اصول طراحی پایگاه داده

By Dr. Taghinezhad

University of Tabriz, Fall 2024

Mail:

a0taghinezhad@gmail.com

Normalization نرمال سازی

مباحث

- معرفی نرمال سازی
- هدف از نرمال سازی
- سطوح مختلف نرمال سازی
 - معایب نرمال سازی

- نرمال سازی
- روشی برای **طراحی جداول** پایگاه داده و داده ها
 - به طریقی که باعث کاهش **افزونگی داده**
 - رفع مشكلات ساختارى و آنومالى

- هدف از نرمال سازی
- مذف افزونگی داده
- باقی نگاه داشتن وابستگی بین داده های مرتبط است.
- به این طریق اندازه پایگاه داده را کاهش داده و ذخیره منطقی داده را تضمین می کند.

فرآیند نرمال سازی

- مامل ایجاد جداول •
- و برقراری ارتباط بین آنها طبق قواعد معین است
- روی وابستگی های ستون های جدول تمرکز دارد.
- این فرآیند اغلب باعث ایجاد جداول بیشتر می شود
- باوجودیکه اثر تکرار داده درون پایگاه داده را دارد باعث افزونگی غیر ضروری داده نمی شود.

مثال. جدول زیر که اطلاعات مربوط به خرید مشتریان را دارد درنظر بگیرید:

همانطور که مشاهده می شود با هر فروش داده ها در جدول تکرار می شوند.

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150

مثال. جدول زیر که اطلاعات مربوط به خرید مشتریان را دارد درنظر بگیرید:

این افزونگی مشکلات زیر را می تواند ایجاد کند:

- هدر رفتن فضای ذخیره سازی.
- با وجودیکه امروزه دیسک های چندصد گیگا بایتی وجود دارد چندین بار ذخیره یک داده غیر ضروری است.
 - آنومالی در بهنگام سازی
- اگر داده یک مشتری، مثلا آدرس، تغییر کند باید در همه جاهائی که ذخیره شده است این تغییر اعمال شود درغیراینصورت جامعیت نقص می شود.
 - آنومالی در حذف.
- اگر این جدول به منظور نگهداری مشخصات مشتریان باشد، اگر مشتری خریدش را پس بدهد و سطر مربوط به آن حذف شود کلیه اطلاعات مشتری هم حذف می شود.
 - آنومالی در درج.

Database

• به همین صورت نمی توانیم مشخصات مشتری جدید را درج کنیم مگر اینکه کالائی خریده باشد.

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150 8

- راهکار:
- جدا کردن داده های جدول زیر به جداول جداگانه افزونگی را کاهش می دهد
 - مواجهه با آنومالی های فوق را ساده تر می کند.
 - این فرآیند را **نرمالسازی** می نامند.

مثال. جدول زیر که اطلاعات مربوط به خرید مشتریان را دارد درنظر بگیرید:

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150 9

- تئوری پایگاه داده درجه نرمالسازی جدول را با اصطلاح فرم های نرمال(normal) معیاری برای تعیین (form) شرح می دهد. فرم های نرمال (یا بطور خلاصه NF) معیاری برای تعیین درجه نرمال جدول دراختیار می گذارد.
 - فرم های نرمال جداگانه روی هر جدول می توانند بکار بروند. پایگاه داده زمانی در فرم نرمال \mathbf{n} باشند.
 - فرم های نرمال عبارتند از:

- First Normal Form (1NF)
 - Second Normal Form (2NF)
 - Third Normal Form (3NF)
 - Forth Normal Form (4NF)
 - Boyce/Codd Normal Form (BCNF)
 - Fifth Normal Form (5NF)
 - Domain/Key Normal Form (DKNF)

جداول آنرمال به جداولی اطلاق میشود که در برخورد هر سطر با هر ستون
 آن به جای یک مقدار اتمی و تجزیه ناپذیر، مجموعه ای از مقادیر وجود
 دارد (مانند Telephones)

S#	Name	Telephones
7801	آرش	0311-6262778 0913-311-5234
7902	كسك	021-2956677 0912-314-4532

Database

■ مهمترین عیب یک جدول آنرمال این است که برای هر یک از عملیات درج، حذف و اضافه به دو دسته عملیات درج تاپل و درج گروه اطلاعات مجموعه (Telephones) احتیاج است.

