Tables for supersymmetry.

Bruno Le Floch, Princeton University, November 3, 2017.

Bruno Le Floch, Princeton	Un	iversity, November 3, 2017.
1 Special functions Multiple gamma function Plethystic exponential q-Pochhammer symbol q-gamma (or basic gamma) function Modular form Dedekind eta function Theta functions Eisenstein series Elliptic gamma function Polylogarithm and Riemann zeta 2 Lie algebras and groups	1	theories $3d \mathcal{N}=4$ $2d \mathcal{N}=(4,4)$ gauge theories 6.4 Theories with 4 supercharges $4d \mathcal{N}=1$ pure SYM Wess-Zumino model $3d \mathcal{N}=2$ $2d \mathcal{N}=(2,2)$ $1d \mathcal{N}=4$ $1d \mathcal{N}=2$ NLSM 7 Other theories
2.1 Lie algebras	1	7.1 Two-dimensional CFT
Complex simple Lie algebras Roots and Weyl group Real simple Lie algebras Accidental isomorphisms ADE classification	0	Virasoro algebra $\mathcal{N}=1$ super-Virasoro algebra $\mathcal{N}=2$ super-Virasoro algebra $\mathcal{S}W(3/2,2)$ super-Virasoro algebra bc and beta-gamma systems
2.2 Lie groups Basics	2	Liouville CFT Minimal model
Compact connected Lie groups		Unitary minimal model
Real connected simple Lie groups		7.2 Chern-Simons
Spin and Pin groups Accidental isomorphisms		7.3 Supergravity and strings
Homotopy		String actions
2.3 Simple Lie superalgebras	3	Pure supergravities M-theory
Classical Lie superalgebras		Branes
Real forms of Lie superalgebras Some isomorphisms		Flat space brane configurations
2.4 Lie supergroups	4	S-rule, brane creation Little string theory (LST)
2.5 Representations	4	7.4 Integrable models
- ~ .	4	Relativistic quantum Toda chain
3 Spinors Clifford algebra	4	7.5 Localization results
Charge conjugation		$3d \mathcal{N} = 2$
Reduced spinors		8 Manifolds
Flavour symmetries Products of spinor representations		8.1 Riemannian geometry
4 Supersymmetry algebras	5	8.2 G-structures, holonomy Structure group
Poincaré algebra	o	Integrability
Super-Poincaré algebra		Holonomy group
Example: M-theory algebra Superconformal algebras		Spin structures Symmetric spaces
Dimensional reduction		K3 surfaces
Explicit supersymmetry algebras		Yau's theorem
Supersymmetry on symmetric curved spaces		9 Dualities
5 Supermultiplets	5	9.1 Field theory dualities
$5.1 \text{ Spin} \leq 1 \text{ supermultiplets}$	5	9.2 4d $\mathcal{N} = 1$ dualities
For 16 supercharges		9.3 String theory dualities
For 8 supercharges		10 Misc
For 4 supercharges For 2 supercharges		10.1Physics of gauge theories
5.2 Other supermultiplets 6 Supersymmetric gauge	5	Phases characterized by potential 10.2Homology and cohomology Complex projective space
theories	5	10.3Homotopy groups π_n
6.1 Generalities	5	Basic properties
Super Yang-Mills (SYM)	-	Quotient
Theta term		Long exact sequence for a fiber bundle Homotopy groups of spheres
Chern-Simons term Matter		Topological groups have abelian $\pi_1(G)$
Superpotential term		10.4Kähler 4-manifolds
An accidental symmetry		K3 surfaces Examples of K3 surfaces
R-symmetry mixing Classical vacua		Non-simply connected
Boundaries and gauge redundancies		Gravitational instantons
6.2 Maximal super Yang–Mills	6	ALE hyperKähler 4-manifolds
Data Lorentzian		10.5Some algebraic constructions 1 Reduction of a Lie (super)algebra
$4d \mathcal{N} = 4$		S-expansion of a Lie (super)algebra
6.3 Theories with 8 supercharges	6	Color (super)algebra
$5d \mathcal{N} = 1 \text{ SCFTs}$		10.6Other 1
4d $\mathcal{N} = 2$ generalities		Fuzzy spaces
4d $\mathcal{N} = 2 (G, G')$ Argyres-Douglas		I

§1 Special functions

Multiple gamma function. For $a_i \in \mathbb{C}$ with $\operatorname{Re} a_i > 0$, $\Gamma_N(x|\vec{a}) = \prod_{\vec{n}}^{\operatorname{reg.}} (x + \vec{n} \cdot \vec{a})^{-1} = \exp(\partial_s \sum_{\vec{n}} (x + \vec{n} \cdot \vec{a})^{-s}|_{s=0})$, where $\vec{n} \in \mathbb{Z}_{\geq 0}^N$. Here, we zeta-regularized the product; the sum is analytically continued from $\operatorname{Re} s > N$. The meromorphic $x \mapsto \Gamma_N(x|\vec{a})$ has no zero and poles at $x = -\vec{n} \cdot \vec{a}$ (simple poles for generic \vec{a}). $\Gamma_0(x|) = 1/x$, $\Gamma_1(x|a) = a^{x/a-1/2}\Gamma(x/a)/\sqrt{2\pi}$, $\Gamma_N(x|\vec{a}) = \Gamma_{N-1}(x|a_1,\ldots,a_{N-1})\Gamma_N(x+a_N|\vec{a})$ and it is invariant under permutations of \vec{a} .

Plethystic exponential. Let $\mathbf{m} \subset R[[x_1,\ldots,x_n]]$ be series with no constant term over a ring R. Then plexp: $\mathbf{m} \to 1+\mathbf{m}$ obeys $\operatorname{plexp}[x_i^p] = 1/(1-x_i^p)$, $\operatorname{plexp}[f+g] = \operatorname{plexp}[f]\operatorname{plexp}[g]$ and $\operatorname{plexp}[\lambda f] = \operatorname{plexp}[f]^{\lambda}$ for $\lambda \in R$. It maps an index of single-particle states f(x) to that of multiparticle states $\operatorname{plexp} f(x) = \exp \sum_{k>1} \frac{1}{k} f(x_1^k,\ldots,x_n^k)$.

q-Pochhammer $(a;q)_{\infty} = \operatorname{plexp} \frac{-a}{1-q} = \prod_{k=0}^{\infty} (1-aq^k)$ and finite version $(a;q)_n = (a;q)_{\infty}/(aq^n;q)_{\infty}$. Products are often denoted $(a_1,\ldots,a_N;q)_n = (a_1;q)_n\cdots(a_N;q)_n$. Properties: $(a;q)_{-n}(q/a;q)_n = (-q/a)^nq^{n(n-1)/2}$ and q-binomial theorem $(ax;q)_{\infty}/(x;q)_{\infty} = \sum_{n=0}^{\infty} x^n(a;q)_n/(q;q)_n$.

q-gamma (or basic gamma) function for |q| < 1, $\Gamma_q(x) = (1-q)^{1-x}(q;q)_{\infty}/(q^x;q)_{\infty}$ obeys $\Gamma_q(x+1) = \frac{1-q^x}{1-q}\Gamma_q(x)$ and

7 $\Gamma_q(x) \xrightarrow{q \to 1} \Gamma(x)$. It has simple poles at $x \in \mathbb{Z}_{\leq 0}$ and no zero.

Modular form of weight k: holomorphic on $\mathbf{H} = \{\operatorname{Im} \tau > 0\}$ and as $\tau \to i\infty$ and obeys $f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau)$.

Dedekind eta function: $\eta(\tau) = q^{1/24}(q;q)_{\infty}$ for $q = e^{2\pi i \tau}$. $\Delta = \eta^{24}$ is a modular form of weight 12.

Theta functions: q-theta $\theta(z;q) = (z;q)_{\infty}(q/z;q)_{\infty}$ obeys $\theta(z;q) = \theta(q/z;q) = -z\theta(1/z;q)$. Variant $\theta_1(z;q) = \theta_1(\tau|u) = iz^{-1/2}q^{1/12}\eta(\tau)\theta(z;q) = -iz^{1/2}q^{1/8}(q;q)_{\infty}(qz;q)_{\infty}(\frac{1}{z};q)_{\infty}$ with $z = e^{2\pi iu}$.

Eisenstein series $(k \ge 1)$ $E_{2k} = 1 + \frac{2}{\zeta(1-2k)} \sum_{n=1}^{\infty} n^{2k-1} \frac{q^n}{1-q^n}$ obeys $E_{2k}(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^{2k} E_{2k}(\tau) + \frac{6}{\pi i} c(c\tau+d) \delta_{k=1}$. For $k \ge 2$ it is a modular form and $E_{2k} = \frac{1}{2\zeta(2k)} \sum_{0 \ne \lambda \in \mathbb{Z} + \tau \mathbb{Z}} \lambda^{-2k}$.

Elliptic gamma function $\Gamma(z;p,q)=\operatorname{plexp} \frac{z-pq/z}{(1-p)(1-q)}=\prod_{m=0}^{\infty}\prod_{n=0}^{\infty}(1-p^{m+1}q^{m+1}z^{-1})/(1-p^mq^nz).$ Obeys $\Gamma(z;p,q)=\Gamma(z;q,p)=1/\Gamma(pq/z;p,q)$ and $\Gamma(pz;p,q)=\theta(z;q)\Gamma(z;p,q)$ and $\Gamma(z;0,q)=1/(z;q)_{\infty}.$

Polylogarithm and Riemann zeta $\zeta(s)=\operatorname{Li}_s(1)$ where $\operatorname{Li}_s(z)=\sum_{k\geq 1}z^k/k^s=\left(1/\Gamma(s)\right)\int_0^\infty t^{s-1}\mathrm{d}t/(e^t/z-1)$ obeys $\operatorname{Li}_{s+1}(z)=\int_0^z\operatorname{Li}_s(t)\mathrm{d}t/t$ and $\operatorname{Li}_1(z)=-\log(1-z)$. The dilogarithm obeys $\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)=\pi^2/6-\log(x)\log(1-x)$ (reflection formula) and $\operatorname{Li}_2(x)+\operatorname{Li}_2(y)-\operatorname{Li}_2(xy)=\operatorname{Li}_2(t)+\operatorname{Li}_2(u)+\log(1-t)\log(1-u)$ where x=t/(1-u) and y=u/(1-t) (pentagon formula).

§2 Lie algebras and groups (dimension $< \infty$)

$\S 2.1$ Lie algebras

Complex simple Lie algebras. Infinite series $\mathfrak{a}_{n\geq 1}$, $\mathfrak{b}_{n\geq 1}$, $\mathfrak{c}_{n\geq 1}$, $\mathfrak{d}_{n\geq 2}$ with $\mathfrak{a}_1=\mathfrak{b}_1=\mathfrak{c}_1$, $\mathfrak{b}_2=\mathfrak{c}_2$, $\mathfrak{d}_2=\mathfrak{a}_1\oplus\mathfrak{a}_1$, $\mathfrak{d}_3=\mathfrak{a}_3$. Five exceptions with dimensions $\begin{vmatrix} \mathfrak{e}_6 & \mathfrak{e}_7 & \mathfrak{e}_8 & \mathfrak{f}_4 & \mathfrak{g}_2 \\ 78 & 133 & 248 & 52 & 14 \end{vmatrix}$.

Type	Dimension	Lie algebra
\mathfrak{a}_n	n(n+2)	$\mathfrak{sl}(n+1,\mathbb{C}) = \{\text{traceless}\}$
\mathfrak{b}_n	n(2n+1)	$\mathfrak{so}(2n+1,\mathbb{C}) = \{\text{antisymmetric}\}$
\mathfrak{c}_n	n(2n+1)	$\mathfrak{sp}(2n,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & \mathbb{I}_n \\ -\mathbb{I}_n & 0 \end{pmatrix} \times \text{symmetric} \right\}$
\mathfrak{d}_n	n(2n-1)	$\mathfrak{so}(2n,\mathbb{C}) = \{\text{antisymmetric}\}\$

Roots and Weyl group. The Weyl group has $\prod_i d_i$ elements where d_i are degrees of fundamental invariants. (Below, $\mathbb{1}_i$ denotes the *i*-th unit vector in \mathbb{Z}^n and $1 \leq i \neq j \leq n$.)

