GABARITO da AD1 da disciplina Probabilidade e Estatística

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo 02.2011

Questão 1) Foi divulgado o resultado de um levantamento feito no setor de recursos humanos de duas empresas, apresentados a seguir. Para a variável escolaridade temos que:
1- significa que o funcionário tem o curso superior completo

- 2- significa que o funcionário tem o curso médio completo
- 3- significa que o funcionário tem o curso fundamental completo

Empresa A

Tabela A-1

	Х		
	= =		
	(salário = X		
	*500,00 reais)	ni	escolaridade
1	1	24	3
2	2	8	3
3	3	18	3
4	4	12	2
5	5	5	2
6	6	2	2
7	7	2	2
8	8	10	1
9	9	13	1
10	10	1	1
11	11	1	1
Total		96	

Empresa B

Tabela B-1

	faixa salarial		
	(em reais)	n _i	escolaridade
1	300,00 - 800,00	6	3
2	800,00 - 1.300,00	4	3
3	1.300,00 - 1.800,00	3	3
4	1.800,00 - 2.300,00	2	2
5	2.300,00 - 2.800,00	2	2
6	2.800,00 - 3.300,00	1	2
7	3.300,00 - 3.800,00	2	1
8	3.800,00 - 4.300,00	2	1
9	4.300,00 - 4.800,00	1	1
10	4.800,00 - 5.300,00	1	1
Total		24	

a) (0,5 pontos) Verifique como é a distribuição dos funcionários em relação à escolaridade nas 2 empresas (proporção de funcionários de nível fundamental, médio e superior). Faça um gráfico para cada empresa. Calcule qual tem a maior proporção de funcionários que não concluíram o nível superior.

Solução:

Passo 1: Construir tabela de freqüência de escolaridade da Empresa A:

Empresa A							
Escolaridade	Freq	Freq. Rel. (fi)					
Fundamental	50	0,5208					
Médio	21	0,2197					
superior	25	0,2605					
Total	96	1,0000					

Passo 2: Construir tabela de freqüência de escolaridade da Empresa B:

Empresa B							
Escolaridade Freq Freq. Rel. (fi)							
Fundamental	13	0,5417					
Médio	5	0,2083					
superior	6	0,2500					
Total	24	1,0000					

Comparando essas tabelas de Escolaridade das empresas A e B e observando a freqüência relativa de ambas as empresas podemos comparar a variável Escolaridade, ou seja:

Escolaridade	Empresa A	Empresa B
	Freq. Relativa (f _i)	Freq. Relativa (f _i)
Fundamental	0,5208	0,5417
Médio	0,2197	0,2083
Superior	0,2605	0,2500
Total	1,0000	1,0000

Comparação:

Quanto a escolaridade nas 2 empresas: verificamos que em ambas a maioria dos funcionários é de nível fundamental.

Passo 3 – Para trabalhar com esta variável, Escolaridade, o melhor gráfico é o de pizza.

Gráfico de pizza da empresa A

Gráfico de pizza da empresa B

Passo 5: Para determinar qual a empresa tem a maior proporção de funcionários que não concluíram o ensino superior é necessário montar as tabelas de freqüências acumuladas de cada empresa.

Empresa A							
Escolaridade	Freq	Freq. Rel. (Fi)	Freq. Acum. (Facu)				
Fundamental	50	0,5208	0,5208				
Médio	21	0,2187	0,7395				
superior	25	0,2605	1,0000				
	96	1,0000					

Empresa B							
Escolaridade	Freq	Freq. Rel. (Fi)	Freq. Acum. (Facu)				
Fundamental	13	0,5417	0,5417				
Médio	5	0,2083	0,7500				
superior	6	0,2500	1,0000				
	24	1,0000					

Observando ambas as tabelas é possível verificar que a empresa B tem um percentual pouco maior de funcionários que não têm curso superior, isto é, 75% dos funcionários contra 74 % dos funcionários da empresa A que não têm curso superior.

b) (0,5 pontos) Qual a média dos salários dos funcionários com curso superior? E em que faixa salarial se encontram a moda e a mediana? (Considere para o cálculo da média, a média de salários da respectiva faixa).

