Projeto de algoritmos

Profa Mariana Kolberg

(material adaptado dos slides do prof. Edson)

Projeto de Algoritmos

 Técnicas que possibilitam a elaboração de algoritmos com complexidade polinomial para problemas que normalmente teriam complexidade exponencial através do uso de um pouco de memória extra.

Dividisão e Conquista

- Resolve os problemas combinando as soluções para subproblemas
 - Particionam o problema em subproblemas independentes
 - Resolvem os subproblemas recursivamente
 - Combinam suas soluções

Programação Dinâmica x Divisão e Conquista

- Assim como a técnica de dividir para conquistar, combina a solução de subproblemas
- Porém, os subproblemas não são independentes
 - Subproblemas compartilham subsubproblemas
- Porque um algoritmo dividir para conquistar não é adequado?
 - Pois ele trabalharia mais que o necessário, resolvendo repetidamente os subsubproblemas comuns

Algoritmos Gulosos

- Se aplicam a problemas de otimização em que diversas escolhas devem ser feitas a fim de se chegar a uma solução ótima
- Idéia: fazer cada escolha de maneira ótima para as condições locais
- Exemplo troco de moedas.

Programação dinâmica x Algoritmos gulosos

- Assim como a técnica algoritmos gulosos:
 - Possui substrutura ótima
 - É aplicada a problemas de otimização em que uma série de escolhas deve ser feita, a fim de se alcançar uma solução ótima
- Porém, programação dinâmica é útil quando não é fácil chegar a uma seqüência ótima de decisões sem testar todas as seqüências possíveis para então escolher a melhor
- Porque um algoritmo guloso não é adequado?
 - Não é possível encontrar uma função gulosa
- É eficaz quando um dado subproblema pode surgir a partir de mais de um conjunto parcial de escolhas
 - Técnica chave é armazenar a solução para cada um dos subproblemas

- A cada passo são eliminadas subsoluções que certamente não farão parte da solução ótima do problema
- Ele reduz drasticamente o número total de seqüências viáveis
 - mecanismo que evita aquelas seqüências que sabidamente não podem resultar em seqüências ótimas

- Sua utilização resulta, em geral, em algoritmos mais eficientes que os algoritmos mais diretos.
 - Em alguns casos, o algoritmo direto tem complexidade exponencial, enquanto que o algoritmo desenvolvido por programação dinâmica é polinomial.
 - Outras vezes, a complexidade continua exponencial, mas de ordem mais baixa.

- Pode ser aplicada em diversos problemas :
 - multiplicação de várias matrizes;
 - caminhos de custo mínimo em grafos orientados;
 - projeto de sistemas confiáveis;
 - casamento de strings;
 - problema do caixeiro viajante;
 - problema de linha de montagem;
 - entre outros

- Desenvolvimento em 4 etapas
 - 1. Caracterizar a estrutura de uma solução ótima (subestrutura ótima)
 - 2. Definir recursivamente o valor de uma solução ótima
 - 3. Calcular o valor de uma solução ótima em um processo de baixo para cima (bottom-up)
 - 4. Construir uma solução ótima a partir das informações calculadas*
 - * Pode ser omitida se apenas o valor da solução ótima for exigido
 - * Pode ser necessário guardar outras informações na etapa 3

Consiste em determinar a sequência ótima de multiplicações de n matrizes

$$M := M_1 \times M_2 \times ... \times M_n$$

Sabemos que
$$[AxB]_{ij} := \sum_{k=1}^{q} A_{ik} \cdot B_{kj}$$
 (para $i = 1, ..., p \in j = 1, ..., r$)

Este cálculo exige p.q.r multiplicações.

