Cybersecurity Management GCS 2.5 – Quantum Security

2022-2023 Prof. Marc Ruiz

marc.ruiz-ramirez@upc.edu

Quantum Networks 101 (by Dr. Masab Iqbal)

Techniques for Efficient and Secure Optical Networks

Masab Iqbal

The emergence of new use cases for 5G and beyond has led to a more dynamic and heterogeneous data traffic in optical transport. Furthermore, classical optical communication is now facing security threats from quantum computers.

There is a demand for making optical networks more efficient to provide the industry with long-term sustainable profits. Security threats need quantum communication to be robust, which faces several challenges. Hence, techniques for efficient and secure optical networks are needed.

Cost-effective solutions can potentially be provided by Point-to-Multipoint optical technologies. Quantum performance can be improved through qubit retransmission protocols, while Point-to-Multipoint Quantum Communication can facilitate multiparty communication.

The outcome includes the creation of novel techniques like Optical Constellation Slicing (OCS), Light Path SECurity (LPsec), Quantum Automatic Repeat Request (QARQ), and Quantum Quadrature Phase Shift Keying (Q²PSK). These techniques enhance the cost-effectiveness and security of optical networks, improve quantum performance, and provide inherent security for classical data.

Results

Societal Value OCS simplifies network architecture, LPsec provides additional security, QARQ improves the robustness of quantum communication, Q2PSK ensures inherent security for classical data.

Quantum – Where we are?

Like at the birth of the Internet...

29 October 1969

LOGIN

We typed the L and asked on the phone: "Did you see the L?"

"Yes, we see the L"

We typed the O and asked on the phone: "Did you see the O?

"Yes, we see the O"

Then we typed G and the System actually crashed

Warm start

https://www.youtube.com/watch?v=90za6mazNps

Classical vs Qubit

Classical

0

Quantum

$$|\varPsi\rangle_{a_0}=\alpha\,|0\rangle_{a_0}+\beta\,|1\rangle_{a_0}$$

1

Bit vs Qubit

 If we had four bits, the possible value a classical computer can take is one of the following

Bit vs Qubit

• If we had four qubits, quantum computer can take all the values at the same time!

α_0	0000	α_8	1000
α_1	0001	α_9	1001
α_2	0010	α_{10}	1010
α_3	0011	α_{11}	1011
α_4	0100	α_{12}	1100
α_5	0101	α_{13}	1101
α_6	0110	α_{14}	1110
α_7	0111	α_{15}	1111

 2^{N}

Bit vs Qubit

With 275 qubits, we can represent more basis states than the number of atoms in the observable universe

2275

Quantum Technologies

Quantum computing

Speed-up tasks

- Quantum database search (Grover's algorithm)
- Quantum prime number factorization (Shor's algorithm)

Quantum communication

Secure communication Efficiency

Quantum Computing – Where we are?

False claims

Quantum computers will replace all classical computers.

Quantum Computers are super powerful computers and are much faster than classical computers.

Quantum computers will break all existing encryptions.

RSA-2048 needs more than 4000 qubits to break encryption

Quantum computer is a solution for everything.

Applications of Quantum Communication

Secure Communication

Secure Quantum Computing in the cloud

Secure Identification

Clock Synchronization

Position Verification

Online Games

No-Cloning theorem

 The no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state

Good or bad?

Entanglement

It strongly correlates two particles, that measurement of one can tell the measurement result of the other, even if they are far apart.

Quantum Network

Methods of qubit transmission

Direct Transmission: Using Quantum Channel

Teleportation: Take advantage of two classical bits and an entangled qubit pair and avoid

using quantum channel

Challenges of direct transmission

Transmission Losses

Losses in transmission media

Decoherence

Interaction with environment

No cloning theorem

Qubits can't be copied

Teleportation Protocol

- Alice prepares the state, she wants to send.
- An entanglement is created and shared between Alice and Bob.
- Alice performs measurement.
- Alice sends the measurement results to Bob.
- Bob applies gates according to results

Takeaway of Teleportation

Instead of sending the qubit directly into the quantum channel send entanglement pairs via the quantum channel and utilize entanglement to teleport the qubit

Challenges of teleportation

Entanglement Swapping (Repeaters)

Takeaways

Qubits are very fragile and are prone to many losses.