Solução:

Passo 1: Cálculo da média aritmética dos salários dos funcionários de nível superior

Solução:

Cálculo da média aritmética

Utilizando diretamente os dados da Tabela A, contendo somente os funcionários com curso superior:

	X (salário = X *500,00				
	reais)	n _i	escolaridade	Salário	ni*salário
8	8	10	1	4.000,00	40.000,00
9	9	13	1	4.500,00	58.500,00
10	10	1	1	5.000,00	5.000,00
11	11	1	1	5.500,00	5.500,00
Total		25			109.000,00

$$x_{obs} = \frac{n_1x_1 + n_2x_2 + \ldots + n_nx_n}{n}$$

$$x_{obs(emp.A.SUPERIOR)} = \frac{109.000,00}{25} = 4.360,00$$

Empresa B

faixa salarial			Média	ni*média
(em reais)	n _i	escolaridade	Salário	salário
3.300,00 - 3.800,00	2	1	3.550,00	7.100,00
3.800,00 - 4.300,00	2	1	4.050,00	8.100,00
4.300,00 - 4.800,00	1	1	4.550,00	4.550,00
4.800,00 - 5.300,00	1	1	5.050,00	5.050,00
total	6			24.800,00

$$x_{obs(emp.B.SUPERIOR)} = \frac{24.800,00}{6} = 4.133,33$$

Ou seja, a Empresa B tem a média de salários dos funcionários com nível superior um pouco menor do que a dos funcionários de mesmo nível da Empresa A.

Moda – valor com maior freqüência de ocorrência

Moda da empresa A é o salário de R\$500,00, a primeira posição.

Moda da empresa B é a faixa 300,00|--800,00, a primeira faixa.

Mediana- o valor que está na posição central dos valores colocados em ordem:

Empresa A: 96 funcionários. Empresa B: 24 funcionários

Mediana (Empresa A)= 1.500,00

Mediana (Empresa B)= 1.550,00 (terceira faixa - 1.300,00|-1.800,00)

c) (1,0 ponto) Calcule o desvio padrão das 2 empresas. Qual deve ser o aumento salarial da Empresa B para que as duas empresas tenham o mesmo desvio padrão?

Solução:

Passo 1: Desvio Padrão:

Variância:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2$$

Desvio Padrão:

$$dp_{obs} = \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2}$$

Para esses cálculos há a necessidade do cálculo da média, feito como no item anterior mas para toda as escolaridades, tendo como resultado:

$$x_{obs(emp.A)} = \frac{205.500,00}{96} = 2.140,63$$

$$x_{obs(emp.B)} = \frac{49.200,00}{24} = 2.050,00$$

Desvio padrão dos salários da Empresa A:

Salário	Freq.	Freq. Rel.	Média	Salario x Freq	Salário - Média	(salario - media)^2	(salario - media)^2 Freq
500,00	24	0,25	2.140,63	12.000,00	-1.640,63	2.691.666,80	64.600.003,13
1.000,00	8	0,08	2.140,63	8.000,00	-1.140,63	1.301.036,80	10.408.294,38
1.500,00	18	0,19	2.140,63	27.000,00	-640,63	410.406,80	7.387.322,34
2.000,00	12	0,13	2.140,63	24.000,00	-140,63	19.776,80	237.321,56
2.500,00	5	0,05	2.140,63	12.500,00	359,37	129.146,80	645.733,98
3.000,00	2	0,02	2.140,63	6.000,00	859,37	738.516,80	1.477.033,59
3.500,00	2	0,02	2.140,63	7.000,00	1.359,37	1.847.886,80	3.695.773,59
4.000,00	10	0,10	2.140,63	40.000,00	1.859,37	3.457.256,80	34.572.567,97
4.500,00	13	0,14	2.140,63	58.500,00	2.359,37	5.566.626,80	72.366.148,36
5.000,00	1	0,01	2.140,63	5.000,00	2.859,37	8.175.996,80	8.175.996,80
5.500,00	1	0,01	2.140,63	5.500,00	3.359,37	11.285.366,80	11.285.366,80
Total	96	1		205.500,00			214.851.562,50