Considere o seguinte exemplo

$$M = M_1 \times M_2 \times M_3 \times M_4 \times M_5$$

 $100 \times 3 \times 3 \times 10 \times 10 \times 50 \times 30 \times 30 \times 5$

$$M := M_1 \times M_2 \times M_3 \times M_4 \times M_5$$

100x3 3x10 10x50 50x30 30x5

• Primeira maneira $\{[(M_1xM_2)xM_3]xM_4\}xM_5$ A quantidade de operações é dada por (100x10x3)+(100x10x50)+(100x50x30)+(100x30x5)=218000 operações

• Segunda maneira $M_1x\{M_2x[(M_3xM_4)xM_5,]\}$ A quantidade de operações é dada por (10x50x30)+(10x30x5)+(3x10x5)+(100x3x5)=18150 operações

- O algoritmo direto tem complexidade exponencial no número de matrizes (testaria todas as combinações possíveis)
- Usando a programação dinâmica encontramos um algoritmo de complexidade polinomial

Multiplicação de Matrizes

$$\{(M_1 \times M_2) \times (M_3 \times M_4)] \times M_5\}$$
 $\{(M_1 \times M_2) \times [M_3 \times (M_4 \times M_5)]\}$

Série de Fibonacci

$$f(n) = f(n-1) + f(n-2)$$

$$f(n-1) = f(n-2) + f(n-3) \qquad f(n-2) = f(n-3) + f(n-4)$$

- Como minimizar ou reduzir a redundância de trabalho?
 - Devemos resolver os problemas menores e utilizá-los para resolver os maiores

	$M_1 \mathbf{x} M_2 \mathbf{x} M_3$	$M_2 \times M_3 \times M_4$	$M_1 \times M_2 \times M_3 \times M_4$
$(M_1 \mathbf{x} M_2)$	$(M_1 \mathbf{x} M_2) \mathbf{x} M_3$	$(M_2 \mathbf{x} M_3) \mathbf{x} M_4$	$((M_1 \mathbf{x} M_2) \mathbf{x} M_3) \mathbf{x} M_4$
$(M_2 \times M_3)$	$M_1 \mathbf{x} (M_2 \mathbf{x} M_3)$	$M_2 \mathbf{x} (M_3 \mathbf{x} M_4)$	$(M_1\boldsymbol{x}(M_2\boldsymbol{x}M_3))\boldsymbol{x}M_4$
$(M_3 \times M_4)$			$M_1 \boldsymbol{x} ((M_2 \boldsymbol{x} M_3) \boldsymbol{x} M_4)$
			M_1 x $(M_2$ x $(M_3$ x $M_4))$
			$(M_1 \mathbf{x} \ M_2) \mathbf{x} (M_3 \mathbf{x} \ M_4)$

• Dado o problema $M := M_1 \times M_2 \times ... \times M_n$ Considere o subproblema (ou subseqüência)

Com $1 \le i < j \le n$ e custo mínimo dado por $_i m_{j.}$ Considere $_i m_i = 0$, para i = 1,..., n

- O objetivo é saber a ordem da multiplicação de custo mínimo
 - O tempo de encontrar esta ordem é compensado quando for se fazer as multiplicações.

$$\mathbf{2M_3} = \mathbf{M_2} \times \mathbf{M_3} \\
\mathbf{M_2} \times \mathbf{M_3} \\
\mathbf{M_3} \times 5 \times 40$$

$$\mathbf{M_3} \times 5 \times 40$$

$$\mathbf{M_3} \times 5 \times 40$$

 b_1 b_3

		M ₂	x M	3
	10	3	5	40
posição	0	1	2	3

A matriz ${}_{2}M_{3}$ é uma matriz 3×40 , ou seja, $b_{1} \times b_{3}$ Portanto, uma matriz ${}_{i}M_{j}$ é uma matriz $b_{i-1} \times b_{j}$

O cálculo de ${}_{i}M_{j}$ com custo mínimo ${}_{i}m_{j}$ pode ser decomposto em dois subproblemas. Considere $i \le k < j$, logo

$$_{i}M_{k} = M_{i} \times M_{i+1} \times \ldots \times M_{k} \quad _{(k+1)}M_{j} = M_{k+1} \times M_{k+2} \times \ldots \times M_{j}$$

