Chapter 15

Functions of Several Variables (I)

Shuwei Chen swchen@swjtu.edu.cn

15.1

Graphs and Level Curves

Functions of Two Variables

Explicitly: z = f(x, y), or implicitly: F(x, y, z) = 0

DEFINITION Function, Domain, and Range with Two Independent Variables

A **function** z = f(x, y) assigns to each point (x, y) in a set D in \mathbb{R}^2 a unique real number z in a subset of \mathbb{R} . The set D is the **domain** of f. The **range** of f is the set of real numbers z that are assumed as the points (x, y) vary over the domain (Figure 19).

EXAMPLE 1 Finding domains Find the domain of the function $g(x, y) = \sqrt{4 - x^2 - y^2}$.

Graphs of Functions of Two Variables

Vertical line test

An ellipsoid does not pass the vertical line test: not the graph of a function.

This elliptic paraboloid passes the vertical line test: graph of a function.

Graphing two-variable functions Find the domain and range of the **EXAMPLE 2** following functions. Then sketch a graph.

a.
$$f(x, y) = 2x + 3y - 12$$

b. $g(x, y) = x^2 + y^2$
c. $h(x, y) = \sqrt{1 + x^2 + y^2}$

b.
$$g(x, y) = x^2 + y^2$$

Paraboloid $z = f(x, y) = x^2 + y^2$

Upper sheet of hyperboloid of two sheets $z = \sqrt{1 + x^2 + y^2}$

Level curves

Closely spaced contours: rapid changes in elevation

Widely spaced contours: slow changes in elevation contour curve: the intersection of the surface and the horizontal plane $z = z_0$

level curve: the projection of contour curve onto the xy-plane

EXAMPLE 3 Level curves Find and sketch the level curves of the following surfaces.

a.
$$f(x,y) = y - x^2 - 1$$
 b. $f(x,y) = e^{-x^2 - y^2}$

b.
$$f(x, y) = e^{-x^2 - y^2}$$

EXAMPLE 4 Level curves The graph of the function

$$f(x, y) = 2 + \sin(x - y)$$

is shown in Figure 32a. Sketch several level curves of the function.

Applications of Functions of Two Variables

EXAMPLE 5 A probability function of two variables Suppose that on a particular day, the fraction of students on campus infected with flu is r, where $0 \le r \le 1$. If you have n random (possibly repeated) encounters with students during the day, the probability of meeting *at least* one infected person is $p(n,r) = 1 - (1-r)^n$ (Figure 333a). Discuss this probability function.

Га	b	le		2

	n						
		2	5	10	15	20	
r	0.05	0.10	0.23	0.40	0.54	0.64	
	0.1	0.19	0.41	0.65	0.79	0.88	
	0.3	0.51	0.83	0.97	1	1	
	0.5	0.75	0.97	1	1	1	
	0.7	0.91	1	1	1	1	

EXAMPLE 6 Electric potential function in two variables The electric field at points in the xy-plane due to two point charges located at (0,0) and (1,0) is related to the electric potential function

$$\varphi(x,y) = \frac{2}{\sqrt{x^2 + y^2}} + \frac{2}{\sqrt{(x-1)^2 + y^2}}.$$

Discuss the electric potential function.

Functions of More Than Two Variables

Table 3

Number of Independent Variables	Explicit Form	Implicit Form	Graph Resides In
1	y = f(x)	F(x,y) = 0	\mathbb{R}^2 (xy-plane)
2	z = f(x, y)	F(x,y,z) = 0	\mathbb{R}^3 (<i>xyz</i> -space)
3	w = f(x, y, z)	F(x, y, z, w) = 0	\mathbb{R}^4
n	$x_{n+1} = f(x_1, x_2, \dots, x_n)$	$F(x_1,x_2,\ldots,x_n,x_{n+1})=0$	\mathbb{R}^{n+1}

DEFINITION Function, Domain, and Range with *n* Independent Variables

The **function** $x_{n+1} = f(x_1, x_2, ..., x_n)$ assigns a unique real number x_{n+1} to each point $(x_1, x_2, ..., x_n)$ in a set D in \mathbb{R}^n . The set D is the **domain** of f. The **range** is the set of real numbers x_{n+1} that are assumed as the points $(x_1, x_2, ..., x_n)$ vary over the domain.

