Webapp en Shiny para modelos de regresión con polinomios fraccionarios de orden 1

Antonio Torres Ruiz Isabel María Ortiz Rodríguez

Universidad de Almería

IX JORNADAS DE USUARIOS DE R Granada, Noviembre de 2017

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Polinomios fraccionarios

Un polinomio fraccionario de orden m se denota por PF_m y viene definido como:

$$\phi_m(x;\beta,\rho) = \beta_0 + \sum_{j=1}^m \beta_j H_j(x),$$

con $H_i(x)$:

$$\left\{\begin{array}{ll} H_1(x)=x^{(p_1)} & \text{para } j=1 \\ H_j(x)=\left\{\begin{array}{ll} x^{(p_j)} & \text{si } p_j\neq p_{j-1} \\ H_{j-1}(x)\ln x & \text{si } p_j=p_{j-1} \end{array}\right. & \text{para } j=2,...,m \end{array}\right.$$

У

$$x^{(p)} = \begin{cases} x^p & p \neq 0 \\ \ln x & p = 0 \end{cases}$$

Royston y Altman (1994): tomar la potencia p en el conjunto

$$\mathcal{P} = \{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}$$

Transformación cuando x < 0:

$$\phi_m(x;\beta,p) = \beta_0 + \sum_{i=1}^m \beta_i H_i(x-c)$$

Características del polinomio fraccionario de orden 1

$$\mathsf{PF}_1(p) = \beta_0 + \beta_1 x^{(p)} = \begin{cases} \beta_0 + \beta_1 x^p & p \in \mathcal{P}, & p \neq 0 \\ \beta_0 + \beta_1 \ln x & p = 0 \end{cases}$$

Representación para $\beta_0 = \beta_1 = 1$:

Características del polinomio fraccionario de orden 2

El paquete mfp de R

$$\mathsf{PF}_2(p_1, p_2) = \left\{ \begin{array}{ll} \beta_0 + \beta_1 x^{(p_1)} + \beta_2 x^{(p_2)} & p_1, p_2 \in \mathcal{P}, & p_1 < p_2 \\ \beta_0 + \beta_1 x^{(p)} + \beta_2 x^{(p)} \ln x & p_1, p_2 \in \mathcal{P}, & p_1 = p_2 = p \end{array} \right.$$

Comportamiento gráfico para varios tipos de curvas:

Curvas PF2

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Modelos de regresión con PF₁

Modelo de regresión con polinomios fraccionarios de orden 1:

$$Y = \beta_0 + \beta_1 X^{(p)} + \epsilon, \quad X^{(p)} = \left\{ \begin{array}{ll} X^p & p \neq 0 \\ \ln X & p = 0 \end{array} \right.,$$

con
$$p \in \mathcal{P} = \{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}.$$

Para una muestra de tamaño n:

$$Y_i = \beta_0 + \beta_1 X_i^{(p)} + \epsilon_i, \qquad i = 1, ..., n.$$

Hipótesis básicas sobre los errores aleatorios ϵ_i

$$Y_i = \beta_0 + \beta_1 X_i^{(p)} + \epsilon_i, \qquad i = 1, ..., n.$$

•
$$E(\epsilon_i) = 0, i = 1, ..., n.$$

•
$$\operatorname{Var}(\epsilon_i) = \operatorname{E}(\epsilon_i^2) = \sigma^2 = \operatorname{cte}, \ i = 1, ..., n.$$

•
$$Cov(\epsilon_i, \epsilon_j) = E(\epsilon_i \epsilon_j) = 0$$
, para todo $i \neq j$.

• Hipótesis adicional:
$$\epsilon_i \sim \mathcal{N}(0, \sigma^2), i = 1, ..., n$$
.

Residuos del modelo

- Muestra de tamaño $n: (X_i, Y_i), i = 1, ..., n.$
- Valores observados: Y_i , i = 1, ..., n.
- Modelo estimado: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X^{(p)}$.
- Valor estimado para X_i : $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i^{(p)}$.
- Residuos: $e_i = Y_i \hat{Y}_i$, i = 1, ..., n.

