$Capstone_diebetes$

September 8, 2021

Project Task Week 1 Descriptive Analysis

```
[5]: import numpy as np
import pandas as pd
import matplotlib as plt
import seaborn as sns
from sklearn import metrics
```

[6]: Dia_Data = pd.read_csv('/home/labsuser/Python/Datasets/Capstone_diabetes.csv')

[7]: Dia_Data

[7]:	Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
	•••	•••	•••		•••		
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

	DiabetesPedigreeFunction	n Age	Outcome
0	0.62	7 50	1
1	0.35	1 31	0
2	0.67	2 32	1
3	0.16	7 21	0
4	2.28	8 33	1
		•••	•••
763	0.17	1 63	0
764	0.34	0 27	0
765	0.24	5 30	0
766	0.34	9 47	1

[768 rows x 9 columns]

[8]: #Checking the no of zeroes present in the datasets for different fields

[9]: (Dia_Data == 0).sum()

[9]: Pregnancies 111 Glucose 5 BloodPressure 35 SkinThickness 227 Insulin 374 BMT 11 DiabetesPedigreeFunction 0 0 Age Outcome 500

dtype: int64

[10]: #This shows that there are missing values for fields Glucose, Bloodpressure, □ →SkinThickness, Insulin , BMI #as these fields cannot be zero.

[11]: Dia_Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

[12]: #The above also shows the data type and whether the fields are having nulluvalues or not.

#The above shows we have no null value in the dataset.

[13]: Dia_Data.describe()

```
[13]:
             Pregnancies
                              Glucose
                                       BloodPressure
                                                       SkinThickness
                                                                          Insulin
              768.000000
                           768.000000
                                                                      768.000000
      count
                                           768.000000
                                                          768.000000
                3.845052
                           120.894531
                                                            20.536458
                                                                        79.799479
      mean
                                            69.105469
      std
                3.369578
                            31.972618
                                            19.355807
                                                            15.952218
                                                                      115.244002
                                                                         0.000000
      min
                0.000000
                             0.000000
                                             0.000000
                                                             0.000000
      25%
                1.000000
                            99.000000
                                            62.000000
                                                             0.000000
                                                                         0.000000
      50%
                3.000000
                          117.000000
                                            72.000000
                                                            23.000000
                                                                        30.500000
      75%
                6.000000
                           140.250000
                                            80.000000
                                                            32.000000
                                                                       127.250000
               17.000000
                           199.000000
                                           122.000000
                                                            99.000000
                                                                       846.000000
      max
                          DiabetesPedigreeFunction
                     BMI
                                                                     Outcome
                                                             Age
             768.000000
                                         768.000000
                                                     768.000000
                                                                  768.000000
      count
              31.992578
                                           0.471876
                                                      33.240885
                                                                    0.348958
      mean
               7.884160
                                                                    0.476951
      std
                                           0.331329
                                                      11.760232
      min
               0.000000
                                           0.078000
                                                      21.000000
                                                                    0.000000
      25%
              27.300000
                                           0.243750
                                                      24.000000
                                                                    0.000000
      50%
              32.000000
                                           0.372500
                                                      29.000000
                                                                    0.000000
      75%
              36.600000
                                           0.626250
                                                      41.000000
                                                                    1.000000
      max
              67.100000
                                           2.420000
                                                      81.000000
                                                                    1.000000
[14]: #The above shows the various measures of central tendcies.
```

Visually Exploring the variables in the datasets

```
[15]: import matplotlib.pyplot as plt
from matplotlib import style
for each in Dia_Data.columns:
    Col = str(each)
    print(Col)
    Data = Dia_Data[Col]
    style.use('ggplot')
    plt.figure(figsize=(7,7))
    plt.subplots_adjust(hspace=.25)
    plt.subplot(2,1,1)
    plt.hist(Data,bins= 30,color='red')
    plt.xlabel(each)
    plt.ylabel('no')
    plt.show()
```

