

第六章 中规模时序逻辑电路

主讲教师: 何云峰

知识要点

- □常用中规模时序逻辑电路的逻辑符号、基本逻辑功能、外部特性和使用方法
- □应用常用中规模时序逻辑电路作为基本部件完成各种逻辑电路的设计,实现各种逻辑功能

常用中规模时序逻辑电路

- ■数字系统中最典型的时序逻辑电路是计数器和寄存器
- □由于计数器和寄存器的应用十分广泛,所以,被制作成中规模集成电路的定型产品供用户选用
- ■要求在掌握外部特性后,根据需要对器件进行合理 选择、灵活使用

常用中规模时序逻辑电路

□计数器

- 一 广义地说, 计数器是一种能在输入信号作用下依次通过预定状态的时序逻辑电路
- 就常用的集成电路计数产品而言,计数器是一种对输入脉冲进行计数的时序逻辑电路,计数的脉冲信号称作"计数脉冲"

- □计数器中的"数"是用触发器的状态组合来表示的
- □计数器在运行时,所经历的状态是周期性的,总是在有限个状态中循环,通常将一次循环所包含的状态总数称为计数器的"模"

□计数器的类型

- 按工作方式可分为同步计数器和异步计数器
- 按进位制可分为二进制计数器,十进制计数器,任意进制计数器
- 按功能可分为加法计数器,减法计数器,加/减可逆计数器等

□功能

- 一般具有计数、保存、清除、预置等功能

□典型芯片

- 常用同步计数器芯片有4位二进制同步可逆计数器74193
- 该计数器具有清除、预置、累加计数、累减计数等功能

□74193引脚排列图和逻辑符号

引脚名称		功能说明		
	CLR	清除		
输入	LD	预置控制		
	DCBA	预置初值		
端	CP _U ↑	累加计数脉冲		
	CP _D ↑	累减计数脉冲		
44	$Q_DQ_CQ_BQ_A$	计数值		
输 出	Qcc	进位输出脉冲(负脉冲)		
端	QсВ	借位输出脉冲(负脉冲)		

□功能表

			输	λ					输	出	
CLR	LD	D	C	В	A	CP _U	CP_D	\mathbf{Q}_{D}	Q_{C}	\mathbf{Q}_{B}	\mathbf{Q}_{A}
1	d	d	d	d	d	d	d	0	0	0	0
0	0	X ₃	X ₂	X ₁	$\mathbf{x_0}$	d	d	X ₃	X ₂	X ₁	$\mathbf{x_0}$
0	1	d	d	d	d	↑	1		累加	计数	
0	1	d	d	d	d	1	1	累减计数			

□进位和借位输出

$$- \operatorname{Qcc} = \overline{\overline{\operatorname{CP}_{U}} \cdot Q_{A} \cdot Q_{B} \cdot Q_{C} \cdot Q_{D}}$$

$$- \operatorname{Qcb} = \overline{\overline{\operatorname{CP}}_{\operatorname{D}} \cdot \overline{Q}_{A} \cdot \overline{Q}_{B} \cdot \overline{Q}_{C} \cdot \overline{Q}_{D}}$$

□应用

- 同步可逆计数器74193的 "模" 为16
- 利用计数器的清除、预置等功能,可以很方便地构成模M < 16的计数器
- 利用计数器的进位和借位输出脉冲,将多个4位计数器级联,构成模M > 16的计数器
- 计数器除了实现对输入脉冲进行计数的功能外,在数字系统中常用来构成脉冲分配器和序列信号发生器等逻辑部件

- □构成模小于16的计数器
 - 通过利用计数器的清除、预置等功能,可以很方便地实现模小于16的计数器

- □例1: 用74193构成模10加法计数器。
 - 解:假设计数器的初始状态为 $Q_3Q_2Q_1Q_0 = 0000$,其状态变化序列如下:

$$0000 o 0001 o 0010 o 0011 o 0100$$
 \uparrow
 $1001 \leftarrow 1000 \leftarrow 0111 \leftarrow 0110 \leftarrow 0101$

□根据74193的功能表,实现模10加法器功能的逻辑 电路如下图所示。

- 图中, \overline{LD} 和 CP_D 接逻辑1,CPU接计数脉冲 CP_U ,74193工作在累加计数状态。

- □例1: 用74193构成模10加法计数器。
 - 解: 假设计数器的初始状态为 $Q_3Q_2Q_1Q_0 = 0000$,其状态变化序列如下:

$$0110 \rightarrow 0111 \rightarrow 1000 \rightarrow 1001 \rightarrow 1010$$
 \uparrow
 $1111 \leftarrow 1110 \leftarrow 1101 \leftarrow 1100 \leftarrow 1011$