A partir de ahora,

$$X^{(p)} = Z$$

Estimación de los parámetros del modelo

• Estimación de los parámetros β_0 y β_1 :

$$\begin{cases} \hat{\beta}_{0} = \bar{Y} - \frac{S_{yz}}{S_{zz}^{2}} \bar{Z} \\ \hat{\beta}_{1} = \frac{S_{yz}}{S_{zz}^{2}} \end{cases} \quad \text{con} \quad \begin{cases} S_{yz} = \frac{\sum_{i=1}^{n} Y_{i} Z_{i}}{\sum_{i=1}^{n} Z_{i}^{2}} - \bar{Y} \bar{Z} \\ S_{zz}^{2} = \frac{\sum_{i=1}^{n} Z_{i}^{2}}{n} - \bar{Z}^{2} \end{cases}$$

• Estimador insesgado para σ^2 :

$$\hat{\sigma}^2 = S_R^2 = \frac{\sum_{i=1}^n e_i^2}{n-2}$$

Intervalos de confianza $100(1-\alpha)\%$

• Para β_0 :

$$\left[\hat{\beta}_{0}-t_{n-2,1-\alpha/2}\sqrt{\frac{S_{R}^{2}}{n}\left(1+\frac{\bar{Z}^{2}}{S_{zz}^{2}}\right)},\hat{\beta}_{0}+t_{n-2,1-\alpha/2}\sqrt{\frac{S_{R}^{2}}{n}\left(1+\frac{\bar{Z}^{2}}{S_{zz}^{2}}\right)}\right]$$

• Para β_1 :

$$\left[\hat{\beta}_{1}-t_{n-2,1-\alpha/2}\sqrt{\frac{S_{R}^{2}}{nS_{zz}^{2}}},\hat{\beta}_{1}+t_{n-2,1-\alpha/2}\sqrt{\frac{S_{R}^{2}}{nS_{zz}^{2}}}\right]$$

• Para σ^2 :

$$\left[\frac{(n-2)S_R^2}{\chi_{n-2,1-\alpha/2}^2}, \frac{(n-2)S_R^2}{\chi_{n-2,\alpha/2}^2}\right]$$

Contrastes de hipótesis

• Para β_0 y β_1 :

Parámetro	β_0	β_1
Contraste	$\begin{cases} H_0: \beta_0 = \beta_{00} \\ H_1: \beta_0 \neq \beta_{00} \end{cases}$	$\begin{cases} H_0: \beta_1 = \beta_{10} \\ H_1: \beta_1 \neq \beta_{10} \end{cases}$
Estadístico	$T = \frac{\hat{\beta}_0 - \beta_{00}}{\sqrt{\frac{S_R^2}{n} \left(1 + \frac{Z^2}{S_{ZZ}^2}\right)}} \sim t_{n-2}$	$T = rac{\hat{eta}_1 - eta_{10}}{\sqrt{rac{S_R^2}{nS_{zz}^2}}} \sim t_{n-2}$
Región de rechazo	$ T > t_{n-2,1-\alpha/2}$	$ T > t_{n-2,1-\alpha/2}$

• Contraste $H_0: \beta_1 = 0$. Tabla ANOVA:

Fuente de variación	SC	gl	MC	Estadístico
Regresión	SCR	1	MCR	F
Error	SCE	n-2	MCE	
Total	SCT	n-1		

Rechazar H_0 si $F > \mathcal{F}_{1,n-2,1-\alpha}$.

Intervalos de predicción

• Para la respuesta media en $X = X_0$ ($Z_0 = X_0^{(p)}$):

$$\left[\hat{Y}_{0}-t_{n-2,1-\alpha/2}\sqrt{S_{R}^{2}\left(\frac{1}{n}+\frac{(Z_{0}-\bar{Z})^{2}}{nS_{zz}^{2}}\right)},\hat{Y}_{0}+t_{n-2,1-\alpha/2}\sqrt{S_{R}^{2}\left(\frac{1}{n}+\frac{(Z_{0}-\bar{Z})^{2}}{nS_{zz}^{2}}\right)}\right]$$

• Para la predicción en $X = X_0$ ($Z_0 = X_0^{(p)}$):

$$\left[\hat{Y}_{0} - t_{n-2,1-\alpha/2}\sqrt{S_{R}^{2}\left(1 + \frac{1}{n} + \frac{(Z_{0} - \bar{Z})^{2}}{nS_{zz}^{2}}\right)}, \hat{Y}_{0} + t_{n-2,1-\alpha/2}\sqrt{S_{R}^{2}\left(1 + \frac{1}{n} + \frac{(Z_{0} - \bar{Z})^{2}}{nS_{zz}^{2}}\right)}\right]$$

 Bandas de confianza y de predicción: unir los extremos de los intervalos anteriores calculados para cada valor de X.

Coeficiente de determinación R^2

$$R^2 = \frac{\mathsf{SCR}}{\mathsf{SCT}} = 1 - \frac{\mathsf{SCE}}{\mathsf{SCT}}$$

- $0 < R^2 < 1$.
- Cuanto mayor sea R^2 mejor será el modelo estimado.