Onde

 $_{i}M_{k}$ tem custo mínimo $_{i}m_{k}$ e dimensões $b_{i-1} \times b_{k}$ $_{(k+1)}M_{j}$ tem custo mínimo $_{(k+1)}m_{j}$ e dimensões $b_{k} \times b_{j}$

O custo associado ao cálculo de ${}_{i}M_{k}$ $X_{(k+1)}M_{j}$, é dado por

$$(_{i}m_{k} + _{(k+1)}m_{i}) + (b_{i-1} x b_{k} x b_{i}).$$

O custo mínimo é dado por

$$_{i}m_{j} = \min_{i \le k < j} \{ (_{i}m_{k} + _{(k+1)}m_{j}) + (b_{i-1} \times b_{k} \times b_{j}) \}$$

Considere o produto das seguintes matrizes

$$M = \begin{array}{cccc} M_1 & x & M_2 & x & M_3 \\ 2x30 & 30x20 & 20x5 \end{array}$$

Inicialmente temos, ¡m¡ =0 , para i=1,2 e 3 (solução trivial).

O produto de 2 matrizes pode ser feito das seguintes maneiras

$$M_1$$
 x M_2 M_2 x M_3 $2x30$ $30x20$ $30x20$ $20x5$

Considere o produto das seguintes matrizes

$$M = \begin{array}{cccc} M_1 & x & M_2 & x & M_3 \\ 2x30 & 30x20 & 20x5 \end{array}$$

Inicialmente temos, ¡m¡ =0 , para i=1,2 e 3 (solução trivial).

O produto de 2 matrizes pode ser feito das seguintes maneiras

$$_{1}$$
m $_{2}$ = 2 x 30 x 20 = 1200 $_{2}$ m $_{3}$ = 30 x 20 x 5 = 3000

O produto de 3 matrizes pode ser feito das seguintes maneiras

$$M_1 \mathbf{x} (M_2 \mathbf{x} M_3) \qquad (M_1 \mathbf{x} M_2) \mathbf{x} M_3$$

Vimos que o custo mínimo é dado por

$$_{i}m_{j} = \min_{i \le k \le j} \{ (_{i}m_{k} + _{(k+1)} m_{j}) + (b_{i-1} \times b_{k} \times b_{j}) \}$$

Qual é o valor de ₁m₃?

Temos 2 valores possíveis para k, k=1 e k=2.

O produto de 3 matrizes pode ser feito das seguintes maneiras

$$M_1 \mathbf{x} (M_2 \mathbf{x} M_3) \qquad (M_1 \mathbf{x} M_2) \mathbf{x} M_3$$

Vimos que o custo mínimo é dado por

$$_{i}m_{j} = \min_{i \le k \le j} \{ (_{i}m_{k} + _{(k+1)} m_{j}) + (b_{i-1} \times b_{k} \times b_{j}) \}$$

Qual é o valor de ₁m₃?

Temos 2 valores possíveis para k, k=1 e k=2.

Para k=1 temos

$$_{1}m_{3} = _{1}m_{1} + _{2}m_{3} + 2 \times 30 \times 5 = 300 + 3000 = 3300 \quad M_{1} \times (M_{2} \times M_{3})$$

Para k=2 temos

$$_{1}m_{3} = _{1}m_{2} + _{3}m_{3} + 2 \times 20 \times 5 = 1200 + 200 = 1400$$
 $(M_{1} \times M_{2}) \times M_{3}$

Este processo assemelha-se ao preenchimento de uma matriz

	1	2	3
1	0	$_{1}m_{2} = 1200$	
2		0	$_{2}m_{3}=3000$
3			0

	1	2	3
1	0	1200	$_{1}m_{3}=1400$
2		0	3000
3			0

Este processo assemelha-se ao preenchimento de uma matriz

	1	2	3
1	0	$_{1}m_{2} = 1200$	
2		0	$_{2}m_{3}=3000$
3			0

	<u>I</u>	2	3
1	0	1200	$_{1}m_{3}=1400$
2		0	3000
3			0

$$M_1 \mathbf{x} (M_2 \mathbf{x} M_3) = 3300$$

Este processo assemelha-se ao preenchimento de uma matriz

$$M_1 x (M_2 x M_3) = 3300$$

$$(M_1 \times M_2) \times M_3 = 1400$$

O produto de n matrizes

- A diagonal é inicializada, ¡m¡ =0
- Os valores para as diagonais superiores são calculados;
- Após o processo, o resultado final encontra-se no canto superior direito da matriz

