Review of Functional Partial Least Squares Application to Spectral Misalignment

Slides by Rory Samuels

Multiple Linear Regression Model

Suppose we have a sample of n scalar valued response variables $y_i \in \mathbb{R}$ and p corresponding predictor variables $\mathbf{x}_i \in \mathbb{R}^p$. The multiple linear regression model is given by

$$y_i = \beta_0 + \boldsymbol{\beta}' \mathbf{x}_i + \epsilon_i,$$

where β_0 is the intercept, $\boldsymbol{\beta}$ is a a vector of coefficients corresponding to the variables in \mathbf{x} , and $\epsilon_i \sim N(0, \sigma_\epsilon^2)$.

Note: for simplicity we assume $\beta_0 = 0$.

Clasical Partial Least Squares (PLS)

Let $\mathbf y$ be the $n \times 1$ vector of responses and $\mathbf X$ be the $n \times p$ matrix of measured predictor variables. Given weight vectors $\mathbf r_1,...,\mathbf r_{k-1}$, the kth PLS weight vector is obtained via

$$rg \max_{\mathbf{r}} \mathsf{Cov}^2\left(\mathbf{y}, \mathbf{Xr}\right), \quad \mathsf{subject to:}$$
 $\mathsf{Cov}\left(\mathbf{Xr}_m, \mathbf{Xr}\right) = 0 \quad \mathsf{for} \quad m = 1, ..., k-1, \quad \mathsf{and} \quad ||\mathbf{r}|||_2^2 = 1.$

Many algorithms for solving efficiently (e.g. SIMPLS/NIPALS)

PLS Coefficients

Let ${\bf R}$ be the $p \times K$ matrix whose columns are the first K PLS empirical weight vectors $\hat{{\bf r}}_1,...\hat{{\bf r}}_K$.

- ightharpoonup X scores: T = XR
- ightharpoonup Y loadings: $lpha=(\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$

$$\hat{\mathbf{y}} = \mathbf{T}\boldsymbol{\alpha} = \mathbf{X}(\mathbf{R}\boldsymbol{\alpha})$$

lacktriangle Coefficient: $\hat{oldsymbol{eta}}_{PLS} = \mathbf{R}oldsymbol{lpha}$

Functional Linear Regression Model

For functional valued predictors $x_i(w) \in L^2([a,b])$, the functional linear regression model (FLM) is given by

$$y_i = \beta_0 + \int_a^b x_i(w)\beta(w)dw + \epsilon_i,$$

where $\beta(w)$ is a functional valued coefficient.

- For now, we assume $x_i(w)$ are known functions
- ightharpoonup Again assuming $eta_0=0$ for notational simplicity

Functional Partial Least Squares (FPLS)

Given weight functions $r_1(w),...,r_{k-1}(w)$, the $k{\rm th}$ FPLS weight function is given by

$$\arg\max_{r(w)} \operatorname{Cov}^2\left(y, \int_a^b x(w) r(w) dw\right), \quad \text{subject to:}$$

$$\operatorname{Cov}\left(\int_a^b x(w)r_m(w)dw,\int_a^b x(w)r(w)dw\right)=0 \ \text{ for } m=1,...,k-1, \quad \text{ and } m=1,\ldots,k-1, \quad \text{ and } m=1$$

$$||r(w)||_2^2 = 1.$$

Basis Expansion for Weight Functions

Let $\mathbf{B}(w)=(B_1(w),...,B_{M+d}(w))'$ be a vector of M+d B-spline basis functions of degree d defined over M-1 equally spaced knots on [a,b].

We can approximate the $m{\rm th}$ weight function by

$$r_m(w) \approx \mathbf{b}_m' \mathbf{B}(w),$$

where \mathbf{b}_m is a vector of M+d basis coefficients.

