

CONTEXTUALICEMOS EL PROBLEMA

- Alta incidencia de casos
- Mortalidad elevada
- Altos costos asociados a su diagnóstico y tratamiento

NUESTROS OBJETIVOS CON MACHINE LEARNING

- Incitar a la consulta médica
- Mejor experiencia del paciente
- Prevención efectiva
- Optimización de recursos

FUENTE DE DATOS

FUENTE DE DATOS

Información general

- Data of patients (Kaggle)
- 230.000 registros
- 34 columnas: edad, género, peso, enfermedades, etc.
- Sin valores nulos

Retos que nos presenta

- Selección de variables según nuestro contexto
- Desbalanceo de la variable a predecir

Balance de pacientes con ACV

Eliminación de columnas

- COVID positivo
- HIV positivo
- Cancer de piel
- Ciudad
- etc.

Reducción del dataset

230000 registros -> 26000 registros

Balance de pacientes con ACV

FEATURE ENGINEERING

Género

Mujer Hombre

1 Salud general

80 > ...
$$\longrightarrow$$
 4 Excellent \longrightarrow 5

60-79 \longrightarrow 3 Very good \longrightarrow 4

40-59 \longrightarrow 2 Good \longrightarrow 3

18-39 \longrightarrow 1 Fair \longrightarrow 2

Poor \longrightarrow 1

FUENTE DE DATOS

RELACIONES ENTRE VARIABLES

RASGOS GENERALES

TRAIN-TEST

80%-20%

MÉTRICAS

F1-score
Precision
Recall

OBJETIVO

El modelo menos costoso en cuanto a tiempo y recursos.

LOGISTIC REGRESSION	RANDOM FOREST	XGBOOST	PCA-RANDOMFOREST
MAX_ITER = 1000 CLASS_WEIGHT = BALANCED	N_ESTIMATORS = 200 MIN_SAMPLES_SPLIT = 4 MAX_DEPTH = 6 CRITERION =GINI CLASS_WEIGHT = BALANCED	N_ESTIMATORS = 300 MIN_CHILD_WEIGHT = 3 MAX_DEPTH = 10 SCALE_POS_WEIGHT = 3 LEARNING_RATE = 0.05 GAMMA = 0.1	N_ESTIMATORS = 200 MIN_SAMPLES_SPLIT = 4 MAX_DEPTH = 6 CRITERION = GINI CLASS_WEIGHT = BALANCED N_COMPONENTS = 6
ACCURACY			
70.54%	68.84%	63.12%	68.12%

ELECCIÓN DE MODELO

RANDOM FOREST

Máximizar el recall sin perder mucha precisión

IMPORTANCIA DE CARACTERISTICAS

LIMITACIONES

- Dataset sesgado
- Mayor enfoque en busqueda de hiperparámetros

MEJORAS

- Muestra representativa
- Análisis descriptivo exhaustivo antes de modelar

GRACIAS

Thank you