Third Year Honours 2018 Department of Applied Mathematics University of Dhaka Math Lab III, AMTH- 350 Assignment No. 1

Name: Md. Niroab Hossain

Roll No. FH-020-023

Write a MATLAB program to solve the following problems. Use Script/ Function file if needed.

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Signature
No	Problem	
1	Create a 10 × 8 matrix named as A a) Create a nine elements column vector named as Ac contains 3 rd three elements of 2 nd row and last six elements of 7 th column b) Create a sixteen elements row vector named as Ar contains last column and	
	2 nd to 7 th elements of 5 th column	
2	c) Replace last 5 elements by elements $[4 5 6 7 8]$ The famous Collatz conjecture states that for any positive integer x_0 , the	
_	sequence $\{x_k\}$ defined by	
	$x_{k} = \begin{cases} \frac{x_{k-1}}{2} & \text{, if } x_{k-1} \text{ is even} \\ 3x_{k-1} + 1 & \text{, if } x_{k-1} \text{ is odd} \end{cases}$	
	$\begin{cases} 3x_{k-1} + 1 & \text{if } x_{k-1} \text{ is odd} \end{cases}$	
	will eventually reach the number 1, regardless of which positive integer is	
	chosen initially. (a) Write a script M-file to take an arbitrary positive integer less than 50 as	
	input from keyboard and construct the above sequence. Then plot all the	1
	tarms of the sequence	
	(b) Write a script M-file to construct a plot of s versus n where s is the total	
	number of steps that it takes to reach 1 for a positive integer n. Vary n from 1 to 40.	
3	Solve the following system of equations	Ne car
	y+z+t=1	
	x + 2z + 3y + 4t = -1	
	x + 6z + 10t = 2	
	x + 4y + 10z + 20t = 3	
	And verify your answer.	
4	Consider the function $y = Cos(2x)$.	As Av.
	a) Generate a data set of exactly 40 points for $0 \le x \le 2\pi$. Interpolate the set with a polynomial of degree 4 and estimate a value at 2.	
	b) In the same graph, plot the date set with red diamonds and the fit with	
	green dashed line. Use appropriate title and legends for the graph.	
5	Given that: $\frac{(x+1)^2-2x^2}{(x-1)^3-x+1}$, present it symbolically.	
	a) Separate the denominator and numerator.	
	b) Expand the equation.	
,	c) Factorize the equation.	
	d) Simplify and solve the equation by letting equal to 0.	

Suppose, students of Dept. of Applied Mathematics has decided to go on a study tour. The tour will not be possible if less than 15 students want to go. Also, if more than 50 students join then the tour will be in abroad, otherwise inside Bangladesh. Again, if the journey is in abroad then the tour-fee will be 15,000 TK each, otherwise 5,000 TK each. There are three available modes of transport: air, bus and train. No matter where the tour takes place, if the journey is by air then another 10,000 TK will be added to the fee while for bus and train, extra 3,000 and 2,000 TK will be added respectively. For a given number of students, write a script M-file that will compute the total fee according to the above information.

Compression of the contraction o

Third Year B.S. (Honors) 2017-2018

Course Title: Math Lab III Course Code: AMTH 350 Department of Applied Mathematics, University of Dhaka

Name: Md. Ninab Hossain

Roll No: FH-23 Group:

Write a MATLAB Script-M file to solve each of the following problems.

