MATH1058: Problem Sheet 6

Problem 1 (Production planning (subject to uncertainty)). Consider a production planning problem for a single good over a time period of τ time steps. An intensive marketing campaign has revealed that, at each time period $t=1,\ldots,\tau$, no more than d_t units can be sold. The production of a unit requires assembling components of n types, with a_i representing the number of components of type $i \in 1,\ldots,n$ that are needed to produce one unit of the single good and q_i representing their availability during the whole time period.

We are asked to determine a production plan which maximizes the revenue of the company over the time period, subject to availability and demand constraints.

- 1. Propose a linear programming model for the problem where c_t , for all $t = 1, ..., \tau$, denotes the price at which a unit of the single good is sold.
- 2. Consider now the case where, rather than knowing c with absolute precision, we have a set of κ estimates (scenarios) of it, where each estimate is a vector $c^k \in \mathbb{R}^{\tau}$, with $k = 1, ..., \kappa$, corresponding to the time series of unit prices that was forecast for the whole time period. Propose a linear programming formulation to find a production plan by which the profit is maximized in the worst case, i.e., a production plan $x \in \mathbb{R}^{\tau}$ by which, rather than cx, the following function is maximized:

$$\phi(x) := \min_{k \in \{1, \dots, \kappa\}} c^k x.$$

Note that, for any $x \in \mathbb{R}^{\tau}$, $\phi(x)$ corresponds to the smallest profit achieved with the production plan corresponding to x over all scenarios $k = 1, ..., \kappa$.

Problem 2 (Simplex method with Bland's rule I). Solve the following linear program with the two-phase simplex method, applying Bland's rule:

Problem 3 (Simplex method with Bland's rule II). Solve the following LP with the two-phase simplex method, adopting Bland's rule: