Über psychische und physikalische Zeit

Harald Rieder

4. November 2020

Inhaltsverzeichnis

Motivation	1
ldee zu einer Quantenuhr	2
Eine Quantenuhr aus 4 Qubits	4
Das Anwachsen der Entropie in der psychischen Zeit	7
Eine relativbewegte Quantenuhr	7

Motivation

Der Erfolg der relativistischen Physik lehrt uns, dass die Zeit irgendwie gleichrangig neben dem Ort zu stehen hat. Wechselt ein Beobachter seine Perspektive auf bestimmte Art, sehen Koordinaten, die zuvor wie reine Ortskoordinaten ausgesehen haben, plötzlich ein wenig wie Zeitkoordinaten aus, und umgekehrt. Ein solcher Perspektiv-Wechsel heißt in der speziellen Relativitätstheorie *Lorentz-Transformation*.¹

Der Alltag lehrt uns, dass die Zeit kontinuierlich vergeht, und zwar in eine bestimmte Richtung. Denn das Alltagsgeschehen scheint sich meistens nicht umkehren zu lassen. Eine zerschellte Tasse setzt sich nicht mit der Zeit wieder zu einer heilen Tasse zusammen und kehrt unter Abkühlung auf den Tisch zurück. Solches Alltagsgeschehen wird durch den 2. Hauptsatz der Thermodynamik erfolgreich modelliert.

Der Erfolg der Physik insgesamt lehrt uns, dass Ortsraum keine eingebaute Richtung hat. Es gibt keinen Satz der behauptet, dass wenn man in eine bestimmte Richtung geht, die Tassen immer kaputter werden müssen.

Somit haben wir 3 erfolgreich anwendbare Konzepte, die im Widerspruch zu stehen scheinen. Raum und Zeit sind wie Bruder und Schwester. Die Zeit hat eine eingebaute Richtung, der Raum aber nicht. Und nun?

¹Ein Beispiel aus der allgemeinen Relativitätstheorie: Beim Passieren des Ereignishorizontes der Schwarzschild-Metrik tauschen Radialterm und Zeitterm ihre Vorzeichen aus. Nach dem starken Äquivalenzprinzip ist so ein Standortwechsel lokal äquivalent zu einem Wechsel der Perspektive.

Darum schauen wir uns an, wozu uns ein paar unkonventionelle Annahmen führen können:

- In der Physik vergeht keine Zeit. Die Natur der physikalischen Zeit ist wie die Natur des physikalischen Ortsraums.
- In der Psyche vergeht Zeit. Sie ist integraler Bestandteil des Bewusstwerdens, des Geistes.
- Es muss einen Mechanismus geben, der die psychische Zeit mit einem Bestandteil der physikalischen Welt so koppelt, dass es wenigstens für die menschliche Psyche den Anschein hat, die physikalische Zeit würde objektiv vergehen.

Idee zu einer Quantenuhr

In der Quantenmechanik spielt sich das Geschehen in einem vieldimensionalen Konfigurationsraum ab, dem Hilbert-Raum. Ein Ort existiert in diesem Raum zunächst nicht. Erst durch Festlegung auf eine Basis lassen sich komplexwertige Funktionen erstellen. Diese Funktionen stehen für unendlich viele Amplituden, die durch einen kontinuierlichen reellwertigen Index \boldsymbol{x} durchnummeriert werden.

Durch Beobachtung von außen, sowie durch Symmetrien, die wir aus der Erfahrung her einem dreidimensionalen Ortsraum zuschreiben, gelingt uns der Anschluss. Es sind unendlich viele Basen wählbar, doch nur bestimmte Wahlen führen zu einer Indexierung, bei der wir den Index als Ortskoordinate interpretieren können. Die Amplitude eines abstrakten Zustandsvektors $|\psi\rangle$ an einem bestimmten Ort liefert uns das Skalarprodukt mit dem abstrakten Vektor einer "Ortsbasis"

$$\psi(x) \equiv \langle x | \psi \rangle \tag{1}$$

Wenn wir die physikalische Zeit ähnlich wie den Ort behandeln wollen, dann muss die Zeitkoordinate *t* ebenso ein reellwertiger kontinuierlicher Index sein. Das heißt

