Tema 6 – Nivel de aplicación

Redes de Computadores

Grado en Ingeniería Informática en Tecnologías de la Información

Índice

- Introducción
- Ejemplos de protocolos de nivel de aplicación
- El modelo cliente/servidor
- Arquitectura centralizada Servidores y nube
- Arquitectura distribuida El modelo P2P

Introducción

- Está formado por un conjunto de protocolos:
 - Cada uno de ellos se utiliza para un propósito específico
 - Cada uno de los protocolos es independiente
 - Pueden convivir varios dentro de una red y dispositivo
 - Son utilizados por aplicaciones a las que se denomina servicios
 - Utilizan servicios extremo a extremo del nivel de transporte

 Ejemplo de protocolo de nivel de aplicación

POP3

TCP

IP

Protocolo Acceso

Física

Introducción

Servidor: +OK Hello there.

Cliente: USER alumno

Servidor: +OK Password required.

Cliente: PASS Pass_Alumno

Servidor: +OK logged in.

Cliente: STAT

Servidor: +OK 1 15216

Cliente: LIST

Servidor: +OK POP3 clients that break here, they violate STD53.

1 15216

.

Cliente: RETR 1

Servidor: +OK 15216 octets follow.

Date: Mon, 04 Dec 2006 20:00:57 +0100

From: Profesor profesor@uniovi.es>

Subject: Prueba e-mail To: alumno@uniovi.es

••

.

Cliente: DELE 1

Servidor: +OK Deleted.

Cliente: QUIT

Servidor: +OK Bye-bye.

Introducción

BGP = Border Gateway Protocol OSPF = Open Shortest Path First = File Transfer Protocol RSVP = Resource ReSerVation Protocol

HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

Transmission Control Protocol

Internet Group Management Protocol IGMP TCP UDP = User Datagram Protocol Internet Protocol

MIME = Multi-Purpose Internet Mail Extension

Introducción

- Protocolos de servicios orientados al usuario
 - HTTP
 - SMTP, POP3, IMAP
 - TELNET, SSH
 - RFB, ICA, RDP
 - FTP
 - RTSP
 - SIP
 - ...
- Protocolos de servicios básicos
 - DNS
 - DHCP
 - NTP
 - LDAP
 - SNMP
 - **—** ...

Utilizados por servicios a los que el usuario accede directamente

Utilizados por servicios base para el funcionamiento de la red o de otros servicios

El protocolo HTTP

- Protocolo para la transferencia de ficheros de hipertexto
- Base para los servicios Web
- Sobre una capa de cifrado se le conoce como HTTPS

Protocolos SMTP, POP3, IMAP

Protocolos para el envío de mensajes de corres electrónico

Protocolos TELNET y SSH

- Protocolos para el trabajo mediante terminal remota
- Permiten trabajar desde una localización remota con la consola de un computador

El protocolo FTP

 Protocolo utilizado para la transferencia de archivos entre máquinas remotas

El protocolo RTSP

- Protocolo para el control de servicio multimedia basados en tecnología de streaming
- Únicamente realiza el control del sistema
- Utiliza otros protocolos para el transporte de la información

El protocolo SIP

- Protocolo de control y señalización para la creación, modificación y finalización de sesiones de uno o más participantes
- Sesión: llamada de VoIP, mensajería, videoconferencia, ...

El protocolo DNS

- Protocolo para la resolución de nombres
- A partir del nombre lógico de una máquina resuelve su dirección IP

El protocolo DHCP

 Protocolo para el reparto de direcciones IP de forma dinámica

El protocolo NTP

 Permite el acceso y la distribución de señales de reloj precisas

El protocolo LDAP

- Implementa un servicio de directorio
- Altamente optimizado para lectura de datos

El protocolo SNMP

- Protocolo para la gestión de red
 - Monitorización y control

El modelo cliente/servidor

- Programa Servidor: ofrece un servicio y acepta peticiones de clientes
- Programa Cliente: se comunican con el servidor para solicitar un servicio

