NEC

NPN SILICON TRANSISTOR 2SC3615

DESCRIPTION

The 2SC3615 is designed for general-purpose applications

requiring High DC Current Gain.

This is suitable for all kind of driving, instead of Darlington

Transistor, or muting.

FEATURES

• High DC Current Gain.

 h_{FE} = 800 to 3200 (@ V_{CE} = 5.0 V, I_{C} = 100 mA)

• Low Collector Saturation Voltage.

 $V_{CE(sat)} = 0.11 \text{ V TYP.}$ (@ $I_C/I_B = 100 \text{ mA}/1.0 \text{ mA}$)

• High V_{EBO} : V_{EBO} = 15 V

• High Total Power Dissipation. : P_T = 0.75 W (@ T_a = 25 ° C)

ABSOLUTE MAXIMUM RATINGS

WOW RATINGS		
Maximum Temperatures		•
Storage Temperature	o +15	50°C
Junction Temperature 150 °C	Maxii	mum
Maximum Power Dissipation ($T_a = 25$ °C)		
Total Power Dissipation	. 0.	75 W
Maximum Voltages and Currents (T _a = 25 °C)		
V _{CBO} Collector to Base Voltage	50	٧
V _{CEO} Collector to Emitter Voltage	50	٧
V _{EBO} Emitter to Base Voltage	15	٧
I _C Collector Current (DC)	300	mΑ
IC Collector Current (pulse)*		mΑ
*PW \leq 10 ms, Duty Cycle \leq 50 %		

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	800		3200	_	V _{CE} = 5.0 V, I _C = 100 mA
hFE2	DC Current Gain	640				$V_{CE} = 5.0 \text{ V, } I_{C} = 300 \text{ mA}$
fT	Gain Bandwidth Product	150	220		MHz	$V_{CE} = 5.0 \text{ V}, I_{E} = -100 \text{ mA}$
C _{ob}	Output Capacitance		8.0		рF	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
ICBO	Collector Cutoff Current			100	nΑ	V _{CB} = 50 V, I _E = 0
IEBO	Emitter Cutoff Current			100	nΑ	$V_{EB} = 10 \text{ V, I}_{C} = 0$
VBE	Base to Emitter Voltage	600		700	mV	$V_{CE} = 5.0 \text{ V, } I_{C} = 100 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		0.11	0.3	V	I _C = 100 mA, I _B = 1.0 mA
V _{BE(sat)}	Base Saturation Voltage		0.7	1.2	V	$I_C = 100 \text{ mA}, I_B = 1.0 \text{ mA}$
ton	Turn-On Time		0.15		μs	$/V_{CC} = 10 \text{ V, } V_{BE(off)} = -2.7 \text{ V}$
t _{stq}	Storage Time		0.75		μs	I _C = 200 mA
toff	Turn-Off Time		1.1		μs	$I_{B1} = -I_{B2} = 4.0 \text{ mA}$

Classification of hFE1

Rank	M	L	К
Range	800 to 1600	1200 to 2400	2000 to 3200

Test Conditions: $V_{CE} = 5.0 \text{ V, } I_{C} = 100 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

