

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR A100 FORMALE GRUNDLAGEN

QUARTAL: Q4/2015

Name des Prüflings:			Matrike	lnummer:	Zenturie:	
Dauer: 120 Min.		Seiten ohne	e Deckbla	tt und Infoblatt: 18	Datum: 06.10.2015	
Hilfsmittel: Bemerkungen:		Bitte kontrollieren Sie Ihr Klausurheft zu Beginn der Prüfung auf Vollständigkeit. ind 120 Punkte erreichbar.				
	∠um E	sestenen der Klaust	ır sına 60	Punkte ausreichend.		
		Punkte für Aufgab	en			
		Aufgabe 1		V	on 12	
		Aufgabe 2			on 31	
		Aufgabe 3			on 28	
		Aufgabe 4			on 29	
		Aufgabe 5			on 20	
		Insgesamt		V	on 120	
Datum:		Note:	_	Ergänzungsprüf	ung:	
Unterschrift:						
Termin für Klausureinsicht:				Ort:		

Aufgabe 1: Wortmengen und Wortfunktionen

a)	Was versteht man unter einer formalen Sprache? Erläutern Sie die Eigenschaften und Abgrenzungskriterien zu natürlichen Sprachen. (2 Punkte)
b)	Gegeben sei ein Alphabet Σ . Erläutern Sie den Begriff <u>Kleene-Stern-Produkt</u> in Bezug auf das Alphabet Σ . Worin besteht der <u>Unterschied</u> zur <u>Plushülle</u> über Σ ? (1 Punkt)
c)	In welche drei Bestandteile lassen sich Wörter einer Sprache im Allgemeinen zerlegen? Zeigen Sie eine <u>echte Zerlegung</u> beispielhaft. Geben Sie ein Beispiel für eine <u>nicht echte Zerlegung</u> an. (1 Punkt)

d)	Geben Sie zwei Wortfunktionen inklusive des Definitions- und Wertebereichs
	gemäß üblicher (mengentheoretischer) Funktionsvorschrift und beispielhaftem
	Funktionsaufruf an. Erläutern Sie die jeweiligen Zuordnungen von Definitions-
	und Wertebereich. (2 Punkte)

e) Stellen Sie zwei Wortfunktionen <u>Ihrer Wahl</u> als <u>Turingautomaten</u> dar. Geben Sie entsprechenden Zustandsüberführungsfunktionen exemplarisch für das Eingabealphabet

$$\Sigma = \{a,b,c\}$$

an. (4 Punkte)

Aufgabe 2: Endliche Automaten

a) Erläutern Sie den Begriff <u>endlicher Automat</u>. Geben Sie die <u>drei</u> grundsätzlichen Konzepte für endliche Automaten an und erläutern Sie die jeweiligen Eigenschaften und ihre Funktionsweise bei der Wortverarbeitung anhand von Skizzen und der zugehörigen Zustandsüberführungsfunktionen. (4 Punkte)

b)	Was versteht man unter der <u>Konfiguration</u> eines Automaten? Erläutern Sie den Ausdruck <u>Konfigurationsübergang</u> . (2 Punkte)
c)	Erläutern Sie den Begriff Epsilon-Zykel anhand einer Skizze. Wie lässt sich
	ein Epsilon-Zykel in einen DEA/NEA transformieren. (2 Punkte)
d)	Erläutern Sie die beiden Begriffe <u>verallgemeinerter Automat</u> und <u>vollständiger/totaler</u> Automat mithilfe von Skizzen (2 Punkte)
	· · · · · · · · · · · · · · · · · · ·

e) Gegeben sind die Sprachen

$$\begin{split} L_2 &= \{ w \in \Sigma^* | w = \{ aa, ee, f \} \{ c, d \}^* bb^+ \{ aa, ee \}^* \} \\ L_3 &= \{ w \in \Sigma^* | w = c^i b^j c^k, i > 1, j > 1, k > 1, k \ modulo \ 3 = 0 \}. \end{split}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_4 , der <u>ausschließlich</u> die Sprache

$$L_4 = L_2^{\circ} L_3$$

akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen an. Auf eine mengenwertige Darstellung von δ_4 kann verzichtet werden. (8 Punkte)

f) Was versteht man unter dem Begriff <u>Transduktor</u> und erläutern Sie die <u>beiden Grundtypen</u> und ihre jeweilige Funktionsweise anhand skizzierter Automaten (mindestens vier Zustände) mit Angabe korrespondierender Übergangs- und Ausgabefunktionen (allgemeine Funktionsdarstellung mit Definitions- und Wertebereich). (5 Punkte)

g) Gegeben sei die Sprache

$$L_6 = \{w \in \Sigma^* | w = \{1, 2, 3\}^* \{22\} \{3\}^* \}$$

Konstruieren Sie den korrespondierenden, <u>nicht verallgemeinerten</u> NEA A_6 (Automatengraph genügt) und demonstrieren Sie die Äquivalenz zwischen NEA und DEA, indem Sie A_6 in einen äquivalenten DEA ${A_6}^*$ <u>transformieren</u>. Nutzen Sie dafür den <u>tabellarischen Ansatz</u> und <u>zeichnen</u> Sie den Graphen von ${A_6}^*$. (8 Punkte)

Aufgabe 3: Grammatiken

a)	Welche <u>drei grundsätzlichen Konzepte</u> werden zur Definition von regulären Sprachen verwendet. (1 Punkte)
b)	Erläutern Sie den Begriff <u>Semi-Thue-System</u> . Worin bestehen die <u>Unterschiede</u> zu einem <u>Thue-System</u> ? (2 Punkte)
c)	Erläutern Sie die beiden Begriffe <u>Syntaxbaum</u> (Skizze!) und <u>mehrdeutige</u> <u>Grammatik</u> . Was versteht man unter dem Ausdruck <u>inhärent mehrdeutig</u> ?(2 Punkte).

