Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет» Факультет электроники и вычислительной техники Кафедра физики

	ОТЧЕТ		
О научно-исследовательс	кой практике на		ание организации
Руководитель практики от организации		подпись	_ Виснер С. В.
Руководитель практики от университета	доцент	подпись	_ Поляков И. В.
Студент группы Ф-369	подпи	СР	_ Слоква В. И.

Отчет защищен с оценкой ____

Аннотация

В данной работе приведены цели и задачи научно-исследовательской практики, а так же приведена топология наиболее распространенных импульсных источников питания. Приведено краткое описание прохождения практики (описаны программы по расчету моточных компонентов, используемые формулы, описание практической части).

Список ключевых понятий

Обратноходовый преобразователь, випер, дроссель, трансформатор, мостовой преобразователь, диодный мост, индуктивность.

Содержание

В	Введение							
1	Осн	овные схематические решения для импульсных источников пи-						
	тан	ия	6					
	1.1	Понижающий преобразователь мощностью до нескольких киловатт	6					
	1.2	Повышающий преобразователь мощностью до нескольких киловатт	6					
	1.3	Инвертирующий преобразователь	7					
	1.4	Обратноходовой преобразователь мощностью до 200 Вт	7					
	1.5	Прямоходовой преобразователь	7					
	1.6	Полумостовой преобразователь	8					
	1.7	Мостовой преобразователь	Ç					
2	Пра	актическая часть	g					
Ст	іисон	к литературы	еатт 6 затт 6 . 7 . 7 . 7					

Введение

Прохождение практики студентами на предприятии подразумевает собой ознакомление студентов с реальным технологическим процессом и закреплением теоретических знаний, полученных в ходе обучения.

На протяжении долгого времени остается актуальным вопрос о производстве различных источников питания, ведь от них зависит нормальное функционирование бытовых электроприборов. Каждый год рынок предлагает большое разнообразие подобной продукции, имеющую различные входные и выходные характеристики, соответствующие спросу потребителей. К ним относятся источники питания для мобильных устройств, силовая электроника, различные инверторы напряжения и т. п.

В данной работе представлена наиболее распространенная топология импульсных источников питания, а также более детально описан преобразователь с передачей энергии на обратном ходу, т. к. приведенная схема является одной из наиболее часто применяемых в электронике рассматриваемого типа.

1 Основные схематические решения для импульсных источников питания

1.1 Понижающий преобразователь мощностью до нескольких киловатт

Понижающий преобразователь (рис. 1) относится к разряду прямоходовых схем. Он позволяет получать выходную мощность в несколько киловатт. Предназначен для использования в тех случаях, когда не нужна изоляция между первичной и вторичной сторонами.

Для повышения эффективности вместо диода может также использоваться транзистор с дополнительной схемой управления, связанной с ШИМ-контроллером (синхронный выпрямитель). Применение синхронного выпрямителя позволяет существенно повысить КПД преобразователя. Так, например, в типовом случае понижающий преобразователь без синхронного выпрямителя имеет КПД, равный 86%, а с ним – 95%. В устройствах, рассчитанных на большие токи потребления (например, в схемах питания процессоров), часто используется многофазное преобразование, что позволяет снизить токи пульсаций и тем самым снизить нагрузку на выходные ёмкости и уменьшить габариты индуктора (суммарный объём, занимаемый им на монтажной плате).

1.2 Повышающий преобразователь мощностью до нескольких киловатт

Повышающий преобразователь (рис. 2) относится к типу обратноходовых схем. Его особенность – выходное напряжение всегда больше входного. Выходная мощность может составлять сотни ватт в прерывистом режиме и до нескольких киловатт в непрерывном режиме.

1.3 Инвертирующий преобразователь

Инвертирующий преобразователь (рис. 3) также относится к обратноходовым схемам. Его особенность: выходное напряжение преобразователя имеет отрицательную полярность относительно земли.

Когда ключ замкнут, ток через индуктор линейно растёт и в нем запасается энергия. В момент размыкания ключа напряжение на индукторе меняет знак, ток продолжает течь через диод, заряжая конденсатор.

Как и рассмотренные выше преобразователи, инвертирующая схема также может работать в режиме непрерывного тока в индукторе и в прерывистом режиме.

1.4 Обратноходовой преобразователь мощностью до 200 Вт.

Обратноходовой преобразователь (рис. 4) по принципу работы аналогичен повышающему преобразователю (когда ключ находится в открытом состоянии (замкнут), энергия запасается в трансформаторе/индукторе, при разомкнутом ключе энергия передаётся в нагрузку).

Обратноходовой преобразователь может работать как в режиме непрерывного тока в трансформаторе (индукторе), так и в прерывистом режиме. Следует отметить, что в непрерывном режиме схема очень нестабильна и склонна к автогенерации, поэтому преобразователи этого типа в основном проектируют для работы в прерывистом режиме.

1.5 Прямоходовой преобразователь.

