Lecture 3: The Recursive Problem – Principle of Optimality and Dynamic Programming

Lukasz Rachel

ECON 0107, First Term 2022

Problem SP suggests principle of optimality

• Consider the stationary version of the **sequence problem (SP)**:

$$V^{*}(x_{0}) = \sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_{t})$ for all $t \geq 0$.

- Based on intuition, one could conjecture that:
 - The optimal path should satisfy:

$$V^{*}(x_{t}^{*}) = F(x_{t}^{*}, x_{t+1}^{*}) + \beta V^{*}(x_{t+1}^{*})$$
 for each t .

• Value function should satisfy Functional/Bellman equation (FE):

$$V^{*}(x^{*}) = \max_{y \in \Gamma(x^{*})} F(x^{*}, y) + \beta V^{*}(y).$$

- Equivalence of (SP) and (FE): the Principle of Optimality (PO).
- How to solve (FE): Contraction Mapping Theory (CMT).

1. Background: Dynamic inconsistency

Example I: Hyperbolic Discounting Example II: Central Banking

2. Equivalence of (SP) and (FE)
Principle of optimality
Converse

3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

How could PO not apply?

It is useful to start by analyzing examples in which the principle of optimality doesn't apply – that is, a solution to (SP) does not solve (FE).

How could recursive optimization be different than sequential optimization?

When this happens, the problem is referred to as "dynamically inconsistent."

2

1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking

- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)
 High-level overview of the theory
 Policy function
 FOCs via Dynamic Programming
 Taking stock and solution steps
- 4. Numerical approache

Hyperbolic discounting

• We typically work with exponential discounting:

$$U_t = u_t + \delta u_{t+1} + \delta^2 u_{t+2} + \dots$$

where δ (previously β) captures broad motives for caring less about later periods than earlier (what are some reasons?).

- This is ok if this is not the focus of our analysis (**simplicity**), but might be restrictive if our goal is to analyze certain motives.
 - For some psychological motives, exponential form is restrictive: Same trade-off for periods t vs t+1 and t+20 and t+21.
- What if we instead have quasi-hyperbolic discounting:

$$U_t = u_t + \beta \delta u_{t+1} + \beta \delta^2 u_{t+2} + \dots$$

- The new discount factor, $\beta < 1$, captures the salience of now.
- Useful to capture myopia and self-control issues (Strotz-Laibson).
- It also generates dynamic (time) inconsistency...

3

Problem: Dynamic inconsistency in preferences

- Exercise has benefit today -2. Has delayed benefit of 3.
- Suppose $\beta = 1/2$ and $\delta = 1$.
- Questions about the one-shot optimal plan (sequence problem):
 - Do you exercise today?
 - Do you plan to exercise tomorrow?
- Questions about the recursively optimal plan:
 - Do you exercise tomorrow?

Why does the PO not apply in this example?

1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking

- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)
 High-level overview of the theory
 Policy function
 FOCs via Dynamic Programming
 Taking stock and solution steps
- 4. Numerical approaches

Inflation-output trade-off

Consider a stylized model with inflation-output trade-off:

$$\begin{split} \max_{\pi_0, y_0, \pi_1, y_1} - \left(\pi_0^2 + (y_0 - y^*)^2\right) - \beta \left(\pi_1^2 + (y_1 - y^*)^2\right), \\ \text{s.t. } \pi_0 &= E_0\left[\pi_1\right] + y_0, \text{ where } E_0\left[\pi_1\right] = \pi_1 \\ \text{and } \pi_1 &= y_1. \end{split}$$

- y_t is the output gap from the flexible price level (normalized to 0).
- Constraint is a caricaturized NK Phillips curve: Inflation depends on y_t and **future inflation** expectations (through firms' price setting).
- Since there is no uncertainty, rational expectations imply $E_0[\pi_1] = \pi_1$.
- Policymaker chooses $\{\pi_t, y_t\}$ subject to the constraint.
- Dislikes π_t , and likes to keep y_t close to a target, y^* . Suppose target is strictly positive, $y^* > 0$ (e.g., political friction).
- Does the PO apply here? Let's start with recursive optimization...

