LEC002 Demand Forecasting

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Properties

- *Trend*: A long-term increase or decrease in the data. This can be seen as a slope (doesn't have to be linear) roughly going through the data.
- **Seasonality**: A time series is said to be seasonal when it is affected by seasonal factors (hour of day, week, month, year, etc.). Seasonality can be observed with nice cyclical patterns of fixed frequency.
- *Cyclicity*: A cycle occurs when the data exhibits rises and falls that are not of a fixed frequency. These fluctuations are usually due to economic conditions, and are often related to the "business cycle". The duration of these fluctuations is usually at least 2 years.
- *Residuals*: Each time series can be decomposed in two parts:
 - A forecast, made up of one or several *forecasted* values
 - Residuals. They are the difference between an observation and its predicted value at each time step. Remember that

Value of series at time t = Predicted value at time t + Residual at time t

Examples

Examples

Decomposition of Time Series

Each time series can be thought as a mix between several parts:

- A trend (upward or downwards movement)
- A seasonal component
- Residuals

Simple Average

- Stationary model $D_t = I + \epsilon_t$ \equiv
- Static forecast $\hat{y} = \frac{\sum_{t=1}^{N} D_t}{N}$
- Derived based on minimizing MSE

$$e_t = D_t - \hat{y}$$

$$\frac{d\left(\sum_{t=1}^{N} e_t^2\right)}{d\hat{y}} = \frac{d\left[\sum_{t=1}^{N} (d_t - \hat{y})^2\right]}{d\hat{y}} = -2\sum_{t=1}^{N} (d_t - \hat{y}) = 0$$

Simple Average Model

Moving Average (MA)

Average only the most recent data points

$$y_t = \frac{1}{N} \sum_{i=t-N}^{t-1} D_i$$

- Smooth out noise
- Can respond to change in process

Moving Average (MA)

Weighted Moving Average

A generalization of MA with weights

$$y_t = \frac{\sum_{i=t-N}^{t-1} w_i D_i}{\sum_{i=t-N}^{t-1} w_i} \qquad =$$

e.g.,
$$w_{t-1} = N, w_{t-2} = N-1, \dots, w_{t-N} = 1$$

Exponential Smoothing

Adjust forecast based on the recent data point

$$y_t = \alpha D_{t-1} + (1 - \alpha) y_{t-1}$$

 It is a weighted average of all historical data points, with the weight decreasing exponentially with age

$$y_{t-1} = \alpha D_{t-2} + (1 - \alpha) y_{t-2}$$

$$y_t = \alpha D_{t-1} + \alpha (1 - \alpha) D_{t-2} + (1 - \alpha)^2 y_{t-2}$$

$$y_t = \sum_{i=0}^{\infty} \alpha (1 - \alpha)^i D_{t-i-1} = \sum_{i=0}^{\infty} \alpha_i D_{t-i-1}$$

Exponential Smoothing

Double Exponential Smoothing (Holt)

Double exponential smoothing can be used to forecast demands with a linear trend

$$D_t = I + tS + \epsilon_t \qquad \equiv$$

The predictor consists of base and slope:

$$y_t = I_{t-1} + S_{t-1}$$

$$I_{t} = \alpha D_{t} + (1 - \alpha) (I_{t-1} + S_{t-1})$$

$$S_{t} = \beta (I_{t} - I_{t-1}) + (1 - \beta) S_{t-1}$$

Triple Exponential Smoothing (Holt-Winters)

Random demands with trend and seasonality

Triple Exponential Smoothing (Holt-Winters)

Demand model

$$D_t = (I + tS)c_t + \epsilon_t \qquad \sum c_t = N =$$

The predictor

$$y_t = (I_{t-1} + S_{t-1}) c_{t-N}$$

Basic idea is to "de-trend" and "de-seasonalize"

$$I_{t} = \alpha \frac{D_{t}}{c_{t-N}} + (1 - \alpha) (I_{t-1} + S_{t-1})$$

$$S_{t} = \beta (I_{t} - I_{t-1}) + (1 - \beta) S_{t-1}$$

$$c_{t} = \gamma \frac{D_{t}}{I_{t}} + (1 - \gamma) c_{t-N}$$

Python Time!

statsmodels.tsa.seasonal

statsmodels.tsa.holtwinters