d) Gegeben ist die Sprache

$$L_8 = \{w \in \Sigma^* | w = \{a, c\}^+ b^i d^j, i > 0, j > 3\}.$$

Geben Sie die <u>normierte Grammatik</u> G_8 mit der Regelmenge P_8 an, die ausschließlich die Sprache L_8 erzeugt. <u>Zeichnen</u> Sie den mit P_8 korrespondierenden Automaten und leiten Sie mithilfe der Regeln aus P_8 das Wort w = accabdddd mit vollständiger Angabe der Satzformen ab (6 Punkte).

e) Erläutern Sie den Begriff <u>Greibach-Normalform</u> mithilfe einer beispielhaften, konformen Regelmenge **P**. (2 Punkte).

f) Gegeben sei die Sprache

$$L_9 = \{ w \in \Sigma^* | w = \{b, c\}^+ d^j e^j, j > 2 \}$$

Geben Sie die Grammatik G_9 in <u>Chomsky-Normalform</u> mit der Regelmenge P_9 an und konstruieren Sie den korrespondierenden <u>Kellerautomaten</u> K_9 mit Angabe der Zustandsübergangsfunktion δ_9 . (7 Punkte)

g) Nennen Sie ein Beispiel für eine Typ 2-Sprache, die einen <u>nichtdeterministischen Kellerautomaten</u> als Akzeptor benötigt. Begründen Sie Ihre Antwort (3 Punkte)

h) Geben Sie den Mehrkellerautomaten ${\it K}$ an, der die Sprache
$L_{10} = \{ w \in \Sigma^* w = \{a, c\}^* b^i e^i d^i \{a, c\}^+, i > 1 \}$
akzeptiert. Die Angabe der Zustandsüberführungsfunktion genügt.

Aufgabe 4: Sprachklassen

a) Zeigen Sie mithilfe einer Skizze, dass die Leege Sprache $L=\emptyset$ zur Klasse der regulären Sprache gehört. (2 Punkte)

(5 Punkte)

b) Skizzieren Sie die <u>Chomsky-Hierarchie</u> und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: *P* enthält Regeln unterschiedlichen Typs zur Worterzeugung). Geben Sie die jeweiligen <u>Abschlusseigenschaften</u> an. (8 Punkte)

c)	Zeigen Sie, dass reguläre Sprachen bzgl. der <u>Schnittmengenoperation</u> abge schlossen sind (Stichwort Produktautomat). (3 Punkte)
d)	Zeigen Sie mithilfe einer Skizze, dass die <u>Plushülle</u> über ein Alphabet Σ zu Klasse der regulären Sprache gehört. (2 Punkte)
e)	Erläutern Sie, warum das <u>Wortproblem</u> für reguläre Sprachen lösbar ist (2 Punkte)

f)	Erläutern Sie n abgeschlossen Punkte)								
g)	Lässt sich das Antwort. (2 Pun		für Typ 2	2 – Spra	chen löse	en? Begrüi	nden S	ie Ih	ıre
h)	Erläutern Sie Beschränkter / Akzeptor? (2 Pt	<u>Automat</u> . We							

i) Gegeben seien die Sprachen

$$\begin{split} L_{12} &= \{ w \in \Sigma^* | w = \{b,e\}^* a^i f^j e^j a^i \{b,e\}^+, i > 1, j > 1 \} \\ L_{13} &= \{ w \in \Sigma^* | w = \{ccc, ddd\} b^i d^i e^i \{a,c\}^*, i > 0 \} \end{split}$$

Testen Sie mithilfe des <u>Pumping-Lemmas</u>, ob es sich um Typ 3, Typ 2 oder Typ1/Typ0 Sprachen handeln könnte und geben Sie für die jeweilige Zerlegung, sofern möglich, die Pumping-Lemma-Zahl an. (6 Punkte)

Aufgabe 5: Berechenbarkeit

a)	Erläutern Sie den Begriff Algorithmus. Wann spricht man von einer berechenbaren Funktion f . (2 Punkte)
b)	Erläutern Sie die <u>Churchsche These</u> und geben Sie die Unterschiede bei der Berechenbarkeit von Funktionen an. (3 Punkte)
c)	Erläutern Sie den Begriff <u>UTM-Theorem</u> . Welche <u>Voraussetzungen</u> müssen für die Umsetzung des UTM-Theorems erfüllt sein. (2 Punkte)

d) Ordnen Sie folgenden Funktionen <u>infrage kommenden Berechenbarkeitskonzepten</u> zu und begründen Sie Ihre Antwort. (5 Punkte)

$$f_1: \Sigma^* \longrightarrow \mathbb{N}_0, w \mapsto |w|$$

$$f_2:\mathbb{N}_0 \longrightarrow \mathbb{N}_0$$
, $x\mapsto 0$

$$f_3 \colon \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0, (x,y,z) \mapsto x + y + z$$

$$f_4 \colon \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0, (x,y) \mapsto x-y$$

$$f_5: \mathbb{N}_0 \longrightarrow \mathbb{N}_0, (x) \mapsto \ln(x)$$

e) Was versteht man unter einer <u>primitiv rekursiven Funktion</u>? Inwiefern ergeben sich Unterschiede zur μ -Rekursion? (2 Punkte)

f) Stellen Sie die Funktion

$$f: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0, (x, y) \mapsto \frac{x}{y}$$

mit

$$f = \begin{cases} \frac{x}{y}, gdw \ x \ modulo \ y = 0 \\ 0, sonst \end{cases}$$

mithilfe eines geeigneten Programms (GOTO, WHILE oder LOOP) dar. (6 Punkte)