Dinamica Non Lineare.

Edoardo Gabrielli

16 aprile 2021

Indice

1	Intr	roduzione ai Sistemi Dinamici	3
	1	Definire un Sistema dinamico	3
	2	Esistenza ed unicità della soluzione di IVP	
	3	Introduzione ai Manifold	16
	4	Mappe Ricorsive	18
	5	Spazio delle fasi esteso (SD a tempi continui)	20
	6	Flusso di fase	22
	7	Soluzioni speciali di Sistemi Dinamici	27
	8	Campi Vettoriali e Proprietà dei SD a t. con. autonomi	29
	9	Teorema di Liuville	33
	10	Phase Portrait	39
2	Studio della stabilità delle soluzioni 4		
	1	Soluzioni stazionarie di SD	41
	2	Stabilità delle soluzioni	46
	3	Studio della stabilità mediante linearizzazione	51
	4	Generalità sulle equazioni differenziali lineari a coeff. costanti	62
	5	Soluzione generale dell'IVP di un sistema dinamico $\dot{\boldsymbol{x}} = A\boldsymbol{x}$	71
	6	SD a tempo continuo in \mathbb{R}^2 della forma $\frac{d^2x}{dt^2} = F(t, x, \dot{x})$	77
	7	Sistemi lineari in dimensione n	
	8	Insiemi invarianti (stabili, instabili e centro)	

Capitolo 1

Introduzione ai Sistemi Dinamici

Un sistema dinamico può essere descritto, a livello intuitivo, come un sistema fisico il cui stato evolve nel tempo.

1 Definire un Sistema dinamico

Prendiamo un insieme X^1 , lo stato x di un sistema al tempo iniziale è definito da $x_0=x(t=0)$.

Definizione 1.0.1: (Sistema Dinamico Deterministico). Un sistema dinamico si dice deterministico quando la sua evoluzione temporale segue regole deterministiche.

In Figura 1.1 abbiamo un esempio di sistema dinamico con evoluzione deterministica.

Prendiamo un altro sistema preparato ad un istante iniziale in x_0 . Se al tempo t il sistema è caratterizzato da una certa probabilità di trovarsi in x² allora il Sistema Dinamico si dice stocastico (o processo stocastico).

Un processo stocastico $\boldsymbol{x} \in \mathbb{R}^n$ è caratterizzato da due parametri: $\boldsymbol{x}(t,\omega)$. Il primo indica il tempo, il secondo è legato alla parte stocastica del processo.

Il parametro ω appartiene allo spazio degli eventi Ω :

 $\omega \in \Omega$.

Significa che $\forall \ \omega^* \in \Omega$ corrisponde un punto $\boldsymbol{x}(t,\omega^*)$ che è definito come la realizzazione di ω^* .

1 Che definiremo avanti come Spazio degli stati, Spazio degli eventi o Spazio delle fasi.

Figura 1.1: Evoluzione temporale deterministica di x all'interno di X.

² P diversa dalla distribuzione $\delta(x)$, altrimenti il processo è deterministico!

Figura 1.2: Evoluzione 1D di processo stocastico date le condizioni iniziali x_0 .

4

Definizione 1.0.2: (Processo stocastico). Collezione di funzioni $\forall t \ al \ variare \ di \ \omega \ nello \ spazio \ degli \ eventi.$

1.1 Rappresentazione di un Sistema Dinamico

Sistema dinamico a tempo continuo. Un SD a tempo continuo è rappresentato in generale da un sistema di equazioni differenziali:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t, \boldsymbol{u}); \qquad \boldsymbol{x} \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

La funzione F è definita nel seguente dominio:

$$F: U \times I \times \Gamma \to V \subset \mathbb{R}^n.$$

- U è il dominio della funzione x.
- *I* è l'intervallo di definizione della soluzione (non ché l'intervallo temporale studiato).
- Γ è il sottospazio dell'insieme dei parametri \mathbb{R}^p .
- V L'insieme in cui viene mappato il dominio iniziale dalla F.

Definizione 1.1.1: (Notazione semplificata). Nel seguito si sceglie di alleggerire la notazione dei sottospazi. Abuseremo del termine \mathbb{R} per definire tutti gli spazi

$$U, I, \Gamma, V$$
.

Con l'opportuna dimensionalità.

Sarà **importante** saper ricostruire i giusti insiemi di definizione di tutti i termini per i casi di studio analizzati.

Sistemi di equazioni differenziali Una equazione differenziale è definita dalla seguente:

$$E\left(\frac{\mathrm{d}^n x}{\mathrm{d}t^n}, \dots, \frac{\mathrm{d}x}{\mathrm{d}t}, x, t\right) = 0 \qquad x \in \mathbb{R}, \ t \in \mathbb{R}$$
 (1.1)

In cui si fa uso della notazione semplificata. Il grado di una equazione differenziale è l'ordine massimo delle sue derivate (n in questo caso).

Se è possibile riscrivere la 1.1 isolando il termine di ordine n:

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = G\left(\frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}}, \dots, x, t\right).$$

Allora l'equazione differenziale iniziale è scomponibile in n equazioni differenziali del primo ordine con il seguente cambio di variabili:

$$y_1(t) = x(t);$$
 ... $y_n(t) = \frac{d^{n-1}x}{dt^{n-1}}.$

Quindi è possibile definire un nuovo vettore di \mathbb{R}^n :

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
.

In conclusione il sistema da risolvere è:

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = y_3$$

$$\vdots$$

$$\frac{dy_n}{dt} = G(y_n, y_{n-1}, \dots, y_1, t).$$

Esempio 1.1.1: (SD a tempo continuo: Oscillatore armonico) Prendiamo un sistema descritto dalla seguente Hamiltoniana:

$$H = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2.$$

In questo caso lo stato del sistema è descritto dalla variabile x:

$$\boldsymbol{x}(t) = (y_1, y_2).$$

Il sistema è conservativo: fissate le condizioni iniziali la quantità H è conservata, questo di fatto significa che l'energia è conservata.

$$E = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2 = \cos t.$$

Di conseguenza lo spazio delle fasi (o spazio degli stati) è definito in un sottoinsieme di \mathbb{R}^2 : un'ellisse.

$$\frac{y_1^2}{2E/k} + \frac{y_2^2}{2E/m} = 1.$$

I semiassi dell'ellisse sono:

$$a^2 = \frac{2E}{k} \qquad b^2 = \frac{2E}{m}.$$

Notiamo che l'orbita nello spazio delle fasi è chiusa: il sistema è periodico.

Definizione 1.1.2: (Spazio delle fasi). Sottoinsieme di \mathbb{R}^n con le soluzioni (gli stati).

Figura 1.3: Spazio delle fasi con una soluzione per il sistema Hamiloniano (a tempo continuo).

³ Valida per i sistemi dinamici "fisici" che studieremo, più tardi daremo anche una definizione più generale ed astratta.

Figura 1.4: Andamento delle macchie solari (wikipedia).

Figura 1.5: Andamento della soluzione N al variare del parametro r.

Sistema dinamico a tempo discreto Una prima rappresentazione di SD a tempo discreto³ è la seguente:

$$\boldsymbol{x}_n = G(\boldsymbol{x}_{n-1}, \boldsymbol{u}); \quad \boldsymbol{x}_n \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

$$G: U \times \mathbb{R}^p \to V \subset \mathbb{R}^n.$$

Possiamo immaginare che tra lo step n e lo step n-1 vi sia un intervallo temporale Δt . Fisicamente può essere la distanza tra due osservazioni sperimentali oppure l'andamento giornaliero di una popolazione.

Ovviamente l'intervallo Δt dipende dal contesto e dal tipo di sistema sotto esame.

Esempio 1.1.2: (Osservazione delle macchie solari.)

Un SD a tempi discreti può essere realizzato con l'osservazione delle macchie solari ogni 6 mesi.

Nella pratica si ottengono degli andamenti come in Figura 1.4.

Esempio 1.1.3: (Andamento degli individui di una popolazione, modello lineare.)

Prendiamo una popolazione di individui descritta dallo stato N_i : il numero di individui al tempo $t = i \in \mathbb{N}$.

La dinamica dello stato è descritta dal legame tra N_i e N_{i-1} . Nota questa legge è possibile predire i futuri andamenti della popolazione.

Il modello più semplice da studiare è il modello lineare:

$$N_n = rN_{n-1} \qquad r \in \mathbb{R}^+.$$

Ipotizzando che il numero di individui all'istante iniziale (arbitrario) sia N_0 è possibile ricostruire una legge temporale che lega l'istante iniziale all'istante n:

$$N_1 = rN_0;$$
 $N_2 = rN_1 = r^2N_0$ \Longrightarrow $N_n = r^nN_0.$

Quindi lo stato n-esimo è definito tramite una rete deterministica legata allo stato iniziale. Dalla Figura 1.5 si può osservare come l'andamento delle soluzioni dipende esclusivamente dal parametro r: sono possibili soltanto 3 casi.

Il modello lineare è il più semplice che si possa costruire per studiare le popolazioni e, per quasi tutti i casi, non basta a spiegare i fenomeni fisici che ci circondano: è necessario elaborare un modello più complesso...

Principio di sovrapposizione Riprendiamo l'Esempio 1.1.3, abbiamo concluso che l'andamento dello stato del sistema (la popolazione) seguiva la legge:

$$N_n = r^n N_0$$
.

Ipotizziamo che l'analisi prenda in considerazione l'andamento di due distinte popolazioni che seguono tale legge:

$$N_n = r^n N_0; \qquad M_n = r^n M_0.$$

Se lo studio prevede che queste due popolazioni si uniscano⁴ allora si ottiene la nuova popolazione \overline{N} :

$$\overline{N}_n = N_n + M_n = r^n(N_n + M_n) = r^n \overline{N}.$$

Teorema 1.1.1: (Principio di sovrapposizione.). Dati due sistemi che evolvono linearmente con la stessa legge: l'evoluzione della somma dei due ha lo stesso andamento della evoluzione dei singoli.

Cosa avviene se i due sistemi non evolvono linearmente?

1.2 Introduzione al Modello Logistico

Prendiamo il seguente modello di popolazione:

$$N_{n+1} = r(N_n) \cdot N_n.$$

A differenza dell'esempio 1.1.3 il rate della popolazione r adesso non è costante: dipende dalla popolazione all'istante n.

Un caso particolare di questa classe di sistemi è stato al centro di molti studi, in particolare per la sua versatilità nel modellizzare sistemi in ogni branca scientifica:

Definizione 1.2.1: (Modello logistico). Il modello logistico descrive l'andamento di una popolazione N_n con il seguente rate r:

$$r(N_n) = \mu \left(1 - \frac{N_n}{k} \right).$$

Quindi lo stato del sistema si esprime con la legge:

$$N_{n+1} = \mu \left(1 - \frac{N_n}{k} \right) N_n.$$

Questo rappresenta un modello non lineare.

Nel modello logistico la dipendenza di r dalla popolazione permette un meccanismo di retroazione che sfavorisce la crescita della popolazione stessa.

Figura 1.6: Andamento del Rate in funzione della popolazione, notiamo l'antimonotonia di r che garantisce il fenomeno di retroazione.

Figura 1.7: Porzione di spazio considerata per il modello, la stella con il contorno rosso è una stella in procinto di esplodere. M è la quantità di materia totale all'interno di tale spazio, composta da stelle formate e gas interstellare.

Esempio 1.2.1: (Modello logistico a popolazioni stellari.)

Il modello logistico può essere utilizzato come "toy model" per descrivere il fenomeno di formazione delle stelle del tipo "Supernovae Triggered": stelle che nascono in seguito all'esplosione di supernovae.

Il modello prevede che le stelle neonate si trasformino in supernovae (al termine della loro vita) diventando anche loro sorgenti di stelle.

Ipotizziamo che ad un istante i la popolazione di stelle sia S_i e la massa del gas interstellare sia M. Tutte le stelle del modello hanno la stessa massa m e sono identiche.

Vogliamo modellare la popolazione stellare ad un istante successivo: i+1.

La quantità di gas insterstellare disponibile (per la formazione di altre stelle) al tempo t è data dalla massa totale M meno la massa delle stelle presenti in tale istante:

$$m_{\text{gas}} = M - S_i \cdot m.$$

Quindi il numero di stelle al tempo i+1 può essere espresso tramite un modello logistico:

$$S_{i+1} = cS_i(M - S_i \cdot m).$$

Cambiando variabili si arriva ad un sistema avente una notazione "classica" nello studio dei modelli logistici:

$$x_i = \frac{mS_i}{M}$$
 $r = \frac{cM}{4}$ \Longrightarrow $x_{i+1} = 4rx_i(1 - x_i).$

1.3 Definizione Formale di Sistema Dinamico

Spazio metrico Prima di generalizzare le definizioni si SD è necessario definire uno spazio metrico:

Definizione 1.3.1: (Spazio metrico). L'inseme X è spazio metrico se $\exists d$:

$$d: X \times X \to \mathbb{R}^+ \cup \{0\}.$$

Che soddisfa le seguenti proprietà:

$$\begin{split} d(x,y) &\geq 0; & d(x,y) = d(y,x); \\ d(x,y) &= 0 \iff x = y; & d(x,y) \leq d(x,z) + d(z,y). \end{split}$$

Esempio 1.3.1: (Spazio metrico)

Prendiamo l'insieme di funzioni:

$$C(I) = \{f(x) | x \in I \subset \mathbb{R}; f \text{ continua} \}.$$

Possiamo definire una distanza d come:

$$d(f(x), g(x)) = \sup_{x \in I} |f(x) - g(x)|.$$

Definizione di SD a tempo discreto

Definizione 1.3.2: (SD a tempo discreto). Un sistema dinamico a tempo discreto è rappresentato da una mappa $G: X \to X$ tale che

- $G^{n+m} = G^n \circ G^m \ \forall n, m \in \mathbb{N}_0 \cup \{0\}.$
- Se G è invertibile $\Longrightarrow G^{-n} = G^{-1} \circ G^{-1} \circ \dots \circ G^{-1}$, in cui la composizione viene applicata n volte. In questo caso $n, m \in \mathbb{Z}$.

Esempio 1.3.2: (Shift Map)

Un esempio astratto di SD a tempo discreto è la Shift Map. L'insieme di partenza è così composto:

$$S_k = \{1, 2, \dots, k\};$$
 Insieme di k simboli.

Ci concentriamo su S_2^5 , definiamo uno spazio s come:

$$s = (s_1, s_2, \dots, s_\infty) \quad s_i \in S_2.$$

E chiamiamo l'insieme delle possibili stringhe Σ_2

$$\Sigma_2 = \{s | s = (s_1, s_2, s_3, \ldots); s_i \in \Sigma_2\}.$$

Su questo spazio definiamo un operatore $\sigma:\Sigma\to\Sigma$ tale che

$$\sigma(s) = (s_2, s_3, s_4 \ldots) \in \Sigma_2.$$

L'operatore σ definisce, insieme allo spazio Σ , il sistema dinamico. Siano $s,t \in \Sigma_2$, possiamo definire una distanza $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}^+ \cup \{0\}$ come:

$$d(s,t) = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j}.$$

Notiamo che questa quantità è limitata, infatti:

$$d(s,t) \le \sum_{j=0}^{\infty} \frac{1}{2^j} = 2 \quad \forall t, s.$$

⁵ di fatto è uno spazio binario (a due simboli: 0,1)

Teorema 1.3.1: (Continuità di σ). Dati lo spazio metrico Σ_2 , la trasformazione σ e la distanza d allora la trasformazione σ è continua.

Cerchiamo i **punti fissi** della mappa iterata n volte: $s \in \Sigma_2$ tale che

$$\sigma^n(s) = s.$$

Nel nostro sistema i punti sono stringe. Utilizziamo la notazione per indicare le stringhe fisse: $s^{n,j}$. Il primo indice corrisponde al numero di iterazioni per il quale la stringa s è punto fisso, il secondo indice corre tra tutte le possibili stringhe che sono fisse per la n-esima iterazione.

$$\sigma^n(s^{n,j}) = s^{n,j}.$$

Nel caso di n = 1 abbiamo (sempre per la shift map):

$$s^{1,1} = (0, 0, 0, \dots, 0)$$

 $s^{1,2} = (1, 1, 1, \dots, 1).$

Infatti shiftando verso sinistra la mappa queste due stringhe risultano invarianti.

Nel caso di n=2 le stringhe invarianti sono:

$$s^{2,1} = (0, 1, 0, 1 \dots) \equiv (\overline{01})$$

 $s^{2,2} = (1, 0, 1, 0 \dots) \equiv (\overline{10})$

Non è un caso che, per entrambi i casi, le stringhe fisse presentino una periodicità negli elementi (n-periodicità).

Definizione di SD a tempo continuo

Definizione 1.3.3: (Sistema dinamico a tempo continuo). Sia X uno spazio metrico e φ_t ($t \in \mathbb{R}$) una famiglia di mappe definite da:

$$\varphi_t: X \to X$$
.

e tale per cui

- $\varphi_0 = \mathbb{I}$.
- $\bullet \ \varphi_{t+s} = \varphi_t \circ \varphi_s.$

Inoltre si possono distinguere due tipi di SD a tempo continuo:

1. $t \in \mathbb{R}^+ \implies Semi \ Dynamical \ System.$

2. $t \in \mathbb{R} \implies Dynamical System$.

Nel caso 2. la mappa è detta invertibile, infatti si ha che:

$$\varphi_{s+t} = \varphi_0 = \mathbb{I} \iff s = -t.$$

Esempio 1.3.3: (Traslazione)

Sia $y \in \mathbb{R}^n$ fissato; $t \in \mathbb{R}$. La mappa per il sistema agisce negli spazi:

$$\varphi_t : \mathbb{R}^n \to \mathbb{R}^n \quad \forall \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} \to \varphi_t(\boldsymbol{x}).$$

Operativamente la mappa è:

$$\varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$$

La mappa trasla il vettore x di un fattore ty, possiamo chiederci se questa rispecchia le proprietà di sistema dinamico:

- $\bullet \ \varphi_0(\boldsymbol{x}) = \boldsymbol{x}.$
- $t, s \in \mathbb{R}$;

$$\varphi_s(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y} \qquad \varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$$

$$\varphi_t(\mathbf{x}) \circ \varphi_s(\mathbf{x}) = \varphi_t(\varphi_s)(\mathbf{x}) =$$

$$= \mathbf{x} + s\mathbf{y} + t\mathbf{y} = \varphi_{t+s}(\mathbf{x}).$$

Soluzione, grafico e orbita di SD a tempi continui Si dice sistema dinamico autonomo un SD a tempi continui indipendente in modo esplicito dal tempo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Per gli insiemi di appartenenza si è usata la notazione semplificata. Viceversa un sistema non autonomo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, t \in I \subset \mathbb{R}, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Supponiamo di avere il seguente problema alle condizioni iniziali

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t)$$
$$\boldsymbol{x}(t=0) = \boldsymbol{x}_0.$$

e supponiamo che la soluzione esista.

Definizione 1.3.4: (Soluzione del problema alle C.I.). La soluzione del problema alle condizioni iniziali $x(t, t_0, \mathbf{x}_0)$ è chiamata:

- Traiettoria per x_0 .
- Curva di Fase.

Ed ha l'ovvia proprietà:

$$x(t, t_0, \mathbf{x}_0): \qquad x(t_0, t_0, \mathbf{x}_0) = \mathbf{x}_0.$$

Definizione 1.3.5: (Grafico). Si definisce grafico della soluzione del problema alle CI l'insieme:

$$\Gamma(\boldsymbol{x}_0) = \{(\boldsymbol{x}, t) \in \mathbb{R}^n \times \mathbb{R} | \boldsymbol{x} = x(t, t_0, \boldsymbol{x}_0) \}.$$

Definizione 1.3.6: (Orbita). Si definisce orbita della soluzione del problema alle CI:

$$O(\boldsymbol{x}_0) = (\boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{x} = x(t, t_0, \boldsymbol{x}_0)).$$

Esempio 1.3.4: (Oscillatore armonico)

$$\begin{cases} \dot{u} = v \\ \dot{v} = -u \\ u_0 = 1 \end{cases}$$

$$v_0 = 0$$

La variabile e le condizioni iniziali del problema sono:

$$\boldsymbol{x} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}; \quad \boldsymbol{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Si può dimostrare (esercizio) che la soluzione è:

$$x(t, t_0, \mathbf{x}_0) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Prendiamo un sistema dinamico a tempi continui così definito:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \qquad \boldsymbol{x} \in \mathbb{R}^n; t \in \mathbb{R}; F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n) \qquad F = (F_1, F_2, \dots, F_n).$$
(1.2)

Figura 1.8: Soluzione, grafico e orbita per l'oscillatore armonico.

Definizione 1.4.1: (Condizione di linearità). Un SD a tempi continui come quello di equazione 1.2 è lineare se:

$$F(\boldsymbol{x} + \boldsymbol{y}, t) = F(\boldsymbol{x}, t) + F(\boldsymbol{y}, t) \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

Questa condizione è sufficiente ma non necessaria.

Esempio 1.4.1: (Circuito RC)

Prendiamo il circuito RC come in figura 1.9, l'equazione che regola la carica nel circuito è la seguente:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \frac{V}{R} - \frac{q}{RC}.$$

In questo caso la variabile x corrisponde con la carica. Il sistema non rispetta la condizione 1.4.1, infatti nello sviluppare il calcolo per due correnti, q_1 e q_2 , rimane un termine 2V/R. Nonostante questo il sistema è ancora lineare.

Figura 1.9: Circuito RC.

Esempio 1.4.2: (Pendolo)

Prendiamo il sistema del pendolo classico, le equazioni del moto della massa m sono:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l} \sin \theta \implies \begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l} \sin \theta \end{cases}.$$

Questo sistema è non lineare (c'è il seno).

Definizione 1.4.2: (Criterio generale per la linearità). Un SD si dice lineare se la sua dipendenza dalle variabili di stato è lineare.

Figura 1.10:

2 Esistenza ed unicità della soluzione di IVP

Dato un SD a tempo continuo ed un IVP (initial value problem) vorremmo sapere, per studiare la dinamica, se:

- Il problema ha soluzione?
- La soluzione, se esiste, è unica?

In assenza di unicità il sistema non può essere deterministico. I sistemi dinamici che studiamo devono sempre essere deterministici.

Esempio 2.0.1: (Due soluzioni)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 3x^{2/3} = F(x) \\ x(0) = x_0 = 0 \end{cases}.$$

Il sistema non è lineare poiché

$$(x+y)^{2/3} \neq x^{2/3} + y^{2/3}$$

Possiamo subito notare che una prima soluzione è la nulla: $x_1(t) = 0$. Un'altra soluzione è invece $x_2(t) = t^3$, infatti sostituendo nella equazione per la derivata di x:

$$3t^2 = 3(t^3)^{2/3}.$$

Che è appunto verificata.

Possiamo notare che F(x) è continua in x_0 , tuttavia non lo è la sua derivata rispetto a x: diverge a $\pm \infty$. Questo fatto è strettamente correlato alla non unicità della soluzione.

