Ordinary Differential Equation

2 Term Tests 10.10 + 11.7

3 Quizzes 9.25 + 10.25 + 11.22

BA 6/1/2, T 1-2, mein@math. toronto. edu

www.math. toronto. edu/medy/teaching/244 F. html.

Do hw!!: Eckhard Meinronkeu

What is a DE?

Eg. F=ma Newton's egu's.

X(t) position at time t

V(t)= dx velocity at time t.

a(t)= dix acceleration at time t.

= dv

= dt

Since m=mass (onstant) F(x,t) force (some function of x, and sometimes t.) $\frac{d^2x}{dt^2} = \frac{1}{m}F(x,t)$ This is a 2nd order ODE.

Sol. X=p(t) satisfying this eg'n.

Here,
$$\overline{T} = mg$$

$$\frac{d^2x}{dt^2} = g \quad constant$$

$$\sqrt{x} = \frac{1}{2}gt^2 + V(0)t + X(0)$$

Some with friction

m. d2x = mg-r-dx

dt

more realistically, friction could be complicated func of relocatly: -H(\frac{dx}{dt})

particle attached to spring
$m\frac{d^{2}x}{dt^{2}} = mg - kx$
system of ODE'S (more dependent variable, more equation)
wage egn (in electric dynamics). $u = field$ depending on time t and position x, y, z
$\frac{\partial^2 u}{\partial t^2} = \frac{\partial u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$
this is a partial diff. egn. (PDE)
An ordinary diff equation is an equation of the form.
F(t,y,y', y'")=0 for y (on function of t)
t: indep. variable y. dep. variable.
Example:
1. t'sin(y)+ey"+y"=0 2nd order ODE
2.y'=y (y'-y=0)
y=(.et(general solution)
3. y'=ety
y'=ety+c But: An equation y(t+1)=2(t) is not a DE.