

E1214 Fundamentos de las Comunicaciones E0214 Comunicaciones E0311/E1311 Comunicaciones

Temas a tratar

• Sistemas de Modulación digital binarios

Sistema ADS-B

 T_s : Tiempo de símbolo [s] ; T_b : Tiempo de bit [s]

 R_s : Tasa de símbolos ; $R_s = 1/T_s$ [Baudios]

Si $M = 2^n$ esto es que cada símbolo se compone de n bits

 $s_1(t), s_2(t), ..., s_M(t)$

$$T_{S} = n T_{b} [s]$$
 ; $R_{b} = \frac{1}{T_{b}} = \frac{n}{T_{S}} = n R_{S} [bps]$

Símbolo correspondiente a '0'

 s_0

 s_1

señal recibida

Símbolo correspondiente a '0'

Símbolo correspondiente a '1'

Promedio muestras: -10.5221

Medida de perfomance: P_{e_b}

sensibilidad es la menor potencia en entrada Rx (p. ej. antena) / cumpla con P_{e_b}

$$E_{0} = \int_{-\infty}^{\infty} |s_{0}(t)|^{2} dt$$

$$E_{1} = \int_{-\infty}^{\infty} |s_{1}(t)|^{2} dt$$

$$E_{b} = E_{0} P\{m_{0}\} + E_{1}P\{m_{1}\} = \frac{E_{0} + E_{1}}{2}$$
Símbolos (bits) equiprobables

Receptor óptimo:

$$v(t) = s_{i_f}(t) + n_f(t)$$
 $i \in \{0,1\}$

$$\operatorname{En} \, \mathbf{t} = 0 \colon \qquad v(0) = \begin{cases} s_{0_f}(0) + n_f(0) & \text{si se transmitió } s_0(t) \\ s_{1_f}(0) + n_f(0) & \text{si se transmitió } s_1(t) \end{cases} \qquad v(0) \sim \mathcal{N}(s_{0_f}(0), \sigma_n^2)$$

$$v(0) \sim \mathcal{N}(s_{1_f}(0), \sigma_n^2)$$

$$v(0) \sim \mathcal{N}(s_{1_f}(0), \sigma_n^2)$$

$$v(0) \sim \mathcal{N}(s_{1_f}(0), \sigma_n^2)$$

$$\sigma_n^2 = \int_{-\infty}^{\infty} S_{n_f n_f}(f) \, df = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df$$

$$P\{\text{error/transmiti } s_0\} = P\left\{s_{0_f}(0) + n_f(0) > K\right\} = P\left\{n_f(0) > K - s_{0_f}(0)\right\} = P\left\{\frac{n_f(0)}{\sigma_n} > \frac{K - s_{0_f}(0)}{\sigma_n}\right\} = Q\left(\frac{K - s_{0_f}(0)}{\sigma_n}\right)$$

$$P\{\text{error/transmiti } s_1\} = P\left\{s_{1_f}(0) + n_f(0) < K\right\} = 1 - P\left\{s_{1_f}(0) + n_f(0) > K\right\} = 1 - P\left\{n_f(0) > K - s_{1_f}(0)\right\} = 1 - P\left\{\frac{n_f(0)}{\sigma_n} > \frac{K - s_{1_f}(0)}{\sigma_n}\right\} = 1 - Q\left(\frac{K - s_{1_f}(0)}{\sigma_n}\right) = Q\left(\frac{s_{1_f}(0) - K}{\sigma_n}\right)$$

