Contract NAS8-4016 Apollo/Soyuz Test Project

DRL 444-V4a

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS

VOLUME I

APRIL 4, 1975

DRL 444-V4a

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY **DISPERSION ANALYSIS**

VOLUME I

April 4, 1975

CONTRACT NAS 8-4016

APOLLO/SOYUZ TEST PROJECT

by

FLIGHT TECHNOLOGY BRANCH

CHRYSLER CORPORATION SPACE DIVISION

Prepared by: N. W. Williams, G. W. Klug

and F. A. Ransom

Approved by:

R. M. Blackstock, Supervisor

Performance and Mission

Analysis Group

R. D. Taylor, Managing Engineer Flight Mechanics Section

G. Swider, Manager Hight Technology Branch

R. H. Ross, Deputy Project Manager

Vehicle Systems

FOREWORD

This document is Data Requirements List (DRL) Item 444-V4a. It is

Volume I of the two volume documentation required for the ASTP (SA-210)

Launch Vehicle Operational Flight Trajectory Dispersion Analysis under

Contract NAS 8-4016, Schedule II, Modification MSFC-1, Amendment 199. The

associated Guidance Hardware Error Analysis is documented separately, as

Volume II, because it contains classified material.

Acknowledgements are made to the personnel of Marshall Space Flight Center SA&I-EL24 for their assistance and cooperation.

TABLE OF CONTENTS

<u>P</u>	age
FOREWORD	i
TABLE OF CONTENTS	ii
LIST OF TABLES	ii:
DEFINITIONS AND SYMBOLS	iv
SUMMARY	1
1.0 INTRODUCTION	4
2.0 DISCUSSION	5
2.1 Mission Description	5
2.2 Launch Vehicle and Trajectory Description	5
2.2.1 Launch Vehicle	5
2.2.2 Flight Environment	6
2.2.3 Flight Sequence of Events	6
2.3 Dispersion Error Sources	7
2.4 Trajectory Dispersion and Analytical Procedures	8
3.0 RESULTS	9
3.1 Trajectory Dispersions	9
3.2 S-IVB Stage Flight Performance Reserve	.1
4.0 GOVERNMENT FURNISHED DOCUMENTATION	.3
5.0 REFERENCES	.4
DISTRIBUTION	5

LIST OF TABLES

Table		Page
1	Vehicle Weight Breakdown	16
2	Flight Sequence of Events	17
3	Three Sigma Tolerances	18
4	Trajectory Dispersions at S-IB/S-Ivb Separation, S-IB Propul:ion/Non-Propulsion Three Sigma Deviations	20
5	Trajectory Dispersions at S-IB/S-IVB Separation, S-IVB Propulsion/Non-Propulsion Three Sigma Deviations	25
6	Trajectory Dispersion Envelope at S-IB/S-IVB Separation, Combined S-IB and S-IVB Stage Three Sigma Deviations	30
7	Trajectory Dispersions at Orbit Insertion, S-IB Propulsion/Non-Propulsion Three Sigma Deviations	35
8	Trajectory Dispersions at Orbit Insertion, S-IVB Propulsion/Non-Propulsion Three Sigma Deviations	43
9	Trajectory Dispersion Envelope at Orbit Insertion, Combined S-IB, S-IVB Stage and IMU Three Sigma Deviations	51
10	Three Sigma Flight Envelope of Pertinent Design Parameters, First Stage Flight	58
11	Performance Trade-Offs at S-IB/S-IVB Separation	60
12	Performance Trade-Offs at Orbit Insertion	61
13	Large Guidance Platform Azimuth Misalignment Effects at Orbit Insertion	62
14	S-IVB Stage Flight Performance Reserve	63

DEFINITIONS AND SYMBOLS

Aerodynamic Heating Indicator

$$\int \frac{qV_r}{|\pi_2 - \alpha_t|} dt \qquad \begin{array}{c} q = \text{dynamic pressure} \\ V_r = \text{relative velocity} \\ \alpha_t = \text{total angle of attack} \end{array}$$

Aerodynamic Load Indicator

Product of dynamic pressure and angle of attack.

Altitude

Vehicle altitude above the reference ellipsoid measured along the geocentric position vector.

Angle of Attack, Pitch

Angle between the pitch plane component of the relative velocity vector and the rongitudinal axis of the vehicle, measured positive nose up.

Apogee Altitude

Apogee height of the osculating conic above the reference ellipsoid, referenced to the equatorial radius, 6378165 meters.

Attitude Command

Eulerian angle command, derived by the guidance system and transmitted to the control system.

Attitude Error

Difference between the vehicle attitude (pitch, yaw and roll Eulerian angles) and the vehicle attitude command.

Axial Force

Component of the resultant aerodynamic force along the vehicle longitudinal axis (X axis of PASCS 8a), measured positive toward the nose of the vehicle.

Descending Node Argument

Angle measured in the equatorial plane between the orbit descending node and the space fixed launch meridian defined at Guidance Reference Release.

Drag

Component of the resultant aerodynamic force along the relative velocity vector. measured positive opposite to the velocit vector.

Dynamic Pressure

 $\frac{1}{2}$ x (Density) x (Relative Velocity)²

Earth Fixed Cross Range

Ye component of PASCS 10 position vector.

Earth Fixed Flight Path Angle

Angle between the earth fixed velocity vector and the earth fixed geocentric position vector (PASCS 11), measured positive downrange from the position vector.

Earth Fixed Position

Position vector/components in an earth-fixed pad-centered plumbline coordinate system. The Xe axis is coincident with the reference ellipsoid normal, positive upward. The Ze axis is parallel to the earth-fixed aiming azimuth and is positive downrange. The Ye axis completes a right handed system. (FASCS 10)

Earth Fixed Velocity

Earth Fixed Velocity Magnitude

Eccentricity

Flight Azimuth

Eccentricity of the osculating conic.

Velocity vector/components in PASCS 10.

Angle defining orientation of the space fixed coordinate system downrange axis, Zs, at Guidance Reference Release, measured positive east of north in plane normal to the space fixed Xs axis.

Geocentric Declination

Angle between the geocentric radius vector and the true equatorial plane, measured positive north of the equator.

Geodetic Latitude

Angle between the reference ellipsoid normal through the point of interest and the true equatorial plane, measured positive north of the equator.

Ground Range

Surface distance from launch site to the subvehicle point, positive east (0° - 180°).

Inclination

Angle between the instantaneous flight plane and the equatorial plane.

Inertial Range Angle

Angle between the instantaneous space fixed position vector and the space fixed position vector at Guidance Reference Release.

Longitude

Angle between the Greenwich meridian plane and the projection of the geocentric position vector in the equatorial plane, measured positive east of Greenwich.

Longitudinal Acceleration

That part of the total measurable acceleration directed along the longitudinal axis of the vehicle.

Mach Number

(Relative Velocity) : (Local Speed of Sound)

Mass

Mass of the vehicle.

Navigation Coordinate System

This system is identical to PASCS 13 with ideal navigation.

Normal Force

Magnitude of the resultant aerodynamic force normal to the vehicle longitudinal axis, and in the plane defined by that axis and the relative velocity vector.

Perigee Altitude

Perigee height of the osculating conic above the reference ellipsoid, referenced to the equatorial radius, 6378165 meters.

Period

Period of the osculating conic.

Pitch, Yaw, Roll (Inertial)

Eulerian angles of vehicle attitude measured with respect to the space fixed coordinate system. Vehicle attitude is defined by the ordered rotation of pitch, yaw, and roll. (See illustration)

Radius

Space fixed position vector magnitude,

$$\sqrt{xs^2 + ys^2 + zs^2},$$

Range

Surface distance from launch site to the sub-vehicle point, positive east (0° - 180°).

Relative Vehicle Attitude

Pitch, yaw and roll angles of the vehicle in an earth relative system. The roll axis is the projection of the velocity vector in the local horizontal plane; the yaw axis is in the local vertical plane, positive toward the center of the earth; the pitch axis completes a right handed system. Vehicle attitude is defined by ordered rotation-pitch, yaw and roll.

 $\bar{x}_{m} = (\phi_{r})_{1} (\phi_{y})_{3} (\phi_{p})_{2} \bar{x}_{s}$

Relative Velocity

Velocity relative to the atmosphere (includes wind velocity).

Semi-Major Axis

Length of the chord in the orbit plane connecting the apogee and the perigee of the osculating conic.

Space Fixed Cross Range

Ys component of PASCS 13 position vector.

Space Fixed Flight Path Angle

Angle between the space fixed velocity vector and the radius vector (PASCS 13), measured positive downrange from radius vector.

Space Fixed Position

Position vector/components in a space fixed earth centered, plumbline coordinate system defined at Guidance Reference Release. The Xs axis is parallel to the reference ellipsoid normal which passes through the launch site. The Zs axis is parallel to, and positive in the same direction as, the earth-fixed firing azimuth. The Ys axis completes the right handed system. This is Project Apollo Standard Coordinate System 13. (PASCS 13).

Space Fixed Velocity

Velocity vector/components in PASCS 13.

Space Fixed Velocity Magnitude

$$\sqrt{\dot{x}s^2 + \dot{y}s^2 + \dot{z}s^2}$$

Time

Instantaneous flight time referenced to first motion.

Three Sigma (3σ)

Three standard deviations.

Thrust

Total effective thrust magnitude,

$$\sqrt{\text{FTX}^2 + \text{FTY}^2 + \text{FTZ}^2}$$

True Anomaly

Angular displacement of the vehicle C.G. from the perigee, measured in the direction of the motion.

Velocity Vector Azimuth

The angle between the velocity vector projection on the earth's surface and true north.

Vehicle Weight

X4 Position Vector

Instantaneous total vehicle weight.

Vehicle c.g. displacement components in a space fixed, right handed, target coordinate system with its origin at the center of the earth. The χ_4 axis passes through the descending node of the orbit plane. The χ_4 axis lies in the desired orbit plane 90° downrange from the χ_4 axis. The χ_4 axis completes a right handed system and is perpendicular to the orbit plane.

AFETR Air Force Eastern Test Range

AFB Air Force Base

AH1 Aerodynamic Heating Indicator

APS Auxiliary Propulsion System

APSO Apollo Soyuz Program Office

AS Apollo Saturn

ASTP Apollo Soyuz Test Project

B-7 Trajectory Data Tape

C C-Band Radar Stations

C/O Cutoff

CS Command System

CCSD Chrysler Corporation Space Division

C.G. Center of Gravity

CM Command Module

CSM Command and Service Modules

DELTA (\Delta) Increment

(ΔP) Parameter Increment

DIA Vehicle Diameter

DM Docking Module

DRL Data Requirements List

ECF End Conditions of Flight

EMR Engine Mixture Ratio

F Average Longitudinal Sea Level Thrust

FPR Flight Performance Reserve

FT Flight Technology

Acceleration of Gravity at Sea Level (9.80665 m/sec²)

GCS Guidance Cutoff Signal **GET** Ground Elapsed Time GFD Government Furnished Documentation GH₂ Gaseous Hydrogen GMT Greenwich Mean Time GRR Guidance Reference Release GSFC Goddard Space Flight Center H-1 S-IB Stage Engine Inclination i IBM International Business Machines Corp. **IECO** Inboard Engine Cutoff Signal IGM Iterative Guidance Mode Inertia. Measurement Unit IMU ISP Specific Impulse ΙU Instrument Unit J-2 S-IVB Stage Engine KSC Kennedy Spaceflight Center Loss of Attitude Control LAC Launch Complex LC LES Launch Escape System Liquid Hydrogen LH₂ Lockheed Missiles and Space Company/Huntsville LMSC/HREC Research and Engineering Center LOX Liquid Oxygen Level Sensor Actuation LSA

LVDC

Launch Vehicle Digital Computer

L/V Launch Vehicle

LWC Launch Window Closing

LWO Launch Window Opening

MDAC McDonnell Douglas Aircraft Corporation

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

N₂ Liquid Nitrogen

N/A Not Applicable

N/D Non-Dimensional

NPV Non-Propulsive Vent

OECO Outboard Engine Cutoff Signal

OI Orbit Insertion

OT Operational Trajectory

PASCS Project Apollo Standard Coordinate System

POT Preliminary Operational Flight Trajectory

PSF; psf Pounds Per Square Foot

q Dynamic Pressure

RP-1 S-IB Propellant

RSS Root-Sum-Square

S-IB First Stage of the Saturn IB Launch Vehicle

S-IU Saturn Launch Vehicle Instrument Vehicle

S-IVB Second Stage of the Saturn IB Launch Vehicle

SA Saturn

SC Spacecraft

SIGMA (σ) Standard Deviation (Σ) Summation of SLA Spacecraft Launch Adapter SM Service Module STA Vehicle Station Location T Telemetry Stations; Time Base One Time TO Time Base Zero Time Base One T1 T2 Time Base Two Т3 Time Base Three Т4 lime Base Four Technical Note TN Ultra High Frequency UHF United States of America USA Union of Soviet Socialist Republics USSK Very High Frequency VHF Flowrate

SUMMARY

This report presents the ASTP (SA-210) Launch Vehicle Operational Flight Trajectory (OT) three sigma ($3\,\sigma$) flight parameter envelopes, the S-IVB Stage Flight Performance Reserve (FPR), the S-IB stage design parameter envelopes, and pertinent trade-off factors. The ASTP (SA-210) Launch Vehicle 500 Pound Launch Window Opening Operational Flight Trajectory was utilized as the nominal for this analysis.

The flight envelopes presented are the results of statistical combinations of perturbation effects, employing the Root-Sum-Square (RSS) technique. Concise summaries of pertinent trajectory parameter dispersions at S-IB/S-IVB Separation and Orbit Insertion (OI) follow.

	S-IB/S-IVB Sep.		Orbit I	nsertion
	+RSS	-RSS	+RSS	-RSS
Flight Time (sec)	2.82	2.65	10.99	10.46
Radius (m)	2050.	2303.	505.	502.
Space Fixed Velocity (m/sec)	46.10	41.82	2.47	2.46
Space Fixed Path Angle (deg)	1.872	1.776	0.018	0.018
Ground Range (m)	4646.	3607.	40192.	38336.
Earth Fixed Cross Range (m)	4002.	2377.	4928.	5125.
Inclination (deg)			0.019	0.019
Descending Node Argument (deg)			0.019	0.019

Three sigma (3 σ) variations in the establishments of the Launch Vehicle Digital Computer (LVDC) time bases T2, T3, and T4 are displayed in the following table. Also included are the 3 σ variations in the time that dynamic pressure (q) decreases to one pound per square foot (psf). The time bases initiate independent event sequences and q \leq 1 psf is a primary Launch Escape System (LES) jettisoning criterion.

	T2 <u>(sec)</u>	T3 (sec)	T4 (sec)	T3 Time of q = 1 psf (sec)
RSS (+)	2.70	2.82	10.99	5.37
RSS (-)	2.53	2.65	10.46	4.83

The 3σ deviations in J-2 engine ignition and Engine Mixture Ratio (EMR) shift times are the same as those shown for T3, since they are programmed T3 events.

The S-IVB stage three sigma Flight Performance Reserve (FPR) requirements for this launch are 1172 pounds of LOX and 683 pounds of LH2. This FPR is considered to be valid at any point in the prescribed 500 pound launch window, since a previous analysis has established that FPR variation within a larger 700 pound launch window is less than 50 pounds. Utilizing these FPR data, the table on the following page provides an assessment of the S-IVB residual propellants predicted for the nominal mission. The nominal launch time is 2.84 minutes prior to the planar flight opportunity, consequently, 96 pounds of the 500 pound launch window propellant allocation are required for yaw steering to the prescribed target conditions.

	LOX (Pounds)	LH ₂ (Pounds)	Total (Pounds)
Total on board at GCS	2208	1792	4000
(1)Unuseable	_440	948	1388
(2)Total Available	1768	844	2612
3 si ;ma FPR allocation	1172	683	1855
Remaining launch window allocation (4.8.1 EMR)	334		404
Total allocation	1506	753	22 59
Excess available over allocation	262	91	3 53
Excess useable at 4.8:1 EMR	262	55	317
Excess bias	0	36	36

- (1) Unuseable determined by MSFC/MDAC to assure the required 6.7 m/sec depletion cutoff thrust decay velocity increment.
- (2) Total available LH2 includes a 460 pound bias.

The preceding table is a modification of the residual propellant assessment provided in the ASTP (SA-210) OT documentation, using the actual FPR generated in this analysis.

SECTION 1

INTRODUCTION

Launch vehicle performance is predictable only within certain tolerances. Therefore, deviations from a predicted launch vehicle trajectory are expected. In order to establish realistic deviation limits for the ASTP (SA-210) Launch Vehicle Operational Flight Trajectory, a dispersion analysis has been conducted and is documented in this report.

The nominal trajectory prescribed for this analysis is the ASTP (SA-210) Launch Vehicle 500 Pound Launch Window Opening OT. This trajectory is documented in Reference 1.

The error sources considered are those associated with predictions of vehicle characteristics, vehicle systems performances, and flight environment. The nominal vehicle, the boost trajectory simulations, the error sources, the analytic procedures utilized, and the results are discussed in the following sections.

Launch vehicle guidance system inaccuracies were determined from the guidance error analysis, which is documented in Volume II of this publication (Reference 2). These data are composed of individual error source trajectory effects, which are statistically combined to provide trajectory parameter dispersion envelopes. Fixed time state variable cards are provided with Volume II to facilitate orbital trajectory dispersion analyses.

SECTION 2

DISCUSSION

2.1 Mission Description

The Apollo Soyuz Test Project (ASTP) is a joint USA and USSR venture consisting of separate Apollo and Soyuz spacecraft launches for an earth orbit rendezvous and docking. The Soyuz will be launched first on July 15, 1975 and inserted into a 188/228 km. (101.5/123.1 n.mi.) earth orbit inclined at 51.78 degrees. Subsequently, the Soyuz orbit will be circularized at 225 km. (121.5 n.mi.). Approximately 7½ hours after the Soyuz launch, the Apollo spacecraft will be launched and inserted into a 150/167 km. (81/90 n.mi.) earth orbit coplanar with the Soyuz orbit. The Apollo will then rendezvous and dock with the Soyuz. The two spacecraft will remain docked for approximately two days, during which time the crews will exchange visits and operational procedures. After additional docking tests, the spacecraft will separate and conduct independent activities. The Soyuz will deorbit approximately 46 hours after the initial undocking, and the Apollo will remain in orbit, conducting experiments, for five additional days.

2.2 Launch Vehicle and Trajectory Description

The launch vehicle and typical trajectories are described in Reference

1. Features pertinent to this analysis are discussed in the following subsections. Associated dispersion data are discussed in subsections 2.3 and

2.4.

2.2.1 Launch Vehicle

The Apollo launch vehicle is Saturn IB 210. It is composed of the

S-IB-10 first stage, an interstage, the S-IVB-210 second stage, and the S-IU-210 Instrument Unit. Major spacecraft elements are the CM-111 Command Module, the SM-111 Service Module, the SLA-18 Spacecraft Launch Adapter and the DM-2 Docking Module. A Launch Escape System (LES) completes the space vehicle. A vehicle weight breakdown is presented in Table 1.

2.2.2 Flight Environment

The 1963 Patrick Air Force Base atmosphere model, defined in Reference 3, is the nominal atmosphere used in this analysis. The nominal wind is the July mean profile from Reference 4 supplemented by compatible data from Reference 5 for altitudes greater than 27 kilometers.

2.2.3 Flight Sequence of Events

The nominal flight sequence of events, for this analysis, is presented in Table 2. Off nominal propulsion systems performances produce significant sequence changes. Of primary interest are the events which establish Launch Vehicle Digital Computer (LVDC) time bases and thus the subsequent events dependent on these time bases. A discussion of pertinent time bases and associated events follows.

- 1) Time Base 2 (T2) Established by S-IB stage propellant level sensor actuation if a downrange velocity ≥ 500 m/sec exists. Significant dependent events are Inboard Engine Cut-Off Signal (IECO), interconnection of thrust O.K. switches and fuel depletion probe arming.
- 2) Time Base 3 (T3) Established when an Outboard Engine Cut-Off
 Signal (OECO) is received by the LVDC due to either LOX or fuel

depletion; or, by a backup LVDC signal initiated 13.00 seconds after establishment of Time Base 2. Pertinent dependent events are ullage rocket firing, S-IB retro-rocket firing, S-IB/S-IVB separation signal, J-2 engine start signal, IGM guidance initiation, and Engine Mixture Ratio (EMR) changes.

