

Jiajla Liang 5/29/2018.

6.1 Conditional independence

Consider the hidden Markov model (HMM) shown below, with hidden states S_t and observations O_t for times $t \in \{1, 2, ..., T\}$. Indicate whether the following statements are true or false.

$t \in \{1, 2, \dots, T\}$. In	dicate whether the following statements are true or false.
F	$P(S_t S_{t-1}) = P(S_t S_{t-1}, O_t)$
	$P(S_t S_{t-1}) = P(S_t S_{t-1}, O_{t-1})$
F	$P(S_t S_{t-1}) = P(S_t S_{t-1}, S_{t+1})$
F	$P(S_t O_{t-1}) = P(S_t O_1, O_2, \dots, O_{t-1})$
T	$P(O_t S_{t-1}) = P(O_t S_{t-1}, O_{t-1})$
F	$P(O_t O_{t-1}) = P(O_t O_1, O_2, \dots, O_{t-1})$
T	$P(O_1, O_2, \dots, O_T) = \prod_{t=1}^T P(O_t O_1, \dots, O_{t-1}) (O_t) (O_t) (O_t)$
T	$P(S_2, S_3,, S_T S_1) = \prod_{t=2}^T P(S_t S_{t-1})$
<u></u>	$P(S_1, S_2, \dots, S_{T-1} S_T) = \prod_{t=1}^{T-1} P(S_t S_{t+1}) = P(S_t S_2) P(S_2 S_3)$
<u>+</u>	$P(S_1, S_2, \dots, S_T O_1, O_2, \dots, O_T) = \prod_{t=1}^T P(S_t O_t)$
<u> </u>	$P(S_1, S_2, \dots, S_T, O_1, O_2, \dots, O_T) = \prod_{t=1}^T P(S_t, O_t)$
1	$P(O_1, O_2, \dots, O_T S_1, S_2, \dots, S_T) = \prod_{t=1}^T P(O_t S_t)$
·	(ο, ο, ο

#2

6.2 More conditional independence

Indicate the **smallest** subset of evidence nodes that must be considered to compute each conditional probability shown below. The first two problems are done as examples. (You may assume everywhere that 2 < t < T - 1: i.e., do not worry about special boundary cases.)

$$P(S_{t}|S_{1}, S_{2}, ..., S_{t-1}) = P(S_{t}|S_{t-1})$$

$$P(O_{t}|S_{1}, S_{2}, ..., S_{T}) = P(O_{t}|S_{t})$$

$$P(S_{t}|S_{t+1}, S_{t+2}, ..., S_{T}) = \frac{P(S_{t}|S_{t}|S_{t+1})}{P(S_{t}|O_{t}, O_{t-1}, O_{t+1})}$$

$$P(S_{t}|O_{t}, O_{t-1}, O_{t+1}, S_{t-1}, S_{t+1}) = \frac{P(S_{t}|S_{t}, S_{T}, O_{1}, O_{t}, O_{T})}{P(S_{t}|S_{1}, S_{T}, O_{1}, O_{t}, O_{T})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{1}, O_{t}, O_{T})}{P(S_{t}|O_{t}, O_{t+1}, ..., O_{T})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t}, O_{t}, O_{T})}{P(S_{t}|O_{t}, O_{2}, ..., O_{t-1})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t}, O_{T})}{P(S_{t}|O_{t}, O_{2}, ..., O_{t-1})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t}, O_{T})}{P(S_{t}|S_{t}, S_{t}, O_{t}, O_{t}, O_{T})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t}, O_{T})}{P(S_{t}|S_{t}, S_{t}, S_{t+1}, S_{t+2})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t+1}, S_{t+1}, S_{t+2})}{P(S_{t}|S_{t}, S_{T}, S_{t+1}, S_{t+2})} = \frac{P(S_{t}|S_{t}, S_{T}, O_{t+1}, S_{t}, S_{T})}{P(S_{t}|S_{t}, S_{T}, S_{t+1}, S_{t+2})} = \frac{P(S_{t}|S_{t}, S_{T}, S_{t+1}, S_{t+1}, S_{t+2})}{P(S_{t}|S_{t}, S_{T}, S_{t+1}, S_{t+1}, S_{t+2})} = \frac{P(S_{t}|S_{t}, S_{T}, S_{t+1}, S_{t+1}, S_{t+2}, S_{T}, S_{T},$$

#4

(a)
$$P(Y_i|X_i) = \sum_{x_0} P(X_i, X_0 = x_0 | X_i)$$
 (margi.)
 $= \sum_{x_0} P(X_0 = x_0 | X_i) P(Y_i | X_0 = x_0, X_i)$ (P.R.)
 $= \sum_{x_0} P(X_0 = x_0) P(Y_i | X_0 = x_0, X_i)$ (c.I. by)
 $= \sum_{x_0} P(X_0 = x_0) P(Y_i | X_0 = x_0, X_i)$ (d.sep.#3)

(b)
$$P(Y_1) = \sum_{X_1} P(X_1 = X_1, Y_1)$$
 (margin.)

$$= \sum_{X_1} P(X_1 = X_1) P(Y_1 | X_1 = X_1)$$
 (P.R)
from CPT, from (a)

(c) $P(X_{t}|Y_{1},Y_{2},...,Y_{t-1}) = P(X_{t})$ since X_{t} is C.I. with $Y_{1},Y_{2},...,Y_{t-1}$ when Y_{t} is not given by d-sep. #3 on node Y_{t} .

