Konditionale untere Schranken basierend auf SAT Seminar Satisfiability

Alexander Kulpe

Ruhr-Universität Bochum

2023-07-05

Inhaltsverzeichnis

Motivation

Konsequenzen aus ETH für harte Probleme

Konsequenzen aus SETH für einfache Probleme

Superlineare untere Schranken basierend auf SAT

Resümee

Inhaltsverzeichnis

Motivation

Konsequenzen aus ETH für harte Probleme

Konsequenzen aus SETH für einfache Probleme

Superlineare untere Schranken basierend auf SAT

Resüme

Beispiel

Problem: REPATTERNMATCHING (REPM)

- ullet Gegeben: Regulärer Ausdruck R der Länge n und einen Textstring T der Länge m
- Frage: Matcht ein Teilstring von T mit R
- Der beste bekannte Algorithmus hat Laufzeit $\mathcal{O}(nm)$

Beispiel

Problem: REPATTERNMATCHING (REPM)

- ullet Gegeben: Regulärer Ausdruck R der Länge n und einen Textstring T der Länge m
- Frage: Matcht ein Teilstring von T mit R
- Der beste bekannte Algorithmus hat Laufzeit $\mathcal{O}(nm)$
- Offene Frage: Kann das verbessert werden?
- Genauer: Kann REPM in Zeit $\tilde{\mathcal{O}}((nm)^{1-\varepsilon})$ für $\varepsilon > 0$ gelöst werden?
- Notation: $f(n) \in \tilde{\mathcal{O}}(g(n))$, wenn es eine Konstante c gibt mit $f(n) \in \mathcal{O}(g(n)(\log n)^c)$

Beispiel

Problem: REPATTERNMATCHING (REPM)

- ullet Gegeben: Regulärer Ausdruck R der Länge n und einen Textstring T der Länge m
- Frage: Matcht ein Teilstring von T mit R
- Der beste bekannte Algorithmus hat Laufzeit $\mathcal{O}(nm)$
- Offene Frage: Kann das verbessert werden?
- Genauer: Kann REPM in Zeit $\tilde{\mathcal{O}}((nm)^{1-\varepsilon})$ für $\varepsilon > 0$ gelöst werden?
- Notation: $f(n) \in \tilde{\mathcal{O}}(g(n))$, wenn es eine Konstante c gibt mit $f(n) \in \mathcal{O}(g(n)(\log n)^c)$
- Wir werden sehen: Bessere Laufzeit ist unwahrscheinlich

Einleitung

- Wir haben viele NP-schwierige Probleme kennengelernt
- Untere Schranken werden hierdurch nicht impliziert
- Was können wir also über untere Schranken lernen?
 - P \neq NP impliziert untere Schranke $n^{\omega(1)}$
 - Frage: Was können wir aus stärkeren Annahmen für NP-schwierige Probleme lernen?

Einleitung

- Wir haben viele NP-schwierige Probleme kennengelernt
- Untere Schranken werden hierdurch nicht impliziert
- Was können wir also über untere Schranken lernen?
 - P \neq NP impliziert untere Schranke $n^{\omega(1)}$
 - Frage: Was können wir aus stärkeren Annahmen für NP-schwierige Probleme lernen?
 Was können wir für leichtere Probleme lernen?

Wiederholung

k-SAT

- geg: Aussagenlogische Formel φ in KNF mit n Variablen, m Klauseln, $\leq k$ Literalen pro Klauseln
- Frage: Gibt es eine erfüllende Belegung für φ ?
- Wie schnell kann k-SAT gelöst werden?

Wiederholung

k-SAT

- geg: Aussagenlogische Formel φ in KNF mit n Variablen, m Klauseln, $\leq k$ Literalen pro Klauseln
- Frage: Gibt es eine erfüllende Belegung für φ ?
- Wie schnell kann k-SAT gelöst werden?
- Notation: $f(n) \in \hat{\mathcal{O}}(g(n)) \Leftrightarrow$ wenn es ein Polynom p(n) gibt mit

$$f(n) \in \mathcal{O}(g(n)p(n))$$

• Beste bekannte Algorithmen:

- 3-SAT kann in Zeit $\hat{\mathcal{O}}(1.3^n)$ gelöst werden (Makino, Tamaki, Yamamoto 2013)
- k-SAT kann in Zeit $\hat{\mathcal{O}}(2^{(1-c_k)n})$ gelöst werden, mit $c_k = \Theta\left(\frac{1}{k}\right)$

Exponentialzeithypothesen

Exponentialzeithypothese (ETH)

Es gibt ein $\varepsilon > 0$, s.d. 3-SAT nicht in $\hat{\mathcal{O}}(2^{\varepsilon n})$ gelöst werden kann

"Es gibt keine Algorithmen, die $3\text{-}\mathrm{SAT}$ in subexponentieller Laufzeit lösen"

Exponentialzeithypothesen

Exponentialzeithypothese (ETH)

Es gibt ein $\varepsilon > 0$, s.d. 3-SAT nicht in $\hat{\mathcal{O}}(2^{\varepsilon n})$ gelöst werden kann

"Es gibt keine Algorithmen, die $3\text{-}\mathrm{SAT}$ in subexponentieller Laufzeit lösen"

Starke Exponentialzeithypothese (SETH)

Für jedes $\varepsilon > 0$, gibt es ein k, s.d. k-SAT nicht in Zeit $\hat{\mathcal{O}}(2^{(1-\varepsilon)n})$ gelöst werden kann

"Es gibt keine effizienteren Algorithmen für $k ext{-SAT}$ als Brute-Force"

Exponentialzeithypothesen

Exponentialzeithypothese (ETH)

Es gibt ein $\varepsilon > 0$, s.d. 3-SAT nicht in $\hat{\mathcal{O}}(2^{\varepsilon n})$ gelöst werden kann

"Es gibt keine Algorithmen, die $3\text{-}\mathrm{SAT}$ in subexponentieller Laufzeit lösen"

Starke Exponentialzeithypothese (SETH)

Für jedes $\varepsilon>0$, gibt es ein k, s.d. $k ext{-SAT}$ nicht in Zeit $\hat{\mathcal{O}}(2^{(1-\varepsilon)n})$ gelöst werden kann

"Es gibt keine effizienteren Algorithmen für $k ext{-SAT}$ als Brute-Force"

- ETH impliziert $P \neq NP$
- SETH impliziert ETH

Inhaltsverzeichnis

Motivation

Konsequenzen aus ETH für harte Probleme

Konsequenzen aus SETH für einfache Probleme

Superlineare untere Schranken basierend auf SAT

Resüme

• 3-SAT ist NP-vollständiges Problem

- 3-SAT ist NP-vollständiges Problem
- Frage: Hat ETH auch Auswirkungen auf andere NP-vollständige Probleme?

- 3-SAT ist NP-vollständiges Problem
- Frage: Hat ETH auch Auswirkungen auf andere NP-vollständige Probleme?
- \Rightarrow Wir schauen uns Reduktionen von 3-SAT auf andere NP-vollständige Probleme an. Hier: Zwei Graphenprobleme

- 3-SAT ist NP-vollständiges Problem
- Frage: Hat ETH auch Auswirkungen auf andere NP-vollständige Probleme?
- ⇒ Wir schauen uns Reduktionen von 3-SAT auf andere NP-vollständige Probleme an. Hier: Zwei Graphenprobleme

DOMINATINGSET

- **Geg:** Ungerichteter Graph G = (V, E) und natürliche Zahl k
- Frage: Gibt es eine Knotenmenge $U \subseteq V, |U| = k$ s.d. für alle $v \in V \setminus U$ ein Knoten $u \in U$ existiert mit $(u, v) \in E$
- ullet "Jeder Knoten des Graphen ist selbst in U oder durch eine Kante mit einem Knoten aus Uverbunden"

- 3-SAT ist NP-vollständiges Problem
- Frage: Hat ETH auch Auswirkungen auf andere NP-vollständige Probleme?
- ⇒ Wir schauen uns Reduktionen von 3-SAT auf andere NP-vollständige Probleme an. Hier: Zwei Graphenprobleme

DOMINATINGSET

- **Geg:** Ungerichteter Graph G = (V, E) und natürliche Zahl k
- Frage: Gibt es eine Knotenmenge $U \subseteq V, |U| = k$ s.d. für alle $v \in V \setminus U$ ein Knoten $u \in U$ existiert mit $(u, v) \in E$
- ullet "Jeder Knoten des Graphen ist selbst in U oder durch eine Kante mit einem Knoten aus Uverbunden"

INDEPENDENTSET

- **Geg:** Ungerichteter Graph G = (V, E) und eine natürliche Zahl k
- Frage: Gibt es eine Knotenmenge $U \subseteq V, |U| = k$ s.d. für $v_1, v_2 \in U$ gilt, dass $(v_1, v_2) \notin E$.
- "Zwischen den Knoten aus U gibt es keine Kanten"

Reduktion 3-SAT zu DOMINATINGSET

 \bullet Sei φ 3-KNF mit N Variablen und M Klauseln

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten

Beispiel

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - ullet Für jede Klausel C_j füge Knoten C_j hinzu

Reduktion 3-SAT zu DOMINATINGSET

- ullet Sei arphi 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - ullet Für jede Klausel C_j füge Knoten C_j hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_j genau dann wenn C_j das Literal ℓ enthält

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - ullet Für jede Klausel C_j füge Knoten C_j hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_j genau dann wenn C_j das Literal ℓ enthält
 - Setze k auf N

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - ullet Für jede Klausel C_j füge Knoten C_j hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_j genau dann wenn C_j das Literal ℓ enthält
 - Setze k auf N
- G_{φ} hat 3N + M Knoten

Beispiel

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{φ} hat 3N + M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$(d_1)$$

$$(d_2)$$

$$(d_3)$$

$$(x_1)$$

$$(C_1)$$

$$(C_2)$$

Satz

 G_{arphi} besitzt ein DominatingSet der Größe N genau dann wenn arphi ist erfüllbar

Reduktion 3-SAT zu DominatingSet

- ullet Sei arphi 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{φ} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{φ} hat 3N + M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$d_1$$

$$d_2$$

$$x_1$$

$$\overline{x_1}$$

$$x_2$$

$$\overline{x_2}$$

$$x_3$$

$$\overline{x_3}$$

Satz

 G_{arphi} besitzt ein DominatingSet der Größe N genau dann wenn arphi ist erfüllbar

Beweis.