$$\psi(x,t) \equiv \langle x,t|\psi\rangle \tag{2}$$

Die Indizes x und t nummerieren nun zusammen eine Produktbasis aus Orts- und Zeiteigenvektoren. Wir könnten aufgrund der Gleichmächtigkeit von \mathbb{R} mit \mathbb{R}^2 diesen Index durch einen gemeinsamen reellwertigen Index i=i(x,t) ersetzen und kämen damit wieder auf die Form

$$\psi(i) \equiv \langle i|\psi\rangle \tag{3}$$

wobei $|\psi\rangle$ wie in (2) der abstrakte Zustandsvektor im Produktraum wäre.

Wir nehmen an, dass der Beobachter aus seinem Hilbert-Raum \mathscr{H}_X heraus nicht in der Lage dazu ist, Zeit "direkt" in Erfahrung zu bringen. Diese Annahme drückt sich in der Quantenmechanik so aus, dass in Matrixelementen H(X,x) von Wechselwirkungs-Hamiltonians die Zeit nicht auftritt. Ein Beobachter muss eine Zeigerstellung, einen Ort, ablesen, um von dort auf die Zeit im Uhrenzustand zu schließen.

Ein guter Uhrenzustand kann also ein Zustandsvektor im Produktraum $\mathcal{H}_x \otimes \mathcal{H}_t$ sein, der Ortsund Zeitunterräume maximal verschränkt. Wenn $\delta(x-\xi)$ die Amplituden von Ortseigenvektoren

Abbildung 1: Indirektes Ablesen der Uhrzeit

im Ortsunterraum in der Ortsdarstellung sind, und $\delta(t-\tau)$ die Amplituden von Zeiteigenvektoren im Zeitunterraum in der Zeitdarstellung, dann sind²

$$\psi(x,t) \sim \int_{-\infty}^{\infty} d\chi \delta(x-\chi) \delta(t-\chi) = \delta(x-t)$$
 (4)

die Amplituden eines maximal verschränkten Zustands, der aus der Beobachtung von ξ sicher auf die Zeit τ schließen lässt. Durch die Beobachtung (oder Messung) "kollabiert die Überlagerung"

$$\int d\chi \delta(x-\chi)\delta(t-\chi) \quad \to \quad \delta(x-\chi)\delta(t-\chi) \tag{5}$$

Dadurch ist die Uhr zunächst kaputtgegangen. Denn durch verträgliche Messungen, also wiederholte Ortsmessungen, werden wir immer wieder nur diesen Zustand und damit die Zeit χ antreffen. Es fehlt also ein Mechanismus, der die Uhr wieder scharfschaltet, sie in ihren verschränkten Zustand zurückbringt.

Im Artikel *Ideas about a Quantum Theory without Process Type 2* wird so ein Mechanismus vorgestellt. Dort wird postuliert, dass jeder bewusste Beobachter einerseits eine Teilung des Hilbertraums vornimmt, andererseits die Änderung der Verschränkungen, wie sie erst durch die jeweilige Teilung aus den jeweils vorliegenden Zustandsvektoren entstehen, erlebt, ja sie womöglich willentlich herbeiführen kann, wodurch dann *aus Sicht des jeweiligen Beobachters* die quantenmechanische Überlagerung kollabiert und am Ende ein reiner Produktzustand vorliegt. Mindestens 2 solcherart an den physikalischen Kanal angeschlossene Beobachter (*conscious splits*) sind notwendig, um ein Geschehen am Laufen zu halten. Unsere Uhr soll von einem äußeren Beobachter wie gezeigt hin und wieder abgelesen werden. Wir benötigen also noch einen weiteren "internen" Beobachter, der den x,t-Produktraum auf andere Weise teilen muss als der externe Beobachter. Der interne Beobachter teilt den Produktraum dazu nicht in x- und t-Basen, sondern in eine Basis aus x,t-verschränkten Zuständen und eine Basis, die den ganzen Rest enthält.

Um zu sehen, wie es läuft, betrachten wir ein einfaches Beispiel...

²Fortan lassen wir die Integralgrenzen weg, wenn sie im Unendlichen liegen.