Recursive problem in the future

• At date 1, the recursive problem is

$$\max_{\pi_1, y_1} - \left(\pi_1^2 + (y_1 - y^*)^2\right) \text{s.t. } \pi_1 = y_1.$$

• The FOC for y_1 implies:

$$\underbrace{y_1}_{\text{marginal cost}} = \underbrace{(y^* - y_1)}_{\text{marginal cost}}$$

• The solution is

$$\pi_1^{\text{rec}} = y_1^{\text{rec}} = \frac{y^*}{2} > 0.$$

• The planner "overheats" the economy (induces a level of output that is above the flexible price level). She optimally trades off output and inflation.

6

Recursive problem now

- At date 0, the planner takes its future choices as given.
- The first step of the recursive problem is then given by,

$$\begin{split} \max_{\pi_0, y_0} &- \left(\pi_0^2 + (y_0 - y^*)^2\right) - \beta \left((\pi_1^{\rm rec})^2 + (y_1^{\rm rec} - y^*)^2\right), \\ \text{s.t.} \ \, \pi_0 &= \pi_1^{\rm rec} + y_0 \\ \text{and} \ \, \pi_1^{\rm rec} &= y_1^{\rm rec} = y^*/2. \end{split}$$

Check that the solution to this is given by

$$y_0^{\rm rec} = \frac{-y^*/2 + y^*}{2} < \frac{y^*}{2} \text{ and } \pi_0^{\rm rec} = \frac{y^*}{2} + \frac{-y^*/2 + y^*}{2} > \frac{y^*}{2}.$$

1

Recursive problem now

- The planner overheats the economy a bit less because she already starts with a large level of baseline inflation to deal with.
- But the baseline inflation is created by the planner's own actions!
- This suggests there a potential remedy: Commit not to create inflation.
- And this suggests the one-shot optimization might be different...

One-shot problem: Solution is different

• The one-shot problem reduces to

$$\max_{y_0,y_1} - \left((y_1 + y_0)^2 + (y_0 - y^*)^2 \right) - \beta \left(y_1^2 + (y_1 - y^*)^2 \right).$$

• The FOC for y_1 implies,

 $\underbrace{(y_1 + y_0)}_{\text{current marginal cost}} + \underbrace{\beta y_1}_{\text{future marginal cost}} = \underbrace{\beta (y^* - y_1)}_{\text{marginal benefit from overheating}}$

• The first term raises MC relative to sequential, so the solution features,

$$y_1^{\text{one-shot}} < y_1^{\text{rec}} = \frac{y^*}{2}.$$

 Exact solution is not important. Just note that it is different than the sequential solution—and the direction of the difference.

9

Dynamic inconsistency

- At date 0, the planner plans to overheat the economy less at date 1.
 - Intuitively, she recognizes π_1 also raises π_0 , which is costly, so she perceives greater marginal cost from creating a future boom.
- At date 1, she would like to overheat more relative to the original plan.
 - Intuitively, π_0 is already set by the time we reach date 1. This reduces the planner's marginal cost and induces her to boom more.
- So there is dynamic inconsistency here even though the preferences look fine. What's the issue?

Dynamic inconsistency is caused by constraints

- Take the state variable as last period's inflation, $x_t = \pi_{t-1}$ (since the problem allows the current inflation to change within the period).
- If the Phillips Curve took the following form (which is also used),

expectations at time 0 are backward looking and predetermined
$$\pi_0 = \overbrace{\pi_{-1}} + y_0$$

then we wouldn't have time inconsistency. You could formulate this problem in our canonical notation. (Can you see how?)