 \mathfrak{a}_{n-1} : (note shifted rank) roots $\mathbb{1}_i - \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$. The Weyl group S_n permutes the $\mathbb{1}_i$. Fundamental invariants: $x_1^k + \cdots + x_n^k$ for $2 \le k \le n$.

 \mathfrak{b}_n : roots $\pm \mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $\mathbb{1}_n$. The Weyl group $\{\pm 1\}^n \rtimes S_n$ permutes and changes signs of the $\mathbb{1}_i$. Fundamental invariants: $x_1^{2k} + \cdots + x_n^{2k}$ for $2 \le 2k \le 2n$.

 \mathfrak{c}_n : roots $\pm 2\mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $2\mathbb{1}_n$. Same Weyl group and invariants as \mathfrak{b}_n .

 \mathfrak{d}_n : roots $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $\mathbb{1}_{n-1} + \mathbb{1}_n$. The Weyl group $\{\pm 1\}^{n-1} \rtimes S_n$ permutes the $\mathbb{1}_i$ and changes an even number of signs. Fundamental invariants $x_1 \cdots x_n$ and $x_1^{2k} + \cdots + x_n^{2k}$ for $2 \leq 2k \leq 2n - 2$.

 $\mathfrak{e}_{8} \colon \{ \pm \mathbb{1}_{i} \pm \mathbb{1}_{j} \} \cup \{ \frac{1}{2} \sum_{k=1}^{8} \epsilon_{k} \mathbb{1}_{k} \mid \epsilon_{k} = \pm 1, \prod_{k=1}^{8} \epsilon_{k} = -1 \}, \\ \text{simple roots } \mathbb{1}_{i} - \mathbb{1}_{i+1} \text{ and } \frac{1}{2} (-\mathbb{1}_{1} - \dots - \mathbb{1}_{5} + \mathbb{1}_{6} + \mathbb{1}_{7} + \mathbb{1}_{8}). \\ \text{The } 2^{14} \, 3^{5} \, 5^{2} \, 7 = 696729600 \text{-element Weyl group is } O_{8}^{+}(\mathbb{F}_{2}). \\ \text{Degrees of invariants are } \{d_{i}\} = \{2, 8, 12, 14, 18, 20, 24, 30\}, \\ \text{with mnemonic } 1 + (\text{primes from 7 to 29}).$

 \mathfrak{e}_7 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = \sum_{i=2}^8 a_i$, simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 - \mathbb{1}_2$. The $2^{10} \times 3^4 \times 5 \times 7 = 2903040$ -element Weyl group is $\mathbb{Z}_2 \times \mathrm{PSp}_6(\mathbb{F}_2)$. Degrees of invariants are $\{d_i\} = \{2, 6, 8, 10, 12, 14, 18\}$.

are $\{d_i\} = \{2, 6, 8, 10, 12, 14, 18\}$. \mathfrak{e}_6 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = a_2$ and $\sum_{i=3}^8 a_i = 0$, simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 - \mathbb{1}_2$ and $\mathbb{1}_2 - \mathbb{1}_3$. The $2^7 3^4 5 = 51840$ -element Weyl group is $\operatorname{Aut}(\operatorname{PSp}_4(\mathbb{F}_3))$. Degrees of invariants are $\{d_i\} = \{2, 5, 6, 8, 9, 12\}$.

 \mathfrak{f}_4 : roots $\pm \mathbb{1}_i$, $\pm \mathbb{1}_i \pm \mathbb{1}_j$, $\frac{1}{2}(\pm \mathbb{1}_1 \pm \mathbb{1}_2 \pm \mathbb{1}_3 \pm \mathbb{1}_4)$, simple roots $\mathbb{1}_1 - \mathbb{1}_2$, $\mathbb{1}_2 - \mathbb{1}_3$, $\mathbb{1}_3$, $-\frac{1}{2}(\mathbb{1}_1 + \mathbb{1}_2 + \mathbb{1}_3 + \mathbb{1}_4)$. It has an 1152-element Weyl group and $\{d_i\} = \{2,6,8,12\}$.

 \mathfrak{g}_2 : 12 roots $e^{2\pi i k/6}$, $e^{2\pi i (2k+1)/12}\sqrt{3} \in \mathbb{C}$ for $0 \le k < 6$, simple roots 1 and $e^{5\pi i/6}\sqrt{3}$. The 12-element Weyl group is the dihedral group D_6 , and $\{d_i\} = \{2,6\}$.

The Coxeter number $h(\mathfrak{g}) = (\dim \mathfrak{g}/\operatorname{rank} \mathfrak{g}) - 1$ is the largest d_i . A Coxeter element is the product of all simple reflections, in any order. Its eigenvalues $e^{2\pi i(d_i-1)/h}$ come in conjugate pairs.

A real simple Lie algebra is a complex algebra (see above) or a real form of it. Let $\mathfrak{sp}(m,n)=\mathfrak{usp}(2m,2n)=\mathfrak{u}(m,n,\mathbb{H}),$ $\mathfrak{su}^*(2n)=\mathfrak{sl}(n,\mathbb{H})=\{\operatorname{Re}\operatorname{Tr}M=0\text{ in }\mathfrak{gl}(n,\mathbb{H})\}\simeq\mathfrak{gl}(n,\mathbb{H})/\mathbb{R},$ $\mathfrak{so}^*(2n)=\mathfrak{o}(n,\mathbb{H}).$ A Lie algebra is called compact if it exponentiates to a compact Lie group. In $\mathfrak{e}_{r(s)}$, s is the number of (non-compact) - (compact) generators.

Real form	Max compact subalgebra	ra Range
$ \begin{array}{c} \mathfrak{su}(n) \\ \mathfrak{sl}(n,\mathbb{R}) \\ \mathfrak{su}(n-p,p) \end{array} $	compact $\mathfrak{so}(n)$ $\mathfrak{su}(n-p)\oplus\mathfrak{su}(p)\oplus\mathfrak{u}$. ,
<u>su (n)</u>	$\mathfrak{usp}(n)$	n even
\bigcirc $\mathfrak{so}(n)$ $\stackrel{\circ}{\mathfrak{S}}$ $\mathfrak{so}(p,n-p)$ $\stackrel{\circ}{\mathfrak{S}}$ $\mathfrak{so}^*(n)$	$egin{aligned} \operatorname{compact} & \mathfrak{so}(p) \oplus \mathfrak{so}(n-p) \ \mathfrak{u}(n/2) & \end{aligned}$	0 n even
$\begin{array}{ccc} & \mathfrak{So}(n) \\ & \mathfrak{So}(p,n-p) \\ & \mathfrak{So}^*(n) \\ & \\ & \mathfrak{So}(2n) \\ & \\ & \mathfrak{Sp}(2n,\mathbb{R}) \\ & \\ & \\ & \mathfrak{Sp}(2n-2p,2p) \end{array}$	compact $\mathfrak{u}(n)$ $\mathfrak{p}(2n-2p) \oplus \mathfrak{usp}(2p)$	$p) \qquad 0$
$egin{array}{ll} {\mathfrak e}_{6(-78)} & { m com} \ {\mathfrak e}_{6(-26)} & {\mathfrak f}_4 \ {\mathfrak e}_{6(-14)} & {\mathfrak {so}}(1 \ \end{array}$	pact $\mathfrak{e}_{8(-248)}$ $\mathfrak{e}_{8(-24)}$	compact $\mathfrak{e}_7 \oplus \mathfrak{su}(2)$ $\mathfrak{so}(16)$
$\mathfrak{e}_{6(2)}$ $\mathfrak{su}(6)$ $\mathfrak{usp}(6)$	$\mathfrak{g}_{2(-14)}$	compact $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$
$\mathfrak{e}_{7(-25)}$ $\mathfrak{e}_6 \oplus$	$\begin{array}{ccc} \operatorname{pact} & & & & \\ \operatorname{\mathfrak{so}}(2) & & & \operatorname{\mathfrak{f}}_{4(-52)} & \\ 2) \oplus \operatorname{\mathfrak{su}}(2) & & \operatorname{\mathfrak{f}}_{4(-20)} & \end{array}$	compact $\mathfrak{so}(9)$

 $f_{4(4)}$

Accidental isomorphisms.

 $\mathfrak{e}_{7(7)}$

 $\mathfrak{su}(8)$

$$\begin{split} \mathfrak{so}(2) &= \mathfrak{u}(1), \quad \mathfrak{so}(1,1) = \mathbb{R} \\ \mathfrak{so}(3) &= \mathfrak{su}(2) = \mathfrak{su}^*(2) = \mathfrak{usp}(2) \\ \mathfrak{so}(3,2) &= \mathfrak{su}(4,\mathbb{R}) \\ \mathfrak{so}(2,1) &= \mathfrak{su}(1,1) = \mathfrak{sl}(2,\mathbb{R}) = \mathfrak{sp}(2,\mathbb{R}) \\ \mathfrak{so}(4) &= \mathfrak{su}(2) \oplus \mathfrak{su}(2) \\ \mathfrak{so}(3,1) &= \mathfrak{sl}(2,\mathbb{C}) = \mathfrak{sp}(2,\mathbb{C}) \\ \mathfrak{so}(2,2) &= \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) \\ \mathfrak{so}(4) &= \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) \\ \mathfrak{so}(2,2) &= \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) \\ \mathfrak{so}(2,2) &= \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2) \\ \mathfrak{so}(2,2) &= \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2,\mathbb{R}) \\ \mathfrak{so}(2,2) \oplus \mathfrak{su}(2,\mathbb{R}) \\ \mathfrak{so}(2,2) \oplus \mathfrak{su}(2,\mathbb{R}) \\ \mathfrak{so}(2,2) \oplus \mathfrak{su}(2,$$

ADE classification of symmetric matrices with eigenvalues in (-2,2) and $\mathbb{Z}_{\geq 0}$ entries (adjacency matrices of ADE diagrams), of simply laced simple Lie algebras, of binary polyhedral groups Γ (discrete subgroups of SU(2)) and du Val singularities $\mathbb{C}^2/\Gamma \simeq$ (zeros of Kleinian polynomial), of integers $1 \leq p \leq q \leq r$ with 1/p + 1/q + 1/r > 1, of singularities with no moduli (Arnold) hence of $\mathcal{N} = 2$ minimal models (c < 3), of $\mathcal{N} = 0$ unitary minimal models (c < 1), of quivers of finite type,...

\mathfrak{g}	(p,q,r)	Kleinian polynomial
\mathfrak{a}_k	(1,q,1+k-q)	$w^2 + x^2 + y^{k+1}$
\mathfrak{d}_k	(2,2,k-2)	$w^2 + x^2y + y^{k-1}$
\mathfrak{e}_6	(2, 3, 3)	$w^2 + x^3 + y^4$
\mathfrak{e}_7	(2, 3, 4)	$w^2 + x^3 + xy^3$
\mathfrak{e}_8	(2, 3, 5)	$w^2 + x^3 + y^5$

§2.2 Lie groups

Basics. The identity component G_0 is a normal subgroup: G/G_0 is the group of components. The maximal compact subgroup K is unique up to conjugation.

Every compact connected Lie group K is a quotient of $\mathrm{U}(1)^n \times \prod_{i=1}^m K_i$ by a finite subgroup Γ of its center, where K_i are simple, compact, simply-connected, connected. Then $\pi_1(K)/\mathbb{Z}^n \simeq \Gamma$ for some embedding $\mathbb{Z}^n \hookrightarrow \pi_1(K)$, and the center of K is $Z(K) = \left(\mathrm{U}(1)^n \times \prod_{i=1}^m Z(K_i)\right)/\Gamma$.

