I prodotti di uno spazio vettoriale

Dispense del corso di Geometria 1

Gabriel Antonio Videtta

A.A. 2022/2023

Indice

1	Intr	Introduzione al prodotto scalare			5		
	1.1	1.1 Prime definizioni					
		1.1.1	Prodott	o scalare e vettori ortogonali rispetto a φ	5		
		1.1.2	Prodott	o definito o semidefinito	6		
	1.2	Il radi	cale di u	n prodotto scalare	6		
		1.2.1	La form	a quadratica q associata a φ e vettori (an)isotropi	6		
		1.2.2	Matrice	associata a φ e relazione di congruenza	7		
		1.2.3	Studio o	del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$	8		
		1.2.4	Condizi	oni per la (semi)definitezza di un prodotto scalare	9		
	1.3	Formu	ıla delle d	limensioni e di polarizzazione rispetto a φ	10		
	1.4	Il teor	ema di L	agrange e basi ortogonali	12		
		1.4.1	L'algori	tmo di ortogonalizzazione di Gram-Schmidt	12		
	1.5	Il teor	ema di S	ylvester	14		
		1.5.1	Caso complesso				
		1.5.2	Caso rea	ale e segnatura di φ	15		
			1.5.2.1	Classificazione delle segnature per $n=1,2,3\ldots\ldots$	17		
			1.5.2.2	Metodo di Jacobi per il calcolo della segnatura	18		
			1.5.2.3	Criterio di Sylvester per la definitezza di un prodotto			
				scalare	20		
			1.5.2.4	Sottospazi isotropi e indice di Witt	20		
	1.6	Isome	trie tra s _l	pazi vettoriali	21		
2	l pr	odotti l	hermitian	i e complessificazione (non indicizzato)	25		
3	Spa	zi eucli	dei e teo	rema spettrale (non indicizzato)	32		

Introduzione al prodotto scalare

Nota. Nel corso del documento, per V, qualora non specificato, si intenderà uno spazio vettoriale di dimensione finita n.

1.1 Prime definizioni

1.1.1 Prodotto scalare e vettori ortogonali rispetto a φ

Definizione (prodotto scalare). Un prodotto scalare su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K}) \times M(n, \mathbb{K}) \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $\varphi(A', B)$ (linearità nel primo argomento),
- $ightharpoonup \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A) \text{ (simmetria)},$
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione (vettori ortogonali). Due vettori $\underline{v}, \underline{w} \in V$ si dicono **ortogonali** rispetto al prodotto scalare φ , ossia $v \perp w$, se $\varphi(v, w) = 0$.

Definizione (somma diretta ortogonale). Siano $U \in W \subseteq V$ due sottospazi di V in somma diretta. Allora si dice che U e W sono in somma diretta ortogonale rispetto al prodotto scalare φ di V, ossia che $U \oplus W = U \oplus^{\perp} W$, se $\varphi(\underline{u},\underline{w}) = 0 \ \forall \underline{u} \in U, \underline{w} \in W$.

Definizione. Si definisce prodotto scalare canonico di \mathbb{K}^n la forma bilineare simmetrica $\varphi = \langle \cdot, \cdot \rangle$ con argomenti in \mathbb{K}^n tale che:

$$\varphi(\underline{v},\underline{w}) = \langle \underline{v},\underline{w} \rangle = \underline{v}^{\top}\underline{w}, \quad \forall \, \underline{v},\underline{w} \in V.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

- (linearità nel primo argomento),
- $\varphi(\alpha \underline{v}, \underline{w}) = (\alpha \underline{v})^{\top} \underline{w} = \alpha \underline{v}^{\top} \underline{w} = \alpha \varphi(\underline{v}, \underline{w}) \text{ (omogeneità nel primo argomento)},$ $\varphi(\underline{v}, \underline{w}) = \underline{v}^{\top} \underline{w} = (\underline{v}^{\top} \underline{w})^{\top} = \underline{w}^{\top} \underline{v} = \varphi(\underline{w}, \underline{v}) \text{ (simmetria)},$
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \text{ per } M(n,\mathbb{K}),$
- $ightharpoonup \varphi(p(x), q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- $\varphi(p(x), q(x)) = \sum_{i=1}^{n} p(x_i)q(x)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, $\varphi(p(x), q(x)) = \int_a^b p(x)q(x)dx$ per lo spazio delle funzioni integrabili su \mathbb{R} , con a, b in
- $\varphi(\underline{x},y) = \underline{x}^{\top}Ay$ per \mathbb{K}^n , con $A \in M(n,\mathbb{K})$ simmetrica, detto anche **prodotto** scalare indotto dalla matrice A, ed indicato con φ_A .

1.1.2 Prodotto definito o semidefinito

Definizione. Sia $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ si dice **definito positivo** $(\varphi > 0)$ se $\underline{v} \in V$, $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) > 0$. Analogamente φ è definito negativo $(\varphi < 0)$ se $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) < 0$. In generale si dice che φ è **definito** se è definito positivo o definito negativo.

Infine, φ è semidefinito positivo $(\varphi \geq 0)$ se $\varphi(\underline{v},\underline{v}) \geq 0 \ \forall \underline{v} \in V$ (o semidefinito **negativo**, e quindi $\varphi \leq 0$, se invece $\varphi(\underline{v},\underline{v}) \leq 0 \ \forall \underline{v} \in V$). Analogamente ai prodotti definiti, si dice che φ è **semidefinito** se è semidefinito positivo o semidefinito negativo.

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 > 0$, se $(x_1,...,x_n) \neq \underline{0}$.

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2, \text{ ossia se } y = x \text{ o } y = -x.$

1.2 Il radicale di un prodotto scalare

1.2.1 La forma quadratica q associata a φ e vettori (an)isotropi

Definizione. Ad un dato prodotto scalare φ di V si associa una mappa $q:V\to\mathbb{K}$, detta forma quadratica, tale che $q(v) = \varphi(v, v)$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v}+\underline{w}) \neq q(\underline{v}) + q(\underline{w})$

Definizione (vettore (an)isotropo). Un vettore $\underline{v} \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(\underline{v}) = \varphi(\underline{v},\underline{v}) = 0$. Al contrario, \underline{v} si dice **anisotropo** se non è isotropo, ossia se $q(\underline{v}) \neq 0$.

Definizione (cono isotropo). Si definisce **cono isotropo** di V rispetto al prodotto scalare φ il seguente insieme:

¹In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

$$CI(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{v}) = 0 \},$$

ossia l'insieme dei vettori isotropi di V.

Esempio. Rispetto al prodotto scalare $\varphi : \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_2 - x_3y_3$, i vettori isotropi sono i vettori della forma (x, y, z) tali che $x^2 + y^2 = z^2$, e quindi $CI(\varphi)$ è l'insieme dei vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.

1.2.2 Matrice associata a φ e relazione di congruenza

Osservazione. Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie $\underline{v_i}, \underline{v_j}$ estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (\underline{v_1}, ..., \underline{v_k}), \underline{v} = \sum_{i=1}^k \alpha_i \underline{v_i}$ e $\underline{w} = \sum_{i=1}^k \beta_i \underline{v_i}$, allora:

$$\varphi(\underline{v},\underline{w}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Allora si definisce la **matrice associata** a φ come la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i, j=1 \dots n} \in M(n, \mathbb{K}).$$

Osservazione.

- ▶ $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v_j}, \underline{v_i})$, dal momento che il prodotto scalare è simmetrico,

Teorema 1.1. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

 $\begin{array}{ll} \textit{Dimostrazione.} \ \text{Siano} \ \mathcal{B} = (\underline{v_1},...,\underline{v_n}) \ \text{e} \ \mathcal{B}' = (\underline{w}_1,...,\underline{w}_n). \ \text{Allora} \ A'_{ij} = \varphi(\underline{w}_i,\underline{w}_j) = [\underline{w}_i]_{\mathcal{B}}^\top A[\underline{w}_j]_{\mathcal{B}} = (P^i)^\top AP^j = P_i^\top (AP)^j = (P^\top AP)_{ij}, \ \text{da cui la tesi.} \end{array}$

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong (denotata anche come \equiv) definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \iff \exists P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- $ightharpoonup A = I^{\top}AI \implies A \cong A \text{ (riflessione)},$
- $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A$ (simmetria),
- ▶ $A \cong B$, $B \cong C \implies A = P^{\top}BP$, $B = Q^{\top}CQ$, quindi $A = P^{\top}Q^{\top}CQP = (QP)^{\top}C(QP) \implies A \cong C$ (transitività).

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora si può ben definire il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango della matrice associata di φ in una qualsiasi base di V.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è un altro invariante per congruenza.

1.2.3 Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$

Definizione. Si definisce il **radicale** di un prodotto scalare φ come lo spazio:

$$V^{\perp} = \operatorname{Rad}(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale del prodotto scalare canonico su \mathbb{R}^n ha dimensione nulla, dal momento che $\forall\,\underline{v}\in\mathbb{R}^n\setminus\{\underline{0}\},\,q(\underline{v})=\varphi(\underline{v},\underline{v})>0\implies\underline{v}\notin V^\perp$. In generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore non nullo non è isotropo, e dunque non può appartenere a V^\perp .

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Sia $\alpha_{\varphi}: V \to V^*$ la mappa² tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w})$ $\forall \underline{v}, \underline{w} \in V$.

Si osserva che α_{φ} è un'applicazione lineare. Infatti, $\forall \underline{v}, \underline{w}, \underline{u} \in V$, $\alpha_{\varphi}(\underline{v} + \underline{w})(\underline{u}) = \varphi(\underline{v} + \underline{w}, \underline{u}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{w}, \underline{u}) = \alpha_{\varphi}(\underline{v})(\underline{u}) + \alpha_{\varphi}(\underline{w})(\underline{u}) \implies \alpha_{\varphi}(\underline{v} + \underline{w}) = \alpha_{\varphi}(\underline{v}) + \alpha_{\varphi}(\underline{w}).$ Inoltre $\forall \underline{v}, \underline{w} \in V$, $\lambda \in \mathbb{K}$, $\alpha_{\varphi}(\lambda \underline{v})(\underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \lambda \varphi(\underline{v}, \underline{w}) = \lambda \alpha_{\varphi}(\underline{v})(\underline{w}) \implies \alpha_{\varphi}(\lambda \underline{v}) = \lambda \alpha_{\varphi}(\underline{v}).$

Si osserva inoltre che Ker α_{φ} raccoglie tutti i vettori $\underline{v} \in V$ tali che $\varphi(\underline{v},\underline{w}) = 0 \ \forall \underline{w} \in W$, ossia esattamente i vettori di V^{\perp} , per cui si conclude che $V^{\perp} = \operatorname{Ker} \alpha_{\varphi}$ (per cui V^{\perp} è effettivamente uno spazio vettoriale). Se V ha dimensione finita, dim $V = \dim V^*$, e si

²In letteratura questa mappa, se invertibile, è nota come *isomorfismo musicale*, ed è in realtà indicata come b.

può allora concludere che dim $V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi} \text{ non è invertibile}$ (infatti lo spazio di partenza e di arrivo di α_{φ} hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su \mathcal{B} , ossia $\mathcal{B}^* = (v_1^*, ..., v_n^*)$. Allora $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i = [\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*} =$

$$\begin{pmatrix} \varphi(\underline{v_i}, \underline{v_1}) \\ \vdots \\ \varphi(v_i, v_n) \end{pmatrix} \underbrace{\varphi \text{ è simmetrica}}_{\varphi \text{ is simmetrica}} \begin{pmatrix} \varphi(\underline{v_1}, \underline{v_i}) \\ \vdots \\ \varphi(v_n, v_i) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i. \text{ Quindi } M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\varphi).$$

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.

1.2.4 Condizioni per la (semi)definitezza di un prodotto scalare

Proposizione 1.1. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è definito \iff CI $(\varphi) = \{\underline{0}\}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se φ è definito, allora $\varphi(\underline{v},\underline{v})$ è sicuramente diverso da zero se $\underline{v} \neq \underline{0}$. Pertanto $CI(\varphi) = \{\underline{0}\}.$

(\iff) Sia φ non definito. Se non esistono $\underline{v} \neq \underline{0}, \underline{w} \neq \underline{0} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$, allora φ è necessariamente semidefinito. In tal caso, poiché φ non è definito, deve anche esistere $\underline{u} \in V, \underline{u} \neq \underline{0} \mid q(\underline{u}) = 0 \implies \mathrm{CI}(\varphi) \neq \{\underline{0}\}.$

Se invece tali \underline{v} , \underline{w} esistono, questi sono anche linearmente indipendenti. Se infatti non lo fossero, uno sarebbe il multiplo dell'altro, e quindi le loro due forme quadratiche sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$ al variare di $\lambda \in \mathbb{R}$, imponendo che essa sia isotropa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

Dal momento che $\frac{\Delta}{4} = \overbrace{q(\underline{v},\underline{w})^2}^{\geq 0} - \overbrace{q(\underline{w})q(\underline{v})}^{>0}$ è sicuramente maggiore di zero, tale equazione ammette due soluzioni reali λ_1, λ_2 . In particolare λ_1 è tale che $\underline{v} + \lambda_1 \underline{w} \neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora $\underline{v} + \lambda_1 \underline{w}$ è un vettore isotropo non nullo di $V \implies \mathrm{CI}(\varphi) \neq \{\underline{0}\}$.

Si conclude allora, tramite la contronominale, che se $CI(\varphi) = \{\underline{0}\}, \varphi$ è necessariamente definito.

Proposizione 1.2. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è semidefinito \iff $CI(\varphi) = V^{\perp}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia φ semidefinito. Chiaramente $V^{\perp}\subseteq \mathrm{CI}(\varphi)$. Si assuma per assurdo che $V^{\perp}\subsetneq \mathrm{CI}(\varphi)$. Sia allora \underline{v} tale che $\underline{v}\in \mathrm{CI}(\varphi)$ e che $\underline{v}\notin V^{\perp}$. Poiché $\underline{v}\notin V^{\perp}$, esiste un vettore $\underline{w}\in V$ tale che $\varphi(\underline{v},\underline{w})\neq 0$. Si osserva che \underline{v} e \underline{w} sono linearmente indipendenti tra loro. Se infatti non lo fossero, esisterebbe $\mu\in\mathbb{R}$ tale che $\underline{w}=\mu\underline{v}\Longrightarrow \varphi(\underline{v},\underline{w})=\mu\,\varphi(\underline{v},\underline{v})=0$, f.

Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$. Si consideri φ semidefinito positivo. In tal caso si può imporre che la valutazione di q in $v + \lambda w$ sia strettamente negativa:

$$q(\underline{v} + \lambda \underline{w}) < 0 \iff q(\underline{v}) + \lambda^2 q(\underline{w}) + 2\lambda \varphi(\underline{v}, \underline{w}) < 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Inoltre $\underline{v} + \lambda_1 \underline{w} \neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora si è trovato un vettore non nullo per cui la valutazione in esso di q è negativa, contraddicendo l'ipotesi di semidefinitezza positiva di φ , f. Analogamente si dimostra la tesi per φ semidefinito negativo.

 (\Leftarrow) Sia φ non semidefinito. Allora devono esistere $\underline{v}, \underline{w} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$. In particolare, \underline{v} e \underline{w} sono linearmente indipendenti tra loro, dal momento che se non lo fossero, uno sarebbe multiplo dell'altro, e le valutazioni in essi di q sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$, imponendo che q si annulli in essa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Allora, per tale $\lambda_1, \underline{v} + \lambda_1 \underline{w} \in \mathrm{CI}(\varphi)$. Tuttavia $\varphi(\underline{v} + \lambda_1 \underline{w}, \underline{v} - \lambda_1 \underline{w}) = q(\underline{v}) - \underbrace{\lambda_1^2 q(\underline{w})}_{<0} > 0 \implies \underline{v} + \lambda_1 \underline{w} \notin V^\perp \implies \mathrm{CI}(\varphi) \supsetneq V^\perp.$

Si conclude allora, tramite la contronominale, che se $CI(\varphi) = V^{\perp}$, φ è necessariamente semidefinito.

1.3 Formula delle dimensioni e di polarizzazione rispetto a φ

Definizione (sottospazio ortogonale a W). Sia $W \subseteq V$ un sottospazio di V. Si identifica allora come **sottospazio ortogonale** a W il sottospazio $W^{\perp} = \{\underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) \ \forall \underline{w} \in W\}.$

Proposizione 1.3 (formula delle dimensioni del prodotto scalare). Sia $W \subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}).$$

Dimostrazione. Si consideri l'applicazione lineare a_{φ} introdotta precedentemente. Si osserva che $W^{\perp} = \operatorname{Ker}(i^{\top} \circ a_{\varphi})$, dove $i : W \to V$ è tale che $i(\underline{w}) = \underline{w}$. Allora, per la formula delle dimensioni, vale la seguente identità:

$$\dim V = \dim W^{\perp} + \operatorname{rg}(i^{\top} \circ a_{\varphi}). \tag{1.1}$$

Sia allora $f = i^{\top} \circ a_{\varphi}$. Si consideri ora l'applicazione $g = a_{\varphi} \circ i : W \to V^*$. Sia ora \mathcal{B}_W una base di $W \in \mathcal{B}_V$ una base di V. Allora le matrici associate di f e di g sono le seguenti:

(i)
$$M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(f) = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(i^{\top} \circ a_{\varphi}) = \underbrace{M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}^{*}}(i^{\top})}_{A} \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} = AB,$$

(ii)
$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(g) = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(a_{\varphi} \circ i) = \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} \underbrace{M_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(i)}_{A^{\top}} = BA^{\top} \stackrel{B^{\top} = B}{\longleftarrow} (AB)^{\top}.$$

Poiché $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$, si deduce che $\operatorname{rg}(f) = \operatorname{rg}(g) \Longrightarrow \operatorname{rg}(i^{\top} \circ a_{\varphi}) = \operatorname{rg}(a_{\varphi} \circ i) = \operatorname{rg}(a_{\varphi}|_{W}) = \dim W - \dim \operatorname{Ker} a_{\varphi}|_{W}$, ossia che:

$$\operatorname{rg}(i^{\top} \circ a_{\varphi}) = \dim W - \dim(W \cap \underbrace{\operatorname{Ker} a_{\varphi}}_{V^{\perp}}) = \dim W - \dim(W \cap V^{\perp}). \tag{1.2}$$

Si conclude allora, sostituendo l'equazione (1.2) nell'equazione (1.1), che dim $V = \dim W^{\top} + \dim W - \dim(W \cap V^{\perp})$, ossia la tesi.

Dimostrazione alternativa. Si consideri nuovamente l'applicazione lineare α_{φ} introdotta precedentemente. Si osserva innanzitutto che³ $W^{\perp} = \alpha_{\varphi}^{-1}(\mathrm{Ann}(W))$. Allora vale la seguente identità:

$$\alpha_{\varphi}(W^{\perp}) = \operatorname{Ann}(W) \cap \operatorname{Im} \alpha_{\varphi}. \tag{1.3}$$

Si mostra che Im $\alpha_{\varphi} = \operatorname{Ann}(V^{\perp})$. Chiaramente Im $\alpha_{\varphi} \subseteq \operatorname{Ann}(V^{\perp})$: siano infatti $\underline{v} \in V$ e $\underline{w} \in V^{\perp}$, allora $\alpha_{\varphi}(\underline{v})(\underline{w}) = \varphi(\underline{v},\underline{w}) = 0$. Inoltre dim Im $\alpha_{\varphi} = \operatorname{rg} \alpha_{\varphi} = n - \dim \operatorname{Ker} \alpha_{\varphi} = \dim V - \dim V^{\perp} = \dim \operatorname{Ann}(V^{\perp})$, da cui segue l'uguaglianza dei due sottospazi. Allora l'equazione (1.3) si può riscrivere⁴ come:

$$\alpha_{\varphi}(W^{\perp}) = \operatorname{Ann}(W) \cap \operatorname{Ann}(V^{\perp}) = \operatorname{Ann}(W + V^{\perp})$$

da cui segue che:

$$\dim W^{\perp} - \dim(V^{\perp} \cap W^{\perp}) = \dim V - \dim(W + V^{\perp}),$$

 $^{^3\}alpha_{\varphi}^{-1}$ in questo caso non indica un'eventuale applicazione inversa di α_{φ} , ma indica l'insieme delle eventuali controimmagini degli elementi su cui è applicata.

⁴Si è utilizzata l'identità $\operatorname{Ann}(U) \cap \operatorname{Ann}(W) = \operatorname{Ann}(U+W)$, dove U e W sono due sottospazi di V, nonché che $\operatorname{Ker} \alpha_{\varphi} = V^{\perp}$.

e quindi, applicando la formula di Grassmann, che⁵:

$$\dim W^\perp - \dim V^\perp = \dim V - \dim W - \dim V^\perp + \dim(W \cap V^\perp),$$
ossia la tesi.

Osservazione. Si identifica \underline{w}^{\perp} come il sottospazio di tutti i vettori di V ortogonali a \underline{w} . In particolare, se $W = \operatorname{Span}(\underline{w})$ è il sottospazio generato da $\underline{w} \neq \underline{0}$, $\underline{w} \in V$, allora $W^{\perp} = \underline{w}^{\perp}$. Inoltre valgono le seguenti equivalenze: $\underline{w} \notin W^{\perp} \iff \operatorname{Rad}(\varphi|_W) = W \cap W^{\perp} = \{\underline{0}\} \iff \underline{w}$ non è isotropo $\iff V = W \oplus^{\perp} W^{\perp}$.

In generale, se W è un sottospazio qualsiasi di V tale che $W \cap W^{\perp} = \{\underline{0}\}$, vale che $V = W \oplus^{\perp} W^{\perp}$.

Proposizione 1.4 (formula di polarizzazione). Se char $\mathbb{K} \neq 2$, un prodotto scalare è univocamente determinato dalla sua forma quadratica q. In particolare vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = \frac{q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w})}{2}.$$

1.4 II teorema di Lagrange e basi ortogonali

Definizione. Si definisce **base ortogonale** di V una base $\underline{v_1}$, ..., $\underline{v_n}$ tale per cui $\varphi(\underline{v_i},\underline{v_j})=0 \iff i\neq j$, ossia una base per cui la matrice associata del prodotto scalare è diagonale.

Teorema 1.2 (di Lagrange). Ogni spazio vettoriale V su \mathbb{K} tale per cui char $\mathbb{K} \neq 2$ ammette una base ortogonale.

