Tecnologías de LAN	3
Clasificacion De Redes:	3
Características de una LAN	3
Diferencias entre LAN y WAN	3
• LAN	3
• WAN	3
Arquitectura de una LAN	3
Modelo ISO/OSI & IEEE 802	4
Capa Física en LAN	4
Capa de Enlace en LAN	4
Logical Control Link	4
Medium Control Access	4
Capas de LAN	5
Topología de LAN	5
Bus y Árbol	5
Topología Anillo	6
Topología de Anillo	6
Topología De Estrella	7
Medium Access Control	8
Donde realiza el control?	8
Forma centralizada	8
Forma descentralizada	8
¿Cómo realizar el control?	8
Round Robin	8
Reservación	8
Contención	8
Estructura de una Trama MAC	9
Logical Link Control LLC (IEEE 802.2)	9
Servicios	
Sin Conexión	9
Con Conexión	9
Sin conexión con ASK	9
Multiplexación	10
Direcciones	
Hay dos niveles de Direcciones	
Primitivas	
Trama LLC	11
Redes de Computadora	
Modelo de Comunicación:	
Servicios a ofrecer	
Elementos de una Red	
Comunicación y Networking	
Comunicación	13

Networking	13
LAN y WAN	13
Tipos de Redes	14
Tipologías	15
Modelo por Capas	15
Conceptos	15
Entidad	15
Sistema	15
Protocolo	16
Arquitectura	16
Formas de Comunicación	16
Entidad, sistema, Protocolo	16
Conceptos del modelo por capas	17
Servicios	17
Interfaz	17
Protocolos de la capa N	17
Modelo ISO/OSI	18
Nivel 1 Fisica	18
Nivel 2 Enlace	19
Nivel 3 Red	19
Capa 4 Transporte	19
Capa 5 Sesion	19
Capa 6 Presentación	19
Capa 7 Aplicacion	20
ISO vs TCP/IP	21
Sistemas LAN IEEE 802.x	22
Métodos de Acceso	22
ALOHA	22
Slotted ALOHA	22
Carrier Sense Multiple Access	23
Carrier sense Multiple Access / Collision Detection	23
Back Off	23
Algoritmo CSMA/CD	23
802.3 y Ethernet	23
Trama 802.3	24
Direcciones	24
Trama Ethernet	24
Algoritmo 802.3	24
Token Ring	25
Características	25
Funcionamiento	25
Estructura de Token	26
Estructura del Frame	26
Frame Status	27

Funcionamiento (Continuación) Token Ring	27
Para Transmitir	27
Para Recibir	28
Para Terminar	28
Observación	28
Tipos de Estaciones	29
IEEE 802.4	29
Prioridades	29
Tramas	30
Problemas	30

Tecnologías de LAN

Clasificacion De Redes:

WAN: WideLAN: Local

MAN: Metropolitan
CAN: Campus
DAN: Desk
GAN: Global

Características de una LAN

- Redes de difusión de paquetes
- Canal : no disponible en 24/7
- · Competencia por el medio antes de transmitir
- Se determina quién tiene derecho a usar el medio.
- LAN, sistemas satelitales.

Diferencias entre LAN y WAN

- LAN
 - o Usualmente comporten el medio
 - o Broadcast
 - o Sin estaciones intermedias
 - o Infraestructura: mantenida por una organización
- WAN
 - o Punto a punto
 - Unicast
 - o Routers y Switches intermedios
 - o Infraestructura mantenida por una telecom

Arquitectura de una LAN

- Desarrollado por IEEE 802
- Capas inferiores modelo OSI (1 y 2)
- Capas superiores independiente de la arquitectura

Modelo ISO/OSI & IEEE 802

Capa Física en LAN

- Codificacion y Decodificacion de señales
- Agregar y quitar el preámbulo para la sincronización
- Transmisión y recepción de Bit
- Incluye especificación del medio de transmisión y topología de la LAN

Capa de Enlace en LAN

Logical Control Link

• Provee una interfaz para capas superiores => se independiza del medio

Medium Control Access

- Ensambla los datos en frames.
- Maneja Direccionamiento
- Gobierna el acceso al medio de transmisión

Capas de LAN

Topología de LAN

- Ring
- Star
- Tree
- Bus

Bus y Árbol

- Todos reciben señal (Broadcast)
- Los terminadores absorben la señal
- Datos divididos en Frames
- Cada Frame contiene:
 - Identificación destinatario
- Todas las estaciones leen el frame

Topología Anillo

- No representa medio de difusión
- Conjunto de enlaces punto a punto
 - Unidireccionales
 - Forman un círculo
- Interfaces de DTE leen y transmiten cada bit
- Existe delay de señal
 - o Al pasar por cada DTE

Topología de Anillo

Topología De Estrella

- Cada estación está conectada por un enlace.
- Modos de operación:
 - Broadcast
 - Switching

Medium Access Control

- Determinar DÓNDE y CÓMO realizar Acceso de control al medio MCA
- Establece estructuras de la trama
- Responsable de:
 - Detectar errores => Descartar las tramas

Donde realiza el control?

