→ Probabilidade - Simulação de um dado

Discente: Mariana Emerenciano Miranda

Descrição da atividade:

Nest a atividade o aluno deve simular jogar um dado imparcial de 6 lados. Para tal, o aluno deve seguir os seguintes passos:

- 1) Rodar 6 cenários diferentes, jogando o dado 10, 100, 1000, 10000, 100000 e 1000000 vezes
- 2) Para cada cenário, faça:
- a. Calcule o número de vezes que cada número aconteceu
- b. Calcule a frequência relativa de cada número (probabilidade de ocorrência)
- c. Calcule a diferença entre a probabilidade teórica e a probabilidade de ocorrência
- d. Most re as diferenças de cada número.

Submet a apenas um arquivo PDF com os resultados das diferenças na seguinte forma:

Cenário 1 – 10 vezes

- 1: Diferença calculada no item (c) para o número 1;
- 2: Diferença calculada no item (c) para o número 2;
- 3: Diferença calculada no item (c) para o número 3;
- 4: Diferença calculada no item (c) para o número 4;
- 5: Diferença calculada no item (c) para o número 5;
- 6: Diferença calculada no item (c) para o número 6;

•••

Cenário 6 - 1000000 vezes

- 1: Diferença calculada no item (c) para o número 1;
- 2: Diferença calculada no item (c) para o número 2;
- 3: Diferença calculada no item (c) para o número 3;
- 4: Diferença calculada no item (c) para o número 4;
- 5: Diferença calculada no item (c) para o número 5;
- 6: Diferença calculada no item (c) para o número 6;

Deste modo, seguem os resultados.

```
import numpy as np
import pandas as pd
import math
lancamentos = 10
resultados = np.random.randint(1, 7, lancamentos)
# Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]
# Calculando a freguência relativa
frequencia_relativa = contagem_faces / lancamentos
# Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6
# Calculando a diferença entre a frequência relativa e a probabilidade teórica
desvio = abs(frequencia_relativa - probabilidade_teoria)
# Criando um DataFrame
dados = pd.DataFrame({'Faces': np.arange(1, 7),
                      'Contagem': contagem_faces,
                      'Frequência Relativa': frequencia_relativa,
                      'Probabilidade Teórica': probabilidade_teoria,
                      'Desvio': desvio})
```

print('\t\t Resultados para o 1º Cenário (10 lançamentos)')
display(dados)

Resultados para o 1º Cenário (10 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade	Teórica	Desvio
0	1	3	0.3		0.166667	0.133333
1	2	1	0.1		0.166667	0.066667
2	3	0	0.0		0.166667	0.166667
3	4	3	0.3		0.166667	0.133333
4	5	2	0.2		0.166667	0.033333
5	6	1	0.1		0.166667	0.066667

```
lancamentos = 100
resultados = np.random.randint(1, 7, lancamentos)
# Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]
# Calculando a freguência relativa
frequencia_relativa = contagem_faces / lancamentos
# Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6
# Calculando a diferença entre a frequência relativa e a probabilidade teórica
desvio = abs(frequencia_relativa - probabilidade_teoria)
# Criando um DataFrame
dados = pd.DataFrame({'Faces': np.arange(1, 7),
                      'Contagem': contagem_faces,
                      'Frequência Relativa': frequencia relativa,
                      'Probabilidade Teórica': probabilidade_teoria,
                      'Desvio': desvio})
```

print('\t\t Resultados para o 2º Cenário (100 lançamentos)')
display(dados)

Resultados para o 2º Cenário (100 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade	Teórica	Desvio
0	1	15	0.15		0.166667	0.016667
1	2	15	0.15		0.166667	0.016667
2	3	13	0.13		0.166667	0.036667
3	4	17	0.17		0.166667	0.003333
4	5	17	0.17		0.166667	0.003333
5	6	23	0.23		0.166667	0.063333

lancamentos = 1000
resultados = np.random.randint(1, 7, lancamentos)

Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]

```
# Calculando a frequência relativa
frequencia_relativa = contagem_faces / lancamentos
```

```
# Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6
```

Calculando a diferença entre a frequência relativa e a probabilidade teórica desvio = abs(frequencia_relativa - probabilidade_teoria)

print('\t\t Resultados para o 3° Cenário (1000 lançamentos)')
display(dados)

Resultados para o 3º Cenário (1000 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade	Teórica	Desvio
0	1	160	0.160		0.166667	0.006667
1	2	189	0.189		0.166667	0.022333
2	3	168	0.168		0.166667	0.001333
3	4	149	0.149		0.166667	0.017667
4	5	173	0.173		0.166667	0.006333
5	6	161	0.161		0.166667	0.005667

lancamentos = 10000
resultados = np.random.randint(1, 7, lancamentos)

Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]

Calculando a frequência relativa
frequencia_relativa = contagem_faces / lancamentos

```
# Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6
```

Calculando a diferença entre a frequência relativa e a probabilidade teórica desvio = abs(frequencia_relativa - probabilidade_teoria)

'Frequência Relativa': frequencia_relativa,
'Probabilidade Teórica': probabilidade teoria,

'Desvio': desvio})

print('\t\t Resultados para o 4º Cenário (10000 lançamentos)')
display(dados)

Resultados para o 4º Cenário (10000 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade Teórica	Desvio
0	1	1699	0.1699	0.166667	0.003233
1	2	1642	0.1642	0.166667	0.002467
2	3	1685	0.1685	0.166667	0.001833
3	4	1639	0.1639	0.166667	0.002767
4	5	1706	0.1706	0.166667	0.003933
5	6	1629	0.1629	0.166667	0.003767

lancamentos = 100000
resultados = np.random.randint(1, 7, lancamentos)

Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]

Calculando a frequência relativa
frequencia_relativa = contagem_faces / lancamentos

Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6

Calculando a diferença entre a frequência relativa e a probabilidade teórica desvio = abs(frequencia_relativa - probabilidade_teoria)

print('\t Resultados para o 5° Cenário (100000 lançamentos)')
display(dados)

Resultados para o 5º Cenário (100000 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade	Teórica	Desvio
0	1	16649	0.16649		0.166667	0.000177
1	2	16644	0.16644		0.166667	0.000227
2	3	16604	0.16604		0.166667	0.000627
3	4	16709	0.16709		0.166667	0.000423
4	5	16753	0.16753		0.166667	0.000863
5	6	16641	0.16641		0.166667	0.000257

```
lancamentos = 1000000
resultados = np.random.randint(1, 7, lancamentos)
```

```
# Calculando o número de vezes que cada face apareceu
contagem_faces = np.bincount(resultados)[1:]
```

```
# Calculando a frequência relativa
frequencia_relativa = contagem_faces / lancamentos
```

```
# Calculando a probabilidade teórica
probabilidade_teoria = np.ones(6) / 6
```

Calculando a diferença entre a frequência relativa e a probabilidade teórica desvio = abs(frequencia_relativa - probabilidade_teoria)

print('\t Resultados para o 6º Cenário (1000000 lançamentos)')
display(dados)

Resultados para o 6º Cenário (1000000 lançamentos)

	Faces	Contagem	Frequência Relativa	Probabilidade Teórica	Desvio
0	1	167104	0.167104	0.166667	0.000437
1	2	166044	0.166044	0.166667	0.000623
2	3	166855	0.166855	0.166667	0.000188
3	4	165963	0.165963	0.166667	0.000704
4	5	167308	0.167308	0.166667	0.000641
5	6	166726	0.166726	0.166667	0.000059