ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

ВШ программной инженерии

КУРСОВАЯ РАБОТА

«Методы имитационного моделирования» по дисциплине «Архитектура программных систем»

Студент 3530202/90202

Потапова А. М.

Преподаватель

Дробинцев Д. Ф.

Санкт-Петербург 2021 г.

Minaval

Оглавление

Постановка задачи
Формализованная схема и описание СМО5
Пример временной диаграммы функционирования системы 8
Пример технической системы (ВС или части ВС), удовлетворяющей
формализованному описанию
Ограничения и требуемые характеристики
Документация на ПО11
Модульная структура
Форма для ввода параметров13
Отображение результатов происходит в автоматическом режиме: . 14
Отображение результатов происходит в пошаговом режиме:
Результаты работы имитационной модели
Анализ результатов, выводы и рекомендации по выбору конфигурации
системы
Вывол

Постановка задачи

Целью курсовой работы является создание модели вычислительной системы (BC) или ее части на некотором уровне детализации, описывающей и имитирующей ее структуру и функциональность.

Каждый реальный объект (реальная BC) обладает бесконечной сложностью, множеством характеристик, внутренних и внешних связей. Модель есть приближенное описание объекта с целью получения требуемых результатов с определенной точностью и достоверностью.

При необходимости исследования поведенческих характеристик ВС в процессе исследования выгодно использовать не сам объект, а его модель. Степень приближения модели к описываемому объекту может быть различной и зависит от требований задачи.

Существуют различные типы моделей:

- Аналитические (математические) модели
- Аналоговые модели
- Физические модели
- Имитационные модели

Последний тип моделей является предметом нашего изучения. Одним из подходов к построению имитационной модели является построение ее в виде системы массового обслуживания (СМО), с характерной для СМО терминологией: источник, буфер, прибор, диспетчер, заявка (требование).

Существуют два подхода к построению моделирующего алгоритма:

Принцип **Δ**t

Универсальный метод построения моделирующего алгоритма, когда состояние объекта проверяется через фиксированный интервал модельного времени. Суть его заключается в следующем: в каждый момент времени $t_i = t_{i-1} + Dt_{i-1}$ получают приближенные значения характеристик исследуемого объекта. Δt можно получить детерминированным способом.

Основной критерий выбора Δt — он должен быть настолько мал, чтобы не пропустить событие в моделируемой системе, которое должно быть учтено при выбранной детальности моделирования. Метод неэффективен, т.к. постоянно проверяет состояние объектов моделирования, не изменяющихся при этом, особенно при малых Δt .

Принцип особых состояний

При исследовании реальной системы интервалы, в которых состояние ее не меняется, не представляют интереса. Имеют значение только переходы системы из одного состояния в другое в некоторые моменты времени. Эти переходы определяются особыми состояниями или событиями.

Рассмотрим некоторые типы особых событий, которые изменяют состояние системы:

- Поступление заявки в СМО (момент генерации заявки источником).
- Освобождение прибора (готовность прибора взять заявку на обслуживание).
- Окончание процесса моделирования.

Использование принципа особых событий для построения имитационной модели наиболее эффективно. В настоящей курсовой работе предлагается использовать именно этом принцип.

Формализованная схема и описание СМО

Здесь **Иі (i= 1..n)** – источник заявок, который генерирует заявки, а все вместе п источников создают входной поток заявок в систему.

Каждая заявка приходит в СМО со своими характеристиками. Это $T_{\text{вх}}$ — время генерации заявки (время поступления её в СМО) и номер заявки, составленный из номера источника, сгенерировавшего заявку, и порядкового номера заявки от этого источника. Например, (2.3) — третья заявка от второго источника.

П — приборы, которые обслуживают заявки и создают выходной поток заявок после обслуживания.

БП — буферная память (место для хранения очереди заявок).

В общей памяти хранятся заявки от различных источников. Порядок их записи в БП определяется только дисциплиной буферизации.

ДП — диспетчер постановки заявок.

ДВ — диспетчер выбора заявок.