Dimostrazione. Si dimostra il teorema per induzione su $n := \dim V$. Per $n \le 1$, la tesi è triviale (se esiste una base, tale base è già ortogonale). Sia allora il teorema vero per $i \le n$. Se V ammette un vettore non isotropo \underline{w} , sia $W = \operatorname{Span}(\underline{w})$ e si consideri la decomposizione $V = W \oplus W^{\perp}$. Poiché W^{\perp} ha dimensione n-1, per ipotesi induttiva ammette una base ortogonale. Inoltre, tale base è anche ortogonale a W, e quindi l'aggiunta di \underline{w} a questa base ne fa una base ortogonale di V. Se invece V non ammette vettori non isotropi, ogni forma quadratica è nulla, e quindi il prodotto scalare è nullo per la formula di polarizzazione. Allora in questo caso ogni base è una base ortogonale, completando il passo induttivo, e dunque la dimostrazione.

1.4.1 L'algoritmo di ortogonalizzazione di Gram-Schmidt

Definizione (coefficiente di Fourier). Siano $\underline{v} \in V$ e $\underline{w} \in V \setminus CI(\varphi)$. Allora si definisce il **coefficiente di Fourier** di \underline{v} rispetto a \underline{w} come il rapporto $C(\underline{w},\underline{v}) = \frac{\varphi(v,\underline{w})}{\varphi(\underline{w},\underline{w})}$.

⁵Ricordiamo che $V^{\perp} \subseteq W^{\perp}$ per ogni sottospazio W di V, e quindi che dim $(V^{\perp} \cap W^{\perp}) = \dim V^{\perp}$.

Algoritmo 1.1 (algoritmo di ortogonalizzazione di Gram-Schmidt). Se $CI(\varphi) = \{\underline{0}\}$ (e quindi nel caso di $\mathbb{K} = \mathbb{R}$, dalla *Proposizione 1.1*, se φ è definito) ed è data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ per V, è possibile applicare l'algoritmo di ortogonalizzazione di Gram-Schmidt per ottenere da \mathcal{B} una nuova base $\mathcal{B}' = \{\underline{v_1}', \dots, \underline{v_n}'\}$ con le seguenti proprietà:

- (i) \mathcal{B}' è una base ortogonale,
- (ii) \mathcal{B}' mantiene la stessa bandiera di \mathcal{B} (ossia $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i}) = \operatorname{Span}(\underline{v_1}', \dots, \underline{v_i}')$ per ogni $1 \leq i \leq n$).

L'algoritmo si applica nel seguente modo: si prenda in considerazione $\underline{v_1}$ e si sottragga ad ogni altro vettore della base il vettore $C(\underline{v_1},\underline{v_i})$ $\underline{v_1} = \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1}$, rendendo ortogonale ogni altro vettore della base con $\underline{v_1}$. Si sta quindi applicando la mappa $\underline{v_i} \mapsto \underline{v_i} - \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_i} = \underline{v_i}^{(1)}$. Si verifica infatti che $\underline{v_1}$ e $\underline{v_i}^{(1)}$ sono ortogonali per $2 \leq i \leq n$:

$$\varphi(\underline{v_1},\underline{v_i}^{(1)}) = \varphi(\underline{v_1},\underline{v_i}) - \varphi\left(\underline{v_1},\frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(v_1,v_1)}\underline{v_i}\right) = \varphi(\underline{v_1},\underline{v_i}) - \varphi(\underline{v_1},\underline{v_i}) = 0.$$

Poiché $\underline{v_1}$ non è isotropo, si deduce che vale la decomposizione $V = \operatorname{Span}(\underline{v_1}) \oplus \operatorname{Span}(\underline{v_1})^{\perp}$. In particolare dim $\operatorname{Span}(\underline{v_1})^{\perp} = n-1$: essendo allora i vettori $\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}$ linearmente indipendenti e appartenenti a $\operatorname{Span}(\underline{v_1})^{\perp}$, ne sono una base. Si conclude quindi che vale la seguente decomposizione:

$$V = \operatorname{Span}(v_1) \oplus^{\perp} \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)}).$$

Si riapplica dunque l'algoritmo di Gram-Schmidt prendendo come spazio vettoriale lo spazio generato dai vettori a cui si è applicato precedentemente l'algoritmo, ossia $V' = \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)})$, fino a che non si ottiene $V' = \{\underline{0}\}$.

Esempio. Si consideri $V=(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$, ossia \mathbb{R}^3 dotato del prodotto scalare standard. Si applica l'algoritmo di ortogonalizzazione di Gram-Schmidt sulla seguente base:

$$\mathcal{B} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{v_1 = e_1}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}_{v_2}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{v_3} \right\}.$$

Alla prima iterazione dell'algoritmo si ottengono i seguenti vettori:

•
$$\underline{v_2}^{(1)} = \underline{v_2} - \frac{\varphi(\underline{v_1}, \underline{v_2})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_2} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \underline{e_2},$$

•
$$\underline{v_3}^{(1)} = \underline{v_3} - \frac{\varphi(\underline{v_1}, \underline{v_3})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_3} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

Si considera ora $V' = \text{Span}(\underline{v_2}^{(1)}, \underline{v_3}^{(1)})$. Alla seconda iterazione dell'algoritmo si ottiene allora il seguente vettore:

•
$$\underline{v_3}^{(2)} = \underline{v_3}^{(1)} - \frac{\varphi(\underline{v_2}^{(1)},\underline{v_3}^{(1)})}{\varphi(\underline{v_2}^{(1)},\underline{v_2}^{(1)})} \underline{v_2}^{(1)} = \underline{v_3}^{(1)} - \underline{v_2}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \underline{e_3}.$$

Quindi la base ottenuta è $\mathcal{B}' = \{e_1, e_2, e_3\}$, ossia la base canonica di \mathbb{R}^3 .

1.5 II teorema di Sylvester

1.5.1 Caso complesso

Nota. D'ora in poi, nel corso del documento, si assumerà char $\mathbb{K} \neq 2$.

Teorema 1.3 (di Sylvester, caso complesso). Sia \mathbb{K} un campo i cui elementi sono tutti quadrati di un altro elemento del campo (e.g. \mathbb{C}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini allora la base \mathcal{B}' in modo tale che la forma quadratica valutata nei primi elementi sia sempre diversa da zero. Allora, poiché ogni elemento di \mathbb{K} è per ipotesi quadrato di un altro elemento di \mathbb{K} , si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) = 0$, $\underline{v_i} \mapsto \underline{v_i}$, e altrimenti $\underline{v_i} \mapsto \frac{v_i}{\sqrt{q(\underline{v_i})}}$. Allora \mathcal{B} è una base tale per cui la matrice associata del prodotto scalare in tale base è proprio come desiderata nella tesi, dove r è il numero di elementi tali per cui la forma quadratica valutata in essi sia diversa da zero.

Osservazione.

▶ Si può immediatamente concludere che il rango è un invariante completo per la congruenza in un campo \mathbb{K} in cui tutti gli elementi sono quadrati, ossia che $A \cong B \iff \operatorname{rg}(A) = \operatorname{rg}(B)$, se $A \in B$ sono matrici simmetriche con elementi in \mathbb{K} .

Ogni matrice simmetrica rappresenta infatti un prodotto scalare, ed è pertanto congruente ad una matrice della forma desiderata nell'enunciato del teorema di Sylvester complesso. Poiché il rango è un invariante della congruenza, si ricava che r nella forma della matrice di Sylvester, rappresentando il rango, è anche il rango di ogni sua matrice

congruente.

In particolare, se due matrici simmetriche hanno lo stesso rango, allora sono congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti a loro volta tra di loro.

- \blacktriangleright Due matrici simmetriche in $\mathbb K$ con stesso rango, allora, non solo sono SD-equivalenti, ma sono anche congruenti.
- \blacktriangleright Ogni base ortogonale deve quindi avere lo stesso numero di vettori isotropi, dal momento che tale numero rappresenta la dimensione del radicale V^{\perp} .

1.5.2 Caso reale e segnatura di φ

Definizione (segnatura di un prodotto scalare). Data una base ortogonale \mathcal{B} di V rispetto al prodotto scalare φ , si definiscono i seguenti indici:

$$\iota_{+}(\varphi) = \max\{\dim W \mid W \subseteq V \text{ e } \varphi|_{W} > 0\}, \qquad \text{(indice di positività)}$$

$$\iota_{-}(\varphi) = \max\{\dim W \mid W \subseteq V \text{ e } \varphi|_{W} < 0\}, \qquad \text{(indice di negatività)}$$

$$\iota_{0}(\varphi) = \dim V^{\perp}. \qquad \text{(indice di nullità)}$$

Quando il prodotto scalare φ è noto dal contesto, si semplifica la notazione scrivendo solo ι_+ , ι_- e ι_0 . In particolare, la terna $\sigma(\varphi) = \sigma = (i_+, i_-, i_0)$ è detta **segnatura** del prodotto φ .

Teorema 1.4 (di Sylvester, caso reale). Sia \mathbb{K} un campo ordinato i cui elementi positivi sono tutti quadrati (e.g. \mathbb{R}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = egin{pmatrix} I_{\iota_{+}} & 0 & 0 \\ 0 & -I_{\iota_{-}} & 0 \\ 0 & 0 & 0 \cdot I_{\iota_{0}} \end{pmatrix}.$$

Inoltre, per ogni base ortogonale, esistono esattamente ι_+ vettori della base con forma quadratica positiva, ι_- con forma negativa e ι_0 con forma nulla.

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini la base in modo tale che la forma quadratica valutata nei primi elementi sia strettamente positiva, che nei secondi elementi sia strettamente negativa e che negli ultimi sia nulla. Si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) > 0$, allora $\underline{v_i} \mapsto \frac{v_i}{\sqrt{q(v_i)}}$; se $q(\underline{v_i}) < 0$, allora $\underline{v_i} \mapsto \frac{\underline{v_i}}{\sqrt{-q(v_i)}}$; altrimenti $\underline{v_i} \mapsto \underline{v_i}$. Si è allora trovata una base la cui matrice associata del prodotto scalare è come desiderata nella tesi.

Sia ora \mathcal{B} una qualsiasi base ortogonale di V. Siano inoltre a il numero di vettori della base con forma quadratica positiva, b il numero di vettori con forma negativa e c quello

dei vettori con forma nulla. Si consideri $W_+ = \operatorname{Span}(\underline{v_1}, ..., \underline{v_a}), W_- = \operatorname{Span}(\underline{v_{a+1}}, ..., \underline{v_b}), W_0 = \operatorname{Span}(v_{b+1}, ..., v_c).$

Sia $M = M_{\mathcal{B}}(\varphi)$. Si osserva che $c = n - \operatorname{rg}(M) = \dim \operatorname{Ker}(M) = \dim V^{\perp} = \iota_0$. Inoltre $\forall \underline{v} \in W_+$, dacché \mathcal{B} è ortogonale, $q(\underline{v}) = q(\sum_{i=1}^a \alpha_i \underline{v_i}) = \sum_{i=1}^a \alpha_i^2 q(\underline{v_i}) > 0$, e quindi $\varphi|_{W_+} > 0$, da cui $\iota_+ \geq a$. Analogamente $\iota_- \geq b$.

Si mostra ora che è impossibile che $\iota_+ > a$. Se così infatti fosse, sia W tale che dim $W = \iota_+$ e che $\varphi|_W > 0$. $\iota_+ + b + c$ sarebbe maggiore di $a + b + c = n := \dim V$. Quindi, per la formula di Grassman, $\dim(W + W_- + W_0) = \dim W + \dim(W_- + W_0) - \dim(W \cap (W_- + W_0)) \implies \dim(W \cap (W_- + W_0)) = \dim W + \dim(W_- + W_0) - \dim(W + W_- + W_0) > 0$, ossia esisterebbe $\underline{v} \neq \{\underline{0}\} \mid \underline{v} \in W \cap (W_- + W_0)$. Tuttavia questo è assurdo, dacché dovrebbe valere sia $q(\underline{v}) > 0$ che $q(\underline{v}) < 0$, \mathcal{I} . Quindi $\iota_+ = a$, e analogamente $\iota_- = b$. \square

Definizione. Si dice base di Sylvester una base di V tale per cui la matrice associata di φ sia esattamente nella forma vista nell'enunciato del teorema di Sylvester. Analogamente si definisce tale matrice come **matrice di Sylvester**.

Osservazione.

- ▶ Come conseguenza del teorema di Sylvester reale, si osserva che la segnatura di una matrice simmetrica reale è invariante per cambiamento di base, se la base è ortogonale.
- ▶ La segnatura è un invariante completo per la congruenza nel caso reale. Se infatti due matrici hanno la stessa segnatura, queste sono entrambe congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti tra loro. Analogamente vale il viceversa, dal momento che ogni base ortogonale di due matrici congruenti deve contenere gli stessi numeri ι_+ , ι_- e ι_0 di vettori di base con forma quadratica positiva, negativa e nulla.
- ▶ Vale che φ è definito positivo $\iff \sigma = (n,0,0)$. Infatti, per il teorema di Sylvester reale, $i_+ = n \iff$ la dimensione del massimo sottospazio di V su cui φ è definito positivo è $n \iff \varphi$ è definito positivo. Analogamente φ è definito negativo $\iff \sigma = (0,n,0)$.
- Nello stesso spirito dei prodotti definiti, φ è semidefinito positivo $\iff \iota_- = 0$. Infatti valgono le seguenti equivalenze: φ è semidefinito positivo \iff non esiste un vettore $\underline{v} \in V$, $\underline{v} \neq \underline{0}$ tale che $q(\underline{v}) < 0 \iff \iota_- = 0$. Analogamente φ è semidefinito negativo $\iff \iota_+ = 0$.
- ▶ Se $\underline{w_1}$, ..., $\underline{w_k}$ sono tutti i vettori di una base ortogonale \mathcal{B} con forma quadratica nulla, si osserva che $W = \operatorname{Span}(w_1, ..., w_k)$ altro non è che V^{\perp} stesso.

Infatti, come visto anche nella dimostrazione del teorema di Sylvester reale, vale che dim $W = \dim \operatorname{Ker}(M_{\mathcal{B}}(\varphi)) = \dim V^{\perp}$. Sia allora la base $\mathcal{B} = \{\underline{w_1}, \dots, \underline{w_k}, \underline{v_{k+1}}, \dots, \underline{v_n}\}$

1 Introduzione al prodotto scalare

un'estensione di $\{\underline{w_1},\ldots,\underline{w_k}\}$. Se $\underline{w}\in W$ e $\underline{v}\in V$, $\varphi(\underline{w},\underline{v})=\varphi(\sum_{i=1}^k\alpha_i\underline{w_i},\sum_{i=1}^k\beta_i\underline{w_i}+\sum_{i=k+1}^n\beta_i\underline{v_i})=\sum_{i=1}^k\alpha_i\beta_iq(\underline{w_i})=0$ (dove α_i e $\beta_i\in\mathbb{K}$ rappresentano la i-esima coordinata di \underline{w} e \underline{v} nella base \mathcal{B}), e quindi $W\subseteq V^{\perp}$. Si conclude allora, tramite l'uguaglianza dimensionale, che $W=V^{\perp}$.

- ▶ Poiché dim Ker $(\varphi) = \iota_0$, vale in particolare che rg $(\varphi) = n \iota_0 = \iota_+ + \iota_-$ (infatti vale che $n = \iota_+ + \iota_- + \iota_0$, dal momento che n rappresenta il numero di elementi di una base ortogonale).
- ▶ Se $V = U \oplus^{\perp} W$, allora $\iota_{+}(\varphi) = \iota_{+}(\varphi|_{U}) + \iota_{+}(\varphi|_{W})$. Analogamente vale la stessa cosa per gli altri indici. Infatti, prese due basi ortogonali \mathcal{B}_{U} , \mathcal{B}_{W} di U e W, la loro unione \mathcal{B} è una base ortogonale di V. Pertanto il numero di vettori della base \mathcal{B} con forma quadratica positiva è esattamente $\iota_{+}(\varphi|_{U}) + \iota_{+}(\varphi|_{W})$.
- ▶ In generale, se W è un sottospazio di V, vale che $\iota_+(\varphi) \ge \iota_+(\varphi|_W)$. Infatti, se U è un sottospazio di W di dimensione $\iota_+(\varphi|_W)$ tale che $(\varphi|_W)|_U > 0$, allora U è in particolare un sottospazio di V tale che $\varphi|_U > 0$. Pertanto, per definizione, essendo $\iota_+(\varphi)$ la dimensione del massimo sottospazio su cui φ , ristretto ad esso, è definito positivo, deve valere che $\iota_+(\varphi) \ge \iota_+(\varphi|_W)$. Analogamente, $\iota_-(\varphi) \ge \iota_-(\varphi|_W)$.

1.5.2.1 Classificazione delle segnature per n=1, 2, 3

Sia \mathcal{B} una base di Sylvester per φ . Sia $A = M_{\mathcal{B}}(\varphi)$. Si indica con $x, y \in z$ le tre coordinate di $\underline{v} \in V$ secondo la base \mathcal{B} .

(n = 1) Vi sono solo tre possibili matrici per A:

- A = (0), con $\sigma = (0, 0, 1)$, $rg(\varphi) = 0$ e $CI(\varphi) = V$,
- A = (1), con $\sigma = (1, 0, 0)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{\underline{0}\}$,
- A = (-1), con $\sigma = (0, 1, 0)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{0\}$.

(n=2) Vi sono sei possibili matrici per A:

- A = 0, con $\sigma = (0, 0, 2)$, $rg(\varphi) = 0$ e $CI(\varphi) = V$,
- $\bullet \ \ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathrm{con} \ \sigma = (1,0,1), \ \mathrm{rg}(\varphi) = 1 \ \mathrm{e} \ \mathrm{CI}(\varphi) = \{x = 0 \mid \underline{v} \in V\} = V^{\perp},$
- $A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$, con $\sigma = (0, 1, 1)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{x = 0 \mid \underline{v} \in V\} = V^{\perp}$,
- $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, con $\sigma = (1, 1, 0)$, $rg(\varphi) = 2$ e $CI(\varphi) = \{x^2 = y^2 \mid \underline{v} \in V\}$,

- $A = I_2$, con $\sigma = (2, 0, 0)$, $rg(\varphi) = 2$ e $CI(\varphi) = \{\underline{0}\}$,
- $A = -I_2$, con $\sigma = (0, 2, 0)$, $rg(\varphi) = 2$ e $CI(\varphi) = \{\underline{0}\}$.

Si osserva in particolare che $\det(A) = -1 \iff \sigma = (1, 1, 0)$. Pertanto se M è una matrice associata al prodotto scalare φ in una base \mathcal{B}' , $\det(M) < 0 \iff \sigma = (1, 1, 0)$.

(n=3) Se A contiene almeno uno zero nella diagonale, si può studiare A riconducendosi al caso n=2, considerando la matrice $A_{1,2}^{1,2}$, e incrementando di uno l'indice di nullità di φ (eventualmente considerando anche come varia il cono isotropo). Altrimenti A può essere rappresentato dalle seguenti quattro matrici:

- $A = I_3$, con $\sigma = (3, 0, 0)$, $rg(\varphi) = 3$ e $CI(\varphi) = \{\underline{0}\}$,
- $A = -I_3$, con $\sigma = (0, 3, 0)$, $rg(\varphi) = 3$ e $CI(\varphi) = \{0\}$,

•
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, con $\sigma = (2, 1, 0)$, $\operatorname{rg}(\varphi) = 3 \in \operatorname{CI}(\varphi) = \{x^2 + y^2 = z^2 \mid \underline{v} \in V\}$,

•
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\operatorname{con} \sigma = (1, 2, 0)$, $\operatorname{rg}(\varphi) = 3 \operatorname{eCI}(\varphi) = \{y^2 + z^2 = x^2 \mid \underline{v} \in V\}$.

Si osserva infine che, se $V = \mathbb{R}^3$ e \mathcal{B} ne è la base canonica, i coni isotropi delle ultime due matrici rappresentano proprio due coni nello spazio tridimensionale.

1.5.2.2 Metodo di Jacobi per il calcolo della segnatura

Proposizione 1.5. Sia \mathbb{K} un campo ordinato i cui elementi positivi sono tutti quadrati (e.g. \mathbb{R}). Sia W un sottospazio di V di dimensione k. Sia W' un sottospazio di V di dimensione k+1. Sia $\sigma(\varphi|_W)=(p,q,0)$, con $p,q\in\mathbb{N}$ e siano \mathcal{B} e \mathcal{B}' due basi di W e W'. Siano $B=M_{\mathcal{B}}(\varphi|_{W'})$ e $B'=M_{\mathcal{B}'}(\varphi|_W)$).

Sia $d := \frac{\det(B')}{\det(B)}$. Allora vale che:

$$\sigma(\varphi|_{W'}) = \begin{cases} (p+1, q, 0) & \text{se } d > 0, \\ (p, q+1, 0) & \text{se } d < 0, \\ (p, q, 1) & \text{altrimenti} \end{cases}$$

Dimostrazione. Dalle precedenti osservazioni, vale che $\iota_+(\varphi|_{W'}) \geq \iota_+(\varphi|_W)$ e che $\iota_-(\varphi|_{W'}) \geq \iota_-(\varphi|_W)$. Inoltre $\varphi|_W$ è non degenere dal momento che $\iota_0(\varphi|_W) = 0$, e

pertanto $p + q = \operatorname{rg}(\varphi|_W) = k$.

Siano ora \mathcal{B}_{\perp} e \mathcal{B}'_{\perp} due basi di Sylvester di W e W'. Siano $A = M_{\mathcal{B}_{\perp}}(\varphi|_W)$ e $A' = M_{\mathcal{B}'_{\perp}}(\varphi|_W)$. Allora $\det(A) = (-1)^p(-1)^q$, mentre $\det(A') = (-1)^p(-1)^q d'$, dove $d' \in \{-1,0,1\}$. Allora $\det(A') = \det(A)d' \implies d' = \frac{\det(A')}{\det(A)}$, dal momento che $\det(A) \neq 0$, essendo $\varphi|_W$ non degenere.

In particolare, $\sigma(\varphi|_{W'}) = (p,q,1)$ se e solo se $\det(A') = 0 \implies d' = 0$. Dal momento che $\det(A') = 0 \iff \det(B') = 0$, $d' = 0 \iff d = 0$. Pertanto si conclude che $\sigma(\varphi|_{W'}) = (p,q,1) \iff d = 0$.

Al contrario, $\sigma(\varphi|_{W'}) = (p+1,q,0)$ se e solo se d'=1, ossia se e solo se $\det(A')$ e $\det(A)$ sono concordi di segno. Dal momento che il segno è un invariante del cambiamento di base per la matrice associata a φ , d'=1 se e solo se $\det(B)$ e $\det(B')$ sono concordi di segno, ossia se e solo se d>0. Pertanto $\sigma(\varphi|_{W'}) = (p+1,q,0) \iff d>0$. Analogamente si verifica che $\sigma(\varphi|_{W'}) = (p,q+1,0) \iff d<0$, da cui la tesi.

