Introduction To Commutative Algebra

Atiyah & Macdonald

June 22, 2020

Contents

1 Rings and Ideals

2

1 Rings and Ideals

A unit is an element u with a reciprocal 1/u or the multiplicative inverse. The units form a multiplicative group, denoted R^{\times}

A ring **homomorphism**, or simply a **ring map**, $\varphi: R \to R'$ is a map preserving sum, products and 1

If there is an unspecified isomorphism between rings R and R', then we write R = R' when it is **canonical**; that is, it does not depend on any artificial choices.

A subset $R'' \subset R$ is a **subring** if R'' is a ring and the inclusion $R'' \hookrightarrow R$ is a ring map. In this case, we call R a **(ring) extension**.

An R-algebra is a ring R' that comes equipped with a ring map φ : $R \to R'$, called the **structure map**, denoted by R'/R. For example, every ring is canonically a \mathbb{Z} -algebra. An R-algebra homomorphism, or R-map, $R' \to R''$ is a ring map between R-algebras.

A group G is said to **act** on R if there is a homomorphism given from G into the group of automorphism of R. The **ring of invariants** R^G is the subring defined by

$$R^G := \{x \in R \mid gx = g \text{ for all } g \in G\}$$

Similarly a group G is said to **act** on R'/R if G acts on R' and each $g \in G$ is an R-map. Note that R'^G is an R-subalgebra

Boolean rings

The simplest nonzero ring has two elements, 0 and 1. It's denoted \mathbb{F}_2

Given any ring R and any set X, let R^X denote the set of functions $f: X \to R$. Then R^X is a ring.

For example, take $R := \mathbb{F}_2$. Given $f : X \to R$, put $S := f^{-1}\{1\}$. Then f(x) = 1 if $x \in S$. In other words, f is the **characteristic function** χ_S . Thus the characteristic functions form a ring, namely, \mathbb{F}_2^X

Given $T \subset X$, clearly $\chi_S \cdot \chi_T = \chi_{S \cap T}$. $\chi_S + \chi_T = \chi_{S \triangle T}$, where $S \triangle T$ is the **symmetric difference**:

$$S \triangle T := (S \cup T) - (S \cap T)$$

Thus the subsets of X form a ring: sum is symmetric difference, and product is intersection. This ring is canonically isomorphic to \mathbb{F}_2^X

A ring *B* is called **Boolean** if $f^2 = f$ for all $f \in B$. If so, then 2f = 0 as $2f = (f + f)^2 = f^2 + 2f + f^2 = 4f$

Suppose X is a topological space, and give \mathbb{F}_2 the **discrete** topology; that is, every subset is both open and closed. Consider the continuous functions $f: X \to \mathbb{F}_2$. Clearly, they are just the χ_S where S is both open and closed.

Polynomial rings

Let R be a ring, $P := R[X_1, ..., X_n]$. P has this **Universal Mapping Property** (UMP): given a ring map $\varphi : R \to R'$ and given an element x_i of R' for each i, there is a unique ring map $\pi : P \to R'$ with $\pi | R = \varphi$ and $\pi(X_i) = x_i$. In fact, since π is a ring map, necessarily π is given by the formula:

$$\pi(\sum a_{(i_1,\dots,i_n)}X_1^{i_1}\dots X_n^{i_n}) = \sum \varphi(a_{(i_1,\dots,i_n)})x_1^{i_1}\dots x_n^{i_n}$$
 (1.0.1)

In other words, *P* is universal among *R*-algebras equipped with a list of *n* elements

Similarly let $\mathcal{X} := \{X_{\lambda}\}_{{\lambda} \in \Lambda}$ be any set of variables. Set $P' := R[\mathcal{X}]$; the elements of P' are the polynomials in any finitely many of the X_{λ} . P' has essentially the same UMP as P

Ideals

Let *R* be a ring. A subset a is called an **ideal** if

- 1. $0 \in \mathfrak{a}$
- 2. whenever $a, b \in \mathfrak{a}$, also $a + b \in \mathfrak{a}$
- 3. whenever $x \in R$ and $a \in \mathfrak{a}$ also $xa \in \mathfrak{a}$

Given a subset $\mathfrak{a} \subset R$, by the ideal $\langle \mathfrak{a} \rangle$ that \mathfrak{a} **generates**, we mean the smallest ideal containing \mathfrak{a}

All ideal containing all the a_{λ} contains any (finite) **linear combination** $\sum x_{\lambda}a_{\lambda}$ with $x_{\lambda} \in R$ and almost all 0.

