Attorney Docket No.: DIVER1180-2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Robertson et al.

Art Unit:

Unassigned

Serial No.:

09/903,410

Examiner:

Unassigned

Filed:

July 10, 2001

Title:

ENZYMES HAVING ESTERASE ACTIVITY AND METHODS OF USE

THEREOF

Commissioner for Patents Washington, D.C. 20231

VERIFIED STATEMENT UNDER 37 C.F.R. § 1.821(f)

Sir:

I, Mikhail Bayley, declare that I personally prepared the paper and the computerreadable copies of the Sequence Listing filed herewith in the above-entitled case and that the content of both is the same.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of The United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 09/24/2001

Mikhail Bayley

GRAY CARY WARE & FREIDENRICH LLP 4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189

Customer Number: 28213

CERTIFICAT	TION UNDER 37	7 CFR §1.8
I hereby certify that the docum deposited with the United Sta date, Dec 10, 200 Commissioner for Patents, Was	ites Postal Service	as first class mail on this an envelope addressed to:
Stephanie	Sharrett	
		(5)
Signature Stephino	Shanta	13/10/0 Date

Attorney Docket No.: DIVER1180-2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Robertson et al.

Art Unit: Examiner: Unassigned Unassigned

Serial No.:

09/903,410

Filed: Title:

July 10, 2001 ENZYMES HAVING ESTERASE ACTIVITY AND METHODS OF USE

THEREOF

Commissioner for Patents Washington, D.C. 20231

STATEMENT UNDER 37 C.F.R. §§ 1.821(f) and (g)

Sir:

I hereby state, as required by 37 C.F.R. § 1.821(f), that the information recorded in computer readable form is identical to the written sequence listing.

I hereby state that the submission, filed in accordance with 37 C.F.R. § 1.821 (g), herein does not include new matter.

Respectfully submitted,

Lisa A. Haile, Ph.D.

Reg. No. 38,347

Telephone: (858) 677-1456 Facsimile: (858) 677-1465

GRAY CARY WARE & FREIDENRICH LLP 4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189

Customer Number: 28213

	CERTIFICATION	UNDER 37	CFR §1.8
--	---------------	-----------------	----------

I hereby certify that the documents referred to as enclosed herein are being deposited with the United States Postal Service as first class mail on this date, Dir. 10, 2001, in an envelope addressed to:

Commissioner for Patents, Washington, D.C. 20231.

ephanie Sharrett Name of Person Mailing Paper

Signature

Date

SEQUENCE LISTING

DIVERSA CORPORATION
ROBERTSON, Dan
MURPHY, Dennis
REID, John
MAFFIA, Anthony
LINK, Steven
SWANSON, Ronald
WARREN, Patrick
KOSMOTKA, Anna

- <120> ENZYMES HAVING ESTERASE ACTIVITY AND METHODS OF USE THEREOF
- <130> DIVER1180-2
- <140> US 09/903,410
- <141> 2001-07-10
- <150> US 09/382,242
- <151> 1999-08-24
- <150> US 08/602,359
- <151> 1996-02-16
- <160> 42
- <170> PatentIn version 3.0
- <210> 1
- <211> 52
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Primer for PCR
- <400> 1
- ccgagaattc attaaagagg agaaattaac tatgtcttta aacaagcact ct
- 52

- <210> 2
- <211> 31
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Primer for PCR
- <400> 2
- tttagtatgt gatttgctat ctctagaagg c

31

- <210> 3
- <211> 52
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Primer for PCR
- <400> 3

ccgaga	attc attaaagagg agaaattaac	tatgaaactc	cttgagccca	ca	52
<210>	4				
<211>	31				
<212>					
<213>	Artificial sequence				
<220>					
<223>	Primer for PCR				
<400>	4				
	tac cacatggccg ctctagaagg	C			31
caccga	cuc cacacggeeg eceeagaagg	C			JI
<210>	5				
<211>					
<212>					
<213>	Artificial sequence				
<220>					
<223>	Primer for PCR				
<400>	5				
	T	tatoccatat	attaggaatg	at	52
ccyagas	attc attaaagagg agaaattaac	tatgecatat	gctaggaatg	gc	52
<210>	6				
<211>	49				
<212>					
<213>	Artificial sequence				
<220>					
	Primer for PCR				
<400>	6				
tctcgtt	acc tgcttaaata aagaagtcgt	gtcaagattc	catggaggc		49
<210>	7				
<211>					
	DNA				
<213>	Artificial sequence				
<220>					
<223>	Primer for PCR				
<400>	7		•		
	tac ctgcttaaat aaagaagtcg	tatcaagatt	ccatggaggc		50
access	oue objectuate adagaageeg	cgccaagacc	ocacggagge		,,,
<210>	۵				
<210>					
<211>					
	Artificial sequence				
~ 213>	vicitional seducuce				
<220>					
<223>	Primer for PCR				
<400>	8				
	ttc attaaagagg agaaattaac (tatgagattg	aggaaatttg	aaq	53

```
<210> 9
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 9
aatctccatg aaagacttat cccatggagg c
                                                                       31
<210> 10
<211> 52
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 10
ccgagaattc attaaagagg agaaattaac tatgtttaat atcaatgtct tt
                                                                       52
<210> 11
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 11
                                                                       31
gatgggtccc ttttaggaat ttctagaagg c
<210> 12
<211> 52
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 12
                                                                       52
ccgagaattc attaaagagg agaaattaac tatggaggtt tacaaggcca aa
<210> 13
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 13
                                                                       31
agcatgagaa gccgagttat tccatggagg c
```

```
<210> 14
<211> 53
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 14
ccgagaattc attaaagagg agaaattaac tatgattggc aatttgaaat tga
                                                                    53
<210> 15
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 15
cccctatact ctcgtgaaat tccatggagg c
                                                                    31
<210> 16
<211> 52
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
ccgagaattc attaaagagg agaaattaac tatgccagct aatgactcac cc
                                                                    52
<210> 17
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 17
ctttaataaa cctcggacaa cttctagaag gc
                                                                    32
<210> 18
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 18
                                                                    29
ctttaataaa cctcggacat ctagaaggc
```

```
<210> 19
 <211> 52
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Primer for PCR
 <400> 19
ccgagaattc attaaagagg agaaattaac tatgcttgat atgccaatcg ac
                                                                      52
<210> 20
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 20
cgagaagaac agaagctgat cccatggagg c
                                                                      31
<210> 21
<211> 52
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 21
ccgagaattc attaaagagg agaaattaac tatgccccta gatcctagaa tt
                                                                     52
<210> 22
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for PCR
<400> 22
cataaaatac tattttaaat tccatggagg c
                                                                     31
<210> 23
<211> 555
<212> DNA
<213> Staphylothermus Marinus
<400> 23
atgtetttaa acaageaete ttggatggat atgataatat ttatteteag ettttette
                                                                     60
ccattaacaa tgatcgcatt agctatctct atgtcgtcat ggtttaatat atggaataat
                                                                    120
gcattaagcg atctaggaca tgctgttaaa agcagtgttg ctccaatatt caatctaggt
                                                                    180
cttgcaattg gtgggatact aattgttata gttggtttaa gaaatcttta ttcgtggagt
                                                                    240
```

