LATEX Tutorial 2: Basic Math Notation

Joel M. Brigida: ADolbyB

April 22, 2023

1 Superscripts:

 $2x^3$

More than 1 character in the exponent:

 $2x^{34}$

Functions in the exponent:

 $2x^{3x+4}$

Power to a Power exponents:

 $2x^{3x^4+5}$

2 Subscripts:

 $x_1 + x_{12}$

Subscript in a subscript:

 $x_{1_{12}} + y_{1_{2_3}}$

Series:

$$a_0 + a_1 + a_2 + \ldots + a_n$$

3 Greek Letters:

Some Popular Examples:

 $\pi \Pi \alpha \varepsilon$

Equations With Greek Letters: Area of a circle:

$$A = \pi r^2$$

4 Trigonometric Functions:

Some Popular Examples:

$$y = \sin(x)$$

$$y = \cos(\theta)$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

$$\theta = \arcsin\left(\frac{y}{r}\right)$$

5 Log Functions:

Common Log (Base 10) :
$$y = \log(x)$$

Log Base 2 (Binary) :
$$y = \log_2(x)$$

Log Base
$$e$$
 (Natural Log) : $y = \ln(x)$

An Easier Way:

Common Log (Base 10):
$$y = \log(x)$$

Log Base 2 (Binary):
$$y = \log_2(x)$$

Log Base
$$e$$
 (Natural Log): $y = \ln(x)$

6 Roots:

Square Roots:
$$\sqrt{2}$$

Cube Roots:
$$\sqrt[3]{8} = 2$$

*n*th root:
$$\sqrt[n]{x}$$

Pythagorean Theorem:
$$r = \sqrt{x^2 + y^2}$$

Square Root:
$$\sqrt{1+\sqrt{3x^2+3}}$$

7 Fractions:

A Simple Fraction (Display Mode):

$$\frac{2}{3}$$

In a sentence (resized):

Is the glass
$$\frac{1}{2}$$
 empty or $\frac{1}{2}$ full?

In a sentence (Display Mode):

Is the glass
$$\frac{1}{2}$$
 empty or $\frac{1}{2}$ full?

With ams packages:
$$\frac{1}{2}$$
 empty or $\frac{1}{2}$ full?

More Complex Fractions:

$$\frac{\sqrt{x+1}}{\sqrt{x+2}}$$

$$\frac{1}{1+\alpha e^{-x}}$$

$$\frac{x^3}{1 + \frac{1}{\sqrt{x}}}$$