Center of all such K_i : $Z(\mathrm{SU}(n)) = \mathbb{Z}_n$, $Z(\mathrm{USp}(2n)) = \mathbb{Z}_2$, $Z(\mathrm{Spin}(n \geq 3)) = (\mathbb{Z}_2 \text{ for } n \text{ odd}, \mathbb{Z}_4 \text{ for } n/2 \text{ odd}, \mathbb{Z}_2^2 \text{ otherwise})$, $Z(\widetilde{\mathrm{E}}_{6(-78)}) = \mathbb{Z}_3$, $Z(\widetilde{\mathrm{E}}_{7(-133)}) = \mathbb{Z}_2$, while $\mathrm{E}_{8(-248)}$, $\mathrm{F}_{4(-52)}$, $\mathrm{G}_{2(-14)}$ have no center.

Named quotients: $SO(n) = Spin(n)/\mathbb{Z}_2$ and PG = G/Z(G) for G = SU, USp, SO (also U, GL, SL). The other two quotients $Spin(4n)/\mathbb{Z}_2$ have no name.

Real connected simple Lie groups are the simply-connected \widetilde{G} (classified by simple Lie algebras) and their quotients by a subgroup $\Gamma \subset Z(\widetilde{G})$ of the center; equivalently, covers of the center-free $G_{\rm cf} = \widetilde{G}/Z(\widetilde{G})$. One has $\pi_1(\widetilde{G}/\Gamma) = \Gamma$ and $Z(\widetilde{G}/\Gamma) = Z(\widetilde{G})/\Gamma$. The algebraic universal cover $\widetilde{G}_{\rm alg}$ (largest with a faithful finite-dimensional representation) may be a quotient of \widetilde{G} . We define $\pi_1^{\rm alg}(\widetilde{G}_{\rm alg}/\Gamma) = \Gamma$. For each real simple Lie algebra \mathfrak{g} , we tabulate: $G_{\rm cf}$ as a quotient of $\widetilde{G}_{\rm alg}$; the (topological) π_1 ; the real rank $r_{\rm Re}$; and the maximal compact subgroup $K \subset G_{\rm cf}$. Below, $\iota(l) = (1 \text{ for } l \text{ odd}, 2 \text{ otherwise}), p+q=n \text{ with } p,q\geq 1, \text{ and } 2k=n \text{ when } n \text{ is even. For } \mathfrak{sl}(2)$ use $\mathrm{SU}(2)=\mathrm{Sp}(2),\,\mathrm{SL}(2,\mathbb{R})=\mathrm{Sp}(2,\mathbb{R}),\,\mathrm{SL}(2,\mathbb{C})=\mathrm{Sp}(2,\mathbb{C}).$

 $\mathfrak{usp}(6) \oplus \mathfrak{su}(2)$

$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	r_{Re}
\bigcap SU(n)/ \mathbb{Z}_n	$SU(n)/\mathbb{Z}_n$	\mathbb{Z}_n	0
$\widehat{\mathfrak{SL}}(n,\mathbb{R})/\mathbb{Z}_{\iota(n)}$	$\operatorname{PSpin}(n)^{\ddagger\S}$	$Z(\mathrm{Spin}(n))^{\ddagger\S}$	n-1
$\stackrel{\wedge}{\epsilon}$ SU $(p,q)/\mathbb{Z}_{p+q}$	$\frac{\mathrm{SU}(p)\times\mathrm{SU}(q)\times\mathrm{U}(q)}{\mathbb{Z}_{pq/\gcd(p,q)}}$	$\frac{1)}{\P}$ \mathbb{Z} mi	n(p,q)
$\operatorname{SU}(p,q)/\mathbb{Z}_{p+q}$ $\operatorname{SU}^*(2k)/\mathbb{Z}_2$	$\mathrm{USp}(2k)/\mathbb{Z}_2$	\mathbb{Z}_2	k-1
$\mathrm{SL}(n,\mathbb{C})/\mathbb{Z}_n$	$SU(n)/\mathbb{Z}_n$	\mathbb{Z}_n	n-1
$ \widehat{\mathfrak{S}} \operatorname{PSpin}(n)^{\ddagger} $	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	0
\wedge PSpin $(p,q)^{\ddagger}$	$\frac{\mathrm{SO}(p) \times \mathrm{SO}(q)}{\mathbb{Z}_2 \text{ if } p, q \text{ even}}$	Γ^{\parallel} mi	n(p,q)
$\stackrel{\varepsilon}{\circ}$ SO* $(2k)/\mathbb{Z}_2$	$\mathrm{U}(k)/\mathbb{Z}_2$	$\mathbb{Z}_{\iota(k)} imes \mathbb{Z}$	$\lfloor k/2 \rfloor$
PSpin (n, \mathbb{C})	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	
$ \overline{\widehat{\otimes}} \operatorname{USp}(2n)/\mathbb{Z}_2 $	$USp(2n)/\mathbb{Z}_2$	\mathbb{Z}_2	0
$\bigtriangleup \operatorname{Sp}(2n,\mathbb{R})/\mathbb{Z}_2$	$\mathrm{U}(n)/\mathbb{Z}_2$	$\mathbb{Z}_{\iota(n)} imes \mathbb{Z}$	n
$\stackrel{\mathcal{E}}{\leq} \operatorname{USp}(2p,2q)/\mathbb{Z}_2$	$\frac{\mathrm{USp}(2p) \times \mathrm{USp}(2q)}{\mathbb{Z}_2}$	\mathbb{Z}_2 mi	n(p,q)
$\operatorname{sp}(2n,\mathbb{C})/\mathbb{Z}_2$	$\mathrm{USp}(2n)/\mathbb{Z}_2$	\mathbb{Z}_2	n

[‡] For $r + s \ge 3$, $\operatorname{PSpin}(r, s) = \operatorname{Spin}(r, s) / Z(\operatorname{Spin}(r, s))$ and $Z(\operatorname{Spin}(r, s)) = (\mathbb{Z}_2 \text{ if } r \text{ or } s \text{ odd}, \mathbb{Z}_4 \text{ if } \frac{r+s}{2} \text{ odd}, \text{ else } \mathbb{Z}_2^2).$

$$\P \ K \ni \overline{(A,B,\lambda)} \mapsto \begin{pmatrix} \lambda^{q/(p+q)} A & 0 \\ 0 & \lambda^{-p/(p+q)} B \end{pmatrix} \in \mathrm{PSU}(p,q).$$

 $\Gamma = \pi_1(SO(p)) \times \pi_1(SO(q))$ for p or q odd (each factor is \mathbb{Z}_2 except $\pi_1(SO(1)) = 0$ and $\pi_1(SO(2)) = \mathbb{Z}$); otherwise $\Gamma \subset \pi_1(SO(p)/\mathbb{Z}_2) \times \pi_1(SO(q)/\mathbb{Z}_2)$ consists of (γ_p, γ_q) such that both or neither γ is in the corresponding $\pi_1(SO) \subset \pi_1(SO/\mathbb{Z}_2)$.

	$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	$r_{ m Re}$
	$\widetilde{\mathrm{E}}_{6(-78)}/\mathbb{Z}_3$	$= E_{6(-78)}$	\mathbb{Z}_3	0
ed.	$E_{6(-26)}$	$F_{4(-52)}$	1	2
\mathbf{st}	$\widetilde{\mathrm{E}}_{6(-14)}/\mathbb{Z}$	$\operatorname{Spin}(10) \times \operatorname{U}(1)/?$	\mathbb{Z}	2
tr	$\widetilde{\mathrm{E}}_{6(2)}/\mathbb{Z}_{6}$	$(SU(6)/\mathbb{Z}_6) \times SU(2)$	\mathbb{Z}_6	4
эс	$\widetilde{\mathrm{E}}_{6(6)}/\mathbb{Z}_2$	$USp(8)/\mathbb{Z}_2$	\mathbb{Z}_2	6
ot 1	$\begin{array}{c} E_{6(-26)} \\ \widetilde{E}_{6(-14)}/\mathbb{Z} \\ \widetilde{E}_{6(2)}/\mathbb{Z}_{6} \\ \widetilde{E}_{6(6)}/\mathbb{Z}_{2} \\ \widetilde{E}_{6}^{\mathbb{C}}/\mathbb{Z}_{3} \\ \end{array}$ $\begin{array}{c} \widetilde{E}_{7(-133)}/\mathbb{Z}_{2} \\ \widetilde{E}_{7(-25)}/\mathbb{Z} \\ \widetilde{E}_{7(-5)}/\mathbb{Z}_{2} \\ \widetilde{E}_{7(7)}/\mathbb{Z}_{4} \\ \widetilde{E}_{7}^{\mathbb{C}}/\mathbb{Z}_{2} \\ \end{array}$ $\begin{array}{c} E_{8(-248)} \\ \widetilde{E}_{8(-24)}/\mathbb{Z}_{2} \\ \widetilde{E}_{8(8)}/\mathbb{Z}_{2} \\ \widetilde{E}_{8}^{\mathbb{C}} \\ \widetilde{F}_{4(-52)} \\ \widetilde{F}_{4(-20)}/\mathbb{Z}_{2} \\ \widetilde{F}_{4(4)} \\ F_{4}^{\mathbb{C}} \end{array}$	$E_{6(-78)}$	\mathbb{Z}_3	6
d n	$\widetilde{\mathrm{E}}_{7(-133)}/\mathbb{Z}_2$	$= E_{7(-133)}$	\mathbb{Z}_2	0
oul	$\mathrm{E}_{7(-25)}/\mathbb{Z}$	$E_{6(-78)} \times U(1)/?$	\mathbb{Z}	3
$^{\mathrm{shc}}$	$\widetilde{\mathrm{E}}_{7(-5)}/\mathbb{Z}_2^2$	$\operatorname{Spin}(12) \times \operatorname{SU}(2)/\mathbb{Z}_2^2$	\mathbb{Z}_2^2	4
le	$\widetilde{\mathrm{E}}_{7(7)}/\mathbb{Z}_4$	$SU(8)/\mathbb{Z}_4$	\mathbb{Z}_4	7
$_{\mathrm{tab}}$	$\widetilde{\mathrm{E}}_{7}^{\mathbb{C}}/\mathbb{Z}_{2}$	$E_{7(-133)}$	\mathbb{Z}_2	7
$\dot{\mathbf{n}}$	$E_{8(-248)}$	$\underset{\sim}{\text{E}}_{8(-248)}$	1	0
t.	$\widetilde{\mathrm{E}}_{8(-24)}/\mathbb{Z}_2$	$\widetilde{\mathrm{E}}_{7(-133)} \times \mathrm{SU}(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
.=	$\widetilde{\mathrm{E}}_{8(8)}/\mathbb{Z}_2$	$SO(16)/\mathbb{Z}_2$	\mathbb{Z}_2	8
sdn	$\mathrm{E}_8^{\mathbb{C}}$	$E_{8(-248)}$	1	8
Sro	$F_{4(-52)}$	$F_{4(-52)}$	1	0
e e	$\widetilde{\mathrm{F}}_{4(-20)}/\mathbb{Z}_2$	$\operatorname{Spin}(9)/\mathbb{Z}_2$	\mathbb{Z}_2	1
ret	$\widetilde{\mathrm{F}}_{4(4)}$	$USp(6) \times SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
isc	$F_4^{\mathbb{C}}$	$F_{4(-52)}$	1	4
	$G_{2(-14)}$	$G_{2(-14)}$	1	0
	$G_{2(2)}/\mathbb{Z}_2$	$SU(2) \times SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
	$\mathrm{G}_2^{\mathbb{C}^{^{\!$	$G_{2(-14)}$	1	4

Spin and Pin groups. SO(n) has a double cover Spin(n). Since $\pi_0(O(n)) = \mathbb{Z}_2$ there are two double covers: $Pin_+(n)$ in which a reflection R obeys $R^2 = 1$, and $Pin_-(n)$ in which $R^2 = (-1)^F$. For $p, q \ge 1$, $\pi_0(O(p, q)) = \pi_0(O(p)) \times \pi_0(O(q)) = \mathbb{Z}_2^2$; the identity component $SO_+(p, q)$ has a double cover Spin(p, q).

