End-To-End Spam Classification With Neural Networks

Christopher Lennan, Bastian Naber, Jan Reher, Leon Weber

Humboldt-Universität zu Berlin, Germany

Motivation

- Until a few years ago the majority of email traffic was due to spam
- Machine learning algorithms must quickly adapt to changing tactics of spammers
- Neural Networks are suited for this task as they do not require feature engineering

Methods

We trained two Convolutional Neural Networks (CNN) and a baseline Support Vector Machine (SVM) on the SpamAssassin and TREC 2007 spam/ham data sets using two encoding methods:

- Character-level methods (each character in email is one-hot encoded based on an alphabet)
 - Character-level linear SVM baseline
 - Character-level CNN similar to [1]
- Word embeddings (each word in email is transformed to a dense vector)
 - CNN with embedding layer

Results

Accuracy scores on two data sets

	TREC 2007	SpamAssassin
SVM (character level)	1	0.96
CNN (character-level)	1	0.97
CNN (word embeddings)	1	0.98

Conclusions

- Character-level SVM performs suprisingly well
- Promising results for CNN-based spam classification with especially good accuracy using word embeddings
- TREC 2007 data set seems unrepresentative

Forthcoming Research

■ Create larger data sets and more diverse spam/ham representations by combining multiple data sets and thus achieve better generalization performance of the trained algorithm

Word embeddings CNN

Character-level CNN

References

[1] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. *arXiv preprint arXiv:1509.01626*, 2015.