(d)
$$P(Y_{t} | X_{t}, Y_{1}, Y_{2}, ..., Y_{t-1})$$

 $= \sum_{X_{t-1}} P(Y_{t}, X_{t-1} = X_{t-1} | X_{t}, Y_{1}, Y_{2}, ..., Y_{t-1}) \quad (margin.)$
 $= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1} | X_{t}, Y_{1}, Y_{2}, ..., Y_{t-1}) P(Y_{t} | X_{t-1} = X_{t-1}, X_{t}, Y_{1}, Y_{2}, ..., Y_{t-1}) P(Y_{t} | X_{t-1} = X_{t-1}, X_{t}, Y_{1}, Y_{2}, ..., Y_{t-1}) \quad (P.R.)$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1} | Y_1, Y_2, ..., Y_{t-1}) P(Y_t | X_{t-1} = X_{t-1}, X_t)$$
given by prev. Step of recur.

(by d-sep. # 2&3)

(e) $P(Y_t | Y_1, Y_2, ..., Y_{t-1}) = \sum_{X_t} P(Y_t, X_t = X_t | Y_1, Y_2, ..., Y_{t-1})$

(margin.)

$$= \sum_{X_t} P(X_t = X_t | Y_1, Y_2, ..., Y_{t-1}) P(Y_t | X_t = X_t, Y_1, Y_2, ..., Y_{t-1})$$
from (a)

from (b) (p.R.)

6.5 Inference in HMMs

Consider a discrete HMM with hidden states S_t , observations O_t , transition matrix $a_{ij} = P(S_{t+1} = j | S_t = i)$ and emission matrix $b_{ik} = P(O_t = k | S_t = i)$. In class, we defined the forward-backward probabilities:

$$\alpha_{it} = P(o_1, o_2, \dots, o_t, S_t = i),$$

 $\beta_{it} = P(o_{t+1}, o_{t+2}, \dots, o_T | S_t = i),$

for a particular observation sequence $\{o_1,o_2,\dots,o_T\}$ of length T. In terms of these probabilities, which you may assume to be given, as well as the transition and emission matrices of the HMM, show how to (efficiently) compute the following quantities:

(a)
$$P(S_{t+1} = j | S_t = i, o_1, o_2, \dots, o_T)$$

(b)
$$P(S_t = i | S_{t+1} = j, o_1, o_2, \dots, o_T)$$

(c)
$$P(S_{t-1}=i, S_t=j, S_{t+1}=k|o_1, o_2, \dots, o_T)$$

(d)
$$\hat{s}_t = \operatorname{argmax}_i \left[P(S_t = i | o_1, 2, ..., o_T) \right]$$

In all these problems, you may assume that t > 1 and t < T; in particular, you are *not* asked to consider the boundary cases.

(a)
$$P(S_{t+1} = \hat{j} | S_t = \hat{i}_{>0,,02,...,0T})$$

= $P(S_{t+1} = \hat{j} | S_t = \hat{i}_{>0,02,...,0T})$ ($S_{t+1} = \hat{j} | S_t = \hat{i}_{>0,02,...,0T}$) ($S_{t+1} = \hat{i}_{>$

$$= \frac{b_{j}(o_{t+1}) \cdot \beta_{j}(t+1) \cdot a_{ij}}{\beta_{i+1}}$$

$$(b) P(St=i|St+1=j, o_{1},o_{2},...o_{T})$$

$$= \frac{P(St+1=j|St=1,o_{1},o_{2},...o_{T})}{P(St+1=j|O_{1},o_{2},...,O_{T})}$$

$$= \frac{P(St+1=j|St+1=j,o_{1},o_{2},...,o_{T})}{P(St=i,o_{1},o_{2},...,o_{T})}$$

$$= \frac{P(St=i|O_{1},o_{2},...,o_{T})}{P(O_{1},o_{2},...,O_{T})}$$

$$= \frac{P(St=i,o_{1},o_{2},...,o_{T})}{\sum_{k=1}^{N} P(S_{T}=k,o_{1},o_{2},...,o_{T})}$$

$$= \frac{A_{i}t \cdot \beta_{i}t}{\sum_{k=1}^{N} A_{k}T}$$

$$= \frac{A_{j}(t+1) \cdot \beta_{j}(t+1)}{\sum_{k=1}^{N} A_{k}T}}$$

$$=\frac{b_{j}(o_{t+1}) \cdot b_{j}(t+1) \cdot a_{jj}}{b_{j}(t+1) \cdot b_{j}(t+1)} \cdot \frac{a_{ij} \cdot b_{j}(o_{t+1}) \cdot a_{it}}{a_{j}(t+1) \cdot b_{j}(t+1)} = \frac{a_{ij} \cdot b_{j}(o_{t+1}) \cdot a_{it}}{a_{j}(t+1)}$$

$$(c) P(S_{t+1} = i) S_{t+1} = k| O_{1} \cdot O_{2} \cdot ..., O_{T})$$

$$= P(S_{t+1} = i) P(S_{t+1} = k| O_{1} \cdot O_{2} \cdot ..., O_{T}) P(S_{t+1} = k| O_{1}$$

since \$1,..., \$\frac{1}{2}\$ are obtained individually.

(b) Yes. As mentioned in (a). It's possible

that \$\hat{St} = \hat{St}\$ for all t.

(c) No. In most cases, they will not

be equal.

(d) Yes. P(\$\hat{Si}_1 \hat{Sz}_2,..., \hat{St}_1) = \hat{nT} where

n is the number of possible values \$\hat{St}\$ can

take, \$\hat{St}\$ if always > 0.