Tabla de Transformadas de Laplace

f(s)	$E(x) = \mathcal{C}(f(A))$
f(t)	$F(s) = \mathcal{L}\{f(t)\}\$
1	1
	$\frac{1}{s}$
t	1
i i	$\frac{1}{s^2}$
	S ²
t^n	<u>_n!</u>
	$\overline{s^{n+1}}$
t ^{-1/2}	Īπ
t '2	$\sqrt{\frac{n}{n}}$
	V s
t ^{1/2}	$ \frac{\sqrt{\frac{\pi}{s}}}{\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}} $
	${2s^{\frac{3}{2}}}$
t^{α}	$\Gamma(\alpha+1)$
	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}} \alpha > -1$
	Surr
$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$
$-\frac{1}{t}J(t)$	$\int_{S} T(u)du$
	$\underline{F(s)}$
$\int_0^t f(\tau)d\tau$	$\frac{s}{s}$
$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)
J ₀	
(f * g)(t)	F(s)G(s)
$f(t-a)\mu(t-a)$	-05 E/)
$\int (i-a)\mu(i-a)$	$e^{-as}F(s)$
$g(t)\mu(t-a)$	$e^{-as}\mathcal{L}\{g(t+a)\}$
$\mu(t-a)$	e^{-as}
A(C)	
8(S
$\delta(t-a)$	e^{-as}
$\delta(t-t_o)$	$e^{-t_o s}$
	-
(1.)	T.
sen(kt)	$\frac{k}{s^2 + k^2}$
	$s^2 + k^2$

$\cos(kt)$	$\frac{s}{s^2+k^2}$
sen² (kt)	$\frac{2k^2}{s(s^2+4k^2)}$
$\cos^2(kt)$	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$
senh(kt)	$\frac{k}{s^2 - k^2}$
$\cos h(kt)$	$\frac{s}{s^2-k^2}$
senh² (kt)	$\frac{2k^2}{s(s^2-4k^2)}$
$\cos h^2(kt)$	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s)-f(0)
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n F^n(s)$ o bien $(-1)^n \frac{d^n}{ds^n} F(s)$
$\frac{1}{t}f(t)$	$\int_0^t f(au)d au$
e^{at}	$\frac{1}{s-a}$
t ⁿ	$\frac{n!}{s^{n+1}}$
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$
$e^{at}-e^{bt}$	$\frac{(a-b)}{(s-a)-(s-b)}$
$ae^{at}-be^{bt}$	$\frac{(a-b)s}{(s-a)-(s-b)}$
e ^{at} sen(kt)	$\frac{k}{(s-a)^2 + k^2}$

$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
$e^{at} senh(kt)$	$\frac{k}{(s-a)^2-k^2}$
$e^{at}\cos h(kt)$	$\frac{s-a}{(s-a)^2-k^2}$
$\frac{e^{at}-e^{bt}}{t}$	$\ln\left(\frac{s-a}{s-b}\right)$
$\frac{2\left[1-\cos(kt)\right]}{t}$	$\ln\left(\frac{s^2+k^2}{s^2}\right)$
$\frac{2[1-\cosh kt]}{t}$	$\ln\left(\frac{s^2-k^2}{s^2}\right)$
$\frac{sen(at)}{t}$	$\arctan\left(\frac{a}{s}\right)$
$\frac{sen(at)\cos(bt)}{t}$	$\frac{1}{2}\arctan\left(\frac{a+b}{s}\right) + \frac{1}{2}\arctan\left(\frac{a-b}{s}\right)$
f(t) periodo T	$\frac{1}{1-e^{sT}}\int_0^T e^{st}f(t)dt$