

Computer Organization

Lab7 Floating-Point Number Processing

Floating-Point

Floating-Point Number

- ✓ IEEE 754 On Single-Precision Floating-Point Number
- ✓ IEEE 754 On Double-Precision Floating-Point Number
- ✓ Conversion between Floating-Point and decimal Number
- ✓ IEEE 754 Single-Precision Floating-Point Number Classification
- ✓ Infinite vs NaN (Floating-Point)

Floating-Point Instructions

- ✓ Floating-Point Registers in RISC-V
- ✓ Floating-Point Instructions Classification
- ✓ Floating-Point system Calls in Rars
- Practice

IEEE 754 On Single-Precision Floating-Point Number

- Single-Precision Floating-Point Number (32-bit width)
 - ✓ Signed bit (符号位): the most significant bit
 - 0: positive number
 - 1: negative number
 - ✓ Exponent (阶码): 8 bits
 - Used to represent indices with a base of 2
 - Using frame shift code (移码), and the Bias is 127 (0111_1111)
 - The real value is: Exponent Bias
 - 0000_0000 and 1111_1111 are reserved
 - ✓ Fraction (尾数): 23 bits
 - Representing the decimal part under binary
 - Using true code (原码), and the real value is: 1. Fraction
 - ▼ The real value of the floating-point number
 - $X = (-1)^S \times (1.Fraction) \times 2^{(Exponent Bias)}$

1 bit	8 bits	23 bits
31	30 23	22
S	Exponent	Fraction

IEEE 754 On Double-Precision Floating-Point Number

Double-Precision Floating-Point Number (64-bit width)

Conversion between Floating-Point and decimal Number (1)

- ➤ Convert 408.6875_{ten} to IEEE 754 single-precision floating-point number
 - ✓ Binary: 110011000.1011 \longrightarrow 28 × 1.100110001011
 - √ Signed bit: 0
 - \checkmark Exponent: 8 + 127 = 135_{ten} = 10000111_{two}
 - ✓ Fraction:100110001011
 - √ Floating number:

0 10000111 1001100010110000000000

√ Convert binary to hexadecimal: 0x43CC5800

Conversion between Floating-Point and decimal Number (2)

Suppose 0xC1830000 is the is the hexadecimal machine code for a IEEE 754 single precision floating-point number, convert it to its decimal value.

Signed bit: 1

Exponent: $10000011_{two} = 131_{ten}$

The real value: $131 - 127 = 4_{ten}$

Fraction: 000 0011 0000 0000 0000 0000

The real value: 1.0000011

The true value in decimal:

= -16.375

$$X = (-1)^S \times (1.Fraction) \times 2^{(Exponent - Bias)}$$

= $(-1)^1 \times 1.0000011 \times 2^4$
= -10000.011

Conversion between Floating-Point and decimal Number (3)

Data Segment					
Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	
0x10010000	0xbf800000	0xffffffff	0x3f800000	0x0000001	

IEEE 754 Single-Precision Floating-Point Number Classification

Classification	Sign	Exponent (E)	Fraction (M)	Real value
Positive zero	0	0 (all 0s)	0	+0
Negative zero	1	0 (all 0s)	0	-0
Positive infinity	0	255 (all 1s)	0	+∞
Negative infinity	1	255 (all 1s)	0	-∞
NaN	0 or 1	255 (all 1s)	M ≠ 0	Not a number
Normalize positive numbers	0	1 ≤ E ≤ 254	M	$(-1)^0 \times (1.M) \times 2^{(E-127)}$
Normalize negative numbers	1	1 ≤ E ≤ 254	M	$(-1)^1 \times (1.M) \times 2^{(E-127)}$
Denormalize positive numbers	0	0 (all 0s)	M ≠ 0	$(-1)^0 \times (0.M) \times 2^{-126}$
Denormalize negative numbers	1	0 (all 0s)	M ≠ 0	$(-1)^1 \times (0.M) \times 2^{-126}$

Infinite vs NaN (Floating-Point)