La non unicità della soluzione non è l'unico problema nel caso di sistemi dinamici a tempo continuo, può anche accadere che la soluzione non esista per tutti i tempi $\in \mathbb{R}$.

Esempio 2.0.2: (Soluzione con discontinuità nel tempo)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 = F(x) \\ x(0) = 1 \end{cases}$$

In questo caso F(x) è derivabile infinite volte e le sue derivata sono sempre continue. Cerchiamo la soluzione:

$$\int \frac{dx}{x} = \int dt \implies x(t) = -\frac{1}{t+c}.$$

Inserendo la condizione iniziale:

$$x(t) = \frac{1}{1-t}.$$

Notiamo che la soluzione non è continua $\forall t \in \mathbb{R}$, infatti è definita in $]-\infty,1[\ \cup\]1,\infty[.$

La soluzione del problema di Cauchy non deve necessariamente esser definita in tutto \mathbb{R} , quello che conta per noi è che sia definita almeno asintoticamente.

Definizione 2.0.1: (Funzione C^r). Una funzione F(x):

$$F(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^n \qquad \boldsymbol{x} \in \mathbb{R}^n.$$

si dice C^r se è r volte derivabile e le derivate fino all'ordine r sono continue.

Teorema 2.0.1: (Esistenza locale della soluzione). Dato un SD a tempo continuo:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

Con $(\mathbf{x}_0, t_0) \in U \times \mathbb{R} \in$. Assumendo che:

- F(x,t) sia C^r rispetto a x con $r \ge 1$.
- F(x,t) continua in t.

Allora esiste un intorno di t_0 ($t_0 - \epsilon < t < t_0 + \epsilon$) nel quale la soluzione dell'IVP esiste ed è unica.

Questo teorema è locale poiché ci assicura una soluzione in un intervallo temporale, non asintoticamente.

Alcuni libri sostituiscono la richiesta di avere F(x,t) funzione C^r con la richiesta che quest'ultima funzione sia Lipschitziana:

$$|F(\boldsymbol{x},t) - F(\boldsymbol{y},t)| \le k |\boldsymbol{x} - \boldsymbol{y}|.$$

In cui se k è una quantità indipendente dal punto \boldsymbol{x} considerato allora si ha una ed una sola soluzione all'IVP.

Teorema 2.0.2: (Esistenza Globale della soluzione). Supponiamo di avere il sistema di equazioni differenziali:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

Con le quantità definite nei seguenti intervalli:

$$x \in \mathbb{R}^n$$
; $t \in [a, \infty[$; $F : \mathbb{R}^n \times [a, \infty[\to \mathbb{R}^n.$

Se valgono i due sequenti:

- $F \stackrel{.}{e} C^r con r > 1 e continua in t.$
- $\exists h(t), k(t) con [h, k > 0 \forall t] tali che$:

$$|F(\boldsymbol{x},t)| \le h(t) |\boldsymbol{x}| + k(t); \quad per \, \boldsymbol{x}, t \in \mathbb{R}^n \times [a, \infty[.]]$$

Allora esiste ed è unica la soluzione dell'IVP definito in $\mathbb{R}^n \times [a, \infty[$.

Esempio 2.0.3: (Applicazione del teorema)

$$\begin{cases} \frac{dx}{dt} = \frac{3t^2x(t)}{1+x(t)^2} + x(t) = F(x,t) \\ x(t_0) = x_0 \end{cases}$$

La soluzione esiste? É unica?

La funzione F sicuramente è almeno C^1 in x ed è continua in t, quindi sicuramente la soluzione esiste almeno in un intorno del punto iniziale ed è unica sempre in questo intorno.

Per l'esistenza ed unicità globali invece è necessario qualche altro passaggio algebrico:

$$|F(x,t)| = \left| \frac{3t^2x(t)}{1+x^2(t)} + x(t) \right| \le |x| + \left| \frac{3t^2x}{1+x^2} \right| \le |x| \left| 3t^2 + 1 \right|.$$

Quindi scegliendo le funzioni:

$$k(t) = 0$$
 $h(t) = 3t^2 + 1$.

Abbiamo che le ipotesi del teorema di esistenza globale sono rispettate, quindi la soluzione esiste globalmente (asintoticamente). Un ulteriore esercizio (per il lettore) è quello di dimostrare che x(t) non diverge per $t \to \infty$. Un suggerimento: moltiplicare l'equazione differenziale a destra e sinistra per 2x, scrivere la nuova eq. differenziale per x^2 e minorare la $F(x^2)$...

Definizione 2.0.2: (Sistema deterministico). Un SD a tempo continuo descritto da

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

si dice deterministico se esiste ed è unica la corrispondente soluzione dell'IVP.

3 Introduzione ai Manifold

Abbiamo fin'ora affermato che lo stato di un sistema dinamico è descritto da un vettore di \mathbb{R}^n , in questa sezione cerchiamo di essere più precisi riguardo a questa quantità.

Esempio 3.0.1: (Pendolo nello spazio delle fasi)

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l}\sin\theta \end{cases}$$

In questo caso abbiamo che lo stato $\boldsymbol{x}=(\theta,y)$ non è un vettore di \mathbb{R}^n generico:

- θ è un angolo.
- \bullet y è una velocità angolare.

Lo stato è descritto in \mathbb{R}^2 , la dinamica del sistema giace su una superficie dello spazio delle fasi detto **Manifold**.

Il manifold per il problema del pendolo è una superficie cilindrica:

$$\theta \in S_1$$
 $y \in \mathbb{R}$ Con S_1 cerchio.

Anche se un manifold non coincide con \mathbb{R}^n localmente (sulla varietà) può essere caratterizzato da \mathbb{R}^n .

Definizione 3.0.1: (Omomorfismo). Sia $h: U \to V$ con $U, V \subset \mathbb{R}^n$. Supponiamo che $\exists h^{-1}$, allora h è omomorfismo se h e h^{-1} sono entrambe continue.

Definizione 3.0.2: (Manifold n-dimensionale). Sia $M \subset \mathbb{R}^n$ e $x \in M$, sia W un intorno di x. Diciamo che M è un manifold k-dimensionale (k < n) se \exists un omomorfismo $h : W \to \mathbb{R}^n$.

In pratica l'omomorfismo manda i punti appartenenti al manifold in un sottoinsieme $U \subset \mathbb{R}^n$. L'insieme U, in cui viene mappato l'intorno W di $\mathbf{x} \in M$ è detto carta del manifold: U = h(W).

Definizione 3.0.3: (Atlante di un manifold). Se è possibile costruire per tutti i punti di M un intorno in cui vale l'omomorfismo allora l'insieme $U \subset \mathbb{R}^n$ in cui i punti di M vengono mappati è detto Atlante di M.

La cosa importante è che tramite h è possibile introdurre le proprietà di differenziabilità sul manifold utilizzando le definizioni di differenziabilità su \mathbb{R}^n che sono ben definite.

Figura 1.11: Azione dell'omomorfismo sul manifold.

3.1 Mappare la dinamica di un Manifold in \mathbb{R}^n

Supponiamo di avere la mappa $G: W \to W$, ovvero manda punti di W (un intorno del punto $x \in M$) in punti di W.

Prendiamo $x_1 \in W$: $x_2 = G(x_1) \in W$.

Possiamo mappare la G in \mathbb{R}^n nel seguente modo:

$$\boldsymbol{y}_1 = h(\boldsymbol{x}_1); \qquad \boldsymbol{y}_2 = h(\boldsymbol{x}_2).$$

I punti $y_{1,2}$ appartengono a \mathbb{R}^n . Il modo in cui si trasporta la differenziabilità all'interno del manifold è il seguente:

$$y_2 = h(G(x_1)) = h(G(h^{-1}(y_1))).$$

Visto che h e G sono note, che h è omomorfismo e che $y_1, y_2 \in \mathbb{R}^n$ abbiamo che le proprietà di diff. sono applicabili ai funzionali sul manifold nello stesso modo in cui le applichiamo su \mathbb{R}^n .

4 Mappe Ricorsive

Ricordiamo che una mappa ricorsiva è definita da:

$$oldsymbol{x}_{n+1} = G(oldsymbol{x}_n) \qquad oldsymbol{x}_n \in \mathbb{R}^n; \qquad G: \mathbb{R}^n
ightarrow \mathbb{R}^n.$$

- 1. La mappa è invertibile se $\exists G^{-1}$.
- 2. La mappa è C^r se esistono e sono continue le derivate⁶ di G fino all'ordine r.

Se valgono la 1) e la 2) allora si ha un **Diffeomorfismo** C^r .

^b Intese come parziali in più dimensioni

4.1 Orbita per mappa ricorsiva invertibile

Se la mappa è invertibile allora preso un punto x_0 è possibile muoversi verso destra (con G) o verso sinistra con G^{-1} .

$$\ldots$$
, $G^{-1}(\boldsymbol{x}_0)$, $G^{-1}(\boldsymbol{x}_0)$, \boldsymbol{x}_0 , $G(\boldsymbol{x}_0)$, $G^2(\boldsymbol{x}_0)$, \ldots

Esempio 4.1.1: (Mappa lineare)

$$x_{n+1} = ax_n \qquad a \in \mathbb{R} - \{0\}.$$

Questa mappa è invertibile: basta spostare il parametro a a sinistra per ricavare la preimmagine.

Le mappe più studiate sono quelle non invertibili, questo perché al variare dei loro parametri si possono generare dei comportamenti particolari (caos).

Ci sono casi in cui anche le mappe all'apparenza invertibili possono generare situazioni complicate, ad esempio quelle che presentano un modulo come vedremo negli esempi di questa sezione.

4.2 Orbita per mappa ricorsiva non invertibile

Preso un punto x_0 per una mappa non invertibile è possibile spostarsi soltanto verso destra tramite la G.

$$x_0, G(x_0), G^2(x_0), \ldots$$

Esempio 4.2.1: (Mappa logistica)

$$x_{n+1} = 3.5x_n (1 - x_n)$$
 $x_n \in [0, 1]$.

Questa mappa non è invertibile: la preimmagine non è univoca (un'equazione del secondo grado ha due soluzioni).

Esempio 4.2.2: (Mappa di Bernoulli)

$$x_{n+1} = 2x_n \mod(1).$$

Questa mappa è parente della shift-map poiché, scegliendo di rappresentare x in base due, la mappa agisce allo stesso modo sui coefficienti della espansione (di base due) di come agiva con i simboli la shift map.

L'operazione di modulo 1 invece si occupa di traslare in [0,1] il punto x_{n+1} ogni volta che esce dall'intervallo a causa all'applicazione della mappa.

L'operazione di traslazione avviene tramite un intero n tale che:

$$n = \min(k \in \mathbb{Z}): \ 0 \le x + n \le 1.$$

Pur essendo lineare (all'apparenza) questa mappa può esibire un comportamento complesso. La presenza del modulo infatti fa si che la mappa non sia invertibile, come si può vedere in figura 1.12.

Esempio 4.2.3: (Circle Rotation Map)

Prendiamo una classe di mappe generale del seguente tipo:

$$x_{n+1} = G(x_n) \qquad x_n \in S_1.$$

 S_1 rappresenta il cerchio di raggio unitario, quindi i punti della mappa appartengono tutti al cerchio e sono rappresentati da una variabile: l'angolo di rotazione $x \cdot 2\pi$ (con $x \in [0,1]$).

La Circle Rotation Map è un caso particolare di queste mappe, ovvero:

$$x_{n+1} = x_n + \alpha \mod(1); \qquad \alpha \in [0, 1[.$$

La caratteristica principale di questa mappa è che può essere:

Figura 1.12: Mappa di Bernoulli, si vede come la linea rossa non rappresenti una funzione iniettiva: non può essere invertibile.

Figura 1.13: Rappresentazione della Circle Rotation Map.

- k-periodica se α razionale: le orbite degli x_n si richiudono.
- Quasi periodica se α irrazionale: i punti della mappa si distribuiscono uniformemente sul cerchio unitario (questo è il caso mostrato in figura 1.13).

La mappa è sempre invertibile.

Esempio 4.2.4: (Mappa di Arnold)

$$x_{n+1} = x_n + \omega - \frac{k}{2\pi}\sin(2\pi x_n) \quad \text{mod}(1).$$

 k,ω sono costanti e k>0,la mappa non è lineare a causa della presenza del sin.

Il parametro ω può essere interpretato come il rapporto tra due frequenze: una intrinseca del sistema ed una forzante esterna.

$$\omega \sim \frac{\omega_{\rm int}}{\omega_{\rm ext}}; \qquad \omega \in [0, 1].$$

La mappa mostra le seguenti peculiarità:

- $0 \le k \le 1$: la mappa di comporta come la Circle Map, presenta orbite periodiche o quasi periodiche a seconda della razionalità di ω .
- k > 1: la mappa può esibire comportamenti caotici.

Nel caso di k=1 la mappa inizia a riscontrare alcune "anomalie", è il valore per il quale iniziano a rompersi le "lingue di Arnold".

5 Spazio delle fasi esteso (SD a tempi continui)

Si prende un sistema dinamico a tempi continui autonomo e lo si perturba con una componente dipendente dal tempo (un fattore esterno). Il sistema in questo modo diventa non autonomo, l'equazione generale che regola questo tipo di sistema è:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n; \ F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n.$$

Possiamo ricondurre questo sistema ad un sistema autonomo tramite una trasformazione nella variabile temporale:

$$t = m(s) = s \implies \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}s}.$$

Inserendo nella equazione del moto:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = F(\boldsymbol{x}, t).$$

Possiamo definire il differenziale di t rispetto a s: dt/ds = 1.

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}(s)}{\mathrm{d}s} = F(\boldsymbol{x}, t) \\ \frac{\mathrm{d}t}{\mathrm{d}s} = 1 \end{cases}$$

Definizione 5.0.1: (Spazio delle fasi esteso). Si definisce spazio delle fasi esteso la quantità:

$$\mathbf{y} = (\mathbf{x}, t) \in \mathbb{R}^n \times \mathbb{R}.$$

In questo modo, definendo anche il funzionale esteso:

$$H = (F(x, t), 1).$$

Si possono generalizzare le equazioni del moto come:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}s} = H(\boldsymbol{y}).$$

Per quanto il problema sia formalmente risolto si deve tenere in considerazione che il nuovo spazio delle fasi potrebbe non essere più un compatto.

Questa mancanza potrebbe diventare un problema nei nostri scopi in quanto siamo spesso interessati alla soluzione asintotica del sistema (che potrebbe smettere di esistere).

In ogni caso aggiungiamo che, se la forzante è periodica, il sistema può essere sempre gestito con questo metodo.

Esempio 5.0.1: (Forzante oscillante)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -x + A\sin(\omega t).$$

Come sempre si riporta l'equazione ad una di primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x + A\sin(\omega t) \end{cases}$$

Adesso si introduce la variabile $\theta(t) = \omega t$. Il nuovo sistema, con questa variabile, è descritto nello spazio delle fasi generalizzato e le equazioni sono le seguenti:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}x}{\mathrm{d}t} = -x + A\sin\theta\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega \end{cases}$$

Si noti che la variabile θ non è limitata, quindi lo spazio delle fasi non è più un compatto.

6 Flusso di fase

Dato un sistema dinamico a tempo continuo in \mathbb{R}^2 :

$$rac{\mathrm{d}oldsymbol{x}}{\mathrm{d}t} = Aoldsymbol{x}.$$
 $oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \end{pmatrix} \qquad A = egin{pmatrix} -\Gamma & 0 \ 0 & \Gamma \end{pmatrix}; \ \Gamma \in \mathbb{R}.$

Studiamone l'evoluzione risolvendo il problema alle condizioni iniziali:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -\Gamma x_1\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = \Gamma x_2\\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \end{cases}$$

La soluzione può essere espressa tramite il seguente vettore:

$$\boldsymbol{x}(t) = \begin{pmatrix} x_{10}e^{-\Gamma t} \\ x_{20}e^{\Gamma t} \end{pmatrix}.$$

Oppure possiamo scriverla in termini di matrice:

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix} \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix} \equiv \varphi_t(\boldsymbol{x}_0).$$

Definizione 6.0.1: (Flusso di fase). L'operatore φ_t definito come

$$\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2; \quad \varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix}.$$

Si dice flusso di fase del sistema.

Proprietà del flusso di fase

- 1. $\varphi_t(\boldsymbol{x}_0)$ è una soluzione dell'IVP.
- 2. $\varphi_0(x_0) = x_0$
- 3. $\varphi_{t+s}(\boldsymbol{x}_0) = \varphi_t(\varphi_s(\boldsymbol{x}_0))$

Notiamo che se φ_t è invertibile allora il suo inverso è φ_{-t} .

Esempio 6.0.1: (Flusso unodimensionale)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 - 1\\ x(0) = x_0 \end{cases}.$$

Prima di ricavare il flusso di fase determiniamo la soluzione:

$$\frac{dx}{x^2 - 1} = dt \implies dx \left[\frac{1}{x - 1} - \frac{1}{x + 1} \right] = dt.$$

Integrando a destra e sinistra:

$$\log(\frac{|x-1|}{|x+1|}) = 2t + c.$$

Per ricavare x(t) è necessario uno studio di funzione all'interno del logaritmo per capire quando è necessaria una inversione di segno nel suo argomento.

Per |x| > 1 l'argomento è positivo, possiamo procedere in tal caso a risolvere con l'elevamento a potenza:

$$\frac{x-1}{x+1} = e^{2t}B.$$

La costante B si determina imponendo la condizione iniziale $x(0) = x_0$:

$$B = \frac{x_0 - 1}{x_0 + 1}.$$

In conclusione la soluzione è:

$$x(t) = \frac{(x_0 + 1) + e^{2t}(x_0 - 1)}{(x_0 + 1) - e^{2t}(x_0 - 1)} = \varphi_t(x_0).$$

In questo caso abbiamo un flusso che non è rappresentato da una matrice ma da un funzionale. Possiamo dimostrare che è un flusso: le prime due richieste sono ovvie. La terza invece è lasciata per esercizio, si tratta di fare tanti conti.

6.1 Flusso di Fase per sistemi non autonomi

Prendiamo nuovamente la definizione di Flusso partendo dal solito sistema:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) \\ \boldsymbol{x}(0) = \boldsymbol{x_0} \end{cases} F \in C^r, \ F : \mathbb{R}^n \to \mathbb{R}^n; \ \boldsymbol{x}_0 \in \mathbb{R}^n.$$

Possiamo caratterizzare la soluzione tramite il funzionale flusso:

$$\varphi(t, \boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R}^n.$$

L'applicazione del funzionale manda la variabile \boldsymbol{x} nella soluzione, in questo modo il funzionale caratterizza completamente il sistema. Le proprietà della φ sono:

- 1. $\varphi(t, \boldsymbol{x}) \in C^r$.
- 2. $\varphi(0, \mathbf{x}_0) = \mathbf{x}_0$
- 3. $\varphi(t+s, \mathbf{x}_0) = \varphi(t, \varphi(s, \mathbf{x}_0))$.

Introduciamo adesso il flusso nel caso in cui il sistema non è autonomo. Un sistema non autonomo è generalmente caratterizzato dalle equazioni:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases} \quad \boldsymbol{x} \in \mathbb{R}^n; \ F \in C^r; \ F : \mathbb{R}^n \to \mathbb{R}^n$$

Notiamo che nella condizione iniziale si è messo come tempo iniziale t_0 , questo è dovuto al fatto che, in un sistema non autonomo, la soluzione dipende dalla variabile t_0 (e non solo da $t-t_0$ come si avrebbe per un sistema autonomo). Questa caratteristica corrisponde alla perdita di invarianza per traslazione temporale della soluzione.

Le metodologie che permettono di introdurre il flusso in questi sistemi sono 2:

- Process Formulation.
- Skew Product Flow Formulation.

Process Formulation. Supponiamo che esista e sia unica la soluzione del IVP e che tale soluzione sia globale (definita $\forall t$). Definiamo il flusso di questo sistema come la soluzione dell'IVP $\Phi(t, t_0, x_0)$. Le proprietà di Φ sono:

- 1. $\Phi(t, t_0, \mathbf{x}_0)$ eredità tutte le proprietà del funzionale F.
- 2. $\Phi(t, t_0, \mathbf{x}_0) = \mathbf{x}_0$ (Proprietà di identità).
- 3. $\Phi(t_2, t_0, \boldsymbol{x}_0) = \Phi(t_2, t_1, \Phi(t_1, t_0, \boldsymbol{x}_0)) \text{ con } t_0 \le t_1 \le t_2.$

Potremmo essere più formali definendo lo spazio:

$$\mathbb{R}^2_{>} \equiv \left\{ (t, t_0) \in \mathbb{R}^2 \mid t \ge t_0 \right\}.$$

Quindi definiamo il flusso di fase come il funzionale (di variabile generica *):

$$\varphi(t, t_0, *) : \mathbb{R}^n \to \mathbb{R}^n \quad \text{con } (t, t_0) \in \mathbb{R}^2_{>}.$$

Che gode delle solide proprietà di flusso, che ripetiamo:

- 1. $\varphi(t, t_0, x_0) \in C^r \text{ con } r \ge 1$.
- 2. $\varphi(t, t_0, \mathbf{x}_0) = \mathbf{x}_0$ (Proprietà di identità).
- 3. $\varphi(t_2,t_0,\boldsymbol{x}_0) = \varphi(t_2,t_1,\varphi(t_1,t_0,\boldsymbol{x}_0))$ con $(t_2,t_1) \in \mathbb{R}^2_{\geq}$, e anche $(t_1,t_0) \in \mathbb{R}^2_{\geq}$.

Esempio 6.1.1: (Flusso per Process Formulation) Prendiamo il sistema:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -2tx \\ x(t_0) = x_0 \end{cases}.$$

Si può dimostrare (esercizio) che la soluzione ha la forma:

$$x(t) = x_0 e^{-(t^2 - t_0^2)} \equiv \varphi(t, t_0, x_0).$$

La dipendenza da t_0 non può essere eliminata in questo caso con una traslazione temporale, questo è dovuto al fatto che l'argomento dell'esponenziale non è riscrivibile come funzione di $t-t_0$:

$$t^{2} - t_{0}^{2} = (t - t_{0})^{2} + 2(t - t_{0})t_{0}.$$

Skew Product Flow Formulation L'idea alla base del metodo è quella di aggiungere ulteriori equazioni del moto in modo tale da rendere il sistema nuovamente autonomo. A quel punto il flusso di fase sarà quello già visto in precedenza.

Esempio 6.1.2: (Pendolo)

Nel caso del pendolo l'equazione del moto abbiamo visto che è:

$$\ddot{x} = -x + A\sin(\omega t).$$

E per rendere autonomo il sistema nuovamente abbiamo introdotto la variabile $\theta = \omega t$. La chiave del funzionamento del metodo è proprio il fatto che θ ha una evoluzione autonoma.