В отличие от обратноходовой схемы, в трансформаторе прямоходового преобразователя энергия не запасается (рис. 5). Когда ключ открыт, к первичной

обмотке прикладывается напряжение питания V_{in} . На обмотке N2 появляется напряжение, открывается диод D2, ток протекает через индуктор LC-фильтр в нагрузку. Когда ключ размыкается, открывается диод D3, энергия, запасённая в индукторе L, поступает в нагрузку. Размагничивание трансформатора происходит через дополнительную обмотку и диод D1.

Схема может работать как в режиме непрерывного тока в индукторе L, так и в прерывистом режиме.

1.6 Полумостовой преобразователь.

Энергия передаётся в нагрузку в течение двух полупериодов цикла. Схема позволяет получать большие выходные мощности (рис. 6). Когда замкнут верхний ключ T1, на первичную обмотку N1 подаётся положительное напряжение, равное $V_{in}/2$ (напряжение на конденсаторах делится ровно пополам). На вторичной обмотке появляется положительное напряжение, кратное коэффициенту трансформации, напряжение через диагональ диодного моста поступает на LC-фильтр в нагрузку.

Далее выдерживается пауза («мёртвое время») до полного закрытия верхнего транзистора и открывается нижний транзистор. На первичную обмотку поступает отрицательное напряжение, на вторичной обмотке появляется напряжение также отрицательной полярности и через вторую диагональ поступает через LC-фильтр в нагрузку.

Когда ни один из ключей не замкнут («мёртвое время»), индуктор отдаёт в нагрузку накопленную энергию. Если ток в индукторе не падает до нуля, то такой режим работы называется непрерывным, если ток падает до нуля, то это прерывистый режим. Прерывистый режим характеризуется большими токами, что приводит к повышенным потерям мощности в ключах и выходных диодах.

1.7 Мостовой преобразователь.

В отличие от полумостовой схемы здесь используются четыре транзистора (рис. 7). Мостовой преобразователь применяется в мощных схемах от единиц до десятков киловатт, что позволяет снизить токи в первичной цепи в два раза по сравнению с полумостовой схемой.

Когда замкнута пара ключей Т1 и Т4, к первичной обмотке N1 прикладывается напряжение питания V_{in} . На вторичной обмотке N2 появляется напряжение, которое через LC фильтр поступает на нагрузку. Затем пара ключей Т1 и Т4 размыкается, после паузы замыкаются ключи Т2 и Т3, на первичную обмотку подаётся напряжение питания V_{in} отрицательной полярности.

Как и полумостовая, мостовая схема может работать в непрерывном режиме или в прерывистом.

Рисунок 7

2 Практическая часть

На рис. **??** приведена электрическая схема обратноходового преобразователя, базируемого на микросхеме *Viper53*. Данная схема очень удобна для рассмотрения общих схемотехнических принципов, которые легко могут быть применены и в большинстве других случаев.

таолица т	— входные	и выходные	характеристики	

Входное напряжение	Выходное Выходной ток		Выходная мощность	Частота преобразо- вания	кпд	
$\begin{array}{c} 220 \text{ VAC} \\ \pm 20\% \end{array}$	12 VDC	0,6 A	7,2 Вт	100 кГц	80 %	

С учетом входных и выходных данных, а также с помощью использования следующих программ: *Viper Flyback* и *Lite-CalcIT* (2000), была разработана и рассчитана схема импульсного блока питания на 12 В.

Рисунок 8 — Электрическая схема

Для проектирования моточных компонентов (трансформаторов, дросселей) были использованы следующие программы: *TransK1.0*, *Forward*, *Flyback*.

Номиналы и наименования компонентов электрической схемы приведены в таблице 2.

C1	C2	C4	C5	C6	C7	C9	C11	C12	R2	R3	R4	
22 мкФ	10	4,7	2,2	47	2,2 нФ	22	0,33	56	6,8	820	10	
– 1 кВ	мкФ	мкФ	ΗФ	нФ	- 2 кВ	Φ_{H}	мФ	мкФ	кОм	Ом	Ом	
L1	L11	T1		D1	D2		03	D	11	В	R1	
6,8	10	1,35	5 _B	SYT11	BZW04-	BAS21		STPS1H100		KC/	KC1071	
мкГн	мкГн	мΓн	4 L	, 1 1 1 1	188		321	3173111100		I.C.		

Таблица 2 — Номиналы и наименования элементов электрической схемы

Рассчитанная схема полностью удовлетворяет заявленным требованиям.

Список использованных источников

- 1. Макашов, Д. Обратноходовый преобразователь [Электронный ресурс] / Д. Макашов 2005-2006. Режим доступа: http://www.bludger.narod.ru/smps/Flyback-R01.pdf
- 2. Фролов, В. В. Язык радиосхем [Текст] / В. В. Фролов 2-е изд., перераб. и доп. М.: Радио и связь, 1988. 128 с.
- 3. Браун, М. Источники питания. Расчет и конструирование [Текст] / М. Браун; пер. с англ. С. Л. Попова – К.: «МК-Пресс», 2007. – 288 с.
- 4. Мэк, Р. Импульсные источники питания. Теоретические основы и руководство по практическому применению [Текст] / Р. Мэк; пер. с англ. С. В. Пряничникова М.: Издательский дом «Додэка-ХХІ», 2008. 272 с.