R-programmering VT2022

Föreläsning 7

Josef Wilźen

2022-03-07

Linköpings Universitet

Föreläsning 7

Innehåll föreläsning 7

- Grafik med ggplot2
- Grundläggande statistik
- Linjär regression

ggplot2

ggplot2

- Skapat av Hadley Wickham för över 10 år sedan
- Baseras på "Grammar of Graphics" av Leland Wilkinson
- Alternativ till basgrafiken
- Grunden är alltid en data.frame

Grammar of Graphics

- Abstraktion av grafiska idéer
 - Tänk språk med ordklasser/satsdeelar
- Ger ett teoretiskt ramverk för att bygga grafik.
- Bygga upp grafik lager för lager

ggplot2

- Bygger upp en graf av flera delar:
 - data: en data.frame med all data
 - aes: asethetic mappings
 - geom: geometriska objekt
 - facets: subplottar
 - scales: skalor
 - coordinate system: koordinatsystem

Bild från "R for the rest of us"

ggplot2

- ggplot2 bygger upp en plot med olika lager
 - När plotten är klar så visas den
 - Kan också visa med print()
- Utgår från ggplot()
 - Returnerar ett objekt
- Adderar lager med +
 - t.ex. + geom_point()
- Speciella klasser för ggplot2

Grammar of Graphics

"In brief, the grammar tells us that a statistical graphic is a mapping from data to aesthetic attributes (colour, shape, size) of geometric objects (points, lines, bars). The plot may also contain statistical transformations of the data and is drawn on a specific coordinate system."

Från "ggplot2 book" av Hadley Wickham

aesthetic (aes)

Kopplar ihop färg, form och utseende till data

aes	Beskrivning
x	x-axel
У	y-axel
size	storlek
color	färg
shape	form

geometric (geom)

Vilken geometrisk representation ska användas

geom	Beskrivning
geom_point	Scatterplot
geom_line	Line graph
geom_bar	Barplot
geom_boxplot	Boxplot
geom_histogram	Histogram

aes och geom

Finns även speciella aesthetics för vissa geoms

geom	aes
geom_points	point shape, point size
geom_line	line type, line size
geom_bar	y min, y max, fill color, outline color

Exempel - I

```
ggplot(data = Nile) +
  aes(x = years, y = level) +
  geom_point()

F7_johan_files/figure-beamer/unnamed-chunk-2-1.pdf
```

Exempel - II

```
ggplot(data = Nile) +
  aes(x = years, y = level) +
  geom_line()

F7_johan_files/figure-beamer/unnamed-chunk-3-1.pdf
```

Exempel - III

```
ggplot(data = Nile) +
  aes(x = years, y = level, color = period) +
  geom_point(aes(shape = period))

F7_johan_files/figure-beamer/unnamed-chunk-4-1.pdf
```

Exempel - IV

```
ggplot(data = Nile) +
  aes(x = years, y = level, color = period) +
  geom_line() +
  geom_point()
```

```
F7_johan_files/figure-beamer/unnamed-chunk-5-1.pdf
```

Exempel - V

```
ggplot(data = Nile) +
aes(x = years, y = level) +
facet_grid(period ~ .) +
geom_line()
```

```
F7_johan_files/figure-beamer/unnamed-chunk-6-1.pdf
```

Exempel - VI

```
p <- ggplot(data = Nile) +
  aes(x = years, y = level) +
  facet_grid(~ period) +
  geom_line()
print(p)</pre>
```

```
F7_johan_files/figure-beamer/unnamed-chunk-7-1.pdf
```

Exempel - VII : Teman

```
p + theme_bw()

F7_johan_files/figure-beamer/unnamed-chunk-8-1.pdf
```

Exempel - VIII: Teman

```
p + theme_calc()

F7_johan_files/figure-beamer/unnamed-chunk-9-1.pdf
```

Exempel - IX: Teman

p + theme_clean()

F7_johan_files/figure-beamer/unnamed-chunk-10-1.pdf

Exempel - X : Teman

```
p + theme_minimal()

F7_johan_files/figure-beamer/unnamed-chunk-11-1.pdf
```

qplot

- qplot() liknar plot()
- Bra för snabba grafer
- För mer kontroll använd ggplot()

Statistik

Enklare statistika tester

- Finns massor av olika statistiska tester
 - Väldigt många finns i R också
- För t-tester används t.test()
- För χ^2 -tester används
 - chisq.test(), fisher.test()
- Korrelation och kovarians kan beräknas och testas
 - cor() och cov()
 - cor.test()

Exempel: t.test() - I

[1] 328.9167

```
data("chickwts")
horsebean <- chickwts$weight[chickwts$feed == "horsebean"]
sunflower <- chickwts$weight[chickwts$feed == "sunflower"]</pre>
mean(horsebean)
## [1] 160.2
mean(sunflower)
```

Exempel: t.test() - II

```
mu = 150, conf.level = 0.95)
##
## One Sample t-test
##
## data: horsebean
## t = 0.83507, df = 9, p-value = 0.4253
## alternative hypothesis: true mean is not equal to 150
## 95 percent confidence interval:
## 132.5687 187.8313
## sample estimates:
## mean of x
## 160.2
```

t.test(horsebean, alternative = "two.sided",

Exempel: t.test() - III

160,2000 328,9167

```
t.test(horsebean, sunflower,
       alternative = "two.sided".
       mu = 0, conf.level = 0.95)
##
##
   Welch Two Sample t-test
##
## data: horsebean and sunflower
## t = -9.0449, df = 19.964, p-value = 1.69e-08
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -207.6313 -129.8021
## sample estimates:
## mean of x mean of y
```

Linjär regression

Linjär regression

- I R finns formelobjektet som beskriver relationer mellan variabler
 - ullet Formel skapas med \sim
 - Exempel: y ~ x1 + x2
- Att arbeta med modeller i R kan delas in i fyra steg:
 - 1. Anpassa (träna) en modell
 - 2. Analysera/studera resultatet
 - 3. Diagnostisera
 - 4. Använda modellen och resultaten
- Linjär regression handlar om att hitta en linjär modell

Linjär regression - Anpassa en modell

Behöver en formel och data

library(MASS)
library(car)

Data behöver samma variabler som formeln

```
mod1 <- lm(prestige ~ income + women + education, data=Prestige ~ income + women + education - 1, data=</pre>
```

mod3 <- lm(prestige ~ income:women + education, data=Prest

Linjär regression - Analysera modellen

- Använd följande funktioner för att studera resultatet
 - summary()
 - anova()

Exempel:

```
summary(mod1)
anova(mod1)
anova(mod1, mod2, test = "Chisq")
```

Linjär regression - Diagnostisera

• Finns ett antal olika metoder, ex:

```
plot(mod1)
durbinWatsonTest(mod1)
qqplot(mod1)
```

Linjär regression - Använda modellen

- När vi har en modell kan vi göra olika saker:
 - Publicera modellen
 - Studera residualer
 - Prediktion
- Vi kan spara vår modell och använda
 - resid()
 - predict()