ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{DD}=20$ V, $R_g=2$ k Ω , $R_I=450$ k Ω , $R_2=100$ k Ω , $R_{SI}=1$ k Ω , $R_{S2}=1$ k Ω , $R_D=8$ k Ω i $R_T=12$ k Ω . Parametri n-kanalnog MOSFET-a su: K=5 mA/V², $U_{GS0}=1$ V i $\lambda=0,005$ V⁻¹.

- a) Odrediti statičku radnu točku tranzistora $(I_{DQ}, U_{DSQ}, U_{GSQ})$, te strminu i dinamički otpor u radnoj točki. **Provjeriti u kojem području rada radi tranzistor**. Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja (2 boda).
- b) Nacrtati nadomjesnu shemu, te izvesti izraz i izračunati naponska pojačanja $A_V = u_{iz}/u_{ul}$ i $A_{Vg} = u_{iz}/u_g$ (4 boda).
- c) Izračunati ulazni otpor R_{ul} te izvesti i izračunati izlazni otpor R_{iz} (2 boda).

ZADATAK 2. Silicijski *pnp* tranzistor ima homogene koncentracije primjesa u emiteru i bazi iznosa $N_{AE} = 2 \cdot 10^{18}$ cm⁻³ i $N_{DB} = 2 \cdot 10^{16}$ cm⁻³. Pokretljivosti manjinskih nosilaca su $\mu_{pB} = 280$ cm²/Vs i $\mu_{nE} = 480$ cm²/Vs. Efektivna širina baze je 1 μm, a emitera 1,7 μm. Širine baze i emitera su puno manje, a širina kolektora puno veća od difuzijskih duljina manjinskih nosilaca. Vrijeme života šupljina u bazi je $\tau_{pB} = 0,4$ μs. Površina tranzistora je 2 mm². Naponi na spojevima su $U_{BE} = -0,55$ V i $U_{CB} = -3$ V. Pretpostaviti T = 300 K i $I_{CB0} = 1$ pA.

- a) Skicirati raspodjelu manjinskih nosilaca u tranzistoru ($N_{AC} < N_{DB} < N_{AE}$) (2 boda).
- b) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora (5 bodova).
- c) Izračunati faktor injekcije, te faktore pojačanja α i β (1 bod).

ZADATAK 3. Za sklop na slici zadano je R_E =2,5 k Ω , R_C = R_T =3 k Ω , R_G =1 k Ω , U_{CC} =12 V, U_{EE} =6 V. Parametri tranzistora su $\beta \approx h_{fe} = 100$ i $U_{\gamma} = 0,7$ V. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature je U_T = 25 mV.

- a) Odrediti statičku radnu točku i dinamički otpor r_{be} (2 **boda**).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu. Odrediti izmjenične komponente signala i_{ul} , u_{iz} te i_{iz} ako je napon generatora signala $u_g(t)=10 \sin{(\omega t)}$ mV (**6 bodova**).

ZADATAK 4. Ulazni otpori operacijskih pojačala su beskonačno veliki, a njihova pojačanja A_1 i A_2 su prema slici.

- a) Odrediti izraz za izlazni napon U_{IZ1} kao funkciju I_0 , R_1 , R_2 , A_1 i A_2 (2 boda).
- b) Odrediti izraz za izlazni napon U_{IZ2} kao funkciju I_0 , R_1 , R_2 , A_1 i A_2 (2 boda).
- c) Izračunati vrijednosti U_{IZ1} i U_{IZ2} ukoliko su $R_1 = 100 \Omega$, $R_2 = 200 \Omega$, $A_1 = 10^4$, $A_2 = 2 \cdot 10^4$ i $I_0 = 1 \text{ mA } (\mathbf{2 \ boda})$.

PITANJA

- 1. Za sklop prikazan na slici vrijedi tvrdnja (2 boda):
 - a) naponsko pojačanje je negativno i manje od jedan,
 - b) naponsko pojačanje je negativno i veće od jedan,
 - c) naponsko pojačanje je pozitivno i manje od jedan,
 - d) naponsko pojačanje je pozitivno i veće od jedan,
 - e) naponsko pojačanje je pozitivno i puno veće od jedan.

2. Koju logičku funkciju ostvaruje CMOS sklop na slici (2 boda)?

- a) Y = A(B+D) + CE
- b) niti jedan od odgovora
- c) $Y = \overline{(A+BD)(C+E)}$
- d) $Y = \overline{A(B+D) + CE}$
- e) Y = (A + BD)(C + E)

3. Izlazne karakteristike bipolarnog tranzistora prikazane su na slici. U kakvom su odnosu efikasnosti emitera γ i transportni faktori β^* u točkama A i B (2 boda)?

- a) $\gamma_A > \gamma_B$; $\beta_A^* > \beta_B^*$
- b) $\gamma_A < \gamma_B$; $\beta_A^* > \beta_B^*$
- c) $\gamma_A < \gamma_B$; $\beta_A^* < \beta_B^*$
- d) $\gamma_A = \gamma_B$; $\beta_A^* > \beta_B^*$
- e) $\gamma_A > \gamma_B$; $\beta_A^* = \beta_B^*$

4. Za sklop na slici vrijedi (**2 boda**):

- a) radna točka tranzistora je stabilizirana, u_{iz} i u_{ul} su u protufazi,
- b) radna točka tranzistora nije stabilizirana, u_{iz} i u_{ul} su u fazi.
- c) radna točka tranzistora nije stabilizirana, u_{iz} i u_{ul} su u protufazi,
- d) radna točka tranzistora je stabilizirana, u_{iz} i u_{ul} su u fazi,
- e) radna točka tranzistora je stabilizirana, u_{iz} =0, fazni odnos se ne može odrediti.

5. Zajednički i diferencijski napon diferencijskog pojačala sa slike su $u_z = -8\sin\omega t \text{ mV}$ i $u_d = +4\sin\omega t \text{ mV}$. Koliki su naponi u_{g1} i u_{g2} (2 boda)?

- a) $u_{g1} = -12\sin\omega t \text{ mV}$ i $u_{g2} = -4\sin\omega t \text{ mV}$
- b) $u_{g1} = 0\sin\omega t \text{ mV}$ i $u_{g2} = +8\sin\omega t \text{ mV}$
- c) $u_{g1} = -10\sin\omega t \text{ mV}$ i $u_{g2} = -6\sin\omega t \text{ mV}$
- d) $u_{g1} = +6\sin\omega t \text{ mV}$ i $u_{g2} = +10\sin\omega t \text{ mV}$
- e) $u_{g1} = +4\sin\omega t \text{ mV}$ i $u_{g2} = +12\sin\omega t \text{ mV}$

- **6.** Koji uvjet mora zadovoljavati otpor R_B u sklopu na slici da bi osigurao rad tranzistora T_I u zasićenju. Zadano je U_{CC} = 5 V, U_{CEzas} = 0,2 V, U_{BEzas} = 0,8 V, R_C = 3 kΩ, β može imati vrijednosti od 80 do 120 (**2 boda**)?
 - a) $R_B < 259.5 \text{ k}\Omega$
 - b) $R_B < 207 \text{ k}\Omega$
 - c) $R_B < 210 \text{ k}\Omega$
 - d) $R_B < 315 \text{ k}\Omega$
 - e) $R_B < 312 \text{ k}\Omega$

7. Ako se otpornik R_I smanji za 5% što će se dogoditi s frekvencijom izlaznog napona u_{iz} (2 boda)?

- a) povećati će se 5%
- b) smanjiti će se 5%
- c) smanjiti će se β ·5%
- d) ostati će nepromijenjena
- e) povećati će se β ·5%