Algoritmo 1.2 (metodo di Jacobi). Sia \mathcal{B} una base di V e sia $A = M_{\mathcal{B}}(\varphi)$. Se il determinante di ogni minore di testa⁶ di A (ossia dei minori della forma $A_{1,...,i}^{1,...,i}$, con $1 \leq i \leq n-1$) è diverso da zero, è possibile applicare il **metodo di Jacobi** per il calcolo della segnatura di φ .

Sia $d_i = \det \left(A_{1,\dots,i}^{1,\dots,i}\right) \ \forall \ 1 \leq i \leq n$ e si ponga $d_0 := 1$. Allora, per la *Proposizione 1.5*, ι_+ corrisponde al numero di permanenze del segno tra elementi consecutivi (escludendo 0) di (d_i) , mentre ι_- corrisponde al numero di variazioni del segno (anche stavolta escludendo 0). Infine ι_0 può valere solo 0 o 1, dove $\iota_0 = 1 \iff \det(A) = 0$.

Esempio. Sia
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 4 \end{pmatrix} \in M(3, \mathbb{R}).$$

Si calcola la segnatura di φ_A mediante il metodo di Jacobi. Poiché A è la matrice associata di φ_A nella base canonica di \mathbb{R}^3 , si può applicare il metodo di Jacobi direttamente su A.

Si calcola allora la successione dei d_i :

1.
$$d_1 = \det(1) = 1$$
,

2.
$$d_2 = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 2 - 1 = 1,$$

⁶In realtà il metodo si estende ad ogni successione di minori coerente con un'estensione di base (i.e. i minori principali di A).

3.
$$d_3 = \det(A) = (8-1) - 4 = 3$$
.

Dal momento che vi sono tre permanenze di segno, si conclude che $\sigma(\varphi_A) = (3,0,0)$, ossia che φ_A è definito positivo.

1.5.2.3 Criterio di Sylvester per la definitezza di un prodotto scalare

Proposizione 1.6 (criterio di Sylvester per i prodotti definiti). Sia $\mathbb{K} = \mathbb{R}$. Sia \mathcal{B} una base di V, e sia $A = M_{\mathcal{B}}(\varphi)$. Sia $d_i = \det\left(A_{1,\dots,i}^{1,\dots,i}\right)$. Allora φ è definito positivo se e solo se $d_i > 0 \ \forall \ 1 \le i \le n$. Analogamente φ è definito negativo se e solo se $(-1)^i d_i > 0 \ \forall \ 1 \le i \le n$.

Dimostrazione. Si osserva che φ è definito positivo se e solo se $\iota_+ = n$. Pertanto, per il metodo di Jacobi, φ è definito positivo se e solo se vi sono solo permanenze di segno tra elementi consecutivi nella successione (d_i) , e quindi se e solo se $d_i > 0 \ \forall 1 \le i \le n$. Analogamente φ è definito negativo se e solo se $\iota_- = n$, e quindi se e solo se vi sono solo variazioni di segno $\iff d_i > 0$ se i è pari e $d_i < 0$ se i è dispari $\iff (-1)^i d_i > 0$, $\forall 1 \le i \le n$.

1.5.2.4 Sottospazi isotropi e indice di Witt

Definizione (sottospazio isotropo). Sia W un sottospazio di V. Allora si dice che W è un sottospazio isotropo di V se $\varphi|_W = 0$.

Osservazione.

- $ightharpoonup V^{\perp}$ è un sottospazio isotropo di V.
- ightharpoonup è un vettore isotropo $\iff W = \operatorname{Span}(\underline{v})$ è un sottospazio isotropo di V.
- ▶ $W \subseteq V$ è isotropo $\iff W \subseteq W^{\perp}$.

Proposizione 1.7. Sia φ non degenere. Se W è un sottospazio isotropo di V, allora dim $W \leq \frac{1}{2} \dim V$.

Dimostrazione. Poiché W è un sottospazio isotropo di V, vale che $W\subseteq W^{\perp}$. Allora vale che:

$$\dim W \le \dim W^{\perp}. \tag{1.4}$$

Inoltre, dal momento che φ è non degenere, vale anche che:

$$\dim W + \dim W^{\perp} = \dim V \implies \dim W^{\perp} = \dim V - \dim W. \tag{1.5}$$

Sostituendo allora l'equazione (1.5) nella disuguaglianza (1.4), si ottiene che dim $W \leq \frac{1}{2} \dim V$, ossia la tesi.

Definizione (indice di Witt). Si definisce l'**indice di Witt** $W(\varphi)$ di (V, φ) come la massima dimensione di un sottospazio isotropo di V.

Osservazione.

- ▶ Se $\varphi > 0$ o $\varphi < 0$, $W(\varphi) = 0$. Infatti ogni sottospazio non nullo W di V non ammette vettori isotropi, da cui si deduce che $\varphi|_W \neq 0$.
- ▶ Se φ è non degenere, per la *Proposizione 1.7*, vale che $W(\varphi) \leq \frac{1}{2} \dim V$.

Proposizione 1.8. Sia $\mathbb{K} = \mathbb{R}$ e sia φ non degenere. Allora $W(\varphi) = \min\{\iota_+(\varphi), \iota_-(\varphi)\}.$

Dimostrazione. Senza perdità di generalità si assuma $\iota_{-}(\varphi) \leq \iota_{+}(\varphi)$ (il caso $\iota_{-}(\varphi) > \iota_{+}(\varphi)$ è analogo). Sia W un sottospazio con dim $W > \iota_{-}(\varphi)$. Sia W^{+} un sottospazio con dim $W^{+} = \iota_{+}(\varphi)$ e $\varphi|_{W^{+}} > 0$. Allora, per la formula di Grassmann, $n-\dim(W\cap W^{+}) < \dim(W+W^{\perp}) \leq n \implies \dim(W\cap W^{+}) > 0$. Quindi $\exists \underline{w} \in W, \underline{w} \neq \underline{0}$ tale che $\varphi(\underline{w},\underline{w}) > 0$, da cui si ricava che W non è isotropo. Pertanto $W(\varphi) \leq \iota_{-}(\varphi)$.

Sia $a := \iota_+(\varphi)$ e sia $b := \iota_-(\varphi)$. Sia ora $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_a}, \underline{w_1}, \dots, \underline{w_b}\}$ una base di Sylvester per φ . Siano $\underline{v_1}$, ..., $\underline{v_a}$ tali che $\varphi(\underline{v_i}, \underline{v_i}) = 1$ con $1 \le i \le a$. Analogamente siano $\underline{w_1}$, ..., $\underline{w_b}$ tali che $\varphi(\underline{w_i}, \underline{w_i}) = -1$ con $1 \le i \le b$. Detta allora $\mathcal{B}' = \{\underline{v_1}' := \underline{v_1} + \underline{w_1}, \dots, \underline{v_b}' := v_b + w_b\}$, sia $W = \operatorname{Span}(\mathcal{B}')$.

Si osserva che \mathcal{B}' è linearmente indipendente, e dunque che dim $W=\iota_-$. Inoltre $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i}+\underline{w_i},\underline{v_j}+\underline{w_j})$. Se $i\neq j$, allora $\varphi(\underline{v_i}',\underline{v_j}')=0$, dal momento che i vettori di \mathcal{B} sono a due a due ortogonali tra loro. Se invece i=j, allora $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i},\underline{v_i})+\varphi(\underline{w_i},\underline{w_i})=1-1=0$. Quindi $M_{\mathcal{B}'}(\varphi|_W)=0$, da cui si conclude che $\varphi|_W=0$. Pertanto $W(\varphi)\geq i_-(\varphi)$, e quindi si conclude che $W(\varphi)=i_-(\varphi)$, da cui la tesi.

1.6 Isometrie tra spazi vettoriali

Definizione. (isometria) Dati due spazi vettoriali (V, φ) e (V', φ') dotati di prodotto scalare sullo stesso campo \mathbb{K} , si dice che V e V' sono **isometrici** se esiste un isomorfismo f, detto isometria, che preserva tali che prodotti, ossia tale che:

$$\varphi(\underline{v},\underline{w}) = \varphi'(f(\underline{v}), f(\underline{w})).$$

Proposizione 1.9. Sia $f: V \to V'$ un isomorfismo. Allora f è un'isometria \iff \forall base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di $V, \mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall \ 1 \leq i, j \leq n \iff \exists \text{ base } \mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\} \text{ di } V \text{ tale che } \overline{\mathcal{B}'} = \{f(\underline{v_1}), \dots, \overline{f(v_n)}\}$ è una base di V' e $\varphi(\underline{v_i}, v_j) = \varphi'(f(\underline{v_i}), f(v_j)) \ \forall \ 1 \leq i, j \leq n.$

Dimostrazione. Se f è un'isometria, detta \mathcal{B} una base di V, $\mathcal{B}' = f(\mathcal{B})$ è una base di V' dal momento che f è prima di tutto un isomorfismo. Inoltre, dacché f è un'isometria, vale sicuramente che $\varphi(\underline{v_i},v_j)=\varphi'(f(\underline{v_i}),f(v_j)) \ \forall \ 1\leq i,j\leq n.$

Sia ora assunto per ipotesi che \forall base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V, $\mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, v_j) = \varphi'(f(\underline{v_i}), f(v_j)) \ \forall 1 \leq i, j \leq n$. Allora, analogamente a

prima, detta $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V, $\mathcal{B}' = f(\mathcal{B})$ è una base di V', e in quanto tale, per ipotesi, è tale che $\varphi(v_i, v_j) = \varphi'(f(v_i), f(v_j)) \ \forall 1 \leq i, j \leq n$.

Sia infine assunto per ipotesi che \exists base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V tale che $\mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall \ 1 \leq i, j \leq n$. Siano $\underline{v}, \ \underline{w} \in V$. Allora $\exists \ a_1, \ \dots, \ a_n, \ b_1, \ \dots, \ \overline{b_n} \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$ e $\underline{w} = b_1v_1 + \dots + b_nv_n$. Si ricava pertanto che:

$$\varphi'(f(\underline{v}), f(\underline{w})) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \, \varphi'(f(\underline{v_i}), f(\underline{v_j})) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \, \varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v}, \underline{w}),$$

da cui la tesi. \Box

Proposizione 1.10. Sono equivalenti le seguenti affermazioni:

- (i) $V \in V'$ sono isometrici;
- (ii) \forall base \mathcal{B} di V, base \mathcal{B}' di V', $M_{\mathcal{B}}(\varphi)$ e $M_{\mathcal{B}'}(\varphi')$ sono congruenti;
- (iii) \exists base \mathcal{B} di V, base \mathcal{B}' di V' tale che $M_{\mathcal{B}}(\varphi)$ e $M_{\mathcal{B}'}(\varphi')$ sono congruenti.

Dimostrazione. Se V e V' sono isometrici, sia $f: V \to V'$ un'isometria. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Allora, poiché f è anche un isomorfismo, $\mathcal{B}' = f(\mathcal{B})$ è una base di V tale che $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall \ 1 \le i, j \le n$. Pertanto $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}'}(\varphi')$. Si conclude allora che, cambiando base in V (o in V'), la matrice associata al prodotto scalare varia per congruenza dalla formula di cambiamento di base per il prodotto scalare, da cui si ricava che per ogni scelta di \mathcal{B} base di V e di \mathcal{B}' base di V', $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi')$. Inoltre, se tale risultato è vero per ogni \mathcal{B} base di V e di \mathcal{B}' base di V', dal momento che sicuramente esistono due basi \mathcal{B} , \mathcal{B}' di V e V', vale anche (ii) \Longrightarrow (iii).

Si dimostra ora (iii) \Longrightarrow (i). Per ipotesi $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi')$, quindi $\exists P \in \operatorname{GL}(n,\mathbb{K}) \mid M_{\mathcal{B}'}(\varphi') = P^{\top}M_{\mathcal{B}}(\varphi)P$. Allora $\exists \mathcal{B}''$ base di V' tale che $P = M_{\mathcal{B}''}^{\mathcal{B}'}(\operatorname{Id}_V)$, da cui $P^{-1} = M_{\mathcal{B}'}^{\mathcal{B}''}(\varphi)$. Per la formula di cambiamento di base del prodotto scalare, $M_{\mathcal{B}''}(\varphi') = (P^{-1})^{\top}M_{\mathcal{B}'}P^{-1} = M_{\mathcal{B}}(\varphi)$. Detta $\mathcal{B}'' = \{\underline{w_1}, \dots, \underline{w_n}\}$, si costruisce allora l'isomorfismo $f: V \to V'$ tale che $f(\underline{v_i}) = \underline{w_i} \ \forall 1 \leq i \leq n$. Dal momento che per costruzione $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}''}(\varphi')$, $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(\underline{w_i}, \underline{w_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall 1 \leq i, j \leq n$. Si conclude dunque, dalla $Proposizione \ 1.9$, che $\varphi(\underline{v}, \underline{w}) = \varphi'(f(\underline{v}), f(\underline{w})) \ \forall \underline{v}, \underline{w} \in V$, e dunque che f è un'isometria, come desiderato dalla tesi. \square

Proposizione 1.11. (V, φ) e (V', φ') spazi vettoriali su \mathbb{R} sono isometrici $\iff \varphi$ e φ' hanno la stessa segnatura.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Per la *Proposizione 1.10*, esistono due basi \mathcal{B} e \mathcal{B}' , una di V e una di V', tali che $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi')$. Allora, poiché queste due matrici sono congruenti, esse devono

1 Introduzione al prodotto scalare

condividere anche la stessa segnatura, che è invariante completo per congruenza, e dunque le segnature di φ e di φ' coincidono.
(\Leftarrow) Se φ e φ' hanno la stessa segnatura, allora, detta \mathcal{B} una base di V e \mathcal{B}' una base di V' , $M_{\mathcal{B}}(\phi) \cong M_{\mathcal{B}'}(\phi')$. Allora, per la <i>Proposizione 1.10</i> , V e V' sono isometrici. \square

2 I prodotti hermitiani e complessificazione (non indicizzato)

Definizione. (prodotto hermitiano) Sia $\mathbb{K} = \mathbb{C}$. Una mappa $\varphi : V \times V \to \mathbb{C}$ si dice **prodotto hermitiano** se:

- (i) φ è \mathbb{C} -lineare nel secondo argomento, ossia se $\varphi(\underline{v}, \underline{u} + \underline{w}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{v}, \underline{w})$ e $\varphi(\underline{v}, a\underline{w}) = a \varphi(\underline{v}, \underline{w}),$
- (ii) $\varphi(u, w) = \overline{\varphi(w, u)}$.

Definizione. (prodotto hermitiano canonico in \mathbb{C}^n) Si definisce **prodotto hermitiano** canonico di \mathbb{C}^n il prodotto $\varphi: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ tale per cui, detti $\underline{v} = (z_1 \cdots z_n)^{\top}$ e $\underline{w} = (w_1 \cdots w_n)^{\top}, \ \varphi(\underline{v}, \underline{w}) = \sum_{i=1}^n \overline{z_i} w_i.$

Osservazione.

- $ightharpoonup \varphi(\underline{v},\underline{v}) = \overline{\varphi(\underline{v},\underline{v})}$, e quindi $\varphi(\underline{v},\underline{v}) \in \mathbb{R}$.
- Sia $\underline{v} = \sum_{i=1}^{n} x_i \underline{v_i}$ e sia $\underline{w} = \sum_{i=1}^{n} y_i \underline{v_i}$, allora $\varphi(\underline{v}, \underline{w}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{x_i} y_i \varphi(\underline{v_i}, \underline{v_j})$.

Proposizione 2.1. Data la forma quadratica $q:V\to\mathbb{R}$ del prodotto hermitiano φ tale che $q(\underline{v})=\varphi(\underline{v},\underline{v})\in\mathbb{R}$, tale forma quadratica individua univocamente il prodotto hermitiano φ .

Dimostrazione. Innanzitutto si osserva che:

$$\varphi(\underline{v},\underline{w}) = \frac{\varphi(\underline{v},\underline{w}) + \overline{\varphi(\underline{v},\underline{w})}}{2} + \frac{\varphi(\underline{v},\underline{w}).\overline{\varphi(\underline{v},\underline{w})}}{2}.$$

Si considerano allora le due identità:

$$q(\underline{v}+\underline{w})-q(\underline{v})-q(\underline{w})=\varphi(\underline{v},\underline{w})+\overline{\varphi(\underline{w},\underline{v})}=2\,\Re(\varphi(\underline{v},\underline{w})),$$

$$q(i\underline{v}+\underline{w})-q(\underline{v})-q(\underline{w})=-i(\varphi(\underline{v},\underline{w})-\overline{\varphi(\underline{v},\underline{w})})=2\,\Im(\varphi(\underline{v},\underline{w})),$$

da cui si conclude che il prodotto φ è univocamente determinato dalla sua forma quadratica.

Definizione. Si definisce **matrice aggiunta** di $A \in M(n, \mathbb{K})$ la matrice coniugata della trasposta di A, ossia:

$$A^* = \overline{A^\top} = \overline{A}^\top$$
.

Osservazione. Per quanto riguarda la matrice aggiunta valgono le principali proprietà della matrice trasposta:

- $(A+B)^* = A^* + B^*$,
- $(AB)^* = B^*A^*$,
- $(A^{-1})^* = (A^*)^{-1}$, se A è invertibile.

Definizione. (matrice associata del prodotto hermitiano) Analogamente al caso del prodotto scalare, data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ si definisce come **matrice associata** del prodotto hermitiano φ la matrice $M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i,j=1\cdots n}$.

Osservazione. Si osserva che, analogamente al caso del prodotto scalare, vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}}.$$

Proposizione 2.2. (formula del cambiamento di base per i prodotto hermitiani) Siano \mathcal{B} , \mathcal{B}' due basi di V. Allora vale la seguente identità:

$$M_{\mathcal{B}'} = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V).$$

Dimostrazione. Siano $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e $\mathcal{B}' = \{\underline{w_1}, \dots, \underline{w_n}\}$. Allora $\varphi(\underline{w_i}, \underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w_j}]_{\mathcal{B}} = \left(M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^i\right)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^j = \left(M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)\right)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^j,$ da cui si ricaya l'identità desiderata

Definizione. (radicale di un prodotto hermitiano) Analogamente al caso del prodotto scalare, si definisce il **radicale** del prodotto φ come il seguente sottospazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \underline{w} \in V \}.$$

Proposizione 2.3. Sia \mathcal{B} una base di V e φ un prodotto hermitiano. Allora $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))^{1}$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e sia $\underline{v} \in V^{\perp}$. Siano $a_1, \dots, a_n \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$. Allora, poiché $\underline{v} \in V$, $0 = \varphi(\underline{v_i}, \underline{v}) = a_1\varphi(\underline{v_i}, \underline{v_1}) + \dots + a_n\varphi(\underline{v_i}, \underline{v_n}) = M_i[\underline{v}]_{\mathcal{B}}$, da cui si ricava che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$, e quindi che $V^{\perp} \subseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$.

Sia ora $\underline{v} \in V$ tale che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$. Allora, per ogni $\underline{w} \in V$, $\varphi(\underline{w},\underline{v}) = [\underline{w}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{v}]_{\mathcal{B}} = [\underline{w}]_{\mathcal{B}}^* 0 = 0$, da cui si conclude che $\underline{v} \in V^{\perp}$, e quindi che $V^{\perp} \supseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, da cui $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, ossia la tesi.

¹Stavolta non è sufficiente considerare la mappa $f: V \to V^*$ tale che $f(\underline{v}) = [\underline{w} \mapsto \varphi(\underline{v}, \underline{w})]$, dal momento che f non è lineare, bensì antilineare, ossia $f(a\underline{v}) = \overline{a}f(\underline{v})$.

Osservazione. Come conseguenza della proposizione appena dimostrata, valgono le principali proprietà già viste per il prodotto scalare.

- $ightharpoonup \det(M_{\mathcal{B}}(\varphi)) = 0 \iff V^{\perp} \neq \{0\} \iff \varphi \text{ è degenere,}$
- \blacktriangleright Vale il teorema di Lagrange, e quindi quello di Sylvester, benché con alcune accortezze: si introduce, come nel caso di $\mathbb R$, il concetto di segnatura, che diventa l'invariante completo della nuova congruenza hermitiana, che ancora una volta si dimostra essere una relazione di equivalenza.
- ▶ Come mostrato nei momenti finali del documento (vd. *Esercizio 3*), vale la formula delle dimensioni anche nel caso del prodotto hermitiano.

Definizione. (restrizione ai reali di uno spazio) Sia V uno spazio vettoriale su \mathbb{C} con base \mathcal{B} . Si definisce allora lo spazio $V_{\mathbb{R}}$, detto **spazio di restrizione su** \mathbb{R} di V, come uno spazio su \mathbb{R} generato da $\mathcal{B}_{\mathbb{R}} = \mathcal{B} \cup i\mathcal{B}$.

Esempio. Si consideri $V = \mathbb{C}^3$. Una base di \mathbb{C}^3 è chiaramente $\{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$. Allora $V_{\mathbb{R}}$ sarà uno spazio vettoriale su \mathbb{R} generato dai vettori $\{e_1, e_2, e_3, ie_1, ie_2, ie_3\}$.

Osservazione. Si osserva che lo spazio di restrizione su \mathbb{R} e lo spazio di partenza condividono lo stesso insieme di vettori. Infatti, $\mathrm{Span}_{\mathbb{C}}(\mathcal{B}) = \mathrm{Span}_{\mathbb{R}}(\mathcal{B} \cup i\mathcal{B})$. Ciononostante, dim $V_{\mathbb{R}} = 2 \dim V^2$, se dim $V \in \mathbb{N}$.

Definizione. (complessificazione di uno spazio) Sia V uno spazio vettoriale su \mathbb{R} . Si definisce allora lo **spazio complessificato** $V_{\mathbb{C}} = V \times V$ su \mathbb{C} con le seguenti operazioni:

- $(\underline{v}, \underline{w}) + (\underline{v}', \underline{w}') = (\underline{v} + \underline{v}', \underline{w} + \underline{w}'),$
- (a+bi)(v,w) = (av bw, aw + bv).

Osservazione. La costruzione dello spazio complessificato emula in realtà la costruzione di \mathbb{C} come spazio $\mathbb{R} \times \mathbb{R}$. Infatti se z = (c, d), vale che (a+bi)(c, d) = (ac-bd, ad+bc), mentre si mantiene l'usuale operazione di addizione. In particolare si può identificare l'insieme $V \times \{\underline{0}\}$ come V, mentre $\{\underline{0}\} \times V$ viene identificato come l'insieme degli immaginari iV di $V_{\mathbb{C}}$. Infine, moltiplicare per uno scalare reale un elemento di $V \times \{\underline{0}\}$ equivale a moltiplicare la sola prima componente con l'usuale operazione di moltiplicazione di V. Allora, come accade per \mathbb{C} , si può sostituire la notazione $(\underline{v},\underline{w})$ con la più comoda notazione v+iw.

