

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

Pulsaciones

1. Anteriormente se pidió obtener frecuencias y sus modos normales de oscilación de \sqrt{g} este sistema con dos péndulos de igual longitud l pero de masas diferentes m_a y m_b , acoplados mediante un resorte de constante k.

- a) Suponga que el acoplamiento es débil $(k \ll \frac{g}{l} \frac{m_a m_b}{m_a + m_b})$ y que las condiciones iniciales son: $\dot{\Psi}_a(0) = 0, \dot{\Psi}_b(0) = 0, \Psi_a(0) = 0, \Psi_b(0) = 1$. Obtenga el movimiento de cada masa y grafíquelo en función del tiempo.
- b) Calcule los valores medios, en un ciclo rápido, de T_a y T_b , donde T indica energía cinética. Grafique $\langle T_a \rangle$ y $\langle T_b \rangle$, y analice las diferencias en el gráfico como función de las diferencias entre las masas $(m_a = m_b$ y m_a muy diferente de m_b). Calcule el valor medio de la energía de interacción entre las dos partículas.
- 2. Anteriormente se pidió obtener frecuencias y los modos transversales del sistema de la figura. Las masas están apoyadas en una mesa sin rozamiento, sujetas a las paredes por resortes de constante k y unidas por otro resorte de constante k'. ¿Bajo qué condiciones espera observar batidos? ¿Qué son los batidos?

Sistemas de N grados de libertad forzados

- 3. Considere el sistema de dos péndulos acoplados del problema 1, tal que uno de ellos es impulsado por una fuerza $F = F_0 \cos(\Omega t)$.
 - a) Escriba las ecuaciones de movimiento del sistema con amortiguamiento y forzado y desacople las ecuaciones utilizando las coordenadas normales del sistema.
 - b) Resuelva el sistema forzado para las coordenadas normales y luego escriba la solución más general posible para las coordenadas de las partículas a y b.
 - c) Estudie el caso estacionario, observe cuando las partículas están en fase o contrafase.
 - d) Muestre que considerando $m_a = m_b = m$ y despreciando el amortiguamiento se obtienen las siguientes expresiones.

$$\begin{split} \Psi_a &\approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} + \frac{1}{\omega_2^2 - \Omega^2} \right] \\ \Psi_b &\approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} - \frac{1}{\omega_2^2 - \Omega^2} \right] \\ \frac{\Psi_b}{\Psi_a} &\approx \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2 - 2\Omega^2} \end{split}$$

donde ω_1 es la menor de las frecuencias modales, ω_2 es la mayor y Ω es la frecuencia de excitación.

- e) (*) Grafique $\frac{\Psi_b}{\Psi_a}$, ¿qué representa esta relación? Indique cuándo hay una transferencia efectiva de movimiento y cuándo no.
- 4. Considere el sistema del problema 2, pero en este caso en considere las oscilaciones longitudinales.

- a) Halle la solución estacionaria para el caso forzado en el cual se aplica sobre la masa de la izquierda una fuerza oscilante $F(t) = F_0 cos(\Omega t)$. ¿Qué resonancias espera ver si realiza un barrido de frecuencias?
- b) (*) Repita el punto anterior, teniendo en cuenta además una fuerza de disipación proporcional a la velocidad
- c) (*) Repita el problema pero considerando las oscilaciones transversales del sistema