

Global Modeling and Assimilation Office

GMAO Office Note No. 17 (Version 1.2)

File Specification for GEOS-CF Products

Release Date: 03/05/2022

Global Modeling and Assimilation Office Earth Sciences Division NASA Goddard Space Flight Center Greenbelt, Maryland 20771

This page intentionally left blank.

File Specification for GEOS-CF Products

Document maintained by K. Emma Knowland (GMAO, MSU)
This document should be cited as
Knowland, K.E., C.A. Keller, and R. Lucchesi, 2022: File Specification for GEOS-CF Products. GMAO Office Note No. 17 (Version 1.2), 53 pp, available from https://gmao.gsfc.nasa.gov/pubs/office_notes.php
Approved by:
Steven Pawson Date
Chief, Global Modeling and Assimilation Office
Code 610.1, NASA GSFC

REVISION HISTORY

Version Number	Revision Date	Extent of Changes
1.0	09/03/2019	Baseline
1.1	03/13/2020	Added aqc_tavg_1hr_g1440x721_x1 collection
1.2	02/03/2022	Added chm_tavg_1hr_g1440x721_v36, met_tavg_1hr_g1440x721_v36, xgc_tavg_1hr_g1440x721_v36, mls_inst_1hr_g1440x721_p39, chm_inst_3hr_g1440x721_h35, met_inst_1hr_g1440x721_v72, chm_inst_1hr_g1440x721_v72, and sat_inst_1hr_r721x361_v72 collections

Table of Contents

1.	Introduction	7
	1.1 Gas-phase chemistry	7
	1.2 Aerosol chemistry	7
	1.3 Emissions	8
	1.4 GEOS-CF Configuration	8
	1.5 Spatial and temporal resolution	8
	1.6 File location	9
2.	Format and File Organization	10
	2.1 Dimensions	10
	2.2 Variables	10
	2.3 Global Attributes	11
3.	Instantaneous vs Time-averaged Products	14
4.	Grid Structure	15
	4.1 Horizontal Structure	15
	4.2 Vertical Structure	15
5.	File Naming Conventions	18
	5.1 File Names	18
	5.2 Earth Science Data Types (ESDT) Name	20
6.	GEOS-CF data collections	23
	Instantaneous Two-Dimensional Collections	23
	htf_inst_15mn_g1440x721_x1: High Temporal Frequency Chemistry and Meteorology	
	Diagnostics	
	Time-Averaged Two-Dimensional Collections	
	aqc_tavg_1hr_g1440x721_v1: Air Quality Concentrations Diagnostics	
	chm_tavg_1hr_g1440x721_v1: Single-level Chemistry Diagnostics	
	met_tavg_1hr_g1440x721_x1: Single-level Meteorological Diagnostics	
	xgc_tavg_1hr_g1440x721_x1: Single-level Extra GEOS-Chem Chemistry Diagnostics Instantaneous Three-Dimensional Collections	
	chm inst 1hr g1440x721 p23: Chemistry Diagnostics on Tropospheric and Lower Stratosph	
	Pressure Levels	
	met_inst_1hr_g1440x721_p23: Meteorology Diagnostics on Tropospheric and Lower	
	Stratospheric Pressure Levels	
	chm_inst_3hr_g1440x721_h35: Chemistry and Meteorology Diagnostics on Theta Levels	
	chm_inst_1hr_g1440x721_v72: Chemistry Diagnostics on Model Layers	38

Web Resources	54
References	50
xgc_tavg_1hr_g1440x721_v36: Extra GEOS-Chem Chemistry Fields on Tropospheric and Lower Stratospheric Model Layers	47
met_tavg_1hr_g1440x721_v36: Meteorological Fields on Tropospheric and Lower Stratospher Model Layers	
chm_tavg_1hr_g1440x721_v36: Chemistry Fields on Tropospheric and Lower Stratospheric Model Layers	42
Time-Averaged Three-Dimensional Collections	42
sat_inst_1hr_r721x361_v72: Regional Chemistry and Meteorology Diagnostics to support TEMPO satellite	40
mls_inst_1hr_g1440x721_p39: Meteorology and Chemistry Fields on MLS Pressure Levels	39
met_inst_1hr_g1440x721_v72: Meteorology Diagnostics on Model Layers	39

1. Introduction

The NASA Global Earth Observing System (GEOS) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (about 25 km). This GEOS Composition Forecast (GEOS-CF) system combines the GEOS weather analysis and forecasting system with the state-of-the-science GEOS-Chem chemistry module (Bey et al., 2001; Keller et al., 2014; Long et al., 2015) to provide detailed chemical analysis of a wide range of air pollutants including ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Full model description and evaluation of the GEOS-CF tropospheric simulation and forecast skill is given in Keller et al. (2021). For evaluation of GEOS-CF stratospheric composition see Knowland et al. (2021).

1.1 Gas-phase chemistry

The main chemistry scheme in the GEOS-CF system is GEOS-Chem version 12.0.1 (http://geoschem.org). The model chemistry scheme includes detailed HO_x-NO_x-BrO_x-VOC-O₃ chemistry as originally described by Bey et al. (2001), with addition of halogen chemistry by Parrella et al. (2012) and Sherwen et al. (2016) plus updates to isoprene oxidation as described by Mao et al. (2013) and Marais et al. (2016). GEOS-Chem includes detailed stratospheric chemistry fully coupled with tropospheric chemistry through the Unified tropospheric-stratospheric Chemistry eXtension (UCX) as described in Eastham et al. (2014).

Photolysis rates are computed online by GEOS-Chem using the Fast-JX code (Bian and Prather, 2002) as implemented in GEOS-Chem by Mao et al. (2010) and Eastham et al. (2014). The gas-phase mechanism comprises of 250 chemical species and 725 reactions and is solved using the Kinetic Pre-Processor KPP Rosenbrock solver (Sandu and Sander, 2006).

1.2 Aerosol chemistry

GEOS-CF carries two independent aerosol schemes that are run in parallel:

Scheme 1 is the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART; Chin et al., 2002; Colarco et al., 2010) bulk aerosol module which is radiatively coupled with GEOS and therefore simulates the direct and semidirect effects of aerosols (Randles et al., 2017) on the atmosphere.

Scheme 2 is the GEOS-Chem aerosol mechanism, which simulates mass concentrations of all major aerosol components – dust, black carbon (BC), organic carbon, sea salt, sulfate, nitrate, and ammonium – and provides updates to secondary organic aerosol (SOA) chemistry (Marais et al., 2016). Sulfate-nitrate-ammonium thermodynamics are computed with the ISORROPIA II thermodynamic module (Fountoukis and Nenes, 2007), as implemented in GEOS-Chem by Pye et al. (2009). Cloudwater pH for in-cloud sulfate formation is as given by Alexander et al. (2012). HOBr has been added by Chen et al. (2017) as a S(IV) oxidant. In-cloud SO₂ oxidation by transition metals is as described by Alexander et al. (2009). The BC simulation is described in Wang et al. (2014). The computation of SOA follows the simplified Volatility Basis Set (VBS) scheme of Pye et al. (2010) and the aqueous-phase isoprene SOA scheme of Marais et al. (2016) coupled to the isoprene gas-phase chemistry mechanism. The dust simulation is described by Fairlie et al. (2007), with dust size distributions from Zhang et al. (2013). The sea salt aerosol simulation in GEOS-Chem is described by Jaeglé et al. (2011).

1.3 Emissions

All model emissions related to GEOS-Chem are handled through the NASA-Harvard emissions component, HEMCO (Keller et al., 2014). Anthropogenic emissions are monthly averages from HTAP v2.2 (Janssens-Maenhout et al., 2015) and RETRO (Schultz et al., 2008), broken down into hourly values using sector-specific day-of-week and diurnal scale factors (van der Gon et al., 2011). Annual gridded scale factors based on satellite data are applied to the emissions of CO (Oda et al., 2017) and SO₂ (Liu et al., 2018). The near-real time satellite-based emissions from the Quick Fire Emission Database (QFED v2.5; Darmenov and da Silva, 2015) are used for biomass burning sources, with 35% of the fire emissions emitted above the boundary layer, evenly between 3.5 and 5.5 km altitude (Fischer et al., 2014). Volcanic emissions of SO₂ are from Carn (2019), with 5% of the sulfate emitted as SO₄. There are several natural emission sources included in the model that dynamically respond to the meteorological environment: lightning NO_x emissions are described in Murray et al. (2012); soil sources for NO_x follow Hudman et al. (2012); biogenic emissions computed online using MEGAN v2.1 (Guenther et al., 2012); sea salt aerosols (Gong, 2003; Jaeglé et al., 2011); oceanic emissions of dimethyl sulfide, acetone, acetaldehyde (Johnson, 2010; Nightingale et al., 2000) and iodine (Carpenter et al., 2013); and soil dust emissions (Zender et al., 2003).

1.4 GEOS-CF Configuration

The GEOS-CF system runs, once each day, a one-day meteorological replay and a five-day forecast. The *meteorological replay* forces the GEOS atmospheric general circulation model to the analyzed meteorological fields from an assimilated GEOS product (Orbe et al., 2017). In this case, the GEOS-CF uses the GEOS Forward Processing for Instrument Teams (FP-IT) dataset (Lucchesi, 2015) and the meteorological replay is launched as soon as the GEOS FP-IT 12z forecast run completes. The meteorological replay is coupled to the GEOS-Chem chemistry module and the GOCART aerosol module, which provides the GEOS-CF forecast with the best possible initial conditions for the chemistry and meteorology. The GOCART aerosols are replayed to GEOS FP-IT GOCART aerosols, which were constrained by satellite observations of aerosol optical depth (Buchard et al., 2017). From GEOS model level 34 (i.e., above 65 hPa/19 km; from GEOS model level 37 was used for the period January 1, 2018 to July 31, 2019 12z) to the top of the atmosphere, the GEOS-Chem ozone is nudged towards the ozone field produced by GEOS FP which were constrained by assimilating satellite observations of ozone (Wargan et al., 2015). Currently, no other direct data assimilation of chemical constituents is performed within GEOS-CF.

Upon completion of the meteorological replay, a five-day free-running model forecast simulation is launched. Similar to other GEOS forecasting products, persisted sea ice concentrations, sea surface temperatures, and biomass burning emissions are used in the GEOS-CF five-day forecasts.

