Deductive Databases (MIF14 - UCBL)

Datalog Programs and their Evaluation

Outline

- Datalog: Facts and Rules
 - Evaluating Datalog programs (with no recursion)
- Recursive rules
 - Linear datalog vs Non-linear Datalog
 - Dependency Graph
 - Evaluating recursive rules (least fixed point)
 - The Naïve Evaluation Algorithm
- Safe/Unsafe rules

Datalog

- Logical query language for the relational model
- Consists of "if-then" rules made up of atoms:
 - relational: predicates corresponding to relations
 - arithmetic
- Basic concepts
 - predicate (relation)
 - term, constant, variable
 - goal, subgoal, head
 - rule, fact

Datalog Facts and Rules

```
Actor (pid, fname, lname)
Casts (pid, mid)
Movie (mid, name, year)
```

Find Movies made in 1940

Facts = tuples in the database

```
Rules = queries
```

```
Actor(344759, Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).
```

Q1(y):- Movie(x,y,1940)

Datalog Facts and Rules

```
Actor (pid, fname, lname)
Casts (pid, mid)
Movie (mid, name, year)
```

Find Actors who acted in Movies made in 1940

Facts = tuples in the database

```
Actor(344759, Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).
```

Rules = queries

```
Q2(y):- Actor(z,f,i), Casts(z,x),
Movie(x,y,1940)
```

Q1(y):- Movie(x,y,1940)

Datalog Facts and Rules

```
Actor (pid, fname, lname)
Casts (pid, mid)
Movie (mid, name, year)
```

Find Actors who acted in a Movie in 1940 and in one in 1910

Facts = tuples in the database

```
Actor(344759, Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).
```

Rules = queries

```
Q2(f,i):- Actor(z,f,i), Casts(z,x),
Movie(x,y,1940)
```

Q1(y):- Movie(x,y,1940)

Datalog Programs

- A datalog program is a collection of one or more rules
 - Each rule expresses the idea that, from certain combinations of tuples in certain relations, we may **infer** that some other tuple must be in some other relation or in the query answer
- In a program, predicates can be either
 - ▶ EDB = Extensional Database = stored table
 - ▶ IDB = Intensional Database = relation defined by rules
- Never both!
- EDB cannot appear in the heads

EDBs and IDBs

```
Actor (pid, fname, lname)
Casts (pid, mid)
Movie (mid, name, year)
```

Find Actors who acted in a Movie in 1940 and in one in 1910

Facts = tuples in the database

```
Actor(344759, Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).
```

```
EDBs = Actor, Casts, Movie
IDBs = Q1, Q2, Q3
```

Rules = queries

```
Q3(f,i):- Actor(z,f,i),

Casts(z,x1),

Movie(x1,y,1940),

Casts(z,x2),

Movie(x2,y,1910)
```

Evaluating Datalog Programs

- As long as there is no recursion
 - we can pick an order to evaluate the IDB predicates,
 - so that all the predicates in the body of its rules have already been evaluated
- If an IDB predicate has more than one rule
 - each rule contributes tuples to its relation

Datalog Program: An example

```
Sells(bar, beer, price)
Beers(name, manf)
```

Find the manufacturers of beers Joe doesn't sell

Facts

```
Sells('Adam's bar', 'firstBeer', 1.2).
Sells('Adam's bar', 'bestBeer', 3.0).
Sells('Joe's bar', 'bestBeer', 2.5).
Beers('firstBeer', 'AAA').
Beers('bestBeer', 'CCC').
```

Rules

```
JoeSells(b) :- Sells('Joe''s Bar', b, p)

Answer(m) :- Beers(b,m),

¬ JoeSells(b)
```

Datalog Program: An example

- Step 1: Examine all Sells tuples with first component
 'Joe''s Bar'
 - Add the second component to JoeSells

```
Sells(bar, beer, price)
Beers(name, manf)
```

Find the manufacturers of beers

Joe doesn't sell

Facts

```
Sells('Adam's bar', 'firstBeer', 1.2).
Sells('Adam's bar', 'bestBeer', 3.0).
Sells('Joe's bar', 'bestBeer', 2.5).
Beers('firstBeer', 'AAA').
Beers('bestBeer', 'CCC').
```

```
Rules
```

```
JoeSells(b) :- Sells('Joe''s Bar', b, p)

Answer(m) :- Beers(b,m),

¬ JoeSells(b)
```

```
JoeSells('bestBeer').
```

Datalog Program: An example

- Step 2: Examine all Beers tuples (b, m)
 - ▶ If b is not in JoeSells, add m to Answer

```
Sells(bar, beer, price)
Beers(name, manf)
```