3) Time Base 4 (T4) - Initiated approximately 0.2 seconds after Guidance Cutoff Signal (GCS). In this analysis, GCS is received when the S-IVB stage obtains the target velocity less the predicted velocity increment from J-2 thrust decay. The significant events subsequent to T4 are the preplanned orbital maneuvers and S-IVB stage ventings.

It should be noted that T2 and T3 establishments are nominally dependent upon propellant level sensor actuations and propellant depletion detection. Therefore, establishments of these time bases are very sensitive to propulsion system perturbations, which affect propellant flowrate, and thus, tank level histories.

2.3 Dispersion Error Sources

Vehicle manufacturing tolerances, predicted system performance inaccuracies, flight environment anomalies, and guidance hardware inaccuracies
are sources of errors which significantly affect trajectory predictions. To
facilitate statistical analyses of such error effects, three sigma tolerances
have been established. The three sigma tolerances considered in this analysis,
with corresponding references, are displayed in Table 3.

The LOX and RP-1 density cases presented herein were generated from July propulsion predictions utilizing the tapes delineated in Reference 11.

The three sigma wind data utilized are the Reference 5 annual wind profiles.

2.4 Trajectory Dispersions and Analytical Procedures

The trajectory parameter perturbations resulting from this analysis are assumed to be random, independent, and normally distributed. These assumptions allow application of the Root-Sum-Square (RSS) statistical combination method to produce a reasonable trajectory dispersion envelope.

Dispersed trajectories were generated with each of the three sigma tolerances delineated in Table 3. Effects on pertinent trajectory parameters at S-IB/S-IVB stage separation and orbit insertion were determined and combined as follows:

+ RSS =
$$\sqrt{\Sigma(+\Delta P)^2}$$
;
- RSS = $\sqrt{\Sigma(-\Delta P)^2}$; where
 ΔP = perturbed parameter - nominal parameter.

These RSS values define a reasonable three sigma flight envelope for the ASTP (SA-210) Launch Vehicle Operational Flight Trajectory. In a similar manner, utilizing trajectory dispersion data, the S-IVB Flight Performance Reserve (FPR), required to offset the combined three sigma deviations, was determined. This FPR and other trajectory dispersion results are presented in Section 3.

SECTION 3

RESULTS

3.1 Trajectory Dispersions

Trajectory dispersion data are presented for two events, S-IB/S-IVB stage separat on and orbit insertion. Table 4 presents three sigma trajectory parameter deviations produced at S-IB/S-IVB separation by the S-IB stage propulsion, non-propulsion, and flight environment perturbations.

Table 5 provides similar data derived from S-IVB stage perturbations. Tables 7 and 8 display corresponding data at orbit insertion. In the Event that both + three sigma perturbations of the same error source produce effects with like algebraic sign, only the larger effect is included in the RSS.

Tables 6 and 9 display predicted three sigma flight envelopes at S-IB/S-IVB separation and at orbit insertion, respectively. These envelopes are the root-sum-square of the previously mentioned error source group effects with the RSS of the Inertial Measurement Unit (IMU) error effects included in Table 9. Individual IMU error effects are provided in Reference 2.

Results of the analysis show that the expected extreme deviations for T2 are +2.70 and -2.53 seconds. Analysis also reveals that the maximum deviations expected for T3 are +2.82 seconds and -2.65 seconds. Since S-IB/S-IVB stage separation, J-2 ignition, and IGM initiation times are dependent on T3, the maximum expected deviations for these events are the same as those of T3. This fact is reflected in Table 6 for S-IB/S-IVB stage separation.

A basic criterion for Launch Escape System (LES) jettisoning is that dynamic pressure (q) has Jecreased to one pound per square foot (psf). Therefore, the three sigma dispersion on the time this occurs was determined to facilitate selection of a satisfactory LES jettison time. It was found that q=1 psf may occur as early as T3 +20.81 seconds or as late as T3 +31.01 seconds. These extremes reflect deviations of -4.83 seconds, and +5.37 seconds, respectively, from the nominal T3 + 25.64 seconds. Thus, current OT simulation LES jettison time of T3 + 32 seconds provides 3σ probability that $q \le 1$ psf.

The S-IVB stage EMR step down is a T3 event, therefore the expected deviation extremes are those presented previously for T3. It is found that the maximum expected variations in T4 are +10.99 seconds and -10.46 seconds as shown in Table 9. These variations are primarily due to S-IVB propulsion perturbations.

The error sources prescribed for this analysis, Table 3, do not include conditions and tolerances which contribute to a realistic vehicle attitude rate envelope determination at S-IB/S-IVB physical separation or orbit insertion. Consequently, the total attitude rate envelopes have been omitted from Tables 6 and 9.

During S-IVB stage flight, roll control is maintained by the Auxiliary Propulsion System (APS). This system also assumes pitch and yaw control at T4 + 3.5 seconds. Essentially, the APS corrects attitude errors when the attitude error signals exceed one degree. These criteria allow attitude errors

to approach \pm one degree at orbit insertion, thus a two degree APS deadband exists. Consequently, attitude differences (dispersed - nominal) could be increased by nearly two degrees due to the APS deadband if the dispersion and the nominal attitude errors approached opposite deadband limits. Such an increase would be compounded by the RSS process, therefore, this methods are not applicable for attitude dispersion envelope derivations at orbit artical. Accordingly, attitude envelopes have been excluded from Table 9. These attitude envelopes as well as the attitude rate envelopes discussed in the previous paragraph are currently derived at MSFC by an alternate method.

Three sigma dispersion envelopes of pertinent design parameters during S-IB stage flight are displayed in Table 10. Tables 11 and 12 provide pertinent performance trade-off factors at S-IB/S-IVB separation and orbit insertion, respectively. Table 13 exhibits the effects at orbit insertion of large guidance platform azimuth misalignments. Such misalignments may result from ground control equipment inaccuracies in the event that a backup alignment scheme is employed. These effects are not included in the three sigma envelopes presented herein.

3.2 S-IVB Stage Flight Performance Reserve

The S-IVB stage 3σ Flight Performance Reserve (FPR) requirements for this mission are derived in Table 14. The requirements are 1172 pounds of LOX and 683 pounds of LH₂. A previous analysis, documented in Reference 19, has established that FPR variation within a 700 pound launch window is less than 50 pounds. Therefore, this FPR is considered valid at any point in the

specified 500 pound launch window. Utilizing this FPR, the residual S-IVB propellant assessment presented in Reference 1 is modified in the following table.

	LOX (Pounds)	LH2 (Pounds)	Total (Pounds)
Total on board at GCS	2208	1792	4000
(1) Unuseable	440	948	1338
(2) Total Available	1768	844	2612
3 sigma FPR allocation	1172	683	1855
Remaining launch window allocation (4.8:1 EMR)	334		404
Total allocation	1506	753	2259
Excess available over allocatio	262	91	3 53
Excess useable at 4.8:1 EMR	262	55	317
Excess bias	0	36	36

- (1) Unuseable determined by MSFC/MDAC to assure the required 6.7 m/sec depletion cutoff thrust decay velocity increment.
- (2) Total available LH2 includes a 460 pound bias.

Table 14 also concains significant individual perturbation effects on the S-IVB stage propellant components consumed and the readily applicable trade-off factors. Utilizing the proper algebraic sign, these trade-off factors provide quick estimates of perturbat on effects on S-IVB propellancs consumed.

SECTION 4

GOVERNMENT FURNTSHED DOCUMENTATION

The GFD for this analysis is listed below.

GOVERNMENT FURNISHED DOCUMENTATION DRL 444-V48, VOLUME I

IDENTIFICATION OF GFD PRESCRIBED	MSFC Computer Card Decks 513A (Rev. 2), 513B (Rev. 1), 515A (Rev. 1) through 515G (Rev. 1), and 515H through 515S; MSFC/CCSD Telecons - R. Bailey to N. Williams, 12/16/74 and 12/18/74.	TR-P&VE-75-222 S&E-ASTN-SAB (71-9); S&E-ASTN-SAB (72-20); S&E-AERO-MFP-31-74 GFDA for ASTP (SA-210) DRL 444-V4; MSFC/CCSD Telecons - R, Bailey to N. Williams/R. Blackstock, 12/16/74, and 12/18/74.	TN-AP-68-312: R-P&VE-VAW-66-119 R-AERO-F-27-67; TM-53956; S&E-AERO-YT-91-71 S&E-ASTR-SC-36-69 R-P&VE-PPE-66-M-99 S&E-AERO-MFG-138-70 TN-FT-74-19.	700 Seconds Flight Time.	ASTP (SA-210) L/V 500 Pound Launch Window Opening OT (Updated).
DESCRIPTION OF GFD AEQUIRED	L/V mass characteristics consistent with propulsion dispersion data.	L/V propulsion dispersion data.	Error sources and tolerances.	Time for fixed-time state variable card generation.	Nominal Trajectory.
MSFC APPROVAL DATE	12/13/74, 12/18/74 an: 2/3/75	12/13/74 .nd 12/18/74	12/13/74	12/13/74	2/3/75

SECTION 5

REFERENCES

- 1. CCSD TN-FT-74-35, ASTP (SA-210) Launch Vehicle Operational Flight Trajectory, Part III, Final Documentation, dated January 21, 1975; as updated by CCSD Letter, R. M. Blackstock to J. L. Crafts, dated February 7, 1975.
- 2. CCSD TN-FT-75-43, ASTP (SA-210) Launch Vehicle Operational Flight Trajectory Dispersion Analysis, Volume 11, Guidance Hardware Erro, Analysis (J), dated April 4, 1975.
- 3. NASA/MSFC TMX-53139, A Reference Atmosphere for Patrick AFB, Florida, Annual (1963 Revision), dated September 23, 1964.
- 4. NASA/MSFC S&E-AERO-YT-77-71, Subject: Monthly Vector Mean Winds Versus Altitude for Capε Kennedy, Florida, for Skylab (INT-21) Wind Bias Trajectory Analysis, dated January 29, 1971.
- 5. NASA/MSFC TM-53956, Cape Kennedy Wind Component Statistics Monthly and Annual Reference Periods for All Flight Azimuths from 0 to 70 KM Altitude, dated October 9, 1969.
- 6. NASA/MSFC R-AERO-F-27-67, Subject: S-IB, S-IVB Three Sigma Tolerance Envelope for Use in the Stage Incentive Plan for Vehicles AS-207 through AS-212, dated February 10, 1967 (U).
- 7. CCSD TN-AP-68-312, SA-206/LM and SA-207/CSM Aerodynamic Axial Force Characteristics Mission 276, dated March 1, 1968
- 8. NASA/MSFC R-P&VE-VAW-60-119, Subject: Saturn IB Three-Sigma Radial Center of Gravity Deviation During First Stage Flight, dated November 30, 1966.
- 9. NASA/MSFC S&E-AERO-YT-91-71, Subject: Computer Subroutines for the Cape Kennedy Hot and Cold Atmospheres, 1971, dated July 23, 1971.
- 10. NASA/MSFC S&E-ASTN-SAB (71-9), Subject: S-IB Stage Propulsion System Dispersions for Skylab Missions, dated May 6, 1971.
- 11. CCSD TR-P&VE-75-222, Final Launch Vehicle Propulsion Systems Flight Performance Prediction for SA-210, dated January 31, 1975.
- 12. NASA/MSFC Computer Card Decks 513A (Rev. 2), 513B (Rev. 1), 515A (Rev. 1) through 515G (Rev. 1), and 515H through 515S.
- 13. NASA/MSFC R-P&VE-PPE-60-M-99, Subject: S-IB Stage 200K and 205K H-1 Engine Thrust Decay Profiles, dated June 3, 1966.

REFERENCES (CONTINUED)

- 14. NASA/MSFC S&E-AERO-MFG-138-70, Subject: Sign Convention to be Used in Dispersion Analysis of ST-124M Platform Hardware Errors for Saturn V and Saturn IB Vehicles, dated November 10, 1970.
- 15. NASA/MSFC S&E-ASTR-SG-36-69, Subject: ST-124M Platform Hardware Errors to be Used in Performing a Hardware Error Analysis for the Saturn IB and Saturn V Launch Vehicles, dated September 25, 1969 (U).
- 16. NASA/MSFC S&E-ASTN-SAB (72-20), Subject: Saturn IB Vehicle Engine Start and Shutdown Performance Characteristics Predicted for Skylab and Subsequent Missions, dated December 12, 1972.
- 17. MSFC/CCSD Telecon R. Bailey to R Blackstock, Subject: ASTP (SA-210) L/V Operational Trajectory Dispersion Analysis, DRL 444-V4, December 17, 1974.
- 18. NASA/MSFC GFD/Groundrule Approval Sheet, Task: ASTP (SA-210) Sarurn IB Vehicle Operational Flight Trajectory Dispersion Analysis, DRL 444-V4, approved 12-13-74; and Revision A, approved 2-3-75.
- 19. CCSD TN-AP-71-492, Stylab/Saturn IB Launch Window Dispersion Analysis, Part I, dated June 30, 1971.
- 20. CCSD TN-FT-74-19, ASTP (SA-210) Launch Vehicle Preliminary Operational Flight Trajectory Dispersion Analysis, Volume I, dated July 15. 1974.
- 21. MSFC/CCSD Telecons R. Bailey to N. Williams, Subject: Corrections to ASTP (SA-210) L/V OT Dispersion Analysis GFD, December 16, 1974 and December 18, 1974.

TABLE 1

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS VEHICLE WEIGHT BREAKDOWN 500 POUND LAUNCH WINDOW OPENING TRAJECTORY (POUNDS)

DM	4,492	
SM	15,446	
CM	12,955	
SLA Panels	2,343	
SLA (Fixed)	2,164	
Instrument Unit	4,099	
'S-IVB Stage	25,108	
* Useable S-IVB Propellant	1,733	
Orbit Insertion Weight		68,340
		ŕ
I.OX Vented	11	
2 Thrust Decay and Drain Propellant	121_	
S-IVB Cutoff Weight		68,472
S-IVB Propellant Consumed	229,476	
S-IVB APS Propellant Consumed	6	
LES	9,151	
Ullage Cases	214	
S-IVB "90% Thrust" Weight		307,319
5 175 70% 1111 db		201,027
S-IVB GH2 Start Tank	4	
S-IVB Buildup Propellant Consumed	383	
Ullage Propellant Consumed	<u> 176</u>	
S-IVB Weight at Separation		307,882
S-IVB Aft Frame Hardware	31	
S-IB/S IVB Interstage	6,718	
S-12 Dry Weight	84,410	
S-IB Residuals and Reserves	10,200	
S-IVB Detonation Package	5	
S-IVB Frost Dissipated	200	
S-IB Frost Dissipated	1,000	
S-IB Seal Purge Consumed (N2)	6	
S-IB Fuel Additive Consumed (Oronite)	27	
S-IB Gearbox Consumption (RP-1)	699	
Inboard Engine Thrust Decay Prpt. Consumed	2,181	
Outboard Engine Thrust Decay Prpt. Consumed	•	
to Separation	1,529	
S-IB Mainstage Propellant Consumed	881,519	
Vehicle Weight at First Motion		1,296,407
-		

^{*} Includes sufficient useable propellant to assure the required 6.7 m/s depletion thrust decay velocity increment and a 460 pound LH2 bias.

^{**} Composed of 1,434 pounds of LOX and 299 pounds of LH2.

TABLE 2

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY
FLIGHT SEQUENCE OF EVENTS
500 POUND LAUNCH WINDOW OPENING TRAJECTORY

FLIGHT T	IME	LVDC FLIGHT	
		PROGRAM	
(HR: MIN: SEC)	(SEC)	TIME(SEC)	EVENT
-0:00:17.20	- 17.20	$(0.00)_0$	Guidance Reference Release (GRR); Initiation of Time Base 0.
-0:00:03.30	- 3.30		Time for S-TB Mainstage Ignition,
-0:00:00 20	- 0.20		Hold Down Arm Release Signal.
0:00:00.00	0.00		First Motion.
C:00:00.20	0.20	$(0.00)_{1}$	Lift-Off Signal; Instiate Time
(.0).00.00	3.23	(0.00)1	Base 1.
0:00:10.00	10.00	(9.80) ₁	Initiate Pitch and Ro.l Maneuvers.
0:00:57.74	57.74		Mach One.
0:01:13.2 9	73.2 0		Maximum Dynamic Pressure.
0:01:40.20	100.20	$(100.00)_1$	Control Gain Switch Point.
0:02:00.20	120.20	$(120.00)_{1}^{1}$	Control Gain Switch Point.
0:02:08.07	128.07	$(127.87)_{1}^{1}$	Enable S-IB Propellant Level
		-	Sensors.
0:02:09.00	129 .00	$(128.80)_1$	Arrest Attitude Commands.
0:02:13.07	133.07	$(0.00)_{2}^{2}$	Level Sensor Actuation;
		_	Initiate Time Base 2.
0:02:16.07	13 6.07	$(3.00)_2$	Inboard Engine Cutoff (IECO).
0:02:19.47	139.47	$(0.00)_{3}^{2}$	Outboard Engine Cutoff (OECO);
		_	Initiate Time Base 3.
0:02:20.57	140 .57	$(1.10)_3$	Ullage Rockets Ignition.
0:02:20.77	140.77	$(1.30)_3$	Separation Signal,
0:02:20.85	140.85	~	S-IB/S-IVB Physical Separation.
0:02:22.17	142.17	(2.70)3	J-2 Engine Start Command.
0:02:25.57	145.57		90% J-2 Thrust Level.
0:02:28.17	148.17	(8.70) ₃	Command 5.5:1 EMR.
0:02:28.57	148.57		Ullage Burn Out.
0:02:32.77	152.77	(13.30) ₃	Jettison Ullage Rocket Motors.
0:02:45.11	165.11		Dynamic Pressure = 1 PSF.
0:02:51.47	171.47	(05.00)	LES Jettison.
0:02:54.47	174.47	(35.00)3	Command Active Guidance Initiation.
0:03:01.47	181.47	$(42.00)_3$	Control Gain Switch Point.
0:05:43.17	343.17	$(203.70)_3$	Control Gain Switch Point.
0:07:47,57	467.57	$(328.10)_3$	Command EMR Shift to 4.8:1.
0:09:44.07	584.07	(0.00)	Guidance Cutoff Signal (GCS).
0:09:44.27	584.27	(0.00) ₄	<u>Initiate Time Base 4;</u> <u>Inertial Attitude Freeze.</u>
0:09:44.87	584.87	(0.60) ₄	Initiate LOY NPV.
0:09:54.07	594.07	(0.00)4	Orbit Insertion.
0:09:54.67	594.67	(10 40)4	Initiate LH ₂ NPV.
0:10:04.27	604.27	$(20.00)_{4}^{2}$	Initiate a maneuver to align and
	VV7,21	(=0.00)4	maintain the S-IVB/CSM along the
			local horizontal, nose leading,
			position 1 down.
0:10:44.87	644.87	(60.60)4	End LOX NPV.
0:11:40.00	700.00		End of trajectory simulation.
			and or eragiciony simulation,

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS
THREE SIGMA TOLERANCES

Non-Propulsion Ti	on-Propellant Mass hrust Misalignment (Pitch) hrust Misalignment (Yew) hrust Misalignment (Roll) kial Force Coefficient kial Force Coefficient	+ 310 Pounds + 0.62 Degrees + 0.62 Degrees + 0.62 Degrees Maximum	6 6 6
_	enter of Gravity Offset (y) enter of Gravity Offset (z)	Minimum + 0.05 Meters + 0.05 Meters	6 7 7 8 8
Te Ri Le At	eadwind ailwind ight Cross Wind eft Cross Wind tmosphere tmosphere	Annual 3 o where Annual available, Annual maximum Annual otherwise Hot Atmosphere Profile Cold Atmosphere Profile	5 5 5 9 9
Propulsion Los	igh LOX Density ow LOX Density igh Fuel Density ow Fuel Density ael Mass ael Mass OX Mass OX Mass orust and Flowrate GP and Flowrate agine Mixture Ratio angine Mixture Ratio	- 3σ July Surface Winds + 3σ July Surface Winds - 3σ July Surface Temp. + 3σ July Surface Temp. + 0.60% - 0.60% + 0.45% - 0.60% + 1.5 % - 1.95 Seconds - 2800 Pound Max. Residual - 1550 Pound Min. Residual - RSS of 22.5% of Nominal Thrust Decay Impulse	10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 11 & 12 10, 10 10 10 10, 11 & 12 13
Non-Propulsion *Ce *Ce Th Th	on-Propellant Mass enter of Gravity Offset (y) enter of Gravity Offset (z) erust Misalignment (Pitch) erust Misalignment (Yaw)	For Each H-1 Engine + 200 Pounds + 0.05 Meters + 0.05 Meters + 1.24 Degrees + 1.24 Degrees	6 6 6 6 6

^{*} Referenced to Project Apollo Standard Coordinate System 9.

