Expolratory Data Analysis

Employee Attrition Analysis

```
1 import pandas as pd
2 import numpy as np
```

Initial exploration

```
1 df=pd.read_csv('/content/WA_Fn-UseC_-HR-Employee-Attrition.csv')
 2 df.head()
\overline{\mathbf{T}}
         Age Attrition
                           BusinessTravel DailyRate
                                                         Department DistanceFromHome Education EducationField EmployeeCount
      0
          41
                     Yes
                              Travel_Rarely
                                                  1102
                                                                Sales
                                                                                                          Life Sciences
                                                          Research &
                                                   279
                                                                                                   1
                                                                                                                                      1
          49
                          Travel_Frequently
                                                                                                          Life Sciences
                                                         Development
                                                          Research &
          37
                     Yes
                              Travel_Rarely
                                                  1373
                                                                                                                 Other
                                                         Development
                                                          Research &
          33
                          Travel_Frequently
                                                  1392
                                                                                                          Life Sciences
                                                                                                                                      1
                                                         Development
                                                          Research &
                      No
                                                   591
                                                                                       2
                                                                                                   1
                                                                                                               Medical
                                                                                                                                      1
          27
                              Travel_Rarely
                                                         Development
     5 rows × 35 columns
```

1 df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1470 entries, 0 to 1469
 Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype				
		4.470					
0 1	Age Attrition	1470 non-null	int64				
2	BusinessTravel	1470 non-null 1470 non-null	object object				
3	DailyRate	1470 non-null	int64				
3 4		1470 non-null	object				
5	Department DistanceFromHome		int64				
6	Education	1470 non-null 1470 non-null	int64				
7	EducationField	1470 non-null	object				
8		1470 non-null	int64				
_	EmployeeCount EmployeeNumber						
9 10	EnvironmentSatisfaction	1470 non-null 1470 non-null	int64 int64				
11	Gender	1470 non-null					
12	HourlyRate	1470 non-null	object int64				
13	JobInvolvement	1470 non-null	int64				
14	JobLevel	1470 non-null	int64				
15	JobRole	1470 non-null	object				
16	JobSatisfaction	1470 non-null	int64				
17	MaritalStatus	1470 non-null	object				
18	MonthlyIncome	1470 non-null	int64				
19	MonthlyRate	1470 non-null	int64				
20	NumCompaniesWorked	1470 non-null	int64				
21	Over18	1470 non-null	object				
22	OverTime	1470 non-null	object				
23	PercentSalaryHike	1470 non-null	int64				
24	PerformanceRating	1470 non-null	int64				
25	RelationshipSatisfaction	1470 non-null	int64				
26	StandardHours	1470 non-null	int64				
27	StockOptionLevel	1470 non-null	int64				
28	TotalWorkingYears	1470 non-null	int64				
29	TrainingTimesLastYear	1470 non-null	int64				
30	WorkLifeBalance	1470 non-null	int64				
31	YearsAtCompany	1470 non-null	int64				
32	YearsInCurrentRole	1470 non-null	int64				
33	YearsSinceLastPromotion	1470 non-null	int64				
34	YearsWithCurrManager	1470 non-null	int64				
dtyp	•	, 0					
memory usage: 402.1+ KB							

1 df.shape

→ (1470, 35)

The dataset contains 1,470 records with 35 features. The target variable is Attrition, which indicates whether an employee has left the company (Yes) or not (No).

```
1 print(df.nunique())
→ Age
                                  43
                                   2
    Attrition
    BusinessTravel
                                   3
    DailyRate
                                 886
    Department
                                   3
    DistanceFromHome
                                  29
                                   5
    Education
    EducationField
                                   6
    EnvironmentSatisfaction
                                   4
    Gender
                                   2
                                  71
    HourlyRate
    JobInvolvement
                                   4
    JobLevel
                                   5
                                   9
    JobRole
    JobSatisfaction
                                   4
    MaritalStatus
                                   3
    MonthlyIncome
                                1349
    MonthlyRate
                                1427
                                 10
    NumCompaniesWorked
                                  2
    OverTime
    PercentSalaryHike
                                  15
    PerformanceRating
                                  2
    RelationshipSatisfaction
    StockOptionLevel
                                  4
    TotalWorkingYears
                                  40
    TrainingTimesLastYear
                                  7
    WorkLifeBalance
                                  37
    YearsAtCompany
    YearsInCurrentRole
                                  19
    YearsSinceLastPromotion
                                  16
                                  18
    YearsWithCurrManager
    dtype: int64
```