- Caracterizar a estrutura de uma solução ótima
 - Se para encontrar a ordem ótima da multiplicação das matrizes ${}_{i}M_{j}$ dividimos em ${}_{i}M_{k}$ e ${}_{k+1}M_{j}$, então tanto ${}_{i}M_{k}$ quanto ${}_{k+1}M_{j}$ devem representar uma ordem ótima também
- Definir recursivamente o valor de uma solução ótima

$$= \int_{i}^{0} M_{j} = \begin{cases} 0 & \text{se } i = j \\ \min\{iM_{k} + i + 1M_{j} + b_{i-1} \times b_{k} \times b_{j}\} \text{se } i < j \end{cases}$$

- Calcular o valor de uma solução ótima em um processo de baixo para cima (bottom-up)
 - Começa pelo cálculo do custo da multiplicação da menor cadeia de matrizes: tamanho 1,2,3...n
 - A medida que a cadeia de matrizes cresce, são utilizados os custos já calculados anteriormente

```
{custo mínimo de produto de matrizes}
Função: Multi_Mat(b:D)→IN

 para i de 1 até n faça m[i, i] ← 0;

                                                            {inicializa diagonal principal}
2. para u de 1 até n - 1 faça
                                                         {deslocamento da diagonal: 7}
                                                                 {posição na diagonal: 6}
   para i de 1 até n - u faça
4. j \leftarrow i + u; \{u = j - i\};
    m[i,j] \leftarrow \min_{i < k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \};
6.
                                                                         {3: ide 1 até n-u}
     fim-para
7. fim-para
                                                                         {2: u de 1 até n - 1}
retorne-saída(m[1,n]);
                                                                      {dá saída extraída}
9. <u>fim-Função</u>
                               {fim do algoritmo Multi_Mat: custo mínimo de produto}
```

<u>Função</u>: Multi_Mat(b:D)→IN

- para i de 1 até n faça m[i, i] ← 0;
- 2. <u>para u de</u> 1 <u>até</u> n 1 <u>faça</u>
- 3. para i de 1 até n u faça
- 4. $j \leftarrow i + u$; $\{u = j i\}$;
- 5. $m[i,j] \leftarrow \min_{i \le k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \}$;
- 6. fim-para
- 7. fim-para
- 8. retorne-saída(m[1,n]);
- 9. fim-Função

-								
	0							
		0						
			0					
				0				
					0			
						0		
							0	
		-		_		_	_	0

9. fim-Função

8. retorne-saída(m[1, n]);

7. fim-para

_	J							
	0							
		0						
			0					
				0				
					0			
						0		
							0	
								0

9. fim-Função

8. retorne-saída(m[1, n]);

7. fim-para

```
Função: Multi_Mat(b:D)→IN
```

- para i de 1 até n faça m[i, i] ← 0;
- 2. <u>para u de</u> 1 <u>até</u> n 1 <u>faça</u>
- 3. para i de 1 até n u faça
- 4. $j \leftarrow i + u$; $\{u = j i\}$;
- 5. $m[i,j] \leftarrow \min_{i \le k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \}$;
- 6. fim-para
- 7. fim-para
- 8. retorne-saída(m[1,n]);
- 9. fim-Função

