Peer-to-Peer Communication Across Network Address Translators

Bryan Ford – M.I.T.

Pyda Srisuresh – Caymas Systems

Dan Kegel – Ixia Communications

J'fais des trous, des petits trous...
toujours des petits trous
- S. Gainsbourg

USENIX – April 14, 2005

Demand for P2P Communication

Many compelling apps need P2P communication, not just "P2P apps":

- Teleconferencing, Voice over IP (VoIP)
- Multiplayer on-line games
- Remote access/administration (e.g., ssh)

Outline

- The NAT Traversal Problem
- UDP Hole Punching (not new)
- TCP Hole Punching (quite new)
- Multi-Level NAT Scenarios
- NAT Compatibility with Hole Punching
- Related Work

Usage model assumptions:

- Clients register with public "rendezvous server" to become accessible to other clients
- Application implements notion of "identity"
 - Username, public key [HIP], etc.
- Rendezvous server facilitates P2P session setup, but does not participate in resulting P2P sessions

UDP Hole Punching Gone Wrong

UDP Hole Punching Gone Wrong

UDP Hole Punching Gone Wrong

UDP Hole Punching Gone Wrong

TCP has always supported crucial feature

• "Simultaneous TCP Open" [RFC 793]

Difficulties:

- More ways for NATs to behave poorly
- TCP sockets API oriented toward client/server

Timing Caveat

Timing Caveat

Timing Caveat

Timing Solution

Timing Solution

Timing Solution

TCP Hole Punching Gone Wrong

Potential problems:

- Inconsistent endpoint translation
 - Same as for UDP
- NAT could reject "unsolicited" incoming SYNs with RSTs or ICMP errs instead of just dropping
 - Connection failures, retry oscillation
- Buggy TCP state machine in host OS
 - Windows before XP SP2

NAT Check

Tests hole punching "end-to-end" from user's host

- Results reflect composition of all NAT(s) in path
- No isolation of contention-related "bad" behaviors
- No tests for "bad but semi-predictable" behaviors

More detailed tests of specific NATs elsewhere [Jennings–STUN, Guha–STUNT]

http://midcom-p2p.sourceforge.net/

Data Collection

Results submitted over Web by (self-selecting) community of volunteers

- UDP: 380 data points

- TCP: 286 data points

Covers

- NAT router hardware from 68 vendors
- NAT support in 8 popular operating systems

(Breakdown by vendor in paper)

Testing Results

UDP Hole Punching

- 82% of NATs support
- Most common NATs:
 - Linksys 98% (45/46)
 - Netgear 84% (31/37)
 - Windows 94% (31/33)
 - Linux 81% (26/32)
- Hairpin: 24%

- 64% of NATs support
- Most common NATs:
 - Linksys 87% (33/38)
 - Windows 52% (16/31)
 - Netgear 63% (19/30)
 - Linux 67% (16/24)
- Hairpin: 13%

Related Work

- UDP hole punching: [Kegel 1999]
 - Voice over IP: SIP/ICE [Rosenberg 2003]
- Asymmetric TCP hole punching
 - NUTSS, NATBLASTER, NatTrav
 - Sometimes compensate for bad NAT behaviors,
 but more complex, timing-sensitive
- Proxy protocols
 - SOCKS, RSIP, MIDCOM, UpnP
 require explicit NAT support, user setup

Conclusion

- NAT is evil, but is here to stay
- Hole punching enables practical, automatic traversal of majority of existing NATs
- Compatibility good for UDP, tolerable for TCP, increasing with NAT vendor awareness (hint, hint)