Given a single element a, we say that the ideal $\langle a \rangle$ is **principal**

Given a number of ideals \mathfrak{a}_{λ} , by their **sum** $\sum \mathfrak{a}_{\lambda}$ we mean the set of all finite linear combinations $\sum x_{\lambda}a_{\lambda}$ with $x_{\lambda} \in R$ and $a_{\lambda} \in \mathfrak{a}_{\lambda}$

Given two ideals \mathfrak{a} and \mathfrak{b} , by the **transporter** of \mathfrak{b} into \mathfrak{a} we mean the set

$$(\mathfrak{a} : \mathfrak{b}) := \{ x \in R \mid x\mathfrak{b} \subset \mathfrak{a} \}$$

(a : b) is an ideal. Plainly,

$$ab \subset a \cap b \subset a + b$$
, $a, b \subset a + b$, $a \subset (a : b)$

Further, for any ideal \mathfrak{c} , the distributive law holds: $\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$

Given an ideal fa, notice a = R if and only if $1 \in a$. It follows that a = R iff a contains a unit.

Given a ring map $\varphi: R \to R'$, denote by $\mathfrak{a}R'$ or \mathfrak{a}^e the ideal of R' generated by the set $\varphi(\mathfrak{a})$. We call it the **extension** of \mathfrak{a}

Given an ideal \mathfrak{a}' of R', its preimage $\varphi^{-1}(\mathfrak{a}')$ is an ideal of R. We call $\varphi^{-1}(\mathfrak{a}')$ the **contraction** of \mathfrak{a}' and sometimes denote it by \mathfrak{a}'^c

Residue rings

kernel $\ker(\varphi)$ is defined to be the ideal $\varphi^{-1}(0)$ of R Let \mathfrak{a} be an ideal of R. Form the set of cosets of \mathfrak{a}

$$R/\mathfrak{a} := \{x + \mathfrak{a} \mid x \in R\}$$

 R/\mathfrak{a} is called the **residure ring** or **quotient ring** or **factor ring** of R **modulo** \mathfrak{a} . From the **quotient map**

$$\kappa: R \to R/\mathfrak{a}$$
 by $\kappa x := x + \mathfrak{a}$

The element $\kappa x \in R/\mathfrak{a}$ is called the **residure** of x.

If $\ker(\varphi) \supset \mathfrak{a}$, then there is a ring map $\psi : R/\mathfrak{a} \to R'$ with $\psi \kappa = \varphi$; that is, the following diagram is commutative

by $\psi(x\mathfrak{a}) = \varphi(x)$. Then we only need to verify that ψ is a map

Conversely, if ψ exists, then $\ker(\varphi) \supset \mathfrak{a}$, or $\varphi \mathfrak{a} = 0$, or $\mathfrak{a} R' = 0$, since $\kappa \mathfrak{a} = 0$

Further, if ψ exists, then ψ is unique as κ is surjective

Finally, as κ is surjective, if ψ exists, then ψ is surjective iff ψ is so. In addition, ψ is injective iff $\mathfrak{a} = \ker(\varphi)$. Hence ψ is an isomorphism iff φ is surjective and $\mathfrak{a} = \ker(\varphi)$. Therefore,

$$R/\ker(\varphi) \xrightarrow{\sim} \operatorname{im}(\varphi)$$

 R/\mathfrak{a} has UMP: $\kappa(\mathfrak{a})=0$, and given $\varphi:R\to R'$ s.t. $\varphi:R\to R'$ s.t. $\varphi(\mathfrak{a})=0$, there is a unique ring map $\psi:R/\mathfrak{a}\to R'$ s.t. $\psi\kappa=\varphi$. In other words, R/\mathfrak{a} is universal among R-algebras R' s.t. $\mathfrak{a}R'=0$

If $\mathfrak a$ is the ideal generated by elements a_{λ} , then the UMP can be usefully rephrased as follows: $\kappa(a_{\lambda}) = 0$ for all λ , and given $\varphi : R \to R'$ s.t. $\varphi(a_{\lambda}) = 0$ for all λ , there is a unique ring map $\psi : R/\mathfrak a \to R'$ s.t. $\psi \kappa = \varphi$

The UMP serves to determine R/\mathfrak{a} up to unique isomorphism. Say R', equipped with $\varphi: R \to R'$ has the UMP too. $\kappa(\mathfrak{a}) = 0$ so there is a unique $\psi': R' \to R/\mathfrak{a}$ with $\psi'\varphi = \kappa$. Then $\psi'\psi\kappa = \kappa$. Hence $\psi'\psi = 1$ by uniqueness. Thus ψ and ψ' are inverse isomorphism

Proposition 1.1. Let R be a ring, P := R[X], $a \in R$ and $\pi : P \to R$ the R-algebra map defined by $\pi(X) := a$. Then

- 1. $\ker(\pi) = \{ F(X) \in P \mid F(a) = 0 \} = \langle X a \rangle$
- 2. $R/\langle X-a\rangle \simeq R$

Proof. Set G := X - a. Given $F \in P$, let's show F = GH + r with $H \in P$ and $r \in R$. By linearity, we may assume $F := X^n$. If $n \ge 1$, then $F = (G + a)X^{n-1}$, so $F = GH + aX^{n-1}$ with $H := X^{n-1}$.

