

Økt 7 (av 12)

DB1100 Databaser

(Tomas Sandnes / tomas.sandnes@kristiania.no)

Dagens temaer

Dagens tema: Modellering ER, del 1 (av 2).

- Dagens pensum: (samme som neste uke!) Læreboka, kapittel 7 & 8.1
- Tilbakemelding SQL Saturday
- Status arbeidskrav
- Fra forrige økt: Resultater Kahoot
- Nytt innhold: Datamodellering med ER

Tilbakemelding på SQL Saturday, 1. september

- Hei, for en drøy måned siden (1. september) var det SQL Saturday på skolen.
- De som stod for arrangementet vil gjerne ha tilbakemeldinger fra studenter som deltok!
- Derfor: Var du med på SQL Saturday på Fjerdingen den 1. september?
 - Flott om du da vil sende en kort tilbakemelding til <u>event@kristiania.no</u>! :-)

Status arbeidskrav

- Alle dere som ikke leverte arbeidskrav:
 - Se bort fra denne sliden. :-)
- Frist for peer review av arbeidskrav #1 var i går.
 - Dere får en bekreftelse på levert peer review snart (i dag eller i morgen).
 - Dere vil få tilbakemelding (peer review) av deres egen video.
- Dere som har levert peer review:
 - Dere får snart (når jeg har fått sendt ut bekreftelser på peer review, over) utdelt arbeidskrav #2, inklusive info om innhold og frist for dette!

Resultat, forrige Kahoot

- Forrige gang slo dere fjorårets studenter hårfint!
 - De klarte 64,17 % riktig svar.
- Dere: 64,66 % riktig svar!
 - Dere er helt rå! B-)

Lærdom fra Kahoot

Spm. 7: Hvilket av følgende alternativer er ikke en gyldig datatype i MySQL?

- A) "varchar" (8 svar)
- B) "date" (23 svar)
- C) "int" (6 svar)
- D) "Ingen av de andre alternativene" (34 svar)

"date" er absolutt en gyldig datatype i MySQL! (En annen gyldig datatype er "datetime", kanskje noen dermed tenkte at "date" ikke var en gyldig type?)

For oversikt over datatyper, se f.eks.:

- <u>https://dev.mysql.com/doc/refman/8.0/en/data-types.html</u>
- https://www.w3schools.com/sql/sql_datatypes.asp

Lærdom fra Kahoot, #2

Spm. 8: Verdien NULL kan forklares slik:

- A) NULL er det samme som 0 | 0 svar
- B) NULL er det samme som en blank ("space") | 37 svar
- C) NULL er det samme som et linjeskift ("enter") | 0 svar
- D) Ingen av alternativene ovenfor | 34 svar

Kanskje var det vanskelig formulert, å skjønne at med alternativ B 'blank ("space")' så mente jeg mellomromstegnet?

• Uansett: NULL er en form for "ingenting"! Ikke 0, ikke mellomrom, ikke linjeskift. :-)

Modellering

- Hittil har vi sett på hvordan det er å jobbe mot eksisterende schema/ databaser. Da er tabellene alt definert for oss. Vi har hatt fokus på:
 - select queries.
 - insert into, update og delete from.
 - create table, alter table og drop table.
- Av og til ønsker vi å være arkitektene bak databasen.
 - Da kommer ER modellering inn i bildet.

Modellering – forts.

- ER modellering:
 - ER = Entity Relationship
- NB: Her må vi holde tunga rett i munnen:
 - "Relation" er et generelt relasjonsdatabaseuttrykk, og betyr tabell.
 - "Relationship" brukes i modelleringssammenheng, og betyr koplingen mellom to tabeller. Boka kaller dette forhold eller relasjon.
- Merk: MySQL Workbench bruker uttrykket EER modell (<u>Extended Entity Relationship</u>).
 - Du finner info om EER-modell i læreboka, kap. 7.6.4.

Om notasjoner

- Det finnes en rekke ER notasjoner.
- Du kan velge om du vil benytte kråkefot eller UML på eksamen.
 - Men bruk valget ditt konsekvent.
- LearnER, MySQL Workbench og læreboka bruker kråkefot.
- På mine slides bruker jeg UML.
- Dette er de vanligste notasjonene.
 - Vi tar ikke for oss resten i DB1100.

(Kilde: Wikipedia)

ER diagram (modellering)

- Vi kan vise modellen av databasen World som et ER diagram:
 - Entity
 - Relationship
- Denne modellen er laget i Gliffy: www.gliffy.com/
- <u>Lucidchart</u> og <u>Draw</u> er gode alternativer.
- Velg selv, men velg gjerne noe som er gratis. :-)

Entitet, Relasjon (forhold) og Attributt

- Entitetstype: En gruppe objekter med samme attributter der alle objekter har en selvstendig eksistens.
 - Entitetsforekomst: Et unikt identifiserbart objekt av en entitetstype.
- Relasjonstype: En mengde meningsfulle assosiasjoner mellom entitetstyper.
 - Relasjonsforekomst: En unik identifiserbar assosiasjon som inkluderer én forekomst fra hver representerte entitetstype.
- Attributt: En egenskap til en entitets- eller relasjonstype.

Begrepsmessig (konseptuell) og logisk modell

- Begrepsmessig (konseptuell) modell omtales i kapittel 7 i læreboka.
 - Dette er den enkleste modellen.
 - Når vi benytter LearnER (mer info om dette verktøyet i dagens øvingsoppgaver) begynner vi evt. med konseptuell fase før vi går til den neste:
- Logisk modell beskrives i kapittel 8.1 i læreboka.
 - I LearnER er alltid logisk fase med.

Svake entiteter og identifiserende forhold

 Når vi benytter kråkefot-notasjon kan vi tydeliggjøre svake entiteter og identifiserende relasjoner.

