Example 1:

An 8 kg mass is thrown off the back of a stationary 12kg cart at a velocity of 10m/s, relative to the cart.

Assuming no friction, what is the velocity of the cart?

Instead of throwing the 8kg mass off the cart all at once, you throw it in 4kg chunks, each time at 10m/s with relative to cart. What is final velocity of the cart?

Rocket Design What is the smallest mass we can throw? 1 atom / molecule Rocket Equation: natural logorithm change $\rightarrow \Delta V = V_{exh} \ln \left(\frac{M_i}{m_f} \right) \leftarrow \text{final mass}$ of the initial mass rocket Exhanst Velocity (how fast it was being released or thrown) Apply to examples $1 \sim 3$: $\Delta V = 10 \ln \left(\frac{20}{12} \right)$ = 5.11m/s [L] Thrust Vexh (constant) Thrust: the push from the engine (F) Î = DP = MOV = FAt F thrust propulsion Actual Op equation: $\Delta \vec{p} = \Delta (m\vec{v}) = \Delta m\vec{v} + m\Delta \vec{v}$ $7 \quad 7 \quad (x) \quad g(x)$ Rocket Thrust Equation Fat = Dmv + m AV 0 Comes from product rule in calculus Fat = Amvexh $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$ derivative actual actual derivative

Engine Efficiencies

Engine efficiencies are determined by a rocket's specific impulse (ISP) which is the length of time 1kg of fuel can create 9.8N of thrust. The higher the ISP, the more efficient the engines.

Rocket type	ISP	Vein * Om=kg ==9.8N
Solid Moder Rocket		Fot = DmVexh
	805	9.8(80)=1Vexh
(uses Fe ₂ D ₃		Vexh = 784mls
to fuel)		Vexh = 184m3
"Real" Solid		
Rocket Motor	2309	2254m/s
(Ammonium perchlorote +	1508	2254M1S
aluminum)		
Kerosene/		
liquid exygen		
	3005	2940m/s
Heony - C+ H		
reactions)		
Methane /	3305	3234m/s
liquid oxygen		
H ₂ / 0 ₂		
(small particles	4505	4410m/s
faster chemical		
1 CO (TIUM)		
Nuclear		
(subatomic	8005	7840m/s
reaction)		
Ion	20005	19600 m/s
	l loogne	98000 m/s
	100005	7 % UU W 13

	(subatomic, even smaller	1000003	980000mls	
	particles)			
Exampl	e 4: A 10 tonne	e spaceship has	an engine with an ISP of 25	500s and uses 1.5kg of fuel a minute.
f the ro	cket is propell	ed for 1.5h, what	delta v does it experience	?
	,	V ,	V V V	
Fat	= Dm Vexh	ΔV = Vexh In ($\frac{M_1}{m_f}$) $\hat{F}\Delta t = m\Delta \hat{V}$	
M; =	: 10000 kg			
ISP	= 2500s (F=	9.9N, Dm = lkg)	→ Vexh	
Δm =	: 1.5kg At	= 60s → F		
Δt=	= 5400s			
	Ich		Thrust	0 V
	F=9.8N		Am = 1.5kg	F= 612.5N
	Dm= kg At = ISP = 7). tens	st = 605 Vexh = 24500 m/s	At = 1.5h = 5400s m = 10000 kg
	Fot = om V	exh	Fot=Omverh	FAT = MAV 612.5 (5400) = (0000 AU
	9.8 (2500) = 1 V	exh	F (60) = (1.5) (24500)	ΔV = 331m/s
	Vexh = 2450	00m/s	F = 612.5N	0V = 331M13
Wag	2:			
			_ la ·	
	5400 1.5 kg	2	$\Delta V = Vexh \ln \left(\frac{m_i}{m_f} \right)$	
	X = 135kg		DV = 24500 Ln (10000)	
	mf = 10000k	g-13Jkg	= 333 m/s	
	= 9865 K			
	- 4800 K	7		