 \leftarrow

• Angenommen es existiert eine erfüllende Belegung für φ

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$d_1$$

$$d_2$$

$$x_1$$

$$\overline{x_1}$$

$$x_2$$

$$\overline{x_2}$$

$$x_3$$

$$\overline{x_3}$$

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen es existiert eine erfüllende Belegung für φ
- Sei S die Menge der Literalknoten ℓ , s.d. ℓ unter dieser Belegung wahr ist
- S enthält genau einen der Knoten $x_i, \overline{x_i}$. Es gilt |S| = N

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen es existiert eine erfüllende Belegung für φ
- Sei S die Menge der Literalknoten ℓ , s.d. ℓ unter dieser Belegung wahr ist
- S enthält genau einen der Knoten $x_i, \overline{x_i}$. Es gilt |S| = N
- Für jede Variable x_i : Die Knoten $x_i, \overline{x_i}, d_i$ sind dominiert

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen es existiert eine erfüllende Belegung für φ
- Sei S die Menge der Literalknoten ℓ , s.d. ℓ unter dieser Belegung wahr ist
- S enthält genau einen der Knoten $x_i, \overline{x_i}$. Es gilt |S| = N
- Für jede Variable x_i : Die Knoten $x_i, \overline{x_i}, d_i$ sind dominiert
- Jeder Klauselknoten C_i ist dominiert

Reduktion 3-SAT Zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{φ} hat 3N + M Knoten

Beispiel $\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$ d_3 x_1 x_2 x_3 $\overline{x_3}$ $\overline{x_1}$ $\overline{x_2}$ C_1

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

Beweis.

• Angenommen, S sei ein DominatingSet von G_{ω} der Größe N

Reduktion 3-SAT Zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$d_1$$

$$d_2$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_3$$

$$C_1$$

$$C_2$$

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen, S sei ein DominatingSet von G_{ω} der Größe N
- Um alle Literalknoten $x_i \overline{x_i}, d_i$ zu dominieren, muss S genau einen dieser Knoten enthalten

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$d_1$$

$$d_2$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_3$$

$$C_1$$

$$C_2$$

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen, S sei ein DominatingSet von G_{ω} der Größe N
- Um alle Literalknoten $x_i \overline{x_i}, d_i$ zu dominieren, muss S genau einen dieser Knoten enthalten
- Definiere $\varphi : x_i$ ist TRUE genau dann wenn $x_i \in S$ gilt.

Reduktion 3-SAT zu DOMINATINGSET

- Sei φ 3-KNF mit N Variablen und M Klauseln
- Wir konstruieren G_{ω} wie folgt:
 - Für jede Variable x_i konstruiere Dreieck mit Literalknoten $x_i, \overline{x_i}$ und Dummyknoten d_i als Knoten
 - Für jede Klausel C_i füge Knoten C_i hinzu
 - Verbinde Literalknoten ℓ mit Klauselknoten C_i genau dann wenn C_i das Literal ℓ enthält
 - Setze k auf N
- G_{ω} hat 3N+M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$(d_1)$$

$$(d_2)$$

$$(d_3)$$

$$(x_1)$$

$$(C_1)$$

$$(C_2)$$

Satz

 G_{φ} besitzt ein DominatingSet der Größe N genau dann wenn *φ* ist erfüllbar

- Angenommen, S sei ein DominatingSet von G_{ω} der Größe N
- Um alle Literalknoten $x_i \overline{x_i}, d_i$ zu dominieren, muss S genau einen dieser Knoten enthalten
- Definiere $\varphi : x_i$ ist TRUE genau dann wenn $x_i \in S$ gilt.
- Da jeder Klauselknoten C_i durch einen Literalknoten $\ell \in S$ dominiert wird, muss C_i per Konstruktion erfüllt sein

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

• Annahme: DominatingSet ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DOMINATINGSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DOMINATINGSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln (N < 3M)

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DOMINATINGSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln (N < 3M)
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3N+M)})$ überprüft werden

Problem

- ETH macht nur eine Aussage über die Anzahl der Variablen N, nicht über die Anzahl der Klauseln M
- Gilt ETH auch f
 ür M?
- ⇒ Sparsification Lemma

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\hat{\mathcal{O}}(2^{\varepsilon n})$ zu einer Disjunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\mathcal{O}(2^{\varepsilon n})$ zu einer Disjunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

Beispiel

• $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_5) \land (x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_5) \land (x_3 \lor x_4)$

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\mathcal{O}(2^{\varepsilon n})$ zu einer Disjunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

- $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_1 \vee \neg x_2 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_5) \wedge (x_3 \vee x_4)$
- Die Literale x_1 und $\neg x_2$ treten zusammen in drei Klauseln auf

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\mathcal{O}(2^{\varepsilon n})$ zu einer Disiunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

- $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_1 \vee \neg x_2 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_5) \wedge (x_3 \vee x_4)$
- Die Literale x_1 und $\neg x_2$ treten zusammen in drei Klauseln auf
- Idee: Erstelle φ_1 und φ_2 nach Fallunterscheidung, ob

```
\varphi_1: x_1 \vee \neg x_2 wahr ist,
\varphi_2: x_1 \vee \neg x_2 falsch ist
```

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\mathcal{O}(2^{\varepsilon n})$ zu einer Disiunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

- $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_1 \vee \neg x_2 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_5) \wedge (x_3 \vee x_4)$
- Die Literale x_1 und $\neg x_2$ treten zusammen in drei Klauseln auf
- Idee: Erstelle φ_1 und φ_2 nach Fallunterscheidung, ob
 - φ_1 : $x_1 \vee \neg x_2$ wahr ist, φ_2 : $x_1 \vee \neg x_2$ falsch ist
- $\varphi_1 = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_3 \vee x_4)$
- $\varphi_2 = x_3 \land (\neg x_1 \lor x_3 \lor x_5) \land x_4 \land (x_3 \lor \neg x_5) \land (x_3 \lor x_4)$

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\mathcal{O}(2^{\varepsilon n})$ zu einer Disiunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

- $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_1 \vee \neg x_2 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_5) \wedge (x_3 \vee x_4)$
- Die Literale x_1 und $\neg x_2$ treten zusammen in drei Klauseln auf
- Idee: Erstelle φ_1 und φ_2 nach Fallunterscheidung, ob
 - φ_1 : $x_1 \vee \neg x_2$ wahr ist, φ_2 : $x_1 \vee \neg x_2$ falsch ist
- $\varphi_1 = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_3 \vee x_4)$
- $\varphi_2 = x_3 \land (\neg x_1 \lor x_3 \lor x_5) \land x_4 \land (x_3 \lor \neg x_5) \land (x_3 \lor x_4)$
- Die wiederholte Anwendungen "verdünnt" φ und wir erhalten $\varphi_1, \ldots, \varphi_t$

Lemma (Sparsification Lemma)

- Seien $k, \varepsilon > 0$ und sei $C = C(k, \varepsilon)$ eine Konstante. Jede k-KNF-Formel φ kann in Zeit $\hat{\mathcal{O}}(2^{\varepsilon n})$ zu einer Disiunktion $\varphi_1 \vee \cdots \vee \varphi_t$ umgeformt werden, s.d.
 - (1) $t < 2^{\varepsilon n}$
 - (2) φ erfüllbar \Leftrightarrow eine der Formeln $\varphi_1, \ldots, \varphi_t$ Erfüllbarkeit
 - (3) In $\varphi_1, \ldots, \varphi_t$ kommt jede Variable höchstens in C Klauseln vor

Beispiel

- $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_1 \vee \neg x_2 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_5) \wedge (x_3 \vee x_4)$
- Die Literale x_1 und $\neg x_2$ treten zusammen in drei Klauseln auf
- Idee: Erstelle φ_1 und φ_2 nach Fallunterscheidung, ob
 - φ_1 : $x_1 \vee \neg x_2$ wahr ist,
 - φ_2 : $x_1 \vee \neg x_2$ falsch ist
- $\varphi_1 = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3 \vee x_5) \wedge (x_3 \vee x_4)$
- $\varphi_2 = x_3 \land (\neg x_1 \lor x_3 \lor x_5) \land x_4 \land (x_3 \lor \neg x_5) \land (x_3 \lor x_4)$
- Die wiederholte Anwendungen "verdünnt" φ und wir erhalten $\varphi_1, \ldots, \varphi_t$

Folgerung

Falls ETH gilt, gibt es ein s > 0, s.d. 3-SAT nicht in Zeit $O(2^{sm})$ entschieden werden kann

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DominatingSet ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln $(N \leq 3M)$
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3N+M)})$ überprüft werden

Problem

- ETH macht nur eine Aussage über die Anzahl der Variablen N, nicht über die Anzahl der Klauseln M
- Gilt ETH auch für M?
- → Sparsification Lemma

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DominatingSet ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln ($N \leq 3M$)
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3N+M)})$ überprüft werden

Kein Problem mehr

• ETH macht eine Aussage über die Anzahl der Variablen N und über die Anzahl der Klauseln M

Satz

Falls ETH gilt, dann lässt sich DominatingSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: DominatingSet ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- Die Reduktion von 3-SAT auf DominatingSet bildet eine Formel φ mit NVariablen und M Klauseln auf einen Graphen mit 3N + M Knoten ab.
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln $(N \leq 3M)$
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3N+M)})$ überprüft werden
- $\Rightarrow \varphi$ kann in Zeit $\hat{\mathcal{O}}(2^{o(M)})$ auf Erfüllbarkeit getestet werden &

Kein Problem mehr

• ETH macht eine Aussage über die Anzahl der Variablen N und über die Anzahl der Klauseln M

Reduktion 3-SAT zu INDEPENDENTSET

• Sei φ 3-KNF mit N Variablen und M Knoten

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{ω} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1$$

$$x_3$$

$$x_2$$

$$x_3$$

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1$$

$$x_3$$

$$x_2$$

$$x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Reduktion 3-SAT zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1 \overline{x_1} \overline{x_1}$$

$$x_3 \overline{x_2} \overline{x_2} \overline{x_3}$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis.