Dynamic inconsistency is caused by constraints

• The problem emerges because the constraint has the form,

$$\pi_0 = \overbrace{\pi_1}^{ ext{depends on future choices}} + y_0$$

• So we have a situation in which the state evolution is given by,

$$x_{t+1} = x_t + \tilde{g}(x_t, z_t, x_{t+1}, z_{t+1}, ...)$$
 as opposed to $x_{t+1} = x_t + \tilde{g}(x_t, z_t)$.

- Committing to future actions can be valuable since it affects the current outcomes via forward-looking constraints.
- This is a common issue in macro policy analysis because **economic agents' expectations** of future states—which depend on future policy choices—tend to affect current outcomes (Kydland-Prescott).

Need: Time consistency of preferences and constraints

- So we need time-consistency of preferences and constraints.
- Otherwise, there is (direct or indirect) benefit from **commitment**.
- Our canonical problem is time-consistent in both dimensions since:

$$\begin{split} \sup_{\{x_{t+1}, z_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \tilde{F}\left(x_t, z_t\right) \\ \text{s.t. } z_t \in \tilde{\Gamma}\left(x_t\right), \\ x_{t+1} = x_t + \tilde{g}\left(x_t, z_t\right) \text{ for all } t \geq 0 \text{ and } x_0 \text{ given.} \end{split}$$

• We could therefore hope for an equivalence of (SP) and (FE).

1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking

2. Equivalence of (SP) and (FE)

Principle of optimality Converse

3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

Back to our canonical problem

$$V^{*}(x_{0}) = \sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_{t})$ for all $t \geq 0$.

- Next: "the equivalence" of the one-shot and the recursive problems.
- There are two sides to this argument:
 - 1. Optimization at one-go implies recursive optimization (the PO),
 - 2. Recursive optimization implies optimization at one-go (converse).
- Theorems from SLP for reference, but we will not go into detail here.

1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking

2. Equivalence of (SP) and (FE)
Principle of optimality
Converse

3. Solving (FE)

High-level overview of the theory
Policy function
FOCs via Dynamic Programming

4. Numerical approaches

Formalizing the Principle of Optimality

• Recall notation: V^* and $\{x_t^*\}_{t=0}^{\infty}$ are the solution to (SP).

Theorem (SLP 4.2)

The function V^* solves the Bellman or Functional Equation (FE):

$$V^{*}(x_{0}) = \max_{x_{1} \in \Gamma(x)} F(x_{0}, x_{1}) + \beta V^{*}(x_{1})$$

Theorem (SLP 4.4)

An optimal plan, $\{x_t^*\}_{t=0}^{\infty}$, satisfies the principle of optimality (PO):

$$V^{*}\left(x_{t}^{*}\right) = F\left(x_{t}^{*}, x_{t+1}^{*}\right) + \beta V^{*}\left(x_{t+1}^{*}\right) \text{ for each } t.$$

• See SLP for the proof. Key idea: optimization for entire path ⇒ optimization today given optimal behavior tomorrow

Principle of Optimality: the NGM

$$\max_{\left\{k_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(f\left(k_{t}\right)-k_{t+1}\right), \quad k_{t+1} \in \left[0, f\left(k_{t}\right)\right] \text{ for each } t, \quad k_{0} \text{ given.}$$

$$\begin{split} V^*(k_0) &= \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(f(k_t) - k_{t+1}) \\ &= \max_{0 \le k_1 \le f(k_0)} \left\{ \max_{\{k_{t+2}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(f(k_t) - k_{t+1}) \right\} \\ &= \max_{0 \le k_1 \le f(k_0)} \left\{ \max_{\{k_{t+2}\}_{t=0}^{\infty}} \left[u(f(k_0) - k_1) + \beta \sum_{t=0}^{\infty} \beta^t u(f(k_{t+1}) - k_{t+2}) \right] \right\} \\ &= \max_{0 \le k_1 \le f(k_0)} \left\{ u(f(k_0) - k_1) + \beta \max_{\{k_{t+2}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(f(k_{t+1}) - k_{t+2}) \right\} \\ &= \max_{0 \le k_1 \le f(k_0)} \left\{ u(f(k_0) - k_1) + \beta V^*(k_1) \right\} \\ &\implies V^* \text{ solves the Bellman equation!} \end{split}$$

Is the converse true?

