TP3 - Modem FSK

ADC - DAC - FTM - DMA - CMP

ITBA

MODEM FSK Bell 202 - Concepto General

Transmisión y Recepción de Datos

Bell 202

- Tiempo de bit: 833 μs (1200 Bd)
- Señalización:
 - o Mark (1): 1200 Hz
 - o Space (0): 2200 Hz
- Usos:
 - o CallerID
 - o HART

Bell 202

Bell 202

IDLE \rightarrow 1111 1111 \rightarrow IDLE \rightarrow 0101 0101 \rightarrow IDLE

Bell 202 - HART

Bell 202 - HART

Bell 202 - HART

Objetivo del TP

• Implementar **dos versiones** de un módem FSK full-duplex usando diferentes periféricos del K64F

Versión	TX	RX
V1	DAC	ADC
V2	FTM (PWM/output compare)	<pre>CMP + FTM (input capture)</pre>

Versión 1 - ADC/DAC

Versión 1 - ADC/DAC - Detalles

Tx:

- Recibe por UART a 1200bps 8o1
- Caracteres recibidos \rightarrow bitstream \rightarrow modulador FSK \rightarrow DAC
- DAC DC en VCC/2 = 1.65V, amplitud máxima, sin distorsión

Rx:

- Señal FSK \rightarrow sampling (ADC) \rightarrow demodulador FSK \rightarrow bitstream
 - → caracteres a enviar
- Envia por UART a 1200bps 8o1

$$x(t) = A \sin(\omega t) \qquad d(t) = 0.5 A^2 \cos(\omega \delta)$$

$$x(t-\delta) = A \sin[\omega(t-\delta)] \qquad \delta_{opt} = 446 \mu s$$

$$m(t) = 0.5 A^2 [\cos(\omega \delta) - \cos(2\omega t + \omega \delta)]$$

$$cos(2\pi f_{\{M, S\}} t) \longrightarrow cos(2\pi f_{\{M, S\}} \delta)$$

Versión 2 - FTM/CMP - Detalles

Tx:

- Menor THD posible sin sobrecargar CPU
- Fase continua
- RC 1er orden (PWM \rightarrow sine)

Rx:

- CMP para detectar cruces por cero (1.65V)
- RC 1er orden (ruido)
- $CMP \rightarrow FTM$ (input capture)

Consideraciones - DMA

- Usar DMA **solo en una** de la versiones
- En V1: $ADC \rightarrow DAC$
- En V2: FTM (input capture) \rightarrow FTM (output compare / PWM)

Consideraciones - Impedancias / Buffer

- Adaptación de impedancias entre modems
- Corriente entregable por DAC y FTM/PWM

• Impedancia de entrada de ADC y CMP

Consideraciones - Tips

- Técnicas DDS (direct digital synthesis) para FSK sin salto de fase
- V1:
 - o FPU (floating-point unit) para FIR eficiente
 - o Python / Matlab para simular cadena de procesamiento
 - o Inspirarse en oversampling de UART para Rx

Consideraciones - Tips

- V2:
 - o SIM_SOPT4
 - Histéresis de CMP
 - O Validar ancho de pulso capturado para rechazar ruido

Requerimientos - Obligatorios

- V1 y V2 operando correctamente en full-duplex, transmitiendo y recibiendo al mismo tiempo (2 placas)
 - \circ Tx y Rx de 1kBy
 - Sin modo loopback

Requerimientos - Obligatorios

- V1 y V2 operando correctamente en full-duplex, transmitiendo y recibiendo al mismo tiempo (2 placas)
 - Tx y Rx de 1kBy
 - Sin modo loopback
- DMA en solo una versión. Justificar elección
- Uso de CPU y máximo tiempo de ISR en V1 y V2

Requerimientos - Opcionales

- Medición de THD para cada versión
 - Análisis de reducción de THD en V2
- Para la versión con DMA:
 - Hallar máximo baudrate "sin errores"
 - ¿Por qué? ¿Qué limita?
- Para V1:
 - Sumar ruido AWGN en Tx (desde el DAC)

Medir curva BER vs SNR con misma placa en modo loopback

Segundo Cuat. 2025

Evaluación

- 1. Funcionamiento del equipo en sus dos versiones
- 2. Diseño de los bloques de procesamiento, implementados en forma eficiente para streaming
- 3. Medición de **uso de CPU** y **máximo tiempo en ISR**, en ambas versiones

Sugerencias

- 1. Simular transmisión/recepción V1 en Python/Matlab
- 2. Plantear estructura-jerarquía de drivers-módulos
 - a. Escribir los .h
- 3. ¿Cómo sincronizar todo y de manera no-bloqueante?
 - a. Otros periféricos posiblemente útiles:
 - i. PIT: Periodic Interrupt Timer
 - ii. PDB: Programmable Delay Block