SEQUENCE ALIGNMENT AND GLOBAL SIMILARITY

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his eleventy-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his **eleventh**-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo Baggens of Bag End announced that he would shortly be celebrating his eleventh-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his eleventh-first birthday with a party of special magnificence, there was much talk and excitement in **Hobbit-town**"

"When Mrs. Bilbo Baggins of Bag End announced that she would shortly be celebrating his eleventh-first birthday with a party of special magnificence, there was much talk and excitement in Hobbit-town"

- If two sequences are similar, this provides evidence of descent from a common ancestor
- Sequences are conserved at different rates

 Very similar sequence can indicate a very recent common ancestor, or a highly conserved function

- Identify important sequences by finding conserved regions.
- Find genes similar to known genes.

H. sapiens

C. lupus

B. taurus

G. gallus

D. rerio

M. musculus

R. norvegicus

CC3

P. troglodytes

- Understand evolutionary relationships and distances (D. rerio aka zebrafish is farther from humans than G. gallus aka chicken).
- Interface to databases of genetic sequences.
- As a step in genome assembly, and other sequence analysis tasks.
- Provide hints about protein structure and function (next slides).

BIOI 607

Suffix tree / array and BWT / FM-index are powerful tools for finding exact patterns in a large text, but exact matching is insufficient. Reads have **errors** and there is **true genomic variation** between a reference and a sample.

Typical strategy (many variants):

• Find all places where a substring of the query matches the reference exactly (seeds)

Requires efficient exact search, as we covered with the suffix array/FM-index

• Filter out regions with insufficient exact "Filte matches to warrant further investigation discu

"Filtering"; we may discuss this later

 Perform a "constrained" alignment that includes these exact matching "seeds"

Here is where we use our "alignment" scoring (current lecture) or 607

A string s is a finite sequence of characters

|s| denotes the length of the string — the number of characters in the sequence.

A string is defined over an alphabet, Σ

$$\begin{split} &\Sigma_{DNA} = \{A,T,C,G\} \\ &\Sigma_{RNA} = \{A,U,C,G\} \\ &\Sigma_{AminoAcid} = \{A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V\} \end{split}$$

The empty string is denoted $\varepsilon - |\varepsilon| = 0$

Given two strings \mathbf{s}, \mathbf{t} over the same alphabet Σ , we denote the concatenation as \mathbf{st} — this is the sequence of \mathbf{s} followed by the sequence of \mathbf{t}

String s is a substring of t if there exist two (potentially empty) strings u and v such that t = usv

String **s** is a subsequence of **t** if the characters of **s** appear in order (but not necessarily consecutively) in **t**

String s is a prefix/suffix of t if t = su/us — if neither s nor u are c, then s is a proper prefix/suffix of t

Given: Two strings

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

where a_i , b_i are letters from some alphabet, Σ , like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by "similar"?

Edit distance between strings a and b = the smallest number of the following operations that are needed to transform a into b:

- mutate (replace) a character
- delete a character
- insert a character

The String Alignment Problem

Parameters:

- "gap" is the cost of inserting a "-" character, representing an insertion or deletion (insertion/deletion are dual operations depending on the string)
- cost(x,y) is the cost of aligning character x with character y. In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

- Can compute the edit distance by finding the lowest cost alignment.
 (often phrased as finding highest scoring alignment.)
- Cost of an alignment is: sum of the cost(x,y) for the pairs of characters that are aligned + $gap \times$ number of characters inserted.

e.g. gap = 3cost('D', 'P') = 1

© 24, UNIVERSITY OF MARYLAND

Representing alignments as edit transcripts

Can think of edits as being introduced by an *optimal editor* working left-to-right. *Edit transcript* describes how editor turns *x* into *y*.

```
Operations:
x: G'CGTATGCGGCTAACGC
                                M = match, R = replace,
y: GCTATACGC
                                I = insert into x, D = delete from x
x: GCGTATGCGGCTAACGC
                               MMD
y: GC-TATGCGGCTATACGC
x: GCGTATGCGGCTA-ACGC
                              MMDMMMMMMMMI
y: GC-TATGCGGCTATACG
x: GCGTATGCGGCTA-ACGC
                               MMDMMMMMMMMMIMMM
y: GC-TATGCGGCTATACGC
```

