UNIT 8B: Coronavirus

Outline

Initial projections

Endemic coronavirus

Pathogen aggressiveness

The future of SARS-CoV-2

What happens when we flatten?

Which scenario has the lowest total number of cases shown (area under the curve)?

* * LP * * E * * E * * 9 Q (°

Flattening the curve

Flattening the curve

- More flattening than reduction in total
 - * As long as \mathcal{R}_0 is medium-to-large we expect almost everyone to get infected in a simple model
 - ▶ * Changes in \mathcal{R}_0 don't affect area under the curve
 - * But they can have big effects on the peak
- What are some benefits of just flattening?
 - * Less peak demand
 - * More time to find solutions:
 - * Better treatments
 - * Vaccines

Behaviour and policy change

- Why were our early models so wrong?
 - ► * People and governments changed behaviour much more than we expected
 - ► * Fear of overflowing hospitals and chaos in general
 - ► * Population heterogeneity played a smaller role

Outline

Initial projections

Endemic coronavirus

Pathogen aggressiveness

The future of SARS-CoV-2

Endemic coronavirus

- ▶ What does it mean for SARS-CoV-2 to become "endemic"
 - ► * Not going extinct
 - ▶ * Not too much variation in annual incidence
- ▶ What it doesn't mean:
 - * Not fluctuating
 - * Not dangerous
- A lot of double negatives, make sure you're clear!

Terminology (preview)

FEELS LIKE WE MISSED THE WINDOW FOR THE "COVID-19" RENAMING. "CORONAVIRUS" IS JUST TOO CATCHY.

BUT IT'S NOT SPECIFIC!
THERE ARE LOTS OF
CORONAVIRUSES.

I THINK IT'S FINE. IT'S LIKE, YOU K THE GIANT SPIDER DOWNTOWN THE ON THE BUILDINGS AND SOMETIME CARS? I THINK TECHNICALLY IT'S

Disease burnout

- ➤ A disease that has a big epidemic and leaves very few susceptibles behind can go locally or globally extinct – we call this burnout
- ► Lots of evidence for influenza or measles burning out in isolated areas during less global times

Disease burnout (repeat)

Disease burnout (repeat)

Disease burnout

Adaptive responses

- How do people respond to fear of COVID-19?
 - * Masking, distancing, booster shots
 - * Mandates, lockdowns
- What effects do we expect if people's worry levels about SARS-CoV-2 fluctuate with virus levels?
 - * Will increae spread when levels are high (or growing)
 - * Tendency to stabilize the dynamics

Burnout and SARS-CoV-2

- Burnout seems very rare in the global era
- Adaptive responses work against burnout
 - When things are bad, people are more careful: less overshoot
 - ▶ When things are good, people are less careful: less chance to keep the virus down

Outline

Initial projections

Endemic coronavirus

Pathogen aggressiveness

The future of SARS-CoV-2

Pathogen aggressiveness

- Should viruses evolve to become more or less dangerous?
 - * It depends
 - * The virus evolves in the way that's best for the virus
 - * Host death and host recovery are equally bad!

Tradeoffs (repeat)

Reproduction

Which strain will win?

- ▶ If the competing strains produce similar immune responses, this is exactly like equal competition: infections are competing for a single resource:
 - * Susceptible humans
- ► The winner will be the strain that has the highest "carrying capacity":
 - * Removes the largest number from susceptible pool
 - * Highest \mathcal{R}_0
 - * This could be more or less deadly
 - ► * The 1 or 2% of humans who die from COVID-19 disease may not be the most important arena for evolution

Pathogen aggressiveness (repeat)

Pathogen aggressiveness (repeat)

Pathogen aggressiveness (repeat)

Pathogen aggressiveness

- Pathogen will evolve to maximize \mathcal{R}_0 .
- ▶ Is not affected by whether duration *D* is ended by host death, or by immune system clearing the pathogen

Human evolution

- We have evolved very good immune systems, but we can't always stay ahead of the viruses
- ► Should people evolve to favor the spread of more or less dangerous viruses?
 - ► * Probably less dangerous
 - * Viruses that do well in the upper respiratory tract may spread better
 - * Viruses that do well in the lower respiratory tract are more dangerous

Omicron example

- Omicron spreads much better than earlier SARS-CoV-2 viruses
- ▶ It does less well in the lungs and better in the upper airways
- ► SARS-CoV-2 *may* be evolving in a less dangerous direction
 - ► There is no guarantee
 - ▶ Delta spread better and was *more* dangerous than previous

Outline

Initial projections

Endemic coronavirus

Pathogen aggressiveness

The future of SARS-CoV-2

What is different about SARS-CoV-2?

- ▶ What is the main difference between SARS-CoV-2 and other colds and flus?
 - ▶ * There was almost no immunity before 2020
 - ▶ * It is still adapting to humans

Human immunity

- ▶ The immune system is very complicated and very effective
 - ► T cells and B cells recognize different parts of the **pathogen**
 - Even partial recognition often protects people against severe outcomes
- Vaccines
 - Also likely to protect against severe outcomes

Immunity and the virus

- Our immune systems may see different variants of the virus differently:
 - Cross-immunity to a different strain might be less effective than direct immunity to the strain I was infected with
- ▶ How will this change our picture of competition?
 - * It makes it easier for different strains to co-exist
 - ► * We don't know yet how much easier. Some viruses (HPV) have dozens of co-existing strains. Others (influenza A) have limited cross-immunity, but strong population-level competition

Herd immunity

- ▶ What is meant by herd immunity?
 - ► * A level of immunity in the population that interferes with *the* spread of the pathogen
 - * May or may not mean that the pathogen cannot survive
- ▶ How much herd immunity do we need?
 - \blacktriangleright * About $1-1/\mathcal{R}_0$ for $\mathcal{R}_{\mathrm{eff}} \approx 1$
 - ▶ * In the long run, we expect to see about the right number of susceptibles to keep the infectious individuals in balance

Can herd immunity drive SARS-CoV-2 extinct?

- ► What extinct viruses do we know about? How did they get there?
 - * Smallpox and rinderpest
 - * Vaccination!
 - * Herd immunity by vaccination is the only hope for driving SARS-CoV-2 extinct
 - * What about our luck with measles, mumps, polio, influenza, etc?

Levels of disease

- ► In the long run, how long we go between COVID-19 infections will likely depend mostly on how long our immunity lasts, or else on
 - ▶ * how often we get vaccine boosters

Just another seasonal coronavirus (JASC)

- ► This is a *theory* that lack of population immunity is the *only* difference between SARS-CoV-2 and other viruses that cause common colds
 - Some versions of the theory account for SARS-CoV-2 continuing to evolve in that direction
- What do you think of this theory?
 - * We all had versions of the common cold viruses as young children
 - * The common cold viruses face a high level of population immunity and can't have big outbreaks the way SARS-CoV-2 does.
 - ► * Smaller doses may be correlated with less-severe cases
 - * It's good to hope, but we shouldn't count on it
 - ▶ * We don't know how SARS-CoV-2 is going to evolve

Moving forward

- We need to pay attention and figure out how strongly to prioritize SARS-CoV-2 control
- ► We also need to be thinking about detecting and responding to the next pandemic!
 - ▶ * Better surveillance
 - * Routine monitoring of viruses from patient samples