Forma centralizada

- Una estación de red controla los permisos de transmisión.
 - o De todas las estaciones.

Forma descentralizada

• Entre todas las estaciones de red controlan acceso al medio.

¿Cómo realizar el control?

Round Robin

- Apto para control de tráfico de stream
- Control puede ser:
 - o Central.
 - o Distribuido.

Reservación

- Apto para control de tráfico de stream
- Control puede ser:
 - o Central.
 - o Distribuido.

Contención

- Apto para el tráfico en rafagas.
- Control Distribuido.
- Simple de implementar.

Estructura de una Trama MAC

Logical Link Control LLC (IEEE 802.2)

- Responsable de soportar el acceso múltiple en un medio de naturaleza compartida.
- Especifica los mecanismos para poder direccionar las estaciones a través de un medio y para controlar el intercambio de datos entre ellas.

Servicios

Sin Conexión

- Sin procedimientos para iniciar y terminar comunicacion
- No se sabe si las tramas llegan bien o mal

Con Conexión

- Implícitamente incorporan acknowledge
- Es posible salir de una condición de error.
- E procedimientos para realizar y liberar la conexión.

Sin conexión con ASK

Multiplexación

- Un único Link físico conectado a la estación, debería poder transferir datos a múltiples puntos en los extremos del link.
- Como? Mediante:
 - o Service Access Point

Direcciones

Hay dos niveles de Direcciones

• MAC: identifica la estación en la red

LLC: identifica sevicio dentro del DTE

Primitivas

• Todos los servicios se realizan por medio de primitivas.

Trama LLC

- DSAP Destination Service Access Point
- SSAP: Source service Access point.
- Control: Tipifica la trama
- Datos: Acotado por el nivel MAC (802.3, 802.5, Ethernet)

Redes de Computadora

• La información nace cuando los datos son interpretados

Modelo de Comunicación:

• Ejemplos: mail, conversación telefónica

Servicios a ofrecer

- Establecer y finalizar conexión
- Control de flujo
- Enrutamiento
- Direccionamiento (Addressing)
- Network Access (Acceso al medio)
- Half Duplex vs full duplex
- Multiplexación y demultiplexación

Elementos de una Red

Comunicación y Networking

Comunicación

Dos nodos, punto a punto

Networking

- Dos o más nodos, más elementos
 - o Ruteo
 - o Direccionamiento...

LAN y WAN

Tipos de Redes

Point to point vs Broadcast

Circuit switched vs packet switched

Local Area Networks (LAN) 0-2 km, Metropolitan Area Networks (MAN) 2-50 km, Wide Area Networks (WAN) 50+km

• LAN 0-2 km

• MAN: 2 - 50 Km

• WAN: 50 km +

Tipologías

Modelo por Capas

Conceptos

Entidad

- Todo lo que pueda enviar y recibir información.
- Ejemplos:
 - o FTP
 - o DBMS
 - o eMail
 - o Telnet

Sistema

- Objeto Físico, contiene 1 o + entidades.
- Ejemplos:
 - Computadoras
 - Terminales

Protocolo

• Reglas que definen la forma de intercambiar datos entre dos entidades.

Arquitectura

- Conjunto de protocolos que cooperan en una comunicación.
 - o OS
 - o TCP/IP

Formas de Comunicación

- Humanos envían y reciben información
- Aplicaciones envían y reciben datos
- Dispositivos digitales envían y reciben señales analógicas.
- Cables pasan por señales eléctricas u ópticas.

Todos estos dispositivos hablan su propio idioma.

Entidad, sistema, Protocolo

Conceptos del modelo por capas

Servicios

- Libre implementación
- Conjunto de PRIMITIVAS
 - o Estas se brindan a una capa de nivel superior.

Interfaz

- Poca interconexión entre capas.
- Específica que servicios de la capa inferior se le brindaran a una superior.