EXAMPLE 7 Finding domains Find the domain of the following functions.

a.
$$g(x, y, z) = \sqrt{16 - x^2 - y^2 - z^2}$$
 b. $h(x, y, z) = \frac{12y^2}{z - y}$

b.
$$h(x, y, z) = \frac{12y^2}{z - y}$$

Graphs of Functions of More Than Two Variables

With the function w = f(x, y, z), level curves become level

surfaces, where w is constant

Example, $w = \sqrt{z - x^2 - 2y^2}$

Another approach to displaying functions of three variables is to use colors to represent the fourth dimension.

15.2

Limits and Continuity

Limit of a Function of Two Variables

|f(x,y) - L| can be made arbitrarily small for all P in the domain that are sufficiently close to P_0

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{P\to P_0} f(x,y) = L$$

DEFINITION Limit of a Function of Two Variables

The function f has the **limit** L as P(x, y) approaches $P_0(a, b)$, written

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{P\to P_0} f(x,y) = L,$$

if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x,y) - L| < \varepsilon$$

whenever (x, y) is in the domain of f and

$$0 < |PP_0| = \sqrt{(x-a)^2 + (y-b)^2} < \delta.$$

THEOREM 1 Limits of Constant and Linear Functions

Let a, b, and c be real numbers.

- **1.** Constant function f(x, y) = c: $\lim_{(x,y)\to(a,b)} c = c$
- **2.** Linear function f(x, y) = x: $\lim_{(x,y)\to(a,b)} x = a$
- **3.** Linear function f(x, y) = y: $\lim_{(x,y)\to(a,b)} y = b$

THEOREM 2 Limit Laws for Functions of Two Variables

Let L and M be real numbers and suppose that $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and

 $\lim_{(x,y)\to(a,b)} g(x,y) = M$. Assume c is a constant, and m and n are integers.

- **1. Sum** $\lim_{(x,y)\to(a,b)} (f(x,y) + g(x,y)) = L + M$
- **2. Difference** $\lim_{(x,y)\to(a,b)} (f(x,y) g(x,y)) = L M$
- 3. Constant multiple $\lim_{(x,y)\to(a,b)} cf(x,y) = cL$
- **4. Product** $\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = LM$
- **5. Quotient** $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$, provided $M \neq 0$
- **6. Power** $\lim_{(x,y)\to(a,b)} (f(x,y))^n = L^n$
- **7.** Root $\lim_{(x, y) \to (a, b)} (f(x, y))^{1/n} = L^{1/n}$, where we assume L > 0 if *n* is even.

EXAMPLE 1 Limits of two-variable functions Evaluate $\lim_{(x,y)\to(2,8)} (3x^2y + \sqrt{xy})$.

Limits at Boundary Points

DEFINITION Interior and Boundary Points

Let R be a region in \mathbb{R}^2 . An **interior point** P of R lies entirely within R, which means it is possible to find a disk centered at P that contains only points of R (Figure 40).

A **boundary point** *Q* of *R* lies on the edge of *R* in the sense that *every* disk centered at *Q* contains at least one point in *R* and at least one point not in *R*.

Q is a boundary point: Every disk centered at Q contains points in R and points not in R.

P is an interior point: There is a disk centered at P that lies entirely in R.

DEFINITION Open and Closed Sets

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

EXAMPLE 2 Limits at boundary points Evaluate $\lim_{(x,y)\to(4,1)} \frac{xy-4y^2}{\sqrt{x}-2\sqrt{y}}$.

EXAMPLE 3 Nonexistence of a limit Investigate the limit $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$.

PROCEDURE Two-Path Test for Nonexistence of Limits

If f(x, y) approaches two different values as (x, y) approaches (a, b) along two different paths in the domain of f, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Continuity of Functions of Two Variables

DEFINITION Continuity

The function f is continuous at the point (a, b) provided

- **1.** f is defined at (a, b).
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ exists.
- 3. $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$

EXAMPLE 4 Checking continuity Determine the points at which the following function is continuous.

$$f(x,y) = \begin{cases} \frac{3xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Composite Functions

THEOREM 3 Continuity of Composite Functions

If u = g(x, y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then the composite function z = f(g(x, y)) is continuous at (a, b).

EXAMPLE 5 Continuity of composite functions. Determine the points at which the following functions are continuous.

a.
$$h(x, y) = \ln(x^2 + y^2 + 4)$$
 b. $h(x, y) = e^{x/y}$

Functions of Three Variables

EXAMPLE 6 Functions of three variables

- **a.** Evaluate $\lim_{(x,y,z)\to(2,\pi/2,0)} \frac{x^2 \sin y}{z^2 + 4}$.
- **b.** Find the points at which $h(x, y, z) = \sqrt{x^2 + y^2 + z^2 1}$ is continuous.