 $P\{error\} = P\{error/transmiti s_0\} P\{transmitir s_0\} + P\{error/transmiti s_1\} P\{transmitir s_1\}$

$$P\{\text{error}\} = P_{e_b} = Q\left(\frac{K - s_{0_f}(0)}{\sigma_n}\right) \frac{1}{2} + Q\left(\frac{s_{1_f}(0) - K}{\sigma_n}\right) \frac{1}{2}$$

$$K_{opt} = \frac{s_{0_f}(0) + s_{1_f}(0)}{2}$$

$$P_{e_b} = Q\left(\frac{s_{1_f}(0) - s_{0_f}(0)}{2\sigma_n}\right) \longrightarrow P_{e_b} \text{ mínima } \Rightarrow \left(\frac{s_{1_f}(0) - s_{0_f}(0)}{2\sigma_n}\right) \text{máximo}$$

$$s_d(t) \triangleq s_1(t) - s_0(t)$$

$$s_{d_f}(t) \triangleq s_{1_f}(t) - s_{0_f}(t)$$

$$s_{d_f}(t) = \{s_d * h\}(t) = \mathcal{F}^{-1}\{S_d(f) H(f)\} = \int_{-\infty}^{\infty} S_d(f) H(f) e^{j2\pi f t} df$$

Tenemos que maximizar $\frac{s_{d_f}(0)}{2\sigma_n}$ que es lo mismo que hacer máximo $SNR(0) \triangleq \frac{\left|s_{d_f}(0)\right|^2}{\sigma_n^2} = \frac{\left|\int_{-\infty}^{\infty} S_d(f) H(f) df\right|^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df}$

Utilizando la desigualdad de Cauchy-Schwarz: $SNR(0) \le \frac{2}{N_0} \frac{\int_{-\infty}^{\infty} |S_d(f)|^2 df}{\int_{-\infty}^{\infty} |H(f)|^2 df}$

$$SNR(0) \le \frac{2}{N_0} \int_{-\infty}^{\infty} |S_d(f)|^2 df$$
 la igualdad (máximo) se logra cuando $H(f) = \alpha S_d^*(f)$

FILTRO ADAPTADO

(matched filter / filtro casado)

$$H(f) = \alpha S_d^*(f)$$

$$h(t) = \alpha \ s_d^*(-t) = \alpha \ [s_1^*(-t) - s_0^*(-t)]$$

Causal: $h(t) = \alpha s_d(T_b - t)$

$$P_{e_b} = Q\left(\frac{s_{1_f}(0) - s_{0_f}(0)}{2\sigma_n}\right) = Q\left(\frac{\sqrt{\max\{SNR(0)\}}}{2}\right)$$

$$\max\{SNR(0)\} = \frac{2}{N_0} \int_{-\infty}^{\infty} |S_d(f)|^2 df = \frac{2}{N_0} \int_{-\infty}^{\infty} |s_d(t)|^2 dt = \frac{2}{N_0} E_{s_d}$$

$$P_{e_b} = Q\left(\sqrt{\frac{E_{s_d}}{2 N_0}}\right)$$

$$P_{e_b} = Q\left(\sqrt{\frac{E_{s_d}}{2 N_0}}\right)$$

$$E_{s_d} = \int_{-\infty}^{\infty} |s_d(t)|^2 dt = \int_{-\infty}^{\infty} s_d(t) \, s_d^*(t) \, dt = \int_{-\infty}^{\infty} [s_1(t) - s_0(t)] \, [s_1^*(t) - s_0^*(t)] \, dt = E_1 + E_0 - 2 \, \text{Re}\{r_{s_1 s_0}(0)\}$$

<u>Señalización antipodal</u>: $s_1(t) = -s_0(t)$ (para una P_{e_h} requerida y DEP de ruido dada, minimiza la E_b)

$$E_b = \frac{E_0 + E_1}{2} = E_0 = E_1$$

$$r_{s_1 s_0}(0) = \int_{-\infty}^{\infty} s_1(t) \ s_0^*(t) \ dt = -\int_{-\infty}^{\infty} |s_0(t)|^2 \ dt = -E_0 = -E_1$$

$$E_{S_d} = 4 E_b$$

 $r_{S_0S_1}(0) = r_{S_1S_0}^*(0)$

$$P_{e_b} = Q\left(\sqrt{\frac{2 E_b}{N_0}}\right)$$

Señalización ortogonal: $r_{s_1s_0}(\mathbf{0}) = \mathbf{0}$ (utilizamos la misma energía de bit que en el caso anterior) (implica fijar la potencia media de señal recibida)

$$E_{b} = \frac{E_{0} + E_{1}}{2}$$

$$r_{S_{1}S_{0}}(0) = 0$$

$$E_{S_{d}} = 2 E_{b}$$

$$P_{e_{b}} = Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$$

$$P_{e_b} = 10^{-5}$$
 $\frac{E_b}{N_0} = 9.6 \text{ dB}$ (antipodal) $\frac{E_b}{N_0} = 12.6 \text{ dB}$ (ortogonal)