vviile	a MATLAB Script-M file to solve each of the following problems.	
No.	Problem	Signature
1.	Find a zero, accurate to within 10^{-5} , of the function $f(x) = e^x + x$ using Bisection Method following the stopping criterion $ f(P_n) < TOL$ where P_n is the n^{th} approximation. Show your answer in a table with headings as follows: "Iteration No.", "a", "b", " P_n ", " $ f(P_n) $ "	
2.	Using Fixed Point Iteration Method with initial guess 1, generate 20 approximations to the solution of $x^4 + 2x^2 - x - 3 = 0$ for each of the following choices of $g(x)$: (i) $g_1(x) = (3 + x - 2x^2)^{1/4}$ (ii) $g_2(x) = \left(\frac{x+3-x^4}{2}\right)^{1/2}$ (iii) $g_3(x) = \frac{3x^4+2x^2+3}{4x^3+4x-1}$ Show your answers in a table with suitable headings. Comment on the convergence of choices of $g(x)$.	Sin Co. 18
3.	Consider the equation $\cot\left(\frac{\pi x}{4}\right) - \sqrt{x} = 0$ for $0.5 < x < 2$ whose exact solution is evident by inspection. Use the Regula Falsi Method to approximate a solution of this equation within tolerance 10^{-5} . Also find absolute error, relative error and relative percentage error. Show your results in a table with headings as follows: "Iteration No.", " P_n ", "Abs. Err.", "Rel. Err.", "Rel. Per. Err."	Se de la constant de
4.	Use the Newton-Raphson Method with a suitable initial guess to approximate a solution of $Sin(x) + 4x^3 - e^x = 0$ within tolerance 10^{-7} . Show your answer in a table with suitable headings.	1. 10 mg

Assignment 03
Third Year B.S. (Honors) 2017-2018
Course Title: Math Lab III Course Code: AMTH 350
Department of Applied Mathematics, University of Dhaka

Name:

Md. Niraclo Hossain

Roll No: FH-020-023 Group: A

	1		he following problem(s). Problem	Signature
•	The world pop	ulation in billion	ns from 1950 through 2015 is given in the	е
	following table:			
		Year	Population (in billions)	
		1950	2.562	
		1955	2.781	
		1960	3.040	
	- Fit	1965	3.332	
		1970	3.692	•
		1975	4.071	1 11
		1980	4.447	
		1985	4.854	
		1990	5.296	
		1995	5.715	
		2000	6.118	
	,e	2005	6.503	
		2010	6.885	and the second second
		2015	7.383	And the second
			he maximum growth rate under unlimited	X .
	as 'carrying cap	acity'). The analy there P_o is the initial 150 using: Il solution	and K is the maximum population (also known tical solution to this model is given by $P(t) = 0$ ial population. Simulate the world's population	= Max 12
	as 'carrying cap $\frac{P_0K}{P_0+(K-P_0)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Euler's the second-order of the second-order	acity'). The analy there P_o is the initial P_o is the initial P_o using: I solution had ler's method order RK method	vical solution to this model is given by $P(t) =$	= Max 12
	as 'carrying cap $\frac{P_o K}{P_o + (K - P_o)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Euler's the second-one of the fourth-or	acity'). The analy there P_o is the initial 50 using: al solution and ler's method arder RK method der RK method	vical solution to this model is given by $P(t) =$	= Max 12
	as 'carrying cap $\frac{P_0 K}{P_0 + (K - P_0)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2	acity'). The analy there P_o is the initial of the solution and ler's method order RK method der RK method of function	vical solution to this model is given by $P(t) =$	= Max 12
	as 'carrying cap $\frac{P_o K}{P_o + (K - P_o)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2 (g) built-in ode4	acity'). The analy there P_o is the initial of the solution and ler's method order RK method der RK method of function	tical solution to this model is given by $P(t) = 1$ ial population. Simulate the world's population	
	as 'carrying cap $\frac{P_0 K}{P_0 + (K - P_0)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2 (g) built-in ode4 Use a step size of	acity'). The analy there P_o is the initial of the solution and ler's method order RK method der RK method of function for the solution of t	tical solution to this model is given by $P(t) = 1$ ial population. Simulate the world's population	
	as 'carrying cap $\frac{P_o K}{P_o + (K - P_o)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2 (g) built-in ode4 Use a step size of values for your steps	acity'). The analy there P_o is the initial of the solution and ler's method order RK method of the RK method of function f 5 years. Employ simulation:	tical solution to this model is given by $P(t) = 1$ ial population. Simulate the world's population the following initial conditions and paramete	
	as 'carrying cap $\frac{P_o K}{P_o + (K - P_o)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2 (g) built-in ode4 Use a step size of values for your step (in 1950) =	acity'). The analy there P_o is the initial of the solution and ler's method order RK method der RK method function of 5 years. Employ simulation:	viical solution to this model is given by $P(t) = 1$ ial population. Simulate the world's population the following initial conditions and paramete $1 = 0.026/year$, and $1 = 12$ billion.	r
	as 'carrying cap $\frac{P_o K}{P_o + (K - P_o)e^{-rt}}, \text{ W}$ from 1950 to 20 (a) the analytica (b) Euler's method (c) Modified Eu (d) the second-od (e) the fourth-or (f) built-in ode2 (g) built-in ode4 Use a step size of values for your step (in 1950) =	acity'). The analy there P_o is the initial of the solution and ler's method order RK method der RK method function of 5 years. Employ simulation:	tical solution to this model is given by $P(t) = 1$ ial population. Simulate the world's population	r

