矩阵理论作业9

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 26 日

1. 59 页习题 4

Lemma 0.1. 正交矩阵可以由若干镜面反射矩阵相成得到

证明. 设 $Q \in M_n(\mathbb{R})$, $Q = (q_1, q_2, \dots, q_n)$. 由于 $(q_1, q_1) = 1$,故存在镜面反射矩阵 U_1 使得 $U_1q_1 = e_1 := (1, 0, \dots, 0)^{\mathsf{T}}$. 对于任意 $j \neq 1$, $(U_1q_j, U_1q_1) = q_j^{\mathsf{T}}U_1U_1q_1 = q_j^{\mathsf{T}}q_1 = 0$,所以 $U_1q_j = (0, *, \dots, *)^{\mathsf{T}}$,即第一个分量必然为 0. 从而有

$$U_1Q = (U_1q_1, U_1q_2, \cdots, U_1q_n) = \begin{bmatrix} 1 & 0 \\ 0 & Q' \end{bmatrix}$$

由于镜面反射变换不改变内积,即 $(U_1q_i,U_1q_j)=(q_i,q_j)$,故 Q' 是 n-1 阶的正交矩阵。归纳地进行下 去即可得到 $U_{n-1}\cdots U_2U_1Q=E_n$,即 $Q=U_1U_2\cdots U_{n-1}$.

对于正交变换 σ 它在 V 的一组标准正交基 η_1, \dots, η_n 下对应于矩阵 Q, 容易验证 Q 是正交矩阵。

那么 $\sigma(\eta_1, \dots, \eta_n) = (\eta_1, \dots, \eta_n)Q = (\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1}$, 其中 U_i 是镜面反射矩阵

在标准正交基 η_1, \dots, η_n 下,镜面反射矩阵 U_1 对应于镜面反射变换 σ_1 ,于是 $(\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1} = \sigma_1(\eta_1, \dots, \eta_n)U_2 \dots U_{n-1}$. 由于镜面反射变换不改变内积,故而 $\sigma_1(\eta_1, \dots, \eta_n)$ 仍是一组标准正交基,不妨设 U_2 在 $\sigma_1\{\eta_i\}$ 下对应于镜面反射变换 σ_2 ,则有 $(\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1} = (\sigma_2\sigma_1)(\eta_1, \dots, \eta_n)U_3 \dots U_{n-1}$. 归纳地进行下去,假设镜面反射矩阵 U_{i+1} 在 $(\sigma_i \dots \sigma_1)(\eta_1, \dots, \eta_n)$ 这一标准正交基下对应于镜面反射变换 σ_{i+1} ,则最终得到

$$\sigma(\eta_1, \cdots, \eta_n) = (\sigma_{n-1}\sigma_{n-2}\cdots\sigma_1)(\eta_1, \cdots, \eta_n)$$

这就构造出了 $\sigma = \sigma_{n-1}\sigma_{n-2}\cdots\sigma_1$.

似乎证复杂了,实际上只需要假设 U_i 在 (η_1, \cdots, η_n) 下对应于镜面反射变换 σ_i , 即可得到 $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{n-1}$

2. 60 页习题 8

方便起见,这里先证明第 2 问的结论,以说明 τ 的存在性,再回到第 1 问,补充证明其唯一性: σ 在基 $V=(v_1,v_2,\cdots,v_n)$ 下对应于矩阵 A,取 τ 为在这组基下 A^* 对应的线性变换,任取 $v=(v_1,\cdots,v_n)\alpha$, $w=(v_1,\cdots,v_n)\beta$,则 $\sigma v=(v_1,\cdots,v_n)A\alpha$, $\tau w=(v_1,\cdots,v_n)A^*\beta$.

计算得到 $[\sigma v, w] = \alpha^* A^* V^* V \beta$, $[v, \tau w] = \alpha^* V^* V A^* \beta$.

实际上应该需要增加 (v_1, \cdots, v_n) 是标准正交基的条件,以保证 $V^\star V = E$,从而有 $[\sigma v, w] = [v, \tau w]$.