Formalmente prendiamo di nuovo il sistema di partenza:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases} \quad \boldsymbol{x} \in \mathbb{R}^n; \ F \in C^r; \ F : \mathbb{R}^n \to \mathbb{R}^n$$

Introduciamo un sistema dinamico da affiancare a questo:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}t} = G(\boldsymbol{q}) \\ \boldsymbol{q}(t_0) = \boldsymbol{q}_0 \end{cases}.$$

Questo nuovo sistema è autonomo, possiamo allora risolvere il problema nel sistema di variabili:

$$y = (x, q) \in \mathbb{R}^n \times \mathbb{R}^d$$
.

Con \mathbb{R}^d spazio di definizione di q.

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, \boldsymbol{q}) \\ \boldsymbol{x}(t_0) = \boldsymbol{x_0} \\ \frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}t} = G(\boldsymbol{q}) \\ \boldsymbol{q}(t_0) = \boldsymbol{q}_0 \end{cases}.$$

Il sistema in q è definito "Driver", il sistema in x invece è spesso detto "schiavizzato" dal Driver. Il sistema complessivo risulta comunque autonomo.

Quindi possiamo definire il flusso come lo spazio delle soluzioni in \boldsymbol{x} e \boldsymbol{q} :

$$\varphi_t(x_0, q_0) = (x(t, x_0, q_0), q(t, q_0)).$$

Essendo un sistema autonomo valgono le proprietà di flusso già viste:

- 1. $\varphi_t \in C^r \text{ con } r \geq 1$.
- 2. $\varphi_{t_0}(\boldsymbol{x}_0, \boldsymbol{q}_0) = (\boldsymbol{x}_0, \boldsymbol{q}_0).$
- 3. $\varphi_{t+s}(x_0, q_0) = \varphi_t(\varphi_s(x_0, q_0)).$

Concentriamoci sulla terza proprietà ed esplicitiamola in modo diverso:

$$\begin{split} \varphi_{t+q}(\boldsymbol{x}_0, \boldsymbol{q}_0) = & (\boldsymbol{x}(t+s, \boldsymbol{x}_0, \boldsymbol{q}_0), \boldsymbol{q}(t+s, \boldsymbol{q}_0)) = \\ = & (\boldsymbol{x}(t, \boldsymbol{x}(s, \boldsymbol{x}_0, \boldsymbol{q}_0) \boldsymbol{q}(s, \boldsymbol{q}_0)), \boldsymbol{q}(t, \boldsymbol{q}(s, \boldsymbol{q}_0))) = \\ = & (\boldsymbol{x}(t, \boldsymbol{x}(s, \boldsymbol{x}_0, \boldsymbol{q}_0), \boldsymbol{q}(s, \boldsymbol{q}_0)), \boldsymbol{q}(t+s, \boldsymbol{q}_0)). \end{split}$$

Ed uguagliando la prima dopo l'uguale con l'ultima deve esser vero che:

Definizione 6.1.1: (Cocycle Property).

$$x(t+s, x_0, q_0) = x(t, x(s, x_0, q_0), q(s, q_0)).$$

Esempio 6.1.3: (Esempio di Cocycle Property) Prendiamo la seguente variabile "Driver":

$$q(t) = t \in \mathbb{R}$$
 $q(t_0) = t_0$.

La proprietà in questo caso si esprime come:

$$x(t+s, x_0, t_0) = x(t, x(s, x_0, t_0), t_0 + s).$$

7 Soluzioni speciali di Sistemi Dinamici

Analizziamo il regime asintotico di un sistema dinamico, i tipi di soluzione che si possono incontrare sono:

- 1. Stati Stazionari Costanti.
- 2. Stati Stazionari Dinamici.
 - Periodici.
 - Quasi Periodici.
 - Complessi.

7.1 Stati Stazionari Costanti

Questi stati sono indipendenti dal tempo, ipotizzando che la soluzione stazionaria si $\boldsymbol{x}(t)$ allora:

$$\boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t).$$

Nei libri sono spesso chiamati Punti Singolari, Punti Critici, Soluzioni Stazionarie.

7.2 Stati Stazionari Dinamici

Lo stato per questi sistemi non è costante nel tempo, analizziamo le più comuni situazioni che si possono presentare in questi sistemi.

Figura 1.14: Orbita Periodica che attrae la dinamica nello spazio delle fasi.

Orbite periodiche L'orbita di uno stato stazionario dinamico periodico è un'orbita che si ripete nel tempo.

Esempio 7.2.1: (Oscillatore non lineare)

Un oscillatore non lineare è un sistema che presenta un'orbita periodica come in figura . . .

Se lo stato x_1 si trova (con le condizioni iniziali) sull'orbita allora rimarrà su tale orbita a stazionarietà. Se uno stato x_2 si trova invece in un altro punto dello spazio delle fasi inizialmente allora evolverà per raggiungere l'orbita stabile (a stazionarietà).

Orbite quasi periodice Sono orbite che non si ripetono nel tempo, sono più complesse delle orbite periodiche. La loro struttura verrà approfondita nel seguito.

Comportamenti complessi Quando un sistema presenta, ad esempio, caos deterministico.

7.3 Orbite periodiche di sistema dinamico

Definizione 7.3.1: (Orbita periodica per SD a tempo continuo). *Prendiamo un Sistema Dinamico a tempo continuo:*

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases} F: I \times \mathbb{R}^n \to \mathbb{R}^n.$$

Sia $\mathbf{x}_p(t)$ la soluzione dell'IVP, diciamo che $\mathbf{x}_p(t)$ è periodica se:

$$\exists T \in \mathbb{R}^+ : \boldsymbol{x}_p(t) = \boldsymbol{x}_p(t+T) \ \forall t \in I.$$

Definizione 7.3.2: (Orbita periodica per SD a tempo continuo). Dato un Sistema Dinamico a tempo discreto:

$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_k) \qquad \boldsymbol{x}_k \in \mathbb{R}^n.$$

Diciamo che x_p è una orbita q-periodica con $q \in \mathbb{N}$ se:

$$G^q(\boldsymbol{x}_p) = \boldsymbol{x}_p.$$

Prima di procedere definiamo la seguente categoria di funzioni:

Definizione 7.3.3: (Funzioni quasi periodiche). Una funzione H si dice Quasi Periodica se può essere rappresentata nella seguente forma:

$$H(t) = H(\omega_1 t, \omega_2 t, \dots, \omega_n t).$$

Con l'insieme di frequenze $\{\omega_i\}$ tra di loro Incommensurabili. Questo significa che non esiste una combinazione lineare di queste frequenze con coefficienti in \mathbb{Q} che si annulla.

Preso un sistema a tempo continuo non autonomo e supponiamo di avere uno spazio delle fasi con un'orbita chiusa: l'orbita è necessariamente periodica? No.

8 Campi Vettoriali e Proprietà dei SD a t. con. autonomi

Prendiamo il solito sistema:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases}$$

I campi di esistenza di tutte le quantità sono:

$$x \in \mathbb{R}^n$$
; $F: I \times \mathbb{R}^n \to \mathbb{R}^n$; $F \in C^r \ (r \ge 1)$.

Assumiamo che le soluzioni siano definite globalmente, tale sistema dinamico viene spesso chiamato Campo Vettoriale.

Facciamo un esempio per capire da dove nasce l'idea che il sistema possa presentare un campo vettoriale.

Esempio 8.0.1: (Campo Vettoriale in \mathbb{R}^2)

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = F_1(x_1, x_2, t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = F_2(x_1, x_2, t) \end{cases}$$

Supponiamo di aver trovato una soluzione particolare $x_s(t)$ con condizioni iniziali $V_0 = (x_{10}, x_{20})$.

Preso un punto appartenente alla soluzione (o orbita) $P(t, x_1, x_2)$ si ha che la tangente alla curva ha come componenti $(F_1, F_2)|_P$. Questo vettore tangente definisce il campo vettoriale e può essere associato ad ogni punto dell'orbita.

Dobbiamo aggiungere che, lo stesso sistema proiettato nello spazio delle fasi senza la componente temporale sarebbe una varietà schiacciata in due dimensioni. In questa proiezione può sembrare che le orbite si sovrappongano, questo in realtà non avviene: è dovuto all'aver effettuato una proiezione del moto reale.

Generalmente nel corso avremmo a che fare con SD autonomi.

Figura 1.15: Andamento della soluzione (ipotetica) e campo vettoriale nel punto P che appartiene alla traiettoria.

8.1 Proprietà dei sistemi dinamici a tempo continuo autonomi

Prendiamo il problema:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}).$$

Con le opportune condizioni iniziali e

$$F \in C^r \ (r > 1); \ x \in \mathbb{R}^n; \ F : \mathbb{R}^n \to \mathbb{R}^n.$$

Chiamiamo l'intervallo di esistenza della soluzione con il nome I.

Teorema 8.1.1: (Invarianza per Shift). Sia $x_s(t)$ una soluzione dell'IVP per un SD a tempo continuo autonomo con le opportune condizioni iniziali. Allora:

$$x_s(t+\tau) \ con \ t+\tau \in I$$

è soluzione.

Dimostrazione. Calcoliamo la quantità:

$$\frac{\mathrm{d}\boldsymbol{x}_s(t+\tau)}{\mathrm{d}t}.$$

Per vedere se corrisponde anch'essa alla soluzione del problema. La dimostrazione si conclude con il semplice cambio di variabili:

$$t' = t + \tau \implies \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t'}.$$

Infatti inserendo nella equazione differenziale otteniamo:

$$\frac{\mathrm{d}\boldsymbol{x}_s(t')}{\mathrm{d}t'} = F(\boldsymbol{x}_s(t')).$$

Che ci dice appunto che la soluzione traslata è ancora soluzione. \Box

Teorema 8.1.2: (<u>Unicità della soluzione</u>). Dato il sistema dinamico a tempo continuo autonomo:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}); \qquad F \in C^r \ (r \ge 1); \quad \mathbf{x} \in \mathbb{R}^n.$$

Allora $\forall x_0 \in U \subset \mathbb{R}^n$ (U l'insieme delle soluzioni) \exists soltanto una unica soluzione (orbita) che passa per x_0 .

Dimostrazione. Supponiamo esistano due soluzioni passanti per lo stesso punto x_0 :

$$oldsymbol{x}_1
eq oldsymbol{x}_2 : egin{cases} oldsymbol{x}_1(t_1) = oldsymbol{x}_0 \ oldsymbol{x}_2(t_2) = oldsymbol{x}_0 \end{cases}$$
 .

Definiamo allora

$$y_2(t) = x_2(t + t_2 - t_1).$$

Questa è ancora soluzione del sistema autonomo (per il teorema di invarianza sotto shift temporale), inoltre gode della proprietà:

$$y_2(t_1) = x_2(t_2) = x_0.$$

Ma al tempo t_1 per ipotesi anche la soluzione x_1 verifica la condizione iniziale.

Tuttavia per il teorema di unicità della soluzione di un IVP fissate le condizioni iniziali si deve avere:

$$x_1(t) = y_2(t) = x_2(t + t_2 - t_1).$$

Questo implica che le soluzioni x_1 e x_2 sono uguali: assurdo.

8.2 Flusso di fase e Campi Vettoriali

Prendiamo un SD a tempo continuo autonomo e consideriamo il flusso di fase di questo sistema con tutte le proprietà già discusse in precedenza.

Teorema 8.2.1: (Flusso e Campo Vettoriale). La relazione tra il flusso di un sistema dinamico a tempo continuo autonomo ed il suo Campo vettoriale F è:

$$F(\boldsymbol{x}) = \left. \frac{\partial \varphi(t, \boldsymbol{x})}{\partial t} \right|_{t=0}$$

Esempio 8.2.1: (Sulla relazione flusso-F)

Dato il campo vettoriale definito dalle seguente equazione differenziale:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases}$$

In questo caso si ha il seguente flusso di fase:

$$\varphi(t, x_0) = x(t) = \frac{x_0}{1 - x_0 t}$$

Dobbiamo notare che tale flusso non è definito su tutto \mathbb{R} :

- $x_0 > 0 \implies] \infty, \frac{1}{x_0}$ [è l'intervallo di definizione.
- $x_0 < 0 \implies \frac{1}{x_0}, \infty$ [è l'intervallo di definizione.
- $x_0 = 0 \implies \mathbb{R}$ è l'intervallo di definizione.

Si verifica immediatamente che, prendendo uno dei due casi non banali, la relazione tra flusso e campo vettoriale è rispettata (semplicemente derivando).

Teorema 8.2.2: (Relazione flusso-campo vettoriale per SD autonomi). $Sia \varphi(t, \mathbf{x}_0)$ associato all'IVP:

$$\begin{cases} \frac{d\mathbf{x}}{dx} = F(\mathbf{x}) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

Allora vale la relazione:

$$\frac{\partial \varphi(t, \boldsymbol{x}_0)}{\partial t} = F(\boldsymbol{x})$$

Dimostrazione.

$$\frac{\partial \varphi(t, \boldsymbol{x}_0)}{\partial t} = \lim_{\epsilon \to 0} \frac{\varphi(t + \epsilon, \boldsymbol{x}_0) - \varphi(t, \boldsymbol{x}_0)}{\epsilon} = \\
= \lim_{\epsilon \to 0} \frac{\varphi(\epsilon, \varphi(t, \boldsymbol{x}_0)) - \varphi(t, \boldsymbol{x}_0)}{\epsilon}$$
(8.1)

Visto che valgono le seguenti:

$$\varphi(t, \mathbf{x}_0) = \mathbf{x}(t); \qquad \varphi(t, \mathbf{x}_0) = \varphi(0, \varphi(t, \mathbf{x}_0))$$

Allora possiamo sviluppare ulteriormente il calcolo 9.1:

$$\begin{split} \frac{\partial \varphi(t, \boldsymbol{x}_0)}{\partial t} &= \lim_{\epsilon \to 0} \frac{\varphi(\epsilon, \boldsymbol{x}(t)) - \varphi(0, \varphi(t, \boldsymbol{x}_0))}{\epsilon} = \\ &= \lim_{\epsilon \to 0} \frac{\boldsymbol{x}(t+\epsilon) - \boldsymbol{x}(t)}{\epsilon} = \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}). \end{split}$$

Figura 1.16: Evoluzione del volume nello spazio delle fasi per SD a tempo continuo autonomo.

CAPITOLO 1. INTRODUZIONE AI SISTEMI DINAMICI

9 Teorema di Liuville

mici è il seguente:

Preso un sistema dinamico a tempo continuo autonomo vogliamo capire come evolve lo spazio delle fasi in maniera non locale (con delle condizioni iniziali) ma globale, per far questo consideriamo l'evoluzione di un intero volume dello spazio delle fasi V(t). Un importante teorema nello studio di questo tipo di sistemi dina-

Teorema 9.0.1: (<u>Teorema di Liuville</u>). Preso un sistema dinamico a tempo continuo autonomo:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \qquad F: U \subset \mathbb{R}^n \to \mathbb{R}^n; \ F \in C^r \ (r \ge 1)$$

e sia $V(0) \subset U$ un certo volume dello spazio delle fasi. Allora vale la seguente⁷:

 $\left. \frac{d}{dt} V(t) \right|_{t=0} = \int_{V(0)} \nabla F d\boldsymbol{x} \tag{9.1}$

 7 In cui si ricorda che:

$$\nabla F = \sum_{\sigma=1}^{n} \frac{\partial F_i}{\partial x_i}$$

Dimostrazione. L'evoluzione da un punto $\boldsymbol{x} \in V(0)$ a $\boldsymbol{y} \in V(t)$ è guidata dal flusso di fase:

$$\boldsymbol{y} = \varphi(t, \boldsymbol{x})$$

Possiamo pensare a \boldsymbol{y} come una trasformazione di coordinate.

$$\boldsymbol{y} = g(\boldsymbol{x})$$
 $g: \mathbb{R}^n \to \mathbb{R}^n; \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$

Le variazioni in $d\boldsymbol{x}$ e in $d\boldsymbol{y}$ sono legate dal Jacobiano della trasformazione:

$$d\mathbf{y} = \det\left(J(\mathbf{x})\right) d\mathbf{x}$$

Dove ricordiamo la struttura di J:

$$J(\boldsymbol{x}) = \left[\frac{\partial g_i}{\partial x_J}\right]_{i,J=1,2,\dots,n}$$

Quindi vale che:

$$d\boldsymbol{y} = \det\left(\frac{\partial \varphi(t, \boldsymbol{x})}{\partial \boldsymbol{x}}\right) d\boldsymbol{x}$$

Integrando ambo i membri nel volume V(0):

$$\int\limits_{V(0)} d\boldsymbol{y} = V(t) = \int\limits_{V(0)} \det \left(\frac{\partial \varphi(t, \boldsymbol{x})}{\partial \boldsymbol{x}} \right) d\boldsymbol{x}$$

A questo punto si valuta una evoluzione per tempi:

$$0 \le t \ll 1$$

e si sviluppa il flusso di fase in t = 0 al primo ordine:

$$\varphi(t, \mathbf{x}) \simeq \mathbf{x} + \frac{\partial}{\partial t} \varphi(t, \mathbf{x}) \Big|_{t=0} \cdot t + o(t^2) =$$

= $\mathbf{x} + F(\mathbf{x})t + o(t^2).$

Possiamo riscrivere la derivata di φ secondo questa ultima approssimazione:

$$\frac{\partial \varphi(t, \boldsymbol{x})}{\partial \boldsymbol{x}} = \left\{ \frac{\partial}{\partial x_J} \left[x_i + F_i(\boldsymbol{x})t + o(t^2) \right] \right\}_{i, J = 1, 2, \dots, n} = \left\{ \delta_{iJ} + \frac{\partial}{\partial x_J} F_i(\boldsymbol{x})t + o(t^2) \right\}_{i, J = 1, 2, \dots, n}$$

⁸ Lo Jacobiano in questo caso si scrive come:

Calcoliamo adesso il determinante di questa quantità⁸:

$$J(\boldsymbol{x}) = \left\{ \frac{\partial F_i}{\partial x_J} \right\}_{i,J=1,2,...,n}$$

$$\det\left(\frac{\partial}{\partial \boldsymbol{x}}\varphi(t,\boldsymbol{x})\right) \simeq 1 + \text{Tr}(J(\boldsymbol{x}))t + o(t^2)$$
(9.2)

Per una migliore comprensione dello Jacobiano si mostra un esempio pratico (mantenuto all'interno della dimostrazione):

Esempio 9.0.1: (Jacobiano in \mathbb{R}^2)

$$\left\{ \delta_{iJ} + \frac{\partial F_i}{\partial x_J} \right\}_{i,J=1,2} = \mathbb{I} + J(\boldsymbol{x})t = \begin{pmatrix} 1 + \frac{\partial F_1}{\partial x_1}t & \frac{\partial F_1}{\partial x_2}t \\ \frac{\partial F_2}{\partial x_1}t & 1 + \frac{\partial F_2}{\partial x_2}t \end{pmatrix} \equiv A.$$

$$\det(A) = 1 + t \left(\frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} \right) - \frac{\partial F_1}{\partial x_1} \frac{\partial F_2}{\partial x_2} t^2 - \frac{\partial F_1}{\partial x_2} \frac{\partial F_2}{\partial x_2} t^2$$

Approssimiamo prendendo solo i termini di ordine t ed emerge la relazione 9.2:

$$\det(A) = 1 + \operatorname{Tr}(J(\boldsymbol{x})) + o(t^2)$$

Continuiamo la dimostrazione partendo dalla equazione per il volume:

$$V(t) = \int\limits_{V_0} \det \left[rac{\partial arphi(t, oldsymbol{x})}{\partial oldsymbol{x}}
ight] doldsymbol{x}$$

Applichiamo l'approssimazione 9.2:

$$V(t) \simeq \int\limits_{V_0} \left[1 + \operatorname{Tr}(J(\boldsymbol{x}))t\right] d\boldsymbol{x} = V(0) + t \int\limits_{V(0)} \operatorname{Tr}(J(\boldsymbol{x})) d\boldsymbol{x}$$

A questo punto basta portare il termine V(0) a sinistra e dividere per il tempo per concludere:

$$\lim_{t\to 0} \frac{V(t)-V(0)}{t} = \left.\frac{\mathrm{d}V(t)}{\mathrm{d}t}\right|_{t=0} = \int\limits_{V(0)} d\boldsymbol{x} \nabla F$$

Cambiando la notazione ed approssimando la φ in punti diversi da t=0 ci si accorge che il teorema deve valere \forall t.

Esempio 9.0.2: $(\nabla F \text{ costante})$

Preso un campo vettoriale del tipo: $\nabla F = k$ costante possiamo applicare il teorema:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \int_{V(t)} k d\boldsymbol{x} = k(V(t))$$

Abbiamo allora una equazione differenziale per V, la soluzione è:

$$V(t) = e^{kt}V(0)$$

A seconda del segno di k si ha una espansione/contrazione dello spazio delle fasi, l'unico modo per avere una conservazione del volume è k=0.

9.1 SD a tempo continuo autonomi Conservativi e Dissipativi

Definizione 9.1.1: (Sistema dinamico conservativo). Dato un sistema dinamico a tempo continuo autonomo descritto da un campo vettoriale F, il sistema si dice conservativo se vale:

$$\nabla F = 0$$

Definizione 9.1.2: (Sistema dinamico dissipativo). Un sistema dinamico a tempo continuo autonomo descritto dal un campo vettoriale F si dice dissipativo se:

$$\nabla F < 0$$

Esempio 9.1.1: (Sistema Hamiltoninano)

Prendiamo un sistema di variabili $\boldsymbol{x} \in \mathbb{R}^n$ e $\boldsymbol{y} \in \mathbb{R}^n$ descritto da un funzionale H:

$$H: \mathbb{R}^{2n} \to \mathbb{R} \qquad H \subset C^2$$

e sia $(x,y) \in U \subset \mathbb{R}^{2n}$ l'insieme di definizione del problema. Le equazioni che descrivono il sistema sono:

$$\begin{cases} \frac{\partial x_i}{\partial t} = \frac{\partial H}{\partial \frac{\partial y_i}{\partial x}} \\ \frac{\partial y_i}{\partial t} = -\frac{\partial H}{\partial x_i} \end{cases}$$

Possiamo dimostrare che questo campo è conservativo. La forma vettoriale del campo F in questo caso è:

$$F(\boldsymbol{x}, \boldsymbol{y}) = \left(\frac{\partial H}{\partial \boldsymbol{y}}; -\frac{\partial H}{\partial \boldsymbol{x}}\right) = \left(\frac{\partial H}{\partial y_1}, \frac{\partial H}{\partial y_2}, \dots, \frac{\partial H}{\partial y_n}; -\frac{\partial H}{\partial x_1}, \dots, -\frac{\partial H}{\partial x_n}\right)$$

Calcoliamo la divergenza del campo⁹:

 9 ()_J è la componente J esima.

$$\nabla F = \sum_{J=1}^{n} \frac{\partial}{\partial x_J} \left(\frac{\partial H}{\partial \boldsymbol{y}} \right)_J + \sum_{J=1}^{n} \frac{\partial}{\partial y_J} \left(-\frac{\partial H}{\partial \boldsymbol{x}} \right)_J =$$

$$= \sum_{J=1}^{n} \frac{\partial^2 H}{\partial x_J \partial y_J} - \sum_{J=1}^{n} \frac{\partial^2 H}{\partial y_J \partial x_J} = 0.$$

In cui l'ultima uguaglianza è vera per il teorema di Schwartz e deve valere che $H\subset C^2$.

