CONSIDERAZIONI GENERALI SULLA SPETTROSC. &

- DELLE LOAD PROPRIETA, NELL'INTERAGIRE CON LA MATERIA
 - · LE PARTICE LLE CARICHE PERSONO INVECE LA LORO ENERGIA IN

 MORO CONTINUO, ATTRAVERSO MOLTE INTERAZIONI COL MEZZO

 I & SONO TRASPARENTI, NOI RIVELLAMO GLI E SE CONDARI

BUOND SPETTROMETRO & ALTA EFF. DI RIVELAZIONE E

IPOTES! DI BASE; COMPLETO ASSOLBINENTO E SECONDARI C BREMSSTRAHLUNG

RICHIAM

Elleto fotoelettrico Ee = hy - Eb

- . DOMINA FINO 4 Ex 100 KEN
- . Oph : 24.5 (MATERIAL AD ALTO 2)
- · FOTO ELETTRONE DA SHELL K (se energeticam. possibile)
- · RAGGI X CARATTERISTICI O E AUGER SEMPRE

Emis = Ex sse 1) en fotbelettrone completam. registrata

2) X e AUGER ed e successivi von Stuggonb

-> SPETTRO CARATTERISTICO

Elletto Compton

DOMINA AD ENERGIE INTERMEDIE (= 100 KeW - 5 MEW)

$$E_{e^{-}} = h p - h p' = h p \left(\frac{\alpha (1 - \cos \theta)}{1 + \alpha (1 - \cos \theta)} \right) \left(\alpha = \frac{h v}{m_e c^2} \right)$$

E O (INTERAZIONE DI STRISCIO, ho = hv', 9=0)

$$E_c = hv - E_{e^-}^{MAX} = \frac{hv}{1+2m} \simeq \frac{mec^2}{2} = 256 \text{ KeV}$$

$$\int_{SE} hv >> \frac{mec^2}{2} \left(E_{c^-} \approx 233 \text{ KeV}\right) de$$

$$E_{c^-} \approx 2.6 \text{ KeV}$$

SPETTRO CARATTERISTICO

IN REALTÀ LA FORMA È UN PO' PIÙ STONBATA ...

Produzione di coppie (e-,e+)

- . DOMINA PER Ex x 5-10 New
- · ESISTE EN, OF SOCUR Emin = 1022 KeV
- IL POSITRONE, A RIPOSO, SI ANNICHILA: 2 8 04 54 KeV 1'uno Ee- + Ee+ = hv - 2 me c2 (R = quelche mm)

3 POSSIBILITÀ "ESTREME"

hy-2mec hy-mect

I 2 8 DI ANDICHI LAZ, SFUGGONO COMPLETAMENTE
VENGONO MUZLATI
UN 8 DI ANDI VIENE RIVELATO, L'ALTRO SFUGGE

2 SISTONO POI TUTTI I CASI INTERNEDI

Il rapporto tra i picchi di pende dal rivelatore e da Ez

FUNZIONI DI RISPOSTA DEGLI SPETTROMETRI &

- A RIVELATORE "PICCOLO" (1-2 cm)

 AISPETTO AL C.C.M. DEI & SECONDARI (DA ANNICH. O DA COMPTON)

 NB CONTINUIAMO A CONSIDERARE GUI et COMPLETAM. CONTENTI
 - . 2 CASI: CON O SENZA PRODUZIONE A COPAE
 - . BUNI & VA INCONTRO AD UNA DUA INTERAZIONE

B) RIVELATORE "MOLTO GRANDE" (diverse decine di cm ...)

IP TUTTI I & SECONDARI SONO CONTENUTI

- STORIE DIVERSE . SINGOLD EFFETTO FOTO ELETTRICO SINGLE EN
 - · 1 COMPTON + 1 "
 - · ALWAL II + 4 4 A MULTISITE EVENT

TUTTI QUESTI EVENTI SONO CONTERPORANEI (Ng = C tof 1ms)

CONSIDERATIONI BEL TUTTO ANALOGHE CON PROBUTIONE DI COPPIE CASO (A) FOTOPICCO CASO (B) PICCO DI EN. PIENA

LA COMPOSIZIONE DEL PICCO DI ENERGIA PIENA (O FOTOPICO" - IN GENERALE FOTONI MONOCROMATICI DANNO : + CONTINUO + PICCHI DI FUGA ENERGIA PIENA (COMPTON) (SE EX > 1.022 MeV) (FOTOELETTRICO + EVENTI MULTIPLI) SIMULAZIONE CONTRIBUTO AL FOTOPICCO TOTAL MULTIPLE-SITE EVENTS MONTECARLO [eag] MULTIPLE COMPTON FRACTION OF PHOTOPEAK + PHOTOELECTRIC SINGLE COMPTON + PHOTOELECTRIC CON ASSORBINENTO SINGLE PHOTOELECTRIC DI ENTRAMBI I Y DI ANNICHILAZIONE . COASSIALE 6 cm dia x 6 cm PAIR DI MEDIE PRODUCTION ENERGIA [Hev] DIMEN NON! ~ 170 cms 0.1 10 PHOTON ENERGY (MeV)

