Allgemein 1

Driftgeschwindigkeit: v = b * E; **Strom:** $I = Q * n * b * A * E = \frac{dQ}{dt}$; Einheit Leitfähigkeit: $[k] = \frac{S}{m} = \frac{1}{\Omega m}$; Spannung: $U = \phi_1 - \phi_2$

2 Widerständen

2.1Allgemein

Widerstand: $R = \frac{U}{I} = \rho * \frac{l}{A}$

2.2Temperaturabhängigkeit

Lineare Näherung: $R(\Theta) = R_{20} * (1 + \alpha_{20} * \Delta \Theta) \text{ mit } \Delta \Theta = \Theta - 20^{\circ}C;$

Quadratische Näherung: $R(\Theta) = R_{20} * (1 + \alpha_{20} * \Delta\Theta + \beta_{20} * (\Delta\Theta)^2)$ mit $\Delta\Theta = \Theta - 20^{\circ}C$; NTC: Umso heißer das Material umso geringer ist der Widerstand;

PTC: Umso kälter das Material umso geringer ist der Widerstand

2.3Leistung

Verbraucher Widerstand $P = U * I = G * U^2 = \frac{U^2}{R} = R * I^2$

Anpassung: $R_a = R_i; \eta = 0, 5$

2.4Wirkungsgrad

$$\eta = \frac{R_V}{(R_V + R_i e)}$$
 Maximale Leistung: $P_a b max = (\frac{U_q^2}{(4R_i e)}$ Quellenleistung: $P_q = U_q * I$

3 Teiler

 $\begin{array}{ll} \textbf{Spannungsteiler:} \ \alpha = \frac{U_a}{U_e} = \frac{R_2}{R_1 + R_2)} \\ \textbf{Stromteiler:} \ \beta = \frac{I_a}{I_E} = \frac{G_2}{(G_1 + G_2)} = \frac{R_1}{(R_1 + R_2)} \end{array}$

Dreieck-Stern-Transformation 4

 $egin{aligned} \mathbf{Dreieck} &\Rightarrow \mathbf{Stern:} & R_A = rac{(R_B R_C)}{(R_A + R_B + R_C)} \ \mathbf{Stern} &\Rightarrow \mathbf{Dreieck:} & G_A = rac{(G_B G_C)}{(G_A + G_B + G_C)} \end{aligned}$

5 KPA

- Hauptdiagonalelemente enthalten die Summen der an dem Knoten betroffenen Leitwerte
- Matrixelemente außerhalb der Hauptdiagonalen enthalten den negativen Leitwert zwischen den Knoten
- Matrixelemente sind symmetrisch (1. Probe)
- Stromquellenvektor : Iq zum Knoten wird positiv gezählt
- Vom Knoten weg wird Iq negativ gezählt

Spezialfälle

- Reale Spannungsquellen werden durch reale Stromquellen ersetzt
- Ideale Spannungsquellen
- Zunächst KPA ohne ideale Spannungsquelle aufstellen
- 1: Spannungszählpfeil zeigt von i nach j
- 2: Zeile i auf j addieren (auch bei Iq)
- 3: In der i Zeile: $g_{ii} = 1$ $g_{ij} = -1$ und der Rest 0
- 4: Zählpfeil von i auf 0: $g_{ii} = 1$ und der Rest 0
- ullet 5: Zählpfeil von 0 auf i: Hilfsspannung $-U_q$ und wie oben vorgehen
- Bei größerem Superknoten wenn z.B. zwischen 3 Knoten ideale Spannungsquellen liegen werden alle Bereiche addiert und anschließend wie oben vorgegangen!

${f 6}$ Knoten+Maschenstromverfahren

6.1 Knotenregel

$$\sum_{N}^{i=1} I_i = 0 \tag{1}$$

6.2 Maschenregel

$$\sum_{N}^{i=1} U_i = 0 \tag{2}$$