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Innanzitutto si osserva che $(a+bi)(\underline{v},\underline{0}) = (a\underline{v},b\underline{v})$. Pertanto si può concludere che $\mathcal{B} \times \{\underline{0}\}$ è una base dello spazio complessificato $V_{\mathbb{C}}$ su \mathbb{C} .

²Si sarebbe potuto ottenere lo stesso risultato utilizzando il teorema delle torri algebriche: $[V_{\mathbb{R}} : \mathbb{R}] = [V : \mathbb{C}][\mathbb{C} : \mathbb{R}] = 2[V : \mathbb{C}].$

Infatti, se $(a_1+b_1i)(\underline{v_1},\underline{0})+\ldots+(a_n+b_ni)(\underline{v_n},\underline{0})=(\underline{0},\underline{0})$, allora $(a_1\underline{v_1}+\ldots+a_n\underline{v_n},b_1\underline{v_1}+\ldots+b_n\underline{v_n})=(\underline{0},\underline{0})$. Poiché però \mathcal{B} è linearmente indipendente per ipotesi, l'ultima identità implica che $a_1=\cdots=a_n=b_1=\cdots=b_n=0$, e quindi che $\mathcal{B}\times\{\underline{0}\}$ è linearmente indipendente.

Inoltre $\mathcal{B} \times \{\underline{0}\}$ genera $V_{\mathbb{C}}$. Se infatti $\underline{v} = (\underline{u}, \underline{w})$, e vale che:

$$\underline{u} = a_1 \underline{v_1} + \ldots + a_n \underline{v_n}, \quad \underline{w} = b_1 \underline{v_1} + \ldots + b_n \underline{v_n},$$

allora $\underline{v} = (a_1 + b_1 i)(v_1, \underline{0}) + \ldots + (a_n + b_n i)(v_n, \underline{0})$. Quindi dim $V_{\mathbb{C}} = \dim V$.

Definizione. Sia f un'applicazione \mathbb{C} -lineare di V spazio vettoriale su \mathbb{C} . Allora si definisce la **restrizione su** \mathbb{R} di f, detta $f_{\mathbb{R}}: V_{\mathbb{R}} \to V_{\mathbb{R}}$, in modo tale che $f_{\mathbb{R}}(\underline{v}) = f(\underline{v})$.

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V su \mathbb{C} . Sia $A = M_{\mathcal{B}}(f)$. Si osserva allora che, se $\mathcal{B}' = \mathcal{B} \cup i\mathcal{B}$ e A = A' + iA'' con A', $A'' \in M(n, \mathbb{R})$, vale la seguente identità:

$$M_{\mathcal{B}'}(f_{\mathbb{R}}) = \left(egin{array}{c|c} A' & -A'' \ A'' & A' \end{array}
ight).$$

Infatti, se $f(\underline{v_i}) = (a_1 + b_1 i)\underline{v_1} + \ldots + (a_n + b_n i)\underline{v_n}$, vale che $f_{\mathbb{R}}(\underline{v_i}) = a_1\underline{v_1} + \ldots + a_n\underline{v_n} + b_1(i\underline{v_1}) + \ldots + b_n(i\underline{v_n})$, mentre $f_{\mathbb{R}}(i\underline{v_i}) = if(\underline{v_i}) = -b_1\underline{v_1} + \ldots - b_n\underline{v_n} + a_1(i\underline{v_1}) + \ldots + a_n(i\underline{v_n})$.

Definizione. Sia f un'applicazione \mathbb{R} -lineare di V spazio vettoriale su \mathbb{R} . Allora si definisce la **complessificazione** di f, detta $f_{\mathbb{C}}: V_{\mathbb{C}} \to V_{\mathbb{C}}$, in modo tale che $f_{\mathbb{C}}(\underline{v}+i\underline{w}) = f(\underline{v}) + if(\underline{w})$.

Osservazione. Si verifica infatti che $f_{\mathbb{C}}$ è \mathbb{C} -lineare.

- $f_{\mathbb{C}}((\underline{v_1} + i\underline{w_1}) + (\underline{v_2} + i\underline{w_2})) = f_{\mathbb{C}}((\underline{v_1} + \underline{v_2}) + i(\underline{w_1} + \underline{w_2})) = f(\underline{v_1} + \underline{v_2}) + if(\underline{w_1} + \underline{w_2}) = (f(\underline{v_1}) + if(\underline{w_1})) + (f(\underline{v_2}) + if(\underline{w_2})) = f_{\mathbb{C}}(\underline{v_1} + i\underline{w_1}) + f_{\mathbb{C}}(\underline{v_2} + i\underline{w_2}).$
- $f_{\mathbb{C}}((a+bi)(\underline{v}+i\underline{w})) = f_{\mathbb{C}}(a\underline{v}-b\underline{w}+i(a\underline{w}+b\underline{v})) = f(a\underline{v}-b\underline{w})+if(a\underline{w}+b\underline{v}) = af(\underline{v})-bf(\underline{w})+i(af(\underline{w})+bf(\underline{v})) = (a+bi)(f(\underline{v})+if(\underline{w})) = (a+bi)f_{\mathbb{C}}(\underline{v}+i\underline{w}).$

Proposizione 2.4. Sia $f_{\mathbb{C}}$ la complessificazione di $f \in \text{End}(V)$, dove V è uno spazio vettoriale su \mathbb{R} . Sia inoltre $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Valgono allora i seguenti risultati:

- (i) $(f_{\mathbb{C}})_{\mathbb{R}}|_{V}$ assume gli stessi valori di f,
- (ii) $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f) \in M(n, \mathbb{R}),$

(iii)
$$M_{\mathcal{B} \cup i\mathcal{B}}((f_{\mathbb{C}})_{\mathbb{R}}) = \begin{pmatrix} M_{\mathcal{B}}(f) & 0 \\ 0 & M_{\mathcal{B}}(f) \end{pmatrix}$$
.

Dimostrazione. Si dimostrano i risultati separatamente.

- (i) Si osserva che $(f_{\mathbb{C}})_{\mathbb{R}}(\underline{v_i}) = f_{\mathbb{C}}(\underline{v_i}) = f(\underline{v_i})$. Dal momento che $(f_{\mathbb{C}})_{\mathbb{R}}$ è \mathbb{R} -lineare, si conclude che $(f_{\mathbb{C}})_{\mathbb{R}}$ assume gli stessi valori di f.
- (ii) Dal momento che \mathcal{B} , nell'identificazione di $(\underline{v},\underline{0})$ come \underline{v} , è sempre una base di $V_{\mathbb{C}}$, e $f_{\mathbb{C}}(\underline{v_i}) = f(\underline{v_i})$, chiaramente $[f_{\mathbb{C}}(\underline{v_i})]_{\mathcal{B}} = [f(\underline{v_i})]_{\mathcal{B}}$, e quindi $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f)$, dove si osserva anche che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R})$, essendo V uno spazio vettoriale su \mathbb{R} .
- (iii) Sia $f(\underline{v_i}) = a_1\underline{v_1} + \ldots + a_n\underline{v_n}$ con $a_1, \ldots, a_n \in \mathbb{R}$. Come osservato in (i), $(f_{\mathbb{C}})_{\mathbb{R}}|_{\mathcal{B}} = (f_{\mathbb{C}})_{\mathbb{R}}|_{\mathcal{B}}$, e quindi la prima metà di $M_{\mathcal{B} \cup i\mathcal{B}}((f_{\mathbb{C}})_{\mathbb{R}})$ è formata da due blocchi: uno verticale coincidente con $M_{\mathcal{B}}(f)$ e un altro completamente nullo, dal momento che non compare alcun termine di $i\mathcal{B}$ nella scrittura di $(f_{\mathbb{C}})_{\mathbb{R}}(\underline{v_i})$. Al contrario, per $i\mathcal{B}$, $(f_{\mathbb{C}})_{\mathbb{R}}(\underline{iv_i}) = f_{\mathbb{C}}(\underline{iv_i}) = if(\underline{v_i}) = a_1(\underline{iv_1}) + \ldots + a_n(\underline{iv_n})$; pertanto la seconda metà della matrice avrà i due blocchi della prima metà, benché scambiati.

Osservazione. Dal momento che $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f)$, $f_{\mathbb{C}}$ e f condividono lo stesso polinomio caratteristico e vale che sp $(f) \subseteq \operatorname{sp}(f_{\mathbb{C}})$, dove vale l'uguaglianza se e solo se tale polinomio caratteristico è completamente riducibile in \mathbb{R} . Inoltre, se V_{λ} è l'autospazio su V dell'autovalore λ , l'autospazio su $V_{\mathbb{C}}$, rispetto a $f_{\mathbb{C}}$, è invece $V_{\mathbb{C}_{\lambda}} = V_{\lambda} + iV_{\lambda}$, la cui dimensione rimane invariata rispetto a V_{λ} , ossia dim $V_{\lambda} = \dim V_{\mathbb{C}_{\lambda}}$ (infatti, analogamente a prima, una base di V_{λ} può essere identificata come base anche per $V_{\mathbb{C}_{\lambda}}$).

Proposizione 2.5. Sia $f_{\mathbb{C}}$ la complessificazione di $f \in \operatorname{End}(V)$, dove V è uno spazio vettoriale su \mathbb{R} . Sia inoltre $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Allora un endomorfismo $\tilde{g} : V_{\mathbb{C}} \to V_{\mathbb{C}}$ complessifica un endomorfismo $g \in \operatorname{End}(V) \iff M_{\mathcal{B}}(\tilde{g}) \in M(n, \mathbb{R})$.

Dimostrazione. Se \tilde{g} complessifica $g \in \operatorname{End}(V)$, allora, per la proposizione precedente, $M_{\mathcal{B}}(\tilde{g}) = M_{\mathcal{B}}(g) \in M(n, \mathbb{R})$. Se invece $A = M_{\mathcal{B}}(\tilde{g}) \in M(n, \mathbb{R})$, si considera $g = M_{\mathcal{B}}^{-1}(A) \in \operatorname{End}(V)$. Si verifica facilemente che \tilde{g} non è altro che il complessificato di tale g:

- $\tilde{g}(\underline{v_i}) = g(\underline{v_i})$, dove l'uguaglianza è data dal confronto delle matrici associate, e quindi $\tilde{g}|_V = g$;
- $\tilde{g}(\underline{v} + i\underline{w}) = \tilde{g}(\underline{v}) + i\tilde{g}(\underline{w}) = g(\underline{v}) + ig(\underline{w})$, da cui la tesi.

Proposizione 2.6. Sia φ un prodotto scalare di V spazio vettoriale su \mathbb{R} . Allora esiste un unico prodotto hermitiano $\varphi_{\mathbb{C}}: V_{\mathbb{C}} \times V_{\mathbb{C}} \to \mathbb{C}$ che estende φ (ossia tale che $\varphi_{\mathbb{C}}|_{V \times V} = \varphi$), il quale assume la stessa segnatura di φ .

Dimostrazione. Sia \mathcal{B} una base di Sylvester per φ . Si consideri allora il prodotto $\varphi_{\mathbb{C}}$ tale che:

$$\varphi_{\mathbb{C}}(\underline{v_1}+i\underline{w_1},\underline{v_2}+i\underline{w_2})=\varphi(\underline{v_1},\underline{v_2})+\varphi(\underline{w_1},\underline{w_2})+i(\varphi(\underline{v_1},\underline{w_1})-\varphi(\underline{w_1},\underline{v_2})).$$

Chiaramente $\varphi_{\mathbb{C}}|_{V\times V}=\varphi$. Si verifica allora che $\varphi_{\mathbb{C}}$ è hermitiano:

2 I prodotti hermitiani e complessificazione (non indicizzato)

- $\varphi_{\mathbb{C}}(\underline{v} + i\underline{w}, (\underline{v_1} + i\underline{w_1}) + (\underline{v_2} + i\underline{w_2})) = \varphi(\underline{v}, \underline{v_1} + \underline{v_2}) + \varphi(\underline{w}, \underline{w_1} + \underline{w_2}) + i(\varphi(\underline{v}, \underline{w_1} + \underline{w_2}) + i(\varphi(\underline{v}, \underline{w_1} + \underline{w_2}) + i(\varphi(\underline{v}, \underline{w_1} + \underline{v_2}))) = [\varphi(\underline{v}, \underline{v_1}) + \varphi(\underline{w}, \underline{w_1}) + i(\varphi(\underline{v}, \underline{w_1}) \varphi(\underline{w}, \underline{v_1}))] + [\varphi(\underline{v}, \underline{v_2}) + i(\varphi(\underline{v}, \underline{w_2}) \varphi(\underline{w}, \underline{v_2}))] = \varphi_{\mathbb{C}}(\underline{v} + i\underline{w}, \underline{v_1} + i\underline{w_1}) + \varphi_{\mathbb{C}}(\underline{v} + i\underline{w}, \underline{v_2} + i\underline{w_2})$ (additività nel secondo argomento),
- $\begin{array}{l} \bullet \ \ \varphi_{\mathbb{C}}(\underline{v}+i\underline{w},(a+bi)(\underline{v_1}+i\underline{w_1})) = \varphi_{\mathbb{C}}(\underline{v}+i\underline{w},a\underline{v_1}-b\underline{w_1}+i(b\underline{v_1}+a\underline{w_1})) = \varphi(\underline{v},a\underline{v_1}-b\underline{w_1}) \\ \bullet \underline{w_1}) + \varphi(\underline{w},b\underline{v_1}+a\underline{w_1}) + i(\varphi(\underline{v},b\underline{v_1}+a\underline{w_1})-\varphi(\underline{w},a\underline{v_1}-b\underline{w_1})) = a\varphi(\underline{v},\underline{v_1}) b\varphi(\underline{v},\underline{v_1}) + b\varphi(\underline{w},\underline{v_1}) + i(b\varphi(\underline{v},\underline{v_1})+a\varphi(\underline{v},\underline{w_1})-a\varphi(\underline{w},\underline{v_1})+b\varphi(\underline{w},\underline{w_1})) = a(\varphi(\underline{v},\underline{v_1})+\varphi(\underline{w},\underline{w_1})) b(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + i(a(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1}))+b(\varphi(\underline{v},\underline{v_1})+\varphi(\underline{w},\underline{w_1})) + i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) = (a+bi)\varphi_{\mathbb{C}}(\underline{v}+\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) = (a+bi)\varphi_{\mathbb{C}}(\underline{v}+\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) = (a+bi)\varphi_{\mathbb{C}}(\underline{v}+\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline{w_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) = (a+bi)\varphi_{\mathbb{C}}(\underline{v}+\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1})) + i(\varphi(\underline{v},\underline{v_1})-\varphi(\underline{w},\underline{v_1}) + i(\varphi(\underline{v},\underline$
- $\begin{array}{lll} \bullet & \underline{\varphi_{\mathbb{C}}(\underline{v_1}+i\underline{w_1},\underline{v_2}+i\underline{w_2})} & = & \underline{\varphi(\underline{v_1},\underline{v_2})} + \underline{\varphi(\underline{w_1},\underline{w_2})} + i(\underline{\varphi(\underline{v_1},\underline{w_2})} \underline{\varphi(\underline{w_1},\underline{v_2})}) \\ & \underline{\varphi(\underline{v_1},\underline{v_2})} + \underline{\varphi(\underline{w_1},\underline{w_2})} + i(\underline{\varphi(\underline{w_1},\underline{v_2})} \underline{\varphi(\underline{v_1},\underline{w_2})}) \\ & \underline{\varphi(\underline{v_2},\underline{v_1})} + \underline{\varphi(\underline{w_2},\underline{w_1})} + i(\underline{\varphi(\underline{v_2},\underline{w_1})} \underline{\varphi(\underline{w_2},\underline{v_1})}) \\ & = & \underline{\varphi_{\mathbb{C}}(\underline{v_2}+\underline{w_2},\underline{v_1}+\underline{w_1})} \text{ (coniugio nello scambio degli argomenti)}. \end{array}$

Ogni prodotto hermitiano τ che estende il prodotto scalare φ ha la stessa matrice associata nella base \mathcal{B} , essendo $\tau(\underline{v_i},\underline{v_i})=\varphi(\underline{v_i},\underline{v_i})$ vero per ipotesi. Pertanto τ è unico, e vale che $\tau=\varphi_{\mathbb{C}}$. Dal momento che $M_{\mathcal{B}}(\varphi_{\mathbb{C}})=M_{\mathcal{B}}(\varphi)$ è una matrice di Sylvester, $\varphi_{\mathbb{C}}$ mantiene anche la stessa segnatura di φ .

3 Spazi euclidei e teorema spettrale (non indicizzato)

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto, hermitiano o scalare dipendentemente dal contesto.

Teorema 3.1. (di rappresentazione di Riesz per il prodotto scalare) Sia V uno spazio vettoriale e sia φ un suo prodotto scalare non degenere. Allora per ogni $f \in V^*$ esiste un unico $v \in V$ tale che $f(w) = \varphi(v, w) \ \forall w \in V$.

Dimostrazione. Si consideri l'applicazione a_{φ} . Poiché φ non è degenere, Ker $a_{\varphi} = V^{\perp} = \{\underline{0}\}$, da cui si deduce che a_{φ} è un isomorfismo. Quindi $\forall f \in V^*$ esiste un unico $\underline{v} \in V$ tale per cui $a_{\varphi}(\underline{v}) = f$, e dunque tale per cui $\varphi(\underline{v},\underline{w}) = a_{\varphi}(\underline{v})(\underline{w}) = f(\underline{w}) \ \forall \underline{w} \in V$. \square

Dimostrazione costruttiva. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{f(\underline{v_1})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1} + \dots + \frac{f(\underline{v_n})}{\varphi(\underline{v_n},\underline{v_n})}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v}' \in V$ con la stessa proprietà di \underline{v} , $\varphi(\underline{v},\underline{w}) = \varphi(\underline{v}',\underline{w}) \Longrightarrow \varphi(\underline{v}-\underline{v}',\underline{w})$ $\forall \underline{w} \in V$. Si deduce dunque che $\underline{v} - \underline{v}' \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi si conclude che $\underline{v} = \underline{v}'$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Teorema 3.2. (di rappresentazione di Riesz per il prodotto hermitiano) Sia V uno spazio vettoriale su \mathbb{C} e sia φ un suo prodotto hermitiano non degenere. Allora per ogni $f \in V^*$ esiste un unico $\underline{v} \in V$ tale che $f(\underline{w}) = \varphi(\underline{v}, \underline{w}) \ \forall \underline{w} \in V$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{f(\underline{v_1})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1} + \dots + \frac{f(\underline{v_n})}{\varphi(\underline{v_n},\underline{v_n})}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v'} \in V$ con la stessa proprietà di \underline{v} , $\varphi(\underline{v},\underline{w}) = \varphi(\underline{v'},\underline{w}) \implies \varphi(\underline{v} - \underline{v'},\underline{w})$ $\forall \underline{w} \in V$. Si deduce dunque che $\underline{v} - \underline{v'} \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi si conclude che $\underline{v} = \underline{v'}$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Proposizione 3.1. Sia V uno spazio vettoriale con prodotto scalare φ non degenere. Sia $f \in \operatorname{End}(V)$. Allora esiste un unico endomorfismo $f_{\varphi}^{\top}: V \to V$, detto il **trasposto** di f e indicato con f^{\top} in assenza di ambiguità¹, tale che:

¹Si tenga infatti in conto della differenza tra $f_{\varphi}^{\top}: V \to V$, di cui si discute nell'enunciato, e $f^{\top}: V^* \to V^*$ che invece è tale che $f^top(g) = g \circ f$.

$$a_{\varphi} \circ g = f^{\top} \circ a_{\varphi},$$

ossia che:

$$\varphi(v, f(w)) = \varphi(g(v), w) \ \forall v, w \in V.$$

Dimostrazione. Si consideri $(f^{\top} \circ a_{\varphi})(\underline{v}) \in V^*$. Per il teorema di rappresentazione di Riesz per il prodotto scalare, esiste un unico \underline{v}' tale che $(f^{\top} \circ a_{\varphi})(\underline{v})(\underline{w}) = \varphi(\underline{v}',\underline{w}) \Longrightarrow \varphi(\underline{v},f(\underline{w})) = \varphi(\underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si costruisce allora una mappa $f_{\varphi}^{\top} : V \to V$ che associa a \underline{v} tale \underline{v}' . Si dimostra che f_{φ}^{\top} è un'applicazione lineare, e che dunque è un endomorfismo:

(i) Siano $\underline{v_1}, \underline{v_2} \in V$. Si deve dimostrare innanzitutto che $f_{\varphi}^{\top}(\underline{v_1} + \underline{v_2}) = f_{\varphi}^{\top}(\underline{v_1}) + f_{\varphi}^{\top}(\underline{v_2})$, ossia che $\varphi(f_{\varphi}^{\top}(\underline{v_1}) + f_{\varphi}^{\top}(\underline{v_2}), \underline{w}) = \varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) \ \forall \underline{w} \in V$.

