CSE428: Image Processing

Lecture 3: Point Processing - Part 1

Spatial Image Processing

Introduction

Typical image processing pipeline

- **Transform**: pixel values in some other, but equivalent form.
 - For example, fourier, wavelet, unity (no transform)
- Spatial processing: direct manipulation of pixels (i.e. unity transform)
- g(x, y) = T[f(x, y)], where f = input image, g = output image, T[] = mapping function
- Scope: (i) Enhancement improved visual quality (ii) Improved recognition rate

Spatial Image Processing Types

Point Processing

Spatial Image Processing Types

Neighborhood Processing (Filtering)

Spatial Image Processing Types

Global Processing

Mapping Function

- s = T[r], where r = input intensity, s = output intensity, T[] = mapping function
- Mapping functions can be visualized graphically

Contrast stretching

Unity mapping

Mapping Function

• Will consider [0, 1] range for simplicity

Contrast stretching Unity mapping

Addition and Subtraction - Brightness Adjustment

- $s = r \pm C$, where r = input intensity, s = output intensity, C = a positive constant
- Have to make sure the outputs are <u>clipped</u> between [0, 1]
- Increases (+) or decreases (-) the overall brightness

Addition and Subtraction - Brightness Adjustment

Addition might saturate high intensity levels

Original

$$s = r + 0.25$$

Addition and Subtraction - Brightness Adjustment

Subtraction might saturate low intensity levels

Original

$$s = r - 0.25$$

Multiplication and Division - Contrast Adjustment

- $s = r \times C$ or $r \div C$, r = input intensity, s = output intensity, C = a positive constant
- Have to make sure the outputs are <u>clipped</u> between [0, 1]
- Combined with addition/subtraction, can be used for <u>contrast adjustment</u>

Multiplication and Division - Contrast Adjustment

Overall brightness increased, contrast increased

Original

$$s = r \times 2$$

Multiplication and Division - Contrast Adjustment

Overall brightness decreased, contrast decreased

Original

$$s = r \div 2$$

- A wide range near black/white is **compressed** to a corresponding narrow range
- A small range near the middle is **expanded** to a wide range
- Limiting case of contrast stretching is thresholding. Produces binary image.

Contrast stretching

Thresholding

Using arithmetic operation

- $s = C_1 \times (r C_2)$ Some loss of information near low and high intensity levels

Input image (LANDSAT band 1)

Stretching function

Output image

Using arithmetic operation

How to calculate C₁ and C₂?

Using Piecewise Linear Mapping

- $[0, r_{I}]$ is mapped to $[0, s_{I}]$ where $s_{I} < r_{I}$ [Compressed]
- $[r_2, 1]$ is mapped to $[s_2, 1]$ where $s_2 > r_2$ [Compressed]
- $[r_1, r_2]$ is mapped to $[s_1, s_2]$ [Stretched]
- No clipping, hence no loss of information

Contrast Stretching Using Piecewise Linear Mapping

- (a) Piecewise linear transformation function.
- (b) A low-contrast electron microscope image of pollen, magnified 700 times.
- (c) Result of contrast stretching.
- (d) Result of thresholding.

(Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

What is happening

Example Histogram

r	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n _r	15	0	0	0	0	70	110	45	70	35	0	0	0	0	0	15

Basic transformations

Negative Image

- \bullet s = 1 r
- Mammogram with better tissue structure

Log Transformation - Dynamic Range Compression

By Rafael C. Gonzalez & Richard E. Woods, 2018, Digital Image Processing, 4th Edition

- $s = c \log(1 + r), r \ge 0, c \ge 0$
- Low range gray levels expanded
- High range gray levels compressed
- ^ Visualization of fourier spectra of an image before and after log compression

Power Law Transformation

- $s = cr^{\gamma}, r \ge 0, c, \gamma > 0$
- A generalized version of log transformation
- $\gamma > 1$ Inverse log transformation, dynamic range expansion
- γ < 1 Log transformation, dynamic range compression

Power Law Transformation - Dynamic Range Compression

- (a) Magnetic resonance image (MRI) of a fractured human spine (the region of the fracture is enclosed by the circle).
- (b)–(d) Results of applying the transformation in Eq. (3-5) with c = 1 and γ = 0.6, 0.4, 0.3, respectively.

(Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

Power Law Transformation - Dynamic Range Expansion

(a) Ariel Image

(b)–(d) Results of applying the transformation in Eq. (3-5) with c = 1 and $\gamma = 3, 4, 5$, respectively.

(Original image courtesy of NAS)

a b c d

Gray-Level Slicing

By Rafael C. Gonzalez & Richard E. Woods, 2018, *Digital Image Processing*, 4th Edition

Discord

Link: https://discord.gg/vM2Npk3V2q

Questions?