□根据74193的功能表,实现模10加法器功能的逻辑 电路如下图所示

□利用计数器74193构造模小于16计数器的一般方法

- 清零法
 - 清零法一般使用前n(n为模值)个状态
 - 异步清零中存在一个暂态
 - 不能直接使用计数器的进位/借位输出, 需外加电路
- 置数法
 - 置数法一般使用后n(n为模值)个状态
 - 异步置数时存在一个暂态
 - 可以直接使用计数器的进位/借位输出

□ 例2:用一片74193构成模6的加法计数器,要求输出8421码,有进位脉冲输出。

□ 例2:用一片74193构成模6的加法计数器,要求(输出8421码)有进位脉冲输出。

□构成模大于16的计数器

利用计数器的进位输出或借位输出脉冲作为计数脉冲,可将多个4位计数器进行级联,并恰当地使用预置、清除等功能,构成模大于16的任意进制计数器

- 方法

- 级联多个模16计数器,利用清零和置数
- 将模值进行分解,分解成多个模小于16的值相乘,然后用清零 和置数法分别构成模小于16的计数器,然后再级联

- □ 例2:用两片74193构成模(147)₁0的加法计数器。
 - 解:设计数器状态变化序列为(0)₁₀~(146)₁₀,当计数器状态由(146)₁₀变为(147)₁₀(即(10010011)₂)时,令其回到(0)₁₀状态
 - 根据74193的功能,可构造出模(147)₁₀加法计数器的逻辑电路图

□进位和借位输出

$$- Qcc = \overline{\overline{CP_U} \cdot Q_A \cdot Q_B \cdot QC \cdot QD}$$

$$- \ Qcb = \overline{\overline{CP_D} \cdot \overline{Q_A} \cdot \overline{Q_B} \cdot \overline{Q_C} \cdot \overline{Q_D}}$$

□集成异步计数器

- 最常用的中规模异步时序逻辑器件有二—五—十进制加 法计数器74290等集成器件
- 74290的引脚图和逻辑符号

- □ 芯片内部包括4个主从JK触发器。触发器0构成模2计数器,计数脉冲由 CP_A提供;触发器1~3组成异步模5计数器,计数脉冲由CP_B提供。
- □ 芯片共有6个输入和4个输出。其中, R_{0A}、R_{0B}为清零输入信号, 高电平有效; R_{9A}、R_{9B}为置9 (即二进制1001) 输入信号, 高电平有效; CP_A、CP_B为计数脉冲信号; Q_D、Q_C、Q_B、Q_A为数据输出信号。

□74290的功能

- 异步置9功能: 当 $R_{9A}=R_{9B}=1$ 时,不论 R_{0A} 、 R_{0B} 及输入脉冲为何值,均可实现异步置9操作,使 $Q_DQ_CQ_BQ_A=1001$ 。
- 异步清零功能: ${\rm id} R_{9A} \cdot R_{9B} = 0$ 且 $R_{0A} = R_{0B} = 1$ 时,不需要输入脉冲配合,电路可以实现异步清零操作,使 $Q_D Q_C Q_B Q_A$ = 0000。

- 计数功能: 当 $R_{9A}\cdot R_{9B}=0$ 且 $R_{0A}\cdot R_{0B}=0$ 时,电路实现3种计数功能
 - 模2计数器:若将计数脉冲加到CP_A端,并从Q_A端输出,则可实现1
 位二进制加法计数(二分频)
 - 模5计数器:若将计数脉冲加到 CP_B 端,并从 $Q_DQ_CQ_B$ 端输出,则可实现五进制加法计数
 - 模10计数器:用74290构成模10计数器有两种不同的方法,一种是构成8421码十进制计数器,另一种是构成5421码十进制计数器

□用74290构成模10计数器(8421):

序号	$\mathbf{Q}_{\mathrm{D}}\mathbf{Q}_{\mathrm{C}}\mathbf{Q}_{\mathrm{B}}\mathbf{Q}_{\mathrm{A}}$
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1000
9	1001

□用74290构成模10计数器(5421):

序号	$\mathbf{Q}_{\mathrm{A}}\mathbf{Q}_{\mathrm{D}}\mathbf{Q}_{\mathrm{C}}\mathbf{Q}_{\mathrm{B}}$
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	1000
6	1001
7	1010
8	1011
9	1 1 0 0

