Selected Problems Chapter 1 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

April 24, 2021

Problem 1.A.2. Show that $\frac{-1+\sqrt{3}i}{2}$ is a cube root of 1 (meaning that its cube equals 1.) *Proof.* We can use the definition of complex multiplication:

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^3 = \left(\frac{-1+\sqrt{3}i}{2}\right)^2 \left(\frac{-1+\sqrt{3}i}{2}\right)$$
$$= \left(\frac{-1-\sqrt{3}i}{2}\right) \left(\frac{-1+\sqrt{3}i}{2}\right)$$
$$= \frac{1}{4} + \frac{-\sqrt{3}i}{2} + \frac{\sqrt{3}i}{2} + \frac{3}{4}$$
$$= 1$$

Problem 1.A.3. Find two distinct roots of i.

Let z = (a + bi) be some root of i. We have :

$$z^2 = (a+bi)^2 = a^2 - b^2 + 2abi = i$$

Since i has no real component, this means that $a^2 - b^2 = 0$. Also, since the coefficient of i is 1, 2ab = 1, which also means that a, b must have the same sign. Thus, a = b, and

$$2ab = 2a^{2} = 1$$

$$a^{2} = \frac{1}{2}$$

$$a = b = \pm \frac{1}{\sqrt{2}}$$

so the two solutions are $z=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$ and $z=\left(-\frac{1}{\sqrt{2}}+\frac{-i}{\sqrt{2}}\right)$.

Problem 1.B.1. Prove that -(-v) = v for each $v \in V$.

Proof. Given $v \in V$, we have :

$$-(-v) = -1(-1v) = (-1^2)v = 1(v) = v.$$

Problem 1.B.1. Suppose $a \in F, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Proof. There are two cases : a = 0 or $a \neq 0$.

Case 1: a = 0. We are done.

Case 2: $a \neq 0$. Since F is a field and $a \neq 0$, the multiplicative inverse of a exists. We have that

$$v = (\frac{1}{a})av = (\frac{1}{a})0 = 0.$$

The first equality holds because $\frac{1}{a}$ is the multiplicative inverse of a, and the third equality holds because the vector 0 is invariant to scalar multiplication.

Problem 1.B.1. Suppose $a \in F, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Proof. There are two cases : a = 0 or $a \neq 0$.

Case 1: a = 0. We are done.

Case 2: $a \neq 0$. Since F is a field and $a \neq 0$, the multiplicative inverse of a exists. We have that

$$v = (\frac{1}{a})av = (\frac{1}{a})0 = 0.$$

The first equality holds because $\frac{1}{a}$ is the multiplicative inverse of a, and the third equality holds because the vector 0 is invariant to scalar multiplication.

Problem 1.C.4. Suppose $b \in \mathbb{R}$. Show that the set of continuous real-valued functions f on the interval [0,1] such that $\int_0^1 f = b$ is a subspace of $\mathbb{R}^{[0,1]}$ if and only if b = 0.

Proof. Define the set

$$C = \{ f \in \mathbb{R}^{[0,1]} \mid \int_0^1 f = b \}.$$

For the forward direction, assume C is a subspace of the real-valued functions from the interval [0,1] to \mathbb{R} . Since C is a subspace, $0 \in C$, defined as 0(x) = 0 for all $x \in [0,1]$. Thus, $0+0 \in C$ because addition is an operation on C, and

$$b = \int_0^1 0 = \int_0^1 (0+0) = \int_0^1 0 + \int_0^1 0 = b + b = 2b.$$

Subtracting b from both side, we get b = 0.

Conversely, assume b=0. We must show that C is a subspace. We define the zero vector as above. Given $f \in C$, we have

$$\int_0^1 (f+0) = \int_0^1 f + \int_0^1 0 = 0,$$

so $f + 0 \in C$, meaning C contains an additive identity.

We must now show that addition and scalar multiplication are operations on C. Given $f, g \in C$, we have :

$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g = 0 + 0 = 0,$$

so $f + g \in C$. Also, Given $\lambda \in F$ and $f \in C$, we have :

$$\int_0^1 \lambda(f) = \lambda \int_0^1 f = \lambda * 0 = 0,$$

so $\lambda(f) \in C$. Thus, The minimum properties for C to be a subspace of $\mathbb{R}^{[0,1]}$ are satisfied.

