Machine Learning Assignment 1

Linear Regression

- RAJ GUPTA
- 20124082
- G3

```
In []:

In [1]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from matplotlib import style

   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [2]:
 df = pd.read_csv("C:\\Users\\raj gupta\\Downloads\\insurance.csv")
 df.head()

Out[2]:

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.9	0	yes	southwest	16884.92
1	18	ma l e	33.8	1	no	southeast	1725.55
2	28	ma l e	33.0	3	no	southeast	4449.46
3	33	ma l e	22.7	0	no	northwest	21984.47
4	32	ma l e	28.9	0	no	northwest	3866.86

```
In [3]: |df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1338 entries, 0 to 1337
        Data columns (total 7 columns):
                       Non-Null Count Dtype
             Column
         0
                       1338 non-null
                                       int64
             age
         1
                       1338 non-null
                                       object
             sex
         2
             bmi
                       1338 non-null
                                       float64
         3
             children 1338 non-null
                                       int64
         4
             smoker
                       1338 non-null
                                       object
         5
             region
                       1338 non-null
                                       object
             expenses 1338 non-null
                                       float64
        dtypes: float64(2), int64(2), object(3)
        memory usage: 73.3+ KB
In [4]: df.isnull().sum()
Out[4]: age
        sex
                    0
        bmi
                    0
        children
                    0
        smoker
                    0
                    0
        region
        expenses
        dtype: int64
```

Data Visualisation

```
In [5]: sns.distplot(df['age'])
    re version. Please adapt your code to use elther displot (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
        warnings.warn(msg, FutureWarning)
Out[5]: <AxesSubplot:xlabel='age', ylabel='Density'>
```

```
In [6]: sns.lineplot(df['age'] ,df['expenses'] ,color = 'r')
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[6]: <AxesSubplot:xlabel='age', ylabel='expenses'>

In [7]: sns.histplot(data=df, x='expenses', bins=50 ,kde=True);


```
In [8]: plt.title('Sex Distribution')
        sns.countplot(df['sex'] ,palette = 'hot')
        without an explicit keyword will result in an error or misinterpretation.
           warnings.warn(
Out[8]: <AxesSubplot:title={'center':'Sex Distribution'}, xlabel='sex', ylabel='coun</pre>
                               Sex Distribution
            700
            600
            500
            400
            300
            200
           100
In [9]: plt.title('Smoker')
         sns.countplot(df['smoker'] ,palette = 'ocean')
         without an explicit keyword will result in an error or misinterpretation.
           warnings.warn(
Out[9]: <AxesSubplot:title={'center':'Smoker'}, xlabel='smoker', ylabel='count'>
                                    Smoker
            1000
            800
            600
            400
            200
                                                 no
                          yes
```

emoker

In [10]: sns.distplot(df['bmi'] ,color ='g')

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='bmi', ylabel='Density'>


```
In [11]:
    plt.figure(figsize=(5,5))
    sns.barplot(x='sex', y='expenses',hue='smoker', data=df ,palette ='Reds')
    plt.title('Expenses for smokers')
```



```
In [12]: fig, axes = plt.subplots(1,3, figsize=(15,5), sharey=True)
    fig.suptitle('Visualizing categorical columns')
    sns.boxenplot(x='smoker', y= 'expenses', data=df, ax=axes[0] ,palette ='hot')
    sns.boxenplot(x='sex', y= 'expenses', data=df, ax=axes[1] ,palette ='Accent')
    sns.boxenplot(x='region', y= 'expenses', data=df, ax=axes[2] ,palette= 'icefire')
```

Out[12]: <AxesSubplot:xlabel='region', ylabel='expenses'>

Visualizing categorical columns


```
In [13]: #categorical encoding
In [14]: df.select_dtypes('object').columns
Out[14]: Index(['sex', 'smoker', 'region'], dtype='object')
In [15]: df['region'].value_counts()
Out[15]: southeast
                      364
         southwest
                      325
         northwest
                      325
         northeast
                      324
         Name: region, dtype: int64
In [16]: df['smoker'].value_counts()
Out[16]: no
                1064
                 274
         yes
         Name: smoker, dtype: int64
In [17]: |df['sex'].value_counts()
Out[17]: male
                    676
         female
                    662
         Name: sex, dtype: int64
 In [ ]:
In [18]: #binary encoding
         df['sex_en'] = df['sex'].replace({'male' :0 , 'female':1})
         df['smoker_en'] = df['smoker'].replace({'no':0 ,'yes':1})
In [19]: df.drop(columns = ['smoker' ,'sex'] ,inplace = True)
```

```
In [20]: df
```

