# Music Recommendation System

ASHWIN PAL

APPLIED DATA SCIENCE PROGRAM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2025-03-08

#### Introduction

































#### Problem Statement & Objectives

Problem

Finding new music that matches personal taste is difficult for users.

Objective

Develop a recommendation system that suggests songs based on listening habits.

#### Dataset & Data collection

- ▶ 337 unique users
- ► 620 unique songs
- 247 artists
- ▶ 93.32% Sparsity

|                       | song_id | release               | artist_name     | year      | user_id | play_count | text                                           |
|-----------------------|---------|-----------------------|-----------------|-----------|---------|------------|------------------------------------------------|
| title                 |         |                       |                 |           |         |            |                                                |
| Van Helsing Boombox   | 7900    | Six Demon Bag         | Man Man         | 2006      | 44689   | 1          | Van Helsing Boombox Six Demon Bag Man Man      |
| Sincerité Et Jalousie | 617     | Simple Et Funky       | Alliance Ethnik | <na></na> | 34225   | 3          | Sincerité Et Jalousie Simple Et Funky Alliance |
| The Maestro           | 4954    | Check Your Head       | Beastie Boys    | 1992      | 27018   | 5          | The Maestro Check Your Head Beastie Boys       |
| Too Much Love         | 2557    | LCD Soundsystem       | LCD Soundsystem | 2005      | 27018   | 4          | Too Much Love LCD Soundsystem LCD Soundsystem  |
| Porno Disaster        | 6482    | Identification Parade | Octopus Project | 2002      | 3139    | 2          | Porno Disaster Identification Parade Octopus P |

#### Exploratory Data Analysis (EDA)



#### Modeling Techniques

| Rank       | Model                   | RMSE   | Precision | Recall | F1-Score | Remarks                            |
|------------|-------------------------|--------|-----------|--------|----------|------------------------------------|
| <b>y</b> 1 | SVD                     | 0.9948 | 0.428     | 0.650  | 0.516    | Best RMSE (Most Accurate)          |
| ₩ 2        | Sim User-User Optimized | 1.0175 | 0.445     | 0.647  | 0.527    | Best Precision & F1-Score          |
| ₩ 3        | Sim User-User           | 1.0758 | 0.403     | 0.707  | 0.513    | Best Recall (Widest Coverage)      |
| 4          | SVD Optimized           | 1.0023 | 0.406     | 0.642  | 0.497    | Slightly Lower RMSE Than User-User |
| 5          | Sim Item-Item Optimized | 1.0171 | 0.346     | 0.551  | 0.425    | Good Precision but Lower Recall    |
| 6          | Sim Item-Item           | 1.0244 | 0.315     | 0.575  | 0.407    | Lower Performance Than Optimized   |
| 7          | Clust Baseline          | 1.0376 | 0.399     | 0.590  | 0.476    | Performs Worse Than Other Models   |
| 8          | Clust Tuned             | 1.0374 | 0.398     | 0.589  | 0.475    | Minimal Improvement Over Baseline  |

#### Proposed Model Solution

► Hybrid Recommendation System (SVD & User-User Based)

| Rank       | Model                   | RMSE   | Precision | Recall | F1-Score | Remarks                                |
|------------|-------------------------|--------|-----------|--------|----------|----------------------------------------|
| <b>y</b> 1 | SVD Hybrid              | 0.9743 | 0.424     | 0.613  | 0.501    | Best RMSE (Most Accurate Hybrid Model) |
| ₩ 2        | SVD                     | 0.9948 | 0.428     | 0.650  | 0.516    | Strong RMSE, Best Recall               |
| ₩ 3        | Sim User-User Optimized | 1.0175 | 0.445     | 0.647  | 0.527    | Best Precision & F1-Score              |
| 4          | SVD Optimized           | 1.0023 | 0.406     | 0.642  | 0.497    | Slightly Lower RMSE Than User-User     |
| 5          | Sim User-User           | 1.0758 | 0.403     | 0.707  | 0.513    | Best Recall (Widest Coverage)          |
| 6          | Sim Item-Item Optimized | 1.0171 | 0.346     | 0.551  | 0.425    | Good Precision but Lower Recall        |
| 7          | Sim Item-Item           | 1.0244 | 0.315     | 0.575  | 0.407    | Lower Performance Than Optimized       |
| 8          | Clust Baseline          | 1.0376 | 0.399     | 0.590  | 0.476    | Performs Worse Than Other Models       |
| 9          | Clust Tuned             | 1.0374 | 0.398     | 0.589  | 0.475    | Minimal Improvement Over Baseline      |

#### Challenges

- Computational Costs
- Scalability:
- Data Bias
- Privacy & Security
- Sustainability



#### Summary:

- ▶ Built a Hybrid Recommendation System using SVD & User-Based Filtering.
- Balanced accuracy & diversity, improving recommendations.
- Enhanced user engagement, making the system scalable for streaming services.
- ▶ Future improvements: Deep learning & real-time updates.