S#	Name	Telephones
7801	آرش	0311-6262778 0913-311-5234
7902	لسح	021-2956677 0912-314-4532

- یک جدول نرمال۱ است اگر در برخورد هر سطر با هر ستون به یک مقدار تجزیه ناپذیر برسیم
- برای آنکه جدول آنرمال Student را به نرمال ۱ تبدیل کنیم، لازم است مقادیر ویژگیهای #St و Name را به ازاء هر شماره تلفن تکرار کنیم

S#	Name	Telephones
7801	آرش	0311-6262778
7801	آرش	0913-311-5234
7902	June	021-2956677
7902	كسك	0912-314-4532

■ مثال. جدول ALL_SALESکه اطلاعات فروش را نگهداری می کند درنظر بگیرید. ایا در فرم نرمال اول هست ؟

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150

■ این جدول در فرم اول نرمال هست چون هیچ کدام از ستون ها چندمقداری نیستند بنابراین نیازی نیست روی جدول کاری انجام دهیم بجز اینکه یک کلید انتخاب نمائیم.

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150

• وابستگی تابعی (FD) صفت Y با صفت X وابستگی تابعی دارد اگر و فقط اگر در طول حیاط رابطه به هر مقدار X دقیقا یک مقدار از Y متناظر باشد که میگوییم صفت X صفت Y را تعیین می کند.

تعریف: اگر صفت Xصفت Yرا تعیین کند، گفته می شود Yبه صورت تابعی وابسته به Xاست و به صورت زیر نمایش داده می شود:

- $X \rightarrow Y$
- در اینجا:
- . Xتعیین کننده (Determinant)نام دارد.
 - . **Yوابسته** (Dependent)نام دارد.

شماره	نام	فاميل
11	اکبر	حسيني
77	اکبر	کریمی

FD1: StudentID → StudentName

با دانستن StudentID ، مى توانيم به طور منحصربه فرد StudentName را تعيين كنيم.

FD2: StudentID \rightarrow Course با دانستن StudentID ، می توانیم StudentID را تعیین کنیم.

 StudentID
 StudentName
 Course

 101
 سیاسی

 102
 باب

 شیمی
 چارلی

اگر B زیرمجموعه A باشد، B<-Aرا وابستگی تابعی بدیهی می نامیم. مثال:

(Sname, avg)->avg

Dr. A. Taghinezhad 1.17 Database

- وابستگی تابعی کامل FFD
- صفت خاصه Y به صفت خاصه X وابستگی تابعی کامل دارد اگر Y به X وابسته باشد ولی با هیچ یک از زیرمجموعههای X وابستگی تابعی نداشته باشد.
 - ابطه دانشجوی زیر را درنظر بگیرید
 - S#,SNAME, City, AVG, Department
 - وابستگی تابعی زیر وجود دارد
 - (S#,SNAME)->City
 - آیا وابستگی تابعی کامل هست؟
 - اگر برای تمامی صفتهای B داشته باشیم A->B انگاه A ابر کلید هست.

اگر F یک مجموعه از وابستگی های تابعی باشد آنگاه مجموعه تمام وابستگی های تابعی که از آن منتج می شود را مجموعه پوششی f مینامیم و با fنمایش می دهیم .

