oh26A.                      | 78            | 19                        | 81       | 97              | 98    | 39            | 2.8             |
| 4                                                  | M14.                        | 99            | 21                        | 81       | 92              | 94    | 37            | 3.4             |
| 5                                                  | Oh422.                      | 97            | 21                        | 77       | 96              | 92    | 40            | 4.6             |
| 6                                                  | <b>Oh28.</b>                | 106           | 19                        | 79       | 96              | 99    | 38            | .7              |
| 7                                                  | Nebr. 9206.                 | 102           | 19                        | 82       | 80              | 99    | 40            | 4.5             |
| 8                                                  | Oh5.                        | 82            | 19                        | 75       | 97              | 100   | 40            | 6.2             |
| 9                                                  | W70.                        | 86            | 19                        | 82       | 97              | 99    | 41            | 3.8             |
| 10                                                 | Oh43.                       | 113           | 20                        | 82       | 93              | 99    | 38            | 2.4             |
| 11                                                 | <b>Nebr. 4535.</b>          | 118           | 20                        | 83       | 94              | 99    | 39            | 3.9             |
| 12                                                 | K1603.                      | 110           | 18                        | 81       | 90              | 96    | 41            | 1.2             |
| 13                                                 | A73.                        | 73            | 18                        | 82       | 97              | 99    | 35            | 0               |
| 14                                                 | <b>B37.</b>                 | 102           | 19                        | 78       | 97              | 99    | 41            | 3.2             |
| 15                                                 | N18.                        | 100           | 20                        | 81       | 82              | 97    | 38            | 3.2             |
|                                                    | Average.                    | 96            | 20                        | 80       | 94              | 98    | 39            | 3.5             |
| <b>B — Inbred lines crossed with (Oh28 × Oh43)</b> |                             |               |                           |          |                 |       |               |                 |
| 16                                                 | <b>B38.</b>                 | 119           | 19                        | 79       | 93              | 92    | 42            | 2.6             |
| 17                                                 | C103.                       | 72            | 23                        | 71       | 95              | 99    | 39            | 2.1             |
| 18                                                 | Oh26A.                      | 95            | 19                        | 82       | 91              | 98    | 39            | 2.7             |
| 19                                                 | <b>WF9.</b>                 | 106           | 20                        | 81       | 92              | 96    | 34            | 1.2             |
| 20                                                 | M14.                        | 98            | 18                        | 82       | 83              | 99    | 34            | .6              |
| 21                                                 | Nebr. 9206.                 | 99            | 20                        | 83       | 58              | 96    | 38            | 1.4             |
| 22                                                 | Oh5.                        | 96            | 19                        | 82       | 77              | 97    | 40            | 4.7             |
| 23                                                 | W70.                        | 108           | 21                        | 82       | 81              | 99    | 40            | 1.3             |
| 24                                                 | Nebr. 4535.                 | 112           | 21                        | 85       | 75              | 99    | 38            | 3.4             |
| 25                                                 | K1603.                      | 109           | 18                        | 83       | 75              | 99    | 39            | 2.9             |
| 26                                                 | A73.                        | 80            | 19                        | 80       | 91              | 99    | 36            | 4.6             |
| 27                                                 | B37.                        | 129           | 23                        | 82       | 98              | 100   | 39            | .6              |
| 28                                                 | N18.                        | 91            | 22                        | 79       | 68              | 98    | 36            | 2.6             |
| 29                                                 | Nebr. 4056.                 | 97            | 19                        | 82       | 95              | 97    | 36            | .7              |
|                                                    | Average.                    | 101           | 20                        | 81       | 84              | 98    | 38            | 2.2             |
| <b>C — Double crosses</b>                          |                             |               |                           |          |                 |       |               |                 |
|                                                    | (Oh28×Oh43)(B14×WF9)....    | 108           | 21                        | 80       | 94              | 99    | 39            | 3.8             |
|                                                    | AES 702.....                | 90            | 20                        | 77       | 96              | 98    | 40            | 5.9             |
|                                                    | Iowa 4297.....              | 87            | 21                        | 80       | 92              | 98    | 40            | 1.9             |
|                                                    | Average.....                | 95            | 21                        | 79       | 94              | 98    | 40            | 3.9             |
|                                                    | Significant difference..... | 11            | ..                        | ..       | 9               | 4     | 3             | ...             |

Table 6.— DOUBLE CROSSES OF U. S. 13 MATURITY  
Tested in Central Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Rank<br>in<br>yield                       | Entry            | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|-------------------------------------------|------------------|---------------|---------------------------|----------|-----------------|-------|---------------|
| <b>A — Five-year averages, 1950-1954</b>  |                  |               |                           |          |                 |       |               |
| 1                                         | Ill. 1511.....   | 98            | 18                        | 82       | 86              | 96    | 48            |
| 2                                         | Ill. 1332.....   | 94            | 17                        | 81       | 89              | 98    | 46            |
| 3                                         | Ill. 972A-1..... | 94            | 17                        | 80       | 83              | 97    | 47            |
| 4                                         | U.S. 13.....     | 93            | 18                        | 80       | 78              | 98    | 52            |
| 5                                         | Ill. 1570.....   | 93            | 18                        | 80       | 78              | 97    | 47            |
| 6                                         | Ill. 21.....     | 91            | 17                        | 82       | 83              | 97    | 47            |
| 7                                         | Ill. 274-1.....  | 90            | 16                        | 82       | 87              | 98    | 45            |
|                                           | Average.....     | 93            | 17                        | 81       | 83              | 97    | 47            |
| <b>B — Four-year averages, 1951-1954</b>  |                  |               |                           |          |                 |       |               |
| 1                                         | Ill. 1511.....   | 95            | 17                        | 82       | 85              | 99    | 47            |
| 2                                         | Ill. 1421.....   | 94            | 17                        | 82       | 85              | 99    | 44            |
| 3                                         | Ill. 1332.....   | 92            | 16                        | 82       | 88              | 98    | 46            |
| 4                                         | Ill. 972A-1..... | 91            | 16                        | 80       | 82              | 99    | 47            |
| 5                                         | Ill. 1777.....   | 91            | 17                        | 80       | 83              | 98    | 46            |
| 6                                         | U.S. 13.....     | 90            | 17                        | 80       | 77              | 98    | 51            |
| 7                                         | Ill. 1759.....   | 90            | 18                        | 80       | 81              | 98    | 46            |
| 8                                         | Ill. 1788.....   | 90            | 18                        | 79       | 80              | 100   | 47            |
| 9                                         | Ill. 1764.....   | 88            | 17                        | 79       | 82              | 99    | 47            |
| 10                                        | Ill. 1570.....   | 88            | 18                        | 80       | 77              | 99    | 47            |
| 11                                        | Ill. 274-1.....  | 86            | 16                        | 82       | 84              | 100   | 45            |
| 12                                        | AES 805.....     | 86            | 17                        | 80       | 90              | 97    | 43            |
| 13                                        | Ill. 1767.....   | 84            | 18                        | 81       | 77              | 100   | 45            |
|                                           | Average.....     | 90            | 17                        | 80       | 82              | 99    | 46            |
| <b>C — Three-year averages, 1952-1954</b> |                  |               |                           |          |                 |       |               |
| 1                                         | Ill. 1511.....   | 94            | 17                        | 83       | 87              | 99    | 47            |
| 2                                         | Ill. 1421.....   | 94            | 17                        | 82       | 85              | 99    | 43            |
| 3                                         | Ill. 1332.....   | 91            | 15                        | 82       | 91              | 98    | 45            |
| 4                                         | Ill. 1777.....   | 91            | 17                        | 80       | 89              | 99    | 45            |
| 5                                         | AES 801.....     | 90            | 16                        | 79       | 94              | 96    | 39            |
| 6                                         | Ill. 1570.....   | 90            | 17                        | 80       | 84              | 99    | 47            |
| 7                                         | Ill. 972A-1..... | 89            | 16                        | 79       | 83              | 98    | 47            |
| 8                                         | U.S. 13.....     | 88            | 16                        | 81       | 83              | 98    | 50            |
| 9                                         | Ill. 1788.....   | 88            | 17                        | 78       | 80              | 99    | 48            |
| 10                                        | Mo. 4041W.....   | 88            | 18                        | 77       | 80              | 99    | 49            |
| 11                                        | AES 802.....     | 87            | 16                        | 80       | 90              | 88    | 43            |
| 12                                        | Ill. 1759.....   | 87            | 17                        | 78       | 83              | 98    | 45            |
| 13                                        | Ill. 274-1.....  | 86            | 15                        | 82       | 90              | 99    | 44            |
| 14                                        | Ill. 21.....     | 86            | 16                        | 82       | 80              | 98    | 46            |
| 15                                        | Ohio 4808.....   | 86            | 17                        | 80       | 92              | 98    | 40            |
| 16                                        | Ill. 1764.....   | 83            | 16                        | 79       | 87              | 98    | 46            |
| 17                                        | Ill. 1767.....   | 82            | 17                        | 80       | 86              | 99    | 45            |
| 18                                        | AES 803.....     | 81            | 16                        | 79       | 90              | 97    | 40            |
| 19                                        | AES 805.....     | 79            | 17                        | 80       | 92              | 95    | 42            |
|                                           | Average.....     | 87            | 16                        | 80       | 87              | 98    | 45            |

(Table is continued on next page)

