INE5607 – Organização e Arquitetura de Computadores

Abstrações, Tecnologias e Organização do Software e do Hardware

Aula 3: Semicondutores e processo de fabricação

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Indústria de semicondutores
- Transistor MOS
- Do transistor ao processador
- Processo de fabricação
- Considerações finais

INDÚSTRIA DE SEMICONDUTORES

- A tecnologia de circuitos integrados (chips) determina a velocidade de evolução dos computadores.
- Chips são o produto da indústria de semicondutores

- Dois tipos de empresas:
 - IDMs (Integrated Device Manufacturer)
 - Fabless Companies (terceirizam fabricação)

 Top 10 das empresas de semicondutores em 2010:

	Empresa	Receita em 2010 (USD)
1	Intel	\$43.623.000.000
2	Samsung Electronics – Semi Division	\$33.266.160.000
3	Texas Instruments	\$13.966.000.000
4	Toshiba Semiconductor	\$13.199.427.000
5	Renesas Electronics – Semi Division	\$11.813.557.000
6	Hynix Semiconductor	\$10.692.779.000
7	STMicroelectronics	\$10.346.000.000
8	Sony Electronics – Semi & Component Divisions	\$9.211.049.000
9	Micron Technology	\$8.994.000.000
10	QUALCOMM – QCT Division	\$7.204.000.000

http://www.gsaglobal.org/2011/01/semiconductor-fabless-facts/

Top 10 das Fabless Companies em 2010:

	Empresa	Receita em 2010 (USD)
1	QUALCOMM – QCT Division	\$7.204.000.000
2	Broadcom – Product Division	\$6.589.270.000
3	Advanced Micro Devices (AMD)	\$6.494.000.000
4	MediaTek	\$3.909.158.000
5	Marvell Semiconductor	\$3.611.893.000
6	NVIDIA	\$3.543.309.000
7	SanDisk – OEM Division	\$2.776.800.000
8	LSI	\$2.570.047.000
9	Xilinx	\$2.310.613.000
10	ST-Ericsson	\$2.293.000.000

http://www.gsaglobal.org/2011/01/semiconductor-fabless-facts/

http://www.gsaglobal.org/2011/01/semiconductor-fabless-facts/

TRANSISTOR MOS

 Nos sistemas digitais, diferentes níveis lógicos são representados por diferentes valores ou faixas de tensão elétrica

- Para manipular esse bits, os transistores são utilizados
- Transistor MOS = MOSFET = MOS Field-Effect Transistor
 - MOS = Metal-oxide-semiconductor
 - Tipos: nMOS e pMOS

S: Source

D: Drain

G: Gate

- Um transistor precisa fazer três coisas bem
 - Deixar passar o máximo de corrente possível quando ligado
 - Active current
 - Deixar o mínimo de corrente passar quando desligado
 - Leakage current
 - Trocar entre estados o mais rápido possível

Estrutura do transistor nMOS:

Estrutura do transistor nMOS:

- Funcionamento do transistor nMOS:
 - Considerando B ligado em gnd (0 volts):
 - Se uma tensão igual a zero é aplicada em G, não há circulação de corrente entre S e D

- Funcionamento do transistor nMOS:
 - -Considerando B ligado em gnd (0 volts):
 - Se Vcc (1) é aplicada em G, pode haver circulação de corrente entre S e D

- Funcionamento do transistor nMOS:
 - De forma muito simplificada: transistor nMOS entra em condução quando a tensão em G é Vcc (1) e fica em aberto quando a tensão em G é gnd (0)
 - Funciona como uma chave.

Estrutura do transistor pMOS:

- Funcionamento do transistor pMOS:
 - De forma muito simplificada: transistor
 pMOS entra em condução quando a tensão em G é gnd (0) e fica em aberto quando a tensão em G é Vcc (1)
 - Funciona como uma chave.

Resumo

nMOS:

pMOS:

- Tri-Gate Transistor
 - Tecnologia Intel
 - 3D

Traditional Planar Transistor

High-k Dielectric Source Silicon Substrate

22 nm Tri-Gate Transistor

Tri-Gate transistors can have multiple fins connected together to increase total drive strength for higher performance

DO TRANSISTOR AO PROCESSADOR

 Os transistores são usados para montar portas lógicas

- Os transistores são usados para montar portas lógicas
 - Exemplo 2: porta NÃO-E (NAND)

Α	В	Saída
0	0	1
0	1	1
1	0	1
1	1	0

 Os transistores são usados para montar portas lógicas

– Exemplo 3: porta E (AND)

 A partir de portas lógicas básicas (E, OU, NÃO, etc), é possível montar uma infinidade de funções menos simples

 Exemplo: um somador-subtrator de números de N bits

- Circuitos mais complexos podem então ser montados:
 - Exemplo: Unidade Lógico-Artimética

- Circuitos mais complexos podem então ser montados:
 - Exemplo: Unidade Lógico-Artimética

C1	CO	operação
0	0	S = A + B
0	1	S = A - B
1	0	S = A AND B
1	1	S = A OR B

- Composição de sistemas
 - Exemplo: datapath de um processador

 Praticamente tudo no datapath é baseado em portas lógicas

 Praticamente tudo no datapath é baseado em portas lógicas

– Cada um dos registradores:

– Cada um dos flip-flops:

• Resultado:

PROCESSO DE FABRICAÇÃO

Processo de fabricação

Litografia

http://www.tecmundo.com.br/processadores/59510-litografia-feito-

Processo de fabricação

Litografia

http://www.tecmundo.com.br/processadores/59510-litografia-feitoprocessador-infografico.htm

Processo de fabricação

Litografia

http://www.tecmundo.com.br/processadores/59510-litografia-feito-

CONSIDERAÇÕES FINAIS

Considerações finais

- Semicondutores
 - Transistores
 - nMOS e pMOS
 - Portas lógicas
 - Circuitos complexos

Considerações finais

- Próxima aula
 - Avaliação de desempenho

INE5607 – Organização e Arquitetura de Computadores

Abstrações, Tecnologias e Organização do Software e do Hardware

Aula 3: Semicondutores e processo de fabricação

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

