8.吴恩达-机器学习+机器学习诊断

笔记本: 日常

创建时间: 2019/11/18 8:33 **更新时间**: 2019/11/18 8:52

作者: 296645429@qq.com

调试算法

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict <u>housing</u> prices.

$$\longrightarrow J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

Get more training examples

- Try smaller sets of features 💢 , 🛂 , 💢 , 🗡 😘

-> - Try getting additional features

- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$

- Try decreasing λ

- Try increasing λ

机器学习诊断法

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

Evaluating your hypothesis

Dataset:

<82980

Mtest

线性回归的假设评估

Training/testing procedure for linear regression

- Learn parameter $\underline{\theta}$ from training data (minimizing training error $J(\theta)$)

逻辑回归的假设评估

Training/testing procedure for logistic regression

- > Learn parameter θ from training data
 - Compute test set error:

$$\underbrace{J_{test}(\theta)}_{} = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

Misclassification error (0/1 misclassification error):

err (ho(x), y) = { | if ho(x) > 0.5, y=0 } error or if ho(x) < 0.5, y=1 } error
O otherwise

Test error =
$$\frac{1}{M_{test}}$$
 $\sum_{i=1}^{m_{test}} err(ho(x)test), y(i)).$

模型选择-验证集选择模型、测试集测试模型性能

Dataset:

	Size	Price
60.	2104	400
	1600	330
	2400	369 Trainy set
	1416	232
	3000	540
	1985	300)
20	1534	315 7 Cross validation
	1427	199) set (20)
70.	/. 1380	212 } test set
	1494	243

模型选择-使用测试集得出已选择模型的泛化误差

Model selection

Who defined selection
$$h_{\theta}(x) = \theta_0 + \theta_1 x \longrightarrow \min_{\theta \in \mathcal{I}} \mathcal{I}(\theta) \longrightarrow \mathcal{I}_{\epsilon_0}(\theta^{(i)})$$

$$\lambda \ge 2. \quad h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 \longrightarrow \mathcal{I}_{\epsilon_0}(\theta^{(i)})$$

$$\lambda \ge 3. \quad h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3 \longrightarrow \mathcal{I}_{\epsilon_0}(\theta^{(i)})$$

$$\vdots \qquad \vdots$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
 $\longrightarrow \mathfrak{S}^{(3)}$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$ extstyle =

诊断偏差(欠拟合)和方差(过拟合)

Diagnosing bias vs. variance %

Suppose your learning algorithm is performing less well than you were hoping. $(J_{cv}(\theta) \text{ or } J_{test}(\theta) \text{ is high.})$ Is it a bias problem or a variance problem?

正则化解决拟合问题

Linear regression with regularization

正则化解决拟合问题

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \iff$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \iff$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Ч

正则化解决拟合问题

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$
1. Try $\lambda = 0 \in \Lambda$ \longrightarrow Min $J(\Theta) \to \Theta^{(i)} \to J_{\omega}(\Theta^{(i)})$
2. Try $\lambda = 0.01$ \longrightarrow $O(\Theta) \to O(\Theta) \to J_{\omega}(\Theta^{(i)})$
3. Try $\lambda = 0.02$ \longrightarrow $O(\Theta) \to J_{\omega}(\Theta^{(i)})$
4. Try $\lambda = 0.04$ \longrightarrow $O(\Theta) \to O(\Theta)$
5. Try $\lambda = 0.08$ \longrightarrow $O(\Theta) \to J_{\omega}(\Theta^{(i)})$

$$\vdots$$
12. Try $\lambda = 10$ \longrightarrow Pick (say) $\theta^{(5)}$. Test error: $J_{\text{test}}(\Theta^{(i)})$

正则化解决拟合问题

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \leftarrow$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

学习曲线

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

debug解决方案

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high variance
- Try smaller sets of features Fixe high voice
- Try getting additional features fixed high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow \text{fine high bias}$
- Try decreasing & fixes high hier
- Try increasing \(\rightarrow \) fixes high vorionce

拟合问题修正方法

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting)

Computationally more expensive.

Use regularization (λ) to address overfitting.

过拟合一般使用正则化