Table 6.—Continued

| Rank<br>in<br>yield            | Entry                 | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|--------------------------------|-----------------------|---------------|---------------------------|----------|-----------------|-------|---------------|
| D—Two-year averages, 1953-1954 |                       |               |                           |          |                 |       |               |
| 1                              | Ill. 1896.....        | 92            | 16                        | 82       | 82              | 98    | 42            |
| 2                              | Ill. 1511.....        | 90            | 17                        | 83       | 84              | 98    | 47            |
| 3                              | Ill. 1421.....        | 88            | 17                        | 82       | 78              | 98    | 42            |
| 4                              | Ill. 1332.....        | 87            | 15                        | 82       | 88              | 98    | 46            |
| 5                              | Ill. 1777.....        | 87            | 17                        | 81       | 85              | 100   | 45            |
| 6                              | Ill. 1570.....        | 86            | 17                        | 81       | 77              | 98    | 47            |
| 7                              | U.S. 13.....          | 83            | 16                        | 82       | 80              | 98    | 48            |
| 8                              | Ill. 972A-1.....      | 82            | 16                        | 79       | 76              | 98    | 46            |
| 9                              | Mo. 4041W.....        | 82            | 17                        | 79       | 76              | 98    | 48            |
| 10                             | <b>AES 802.....</b>   | 80            | 16                        | 80       | 88              | 88    | 42            |
| 11                             | <b>AES 801.....</b>   | 80            | 16                        | 78       | 91              | 95    | 39            |
| 12                             | Ill. 1788.....        | 80            | 17                        | 80       | 72              | 98    | 46            |
| 13                             | Ill. 21.....          | 78            | 16                        | 82       | 86              | 98    | 46            |
| 14                             | <b>Ohio 4808.....</b> | 78            | 16                        | 80       | 89              | 98    | 38            |
| 15                             | Ill. 1813.....        | 78            | 17                        | 81       | 90              | 96    | 40            |
| 16                             | Ill. 1890.....        | 76            | 16                        | 79       | 90              | 100   | 42            |
| 17                             | Ill. 1759.....        | 76            | 16                        | 78       | 76              | 98    | 44            |
| 18                             | Ill. 274-1.....       | 75            | 16                        | 82       | 85              | 100   | 44            |
| 19                             | Ill. 1767.....        | 75            | 16                        | 82       | 80              | 99    | 45            |
| 20                             | Ill. 1764.....        | 72            | 16                        | 78       | 84              | 97    | 46            |
| 21                             | AES 803.....          | 71            | 16                        | 80       | 88              | 96    | 38            |
| 22                             | Ill. 1880.....        | 70            | 15                        | 82       | 85              | 95    | 42            |
| 23                             | Ill. 6075.....        | 68            | 16                        | 82       | 67              | 96    | 39            |
| 24                             | AES 895.....          | 68            | 17                        | 80       | 90              | 94    | 40            |
| 25                             | Ill. 1884.....        | 67            | 16                        | 76       | 90              | 96    | 43            |
| 26                             | Ill. 1877.....        | 66            | 16                        | 78       | 96              | 98    | 38            |
| 27                             | Ill. 1876.....        | 63            | 16                        | 77       | 88              | 96    | 44            |
| 28                             | Ill. 1889.....        | 62            | 18                        | 76       | 96              | 98    | 44            |
|                                | Average.....          | 77            | 16                        | 80       | 84              | 97    | 43            |

(Table is concluded on next page)

Table 6.—Concluded

| Rank<br>in<br>yield               | Entry                  | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand  | Ear<br>height | Dropped<br>ears | Smutted<br>plants |
|-----------------------------------|------------------------|---------------|---------------------------|----------|-----------------|--------|---------------|-----------------|-------------------|
| E — 1954 results (4 replications) |                        |               |                           |          |                 |        |               |                 |                   |
|                                   |                        | bu.           | perct.                    | perct.   | perct.          | perct. | in.           | perct.          | perct.            |
| 1                                 | Ill. 1511.....         | 99            | 18                        | 84       | 86              | 98     | 42            | 5.4             | 9.4               |
| 2                                 | Tenn. 3473.....        | 98            | 21                        | 83       | 79              | 98     | 40            | 0               | 7.0               |
| 3                                 | Ill. 1896.....         | 97            | 17                        | 83       | 90              | 97     | 38            | 11.8            | 3.8               |
| 4                                 | Ill. 1913.....         | 96            | 18                        | 84       | 93              | 95     | 38            | 4.0             | 4.0               |
| 5                                 | Ill. 1919.....         | 94            | 16                        | 83       | 90              | 97     | 38            | 1.3             | 7.7               |
| 6                                 | Ill. 1911.....         | 94            | 17                        | 82       | 89              | 99     | 40            | 6.9             | 2.5               |
| 7                                 | Ill. 1777.....         | 92            | 18                        | 81       | 91              | 100    | 40            | 3.8             | 5.7               |
| 8                                 | U.S. 13.....           | 91            | 16                        | 82       | 86              | 97     | 42            | 5.3             | 5.2               |
| 9                                 | AES 806.....           | 91            | 19                        | 83       | 86              | 99     | 35            | 7.6             | 6.3               |
| 10                                | Ill. 1570.....         | 91            | 19                        | 81       | 85              | 99     | 40            | 10.5            | 9.4               |
| 11                                | Ill. 1332.....         | 90            | 17                        | 83       | 90              | 97     | 40            | 1.9             | 5.8               |
| 12                                | Ill. 1918.....         | 88            | 17                        | 79       | 87              | 100    | 39            | 4.7             | 2.5               |
| 13                                | Mo. 4041W.....         | 87            | 19                        | 80       | 92              | 100    | 40            | 5.6             | 5.7               |
| 14                                | Ind. 2609.....         | 87            | 16                        | 81       | 83              | 99     | 37            | 4.3             | 6.3               |
| 15                                | Ill. 1908.....         | 86            | 17                        | 84       | 96              | 93     | 39            | 3.7             | .7                |
| 16                                | Ill. 1915.....         | 86            | 17                        | 79       | 89              | 97     | 39            | 2.1             | 0                 |
| 17                                | Ill. 1906.....         | 85            | 17                        | 80       | 78              | 96     | 37            | 8.8             | 5.8               |
| 18                                | Ill. 1914.....         | 85            | 18                        | 80       | 88              | 99     | 40            | 2.6             | 2.5               |
| 19                                | Ill. 1421.....         | 85            | 18                        | 81       | 87              | 99     | 38            | 2.0             | 7.6               |
| 20                                | Ind. 9502.....         | 85            | 19                        | 80       | 96              | 99     | 34            | .7              | 3.8               |
| 21                                | Ill. 1909.....         | 84            | 17                        | 82       | 90              | 97     | 41            | 3.3             | 7.1               |
| 22                                | Ill. 972A-1.....       | 84            | 17                        | 76       | 80              | 98     | 40            | 0               | 1.3               |
| 23                                | Ill. 1788.....         | 83            | 18                        | 79       | 87              | 98     | 38            | 4.2             | 5.1               |
| 24                                | Ill. 1916.....         | 83            | 17                        | 82       | 88              | 96     | 39            | 3.5             | 13.1              |
| 25                                | AES 801.....           | 83            | 17                        | 76       | 94              | 97     | 34            | 1.9             | 4.5               |
| 26                                | Ill. 6021.....         | 82            | 18                        | 80       | 75              | 94     | 45            | 4.4             | 4.0               |
| 27                                | Ill. 21.....           | 81            | 18                        | 82       | 96              | 99     | 41            | 9.9             | 13.3              |
| 28                                | Ill. 1904.....         | 79            | 16                        | 78       | 88              | 94     | 39            | 4.2             | 8.7               |
| 29                                | Ill. 1917.....         | 79            | 17                        | 81       | 76              | 97     | 37            | 2.6             | 7.0               |
| 30                                | Ill. 1910.....         | 77            | 17                        | 84       | 90              | 99     | 37            | 4.7             | 13.3              |
| 31                                | Ill. 1912.....         | 76            | 17                        | 80       | 94              | 97     | 37            | 3.6             | 9.6               |
| 32                                | AES 802.....           | 76            | 17                        | 77       | 97              | 80     | 38            | 5.3             | 16.4              |
| 33                                | Ill. 274-1.....        | 76            | 17                        | 81       | 95              | 100    | 37            | .7              | 5.0               |
| 34                                | Ill. 1905.....         | 75            | 17                        | 76       | 91              | 99     | 38            | 3.7             | 6.3               |
| 35                                | Ill. 1759.....         | 74            | 18                        | 78       | 83              | 97     | 38            | 2.9             | 3.8               |
| 36                                | Ill. 1813.....         | 73            | 18                        | 80       | 91              | 100    | 36            | 4.2             | 10.6              |
| 37                                | Ill. 1890.....         | 71            | 18                        | 78       | 94              | 100    | 38            | .6              | 21.7              |
| 38                                | Ill. 1767.....         | 71            | 18                        | 81       | 87              | 99     | 40            | 4.5             | 18.9              |
| 39                                | Ill. 6075.....         | 71            | 18                        | 82       | 70              | 100    | 35            | 7.4             | 5.7               |
| 40                                | Ohio 4808.....         | 69            | 18                        | 79       | 91              | 98     | 35            | 0               | 10.1              |
| 41                                | Iowa 4615.....         | 69            | 17                        | 79       | 96              | 97     | 40            | .7              | 10.8              |
| 42                                | AES 803.....           | 68            | 17                        | 78       | 93              | 99     | 36            | 5.0             | 20.8              |
| 43                                | Ill. 1764.....         | 66            | 16                        | 76       | 90              | 95     | 40            | 1.5             | 14.4              |
| 44                                | Ill. 1880.....         | 63            | 16                        | 81       | 86              | 98     | 37            | 5.1             | 5.7               |
| 45                                | AES 805.....           | 58            | 18                        | 79       | 97              | 90     | 35            | .6              | 17.7              |
| 46                                | Ill. 1884.....         | 54            | 18                        | 71       | 93              | 97     | 38            | 7.4             | 19.2              |
| 47                                | Ill. 1876.....         | 51            | 19                        | 73       | 92              | 94     | 37            | 4.8             | 28.9              |
| 48                                | Ill. 1877.....         | 50            | 19                        | 74       | 99              | 98     | 35            | 9.7             | 25.3              |
| 49                                | Ill. 1889.....         | 46            | 20                        | 73       | 99              | 97     | 36            | 2.7             | 24.0              |
|                                   | Average.....           | 79            | 18                        | 80       | 89              | 97     | 38            | 4.1             | 9.3               |
|                                   | Significant difference | 16            | ..                        | ..       | 8               | 6      | 3             | ...             | ...               |

