

Introduction to R and R-commander

Curs d'Estadística Bàsica per a la Recerca Biomèdica

UEB - VHIR

21/01/2019

Table of contents

- Introduction to R (and S)
- Introduction to Rcmdr
- The Rcmdr menus
- Loading data sets
- Working with data sets
- Using R scripts
- Exporting results
- Additional sources
- Practice

Introduction to R (and S)

- R (and S) is a programming language and environment for data exploration and manipulation, statistical computing and high-quality graphics.
- Currently, S and R are the two most widely used languages in statistical research.
- S was originally developed at Bell Laboratories by John Chambers in 1976 and is a commercial language (S-Plus).
- R ("GNU" S) was implemented in 1993 by Robert Gentleman and Ross Ihaka as a free alternative to S.
 - It is currently developed and maintained by the *R*Development Core Team, a team of volunteer developers from across the globe including well-known statisticians (eg, J. Chambers, L. Terney, B. Ripley, D. Bates, etc.).
 - It is available from the R-Project website:

http://www.r-project.org/

Introduction to R

Advantages

- It is free
- Multi-platform (Linux, Mac, Windows)
- Powerful in graphics generation
- Powerful statistical tool (top statistical methods)
- Is always growing in users and functionalities → Frequent updates
- Flexible, open source programming language
- Useful for repetitive tasks

Drawbacks

- It is a programming language (though incorporates GUIs as Rcmdr, Rstudio)
- Not so user friendly as desired
- Supporting documentation is of variable quality
- Frequent updates
- Works better with internet connection

Introduction to R

How it works

- R consists of a base system and additional packages that extend its functionalities.
- Language based on objects and functions

- Different interfaces:
 - R console
 - RStudio: Simplifies the use of R through a window system that gives access to code, console, data, graphics or help in a powerful and intuitive way
 - **RCommander:** allows the user to run basic functions using a menus interface. Offers a great way to begin familiarizing yourself with R and statistics within a GUI environment.

RStudio

Source -scripts -text edit

_ D X RStudio File Edit Code View Project Workspace Plots Tools Help 📭 🗕 🔒 🗎 📥 🖍 Go to file/function 塞 Project: (None) 🔻 Workspace History @ | diamondPricing.R* × | @ | formatPlot.R × | | | | diamonds × -C library(ggplot2) source("plots/formatPlot.R") diamonds 53940 obs. of 10 variables View(diamonds) Values summary(diamonds) avesize 0.7979 clarity character[8] summary(diamonds price) aveSize <- round(mean(diamonds\$carat), 4) ggplot[8] clarity <- levels(diamonds\$clarity)</pre> Functions 10 11 format.plot(plot, size) p <- qplot(carat, price,</pre> 12 data=diamonds, color=clarity, xlab="Carat", ylab="Price", 13 14 main="Diamond Pricing") Plots Packages Help 15 (3 **Diamond Pricing** (Top Level) \$ R Script \$ Console ~/ 🙈 Clarity 15000 : 0.000 Min. : 0.000 Min. : 0.000 I1 1st Qu.: 4.710 1st Qu.: 4.720 1st Qu.: 2.910 Median : 5.710 Median : 3.530 Median : 5.700 Mean : 5.731 Mean : 5.735 : 3.539 SI1 3rd Qu.: 6.540 3rd Qu.: 6.540 3rd Qu.: 4.040 Price 10000 :10.740 :58.900 :31.800 VS2 Max. > summary(diamonds\$price) VS1 Median Min. 1st Qu. Mean 3rd Qu. Max. 950 3933 5324 18820 VVS2 2401 aveSize <- round(mean(diamonds\$carat), 4)</pre> 5000 VVS1 clarity <- levels(diamonds\$clarity)</pre> p <- qplot(carat, price,</pre> IF data=diamonds, color=clarity, xlab="Carat", ylab="Price", main="Diamond Pricing") 0.0 0.5 2.0 2.5 3.0 3.5 1.0 > format.plot(p, size=24) Carat