下面验证这样的 τ 的唯一性: 假设 τ_1, τ_2 都满足 $[\sigma v, w] = [v, \tau_i w], \forall v, w \in V, i = 1, 2.$

构造线性变换 $\tau': x \to \tau_1 x - \tau_2 x$, 则有 $\forall v, w \in V, [v, \tau'w] = 0$. 取 $v = \tau'w$ 即有对任意的 $w \in V$, $[\tau'w, \tau'w] = 0$, $\tau'w = 0$, 这就验证了 $\tau' = \tau_1 - \tau_2$ 是零线性变换, 故 $\tau_1 = \tau_2$.

若 $σσ^* = σ^*σ$ 则称 σ 是正规线性变换,这一定义当然与正规矩阵的概念和谐。因为正规矩阵是指使得 $AA^* = A^*A$ 成立的矩阵,而在标准正交基下,线性变换与矩阵是对应的。

3. 63 页习题 3

⇒: 由教材 62 页命题 3.4.3 直接可得;

⇐:

Lemma 0.2. 如果 $V = A \oplus W_A = B \oplus W_B$, 且有 $B \subseteq W_A$, 那么 $W_A = B \oplus (W_A \cap W_B)$.

证明. 显然有 $W_A \cap W_B \subseteq W_B$ 与 B 的交集为 $\{0\}$, 所以 $B + (W_A \cap W_B) = B \oplus (W_A \cap W_B)$.

考虑到 $B \subseteq W_A$, $(W_A \cap W_B) \subseteq W_A$, 所以 $B \oplus (W_A \cap W_B) \subseteq W_A$. 下验证 $W_A \subseteq B \oplus (W_A \cap W_B)$: 对于任意 $v \in W_A \subseteq V = B \oplus W_B$, $v = b + w_b$, 其中 $b \in B$, $w_b \in W_B$. 假设 w_b 在 $V = A \oplus W_A$ 下表示为 $w_b = a + w_a$, $a \in A$, $w_a \in W_A$, 那么有 $v = b + a + w_a$. 由于 $b \in B \subseteq W_A$, $w_a \in W_A$, W_A 是线性空间,所以 $a = v - b - w_a \in W_A$,又 $a \in A$,所以 a = 0. 从而 $w_b = w_a \in W_A$,即 $w_b \in (W_A \cap W_B)$. 这就验证了 W_A 中任意的 v 可以表示为 $v = b + w_b$,其中 $b \in B$, $w_b \in (W_A \cap W_B)$.

假设 $\lambda \in \sigma$ 在 V 下的某一个特征值,设 $A = \{v \in V | \sigma v = \lambda v\}$.

如果 $\dim A = \dim V$, 那么 σ 在某组基下对应于对角阵 λE .

如果 $0 < \dim A < \dim V$,显然 A 是一个 σ -子空间,根据题设,它存在 σ -子空间直和补 W_A , $V = A \oplus W_A$.由 Lemma 0.2 可知 W_A 也满足"每个 σ -子空间都有一个 σ -子空间直和补",因为对于 W_A 的 σ -子空间 B,在 V 上存在 σ -子空间直和补 W_B ,从而可以构造 W_A 上的 σ -子空间直和补 $W_A \cap W_B$.由于 $\dim W_A < \dim V$,归纳地进行下去,即可证得 σ 在 W_A 的某个基下对应于对角阵 $\Lambda_{\dim W_A}$,从而证得 σ 在 V 的某组基下对应于对角阵 $\Lambda_{\dim W_A}$