 $\begin{array}{ll} & \underbrace{\textit{Função}}: \ \mathsf{Multi_Mat}(b:D) \to \mathsf{IN} & \mathbf{u} = \mathbf{2} \\ 1. \ \underline{\mathsf{para}} \, i \, \underline{\mathsf{de}} \, 1 \, \underbrace{\mathsf{at\acute{e}}} \, \mathsf{nfaça} \, \mathsf{m[i,i]} \leftarrow 0 \, ; & \mathbf{i} = \mathbf{1} \\ 2. \ \underline{\mathsf{para}} \, u \, \underline{\mathsf{de}} \, 1 \, \underbrace{\mathsf{at\acute{e}}} \, \mathsf{n-1} \, \underbrace{\mathsf{faça}} & \mathbf{j} = \mathbf{3} \\ 3. \ \ \underline{\mathsf{para}} \, i \, \underline{\mathsf{de}} \, 1 \, \underbrace{\mathsf{at\acute{e}}} \, \mathsf{n-ufaça} & \mathbf{j} = \mathbf{3} \\ 4. \ \ \underline{\mathsf{j}} \leftarrow i + u \, ; \, \{u = j - i\} \, ; & \mathbf{j} \\ 5. \ \ m[i,j] \leftarrow \min_{i < k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1] \times b[k] \times b[j]) \} \, ; & \mathbf{j} \\ \end{array}$

_								
ľ	0							
		0						
			0					
				0				
					0			
						0		
							0	
								0

9. fim-Função

7. fim-para

fim-para

8. retorne-saída(m[1, n]);

 $\begin{array}{ll} \underline{\textit{Função}} \colon \mathsf{Multi_Mat(b:D)} \to \mathsf{IN} & \mathbf{u} = \mathbf{2} \\ 1. \ \underline{\textit{para}} \, i \, \underline{\textit{de}} \, 1 \, \underbrace{\textit{at\'e}} \, n \, \underbrace{\textit{faça}} \, m[i,i] \leftarrow 0 \, ; & \mathbf{i} = \mathbf{2} \\ 2. \ \underline{\textit{para}} \, u \, \underline{\textit{de}} \, 1 \, \underbrace{\textit{at\'e}} \, n - 1 \, \underbrace{\textit{faça}} & \mathbf{j} = \mathbf{4} \\ 3. \ \ \underline{\textit{para}} \, i \, \underline{\textit{de}} \, 1 \, \underbrace{\textit{at\'e}} \, n - u \, \underbrace{\textit{faça}} & \mathbf{j} = \mathbf{4} \\ 4. \ \ j \leftarrow i + u \, ; \, \{u = j - i\} \, ; & \mathbf{i} \\ 5. \ \ m[i,j] \leftarrow \min_{i \leq k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1] \times b[k] \times b[j]) \} \, ; & \mathbf{i} \\ \mathbf{j} \leftarrow \mathbf{j} \in \mathsf{Multi_Mat(b:D)} \to \mathsf{N} & \mathbf{i} = \mathbf{2} \\ \mathbf{j} \leftarrow \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} & \mathbf{j} \leftarrow \mathsf{min} \\ \mathbf{j}$

0							
	0						
		0					
			0				
				0			
					0		
						0	
							0

9. fim-Função

7. fim-para

fim-para

8. retorne-saída(m[1, n]);

```
<u>Função</u>: Multi_Mat(b:D)→IN
```

- para i de 1 até n faça m[i, i] ← 0;
- 2. <u>para u de</u> 1 <u>até</u> n 1 <u>faça</u>
- 3. para i de 1 até n u faça
- 4. $j \leftarrow i + u$; $\{u = j i\}$;
- 5. $m[i,j] \leftarrow \min_{i \le k \le i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \};$
- 6. fim-para
- 7. fim-para
- 8. retorne-saída(m[1,n]);
- 9. fim-Função

<u>Função</u>: Multi_Mat(b:D)→IN

- para i de 1 até n faça m[i, i] ← 0;
- 2. <u>para u de</u> 1 <u>até</u> n 1 <u>faça</u>
- 3. para i de 1 até n u faça
- 4. $j \leftarrow i + u$; $\{u = j i\}$;
- 5. $m[i,j] \leftarrow \min_{i \le k < j} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \}$;
- 6. fim-para
- 7. fim-para
- 8. retorne-saída(m[1,n]);
- 9. fim-Função

Considere

$$M = \begin{array}{ccccc} M_1 & x & M_2 & x & M_3 & x & M_4 \\ 2x30 & 30x20 & 20x5 & 5x10 \end{array}$$

Calcule a sequência ótima de multiplicações e o preenchimento da matriz usada na programação dinâmica. Lembre-se da linha 5.