TABLE 3 (CONTINUED)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS THREE SIGMA TOLERANCES

GROUP ITEM		TOLERANCE	REFERENCE	
S-IVB Stage	J-2 Thrust Decay	Dispersion Limits	16 & 18	
Propulsion	Cases 1 through 12	Identified below		

S-IVB Stage Engine Performance Dispersions

		Deviations from Nominal					
MSFC Tape No.	Case	LH2 Flowrate (lbs/sec)	LOX Flowrate (lbs/sec)	Total Flowrate (lbs/sec)	Engine Mixture Ratio	Specific Impulse (secs)	Thrust (lbs)
00029	1	+0.830	+7.526	+8.356	+0.035	+0.233	+3678.
00169	2	-0.830	- 7.526	-8.356	-0.035	-0.233	-3678
00254	3	+0.396	+0.659	+1.05 5	-0 .018	+1.935	+1504.
00562	4	-0.396	-0.659	-1.055	+0.018	-1.935	-1504.
00701	5	+1.083	-0.167	+0.917	-0.072	-0.074	+ 349.
007 58	6	-1.083	+0.167	-0.917	+0.072	+0.074	- 349.
00916	7	+0.253	+3.053	+3.306	+0.020	-0.097	+1350.
01059	8	-0.253	-3.0 53	-3.306	-0.020	+0.097	-1350.
*28311	9	+0.645% L	+0.645% LOX Load				
*28311	10	-0.645% L	-0.645% LOX Load				
*28311	11	+0.902% F	+0.902% Fuel Load				
*28311	12	-0.902% F	uel Load	·····		····	

^{*} Nominal ASTP (SA-210) Launch Vehicle Operational Flight Trajectory Propulsion Data.

ASIP (SA-210) L/V OPERATIONAL FLIGHT TPAJECTORY . ISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT S-18/5-1765 SHPARATION S-18 PROPULSION/NON-PROPULSION THMEE SIGMA NEVIATIONS

	FLICHT TIE	RADIUS	SPACE	SPACE FIXED FLIGHT ATA	GROUMD PALGE	EARTH FIXED CPOSS RANGE	VEHICLE
VARIATIONS	(SEC)	(w)	(E/S)	Araber (JEG)	- 1	(/)	(LB)
NOMINAL	140.85	6431838.	2318.85	66.39,	64342	-451	409246.
HIGH LOX DENSATY	71	256.	-5.21	3uc	-711.	• \$	1078.
LOW LOX DENSITY	66.	-463.	æ	707.	928.	-9-	-11044
HIGH FUEL DERISITY	10.1	-049-	.15	1387	821.	ស្គា •	25.
1	58	365.	22	C 80 1	-479.	ກໍ :	- 238.
LOAUTHO	.58	141.	15.46	.17.	H17.	.	-1072.
LOALING MASS -	65	-209.	-17.46	1. YUL	-1170.	ທໍ	1599.
	00.	-279.	-7.32	.061	-193.	•	1674.
LOADING MASS -	17	153,	6.23	10,	-62.		-1410.
T ANU FLUMPA	-2.09	1321.	3.34	-1.04-	-1709.	10.	-45
THRUST AND FLOWRATE (-)	2.16	-1391,	-3.86	1.017	1705.	-11.	777
Ž	.93	503.	18.82	. 222	1391.	-7-	-18.
ISP AND FLOWPATE (-++)	66	-505-	-18.83	235	-1376.	7.	-31.
MAXIMUN.	97	-451.	-17.86	065	-866.	* #	2781.
E.M.R. MINIMUN PESIDINAL	.25	232.	10.36	.035	472.	-2-	-1596.
ENGINE THRUST DECAY	09•	1.	.77	100	٠,	• 0	o ·
UST	• 00	-1.	•	100.	٠,	-0-	0
	00.	-52.	-1.3	.611	- 3h•	•0	3
	0ŋ•	52.	1.35	611	36.	•01	-310.
* *SIX	00.	-1056.	13.26	1.253	1430.	171.	ċ
MIS.	00.	1026.	-13.71	-1.25 _b	-1459.	-174.	•
THRUST MIS. + YAW	00.	-14.	-5.43	040	207	-1892.	•
MIS.	0u•		5.11	<u>აგე.</u>	-182.	1893.	•
* .SIM	00.	-5-	*.0*	705	٠,	* 강()	• 0
. WIS.	00•	• ••	10.	₹00°-	-1	-53.	.
FORCE CUEF. (00•	-823.	-15.95	£ 7 1.	*****	• •	• 0
FORCE CO	00•	826.	15.43	177	530.	•6.	•
OFFSET (• 30	ท์เ	-1.21	01c	† †	.1581.	
OFFSET (ଜୁନ୍ଦ •			710.	• 66-	100	• •
OFFSET (00.	271.	-4-13	320°1	091-	• 00	• •
C.G. OFFSET (-Z)	00°	•2/2• 88	4004	. 36.	• • • • • • • • • • • • • • • • • • •	177	.
TEACALNO HANNEL	0 5	• 000 • 75 • 75		- C C C C C C C C C C C C C C C C C C C	3415	101	
ONTAIN UNDER PROTECTION OF THE	00.		16.62	ე 0 4 •	• • • • • • • • • • • • • • • • • • • •	- 60 C F F I	
ALGER CROSS EARS	<u>-</u> (**************************************		50 - -	• 5	7 7	•
HOT ATMOSOURCE DEOFTER	000	. co	7 6	.10.	16.5	31	
ATMOSPHEKE	000	206.	• •	(4).	167.	6	•
POSITIVE RSS	2.42	2038.	45.73	1.87	4643.	4002	3789.
NEGATIVE HSS -2.05 -	-2.05	-2292,	-41.42	-1.77.	-3604.	-2377.	-7756

TABLE 4 (CONT'D)

CRITCH AL PACE IN

ASTP (SA-210) L/V OPERATIONA! FLIGHT TRAJECTORY UISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT S-IB/S-IVB SEPAKATION S-IB PROPULSION/NON-PROPULSION THEE SIGMA DEVIATIONS

	FLIGHT	** SPACE FI)	FIXED POSITIOM VE	VEC10R **	** SPACE FI	FIXFD VELOCITY	VECTOR #
VARIATIONS	ս •	Ĉ	<u>-</u>	67	- CO.14	2001	7007
	(SEC)	(M)	(/)	(X)	(W/S)	(M/S)	(S/W)
NOMINAL	140.85	_	55701.	103813.	892.04	257.19	2124.89
HIGH LOX DENSITY	71	272.		-933	, ic	.25	-9.78
LOW LOX DENSITY	66.	-485.	253.	1236.	-14.80	36	11,52
HIGH FUEL DENSITY	1.01	-661.	258.	1131,	-18.29	36	7.77
LCW FUEL UFNSITY	58	377.	-148.	-657.	10.68	•25	-4.78
SS +	•58	123.	150.	1007.	-1.95	18	14.43
PRPT. LOADING RASS - LOX	5	-184.	-218.	-1447	3.14	•23	-20.43
	00.	-276.	•	-199.	-5.02	01	-5.88
LOADING MASS -	-117	155	1 + + +	-146	: :	.05	4.19
THRUST AND FLOWRATE (+)	-2.09	1363,	-535.	-2353	41-14	. 7ª	-14.16
THRUST AND FLOWRATE (-)	2.16	-1435	551.	2366	\$E.04-	76	12.0
AND FLC	.93		239.	1701.		23	21,35
ISP AND FLOWRATE (-++)	93	-476.	-240	-1686.	2.00	.23	3
E.M. R. MAXIMUN RESIDUAL	94	-434	-116.	-1024		.11	-17.73
E.M.R. MINIMUM RESIDUAL	•25	222	65	558	2.48	- 00-	10.27
H-1 ENGINE THRUST DECAY (+)	00°	-	0-	۲۵.	at the	00.	02.
ENGINE THRUST	0.0.		· .	-5-		00•	19.1
₹ 4	00.	-51,	•0-	-37.	F6	00.	-1.09
	00•	51.	•0-	37.	.03	00	1.09
	00•	-1081.	156.	1428.	-42.66	.57	31.68
MIS.	00.	1051.	.158.	-1458.	41.71	58	-33.02
* .SIM	00•	ç	-1893.	156.	21	-54.35	• 05
×IS.	0°•	-27.	1894.	-184.	61	54.41	-1.42
* . si*	00•	.64	9#°	.0	11	•63	.07
FIS.	09•	1.	-33.	સ	60.	62	90
FORCE	00•	-814.	•0	-562.	-12.59	05	-12.13
FORCE CU	00•	818.	ò	548.	12.41	• 05	11.61
OFFSET (0.0	• 9	-581	94.	. 08	-14.49	• 35
OFFSET (-	00.	-11.	582.	-88.	16	14.50	L#*-
C.C. OFFSET (+Z)	00•	280.	64-	-471.	10.79	28	-9.05
C.6. OFFSET (-2)	00•	-284.	78.	465.	-10.97		8.92
HE AD IND	900	112.	187.	-1620.	# 6 •	5.13	3
~	00•	-533.	173.	3440	-7.95	4.88	35.28
RIGHT CHOSS WIND	00.	-110.	-1303.	38.	-2.63	-13,17	1.77
LLFT LROSS WILL	00.	-120.	3406.	ຂຂ	-2.79	38.80	2.09
HCT ATMOSPHERE PROFILE	03.	-47.	• •	-66.	-1.40	09	-1.56
COLD ATMOSPHEKE PROFILE	00.	203.	10.	172.	3.R7	07.	5.69
PCSITIVE RSS	2.82	2072	4065.	5204.	63.12	68.59	60.08
		, , , , , , , , , , , , , , , , , , , ,		,	1	Ì	
PA GATIVE ASS	10.55	-2339.	-2473	-4266.	-66,35	-57.78	-55.41

TABL! 4 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TPALECTORY JEFEPSION PNALYSIS TRAJECTORY DISPERSIONS AT S-18/5-176 ScPARATION S-18 PROPULSION/NON-PROPULSION THREE SIGML DEVIATIONS

	FLICHT	** EARTH FIXE	V NOITISOG I	FCTOK **	** EARTH F	CITY	VErTOR **
Section	3 11	w ×	ΥE	<u>7.</u> E	FOCK	YDOT	ZDOT
OPPORT ATEN	(SEC)	(W)	(W)	(4)	(\S/\W)	(M/S)	(M/S)
NOMINAL	140.85	58327.		66834.	913.03	-8.20	1606.04
HIGH LON DENSITY	71	262.	.	-71c.	45.6	.07	-9.82
LOW LOX DENSITY	66•	-471.	•	933.	-14.56	-,10	11.60
HIGH FUEL DENSITY	1.01	-647.		823.	-18.08	10	7.88
LOW FUEL DENSITY	58	369.		-480	10.56	.07	-4.85
+ '58	8	133.	†	82	-1.73	₹0°-	14.40
MASS -	5.4.5	-199.	້ຳ	-1184.	18.0	• 03	-20.40
1 DAUING MASS +	00.	-277.	-	-197.	-: · 08	00.	-5.83
_	17	153.	-	• • • •	£ 47.0	.01	4.15
THRUST AND FLOWRATE (+)	-2.09	1335,	10.	-1714	40.72	•20	-14.43
THRUST AND FLOWRATE (-)	2.16	-1406.	-11.	1706.	-39.92		12.67
FLOWRATE	.93	491.	-7.	140A.	-1.61	†O.I	21.29
FLOWRAT	03	-494-	7.	-1393.	1.67	10	-21.38
E.M.R. MAXIMUM RESIDUAL	94	• + + + -	• •	-87h.	94.4-	• 05	-17.66
MINIMUR RES	• 25	228.	٠. ا	474.	2.61	01	10.23
ENGINE THRUST DECAY (00•	1.	•	*	99.	00	.70
1SO	00.	-1.	•		31	00.	63
NON-PROPELLAR MASS (+)	•00•	-51.	0	-Jr.,	₹5°-1	- 00	-1.08
PELLANI	00.	51,	•	37.	30.	00	1.08
THRUST MIS. + PITCH	00•	-1069.	171.	1435.	40.04	1,13	32.05
MIS.	00.	1039.	-174.	-1465.	41.37	-1.13	-33.37
MIS. +	٥٦.	-12.	-1892.	160.	65	-54.34	.42
MIS	60.	-16.	1893.	-19	19	54.40	-1.78
W.15. +	0)•	.2	34.	• ,	•.10	.63	20.
	00*	1.	-33.	•	80.	62	06
FORCE	00•	-	m°	-55¢.	-12.71	01	-11.99
N FORCE CO	00.	822.		545°	12.53	20.	11.48
OFFSET (00•	้ำ	-581.	۵۵.	60	-14.49	
OFFSET (00.	8-	581.	-61.	, o . I	14.49	/5*-
C.6. OFFSET (+Z)	0°.	275.	-63-	-47£•	C	₩ 4. I	-9.14
-C.6. OFFSET (-Z)	00.	-280	82.	467.	-10.78	Pa.	10.6
HEADWIND	٥٥.	101.	177.	-1622.	. 79	66.4	-14.17
INC	0v•	-506.	196.	3440	-7.48	5.27	•
	05.	-118.	3	٠ ټ	-2.76	n	1.92
_	07•	-96-	3467.	3/.	75.4	38.84	1.78
PROFILE	00.	-47.	÷	-64.	-1.42	60	-1.55
CULD ATMOSPHERE PROFILE	0v•	204.	6	170.	3.61	95.	2.65
PCSITIVE RSS	2.82	2051.	4002.	4675.	62.56	68.61	60.34
NEGATIVE ASS	-2.65	-2311,	-2377.		-64.74	-67.77	-55.65

TABLE 4 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY JISPERSION AMALYSIS TRAJECTORY DISPERSIONS AT S-18/S-1VB SEPARATION S-18 PROPULSION/NON-PROPULSION THREE SIGMA DEVIATIONS

V 0 4 1 1 1 1 1 1 1 1 1				•	١,		
	TINE		YAA	ROLL	PITCH		ROLL
VAKIATIONS	(SEC)	(DEG)	(nEG)	(DEG)	(DEG/S)	(DE6/S)	(DEG/S)
MINAL	140.85	-64.008	096	000.	.006	023	000 -
HIGH LOX DENSITY	71	017	.001	∠00°	012	.001	• 002
LCH LOX DENSITY	66.	• 026	003	003	•019	002	+00°-
HIGH FUEL DENSITY	1.01	• 029	003	→00°-	.021	003	004
111	58	015	.002	~00°	011	.002	• 005
LOADING MASS +	.58	.011	.001	•ຸດິດ•−	900°	.001	001
LUALING MASS -	85	017	001	~00°	011	001	• 005
LOADING MASS +	00.	• 005	001	· 00(-	200•	001	••000
ŧ	17	+00 * -	†00°	°00°	003	.003	.001
AND FLUNDATE (-2.09	050	9 00.	30°	037	• 005	*000
ST AND FLOWRATE	2.16	• 065	007	€008	# 10 ·	900	600
Ī	.93	.015	• 005	₹00.	.010	• 002	002
ISP AND FLOWPATE (-,+)	93	017	002	,00°	011	-,002	-002
E.M.K. MAXIMUM RESIDUAL	97	• 000	-,002	• 001	+00+	002	•001
.R. MINIMUM RESIDUAL	.25	.003	.001	•	•005	.001	000
ENGINE THRUST DECAY	0°.	000	.001	00.	000.	000.	000-
UST DE	00.	000-	000	100	0.0	•	000.
	Φ	000	100°-	100.	00 0 •	000-	000-
OPELLA!	0.3 •	٠	000	330°	000-	000	000
+ SIW	00.	-1.550	007	.001	800 ·	• 006	• 002
• SI	00.	1.548	200	.001	800·•	.005	002
+ .512	อง•์	000.	-1,545	~00°	000.	•	000.
•	0 o	000.	at a c	<u> </u>	000-	0.00	000.
	ם י	200*-	100-	•	100.	000°-	100.
ACT TOOUT TOOLS	9	700	100	70.0	100.	000.	100
1000	000	• 000	700.	100	100	600	100.
OFFSET (+Y)		000	121	00.			
CFFSFT			•	.003			000.
OFF SET (وي د •	.173	. 0	010	600	005	.013
OFFSET (-	00.	172	- 0002	01.	010	-,002	014
3	00.	†00	0	00°	5 00.	.028	00
TAILAIND	00.	-,060	603	,00°	610	.027	600.
_	00.	015	016	₹00°	011	013	. JO2
LEFT CROSS #IND	00.	017	.104	*00°	012	.077	*00 *
HCT ATMOSPHERE PROFILE	٠,٥٥	002	900	000.	.001	-,005	000
	00•	000-	.010	٠٥٥٠	003	. 007	000•
ı	2.62	1.560	1.558	3.640	.040.	180.	.018
NEGATIVE HSS	-2.65	-1.562	-1,554	**************************************			018
000000000000000000000000000000000000000							

TABLE 4 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRALECTORY LISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT S-18/5-1V: 5. PARATION S-1B PROPULSION/NON-PROPULSION THREE SIGMA DEVIATIONS

VARIATIONS	11.E	LATITUDE	POSITIVE	VELOC, TY	PATH	100	FIXED
POMINAL	(SEC)	(DEG)	FAST (neg)		1161 F (CEG)	(W.)	AZIMUTH (DEG)
	- 140-85	29.027	-80.115	2025.51	62.719	58675.	55.762
HIGH LOX DENSITY	71	+00°-	500-		35	254	
LCM LOX DENSITY	66.	•006	.007	•	.50b	-461.	038
HIGH FUEL DENSITY	1.01	•005	•000	-1.02	.550	-639	026
UEL DENSITY	58	003	†90*-	. 46	-, 124	364.	.016
LOALING MASS +	•58	•005	•000	12,04	.219	142.	046
LOALING MASS -	** A5	007	600		-,324	-211.	. 665
LOADING MASS +	00•	001	001	64.7-	•056	-279.	.019
PRPT. LOADING MASS - RP-1	-11	001	001	09.50	-102	152.	014
ANC	60.5-	010	013	5,93	-1.193	1317.	840.
THRUST AND FLOWRATE (-)	2.16	.010	.013	-6.26	1.158	-1388.	045
AND FLOWRATE	.93	.008	110.	18.31	766.	505	066
ISP AND FLOWRATE (-++)	-163	₩00.	011	M	-, 305	-508.	.067
	94	005	007	-17.77	-,106	-453.	• 056
R. MINIMUR RES	•25	.003	+00•	10.31	090.	233.	032
ENGINE 11	00•	•000	000	.7A	060.	•	002
_	00.	000	000-	71	000	-7-	.002
	63•	000	000-	-1.39	.010	-52.	.003
OPELLAN.T	00•	000.	000.	1.39	010	52.	003
WIS. +	00•	•007	.012	10.19	1.457	-1054.	070
. SIX	0J•	F.00P	012	-10.47	-1.465	1023.	.077
+ SIX	00°	.014	011	1.03	•037	-10.	-1.458
WIS.	00.	014	.011	-1.16	013	-18.	1.456
* SIW	0ء •	000.−	000•	.01	.003	-2.	.017
T MIS.	00•	000.	000	05	003	· • •	016
FORCE CUEF.	00•	00	+00.	٠.	.174	-824.	.037
FORCE CO	00.	£00°	†00°	15.90	173	827.	035
CFFSET (0v•	† 00.	003	.50	80u*	• 1	389
CFFSET (0′)•	1.004	• 003	F. 53	900	• a	686.
VFFSET (ر).	002	+000-	-3.29	- ,383	271.	.017
C.6. OFFSET (-Z)		~00·	†00°	m)	. 182	-275.	017
HEAD IND	0)•	011	011	ณ่	188	94.	•176
ONI	0 j.	.019	.028	28.27	665.	-469.	460.
RIGHT CROSS WIND	€0°	600.	008	.57	900.	-118.	357
LEFT CROSS WILL	00.	023	.024	٠٢٠.	. n8ž	-95.	1.028
	00•	000	001	-2.02	.017	-48.	.003
COLD ATMOSPHERE PROFILE	00+	.001	.001	4.12		206.	.002
Positive RSS	2.82	.031	.045	1	2.171	2036.	1.839
_	-2-15	035	031	**************************************	650-8-	-2288	-1.556

TABLE 5

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY JICPERSION ANALYSIS TRAJECTORY DISPERSIONS AT S-18/S-IVB SEPAHATION S-IVB PROPULSION/NON-PROPULSION THMEE SIGMA DEVIATIONS

FLIGHT TOTAL	FLIGHT	RADIUS	SPACE	SPACE FIXED FLIGHT PATH	GROUND RANGE	EARTH FIXED CROSS RANGE	VEHICLE WEIGHT
VARIATIONS		(W)	VELOCITY (M/S)	ANGLE (DEG)	(W)	(M)	(LB)
NOMINAL 140.55	İ	6431838.	2318.85	66.39 ₈	66342.	-451.	409246.
PUPT. LUALING MASS + LCX	6	-210.	-5.51	2,000	-145.	•	1259.
PRPT. LOADING MASS - LOX	00	211.	5.53	04E	145.	-1-	-1259.
PRPT. LOADING MASS + LHZ	0.0.	-58.	-1,53	.013		•	349
PEPT. LOADING MASS - LH2	00.	58.	1.54	013	*C#	•	-349.
NCN-PROPELL ANT MASS (+)	0)•	-33.	~ 9• •	.007	-23.	•	200
NON-PROPELLANT MASS (-)	0u•	33.	£	007	23.	•0-	-200.
PUSITIVE RSS	00.	221.	5.80	##O *	153.		1322.
NEGATIVE ASS	67.	-221,	-5.78	A#0	-152.	-1.	-1322.

