

Bruce M. Boghosian

Motivation

Bernoulli trials

The Poisson

Uniform distribution

normal distribution

Summar

Maximum Likelihood Estimation

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M. Boghosiar

Motivation

Bernoulli tria

The Poisson distribution

Uniform distribution

normal distribution

- 1 Motivation
- 2 Bernoulli trials
- 3 The Poisson distribution
- 4 Uniform distribution
- 5 Standard normal distribution
- 6 Summary

Motivation

Bruce M. Boghosiar

Motivation

Bernoulli trial

The Poisson distribution

Uniform distribution

normal distribution

Summa

- Suppose we know the results of a repeated random experiment.
- We have a priori knowledge of the *form* of the probability function.
- We do not know the values of the *parameter(s)* of the distribution.
- Can we use the experimental results to estimate the parameter(s)?
- In this lecture, we learn to do so by maximizing a quantity called *likelihood*.
- This method is called *maximum likelihood estimation*.
- It is best to learn this method by example, so we present examples using a variety of probability functions.

Tufts A random experiment

- A coin lands on heads with probability p, tails with probability 1-p.
- You are not given the value of p.
- You flip the coin five times and find the sequence HTHHT.
- Suppose this outcome is all you know about the coin.
- What is your best guess for *p*?

A posteriori calculation of probability of the outcome

Bruce M. Boghosian

Motivation

Bernoulli trials

The Poisson

Uniform distribution

normal distribution

- We have done the experiment and we know the result *HTHHT*.
- The coin flips may be assumed to have been independent.
- The *likelihood* of result HTHHT is $L(p) = p(1-p)pp(1-p) = p^3(1-p)^2$.
- Note that L(p) is not a probability density function!
- For which value of p is L(p) maximized?

Finding the maximum likelihood

Bruce M. Boghosian

iviotivation

Bernoulli trials

The Poisson distribution

distribution

Standard normal distribution

- We have $L(p) = p^3(1-p)^2$
- Derivative $L'(p) = p^2(1-p)(3-5p)$ has roots p = 0, p = 3/5 and p = 1.
- Second derivative $L''(p) = 2p(10p^2 12p + 3)$, so L''(3/5) = -18/25 < 0
- Second derivative is negative at p = 3/5, indicating a maximum at that point.
- *Maximum likelihood* occurs for $p = p_e = 3/5$.

General Bernoulli trial

Bruce M. Boghosian

Motivation

Bernoulli trials

distribution

Uniform distribution

normal distribution

Summar

Define random variable for each coin toss,

$$X := \left\{ egin{array}{ll} 1 & ext{if toss results in heads (with probability } p) \\ 0 & ext{if toss results in tails (with probability } 1-p). \end{array} \right.$$

lacksquare Discrete probability function for one toss, where $k\in\{0,1\}$,

$$p_X(k) = \text{Prob}(X = k) = p^k (1 - p)^{1-k}$$

- Normalization: $\sum_{k=0}^{1} p_X(k) = (1-p) + p = 1$
- Mean: $\sum_{k=0}^{1} p_X(k)k = (1-p)0 + p1 = p$
- Variance: $\sum_{k=0}^{1} p_X(k)k^2 p^2 = (1-p)0^2 + p1^2 p^2 = p p^2 = p(1-p)$

Defining the likelihood for *n* tosses

Bruce M. Boghosian

iviotivation

Bernoulli trials

The Poisson

Uniform distribution

normal distribution

Summary

- *Likelihood* of *n* tosses with $\vec{X} = \langle X_1, X_2, \dots, X_n \rangle$ equal to $\vec{k} = \langle k_1, k_2, \dots, k_n \rangle$
- \blacksquare Product of discrete probability functions for observed data using parameter p,

$$egin{aligned} L(p;ec{k}) &:= \mathsf{Prob}(ec{X} = ec{k}) = \prod_{j=1}^n p_{X_j}(k_j) \ &= p^{k_1}(1-p)^{1-k_1}p^{k_2}(1-p)^{1-k_2}\cdots p^{k_n}(1-p)^{1-k_n} \ &= \prod_{j=1}^n p^{k_j}(1-p)^{1-k_j} = p^K(1-p)^{n-K} \end{aligned}$$

where $K := \sum_{j=1}^{n} k_j$.

