Email Spam Classification

Group 7: David Genfan, Brian Louie, Davin Yu

Overview

- Data contains 5172 emails with the 3000 most commonly used words from all emails and a label if the email is spam (1) or not spam (0)
 - Removed stop words from the features ("and", "most", "very", etc.)
- Emails (n) = 5172, Words (P) = 2619
- Imbalance ratio: n+/n- = 1500 / 3672
- With this data set, we sought to determine if we could classify spam based on the composition of the email

AUC's for D_{train} and $D_{\text{validation}}$

type

Method	Median test AUC	Time of single cross-validation	Time of full model fitting including cross-validating parameter tuning
Logistic Lasso	0.99	2 min 4 sec	4 min 45 sec
Logistic Ridge	0.99	6 min 9 sec	7 min 56 sec
Elastic Net	0.99	2 min 46 sec	3 min 4 sec
Random Forest	0.99	N/A	16 min 28 sec

Top 15 Spam Features

Across all models, the most common features for spam emails were words such as "huge", "adult", "meds", typically associated with pornography

Top 15 Non-Spam Features

The top 15 non-spam features have more professional words such as "resume", "attached", "actuals".

Conclusion

- Performance is similar across all methods, with train AUCs being clustered closer to 1 and test AUCs hovering around 0.99
- Longer training time does not always mean more accuracy in results. Sometimes, overfitting may be occurring which would require more analysis.
- The top 15 Spam features were consistent across models, with words such as "adult", "mortgage", and "woman" included as spam triggers.