1.5 Spatial and temporal resolution

All fields are computed on a cubed-sphere c360 grid (approximate resolution of 25 km \times 25 km) with 72 vertical model layers extending up to 0.01 hPa. The data collections are provided at $\frac{1}{4}$ degree horizontal resolution. This global grid has 1440 points in the longitudinal direction and 721 points in the latitudinal direction, corresponding to a resolution of $0.25^{\circ} \times 0.25^{\circ}$. Many collections provide model output from the lowest model layer, along with other two-dimensional (2-D) diagnostics. Three-dimensional (3-D) model output may be on the model's native 72-layer vertical grid, 36-layer vertical

grid, or interpolated onto 23 tropospheric and lower stratospheric pressure levels, onto 39 pressure levels consistent with profiles from the Microwave Limb Sounder (MLS) instrument aboard NASA's Aura satellite and onto 35 theta levels. Model output is provided at 15-minute, 1-hour, and 3-hour temporal resolution. More details on output time and grid are provided in <u>Section 3</u> and <u>Section 4</u>, respectively.

1.6 File location

The GEOS-CF data are produced on the NCCS discover supercomputer and are available through the NCCS data portal (https://portal.nccs.nasa.gov/datashare/gmao/geos-cf, hereafter referred to as "HTTPS"). Additionally, clients such as the Grid Analysis and Display System (GrADS) can access data directly using the NCCS OpenDAP server (https://opendap.nccs.nasa.gov/dods/gmao/geos-cf). Data visualizations are available on the NASA GMAO FLUID web site (https://fluid.nccs.nasa.gov/cf/). There are links from FLUID to the HTTPS download locations on the data portal, to the OpenDAP server, and to a Data Download Tool.

At this time, the GEOS-CF does not include data assimilation of chemical constituents (Sec 1.4), however it will in the future. Therefore, in order to have the same pathway when the GEOS-CF includes data assimilation, the same naming structure is used for the meteorological replay segments as GEOS FP's analysis files, where "das" and "assim" both stand for data assimilation.

- 1) HTTPS: GEOS-CF url structure continues with the version number, e.g., "v1". Then the meteorological replay files are located in "das" and forecasts are located in "forecast".
- 2) OpenDAP: No reference to the version of GEOS-CF. The meteorological replay is found in "assim" and forecast is abbreviated to "fcast".

The meteorological replay files are available since the start of each collection. For GEOS-CF version 1 the start date is 1 January 2018; however, some collections were introduced later and the start date for each collection is stated in Section 6. Forecasts are available on HTTPS and OpenDAP for a limited time, with one exception where the aqc_tavg_1hr_g1440x721_v1 collection (Section 6) is available for longer. All meteorological replay and forecast files are archived on NCCS dirac storage system. Note, the mode for each collections is included in Section 6.

2. Format and File Organization

GEOS-CF data files are provided in netCDF-4 format. Since netCDF-4 files are actually HDF-5 files that are structured in a special way, netCDF-4 files can also be read by HDF-5 tools. The data files are structured in the netCDF "classic" data model, which should allow source code written for this data model to read GEOS-CF files when compiled with the netCDF-4 and HDF-5 libraries. The data products use some of the CF ("Climate and Forecast") metadata conventions, primarily those inherited from the older COARDS conventions for NetCDF dealing with dimension scales. CF standard names for identifying parameters are not used in these data sets.

Due to the size of the GEOS-CF archive, most product collections are compressed with a GRIB-like method that is invisible to the user. This method does degrade the precision of the data, but every effort has been made to ensure that differences between the product and the original, non-degraded data are not scientifically meaningful. Once the precision has been degraded, the files are written using the standard (internal) Lempel-Ziv deflation available in netCDF-4.

GEOS-CF is run on a cube-sphere grid, but these native data are not distributed. Rather, upon output, it has been interpolated to the regular latitude-longitude grid discussed in this document. The interpolation includes two options, a conservative remapping (simply a binning routine) and a non-conservative bilinear interpolation. Most variable collections are transformed using the bilinear interpolation. The htf_inst_15mn_g1440x721_x1 collection is conservatively remapped. As a rule of thumb, only the data that have been conservatively remapped will balance to the highest precision.

2.1 Dimensions

Every GEOS-CF collection will contain variables that define the dimensions of longitude, latitude, level and time. In the initial release of the GEOS-CF product, a selection of 2-D and 3-D collections are released; however, the 2-D collection may include an additional level dimension (see Section 4.2). Dimension variables have an attribute named "units," set to an appropriate string defined by the CF and COARDS conventions that can be used by applications to identify the dimension.

Name Description Type units attribute double Longitude lon degrees east Latitude double lat degrees north Pressure, Theta (TH), layer index double lev hPa, K, or layer minutes since first time in file int minutes time

Table 2.1-1. Dimension Variables Contained in GMAO NetCDF Files

2.2 Variables

Variables are stored as HDF-5 dataset objects. GEOS-CF uses the "classic" netCDF data model and does not use

any of the extensions supported by netCDF-4 and the underlying HDF-5 format. This allows applications written to read netCDF files to easily read variables without having to modify code. Variable names are listed in Section 6 along with the number and sizes of dimensions. One can quickly list the variables in the file by using common utilities such as *ncdump*, which is distributed with the netCDF-4 library. With the '-h' flag, this utility will display all information about the file and its contents, including metadata associated with each variable. A short description of the variable is provided in the *long_name* and *standard_name* metadata parameters. Please note that we do not guarantee that the value in the <u>standard_name</u> attribute will conform to the CF metadata conventions.

Each variable has several useful metadata attributes. Many of these attributes are required by the CF and COARDS conventions, while others are specific for GMAO products. The following table lists required attributes. Other attributes may be included for internal GMAO use and can be ignored.

Table 2.2-1 Metadata attributes associated with each SDS.

Name	Type	Description
_FillValue	32-bit float	Floating-point value used to identify missing data. Normally set to 1e15. Required by CF.
missing_value	32-bit float	Same as _FillValue. Required for COARDS backwards compatibility.
valid_range	32-bit float, array(2)	This attribute defines the valid range of the variable. The first element is the smallest valid value and the second element is the largest valid value. Required by CF. These are set to -/+ _FillValue.
long_name	String	An ad hoc description of the variable as required by <u>COARDS</u> . It approximates the standard names as defined in an early version of CF conventions. The <i>Description</i> column from the tables of <u>Section 6</u> is based on this name.
standard_name	Char String	Same as long_name
units	Char String	The units of the variable. Must be a string that can be recognized by UNIDATA's Udunits package.
scale_factor	32-bit float	If variable is packed as 16-bit integers, this is the scale_factor for expanding to floating-point. Currently data are not packed, thus value is 1.0.
add_offset	32-bit float	If variable is packed as 16-bit integers, this is the offset for expanding to floating-point. Currently, data are not packed, thus value is 0.0.

2.3 Global Attributes

In addition to HDF-5 dataset variables and dimension scales, global metadata is also stored in GMAO netCDF-4 files. Some metadata are required by the CF/COARDS conventions, some are present to meet ECS requirements,

and others as a convenience to users of GMAO products. A summary of global attributes present in GEOS-CF files is shown in Table 2.3-1. Note, if the GEOS-CF file is for a region smaller than the globe, the SpatialCoverage parameter will indicate such and the latitude and longitude bounds will differ from the stated global values.

Table 2.3-1 Global metadata attributes (type character) associated with each SDS.

Name	Description
History	Production/creation date of this file.
Comment	Includes but not limited to the Internal/original GMAO filename (for provenance).
Filename	Filename of this granule.
Conventions	Identification of the file convention used, currently "CF-1"
Institution	"NASA Global Modeling and Assimilation Office"
References	"https://gmao.gsfc.nasa.gov"
Format	"NetCDF-4/HDF-5"
SpatialCoverage	Global or Regional
VersionID	The GEOS-CF version
Temporal Range	The beginning and ending dates of GEOS-CF. The ending date is assumed but may change.
Shortname	Product short name (see <u>Section 5.2</u>)
RangeBeginningDate	Date corresponding to the first timestep in this file.
RangeBeginningTime	Time corresponding to the first timestep in this file.
RangeEndingDate	Date corresponding to the last timestep in this file.
RangeEndingTime	Time corresponding to the last timestep in this file.

Name	Description
GranuleID	Filename for this product.
ProductionDateTime	Production date & time of this granule.
LongName	Description of product type.
Title	"GEOS CF (Composition Forecast)"
SouthernmostLatitude	Southernmost latitude point, for global output "-90.0"
NorthernmostLatitude	Northernmost latitude point, for global output "90.0"
WesternmostLongtitude	Westernmost longitude, for global output "-180.0"
EasternmostLongtitude	Easternmost longitude, for global output "179.75"
LatitudeResolution	"0.25"
LongitudeResolution	"0.25"
DataResolution	Horizontal (and vertical resolution) of granule.
Source	Software version tag associated with GEOS-CF version.
Contact	"https://gmao.gsfc.nasa.gov"

3. Instantaneous vs Time-averaged Products

Each file collection listed in <u>Section 6</u> contains either instantaneous or time-averaged products, but not both.

The released GEOS-CF products contains 15-minute, 1-hour and 3-hour instantaneous collections and 1-hourly time-averaged collections. Each time-averaged collection consists of a continuous sequence of data averaged over the indicated interval and time stamped with the central time of the interval. For hourly data, for example, an average from 12 UTC to 13 UTC has a time stamp of 12:30 UTC.

4. Grid Structure

4.1 Horizontal Structure

In GEOS-CF, all fields will be produced on the same $\frac{1}{4}$ degree longitude by $\frac{1}{4}$ degree latitude grid. The GEOS-CF *native grid* is c360 on the cubed sphere. The gridded output is on a global horizontal grid, consisting of **IMn=1440** points in the longitudinal direction and **JMn=721** points in the latitudinal direction. The horizontal native grid origin, associated with variables indexed (i=1, j=1) represents a grid point located at $(180^{\circ}\text{W}, 90^{\circ}\text{S})$. Latitude (ϕ) and longitude (λ) of grid points as a function of their indices (i, j) can be determined by:

$$\lambda_i = -180 + (\Delta \lambda)_n (i-1), i = 1,\text{IMn}$$

 $\phi_j = -90 + (\Delta \phi)_n (j-1), j = 1,\text{JMn}$

Where $(\Delta \lambda)_n = 1/4^{\circ}$ and $(Dj)_n = 1/4^{\circ}$.