Eine Quantenuhr aus 4 Qubits

Unsere einfache Quantenuhr soll nur 4 diskrete Zeigerstellungen haben: $|x=0\rangle$, $|x=1\rangle$, $|x=2\rangle$, $|x=3\rangle$. Sie soll auch nur 4 Zeitpunkte messen können: $|t=0\rangle$, $|t=1\rangle$, $|t=2\rangle$, $|t=3\rangle$. Wir lassen später der Übersichtlichkeit halber x und t weg, x soll links stehen, t rechts. Das heißt zum Beispiel $|00\rangle$ soll für $|x=0\rangle$ $|t=0\rangle$ stehen.

Wir haben es mit einem Produktraum aus 4 Qubits, 2 Raum- und 2 Zeit-Qubits zu tun. Für eine Orthogonalbasis sind somit 16 Basisvektoren notwendig. Wir bilden diese aus den Produkten der 4 Raum- und 4 Zeit-Eigenvektoren.

Einen x,t-verschränkten Zustand können wir zum Beispiel so bilden

und einen unverschränkten Zustand so

Dies ist die Perspektive des äußeren Beobachters. Die Uhr soll ihm verschränkte Zustände anbieten, die aus Linearkombinationen von $|\chi\chi\rangle$ Vektoren zusammengesetzt sind. Er entscheidet sich dann für einen der Vektoren mit einer Wahrscheinlichkeit gemäß der Bornschen Regel.

Daraufhin muss die Uhr wieder scharfgeschaltet werden, wozu wir den internen Beobachter brauchen. Für den internen Beobachter müssen alle $|\chi\chi\rangle_{ext}$ Zustände verschränkt aussehen, damit er tätig wird. Um auf seine Perspektive zu wechseln, brauchen wir eine unitäre Matrix U im Produktraum, zum Beispiel³

$$U = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 02 \\ 03 \\ 03 \\ 10 \\ 02 \\ 03 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 20 \\ 21 \\ 21 \\ 0 \end{pmatrix}$$

$$(6)$$

$$U = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 02 \\ 03 \\ 10 \\ 12 \\ 13 \\ 20 \\ 21 \\ 23 \\ 30 \\ 31 \\ 32 \\ 0 \end{pmatrix}$$

$$(6)$$

Hat der externe Beobachter zum Beispiel die Zeit t=0 gemessen, dann ist die Uhr im Zustand $|00\rangle_{ext}$. Dieser Zustand ist aus Sicht des internen Beobachters eine Verschränkung aus $|00\rangle_{int}$, $|11\rangle_{int}$ und $|22\rangle_{int}$. Mit den Bornschen Wahrscheinlichkeiten kollabiert die Überlagerung aus seiner Sicht:

Damit das Geschehen weiterläuft, benötigen wir wieder den externen Beobachter. Die Inverse von U transformiert zurück auf dessen Sicht und lässt unverschränkte interne Zustände $|\chi\chi\rangle_{int}$

³Elemente mit Wert 0 lassen wir der Übersichtlichkeit halber nun öfter weg.

⁴Welche Bedeutung für ihn die Ziffernpaare haben, wissen wir nicht.

verschränkt erscheinen.

Insgesamt haben wir nun einen stochastischen Prozess vorliegen. Die absolutquadrierten Elemente von U und U^{-1} liefern uns die Wahrscheinlichkeiten für Zustandsübergänge. Nur die fettgedruckten Elemente in (6) und (7) tragen zum Geschehen bei, wenn wir mit $|\chi\chi\rangle_{ext}$ Zuständen starten. Wir können die anderen Elemente somit weglassen und bekommen übersichtlichere 4x4-Matrizen. Wenn wir interne und externe Sicht noch in einem 8-komponentigen Vektor zusammenfassen, können wir eine *unistochastische* Matrix P angeben, die den Prozess beschreibt und von Bornschen Wahrscheinlichkeiten bevölkert ist.

$$P = \begin{pmatrix} 0 & \{|U_{ji}|^2\} \\ \{|U_{ij}|^2\} & 0 \end{pmatrix}$$
 (8)

In unserem Beispiel ist die stochastische Matrix

$$P = \begin{pmatrix} 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \end{pmatrix}$$

$$(9)$$

Die Matrix P^2 bedeutet einen Wechsel auf die interne Sicht und wieder zurück. Sie liefert die