Receptor óptimo:

Implementación con Filtro Adapado

 \widehat{m}

$$v(t) = \int_{-\infty}^{\infty} h(\tau)r(t-\tau) d\tau = \int_{-\infty}^{\infty} s_d(-\tau) r(t-\tau) d\tau$$
$$v(0) = \int_{-\infty}^{\infty} s_d(-\tau) r(-\tau) d\tau = \int_{-\infty}^{\infty} s_d(\tau) r(\tau) d\tau = r_{s_d r}(0)$$

 $r(t) \qquad v(t) \qquad t = 0 \qquad v(0)$ $S_d(t) \qquad K_{opt}$

Implementación con Correlador

Señal PAM

A la entrada del canal, el Tx envía la señal $X(t) = \sum_{n=-\infty}^{\infty} A_n \, p(t-nT_b)$ Señal PAM

Por ejemplo:

$$A_n \in \{-A, A\}$$
 (bipolar)

$$A_n \in \{0, A\}$$
 (unipolar)

PULSO NRZ

PULSO RZ

PULSO Manchester (Biphase-L)

Algunos formas de pulsos en banda base de duración finita

Espectro de señales PAM

la señal PAM
$$X(t) = \sum_{n=-\infty}^{\infty} A_n p(t - nT_s)$$

 A_n es una secuencia ESA: $E\{A_n\}=a$ y $R_{AA}[k]$ p(t) es una señal de energía por lo que el proceso X(t) es de potencia El tiempo de símbolo T_s en nuestro caso coincide con T_b

$$R_{XX}(t+\tau,t) = E\{X(t+\tau)X^*(t)\} = E\{\sum_{n=-\infty}^{\infty} A_n \ p(t+\tau-nT_s) \sum_{m=-\infty}^{\infty} A_m^* \ p^*(t-mT_s)\} =$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\{A_n A_m^*\} \ p(t+\tau-nT_s) \ p^*(t-mT_s) = \sum_{k=n-m}^{\infty} R_{AA}[k] \ \sum_{n=-\infty}^{\infty} p(t+\tau-nT_s) \ p^*(t-nT_s+kT_s)$$

 $R_{XX}(t+\tau,t)$ resulta periódica de período T_s por lo tanto X(t) no es ESA. Para calcular el espectro deberemos también promediar en el tiempo.

Espectro de señales PAM

$$< R_{XX} (t + \tau, t) > = \frac{1}{T_S} \sum_{k} R_{AA}[k] \int_{-\infty}^{\infty} p(\lambda + \tau) p^*(\lambda + kT_S) d\lambda = \frac{1}{T_S} \sum_{k} R_{AA}[k] r_{pp} (\tau - kT_S)$$

$$S_{XX}(f) = \mathcal{F}\{\langle R_{XX}(t+\tau,t) \rangle\} = \frac{1}{T_S} \sum_{k} R_{AA}[k] |P(f)|^2 e^{-j2\pi f k T_S} = \frac{|P(f)|^2}{T_S} S_{AA}(e^{j2\pi f T_S})$$

En caso de una secuencia de amplitudes no correlacionada:

$$R_{AA}[k] = \sigma_A^2 \, \delta[k] + a^2$$

$$S_{AA}(e^{j2\pi f T_S}) = \sigma_A^2 + \frac{a^2}{T_S} \sum_{k=-\infty}^{\infty} \delta(f - \frac{k}{T_S})$$

$$S_{XX}(f) = \frac{|P(f)|^2}{T_S} \left[\sigma_A^2 + \frac{a^2}{T_S} \sum_{k=-\infty}^{\infty} \delta\left(f - \frac{k}{T_S}\right) \right]$$

