Real-time Focus Peaking

VHDL BASED KERNEL

Top Module

Top Module

GRB Gr Module

Case	Code	Condition
C1	1000	L_ptr=0 &c_ptr=0
C2	1001	L_ptr=0 &c_ptr/=0 &c_ptr /= (columns-1)
C3	1010	L_ptr=0 & c_ptr /= (columns-1)
C4	1011	L_ptr/=0 & L_ptr/=0(Rows-1) & c_ptr /= (columns-1)
C5	1100	L_ptr/=0(Rows-1) & c_ptr /= (columns-1)
C6	1101	L_ptr/=0(Rows-1) & c_ptr/=0 & c_ptr /= (columns-1)
C7	1110	L_ptr/=0(Rows-1) & c_ptr/=0
C8	1111	L_ptr/=0 & L_ptr/=0(Rows-1) & c_ptr/=0
C9	0001	Normal case
	0000	NO ACTION

L_ptr = Row pointer C_ptr = Column pointer

Sobel kernel

$$H_0 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$H_{45} = \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$H_{90} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix},$$

D₁₃₅

H₁₃₅

$$H_0 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad H_{45} = \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \qquad H_{90} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad H_{135} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

Multiplying by:-

-1 = 2s compliment

-2 = left shift and 2s compliment

Pixel_edge value

2 = left shift

Second Evaluation

tasks

1: Simulate the IP from top level to the structural level

2: Instantiate the IP into the AXIOM pipeline

Simulation

- To Simulate the IP the main structure was the line buffer.
- To test the line buffer, external signals in form of random pixel values were forced on the line buffer (5x5 for testing purpose) over a period of time so that all the pixels streams through the pipeline.
- The result of the pipeline was observed and the generated window pixels were compared so as to verify the correct functioning of the pipeline.
- •The top module was tested to see if the output stream removes the blue and green component from the incoming pixels whose grey value was below a preset thresh hold.

Simulation result for line buffer

RTL schematic of the IP

Instantiation

INSTANTIATE THE IP INTO THE AXIOM PIPELINE

Output Image Processing Pipeline (IP input)

Output Image Processing Pipeline (IP input)

•Didn't understand the functioning of the HDMI/RGB scan...that handles the timing...beacause first of all im not able to find data_valid signal flowing through the stream Ips like thematrix ...LUTs....secondly without EOL and SOF im not able tosee how are the timing like blank and sync signals being generated...and how address is being generated for the HP_reader