Higher-Ranked Exception Types

Ruud Koot

Utrecht University

May 13, 2014

► Types should not lie; we would like to have *checked exceptions* in Haskell:

map ::
$$(\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]$$
 throws *e*

▶ What should be the correct value of *e*?

Assigning accurate exception types is complicated by:

Higher-order functions Exceptions raised by higher-order functions depend on the exceptions raised by functional arguments.

$$map :: (\alpha \to \beta \text{ throws } e_1) \to [\alpha] \to [\beta] \text{ throws } (e_1 \cup e_2)$$

Non-strict evaluation Exceptions are embedded inside values.

$$map :: (\alpha \text{ throws } e_1 \to \beta) \text{ throws } e_2 \to [\alpha \text{ throws } e_3] \text{ throws } e_4 \to [\beta \text{ throws } e_5] \text{ throws } e_6$$

- ▶ Instead of τ **throws** e, write τ^e for a type τ that can evaluate to \bot_{χ} for some $\chi \in e$.
- ▶ The fully annotated exception type for *map* would be:

$$map :: (\alpha^{e_1} \to \beta^{(e_1 \cup e_2)})^{e_3} \to [\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup e_2 \cup e_3)}]^{e_4}$$
 $map = \lambda f. \lambda xs. \ \mathbf{case} \ xs \ \mathbf{of}$
 $[] \mapsto []$
 $(y: ys) \mapsto f \ y: map \ f \ ys$

- ▶ Instead of τ **throws** e, write τ^e for a type τ that can evaluate to \bot_{χ} for some $\chi \in e$.
- ▶ The fully annotated exception type for *map* would be:

$$map :: (\alpha^{e_1} \to \beta^{(e_1 \cup e_2)})^{e_3} \to [\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup e_2 \cup e_3)}]^{e_4}$$

$$map = \lambda f. \lambda xs. \mathbf{ case } xs \mathbf{ of }$$

$$[] \mapsto []$$

$$(y: ys) \mapsto f y: map f ys$$

▶ If you want to be pedantic:

map ::
$$\forall \alpha \ \beta \ e_1 \ e_2 \ e_3 \ e_4$$
. $((\alpha^{e_1} \to \beta^{(e_1 \cup e_2)})^{e_3} \to ([\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup e_2 \cup e_3)}]^{e_4})^{∅})^{∅}$

- ▶ Instead of τ **throws** e, write τ^e for a type τ that can evaluate to \bot_{χ} for some $\chi \in e$.
- ▶ The fully annotated exception type for *map* would be:

$$map :: (\alpha^{e_1} \xrightarrow{e_3} \beta^{(e_1 \cup e_2)}) \to [\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup e_2 \cup e_3)}]^{e_4}$$

$$map = \lambda f. \lambda xs. \mathbf{case} \ xs \mathbf{of}$$

$$[] \mapsto []$$

$$(y: ys) \mapsto f \ y: map \ f \ ys$$

▶ If you want to be pedantic:

$$map :: \forall \alpha \ \beta \ e_1 \ e_2 \ e_3 \ e_4.$$

$$(\alpha^{e_1} \xrightarrow{e_3} \beta^{e_1 \ \cup \ e_2}) \xrightarrow{\cdot} \cdot) \ ([\alpha^{e_1}]^{e_4} \xrightarrow{\varnothing} [\beta^{(e_1 \ \cup \ e_2 \ \cup \ e_3)}]^{e_4}) \ \varnothing$$

The exception type

$$map :: (\alpha^{e_1} \xrightarrow{e_3} \beta^{(e_1 \cup e_2)}) \to [\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup e_2 \cup e_3)}]^{e_4}$$

is not as accurate as we would like.

Consider the instantiations:

map id
$$:: [\alpha^{e_1}]^{e_4} \to [\alpha^{e_1}]^{e_4}$$

map $(const \perp_{\mathbf{E}}) :: [\alpha^{e_1}]^{e_4} \to [\beta^{(e_1 \cup \{\mathbf{E}\})}]^{e_4}$

▶ A more appropriate type for $map\ (const\ \bot_E)$ would be

$$map\ (const\ \bot_{\mathbf{E}}) :: [\alpha^{e_1}]^{e_4} \to [\beta^{\{\mathbf{E}\}}]^{e_4}$$

as it cannot propagate exceptional elements inside the input list to the output list.

▶ The problem is that we have already committed the first argument of *map* to be of type

$$\alpha^{e_1} \xrightarrow{e_3} \beta^{(e_1 \cup e_2)}$$
,

i.e. it propagates exceptional values from the its input to the output while possibly adding additional exceptional values.

▶ This is a worst-case scenario: it is sound but inaccurate.

- ► The solution is to move from Hindley–Milner to F_{ω} , introducing *higher-ranked types* and *type operators*.
 - ▶ Recall that System F_{ω} replicates the *simply typed* λ -calculus on the type level.
- ▶ This gives us the expressiveness to state the exception type of *map* as:

$$\forall e_2 \ e_3.(\forall e_1.\alpha^{e_1} \xrightarrow{e_3} \beta^{(e_2 \ e_1)})$$

$$\rightarrow (\forall e_4 \ e_5.[\alpha^{e_4}]^{e_5} \rightarrow [\beta^{(e_2 \ e_4 \ \cup \ e_3)}]^{e_5})$$

▶ Note that e_2 is an *exception operator* of kind $exn \rightarrow exn$.

► Given the following functions:

$$\begin{array}{ll} \textit{map} & :: \forall e_2 \ e_3. (\forall e_1.\alpha^{e_1} \xrightarrow{e_3} \beta^{(e_2 \ e_1)}) \\ & \rightarrow (\forall e_4 \ e_5. [\alpha^{e_4}]^{e_5} \rightarrow [\beta^{(e_2 \ e_4 \ \cup \ e_3)}]^{e_5}) \\ \textit{id} & :: \forall e.\alpha^e \xrightarrow{\varnothing} \alpha^e \\ \textit{const} \ \bot_E :: \forall e.\alpha^e \xrightarrow{\varnothing} \beta^{\{E\}} \\ \end{array}$$

- ▶ Applying *id* or *const* \bot ^E to *map* will give rise the the instantiations $e_2 \mapsto \lambda e.e$, respectively $e_2 \mapsto \lambda e.\{E\}$.
- ► This gives us the exception types:

map id
$$:: \forall e_4 \ e_5. [\alpha^{e_4}]^{e_5} \to [\alpha^{e_4}]^{e_5}$$

map (const \bot_E) $:: \forall e_4 \ e_5. [\alpha^{e_4}]^{e_5} \to [\beta^{\{E\}}]^{e_5}$

as desired.

Technicalities

- Due to their syntactic weight, higher-ranked exception type only seem useful if they can be infered automatically.
- ▶ Unlike for HM type inference is undecidable in F_{ω} .
- ► However, the exception types are annotations piggybacking on top of an underlying type system.
- ▶ Holdermans and Hage [HH10] showed type inference is decidable for a higher-ranked annotated type system with type operators performing control-flow analysis.

Technicalities

Stefan Holdermans and Jurriaan Hage, Polyvariant flow analysis with higher-ranked polymorphic types and higher-order effect operators, Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming (New York, NY, USA), ICFP '10, ACM, 2010, pp. 63-74.