METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 - obliczanie całek za pomocą kwadratury Gaussa-Legendre'a oraz Newtona-Cotesa (wzór Simpsona)

Opis rozwiązania

W celu obliczenia przybliżonej wartości całki:

$$\int_{a}^{b} f(x) dx$$

Wykorzystujemy dwie metody:

a) Kwadratura Gaussa-Legendre'a

Polega ona na podstawieniu do wzoru odpowiednich wartości:

$$I(f) = \frac{b-a}{2} \sum_{k=0}^{n} A_k f\left(\frac{a+b}{2} + \frac{b-a}{2}x_k\right),$$

Gdzie xk to wartości węzłów, zaś współczynnik Ak to wartości wag, które są wyliczane ze wzoru:

$$A_k = \frac{-2}{(n+2)P_{n+2}(x_k)P'_{n+1}(x_k)}$$

Wartości x_k oraz wyników $P_n(x_k)$ zostały podane odgórnie w programie. Wartości wielomianów są wyliczane ze wzorów:

$$\begin{split} P_0(x_k) &= 1 \\ P_1(x_k) &= x_k \\ P_{m+1}(x_k) &= \frac{2m+1}{m+1} x_k P_m(x_k) - \frac{m}{m+1} P_{m-1}(x_k) \\ P'_m(x_k) &= \frac{m}{{x_k}^2 - 1} x_k P_m(x_k) - \frac{m}{{x_k}^2 - 1} P_{m-1}(x_k) \end{split}$$

b) Kwadratura Newtona-Cotesa (wzór Simpsona)

Metoda polega na:

- Wczytaniu podanego przedziału (a,b)
- Wyznaczeniu odległości pomiędzy dwoma sąsiednimi punktami podziałowymi dx
- Rozpoczęciu pętli, która wykonuje się n-razy. Wyznaczamy tu wartość punktu podziałowego, a następnie obliczamy wartość funkcji w punkcie środkowym, który jest odległy o połowę dx od wyznaczonego wcześniej punktu podziałowego. Wynik ten dodajemy do sumy wartości funkcji w punktach środkowych. Tworzymy także drugą sumę w zmiennej s, która zawiera jedynie wartości funkcji w dla punktów od x_i do x_{n-1}.
- Wyznaczeniu wartości całki w zmiennej s (po zakończeniu pętli) zgodnie z podanym wzorem:

$$Q(f) = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Wyniki

Kwadratura Newtona-Cotesa (wzór Simpsona)					
Funkcja	Przedział	Epsilon	Wynik	Liczba iteracji	
$f(x) = x^2 - 3x + 3$	<-5;5>	0.01	113.33333	2	
$f(x) = \cos x \cdot (x+8)$	<2;8>	0.001	7.00854	7	
$f(x) = \frac{x}{x+1}$	<0;5>	0.01	3.20526	4	
$f(x) = x^4 + 2x - 3$	<-5,5>	0.01	1220.02169	14	
$f(x) = 3\sin(x) - \cos(x)$	<2,8>	0.001	- 0.89232	6	

Kwadratura Gaussa-Legendre'a					
Funkcja	Przedział	Wynik	Liczba węzłów		
$f(x) = x^2 - 3x + 3$	<-5;5>	113.33333	2		
$f(x) = x^2 - 3x + 3$	<-5;5>	113.33333	3		
$f(x) = x^2 - 3x + 3$	<-5;5>	113.33333	4		
$f(x) = x^2 - 3x + 3$	<-5;5>	113.33333	5		
$f(x) = \cos x \cdot (x+8)$	<2;8>	6.28373	2		
$f(x) = \cos x \cdot (x+8)$	<2;8>	6.84767	3		
$f(x) = \cos x \cdot (x+8)$	<2;8>	7.02348	4		
$f(x) = \cos x \cdot (x+8)$	<2;8>	7.00675	5		
$f(x) = \frac{x}{x+1}$	<0;5>	3.27869	2		
$f(x) = \frac{x}{x+1}$	<0;5>	3.22129	3		
$f(x) = \frac{x}{x+1}$	<0;5>	3.2106	4		
$f(x) = \frac{x}{x+1}$ $f(x) = \frac{x}{x+1}$ $f(x) = \frac{x}{x+1}$ $f(x) = \frac{x}{x+1}$	<0;5>	3.20866	5		
$f(x) = x^4 + 2x - 3$	<-5;5>	664.44444	2		
$f(x) = x^4 + 2x - 3$	<-5;5>	1220.0	3		
$f(x) = x^4 + 2x - 3$	<-5;5>	1220.0	4		
$f(x) = x^4 + 2x - 3$	<-5;5>	1220.0	5		
$f(x) = 3\sin(x) - \cos(x)$	<2,8>	3.04457	2		
$f(x) = 3\sin(x) - \cos(x)$	<2,8>	-1.22387	3		
$f(x) = 3\sin(x) - \cos(x)$	<2,8>	-0.87769	4		
$f(x) = 3\sin(x) - \cos(x)$	<2,8>	-0.89238	5		

Wnioski

- Wraz ze wzrostem ilości węzłów rośnie dokładność metody Gaussa-Legendre'a.
- Odgórnie podane wartości węzłów powodują ograniczoną ilość iteracji metody Gaussa-Legendre'a, przez co metoda Newtona-Cotesa osiągnie prawdopodobnie większą dokładność (ponieważ ona nie ma żadnych ograniczeń).
- Metoda Newtona-Cotesa jest łatwiejsza do zaimplementowania oraz zapewnia dokładniejsze wyniki.