CMSC 451: Reductions & NP-completeness

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Based on Section 8.1 of Algorithm Design by Kleinberg & Tardos.

Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X:

If you had a black box that can solve instances of problem X, how can you solve any instance of Y using polynomial number of steps, plus a polynomial number of calls to the black box that solves X?

Polynomial Reductions

• If problem Y can be reduced to problem X, we denote this by $Y <_P X$.

This means "Y is polynomal-time reducible to X."

 It also means that X is at least as hard as Y because if you can solve X, you can solve Y.

• Note: We reduce *to* the problem we want to show is the harder problem.

Polynomial Problems

Suppose:

- $Y <_P X$, and
- there is an polynomial time algorithm for X.

Then, there is a polynomial time algorithm for Y.

Why?

Polynomial Problems

Suppose:

- $Y \leq_P X$, and
- there is an polynomial time algorithm for X.

Then, there is a polynomial time algorithm for Y.

Why? Because polynomials compose.

We've Seen Reductions Before

Examples of Reductions:

- MAX BIPARTITE MATCHING \leq_P MAX NETWORK FLOW.
- IMAGE SEGMENTATION \leq_P MIN-CUT.
- Survey Design \leq_P Max Network Flow.
- Disjoint Paths \leq_P Max Network Flow.

Reductions for Hardness

Theorem

If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Why? If we *could* solve X in polynomial time, then we'd be able to solve Y in polynomial time using the reduction, contradicting the assumption.

So: If we could find one hard problem Y, we could prove that another problem X is hard by reducing Y to X.

Vertex Cover

Def. A vertex cover of a graph is a set *S* of nodes such that every edge has at least one endpoint in *S*.

In other words, we try to "cover" each of the edges by choosing at least one of its vertices.

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover of size at most k.

Independent Set to Vertex Cover

Independent Set

Given graph G and a number k, does G contain a set of at least k independent vertices?

Can we reduce independent set to vertex cover?

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover of size at most k.

Relation btw Vertex Cover and Indep. Set

Theorem

If G = (V, E) is a graph, then S is an independent set \iff V - S is a vertex cover.

Proof. \Longrightarrow Suppose S is an independent set, and let e=(u,v) be some edge. Only one of u,v can be in S. Hence, at least one of u,v is in V-S. So, V-S is a vertex cover.

 \Leftarrow Suppose V-S is a vertex cover, and let $u, v \in S$. There can't be an edge between u and v (otherwise, that edge wouldn't be covered in V-S). So, S is an independent set. \square

Independent Set \leq_P Vertex Cover

Independent Set \leq_P Vertex Cover

To show this, we change any instance of Independent Set into an instance of Vertex Cover:

- Given an instance of Independent Set $\langle G, k \rangle$,
- We ask our Vertex Cover black box if there is a vertex cover V S of size $\leq |V| k$.

By our previous theorem, S is an independent set iff V-S is a vertex cover. If the Vertex Cover black box said:

yes: then S must be an independent set of size $\geq k$. no: then there is no vertex cover V-S of size $\leq |V|-k$, hence there is no independent set of size $\geq k$.

Vertex Cover \leq_P Independent Set

Actually, we also have:

Vertex Cover \leq_P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has an independent set of size n - k. \square

So: VERTEX COVER and INDEPENDENT SET are equivalently difficult.

NP-completeness

Def. We say X is NP-complete if:

- X ∈ NP
- for all $Y \in \mathbf{NP}$, $Y \leq_P X$.

If these hold, then X can be used to solve every problem in \mathbf{NP} .

Therefore, X is definitely at least as hard as every problem in **NP**.

NP-completeness and P=NP

Theorem

If X is NP-complete, then X is solvable in polynomial time if and only if $\mathbf{P} = \mathbf{NP}$.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in **NP**. We can solve Y in polynomial time: reduce it to X.

Therefore, every problem in \mathbf{NP} has a polytime algorithm and $\mathbf{P} = \mathbf{NP}$.

Reductions and NP-completeness

Theorem

If Y is NP-complete, and

- 1 X is in NP
- $Y \leq_P X$

then X is NP-complete.

In other words, we can prove a new problem is NP-complete by reducing some other NP-complete problem to it.

Proof. Let Z be any problem in **NP**. Since Y is NP-complete, $Z \leq_P Y$. By assumption, $Y \leq_P X$. Therefore: $Z \leq_P Y \leq_P X$. \square

Some First NP-complete problem

We need to find some first NP-complete problem.

Finding the first NP-complete problem was the result of the Cook-Levin theorem.

We'll deal with this later. For now, trust me that:

- Independent Set is a packing problem and is NP-complete.
- Vertex Cover is a covering problem and is NP-complete.

Set Cover

Another very general and useful covering problem:

Set Cover

Given a set U of elements and a collection S_1, \ldots, S_m of subsets of U, is there a collection of at most k of these sets whose union equals U?

We will show that

 $\begin{array}{c} \operatorname{Set} \ \operatorname{Cover} \in \mathit{NP} \\ \operatorname{Vertex} \ \operatorname{Cover} \leq_{\mathit{P}} \operatorname{Set} \ \operatorname{Cover} \end{array}$

And therefore that SET COVER is NP-complete.

Set Cover, Figure

Set Cover, Figure

Vertex Cover \leq_P Set Cover

Thm. Vertex Cover \leq_P Set Cover

Proof. Let G = (V, E) and k be an instance of VERTEX COVER. Create an instance of SET COVER:

- U = E
- Create a S_u for for each $u \in V$, where S_u contains the edges adjacent to u.

U can be covered by $\leq k$ sets iff G has a vertex cover of size $\leq k$.

Why? If k sets S_{u_1}, \ldots, S_{u_k} cover U then every edge is adjacent to at least one of the vertices u_1, \ldots, u_k , yielding a vertex cover of size k.

If u_1, \ldots, u_k is a vertex cover, then sets S_{u_1}, \ldots, S_{u_k} cover U. \square

Last Step:

We still have to show that Set Cover is in NP!

The certificate is a list of k sets from the given collection.

We can check in polytime whether they cover all of U.

Since we have a certificate that can be checked in polynomial time, Set Cover is in \mathbf{NP} .

Summary

You can prove a problem is NP-complete by reducing a known NP-complete problem to it.

We know the following problems are NP-complete:

- Vertex Cover
- Independent Set
- Set Cover

<u>Warning:</u> You should reduce the *known* NP-complete problem to the problem you are interested in. (You *will* mistakenly do this backwards sometimes.)