Third Year B.S. (Honors) 2017-2018

Course Title: Math Lab III Course Code: AMTH 350 Department of Applied Mathematics, University of Dhaka

Name: Md. Ninab Hossain Roll No: FH-020-023 Group: A

Write a MATLAB Script-M file to solve the following problem(s).

No.	Problem	Signature
1.	Consider the initial-value problem $y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5$ The analytic solution is given by $y(t) = (t+1)^2 - 0.5 e^t$. i) Use the exact values from this solution as the starting values and step size $h = 0.2$ to obtain approximations using a) Adams-Bashforth four step explicit method b) Adams-Moulton three step implicit method c) Adams fourth order predictor-corrector method Show your result in a table with headings as follows: "t", "Exact", "Adams-Bashforth", "Adams-Moulton", "Predictor-Corrector" ii) Compare the three methods by finding the errors at each step. Show your comparison in a table with headings as follows: "t", "Exact", "Error in AB-4", "Error in AM-3", "Error in A-4 PC" Also plot the exact solution along with the approximations obtained by the above three methods using different colors and legends. Which method do you think approximated the solution best?	George Grossing

3rd Year B.S. (Honors) 2017-2018 Math Lab Assignment 05 Course: AMTH 350 (Math Lab III) Department of Applied Mathematics University of Dhaka

Name: Md. Nipab Hossain

Roll No: FH-020-023

Write MATLAB program to solve the following problems using Script file.

No:

Problems

- Mersenne number defined as $M_n = 2^n 1$, how many numbers are prime there? Form a table to show prime and non prime numbers, when n ranges from 50 to 150.
- If $\tau(n) = \prod_{i=1}^k (\alpha_i + 1)$, $\sigma(n) = \prod_{i=1}^k \left(\frac{p_i^{\alpha_i + 1} 1}{p_i 1}\right)$ and $\varphi(n) = n \prod_{i=1}^n \left(1 \frac{1}{p_i}\right)$

Where $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, then for any n calculate the values of $\tau(n)$, $\sigma(n)$ and $\varphi(n)$

Schedule a round-robin tournament for 8 teams so that every team plays other team exactly once. (Use the Congruence equation $i + j \equiv k \pmod{N-1}$, where i, j represent the teams to play at kth round and N is the total number of teams)

Signature 1

1. 5:03.14

S. (S.

Third Year B.S. (Honors) 2017-2018

Course Title: Math Lab III Course Code: AMTH 350

Department of Applied Mathematics, University of Dhaka

Name:

Roll No:

Group:

Write a MATLAB Script-M file to solve the following problem(s).