Si osservano le seguenti identità:

$$\begin{split} &\varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) = \varphi(\underline{v_1}, f(\underline{w})) + \varphi(\underline{v_2}, f(\underline{w})) = (*), \\ &\varphi(f_\varphi^\top(\underline{v_1}) + f_\varphi^\top(\underline{v_2}), \underline{w}) = \varphi(f_\varphi^\top(\underline{v_1}), \underline{w}) + \varphi(f_\varphi^\top(\underline{v_2}), \underline{w}) = (*), \end{split}$$

da cui si deduce l'uguaglianza desiderata, essendo $f_{\varphi}^{\top}(\underline{v_1} + \underline{v_2})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

(ii) Sia $\underline{v} \in V$. Si deve dimostrare che $f_{\varphi}^{\top}(a\underline{v}) = af_{\varphi}^{\top}(\underline{v})$, ossia che $\varphi(af_{\varphi}^{\top}(\underline{v}),\underline{w}) = \varphi(a\underline{v},f(\underline{w})) \ \forall a \in \mathbb{K}, \ \underline{w} \in V$. È sufficiente moltiplicare per a l'identità $\varphi(f_{\varphi}^{\top}(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w}))$. Analogamente a prima, si deduce che $f_{\varphi}^{\top}(a\underline{v}) = af_{\varphi}^{\top}(\underline{v})$, essendo $f_{\varphi}^{\top}(a\underline{v})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

Infine si dimostra che f_{φ}^{\top} è unico. Sia infatti g un endomorfismo di V che condivide la stessa proprietà di f_{φ}^{\top} . Allora $\varphi(f_{\varphi}^{\top}(\underline{v}),\underline{w})=\varphi(\underline{v},f(\underline{w}))=\varphi(g(\underline{v}),\underline{w})\;\forall\,\underline{v},\,\underline{w}\in V,$ da cui si deduce che $\varphi(f_{\varphi}^{\top}(\underline{v})-'(\underline{v}),\underline{w})=0\;\forall\,\underline{v},\,\underline{w}\in V,$ ossia che $f_{\varphi}^{\top}(\underline{v})-g(\underline{v})\in V^{\perp}\;\forall\,\underline{v}\in V.$ Tuttavia φ è non degenere, e quindi $V^{\perp}=\{\underline{0}\},$ da cui si deduce che deve valere l'identità $f_{\varphi}^{\top}(\underline{v})=g(\underline{v})\;\forall\,\underline{v}\in V,$ ossia $g=f_{\varphi}^{\top}.$

Proposizione 3.2. Sia V uno spazio vettoriale su \mathbb{C} e sia φ un suo prodotto hermitiano. Allora esiste un'unica mappa² $f^*: V \to V$, detta **aggiunto di** f, tale che $\varphi(\underline{v}, f(\underline{w})) = \varphi(f^*(\underline{v}), \underline{w}) \ \forall \underline{v}, \underline{w} \in V$.

Dimostrazione. Sia $\underline{v} \in V$. Si consideri il funzionale σ tale che $\sigma(\underline{w}) = \varphi(\underline{v}, f(\underline{w}))$. Per il teorema di rappresentazione di Riesz per il prodotto scalare esiste un unico $\underline{v}' \in V$ tale per cui $\varphi(\underline{v}, f(\underline{w})) = \sigma(\underline{w}) = \varphi(\underline{v}', \underline{w})$. Si costruisce allora una mappa f^* che associa \underline{v} a

²Si osservi che f^* non è un'applicazione lineare, benché sia invece antilineare.

tale \underline{v}' .

Si dimostra infine che la mappa f^* è unica. Sia infatti $\mu: V \to V$ che condivide la stessa proprietà di f^* . Allora $\varphi(f^*(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(\mu(\underline{v}), \underline{w}) \ \forall \underline{v}, \underline{w} \in V$, da cui si deduce che $\varphi(f^*(\underline{v}) - \mu(\underline{v}), \underline{w}) = 0 \ \forall \underline{v}, \underline{w} \in V$, ossia che $f^*(\underline{v}) - \mu(\underline{v}) \in V^{\perp} \ \forall \underline{v} \in V$. Tuttavia φ è non degenere, e quindi $V^{\perp} = \{\underline{0}\}$, da cui si deduce che deve valere l'identità $f^*(v) = \mu(v) \ \forall v \in V$, ossia $\mu = f^*$.

Osservazione. L'operazione di trasposizione di un endomorfismo sul prodotto scalare non degenere φ è un'involuzione. Infatti valgono le seguenti identità $\forall \, \underline{v}, \, \underline{w} \in V$:

$$\begin{cases} \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi(f^{\top}(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})), \\ \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi((f^{\top})^{\top}(\underline{w}), \underline{v}) = \varphi(\underline{v}, (f^{\top})^{\top}(\underline{w})). \end{cases}$$

Si conclude allora, poiché φ è non degenere, che $f(\underline{w}) = (f^{\top})^{\top}(\underline{w}) \ \forall \underline{w} \in V$, ossia che $f = (f^{\top})^{\top}$.

Osservazione. Analogamente si può dire per l'operazione di aggiunta per un prodotto hermitiano φ non degenere. Valgono infatti le seguenti identità $\forall \underline{v}, \underline{w} \in V$:

$$\begin{cases} \overline{\varphi(\underline{w},f^*(\underline{v}))} = \varphi(f^*(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w})), \\ \overline{\varphi(\underline{w},f^*(\underline{v}))} = \overline{\varphi((f^*)^*(\underline{w}),\underline{v})} = \varphi(\underline{v},(f^*)^*(\underline{w})), \end{cases}$$

da cui si deduce, come prima, che $f = (f^*)^*$.

Definizione. (base ortonormale) Si definisce **base ortonormale** di uno spazio vettoriale V su un suo prodotto φ una base ortogonale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ tale che $\varphi(\underline{v_i}, \underline{v_j}) = \delta_{ij}$.

Proposizione 3.3. Sia φ un prodotto scalare non degenere di V. Sia $f \in \text{End}(V)$. Allora vale la seguente identità:

$$M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(\varphi),$$

dove \mathcal{B} è una base di V.

Dimostrazione. Sia \mathcal{B}^* la base relativa a \mathcal{B} in V^* . Per la proposizione precedente vale la seguente identità:

$$a_{\varphi} \circ f_{\varphi}^{\top} = f^{\top} \circ a_{\varphi}.$$

Pertanto, passando alle matrici associate, si ricava che:

$$M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi})M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}^*}(f^{\top})M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi}).$$

Dal momento che valgono le seguenti due identità:

$$M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi}) = M_{\mathcal{B}}(\varphi), \qquad M_{\mathcal{B}^*}(f^{\top}) = M_{\mathcal{B}}(f)^{\top},$$

e a_{φ} è invertibile (per cui anche $M_{\mathcal{B}}(\varphi)$ lo è), si conclude che:

$$M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(\varphi) \implies M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(\varphi),$$
da cui la tesi.

Corollario 3.1. Sia φ un prodotto scalare di V. Se \mathcal{B} è una base ortonormale, φ è non degenere e $M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(f)^{\top}$.

Dimostrazione. Se \mathcal{B} è una base ortonormale, $M_{\mathcal{B}}(\varphi) = I_n$. Pertanto φ è non degenere. Allora, per la proposizione precedente:

$$M_{\mathcal{B}}(f_{\varphi}^{\top}) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^{\top} M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(f)^{\top}.$$

Proposizione 3.4. Sia φ un prodotto hermitiano non degenere di V. Sia $f \in \text{End}(V)$. Allora vale la seguente identità:

$$M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi),$$

dove \mathcal{B} è una base di V.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Dal momento che φ è non degenere, Ker $M_{\mathcal{B}}(\varphi) = V^{\perp} = \{\underline{0}\}$, e quindi $M_{\mathcal{B}}(\varphi)$ è invertibile.

Dacché allora $\varphi(f^*(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) \ \forall \underline{v}, \underline{w} \in V$, vale la seguente identità:

$$[f^*(\underline{v})]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[f(\underline{w})]_{\mathcal{B}},$$

ossia si deduce che:

$$[\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(f^*)^* M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}(f) [\underline{w}]_{\mathcal{B}}.$$

Sostituendo allora a \underline{v} e \underline{w} i vettori della base \mathcal{B} , si ottiene che:

$$(M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi))_{ij} = [\underline{v_i}]_{\mathcal{B}}^*M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi)[\underline{v_j}]_{\mathcal{B}} =$$

$$= [v_i]_{\mathcal{B}}^*M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)[v_i]_{\mathcal{B}} = (M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f))_{ij},$$

e quindi che $M_{\mathcal{B}}(f^*)^*M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)$. Moltiplicando a destra per l'inversa di $M_{\mathcal{B}}(\varphi)$ e prendendo l'aggiunta di ambo i membri (ricordando che $M_{\mathcal{B}}(\varphi)^* = M_{\mathcal{B}}(\varphi)$, essendo φ un prodotto hermitiano), si ricava l'identità desiderata.

Corollario 3.2. Sia φ un prodotto hermitiano di V spazio vettoriale su \mathbb{C} . Se \mathcal{B} è una base ortonormale, φ è non degenere e $M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(f)^*$.

Dimostrazione. Se \mathcal{B} è una base ortonormale, $M_{\mathcal{B}}(\varphi) = I_n$. Pertanto φ è non degenere. Allora, per la proposizione precedente:

$$M_{\mathcal{B}}(f_{\varphi}^*) = M_{\mathcal{B}}(\varphi)^{-1} M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}(f)^*.$$

П

Nota. D'ora in poi, nel corso del documento, s'intenderà per φ un prodotto scalare (o eventualmente hermitiano) non degenere di V.

Definizione. (operatori simmetrici) Sia $f \in \text{End}(V)$. Si dice allora che f è **simmetrico** (o autoaggiunto) se $f = f^{\top}$.

Definizione. (applicazioni e matrici ortogonali) Sia $f \in \text{End}(V)$. Si dice allora che f è **ortogonale** se $\varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}),f(\underline{w}))$, ossia se è un'isometria in V. Sia $A \in M(n,\mathbb{K})$. Si dice dunque che A è **ortogonale** se $A^{\top}A = AA^{\top} = I_n$.

Definizione. Le matrici ortogonali di $M(n, \mathbb{K})$ formano un sottogruppo moltiplicativo di $GL(n, \mathbb{K})$, detto **gruppo ortogonale**, e indicato con O_n . Il sottogruppo di O_n contenente solo le matrici con determinante pari a 1 è detto **gruppo ortogonale speciale**, e si denota con SO_n .

Osservazione. Si possono classificare in modo semplice alcuni di questi gruppi ortogonali per $\mathbb{K} = \mathbb{R}$.

▶ $A \in O_n \implies 1 = \det(I_n) = \det(AA^\top) = \det(A)^2 \implies \det(A) = \pm 1.$ ▶ $A = (a) \in O_1 \iff A^\top A = I_1 \iff a^2 = 1 \iff a = \pm 1$, da cui si ricava che l'unica matrice di SO_1 è (1). Si osserva inoltre che O_1 è abeliano di ordine 2, e quindi che $O_1 \cong \mathbb{Z}/2\mathbb{Z}$.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2 \iff \begin{pmatrix} a^2 + b^2 & ab + cd \\ ab + cd & c^2 + d^2 \end{pmatrix} = A^{\top}A = I_2.$$

Pertanto deve essere soddisfatto il seguente sistema di equazioni:

$$\begin{cases} a^2 + b^2 = c^2 + d^2 = 1, \\ ac + bd = 0. \end{cases}$$

Si ricava dunque che si può identificare A con le funzioni trigonometriche $\cos(\theta)$ e $\sin(\theta)$ con $\theta \in [0, 2\pi)$ nelle due forme:

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \qquad (\det(A) = 1, A \in SO_2),$$

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \qquad (\det(A) = -1).$$

Definizione. (applicazioni e matrici hermitiane) Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è **hermitiano** se $f = f^*$. Sia $A \in M(n, \mathbb{C})$. Si dice dunque che A è **hermitiana** se $A = A^*$.

Definizione. (applicazioni e matrici unitarie) Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è **unitario** se $\varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}),f(\underline{w}))$. Sia $A \in$ $M(n,\mathbb{C})$. Si dice dunque che A è unitaria se $A^*A = AA^* = I_n$.

Definizione. Le matrici unitarie di $M(n,\mathbb{C})$ formano un sottogruppo moltiplicativo di $\mathrm{GL}(n,\mathbb{C})$, detto **gruppo unitario**, e indicato con U_n . Il sottogruppo di U_n contenente solo le matrici con determinante pari a 1 è detto gruppo unitario speciale, e si denota con SU_n .

Osservazione.

Si possono classificare in modo semplice alcuni di questi gruppi unitari.

- ► $A \in U_n \implies 1 = \det(I_n) = \det(AA^*) = \det(A)\det(A) = |\det(A)|^2 = 1.$ ► $A = (a) \in U_1 \iff A^*A = I_1 \iff |a|^2 = 1 \iff a = e^{i\theta}, \ \theta \in [0, 2\pi), \text{ ossia il}$

numero complesso
$$a$$
 appartiene alla circonferenza di raggio unitario.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU_2 \iff AA^* = \begin{pmatrix} |a|^2 + |b|^2 & a\overline{c} + b\overline{d} \\ \overline{a}c + \overline{b}d & |c|^2 + |d|^2 \end{pmatrix} = I_2, \det(A) = 1, \text{ ossia}$$

se il seguente sistema di equazioni è sod

$$\begin{cases} |a|^2 + |b|^2 = |c|^2 + |d|^2 = 1, \\ a\overline{c} + b\overline{d} = 0, \\ ad - bc = 1, \end{cases}$$

le cui soluzioni riassumono il gruppo SU_2 nel seguente modo:

$$SU_2 = \left\{ \begin{pmatrix} x & -y \\ \overline{y} & \overline{x} \end{pmatrix} \in M(2, \mathbb{C}) \mid |x|^2 + |y|^2 = 1 \right\}.$$

Definizione. (spazio euclideo reale) Si definisce spazio euclideo reale uno spazio vettoriale V su \mathbb{R} dotato del prodotto scalare standard $\varphi = \langle \cdot, \cdot \rangle$.

Definizione. (spazio euclideo complesso) Si definisce spazio euclideo complesso uno spazio vettoriale V su \mathbb{C} dotato del prodotto hermitiano standard $\varphi = \langle \cdot, \cdot \rangle$.

Proposizione 3.5. Sia (V, φ) uno spazio euclideo reale e sia \mathcal{B} una base ortonormale di V. Allora $f \in \text{End}(V)$ è simmetrico $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^{\top} \iff M_{\mathcal{B}}(f)$ è simmetrica.

Dimostrazione. Per il corollario precedente, f è simmetrico \iff $f = f^{\top}$ \iff $M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}.$

Proposizione 3.6. Sia (V, φ) uno spazio euclideo reale e sia \mathcal{B} una base ortonormale di V. Allora $f \in \text{End}(V)$ è ortogonale $\iff M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = I_n \stackrel{\text{def}}{\iff}$ $M_{\mathcal{B}}(f)$ è ortogonale.

Dimostrazione. Si osserva che $M_{\mathcal{B}}(\varphi) = I_n$. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Se f è ortogonale, allora $[\underline{v}]_{\mathcal{B}}^{\top}[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top}M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}} = \varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}), f(\underline{w})) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top}M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = [\underline{v}]_{\mathcal{B}}^{\top}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(\varphi)M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}$. Allora, come visto nel corollario precedente, si ricava che $M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = I_n$.

Se invece $M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = I_n, \ \varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^{\top}[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top}M_{\mathcal{B}}(f)^{\top}M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top}(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top}M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = \varphi(f(\underline{v}), f(\underline{w})), \text{ e quindi } f \text{ è ortogonale.}$

Proposizione 3.7. Sia (V, φ) uno spazio euclideo complesso e sia \mathcal{B} una base ortonormale di V. Allora $f \in \operatorname{End}(V)$ è hermitiano $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^* \stackrel{\text{def}}{\iff} M_{\mathcal{B}}(f)$ è hermitiana.

Dimostrazione. Per il corollario precedente, f è hermitiana $\iff f = f^* \iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f^*) = M_{\mathcal{B}}(f)^*$.

Proposizione 3.8. Sia (V, φ) uno spazio euclideo complesso e sia \mathcal{B} una base ortonormale di V. Allora $f \in \text{End}(V)$ è unitario $\iff M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^* = M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = I_n$ $\stackrel{\text{def}}{\iff} M_{\mathcal{B}}(f)$ è unitaria.

Dimostrazione. Si osserva che $M_{\mathcal{B}}(\varphi) = I_n$. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Se f è unitario, allora $[\underline{v}]_{\mathcal{B}}^* [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}} = \varphi(\underline{v}, \underline{w}) = \varphi(f(\underline{v}), f(\underline{w})) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^* M_{\mathcal{B}}(\varphi) (M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}(f) [\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(f) [\underline{w}]_{\mathcal{B}}.$ Allora, come visto nel corollario precedente, si ricava che $M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(f) = I_n$. Dal momento che gli inversi sinistri sono anche inversi destri, $M_{\mathcal{B}}(f)^* M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f) M_{\mathcal{B}}(f)^* = I_n$.

Se invece $M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^* = I_n, \ \varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^*[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^*M_{\mathcal{B}}(f)^*M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}$ $= (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^*(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^*M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = \varphi(f(\underline{v}), f(\underline{w})), \text{ e quindi } f \text{ è unitario.}$

Osservazione. Se \mathcal{B} è una base ortonormale di (V, φ) , ricordando che $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}$ e che $M_{\mathcal{B}}(f^*) = M_{\mathcal{B}}(f)^*$, sono equivalenti allora i seguenti fatti:

▶ $f \circ f^{\top} = f^{\top} \circ f = \operatorname{Id}_{V} \iff M_{\mathcal{B}}(f)$ è ortogonale $\iff f$ è ortogonale, ▶ $f \circ f^{*} = f^{*} \circ f = \operatorname{Id}_{V} \iff M_{\mathcal{B}}(f)$ è unitaria $\iff f$ è unitario (se V è uno spazio vettoriale su \mathbb{C}).

Proposizione 3.9. Sia $V = \mathbb{R}^n$ uno spazio vettoriale col prodotto scalare standard φ . Allora sono equivalenti i seguenti fatti:

(i) $A \in O_n$,

- (ii) f_A è un operatore ortogonale,
- (iii) le colonne e le righe di A formano una base ortonormale di V.

Dimostrazione. Sia \mathcal{B} la base canonica di V. Allora $M_{\mathcal{B}}(f_A) = A$, e quindi, per una proposizione precedente, f_A è un operatore ortogonale. Viceversa si deduce che se f_A è un operatore ortogonale, $A \in O_n$. Dunque è sufficiente dimostrare che $A \in O_n \iff$ le colonne e le righe di A formano una base ortonormale di V.

 (\Longrightarrow) Se $A \in O_n$, in particolare $A \in GL(n,\mathbb{R})$, e quindi A è invertibile. Allora le sue colonne e le sue righe formano già una base di V, essendo n vettori di V linearmente indipendenti. Inoltre, poiché $A \in O_n$, $\varphi(\underline{e_i},\underline{e_j}) = \varphi(A\underline{e_i},A\underline{e_j})$, e quindi le colonne di A si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A\underline{e_i},A\underline{e_i}) = \varphi(\underline{e_i},\underline{e_i}) = 1$. Pertanto le colonne di A formano una base ortonormale di V.

Si osserva che anche $A^{\top} \in O_n$. Allora le righe di A, che non sono altro che le colonne di A^{\top} , formano anch'esse una base ortonormale di V.

(\Leftarrow) Nel moltiplicare A^{\top} con A altro non si sta facendo che calcolare il prodotto scalare φ tra ogni riga di A^{\top} e ogni colonna di A, ossia $(A^*A)_{ij} = \varphi((A^{\top})_i, A^j) = \varphi(A^i, A^j) = \delta_{ij}$. Quindi $A^{\top}A = AA^{\top} = I_n$, da cui si deduce che $A \in O_n$.

Proposizione 3.10. Sia $V = \mathbb{C}^n$ uno spazio vettoriale col prodotto hermitiano standard φ . Allora sono equivalenti i seguenti fatti:

- (i) $A \in U_n$,
- (ii) f_A è un operatore unitario,
- (iii) le colonne e le righe di A formano una base ortonormale di V.

Dimostrazione. Sia \mathcal{B} la base canonica di V. Allora $M_{\mathcal{B}}(f_A) = A$, e quindi, per una proposizione precedente, f_A è un operatore unitario. Viceversa si deduce che se f_A è un operatore unitario, $A \in U_n$. Dunque è sufficiente dimostrare che $A \in U_n \iff$ le colonne e le righe di A formano una base ortonormale di V.

 (\Longrightarrow) Se $A\in U_n$, in particolare $A\in \mathrm{GL}(n,\mathbb{R})$, e quindi A è invertibile. Allora le sue colonne e le sue righe formano già una base di V, essendo n vettori di V linearmente indipendenti. Inoltre, poiché $A\in U_n$, $\varphi(\underline{e_i},\underline{e_j})=\varphi(A\underline{e_i},A\underline{e_j})$, e quindi le colonne di A si mantengono a due a due ortogonali tra di loro, mentre $\varphi(A\underline{e_i},A\underline{e_i})=\varphi(\underline{e_i},\underline{e_i})=1$. Pertanto le colonne di A formano una base ortonormale di V.

Si osserva che anche $A^{\top} \in U_n$. Allora le righe di A, che non sono altro che le colonne di A^{\top} , formano anch'esse una base ortonormale di V.

(\Leftarrow) Nel moltiplicare A^* con A altro non si sta facendo che calcolare il prodotto hermitiano φ tra ogni riga coniugata di A^* e ogni colonna di A, ossia $(A^*A)_{ij} = \varphi((A^\top)_i, A^j) = \varphi(A^i, A^j) = \delta_{ij}$. Quindi $A^*A = AA^* = I_n$, da cui si deduce che $A \in U_n$.

Proposizione 3.11. Sia (V, φ) uno spazio euclideo reale. Allora valgono i seguenti tre risultati:

- (i) $(V_{\mathbb{C}}, \varphi_{\mathbb{C}})$ è uno spazio euclideo complesso.
- (ii) Se $f \in \text{End}(V)$ è simmetrico, allora $f_{\mathbb{C}} \in \text{End}(V)$ è hermitiano.
- (iii) Se $f \in \text{End}(V)$ è ortogonale, allora $f_{\mathbb{C}} \in \text{End}(V)$ è unitario.

Dimostrazione. Dacché φ è il prodotto scalare standard dello spazio euclideo reale V, esiste una base ortnormale di V. Sia allora \mathcal{B} una base ortnormale di V. Si dimostrano i tre risultati separatamente.

- È sufficiente dimostrare che $\varphi_{\mathbb{C}}$ altro non è che il prodotto hermitiano standard. Come si è già osservato precedentemente, $M_{\mathcal{B}}(\varphi_{\mathbb{C}}) = M_{\mathcal{B}}(\varphi)$, e quindi, dacché $M_{\mathcal{B}}(\varphi) = I_n$, essendo \mathcal{B} ortonormale, vale anche che $M_{\mathcal{B}}(\varphi_{\mathbb{C}}) = I_n$, ossia $\varphi_{\mathbb{C}}$ è proprio il prodotto hermitiano standard.
- Poiché f è simmetrico, $M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^{\top}$, e quindi anche $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f_{\mathbb{C}})^{\top}$. Dal momento che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R})$, $M_{\mathcal{B}}(f) = \overline{M_{\mathcal{B}}(f)} \implies M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = M_{\mathcal{B}}(f_{\mathbb{C}})^*$. Quindi $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f_{\mathbb{C}})^*$, ossia $M_{\mathcal{B}}(f_{\mathbb{C}})$ è hermitiana, e pertanto anche $f_{\mathbb{C}}$ è hermitiano.
- Poiché f è ortogonale, $M_{\mathcal{B}}(f)M_{\mathcal{B}}(f)^{\top} = I_n$, e quindi anche $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = I_n$. Allora, come prima, si deduce che $M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = M_{\mathcal{B}}(f_{\mathbb{C}})^*$, essendo $M_{\mathcal{B}}(f_{\mathbb{C}}) = M_{\mathcal{B}}(f) \in M(n,\mathbb{R})$, da cui si ricava che $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^* = M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}})^{\top} = I_n$, ossia che $f_{\mathbb{C}}$ è unitario.