4.2 Vertical Structure

The GEOS model layers used for the GEOS-CF are on a terrain-following hybrid sigma-p coordinate with 72 model layers (Table 4.1). Gridded products use four different vertical configurations: Horizontal-only (can be vertical averages, single level, or surface values), pressure-level, model-layer, or model-edge. Horizontal-only data for a given variable appear as 3-dimensional fields (x, y, time), while pressure-level, theta-level, model-layer, or model-edge data appear as 4-dimensional fields (x, y, z, time). For the 2-D fields, these include quantities from the lowest model layer (model level 72, Table 4.1, which is nominally 130 m in thickness, e.g. "surface" concentration of O₃), vertically integrated quantities (e.g., tropospheric O₃ column), and information with no vertical coordinate (e.g., Planetary Boundary Layer Height).

Table 4.1 Products on the native vertical grid are output on the following levels. Pressures are nominal for a 1000 hPa surface pressure and refer to the top edge of the layer. Note that the bottom layer has a nominal thickness of 15 hPa.

Lev	P(hPa)	Lev	P(hPa)	Lev	P(hPa)	Lev	P(hPa)	Lev	P(hPa)	Lev	P(hPa)
1	0.0100	13	0.6168	25	9.2929	37	78.5123	49	450.000	61	820.000
2	0.0200	14	0.7951	26	11.2769	38	92.3657	50	487.500	62	835.000
3	0.0327	15	1.0194	27	13.6434	39	108.663	51	525.000	63	850.000
4	0.0476	16	1.3005	28	16.4571	40	127.837	52	562.500	64	865.000
5	0.0660	17	1.6508	29	19.7916	41	150.393	53	600.000	65	880.000
6	0.0893	18	2.0850	30	23.7304	42	176.930	54	637.500	66	895.000
7	0.1197	19	2.6202	31	28.3678	43	208.152	55	675.000	67	910.000
8	0.1595	20	3.2764	32	33.8100	44	244.875	56	700.000	68	925.000
9	0.2113	21	4.0766	33	40.1754	45	288.083	57	725.000	69	940.000
10	0.2785	22	5.0468	34	47.6439	46	337.500	58	750.000	70	955.000
11	0.3650	23	6.2168	35	56.3879	47	375.000	59	775.000	71	970.000
12	0.4758	24	7.6198	36	66.6034	48	412.500	60	800.000	72	985.000

Table 4.2 Pressure-level data is output on the following 23 pressure levels:

Level	P(hPa)										
1	1000	5	900	9	700	13	500	17	300	21	100
2	975	6	850	10	650	14	450	18	250	22	50
3	950	7	800	11	600	15	400	19	200	23	10
4	925	8	750	12	550	16	350	20	150		

Table 4.3 Pressure-level data is output on the following 39 MLS pressure levels:

Lev	P(hPa)										
1	316.2	8	82.5	15	21.5	22	5.62	29	1.47	36	0.147
2	261.0	9	68.1	16	17.8	23	4.64	30	1.21	37	0.1

3	215.4	10	56.2	17	14.7	24	3.83	31	1	38	0.046
4	177.8	11	46.4	18	12.1	25	3.16	32	0.68	39	0.0215
5	146.8	12	38.3	19	10	26	2.61	33	0.46		
6	121.2	13	31.6	20	8.25	27	2.15	34	0.32		
7	100		26.1	21			1.78	35	0.215		
Table	4.4 Isentrop	oic-lev	el data is ou	ıtput	on the follow	ing 3	35 theta level	s:			
Lev	TH(K)	Low	THOZ	Lav	THAZ	T	THAN	I 071	THOS	T	THAN
Lev	111(K)	Lev	TH(K)	Lev	TH(K)	Lev	TH(K)	Lev	TH(K)	Lev	TH(K)
1	270	7	330	13	450	19	750	25	1100	31	2200
	, ,		. ,		450				• •		
1	270	7	330	13	450	19	750	25	1100	31	2200
1 2	270 280	7	330 340	13 14	450 500	19 20	750 800	2526	1100 1200	31 32	2200 2400
1 2 3	270 280 290	7 8 9	330 340 350	13 14 15	450 500 550	19 20 21	750 800 850	252627	1100 1200 1400	313233	2200 2400 2600

6 320 12 400 18 700 24 1000 30 2000

5. File Naming Conventions

The filename of each GEOS product will be stored in the metadata parameter GranuleID (<u>Table 2.3-1</u>). Each product also has a "Shortname" (maximum 30 characters) which is specified in the metadata and is often called an Earth Science Data Type (ESDT). In GEOS-CF each file collection has a unique ESDT index. The ESDT index convention is described in Section 5.2.

5.1 File Names

The standard full name for the GEOS-CF products will consist of five dot-delimited nodes:

runid.version.mode.collection.timestamp.nc4

The node fields, which vary from file to file, are defined as follows:

runid

All GEOS-CF files will begin with the runid = "GEOS-CF"

version

If there are major updates to either the GEOS model or the GEOS-Chem model, the version number will change, beginning with "v01"

mode

There are three possible options: "ana", "rpl" and "fcst", where ana stands for data assimilation analysis, rpl for meteorological replay, and fcst for forecast. At this time, "ana" is not used since there is no direct data assimilation of chemical constituents.

collection:

All GEOS-CF data are organized into file *collections* that contain fields with common characteristics. These collections are used to make the data more accessible for specific purposes. Fields may appear in more than one collection. Collection names are of the form $grp_time_Ftt_hIxJ_vL$, where the five attributes are:

grp: A three-letter mnemonic for the type of fields in the collection. It is used also for the group designation in the ESDT name, as in the next section.

```
aqc = air quality relevant fields
chm = chemistry fields
htf = high-temporal frequency
met = meteorology fields
mls = chemistry and meteorology fields on Microwave Limb Sounder pressure levels
sat = chemistry and meteorology fields to support satellite retrievals
xgc = extra GEOS-Chem chemistry fields
```

time: Either instantaneous (inst) or time-average (tavg)

Ftt: The frequency or averaging time interval, including the time unit tt:

```
mn = minutes
hr = hour
```

hIxJ: Grid domain and size of the grid

h is the horizontal grid domain. It can be global or regional:

g: Global

r: Subset of the global resolution

IxJ is the horizontal resolution in number of longitude points x number of latitude points.

vL: Vertical resolution, where

v can be:

h: Isentropic levels

p: Pressure levels

v: Native vertical grid

x: Single-level, where fields in the collection are not exclusively the lowest model layer (e.g. vertically-integrated quantities, quantities with no vertical coordinate).

L is the number of vertical levels in the collection.

timestamp:

This node defines the date and time associated with the data in the file. It has the form *yyyymmdd hrmn* for either instantaneous or time-averaged daily files.

```
yyyy - year string (e.g., "2002")mm - month string (e.g.., "09" for September)dd - day of the month string
```

```
hr – hour (UTC indicated by the 'z')
```

mn – minute

The forecast files have two date nodes separated by a '+'. For forecast files, the final timestamp of the meteorological replay used to initialize the forecast is first (yyyymmdd_hr+) followed by the valid time for the forecasted data within the file (yyyymmdd_hrmn). A forecast time-series will contain numerous files with the same initial node while the second node progresses through the time-span of the forecast (5 days).

nc4:

All files are in NetCDF-4 format, thus the suffix ".nc4".

EXAMPLE 1:

GEOS-CF.v01.rpl.htf_inst_15mn_g1440x721_x1. 20190101_0015z.nc4

This is an example of a GEOS-CF replay filename ("GEOS-CF.v01.rpl"). The data are the high-temporal-frequency ("htf") instantaneous ("inst"), 15-minute ("15mn") global 1/4° ("g1440x721") product. This is a mix of single-level and surface level data ("x1"). The file is for a single timestamp ("20190101_0015z") and is in "nc4" format.

EXAMPLE 2:

GEOS-CF.v01.fcst.chm tavg 1hr g1440x721 v1. 20190309 12z+20190314 0730z.nc4

This is an example of a GEOS-CF forecast filename ("GEOS-CF.v01.fcst"). The data are chemical species ("chm") time-averaged ("tavg") for a 1-hour period ("1hr") at the global 1/4° horizontal resolution ("g1440x721") for a single model layer data ("v1"). This file is for a forecast for a single timestamp ("20190314_0730z") which was initialized from the 20190309 12z replay timestamp. The file is in "nc4" format.

5.2 Earth Science Data Types (ESDT) Name

To accommodate EOSDIS toolkit requirements, all GEOS-CF files are associated with a maximum of 30-character ESDT. The ESDT is designed for users to access sets of files. In GEOS-CF, the ESDT will be used to identify the *Mainstream collections* and consists of a compressed version of the collection name of the form:

where

ID: Reduced runid to "CF"

VV: Reduced version number to simply the number, e.g., "01" for v01

M: Mode

A = Analysis

 $\mathbf{R} = \text{Replay}$

F = Forecast

grp: Group

aqc = air quality relevant fields

chm = chemistry fields

htf = high-temporal frequency

met = meteorology fields

mls = chemistry and meteorology fields on Microwave Limb Sounder pressure levels

sat = chemistry and meteorology fields to support satellite retrievals

xgc = extra GEOS-Chem chemistry fields

Ftt: The frequency or averaging interval, including the time unit tt:

mn = minutes

hr = hour

T: Time description

I = Instantaneous

T = Time-average

h: Grid

g = Global

 $\mathbf{r} = \text{subset region}$

IxJ: Horizontal resolution, number of longitude points x number of latitude points

V: Vertical resolution

H = Isentropic levels

P = Pressure levels

V = model layer center

X = Two-dimensional

L: Number of vertical levels or layers

EXAMPLE 1:

CF01Rhtf 15mnI g1440x721 X1

This is an example of a GEOS-CF version 01 replay shortname ("CF01R") for the high temporal frequency diagnostics ("htf"). The data are 15-minute ("15mn") instantaneous ("I") on the global 1/4° ("g1440x721") resolution. This is a mix of single-level and lowest model layer data ("X1").

EXAMPLE 2:

CF01Fchm_1hrT_g1440x721_V1

This is an example of a GEOS-CF version 01 forecast shortname ("CF01F") for chemistry fields ("chm"). The data are 1-hourly time-averaged ("1hrT") at the global 1/4° horizontal resolution ("g1440x721") for a single model layer ("v1").

6. GEOS-CF data collections

This section lists the variables in each data collection. The definition of the chemical species is given in the "Description".

