数据科学导论大作业报告-LMP 短期预测

王铮澄 林啸 牛腾腾

2019年1月16日

一、 选题意义

节点边际电价(Locational marginal price)是一种基于最优潮流的电价算法,这种方式得到的节点电价会受到 4 个因素影响:发电机边际成本,系统容量,网损和线路阻塞情况。而节点电价电力市场在国外已经有多年的发展和使用历史。不同于我国电力市场统一定价的方式,在基于节点电价的电力市场中,每个节点的电价都可能不相同,受到上述 4 个因素影响。一般来说,当线路出现阻塞或是某区域电力负荷较高时,节点电价会被抬高。典型的使用节点电价的电力市场:美国 PJM 电力市场、加州电力市场 CAISO、澳洲电力市场、欧洲电力市场。我国即将在广东试行节点电价电力市场,若能准确预测次日 LMP,发电商、售电商就能调整竞价策略,获取更高的利润,有其实用意义。此外,对节点电价的预测本质上是对时间序列的预测,可以在这个项目中很好地结合本课程所学。

二、 项目目标

我们的预测目标是基于历史数据,对次日 24 小时每小时的日前市场节点电价进行预测。在前期文献调研中,国外对于节点电价预测的准确度在 MAPE 误差之下大都在为 10% 左右,并且对尖峰点的预测效果普遍不好,因此我们将这次大作业的目标定为预测 MAPE 误差在 12% 以内,并且通过图像来判断尖峰点的预测效果,尽量优化尖峰点处的预测精度。

三、 数据分析

项目数据来源是美国 PJM 市场官网 (www.dataminer2.pjm.com),在前期数据分析中,发现这个网站的数据种类较多,但是数据质量参差不齐,而且数据格式并不统一,例如每日发电容量、每小时负荷测量数据等更新不及时,最新的数据一般是几天甚至几个月之前的,这对于我们需要的次日预测目标来说是不合用的,因此在选取训练数据的时候需要对数据的实时性加以分析。此外网站上数据的组织形式不统一,电价类数据是根据时间和节点进行划分的,每个节点会给出 24 小时的电价,而负荷类数据是根据区域划分的,并不精确到节点,发电类数据则是根据能源种类和更大的区域来划分的,因此都需要专门处理,得到可以训练的向量形式。

四、 符号说明

符号	含义
$load_f^t$	预测日当天时间 t 的负荷
lmp_{f-n}^t	预测日前 n 天时间 t 的总电价
cop_{f-n}^t	预测日前 n 天时间 t 的电价拥堵分量
mlp_{f-n}^t	预测日前 n 天时间 t 的电价线损分量
t	时间 t 标记,取值为 1 到 24 之间的整数
$spike_mark_f^t$	预测日时间 t 的电价尖峰标记,非尖峰为 0

五、 第一阶段

(一) 特征选择与误差评估

 $[load_f^t, lmp_{f-1}^t, lmp_{f-2}^t, lmp_{f-7}^t, t]$ 共 5 个特征,在尖峰优化设想当中加入了'尖峰电价标记'特征。

误差函数的选择为 MAPE。

(二) 数据选取与划分

本次选择的数据为美国 PJM 电力市场 5021071 号节点的 daily ahead lmp 数据,时间跨度为 2018.7.2-2018.10.1,其中选择 7 月 2 日到 9 月 17 日的数据作为训练集,9 月 18 日到 10 月 1 日的 数据作为测试集。

(三) 模型评估

1 MLP

MLP 模型的准确率不是特别稳定,在参数固定的情况下每次运行得到的准确度有 1% 左右的波动。

基本参数为:

参数类型	参数详情	
隐层数量	2	
隐层节点	(100, 80)	
激活函数	'relu'	
迭代次数	50000	
学习率	0.1	
优化器	'Adam'	

以下为连续三次运行得到的训练集误差率和测试集误差率:

训练集误差/%	测试集误差/%	
6.13	13.01	
6.36	12.42	
6.06	13.75	

图 1: MLP 预测

2 SVM

基本参数为:

参数类型	参数详情
С	0.1
gamma	0.01
核函数	'rbf'

误差率稳定

训练集误差/%	测试集误差/%	
7.44	11.93	

图 2: SVM 预测

3 RF

基本参数为:

参数类型	参数详情	
n_estimators	60	
max_depth	5	
max_features	2	

误差率较为稳定,测试集误差波动在 0.5% 以内,以下为连续 3 次训练的误差:

训练集误差/%	测试集误差/%	
6.45	10.23	
6.48	10.68	
6.50	10.48	

图 3: RF 预测

4 LGBM

基本参数为:

参数类型	参数详情	
num_leaves	4	
\max_{depth}	3	
reg_lambda	7	

误差率稳定

训练集误差/%	测试集误差/%	
6.51	10.73	

图 4: LGBM 预测

5 XGB

基本参数为:

参数类型	参数详情	
n_estimators	150	
\max_depth	2	
reg_lambda	7	
gamma	0.01	
colsample_bytree	0.4	
subsample	0.6	
learning_rate	0.1	