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE > (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY, ISPENSION ANALYSIS TRAJECTORY DISPERSIONS AT S-IB/S-IV5 SEPARATION S-IVB PROPULSION/NON-PROPULSION THREE SIGML REVIATIONS

** THOILIE	FLIGHT	** SPACE FIX	SPACE FIXED POSITION VECTUR **	10.0K ##	** SPACE FI	** SPACE FIXED VELOCITY VECTOR **	PETAR **
•	TIVE	XS		52	YPCT	TOGY	ZD07
VARIATIONS			(X)	()	(M/S)	(%/S)	(M/S)
	ı	6430759.	55701.	103813.	892.04	257.19	2124.89
PRPT. LOALING MASS + LOX	00.	-208.	• ŋ <u>.</u>	-150.	-3.75	01	24.4-
PRPT. LOADING MASS - LOX	00.	208.	•	150.	3.63	0 •	*****
PHPT. LOADING MASS + LH2	00.	- 58•	ġ	-41,	-1.05	00:-	-1.23
PRPT. LOADING MASS - LH2	00.	58.	-0-	42.	1.05	•••	1.23
NON-PROPERLA! T WASS (+)	00.	-33.	ò	-24	09	00	70
NON-PROPELLANT MASS (-)	0.1.	33.	• 0	24.	09.	90.	0.40
PCSITIVE NSS .00	00.	219.	0	158.	60°E	00*	4.06
NEGATIVE RSS *00	00.	-218.	•0;	-157.	-3.97	01	49.4

TABLE 5 (CONT'D)

ASTR (SA-210) L/V OPERATION, FLIGHT TRAULCTORY ISPERSION ANALYSIS TRAUECTURY DISPERSION'S AT S-1875-1745 SFPARATION FRAUECTURY DISPERSION'S AT S-1875-1745 SFPARATION

VAKIATIONS (SEC) (M)	XE YE ZE		** 2010	L ILYVI **	TXED VELOCITY VE	TOTOR **
(SEC) 140.85 MASS + LOX .00 MASS - LOX .00 MASS - LH2 .00 MASS - LH2 .00 MASS (+) .00 MASS (+) .00		YE	7E	XDOT	XDOT YDOT ZDO	ZD07
140-85 MASS + LOX .00 MASS - LOX .00 MASS - LH2 .00 MASS - LH2 .00 MASS (+) .70 MASS (+) .50	(W)	ξ	ξ.	(S/W)	(M/S)	(M/S)
MASS + LOX .000 MASS - LOX .000 MASS - LH2 .000 MASS - LH2 .000 MASS (+) .00	58327.	1451	66830.	913.03	-8.20	1808.04
	-508-	-	-14.	-3.82	00.	96.4
000000000000000000000000000000000000000	209	7	149.	3.84	00*-	05.4
000.	-58.	· .	-47.	-1.06	00	-1.21
000	585	٠,	41.	1.06	00	1.22
0.00	-33.	•	-24.	61	00.	70
1	33.	-0-	24.	19.	00.	.70
		1.	156.	1	00.	4.62
NEGATIVE RSS -219.		-1.	-156.	-4.01	00*-	09-1-

TABLE 5 (CONT'D)

i

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAUECTORY LISPERSION ANALYSIS TRAJECTORY UISPERSIONS AT S-16/3-108 SHPARATION S-1VB PROPULSION/NOM-PROPULSION THREE SIGMS NEVIATIONS

	FI TOHT	**	** VEHICLE ATTITUDE	**	** VEH	** VEHICLE ATTITUDE KATE	*
	TINE	PITCH	AVA	ROLL	PITCH	*A*	ROLL
VARIATIONS	(SEC)	(DEG)	(FEG)	(DEG)	(086/5)	(DEG/S)	(DEG/S)
	ĺ				900	-,023	000-
NCMINAL	140.85	900.40-	360.			1	000
PRPT. LOADING MASS + LOX	03.	.00°	100		200		
PRPT LOALING MASS - LOX	00.	30°-	.001	300.	700.1	100	
CHI + SAN SALINO I TOJO	00.	•00.	000-	,000. I	000.	000.	000.
CHI I SOUN STREET FORD		001	000	.00°	0.00-	000.	000.
ACT LOSS STREET STAN				. 00 -	000.	000	000-
LCU-PROPELLY WASS (+)	0	000.	000			000	000
NON-PROPELLANT MASS (-)	00.	000.	000.	':00 • ((
PCSITIVE KSS •00	00.		.001	700	200.	.001	000
MEGATINE RCA	00.	005		900	7.00-	100	000*-

TABLE 5 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY ISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT S-18/S-TVB S-PARATION S-IVB PROPULSION/NON-PROPULSION THLEE SIGM, OFVIATIONS

	114E (SEC)	LATITUDE (DFG)	LONGJJUDE POSITIVE FAST (CEG)	VELOCITY	EAKTH FIXED Path Angle (DEG)	ALT FOUE	SPACE FIXED AZIMUTH (DEG)
	1						
NOMINAL 140.85 PROT. 140.85		29.027	-80.115	2025.51	62.719	586/5. -210.	55.752
	00.	100	.001	5.66	042	211.	014
PRPT. LOADING MASS + LH2	• 00	000	000	-1.5h	.012	-58.	*00
	00.	000.	000.	1.57	n12	58.	- 004
	0:0.0	000	000.	u6	.007	-33.	• 005
NON-PROPELLANT MASS (-)	00.		000.	U6.	007	33.	005
PUSITIVE KSS .co	00.	. 001	100.	#6*G	11111111111111111111111111111111111111	221.	.015
NEGATIVE KSS	•60	001		66*5-	*****	-221.	015

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 6

ASTP (\$A-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRADECTORY DISPERSION AWALYSIS TRADECTORY DISPERSION ENVELOPE AT C-IP/S-IVE S. PARATIO COMBINE' S-IB AND S-IVE STAGE IH 'LE-SIOM' DEVIATIONS

		FLIGIT		SPACE	SPACE FIXFD	CNUON	EALTH FIXED	VFHICLE
DISPENSION GEOUP TIME F	r our	IIME (SEC)	RADIUS (M)	VELOCITY (F/S)	PATH ANGLE (nEG)	"ANGE (M)	Choss RANGE	WEIGHI (LB)
S-IB STAGE	+KSS	8	2038.	45.73	1.871	4643.	4 00 2 •	5749.
S-IB STACE	557-		.2022	41.42	4.775	3004•	2577.	2756.
5-1Vb 5TAGE	+K55	0 ′.•	221.	5.80	2+0.	153.	1.	1322.
S-IVB STPGE -RSSn	-RS5	C 1	221.	5.78	9 bu - 1	152.	1.	1322.
COMBINED POSITIVE PSS 2.2	VE PSS	6 . 6	<850°	47.10	1.972	4646.	4.) .2.	4013.
COMBINED NEGATIVE KSS	VE KSS	2.65	2303.	41.82	1.776	3607.	2377.	3057.

TARLE & (CONT'T)

!

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY DISPERSION: ANALYSIS

TRAJECTORY DISPERSION ENVELOPE AT S-TB/S-TVB SEPARATIO.

COMBINER S-IB AND S-IVB STAGE THEFE-SIGMA DEVIATIONS

	FLIGHT LISPERSICH CROUP TIME (SEC)	J J	FLIGHT 11ME (SEC)	SPACE FI) XS (M)	SPACE FIXED POSITION VECTOR XS YS ZS (M) (M) (M)	N VECTOR 25 (M)	SPACE F1) XDOT (R/S)	SPACE FIXE, VFLOCITY VFCIOR XDOT ZDOT (M/S) (M/S) (M/S)	VFC10R ZD0T (M/S)
i	S-IB STAGE +KSS 2.82	+KSS	2.82	2072.	4065.	• t.035	63.12	68.59	90.09
	3-118 ST/0E	-K5S	34.	2539.	2473.	420,,	c6.35	57.78	55.41
	S-IVE STAGE	+KSS	00.	219.	0.	15 3.	3,99	00.	4.66
	S-IV 5 STAGE	- KSS	00.	218.	• 0	157.	3,97	.01	4.6
1	COMULIFIE POSITIVE MSS	KSS	28.0	2084	4045.	5200	L3.25	65°89	60.20
•	COMULTIFIC NEGATIVE KSS 2.65	: KSS		2349.	2473.	4267.	24.90	57.78	55,60

TABLE 6 (CONTYY)

;

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS
TRAJECTORY DISPERSION ENVELOPE AT C-TRAS-IVE S PARATIO.
COMBINE S-IB AND S-IVE STAGE THREE-SIGMA DEVIATIONS

	FLIGHT		FLIGHT	EARTH FI	EARTH FIXED POSITI !! VECT. R	N VECT. R	EARTH F.	EARTH FIXED POSITI !! VECT. R LAPTH FIXEL VELOCITY VECTOR	r VECTOR
•	UISPLRSICH GROUP (SEC)	جار ا	T: AL (SEC)	XF (33)	YE (M)	기 (조) (조)	,001 (M/S)	YUC 1 (M/S)	2001 (8/8)
	S-IB STAGE	+K5S	5° • 5	2051.	4005.	467.	02.56	68.61	60.34
32	S-Ib STAGE	•k5S	₩.	2011.	2377.	• (1)	05.74	57.77	55.65
	S-IV3 STAGE	+KSS	• 00	226.	1.	15.4	4.63	00.	4.62
	S-IVE STAGE	-KSS	96. 85X-	219.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	156.	4.01	00.	4.50
1	COMPILEL POSITIVE KSS 7.82	h55	7.32	2063.	+0n2+	407	65.29	o6.01	52.00
1	COMBINEL NEGATIVE KSS 2.05	KSS	3.45	2321.	2377.	\$0\$°.	65.8B	57.77	55°84
ì									

TABLE & (CONTY)

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS
TRAJECTORY DISPERSION ENVELOPE AT S-IR/S-IVB SEPARATIO
COMPINEE S-IB AND S-IVB STAGE THEFE-SIGMA DEVIATIONS

LISPEFSION GROUP	طر ا	FL16HT T1NE (SEC)	P11.:: (DEC)	JEHICIE ATTIT JDF. YAW (DEG)	ROLL (DEG)
S-IB STAGE +RSS	+RSS	2.82	1.560	1.558	3.649
S-IH STACE	- RSS	2.65	1.562	1.554	3.649
S-IVB STAGE	+K5S	00•	€.0•	.001	. noo
S-IVB STAGE PSS	-RSS	00.	000 ·	.001	000.
CUMPILED POSITIVE RSS	KSS	Z + 42	1.56	1.558	5.649
CUMHINED HEGATIVE	RSS	2.65	1.562	1.554	3.649

TAPLE + (CONT'!)

and the second of the second o

ASTE (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TPAJEMBORY DISPENSION ANALYSIS TELJECTORY DISPERSION ENVELOPE AT S-1875-1VB S PARATIO COMBINE S-18 AND S-1VB STAGE THEME-SIONALISMATIONS

3002(c) 1611 13		EL TGHT	(SPTODETIC	LONGITURE	FARTH	FANTII FILL		SFACE FIXE
NISPEKSIOL GROUP	ксир	TINE (SEC)	LATITUDE (DEG)	POS. EAST (PES)	, EL OCIT ((M/S)	FAIN ANGLE (DEG)	ALTITUDE (.)	AZIMUTH (DEG.)
S-IB STAGE +RSS 2.82	+RS5	2.82	.031	540*	43.22	2.171	2036.	1.839
S-IF STAGE	- 455	2.05	.035	.031	€0.04	5.059	2208.	1,556
S S-IVB STAGE	4 858+	00.	.031	.001	5.94	***·	201.	.015
S-1VB STAGE	- kSS	, nu	.001	.001	5.92	htu.	221.	.035
CUMPINED PUSITIVE RSS 2.72	VE RSS	2 5	. 0.51	. 045	# # # # # # # # # # # # # # # # # # #	4.171	• ଅଧ୍ୟକ୍ଷ	1,829
CUMPINED LEGATIVE RSS 2.65	VE RSS	2.65		.031	74.0 p	2,053	2209.	1,550

TABLE 7

}

· ·

. . .

ADTP (SA-210) L/V OPFRATIONAL FLIGHT THAUECTORY ISLERSION ALALYSIS TRADECTORY DISPERSIONS AT OWBIT ITSLETTO. STRUCK S-15 PROPULSION/NON-PROPULSION THREE SIGM. DEVIATIONS

UFNSITY	818.46.		INCLINATION	NODE	WEIGHT
NAL LOX DENSITY LOX DENSITY LOX DENSITY LOADING MASS + LOX LOADING MASS + LOX LOADING MASS + RP-1 LOADING MASS - RP-1 LOADING		(DEG)	(0EG)	(OFG)	(FB)
LOX DENSITY LOX DE		90.001	51,780	157,775	68340
LOW DENSITY LOW DENSITY FUEL DETAILS THE	9 0.	0000	•		-64-
FUEL DELSITY	10.	J00°	000	000-	Š
FUEL LEWSITY7410ADING MASS + LOX10ADING MASS + LOX10ADING MASS + LOX10ADING MASS + RP-110ADING MASS + RP-110ADI		-,00,	00n	-, 500	-138.
LOADING MASS + LOX	.0.	001	- 000	000	72.
LOADING MASS - LOX	-00	-,00 t	00n	000	262.
LOADING MASS + RP-1 LOADING MASS + RP-1 LOADING MASS - RP-1 ST AND FLOWRATE (+) AND FLOWRATE (+,-) AND FROMELLANT MASS (+) AND FROME MASS (+) AND FROMELLANT MASS (+) AND FROMELANT MASS (+) AND FROMELLANT MASS (+) AND FROMELANT MASS (+) AND FROMELLANT MASS (+) AND FROMELANT MASS (+) AND FROMELANT MASS (†0 .	· 00 · ·	000-	000	-366
LOADING MASS - RP-156 6. SI AND FLOWRATE (+) 3.05 -0. AND FLOWRATE (+,+) AND FLOWRATE (+,+) AND FLOWRATE (-,+) BY MINIMUM RESIDUAL ENGINE THRUST DECAY (+) BY MINIMUM RESIDUAL BY MINIMUM RESID	٠٥٠	-,001,	00n	000	-199.
ST AND FLCWRATE (+) ST AND FLOWRATE (-) SOS AND FLOWRATE (-+-) AND FLOWRATE () AND FREE (·0·	.00	000	000-	173.
ST AND FLOWRATE (+, -) AND FEEL (+, -) AND FEEL (+, -) AND FEEL (+, -) AND FEET (+, -) AND FE	*0 °	 001.	U00°-	000-	329.
AND FLOWRATE (+,-) AND FLOWRATE (+,-) R. MAXIMUM RESIDUAL R. G.	.07	· 00·	000-	000	-411.
AND FLOWRATE (-++) R. MAXIMUM RESIDUAL R. MAXIMUM RESIDUAL R. MAXIMUM RESIDUAL R. STORING THRUST DECAY (+) ENGINE THRUST DECAY (+) PROPELLANT MASS (+) SI MIS. + PITCH SI MIS. + PAUL SI MIS TAW SI MIS TAW OFF SET (+Y) COFF SET (+Y) OFF	.0	J00 *-	,00°-	000	419.
R. MAXIMUM RESIDUAL R. MINIMUM RESIDUAL ENGINE THRUST DECAY (+) ENGINE THRUST DECAY (+) ENGINE THRUST DECAY (+) ENGINE THRUST DECAY (+) PROPELLANT MASS (+) PROPELLANT MASS (+) PROPELLANT MASS (+) PROPELLANT MASS (+) SI MIS. + PITCH SI MIS. + PAW SI MIS. + PAW SI MIS POLL FORCE CUEF. (+) FORCE	• 0 ÷	9000-	- .099		420.
R. MINIMUM RESIDUAL ENGINE THRUST DECAY (+) ENGINE THRUST DECAY (-) ENGINE THRUST DECAY (-) ENGINE THRUST DECAY (-) OPECINAL MASS (+) ST MIS. + PITCH ST MIS. + PAW ST MIS PITCH ST MIS PITC	• 06	700°	000	000	-431.
ENGINE THRUST DECAY (+)04 -0. ENGINE THRUST DECAY (-) .04 -0. PROPELLANT MASS (+) .08 -1. ST MIS. + PITCH .09 -2. ST MIS. + TAW .09 -2. ST MIS. + TAW .09 -2. ST MIS. + TAW .09 -2. ST MIS. + POLL .00 10. L FORCE CUEF. (+) 1.00 44. L FORCE CUEF. (+) 1.00 11. L FORCE CUEF	.00	000	• 000	000	248.
ENGINE THAUST DECAY (=) .04 -0. PROPELLANT MASS (+) .08 1. PROPELLANT MASS (+) .08 1. PROPELLANT MASS (-) .08 1. PROPELLANT MASS (-) .08 1. SI MIS. + PICH .09 -2. SI MIS. + YAW .09 -2. SI MIS. + PALL .09 1. SI MIS. + PALL .00 1. E FORCE CUEF. (+) 1.00 1. FORCE CUEF. (-) 1.00 1. FORCE	~o.	٠ 000 -	·00	000.	18.
PROPELLANT MASS (+) .08 -1. PROPELLANT MASS (-) .(9 15 -6.9 15 15 15 15 15 15 15 15 15 15 15 15 15	• 01	300°	000	000	-17.
PROPELLANT MASS (*) -:09 -:09 SI MIS. + PITCH -:07 -:07 -:07 -:07 -:07 -:07 -:07 -:07	٠٥٠	300°-	000.	000.	-37.
SI MIS. + PITCH .15 -5. SI MIS PITCH .07 6. SI MIS YAW .09 -2. SI MIS YAW .00 18. SI MIS ROLL .00 18. L FORCE CUEF. (+) 1.00 4. L FORCE CUEF. (+) 1.00 19. OFFSET (-Y) .03 0.00 CFFSET (-Y) .03 0.00 CFFSET (-Y) .03 0.00 T CROSS WIND .05 1.00 ATMOSPHERE PROFILE .20 ATMOSPH	01	1) 00°1	000.	000.	37.
SI MIS PITCH .67 SI MIS. + YAW .18 SI MIS YAW .18 L FORCE COEF. (+) .00 L FORCE COEF. (+) .00 OFFSET (+Y) .03 OFFSET (+Y) .03 OFFSET (+Z) .03 OFF	ō	00° -	- 000 -	000.	-67.
SI MIS. + TAN .09 SI MIS. + TAN .18 SI MIS. + ROLL .00 SI MIS ROLL .00 L FORCE CUEF. (+) .00 L FORCE CUEF. (+) .00 OFFSET (+Y) .03 OFFSET (+Y) .03 OFFSET (+Z) .03 O	ر ا ا	300°-	000.	200.	00.
SI MIS. TAW .18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.0.	000	000.	000.	
SI MIS. TRUCL	† O •	000°	000.	000-	- 92
L FORCE COEF. (+) 1.00 4. L FORCE COEF. (+) 1.00 10. OFFSET (+Y) 0.3 0. OFFSET (+Y) 0.3 0. OFFSET (+Y) 0.3 0. OFFSET (+Y) 0.3 0. IND 0.4 -1. ATMOSPHERE PROFILE 0.5 3.	٠ ٠ ٠	300.	000°	000	•
L FORCE CUEF. (+) L FORCE CUEF. (+) L FORCE CUEF. (-) L FORC CUEF. (-) L FORCE CUEF. (-) L FORCE CUEF. (-) L FORCE CUEF.	CO:	300.	000•	ann.	
DEFSET (+7)96 10. OFFSET (+7)61 1. OFFSET (+7)03 0. OFFSET (+2)03 0. OFFSET (+2)03 0. OFFSET (+2)03 0. IND04 -1. ATMOSPHERE PROFILE26 3.	٠05	300°-	000	000.	- 167
OFFSET (+Y)61 1. OFFSET (+Y)03 0. OFFSET (+Z)03 2. OFFSET (-Z)04 1. OFFSET (-Z)04 1. OFFSET (-Z)04 1. OFFSET (-Z)05 1.	.0. 	300°-	000·■	000.	+37.
OFFSET (- Y) .03 0. OFFSET (+ Z) .03 0. OFFSET (+ Z) .03 .2. AIND .05 .04 .1. CROSS WIND .05 1. CROSS WIND .05 1. ATWOSPHERE PROFILE .12 .3.	۰0 و	000.	000	000	و
OFFSET (+2) .03 .2. GFSET (-2) .03 .2. AIND .05 .121 .3. T CROSS WIND .05 .12 ATWOSPHERE PROFILE .12 ATWOSPHERE PROFILE .26 .3.	٠٥٠	, 00°	000.	000.1	-15
OFFSET (-Z)01 NIND -121 T CROSS WIND .05 TTWOSPHERE PROFILE .12 ATMOSPHERE PROFILE .25 ATMOSPHERE PROFILE .26	٠٥٠	300°-	000.	000.	-13.
######################################	•01	000	.000	000-	• •
T CROSS WIND .1.21 -3. T CROSS WIND .04 -1. CROSSWIND .05 1. ATMOSFHERE PROFILE .12 3.	• 0.3	- 00°-	.000	000.	-260
T CROSS WIND .04 -1. CROSS WIND .05 1. 4TWOSPHERE PROFILE -26 3.	→ 00 •	€00	000	000	555
ATMOSPHERE PROFILE -22 -1. 32.06 3.	.01	٦ <u>00</u> •	000.	000.	-20
AIMOSPHENE NOFILE -126 3.	ر . • •	300		000-	-12-
OSPREME TRUE ILE		•	E00.	000	
	'D • I	300 ·			• / 7 7
KSS	• 1-61	.06:	O.O.	000	981.
SCONTINE AND THE STATE OF THE S	11.	.001	001	-,001	-1010

RIGINAL PAGE IS.