agagttaaag gatctttaat catatccatg ggtgtatttc ttaacttaat aggggttttc 300 gacgaagtat atggttggat acatttccta gtctcagtat tgtttttctt atcaataata 360 gcatatttca tagctatatc aatacttgac aaatcatgga tagctgttct actaataata 420 ggtcatattg caatgtggta tctacacttt gcttcagaga ttccgagagg tgcggctatt 480 cccgagttat tagcggtatt ctcgttttta ccattctata taagagacta ttttaaatca 540 tacactaaac gatag 555 <210> 24 <211> 1041 <212> DNA <213> Pyrodictium <400> 24 atgaaactcc ttgagcccac aaatacctcc tacacgctgt tacaggattt agcattgcat 60 tttgcatttt actggtttct ggccgtgtat acgtggttac ccggtgtcct agtccggggc 120 gtagctgtgg acacaggggt ggctcgggtg cctgggctcg gccggcgcgg taagaggctg 180 ctcctggccg ctgtggctgt cttggcgctt gttgtgtccg ttgttgtccc ggcttatgtg 240 gcgtatagta gtctgcaccc ggagagctgt cggcccgttg cgccggaggg gctcacctac 300 aaagagttca gcgtgaccgc ggaggatggc ttggtggttc ggggctgggt gctgggccc 360 ggcgctgggg gcaacccggt gttcgttttg atgcacgggt atactgggtg ccgctcggcg 420 ccctacatgg ctgtgctggc ccgggagctc gtggagtggg ggtacccggt ggttgtgttc 480 gactteeggg gecaegggga gageggggge tegaegaega ttgggeeeeg ggaggtgetg 540 gatgeceggg etgtggtggg etatgteteg gageggttee eeggeegeeg gataatattg 600 gtggggttca gtatgggcgg cgctgtagcg atcgtggagg gtgctgggga cccgcgggtc 660 tacgcggtgg ctgctgatag cccgtactat aggctccggg acgtcatacc ccggtggctg 720 gagtacaaga cgccgctgcc gggctgggtg ggtgtgctgg ccgggttcta cgggaggctg 780 atggcgggcg ttgacctcgg cttcggcccc gctggggtgg agcgcgtgga taagccgttg 840 ctggtggtgt atgggccccg ggacccgctg gtgacgcggg acgaggcgag gagcctggcg 900 tecegtagee egtgtggeeg tetegtegag gtteetgggg etggeeacgt ggaggeegtg 960 gatgtgctcg ggccgggccg ctacgcagac atgctgatag agctggcgca cgaggagtgc 1020 cctccggggg ccggtggctg a 1041

<210> 25

<211> 789

<212> DNA

<213> Archaeoglobus veneficus

<400> 25						
atgccatatg	ttaggaatgg	tggtgtaaat	atctattatg	aactggtgga	tggacctgag	60
ccaccaattg	tctttgttca	cggatggaca	gcaaatatga	atttttggaa	agagcaaaga	120
cgttattttg	caggcaggaa	tatgatgttg	tttgtcgata	acagaggtca	tggcaggtcc	180
gataagccac	ttggatacga	tttctacaga	tttgagaact	tcatttcaga	tttagatgcg	240
gttgttaggg	agactggagt	ggagaaattt	gttctcgtcg	gacattcatt	cggaacaatg	300
atctctatga	agtactgttc	ggagtatcgg	aatcgggttc	ttgctctaat	cctcataggt	360
ggtgggagca	gaataaagct	tctacacaga	attggatatc	ctttagcaaa	gattcttgca	420
tccattgcat	acaagaagtc	ttcaagattg	gtcgcagatc	tttcctttgg	caaaaatgct	480
ggtgaactta	aagagtgggg	atggaaacag	gcaatggatt	atacaccctc	ctacgtggca	540
atgtacacgt	acagaactct	aacgaaagtg	aatcttgaaa	atatcttgga	gaaaatagac	600
tgtccaacac	tgattatcgt	tggagaagag	gatgcactat	tgcccgttag	caaatcagtt	660
gagctgagca	ggaggataga	aaactcaaag	cttgtgatca	tcccaaactc	ggggcattgc	720
gtaatgcttg	agagtccaag	tgaggttaat	agagcaatgg	acgaattcat	ttcttcagca	780
cagttctaa						789