Comprobación de las hipótesis del modelo

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Elección del mejor modelo PF₁

Medidas para comparar los modelos:

Medida	Expresión	Criterio
SCE	SCE	>
MCE	$\frac{SCE}{n-2}$	>
R^2	1 – <u>SCE</u> SCT	7
\bar{R}^2	$1 - (1 - R^2) \frac{n-1}{n-2}$	7
AIC	$n\ln\left(\frac{SCE}{n}\right) + n\ln(2\pi) + n + 6$	>

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

La aplicación desarrollada

• Enlace de la aplicación:

https://antoniotorres.shinyapps.io/shiny/

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 3
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Polinomios fraccionarios Modelos de regresión con polinomios fraccionarios de orden 1 Elección del mejor modelo fraccionario de orden 1 Webapp en Shiny para modelos fraccionarios de orden 1 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional El paquete m≢p de R Conclusiones

Relación entre edad gestacional (X, semanas) y longitud de la mandíbula (Y, mm)

Introducción de los datos (Chitty et al. 1994):

Elección del mejor modelo:

Grafic	o Mod	Modelo de Regresion		Predic	Prediccion Resi		Mejor modelo	Datos
Medida	as para c	ompara	r los m	odelos				
р	S.C.E.	M.C.E.	R2	R2.Aj.	AIC	Compara	r.AIC	
-2.00	1489.58	9.55	0.83	0.83	808.88	14	83.48	
-1.00	1105.39	7.09	0.87	0.87	761.75	142	36.35	
-0.50	977.91	6.27	0.89	0.89	742.39	14	16.98	
0.00	897.65	5.75	0.90	0.90	728.86		-3.45	
0.50	865.00	5.54	0.90	0.90	723.01		2.40	
1.00	878.24	5.63	0.90	0.90	725.41		0.00	
2.00	1027.21	6.58	0.88	0.88	750.16	-	24.76	
3.00	1304.30	8.36	0.85	0.85	787.89	-1	62.49	
Mejor	modelo							
p	S.C.E.	M.C.E.	R2	R2.Aj.	AIC	Comparar.	AIC	
0.50	865.00	5.54	0.90	0.90	723.01	2	.40	

Comprobación de las hipótesis básicas:

El modelo considerado no es el adecuado.

$$Y = In(Longitud)$$

Relación entre edad gestacional (X) y Y = In(Longitud)

Introducción de los datos:

Elección del mejor modelo:

Grafic	o Mor	Modelo de Regresion		Prediccion		lesiduos	Mejor modelo	Datos
Medida	s para	compara	r los n	nodelos				
р	S.C.E.	M.C.E.	R2	R2.Aj.	AIC	Compar	ar.AIC	
-2.00	1.62	0.01	0.91	0.91	-269.19		60.19	
-1.00	1.45	0.01	0.92	0.92	-286.33		77.33	
-0.50	1.53	0.01	0.92	0.92	-277.94		68.94	
0.00	1.72	0.01	0.91	0.91	-259.92		50.92	
0.50	2.00	0.01	0.89	0.89	-235.80		26.80	
1.00	2.37	0.02	0.87	0.87	-209.00		0.00	
2.00	3.31	0.02	0.83	0.82	-156.17		-52.83	
3.00	4.42	0.03	0.77	0.77	-110.55		-98.45	
Mejor r	nodelo							
р	S.C.E.	M.C.E.	R2	R2.Aj.	AIC	Compar	ar.AIC	
-1.00	1.45	0.01	0.92	0.92	-286.33		77.33	

Comprobación de las hipótesis básicas:

Representación gráfica de las observaciones y el modelo estimado:

Estimación de parámetros, I.C. y contrastes:

Modelo estimado: $\hat{\ln}(\text{Longitud}) = 4.69 - \frac{30.41}{\text{Semanas}}$

Bandas de confianza y predicción:

Modelo con datos originales:

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

El paquete mfp (Sauerbrei et al. 2006)

Contraste:

$$\begin{cases} H_0 : Modelo restringido \\ H_1 : Modelo completo \end{cases}$$

mediante test de razón de verosimilitud:

$$\mathsf{RV} = -2 \ln \frac{\hat{\mathcal{L}}_0}{\hat{\mathcal{L}}_1} \sim \chi_r^2$$

Ejemplo:

$$\begin{cases} H_0: \text{Modelo lineal } (p=1) \\ H_1: \text{Modelo no lineal } (p \neq 1) \end{cases} \Leftrightarrow \begin{cases} H_0: \mathsf{E}(Y) = \beta_0 + \beta_1 X \\ H_1: \mathsf{E}(Y) = \beta_0 + \beta_1 X^{(p)}, \ p \neq 1 \end{cases}$$

$$\Rightarrow \mathsf{RV} \sim \chi_{3-2}^2 = \chi_1^2$$

Esquema del proceso iterativo:

• Relación entre X e Y:

$$\left\{ \begin{array}{l} \textit{H}_0 : \mathsf{Modelo\ nulo} \\ \textit{H}_1 : \mathsf{Mejor\ PF}_2 \end{array} \right.$$

