

Willow Run Test Labs, LLC 8501 Beck Road, Building 2227 Belleville, Michigan 48111 USA

Tel: (734) 252-9785 Fax: (734) 926-9785 e-mail: info@wrtest.com

Testing of

Electromagnetic Emissions

per

USA: CFR Title 47, Part 15.247 Canada: IC RSS-210/GENe

are herein reported for

Computer Performance, Inc. EPCR5

Test Report No.: 20140624-01 Copyright © 2014

Applicant/Provider: Computer Performance, Inc.

2695 Walse Ave, Santa Clara California 95051 USA Phone: +1 (408) 330-5599, Fax: +1 (408) 970-3491

Contact Person: Martin Bodo; martin@digital-loggers.com

Measured by:

Dr. Joseph Brunett, EMC-002790-N

Report Approved by:

Dr. Joseph Proport FMC 002700 NE

Report by:

Report Date of Issue:

June 24, 2014

Results of testing completed on (or before) June 24, 2014 are as follows.

Emissions: The transmitter intentional emissions COMPLY with the regulatory limit(s) by no less than 40.1 dB. Transmit chain spurious harmonic emissions COMPLY by no less than 5.3 dB. Radiated spurious emissions associated with the receive chain of this device COMPLY the regulatory limit(s) by no less than 10.3 dB. Unintentional spurious emissions from digital circuitry COMPLY with radiated emission limit(s) by more than 5.0 dB. AC Power Line conducted emissions COMPLY by more than 14.3 dB.

Contents

1		t Specifications, General Procedures, and Location	4
	1.1	Test Specification and General Procedures	4
	1.2	Test Location and Equipment Used	5
2	Cor	nfiguration and Identification of the Equipment Under Test	6
	2.1	Description and Declarations	6
		2.1.1 EUT Configuration	6
		2.1.2 Modes of Operation	6
		2.1.3 Variants	6
		2.1.4 Test Samples	7
		2.1.5 Functional Exerciser	7
		2.1.6 Modifications Made	8
		2.1.7 Production Intent	8
		2.1.8 Declared Exemptions and Additional Product Notes	8
3	Em	issions	9
•	3.1	General Test Procedures	9
	0.1	3.1.1 Radiated Test Setup and Procedures	9
		3.1.2 Conducted Emissions Test Setup and Procedures	
		3.1.3 Power Supply Variation	
	0.0	3.1.4 Thermal Variation	
	3.2	Intentional Emissions	
		3.2.1 Fundamental Emission Bandwidth	
		3.2.2 Effective Isotropic Radiated Power	16
		3.2.3 Power Spectral Density	18
	3.3	Unintentional Emissions	19
		3.3.1 Transmit Chain Spurious Emissions	19
		3.3.2 Radiated Receiver Spurious	
		3.3.3 Radiated Digital Spurious	
		3.3.4 Conducted Transmitter Spurious	
		3.3.5 Conducted Emissions Test Results - AC Power Port(s)	
		5.5.5 Conducted Emissions Test Results - AC Fower Fort(s)	دد
т:	:a+ a	f Tables	
L	ist o	i Tables	
	1	Willow Run Test Labs, LLC Equipment List	5
	2	EUT Declarations.	
	3	Intentional Emission Bandwidth.	
	4		16
	_		_
	5	Power Spectral Density Results.	
	6	Transmit Chain Spurious Emissions.	
	7	Receiver Chain Spurious Emissions $\geq 30 \text{ MHz}$	
	8	Radiated Digital Spurious Emissions.	
	9	AC Mains Power Conducted Emissions Results.	
	9	AC Mains Power Conducted Emissions Results	24
Li	ist o	f Figures	
	1	Photos of EUT.	6
	2	EUT Test Configuration Diagram.	
	3	Radiated Emissions Diagram of the EUT	
	4	Radiated Emissions Test Setup Photograph(s)	
	5	Conducted RF Test Setup Photograph(s)	12

6	Conducted Emissions Setup Diagram of the EUT	13
7	Intentional Emission Bandwidth	15
8	Power Measurement Plots	17
9	Power Spectral Density Plots.	18
10	Conducted Transmitter Emissions Measured.	22

1 Test Specifications, General Procedures, and Location

1.1 Test Specification and General Procedures

The ultimate goal of Computer Performance, Inc. is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Computer Performance, Inc. EPCR5 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)		
United States	Code of Federal Regulations	CFR Title 47, Part 15.247		
Canada	Industry Canada	IC RSS-210/GENe		

In association with the rules and directives outlined above, the following specifications and procedures are followed herein.

ANSI C63.4-2003	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
FCC KDB 558074 (2013)	"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247"
FCC KDB 913591 (2007)	"Measurement of radiated emissions at the edge of the band for a Part 15 RF Device" $$
ICES-003; Issue 5 (2012)	"Information Technology Equipment (ITE) Limits and methods of measurement"
Industry Canada	"The Measurement of Occupied Bandwidth"

1.2 Test Location and Equipment Used

Test Location The EUT was fully tested by **Willow Run Test Labs, LLC**, 8501 Beck Road, Building 2227, Belleville, Michigan 48111 USA. The Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: 688478) and with Industry Canada, Ottawa, ON (File Ref. No: IC 8719A-1).

Test Equipment Pertinent test equipment used for measurements at this facility is listed in Table 1. The quality system employed at Willow Run Test Labs, LLC has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 1: Willow Run Test Labs, LLC Equipment List.