Data Cleaning

```
1 # Dropping columns with no predictive power
2 df = df.drop(['EmployeeCount', 'Over18', 'StandardHours', 'EmployeeNumber'], axis=1)
3
4 # Converting categorical variables to numerical
5 cat_cols = df.select_dtypes(include=['object']).columns
6 le = LabelEncoder()
7 for col in cat_cols:
8     df[col] = le.fit_transform(df[col])
9
10 # Check class imbalance
11 print("\nAttrition distribution:\n", df['Attrition'].value_counts())

Attrition distribution:
    Attrition
0     1233
1     237
Name: count, dtype: int64
```

visualizing the relationships between features and attrition:

```
1 import matplotlib.pyplot as plt
2 import seaborn as sns
3
4 # Set style
5 sns.set(style="whitegrid")
6
7 # Plot attrition by department
8 plt.figure(figsize=(6,4))
9 sns.countplot(x='Department', hue='Attrition', data=df)
10 plt.title('Attrition by Department')
11 plt.show()
```


Shows how many employees stayed or left in each department.

```
1 # Age distribution by attrition
2 plt.figure(figsize=(5,4))
3 sns.boxplot(x='Attrition', y='Age', data=df)
4 plt.title('Age Distribution by Attrition Status')
5 plt.show()
```


Illustrates age spread among employees who stayed vs those who left. Generally, younger employees tend to leave more often.

```
1 # Monthly income by job role and attrition
2 plt.figure(figsize=(9,5))
3 sns.boxplot(x='JobRole', y='MonthlyIncome', hue='Attrition', data=df)
4 plt.xticks(rotation=45)
5 plt.title('Monthly Income by Job Role and Attrition Status')
6 plt.show()
```


Highlights income disparities across job roles and how income relates to attrition. Employees in lower-paying roles show higher attrition.

Displays relationships among numerical features. Strong correlations are seen between variables like Monthly Income and Job Level.

Feature Engineering and Selection

```
1 df.columns
   Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
           'DistanceFromHome', 'Education', 'EducationField',
           'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
           'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
           'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'OverTime',
           'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
           'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
           'YearsSinceLastPromotion', 'YearsWithCurrManager'],
          dtype='object')
 1 # Calculate correlation with target
 2 corr_with_target = df.corr()['Attrition'].sort_values(ascending=False)
 3 print("\nCorrelation with Attrition:\n", corr_with_target)
 5 # Select important features based on correlation and domain knowledge
 6 selected_features = ['Age', 'DailyRate', 'DistanceFromHome', 'EnvironmentSatisfaction',
 7
                        'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome',
                       'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike',
 8
                        'RelationshipSatisfaction', 'StockOptionLevel', 'TotalWorkingYears',
 9
10
                        'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
                       'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager',
11
                        'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus']
12
13
14 # Prepare data for modeling
15 X = df[selected_features]
16 y = df['Attrition']
    Correlation with Attrition:
    Attrition
                                 1.000000
   OverTime
                                0.246118
   MaritalStatus
                                0.162070
   DistanceFromHome
                                0.077924
   JobRole
                                0.067151
   Department
                                0.063991
   NumCompaniesWorked
                                0.043494
   Gender
                                0.029453
   EducationField
                                0.026846
   MonthlyRate
                                0.015170
   PerformanceRating
                                0.002889
    BusinessTravel
                                0.000074
   HourlyRate
                               -0.006846
   PercentSalaryHike
                               -0.013478
                               -0.031373
   Education
   YearsSinceLastPromotion
                               -0.033019
   RelationshipSatisfaction -0.045872
                                -0.056652
   DailyRate
   TrainingTimesLastYear
                               -0.059478
   WorkLifeBalance
                               -0.063939
    EnvironmentSatisfaction -0.103369
    JobSatisfaction
                               -0.103481
    JobInvolvement
                               -0.130016
    YearsAtCompany
                                -0.134392
    StockOptionLevel
                                -0.137145
    YearsWithCurrManager
                               -0.156199
                               -0.159205
   MonthlyIncome
                               -0.159840
   YearsInCurrentRole
                               -0.160545
    JobLevel
                               -0.169105
    TotalWorkingYears
                               -0.171063
    Name: Attrition, dtype: float64
 1 from imblearn.over_sampling import SMOTE
 2
 3 # Handle class imbalance with SMOTE
 4 smote = SMOTE(random_state=42)
 5 X_res, y_res = smote.fit_resample(X, y)
 1 from sklearn.model_selection import train_test_split
 3 # Split data into train and test sets
 4 X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.3, random_state=42)
```