- It would be nice if the converse was also true, so if we find a function that solves (FE) or a plan that satisfies (PO) then we solve (SP).
 - But this is not always the case with $T = \infty$ as the following shows.

1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking

2. Equivalence of (SP) and (FE)

Principle of optimality

Converse

3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approache

A pathological example

• Consider the consumption-savings problem with linear utility:

$$V^{*}(a_{0}) = \max_{\{c_{t}, a_{t+1}\}} \sum_{t=0}^{\infty} \beta^{t} (a_{t} (1+r) - a_{t+1}),$$

s.t. $a_{t+1} \geq 0$, and a_{0} given.

- Suppose $\beta(1+r)=1$. Indifferent between consuming and saving.
 - So there are many optimal paths (what are those?) and $V^*(a_0) = a_0$.
- Now consider the always-save path: $\tilde{a}_t = \tilde{a}_0 (1+r)^{t+1}$ for each t:
 - This satisfies the PO since $V^*(\tilde{a}_t) = \frac{1}{1+r}V^*(\tilde{a}_{t+1})$.
 - But yields value of 0 so clearly not optimal.
- You can check that this path violates the Transversality Condition of the variational approach.

Ruling out the pathological case

• The example pathological case reflects nondiminishing importance of the distant future:

$$\lim_{T\to\infty} \beta^T V^*(x_T) \neq 0 \text{ for some feasible (or candidate) paths.}$$

- Intuitively, the issue is that recursive optimization does not capture "deviations at infinity."
 - If infinite future is unimportant, the issue can be safely ignored.
 - Otherwise, paths that violate the TVC might seem recursively optimal.
- As long as the distant future is unimportant, the converse also holds...

Principle of optimality: Converse results

Theorem (SLP 4.3)

Suppose V solves (FE) and that for any feasible plan $\{x_t\}_{t=0}^{\infty}$:

$$\lim_{T \to \infty} \beta^T V(x_T) = 0. \tag{1}$$

Then, V solves (SP); that is, $V = V^*$.

Theorem (SLP 4.5)

Suppose the feasible plan, $\{\tilde{x}_t^*\}_{t=0}^{\infty}$, satisfies (PO) and that

$$\lim_{T \to \infty} \beta^T V^*(\tilde{\mathbf{x}}_T^*) = 0. \tag{2}$$

Then, $\{\tilde{x}_t^*\}_{t=0}^{\infty}$ is an optimum for (SP).

 See SLP for proofs. Intuition: optimization today given optimization tomorrow does not necessarily deal with value "escaping at infinity".

Intuition via sketch of proof

For any plan,

$$V(k_0) \ge u(f(k_0) - k_1) + \beta V(k_1)$$

$$\ge u(f(k_0) - k_1) + \beta u(f(k_1) - k_2) + \beta^2 V(k_2)$$
...
$$\ge \sum_{t=0}^{T-1} \beta^t u(f(k_t) - k_{t+1}) + \beta^T V(k_T)$$

with $\lim_{t\to\infty} \beta^T V(k_T) = 0$, we have global optimality with infinite horizon.

Discussion of the converse results

- Given the equivalence, our next challenge is to characterize the solution of (FE) (and so equivalently that of (SP)).
- For this we will assume F (or the state variable) is bounded.
 - That's strictly speaking overkill.
 - But note that it makes the previous pathology irrelevant for us, since a bounded F will also result in a bounded V^* (as this is a discounted sum of F's), which in turn will satisfy condition (2).
 - Relatedly, once we assume bounded F, our solution method to (FE) will produce bounded V. Since this satisfies (1), we will invoke the converse result to argue $V = V^*$.
 - The takeaway message now is that you can safely ignore the pathology: For our problems, (PO) as well as its converse will hold.

