ANT 6973: DATA VISUALIZATION AND EXPLORATION

VISUALIZING DISTRIBUTIONS AND UNCERTAINTY

Visualizing amounts with bar charts (and variants)

 Visualizing proportions with pies, stacked bars, and stacked areas

Import from a .csv file using read_csv()
the readr package.

```
ny_data <- read_csv("path/to/data.csv")

New R object where
data will be stored</pre>
Path of data file relative
to project home
```

Create small multiples (plots of slices of data)
using facet_wrap and facet_grid().

Obtain subsets of data with the filter() function

 Alternate coordinate systems coord_polar() and coord_flip().

TODAY'S TOPICS

- Visualizing single distributions
- Visualizing multiple distributions
- Visualizing uncertainty
- Activities:
 - Body mass distributions of late Quaternary mammals (interactive)
 - Continue on baboon activities and any others not completed

OUR TEMPLATE

mappings

data

geom

1. Pick a data set

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

 $ggplot(data = \langle DATA \rangle) +$

```
2. Choose a geom to display cases
```

3. **Map** aesthetic properties to variables

CC by RStudio

VISUALIZING DISTRIBUTIONS

VISUALIZING DISTRIBUTIONS

Single distributions

Multiple distributions

- Shows the distribution of a single variable
- Breaks the data apart into specific bins and shows count of cases in each bin

Major difference with bar charts

- Geometric object is geom_histogram()
- One numeric variable to mapped to x in aes()
- y-aesthetic computed automatically (don't map anything to y)

- Create a new folder for the week and a new R markdown file.
- Create a new R chunk and load the tidyverse package.
- Download the late Quaternary mammals data set from the course website ("late-quaternary-mammals.RDS"). This is a file format for single R objects.
- Read the file into R using:

lqm <- readRDS("your-path/late-quaternary-mammals.RDS")</pre>

Average of M/F body masses (g)

log₁₀(combined_mass)

continent	status	order	family	genus	species	log_mass	combined_mass reference
Africa	extant	Artiodactyla	Bovidae	Addax	nasomaculatus	4.85	70000.3 60
Africa	extant	Artiodactyla	Bovidae	Aepyceros	melampus	4.72	52500.1 63, 70
Africa	extant	Artiodactyla	Bovidae	Alcelaphus	buselaphus	5.23	171001.5 63, 70
Africa	extant	Artiodactyla	Bovidae	Ammodorcas	clarkei	4.45	28049.8 60
Africa	extant	Artiodactyla	Bovidae	Ammotragus	lervia	4.68	48000.0 75
Africa	extant	Artiodactyla	Bovidae	Antidorcas	marsupialis	4.59	39049.9 60
Africa	extinct	Artiodactyla	Bovidae	Antidorcas	bondi	4.53	34000.0 1
Africa	extinct	Artiodactyla	Bovidae	Antidorcas	australis	4.60	40000.0 2
Africa	extant	Artiodactyla	Bovidae	Bos	taurus	5.95	900000.0 -999
Africa	extant	Artiodactyla	Bovidae	Capra	walie	5.00	100000.0 -999


```
ggplot(lqm, aes(x = combined_mass)) +
  geom_histogram()
```



```
ggplot(lqm, aes(x = log_mass)) +
  geom_histogram(fill = "thistle", color = "white")
```


- When making a histogram, always explore multiple bin widths.
- Binning behavior can be modified using: # of bins
 - bins: geom_histogram(bins = 30)
 - binwidth: geom_histogram(binwidth = 1)
 - breaks: geom_histogram(breaks = 0:10)

width of one

bin in units of x

- When making a histogram, always explore multiple bin widths.
- Binning behavior can be modified using:
 - bins: geom_histogram(bins = 30)
 - binwidth: geom_histogram(binwidth = 1)
 - breaks: geom_histogram(breaks = 0:10)

 Histograms are generally bad at showing multiple distributions together

For example...

"Age pyramid" style plot is ideal for comparing two (and only two) distributions

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

A STARTER...

Use the stat() trick to get counts with flipped sign

- Like histograms, density plots show the distribution of a single variable
- Uses smoothing to estimate the density of points over a continuous range of data values.

