Guanquan Wang

University of Electronic Science and Technology of China, Chengdu, Sichuan, China, 610000 arikaswang@gmail.com | (+86) 17358606386 | Arikas-w.github.io

Education

University of Electronic Science and Technology of China (UESTC)

Sep 2021 - Jun 2025

Bachelor in Electronic Information Engineering

GPA: 3.5/4.0, Honours of the Second Class(Division i)

Coursework: Dynamic Control, Artificial Intelligence, Signal Processing, Analog Circuit, Digital Circuit **Graduation Project**: Diffusion Policy for Robotic Manipulation: Stochastic Optimization of Adaptive Action Sequences in Dynamic Environments

University of Washington

Sep 2025 - Present

Master in Electrical & Computer Engineering

Research Experience

Multimodal multi-classification model based on binary classification Image Processing Lab, UESTC, Supv. Prof. Bing Zeng

Aug 2023 – Nov 2024

Chengdu, China

- Systematically studied multimodal knowledge and pre-trained models, successfully reproducing and mastering models such as **Vision Transformer (ViT)**, **CLIP**, and **ResNet**.
- Applied a binary classification network as a post-processing module to a multi-class model, focusing on using
 multimodal pre-trained models to improve accuracy and optimize the model through various network
 combinations.
- Successfully optimized pre-trained models, achieving significant improvements in results compared to traditional multi-class networks.

Internship

Research Intern Midea Group AI Lab, Supv: Mr. Yichen Zhu Jan 2025 – Apr 2025

Shanghai, China

Project Link: github.com/GqWang0617/pi0/tree/master

- Built and proficiently used the **MuJoCo** and **DISCOVERSE** end-to-end embodied intelligence simulation platform, employing **3DGS** rendering and modeling to simulate robots in complex, high-fidelity environments, preparing for subsequent real-to-simulation and simulation-to-real applications. Later, **Franka** robotic arm will be used for experiments.
- Reimplement **Diffusion Policy** and **ALOHA** algorithms, deepening understanding of the application of imitation learning algorithms. Adjust the hardware configuration and interface of the **Franka** and **ARX** robot arm to realize the control of the robotic arm through LAN connection.
- Implemented the pre-trained model such as **PiO** and **RDT** algorithms for **cross-embodied** manipulation research, explored generalization performance across heterogeneous robot platforms, and improved the capability to solve high-precision and long-horizon manipulation through designed fine-tuning.

Embodied Intelligence Algorithm Intern MiLAB, Westlake University, Supv: Prof. Donglin Wang

Jul 2024 – Sep 2024 Hangzhou, China

- Systematically studied **autonomous driving vision perception** algorithms, **large language model**, and **ROS** communication protocols, contributing to the development of guiding functionality for quadruped robots.
- Implemented **Google Speech-to-Text** to convert voice commands into text. Combined **YOLOP** and **CLIP** models, using custom scripts to convert self-made datasets into the required format. **Fine-tune** the **MLLM** to ensure the system understood complex scenarios, achieving **detection**, **segmentation**, **and voice interaction** functionality.
- Gained expertise in developing and training robots using the Gazebo simulation platform and proficiently worked with the Ubuntu system. Successfully migrated YOLOP and CLIP models to a custom dataset and fine-tune technique, achieving a mean average precision (mAP) of 75%, Intersection over Union (IoU) of 70%, Top-1 accuracy of 72%, and Top-5 accuracy of 86%. The algorithm models are expected to be deployed on the NVIDIA Jetson Xavier NX computing module.

Other Experience

Intelligent cruise vehicle development project (Third Prize of the 2023 National Embedded Chip and Design Competition)

Project Leader, Robotics LAB, University of Glasgow, Supv: Prof. Guodong Zhao

Jun 2023 - Aug 2023

Glasgow, UK

• Designed and implemented an autonomous driving system based on **OpenMV**, responsible for visual perception functions such as line tracking, arrow recognition, traffic light detection, obstacle avoidance, and pedestrian detection for an intelligent vehicle. The programming language used was MicroPython.

- Developed obstacle detection via OpenMV's IDE, enhancing accuracy through image binarization and optimizing motor control for obstacle avoidance. Integrated real-time image transmission with SLAM to construct a 3D obstacle map.
- Enhanced expertise and practical proficiency in visual perception algorithms, fundamental control systems, and SLAM-based map modeling techniques.

Robotic Arm Team, UESTC

Oct 2021 - Apr 2022

Team Leader

Chengdu, China

- Led the team to complete the robotic arm goalkeeper project and participated in the university's innovation competition, winning the "Outstanding Team Design Project Award" (the highest award).
- Acquired proficiency in the manipulation and operation of robotic arm systems, with hands-on experience in implementing advanced control strategies. Gained expertise in Kalman filtering for sensor data fusion and trajectory estimation, as well as path planning algorithms for autonomous motion control.

Honers & Awards

- 2022-2023 School Scholarship (Top 20%)
- 2023-2024 School Scholarship (Top 20%)
- 2023-2024 Second Prize in the ACM College Competition
- 2022-2023 Third Prize in the National Undergraduate Embedded System Design Competition
- IELTS 7.0 (Listening 8.5)