Find the manufacturers of beers

Joe doesn't sell

Facts

Sells('Adam's bar', 'firstBeer', 1.2). Sells('Adam's bar', 'bestBeer', 3.0). Sells('Joe's bar', 'bestBeer', 2.5). Beers('firstBeer', 'AAA'). Beers('bestBeer', 'CCC').

```
JoeSells('bestBeer').
```

```
Answer('AAA').
```

Rules

```
JoeSells(b) :- Sells('Joe''s Bar', b, p)
```

```
Answer(m):-Beers(b,m),
¬ JoeSells(b)
```

Graph Example

Write a Datalog program to find paths of length two

▶ P(v1, v2): the start and the end vertices

Graph Example

- Write a Datalog program to find paths of length two
 - \triangleright P(v1, v2): the start and the end vertices

` •	
v1	v2
а	С
b	а
b	d
С	d
d	а
d	е

v1	v2
а	d
b	С
b	а
b	е
С	а
С	е
d	С

P(x, y) := E(x, z), E(z, y)

Graph Example

Write a Datalog program to find all pairs of vertices (u, v) such that v is reachable from u

Recursive Rules

Write a Datalog program to find all pairs of vertices (u, v) such that v is reachable from u

E (edge relation)

v1	v2
а	С
b	а
b	d
С	d
d	а
d	е

- Options 1 and 2 are linear
- Option 3 is non-linear

Option 1

$$R(x, y) := E(x, y)$$

 $R(x, y) := E(x, z), R(z, y)$

Option 2

$$R(x, y) := E(x, y)$$

 $R(x, y) := R(x, z), E(z, y)$

Option 3

$$R(x, y) := E(x, y)$$

 $R(x, y) := R(x, z), R(z, y)$

Linear Datalog

- Linear rule
 - at most one atom in the body that is recursive with the head of the rule
 - e.g. R(x, y) := E(x, z), R(z, y)
- Linear datalog program
 - ▶ If all rules are linear
 - Like linear recursion

Dependency Graph

- Form a dependency graph whose nodes are IDB predicates
- lacksquare An Arc X o Y if and only if there is a rule with X in the head and Y in the body
 - Cycle = recursion;
 - ▶ No cycle = no recursion

Answer

JoeSells

Bars and Beers
Example

Evaluation of Recursive Rules

- The following works when there is no negation
 - 1. Start by assuming all IDB relations are empty
 - 2. Repeatedly evaluate the rules using the EDB and the previous IDB, to get a new IDB
 - 3. End when no change to IDB
- This set of IDB tuples is called the least fixed point of the rules

The "Naïve" Evaluation Algorithm

- In all subsequent iteration
 - check if any of the rules can be applied
 - do union of all the rules with the same head IDB

R(u,v) vertices such that v is reachable from u

Iteration 1

$$R = E = R1$$

v1	v2
а	С
b	а
b	d
С	d
d	а
d	е

R(x, y) := E(x, y)

R(x, y) := E(x, z), R(z, y)

▶ R(u, v) vertices such that v is reachable from u lteration 2

$$R = E = R1$$

v1	v2
а	С
b	а
b	d
С	d
d	а
d	е

$$R(x, y) := E(x, y)$$

$$R(x, y) := E(x, z), R(z, y)$$

- 1 (1
v2
С
а
d
d
а
е
d
С
е
а
е
С

Deductive Databases

R = E = R1

b

d

d

v2

С

d

d

а

е

▶ R(u, v) vertices such that v is reachable from u

R(x, y) := E(x, y)R(x, y) := E(x, z), R(z, y) R2 ≠ R1

7	- 111	
v1	v2	
а	С	
b	а	
b	d	
С	d	
d	а	
d	е	
а	d	
b	С	
b	е	
С	а	
С	е	
d	С	

Iteration 3

R3 =	≠ R2
v1	≠ R2 v2
а	С
b	а
b	d
С	d
d	а
d	е
а	d
b	С
b	е
С	а
С	е
d	С
а	е
а	а
d	d
С	С

▶ R(u, v) vertices such that v is reachable from u

$$R(x, y) := E(x, y)$$

 $R(x, y) := E(x, z), R(z, y)$

 $R2 \neq R1$

R = E = R1

а

b

d

d

v2

С

d

d

а

е

v1	v2
а	С
b	а
b	d
С	d
d	а
d	е
а	d
b	С
b	е
С	а
С	е
Ь	C

Iteration 4

R3 =	⊭ R2	R4 =	= R3
v1	v2	v1	v2
а	С	а	С
b	а	b	а
b	d	b	d
С	d	С	d
d	а	d	а
d	е	d	е
а	d	а	d
b	С	b	С
b	е	b	е
С	а	С	а
С	е	С	е
d	С	d	С
а	е	а	е
а	а	а	а
d	d	d	d
С	С	С	С

