Overheads: - Outline

Recap Friday:

I) Radical Halogenation

Selectivity: Ratios result from:

- 1) # of each type of H
- 2) Halogen radical being used

Br• is more stable than Cl• : it is more selective

∴ get more 3° for Br than Cl

Relative stabilities of carbon radicals Resonance $> 3^{\circ} > 2^{\circ} > 1^{\circ}$

** for allylic halogenations of alkenes use NBS to avoid EA

NOTE: Only C+ can rearrange, so once formed radical does NOT rearrange

Stereochemistry of Radical Halogenation (and all radical reactions)

- radical is flat (sp^2) like C^+
- Br_2 can add to either top or bottom (like C^+)

: reaction is not stereoselective!

- ⇒ if a chiral center is formed, usually get racemic product (50:50 R:S)
- II) Radical Addition of H-Br to Alkenes: second radical reaction

"Normal" Addition of H-Br:

Markovnikov: H^+ (= E^+) adds to end with most H's

 \Rightarrow What if we want the <u>Br</u> to go to the end with the most H's?

 \Rightarrow we need the Br to be the E⁺!

How? Radicals! $Br = E^+ \text{ (only has 7 e}^-\text{)}$

H C
$$=$$
 C $=$ C $=$ C $=$ HOOH (peroxide) $=$ H $=$ C $=$ C $=$ CH₃ "Anti-Markovnikov" $=$ Br $=$ H

⇒ Need to add <u>radical initiator</u> (such as HOOH or ROOR) to make Br• from H-Br

: breaks more easily

Mechanism:

Initiation

O-O bond weak, like Br-Br : breaks easily ***only add small amount to initiate reaction

(1b)
$$R - O + H - Br$$
 \longrightarrow $R - OH + Br - can add to C=C$

Propagation

2° radical > 1° - Markov: the E⁺ (Br•) adds to the end with most H's

- called "Anti-Markovnikov" because "backwards", but really still follows Markov since $Br^{\bullet} = E^{\dagger}$

(3) <u>Termination:</u> any 2 radicals combine

⇒ Works for H-Br only

H-Cl H-I one step of propagation is endothermic : doesn't go
H-F - too exothermic

Now know 3 ways to make R-Br (or R-Cl etc.)

- 1) $R-H + Br_2/h\nu$ or $Cl_2/h\nu$
- 2) R₂C=CR₂ + H-Br (or HCl, HI, HF) Markov
- 3) $R_2C=CR_2 + H-Br/H_2O_2/h\nu$ Anti-Markov
- ⇒ Can use these alkyl halides to make all kinds of other groups ⇒ next 2 chapters

Two Main Reactions:

Nucleophilic Substitution Reactions

$$\underline{\qquad} \begin{array}{c} \delta^{+} \delta^{-} & X = F, Cl, Br, I \\ C \text{ is } \delta^{+} \therefore E^{+} \therefore Nu^{-} \text{ can add} \end{array}$$

Two Possible Mechanisms: replace X- with Nu-

S_N2 Reaction

S: substitution N: nucleophilic

2: bimolecular \Rightarrow 2 molecules in RDStep (S_N1 = unimolecular)