Вариант 14

14.	ИБ ИЗ1	П32	Д1033	Д1003	Д2П2	Д2Б5	OP1	ОД2
-----	--------	-----	-------	-------	------	------	-----	-----

Источники:

ИБ – бесконечный источник;

ИЗ1 – пуассоновский закон распределения заявок;

$$\tau = -1/\lambda \cdot \operatorname{Ln}(r)$$
,

Приборы:

П32 – равномерный закон распределения времени обслуживания;

$$F(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x \le b \Rightarrow x = F(x)(b - a) + a \\ 1, x \ge b \end{cases}$$

Описание дисциплин постановки и выбора:

Дисциплина буферизации:

Д1033 – постановка заявки на свободное место;

Заявка встанет в очередь на первое от начала свободное место, если такое найдется. Сдвига очереди в этом случае не происходит.

Дисциплина отказа:

Эта дисциплина рассматривает только время прихода заявок в систему (момент генерации заявок источником). Заявка, раньше других вставшая в буфер, получает отказ, уходит из системы и на её место встает пришедшая заявка.

Дисциплина постановки на обслуживание:

Д2П2 – выбор прибора по кольцу;

Эта дисциплина производит выбор свободного прибора таким же способом, как и аналогичная дисциплины выбора заявок из буфера по кольцу, т. е. поиск свободных приборов каждый раз начинается с указателя, и заявка встает на обслуживание на первый из найденных приборов.

Д2Б5 – приоритет по номеру источника, заявки в пакете;

Происходит динамическая смена приоритетов обслуживания заявок, причем приоритетность пакетов можно регулировать, изменяя интенсивность генерации заявок источниками.

Виды отображения результатов работы программной модели:

Динамическое отражение результатов:

ОД2 – формализованная схема модели, текущее состояние;

Отражение результатов после сбора статистики: *OP1* – сводная таблица результатов.

Пример временной диаграммы функционирования системы

Пример технической системы (ВС или части ВС), удовлетворяющей формализованному описанию

Техническая система	Авиационная погодная станция
Система	Источниками являются датчики,
	которые собирает информацию о
	температуре, скорости и
	направлении ветра и количестве
	осадков для последующей передачи
	данных диспетчерам.
Приборы	Приборы (физические ядра
	процессора) обрабатывают
	информацию с датчиков,
	вычисляют значения. Полученные
	данные передаются на устройство
	отображения.
Буфер	Буфером является память
	устройства. Стандартный размер от
	64кб и до 2мб. Размер буфера
	зависит от количества
	установленных модулей памяти.
Дисциплина постановки в буфер	Заявка встанет в очередь на первое
	от начала свободное место, если
	такое найдется. Сдвига очереди в
	этом случае не происходит.
Дисциплина выбора из буфера	Из буфера выбирается заявка с
	последняя пришедшая заявка
Дисциплина отказа	Если буфер переполнен, то
	поступившая заявка становится
	вместо заявки, простоявшей
	больше всего в буфере.
Дисциплина постановки на	Поиск свободного прибора
обслуживание	введётся по кольцу.

Ограничения и требуемые характеристики

Вероятность отказа должна составлять не более 10 %.

Загрузка приборов более 90 %.

Время пребывания заявки в системе ограниченно 350 мс

Количество датчиков	4
Размер заявки	64 Кб
Размер буфера	От 640 кб до 2 Мб
Количество приборов	От 1 до 7
Скорость работы датчиков	Простейший поток с λ=0,1 мс
Скорость работы приборов	Экспоненциальная

Помимо микроконтроллеров нам потребуются дополнительные компоненты системы.

Стоимость компонентов системы

Наименование	Характеристики	Цена (руб.)
Intel Core i5	8 ядер	12000
AMD FX-4300 OEM	4 ядра	2500
Intel Celeron G5905	2 ядра	3300
OEM		
Доп. оперативная	128 кб	250
память		

Документация на ПО

Обобщенная блок-схема

Блок БАС1 должен обеспечить выполнение действий, являющихся следствием события «пришла заявка от первого источника», а именно:

- 1. Записать заявку в буфер, если в нем есть место;
- 2. Положить новую заявку в буфер и отказать заявке, больше всего пролежавшей в буфере;
- 3. Сформировать следующую заявку первого источника.