- Q1. What are the results of piece 7-2 and 7-3?
- Q2. Which piece of codes will get an infinite value, 7-2 or 7-3?
- Q3. Is the result positive infinity or negative infinity? What's the machine code of this infinity value?
- Q4. Which piece of codes will get the NaN, 7-2 or 7-3? What's the machine code of this NaN value?

```
# Piece 7-2
.include "macro print str.asm"
.data
     sdata: .word 0xff7f7fff
     fneg1: .float -1
.text
     la t0, sdata
     flw ft0, (t0)
     fmul.s fa0, ft0, ft0
     li a7, 2
     ecall
     print string("\n")
     la t0, fneg1
     flw ft0, (t0)
     fmul.s fa0, ft0, ft0
     li a7, 2
     ecall
     li a7, 10
     ecall
```

```
# Piece 7-3
.include "macro print str.asm"
.data
     sdata: .word 0xffff7fff
     fneg1: .float -1
.text
     la t0, sdata
     flw ft0, (t0)
     fmul.s fa0, ft0, ft0
     li a7, 2
     ecall
     print string("\n")
     la t0, fneg1
     flw ft0, (t0)
     fmul.s fa0, ft0, ft0
     li a7, 2
     ecall
     li a7, 10
     ecall
```


Floating-Point Registers in RISC-V

- 32 floating-point registers.
- Each register is 64-bit width.
- View in "Floating Point" window in Rars.

Reg	jisters	Floating Point	
Name	Number	Value	
ft0	0	0x0000000000000000	
ft1	1	0x0000000000000000	
ft2	2	0x0000000000000000	
ft3	3	0x0000000000000000	
ft4	4	0x0000000000000000	
ft5	5	0x0000000000000000	
ft6	6	0x0000000000000000	
ft7	7	0x0000000000000000	
fs0	8	0x0000000000000000	
fs1	9	0x0000000000000000	
fa0	10	0x0000000000000000	
fa1	11	0x0000000000000000	
fa2	12	0x0000000000000000	
fa3	13	0x0000000000000000	
fa4	14	0x0000000000000000	

fa5	15	0x0000000000000000
fa6	16	0x0000000000000000
fa7	17	0x000000000000000
fs2	18	0x000000000000000
fs3	19	0x0000000000000000
fs4	20	0x0000000000000000
fs5	21	0x0000000000000000
fs6	22	0x0000000000000000
fs7	23	0x0000000000000000
fs8	24	0x0000000000000000
fs9	25	0x0000000000000000
fs10	26	0x0000000000000000
fs11	27	0x000000000000000
ft8	28	0x000000000000000
ft9	29	0x000000000000000
ft10	30	0x000000000000000
ft11	31	0x0000000000000000

Floating-Point Instructions Classification

- RV32F & RV32D
- Most instructions start with "f"
- Some basic type
 - ✓ Load and Store: e.g. flw, fld, fsw, fsd
 - ✓ Move data: e.g. fmv.s.x, fmv.x.s
 - ✓ Computational: e.g. fadd.s, fadd.d, fmadd.s, fmadd.d, fmax.d, fmax.s, fsqrt.s, fsqrt.d
 - ✓ Relational: e.g. fle.s, fle.d, flt.s, flt.d
 - ✓ Convert: e.g. fcvt.d.s, fcvt.d.w, fcvt.d.wu
- When the operands are single-precision float number, use ".s" as suffix; when the operands are double-precision float number, use ".d" as suffix.
 - √ floating add: fadd.s f1, f2, f3 # assign f1 to f2 + f3
 - ✓ floating add (64 bits): fadd.d f1, f2, f3 # assign f1 to f2 + f3
- Also supports pseudo instructions.

Floating-Point system Calls in Rars

Name	Number	Description	Inputs	Ouputs
PrintFloat	2	Prints a floating point number	fa0 = float to print	N/A
PrintDouble	3	Prints a double precision floating point number	fa0 = double to print	N/A
ReadFloat	6	Reads a float from input console	N/A	fa0 = the float
ReadDouble	7	Reads a double from input console	N/A	fa0 = the double
RandFloat	43	Get a random float	a0 = index of pseudorandom number generator	fa0 = uniformly randomly selected from from [0,1]
RandDouble	44	Get a random double from the range 0.0-1.0	a0 = index of pseudorandom number generator	fa0 = the next pseudorandom

