A Seminar Report on

Advanced Automation in Agriculture - Lateral Move Irrigation Machines

By

Ms. Mrunalini Vijay Patil

Guided by

Prof. XYZ

Department of Mechanical Engineering

K.K.Wagh Institute of Engineering Education Research

2018-19

K.K.Wagh Institute of Engineering Education Research

CERTIFICATE

This is to certify that Ms. Mrunalini Vijay Patil, has successfully com-

ntomation in Agriculture - Lat- pervision, in the partial fulfilment of g, by the University of Pune.
Prof. Milind Murugkar, HOD, Mechanical
Prof.(Dr.) K. N. Nandurkar Principal, KKWIEER

KKWIEER, Department of Mechanical Engineering

Seal

Acknowledgement

First of all, I am very thankful to my institute K.K.Wagh Institute of Engineering Education Research - KKWIEER for providing me a wonderful opportunity to work towards this seminar report. Secondly, I am very thankful to my mentor Mr. XYZ for guiding me during each step of seminar execution work. I am grateful of my subject teachers and parents for their guidence and support throughout the learning period.

I am also thankful to Dr. PQR from Mechanical Engineering Departments, and Prof, ABC from GHI,India for guiding me towards the blahblah blahblah blahblah blahblah .

S

List of Tables

Nomenclature

A = nozzle cross-sectional area

H = nozzle height

M = Mach number

 $NPR = nozzle pressure ratio, P_0/P_a$

P = pressure

 P_0 = total pressure at the nozzle inlet

T = temperature

u,v,w = velocity components

x = axial direction

y = normal direction

 $\gamma = {
m ratio}$ of specific heats

 $\theta = \text{flow angle}$

 $\mu = \text{viscosity}$

 $\varphi = \text{shock angle}$

a = ambient

c = centerline

e = nozzle exit

t = throat

The University of Pune

Contents

1	Introduction	6
	1.1 Scope & Methodology	6
2	Literature Review	7
3	Case study	8
4	A Sample Section	9
	4.1 Title of Sample Subsection	9
5	Conclusion	10
6	Future Work	11

Abstract

ABSTRACT OF YOUR SEMINAR WORK GOES HERE

1 Introduction

INTRODUCTION OF YOUR SEMINAR WORK GOES HERE

$1.1 \quad \textbf{Scope \& Methodology}$

YOUR SEMINAR WORK GOES HERE

2 Literature Review

The review should be conducted from at least five research papers published during last five year.

YOUR SEMINAR WORK GOES HERE

3 Case study

YOUR SEMINAR WORK GOES HERE

4 A Sample Section

4.1 Title of Sample Subsection

For a figure sample with caption and proper reference, see Figure 1 as adopted from [1]. The figure number and reference numbers are automatically generated in a chronological order by LATEX.

Figure 1: Here Goes Your Figure's Caption.

A sample equation is written as:

$$F_m = \frac{dm}{dt}v_e = \dot{m}v_e \tag{1}$$

where m is the mass flow rate and v e is the exit or exhaust velocity of the propellant.

An another sample equation can be expressed as

$$F_m = \dot{m}v_e + (P_e - P_a)A_e \tag{2}$$

where p_e and A_e are the pressure and cross section area at the nozzle exit, and p_a is the ambient pressure.

5 Conclusion

CONCLUSION, IF ANY.

6 Future Work

FUTURE WORK, IF ANY

References

- [1] Humble R W, Henry G N and Larson W J (1995), Space propulsion analysis and design, McGraw-Hill, Inc., ISBN-0-07-031329-6.
- [2] Author First, Author Second *Title of the paper* Name of Journal Pagenumbers, Month Year.
- [3] Sadeghi, M., Yang, S., Liu, F., and Tsai, H. M., Parallel Computation of Wing Flutter with a Coupled Navier-Stokes and CSD Method AIAA Paper 2003-1347, 2003.