■ We now wish to find the value of p that maximizes $L(p; \vec{k})$.

Maximizing the likelihood for n tosses

Bruce M. Boghosian

Motivation

Bernoulli trials

The Poisson distribution

Uniform distribution

Standard normal distribution

Summary

■ Defining $K := \sum_{i=1}^{n} k_i$, the likelihood function is

$$L(p; \vec{k}) := p^{K} (1-p)^{n-K}.$$

- Note that \vec{k} and hence K is known from the experimental outcome.
- We maximize the *log likelihood* with respect to *p*,

$$\ln L(p; \vec{k}) = K \ln p + (n - K) \ln(1 - p)$$

Setting derivative to zero yields

$$0 = \frac{d}{dp} \ln L(p; \vec{k}) = \frac{K}{p} - \frac{n - K}{1 - p}.$$

■ Maximum likelihood is
$$p = p_e := \frac{K}{n}$$
, so $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$

Estimator for p

Bruce M. Boghosian

...otivation

Bernoulli trials

The Poisson distribution

Uniform distribution

tandard ormal listribution

- Maximum likelihood occurs when p is $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$
- Note that this is a function of the outcomes \vec{k} that estimates the parameter p.
- Considered as a function of \vec{k} yielding p, this is called an *estimator*,

$$\hat{p}(\vec{k}) = \frac{1}{n} \sum_{j=1}^{n} k_j.$$

- In this case, $\hat{p}(\vec{k})$ is just the <u>average</u> of the experimental outcomes \vec{k} .
- Here and henceforth, we use the "hat" to denote estimator functions.
- More generally, $L(p; \vec{k})$ is maximized for $p = \hat{p}(\vec{k})$.
- This approach is called *maximum likelihood estimation*.
- It estimates one or more parameters of known probability functions.
- Note that there must be a priori knowledge of the form of $p_X(k)$.

The Poisson distribution

Bruce M. Boghosian

Motivation

Bernoulli trials

The Poisson distribution

Uniform distribution

otandard normal distribution

Summary

- Sample space *S* is nonnegative integers.
- Poisson random variable $X \in S = \{0, 1, 2, ...\}$
- We have

$$p_X(k) = \text{Prob}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Normalization

$$\sum_{k=0}^{\infty} p_X(k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{+\lambda} = 1.$$

Mean

$$E(X) = \sum_{k=0}^{\infty} p_X(k)k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} k = \lambda$$

Tufts The Poisson distribution (continued)

distribution

Variance

$$E(X^2) - E(X)^2 = \sum_{k=0}^{\infty} p_X(k)k^2 - \lambda^2 = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} k^2 - \lambda^2 = \lambda$$

- Again, note that this is a one-parameter probability function.
- The mean and variance are both equal to the parameter λ .
- Now, suppose we are given n = 50 samples from this distribution

 \blacksquare Can we estimate λ using maximum likelihood estimation?

Defining the likelihood for n samples

Bruce M. Boghosiar

Motivation

Bernoulli trials

The Poisson distribution

distribution

normal distribution

Summary

- Given the results of an experiment $\vec{k} = \langle k_1, k_2, \ldots \rangle$ where $k_i \in \{0, 1, 2, \ldots\}$
- Define the likelihood

$$L(\lambda; \vec{k}) := \operatorname{\mathsf{Prob}}(\vec{X} = \vec{k}) = \prod_{j=1}^n p_{X_j}(k_j) = \prod_{j=1}^n e^{-\lambda} \frac{\lambda^{k_j}}{k_j!}$$

Easier to maximize the log likelihood

$$\ln L(\lambda; \vec{k}) = \sum_{j=1}^{n} \left[-\lambda + k_j \ln \lambda - \ln (k_j!) \right] = -n\lambda + K \ln \lambda - \sum_{j=1}^{n} \ln (k_j!)$$

where, once again, $K := \sum_{j=1}^{n} k_j$.

