Process and Supporting Tools for Conducting

Technology Readiness Assessments 30 Apr 04

Mick Hitchcock, Deputy AFRL/AE

Briefing Outline

- Tech Readiness Assessment (TRA) vs Tech Readiness Level (TRL)
- Candidate TRA process
- Supporting Tools
 - TRL Calculator a 1st Start
 - Systems Engineering Based TRA Tool
- Summary

TRL Scale <u>Current Driver For TRAs</u>

Technology Readiness Levels (TRLs)

- 9. Actual system "flight proven" through successful miss operations
- 8. Actual system completed and "flight qualified" throug and demonstration
- 7. System prototype demonstration in a operational envi
- 6. System/subsystem model or prototype demonstration relevant environment
- 5. Component and/or breadboard validation in relevant environment
- 4. Component and/or breadboard validation in laboratory environment
- 3. Analytical and experimental critical function and/or characteristic proof of concept
- 2. Technology concept and/or application formulated
- 1. Basic principles observed and reported

Subjective and Incomplete

TRA >> TRL

Documented TRA Criteria

Tech Readiness Level (TRL)

Current:
Performance
Driven

Customer Needs Set Con

Example TRA Elements

- Performance (TRL)
- Design Maturity
- Producibility
- Industrial Base Capability
- Maintainability
- Parts obsolescence
- Survivability
- Sustainability
- Schedule
- Costs
- ...

How do
we
capture
these
critical
elements
in an
efficient
process?

However, Many Other Factors Influence The "Readiness" of a Technology

DEVELOPMENT

Ref: Boeing Technical Interface Meeting, with AFRL. 9 Dec 03

Candidate TRA Process - First

Phase

Establishing Key Maturation Parameters - Where Do I Need To Focus?

Candidate TRA Process - Second Phase

AFRL Developed TRL Calculator*

MRL 9

* Developed by Mr. William Nolte -AFRL/SN

TRL 9

Yellow Level Achieved

PRL 9

Example TRL 5 Criteria

H/SW	Ques					
Both	Catgry	% Co	omplete TRL 5 (Check all that apply or use sliders)			
В	Т	1	Þ	10(Cross technology e		Cross technology effects (if any) identified and established through analysis
Н	М	1	100		V.	Pre-production hardware available
В	Т	1	•	100	\.\.	System interface requirements known
В	Р	1	•	100	.V.	System requirements flow down through work breakdown structure (systems engineering begins)
S	T	•	•	100	V.	System software architecture established
Н	М			100	₹.	Targets for improved yield established
S	Т		•	100	∵.	External interfaces described as to source, format, structure, content, and method of support
S	Т	•	•	100	\.\.	Analysis of internal interface requirements completed
Н	М	1	•	100	V.	Trade studies and lab experiments define key manufacturing processes
В	Т	4	•	100	V.	Interfaces between components/subsystems are realistic (Breadboard with realistic interfaces)
Н	М	1	•	100	V.	Significant engineering and design changes
S	Т	1	Þ	100	₹.	Coding of individual functions/modules completed
Н	М	1	•	100	V.	Prototypes have been created
Н	М	1	•	100	₹.	Tooling and machines demonstrated in lab
В	Т	1)	100	∵.	High fidelity lab integration of system completed, ready for test in realistic/simulated environments
Н	М	1	•	100	V.	Design techniques have been defined to the point where largest problems defined
Н	Р	1	•	100	V.	Form, fit, and function for application addressed in conjunction with end user development staff
Н	Т	4	•	100	V.	Fidelity of system mock-up improves from breadboard to brassboard
В	М	1	•	100	∵.	Quality and reliability considered, but target levels not yet established
Н	М	4	•	100	∵.	Some special purpose components combined with available laboratory components
Н	Р	1	•	100	Ÿ.	Three view drawings and wiring diagrams have been submitted
В	Т	1	•	100	V.	Laboratory environment modified to approximate operational environment

AFRL Is Investing In a Tool For Assisting with the TRA

Dynamic Insight® is a commercially available from James Gregory Associates

Captures "Tech Readiness" And Maturation Concerns

Embodies The Systems Engineering Process

Communication Tool For Stakeholders (SPO, Contractor, S&T)

Allows for Effective Trade-Offs & Provides Traceability For Decisions

Summary

- The process for conducting TRAs does not appear to be well defined
- TRL's are not sufficient for defining the true readiness of a technology:
 - Good 1st cut self assessment
 - Satisfy management's need for a "go, no-go" number
 - Does not address production, sustainment, system unique issues/relationships, etc
- The time is right to establish a more analytical, self documenting approach for conducting Tech Readiness Assessments
 - Responds to pressure to implement Systems Eng. & Expectation Mgmt
 - Builds on ACE role
 - Commercial tool is available that can be tailored to this application
- AFRL/AE is making the investment to demonstrate the concepts in practice – with small set of select SPOs and "constructed" examples
- Opportunity exists for ACE community to contribute to and guide the implementation of the enhanced process and tools.