قواعد استنتاج آرمسترانگ

- if B \subseteq A then A \rightarrow B \Rightarrow A \rightarrow A.1
- تراگذاری یا قاعدہ تعدی if $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$.2
 - if A \rightarrow B then (A,C) \rightarrow (B,C) .3
 - if $A \rightarrow (B,C)$ then $A \rightarrow B$ and $A \rightarrow C$.4
 - if $A \rightarrow B$ and $C \rightarrow D$ then $(A,C) \rightarrow (B,D)$.5
- if $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow (B,C)$.6
- if $A \rightarrow B$ and $(B,C) \rightarrow D$ then $(A,C) \rightarrow D$.V

کاربردهای قواعد آرمسترانگ

- A^+ : A محاسبه بستار صفت (۱
- مجموعه تمام صفاتی که باA ، وابستگی تابعی دارند
- نکته: اگر $H_R = H_R$ در این صورت A سوپر کلید (الگوریتم تشخیص سوپر کلید)
 - F^+ : محاسبه بستار مجوعه وابستگیهای تابعی یک رابطه $^{-}$
 - مجموعه تمامFD هایی که از F منطقاً استنتاج میشوند
- : $F = \{A \rightarrow B, B \rightarrow C\} \Rightarrow F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, (A,C) \rightarrow (B,C), \blacksquare$

...}

Finding F^+

- اگر رابطه ی R(A,B,C,D) با وابستگی های تابعی F را داشته باشیم.
- 1. A→B
- 2. B→C
- 3. A→D

- پیدا کردن F^+ بستار مجموعه شامل تمام وابستگیهای تابعی مشتق شده است.
- 1. $A \rightarrow B$
- $2. B \rightarrow C$
- $3. A \rightarrow D$
- 4. A→CA (تعدى)
- (افزایش) A→BCA (افزایش)
- A→BCDA (ترکیب وابستگی)

(2NF) Second Normal Form

- تعریف TNF
- باشد 1NF باید ابتدا در 1NF
- 2. تمام صفات غیر کلیدی باید به طور کامل به کل کلید اصلی وابسته باشند (نه فقط بخشی از کلید اصلی). اگر وابستگی جزئی وجود داشته باشد، جدول به ۲ NF۲نمی رسد.

ستون Y با ستون X در یک رابطه وابستگی تابعی (X دقیقا یک مقدار (طوب در X دقیقا یک مقدار در X دارد اگروفقط اگر به ازای هر مقدار در X دقیقا یک مقدار در X متناظر با آن وجود داشته باشد. که به صورت $X \longrightarrow X$ نشان داده می شود.

آیا جدول زیر 2NF هست ؟

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150

- الله اصلی ترکیبی (SaleNo, ProductNo, CustomerNo)، وابستگی صفات غیر کلیدی را بررسی می کنیم:
 - Credit Limit: Address Last First .1
 - oustomerNo, این صفات فقط به CustomerNoوابسته هستند و به کل کلید ترکیبی CustomerNo) وابسته نیستند.
 - این موضوع باعث ایجاد وابستگی جزئی میشود و فرم NF ۲را نقض می کند.
- Salesrep: .2 وابسته است (با فرض اینکه هر فروش نماینده فروش خاصی دارد) و به کل کلید ترکیبی (SaleNo, ProductNo, CustomerNo)
 - این نیز یک وابستگی جزئی است که فرم ۲ NFرا نقض می کند.
- 3. Amount:به ProductNoو به Qtyوابسته است، بنابراین به درستی به بخشی از کلید وابسته است. این مورد فرم ۲ NFرا نقض نمی کند.
- توجه کنید اگر کلیدهای کاندید در جدول، ترکیبی نباشند یعنی تنها شامل یک ستون باشند بلافاصله می گوئیم جدول NF۲ است.