Instantaneous Two-Dimensional Collections

htf_inst_15mn_g1440x721_x1: High Temporal Frequency Chemistry and Meteorology Diagnostics

Frequency: 15-minute from 00:00 UTC (instantaneous)

Spatial Grid: 2D, single-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=1, time=1

vertical level: [72.] (layer) Granule Size: ~17 MB

Shortname: CF01Rhtf_15mnI_g1440x721_X1

Name	Dim	Description	Units
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
О3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
PM25_RH35_ GCC	tzyx	Particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25_RH35_ GOCART	tyx	Total reconstructed PM2.5 RH 35	kg m-3
Q	tzyx	specific humidity	kg kg-1
RH	tzyx	relative humidity after moist	1
SLP	tyx	sea level pressure	Pa
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
T	tzyx	air temperature	K
U	tzyx	eastward wind	m s-1

V tzyx northward wind m s-	1
----------------------------	---

Time-Averaged Two-Dimensional Collections

aqc_tavg_1hr_g1440x721_v1: Air Quality Concentrations Diagnostics

Frequency: 1-hourly centered on 01:30 UTC (time-averaged)

Spatial Grid: 2D, surface-layer, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=1, time=1

vertical level: [72.] (layer)

Granule Size: ~7 MB

Shortname: CF01Raqc 1hrT g1440x721 V1

Mode: Replay and Forecast

Name	Dim	Description	Units
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
O3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
PM25_RH35_ GCC	tzyx	Particulate matter with diameter below 2.5 um RH 35	ug m-3
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1

chm_tavg_1hr_g1440x721_v1: Single-level Chemistry Diagnostics

Frequency: 1-hourly centered on 00:30 UTC (time-averaged) **Spatial Grid:** 2D, surface-layer, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=1, time=1

vertical level: [72.] (layer)
Granule Size: ~81 MB

Shortname: CF01Rchm 1hrT g1440x721 V1

Name	Dim	Description	Units
------	-----	-------------	-------

ACET	tzyx	Acetone (CH3C(O)CH3, MW = 58.08 g mol-1) volume mixing ratio dry air	mol mol-1
ALD2	tzyx	Acetaldehyde (CH3CHO, MW = 44.05 g mol-1) volume mixing ratio dry air	mol mol-1
ALK4	tzyx	Lumped >= C4 Alkanes (MW = 58.12 g mol-1) volume mixing ratio dry air	mol mol-1
ВСРІ	tzyx	Hydrophilic black carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air	mol mol-1
ВСРО	tzyx	Hydrophobic black carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air	mol mol-1
BENZ	tzyx	Benzene (C6H6, MW = 78.11 g mol-1) volume mixing ratio dry air	mol mol-1
С2Н6	tzyx	Ethane (C2H6, MW = 30.07 g mol-1) volume mixing ratio dry air	mol mol-1
С3Н8	tzyx	Propane (C3H8, MW = 44.10 g mol-1) volume mixing ratio dry air	mol mol-1
CH4	tzyx	Methane (CH4, MW = 16.00 g mol-1) volume mixing ratio dry air	mol mol-1
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
DST1	tzyx	Dust aerosol, Reff = 0.7 microns (MW = 29.00 g mol-1) volume mixing ratio dry air	mol mol-1
DST2	tzyx	Dust aerosol, Reff = 1.4 microns (MW = 29.00 g mol-1) volume mixing ratio dry air	mol mol-1
DST3	tzyx	Dust aerosol, Reff = 2.4 microns (MW = 29.00 g mol-1) volume mixing ratio dry air	mol mol-1
DST4	tzyx	Dust aerosol, Reff = 4.5 microns (MW = 29.00 g mol-1) volume mixing ratio dry air	mol mol-1
ЕОН	tzyx	Ethanol (C2H5OH, MW = 46.07 g mol-1) volume mixing ratio dry air	mol mol-1
H2O2	tzyx	Hydrogen peroxide (H2O2, MW = 34.00 g mol-1) volume mixing ratio dry air	mol mol-1
НСНО	tzyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
HNO3	tzyx	Nitric acid (HNO3, MW = 63.00 g mol-1) volume mixing ratio dry air	mol mol-1

HNO4	tzyx	Peroxynitric acid (HNO4, MW = 79.00 g mol-1) volume mixing ratio dry air	mol mol-1
ISOP	tzyx	Isoprene (CH2=C(CH3)CH=CH2, MW = 68.12 g mol-1) volume mixing ratio dry air	mol mol-1
MACR	tzyx	Methacrolein (CH2=C(CH3)CHO, MW = 70.00 g mol-1) volume mixing ratio dry air	mol mol-1
MEK	tzyx	Methyl Ethyl Ketone (RC(O)R, MW = 72.11 g mol-1) volume mixing ratio dry air	mol mol-1
MVK	tzyx	Methyl vinyl ketone (CH2=CHC(=O)CH3, MW = 70.00 g mol-1) volume mixing ratio dry air	mol mol-1
N2O5	tzyx	Dinitrogen pentoxide (N2O5, MW = 108.00 g mol-1) volume mixing ratio dry air	mol mol-1
NH3	tzyx	Ammonia (NH3, MW = 17.00 g mol-1) volume mixing ratio dry air	mol mol-1
NH4	tzyx	Ammonium (NH4, MW = 18.00 g mol-1) volume mixing ratio dry air	mol mol-1
NIT	tzyx	Inorganic nitrates (MW = 62.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO	tzyx	Nitrogen oxide (NO, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
NOy	tzyx	Reactive nitrogen = NO NO2 HNO3 HNO4 HONO 2xN2O5 PAN OrganicNitrates AerosolNitrates	mol mol-1
О3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
OCPI	tzyx	Hydrophilic organic carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air	mol mol-1
ОСРО	tzyx	Hydrophobic organic carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air	mol mol-1
PAN	tzyx	Peroxyacetyl nitrate (CH3C(O)OONO2, MW = 121.00 g mol-1) volume mixing ratio dry air	mol mol-1
PM25_RH35_ GCC	tzyx	Particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25_RH35_	tyx	Total reconstructed PM2.5 RH 35	kg m-3

GOCART			
PM25bc_RH3 5_GCC	tzyx	Black carbon particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25du_RH3 5_GCC	tzyx	Dust particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25ni_RH3 5_GCC	tzyx	Nitrate particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25oc_RH3 5_GCC	tzyx	Organic carbon particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25soa_RH 35_GCC	tzyx	Secondary organic aerosol particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25ss_RH3 5_GCC	tzyx	Seasalt particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25su_RH3 5_GCC	tzyx	Sulfate particulate matter with diameter below 2.5 um RH 35	ug m-3
PRPE	tzyx	Lumped >= C3 alkenes (C3H6, MW = 42.08 g mol-1) volume mixing ratio dry air	mol mol-1
RCHO	tzyx	Lumped aldehyde >= C3 (CH3CH2CHO, MW = 58.00 g mol-1) volume mixing ratio dry air	mol mol-1
SALA	tzyx	Fine (0.01-0.05 microns) sea salt aerosol (MW = 31.40 g mol-1) volume mixing ratio dry air	mol mol-1
SALC	tzyx	Coarse (0.5-8 microns) sea salt aerosol (MW = 31.40 g mol-1) volume mixing ratio dry air	mol mol-1
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
SOAP	tzyx	SOA Precursor - lumped species for simplified SOA parameterization (MW = 150.00 g mol-1) volume mixing ratio dry air	mol mol-1
SOAS	tzyx	SOA Simple - simplified non-volatile SOA parameterization (MW = 150.00 g mol-1) volume mixing ratio dry air	mol mol-1
TOLU	tzyx	Toluene (C7H8, MW = 92.14 g mol-1) volume mixing ratio dry air	mol mol-1
XYLE	tzyx	Xylene (C8H10, MW = 106.16 g mol-1) volume mixing ratio dry air	mol mol-1

met_tavg_1hr_g1440x721_x1: Single-level Meteorological Diagnostics

Frequency: 1-hourly centered on 00:30 UTC (time-averaged)

Spatial Grid: 2D, surface-layer, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=1, time=1

vertical level: [72.] (layer)
Granule Size: ~28 MB

Shortname: CF01Rmet_1hrT_g1440x721_X1

Name	Dim	Description	Units
CLDTT	tyx	total cloud area fraction	1
PHIS	tyx	surface geopotential height	m+2 s-2
PS	tyx	surface pressure	Pa
Q	tzyx	specific humidity	kg kg-1
Q10M	tyx	10-meter specific humidity	kg kg-1
Q2M	tyx	2-meter specific humidity	kg kg-1
RH	tzyx	relative humidity after moist	1
SLP	tyx	sea level pressure	Pa
T	tzyx	air temperature	K
T10M	tyx	10-meter air temperature	K
T2M	tyx	2-meter air temperature	K
TPREC	tyx	total precipitation	kg m-2 s-1
TROPPB	tyx	tropopause pressure based on blended estimate	Pa
TS	tyx	surface skin temperature	K
U	tzyx	eastward wind	m s-1
U10M	tyx	10-meter eastward wind	m s-1
U2M	tyx	2-meter eastward wind	m s-1
V	tzyx	northward wind	m s-1
V10M	tyx	10-meter northward wind	m s-1
V2M	tyx	2-meter northward wind	m s-1

ZL	tzyx	mid layer heights	m
ZPBL	tyx	planetary boundary layer height	m

xgc_tavg_1hr_g1440x721_x1: Single-level Extra GEOS-Chem Chemistry Diagnostics

Frequency: 1-hourly centered on 00:30 UTC (time-averaged) **Spatial Grid:** 2D, surface-layer, full horizontal resolution

Dimensions: longitude=1440, latitude=721, time=1

Granule Size: ~101 MB

Shortname: CF01Rxgc_1hrT_g1440x721_X1

Name	Dim	Description	Units
AOD550_BC	tyx	Black carbon optical depth at 550nm	1
AOD550_CLOU D	tyx	Cloud optical depth	1
AOD550_DST1	tyx	Dust bin1 optical depth at 550nm	1
AOD550_DST2	tyx	Dust bin2 optical depth at 550nm	1
AOD550_DST3	tyx	Dust bin3 optical depth at 550nm	1
AOD550_DST4	tyx	Dust bin4 optical depth at 550nm	1
AOD550_DST5	tyx	Dust bin5 optical depth at 550nm	1
AOD550_DST6	tyx	Dust bin6 optical depth at 550nm	1
AOD550_DST7	tyx	Dust bin7 optical depth at 550nm	1
AOD550_DUST	tyx	Dust optical depth at 550nm	1
AOD550_OC	tyx	Organic carbon optical depth at 550nm	1
AOD550_SALA	tyx	Accumulation mode sea salt optical depth at 550nm	1
AOD550_SALC	tyx	Coarse mode sea salt optical depth at 550nm	1
AOD550_SULF ATE	tyx	Sulfate optical depth at 550nm	1
DRYDEPFLX_ BCPI	tyx	Hydrophilic black carbon aerosol (MW = 12.01 g mol-1) dry deposition flux	molec cm-2 s-1

