Advanced Statistics

F22 Data Science (Morning)

Quiz 04

Name & id: Marks: / 50

Note: Formulas are given on last page.

Q#1 /20

(a)An educator wants to determine how study hours impact exam scores among high school students. The exam scores for students who studied for different hours are as follows:

Study Hours	Observation 1	Observation 2	Observation 3	Observation 4	Observation 5	Observation 6
0-2 hours	55	60	58	57	59	61
3-5 hours	70	72	68	74	71	69
6-8 hours	85	80	82	78	81	83
9+ hours	90	92	91	89	88	90

Conduct a One-Way ANOVA to determine if there is a significant difference in exam scores based on study hours at a significance level of 0.05.

(b) Write a python code for part a.

Q#2 Two cards are drawn at random from a standard deck of 52 playing cards. Let:

- X represent the number of hearts drawn,
- Y represent the number of diamonds drawn.
- (a) Calculate the expected value of g(X,Y)=XY
- (b) Find the covariance of X and Y

/10

F(X,Y)		X					Row Totals
		0	1	2			
Υ	0	325/132	6 338/1	326	78/1326		741/1326
Υ	1	338/132	6 338/13	326	0		507/1326
Υ	2	78/1326	0		0		78/1328
Column total		741/132	6 507/13	326	78/1326		1

Q#3 Imagine you are a scientist studying the growth of a rare plant species, *Flora Magnifica*, in a botanical garden. You decide to record the number of hours of sunlight the plants receive each week and their corresponding heights in centimeters after one month. The data you collected is as follows:

Hours of Sunlight (X)	Height of Plant (Y)
2	10
4	18
6	24
8	30
10	36

- 1. Calculate the linear correlation coefficient "r" for the data above.
- 2. Based on your calculation, what can you conclude about the relationship between the hours of sunlight and the height of *Flora Magnifica*? /10

Q#4 A fitness coach tracks the number of hours clients spend exercising each week and their weight loss in pounds. Given the following data:

Hours Exercised (X)	Weight Loss (Y)
0	0
2	3
4	6
6	8
8	12

Calculate the regression equation. What does the intercept tell you about the clients' weight loss?

$$SST = \sum_{i=1}^{K} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i..})^2$$

SSA =
$$n \sum_{i=1}^{k} (\overline{y}_{i.} - \overline{y}_{i..})^2$$

SSE =
$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^2$$

$$S_1^2 = \frac{\text{SSA}}{\text{k-1}}$$

$$S^2 = \frac{\text{SSE}}{\text{k(n-1)}}$$

$$f_{cal} = \frac{s_1^2}{s_2^2}$$

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$

$$\mu_{g}(X,Y) = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)f(x,y)$$

$$\hat{y} = b_0 + b_1 x$$

$$\mathbf{b_1} = \frac{\mathsf{n}(\sum xy) - (\sum x)(\sum y)}{\mathsf{n}(\sum x^2) - (\sum x)^2}$$

$$\mathbf{b_0} = \bar{y} - \mathbf{b_1} \bar{x}$$

or

$$\mathbf{b}_0 = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{\mathsf{n}(\sum x^2) - (\sum x)^2}$$

$$\mathbf{r} = \frac{\mathsf{n}(\sum xy) - (\sum x)(\sum y)}{\sqrt{\mathsf{n}(\sum x^2) - (\sum x)^2} \sqrt{\mathsf{n}(\sum y^2) - (\sum y)^2}}$$

Table A.6 Critical Values of the F-Distribution

Tai	ле А. о Од	ideat value	s of the r-	DJS@JDUGO,	11	0	t _e		
				j	$f_{0.05}(v_1,v_2)$	2)			
					v_1				
v_2	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Dr. Faisal Bukhari, PUCIT, PU, Lahore

Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.05}(v_1,v_2)$									
					ı	1				
v_2	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
8	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
$_{\infty}$	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00