Protocolos de la capa N

• Conjunto de reglas usadas para transferir datos entre capas del mismo nivel.

Flujo de la Información

Modelo ISO/OSI

No es una arquitectura de red

Nivel 1 Fisica

- Unidad de información es el Bit
- Características:
 - Mecánicas

o Eléctricas

Funcionales

Pin 2	Transmisión de datos	DTE	DCE Pin
3	Recepción de datos	DTE	DCE Pin
4	Request to send	DTE	DCE Pin
5	Clear to send	DTE	DCE

- Establecer, terminar conexión
- Transmisión en uno o dos sentidos.

Nivel 2 Enlace

- Administra la competencia en líneas bidireccionales.
- Realiza control de error, por medio de ACK y retransmisiones.
- U información:
 - o Tramas.
 - o Frames.
- Control de flujo
- Controla Perdida y duplicidad de Tramas/Frames

Nivel 3 Red

- Paquete
- Direccionamiento
- Posibilidad de encontrar congestión
- Interconexión de redes heterogéneas
- Ruteo de paquetes, Origen -> Destino

Capa 4 Transporte

- Realiza Control de flujo
- Comunicación de Extremo a Extremo
- Dos tipos de servicios
 - Con conexión
 - Sin conexión
- Divide si es necesario datos de la Capa 5, para adaptarlos a la capa 3

Capa 5 Sesion

- Gestiona Control de diálogo
 - o Direccional
 - Controla comunicación entre dos dispositivos
 - Unidireccional
 - Transmite sólo del emisor al receptor.
- Establece, controla y termina las sesiones entre aplicaciones.
- Estructuras de control para comunicación entre aplicaciones.

Capa 6 Presentación

- Aspectos:
 - o Sintácticos
 - Semánticos
- Estructura abstracta de datos
- Compresión encriptado de datos

Capa 7 Aplicacion

- Interfaz con el Usuario
- Protocolos que brindan servicios:
 - Telnet
 - o FTP
 - o SNMP
 - o SMTP
 - o POP

ISO vs TCP/IP

Sistemas LAN IEEE 802.x

- Ethernet y 802.3
- Token Ring (802.5)
- Token Bus (802.4)

Métodos de Acceso

ALOHA

- Eficiencia 18%
- Emisor no recibe ACK => retransmite frame
- ACK para verificar si la trama llegó bien o mal
- Colisiones y ruido destruyen tramas

Slotted ALOHA

- Eficiencia de un 36%
- Sincronizar todas las estaciones sobre el medio
- Autoriza transmisión c/ slot de tiempo

Aloha Puro 18 % de rendimiento

Slotted Aloha 36 % de rendimiento

Carrier Sense Multiple Access

- Transmite inútilmente
- No excita colisiones
- Si está ocupado => espera
- Existe ACK para confirmación de la llegada.

Carrier sense Multiple Access / Collision Detection

- Dispositivos tienen los mismos derechos.
- Canal libre => transmite.
- Colisión => Corta la transmisión => Back off (espera un tiempo).
- Medio ocupado => retrasa la transmisión.

Back Off

- Primer colisión => elijo tiempo entre [0, 1] de t
- Segunda Colisión => [0,1,2,3] de t
- I-ésima colision => $[0, 2^n 1]$ de t
- Hasta I = 10

Algoritmo CSMA/CD

- DTE desea transmitir => escucha =>
 - Medio ocupado => espera
 - Medio libre => Transmite y sigue escuchando
 - Colisión durante transmisión => Deja de transmitir y manda señal a todas las DTE sobre la colisión
 - o **Espera tiempo aleatorio** para volver a transmitir

802.3 y Ethernet

- Arquitectura tipo BUS
- Método de acceso: CSMA/CD
- **Medios**: 10 base 2, 10 base 5, 10 base T
- Longitud máx: 2500 mts usando repetidores
- Repetidores max = 4
- Codificación: Manchester No diferencial

Trama 802.3

• Preámbulo: Bit sincronización entre estaciones

SFD Start frame Delimiter

Frame: Direcciones + DATOS

• IPG Inter Packet Gap - 96 bit

Direcciones

- A nivel de MAC
- Dirección destino es de forma:
 - o 0...: indica un DTE en particular
 - o 1 ...: grupo de DTEs (Multicast)
 - 111..11: todos los DTE (Broadcast)
- Cada NIC debe tener dirección distinta en la misma LAN
 - o NIC: Tarjeta de interfaz de red

