U3 Clustering: K-means algorithm

Index

- 1. Partitional clustering
- 2. Criterion sum of squared errors
- 3. K-means algorithm by Duda and Hart
- 4. Conventional K-means algorithm

1 Partitional clustering

Partitional clustering: given a dataset \mathcal{D} of N samples and a number of clusters K, the partitional clustering consists of optimizing some criterion function $J(\Pi)$ to evaluate the quality of any partition Π of the dataset into K clusters

$$\Pi^* = \mathop{\mathrm{argopt}}_\Pi J(\Pi)$$

Intractability: partitional clustering is in general an intractable problem since the number of partitions to explore grows exponentially with N and K (see Stirling numbers of the second kind)

Usual approximation: we use approximate algorithms to optimize a particular criterion such as the sum of squared errors

2 Criterion: sum of squared errors

Sum of squared errors (SSE): of a partition $\Pi = \{X_1, \dots, X_K\}$

$$J(\Pi) = \sum_{k=1}^K J_k \quad ext{with} \quad J_k = \sum_{oldsymbol{x} \in X_k} \lVert oldsymbol{x} - oldsymbol{m}_k
Vert_2^2 \quad ext{and} \quad oldsymbol{m}_k = rac{1}{|X_k|} \sum_{oldsymbol{x} \in X_k} oldsymbol{x}_k^2$$

Interpretation:

- Each cluster k is represented by its **centroid** or **mean** m_k
- ullet If $m{x}$ belongs to cluster k, $m{x}-m{m}_k$ is the **error vector** obtained by representing $m{x}$ with $m{m}_k$
- ullet The error associated with $m{x}$ is measured by the Euclidean norm of its error vector, $\|m{x}-m{m}_k\|_2$
- We call the sum of the squared errors of the cluster k, J_k , the **distortion** of cluster k
- The SSE criterion is the sum of the distortions of all clusters and is obviously a criterion to be minimized
- \bullet Ideally, we expect compact hyper-spherical clusters of similar size, around K well-separated averages
- If the natural partition of the data is different from that expected, it is likely that SSE minimization will not find it

```
Example: calculation of the SSE for \Pi=\{X_1=\{(1,7)^t,(4,2)^t,(4,6)^t\},X_2=\{(8,2)^t,(8,6)^t\}\}  m_1=(3,5)^t \qquad J_1=8+10+2=20   m_2=(8,4)^t \qquad J_2=4+4=8   J=J_1+J_2=28
```

```
In [1]: import numpy as np; np.set_printoptions(precision=2)
def SSE(X, y): # labels from 0 to K-1 for simplicity
    N, D = X.shape; K = np.max(y)+1; J = 0.0; m = np.zeros((K, D)); S = np.zeros(K).astype(int)
    for k in range(K):
        Xk = np.squeeze(X[np.where(y==k),:]); S[k] = Xk.shape[0];
        m[k] = Xk.mean(axis=0); J += np.square(Xk - m[k]).sum()
    return J, m, S
X = np.array([[1, 7], [4, 2], [4, 6], [8, 2], [8, 6]]); y = np.array([0, 0, 0, 1, 1])
J, m, S = SSE(X, y); print(f'J = {J:.2f} m = {m.reshape(1, -1)} S = {S}')

J = 28.00 m = [[3. 5. 8. 4.]] S = [3 2]
```

3 K-means algorithm by Duda and Hart

SSE increment when transferring a data sample: if a data x is transferred from cluster i to j, the SSE increment is

$$\Delta J = rac{|X_j|}{|X_j|+1} \|m{x} - m{m}_j\|_2^2 - rac{|X_i|}{|X_i|-1} \|m{x} - m{m}_i\|_2^2.$$

DH condition: should be transferred if $\Delta J < 0$, that is, if J is increased less if \boldsymbol{x} is moved into X_j than J is decreased by leaving \boldsymbol{x} in X_i

$$\|rac{|X_j|}{|X_j|+1}\|m{x}-m{m}_j\|_2^2 < rac{|X_i|}{|X_i|-1}\|m{x}-m{m}_i\|_2^2$$