<210> 26

<211> 756

<212> DNA

<213> Aquifex pyrophilus

<400> 26

ttgagattga ggaaatttga agagataaac ctcgttcttt cgggaggagc tgcaaagggc 60 atagcccaca taggtgtttt gaaagctata aacgagctcg gtataagggt gagggcttta 120 agcggggtga gcgccggggc aatcgtttcg gtcttttatg cctcaggcta ctcccctgaa 180 gggatgttca gccttctgaa gagggtaaac tggctgaagc tgtttaagtt caagccacct 240 ctgaagggat tgatagggtg ggagaaggct ataagattcc ttgaggaagt tctcccttac 300 aggagaatag aaaaacttga gataccgacg tatatatgcg cgacggattt atactcggga 360 agggctctat acctctcgga agggagttta atccccgcac ttctcggcag ctgtgcaatt 420 cccggcatat ttgaacccgt tgagtataag aattacttgc tcgttgacgg aggtatagtt 480 aacaaccttc ccgttgagcc ctttcaggaa agcggtattc ccaccgtttg cgttgatgtc 540 cttcccatag agccggaaaa ggatataaag aacattcttc acatcctttt gaggagcttc 600 tttcttgcgg tccgctcaaa ctccgaaaag agaaaggagt tttgtgacct cgttatagtt 660 cctgagcttg aggagttcac accccttgat gttagaaaag cggaccaaat aatggagagg 720

ggatacataa	a aggccttaga	a ggtactttct	gaatag			756
<210> 27 <211> 894 <212> DNA <213> M11						
<400> 27 atgtttaata	ı tcaatgtctt	: tgttaatata	tettggetgt	atttttcagg	gatagttatg	60
aagactgtgg	, aagagtatgo	gctacttgaa	acaggcgtaa	gagtgtttta	tcggtgtgta	120
atcccggaga	aagcttttaa	cactttgata	ataggttcac	acggattggg	ggcgcacagt	180
ggaatctaca	ttagtgttgc	: tgaagaattt	gctaggcacg	gatttggatt	ctgcatgcac	240
gatcaaaggg	gacatgggag	aacggcaagc	gatagagaaa	gagggtatgt	ggagggcttt	300
cacaacttca	tagaggatat	gaaggccttc	tccgattatg	ccaagtggcg	cgtgggaggt	360
gacgaaataa	tattgctagg	acacagtatg	ggcgggctga	tagcgctctt	aacagttgca	420
acttataaag	aaatcgccaa	gggagttatc	gcgctagccc	cggccctcca	aatcccctta	480
accccggcta	gaagacttgt	tctaagcctc	gcgtcaaggc	ttgccccgca	ttctaagatc	540
accttacaaa	ggagattgcc	gcagaaacca	gagggttttc	aaagagcaaa	agatatagaa	600
tacagtctga	gtgaaatatc	agtcaagctc	gtggacgaaa	tgattaaagc	atcatctatg	660
ttctggacca	tagcagggga	aattaatact	cccgtcctgc	ttattcatgg	ggaaaaagac	720
aatgtcatac	ctccggaggc	gagcaaaaaa	gectaccaat	taataccttc	attccctaaa	780
gagttgaaaa	aataccccga	tcttggacac	aacttgtttt	ttgaaccagg	cgcggtgaaa	840
atcgtcacag	acattgtaga	gtgggttaag	aatctaccca	gggaaaatcc	ttaa	894
<210> 28 <211> 789 <212> DNA <213> The:	rmococcus Ci	L-2-30LC				
<400> 28						
		attcggcgaa				60
		aaggtatgga				120
tttggagttt	acaccttcga	ctggcccggc	cacgggaaga	gcccgggcaa	gagagggcac	180
		ggaaatcatc				240
cccttcctct	tcggccacag	cctcggtggt	ctaactgtca	tcaggtacgc	tgagacgcgg	300
cccgataaaa	tacggggatt	aatagcttcc	tcgcctgccc	tcgccaagag	cccggaaacg	360
ccgggcttca	tggtggccct	cgcgaagttc	cttggaaaga	tcgccccggg	agttgttctc	420
ccaacggca	taaagccgga	actcctctcg	aggaacaggg	acqccqtqaq	gaggtacgtt	480

gaagacccac	tcgtccacga	caggatttcg	gccaagctgg	g gaaggagcat	cttcgtgaac	540
atggagctgg	cccacaggga	ggcggacaag	ataaaagtco	cgatcctcct	tctgatcggc	600
actggcgatg	taataacccc	gcctgaaggc	tcacgcagac	tcttcgagga	gctggccgtc	660
gagaacaaaa	ccctgaggga	gttcgagggg	gcgtaccacg	g agatatttga	agaccccgag	720
tgggccgagg	agttccacga	aacaattgtt	aagtggctgg	ttgaaaaatc	gtactcttcg	780
gctcaataa						789
<210> 29 <211> 750 <212> DNA <213> Aqu:	ifex VF5-34	LC				
<400> 29 ttgattggca	atttgaaatt	gaagaggttt	gaagaggtta	acttagttct	ttcgggaggg	60
gctgccaagg	gtatcgccca	tataggtgtt	ttaaaagctc	tggaagagct	cggtataaag	120
gtaaagaggc	tcagcggggt	aagtgctgga	gctatcgttt	ccgtcttta	cgcttcgggc	180
tacactcccg	acgagatgtt	aaaactcctg	aaagaggtaa	actggctcaa	actttttaag	240
ttcaaaacac	cgaaaatggg	cttaatgggg	tgggagaagg	ctgcagagtt	tttggaaaaa	300
gagctcggag	ttaagaggct	ggaagacctg	aacataccaa	cctatctttg	ctcggcggat	360
ctgtacacgg	gaaaggctct	ttacttcggc	agaggtgact	taattcccgt	gcttctcgga	420
agttgttcca	tacccgggat	ttttgaacca	gttgagtacg	agaattttct	acttgttgac	480
ggaggtatag	tgaacaacct	gcccgtagaa	cctttggaaa	agttcaaaga	acccataatc	540
ggggtagatg	tgcttcccat	aactcaagaa	agaaagatta	aaaatatact	ccacatcctt	600
ataaggagct	tctttctggc	ggttcgttcc	aattcggaaa	agagaaagga	gttctgcaac	660
gtagttatag	aacctcccct	tgaagagttc	tctcctctgg	acgtaaataa	ggcggacgag	720
atattctgcg	gggatatgag	agcactttaa				750
<210> 30 <211> 1017 <212> DNA <213> Tere	dinibacter	- 42L				
<400> 30 atgccagcta	atgactcacc	cacqatcqac	tttaatooto	acaacattat	taggaaagat	60
cacgcacagg						60
aagagctacc						120
						180
gccggagagc	LLaacacage	geergeaact	geatectect	cccacccggc	gcacaagaac	240