Table 7.—SINGLE AND DOUBLE CROSSES  
OF U. S. 13 MATURITY  
Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Code                    | Entry          | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling      | Erect<br>plants | Stand         | Ear<br>height | Dropped<br>ears | Smutted<br>plants |
|-------------------------|----------------|---------------|---------------------------|---------------|-----------------|---------------|---------------|-----------------|-------------------|
| <b>A—Single crosses</b> |                |               |                           |               |                 |               |               |                 |                   |
|                         |                | <i>bu.</i>    | <i>perct.</i>             | <i>perct.</i> | <i>perct.</i>   | <i>perct.</i> | <i>in.</i>    | <i>perct.</i>   | <i>perct.</i>     |
| 1                       | R71×R98.....   | 87            | 18                        | 84            | 97              | 100           | 38            | 1.4             | 0                 |
| 2                       | R71×R105.....  | 81            | 21                        | 80            | 97              | 100           | 37            | 0               | 0                 |
| 3                       | R71×R113.....  | 61            | 17                        | 78            | 97              | 100           | 34            | 0               | 0                 |
| 4                       | R98×R105.....  | 98            | 19                        | 81            | 97              | 100           | 44            | 0               | 10.0              |
| 5                       | R98×R113.....  | 73            | 17                        | 81            | 95              | 94            | 41            | 0               | 6.2               |
| 6                       | R105×R113..... | 75            | 18                        | 77            | 96              | 88            | 40            | 0               | 0                 |
| 7                       | R71×R130.....  | 95            | 16                        | 84            | 91              | 100           | 45            | 4.7             | 1.7               |
| 8                       | R98×R130.....  | 111           | 17                        | 83            | 83              | 99            | 50            | 0               | 4.2               |
| 9                       | R105×R130..... | 83            | 21                        | 79            | 90              | 97            | 46            | 1.8             | .8                |
| 10                      | R113×R130..... | 85            | 16                        | 79            | 81              | 100           | 44            | 2.6             | 0                 |
| 11                      | R71×R151.....  | 80            | 18                        | 82            | 94              | 100           | 39            | 1.8             | 0                 |
| 12                      | R98×R151.....  | 86            | 17                        | 84            | 92              | 98            | 43            | 0               | 11.9              |
| 13                      | R105×R151..... | 92            | 22                        | 80            | 94              | 100           | 43            | 5.6             | 2.5               |
| 14                      | R113×R151..... | 77            | 16                        | 82            | 92              | 99            | 43            | 5.0             | 0                 |
| 15                      | R130×R151..... | 92            | 17                        | 85            | 86              | 99            | 46            | 0               | .8                |
| 16                      | R71×R153.....  | 91            | 17                        | 83            | 99              | 100           | 37            | .5              | 0                 |
| 17                      | R98×R153.....  | 94            | 20                        | 82            | 90              | 99            | 43            | 0               | 2.5               |
| 18                      | R105×R153..... | 99            | 20                        | 80            | 100             | 99            | 39            | .8              | 0                 |
| 19                      | R113×R153..... | 81            | 17                        | 80            | 96              | 100           | 37            | 0               | 0                 |
| 20                      | R130×R153..... | 101           | 18                        | 82            | 80              | 100           | 45            | .8              | 1.7               |
| 21                      | R151×R153..... | 97            | 18                        | 81            | 79              | 99            | 43            | 1.5             | .8                |
| 22                      | R71×R154.....  | 81            | 17                        | 84            | 94              | 100           | 37            | 1.6             | 0                 |
| 23                      | R98×R154.....  | 95            | 16                        | 86            | 72              | 96            | 46            | 0               | 1.7               |
| 24                      | R105×R154..... | 101           | 18                        | 85            | 93              | 99            | 42            | .9              | 0                 |
| 25                      | R113×R154..... | 84            | 15                        | 84            | 76              | 98            | 38            | 0               | 0                 |
| 26                      | R130×R154..... | 111           | 15                        | 86            | 77              | 100           | 49            | 1.7             | 0                 |
| 27                      | R151×R154..... | 99            | 16                        | 87            | 91              | 99            | 43            | 2.8             | 1.7               |
| 28                      | R153×R154..... | 96            | 17                        | 88            | 78              | 98            | 42            | 0               | .8                |
| 29                      | R71×R155.....  | 85            | 17                        | 83            | 95              | 100           | 40            | 0               | 0                 |
| 30                      | R98×R155.....  | 90            | 16                        | 83            | 73              | 100           | 45            | 0               | .8                |
| 31                      | R105×R155..... | 92            | 20                        | 82            | 93              | 99            | 42            | 0               | 0                 |
| 32                      | R113×R155..... | 72            | 16                        | 81            | 97              | 98            | 40            | 0               | .8                |
| 33                      | R130×R155..... | 105           | 16                        | 84            | 88              | 100           | 46            | 2.5             | 0                 |
| 34                      | R151×R155..... | 88            | 18                        | 83            | 91              | 100           | 45            | 2.5             | 0                 |
| 35                      | R153×R155..... | 87            | 19                        | 81            | 79              | 100           | 44            | 0               | 0                 |
| 36                      | R154×R155..... | 80            | 16                        | 85            | 75              | 99            | 43            | .9              | 0                 |
| 37                      | R71×R156.....  | 90            | 19                        | 85            | 98              | 99            | 37            | .8              | .8                |
| 38                      | R98×R156.....  | 81            | 17                        | 78            | 90              | 100           | 43            | 0               | 14.2              |
| 39                      | R105×R156..... | 75            | 22                        | 78            | 100             | 100           | 38            | 0               | 3.3               |
| 40                      | R113×R156..... | 73            | 17                        | 77            | 93              | 97            | 35            | 0               | 5.1               |
|                         | Average.....   | 88            | 18                        | 82            | 89              | 99            | 42            | 1.0             | 1.9               |

**B—Double crosses**

|                        |    |    |    |    |     |    |     |      |
|------------------------|----|----|----|----|-----|----|-----|------|
| Ill. 6021.....         | 90 | 16 | 81 | 87 | 99  | 48 | 8.9 | 8.4  |
| U.S. 13.....           | 87 | 17 | 82 | 91 | 99  | 42 | 4.0 | 12.6 |
| III. 6016.....         | 84 | 16 | 84 | 74 | 99  | 44 | 3.6 | 17.6 |
| AES 805.....           | 74 | 16 | 77 | 94 | 100 | 38 | 5.6 | 20.0 |
| Average.....           | 84 | 16 | 81 | 86 | 99  | 43 | 5.5 | 14.6 |
| Significant difference | 9  | .. | .. | 10 | 2   | 3  | ... | ...  |

Table 8.—THREE-WAY AND DOUBLE CROSSES  
OF U. S. 13 MATURITY  
Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Code                                    | Entry                  | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Dropped<br>ears | Smutted<br>plants |
|-----------------------------------------|------------------------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|-------------------|
| Inbred lines crossed with (WF9 × Hy)    |                        |               |                           |          |                 |       |               |                 |                   |
| 1                                       | R95.....               | 108           | 17                        | 82       | 71              | 96    | 40            | 2.0             | 2.6               |
| 2                                       | R96.....               | 99            | 15                        | 80       | 84              | 98    | 43            | 9.5             | 8.9               |
| 3                                       | R98.....               | 77            | 17                        | 82       | 82              | 98    | 39            | 2.1             | 24.8              |
| 4                                       | R101.....              | 82            | 17                        | 80       | 99              | 99    | 39            | 2.0             | 5.1               |
| 5                                       | N5.....                | 85            | 18                        | 77       | 76              | 98    | 40            | 3.5             | 7.0               |
| 6                                       | N12.....               | 76            | 18                        | 80       | 95              | 94    | 38            | .7              | 12.0              |
| 7                                       | N13.....               | 99            | 18                        | 83       | 89              | 99    | 41            | 4.5             | 19.6              |
| 8                                       | K1605.....             | 89            | 18                        | 79       | 80              | 98    | 38            | 0               | 17.2              |
| 9                                       | B36.....               | 74            | 18                        | 76       | 92              | 99    | 41            | 16.9            | 27.0              |
| 10                                      | Oh451.....             | 110           | 19                        | 82       | 83              | 99    | 41            | 2.6             | 5.7               |
| 11                                      | <b>38-11</b> .....     | 98            | 18                        | 82       | 90              | 97    | 41            | 11.5            | 14.2              |
| 12                                      | L317.....              | 98            | 18                        | 82       | 76              | 99    | 45            | 5.5             | 2.5               |
|                                         | Average.....           | 91            | 18                        | 80       | 85              | 98    | 40            | 5.1             | 12.2              |
| Inbred lines crossed with (WF9 × 38-11) |                        |               |                           |          |                 |       |               |                 |                   |
| 13                                      | <b>R95</b> .....       | 96            | 17                        | 82       | 91              | 94    | 40            | 6.4             | 10.7              |
| 14                                      | R96.....               | 92            | 17                        | 82       | 86              | 95    | 41            | 9.9             | 11.8              |
| 15                                      | R98.....               | 79            | 18                        | 81       | 92              | 94    | 41            | 2.6             | 39.3              |
| 16                                      | R101.....              | 77            | 17                        | 82       | 98              | 96    | 36            | 1.3             | 12.4              |
| 17                                      | N5.....                | 88            | 18                        | 78       | 76              | 98    | 39            | .7              | 9.0               |
| 18                                      | N12.....               | 78            | 17                        | 81       | 95              | 98    | 40            | .7              | 28.2              |
| 19                                      | N13.....               | 73            | 18                        | 80       | 94              | 98    | 40            | 4.9             | 49.7              |
| 20                                      | K1605.....             | 91            | 18                        | 82       | 88              | 96    | 38            | .7              | 29.4              |
| 21                                      | L317.....              | 101           | 17                        | 82       | 89              | 94    | 46            | 10.9            | 15.2              |
| 22                                      | Hy.....                | 79            | 18                        | 83       | 87              | 79    | 40            | 7.9             | 10.2              |
|                                         | Average.....           | 85            | 18                        | 81       | 90              | 94    | 40            | 4.6             | 21.6              |
| Double crosses                          |                        |               |                           |          |                 |       |               |                 |                   |
|                                         | AES 805.....           | 98            | 17                        | 81       | 90              | 98    | 46            | 7.0             | 4.5               |
|                                         | U.S. 13.....           | 60            | 18                        | 76       | 95              | 97    | 38            | 3.7             | 31.6              |
|                                         | Average.....           | 79            | 18                        | 78       | 92              | 98    | 42            | 5.4             | 18.0              |
|                                         | Significant difference | 19            | ..                        | ..       | 10              | 6     | 4             | ...             | ...               |

**Table 9.—UNIFORM TEST OF BLIGHT-RESISTANT THREE-WAY CROSSES AND STANDARDS OF U. S. 13 MATURITY**

Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

| Code                                             | Entry                                  | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Dropped<br>ears | Smutted<br>plants |
|--------------------------------------------------|----------------------------------------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|-------------------|
| <b>A — Inbred lines crossed on (WF9 × 38-11)</b> |                                        |               |                           |          |                 |       |               |                 |                   |
| 1                                                | Hy.....                                | 87            | 16                        | 83       | 92              | 95    | 42            | 11.7            | 13.0              |
| 2                                                | <b>CL42A</b> .....                     | 103           | 17                        | 85       | 88              | 96    | 45            | 9.8             | 7.3               |
| 3                                                | CL42B.....                             | 104           | 16                        | 85       | 71              | 90    | 47            | 8.6             | 4.3               |
| 4                                                | CL42C.....                             | 92            | 16                        | 82       | 83              | 94    | 42            | 5.8             | 22.5              |
| 5                                                | Hy(Mo.21A)B×<br>1-S6 AJU 13700....     | 102           | 17                        | 84       | 98              | 96    | 45            | 7.5             | 4.1               |
| 6                                                | Hy(Mo.21A)B×<br>2-S4 AJU 13706....     | 111           | 16                        | 84       | 87              | 97    | 46            | 6.7             | 5.6               |
| 7                                                | Hy(Mo.21A)B×<br>2-S4 AJU 13711....     | 97            | 17                        | 85       | 91              | 86    | 44            | 6.9             | 10.0              |
| 8                                                | L317.....                              | 103           | 16                        | 83       | 83              | 96    | 48            | 15.7            | 8.1               |
| 9                                                | CL317A.....                            | 102           | 18                        | 78       | 90              | 88    | 49            | 7.3             | 14.3              |
| 10                                               | CL317B.....                            | 110           | 18                        | 80       | 94              | 98    | 50            | .8              | 12.6              |
| 11                                               | (L317×L97)-B-#3-S4                     | 96            | 18                        | 82       | 92              | 92    | 48            | 3.6             | 6.7               |
|                                                  | (L317×L97)-B-#3-S6                     | 98            | 19                        | 80       | 96              | 96    | 47            | 6.4             | 6.4               |
| 12                                               | (L317×L97)-B-#3-S9                     | 101           | 18                        | 80       | 82              | 97    | 49            | 5.5             | 11.9              |
| 14                                               | (L317×L97)-B-#3-S10                    | 105           | 18                        | 80       | 89              | 94    | 47            | 10.5            | 5.0               |
| 15                                               | L317(Mo.21A)B×<br>1-S6 AJU 13676....   | 98            | 17                        | 82       | 84              | 92    | 48            | 5.0             | 6.8               |
| 16                                               | L317(Mo.21A)B×<br>1-S6 AJU 13683....   | 103           | 17                        | 81       | 86              | 99    | 45            | 15.8            | 8.6               |
| 17                                               | L317(Mo.21A)B×<br>2-S4 AJU 13688-8.... | 96            | 17                        | 82       | 76              | 93    | 45            | 7.5             | 1.7               |
| 18                                               | L317(Mo.21A)B×<br>2-S4 AJU 13688-13    | 94            | 18                        | 82       | 89              | 87    | 45            | 9.5             | 4.5               |
| 19                                               | Os 420.....                            | 80            | 16                        | 81       | 88              | 95    | 35            | 8.0             | 12.2              |
| 20                                               | (Os420×NC34)-B-<br>#4-S2-1.....        | 88            | 16                        | 82       | 92              | 100   | 46            | 10.8            | 36.2              |
| 21                                               | (Os420×NC34)-B-<br>#4-S9-(x).....      | 97            | 17                        | 82       | 94              | 98    | 43            | 22.3            | 11.8              |
| 22                                               | (Os420×NC34)-B-<br>#4-S12-(x).....     | 82            | 17                        | 83       | 98              | 96    | 39            | 17.9            | 12.8              |
|                                                  | Average.....                           | 98            | 17                        | 82       | 88              | 94    | 45            | 9.3             | 10.3              |

**B — Inbred lines crossed on (Hy × L317)**

|    |                                       |     |    |    |    |     |    |      |      |
|----|---------------------------------------|-----|----|----|----|-----|----|------|------|
| 23 | <b>WF9</b> .....                      | 110 | 17 | 85 | 84 | 99  | 46 | 8.3  | 4.6  |
| 24 | CL29A.....                            | 103 | 17 | 84 | 71 | 97  | 45 | 8.9  | 7.9  |
| 25 | <b>CL29B</b> .....                    | 113 | 16 | 82 | 84 | 100 | 50 | 5.8  | 0    |
| 26 | <b>CL29C</b> .....                    | 109 | 16 | 82 | 86 | 98  | 49 | 14.2 | 3.1  |
| 27 | (WF9×NC34)-B-<br>#3-S8-3-1.....       | 101 | 18 | 80 | 75 | 99  | 46 | 3.0  | 3.1  |
| 28 | (WF9×NC34)-B-<br>#3-S10-1-1.....      | 105 | 18 | 81 | 79 | 92  | 48 | 1.7  | 0    |
| 29 | 38-11.....                            | 97  | 17 | 82 | 88 | 98  | 48 | 9.5  | 9.4  |
| 30 | CL38A.....                            | 103 | 18 | 82 | 83 | 99  | 49 | 21.0 | 8.5  |
| 31 | CL38B.....                            | 111 | 18 | 81 | 87 | 99  | 53 | 11.7 | 9.4  |
| 32 | (38-11×NC34)-B-<br>#3-S2-1-2-(x)..... | 99  | 19 | 79 | 78 | 97  | 52 | 8.3  | 14.4 |

(Table is concluded on next page)

Table 9.—Concluded

| Code                                                       | Entry                                    | Acre yield | Mois-ture in grain | Shelling | Erect plants | Stand | Ear height | Dropped ears | Smutted plants |
|------------------------------------------------------------|------------------------------------------|------------|--------------------|----------|--------------|-------|------------|--------------|----------------|
| <b>B — Inbred lines crossed on (Hy × L317) (concluded)</b> |                                          |            |                    |          |              |       |            |              |                |
| 33                                                         | (38-11×NC34)-B-#3-S4-2-1.....            | 102        | 18                 | 83       | 83           | 98    | 50         | 6.7          | 3.1            |
| 34                                                         | (38-11×NC34)-B-#3-S7-1-1.....            | 101        | 18                 | 79       | 75           | 99    | 50         | 10.8         | 4.6            |
| 35                                                         | 38-11(Mo.21A)B×1-S6 AJU 13734.....       | 103        | 17                 | 83       | 89           | 99    | 48         | 8.3          | 10.1           |
| 36                                                         | 38-11(Mo.21A)B×1-S2-#3-S1 AJU 13755..... | 118        | 17                 | 84       | 91           | 96    | 49         | 7.0          | 3.2            |
|                                                            | Average.....                             | 105        | 17                 | 82       | 82           | 98    | 49         | 8.9          | 5.8            |

**C — Standards**

|                        |     |    |    |    |    |    |      |      |
|------------------------|-----|----|----|----|----|----|------|------|
| Hy×L317.....           | 119 | 18 | 83 | 72 | 94 | 51 | 3.3  | .8   |
| WF9×38-11.....         | 99  | 17 | 84 | 97 | 98 | 38 | 25.0 | 43.8 |
| U.S. 13.....           | 90  | 17 | 82 | 92 | 95 | 44 | 10.0 | 10.6 |
| AES 805.....           | 79  | 17 | 81 | 99 | 99 | 38 | 4.3  | 24.0 |
| Average.....           | 97  | 17 | 82 | 90 | 96 | 43 | 10.6 | 19.8 |
| Significant difference | 12  | .. | .. | 11 | 9  | 4  | ...  | ...  |

**Table 10.—DOUBLE CROSSES OF ILLINOIS 448 MATURITY  
Tested in South-Central Illinois, 1950-1954**

(Entries in boldface were average<sup>a</sup> or better in yield and standability  
and average or earlier in maturity)

| Rank<br>in<br>yield | Entry | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height |
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|
|---------------------|-------|---------------|---------------------------|----------|-----------------|-------|---------------|

**A — Five-year averages, 1950-1954**

|    |             | bu. | perct. | perct. | perct. | perct. | in. |
|----|-------------|-----|--------|--------|--------|--------|-----|
| 1  | Ill. 1657.  | 80  | 21     | 80     | 74     | 99     | 46  |
| 2  | Ill. 1539A. | 77  | 19     | 79     | 85     | 99     | 45  |
| 3  | U.S. 13.    | 76  | 17     | 81     | 73     | 99     | 44  |
| 4  | Ill. 1349.  | 76  | 18     | 81     | 83     | 98     | 46  |
| 5  | Ill. 1332.  | 75  | 17     | 82     | 85     | 98     | 40  |
| 6  | Ill. 2214W. | 75  | 20     | 79     | 78     | 98     | 45  |
| 7  | Ill. 2235W. | 75  | 21     | 79     | 89     | 99     | 45  |
| 8  | Ill. 1570.  | 74  | 17     | 80     | 80     | 99     | 39  |
| 9  | Ill. 200.   | 71  | 18     | 80     | 73     | 99     | 45  |
| 10 | Mo. 804.    | 70  | 19     | 77     | 78     | 93     | 49  |
|    | Average.    | 75  | 19     | 80     | 80     | 98     | 44  |

**B — Four-year averages, 1951-1954**

|    |             |    |    |    |    |     |    |
|----|-------------|----|----|----|----|-----|----|
| 1  | Ill. 1657.  | 72 | 20 | 80 | 74 | 99  | 45 |
| 2  | Mo. 862.    | 72 | 22 | 76 | 80 | 100 | 45 |
| 3  | Ill. 1332.  | 70 | 16 | 83 | 86 | 99  | 38 |
| 4  | Ill. 1570.  | 70 | 16 | 80 | 80 | 100 | 38 |
| 5  | U.S. 13.    | 69 | 16 | 82 | 75 | 99  | 41 |
| 6  | Ill. 1656.  | 69 | 17 | 82 | 83 | 99  | 38 |
| 7  | Ill. 1349.  | 69 | 18 | 81 | 88 | 99  | 44 |
| 8  | Ill. 1539A. | 69 | 18 | 79 | 85 | 100 | 44 |
| 9  | Ill. 1771.  | 68 | 19 | 78 | 91 | 98  | 44 |
| 10 | Ill. 2235W. | 68 | 21 | 78 | 88 | 99  | 44 |
| 11 | Ill. 1788.  | 67 | 16 | 79 | 78 | 99  | 40 |
| 12 | Ill. 2214W. | 67 | 18 | 78 | 79 | 99  | 43 |
| 13 | Ill. 200.   | 63 | 18 | 79 | 73 | 99  | 42 |
| 14 | Mo. 804.    | 62 | 18 | 76 | 79 | 98  | 48 |
|    | Average.    | 68 | 18 | 79 | 81 | 99  | 42 |

