ROBOTICA

PRIMER PARCIAL

PRUEBA ESCRITA (70 %)				
Nombre:	Código:	Resultado:		

- 1. (0.5) Con sus palabras:
 - a. ¿Qué es un robot?
 - b. De ejemplos de actuadores, sensores y elementos terminales en robots
- 2. (1.0) Un sistema F_{noa} ha sido girado 90° alrededor del eje X y posteriormente trasladado por el vector p_{xvz}(8, -4, 12). Calcule las coordenadas R_x, R_y y R_z, del vector R con coordenadas R_{noa}(-3, 4, -11). <u>Use las</u> matrices de transformación
- 3. (1.5) Partiendo de que se está trabajando en el plano XY (z=0) y utilizando la información disponible en la siguiente figura determine:

- a. (0.5) La Matriz de transformación ^oM_a
- b. (0.5) La Matriz de transformación ^aM_b
- c. (0.5) Las coordenadas del punto °P=[1, 2, 0, 1]^T con respecto a los marcos {a} y {b}, es decir ^aP y ^bP, respectivamente.
- 4. (2.0) Un robot está descrito por los siguientes parámetros de Denavit-Hartenberg. (Nota: Todas las unidades están en metros o radianes

	θ	d	а	α
1	0	q1	0.3	0
2	q2	0.35	0	π/2
3	q3	0	0.25	0
4	q4	0	0.25	0

- a. (1.0) Teniendo en cuenta el algoritmo de Denavit-Hartenberg. Dibuje el robot y en cada una de las articulaciones los respectivos marcos.
- b. (1.0) A partir de la Matriz de transformación ⁰M₄: obtenga expresiones matemáticas que permitan, para cualquier valor de q1, q2, q3 o q4, calcular las componentes "ax", "ay" y "az" del vector unitario "a" del marco ubicado en la punta del robot.