□74290除完成上述基本功能外,亦可构成其他计数器。

- □ 例: 用74290设计一个模8加法计数器。
 - 状态转移图

- 逻辑电路图

- □ 例: 用74290设计一个模24计数器。
 - 模24的计数器需要两片74290
 - 实现方法
 - 构造一个模大于24的计数器, 然后利用清零或者置数实现
 - 将24变为4*6或者3*8,利用拆分法实现

- □ 例: 用74290设计一个模24计数器。
 - 利用两个8421码模10计数器级联,通过清零法实现
 - 在24 (0010 0100) 时清零

- □ 例: 用74290设计一个模24计数器。
 - 利用1个8421码模10和1个模5的计数器级联
 - 在24 (010 0100) 时清零

- □ 例: 用74290设计一个模24计数器。
 - 利用2个模5的计数器级联,通过置数法实现

- □ 例: 用74290设计一个模24计数器。
 - 利用1个8421码模4和1个8421码模6的计数器级联实现

常用中规模时序逻辑电路

□寄存器

- 数字系统中用来存放数据或运算结果的一种常用逻辑部件。
- 功能:除了具有接收数据、保存数据和传送数据等基本功能外,通常还具有左、右移位,串、并输入,串、并输出以及预置、清零等多种功能,属于多功能寄存器。

□典型芯片

- 中规模集成电路寄存器的种类很多,例如,74194是一种常用的4位双向移位寄存器。
- 74194的管脚排列图和逻辑符号

□引脚功能

引脚	名称	功能说明
	CLR	清除
	DCBA	并行数据输入
 輸入端	D_{R}	右移串行数据输入
刊/\-	D_{L}	左移串行数据输入
	S_1, S_0	工作方式选择
	CP	工作脉冲
输出端	$Q_DQ_CQ_BQ_A$	寄存器状态

□功能表

				输	λ						输	出	
CLR	СР	S ₁	S ₀	D _R	D _L	D	С	В	Α	Q_D	Q_{C}	\mathbf{Q}_{B}	Q_A
0	d	d	d	d	d	d	d	d	d	0	0	0	0
1	0	d	d	d	d	d	d	d	d	Q_D^n	$\mathbf{Q}_{\mathcal{C}}^{\mathbf{n}}$	Q_B^n	Q_A^n
1	1	1	1	d	d	X ₀	X ₁	\mathbf{X}_{2}	X ₃	x ₀	X ₁	X_2	X ₃
1	1	0	1	1	d	d	d	d	d	1	Q_D^n	$\mathbf{Q}_{c}^{\mathbf{n}}$	Q_B^n
1	1	0	1	0	d	d	d	d	d	0	Q_D^n	$\mathbf{Q}_{\mathcal{C}}^{\mathbf{n}}$	Q_B^n
1	1	1	0	d	1	d	d	d	d	Q_c^n	Q_B^n	$\mathbf{Q}_{A}^{\mathbf{n}}$	1
1	1	1	0	d	0	d	d	d	d	Q_c^n	Q_B^n	$\mathbf{Q}_{A}^{\mathbf{n}}$	0
1	1	0	0	d	d	d	d	d	d	Q_D^n	$\mathbf{Q}_{\mathcal{C}}^{}}$	Q_B^n	Q_A^n

- **口**双向移位寄存器在S1S0和 CLR 的控制下可完成数据的并行输入($S_1S_0=11$)、右移串行输入($S_1S_0=01$),左移串行输入($S_1S_0=10$)、保持($S_1S_0=00$)和清除($\overline{CLR}=0$)等五种功能。
- □寄存器除完成预定功能外,在数字系统中还能用来 构成计数器和脉冲序列发生器等。

□应用举例

- 例1 用四位双向移位寄存器74194构成模8计数器。
- 计数器状态 $Q_DQ_CQ_BQ_A$ 的变化序列为

□解:由74194的功能表可知,满足给定计数状态变化序列,只需将Q_DQ_CQ_BQ_A预置初始状态0000后

,将S₁S₀接10,并令DL与QD连接即可。

□解:使用右移

- □电路的状态每次变化时只有1个触发器翻转,不会 出现竞争和险象
- □扭环计数器 (约翰逊计数器)
- □电路比较简单,但是电路状态的利用率不高,这里的模8计数器就使用了4个触发器

- □利用移位寄存器的右移功能构成扭环计数器有一定 的规律
 - 当由寄存器的第*n* 位状态输出通过非门连接到右移控制端D_R时,构成是模为2×*n* 的扭环计数器
 - 当由寄存器的第n-1位和第n位状态输出通过与非门连接 到右移控制端 D_R 时,构成是模为 $2 \times n$ -1的扭环计数器

