2022 秋季矩阵大作业 A

姓名

学号

一. 判断正误(20分)(填 √ 或×)
(1) $rank(A^{H}A) = rank(AA^{H}) = rank(A)$ ()
(2) 方阵 A 的特征根 λ ,谱半径 $\rho(A)$ 满足 $ \lambda \le \rho(A) \le A _1$ ()
(3)设 $A = (a_{ij})_{m \times n}$ 则有迹公式: $tr(A^H A) = tr(AA^H) = \sum a_{ij} ^2$ ()
(4) $\stackrel{\text{H}}{=}$ rank $(A) = 1$, $\text{M} A^{+} = \frac{1}{tr(A^{H}A)} A^{H} = \frac{1}{\sum a_{ij} ^{2}} A^{H}$ ()
(5)设 $A = A_{n \times p}, B = B_{p \times n}$,则 AB , BA 有相同的非 $\mathbf 0$ 特征根(
(6) 若 $A = \begin{pmatrix} 0 & A_1 \\ A_2 & 0 \end{pmatrix}$,则 $A^+ = \begin{pmatrix} 0 & A_1^+ \\ A_2^+ & 0 \end{pmatrix}$ ()
(7)若B是列满秩(高阵), C是行满秩,则 $B^+ = (B^H B)^{-1}B^H$, $C^+ = C^H (CC^H)^{-1}$ ()
(8) 若 $A = BC$ 是满秩分解(高低分解),则 $A^+ = C^+B^+$ ()
(9) 设 $A = A_{m \times p}$ 为高阵,且有 QR 分解 $A = QR$, Q 为半优阵, $R = R_{p \times p}$ 可逆,则
$A^{+} = R^{+}Q^{+} = R^{-1}Q^{H} $
(10)若 A 是 酉阵 ($A^{H}A = AA^{H} = I$),则 $A^{+} = A^{-1} = A^{H}$ ()
(11)若 A 为半优阵($A^{H}A = I$),则 $A^{+} = A^{H} \perp \!\!\! \perp A^{+}A = I$ ()
(12) 若 A^{H} 为半优阵($AA^{H} = I$),则 $A^{+} = A^{H}$ 且 $AA^{+} = I$ ()
(13) 若 $ \mathbf{x}_0 = A^+ \mathbf{b} $,则 $ A^H A \mathbf{x}_0 = A^H \mathbf{b} - $ 定成立(
(14) A, B 是任意矩阵,则 $(A \otimes B)^H = A^H \otimes B^H$, $(A \otimes B)^+ = A^+ \otimes B^+$ (
(15) n 阶 Hermite 阵 $A(A^H = A)$ 的特征根 $\lambda_1, \dots, \lambda_n$ 全为实数 ()
(16) 若 A 是正规阵,则 存在酉矩阵 P 使 $P^HAP = D$ 为对角阵.
(17) 正规阵 A 特征根为 $\{\lambda_1, \cdots, \lambda_n\}$,则它的全体奇异值为 $\{ \lambda_1 , \cdots, \lambda_n \}$ ()
(18) <mark>许尔定理说:</mark> 若 A 是 n 阶方阵,则存在酉阵 P 使 $P^H AP = D$ 为上三角阵 ()

- (19) 若 Ax=b 无解(不相容),则 $A^H Ax=A^H b$ 也无解(不相容)
- (20) I 是单位阵,则存在相容的矩阵范数 $\| \bullet \|$, 使得 $0 < \| I \| < 1$ ()

二. 化简与计算

1.
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$, 写出张量积 $A \otimes B$ 的全体特征根:

2.已知
$$A^2 = A$$
,化简 $e^{tA} = I + tA + \frac{t^2 A^2}{2} + \frac{t^3 A^3}{3!} + \dots = ?$

3.设
$$A$$
 的 QR 分解是 $A = QR$, 其中 $Q^HQ = I$, 计算 Q^HA

4. 设
$$A = \begin{pmatrix} 1 & 2i \\ i & 1 \end{pmatrix}$$
, $(i^2 = -1)$ 求 **QR** 分解 $A = QR$

三. 估计
$$A = \begin{pmatrix} 2 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 4 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & 6 & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 9 \end{pmatrix}$$
 的谱半径 $\rho(A)$ 范围;证明 $\det(A) \ge \frac{13}{4} \times \frac{21}{4} \times \frac{33}{4}$.
 A 是否为单纯阵 (相似于对角阵)?

四. 计算

1.设
$$A = \begin{pmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, 求 $Ax = \beta$ 最佳极小二乘解或极小范数解.

2. 设
$$A = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$$
,化简: $A^2 - A$,且求 e^{tA}

五. 计算

1.设
$$A = \begin{pmatrix} 13 & 12 \\ 12 & 13 \end{pmatrix}$$
,求一个 Hermite 矩阵 B ,使 $A = B^2$

2.求
$$A = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$
的奇异值与奇异值分解 **SVD**.

六.设 A 为 n 阶**实的反对称阵** $A^H = -A \in \mathbb{R}^{n \times n}$

- (1)问: $\frac{A}{i}$ 是否**为 Hermite 阵?** 且 $\frac{A}{i}$ 的特征根 $\{t_1, \dots, t_n\}$ 是否都为实数?
- (2)证明 A 的特征根必为纯虚数(或 0),可记为 $\{it_1,it_2,\cdots,it_n\}$
- (3)证明 $|\det(A+I)| \ge 1$; 问 $\det(A+I) \ge 1$ 是否成立?

七. 设 n 阶**方阵** $A \in \mathbb{C}^{n \times n}$, $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, α_j 为 A 中列向量.

证明 $|\det(A)| \le |\alpha_1| |\alpha_2| \cdots |\alpha_n|$,其中 $|\alpha_j|$ 为模长.

(提示 1: $\det(A) \neq 0$ 时,即 A 可逆时,对 A 用 QR 分解)