Research 2 (series): Performance Enhancement in Overloaded Networks

Motivation

- Extensive analysis over underloaded system
- However, overloaded situation becomes more frequent in IoT but under unsystematic study & results

Server Farm

Datacenter

Mobile System

Communication infrastructure in Smart Grid; Cloud; HPC; Edge computing, etc.

Contributions

- 1) Model queue dynamics by flow, which generalizes different network settings.
- overload/underload, shared/split buffer, etc.
- 2) Propose network policies that optimizes metrics: latency, fairness, throughput, under network overload.

(1) Latency

Set service rates to minimize queueing latency when overload:

Main Results:

- Setting max rates on all links is generally NOT optimal.
- Properly setting smaller rates reduces latency & saves energy.
- Our algorithm brings 10%
 reduction in avg. delay & 50%
 reduction in max delay

(2) Fairness

Balancing input loads when egress buffer is bounded:

Centralized

Distributed

(4) Routing Attack on Causing Overload

Propose algorithms to identify **optimal routing attack** to cause **network overload**:

- Minimize no-loss throughput & Maximize loss
- Critical nodes to protect from overload

(3) Stability

A queue-based policy design criterion to stabilize the networks that generalizes a set of policies:

$$\frac{\partial g_{ij}(q_i, q_j)}{\partial q_i} \ge 0, \ \frac{\partial g_{ij}(q_i, q_j)}{\partial q_j} \le 0$$

Connection to Industrial Research:

- Network control to guarantee high performance under network overload
- Benchmark to forecast network vulnerability to overload under attack