DM₂

A - Préliminaires

Question 1

(a)

 \Leftarrow : Trivial

 \Rightarrow :

Supposons que:

$$X^{ op}X = 0$$

Soit $(\lambda_i)_{i=1}^n \in \mathbb{R}^n$, tels que :

$$X = egin{pmatrix} \lambda_1 \ dots \ \lambda_n \end{pmatrix}$$

Alors,

$$X^ op X = \left(\lambda_1^2 + \dots + \lambda_n^2
ight) = (0)$$

Comme $orall i \in \llbracket 1, n
rbracket, \lambda_i^2 \geq 0$,

$$\sum_{i=1}^n \lambda_i^2 = 0$$

Ainsi,

$$X = egin{pmatrix} 0 \ dots \ 0 \end{pmatrix} n ext{ fois}$$

(b).

Soit $M\in\mathcal{M}_n(\mathbb{R})$ et $X\in\mathcal{M}_{n,1}(\mathbb{R})$,

$$egin{aligned} orall M \in \mathcal{M}_n(\mathbb{R}), orall X \in \operatorname{Ker}(M) &\Leftrightarrow MX = 0_{\mathcal{M}_{n,1}(\mathbb{R})} \ &\stackrel{(\star)}{\Leftrightarrow} (M^ op M)X = 0_{\mathcal{M}_{n,1}(\mathbb{R})} \ &\Leftrightarrow X \in \operatorname{Ker}(M^ op M) \end{aligned}$$

 $(\star), \Leftarrow$:

car:

$$egin{aligned} orall M \in \mathcal{M}_n(\mathbb{R}), orall X \in \mathcal{M}_{n,1}, & (M^ op M)X = 0 \ & \Rightarrow X^ op M^ op MX = 0 \ & \Rightarrow (MX)^ op MX = 0 \end{aligned}$$

 $(\star\star)$: Car $MX\in\mathcal{M}_{n,1}(\mathbb{R}).$

Question 2

(a).

$$oxed{Megin{pmatrix} I_r & -A^{-1}B \ 0 & I_{n-r} \end{pmatrix} = egin{pmatrix} A & 0 \ C & D-CA^{-1}B \end{pmatrix}}$$

(b).

$$egin{pmatrix} I_r & -A^{-1}B \ 0 & I_{n-r} \end{pmatrix}$$

Comme c'est une matrice triangulaire à coefficients tous non nuls à la diagonale, alors cette matrice est inversible, donc,

$$\operatorname{rg}\left(Megin{pmatrix}I_r&-A^{-1}B\0&I_{n-r}\end{pmatrix}
ight)=\operatorname{rg}(M)$$

Comme $A \in GL_r(\mathbb{R})$, $\operatorname{rg}(A) = r$.

Comme:

$$G = egin{pmatrix} A & 0 \ C & D - CA^{-1}B \end{pmatrix}$$

est une matrice triangulaire inférieure,

$$\det(G) = \det(A) + \det(D - CA^{-1}B) = r + \det(D - CA^{-1}B)$$

Ainsi,

$$\det(G) = \det(M) \ge r$$

Si $D=CA^{-1}B=0$ alors, $\det(D-CA^{-1}B)=0$ Ainsi,

$$\det(G) = r$$

Question 3

On pose:

$$arphi: egin{cases} \mathcal{M}_{n-r}(\mathbb{R}) imes \mathcal{M}_{r,n-r}(\mathbb{R}) o W_r \ (A,B)\mapsto egin{pmatrix} 0&B \ B^ op & A \end{pmatrix}$$

 φ est bien définie par définition de W_r .

On montre que cette application est bijective :

Soit $(X,Y) \in \mathrm{Ker}(\varphi)$,

$$arphi(X,Y) = egin{pmatrix} 0 & Y \ Y^ op & X \end{pmatrix} = egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$

Ainsi, X=0 et Y=0, par unicité des blocs dans des matrices par blocs.