Espectro señales PAM

Ejemplo: Señal PAM. Forma de pulso NRZ, sistema binario antipodal $A_n \in \{-A, A\}$ (NRZ bipolar), símbolos equiprobables y no correlacionados entre sí.

símbolos equiprobables y no correlacionados entre sí.
$$a=E\{A_n\}=-A\ P\{A_n=-A\}+A\ P\{A_n=A\}=-\frac{A}{2}+\frac{A}{2}=0$$

$$\forall \text{Var}\{A_n\}=\sigma_A^2=E\{A_n^2\}=A^2$$

PULSO NRZ

$$S_{XX}(f) = \frac{|P(f)|^2}{T_s} \left[\sigma_A^2 + \frac{a^2}{T_s} \sum_{k=-\infty}^{\infty} \delta\left(f - \frac{k}{T_s}\right) \right] \qquad T_s = T_b$$

$$S_{XX}(f) = A^2 T_b \ sinc^2(T_b f)$$

Señales Pasabanda en sistemas binarios

BPSK

Puede analizarse como NRZ bipolar modulado por $\cos(2\pi f_p t)$

$$X(t) = \sum_{n=-\infty}^{\infty} A_n \ p(t - nT_b) \cos(2\pi f_p t) \qquad A_n \in \{-A, A\}$$

ASK (caso particular OOK)

Puede analizarse como NRZ unipolar modulado por $\cos(2\pi f_p t)$

$$X(t) = \sum_{n=-\infty}^{\infty} A_n p(t - nT_b) \cos(2\pi f_p t) \qquad A_n \in \{0, A\}$$

FSK

Puede analizarse como una señal NRZ bipolar modulada en FM

BPSK, ASK: DEP

Sea el proceso $Y(t) = X(t) \cos(2\pi f_p t + \theta)$

$$S_{YY}(f) = \mathcal{F}\{\langle R_{YY}(t+\tau,t) \rangle\}$$

 $S_{YY}(f) = \frac{1}{4} \left[S_{XX} \left(-(f + f_p) \right) + S_{XX}(f - f_p) \right]$

<u>Ejemplo: BPSK</u>

$$Y(t) = \sum_{n=-\infty}^{\infty} A_n \ p(t - nT_b) \cos(2\pi f_p t) \qquad A_n \in \{-A, A\} \qquad p(t) \text{ es NRZ}$$

$$A_n \in \{-A, A\}$$

$$S_{XX}(f) = A^2 T_b \ sinc^2(T_b f)$$

Calculado anteriormente (NRZ bipolar o binario antipodal con forma de pulso NRZ)

$$S_{YY}(f) = \frac{A^2 T_b}{4} sinc^2 \left(-T_b (f + f_p) \right) + \frac{A^2 T_b}{4} sinc^2 (T_b (f - f_p))$$

DEP unilateral

Receptor

El instante en que "miro" el valor es Si ahora transmitimos un bit cada T_b segundos, el receptor: estimado por el sistema de sincronismo de símbolo (en nuestro caso sincronismo de bit) v(t)v(0)Implementación con Filtro Adapado $t = nT_b$ Filtro Adaptado r(t) \widehat{m} $h(t) = s_d(-t)$ $K_{opt} \rightarrow$ $\cos(2\pi f_p t + \theta)$ El sistema de **sincronismo de portadora** se encarga de estimar la frecuencia y la fase de la portadora Implementación con Correlador v(0)r(t)v(t) $t = n T_b$ $_{C}nT_{b}$ (.) \widehat{m} $J_{(n-1)T_b}$ $K_{opt} \rightarrow$ $\cos(2\pi f_p t + \theta)) s_d(t)$

Cod. Diferencial / Trama (preámbulo)

Sincronismo de portadora: error de fase

Sabemos que si cometemos un error en la fase de la portadora de θ_{error} , la amplitud de la señal demodulada se modifica por $\cos(\theta_{error})$ por lo que ahora la E_b con error de fase en el sincronismo de portadora será:

$$E_b' = E_b \cos^2(\theta_{error})$$

Cómo se modifica la P_{e_h} por ejemplo para BPSK (pasabanda)

$$P_{e_b} = Q\left(\sqrt{\frac{2 E_b'}{N_0}}\right) = Q\left(\sqrt{\frac{2 E_b \cos^2(\theta_{error})}{N_0}}\right)$$

