Tool for Mycelium Grain Spawn Production

Isaac Peterson

Advisor: Dr. Mitchell Neilsen

What is mycelium grain spawn?

Ok, but who cares?

Oats Prices - Historical Annual Data						
Year	Average Closing Price	Year Open	Year High	Year Low	Year Close	Annual % Change
2023	\$3.6943	\$3.6525	\$3.8820	\$3.6250	\$3.7630	3.07%
2022	\$5.3724	\$6.8075	\$8.0700	\$3.3300	\$3.6510	-46.54% crotrends.i

100 Grams/4 oz of Blue Oyster Mushroom Spawn Mycelium to Grow Gourmet and Medicinal Mushrooms at Home or commercially - Use to Grow on Straw or Sawdust Blocks - G1 or G2 Spawn

Brand: BetterFungi

★★★☆ × 171 ratings

₭ Best Deal

\$18⁹⁵ (\$4.74 / Ounce)

√prime

FREE Returns Y

Input (oats + water)

- Oats = \$3.69 / bushel
- 1 Bushel oats ≈ 34 lbs.
- $$3.69 / 34 \approx $0.10 / lb.$

- Water ≈ \$0.01 / gallon
- Oxygen = free

Output (colonized grain spawn)

- \$4.74 / oz
- 16 oz = 1 lb.
- \$4.74 * 16 = \$75.84 / lb.

profit margin (*minus overhead*) = 99.86% (absurdly high)

Scalability Problem #1 : O_2 Supply

- aerobic respiration
- ≈ 29.37 L atmosphere / kg oats
- 66.6L (2.35 ft²) for 5lb bags pictured
- Colonization rate bound by how much air happens to seep through a small hole

BOTTOM LINE:

≈ 8 weeks to colonize 5lb bags pictured

FULLY COLONIZED BAG

BAG BEFORE INJECTION

Autoclavable polypropylene grow bags with $0.2~\mu m$ filter port - northspore.com

Scalability Problem #2: *Moisture Regulation*

- Unknowable amount of moisture will be lost during sterilization process
- Unknowable amount of moisture will be lost to fresh air exchange (FAE)

BOTTOM LINE:

Real time moisture regulation is necessary

Scalability Problem #3 : Sterilization

Autoclave

• Expensive (\$18,000+)

Pressure Cooker

- Inefficient
- Limits size of grow container

User interface (CLI app) : C++

- Manually set temp, and humidity
- View log data
- Manually input crop yields for auto adjustment features

Logging

Control &
logging

Server: C++

- Stores all log data long-term
- Automatically experiments with different growing parameters and adjusts to maximize yield

Control

Pi pico W : C

-maintains growing parameters

-collects log data

Drivers from RBP pico SDK

Output

- 1. Atomizer ETA1617, NE555
- 2. Fan GDA8010

Input

- 1. Gas Sensor MQ135
- 2. Temperature and Humidity Sensor DHT22

Minimum viable product

- Working hardware prototype
- FAE control based on sensor input
- Humidity control based on sensor input
- All sensor readings logged locally on microcontroller

Version 1.0

- Software updates over Wi-Fi
- Log data sent to server and stored there
- Command line interface with server

Version 2.0

- WAN communication between sever and control systems
- Influence colonies' behavior with electrical pulses (highly experimental)
- Temperature control
- Compatibility with multiple

Questions?