STOP

Linear vs. Non-Linear Recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated relation with the "base" relation
 - For non-linear recursion, need to join newly generated relation with all existing relation rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - ▶ Non-linear recursion takes 3 steps
 - \square More work: e.g., $a \rightarrow d$ has two different derivations

Termination of a Datalog Program

- A Datalog program always terminates why?
 - Because the values of the variables are coming from the "active domain" in the input relations (EDBs)
- Active domain = (finite) values from the (possibly infinite) domain appearing in the instance of a database
 - e.g. age can be any integer (infinite), but active domain is only finitely many in R(id, name, age)
- Therefore the number of possible values in each of the IDBs is finite

Termination of a Datalog Program

- In the graph example R(x,y), the values of x and y come from {a,b,c,d,e}
 - ▶ at most 5x5=25 tuples possible in the IDB R(x, y)
 - in any iteration, at least one new tuple is added in at least one IDB
 - Must stop after finite steps!

R(x, y) := E(x, y)R(x, y) := E(x, z), R(z, y)

Problems with IDB Negation

- Model = set of IDB facts, plus the given EDB facts, that make the rules true for every assignment of values to variables
- When rules have negated IDB subgoals, there can be several minimal models

Minimal Models

- A minimal model should not properly contain any other model
 - Intuitively, we don't want to assert facts that do not have to be asserted
- When there is no negation, a Datalog program has a unique minimal model
 - One given by naïve evaluation

Multiple Models: An example

Facts (tuples in the EDB)

Rules

```
Arc(1,2).
Arc(3,4).
Arc(4,3).
Source(1).
Target(2).
Target(3).

Reach(x):- Source(x)

Reach(x):- Reach(y), Arc(y,x)

NoReach(x):- Target(x), \negReach(x)
```


- Setting is graph: Nodes designated as source and target
- Our problem is to find target nodes that are not reached from any source

Multiple Models: An example

Facts (tuples in the EDB)

Rules

```
Arc(1,2).
Arc(3,4).
Arc(4,3).
Source(1).
Target(2).
Target(3).
```

Reach(x):- Source(x)

Reach(x):- Reach(y), Arc(y,x)

NoReach(x):- Target(x), \neg Reach(x)

- A possible model
 - \blacktriangleright Reach(1), Reach(2), NoReach(3)

Multiple Models: An example

Facts (tuples in the EDB)

Rules

```
Arc(1,2).
Arc(3,4).
Arc(4,3).
Source(1).
Target(2).
Target(3).

Reach(x):- Source(x)

Reach(x):- Reach(y), Arc(y,x)

NoReach(x):- Target(x), \negReach(x)
```


- Another possible model
 - Reach (1), Reach (2), Reach (3), Reach (4)
 - NoReach is empty
 - Remember: a rule is true whenever its body is false

Stratified Negation

- Stratification is a constraint usually placed on Datalog with recursion and negation
 - It rules out negation wrapped inside recursion
 - Gives the sensible IDB relations when negation and recursion are separate
- Usually requires Negation to be stratified
- Stratification does two things:
 - Lets evaluate the IDB predicates in a way that it converges
 - Lets discover a "correct" solution in face of "many solutions"

Stratified Models

- Dependency graph describes how IDB predicates depend negatively on each other
- Stratified Datalog = no recursion involving negation
- Stratified model is a particular model that "makes sense" for stratified Datalog programs
 - Let us discover a "correct" solution in face of "many solutions"

Dependency Graph

- Form a dependency graph whose nodes are IDB predicates
- $lack An \ {
 m Arc} \ X o Y$ if and only if there is a rule with X in the head and Y in the body
- An Arc $X \to Y$ is labeled with iff there is a subgoal with predicate Y that is a negated body

Deductive Databases 2019/2020

Reach

Datalog with Negation: Another example

Rule

 $Win(x) := Move(x, y), \neg Win(y)$

Represents games where you win by forcing your opponent to a position where they have no move

Strata

The stratum of an IDB predicate is the largest number of -'s on a path from that predicate, in the dependency graph

Infinite Stratum.
Not finitely
stratifiable!

Stratified Programs

- If all IDB predicates have finite strata
 - then the Datalog program is stratified
- If any IDB predicate has an infinite stratum,
 - then the program is unstratified, and
 - no stratified model exists

Let us consider the following rules

Rules

$$R(x) :- P(x), \neg Q(x)$$

$$Q(x) :\neg V(x), E(x)$$

$$P(x) :\neg S(x), E(x)$$

$$V(x) := T(x)$$

$$T(x) :- Q(x)$$

$$S(x) :- F(x)$$

Let us consider the following rules

Rules

$$R(x) :- P(x), \neg Q(x)$$

$$Q(x) :\neg V(x), E(x)$$

$$P(x) :\neg S(x), E(x)$$

$$V(x) := T(x)$$

$$T(x) :- Q(x)$$

$$S(x) :- F(x)$$

Let us consider the following rules

Rules

$$R(x) :- P(x), \neg Q(x)$$

$$Q(x) :\neg V(x), E(x)$$

$$P(x) :\neg S(x), E(x)$$

$$V(x) := T(x)$$

$$S(x) :-F(x)$$

- ▶ The program below is stratified.
 - Stratum 0 = {S, V}
 - ▶ Stratum 1 = {P, Q}
 - ▶ Stratum 2 = {R}

