深圳芯科泰半导体有限公司

深圳市坪山区龙田街道龙田社区佳宝工业园 A 栋 9 层

公司网址: www.liucr.com、www.xktbdt.com

E-mail:492332990@qq.com /liuchangrong@xktbdt.com/liulongjiao@xktbdt.com

XKT-R2

电话: 0755-84533145

无线供电接收芯片

规格书

一、 概述

XKT-R2集成电路,采用最先进的宽电压芯片设计工艺,可最高工作在 3~300V 工作范围内电压使用,主要针对各种电池实现无线充电,此芯片即有大电流开关充电的功能,同时具备有限压稳压的功能,所以可以直接针对各种电池实现大电流强功率充电,可满足超大型设备的电池充电功能,配以不同的电路可充几安、十几安、百安级。大电流有专门的外置电压调节接口,输出电压可以任意改变以适应各种不同电压的电池,价格低廉,适合各种大大小小的蓄电池充电可应用于各种场合,特别适合高电压大电流的电池应用

二、特点

- *工作电压超高可达 300V 使之能够在较宽的电压下均能工作
- *体积小巧
- *外围器件少
- *适合各种不同的电压输出
- *适合各种电池充电
- *充电电流大

三、应用范围

可用于电动牙刷,美容仪,补水仪,嵌入式产品供电、医疗产品、安防产品、防水产品、玩具产品、成人用品、数码产品、LED、采矿设备、手持家用电器等的电池充电

四、脚位图及说明

- 1.为外接指示灯工作引脚: 充电时灯亮, 注意若不外接
- LED 灯或者灯损坏电路将停止工作,若不使用此灯,必须要用一个 3V 的稳压二极管代替。芯片需要 LED 的结电压提供的稳定电压给芯片内部供电。
 - 2.输出开关脚:控制外接功率器件如 MOS 管、三极管继电器等充电开关功能
 - 3.输出电压取样引脚:通过外接高阻值的取样电阻实现充电输出限制电压的取样式
 - 4.IC 接地(VSS)
 - 5.控制电压供电端(VDD)

五、典型应用电路

接收典型应用 1:

接收充电池电路的设计要求(XKT-R2): XKT-R2 是直接对电池等容性负载充电的,通过输出电压判断,输出到设定电压输出断电。适用于 4. 2V 及以上电压的储能设备充电。后端直接接电池,若要加充电管理芯片在后端,那么,调整 XKT-R2 芯片的 R3,减小阻值可以加大可充电的回差电压,避免充电管理先关断引起电池电压下跌而导致 XKT-R2 会反复开关。电路中 D3 LED 灯为充电指示灯,充电时灯亮,充饱后灭,D3LED 若不使用,不可以直接去掉,需要替换为一个 3V 稳压二极管,否则电路无法工作。R1 为输出截止电压修改点,阻值加大,截止电压提高,以适用于不同电池。

注意: C3、C4、L1 是根据发射方案的配套要求会随时做修改的,具体值按照发射所用芯片的规格书来定义。或者以供应商工程师提供的具体值为准。

器	<i>(H</i> -	/=	E.	苗	

器件位置	器件类型	器件参数	器件封装	备注	器件位置	器件类型	器件参数	器件封装	备注
R1	电阻	140K	0603	调整输出电压	С3	电容	根据实际力	方案做调整	NPO 材质
R2	电阻	200K	0603		C4	电容	根据实际力	方案做调整	NPO 材质
R3	电阻	10M	0603	回差电阻	D1	肖特基二极管	SS34	1210	根据电流调整
R4	电阻	2K	0603		D2	二极管	IN4148	0810	
R5	电阻	100K	0603		D3	LED	LED 红	0603	
R6	电阻	7.5K	0603		IC1	芯片	XKT-R2	SOT23-5	
C1	电容	10uF50V	0805	X7R	L1	线圈	根据实际方案做调整		
C2	电容	10uF50V	0805	X7R	BT1	容性负载	锂电池		输出端

指示灯充饱跳转电路:

由于给电池充电时,整体电路的电压会被电池拉低,所以在充电时,D1 常亮,D2 处于熄灭状态;当充电结束时,D1 熄灭,Q1 截止,那么 Q1 前端的电压会有一个明显的提升,这时候,电压高于 DW1 的导通电压,点亮 D2。

单片机检测点的设置:

在使用单片机做充电检测时,需要按照上图的电路,将电路搭出来。IO 为单片机检测的采样点。IO 的工作特点是,接收悬空时,IO 电压为 0V,充电时,R6 的前端电压和电池电压一致,电池充饱后,R6 的前端电压会有一个明显的抬升,一般电压会高于 8V 左右。IO 点的检测电压为 R6 与 R7 分压得到,防止电压过高而击穿单片机的检测脚。实际电压以样板搭出来后的实际电压为准,再去设置单片机的采样电压。分压电阻可以设置 IO 的电压变化范围,防止过压。

5A 高电压大电无线充电电路典型应用 2

12V 24V 36V 48V 5A 大电流应用方案

输出电压可以通过 R6 任意调节

产品实物应用图

0~100mA 小产品微电流充电电路典型应用 3

4. 2V~24V 0~100mA 电路典型应用

输出电压可以通过 R2 任意调节

带指示功能和限流的的小电流电路图 4

实物图片

0~300mA 充电电路图 5

20A 超大电流充电电路典型应用 6

--12V 24V 36V 48V 20A 大电流无线充电应用电路

实物图片

防异物接收识别电路7

0~1000mA 识别接收电路

六、典型工作参数

七、充电特性

八、工作极限

工作温度: -55℃to+125℃ 存储温度: -65℃to+150℃ 最大工作电压: 300V

九、封装形式

SOT23-5 封装