Environment & History

Files, plots, packages, help

Console -commands -output

- Package to install after having R.
- Developed by a statistician, John Fox, to ease the use of R.
- Inspired in SPSS software.
- Menus accessible to use directly the functions and avoid the command line programming.
- Graphics are generated in the R interface.
- There are plug-ins with specific functionalities

Rcommander:

http://www.rcommander.com/

Menu bar

😱 R Commander

Fichero Editar Datos Estadísticos Gráficas Modelos Distribuciones Herramientas Ayuda

- File: contains options to load and save files, define settings and exit.
- Edit: options for editing output and log/script window contents.
- Data: options to read and modify data.
- Statistics: submenu containing options for basic statistical analysis
- Graphs: contains options for creating simple statistical graphs
- Models: options for obtaining numerical summaries, testing hypotheses and regression models.
- Distributions: options to calculate probabilities, obtain quantiles, and get plots of already known statistical distributions.
- Help: contains menus with info about how to work with R commander.

Menu bar

- Create / Load data
- Editing and inspection of data files.
- Data transformation / Creation of new variables.
- Selection of subsets of data or subgroups of variables.
- · Conversion of numerical variables into factors.

Menu bar

- Summaries
- Contingency tables
- Mediums
- Proportions
- Variants
- Non-parametric tests
- Dimensional analysis (A. Multivariant)
- Model adjustment (Regression)

Tool bar

- The program always works with a main set of data (active dataset).
- With the active "dataset" we can:
 - edit or visualize it
 - Do analysis
 - Build and use models
- At any moment we can change the active dataset.

Command window

```
R Script R Markdown
```

```
Dataset <- read.table("E:/BioStatFLOSS/dades/osteoporosis.csv", header=TRUE,
    sep="\t", na.strings="NA", dec=",", strip.white=TRUE)
library(abind, pos=14)
library(e1071, pos=15)
summary(Dataset)</pre>
```

• The menu actions are converted into instructions in the Command window.

Text output window

Message window

Mensajes

- [1] NOTA: Versión de R Commander 2.3-1: Thu Jan 26 08:42:06 2017
- [2] NOTA: El conjunto de datos Dataset tiene 1000 filas y 15 columnas.

>

We have to load into Rcommander the dataset osteoporosis.csv

- 1. ".csv" -> "comma separated values" but could be separated with \tab, spaces, ; ,
- 2. First of all "look" the file with a file viewer like "wordpad", "bloc de notas",...

We have to load into Rcommander the dataset osteoporosis.csv

We have to load into Rcommander the dataset osteoporosis.csv

- 1. ".csv" -> "comma separated values" but could be separated with \tab, spaces, ; ,
- 2. First of all "look" the file with a file viewer like "wordpad", "bloc de notas",...
- 3. Once we know how:
 - 1. the data is separated
 - 2. the decimals are separated
- 4. we can open with Rcmdr

We have to import into Rcommander the dataset osteoporosis.csv

🔙 Llegeix dades des d'un fitxer, por <mark>apapers o 🗙</mark>
Introdueixi el nom d'una taula de dades: osteo
Noms de les variables en el fitxer:
Indicador de dada no observada: NA
Ubicació del fitxer de dades
Fitxer de sistema local
O Portapapers
O Internet URL
Separador dels camps
C Espai blanc
O Comes
⊙ Tabuladors
O Altre Especificar:
Caràcter decimal
O Punt [.]
⊙ <u>Coma [,]</u>
Ajuda D'acord Manul·la
D desire

We have to import into Rcommander the dataset osteoporosis.csv

Practice. Adding variables to the data set

We have to add new variables to the dataset osteoporosis.csv

We have to import into Rcommander the dataset hta.xls

We have to import into Rcommander the dataset hta.xls

Practice. Adding variables to the data set

We have to add variables age and weight the dataset hta.xls

Practice. Adding variables to the data set

We have to add variables age and weight the dataset hta.xls

Exercise

- 1. <u>Import into Rcmdr the dataset demora.dta</u> (STATA file)
- 2. <u>Convert</u> numeric variable *dolor* to factor (rename levels accordingly, eg. 0=low, 1=medium, 2=high)
- 3. Remove cases with missing data (NA) in demora variable.
- 4. Recode variable edad in a new variable named rango_edad according to the following ranges:

0:25="young"

25:50="adult"

51:75="mid-old"

76:100="old"

Practice. Statistics with Rcmdr

We have to calculate some descriptive statistics with the dataset osteo.

