А.М.Кириллов, Е.И.Красавина.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ КАЧЕНИЯ МЕТОДОМ НАКЛОННОГО МАЯТНИКА

Методические указания к лабораторной работе M-36 по общему курсу физики. Под редакцией Л.Н. Климова.

<u>Цель работы</u> - экспериментальное изучение основных закономерностей трения качения и измерение коэффициента трения качения для разных материалов.

Теоретическая часть

Трение качения возникает при перекатывании цилиндрического юга сферического тела по поверхности другого тела. Для примера рассмотрим шар радиусом R. и массой m, лежащий на горизонтальной поверхности (рис. 1). Приложим к оси шара силу \vec{Q} , меньшую, чем максимальная сила трения покоя $F_m = \mu N$, где μ статический коэффициент трения скольжения, а N - нормальная реакция опоры. Тогда в точке A возникает сила трения \vec{F} , численно равная силе \vec{Q} . Если сила нормальной реакции опоры N приложена в точке A, то она уравновешивает силу $\vec{P} = m\vec{g}$, а под действием пары сил \vec{Q} и \vec{F} будет происходить качение шара.

Однако в действительности все происходит несколько иначе. При взаимодействии шара и плоскости их поверхности деформируются, и касание их происходит вдоль некоторой области AB (рис. 2). При действии на шар силы \vec{Q} равнодействующая сил реакции опоры имеет точку приложения, смещенную к точке B, т.е. в сторону действия силы \vec{Q} . С увеличением силы \vec{Q} это смещение растет до некоторой величины μ . В предельном положении на шар будут действовать две пары

сил с моментами $M_1 = Q_{IIP}R$ и $M_2 = \mu N$, уравновешивающими друг друга. Из равенства моментов $M_1 = M_2$ находим значение предельной силы

$$Q_{IIP} = \frac{\mu}{R} N \tag{1}$$

Пока $Q < Q_{\Pi P}$, шар покоится. При $Q = Q_{\Pi P}$ начинается качение.

Входящая в выражение (1) величина μ носит название коэффициента трения качания.

Коэффициент трения качения μ - это плечо пари сил, создающих момент трения качения, при котором начинается качение без скольжения. Коэффициент μ измеряется в единицах длины. Его значение зависит от материала тела и соприкасающейся с ним поверхности и определяется опытным путем.

Для большинства материалов отношение μ/R значительно меньше, чем статический коэффициент трения скольжения $f_{\rm c}$. Этим объясняется то, что в технике, когда это возможно, стремятся заменить скольжение качением.

Для исследования трения качения в данной работе использован наклонный маятник (рис. 3).

Рис. 3

Шарик 1 массой m подвешен на нити длиной L и давит на наклонную плоскость 2, угол наклона β которой можно изменять.

Если вывести шарик из положения равновесия, он будет катиться по плоскости, и его движение примет характер затухающих колебаний. Коэффициент трения качения с помощью наклонного маятника определяют путем измерения уменьшения амплитуды его колебаний за определенное число периодов.

За n периодов колебания маятника шарик переходит из положения B в положение B'. При этом маятник теряет энергию $\Delta E = mgh$, равную работе момента сил сопротивления при изменении угла отклонения маятника на величину S/R, где S - длина дуги, которую описывает шарик,

$$\Delta E = \Delta A_P + \Delta A_I \tag{2}$$

Здесь ΔA_P - работа момента силы трения качения ($\Delta A_P = MS/R$);

 ΔA_{I} - работа, затрачиваемая на преодоление сопротивления среда и трения в подвесе маятника;

 Δh - изменение положения центра тяжести маятника. Пренебрегая ΔA_I , ввиду ее малости, имеем

$$mg\Delta h = \mu NS/R.$$
 (3)

Из геометрических соображений (см. рис. 3) найдем $\Delta h = \Delta L sin \beta$ и $N = mgcos \beta$. Подставив Δh и N в выражение (3), получим

$$mg\Delta L\sin\beta = \frac{\mu}{R}mg\cos\beta,\tag{4}$$

где R - радиус шара; $\Delta L = L(\cos\alpha_n - \cos\alpha_0)$ (см. рис. 3), α_0 и α_n - амплитудные значения угла отклонения маятника от положения равновесия в начальный момент и через n полных колебаний соответственно.

Из выражения (4) определяем коэффициент трения качения

$$\mu = \frac{R}{S} tg \beta L(\cos \alpha_n - \cos \alpha_\theta)$$
 (5)

Путь, который проходит центр тяжести маятника за п колебаний,

$$S=4nL\alpha_{CP} \tag{6}$$

При малых углах α_0 и α_n , учитывая, что $\cos \alpha \cong 1 - \frac{\alpha^2}{2}$, получим

$$\mu = Rtg\beta \frac{\alpha_0 - \alpha_n}{4n} \tag{7}$$

где α_0 и α_n - выраженные в радианах углы отклонения маятника в начальный и конечный моменты наблюдения.

<u>Экспериментальная часть</u> <u>Описание установки</u>

Установка для определения коэффициента трения качения представлена на рис. 4.

На вертикальной стойке 2 основания 1 размещен червячный редуктор, который осуществляет поворот и фиксацию нижнего кронштейна 3. Червячный редуктор приводится во вращение маховичком, причем угол наклона образца отсчитывается по шкале 4. Нижний кронштейн 3 представляет собой литую деталь сложной конфигурации, на которой крепятся: шкала отсчета амплитуда колебаний маятника 5; вертикальный стержень 6, предназначенный для крепления верхнего кронштейна 7; фотоэлектрический датчик 9.

Шкала 5 представляет собой пластинку, в которой выфрезеровано гнездо, предназначенное для установки сменных образцов. По шкале определяется угол отклонения маятника, от положения равновесия до 11°. Шкала 5 снабжена зеркальным отражателем, который служит для уменьшения параллакса при отсчете угла отклонения маятника.