- 1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse

3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

- Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

Bellman equation

• The Bellman equation (FE) for the general problem is:

$$V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \}.$$

• e.g. in the neoclassical growth model:

$$V(k) = \max_{0 \le k' \le f(k)} \{ u(f(k) - k') + \beta V(k') \}$$

- Known: functions u and f. Unknown: function V. We want to find V.
 - why is knowing V so useful?
- The key observation is that this equation can be equivalently written as a **fixed point problem** over the space of value functions.
- Sounds mysterious. But it is intuitive: start by thinking about the V on the LHS and the V on the RHS as two different functions, and the $\max\{u(\cdot)+\beta\cdot\}$ as being an operator that links them...

Bellman operator

• Pick some function $V_0(k)$ and plug in on the RHS. Define new function $V_1(k)$ as:

$$V_1(k) = \max_{0 \le k' \le f(k)} \{ u(f(k) - k') + \beta V_0(k') \}$$

• If $V_0 = V_1$, we are done (guess and verify method). If not, use V_1 on the RHS and define V_2 . After n + 1 times:

$$V_{n+1}(k) = \max_{0 \le k' \le f(k)} \{ u(f(k) - k') + \beta V_n(k') \}$$

• Can think of the RHS as applying an operator T to function V_n :

$$V_{n+1} = TV_n$$

 \mathcal{T} is a mapping from a set of functions onto itself called a **Bellman** operator.

• Solving the Bellman equation \iff finding a fixed point of mapping T:

$$V_{\infty} = TV_{\infty}$$

A map of the theory – for details see SLP

- 1. Does a fixed point exist?
- 2. Is it unique?
- 3. How to find it? Characterize it?
- Contraction Mapping Theorem: if operator T is a contraction mapping, then
 - it has a unique fixed point
 - it converges from anywhere (from any initial guess V_0)
- Blackwell Sufficiency Theorem: Let B be the space of bounded functions. T: B → B is a contraction mapping if it satisfies monotonicity and discounting.
 - the two conditions are generally satisfied in econ applications
 - we ensure functions are bounded by restricting to bounded pay-offs
- Properties of V^* : continuous, monotonic, concave
- Benveniste-Scheinkman: V^* is differentiable.

- 1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)

High-level overview of the theory

Policy function

FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

How about the optimal plan(s)?

- So far, we focused on the value function, $V^*(x)$, but we didn't say much about the optimal plan/sequence, $\{x_t^*\}_{t=0}^{\infty}$.
 - Aside: V^* is unique. But is the optimal plan unique? **Yes**, when V^* strictly concave. True when F strictly concave and Γ is a convex set.
- From the (PO), we know x_{t+1}^* should solve (FE) starting with x_t^* .
- So consider the solution to the (FE) starting with some $x \in X$:

$$g(x) = \arg\max_{y \in \Gamma(x)} F(x, y) + \beta V^*(y). \tag{3}$$

- The time invariant function y = g(x) is called the **policy function**.
- It tells you what to do now (y) given where you are (x).
- Clearly, starting at any $x_0 \in X$, the policy function pins down the sequence $\{x_t^*\}_{t=0}^{\infty}$.

Outline

- Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)

High-level overview of the theory Policy function

FOCs via Dynamic Programming
Taking stock and solution steps

4. Numerical approaches

The FOCs and the envelope condition

• Recall the Bellman Equation:

$$V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \}.$$

 \bullet Since V differentiable, the necessary FOC is

$$F_2(x,y) + \beta V'(y) = 0 \tag{4}$$

• Note that the policy function g(x) satisfies (why?)

$$V(x) = F(x, g(x)) + \beta V(g(x)).$$
 (5)

• Differentiate (5) with respect to x:

$$V'(x) = F_1(x, y) + F_2(x, y)g'(x) + \beta V'(y)g'(x)$$

• This and (4) give the Benveniste Scheinkman (1979) formula

$$V'(x) = F_1(x, y) \tag{6}$$

The FOCs and the envelope condition

• Eq (6) is also known as the envelope condition

$$V'(x) = F_1(x, y)$$

• Plugging back to the FOC we get

$$F_2(x,y) + \beta F_1(x,y) = 0$$

- Looks familiar? Euler equation!
- All roads lead to Rome, but now we got there with additional structure.
 - For instance, we also have the value function, V(x), which we didn't have before.