DRYDEPFLX_ BCPO	tyx	Hydrophobic black carbon aerosol (MW = 12.01 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ DST1	tyx	Dust aerosol, Reff = 0.7 microns (MW = 29.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ DST2	tyx	Dust aerosol, Reff = 1.4 microns (MW = 29.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ DST3	tyx	Dust aerosol, Reff = 2.4 microns (MW = 29.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ DST4	tyx	Dust aerosol, Reff = 4.5 microns (MW = 29.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ HCHO	tyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ HNO3	tyx	Nitric acid (HNO3, MW = 63.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ NH3	tyx	Ammonia (NH3, MW = 17.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ NH4	tyx	Ammonium (NH4, MW = 18.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ NIT	tyx	Inorganic nitrates (MW = 62.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ NO2	tyx	Nitrogen dioxide (NO2, MW = 46.00 g mol- 1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ O3	tyx	Ozone (O3, MW = 48.00 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ OCPI	tyx	Hydrophilic organic carbon aerosol (MW = 12.01 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ OCPO	tyx	Hydrophobic organic carbon aerosol (MW = 12.01 g mol-1) dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ SALA	tyx	Fine $(0.01\text{-}0.05 \text{ microns})$ sea salt aerosol $(MW = 31.40 \text{ g mol-1})$ dry deposition flux	molec cm-2 s-1
DRYDEPFLX_ SALC	tyx	Coarse (0.5-8 microns) sea salt aerosol (MW = 31.40 g mol-1) dry deposition flux	molec cm-2 s-1
TOTCOL_BrO	tyx	Bromine monoxide (BrO, MW = 96.00 g mol- 1) total column density	1.0e15 molec cm-2
TOTCOL_CO	tyx	Carbon monoxide (CO, MW = 28.00 g mol-1) total column density	1.0e15 molec cm-2

TOTCOL_HCH O	tyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) total column density	1.0e15 molec cm-2
TOTCOL_IO	tyx	Iodine monoxide (IO, MW = 143.00 g mol-1) total column density	1.0e15 molec cm-2
TOTCOL_NO2	tyx	Nitrogen dioxide (NO2, MW = 46.00 g mol- 1) total column density	1.0e15 molec cm-2
TOTCOL_O3	tyx	Ozone (O3, MW = 48.00 g mol-1) total column density	dobsons
TOTCOL_SO2	tyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) total column density	1.0e15 molec cm-2
TROPCOL_BrO	tyx	Bromine monoxide (BrO, MW = 96.00 g mol- 1) tropospheric column density	1.0e15 molec cm-2
TROPCOL_CO	tyx	Carbon monoxide (CO, MW = 28.00 g mol-1) tropospheric column density	1.0e15 molec cm-2
TROPCOL_HC HO	tyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) tropospheric column density	1.0e15 molec cm-2
TROPCOL_IO	tyx	Iodine monoxide (IO, MW = 143.00 g mol-1) tropospheric column density	1.0e15 molec cm-2
TROPCOL_NO 2	tyx	Nitrogen dioxide (NO2, MW = 46.00 g mol- 1) tropospheric column density	1.0e15 molec cm-2
TROPCOL_O3	tyx	Ozone (O3, MW = 48.00 g mol-1) tropospheric column density	dobsons
TROPCOL_SO2	tyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) tropospheric column density	1.0e15 molec cm-2
WETDEPFLX_ BCPI	tyx	Hydrophilic black carbon aerosol (MW = 12.01 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ BCPO	tyx	Hydrophobic black carbon aerosol (MW = 12.01 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ DST1	tyx	Dust aerosol, Reff = 0.7 microns (MW = 29.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ DST2	tyx	Dust aerosol, Reff = 1.4 microns (MW = 29.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1

-		T	1
WETDEPFLX_ DST3	tyx	Dust aerosol, Reff = 2.4 microns (MW = 29.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ DST4	tyx	Dust aerosol, Reff = 4.5 microns (MW = 29.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ HCHO	tyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ HNO3	tyx	Nitric acid (HNO3, MW = 63.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ NH3	tyx	Ammonia (NH3, MW = 17.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ NH4	tyx	Ammonium (NH4, MW = 18.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ NIT	tyx	Inorganic nitrates (MW = 62.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ OCPI	tyx	Hydrophilic organic carbon aerosol (MW = 12.01 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ OCPO	tyx	Hydrophobic organic carbon aerosol (MW = 12.01 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ SALA	tyx	Fine (0.01-0.05 microns) sea salt aerosol (MW = 31.40 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ SALC	tyx	Coarse (0.5-8 microns) sea salt aerosol (MW = 31.40 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ SO2	tyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1
WETDEPFLX_ SO4	tyx	Sulfate (SO4, MW = 96.00 g mol-1) vertical integrated loss due to wet scavenging	kg m-2 s-1

Instantaneous Three-Dimensional Collections

chm_inst_1hr_g1440x721_p23: Chemistry Diagnostics on Tropospheric and Lower

Stratospheric Pressure Levels

Frequency: 1-hourly from 00:00 UTC (instantaneous)

Spatial Grid: *3D, pressure-level, full horizontal resolution*

Dimensions: longitude=1440, latitude=721, level=23, time=1

vertical level: [1000. 975. 950. 925. 900. 850. 800. 750. 700. 650. 600. 550. 500.

450. 400. 350. 300. 250. 200. 150. 100. 50. 10.] (hPa)

Granule Size: ~413 MB

Shortname: CF01Rchm 1hrI g1440x721 P23

Name	Dim	Description	Units
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
NOy	tzyx	Reactive nitrogen = NO NO2 HNO3 HNO4 HONO 2xN2O5 PAN OrganicNitrates AerosolNitrates	mol mol-1
О3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
PM25_RH35_G CC	tzyx	Particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25bc_RH35 _GCC	tzyx	Black carbon particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25du_RH35 _GCC	tzyx	Dust particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25ni_RH35 _GCC	tzyx	Nitrate particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25oc_RH35 _GCC	tzyx	Organic carbon particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25soa_RH3 5_GCC	tzyx	Secondary organic aerosol particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25ss_RH35 _GCC	tzyx	Seasalt particulate matter with diameter below 2.5 um RH 35	ug m-3
PM25su_RH35	tzyx	Sulfate particulate matter with diameter below	ug m-3

_GCC		2.5 um RH 35	
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1

met_inst_1hr_g1440x721_p23: Meteorology Diagnostics on Tropospheric and Lower Stratospheric Pressure Levels

Frequency: 1-hourly from 00:00 UTC (instantaneous)

Spatial Grid: 3D, pressure-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=23, time=1

vertical level: [1000. 975. 950. 925. 900. 850. 800. 750. 700. 650. 600. 550. 500.

450. 400. 350. 300. 250. 200. 150. 100. 50. 10.] (hPa)

Granule Size: ~317 MB

Shortname: CF01Rmet_1hrI_g1440x721_P23

Name	Dim	Description	Units
AIRDENS	tzyx	moist air density	kg m-3
AIRVOL_CHEM	tzyx	GEOS-Chem chemistry box volume	km3
EPV	tzyx	ertels potential vorticity	K m+2 kg-1 s-1
ETH	tzyx	potential temperature	K
Н	tzyx	edge heights	m
OMEGA	tzyx	vertical pressure velocity	Pa s-1
PS	tyx	surface pressure	Pa
Q	tzyx	specific humidity	kg kg-1
RH	tzyx	relative humidity after moist	1
SLP	tyx	sea level pressure	Pa
T	tzyx	air temperature	K
TH	tzyx	potential temperature	K
U	tzyx	eastward wind	m s-1
V	tzyx	northward wind	m s-1

chm_inst_3hr_g1440x721_h35: Chemistry and Meteorology Diagnostics on Theta Levels

Frequency: 3-hourly from 00:00 UTC (instantaneous) **Spatial Grid:** 3D, theta-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=35, time=1

vertical level: [270. 280. 290. 300. 310. 320. 330. 340. 350. 360. 380. 400. 450. 500. 550. 600. 650. 700. 750. 800. 850. 900. 950. 1000. 1100. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600. 2800. 3000.] (K)

Granule Size: ~1.7 GB

Shortname: CF01Rchm_3hrI_g1440x721_H35

Start date: 00 UTC 1 January 2020

Mode: Replay only

Name	Dim	Description	Units
Br	tzyx	Atomic bromine (Br, MW = 80.00 g mol-1) volume mixing ratio dry air	mol mol-1
Br2	tzyx	Molecular Bromine (Br2, MW = 160.00 g mol-1) volume mixing ratio dry air	mol mol-1
BrO	tzyx	Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air	mol mol-1
Bry	tzyx	Inorganic bromine = 2xBr2 Br BrO HOBr HBr BrNO2 BrNO3 BrCl IBr	mol mol-1
С2Н6	tzyx	Ethane (C2H6, MW = 30.07 g mol-1) volume mixing ratio dry air	mol mol-1
С3Н8	tzyx	Propane (C3H8, MW = 44.10 g mol-1) volume mixing ratio dry air	mol mol-1
CC14	tzyx	Carbon tetrachloride (CCl4, MW = 152.00 g mol-1) volume mixing ratio dry air	mol mol-1
CH2Br2	tzyx	Dibromomethane (CH2Br2, MW = 174.00 g mol-1) volume mixing ratio dry air	mol mol-1
CH3Br	tzyx	Methyl bromide (CH3Br, MW = 95.00 g mol-1) volume mixing ratio dry air	mol mol-1
CH3CCl3	tzyx	Methyl chloroform (CH3CCl3, MW = 133.00 g mol- 1) volume mixing ratio dry air	mol mol-1
CH4	tzyx	Methane (CH4, MW = 16.00 g mol-1) volume mixing ratio dry air	mol mol-1