$$var_{obs(emp.A)} = 2.238.037,11$$

$$dp_{obs(emp.A)} = \sqrt{\text{var}_{obs(emp.A)}} = 1.496,01$$

Desvio padrão da empresa B

	Valor	Fre	Valor médio x	Freq.		Salário -	(Salário-	(salario - media)^2
Faixa	médio	q.	Freq	Rel	Média	Média	Média)^2	Freq
300,00 - 800,00	550,00	6	3.300,00	0,25	2.050,00	-1.500,00	2.250.000,00	13.500.000,00
800,00 - 1.300,00	1.050,00	4	4.200,00	0,17	2.050,00	-1.000,00	1.000.000,00	4.000.000,00
1.300,00 - 1.800,00	1.550,00	3	4.650,00	0,13	2.050,00	-500,00	250.000,00	750.000,00
1.800,00 - 2.300,00	2.050,00	2	4.100,00	0,08	2.050,00	0,00	0,00	0,00
2.300,00 - 2.800,00	2.550,00	2	5.100,00	0,08	2.050,00	500,00	250.000,00	500.000,00
2.800,00 - 3.300,00	3.050,00	1	3.050,00	0,04	2.050,00	1.000,00	1.000.000,00	1.000.000,00
3.300,00 - 3.800,00	3.550,00	2	7.100,00	0,08	2.050,00	1.500,00	2.250.000,00	4.500.000,00
3.800,00 - 4.300,00	4.050,00	2	8.100,00	0,08	2.050,00	2.000,00	4.000.000,00	8.000.000,00
4.300,00 - 4.800,00	4.550,00	1	4.550,00	0,04	2.050,00	2.500,00	6.250.000,00	6.250.000,00
4.800,00 - 5.300,00	5.050,00	1	5.050,00	0,04	2.050,00	3.000,00	9.000.000,00	9.000.000,00
	Total	24	49.200,00	1			26.250.000,00	47.500.000,00

$$var_{obs(emp.B)} = 1.979.166,67$$

$$dp_{obs(emp.B)} = \sqrt{\text{var}_{obs(emp.B)}} = 1.406,83$$

Passo 2:

Para calcular qual deve ser o aumento necessário no salário dos funcionários da Empresa B para que ela tenha o desvio padrão igual ao da Empresa A, basta calcular o percentual de diferença entre os valores do desvio padrão da Empresa B em relação a empresa A e este valor aplicar sobre cada faixa de valor da tabela.

Calculando sobre a tabela A

$$p = \frac{dp_{obs(empA)}}{dp_{obs(empB)}} = \frac{1.496,00}{1.406,83} = 1,0634$$

Ou seja, cada valor da faixa deve ser multiplicado por 1,0634.

As faixas da Tabela B devem ser multiplicados por 1,06339 para possuir o mesmo desvio padrão das tabelas A.

d) (1,0 pontos) Mostre o que acontecerá com a média, a variância e o desvio padrão da empresa B se cada funcionário receber um gratificação fixa de "c". Mostre também o que acontecerá se na empresa A essa bonificação for de 20% sobre cada salário.

Passo 1: O aluno pode, para esse caso, somar uma constante "c" aos valores da tabela e fazer os cálculos ou chegar a mesma conclusão analisando as fórmulas, e concluindo:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original,
- no caso da variância o resultado não é alterado,
- e nesse caso, é claro que o desvio padrão também não é alterado.

Para a média

Analisando as formulas:

$$\overline{x}_{NOVO} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + c \times n}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \overline{x} + c$$

Para a variância

$$var_{NOVO} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\bar{x} + c)]^2$$

$$\operatorname{var}_{\text{NOVO}} = \frac{1}{n} \sum_{i} [x_i + c - \overline{x} - c]^2 = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2$$

$$x_{NOVOobs(empB)} = 2.050,00 + c$$

Variância igual a tabela original

Passo 2:

Acrescentar 20% nas faixas salariais da empresa A, significa multiplicar cada valor do salário por 1,2 e pode ser visto também pela fórmula ou fazendo os cálculos. Pela fórmula:

$$\overline{x}_{NOVOobs(empA)} = \frac{\sum 1,2x_i}{n} = 1,2\frac{\sum x_i}{n} = 1,2\overline{x}_{obs(empA)}$$

$$var_{NOVOobs(empA)} = \frac{1}{n} \sum (1,2x_i - \overline{x}_{NOVOobs(empA)})^2 = \frac{1}{n} \sum [1,2(x_i - \overline{x}_{obs(empA)})]^2$$

$$var_{NOVOobs(empA)} = \frac{1}{n} \sum_{i} 1,2^{2} (x_{i} - \overline{x}_{obs(empA)})^{2}$$

$$\operatorname{var}_{NOVOobs(empA)} = 1,2^{2} \frac{1}{n} \sum_{i} (x_{i} - \overline{x}_{obs(empA)s})^{2} = 1,2^{2} \operatorname{var}_{obs(empA)}$$

$$x_{NOVOobs(empA)} = 1,2 * 2.140,63 = 2.568,75$$

$$var_{NOVOobs(empA)} = 1,2^2 * 2.238.037,11 = 3.222.773,44$$

$$dp_{Nova empA} = 1.2 * 1.496,08 = 1.795,21$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original).

