

Universidade do Minho DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

Analise Matemática B

FICHA 3B MIECOM

Funções vectoriais

- **1.** Seja \overrightarrow{r} uma função vectorial de variável real. Mostre que se para todo $t \in \mathbb{R}$, $\|\overrightarrow{r}(t)\| = k$, com $k \in \mathbb{R}^+$ fixo, então $\overrightarrow{r}'(t)$. $\overrightarrow{r}(t) = 0$ e interprete geometricamente este resultado.
- **2.** Seja $\overrightarrow{r}(t), t \in \mathbb{R}$ uma função vectorial de variável real tal que $\overrightarrow{r}(0) = \overrightarrow{e_3}, \overrightarrow{r}'(0) = \overrightarrow{e_1} + \overrightarrow{e_2}$ e $\overrightarrow{r}''(t) = -\overrightarrow{e_3}$. Determine t_0 de modo que $\overrightarrow{r}(t_0)$ seja um vector director do plano xoy.
- 3. Considere a curva plana de equações paramétricas $x = t^2 1$ e $y = t^3 t$, $t \in \mathbb{R}$.
- a) Determine os pontos da curva onde a recta tangente à curva é horizontal.
- b) Determine os pontos da curva onde a recta tangente à curva é vertical.
- 4. Determine o comprimento dos arcos das curvas dadas por

a)
$$\overrightarrow{r}(t) = (\sin t - t \cdot \cos t) \overrightarrow{e_1} + (\cos t + t \cdot \sin t) \overrightarrow{e_2}, t \in [-1, 1].$$

b)
$$\overrightarrow{r}(t) = t\overrightarrow{e_1} + \ln(\cos t)\overrightarrow{e_2} + 2\overrightarrow{e_3}, t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right].$$

5. Mostre que uma recta tem curvatura nula.