CHBr3	tzyx	Bromoform (CHBr3, MW = 253.00 g mol-1) volume mixing ratio dry air	mol mol-1
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
COSZ	tyx	cosine of the solar zenith angle	1
C1	tzyx	Atomic chlorine (Cl, MW = 35.00 g mol-1) volume mixing ratio dry air	mol mol-1
C12	tzyx	Molecular chlorine (Cl2, MW = 71.00 g mol-1) volume mixing ratio dry air	mol mol-1
C12O2	tzyx	Dichlorine dioxide (Cl2O2, MW = 103.00 g mol-1) volume mixing ratio dry air	mol mol-1
ClO	tzyx	Chlorine monoxide (ClO, MW = 51.00 g mol-1) volume mixing ratio dry air	mol mol-1
ClONO2	tzyx	Chlorine nitrate (ClNO3, MW = 97.00 g mol-1) volume mixing ratio dry air	mol mol-1
ClOO	tzyx	Chlorine dioxide (ClOO, MW = 67.00 g mol-1) volume mixing ratio dry air	mol mol-1
DMS	tzyx	Dimethyl sulfide ((CH3)2S, MW = 62.00 g mol-1) volume mixing ratio dry air	mol mol-1
EPV	tzyx	ertels potential vorticity	K m+2 kg-1 s-1
H2O	tzyx	Water vapor (H2O, MW = 18.00 g mol-1) volume mixing ratio dry air	mol mol-1
HBr	tzyx	Hypobromic acid (HBr, MW = 81.00 g mol-1) volume mixing ratio dry air	mol mol-1
НСНО	tzyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
HC1	tzyx	Hydrochloric acid (HCl, MW = 36.00 g mol-1) volume mixing ratio dry air	mol mol-1
HNO2	tzyx	Nitrous acid (HNO2, MW = 47.00 g mol-1) volume mixing ratio dry air	mol mol-1
HNO3	tzyx	Nitric acid (HNO3, MW = 63.00 g mol-1) volume mixing ratio dry air	mol mol-1
НОІ	tzyx	Hypoiodous acid (HOI, MW = 144.00 g mol-1) volume mixing ratio dry air	mol mol-1

I2	tzyx	Molecular iodine (I2, MW = 254.00 g mol-1) volume mixing ratio dry air	mol mol-1
N2O	tzyx	Nitrous oxide (N2O, MW = 44.00 g mol-1) volume mixing ratio dry air	mol mol-1
N2O5	tzyx	Dinitrogen pentoxide (N2O5, MW = 108.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO	tzyx	Nitrogen oxide (NO, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO3	tzyx	Nitrate radical (NO3, MW = 62.00 g mol-1) volume mixing ratio dry air	mol mol-1
NOy	tzyx	Reactive nitrogen = NO NO2 HNO3 HNO4 HONO 2xN2O5 PAN OrganicNitrates AerosolNitrates	mol mol-1
О3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
O3_mmr	tzyx	Ozone (O3, MW = 48.00 g mol-1) mass mixing ratio total air	kg kg-1
OCS	tzyx	Carbonyl sulfide (COS, MW = 60.00 g mol-1) volume mixing ratio dry air	mol mol-1
OClO	tzyx	Chlorine dioxide (OClO, MW = 67.00 g mol-1) volume mixing ratio dry air	mol mol-1
OH_mmr	tzyx	Hydroxyl radical (OH, MW = 17.01 g mol-1) mass mixing ratio total air	kg kg-1
O_mmr	tzyx	Molecular oxygen (O, MW = 16.01 g mol-1) mass mixing ratio total air	kg kg-1
Q	tzyx	specific humidity	kg kg-1
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
SfcAreaD ust	tzyx	Mineral dust surface area	cm2 cm-3
T	tzyx	air temperature	K

chm_inst_1hr_g1440x721_v72: Chemistry Diagnostics on Model Layers

Frequency: 1-hourly from 00:00 UTC (instantaneous) **Spatial Grid:** 3D, model-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=72, time=1

vertical level: [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~836 MB

Shortname: CF01Rchm_1hrI_g1440x721_V72

Start date: 00 UTC 1 January 2020

Name	Dim	Description	Units
BrO	tzyx	Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air	mol mol-1
CH4	tzyx	Methane (CH4, MW = 16.00 g mol-1) volume mixing ratio dry air	mol mol-1
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
НСНО	tzyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
IO	tzyx	Iodine monoxide (IO, MW = 143.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO	tzyx	Nitrogen oxide (NO, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
О3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
PM25_RH35_ GCC	tzyx	Particulate matter with diameter below 2.5 um RH 35	ug m-3
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1

met inst 1hr g1440x721 v72: Meteorology Diagnostics on Model Layers

Frequency: 1-hourly from 00:00 UTC (instantaneous)

Spatial Grid: 3D, model-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=72, time=1

vertical level: [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~521 MB

Shortname: CF01Rmet_1hrI_g1440x721_V72

Start date: 00 UTC 1 January 2020

Mode: Replay only

Name	Dim	Description	Units
DELP	tzyx	pressure thickness	Pa
PHIS	tyx	surface geopotential height	m+2 s-2
PS	tyx	surface pressure	Pa
Q	tzyx	specific humidity	kg kg-1
QCTOT	tzyx	mass fraction of total cloud water	kg kg-1
T	tzyx	air temperature	K
TH	tzyx	potential temperature	K
U	tzyx	eastward wind	m s-1
V	tzyx	northward wind	m s-1
ZL	tzyx	mid layer heights	m

mls_inst_1hr_g1440x721_p39: Meteorology and Chemistry Fields on MLS Pressure Levels

Frequency: 1-hourly from 00:00 UTC (instantaneous)

Spatial Grid: 3D, pressure-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=39, time=1

 vertical level: [316.2 261.0 215.4 177.8 146.8 121.2 100 82.5 68.1 56.2 46.4 38.3

 31.6 26.1 21.5 17.8 14.7 12.1 10 8.25 6.81 5.62 4.64 3.83 3.16 2.61 2.15 1.78

 1.47 1.21 1 0.68 0.46 0.32 0.215 0.147 0.1 0.046 0.0215] (hPa)

Granule Size: ~542 MB

Shortname: CF01Rmls_1hrI_g1440x721_P39

Start date: 00 UTC 1 January 2020

Name	Dim	Description	Units
BrO	tzyx	Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air	mol mol-1
CH3CC13	tzyx	Methyl chloroform (CH3CCl3, MW = 133.00 g mol-1) volume mixing ratio dry air	mol mol-1
СО	tzyx	Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air	mol mol-1
ClO	tzyx	Chlorine monoxide (ClO, MW = 51.00 g mol-1) volume mixing ratio dry air	mol mol-1
H2O	tzyx	Water vapor (H2O, MW = 18.00 g mol-1) volume mixing ratio dry air	mol mol-1
HC1	tzyx	Hydrochloric acid (HCl, MW = 36.00 g mol-1) volume mixing ratio dry air	mol mol-1
HNO3	tzyx	Nitric acid (HNO3, MW = 63.00 g mol-1) volume mixing ratio dry air	mol mol-1
HO2_mmr	tzyx	Hydroperoxyl radical (HO2, MW = 33.01 g mol-1) mass mixing ratio total air	kg kg-1
HOC1	tzyx	Hypochlorous acid (HOCl, MW = 52.00 g mol-1) volume mixing ratio dry air	mol mol-1
N2O	tzyx	Nitrous oxide (N2O, MW = 44.00 g mol-1) volume mixing ratio dry air	mol mol-1
O3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
OH_mmr	tzyx	Hydroxyl radical (OH, MW = 17.01 g mol-1) mass mixing ratio total air	kg kg-1
SO2	tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
Т	tzyx	air temperature	K

support TEMPO satellite

Frequency: unknown from 00:00 UTC (unknown)

Spatial Grid: 3D, model-level, subset region of full horizontal resolution

Dimensions: *longitude=721, latitude=361, level=72, time=1*

longitude: 0 ° to -180 °

latitude: 0 ° to 90 °

vertical level: [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~258 MB

Shortname: CF01Rsat 1hrI r721x361 V72

Start date: 00 UTC 1 January 2022

Mode: Replay only; Forecasts available based on mission requirements

Name	Dim	Description	Units
BrO	tzyx	Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air	mol mol-1
FRSEAICE	tyx	ice covered fraction of tile	1
FRSNO	tyx	fractional area of land snowcover	1
GLYX	tzyx	Glyoxal (CHOCHO, MW = 58.00 g mol-1) volume mixing ratio dry air	mol mol-1
НСНО	tzyx	Formaldehyde (CH2O, MW = 30.00 g mol-1) volume mixing ratio dry air	mol mol-1
HNO2	tzyx	Nitrous acid (HNO2, MW = 47.00 g mol-1) volume mixing ratio dry air	mol mol-1
IO	tzyx	Iodine monoxide (IO, MW = 143.00 g mol-1) volume mixing ratio dry air	mol mol-1
NO2	tzyx	Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air	mol mol-1
O3	tzyx	Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air	mol mol-1
OCIO	tzyx	Chlorine dioxide (OClO, MW = 67.00 g mol-1) volume mixing ratio dry air	mol mol-1
PHIS	tyx	surface geopotential height	m+2 s-2

tyx	surface pressure	Pa
tzyx	specific humidity	kg kg-1
tyx	snow depth	m
tyx	Total snow storage land	kg m-2
tzyx	Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air	mol mol-1
tzyx	air temperature	K
tyx	tropopause pressure based on blended estimate	Pa
tyx	2-meter eastward wind	m s-1
tyx	2-meter northward wind	m s-1
tyx	planetary boundary layer height	m
	tzyx tyx tyx tzyx tzyx tzyx tzyx tyx tyx	tzyx specific humidity tyx snow depth tyx Total snow storage land tzyx Sulfur dioxide (SO2, MW = 64.00 g mol-1) volume mixing ratio dry air tzyx air temperature tyx tropopause pressure based on blended estimate tyx 2-meter eastward wind tyx 2-meter northward wind

Time-Averaged Three-Dimensional Collections

chm_tavg_1hr_g1440x721_v36: Chemistry Fields on Tropospheric and Lower Stratospheric Model Layers

Frequency: 1-hourly centered on 00:30 UTC (time-averaged)

Spatial Grid: 3D, model-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=36, time=1

vertical level: [37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.