Pregnancies

Glucose

BloodPressure

SkinThickness

Insulin

BMI

DiabetesPedigreeFunction

Age

Outcome


```
[16]: \#Using\ Median\ Values\ from\ the\ above\ coomands\ describe\ result,\ and\ using\ it\ to \hookrightarrow replace.
```

```
[17]: Dia_Data['Glucose'].replace(0,117,inplace=True)
Dia_Data['BloodPressure'].replace(0,72,inplace=True)
Dia_Data['SkinThickness'].replace(0,23,inplace=True)
Dia_Data['Insulin'].replace(0,30.5,inplace=True)
Dia_Data['BMI'].replace(0,32,inplace=True)
```

[18]: (Dia_Data==0).sum()

[10].	Dragmanaiaa	111
[10]:	Pregnancies	111
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0
	Outcome	500
	dtype: int64	

[19]: #the above shows that the zero values in the dataset have been replaced .

[20]: #Create a count (frequency) plot describing the data types and the count of \rightarrow variables.

```
[21]: Data_Type = []
for each in Dia_Data.columns:
```

```
Col = str(each)
  Data_Type.append(str(Dia_Data[Col].dtype))
print(Data_Type)
sns.countplot(Data_Type)
```

['int64', 'int64', 'int64', 'float64', 'float64', 'float64', 'int64', 'int64', 'int64']

[21]: <AxesSubplot:ylabel='count'>

Project Task Week 2

[22]: #Check the balance of the data by plotting the count of outcomes by their value. #Describe your findings and plan future course of action.

[23]: sns.countplot(Dia_Data.Outcome)

[23]: <AxesSubplot:xlabel='Outcome', ylabel='count'>


```
[24]: # Since Both the outcomes i.e 1 and 0 are are consiserable, so the dataset is \rightarrow balanced
```

```
[25]: #2. Create scatter charts between the pair of variables to understand the → relationships. Describe your findings.
```

```
[26]: import matplotlib.pyplot as plt
      from matplotlib import style
      for each in Dia_Data.columns:
          for one in Dia_Data.columns:
              Col1 = str(each)
              Col2 = str(one)
              print(Col2, 'vs', Col1)
              Data1 = Dia_Data[Col1]
              Data2 = Dia_Data[Col2]
              style.use('ggplot')
              plt.figure(figsize=(7,7))
              plt.subplots_adjust(hspace=.25)
              plt.subplot(2,1,1)
              plt.scatter(Data1,Data2)
              plt.xlabel(each)
              plt.ylabel(one)
              plt.show()
```