Representing edits as alignments

```
prin-ciple
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR
```

```
misspell
mis-pell
(1 gap)
MMMMIMMM
```

```
aa-bb-ccaabb
ababbbc-a-b-
5 gaps, 1 mm)
MRIMMIMDMDMD
```

```
prin-cip-le
prinncipal-
(3 gaps, 0 mm)
MMMMIMMIMD
prehistoric
 ---historic
 (3 gaps)
 DDDMMMMMMMM
al-go-rithm-
alKhwariz-mi
```

```
(4 gaps, 3 mm)
MMIRRIMMRDMI
```


NCBI BLAST DNA Alignment

>gb AC115706.7 Mus musculus chromosome 8, clone RP23-382B3, complete sequence			
Query	1650	gtgtgtgtgggtgcacatttgtgtgtgtgtgcgcctgtgtgtg	1709
Sbjct	56838	GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTG	56895
Query	1710	gtg-gggcacatttgtgtgtgtgtgtgcctgtgtgtgggtgcacatttgtgtgtg	1768
Sbjct	56896	GTCCGGGCATGCATGTCTGTGTGCATGTGTGTGTGTGTGCATGTGTGAGTAC	56947
Query	1769	ctgtgtgtgtgtgcctgtgtgtgggggtgcacatttgtgtgtg	1828
Sbjct	56948	CTGTGTGTATGCTTGTATGTGTGTGTGTGTGTGTGTGTGT	57007
Query	1829	gggtgcacatttgtgtgtgtgtgcctgtgtgtgtgtgggtgcacatttgtgtgtg	1888
Sbjct	57008	TCATCTGTGTGTATGTGTGTGTGAGAGTGCATGCATGTGTGTGTGAGT	57055
Query	1889	gcctgtgtgtgtgggtgcacatttgtgtgtgtgtgtgcctgtgtgtgtgggtgcac	1942
Sbjct	57056	TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC	57114
Query	1943	atttgtgtgtgtgtgcctgtgtgtgtgggtgcacatttgtgtgtg	2002
Sbjct	57115	ATCTGTGTATGTGTGTGTGTGAGTTAGTTCATCTGTGTGAGAGTGTGTGA	57168
Query	2003	gtgcacatttgtgtgtgtgcctgtgtgtgtgtgcctgtgtgtg	2062
Sbjct	57169	GCTCATCTGTGTGAGTTCATCTGTATGAGTGTGTGTATGTGTGTGTACAAATGA	57224
Query	2063	gtgtgtgtgtgcctgtgtgtgggtgcacatttgtgtgtgt	2122
Sbjct	57225	GTTCATCTGTGCATGTGTGTGTTTAAGTGTGTTCATCTGTGTGCGTGT	57274

How many alignments are there?

How many alignments are there?

Interlude: Dynamic Programming

General and powerful algorithm design technique

"Programming" in the mathematical sense—nothing to do with e.g. code

To apply DP, we need optimal substructure and overlapping subproblems

optimal substructure — can combine solutions to "smaller" problems to generate solutions to "larger" problems.

overlapping subproblems — solutions to subproblems can be "re-used" in multiple contexts (to solve multiple) larger problems

$$F_n = F_{n-1} + F_{n-2}$$
 with $F_1 = F_2 = 1$

This recursive way of computing fib(n) is very inefficient!

What is the runtime of this approach (i.e. fib(n) = O(?))

$$F_n = F_{n-1} + F_{n-2}$$
 with $F_1 = F_2 = 1$

This recursive way of computing fib(n) is very inefficient!

Runtime of this approach is fib(n) = $O(\Phi^n) = O(2^n)$ golden ratio

BIOI 607

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than O(φⁿ)?