56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~2.9 GB

Shortname: CF01Rchm 1hrT g1440x721 V36

Start date: 00 UTC 1 January 2020

| Name | Di
m | Description | Units |
|------|---------|---|-----------|
| ACET | tzyx | Acetone (CH3C(O)CH3, MW = 58.08 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ALD2 | tzyx | Acetaldehyde (CH3CHO, MW = 44.05 g mol-1) volume mixing ratio dry air | mol mol-1 |

| ALK4 | tzyx | Lumped >= C4 Alkanes (MW = 58.12 g mol-1) volume mixing ratio dry air | mol mol-1 |
|------|------|---|-----------|
| ВСРІ | tzyx | Hydrophilic black carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ВСРО | tzyx | Hydrophobic black carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air | mol mol-1 |
| BrO | tzyx | Bromine monoxide (BrO, MW = 96.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| С2Н6 | tzyx | Ethane (C2H6, MW = 30.07 g mol-1) volume mixing ratio dry air | mol mol-1 |
| С3Н8 | tzyx | Propane (C3H8, MW = 44.10 g mol-1) volume mixing ratio dry air | mol mol-1 |
| CH4 | tzyx | Methane (CH4, MW = 16.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| СО | tzyx | Carbon monoxide (CO, MW = 28.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ClO | tzyx | Chlorine monoxide (ClO, MW = 51.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| DST1 | tzyx | Dust aerosol, Reff = 0.7 microns (MW = 29.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| DST2 | tzyx | Dust aerosol, Reff = 1.4 microns (MW = 29.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| DST3 | tzyx | Dust aerosol, Reff = 2.4 microns (MW = 29.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| DST4 | tzyx | Dust aerosol, Reff = 4.5 microns (MW = 29.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| H2O | tzyx | Water vapor (H2O, MW = 18.00 g mol-
1) volume mixing ratio dry air | mol mol-1 |
| H2O2 | tzyx | Hydrogen peroxide (H2O2, MW = 34.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| НСНО | tzyx | Formaldehyde (CH2O, MW = 30.00 g | mol mol-1 |

| | | mol-1) volume mixing ratio dry air | |
|---------|------|---|-----------|
| HNO2 | tzyx | Nitrous acid (HNO2, MW = 47.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| HNO3 | tzyx | Nitric acid (HNO3, MW = 63.00 g mol-
1) volume mixing ratio dry air | mol mol-1 |
| HNO4 | tzyx | Peroxynitric acid (HNO4, MW = 79.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| HO2_mmr | tzyx | Hydroperoxyl radical (HO2, MW = 33.01 g mol-1) mass mixing ratio total air | kg kg-1 |
| Ю | tzyx | Iodine monoxide (IO, MW = 143.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ISOP | tzyx | Isoprene (CH2=C(CH3)CH=CH2, MW = 68.12 g mol-1) volume mixing ratio dry air | mol mol-1 |
| MEK | tzyx | Methyl Ethyl Ketone (RC(O)R, MW = 72.11 g mol-1) volume mixing ratio dry air | mol mol-1 |
| MSA | tzyx | Methyl sulfonic acid (CH4SO3, MW = 96.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| N2O5 | tzyx | Dinitrogen pentoxide (N2O5, MW = 108.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NH3 | tzyx | Ammonia (NH3, MW = 17.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NIT | tzyx | Inorganic nitrates (MW = 62.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NITs | tzyx | Inorganic nitrates on surface of seasalt aerosol (MW = 31.40 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NO | tzyx | Nitrogen oxide (NO, MW = 30.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NO2 | tzyx | Nitrogen dioxide (NO2, MW = 46.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NOy | tzyx | Reactive nitrogen = NO NO2 HNO3
HNO4 HONO 2xN2O5 PAN
OrganicNitrates AerosolNitrates | mol mol-1 |

| O3 | tzyx | Ozone (O3, MW = 48.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
|------------------|------|--|-----------|
| OCPI | tzyx | Hydrophilic organic carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ОСРО | tzyx | Hydrophobic organic carbon aerosol (MW = 12.01 g mol-1) volume mixing ratio dry air | mol mol-1 |
| OH_mmr | tzyx | Hydroxyl radical (OH, MW = 17.01 g
mol-1) mass mixing ratio total air | kg kg-1 |
| PAN | tzyx | Peroxyacetyl nitrate (CH3C(O)OONO2,
MW = 121.00 g mol-1) volume mixing
ratio dry air | mol mol-1 |
| PM25_RH35_GCC | tzyx | Particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25bc_RH35_GCC | tzyx | Black carbon particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25du_RH35_GCC | tzyx | Dust particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25ni_RH35_GCC | tzyx | Nitrate particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25oc_RH35_GCC | tzyx | Organic carbon particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25soa_RH35_GCC | tzyx | Secondary organic aerosol particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25ss_RH35_GCC | tzyx | Seasalt particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PM25su_RH35_GCC | tzyx | Sulfate particulate matter with diameter below 2.5 um RH 35 | ug m-3 |
| PRPE | tzyx | Lumped >= C3 alkenes (C3H6, MW = 42.08 g mol-1) volume mixing ratio dry air | mol mol-1 |
| RCHO | tzyx | Lumped aldehyde >= C3 (CH3CH2CHO, MW = 58.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| SALA | tzyx | Fine (0.01-0.05 microns) sea salt aerosol | mol mol-1 |

| | | (MW = 31.40 g mol-1) volume mixing ratio dry air | |
|------|------|--|-----------|
| SALC | tzyx | Coarse (0.5-8 microns) sea salt aerosol (MW = 31.40 g mol-1) volume mixing ratio dry air | mol mol-1 |
| SO2 | tzyx | Sulfur dioxide (SO2, MW = 64.00 g mol-
1) volume mixing ratio dry air | mol mol-1 |
| SO4 | tzyx | Sulfate (SO4, MW = 96.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| SO4s | tzyx | Sulfate on surface of seasalt aerosol (MW = 31.40 g mol-1) volume mixing ratio dry air | mol mol-1 |

met_tavg_1hr_g1440x721_v36: Meteorological Fields on Tropospheric and Lower Stratospheric Model Layers

Frequency: 1-hourly centered on 00:30 UTC (time-averaged)

Spatial Grid: 3D, model-level, full horizontal resolution

Dimensions: longitude=1440, latitude=721, level=36, time=1

vertical level: [37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.

56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~558 MB

Shortname: CF01Rmet_1hrT_g1440x721_V36

Start date: 00 UTC 1 January 2020

| Name | Dim | Description | Units |
|----------|------|----------------------------|-------------------|
| AIRDENS | tzyx | moist air density | kg m-3 |
| BYNCY | tzyx | buoyancy of surface parcel | m s-2 |
| CAPE | tyx | cape for surface parcel | J kg-1 |
| CNV_FREQ | tyx | convective frequency | fraction |
| DELP | tzyx | pressure thickness | Pa |
| EPV | tzyx | ertels potential vorticity | K m+2
kg-1 s-1 |

| OMEGA | tzyx | vertical pressure velocity | Pa s-1 |
|--------|------|---|---------|
| PHIS | tyx | surface geopotential height | m+2 s-2 |
| PS | tyx | surface pressure | Pa |
| Q | tzyx | specific humidity | kg kg-1 |
| RH | tzyx | relative humidity after moist | 1 |
| SLP | tyx | sea level pressure | Pa |
| T | tzyx | air temperature | K |
| TH | tzyx | potential temperature | K |
| TROPPB | tyx | tropopause pressure based on blended estimate | Pa |
| U | tzyx | eastward wind | m s-1 |
| V | tzyx | northward wind | m s-1 |
| ZL | tzyx | mid layer heights | m |

xgc_tavg_1hr_g1440x721_v36: Extra GEOS-Chem Chemistry Fields on Tropospheric and Lower Stratospheric Model Layers

Frequency: 1-hourly centered on 00:30 UTC (time-averaged) **Spatial Grid:** 3D, surface-layer, full horizontal resolution **Dimensions:** longitude=1440, latitude=721, level=36, time=1

Vertical level: [37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.] (layer)

Granule Size: ~1.2 GB

 $\textbf{Shortname:} \ CF01Rxgc_1hrT_g1440x721_V36$

Start date: 00 UTC 1 January 2020

| Name | Dim | Description | Units |
|-------|------|---|-----------|
| ASOA1 | tzyx | Lumped non-volatile aerosol products of light aromatics + IVOCs (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ASOA2 | tzyx | Lumped non-volatile aerosol products of light aromatics + IVOCs (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |

| ASOA3 | tzyx | Lumped non-volatile aerosol products of light aromatics + IVOCs (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
|-------|------|---|-----------|
| ASOAN | tzyx | Lumped non-volatile aerosol products of light aromatics + IVOCs (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| C1 | tzyx | Atomic chlorine (Cl, MW = 35.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| C12 | tzyx | Molecular chlorine (Cl2, MW = 71.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| HC1 | tzyx | Hydrochloric acid (HCl, MW = 36.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| IPMN | tzyx | Peroxymethacroyl nitrate (PMN) from isoprene oxidation (CH2=C(CH3)C(O)OONO2, MW = 147.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ISOA1 | tzyx | Lumped semivolatile aer products of isoprene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ISOA2 | tzyx | Lumped semivolatile aer products of isoprene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| ISOA3 | tzyx | Lumped semivolatile aer products of isoprene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NH4 | tzyx | Ammonium (NH4, MW = 18.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| NPMN | tzyx | Non-isoprene peroxymethacroyl nitrate (PMN) (CH2=C(CH3)C(O)OONO2, MW = 147.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| PPN | tzyx | Lumped peroxypropionyl nitrate (CH3CH2C(O)OONO2, MW = 135.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| R4N1 | tzyx | R4N1 volume mixing ratio dry air | mol mol-1 |
| R4N2 | tzyx | Lumped alkyl nitrate (RO2NO, MW = 119.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| TSOA0 | tzyx | Lumped semivolatile aerosol products of monoterpene + sesquiterpene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |

| TSOA1 | tzyx | Lumped semivolatile aerosol products of monoterpene + sesquiterpene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
|-------|------|---|-----------|
| TSOA2 | tzyx | Lumped semivolatile aerosol products of monoterpene + sesquiterpene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |
| TSOA3 | tzyx | Lumped semivolatile aerosol products of monoterpene + sesquiterpene oxidation (MW = 150.00 g mol-1) volume mixing ratio dry air | mol mol-1 |