Pregnancies vs Pregnancies

Glucose vs Pregnancies

BloodPressure vs Pregnancies

SkinThickness vs Pregnancies

Insulin vs Pregnancies

BMI vs Pregnancies

DiabetesPedigreeFunction vs Pregnancies

Age vs Pregnancies

Outcome vs Pregnancies

Pregnancies vs Glucose

Glucose vs Glucose

BloodPressure vs Glucose

SkinThickness vs Glucose

Insulin vs Glucose

BMI vs Glucose

DiabetesPedigreeFunction vs Glucose

Age vs Glucose

Outcome vs Glucose

Pregnancies vs BloodPressure

Glucose vs BloodPressure

BloodPressure vs BloodPressure

SkinThickness vs BloodPressure

Insulin vs BloodPressure

BMI vs BloodPressure

DiabetesPedigreeFunction vs BloodPressure

Age vs BloodPressure

Outcome vs BloodPressure

Pregnancies vs SkinThickness

Glucose vs SkinThickness

BloodPressure vs SkinThickness

SkinThickness vs SkinThickness

Insulin vs SkinThickness

BMI vs SkinThickness

DiabetesPedigreeFunction vs SkinThickness

Age vs SkinThickness

Outcome vs SkinThickness

Pregnancies vs Insulin

Glucose vs Insulin

BloodPressure vs Insulin

SkinThickness vs Insulin

Insulin vs Insulin

BMI vs Insulin

DiabetesPedigreeFunction vs Insulin

Age vs Insulin

Outcome vs Insulin

Pregnancies vs BMI

Glucose vs BMI

BloodPressure vs BMI

SkinThickness vs BMI

Insulin vs BMI

BMI vs BMI

DiabetesPedigreeFunction vs BMI

Age vs BMI

Outcome vs BMI

Pregnancies vs DiabetesPedigreeFunction

Glucose vs DiabetesPedigreeFunction

BloodPressure vs DiabetesPedigreeFunction

SkinThickness vs DiabetesPedigreeFunction

Insulin vs DiabetesPedigreeFunction

BMI vs DiabetesPedigreeFunction

 ${\tt DiabetesPedigreeFunction}\ {\tt vs\ DiabetesPedigreeFunction}$

Age vs DiabetesPedigreeFunction

Outcome vs DiabetesPedigreeFunction

Pregnancies vs Age

Glucose vs Age

BloodPressure vs Age

SkinThickness vs Age

Insulin vs Age

BMI vs Age

DiabetesPedigreeFunction vs Age

Age vs Age

Outcome vs Age

Pregnancies vs Outcome

Glucose vs Outcome

BloodPressure vs Outcome

SkinThickness vs Outcome

Insulin vs Outcome

BMI vs Outcome

DiabetesPedigreeFunction vs Outcome

Age vs Outcome

Outcome vs Outcome

[27]: # The Above scatter plots show us that most of the variables have one to many
→relations,
#or are independent of each other or have very small relation between them.

[28]: #correlation analysis. Visually explore it using a heat map.

[29]: plt.figure(figsize=(8,8))
sns.heatmap(Dia_Data.corr(),cmap='YlGnBu')
Dia_Data.corr()

[29]:		Pregnancies	Glucose	BloodPressure	SkinThickness	\
	Pregnancies	1.000000	0.128213	0.208615	0.032568	
	Glucose	0.128213	1.000000	0.218937	0.172143	
	BloodPressure	0.208615	0.218937	1.000000	0.147809	
	SkinThickness	0.032568	0.172143	0.147809	1.000000	
	Insulin	-0.055697	0.357573	-0.028721	0.238188	
	BMI	0.021546	0.231400	0.281132	0.546951	
	DiabetesPedigreeFunction	-0.033523	0.137327	-0.002378	0.142977	
	Age	0.544341	0.266909	0.324915	0.054514	
	Outcome	0.221898	0.492782	0.165723	0.189065	

	Insulin	BMI	DiabetesPedigreeFunction	\
Pregnancies	-0.055697	0.021546	-0.033523	
Glucose	0.357573	0.231400	0.137327	
BloodPressure	-0.028721	0.281132	-0.002378	
SkinThickness	0.238188	0.546951	0.142977	
Insulin	1.000000	0.189022	0.178029	
BMI	0.189022	1.000000	0.153506	
DiabetesPedigreeFunction	0.178029	0.153506	1.000000	

Age	-0.015413	0.025744	0.033561
Outcome	0.148457	0.312249	0.173844
	Age	Outcome	
Pregnancies	0.544341	0.221898	
Glucose	0.266909	0.492782	
BloodPressure	0.324915	0.165723	
SkinThickness	0.054514	0.189065	
Insulin	-0.015413	0.148457	
BMI	0.025744	0.312249	
DiabetesPedigreeFunction	0.033561	0.173844	
Age	1.000000	0.238356	
Outcome	0.238356	1.000000	


```
[30]: #The Above Chart shows Glucose, BMI, and age are strongly related with the _{\mbox{\tiny $\square$}} outcome
```

Project Task: Week 3

```
[31]: #Devise strategies for model building. It is important to decide the right⊔
→validation framework.
#Express your thought process.
```

Since target has only two catgeories , We will use Classification rather than regression . We will be using Random forest classification method as it is based on ensamble learning model and provides more accuarte results than single decision tree. We will use train-test-split .

```
[32]: #Apply an appropriate classification algorithm to build a model. #Compare various models with the results from KNN algorithm.
```

```
[33]: #Importing Important Libraries to Build the model
```

```
[34]: from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score
```

```
[36]: Data_input, Data_output
```

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
6	148	72	35	30.5	33.6	
1	85	66	29	30.5	26.6	
8	183	64	23	30.5	23.3	
1	89	66	23	94.0	28.1	
0	137	40	35	168.0	43.1	
•••	•••	•••		•••		
10	101	76	48	180.0	32.9	
2	122	70	27	30.5	36.8	
5	121	72	23	112.0	26.2	
1	126	60	23	30.5	30.1	
	6 1 8 1 0 10 2	6 148 1 85 8 183 1 89 0 137 10 101 2 122 5 121	6 148 72 1 85 66 8 183 64 1 89 66 0 137 40 10 101 76 2 122 70 5 121 72	6 148 72 35 1 85 66 29 8 183 64 23 1 89 66 23 0 137 40 35 10 101 76 48 2 122 70 27 5 121 72 23	6 148 72 35 30.5 1 85 66 29 30.5 8 183 64 23 30.5 1 89 66 23 94.0 0 137 40 35 168.0 10 101 76 48 180.0 2 122 70 27 30.5 5 121 72 23 112.0	6 148 72 35 30.5 33.6 1 85 66 29 30.5 26.6 8 183 64 23 30.5 23.3 1 89 66 23 94.0 28.1 0 137 40 35 168.0 43.1 10 101 76 48 180.0 32.9 2 122 70 27 30.5 36.8 5 121 72 23 112.0 26.2

767 1 93 70 31 30.5 30.4

```
DiabetesPedigreeFunction
0
                            0.627
                                      50
1
                            0.351
                                      31
2
                            0.672
                                      32
3
                            0.167
                                      21
4
                            2.288
                                      33
. .
                               ... ...
                            0.171
763
                                      63
                            0.340
764
                                      27
765
                            0.245
                                      30
766
                            0.349
                                      47
767
                            0.315
                                      23
```

[768 rows x 8 columns],

```
array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
      1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1,
      0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
      1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
      1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
      1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
      0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
      1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
      1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
      1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,
      0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
      1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
      0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
      0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
      1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
      0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
```

```
0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
             0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
             0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
             1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0]))
[37]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(Data_input,Data_output,u
       →random_state =111)
[38]: #initialising the classifiers
[39]: lr_classifier =LogisticRegression(solver='lbfgs',max_iter=1000)
      rf_classifer =RandomForestClassifier(n_estimators =10)
[40]: #using Logistic regression for model making
[41]: lr_classifier.fit(X_train,y_train)
[41]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                        intercept_scaling=1, l1_ratio=None, max_iter=1000,
                        multi_class='auto', n_jobs=None, penalty='12',
                        random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                        warm start=False)
[42]: y_lr_predict= lr_classifier.predict(X_test)
[43]: y_lr_predict
[43]: array([0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
             1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
            0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
            0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
            0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
            1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,
            0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0])
[44]: print('RSE\n',np.sqrt(metrics.mean_squared_error(y_lr_predict,y_test)),'\n')
      print('Classification report\n')
      print(classification_report(y_test,y_lr_predict))
      print('accuracy\n',metrics.accuracy_score(y_test,y_lr_predict),'\n')
      print('Confusion Matrix\n',confusion_matrix(y_test,y_lr_predict))
```

RSE

0.48947250518628044

Classification report

support	f1-score	recall	precision	
126 66	0.82 0.64	0.83	0.81 0.66	0
	0.02	0.02		_
192	0.76			accuracy
192	0.73	0.73	0.73	macro avg
192	0.76	0.76	0.76	weighted avg

accuracy

0.760416666666666

Confusion Matrix

[[105 21]

[25 41]]

