Heat Transfer: Conduction

Heat conduction in a cylindrical coordinate system

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Video overview

Steady state 1-D Heat conduction in pipe wall:

- Schematic curves for temperature, cross section and heat flow
- Derivation of the differential equation via energy balances
- Mathematical solution of the differential equation

Steady state 1-D Heat conduction for multilayer pipe walls:

Expand the equation to several resistors

Special case of steady state 1-D heat conduction for very thin pipe walls $\delta \ll r_1$:

Simplification of the problem (engineering approach)

Differential equation derivation:

Steady state 1-D heat conduction in a cylindrical body without sources

Fourier's law for a cylindrical body:

$$\dot{Q}_{\rm r} = -\lambda A \frac{dT}{dr}$$

Change of area:

$$A(r) \uparrow with r \uparrow$$

Resulting temperature gradient:

$$\dot{Q}_{\rm r} = {\rm const.} \implies \frac{dT}{dr} \downarrow$$

Energy balance around ring element:

$$0 = \dot{Q}_{\rm r} - \dot{Q}_{\rm r+dr}$$

Area A:

Heat flow \dot{Q} :

Temperature T:

Fourier's law for a cylindrical body:

$$\dot{Q}_{\rm r} = -\lambda \; \frac{dT}{dr} \; A(r)$$

Local temperature gradient for a cyl. body:

$$\frac{dT}{dr} = -\frac{\dot{Q}_{\rm r}}{\lambda \, A(r)}$$

Separation of the temperature gradient in constant and variable terms:

$$dT = -\frac{\dot{Q}_{\rm r}}{\lambda 2 \pi L} \cdot \frac{dr}{r}$$

Integration of Fourier's law (this approach is less common):

$$\int_{T_0}^{T_r} dT = -\text{const.} \quad \int_{r_0}^{r} \frac{dr}{r} \qquad \Longrightarrow T_0 - T_r = \cdots$$

Integration of Fourier's law (this approach is less common):

$$\int_{T_0}^{T_r} dT = -\text{const.} \quad \int_{r_0}^{r} \frac{dr}{r} \qquad \Longrightarrow T_0 - T_r = \cdots$$

Proven Method: Temperature profile via an energy balance around an infinitesimal element:

$$\dot{Q}_{\rm in} = -\lambda A(r) \frac{dT}{dr} = -\lambda 2 \pi r L \frac{dT}{dr}$$

$$\dot{Q}_{\text{out}} = \dot{Q}_{\text{in}} + \frac{d\dot{Q}_{\text{in}}}{dr} \Delta r$$

$$0 = -\frac{d\dot{Q}_{\rm in}}{dr} =$$

Differential equation derivation:

Steady state 1-D heat conduction in a cylindrical body without sources

Integrand:

$$\frac{d\left(r\,\frac{dT}{dr}\right)}{dr}$$

1st integration yields:

$$r \frac{dT}{dr} = const. = C_1$$

2nd integration yields:

$$T(r) = C_1 \ln(r) + C_2$$

Boundary conditions:

$$r = r_1 : T = T_1$$

$$r = r_2 : T = T_2$$

Results of 2nd integration:

$$T_1 = C_1 \ln (r_1) + C_2$$

$$T_2 = \ln (r_2) + C_2$$

Subtraction of temperature eq.:

$$T_1 - T_2 = C_1 \left(\ln (r_1) - \ln (r_2) \right)$$

Insert in temperature equation:

$$C_2 = T_1 - \frac{T_1 - T_2}{\ln\left(\frac{r_1}{r_2}\right)} \ln(r_1)$$

1st integration constant:

$$C_1 = \frac{T_1 - T_2}{\ln\left(\frac{r_1}{r_2}\right)} = \frac{T_2 - T_1}{\ln\left(\frac{r_2}{r_1}\right)}$$

1st integration constant:

$$C_1 = \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}}$$

2nd integration constant:

$$C_2 = T_1 - \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \ln r_1$$

Final temperature profile:

$$T(r) = C_1 \cdot \ln r + C_2$$

$$T(r) = \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \ln r + T_1 - \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \ln r_1$$

$$T(\mathbf{r}) = T_1 + \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \ln \frac{\mathbf{r}}{r_1}$$

Temperature profile:

$$T(r) = T_1 + \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \ln \frac{r}{r_1}$$

Heat flow:

$$\dot{Q} = -\lambda \cdot 2\pi \cdot r \cdot L \cdot \frac{dT(r)}{dr}$$

$$\frac{dT(r)}{dr} = \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}} \cdot \frac{1}{r}$$

Thermal resistances of a multilayer pipe wall Steady state 1-D heat conduction multilayer cylindrical wall without sources

Thermal resistance R_c for single layer pipe wall:

$$\dot{Q} = \frac{T_1 - T_2}{\ln \frac{r_2}{r_1}} = \frac{T_1 - T_2}{R_c}$$

$$R_c = \frac{\ln \frac{r_2}{r_1}}{\lambda \cdot 2 \cdot \pi \cdot L}$$

Multilayer pipe wall and heat flow:

$$\sum_{i=1}^{i=n} R_{c,i} = \frac{1}{2 \pi L} \sum_{i=1}^{n} \frac{1}{\lambda_i} \cdot \ln \frac{r_{i+1}}{r_i}$$

$$\dot{Q}_r = \frac{T_1 - T_{n+1}}{R_{c,i}} = \frac{T_1 - T_{n+1}}{\frac{1}{2 \pi L} \cdot \sum_{i=1}^n \frac{1}{\lambda_i} \cdot \ln \frac{r_{i+1}}{r_i}}$$

Special case of a thin pipe wall ($\delta \ll r$)

Introduction of the pipe thickness δ for the case: $\delta \ll r$

$$\ln \frac{r_2}{r_1} = \ln \left(\frac{r_1 + \delta}{r_1} \right) \quad \Longrightarrow \quad \ln \left(1 + \frac{\delta}{r_1} \right)$$

Mathematical reformulation:

 $\ln\left(1+\frac{\delta}{r_1}\right)$ is equivalent to $\ln(1+x)$

For $\delta \ll r$ the ln term simplifies to:

 $ln(1+x) \approx x$ for small x

Special case of a thin pipe wall ($\delta \ll r$)

Introduction of the pipe thickness δ for the case: $\delta \ll r$

$$\ln \frac{r_2}{r_1} = \ln \left(\frac{r_1 + \delta}{r_1} \right) \quad \Longrightarrow \quad \ln \left(1 + \frac{\delta}{r_1} \right)$$

Mathematical reformulation:

$$\ln\left(1+\frac{\delta}{r_1}\right)$$
 is equivalent to $\ln(1+x)$

For $\delta \ll r$ the ln term simplifies to:

$$ln(1+x) \approx x$$
 for small x

Simplified equation for the case: $\delta \ll r$

$$\dot{Q} = \frac{T_1 - T_2}{\frac{1}{2\pi L} \cdot \frac{1}{\lambda} \cdot \frac{\delta}{r_1}} = A \cdot \lambda \cdot \frac{\Delta T}{\delta}$$

plane wall equation

Comprehension questions

What is the course of the temperature profile for cylindrical bodies?

How does the temperature profile of a cylindrical body differ from the temperature profile in a plane wall? What is the reason for this?

Under which conditions can the curvature of the cylinder and thus the change of the area inside the cylinder wall be neglected?

