## Master CSI 2

2011-2012

Crypto avancée : feuille de TD 2

- Exercice 1.

a) Montrer que la formule booléenne  $x \vee y$  est réalisée (vaut 1) si et seulement si la formule

$$(x \lor y \lor z) \land ((x \lor y \lor \overline{z}))$$

l'est. On dira que les deux formules sont équivalentes.

b) Montrer que la formule  $x_1 \vee x_2 \vee x_3 \vee x_4$  est équivalente à la formule

$$(x_1 \vee x_2 \vee y) \wedge (x_3 \vee x_4 \vee \overline{y}).$$

c) Exhiber une transformation polynomiale f de SAT vers 3-SAT.

– EXERCICE 2. Une fonction booléenne est une fonction  $f:\{0,1\}^n \to \{0,1\}$ . Elle peut être représentée par une table, par exemple :

| $x_1$ | $x_2$ | $x_3$ | f |
|-------|-------|-------|---|
| 0     | 0     | 0     | 1 |
| 0     | 0     | 1     | 0 |
| 0     | 1     | 0     | 0 |
| 0     | 1     | 1     | 1 |
| 1     | 0     | 0     | 1 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 0 |

Un *circuit* de calcul est un graphe orienté, dont les sommets sont étiquetés par un des termes  $0, 1, \vee, \wedge, \neg, \mathbf{x}_1, \dots, x_n$ , «sortie». De plus,

- Les sommets étiquetés  $0, 1, x_i$  ont 0 comme degré rentrant.
- Les sommets étiquetés  $\neg$  ont 1 comme degré rentrant.
- Les sommet étiquetés  $\vee$ ,  $\wedge$  ont 2 comme degré rentrant.
- Il y a un unique sommet étiqueté «sortie», il a 1 comme degré rentrant, et 0 comme degré sortant.
  - a) Écrire un circuit qui calcule la fonction f donnée par la table ci-dessus.
  - b) Donner une procédure qui construit, à partir d'une table définissant une fonction booléenne f, un circuit calculant f. Que peut-on dire de la taille du circuit?

– EXERCICE 3. Il s'agit de montrer que le problème suivant

SUBSET SUM

I: des entiers  $N_1, \ldots, N_n$  et un entier S

Q: Existe-t-il  $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$  tel que  $\sum_{i=1}^n\varepsilon_iN_i=S$ ?

est NP-complet. On considère la transformation suivante, d'une instance de 3-SAT vers une instance de SUBSET SUM.

Soit une formule booléenne de la forme

$$f = C_1 \wedge \ldots \wedge C_k$$

sur l'ensemble de variables  $x_1, \ldots, x_\ell$ . On lui associe  $n = 2\ell + 2k$  entiers que l'on représentera par leur écriture décimale. Tout d'abord les  $2\ell$  entiers

$$Y_1, Z_1, \ldots, Y_\ell, Z_\ell$$

où

 $-Y_i = 10^{k+i} + \sum_{j \in I} 10^j$ , en convenant que I est l'ensemble des j tels que la variable  $x_i$  figure dans la clause j.

 $-Z_i = 10^{k+i} + \sum_{j \in J} 10^j$ , en convenant que J est l'ensemble des j tels que la variable  $\overline{x}_i$  figure dans la clause j.

On complète par les entiers  $G_1, H_1, \ldots, G_k, H_k$  où  $G_i = H_i = 10^i$ . L'entier S est défini par

$$S = \sum_{i=1}^{\ell} 10^{k+i} + 3\sum_{i=1}^{k} 10^{i}.$$

a) Écrire la transformation de la formule

$$(x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3).$$

On pourra représenter  $N_1 \dots N_n$  sous forme d'un tableau.

- b) Quel est le rapport entre un choix de valeurs de  $x_1, x_2, x_3$  satisfaisant f et un sous-ensemble de  $N_i$  sommant à S?
- c) Montrer que la transformation est une transformation polynômiale.
- EXERCICE 4. On considère le problème de décision

Recouvrement par des sommets :

- I: Un graphe G et un entier k
- Q: Existe-t-il un sous-ensemble A de k sommets tel que chaque arête du graphe soit incidente à un sommet de A?

À la formule booléenne suivante

$$F = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_3 \vee \overline{x}_4)$$

on associe le graphe



Généraliser pour trouver une transformation polynômiale de 3-SAT vers  $recouverment\ par\ de\ sommets.$