### Thank You ©

## Appendix

|               | Count    | Percentage |
|---------------|----------|------------|
| title         |          |            |
| Use Somebody  | 1602     | 1.16       |
|               |          |            |
|               |          |            |
| Column: relea | ise      |            |
| Co            | ount Per | rcentage   |
| release       |          |            |
| My Worlds     | 1967     | 1.42       |
|               |          |            |
|               |          |            |
| Column: artis | t_name   |            |
| c             | ount Pe  | ercentage  |
| artist_name   |          |            |
| Coldplay      | 6527     | 4.72       |

Number of unique values in song\_id: 620
Number of unique values in title: 629
Number of unique values in release: 453
Number of unique values in artist\_name: 247
Number of unique values in year: 37
Number of unique values in user\_id: 3337
Number of unique values in play\_count: 5





#### Solution Code 1

```
# Build baseline model using svd
hybrid_svd = SVD(n_factors=150, biased=True, random_state=1)
# n_factor: latent factors (user & item features extracted from interactions
# biased: Determines whether to include user and item biases in the prediction
# True: model learns biases for users and items to improve accuracy

# Training the algorithm on the training dataset
hybrid_svd.fit(trainset)
```

... <surprise.prediction\_algorithms.matrix\_factorization.SVD at 0x79264c874c10>

```
# Let us compute precision@k, recall@k, and f_1 score with k=10 precision_recall_at_k(hybrid_svd)
```

RMSE: 0.9743

Precision: 0.424 Recall: 0.613 F 1 score: 0.501

#### Solution Code 2

Compute User-Based Similarity

```
# Aggregate duplicate entries by summing play counts
df_cleaned = df.groupby(['user_id', 'song_id'])['play_count'].sum().reset_index()

# Create user-song matrix
user_song_matrix = df_cleaned.pivot(index='user_id', columns='song_id', values='play_count').fillna(0)

# Compute cosine similarity between users
user_similarity = cosine_similarity(user_song_matrix)

# Convert similarity matrix into DataFrame
user_sim_df = pd.DataFrame(user_similarity, index=user_song_matrix.index, columns=user_song_matrix.index)
```

#### Solution Code 3

#### Hybrid Recommendation Function

```
def hybrid recommend(user id, song id):
   # Get SVD predicted rating
   pred rating = hybrid svd.predict(user id, song id).est
   # Get user-based similarity score
   if user id in user sim df.index:
        similar_users = user_sim_df[user_id].sort_values(ascending=False)[1:6] # Top 5 similar users
       user_based_score = df_cleaned[
           (df cleaned['user id'].isin(similar users.index)) &
           (df cleaned['song id'] == song id)
       ['play count'].mean()
   else:
       user_based_score = 0 # Default score if no similar users
   # Hybrid Score: Weighted sum of SVD prediction and user-based score
   hybrid score = (0.7 * pred rating) + (0.3 * (user based score if not np.isnan(user based score) else 0))
   return hybrid score
```

#### Solution Code Predictions

Make Predictions for Specific Users & Songs

Predict Play Count for a User Who Has NOT Listened to a Song

| Rank       | Model                   | RMSE   | Precision | Recall | F1-Score | Remarks                                |
|------------|-------------------------|--------|-----------|--------|----------|----------------------------------------|
| <b>y</b> 1 | SVD Hybrid              | 0.9743 | 0.424     | 0.613  | 0.501    | Best RMSE (Most Accurate Hybrid Model) |
| ₩ 2        | SVD                     | 0.9948 | 0.428     | 0.650  | 0.516    | Strong RMSE, Best Recall               |
| ₩ 3        | Sim User-User Optimized | 1.0175 | 0.445     | 0.647  | 0.527    | Best Precision & F1-Score              |
| 4          | SVD Optimized           | 1.0023 | 0.406     | 0.642  | 0.497    | Slightly Lower RMSE Than User-User     |
| 5          | Sim User-User           | 1.0758 | 0.403     | 0.707  | 0.513    | Best Recall (Widest Coverage)          |
| 6          | Sim Item-Item Optimized | 1.0171 | 0.346     | 0.551  | 0.425    | Good Precision but Lower Recall        |
| 7          | Sim Item-Item           | 1.0244 | 0.315     | 0.575  | 0.407    | Lower Performance Than Optimized       |
| 8          | Clust Baseline          | 1.0376 | 0.399     | 0.590  | 0.476    | Performs Worse Than Other Models       |
| 9          | Clust Tuned             | 1.0374 | 0.398     | 0.589  | 0.475    | Minimal Improvement Over Baseline      |