Sprawozdanie P0.2

Kamil Tasarz, 322492 październik 2021

1 Wstęp

Celem tej pracowni jest napisanie przykładowego sprawozdania, zapoznanie się z technicznymi zasadami zaliczania pracowni oraz wysłanie sprawozdania w Portalu Przedmioty.

2 Działy i poddziały

2.1 Poddział 1

Treść pierwszego poddziału pierwszego rozdziału.

2.2 Drugi poddział

COŚ

3 Tabela zawierająca liczby

to jest tabela zawierająca liczby				
10	1	1.0657120621	1.06571206217	17
20	23	177	3.965172E-0007	17
5555555	2.23092008061E-0009	2.2	-9	17
1	3	7	2.0	17
1	3	7	2.0	17
1	3	7.0	2	17
1.0	3.0	7	12	17
1	35	575	22345678	17

4 Wykres

5 Twierdzenie Taylora (o szeregu)

Niech f będzie funkcją na przedziałe [a, b] o wartościach rzeczywistych (bądź ogólniej, o wartościach w przestrzeni unormowanej Y) różniczkowalną (n + 1)-razy w sposób ciągły (na końcach przedziału zakłada się różniczkowalność z lewej, bądź odpowiednio, z prawej strony). Wówczas dla każdego punktu x z przedziału (a, b) spełniony jest wzór zwany wzorem Taylora:

$$f(x) = f(a) + \frac{x-a}{1!} f^{(1)}(a) + \frac{(x-a)^2}{2!} f^{(2)}(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a) + R_n(x,a)$$
$$= \sum_{k=0}^n \left(\frac{(x-a)^k}{k!} f^{(k)}(a) \right) + R_n(x,a),$$

gdzie $f^{(k)}(a)$ jest pochodną k-tego rzędu funkcji f obliczoną w punkcie a, przy czym $R_n(x,a)$ spełnia warunek

$$\lim_{x \to a} \frac{R_n(x, a)}{||x - a||^n} = 0.$$