actotggtta ttgtgctgca cggctgggaa ggctccagcc agtcggccta tgcgacctcc 300 gctggcagca cgcttttcga caatgggttc gacacttttc gccttaattt tcgcgatcac 360 ggcgacacct accacttaaa ccgcggcata tttaactcat cgctgattga cgaagtagtg 420 ggcgcagtca aagccatcca gcagcaaacc gactacgaca agtattgcct gatggggttc 480 tcactgggtg ggaactttgc cttgcgcgtc gcggtgcggg aacagcatct cgctaaaccg 540 ctagcgggcg tgctcgccgt atgcccggta ctcgaccccg cacacccat gatggcccta 600 aaccgaggtg cgtttttcta cggccgctat tttgcgcata aatggaagcg ctcgttaacc 660 gcaaaacttg cagctttccc agactacaaa tacggcaaag atttaaaatc gatacacacg 720 cttgatgagt taaacaacta tttcattccc cgctacaccg gcttcaactc agtctccgaa 780 tacttcaaaa gttacacgct caccgggcag aagctcgcgt ttctcaactg ccccagttac 840 attctggcag ctggcgacga cccaataatt ccagcatccg actttcagaa aatagccaag 900 cctgcgaatc tgcacataac agtaacgcaa caaggttctc attgcgcata cctggaaaac 960 ctgcataaac ctagtgctgc cgacaaatat gcggtgaaat tatttggagc ctgttga 1017

<210> 31

<211> 936

<212> DNA

<213> Archaeoglobus fulgidus

<400> 31

atgettgata tgecaatega ceetgtttae taccagettg etgagtattt egacagtetg 60 ccgaagttcg accagttttc ctcggccaga gagtacaggg aggcgataaa tcgaatatac 120 gaggagagaa accggcagct gagccagcat gagagggttg aaagagttga ggacaggacg 180 attaagggga ggaacggaga catcagagtc agagtttacc agcagaagcc cgattccccg 240 gttctggttt actatcacgg tggtggattt gtgatttgca gcatcgagtc gcacgacgcc 300 ttatgcagga gaattgcgag actttcaaac tctaccgtag tctccgtgga ttacaggctc 360 gctcctgagc acaagtttcc cgccgcagtt tatgattgct acgatgcgac caagtgggtt 420 gctgagaacc gggaggagct gaggattgac ccgtcaaaaa tcttcgttgg gggggacagt 480 gcgggaggga atcttgccgc ggcggtttca ataatggcga gagacagcgg agaagatttc 540 ataaagcatc aaattctaat ttaccccgtt gtgaactttg tagcccccac accatcgctt 600 ctggagtttg gagaggggct gtggattctc gaccagaaga taatgagttg gttctcggag 660 cagtacttct ccagagagga agataagttc aacccctcg cctccgtaat ctttgcggac 720 cttgagaacc tacctcctgc gctgatcata accgccgaat acgacccgct gagagatgaa 780 ggagaagttt tegggeagat getgagaaga geeggtgttg aggegageat egteagatae 840

agaggcgtgc	ttcacggatt	catcaattac	tatcccgtgc	tgaaggctgc	gagggatgcg	900
ataaaccaga	ttgccgctct	tcttgtgttc	gactag			936
<210> 32 <211> 918 <212> DNA <213> Sul	folobus sol:	fataricus				
<400> 32 atgcccctag	atcctagaat	taaaaagtta	ctagaatcag	ctcttactat	accaattggt	60
aaagccccag	tagaagaggt	aagaaagata	tttaggcaat	tagcgtcggc	agctcccaaa	120
gtcgaagttg	gaaaagtaga	agatataaaa	ataccaggca	gtgaaaccgt	tataaacgct	180
agagtgtatt	ttccgaagag	tagcggtcct	tatggtgttc	tagtgtatct	tcatggaggc	240
ggttttgtaa	taggcgatgt	ggaatcttat	gacccattat	gtagagcaat	tacaaatgcg	300
tgcaattgcg	ttgtagtatc	agtggactat	aggttagctc	cagaatacaa	gtttccttct	360
gcagttatcg	attcatttga	cgctactaat	tgggtttata	acaatttaga	taaatttgat	420
ggaaagatgg	gagttgcgat	tgcgggagat	agtgctggag	gaaatttggc	agcggttgta	480
gctcttcttt	caaagggtaa	aattaatttg	aagtatcaaa	tactggttta	cccagcggta	540
agtttagata	acgtttcaag	atccatgata	gagtactctg	atgggttctt	ccttaccaga	600
gagcatatag	agtggttcgg	ttctcaatac	ttacgaagcc	ctgcagattt	gctagacttt	660
aggttctctc	caattctggc	gcaagatttc	aacggattac	ctccagcctt	gataataaca	720
gcagaatacg	atccactaag	ggatcaagga	gaagcgtatg	caaataaact	actacaagct	780
ggagtctcag	ttactagtgt	gagatttaac	aacgttatac	acggattcct	ctcattcttt	840
ccgttgatgg	agcaaggaag	agatgctata	ggtctgatag	ggtctgtgtt	aagacgagta	900
ttttatgata	aaatttaa					918
<210> 33 <211> 184 <212> PRT <213> Stap <400> 33	hylothermus	Marinus				

