Solution for HW 1

- 1. (a). It is obvious that $\emptyset \in \mathcal{F}$. Take $A \in \mathcal{F}$, then $\exists n \in \mathbb{N} \text{ s.t. } A \in \mathcal{F}_n$. This implies $A^c \in \mathcal{F}_n \subset \mathcal{F}$. Now take $B \in \mathcal{F}$, then $\exists m \in \mathbb{N} \text{ s.t. } B \in \mathcal{F}_m$. We have $A \cup B \in \mathcal{F}_{m \vee n}$ since $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is increasing. Therefore, \mathcal{F} is a field. (b). Consider $\Omega = \mathbb{N}$ and $\mathcal{F}_n = \sigma(\{k\}; k \leq n)$ (i.e. all the subsets of $\{1, \dots, n\}$ and their complements) : $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is increasing. Observe that $\{2n\} \in \mathcal{F}_{2n} \subset \mathcal{F} \text{ but } 2\mathbb{N} \notin \mathcal{F}$.
- **Remark**: If you feel this question boring, think of a more challenging one: If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is strictly increasing σ -fields, then $\cup \mathcal{F}_n$ is necessarily not a σ -field.
- **2.** Denote \mathcal{G} the class of the sets mentioned in the problem. We would like to show that $\mathcal{F}(\mathcal{A}) = \mathcal{G}$. It's straightforward that any field containing \mathcal{A} contains \mathcal{G} (closed under complement, finite intersection and union). Thus $\mathcal{G} \subset \mathcal{F}(\mathcal{A})$. It is enough to prove that \mathcal{G} itself is a field. Observe that $(\bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij}) \cap (\bigcup_{k=1}^p \bigcap_{l=1}^{q_k} A_{kl}) = \bigcup_{i \leq m,k \leq p} (\bigcap_{j=1}^{n_i} A_{ij} \bigcap_{l=1}^{q_k} A_{kl})$: closed under finite intersection. In addition, $(\bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij})^c = \bigcap_{i=1}^m \bigcup_{j=1}^{n_i} A_{ij}^c$ and $\bigcup_{j=1}^{n_i} A_{ij}^c = \bigcup_{j=1}^{n_i} (A_{ij}^c \bigcap_{k=1}^{j-1} A_{ik})$. We have thus proved the desired result.
- 3. Denote $\mathcal{F} = \cup \sigma(\mathcal{C})$ where \mathcal{C} runs over the set of all countable subsets of \mathcal{A} . The question consists in proving that $\mathcal{F} = \sigma(\mathcal{A})$. It is obvious that $\mathcal{F} \subset \sigma(\mathcal{A})$. Thus it suffices to show that \mathcal{F} is a σ -field. Take $A \in \mathcal{F} : \exists$ countable subset \mathcal{C} s.t. $A \in \sigma(\mathcal{C})$. Then $A^c \in \sigma(\mathcal{C}) \subset \mathcal{F}$. Now take $(A_n)_{n \in \mathbb{N}} \in \mathcal{F}^{\mathbb{N}} : \exists \mathcal{C}_n$ s.t. $A_n \in \sigma(\mathcal{C}_n)$. We have then $\cup_n A_n \in \sigma(\cup \mathcal{C}_n) \subset \mathcal{F}$. Hence \mathcal{F} is a σ -field.
- **4.** Note that $\mathcal{B}(\mathbb{R}^d) = \sigma(F; F \text{ closed in } \mathbb{R}^d)$. For $f : \mathbb{R}^d \to \mathbb{R}$ continuous, $f^{-1}([a, \infty])$ is closed in \mathbb{R}^d . It follows that $\mathcal{B}(\mathbb{R}^d)$ makes all continuous functions measurable. Now denote \mathcal{F} σ -field on \mathbb{R}^d which makes all continuous functions measurable. For F closed set in \mathbb{R}^d , take $d_F(x) := \inf\{|x-y|; y \in F\} : d_F \text{ is } 1$ -Lipschitz and thus continuous. Observe that $d_F^{-1}(\{0\}) = F \subset \mathcal{F}$. Thus, $\mathcal{F} \supset \sigma(F; F \text{ closed in } \mathbb{R}^d) = \mathcal{B}(\mathbb{R}^d)$ and $\mathcal{B}(\mathbb{R}^d)$ is the smallest σ -field that makes all continuous function measurable.
- **5.** We will prove the result for l.s.c. functions and the proof for u.s.c. functions is similar. It is enough to prove that $\{f(x) > t\}$ is open for $\forall t \in \mathbb{R}$. Take $x_0 \in \{f(x) > t\}$. By the definition of l.s.c., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $f(x_0) \epsilon < f(y)$ provided $|x_0 y| < \delta$. In particular, take $\epsilon = f(x_0) t$, we have $\exists \delta > 0$ s.t. $f(y) > f(x_0) \epsilon = t$ for all $|x y| < \delta$, which permits to conclude.