### Matrices and composition

Now let's go back and see how this works for matrices representing relations





R< {1,-106} x {1,-,50} S < {1,-50} x

Simplify the examp \$1 \$7 \$1 40 \$ B 1 100000 Matres 601 Matrix for s

#### The formal description

Given two matrices with entries "1" and "0" representing the relations we can form the matrix representing the composition. This is called the *logical* (*Boolean*) *matrix product*.

Let 
$$A = \{a_1, \ldots, a_n\}$$
,  $B = \{b_1, \ldots, b_m\}$  and  $C = \{c_1, \ldots, c_p\}$ .

The logical matrix M representing R is given by:

$$M(i,j) = \begin{cases} 1 & \text{if} \quad (a_i, b_j) \in R \\ 0 & \text{if} \quad (a_i, b_j) \notin R \end{cases}$$

The logical matrix N representing S is given by

$$N(i,j) = \begin{cases} 1 & \text{if} \quad (b_i, c_j) \in S \\ 0 & \text{if} \quad (b_i, c_j) \notin S \end{cases}$$

### Matrix representation of compositions

Then the entries P(i,j) of the logical matrix P representing  $S \circ R$  are given by

- P(i,j) = 1 if there exists I with  $1 \le I \le m$  such that M(i,I) = 1 and N(I,j) = 1.
- P(i,j) = 0, otherwise.

We write P = MN.

### The example from before

Let R be the relation between  $A = \{a, b\}$  and  $B = \{1, 2, 3\}$  represented by the matrix

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Similarly, let S be the relation between B and  $C = \{x, y\}$  represented by the matrix









#### Example

Then the matrix P = MN representing  $S \circ R$  is

$$P = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

## Detour: Boolean multiplication in Python

```
def booleanMM(m1, m2):
    # creating a zero matrix
    res = [0 for i in range(len(m2[0]))]
            for j in range(len(m1))
    # computing the result
    for i in range(len(m1)):
        for j in range(len(m2[0])):
            for k in range(len(m2)):
                 res[i][j] = (res[i][j] or
                     (m1[i][k] and m2[k][j]))
    return res
print booleanMM([[0,0,1],[1,0,1]], [[1,0],[0,1],[0,0]])
(but numpy does it better!)
```

# Properties of relations on a set

### Infix notation for binary relations

If R is a binary relation then we write xRy whenever  $(x, y) \in R$ . The predicate xRy is read as x is R-related to y.

## Motivating example: comparing strings

Consider relations R, S and L on the set of all strings: ■ *R*—lexicographic ordering;  $\blacksquare$  *uSv* if, and only if, *u* is a substring of *v*; ■ uLv if, and only if,  $len(u) \leq len(v)$ .

# Properties of binary relations (1)

R,S,L

A binary relation R on a set A is

■ reflexive when xRx for all  $x \in A$ .

$$\forall x A(x) \Longrightarrow xRx$$

■ symmetric when xRy implies yRx for all  $x, y \in A$ ;

$$\forall x, y xRy \Longrightarrow yRx$$

151

? bob Rana

## Properties of binary relations (2)

R, S, L

A binary relation R on a set A is



■ antisymmetric when xRy and yRx imply x = y for all  $x, y \in A$ ;

 $\forall x, y \times Ry \text{ and } yRx \Longrightarrow y = x$ 



■ transitive when xRy and yRz imply xRz for all  $x, y, z \in A$ .

 $\forall \underline{x}, \underline{y}, z \ xRy \ \text{and} \ yRz \Longrightarrow xRz$ 







alphetral order