Met Ser Leu Asn Lys His Ser Trp Met Asp Met Ile Ile Phe Ile Leu

Ser Phe Ser Phe Pro Leu Thr Met Ile Ala Leu Ala Ile Ser Met Ser 20 25

Ser Trp Phe Asn Ile Trp Asn Asn Ala Leu Ser Asp Leu Gly His Ala

Val Lys Ser Ser Val Ala Pro Ile Phe Asn Leu Gly Leu Ala Ile Gly

50 55 60

Gly Ile Leu Ile Val Ile Val Gly Leu Arg Asn Leu Tyr Ser Trp Ser 65 70 75 80

Arg Val Lys Gly Ser Leu Ile Ile Ser Met Gly Val Phe Leu Asn Leu 85 90 95

Ile Gly Val Phe Asp Glu Val Tyr Gly Trp Ile His Phe Leu Val Ser

Val Leu Phe Phe Leu Ser Ile Ile Ala Tyr Phe Ile Ala Ile Ser Ile 115 120 125

Leu Asp Lys Ser Trp Ile Ala Val Leu Leu Ile Ile Gly His Ile Ala 130 135 140

Met Trp Tyr Leu His Phe Ala Ser Glu Ile Pro Arg Gly Ala Ala Ile 145 150 155 160

Pro Glu Leu Leu Ala Val Phe Ser Phe Leu Pro Phe Tyr Ile Arg Asp 165 170 175

Tyr Phe Lys Ser Tyr Thr Lys Arg 180

<210> 34

<211> 346

<212> PRT

<213> Pyrodictium

<400> 34

Met Lys Leu Leu Glu Pro Thr Asn Thr Ser Tyr Thr Leu Leu Gln Asp 1 5 10 15

Leu Ala Leu His Phe Ala Phe Tyr Trp Phe Leu Ala Val Tyr Thr Trp
20 25 30

Leu Pro Gly Val Leu Val Arg Gly Val Ala Val Asp Thr Gly Val Ala
35 40 45

Arg Val Pro Gly Leu Gly Arg Arg Gly Lys Arg Leu Leu Leu Ala Ala 50 55 60

Val Ala Val Leu Ala Leu Val Val Ser Val Val Val Pro Ala Tyr Val 65 70 75 80

Ala Tyr Ser Ser Leu His Pro Glu Ser Cys Arg Pro Val Ala Pro Glu 85 90 95

Gly Leu Thr Tyr Lys Glu Phe Ser Val Thr Ala Glu Asp Gly Leu Val 100 105 110

Val Arg Gly Trp Val Leu Gly Pro Gly Ala Gly Gly Asn Pro Val Phe
115 120 125

Val Leu Met His Gly Tyr Thr Gly Cys Arg Ser Ala Pro Tyr Met Ala 130 135 140

Val Leu Ala Arg Glu Leu Val Glu Trp Gly Tyr Pro Val Val Val Phe

145	;				150					155					160
Asp	Phe	Arg	g Gly	His 165		Glu	Ser	Gly	Gly 170		Thr	Thr	lle	Gly 175	Pro
Arg	Glu	. Val	Leu 180		Ala	Arg	Ala	Val 185		Gly	Tyr	Val	Ser 190		Arg
Phe	Pro	Gly 195		Arg	Ile	Ile	Leu 200	Val	Gly	Phe	Ser	Met 205		Gly	Ala
Val	Ala 210		Val	Glu	Gly	Ala 215		Asp	Pro	Arg	Val 220		Ala	Val	Ala
Ala 225	Asp	Ser	Pro	Tyr	Tyr 230	Arg	Leu	Arg	Asp	Val 235	Ile	Pro	Arg	Trp	Leu 240
Glu	Tyr	Lys	Thr	Pro 245		Pro	Gly	Trp	Val 250	Gly	Val	Leu	Ala	Gly 255	Phe
Tyr	Gly	Arg	Leu 260	Met	Ala	Gly	Val	Asp 265	Leu	Gly	Phe	Gly	Pro 270		Gly
Val	Glu	Arg 275	Val	Asp	Lys	Pro	Leu 280	Leu	Val	Val	Tyr	Gly 285	Pro	Arg	Asp
Pro	Leu 290	Val	Thr	Arg	Asp	Glu 295	Ala	Arg	Ser	Leu	Ala 300	Ser	Arg	Ser	Pro
Cys 305	Gly	Arg	Leu	Val	Glu 310	Val	Pro	Gly	Ala	Gly 315	His	Val	Glu	Ala	Val 320
Asp	Val	Leu	Gly	Pro 325	Gly	Arg	Tyr	Ala	Asp 330	Met	Leu	Ile	Glu	Leu 335	Ala
His	Glu	Glu	Cys 340	Pro	Pro	Gly	Ala	Gly 345	Gly						
<210 <210 <210 <210	l> 2 2> 1	35 262 PRT Archa	aeoq]	lobus	s Ver	nefic	cus								
<400)> 3	35													
Met 1	Pro	Tyr	Val	Arg 5	Asn	Gly	Gly	Val	Asn 10	Ile	Tyr	Tyr	Glu	Leu 15	Val
Asp	Gly	Pro	Glu 20	Pro	Pro	Ile	Val	Phe 25	Val	His	Gly	Trp	Thr 30	Ala	Asn
Met	Asn	Phe 35	Trp	Lys	Glu	Gln	Arg 40	Arg	Tyr	Phe	Ala	Gly 45	Arg	Asn	Met
Met	Leu 50	Phe	Val	Asp	Asn	Arg 55	Gly	His	Gly	Arg	Ser 60	Asp	Lys	Pro	Leu
Gly 65	Tyr	Asp	Phe	Tyr	Arg 70	Phe	Glu	Asn	Phe	Ile 75	Ser	Asp	Leu	Asp	Ala 80
Val	Val	Arg	Glu	Thr	Gly	Val	Glu	Lys	Phe	Val	Leu	Val	Gly	His	Ser