We would appreciate your input and quidance

Back Up Slides

TRA Tool for **Acquisition and Tech Development***

Program

Notional C-17 Technology Deployment Requirements

Custome C-17 SPO

Rom	Customer	Requirement	Priority	How Measured	Objective	Lower Threshold	Upper Threshold	Туре	Description	How tested	Objective Rationale
	C-17 SPO	Reduced Procurement Cost	High	Percent	30	12		Coct	Procurement cost of one C-17.		
	C-17 SPO	Reduced Life Cycle Cost	High	Percent Savings over Baseline Configuration	15	6		Cost			
	C-17 SPO	Durability	High	Number Life times of C-17	4	2					
	C-17 SPO	Supportability	Medium	Scale 1 - 5	5	4	.ogis	stics S	Support :. Scale defined: d; 3=New tools or		
	C-17 SPO	Skills Required	High	Scale 1 - 5	5	3	N/1-:		Skills required to maintain new technology after insertion. Scale Definition: 1=Complete remail training required; required		Ideal situation is to replace old component with a component that requires no special skills, training, etc.
	C-17 SPO	мтвм	High	Hours			<u>Iviai</u>	ntain	ability ammed maintenance		
	C-17 SPO	Inspection	Medium	Scale 1 - 5	5	3		Maintainability	Scale Defined: 1⊨nspection not possible; 3⊨nspection by NDE methods only; 5⊨nspection by NDE and visual.		
	C-17 SPO	Weight	High	Scale 1 - 5	5	3		Performance	Weight of new component compared to current component. Scale Definition: 1—Heavier than old component; 3=Same weight as old component; 5=Lighter than old component.		Ideal solution will be lighter than old component.
	C-17 SPO	Structural Arrangement	High	Scale 1 - 5	5	3	Per	form	Overall structural arrangement must remain the came. Scale Deficition: 1=Major modification new component: 3=Slight ired to install component in replacement.		Ideal situation is a drop-in replacement.
	C-17 SPO	Strength	High	Scale 1 - 5	5	3		Performance	Strength; 5=Better strength; 3=Same		Ideal situation is to improve structural strength.
	C-17 SPO	MTBF	High	Hours				Performance			Ideal component will have better MTBF than current component.
	C-17 SPO	Margin of Safety	High	Percent				Performance			
	C-17 SPO	Procurement Lead Time	High	Months				Producibility	Time between order placement and receipt of material		
	C-17 SPO	Industrial Base	High	Scale 1 - 5	5	3	Pro	oduci	Product availability and product reproducibility. Scale Definition: 5 = Multiple vendors with high process capability; 3= one dedicated line and high 2=material is available per atted line) and achieves ty control standards; 1 =		Ideal situation where product is a standard product line with adequate process controls.
	C-17 SPO	TRL	High	Level 1 - 9				Producibility	NASA Recognized TRL Levels.		
	C-17 SPO	MRL	High	Level 1 - 9				Producibility	Manufacturing Readiness Level		
	C-17 SPO	FirstTime Yield	High	Percent	100	95		Producibility	Product quality. Form, fit, and function.		
	C-17 SPO	Tooling Impact	High	Scale 1 - 5	5	3		Producibility	Scale Defined: 5= ully understood at System Level to include cost impacts; 3=Partial understanding at system level; 1=No		
	C-17 SPO	Insertion Date	High	P Number and or Date of Block				Schedule	The Aircraft number on which the technology can expected to be ready for insertion.		
	C-17 SPO	Complete Process Documentation	High	Months prior to PDR			S	ched	Process docmentation. (DPS/DMS).		
	C-17 SPO	Model Based Enterprise	High	Months prior to CDR				Schedule	Complete team must acquire 3-D data, control 3- D data, use 3-D, and inspect 3-D data		

Proposed Platform for Change

Example - TRL 4 Criteria

H/SW	Ques										
Both	Catory	%	6 Comp	ete		TRL 4 (Check all that apply or use slider for % complete)					
В	Т	•	•	100	$ \sqrt{} $	Cross technology issues (if any) have been fully identified					
н	М	•	•	100		Ad hoc and available laboratory components are surrogates for system components					
Н	Т	•	•	100	$ \sqrt{} $	Individual components tested in laboratory/by supplier (contractor's component acceptance testing)					
Н	М	4	•	100		Piece parts and components in a pre-production form exist					
Н	Т	•	•	TOO		M&S used to simulate some components and interfaces between components					
S	T	•	•	100		Formal system architecture development begins					
В	Р	•)	100		Customer publishes requirements document					
В	T	•		100	⊻	Overall system requirements for end user's application are known					
В	Р	•	<u> </u>	TOO		System performance metrics have been established					
S	Т	•		100		Analysis provides detailed knowledge of specific functions software needs to perform					
В	P	•	•	100	⊻	Laboratory requirements derived from system requirements are established					
н	М	•	•	LUC	✓	Available components assembled into system breadboard					
н	Т	•	<u> </u>	TOO	V	Laboratory experiments with available components show that they work together (lab kludge)					
S	T	4	•	11(0,0)	<u> </u>	Requirements for each function established					
S	T	4	•	TOO	<u> </u>	Algorithms converted to pseudocode					
S	T	4	•	TOO	_	Analysis of data requirements and formats completed					
S	T	4		100]	Stand-alone modules follow preliminary system architecture plan					
Н	T	•	•	TOO		Hardware in the loop/computer in the loop tools to establish component compatibility					
S	М	1	<u> </u>	170,0		Designs verified through formal inspection process					
В	Р	4		100		S&T exit criteria established					
В	Т	•	<u> </u>	100	√	Technology demonstrates basic functionality in simplified environment					

Providing English-Like Tool Interface

A CORCE RESERRON UNCORPORT

IPPD Navigator - for Dynamic Insight

Capture TRA experience in database for future use