15.3

Partial Derivatives

Derivatives with Two Variables

Partial derivatives: An ordinary derivative with respect to the remaining variable when one independent variable fixed.

For example, let y-coordinate be fixed at y = b

$$f_{x}(a,b) = \lim_{h\to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Similarly, let x-coordinate be fixed at x = a

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

DEFINITION Partial Derivatives

The partial derivative of f with respect to x at the point (a, b) is

$$f_x(a,b) = \lim_{h\to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$

The partial derivative of f with respect to y at the point (a, b) is

$$f_{y}(a,b) = \lim_{h\to 0} \frac{f(a,b+h) - f(a,b)}{h},$$

provided these limits exist.

Notations

$$\left. \frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial x} \right|_{(a,b)} = f_x(a,b), \frac{\partial f}{\partial y}(a,b) = \frac{\partial f}{\partial y} \right|_{(a,b)} = f_y(a,b)$$

Calculating Partial Derivatives

EXAMPLE 1 Partial derivatives from the definition Suppose $f(x, y) = x^2y$. Use the limit definition of partial derivatives to compute $f_x(x, y)$ and $f_y(x, y)$.

EXAMPLE 2 Partial derivatives Let $f(x, y) = x^3 - y^2 + 4$.

a. Compute
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$.

b. Evaluate each derivative at (2, -4).

EXAMPLE 3 Partial derivatives Compute the partial derivatives of the following functions.

a.
$$f(x, y) = \sin xy$$

b.
$$g(x, y) = x^2 e^{xy}$$

Higher-Order Partial Derivatives

Table 4

Notation 1	Notation 2	What we say
$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$	$(f_x)_x = f_{xx}$	d squared f dx squared or f-x-x
$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$	$(f_{y})_{y} = f_{yy}$	d squared f dy squared or f-y-y
$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$	$(f_y)_x = f_{yx}$	f- y - x
$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$	$(f_x)_y = f_{xy}$	f- x - y

The order of differentiation can make a difference in the **mixed** partial derivatives f_{xy} and f_{yx}

EXAMPLE 4 Second partial derivatives Find the four second partial derivatives of $f(x, y) = 3x^4y - 2xy + 5xy^3$.

Equality of Mixed Partial Derivatives

THEOREM 4 (Clairaut) Equality of Mixed Partial Derivatives

Assume that f is defined on an open set D of \mathbb{R}^2 , and that f_{xy} and f_{yx} are continuous throughout D. Then $f_{xy} = f_{yx}$ at all points of D.

Functions of Three Variables

EXAMPLE 5 Partial derivatives with more than two variables Find f_x, f_y , and f_z when $f(x, y, z) = e^{-xy} \cos z$.

Applications of Partial Derivatives

EXAMPLE 6 Ideal Gas Law The pressure P, volume V, and temperature T of an ideal gas are related by the equation PV = kT, where k > 0 is a constant depending on the amount of gas.

- **a.** Determine the rate of change of the pressure with respect to the volume at constant temperature. Interpret the result.
- **b.** Determine the rate of change of the pressure with respect to the temperature at constant volume. Interpret the result. $T \downarrow$
- **c.** Explain these results using level curves.

Differentiability

Is f differentiable there if the partial derivatives f_x and f_y exist at a point? Not that simple!

Recall that a function f of one variable is differentiable at x = a

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

$$\varepsilon = \frac{f(a + \Delta x) - f(a)}{\Delta x} - f'(a),$$
slope of secant line slope of

$$\Delta y = f(a + \Delta x) - f(a) = f'(a) \Delta x + \underbrace{\varepsilon} \Delta x.$$

$$\varepsilon \to 0 \text{ as } \Delta x \to 0$$

tangent line

DEFINITION Differentiability

The function z = f(x, y) is **differentiable at** (a, b) provided $f_x(a, b)$ and $f_y(a, b)$ exist and the change $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$ equals

$$\Delta z = f_x(a, b) \Delta x + f_y(a, b) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y,$$

where for fixed a and b, ε_1 and ε_2 are functions that depend only on Δx and Δy , with $(\varepsilon_1, \varepsilon_2) \to (0, 0)$ as $(\Delta x, \Delta y) \to (0, 0)$. A function is **differentiable** on an open set R if it is differentiable at every point of R.