References

- Alexander, B., Allman, D.J., Amos, H.M., Fairlie, T.D., Dachs, J., Hegg, D.A., Sletten, R.S., 2012. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. J. Geophys. Res. Atmospheres 117. https://doi.org/10.1029/2011JD016773
- Alexander, B., Hastings, M.G., Allman, D.J., Dachs, J., Thornton, J.A., Kunasek, S.A., 2009. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ¹⁷O) of atmospheric nitrate. Atmospheric Chem. Phys. 9, 5043–5056. https://doi.org/10.5194/acp-9-5043-2009
- Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q., Liu, H.Y., Mickley, L.J., Schultz, M.G., 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmospheres 106, 23073–23095. https://doi.org/10.1029/2001JD000807
- Bian, H., Prather, M.J., 2002. Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models. J. Atmospheric Chem. 41, 281–296. https://doi.org/10.1023/A:1014980619462
- Buchard, V., Randles, C.A., Silva, A.M. da, Darmenov, A., Colarco, P.R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A.J., Ziemba, L.D., Yu, H., 2017. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 30, 6851–6872.
- Carn, S., 2019. Multi-Satellite Volcanic Sulfur Dioxide L4 Long-Term Global Database V3. https://doi.org/10.5067/measures/so2/data404
- Carpenter, L.J., Shaw, M.D., Parthipan, R., Wilson, J., MacDonald, S.M., Kumar, R., Saunders, R.W., Plane, J.M.C., 2013. Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat. Geosci. 6, 108–111.
- Chen, Q., Schmidt, J.A., Shah, V., Jaeglé, L., Sherwen, T., Alexander, B., 2017. Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets. Geophys. Res. Lett. 44, 7069–7078. https://doi.org/10.1002/2017GL073812
- Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B.N., Duncan, B.N., Martin, R.V., Logan, J.A., Higurashi, A., Nakajima, T., 2002. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmospheric Sci. 59, 461–483.
- Colarco, P., da Silva, A., Chin, M., Diehl, T., 2010. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmospheres 115, D14207. https://doi.org/10.1029/2009JD012820
- Darmenov, A.S., da Silva, A., 2015. The Quick Fire Emissions Dataset (QFED)—
 Documentation of versions 2.1, 2.2 and 2.4. Technical Report Series on Global Modeling and Data Assimilation. NASA//TM-2015-104606, Vol. 38, 212 pp.
- Eastham, S.D., Weisenstein, D.K., Barrett, S.R.H., 2014. Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-

- transport model GEOS-Chem. Atmos. Environ. 89, 52-63.
- Fairlie, T.D., Jacob, D.J., Park, R.J., 2007. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 41, 1251–1266. https://doi.org/10.1016/j.atmosenv.2006.09.048
- Fischer, E.V., Jacob, D.J., Yantosca, R.M., Sulprizio, M.P., Millet, D.B., Mao, J., Paulot, F., Singh, H.B., Roiger, A., Ries, L., Talbot, R.W., Dzepina, K., Pandey Deolal, S., 2014. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chem. Phys. 14, 2679–2698. https://doi.org/10.5194/acp-14-2679-2014
- Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K⁺–Ca²⁺–Mg²⁺–NH₄ ⁺–Na⁺–SO₄ ²–NO₃ ⁻–Cl⁻–H₂O aerosols. Atmospheric Chem. Phys. 7, 4639–4659.
- Gong, S.L., 2003. A parameterization of sea-salt aerosol source function for sub- and supermicron particles. Glob. Biogeochem. Cycles 17. https://doi.org/10.1029/2003GB002079
- Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492.
- Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C., Cohen, R.C., 2012. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmospheric Chem. Phys. 12, 7779–7795. https://doi.org/10.5194/acp-12-7779-2012
- Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., Lin, J.-T., 2011. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chem. Phys. 11, 3137–3157.
- Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., Li, M., 2015. HTAP v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chem. Phys. 15, 11411–11432.
- Johnson, M.T., 2010. A numerical scheme to calculate temperature and salinity dependent airwater transfer velocities for any gas. Ocean Sci. 6, 913–932. https://doi.org/10.5194/os-6-913-2010
- Keller, C.A., Knowland, K.E., Duncan, B.N., Liu, J., Anderson, D.C., Das, S., Lucchesi, R.A., Lundgren, E.W., Nicely, J.M., Nielsen, E., Ott, L.E., Saunders, E., Strode, S.A., Wales, P.A., Jacob, D.J., Pawson, S., 2021. Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0. J. Adv. Model. Earth Syst. 13. https://doi.org/10.1029/2020MS002413
- Keller, C.A., Long, M.S., Yantosca, R.M., Da Silva, A.M., Pawson, S., Jacob, D.J., 2014. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev. 7, 1409–1417.
- Knowland, K.E., Keller, C.A., Wales, P.A., Wargan, K., Coy, L., Johnson, M.S., Liu, J., Lucchesi, R.A., Eastham, S.D., Fleming, E.L., Liang, Q., Leblanc, T., Livesey, N.J., Walker, K.A., Ott, L.E., Pawson, S., 2021. NASA GEOS Composition Forecast

- Modeling System GEOS-CF v1.0: Stratospheric composition (preprint). Atmospheric Sciences. https://doi.org/10.1002/essoar.10508148.1
- Liu, F., Choi, S., Li, C., Fioletov, V.E., McLinden, C.A., Joiner, J., Krotkov, N.A., Bian, H., Janssens-Maenhout, G., Darmenov, A.S., da Silva, A.M., 2018. A new global anthropogenic SO₂ emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions. Atmospheric Chem. Phys. 18, 16571–16586. https://doi.org/10.5194/acp-18-16571-2018
- Long, M.S., Yantosca, R., Nielsen, J.E., Keller, C.A., da Silva, A., Sulprizio, M.P., Pawson, S., Jacob, D.J., 2015. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models. Geosci. Model Dev. 8, 595–602.
- Lucchesi, R., 2015. File Specification for GEOS-5 FP-IT. GMAO Office Note No. 2 (Version 1.4) 64 pp.
- Mao, J., Jacob, D.J., Evans, M.J., Olson, J.R., Ren, X., Brune, W.H., Clair, J.M.St., Crounse, J.D., Spencer, K.M., Beaver, M.R., Wennberg, P.O., Cubison, M.J., Jimenez, J.L., Fried, A., Weibring, P., Walega, J.G., Hall, S.R., Weinheimer, A.J., Cohen, R.C., Chen, G., Crawford, J.H., McNaughton, C., Clarke, A.D., Jaeglé, L., Fisher, J.A., Yantosca, R.M., Le Sager, P., Carouge, C., 2010. Chemistry of hydrogen oxide radicals (HO_x) in the Arctic troposphere in spring. Atmospheric Chem. Phys. 10, 5823–5838. https://doi.org/10.5194/acp-10-5823-2010
- Mao, J., Paulot, F., Jacob, D.J., Cohen, R.C., Crounse, J.D., Wennberg, P.O., Keller, C.A., Hudman, R.C., Barkley, M.P., Horowitz, L.W., 2013. Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. J. Geophys. Res. Atmospheres 118, 11,256-11,268.
- Marais, E.A., Jacob, D.J., Jimenez, J.L., Campuzano-Jost, P., Day, D.A., Hu, W., Krechmer, J., Zhu, L., Kim, P.S., Miller, C.C., Fisher, J.A., Travis, K., Yu, K., Hanisco, T.F., Wolfe, G.M., Arkinson, H.L., Pye, H.O.T., Froyd, K.D., Liao, J., McNeill, V.F., 2016. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO₂ emission controls. Atmospheric Chem. Phys. 16, 1603–1618.
- Murray, L.T., Jacob, D.J., Logan, J.A., Hudman, R.C., Koshak, W.J., 2012. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. Atmospheres 117, D20307. https://doi.org/10.1029/2012JD017934
- Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R.C., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387. https://doi.org/10.1029/1999GB900091
- Oda, T., Maksyutov, S., Andres, R.J., 2017. The Open-source Data Inventory for Anthropogenic Carbon dioxide (CO₂), version 2016 (ODIAC2016): A global, monthly fossil-fuel CO₂ gridded emission data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data Discuss. 2017, 1–31.
- Orbe, C., Oman, L.D., Strahan, S.E., Waugh, D.W., Pawson, S., Takacs, L.L., Molod, A.M.,

- 2017. Large-Scale Atmospheric Transport in GEOS Replay Simulations. J. Adv. Model. Earth Syst. 9, 2545–2560.
- Parrella, J.P., Jacob, D.J., Liang, Q., Zhang, Y., Mickley, L.J., Miller, B., Evans, M.J., Yang, X., Pyle, J.A., Theys, N., Van Roozendael, M., 2012. Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury. Atmospheric Chem. Phys. 12, 6723–6740. https://doi.org/10.5194/acp-12-6723-2012
- Pye, H.O.T., Chan, A.W.H., Barkley, M.P., Seinfeld, J.H., 2010. Global modeling of organic aerosol: the importance of reactive nitrogen (NO_x and NO₃). Atmospheric Chem. Phys. 10, 11261–11276. https://doi.org/10.5194/acp-10-11261-2010
- Pye, H.O.T., Liao, H., Wu, S., Mickley, L.J., Jacob, D.J., Henze, D.K., Seinfeld, J.H., 2009. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res. Atmospheres 114, D01205. https://doi.org/10.1029/2008JD010701
- Randles, C.A., Silva, A.M. da, Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J., 2017. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 30, 6823–6850.
- Sandu, A., Sander, R., 2006. Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmospheric Chem. Phys. 6, 187–195. https://doi.org/10.5194/acp-6-187-2006
- Schultz, M.G., Heil, A., Hoelzemann, J.J., Spessa, A., Thonicke, K., Goldammer, J.G., Held, A.C., Pereira, J.M.C., van het Bolscher, M., 2008. Global wildland fire emissions from 1960 to 2000. Glob. Biogeochem. Cycles 22, GB2002.
- Sherwen, T., Schmidt, J.A., Evans, M.J., Carpenter, L.J., Gro\s smann, K., Eastham, S.D., Jacob, D.J., Dix, B., Koenig, T.K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A.S., Ordóñez, C., 2016. Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chem. Phys. 16, 12239–12271.
- van der Gon, H.D., Hendriks, C., Kuenen, J., Segers, A., Visschedijk, A., 2011. TNO Report: Description of current temporal emission patterns and sensitivity of predicted AQ for temporal emission patterns. TNO, Utrecht, The Netherlands.
- Wang, Q., Jacob, D.J., Spackman, J.R., Perring, A.E., Schwarz, J.P., Moteki, N., Marais, E.A., Ge, C., Wang, J., Barrett, S.R.H., 2014. Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. J. Geophys. Res. Atmospheres 119, 195–206.
- Wargan, K., Pawson, S., Olsen, M.A., Witte, J.C., Douglass, A.R., Ziemke, J.R., Strahan, S.E., Nielsen, J.E., 2015. The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data: UTLS Ozone from Assimilation. J. Geophys. Res. Atmospheres 120, 2013–2036. https://doi.org/10.1002/2014JD022493
- Zender, C.S., Bian, H., Newman, D., 2003. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. Atmospheres 108. https://doi.org/10.1029/2002JD002775

Zhang, L., Kok, J.F., Henze, D.K., Li, Q., Zhao, C., 2013. Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution. Geophys. Res. Lett. 40, 3270–3275. https://doi.org/10.1002/grl.50591

Web Resources

GMAO web site: https://gmao.gsfc.nasa.gov/

OpeNDAP Software Description: https://www.opendap.org/
CF NetCDF Standard Description: https://cf-trac.llnl.gov/trac

COARDS Description: https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions