EXPLORE WEATHER TRENDS

• Extract the data:

1. First, I write SQL queries to extract three CSV files from the database: city_data, city_list, global_data

Queries:

- SELECT * FROM CITY_LIST
- SELECT * FROM CITY_DATA
- SELECT * FROM GLOBAL_DATA

city_list			
city	country		
Abidjan	Côte D'Ivoire		
Abu Dhabi	United Arab Emirates		
Abuja	Nigeria		
Accra	Ghana		
Adana	Turkey		
Adelaide	Australia		
Agra	India		
Ahmadabad	India		
Albuquerque	United States		
Alexandria	Egypt		
Alexandria	United States		
Algiers	Algeria		

city_data				
year	city	country	avg_temp	
1849	Abidjan	Côte D'Ivoire	25.58	
1850	Abidjan	Côte D'Ivoire	25.52	
1851	Abidjan	Côte D'Ivoire	25.67	
1852	Abidjan	Côte D'Ivoire		
1853	Abidjan	Côte D'Ivoire		
1854	Abidjan	Côte D'Ivoire		
1855	Abidjan	Côte D'Ivoire		
1856	Abidjan	Côte D'Ivoire	26.28	
1857	Abidjan	Côte D'Ivoire	25.17	
1858	Abidjan	Côte D'Ivoire	25.49	
1859	Abidjan	Côte D'Ivoire	25.92	
1860	Abidjan	Côte D'Ivoire	25.46	
1861	Abidian	Côte D'Ivoire	25.67	

	global_data		
У	ear	avg_temp	
1	750	8.72	
1	751	7.98	
1	752	5.78	
1	753	8.39	
1	754	8.47	
1	755	8.36	
1	756	8.85	
1	757	9.02	
1	758	6.74	
1	759	7.99	
1	760	7.19	
1	761	8.77	

Create charts:

- 1. I use Excel to calculate 25 years moving average (25-Y MA) of temperature (start in 1875) for both Los Angeles, USA and global using AVERAGE Excel function. I attach how I calculate 25-Y MA of global data below.
 - Los Angeles, CA Data

■ Global Data

- 2. Next, I create line charts for Los Angeles data and global data.
 - Los Angeles

Global

Los Angeles and Global Data

• Observations:

1. My city, Los Angeles, is warmer on average compared to the global average. (based on the graphs)

- 2. I can see that in 50 years (1875-1925), the average temperature in Los Angeles was consistent in 13.90 $^{\sim}$ 14.00 Celsius range. The global average temperature was consistent in 30 years (1875-1905) around 8.14 $^{\sim}$ 8.17 Celsius range.
- 3. In 25 years (from 1825-1950), the Los Angeles temperature average was increasing consistently from low 14.00 Celsius to 14.30 Celsius. In 50 years (1905-1955), global temperature average was increasing consistently from low 8.15 Celsius to 8.64 Celsius
- 4. In 25 years (1950-1975), the average temperature in Los Angeles was consistent in 14.31 $^{\sim}$ 14.34 Celsius range. We can see the same for global average temperature was; It was consistent in 25 years (1950-1975) around 8.63 $^{\sim}$ 8.66 Celsius range.
- 5. Since 1975, we can see that Los Angeles and the global average temperature is consistently increasing.
- 6. In my observation, I can see that the rise of the global average temperature is more quickly and more consistent than my city, Los Angeles. We can see the result of the global warming trend based on this data.