Description	Manufacturer/Model	SN	Quality Number	Last Cal By / Date Due
Antennas				
Shielded Loop (9 kHz - 50 MHz)	EMCO/6502	2855	UMLOOP1	UMRL / July-2014
Dipole Set (20 MHz - 1000 MHz)	EMCO/3121C	9504-1121	DIPEMC001	Liberty Labs / Sept-2016
Bicone (20 MHz - 250 MHz)	JEF	1	BICJEF001	UMRL / July-2014
Bicone (200 MHz - 1000 MHz)	JEF	1	SBICJEF001	UMRL / July-2014
Log-Periodic Array (200 MHz - 1000 MHz)	JEF/Isbell	1	LOGJEF001	UMRL / July-2014
Ridge-Horn Antenna	Univ. of Michigan	5	UMHORN005	UMRL / July-2014
L-Band	JEF		HRNL001	JEF / July-2014*
LS-Band Horns	JEF/NRL	001, 002	HRN15001, HRN15002	JEF / July-2014*
S-Band Horns	Scientific-Atlanta	1854	HRNSB001	JEF / July-2014*
C-Band	JEF/NRL	1	HRNC001	JEF / July-2014*
XN-Band Horns	JEF/NRL	001, 002	HRNXN001, HRNXN002	JEF / July-2014*
X-Band Horns	JEF/NRL	001, 002	HRNXB001, HRNXB002	JEF / July-2014*
Ku-Band Horns	JEF/NRL	001, 002	HRNKU001, HRNKU002	JEF / July-2014*
Ka-Band Horns	JEF/NRL	001, 002	HRNKA001, HRNKA002	JEF / July-2014*
Quad-Ridge Horns	Condor AS-48461	C35200	QRH218001	WRTL / July-2014
Analyzers & Generators				
Spectrum Analyzer	HP/8593E	3649A02722	HP8593E001	DTI / Nov-2014
Spectrum Analyzer	R&S/FSV30	101660	RSFSV30001	R&S / Mar-2015
Radio Test Set	R&S/CMU200	100104	RSCMU20001	Not Necessary
Line Impedance Stabilization Networks				
LISN	EMCO	9304-2081	LISNEM001	JEF / Jan-2015

^{*} Verification Only - Standard Gain Horn Antennas

2 Configuration and Identification of the Equipment Under Test

2.1 Description and Declarations

The EUT is a Low Power 2.4 GHz Digital Spread Spectrum (DSS) commercial power controller. The EUT is approximately $3.5 \times 4.5 \times 19$ inches in dimension, and is depicted in Figure 1. It is powered by a 115 VAC mains power. This device is envisioned to be a commercial AC power controller that may be actuated by Ethernet or WLAN communications. Table 2 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 2: EUT Declarations.

General Declarations			
Equipment Type:	Low Power WLAN	Country of Origin:	USA
Nominal Supply:	115 VAC	Oper. Temp Range:	-34° C to $+77^{\circ}$ C
Frequency Range:	2412 - 2462 MHz	Antenna Dimension:	17 cm
Antenna Type:	whip	Antenna Gain:	2.0 dBi (spec.)
Number of Channels:	11	Channel Spacing:	5 MHz
Alignment Range:	Not Declared	Type of Modulation:	OFDM
United States			
FCC ID Number:	2ACIUEPCR5	Classification:	DSS
Canada			
IC Number:	12058A-EPCR5	Classification:	Spread Spectrum Device,
10 minber.	1200011-11 0100	Classification.	Digital Device

2.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

2.1.2 Modes of Operation

The EUT is a Ethernet or WiLAN controlled AC power controller with two AC power cords for redundant operation. The 802.11n radio as deployed in this product is capable of only a single mode of operation, as a single-stream fixed data rate (OFDM-20) 1x1 radio.

2.1.3 Variants

There is only a single variant of the EUT, as tested.

Figure 2: EUT Test Configuration Diagram.

2.1.4 Test Samples

One sample of the EUT was provided for testing with modified radio software capable of continuously modulated transmission on the low, middle, and high channels, as well as standby (Rx) mode.

2.1.5 Functional Exerciser

For RF testing, the radio was placed into the maximum possible (continuous) data rate and maximum power setting using custom software provided by the radio manufacturer.

Test Report No.: 20140624-01

2.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

2.1.7 Production Intent

The EUT appears to be a production ready sample.

2.1.8 Declared Exemptions and Additional Product Notes

The EUT employs only single-stream fixed data rate (OFDM-20) communication on 11 selectable channels (2412 MHz through 2462 MHz). The radio parameters cannot be adjusted by the end user. This is an expensive product sold for use in commercial rack-mount installations. As such, it is subject to digital emissions regulation as a Class A commercial product. The EUT antenna is attached to the chassis via a RP-SMA unique connector.

3 Emissions

3.1 General Test Procedures

3.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first evaluated in our shielded fully anechoic chamber. Spectrum and modulation characteristics of all emissions are recorded, and emissions above 1 GHz are fully characterized. The anechoic chamber contains a set-up similar to that of our outdoor 3-meter site, with a turntable and antenna mast. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.2 are employed. After indoor pre-scans, emission measurements are made on our outdoor 3-meter Open Area Test Site (OATS). If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 / CISPR-22 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3.

Figure 3: Radiated Emissions Diagram of the EUT.

intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded.