Maximizing the likelihood for n samples

Bruce M. Boghosian

Motivation

Bernoulli tria

The Poisson distribution

Uniform distribution

normal distribution

Summary

Log likelihood

$$\ln L(\lambda; \vec{k}) = -n\lambda + K \ln \lambda - \sum_{j=1}^{n} \ln (k_{j}!)$$

Log likelihood maximized for

$$0 = \frac{d}{d\lambda} \ln L(\lambda; \vec{k}) = -n + \frac{K}{\lambda}$$

Result is $\lambda = \lambda_e := \frac{K}{n}$, or

$$\lambda_e = \frac{1}{n} \sum_{j=1}^n k_j$$

MLE for Poisson-distributed data

Bruce M. Boghosian

Motivation

Bernoulli trial

The Poissor distribution

Uniform distribution

normal distribution

Summary

Maximum likelihood estimator for the Poisson distribution is

$$\hat{\lambda}(\vec{k}) = \frac{1}{n} \sum_{j=1}^{n} k_j$$

- For the 50 points shown earlier, $\hat{\lambda}(\vec{k}) = 3.78$.
- Actual value of λ used to sample the points was 4.

Tufts Some discussion

distribution

- So far, these results are not terribly surprising.
- The mean of the Bernoulli trials is p.
- The mean of the Poisson distribution is λ .
- Both MLE analyses estimate the parameter to be the sample mean.

Continuous random variable: The uniform distribution

Bruce M. Boghosian

Motivation

Bernoulli trials

distribution

Uniform distribution

otandard normal distribution

Summary

■ Suppose $X \in \mathbb{R}$ has the continuous *probability density function*,

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } X \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

- Normalization: $\int_{\mathbb{R}} dx \ f_X(x) = \int_a^b dx \ \frac{1}{b-a} = \frac{b-a}{b-a} = 1$
- Mean: $\int_{\mathbb{R}} dx \ f_X(x)x = \int_a^b dx \ \frac{x}{b-a} = \frac{b+a}{2}$
- Variance: $\int_{\mathbb{R}} dx \ f_X(x) x^2 \left(\frac{b+a}{2}\right)^2 = \int_a^b dx \ \frac{x^2}{b-a} \left(\frac{b+a}{2}\right)^2 = \frac{(b-a)^2}{12}$
- \blacksquare This is a two-parameter distribution, with parameters a and b.
- Given experimental results $\vec{x} = \{x_1, x_2, \dots, x_n\}$, can we estimate a and b?

Defining the likelihood for n samples

Bruce M. Boghosian

Motivation

Bernoulli trials

The Poisson distribution

Uniform distribution

normal distribution

Summary

■ Suppose $X \in \mathbb{R}$ has the continuous *probability density function*,

$$f_X(x) = \left\{ egin{array}{ll} rac{1}{b-a} & ext{if } X \in [a,b] \\ 0 & ext{otherwise} \end{array}
ight.$$

Likelihood is

$$L(a,b;\vec{x}) = \prod_{j=1}^{n} f_X(x_j) = \begin{cases} \left(\frac{1}{b-a}\right)^n & \text{if } x_j \in [a,b] \text{ for all } j=1,\ldots,n \\ 0 & \text{if } x_j \notin [a,b] \text{ for any } j=1,\ldots,n \end{cases}$$

- Choose $a \le \min_j x_j$ and $b \ge \max_j x_j$ so result is $\left(\frac{1}{b-a}\right)^n$.
- Maximize result by choosing $a_e = \min_j x_j$ and $b_e = \max_j x_j$.