Practice. Statistics with Rcmdr

We have to calculate some descriptive statistics with the dataset osteo.

Practice. Statistics with Rcmdr

We have to calculate some descriptive statistics with the dataset osteo.

Practice. Graphics with Rcmdr

We want to see how the variable *imc* is distributed among the individuals

Practice. Graphics with Rcmdr

We want to see how the variable imc is distributed among the individuals

Practice. Running scripts with Rcmdr

showData(hta, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80,

Instruccions R R Markdown

maxheight=30)

We want to change the graphic colour, add a legend and a main title

```
showData(hta, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80,
 maxheight=30)
editDataset(hta)
names (hta)
AggregatedData<- aggregate(tad1 ~ grupo, data=hta, FUN=mean)
showData(AggregatedData, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80,
 maxheight=30)
editDataset(hta)
editDataset(hta)
library(abind, pos=15)
library(e1071, pos=16)
numSummary(osteo[,c("bua", "imc", "peso")], statistics=c("mean", "sd", "IQR",
with(osteo, Hist(imc, scale="frequency", breaks="Sturges", col="darkgray"))
                                                                                        idth=80.
                      showData(hta, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80,
                       maxheight=30)
                      editDataset(hta)
                      names (hta)
                      AggregatedData<- aggregate(tad1 ~ grupo, data=hta, FUN=mean)
                      showData(AggregatedData, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80,
                       maxheight=30)
                      editDataset(hta)
                      editDataset(hta)
                      library(abind, pos=15)
                      library(e1071, pos=16)
                      numSummary(osteo[,c("bua", "imc", "peso")], statistics=c("mean", "sd", "IQR",
                        "quantiles"). quantiles=c(0..25..5..75.1))
                     with(osteo, Hist(imc, scale="frequency", breaks="Sturges", col="red",main="IMC HISTOGRAM"))
                      legend("topright", "imc", col="red", lwd=10)
```

Practice. Running scripts with Rcmdr

We want to change the graphic colour, add a legend and a main title

Exporting results

Years ago, R-commander had the limitation that exporting data had to be done through saving plots and copy-pasting code to external software.

Now, Rcmdr integrates Markdown/Knitr results writing system, that allows the user to export all work (code, plots and results) to html pages in quick and easy way.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

http://www.rstudio.com/ide/docs/authoring/using_markdown

http://yihui.name/knitr/

Practice. Export results as html

We want to export the results into an html report

Practice. Export results as html

Exercise

- 1. Load into Rcmdr the dataset in prostate.csv
- 2. Calculate some descriptive statistics for some variables
- 3. Make a graphic from one or two variables
- 4. Generate the report with all the data

Rcommander's plugins installation

Plug-ins are additional libraries that we may want to have available in R-commander

To check if they are correctly installed...

You should find...

Additional souRces

R manuals

- * Intro for beginners http://cran.r-project.org/doc/contrib/rdebuts_es.pdf
- * SimpleR http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
- * Quick-R http://www.statmethods.net/
- * Basic statistics with R and R-commander http://knuth.uca.es/ebrcmdr/
- * Statistical methods with R and R-commander

http://cran.r-project.org/doc/contrib/Saez-Castillo-RRCmdrv21.pdf * Try R http://tryr.codeschool.com/levels/1/challenges/1

R books

- * Introductory Statistics with R
- * R for SPSS and SAS users