@ RIVE LATORE DI MEDIA GRANDEZZA (situazione tifica)

- · 2 casi: CON O SENZA PRODUZIONE A COPPLE
- · RAPPORTO PICCO COMPTON MIGLIORE (eggiunta dui multi eventi)

 DI PEN DENTE DALL'EN ERGIA (P) per Eg <)
- PRESENTA DI EVENTI HULT, COMPTON NELLA REGIONE TRA
- · COMPARSA DEL PICCO DI FULA SINGOLA
- . I CASI INTERMEDI FORMANO UN CONTINUO

LA FUNZIONE DI RISPOSTA SI SIMULA COI M.C.

Nuovi parametri

TOT

F. D.

F.S.

caratteristici del rivelatore e della configuratione di misura

ALCONE COMPLICAZIONI NELLA FUNZIONE AI RISPOSTA FUGA DI C SECONDARI

- . PIÙ IMPORTANTE SE EX> e/o SE RIV. PICCOLO
- · CAMBIA LA FORMA DEL CONTINUO A FAVORE DELLE EN. + BASSE
- · ABBASSA IL RAPPORTO PICCO COMPTON

FUGA DI & DA BREMSSTRAHWNG

- · IMPORTANTE PER E .- > 1MEN
- · Srad 22
- · CAMBIA LA FORMA DEL CONTINUO

FUGA DI RAGGI X CARATTERISTICI

- · APPRIONO I PICCHI DI FUGA DEGY X E = hp Kx, A
- · PIÙ IMPORTANTI NEI MU. CON GRANDE RAPPORTO SUP
- · PIÙ IMPORTANTI PER EX L

RADIAZIONE SECONDARIA CREATA VICINO ALLA SORGENTE

- PRODUZIONE DI F DI ANNICHILAZIONE + SORGENTE P+
 PICCO A 511 KON OLTRE A I & CARATTERISTICI
 TOZZ (SE RIV. A "POZZETTO")
- BREMSSTRAHLUNG DA FRENAHENTO DEL 15 DELLA SOLGENTE NELLA CAPSULA O NEI MATERIALI INTERPOSTI

S CONTINUO A BASSEEN. NON SOTTRAIBILE (SOFGENTE OLI ENTON)

EFFETTI DOVOTI AI HATERIALI ESTERNI

- * RAGGI X CARATTERISTICI DEI MATERIALI -> PICCHI A BANE EN.
- . PICCO DI ANNICHI LAZIONE DRIGINE DIVERSA DA PRIMA!

+ continuo

. & DA BACKSCATTERING E ~ 0,2-0,25 MEN = (hv') COMPTON
Ly PICCO MOLTO LARGO, ADDENSAMENTO DI CONTEGGI

EFFETTI DOUDTI A SONMA D'IMPULSI

COINCIDENTE REALL O CASUALI (# STATISTICA DI CONTEGGIO!)

606

5TUDIO DELLE PROBLEMAT.

1173, 1333 > 2506 picco

DI "PILE UP"

NOLTRE

POSSIBILITÀ DI CORNELAZIONI ANGOLARI

Na | con somma

SCINTILLATORI COME SPETTROMETRI &

FUNZIONE DI RISPOSTA

MaI (Te): $Z_{I} = 53 \Rightarrow G_{Ph}$ ALTO

CATTIVA RISOLUTION E

CSI (Te), CSI (Na), BGO: BASSO YIELD E/O ALTO To

Lo CONFRONTO SPETTRO NaI-BGO: NaI mighiore visolutione

BGO maggiore Right

Lo minor Cotteton

Picchi FD, FS <

Figure 12-13 The effect of energy resolution on the ability to identify a weak peak superimposed on a statistically uncertain continuum. The area under the peak is the same in all three cases. (From Armantrout et al.²⁸)

IMPORTANZA DELLA RISOLUZIONE PER RICONOSCERE
UN PICCO CHE CRESCE SU DI UN FONDO CONTINUO

FUNZIONE DI PUSPOSTA US ES

Ad alte en. (2 TeV -> 20 TeV):

La Stad CRESCE, CON Express 7

LY MAGGIORI PERDITE PALLE SUPERFICE

LA PICCO FE DIMINUISCE

DI FOTO ELETTRONI PROPOTTI

Ly PICCHI FD E FS SI ALLARGAND

PICCHI DI FUGA AL VARIARE DI EX

Figure 12-16 The relative intensity of the full-energy, single escape, and double escape peaks for a 100 cm³ Ge(Li) detector for gamma-ray energies from 4.439 to 17.64 MeV. (From Berg et al.³²)

