

AAE1001 Introduction to Artificial Intelligence and Data Analytics in Aerospace and Aviation Engineering

Week 8 (Project Tasks)

Dr Guohao Zhang, assisted by

Dr Penghui XU, Mr Zekun ZHANG, Mr Di HAI, Mr Yidi CHEN, Mr Zhen LYU

Necessary Information

- Course Repository (project download) link:
- https://github.com/IPNL-POLYU/PolyU AAE1001 Github Project
- TA Information & Contact:

Group 1-3: Dr Penghui XU - pengh.xu@polyu.edu.hk

Group 4-6: Mr Zekun ZHANG - <u>zekun.zhang@connect.polyu.hk</u>

Group 7-8: Mr Di HAI - 23037537R@connect.polyu.hk

Group 9-10: Mr Yidi CHEN - <u>yi-di.chen@connect.polyu.hk</u>

Group 11-12: Mr Zhen LYU - zhenn.lyu@connect.polyu.hk

Project Compulsory Tasks

Project Tasks for Flight Path Planning

- 1. Find an appropriate aircraft model that achieve the minimum cost for the challenge assigned to your group.
- 2. Design a new cost area that can reduce the cost of the route.
- 3. Design a new aircraft model within the constrains to achieve minimum cost for your group challenge.
- 4. Additional Tasks (see different slide)

The assessment of path planning part is based on the completion and the performance of 1, 2, 3 (compulsory) and 4 (additional), according to your: codes, answers on your report, and presentation

Task 1

Find an appropriate aircraft model that achieve minimum cost for each scenario for the challenge assigned to your group.

Aircraft Models

Many types of aircrafts nowadays (Airbus, Boeing, Bombardier and more)

Each aircraft has different properties
-Capacity (Passenger and cargo) / COST!

- Costs of operating an aircraft might include:
 - Crew cost
 - Fuel cost
 - Other operational costs
 - To keep it simple, costs can be approximated by:

$$C = C_F \cdot \Delta F \cdot T_{best} + C_T \cdot T_{best} + C_c$$

Airbus A220

Task 1

Three scenarios with different requirements

Find the <u>shortest route</u> from the departure point to the arrival point, then <u>determine the aircraft type</u> for each scenario to achieve <u>minimum</u> <u>cost</u> while satisfying <u>passenger needs</u>

3 main factors affecting the total cost in this project:

- Shortest distance
- Cost intensive area
- Aircraft fuel and time costs from different model

Check out the example to understand this task better!

Task 1

Restrictions and rules:

- Only consider cruise time
- All aircrafts take $\frac{1 \text{ minute}}{\sqrt{2 \text{ minute}}}$ between nearby nodes ($\frac{\sqrt{2} \text{ minute}}{\sqrt{2} \text{ minute}}$ on diagonal movement)
- Each group must use their own obstacle set
- 30% and 15% additional flight time for cost intensive area for <u>Time</u> and <u>Fuel</u> (e.g., 1min -> 1.3min)
- You must calculate the travelling time for the fastest path by using and modifying the program
- Only consider one type (from provided three) of aircraft in each scenario
- Time cost stays the same regardless of any vacancy in an aircraft
- Trip cost can be calculated manually, or automatically in program (bonus)

Cost	Specificat	ion
------	-------------------	-----

	A321neo	A330-900neo	A350-900	
Fuel Consumption rate (kg/min)	54	84	90	
Passenger Capacity	200	300	350	
Time cost (Low) (\$/min)	10	15	20	
Time cost (Medium) (\$/min)	15	21	27	
Time cost (High) (\$/min)	20	27	34	
Fixed Cost (C_c) (\$)	1800	2000	2500	
Source: https://www.airlines-inform.com/				

$$C = C_F \cdot \Delta F \cdot T_{best} + C_T \cdot T_{best} + C_c$$

 C_F =cost of fuel per kg C_T =time related cost per minute of flight C_C =fixed cost independent of time ΔF =trip fuel ΔT =trip time

Task 1 - Example to Accomplish this Task

Scenario:

- 1. 2000 passengers travel from start to destination this week
- 2. 10 flights maximum for one week
- 3. Time cost = low, Fuel cost = 0.8\$/kg

First step: Find the shortest path for your obstacle set

- 1. Set up your obstacles and cost intensive areas using the path planning programme
- 2. Modify the program so it will calculate the time travelled, hence finds the fastest path (remember to modify cost intensive areas!)

^{*}In this example, the <u>shortest</u> path is planned to be 100 minutes. Considering the cost intensive areas, the fastest path is 120 minutes

What the working program should look like

Task 1 - Example to Accomplish this Task

Second step: Consider the cost factors

- 1. Count number of flights for aircraft models *Maximum 10 flights for 2000 passengers:* ten A321 flights, seven A330 flights or six A350 flights
- 2. Calculate trip cost from available numbers:

A321: $(0.8\$/kg \times 54 \ kg/min \times 120min + 10 \$/min \times 120 \ min + 1800) \times 10 \ flights = \81840

A330: $(0.8\$/kg \times 84 \ kg/min \times 120min + 15 \$/min \times 120 \ min + 2000) \times 7 \ flights = \83048

A350: $(0.8\$/kg \times 90 \ kg/min \times 120min + 20 \ \$/min \times 120 \ min + 2500) \times 6 \ flights = \81240

(can be done inside programme, bonus)

3. As the total cost of operating A350 is the lowest, the answer for this example is 6 flights of A350!

Cost Specification					
	A321neo	A330-900neo	A350-900		
Fuel Consumption rate (kg/min)	54	84	90		
Passenger Capacity	200	300	350		
Time cost (Low) (\$/min)	10	15	20		
Time cost (Medium) (\$/min)	15	21	27		
Time cost (High) (\$/min)	20	27	34		
Fixed Cost (C_c) (\$)	1800	2000	2500		
Source: https://www.airlines-inform.com/					

$$C = C_F \cdot \Delta F \cdot T_{best} + C_T \cdot T_{best} + C_c$$

 C_F =cost of fuel per kg C_T =time related cost per minute of flight C_C =fixed cost independent of time

 ΔF =trip fuel ΔT =trip time

Task 1 - Scenarios

Scenario 1

- 1. 3300 Passengers need to travel within this week from the start to the destination
- 2. <u>13</u> flights maximum for one week
- 3. Time cost = $\underline{\text{medium}}$ and Fuel cost = $\underline{0.85}$ \$/kg

Scenario 2

- 1. <u>1500</u> Passengers need to travel within <u>this month</u> from the start to the destination
- 2. <u>7</u> flights maximum for one week
- 3. Time cost = high and Fuel cost = 0.96\$/kg

Scenario 3

- 1. 2250 Passengers need to travel within this week from the start to the destination
- 2. <u>25</u> flights maximum for one week
- 3. Time cost = low and Fuel cost = 0.78 \$/kg

Group 11

Have fun with your tasks (**)