Defining the U Matrix

Define $u_{ij} = \int_a^b x_i(w) B_j(w) dw$ and $\mathbf{u}_i = (u_{i1}, ..., u_{i(M+d)})'$. We can approximate the needed inner-products with:

$$\int_{a}^{b} x_{i}(w)r(w)dw \approx \mathbf{b}'\mathbf{u}_{i}.$$

For all n observations, we can define an $n \times (M+d)$ matrix \mathbf{U} with elements $\mathbf{U}_{(ij)} = u_{ij}$.

Empirical FPLS Task

Given weight vectors $\mathbf{b}_1,...,\mathbf{b}_{k-1}$, the kth FPLS weight vector is obtained via

$$\arg\max_{\mathbf{b}}\mathsf{Cov}^{2}\left(\mathbf{y},\mathbf{Ub}\right),\quad\mathsf{subject\ to}:$$

$$\mathsf{Cov}\left(\mathbf{Ub}_{m},\mathbf{Ub}\right)=0\quad\mathsf{for}\quad m=1,...,k-1,\quad\mathsf{and}$$

$$||\mathbf{b'Vb}||_2^2 = 1.^1$$

lacktriangle Equivalent to classical PLS with response vector ${f y}$ and data-matrix ${f U}$

 $^{{}^1\}mathrm{V}$ is the pos. def. matrix of inner products between all pairs of basis functions.

FPLS Coefficient

Let ${\bf R}$ be the $p \times K$ matrix whose columns are the first K PLS empirical weight vectors $\hat{{\bf b}}_1,...\hat{{\bf b}}_K$.

- ightharpoonup U scores: T = UR
- ightharpoonup Y loadings: $lpha=(\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$

The estimated functional coefficient is then

$$\hat{\beta}_{FPLS}(w) = (\mathbf{R}\boldsymbol{\alpha})'\mathbf{B}(w)$$

Starting from Discrete Observations

The key to functional partial least squares is obtaining

$$\mathbf{U}_{(ij)} = \int_{a}^{b} x_i(w)B_j(w)dw, \quad i = 1, ..., n, \quad j = 1, ..., M + d.$$

- ightharpoonup In practice, we observe p discrete points along each $x_i(w)$
- $lackbox{f W}$ We have options for how we approximate ${f U}_{(ij)}$

Numerical Approximation

lackbox Simple option: we can approximate $\mathbf{U}_{(ij)}$ by

$$\mathbf{U}_{(ij)} \approx \frac{b-a}{p} \sum_{k=1}^{p} x_i(w_k) B_j(w_k).$$

- Assumes noise-free observations
- Good if we have a dense observation grid

Basis Expansion for Data

Alternatively, we can expand each observation onto a set of suitable basis functions:

$$x_i(w) \approx \mathbf{c}_i' \mathbf{B}^x(w),$$

where $\mathbf{B}^x(w)$ is a vector of M_x+d B-spline basis functions and \mathbf{c}_i is a vector of M_x+d basis coefficients. If we define

$$\Theta_{(ij)} = \int_a^b B_i^x(w) B_j(w) dw,$$

then we can express ${f U}$ as

$$\mathbf{U} \approx \mathbf{C}\mathbf{\Theta}$$
,

where C is an $n \times (M_x + d)$ matrix of basis coefficients.

Example I: Generated Responses

We generated n=500 scalar responses from

$$y_i = \int_0^1 x_i(w)\beta(w)dw + \epsilon_i$$

- $\triangleright x_i(w)$: random linear combinations of cubic B-spline basis functions²
- $\beta(w) = 10(w-1)^2 + 30\cos(4\pi w^3)$
- $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)^3$

 $^{^2}$ The basis functions were defined over 50 knots and all coefficients were generated from a standard normal distribution.

³The error variance σ_{ϵ}^2 was chosen such that the signal-to-noise ratio was 5.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(w)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : w = 0,.0024,.0048,...,1
- G_B : w = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(w)$ on both G_A and G_B , for i=1,...,500.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(w)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : w = 0,.0024,.0048,...,1
- $ightharpoonup G_B$: w = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(w)$ on both G_A and G_B , for i=1,...,500.