Svake entiteter

- Eksistensen til forekomster av den svake entiteten avhenger av eksistensen til forekomsten av entiteten den er knyttet til.
- Identifikatoren til en svak entitet er helt eller delvis arvet fra andre entiteter.

Identifiserende forhold:

- Relasjoner mot svake entiteter, som skal føre til arv av identifikator, kalles identifiserende, og tegnes som heltrukne linjer.
- Alle andre forhold kalles ikke-identifiserende og tegnes som stiplede linjer.
- Eksempel fra læreboka: (kap. 7.4)
 - Saga Kino og salen Saga 2.

Eksempel case: prosjektstyring

- Et firma ønsker å få oversikt over sine prosjekter. De har leid oss inn for å lage en databaseløsning som ordner dette.
- De ønsker spesifikt å få oversikt over følgende:
 - Hvilken avdeling (nummer, navn) eier hvert prosjekt?
 - Hvilke prosjekter (nummer, tittel) involverer hvilke ansatte?
 - Hvor mye tid benytter hver ansatt (id, navn) per prosjekt?
 (NB: Denne siste er litt vanskelig å plassere på rett sted.)
- Modelleringsspørsmål:
 - Hvilke entiteter (kommende tabeller) må vi ha?
 Og hvilke attributter skal plasseres i entitetene?
 - Hva er relasjonene (koplingene) mellom entitetene?
 (Hvordan hører de sammen: En til en? En til mange? Mange til mange?)

Entiteter og attributter

- Ut fra spesifikasjonen kommer vi fram til et behov for følgende entiteter:
 - Avdeling
 - Prosjekt
 - Ansatt
- Videre trenger vi f
 ølgende attributter:
 - Avdeling: AvdNr, AvdNavn
 - Prosjekt: ProsjektNr, Tittel
 - Ansatt: Id, Navn

Relasjoner

- Relasjonene er ikke oppgitt i spesifikasjonen, men det er logisk(?) å anta relasjoner som oppgitt under.
 - (Vi bør tidlig i prosjektet få de bekreftet av kunden!)
- Relasjonen avdeling & ansatt:
 - En avdeling kan ha mange (symbol: *) ansatte.
 - En ansatt tilhører én (symbol: 1) avdeling.
- Relasjonen prosjekt & avdeling:
 - Et prosjekt tilhører én (symbol: 1) avdeling.
 - En avdeling kan ha mange (symbol: *) prosjekter.

Relasjoner – forts.

- Relasjonen prosjekt & ansatt:
 - Et prosjekt kan bemannes av mange (*) ansatte.
 - En ansatt kan jobbe parallelt på mange (*) prosjekter.

- Modellen begynner å falle på plass! :-)
- Men vi har én attributt igjen:
 - Vi trenger å vite "tid per ansatt per prosjekt".
 - Men putte denne hvor?
 - På relasjonen prosjekt & ansatt!

Koblingsentiteter

- Vi la inn et attributt på relasjonen mellom Ansatt og Prosjekt.
 - Relasjonen er i dette tilfellet et mange-til-mange-forhold: En ansatt kan delta i mange prosjekter. Et prosjekt kan ha mange prosjektdeltakere (ansatte).
- Når vi har et mange-til-mange-forhold introduserer vi en koblingsentitet, og attributtene legges i denne entiteten.
- Vi kaller overgangen fra mange-til-mange-forhold til koblingsentitet for *entitisering*.
- Kapittel 7.5 i boka forklarer dette godt! :-)

Relasjoner, nytt uttrykk

Kardinalitet:

- Vi husker fra før av at vi har kardinalitet i en tabell, og at dette betyr det antall rader tabellen inneholder.
- På liknende måte har vi kardinalitet ifbm. ER-modellering:
 - Kardinaliteten angir det største antall koplinger en entitet som deltar i en gitt relasjon kan ha.
 - Eksempel: En ansatt kan maks tilhøre 1 avdeling. Kardinaliteten til ansatt i "ansatt-avdeling relasjonen" er derfor 1. (For avdeling i samme relasjon er den '*'.)

ER-skjema, ord/uttrykk - UML

To nye nøkkeltyper

Supernøkkel

- En eller flere kolonner som danner en unik identifikator for en rad i en tabell.
- NB: Kan godt være flere kolonner enn det minste, unike utvalget. (Alle kolonner i en tabell til sammen er dermed alltid en supernøkkel.)

Kandidatnøkkel

 En supernøkkel som ikke kan reduseres til færre kolonner om den fortsatt skal være en unik identifikator.

Repetisjon, fra før har vi lært:

- Primærnøkkel: (PK) De(n) kolonnen(e) vi velger å bruke som vår unike identifikator for en rad i en tabell.
- Fremmednøkkel: Kolonne(r) som viser til primærnøkkelen i en annen tabell.

Oppgave!

• Hvilke supernøkler og kandidatnøkler har vi her?

ProsjektNr (fra Prosjekt)	ld (fra Ansatt)	Timer
1001	1	12
1002	1	44
1002	2	20
1002	3	125
1003	2	25
1004	2	5
1004	3	10
1005	1	10
1006	1	20
1006	2	125

Videre arbeid i dag (og kort om neste gang)

- Neste gang (torsdag om 1 uke), Modellering ER del 2:
 - Pensum er samme som til i dag: Kapittel 7 & 8.1
- NÅ: (om du ikke alt har gjort det)
 - Lese kap. 7 & 8.1 i pensumboka.
 - Begynne på øvingsoppgaver!
- Etterpå:
 - Øving (flipped) 12:15 14:00, sjekk TimeEdit for rom.
 Teori (flipped) 14:15 16:00, auditoriet.