Problem 1.C.24. A function $f: \mathbb{R} \to \mathbb{R}$ is called even if

$$f(-x) = f(x)$$

for all $x \in \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called odd if

$$f(-x) = -f(x)$$

for all $x \in \mathbb{R}$. Let U_e denote the set of real-valued even functions on \mathbb{R} and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

Proof.

We will first show that U_e and U_o are subspaces of $\mathbb{R}^{\mathbb{R}}$. The zero element of $\mathbb{R}^{\mathbb{R}}$ is defined to be z(x) = 0, for all $x \in \mathbb{R}$. We have that

$$z(-x) = 0 = z(x)$$

because z(x) is constant, so $z(x) \in U_e$. We also have that

$$z(-x) = -0 = -z(x)$$

because z(x) is constant, so $z(x) \in U_o$.

Now, we must show that addition and scalar multiplication are valid operations on the two sets. Given $f, g \in U_e$, we have

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x),$$

since f and g are even. Similarly, given $f, g \in U_o$, we have

$$(f+g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f+g)(x),$$

since f and g are odd. Given $\lambda \in F$ and $f \in U_e$, we have

$$(\lambda f)(-x) = \lambda(f)(-x) = \lambda(f)(x),$$

since f is even. Similarly, given $g \in U_o$, we know that

$$(\lambda g)(-x) = \lambda(g)(-x) = -\lambda(g)(x),$$

because g is odd. Thus, U_e and U_o are subspaces of $\mathbb{R}^{\mathbb{R}}$.

Finally, we must demonstrate that $U_e \oplus U_o = \mathbb{R}^{\mathbb{R}}$, i.e. we must show that the sum of the two subspaces equals $\mathbb{R}^{\mathbb{R}}$, and it's a direct sum. Given $f \in U_e$ and $g \in U_e$ (both functions from the real numbers to the real numbers), (f+g)(x) is a function from the real numbers to the real numbers; thus, $U_e + U_o \subseteq \mathbb{R}^{\mathbb{R}}$. To finish showing that $U_e + U_o = \mathbb{R}^{\mathbb{R}}$, we need to prove that every function from the real numbers to the real numbers can be expressed as the sum of an even and odd function. Given $f \in \mathbb{R}^{\mathbb{R}}$, we must show that there exists $g \in U_e$ and $h \in U_o$ such that

$$f(x) = g(x) + h(x).$$
Define $f_e(x) = \frac{f(x) + f(-x)}{2}$ and $f_o(x) = \frac{f(x) - f(-x)}{2}$. Then,
$$f_e(x) + f_o(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

$$= \frac{f(x) + f(-x) + f(x) - f(-x)}{2}$$

$$= \frac{2f(x)}{2}$$

$$= f(x),$$

so $\mathbb{R}^{\mathbb{R}} \subseteq U_e + U_o$.

The last requirement is that $U_e + U_o$ is a direct sum; we can prove this by showing $U_e \cap U_o = \{z(x)\}$. Assume $f \in U_e \cap U_o$. Thus,

$$0 = f(x) + -f(x) = f(-x) + f(-x) = 2f(-x) = 2f(x),$$

so dividing both sides by two leads to f(x) = 0 for all $x \in \mathbb{R}$.

Problem Theorem 1.44 Condition for a direct sum. Suppose U_1, \ldots, U_m are subspace of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if the only way to write 0 in the sum is the sum $u_1 + \cdots + u_m$ where each u_i is 0.

Proof. For the forward direction, assume that $U_1 + \cdots + U_m$ is a direct sum. We know that 0 in $U_1 + \cdots + U_m$ is written the sum of the zero vector in each U_j . By the definition of direct sum, this representation is unique.

For the backward direction, assume that 0 is uniquely represented in $U_1 + \cdots + U_m$ as the sum of the zero vector in each U_j . Given $v = v_1 + \cdots + v_m \in U_1 + \cdots + U_m$, assume there exists $w = w_1 + \cdots + w_m \in U_1 + \cdots + U_m$ where v = w. We want $v_j = w_j$ for each j.

Subtracting the two representations, we have

$$0 = v - w$$

= $(v_1 - w_1) + \dots + (v_m - w_m)$

Since 0 is represented uniquely as the sum of zero vectors from each subspace, $v_j = w_j$ for each j, as desired.