Model Building and Evaluation

Random Forest Classifier

→▼

Classification Report:

	precision	recall	f1-score	support
0	0.88	0.91	0.90	369
1	0.91	0.87	0.89	371
accuracy			0.89	740
macro avg	0.89	0.89	0.89	740
weighted avg	0.89	0.89	0.89	740

Confusion Matrix: [[337 32]

[47 324]]

Accuracy: 0.8932432432432432

Feature Importance:

· carear c _mpor carroor							
	Feature	Importance					
12	StockOptionLevel	0.106314					
7	MonthlyIncome	0.088038					
4	JobInvolvement	0.056382					
6	JobSatisfaction	0.055194					
3	EnvironmentSatisfaction	0.055189					
2	DistanceFromHome	0.047643					
13	TotalWorkingYears	0.046428					
1	DailyRate	0.046144					
0	Age	0.044474					
19	YearsWithCurrManager	0.041727					
11	RelationshipSatisfaction	0.041709					
15	WorkLifeBalance	0.038517					
16	YearsAtCompany	0.035777					
17	YearsInCurrentRole	0.034877					
14	TrainingTimesLastYear	0.034372					
5	JobLevel	0.033610					
10	PercentSalaryHike	0.031820					
23	JobRole	0.027960					
8	NumCompaniesWorked	0.025441					
18	YearsSinceLastPromotion	0.022619					
21	EducationField	0.022097					
24	MaritalStatus	0.020351					
9	OverTime	0.020225					
22	Gender	0.014432					

20 Department 0.008663

 $\overline{2}$

```
1 # Plot feature importance
2 plt.figure(figsize=(12,8))
3 sns.barplot(x='Importance', y='Feature', data=feature_importance)
4 plt.title('Feature Importance for Attrition Prediction')
5 plt.show()
```


0.04

0.06

0.08

0.10

Key Findings and Insights Based on the analysis:

0.02

Top Factors Influencing Attrition:

OverTime: Employees working overtime are much more likely to leave

MonthlyIncome: Lower income correlates with higher attrition

0.00

Age: Younger employees are more likely to leave

EducationField MaritalStatus OverTime Gender Department

StockOptionLevel: Employees with fewer stock options leave more often

JobSatisfaction: Lower satisfaction leads to higher attrition

YearsAtCompany: Employees with fewer years at company are more likely to leave

Department Impact: Sales department shows higher attrition rates compared to R&D

Job Role Impact: Sales Representatives and Laboratory Technicians show higher attrition

Managers and Research Directors have lower attrition

Work-Life Balance: Employees reporting poor work-life balance have higher attrition