If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied. For devices with intentional emissions below 30 MHz, a shielded loop antenna is used as the test antenna. It is placed at a 1 meter receive height and appropriate low frequency magnetic field extrapolation to the regulatory limit distance is employed. Emissions between 30 MHz and 1 GHz are measured using tuned dipoles and/or calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain horn antennas or calibrated broadband ridge-horn antennas. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is

a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is compute, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Where regulations call for substitution method measurements, the EUT is replaced by a substitution dipole or standard gain antenna if field strength measurements indicate the emission is close to the regulatory limit. This antenna is co-polarized with the test antenna and tuned (when necessary) to the emission frequency, after which the test antenna height is again optimized. The substitution antenna input signal level is then adjusted such that its emission is equal to the level measured from the EUT. The signal level applied to the substitution antenna is then recorded. Effective isotropic radiated power (EIRP) and effective radiated power (ERP) in dBm are formulated from

$$EIRP = P_T - G_A = ERP + 2.16, (1)$$

where P_T is the power applied to substitution antenna in dBm, including correction for cable loss, and G_A is the substitution antenna gain, in dBi.

Figure 4: Radiated Emissions Test Setup Photograph(s).

3.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 5.

Figure 5: Conducted RF Test Setup Photograph(s).

AC Port Conducted Spurious For this device, AC power line conducted emissions are measured in our screen room. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 / CISPR 22 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 6. Conducted emissions are measured and recorded for each AC mains power source over the spectrum 0.15 MHz to 30 MHz for both the ungrounded (HI/PHASE) and grounded (LO/GRND) conductors with the EUT placed in its highest current draw operating mode(s). The test receiver is set to peak-hold mode in order to record the peak emissions throughout the course of functional operation. Only if an emission exceeds or is near the limit are quasi-peak and average detection applied.

3.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case of this EUT, measurements of the worst-case radiated emissions are performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value for devices connecting to AC power mains.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

Figure 6: Conducted Emissions Setup Diagram of the EUT.

3.1.4 Thermal Variation

Tests at extreme temperatures are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report. The provider has declared that the EUT is designed for operation over the temperature range -34° C to $+77^{\circ}$ C. Before any temperature measurements are made, the equipment is allowed to reach a thermal balance in the test chamber, temperature and humidity are recorded, and thermal balance is verified via a thermocouple based probe.

Test Report No.: 20140624-01

3.2 Intentional Emissions

3.2.1 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 1.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The 99% emission bandwidth per IC test procedures is also reported. The results of this testing are summarized in Table 3. Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 7.

Table 3: Intentional Emission Bandwidth.

Frequency Range	Detector	IF Bandwidth	Video Bandwidth	Test Date:	20-Jun-14
f > 1~000~MHz	Pk	30 kHz	> 3 x IFBW	Test Engineer:	Joseph Brunett
				EUT Mode:	DL EPCR5
Equipment U	sed: HRN15001, RSFSV	30001		Meas. Distance:	3m

								FCC/IC	
			Ant.	Ant.	Frequency	6 dB BW	20 dB BW	IC 99% PWR BW	
Mode	Data Rate	Channel	Used	Pol.	(MHz)	(MHz)	(MHz)	(MHz)	
	Continuous		1	Horn LS	H/V	2412.0	16.31	18.51	16.49
Cont. Tx		6	Horn LS	H/V	2437.0	16.36	18.56	16.48	
		11	Horn LS	H/V	2462.0	16.39	18.24	16.49	

Figure 7: Intentional Emission Bandwidth.

3.2.2 Effective Isotropic Radiated Power

The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each sweep) in the FCCs DTS measurement procedures is employed in determining average output power. The results of this testing are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 8.

Table 4: Radiated Power Results.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	20-Jun-14
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Test Engineer:	Joseph Brunett
$f > 1\ 000\ MHz$	RMS(Int.)	300 kHz	1 MHz	EUT:	DL EPCR5
Equipment Used: HRN1	5001, RSFSV3	30001		Meas. Distance:	3m

											F	CC/IC
		Freq.	Ant.	Ant.	Pr (Avg)**	Ka	Kg	EIRP (Avg)	Pout* (Avg)	Calc. Ant Gain	EIRP (Avg) Limit	Pass
Mode	Channel	MHz	Used	Pol.	(dBm)	(dB/m)	(dB)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)
	1	2412.0	Horn LS	H/V	-45.8	21.4	-0.4	-12.2	-11.1	-1.1	30.0	42.2
Cont. Tx.	2	2437.0	Horn LS	H/V	-43.9	21.5	-0.4	-10.2	-11.5	1.3	30.0	40.2
	4	2462.0	Horn LS	H/V	-44.0	21.6	-0.4	-10.1	-11.8	1.7	30.0	40.1
		Freq.	Supply	Ant.	Pr **	Ka	Kg	EIRP (Pk)				
Mode	Channel	MHz	Voltage	Pol.	dBm	dB/m	dB	dBm				
		2462.0	140.0	H/V	-44.0	21.6	-0.4	-10.2				
		2462.0	125.0	H/V	-44.0	21.6	-0.4	-10.2				
Cont. Tx.	2	2462.0	115.0	H/V	-43.9	21.6	-0.4	-10.1				
		2462.0	100.0	H/V	-43.9	21.6	-0.4	-10.1				
		2462.0	85.0	H/V	-44.0	21.6	-0.4	-10.2				

^{*} Measured conducted from radio port via modified device following FCC's DTS measurement procedures method AVGSA-1.