85	90	95
	90	95

Phe Gly Thr Met Ile Ser Met Lys Tyr Cys Ser Glu Tyr Arg Asn Arg

Val Leu Ala Leu Ile Leu Ile Gly Gly Ser Arg Ile Lys Leu Leu 115 120 125

His Arg Ile Gly Tyr Pro Leu Ala Lys Ile Leu Ala Ser Ile Ala Tyr 130 140

Lys Lys Ser Ser Arg Leu Val Ala Asp Leu Ser Phe Gly Lys Asn Ala 145 150 155 160

Gly Glu Leu Lys Glu Trp Gly Trp Lys Gln Ala Met Asp Tyr Thr Pro 165 170 175

Ser Tyr Val Ala Met Tyr Thr Tyr Arg Thr Leu Thr Lys Val Asn Leu 180 185 190

Glu Asn Ile Leu Glu Lys Ile Asp Cys Pro Thr Leu Ile Ile Val Gly
195 200 205

Glu Glu Asp Ala Leu Leu Pro Val Ser Lys Ser Val Glu Leu Ser Arg 210 215 220

Arg Ile Glu Asn Ser Lys Leu Val Ile Ile Pro Asn Ser Gly His Cys 225 230 235 240

Val Met Leu Glu Ser Pro Ser Glu Val Asn Arg Ala Met Asp Glu Phe 245 250 255

Ile Ser Ser Ala Gln Phe 260

<210> 36

<211> 251

<212> PRT

<213> Aquifex pyrophilus

<400> 36

Leu Arg Leu Arg Lys Phe Glu Glu Ile Asn Leu Val Leu Ser Gly Gly

1 10 15

Ala Ala Lys Gly Ile Ala His Ile Gly Val Leu Lys Ala Ile Asn Glu 20 25 30

Leu Gly Ile Arg Val Arg Ala Leu Ser Gly Val Ser Ala Gly Ala Ile 35 40 45

Val Ser Val Phe Tyr Ala Ser Gly Tyr Ser Pro Glu Gly Met Phe Ser 50 55 60

Leu Leu Lys Arg Val Asn Trp Leu Lys Leu Phe Lys Phe Lys Pro Pro 65 70 75 80

Leu Lys Gly Leu Ile Gly Trp Glu Lys Ala Ile Arg Phe Leu Glu Glu 85 90 95

Val Leu Pro Tyr Arg Arg Ile Glu Lys Leu Glu Ile Pro Thr Tyr Ile

100 105 110

Cys Ala Thr Asp Leu Tyr Ser Gly Arg Ala Leu Tyr Leu Ser Glu Gly
115 120 125

Ser Leu Ile Pro Ala Leu Leu Gly Ser Cys Ala Ile Pro Gly Ile Phe 130 135 140

Glu Pro Val Glu Tyr Lys Asn Tyr Leu Leu Val Asp Gly Gly Ile Val 145 150 155 160

Asn Asn Leu Pro Val Glu Pro Phe Gln Glu Ser Gly Ile Pro Thr Val 165 170 175

Cys Val Asp Val Leu Pro Ile Glu Pro Glu Lys Asp Ile Lys Asn Ile 180 185 190

Leu His Ile Leu Leu Arg Ser Phe Phe Leu Ala Val Arg Ser Asn Ser 195 200 205

Glu Lys Arg Lys Glu Phe Cys Asp Leu Val Ile Val Pro Glu Leu Glu 210 215 220

Glu Phe Thr Pro Leu Asp Val Arg Lys Ala Asp Gln Ile Met Glu Arg 225 230 235 240

Gly Tyr Ile Lys Ala Leu Glu Val Leu Ser Glu 245 250

<210> 37

<211> 297

<212> PRT

<213> M11TL-29L

<400> 37

Met Phe Asn Ile Asn Val Phe Val Asn Ile Ser Trp Leu Tyr Phe Ser 1 5 10 15

Gly Ile Val Met Lys Thr Val Glu Glu Tyr Ala Leu Leu Glu Thr Gly 20 25 30

Val Arg Val Phe Tyr Arg Cys Val Ile Pro Glu Lys Ala Phe Asn Thr 35 40 45

Leu Ile Ile Gly Ser His Gly Leu Gly Ala His Ser Gly Ile Tyr Ile 50 55 60

Ser Val Ala Glu Glu Phe Ala Arg His Gly Phe Gly Phe Cys Met His 65 70 75 80

Asp Gln Arg Gly His Gly Arg Thr Ala Ser Asp Arg Glu Arg Gly Tyr 85 90 95

Val Glu Gly Phe His Asn Phe Ile Glu Asp Met Lys Ala Phe Ser Asp

Tyr Ala Lys Trp Arg Val Gly Gly Asp Glu Ile Ile Leu Leu Gly His 115 120 125

Ser Met Gly Gly Leu Ile Ala Leu Leu Thr Val Ala Thr Tyr Lys Glu

130 135 140

Ile Ala Lys Gly Val Ile Ala Leu Ala Pro Ala Leu Gln Ile Pro Leu 145 150 155 160

Thr Pro Ala Arg Arg Leu Val Leu Ser Leu Ala Ser Arg Leu Ala Pro 165 170 175

His Ser Lys Ile Thr Leu Gln Arg Arg Leu Pro Gln Lys Pro Glu Gly
180 185 190

Phe Gln Arg Ala Lys Asp Ile Glu Tyr Ser Leu Ser Glu Ile Ser Val 195 200 205

Lys Leu Val Asp Glu Met Ile Lys Ala Ser Ser Met Phe Trp Thr Ile 210 215 220

Ala Gly Glu Ile Asn Thr Pro Val Leu Leu Ile His Gly Glu Lys Asp 225 230 235 240

Asn Val Ile Pro Pro Glu Ala Ser Lys Lys Ala Tyr Gln Leu Ile Pro 245 250 255

Ser Phe Pro Lys Glu Leu Lys Ile Tyr Pro Asp Leu Gly His Asn Leu 260 265 270

Phe Phe Glu Pro Gly Ala Val Lys Ile Val Thr Asp Ile Val Glu Trp 275 280 285

Val Lys Asn Leu Pro Arg Glu Asn Pro 290 295

<210> 38

<211> 262

<212> PRT

<213> Thermococus CL-2-30LC

<400> 38

Met Glu Val Tyr Lys Ala Lys Phe Gly Glu Ala Lys Leu Gly Trp Val

5 10 15

Val Leu Val His Gly Leu Gly Glu His Ser Gly Arg Tyr Gly Arg Leu 20 25 30

Ile Lys Glu Leu Asn Tyr Ala Gly Phe Gly Val Tyr Thr Phe Asp Trp 35 40 45

Pro Gly His Gly Lys Ser Pro Gly Lys Arg Gly His Thr Ser Val Glu 50 60

Glu Ala Met Glu Ile Ile Asp Ser Ile Ile Glu Glu Ile Arg Glu Lys