So, we don't transmit Qubits over long distances

We can use entanglement assistance to teleport the qubit without transmitting the qubit through a quantum channel.

But entanglement pairs are also qubits, so we can't send the pair over long distances too.

So, we generate multiple entanglement pairs, and through teleportation perform entanglement swapping to enable long-distance entanglement distribution.

Quantum Key Distribution

"The" encryption: One Time Pad

XOR	0	1
0	0	1
1	1	0

Proven security if:

- Length text = Length key
- Key is used one time only
- Key is generated randomly

Quantum Random Number Generators (QRNG) can do this!!!

QRNG

Currently, they achieve low rates: ~4 Mb/s

https://idquantique.com

Quantum Key Distribution (QKD)

- It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages
- The two communicating users can detect the presence of any third party trying to gain knowledge of the key (eavesdropping)
- Qubits are coded into quantum particles (photons), e.g., using polarization
- Any measurement by an eavesdropper will alter qubit state (photon polarization) and this perturbation is going to be detected
- However other sources of noise (no eavesdropping) can introduce perturbations

https://www.youtube.com/watch?v=Hm2Nmw_gnMQ

Encoding qubits as photons

BB84 Protocol

Oldest protocol, works for polarization-encoded QKD systems

Several phases:

Distribution

- Sifting
- Error estimation and correction
- Privacy amplification

BB84 - Distribution

BB84 – Key sifting

Alice's selected basis	+	x	x	+	x	+	+	+	x	+	x	x
Alices's selected states	1	/	/	\rightarrow	`	\rightarrow	1	1	/	\rightarrow	`	`
Alice's raw-key	1	0	0	0	1	0	1	1	0	0	1	1
Bob's selected basis	+	+	х	+	х	X	+	+	х	+	+	x
Bob's measured states	1	\rightarrow	,		`	`	1	1	7	\rightarrow		`
Bob's raw-key	1	0	0		1	1	1	1	0	0		1
Alice's sifted-key	1		0		1		1	1	0	0		1
Bob's sifted-key	1		0		1		1	1	0	0		1

BB84 – Error estimation

A sample is chosen, shared, and if **errors > 10%**, it is assumed that there is **eavesdropping** and the key is **discarded**

https://www.youtube.com/watch
?v=2kdRuqvlaww

AT - 2 1 1												
Alice's selected basis	+	x	x	+	x	+	+	+	x	+	x	x
Alices's selected states	1	/	/	\rightarrow	`	\rightarrow	1	1	/	\rightarrow	`	,
Alice's raw-key	1	0	0	0	1	0	1	1	0	0	1	1
Bob's selected basis	+	+	х	+	х	X	+	+	х	+	+	х
	'	'	Vithou	t eave	sdropp	ing						
Bob's measured states	1		,		`	`	1	1	,	→		\
Bob's raw-key	1	0	0		1	1	1	1	0	0		1
Alice's sifted-key	1		0		1		1	1	0	0		1
Bob's sifted-key	1		0		1		1	1	0	0		1
			With	eavesd	roppii	ng						_
Bob's measured states	1		/			`	1	1	/	î		\
Bob's received bits	1	0	0		0	1	1	1	0	1		1
Alice's sifted-key	1		0		1		1	1	0	0		1
Bob's sifted-key	1		0		0		0	1	0	1		1

BB84 – Last steps

Error correction

- Aka, information reconciliation
- Needed to correct the rest of bits that were not discarded during error estimation
- Using a cascade protocol, Bob can correct errors exposing (leaking) a minimum amount of bits through the classical channels
- Eavesdropper can get significant information about keys in this phase
- Process ends with identical Alice and Bob secret keys

Privacy amplification

- Using a hash function, a secret key of length *n* is transformed into a shorter one of length *m*<<*n*
- In this way, potential information retrieved by eavesdropper is cancelled.