误差率稳定

训练集误差/%	测试集误差/%	
6.71	10.02	

图 5: XGB 预测

6 STACK

将以上五种模型进行 stacking,将表现最好的 XGB 模型作为第二层的回归模型。参数选择与每种模型单独的参数一样。以下列出每种模型单独的 MSE Score 和其标准差,并将每种模型的训练集、测试集误差汇总。不稳定模型的误差取三次均值。

模型名称	MSE Score	标准差	训练集误差/%	测试集误差/%
XGB	-12.25	+/- 0.0702	6.71	10.02
RF	-13.43	+/- 0.0751	6.48	10.46
LGBM	-13.60	+/- 0.0891	6.51	10.73
SVM	-15.18	+/- 0.0861	7.44	11.93
MLP	-13.04	+/- 0.0839	6.18	13.06
STACK	-12.28	+/- 0.0787	5.58	11.08

预测图像为:

图 6: STACK 预测

(四) 尖峰优化

观察到以上模型得到的图像中,对于尖峰点的预测普遍不理想,因此我考虑加入其它特征尝试优化尖峰处的预测。我将训练集中的电价进行分段,先计算出训练集电价的均值 p 和标准差 δ ,然后以

 $p+\delta$ 、 $p+1.5\delta$ 、 $p+2.5\delta$ 作为分界点将电价分为三个等级,分别标记为 0,1,2,3。而对于测试集,由于电价事先未知,但是根据预测结果可以看出趋势大致是准确的,所以我考虑先进行第一次训练,然后将预测结果重复对训练集的操作,给预测的电价也进行标号,然后将得到的标号作为特征再次训练,也就是说,在第二次训练的时候我们才将标号作为新特征加入。由于第一次训练之后预测的峰值较小,可能不能被很好地识别和增强,因此我考虑采用多次训练、重标号的办法,使峰值处的电价得以增强。

此外,考虑到尖峰电价的形成与线路拥堵状况和损耗状况密切相关,我将这两项也作为特征纳入 考虑,在尝试了几种特征组合后,以下的特征表现较好: $[load_f^t \ lmp_{f-1}^t \ lmp_{f-2}^t \ lmp_{f-7}^t \ cop_{f-7}^t \ cop_{f-7}^t \ mlp_{f-1}^t \ mlp_{f-1}^t \ spike_mark_f^t]$ 由于 XGB 模型的效果较好,我选择 XGB 进行尖峰优化。为了对比,XGB 模型的参数没有调整。在进行了 4 轮迭代之后,得到的结果如下:

训练集误差/%	测试集误差/%
5.35	8.86

图 7: XGB 引入电价标记之后的预测结果

图 8: XGB 未引入电价标记的预测结果

从结果可以发现,训练集和测试集上的误差均下降,测试集误差下降大约 1.2%,并且在图像上看出尖峰点有所改善,可以认为该方法确实起到了一定作用。

(五) 结果评估

虽然在调参以及优化之后准确度较高,但是在测试其它节点的时候,我们发现这个模型的效果并不好,误差甚至可以达到 15% 左右。分析原因,是因为选取的测试数据不够有代表性,这个区间内波形的周期性较为明显,并且几乎没有低洼下陷的波形,因此对特征更丰富的数据预测效果较差。因此我们考虑进行第二阶段的探究,使用更多的数据进行训练,测试集也选用更长时间尺度的数据来模拟多种情况的预测。

六、 第二阶段

第二阶段的具体操作步骤与第一阶段大同小异,这里就不再详细描述。具体区别是,我们选用了包括电价分量,负荷,各类能源发电量,电力断供量等更多数据,组成了长度为 44 的特征向量。并且我们使用了接近一年的数据作为训练,两个月的数据进行测试。使用的模型是 3 层 MLP。

由于数据量较大,特征较多,我使用了自编码器进行主成分分析和特征提取,自编码器的结构设计是 4 层神经网络,每层以 75% 的比例缩减。具体见下图:

```
self.encoder = nn.Sequential(
    nn.Linear(44, 37),
    nn.ReLU(),
    nn.Linear(37, 31),
    nn.ReLU(),
    nn.Linear(31, 26),
    nn.ReLU(),
    nn.Linear(26, 22),
)
```

图 9: 编码器结构

(一) 无编码器结果

图 10: 无编码器

无编码器时训练误差为 3.93%, 测试误差为 10.64%, 怀疑有过拟合迹象。

(二) 有编码器结果

图 11: 有编码器

有编码器时训练误差为 7.03%, 但是测试误差降至 10.19%, 训练误差接近测试误差, 模型泛化能力变强。

(三) 结果分析

从误差结果和预测图象上看,数据量加大之后,预测效果明显变好,并且对尖峰点的预测效果大 大增强,自编码器的使用降低了模型运算量和复杂度,并且提升了模型的泛化能力。预测误差已经达 到目标,这次大作业基本得到完成。