- ▶ Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ▶ 80/20 train/test split.

Example I: Two Approaches

- Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ▶ 80/20 train/test split.

Classical PLS Approach:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- lacksquare Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- lacksquare Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{oldsymbol{eta}}_B$

Example I: Two Approaches

- ▶ Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ▶ 80/20 train/test split.

Classical PLS Approach:

- lacktriangle Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- lacktriangle Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{oldsymbol{eta}}_B$

Functional PLS approach:

- ▶ Obtain $\hat{\beta}_{FPLS}(w)$ using observations of $x^{train}(w)$ on G_A
- Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{\beta}_{FPLS}(w)$.

Example I: Functional PLS

Example I: Functional PLS

y_{test}

Example I: Functional PLS

Example II: AOP Crown Data

We applied the same method to the AOP Crown data-set to predict d15N from observed spectra.

- ightharpoonup n = 2515 observations
- $ho p_A = 350$ spectral points per spectra.

To simulate misalignment, we sampled every other spectral point for observation grid A and assigned the remaining spectral points to grid B.

- Find A (G_A) : odd indices
- ▶ Grid B (G_B) : even indices.

Example II: Spectra

Example II: Two Observation Grids

Example II: Two Approaches

- ▶ Goal: predict d15N from spectra observed on G_B , using a model trained with spectra observed on G_A .
 - ► 80/20 train/test split.

Example II: Two Approaches

- ▶ Goal: predict d15N from spectra observed on G_B , using a model trained with spectra observed on G_A .
 - ▶ 80/20 train/test split.

Classical PLS Approach + Linear Approximation:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- lacksquare Approximate $x^{test}(w)$ on G_A using $x^{test}(w)$ on G_B
- Predict y^{test} using approx. observations of $x^{test}(w)$ on G_A and $\hat{oldsymbol{eta}}_A$.

Example II: Two Approaches

- ▶ Goal: predict d15N from spectra observed on G_B , using a model trained with spectra observed on G_A .
 - ▶ 80/20 train/test split.

Classical PLS Approach + Linear Approximation:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- Approximate $x^{test}(w)$ on G_A using $x^{test}(w)$ on G_B
- Predict y^{test} using approx. observations of $x^{test}(w)$ on G_A and $\hat{\beta}_A$.

Functional PLS approach:

- ▶ Obtain $\hat{\beta}_{FPLS}(w)$ using observations of $x^{train}(w)$ on G_A
- Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{\beta}_{FPLS}(w)$.

Example II: Classical PLS + Linear Approximation

Example II: Functional PLS

Example II: Results for Other Responses

We repeated the example for two other responses in the AOP Crown data-set, LWC_per and LMA_gm2. Using functional PLS resulted in reduced root mean squared prediction error (RMSPE) for all three responses.

	d15N	LWC_per	LMA_gm2
PLS	3.04	45.42	218.89
FPLS	1.75	38.21	150.10

Table 1: RMSPE for three site trait variables in the AOP Crown data-set.

Appendix I: Intuition Behind FPLS Coefficient

Recall that the (0-intercept) FLM:

$$y_i = \int_a^b x_i(w)\beta(w)dw + \epsilon_i. \tag{1}$$

When we approximate r(w) as $r(w) \approx \mathbf{b}' \mathbf{B}(w)$, we implicitly assume

$$\beta(w) \approx \gamma' \mathbf{B}(w),$$
 (2)

allowing us to re-write (1) as

$$\mathbf{y} = \mathbf{U}\boldsymbol{\gamma} + \epsilon.$$

Performing PLS of \mathbf{U} on \mathbf{y} yields $\hat{\gamma} = \mathbf{R}\alpha$. Hence, from (2),

$$\hat{\beta}(w) = (\mathbf{R}\boldsymbol{\alpha})'\mathbf{B}(w).$$