Esercizio 1. Sia (V, φ) uno spazio euclideo reale. Allora valgono i seguenti risultati:

- Se $f, g \in \text{End}(V)$ commutano, allora anche $f_{\mathbb{C}}, g_{\mathbb{C}} \in \text{End}(V_{\mathbb{C}})$ commutano.
- Se $f \in \text{End}(V)$, $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$.
- Se $f \in \text{End}(V)$, f diagonalizzabile $\iff f^{\top}$ diagonalizzabile.

Soluzione. Dacché φ è il prodotto scalare standard dello spazio euclideo reale V, esiste una base ortonormale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V. Si dimostrano allora separatamente i tre risultati.

• Si osserva che $M_{\mathcal{B}}(f_{\mathbb{C}})M_{\mathcal{B}}(g_{\mathbb{C}}) = M_{\mathcal{B}}(f)M_{\mathcal{B}}(g) = M_{\mathcal{B}}(g)M_{\mathcal{B}}(f) = M_{\mathcal{B}}(g_{\mathbb{C}})M_{\mathcal{B}}(f_{\mathbb{C}}),$ e quindi che $f_{\mathbb{C}} \circ g_{\mathbb{C}} = g_{\mathbb{C}} \circ f_{\mathbb{C}}.$

- Si osserva che $M_{\mathcal{B}}(f) \in M(n,\mathbb{R}) \implies M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^*$, e quindi che $M_{\mathcal{B}}((f^{\top})_{\mathbb{C}}) = M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)^* = M_{\mathcal{B}}(f_{\mathbb{C}})^* = M_{\mathcal{B}}((f_{\mathbb{C}})^*)$. Allora $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$.
- Poiché \mathcal{B} è ortonormale, $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top}$. Allora, se f è diagonalizzabile, anche $M_{\mathcal{B}}(f)$ lo è, e quindi $\exists P \in \mathrm{GL}(n,\mathbb{K}), D \in M(n,\mathbb{K})$ diagonale tale che $M_{\mathcal{B}}(f) = PDP^{-1}$. Allora $M_{\mathcal{B}}(f^{\top}) = M_{\mathcal{B}}(f)^{\top} = (P^{\top})^{-1}D^{\top}P^{\top}$ è simile ad una matrice diagonale, e pertanto $M_{\mathcal{B}}(f^{\top})$ è diagonalizzabile. Allora anche f^{\top} è diagonalizzabile. Vale anche il viceversa considerando l'identità $f = (f^{\top})^{\top}$ e l'implicazione appena dimostrata.

Nota. D'ora in poi, qualora non specificato diversamente, si assumerà che V sia uno spazio euclideo, reale o complesso.

Definizione. (norma euclidea) Sia (V, φ) un qualunque spazio euclideo. Si definisce **norma** la mappa $\|\cdot\|: V \to \mathbb{R}^+$ tale che $\|\underline{v}\| = \sqrt{\varphi(\underline{v}, \underline{v})}$.

Definizione. (distanza euclidea tra due vettori) Sia (V, φ) un qualunque spazio euclideo. Si definisce **distanza** la mappa $d: V \times V \to \mathbb{R}^+$ tale che $d(\underline{v}, \underline{w}) = \|\underline{v} - \underline{w}\|$.

Osservazione.

- ▶ Si osserva che in effetti $\varphi(\underline{v},\underline{v}) \in \mathbb{R}^+ \ \forall \underline{v} \in V$. Infatti, sia per il caso reale che per il caso complesso, φ è definito positivo.
- ▶ Vale che $\|\underline{v}\| = 0 \iff \underline{v} = \underline{0}$. Infatti, se $\underline{v} = \underline{0}$, chiaramente $\varphi(\underline{v}, \underline{v}) = 0 \implies \|\underline{v}\| = 0$; se invece $\|\underline{v}\| = 0$, $\varphi(\underline{v}, \underline{v}) = 0$, e quindi $\underline{v} = \underline{0}$, dacché $V^{\perp} = \{\underline{0}\}$, essendo φ definito positivo.
- ▶ Inoltre, vale chiaramente che $\|\alpha \underline{v}\| = |\alpha| \|\underline{v}\|$.
- Se f è un operatore ortogonale (o unitario), allora f mantiene sia le norme che le distanze tra vettori. Infatti $\|\underline{v} \underline{w}\|^2 = \varphi(\underline{v} \underline{w}, \underline{v} \underline{w}) = \varphi(f(\underline{v} \underline{w}), f(\underline{v} \underline{w})) = \varphi(f(\underline{v}) f(\underline{w}), f(\underline{v})) = \|f(\underline{v}) f(\underline{w})\|^2$, da cui segue che $\|\underline{v} \underline{w}\| = \|f(\underline{v}) f(\underline{w})\|$.

Proposizione 3.12 (disuguaglianza di Cauchy-Schwarz). Vale che $||\underline{v}|| ||\underline{w}|| \ge |\varphi(\underline{v}, \underline{w})|$, $\forall \underline{v}, \underline{w} \in V$, dove l'uguaglianza è raggiunta soltanto se \underline{v} e \underline{w} sono linearmente dipendenti.

Dimostrazione. Si consideri innanzitutto il caso $\mathbb{K} = \mathbb{R}$, e quindi il caso in cui φ è il prodotto scalare standard. Siano $\underline{v}, \underline{w} \in V$. Si consideri la disuguaglianza $\|\underline{v} + t\underline{w}\|^2 \geq 0$, valida per ogni elemento di V. Allora $\|\underline{v} + t\underline{w}\|^2 = \|\underline{v}\|^2 + 2\varphi(\underline{v},\underline{w})t + \|\underline{w}\|^2 t^2 \geq 0$. L'ultima disuguaglianza è possibile se e solo se $\frac{\Delta}{4} \leq 0$, e quindi se e solo se $\varphi(\underline{v},\underline{w})^2 - \|\underline{v}\|^2 \|\underline{w}\|^2 \leq 0 \iff \|\underline{v}\| \|\underline{w}\| \geq \varphi(\underline{v},\underline{w})$. Vale in particolare l'equivalenza se e solo se $\|\underline{v} + t\underline{w}\| = 0$, ossia se $\underline{v} + t\underline{w} = \underline{0}$, da cui la tesi.

Si consideri ora il caso $\mathbb{K} = \mathbb{C}$, e dunque il caso in cui φ è il prodotto hermitiano standard. Siano $\underline{v}, \underline{w} \in V$, e siano $\alpha, \beta \in \mathbb{C}$. Si consideri allora la disuguaglianza $\|\alpha\underline{v} + \beta\underline{w}\|^2 \geq 0$, valida per ogni elemento di V. Allora $\|\alpha\underline{v} + \beta\underline{w}\|^2 = \|\alpha\underline{v}\|^2 + \varphi(\alpha\underline{v}, \beta\underline{w}) + \varphi(\beta\underline{w}, \alpha\underline{v}) + \varphi(\beta\underline{w}, \alpha\underline{v})$

 $\|\beta\underline{w}\|^2 = |\alpha|^2 \|\underline{v}\|^2 + \overline{\alpha}\beta \, \varphi(\underline{v},\underline{w}) + \alpha \overline{\beta} \, \varphi(\underline{w},\underline{v}) + |\beta|^2 \|\underline{w}\|^2 \ge 0. \text{ Ponendo allora } \alpha = \|\underline{w}\|^2$ e $\beta = -\varphi(\underline{w},\underline{v}) = \overline{-\varphi(\underline{v},\underline{w})}, \text{ si deduce che:}$

$$\left\|\underline{v}\right\|^{2}\left\|\underline{w}\right\|^{4}-\left\|\underline{w}\right\|^{2}\left|\varphi(\underline{v},\underline{w})\right|\geq0.$$

Se $\underline{w} = \underline{0}$, la disuguaglianza di Cauchy-Schwarz è già dimostrata. Altrimenti, è sufficiente dividere per $\|\underline{w}\|^2$ (dal momento che $\underline{w} \neq \underline{0} \iff \|\underline{w}\| \neq 0$) per ottenere la tesi. Come prima, is osserva che l'uguaglianza si ottiene se e solo se \underline{v} e \underline{w} sono linearmente dipendenti.

Proposizione 3.13 (disuguaglianza triangolare). $||v + w|| \le ||v|| + ||w||$.

Dimostrazione. Si osserva che $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + \varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}) + \|\underline{w}\|^2$. Se φ è il prodotto scalare standard, si ricava che:

$$\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + 2\varphi(\underline{v}, \underline{w}) + \|\underline{w}\|^2 \le \|\underline{v}\|^2 + 2\|\underline{v}\| \|\underline{w}\| + \|\underline{w}\|^2 = (\|\underline{v}\| + \|\underline{w}\|)^2,$$

dove si è utilizzata la disuguaglianza di Cauchy-Schwarz. Da quest'ultima disuguaglianza si ricava, prendendo la radice quadrata, la disuguaglianza desiderata.

Se invece φ è il prodotto hermitiano standard, $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + 2\Re(\varphi(\underline{v},\underline{w})) + \|\underline{w}\|^2 \le \|\underline{v}\|^2 + 2|\varphi(\underline{v},\underline{w})| + \|\underline{w}\|^2$. Allora, riapplicando la disuguaglianza di Cauchy-Schwarz, si ottiene che:

$$\|\underline{v} + \underline{w}\|^2 \le (\|\underline{v}\| + \|\underline{w}\|)^2,$$

da cui, come prima, si ottiene la disuguaglianza desiderata.

Osservazione. Utilizzando il concetto di norma euclidea, si possono ricavare due teoremi fondamentali della geometria, e già noti dalla geometria euclidea.

- Se $\underline{v} \perp \underline{w}$, allora $\|\underline{v} + \underline{w}\|^2 = \|\underline{v}\|^2 + \overbrace{(\varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}))}^{=0} + \|\underline{w}\|^2 = \|\underline{v}\|^2 + \|\underline{w}\|^2$ (teorema di Pitagora),
- Se $\|\underline{v}\| = \|\underline{w}\|$ e φ è un prodotto scalare, allora $\varphi(\underline{v} + \underline{w}, \underline{v} \underline{w}) = \|\underline{v}\|^2 \varphi(\underline{v}, \underline{w}) + \varphi(\underline{w}, \underline{v}) \|\underline{w}\|^2 = \|\underline{v}\|^2 \|\underline{w}\|^2 = 0$, e quindi $\underline{v} + \underline{w} \perp \underline{v} \underline{w}$ (le diagonali di un rombo sono ortogonali tra loro).

Osservazione. Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base ortogonale di V per φ .

- Se $\underline{v} = a_1 \underline{v_1} + \ldots + a_n \underline{v_n}$, con $a_1, \ldots, a_n \in \mathbb{K}$, si osserva che $\varphi(\underline{v}, \underline{v_i}) = a_i \varphi(\underline{v_i}, \underline{v_i})$. Quindi $\underline{v} = \sum_{i=1}^n \frac{\varphi(\underline{v}, v_i)}{\varphi(\underline{v_i}, v_i)} \underline{v_i}$. In particolare, $\frac{\varphi(\underline{v}, v_i)}{\varphi(\underline{v_i}, v_i)}$ è detto **coefficiente di Fourier** di \underline{v} rispetto a $\underline{v_i}$, e si indica con $C(\underline{v}, \underline{v_i})$. Se \mathcal{B} è ortonormale, $\underline{v} = \sum_{i=1}^n \varphi(\underline{v}, \underline{v_i}) \underline{v_i}$.

 Pundi $\|\underline{v}\|^2 = \varphi(\underline{v}, \underline{v}) = \sum_{i=1}^n \frac{\varphi(\underline{v}, v_i)^2}{\varphi(\underline{v_i}, v_i)}$. In particolare, se \mathcal{B} è ortonormale,
- Quindi $\|\underline{v}\|^2 = \varphi(\underline{v},\underline{v}) = \sum_{i=1}^n \frac{\varphi(\underline{v},v_i)^2}{\varphi(\underline{v}_i,v_i)}$. In particolare, se \mathcal{B} è ortonormale, $\|\underline{v}\|^2 = \sum_{i=1}^n \varphi(\underline{v},\underline{v}_i)^2$. In tal caso, si può esprimere la disuguaglianza di Bessel: $\|\underline{v}\|^2 \geq \sum_{i=1}^k \varphi(\underline{v},\underline{v}_i)^2$ per $k \leq n$.

Osservazione. (algoritmo di ortogonalizzazione di Gram-Schmidt) Se φ è non degenere (o in generale, se $\text{CI}(\varphi) = \{\underline{0}\}$) ed è data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ per V (dove si ricorda che deve valere char $\mathbb{K} \neq 2$), è possibile applicare l'algoritmo di ortogonalizzazione di Gram-Schmidt per ottenere da \mathcal{B} una nuova base $\mathcal{B}' = \{\underline{v_1}', \dots, \underline{v_n}'\}$ con le seguenti proprietà:

- (i) \mathcal{B}' è una base ortogonale,
- (ii) \mathcal{B}' mantiene la stessa bandiera di \mathcal{B} (ossia $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i}) = \operatorname{Span}(\underline{v_1}', \dots, \underline{v_i}')$ per ogni $1 \leq i \leq n$).

L'algoritmo si applica nel seguente modo: si prenda in considerazione $\underline{v_1}$ e sottragga ad ogni altro vettore della base il vettore $C(\underline{v_1},\underline{v_i})\underline{v_1} = \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1}$, rendendo ortogonale ogni altro vettore della base con $\underline{v_1}$. Pertanto si applica la mappa $\underline{v_i} \mapsto \underline{v_i} - \frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_i} = \underline{v_i}^{(1)}$. Si verifica infatti che $\underline{v_1}$ e $\underline{v_i}^{(1)}$ sono ortogonali per $2 \leq i \leq n$:

$$\varphi(\underline{v_1},\underline{v_i}^{(1)}) = \varphi(\underline{v_1},\underline{v_i}) - \varphi\left(\underline{v_1},\frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(v_1,v_1)}\underline{v_i}\right) = \varphi(\underline{v_1},\underline{v_i}) - \varphi(\underline{v_1},\underline{v_i}) = 0.$$

Poiché $\underline{v_1}$ non è isotropo, si deduce la decomposizione $V = \operatorname{Span}(\underline{v_1}) \oplus \operatorname{Span}(\underline{v_1})^{\perp}$. In particolare dim $\operatorname{Span}(\underline{v_1})^{\perp} = n-1$: essendo allora i vettori $\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}$ linearmente indipendenti e appartenenti a $\operatorname{Span}(\underline{v_1})^{\perp}$, ne sono una base. Si conclude quindi che vale la seguente decomposizione:

$$V = \text{Span}(v_1) \oplus^{\perp} \text{Span}(v_2^{(1)}, \dots, v_n^{(1)}).$$

Si riapplica dunque l'algoritmo di Gram-Schmidt prendendo come spazio vettoriale lo spazio generato dai vettori a cui si è applicato precedentemente l'algoritmo, ossia $V' = \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)})$, fino a che non si ottiene $V' = \{\underline{0}\}$.

Si può addirittura ottenere una base ortonormale a partire da \mathcal{B}' normalizzando ogni vettore (ossia dividendo per la propria norma), se si sta considerando uno spazio euclideo.

Osservazione. Poiché la base ottenuta tramite Gram-Schmidt mantiene la stessa bandiera della base di partenza, ogni matrice triangolabile è anche triangolabile mediante una base ortogonale.

Esempio. Si consideri $V = (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, ossia \mathbb{R}^3 dotato del prodotto scalare standard. Si applica l'algoritmo di ortogonalizzazione di Gram-Schmidt sulla seguente base:

$$\mathcal{B} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{v_1 = e_1}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}_{v_2}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{v_3} \right\}$$

Alla prima iterazione dell'algoritmo si ottengono i seguenti vettori:

3 Spazi euclidei e teorema spettrale (non indicizzato)

•
$$\underline{v_2}^{(1)} = \underline{v_2} - \frac{\varphi(v_1, v_2)}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_2} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \underline{e_2},$$

•
$$\underline{v_3}^{(1)} = \underline{v_3} - \frac{\varphi(\underline{v_1}, \underline{v_3})}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_3} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

Si considera ora $V' = \text{Span}(\underline{v_2}^{(1)}, \underline{v_3}^{(1)})$. Alla seconda iterazione dell'algoritmo si ottiene allora il seguente vettore:

$$\bullet \ \underline{v_3}^{(2)} = \underline{v_3}^{(1)} - \frac{\varphi(\underline{v_2}^{(1)},\underline{v_3}^{(1)})}{\varphi(\underline{v_2}^{(1)},\underline{v_2}^{(1)})} \underline{v_2}^{(1)} = \underline{v_3}^{(1)} - \underline{v_2}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \underline{e_3}.$$

Quindi la base ottenuta è $\mathcal{B}' = \{e_1, e_2, e_3\}$, ossia la base canonica di \mathbb{R}^3 , già ortonormale.

Osservazione. Si osserva adesso che se (V, φ) è uno spazio euclideo (e quindi $\varphi > 0$), e W è un sottospazio di V, vale la seguente decomposizione:

$$V = W \oplus^{\perp} W^{\perp}$$
.

Pertanto ogni vettore $\underline{v} \in V$ può scriversi come $\underline{w} + \underline{w}'$ dove $\underline{w} \in W$ e $\underline{w}' \in W^{\perp}$, dove $\varphi(\underline{w}, \underline{w}') = 0$.

Definizione. (proiezione ortogonale) Si definisce l'applicazione $\operatorname{pr}_W:V\to V$, detta **proiezione ortogonale** su W, in modo tale che $\operatorname{pr}_W(\underline{v})=\underline{w}$, dove $\underline{v}=\underline{w}+\underline{w}'$, con $\underline{w}\in W$ e $\underline{w}'\in W^{\perp}$.

Osservazione.

- \blacktriangleright Dacché la proiezione ortogonale è un caso particolare della classica applicazione lineare di proiezione su un sottospazio di una somma diretta, pr $_W$ è un'applicazione lineare.
- Vale chiaramente che $\operatorname{pr}_W^2 = \operatorname{pr}_W$, da cui si ricava, se $W^\perp \neq \{\underline{0}\}$, che $\varphi_{\operatorname{pr}_W}(\lambda) = \lambda(\lambda 1)$, ossia che $\operatorname{sp}(\operatorname{pr}_W) = \{0,1\}$. Infatti $\operatorname{pr}_W(\underline{v})$ appartiene già a W, ed essendo la scrittura in somma di due elementi, uno di W e uno di W', unica, $\operatorname{pr}_W(\operatorname{pr}_W(\underline{v})) = \operatorname{pr}_W(\underline{v})$, da cui l'identità $\operatorname{pr}_W^2 = \operatorname{pr}_W$.
- \blacktriangleright Seguendo il ragionamento di prima, vale anche che $\operatorname{pr}_W|_W = \operatorname{Id}_W$ e che $\operatorname{pr}_W|_{W^{\perp}} = 0$.
- ▶ Inoltre, vale la seguente riscrittura di $\underline{v} \in V$: $\underline{v} = \operatorname{pr}_W(\underline{v}) + \operatorname{pr}_{W^{\perp}}(\underline{v})$.
- ▶ Se $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ è una base ortogonale di W, allora $\operatorname{pr}_W(\underline{v}) = \sum_{i=1}^n \frac{\varphi(\underline{v}, \underline{v_i})}{\varphi(\underline{v_i}, \underline{v_i})} \underline{v_i} = \sum_{i=1}^n C(\underline{v}, \underline{v_i}) \underline{v_i}$. Infatti $\underline{v} \sum_{i=1}^n C(\underline{v}, \underline{v_i}) \underline{v_i} \in W^{\perp}$.
- ▶ pr_W è un operatore simmetrico (o hermitiano se lo spazio è complesso). Infatti $\varphi(\operatorname{pr}_W(\underline{v}),\underline{w}) = \varphi(\operatorname{pr}_W(\underline{v}),\operatorname{pr}_W(\underline{w}) + \operatorname{pr}_{W^{\perp}}(\underline{w})) = \varphi(\operatorname{pr}_W(\underline{v}),\operatorname{pr}_W(\underline{w})) = \varphi(\operatorname{pr}_W(\underline{v}) + \operatorname{pr}_{W^{\perp}}(\underline{v}),\operatorname{pr}_W(\underline{w})) = \varphi(\underline{v},\operatorname{pr}_W(\underline{w})).$

Proposizione 3.14. Sia (V, φ) uno spazio euclideo. Allora valgono i seguenti risultati:

- (i) Siano $U, W \subseteq V$ sono sottospazi di V, allora $U \perp W$, ossia $U \subseteq W^{\perp}$, \iff $\operatorname{pr}_U \circ \operatorname{pr}_W = \operatorname{pr}_W \circ \operatorname{pr}_U = 0$.
- (ii) Sia $V = W_1 \oplus \cdots \oplus W_n$. Allora $\underline{v} = \sum_{i=1}^n \operatorname{pr}_{W_i}(\underline{v}) \iff W_i \perp W_j \ \forall i \neq j, 1 \leq i, j \leq n$.

Dimostrazione. Si dimostrano i due risultati separatamente.