**C — Three-year averages, 1952-1954**

|    |             |    |    |    |    |     |    |
|----|-------------|----|----|----|----|-----|----|
| 1  | U.S. 13.    | 62 | 14 | 82 | 77 | 99  | 42 |
| 2  | Ill. 1570.  | 62 | 15 | 80 | 78 | 100 | 38 |
| 3  | Ill. 1656.  | 62 | 16 | 82 | 83 | 100 | 39 |
| 4  | Ill. 1859.  | 62 | 16 | 80 | 79 | 100 | 42 |
| 5  | Ill. 1851.  | 62 | 17 | 79 | 80 | 100 | 45 |
| 6  | Ill. 1857.  | 61 | 19 | 77 | 84 | 99  | 44 |
| 7  | Ill. 1511.  | 60 | 14 | 83 | 74 | 98  | 40 |
| 8  | Ill. 1332.  | 60 | 16 | 82 | 82 | 99  | 39 |
| 9  | Ill. 1856.  | 60 | 19 | 79 | 77 | 100 | 42 |
| 10 | Mo. 862.    | 59 | 20 | 75 | 79 | 99  | 45 |
| 11 | Ill. 1788.  | 58 | 16 | 78 | 75 | 99  | 41 |
| 12 | Ill. 1349.  | 58 | 17 | 81 | 88 | 99  | 45 |
| 13 | AES 805.    | 57 | 16 | 80 | 88 | 99  | 38 |
| 14 | Ill. 1657.  | 57 | 20 | 79 | 69 | 98  | 43 |
| 15 | Ill. 1852.  | 56 | 17 | 75 | 80 | 100 | 43 |
| 16 | Ill. 1539A. | 56 | 18 | 78 | 86 | 100 | 43 |
| 17 | Ill. 1849.  | 56 | 19 | 75 | 90 | 99  | 41 |
| 18 | Ill. 1771.  | 55 | 19 | 76 | 89 | 97  | 42 |
| 19 | Ill. 2235W. | 55 | 21 | 77 | 88 | 99  | 44 |
| 20 | Ill. 200.   | 54 | 16 | 77 | 71 | 99  | 44 |
| 21 | Ill. 1850.  | 54 | 19 | 75 | 87 | 99  | 42 |
| 22 | Mo. 804.    | 50 | 17 | 75 | 79 | 99  | 48 |
| 23 | Ill. 2214W. | 48 | 17 | 76 | 75 | 99  | 41 |
|    | Average.    | 58 | 17 | 78 | 81 | 99  | 42 |

(Table is continued on next page)

Table 10.—Continued

| Rank<br>in<br>yield              | Entry           | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand  | Ear<br>height | Leaf<br>firing <sup>a</sup> | Dropped<br>ears |
|----------------------------------|-----------------|---------------|---------------------------|----------|-----------------|--------|---------------|-----------------------------|-----------------|
| D — Two-year averages, 1953-1954 |                 |               |                           |          |                 |        |               |                             |                 |
|                                  |                 | bu.           | perct.                    | perct.   | perct.          | perct. | in.           | grade                       | perct.          |
| 1                                | III. 1897.....  | 52            | 14                        | 80       | 74              | 100    | 38            | ...                         | ...             |
| 2                                | III. 1570.....  | 52            | 14                        | 79       | 71              | 100    | 38            | ...                         | ...             |
| 3                                | III. 1859.....  | 51            | 14                        | 80       | 76              | 100    | 41            | ...                         | ...             |
| 4                                | III. 1896.....  | 50            | 14                        | 84       | 75              | 98     | 37            | ...                         | ...             |
| 5                                | III. 2246W..... | 50            | 14                        | 80       | 82              | 100    | 38            | ...                         | ...             |
| 6                                | III. 1332.....  | 50            | 16                        | 82       | 80              | 99     | 37            | ...                         | ...             |
| 7                                | U.S. 13.....    | 49            | 14                        | 81       | 70              | 100    | 41            | ...                         | ...             |
| 8                                | III. 1656.....  | 49            | 16                        | 80       | 79              | 100    | 39            | ...                         | ...             |
| 9                                | III. 1511.....  | 48            | 14                        | 83       | 73              | 97     | 38            | ...                         | ...             |
| 10                               | III. 6076.....  | 48            | 14                        | 82       | 60              | 99     | 38            | ...                         | ...             |
| 11                               | III. 1851.....  | 48            | 16                        | 80       | 75              | 100    | 43            | ...                         | ...             |
| 12                               | III. 1788.....  | 48            | 16                        | 78       | 72              | 98     | 40            | ...                         | ...             |
| 13                               | III. 1857.....  | 48            | 18                        | 78       | 80              | 98     | 42            | ...                         | ...             |
| 14                               | AES 805.....    | 46            | 14                        | 80       | 86              | 99     | 36            | ...                         | ...             |
| 15                               | III. 1349.....  | 44            | 16                        | 78       | 86              | 100    | 43            | ...                         | ...             |
| 16                               | III. 1893.....  | 44            | 16                        | 76       | 86              | 98     | 40            | ...                         | ...             |
| 17                               | III. 1856.....  | 44            | 18                        | 79       | 76              | 99     | 40            | ...                         | ...             |
| 18                               | Mo. 862.....    | 44            | 18                        | 74       | 76              | 100    | 42            | ...                         | ...             |
| 19                               | III. 6075.....  | 43            | 14                        | 80       | 62              | 100    | 36            | ...                         | ...             |
| 20                               | III. 200.....   | 42            | 16                        | 76       | 70              | 99     | 42            | ...                         | ...             |
| 21                               | III. 1852.....  | 42            | 17                        | 74       | 78              | 100    | 42            | ...                         | ...             |
| 22                               | III. 1539A..... | 41            | 16                        | 78       | 80              | 100    | 40            | ...                         | ...             |
| 23                               | III. 1657.....  | 41            | 19                        | 78       | 64              | 98     | 41            | ...                         | ...             |
| 24                               | III. 6102.....  | 40            | 16                        | 73       | 60              | 100    | 38            | ...                         | ...             |
| 25                               | III. 1849.....  | 40            | 18                        | 74       | 90              | 98     | 40            | ...                         | ...             |
| 26                               | III. 1771.....  | 40            | 18                        | 74       | 87              | 96     | 40            | ...                         | ...             |
| 27                               | III. 2235W..... | 38            | 20                        | 76       | 88              | 99     | 41            | ...                         | ...             |
| 28                               | III. 1850.....  | 36            | 18                        | 74       | 86              | 98     | 40            | ...                         | ...             |
| 29                               | Mo. 804.....    | 35            | 17                        | 74       | 76              | 98     | 46            | ...                         | ...             |
| 30                               | III. 6079.....  | 34            | 16                        | 78       | 58              | 98     | 38            | ...                         | ...             |
| 31                               | III. 2214W..... | 31            | 16                        | 74       | 67              | 100    | 39            | ...                         | ...             |
|                                  | Average.....    | 44            | 16                        | 78       | 76              | 99     | 40            | ...                         | ...             |

E — 1954 results (4 replications)

|    |                 |    |    |    |    |     |    |     |     |
|----|-----------------|----|----|----|----|-----|----|-----|-----|
| 1  | III. 1851.....  | 53 | 15 | 80 | 52 | 100 | 32 | 1.5 | 0   |
| 2  | III. 1857.....  | 51 | 17 | 80 | 69 | 99  | 32 | 1.2 | 4.2 |
| 3  | III. 1788.....  | 49 | 15 | 79 | 54 | 100 | 29 | 2.2 | .8  |
| 4  | III. 1656.....  | 49 | 16 | 80 | 60 | 100 | 28 | 1.0 | 1.7 |
| 5  | III. 1332.....  | 49 | 15 | 82 | 63 | 100 | 28 | 1.5 | .8  |
| 6  | III. 1859.....  | 49 | 15 | 79 | 56 | 100 | 31 | 2.2 | 0   |
| 7  | III. 1570.....  | 49 | 14 | 79 | 46 | 100 | 27 | 1.5 | 1.8 |
| 8  | III. 1657.....  | 49 | 18 | 82 | 36 | 99  | 32 | 1.2 | 0   |
| 9  | Mo. 862.....    | 48 | 17 | 76 | 63 | 100 | 34 | 1.0 | 0   |
| 10 | III. 1539A..... | 47 | 16 | 79 | 67 | 100 | 29 | 1.5 | .9  |
| 11 | III. 1856.....  | 47 | 16 | 82 | 59 | 98  | 31 | 1.8 | 2.5 |
| 12 | Mo. 8010W.....  | 47 | 18 | 77 | 54 | 100 | 32 | 1.0 | .7  |
| 13 | III. 1852.....  | 47 | 16 | 77 | 61 | 100 | 32 | 1.8 | 0   |
| 14 | III. 1909.....  | 47 | 15 | 81 | 50 | 100 | 29 | 2.0 | 2.6 |
| 15 | III. 2246W..... | 47 | 15 | 79 | 65 | 99  | 29 | 3.0 | 4.2 |
| 16 | III. 1349.....  | 47 | 16 | 78 | 81 | 99  | 34 | 1.0 | 1.0 |
| 17 | III. 1893.....  | 47 | 15 | 75 | 72 | 100 | 31 | 1.5 | .9  |
| 18 | Mo. 804.....    | 46 | 16 | 77 | 58 | 100 | 35 | 1.0 | 1.7 |
| 19 | III. 1771.....  | 46 | 16 | 80 | 76 | 92  | 30 | 1.5 | 0   |
| 20 | AES 805.....    | 46 | 15 | 79 | 73 | 98  | 27 | 2.0 | 0   |

<sup>a</sup> Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

(Table is concluded on next page)