- [45]: #Thus the above shows the results from logistic regression
- [46]: #using random forest now
- [47]: rf_classifer.fit(X_train,y_train)
- [47]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
- [48]: y_rf_predict = rf_classifer.predict(X_test)
- [49]: y_rf_predict

```
[50]: print('RSE\n',np.sqrt(metrics.mean_squared_error(y_rf_predict,y_test)),'\n')
      print('Classification report\n')
      print(classification_report(y_test,y_rf_predict))
      print('accuracy\n',metrics.accuracy_score(y_test,y_rf_predict),'\n')
      print('Confusion Matrix\n',confusion_matrix(y_test,y_rf_predict))
     RSE
      0.5448623679425842
     Classification report
                   precision
                                recall f1-score
                                                    support
                0
                        0.76
                                  0.81
                                            0.78
                                                        126
                                  0.50
                1
                        0.58
                                            0.54
                                                         66
                                            0.70
                                                        192
         accuracy
                                            0.66
        macro avg
                        0.67
                                  0.65
                                                        192
     weighted avg
                        0.69
                                  0.70
                                             0.70
                                                        192
     accuracy
      0.703125
     Confusion Matrix
      [[102 24]
      [ 33 33]]
[51]: #the above show the results for Random Forest
[52]: #using Knn
[53]: error_rate = []
      for i in range(1,10):
          Knn= KNeighborsClassifier(n_neighbors=i)
          Knn.fit(X_train,y_train)
          pred_i = Knn.predict(X_test)
          error_rate.append(np.mean(pred_i != y_test))
[54]: plt.figure(figsize=(10,6))
      plt.plot(range(1,10),error_rate,color='blue', linestyle='dashed',_
       →marker='o',markerfacecolor='red',markersize=10)
```

[54]: [<matplotlib.lines.Line2D at 0x7f4eb998fd50>]


```
[55]: |# since the error is minimum at K = 7, we will use 7 as value for no of
       \rightarrow neighbours
[56]: knn_classifier = KNeighborsClassifier(n_neighbors=7)
[57]: knn_classifier.fit(X_train,y_train)
[57]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                           metric_params=None, n_jobs=None, n_neighbors=7, p=2,
                           weights='uniform')
[58]: y_knn_predict = knn_classifier.predict(X_test)
[59]: print('RSE\n',np.sqrt(metrics.mean_squared_error(y_knn_predict,y_test)),'\n')
      print('Classification report\n')
      print(classification_report(y_test,y_knn_predict))
      print('accuracy\n',metrics.accuracy_score(y_test,y_knn_predict),'\n')
      print('Confusion Matrix\n',confusion_matrix(y_test,y_knn_predict))
     RSE
      0.5400617248673217
     Classification report
                   precision
                                recall f1-score
                                                    support
```

0	0.80	0.75	0.77	126
1	0.57	0.64	0.60	66
accuracy			0.71	192
macro avg	0.68	0.69	0.69	192
weighted avg	0.72	0.71	0.71	192

accuracy

0.7083333333333334

Confusion Matrix [[94 32] [24 42]]

Project Week 4

#Please be descriptive to explain what values of these parameter you have used.

Classification report for the three mdoels used are given below

1. for Logistic regression

 $0\ 0.81\ 0.83\ 0.82\ 126\ 1\ 0.66\ 0.62\ 0.64\ 66$

accuracy $0.76\ 192\ \text{macro}$ avg $0.73\ 0.73\ 0.73\ 192$ weighted avg $0.76\ 0.76\ 0.76\ 192$

Confusion Matrix [[105 21] [25 41]]

2.for random forest

RSE=0.535218024111047, accuracy= 0.713541666666666 Classification report precision recall f1-score support

 $0\ 0.76\ 0.83\ 0.79\ 126\ 1\ 0.60\ 0.48\ 0.54\ 66$

accuracy 0.71 192 macro avg 0.68 0.66 0.67 192 weighted avg 0.70 0.71 0.70 192

Confusion Matrix [[105 21] [34 32]]

 $0\ 0.80\ 0.75\ 0.77\ 126\ 1\ 0.57\ 0.64\ 0.60\ 66$

accuracy $0.71\ 192\ \text{macro}$ avg $0.68\ 0.69\ 0.69\ 192$ weighted avg $0.72\ 0.71\ 0.71\ 192$

Confusion Matrix [[94 32] [24 42]]

[62]: # Please find the detailed classification report above .And teh alogorithm has $_$ $_$ used the default threshold as 0.5.

Data Reporting and Dash board creation is given below