K-means algorithm by Duda and Hart: for each data sample, find the transfer of least ΔJ and apply it if it satisfies DH

Input: an initial partition, $\Pi = \{X_1, \dots, X_K\}$

Output: an optimized partition, $\Pi^* = \{X_1, \dots, X_K\}$

Calculate means and ${\cal J}$

repeat

for all $oldsymbol{x}$

Let i be the cluster in which ${m x}$ is located Find a $j \neq i$ that minimizes $\triangle J$ by transferring ${m x}$ from i to j if $\triangle J < 0$: transfer ${m x}$ from i to j and update means and J

until no profitable transfer is found

Implementation: function for simple problems

```
In [2]: import numpy as np; np.set printoptions(precision=2, linewidth=np.inf)
        def kmeansDH(X, y, max iter=10, verbose=0):
            N = X.shape[0]; J, m, S = SSE(X, y); z = y.copy(); notransfer = 0
            for iter in range(max iter):
                for n in range(N):
                    x = X[n, :]: i = z[n]
                    if S[i] == 1: continue
                    D = np.square(x - m).sum(axis=1); Di = S[i] / (S[i] - 1.0) * D[i]
                    D = S / (S + 1.0) * D; D[i] = np.inf; j = np.argmin(D); Dj = D[j]; DJ = Dj - Di
                    if verbose > 0: print(f'{iter} {x} {Di:.2f} {Dj:.2f} ', end=" ")
                    if DJ < 0.0:
                        z[n] = i; S[i] -= 1; S[i] += 1; J += DJ; notransfer = 1
                        m[i] = m[i] - (x - m[i]) / S[i]; m[i] = m[i] + (x - m[i]) / S[i]
                        if verbose > 0: print(f'=> z = \{z\} m = {m.reshape(1, -1)} J = {J:.2f}')
                    else: print("=> no transfer"); notransfer += 1
                    if notransfer == N: break
                if notransfer == N: break
            return J, m, z
```

Example (cont.):
$$X_1 = \{ {m x}_1 = (1,7)^t, {m x}_2 = (4,2)^t, {m x}_3 = (4,6)^t \}$$
 $X_2 = \{ {m x}_4 = (8,2)^t, {m x}_5 = (8,6)^t \}$