Some numbers

Obtained with https://www.qkdsimulator.com

Initial Configuration								
Property Qubit Count	Basis choice bias delta	Eve basis choice bias delta	Eavesdropping	Eavesdropping late	Error estimation sampling rate	Biased error estimation	Error tolerance	
1000	0.5	0.5	0	.1	0.2	0	0.11	

Statistics and Overview						
Property	Value					
Initial number of qubits	1000					
Final key length	343					
Raw key mismatch before error correction	0.0					
Raw key mismatch after error correction	0					
Information leakage (Total number of disclosed bits)	52					
Overall key cost for authentication	256					
Key length before error correction	415					
Bit error probability	0.0					
Bits leaked during error correction	20					

Some numbers

Obtained with https://www.qkdsimulator.com

Initial Configuration								
Property Qubit Count	Basis choice bias delta	Eve basis choice bias delta	Eavesdropping	Eavesdropping rate	Error estimation sampling rate	Biased error estimation	Error tolerance	
1000	0.5	0.5	1	0.2	0.2	0	0.11	

Statistics and Overview					
Property	Value				
Initial number of qubits	1000				
Final key length	234				
Raw key mismatch before error correction	0.0438				
Raw key mismatch after error correction	0				
Information leakage (Total number of disclosed bits)	166				
Overall key cost for authentication	256				
Key length before error correction	420				
Bit error probability	0.0405				
Bits leaked during error correction	134				

Commercial QKD

IDquantique

Home | Quantum-Safe Security | Products | Clavis XG QKD System

Clavis XG QKD System

Quantum Key Distribution for production environments requiring high key transmission rate or extended range interconnection

- > Long range (up to 150 km)
- > High key rate (>100 kb/s)
- > Complex network topologies (ring, hub and spoke, meshed, star)
- > Controlled and monitored centrally
- > Interoperability with major Ethernet and OTN encryptors

DOWNLOAD BROCHURE

VIEW USE CASES

HOW TO BUY

Local SME on Quantum

LuxQuanta -> Continuous Variable QKD

LuxQuanta® Continuous Variable Quantum Key Distribution system

Adding quantum security to optical networks

LuxQuanta Continuous Variable Quantum Key Distribution (CV-QKD) systems are ideal for distributing highly secure keys in metropolitan networks, integrating this technology into existing optical fiber links and coexisting with conventional telecommunication technologies.

Contact us for more information

Built with mature telecommunication components

Easy network integration

High performance at metro distances

Reduced system and implementation cost

A clear path to future scalability via full photonic integration

Recent research

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 13, JULY 1, 2022

4119

Cost-Effective ML-Powered Polarization-Encoded Quantum Key Distribution

Morteza Ahmadian , Marc Ruiz , Jaume Comellas , and Luis Velasco

Recent research

Cost-Effective ML-Powered Polarization-Encoded Quantum Key Distribution

Morteza Ahmadian , Marc Ruiz , Jaume Comellas , and Luis Velasco

Recent research

Cost-Effective ML-Powered Polarization-Encoded Quantum Key Distribution

Morteza Ahmadian , Marc Ruiz , Jaume Comellas , and Luis Velasco

References QKD

- Wehner, Stephanie & Elkouss, David & Hanson, Ronald. (2018).
 Quantum internet: A vision for the road ahead. Science. 362.
 eaam9288. 10.1126/science.aam9288.
- Introduction to QKD
 - https://medium.com/quantum-untangled/quantum-key-distribution-and-bb84protocol-6f03cc6263c5
- BB84 short video
 - https://www.youtube.com/watch?v=2kdRuqvlaww
- Online QKD simulator
 - https://www.qkdsimulator.com/
- Open-Source Quantum Development
 - https://qiskit.org/

Cybersecurity Management GCS 2.5 – Quantum Security

2022-2023 Prof. Marc Ruiz

marc.ruiz-ramirez@upc.edu