Table 10.—Concluded

| Rank<br>in<br>yield        | Entry                  | Acre<br>yield | Mois-<br>ture in<br>grain | Shelling | Erect<br>plants | Stand | Ear<br>height | Leaf<br>firing* | Dropped<br>ears |
|----------------------------|------------------------|---------------|---------------------------|----------|-----------------|-------|---------------|-----------------|-----------------|
| E—1954 results (concluded) |                        |               |                           |          |                 |       |               |                 |                 |
| 21                         | Ill. 1918.....         | 46            | 15                        | 80       | 52              | 100   | 29            | 2.8             | 1.6             |
| 22                         | Ill. 1914.....         | 46            | 16                        | 80       | 66              | 100   | 28            | 2.8             | .8              |
| 23                         | U.S. 13.....           | 46            | 15                        | 79       | 47              | 100   | 30            | 2.0             | 1.6             |
| 24                         | Tenn. 3744.....        | 45            | 16                        | 74       | 28              | 100   | 26            | 1.5             | 2.5             |
| 25                         | Ill. 1896.....         | 45            | 16                        | 81       | 59              | 98    | 27            | 3.2             | 1.9             |
| 26                         | Ill. 1904.....         | 45            | 15                        | 77       | 47              | 100   | 27            | 2.2             | 0               |
| 27                         | Ill. 1897.....         | 45            | 15                        | 77       | 50              | 100   | 27            | 3.0             | .8              |
| 28                         | Ill. 2235W.....        | 45            | 19                        | 76       | 75              | 100   | 31            | 2.5             | 3.6             |
| 29                         | Ill. 200.....          | 45            | 16                        | 78       | 44              | 100   | 31            | 2.0             | 0               |
| 30                         | Ill. 1919.....         | 44            | 14                        | 77       | 63              | 100   | 27            | 2.8             | .8              |
| 31                         | Ill. 1849.....         | 44            | 17                        | 80       | 82              | 99    | 31            | 2.0             | 5.6             |
| 32                         | Ill. 1850.....         | 44            | 16                        | 79       | 74              | 100   | 31            | 2.0             | .9              |
| 33                         | Ill. 6076.....         | 44            | 14                        | 79       | 35              | 98    | 28            | 2.2             | 2.5             |
| 34                         | Ill. 1916.....         | 44            | 14                        | 80       | 57              | 99    | 28            | 2.5             | 1.8             |
| 35                         | Ill. 1911.....         | 44            | 17                        | 78       | 57              | 100   | 31            | 1.8             | 0               |
| 36                         | Ill. 1912.....         | 43            | 14                        | 80       | 58              | 99    | 25            | 3.8             | .9              |
| 37                         | Ill. 1511.....         | 43            | 14                        | 81       | 51              | 100   | 29            | 2.2             | 2.6             |
| 38                         | Ill. 1910.....         | 43            | 16                        | 83       | 50              | 99    | 26            | 4.0             | 0               |
| 39                         | Ill. 1905.....         | 43            | 14                        | 76       | 54              | 100   | 28            | 2.5             | 1.6             |
| 40                         | Ill. 1906.....         | 42            | 15                        | 78       | 44              | 100   | 26            | 2.2             | 3.2             |
| 41                         | AES 903W.....          | 42            | 16                        | 74       | 66              | 100   | 27            | 2.2             | 2.5             |
| 42                         | Ill. 1913.....         | 42            | 14                        | 81       | 42              | 100   | 25            | 4.0             | 2.5             |
| 43                         | Ill. 1908.....         | 40            | 15                        | 79       | 53              | 100   | 27            | 4.0             | 1.7             |
| 44                         | Ill. 1917.....         | 39            | 16                        | 78       | 50              | 99    | 28            | 4.0             | 4.0             |
| 45                         | Ill. 1915.....         | 39            | 15                        | 78       | 56              | 100   | 27            | 3.8             | .8              |
| 46                         | Ill. 6102.....         | 39            | 15                        | 75       | 29              | 100   | 29            | 2.5             | 4.5             |
| 47                         | Ill. 6075.....         | 39            | 15                        | 78       | 29              | 100   | 26            | 3.5             | 1.7             |
| 48                         | Ill. 6079.....         | 33            | 16                        | 78       | 38              | 99    | 27            | 2.0             | .8              |
| 49                         | Ill. 2214W.....        | 30            | 14                        | 73       | 36              | 100   | 28            | 3.0             | 1.7             |
|                            | Average.....           | 45            | 16                        | 79       | 55              | 99    | 29            | 2.3             | 1.6             |
|                            | Significant difference | 6             | ..                        | ..       | 18              | 2     | 3             | 1.1             | ...             |

\* Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

Table 11.—THREE-WAY AND DOUBLE CROSSES  
OF ILLINOIS 448 MATURITY  
Tested in South-Central Illinois, 1954

(Entries in boldface were average or better in yield and standability  
and average or earlier in maturity)

| Code                | Entry                        | Acre<br>yield | Mois-<br>ture in<br>grain | Shell-<br>ing | Erect<br>plants | Stand | Ear<br>height | Leaf<br>firing* | Dropped<br>ears |
|---------------------|------------------------------|---------------|---------------------------|---------------|-----------------|-------|---------------|-----------------|-----------------|
| A—Three-way crosses |                              |               |                           |               |                 |       |               |                 |                 |
| 1                   | (K201×38-11)×B1A.....        | 38            | 18                        | 81            | 57              | 100   | 32            | 2.0             | 1.7             |
| 10                  | <b>(K201×38-11)×B18.....</b> | 43            | 17                        | 82            | 65              | 100   | 33            | 1.2             | 1.8             |
| 11                  | (K201×38-11)×Kys.....        | 39            | 19                        | 77            | 42              | 100   | 37            | 1.0             | .8              |
| 14                  | (K201×38-11)×K4.....         | 46            | 18                        | 80            | 47              | 98    | 35            | 1.0             | 0               |
| 18                  | (K201×38-11)×Ky36-11.....    | 48            | 19                        | 81            | 72              | 100   | 35            | 2.2             | 1.7             |
| 56                  | (K201×38-11)×Ky106.....      | 47            | 16                        | 80            | 65              | 100   | 35            | 1.0             | 0               |
| 20                  | (K201×38-11)×Ky118.....      | 46            | 19                        | 78            | 67              | 99    | 34            | 1.0             | .9              |
| 21                  | (K201×38-11)×Ky120.....      | 42            | 19                        | 79            | 78              | 100   | 33            | 1.2             | 2.6             |
| 19                  | (K201×38-11)×Ky126.....      | 53            | 19                        | 84            | 80              | 99    | 36            | 2.0             | .8              |
| 28                  | (K201×38-11)×N5.....         | 36            | 18                        | 82            | 39              | 100   | 34            | 1.0             | 0               |

\* Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

(Table is concluded on next page)

