Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра «Прикладная математика»

Курсовая работа

по дисциплине «Дифференциальная геометрия», «Применение математических пакетов»

Эволюта и эвольвента кривых.

Bыполнил студент группы Φ H2-53 Cидорова E.A.

Hаучный к.ф.-м.н., доцент кафедры Φ H-2 Hовожилова O.B.

руководитель

Оглавление

Введение			3
1.	Пос	становка задачи	3
2.	Teo	рия	3
	2.1.	Основные определения	3
		2.1.1. Определение эволюты	3
		2.1.2. Определение эвольвенты	5
	2.2.	Вывод формул	5
		2.2.1. Уравнение эволюты	5
Ст	іисоі	к литературы	5

Введение 3

Введение

1. Постановка задачи

Изучение построения эволюты и эвольвенты различных кривых.

2. Теория

2.1. Основные определения

2.1.1. Определение эволюты.

Определение 1. Геометрическое место центров кривизны для всевозможных точек данной кривой называется её эволютой. Уравнение эволюты для кривой заданной уравнениями

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in R \tag{1}$$

выглядит так:

$$\begin{cases} X = x(t) - y'(t) \frac{(x'(t))^2 + (y'(t))^2}{x''(t)y'(t) - y''(t)x'(t)}, \\ Y = y(t) + x'(t) \frac{(x'(t))^2 + (y'(t))^2}{x''(t)y'(t) - y''(t)x'(t)}. \end{cases}$$

Но мы будем использовать другое определение эволюты.

Определение 2. Эволюта - это огибающая семейства нормалей исходной кривой.

Рис. 2.1. Красным цветом обозначается построенная эволюта.

Введем дополнительно определение огибающей.

2. Теория 4

Определение 3. Пусть имеется семейство кривых γ , зависящих от параметра α и задающихся уравнением: $F(\alpha,x,y)=0$. Тогда огибающая семейства кривых определяется как множество точек, для которых выполнено $F(\alpha,x,y)=\frac{\partial F}{\partial \alpha}(\alpha,x,y)$ для некоторого значения , где $\frac{\partial F}{\partial \alpha}$ — частная производная функции по параметру .

2.1.2. Определение эвольвенты.

Определение 4. Эвольвента кривой γ - это кривая γ_* , по отношению к которой γ является эволютой. Иными словами это кривая, нормаль в каждой точке которой является касательной к исходной кривой.

Зеленым цветом обозначается построенная эвольвента.

2.2. Вывод формул.

2.2.1. Уравнение эволюты

Рис. 2.2. Несколько эвольвент

Список литературы

- 1. Источник 1
- 2. Источник 2