XIANGYU ZHANG

2B E Plumtree Rd \diamond Sunderland , MA. 01375 321-305-9833 \diamond xiangyuzhang@umass.edu

EDUCATION

University of Massachusetts Amherst M.S.in Electronic & Computer Engineering

Florida Institute of Technology B.S.in Electronic & Computer Engineering Expected: 12/2016 Overall GPA: 3.423

05/2014

Overall GPA: 3.5

TECHNICAL STRENGTHS

Languages Verilog, C++, Python.

Tools Quartus II, Linux, MINISAT, HSPICE, Cadence Virtuoso, Visual Studio, Git.

Courses Computer Architecture, VLSI, Testing in VLSI, Verification, Algorithm, Computer Network.

RESEARCH AND TEACHING EXPERIENCE

University of Massachusetts Amherst

Area: Formal Equivalence Checking, SAT, Circuit Security

Research Assistant 06/2015 - Present

- Oracle-Guided Incremental SAT Solver Development
 - Participated in Oracle-Guided Incremental SAT Solver using ${\bf Python}$ and ${\bf C/C++}.$
 - Developed Circuit Equivalence Checking tool based on MINISAT using Python.
 - Camouflage Tools Development
 - Implemented Logic-level circuit obfuscation based on Anti-reverse Engineering using Transformable Interconnects in Python.
 - Implemented Logic Anti-propagation in **Python**.

University of Massachusetts Amherst

Course: ENG Computer Systems Lab I

Teaching Assistant 09/2015 - 01/2016

• Assisted in teaching design and analysis of digital systems using both hardware (Altera Complex Programmable Logic Device (CPLD) and **Verilog**) and software (Atmel **AVR** ATmega32 microcontroller, assembly language and **C**).

ACADEMIC PROJECTS

- \bullet Parallel Pattern Single Fault Simulation (PPSFP) based Fault Simulator (11/2015)
 - Developed a parser and lexical analyzer based on YACC & LEX to read ISCAS benchmark circuits and convert to customized double undirected graph using C.
 - Implemented circuit levelization algorithm using C/C++.
 - Implemented Parallel Pattern Single Fault Simulation (**PPSFP**) algorithm using **C/C++**.
- MIPS Simulating Model (10/2015)
 - Simulated MIPS architecture in C and evaluated utilization of each gate.
- Universal Synchronous and Asynchronous Receiver Transmitter (USART) implementation on CPLD (11/2015)
 - Designed a USART for MIDI device that will read a MIDI signal to interpret its content and display the note number in binary on seven LEDs using **CPLD** and **Verilog**.
- General MIDI Explorer (GME) with Record/Playback implementation on AVR (12/2015)
 - Developed record and playback function using USART and store function using EEPROM on ATmega32
 AVR in C.
 - Implemented Run-length encoding (RLE) to perform compression and uncompression in EEPROM.

PUBLICATIONS

• Duo Liu, Xiangyu Zhang, Cunxi Yu, Daniel Holcomb, Oracle-Guided Incremental SAT Solving to Reverse Engineer Camouflaged Logic Circuits, Design Automation and Test in Europe, **DATE 2016** (accepted).