- (i) Sia $\underline{v} \in V$. Allora $\operatorname{pr}_W(\underline{v}) \in W = W^{\perp \perp} \subseteq U^{\perp}$. Pertanto $\operatorname{pr}_U(\operatorname{pr}_W(\underline{v})) = \underline{0}$. Analogamente $\operatorname{pr}_W(\operatorname{pr}_U(v)) = 0$, da cui la tesi.
- (ii) Sia vero che $\underline{v} = \sum_{i=1}^{n} \operatorname{pr}_{W_{i}}(\underline{v}) \ \forall \underline{v} \in V$. Sia $\underline{w} \in W_{j}$. Allora $\underline{w} = \sum_{i=1}^{n} \operatorname{pr}_{W_{i}}(\underline{w}) = \underline{w} + \sum_{\substack{i=1\\i\neq j}} \operatorname{pr}_{W_{i}}(\underline{w}) \implies \operatorname{pr}_{W_{i}}(\underline{w}) = \underline{0} \ \forall i \neq j$. Quindi $\underline{w} \in W_{i}^{\perp} \ \forall i \neq j$, e si conclude che $W_{i} \subseteq W_{j}^{\perp} \implies W_{i} \perp W_{j}$. Se invece $W_{i} \perp W_{j} \ \forall i \neq j$, sia $\mathcal{B}_{i} = \left\{\underline{w}_{i}^{(1)}, \dots, \underline{w}_{i}^{(k_{i})}\right\}$ una base ortogonale di W_{i} . Allora $\mathcal{B} = \bigcup_{i=1}^{n} \mathcal{B}_{i}$ è anch'essa una base ortogonale di V, essendo $\varphi\left(\underline{w}_{i}^{(t_{i})}, \underline{w}_{j}^{(t_{j})}\right) = 0$ per ipotesi. Pertanto $\underline{v} = \sum_{i=1}^{n} \sum_{j=1}^{k_{i}} C\left(\underline{v}, \underline{w}_{i}^{(j)}\right) \underline{w}_{i}^{(j)} = \sum_{i=1}^{n} \operatorname{pr}_{W_{i}}(\underline{v})$, da cui la tesi. \square

Definizione. (inversione ortogonale) Si definisce l'applicazione $\rho_W: V \to V$, detta inversione ortogonale, in modo tale che, detto $\underline{v} = \underline{w} + \underline{w}' \in V$ con $\underline{w} \in W$, $\underline{w} \in W^{\perp}$, $\rho_W(\underline{v}) = \underline{w} - \underline{w}'$. Se dim $W = \dim V - 1$, si dice che ρ_W è una **riflessione**.

Osservazione.

- \blacktriangleright Si osserva che ρ_W è un'applicazione lineare.
- ▶ Vale l'identità $\rho_W^2 = \operatorname{Id}_V$, da cui si ricava che $\varphi_{\rho_W}(\lambda) \mid (\lambda 1)(\lambda + 1)$. In particolare, se $W^{\perp} \neq \{\underline{0}\}$, vale proprio che sp $(\rho_W) = \{\pm 1\}$, dove $V_1 = W$ e $V_{-1} = W^{\perp}$.
- $\begin{array}{c} \blacktriangleright \quad \rho_W \text{ \`e ortogonale (o unitaria, se V \`e uno spazio euclideo complesso). Infatti se $\underline{v_1} = \underline{w_1 + w_1'}$ e $\underline{v_2} = \underline{w_2} + \underline{w_2'}$, con $\underline{w_1}$, $\underline{w_2} \in W$ e $\underline{w_1'}$, $\underline{w_2'} \in W$, $\varphi(\rho_W(\underline{v_1}), \rho_W(\underline{v_2})) = \varphi(\underline{w_1} \underline{w_1'}, \underline{w_2} \underline{w_2'})$.} \\ \underline{\psi_1'}, \underline{w_2} \underline{w_2'}) = \varphi(\underline{w_1}, \underline{w_2}) \underbrace{-\varphi(\underline{w_1'}, \underline{w_2}) \varphi(\underline{w_1}, \underline{w_2'})}_{=0} + \varphi(\underline{w_1'}, \underline{w_2'}) = \varphi(\underline{w_1} \underline{w_1'}, \underline{w_2} \underline{w_2'}). \end{array}$

Quindi $\varphi(\rho_W(\underline{v_1}), \rho_W(\underline{v_2})) = \varphi(\underline{w_1}, \underline{w_2}) + \varphi(\underline{w_1}', \underline{w_2}) + \varphi(\underline{w_1}, \underline{w_2}') + \varphi(\underline{w_1}', \underline{w_2}') = \varphi(\underline{v_1}, \underline{v_2}).$

Lemma 3.1. Sia (V, φ) uno spazio euclideo reale. Siano $\underline{u}, \underline{w} \in V$. Se $||\underline{u}|| = ||\underline{w}||$, allora esiste un sottospazio W di dimensione n-1 per cui la riflessione ρ_W relativa a φ è tale che $\rho_W(\underline{u}) = \underline{w}$.

Dimostrazione. Se \underline{v} e \underline{w} sono linearmente dipendenti, dal momento che ||v|| = ||w||, deve valere anche che $\underline{v} = \underline{w}$. Sia $\underline{u} \neq \underline{0}$, $\underline{u} \in \operatorname{Span}(\underline{v})^{\perp}$. Si consideri $U = \operatorname{Span}(\underline{u})$: si osserva

³È sufficiente che valga $U\subseteq W^{\perp}$ affinché valga anche $W\subseteq U^{\perp}$. Infatti $U\subseteq W^{\perp}\Longrightarrow W=W^{\perp\perp}\subseteq U^{\perp}$. Si osserva che in generale vale che $W\subseteq W^{\perp\perp}$, dove vale l'uguaglianza nel caso di un prodotto φ non degenere, com'è nel caso di uno spazio euclideo, essendo $\varphi>0$ per ipotesi.

che dim U=1 e che, essendo φ non degenere, dim $U^{\perp}=n-1$. Posto allora $W=U^{\perp}$, si ricava, sempre perché φ è non degenere, che $U=U^{\perp\perp}=W^{\perp}$. Si conclude pertanto che $\rho_W(v)=v=w$.

Siano adesso \underline{v} e \underline{w} linearmente indipendenti e sia $U=\operatorname{Span}(\underline{v}-\underline{w})$. Dal momento che dim U=1 e φ è non degenere, dim $U^{\perp}=n-1$. Sia allora $W=U^{\perp}$. Allora, come prima, $U=U^{\perp\perp}=W^{\perp}$. Si consideri dunque la riflessione ρ_W : dacché $\underline{v}=\frac{\underline{v}+\underline{w}}{2}+\frac{\underline{v}-\underline{w}}{2}$, e $\varphi(\frac{\underline{v}+\underline{w}}{2},\frac{\underline{v}-\underline{w}}{2})=\frac{\|\underline{v}\|-\|\underline{w}\|}{4}=0$, \underline{v} è già decomposto in un elemento di W e in uno di W^{\perp} , per cui si conclude che $\rho_W(\underline{v})=\frac{\underline{v}+\underline{w}}{2}-\frac{\underline{v}-\underline{w}}{2}=\underline{w}$, ottenendo la tesi.

Teorema 3.3 (di Cartan–Dieudonné). Sia (V, φ) uno spazio euclideo reale. Ogni isometria di V è allora prodotto di al più n riflessioni.

Dimostrazione. Si dimostra la tesi applicando il principio di induzione sulla dimensione n di V.

(passo base) Sia n=1 e sia inoltre f un'isometria di V. Sia $\underline{v_1}$ l'unico elemento di una base ortonormale \mathcal{B} di V. Allora $||f(\underline{v_1})|| = ||\underline{v_1}|| = 1$, da cui si ricava che⁴ $f(\underline{v_1}) = \pm \underline{v_1}$, ossia che $f = \pm \operatorname{Id}_V$. Se $f = \operatorname{Id}_V$, f è un prodotto vuoto, e già verifica la tesi; altrimenti $f = \rho_{\{0\}}$, dove si considera $V = V \oplus^{\perp} \{\underline{0}\}$. Pertanto f è prodotto di al più una riflessione.

 $(passo\ induttivo)$ Sia $\mathcal{B}=\{\underline{v_1},\ldots,\underline{v_n}\}$ una base di V. Sia f un'isometria di V. Si assuma inizialmente l'esistenza di $\underline{v_i}$ tale per cui $f(\underline{v_i})=\underline{v_i}$. Allora, detto $W=\operatorname{Span}(\underline{v_i})$, si può decomporre V come $W\oplus^\perp W^\perp$. Si osserva che W^\perp è f-invariante: infatti, se $\underline{u}\in W^\perp$, $\varphi(\underline{v_i},f(\underline{u}))=\varphi(f(\underline{v_i}),f(\underline{u}))=\varphi(\underline{v_i},\underline{u})=0 \implies f(\underline{u})\in W^\perp$. Pertanto si può considerare l'isometria $f|_{W^\perp}$. Dacché dim $W^\perp=n-1$, per il passo induttivo esistono W_1,\ldots,W_k sottospazi di W^\perp con $k\leq n-1$ per cui $\rho_{W_1},\ldots,\rho_{W_k}\in\operatorname{End}(W^\perp)$ sono tali che $f|_{W^\perp}=\rho_{W_1}\circ\cdots\circ\rho_{W_k}$.

Si considerino allora le riflessioni $\rho_{W_1\oplus^{\perp}W}, \ldots, \rho_{W_k\oplus^{\perp}W}$. Si mostra che $\rho_{W_1\oplus^{\perp}W}\circ\cdots\circ\rho_{W_k\oplus^{\perp}W}|_W=\operatorname{Id}_W=f|_W.$ Affinché si faccia ciò è sufficiente mostrare che $(\rho_{W_1\oplus^{\perp}W}\circ\cdots\circ\rho_{W_k\oplus^{\perp}W})(\underline{v_i})=\underline{v_i}.$ Si osserva che $\underline{v_i}\in W_i\oplus^{\perp}W$ $\forall\,1\leq i\leq k,$ e quindi che $\rho_{W_k\oplus^{\perp}W}(\underline{v_i})=\underline{v_i}.$ Reiterando l'applicazione di questa identità nel prodotto, si ottiene infine il risultato desiderato. Infine, si dimostra che $\rho_{W_1\oplus^{\perp}W}\circ\cdots\circ\rho_{W_k\oplus^{\perp}W}|_{W^{\perp}}=\rho_{W_1}\circ\cdots\circ\rho_{W_k}=f|_{W^{\perp}}.$ Analogamente a prima, è sufficiente mostrare che $\rho_{W_k\oplus^{\perp}W}(\underline{u})=\rho_{W_k}(\underline{u})$ $\forall\,\underline{u}\in W^{\perp}.$ Sia $\underline{u}=\rho_{W_k}(\underline{u})+\underline{u}'$ con $\underline{u}'\in W_k^{\perp}\cap W^{\perp}\subseteq (W_k\oplus^{\perp}W)^{\perp},$ ricordando che $W^{\perp}=W_k\oplus^{\perp}(W^{\perp}\cap W_k^{\perp}).$ Allora, poiché $\rho_{W_k}(\underline{u})\in W_k\subseteq (W_k\oplus^{\perp}W),$ si conclude che $\rho_{W_k\oplus^{\perp}W}(\underline{u})=\rho_{W_k}(\underline{u}).$ Pertanto, dacché vale che $V=W\oplus^{\perp}W^{\perp}$ e che $\rho_{W_1\oplus^{\perp}W}\circ\cdots\circ\rho_{W_k\oplus^{\perp}W}$ e f, ristretti su W o su W^{\perp} , sono le stesse identiche mappe, allora in particolare vale l'uguaglianza più generale:

⁴Infatti, detto $\lambda \in \mathbb{R}$ tale che $f(\underline{v_1}) = \lambda \underline{v_1}$, $\|\underline{v_1}\| = \|f(\underline{v_1})\| = \lambda^2 \|\underline{v_1}\| \implies \lambda = \pm 1$, ossia $f = \pm \mathrm{Id}$, come volevasi dimostrare.

$$f = \rho_{W_1 \oplus^{\perp} W} \circ \cdots \circ \rho_{W_k \oplus^{\perp} W},$$

e quindi f è prodotto di $k \le n-1$ riflessioni.

Se invece non esiste alcun $\underline{v_i}$ tale per cui $f(\underline{v_i}) = \underline{v_i}$, per il Lemma 1 esiste una riflessione τ tale per cui $\tau(f(\underline{v_i})) = \underline{v_i}$. In particolare $\tau \circ f$ è anch'essa un'isometria, essendo composizione di due isometrie. Allora, da prima, esistono $U_1, ..., U_k$ sottospazi di V con $k \leq n-1$ tali per cui $\tau \circ f = \rho_{U_1} \circ \cdots \circ \rho_{U_k}$, da cui $f = \tau \circ \rho_{U_1} \circ \cdots \circ \rho_{U_k}$, ossia f è prodotto di al più n riflessioni, concludendo il passo induttivo.

Lemma 3.1. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Allora f ha solo autovalori reali⁵.

Dimostrazione. Si assuma che V è uno spazio euclideo complesso, e quindi che φ è un prodotto hermitiano. Allora, se f è hermitiano, sia $\lambda \in \mathbb{C}$ un suo autovalore⁶ e sia $\underline{v} \in V_{\lambda}$. Allora $\varphi(\underline{v}, f(\underline{v})) = \varphi(f(\underline{v}), \underline{v}) = \overline{\varphi(\underline{v}, f(\underline{v}))} \implies \varphi(\underline{v}, f(\underline{v})) \in \mathbb{R}$. Inoltre vale la seguente identità:

$$\varphi(\underline{v}, f(\underline{v})) = \varphi(\underline{v}, \lambda \underline{v}) = \lambda \varphi(\underline{v}, \underline{v}),$$

da cui, ricordando che φ è non degenere e che $\varphi(\underline{v},\underline{v}) \in \mathbb{R}$, si ricava che:

$$\lambda = \frac{\varphi(\underline{v}, f(\underline{v}))}{\varphi(\underline{v}, \underline{v})} \in \mathbb{R}.$$

Sia ora invece V è uno spazio euclideo reale e φ è un prodotto scalare. Allora, $(V_{\mathbb{C}}, \varphi_{\mathbb{C}})$ è uno spazio euclideo complesso, e $f_{\mathbb{C}}$ è hermitiano. Sia \mathcal{B} una base di V. Allora, come visto all'inizio di questa dimostrazione, $f_{\mathbb{C}}$ ha solo autovalori reali, da cui si ricava che il polinomio caratteristico di $f_{\mathbb{C}}$ è completamente riducibile in \mathbb{R} . Si osserva inoltre che $p_f(\lambda) = \det(M_{\mathcal{B}}(f) - \lambda I_n) = \det(M_{\mathcal{B}}(f_{\mathbb{C}}) - \lambda I_n) = p_{f_{\mathbb{C}}}(\lambda)$. Si conclude dunque che anche p_f è completamente riducibile in \mathbb{R} .

Osservazione. Dal lemma precedente consegue immediatamente che se $A \in M(n, \mathbb{R})$ è simmetrica (o se appartiene a $M(n, \mathbb{C})$ ed è hermitiana), considerando l'operatore simmetrico f_A indotto da A in \mathbb{R}^n (o \mathbb{C}^n), f_A ha tutti autovalori reali, e dunque così anche A.

Lemma 3.2. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Allora se λ , μ sono due autovalori distinti di f, $V_{\lambda} \perp V_{\mu}$.

 $^{^{5}}$ Nel caso di f simmetrico, si intende in particolare che tutte le radici del suo polinomio caratteristico sono reali.

 $^{^6}$ Tale autovalore esiste sicuramente dal momento che $\mathbb{K}=\mathbb{C}$ è un campo algebricamente chiuso.

Dimostrazione. Siano $\underline{v} \in V_{\lambda}$ e $\underline{w} \in V_{\mu}$. Allora⁷ $\lambda \varphi(\underline{v}, \underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \varphi(f(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(\underline{v}, \mu \underline{w}) = \mu \varphi(\underline{v}, \underline{w})$. Pertanto vale la seguente identità:

$$(\lambda - \mu)\varphi(\underline{v}, \underline{w}) = 0.$$

In particolare, valendo $\lambda - \mu \neq 0$ per ipotesi, $\varphi(\underline{v}, \underline{w}) = 0 \implies V_{\lambda} \perp V_{\mu}$, da cui la tesi.

Lemma 3.3. Sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Se $W \subseteq V$ è f-invariante, allora anche W^{\perp} lo è.

 $Dimostrazione. \ {\rm Siano} \ \underline{w} \in W \ {\rm e} \ \underline{v} \in W^{\perp}. \ {\rm Allora} \ \varphi(\underline{w},f(\underline{v})) = \varphi(\underbrace{f(\underline{w})}_{\in W},\underline{v}) = 0, \ {\rm da} \ {\rm cui} \ {\rm si}$

ricava che $f(\underline{v}) \in W^{\perp}$, ossia la tesi.

Teorema 3.4 (spettrale reale). Sia (V, φ) uno spazio euclideo reale (o complesso) e sia $f \in \text{End}(V)$ simmetrico (o hermitiano). Allora esiste una base ortogonale \mathcal{B} di V composta di autovettori per f.

Dimostrazione. Siano $\lambda_1, ..., \lambda_k$ tutti gli autovalori reali di f. Sia inoltre $W = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$. Per i lemmi precedenti, vale che:

$$W = V_{\lambda_1} \oplus^{\perp} \cdots \oplus^{\perp} V_{\lambda_k}$$
.

Sicuramente $W \subset V$. Si assuma però che $W \subsetneq V$. Allora $V = W \oplus^{\perp} W^{\perp}$. In particolare, per il lemma precedente, W^{\perp} è f-invariante. Quindi $f|_{W^{\perp}}$ è un endomorfismo di uno spazio di dimensione non nulla. Si osserva che $f|_{W^{\perp}}$ è chiaramente simmetrico (o hermitiano), essendo solo una restrizione di f. Allora $f|_{W^{\perp}}$ ammette autovalori reali per i lemmi precedenti; tuttavia questo è un assurdo, dal momento che ogni autovalore di $f|_{W^{\perp}}$ è anche autovalore di f e si era supposto che⁸ $\lambda_1, ..., \lambda_k$ fossero tutti gli autovalori di f, f. Quindi W = V. Pertanto, detta \mathcal{B}_i una base ortonormale di V_{λ_i} , $\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$ è una base ortonormale di V, da cui la tesi.

Corollario 3.3 (teorema spettrale per le matrici). Sia $A \in M(n, \mathbb{R})$ simmetrica (o appartenente a $M(n, \mathbb{C})$ ed hermitiana). Allora $\exists P \in O_n$ (o $P \in U_n$) tale che $P^{-1}AP = P^{\top}AP$ (o $P^{-1}AP = P^*AP$ nel caso hermitiano) sia una matrice diagonale reale.

Dimostrazione. Si consideri f_A , l'operatore indotto dalla matrice A in \mathbb{R}^n (o \mathbb{C}^n). Allora f_A è un operatore simmetrico (o hermitiano) sul prodotto scalare (o hermitiano) standard. Pertanto, per il teorema spettrale reale, esiste una base ortonormale $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ composta di autovettori di f_A . In particolare, detta \mathcal{B}' la base canonica di \mathbb{R}^n (o \mathbb{C}^n), vale la seguente identità:

⁷Si osserva che non è stato coniugato λ nei passaggi algebrici, valendo $\lambda \in \mathbb{R}$ dallo scorso lemma.

⁸Infatti tale autovalore λ non può già comparire tra questi autovalori, altrimenti, detto $i \in \mathbb{N}$ tale che $\lambda = \lambda_i, V_{\lambda_i} \cap W^{\perp} \neq \{\underline{0}\}$, violando la somma diretta supposta.

$$M_{\mathcal{B}}(f) = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{Id})^{-1} M_{\mathcal{B}'}(f) M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{Id}),$$

dove $M_{\mathcal{B}'}(f) = A$, $M_{\mathcal{B}}(f)$ è diagonale, essendo \mathcal{B} composta di autovettori, e $P = M_{\mathcal{B}'}^{\mathcal{B}}$ si configura nel seguente modo:

$$M_{\mathcal{B}'}^{\mathcal{B}}(f) = \left(\underline{v_1} \mid \dots \mid \underline{v_n}\right).$$

Dacché \mathcal{B} è ortogonale, P è anch'essa ortogonale, da cui la tesi.

Osservazione.

▶ Un importante risultato che consegue direttamente dal teorema spettrale per le matrici riguarda la segnatura di un prodotto scalare (o hermitiano). Infatti, detta $A = M_{\mathcal{B}}(\varphi), D = P^{\top}AP$, e dunque $D \cong A$. Allora, essendo D diagonale, l'indice di positività è esattamente il numero di valori positivi sulla diagonale, ossia il numero di autovalori positivi di A. Analogamente l'indice di negatività è il numero di autovalori negativi, e quello di nullità è la molteplicità algebrica di 0 come autovalore (ossia esattamente la dimensione di $V_{\varphi}^{\perp} = \operatorname{Ker} a_{\varphi}$).

Teorema 3.5 (di triangolazione con base ortonormale). Sia $f \in \text{End}(V)$, dove (V, φ) è uno spazio euclideo su \mathbb{K} . Allora, se p_f è completamente riducibile in \mathbb{K} , esiste una base ortonormale \mathcal{B} tale per cui $M_{\mathcal{B}}(f)$ è triangolare superiore (ossia esiste una base ortonormale a bandiera per f).

Dimostrazione. Per il teorema di triangolazione, esiste una base \mathcal{B} a bandiera per f. Allora, applicando l'algoritmo di ortogonalizzazione di Gram-Schmidt, si può ottenere da \mathcal{B} una nuova base \mathcal{B}' ortonormale e che mantenga le stesse bandiere. Allora, se $\mathcal{B}' = \{\underline{v_1}, \dots, \underline{v_n}\}$ è ordinata, dacché $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i})$ è f-invariante, $f(\underline{v_i}) \in \operatorname{Span}(\underline{v_1}, \dots, \underline{v_i})$, e quindi $M_{\mathcal{B}'}(f)$ è triangolare superiore, da cui la tesi.

Corollario 3.4. Sia $A \in M(n,\mathbb{R})$ (o $M(n,\mathbb{C})$) tale per cui p_A è completamente riducibile. Allora $\exists P \in O_n$ (o U_n) tale per cui $P^{-1}AP = P^{\top}AP$ (o $P^{-1}AP = P^*AP$) è triangolare superiore.

Dimostrazione. Si consideri l'operatore f_A indotto da A in \mathbb{R}^n (o \mathbb{C}^n). Sia \mathcal{B} la base canonica di \mathbb{R}^n (o di \mathbb{C}^n). Allora, per il teorema di triangolazione con base ortonormale, esiste una base ortonormale $\mathcal{B}' = \{\underline{v_1}, \dots, \underline{v_n}\}$ di \mathbb{R}^n (o di \mathbb{C}^n) tale per cui $T = M_{\mathcal{B}'}(f_A)$ è triangolare superiore. Si osserva inoltre che $M_{\mathcal{B}}(f_A) = A$ e che $P = M_{\mathcal{B}'}^{\mathcal{B}'}(f_A) = \left(\underline{v_1} \mid \dots \mid \underline{v_n}\right)$ è ortogonale (o unitaria), dacché le sue colonne formano una base ortonormale. Allora, dalla formula del cambiamento di base per la applicazioni lineari, si ricava che:

$$A = PTP^{-1} \implies T = P^{-1}TP,$$

da cui, osservando che $P^{-1} = P^{\top}$ (o $P^{-1} = P^*$), si ricava la tesi.

