EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 9481

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	<u>Emissio</u>	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
116CT	Cooling Tower	VOC	0.74	3.20
116F	Refrigeration Fugitives (4)	VOC	6.58	28.79
230F	Process Fugitives (4)	VOC PM 0.03 HF 0.01 Nickel Octoate Modifier "T"	12.99 0.11 0.01 0.01 0.02	55.93 0.01 0.10
230T-F105A	Oil Tank	VOC	0.90	0.16
230T-F105B	Oil Tank	VOC	0.90	0.16
230T-F200	Catalyst Tank	VOC	24.31	0.30
230T-F201	Catalyst Tank	VOC	14.96	0.22
230T-F205	Catalyst Tank	VOC	14.95	0.22
230T-F222	Catalyst Tank	VOC	2.87	0.08
230V-E405	Crumb Tank Vent Condenser	VOC	0.07	0.02
230WF	Wastewater Fugitives (4)	VOC	4.70	1.52
236F	840 Unit Finishing Process	VOC	149.0	265.8
4H-228	Modifier "T" Makeup Tank	VOC	3.66	0.05

230T-F311	Nitrax Makeup Tank	PM	0.01	0.01
230T-F408	Tamol Makeup Tank	PM	1.20	0.01
230T-F411	Phosphoric Acid Storage Tank PM		3.80	0.04
280F	Process Fugitives (4)	VOC	11.71	51.32
280FLQ504	Flare SO_2	VOC NO _x CO 0.01	27.77 2.19 11.15 0.01	13.55 1.44 7.33
280T-115	Angelax Storage Tank	VOC	0.14	0.01
280T-F201	Catalyst Tank	VOC	18.17	0.10
280T-F206	Catalyst Tank	VOC	3.93	0.62
280T-F216	Catalyst Tank	VOC	0.05	0.01
280T-F507	Catalyst Tank	PM	0.01	0.01
280V-E405	Crumb Tank Vent Condenser	VOC	2.10	7.61
280V-M202	HF Scrubber	VOC HF	0.67 0.02	0.01 0.01
280WF	Wastewater Fugitives (4)	VOC	20.88	39.59
286F	880 Unit Finishing Process	VOC	188.1	550.0

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Dated January 15, 2004

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates * lb/hr TPY**
Page 3			
	EMISSION SOURCES	- MAXIMUM ALLOWABLE EMISSIC	N RATES
from a plot (2) Specific poi (3) VOC - vola PM - par PM ₁₀ - par shall be as NO _x - tota CO - car SO ₂ - sult HF - hydrox	ot plan. nt source names. For fugatile organic compounds a ticulate matter, suspende ticulate matter equal to organic all oxides of nitrogen bon monoxide fur dioxide lrogen fluoride issions are an estimate of the source of th	r specific equipment designation or gitive sources, use an area name or fras defined in Title 30 Texas Administed in the atmosphere, including PM ₁₀ . It less than 10 microns in diameter. We matter greater than 10 microns is expensely and should not be considered a	ugitive source name. rative Code § 101.1 Vhere PM is not listed, it mitted.
* Emission ra	ates are based on and th	ne facilities are limited by the follow	ing maximum operating
	· — · — —	Weeks/year or <u>8,760</u> Hrs/year its is based on a rolling 12-month pe	riod.