The eight double covers of O(p,q) differ in whether R^2 , T^2 and $(RT)^2$ are +1 or $(-1)^F$.

Accidental isomorphisms (low-rank real reductive Lie groups) $\mathbb{R}/\mathbb{Z} = \mathrm{U}(1); \, \mathrm{SU}(2) = \mathrm{Spin}(3) \twoheadrightarrow \mathrm{SO}(3); \dots$

Homotopy. Any connected Lie group is homeomorphic to its maximal compact subgroup K times a Euclidean space \mathbb{R}^p . All $\pi_{j\geq 1}(K)$ are abelian and finitely generated, $\pi_2(K)=0$, $\pi_3(K)=\mathbb{Z}^m$ where m counts simple factors in a finite cover $\mathrm{U}(1)^n\times\prod_{i=1}^m K_i\twoheadrightarrow K$, and $\pi_j(K)=\prod_{i=1}^m \pi_j(K_i)$ for $j\geq 2$.

For any G there exists $\prod_{i=1}^{\operatorname{rank} G} S^{2d_i-1} \to G$ which induces isomorphisms of rational (i.e., torsion-free part of) homotopy/cohomology groups where d_i are the degrees of fundamental invariants. For compact simple K,

Group $(2d_i - 1)$	E_6 3, 9, 11, 15, 17, 23
A_n 3,5,, $2n + 1$ B_n , C_n 3,7,, $4n - 1$ D_n 3,7,, $4n - 5$, $2n - 1$	$\begin{array}{c} E_7 \ 3, 11, 15, 19, 23, 27, 35 \\ E_8 \ 3, 15, 23, 27, 35, 39, 47, 59 \\ F_4 \ 3, 11, 15, 23 \\ G_2 \ 3, 11 \end{array}$

 $\pi_{j\geq 2}(G)$ has a factor \mathbb{Z} for each S^j above, and some torsion. Explicitly, $\pi_j(\mathrm{SU}(n))$ is \mathbb{Z} for odd j<2n, 0 for even j<2n, and is pure torsion for $j\geq 2n$. Similarly, $\pi_{j<4n+2}(\mathrm{USp}(2n))$ is \mathbb{Z} for $j\equiv 3,7 \bmod 8$, \mathbb{Z}_2 for $j\equiv 4,5 \bmod 8$, and 0 otherwise.

§2.3 Simple Lie superalgebras

Classical Lie superalgebras: the bosonic algebra acts on the fermionic generators in a completely reducible representation. This excludes Cartan-type superalgebras $\mathfrak{w}(n)$, $\mathfrak{s}(n)$, $\tilde{\mathfrak{s}}(n)$ and $\mathfrak{h}(n)$. In this table, $m,n\geq 1$ and we do not list purely bosonic Lie algebras. The factor $\mathbb C$ of $\mathfrak{sl}(m|n)$ must be removed if m=n.

	Bosonic algebra	Fermionic repr.
$\mathfrak{sl}(m n)$	$\mathfrak{sl}(m,\mathbb{C})\oplus\mathfrak{sl}(n,\mathbb{C})\oplus\mathbb{C}$	$(m,\overline{n})\oplus(\overline{m},n)$
$\mathfrak{osp}(m 2n)$	$\mathfrak{so}(m,\mathbb{C})\oplus\mathfrak{sp}(2n,\mathbb{R})$	(m,2n)
$\mathfrak{d}(2,1,lpha)$	$\mathfrak{sl}(2,\mathbb{C})^3$	(2, 2, 2)
$\mathfrak{f}(4)$	$\mathfrak{so}(7,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C})$	(8,2)
$\mathfrak{g}(3)$	$\mathfrak{g}_2\oplus\mathfrak{sl}(2,\mathbb{C})$	(7,2)
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	$\mathrm{sym} \oplus (\mathrm{antisym})^*$
$\mathfrak{q}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	adjoint

Real forms of Lie superalgebras, starting from their compact form (p = q = 0). $\mathfrak{p}(m)$ has no compact form. Here, $m, n \geq 1, 0 \leq p \leq m/2, 0 \leq q \leq n/2$. The forms \mathfrak{su}^* , \mathfrak{osp}^* , \mathfrak{q}^* only exist for even rank; \mathfrak{sl}' only if m = n.

[§] Exception: for n = 2, $K = SO(2)/\mathbb{Z}_2$ and $\pi_1 = \mathbb{Z}$.

Real form	Bosonic algebra
	$\begin{array}{c} \mathfrak{su}(m-p,p) \oplus \mathfrak{su}(n-q,q) \oplus \mathfrak{u}(1)^{\ddagger} \\ \mathfrak{sl}(m,\mathbb{R}) \oplus \mathfrak{sl}(n,\mathbb{R}) \oplus \mathfrak{so}(1,1)^{\ddagger} \\ \mathfrak{sl}(n,\mathbb{C}) \\ \mathfrak{su}^*(m) \oplus \mathfrak{su}^*(n) \oplus \mathfrak{so}(1,1)^{\ddagger} \end{array}$
$\mathfrak{osp}(m-p,p 2n)$ $\mathfrak{osp}^*(m 2n-2q,2q) \ (m-p,p 2n)$	$\mathfrak{so}(m-p,p)\oplus\mathfrak{sp}(2n,\mathbb{R})$ $\mathfrak{so}^*(m)\oplus\mathfrak{usp}(2n-2q,2q)$
$\mathfrak{d}^p(2,1,\alpha)$ §	$\mathfrak{so}(4-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})\ (p=0,1,2)$
$f^p(4) \text{ for } p = 0, 3$ $f^p(4) \text{ for } p = 1, 2$	$\mathfrak{so}(7-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})$ $\mathfrak{so}(7-p,p)\oplus\mathfrak{su}(2)$
$g_s(3) \text{ for } s = -14, 2$	$\mathfrak{g}_{2(s)}\oplus\mathfrak{sl}(2,\mathbb{R})$
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{R})$
$\begin{array}{c} \begin{array}{c} \\ \mathfrak{q}(m-p,p) \\ \mathfrak{q}(m) \\ \mathfrak{q}^*(m) \end{array} \pmod{0} \end{array}$	$\mathfrak{su}(m+1-p,p)$ $\mathfrak{sl}(m+1,\mathbb{R})$ $\mathfrak{su}^*(m+1)$

[‡] For m = n, $\mathfrak{u}(1)$ and $\mathfrak{so}(1,1)$ factors are absent. Additionally, one can project down to a single bosonic factor.

Some isomorphisms: $\mathfrak{su}(1,1|1) = \mathfrak{sl}(2|1) = \mathfrak{osp}(2|2)$ and $\mathfrak{su}(2|1) = \mathfrak{osp}^*(2|2,0)$ and $\mathfrak{d}^p(2,1,\alpha=1) = \mathfrak{osp}(4-p,p|2)$ and $\mathfrak{osp}(6,2|4) = \mathfrak{osp}^*(8|4)$.

§2.4 Lie supergroups

§2.5 Representations

§3 Spinors

Clifford algebra. Let h_{ab} be diagonal with s '+1' and t '-1', and d = s + t. The Clifford algebra $\{\Gamma_a, \Gamma_b\} = 2h_{ab}$ has real dimension 2^d and is isomorphic to a matrix algebra $M_{2^\#}(\bullet)$ with

Charge conjugation. $(-\eta)\Gamma_a^T = \mathcal{C}\Gamma_a\mathcal{C}^{-1}$ are conjugate for $\eta = \pm 1$ because they obey the same algebra. Get $\mathcal{C}^T = -\varepsilon\mathcal{C}$ with $\varepsilon = \pm 1$ by transposing twice. Let $\Gamma^{(n)} = \Gamma_{a_1...a_n}$. Using $\left(\mathcal{C}\Gamma^{(n)}\right)^T = -\epsilon(-)^{n(n-1)/2}(-\eta)^n\mathcal{C}\Gamma^{(n)}$ find which $n \mod 4$ give symmetric $\mathcal{C}\Gamma^{(n)}$. The sum of $\binom{d}{n}$ must be $2^{\lfloor d/2 \rfloor}(2^{\lfloor d/2 \rfloor} + 1)/2$. This fixes ϵ, η . Odd d require $\eta = (-1)^{d(d+1)/2}$ to preserve $\Gamma^{(d)}$. Even d allow two choices of signs: consult the rows $d \pm 1$.

$d \bmod 8$	n	ϵ	η
$0\langle 1$	0, 1	-1	-1
$4\langle 3$	1, 2	+1	+1
6/5	2, 3	+1	-1
7	0, 3	-1	+1

Reduced spinors. $M_{ab} \in \mathfrak{so}(s,t)$ acts as $\gamma_a \gamma_b$ on representations of the Clifford algebra. But the $2^{\lceil d/2 \rceil}$ -dimensional representation is not irreducible as a representation of $\mathfrak{so}(s,t)$.

In even d, Weyl (or chiral) spinors $\Gamma^{(d)}\lambda = \pm \lambda$ have $2^{d/2-1}$ real components. Let B be defined by $\Gamma_a^* = -\eta(-1)^t B \Gamma_a B^{-1}$. Majorana spinors $\lambda^* = B\lambda$ exist for $s - t \equiv 0, \pm 1, \pm 2 \mod 8$; the case $s - t \equiv \pm 2$ requires $\eta = \mp (-1)^{d/2}$. When $s - t \equiv 3, 4, 5$,

a set of 2n spinors can be symplectic Majorana: $(\lambda^I)^* = B\Omega_{IJ}\lambda^J$ for $\Omega = ((0, \mathbb{1}_n); (-\mathbb{1}_n, 0))$. (Symplectic) Majorana–Weyl spinors exist for $s-t\equiv 0, 4 \bmod 8$. The table also includes the real dimension of the minimal spinor.

d t	■ 0	1	2	$3 \bmod 4$
1 (D 2) M	1	M 1		
$2~({ m W}~2)~{ m M}^-$	2	MW 1	M^+ 2	
3 (D 4) s	4	M = 2	M = 2	s 4
4 (W 4) sW	4	M^+ 4	MW 2	M^- 4
5 (D 8) s	8	s 8	M = 4	M = 4
$6 \text{ (W 8) } \text{M}^{+}$	8	sW = 8	M^- 8	MW = 4
7 (D 16) M	8	s 16	s 16	M 8
8 (W16) MW	7 8	M^{-} 16	sW = 16	M^{+} 16
9 (D32) M	16	M 16	s = 32	s 32
$10 \text{ (W32) } \text{M}^-$	32	MW 16	M^{+} 32	sW 32
$11 \; (D \; 64) \; s$	64	M = 32	M = 32	s 64
12 (W64) sW	64	M^{+} 64	MW 32	M ⁻ 64

Flavour symmetries of N minimal spinors. This is also the R-symmetry of the N-extended superalgebra. For (symplectic) Majorana Weyl spinors, specify $N=(N_L,N_R)$ left/right-handed.

$$\begin{array}{l} \mathbf{M} & \begin{cases} \mathfrak{u}(N) & \text{if } d \text{ even} \\ \mathfrak{so}(N) & \text{if } d \text{ odd} \end{cases} \\ \mathbf{MW: } \mathfrak{so}(N_L) \times \mathfrak{so}(N_R) \\ \mathbf{s} & : \mathfrak{usp}(2N) \\ \mathbf{sW} & : \mathfrak{usp}(2N_L) \times \mathfrak{usp}(2N_R) \end{cases}$$

E.g., Lorentzian 6d (2,0) has $\mathfrak{usp}(4) \times \mathfrak{usp}(0)$ R-symmetry.

Products of spinor representations. For odd d=2m+1, let \mathcal{S} be a spinor representation of complex dimension 2^m . The symmetric product $S^2\mathcal{S}$ consists of k-forms with $k\equiv m \mod 4$. Since k-forms and (d-k)-forms are the same representation, other descriptions can be given. For the antisymmetric product $\bigwedge^2 \mathcal{S}$, take $k\equiv m-1 \mod 4$. See the list of forms in the table.