į

TABLE 7 (CONT'D)

:

;

i

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRACECTOMY, ISFERSION ANALYSIS TRAJECTORY DISPERSIONS AT OLLIT 195, RTION.
S-IB PROPULSION/NON-PROPULSION THEE SISM, OFVILTIONS

	FLIGHT	** SPACE FIXED	POSITION		** SPACE F	! ≿	VECTOR **
	11.15	sx.	۲,	2.5	XDOT	YDOY	ZOOZ
0701-4144	(SEC)	(X)	(W)	(*)	(M/S)	(S/M)	(W/S)
NCAINAL	594.07	0202530	372.48	2035756.	-2422.13	-754.38	7395.23
HIGH LOX DELETTY	61	771.	240.		2.9	.07	96.
LOW LOX DENSITY	1.00	-933.	-289.	2839.	₩ # ₩	02	-1.12
HIGH FUEL DENSITY	1.31	-717.	-221.	2173.	ŝ	• 03	61
Ţ	+2.4	439.	137.	-1343.	ď	.00	.55
. LOADING MASS +	1 .0•	-1001.	-311.	3070.	-3. 65	-05	-1.22
PRPT. LOACING MASS - LOX	••05	1443.	450	-4393.	5,31	• 05	1.79
LOALING MASS +	.	346.	109.	-1069.	1.31	• 05	9 † •
	56	-150.	-47.	476.	वार्थ•	S.	0.2
THRUST AND FLCMRATE (+)	-2.61	1390.	430.	-4506.	5,14	.04	1.63
THRUST AND FLOWRATE (-)	3.05	-1303.	-403.	3974.	₩	01	-1.51
AND FLOWRATE	იე•	-1519.	-472.	465P.	ກ. ຄຸ້າ ຄຸ້າ	20°	-1.86
ISP AND FLOATATE (-++)	-•63	1575.	• 164	-4487	5.19	50	96-1
E.M.R. MAXIMUM RESIDUAL	.47	1175.	367.	9	4.37	90.	1.50
.R. MINIMUR RESIDUAL	29	-656.	-504	2012.	-2.41	00**	67
ENGINE THRUST DECAY	→ □•-		-11.		- 13	10	02
H-1 ENGINE THE	₹.j.	32.	10.	-67	•11	00:	30.
	90 •	. to	50 •	-197.	50.	••01	•10
OPELLANT	08	-63.	-50.	197.	ກ. •	00.	60
WIS. +	•15	-2037.	-630	6190.	24.62	10° ■	•
MIS.	•67	206A.	642.	-6305.	7.63	30.	2.47
* SIE	60.	-719.	•ი	18	Š	80.	78
SIE.	•18	77A.	549		N. 4. N.	98.	80 °
+ "SIW	00•	ഹ്.	.		10.	00.	00.
יוסאן.	00.	÷ • • • • • • • • • • • • • • • • • • •		→ ;	٠,	00.	10.
FORCE CUEP.	1.00	, / 1 •	147	-K044	20.00	20.0	05°
TOTAL CO	0.	• • • • • • • • • • • • • • • • • • • •	• 6 5 2 •		<u>.</u> ۱	•	16.1
C.G. OFFSFT (+1)	[:) • [-221.	-77	0.48	ν σ. •	20.0)
	° .	e Cu Vi	• > ' .		•	3 0.	、 ₽
OFFISET C	000	000 	181.	.6//1:	0.4	30.	•
C.C. UPTURE (12)	10.	•/	· 6/1-	-3070	•	10.	7.5
	200	• >031	* * * * * * * * * * * * * * * * * * *		• 1	•	- N
ONTE COOR FIRST	12.1		- 000-	• • • • • • • • • • • • • • • • • • • •) (00	1
	• u	• G		-1501	• -	30.	1 - 4
	2	102.	٦,٠	1315	€	00	10.
	9	-182.	-57.	565.	7.4.	.01	22
	3.72	4067	1206.	13654.	15.01	.20	66.7
	14.40		-1390	11238.5.		.10	
					1		

TABLE 7 (CONT'D)

ASTR (SA-210) L/V OPERATIONAL FLIGH) TRAJECTORY LISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT 0-bit inshation S-13 PROPULSION/NON PROPULSION THMEE SIGMA REVIATIONS

	FLIGHT		10	VECTOR **	ARTH		VECTOR ##
	TINE	raj	, YE	3E		YDOT	ZDOT
0201-4144	(SEC)	(N)	(M)	(M)	(M/S)	(M/S)	(N/S)
	594.07	-114345	-95690.	1865638,	-2136.37	-736.18	7180.02
HIGH LOX LENSITY	61	655.	294.	-2206.	2.63	31	•76
LOW LOX DENSITY	1.00	-770	-406	2573.	-3.02	55.	84
HIGH FUEL DENSITY	1.31	-546.	-420.	1806.	-2.09	†9 •	*. 53
LOW FUEL DENSITY	74	340.	246.	-1136.	1.41	28	8F.
+ 55	10.	-917.	-221.	3102.	-3.54	*Z*	-1.06
LOADING MASS -	05	1320.	330.	-4427.	5.15		1.55
LOALING MASS +	5 1.	354.	-11.	-1210.	1.41	.12	94.
PHPT. LOADING MASS - RP-1	56	-185.	.62	• ang	70	~	25
AND FLOWRATE	-2.81	1036.	871.	-3417.	4.12	-1.19	1.05
THRUST AND FLOWRATE (-)	3.05	-934	-868·	3111.		1.42	16.
ISP AND FLOWRATE (+++)	0ن• ا	-1392.	-335 .	4707	96.4-	SE.	-1.62
IST AND FLOSKAIR (**+)	50.		CAP.		506		
H.M.K. MAXIMUM RESIDUAL	Z # *	111/.	166.	-3/87	D	# P P P P P P P P P P P P P P P P P P P	1.37
R. MINIMUM RESIDUAL	29	-626.	-87.	2120	24.6-	#0.	72
ENGINE THRUST DECAY	\$C.	-02.	•	126.	+1.	10.1	- 02
_	† 0•	32.	0	-100	rd (00.	30.
MASS	•08	65.	-5-	-223	ດ .	00.	•10
OPELLANI	90.		2	223.	1 3	10.1	50-6
+ SIE	• 15	-1856.	-476.	6215.	-7.19		-2.05
KIS.	20.	1902.	442.	-6394	7.43	65.	2.15
+ .S.	60.	1652	-183.	2187.	សំ	11.	# C .
STE	87.	.63.	142.	·66+2-	2000	CO.	ş.
	00.	• n :	•	• • • • • • • • • • • • • • • • • • • •	10.	9	20.
	000	, r		***	70.1	30.	
TORCE CORP.	00.1	- 0.6.1 - 0.6.1		• / 007L	3.00	17.	66.
1 C	0.	100	• •	6040	•	***	36.1
	T : 0	- 2021	• • • •	020	000	200	47.
) F			1000		30.	63.
10110	? •	000	77.	• 1001	•	1 -	
- J		-22Y	****	10.1		110	7 :
	70.	•00.71	100	. 700to	# C 0 0 T	10.	
	77.7	*6707	• noc -	• • • • • • • • • • • • • • • • • • • •	•	970	n :
TOTAL CHOICE TOTAL	# (C	* 45 N	-63	77.6	01.1-	90.	ດາ.∎
LEFT CROSS LIND	٠ ت	452°	105.	-1551-	1.76	# O • I	*0.
	.12	104.	.; ;	-32%	φ.	20.	.13
CLL ATMOSPHERE PROFILE	26	-188.	21.	• / 49	27	*O*-	23
	3.72	9	1203.	13724.	14.44	1.71	05.4
NEGATIVE PSS	-3.th	-4086.	-1316.	-12397.	-15.81	-1.41	-4.65
					*************	**********	

^{*} Earth fixed cross range-

ASTP (SA-210) L/V OPERATIONAL FLIGHT TFAUECTOPY LISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT OWBIT IMSERTION S-18 PROPULSION/NON-PFOPULSION THIEE SIGNE DEVIATIONS

11.

•	FLIGHT TI'E	** PITCH	VEHICLE ATTITUDE YAW	: ** ROLL	** VE PITCH	VEHICLE ATTITUNE R YAW	RATE **
VARIATIONS	(SEC)	(0EG)	(PEG)	(CEG)	(5/830)	(DFG/S)	(DEG/S)
NONINAL	5947	422.66-	-13.741	,266	000.	100	.019
HIGH LOX LEISTIY	61	.355	400.	¢00.	.001	B00°-	030
LOW LOX DENSITY	1.00	450	.076	.157	000	000	011
HIGH FUEL DENSITY	1.31	501	.146	1 40.	• 005	000	045
LOW FUEL DENSITY	1.74	.403	200°	.035	000	000.	•004
SS +	• 01	073	014	.114	• 00 1	007	012
LOALING	05	.037	.020	•020	• 001	009	028
LOAUING MASS +	##	109	.081	-,23,1	ju0*-	001	÷, 006
LOAUING	56	.161	240	.46.	• 60.2	000.	043
ATT	-2.81	1.230	219	. 282	• 005	000	**0
	3.05	-1.268	.254	-,918	001	001	*00
ISP ANT FLORUMTE (+1-)	0U•	021	600 °-	,264	50·0·	.001	9,040
ISP ANE FLUNKATE (+++)	•• 03	038	.042	037	000	-001	5000
R. MAXIMUM	74.	104	690.	, 23c	•005	001	840.1
.R. MINI	29	.093	018	-,053	000	000-	+000-
ENGINE THRUST DECAY	†∵	.011	003	502,	• 003	200.	061
\rightarrow	†0 •	013	.003	-,117	000	000	600-
	90.	026	900*	.221	001	200	•016
PELLANT	90	620	007	186	- 002	000	900
WIS. +	•15	-1.336	179	-, 104	000.	-,001	010
WIS.	20.	1.26	159	90.	100	100.	710.
+ SIX	60.	-,153	-1.294	100	100.	000	D10.
SIN	•18	\$50°	1,531	505	N - C C	00.1	
	000	200.	2000	ָּ מיני מיני מיני	100		0.05
ACTAL PODOTI COL	•	000	90.				210
FORCE CUEF.	93.1	001	080	710	000.	100	900
DEFOLT (+Y)		350-1	1.351	31,	200	000-	046
OFFICE		670	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.023	001	000	.002
OFF SET) P)	.329	050	.05	00.1	.007	• 326
	10	329	050	-00-	J.00.	000.	002
	.57	.131	.190	300.	.001	008	028
TAILWIND	-1.21	239	.165	.274	1.00.	.00a	.010
RIGHT CROSS WIND	÷ .	135	004.1	160	000 .	000°	c00•-
	50.	.003	1.220	.22r	001	მ ე 0 •	• 0 1 4
HUT ATMOSPHEPE PROFILE	.12	0+0.1	3، ام.	-,31;	ر, ن	000	014
CCLD ATMOSPHEKE PROFILE	4.66	.118	010	7		-,007	023
PUSITIVE KSS	3.72	1.9	* 1.890	6.59	900.	.017	.043
REGATIVE KSS	-3.42	-2.076	-1.429	-1.43	002	-,(121	152
#							

* Not applicable due to APS control limit of L legree error simmal (see subsection 21).

TABLE 7 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY LISPENSION ANALYSIS TRAJECTORY DISPERSIONS AT OMBIT INSERTION S-1P PROPULSION/NON-PLODULSION THAEE SIGMA DEVIATIONS

	FLIGHT TIME	GEODETIC	LONGITUDE	EARTH FIXFD VELOCITY	INERTIAL	GROUND	ALTITUDE
VARIATIONS	(SEC)	(DEG)	FAST (DEG)	(M/S)	ANGLE (DEG)	(M)	(M)
NCKINAL	594.07.	524-61	-65.329	7527.20	18.279	1848650	158604.
HIGH LOX DENSITY	61	013	020	.01	022	-2257.	-7.
LOW LOX DENSITY	1.00	.016	.023	0°.	• 026	2637.	*
HIGH FUEL DENSITY	1.31	.012	•015	.03	•050	1861.	ė
ΙΤΥ	47.1	008	010	01	012	-1169.	-36-
. LOADING MASS +	10.	.017	•050	03	• 028	3163.	12.
MASS -	05	025	2.042	.05	041	-4517.	
LOADING MASS +	77.	006	012	.03	010	-1228.	. ę.
LOALING MASS -	93	•003	100.	٠٠٠-	• 000	653.	7.
THRUST AND FLOWRATE (+)	-2.81	024	670	05	039	-3521.	• •
•	3.05	,022	• 0.25	90.	.037	3209.	•
AND FLOWRATE	00.	.026	• 042	05	.043	48′0•	17.
ISP AND FLOWRATE (-++)	03	027	940	1 90°	##0°	-04640	
	L+-	020	 036	90*	033	-3856.	-13.
K. FINIMUR RE	29	.011	• 050	00.1	610.	- 2159-	7.
ENGINE THRUST DECAY (†0	100.	.001	-02	100.	122.	1.
\rightarrow	†0 •	001	001	.01	001	-111.	• • • • • • • • • • • • • • • • • • • •
	8v.	001	002	.03	002	-526.	7
OPELLANT	87	.001	• 005	01	.002	226.	
MIS. +	•15	.035	640.	70°	.057	6344.	۲.
×IS.	.07	035	061	01	058	-6522	-7-
WIS.	60•	.012	.021	0.	•020	2233	ที่เ
MIS.	•18	013	023	70.	022	-2506.	•ំ្
+ .SIM	00.	000.1	000	םם. י	000-	• • • • • • • • • • • • • • • • • • •	•
TOUR - MOLE	00.	000.	000.	co.	000		•
FORCE CUEF.	1.00	510	.02/	90.	22U	-2710.	ក់ :
FORCE CO	96.	5015	40.5 CZO•	90.1	020.	2552	• • •
CFFSET	7.07	#00°	/00.	00	900.	.02	• • •
	50.	#00°-	\00°-	co.	900-	-121.	• • •
	•03	010	· 01/	20°	016	-100	ï
C.66. OFF VET -2. 3		-010	110.	10.	910.	1791	3
THE CALLS	,,,	2.0.1	200°	.03	900.1	• 66191	- 27-
-	-1.21	/#O*	.085	90°-	7.00	A454	• • • •
1	*0.	900.	600.	01	600.	1015.	
	ຣັງ•	008	015	-00	014	-1562.	N
	•12	002	• 003	.01	-, n03	-358	-1.
COLD ATMOSPHERE PROFILE	26	£00°	900.	.01	.005	656.	*
KSS	3.72	•076	.130	.16	.126	14007.	33.
NEGATIVE RSS	-3.42	690-	117	12	*****	-12650.	-22.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**************		************	••••••

TABLE 7 (CONT'D)

;

ASTP (SA-210) L/V OPERATIONIN FLIGHT TRAJECTORY LISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT OLDIT INSERTION S-IR PROPULSION/NON-PHOPULSION THAEE SIGMA DEVIATIONS

	FLIGHT TIFE	APOGEE RADIUS	PERIGEE RADIUS	APOGFE VELOCITY	PERIGEE VELOCITY	SEMI-MAJOR AXIS	SEMI-LATUS RECTUM
VAHLATICNS	(SEC)	(X)	((K/S)	(k / <)	(S)	(M)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	594.07		6528129.	7400.03	7818,52	6535e13.	6535605.
HIGH LCX LENSITY	19	-36.	64	30.	05	•9	7.
LOW LOX DENSITY	1.00	.	.	00	00	• •	÷
HIGH FUEL DENSITY	1.31	94.	<u>-</u>	87°-L	.03	41.	41.
LCM FUEL DENSITY	+·-	-98-	72.	11.	60 *-	-13.	-13.
PRPT. LOADING MASS + LOX	10.	-71.	14.	L	03	-59.	-2H.
LOADING MASS -	05	166.	<u>.</u>	15	• 05	81.	81.
PRPT. LOADING MASS + RP-1	*	81.	 	 67	. رع	39.	39.
PRPT. LUALING MASS - 4P-1	- •50	-112.	58.	.12	<u>ئ</u> •	-27.	-27.
	-2.83	-191.	65.	•19	12	-63	-63.
JST AND FLOWRATE	3.05	242	-10.	a;	80.	116.	116.
ISP AND FLOWRATE (+,-)	00.	-140.	31.	.13	07	- 20 C	- 124
AND FLOWRA	- C3	231.	-50.		60.	105	
E.M.R. MAXIMUM RESIDUAL	74.	130.	4°5.	10	00		. 87.
E.M.R. MINIMUM RESIDUAL	- 29	47.	-38.	J. 6.5	\$0.	* 1	
THHUST DECAY	\$0·-	37.	37.	٠. د .	02	37.	37.
2	\$0.	• 17 17	14.		-, 01	***	***
_	90•	82.		20.	.03	0 1	9
OPELLANT	80·-	-17.	-17.		10.	-11.	-17.
+ .SIM	•15	117.	32.	6.1 •	To.	• [• • • • • • • • • • • • • • • • • • • •
MIS.	. 0.7	• u / -	15.) ; • •	€ •		• • • • • • • • • • • • • • • • • • • •
+ SIW	60.	& (c)	-36.	n d		• •	• •
- 51E	D (• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 4 .	N 14	1		
TOUR MIN MOLE	000	- Z-	· •	. ·			
1000 - 1000 - 1000 - 1	9 6	• = = = = = = = = = = = = = = = = = = =	• a	? - -	900	98.	986
7 0 0	90.1	250		4 40	- 16	-78.	-78
CALC PACE) == 	, (1	• •			8	2.
OFFICE T		- 11/2	-11	7	0.0	32.	32.
OFFSFT (10 C	32.	32.	2	-,02	32.	32.
OFFSET (10	16.	16.	1	01	16.	16.
	14	85.		00	79 0.	43.	• PO = 1
TAILWIND	-1.21	-164.	7.	•15	05	-18.	-78.
RIGHT CROSS WIND	40.	-64.	21.	•1:0	†0. -	-22.	-21.
CROSS N	\$U.	32.	32.	2	02	32.	32.
HCT ATMOSPHERE PROFILE	.12	19.	19.	(-) • -	01	19.	10.
COLC ATMOSPHEKE PROFILE	••î b	****	41.	φ. •	50	-1.	• • • • • • • • • • • • • • • • • • • •
P(SITIVE KSS	3.72	517.	188.	1 M 3 *	.18	263.	:62.
N 641 1 VE X C		111111111111111111111111111111111111111		97.1	27	-150.	-149.

ļ							1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ABLE 7 (CONT'D)

ASTO (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY LISPERSI TO AMPLYSIS

TRAJECTORY DISPERSIONS AT OwbIT INSERTION S-16 PROPULSION/NON-PPOPULSION THMEE SIGM, DEVIATIONS

(DEG) TRUE ANOMALY ARGUMENT PERIGEE (Deg) 760. -.00a -.077 CONIC ENERGY (-2/SEC2 ORBIT LCCENTRICITY .000006 -.0000013 -.000006 .000000 (-) -.000000-.000000 00000 .000000 .000019 .000000 .000000 •000000 96.-594.07 -.01 LCW FUEL DENSITY
PRPT. LOADING MASS + LOX
PRPT. LOADING MASS - LOX
PRPT. LOADING MASS + RP-1
PFFT. LOADING MASS - RP-1 THRUST AND FLOWRATE (+) LEFT CROSS WIND HCT ATMOSPHEPE PROFILE TAILWIND RIGHT CROSS WIND THRUST MIS.
THRUST MIS.
THRUST MIS.
THRUST MIS.
AXIAL FORCE VALIATIONS PCSITIVE KS NE GATIVE

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 7 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY JISFERSION ALALYSIS TRAJECTORY DISPERSIONS AT 0. BIT 1451 RIIGN S-IP PROPULSION/NON-PPOPULSION TH, EE SIGM, DEVIATIONS

	FLIGHT	RE	
₹	(350)	AZIMOTH (DEG)	
NOTIONAL STATEMENT OF THE STATEMENT OF T	594.07		
TIGHT FOX DESCRIPTION	10.	•	
HIGH FUEL DEPISITY	1.10	÷10.	
LOS FUEL DENNITY	1.74	800*-	
+ 55	10.	.019	
PHPT. LOADING MASS - LOX	80°=	026	
LOADING MASS +	***	••000	
LOAUING WASE -	99	.003	
ANC	-2.61	-,025	
IND FLOWR	3.05	•024	
AND FL	0 ·	670*	
ISP AND FLOWRATE (-,+)	-•63	620	· •
R. MAXIMUM RE	. 47	022	
E.M.R. MINIMUM RESIDUAL	29	*015	
	₩ J• -	.001	
_	†0 •	001	
MAS	80°	001	
OPELLANT	90. -	• 001	
WIS. +	•15	850.	
X. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10.	200°	
+ SIE	6J•	•	
	\$0 •	•	
TRUST ALSO 4 ACEL	5 6		
77007	90.1	•	
DEFORT (+Y)		700	
OFFICE			
OFFSET		•	
	7	•	
. INC	7.4	F 600	
TAIL WIND		•	
CALL CROSS #1NO	10	900	
LEVI CROSS HIND		600°	
		•	
•	3.72	90.	
61			- 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9
	V 2 - 17	٠	

TAPLE 8

ASTP (SA-216) L/V OPERATIONAL FLIGHT TRAJECTORY ISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT 0, DIT 11.5, RTION S-1V3 PROPULSION/NOH-PROPULSION THALE SIGMA DEVIATIONS

	FLIGHT	RADIUS	SPACE	SPACE FIXED FLIGHT PATE	OPBIT INCLINATION	DESCENDING NODE	VEHICLE
VARIATIONS	(090)	3	VELOCITY	ANGLE	(0,00)	ARGUMENT	a
		1;100;100;100;100;100;100;100;100;100;1	10.181				, LD /
NOMINAL	594.07	6528178	7818.46	700.06	51.780	157,775	68340.
S-IVB PROPULSION CASE 1	-8.56	10.	•01	001	.001	.001	331.
	10.6	-6-	06	700	-,001	001	-370.
	-2.31	• 9	-0.	700	000.■	000	547.
	2.37	້ຳ	•0•	700	000.	000-	-543.
IVE PROPULSION	06*-	•	00.	(100°-	000	-,000	12.
	-92	6.	CO.₌	³ 00	000	000	-11.
	-3.31	พ	• 0 •	-,00 _L	· 000	000	88.
S-IVB PROPULSION CASE 8	3.39	-1.		,,00°	U00	000	•06-
PRPT. LOALING MASS + LOX	2.64	ທ້	• 01	∩ 00°-	· 000	000	73.
PRPT. LOADING MASS - LOX	-2.60	10.	, ,	- 001	•000	000-	-55-
+	.74	7.	• 01	- 00r.	00n	••000	18.
PHFT. LUADING MASS - LH2	71	•	70.	1,00.1	₩ ₩ ₩	0000	
J-2 ENGINE THRUST DECAY (+)	00•	m	7.04	~00·-	.001	-002	••
J-2 ENGINE THRUST DECAY (-)	00.	, 10,1	-2.04	₹00°	001	-,002	7
_	.42	.61	00. -	000-	000-	000	10.
PELLANT	45	t .	٠0٠	300	000	000.	-10
_	.13		۰0،	J00	.000	000	-46.
MIS.	03	7.	٠ 0 ٠	100	000	000	15.
THRUST MIS. + YAW	•01	-1.	01	000-	.000	000.	ŧ
	90•	1.	۰0.	000.	000-	000	-56.
C.G. OFFSET (+Y)	01	1,	۰00	°00°-	001	002	e.
	<u>م</u> ان•	-0-	. 0.	,00°.	200°	.002	.8
C.6. OFFSET (+Z)	20.	-13,	00.	700°	000°-	000-	11.
٠	10•	17.	•01	~00°•	000	000	-17.
! =	10.34	27.	5.04	.003	200°	n00°	650.
NEATIVE KSS		-16.	-5.04	+00.	<00°-	700-	-668.

TABLE 8 (CONT'D)

ASTP (SA+210) L/V OFFRATIONAL FLIGHT TEADECTORY, INPERSION ADELYSIS TRADECTORY DISCERSIONS AT OARLY ASS. RTION S-1VB PROPULSION/FROPULSION THEE SIGMA OF VIATIONS

	F1 16H1		P0417100	11114111111111111111111111111111111111	** SPACE F1	FIXED VELOCITY V	
)	TICE	SX		52			7002
070011111111111111111111111111111111111	(SEC)	(W)	(W)	(W)	(b / k)	(S/N)	(M/S)
NCMLAL	594.07	6202530	37498	2035756	-2422.18	-754,38	7395,23
S-IVB PROPULSION CASE 1	-8.56	10877.	3392	-33479.	40.33	.11	13.17
S-IVE PROPULSION CASE 2	9.01	-11578.	-3558	34987.	-42.01	60	-13.97
PI OPULSION	-2.31	2527.	785.	-7710.	9.32	.07	3.05
	2.37	-2595.	-803.	7887	34.6-	• 01	-3.09
	ე6••	1176.	365.	-3567.	4.33	•00	1.43
PROPULS: UN	-92	-1200.	-372.	3679.	01.11	- 03	-1.44
S-IVB PROPULSION CASE 7	-3.31	4254	1321.	-13024.	15.68	70.	5.15
	3.39	-4381.	-1353.	13321.	-10.03	04	-5.29
3 MASS +	2.64	-2628.	-813.	8020	49.6-	• 01	-3.16
MASS -	-2.60	2604.	808	-7935.	9.61	• 00	3.17
+	.74	-734.	-227.	2263.	12.50	.03	87
MASS -	71	714.	221.	-2161.	2.64	10.	. 67
DECAY (00.	61	-5-	19.	#E-1	51	1,99
ENGINE THRU	• 00	М	Ş	-19.	#R.	08.	-1.99
NON-PROPELLANT MASS (+)	• 42	-418.	-129.	1265.	-1.51	• 05	64
	42	419.	130.	-1265.	1.54	• 05	.53
_	•10	-589.	-182.	1786.	-2.15	- 05	69
THRUST MIS PITCH	E0.4	603.	186.	-1820.	2.26	•00	.75
+ *SIW	.01	-214.	-20.	650.	1.73	- 06	26
THHUST MIS YAN	9,	227.	74.	- 095.	.78	.03	. v.
C.6. OFFSET (+Y)	01	•06-	-11.	278.	60.0 €	.31	07
C.6. OFFSET (-Y)	~ ;	92.	11.	-584.	61	33	.10
C.6. OFFSET (+2)	62	446.	81.	-793.	.71	• 05	#2 ?
C.6. OFFSET (=2)	\$3.	-240.	-80.	786.	£4	70*-	20
PCSITIVE RSS	10.34	12334.	3842.	39403.	45.68	.62	15.07
NE GATIVE ASS	63.6-	-13019.	•900+-	-37899.	-47.12	62	-15.82
		1 E	1091111111111	,			

TABLE 8 (CONT'D)

ASTR (SA-210) L/V OPERATIONE: FLIGHT TRAJECTORY . ISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT 0.61T 1'45k HTION 5-1VB PROPULSION/NON-PROPULSION THJEE SIGM. OFVIATIONS

	FLIGHT	** EARTH F	FIXED POSITION *YE	VFCTOR **	** EARTH FI XCOT	FIXED VELOCITY VE	VECTOR ** ZDOT
VAKTALIONS	(SEC)	(X)	(M)	(X)	(5/M)	(M/S)	(M/S'
NCN.I.JAL	594.07	-114345.	-95690	1865630	-2136.37	-736.18	7180.02
S-IVB PROPULSION CASE 1	-8.56	9247.	4136.	-31297.	36.49	-5.19	10.35
S-IVB PROPULSION CASE 2	9.01	-9844	-4314	32707.	-38.00	5,50	-10.97
	-2.31	2121.	1021	-711(D. 04	-1.27	2.35
	2.37	-2178.	-1043.	7273.	カナ・ゼー	1.38	-2.38
	06	1003.	439.	-3341.	3.93	50	1.12
PROPULSION	.92	-1021,	-448	3445.	-3.99	.61	-1.14
S-IVB PROPULSION CASE 7	-3,31	3620.	1601.	-12184.	14.20	-2.01	4.05
CASE	3.39	-3727.	-1637.	12462.	-14.51	2.07	-4.16
PRPT. LOADING MASS + LOX	5.64	-2184.	-1104.	7326.	-A.S.4	1.48	-2.40
ŧ	-2.60	2167.	1095.	-7251;	A.53	-1.39	2.42
PRPT. LOADING MASS + LH2	٠74	-609-	-309.	2064.	-2.37	3#°	99
PRPT. LOADING MASS - LH2	71	. 595.	300.	-1974,	#P. 0	36	794
J-2 ENGINE THRUST DECAY (+)	• 00	m.	7	10.	30	94.	2.01
	00•	ที่	t.	-19.	98.	\$ † *	-2.01
NON-PROPELLANT MASS (+)	. 4.0	-348	-175.	1155.	-1.33	•28	37
NON-PROPELLANT MASS (-)	+5	349.	175.	-1156.	1.37	23	77.
WIS. +	•10	-532,	-149.	1776.	-2.06	.12	58
- 'SIW	£0	551,	138,	-1831.	2.19	- 404	65
FIS. +	10.	-195.	-52.	655.	70	01	22
THRUST MIS YAW	90•	213.	42.	-716.	.78	00:1	•25
C.G. OFFSET (+Y)	10	-83.	-2-	282.	31	• 33	07
	609	86.		-565-	0 ft •	30°1	60.
C.6. UFFSET (+Z)	05	222.	o3.	-194.	.67	01	• 50
C.6. OFFSLT (=Z)	1 9•	-215.	-65,	783.	69	.03	17
P(SITIVE RSS	10.34	10474.	4717.	36780.	41.28	6.29	11.89
NEGATIVE HSS	69.6	-11055.	.4884	-35385.	47.04-	76°5-	-12.47
				*************	,		

Farth fixed cross range

TABLE 8 (CONT'D)

ASTP (SA-210) L/V OPERATION: FLIGHT TRADECTORY ISPERSION ALALYSIS TRADECTORY DISFERSIONS AT PART I SERTION SET S-1VB PROPULSION/NON-PROPULSION THEE SISK. DEVICTIONS

	11vE	PITCH	YAN	ROLL	PITCH	YAW.	FOLL
VEXTA LOUD	(3 <u>5</u> C)	(DEG)	(nEG)	(1.E.G.)	(DEG/S)	(DF6/S)	(DE6/S)
NOMICAL	594.07	-99.779	-13,741	927.	000.	-,001	£10°
S-IVB PROPULSION CASE 1	-8.56	264.	-1,346	07a	000	001	410.
S-IVE PROPULSION CASE 2	9.01	789	1.263	025	000.	.001	.013
	-2.31	.152	301	.013	300	.001	.012
	2.37	100	140.	.021	000-	001	.014
	06	• 056	128	460.	000.	007	015
	20.	125	.146	140	1.00-	000	600
PROPULSION	-3.31	.312	500	-,157	1001	000-	F.008
S-IVE PROFULTION CASE 8	3.39	517	164.	.28;	001	800*	, o14
÷	2.64	363	.366	320	001	000.	015
LOAUING MASS -	-2.00	• 295	355	**0.	001	.007	• 025
LOADING MASS +	.74	-,128	.111	, 00°	000	000.	.014
PHPT. LUAUING MASS - LH2	71	.071	₹60°-	.041	•00•	006	019
U-2 ENGINE THRUST DECAY (+)	00•	000.	000	000	001	.036	041
UST	00.	000.	000.	000.	.002	.028	670
NON-PROPELLANT MASS (+)	.42	.023	a60°	-1.25	100.	.00G	051
	45	.039	055	.061	.001	008	023
THRUST MIS. + PITCH	•10	678	.053	370	.031	200.	•039
THRUST MIS PITCH	€0.0°	•652	053	٠67٠	8¢0	600	437
THRUST MIS. + YAW	.01	058	591	.10.	1.001	.129	021
THRUST MIS YAN	90.	.063	. 599	••00:	.001	.063	021
C.G. OFFSET (+Y)	.	022	024	າ60•	.001	.018	010
	• 0.5	.024	.025	921	000.	. 028	041
C.6. OFFSET (+2)	ري. • د د د	• 026	030	.314	.037	100,	011
C.6. OFFSET (=2)	70 °	##O*•	.024	.016	035	000	-,063
PCSITIVE RSS	10.34	7.1.150	1,579		640.	. 138	#SO.
NEGATIVE HSS	64.61	1.107	-1.631	*=1.65H	540	-,016	116
							1111111111111

* Not applicable due to APS control limit of 1 degree error signal (see subsection 3.1).

. .

TABLE 8 (CONT'D)

ASTR (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY LISPERSION ANALYSIS (RAJECTORY DISPERSIONS AT ORBIT INS. RTION S-1VB PROPULSION/NON-PPOPULSION THREE SIGML DEVIATIONS

3	FLIGHT TIVE	GEODETIC LATITUDE	I ONGITUDE POSITIVE	EARTH FIXED VELOCITY	IVERTIAL RANGE	GROUND	ALTITUDE
VARIATIONS			FAST	•	ANG! F		
	(5EC)	(DEG)	(nEG)	(W/S)	(DEG)	(W)	(H)
NOWINAL	594.07	39.453	-65.329	7527.20	18.279	1848850.	158604.
S-IVE PROPULSION CASE 1	-8,56	187	284	.12		-32001.	
PROPULSION	9.01	.195	. 299	12		33495	69
PROPULSION	-2.31	043	190-	0.		-7279.	6
	2.37	770.	• 066	00		24446	11.
PROPULSION	06	020	030	.01	n33	-3420	-
PROPULSION	- 85	.021	.031	01		3523.	14.
S-IVB PROPULSION CASE 7	-3.31	073	111	.05		-12464.	-23.
CASE	3.49	+20•	.114	03	.123	12755.	26.
PHPT. LOADING MASS + LOX	2.64	.045	066	00.1	. n74	7503.	21.
PHPT. LOADING MASS - LOX	-2.60	1.044	065	.03	113	-7427.	-6-
PRPT. LOADING MASS + LH2	ħ.	.013	.014	00.	.021	2116.	12.
PHPT. LOAUING MASS - LH2	71	012	018	10.	020	-2023-	2
J-2 ENGINE THKUST DECAY (+)	00.	000•	000•	2.04	000•	19.	'n
SUST	00•	000*-	000	-2.04	- 000	-19.	-3·
-	. 42	.007	•010	01	.012	1184.	-1:
OPELLANT	1.42	007	010	· 0.	012	-1185.	:
MIS. +	•10	.010	.017	• 05	.016	1814.	•
MIS.	03	010	01	00.	017	-1870.	4
MIS. +	•01	†00 *	• 006	01	9 ₀ u•	.899	7.
THRUST MIS YAW	•00	+00	007	~0.	-· n06	-730.	-1.
C.G. OFFSLT (+Y)	10.	.001	• 003	01	.003	286.	1.
C.6. OFFSET (-Y)	7 0.	001	003	70.	003	-296.	7
C.G. OFFSET (+Z)	02	+000-	0 07	00.	007	-807.	-15.
C.G. OFFSET (-Z)	†0 •	†00 *	2000	.01	200.	795.	18.
PUSITIVE RSS	10.34	.220	, 336	2.05	. 364	37671.	79.
NE GATIVE HSS	-9.R9	212	321	-2.05	646.	-36187.	-99-
		100000000000000000000000000000000000000	*************				

TABLE 8 (CONT'D)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTOFY, ISFERSION ANALYSIS TRAJECTORY DISPERSIONS AT OABIT INSPRTION CAPITION S-IVB PROPULSION/HON-FFOPULSION THALE SIGN, DEVIATIONS

!