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than O(φⁿ)?

If I compute the solutions in the "right order", I don't need to waste time re-computing the same values.

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than O(φⁿ)?

What is the "right order"?

If I compute the solutions in the "right order", I don't need to waste time re-computing the same values.

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than O(φⁿ)?

What is the "right order"?

$$F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow F_4 \rightarrow F_5 \dots$$

If I compute the solutions in the "right order", I don't need to waste time re-computing the same values.


```
F_n = F_{n-1} + F_{n-2} with F_1 = F_2 = 1
How do we do better than O(\varphi^n)?
Take 2:
```

```
def fib(n):
   if n == 1 or n == 2:
      return 1
   fm2, fm1 = 1, 1
   for i in xrange(2, n):
      fm2, fm1 = fm1, fm2 + fm1
   return fm1
```

We loop up to n, and perform an addition in each iteration —> O(n); **much better!** Note: O(n) assumes addition is constant, not true for large enough n.

Let G = (V,E) be a **d**irected **a**cyclic **g**raph (DAG) with vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least one) **topological order** of G — an ordering $p(v_1)$, $p(v_2)$, ..., $p(v_n)$ such that for all $e = (v_i, v_j)$ in E, $p(v_i) < p(v_j)$

In other words, we can label the nodes of G such that all edges point from a vertex with a smaller label to a vertex with a larger label.

BIOI 607

Kahn's algorithm

Builds up a valid topo order node-by-node

```
L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
    remove a node n from S
    add n to tail of L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
if graph has edges then
        return error (graph has at least one cycle)
else
    return L (a topologically sorted order)
```


O(|V| + |E|); why?

What's the distance from S to B — d(S,B)?

First, I must go through A, so it's at least d(S,A) + 6

Then, there are 2 ways of getting to A — we choose the shortest.

In general, d(S,X) is the minimum value of d(S,Y) + d(Y,X) for all Y that precede X and are connected by an edge

$$d(S,X) = \min_{Y \mid (Y,X) \in E} \{d(S,Y) + d(Y,X)\}$$

This becomes the DP recurrence for our problem

The problem is solved efficiently by the following algorithm

```
initialize all \operatorname{dist}(\cdot) values to \infty \operatorname{dist}(s)=0 for each v\in V\backslash\{s\}, in linearized order: \operatorname{dist}(v)=\min_{(u,v)\in E}\{\operatorname{dist}(u)+l(u,v)\}
```


Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

One of these possibilities must hold:

- 1. (a_m,b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all
- 4. a_m is matched to some b_i ($j \ne n$) and b_n is matched to some a_k ($k \ne m$).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

One of these possibilities must hold:

- 1. (a_m,b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all
- 4. a_m is matched to some b_i ($j \ne n$) and b_n is matched to some a_k ($k \ne m$).

Algorithm for Computing Edit Distance

4. a_m is matched to some b_j ($j \neq n$) and b_n is matched to some a_k ($k \neq m$).

So, the only possibilities for what happens to the last characters are:

- 1. (a_m, b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

$$\mathsf{OPT}(i,j) = \min \begin{cases} cost(a_i,b_j) + \mathsf{OPT}(i-1,j-1), & \mathsf{match} \ \mathsf{a_i}, \mathsf{b_j} \\ \mathsf{gap} + \mathsf{OPT}(i-1,j), & \mathsf{a_i} \ \mathsf{unmatched} \ \mathsf{(matched} \ \mathsf{to} \ \mathsf{gap}) \\ \mathsf{Cost} \ \mathsf{of} \ \mathsf{the} \ \mathsf{optimal} \\ \mathsf{alignment} \ \mathsf{between} \\ a_1...a_i \ \mathsf{and} \ b_1...b_j & \mathsf{the} \ \mathsf{costs} \ \mathsf{of} \ \mathsf{smaller} \\ \mathsf{problems} \end{cases}$$

Key: we don't know which of the 3 possibilities is the right one, so we try them all.

