Introduction (SNLP tutorial)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

April 27, 2021

Overview

- Hello
- Topics
- Requirements
- Materials
- Assignments
- Homework
- Zipf's Law
- QA

Hello

Who am I?

Who are you?

Topics

- Language properties, Zipf's Law, Basic statistical formalism
- Information theory (Shannon's game, Code Length, Compression), Entropy
- Language modelling, Backing-off models (interpolation, discounting, smoothing)
- Text classification, Algorithms (kNN, Decision Trees, SVM, ...)
- Word Sense Disambiguation, Algorithms (Dictionary based-, translation-, Collocation-based)
- Information retrieval, Latent Semantic Analysis, Singular Value Decomposition
- Machine Translation, Word alignment
- POS Tagging, Named Entity Recognition
- Sequence labeling (Hidden Markov models, Conditional Random Fields)

Requirements

Tutorial Requirements (exam admission)

- 70% of mandatory points (~10 assignments, 10 points each)
- Tutorial points only for exam admission (no final grade influence)

Tutorial Bonus Points

- ~2pts for extra exercises in the assignments
- 1pt for participating and talking in a tutorial
- Presenting a solution to the assignment (~5 points)
- Let individual tutors known if you wish to present (in the respective tutor's channel)
- Every group can present at most once

Final Project

- 25% of the final grade
- Details TBD

Transfer from last year

- Possible
- Do project and exam

What's available

- Lectures by Prof. Klakow (recorded)
- Tutorials (not recorded, but allowed for private sharing)
- Corrected homework
- Consultations
- Only in specific cases
- By default no email and no personal chat
- Ask questions during the lecture / tutorials
- Public forum (please use Piazza)
- Ask questions
- Other students will also benefit from the answers
- You can answer someone else's issue

Assignments

- Mandatory groups of 2
- Usually 3 exercises per assignment + a possible bonus question
- Jupyter notebook templates
- Assignment + solution in the same notebook
- Can use Google Colab or local runtime
- Write solutions in Python files and import them
- Submitted notebook must only contain your analysis and outputs
- Only one submission per group
- Submit through Teams

Dates / Times

- Lecture: Fridays 8:30-10:00
- Tutorials:
- Awantee: Tuesday 14:15-15:45
- Julius: Tuesday 12:15-13:45
- Vilém: Thursday 16:00-17:30
- Assignments
- Released (usually) Friday 23:59 (available in Teams)
- Deadline (next) Friday 23:59 (submit in Teams)
- Exam: 23rd. Jul. (8:00-10:00)
- Project Deadline: Sometime in August

Tutorial Content

- Review of the topics covered in class
- Presentation of the past assignment
- Discussing doubts in current assignment

Current Homework

- Exercise 1: Notebook instructions
- Exercise 2: Stick breaking
- Exercise 3: Zipf's law at word level
- Bonus: Zipf's law at character level

Languages

Language

 $L\subseteq \Sigma^*$ (all possible substrings by elements of alphabet $\Sigma)$

$$ullet$$
 $\Sigma_1 = \{a,b,\ldots,z,\ddot{u},\ddot{a},\ddot{o}\}$

•
$$\Sigma_2 = \{A,G,C,T\}$$

•
$$\Sigma_3 = \{ \text{def,True,:,print,...} \}$$

•
$$\Sigma_4 = \{ \text{SELECT}, \text{INSERT}, \text{DROP}, \dots \}$$

•
$$\Sigma_5 = \{\text{hallo,ja,nein,...}\}$$

•
$$\Sigma_6 = \{+,-,=,1,2,3...\}$$

•
$$\Sigma_7 = \{+,-,=,1,2,3...\}$$

$$ullet$$
 'Oberfläche' $\in L_1$ (German words)

• '..GATTCCAATCAG'
$$\in L_2$$
 (DNA)

• 'while True:
$$f()' \in L_3$$
 (Python)

• 'SELECT * FROM tbl;'
$$\in L_4$$
 (SQL)

$$ullet$$
 'Wie geht's dir?' $\in L_5$ (German)

• '4=5'
$$\in L_6$$
 (arithmetics)

• '1=2+=3333='
$$\in L_7$$
 (????)

Usually defined by the alphabet and production rules (Automata and Grammar).

Zipf's Law

- Sort words/entries by frequency f(x)
- Then $f(x) \propto \frac{1}{r(x)^{\gamma}}$ (γ parameter)
- Most common entry m.
- Then $f(x) = \frac{f(m)}{r(x)^{\gamma}}$

Rank	Frequency	Predicted ($\gamma=$ 0.7)
4	606	$ 1507/4^{0.7} = 571 1507/5^{0.7} = 488 $
5	490	$1507/5^{0.7} = 488$
11	261	$1507/11^{0.7} = 281$
12	252	$1507/12^{0.7} = 264$

Rank	Word [3]	Frequency
1	the	1507
2	and	714
3	to	703
4	а	606
5	of	490
6	she	484
7	said	416
8	it	346
9	in	345
10	was	328
11	1	261
12	you	252
13	as	237
14	Alice	221

Zipf's Law

Figure 1: log-log plot of Zipf's Law applied to natural languages [4]

We are plotting:
$$\log\left(\frac{C}{\exp(x)^{\gamma}}\right)$$

$$\log(C) - \gamma \log \exp(x)$$

$$\log(C) - \gamma x$$

Zipf's Law Notes

- Works beyond natural languages
- DNA subsequences of fixed lengths
- Code (programming languages)
- Population of cities (frequency is city population)

Rank	City	Population
1	New York, N.Y.	8,491,079
2	Los Angeles, Calif.	3,928,864
3	Chicago, III.	2,722,389
4	Houston, Tex.	2,239,558
5	Philadelphia, Pa.	1,560,297
6	Phoenix, Ariz.	1,537,058
7	San Antonio, Tex.	1,436,697
8	San Diego, Calif.	1,381,069
9	Dallas, Tex.	1,381,069

Mandelbrot Distribution

$$f(x) = \frac{m}{(c + r(x))^B}$$

Parameters to determine:

- m Normalising term
- c ≥ 0
- B > 1

Resources

- Ourse Website: https://www.lsv.uni-saarland.de/statistical-natural-language-processing-summer-2021/
- Piazza: https://piazza.com/uni-saarland.de/spring2021/snlp
- Teams channel: https://teams.microsoft.com/l/channel/19%3ac27c6662bea5450ebd05aad 405690742%40thread.tacv2/General?groupId=4aab09db-6c09-4284-bfb0-2a94317c1d57&tenantId=67610027-1ac3-49b6-8641-ccd83ce1b01f