Esempio 9.1.2: (Sistema con forzante periodica)

Prendiamo il sistema descritto dalla seguente equazione differenziale:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\mu \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = G\cos(\omega t)$$

Possiamo riscriverlo come un sistema di equazioni del primo ordine utilizzando le variabili:

$$\begin{cases} x_1 = x \\ x_2 = \frac{\mathrm{d}x}{\mathrm{d}t} \\ \theta = \omega t \end{cases}$$

Il campo vettoriale è un funzionale definito negli insiemi:

$$F: \mathbb{R}^2 \times S^1 \to \mathbb{R}^2 \times S^1$$

In particolare ha la seguente struttura:

$$F = (x_2, -\mu x_2 - \omega^2 x_1 + G\cos(\theta), \ \omega)$$

Ed in conclusione possiamo dire che:

$$\nabla F = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial \theta} = -2\mu$$

Esempio 9.1.3: (Calcolo numerico: Attrattore di Lorenz) Preso il seguente sistema dinamico:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = \rho x - y - xz \\ \dot{z} = -\beta z + xy \end{cases}$$

Utilizzando i seguenti parametri:

$$\sigma = 10; \quad \rho = 28; \quad \beta = \frac{8}{3}$$

Mostrare che il sistema dinamico è conservativo.

9.2 Mappe (autonome) Conservative o Dissipative

Data una mappa del tipo:

$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_k) \qquad G: U \to \mathbb{R}^n; \ \boldsymbol{x} \in U \subset \mathbb{R}^n$$

Si hanno le seguenti:

Definizione 9.2.1: (Mappa Dissipativa). Se vale la seguente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k}<1$$

La mappa si dice Dissipativa.

Definizione 9.2.2: (Mappa Conservativa). Se vale la seguente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k}=1$$

La mappa si dice Conservativa.

Definizione 9.2.3: (Mappa Espansiva). Se vale la seguente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k} > 1$$

La mappa si dice Espansiva.

Dove J(G) è lo Jacobiano della trasformazione G.

Esempio 9.2.1: (Mappa di Henon)

Prendiamo il seguente sistema dinamico a tempo discreto autonomo:

$$\begin{cases} x_{n+1} = 1 + y_n - \alpha x_n^2 \\ y_{n+1} = \beta x_n \end{cases}$$

Le quantità in gioco sono:

$$V_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix} \implies V_{n+1} = G(V_n)$$

$$G = \begin{pmatrix} G_1(\mathbf{V}_n) \\ G_2(\mathbf{V}_n) \end{pmatrix} = \begin{pmatrix} 1 + y_n - \alpha x_n^2 \\ \beta x_n \end{pmatrix}$$

Lo Jacobiamo della trasformazione G è definito dalla matrice delle derivate:

$$J(G) = \begin{pmatrix} -2\alpha x_n & 1\\ \beta & 0 \end{pmatrix} \implies \det(J) = -\beta$$

Nota la matrice J possiamo anche affermare subito che la mappa è invertibile per $\beta \neq 0$. L'invertibilità non garantisce che la mappa presenti un comportamento "tranquillo", questa mappa infatti può mostrare chaos deterministico (e lo vedremo).

Si accenna qui al fatto che una mappa 1D invertibile non può presentare caos, questo non è più vero per dimensioni maggiori di 1.

Esempio 9.2.2: (Mappa logistica)

$$x_{n+1} = \mu x_n (1 - x_n)$$

Con $\mu \in [0, 4]$ e $x_n \in [0, 1]$.

In questo caso lo Jacobiano è definito dalla semplice derivata della mappa rispetto a x_n :

$$J(G) = \mu - 2\mu x_n = \mu(1 - 2x_n)$$

Quindi il sistema può cambiare drasticamente il suo comportamento al variare di μ :

- $\mu = 1 \implies J(G) = 1 2x_n$. In questo caso se $x_n \in [0, 1/2[$ il sistema dinamico è invertibile e la mappa è dissipativa.
- $\mu = 2 \implies J(G) = 2 4x_n$. In questo caso se $x_n \in [0, 1/4[$ la mappa può presentare un andamento espansivo in quando $\det(J) = J > 1$.

Per i sistemi "complessi" (caotici) lo spazio delle fasi può convergere (in un punto o in una intera zona) oppure può anche espandersi (a meno di vincoli, come può essere la conservazione della energia).

10 Phase Portrait

Si definisce Phase Portrait (PP) una determinata collezione di orbite nello spazio delle fasi.

Possiamo dire che il PP è una specie di arte: per fare un buon PP è necessario selezionare le orbite significative del sistema, quelle che esprimono al meglio tutta la possibile dinamica che il sistema può presentare.

Esempio 10.0.1: (Oscillatore armonico)

Partiamo da un esempio semplice di PP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases}$$

Espresso in termini di campo vettoriale:

$$V = \begin{pmatrix} x \\ y \end{pmatrix}; F(V) = \begin{pmatrix} y \\ -x \end{pmatrix} = \begin{pmatrix} F_1(V) \\ F_2(V) \end{pmatrix}$$

Il sistema presenta la seguente legge di conservazione:

$$\frac{\mathrm{d}}{\mathrm{d}t}(x^2+y^2)=0 \qquad \forall \; \boldsymbol{V}_0 \in \mathbb{R}^2$$

è possibile dimostrarlo semplicemente esplicitando le derivate ed inserendo le equazioni del moto.

Questa legge di conservazione ci permette di concludere subito che le orbite descritte dal sistema nello spazio delle fasi sono circonferenze centrate nell'origine.

Figura 1.17: Phase Portrait per l'oscillatore armonico.

$$x^2 + y^2 = \cos t = r_0^2$$
 $r_0 = \sqrt{x_0^2 + y_0^2}$

La direzione di rotazione è data dai segni nel campo vettoriale, ad esempio scegliendo $(x_0, y_0) = (1, 0)$ si vede che il campo è: $F_0 = (0, -1)$: rotazione antioraria.

Un'altra riprova del fatto che le orbite sono circonferenze è il fatto che il campo vettoriale è sempre tangente al vettore \boldsymbol{V} nello spazio delle fasi:

$$\begin{pmatrix} -x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 0 \qquad \forall \ (x, y) \in \mathbb{R}^2$$

Esempio 10.0.2: (Oscillatore di Duffling (semplificato)) Prendiamo il sistema descritto dalle seguenti equazioni:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = x - x^3 - by \end{cases}$$

Questo rappresenta una semplificazione dell'oscillatore di Duffling, nel sistema originale si ha in più una forzante periodica.

Il sistema presenta due punti che "arrestano la dinamica", ovvero ci sono delle condizioni iniziali per il quale vale che:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = 0 \qquad \forall \boldsymbol{x} = (x, y) \in \mathbb{R}^2$$

Infatti scegliendo $\boldsymbol{x}_0=(1,0)$ oppure $\boldsymbol{x}_0=(-1,0)$ entrambe le equazioni differenziali si annullano.

Questi punti sono detti *punti fissi*, gli approfondiremo nelle prossime sezioni.

Capitolo 2

Studio della stabilità delle soluzioni

1 Soluzioni stazionarie di SD

1.1 Sistema dinamico a tempo continuo

Definizione 1.1.1: (Stato stazionario o Soluzione Stazionaria per SD autonomo). Preso il sistema dinamico:

$$\frac{d\boldsymbol{x}}{dt} = F(\boldsymbol{x}) \qquad F: U \to \mathbb{R}^n; F \in C^r \ (r \ge 1); \ \boldsymbol{x} \in \mathbb{R}^n$$

Uno stato $\mathbf{x}_s \in \mathbb{R}^n$ si dice stazionario se è soluzione del SD e vale che $F(\mathbf{x}_s) = 0$.

La definizione non è valida nel caso di sistemi non autonomi.

Esempio 1.1.1: (Sistema non autonomo non ha sol. Stazionarie) Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + t\\ x(0) = x_0 \end{cases}$$

In questo caso la soluzione è dipendente dal tempo (in modo indipendente da $t - t_0$):

$$x(t) = e^{-t}(x_0 + 1) + t - 1$$

Quindi non può esistere la soluzione stazionaria in questo caso: non esiste una soluzione che annulli la F al variare di t.

Vediamo adesso un esempio molto esplicativo per il Phase Portrait e per le soluzioni stazionarie.

Le soluzioni stazionarie devono rispettare la seguente equazione:

$$-x_s + ax_s^3 = 0 \implies \begin{cases} x_s = 0 & \forall a \in \mathbb{R} \\ x_s = \pm 1/\sqrt{a} & \forall a > 0 \end{cases}$$

Si vede che al variare del parametro di controllo a compaiono o scompaiono multipli punti fissi, questa è una peculiarità dei sistemi non lineari che approfondiremo in seguito.

1) a = 0. In questo caso il sistema è lineare:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x$$

Vogliamo classificare l'unica soluzione stazionaria in $x_s = 0$. Applicando una perturbazione a questa soluzione il sistema torna a stazionarietà o inizia una evoluzione diversa?

Per rispondere a questa domanda si può prendere delle condizioni iniziali a destra ed a sinistra dell'unico punto fisso come in figura 2.1: x_0^+, x_0^- .

Si può subito notare che in x_0^+ si ha F(x) negativa, quindi il punto tenderà ad avvicinarsi all'origine, viceversa per x_0^- . La soluzione stazionaria è quindi stabile.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3$$

Le orbite hanno lo stesso comportamento del caso analizzato in precedenza, qui però si ha un avvicinamento all'origine non lineare per via del termine cubico (figura 2.2).

Le direzioni sono tracciate sempre valutando il segno di F(x), notiamo subito che il punto nell'origine attrae la dinamica (è ancora stabile) mentre le altre due soluzioni stazionare non

Figura 2.1: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a=0.

Figura 2.2: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a < 0, in arancio il punto fisso.

Figura 2.3: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a > 0, in arancione le 3 soluzioni stazionarie.

godono della stessa proprietà.

Ponendo un punto nei pressi di $x_s = \pm 1/\sqrt{a}$ il SD tenderà a divergere o ad avvicinarsi a x = 0, queste soluzioni sono quindi stazionarie ma instabili.

L'esempio precedente mostra che per risolvere il sistema e determinare la dinamica non è sempre necessario trovare la soluzione analitica, è possibile determinare i punti fissi e valutarne la stabilità.

In questo modo si ottiene il quadro complessivo dell'evoluzione del sistema (possiamo disegnare una approssimazione del Phase Portrait). Questo tipo di approccio è stato inventato da un grande esperto di sistemi dinamici: Henry Poicaré.

1.2 Interpretazione fisica: Gradient Dynamical System

Quando è possibile esprimere il SD (a tempo continuo, autonomo) nel seguente modo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) = -\frac{\mathrm{d}V(\boldsymbol{x})}{\mathrm{d}t}$$

Allora il sistema si presta ad una interpretazione intuitivamente semplice: $V(\boldsymbol{x})$ rappresenta il potenziale in cui il corpo che compie la traiettoria $\boldsymbol{x}(t)$ si trova immerso.

Riprendendo l'esempio unidimensionale visto sopra:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3 = -\frac{\mathrm{d}V(x)}{\mathrm{d}t}$$

Possiamo integrare per ottenere il potenziale:

$$V(x) = \frac{x^2}{2} - \frac{a}{4}x^4$$

Tale potenziale gode delle seguenti proprietà:

- è simmetrico V(x) = V(-x).
- $\lim_{x \to \pm \infty} V(x) = -\infty$.
- Si annulla in $(0, \pm \sqrt{2/a})$ se a > 0, altrimenti si annulla solo nell'origine.

Per a > 0 il potenziale assume la forma a doppio monte in figura 2.4, negli altri due casi invece si ha un paraboloide con minimo in x = 0: l'unica soluzione stazionaria.

Figura 2.4: Andamento del potenziale per l'esempio sopra nel caso a>0, i punti arancioni corrispondono alle 3 soluzioni stazionarie.

Esempio 1.2.1: (Punti fissi dell'oscillatore di Duffling) Analizziamo la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + k \frac{\mathrm{d}x}{\mathrm{d}t} + \alpha x + \beta x^3 = A\cos(\omega t)$$

Valutiamo il sistema nel caso semplificato:

$$A = 0$$
 $\alpha = 1$ $\beta = -1$ $k > 0$

Selezionare l'ultimo parametro nel dominio positivo (k > 0) significa dire che il sistema presenta dissipazione.

Conduciamo il SD ad un sistema di equazioni differenziali del primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y \equiv F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -ky - x + x^3 \equiv F_2(x, y) \end{cases}$$

Possiamo ricavare i punti fissi richiedendo l'annullamento di $F = (F_1, F_2)$:

$$\begin{cases} y = 0 \\ -ky - x + x^3 = 0 \end{cases}$$

Prendendo il caso semplice in cui k=0, è immediato trovare i seguenti punti fissi:

$$V_{1s} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $V_{2s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $V_{3s} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

Lo studio della stabilità di questi punti non è scontato. Si deve considerare le direzioni di tutte le orbite in x e in y a destra e sinistra di ogni punto fisso.

1.3 Stati Stazionari di SD a tempo discreto autonomo

Definizione 1.3.1: (Stato Stazionario SD a tempo discreto). Data la mappa $\mathbf{x}_{k+1} = G(\mathbf{x}_k)$ con $G: U \subset \mathbb{R}^n \to \mathbb{R}^n$ $e \ \mathbf{x}_k \in U$. Una soluzione \mathbf{x}_s si dice stazionaria se:

$$\boldsymbol{x}_s = G(\boldsymbol{x}_s)$$

Questo in termini di risposta del sistema implica che l'input deve essere uguale all'output. Esempio 1.3.1: (Mappa logistica)

Prendiamo la solita mappa logistica:

$$x_{k+1} = \mu x_k (1 - x_k)$$
 $x_k \in [0, 1]; \ \mu \in [0, 4]$

La richiesta di stato stazionario si traduce in:

$$x_s = G(x_s) \implies x_s = \mu x_s (1 - x_s)$$

Risolvendo l'equazione si trovano i candidati:

$$x_{s_1} = 0$$
$$x_{s_2} = \frac{\mu - 1}{\mu}.$$

Visto che la dinamica è definita tra 0 e 1 la condizione di esistenza del punto fisso x_{s_2} è $\mu>1.$

Esempio 1.3.2: (Stati stazionari della Mappa di Henon)

$$\begin{cases} x_{n+1} = 1 + y_n - \alpha x_n^2 \\ y_{n+1} = \beta x_n \end{cases}$$

Cerchiamo uno stato stazionari $\boldsymbol{V}_s = \begin{pmatrix} x_s \\ y_s \end{pmatrix}$ tale che:

$$\boldsymbol{V}_s = G(\boldsymbol{V}_s)$$

Quindi serve che:

$$\begin{cases} x_s = 1 + y_s - \alpha x_s^2 \\ y_s = \beta x_s \end{cases} \implies \begin{cases} x_s = 1 + \beta x_s - \alpha x_s^2 \\ y_s = \beta x_s \end{cases} \begin{cases} \alpha x_s^2 + x_s (1 - \beta) - 1 = 0 \\ y_s = \beta x_s \end{cases}$$

Cercando soluzioni reali la condizione di esistenza per la prima equazione è:

$$(1-\beta)^2 + 4\alpha \ge 0 \implies \alpha \ge \frac{-(1-\beta)^2}{4}$$

Scegliendo valori per il quale la mappa presenta un comportamento complesso:

$$\alpha = 1.4, \ \beta = 0.3$$

Abbiamo che la condizione di esistenza è rispettata. Le soluzioni stazionarie della mappa sono:

$$oldsymbol{V}_{s_1} = \left(rac{-(1-eta)+\sqrt{(1-eta)^2+4lpha}}{2lpha}
ight) \quad oldsymbol{V}_{s_1} = \left(rac{-(1-eta)-\sqrt{(1-eta)^2+4lpha}}{2lpha}
ight)$$

2 Stabilità delle soluzioni

Quando si parla di stabilità di un sistema si intende la stabilità rispetto ad una perturbazione esterna, osservandone il comportamento dopo la perturbazione.

Inoltre si parla di stabilità sempre in un contesto asintotico: serve che il sistema sia definito in $t \to \infty$. Alcuni teoremi che ci garantisce l'esistenza della soluzione asintotica per sistemi non autonomi sono i seguenti.

Teorema 2.0.1: (Bounded Global Existence). Preso un sistema dinamico:

$$egin{cases} rac{doldsymbol{x}}{dt} = F(oldsymbol{x}) \ oldsymbol{x}(0) = oldsymbol{x}_0 \ oldsymbol{x} \in \mathbb{R}^n \ F : \mathbb{R}^n
ightarrow \mathbb{R}^n \end{cases}$$

Se valgono le seguenti condizioni:

2.
$$F \in limitata: \exists M > 0: |F(x)| \leq M$$
.

Allora la soluzione dell'IVP è globalmente definita.

Teorema 2.0.2: (Esistenza Globale della soluzione). Se F è globalmente Lipshitziana (k(x) = k indipendente da x) allora la soluzione è globalmente definita.

Definizione 2.0.1: (Stabilità secondo Lyapunov). Dato il sistema dinamico a tempo continuo autonomo: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n, \ F: \mathbb{R}^n \to \mathbb{R}^n \ e \ sia \ \mathbf{x}_p(t) \ una \ soluzione \ dell'IVP.$

Diciamo che $x_p(t)$ è stabile secondo Lyapunov se

$$\forall \ \epsilon > 0 \quad \exists \ \delta(\epsilon) > 0 :$$

$$se ||\boldsymbol{x}(0) - \boldsymbol{x}_p(0)|| < \delta(\epsilon) \implies ||\boldsymbol{x}(t) - \boldsymbol{x}_p(t)|| < \epsilon \quad \forall \ t > 0$$

 $Con \ x(t) \ soluzione \ dell'IVP.$

Definizione 2.0.2: (Stabilità asintotitca). Nelle stesse ipotesi della precedente definizione diciamo che $x_p(t)$ (soluzione di riferimento) è asintoticamente stabile se è:

1. Stabile secondo Lyapunov.

2.
$$\lim_{t \to \infty} ||x(t) - x_p(t)|| = 0.$$

Figura 2.5: Concettualmente la soluzione e stabile se tutte le altre soluzioni con diverse condizioni iniziali nel suo intorno rimangono nel tubo di flusso nel tempo.

Figura 2.6: Concettualmente se la soluzione è asintotica allora tutte le soluzioni nell'intorno cadono in essa per $t \to \infty$.

Esempio 2.0.1: (Sistema stabile ma non stabile asintoticamente)

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = 0\\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \end{cases}$$

La soluzione è banalmente: $\boldsymbol{x}_p = \boldsymbol{x}_0$. Questa soluzione è stabile secondo Lyapunov:

Presa un'altra soluzione x tale che $x(0) = x_0$.

$$\epsilon > 0 \quad ||\boldsymbol{x}_p(t) - \boldsymbol{x}(t)|| = ||\boldsymbol{x}_0 - \boldsymbol{y}_0|| < \epsilon$$

Allora basta prendere $\delta(\epsilon) = \epsilon$.

Notiamo che questa soluzione non è asintoticamente stabile, le due soluzioni restano sempre distanti nel tempo.

2.1 Stabilità a tempo discreto

La cosa particolare della seconda definizione è che condizione 2) non basta per dire che una soluzione sia stabile anche secondo Lyapunov.

Definizione 2.1.1: (Stabilità per SD a tempo discreto autonomi secondo Lyapunov). Data la mappa

$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_k) \ con\boldsymbol{x}_k \in \mathbb{R}^n \ e \ G : \mathbb{R}^n \to \mathbb{R}^n.$$

Diciamo che un orbita¹⁰ $\{u_k\}$ è stabile secondo Lyapunov se

$$\forall \epsilon > 0 \ \exists \delta(\epsilon) > 0$$
:

Per ogni altra orbita V_k per la quale vale che:

$$||\boldsymbol{V}_m - \boldsymbol{u}_m|| < \delta(\epsilon), \ m \in \mathbb{N} \implies ||\boldsymbol{V}_K - \boldsymbol{u}_K|| < \epsilon \quad \forall K > m$$

Definizione 2.1.2: (Stabilità asintotica di SD a tempo discreto). Nelle stesse ipotesi della definizione precedente, diciamo che l'orbita $\{u_k\}$ è asintoticamente stabile se:

- 1. è stabile secondo Lyapunov.
- 2. $\lim_{k\to\infty} ||V_k u_k|| = 0$ per ogni altra orbita V_k nell'intorno $\delta(\epsilon)$.

Figura 2.7: L'idea è che una soluzione che si trovi ad un certo punto a meno di $\delta(\epsilon)$ di distanza da x_s nel tempo iniziale non è in grado di uscire dalla bolla di raggio ϵ .

 10 $\{u_k\}$ Inteso come insieme di valori

2.2 Stabilità secondo Lyapunov di stati stazionari di SD a tempo continuo

Sia $\frac{d\mathbf{x}}{dt} = F(\mathbf{x})$ con \mathbf{x}_s stazionario ($F(\mathbf{x}_s) = 0$). Ricordiamo che lo stato stazionario è anch'esso una soluzione.

Definizione 2.2.1: (Stabilità di stato stazionario secondo Lyapunov). Si dice che x_s è stabile secondo Lyapunov se

$$\forall \epsilon > 0 \exists \ \delta(\epsilon) > 0:$$

$$se \ ||\boldsymbol{x}_0 - \boldsymbol{x}_s|| < \delta(\epsilon) \implies ||\boldsymbol{x}(t) - \boldsymbol{x}_s|| < \epsilon$$

Definizione 2.2.2: (Stabilità asintotica di stato stazionario). Nelle stesse ipotesi della definizione precedente diciamo che x_s è asintoticamente stabile se

- 1. x_s è stabile secondo Lyapunov.
- 2. $\lim_{t\to\infty} ||\boldsymbol{x}(t) \boldsymbol{x}_s|| = 0.$

Esempio 2.2.1: (Vinograd)

In un articolo di Vinograd del 1957 (ineguality of the method of deterministic experiments for the study of nonlinear diff. equations) è stato dimostrato che il seguente sistema:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2(y-x) + y^5 = F_1(x,y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = y^2(y-2x) = F_2(x,y) \end{cases}$$

Che l'unico stato stazionario è ${m V}_s=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (per casa) e che ${m V}_s$ è tale che:

$$\lim_{t \to \infty} ||\boldsymbol{V}(t) - \boldsymbol{V}_s|| = 0$$

Quindi lo stato stazionario è asintoticamente stabile ma non è stabile secondo Lyapunov.

