Goals

We want to maximize the long term monetary gain to produce a stable source of return.

Deliverables

Produce a simulation on never before tested data and produce a graph of the returns long term (multiple years). It should produce a strong return (minimum 5% target 10%, with a stability comparable to the stock market).

Formalization

 g_t is the money in the pot, g_0 is the initial investment, r_t is the percent return between g_t and g_{t+1} such that $g_{t+1} = r_t g_t$.

$$\max_{t\to\infty} \lim_{t\to\infty} g_t$$

We can then define the amount we invest in each team, where we have teams A and B. An investment in team A would be represented as A and a investment in no team is \emptyset . Thus $A_t + B_t + \emptyset_t = g_t$.

Let's assume we have a model that provides us with both a probability of team A winning, $P[W_t = A]$, and its confidence on that probability, ϵ_t .

Below is the Hoeffding bound

$$P[|v - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

There is also a given gambling odds O_A and O_B such that $O_A = 1 - O_B$.

$$g_{t+1} = \emptyset_t +$$

Implementation

Architecture

- 1. Probability estimation: Generates $P[W_t = A]$ and ϵ . Should create a game environment similar to a sport where I can measure and re-run to manually calculate $P[W_t = A]$ and calculate the correctness of ϵ to test is the model is constructed properly prior to using real data
- 2. Gambler model: Uses $P[W_t = A]$ and ϵ generated by the probability estimation model to find the optimal gambling strategy. Note that this model should be re-trained for each sport that is played as the sampling distribution will vary from sport to sport

Milestones

- 1. Train gambler reinforcment model with sim that gives $P[W_t = A]$ and ϵ see if we can profit maximize in this environment, this way we don't need any data yet its just a game agnostic model that can be applied in any gambling situation
- 2. Create a sports environment with a similar setup to baseball and provides a similar data
- 3. Write and test model until epsilon is correct within a certain bound to be defined
- 4. Create data API for use in training the probability estimation model
- 5. Train the model
- 6. Use end to end and test
- 7. Write front end and ship

Concerns to consider

There will be a tradeoff between achieving a good return and losing a large amount of pot. How accurate are betting odds int terms of expected value.

Updates

After running the gambler model that just takes in g, O, team_a, team_b and date, it returned an average earnings with an episode length of 300 of $\mu = 9.944\,04e-1$ and $\sigma = 6.815\,31e-3$. This was run with the TD3 algorithm with $\lambda_{\rm loss} = -1.1$ and $\lambda_{\rm gain} = 1$.

PPO with $\lambda_{\rm loss}=-1$ had final result of $\mu=2.195\,57\mathrm{e}{-13}$ and $std=2.157\,27\mathrm{e}{-12}$, very poor. Ran A2C with the same λ performed the same.

Changing the λ value to -1.3 to see in an increase will help

None of the above worked. This is because the discount factor $\gamma=0.99$ which throws off the model completely as it thinks that its current actions affect the future rewards. When I changed episode length to 1 the final results were $\mu=1.683\,95~\sigma=1.139\,96$. I have not tried testing large length episodes so I am unsure if this actually produces stable results. However, after simulating it with just random variables I get that it sometimes returns very large amounts but most of the time it returns 0. Out of 50 trials of episode length of 50 only 2 returned any money (it was in the billions though). Question: can i divide both μ and σ by the same amount to bolster the stability?

I will now try removing any possibility of cheating by removing all duplicates. Additionally, I will save the model so I can do future testing.

In the future try removing the / self.pot in reward calc for the env.

Resulted in μ =9.803 33e-1 σ = 9.721 42e-1 sem = 3.074 18e-2. Somehow the reward was that of the original experiment where I reached a μ of 1.6. I'll have to identify all the differences.