

集成学习方法在财务舞弊中的应用——以CUSBoost算法为例

莫书琪 2021/4/29

引入

- 研究背景: 财务舞弊的危害性与财务舞弊预测的困难性
- **研究目的**: 针对财务舞弊预测这一情境,寻找合适的机器 学习方法
- **主要挑战**: 传统机器学习方法在非平衡数据学习任务下表现不佳

相关工作

• JAR期刊上一篇使用RUSBoost模型预测财务舞弊的工作 (Bao et al.2020)

The Out-of-Sample Performance Evaluation Metrics for the Test Period 2003–08

			Performance Metrics Averaged over the Test Period 2003–2008			
			Metric 1	Metric 2		
Input Variables		Method	AUC	NDCG@k	Sensitivity	Precision
14 financial ratios	1)	logit	0.672	0.028	3.99%	2.63%
			(0.167)	(0.479)		
28 raw financial data items	2)	SVM-FK	0.626	0.020	2.53%	1.92%
			(0.012)	(0.171)		
	3)	Logit	0.690	0.006	0.73%	0.85%
			(0.911)	(0.041)		
	4)	RUSBoost	0.725	0.049	4.88%	4.48%

模型介绍

- RUSBoost: 随机降采样
 (Random Under-Sampling)+
 集成学习方法(Boosting)
- CUSBoost: 基于聚类的随机 降采样(Cluster-based Random Under-Sampling)+集 成学习方法(Boosting)
- 优点: 考虑了更全面的信息

实验设置

- · 为了更公平地进行性能对比,本文在实验设置上主要参考了Bao et al.(2020)的工作
- **数据集**: CFRM数据集,包含了美国证券交易委员会历年 公布的会计审计监管文件
- 输入变量: 28个财务报表科目的财务数据
- 输出变量: 是否舞弊(0代表没有舞弊,1代表舞弊)

实验结果

· 研究问题一: CUSBoost模型的性能如何?

	超参数	坟	评价指标		
快空 	决策树最大深度	迭代次数	AUC	NDCG@k	
	2	20	0.52	0.01	
	2	30	0.52	0.01	
AdaBoost	2	40	0.52	0.01	
Adaboost	12	20	0.64	0.04	
	12	30	0.64	0.04	
	12	40	0.64	0.04	
	2	20	0.23	0.00	
	2	30	0.72	0.03	
RUSBoost	2	40	0.64	0.05	
RUSB00st	12	20	0.72	0.01	
	12	30	0.73	0.06	
	12	40	0.74	0.08	
CUSBoost	2	20	0.71	0.07	
	2	30	0.67	0.07	
	2	40	0.73	0.06	
	12	20	0.75	0.08	
	12	30	0.76	0.15	
	12	40	0.76	0.06	

实验结果

- · 研究问题二: CUSBoost模型的可解释性如何?
- **轮廓系数**(silhouette coefficient): 一个评估聚类结果好坏的 评价指标, 越接近1表明效果越好
- 实验方法: 在CUSBoost完成聚类后计算轮廓系数
- **实验结果**: 轮廓系数均值大于0.75, 表明财务舞弊数据集 具有良好的聚类特性,可以借助基于聚类的随机降采样方 法提高性能

总结

- 强调了财务舞弊预测中的非平衡数据学习问题
- 讨论了当前最优的财务舞弊预测模型RUSBoost的缺陷,并使用CUSBoost模型进行财务舞弊预测
- 通过实验证明了CUSBoost模型的现实意义下的有效性和理 论意义下的结构可解释性

• Q&A