TD

1 Mesures

Exercice 1. Donner une définition plus succincte d'une tribu.

Exercice 2. Prouver la Proposition 1.8 du cours.

Proposition. Si (X, Σ_X, ν) est un espace mesuré, nous avons les propriétés suivantes :

- 1. Pour tout $A, B \in \Sigma_X$, $A \cap B = \emptyset$ implique $\nu(A \sqcup B) = \nu(A) + \nu(B)$;
- 2. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) = \nu(A) + \nu(B) \nu(A \cap B)$;
- 3. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \le \nu(A) + \nu(B)$;
- 4. Pour tout $A, B \in \Sigma_X$, $\nu(A \cap B) \leq \min(\nu(A), \nu(B))$;
- 5. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \ge \max(\nu(A), \nu(B))$.

Exercice 3. Prouver la Proposition 1.14 du cours.

Proposition. Si $(\Omega, \Sigma_{\Omega}, \mu)$ est un espace probabilisé, nous avons :

1. Pour tout $A \in \Sigma_{\Omega}$, $\mu(\overline{A}) = 1 - \mu(A)$.

2 Fonction simple

Exercice 4. Prouver le Théorème 2.4 du cours.

Théorème. Soit f une fonction simple, alors f est une fonction mesurable.

Exercice 5. Prouver le théorème suivant, qui est une version simplifiée du Théorème 2.5.

Théorème. Soit une fonction mesurable positive $f: X \to \mathbb{R}^+$, alors il existe une séquence de fonctions simples $\{f_n\}_{n\in\mathbb{N}}$ telle que

pour tout
$$x \in X$$
, nous avons $\lim_{n \to \infty} f_n(x) = f(x)$.

3 Intégrale de Lebesgue

Exercice 6. Prouver le théorème suivant, qui est une version simplifiée du Théorème 2.10.

Théorème. Soient un espace mesuré (X, Σ_X, ν) et $f: X \to \mathbb{R}^+$ et $g: X \to \mathbb{R}^+$ des fonctions intégrables positives, alors

1. pour tout $c \geq 0$,

$$\int_X \left(c \cdot f(x) \right) d\nu(x) = c \cdot \int_X f(x) d\nu(x),$$

2. nous avons

$$\int_X (f(x) + g(x)) d\nu(x) = \int_X f(x) d\nu(x) + \int_X g(x) d\nu(x),$$

3. nous avons

$$\int_X \mathbb{1}[x \in A] f(x) d\nu(x) = \int_A f(x) d\nu(x).$$