$d \dim_{\mathbb{C}} \mathcal{S}$	1 1	$\frac{3}{2}$	5 4	7 8	9 16	$\frac{11}{32}$
	0	1	2	0,3	0, 1, 4	1, 2, 5
$\bigwedge^2 S$		0	0, 1	1, 2	2,3	0, 3, 4

For even d=2m, let \mathcal{S}_{\pm} be the Weyl spinor representations of complex dimension 2^{m-1} . The tensor product $\mathcal{S}_{+}\otimes\mathcal{S}_{-}$ consists of (m-1-2j)-forms for $0\leq j\leq (m-1)/2$. The symmetric products $S^2\mathcal{S}_{\pm}$ decompose into the (anti)-self-dual m-forms and (m-4j)-forms for $0< j\leq m/4$. The antisymmetric products $\bigwedge^2\mathcal{S}_{\pm}$ decompose into (m-2-4j)-forms for $0\leq j\leq (m-2)/4$.

d	2	4	6	8	10	12
$\dim_{\mathbb{C}}\mathcal{S}_{\pm}$	1	2	4	8	16	32
$S^2 \mathcal{S}_{\pm}$	1^{\dagger}	2^{\dagger}	3^{\dagger}	$0,4^{\dagger}$	$1,5^{\dagger}$	$2,6^{\dagger}$
$igwedge^2 \mathcal{S}_\pm$		0	1	2	3	0, 4
$\mathcal{S}_+ \otimes \mathcal{S}$	0	1	0, 2	1, 3	0, 2, 4	1, 3, 5

Note that $S^2(\mathcal{S}_+ \oplus \mathcal{S}_-) = S^2\mathcal{S}_+ \oplus (\mathcal{S}_+ \otimes \mathcal{S}_-) \oplus S^2\mathcal{S}_-$

$$\bigwedge^{2}(\mathcal{S}_{+}\oplus\mathcal{S}_{-})=\bigwedge^{2}\mathcal{S}_{+}\oplus(\mathcal{S}_{+}\otimes\mathcal{S}_{-})\oplus\bigwedge^{2}\mathcal{S}_{-}$$

[§] The three $\mathfrak{sl}(2)$ bosonic factors of $\mathfrak{d}(2,1,\alpha)$ appear with weights 1, α and $-1-\alpha$ in fermion anticommutators. For \mathfrak{d}^0 and \mathfrak{d}^2 , α is real. For \mathfrak{d}^1 , $\alpha=1+ia$ with a real.

§4 Supersymmetry algebras

The Poincaré algebra is $\mathbb{R}^{s,t} \rtimes \mathfrak{so}(s,t)$, the semi-direct product of translations by rotations. Namely, $[P_a, P_b] = 0$, $[M_{ab}, P_c] = 2ih_{c[a}P_{b]}$, and $[M_{ab}, M^{cd}] = 4ih_{[a}^{[c}M_{b]}^{d]}$.

Super-Poincaré algebra. Add supercharges in some spinor representation Q of the Poincaré algebra (so $[P_a,Q]=0$). Their anticommutator transforms in the representation S^2Q and should include the one-form P. Depending on s,t they can include other k-forms Z, called central charges because [P,Z]=[Z,Z]=0. The super-Poincaré algebra is $((\mathbb{R}^{s,t}\times Z).Q)\rtimes(\mathfrak{so}(s,t)\times R)$, where the R-symmetry acts on Q. This Lie superalgebra is graded: $\operatorname{gr}(\mathbb{R}^{s,t}\times Z)=-2$, $\operatorname{gr}(Q)=-1$, and $\operatorname{gr}(\mathfrak{so}(s,t)\times R)=0$. The supertranslations consist of $(\mathbb{R}^{s,t}\times Z).Q$.

Example: M-theory algebra. d=10+1 super-Poincaré algebra with Q= Majorana. Since S^2Q has 1, 2, and 5-forms, there are 2-form and 5-form central charges $Z_{(2)}$ and $Z_{(5)}$ (under which M2 and M5 branes are charged):

$$\{Q_{\alpha}, Q_{\beta}\} = (\gamma^{M} C)_{\alpha\beta} P_{M} + \frac{1}{2} (\gamma_{MN} C)_{\alpha\beta} Z_{(2)}^{MN} + \frac{1}{5!} (\gamma_{MNPQR} C)_{\alpha\beta} Z_{(5)}^{MNPQR}$$

Altogether the M-theory algebra is $\mathfrak{osp}(1|32)$.

Superconformal algebras are the same as super AdS_{d+1} . The bosonic part is $\mathfrak{so}(d,2)$ and R-symmetries. As a supermatrix: $\begin{pmatrix} \mathfrak{so}(d,2) & Q+S \\ Q-S & R \end{pmatrix}$ or $\mathfrak{so}(d,2) \leftrightarrow R$. Note that $\{Q,S\}$ contains R. For d=2, the finite conformal algebra is $\mathfrak{so}(2,2)=\mathfrak{so}(2,1)\oplus\mathfrak{so}(2,1)$, sum of two d=1 algebras, so the superalgebra is sum of two d=1 superalgebras.

\overline{d}	Superalgebra	R-symmetries	#Q+#S
1	$\mathfrak{osp}(N 2)$	$\mathfrak{o}(N)$	2N
	$\mathfrak{su}(N 1,1)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1)$ for $N \neq 2$	4N
	$\mathfrak{su}(2 1,1)$	$\mathfrak{su}(2)$	8
	$\mathfrak{osp}(4^* 2N)$	$\mathfrak{su}(2) \oplus \mathfrak{usp}(2N)$	8N
	$\mathfrak{g}(3)$	\mathfrak{g}_2	14
	$\mathfrak{f}^0(4)$	$\mathfrak{so}(7)$	16
	$\mathfrak{d}^0(2,1,lpha)$	$\mathfrak{su}(2) \oplus \mathfrak{su}(2)$	8
3	$\mathfrak{osp}(N 4)$	$\mathfrak{so}(N)$	4N
4	$\mathfrak{su}(2,2 N)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1) \text{ for } N \neq 4$	8N
	$\mathfrak{su}(2,2 4)$	$\mathfrak{su}(4)$	32
5	$f^{2}(4)$	$\mathfrak{su}(2)$	16
6	$\mathfrak{osp}(8^* N)$	$\mathfrak{usp}(N)$ $(N \text{ even})$	8N

Dimensional reduction of Lorentzian supersymmetry algebras. The 1d column gives the number of real supercharges.

10d	6d	5d	4d	3d	2d	1d
$\mathcal{N} = (1,0)$						
	(1, 0)	1			(4, 4)	
			1	2	(2, 2)	4

Explicit supersymmetry algebras 4d $\mathcal{N}=2$ $\{Q^A_{\alpha},\overline{Q}^B_{\dot{\alpha}}\}=\epsilon^{AB}P_{\alpha\dot{\alpha}}$

Supersymmetry on symmetric curved spaces $4d \mathcal{N} = 2$ supersymmetry on S^4 is $\mathfrak{osp}(2|4)$. $2d \mathcal{N} = (2,2)$ supersymmetry on S^2 is $\mathfrak{osp}(2|2)$.

§5 Supermultiplets

§5.1 Spin ≤ 1 supermultiplets

For 16 supercharges, there is only the vector multiplet.

For 8 supercharges, vector multiplet and hypermultiplet; in 3d and lower also twisted vector multiplet and twisted hypermultiplet.

For 4 supercharges, vector, chiral, linear multiplets; in 2d $\mathcal{N} = (2, 2)$ also twisted vector, twisted chirals, semichirals, . . .

For 2 supercharges, vector, chiral, linear, Fermi, ...

§5.2 Other supermultiplets

6d $\mathcal{N} = (2,0)$ tensor multiplet with self-dual two-form gauge field B (namely $dB = \star dB$), four spinors, five scalars.

6d $\mathcal{N}=(1,0)$ tensor multiplet (contains one scalar), reduces to 4d $\mathcal{N}=2$ vector.

6d $\mathcal{N}=(1,0)$ supergravity multiplet, reduces to 4d $\mathcal{N}=2$ supergravity multiplet and two vectors.

§6 Supersymmetric gauge theories

§6.1 Generalities

Super Yang–Mills (SYM). A gauge group is a compact reductive Lie group G such as $(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_6$. The SYM term is $\mathcal{L}_{SYM} = g^{-2} \operatorname{Tr} F \wedge \star F + \text{superpartners}$, with one real gauge coupling g per simple factor.

Theta term in even dimension: $\theta \operatorname{Tr} F^{\wedge (d/2)}$ with θ periodic. In 4d, θ and g combine to $\tau = \theta/(2\pi) + 4\pi i/g^2$.

Chern–Simons term in 3d: $k \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$ with k quantized (normalization missing).

Matter. For 16 supercharges, none. For 8 supercharges, symplectic representation $V \simeq \mathbb{H}^n$ namely $G \to F = \mathrm{USp}(2n)$. For 4 supercharges, unitary representation $V \simeq \mathbb{C}^n$ namely $G \to F = \mathrm{U}(n)$. Canonical kinetic term for bosons: $D_{\mu}\phi_i D^{\mu}\phi_i$.

Superpotential term. For 4 supercharges, $\int d^2\theta W$ gives a potential for scalars and Yukawa-type interactions. W is holomorphic in chiral fields and in couplings seen as background fields. Example: the kinetic term $\operatorname{Im} \int d^2\theta [\tau W_{\alpha}^2]$ of an abelian gauge field: W_{α}^2 is a chiral field so τ is the background value of a chiral field.

An accidental symmetry is a flavour symmetry of the IR but not of the UV.

R-symmetry mixing. In 2d and higher, the superconformal algebra contains the IR R-symmetry. The UV R-symmetry can be a mixture of the IR R-symmetry and of a flavour symmetry: $R_{\rm UV} \subset R_{\rm IR} \times F$. For nonabelian R-symmetry that flavour symmetry must be accidental as it does not commute with $R_{\rm UV}$. For abelian R-symmetry the mixing is continuous; assuming no accidental flavour symmetries it is fixed in 4d $\mathcal{N}=1$ by a-extremization, in 3d $\mathcal{N}=2$ by Z_{S^3} -extremization, in 2d $\mathcal{N}=(0,2)$ by c-extremization.

Classical vacua: Coulomb, Higgs and mixed branches. Coulomb branch ($\mathfrak g$ modulo conjugation by G) parametrized by vector multiplet scalars, can be lifted by quantum effects, larger in 3d due to monopoles. For 4 supercharges, Higgs branch parametrized by chiral multiplet scalars: Kähler quotient R//G. For 8 supercharges, Higgs branch parametrized by hypermultiplet scalars: hyper-Kähler quotient $\widetilde{R}//G$. The Higgs branch

has flavour symmetry $\{x \in F \mid xG = Gx\}/G$ normalizer of G in F = U(R) or $F = USp(\widetilde{R})$ modulo G. Background vector multiplet scalars (real/twisted masses) reduce the Higgs and mixed branches to fixed points of corresponding flavour symmetries.

Boundaries and gauge redundancies. On a non-compact spacetime one can consider the group of gauge redundancies with various boundary conditions. Let $H \subset F$ be the constant transformations included as gauge redundancies (including constant gauge transformations by $H \cap G$). The Higgs branch flavour symmetry is then $\{x \in F \mid xG = Gx, xH = Hx\}/H$.

§6.2 Maximal super Yang–Mills

Data: gauge group.