Rules

$$R(x) := P(x), \neg Q(x)$$

$$Q(x) :\neg V(x), E(x)$$

$$P(x) : \neg S(x), E(x)$$

$$V(x) :- T(x)$$

$$S(x) :-F(x)$$

Stratified Programs

- stratum 0:
 - do not depend on any negated IDB predicates
- stratum 1:
 - depend on negated IDB predicates from stratum 0;
- stratum 2:
 - depend on negated IDB predicates from stratum1,
- •••
- stratum n:
 - depend on IDB predicates from stratum n-1.

Stratification

A stratification of a datalog program P is a partitioning:

 $\Sigma = \{P_1, ..., P_m\}$

of rule of P, into nonempty sets P_i such that

- If $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in the dependency graph, then $i \geq j$
- If $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in the dependency graph and is marked with "-", then i > j
- lacktriangle The sets $P_1,\ \ldots,\ P_m$ are called strata of P w.r.t. Σ

Evaluation of Stratified Programs

- Evaluate strata 0, 1,...in order.
- If the program is stratified, then any negated IDB subgoal has already had its relation evaluated
 - Safety assures that we can "subtract it from something"
 - Treat it as EDB
- Result is the stratified model

Evaluation of Stratified Programs

- Stratified Datalog programs have the following operational semantics:
 - First compute all IDB predicates in stratum 0 (using the usual fixpoint strategy)
 - ...
 - Using IDB predicates from stratum n, compute IDB predicates from stratum n+1
- This produces unique minimal solutions for all IDB predicates

An example scenario

Person (pid, name, sex, married)

Find all single men

Facts = tuples in the database

Person(1, 'Tom', 'M', 0). Person(2, 'Alex', 'M', 1). Person(3, 'Joe', 'F', 1). Person(4, 'Mary', 'F', 0). Person(5, 'John', 'M', 0).

Rules

```
Man(x):- Person(id, x, 'M', m)
```

```
Married(x):- Person(id, x, s, 1)
```

Husband(x):-Man(x), Married(x)

Singleman(x):- Man(x), $\neg Husband(x)$

An example scenario: Dependency Graph

Person (pid, name, sex, married)

Find all single men Rules

Man(x):- Person(id, x, 'M', m)

Married(x):- Person(id, x, s, 0)

Husband(x):-Man(x), Married(x)

Singleman(x):- Man(x), $\neg Husband(x)$

An example scenario: Stratification

Person (pid, name, sex, married)

Find all single men Rules

Man(x):- Person(id, x, 'M', m)

Married(x):- Person(id, x, s, 0)

Husband(x):-Man(x), Married(x)

Singleman(x):- Man(x), $\neg Husband(x)$

An example scenario: Partitioning

Person (pid, name, sex, married)

Find all single men Rules

```
P1 = {Man(x):- Person(id, x, 'M', m)

Married(x):- Person(id, x, s, 0)
```

Husband(x):- Man(x), Married(x) }

 $P2 = \{Singleman(x):-Man(x), \neg Husband(x)\}$

An example scenario: Evaluation

Person (pid, name, sex, married)

Find all single men

Facts = tuples in the database

Person(1, 'Tom', 'M', 0). Person(2, 'Alex', 'M', 1). Person(3, 'Joe', 'F', 1). Person(4, 'Mary', 'F', 0). Person(5, 'John', 'M', 0).

Rules

```
P1 = {Man(x):- Person(id, x, 'M', m)

Married(x):- Person(id, x, s, 1)

Husband(x):- Man(x), Married(x) }
```

 $P2 = \{Singleman(x):-Man(x), \neg Husband(x) \}$

An example scenario: A model

Person (pid, name, sex, married)

Find all single men

Facts = tuples in the database

Person(1, 'Tom', 'M', 0). Person(2, 'Alex', 'M', 1). Person(3, 'Joe', 'F', 1). Person(4, 'Mary', 'F', 0). Person(5, 'John', 'M', 0).

Rules

```
P1 = {Man(x):- Person(id, x, 'M', m)

Married(x):- Person(id, x, s, 1)

Husband(x):- Man(x), Married(x) }

P2 = {Singleman(x):- Man(x), \negHusband(x) }
```

```
Man('Tom'), Man('Alex'), Man('John'), Married('Alex'),
Married('Joe'), Husband('Alex'), Singleman('Tom'),
Singleman('John')
```