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis

 \Leftarrow

 Angenommen es existiert eine erfüllende Belegung für φ

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_3$$

$$x_4$$

$$x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis.

- Angenommen es existiert eine erfüllende Belegung für φ
- Wähle aus iedem Dreieck einen Knoten. dessen Literal unter dieser Belegung wahr ist
- Dies ist ein IndependentSet der Größe M

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1 \qquad \qquad x_2 \qquad \qquad x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis

• Angenommen S sei ein IndependentSet von G_{φ} der Größe M.

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1 \qquad \qquad x_2 \qquad \qquad x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis.

- Angenommen S sei ein IndependentSet von G_{ω} der Größe M.
- S muss aus ieder Klausel genau einen Knoten enthalten
- S kann keine konfligierende Knoten enthalten

Reduktion 3-SAT Zu INDEPENDENTSET

- Sei φ 3-KNF mit N Variablen und M Knoten
- Wir konstruieren G_{φ} wie folgt:
 - Für jedes Literal ℓ in einer Klausel füge einen Knoten ℓ hinzu
 - Verbinde die drei Literale in einer Klausel zu einem Dreieck
 - Verbinde jedes Literal x_i mit jedem Literal $\overline{x_i}$
 - Setze k auf M
- G_{ω} hat 3M Knoten

Beispiel

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$x_1$$

$$x_3$$

$$x_2$$

$$x_3$$

Satz

 G_{φ} bestitze ein IndependentSet der Größe Mgenau dann wenn φ erfüllbar ist

Beweis.

- Angenommen S sei ein IndependentSet von G_{ω} der Größe M.
- S muss aus ieder Klausel genau einen Knoten enthalten
- S kann keine konfligierende Knoten enthalten
- Wähle Belegung, die Literale in S wahr macht

Satz

Falls ETH gilt, dann lässt sich Independent Set nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Satz

Falls ETH gilt, dann lässt sich IndependentSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

• Annahme: INDEPENDENTSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar

Satz

Falls ETH gilt, dann lässt sich IndependentSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: INDEPENDENTSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- ullet Die Reduktion von 3-SAT auf INDEPENDENTSET bildet eine Formel arphi mit N Variablen und MKlauseln auf einen Graphen mit 3M Knoten ab
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln ($N \leq 3M$)

ETH und IndependentSet III

Satz

Falls ETH gilt. dann lässt sich IndependentSet nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: INDEPENDENTSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- ullet Die Reduktion von 3-SAT auf INDEPENDENTSET bildet eine Formel arphi mit N Variablen und MKlauseln auf einen Graphen mit 3M Knoten ab
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln ($N \leq 3M$)
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3M)})$ überprüft werden
- $\Rightarrow \varphi$ kann in Zeit $\hat{\mathcal{O}}(2^{o(M)})$ gelöst werden f

ETH und IndependentSet III

Satz

Falls ETH gilt, dann lässt sich Independent Set nicht in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösen

Beweisskizze

Beweis durch Widerspruch

- Annahme: INDEPENDENTSET ist in Zeit $\hat{\mathcal{O}}(2^{o(n)})$ lösbar
- ullet Die Reduktion von 3-SAT auf INDEPENDENTSET bildet eine Formel arphi mit N Variablen und MKlauseln auf einen Graphen mit 3M Knoten ab
- Sei nun φ eine 3-KNF-Formel mit N Variablen und M Klauseln ($N \leq 3M$)
- Nach Annahme kann der aus φ entstehende Graph in Zeit $\hat{\mathcal{O}}(2^{o(3M)})$ überprüft werden
- $\Rightarrow \varphi$ kann in Zeit $\hat{\mathcal{O}}(2^{o(M)})$ gelöst werden 4

Übungsaufgabe

Finde und beweise ähnliche Aussagen für VERTEXCOVER, CLIQUE, HAMILTONIANCYCLE, TSP, 3-Colorability. ...

Inhaltsverzeichnis

Konsequenzen aus SETH für einfache Probleme

Interessante Probleme und Vermutungen

3-SUM

- Geg: Menge $M \subset \{-n^3, \dots, n^3\}$ von ganzen Zahlen der Größe n
- Frage: Existieren drei paarweise verschiedene Elemente $a, b, c \in M$, s.d. a+b=c?

ALL-PAIRS-SHORTEST-PATH (APSP)

- **Geg:** Graph G = (V, E) mit ganzzahlen Kantengewichten
- Aufgabe: Bestimme die Distanzen zwischen iedem Knotenpaar

ORTHOGONALVECTORS (OV)

- **Geg:** Zwei Mengen *A*, *B* von n Vektoren aus $\{0,1\}^d$
- Frage: Gibt es $a = (a_1, \ldots, a_d) \in A$ und $b \in (b_1, \ldots, b_d) \in B$, s.d. $\sum_{i} a_i \cdot b_i = 0?$

Interessante Probleme und Vermutungen

3-SUM

- **Geg:** Menge $M \subset \{-n^3, \ldots, n^3\}$ von ganzen Zahlen der Größe n
- Frage: Existieren drei paarweise verschiedene Elemente $a, b, c \in M$, s.d. a+b=c?
- Algorithmus mit Laufzeit $\tilde{\mathcal{O}}(n^2)$:
 - Sortiere M
 - Pr

 üfe f

 ür iedes Paar (a, b). ob die Summe a + b in der Liste vorkommt
- Vermutung: Es existiert kein Algorithmus, der 3-SUM in Zeit $\mathcal{O}(n^{2-\varepsilon})$ für ein $\varepsilon > 0$ löst

ALL-PAIRS-SHORTEST-PATH (APSP)

- **Geg:** Graph G = (V, E) mit ganzzahlen Kantengewichten
- Aufgabe: Bestimme die Distanzen zwischen iedem Knotenpaar

ORTHOGONAL VECTORS (OV)

- **Geg:** Zwei Mengen *A*, *B* von n Vektoren aus $\{0,1\}^d$
- Frage: Gibt es $a = (a_1, \ldots, a_d) \in A$ und $b \in (b_1, \ldots, b_d) \in B$, s.d. $\sum_{i} a_i \cdot b_i = 0?$

Interessante Probleme und Vermutungen

3-SUM

- **Geg:** Menge $M \subset \{-n^3, \ldots, n^3\}$ von ganzen Zahlen der Größe n
- Frage: Existieren drei paarweise verschiedene Elemente $a, b, c \in M$, s.d. a+b=c?
- Algorithmus mit Laufzeit $\tilde{\mathcal{O}}(n^2)$:
 - Sortiere M Pr

 üfe f

 ür iedes Paar (a, b).
 - ob die Summe a + b in der Liste vorkommt
- Vermutung: Es existiert kein Algorithmus, der 3-SUM in Zeit $\mathcal{O}(n^{2-\varepsilon})$ für ein $\varepsilon > 0$ löst

ALL-PAIRS-SHORTEST-PATH (APSP)

- **Geg:** Graph G = (V, E) mit ganzzahlen Kantengewichten
- Aufgabe: Bestimme die Distanzen zwischen iedem Knotenpaar

- Algorithmus mit Laufzeit $\mathcal{O}(n^3)$:
 - Floyd-Warshall
- Vermutung: Es existiert kein Algorithmus, der APSP in Zeit $\mathcal{O}(n^{3-\varepsilon})$ für ein $\varepsilon > 0$ löst

ORTHOGONAL VECTORS (OV)

- **Geg:** Zwei Mengen *A*, *B* von n Vektoren aus $\{0,1\}^d$
- Frage: Gibt es $a = (a_1, \ldots, a_d) \in A$ und $b \in (b_1, ..., b_d) \in B$, s.d. $\sum_i a_i \cdot b_i = 0$?

Interessante Probleme und Vermutungen

3-SUM

- **Geg:** Menge $M \subset \{-n^3, \dots, n^3\}$ von ganzen Zahlen der Größe n
- Frage: Existieren drei paarweise verschiedene Elemente $a,b,c\in M$, s.d. a+b=c?
- Algorithmus mit Laufzeit $\tilde{\mathcal{O}}(n^2)$:
 - Sortiere M
 Prüfe für iedes Paar (a, b).
 - ob die Summe a + b in der Liste vorkommt
- Vermutung: Es existiert kein Algorithmus, der 3-SUM in Zeit $\mathcal{O}(n^{2-\varepsilon})$ für ein $\varepsilon>0$ löst

ALL-PAIRS-SHORTEST-PATH (APSP)

- $\begin{tabular}{ll} \bf Geg: & {\bf Graph} \ G = (V,E) \ {\bf mit} \\ & {\bf ganzzahlen} \ {\bf Kantengewichten} \\ \end{tabular}$
- Aufgabe: Bestimme die Distanzen zwischen jedem Knotenpaar

- Algorithmus mit Laufzeit $\mathcal{O}(n^3)$:
 - Floyd-Warshall
- **Vermutung:** Es existiert kein Algorithmus, der APSP in Zeit $\mathcal{O}(n^{3-\varepsilon})$ für ein $\varepsilon>0$ löst

ORTHOGONAL VECTORS (OV)

 $\sum_{i} a_i \cdot b_i = 0?$

- **Geg:** Zwei Mengen A, B von n Vektoren aus $\{0, 1\}^d$
- Frage: Gibt es $a=(a_1,\ldots,a_d)\in A$ und $b\in(b_1,\ldots,b_d)\in B$, s.d.

- Algorithmus mit Laufzeit $\tilde{\mathcal{O}}(n^2d)$:
 - Naives Testen aller Kombinationen
- **Vermutung:** Es existiert kein Algorithmus, der OV in Zeit $\mathcal{O}(n^{2-\varepsilon})$ löst

• Frage: Wie können wir untere Schranken für andere Probleme finden?

- Frage: Wie können wir untere Schranken für andere Probleme finden?
- ⇒ Betrachte eine Reduktion der Art: "Wenn Problem A nicht schneller gelöst werden kann als in Zeit T_A , dann kann Problem B nicht schneller gelöst werden als in Zeit T_B "

- Frage: Wie können wir untere Schranken für andere Probleme finden?
- \Rightarrow Betrachte eine Reduktion der Art: "Wenn Problem A nicht schneller gelöst werden kann als in Zeit T_A , dann kann Problem B nicht schneller gelöst werden als in Zeit T_B "

Definition

Für Probleme A,B mit Zeitschranken T_A,T_B nennen wir einen Algorithmus, der aus Instanz x von A eine Instanz y von B berechnet, eine Feinkörnige Reduktion, Falls

- x JA-Instanz $\Leftrightarrow y$ JA-Instanz
- für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$, s.d. $T_B(|y|)^{1-\varepsilon} = \mathcal{O}(T_A(|x|)^{1-\delta})$
- Laufzeit der Reduktion beträgt $\mathcal{O}(T_A(|x|)^{1-\gamma})$ für ein $\gamma > 0$.

- Frage: Wie können wir untere Schranken für andere Probleme finden?
- ⇒ Betrachte eine Reduktion der Art: "Wenn Problem A nicht schneller gelöst werden kann als in Zeit T_A , dann kann Problem B nicht schneller gelöst werden als in Zeit T_B "

Definition

Für Probleme A, B mit Zeitschranken T_A, T_B nennen wir einen Algorithmus, der aus Instanz x von Aeine Instanz u von B berechnet, eine Feinkörnige Reduktion, Falls

- $x \text{ JA-Instanz} \Leftrightarrow y \text{ JA-Instanz}$
- für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$, s.d. $T_B(|y|)^{1-\varepsilon} = \mathcal{O}(T_A(|x|)^{1-\delta})$
- Laufzeit der Reduktion beträgt $\mathcal{O}(T_A(|x|)^{1-\gamma})$ für ein $\gamma > 0$.

Satz

- Sei (A, T_A) reduzierbar auf (B, T_B) und es existiert ein Algorithmus für B mit Laufzeit $\mathcal{O}(T_B(n)^{1-\varepsilon})$ für ein $\varepsilon > 0$
- Dann existiert ein $\delta > 0$ und ein Algorithmus für A mit Laufzeit $\mathcal{O}(T_A(n)^{1-\delta})$

Dreieck-Probleme

MATCHINGTRIANGLES

- **Geg:** Graph G = (V, E) mit Knotenfärbung $c: V \to \{1, \dots, n\}$ und natürliche Zahl k
- Frage: Gibt es ein Farbtripel $a, b, c \in \{1, \dots n\}$, s.d. mindestens k Dreiecke in G vorkommen mit Knotenfarben a, b, c?

Dreieck-Probleme

MATCHINGTRIANGLES

- **Geg:** Graph G = (V, E) mit Knotenfärbung $c: V \to \{1, \dots, n\}$ und natürliche Zahl k
- Frage: Gibt es ein Farbtripel $a, b, c \in \{1, \dots n\}$, s.d. mindestens k Dreiecke in G vorkommen mit Knotenfarben a, b, c?

TRIANGLECOLLECTIONS

- **Geg:** Graph G = (V, E) mit Knotenfärbung $c: V \to \{1, \ldots, n\}$
- Frage: Gibt es ein Farbtripel $a,b,c \in \{1,\ldots,n\}$ paarweise unterschiedlicher Farben. s.d. kein Dreieck in G mit Knotenfarben a, b, c existiert?

Dreieck-Probleme

MATCHINGTRIANGLES

- **Geg:** Graph G = (V, E) mit Knotenfärbung $c: V \to \{1, \dots, n\}$ und natürliche Zahl k
- Frage: Gibt es ein Farbtripel
 a, b, c ∈ {1,...n}, s.d. mindestens k Dreiecke
 in G vorkommen mit Knotenfarben a, b, c?

TRIANGLECOLLECTIONS

- **Geg:** Graph G = (V, E) mit Knotenfärbung $c: V \to \{1, \dots, n\}$
- Frage: Gibt es ein Farbtripel $a,b,c\in\{1,\ldots,n\}$ paarweise unterschiedlicher Farben, s.d. kein Dreieck in G mit Knotenfarben a,b,c existiert?

Beispiel

Farben:

Abbildung: G_1 und G_2

- $(G_1, 1) \in MatchingTriangles,$ $(G_1, 2) \in MatchingTriangles$
- $G_1 \in \text{TriangleCollections}$
- $(G_2, 1) \in MatchingTriangles,$ $(G_2, 2) \notin MatchingTriangles$
- $G_2 \notin \text{TriangleCollections}$

Übersicht Probleme

Übersicht Probleme

• Keine bekannten Reduktionen zwischen 3SUM, OV und APSP

Übersicht Probleme

- Keine bekannten Reduktionen zwischen 3SUM, OV und APSP
- Aber: Reduktionen von den drei Problemen zu MATCHING TRIANGLES und TRIANGLE COLLECTION sind bekannt
- MATCHING TRIANGLES und TRIANGLE COLLECTION sind in Zeit $\mathcal{O}(n^3)$ lösbar. Wenn ein Algorithmus mit Laufzeit $\mathcal{O}(n^{3-\varepsilon})$ existiert, dann sind alle drei Vermutungen und die SETH falsch

Satz

Wenn SETH gilt, gibt es kein $\varepsilon>0$ und c>0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

Beweisidee

 Wir konstruieren eine Reduktion von (SAT, $2^n m^{c_1}$) zu (OV, $n^2 d^{c_2}$)

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n. gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2
- Für jede partielle Wahrheitsbelegung $\alpha \in V_i$ erstelle einen Vektor $a_{\alpha} \in \{0,1\}^m$. Setze *i*-te Komponente auf 1 genau dann wenn die i-te Klausel nicht durch diese Wahrheitsbelegung erfüllt wird.

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2
- Für jede partielle Wahrheitsbelegung $\alpha \in V_i$ erstelle einen Vektor $a_{\alpha} \in \{0,1\}^m$. Setze *i*-te Komponente auf 1 genau dann wenn die i-te Klausel nicht durch diese Wahrheitsbelegung erfüllt wird.

- Erstelle Menge W_i , die aus diesen Vektoren besteht. Es gilt $|W_i| = 2^{n/2} =: N$
- Laufzeit Reduktion: $\mathcal{O}(ND)$

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

Beweisidee

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n. gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2
- Für jede partielle Wahrheitsbelegung $\alpha \in V_i$ erstelle einen Vektor $a_{\alpha} \in \{0,1\}^m$. Setze *i*-te Komponente auf 1 genau dann wenn die i-te Klausel nicht durch diese Wahrheitsbelegung erfüllt wird.

- Erstelle Menge W_i , die aus diesen Vektoren besteht. Es gilt $|W_i| = 2^{n/2} =: N$
- Laufzeit Reduktion: $\mathcal{O}(ND)$

- $\varphi = (x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge x_1$
- $V_1 = \{x_1\}, V_2 = \{x_2\}$
- $W_1 = \{(0,0,1,0), (1,1,0,1)\},\$ $W_2 = \{(0, 1, 0, 1), (1, 0, 1, 1)\}$
- $(0,0,1,0) \in W_1, (0,1,0,1) \in W_2$ orthogonal. $\{x_1 := \text{True}, x_2 := \text{False}\}\$ erfüllende Belegung

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

Beweisidee

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n. gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2
- Für jede partielle Wahrheitsbelegung $\alpha \in V_i$ erstelle einen Vektor $a_{\alpha} \in \{0,1\}^m$. Setze *i*-te Komponente auf 1 genau dann wenn die i-te Klausel nicht durch diese Wahrheitsbelegung erfüllt wird.

- Erstelle Menge W_i , die aus diesen Vektoren besteht. Es gilt $|W_i| = 2^{n/2} =: N$
- Laufzeit Reduktion: $\mathcal{O}(ND)$

- $\varphi = (x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge x_1$
- $V_1 = \{x_1\}, V_2 = \{x_2\}$
- $W_1 = \{(0,0,1,0), (1,1,0,1)\},\$ $W_2 = \{(0, 1, 0, 1), (1, 0, 1, 1)\}$
- $(0,0,1,0) \in W_1, (0,1,0,1) \in W_2$ orthogonal. $\{x_1 := \text{True}, x_2 := \text{False}\}\$ erfüllende Belegung
- **Beobachtung:** φ erfüllbar \Leftrightarrow es gibt orthogonale $a \in W_1, b \in W_2$

Satz

Wenn SETH gilt, gibt es kein $\varepsilon > 0$ und c > 0, s.d. sich OV in Zeit $\mathcal{O}(n^{2-\varepsilon}d^c)$ lösen lässt

Beweisidee

- Wir konstruieren eine Reduktion von (SAT. $2^n m^{c_1}$) zu (OV. $n^2 d^{c_2}$)
- Sei φ eine KNF-Formel mit n Variablen und mKlauseln (ObdA: n. gerade)
- Partitioniere Variablen von φ in Mengen V_1, V_2 der Größe n/2
- Für jede partielle Wahrheitsbelegung $\alpha \in V_i$ erstelle einen Vektor $a_{\alpha} \in \{0,1\}^m$. Setze *i*-te Komponente auf 1 genau dann wenn die i-te Klausel nicht durch diese Wahrheitsbelegung erfüllt wird.