65 70 75 80

Pro Phe Leu Phe Gly His Ser Leu Gly Gly Leu Thr Val Ile Arg Tyr

Ala Glu Thr Arg Pro Asp Lys Ile Arg Gly Leu Ile Ala Ser Ser Pro 100 105 110

Ala Leu Ala Lys Ser Pro Glu Thr Pro Gly Phe Met Val Ala Leu Ala

115 120 125

Lys Phe Leu Gly Lys Ile Ala Pro Gly Val Val Leu Ser Asn Gly Ile 130 135 140

Lys Pro Glu Leu Leu Ser Arg Asn Arg Asp Ala Val Arg Arg Tyr Val 145 150 155 160

Glu Asp Pro Leu Val His Asp Arg Ile Ser Ala Lys Leu Gly Arg Ser 165 170 175

Ile Phe Val Asn Met Glu Leu Ala His Arg Glu Ala Asp Lys Ile Lys 180 185 190

Val Pro Ile Leu Leu Ile Gly Thr Gly Asp Val Ile Thr Pro Pro 195 200 205

Glu Gly Ser Arg Arg Leu Phe Glu Glu Leu Ala Val Glu Asn Lys Thr 210 215 220

Leu Arg Glu Phe Glu Gly Ala Tyr His Glu Ile Phe Glu Asp Pro Glu 225 230 235 240

Trp Ala Glu Glu Phe His Glu Thr Ile Val Lys Trp Leu Val Glu Lys 245 250 255

Ser Tyr Ser Ser Ala Gln 260

<210> 39

<211> 249

<212> PRT

<213> Aquifex VF5-34LC

<400> 39

Leu Ile Gly Asn Leu Lys Leu Lys Arg Phe Glu Glu Val Asn Leu Val
1 5 10 15

Leu Ser Gly Gly Ala Ala Lys Gly Ile Ala His Ile Gly Val Leu Lys
20 25 30

Ala Leu Glu Glu Leu Gly Ile Lys Val Lys Arg Leu Ser Gly Val Ser 35 40 45

Ala Gly Ala Ile Val Ser Val Phe Tyr Ala Ser Gly Tyr Thr Pro Asp 50 60

Glu Met Leu Lys Leu Lys Glu Val Asn Trp Leu Lys Leu Phe Lys

Phe Lys Thr Pro Lys Met Gly Leu Met Gly Trp Glu Lys Ala Ala Glu 85 90 95

Phe Leu Glu Lys Glu Leu Gly Val Lys Arg Leu Glu Asp Leu Asn Ile 100 105 110

Pro Thr Tyr Leu Cys Ser Ala Asp Leu Tyr Thr Gly Lys Ala Leu Tyr 115 120 125

Phe Gly Arg Gly Asp Leu Ile Pro Val Leu Leu Gly Ser Cys Ser Ile

135 140 130 Pro Gly Ile Phe Glu Pro Val Glu Tyr Glu Asn Phe Leu Leu Val Asp 155 150 Gly Gly Ile Val Asn Asn Leu Pro Val Glu Pro Leu Glu Lys Phe Lys 170 Glu Pro Ile Ile Gly Val Asp Val Leu Pro Ile Thr Gln Glu Arg Lys 185 Ile Lys Asn Ile Leu His Ile Leu Ile Arg Ser Phe Phe Leu Ala Val 200 Arg Ser Asn Ser Glu Lys Arg Lys Glu Phe Cys Asn Val Val Ile Glu Pro Pro Leu Glu Glu Phe Ser Pro Leu Asp Val Asn Lys Ala Asp Glu Ile Phe Cys Gly Asp Met Arg Ala Leu 245 <210> 40 <211> 338 <212> PRT <213> Teredinibacter - 42 <400> 40 Met Pro Ala Asn Asp Ser Pro Thr Ile Asp Phe Asn Pro Arg Gly Ile Leu Arg Asn Ala His Ala Gln Val Ile Leu Ala Thr Ser Gly Leu Arg 25 Lys Ala Phe Leu Lys Arg Thr His Lys Ser Tyr Leu Ser Thr Ala Gln Trp Leu Glu Leu Asp Ala Gly Asn Gly Val Thr Leu Ala Gly Glu Leu Asn Thr Ala Pro Ala Thr Ala Ser Ser His Pro Ala His Lys Asn Thr Leu Val Ile Val Leu His Gly Trp Glu Gly Ser Ser Gln Ser Ala Tyr Ala Thr Ser Ala Gly Ser Thr Leu Phe Asp Asn Gly Phe Asp Thr Phe Arg Leu Asn Phe Arg Asp His Gly Asp Thr Tyr His Leu Asn Arg 120 Gly Ile Phe Asn Ser Ser Leu Ile Asp Glu Val Val Gly Ala Val Lys Ala Ile Gln Gln Gln Thr Asp Tyr Asp Lys Tyr Cys Leu Met Gly Phe

Ser Leu Gly Gly Asn Phe Ala Leu Arg Val Ala Val Arg Glu Gln His

175 165 170 Leu Ala Lys Pro Leu Ala Gly Val Leu Ala Val Cys Pro Val Leu Asp 185 Pro Ala His Thr Met Met Ala Leu Asn Arg Gly Ala Phe Phe Tyr Gly Arg Tyr Phe Ala His Lys Trp Lys Arg Ser Leu Thr Ala Lys Leu Ala Ala Phe Pro Asp Tyr Lys Tyr Gly Lys Asp Leu Lys Ser Ile His Thr Leu Asp Glu Leu Asn Asn Tyr Phe Ile Pro Arg Tyr Thr Gly Phe Asn Ser Val Ser Glu Tyr Phe Lys Ser Tyr Thr Leu Thr Gly Gln Lys Leu Ala Phe Leu Asn Cys Pro Ser Tyr Ile Leu Ala Ala Gly Asp Asp Pro Ile Ile Pro Ala Ser Asp Phe Gln Lys Ile Ala Lys Pro Ala Asn Leu 295 His Ile Thr Val Thr Gln Gln Gly Ser His Cys Ala Tyr Leu Glu Asn Leu His Lys Pro Ser Ala Ala Asp Lys Tyr Ala Val Lys Leu Phe Gly 325 330 Ala Cys <210> 41 <211> 311 <212> PRT <213> Archaeoglobus fulgidus <400> 41 Met Leu Asp Met Pro Ile Asp Pro Val Tyr Tyr Gln Leu Ala Glu Tyr Phe Asp Ser Leu Pro Lys Phe Asp Gln Phe Ser Ser Ala Arg Glu Tyr 25 Arg Glu Ala Ile Asn Arg Ile Tyr Glu Glu Arg Asn Arg Gln Leu Ser Gln His Glu Arg Val Glu Arg Val Glu Asp Arg Thr Ile Lys Gly Arg Asn Gly Asp Ile Arg Val Arg Val Tyr Gln Gln Lys Pro Asp Ser Pro Val Leu Val Tyr Tyr His Gly Gly Gly Phe Val Ile Cys Ser Ile Glu

