Question Bank

Discrete Mathematics KCA104

UNIT 1

- 1. What is the cardinality of the set? Find the cardinality of the set $\{1, \{2, \varphi, \{\varphi\}\}\}, \{\varphi\}\}$.
- 2. Let the two following functions be defined on set of real numbers be as: f(x) = 2x+3 and $g(x) = x^2+1$. Find the $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 3. In a survey of 60 people, it was found that 25 eat Apple, 26 eat Orange and 26 eat Banana fruit. Also 9 eat both Apple and Banana, 11 eat both Orange and Apple, and 8 eat both Orange and Banana. 8 eat no fruit at all. Then determine
 - i). the number of people who eat all three fruit.
 - ii). the number of people who eat exactly two fruit.
 - iii). the number of people who eat exactly one fruit.
- 4. State and Prove De Morgan's laws for set theory.
- 5. Define the Power set.

If $A = \{1,2,3\}$ find P(A) and $n\{P(A)\}$.

6. Define the Cartesian Product of sets.

If
$$U = \{1,2,3,4,5,6,7,8\}$$
, $A = \{2,4,6,8\}$, and $B = \{3,5,6,7\}$ then find A ×B, A – B?

- 7. Define Equivalence Relation with a suitable examples.
- 8. Let $A = \{2, 3, 4\}$ $B = \{3, 4, 5\}$.

List the elements of each relation R defined below and the Domain and Range.

- a) $a \in A$ is related to $b \in B$, that is aRb if and only if a < b.
- b) $a \in A$ is related to $b \in B$, that is aRb if a and b are both odd numbers.
- 9. Define Bijective function with a suitable example.
- 10. Explain Symmetric Relation, Antisymmetric Relation and Asymmetric Relation in detail.

UNIT 2

- 1. Is (Z^+, \le) a POSET?
- 2. Draw the Hasse diagram of the lattice of $(D_6, |)$.
- 3. Show that (Z, \geq) is a Poset.
- 4. Define Lattice and differentiate between Complete Lattice and Bounded Lattice.
- 5. Determine all the maximal and minimal elements of the Poset whose Hasse diagram is shown in fig:

- 6. Simplify the following Boolean expression using K-Map method: A'B'C'+A'B'C+A'BC+A'BC'+AB'C+ABC.
- 7. If $S = \{10, 11, 12\}$. Determine the power set of S. Draw the Hasse diagram of Poset $(P(S), \subseteq)$.
- 8. Simplify the following Boolean expression using K-Map method: Y=A'B' + A'B+AB
- 9. Simplify the expression using K-maps: $F(A, B, C, D) = \Sigma (1,3,5,6,7,11,13,14)$.
- 10. Simplify the expression using K-maps: $F(A, B, C) = \pi(0,2,4,5,7)$.

<u>UNIT 3</u>

- 1. Define Tautology and Contradiction.
- 2. Discuss the truth table of $p \leftrightarrow q$.
- 3. Prove that conditional proposition and its contrapositive are equivalent, i.e.

$$(p \rightarrow q) \equiv \sim q \rightarrow . \sim p$$

- 4. Using the truth table, prove the following logical equivalence: $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$.
- 5. State and Prove De Morgan's laws for propositions using truth table.
- 6. Construct the truth table of the following- $\sim (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$.
- 7. Using logical equivalent formulas, show that $\sim (P \lor (\sim P \land Q)) \equiv \sim P \land \sim Q$.
- 8. Show that which of the following statements tautology are. (($PV \sim Q$) $\land (\sim PV \sim Q)$) $\lor Q$.
- 9. Explain Modus Ponens Rule in detail.
- 10. Briefly explain Disjunctive Syllogism with a suitable example.

UNIT 4

- 1. Define Ring and Field. Give an example of a Ring and a Field.
- 2. Prove that every cyclic group is abelian.
- 3. Show that set $Z_6 = (0,1,2,3,4,5)$ forms a group with respect to addition modulo 6.
- 4. What is the generator of a cyclic group?
- 5. Find the order of each element in the group $(\{1, -1\}, .)$.
- 6. $G = \{1, w, w^2\}$ is an abelian group under multiplication. Where 1, w, w^2 are cube roots of unity.
- 7. What is the inverse of a, if (Z, *) is a group with $a*b = a+b+1 \ \forall \ a, b \in Z$?
- 8. If every element of a group is its own inverse, then show that the group must be abelian.
- 9. The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.
- 10. Let $G = \{......-3, -2, -1, 0, 1, 2, 3,\}$ under addition, $H = \{......-9, -6, -3, 0, 3, 6, 9,\}$ Find left and right cosets.

UNIT 5

- 1. Find the number of handshakes in party of 12 people, where each two of them shake hands with each other.
- 2. Discuss the pigeonhole principle?
- 3. State all PEANO's axioms.
- 4. State Mathematical Induction. Explain with a suitable example.
- 5. Explain generating functions to solve the recurrence relation, with a example.
- 6. Using mathematical Induction Show that: For every positive integer n, $1 + 2 + \cdots + n = n(n + 1)/2$.
- 7. Using the principle of mathematical induction, prove that $7^{2n} + 2^{3n-3}$. 3^{n-1} is divisible by 25 for all $n \in \mathbb{N}$.
- 8. What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0=2$ and $a_1=7$?
- 9. What is the solution of the recurrence relation $a_n = 2a_{n-1} a_{n-2} + 2^n$ for $n \ge 2$, with $a_0 = 1$ and $a_1 = 2$?
- 10. Solve the recurrence relation a_{r+2} - $3a_{r+1}$ + $2a_r$ =0.By the method of generating functions with the initial conditions a_0 =2 and a_1 =3.