CALLELIONS INAL INAL INAL VE PROFULSION CASE 1 -894 VE PROFULSION CASE 3 -29 VE PROFULSION CASE 3 -29 VE PROPULSION CASE 5 -29 VE PROFULSION CASE 6 6 VE PROFULSION CASE 6 7 VE PROFULSION CASE 7 -3 VE PROFULSION CASE 7 -4 VE PROFULSION CASE	(0)		1	1110011	VELOCITY	AXIS	*/3133s
AL PROPULSION CASE 1 PROPULSION CASE 2 PROPULSION CASE 3 PROPULSION CASE 4 PROPULSION CASE 5 PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 7 PROFULSION CASE 7 PROFULSION CASE 7 LOALING MASS - LOX LOALING MASS - LOX LOALING MASS - LOX LOALING MASS - LOX		(M)	(M)	(4/8)	(S/A)	(W)	(×)
PROPULSION CASE 1 PROPULSION CASE 2 PROPULSION CASE 3 PROPULSION CASE 4 PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 7 PROPULSION CASE 7 PROPULSION CASE 6 PROPULSION CASE 6 PROPULSION CASE 7 PROPULSION CASE 1 PROPULSION CASE 7 PROPULSION C	,07	6543067.	6528124.	7800.03	7918.52	6535613.	6535605.
PROFULSION CASE 2 PROFULSION CASE 3 PROPULSION CASE 4 PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 6 PROFULSION CASE 7 PROFULSION CASE 7 PROFULSION CASE 7 PROFULSION CASE 8 LOALING MASS + LOX LOALING MASS - LOX LOALING MASS - LOX LOALING MASS - LH2	56	260.	80	M4.1	.07	134.	134.
PROFULSION CASE 3 PROPULSION CASE 4 PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 7 PROFULSION CASE 7 PROFULSION CASE 7 LOALING MASS + LOX LOALING MASS + LH2 LOADING MASS - LH2	101	-244.	12.		a0	-116.	-116.
PROPULSION CASE 4 PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 7 PROPULSION CASE 7 PROPULSION CASE 8 LOALING MASS + LOX LOALING MASS + LH2 LOADING MASS + LH2	31	-38.	47.	č() •	05	ŧ	• •
PROPULSION CASE 5 PROPULSION CASE 6 PROPULSION CASE 7 PROFULSION CASE 8 LOALING MASS + LOX LOADING MASS - LOX LOADING MASS - LH2	.37	-36.	49.	រភ •	05	7.	7.
PROPULSION CASE 6 PROPULSION CASE 7 PROFULSION CASE 8 3 LOALING MASS + LOX -2 LOAUING MASS + LH2 LOADING MASS - LH2	06	• 49	-50	90•-	*O*	22.	22.
PROPULSION CASE 7 PROFULSION CASE 8 LOALING MASS + LOX LOADING MASS + LOX LOADING MASS + LHZ LOADING MASS - LHZ	•92	-35.	50.	ن ا.	06	7.	7.
b PROFULSION CASE 8 • LOALING MASS + LOX • LOAUING MASS - LOX • LOAUING MASS + LH2 • LOADING MASS - LH2	31	97.	13.	80.	5U.	55.	55.
. LOALING MASS + LOX . LOAUING MASS - LOX . LOALING MASS + LH2 . LOADING MASS - LH2	Q. (1)	-65.	20.	9".	*G*-	-23.	-25.
. LOADING MASS - LOX . LOADING MASS + LH2 . LOADING MASS - LH2	19	25.	25.	10	01	25.	25.
. LOADING MASS + LH2	09:	53.	53.	E0	03	53.	53.
. LOADING MASS - LH2	,74	25.	25.	40.4L	01	25.	25.
	.71	21.	21.	40.1	07-	21.	51.
DECAY (+)	00•	6778.	59.	+0.9-	1.97	3418.	3409
THRUST DECAY (-)	00.	-6874.	47.	6-17	-2.09	-3434.	-340A.
NCN-PROPELLANT MASS (+)	745	-11.	-11.	1 0.	.01	-11.	-11.
MELLANI MASS (-)	.42	•06	• 9	80	.02	. 84	. 84
MIS. + PITCH	•10	29•	29.	02	02	29.	29.
MIS.		16.	16.	10	10	16.	16.
MIS. + YAh	•01	-63.	22.	95.	+0	-20.	-50.
MY I	• j.e	94.	. 4P	N	02	・すり	96
- (\ +)	10°	-35.	50.	s.·•	06	7.	7.
OFFSET (-Y)	50	82.		T	.03	39.	39.
C.6. OFFSET (+Z) -+1.2	ر ج	-26.	-26.	N :	.02	-26.	-26.
OFFSET (=Z)	+0+	86.	2.	6.68	.02	***	* 7 7
)	#O.	6786.	129.	6.17	1.97	3423.	3414.
KSS	7.9	-6880.	-35.	50.9-	-2.10	-3416.	-3410.

TABLE 8 (CONT'D)

ASTP (SA-210) L/V OPERATIONS FLIGHT TRAJECTORY JISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT OMBIT INSERTION S-IVE PROPULSION/1014-PEOPULSION THEE SIGM, DEVIATIONS

	FLIGHT TINE	ORBIT ECCENTRICITY	CONIC	ORBI1 PERIND	ARGUMENT	TRUE	ECCENTRIC ANOMALY
VARIATIONS	(SEC)	•	(M2/SEC2)	(SEC)	PERIGER (DEG)	(DEG)	(DEG)
	594.67	.001145		5258.22	54.714	350.953	356,954
S-IVE PROPUL SION CASE 1	18.56	• 00000	1253	.16	80₩	.493	664.
PROPIL STON	10.0	-,000020	-1083	14	u60*-	.416	. 415
PROPUL STON	12,27	900000-	39.	10.	381	•309	.309
FROPILI SION	2.37	-,000006	63.	.01	235	• 308	.308
PROPILI STON	00	900000	205.	£0.	519	• 286	.285
PROPIN STON	36.	0	67.	.01	10A	.142	.142
VH PROPILISION	-3.31	900000	F15.	20.	285	.164	.164
IVE PROPULSION	3.39	900000	-211.	£3	.191	068	067
LOALING MASS + LO	2.64	000000	229.	.03	•02B	.047	7.00.
LOADING MASS -	-2.60	000000	491.	90.	-,563	687.	687.
- LOADING MASS +	74.	.000000	232.	د ي	239	• 260	.260
LOALING MASS	71	000000	196.	£0°	286	-566	-265
VOINE THRUST DEC	000	.000513	31883.	4,13	-1.690	1.689	1.687
CLS FNGINE THRUST	00.	000529	-31875	-4.12	4.539	-4.538	-4.536
AN WA	23.	.000000	-104.	10	106	.118	.118
	1.42	9000000	445.	90.	166	154	.154
	• 10	.000000	268.	.03	019	• 336	.036
ı	03	000000	148.	• 02	488	.471	127
* 15.	10.	000006	-187.	02	323	• 329	. 329
1 5 1 2	90.	.000000	317.	†0°	.295	301	301
FFS-T (+		000000	68.	.01	082	•086	.085
	2	900000	369.	\$0.	.164	169	168
	2 J • •	000000	-239.	03	1.630	-1.638	-1.636
	+0.	900000	412.	\$0.	-2.069	2.076	2.074
P(SITIVE HSS	10.34	.000514	31928.	4.13	4.839	2.A78	2.874
N. GATIVE KSS	69.61		-31896.		-2.981	-4.837	4.834

TABLE 8 (CONT'D)

À

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY, ISPERSION ANALYSIS TRAJECTORY DISPERSIONS AT Uselt II Scriion S-IVB PROPULSION/NON-PROPULSION THEEE SIGM, EFVIATIONS

SEC		FLIGHT	SPACE FIXED	
## PROPULSION CASE 1	VAKLATIOTU	(SEC)	(DEG)	
## PROPULSION CASE 1	NORTER	594.07		
B PROPULSION CASE 3	PROPULSION	-8.56		
B PROPULSION CASE 3 -2.31 B PROPULSION CASE 4 2.37 B PROPULSION CASE 5 -90 B PROPULSION CASE 6 -90 B PROPULSION CASE 7 -3.31 B PROPULSION CASE 8 3.39 LOADING MASS + LOX 2.64 LOADING MASS - LOX 2.64 LOADING MASS - LOX 2.60 LOADING MASS - LOX 2.60 LOADING MASS - LOX 2.60 PROPELLANT DECAY (+) .00 PROPELLANT MASS (+) .42 PROPELANT MASS (+) .42 PROPELANT MASS (+) .42 PROPELANT MASS (+) .42 PROPELANT MASS (+	PROPULSION	9.01	.214	
B PROPULSION CASE 4 2.37 B PROPULSION CASE 590 B PROPULSION CASE 690 B PROPULSION CASE 790 B PROPULSION CASE 8 3.39 B LOADING MASS + LOX 2.64 CADDING MASS - LOX -2.60 CADDING MASS - LA271 CADDING MASS - LA271 ENGINE THRUST DECAY (+)00 ENGINE THRUST CH01 OFFSET (+Y)02 OFFSET (+Y)02 OFFSET (+Z)02 OFFSET (+Z)02	PROPULSION	-2.31	047	
B PROPULSION CASE 5 B PROPULSION CASE 6 B PROPULSION CASE 7 B PROPULSION CASE 8 B 3.39 B CADDING MASS + LOX 2.64 CADDING MASS - LOX 2.64 LOADING MASS - LOX 2.64 CADDING MASS - LOX 2.64 FNGINE THRUST DECAY (+) .00 FROPELLANT MASS (-) .42 FROPELLAN	PROPULS10N	2.37	840.	
B PROPULSION CASE 6 .92 B PROPULSION CASE 7 .3.31 B PROPULSION CASE 8 3.39 CADALING MASS + LOX 2.64 CADALING MASS - LOX 2.64 CLOADING MASS - LOX 2.64 CADALING MASS - LAZ .71 CADING MASS - LAZ .74 CADING MASS - LAZ .71 CENCINE THRUST DECAY (+) .00 ENGINE	PROPUL SION	06*-	021	
## PROPULSION CASE 7 -3.31 ## PROPULSION CASE 8 3.39 ## LOADING MASS + LOX 2.64 ## LOADING MASS - LOX 2.64 ## LOADING MASS - LOX 2.66 ## LOADING MASS - LH2	PROPUL STON	• 92	.023	
## PROPULSION CASE 8 3.39 • LOALING MASS + LOX	PROPULSION	-3.31	079	
LOALING MASS + LOX 2.64 . LOADING MASS - LOX 2.66 . LOADING MASS - LOX 2.66 . LOADING MASS + LH2 77 . LOADING MASS - LH2 77 . LOADING MASS - LH2 77 ENGINE THRUST DECAY (+) 00 PROPELLANT MASS (+) 42 PROPELLANT MASS (+) 42 PROPELLANT MASS (-) 42 FROPELLANT MASS (-) 60 FAT MIS, + PITCH 61 OFFSET (+Y) 66 OFFSET (+Y) 62 OFFSET (+Y) 62 OFFSET (+Z) 63 TIVE RSS 63	PROPULS 10N	3,39	.081	
LOADING MASS - LOX -2.60 LOADING MASS + LH2 .71 LOADING MASS - LH2 .71 ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (-) .00 PROPELLANT MASS (+) .42 PROPELLANT MASS (-) .42 PROPELLANT MASS (-) .42 PROPELLANT MASS (-) .00 ST MIS, + PITCH .01 ST MIS, + YAW .01 OFFSET (+Y) .02 OFFSET (+Y) .02 OFFSET (+Z) .02	. LOALING MASS +	5.64	670.	
LOADING MASS + LH2 .74 . LOADING MASS - LH2 .71 ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (+) .00 PROPELLANT MASS (+) .42 PROPELLANT MASS (-) .42 PROPELLANT MASS (-) .42 PROPELLANT MASS (-) .42 PROPELLANT MASS (-) .42 ST MIS. + PITCH .00 ST MIS. + YAW .06 OFFSET (+Y) .00 OFFSET (+Y) .02 OFFSET (+Z) .02	. LOADING MASS -	-2.60	870	
ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (-) .00 ENGINE THRUST DECAY (-) .00 PROPELLANT MASS (+) .42 JST MIS. + PITCH .10 JST MIS. + YAW .01 JST MIS YAW .06 JST MIS.	. LOADING MASS +	٠74	.014	
ENGINE THRUST DECAY (+) .00 ENGINE THRUST DECAY (-) .00 PROPELLANT MASS (+) .42 PROPELLANT MASS (-) .42 PST MIS. + PITCH .10 JST MIS. + PAW .01 JST MIS. + YAW .05 OFFSET (+Y) .02 OFFSET (+Y) .02 OFFSET (-Y) .02	. LOADING MASS -	71	013	
ENGINE THRUST DECAY (=) .00 PROPELLANT MASS (+) .42 JST MIS. + PITCH .10 JST MIS. + PAW .01 JST MIS YAW .05 OFFSET (+Y) .02 OFFSET (+Y) .02 OFFSET (-Z) .02	ENGINE THRUST DECAY	00.	002	
PROPELLANT MASS (+) ,42 -PROPELLANT MASS (-) ,42	ENGINE THRUST DECAY	00•	.002	
PROPELLANT MASS (-)42 JST MIS. + PITCH10 JST MIS. + YAW01 JST MIS YAW06 JST MIS YAW06 JST MIS YAW06 JST MIS YAW06 JST MIS YAW01 JST MIS YAW06 JST MIS YAW01 JST MIS YAW01 JST MIS YAW01	ANT MAS	.42	800.	
JST MIS. + PITCH .10 JST MIS. + PITCH .01 JST MIS. + YAW .06 JST MIS YAW .01 JST MIS PITCH .01	ANT MASS (24.	800*-	
JST MIS. + YAW .01 JST MIS. + YAW .01 JST MIS YAW .05 JST MIS YAW .05 OFFSET (+Y) .02 OFFSET (+Z) .02 OFFSET (+Z) .02 OFFSET (+Z) .02	+	•10	.011	
JST MIS. + YAW .01 JST MIS YAW .06 OFFSET (+Y) .02 OFFSET (+Z) .02 OFFSET (+Z) .02	MIS.	69	011	
JST MIS YAW .06 OFFSET (+Y) .01 OFFSET (+Z) .02 OFFSET (+Z) .02	+ SIN	10.	.003	
OFFSET (+Y)01 OFFSET (-Y)02 OFFSET (+Z)02 OFFSET (+Z)02		90•	†00.	
OFFSET (-Y) .02 OFFSET (+Z) .02 OFFSET (-Z) .04		01	†00 *	
OFFSET (+Z)02 OFFSET 4 -Z)04 ITIVE RSS 10.34		-05	+00	
OFFSET (=2) .04 ITIVE RSS 10.34		02	+00°-	
855		+0•	#00°	
		10.34	.241	
S	NEGATIVE RSS	68.6	-230	

i

TACK. 9

ASTP (SA-Z10) LAUNCH VEHICLE OPERATIONAL FLIGWT TRAJECTORY DISPERSION ANALYSIS
TRAJECTORY DISPERSION ENVELOPE AT ARBIT INSELTION
COMMINED S-187 S-IVE STAGE AND IMP REPERSIONA DIVIATIONE

DISPERSION GROUP	n GPOUP	FLIGHT IIME (SEC)	RADIUS (M)	SPACE VELOCITY (W/S)	TYFD TH ANGLE	KBTTAL JNCL IN• (DEG)	LI SC. HODE AKGLIMENT (DFG)	VEHICLE WEIGHT (LB)
S-IB STAGE	+RSS		21.	.1ó	000	000	00v•	981.
S-IB STACE	- R55	() 2 • ()	11.	.11	.001	.001	.001	1010.
S-IVB STAGE	+855	10.34	27.	5.04	c00.	300°	\$0u•	629
S-IVB STAGE	755	64.6	16.	2.04	+00.	• 005	40	668.
าษา	+855	51.	504.	1,38	.018	•019	.619	22.
] P (·	-455	\$ 0.5	502.	1.37	.018	.019	.n19	21.
COVBINEL FOSITIVE RSS	RSS	T.	505.	2,47	.018	.019	. (19	1177.
COMBINED LEGATIVE RSS	R55	19.46	•800	2°46	.018	•1019	•(19	1211.

TABLE O (CONTP.)

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TPAJELTORY DISPERSION ANALYSIS TRAJECTORY DISPERSION ENVELOPE AT ARGIT TASE TION COMMINED SHIMS SHAGE AND THE TREESI HAD A VIATION.

		FL SHT	SPACE FIXED	XFF PASITI	1776	SFACE F	F. Xr., V. LOCITY	"FCTCR
DISPLKSICE GROUP ()	OUP	117E (SEC)	کې (چ)	YS (M)				ZBoT (M/S)
S-IB STAGE	+K5S	4.72	4063.	1266.	13054.	15.01	0.5.	66° +
S-Ib STAGE	-KSS	3.42	4480.	1390.	1238	16.37	.10	5.38
S-IVB SIAGE	+ 45S	11 . 34	12334.	3842.	39400.	45.08	Ñ	15.07
S-IVE STAGE	- KSS	58*5	13019.	4006.	3789:-	47.32	24.	15.82
IMU	+K\$S	د 0.	534.	763.	31.	£.77	41.0	1.11
IMU	-KS.	30.	505.	762.	321	2 · 01	3.14	1.1
COMBILED POSITIVE RSS	1	1: 999	12997.	4117.	41703.	#6.10	3.71	15.91
CCMBINFL NEGATIVE	E #55	KSS 11. 445	13779.	4308.	39674.	56.15	3.20	16.75

TABLE ((CONT'T)

ASTP (SA-210) LAUMCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY CISPERSION ANALYSIS TRAJECTORY DISPERSION ENVELOPE AT ARBIT INSE TION LOI THEO SHIP STAGE AND IMU THEE-SIMA DIVIDITION.

UISF LKS164	สกอัลส	FL 3 GHT T 3 MC (SEC)	EARTH XE (M)	FIXFO POSITION YE (M)	': VECT K ZE (M)	EARTH FJO	EARTH FIXER VELOCITY XEGT (MZS) (MZS)	VECTOR ZDOT (M/S)
S-IB STAGE	+K5S	l	3648.	1203.	13724	14.44	1.71	4.30
5-Ib 51/6t	-KS5	3.42	4086.	1316.	12397.	15,81	1.41	4,65
C-IVE, 5146E	+K55	1.34	10474.	4717.	3070	41,28	66.0	11.99
S-IV, STAGE	-KS3	68.5	11055.	4894.	35389	42.74	₽°•3	12.47
IMU	+K55	• 05	539.	764.	30't.	2.77	3.15	1.10
IMU	-KSS	• 35	535.	764.	31:•	2.81	3.15	1.09
COMDITIEL POSITIVE	E KS5	10.99	11117.	4928•	39267•	43,62	h:-L	12.69
COMBINEL NEGATIVE KSS	KS\$		11798.	5125.	37491.	45.66	6.47	13,35

Earth fixed cross range.

TABLE O (CONTO)

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT THAJE, TUPY LISPERSLUE ALLYSIS TRAJECTORY DISPERSION ENVELOPE AT CRAIT INCE TION COME INEE S-137 S-IVP STAGE AND IMU TOPFE-SION VIATION.

C1SFEFS109 GF(0.2)		FLIGHT (ING (SEC)	6. OUE TIC. L. TITOE (OLG)	LOMAITURE PUS. EAST (AEG)	F/PTH FIVED #1.00.4 ft (M/S)	IGEKTIAL ANGE AN LF (DEG)	HOULD HAFGE (M)	لال) (الا)
S-IR STAGE	+RS5	3.72	940.	.130	•16	,126	14007.	33.
S-IF STACE	-KSS	3.42	690.	.117	.12	.114	12650.	22.
S-IVB STF6L	+858	10.34	.220	. 536	्रो हा	#Q5.	71671.	79.
S-IVB STAGE	₽F55	δ. δ	•£12	.321	2.05	6+8.	36187.	£6.
IMC	+KS2	ດທ•	960.	900*	1.39	.003	* ##8	5 t.4.
n4I	\$54 -	ĺ	. 646	, 406)	8.10.	350.	5.1.
COMPINED POSITIVE FSS	rve FSS		5.33	,360	0.40	3 Q P 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n C 192 •	511.
COMPINED MEGATIVE	TIVE PSS	10.40	.224	.342	2.44	.317	16.336.	566.
								6 6 7 1 1 1

TABLE G (CONT'E)

ASTP (SA-210) LAUTICH VEHICLE OPERATIONAL FLIGHT TRAJECTOMY DISPERSION AWALYSIS
TRAJECTORY DISPERSION ENVELOPE IT ARBIT INSELTION
COMPINED S-18, S-1VB STAGE AND IMU TEPPE-SILMA DEVIATIONE.

DISPERSION OF OUP	JP	FLIGHT TIME (SEC)	APOGEE RADIUS (M)	PERIGEE FADIUS (r)	V.EOCITY (7.73)	PERIGEE VEL.CITY (M/S)	LEMITALOR AXIS (M)	SFWI-LATUS AKIS (A)
S-IB STAGE	+R5S	3.72	517.	188.	£ # •	.18	26.3.	262.
S-*B STAGE	-1855	3.42	432.	67.	. 46	.27	156.	149.
S-IVB STAUE	+RS5	10.34	6736.	129.	4.17	1,97	• F.O.# ·	3414.
S-IVB STAGE	1355	68.6	•880°	35.	٠. ال	2.10	54.16.	3410.
זאה	+R55	, O.,	4068.	589.	3.60	1.44	2005.	2000.
1MU:	-R5s	.04,	3589.	636.	, ef. A	1.07	1957.	19c2.
COMBINED FOSITIVE RSS	R55	10.99	7929.	632•	7.16	2,45	3976.	3965.
CONETION EGATIVE PSS	P55	10.4°	7964.	640.	/•10	2,52	2945.	3937.

