Assignment 07 & 08 of I2ML-s23

Q1 (20 pts)

For each $n \in \mathbb{N}$, let Φ_n be the sentence

$$\exists x_1 \cdots \exists x_n \left(\bigwedge_{i \neq j} x_i \neq x_j \right)$$

asserting that there exist at least n elements.

Let φ_1 be the sentence

$$\forall x \forall y ((f(x) = f(y)) \rightarrow (x = y))$$

saying that f is one-to-one and let φ_2 be the sentence

$$\forall y \exists x (f(x) = y)$$

saying that f is onto.

Show that $\{\varphi_1, \varphi_2, \Phi_n\} \vdash \Phi_{n+1}$ by giving a sketch of a formal proof.

Q2 (3 * 12 = 36 pts) For each of the following formulas, find an equivalent formula in Conjunctive Prenex Normal Form. Note that each of these formulas have x and y as free variables (view them as global universal quantifiers).

- (a) $\neg \exists z Q(x, y, z) \lor \forall z \exists w P(w, x, y, z)$
- (b) $\forall z (R(x,z) \land R(x,y) \rightarrow \exists w (R(x,w) \land R(y,w) \land R(z,w)))$
- (c) $\exists z (S(y,z) \land \exists y (S(z,y) \land \exists z (S(x,z) \land (S(z,y))))).$

Q3 (3 * 10 = 30 pts) Find the Skolemization of each of the formulas in the above Q2.

Q4 (14 pts) Is the following set of literals unifiable? If so, give the most general unifier and another unifier that is not most general. If not, give an interpretation for why not.

$${R(f(x),g(z)),R(y,g(x)),R(v,w),R(w,g(x))}.$$

Q5 (2 * 20 = 40 pts) Use resolution to prove that the following are tautologies:

(a)
$$(\exists x \forall y Q(x,y) \land \forall x (Q(x,x) \rightarrow \exists y R(y,x))) \rightarrow \exists y \exists x R(x,y)$$

(b)
$$(\exists x \forall y R(x,y)) \leftrightarrow (\neg \forall x \exists y \neg R(x,y))$$

Q6 (15 pts)

A familiar command missing from our language is the for-statement. It may be used to sum the elements in an array, for example, by programming as follows:

```
s = 0;
for (i = 0; i <= max; i = i+1) {
    s = s + a[i];
}</pre>
```

After performing the initial assignment s = 0, this executes i = 0 first, then executes the body s = s + a[i] and the incrementation i = i + 1 continually until $i \le max$ becomes false. Explain how for $(C_1; B; C_2)$ $\{C_3\}$ can be defined as a derived program in our core language.

Q7 (3 * 10 = 30pts)

Use the proof rule for assignment and logical implication as appropriate to show the validity of

(a) $\vdash_{par}(x > 0) y = x + 1 (y > 1)$ (b) $\vdash_{par}(\top) y = x; y = x + x + y (y = 3 \cdot x)$ (c) $\vdash_{par}(x > 1) a = 1; y = x; y = y - a (y > 0 \land x > y)$.

Q8 (20 pts)

```
Show that \vdash_{par} (y \ge 0) Multi1 (z = x \cdot y) is valid, where Multi1 is:

a = 0;

z = 0;

while (a != y) {

z = z + x;

a = a + 1;

}
```

Q9 (15 pts) Prove the validity of the following total-correctness sequent based on the above Q8.

$$\vdash_{\mathsf{tot}} (y \geq 0)$$
 Multi1 $(z = x \cdot y)$