Service Oriented Computing

Joshua Tan
Alex Liu
Saeed Karimifard

Surgery Ward

Surgery Ward

- Large-scale integration
- Various interconnected dependencies
- Requires:
 - -Effective communication
 - -Resource management

Service Oriented Computing (SOC)

- System that emphasizes each component's autonomy and heterogeneity
- Modern approach to the open environment
- Modeled after Service Oriented Architecture

Service Oriented Architecture (SOA)

- Design pattern that stresses:
 - -Individualized components
 - -Cooperation between each part
 - -Through the use of standard interfaces
- Consists of these transactions:
 - -Service consumer issuing a service request
 - -Service provider returning a service response

Figure 13-15 Basic service-oriented architecture

SOC vs SOA

SOC SOA

Services

- Unassociated, loosely-coupled units that function cohesively
- e.g. submitting an online application, ordering tickets online, retrieving online bank statements

SOA Principles

- Standardized Service Contracts
- Loose Coupling
- Abstraction
- Reusability
- Autonomy
- Statelessness
- Discoverability
- Composability

Standardized Service Contracts

 Services within the same service inventory are in compliance with the same contract design standards.

Loose Coupling

 Service contracts impose low consumer coupling requirements and are themselves decoupled from their surrounding environment

Abstraction

 Service contracts only contain essential information and information about services is limited to what is published in service contracts

Reusability

 Services contain and express agnostic logic and can be positioned as reusable enterprise resources

Autonomy

 Services exercise a high level of control over their underlying runtime execution environment

Statelessness

• Services minimize resource consumption by deferring the management of state information when necessary

Discoverability

 Services are supplemented with communicative meta data by which they can be effectively discovered and interpreted

Composability

 Services are effective composition participants, regardless of the size and complexity of the composition

Who is using SOC & SOA?

- •All major computer corporations, including BEA, IBM, Microsoft, Oracle, HP, SAP, Intel, Cisco, Juniper, SAP, and Sun Microsystems, have moved towards the SOC paradigm.
- •Furthermore, government agencies, such as the U.S. Department of Defense (DoD) and NASA, have adopted SOC.
- •SOC is also being adopted by major computer users, including banks, retailers, airlines, travel agencies.

Why SOA?

To enable Flexible, Federated Business Processes

source:TietoEnator AB, Kurts Bilder Why SOA? To enable Business Process Optimization and the Real Time Enterprise (RTE)

BPM Expressed in terms of Services Provided/Consumed

SOA Patterns: Single, Multi-Channel Service for consistency

source:TietoEnator AB, Kurts Bilder © 2008, Intergraph Corporation

SOA Pattern: Standardized Service provided by multiple suppliers

Before SOA – After SOA

Benefits of SOC

•Service-oriented computing enables new kinds of flexible business applications of open systems that simply would not be possible otherwise.

•Service-oriented computing improves the productivity of programming and administering applications in open systems.

Grand Challenges

- Service Foundation
- —Dynamically (re)-configurable run-time architectures
- —End-to-end security solutions

- Service Composition
- —Composability analysis for repleceability, compatibility & conformance
- –Autonomic composition of services

Grand Challenges

- Service Management
- –Self-configuring services
- —Self-healing services

- Service Engineering
- Design principles for engineering service applications
- —Flexible gap analysis techniques

SOC & SOA Overview

References

- •S. Mahajan, S. Shah, "Distributed Computing", Oxford University Press, 2011.
- •T. Woods, "Service Oriented Architecture"
- •M. P. Papazoglou, "Service Oriented Computing: a research roadmap", International Journal of Cooperative Information Systems, Vol. 17, No. 2 (2008) 223–255.
- Singh & Huhns, "Service Oriented Compting", chapter 5, July 2004

Q&A