La degradación debida al error de fase, respecto a no tener error es:

$$D = -10\log(\cos^2(\theta_{error})) = -20\log(\cos(\theta_{error}))$$

Se realiza con la señal a la <u>salida del Filtro Adaptado</u> en el receptor (en banda base, luego de la demodulación). Mientras el Rx recibe un bit tras otro, todas las posibles salidas posibles observadas en un rango de 2T_b componen al diagrama. Veamos un ejemplo: señalización NRZ bipolar

Con un osciloscopio: observo la señal de salida del Filtro Adaptado durante dos tiempos de bit y la base de tiempo se sincroniza con la señal del sincronismo de bit (Ck de bit).

Con un osciloscopio: observo la señal de salida del Filtro Adaptado durante dos tiempos de bit y la base de tiempo se sincroniza con la señal del sincronismo de bit (Ck de bit).

Error en sincronismo de Bit

$$P_{e_b} = Q\left(\sqrt{\frac{k^2 2E_b}{N_0}}\right) \qquad k < 1$$

La degradación respecto al receptor óptimo es:

$$D = -10\log(k^2) \text{ [dB]}$$

Sin Ruido

Diagrama de ojo con ruido

SNR = 0dB

Diagrama de ojo con ruido

SNR = -20 dB

Comunicaciones digitales: Canales con BW limitado

Interferencia intersímbolo (ISI)

Interferencia intersímbolo (ISI)

Criterios de Nyquist

 $v(nT_b) = v[n] = \beta \ \delta[n]$

Criterios de Nyquist $V(e^{j2\pi f T_b}) = \frac{1}{T_b} \sum_{k=0}^{\infty} V\left(f - \frac{k}{T_b}\right) = \beta$

Las formas de pulso a la salida del filtro del receptor y de banda limitada que cumplan con los criterios de Nyquist, no producirán Interferencia Intersímbolo (ISI)

Ejemplo:

$$v(t) = \operatorname{sinc}(t/T_b)$$
$$V(f) = T_b \sqcap (T_b f)$$

$$V(e^{j2\pi fT_b}) = \frac{1}{T_b} \sum_{k=-\infty}^{\infty} V(f - \frac{k}{T_b}) = 1$$

 β cte

Coseno elevado (raised-cosine)

$$v_{CE}(t) = \frac{\cos\left(\alpha\pi t/T_b\right)}{1 - \left(\frac{2\alpha t}{T_b}\right)^2} \operatorname{sinc}(t/T_b)$$

$$V_{CE}(f) = \begin{cases} T_b \\ \frac{T_b}{2} \left\{ 1 + \cos \left[\frac{\pi T_b}{\alpha} (|f|) - \frac{1 - \alpha}{2T_b} \right] \right\} & \frac{1 - \alpha}{2T_b} \le |f| \le \frac{1 + \alpha}{2T_b} \\ 0 & |f| > \frac{1 + \alpha}{2T_b} \end{cases}$$

 α : factor de roll-off

$$0 \le \alpha \le 1$$

Coseno elevado (raised-cosine)

Coseno elevado (raised-cosine)

$$V(f) = P(f) H_c(f) H_{Rx}(f)$$

Si utilizamos el canal en la banda de paso, suponemos ganancia unitaria y no consideramos el retardo que produce => $H_c(f)$ = 1. Además, si diseñamos el Rx óptimo con el filtro adaptado al pulso Tx tenemos que $H_{Rx}(f) = P^*(f)$ entonces:

$$V(f) = P(f) P^*(f) = |P(f)|^2$$

Si queremos que v(t) sea coseno elevado, entonces el pulso p(t) deberá ser raíz de coseno elevado (root rised cosine).

Fuentes:

- Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc.
- Apuntes de E-0214 y de E-0223