5.
$$m[i,j] \leftarrow \min_{i \le k < j} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \}$$

Considere

$$M = \begin{array}{ccccc} M_1 & x & M_2 & x & M_3 & x & M_4 \\ 2x30 & 30x20 & 20x5 & 5x10 \end{array}$$

Calcule a sequência ótima de multiplicações e o preenchimento da matriz usada na programação dinâmica. Lembre-se da linha 5.

5.
$$m[i,j] \leftarrow \min_{i \le k \le i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \}$$

Seqüência ótima
$$M = ((M_1 \times M_2) \times M_3) \times M_4$$

Idéias básicas da programação dinâmica

Objetiva construir uma resposta ótima através da combinação das respostas obtidas para partes menores do problema (subproblemas).

- Inicialmente, a entrada é decomposta em partes mínimas e resolvidas.
- A cada passo, **os resultados parciais são combinados** dando respostas para os subproblemas cada vez maiores, até que se obtenha uma resposta para o problema original.
- A decomposição **é feita uma única vez** e, além disso, os casos menores são tratados antes dos majores.
- •Este método é chamado **ascendente**, ao contrário dos métodos **recursivos**, que são chamados **descendentes**.


```
Algoritmo: Programação Dinâmica
<u>Função</u> Alg PD(d:D)→R {Algoritmo de programação dinâmica (abstrato)}
    { Entrada-saída: saída r: R é resposta ótima para entrada d: D}
        Incz PD; Iter PD; FnI PD
                                                                {estrutura geral}
                                                                {componentes}
            onde
                 Incz PD:=
                                                                 {inicialização}
                     entrada é decomposta em partes mínimas;
                     partes mínimas dão diretamente partes da saída
                 Iter_PD: itera corpo Crp_PD
                                                                     {iteração}
                     escolhe elemento da parte da entrada;
                     combina parte da entrada com elemento e;
                     atualiza parte da saída
                 Fnl PD:
                                                                   {finalização}
                     extrai a saída final para a entrada original
```

Multi_Mat	Alg_PD	
sorte D:=vetor b:D de naturais	<u>sorte</u> D	{entrada}
1. para i de 1 até n faca m[i, i] ← 0;	Incz_PD	{inicialização}
2. <u>para</u> u <u>de</u> 1 <u>até</u> n - 1 <u>faca</u>	lter_PD	(iteração)
3. <u>para</u> i <u>de</u> 1 <u>até</u> n-u <u>faça</u>	Crp_PD	(corpo da iteração)
4. $j \leftarrow i + u;$		
5. $m[i,j] \leftarrow melhor valor;$	{at	ualiza parte de saída}
6. <u>fim-para</u>		
7. fim-para		{fim da iteração}
8. <u>retorne-saída</u> (m[1,n]);	Fnl_G	{finalização}

```
Função: Multi_Mat(b:D)→IN
                                                  {custo mínimo de produto de matrizes}

 para i de 1 até n faça m[i, i] ← 0;

                                                               {inicializa diagonal principal}
2. <u>para u de</u> 1 <u>até</u> n - 1 <u>faça</u>
                                                            {deslocamento da diagonal: 7}
     para i de 1 até n - u faça
                                                                   {posição na diagonal: 6}
4. i \leftarrow i + u; \{u = j - i\};
    m[i,j] \leftarrow \min_{i < k < i} \{ (m[i,k] + m[k+1,j]) + (b[i-1]xb[k]xb[j]) \};
6.
                                                                            {3: i de 1 até n-u}
     fim-para
                                                                           {2: u de 1 até n - 1}
7. fim-para

 retorne-saída(m[1, n]);

                                                                         {dá saída extraída}
9. fim-Função
                                {fim do algoritmo Multi_Mat: custo mínimo de produto}
```