Outline

- Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)

High-level overview of the theory Policy function FOCs via Dynamic Programming Taking stock and solution steps

4. Numerical approaches

Main four findings from the theory

Under the relevant regularity conditions:

- 1. The Bellman equation has a unique strictly concave solution.
- 2. This solution is approached in the limit as $j \to \infty$ by iterations on

$$V_{j+1}(x) = \max_{x'} \{ F(x, x') + \beta V_j(x') \}$$

starting from any bounded and continuous initial V_0 .

- 3. There is a unique and time-invariant optimal policy of the form x' = g(x) where g is chosen to maximize the RHS of the Bellman equation.
- 4. Off corners, the limiting value function V is differentiable.

Steps in analysis of the Bellman equation

To derive the Euler equation:

- 1. Write down the Bellman equation in terms of x and y.
- 2. Take the FOC w.r.t. v.
- 3. Apply the Benveniste-Scheinkman formula: $v'(x) = F_x(x, y)$
- 4. One step forward on the B-S formula
- 5. Plug back into the FOC

Let's apply this to a consumption-saving problem.

Consumption-saving problem

To derive the Euler equation:

1. Write down the Bellman equation in terms of x and y.

$$v(a) = \max_{a'} u((1+r)a - a') + \beta v(a')$$

2. Take the FOC w.r.t. a'.

$$u'(c) = \beta \frac{dv}{da}(a')$$

3. Apply the Benveniste-Scheinkman formula:

$$\frac{dv}{da}(a) = (1+r)u'(c)$$

4. One step forward on the B-S formula

$$\frac{dv}{da}(a') = (1+r)u'(c')$$

5. Plug back into the FOC

$$u'(c) = (1+r)\beta u'(c')$$

Outline

- 1. Background: Dynamic inconsistency Example I: Hyperbolic Discounting Example II: Central Banking
- 2. Equivalence of (SP) and (FE)
 Principle of optimality
 Converse
- 3. Solving (FE)
 High-level overview of the theory
 Policy function
 FOCs via Dynamic Programming
 Taking stock and solution steps

4. Numerical approaches

Solving the Bellman equation in practice

- The theory suggests three practical methods of solving (FE):
 - 1. Guess and verify
 - Often not feasible
 - 2. Value function iteration
 - Good convergence properties, but slow
 - 3. Policy function iteration
 - Faster than VFI

Brock-Mirman (1972)

• Consider a neoclassical growth model with $u(c) = \log c$ and $\delta = 1$:

$$v^{*}(k_{0}) = \max_{\{k_{t+1}, c_{t}\}_{t=0}^{\infty}} \beta^{t} \log c_{t}$$

s.t. $k_{t+1} + c_{t} = Ak_{t}^{\alpha}$.

• Bellman equation is

$$v(k) = \max_{k'} \log(Ak^{\alpha} - k') + \beta v(k').$$

- It is possible to solve this model with pencil and paper using any of the three methods.
- Let's start with guess and verify.

BM (1972): guess and verify

• Make a guess that

$$v(k) = E + F \log k.$$

 \bullet E and F are coefficients to be determined. We have:

$$E + F \log k = \max_{k'} \log(Ak^{\alpha} - k') + \beta(E + F \log k')$$

• The FOC is $\frac{1}{Ak^{\alpha}-k'}=\frac{\beta F}{k'}$ which gives the policy function

$$k' = \frac{\beta F}{1 + \beta F} A k^{\alpha}$$

• Plugging this back into the Bellman equation gives

$$E + F \log k = \log \left(Ak^{\alpha} \frac{1}{1 + \beta F} \right) + \beta \left(E + F \log \frac{\beta F}{1 + \beta F} Ak^{\alpha} \right).$$

• Solving for E and F gives the result. In particular:

$$k' = \alpha \beta A k^{\alpha}$$
.

