

Computação em nuvem

Tecnologias de Suporte à Computação em Nuvem

Prof. Dr. Marcos A. Simplicio Jr.
Laboratório de Arquitetura e Redes de Computadores
Departamento de Engenharia de Computação e
Sistemas Digitais
Escola Politécnica da Universidade de São Paulo

Objetivos – Aula 17

- Entender o paradigma de redes definidas por software (Software Defined Networks -- SDNs) e sua utilidade
- Compreender o funcionamento básico do OpenFlow

Motivação para SDN

- Equipamentos de rede: difícil inovar
 - Hardware, sistema operacional e aplicações especializadas
 - Interfaces fechadas: definidas por fabricantes, que demoram para introduzir funcionalidades e padronizá-las
- Analogia: mainframes vs. desktops

Motivação para SDN

- Redes definidas por software (SDN)
 - Separação entre planos de controle e dados
 - Interfaces abertas para programação

Soluções proprietárias Inovação lenta Indústria pequena

Soluções abertas Inovação rápida Indústria gigantesca

Redes de computadores tradicionais

encaminhamento, filtragem, bufferização, marcação, limitação de taxa de transmissão

Redes de computadores tradicionais

Gerencia mudanças de topologia, calcula rotas, instala regras de encaminhamento

Redes de computadores tradicionais

Coleta medidas e configura equipamento

SDN: gerenciamento + controle

- Facilita gerenciamento: controle logicamente centralizado
 - Não é necessário "reverter" operações do plano de controle
- Equipamentos mais simples e baratos
- Facilita inovação

Contempla regras simples para tratar pacotes

- > Padrão de entrada: bits no cabeçalho
- > **Ação**: descartar, encaminhar, modificar, enviar a controlador
 - "Enviar a controlador": permite configurar sob demanda regras para outros pacotes do mesmo fluxo
- > **Prioridade**: para prevenir ambiguidades

- 1. orig=1.2.*.*, dest=3.4.5.* \rightarrow descartar
- 2. orig = *.*.*.*, dest=3.4.*.* \rightarrow encaminhar (porta 2)
- 3. orig=10.1.2.3, dest= $*.*.*.* \rightarrow$ enviar a controlador

Openflow: unifica diferentes tipos de equipamentos de rede

Roteador

- Padrão de entrada: maior prefixo do IP de destino
- Ação: encaminhar por uma porta

Switch

Padrão de entrada: endereço MAC de destino

Ação: encaminhar por porta ou fazer broadcast

Firewall

 Padrão de entrada: endereços de IP e números de porta TCP/UDP

Ação: encaminhar ou descartar

NAT

Padrão de entrada: endereços IP e portas

Ação: modificar endereços IP e portas

Controlador: Programabilidade

Eventos dos switches

Mudanças de topologia, Estatísticas de tráfego, Pacotes entrantes

Comandos para switches

(Des)instalar regras, Requisitar estatísticas, Enviar pacotes

Controle de acesso dinâmico

- Inspeciona primeiro pacote da conexão
- **Consulta política** de controle de acesso

Balanceamento de carga em servidores

- Pré-instala política de balanceamento de carga
- Distribui tráfego com base em IP de origem

Virtualização de redes

Controlador #1 Controlador #2

Controlador #3

Particionamento do espaço de endereços

- Entender o paradigma de redes definidas por software (Software Defined Networks -- SDNs) e sua utilidade
 - Separação entre planos de controle e dados
 - Útil para controle de acesso, mobilidade, balanceamento de carga e virtualização de redes (tarefas comuns em cenários de computação em nuvem)
- Compreender o funcionamento básico do OpenFlow
 - Controlador configura equipamentos com lista do tipo <padrão de bits no cabeçalho, ação>
 - Protocolo aberto
- Próxima aula: virtualização assistida por hardware