Table 11.—Concluded

| Code                                   | Entry                        | Acre yield | Mois-<br>ture in<br>grain | Shell-<br>ing<br>plants | Erect<br>Stand | Ear<br>height | Leaf<br>firing <sup>a</sup> | Dropped<br>ears |
|----------------------------------------|------------------------------|------------|---------------------------|-------------------------|----------------|---------------|-----------------------------|-----------------|
| <b>A—Three-way crosses (concluded)</b> |                              |            |                           |                         |                |               |                             |                 |
|                                        |                              | bu.        | perct.                    | perct.                  | perct.         | perct.        | in.                         | grade           |
| 29                                     | (K201×38-11)×N9.....         | 48         | 16                        | 80                      | 62             | 100           | 33                          | 1.5             |
| 30                                     | (K201×38-11)×N10.....        | 37         | 16                        | 82                      | 83             | 100           | 28                          | 2.0             |
| 31                                     | (K201×38-11)×N15.....        | 47         | 22                        | 83                      | 49             | 99            | 29                          | 1.2             |
| 55                                     | (K201×38-11)×Oh7B.....       | 42         | 17                        | 84                      | 89             | 100           | 33                          | 2.0             |
| 12                                     | (K201×38-11)×Oh401.....      | 37         | 14                        | 80                      | 65             | 99            | 30                          | 2.5             |
| 13                                     | (K201×38-11)×Oh443.....      | 38         | 16                        | 80                      | 57             | 100           | 36                          | 1.8             |
| 5                                      | (K201×38-11)×Ok11.....       | 48         | 18                        | 82                      | 76             | 100           | 30                          | 1.5             |
| 9                                      | (K201×38-11)×Ok12.....       | 36         | 17                        | 78                      | 40             | 100           | 34                          | 2.8             |
| 6                                      | (K201×38-11)×Ok15.....       | 46         | 18                        | 80                      | 34             | 99            | 34                          | 2.5             |
| 7                                      | (K201×38-11)×Ok19.....       | 40         | 18                        | 79                      | 80             | 99            | 33                          | .9              |
| 8                                      | (K201×38-11)×Ok22.....       | 39         | 17                        | 79                      | 70             | 99            | 32                          | 2.2             |
| 2                                      | (K201×38-11)×Cl17.....       | 44         | 20                        | 83                      | 72             | 100           | 36                          | 1.0             |
| 3                                      | (K201×38-11)×Cl7A.....       | 38         | 18                        | 79                      | 56             | 99            | 32                          | 1.5             |
| 15                                     | (K201×38-11)×Cl21E.....      | 49         | 17                        | 80                      | 81             | 100           | 33                          | 1.0             |
| 4                                      | (K201×38-11)×Cl31.....       | 46         | 17                        | 84                      | 39             | 100           | 34                          | 1.2             |
| 34                                     | (K201×38-11)×Kans. 52:1326.. | 49         | 16                        | 82                      | 64             | 100           | 32                          | 2.8             |
| 35                                     | (K201×38-11)×Kans. 52:1349.. | 44         | 17                        | 84                      | 58             | 100           | 29                          | 1.8             |
| 36                                     | (K201×38-11)×Kans. 52:1351.. | 41         | 17                        | 82                      | 62             | 100           | 30                          | 2.0             |
| 37                                     | (K201×38-11)×Kans. 52:1357.. | 49         | 17                        | 85                      | 42             | 100           | 28                          | 3.5             |
| 38                                     | (K201×38-11)×Kans. 52:1363.. | 46         | 19                        | 81                      | 72             | 99            | 26                          | 3.8             |
| 39                                     | (K201×38-11)×Kans. 52:1367.. | 43         | 16                        | 82                      | 68             | 100           | 32                          | 2.2             |
| 40                                     | (K201×38-11)×Kans. 52:1385.. | 37         | 18                        | 75                      | 72             | 100           | 33                          | 1.0             |
| 41                                     | (K201×38-11)×Kans. 52:1391.. | 41         | 16                        | 80                      | 60             | 99            | 32                          | 2.2             |
| 42                                     | (K201×38-11)×Kans. 52:1394.. | 43         | 16                        | 78                      | 66             | 99            | 32                          | 2.8             |
| 43                                     | (K201×38-11)×Kans. 52:1409.. | 44         | 20                        | 82                      | 60             | 100           | 35                          | 1.0             |
| 44                                     | (K201×38-11)×Kans. 52:1411.. | 43         | 18                        | 79                      | 82             | 100           | 31                          | 1.5             |
| 45                                     | (K201×38-11)×Kans. 52:1412.. | 49         | 18                        | 82                      | 36             | 100           | 36                          | 1.8             |
| 46                                     | (K201×38-11)×Kans. 52:1421.. | 45         | 23                        | 80                      | 25             | 98            | 36                          | 1.0             |
| 47                                     | (K201×38-11)×Kans. 52:1430.. | 44         | 17                        | 82                      | 62             | 100           | 32                          | .9              |
| 48                                     | (K201×38-11)×Kans. 52:1493.. | 45         | 16                        | 80                      | 85             | 99            | 31                          | 1.5             |
| 49                                     | (K201×38-11)×Kans. 50:1109.. | 45         | 18                        | 82                      | 96             | 97            | 32                          | 2.5             |
| 22                                     | (K201×38-11)×Ky52:130.....   | 44         | 15                        | 83                      | 97             | 100           | 30                          | 4.0             |
| 23                                     | (K201×38-11)×Ky52:132.....   | 36         | 17                        | 82                      | 62             | 98            | 36                          | 1.0             |
| 24                                     | (K201×38-11)×Ky52:134.....   | 32         | 18                        | 74                      | 84             | 99            | 34                          | 2.2             |
| 25                                     | (K201×38-11)×Ky52:136.....   | 41         | 18                        | 80                      | 74             | 99            | 31                          | .9              |
| 26                                     | (K201×38-11)×Ky52:138.....   | 40         | 18                        | 84                      | 54             | 100           | 30                          | 3.0             |
| 27                                     | (K201×38-11)×Ky52:140.....   | 40         | 19                        | 80                      | 93             | 98            | 26                          | 2.0             |
| 17                                     | (K201×38-11)×N47556.....     | 31         | 18                        | 76                      | 92             | 99            | 35                          | 2.5             |
| 32                                     | (K201×38-11)×N47587-9.....   | 30         | 16                        | 77                      | 70             | 98            | 34                          | 3.5             |
| 16                                     | (K201×38-11)×N47904.....     | 36         | 18                        | 81                      | 63             | 98            | 31                          | 2.0             |
| 33                                     | (K201×38-11)×N82481.....     | 40         | 18                        | 79                      | 98             | 100           | 34                          | 1.0             |
| 54                                     | (K201R×38-11)×Kys.....       | 31         | 17                        | 80                      | 22             | 99            | 32                          | 1.0             |
| 50                                     | (K201R×38-11)×K4.....        | 44         | 19                        | 82                      | 46             | 98            | 37                          | 0               |
| 53                                     | (K201R×38-11)×Ky36-11.....   | 36         | 21                        | 79                      | 55             | 99            | 36                          | 1.0             |
| 52                                     | (K201R×38-11)×Cl1.7.....     | 40         | 18                        | 81                      | 78             | 100           | 35                          | 2.7             |
| 51                                     | (K201R×38-11)×Cl.21E.....    | 49         | 18                        | 82                      | 58             | 100           | 32                          | 1.0             |
|                                        | Average.....                 | 42         | 18                        | 81                      | 65             | 99            | 33                          | 1.8             |
|                                        |                              |            |                           |                         |                |               |                             | 1.3             |

**B—Double crosses**

|                             |    |    |    |    |     |    |     |     |
|-----------------------------|----|----|----|----|-----|----|-----|-----|
| Ill. 1852.....              | 50 | 18 | 82 | 75 | 100 | 34 | 1.5 | .9  |
| AES 803.....                | 48 | 15 | 80 | 57 | 100 | 31 | 1.5 | 1.7 |
| K1830.....                  | 45 | 16 | 80 | 52 | 100 | 34 | 1.2 | 1.7 |
| Ill. 1850.....              | 41 | 18 | 80 | 85 | 99  | 33 | 2.2 | .8  |
| Average.....                | 46 | 17 | 80 | 67 | 100 | 33 | 1.6 | 1.3 |
| Significant difference..... | 9  | .. | .. | 20 | 2   | 3  | .9  | ... |

<sup>a</sup> Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

**Table 12.—DOUBLE-CROSS HYBRID NUMBERS,  
PEDIGREES, AND INDEX TO TABLES**

| Hybrid                  | Pedigree                            | Performance given<br>in Table No. |
|-------------------------|-------------------------------------|-----------------------------------|
| <b>Illinois hybrids</b> |                                     |                                   |
| 21.....                 | (Hy2 × 187-2) (WF9 × 38-11).....    | 2ABCDE, 6ACDE                     |
| 101.....                | (M14 × WF9) (187-2 × W26).....      | 2ABCDE                            |
| 200.....                | (WF9 × 38-11) (L317 × K4).....      | 10ABCDE                           |
| 274-1.....              | (Hy2 × WF9) (Oh7 × 187-2).....      | 4BCDE, 6ABCDE                     |
| 972A-1.....             | (Hy2 × L317) (WF9 × Oh7).....       | 4BCDE, 6ABCDE                     |
| 1091A.....              | (Hy2 × 187-2) (M14 × WF9).....      | 2ABCDE                            |
| 1277.....               | (M14 × WF9) (I.205 × 187-2).....    | 2ABCDE, 4ABCDE                    |
| 1279.....               | (M14 × WF9) (A375 × 187-2).....     | 2ABCDE                            |
| 1280.....               | (M14 × WF9) (Os420 × 187-2).....    | 2ABCDE, 4ABCDE                    |
| 1281.....               | (M14 × WF9) (A374 × A375).....      | 2BCDE                             |
| 1289.....               | (M14 × W22) (WF9 × I.205).....      | 2ABCDE, 3B                        |
| 1290.....               | (M14 × 187-2) (WF9 × I.205).....    | 2ABCDE, 4ABCDE                    |
| 1332.....               | (Hy2 × Oh7) (WF9 × 38-11).....      | 4BCDE, 6ABCDE,<br>10ABCDE         |
| 1349.....               | (38-11 × Mo940) (K155 × K201).....  | 10ABCDE                           |
| 1375.....               | (M14 × WF9) (N6 × Oh51A).....       | 2ABCDE                            |
| 1421.....               | (Hy2 × WF9) (P8 × Oh7).....         | 6BCDE                             |
| 1493.....               | (WF9 × I.205) (Oh28 × W22).....     | 2BCDE                             |
| 1511.....               | (Hy2 × WF9) (38-11 × L304A).....    | 4BCDE, 6ABCDE,<br>10CDE           |
| 1539A.....              | (38-11 × CI.7) (K201 × CI.21E)..... | 10ABCDE                           |
| 1555A.....              | (WF9 × Oh51A) (I.224 × Oh28).....   | 2ABCDE, 4ABCDE                    |
| 1557.....               | (M14 × Oh28) (I.205 × Oh51A).....   | 2ABCDE                            |
| 1558.....               | (M14 × WF9) (I.205 × Oh28).....     | 2ABCDE                            |
| 1559B.....              | (M14 × Oh28) (WF9 × Oh51A).....     | 2ABCDE                            |
| 1560A.....              | (WF9 × Oh51A) (I.205 × Oh28).....   | 2ABCDE, 4ABCDE                    |
| 1570.....               | (Hy2 × Oh41) (WF9 × 38-11).....     | 4BCDE, 6ABCDE,<br>10ABCDE         |
| 1575.....               | (M14 × WF9) (L12 × Oh28).....       | 2ABCDE, 4ABCDE                    |
| 1579.....               | (M14 × Oh43) (A73 × Oh5).....       | 2BCDE                             |
| 1585.....               | (M14 × L289) (Oh5 × Oh43).....      | 2BCDE                             |
| 1595.....               | (WF9 × I.205) (187-2 × W22).....    | 2ABCDE                            |
| 1617.....               | (WF9 × B10) (Oh7 × Oh41).....       | 4BCDE                             |
| 1656.....               | (C103 × Hy2) (WF9 × 38-11).....     | 10BCDE                            |
| 1657.....               | (K4 × Oh7) (K201 × CI.21E).....     | 10ABCDE                           |
| 1759.....               | (WF9 × 38-11) (Oh4C × Oh45).....    | 6BCDE                             |
| 1760.....               | (WF9 × 38-11) (Oh29 × Oh45).....    | 4BCDE                             |
| 1764.....               | (Hy2 × WF9) (38-11 × J47).....      | 6BCDE                             |
| 1767.....               | (Hy2 × Oh45) (WF9 × 38-11).....     | 6BCDE                             |
| 1771.....               | (Oh7B × CI.7) (T8 × CI.21E).....    | 10BCDE                            |
| 1777.....               | (Hy2 × WF9) (R114 × R116).....      | 6BCDE                             |
| 1788.....               | (WF9 × 38-11) (Oh41 × CI.21E).....  | 6BCDE, 10BCDE                     |
| 1799.....               | (M14 × WF9) (B8 × Oh51A).....       | 2CDE                              |
| 1800.....               | (M14 × WF9) (A73 × A295).....       | 2CDE, 3B                          |

(Table is continued on next page)