Sale No	SaleDate	ProductNo	Qty	Amount	Salesrep	Customer No	First	Last	Address	tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
Dr. A. Tag	nineznad				Dave Williams 1.25					Database

مثال. جدول SALL_SALESرا درنظر بگیرید:

ALL_SALES(<u>SaleNo, ProductNo, CustomerNo</u>, SaleDate, QtyInStock, Description, Price, Customer_Name, CreditLimit, Amount, Salesrep)

مشاهده می شود بعضی از ستون ها بهم مرتبط هستند و توسط بخشی از کلید مشخص می شوند. به عبارت دیگر بعضی ستون ها با زیرمجموعه ای از کلید وابستگی تابعی دارند:

ProductNo → {Description, ReorderLevel, Price, QtyInStock} CustomerNo → {Customer_Name, CreditLimit} SaleNo → {Date, CustomerNo, ProductNo, Qty, Amount, Salesrep}

Sa	ale O	SaleDate	ProductNo	Qty	Amoun t	Salesrep	Customer No	First	Last	Address	Credi tLimit	
12	345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000	
12	346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>	
12	347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>	~
12	348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	
12	349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>	
12	350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>	
	351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150	6

Dr. A. ragnineznau

با جدا کردن این ستون ها به جداول جداگانه به فرم دوم نرمال می رسیم.

- PRODUCT(<u>ProductNo</u>, Description, Price, QtyInStock)
- CUSTOMER(<u>CustomerNo</u>, Customer_Name, CreditLimit)
- SALE(<u>SaleNo</u>, Date, CustomerNo, ProductNo, Qty, Amount, Salesrep)

Sale No	SaleDate	ProductNo	Qty	Amoun t	Salesrep	Customer No	First	Last	Address	Credi tLimit
12345	Aug 12 2002	AQX88916	1	23.95	Dave Williams	4649-4673	Richard	Johnston	14 West Avenue	1000
12346	Aug 12 2002	AQX88916	7	167.65	Sara Thompson	1113-7741	Wayne	Jones	42 York Street	<null></null>
12347	Aug 13 2002	AHL46785	3705	5001.75	Li Qing	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12348	Aug 13 2002	DHU69863	50	118.5	Sara Thompson	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>
12349	Aug 14 2002	DHU69863	940	2227.8	Sara Thompson	1166-3461	Amelia	Waverley	995 Forth Street	<null></null>
12350	Aug 14 2002	DHU69863	42	99.54	Sara Thompson	7671-3496	Antonio	Gonzales	55B Granary Lane	<null></null>
12351	Aug 14 2002	AQX88916	55	1317.25	Dave Williams	6794-1674	Diane	Adams	364 East Road	150

- یک جدول نرمال۲ است اگر:
 - نرمال ۱ باشد
- در آن هیچ وابستگی جزئی به کلید اصلی وجود نداشته باشد. به عبارت دیگر، هیچ ویژگی جدول تنها به قسمتی از کلید اصلی وابستگی نداشته باشد.

S#	Name	Crs#	Cname	Unit	Grade	Term
7801	على	1400	پایگاه داده	3	20	79-2
7801	على	1500	رياضي 1	3	10	80-1
7801	على	1600	تجزیه و تحلیل	3	20	80-1
7902	كسك	1400	پایگاه داده	3	7	80-1
7902	كسك	1700	تربیت بدنی	1	20	80-1

بخشی از جدول فوق وابسته به #Crs است و بخش دیگر وابسته به #S است

- یک جدول در فرم سوم نرمال 3NFاست اگر اولا 2NFباشد، ثانیا کلیه صفات خاصه غیر کلید در جدول با کلید اصلی وابستگی تابعی غیر تعدی داشته باشند.
 - وابستگی تعدی $X \to X$ است اگر $X \to X$ وابستگی تابعی غیر $X \to X$ است اگر $X \to X$ و $X \to X$ باشد.
 - در فرم سوم نرمال کلیه ستون های جدول مستقیما توسط کلید اصلی مشخص می شوند.
 - با حذف فیلدهائی که وابستگی مستقیم با کلید ندارند به فرم سوم نرمال می رسیم. برای این کار گروهی از ستون های جدول را که مقدارشان برای بیش از یک رکورد تکرار می شود را در جدول جداگانه ای قرار دهید.

