Parcial 3 de algebra abstracta

Rodrigo Castillo (junto a Carlos y Oscar)

19 de noviembre de 2020

1. Sea c el código lineal de longitud 9 cuya matriz de control es:

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Figura 1: matriz de control

1.1. a : encuentre la dimensión de C

sabemos que si C es un código lineal de longitud n y dimensión k, una matrix $n-k\times nH$ es una matriz de control para el código C si $wH^T\iff w\in C$ sabemos que C tiene longitud 9

H es una matriz 4×9 por lo tanto n-k=49-k=4k=5por lo tanto dim(C)=5

1.2. encuentre la distancia mínima de C

para este punto necesitamos la matris generadora de C , tenemos que $G=(I_kA)$ y que $H=(-A^TI_{n-k})$ luego ...

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$
 (1)

con ${\cal G}$ podemos ver que la distancia mínima es 3

1.3. calcule los sindromes correspondientes a errores de C que puede corregir

sabemos que un código es e-corrector si su distancia mínima es 2e+1 como mínimo por lo tanto, como la distancia mínima de C es 3, entonces es 1corrector (pues 1+1+1=3)

como el código es 1 - corrector se tiene que:

si el síndrome es igual a 0, no hay error en la palabra

si el sindrome $\neq 0$, se tiene que la representación será un número binario que representa la posición del error

1.4. diga si $000110011 \in C$ o no

lo primero que hicimos fue calcular la matrix ${\cal H}^T$

$$H^{T} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2)

multiplicaremos la palabra por ${\cal H}^T$, si el resultado es 0000 significa que la palabra pertenece a C

 $000110011 \cdot H^T = 1100$ luego tenemos que $000110011 \notin C$

1.5. decodifique 110101101

sea la palabra 110101101 , la multiplicaremos por H^T 110101101 · $H^T=0111$, luego el error es 001000000 , ahora , usando $\omega=c+r$ se tiene que c=1111011011

2. Punto 2

2.1. sea g(x)el generador de un codigo ciclico de longitud 15 sobre Z_2 demuestre que $g(1) = 1 \iff$ todas las palabras del código tienen un peso par

sea g(x) un generador de un código cíclico de longitud 15 sobre Z_2 se tiene entonces que g(x) corresponde al ideal de $\langle g(x) \rangle$, luego es un ideal de $Z_2/\langle X^{15}-1 \rangle$, por lo que

$$g(x) = c_0 + c_1 X + x_2 X^2 + \dots + c_{14} X^{14}$$

g(1) = 0

$$g(1) = c_0 + c_1 X + c_2 X^2 + \dots + c_{14} X^{14} = 0$$

$$g(1) = c_0 + c_1 + c_2 + \dots + c_{14} = 0$$

como $c_i \in \mathbb{Z}_2$ y además $c_i \in \mathbb{C}$ entonces \mathbb{C} tiene peso par

la demostración de la otra parte de la equivalencia es análoga

3. Punto 3

3.1. sea $\mathbf{F} = \{0, 1, \omega, \hat{\omega}\}$ el campo finito con 4 elementos , las operaciones en F siguen de estas reglas...

$$1 + 1 = 0$$
, $1 + \omega = \omega^2 = \hat{\omega}$

3.1.1. escriba las tablas de operaciones en F

Figura 2: tablas de operaciones

nota: por alguna razón latex no me dejaba importar la libería para hacer una tabla

3.1.2. encuentre el peso minimo de C y una matriz de control para C

el peso mínimo de G es 4

, esto lo sabemos por la distancia mínima entre las filas

como C es lineal, el peso mínimo de de C es igual al peso mínimo de GJ que también es $AG=(I_kA)$, $AG=(I_kA)$, entonces al hacer $AG=(I_kA)$ nos da la matriz ...

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -\omega & -\hat{\omega} \\ -1 & -\hat{\omega} & -\omega \end{pmatrix} \tag{3}$$

haciendo uso de la tabla de operacion de la suma podemos saber que $1=-1, \omega=-\omega$, podemos decir que matriz de control H es :

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & \omega & \hat{\omega} & 0 & 1 & 0 \\ 1 & om\hat{e}ga & \omega & 0 & 0 & 1 \end{pmatrix}$$
(4)

3.1.3. demuestre que ningun codigo sobre un alfabeto de 4 simbolos con la misma longitud y distancia mínima de C puede tener mas palabras códigos que C

C tiene 64 palabras, luego

sabemos que C cumple la cota del singulete, luego $|C| \le 4^3$ luego $C \le 64$ luego no hay un código que sea tenga mas palabras códigos que C(pues C tiene 64 palabras)

4. PUNTO 4

sea H una matriz de control para el código lineal C sobre Z_2 de longitud n y dimension k, construimos un nuevo código C' de longitud n+1 en la siguiente manera: si $c_0c_1...c_{n-1}\in C$ entonces $c_0c_1...c_{n-1}c_n\in C'$ con $c_n=c_0+c_1+...+c_{n-1}$

Encuentre la dimensión, distancia minima y matriz de control de \mathbf{C} ' en función de los mismos para \mathbf{C}

como C' es C mas la añadidura de un simbolo a la longitud sabemos que la dimensión de C es k

Sabemos por teorema dado en clase que **el peso minimo de un codigo lineal es su distancia minima**, por lo que en el caso de este ejercicio se tiene que ...

si el peso de C es par , como C tiene una cantidad par de $1'syc_n$ es la suma del código añadimos un 0. dandonos cuenta de que esto no afecta el peso de C' por que si el peso de C es par, la distancia minima de C' será igual a la de C

si el peso de C es impar en , sumamos una cantidad impar de 1's , entonces añadiremos un 1 a la suma de c_n , por lo que la distancia minima de C' cuando C es impar , la distancia mínima es C+1

Matriz de control:

Sabemos que $(C_0...C_{n-1}H^T=0)$, por lo tanto $C_0...C_n\in C'$, además , $c_n=c_0+c_1+...+c_{n-1}$ tenemos que $C'H'^T$ debe ser igual a 0, por lo que debemos lograr que al agregarle la matriz H siga cumpliendo la igualdad.

para esto tomaremos ${\cal H}^T$ y le agregaremos una columna de 1's al final

luego una fila de $0^\prime s$ al final hasta la posición nXn-1 de manera que la entrada nXn sea un 1 también

al momento de hacer la transpuesta de esta nueva matriz generaremos a H', matriz en la cuál las primeras filas y columnas serán iguales a las de H y a la ultima columna serán 0's hasta la posición n-1Xn y la ultima fila será 0s teniendo así en la posición nXn un 1. De esta manera generaremos una matriz H que al multiplicarla con la matriz descrita arriba, obtendremos 0 y por lo tanto esta matriz será una matriz de control para el código C