Assignment #2: Log Analysis for Anomaly Detection

Qianyu Ouyang

Part#1: comparing current log parsing methods

- Learn the DSN 16 paper (or original paper for these log parsing methods) and do the following jobs using the given datasets:
 - 1. Learn four log parsing algorithms: LogSig, IPLom, SLCT and LKE
 - 2. Use toolkit to run four log parsing algorithms on five datasets (BGL, HDFS, HPC, Proxifier, Zookeeper).
 - 3. Plot **runtime**, **F**–**score**, **RandIndex**^[3] (a metrics for evaluation clustering) with bar charts when four algorithms are parsing logs.
 - 4. Display your template files.
 - 5. Describe your own experience or findings in doing log pasrsing. For example, advantages and disadvantages of these algorithms.

Part#1: comparing current log parsing methods

Toolkit version

Part#1: comparing current log parsing methods

- Dataset:
 - https://github.com/logpai/logparser/tree/master/logs
 - Five types of logs (BGL, HDFS, HPC, Proxifier, Zookeeper), each type has 2000 logs

Part#2: comparing anomaly detection methods

- Learn the ISSRE paper (or original paper for these anomaly detection methods) and do the following jobs using the **HDFS logs**.
 - Learn three unsupervised anomaly detection models: Invariants Mining, PCA and Log Clustering.
 - Choose a log parsing method (mentioned in part1) to parse HDFS logs, and use this toolkit to run **two of three** anomaly detection models (Considering Log Clustering suffers from high computational complexity, you needn't run Log Clustering).
 - Plot precision, recall, F-score, runtime with bar charts when these models detecting anomaly.
 - When running **Invariants Mining**, add some codes and display **three relationships** (please check the paper for more information), *e.g.*, n(A) = n(B), where n(*) represents the number of logs which belong to corresponding template *. And explain why, *e.g.*, template A is "Interface *, changed state to down", while template B is "Interface *, changed state to up".
 - Describe your own experience or findings in doing those jobs.

Part#2: comparing anomaly detection methods

- QA
 - Toolkit:
 - https://github.com/logpai/loglizer
 - Dataset:
 - https://www.dropbox.com/s/akef557hnla0h9v/ANM-data.zip?dl=0
 - https://cloud.tsinghua.edu.cn/f/c8806b4c81ee45afa03c/?dl=1
 - LogParser:
 - You should choose a LogParser (4 methods in part1) to parse the log data according to its performance in the part1
 - LogCluster:
 - You don't need to run logCluster in part2.

When you finish this assignment, you only need to submit a zip file, which includes template files in part#1 and an assignment report.

Project

- The 12-hour test data is be generated in the server every 12 hours.
- You can use consumer.py to read the data from kafka directly.
- And you can use the submit function in consumer.py to send your answers to the server. So you don't have to build the docker container.

- NOTICE: you should use the consumer.py on the web-learning site.
- The final test will start at Dec.16 0:00 (beijing time zone)

Project

http://81.70.98.179:8000/standings/show/

rank	group name	score
1	学堂路车神	170
2	Veritaserum	0
3	The Anomalies	0
4	study group	0
5	MSSherlock	0
6	meow meow	0
7	Learning Failure	0
8	flower group	0
9	DANM!	0
10	ANM小组	0
11	ANMG	0

Q&A