2.3 Esempi sulla stabilità secondo Lyapunov di soluzioni di ODE

Esempio 2.3.1: (1)

Prendiamo il campo vettoriale definito come:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = -a^2 x & a \in \mathbb{R}, a \neq 0 \\ x(0) = x_0 \end{cases}$$

La soluzione dell'IVP è: $x_p(t) = x_0 e^{-a^2 t}$. Abbiamo inoltre lo stato stazionario nullo: $x_s = 0$.

Dimostriamo che la soluzione stazionaria è stabile secondo Lyapunov, ovvero che:

$$\forall \epsilon > 0 \text{ (assegnato)}: |x(t) - x(s)| < \epsilon$$

$$|x(t) - x_s| = |x_0 e^{-a^2 t} - 0| = e^{-a^2 t} |x_0| \le |x_0|$$

Basta allora prendere $\delta(\epsilon) = \epsilon$:

$$\implies \forall x_0: |x_0| < \delta(\epsilon) \rightarrow |x(t) - x_s| < \epsilon$$

Quindi la soluzione è stabile secondo Lyapunov. Inoltre:

$$|x(t) - x_s| = \left| x_0 e^{-a^2 t} \right| \to 0 \text{ con } t \to \infty$$

Allora x_s è anche asintoticamente stabile.

Esempio 2.3.2: (2)

Prendiamo il campo vettoriale non autonomo¹¹:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -tx$$

Dimostrare (per casa) che $x(t)=x_0\exp\left(-\frac{1}{2}(t^2-t_0^2)\right)$ soddisfa l'IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -tx\\ x(t_0) = x_0 \end{cases}$$

Dimostriamo adesso che la soluzione di riferimento:

$$x_p(t) = x_p \exp\left(-\frac{1}{2}(t^2 - t_0^2)\right)$$

è stabile secondo Lyapunov.

$$|x(t) - x_p(t)| = \left| x_0 e^{-1/2(t^2 - t_0^2)} - x_p e^{-1/2(t^2 - t_0^2)} \right|$$

Se $t \ge t_0 \implies \exp(-\frac{1}{2}(t^2 - t_0^2)) < 1$ Quindi:

$$|x(t) - x_p(t)| \le |x_0 - x_p| < \epsilon \implies \delta(\epsilon) = \epsilon$$

La soluzione è anche asintoticamente stabile.

$$\lim_{t \to \infty} |x(t) - x_p(t)| = 0$$

¹¹ Tutte le definizioni sono analoghe, l'unica modifica da tenere in considerazione è che l'intorno del punto iniziale (il tubo) può essere dipendente dal tempo.

Esempio 2.3.3: (3)

Dato il campo vettoriale in \mathbb{R}^2 :

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x - 10y = F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 10x - y = F_2(x, y) \end{cases}$$

L'unico stato stazionario è dato da:

$$\begin{cases} x + 10y = 0 \\ 10x - y = 0 \end{cases} \implies \mathbf{V}_s P \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Per casa trovare la generica soluzione dell'IVP con

$$x(0) = x_0, \quad y(0) = y_0$$

Verificare che la soluzione è:

$$x(t) = e^{-t} [x_0 \cos(10t) - y_0 \sin(10t)]$$

$$y(t) = e^{-t} [x_0 \sin(10t) + y_0 \cos(10t)].$$

Vogliamo dimostrare che \boldsymbol{V}_s è stabile secondo Lyapunov.

$$\begin{split} |\boldsymbol{V}(t) - \boldsymbol{V}_s| = & e^{-t} \left[x_0^2 \cos^2(10t) + \right. \\ & + y_0^2 \sin^2(10t) - 2x_0 y_0 \sin(10t) \cos(10t) + \\ & + x_0^2 \sin^2(10t) + y_0^2 \cos^2(10t) + \\ & + 2x_0 y_0 \sin(10t) \cos(10t) \right] = \\ & = e^{-t} \left[x_0^2 + y_0^2 \right]^{1/2}. \end{split}$$

Visto che stiamo considerando t > 0 allora:

$$|V(t) - V_s| < \epsilon \text{ se } \delta(\epsilon) = \epsilon \text{ e } \left[x_0^2 + y_0^2\right]^{1/2} < \epsilon$$

Quindi V_s è stabile secondo Lyapunov.

Osserviamo anche che V_s è anche asintoticamente stabile:

$$\lim_{t \to \infty} |\boldsymbol{V}(t) - \boldsymbol{V}_s| = 0$$

La definizione di stabilità secondo Lyapunov ha una utilità concettuale poiché ci da una idea di quello che è un punto stabile, a livello applicativo non è banale dimostrare la stabilità: in moltissimi casi nemmeno conosciamo le soluzioni!

Quello che è possibile fare è sviluppare una teoria sui SD a tempo continuo (e discreto) che ci consente di testare la definizione di Lyapunov in modo diretto.

3 Studio della stabilità mediante linearizzazione

Prendiamo il sistema dinamico autonomo a tempo continuo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n, \quad F : \mathbb{R}^n \to \mathbb{R}^n, \quad F \in C^r, \ r \ge 2$$

Supponiamo che le soluzioni esistano globalmente.

Figura: Se l'orbita è stabile allora y(t) è confinata ad un tubo di flusso

La soluzione allora è definita dalla somma della soluzione imperturbata e del disturbo.

$$\boldsymbol{x(t)} = \boldsymbol{x}_p(t) + \boldsymbol{y}(t)$$
 con $|\boldsymbol{y}(t)| \ll 1$

Quindi possiamo dire che:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}\boldsymbol{x}_p}{\mathrm{d}t} + \frac{\mathrm{d}\boldsymbol{t}}{\mathrm{d}t} = F(\boldsymbol{x}_p + \boldsymbol{y}_p)$$

Definizione 3.0.1: (Funzione differenziabilie). Sia $F: I \to J$ con $I \subset \mathbb{R}^n$, $J \subset \mathbb{R}^n$. $I \ \dot{e}$ un aperto $e \ \mathbf{x}_0 \in I$.

Si dice che F è differenziabile in \mathbf{x}_0 se $\exists DF(\mathbf{x}_0) \in L(\mathbb{R}^n, \mathbb{R}^n)$ (spazio delle applicazioni lineari) tale che:

$$\lim_{|\boldsymbol{h}|\to 0} \frac{|F(\boldsymbol{x}_0 + \boldsymbol{h}) - F(\boldsymbol{x}_0) - DF(\boldsymbol{x}_0)\boldsymbol{h}|}{|\boldsymbol{h}|} = 0$$

Teorema 3.0.1: (Sullo Jacobiano). Sia $F: I \to J$, $I \subset \mathbb{R}^n$, $J \subset \mathbb{R}^n$, supponiamo I aperto.

Se F è differenziabile in \mathbf{x}_0 allora:

- 1. esistono le derivate parziali: $\frac{\partial F_I}{\partial x_J}\Big|_{x_0}$ con $i, J = 1, 2, \dots n$.
- 2. $\forall h \in I \text{ si ha che:}$

$$[DF(\boldsymbol{x}_0)\boldsymbol{h}]|_i = \sum_{J=1}^n \frac{\partial F_i}{\partial x_J} h_J, \qquad [DF(x_0)]|_{i,J} = \frac{\partial F_i}{\partial X_J}$$

Tornando alla nostra linearizzazione:

$$\frac{\mathrm{d}\boldsymbol{x}_p(t)}{\mathrm{d}t} + \frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = F(\boldsymbol{x}_p(t) + \boldsymbol{y}(t)) \simeq F(\boldsymbol{x}_p(t)) + DF(\boldsymbol{x}_p(t))\boldsymbol{y} + O(\boldsymbol{y})$$

Quindi eliminando l'identità nella precedente equazione ci si riduce alla sola dinamica della perturbazione:

$$\frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = DF(\boldsymbol{x}_p(t))\boldsymbol{y} \equiv J(\boldsymbol{x}_p)\boldsymbol{y}$$

Figura 2.8: Perturbazione (y(t)) della soluzione $x_p(t)$.

Questo campo vettoriale ha una soluzione soluzione stazionaria:

$$oldsymbol{y}_s = egin{pmatrix} 0 \\ dots \\ 0 \end{pmatrix}$$

L'unica cosa da tenere a mente è che $J(\boldsymbol{x}_p(t))$ potrebbe dipendere dal tempo (se $\boldsymbol{x}_p(t)$ non è una soluzione stazionaria il sistema non è autonomo). Per adesso ci limitiamo a considerare le soluzioni $\boldsymbol{x}_p(t)$ stazionarie: \boldsymbol{x}_s :

$$\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t} = J(\boldsymbol{x}_s) \boldsymbol{y}$$
 $J(\boldsymbol{x}_s)$: matrice costante

Teorema 3.0.2: (Stabilità delle soluzioni stazionarie). Dato $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \ con \ \mathbf{x} \in \mathbb{R}^n, \ F : \mathbb{R}^n \to \mathbb{R}^n, \ F \in C^r, \ r \geq 2 \ e \ sia \ \mathbf{x}_s \ tale \ che \ F(\mathbf{x}_s) = 0.$

Se tutti gli autovalori di $J(x_s)$ hanno parte reale negativa allora x_s è asintoticamente stabile.

Teniamo presente che la stabilità espressa dal teorema è locale, se si può dimostrare anche che la condizione vale anche per intorni arbitrari allora possiamo decretare anche la stabilità globale.

Potrei utilizzare lo stesso approccio per un sistema non autonomo? Gli autovalori della matrice J non autonoma sono ricavabili analiticamente.

Se in tal caso trovassi autovalori con parte reale minore di zero potrei concludere la stabilità del sistema? **NO**.

Esempio 3.0.1: (Il teorema non funziona per sistemi non autonomi)

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A(t) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Con:

$$A(t) = \begin{pmatrix} -1 + \frac{3}{2}\cos^2 t & 1 - \frac{3}{2}\sin t\cos t \\ -1 - 3\sin t\cos t & -1 + \frac{3}{2}\sin^2 t \end{pmatrix}$$

Prendendo il vettore nullo avrei uno stato stazionario per il sistema. Cerchiamo gli autovalori della matrice A:

$$\det(A(t) - \Lambda \mathbb{I}) = (-1 + \frac{3}{2}\cos^2 t - \Lambda)(-1 + \frac{3}{2}\sin^2 t - \Lambda) + (1 + \frac{3}{2}\sin t \cos t)(1 - \frac{3}{2}\sin t \cos t) = 0.$$

Dalla equazione secolare si ottiene:

$$\Lambda^2 + \frac{\Lambda}{2} + \frac{1}{2} = 0 \implies \Delta = \frac{1}{4} - 2 = -\frac{7}{4} < 0$$

Quindi abbiamo autovalori complessi coniugati (CC):

$$\Lambda_{12} = \frac{-1 \pm i \sqrt{\frac{7}{4}}}{4} \implies \operatorname{Re}(\Lambda_{12}) = -\frac{1}{4}$$

Applicando alla lettera il teorema la soluzione stazionaria deve essere stabile. Se consideriamo invece:

$$x_1(t) = e^{t/2} \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$
 $x_1(t) = e^{-t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$

Si scopre che queste due sono soluzioni indipendenti (per casa). Quindi prendendo queste due soluzioni per descrivere la soluzione del sistema dinamico e ponendoci in un intorno della soluzione stazionaria si vede che una direzione non è stabile (x_1) , mentre una direzione è stabile x_2 . Il fatto che la soluzione in x_1 diverga rende il punto $V_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ instabile.

Questo dimostra che quando la matrice Jacobiana non è autonoma il teorema non si applica.

Esempio 3.0.2: (Sistema autonomo)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -y + x(x^2 + y^2) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y(x^2 + y^2) \end{cases} = \begin{pmatrix} F_1(x, y) \\ F_2(x, y) \end{pmatrix}$$

L'unico stato stazionario in questo caso è il vettore $V_s = (0,0)$. Per determinare la stabilità come prima cosa dobbiamo calcolare la generica matrice J:

$$J(\mathbf{V}) = \begin{pmatrix} 3x^2 + y^2 & -1 + 2xy \\ 1 + 2xy & x^2 + 3y^2 \end{pmatrix} \Big|_{\mathbf{V} = \mathbf{V}_s} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Gli autovalori di questa matrice sono dati dalla equazione secolare:

$$\Lambda^2 + 1 = 0 \implies \Lambda_{12} = \pm i$$

Quindi la parte reale è nulla...

Notiamo che la sola parte lineare di questo sistema rappresenta un oscillatore armonico, l'unico punto fisso dell'oscillatore armonico (l'origine) è stabile secondo Lyapunov. In realtà questa conclusione è errata: lo stato stazionario non è stabile.

Dobbiamo allora stare attenti al fatto che quando qualcuno degli autovalori ha una parte reale nulla c'è bisogno di molta cautela nella interpretazione dei risultati.

Possiamo dimostrare l'instabilità di tale punto fisso sfruttando la simmetria del termine non lineare:

$$x(t) = r(t)\cos(\theta(t))$$

$$y(t) = r(t)\sin(\theta(t)).$$

 $con x^2 + y^2 = r^2.$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}\cos(\theta) - r\sin\theta\frac{\mathrm{d}\theta}{\mathrm{d}t}$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}\sin\theta + r\cos\theta\frac{\mathrm{d}\theta}{\mathrm{d}t}.$$

Mettendo nelle equazioni del moto:

$$-r\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}r}{\mathrm{d}t}\cos\theta = -r(t)\sin\theta + r\cos\theta r^2$$

$$r\cos\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}r}{\mathrm{d}t}\sin\theta = r\cos\theta + r\sin\theta r^2$$

Moltiplicando la prima equazione per il seno di θ e la seconda per il coseno di θ e sottraendo membro a membro le equazioni:

$$r\frac{\mathrm{d}\theta}{\mathrm{d}t} = r \implies \frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 \implies \theta(t) = t + \theta_0$$

Per casa: moltiplicare la la prima equazione per $\cos\theta$ e la seconda per $\sin\theta$ e sommarle. Si ottiene che:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = r^3$$

Quindi il sistema dinamico di partenza si è ridotto a:

$$\begin{cases} \frac{\mathrm{d}r}{\mathrm{d}t} = r^3\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 \end{cases}$$

Abbiamo un sistema dinamico definito in un manifold:

$$S^1 \times R^+ \cup \{0\}$$

L'equazione interessante è la prima: questa ci dice che il sistema evolve sempre verso $r \to \infty$ per qualsiasi intorno del punto fisso. Quindi lo stato stazionario non è stabile.

3.1 Concetto di iperbolicità

Introduciamo un concetto importante nella caratterizzazione degli stati stazionari:

Definizione 3.1.1: (Soluzione stazionaria iperbolica). Dato il seguente campo vettoriale: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x})$ con $\mathbf{x} \in \mathbb{R}^n$, $F : \mathbb{R}^n \to \mathbb{R}^n$ e \mathbf{x}_s tale che $F(\mathbf{x}_s) = 0$.

Diciamo che x_s è una soluzione stazionaria iperbolica se nessuno degli autovalori di $J(x_s)$ ha parte reale nulla.

Definizione 3.1.2: (Soluzione stazionaria non iperbolica). Dato il seguente campo vettoriale: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \ con \ \mathbf{x} \in \mathbb{R}^n, F : \mathbb{R}^n \to \mathbb{R}^n$ e \mathbf{x}_s tale che $F(\mathbf{x}_s) = 0$.

Diciamo che x_s è una soluzione stazionaria non iperbolica se non è iperbolica.

3.2 Classificazione dei possibili stati stazionari non iperbolici in \mathbb{R}^2

Prendiamo un sistema dinamico:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = F(x,y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = G(x,y) \end{cases}$$

E supponiamo che esista uno stato stazionario \boldsymbol{V}_s :

$$\boldsymbol{V}_s = \begin{pmatrix} x_s \\ y_s \end{pmatrix}$$

Identifichiamo con J lo Jacobiano:

$$J = \begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Cerchiamo le condizioni per il quale lo stato stazionario non è iperbolico: almeno un autovalore di J calcolato in \boldsymbol{V}_s deve essere nullo. La prima situazione banale è quella in cui a=b=c=d=0. In tal caso tutti gli autovalori sono nulli.

Più in generale utilizziamo un trucchetto per il nostro scopo: introduciamo la traccia T ed il determinante D di J. Gli autovalori della matrice possono essere espressi in termini di questi due parametri:

$$\det \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \Lambda \mathbb{I} \right] = 0$$

$$\implies ad - \Lambda(a+d) + \Lambda^2 - cb = \Lambda^2 - T\Lambda + D = 0$$

Quindi gli autovalori sono:

$$\Lambda_{12} = \frac{T \pm \sqrt{T^2 - 4D}}{2}$$

Andiamo ad analizzare in quali situazioni si può avere un autovalore nullo:

- 1. Matrice nulla.
- 2. Se T=0, D>0 (resta solo una radice negativa)
- 3. Se T = 0, D = 0.

4.
$$D = 0 \text{ e } T \neq 0 \implies \Lambda_{12} = \frac{T \pm \sqrt{T^2}}{2}$$

In dimensione maggiore di 2 la chiave è caratterizzare gli zeri del polinomio caratteristico.

Supponiamo di avere un polinomio:

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n$$

con $a_i \in \mathbb{R}, \ \forall \ i = 0, \ldots, n \ (a_0 \neq 0).$

Cerchiamo gli zeri di questo polinomio caratteristico.

Il teorema fondamentale dell'algebra ci assicura n soluzioni per questo polinomio.

Data una soluzione \overline{x} si ha che $P(\overline{x})=0$ con $\overline{x}\in\mathbb{C}$ allora si ha che \overline{x}^* è anch'esso radice del polinomio.

Teorema 3.2.1: (Regola dei segni). Dato il polinomio P(x) se nella sequenza:

$$a_0, a_1, a_2, \ldots, a_n$$

ci sono k variazioni del segno tra a_i e a_{i+1} allora il numero di radici positive è k o k-2m con $m \in \mathbb{N}$.

Esempio 3.2.1: (Sulla regola dei segni)

Prendiamo i seguenti due polinomi:

$$x^3 + 4x^2 - 5x - 4$$

In tal caso le radici sono: (1, -4, -1). Quindi k = 1.

 $x^3 + 6x^2 + 9x + 4$

Le radici sono (-1. -4, -1) e k = 0.

3.3 Tabella di Rauth

Riprendiamo il polinomio generico:

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

con $a_i \in \mathbb{R}, \ \forall \ i = 0, \dots, n \ (a_0 \neq 0).$

La tabella di Routh si costruisce prendendo i termini a_{2i} ed i termini a_{2i+1} separatamente.

$$\begin{cases} r_{1,i} \} : & a_0 & a_2 & a_4 & \dots \\ \{r_{2,i} \} : & a_1 & a_3 & a_5 & \dots \\ \{r_{3,i} \} : & r_{3,1} & r_{3,2} & r_{3,3} & \dots \\ \{r_{4,i} \} : & r_{4,1} & r_{4,2} & r_{4,3} & \dots \end{cases}$$

Prendiamo $i \geq 3$, in tal caso possiamo definire la sequenza:

$$(r_{i,1} \quad r_{i,2} \quad r_{i,3} \quad \dots) = (r_{i-2,2} \quad r_{i-2,3} \quad r_{i-2,4} \quad \dots) +$$

$$- \frac{r_{i-2,1}}{r_{i-1,1}} (r_{i-1,2} \quad r_{i-1,3} \quad r_{i-1,4} \quad \dots).$$

Ad esempio abbiamo che:

$$r_{i,1} = r_{i-2,2} - \frac{r_{i-2,1}}{r_{i-1,1}} r_{i-1,2} = \frac{r_{i-2,2} r_{i-1,1} - (r_{i-2,1} r_{i-1,2})}{r_{i-1,1}}$$

Possiamo anche calcolare un altro termine:

$$r_{3,1} = r_{1,2} - \frac{r_{1,1}}{r_{2,1}} r_{2,2} = a_2 - \frac{a_0}{a_1} a_3 =$$

$$= \frac{a_1 a_2 - a_0 a_3}{a_1} = -\frac{\det \begin{pmatrix} a_0 & a_2 \\ a_1 & a_3 \end{pmatrix}}{a_1}.$$

Per casa verificare che:

$$r_{3,2} = -\frac{\det\begin{pmatrix} a_0 & a_4 \\ a_1 & a_5 \end{pmatrix}}{a_1}$$

Esempio 3.3.1: (Calcolo della tabella di Routh) Prendiamo il polinomio:

$$P(x) = x^3 + 6x^2 + 11x + 6$$

Quindi $a_0 = 1$, $a_1 = 6$, $a_2 = 11$, $a_3 = 6$. Costruiamo la tabella di Rauth:

$$\{r_{1,i}\}: 1 \quad 11 \quad 0$$

 $\{r_{2,i}\}: 6 \quad 6 \quad 0.$

12

Calcoliamo anche gli elementi della terza riga:

$$r_{3,1} = \frac{r_{2,1}r_{1,2} - r_{1,1}r_{2,2}}{r_{2,1}} = \frac{6 \cdot 11 - 1 \cdot 6}{6} = \frac{60}{6} = 10$$

Per casa dimostrare che:

$$r_{3,2} = 0$$

Questo perché questo termine deriva da una colonna di zeri nella tabella di Routh. Proviamo a calcolare altri termini:

$$r_{4,1} = \frac{6 \cdot r_{3,1}}{10} = 6 \qquad r_{4,2} = 0$$

L'annullarsi del secondo coefficiente deriva ancora una volta dalla colonna di zeri nella tabella.

La tabella finale è quindi composta da^{12} .

In questo caso abbiamo che, per il teorema sotto, le radici del polinomio sono tutte negative (in parte reale). Per completezza le radici sono sono: -1, -2, -3.

Teorema 3.3.1: (<u>Teorema di Routh-Hurwitz</u>). Dato il polinomio P(x) di ordine n. Allora le sue radici hanno parte reale strettamente minore di 0 se e solo se gli elementi della prima colonna della tabella di Routh sono diversi da zero e hanno tutti lo stesso segno.

In inoltre ad ogni cambiamento di segno corrisponde una radice reale positiva.

Esempio 3.3.2: (Sul teorema di RH)

$$P(x) = x^3 + 4x^2 - 5x - 4$$

La tabella di Routh si scrive come:

$$\begin{cases} r_{1,i} \} : 1 & -5 & 0 \\ \{r_{2,i} \} : 4 & -4 & 0 \\ & r_{3,1} & r_{3,2} \\ & r_{4,1} & r_{4,2}. \end{cases}$$

 $\begin{array}{cccc}
1 & -5 \\
4 & -4
\end{array}$

 $r_{3,1} = \frac{r_{1,2}r_{2,1} - r_{1,1}r_{2,2}}{r_{2,1}} = -4 \qquad r_{3,2} = 0 \qquad r_{4,1} = 0$

L'ultimo termine non banale è:

$$r_{4,1} = r_{2,2} - \frac{r_{2,1}}{r_{3,1}} r_{3,3} = \frac{-4 \cdot -4 - (4) \cdot 0}{-4} = -4$$

Quindi la tabella finale \grave{e}^{13} .