Lorentzian 10d $\mathcal{N}=1$ SYM is anomalous unless the gauge group is abelian. Its dimensional reductions are anomaly-free and have one gauge field, 10-d scalars and \mathcal{N} (symplectic or Majorana, and Weyl or not) spinors. The Lagrangian's R-symmetry Spin(10-d) is contained in the automorphism group of the superalgebra (they coincide for $d \geq 5$).

dim.	$\mathcal N$ spinors	autom. \supset R-sym.
10d	(1,0) MW	
9d	1 M	
8d	1 M	U(1) = Spin(2)
7d	1 s	USp(2) = Spin(3)
6d	(1,1) sW	$USp(2)^2 = Spin(4)$
5d	2 s	USp(4) = Spin(5)
4d	$4 \mathrm{~M}$	$U(4) \supset Spin(6)$
3d	8 M	$Spin(8) \supset Spin(7)$
2d	(8,8) MW	$\operatorname{Spin}(8)^2 \supset \operatorname{Spin}(8)$
1d	16 M	$Spin(16) \supset Spin(9)$

4d $\mathcal{N} = 4$ has exactly marginal parameter $\tau = \theta/(2\pi) + 4\pi i/g^2$

§6.3 Theories with 8 supercharges

5d $\mathcal{N} = 1$ **SCFTs** built from 5-brane diagrams or UV fixed point of gauge theory.

 $\mathrm{SU}(2N)$ SYM with $N_f \leq 7$ fundamental hypermultiplets has $\mathrm{SO}(2N_f) \times \mathrm{U}(1)_T \subset \mathrm{E}_{N_f+1}$ flavour symmetry enhancement. For $\mathrm{SU}(2)$ and $N_f = 0$, non-trivial " θ " in $\pi_4(\mathrm{SU}(2)) = \mathbb{Z}_2$ gives the \widetilde{E}_1 theory with $\mathrm{U}(1)_T$ symmetry only.

4d $\mathcal{N}=2$ generalities

The theory on \mathbb{R}^4 (Nekrasov-Shatashvili limit) \leftrightarrow quan-

The theory on $\mathbb{R}^4_{\epsilon_1,0}$ (Nekrasov–Shatashvili limit) \leftrightarrow quantum integrable system with Planck constant ϵ_1 .

Coulomb moduli \leftrightarrow action variables.

Supersymmetric vacua \leftrightarrow eigenstates.

Lift to $\mathbb{R}^4 \times S^1$ gives K-theoretic Nekrasov partition function. The 5d theory \leftrightarrow relativistic version of the integrable system.

4d $\mathcal{N}=2$ (G,G') Argyres–Douglas theories (with G and G' among A_k , D_k , $E_{6,7,8}$) are engineered as IIB strings on three-fold singularity $f_G(x_1,x_2)+f_{G'}(x_3,x_4)=0$ where $f_{A_k}(x,y)=x^2+y^{k+1}$ etc. (see page 2).

3d $\mathcal{N}=4$ has $\mathrm{SU}(2)_C\times\mathrm{SU}(2)_H$ R-symmetry acting on the Coulomb and Higgs branch. Both branches are hyper-Kähler and the $\mathrm{SU}(2)$ rotates their \mathbb{CP}^1 worth of complex structures. Denote $\mathrm{T}\subset\mathrm{G}$ the Cartan torus. The Coulomb branch is a holomorphic Lagrangian fibration $\mathcal{M}_C\to\mathfrak{t}_\mathbb{C}/\mathrm{Weyl}$ with generic fiber $\mathrm{T}^\vee_\mathbb{C}\simeq(\mathbb{C}^*)^{\mathrm{rank}\,\mathrm{G}}$. Its classical $\mathrm{Hom}(\pi_1(\mathrm{G}),\mathrm{U}(1))$ topological flavour symmetry can be enhanced quantum mechanically.

2d $\mathcal{N}=(4,4)$ gauge theories. Typically get in the IR a direct sum of 2d $\mathcal{N}=(4,4)$ SCFTs (from the Coulomb and Higgs branches) whose central charges are different. Their $SU(2) \times SU(2)$ left/right-moving R-symmetries are different.

§6.4 Theories with 4 supercharges

4d $\mathcal{N}=1$ pure SYM classically has $\mathrm{U}(1)_R$ symmetry, broken by instantons to \mathbb{Z}_{2h} with $h=C_2(\mathrm{adj})$. It confines, is mass-gapped, and has $C_2(A)$ vacua associated to breaking \mathbb{Z}_{2h} to \mathbb{Z}_2 by gaugino condensation $\langle \lambda \lambda \rangle$. Witten index $\mathrm{Tr}(-1)^F=h$.

Wess-Zumino model: chiral multiplet ϕ with superpotential $W = m\phi^2 + g\phi^3$.

 $3d \mathcal{N} = 2$

2d $\mathcal{N} = (2,2)$. Classical U(1) × U(1) R-symmetry. The axial U(1) R-symmetry has an anomaly with U(1) gauge symmetry proportional to the total charge under that gauge symmetry.

The gauge field strength is a twisted chiral multiplet Σ .

Integrating out massive chirals gives a twisted superpotential $-\operatorname{Tr}_R(\Sigma \log(\Sigma/\mu) - \Sigma)$ where Σ combines gauge field strength and twisted masses. FI parameters (twisted superpotentials linear in Σ) thus run as $\log(\mu)$ times the sum of charges.

Twisted chiral ring relations: $\partial W/\partial \Sigma_j \in 2\pi i \mathbb{Z}$.

1d
$$\mathcal{N}=4$$

Data: gauge group G, representation V of G for chiral multiplets. Gauge couplings, FI parameters, superpotential W. Flavour Wilson line, twisted and real masses $v, m_1 + im_2, m_3 \in \mathfrak{g}_F$ that commute.

R-symmetry: SU(2), times U(1) if W has charge 2.

1d
$$N = 2$$

Discrete data: gauge group G, chiral multiplets in a representation V of G, Wilson line in a unitary representation $M = M_0 \oplus M_1$ of \mathfrak{g} , flavour symmetry group $G_F \subseteq \mathrm{U}(V) \times \mathrm{U}(M_0) \times \mathrm{U}(M_1)$ commuting with G. Gauge anomaly cancellation: $M \otimes \det^{1/2} V$ must be a representation of G.

Continuous data: gauge couplings, FI parameters, flavour Wilson line and real mass $v, \sigma \in \mathfrak{g}_F$ that commute, \mathfrak{g} -equivariant holomorphic odd map $Q \colon V \to \operatorname{End} M$ with $Q^2 = 0$ describing how supercharges act on M.

Special case: Fermi multiplets in representation $V_{\rm f}$ of G with G-equivariant holomorphic maps $E\colon V\to V_{\rm f}$ and $J\colon V\to V_{\rm f}^\vee$ obeying $J\cdot E=0$ are equivalent to Wilson line in $M=\wedge V_{\rm f}\otimes \det^{-1/2}V_{\rm f}$ with $Q=E\wedge +J$.

R-symmetry: U(1) if $Q: V \to \text{End } M$ has charge 1. Mixing with flavour symmetries not fixed by superconformal algebra.

NLSM Chiral multiplet: scalar ϕ in a Kähler target X and fermion in holomorphic bundle ϕ^*T_X . Wilson line depends on a complex of vector bundles \mathcal{F} . Fermi multiplet takes values in a holomorphic vector bundle \mathcal{E} with hermitian metric, equivalent to Wilson line with $\mathcal{F} = \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E}$. Anomaly cancellation: $\sqrt{K_X} \otimes \wedge T_X \otimes \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E} \otimes \mathcal{F}$ is a well-defined vector bundle on X.

§7 Other theories

§7.1 2d conformal field theories

Virasoro algebra $[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}$ where $m \in \mathbb{Z}$. Adjoint $L_n^{\dagger} = L_{-n}$ and $c^{\dagger} = c$.

 $\mathcal{N}=1$ super-Virasoro algebra additionally $[L_m,G_r]=(m/2-r)G_{m+r}$ and $\{G_r,G_s\}=2L_{r+s}+\frac{c}{3}(r^2-1/4)\delta_{r+s,0}$ where either $r\in\mathbb{Z}$ (Ramond algebra) or $r\in\mathbb{Z}+1/2$ (Neveu–Schwarz algebra). Adjoint $G_r^\dagger=G_{-r}$.

 $\begin{array}{l} \mathcal{N}=2 \text{ super-Virasoro algebra } [L_m,J_n]=-nJ_{m+n}, \\ [J_m,J_n]=\frac{c}{3}m\delta_{m+n,0}, \ [L_m,G_r^\pm]=(m/2-r)G_{m+r}^\pm, \\ [J_m,G_r^\pm]=\pm G_{m+r}^\pm, \ \{G_r^+,G_s^+\}=\{G_r^-,G_s^-\}=0, \\ \{G_r^+,G_s^-\}=L_{r+s}+\frac{1}{2}(r-s)J_{r+s}+\frac{c}{6}(r^2-1/4)\delta_{r+s,0}. \\ \text{Adjoint } L_m^\dagger=L_{-m},\ J_m^\dagger=J_{-m},\ (G_r^\pm)^\dagger=G_{-r}^\mp,\ c^\dagger=c. \ \text{The algebras with } r\in\mathbb{Z} \ (\text{Ramond}) \ \text{or } r\in\mathbb{Z}+1/2 \ (\text{Neveu-Schwarz}) \\ \text{are isomorphic under spectral shift } \alpha_{\pm 1/2} \ \text{where } \alpha_{\eta}(L_n)=L_n+\eta J_n+\frac{c}{6}\eta^2\delta_{n,0},\ \alpha_{\eta}(J_n)=J_n+\frac{c}{3}\eta\delta_n,\ \alpha_{\eta}(G_r^\pm)=G_{r\pm\eta}^\pm. \\ \text{Another automorphism is } G_r^+\leftrightarrow G_r^-,\ J_m\mapsto -J_m-\frac{c}{3}\delta_{m,0}. \ \text{We get a} \ \mathbb{Z} \rtimes \mathbb{Z}_2 \ \text{automorphism group}. \end{array}$

SW(3/2,2) super-Virasoro algebra has $L,\,G,\,W,\,U$ bc system, $\beta\gamma$ system

Liouville CFT has $c = 1 + 6(b+1/b)^2$ and primary operators with $h(\alpha) = \alpha(b+1/b-\alpha)$ for "momentum" $\alpha \in \frac{1}{2}(b+1/b)+i\mathbb{R}$.

Minimal model $\mathcal{M}_{p,q}$ for p > q coprime is a quotient of $b = i\sqrt{p/q}$ Liouville CFT. It has $c = 1 - \frac{6(p-q)^2}{pq}$ and primary operators with $h_{r,s} = \frac{(ps-qr)^2 - (p-q)^2}{4pq}$ for 0 < r < p and 0 < s < q; no degeneracy besides $h_{r,s} = h_{p-r,q-s}$. Example: Ising model $\mathcal{M}_{4,3}$, tricritical Ising model $\mathcal{M}_{5,4}$, Yang-Lee singularity $\mathcal{M}_{5,2}$.

Unitary minimal model $\mathcal{M}_{k+2,k+1}$ is coset $\frac{\hat{\mathfrak{su}}(2)_{k-1} \times \hat{\mathfrak{su}}(2)_1}{\hat{\mathfrak{su}}(2)_k}$

§7.2 Chern–Simons

Chern–Simons (2m-1)-form $m \operatorname{Tr} \left(A \int_0^1 dt (t dA + t^2 A^2)^{m-1} \right)$.

§7.3 Supergravity and strings

String actions Polyakov action $L_{\rm P}=\lambda^{mn}[(\partial_m X)(\partial_n X)-g_{mn}]+\frac{1}{\alpha'}\sqrt{-g}$. Using equations of motion get Nambu–Goto action $L_{\rm NG}=\frac{1}{\alpha'}\sqrt{-\det[(\partial_m X)(\partial_n X)]}$ or Brink–di Veccia–Howe–Deser–Zumino action $L_{\rm BdVHDZ}=\frac{1}{2\alpha'}\sqrt{-g}[g^{mn}(\partial_m X)(\partial_n X)-(d-2)]$ with d=2 the world-sheet dimension.

Pure supergravities in $4 \le d \le 11$. Gravity is topological in d=3. The maximum number of supercharges Q=32 forbids d>11. A priori, all Q=4k are possible. Focus on 32,16,8,4.

