Given: kJ := 1000J

USD := 1

A cryogenic manufacturer handles liquid methane at 115 K and 5 MPa at a rate of 0.280 m³/s. The process involves dropping the pressure to 1 MPa by means of a throttling value. An engineer proposes to replace the throttling value with a turbine so power can be produced from the pressure drop.

$$T_{in} := 115K$$
 $P_{in} := 5MPa$ $V'_{in} := 0.280 \frac{m^3}{s}$ $P_{out} := 1MPa$

Properties of Liquid Methane					
Temp	Pressure	Density	Enthalpy	Entropy	Specific Heat
T, K	P, MPa	T, kg/m³	h, kJ/kg	s, kJ/kg K	<i>c_p</i> , kJ/kg K
110	0.5	425.3	208.3	4.878	3.476
	1	425.8	209.0	4.875	3.471
	2	426.6	210.5	4.867	3.460
	5	429.1	215.0	4.844	3.432
120	0.5	410.4	243.4	5.185	3.551
	1	411.0	244.1	5.180	3.543
	2	412.0	245.4	5.171	3.528
	5	415.2	249.6	5.145	3.486

Required:

What is the maximum amount of power that can be produced by the turbine? Given that the turbine operates 8760 hr/yr and the cost of electricity is \$0.075/kWhr, what is the maximum savings for the company if they use the turbine?

Solution:

The operating time is defined as

$$\Delta t := 8760 \frac{hr}{vr}$$

The cost of electricity is defined as

$$C_e := 0.075 \cdot \frac{USD}{kW \cdot hr}$$

1st Law for a steady flow turbine that is adiabatic, and has no ΔKE and ΔPE shows

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{E}_{\mathrm{sys}} = \Sigma\mathrm{E'}_{\mathrm{in}} - \Sigma\mathrm{E'}_{\mathrm{out}}$$

$$0 = m'_{in} \cdot \left(h_{in} + \frac{V_{in}^2}{2} + g \cdot z_{in}\right) - m'_{out} \cdot \left(h_{out} + \frac{V_{out}^2}{2} + g \cdot z_{out}\right) - W'_{out}$$

$$0 = m'_{in} \cdot (h_{in} - h_{out}) - W'_{out}$$

Knowing that the device only has one inlet and outlet the work output of the device becomes

$$W'_{out} = m' \cdot (h_{in} - h_{out})$$

Solution (contd.):

Going to the given table @ $T_{in} = 115K$ & $P_{in} = 5 \cdot MPa$ shows that interpolation is needed.

$$\begin{split} T_{a} &:= 110 \cdot K & T_{b} := 120 \cdot K \\ \rho_{a} &:= 429.1 \frac{kg}{m^{3}} & \rho_{b} := 415.2 \frac{kg}{m^{3}} & h_{a} := 215 \frac{kJ}{kg} & h_{b} := 249.6 \frac{kJ}{kg} \\ \rho_{in} &:= \frac{T_{in} - T_{a}}{T_{b} - T_{a}} \cdot \left(\rho_{b} - \rho_{a}\right) + \rho_{a} = 422.15 \frac{kg}{m^{3}} & h_{in} := \frac{T_{in} - T_{a}}{T_{b} - T_{a}} \cdot \left(h_{b} - h_{a}\right) + h_{a} = 232.3 \cdot \frac{kJ}{kg} \\ s_{a} &:= 4.844 \frac{kJ}{kg \cdot K} & s_{b} := 5.145 \frac{kJ}{kg \cdot K} \\ s_{in} &:= \frac{T_{in} - T_{a}}{T_{b} - T_{a}} \cdot \left(s_{b} - s_{a}\right) + s_{a} = 4.995 \cdot \frac{kJ}{kg \cdot K} \end{split}$$

The mass flow rate can then be found by

$$m' := \rho_{in} \cdot V'_{in} = 118.202 \frac{kg}{s}$$

Desiring an upper limit to what work can be produced by a turbine, let's assume that the turbine is not only adiabatic but also reversible. It has been shown that a turbine that is both adiabatic and reversible is also isentropic so

$$s_{out} := s_{in} = 4.995 \cdot \frac{kJ}{kg \cdot K}$$

Going to the given table @ $P_{out} = 1 \cdot MPa \& s_{out} = 4.995 \cdot \frac{kJ}{kg \cdot K}$ shows that interpolation is needed.

$$\begin{split} s_{a} &:= 4.875 \frac{kJ}{kg \cdot K} & s_{b} := 5.180 \frac{kJ}{kg \cdot K} \\ h_{a} &:= 209.0 \frac{kJ}{kg} & h_{b} := 244.1 \frac{kJ}{kg} \\ h_{out} &:= \frac{s_{out} - s_{a}}{s_{b} - s_{a}} \cdot \left(h_{b} - h_{a}\right) + h_{a} = 222.752 \cdot \frac{kJ}{kg} \end{split}$$

The maximum possible work that could be produced by a turbine can then be found by

$$W'_{out} := m' \cdot (h_{in} - h_{out}) = 1128.6 \cdot kW$$

The maximum amount of savings per year is then given by

Savings :=
$$C_e \cdot W'_{out} \cdot \Delta t = 741462.49 \cdot \frac{USD}{yr}$$