

EPM ESCUELA POLITECNICA DE MIERES

Procesamiento de Imágenes de sensores Aerotransportados y Satélite

Ing. en Geomática T2: Histograma y Constraste

Silverio García Cortés

Dpto. Explotación y Prospección de Minas Área Ing. Cartográfica, Geodésica y Fotogrametría sgcortes@uniovi.es Universidad de Oviedo

Universidad de Ov

Histograma de una imagen:

Representación gráfica de la frecuencia de los valores de los niveles digitales en una imagen. Se denomina a veces también "pdf" (probability density function) por su semejanza con el concepto de función de densidad estadística

Profundidad de bits

Número de bits empleados para codificar el nivel digital de un pixel.

Imagen de un solo canal:

8bits = 28 = 256 ND

(niveles de gris para representarla)

16bits = 216=65536 ND

En imágenes en color RGB, el color 24 bits corresponde a 8 bits por canal (3 canales):

 $24bits = 2^{24} = 16.777.34$

Rango dinámico:

Ampliación del contraste

Contraste: Diferencia en propiedades visuales (color, brillo) que hacen a la representación de un objeto en una imagen distinguible de otros o del fondo

LUT. "look up table"

Co hucco ampliar

Función de transferencia. LUT (lookup table)

Look-up Table

Look-up Table

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

CONTRASTE

Expansión del histograma lineal

AMPLIACIÓN DEL CONSTRASTE

$$ND_{output} = a \cdot ND_{input} + b$$

Clipping

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Original image and its histogram. Note the unused portion of the available numeric range at the shadows (left side of the histogram), causing a shift of the main histogram peak toward the highlights, which results in a relatively bright background.

Shadows clipping applied to remove the unused values at the shadows, and the resulting histogram. The background is now darker and the overall contrast of the image is higher, as a result of a better usage of the available numeric range. However, note that no pixel has been clipped by carefully adjusting the shadows clipping point. Histogram clipping must always be applied with great care to prevent destruction of significant data in the shadows, where we have the most valuable —and the most difficult to acquire— part of the image in astrophotography.

 El clipping es una transformación lineal del histograma en la aue se eliminan las colas del mismo (intervalo entre dos percentiles extremos como 2% y 98%) de forma que se aumenta en la práctica el rango dinámico de la imagen eliminando el efecto del ruido

Función de transferencia gamma, exponencial y logarítmica

Son transformaciones exponenciales y logarítmicas que se emplean para compensar la no linealidad de los dispositivos de salida (monitores) así como para maximizar el aprovechamiento del ancho de banda en la transmisión de video o imagen.

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Gamma $y = x^{\gamma}$

Exponencial $y = be^{ax+1}$

Logarítimica y=h Lp(arm)

Equalización del histograma. (Histogram equalization)

- Un histograma equalizado es el histograma de la distribución uniforme
- Cada Nivel Digital (ND) aparece en la imagen el mismo número de veces.
- Esto en la práctica nunca se consigue pero se pueden buscar transformaciones que aproximen ese resultado.

Equalización del histograma (II)

- Se puede conseguir con una función de transferencia (LUT) y = f(x) como esta:
- $y(x) = \frac{L}{N} \cdot H_i(x)$ donde $H_i(x) = \sum_{k=0}^{x} h_i(k)$ siendo hi las frecuencias de la imagen de entrada

Equalización del histograma local o adaptativo

Universidad de Oviec Universidá d'Uviéu University of Oviedo

Equalización adaptativa

En la equalización adaptativa se trabaja equalizando hsitogramas de teselas (vecindarios) pequeños dentro de la imagen, en lugar de

Histogram Matching y Expansión gaussiana

El histograma uniforme no es ideal desde un punto de vista visual ya que la vista percibe mas contraste en la zona de tonos medios. Por ello el histograma normal (gaussiano) sería mas recomendable.

$$y = g^{-1}(z) = g^{-1}{f(x)}$$

- Empleando el histograma uniforme como paso intermedio es posible conseguir cualquier histograma que se desee simplemente componiendo las funciones de transferencia "f(x)" directa y "g(x)" inversa (" $g(x)^{-1}$)" de la figura.
- En la práctica ambas funciones estarán implementadas por tablas de búsqueda (LUT)
- Si el histograma final que se persigue es el gaussiane el

Técnica de "Equilibrado del contraste" (Balance contrast enhancement)

- Las imágenes satélite tiene sesgos de color evidentes y las combinaciones de los canales RGB no se aproximan habitualmente al color natural.
- Suele deberse esto a que el brillo medio de un canal es considerablemente diferente al resto
- El BCET emplea una función de transferencia parabólica del tipo:
- $y = a \cdot (x b)^2 + c$
- Los tres coeficientes de la función están relacionados con el ND mínimo (I), máximo (h) y medio (e) de la imagen de entrada y sus homólogos L,H y E de la imagen de salida.

$$b = \frac{h^2(E-L) - s(H-L) + l^2(H-E)}{2[h(E-L) - e(H-L) + l(H-E)]} \quad a = \frac{H-L}{(h-l)(h+l-2b)} \quad c = L - a(l-b)^2 \quad s = \frac{1}{N} \sum_{i=1}^{N} x_i^2$$