\overline{d}	Q = 32	16	8	4
11	√			
10	$\stackrel{IIB}{(2,0)}\stackrel{IIA}{(1,1)}$	(1,0)		
9	\checkmark	\checkmark		
8	\checkmark	\checkmark		
7	\checkmark	\checkmark		
6	(2, 2)	(2,0) (1,1)	(1,0)	
5	\checkmark	\checkmark	\checkmark	
4	N = 8	N = 4	N = 2	N = 1

M-theory has as its low-energy limit 11d supergravity, which has two $\frac{1}{2}$ -BPS membrane solutions (with 16 Killing spinors): M2-brane $\mathrm{d}s^2 = \Lambda^4\,\mathrm{d}x^2 + \frac{\mathrm{d}y^2}{\Lambda^2}$ with $\Lambda = (1 + \frac{c_2N_2l^6}{|y|^6})^{-1/6}$, and M5-brane $\mathrm{d}s^2 = \Lambda\,\mathrm{d}x^2 + \mathrm{d}y^2/\Lambda^2$ with $\Lambda = (1 + \frac{c_5N_5l^3}{|y|^3})^{-1/3}$, where $x \in \mathbb{R}^{p,1}$ and $y \in \mathbb{R}^{10-p}$. In the near horizon $y \to 0$ these become $\mathrm{AdS}_4 \times S^7$ and $\mathrm{AdS}_7 \times S^4$ with 32 Killing spinors.

Branes IIA strings: D0, F1 (strings), D2, D4, O4[±], $\widetilde{O4}^+$, NS5, D6, D8 (wall), O8 (wall), etc.. IIB strings: D(-1), F1 (strings), D1, D3, (p,q) 5-branes (includes D5 and NS5), O5[±], $\widetilde{O5}^+$, D7, O7[±], ON⁰, etc.. M-theory: M2, M5, OM5, M9.

Flat space brane configurations Flat space preserves 32 supercharges. One stack of parallel branes breaks half; two stacks break all unless: $\mathrm{D}p$ and $\mathrm{D}q$ have 0, 4 or 8 directions that one brane spans and not the other; $\mathrm{D}p$ branes have 1 or 3 directions transverse to any NS5; any pair of NS5 branes has 2, 4, 6 common directions. Kappa-projection: for $\mathrm{D}p$ is $\Gamma_{01...p}\epsilon_L=\epsilon_R$, for NS5 is $\Gamma_{01...5}\epsilon_L=\epsilon_L$. Then at least $32/2^{\#\mathrm{stacks}}$ supercharges preserved.

S-rule, brane creation Let a Dp have 3 directions transverse to an NS5. Zero or one D(p-2) can stretch between the two (spanning common directions and directions where neither Dp nor NS5 stretch). Moving Dp through NS5 toggles between zero and one.

Little string theory (LST) Decoupled $g_s \to 0$, fixed α description of k coincident NS5 branes on transverse T^5 gives (1,1) LST for IIB and (2,0) LST for IIA. Has AdS/CFT dual with linear dilaton background.

§7.4 Integrable models

Relativistic quantum Toda chain. $H = \sum_{n=1}^{N} (\cos(2\eta \hat{p}_n) + g^2 \cos(\eta \hat{p}_n + \eta \hat{p}_{n+1}) e^{x_{n+1} - x_n})$. Its non-relativistic limit is $\eta \to 0$ imaginary with $g/(i\eta\sqrt{2}) = c$ fixed.

§7.5 Localization results

3d
$$\mathcal{N} = 2$$
: $Z = \int_{\mathfrak{t}} du \frac{\prod_{\alpha \operatorname{root}} (2 \sinh(\alpha u/2))^2}{\prod_{w \in \mathcal{R}} \cosh(wu/2)} e^{ik \operatorname{Tr} u^2/(4\pi)}$.

§8 Manifolds

§8.1 Riemannian geometry

§8.2 G-structures, holonomy

Structure group. A G-structure on a manifold X (with $n = \dim_{\mathbb{R}} X$) is a G-subbundle of the $\mathrm{GL}(n,\mathbb{R})$ -principal bundle $\mathrm{GL}(TX)$ of tangent frames, namely a global section of $\mathrm{GL}(TX)/G$.

A manifold is oriented if it has a $GL_+(n, \mathbb{R}) = \{ \det > 0 \}$ structure. Similar definitions for Riemannian manifolds etc.:

G-structur	re Manifold type	Other characterization [‡]
$\overline{\mathrm{O}(n)}$	Riemannian	metric $g > 0$
SO(n)	oriented, Riemannian	
O(p,q)	pseudo-Riemannian	metric of signature (p, q)
$SO_+(p,q)$	pseudo-Riemannian, c	riented, time-oriented
Pin_{\pm} or S_{2}	pin (pseudo)-Riemanni	an pin_{\pm} or spin manifold
$\overline{\mathrm{GL}(n/2,\mathbb{C})}$	Almost complex	$\mathbb{C} \subset TX$ (i.e., $J^2 = -1$)

 $\operatorname{GL}(n/2,\mathbb{C})$ Almost complex $\mathbb{C} \subseteq TX$ (i.e., $J^2 = -1$) $\operatorname{Sp}(2n/2,\mathbb{R})$ Almost symplectic Non-degenerate $\omega \in \Omega^2 X$ $\operatorname{U}(n/2)$ Almost Hermitian Two compatible $(g,J,\omega)^\S$ $\operatorname{U}^*(n/2)$ Almost hypercomplex $J_1,J_2,J_3 \subset TX$

 $\begin{array}{lll} \operatorname{U*}(n/2) & \operatorname{Almost\ hypercomplex}^\P & J_1,J_2,J_3 \subset TX \\ \operatorname{USp}(n/2) & \operatorname{Almost\ hyperHermitian} & (g,J_{1,2,3},\omega_{1,2,3}) \\ \operatorname{U*}(n/2)\operatorname{USp}(2) & \operatorname{Almost\ quaternionic}^\P & \operatorname{\mathbb{H}} \subset TX \\ \operatorname{USp}(n/2)\operatorname{USp}(2) & \operatorname{Almost\ quaternion-Hermitian} & (g,\operatorname{\mathbb{H}},\omega_{1,2,3}) \end{array}$

§ Any two of (g,J,ω) fix the third by $\omega_{ik}=J_i{}^jg_{jk}$ if they are compatible: $J_i{}^jJ_l{}^k\omega_{jk}=\omega_{il}$ or $J_i{}^jJ_l{}^kg_{jk}=g_{il}$ namely ω or g is J-invariant, or $\omega_{ij}g^{jk}\omega_{kl}=-g_{il}$. In a basis $e^\beta,\bar{e}^{\bar{\gamma}}$ (= $\mathrm{d}z^\beta,\mathrm{d}\bar{z}^{\bar{\gamma}}$ for Hermitian manifolds) of (1,0) and (0,1) forms, $\omega=\frac{1}{2}h_{\beta\bar{\gamma}}\,e^\beta\wedge\bar{e}^{\bar{\gamma}}$ and $g=\frac{1}{2}h_{\beta\bar{\gamma}}(e^\beta\otimes\bar{e}^{\bar{\gamma}}+\bar{e}^{\bar{\gamma}}\otimes e^\beta)$.

On an almost complex manifold, (p,q)-forms are wedge products $\Omega^{(p,q)}X = \bigwedge^p (\Omega^{(1,0)}X) \wedge \bigwedge^q (\Omega^{(0,1)}X)$ where J acts by $\pm i$ on $\Omega^1X = \Omega^{(1,0)}X \oplus \Omega^{(0,1)}X$. The exterior derivative is $d = d^{2,-1} + d^{1,0} + d^{0,1} + d^{-1,2}$ with $d^{i,j} : \Omega^{(p,q)} \to \Omega^{(p+i,q+j)}$. Dolbeault differential operators are $\partial = d^{1,0}$ and $\overline{\partial} = d^{0,1}$.

An almost symplectic 2m-manifold admits the volume form $\omega^m/m!$. On an almost Hermitian manifold X it is equal to the Riemannian volume form and belongs to $\Omega^{(m,m)}X$.

¶ While almost quaternionic manifolds have a 3d subbundle of End TX locally spanned by J_1, J_2, J_3 with $J_i^2 = J_1 J_2 J_3 = -1$, almost hypercomplex manifolds require J_1, J_2, J_3 to be global.

Integrability. A G-structure is k-integrable (resp. integrable) near $x \in X$ if it can be trivialized to order k (resp. all orders) in a neighborhood of x. We automatically have 0-integrability.

Any Riemannian structure is 1-integrable thanks to Riemann normal coordinates. Integrability is equivalent to the Riemann curvature vanishing.

An almost complex structure is complex if (equivalently) it is integrable; it is 1-integrable; it has a vanishing Nijenhuis tensor $N_J: \bigwedge^2 X \to TX$ defined on vector fields u, v by the Lie brackets $N_J(u,v) = -J^2[u,v] + J[Ju,v] + J[u,Jv] - [Ju,Jv]$; the Lie bracket of (1,0) vector fields is a (1,0) vector field; $d = \partial + \overline{\partial}$ namely $d^{2,-1} = 0 = d^{-1,2}$; or $\overline{\partial}^2 = 0$.

A symplectic structure is an integrable almost symplectic structure. Equivalently, it is 1-integrable: $d\omega = 0$. Altogether,

(Almost) quaternionic/quaternionHermitian/quaternionKähler and (almost) hypercomplex/hyperHermitian/hyperKähler manifolds are defined by replacing J by a 3d subbundle of End TX or by global sections J_1, J_2, J_3 as in the table of G-structures. ‡ Since $\mathrm{GL}(n,\mathbb{R})/\mathrm{O}(n)$ is contractible, any manifold admits (non-canonically) an $\mathrm{O}(n)$ -structure, namely a smooth choice of which frames are orthonormal, i.e., a Riemannian metric g. Similarly $\mathrm{GL}(n/2,\mathbb{C})/\mathrm{U}(n/2)$ is contractible so almost complex manifolds admit almost Hermitian structures.

§ An almost Hermitian manifold is Kähler if (equivalently) its U(n/2)-structure is 1-integrable; $d\omega = 0$ and $N_J = 0$; $\nabla \omega = 0$; $\nabla J = 0$; or the holonomy group is in U(n/2). Locally, $\omega = i\partial \bar{\partial} \rho$ for some real-valued Kähler potentials ρ , and ω is invariant under Kähler transformations $\rho \to \rho + f(z) + \bar{f}(\bar{z})$.

The holonomy group at $x \in X$ of a connection ∇ on a bundle $E \to X$ is the group of symmetries of E_x arising from parallel transport along closed curves based at x.

For Riemannian manifolds X the holonomy group is defined as that of the Levi-Civita connection on the tangent bundle. It is a subgroup of $\mathcal{O}(n)$ (or $\mathcal{SO}(n)$ for X orientable) since parallel transport preserves orthogonality $(\nabla g = 0)$.

If the holonomy group acts reducibly on the tangent space then X is locally (globally if X is geodesically complete) a product. Simply connected X that are locally neither products nor symmetric spaces (we give a list later) can have the following special holonomy subgroups of SO(n) (Berger's theorem)

Holonomy	Manifold type	$\dim_{\mathbb{R}}$
$\mathrm{U}(m)$ $\mathrm{SU}(m)$	Kähler Calabi–Yau CY_m	$\frac{2m}{2m}$
$\frac{\left(\mathrm{USp}(2k)\times\mathrm{USp}(2)\right)/\mathbb{Z}_2}{\mathrm{USp}(2k)}$	quaternionic Kähler hyperKähler	$\frac{4k}{4k}$
$\frac{\operatorname{Spin}(7)}{\operatorname{G}_2}$	$Spin(7)$ manifold G_2 manifold	8 7

Note that hyperKähler \implies Calabi–Yau \implies Kähler since $\mathrm{USp}(m)\subset\mathrm{SU}(m)\subset\mathrm{U}(m)$. In contrast, quaternionic-Kähler manifolds are not Kähler.