TAPLE O (CONTTO)

ASTP (FA-210) LAUNCH VEHICLE OPEPATIONAL FLIGHT TRADECTONY LISPUNS.OF ANALYSIS TRADECTORY DISPERSION ENVELOPE AT CRAIT INSE TION COMPINED STINE STANE / PED INCHORNELLE AND VICILIA

DISPERSION GROUP	01.IP	FLIGHT FIME (SEC)	FLIGHT ONIT DISPERSION GROUP TIME ECCENTRICITY (SEC)	CONIC ENERGY (MZ/SEC)	08311 FER10, (SEC)	AK, UMENI OF ERIGEE (DEG)	ANCMALY (PEG)	ALOP.ALY (DEG)
			! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		 	0.00	1.068	1.067
S-IB STAGE	+RSS	3.72	040000.	2453	30.			Ì
2-18 STACE	-K55	3.42	.000045	1396.	.18	1.155	. 363	. 362
SATURATED	+K5>	10.34	90514	31928.	4.13	4.839	2.678	2.874
STATE STATE	\$ J	5° 6	.000030	31896.	4.12	.961	4.837	4.834
Table avi-s	57 24	đ.	.000523	18704.	24.5	9.156	10.374	16.356
0 2	FRSS.	30.	.000315	18355.	2.37	16.375	15.158	15.140
CUMPINED POSITIVE RSS	E RSS	E RSS 10.99	×09000°	37084.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.91n	10.659	160.01
CONTINE 1 GATIVE MSS 19.40	/E K\$\$	07.01		30827.	п.7е.	404.0	15,915	15.897

A. Manage all

TAHLE Q (COMT*)

ASTP (SA-210) LAUNCH VEHICLE OPERATIONAL FLIGHT TRAJECTORY BISPERSION -ANALYSIS-TRAJECTORY DISPERSION ENVELOPE AT ARBIT INSELTION COMBINED S-IBA S-IVB STAGE AND IMU THREE-SIGMA DEVIATIONS

UISPERSION GROUP	GROUP	FLIGHT TIME (SEC)	SPACE FIXED AZIMUTH (DEG)	1 2 1 1 1 2 1 3 4
S-IB STAGE	+855	3.72	.083	•
S-IB STAGE	- K5S	3.42	+. C O +	
S-IVE STAGE	+KSS	10.34	* #5.	
S-IVE STAGE	1 K\$S	68.6	•23∪	
IMU	+855	• 05	•02b	
OWI	-x55	.05	•02°	
COMBINEL POSITIVE H	IVE KSS	10,99	,25,	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CONDIPED MEGALIVE	IVE MSS	10.46	. 245.	

TABLE 10

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS THREE-SIGMA FLIGHT ENVELOPE OF PERTINENT DESIGN PARAMETERS FIRST STAGE FLIGHT

DYNAMIC PRESSURE (N/M ²)	0.	0	104.	22.	148.	• 96	282.	231.	490.	429.		•160°	1090	1006.	1441	1364.	1761.	1743.	2003.	2121.	2107.	2527.	1887.	2801.	1630.	3130.	1488.	3870.	1390.	4922.	1069.	4773.
PITCH ANGLE OF ATTACK (DEG)	0.000	0000	28.316	47.598	13,939	25,582	11.733	16.229	12,785	10.23	0.040	0/6.6	177.0	7.497	4/0.4	5.941	2,411	4.902	1,513	4,392	1.069	4.193	0.858	3.761	0,818	3,832	998.0	3,793	0.857	3.866	•	2,357
AERO, HEATING INDICATOR [(KG·M) / (M ² ·RAD)] X (10-6)	000.0	000*0	600.0	0.002	0.012	0.001	0.019	0.004	0.034	\$70°0	50.0	0.036	0.123	0.081	0.216	0.159	0,359	0.284	0.565	0.466	0.842	0.713	1.173	1,036	1.537	1.428	1,943	1,912	2.418	2.546	•	3,335
LONGITUDINAL ACCELERATION (M/S ²)	0.225	0.246	0.243	0.267	0.258	0.282	0.275	0.298	0.290	0.312	0.307	0.335	0.324	0.353	0.348	0.375	0.362	0.392	0.388	0.415	0,360	777.0	0.314	0.259	0.496	0.372	0.683	0.1	0	•	S	0.844
RSS	+	•	+	1	+	•	+	•	+		+		+	1 -	+	,	+	'	+	•	+	'	+	•	+	,	+	•	+	,	+	1
FLIGHT TIME (SEC)	0		2		01		15		50	Č	C7	Č	₹	i	દ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	07		45		20		55		09		65		20		75	

TABLE 10 (CONTINUED)

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS THREE-SIGMA FLIGHT ENVELOPE OF PERTINENT DESIGN PARAMETERS FIRST STAGE FLIGHT

DYNAMIC PRESSURE (N/M ²)	2548.	3617.	3243.	3149.	2898.	2999.	2671.	2/10.	27.75	2228.	2108.	1847.	1709.	1518.	1356.	1211.	1050.	954.	795.	721.	379.	432.	315.	334.	288.	296.	286.	294.	
PITCH ANGLE OF ATTACK (DEG)	0.610	0.509	•	•	0.814	0.697	0.849	19/*0	0.090	0.953	0.858	1,187	0.798	1,391	0.740	1,335	1,481	2.037	•	1.914	1.743	2.148	1,503	1,983	1.563	•	1.570	2.043	
AERO. HEATING INDICATOR [(KG·M) / (M ² ·RAD)] X (10-6)	3,023	2,957	4.312	2,787	4,305	2.546	4.196	2,315	4.130	4.232	2,109	4,437	2.252	4.733	2,539	5.058	2.881	5.403	3,221	5,752	3,906	6.208	•	6,366	4,108	6.417	4.110	6,419	
LONGITUDINAL ACCELERATION (M/S ²)	0.825	0.887	0.961	0.934	1.008	0.985	1,061	L.039	1 121	1.194	2	1,308	1,336	_	1.470	1,551	1.631	1.691	1.818	1.879	0.736	0.825	098*9	1.248	0.337	0.123	0.364	0.122	
RSS	+ 1	+	ı	+	•	+		+	1 4	. 1	+	1	+	•	+	•	+	,	+	ı	+	•	+		+	1	+	ı	
FLIGHT TIME (SEC)	80	85		8		95	001	700	105		110		115		120		125		130		IECO		OECO		SEP. SIG.		SEP.		

ASTP (SA-210) L/V OPERATIONAL FLIGHT THAUS CTURY LISPERSION AT ALYSIS PERFORMANCE TRADE-OFFS AT S-IB/S-IVU SI PAFATION

	FL19HT TISE	ALTITURE	SPACE FIXED	SPACE FIXER FLIGHT - ATH	GROUND	EARTH FIXED CROSS RANGE
VARIATIONS	(SEC)	(X)	(8 / S)	Aiver (DEG)	(1.)	(文) (文)
	• •				1	
1) LCX LOAD MASS/(+ %)	1.30	316.	27.76	.379	1814.	•6•
1) LOX LOAD MASS/(- %)	-1.42	-352.	-29.09	423	-1950.	•6
2) RP-1 LGAD MASS/(+ %)	٠٠٥	-466.	-12.2n	.102	-321.	
.) RP-1 LOAD MASS/(- %)	29	254.	10.39	16t	-158.	1.
THRUST AND FLOWRATE/(+ %)	-1.40	878.	2.25	569*-	-1140.	7.
THRUST AND FLOARATEX (- %)	10.44	-925	-2.57	.67A	1137.	-7-
ISP AND FLOWRATE/(+SEC ISP)	84.	259.	9.65	.117	713.	. # -
ISP AND FLOWPATE/ (-SEC ISP)	84	-260.	99.6	121	-104.	•
ENH MAX RESIDUAL/(+1000 LB)	16	-162.	-6.3A	022	-309	
EPR MIN RESIDUAL/(-1000 LB)	•16	150.	6.6A	.023	304.	• • • • • • • • • • • • • • • • • • • •
NON-PROP. MASS/(+100 LB)	00•	-17.	tt. I	, 004	-12.	•0
MUN-PROP. MASS/(-100 LB)	00•	17.	11.	₩00° -	15.	•0=
PITCH THRUST MIS./(+DEG)	00•	-1700.	21.3A	2.021	2307.	275.
PITCH THRUST MIS./(~DEG)	00•	1651.	-22.11	-2.030	-2353.	-280.
YAW THRUST MIS./(+DEC)	00•	-16.	-8.74	065	334.	-3052,
YAW THRUST MIS./(-DEG)	00•	-28.	8.2A	• 095	-584	3054.
ROLL THRUST MIS./(+DFG)	00•		41.	.00°	'n	54.
ROLL THRUST MIS./(-DEG)	00•	۰,	15	005		
YCG OFFSET/(+.01 M)	00•	1.	24	×00°-	19.	-116.
YC6 OFFSET/(01 M)	00•	-2.	F.2.	٠.00.	-10.	116.
2CG UFFSET/(+.01 F)	00.	54.	F8	06,	• 16-	-17.
2CG OFFSET/(01 M)	0:0•	-52.	ιθ.	٠,٥٥٠	93.	17.

1) 17 = 672 Founds

.) 1' - ''9. Founts

ORIGINAL PAGE IS OF POOR QUALITY

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY JISPERSION ANALYSIS PERFORMANCE TRILE-OFFS AT ORBIT INSERTION

VAPIAIICUS	1	RAMGE	CACSS RANGE	WE16.1	
	(SEC)	(M)	(×)	(۲8)	
(6 +) /5>R/ (340 x x) / / /	13	7029.	-491	583.	
1 0 AD MASS/ (-	60.	-7529	849	-610.	
	.73	-2047	-18.	-336.	
RF-1 LO.D MASS/(-	£6	1088.	132.	28н.	
TERUST AND FLOWRAT	-1.48	-2347	581.	219.	
AND FLOWRATE/	5.04	2139.	-665-	-274.	
AND FLOWPATE/ (+SFC I	00.	2462.	-172.	215.	
FLOWPATE/ (-SEC I	02	-2533.	182.	-215.	
MAX RESIEUAL/(+1000	.17	-1377.	.65	-154.	
RESIDUAL/(-100	19	1393.	-56.	160.	
	•03	-73.	-1:	-12.	
NON-PROP. MASS/(-100 LB)	03	73.		14.	
PITCH THRUST MIS. / (+DEG)	•24	10233.	-764.	-109.	
PITCH THRUST MIS./(-DE6)	• 10	-10519.	713.	-46.	
YAW THRUST MIS./ (+DEG)	• 14	3601.	-295.	-65-	
THRUST N	•29	-4043	230.	-133.	
	00•	-25.		•0-	(
ROLL THRUST	00.	23•	-2.	• o l	TO O
OFFSET/(03	141.	-10.	7.	RI F
YCG UFFSE1/(01 M)	.01	-145	•6	٠٤.	G! P
)	• 01	-369	54.	• • • •	00
3	0u•	363.	-52.	• 1	(A
S-IVB NPM (+100 LB)	.21	592.	-87.	\$	L R
S-IVB NPM (-100 LR)	21	-593.	88.	• S.	Q
	8J•	1463.	-120.	-3/.	U
PITC	£0	-1508.	112.	14.	G A
S-IVB YAW TH PIS/(+DEG)	10.	539.	-45.	-3.	E
S-IVG YAW TH MIS/(-DEG)	•0•	-289	34.	-21.	T
YCG OFFSET/(+.01	00	57.	•0-	1.	S
YCG OFFSET/(01	00.	-29	01		
2CG OFFSET/(+.01	00	-161.	1.3.	۶.	
	1 0.	159.	-13.	•?•;	
LOAD MASS/ (+	60.4	11632.	-1712.	11.5.	
S-IVE LOX LOAU MASS/(-	E: - +-	-11515.	1698.	: 19 c	
LOAL	۲,	2346.	-342.	1.7.	
1 S-IVO THE LOAL MASS/(- *)	5.79	-5543.	333.	-17.	

^{1) 12 - 1 1 1 1 1}

रेक्ट हैंट _{मियी}

ŧ

^{2) 15 = 72} F unde

^{·.} · ::

ASTP (SA-210) L/V OPERATIONAL FLIGHT TRAJECTORY DISPERSION ANALYSIS LARGE GUIDANCE PLATFORM AZIMUTH MISALIGNMENT EFFECTS AT ORBIT INSERTION

Parameter/Azimuth Visalignment Flight Time (Orbit Insertion):	(sec)	40.500	+0.25°	00 (Nominal) 594.066	-0,250	0.010
Rading	(E)	-1 55.	-232.	6528178.	231.	461.
Altitude:	(m)	-424.	-211.	158604.	210.	419.
Fixed	(m/s)	-1.78	0.0-	7818,46	0.88	1.78
Fixed Flight	(deg)	0.019	0.00	90.001	600.0-	-0.018
	(deg)	-0.534	-0.267	53,043	0.266	0.532
Earth Fixed Flight Azimuth:	(gિp)	-0.551	-0.276	51.356	0.275	0.550
Geocentric Declination:	(deg)	0.113	0.057	39.264	-0.057	-0.114
	(deg)	0.114	0.057	39,453	-0.057	-0.115
Longitude (Positive East):	(deg)	-0.114	-0.057	-65,329	0.056	0.112
Inclination:	(deg)	0.390	0.195	51.780	-0.194	-0.389
Descending Node Argument:	(deg)	0.363	0.182	157.775	-0.183	-0.366
Inertial Range Angle:	(deg)	-0.017	600.0-	18.279	0.008	0.017
Weight:	(1b)	-7.	-2.	68340.	-1.	-5.
Space Fixed Position & Velocity Components	Component	σį				
Xs:	(m)	201.	100.	6202530.	-66-	-199.
Ys:	(B)	-16282.	-8144.	37898.	8150.	16304.
.82	(a)	-1867.	-914.	2035756.	875.	1714.
:•	(m/s)	0.57	0.31	-2422.78	-0.30	09.0-
:8:	(m/s)	-62,46	-31,24	-754.38	31,26	62.53
28:	(m/s)	-8,33	-4.10	7395.23	3.96	7.79
Osculating Conic Parameters						
* Perigee Altitude:	(m)	-1032.	-356.	149964.	232.	285.
* Apogee Altitude:	(m)	-6786.	-3580.	164932.	3655.	7527.
Eccentricity:		-0,000440	-0.000246	0.001145	0.000261	0.000553
Semi-Major Axis:	(E)	- 3909 -	-1968.	6535613.	1943.	3906.
True Anomaly:	(gap)	-28,723	-10.736	358,953	6.770	11,285
Period:	(sec)	-4.72	-2.37	5258,22	2.35	4.71

* Referenced to Equatorial Radius (6378.165 km).

TABLE 14

the second secon

ASTP (FA-210) LAUNCH VEHICLE OPER/TIOMAL FLIGHT TRAJECIORY DISPERSION AMALYSTS S-IVB STACE FLIGHT PEMENANT MESRAF

医水杨烷酚 化硫磺胺 化二氯化甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲	计设备设备 医水杨素 医水杨素 医二甲甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	**************************************	**************************************	在中央中央中央市场中央中央市场中央市场中央市场市场市场市场市场市场市场市场市场市场	2.全分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分
ITER	TOLFRANCE	CFOLIDED	PEOLITEE .		
	,	(FBS)	(LBS)	(ALOX REGUIRED/TOL)	(ALH2 REQUIRED/TOL)
· · · · · · · · · · · · · · · · · · ·	· 安全的 · · · · · · · · · · · · · · · · · · ·	********	*********	*****	***
5-18 STAGE:					•
JON-PROPELLANT MASS	+310LBS	30	•	.10 LR/LB	.02 LB/LB
NON-PROPELLANT MASS	Ñ	-31	9	_	02 LB/LB
	+0.62 DEG. PITCH	56	12	_	_
THRUST MISALIGNMENT	DEG.	25	S	_	8.06 LA/0FG
	DEG.	. F.	^	_	_
	DEG	84	14	_	10.00 / 10.00 10.00 - 47.00
THEIST MICAL TOWNENT	i i	9	;		7 -
	9 0	> (5 6		
	-0.62 DEG. MOLL	Э,	>		
FORCE	MAXIXCX	378	80	NOT APPLICABLE	NOT APPLICABLE
FORCE COEFFICIENT	これではない。	-362	- 76	NOT APPLICABLE	NOT APPLICABLE
OF GRAVITY	+0*02 ₩	ş	7	-1.00 LB/.01 M	20 LB/.01 M
-YGG-CENTER OF GRAVITY OFFSET	-0.05 ₩	2	m	2.40 LB/.03 M	M 10-/81 09
OF GRAVITY	+0.05 M	11	N	2.20 LB/.01 M	9
OF GRAVITY	#0°08 #	ι, L	7	-1.00 LA/.01 M	2
	(3 SIGMA/MAXIMUM) ANNUAL	215	S.	APPL 1	NOT APPLICABLE
TAILEIND	STEMA ANNUAL	45.0	-97	APPL I CARI	
RIGHT CROSSWIND			. 3	ADDITOR	
LEFT CROSSWIND	STEMA		· 3		_
		• = = = = = = = = = = = = = = = = = = =	- 0		-
ATROCOLORS		7 t	- 20		
		7	3 .		
-		9.	.		
	SURFACE	.	- 1	NOT APPLICABLE	
	SURFACE	114	\$		
	3	-60	-13	NOT APPLICABLE	NOT APPLICABLE
MASS	+0.45 % (2844 LBS)	-219	95-	n8 LE/LB	02 LB/LB
	ų	3112	† 0	. n8 LP/LB	.02 LB/LR
	¥	165	35		
KF1 MASS	(1675 LE	-147	-31	-	_
ANL FLOW KATE	+1.5 %	-273	-58	-192.00 LB/%	-38.67 LB/K
RATE	-1.5%	339	72	226.00 LB/%	00
ļω	+1,95 SEC 1SP	-351	-7		-37.95 LB/SFC
	-1.95 SEC 1SP	341	72	174.87 LE/SEC	
	(+2800	352	74		_
ELGINE MIXTURE RATIO	MIN RESIDUAL (-1550 LRS)	-205	14.		_
DECAY)		100 B	Ω.	^
H-1 ENGINE THILUST DECAY	13 C1 SMA	· •	, M)	APPL TO ABI	
S-IVE STAGE:		•	•		
NCN-PROPELLANT MASS	+200 LBS	157	33	.78 LF/LE	.16 LB/LB
INCIN-PHOPELLAI, T MASS		-157	_33		_
THRUST MISALIGNMENT	DEG.	92	æ		_
THRUST MISALIGNMENT	-1.24 DEG. PITCH	-12	7		.42 LB/0F

TABLE 14 (CONT'D)

The second secon

the entropy of the second of the entropy of the ent

ASTP (SA-210) LAUNCH VEHICLE CPER/FICHAL FLIGHT TO TOTORY OFFERSION ANALYSTS S-IVB STAGE FLIGHT PENFORMANCE OF RVF

经有处理中的现在分词 计设计分别 医多种性性 医多种性 医多种性 医多种性 医多种性 医多种种			******		· · · · · · · · · · · · · · · · · · ·
		ALOX	ALH2	ALOX REGUIRED	_
ITEM	TOLERANCE	PEGUIRED	REGUIRED	TRADE-OFF FACTOR	TRADE-OFF FACTOR
		(188)	(FBZ)	(ALOX RFGUIRED/TOL)	(ALHZ REQUIRED/TOL)
· 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	等级表现的表示是是有关的现在分词 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	***	***	化二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	. •
LIXEN BIVALIONATION	*1.44 UPG. 1AM	n	-1	570/84 2442	•
THRUST MISALIGNMENT	-1.24 DEG. YAW	21	\$	16.94 LP/DEG	3,23 LB/DE6
+YCG CENTER OF GRAVITY OFFSET	+0.05 X	7	0	40 LB/.01 M	_
		7		1.40 LE/.01 M	
GRAVITY		6	2		40 LB/.01 M
GRAVITY		4.	ю	2.80 LB/.01 M	.60 LB/.01 M
>		0	0	NOT APPLICABLE	NOT APPLICABLE
J-2 ENGINE THRUST DECAY	-3 SIGMA	0	0	NOT APPLICABLE	NOT APPLICABLE
PROPULSION CASE 1	3 SIGMA	-21	-311	N.T. APPLICAPIE	
PROPULSION CASE 2	J SIGNA	61	324	NOT APPLICABLE	•
PROPULSION CASE 3	O STORA	-547	ŧ	_	
	3 SIGNA	9ac	7	NOT APPLICABLE	NOT APPLICABLE
	J STORY	924-	418	NOT APPLICABLE	_
	3 SIGNA	426	-408	_	NOT APPLICABLE
	S SIGHA	99	-151	-	_
	A SISA	e.	155	NOT APPLICABLE	NOT APPLICABLE
LOX MASS	*	-261	211	21 LB/LB	.17 LB/LB
LOX MASS		275	-208	.22 LR/LB	17 LB/LB
LF2 MASS	+0.9f2 % (349 LBS)	240	≎6₹-	9747 08°	83 LB/LB
LF2 MASS	-0,902 % (349 LRS)	-270	262	77 L"/LB	.64 LB/LB
REQUIRED FLIGHT PERFORMANCE RESERVE (3 SIGMA)	ESERVE (3 SIGMA)			4	
THE POST INTELLAND PROPERTY OF VITALIONS	TOTAL TOTAL TOTAL	7/11)))		