- Geometric object is geom_density()
- Aesthetic mappings are same as for histogram


```
ggplot(lqm, aes(x = log_mass)) +
  geom_density(fill = "thistle", color = "white")
```


- Like histograms, the visual appearance of density plots depends on the amount of smoothing.
- Smoothing behavior can be adjusted in various complex ways, but the only one you're likely to use is:
 - adjust: geom_density(adjust = 1)

Multiplier for the amount of smoothing (1 = default)

DENSITY PLOTS

Rug plot shows data points as small marks along axis

```
density 0.2
                                                                      log_mass
```

```
ggplot(lqm, aes(x = log_mass)) +
   geom_density(fill = "thistle", color = "white") +
   geom_rug(alpha = 0.1)
```

YOUR TURN

Try to reverse-engineer this plot.

YOUR TURN


```
ggplot(lqm, aes(x = log_mass, fill = continent)) +
  geom_density(color = "white", alpha = 0.5) +
  geom_rug(alpha = 0.1) +
  facet_wrap(~continent)
```

HISTOGRAMS VS. DENSITY PLOTS

- Histograms are much more common, and are therefore more familiar to a wide audience
- Histograms use a more intuitive stat (count vs. density)
- Whereas the appearance of a histograms depends on sample size, densities are scaled

WHAT IF YOU NEED TO SHOW MULTIPLE DISTRIBUTIONS TOGETHER?

WHAT IF YOU NEED TO SHOW MULTIPLE DISTRIBUTIONS TOGETHER?

WHAT IF YOU NEED TO SHOW MULTIPLE DISTRIBUTIONS TOGETHER?

category

statistical values

You want a more nuanced

comparison of the shapes of

the distributions rather than

categories that you

want to compare

- Each box plot shows a standardized set of 5 statistical summaries of the distribution, as well as individual outliers
- Very common in scientific lit
- But beware of using with lay audience (e.g., "what does the line sticking out of the top show exactly?")

- Geometric object is geom_boxplot()
- Categorical variable to mapped to x, and numeric variable mapped to y

Suppress outliers with outlier.shape = NA

ggplot2

VIOLIN PLOTS

VIOLIN PLOTS

- Each violin is essentially a density plot rotated vertically and mirrored across the vertical
- Less standardized and precise, but also easier to intuit
- Better at showing multimodal distributions

VIOLIN PLOTS

- Geometric object is geom_violin()
- Mappings same as boxplot

STRIP PLOTS

geom_jitter()
makes randomly
displaced points

height and width parameters control amount of jitter

```
ggplot(lqm aes(x = continent, y = log_mass)) +
geom_jitter(width = 0.15, height = 0, alpha = 0.35)
```

SINA PLOTS

Not a default geom!

Provided by the "ggforce" package.

library("ggforce")

```
ggplot(lqm, aes(x = continent, y = log_mass)) +
  geom_sina(alpha = 0.15)
```

YOUR TURN

Try to reverse-engineer this (rather busy) plot.

YOUR TURN

RIDGELINE PLOTS

RIDGELINE PLOTS

- Each ridge is a vertically offset density plot
- Rarely used, but easy to compare shapes and relative heights
- Not good if specific statistical values are of interest.

RIDGELINE PLOT

 Only method we have discussed that remains readable with large number of distributions

RIDGELINE PLOTS

- Not a default geom provided by "ggridges" package
- Basic geometric object is geom_density_ridges()
- Like density plot, numeric variable mapped to x but categorical variable to mapped to y


```
library("ggridges")

ggplot(lqm, aes(x = log_mass, y = continent)) +
   geom_density_ridges()
```

WHAT ABOUT A "DYNAMITE PLOT"?

DON'T USE THEM FOR DISTRIBUTIONS

PROBLEMS WITH DYNAMITE PLOTS

- Hides the data for no particular reason
- Does not show possible skew or multi-modality
- Anchors data at zero, which might not make sense for the distribution
 - Data in small range: : part of the range covered by the bar might have never been observed in the sample
 - Log scale (log(0) is undefined)
- Bar plots are good for showing counts and single amounts of categories, but not for summarizing continuous data