NIZOVI I REDOVI

Vježbe 9

Niz realnih brojeva je svaka funkcija $a : \mathbb{N} \to \mathbb{R}$.

Broj a_n nazivamo općim članom niza.

Realan broj L je granična vrijednost ili limes niza (a_n) ako vrijedi:

$$(\forall \epsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})n \geq n_0 \Rightarrow |a_n - L| < \epsilon$$

Pišemo $\lim_{n\to\infty} a_n = L$.

Niz može imati najviše jedan limes. Ako niz ima limes kažemo da konvergira, a ako nema tada on divergira.

Niz (a_n) divergira prema $+\infty$ ako vrijedi:

$$(\forall r > 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})n \geq n_0 \Rightarrow a_n > r$$

Niz (a_n) divergira prema $-\infty$ ako vrijedi:

$$(\forall r < 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})n \geq n_0 \Rightarrow a_n < r$$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ○

NIZOVI I REDOVI Vježbe 9 2 / 12

Primjer. Ispitajte konvergenciju nizova:

$$a_n = \frac{2n^3 - 1}{3 - n^3}$$

$$a_n = \frac{(n+1)(3^n+1)}{2 \cdot 3^n + 1}$$

Red realnih brojeva je uredjeni par $((a_n),(S_k))$ koji se sastoji od nizova (a_n) i (S_k) , pri čemu je $S_k=a_1+a_2+...+a_k$ koju nazivamo k-ta parcijalna suma.

Red zapisivamo kao $\sum_{n=1}^{\infty} a_n$ Primjer. Ispišite članove reda:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{e^n}$$

NIZOVI I REDOVI Vježbe 9 4 / 12

NUŽAN UVJET KONVERGENCIJE. Ako red $\sum_{n=1}^{\infty} a_n$ konvergira onda vrijedi

$$\lim_{n\to\infty}a_n=0$$

Kriteriji konvergencije:

- Poredbeni kriterij
- D'Alembertov kriterij
- Cauchyev kriterij
- Leibnizov kriterij
- Raabeov kriterij

NIZOVI I REDOVI Vježbe 9 5 / 12

D'Alembertov kriterij.Neka je $\sum_{n=1}^{\infty} a_n$ red pozitivnih članova. Ako postoji

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d$$

onda vrijedi:

- Ako je d < 1 red konvergira
- ② Ako je d > 1 red divergira
- 3 Ako je d=1 nema odluke
- 1. Ispitajte konvergenciju redova:

a)

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}$$

b)

$$\sum_{n=1}^{\infty} \frac{n!}{2^n + 1}$$

6 / 12

NIZOVI I REDOVI Vježbe 9

c)

$$\sum_{n=1}^{\infty} \frac{3 \cdot 2^{n-1}}{\sqrt[3]{n}}$$

Cauchyev kriterij. Neka je $\sum_{n=1}^{\infty} a_n$ red nenegativnih članova. Ako postoji

$$\lim_{n\to\infty}\sqrt[n]{a_n}=c$$

onda vrijedi:

- **1** Ako je c < 1 red konvergira
- 2 Ako je c > 1 red divergira
- 3 Ako je c = 1 nema odluke

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 釣り(で)

NIZOVI I REDOVI Vježbe 9 7 / 12

2. Ispitajte konvergenciju redova:

a)

$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$$

b)

$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^{n(n+1)}$$

c)

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{n}{n+1} \right)^{-n^2}$$

NIZOVI I REDOVI

8 / 12

Raabeov kriterij.Neka je $\sum_{n=1}^{\infty} a_n$ red pozitivnih članova. Ako postoji

$$\lim_{n\to\infty} n \cdot \left[\frac{a_n}{a_{n+1}} - 1 \right] = g$$

onda vrijedi:

- Ako je g > 1 red konvergira
- Ako je g < 1 red divergira
- Ako je g = 1 nema odluke

Raabeov kriterij koristimo kad zakaže D'Alembertov kriterij.

1. Ispitajte konvergenciju reda:

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

NIZOVI I REDOVI Vježbe 9 9 / 12

Red potencija. Red funkcija oblika

$$a_0 + a_1(x - x_0) + ... + a_n(x - x_0)^n + ...$$

ili kraće

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

zovemo redom potencija gdje su a_n njegovi koeficijenti, a x_0 realna konstanta.

Radijus konvergencije reda potencija je broj:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

ili

$$r = \frac{1}{\limsup \sqrt[n]{|a_n|}}$$

Red $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ konvergira apsolutno za svaki $x \in (x_0-r,x_0+r)$, a divergira za svaki $x \in (-\infty,x_0-r) \cup (x_0+r,\infty)$. Interval (x_0-r,x_0+r) naziva se interval konvergencije reda potencija.

1. Odredi radijus i interval konvergencije redova:

•

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \cdot 2^n}$$

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{(2n+1)(2n+3)}$$

NIZOVI I REDOVI Vježbe 9 11 / 12

Taylorov red. Neka funkcija f ima na intervalu (a,b) derivacije proizvoljnog reda. Tada za proizvoljnu točku x_0 iz (a,b) i za svaki x iz (a,b) vrijedi:

$$f(x) = f(x_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

Ovaj red potencija zove se Taylorov red u točki x_0 .

Ako je $x_0 = 0$ tada imamo Maclaurenov red.

- 1. Odredite razvoj funkcije $\sin x$ u red po potencijama od x i odredite područje konvergencije.
- 2. Odredite razvoj funkcije $e^{\frac{x}{2}}$ u red po potencijama od x-2 i odredite područje kovergencije reda.

NIZOVI I REDOVI Vježbe 9 12 / 12