Maximum likelihood estimation of a and b

Bruce M. Boghosian

Motivatio

Bernoulli tria

The Poisson

Uniform distribution

Standard normal distribution

- Maximize $L(a, b; \vec{x})$ by choosing $a_e = \min_j x_j$ and $b_e = \max_j x_j$.
- Maximum likelihood estimators for a and b are

$$\hat{a}(\vec{x}) = \min_{j} x_{j}$$

$$\hat{b}(\vec{x}) = \max_{j} x_{j}$$

Continuous random variable: The standard normal distribution

Bruce M. Boghosiar

Motivatio

Bernoulli tria

The Poissor distribution

Uniform distribution

Standard normal distribution

Summary

■ Suppose $X \in \mathbb{R}$ has the continuous *probability density function*,

$$f_X(x) = \frac{1}{\sqrt{2\pi \nu}} \exp\left[-\frac{(x-\mu)^2}{2\nu}\right],$$

which we recognize to be normalized, with mean μ and variance ν .

- This is a two-parameter distribution, with parameters μ and ν .
- Given experimental results $\vec{x} = \{x_1, x_2, \dots, x_n\}$, can we estimate μ and ν ?

Defining the likelihood for n samples

Bruce M. Boghosian

Motivatio

Bernoulli tria

The Poisson distribution

Uniform distribution

Standard normal distribution

Summary

Likelihood is

$$L(\mu, \nu; \vec{x}) = \prod_{j=1}^{n} f_X(x_j) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\nu}} \exp\left[-\frac{(x_j - \mu)^2}{2\nu}\right]$$

Log likelihood is

$$\ln L(\mu, \nu; \vec{x}) = \sum_{j=1}^{n} \left[-\frac{1}{2} \ln (2\pi \nu) - \frac{(x_j - \mu)^2}{2\nu} \right]$$
$$= -\frac{n}{2} \ln (2\pi \nu) - \frac{1}{2\nu} \sum_{j=1}^{n} (x_j - \mu)^2$$

■ We must find maximum with respect to both μ and ν .

Maximum likelihood estimation of μ and ν

Bruce M. Boghosian

Motivation

Bernoulli tria

The Poisson distribution

Uniform distribution

Standard normal distribution

Gummary

■ Log likelihood is
$$\ln L(\mu, \nu; \vec{x}) = -\frac{n}{2} \ln (2\pi \nu) - \frac{1}{2\nu} \sum_{i=1}^{n} (x_i - \mu)^2$$

Set partial derivatives to zero

$$0 = \frac{\partial}{\partial \mu} \ln L(\mu, \nu; \vec{x}) = \frac{1}{\nu} \sum_{j=1}^{n} (x_j - \mu) = \frac{1}{\nu} \left(\sum_{j=1}^{n} x_j - n\mu \right)$$
$$0 = \frac{\partial}{\partial \nu} \ln L(\mu, \nu; \vec{x}) = -\frac{n}{2\nu} + \frac{1}{2\nu^2} \sum_{j=1}^{n} (x_j - \mu)^2$$

■ Solving for location of maximum (μ_e, ν_e) yields

$$\mu_e = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $v_e = \frac{1}{n} \sum_{i=1}^{n} \left[x_i - \left(\frac{1}{n} \sum_{k=1}^{n} x_k \right) \right]^2$

Maximum likelihood estimation of μ and ν

Bruce M. Boghosian

Motivation

Bernoulli tria

The Poisson

Uniform distribution

Standard normal

Summary

Maximum likelihood estimators for a and b are

$$\hat{\mu}(\vec{x}) = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$\hat{v}(\vec{x}) = \frac{1}{n} \sum_{j=1}^{n} \left[x_j - \left(\frac{1}{n} \sum_{k=1}^{n} x_k \right) \right]^2$$

Summary

Bruce M. Boghosia

Motivation

Bernoulli trial

The Poissor distribution

Uniform distribution

normal distribution

- We have learned the method of maximum likelihood estimation.
- Allows estimation of parameters if form of the distribution is known a priori.
- We have seen examples with discrete and continuous probability functions.
- We have seen examples with one and two parameters.
- We have seen examples where using the log likelihood is useful and not useful.
- In all cases, we have calculated *estimator functions*.