4. 63 页习题 4

- (1) 这里利用 Jordan 标准型的唯一性来说明: 假设对于 V 的某个非平凡的 σ -子空间 W, 存在 σ -子空间直和补 W', 那么假设 $w_1, \cdots w_r$ 是 W 的一组基, $0 < r < n, w_{r+1}, \cdots, w_n$ 是 W' 的一组基,则有 $\sigma(w_1, \cdots, w_r, w_{r+1}, \cdots, w_n) = (w_1, \cdots, w_r, w_{r+1}, \cdots, w_n) \begin{bmatrix} A \\ B \end{bmatrix}$. 其中 A 是 r 阶方阵,B 是 n-r 阶方阵。于是 $J = \lambda E_n + E_{12} + \cdots + E_{n-1,n}$ 相似于 $\begin{bmatrix} A \\ B \end{bmatrix}$ 以及相似于它的 Jordan 标准型 $\begin{bmatrix} J_A \\ J_B \end{bmatrix}$. 这与方阵的 Jordan 标准型唯一相矛盾,所以对于 V 的任意非平凡 σ -子空间不存在 σ -子空间直和补。
- (2) 不妨将这组基显式地设出来 $\{\alpha_i\}$, $\sigma(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)J$. 下面归纳地证明: 若 W 是 V 的一个维数不少于 k 的 σ -子空间,那么 $\alpha_i\in W, \forall i\leq k$. 证明.

- i. 对于 k=1, 由于 W 维数至少为 1, 故存在 $W\ni v=\sum_i c_i\alpha_i$, 使得至少有一个 $c_i\neq 0$. 设 j 是使 $c_j\neq 0$ 成立的最大下标。考虑到 W 也是 $\tau=\sigma-\lambda I_V$ 不变的,又有 $\tau\alpha_1=0, \tau\alpha_{i+1}=\alpha_i, i\geq 1$, 故 $\tau^{j-1}v=c_j\alpha_1\in W$, 从而得到 $\alpha_1\in W$.
- ii. 若 W 是 V 的一个维数不少于 k+1 的 σ -子空间,那么存在 W \ni $v = \sum_i c_i \alpha_i$,使得至少有 k+1 个 $c_i \neq 0$ (否则 W 的维数不超过 k). 设 j 是使得 $c_j \neq 0$ 成立的最大下标,显然有 $j \geq k+1$ 。同样 地,构造 $\tau = \sigma \lambda I_V$,显然 W 也是 τ 不变的。由于 $\tau^{j-k-1}v = c_j \alpha_{k+1} + \sum_{i>j-k-1} c_i \alpha_{i-(j-k-1)} = c_j \alpha_{k+1} + v' \in W$,其中 $v' \in \operatorname{span}\{\alpha_1, \cdots, \alpha_k\}$.由归纳假设知, $\operatorname{span}\{\alpha_1, \cdots, \alpha_k\} \subseteq W$ (由 W 维数不少于 k 推知),故而 $\alpha_{k+1} \in W$.

由上述命题可知, σ -子空间有且仅有 $\{0\}$ 以及 $\mathrm{span}\{\alpha_1, \cdots, \alpha_i\}$ 其中 $1 \leq i \leq n$. 事实上由这一命题也能推出本题 (1) 问中的结论。

5. 63 页习题 6

由本次作业第 2 题 (60 页习题 8) 可知, σ 是正规变换,当且仅当它在某一组标准正交基 $\alpha_1, \dots, \alpha_n$ 下对应的矩阵 A 是正规矩阵。而由正规矩阵基本定理可知,正规矩阵 A 可以酉对角化,即存在酉矩阵 U, $UAU^* = \Lambda$. 所以这等价于 σ 在某组标准正交基,即 $(\alpha_1, \dots, \alpha_n)U^*$ 下,对应于对角矩阵 $\Lambda = UAU^*$.

那么由教材 61 页引理 3.4.2 可知,设 $\lambda_1, \dots, \lambda_r$ 是 σ 的互异的特征值,则 $V = \bigoplus_{i=1}^r V_i$,其中 $V_i = \{v \in V | \sigma v = \lambda_i v\}$. 再仿照教材 62 页命题 3.4.3 的方法,可将 W 分解为 $W = \bigoplus_i (W \cap V_i)$. 考虑到对于 $W \cap V_i$,其在 V_i 中存在正交补 $(W \cap V_i)^{\perp}$ (对 V_i 中的特征向量做正交化即可构造),显然 $(W \cap V_i)^{\perp}$ 也是 σ 不变的。于是可以构造 $W^{\perp} = \bigoplus_i (W \cap V_i)^{\perp}$,且它是 σ -子空间。