При этом действия 1 и 2 взаимно исключают друг друга, а действие 3 должно иметь место всегда.

Блоки БМС обеспечивают модификацию состояний элементов СМО и моделирование событий, являющихся следствием событий в активных элементах системы – источниках заявок и приборе.

Каждый блок БМС может представлять цепочку действий, состоящих из некоторых типовых, а именно:

- 1. Запись заявки в буфер;
- 2. Выборка заявки из буфера на обслуживание;
- 3. Обслуживание заявки;
- 4. Генерирование следующей заявки от источника с заданным номером;
- 5. Фиксация обслуженных заявок, времени ожидания заявок в буфере, числа заявок, получивших отказ и общего числа заявок по каждому из источников;
- 6. Имитация освобождения прибора.

Модульная структура

Разработка проводилась в среде Visual Studio 2022 на языке С# с использованием модульной платформы «.NET core 3.1». Приложение использует объектно-ориентированную парадигму программирования и содержит набор классов:

- Class Request класс заявки
- Class Source класс источника
- Class Device класс прибора
- Class Buffer класс буфера

Программа содержит основную точку входа в файле Program.cs. В начальном окне программы задаются параметры системы, а именно: количество приборов, количество источников, количество заявок, размер буфера и интенсивность источников. Программа состоит из трех окон:

- окна ввода параметров,
- окна для пошагового режима,
- окна для вывода результатов в автоматическом режиме.

Форма для ввода параметров

Как было упомянуто выше, для ввода входных параметров и выбора режима было создано специальное окно.

л-во приборов
л-во заявок
0
жим
шаговый Автоматический

Отображение результатов происходит в автоматическом режиме:

В автоматическом режиме в левое окно выводятся входные параметры системы и результаты её работы. В правое окно результаты предыдущего теста системы.

Параметр Количество исто Размер буфера: Количество приб Количество отка Количество отка Количество отка Т пребывания Время работы пр Загруженность п	ра: 6 риборов: 6 70 42 вявок 154 отказа 0,28 я 0,09676858976289823 н прибора сре 0,06548324	3 9676858976289823 6948324	араметр Значение 3начение 6 6 82мер буфера 6 3мичество приборов 6 3мичество поязов 4 3мичество завок 39 дроятность отказа 0,11764705882352941 пребывания 0,07001554660308056
Размер буфера: Количество приб Количество отка Количество заяв Вероятность отк Т пребывания Время работы п	ра: 6 риборов: 6 токазов 42 аявок 154 отказа 0,28 я 0,09676858976289823	3 9676858976289823 6948324	казмер буфера 6 личество приборов 6 личество отказов 4 личество заввок 39 ровичество токаза 0,11764705882352941 пребывания 0,07001554660308056
Количество приб Количество отка Количество заяв Вероятность отк Т пребывания Время работы п	риборов: 6 тказов 42 аявок 154 отказа 0,28 м 0,09676858976289823 ы прибора сре 0,06948324	3 9676858976289823 6948324	оличество приборов 6 оличество отказов 4 оличество заявок 39 рероятность отказа 0,11764705882352941 пребывания 0,07001554660308056
Количество отка Количество заяв Вероятность отк Т пребывания Время работы п	отказов 42 аявок 154 отказа 0,28 я 0,09676858976289823 ы прибора сре 0,06948324	3 9676858976289823 6948324	оличество отказов 4 личество заявок 39 рероятность отказа 0,11764705882352941 пребывания 0,07001554660308056
Количество заяв Вероятность отк Т пребывания Время работы п	аявок 154 отказа 0,28 я 0,09676858976289823 ы прибора сре 0,06948324	3 9676858976289823 6948324	оличество заявок 39 ероятность отказа 0,11764705882352941 пребывания 0,07001554660308056
Вероятность отк Т пребывания Время работы п	отказа 0,28 я 0,09676858976289823 ы прибора сре 0,06948324	3 9676858976289823 6948324	ероятность отказа 0,11764705882352941 пребывания 0,07001554660308056
Т пребывания Время работы п	я 0,09676858976289823 ы прибора сре 0,06948324	9676858976289823 5948324	пребывания 0,07001554660308056
Время работы п	ы прибора сре 0,06948324		
		72697041645102	ремя работы прибора сре 0,049532082
			агруженность приборов 0,665917398610298
Дисперсия обслу		047562425683709865	исперсия обслуживания 0,0047562425683709865
Новое Lambda з		247284	овое Lambda значение 81,085464
Р загруженность	ость 0,0016233766	116222766	загруженность 0,007692308
	•	710237700	
		310233700	
		710233700	
		710233700	
начение 90,247284			Ho
начение 90,	,247284	247284	Ho