- یک جدول نرمال ۳ است اگر:
 - و نرمال۲ باشد
- در آن هیچ وابستگی تعدی (وابستگی با واسطه) در آن وجود نداشته باشد. به عبارت دیگر، در آن هیچ ویژگی غیر کلیدی به ویژگی غیر کلیدی دیگر وابستگی تابعی نداشته باشد.

Prof#	Pname	LastDegree	LastDegreeName
7801	على	2	کاردانی
7802	آرش	2	کاردانی
7803	كسح	4	فوق ليسانس

برای آنکه این جدول نرمال ۳ شود به صورت زیر تبدیل میشود:

- Prof(Prof#, Pname, LastDegree)
- Degree(LastDegree#, LastDegreeName)

ا مثال. فرض کنید جدول PRODUCT به صورت زیر جزئیات تولید کننده هر محصول را دارا باشد:

 PRODUCT(<u>ProductNo</u>, Description, ReorderLevel, Price, QtyInStock, SupplierCode, SupplierName, SupplierAddress)

این جدول کلید اصلی تک ستونی دارد بنابراین ۱ NFااست. اگر تولید کننده چندین محصول را تولید کند فیلدهای SupplierNameو SupplierAddressبرای هر محصول تکرار می شود زیرا وابستگی تعدی با کلید اصلی دارند.

ProductNo → **SupplierCode** → **{SupplierName, SupplierAddress}**

با حذف این ستون ها و تقسیم جدول به صورت زیر به فرم سوم نرمال می رسیم. توجه کنید که SupplierCodeدر جدول PRODUCTبه عنوان کلید خارجی باقی می ماند.

PRODUCT(<u>ProductNo</u>, Description, ReorderLevel, Price, QtylnStock, SupplierCode)
SUPPLIER(<u>SupplierCode</u>, SupplierName, SupplierAddress)

■ یک جدول نرمالBCNFااست اگروتنها اگر کلیه تعیین کننده های (Determinant) آن، کلید کاندیدا باشند. یعنی هر رابطه A->B در جدول وجود داشته باشد A کلید کاندیدا باشد.

- **BCNF** (Boyce-Codd Normal Form) پایگاه داده است که برای کاهش انحرافات و مشکلات ناشی از تکرار دادهها طراحی شده است . BCNF (Third Normal Form) که BCNF شرایط سختگیرانه تری را برای روابط در پایگاه داده وضع می کند.
 - BCNF:شرايط
 - یک رابطه (Table) در BCNF قرار دارد اگر برای هر وابستگی تابعی $\mathbf{X} \to \mathbf{Y}$ در آن رابطه، یکی از شرایط زیر برقرار باشد:
 - اد کی سوپرکلید باشد، یعنی مجموعهای از ویژگیها (attributes) که میتواند به طور منحصر به فرد هر سطر را شناسایی کند.
 - 2. در غیر این صورت، باید وابستگیهای غیرضروری (جزئی) وجود نداشته باشد.

فرض کنید یک جدول به نام Student_Courseداریم که اطلاعات مربوط به دانشجویان و دورههایی که در آنها ثبتنام کردهاند را ذخیره می کند:

در این جدول، وابستگیهای تابعی به شکل زیر هستند:

1. :Student_ID, Course_ID \rightarrow Instructor برای هر ترکیب منحصر به فرد از دانشجو و دوره، استاد مشخص است.

2. :Course_ID → Instructorهر دوره یک استاد ثابت دارد.

مشکل این است که در این جدول، Instructor \rightarrow Instructor وابستگی است که باید در BCNF تجزیه شود زیرا Course_ID یک سوپرکلید نیست (این تنها بخشی از کلید ترکیبی است).