- Erstelle Menge W_i , die aus diesen Vektoren besteht. Es gilt $|W_i| = 2^{n/2} =: N$
- Laufzeit Reduktion: $\mathcal{O}(ND)$

- $\varphi = (x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge x_1$
- $V_1 = \{x_1\}, V_2 = \{x_2\}$
- $W_1 = \{(0,0,1,0), (1,1,0,1)\},\$ $W_2 = \{(0, 1, 0, 1), (1, 0, 1, 1)\}$
- $(0,0,1,0) \in W_1, (0,1,0,1) \in W_2$ orthogonal. $\{x_1 := \text{True}, x_2 := \text{False}\}\$ erfüllende Belegung
- **Beobachtung:** φ erfüllbar \Leftrightarrow es gibt orthogonale $a \in W_1, b \in W_2$
- Angenommen OV in Zeit $\mathcal{O}(N^{2-\varepsilon}D^c)$ lösbar.
- Dann SAT in Zeit. $\mathcal{O}(N^{2-\varepsilon}D^c) = \mathcal{O}(2^{n-\varepsilon'}m^c)$ lösbar

REPM (Wdh.)

- **Geg:** Regulärer Ausdruck R und einen Textstring T
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

REPM (Wdh.)

- **Geg:** Regulärer Ausdruck R und einen Textstring T
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

Beweisidee

• Seien $A, B \subseteq \{0, 1\}^d$ der Größe n

REPM (Wdh.)

- $\begin{tabular}{ll} {\bf Geg:} & {\bf Regul\"arer Ausdruck} \ R \ {\bf und \ einen} \\ & {\bf Textstring} \ T \end{tabular}$
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- Für $a \in A$ konstruiere RE r_a :
 - Ersetze Koordinate 1 durch RE 0
 - Ersetze Koordinate 0 durch RE (0+1)
- \bullet Für $b \in B$ konstruiere kanonischen Binärstring s_b

REPM (Wdh.)

- **Geg:** Regulärer Ausdruck R und einen Textstring T
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

Beweisidee

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- Für $a \in A$ konstruiere RE r_a :
 - Ersetze Koordinate 1 durch RE 0
 - Ersetze Koordinate 0 durch RE (0+1)
- Für $b \in B$ konstruiere kanonischen Binärstring S_h

- a = (0, 1, 0, 1), b = (1, 0, 0, 0)
- $r_a = (0+1)0(0+1)0, s_b = 1000$

REPM (Wdh.)

- Geg: Regulärer Ausdruck R und einen Textstring T
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

Beweisidee

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- Für $a \in A$ konstruiere RE r_a :
 - Ersetze Koordinate 1 durch RE 0
 - Ersetze Koordinate 0 durch RE (0+1)
- Für $b \in B$ konstruiere kanonischen Binärstring S_h

- a = (0, 1, 0, 1), b = (1, 0, 0, 0)
- $r_a = (0+1)0(0+1)0, s_b = 1000$
- Aus $A = \{a_1, \ldots, a_n\}$ konstruiere $R = r_{a_1} + \dots ra_n$
- Aus $B = \{b_1, \dots, b_n\}$ konstruiere $T = s_{b_1} \# s_{b_2} \# \dots \# s_{b_m}$

REPM (Wdh.)

- **Geg:** Regulärer Ausdruck R und einen Textstring T
- ullet Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

Beweisidee

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- Für $a \in A$ konstruiere RE r_a :
 - Ersetze Koordinate 1 durch RE 0
 - Ersetze Koordinate 0 durch RE (0+1)
- Für $b \in B$ konstruiere kanonischen Binärstring s_b

- a = (0, 1, 0, 1), b = (1, 0, 0, 0)
- $r_a = (0+1)0(0+1)0, s_b = 1000$
- Aus $A = \{a_1, \dots, a_n\}$ konstruiere $R = r_{a_1} + \dots ra_n$
- Aus $B = \{b_1, \dots, b_n\}$ konstruiere $T = s_{b_1} \# s_{b_2} \# \dots \# s_{b_n}$
- Beobachtung: Es gibt orthogonale Vektoren $a \in A, b \in B \Leftrightarrow$ Teilstring von T matcht mit R

REPM (Wdh.)

- **Geg:** Regulärer Ausdruck R und einen Textstring T
- Frage: Matcht ein Teilstring von T mit R

Satz

Wenn OV gilt, gibt es kein $\varepsilon > 0$, s.d. sich REPM in Zeit $\mathcal{O}((nm)^{1-\varepsilon})$ lösbar ist

Beweisidee

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- Für $a \in A$ konstruiere RE r_a :
 - Ersetze Koordinate 1 durch RE 0
 - Ersetze Koordinate 0 durch RE (0+1)
- Für $b \in B$ konstruiere kanonischen Binärstring s_b

- a = (0, 1, 0, 1), b = (1, 0, 0, 0)
- $r_a = (0+1)0(0+1)0, s_b = 1000$
- Aus $A = \{a_1, \dots, a_n\}$ konstruiere $R = r_{a_1} + \dots ra_n$
- Aus $B = \{b_1, \dots, b_n\}$ konstruiere $T = s_{b_1} \# s_{b_2} \# \dots \# s_{b_n}$
- Beobachtung: Es gibt orthogonale Vektoren $a \in A, b \in B \Leftrightarrow$ Teilstring von T matcht mit R
- Laufzeit Reduktion und Größe von R, T: $\mathcal{O}(nd)$
- Angenommen REPM in Zeit $\mathcal{O}((|R||T|)^{1-\varepsilon}d^c)$ lösbar
- Dann OV in Zeit $\mathcal{O}((|R||T|)^{1-\varepsilon}) = \mathcal{O}((n^2d^2)^{1-\varepsilon}) = \mathcal{O}(n^{2-\varepsilon'}d^c)$ lösbar

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m = \mathcal{O}(n)$

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m=\mathcal{O}(n)$

Beweisskizze

• Seien $A,B\subseteq\{0,1\}^d$ der Größe n

$$A = \{a_1 = (0, 0, 1, 0), a_2 = (1, 1, 0, 1)\},\$$

$$B = \{b_1 = (0, 1, 0, 1), b_2 = (1, 0, 1, 1)\}$$

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m=\mathcal{O}(n)$

Beweisskizze

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- ullet Für jeden Vektor u erstelle Vektorknoten v_u
- Für jede Koordinate c erstelle Koordinatenknoten v_c
- Füge Knoten α, β hinzu

$$A = \{a_1 = (0, 0, 1, 0), a_2 = (1, 1, 0, 1)\},\$$

$$B = \{b_1 = (0, 1, 0, 1), b_2 = (1, 0, 1, 1)\}$$

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m=\mathcal{O}(n)$

Beweisskizze

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- ullet Für jeden Vektor u erstelle Vektorknoten v_u
- Für jede Koordinate c erstelle Koordinatenknoten v_c
- Füge Knoten α, β hinzu
- Füge Kanten hinzu zwischen

$$A = \{a_1 = (0, 0, 1, 0), a_2 = (1, 1, 0, 1)\},\$$

$$B = \{b_1 = (0, 1, 0, 1), b_2 = (1, 0, 1, 1)\}$$

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m=\mathcal{O}(n)$

Beweisskizze

- Seien $A, B \subseteq \{0,1\}^d$ der Größe n
- ullet Für jeden Vektor u erstelle Vektorknoten v_u
- \bullet Für jede Koordinate c erstelle Koordinatenknoten v_c
- Füge Knoten α, β hinzu
- Füge Kanten hinzu zwischen
 - Vektorknoten v_u und Koordinatenknoten v_c falls $v_u[c]=1$
 - α und $\dot{\beta}$
 - α und jedem Vektorknoten $v_a, a \in A$
 - β und jedem Vektorknoten $v_b, b \in B$
 - jedem Koordinatenknoten

$$A = \{a_1 = (0, 0, 1, 0), a_2 = (1, 1, 0, 1)\},\$$

$$B = \{b_1 = (0, 1, 0, 1), b_2 = (1, 0, 1, 1)\}$$

Satz

Wenn OV-Annahme gilt, dann ist das Unterscheiden von Durchmesser 2 zu Durchmesser 3 nicht in Zeit $\mathcal{O}(n^{2-\varepsilon})$ möglich, selbst wenn $m=\mathcal{O}(n)$

Beweisskizze

- Seien $A,B\subseteq\{0,1\}^d$ der Größe n
- ullet Für jeden Vektor u erstelle Vektorknoten v_u
- \bullet Für jede Koordinate c erstelle Koordinatenknoten v_c
- Füge Knoten α, β hinzu
- Füge Kanten hinzu zwischen
 - ullet Vektorknoten v_u und Koordinatenknoten v_c falls $v_u[c]=1$
 - α und $\dot{\beta}$
 - α und jedem Vektorknoten $v_a, a \in A$
 - ullet eta und jedem Vektorknoten $v_b, b \in B$
 - jedem Koordinatenknoten
- Beobachtung: Existieren $a \in A, b \in B$ orthogonal, dann hat der Graph Durchmesser 3.

$$A = \{a_1 = (0, 0, 1, 0), a_2 = (1, 1, 0, 1)\},\$$

$$B = \{b_1 = (0, 1, 0, 1), b_2 = (1, 0, 1, 1)\}$$

Inhaltsverzeichnis

Superlineare untere Schranken basierend auf SAT

Von SAT zu LOGCIRCUITSAT

SAT

Erfüllbarkeit KNF-Formeln

Von SAT zu LOGCIRCUITSAT

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

Von SAT zu LOGCIRCUITSAT

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

• CIRCUITSAT ist eine Verallgemeinerung von SAT

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

• CIRCUITSAT ist eine Verallgemeinerung von SAT

LOGCIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise mit beschränktem Fan-in, m Gattern und $\log m$ Inputs

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

• CIRCUITSAT ist eine Verallgemeinerung von SAT

LOGCIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise mit beschränktem Fan-in, m Gattern und $\log m$ Inputs

• LOGCIRCUITSAT in polynomieller Laufzeit entscheidbar

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

• CIRCUITSAT ist eine Verallgemeinerung von SAT

LOGCIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise mit beschränktem Fan-in, m Gattern und $\log m$ Inputs

• LOGCIRCUITSAT in polynomieller Laufzeit entscheidbar

$$\varphi = (x_1 \vee x_2) \wedge \neg x_3$$

SAT

Erfüllbarkeit KNF-Formeln

CIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise

 \bullet CIRCUITSAT ist eine Verallgemeinerung von SAT

LOGCIRCUITSAT

Erfüllbarkeit Boolescher Schaltkreise mit beschränktem Fan-in, m Gattern und $\log m$ Inputs

 LOGCIRCUITSAT in polynomieller Laufzeit entscheidbar

$$\varphi = (x_1 \vee x_2) \wedge \neg x_3$$

- Ziel: Wenn ETH gilt, dann ist LOGCIRCUITSAT nicht in essentiell-linearer Zeit lösbar
- Notation: Ein Problem ist in essentiell-linearer Zeit lösbar, falls das Problem für alle $\varepsilon>0$ in Zeit $\mathcal{O}(n^{1+\varepsilon})$ lösbar ist.