Образец представляет собой прямоугольную пластину, имеющую две рабочих поверхности с разной шероховатостью. В верхнем кронштейне 7 размещается механизм подвеса маятника, который позволяет регулировать его длину. Маятник

3 - тонкая эластичная нить с подвешенным на ней шаром, который в свою очередь имеет конус, предназначенный для пересечения оптической оси фотоэлектрического датчика 9. Фотоэлектрический датчик 9 расположен на нижнем кронштейне и служит для выдачи электрического сигнала на физический миллисекундомер 10, выполненный как самостоятельный прибор с цифровой индикацией времени и количества полных периодов колебаний маятника.

Рис. 4

Подготовка установки к работе.

- 1. Установить в гнездо шкалы исследуемый образец.
- 2. Произвести регулировку положения основания при помощи регулировочных опор таким образом, чтобы нить подвеса маятника совпала с нулевым делением шкалы.
- 3. Установить с помощью маховичка угол наклона образца, равный 90°; при этом шарик должен касаться исследуемой поверхности образца при отсутствии силы нормального давления, что достигается с помощью регулировочных опор.
- 4. Установить угол наклона образца 60° .
- 5. Отрегулировать длину маятника с помощью устройства на верхнем кронштейне таким образом, чтобы, при колебаниях маятника шарик перемещался по рабочей поверхности образка, не касаясь шкалы.

- 6. Подключить к разъему "Вход" на миллисекундомере фотоэлектрический датчик
- 7. Включить в сеть шнур питания миллисекундомера.
- 6. Нажать кнопку "Сеть", расположенную на лицевой панели миллисекундомера; при этом должны загореться цифровые индикаторы. 9. Отклонить маятник на угол 5-6°, нажать кнопку "Сброс" на лицевой панели миллисекундомера и плавно отпустить маятник. Убедиться, что маятник совершает колебательные движения, а миллисекундомер производит отсчет времени и количества полных периодов колебаний маятника.
- 10. После совершения маятником 15-20 колебаний нажать на кнопку "Стоп" миллисекундомера, при этом убедиться, что счет времени и количества полных периодов колебаний прекращается в момент окончания очередного периода колебаний маятника,

Выполнение эксперимента.

- 1. Протереть рабочие поверхности исследуемого образца неворсистой тканью, смоченной в спирте,
- 2. Установить угол наклона образца 45°,
- 3. Отклонить маятник от положения равновесия на угол α_0 =6°. Нажать на кнопку "Стоп" миллисекундомера при достижении амплитуды колебаний маятника α_n =2°. Снять показания миллисекундомера о количестве полных периодов колебаний маятника.
- 4. Результаты эксперимента занести в соответствующие графы таблицы.

№ образца	β	α	α	n	μ	$\overline{\mu}$	$\Delta\mu$	ε

- 5. Аналогичные измерения произвести для углов наклона образца 30° и 60° .
- 6. Заменить исследуемый образец и провести для него эксперимент по пунктам 1-5.

Окончательный результат эксперимента для каждого образца представить в виде $\mu = \overline{\mu} \pm \Delta \mu$.

Чтобы рассчитать $\Delta \mu$, воспользуемся выражением для полуширины доверительного интервала, результата косвенных измерений:

$$\Delta \mu = \sqrt{\left(\frac{\partial \mu}{\partial R}\right)^2 \Delta R^2 + \left(\frac{\partial \mu}{\partial \alpha}\right)^2 \Delta \alpha^2 + \left(\frac{\partial \mu}{\partial \beta}\right)^2 \Delta \beta^2}$$
 (8)

Подставляя значение μ, определенное по формуле (7), получим

$$\Delta\mu = \sqrt{\left(\alpha \cdot tg\beta\right)^2 \Delta R^2 + \left(R \cdot tg\beta\right)^2 \Delta \alpha^2 + \left(\frac{\alpha R}{\cos^2 \beta}\right)^2 \Delta \beta^2}$$
(9)

где ΔR , $\Delta \alpha$ и $\Delta \beta$ - абсолютные погрешности прямых измерений R, α и β ,

$$\alpha = \frac{\alpha_0 - \alpha_n}{4n}$$
, a $\Delta \alpha = \frac{1}{4n} \sqrt{(\Delta \alpha_0)^2 + (\Delta \alpha_n)^2}$.

Преобразуем выражение (9) к виду, удобному для вычислений:

$$\frac{\Delta\mu}{\mu} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta\alpha}{\alpha}\right)^2 + \left(\frac{2\Delta\beta}{\sin 2\beta}\right)^2} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \frac{\left(\Delta\alpha_0\right)^2 + \left(\Delta\alpha_n\right)^2}{\left(\alpha_0 - \alpha_n\right)^2} + \left(\frac{2\Delta\beta}{\sin 2\beta}\right)^2}$$

Абсолютные погрешности ΔR , $\Delta \alpha_0$, $\Delta \alpha_n$ и $\Delta \beta$ принять равными цене деления соответствующих шкал.

Контрольные вопросы

- 1. Что является причиной трения между телами?
- 2. Что понимают под коэффициентом трения качения?
- 3. Зависит ли величина коэффициента трения от силы давления тела на поверхность соприкосновения?
- 4. Зависит ли величина силы трения от площади соприкасающихся поверхностей?
- 5. Показать графически зависимость силы трения от силы давления при постоянном коэффициенте трения.

Литература

- 1. Савельев И.В. Курс общей физики, т. 1. М.: 1982. 432 с.
- 2. Лабораторный практикум по физике /Под ред. А.С.Ахматова. М.: 1980. 360 с.