- Run the codes of piece 7-4, and tell the function of it.
- Change float1 to value of 2147483647.825, what're the outputs, are they correct? Why?

```
# Piece 7-4-1
.include "macro_print_str.asm"
.data
      float1: .float 12.625
      float2: .float 0.5
.text
      la t0, float1
      flw ft0, (t0)
      la t0, float2
      flw ft1, (t0)
      print_string("Orignal float: ")
      print float(ft0)
      print string("\nAfter floor:")
      # floor operation
      fsub.s ft2, ft0, ft1# ft2 = ft0 - 0.5
      # conver the result to a 32-bit integer
      fcvt.w.s a0, ft2 # a0 = (int32_t)ft2
      li a7, 1
      ecall
```

```
# Piece 7-4-2
      print_string("\nAfter ceil:")
      # ceil operation
      fadd.s ft2, ft0, ft1# ft2 = ft0 + 0.5
      # conver the result to a 32-bit integer
      fcvt.w.s a0, ft2 \# a0 = (int32_t)ft2
      li a7, 1
      ecall
      print_string("\nAfter round:")
      # round operation
      fcvt.w.s a0, ft0 # a0 = (int32 t)ft0
      li a7, 1
      ecall
                 Orignal float: 12.625
      end
                 After floor: 12
                 After ceil: 13
                 After round: 13
                  program is finished running (0) -
```

```
#Add the content to
"macro_print_str.asm"
.macro print_float(%fr)
     addi sp, sp, -8
     fsw fa0, 4(sp)
     sw a7, 0(sp)
     fmv.s fa0, %fr
     li a7, 2
     ecall
     lw a7, 0(sp)
     flw fa0, 4(sp)
     addi sp, sp, 8
.end macro
```


Practice 1

- Conversion between hexadecimal floating-point numbers and decimal numbers.
 - ✓ Convert **409.2675**_{ten} to IEEE 754 hexadecimal single precision floating-point numbers.
 - ✓ Suppose **0xc1a6fae1** is the hexadecimal machine code for a IEEE 754 single precision floating-point number, please calculate its corresponding decimal value.
 - ✓ Convert -409.2675_{ten} to IEEE 754 hexadecimal double precision floating-point numbers. (optional)
 - ✓ Suppose **0xc0611bf1a9fbe76d** is the hexadecimal machine code for a IEEE 754 double precision floating-point number, please calculate its corresponding decimal value. (optional)
 - ✓ Tip: you can use Rars to get help.

Practice 2-1

- Complete the codes.
- ➤ Tip1: There is not an instruction in RISC-V to compare two float numbers and then branch directly. We can use two steps to complete this function.
 - ✓ 1. Compare two float numbers and set an integer register as 1 or 0.
 - ✓ 2. Compare the register and a specific value (0 or 1) to check whether to branch or not.

Tip 2: When comparing two float numbers, they should both be single-precision or double-precision.

```
# Piece 7-5
.include "macro_print_str.asm"
.data
      fd1: .float 1.0
      dd1: .double
                         2.0
.text
                       -2.0 LargerThan -80.0
      la t0, fd1
                       - program is finished running (0) --
      flw ft0, (t0)
      la t0, dd1
                      1.0 LessOrEqual 2.0
      fld ft1, (t0)
                         program is finished running (0) -
      fmv.s fa0, ft0
      li a7, 2
                               # print fd1
      ecall
      ##complete code here##
      li t2, 1
                              # if(t1 == 1)
      beq t1, t2, printLe
      j printGt
printLe:
      print_string(" LessOrEqual ")
      j printSecondData
printGt:
      print_string(" LargerThan ")
printSecondData:
      fmv.d fa0, ft1
      li a7, 3
                               # print dd1
      ecall
      end
```


Practice 2-2

- Calculate the value of e from the infinite series:
 - Input a double-precision float number which represents a precision threshold.
 - Your program should terminate when the difference between two successive iterations is smaller than the precision threshold.
 - Print the value of e (as double-precision float).

$$\sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

Practice 2-3

Given a single-precision float number 'x' and a positive integer 'r'. Round up 'x' to a number which keeps 'r' digits after the decimal point.

```
For example, suppose 'x' is 1.5671

if 'r' is 2, print 1.57

if 'r' is 0, print 2

if 'r' is 3, print 1.567
```