Visto che c'è un cambiamento di segno allora non tutti gli autovalori hanno parte reale minore di zero ed inoltre ce n'è una positiva. Per casa verificare che le radici del polinomio sono: (1, -4, -1).

3.4 Terminologia associata alla classificazione degli stati stazionari costanti per SD a tempo continuo autonomi

Preso il solito sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) \qquad \boldsymbol{x} \in \mathbb{R}^n \quad F : \mathbb{R}^n \to \mathbb{R}^n$$

e preso x_s stato stazionario.

1) x_s iperbolico.

Definizione 3.4.1: (Punto sella). Si dice che x_s è punto sella se gli autovalori della matrice Jacobiana $J(x_s)$ hanno parti reali sia positive che negative.

Definizione 3.4.2: (Pozzo). x_s è un pozzo se tutti gli autovalori di $J(x_s)$ hanno parte reale negativa.

Definizione 3.4.3: (Sorgente). x_s è una sorgente se tutti gli autovalori di $J(x_s)$ hanno parte reale positiva.

2) Non iperbolico

Definizione 3.4.4: (Centro). x_s è un centro se gli autovalori di $J(x_s)$ sono tutti immaginari puri e diversi da zero.

Esempio 3.4.1: (1)

Prendiamo il sistema dinamico in \mathbb{R}^2 :

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 3x + y = F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 3y = F_2(x, y) \end{cases}$$

Lo stato stazionario è definito da:

$$V_s: F(V_s) = 0 \implies V_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Figura 2.9: Punto sella: le curve indicano 4 direzioni che devono necessariamente esistere.

Figura 2.10: Pozzo.

Figura 2.11: Sorgente.

Lo Jacobiano è dato da:

$$J = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Il polinomio caratteristico del sistema è:

$$\det [J - \Lambda \mathbb{I}] = 0 \implies (3 - \Lambda)^2 = 0$$

Gli autovalori sono 3 con molteplicità 2. Questo implica che \boldsymbol{V}_s è una sorgente.

Esempio 3.4.2: (Oscillatore armonico)

Preso l'oscillatore armonico:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases}$$

Sappiamo che lo stato stazionario è l'origine, inoltre la matrice Jacobiana è:

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Quindi abbiamo subito che:

$$\Lambda^2 + 1 = 0 \implies \Lambda_{1,2} = \pm i$$

Nella definizione espressa sopra questo implica che il punto stazionario è un centro.

Esempio 3.4.3: (Sistema in \mathbb{R}^2)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x - 10y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = 10x - y \end{cases}$$

L'unico stato stazionario è $\boldsymbol{V}_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$ lo Jacobiano è invece:

$$J = \begin{pmatrix} -1 & -10 \\ 10 & -1 \end{pmatrix} \implies \det[J - \Lambda \mathbb{I}] = 0$$

$$(\Lambda + 1)^2 + 100 = 0 \implies P(\Lambda) = \Lambda^2 + 2\Lambda + 101 = 0$$

Il discriminante di questa equazione è: $\Delta = -400$ quindi abbiamo due soluzioni complesse:

$$\Lambda_1 = -1 - 10i, \qquad \Lambda_2 = -1 + 10i$$

Quindi questo è un pozzo poiché la parte reale è minore di zero. Se volessimo applicare il teorema di Routh dobbiamo calcolare la tabella:

$$\frac{1}{2} \quad \frac{101}{0} \quad \frac{0}{0} \implies r_{i,J} = -\frac{\det \begin{pmatrix} r_{i-2,1} & r_{i-2,J+1} \\ r_{i-1,1} & r_{i-1,J+1} \end{pmatrix}}{r_{i-1,1}}$$

Esempio 3.4.4: (Di punto sella)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x + 5y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -3y \end{cases}$$

L'unico stato stazionario è anche in questo caso l'origine.

$$J = \begin{pmatrix} 1 & 5 \\ 0 & -3 \end{pmatrix} \implies P(\Lambda) = (1 - \Lambda)(-3 - \Lambda) = 0$$

Quindi $\Lambda_1=1$ e $\Lambda_2=-3$: abbiamo una sella.

Esempio 3.4.5: (Oscillatore di Duffling)

$$\ddot{x} + k\dot{x} + \alpha x + \beta x^3 = A\cos(\omega t) \qquad \alpha = 1, \ \beta = -1, \ A = 0, \ k > 0$$

Il sistema si riduce a:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y = F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -ky - x + x^3 = F_2(x, y) \end{cases}$$

Gli stati stazionari V_s sono tali per cui $F(V_s) = 0$. Per casa verificare che:

$$V_{1,s} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $V_{2,3,s} = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$

Possiamo trovare lo Jacobiano:

$$J(x,y) = \begin{pmatrix} 0 & 1 \\ 3x^2 - 1 & -k \end{pmatrix} \equiv J(\mathbf{V})$$

Per calcolare gli autovalori del sistema dobbiamo metterci in uno stato stazionario:

$$J(\mathbf{V}_{1,s}) = \begin{pmatrix} 0 & 1 \\ -1 & -k \end{pmatrix} \implies \det[J - \Lambda \mathbb{I}] = 0$$
$$P(\Lambda) = \Lambda^2 + k\Lambda + 1 = 0$$

Possiamo utilizzare il metodo di Cartesio: essendo k positivo allora il polinomio non ha variazione di segno nelle soluzioni, sono tutte negative.

Il discriminante vale:

$$\Lambda = k^2 - 4$$

Quindi, essendo k>0 serve $k\geq 2$ per avere radici reali. In questo caso si ha che:

$$\Lambda_{12} = \frac{-k \pm \sqrt{k^2 - 4}}{2}$$

Quindi anche nel caso in cui il discriminante è reale le radici restano sempre entrambe negative.

Se invece prendiamo 0 < k < 2 allora si ha che il $\Delta < 0$ e le due radici hanno comunque parte reale negativa: -k.

Prendiamo un altro stato stazionario adesso: $V_{2,s}$:

$$J(\boldsymbol{V}_{2,s}) = \begin{pmatrix} 0 & 1\\ 2 & -k \end{pmatrix}$$

Quindi abbiamo il polinomio caratteristico:

$$P(\Lambda) = (\Lambda + k)\Lambda - 2 = \Lambda^2 + k\Lambda - 2 = 0$$

Usando Cartesio essendo k positivo c'è una variazione di segno: c'è una radice positiva. Questo implica che il punto non è stabile.

$$\Lambda_{12} = \frac{-k \pm \sqrt{k^2 + 8}}{2}$$

Quindi lo stato stazionario è una sella. Per casa si può verificare che anche $\boldsymbol{V}_{3,s}$ è una sella.

4 Generalità sulle equazioni differenziali lineari a coeff. costanti

Dato un sistema del tipo:

$$oldsymbol{x} \in \mathbb{R}^n \qquad A \in L(\mathbb{R}^n), \qquad rac{\mathrm{d} oldsymbol{x}}{\mathrm{d} t} = A oldsymbol{x}$$

In qui A rappresenta per noi la Jacobiana (della linearizzazione). Caratterizzare le soluzioni ci da una idea delle orbite nei pressi del punto stazionario.

Esempio 4.0.1: (Conoscenza locale delle soluzione e caratterizzazione delle orbite)

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$

Tradotto in sistema dinamico:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -x_1 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = 2x_2 \end{cases} \implies \forall \boldsymbol{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \in \mathbb{R}^2$$

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \varphi(t, \boldsymbol{c})$$

Quindi vediamo che lungo la direzione x_1 il sistema converge mentre lungo x_2 il sistema diverge (punto di sella).

Teorema 4.0.1: (Diagonabilizzabilità). Se A è una matrice reale $n \times n$ avente n autovalori reali e distinti allora A è diagonalizzabile. Se esistono n autovalori distinti e reali allora:

$$\forall J=1,2,\ldots,n \quad \exists \ v_J \neq 0:$$
 $A oldsymbol{v}_J = \Lambda_J oldsymbol{v}_J$

Con il precedente teorema possiamo definire la matrice:

$$P \in L(\mathbb{R}^n): \quad P \equiv [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]$$

La matrice così costruita è invertibile (gli autovalori sono ortogonali tra loro), quindi esiste P^{-1} :

$$P^{-1}AP = \operatorname{diag}\left[\Lambda_1, \Lambda_2, \Lambda_3, \dots, \Lambda_n\right]$$

Il nuovo sistema di riferimento nella nuova rappresentazione (diagonalizzata) trasforma i vettori nel seguente modo:

$$y = P^{-1}x$$

La dinamica in questo nuovo sistema di riferimento sarà espressa dalla derivata di questo nuovo vettore.

$$\frac{\mathrm{d}\mathbf{t}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[P^{-1}\mathbf{x} \right] = P^{-1} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}$$

Poiché P autonoma: abbiamo imposto il sistema iniziale indipendente dal tempo. Quindi:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = P^{-1}A\boldsymbol{x} = P^{-1}APP^{-1}\boldsymbol{x} = P^{-1}AP\boldsymbol{y}$$

In conclusione abbiamo che:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = \mathrm{diag}\left[\Lambda_1\Lambda_2\dots\Lambda_n\right]\boldsymbol{y}$$

Questo significa che l'evoluzione della componente i-esima del sistema sarà:

$$\frac{\mathrm{d}y_i}{\mathrm{d}t} = \Lambda_i y_i \implies y_i(t) = e^{\Lambda_i t} y_{i,0}$$

In cui si è definito implicitamente il vettore delle componenti iniziali $\boldsymbol{y}_0.$

$$\mathbf{y}(t) = \operatorname{diag}\left[e^{\Lambda_1 t} e^{\Lambda_2 t} \dots e^{\Lambda_n t}\right] \mathbf{y}_0$$

Ogni asse in questo sistema evolve in modo indipendente dagli altri, la dinamica è completamente separata.

Per tornare alla rappresentazione originaria (delle vecchie coordinate) è necessario utilizzare la trasformazione:

$$\boldsymbol{x}(t) = P\boldsymbol{y}(t)$$

Quindi anche:

$$\mathbf{x}(t) = P \operatorname{diag} \left[e^{\Lambda_1 t} e^{\Lambda_2 t} \dots e^{\Lambda_n t} \right] \mathbf{y}_0 =$$

$$= P \operatorname{diag} \left[e^{\Lambda_1 t} e^{\Lambda_2 t} \dots e^{\Lambda_n t} \right] P^{-1} P \mathbf{y}_0 =$$

$$= P \operatorname{diag} \left[e^{\Lambda_1 t} e^{\Lambda_2 t} \dots e^{\Lambda_n t} \right] P^{-1} \mathbf{x}_0.$$

Esempio 4.0.2: (Autovettori di sistema dinamico) Dato il sistema dinamico in \mathbb{R}^2 :

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -x_1 - 3x_2 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = 2x_2 \end{cases} \implies \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \begin{pmatrix} -1 & -3 \\ 0 & 2 \end{pmatrix} \boldsymbol{x} \equiv A\boldsymbol{x}$$

$$\det\left[A - \Lambda \mathbb{I}\right] = \det\begin{pmatrix} -(1+\Lambda) & -3 \\ 0 & 2 - \Lambda \end{pmatrix} = 0$$

Quindi l'equazione secolare:

$$(2-\Lambda)(\Lambda+1)=0 \implies \Lambda_1=-1, \ \Lambda_2=2$$

Abbiamo quindi una sella.

Troviamo adesso gli autovettori:

$$Av = \Lambda v$$

Nel caso di Λ_1 :

$$\begin{pmatrix} -1 & -3 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -a \\ -b \end{pmatrix} \implies \begin{cases} -a - 3b = -a \\ 2b = -b \end{cases} \implies \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Nel caso di Λ_2 :

$$\begin{pmatrix} -1 & -3 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a \\ 2b \end{pmatrix} \implies \begin{cases} b \text{ arbitrario} \\ a = -b \end{cases} \implies \boldsymbol{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Abbiamo quindi la matrice di trasformazione:

$$P = [\boldsymbol{v}_1 \boldsymbol{v}_2] = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Possiamo verificare (per casa) che l'inversa ha la struttura:

$$P^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

In conclusione si ha che:

$$P^{-1}AP = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$

Quindi è necessario fare il cambio di coordinate:

$$y(t) = P^{-1}x(t), \quad y_0 = P^{-1}x_0$$

ed in questo sistema la dinamica è semplice: sono esponenziali separati sugli assi.

$$\mathbf{y}(t) = \begin{pmatrix} e^{-t} & 0\\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} y_{1,0}\\ y_{2,0} \end{pmatrix}$$

Tornando alla rappresentazione originale la sella rimane ma viene distorta (la contrazione / espansione non avviene più sugli assi ma, ad esempio, nella direzione (-1,1)).

$$\boldsymbol{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = P \operatorname{diag} \left[e^{\Lambda_1 t} \dots e^{\Lambda_n t} \right] P^{-1} \begin{pmatrix} x_{1,0} \\ x_{2,0} \end{pmatrix} =$$
$$= \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1,0} \\ x_{2,0} \end{pmatrix}.$$

Verificare per casa che, facendo il conto:

$$\mathbf{x}(t) = \begin{pmatrix} x_{1,0}e^{-t} + x_{2,0}(e^{-t} - e^{2t}) \\ x_{2,0}e^{2t} \end{pmatrix}$$

4.1 Generalizzazione di esponenziale di un operatore.

La struttura $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ è particolare, noi vorremmo generalizzare la soluzione a n dimensioni del seguente problema unidimensionale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x \implies x(t) = e^{\alpha t} x_0$$

Per farlo dobbiamo inserire tale problema in un determinato contesto: quello degli operatori lineari da \mathbb{R}^n a \mathbb{R}^n :

$$T: \mathbb{R}^n \to \mathbb{R}^n, \quad T \in L(\mathbb{R}^n)$$

Data la matrice A quadrata $n \times n$ dobbiamo dare un senso alla espressione: e^{At} .

Definiamo prima di tutto una norma in $L(\mathbb{R}^n)$:

$$\forall T \in L(\mathbb{R}^n) \implies ||T|| = \max_{|x| \le 1} |T(x)|$$

Con || norma euclidea.

Le proprietà di questa norma sono:

- 1. $||T|| \ge 0$, se ||T|| = 0 allora T è l'operatore nullo.
- 2. $||kT|| = |k| ||T|| \ \forall \ k \in \mathbb{R}$.
- 3. $||T + S|| \le ||T|| + ||S||$.

Diamo anche una definizione di convergenza in questo spazio:

Definizione 4.1.1: (Convergenza nello spazio $L(\mathbb{R}^n)$). Data una sequenza $T_k \in L(\mathbb{R}^n)$ allora questa è convergente all'operatore $T \in L(\mathbb{R}^n)$ se:

$$\forall \ \epsilon > 0 \ \exists N : \quad ||T - T_k|| < \epsilon \ se \ k \ge N$$

Teorema 4.1.1: (Proprietà della norma degli operatori lineari). Siano $S, T \in L(\mathbb{R}^n)$ e $x \in \mathbb{R}^n$ allora si ha:

- 1. $|T(x)| \leq ||T|| \cdot |x|$.
- $2. \ ||T\cdot S|| \leq ||T||\cdot ||S||.$
- 3. $\left|\left|T^{k}\right|\right| \leq \left|\left|T\right|\right|^{k}$ (composto k volte a sinistra ed elevato alla k a destra).

Possiamo dimostrare la 1.

$$|T(\boldsymbol{x})| = \left| T\left(\frac{\boldsymbol{x}}{|\boldsymbol{x}|} \, |\boldsymbol{x}| \right) \right| = \left| T\left(\frac{\boldsymbol{x}}{|\boldsymbol{x}|} \right) \right| |\boldsymbol{x}|$$

Dalla definizione di norma:

$$||T|| = \max_{\boldsymbol{v} \in \mathbb{R}^n, |\boldsymbol{v}| \leq 1} |T(\boldsymbol{t})|$$

Si ha immediatamente la minorazione poiché nella definizione si ha il massimo, nella prima espressione invece si ha un particolare x. La 2. si può dimostrare (per casa).

Teorema 4.1.2: (Convergenza assoluta ed uniforme di operatore lineare). $Si \ T \in L(\mathbb{R}^n) \ e \ sia \ t_0 > 0$. Allora la serie:

$$\sum \frac{T^k t^k}{k!}$$

è assolutamente e uniformemente convergente per $|t| \leq t_0$.

Dimostrazione. Prima di tutto si valuta la norma:

$$\left| \left| \frac{T^k t^k}{k!} \right| \right| = \frac{\left| t^k \right|}{k!} \left| \left| T^k \right| \right|$$

Per la proprietà 3. si ha che:

$$\left| \left| \frac{T^k t^k}{k!} \right| \right| \le \frac{\left| t^k \right|}{k!} \left| \left| T^k \right| \right|$$

Dato che $|t| \leq t_0$ allora:

$$\left| \left| \frac{T^k t^k}{k!} \right| \right| \le \frac{\left| t \right|^k}{k!} \left| \left| T \right| \right|^k \le \frac{\left| t_0^k \right|}{k!} \left| \left| T^k \right| \right|$$

Se pongo a = ||T|| si ottiene che:

$$\left. \sum \left\| \frac{T^k t^k}{k!} \right\| \le \sum \frac{t_0^k}{k!} a^k = e^{at_0} \right.$$

Quindi la serie è maggiorata, dal cui la tesi.

Definizione 4.1.2: (Esponenziale di un operatore). $Sia\ T\in L(\mathbb{R}^n),\ allora\ e^T\ \dot{e}\ definito\ da:$

$$e^T = \sum_{k=1}^{\infty} \frac{T^k}{k!}$$

Se si applica tale definizione alla matrice $At \in L(\mathbb{R}^n)$ si ottiene che:

$$e^{At} = \sum_{k=1}^{\infty} \frac{A^k t^k}{k!}$$

Teorema 4.1.3: (Cambio di base per un esponenziale). $SeT, P \in L(\mathbb{R}^n)$ e P è un operatore invertibile e $S = PTP^{-1}$ allora si ha che:

$$e^S = Pe^T P^{-1}$$

Dimostrazione.

$$e^{S} = \sum_{k=0}^{\infty} \frac{(PTP^{-1})^{k}}{k!} = \mathbb{I} + \frac{PTP^{-1}}{1!} + \frac{PTP^{-1}PTP^{-1}}{2!} + \dots$$

In cui sono presenti, termine dopo termine, un sacco di identità che si semplificano.

$$e^S = \mathbb{I} + \frac{PTP^{-1}}{1!} + \frac{PT^2P^{-1}}{2!} + \dots$$

Quindi possiamo dire che (segue già la tesi se si vuole):

$$e^S = P\left[e^T\right]P^{-1}$$

Se adesso si ha $\frac{dx}{dt} = Ax$ ed A è diagonalizzabile (supponendo che esistano n autovalori reali distinti) allora possiamo dire che

$$\operatorname{diag}\left[\Lambda_1\Lambda_2\ldots\Lambda_n\right]t=tP^{-1}AP$$

Quindi anche che:

$$e^{At} = Pe^{\operatorname{diag}[\Lambda_1 \Lambda_2 \dots \Lambda_n]t} P^{-1}$$

Utilizzando la tecnologia esposta in precedenza abbiamo l'importante risultato:

$$e^{At} = P \operatorname{diag} \left[e^{\Lambda_1 t} e^{\Lambda_2 t} \dots e^{\Lambda_n t} \right] P^{-1}$$

4.2 Esponenziale delle matrici di Jordan 2×2

Teorema 4.2.1: (Importanza delle matrici di Jordan). Presa una matrice $A \in L(\mathbb{R}^2)$ (matrice 2×2) reale. Allora esiste una trasformazione invertibile P tale che

$$P^{-1}AP = S \qquad S \in \left\{ \begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix}, \begin{pmatrix} \Lambda & 1 \\ 0 & \Lambda \end{pmatrix}, \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right\} = \left\{ A, B, C \right\}$$

Matrice C Calcoliamo adesso e^S con $S = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Per farlo conviene introdurre il parametro Λ come:

$$\Lambda = a + ib$$

Quindi la matrice S si riscrive come¹⁴:

$$S = \begin{pmatrix} \operatorname{Re}\Lambda & -\operatorname{Imm}\Lambda \\ \operatorname{Imm}\Lambda & \operatorname{Re}\Lambda \end{pmatrix}$$

Per definizione si ha che:

$$e^S = \sum_{k=0}^{\infty} \frac{S^k}{k!}$$

Valutiamo anche S^2 :

$$S^2 = \begin{pmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{pmatrix}$$

Si preserva quindi la struttura di simmetria della matrice originale. Si può provare per induzione che questo fatto è piuttosto generale.

$$\Lambda^2 = a^2 - b^2 + 2iab \implies S^2 = \begin{pmatrix} \operatorname{Re}\Lambda^2 & -\operatorname{Im}\Lambda^2 \\ \operatorname{Im}\Lambda^2 & \operatorname{Re}\Lambda^2 \end{pmatrix}$$

In generale quindi:

$$S^k = \begin{pmatrix} \operatorname{Re}\Lambda^k & -\operatorname{Im}\Lambda^k \\ \operatorname{Im}\Lambda^k & \operatorname{Re}\Lambda^k \end{pmatrix} \qquad k = 0, 1, \dots$$

Tornando all'esponenziale di S:

$$e^{S} = \sum_{k=0}^{\infty} \frac{S^{k}}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \begin{pmatrix} \operatorname{Re}\Lambda^{k} & -\operatorname{Im}\Lambda^{k} \\ \operatorname{Im}\Lambda^{k} & \operatorname{Re}\Lambda^{k} \end{pmatrix}$$

Per capire cosa viene fuori facciamo il conto per un termine di matrice:

$$\sum_{k}^{\infty} \frac{\operatorname{Re}(\Lambda^{k})}{k!} = \operatorname{Re} \sum_{k}^{\infty} \frac{\Lambda^{k}}{k!} = \operatorname{Re}(e^{\Lambda})$$

Possiamo ripetere la cosa per tutti gli elementi di matrice, quindi si ha la matrice finale:

$$e^{S} = \begin{pmatrix} \operatorname{Re}(e^{\Lambda}) & -\operatorname{Im}(e^{\Lambda}) \\ \operatorname{Im}(e^{\Lambda}) & \operatorname{Re}(e^{\Lambda}) \end{pmatrix}$$

Tenendo di conto del fatto che:

$$e^{\Lambda} = e^{a+ib} = e^a e^{ib} = e^a (\cos b + i \sin b) \implies$$

 $\implies \operatorname{Re}(e^{\Lambda}) = e^a \cos b \quad \operatorname{Im}(e^{\Lambda}) = e^a \sin b.$

Possiamo esplicitare ancor di più l'esponenziale di S:

$$e^S = e^a \begin{pmatrix} \cos b & -\sin b \\ \sin b & \cos b \end{pmatrix}$$

Potremmo ottenere lo stesso risultato anche per una matrice del tipo e^{St} :

$$e^{St} = e^{at} \begin{pmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{pmatrix}$$

Matrice B – Andiamo avanti esplicitando il valore di e^S quando $S=\begin{pmatrix} \Lambda & 1 \\ 0 & \Lambda \end{pmatrix}.$

Teorema 4.2.2: (Proprietà di operatori che commutano). Dati due operatori $S, T \in L(\mathbb{R}^n)$ tali per cui [S, T] = ST - TS = 0 allora:

$$e^{S+T} = e^S e^T$$

Osserviamo che la struttura di S permette di scrivere:

$$S = \begin{pmatrix} \Lambda & 1 \\ 0 & \Lambda \end{pmatrix} = \Lambda \cdot \mathbb{I} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \equiv M + N$$

Si vede immediatamente che [M,N]=0. Quindi possiamo usare il teorema precedente per calcolare e^S .