A Calabi–Yau manifold is a Kähler manifold such that (equivalently) some Kähler metric has global holonomy group in $\mathrm{SU}(m)$; the structure group can be reduced to $\mathrm{SU}(m)$; or the holomorphic canonical bundle is trivial i.e., there exists a nowhere vanishing holomorphic top-form. A weaker set of equivalent conditions

todo: here

For simply connected manifolds, the conditions above are equivalent to the following (always equivalent) conditions on X: some Kähler metric has local holonomy group in SU(m); some Kähler metric has vanishing Ricci curvature; the first real Chern class vanishes; a positive power of the holomorphic canonical bundle is trivial; X has a finite cover with trivial holomorphic canonical bundle; X has a finite cover equal to the product of a torus and a simply connected manifold with trivial holomorphic canonical bundle.

Spin structures todo: see http://mathoverflow.net/questions/220502/

Symmetric spaces todo: list missing

K3 surfaces are the only CY_2 : they have holonomy SU(2).

[‡] All sections are global. For instance, an almost complex structure is a global section J of End TX with $J^2 = -1$. A metric is a global section g of $S^2(T^*X)$.

Yau's theorem. Fix a complex structure on a compact complex manifold X of $\dim_{\mathbb{C}} X > 1$ and vanishing real first Chern class. Any real class $H^{1,1}(X,\mathbb{C})$ of positive norm contains a unique Kähler form whose metric is Ricci flat.

(from Wikipedia on Calabi conjecture: "The Calabi conjecture states that a compact Khler manifold has a unique Khler metric in the same class whose Ricci form is any given 2-form representing the first Chern class.")

§9 Dualities

§9.1 Field theory dualities

2d $\mathcal{N} = (0,2)$ Gadde-Gukov-Putrov triality (IR).

2
d $\mathcal{N}=(2,2)$ mirror symmetry of Calabi–Yau sigma models (exact).

2d $\mathcal{N}=(2,2)$ Hori–Tong (SU), Hori (Sp, SO groups), plus adjoint (ADE-type and $(2,2)^*$ -like) dualities (IR).

2d $\mathcal{N} = (2, 2)$ Hori–Vafa/Hori–Kapustin duality of gauged linear sigma models and Landau–Ginzburg models (IR).

3d Chern-Simons level-rank duality.

3
d $\mathcal{N}=2$ Aharony, Giveon–Kutasov, Aharony–Fleischer dualities (IR).

 $3d \mathcal{N} = 2$ and $\mathcal{N} = 4$ mirror symmetry exchanging Coulomb and Higgs branches (IR).

 $4d \mathcal{N}=1$ Seiberg, Kutasov–Schwimmer, Brodie, Intriligator–Pouliot, Argyres–Intriligator–Leigh–Strassler, Klebanov cascade, Intriligator–Leigh–Strassler, duality (IR).

S-duality of 4d $\mathcal{N} = 2$ gauge theories (exact).

S-duality of 4d $\mathcal{N} = 4$ SYM (exact).

§9.2 4d $\mathcal{N} = 1$ dualities

Seiberg: $SU(N_c)$, $N_f \square$, $N_f \overline{\square} \Leftrightarrow SU(N_f - N_c)$, $N_f \square$, $N_f \overline{\square}$, N_f^2 free, with $W = M\tilde{Q}Q$.

Seiberg: SO(N_c), $N_f \square \Leftrightarrow$ SO($N_f - N_c + 4$), $N_f \square$, #? free, W = ?

Seiberg: USp(2 N_c), $2N_f\square \Leftrightarrow$ USp(2 N_f-2N_c-4), $2N_f\square$, #? free, W=?

These three cases are self-dual when $C(R_{\text{chirals}}) = 2C(\text{adj})$, namely $N_f = 2N_c$, $N_f = 2(N_c - 2)$ and $N_f = 2(N_c + 1)$ respectively; adding an adjoint gives $\mathcal{N} = 2$ SCFTs.

§9.3 String theory dualities

In this table "type IIA" etc. refer to string theories not super-gravities

F-theory on K3	$\Leftrightarrow E_8 \times E_8$ heterotic on T^2
M-theory on K3	\Leftrightarrow heterotic or type I on T^3
Type IIA on K3	\Leftrightarrow heterotic or type I on T^4
M-theory on G_2 -manifolds ¹	\Leftrightarrow heterotic or type I on CY ₃
M-theory on $K3^2$	\Leftrightarrow type IIA on T^3/\mathbb{Z}_2

§10 Misc

§10.1 Physics of gauge theories

Phases characterized by potential V(R) (up to a constant) between quarks at distance R: Coulomb 1/R, free electric $1/(R \log(R\Lambda))$, free magnetic $\log(R\Lambda)/R$, Higgs (constant), confining σR .

§10.2 Homology and cohomology

 $H_k(\mathbb{CP}^n, M) = M$ for $0 \le k \le 2n$ even, else 0.

§10.3 Homotopy groups π_n

Basic properties. $\pi_0(X,x)$ is the set of connected components. $\pi_1(X,x)$ is the fundamental group. For $k \geq 1$, $\pi_k(X,x)$ only depends on the connected component of x. $\pi_k(X \times Y,(x,y)) = \pi_k(X,x) \times \pi_k(Y,y)$.

Quotient. If G acts on connected simply-connected X then $\pi_1(X/G) = \pi_0(G)$ (= G for G discrete).

Long exact sequence for a fiber bundle $F \hookrightarrow E \twoheadrightarrow B$: for base-points $b_0 \in B$ and $e_0 = f_0 \in F = p^{-1}(b_0) \subset E$, $\cdots \to \pi_{i+1}(B) \to \pi_i(F) \to \pi_i(E) \to \pi_i(B) \to \cdots \to \pi_0(E)$ is exact, namely each image equals the next kernel (inverse image of the constant map).

Homotopy groups of spheres are finite except $\pi_n(S^n) = \mathbb{Z}$ and $\pi_{4n-1}(S^{2n}) = \mathbb{Z} \times \text{finite.}$ For k < n, $\pi_k(S^n) = 0$, and $\pi_{n+k}(S^n)$ is independent of n for $n \ge k+2$. All $\pi_k(S^0) = 0$, $\pi_k(S^1) = 0$ for $k \ne 1$, and $\pi_k(S^3) = \pi_k(S^2)$ for $k \ne 2$.

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8
S^0	0	0	0	0	0	0	0	0
S^1	\mathbb{Z}	0	0	0	0	0	0	0
S^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2
S^5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}

 $\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2 \text{ for } n \geq 2 \text{ and } \pi_k(\mathbb{RP}^n) = \pi_k(S^n) \text{ for } k \geq 2.$ $\pi_1(\mathbb{CP}^n) = 0, \, \pi_2(\mathbb{CP}^n) = \mathbb{Z}, \, \pi_k(\mathbb{CP}^n) = \pi_k(S^{2n+1}) \text{ for } k \geq 3.$

Topological groups have abelian $\pi_1(G)$. Proofs. 1. The multiplication in G (point-wise) and concatenation of loops are two compatible group structures, hence (by Eckmann–Hilton theorem) coincide and are commutative. 2. Explicitly, for $\alpha_1, \alpha_2 \in \pi_1(G)$ loops, $(t_1, t_2) \mapsto \alpha_1(t_1)\alpha_2(t_2) \in G$ is a homotopy between $\alpha_1 \star \alpha_2$ (concatenation) along bottom and right edges, $\alpha_1 \cdot \alpha_2$ (point-wise multiplication) along the diagonal, and $\alpha_2 \star \alpha_1$ along left and top edges.

§10.4 Kähler 4-manifolds

K3 surfaces are (the only besides T^4) compact complex surfaces of trivial canonical bundle. They have $h^{1,0}=0$ (in contrast to T^4 which has todo: value). Their first Chern class $c_1 \in H^2(X,\mathbb{Z})$ thus vanishes. By Yau's theorem there exists a Ricci flat metric, whose holonomy is then SU(2) = USp(2) by Berger's classification. K3 surfaces are thus Calabi–Yau (CY₂) and hyperKähler (hK₄). Their moduli space is connected and they are all diffeomorphic.

Examples of K3 surfaces. Quartic hypersurface in \mathbb{P}^4 . Kummer surface namely resolution of T^4/\mathbb{Z}_2 .

Non-simply connected Ricci-flat Kähler manifolds may fail to be CY_n when the restricted holonomy group is SU(n) but the global holonomy group is disconnected. For example an Enriques surface $K3/\mathbb{Z}_2$ has a non-trivial canonical bundle.

A gravitational instanton is a metric with (anti-)self-dual curvature. A simply-connected Riemannian 4-manifold is hyperKähler if and only if it is a gravitational instanton. Compact hK₄ are K3 and T^4 . Non-compact hK₄ are ALE (asymptotically locally Euclidean), ALF (asymptotically locally flat), ALG, ALH if their volume growth rate is of order 4, 3, 2, 1. ALE spaces are resolutions of \mathbb{H}/Γ for a finite subgroup $\Gamma < \mathrm{USp}(2)$. The quotient \mathbb{H}/Γ can appear as a local model of an orbifold singularity in a K3 surface.

ALE hyperKähler 4-manifolds X are diffeomorphic to the minimal resolution of \mathbb{H}/Γ for some finite $\Gamma \subset \mathrm{SU}(2)$. The metric is fixed (up to isometry) by cohomology classes $\alpha_1, \alpha_2, \alpha_3 \in H^2(X, \mathbb{R})$ such that there is no two-cycle Σ such that $\Sigma \cdot \Sigma = -2$ and all $\alpha_i(\Sigma) = 0$.

todo: Taub-NUT spaces, multi-Taub-NUT spaces, Eguchi-Hanson spaces, Gibbons-Hawking multicenter spaces. Write metric. todo: Non-explicitly: Atiyah-Hitchin space (moduli space of two SU(2) 't Hooft-Polyakov monopoles in 4d).

todo: The only compact CY_2 are T^4 and K3 surfaces.

todo: The only compact hypercomplex 4-manifolds are T^4 , K3 surfaces, and the Hopf surface $((\mathbb{H} \setminus 0)/(q^{\mathbb{Z}}))$ for a quaternion |q| > 1; it is diffeomorphic to $S^3 \times S^1$.

§10.5 Some algebraic constructions

Reduction of a Lie (super)algebra \mathfrak{g} . If $\mathfrak{g} = V_1 \oplus V_2$ with $[V_1, V_2] \subseteq V_2$ then the bracket of \mathfrak{g} restricted and projected to V_1 defines a Lie (super)algebra.

S-expansion of a Lie (super)algebra \mathfrak{g} by an abelian multiplicative semigroup S: Lie (super)algebra $\mathfrak{g} \times S$ with bracket $[(x,\alpha),(y,\beta)]=([x,y],\alpha\beta)$. If $S=S_1\cup S_2$ with $S_1S_2\subseteq S_2$ (in particular if there is a zero element $0_S=0_S\alpha=\alpha 0_S$) then by reduction we get a Lie (super)algebra structure on $\mathfrak{g}\times S_1$.

A color (super)algebra is a graded vector space with a bracket such that (for X, Y, Z with definite grading) $\operatorname{gr}[X, Y] = \operatorname{gr} X + \operatorname{gr} Y$ and $[X, Y] = -(-1)^{(\operatorname{gr} X, \operatorname{gr} Y)}[Y, X]$ and $[X, [Y, Z]](-1)^{(\operatorname{gr} Z, \operatorname{gr} X)} + [Y, [Z, X]](-1)^{(\operatorname{gr} X, \operatorname{gr} Y)} + [Z, [X, Y]](-1)^{(\operatorname{gr} Y, \operatorname{gr} Z)} = 0$, where (\bullet, \bullet) is some bilinear mapping into $\mathbb{C}/(2\mathbb{Z})$.

$\S 10.6$ Other

A fuzzy space is d Hermitian matrices X^a ("coordinates") acting on some Hilbert space H. The dispersion of $\psi \in H$ is $\delta_{\psi} = \sum_{a} \left(\langle \psi | (X^a)^2 | \psi \rangle - \langle \psi | X^a | \psi \rangle^2 \right)$.

- [1] Tools for supersymmetry by Antoine Van Proeyen
- [2] Various Wikipedia articles.
- [3] Various ncatlab.org articles.