\boldsymbol{x}	i	j	$rac{ X_i }{ X_i -1}\ oldsymbol{x}-oldsymbol{m}_i\ _2^2$	$rac{ X_j }{ X_j +1}\ oldsymbol{x}-oldsymbol{m}_j\ _2^2$	$\triangle J$	X_1	X_2	$oldsymbol{m}_1$	$oldsymbol{m}_2$	J
						$\{m{x}_1,m{x}_2,m{x}_3\}$	$\{oldsymbol{x}_4,oldsymbol{x}_5\}$	$(3,5)^t$	$(8,4)^t$	28
$oldsymbol{x}_1$	1	2	$rac{3}{2} \cdot 8 = 12$	$\frac{2}{3} \cdot 58 = 38.67$	$\frac{80}{3} = 26.67$					
$oldsymbol{x}_2$	1	2	$rac{3}{2}\cdot 10=15$	$rac{2}{3}\cdot 20=13.33$	$-rac{5}{3} = -1.67$	$\{oldsymbol{x}_1,oldsymbol{x}_3\}$	$\{oldsymbol{x}_2,oldsymbol{x}_4,oldsymbol{x}_5\}$	$\left(\frac{5}{2},\frac{13}{2}\right)^t$	$\left(\frac{2}{3},\frac{10}{3}\right)^t$	26.33
\boldsymbol{x}_3	1	2	$\frac{2}{1} \cdot \frac{10}{4} = 5$	$\frac{3}{4} \cdot \frac{128}{9} = 10.67$	$\frac{17}{3} = 5.67$					
$oldsymbol{x}_4$	2	1	$\frac{3}{2} \cdot \frac{32}{9} = 5.33$	$\frac{2}{3} \cdot \frac{101}{2} = 33.67$	$\frac{85}{3} = 28.33$					
$oldsymbol{x}_5$	2	1	$\frac{3}{2} \cdot \frac{80}{9} = 13.33$	$\frac{2}{3} \cdot \frac{61}{2} = 20.33$	7					
$oldsymbol{x}_1$	1	2	$\frac{2}{1} \cdot \frac{5}{2} = 5$	$\frac{3}{4} \cdot \frac{401}{9} = 34.17$	$rac{175}{6} = 29.17$					

```
In [3]: X = np.array([[1, 7], [4, 2], [4, 6], [8, 2], [8, 6]]); y = np.array([0, 0, 0, 1, 1])
    J, m, z = kmeansDH(X, y, max_iter=3, verbose=1)
    print(f'{z} {m.reshape(1, -1)} {J:.2f}')

0 [1 7] 12.00 38.67 26.67 => no transfer
0 [4 2] 15.00 13.33 -1.67 => z =[0 1 0 1 1] m = [[2.5 6.5 6.67 3.33]] J = 26.33
0 [4 6] 5.00 10.67 5.67 => no transfer
0 [8 2] 5.33 33.67 28.33 => no transfer
0 [8 6] 13.33 20.33 7.00 => no transfer
1 [1 7] 5.00 34.17 29.17 => no transfer
```

[0 1 0 1 1] [[2.5 6.5 6.67 3.33]] 26.33

4 Conventional K-means algorithm

Condition for conventional algorithm: $m{x}$ should be transferred from cluster i to j if

$$\|m{x}-m{m}_j\|_2^2 < \|m{x}-m{m}_i\|_2^2$$

Relation to the DH condition: the conventional one is sufficient (but not necessary; see example)

$$\|rac{|X_j|}{|X_j|+1}\|oldsymbol{x}-oldsymbol{m}_j\|_2^2 < \|oldsymbol{x}-oldsymbol{m}_j\|_2^2 < \|oldsymbol{x}-oldsymbol{m}_j\|_2^2 < \|oldsymbol{x}-oldsymbol{m}_i\|_2^2 < rac{|X_i|}{|X_i|-1}\|oldsymbol{x}-oldsymbol{m}_i\|_2^2$$

Conventional K-means algorithm:

Input: an initial partition, $\Pi = \{X_1, \dots, X_K\}$

Output: an optimized partition, $\Pi^* = \{X_1, \dots, X_K\}$

repeat

Calculate the mean of each clusters

Reclassify the data according to the nearest mean

until no data is reclassified

Implementation: function for simple problems

Example (cont.): $X_1 = \{ \boldsymbol{x}_1 = (1,7)^t, \boldsymbol{x}_2 = (4,2)^t, \boldsymbol{x}_3 = (4,6)^t \}$ $X_2 = \{ \boldsymbol{x}_4 = (8,2)^t, \boldsymbol{x}_5 = (8,6)^t \}$

$oldsymbol{x}$	i	j	$\ oldsymbol{x}-oldsymbol{m}_i\ _2^2$	$\ oldsymbol{x} - oldsymbol{m}_j\ _2^2$	X_1	X_2	m_1	m_2	J
					$\{oldsymbol{x}_1,oldsymbol{x}_2,oldsymbol{x}_3\}$	$\{oldsymbol{x}_4,oldsymbol{x}_5\}$	$(3,5)^t$	$(8,4)^t$	28
$oldsymbol{x}_1$	1	2	8	58					
$ m{x}_2 $	1	2	10	20					
$ m{x}_3 $	1	2	2	20					
$oldsymbol{x}_4$	2	1	34	4					
$oldsymbol{x}_5$	2	1	26	4					

```
In [5]: X = np.array([[1, 7], [4, 2], [4, 6], [8, 2], [8, 6]]); y = np.array([0, 0, 0, 1, 1])
J, m, z = kmeans(X, y, max_iter=1, verbose=1)
print(f'{z} {m.reshape(1, -1)} {J:.2f}')
0 [1 7] 8.00 58.00 => no transfer
```