THEOREM 5 Conditions for Differentiability

Suppose the function f has partial derivatives f_x and f_y defined on an open set containing (a, b), with f_x and f_y continuous at (a, b). Then f is differentiable at (a, b).

THEOREM 6 Differentiable Implies Continuous

If a function f is differentiable at (a, b), then it is continuous at (a, b).

EXAMPLE 7 A nondifferentiable function Discuss the differentiability and continuity of the function

$$f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

f is not continuous at (0, 0), even though $f_x(0, 0) = f_y(0, 0) = 0$. 15.4

The Chain Rule

The Chain Rule with One Independent Variable

Recall the basic Chain Rule:
$$\frac{dy}{dt} = \frac{dy}{du} \frac{du}{dt}$$

For
$$z = f(x, y)$$
,
where x and y are functions of t.
What is $\frac{dz}{dt}$?

THEOREM 7 Chain Rule (One Independent Variable)

Let z be a differentiable function of x and y on its domain, where x and y are differentiable functions of t on an interval I. Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

Several comments

- 1. For z = f(x(t), y(t)), the sole independent variable is t, and x and y are intermediate variables.
- 2. The choice of notation for partial and ordinary derivatives in the Chain Rule is important.
- 3. Theorem 7 can be generalized directly to functions of more than two intermediate variables.

EXAMPLE 1 Chain Rule with one independent variable Let $z = x^2 - 3y^2 + 20$, where $x = 2 \cos t$ and $y = 2 \sin t$.

- **a.** Find $\frac{dz}{dt}$ and evaluate it at $t = \pi/4$.
- **b.** Interpret the result geometrically.

The Chain Rule with Several Independent Variables

THEOREM 8 Chain Rule (Two Independent Variables)

Let z be a differentiable function of x and y, where x and y are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

EXAMPLE 2 Chain Rule with two independent variables Let $z = \sin 2x \cos 3y$, where x = s + t and y = s - t. Evaluate $\partial z/\partial s$ and $\partial z/\partial t$.

EXAMPLE 3 More variables Let w be a function of x, y, and z, each of which is a function of s and t.

- **a.** Draw a labeled tree diagram showing the relationships among the variables.
- **b.** Write the Chain Rule formula for $\frac{\partial w}{\partial s}$.

EXAMPLE 4 A different kind of tree Let w be a function of z, where z is a function of x and y, and each of x and y is a function of t. Draw a labeled tree diagram and write the Chain Rule formula for dw/dt.

Implicit Differentiation

Recall: Given F(x, y) = 0, to find $\frac{dy}{dx}$. Treat x as the independent variable and differentiate both sides of F(x, y) = 0. Apply the Chain Rule of partial derivatives now,

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

THEOREM 9 Implicit Differentiation

Let F be differentiable on its domain and suppose that F(x, y) = 0 defines y as a differentiable function of x. Provided $F_y \neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

To compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ with functions of the form F(x, y, z) = 0

EXAMPLE 5 Implicit differentiation Find dy/dx when $F(x, y) = \sin xy + \pi y^2 - x = 0$.

EXAMPLE 6 Fluid flow A basin of circulating water is represented by the square region $\{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$, where x is positive in the eastward direction and y is positive in the northward direction. The velocity components of the water are

the east-west velocity $u(x, y) = 2 \sin \pi x \cos \pi y$ and the north-south velocity $v(x, y) = -2 \cos \pi x \sin \pi y$;

these velocity components produce the flow pattern shown in Figure 61. The *stream-lines* shown in the figure are the paths followed by small parcels of water. The speed of the water at a point (x, y) is given by the function $s(x, y) = \sqrt{u(x, y)^2 + v(x, y)^2}$. Find $\partial s/\partial x$ and $\partial s/\partial y$, the rates of change of the water speed in the *x*- and *y*-directions, respectively.

EXAMPLE 7 Second derivatives Let $z = f(x, y) = \frac{x}{y}$, where $x = s + t^2$ and

 $y = s^2 - t$. Compute $\frac{\partial^2 z}{\partial s^2} = z_{ss}$, $\frac{\partial^2 z}{\partial t \partial s} = z_{st}$, and $\frac{\partial^2 z}{\partial t^2} = z_{tt}$, and express the results in

terms of s and t. We use subscripts for partial derivatives in this example to simplify the notation.

Chapter 15

Functions of Several Variables (I)

Shuwei Chen swchen@swjtu.edu.cn