Linealidad:

$$\begin{cases} H_0 : Modelo lineal \\ H_1 : Mejor PF_2 \end{cases}$$

Simplificación:

$$\begin{cases} H_0 : Mejor PF_1 \\ H_1 : Mejor PF_2 \end{cases}$$

Aplicación del algoritmo mfp al ejemplo

```
Deviance table:
                 Resid Dev
  Null model
                18.95706
12 Linear model
                2.372511
               1.454316
13 Final model
14
  Fractional polynomials:
    df. initial select alpha df. final power1 power2
16
                       0.05
17 X
18
19
  Transformations of covariates:
21
          formula
  x I((x/10)^{-1})
24 Rescaled coefficients:
25 Intercept
                    x.1
26 4.686
                -30.407
```

Índice

- Polinomios fraccionarios
- 2 Modelos de regresión con polinomios fraccionarios de orden 1
- 3 Elección del mejor modelo fraccionario de orden 1
- 4 Webapp en Shiny para modelos fraccionarios de orden 1
- 5 Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional
- 6 El paquete mfp de R
- Conclusiones

Polinomios fraccionarios

Modelos de regresión con polinomios fraccionarios de orden 1
Elección del mejor modelo fraccionarios de orden 1
Webapp en Shiny para modelos fraccionarios de orden 1
Ejemplo: Relación de Longitud de la mandibula con Edad gestacional
El paquete mfp de R
Conclusiones

Ejemplo: Relación de Longitud de la mandíbula con Edad gestacional Conclusiones

· Características de los PF1 v PF2

· Modelo de Regresión PF1

Polinomios fraccionarios
Modelos de regresión con polinomios fraccionarios de orden 1
Elección del mejor modelo fraccionario de orden 1
Webapp en Shiny para modelos fraccionarios de orden 1
Ejemplo: Relación de Longitud de la mandibula con Edad gestacional
El paquete mfp de R
Conclusiones

mejor modelo PF1

Polinomios fraccionarios
Modelos de regresión con polinomios fraccionarios de orden 1
Elección del mejor modelo fraccionario de orden 1
Webapp en Shiny para modelos fraccionarios de orden 1
Ejemplo: Relación de Longitud de la mandibula con Edad gestacional
El paquete mfy de R
Conclusiones

Polinomios fraccionarios

Modelos de regresión con polinomios fraccionarios de orden 1

Elección del mejor modelo fraccionario de orden 1

Webapp en Shiny para modelos fraccionarios de orden 1

Ejemplo: Relación de Longitud de la mandibula con Edad gestacional

El paquete mfp de R

Conclusiones

Polinomios fraccionarios

Modelos de regresión con polinomios fraccionarios de orden 1

Elección del mejor modelo fraccionario de orden 1

Webapp en Shiny para modelos fraccionarios de orden 1

Ejemplo: Relación de Longitud de la mandibula con Edad gestacional

El paquete mfp de R

Conclusiones

Bibliografía I

L.C. Acosta

Ajuste de polinomios fraccionarios a curvas de crecimientoDisponible en: *Enlace al texto completo*. [Consulta 13 nov. 2017]

J. Aparicio, M.A. Martínez, J. Morales

Modelos lineales aplicados en R

Disponible en: Enlace al texto completo. [Consulta 13 nov. 2017]

J.E. Callejas

Métodos de aproximación polinómica en el diseño experimental Disponible en: Enlace al texto completo. [Consulta 13 nov. 2017]

L.S. Chitty, D.G. Altman, A. Henderson, S. Campbell Charts of fetal size: 3, Abdominal measurements Br. J. Obstet. Gynaecol., 101 (1994), 125–131

D. C. Montgomery, E. A. Peck, G. G. Vining Introduction to linear regression analysis Wiley, 1992

Bibliografía II

P. Royston, D.G. Altman Regression using fractional polynomials of continuous covariates J. Royal Stat. Soc., C 43 (1994), 429–467

W. Sauerbrei, C. Meier-Hirmer, A. Benner, P. Royston Multivariable regression model building by using fractional polynomials. Comput. Stat. Data An., 50 (2006), 3464–3485

Shiny: A web application framework for R Disponible en: *Enlace web.* [Consulta 13 nov. 2017]

J. Zamora

Una metodología para manejar variables continuas en los modelos de pronóstico: Polinomios fraccionales

Disponible en: Enlace al texto completo. [Consulta 13 nov. 2017]

Polinomios fraccionarios

Modelos de regresión con polinomios fraccionarios de orden 1

Elección del mejor modelo fraccionario de orden 1

Webapp en Shiny para modelos fraccionarios de orden 1

Ejemplo: Relación de Longitud de la mandibula con Edad gestacional

El paquete mfp de R

Corclusionse

iMUCHAS GRACIAS!