^{**} Measured radiated at 3 meter distance following FCC's DTS measurement procedures method AVGSA-1.

Figure 8: Power Measurement Plots.

3.2.3 Power Spectral Density

For this test, the EUT was attached directly to the test receiver. Following FCC DTS measurement procedures, the emission spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density is measured in the prescribed receiver bandwidth. The results of this testing are summarized in Table 5. Plots showing how these measurements were made are depicted in Figure 9.

Table 5: Power Spectral Density Results.

Frequency Range	Detector	IF Bandwidth	Video Bandwidth	Test Date:	20-Apr-14
2400-2483.5	Pk	3 kHz	300 kHz	Test Engineer:	Joseph Brunett
				EUT:	DL EPCR5
Equ	ipment Used	1: RSFSV30001		Meas. Distance:	Conducted

								FCC/IC
		Frequency Ant. PSDcond (r		PSDcond (meas)*	Ant. Gain	PSD-EIRP	PSD Limit	Pass By
Mode	Channel	(MHz)	Used	(dBm/3kHz)	(dBi)	(dBm/3kHz)	(dBm/3kHz)	(dB)
	1	2412.0	Cond.	-45.2	-1.1	-46.31	8.00	54.3
Continuous Tx.	6	2437.0	Cond.	-46.8	1.3	-45.54	8.00	53.5
	11	2462.0	Cond.	-47.0	1.7	-45.29	8.00	53.3

^{*} PSD measured conducted out the the EUT antenna port following FCC DTS AVGPSD-1.

Figure 9: Power Spectral Density Plots.

3.3 Unintentional Emissions

3.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 6. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 6: Transmit Chain Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	18-Jun-14
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Test Engineer:	Joseph Brunett
f > 1~000~MHz	Pk/Avg	1 MHz	3 MHz	EUT:	DL EPCR5
				Mode:	Continous Tx CH 1,6.11
inment Used: HRN15001, HRN0	C001. HRNXN0	01. HRXB001. HRNK	U001, HRNK001, RSFSV30001	Meas. Distance:	3m

													FCC/IC	
	Freq. Start	Freq. Stop	Ant.	Ant.	Pr (Pk)	Pr (Avg)*	Ka	Kg	E3(Pk)	E3(Avg)	E3 Avg Lim	Pass		
#	MHz	MHz	Used	Pol.	dBm	dBm	dB/m	dB	$dB\mu V/m$	$dB\mu V/m$	dBμV/m	dB	Comments	
1	Fundamental Restricted Band Edge (Low Side)													
2	2390.0	2390.0	Horn LS	H/V	-81.0	-90.7	21.3	-0.4	47.7	38.0	54.0	16.0	CH 1, 2412 MHz; max all	
3	2390.0	2390.0	Horn LS	H/V	-81.1	-90.7	21.3	-0.4	47.6	38.0	54.0	16.0	CH6, 2437 MHz; max all	
4	2390.0	2390.0	Horn LS	H/V	-81.0	-90.8	21.3	-0.4	47.7	37.9	54.0	16.1	CH11, 2462 MHz; max all	
5	Fundament	al Restricted	l Band Edge	e (High S	ide)									
6	2483.5	2483.5	Horn LS	H/V	-81.2	-90.6	21.8	-0.4	48.0	38.6	54.0	15.4	CH 1, 2412 MHz; max all	
7	2483.5	2483.5	Horn LS	H/V	-81.1	-90.7	21.8	-0.4	48.1	38.5	54.0	15.5	CH6, 2437 MHz; max all	
8	2483.5	2483.5	Horn LS	H/V	-81.1	-90.6	21.8	-0.4	48.1	38.6	54.0	15.4	CH11, 2462 MHz; max all	
9														
10	Harmonic /	Spurious E	missions											
11	4000.0	6000.0	Horn C	H/V	-87.8	-88.6	24.9	-0.8	44.9	44.1	54.0	9.9	all channels; max all; noise	
12	6000.0	8400.0	Horn XN	H/V	-86.2	-87.3	27.1	-1.2	49.1	48.0	54.0	6.0	all channels; max all; noise	
13	8400.0	12500.0	Horn X	H/V	-96.3	-103.8	32.0	-2.0	44.7	37.2	54.0	16.8	all channels; max all; noise	
14	12500.0	18000.0	Horn Ku	H/V	-93.8	-96.2	35.4	-2.5	51.1	48.7	54.0	5.3	all channels; max all; noise	
15	18000.0	25000.0	Horn K	H/V	-90.8	-101.3	33.4	-1.7	51.3	40.8	54.0	13.2	all channels; max all; noise	
16														

^{*}QPk detection below 1 GHz, Avg detection at or above 1 GHz with receiver bandwidth as specified at top of table.

^{**} Band Edge Avg. meas. via FCC DTS procedures method 13.3 Integration Method

3.3.2 Radiated Receiver Spurious

The results for the measurement of radiated receiver spurious emissions (emissions from the receiver chain, e.g. LO or VCO) at the nominal voltage and temperature are reported in Table 7. Receive chain emissions are measured to 5 times the highest receive chain frequency observed, or 4 GHz, whichever is higher. If no emissions are detected, only those noise floor emissions at the LO/VCO frequency are reported.