- 0 [4 2] 10.00 20.00 \Rightarrow no transfer 0 [4 6] 2.00 20.00 \Rightarrow no transfer
- $0 [8 2] 4.00 34.00 \Rightarrow \text{no transfer}$
- 0 [8 6] 4.00 26.00 => no transfer [0 0 0 1 1] [[3. 5. 8. 4.]] 28.00

U3 Clustering: K-means algorithm

2023_01_26_Question_4: We have a partition of a 3-dimensional dataset into a given number of clusters, $C \geq 2$. Consider the transfer of the data $\boldsymbol{x} = (3,6,4)^t$ from one cluster j to another $i,j \neq i$. Cluster j is known to contain 3 data samples (including \boldsymbol{x}) and the cluster i contains 3. Likewise, it is known that the mean of cluster j is $\boldsymbol{m}_j = (3,3,2)^t$ and that of i, $\boldsymbol{m}_i = (7,6,9)^t$. If said transfer is carried out, there will be an increase in the sum of quadratic errors, ΔJ , such that:

- 1. $\Delta J < -70$
- 2. $-70 \le \Delta J < -30$
- 3. $-30 \le \Delta J < 0$
- 4. $\Delta J \geq 0$

Solution: option 4 since $\Delta J=11.2$

2023_01_17_Question 7: The figure below shows a partition of 6 two-dimensional points into two clusters, \circ and \bullet :

```
import numpy as np; import matplotlib.pyplot as plt;
fig = plt.figure(figsize=(5, 1)); plt.xlim([-.3, 10.3]); plt.ylim([-.3, 2.3])
plt.xticks(np.arange(0, 11)); plt.yticks(np.arange(0, 3)); plt.grid()
X = np.array([[1,0], [1,1], [4,0], [8,1], [9,0], [9,2]])
y = np.array([1, 1, 1, 2, 2, 2])
plt.scatter(*X.T, c=y, cmap=plt.cm.binary, edgecolors='black');
```


If we transfer the data sample $(1,0)^t$ to the other cluster, there is a variation of the sum of squared errors (SSE), $\Delta J = J - J'$ (SSE after exchange minus SSE before the exchange), such that:

- 1. $\Delta J < -7$
- 2. $-7 \le \Delta J < 0$
- 3. $0 \le \Delta J < 7$
- 4. $\Delta J \geq 7$

Solution: option 4 since $\Delta J = 52.5 - 9.3 = 43.2$

2022_01_27_Question 6: The figure below shows a partition of 6 two-dimensional points into two clusters, ○ and •:

```
In [1]: import numpy as np; import matplotlib.pyplot as plt;
fig = plt.figure(figsize=(5, 1)); plt.xlim([-.3, 10.3]); plt.ylim([-.3, 2.3])
plt.xticks(np.arange(0, 11)); plt.yticks(np.arange(0, 3)); plt.grid()
X = np.array([[2,0], [4,1], [6,0], [7,1], [9,2], [10,1]])
y = np.array([1, 1, 2, 1, 2, 2])
plt.scatter(*X.T, c=y, cmap=plt.cm.binary, edgecolors='black');
```


If we exchange clusters the data samples $(10,1)^t$ and $(7,1)^t$, a variation of the sum of squared errors (SSE) occurs, $\Delta J = J - J'$ SSE after exchange minus SSE before exchange), such that:

- 1. $\Delta J < -7$
- 2. $-7 \le \Delta J < 0$
- 3. $0 \le \Delta J < 7$
- 4. $\Delta J \geq 7$

Solution: option 4 since $\Delta J = 42.0 - 24.0 = 18.0$