• Save and consume a constant fraction of output.

BM (1972): VFI

- Start with a "bad" guess $v_0(k) = 0$ (thus solve a one period problem).
- Solution: $c = Ak^{\alpha}$, plugging back into the Bellman equation:

$$v_1(k) = \log A + \alpha \log k$$

• Maximization in the second step gives $c = \frac{1}{1+\beta\alpha}Ak^{\alpha}$, $k' = \frac{\beta\alpha}{1+\beta\alpha}Ak^{\alpha}$ and

$$v_2(k) = constant + \alpha(1 + \alpha\beta) \log k$$

- Continuing, we get a geometric series recursion, which finally yields the answer (as before).
- Note that doing the first couple of steps can give us a hint as to the good guess for the guess and verify method!
- Outside of very special cases we must rely on numerical solutions...

Value Function Iteration

- Easiest method to numerically solve Bellman equation for V(a)
- Guess value function on RHS of Bellman equation then maximize to get value function on LHS
- Update guess and iterate to convergence right until convergence
- Contraction Mapping Theorem: guaranteed to converge if $\beta < 1$
- Simplest (and slowest)
- Let's see how it works in a deterministic income fluctuations problem

Saving Problem with Deterministic Income

• Assume that income is deterministic and constant $y_t = y$

$$\max_{\substack{\{a_{t+1}\}_{t=0}^{\infty} \\ c_t + a_{t+1} \le y + Ra_t \\ a_{t+1} \ge \underline{a}}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

• Recursive formulation of household problem i.e. Bellman equation

$$V(a) = \max_{c,a'} u(c) + \beta V(a') \quad \text{s.t.}$$

$$c + a' \le y + Ra$$

$$a' \ge \underline{a}$$

- Solution is
 - Value function: V(a)
 - Policy functions: c(a), a'(a)

Value Function Iteration

- Step 1: Discretized asset space $A = \{a_1, a_2, \dots, a_N\}$. Set $a_1 = \underline{a}$
- Step 2: Guess initial $V_0(a)$. Good guess is

$$V_0(a) = \sum_{t=0}^{\infty} \beta^t u(ra + y) = \frac{u(ra + y)}{1 - \beta}$$

• Step 3: Loop over all \mathcal{A} and solve

$$\begin{aligned} a'_{\ell+1}\left(a_{i}\right) &= \arg\max_{a' \in \mathcal{A}} u\left(y + (1+r) \, a_{i} - a'\right) + \beta V_{\ell}\left(a'\right) \\ V_{\ell+1}\left(a_{i}\right) &= \max_{a' \in \mathcal{A}} u\left(y + (1+r) \, a_{i} - a'\right) + \beta V_{\ell}\left(a'\right) \\ &= u\left(y + (1+r) \, a_{i} - a'_{\ell+1}\left(a_{i}\right)\right) + \beta V_{\ell}\left(a'_{\ell+1}\left(a_{i}\right)\right) \end{aligned}$$

Value Function Iteration

• Step 4: Check for convergence $\epsilon_{\ell} < \overline{\epsilon}$

$$\epsilon_{\ell} = \max_{i} |V_{\ell+1}(a_i) - V_{\ell}(a_i)|$$

- if $\epsilon_{\ell} \geq \bar{\epsilon}$, go to Step 2 with $\ell := \ell + 1$
- If $\epsilon_{\ell} < \bar{\epsilon}$, then
- Step 5: Extract optimal policy functions
 - $a'(a) = a_{\ell+1}(a)$
 - $V(a) = V_{\ell+1}(a)$
 - c(a) = y + (1+r)a a'(a)
- Consumption function restricted to implied grid so not very accurate.