Table 7: Receiver Chain Spurious Emissions ≥ 30 MHz.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	18-Jun-14
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Test Engineer:	Joseph Brunett
f > 1~000~MHz	Pk/Avg	1 MHz	3 MHz	EUT Mode:	Receive Only - Standby
Equipment Used: H	RN15001, RSFSV30001			Meas. Distance:	3m

													FCC/IC
	Freq.	Ant.	Ant.	Pr (Pk)	Pr (QPk/Avg)	Ka	Kg	E3(Pk)	E3(Avg)	FCC/IC E3lim	CE E3lim	Pass	
#	MHz	Used	Pol.	dBm	dBm*	dB/m	dB	$dB\mu V/m$	$dB\mu V/m$	$dB\muV/m$	dBµV/m	dB	Comments
1	2372.0	Horn LS	H/V	-81.1	-90.6	21.2	-0.4	47.5	38.0	54.0		16.0	max all, noise
2	2397.0	Horn LS	H/V	-81.7	-89.6	21.3	-0.4	47.0	39.1	54.0		14.9	max all, noise
3	2422.0	Horn LS	H/V	-80.9	-88.6	21.4	-0.4	47.9	40.2	54.0		13.8	max all, noise
4	2452.0	Horn LS	H/V	-80.9	-87.6	21.6	-0.4	48.1	41.4	54.0		12.6	max all, noise
5	2477.0	Horn LS	H/V	-80.3	-86.6	21.7	-0.4	48.8	42.5	54.0		11.5	max all, noise
6	2502.0	Horn LS	H/V	-82.0	-85.6	21.9	-0.4	47.3	43.7	54.0		10.3	max all, noise
7	NOTE: VO	CO/LO is 4	0 MHz	offset from	n Rx Channel. Lov	v, Middle a	and High (Channels te	sted.				
8													
9													

^{*}QPk detection below 1 GHz, Avg detection at or above 1 GHz with receiver bandwidth as specified at top of table.

3.3.3 Radiated Digital Spurious

The results for the measurement of digital spurious emissions (emissions arising from digital circuitry) at the nominal voltage and temperature are provided in Table 8. Radiation from digital components has been measured to 4 GHz, or to five times the maximum digital component operating frequency, whichever is greater.

Table 8: Radiated Digital Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	2-Jun-14
25 MHz f 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Test Engineer:	Joseph Brunett
f > 1~000~MHz	Pk	1 MHz	3 MHz	EUT:	Digital Logger Power Controller
f > 1~000~MHz	Avg	1 MHz	10kHz	EUT Mode:	Active
				Meas, Distance:	3 meters

# M	Test Freq. MHz 59.0	Ante Type		Pr (P	wr Rx.)			Digital Spurious Emissions FCC/IC + CE(CISPA													
# M	MHz		- TC					E-Field	1 @ 3m	FCC/IC	Class B	CE CI	ass B	FCC/IC	Class A	CE Clas	ss A				
1 5	_	**	Test	Pk	QPk/Avg	Ka	Kg	Pk	QPk/Avg	E3lim	Pass	E3lim	Pass	E3lim	Pass	E3lim	Pass				
	59.0	Used	Pol.	dBm	dBm*	dB/m	dB	$dB\mu V/m$	dBμV/m	dBμV/m	dB	dBμV/m	dB	dBµV/m	dB	dBμV/m	dB	Comments			
2		Bic	Н	-58.3		8.2	38.2	18.7	77.0	40.0	21.3	40.5	21.8	49.5	30.8	50.5	31.8				
2 6	65.2	Bic	Н	-56.2	-58.5	7.8	38.0	20.5	18.2	40.0	21.8	40.5	22.3	49.5	31.3	50.5	32.3				
3 8	80.3	Bic	Н	-57.1		7.6	37.7	19.8		40.0	20.2	40.5	20.7	49.5	29.7	50.5	30.7				
4 11	114.4	Bic	Н	-53.4		9.5	37.0	26.1		43.5	17.4	40.5	14.4	54.0	27.9	50.5	24.4				
5 11	117.9	Bic	Н	-44.5	-47.4	9.8	36.9	35.4	32.5	43.5	11.0	40.5	8.0	54.0	21.5	50.5	18.0				
6 11	117.9	Bic	Н	-43.8	-46.3	9.8	36.9	36.1	33.6	43.5	9.9	40.5	6.9	54.0	20.4	50.5	16.9				
7 15	155.8	Bic	Н	-43.8	-55.5	12.9	36.2	39.9	28.2	43.5	15.3	40.5	12.3	54.0	25.8	50.5	22.3				
8 16	162.2	Bic	Н	-47.5		13.3	36.1	36.7		43.5	6.8	40.5	3.8	54.0	17.3	50.5	13.8				
9 20	200.0	Bic	Н	-34.8	-41.4	14.7	35.5	51.4	44.8	43.5	-1.3	40.5	-4.3	54.0	9.2	50.5	5.7				
10 20	200.0	Bic	Н	-31.8	-37.2	14.7	35.5	54.4	49.0	43.5	-5.5	40.5	-8.5	54.0	5.0	50.5	1.5				
11 24	243.0	Bic	Н	-44.4	-57.7	14.6	34.8	42.4	29.1	46.0	16.9	47.5	18.4	56.9	27.8	57.5	28.4				
12 25	254.8	Log	Н	-43.4	-50.3	13.7	34.6	42.7	35.8	46.0	10.2	47.5	11.7	56.9	21.1	57.5	21.7				
	267.1	Log	Н	-50.6		14.0	34.5	36.0		46.0	10.0	47.5	11.5	56.9	20.9	57.5	21.5				
14 28	288.5	Log	Н	-42.2	-55.4	14.5	34.2	45.1	31.9	46.0	14.1	47.5	15.6	56.9	25.0	57.5	25.6				
15 33	336.6	Log	Н	-50.9	-56.9	15.5	33.5	38.1	32.1	46.0	13.9	47.5	15.4	56.9	24.8	57.5	25.4				
	336.6	Log	Н	-56.3		15.5	33.5	32.7		46.0	13.3	47.5	14.8	56.9	24.2	57.5	24.8				
17 40	400.0	Log	Н	-51.2	-55.7	16.6	32.8	39.6	35.1	46.0	10.9	47.5	12.4	56.9	21.8	57.5	22.4				
	509.0	Log	Н	-58.9	-68.7	18.2	31.6	34.7	24.9	46.0	21.1	47.5	22.6	56.9	32.0	57.5	32.6				
	555.0	Log	Н	-63.8		18.7	31.2	30.8		46.0	15.2	47.5	16.7	56.9	26.1	57.5	26.7				
	500.0	Log	Н	-48.2	-52.6	19.3	30.7	47.3	42.9	46.0	3.1	47.5	4.6	56.9	14.0	57.5	14.6				
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					
29																					
30																					
31																					
32																					
33																					
34																					
35																					
36 *OPk detecti																					