Student_ID	Course_ID	Instructor	Semester
1	101	Dr. A	Fall 2024
2	102	Dr. B	Spring 2024
3	101	Dr. A	Fall 2024

تبدیل به جدول نرمال BCNF

1.جدول **Course** که اطلاعات دورهها و استادها را ذخیره می کند: **Student_Course** که اطلاعات مربوط به دانشجویان و دورهها را نگهداری می کند: نگهداری می کند:

در این حالت، هر جدول به BCNF رسیده است، زیرا در هیچکدام از جداول، وابستگی تابعی وجود ندارد که ویژگیهای چپ آنها سوپرکلید نباشد.

Course_ID	Instructor
101	Dr. A
102	Dr. B

Student_ID	Course_ID	Semester
1	101	Fall 2024
2	102	Spring 2024
3	101	Fall 2024

■ آيا BCNF هس*ت* ؟

در جدول زیر دو کلید کاندیدای S#+Field و S#+Tutor و نیز داریم Tutor->Field بنابراین میتواند به دو جدول تقسیم شود

S#	Field	Tutor
YA+1	مهندس کامپیوتر	مهندس رضائی
٧٨٠١	ریاضی محض	آرش ریاضیدان
YA+1	هنر	گلناز هنردوست
V9. ۲	مهندس کامپیوتر	مجید رضائی
٧٨٠٣	مهندس کامپیوتر	پروین صبا

جداول نرمال BCNF

در جدول زیر دو کلید کاندیدای S#+Field و S#+Field و نیز داریم Styrield استواند به دو جدول تقسیم شود

S#	Field	Tutor
YA-1	مهندس کامپیوتر	مهندس رضائی
٧٨٠١	ریاضی محض	آرش ریاضیدان
٧٨٠١	هنر	گلناز هنردوست
V9.Y	مهندس کامپیوتر	مجید رضائی
٧٨٠٣	مهندس کامپیوتر	پروین صبا

Field	Tutor
مهندس	مهندس
كامپيوتر	رضائی
ریاضی	آرش
محض	رياضيدان
هنر	گلناز
	هنردوست
مهندس	مجيد
كامپيوتر	رضائی
مهندس	پروین صبا
كامپيوتر	

S#	Tutor
٧٨٠١	مهندس
	رضائی
٧٨٠١	آرش
	رياضيدا
	ن
٧٨٠١	گلناز
	هنردوس
	ت
79.7	مجيد
	رضائی
٧٨٠٣	پروین
	صبا

37

- 4NF (Fourth Normal Form) ایک مرحله از نرمالسازی در طراحی پایگاه دادهها (Multivalued) است که به منظور حذف وابستگیهای چند مقداری (Dependencies)
 - این نوع وابستگیها در زمانی که یک ویژگی در یک رابطه به بیش از یک مقدار وابسته باشد و این وابستگیها مستقل از سایر ویژگیها باشند، بروز می کند.
 - تعریف NF۴
 - یک رابطه در 4NFقرار دارد اگر:
 - · ابتدا در 3NFباشد.
 - هیچ وابستگی چند مقداری در آن وجود نداشته باشد.

Dr. A. Taghinezhad 1.38 Database

- مثال. اگر مشتریانی با چند آدرس داشته باشیم (که در محیط تجارت عادی است)، در جدول CUSTOMER نمی توانیم چند ستون آدرس را اضافه کنیم چون تعداد آدرس های ممکن را نمی دانیم.
 - بنابراین ناگزیر به اضافه کردن رکورد جدید برای هر آدرس مشتری هستیم که باعث تکرار و افزونگی داده می شود.زیرا CustomerNo دیگر تنها یک آدرس را معین نمی کند بلکه مجموعه ای از آدرس های را نشان می دهد به عبارت دیگر وابستگی چندمقداری دارد.
 - با حذف چنین وابستگی هائی و تقسیم جدول به صورت زیر به فرم چهارم نرمال می رسیم.
 - CUSTOMER(<u>CustomerNo</u>, First, Last, CreditLimit)
 CUSTOMER_ADDRESS(<u>CustomerNo</u>, Address)
 - حالا هر مشتری می تواند هر تعداد آدرسی را داشته باشد.
 - وابستگی چندمقداری (multivalued dependency) به این معنی است که حضور رکوردهای معینی در جدول وجود رکوردهای معین دیگری را برساند.