Cliente/servidor: Ejemplo simple

- Consideremos un servidor de eco basado en UDP
 - El servidor seguirá el siguiente proceso:
 - Negociará con el Sistema Operativo un puerto UDP
 - Entrará en un ciclo sin fin con las siguientes tareas:
 - Espera a que un datagrama llegue al puerto de eco
 - Invierte las direcciones de origen y destino
 - Devuelve el datagrama al emisor original
 - El cliente seguirá el siguiente proceso:
 - Envía un mensaje al programa servidor de eco
 - Espera la respuesta

El modelo cliente/servidor

- Características del servidor
 - Host siempre disponible
 - Dirección IP y puerto bien conocido
 - Su ejecución debe comenzar antes que la ejecución de los clientes
 - Puede atender a varios clientes
- Características del cliente
 - Es el que inicia la comunicación con el servidor
 - Puede tener dirección IP dinámica y puerto aleatorio
 - No se comunica directamente con otro cliente

- Habitualmente los servidores no son tan sencillos como el del ejemplo:
 - Procesamiento de peticiones de forma concurrente
 - Aspectos relacionados con la seguridad
- En cuanto a la concurrencia, los servidores suelen tener dos partes:
 - Un proceso maestro sencillo, responsable de aceptar la nuevas peticiones
 - Varios esclavos, responsables de manejar cada una de las peticiones

- Técnicas de gestión de esclavos:
 - Esclavos por petición: cada vez que llega una petición se crea un esclavo para procesarla
 - Esclavos por sesión: cada vez que se inicia una sesión se crea un esclavo para gestionarla (una sesión contiene una o varias peticiones)
 - Conjunto de esclavos: el servidor tiene inicialmente un conjunto de esclavos activos inicialmente que va repartiendo según llegan las peticiones. Cuando estas terminan los esclavos se liberan (pero no se destruyen). Subtipos:
 - Conjunto de esclavos con asignación por petición
 - Conjunto de esclavos con asignación por sesión

- Problemas de seguridad
 - Protección del sistema y de los recursos
 - Deben mantener reglas de autorización y protección
 - Restringir el acceso a ciertas zonas
 - Integridad
 - Deben protegerse contra peticiones formadas equivocadamente y contra peticiones que causen la interrupción del programa

- Las arquitecturas de los servicios pueden ser más complejas.
 - Reducir el consumo de recursos
 - Garantizar la disponibilidad del servicio
 - Garantizar la escalabilidad del servicio
 - Incrementar la seguridad del servicio
- Otros elementos:
 - Cachés
 - Proxies
 - Repartidores de carga
 - Firewalls, IDS e IPS

Arquitectura centralizada – Servidores y nube

- El cliente puede delegar parte de sus funciones en el servidor
 - Videojuegos en streaming
 - Comandos de voz telefonía móvil
- La mayoría de servicios se trasladan al servidor
- Mayor necesidad de recursos y escalabilidad –
 Computación en la nube

Servicios en la nube

- Ventajas
 - Facilidad de escalado
 - Posible ahorro económico
 - Delegación de problemas técnicos: PaaS (Platform as a Service)
- Inconvenientes
 - No se tiene acceso físico a los servidores
 - Cesión la información del servidor a terceras empresas

Arquitectura distribuida – El modelo P2P

- Distribuye la información en vez de concentrarla en un servidor
- Se consideran todos los nodos iguales a la hora de compartir la información
 - Todos los nodos pueden dar y recibir
 - No existe un proveedor centralizado
 - Las comunicaciones son simétricas

Arquitectura distribuida – El modelo P2P

Ventajas

- Escalabilidad: Es muy fácil unir nuevos nodos
- Descentralización: La información no se almacena únicamente en un servidor
- Coste: El gasto se reparte entre los diferentes nodos
- Robustez: No hay un único punto de fallo

Inconvenientes

- La información está distribuida entre múltiples nodos que a priori desconocemos
- Un nodo malicioso puede causar grandes problemas a toda la red

P2P: Funcionamiento básico

- Funcionamiento básico
 - Se localizan otros pares que tengan la información deseada → proveedores
 - Herramientas de búsqueda, información en la web, servidores centralizados, superpares, ...
 - Se descarga la información
 - Si hay más de un proveedor la información se divide en porciones y se descarga cada porción de un par
 - Se cede la información tan pronto como se tenga