Questão 2) (1,0 ponto) Uma urna contém 3 moedas. Uma tem duas caras, a outra é uma moeda justa, e a terceira é uma moeda viciada com probabilidade de cara igual a 0,75. Uma moeda é selecionada aleatoriamente da urna, lançada com resultado cara. Qual a probabilidade da moeda escolhida ter duas caras?

(Sugestão: considerando as variáveis

cara: se o resultado do lançamento for cara;

M1: a moeda justa;

M2: a moeda que tem duas caras;

M3: a moeda viciada com probabilidade de cara 0.75,

defina uma partição do espaço amostral entre os eventos M1, M2 e M3 para determinar a probabilidade P(M2|cara) .

Dados do problema:

$$P(M_1) = \frac{1}{3}, P(cara/M_1) = 0,50$$

$$P(M_2) = \frac{1}{3}, P(cara/M_2) = 1$$

$$P(M_3) = \frac{1}{3}, P(cara/M_2) = 0,75$$

O que se quer saber?

$$P(M_2/cara) = \frac{P(M_2 \cap cara)}{P(cara)} = \frac{P(M_2) \cdot P(cara/M_2)}{P(cara)}$$

portanto o que precisamos saber é *P(cara)*. Os eventos M1, M2 e M3, são mutuamente exclusivos, e reunidos formam o espaço amostral completo, portanto o evento *cara* é a união de três outros eventos mutuamente exclusivos.

$$\begin{split} &P(cara) = P(M_{1} \cap cara) + P(M_{2} \cap cara) + P(M_{3} \cap cara) \\ &P(cara) = P(M_{1}) \cdot P(cara/M_{1}) + P(M_{2}) \cdot P(cara/M_{2}) + P(M_{3}) \cdot P(cara/M_{3}) \\ &P(cara) = \frac{1}{3} \times 0,50 + \frac{1}{3} \times 1 + \frac{1}{3} \times 0,75 \\ &P(cara) = 0,75 \end{split}$$

logo temos:

$$P(M_2/cara) = \frac{P(M_2 \cap cara)}{P(cara)} = \frac{P(M_2) \cdot P(cara/M_2)}{P(cara)}$$

$$P(M_2/cara) = \frac{\frac{1}{3} \cdot 1}{0.75}$$

$$P(M_2/cara) = 0.44$$

Questão 3) (2,0 pontos) Em uma determinada comunidade a probabilidade de que um homem viver, a partir de hoje, mais 25 anos é 2/5 e a probabilidade de que a mulher viva estes 25 anos é 2/3. Determine a probabilidade de que daqui a 25 anos

(i) pelo menos um esteja vivo:

Chamando de P(H) e P(M) a probabilidade de um homem e de uma mulher viver mais 25 anos respectivamente, tem-se: P(H)=2/5, $P(H^c)=3/5$, P(M)=2/3 e $P(M^c)=1/3$, como os eventos são independentes desejamos calcular:

$$P(H \cup M) = P(H) + P(M) - P(H \cap M) = P(H) + P(M) - P(H)P(M)$$
$$P(H \cup M) = \frac{2}{5} + \frac{2}{3} - \frac{2}{5} \cdot \frac{2}{3} = 1,067 - 0,267 = 0,800$$

(ii) ambos estejam vivos:

$$P(H \cap M) = P(H)P(M) = \frac{2}{5} \cdot \frac{2}{3} = 0,267$$

(iii) nenhum esteja vivo:

$$P(H^c \cap M^c) = P(H^c)P(M^c) = \frac{3}{5} \cdot \frac{1}{3} = 0,200$$

(iv) somente a mulher esteja viva:

$$P(H^c \cap M) = P(H^c)P(M) = \frac{3}{5} \cdot \frac{2}{3} = 0,400$$

Questão 4) (1,0 ponto) Durante o primeiro dia de um feriado prolongado a chegada de ônibus na Rodoviária Novo Rio se dá segundo o modelo de Poisson com taxa de 1 ônibus por minuto.

Modelo de Poisson:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, ...$$

(i) determine a probabilidade da chegada de 2 ônibus em um minuto qualquer desse primeiro dia de feriado:

 $\lambda = 1$ ônibus por minuto

$$P(2) = \frac{e^{-1}1^2}{2!} = 0.184$$

(ii) se for possível desembarcar somente 2 ônibus por minuto, qual a probabilidade de haver ônibus sem desembarque imediato?