La matrice sopra è anche appartenente al gruppo delle matrici nilpotenti: si comporta da proiettore. Inoltre la matrice N ha la proprietà: $N^2 = 0$.

Facendo l'espansione esponenziale a pezzi:

$$e^{\Lambda \mathbb{I}} = e^{\Lambda} \mathbb{I} = \begin{pmatrix} e^{\Lambda} & 0 \\ 0 & e^{\Lambda} \end{pmatrix}$$

$$e^N = \mathbb{I} + N + 0 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Quindi in conclusione:

$$e^S = e^{\Lambda \mathbb{I}} e^N = \begin{pmatrix} e^{\Lambda} & 0 \\ 0 & e^{\Lambda} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = e^{\Lambda} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Per quanto riguarda la dinamica invece¹⁵:

Bisogna rifare tutti gli step per vederlo

$$e^{St} = e^{\Lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Per approfondire gli argomenti: Moris Wo Hirsch, Stephen Smale: Differential equations, Dynamical Systems and linear algebra (Cap. 5)

5 Soluzione generale dell'IVP di un sistema dinamico $\dot{x} = Ax$

Dato il sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}), \qquad F: \mathbb{R}^n \to \mathbb{R}^n, \qquad \boldsymbol{x}_s \text{ stato stazionario.}$$

La linearizzazione in un intorno di \boldsymbol{x}_s porta a dover risolvere un problema lineare della forma:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = J\boldsymbol{x}$$

Con J matrice Jacobiana valutata in x_s .

Dobbiamo dare un senso al concetto di derivabilità di un esponenziale di una matrice.

$$e^{At} \quad (A \in L(\mathbb{R}^n)) \implies \frac{\mathrm{d}}{\mathrm{d}t} e^{At} \dots$$
?

Teorema 5.0.1: (Derivata di esponenziale di operatore lineare). Se $A \stackrel{.}{e} una \ matrice \ n \times n \ allora:$

$$\frac{d}{dt}e^{At} = Ae^{At}$$

Dimostrazione.

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} = \lim_{h \to 0} \frac{e^{A(t+h)} - e^{At}}{h} =$$

$$= \lim_{h \to 0} \frac{e^{At}e^{Ah} - e^{At}}{h} =$$

$$= \lim_{h \to 0} e^{At} \frac{e^{Ah} - \mathbb{I}}{h}.$$

Visto che $|h| \ll 1$ si ha che $e^{Ah} \simeq \mathbb{I} + Ah$.

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} = e^{At} \lim_{h \to 0} \frac{\mathbb{I} + Ah - \mathbb{I}}{h} = e^{At}A$$

Teorema 5.0.2: (Soluzione dell'IVP). Sia A matrice $n \times n$ e $x_0 \in \mathbb{R}^n$. Allora l'IVP

$$\begin{cases} \frac{d\mathbf{x}}{dt} = A\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

Ha una unica soluzione data da:

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}_0$$

Dimostrazione. Se x(t) è soluzione allora deve essere vero che:

$$\boldsymbol{x}(0) = \boldsymbol{x}_0$$

Questo è verificato perché $e^{A0}=\mathbb{I}+\sum_k^\infty \frac{(A\cdot 0)^k}{k!}=\mathbb{I}$. Inoltre abbiamo che la soluzione rispetta effettivamente l'equazione:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}e^{At}\boldsymbol{x}_0 = Ae^{At}\boldsymbol{x}_0 = A\boldsymbol{x}$$

Nota la soluzione $\boldsymbol{x}(t)$ dell'IVP allora definisco:

$$\mathbf{y}(t) = e^{-At}\mathbf{x}(t)$$
 $\mathbf{y}(0) = \mathbf{x}_0$

Facendo la derivata di questa nuova variabile:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = -Ae^{-At}\boldsymbol{x}(t) + e^{-At}\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} =$$
$$= -Ae^{-At}\boldsymbol{x}(t) + e^{-At}A\boldsymbol{x} = 0.$$

Abbiamo allora trovato una costante del moto per l'IVP generico.

Esempio 5.0.1: (Sistema dinamico lineare in \mathbb{R}^2) Prendiamo il SD in \mathbb{R}^2 :

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -2x_1 - x_2\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_1 - 2x_2 \end{cases}$$

Possiamo riscriverlo nella forma matriciale:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A\boldsymbol{x}$$

Questa matrice è del tipo Jordan (con a = -2 e b = -1). Possiamo porre $x(0) = \begin{pmatrix} x_{1,0} & x_{2,0} \end{pmatrix}$, in tal caso:

$$\boldsymbol{x}(t) = e^{tA} \boldsymbol{x}(0)$$

Ricordiamo che per la matrice di Jordan C si ha che:

$$e^{At} = e^{at} \begin{pmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{pmatrix}$$

Nel nostro caso si ha che:

$$e^{At} = e^{-2t} \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

E la soluzione si vede subito essere:

$$\mathbf{x}(t) = e^{-2t} \begin{pmatrix} \cos(t)x_{1,0} - \sin(t)x_{2,0} \\ \sin(t)x_{1,0} + \cos(t)x_{2,0} \end{pmatrix}$$

Supponiamo di prendere $x_{1,0} = 1$ e $x_{2,0} = 0$. In tal caso:

$$\boldsymbol{x}(t) = e^{-2t} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

5.1 Sistemi dinamici lineari in \mathbb{R}^2

Dato un sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^2, \quad A \in L(\mathbb{R}^2)$$

P invertibile: $PAP^{-1} = S$, con

$$S \in \left\{ \begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix}, \begin{pmatrix} \Lambda & 1 \\ 0 & \Lambda \end{pmatrix}, \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right\}$$

Le dinamiche sono state ricavate per ogni matrice:

$$\begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix} \implies e^{At} = \begin{pmatrix} e^{\Lambda t} & 0 \\ 0 & e^{\mu t} \end{pmatrix}$$

$$\begin{pmatrix} \Lambda & 1 \\ 0 & \Lambda \end{pmatrix} \implies e^{At} = e^{\Lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \implies e^{At} = e^{at} \begin{pmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{pmatrix}$$

Classificazione del comportamento dinamico

Esempio 5.1.1: (1)

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{\Lambda t} & \\ 0 & e^{\mu t} \end{pmatrix} \begin{pmatrix} x_{1,0} \\ x_{2,0} \end{pmatrix}$$

- Se $\Lambda, \mu < 0$ abbiamo un pozzo.
- Se $\Lambda, \mu > 0$ abbiamo una sorgente.
- Se $\mu > 0$ e $\Lambda < 0$ o viceversa abbiamo una sella.

Esempio 5.1.2: (2)

Se abbiamo che:

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{\Lambda t} & t e^{\Lambda t} \\ 0 & e^{\Lambda t} \end{pmatrix} \begin{pmatrix} x_{1,0} \\ x_{2,0} \end{pmatrix} = \begin{pmatrix} e^{\Lambda t} \left(x_{1,0} + t x_{2,0} \right) \\ e^{\Lambda t} x_{2,0} \end{pmatrix}$$

Se $\Lambda < 0$ abbiamo un pozzo e viceversa abbiamo una sorgente.

Esempio 5.1.3: (3)

$$\boldsymbol{x}(t) = e^{at} \begin{pmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{pmatrix} \begin{pmatrix} x_{1,0} \\ x_{2,0} \end{pmatrix} = e^{at} \begin{pmatrix} x_{1,0}\cos(bt) - x_{2,0}\sin(bt) \\ x_{1,0}\sin(bt) + x_{2,0}\cos(bt) \end{pmatrix}$$

Possiamo definire allora:

$$R = \sqrt{x_{1,0}^2 + x_{2,0}^2}$$

E riscrivere la soluzione come:

$$\boldsymbol{x}(t) = e^{at} R \begin{pmatrix} \frac{x_{1,0}}{R} \cos(bt) - \frac{x_{2,0}}{R} \sin(bt) \\ \frac{x_{1,0}}{R} \sin(bt) + \frac{x_{2,0}}{R} \cos(bt) \end{pmatrix}$$

Introducendo l'angolo α :

$$\alpha = \arctan\left(\frac{x_{2,0}}{x_{1,0}}\right)$$

Si ha che:

$$x_1(t) = Re^{at} \sin(\alpha - bt)$$

$$x_2(t) = Ra^{at} \cos(\alpha - bt).$$

Il Phase Portrait in questo caso dipende dal parametro a.

Esempio 5.1.4: (Stati stazionari non iperbolici)

Prendiamo un sistema dinamico che si riduce alla matrice di Jordan:

$$\begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix}$$

Quando Λ e μ sono nulli non siamo in grado di dire nulla sul sistema. Vediamolo con due sistemi di esempio:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x^3\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -3y^3 \end{cases} \implies \mathbf{V}_s = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x^2 \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y^2 \end{cases} \implies \mathbf{V}_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Per il primo si ha che:

$$J = \begin{pmatrix} -3x^2 & 0 \\ 0 & -y^2 \end{pmatrix} \implies J(\mathbf{V}_s) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Quindi $\Lambda = \mu = 0$. Analogamente per il secondo sistema.

Nonostante gli autovalori del sistema siano gli stessi il loro comportamento dinamico è completamente diverso.

Nel primo caso infatti il sistema nell'origine attrae la dinamica: abbiamo uno stato stazionario stabile. Nel secondo caso invece il punto stazionario è attrattivo a destra e repulsivo a sinistra (per le x).

Il secondo stato stazionario non è quindi più stabile, in conclusione quando lo stato stazionario è **non iperbolico** bisogna stare ben attenti e non applicare al volo tutte queste considerazioni.

5.2 Classificazione degli stati staz. in \mathbb{R}^2 (con traccia e determinante di J)

Prendiamo un sistema dinamico a tempo continuo:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = F_2(x, y) \end{cases}$$

E supponiamo di avere lo stato stazionario:

$$V_s = \begin{pmatrix} x_s \\ y_s \end{pmatrix}$$

La matrice Jacobiana è definita come sempre:

$$J(\boldsymbol{V}_s) = A = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix} \bigg|_{\boldsymbol{V}_s}$$

Quindi definiamo la variabile di perturbazione y:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = A\boldsymbol{y}$$

Con
$$V = V_s + y$$
, $y = (y_1, y_2)$, $|y| \ll 1$.

Lo studio degli autovalori della matrice A definisce il comportamento della perturbazione attorno allo stato stazionario, quindi descrive interamente la dinamica attorno a quest'ultimo.

Definiamo la matrice linearizzata A con i parametri:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Allora l'equazione secolare diventa:

$$\det [A - \Lambda \mathbb{I}] = 0 \implies ad - \Lambda(a+d) + \Lambda^2 - bc = 0$$

Utilizziamo traccia e determinante:

$$T = a + d$$
$$D = ad - bc.$$

Possiamo ottenere il seguente polinomio caratteristico:

$$\Lambda^2 - \Lambda T + D = 0$$

Quindi dei quattro parametri (a, b, c, d) gli unici che contano nello studio del sistema sono le combinazioni $T \in D$.

La prima cosa da capire è quando l'equazione ammette o no radici reale:

$$a. \qquad \Delta = T^2 - 4D > 0 \implies D \le \frac{T^2}{4}$$

$$b: \qquad \Delta = T^2 - 4D < 0 \implies D > \frac{T^2}{4}.$$

Nel caso a.:

$$\Lambda_{1,2} = \frac{T \pm \sqrt{T^2 - 4D}}{2}$$

Ricordiamo la proprietà delle soluzioni di una equazione del secondo grado: $\Lambda_1 \cdot \Lambda_2 = D$, si ha che il determinante ci dice se il segno delle soluzioni è concorde o discorde, di conseguenza separa la tipologia di punto stazionario come in figura .

Nel caso b. abbiamo la struttura degli autovalori:

$$\Lambda_1 = \frac{T \pm i\sqrt{4D - T^2}}{2}.$$

Figura 2.12:

SD a tempo continuo in \mathbb{R}^2 della forma

$$\frac{\mathbf{d}^2 x}{\mathbf{d}t^2} = F(t, x, \dot{x})$$

In questa sezione ci limitiamo a studiare il caso in cui il sistema dinamico è autonomo, vedremo più avanti il caso dipendente dal tempo.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x, \frac{\mathrm{d}x}{\mathrm{d}t})$$

Esempio 6.0.1: (Oscillatore armonico smorzato)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -kx - \mu \frac{\mathrm{d}x}{\mathrm{d}t}$$

Esempio 6.0.2: (Circuito Van Der Pol)

$$I_R(V) = aV + bV^2$$

L'equazione che descrive tale circuito è del tipo di quelle che studiamo adesso:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x, \dot{x})$$

Nello studio di questi sistemi solitamente la prima cosa da fare è ricondurci ad un sistema di equazioni del primo ordine: ponendo $y = \frac{\mathrm{d}x}{\mathrm{d}t}$ allora possiamo riscrivere il sistema nella forma:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = F(x, y) \end{cases}$$

Stati stazionari del SD

$$\begin{cases} y = 0 \\ F(x, 0) = 0 \end{cases}$$

Quindi gli stati stazionari si trovano tutti sull'asse x. Consideriamo il rapporto delle derivate rispetto a x e y:

$$\frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{F(x,y)}{y} \qquad \text{con } y \neq 0$$

Riscrivendo il rapporto da bravi fisici possiamo dire che:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{F(x,y)}{y} \tag{6.1}$$

Questa relazione porta alcune interessanti conseguenze: immaginando un'orbita che si avvicina all'asse x e passa per un punto dell'asse x non stazionario come in figura ..., grazie alla relazione siamo in grado di dire che la tangente sull'asse x è perpendicolare all'asse stesso per via della divergenza della tangente quando $y \to 0$.

- 1. L'attraversamento di un punto sull'asse x non stazionario è perpendicolare all'asse stesso.
- 2. La soluzione della equazione 6.1 ci permette di tracciare tutte le possibili orbite del SD.

Esempio 6.0.3: (Applicazione a pendolo non smorzato) Prendiamo il sistema dinamico:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 \sin(x) \implies \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\omega^2 \sin x \end{cases} \quad x \in S^1, y \in \mathbb{R}$$

Caratterizziamo il comportamento degli stati stazionari:

$$\begin{cases} y = 0 \\ F(x, 0) = 0 \end{cases} \implies \begin{cases} y = 0 \\ \sin x = 0 \end{cases} \implies (k\pi, 0) \quad k \in \mathbb{Z}$$

Visto che abbiamo dei manifold localmente è sempre possibile mappare $S_1 \times \mathbb{R} \to \mathbb{R}^2$. Procediamo quindi come se x fosse una variabile ordinaria e cartesiana:

$$J(x,y) = \begin{pmatrix} 0 & 1\\ -\omega^2 \cos x & 0 \end{pmatrix}$$

1. |k| pari:

$$J_{\text{pari}} = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix} \implies \Lambda^2 + \omega^2 = 0 \implies \Lambda = \pm i\omega$$

Quindi in $0, 2\pi, 4\pi\dots$ localmente possiamo aspettarci dei centri. 2. |k| dispari:

$$J_{\rm dis} = \begin{pmatrix} 0 & 1 \\ \omega^2 & 0 \end{pmatrix} \implies \Lambda^2 - \omega^2 = 0 \implies \Lambda = \pm \omega$$

Quindi abbiamo in questo caso due autovalori reali, uno positivo e l'altro negativo: delle selle.

Calcoliamo gli autovettori di questo caso, dobbiamo studiare il problema:

$$\Lambda = 1 \implies \begin{pmatrix} 0 & 1 \\ \omega^2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \omega \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{pmatrix} y \\ \omega x \end{pmatrix} = \begin{pmatrix} \omega x \\ \omega y \end{pmatrix}$$

$$\begin{cases} y = \omega x \\ \omega y = \omega^2 x \end{cases} \implies y = \omega x$$

Quindi la direzione instabile è rappresentata dal vettore:

$$oldsymbol{v}_{\Lambda_1} = egin{pmatrix} 1 \ \omega \end{pmatrix}$$

Procedendo in maniera analoga per la direzione stabile si ottiene:

$$oldsymbol{v}_{\Lambda_2} = egin{pmatrix} 1 \ -\omega \end{pmatrix}$$

Come possiamo vedere in figura le selle separano lo spazio delle fasi in due regimi: all'interno dell'occhio le orbite sono chiuse (l'orbita è confinata all'interno), all'esterno dell'occhio invece le orbite sono "aperte". Le due regioni non si parlano e sono separate proprio dalle orbite che attraversano le selle.

Utilizziamo l'equazione 6.1 nel nostro esempio:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\omega^2 \sin x}{y}$$

Quindi la soluzione è subito:

$$dyy = -\omega^2 \sin x dx \implies \frac{y^2}{2} = \omega^2 \cos x + c$$

Tale relazione ha senso soltanto se:

$$\omega^2 \cos x + c \ge 0$$

Se $\omega=1$ allora è sufficiente prendere $c\geq 1$. In questo caso abbiamo che:

$$y = \pm \sqrt{2(\cos x + c)}$$

Quanto vale c nel caso in cui la curva debba passare per $(\pi,0)$? Deve essere vero che:

$$0 = \pm \sqrt{2(-1+c)} \implies c = 1$$

7 Sistemi lineari in dimensione n

Le proprietà dei sistemi di \mathbb{R}^2 ci permettono di caratterizzare quasi completamente anche quello che succede in \mathbb{R}^n .

Supponiamo di avere un sistema dinamico autonomo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) \qquad \boldsymbol{x} \in \mathbb{R}^n, \qquad F: \mathbb{R}^n \to \mathbb{R}^n \in C^r, r \geq 2$$

Dato uno stato stazionario x_s : $F(x_s) = 0$ vogliamo riutilizzare tutta la metodologia affrontata per \mathbb{R}^2 anche in questo caso multidimensionale.

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = A\boldsymbol{y}$$

Nel caso in cui A è una matrice reale con n autovalori distinti e reali allora possiamo diagonalizzare la matrice e integrare subito il sistema essendo completamente separabile.

 16 Ci sarà anche Λ^* : il suo complesso coniugato

Teorema 7.0.1: (Autovettore C.C.). Sia A matrice reale e sia $\Lambda \in \mathbb{C}$ un autovalore di A ($det(A-\Lambda \mathbb{I})=0$) con W il relativo autovettore. Possiamo dire che l'autovalore del complesso coniugato è:

$$A\boldsymbol{W}^* = \Lambda \boldsymbol{W}^*$$

Ovvero anche gli autovettori sono complessi coniugati.

Teorema 7.0.2: (Soluzione del sistema in n dimensioni). Dato il SD:

$$\frac{d\boldsymbol{x}}{dt} = A\boldsymbol{x} \qquad \boldsymbol{x} \in \mathbb{R}^{2n}$$

con A che possiede 2n autovalori distinti

$$\Lambda_J = a_J + ib_J$$
 e $\Lambda_J^* = a_J - ib_J$ con $J = 1, 2, \dots, n$.

Siano $\mathbf{W}_J = \mathbf{u}_J + i\mathbf{v}_J$ e $\mathbf{W}_J = \mathbf{u}_J + i\mathbf{v}_J$ ($\mathbf{u}_J, \mathbf{v}_J$ reali). Allora si ha:

- 1. L'insieme $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ è una base di \mathbb{R}^{2n} .
- 2. La matrice $P = [v_1u_1v_2u_2 \dots v_nu_n]$ è invertibile.

$$3. \ P^{-1}AP = diag \left\{ \begin{pmatrix} a_J & -b_J \\ b_J & a_J \end{pmatrix} \right\}.$$

4. La soluzione dell'IVP $\left\{ \frac{d\mathbf{x}}{dt} = A\mathbf{x} \quad \mathbf{x}(0) = \mathbf{x}_0 \right\}$ è data da:

$$\boldsymbol{x}(t) = P \operatorname{diag} \left\{ e^{a_J t} \begin{pmatrix} \cos(b_J t) & -\sin(b_J t) \\ \sin(b_J t) & \cos(b_j t) \end{pmatrix} \right\} P^{-1} \boldsymbol{x}_0$$

Notiamo la totale simmetria rispetto ai teoremi di \mathbb{R}^2 .

Esempio 7.0.1: (Sistema in dimensione 4) Dato il sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \qquad A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Gli autovalori si calcolano tramite l'equazione secolare:

...
$$(1 - \Lambda)^2 [(3 - \Lambda)(1 - \Lambda) + 2] + [(3 - \Lambda)(1 - \Lambda) + 2] =$$

$$[(1 - \Lambda)^2 + 1] [(3 - \Lambda)(1 - \Lambda) + 2] = 0.$$

Quindi abbiamo il set di autovalori:

$$\Lambda_{12} = 1 \pm i$$
 $\Lambda_{34} = 2 \pm i$

In questo modo possono essere inseriti i vari parametri nella matrice di cambio di variabile del teorema.

7.1 Autovalori Complessi, Autovalori non distinti

Specializziamo il teorema precedente ad alcuni casi particolari. Preso il sistema dinamico del tipo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^m, \quad \boldsymbol{x}(0) = \boldsymbol{x}_0.$$

Supponiamo le seguenti cose:

- 1. m sia definito nel seguente modo: m = k + 2n.
- 2. A possiede k autovalori reali e distinti $\Lambda_1, \ldots, \Lambda_k$.
- 3. Ci sono 2n autovalori complessi coniugati distinti $\Lambda_{k+1}, \Lambda_{k+1}^*, \dots, \Lambda_n, \Lambda_n^*$.

Allora vale il teorema:

Teorema 7.1.1: (Soluzione con autovalori reali e complessi). Dato il sistema dinamico sopra, supponiamo che A abbia:

- k autovalori reali distinti Λ_J con $J=1,\ldots,k$.
- 2n autovalori c.c. distinti $\Lambda_J = a_J + ib_J$, $\Lambda_J^* = a_J + ib_J$ con $J = k + 1, \dots, k + n$.
- V_J autovettore relativo all'autovalore Λ_L con $J=1,2,\ldots,k$.
- $\mu_J \pm i v_J$ autovalori relativi a Λ_J/Λ_J^* con $J = k+1, \ldots, 2n$.

Allora vale che:

- 1. L'insieme definito da $Q = \{V_1, \dots, V_k, \boldsymbol{\mu}_{k+1}, \boldsymbol{v}_{k+1}, \dots, \boldsymbol{\mu}_{k+n}, \boldsymbol{v}_{k+n}\}$ è una base di \mathbb{R}^m .
- 2. La matrice $P = [\{V\}, \{\mu\} \{v\}] \ \dot{e} \ invertibile$.