Table 12 — Continued

| Hybrid                              | Pedigree                            | Performance given<br>in Table No. |
|-------------------------------------|-------------------------------------|-----------------------------------|
| <b>Illinois hybrids (continued)</b> |                                     |                                   |
| 1802.....                           | (M14 × WF9) (A295 × Oh51A).....     | 2CDE                              |
| 1813.....                           | (C103 × Oh45) (Hy2 × WF9).....      | 4CDE, 6DE                         |
| 1814.....                           | (Hy2 × WF9) (M14 × Oh45).....       | 4CDE                              |
| 1819.....                           | (R2 × WF9) (R61 × Oh43).....        | 4CDE                              |
| 1826.....                           | (WF9 × B35) (K237 × Oh45).....      | 4CDE                              |
| 1831.....                           | (WF9 × W146) (K237 × Oh45).....     | 4CDE                              |
| 1849.....                           | (C103 × 38-11) (K201 × CI.21E)..... | 10CDE                             |
| 1850.....                           | (C103 × CI.21E) (38-11 × K201)..... | 10CDE, 11B                        |
| 1851.....                           | (C103 × 38-11) (Oh7 × CI.21E).....  | 10CDE                             |
| 1852.....                           | (C103 × CI.21E) (38-11 × Oh7).....  | 10CDE, 11B                        |
| 1856.....                           | (38-11 × Oh7) (K201 × CI.21E).....  | 10CDE                             |
| 1857.....                           | (38-11 × Oh41) (K201 × CI.21E)..... | 10CDE                             |
| 1859.....                           | (38-11 × Oh7) (Oh41 × CI.21E).....  | 10CDE                             |
| 1861.....                           | (M14 × WF9) (I.224 × Oh28).....     | .2DE                              |
| 1862.....                           | (M14 × WF9) (Oh43 × Oh51A).....     | .2DE                              |
| 1863.....                           | (M14 × WF9) (I.205 × Oh43).....     | .2DE, 3B, 4DE                     |
| 1864.....                           | (M14 × WF9) (Oh43 × W22).....       | .2DE, 4DE                         |
| 1865.....                           | (M14 × WF9) (Oh5 × Oh43).....       | .2DE                              |
| 1866.....                           | (M14 × WF9) (Oh26A × Oh45).....     | .2DE                              |
| 1868.....                           | (C103 × Oh43) (Hy2 × WF9).....      | .4DE                              |
| 1873.....                           | (C103 × M14) (R75 × Oh43).....      | .4DE                              |
| 1875.....                           | (C103 × 38-11) (Hy2 × WF9).....     | .4DE                              |
| 1876.....                           | (R97 × R98) (WF9 × 38-11).....      | .6DE                              |
| 1877.....                           | (R99 × R100) (WF9 × 38-11).....     | .6DE                              |
| 1880.....                           | (R103 × R104) (WF9 × 38-11).....    | .6DE                              |
| 1884.....                           | (C103 × R100) (WF9 × 38-11).....    | .6DE                              |
| 1889.....                           | (C103 × Oh45) (38-11 × Oh29).....   | .6DE                              |
| 1890.....                           | (C103 × Oh45) (R75 × 38-11).....    | .6DE                              |
| 1893.....                           | (C103 × 38-11) (Oh7B × Oh29).....   | .10DE                             |
| 1896.....                           | (R138 × R139) (R140 × R141).....    | .6DE, 10DE                        |
| 1896A.....                          | (R139 × R141) (R138 × R140).....    | .4DE                              |
| 1897.....                           | (R138 × R141) (R139 × R143).....    | .10DE                             |
| 1902.....                           | (R138 × R142) (R139 × R141).....    | .2DE                              |
| 1903.....                           | (M14 × WF9) (R119 × R120).....      | .2E, 4E                           |
| 1904.....                           | (R81 × R85) (WF9 × 38-11).....      | .4E, 6E, 10E                      |
| 1905.....                           | (R81 × R120) (WF9 × 38-11).....     | .4E, 6E, 10E                      |
| 1906.....                           | (Hy2 × WF9) (R81 × R119).....       | .4E, 6E, 10E                      |
| 1908.....                           | (R154 × R155) (WF9 × 38-11).....    | .4E, 6E, 10E                      |
| 1909.....                           | (R130 × R151) (WF9 × 38-11).....    | .4E, 6E, 10E                      |
| 1910.....                           | (R154 × R156) (WF9 × 38-11).....    | .4E, 6E, 10E                      |

(Table is continued on next page)

Table 12—Continued

| Hybrid                              | Pedigree                         | Performance given in Table No.          |
|-------------------------------------|----------------------------------|-----------------------------------------|
| <b>Illinois hybrids (continued)</b> |                                  |                                         |
| 1911.....                           | (R130 × R153) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1912.....                           | (R151 × R156) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1913.....                           | (R151 × R154) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1914.....                           | (R153 × R155) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1915.....                           | (R151 × R155) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1916.....                           | (R130 × R154) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1917.....                           | (R153 × R154) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1918.....                           | (R151 × R153) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 1919.....                           | (R130 × R156) (WF9 × 38-11)..... | 4E, 6E, 10E                             |
| 2214W.....                          | (R30 × Ky27) (H21 × K64).....    | 10ABCDE                                 |
| 2235W.....                          | (H21 × K64) (33-16 × Mo2RF)..... | 10ABCDE                                 |
| 2246W.....                          | (R144 × R145) (R148 × R149)..... | 10DE                                    |
| 2247W.....                          | (R144 × R145) (R146 × R148)..... | 2E, 4DE                                 |
| 6015.....                           | (R84 × 38-11) (R118 × K4).....   | 2E                                      |
| 6016.....                           | (R78 × K4) (R84 × 38-11).....    | 7B                                      |
| 6021.....                           | (R75 × R76) (R84 × K4).....      | 4E, 6E, 7B                              |
| 6052.....                           | (R78 × 38-11) (R84 × K4).....    | 2E                                      |
| 6062.....                           | (R76 × K4) (R78 × R84).....      | 2E                                      |
| 6074.....                           | (R75 × R87) (R78 × R83).....     | 2DE                                     |
| 6075.....                           | (R75 × R83) (R78 × R87).....     | 6DE, 10DE                               |
| 6076.....                           | (R76 × R78) (R87 × R117).....    | 10DE                                    |
| 6079.....                           | (R78 × R84) (R87 × R119).....    | 10DE                                    |
| 6102.....                           | (R75 × R85) (R84 × R87).....     | 10DE                                    |
| <b>Miscellaneous hybrids</b>        |                                  |                                         |
| AES 510.....                        | (WF9 × W22) (H19 × B9).....      | 2E                                      |
| AES 610.....                        | (M14 × A73) (Oh43 × Oh51A).....  | 2CDE                                    |
| AES 702 (Ill. 1790).....            | (C103 × M14) (Hy2 × WF9).....    | 2BCDE, 3B, 4BCDE, 5C                    |
| AES 801.....                        | (WF9 × B7) (B10 × B14).....      | 6CDE                                    |
| AES 802.....                        | (Hy × WF9) (38-11 × N6).....     | 6CDE                                    |
| AES 803.....                        | (WF9 × 187-2) (N6 × K148).....   | 6CDE                                    |
| AES 805 (Ill. 1770).....            | (C103 × Oh45) (WF9 × 38-11)..... | 4BCDE, 6BCDE, 7B,<br>SC, 9C, 10CDE, 11B |
| AES 806.....                        | (Hy × WF9) (N6 × N15).....       | 4CDE, 6E                                |
| AES 903W.....                       | (H28 × K55) (H30 × K41).....     | 10E                                     |
| Ind. 0421.....                      | (M14 × WF9) (B9 × W22).....      | 2CDE                                    |
| Ind. 1405.....                      | (H41 × H42) (H45 × H46).....     | 4CDE                                    |
| Ind. 2401.....                      | (M14 × WF9) (K237 × Oh45).....   | 4E                                      |
| Ind. 2609.....                      | (WF9 × 38-11) (H14 × Oh43).....  | 6E                                      |
| Ind. 9502.....                      | (H26 × H27) (H28 × H29).....     | 6E                                      |
| Iowa 4297.....                      | (M14 × 187-2) (WF9 × I.205)..... | 4BCDE, 5C                               |
| Iowa 4558.....                      | (M14 × WF9) (B8 × B21).....      | 2E                                      |

(Table is concluded on next page)

Table 12.—Concluded

| Hybrid                                   | Pedigree                            | Performance given<br>in Table No. |
|------------------------------------------|-------------------------------------|-----------------------------------|
| <b>Miscellaneous hybrids (concluded)</b> |                                     |                                   |
| Iowa 4615.....                           | (Hy × WF9) (B14 × B36).....         | 6E                                |
| Iowa 4630.....                           | (M14 × B21) (WF9 × Oh51A).....      | 2E                                |
| I.S.P. 2.....                            | (C103 × Oh45) (M14 × WF9).....      | 2CDE                              |
| K1830.....                               | (K201 × 38-11) (K4 × CI.7).....     | 11B                               |
| Minn. 4.....                             | (A286 × A295) (A375 × Oh51A).....   | 2E                                |
| Minn. 40.....                            | (A73 × A401) (A286 × Oh51A).....    | 2E                                |
| Mo. 804.....                             | (CI.7 × K4) (38-11 × CI.21E).....   | 10ABCDE                           |
| Mo. 862.....                             | (K201 × T202) (CI.21E × Mo567)..... | 10BCDE                            |
| Mo. 4041W.....                           | (WhHy × K55) (Wh38-11 × 33-16)..... | 6CDE                              |
| Mo. 8010W.....                           | (K64 × Mo22) (T111 × T115).....     | 10E                               |
| Ohio M15.....                            | (Oh26 × Oh51) (A × W23).....        | 2CDE                              |
| Ohio K24.....                            | (WF9 × Oh51A) (Oh33 × Oh40B).....   | 2BCDE, 3B                         |
| Ohio 3247.....                           | (Oh43 × Oh45) (Oh51A × W22).....    | 4E                                |
| Ohio 4808.....                           | (Oh4C × Oh51A) (Oh28 × Oh45).....   | 6CDE                              |
| Ohio 5305.....                           | (A73 × Oh5) (Oh26A × Oh51A).....    | 2E                                |
| Tenn. 3473.....                          | (M14 × 751) (T206 × 61.984-8).....  | 6E                                |
| Tenn. 3744.....                          | (H21 × K6) (T111 × T115).....       | 10E                               |
| U.S. 13.....                             | (Hy × L317) (WF9 × 38-11).....      | 6ABCDE, 7B, 8C, 9C,<br>10ABCDE    |











UNIVERSITY OF ILLINOIS-URBANA

Q 630.7L68

C002

BULLETIN URBANA

574-580 1954-55



3 0112 019529384