^{*}QPk detection below 1 GHz, Avg detection at or above 1 GHz with receiver bandwidth as specified at top of table.

3.3.4 Conducted Transmitter Spurious

One of the EUT samples provided for testing employs one (or more) external antenna terminals. Measurement of conducted spurious emissions out of such ports at the nominal voltage and temperature were measured in accordance with the regulations. Results of these measurements are provided in Figure 10 below.

Figure 10: Conducted Transmitter Emissions Measured.

3.3.5 Conducted Emissions Test Results - AC Power Port(s)

The results of emissions from the EUT's AC mains power port(s) are reported in Table 9.

Table 9(a): AC Mains Power Conducted Emissions Results.

Video Bandwidth Frequency Range Det IF Bandwidth **Test Date:** 4-Jun-14 Joseph Brunett 150kHz f 30 MHz Pk/QPk/Avg 9 kHz 30 kHz**Test Engineer: EUT Mode:** DL ECPR5 (AC LINE A) Equipment Used: LISNEM001, HP8593E001 AC Mains Conducted Meas. Distance:

	AC Mains Power Conducted Emissions													
	Freq.	Line												
	rreq.	Line	Pk	Qpk	Avg	Vlim*	Margin	Vlim*	Margin	Vlim*		Vlim*	Margin	
#	MHz	Side	dBuV	dBuV	dBuV	dBuV	dB	dBuV	dB	dBuV	dB	dBuV	dB	Comments
1	0.160	Lo	63.8	61.6	53.4	79.0	17.4	66.0	12.6	65.5	3.9	55.4	2.0	Comments
2	0.100	Lo	61.0	57.2	45.4	79.0	21.8	66.0	20.6	64.1	6.9	54.0	8.6	
3	0.190	Lo	58.3	53.0	40.4	79.0	26.0	66.0	25.6	62.8	9.8	52.8	12.4	
4	0.220	Lo	53.7	49.9	40.9	79.0	29.1	66.0	25.1	60.5	10.6	50.5	9.6	
5	0.320	Lo	52.3	48.9	39.8	79.0	30.1	66.0	26.2	59.7	10.8	49.7	9.9	
6	0.320	Lo	47.6	42.1	29.7	79.0	36.9	66.0	36.3	57.3	15.2	47.2	17.5	
7	0.430	Lo	46.1	43.0	33.6	73.0	30.0	60.0	26.4	56.0	13.0	46.0	12.4	
8	0.730	Lo	44.5	39.6	30.0	73.0	33.4	60.0	30.0	56.0	16.4	46.0	16.0	
9	0.780	Lo	42.8	36.5	29.9	73.0	36.5	60.0	30.0	56.0	19.5	46.0	16.1	
10	1.110	Lo	43.5	37.5	28.0	73.0	35.5	60.0	32.0	56.0	18.5	46.0	18.0	
11	1.360	Lo	40.5	37.0	27.6	73.0	36.0	60.0	32.4	56.0	19.0	46.0	18.4	
12	1.480	Lo	41.4	39.5	29.2	73.0	33.5	60.0	30.8	56.0	16.5	46.0	16.4	
13	1.840	Lo	41.7	38.2	28.4	73.0	34.8	60.0	31.6	56.0	17.8	46.0	17.6	
14	3.180	Lo	40.5	35.8	28.1	73.0	37.2	60.0	31.9	56.0	20.2	46.0	17.9	
15	4.840	Lo	38.8	34.7	28.0	73.0	38.3	60.0	32.0	56.0	21.3	46.0	18.0	
16	12.50	Lo	34.4	30.7	29.0	73.0	42.3	60.0	31.0	60.0	29.3	50.0	21.0	
17	15.62	Lo	39.5	37.0	35.4	73.0	36.0	60.0	24.6	60.0	23.0	50.0	14.6	
18	18.750	Lo	33.6	31.2	30.1	73.0	41.8	60.0	29.9	60.0	28.8	50.0	19.9	
19	21.870	Lo	32.1	29.5	28.0	73.0	43.5	60.0	32.0	60.0	30.5	50.0	22.0	
20	25.000	Lo	35.1	32.8	31.8	73.0	40.2	60.0	28.2	60.0	27.2	50.0	18.2	
21	23.000	LU	33.1	32.6	31.0	73.0	40.2	00.0	20.2	00.0	21.2	30.0	10.2	
22	0.150	Hi	62.8	60.0	50.8	79.0	19.0	66.0	15.2	66.0	6.0	56.0	5.2	
23	0.170	Hi	60.3	57.6	49.1	79.0	21.4	66.0	16.9	65.0	7.4	54.9	5.8	
24	0.200	Hi	57.4	54.6	44.5	79.0	24.4	66.0	21.5	63.6	9.0	53.6	9.1	
25	0.200	Hi	61.6	48.9	34.7	79.0	30.1	66.0	31.3	61.1	12.2	51.1	16.4	
26	0.350	Hi	51.4	46.0	35.9	79.0	33.0	66.0	30.1	59.0	13.0	48.9	13.0	
27	0.350	Hi	52.2	45.4	35.7	79.0	33.6	66.0	30.3	59.0	13.6	48.9	13.2	
28	0.579	Hi	47.5	43.4	33.7	73.0	30.0	60.0	26.3	56.0	13.0	46.0	12.3	
29	0.690	Hi	50.8	41.2	30.3	73.0	31.8	60.0	29.7	56.0	14.8	46.0	15.7	
30	0.740	Hi	49.6	32.0	21.4	73.0	41.0	60.0	38.6	56.0	24.0	46.0	24.6	
31	0.830	Hi	40.2	34.4	25.0	73.0	38.6	60.0	35.0	56.0	21.6	46.0	21.0	
32	1.150	Hi	45.4	34.4	25.0	73.0	38.6	60.0	35.0	56.0	21.6	46.0	21.0	
33	1.17	Hi	40.4	34.5	24.9	73.0	38.5	60.0	35.1	56.0	21.5	46.0	21.1	
34	1.64	Hi	38.0	36.1	25.1	73.0	36.9	60.0	34.9	56.0	19.9	46.0	20.9	
35	1.65	Hi	38.3	34.3	25.1	73.0	38.7	60.0	34.9	56.0	21.7	46.0	20.9	
36	1.80	Hi	49.7	36.2	22.9	73.0	36.8	60.0	37.1	56.0	19.8	46.0	23.1	
37	1.97	Hi	42.5	32.2	21.0	73.0	40.8	60.0	39.0	56.0	23.8	46.0	25.0	
38	3.12	Hi	48.8	36.2	24.0	73.0	36.8	60.0	36.0	56.0	19.8	46.0	22.0	
39	4.64	Hi	35.1	29.0	21.0	73.0	44.0	60.0	39.0	56.0	27.0	46.0	25.0	
40	6.77	Hi	36.4	34.0	32.6	73.0	39.0	60.0	27.4	60.0	26.0	50.0	17.4	
41	10.15	Hi	33.0	27.3	23.9	73.0	45.7	60.0	36.1	60.0	32.7	50.0	26.1	
42	16.93	Hi	33.1	29.9	28.1	73.0	43.1	60.0	31.9	60.0	30.1	50.0	21.9	
40	29.49	Hi	29.5	26.5	24.5	73.0	46.5	60.0	35.5	60.0	33.5	50.0	25.5	
+0	47.47	111	20.5	20.5	24.5	15.0	40.5	00.0	33.3	00.0	33.3	30.0	25.5	I

^{*}In all cases, VPk VQpk VAve. If VPk < Vavg limit, then VQPk limit and Vavg limit are met.

Table 9(b): AC Mains Power Conducted Emissions Results.

Frequency Range Det IF Bandwidth Video Bandwidth **Test Date:** 4-Jun-14 150kHz f 30 MHz Pk/QPk/Avg 30 kHz**Test Engineer:** Joseph Brunett 9 kHz **EUT Mode:** DL ECPR5 (AC LINE B) Equipment Used: LISNEM001, HP8593E001 Meas. Distance: AC Mains Conducted

	AC Mains Power Conducted Emissions													
	Freq.	Line		Vmeas			A Qpk		A Avg		B Qpk	Class	B Avg	
	rrcq.	Line	Pk	Qpk	Avg	Vlim*	Margin	Vlim*	Margin	Vlim*		Vlim*	Margin	
#	MHz	Side	dBuV	dBuV	dBuV	dBuV	dB	dBuV	dB	dBuV	dB	dBuV	dB	Comments
1	0.160	Lo	66.2	63.2	54.5	79.0	15.8	66.0	11.5	65.5	2.3	55.4	0.9	Comments
2	0.230	Lo	59.7	55.4	46.0	79.0	23.6	66.0	20.0	62.5	7.1	52.4	6.4	
3	0.290	Lo	56.9	51.9	41.0	79.0	27.1	66.0	25.0	60.5	8.6	50.5	9.5	
4	0.300	Lo	56.3	50.8	37.8	79.0	28.2	66.0	28.2	60.3	9.5	50.2	12.4	
5	0.330	Lo	54.5	49.4	38.4	79.0	29.6	66.0	27.6	59.5	10.1	49.4	11.0	
6	0.410	Lo	50.5	44.9	31.0	79.0	34.1	66.0	35.0	57.7	12.8	47.6	16.6	
7	0.590	Lo	44.9	42.3	32.8	73.0	30.7	60.0	27.2	56.0	13.7	46.0	13.2	
8	0.700	Lo	44.1	38.3	28.6	73.0	34.7	60.0	31.4	56.0	17.7	46.0	17.4	
9	1.040	Lo	42.6	38.8	29.3	73.0	34.2	60.0	30.7	56.0	17.2	46.0	16.7	
10	1.440	Lo	42.6	39.4	30.2	73.0	33.6	60.0	29.8	56.0	16.6	46.0	15.8	
11	1.830	Lo	43.4	39.9	30.9	73.0	33.1	60.0	29.1	56.0	16.1	46.0	15.1	
12	3.120	Lo	48.1	45.1	43.1	73.0	27.9	60.0	16.9	56.0	10.9	46.0	2.9	
13	6.250	Lo	41.8	40.3	39.9	73.0	32.7	60.0	20.1	60.0	19.7	50.0	10.1	
14	6.250	Lo	41.9	40.4	39.9	73.0	32.6	60.0	20.1	60.0	19.6	50.0	10.1	
15	18.750	Lo	37.3	33.6	32.6	73.0	39.4	60.0	27.4	60.0	26.4	50.0	17.4	
16	18.75	Lo	36.3	33.6	32.6	73.0	39.4	60.0	27.4	60.0	26.4	50.0	17.4	
17	20.34	Lo	49.4	48.2	38.5	73.0	24.8	60.0	21.5	60.0	11.8	50.0	11.5	
18	25.000	Lo	39.4	37.1	36.4	73.0	35.9	60.0	23.6	60.0	22.9	50.0	13.6	
19	28.120	Lo	32.8	30.3	29.1	73.0	42.7	60.0	30.9	60.0	29.7	50.0	20.9	
20	29.490	Lo	33.9	32.1	31.6	73.0	40.9	60.0	28.4	60.0	27.9	50.0	18.4	
21														
22	0.160	Hi	68.3	64.7	54.7	79.0	14.3	66.0	11.3	65.5	0.8	55.4	0.7	
23	0.250	Hi	60.8	55.1	42.7	79.0	23.9	66.0	23.3	61.8	6.7	51.7	9.0	
24	0.330	Hi	56.3	52.5	42.5	79.0	26.5	66.0	23.5	59.5	7.0	49.4	6.9	
25	0.350	Hi	54.9	49.9	38.4	79.0	29.1	66.0	27.6	59.0	9.1	48.9	10.5	
26	0.380	Hi	53.6	48.1	35.1	79.0	30.9	66.0	30.9	58.3	10.2	48.2	13.1	
27	0.430	Hi	50.3	45.0	32.8	79.0	34.0	66.0	33.2	57.3	12.3	47.2	14.4	
28	0.590	Hi	48.7	44.4	34.8	73.0	28.6	60.0	25.2	56.0	11.6	46.0	11.2	
29	0.630	Hi	47.3	42.5	32.5	73.0	30.5	60.0	27.5	56.0	13.5	46.0	13.5	
30	1.460	Hi	46.1	41.7	32.1	73.0	31.3	60.0	27.9	56.0	14.3	46.0	13.9	
31	1.830	Hi	45.6	41.8	32.4	73.0	31.2	60.0	27.6	56.0	14.2	46.0	13.6	
32	3.120	Hi	49.8	47.4	45.8	73.0	25.6	60.0	14.2	56.0	8.6	46.0	0.2	
33	6.25	Hi	43.9	39.2	36.7	73.0	33.8	60.0	23.3	60.0	20.8	50.0	13.3	
34	9.37	Hi	44.4	40.3	38.1	73.0	32.7	60.0	21.9	60.0	19.7	50.0	11.9	
35	15.62	Hi	39.5	36.9	35.8	73.0	36.1	60.0	24.2	60.0	23.1	50.0	14.2	
36	18.75	Hi	44.6	41.7	40.1	73.0	31.3	60.0	19.9	60.0	18.3	50.0	9.9	
37	20.30	Hi	54.9	53.9	46.1	73.0	19.1	60.0	13.9	60.0	6.1	50.0	3.9	
38	20.33	Hi	56.4	55.4	45.8	73.0	17.6	60.0	14.2	60.0	4.6 23.4	50.0	4.2	
39	21.87	Hi	39.2	36.6	35.8	73.0	36.4	60.0	24.2	60.0		50.0	14.2	
40	25.00	Hi	43.9	41.6	40.7	73.0	31.4	60.0	19.3	60.0	18.4	50.0	9.3	
41	28.13	Hi	39.6	35.1	33.0	73.0	37.9	60.0	27.0	60.0	24.9	50.0	17.0	
42	29.49	Hi	43.7	42.7	42.6	73.0	30.3	60.0	17.4	60.0	17.3	50.0	7.4	
43	29.49	Hi	29.5	26.5	24.5	73.0	46.5	60.0	35.5	60.0	33.5	50.0	25.5	

^{43 | 29.49 |} Hi | 29.5 | 26.5 | 24.5 | 73.0 | 46.5 | 60.0 | 35.5 | 60.0 | 33.5 | 50.0 *In all cases, VPk | VQpk | VAve. If VPk < Vavg limit, then VQPk limit and Vavg limit are met.