• Gibt es bessere Ansätze als Brute-Force bei effizient lösbaren Problemen?

- Gibt es bessere Ansätze als Brute-Force bei effizient lösbaren Problemen?
- Idee: Beschränkter Nicht-Determinismus: Beschränke den Grad von Nicht-Determinismus in einer Berechnung
- Halte im Input Platz für Bits vom Zeugen frei

- Gibt es bessere Ansätze als Brute-Force bei effizient lösbaren Problemen?
- Idee: Beschränkter Nicht-Determinismus: Beschränke den Grad von Nicht-Determinismus in einer Berechnung
- Halte im Input Platz für Bits vom Zeugen frei
- ⇒ Zeuge beeinflusst Länge nicht!

- Gibt es bessere Ansätze als Brute-Force bei effizient lösbaren Problemen?
- Idee: Beschränkter Nicht-Determinismus: Beschränke den Grad von Nicht-Determinismus in einer Berechnung
- Halte im Input Platz f
 ür Bits vom Zeugen frei
- ⇒ Zeuge beeinflusst Länge nicht!

Definition

Eine Sprache L ist in TIWI(t(n), w(n)), wenn eine Verifikationssprache V für L existiert, s.d.

- $V \in \text{TIME}(t(n))$
- Zeugen sind binär mit Lange < w(n)
- Kombination von x mit Zeugen von y verändert die Länge nicht!
- $x \in L$, genau dann wenn ein Zeuge z existiert, s.d. $x' \in V$, wobei x' das x aufgefüllt mit dem Zeugen z ist.
- \Rightarrow Um zu testen, ob x der Länge n in L ist, reicht es aus, Strings der Länge n in V zu testen

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in TIME(t(n))$, dann können wir Boolesche Schaltkreise für L der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\operatorname{poly}(\log t(n)))$ berechnen

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in TIME(t(n))$, dann können wir Boolesche Schaltkreise für L. der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\operatorname{poly}(\log t(n)))$ berechnen

Beweis

• Sei $L \in TIWI(n, \log n)$. Sei $V \in TIME(n)$ die Verifikationssprache für L.

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in TIME(t(n))$, dann können wir Boolesche Schaltkreise für L. der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\operatorname{poly}(\log t(n)))$ berechnen

Beweis

- Sei $L \in TIWI(n, \log n)$. Sei $V \in TIME(n)$ die Verifikationssprache für L.
- Sei x Input der Länge n

 Aus dem Lemma erhalten wir einen Schaltkreis C für V mit $\mathcal{O}(n \log n)$ Gattern in essentiell-linearer Zeit

$$x = \bot \bot 101, \ n = 5, \lfloor \log n \rfloor = 2$$
 and the second of the

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in TIME(t(n))$, dann können wir Boolesche Schaltkreise für L. der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\operatorname{poly}(\log t(n)))$ berechnen

Beweis

- Sei $L \in TIWI(n, \log n)$. Sei $V \in TIME(n)$ die Verifikationssprache für L.
- Sei x Input der Länge n

- Aus dem Lemma erhalten wir einen Schaltkreis C für V mit $\mathcal{O}(n \log n)$ Gattern in essentiell-linearer Zeit
- Wir konstruieren Schaltkreisfamilie $\{C_i\}_{i=1}^{\lfloor \log n \rfloor}$ aus C. indem wir
 - x fixieren
 - i Bits für Zeugen freihalten

Wir stellen eine Verbindung zwischen $\mathrm{TIWI}(n,\log n)$ und $\mathrm{LOGCIRCUITSAT}$ her

Satz

Jedes $L \in \mathrm{TIWI}(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in \mathrm{TIME}(t(n))$, dann können wir Boolesche Schaltkreise für L der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\mathrm{poly}(\log t(n)))$ berechnen

Beweis

- Sei $L \in TIWI(n, \log n)$. Sei $V \in TIME(n)$ die Verifikationssprache für L.
- Sei x Input der Länge n

- Aus dem Lemma erhalten wir einen Schaltkreis C für V mit $\mathcal{O}(n \log n)$ Gattern in essentiell-linearer Zeit
- Wir konstruieren Schaltkreisfamilie $\{C_i\}_{i=1}^{\lfloor \log n \rfloor}$ aus C, indem wir
 - x fixieren
 - i Bits für Zeugen freihalten
- C_i hat $\leq \log n$ Inputs und höchstens $\mathcal{O}(n \log n)$ Gatter

Wir stellen eine Verbindung zwischen $TIWI(n, \log n)$ und LOGCIRCUITSAT her

Satz

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Lemma (Ohne Beweis)

Sei eine zeitkonstruierbare Funktion t gegeben. Wenn $L \in TIME(t(n))$, dann können wir Boolesche Schaltkreise für L. der Größe $\mathcal{O}(t(n)\log t(n))$ in Zeit $\mathcal{O}(t(n)\cdot\operatorname{poly}(\log t(n)))$ berechnen

Beweis

- Sei $L \in TIWI(n, \log n)$. Sei $V \in TIME(n)$ die Verifikationssprache für L.
- Sei x Input der Länge n

- Aus dem Lemma erhalten wir einen Schaltkreis C für V mit $\mathcal{O}(n \log n)$ Gattern in essentiell-linearer Zeit
- Wir konstruieren Schaltkreisfamilie $\{C_i\}_{i=1}^{\lfloor \log n \rfloor}$ aus C. indem wir
 - x fixieren
 - i Bits für Zeugen freihalten
- C_i hat $< \log n$ Inputs und höchstens $\mathcal{O}(n \log n)$ Gatter
- Es gilt $x \in L \Leftrightarrow \exists i \in \{1, \ldots, \lfloor \log n \rfloor \}$ s.d. C_i erfüllbar

ETH und LOGCIRCUITSAT I

• Ziel: Zeige folgenden Satz

Satz

Wenn LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$, dann ist ETH falsch.

ETH und LOGCIRCUITSAT L

• **Ziel:** Zeige folgenden Satz

Satz

Wenn LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$, dann ist ETH falsch.

• Für den Beweis benutzen wir folgendes Theorem

Satz

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$, dann

 $(\forall \varepsilon > 0)$ CIRCUITSAT \in TIME $(\text{poly}(n)2^{\varepsilon m})$,

wohei m. die Anzahl der Gatter ist

ETH und LOGCIRCUITSAT L

• **Ziel:** Zeige folgenden Satz

Satz

Wenn LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$, dann ist ETH falsch.

• Für den Beweis benutzen wir folgendes Theorem

Satz

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$. dann

$$(\forall \varepsilon > 0)$$
CIRCUITSAT \in TIME $(\text{poly}(n)2^{\varepsilon m})$,

wohei m. die Anzahl der Gatter ist

Beweis.

- SAT ist Spezialfall von CIRCUITSAT
- Aus dem Satz folgt:

$$(\forall \varepsilon > 0)$$
SAT $\in TIME(poly(n)2^{\varepsilon m}),$

wobei m die Anzahl der Gatter ist

ETH und LOGCIRCUITSAT L

• **Ziel:** Zeige folgenden Satz

Satz

Wenn LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$, dann ist ETH falsch.

 Für den Beweis benutzen wir folgendes Theorem

Satz

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$. dann

$$(\forall \varepsilon > 0)$$
CIRCUITSAT \in TIME $(\text{poly}(n)2^{\varepsilon m})$,

wohei m. die Anzahl der Gatter ist

Beweis.

- SAT ist Spezialfall von CIRCUITSAT
- Aus dem Satz folgt:

$$(\forall \varepsilon > 0)$$
SAT $\in TIME(poly(n)2^{\varepsilon m}),$

wobei m die Anzahl der Gatter ist

Anwendung des Sparsification Lemma liefert

$$(\forall \varepsilon > 0)$$
SAT $\in TIME(poly(n)2^{\varepsilon v}),$

wobei v die Anzahl der Variablen ist.

⇒ FTH falsch

ETH und LOGCIRCUITSAT II

Satz (Wdh.)

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in \mathrm{TIME}(n^{\alpha})$, dann

 $(\forall \varepsilon > 0)$ CIRCUITSAT \in TIME $(\text{poly}(n)2^{\varepsilon m})$,

wobei m die Anzahl der Gatter ist.

ETH und LOGCIRCUITSAT II

Satz (Wdh.)

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in \text{TIME}(n^{\alpha})$, dann

 $(\forall \varepsilon > 0)$ CIRCUITSAT $\in TIME(poly(n)2^{\varepsilon m}),$

wobei m die Anzahl der Gatter ist.

 Für den Beweis verwenden wir das folgende Lemma

Lemma

Sei g eine berechenbare Funktion. Wenn für alle $\alpha > 1$

 $LOGCIRCUITSAT \in TIME(n^{\alpha}),$

dann gilt

 $(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$

FTH und LOGCIRCUITSAT II

Satz (Wdh.)