No.	Problem	Signature
1.	Consider the following linear system of equations:	4
	$10x_1 - x_2 + 2x_3 = 6$	
	$-x_1 + 11x_2 - x_3 + 3x_4 = 25$	
	$2x_1 - x_2 + 10x_3 - x_4 = -11$	4
	$3x_2 - x_3 + 8x_4 = 15$	
	a) First, store the coefficients and constants in .txt or .dat files. Then load	Grow Torall
	those data in two matrices named "A" and "b" and perform Gaussian	(Home (event)
	elimination with backward substitution to find the solution of the	. (5)
	system.	, 1
	b) Solve the same system, correct up to 5 decimal places, with initial	
	guess $x_0 = (0,0,0,0)$ using:	
	(i) Jacobi iterative method	
	(ii) Gauss-Seidel iterative method	
	(iii) SOR iterative method with $\omega = 1.1$	
	c) Comment on the efficiency of the methods used in part (b) by creating	
	a table with headings as follows: "Exact Solution", "Jacobi", "G-S",	
	"SOR", "Total iterations for Jacobi", "Total iterations for G-S",	
	"Total iterations for SOR".	-

Third Year B.S. (Honors) 2017-2018

Course Title: Math Lab III Course Code: AMTH 350
Department of Applied Mathematics, University of Dhaka

Name: Md. Nieab Hossain

Roll No: FH -020-023 Group: A

Write a MATLAB Script-M file to solve the following problem(s).

No		ignature
1.	The velocity components of a 2-D flow are $u = (1 + y^2) m/s$ and $v = (x - 1) m/s$. Determine the equation for the streamlines and graph (at least four) representative streamlines. Also indicate the direction of flow.	A leigh
2.	Consider the velocity $V = \left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)i + x(x-1)(y+1)j$, where x and y are in feet. a) Is the motion possible? b) Check whether the motion is irrotational or not. c) Find the stagnation points (if any)	
3.	Check whether the stream function and the velocity potential exist for the velocity field $u = a(x^2 - y^2)$, $v = -2axy$, where $a > 0$. If they exist, find them. Plot some representative streamlines and equipotential curves (at least four of each type) and interpret them.	
4.	 The velocity potential of a 2-D flow is given by φ = ax³/3 - axy² - 2, where a > 0. a) Plot some representative equipotential curves (at least four) b) Determine the stream function. c) Plot some representative streamlines (at least four). Also indicate the direction of flow in the first quadrant. 	A
5.	The flowrate per unit width for a sluice gate in an open channel shown in figure (i) is given by $\frac{Q}{b} = z_2 \sqrt{\frac{2g(z_1 - z_2)}{1 - \left(\frac{z_2}{z_1}\right)^2}}$.	
	Sluice gate width = b Sluice $\frac{z_2}{(2)}$ $\frac{z_2}{(3)}$ $\frac{z_2}{(4)}$ $\frac{z_2}{(4)}$ $\frac{z_2}{(4)}$ $\frac{z_2}{(4)}$ $\frac{z_2}{(4)}$ $\frac{z_2}{(4)}$	
L 1	Figure (i) Figure (ii) Jese this formula and contraction coefficient $C_c = \frac{z_2}{a} = 0.61$, whenever $< \frac{a}{z_1} < 0.2$, to find the flowrate per unit width for the sluice gate shown	
in	figure (ii) for values of ranging from 5.0 m to 15.0 m with incremen	ıt 💮

Complete in one class

	0.25 m. Take $g = 9.81 m/s^2$. Using the generated values, plot a graph of $\frac{Q}{b}$ vs z_1 and determine whether the flowrate is directly proportional to	
	the flow depth.	ŧ
6.	Consider two sources of the same strength $-0.314 m^2/s$ at (0,5) and	1
	(0, -5). First, determine the stream function in Cartesian coordinates and	
	then in polar coordinates. Plot some representative streamlines above and	
	below the x -axis. Do the x and y axes act as streamlines? If so, interpret	
	which one is the dividing streamline.	12