وابستگی چند مقداری:(Multivalued Dependency)

وابستگی چند مقداری زمانی اتفاق میافتد که یک ویژگی (یا مجموعهای از ویژگیها) به بیش از یک مقدار وابسته باشد و این وابستگیها به طور مستقل از سایر ویژگیها باشند. به عبارت دیگر، در این نوع وابستگی، یک مجموعه از مقادیر برای یک ویژگی به مقادیر دیگری وابسته است بدون اینکه وابستگی بین آنها وجود داشته باشد.

مثال:

فرض کنید یک جدول به نام Student_Course_Hobbyداریم که اطلاعات مربوط به دانشجویان، دورههای ثبتنامی آنها و سرگرمیهایشان را ذخیره می کند:

Student_ID	Course_ID	Hobby
1	101	Football
1	102	Music
1	103	Painting
2	101	Football
2	104	Chess

در این جدول، Student_IDبه Course_IDبه وابسته است، اما وابستگیها به طور جداگانه و مستقل از یکدیگر وجود دارند:

- یک دانشجو می تواند در چندین دوره ثبتنام کند.
- همان طور که یک دانشجو ممکن است چندین سرگرمی داشته

تجزیه به NF۴

برای رسیدن به **4NF**، باید جدول را به دو جدول جداگانه تقسیم کنیم: **Student_Course** که اطلاعات مربوط به دانشجویان و دورههایشان را ذخیره می کند:

2.جدول Student_Hobby که اطلاعات مربوط به دانشجویان و

سرگرمیهایشان را ذخیره میکند:

در این حالت، هر جدول به صورت مستقل اطلاعات را ذخیره می کند و دیگر وابستگی چند مقداری وجود ندارد.

Student_ID	Course_ID
1	101
1	102
1	103
2	101
2	104

Student_ID	Hobby	
1	Football	
1	Music	
1	Painting	
2	Football	
2	Chess	

1. تمام كليد

اگر اضافه کنیم کارمند ۱۰۰، جاوا را به المانی	.2
میگوید، افزونگی رخ میدهد.	

emp #	Skill	lang
1	برنامه نویسی جاوا	انگلیسی
1	تجزیه و تحلیل شی گرا	انگلیسی
1 - 1	برنامه نویسی دلفی	انگلیسی
1 • 1	تجزیه تحلیل شی گرا	انگلیسی
1.1	طراحی وب سایت	انگلیسی
1 - 1	برنامه نویسی دلفی	آلماني
1 - 1	تجزیه و تحلیل شی گرا	آلمانی
1 - 1	طراحی وب سایت	آلماني

emp #	Skill
1++	برنامه نویسی جاوا
1	تجزیه و تحلیل شی گرا
1+1	برنامه نویسی دلفی
1.1	تجزیه تحلیل شی گرا
1+1	طراحی وب سایت

emp#	lang
1	انگلیسی
1+1	انگلیسی
1+1	آلماني

یک جدول نرمال۵ است اگر:

- نرمال ۴ باشد.
- نتوان آنرا به جداول کوچکتر تجزیه کرد بطوریکه حداقل یکی از جداول شامل هیچ یک از کلیدهای کاندیدای جدول اولیه نباشد.

آیا Sp∞pj جدول اول را میدهد ؟

معایب نرمال سازی

- نرمال سازی تکنیک مهمی برای طراحی پایگاه داده های کارآمد است اما در ضمنی که افزونگی داده را کاهش می دهد زیرا:
 - سبب **کاهش سرعت اجرای** سیستم می شود.
 - درجات بالای نرمال معمولا جدوال بیشتر را می طلبند.
 - برای پاسخ به پرس و جوها گاهی باید کلیه جداول تقسیم شده دوباره با هم الحاق شوند
- در کاربردهائی که زمان پاسخ مهم است (نظیر وب) مطلوب نیست.

