3.1)

Euklidische Distanzen:

$$d(\alpha, A) = \sqrt{(x_{\alpha} - x_{A})^{2} + (y_{\alpha} - y_{A})^{2}}$$

	A	B	C	D	E	F	G	Н
B	2,2	1	1	54	5,8	5,7	5	4,5
β	5,8	5,7	4,2	1,4	1	1	1,4	2,2
&	4	3,2	2	4	4,1	3,6	2,8	2,2

immer 2 = 5 R 2 - Achse night relevant

k = 3: ox → gesundes Genebe k:

β → Turnorgenebe

gr → Turnorgenebe

 $h = 7 : \alpha \rightarrow Tumorgenebe$ $\beta \rightarrow Tumorgenebe$ $\delta \rightarrow Tumorgenebe$

- je größer k gewählt wird, im Vergleich zur Probenanzahl, desto "falscher" wird das Ergebnis
- Problem: keine gleiche Anzahl an jew. verglichenen Gewebeproben (3x gesundes Gewebe und 5x Tumorgewebe) A wenn dann k>3 wird, muss der zu Wassifizierende Datenpunkt zum Tumorgewebe Zählen (wenn zuvor komplett zu gesundem Gewebe Zähle)
- -> außerdem: wenn relativ großes k gewählt wird (im Bezug auf Probengröße), werden Übereistimmungen mit Gewebegruppen winstlich geschaften