Then $\pi(F) = \pi(G)\pi(H) + \pi(r) = r$. Hence $F \in \ker(\pi)$ iff F = GH. But $\pi(F) = F(a)$ by 1.0.1

Degree of a polynomial

Let R be a ring, P the polynomial ring in any number of variables. If F is a monomial M, then its degree deg(M) is the sum of its exponents; in general, deg(F) is the largest deg(M) of all monomials M in F

Given any $G \in P$ with FG nonzero, notice that

$$\deg(FG) \le \deg(F) + \deg(G)$$

Order of a polynomial

Let R be a ring, P the polynomial ring in variable X_{λ} for $\lambda \in \Lambda$, and $(x_{\lambda}) \in R^{\Lambda}$ a vector. Let $\varphi_{(x_{\lambda})} : P \to P$ denote the R-algebra map defined by $\varphi_{(x_{\lambda})}X_{\mu} := X_{\mu} + x_{\mu}$ for all $\mu \in \Lambda$. Fix a nonzero $F \in P$

The **order** of F at the zero vector (0), denoted $\operatorname{ord}_{(0)} F$, is defined as the smallest $\operatorname{deg}(\mathbf{M})$ of all the monomials \mathbf{M} in F. In general, the **order** of F at the vector (x_{λ}) , denoted $\operatorname{ord}_{(x_{\lambda})} F$ is defined by the formula: $\operatorname{ord}_{(x_{\lambda})} F := \operatorname{ord}_{(0)}(\varphi_{(x_{\lambda})} F)$

Notice that $\operatorname{ord}_{(x_{\lambda})} F = 0$ iff $F(x_{\lambda}) \neq 0$ as $(\varphi_{x_{\lambda}} F)(0) = F(x_{\lambda})$

Given μ and $x \in R$, form $F_{\mu,x}$ by substituting x for X_{μ} in F. If $F_{\mu,x_{\mu}} \neq 0$, then

$$\operatorname{ord}_{(x_{\lambda})} F \leq \operatorname{ord}_{(x_{\lambda})} F_{\mu, x_{\mu}}$$

If $x_{\mu} = 0$, then $F_{\mu,x_{\mu}}$ is the sum of the terms without x_{μ} in F. Hence if $(x_{\lambda}) = (0)$, then 1 holds. But substituting 0 for X_{μ} in $\varphi_{(x_{\lambda})}F$ is the same as substituting x_{μ} for X_{μ} in F and then applying $\varphi_{(x_{\lambda})}$ to the result; that is, $(\varphi_{(x_{\mu})}F)_{\mu,0} = \varphi_{(x_{\lambda})}F_{\mu,x_{\mu}}$

Given any $G \in P$ with FG nonzero,

$$\operatorname{ord}_{(x_{\lambda})} FG \ge \operatorname{ord}_{(x_{\lambda})} F +_{(x_{\lambda})} G$$

Nested ideals

Let *R* be a ring, $\mathfrak a$ an ideal, and $\kappa : R \to R/\mathfrak a$ the quotient map. Given an ideal $\mathfrak b \supset \mathfrak a$, form the corresponding set of cosets of $\mathfrak a$

$$\mathfrak{b}/\mathfrak{a} := \{b + \mathfrak{a} \mid b \in \mathfrak{b}\} = \kappa(\mathfrak{b})$$

Clearly, $\mathfrak{b}/\mathfrak{a}$ is an ideal of R/\mathfrak{a} . Also $\mathfrak{b}/\mathfrak{a} = \mathfrak{b}(R/\mathfrak{a})$

Given an ideal $\mathfrak{b} \supset \mathfrak{a}$, form the composition of the quotient maps

$$\varphi: R \to R/\mathfrak{a} \to (R/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a})$$

 φ is surjective and $\ker(\varphi) = \mathfrak{b}$. Hence φ factors

$$R \longrightarrow R/\mathfrak{b}$$

$$\downarrow \qquad \qquad \simeq \downarrow \psi$$

$$R/\mathfrak{a} \longrightarrow (R/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a})$$

Idempotents

Let *R* be a ring. Let $e \in R$ be an **idempotent**; that is, $e^2 = e$. Then Re is a ring with e as 1.

Exercise

Exercise 1.0.1. Let $\varphi: R \to R'$ be a map of rings, $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3$ ideals of R, $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}_3$ ideals of R'. Prove 1. $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$

1.
$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$$