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$, dann

$$(\forall \varepsilon > 0) \text{CIRCUITSAT} \in \text{TIME}(\text{poly}(n)2^{\varepsilon m}),$$

wobei m die Anzahl der Gatter ist.

• Für den Beweis verwenden wir das folgende Lemma

Lemma

Sei q eine berechenbare Funktion. Wenn für alle $\alpha > 1$

 $LOGCIRCUITSAT \in TIME(n^{\alpha}),$

dann gilt

 $(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$

Beweis.

- Angenommen LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$.
- Sei $\lg(x) := \max\{1, \log x\}$. Wähle $g(n) = \frac{n}{\lg(n)}$.

ETH und LOGCIRCUITSAT II

Satz (Wdh.)

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$, dann

$$(\forall \varepsilon>0) \text{CIRCUITSAT} \in \text{TIME}(\text{poly}(n)2^{\varepsilon m}),$$

wobei m die Anzahl der Gatter ist.

• Für den Beweis verwenden wir das folgende Lemma

Lemma

Sei q eine berechenbare Funktion. Wenn für alle $\alpha > 1$

 $LOGCIRCUITSAT \in TIME(n^{\alpha}),$

dann gilt

 $(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$

Beweis.

- Angenommen LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$.
- Sei $\lg(x) := \max\{1, \log x\}$. Wähle $g(n) = \frac{n}{\lg(n)}$.
- Anwendung des Lemmas liefert

$$(\forall \varepsilon > 0) \operatorname{TIWI}(\operatorname{poly}(n), \frac{n}{\log n}) \subseteq \operatorname{TIME}(2^{\varepsilon \frac{n}{\log n}})$$

FTH und LOGCIRCUITSAT II

Satz (Wdh.)

Wenn für alle $\alpha > 1$ LOGCIRCUITSAT $\in TIME(n^{\alpha})$, dann

$$(\forall \varepsilon>0) \text{CIRCUITSAT} \in \text{TIME}(\text{poly}(n)2^{\varepsilon m}),$$

wobei m die Anzahl der Gatter ist.

• Für den Beweis verwenden wir das folgende Lemma

Lemma

Sei q eine berechenbare Funktion. Wenn für alle $\alpha > 1$

$$LOGCIRCUITSAT \in TIME(n^{\alpha}),$$

dann gilt

$$(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$$

Beweis.

- Angenommen LOGCIRCUITSAT $\in TIME(n^{\alpha})$ für alle $\alpha > 1$.
- Sei $\lg(x) := \max\{1, \log x\}$. Wähle $g(n) = \frac{n}{\lg(n)}$.
- Anwendung des Lemmas liefert

$$(\forall \varepsilon > 0) \operatorname{TIWI}(\operatorname{poly}(n), \frac{n}{\log n}) \subseteq \operatorname{TIME}(2^{\varepsilon \frac{n}{\log n}})$$

• Da $\frac{n}{\log n} = \Theta(m)$ gilt, gilt

CIRCUITSAT
$$\in \text{TIWI}(\text{poly}(n), \frac{n}{\log n})$$

- $\Rightarrow (\forall \varepsilon > 0) \text{CIRCUITSAT} \in \text{TIME}(2^{\varepsilon \frac{n}{\log n}})$
- $\Rightarrow (\forall \varepsilon > 0) \text{CIRCUITSAT} \in \text{TIME}(\text{poly}(n)2^{\varepsilon m})$

ETH und LOGCIRCUITSAT III

Lemma (Wdh.)

Sei g eine berechenbare Funktion. Wenn für alle $\alpha > 1$

 $LOGCIRCUITSAT \in TIME(n^{\alpha}),$

dann gilt

 $(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$

ETH und LOGCIRCUITSAT III

Lemma (Wdh.)

Sei q eine berechenbare Funktion. Wenn für alle $\alpha > 1$

$$LOGCIRCUITSAT \in TIME(n^{\alpha}),$$

dann gilt

$$(\forall \varepsilon > 0) \text{ TIWI}(\text{poly}(n), g(n)) \subseteq \text{TIME}(2^{\varepsilon g(n)}).$$

 Das Lemma folgt aus dem Satz über die Simulation von Turingmaschinen mit Booleschen Schaltkreisen und weiteren Resultaten aus dem Paper

Satz (Wdh.)

Jedes $L \in TIWI(n, \log n)$ ist reduzierbar auf logarithmisch viele Instanzen von LOGCIRCUITSAT in essentiell-linearer Zeit durch eine Turingmaschine

Weitere Auswirkungen

• Die Ergebnisse haben nicht nur Auswirkungen für LOGCIRCUITSAT

Satz

Wenn für alle $\alpha > 1$ gilt, dass LOGCIRCUITSAT $\in TIME(n^{\alpha})$, dann gilt

k-CLIQUE $\in TIME(n^{\alpha})$

für alle $k \in \mathbb{N}$ und jedes $\alpha > 1$.

Inhaltsverzeichnis

Resümee

Resümee

ullet SETH hat Auswirkungen auf einfache Probleme wie REPM

Resümee

- SETH hat Auswirkungen auf einfache Probleme wie REPM
- ETH hat Auswirkungen auf schwierige Probleme wie DOMINATINGSET oder INDEPENDENTSET

Resümee

- SETH hat Auswirkungen auf einfache Probleme wie REPM
- ETH hat Auswirkungen auf schwierige Probleme wie DOMINATINGSET oder INDEPENDENTSET
- Überraschenderweise gibt ETH auch superlineare untere Schranken für LOGCIRCUITSAT, k-CLIQUE etc.

Literaturverzeichnis I

- Abboud, Amir, Virginia Vassilevska Williams und Huacheng Yu (2018). "Matching Triangles and Basing Hardness on an Extremely Popular Conjecture". In: *SIAM Journal on Computing* 47.3, S. 1098–1122
- Bringmann, Karl (2019). "Fine-Grained Complexity Theory (Tutorial)". In: 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Hrsg. von Rolf Niedermeier und Christophe Paul. Bd. 126. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 4:1–4:7. ISBN: 978-3-95977-100-9. DOI: 10.4230/LIPIcs.STACS.2019.4. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10243.
- Buhrman, Harry, Subhasree Patro und Florian Speelman (2019). The Quantum Strong Exponential-Time Hypothesis. arXiv: 1911.05686 [quant-ph].
- Pilipczuk, Michał (2023). Parameterized algorithms and Fine-grained complexity. Presentation EPIT 2023. Île d'Oléron.
- Salamon, András Z. und Michael Wehar (2022). "Superlinear Lower Bounds Based on ETH". en. In: Schloss Dagstuhl Leibniz-Zentrum für Informatik. DOI: 10.4230/LIPICS.STACS.2022.55. URL: https://drops.dagstuhl.de/opus/volltexte/2022/15865/.

Literaturverzeichnis II

- Williams, Virginia Vassilevska (2015). "Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk)". In: International Symposium on Parameterized and Exact Computation.
- Zeume, Thomas (2022). Fine-grained complexity theory. Lecture slides for Computational Complexity Theory, Version from 2022-06-15T11:48.
- (2023). Algorithmen für SAT und die Exponentialzeithypothese. Vorlesungsfolien für Theoretische Informatik. Version vom 2023-01-24T10:06.

Fragen?

Ausblick - Parametrisierte Algorithmen

• Probleme wie *k*-Clique sind abhängig von einem Parameter.

- Probleme wie *k*-Clique sind abhängig von einem Parameter.
- ⇒ In der Praxis können Parameter klein sein

- Probleme wie *k*-Clique sind abhängig von einem Parameter.
- ⇒ In der Praxis können Parameter klein sein

Definition

Ein parametrisiertes Problem ist eine Menge Q von Paaren (x,k), wobei $x\in \sum^*, k\in \mathbb{N}.$

P-CLIQUE

- Geg: Ungerichteter Graph G=(V,E) und natürliche Zahl $k\in\mathbb{N}$
- Parameter: k
- \bullet Frage: Gib es eine Knotenmenge $U\subseteq V$ so, dass
 - $(u,v) \in E$ oder $u \neq v$, für alle $u,v \in U$ • |U| = k?
- Frage: Können wir die Laufzeit vom Parameter "entzerren"?

- Probleme wie *k*-Clique sind abhängig von einem Parameter.
- ⇒ In der Praxis können Parameter klein sein

Definition

Ein parametrisiertes Problem ist eine Menge Q von Paaren (x,k), wobei $x\in \sum^*, k\in \mathbb{N}.$

P-CLIQUE

- **Geg:** Ungerichteter Graph G=(V,E) und natürliche Zahl $k\in\mathbb{N}$
- Parameter: k
- Frage: Gib es eine Knotenmenge $U\subseteq V$ so, dass
 - $(u,v) \in E$ oder $u \neq v$, für alle $u,v \in U$ • |U| = k?
- Frage: Können wir die Laufzeit vom Parameter "entzerren"?

Definition (FPT)

Ein parametrisiertes Problem Q wird fixed-parameter tractabe (fpt) genannt, wenn es einen Algorithmus \mathcal{A} , eine Konstant c und eine berechenbare Funktion $f:\mathbb{N}\to\mathbb{N}$ gibt, so dass

- ullet ${\cal A}$ entscheidet ${\cal Q}$
- \mathcal{A} läuft in Zeit $\leq f(k)|x|^c$ bei Eingabe (x,k)

- Probleme wie *k*-Clique sind abhängig von einem Parameter.
- ⇒ In der Praxis können Parameter klein sein

Definition

Ein parametrisiertes Problem ist eine Menge Q von Paaren (x,k), wobei $x\in \sum^*, k\in \mathbb{N}.$

P-CLIQUE

- **Geg:** Ungerichteter Graph G=(V,E) und natürliche Zahl $k\in\mathbb{N}$
- Parameter: k
- Frage: Gib es eine Knotenmenge $U\subseteq V$ so, dass
 - $(u,v) \in E$ oder $u \neq v$, für alle $u,v \in U$ • |U| = k?
- Frage: Können wir die Laufzeit vom Parameter "entzerren"?

