$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1^{+}\alpha}^{\#2}$	$\tau_{1^{-}\alpha}^{\#1}$	$\mathfrak{r}_{1^{+}\alpha}^{\#2}$
$ \frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)+2t_2} \frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)+2t_2} \frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	$r_1^{\#1} + \alpha \beta$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)+2t_2} - \frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2} - \frac{0}{(1+k^2)^2(2r_3+r_5)t_2} - \frac{0}{(1+k^2)^2(2r_3+r_5)t_2} - \frac{0}{k^2(1+2k^2)(r_3+2r_5)} - \frac{0}{k^2(1+2k^2)(r_3+2r_5)} - \frac{0}{(k+2k^3)^2(r_3+2r_5)t_3} - \frac{0}{0}$ $0 \qquad 0 \qquad$	$r_1^{\#2} + \alpha \beta$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int_{1}^{\#1} + \alpha \beta$		$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$		0	0	0	0
0 0 $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)} = \frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3} = 0$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_1^{\#2} +^{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$0 \qquad 0 \qquad -\frac{4i}{k(1+2k^2)(r_3+2r_5)} - \frac{i}{k(1+2k^2)(r_3+2r_5)+4t_3)} \qquad 0 \qquad 0$	$\tau_{1}^{\#_{1}} +^{\alpha}$	0	0	0	0	0	0	0
	$\tau_1^{\#2} + ^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-} \ lpha}^{\# 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1+}^{#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<i>t</i> 3 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	<u>2 i kt3</u> 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{\#1} \dagger$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total #:	21

$\omega_{0}^{\#1} + \begin{pmatrix} \omega_{0}^{\#1} & f_{0}^{\#1} & f_{0}^{\#2} & \omega_{0}^{\#1} \\ \omega_{0}^{\#1} + \begin{pmatrix} t_{3} & -i \sqrt{2} k t_{3} & 0 & 0 \\ f_{0}^{\#1} + \begin{pmatrix} i \sqrt{2} k t_{3} & 2k^{2} t_{3} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $f_{0}^{\#2} + \begin{pmatrix} \omega_{0}^{\#1} + \delta_{0}^{\#2} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\omega_{0}^{\#1} + \begin{pmatrix} \omega_{0}^{\#1} + \delta_{0}^{\#2} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$ \begin{array}{c c} \omega_{0+1}^{\#1} \\ + & t_3 \\ + & 0 \\ + & 0 \end{array} $	$f_{0}^{#2}$	0	0	0	
+ + + +	$f_0^{\#1}$	-i $\sqrt{2} k t_3$		0	0
$\omega_{0}^{*1}+\frac{\omega_{0}^{*1}}{f_{0}^{*2}+}$	$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2}\ kt_3$	0	0
		$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ \dagger	$f_0^{#2} +$	$\omega_{0}^{\#1}\dagger$

$\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$	0	0	0
$\tau_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
٠	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

?		; km /		>	$\frac{1}{k^{\mu}}$		$/-0-4I$ $\stackrel{\circ}{i}$)
Polarisations: 2	? Pole residue:	Quadratic pole	Parity:	Spin:	Square mass:	Polarisations:	Pole residue:	ויומסטועב לימו רוכוב
2	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2}$	U	Odd	0	$-\frac{t_2}{r_2} > 0$	1	$-\frac{1}{r_2} > 0$	a
	1 (r ₃ +2		U	nita	rity o	cond	dition	ıs
	r5) p ²		r_2	< () && r	₃ <	0 & &	r
	V 0		r_2	2 < () && <i>r</i>	₃ >	0 &&	ı - i

Unitarity conditions
$r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 $
$r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$