Отображение результатов происходит в пошаговом режиме:

В пошаговом режиме можем наблюдать текущее состояние буфера, приборов, все поступившее заявки и текущее состояние системы, а также время системы и номер шага.

Результаты работы имитационной модели

Количество реализаций, необходимое для получения нужной точности при заданной доверительной вероятности, можно оценивать по формуле:

$$N=\frac{t^{2(1-p)}}{p\delta^2}$$

где р — вероятность отказа заявкам в обслуживании, t_{α} = 1.643 для α = 0.9, δ = 0.1 — относительная точность.

Параметр	Значение		Параметр	Значение
Количество источников:	4	>	Количество источников	4
Размер буфера:	8		Размер буфера	8
Количество приборов:	7		Количество приборов	7
Количество отказов	69		Количество отказов	74
Количество заявок	1243		Количество заявок	1203
Вероятность отказа	0,055645161290322584		Вероятность отказа	0,0616666666666667
Т пребывания	0,14376639552588244		Т пребывания	0,14979417504416043
Время работы прибора сре	0,066416994		Время работы прибора сре	0,06979979
Загруженность приборов	0,7089586199243914		Загруженность приборов	0,7467476287736684
Дисперсия обслуживания	0,0047562425683709865		Дисперсия обслуживания	0,0047562425683709865
Новое Lambda значение	78,95766		Новое Lambda значение	79,456566
Р загруженность	0,00016090105		Р загруженность	0,00016625105
		•		

По полученным результатам можно сделать вывод, что N лежит в диапазоне от 1200 до 1250, поскольку именно в этом диапазоне разница между P-загруженностью составляет менее 10%.

Анализ результатов, выводы и рекомендации по выбору конфигурации системы

Т. к. целью моделирования является выбор конфигурации системы, требующей наименьшее количество ресурсов и обрабатывающей максимальный поток информации, то начнем с проверки конфигурации с макс. числом источников и минимальным числом приборов и мин. размером буфера.

Число	Число	Размер	P	Т	Загруженность
источников	приборов	буфера	отказа	пребывания	
4	5	8	0.1915	0.1636	0.8028
4	6	8	0.0672	0.1626	0.6832
4	7	8	0.0247	0.1496	0.6342

Из таблицы видно, что в последнем случае мы получили необходимую вероятность отказов, но загруженность приборов, в свою очередь, упала. Попробуем уменьшим размер буфера до 7. Получаем следующие результаты:

Число	Число	Размер	P	Т	Загруженность
источников	приборов	буфера	отказа	пребывания	
4	7	7	0.086	0.1335	0.7482

Параметр	Значение
Количество источников:	4
Размер буфера:	7
Количество приборов:	7
Количество отказов	111
Количество заявок	1293
Вероятность отказа	0,08604651162790698
Т пребывания	0,13346888755332198
Время работы прибора сре	0,06902714
Загруженность приборов	0,7482342603432707
Дисперсия обслуживания	0,0047562425683709865
Новое Lambda значение	82,652916
Р загруженность	0,00014849188

Вывод

Была построена СМО с необходимыми дисциплинами, выбрана система и под неё подобраны оптимальные параметры. Результаты: вероятность отказа 9%; загруженность приборов 74%.

Данные результаты удовлетворяют всем условиям. Стоит отметить, что полученные результаты обеспечивают уменьшение загрузки процессора, что положительно сказывается на производительности. Стоимость такой системы составит ~12.500 рублей.