CS/ECE 148 -

Data Science Fundamentals

NNs, Unsupervised & Semi-supervised Learning

UCLA Computer Science

Regularization of NN

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Dropout

Optimization

- Challenges in Optimization
- Momentum (next lectures)
- Adaptive Learning Rate (next lectures)
- Parameter Initialization (next lectures)
- Batch Normalization (next lectures)

Unsupervised Learning

- K-means
- Mean Shift
- Hierarchical Clustering
- DBSCAN

Semi-supervised Learning

Self Training

Regularization of NN

- Norm Penalties
- Early Stopping
- Data Augmentation
- Sparse Representation
- Dropout

Dropout

- Randomly set some neurons and their connections to zero (i.e. "dropped")
- Prevent overfitting by reducing co-adaptation of neurons
- Like training many random sub-networks

Dropout

- Widely used and highly effective
- Proposed as an alternative to ensembling, which is too expensive for neural nets

Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout: Stochastic GD

For each new example/mini-batch:

- Randomly sample a binary mask μ independently, where μ_i indicates if input/hidden node i is included
- Multiply output of node i with μ_i , and perform gradient update

Typically, an input node is **included** with **prob=0.8**, hidden node with **prob=0.5**.

Dropout: Weight Scaling

- We can think of dropout as training many of sub-networks
- At test time, we can "aggregate" over these sub-networks by reducing connection weights in proportion to dropout probability, p

Optimization

- Challenges in Optimization
- Momentum (next lectures)
- Adaptive Learning Rate (next lectures)
- Parameter Initialization (next lectures)
- Batch Normalization (next lectures)

Learning vs. Optimization

Goal of learning: minimize generalization error, or the loss function

$$\mathcal{L}(W) = \mathbb{E}_{(x,y) \sim p_{data}} \left[L(f(x, W), y) \right]$$

f is the neural network

In practice, empirical risk minimization:

$$\mathcal{L}(W) = \sum_{i} \left[L(f(x_i; W), y_i) \right]$$

Quantity optimized different from the quantity we care about

Local Minima

Critical Points

Points with zero gradient

2nd-derivate (Hessian) determines curvature

Local Minima

Old view: local minima is major problem in neural network training

Recent view:

- For sufficiently large neural networks, most local minima incur low cost
- Not important to find true global minimum

Saddle Points

Recent studies indicate that in high dim, saddle points are more likely than local min

Gradient can be very small near saddle points

Poor Conditioning

Poorly conditioned Hessian matrix

High curvature: small steps leads to huge increase
 Learning is slow despite strong gradients

Oscillations slow down progress

No Critical Points

Some cost functions do not have critical points. In particular classification.

WHY?

Optimization Challenges

We'll discuss some solutions in the next lectures

- Momentum (later)
- Adaptive Learning Rate (later)
- Parameter Initialization (later)
- Batch Normalization (later)

INCLUDING DROPOUT LAYERS

SCHEDULING THE LEARNING RATE

EXPERIMENTING
WITH
ACTIVATION FUNCTIONS

OPTIMIZING
THE RANDOM SEED

Unsupervised Learning

Unsupervised Learning

- K-means
- Mean-shift
- Hierarchical Clustering
- DBSCAN

Applications

Unsupervised Setting

K-means – Algorithm

Initialization:

- choose K random positions
- assign cluster centers μ^j to these positions

K-means

Until Convergence:

- Compute distances $\|x^{(i)} \mu^{(i)}\|$
- Assign points to nearest cluster center

– Update Cluster centers:

$$\mu^{(j)} = \frac{1}{N_j} \sum_{x_i \in C_j} x_i$$

K-means

K-means Summary

Guaranteed to converge

Result depends on initialization

Number of clusters is important

- Sensitive to outliers
 - Use median instead of mean for updates

Initialization Methods

- Random Positions
- Random data points as Centers
- Random Cluster assignment to data points
- Start several times

How to find K

- Extreme cases:
 - K=1
 - K=N

• Choose K such that increasing it does not model the data much better.

"Knee" or "Elbow" method

Cross Validation

 Use this if you want to apply your clustering solution to new unseen data

- Partition data into n folds
- Cluster on n-1 folds
- Compute sum of squared distances to centroids for validation set

Getting Rid of K

- Having to specify K is annoying
- Can we do without?

Mean Shift

- 1. Put a window around each point
- 2. Compute mean of points in the frame.
- 3. Shift the window to the mean
- 4. Repeat until convergence

Mean Shift

https://www.youtub e.com/watch?v=kma QAsotT9s

Mean Shift

Fischer et al., "Clustering with the Connectivity Kernel", NIPS (2003)

Mean Shift Summary

- Does not need to know number of clusters
- Can handle arbitrary shaped clusters
- Robust to initialization
- Needs bandwidth parameter (window size)
- Computationally expensive

Very good article:

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/