Definition (FPT)

Ein parametrisiertes Problem Q wird fixed-parameter tractabe (fpt) genannt, wenn es einen Algorithmus \mathcal{A} , eine Konstant c und eine berechenbare Funktion $f:\mathbb{N}\to\mathbb{N}$ gibt, so dass

- ullet ${\cal A}$ entscheidet ${\cal Q}$
- \mathcal{A} läuft in Zeit $\leq f(k)|x|^c$ bei Eingabe (x,k)
- ullet Untere Schranken für f(k) für ${\rm FPT ext{-}Algorithmen}$ können hergeleitet werden

Satz

Wenn ETH gilt, dann kann P-VERTEXCOVER nicht in Zeit $\hat{\mathcal{O}}(2^{o(k)})$ gelöst werden

- Probleme wie *k*-Clique sind abhängig von einem Parameter.
- ⇒ In der Praxis können Parameter klein sein

Definition

Ein parametrisiertes Problem ist eine Menge Q von Paaren (x,k), wobei $x\in \sum^*, k\in \mathbb{N}.$

P-CLIQUE

- Geg: Ungerichteter Graph G=(V,E) und natürliche Zahl $k\in\mathbb{N}$
- Parameter: k
- $\begin{tabular}{ll} \bullet & {\bf Frage:} & {\bf Gib} & {\bf es} & {\bf eine} & {\bf Knotenmenge} & U \subseteq V & {\bf so}, \\ & {\bf dass} & & & \\ \end{tabular}$
 - $(u,v) \in E$ oder $u \neq v$, für alle $u,v \in U$ • |U| = k?
- Frage: Können wir die Laufzeit vom Parameter "entzerren"?

Definition (FPT)

Ein parametrisiertes Problem Q wird fixed-parameter tractabe (fpt) genannt, wenn es einen Algorithmus \mathcal{A} , eine Konstant c und eine berechenbare Funktion $f:\mathbb{N}\to\mathbb{N}$ gibt, so dass

- ullet ${\cal A}$ entscheidet ${\cal Q}$
- \mathcal{A} läuft in Zeit $\leq f(k)|x|^c$ bei Eingabe (x,k)
- ullet Untere Schranken für f(k) für ${
 m FPT ext{-}Algorithmen}$ können hergeleitet werden

Satz

Wenn ETH gilt, dann kann P-VERTEXCOVER nicht in Zeit $\hat{\mathcal{O}}(2^{o(k)})$ gelöst werden

Satz

Wenn ETH gilt, dann kann P-CLIQUE nicht in Zeit $\hat{\mathcal{O}}(f(k)n^{o(k)})$ gelöst werden

[Folien von Thomas Zeume]

Definition (Optimierungsprobleme)

- Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I, S, v), wobei
 - $I \subset \Sigma^*$
 - $S: I \to \mathfrak{P}(\Sigma^*)$ • $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{Q}^+$
- OPT-V $(x) = \min\{v(x,y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x,y) = OPT-V(x) \}$

Definition (Optimierungsprobleme)

- Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I, S, v), wobei
 - $I \subset \Sigma^*$
 - $S: I \to \mathfrak{P}(\Sigma^*)$
 - $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{Q}^+$
- OPT-V $(x) = \min\{v(x,y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x, y) = OPT-V(x) \}$

Definition (Approximationsalgorithmus)

Ein Approximationsalgorithmus für O ist ein Algorithmus $\mathcal A$ mit $\mathcal A(x) \in S(x)$ für alle $x \in I$

Definition (Optimierungsprobleme)

- ullet Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I,S,v), wobei
 - $I \subseteq \Sigma^*$ $S: I \to \mathfrak{V}(\Sigma^*)$
 - $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{O}^+$
- OPT-V $(x) = \min\{v(x,y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x,y) = OPT-V(x) \}$

Definition (Approximationsalgorithmus)

Ein Approximationsalgorithmus für O ist ein Algorithmus \mathcal{A} mit $\mathcal{A}(x) \in S(x)$ für alle $x \in I$

Algorithmus \mathcal{A} thit $\mathcal{A}(x) \in \mathcal{B}(x)$ for all $x \in \mathcal{A}(x)$

Definition (Approximationsgüte)

- Die Approximationsgüte einer Lösung y für die Eingabe x ist $Q(x,y) = \frac{v(x,y)}{\mathrm{OPT-V}(x)}$
- \mathcal{A} ist ein δ -Approximationsalgorithmus, wenn $Q(x,\mathcal{A}(x)) \leq \delta(|x|)$ für alle $x \in I$

Definition (Optimierungsprobleme)

- Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I, S, v), wobei
 - $I \subset \Sigma^*$
 - $S: I \to \mathfrak{V}(\Sigma^*)$
- $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{Q}^+$
- OPT-V $(x) = \min\{v(x, y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x, y) = OPT-V(x) \}$

Definition (Approximationsalgorithmus)

Ein Approximationsalgorithmus für O ist ein Algorithmus \mathcal{A} mit $\mathcal{A}(x) \in S(x)$ für alle $x \in I$

Definition (Approximationsgüte)

- Die Approximationsgüte einer Lösung y für die Eingabe x ist $Q(x,y) = \frac{v(x,y)}{OPT-V(x)}$
- A ist ein δ -Approximationsalgorithmus, wenn $Q(x, \mathcal{A}(x)) < \delta(|x|)$ für alle $x \in I$

Definition (PTAS)

Ein Problem $\mathcal{O} = (I, S, v)$ ist in PTAS, wenn es einen Algorithmus A mit Eingaben x und ε gibt, s.d.

- $Q(x, \mathcal{A}(x, \varepsilon)) < 1 + \varepsilon$ für alle $x \in I$ und $\varepsilon > 0$
- A hat polynomielle Laufzeit in |x| für alle festen $\varepsilon > 0$

Definition (Optimierungsprobleme)

- Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I, S, v), wobei
 - $I \subset \Sigma^*$
 - $S:I\to \mathfrak{P}(\Sigma^*)$
- $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{Q}^+$
- OPT-V $(x) = \min\{v(x,y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x, y) = OPT-V(x) \}$

Definition (Approximationsalgorithmus)

Ein Approximationsalgorithmus für O ist ein Algorithmus \mathcal{A} mit $\mathcal{A}(x) \in S(x)$ für alle $x \in I$

Definition (Approximationsgüte)

- Die Approximationsgüte einer Lösung y für die Eingabe x ist $Q(x,y) = \frac{v(x,y)}{\mathrm{OPT-V}(x)}$
- \mathcal{A} ist ein δ -Approximationsalgorithmus, wenn $Q(x,\mathcal{A}(x)) \leq \delta(|x|)$ für alle $x \in I$

Definition (PTAS)

Ein Problem $\mathcal{O}=(I,S,v)$ ist in PTAS, wenn es einen Algorithmus \mathcal{A} mit Eingaben x und ε gibt, s.d.

- $Q(x, \mathcal{A}(x, \varepsilon)) \leq 1 + \varepsilon$ für alle $x \in I$ und $\varepsilon > 0$
- $\mathcal A$ hat polynomielle Laufzeit in |x| für alle festen $\varepsilon>0$

ClosestString

- **Geg:** Strings s_1, \ldots, s_k der Länge ℓ , d
- Frage: Gibt es einen String s mit Hammingdistanz $\leq d$ für alle i?

Definition (Optimierungsprobleme)

- Ein Optimierungs-Minimierungs-Problem O ist ein Tupel (I, S, v), wobei
 - $I \subset \Sigma^*$
 - $S: I \to \mathfrak{V}(\Sigma^*)$
 - $v: \{(x,y) \mid x \in I, y \in S(x)\} \to \mathbb{Q}^+$
- OPT-V $(x) = \min\{v(x, y) \mid y \in S(x)\}$
- $OPT(x) = \{ y \in S(x) \mid v(x, y) = OPT-V(x) \}$

Definition (Approximationsalgorithmus)

Ein Approximationsalgorithmus für O ist ein Algorithmus \mathcal{A} mit $\mathcal{A}(x) \in S(x)$ für alle $x \in I$

Definition (Approximationsgüte)

- Die Approximationsgüte einer Lösung y für die Eingabe x ist $Q(x,y) = \frac{v(x,y)}{QPT_{-}V(x)}$
- A ist ein δ -Approximationsalgorithmus, wenn $Q(x, \mathcal{A}(x)) < \delta(|x|)$ für alle $x \in I$

Definition (PTAS)

Ein Problem $\mathcal{O} = (I, S, v)$ ist in PTAS, wenn es einen Algorithmus A mit Eingaben x und ε gibt, s.d.

- $Q(x, \mathcal{A}(x, \varepsilon)) < 1 + \varepsilon$ für alle $x \in I$ und $\varepsilon > 0$
- \mathcal{A} hat polynomielle Laufzeit in |x| für alle festen $\varepsilon > 0$

ClosestString

- **Geg:** Strings s_1, \ldots, s_k der Länge ℓ , d
- Frage: Gibt es einen String s mit Hammingdistanz $\leq d$ für alle i?

Satz

- Es gibt einen PTAS-Algorithmus für ClosestString mit Laufzeit $n^{\mathcal{O}(1/\varepsilon^2)}$
- Wenn ETH gilt, dann gibt es keinen PTAS-Algorithmus für ClosestString mit Laufzeit $\hat{\mathcal{O}}(f(\frac{1}{\epsilon})n^{o(\log(1/\epsilon))})$

[Folien von Thomas Zeume]

Quantum SETH

Basic QSETH

Es gibt keinen fehlerbeschränkten Quantenalgorithmus, der SAT in Zeit $\hat{\mathcal{O}}(2^{\frac{n}{2}(1-\varepsilon)}m^{O(1)})$ löst.