Soit $Y \in W_r$,

il existe alors par définition de W_r , $(A,B)\in \mathcal{M}_{n-r}(\mathbb{R}) imes \mathcal{M}_{r,n-r}(\mathbb{R})$ tels que :

$$Y = egin{pmatrix} 0 & B \ B^ au & A \end{pmatrix} = arphi(A,B)$$

Alors, $W_r \subset \operatorname{Im}(u)$, et comme : $\operatorname{Im}(u) \subset W_r$,

Donc, $W_r = \operatorname{Im}(\varphi)$

Alors, φ est bijective donc

$$\dim(\mathcal{M}_{n-r}(\mathbb{R})) + \dim(\mathcal{M}_{r,n-r}(\mathbb{R})) = \dim(W_r)$$

Donc,

$$\dim(W_r) = (n-r)^2 + r(n-r) = (n-r)(n-r+r) = n(n-r)$$

$$oxed{\dim(W_r) = n(n-r)}$$

B - Dimension maximale Question 4

(a).

Posons:

$$M = egin{pmatrix} \lambda I_r & B \ B^ op & A \end{pmatrix} \in V$$

car CL de deux éléments de V.

Montrons que:

$$A = B^{\top}B = 0$$

On a:

$$\operatorname{rg}(M) \leq r$$

Comme $\lambda I_r \in GL_r(\mathbb{R})$, $B \in \mathcal{M}_{r,n-r}(\mathbb{R})$ et $B^{\top} \in \mathcal{M}_{n-r,r}$ puis $A \in \mathcal{M}_{n-r}(\mathbb{R})$ d'après la question 2,

$$\operatorname{rg}(M) \geq r$$

Donc, rg(M) = r,

Alors,

encore d'après la question 2 :

$$A = B^\top I_r B = 0$$

Ainsi,

$$A = B^ op B = 0$$

(b).

On a montré que :

$$W_r \cap V = \{0\}$$

(c).

On a alors par la formule de Grassmann :

$$\dim(W_r+V)=\dim(W_r)+\dim(V)$$

Car $W_r \cap V = \{0\}$

Et alors:

$$\dim \mathcal{M}_n(\mathbb{R}) \leq \dim(W_r + V) = \dim(W_r) + \dim(V)$$

la somme de deux matrices (en particulier de W_r et V) de $\mathcal{M}_n(\mathbb{K})$ est toujours dans $\mathcal{M}_n(\mathbb{K})$.

Ainsi,

$$n^2 \geq n^2 - nr + \dim V \Leftrightarrow \overline{\dim V \leq nr}$$

Question 5 : Pas de conclusion Question 6

Soit $X\in\mathcal{M}_n(\mathbb{R})$,

Soit $A\in\mathcal{M}_r(\mathbb{R})$, $B\in\mathcal{M}_{r,n-r}(\mathbb{R})$, $C\in\mathcal{M}_{n-r,r}$ et $D\in\mathcal{M}_{n-r}(\mathbb{R})$

$$X = egin{pmatrix} A & B \ C & D \end{pmatrix}$$

On pose:

$$G = egin{pmatrix} 0 & B \ B^ op & D \end{pmatrix} \in W_r ext{ (Par d\'efinition)}$$

et:

$$F = egin{pmatrix} A & 0 \ C - B^ op & 0 \end{pmatrix} \in V$$

car:

$$\operatorname{rg}inom{A}{C-B^ op}\leq r$$

car le nombres de colonnes de de cette matrice est égale à r. (soit ces vecteurs forment une famille libre à r vecteurs soit une famille liée, donc le nombre de vecteurs formant une base de $\mathrm{Im}(u)$ sera inférieur à r) alors,

$$\operatorname{rg}egin{pmatrix} A & 0 \ C-B^ op & 0 \end{pmatrix} \leq r$$

Ainsi,

$$X = F + G$$

Donc,

$$\mathcal{M}_n(\mathbb{R}) = W_r + V$$

Comme:

$$W_r \cap V = \{0\}$$

D'après la question 4.b.,

$$\mathcal{M}_n(\mathbb{R}) = W_r \oplus V$$

Alors d'après la formule de Grassmann,

$$\dim \mathcal{M}_n(\mathbb{R}) = \dim W_r + \dim V$$

Ainsi,

$$\dim V = nr$$