Base case:
$$OPT(i,0) = i \times gap \text{ and } OPT(0,j) = j \times gap$$

(Aligning i characters to o characters must use i gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other OPT(i,j) $(i \le n, j \le m)$ on the way to computing OPT(n,m).

Store those values in a 2D array:

notation here; OPT(i,j) is referring to column i, row j of the matrix.

Filling in the 2D Array

BIOI 607
© 2024, UNIVERSITY OF MARYLAND

Edit Distance Computation

```
EditDistance(X,Y):
   For i = 1, ..., m: A[i, 0] = i*gap
   For j = 1, ..., n: A[0,j] = j*gap
   For i = 1, ..., m:
      For j = 1, ..., n:
         A[i,j] = min(
            cost(a[i],b[j]) + A[i-1,j-1],
             gap + A[i-1,j],
            gap + A[i,j-1]
      EndFor
   EndFor
   Return A[m,n]
```


Where's the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = $O(m \times n)$, where m and n are the lengths of the 2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Finding the actual alignment

gap cost = 3mismatch cost = 1

С	27												
Α	24												
G	21												
Т	18												
Т	15												
G	12												
С	9												
Α	6												
Α	3 ←	_0											
	0	3	6	9	12	15	18	21	24	27	30	33	36
		Α	Α	G	G	Т	Α	Т	G	Α	Α	Т	С

С	27												
Α	24												
G	21												
Τ	18												
Τ	15												
G	12												
С	9												
A	6												
А		0	_3										
	0	3	6	9	12	15	18	21	24	27	30	33	36
		Α	Α	G	G	Т	Α	Т	G	Α	Α	Т	С

С	27												
Α	24												
G	21												
Τ	18												
Τ	15												
G	12												
С	9												
А	6												
А		0											
	0	3	6	9	12	15	18	21	24	27	30	33	36
		Α	Α	G	G	T	Α	Т	G	Α	Α	Т	С

				1			1		1		1			
С	27													
Α	24													
G	21													
Т	18													
Т	15													
G	12													
С	9													
Α	6													
А	3 ←	_0-	_3-	_6←	-9-	-12	_15 ←	<u> 1</u> 8	21	24	27	30	33	
	0	3	6	9	12	15	18	21	24	27	30	33	36	
		Α	Α	G	G	Т	Α	Т	G	Α	Α	Т	С	

Outputting the Alignment

Build the alignment from right to left.

ACGT

A-GA

Follow the backtrack pointers starting from entry (n,m).

- If you follow a diagonal pointer, add both characters to the alignment,
- If you follow a left pointer, add a gap to the y-axis string and add the x-axis character
- If you follow a down pointer, add the y-axis character and add a gap to the x-axis string.

Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of dynamic programming.

Main idea of dynamic programming: solve the subproblems in an order so that when you need an answer, it's ready.

Requirements for DP to apply:

- 1. Optimal value of the original problem can be computed from some similar subproblems.
- 2. There are only a polynomial # of subproblems
- 3. There is a "natural" ordering of subproblems, so that you can solve a subproblem by only looking at **smaller** subproblems.

Another View: Recasting as a Graph

Another View: Recasting as a Graph

How would you find a shortest path in this graph *efficiently?*

Side note: Lower Bounds

- Suppose the lengths of a and b are n
- Clearly, we need at least $\Omega(n)$ time to find their alignment have to at least read the input and write the output!
- The algorithms we saw for global alignment run in $O(n^2)$ time

Side note: Lower Bounds

- Suppose the lengths of a and b are n
- Clearly, we need at least $\Omega(n)$ time to find their alignment have to at least read the input and write the output!
- The algorithms we saw for global alignment run in $O(n^2)$ time
- Can we do better?
 - . A trick called the "Four Russians Speedup" can get us to $O(\frac{n^2}{\log n})$
 - Can we do better? Can we do strongly sub-quadratic?
 - That is $O(n^{2-\epsilon})$ for some $\epsilon > 0$?
 - NO!#