3.
$$P^{-1}AP = diag[\Lambda_1, \dots, \Lambda_k, B_{k+1}, \dots, B_{k+n}] con$$

$$B_J = \begin{pmatrix} a_J & -b_J \\ b_J & a_J \end{pmatrix} con J = k+1, \dots, k+n.$$

4. La soluzione si scrive come:

$$\boldsymbol{x}(t) = P \operatorname{diag} \left[e^{\Lambda_1 t} \dots e^{\Lambda_k t} \overline{B}_{k+1} \dots \overline{B}_{k+n} \right] P^{-1} \boldsymbol{x}_0.$$

$$\operatorname{con} \overline{B}_J = e^{a_J t} \begin{pmatrix} \cos(b_J t) & -\sin(b_J t) \\ \sin(b_J t) & \cos(b_J t) \end{pmatrix}$$

Esempio 7.1.1: (Dimensione 3)

$$\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = A \boldsymbol{x}, \quad \boldsymbol{x}(0) = \boldsymbol{x}_0, \quad A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 1 \end{pmatrix}.$$

Calcoliamo gli autovalori:

$$-(3 + \Lambda)[(3 - \Lambda)(1 - \Lambda) + 2] = 0.$$

Quindi abbiamo che:

•
$$3 + \Lambda = 0 \implies \Lambda_1 = -3$$
.

•
$$(3-\Lambda)(1-\Lambda)=0 \implies \Lambda_{2,3}=2\pm i$$
.

Per gli autovettori invece si ha che:

$$\boldsymbol{V}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \Lambda_1 = -3.$$

$$oldsymbol{V}_{2,3} = egin{pmatrix} 0 \ 1 \pm i \ 1 \end{pmatrix}.$$

Quindi la matrice P è:

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \implies P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Quindi si ha anche che:

$$P^{-1}AP = \begin{pmatrix} -3 & 0 & 0\\ 0 & 2 & -1\\ 0 & 1 & 2 \end{pmatrix}.$$

Per casa verificare anche che:

$$\mathbf{x}(t) = \begin{pmatrix} e^{-3t} & 0 & 0 \\ 0 & e^{2t}(\cos t + \sin t) & -2e^{2t}\sin t \\ 0 & e^{2t}\sin t & e^{2t}(\cos t - \sin t) \end{pmatrix}.$$

In generale vale un teorema sulle matrici $n \times n$ aventi autovalori distinti.

Teorema 7.1.2: (Abbondanza delle matrici con autovalori distinti). L'insieme delle matrici $A \in L(\mathbb{R}^n)$ con autovalori distinti è aperto e denso.

Che succede invece nel caso in cui si ha una molteplicità negli autovalori?

7.2 Sistema dinamico con autovalori non distinti

Definizione 7.2.1: (Autovettore generalizzato). Se Λ è autovalore di $A \in L(\mathbb{R}^n)$ avente molteplicità m con $m \leq n$ si definisce autovettore generalizzato di A ogni soluzione $\neq 0$ di $(A - \Lambda \mathbb{I})^k \mathbf{v} = 0$ con $\mathbf{v} \neq 0$ e $k = 1, \ldots, m$.

Definizione 7.2.2: (Matrice nilpotente di ordine k). Sia N una matrice reale tale che $N \in L(\mathbb{R}^n)$. Allora N è nilpotente di ordine k se $N^{k-1} \neq 0$ e $N^k = 0$.

Teorema 7.2.1: (Sugli autovettori generalizzati). Sia A una matrice $n \times n$ avente tutti gli autovalori reali Λ_J con J = 1, 2, ..., n allora vale:

- Esiste una base di autovettori generalizzati v_1, v_2, \dots, v_n .
- La matrice $P = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ è invertibile.
- A può essere decomoposta come somma di due matrici: A = S + N. Tali matrici hanno le seguenti proprietà:
 - 1. $P^{-1}SP = diag[\Lambda_J]$.
 - 2. N = A S, si dimostra che N è Nilpotente di ordine k < n.
- \bullet S e N commutano.

Teorema 7.2.2: (Soluzione con autovettori generalizzati). Nelle ipotesi e tesi del precedente teorema la soluzione di

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

è data da:

$$oldsymbol{x}(t) = P \operatorname{diag}\left[e^{\Lambda_J t}\right] P^{-1} \left[\mathbb{I} + Nt + \frac{N^{k-1} + t^{k-1}}{(k-1)!}\right] oldsymbol{x}_0.$$

Esempio 7.2.1: (Sistema in \mathbb{R}^2)

Prendiamo il solito sistema:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^2, \quad \boldsymbol{x}(0) = \boldsymbol{x}_0, \qquad A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}.$$

Gli autovalori si ricavano da:

$$(3-\Lambda)(1-\Lambda)+1=0 \implies \Lambda_1=\Lambda_2=2.$$

Visto che vale la $P^{-1}SP={\rm diag}\,[\Lambda_J]$ e che in questo caso gli autovalori sono tutti uguali, abbiamo subito dalla commutazione che:

$$S = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Quindi anche:

$$N = A - S = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

E si può verificare che $N^2 = 0$. La soluzione ha la struttura:

$$\boldsymbol{x}(t) = P \operatorname{diag} \left[e^{\Lambda_J t} \right] P^{-1} \dots = \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{2t} \end{pmatrix} \left[\mathbb{I} + Nt \right] \boldsymbol{x}_0.$$

Quindi anche:

$$m{x}(t) = e^t \left\{ egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} + egin{pmatrix} t & t \ -t & -t \end{pmatrix}
ight\} m{x}_0.$$

Mettiamoci adesso nella situazione in cui tutti gli autovalori sono complessi. In questo caso vale il teorema:

Teorema 7.2.3: (SD con autovalori complessi). Dato l'IVP con la matrice $A \in L(\mathbb{R}^{2n})$:

$$\frac{d\boldsymbol{x}}{dt} = A\boldsymbol{x}, \qquad \boldsymbol{x}(0) = \boldsymbol{x}_0, \qquad A \ \hat{e} \ reale, \qquad \boldsymbol{x} \in \mathbb{R}^n.$$

Supponiamo che A abbia i seguenti autovalori:

$$\Lambda_J = a_J + ib_J$$
$$\Lambda_J^* = a_J - ib_J.$$

con J = 1, ..., n. Allora si ha che:

- Esistono autovettori generalizzati complessi $\mathbf{W}_J = \mathbf{u}_J + i\mathbf{v}_J$ e $\mathbf{W}_J^* = \mathbf{u}_J i\mathbf{v}_J$.
- L'insieme $Q = [\boldsymbol{u}_1, \boldsymbol{v}_1, \dots, \boldsymbol{u}_n, \boldsymbol{v}_n]$ è una base di \mathbb{R}^n .

- $P = [\mathbf{v}_1 \mathbf{u}_1 \dots \mathbf{v}_n \mathbf{u}_n]$ è invertibile.
- A = S + N tali che:

$$- PSP^{-1} = diag \begin{pmatrix} a_J & -b_J \\ b_J & a_J \end{pmatrix}$$

- -N = A S è nilpotente di ordine $k \leq 2n$.
- Le matrici S e N commutano.

Teorema 7.2.4: (Soluzione complessa con autovettori generalizzati). Nelle ipotesi del precedente teorema si ha che:

$$\boldsymbol{x}(t) = P \operatorname{diag} \left[e^{a_J t} \begin{pmatrix} \cos(b_J t) & -\sin(b_J t) \\ \sin(b_J t) & \cos(b_J t) \end{pmatrix} \right] P^{-1} \left[\mathbb{I} + Nt + \frac{N^{k-1} + t^{k-1}}{(k-1)!} \right] \boldsymbol{x}_0.$$

8 Insiemi invarianti (stabili, instabili e centro)

Definizione 8.0.1: (Insieme invariante rispetto al flusso di fase). $Sia\ E \subset \mathbb{R}^n\ e\ sia\ \varphi_t(\boldsymbol{x}_0): \mathbb{R}^n \to \mathbb{R}^n\ un\ flusso\ di\ fase\ tale\ che:$

$$\varphi_t(\boldsymbol{x}_0) = e^{At} \boldsymbol{x}_0.$$

Con A matrice reale $n \times n$. Diciamo che E è invariante rispetto a φ_t se:

$$\varphi_t(E) \subset E \quad \forall t \in \mathbb{R}.$$

Inoltre E è positivamente invariante rispetto a φ_t se vale che:

$$\varphi_t(E) \subset E \quad \forall t \in \{0\} \cup \mathbb{R}^+.$$

Teorema 8.0.1: (Invarianza dell'autospazio generalizzato). Dato il sistema dinamico $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ con $\mathbf{x} \in \mathbb{R}^n$ e A matrice reale $n \times n^{17}$. Supponiamo che Λ sia un autovalore di A e sia E l'autospazio generalizzato di tale autovalore. Allora $A(E) \subset E$.

¹⁷ Ipotizziamo di aver gia linearizzato questo sistema

Si dimostra ricordando la definizione di autospazio generalizzato. Data una matrice reale $n \times n$ (associata al sistema dinamico del teorema sopra). Supponiamo di aver calcolato tutti gli autovalori di questa matrice, in tal caso possiamo trovare anche tutti gli autovettori generalizzati.

Possiamo suddividere gli autovalori di A in tre gruppi.

Definizione 8.0.2: (Linear Stable manifold). Indichiamo questo insieme come E^S , definito come:

$$E^S = span\left\{ oldsymbol{v}_1^s, \dots oldsymbol{v}_{n_s}^s \right\}.$$

Dove $i \{v_J^s\}$ con $J = 1, ..., n_s$ sono gli autovettori generalizzati corrispondenti agli autovalori con parte reale **negativa**.

Definizione 8.0.3: (Linear Unstable manifold). Indichiamo questo insieme come E^U , definito come:

$$E^{U} = span\left\{\boldsymbol{v}_{1}^{u}, \dots \boldsymbol{v}_{n_{u}}^{u}\right\}.$$

Dove $i \{v_J^u\}$ con $J = 1, ..., n_u$ sono gli autovettori generalizzati corrispondenti agli autovalori con parte reale **positiva**.

Definizione 8.0.4: (Linear Center manifold). Indichiamo questo insieme come E^C , definito come:

$$E^C = span\left\{\boldsymbol{v}_1^c, \dots \boldsymbol{v}_{n_c}^c\right\}.$$

Dove i $\{v_J^c\}$ con $J=1,\ldots,n_c$ sono gli autovettori generalizzati corrispondenti agli autovalori con parte reale **nulla**.

La dimensionalità del sistema in questione, date le precedenti definizioni, sarà data da $n=n_s+n_u+n_c$.

Esempio 8.0.1: (Manifold stabili e centro)

Sia dato il seguente sistema dinamico a tempo continuo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad \boldsymbol{x} \in \mathbb{R}^2 \quad A = \begin{pmatrix} 0 & 1 \\ 0 & -4 \end{pmatrix}.$$

Determinare le varietà (o Manifold) stabili. Calcoliamo per prima cosa gli autovalori:

$$P(\lambda) = \det\left[A - \lambda \mathbb{I}\right] = -\lambda(-4 - \lambda) = 0.$$

Quindi $\lambda_{1,2} = 0$; -4. Troviamo adesso gli autovettori:

$$oldsymbol{v}_1^c = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \qquad oldsymbol{v}_1^s = \begin{pmatrix} 1 \\ -4 \end{pmatrix}.$$

Notiamo, per esempio, che lo span di \mathbf{v}_1^c è tutto l'asse x.

$$E^{S} = \operatorname{span} \left\{ \boldsymbol{v}_{1}^{s} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \right\}$$

$$E^{U} = \{0\}$$

$$E^{C} = \operatorname{span} \left\{ \boldsymbol{v}_{1}^{c} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$

Figura 2.13: Varietà centro e varietà stabile

Notiamo quindi che un qualunque punto dell'asse x è uno stato stazionario. Tutti i punti con $y \neq 0$ invece tendono a decadere esponenzialmente sull'asse x con traiettorie aventi la stessa pendenza della curva v_i^s di figura 2.13

Esempio 8.0.2: (Sistema dinamico in \mathbb{R}^3) Dato il sistema dinamico:

$$rac{\mathrm{d} oldsymbol{x}}{\mathrm{d} t} = A oldsymbol{x}, \quad oldsymbol{x} \in \mathbb{R}^3 \quad A = egin{pmatrix} -1 & -1 & 0 \ 1 & -1 & 0 \ 0 & 0 & 2 \end{pmatrix}.$$

Determinare E^S, E^u, E^c . Notiamo che la matrice è a blocchi, in quello in alto abbiamo una matrice di Jordan che abbiamo studiato, in basso abbiamo un numero positivo che ci porta a pensare ad un asse instabile.

Visto che vale:

$$A^{up} = \begin{pmatrix} a & -b \\ -b & a \end{pmatrix} \implies e^{A^{up}t} = e^{at} \begin{pmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{pmatrix}.$$

con a = -1 nel caso in questione abbiamo una varietà stabile nelle due direzioni x, y.

Troviamo gli autovalori:

$$P(\lambda) = \det \begin{pmatrix} -1 - \lambda & -1 & 0 \\ 1 & -1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = (2 - \lambda) \left[(1 + \lambda)^2 + 1 \right] = 0.$$

Quindi abbiamo $\lambda_1=2,\ \lambda_{2,3}=-1\pm i.$ Troviamo gli autovettori corrispondenti:

$$m{v}_1^u = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} \qquad m{w}_{1,2}^s = egin{pmatrix} 1 \ \pm i \ 0 \end{pmatrix}.$$

Abbiamo usato la notazione con w poichè è un vettore complesso $w \in \mathbb{C}^3$. Si ha quindi che:

$$oldsymbol{w}_{1,2}^s = oldsymbol{v}_1^s + i oldsymbol{v}_2^s = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + i egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}.$$

Ed in conclusione:

$$E^{s} = \operatorname{span} \{\boldsymbol{v}_{1}^{s}, \boldsymbol{v}_{2}^{s}\}$$
$$E^{u} = \operatorname{span} \{\boldsymbol{v}_{1}^{u}\}$$
$$E^{c} = \{0\}.$$

Figura 2.14: Varietà dell'esercizio che ci indicano il flusso di fase, sul piano x, y abbiamo una rotazione dovuta alla componente complessa.

La matrice di trasformazione P è:

$$P = [\mathbf{v}_1^u \mathbf{v}_2^s \mathbf{v}_1^s] = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Quindi la soluzione si scrive come:

$$v(t) = P \operatorname{diag} \left[e^{\lambda_1 t} \dots e^{\lambda_k} t B_{k+1} \dots B_{k+\frac{n-k}{2}} \right] P^{-1} x_0$$
$$= P \operatorname{diag} \left[e^{2t} e^{-t} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \right] P^{-1} v_0.$$

Teorema 8.0.2: (<u>Proprietà dei sottospazi generalizzati</u>). Dato il sistema dinamico

$$\frac{dx}{dt} = Ax$$
 $x \in \mathbb{R}^n$ $A \in L(\mathbb{R}^n).$

Sia $\varphi_t(\mathbf{x})$ il corrispondente flusso di fase. Siano E^s, E^u, E^c i sottospazi generalizzati¹⁸ corrispondenti agli autovalori di A. Allora vale che:

- $\varphi_t(E^s) \subset E^s$. $\varphi_t(E^u) \subset E^u$. $\varphi_t(E^c) \subset E^c$.
- $\bullet \ \mathbb{R}^n = E^s \oplus E^u \oplus E^c$

Per dimostrarlo si supponga $S \subset \mathbb{R}^n$ e S invariante rispetto ad A:

$$A(S) \subset S \qquad (\forall \boldsymbol{v} \in S : A\boldsymbol{v} \in S).$$

Possiamo dire che S è invariante rispetto a cA con $c \in \mathbb{R}$. Inoltre se S è invariante rispetto a A_1 e A_2 (matrici $n \times n$) allora sarà invariante anche rispetto a $c_1A_1 + c_2A_2$. Infine

$$e^{At} = \lim_{N \to \infty} \sum_{J=0}^{N} \frac{A^J t^J}{J!} \equiv \lim_{N \to \infty} L_N(t).$$

Questo limite corrisponde ad una convergenza uniforme, se tale serie è uniformenmente convergente allora esiste un teorema che garantisce che tale successione sia di Cauchy. Quindi quando applico L_N ad un vettore in S allora il limite rimarrà in $S\dots^{19}$

Definizione 8.0.5: (Insiemi omeomorfi). Sia X uno spazio metrico e A, $B \subset X$. Diciamo che A e B sono omeomorfi (oppure topologicamente equivalenti) se esiste $h: A \to B$ che abbia le seguenti proprietà:

18 Ovvero costruiti utilizzando

gli autovettori generalizzati come nell'esempio precedente

¹⁹ Questi sono i punti chiave della dimostrazione

- Bigettiva.
- $h e h^{-1}$ sono continue: appartengono a C^0 .

h è chiamato anche omomorfismo.²⁰

Dato il campo vettoriale

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathbb{R}^n \quad F : \mathbb{R}^n \to \mathbb{R}^n.$$

Con uno stato stazionario x_s : $F(x_s) = 0$. A questo sistema abbiamo associato un sistema linearizzato nel punto stazionario:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = J(\boldsymbol{x}_s)\boldsymbol{y}.$$

Quello che ci chiediamo è quanto queste orbite linearizzate rispecchino il sistema non lineare in un intorno di x_s . Quindi ci chiediamo quanto il sistema linearizzato e quello non lineare siano equivalenti in un intorno di x_s .

Notiamo che, dato uno stato stazionario x_s possiamo sempre definire $x = x_s + z$, quindi:

$$\frac{\mathrm{d}\boldsymbol{z}}{\mathrm{d}t} = F(\boldsymbol{x}_s - \boldsymbol{x}) = F(\boldsymbol{z}).$$

Quindi lo stato stazionario si sposta in z=0. Questo è comodo per il seguente teorema.

Teorema 8.0.3: (<u>Hartman-Grobman</u>). Sia dato il sistema dinamico

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}); \quad \mathbf{x} \in \mathbb{R}^n; \quad F : \mathbb{R}^n \to \mathbb{R}^n; \quad \mathbf{x}_s \ staz.$$

Sia $\varphi_t(\mathbf{x})$ il flusso di fase associato al SD, indichiamo con $\tilde{\varphi}_t(\mathbf{x})$ il flusso del campo linearizzato $\dot{\mathbf{y}} = J(\mathbf{x}_s)\mathbf{y}$. Sia inoltre \mathbf{x}_s uno stato stazionario iperbolico.

Allora esiste un intorno U di x_s nel quale si ha un omomorfismo H che manda le orbite del sistema lineare in quelle del sistema non lineare e viceversa. Tale omeomorfismo preserva l'orientamento temporale.

Questo significa che se ${\boldsymbol y}_0 \to {\boldsymbol y}_1 \implies H({\boldsymbol y}_0) \to H({\boldsymbol y}_1).$

$$\boldsymbol{x}(t) = \varphi_t(\boldsymbol{x}_0); \quad \boldsymbol{x}(t) = H(\boldsymbol{y}(t)) = \varphi_t(\boldsymbol{x}_0) = \varphi_t(H(\boldsymbol{y}_0)).$$

La struttura dell'omeomorfismo è riassunta a lato (²¹). Abbiamo quindi le conseguenti relazioni:

$$\begin{aligned} \boldsymbol{y}(t) &= H^{-1}\varphi_t H \boldsymbol{y}_0 \\ \tilde{\varphi}_t \boldsymbol{y}(t) &= H^{-1}\varphi_t H \boldsymbol{y}_0 \implies \tilde{\varphi}_t = H^{-1}\varphi_t H. \end{aligned}$$

 20 Se h e h^{-1} sono C^2 abbiamo un diffeomorfismo.

Figura 2.15: Soluzione lineare (y) e soluzione non lineare (x) in un intorno U di x_s .

21

Esempio 8.0.3: (Applicazione del teorema in \mathbb{R}^2) Prendiamo il seguente sistema dinamico:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x - y^2\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y \end{cases}$$

Gli stati stazionari sono definiti da:

$$\begin{array}{l} x - y^2 = 0 \\ y = 0. \end{array} \implies \boldsymbol{v}_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Per gli autovalori si ha che:

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \implies \lambda_{1,2} = \pm 1.$$

Quindi abbiamo una sella. Il sistema linearizzato in un intorno di \boldsymbol{v}_s è:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y \end{cases}$$

Quindi la soluzione locale è:

$$\begin{cases} x(t) = x_0 e^t \\ y(t) = y_0 e^{-t} \end{cases}$$

(Per casa) dimostrare che per il sistema dinamico non lineare vale:

$$\begin{cases} x(t) = x_0 e^t + \frac{y_0^2}{3} (e^{-2t} - e^t) \\ y(t) = y_0 e^{-t} \end{cases}$$
 (8.1)

Possiamo cercare di capire come deve essere fatto l'omeomorfismo locale H, si scopre che:

$$H: \mathbb{R}^2 \to \mathbb{R}^2; \quad \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{H} \begin{pmatrix} x - \frac{y^3}{3} \\ y \end{pmatrix}.$$

Si può dimostrare che la mappa cercata è proprio questa, inoltre si ha che ${\cal H}^{-1}$ esiste e vale:

$$H^{-1}: \mathbb{R}^2 \to \mathbb{R}^2; \quad \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{H^{-1}} \begin{pmatrix} x + \frac{y^2}{3} \end{pmatrix}.$$

Preso il campo vettoriale di equazione 8.1 ed applicandogli la trasformazione H si ha che:

$$H\left(\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}\right) = \begin{pmatrix} x_0 e^t + \frac{y_0^2}{3} (e^{-2t} - e^t) - \frac{y_0^2}{3} e^{-2t} \\ y_0 e^{-t} \end{pmatrix} = \begin{pmatrix} x_0 e^t - \frac{y_0^2}{3} e^t \\ y_0 e^{-t} \end{pmatrix}.$$

Possiamo riscrivere la mappa che abbiamo ottenuto in questo modo:

$$H\left(\varphi_t\left(\begin{pmatrix}x_0\\y_0\end{pmatrix}\right)\right) = \begin{pmatrix}e^t & 0\\0 & e^{-t}\end{pmatrix}\begin{pmatrix}x_0 - \frac{y_0^2}{3}\\y_0\end{pmatrix} = \tilde{\varphi}_t\left(\begin{pmatrix}x_0 - \frac{y_0^2}{3}\\y_0\end{pmatrix}\right).$$

La prima matrice corrisponde proprio al flusso di fase lineare.

$$H(\varphi_t(\boldsymbol{x})) = \tilde{\varphi}_t \left(\begin{pmatrix} x_0 - rac{y_0^2}{3} \\ y_0 \end{pmatrix} \right) = \tilde{\varphi}_t(H(\boldsymbol{x})).$$