 λ = 2 ônibus por minuto. Para não haver desembarque imediato é necessário que cheguem mais de 2 ônibus em um minuto, portanto k ≥ 3.

$$P(k \ge 3) = 1 - P(k < 3) = 1 - [P(k = 0) + P(k = 1) + P(k = 2)]$$

$$P(k \ge 3) = 1 - \left[\frac{e^{-2} 2^{0}}{0!} + \frac{e^{-2} 2^{1}}{1!} + \frac{e^{-2} 2^{2}}{2!} \right]$$

$$P(k \ge 3) = 1 - 0,667$$

$$P(k \ge 3) = 0.323$$

Questão 5) (1,5 pontos) Sabe-se que 85% dos pacientes diagnosticados com câncer de pulmão precocemente têm probabilidade de serem completamente curados. Para um grupo de 16 pacientes nessas condições calcule qual a probabilidade de:

$$p=0.85$$
 e $n=16$

$$P(X = k) = \binom{n}{k} \times p^{k} \times (1 - p)^{n - k}, k = 0, 1, 2, 3, ..., n$$

(i) treze (13) ficarem completamente curados: (k=13)

$$P(X=13) = \left(\frac{16!}{13!(16-13)!}\right)0,85^{13}(1-0,85)^{16-13} = 0,2285$$

(ii) de 5 a 7 pacientes (inclusive, ou seja: 5 ⊣ 7) não ficarem curados.

Nesse caso, utilizei p=0,15.

$$P(5 \le X \le 7) = P(X = 5) + P(X = 6) + P(X = 7)$$

$$P(X = 5) = \left(\frac{16!}{5!(16 - 5)!}\right) 0.15^{5} (1 - 0.15)^{16 - 5} = 0.0555$$

$$P(X = 6) = \left(\frac{16!}{6!(16 - 6)!}\right) 0.15^{6} (1 - 0.15)^{16 - 6} = 0.0179$$

$$P(X = 7) = \left(\frac{16!}{7!(16 - 7)!}\right) 0.15^{7} (1 - 0.15)^{16 - 7} = 0.0045$$

$$P(5 \le X \le 7) = 0.0555 + 0.0179 + 0.0045 = 0.0779$$

Questão 6) (1,5 pontos) Num lago-laboratório pesquisadores acompanham o crescimento de 10 botos: 6 da espécie A e 4 da espécie B, avaliando periodicamente seus pesos e tamanhos. Se em determinado dia de avaliação três botos forem capturados de uma vez, utilize um modelo de probabilidade para determinar a probabilidade de:

Modelo Hipergeométrico:

$$P(X = k) = \frac{\binom{m}{k} \binom{n-m}{r-k}}{\binom{n}{r}}; k = \max(0, r - (n-m)), ..., \min(r, m)$$

10 botos (n=10): 6 da espécie A (m=6) -□ amostra 3 botos (r=3)

(i) a maioria ser da espécie A:

Numa amostra com 3 botos a maioria, nesse caso, seria k=2

$$P(k=2) = \frac{\left(\frac{6!}{2!(6-2)!}\right)\left(\frac{(10-6)!}{(3-2)!((10-6)-(3-2))!}\right)}{\left(\frac{10!}{3!(10-3)!}\right)}$$

$$P(k=2) = \frac{\left(\frac{6!}{2!4!}\right)\left(\frac{4!}{1!3!}\right)}{\left(\frac{10!}{3!7!}\right)}$$

$$P(k=2) = 0.50$$

(ii) pelo menos 1 ser da espécie A.

Nesse caso deve-se calcular $P(k\geq 1)=P(k=1)+P(k=2)+P(k=3)$

$$P(k=1) = \frac{\left(\frac{6!}{1!(6-1)!}\right)\left(\frac{(10-6)!}{2!(4-2)!}\right)}{\left(\frac{10!}{3!(10-3)!}\right)} = \frac{6\times6}{120} = 0,30$$

$$P(k=2) = 0.5$$

$$P(k=3) = \frac{\left(\frac{6!}{1!(6-3)!}\right)\left(\frac{(10-6)!}{0!4!}\right)}{\left(\frac{10!}{3!(10-3)!}\right)} = \frac{20 \times 1}{120} = 0,1667$$

$$P(k \ge 1) = 0.3000 + 0.5000 + 0.1667 = 0.9667$$

OBSERVAÇÕES sobre a correção:

- nas questões e itens com mais de uma pergunta, os pontos devem ser distribuídos igualmente;
- no item (b) da questão 1, se ficar claro que o aluno entendeu que era para ser calculado somente o de uma empresa, dar o ponto integralmente.