Database

معایب نرمال سازی

- ا بالاترین سطح نرمال سازی باید با توجه به عملیات کاربردی درنظر گرفته شود:
- در پایگاه داده هایی که بیشتر خواندنی هستند و افزونگی داده در آنها مشکل حادی نیست، مانند داده های کاتالوگ یک سایت تجارت الکترونیکی، می توان سطح نرمالسازی را کاهش داد. به این عمل denormalizationمی گویند.
- در کاربردهائی که درگیر داده های مهم مانند داده های مالی هستند که دائما در حال تغییرند و باید سازگار باقی بمانند، احتمالا سعی می شود به سطوح بالاتر نرمال برسند حتی اگر سرعت پایگاه داده کم شود.

معایب نرمال سازی

- گاهی با توجه به وضعیت ممکن است داده ها از چند پایگاه داده نرمال شده استخراج شوند و در یک انبار داده غیر نرمال قرار گیرد.
 - استاندارد مخزن داده Data warehouse استاندارد خوبی است.

غيرنرمال سازي

- سناريو: برنامه تجارت الكترونيك
- فرض کنید یک پایگاه داده برای یک پلتفرم تجارت الکترونیک طراحی می کنید با ساختار عادی شده زیر:

ProductID	ProductName	CategoryID
101	Laptop	1
102	Smartphone	2

CategoryID	CategoryName	
1	Electronics	
2	Mobile Phones	

OrderDate	ProductID	Customer ID	OrderID
2024-12-	101	201	1
2	101	201	1

1. جدول محصولات:

2. جدول دستهبندیها:

- 3. جدول سفارشها:
- کوئری در ساختار عادیشده:
- برای تولید گزارشی از سفارشها به همراه نام محصولات و دستهبندی آنها، به چندین اتصال نیاز دارید:

SELECT o.OrderID, o.CustomerID, p.ProductName,

c.CategoryName, o.OrderDate

FROM Orders o

JOIN Products p ON o.ProductID = p.ProductID

JOIN Categories c ON p.CategoryID = c.CategoryID;

غيرنرمال سازى

برای بهینهسازی عملکرد، می توانید دادههای دستهبندی را مستقیماً در جدول محصولات ذخیره کنید و جزئیات محصول
 و دستهبندی را به جدول سفارشها اضافه کنید:

ProductID	ProductName	CategoryName
101	Laptop	Electronics
102	Smartphone	Mobile Phones

OrderID	CustomerID	ProductNa me	CategoryNa me	OrderDate
1	201	Laptop	Electronics	2024-12-01

1. جدول محصولات غيرنرمال شده:

2. جدول سفارشها غیرنرمالشده:

• مزایای غیرعادیسازی:

1. كوئرىهاى سادەتر:

- SELECT OrderID, CustomerID, ProductName, CategoryName, OrderDate FROM Orders;
 - این کوئری هیچ پیوندی ندارد.
 - 2. بهبود عملکرد کوئری :از آنجا که اتصالات حذف شدهاند، بازیابی دادهها سریعتر انجام می شود، به ویژه برای مجموعه دادههای بزرگ در محیطهای پرترافیک.
 - معایب:
- 1. افزونگی :اگر نام دستهبندی تغییر کند مثلاً "Electronics" به "Electronic Devices" ، باید در مکانهای مختلف بهروزرسانی شود.
 - 2. احتمال ناسازگاری دادهها :اگر بهدرستی مدیریت نشود، غیرعادیسازی ممکن است منجر به دادههای ناسازگار شود.

پایان فصل نرمال سازی

50

Dr. A. Taghinezhad 1.50 Database