Ser His Asp Ala Leu Cys Arg Arg Ile Ala Arg Leu Ser Asn Ser Thr

			100					105					110		
Val	Val	Ser 115	Val	Asp	Tyr	Arg	Leu 120	Ala	Pro	Glu	His	Lys 125	Phe	Pro	Ala
Ala	Val 130	Tyr	Asp	Cys	Tyr	Asp 135	Ala	Thr	Lys	Trp	Val 140	Ala	Glu	Asn	Ala
Glu 145	Glu	Leu	Arg	Ile	Asp 150	Pro	Ser	Lys	Ile	Phe 155	Val	Gly	Gly	Asp	Ser 160
Ala	Gly	Gly	Asn	Leu 165	Ala	Ala	Ala	Val	Ser 170	Ile	Met	Ala	Arg	Asp 175	Ser
Gly	Glu	Asp	Phe 180	Ile	Lys	His	Gln	Ile 185	Leu	Ile	Tyr	Pro	Val 190	Val	Asr
Phe	Val	Ala 195	Pro	Thr	Pro	Ser	Leu 200	Leu	Glu	Phe	Gly	Glu 205	Gly	Leu	Trp
Ile	Leu 210	Asp	Gln	Lys	Ile	Met 215	Ser	Trp	Phe	Ser	Glu 220	Gln	Tyr	Phe	Sei
Arg 225	Glu	Glu	Asp	Lys	Phe 230	Asn	Pro	Leu	Ala	Ser 235	Val	Ile	Phe	Ala	Asp 240
Leu	Glu	Asn	Leu	Pro 245	Pro	Ala	Leu	Ile	Ile 250	Thr	Ala	Glu	Tyr	Asp 255	Pro
Leu	Arg	Asp	Glu 260	Gly	Glu	Val	Phe	Gly 265	Gln	Met	Leu	Arg	Arg 270	Ala	Gly
Val	Glu	Ala 275	Ser	Ile	Val	Arg	Tyr 280	Arg	Gly	Val	Leu	His 285	Gly	Phe	Ile
Asn	Tyr 290	Tyr	Pro	Val	Leu	Lys 295	Ala	Ala	Arg	Asp	Ala 300	Ile	Asn	Gln	Ile
Ala 305	Ala	Leu	Leu	Val	Phe 310	Asp									
<21 <21 <21 <21	2 > 1	305 PRT	olob	us s	olfa	tari	cus								
<40	0 >	42													
Met 1	Pro	Leu	Asp	Pro 5	Arg	Ile	Lys	Lys	Leu 10	Leu	Glu	Ser	Ala	Leu 15	Th
Ile	Pro	Ile	Gly 20	Lys	Ala	Pro	Val	Glu 25	Glu	Val	Arg	Lys	Ile 30	Phe	Arg
Gln	Leu	Ala 35	Ser	Ala	Ala	Pro	Lys 40	Val	Glu	Val	Gly	Lys 45	Val	Glu	Asj
Ile	Lys 50	Ile	Pro	Gļy	Ser	Glu 55	Thr	Val	Ile	Asn	Ala 60	Arg	Val	Tyr	Ph

Pro Lys Ser Ser Gly Pro Tyr Gly Val Leu Val Tyr Leu His Gly Gly

65 70 75 80

Gly Phe Val Ile Gly Asp Val Glu Ser Tyr Asp Pro Leu Cys Arg Ala 85 90 95

Ile Thr Asn Ala Cys Asn Cys Val Val Val Ser Val Asp Tyr Arg Leu
100 105 110

Ala Pro Glu Tyr Lys Phe Pro Ser Ala Val Ile Asp Ser Phe Asp Ala 115 120 125

Thr Asn Trp Val Tyr Asn Asn Leu Asp Lys Phe Asp Gly Lys Met Gly 130 135 140

Val Ala Ile Ala Gly Asp Ser Ala Gly Gly Asn Leu Ala Ala Val Val 145 150 155 160

Ala Leu Leu Ser Lys Gly Lys Ile Asn Leu Lys Tyr Gln Ile Leu Val 165 170 175

Tyr Pro Ala Val Ser Leu Asp Asn Val Ser Arg Ser Met Ile Glu Tyr 180 185 190

Ser Asp Gly Phe Phe Leu Thr Arg Glu His Ile Glu Trp Phe Gly Ser 195 200 205

Gln Tyr Leu Arg Ser Pro Ala Asp Leu Leu Asp Phe Arg Phe Ser Pro 210 215 220

Ile Leu Ala Gln Asp Phe Asn Gly Leu Pro Pro Ala Leu Ile Ile Thr 225 230 235 240

Ala Glu Tyr Asp Pro Leu Arg Asp Gln Gly Glu Ala Tyr Ala Asn Lys 245 250 255

Leu Leu Gln Ala Gly Val Ser Val Thr Ser Val Arg Phe Asn Asn Val 260 265 270

Ile His Gly Phe Leu Ser Phe Phe Pro Leu Met Glu Gln Gly Arg Asp 275 280 285

Ala Ile Gly Leu Ile Gly Ser Val Leu Arg Arg Val Phe Tyr Asp Lys 290 295 300

Ile

305