Trama Ethernet

- 8 bytes de preámbulo.
- Dirección Origen y destino son iguales
- No hay campo de Longitud
- Tipo clasifica el contenido de los datos
 - Invasión de Niveles

Algoritmo 802.3

- Carrier Sense (espera a que red esté libre)
- Espera de 96 Bit (9,6 us) = IPG
- Deshabilita sensor de colisión
- Transmite preámbulo y SFD (64 bit)
- Habilita sensor de colisión
- Transmite 64 bits de frame
 - Para ganar el medio
- Si Colisión =>
 - Transmite 32 bit (Jam) y para de transmitir, Si no =>
 - Deshabilita sensor de colisión
 - Transmite hasta el final del paquete

Token Ring

- No es un medio de difusión
- Delay de señal al pasar por cada DTE
- DTE's leen y retransmiten cada bit

Características

- DTE sale del anillo => Volver a unir
- Patrón especial de bit (token)
- El anillo debe de contener al token
- Para transmitir => DTE debe capturar el token

Funcionamiento

- DTE origen espera por token libre
- Agrega:
 - Datos
 - Direcciones
 - => Token Ocupado
- DTE receptor toma los datos
- DTE origen remueve los datos y regenera token

Estructura de Token

- S = tiempo de trama
 - 0 => Token Libre
 - 1 => Token con datos
- M = Monitor

Estructura del Frame

- □ SD = Starting Delimiter (1 byte).
- □ FC = Frame Control (1 byte).
 - Distingue tramas de control y de datos.
- DA = Destination Address (2 o 6 bytes)
- □ SA = Source Address (2 o 6 bytes)
- □ INFO = Datos (De 0 a 4027 bytes)
- □ FCS = Frame-Check Sequence (4 bytes).
- □ ED = Ending Delimiter (1 bytes).
- □ FS = Frame Status (1 byte.)

Frame Status

- Bit A/C repiten por seguridad
- 0/0 => destino desconectado
- 1/0 => Destino leyó trama, no acepto
- 1/1 => Destino leyó trama, si acepto
- En Ethernet y 802.3 no tengo estos servicios

Funcionamiento (Continuación) Token Ring

- Siempre hay una sola trama en el anillo
- Token circula libremente S = 0
- Cualquier DTE puede transmitir

Para Transmitir

- Si B quiere transmitir algo a D debe:
 - Capturar token
 - Verificar si está libre S = 0
 - o Armar trama a enviar
 - Indicar Token ocupado S = 1

Para Recibir

- DTE E puede:
 - o Estar fuera del anillo
 - Leer trama pero tiene error CRC (Cyclic Redundancy Check)
 - o leer correctamente
- DTE E notifica la situación a B (ACK)
 - o Por medio de FS y AC

Para Terminar

- Segun lo mitificado, el DTE B debe
 - o generar el token vacío
 - o retransmitir la trama

Observación

- Dos modos de operación
 - o Escuchando y transmitiendo
- Utiliza codificación Manchester
- Retención del toen: 10 ms

Tipos de Estaciones

- monitor Primario
 - Regenera Token
 - Quita tramas mutiladas CRC
 - detectar pérdidas de token (temporizador)
 - Tramas perdidas
 - Mantener anillo
- Monitor Secundario
 - Si m.Primario falla => proceso de contención para establecer nuevo monitor

IEEE 802.4

- Topología Bus
- Organización lógica en anillo
- No hay colisiones
- Token pasa por vecinos lógicos, no físicos
- Todos saben quienes son sus vecinos
- DTE reciben cada trama que pasa por el BUS, destacan si no corresponde.
- DTE puede que no sea parte del anillo

- DTE transmite durante un cierto periodo de tiempo
- Token pasa de dirección más alta a más baja
- DTE se introducen al anillo de forma ordenada, dependiendo de su NIC

Prioridades

- Se definen desde 0 a 7
- Su implementación no es obligatoria
- DTE debe tener cuatro colas distintas en cada prioridad

Tramas

>=1	1	1	2 0 6	2 o 6	0-8182	4	1
Preámbulo	Comienzo	Control de trama	Dirección Destino	Dirección Origen	DATOS	CRC	Fin

- Tramas de datos en el campo CT transporta prioridades y ACK
- Tramas de control llevan el tipo de trama

Problemas

- DTE posee el token => invita a otros DTE a entrar al anillo
- Dos o más DTE solicitan ingresar
 - Habrá colisión
 - Ejecutar algoritmo de contienda
- Si DTE sale del anillo debe indicarlo al predecesor
- Clocks para controlar pérdida de token y errores de transmision