Wahrscheinlichkeiten, die der externe Beobachter vor dem Kollaps sieht.

$$P^{2} = \begin{pmatrix} 0.375 & 0.25 & 0.125 & 0.25 \\ 0.25 & 0.375 & 0.25 & 0.125 \\ 0.125 & 0.25 & 0.375 & 0.25 \\ 0.25 & 0.125 & 0.25 & 0.375 \\ & & & & & & & & & & & & \\ 0.375 & 0.25 & 0.125 & 0.25 & 0.36 \\ & & & & & & & & & & & \\ 0.375 & 0.25 & 0.125 & 0.25 & 0.36 \\ & & & & & & & & & & \\ 0.125 & 0.25 & 0.375 & 0.25 & 0.375 & 0.25 \\ & & & & & & & & & & \\ 0.125 & 0.25 & 0.375 & 0.25 & 0.375 & 33_{int} \end{pmatrix}$$
 (10)

Erwartungswerte für die beobachtete Zeit können wir nun so bilden

$$\langle t \rangle = t \cdot Q \cdot \psi \quad t = \begin{pmatrix} 0 & 1 & 2 & 3 & 0 & 0 & 0 \end{pmatrix}$$
 (11)

In unserem Beispiel ergeben sich in Abhängigkeit des Ausgangszustands die Erwartungswerte

ψ	< t >
$ 00\rangle_{ext}$	1.25
$ 11\rangle_{ext}$	1.25
$ 22\rangle_{ext}$	1.75
$ 33\rangle_{ext}$	1.75

Ausgehend von t=0 und t=1 läuft die gemessene Zeit also vorwärts, ansonsten läuft sie rückwärts. Immerhin haben wir eine laufende Zeit aus Sicht des externen Beobachters bekommen, ohne dass es in der Physik deswegen eine Zeitrichtung geben musste.

Unbefriedigend ist, dass wir nur 2 verschiedene Erwartungswerte bekommen haben. Das liegt am häufigen Auftreten von 0.25. Hier stellt sich die Frage, ob es möglich ist, andere Matrizen U mit lauter betragsverschiedenen Elementen je Spalte zu finden. Es lassen sich zwar leicht solche doppelt-stochastischen Matrizen P finden, allerdings ist die Frage, ob sie auch unistochastisch sind, ab einer Zeilenzahl von 5 und dem heutigen Stand der mathematischen Forschung kaum beantwortbar. Gerade größere Matrizen wären aber von Interesse, um sich an ein Zeitkontinuum annähern zu können.

Das Anwachsen der Entropie in der psychischen Zeit

Eine relativbewegte Quantenuhr

Wir fragen nun danach, wie eine bewegte Uhr gesehen wird. Wenn der externe Beobachter die Zeigerstellung χ erkennt, dann schließt er daraus, dass in der bewegten Uhr die Zeit χ vergangen ist. Daran ändert eine Relativbewegung der Uhr nichts. Das heißt, eine Relativbewegung soll nichts daran ändern, welche Ortseigenvektoren mit welchen Zeiteigenvektoren verschränkt sind. Im diskreten Fall kann sich also an der Verschränkung gar nichts ändern. Im Raumzeitkontinuum gibt es dagegen mehr Freiheit. Wir greifen zurück auf den kontinuierlichen Uhrenzustand (4).

Eine Koordinatentransformation der internen Uhrkoordinaten x, t auf die Koordinaten x', t' aus Sicht des externen Beobachters soll also bewirken

$$\psi(x,t) \sim \delta(x-t) \longmapsto \psi(x',t') \sim \delta(x'-t') \tag{12}$$

Bemerkenswerterweise ist ein Lorentz-Boost in x-Richtung solch eine verschränkungserhaltende Transformation, denn

$$\delta(x'-t') = \delta(\gamma(x+\beta t) - \gamma(t+\beta x)) = \frac{\delta(x-t)}{\gamma(1-\beta)} \sim \delta(x-t)$$
 (13)

wenn wir t in Metern messen, was wir schon von Anfang an getan haben. Allerdings trifft das für Uhrenzeigerkoordinaten in y- oder z-Richtung nicht zu, da bei einem Boost in x-Richtung y' = y und z' = z gilt.