Out[20]:

	age	bmi	children	region	expenses	sex_en	smoker_en
0	19	27.9	0	southwest	16884.92	1	1
1	18	33.8	1	southeast	1725.55	0	0
2	28	33.0	3	southeast	4449.46	0	0
3	33	22.7	0	northwest	21984.47	0	0
4	32	28.9	0	northwest	3866.86	0	0
1333	50	31.0	3	northwest	10600.55	0	0
1334	18	31.9	0	northeast	2205.98	1	0
1335	18	36.9	0	southeast	1629.83	1	0
1336	21	25.8	0	southwest	2007.95	1	0
1337	61	29.1	0	northwest	29141.36	1	1

1338 rows × 7 columns

```
In [21]: #multi categorical encoding
In [22]: region_en = pd.get_dummies(df['region'])
In [23]: df = pd.concat([df, region_en] , axis =1)
In [24]: df.drop(columns = ['region'] ,inplace =True)
```

In [25]: df

Out[25]:

	age	bmi	children	expenses	sex_en	smoker_en	northeast	northwest	southeast	sout
0	19	27.9	0	16884.92	1	1	0	0	0	
1	18	33.8	1	1725.55	0	0	0	0	1	
2	28	33.0	3	4449.46	0	0	0	0	1	
3	33	22.7	0	21984.47	0	0	0	1	0	
4	32	28.9	0	3866.86	0	0	0	1	0	
1333	50	31.0	3	10600.55	0	0	0	1	0	
1334	18	31.9	0	2205.98	1	0	1	0	0	
1335	18	36.9	0	1629.83	1	0	0	0	1	
1336	21	25.8	0	2007.95	1	0	0	0	0	
1227	61	20 1	Λ	201//1 36	1	1	n	1	<u> </u>	

```
In [26]: plt.figure(figsize =(8,8))
    correlation = df.corr()
    sns.heatmap(correlation ,cmap= 'hot',annot =True)
```

Out[26]: <AxesSubplot:>


```
In [27]: x = df.drop('expenses' ,axis = 1)
y= df['expenses']
```

In [28]: x

Out[28]:

	age	bmi	children	sex_en	smoker_en	northeast	northwest	southeast	southwest
0	19	27.9	0	1	1	0	0	0	1
1	18	33.8	1	0	0	0	0	1	0
2	28	33.0	3	0	0	0	0	1	0
3	33	22.7	0	0	0	0	1	0	0
4	32	28.9	0	0	0	0	1	0	0
				•••					
1333	50	31.0	3	0	0	0	1	0	0
1334	18	31.9	0	1	0	1	0	0	0
1335	18	36.9	0	1	0	0	0	1	0
1336	21	25.8	0	1	0	0	0	0	1
1337	61	29.1	0	1	1	0	1	0	0

1338 rows × 9 columns

```
In [33]: |lr.score(X_test ,y_test)
Out[33]: 0.7542883328348358
In [34]: test_pred[:12]
Out[34]: array([ 9023.16356496, 36422.7985755 , 3013.9537084 , 11197.01122603,
                33813.03548902, 11547.53219375, 11370.65054188, 14443.52996653,
                 5700.83417726, 10735.34239937, 9586.45496973, 12108.79851297])
In [35]: # scaling data and then applying
In [36]: from sklearn.preprocessing import MinMaxScaler
In [37]: | scale = MinMaxScaler()
         X_train_scale = scale.fit_transform(X_train)
         X test scale = scale.transform(X test)
In [38]: | lr = LinearRegression()
         lr.fit(X_train_scale , y_train)
Out[38]: LinearRegression()
In [39]: | test_pred1 = lr.predict(X_test_scale)
         test_pred1.shape
Out[39]: (402,)
In [40]: |lr.score(X_test_scale ,y_test)
Out[40]: 0.7542322227503546
In [ ]:
```