Definizione (operatore normale). Sia (V, φ) uno spazio euclideo reale. Allora $f \in \operatorname{End}(V)$ si dice **normale** se commuta con il suo trasposto (i.e. se $ff^{\top} = f^{\top}f$). Analogamente, se (V, φ) è uno spazio euclideo complesso, allora f si dice normale se commuta con il suo aggiunto (i.e. se $ff^* = f^*f$).

Definizione (matrice normale). Una matrice $A \in M(n, \mathbb{R})$ (o $M(n, \mathbb{C})$) si dice **normale** se $AA^{\top} = A^{\top}A$ (o $AA^* = A^*A$).

Osservazione.

- ▶ Se $A \in M(n, \mathbb{R})$ e A è simmetrica $(A = A^{\top})$, antisimmetrica $(A = -A^{\top})$ o ortogonale $(AA^{\top} = A^{\top}A = I_n)$, sicuramente A è normale.
- ▶ Se $A \in M(n, \mathbb{C})$ e A è hermitiana $(A = A^*)$, antihermitiana $(A = -A^*)$ o unitaria $(AA^* = A^*A = I_n)$, sicuramente A è normale.
- ▶ f è normale $\iff M_{\mathcal{B}}(f)$ è normale, con \mathcal{B} ortonormale di V.
- \blacktriangleright A è normale \iff f_A è normale, considerando che la base canonica di \mathbb{C}^n è già ortonormale rispetto al prodotto hermitiano standard.
- ▶ Se V è euclideo reale, f è normale $\iff f_{\mathbb{C}}$ è normale. Infatti, se f è normale, f e f^{\top} commutano. Allora anche $f_{\mathbb{C}}$ e $(f^{\top})_{\mathbb{C}} = (f_{\mathbb{C}})^*$ commutano, e quindi $f_{\mathbb{C}}$ è normale. Ripercorrendo i passaggi al contrario, si osserva infine che vale anche il viceversa.

Lemma 3.1. Sia $A \in M(n, \mathbb{C})$ triangolare superiore e normale (i.e. $AA^* = A^*A$). Allora A è diagonale.

Dimostrazione. Se A è normale, allora $(A^*)_i A^i = \overline{A}^i A^i$ deve essere uguale a $A_i(A^*)^i = A_i \overline{A}_i \ \forall 1 \leq i \leq n$. Si dimostra per induzione su i da 1 a n che tutti gli elementi, eccetto per quelli diagonali, delle righe $A_1, ..., A_i$ sono nulli.

(passo base) Si osserva che valgono le seguenti identità:

$$\overline{A}^1 A^1 = |a_{11}|^2,$$

$$A_1 \overline{A}_1 = |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{1n}|^2.$$

Dovendo vale l'uguaglianza, si ricava che $|a_{12}|^2 \dots + |a_{1n}|^2$, e quindi che $|a_{1i}|^2 = 0 \implies a_{1i} = 0 \quad \forall 2 \le i \le n$, dimostrando il passo base⁹.

(passo induttivo) Analogamente a prima, si considerano le seguenti identità:

$$\overline{A}^i A^i = |a_{1i}|^2 + \ldots + |a_{ii}|^2 = |a_{ii}|^2,$$

 $A_i \overline{A}_i = |a_{ii}|^2 + |a_{i(i+1)}|^2 + \ldots + |a_{in}|^2,$

dove si è usato che, per il passo induttivo, tutti gli elementi, eccetto per quelli diagonali, delle righe $A_1, ..., A_{i-1}$ sono nulli. Allora, analogamente a prima, si ricava che $a_{ij} = 0$ $\forall i < j \leq n$, dimostrando il passo induttivo, e quindi la tesi.

⁹Gli altri elementi sono infatti già nulli per ipotesi, essendo A triangolare superiore

Osservazione.

- ▶ Chiaramente vale anche il viceversa del precedente lemma: se infatti $A \in M(n, \mathbb{C})$ è diagonale, A è anche normale, dal momento che commuta con A^* .
- ▶ Reiterando la stessa dimostrazione del precedente lemma per $A \in M(n, \mathbb{R})$ triangolare superiore e normale reale (i.e. $AA^{\top} = A^{\top}A$) si può ottenere una tesi analoga.

Teorema 3.6. Sia (V, φ) uno spazio euclideo complesso. Allora f è un operatore normale \iff esiste una base ortonormale \mathcal{B} di autovettori per f.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Poiché \mathbb{C} è algebricamente chiuso, p_f è sicuramente riducibile. Pertanto, per il teorema di triangolazione con base ortonormale, esiste una base ortonormale \mathcal{B} a bandiera per f. In particolare, $M_{\mathcal{B}}(f)$ è sia normale che triangolare superiore. Allora, per il $Lemma\ 1,\ M_{\mathcal{B}}(f)$ è diagonale, e dunque \mathcal{B} è anche una base di autovettori per f.

(\Leftarrow) Se esiste una base ortonormale \mathcal{B} di autovettori per f, $M_{\mathcal{B}}(f)$ è diagonale, e dunque anche normale. Allora, poiché \mathcal{B} è ortonormale, anche f è normale.

Corollario 3.5. Sia $A \in M(n, \mathbb{C})$. Allora A è normale $\iff \exists U \in U_n$ tale che $U^{-1}AU = U^*AU$ è diagonale.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia \mathcal{B} la base canonica di \mathbb{C}^n . Si consideri l'applicazione lineare f_A indotta da A su \mathbb{C}^n . Se A è normale, allora anche f_A lo è. Pertanto, per il precedente teorema, esiste una base ortonormale $\mathcal{B}' = \{\underline{v_1}, \dots, \underline{v_n}\}$ di autovettori per f_A . In particolare, $U = M_{\mathcal{B}'}^{\mathcal{B}'}(\mathrm{Id}) = \left(\underline{v_1} \mid \dots \mid \underline{v_n}\right)$ è unitaria $(U \in U_n)$, dacché le colonne di U sono ortonormali. Si osserva inoltre che $M_{\mathcal{B}}(f_A) = A$ e che $D = M_{\mathcal{B}'}(f_A)$ è diagonale. Allora, per la formula del cambiamento di base per le applicazioni lineari, si conclude che:

$$A = UDU^{-1} \implies D = U^{-1}AU = U^*AU.$$

ossia che U^*AU è diagonale.

(\Leftarrow) Sia $D = U^*AU$. Dacché D è diagonale, D è anche normale. Pertanto $DD^* = D^*D$. Sostituendo, si ottiene che $U^*AUU^*A^*U = U^*A^*UU^*AU$. Ricordando che $U^*U = I_n$ e che $U \in U_n$ è sempre invertibile, si conclude che $AA^* = A^*A$, ossia che A è normale a sua volta, da cui la tesi.

Osservazione.

▶ Si può osservare mediante l'applicazione dell'ultimo corollario che, se A è hermitiana (ed è dunque anche normale), $\exists U \in U_n \mid U^*AU = D$, dove $D \in M(n, \mathbb{R})$, ossia tale corollario implica il teorema spettrale in forma complessa. Infatti $\overline{D} = D^* = U^*A^*U = U^*AU = D \implies D \in M(n, \mathbb{R})$.

▶ Se $A \in M(n, \mathbb{R})$ è una matrice normale reale (i.e. $AA^{\top} = A^{\top}A$) con p_A completamente riducibile in \mathbb{R} , allora è possibile reiterare la dimostrazione del precedente teorema per concludere che $\exists O \in O_n \mid O^{\top}AO = D$ con $D \in M(n, \mathbb{R})$, ossia che $A = ODO^{\top}$. Tuttavia questo implica che $A^{\top} = (ODO^{\top}) = OD^{\top}O^{\top} = ODO^{\top} = A$, ossia che A è simmetrica. In particolare, per il teorema spettrale reale, vale anche il viceversa. Pertanto, se $A \in M(n, \mathbb{R})$, A è una matrice normale reale con p_A completamente riducibile in $\mathbb{R} \iff A = A^{\top}$.

Esercizio 2. Sia V uno spazio dotato del prodotto φ . Sia $W \subseteq V$ un sottospazio di V. Sia $\mathcal{B}_W = \{\underline{w_1}, \dots, \underline{w_k}\}$ una base di W e sia $\mathcal{B} = \{\underline{w_1}, \dots, \underline{w_k}, \underline{v_{k+1}}, \dots, \underline{v_n}\}$ una base di V. Sia $A = M_{\mathcal{B}}(\varphi)$. Si dimostrino allora i seguenti risultati.

- (i) $W^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, w_i) = 0 \},$
- $\text{(ii)} \ \ W^{\perp} = \{\underline{v} \in V \mid A_{1,\dots,k}[\underline{v}]_{\mathcal{B}} = 0\} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} A_{1,\dots,k}),$
- (iii) $\dim W^{\top} = \dim V \operatorname{rg}(A_{1,\dots,k}),$
- (iv) Se φ è non degenere, dim $W + \dim W^{\perp} = \dim V$.

Soluzione. Chiaramente vale l'inclusione $W^{\perp} \subseteq \{\underline{v} \in V \mid \varphi(\underline{v}, \underline{w_i}) = 0\}$. Sia allora $\underline{v} \in V \mid \varphi(\underline{v}, \underline{w_i}) = 0 \ \forall \ 1 \leq i \leq k \ \text{e sia} \ \underline{w} \in W$. Allora esistono $\alpha_1, \dots, \alpha_k$ tali che $\underline{w} = \alpha_1 \underline{w_1} + \dots + \alpha_k \underline{w_k}$. Pertanto si conclude che $\varphi(\underline{v}, \alpha_1 \underline{w_1} + \dots + \alpha_k \underline{w_k}) = \alpha_1 \varphi(\underline{v}, \underline{w_1}) + \dots + \alpha_k \varphi(\underline{v}, \underline{w_k}) = 0 \implies \underline{v} \in W^{\top}$. Pertanto $W^{\top} = \{\underline{v} \in V \mid \varphi(\underline{v}, \underline{w_i}) = 0\}$, dimostrando (i).

Si osserva che $\varphi(\underline{v}, \underline{w}_i) = 0 \iff \varphi(\underline{w}_i, \underline{v}) = 0$. Se φ è scalare, allora $\varphi(\underline{w}_i, \underline{v}) = 0 \iff [\underline{w}_i]_{\mathcal{B}}^{\top} A[\underline{v}]_{\mathcal{B}} = (\underline{e}_i)^{\top} A[\underline{v}]_{\mathcal{B}} = A_i[\underline{v}]_{\mathcal{B}} = 0$. Pertanto $\underline{v} \in W^{\top} \iff A_i[\underline{v}]_{\mathcal{B}} = 0 \ \forall \ 1 \le i \le k$, ossia se $A_{1,\dots,k}[\underline{v}]_{\mathcal{B}} = 0$ e $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} A_{1,\dots,k}$, dimostrando (ii). Analogamente si ottiene la tesi se φ è hermitiano. Applicando la formula delle dimensioni, si ricava dunque che dim $W^{\top} = \dim \operatorname{Ker} A_{1,\dots,k} = \dim V - \operatorname{rg} A_{1,\dots,k}$, dimostrando (iii).

Se φ è non degenere, A è invertibile, dacché dim $V^{\perp} = \dim \operatorname{Ker} A = 0$. Allora ogni minore di taglia k di A ha determinante diverso da zero. Dacché ogni minore di taglia k di $A_{1,\ldots,k}$ è anche un minore di taglia k di A, si ricava che anche ogni minore di taglia k di $A_{1,\ldots,k}$ ha determinante diverso da zero, e quindi che $\operatorname{rg}(A_{1,\ldots,k}) \geq k$. Dacché deve anche valere $\operatorname{rg}(A_{1,\ldots,k}) \leq \min\{k,n\} = k$, si conclude che $\operatorname{rg}(A_{1,\ldots,k})$ vale esattamente $k = \dim W$. Allora, dal punto (iii), vale che $\dim W^{\perp} + \dim W = \dim W^{\perp} + \operatorname{rg}(A_{1,\ldots,k}) = \dim V$, dimostrando il punto (iv).

Esercizio 3. Sia V uno spazio dotato del prodotto φ . Sia $U \subseteq V$ un sottospazio di V. Si dimostrino allora i seguenti due risultati.

- (i) Il prodotto φ induce un prodotto $\tilde{\varphi}: V/U \times V/U \to \mathbb{K}$ tale che $\tilde{\varphi}(\underline{v} + U, \underline{v}' + U) = \varphi(v, v')$ se e soltanto se $U \subseteq V^{\perp}$, ossia se e solo se $U \perp V$.
- (ii) Se $U = V^{\perp}$, allora il prodotto $\tilde{\varphi}$ è non degenere.

- (iii) Sia $\pi: V \to V/V^{\perp}$ l'applicazione lineare di proiezione al quoziente. Allora $U^{\perp} = \{\underline{v} \in V \mid \tilde{\varphi}(\pi(\underline{v}), \pi(\underline{u})) = 0 \ \forall \underline{u} \in U\} = \pi^{-1}(\pi(U)^{\perp}).$
- (iv) Vale la formula delle dimensioni per il prodotto φ : dim $U + \dim U^{\perp} = \dim V + \dim(U \cap V^{\perp})$.

Soluzione. Sia $\underline{w} = \underline{v} + \underline{u_1} \in \underline{v} + U$, con $\underline{u_1} \in U$. Se $\tilde{\varphi}$ è ben definito, allora deve valere l'uguaglianza $\varphi(\underline{v},\underline{v}') = \varphi(\underline{w},\underline{v}') = \varphi(\underline{v}+\underline{u_1},\underline{v}') = \varphi(\underline{v},\underline{v}') + \varphi(\underline{u_1},\underline{v}')$, ossia $\varphi(\underline{u_1},\underline{v}') = 0$ $\forall \underline{v}' \in V \implies \underline{u_1} \in V^{\perp} \implies U \subseteq V^{\perp}$. Viceversa, se $U \subseteq V^{\perp}$, sia $\underline{w}' = \underline{v}' + \underline{u_2} \in \underline{v}' + U$, con $u_2 \in U$. Allora vale la seguente identità:

$$\varphi(\underline{w},\underline{w}') = \varphi(\underline{v} + \underline{u_1},\underline{v}' + \underline{u_2}) = \varphi(\underline{v},\underline{v}') + \underbrace{\varphi(\underline{v},\underline{u_2}) + \varphi(\underline{u_1},\underline{v}') + \varphi(\underline{u_1},\underline{u_2})}_{=0}.$$

Pertanto $\tilde{\varphi}$ è ben definito, dimostrando (i).

Sia ora $U = V/V^{\perp}$. Sia $\underline{v} + U \in (V/U)^{\perp} = \operatorname{Rad}(\tilde{\varphi})$. Allora, $\forall \underline{v}' + U \in V/U$, $\tilde{\varphi}(\underline{v} + U, \underline{v}' + U) = \varphi(\underline{v}, \underline{v}') = 0$, ossia $\underline{v} \in V^{\perp} = U$. Pertanto $\underline{v} + U = U \Longrightarrow \operatorname{Rad}(\tilde{\varphi}) = \{V^{\perp}\}$, e quindi $\tilde{\varphi}$ è non degenere, dimostrando (ii).

Si dimostra adesso l'uguaglianza $U^{\perp}=\pi^{-1}(\pi(U)^{\perp})$. Sia $\underline{v}\in U^{\perp}$. Allora $\tilde{\varphi}(\pi(\underline{v}),\pi(\underline{u}))=\tilde{\varphi}(\underline{v}+V^{\perp},\underline{u}+V^{\perp})=\varphi(\underline{v},\underline{u})=0 \ \forall \underline{u}\in U,$ da cui si ricava che vale l'inclusione $U^{\perp}\subseteq\pi^{-1}(\pi(U)^{\perp})$. Sia ora $\underline{v}\in\pi^{-1}(\pi(U)^{\perp}),$ e sia $\underline{u}\in U.$ Allora $\varphi(\underline{v},\underline{u})=\tilde{\varphi}(\underline{v}+V^{\perp},\underline{u}+V^{\perp})=\tilde{\varphi}(\pi(\underline{v}),\pi(\underline{u}))=0,$ da cui vale la doppia inclusione, e dunque l'uguaglianza desiderata, dimostrando (iii).

Dall'uguaglianza del punto (iii), l'applicazione della formula delle dimensioni e l'identità ottenuta dal punto (iv) dell'*Esercizio 2* rispetto al prodotto $\tilde{\varphi}$ non degenere, si ricavano le seguenti identità:

$$\begin{cases} \dim \pi(U) = \dim U - \dim(U \cap \operatorname{Ker} \pi) = \dim U - \dim(U \cap V^{\perp}), \\ \dim \pi(U)^{\perp} = \dim V/V^{\perp} - \dim \pi(U) = \dim V - \dim V^{\perp} - \dim \pi(U), \\ \dim U^{\perp} = \dim \pi(U)^{\perp} + \dim \operatorname{Ker} \pi = \dim \pi(U)^{\perp} + \dim V^{\perp}, \end{cases}$$

dalle quali si ricava la seguente identità:

$$\dim U^{\perp} = \dim V - \dim V^{\perp} - (\dim U - \dim(U \cap V^{\perp})) + \dim V^{\perp},$$

da cui si ricava che dim $U + \dim U^{\perp} = \dim V + \dim(U \cap V^{\perp})$, dimostrando (iv).

Esercizio 4. Sia V uno spazio vettoriale dotato del prodotto φ . Si dimostri allora che $(W^{\perp})^{\perp} = W + V^{\perp}$.

Soluzione. Sia $\underline{v} = \underline{w}' + \underline{v}' \in W + V^{\perp}$, con $\underline{w}' \in W$ e $\underline{v}' \in V^{\perp}$. Sia inoltre $\underline{w} \in W^{\perp}$. Allora $\varphi(\underline{v},\underline{w}) = \varphi(\underline{w}' + \underline{v}',\underline{w}) = \varphi(\underline{w}',\underline{w}) + \varphi(\underline{v}',\underline{w}) = 0$, dove si è usato che $\underline{w}' \perp \underline{w}$ dacché $\underline{w} \in W^{\perp}$ e $\underline{w}' \in W$ e che $\underline{v}' \in V^{\perp}$. Allora vale l'inclusione $W + V^{\perp} \subseteq (W^{\perp})^{\perp}$.

Applicando le rispettive formule delle dimensioni a W^{\perp} , $(W^{\perp})^{\perp}$ e $W+V^{\perp}$ si ottengono le seguenti identità:

$$\begin{cases} \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}) - \dim W, \\ \dim(W^{\perp})^{\perp} = \dim V + \dim(W^{\perp} \cap V^{\perp}) - \dim W^{\perp}, \\ \dim(W + V^{\perp}) = \dim W + \dim V^{\perp} - \dim(W \cap V^{\perp}), \end{cases}$$

da cui si ricava che:

$$\dim(W^{\perp})^{\perp} = \dim W + \dim V^{\perp} - \dim(W \cap V^{\perp}) = \dim(W + V^{\perp}).$$

Dal momento che vale un'inclusione e l'uguaglianza dimensionale, si conclude che $(W^{\perp})^{\perp} = W + V^{\perp}$, da cui la tesi.

Esercizio 5. Sia $A \in M(n, \mathbb{C})$ anti-hermitiana (i.e. $A = -A^*$). Si dimostri allora che A è normale e che ammette solo autovalori immaginari.

Soluzione. Si mostra facilmente che A è normale. Infatti $AA^* = A(-A) = -A^2 = (-A)A = A^*A$. Sia allora $\lambda \in \mathbb{C}$ un autovalore di A e sia $\underline{v} \neq \underline{0}, \underline{v} \in V_{\lambda}$. Si consideri il prodotto hermitiano standard φ su \mathbb{C}^n . Allora vale la seguente identità:

$$\lambda \varphi(\underline{v}, \underline{v}) = \varphi(\underline{v}, \lambda \underline{v}) = \varphi(\underline{v}, A\underline{v}) = \varphi(A^*\underline{v}, \underline{v}) = \varphi(-Av, v) = \varphi(-\lambda v, v) = -\overline{\lambda} \varphi(v, v).$$

Dacché φ è definito positivo, $\varphi(\underline{v},\underline{v}) \neq 0 \implies \lambda = -\overline{\lambda}$. Allora $\Re(\lambda) = \frac{\lambda + \overline{\lambda}}{2} = 0$, e quindi λ è immaginario, da cui la tesi.

Esercizio 6. Sia V uno spazio vettoriale dotato del prodotto φ . Siano $U, W \subseteq V$ due sottospazi di V. Si dimostrino allora le due seguenti identità.

(i)
$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$
,

(ii) $(U\cap W)^{\perp}\supseteq U^{\perp}+W^{\perp}$, dove vale l'uguaglianza insiemistica se φ è non degenere.

Soluzione. Sia $\underline{v} \in (U+W)^{\perp}$ e siano $\underline{u} \in U \subseteq U+W$, $\underline{w} \in W \subseteq U+W$. Allora $\varphi(\underline{v},\underline{u}) = 0 \implies \underline{v} \in U^{\perp}$ e $\varphi(\underline{v},\underline{w}) = 0 \implies \underline{v} \in W^{\perp}$, da cui si conclude che $(U+W)^{\perp} \subseteq U^{\perp} \cap W^{\perp}$. Sia adesso $\underline{v} \in U^{\perp} \cap W^{\perp}$ e $\underline{v}' = \underline{u} + \underline{w} \in U + W$ con $\underline{u} \in V$ e $\underline{w} \in W$. Allora $\varphi(\underline{v},\underline{v}') = \varphi(\underline{v},\underline{u}) + \varphi(\underline{v},\underline{w}) = 0 \implies \underline{v} \in (U+W)^{\perp}$, da cui si deduca che vale la doppia inclusione, e quindi che $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$, dimostrando (i).

Sia ora $\underline{v}' = \underline{u}' + \underline{w}' \in U^{\perp} + W^{\perp}$ con $\underline{u}' \in U^{\perp}$ e $\underline{w}' \in W^{\perp}$. Sia $\underline{v} \in U \cap W$. Allora $\varphi(\underline{v},\underline{v}') = \varphi(\underline{v},\underline{w}') + \varphi(\underline{v},\underline{w}') = 0 \implies \underline{v}' \in (U \cap W)^{\perp}$, da cui si deduce che $(U \cap W)^{\perp} \supseteq U^{\perp} + W^{\perp}$. Se φ è non degenere, $\dim(U^{\perp} + W^{\perp}) = \dim U^{\perp} + \dim W^{\perp} - \dim(U^{\perp} \cap W^{\perp}) = 2\dim V - \dim U - \dim W - \dim(U + W)^{\perp} = \dim V - \dim U - \dim W + \dim(U + W) = \dim V - \dim(U + W) = \dim(U + W)^{\perp}$. Valendo pertanto l'uguaglianza dimensionale, si conclude che in questo caso $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$, dimostrando (ii).