LINEARITA

EFFICIENZA DI SCINTILLAZIONE 5 3 dE

DIPENDE DA É E DAL TIPO DI PARTICELLA NON LINEARITÀ IN É : DEBOLE NON LINEARITÀ IN É : MINORE

SPETTRO DEGLI E SECONDARI VARIABILE

LA MEDIA DI MOLTI S DIFFERENTI PER VNA SOLA ES

LA YARIAZIONI CON EL RIDOTTE

CALIBRAZIONE IN ENERGIA

SORGENTI DI CALIBRAZIONE

LINEARITÀ DEL RIVELATORE NON PERFETTA

LA CALIBRAZIONE CON & MULTIPLI BEN SPAZIATI SU TUTTO
IL RANGE DI E D'INTERESSE

NB LA CALIBRAZIONE PUÒ NON RIMANERE COSTANTE NEL TEMPO
LA CALIBRAZIONI PERIODI CHE

PRECISIONE MASSIMA SPERIM, NELLA MISURA DI E: 1:105

LA LE SORGENTI DI CAL. DEVONO AVERE & DI ÉN. NOTA A 10 ALMEND

T STANDARD K. (W) ~ 5.9 KeV 198A. ~ 412 KeV Co ~ 1333 KW

NON USARE 8AM.!

- · Se F.D. cade in una regione BEN CALIBRATA -> F.E. UTIWERABILE
- . Se & IN CASEATA IN UND IN " -> PICCO SORRA "

CURVA DI CALIBRAZIONE

- Per : Ge NU4-5 Transfer fit DEI PTI SPERIN.

 (metodo olei minimi quadrati)
- · COSTRUZIONE DEL PLOT DI DEVIAZIONE DALLA LI NEARITÀ

DIPENDEN ZA DALLA DIREZIONE D'INCIDENZA SUL RIVELATORE

Si sono osservate delle differenze lino a 100 eV

LA CALIBRARE ILLUMINANDO IL RIV. MALLO STESSO LATO ESPOSTO POI IN MISMA

CAUSE? # Evaccolta nelle varie regioni del viselatore

leggero guadagno di en. nel campo E per phi esecondari, dipendente dell'orientatione rispetto ed E

EFFICIENZE DEGLI NOI

RIPRODUCIBILITÀ E STANDARDIZZAZIONE DEI RIVELATORI

2 TIPI PRINCIPALI DI FORME

CILINDRO

A POLLETTO

ANDI WEE RACCOLTA)

ETOT ~ 100% per Ex < 100 ken

D + 1 → GUIDA DI LUCE

** MEDIARE SULLE FLUTTUAZIONI

DI Q.E. PEL FOTOROLTIPLICATORE

(es: scintillatori & LASTRA)

UTILIZED DEI DATI TABULATI

- · CONTROLLARE SEMPRE QUALE E É PLOTRATO (ELLS, E;)
- · QUALITIPI DI EVENTI CI INTERESSANO (+U+; + E+O+

 ohi en, fix + Ep)
- · DIMENSIONI E FORMA

 conta molto lo jessore ma un po' anche la geometria
- · DITENSIONI, POSIZIONE E TIPO DI SORGENTE
 - AZETZE O BANDALLING STRENCE -
 - JULL'ASSE O DECENTRATA
 - FASCIO DI & O PENNELLO SOTTILE
- . ASSOR BIMENTO E/O AUTO ASSOC BIMENTO

CONVENTIONI SULLE EFFICIENTE × SPETTROM. &

PAPPORTO PICCO - COMPTON R_{2-c}

UMicial mente 137(s (662 KeV) R = conteggi red) tra 358 e 382 KeV

GO (0 (1333 KeV) = idem

in tra 1040 e 1096 KeV

E' UNA MISURA DELL'EFFENTO CONBINATO DELLA FWHM CON LA FOTOFRAZIONE

(Det : FOTOFRAZIONE = AREA PICCO F.E Rah

RP-E VIENE PEGGIORATO DALLA PRESENZA DI T SCATTERATI DA I

- · A PARITÀ DI FOTOFRAZIONE PP-C + 1
- A PARITA DI FWHM RP-c + RPh

EFFICIENZA ASSOLUTA DEL PICCO DI EN. PIENA ELP

Je si usa Eip ci si svincola dal fattore geometrico TIPICAMENTE Si quota Eip per 8 da 1333 Kev (60 Co)

OVETTA SHUJOV

AD ALTE ENERGIE E: + Volume

Ly volume ATTIVO & UN BUON PARAMETRO PER L'EFF, DEL RIVELATORE, el meno per i & con P(Ex) ~ 20-30% e non dipio

EFFICIENZA RELATIVA EREL

4 volte si quota (in%) il rapporto $E_{4e}/E(NaI)$ dove lo standard e dato dall' E di un NaI di 3"x 3" con sorgente posta a 25 cm per 8 da 1333 KeV ed E E^{NaI} = 1.2 × 10 3

REGOLA DEL POLLICE (Per HPGE wax)

EREL ~ VOLUME [cm3] %