回例2:用一片74194和适当的逻辑门构成产生序列01110100的序列发生器。

- 解: 序列信号发生器可由移位寄存器和反馈逻辑电路构成, 其结构框图如下图所示。

假定序列发生器产生的序列周期为p,移位寄存器的级数(触发器个数)为n,应满足关系 $2^n \ge p$ 。本例的 p=8,故 $n \ge 3$,可选择n=3。

□ 设输出序列 Z=a₇a₆a₅a₄a₃a₂a₁a₀,下图列出了所要产生的序列(以p=8周期重复,最右边信号先输出)与寄存器状态之间的关系。

图中, 数码下面的水平线 段表示移位寄存器的状态。 将a₅a₆a₇=100作为寄存器 的初始状态,即 Q_DQ_CQ_R=100,从Q_R产生 输出,由反馈电路依次形 成a₄a₃a₂a₁a₀a₇a₆a₅作为 右移串行输入端D。的输入, 这样便可在时钟脉冲作用 下,产生规定的输出序列。

CP	$F(D_R)$	\mathbf{Q}_{D}	$Q_{\rm C}$	\mathbf{Q}_{B}
0	0	1	0	0
1				
2				
3				
4				
5				
6				
7				

CP	$F(D_R)$	\mathbf{Q}_{D}	\mathbf{Q}_{C}	\mathbf{Q}_{B}	
0	0	1	0	0	
1	1	0	1	0	
2					
3					
4					
5					
6					
7					

CP	$F(D_R)$	\mathbf{Q}_{D}	\mathbf{Q}_{C}	\mathbf{Q}_{B}	
0	0	1	0	0	
1	1	0	1	0	
2	1	1	0	1	
3					
4					
5					
6					
7					

CP	$F(D_R)$	\mathbf{Q}_{D}	\mathbf{Q}_{C}	\mathbf{Q}_{B}
0	0	1	0	0
1	1	0	1	0
2	1	1	0	1
3	1	1	1	0
4	0	1	1	1
5	0	0	1	1
6	0	0	0	1
7	1	0	0	0

回例2: 用一片74194和适当的逻辑门构成产生序列 01110100的序列发生器

CP	$F(D_R)$	\mathbf{Q}_{D}	\mathbf{Q}_{C}	\mathbf{Q}_{B}
0	0	1	0	0
1	1	0	1	0
2	1	1	0	1
3	1	1	1	0
4	0	1	1	1
5	0	0	1	1
6	0	0	0	1
7	1	0	0	0

□由表可得到反馈函数F的逻辑表达式为

CP	$F(D_R)$	\mathbf{Q}_{D}	\mathbf{Q}_{C}	\mathbf{Q}_{B}
0	0	1	0	0
1	1	0	1	0
2	1	1	0	1
3	1	1	1	0
4	0	1	1	1
5	0	0	1	1
6	0	0	0	1
7	1	0	0	0

- □根据上述表达式和74194的功能表,可画出该序列发生器的逻辑电路如图所示
- □该电路的工作过程为:在S₁S₀的控制下,先置寄存器74194的初始状态为Q_DQ_CQ_B=100,然后令其工作在右移串行输入方式,从Z端产生所需要的

$$F = (\overline{Q}_D + Q_C) \oplus Q_B$$

□如果不满足逻辑函数最小项的关系 (01111010)

CP	$F(D_R)$	\mathbf{Q}_{D}	$Q_{\rm C}$	\mathbf{Q}_{B}	\mathbf{Q}_{A}
0	1	1	0	1	0
1	1	1	1	0	1
2	1	1	1	1	0
3	0	1	1	1	1
4	0	0	1	1	1
5	1	0	0	1	1
6	0	1	0	0	1
7	1	0	1	0	0

□利用74194的级联实现寄存器的扩展

□例如:用一片74193和8路数据选择器构成产生序列01110100的序列发生器。

□假定74193的初始状态为"0"。

□分析下图所示逻辑电路,电路输出为Z,说明x1x0分别为00,01,10和11时的电路输出。

□电路的功能

输入 X ₁ X ₀	74193功能	输出Z序列(8位循 环)
0 0	保持0000状态	1111111
0 1	模2累加计数	10101010
1 0	模4累加计数	10111011
1 1	模8累加计数	10110011

□试分析下图所示逻辑电路的功能。

□课堂练习,分析电路

- 计数器74193处在什么工作状态
- 当MN=01时,若计数器的初始状态为0000, L的输出序列
- 当MN=10时, 画出计数器74193的状态变化序列
- 当MN为各种不同输入条件下时,试问计数器74193分别处在什么计数状态(模)
- 若电路在MN=11时处于13进制加法计数状态,该如何修改电路。

