OUTCOME 1

n- K1 - K2 out 3

Musti nomired

Distribution.

2. Repair calls for central air conditioners fall into three general categories: coolant leakage, compressor failure, and electrical malfunction. Experience has shown that the probabilities associated with the three are 0.5, 0.3, and 0.2, respectively. Suppose that a dispatcher has logged in ten service requests for tomorrow morning. Use the answer to Question 3.2.18 to calculate the probability that three of those ten will involve coolant leakage and five will be compressor failures.

Q2 n=10 K1=3 K2=5 P1=0.5 P2=0.3 P3=1-P1-P2 $P = \frac{10!}{3!5!2!} \cdot 0.5^{3} \cdot 0.3^{5} \cdot 0.2^{2}$ = 0.031

3. Find the probability mass function (pmf) for the discrete random variable X whose cumulative distribution function (cdf) at the points $x = 0, 1, \dots, 6$ is given by $F_X(x) = x^2/36$.

Q3 FX(x) = IP(X & x) $P_X(x) = |P(X = x)|$ $F_{X}(20) = \frac{22}{36}$ Y.U. X = 40,1,, ..., 69

$$F_{X}(0) = 0 \quad F_{X}(1) = \frac{1}{16}b \quad F_{X}(6) = 1$$

$$F_{X}(1) = \frac{1}{16}b \quad F_{X}(2) = \frac{9}{2}b$$

$$F_{X}(1) = \frac{1}{16}b \quad F_{X}(2) = \frac{1}{16}b$$

$$F_{X}(2) = \frac{1}{16}(x = x) = \frac{1}{16}(x = x) - \frac{1}{16}(x = x) - \frac{1}{16}(x = x) = \frac{9}{2}b$$

$$F_{X}(2) = \frac{1}{16}(x = x) - \frac{1}{16}(x = x) = \frac{9}{2}b \quad F_{X}(2) = \frac{1}{16}(x = x) - \frac{1}{16}(x = x) = \frac{9}{2}b \quad F_{X}(2) = \frac{1}{16}b \quad F_{X}(2) = \frac{1}{16}b \quad F_{X}(3) = \frac{1}{16}b \quad F_{X}(4) = \frac{1}{16}b \quad F_{X}(5) = \frac{9}{2}b \quad F_{X}(6) = \frac{1}{16}b \quad F_{X}(6) = \frac$$

7. Independent trials consisting of the flipping of a coin having probability p of coming up heads are continually performed until either a head occur or a total of n flips is made. Let X denote the number of times the coin is flipped, find $p_X(k)$, and check that it is a pmf.

Q7
$$X: \# \text{ of times the coin is flapped.}$$

$$P_{X}(k) = P(X = k)$$

$$= CI-P)^{k-1}P$$

$$K < N$$

$$P_{X}(k) = (I-P)^{n-1}P + CI-P)^{n}$$

$$\sum_{k=1}^{n} P_{X}(k) = 1$$

$$\sum_{k=1}^{n-1} CI-P > k^{-1}P + CI-P^{n}$$

$$\sum_{k=1}^{n-1} CI-P > k^{-1}P + CI-P^{n}$$

$$= \sum_{k=1}^{n} \frac{(1-CLb)_{k-1}}{(1-b)_{k-1}} + \frac{(1-b)_{k-1}}{(1-b)_{k-1}} = 1$$

8. Find E(X) and Var(X), where X is the outcome when we roll a fair die.

$$E(X) = \frac{1}{2} \times P_{X}(X)$$

$$= \frac{1}{6} (1 + 2 + \cdots + 6)$$

$$= \frac{7}{2}$$

$$Vor(X) = E(X^{2}) - (E(X))^{2}$$

$$= \frac{91}{6} - (\frac{7}{2})^{2}$$

$$= \frac{35}{12}$$

$$=\frac{\sum 2 \cdot P_{X}(x)}{5(1+4+9+16+25+36)}$$