Strojové učenie a neurónové siete - **zadanie 4** - učenie bez učiteľa (zhlukovanie)

Zadanie 4

- Zadanie a bodovanie je k dispozícii na dokumentovom serveri v AIS
- Máte sa naučiť:
 - 1. Exploratory Data Analysis
 - 2. Pracovať s textovými dátami
 - 3. Zhlukovať dáta
 - 4. Zmenšovať dimenziu dát
- Dataset:
 - Hry na Steame, dostupný v AIS.

Obsah tejto prezentácie

- EDA
- Učenie bez učiteľa
- Typy zhlukovania
- Vybrané zhlukovacie algoritmy kMeans, DBSCAN, AHC, GMM

- Ukážka sklearn, plotly, pandas,
- O týždeň: redukovanie dimenzie

Učenie bez učiteľa

- Hľadá vzory v dátach
- Definujeme vstupnú množinu a parametre modelu
- Ako výstup získavame napríklad:
 - Príslušnosti ku zhlukom ("prirodzené" triedy)
 - Lepšie pochopenie dát/vzťahov
 - Iná reprezentácia dát
- Využitie učenia bez učiteľa:
 - Nedostatok označených dát na trénovanie
 - Data mining nevieme koľko/aké dáta (triedy) máme
 - Pochopenie dát napr. Exploratory Data Analysis
 - "Feature engineering"
- Oproti učeniu s učiteľom:
 - + Ľahšie získať dáta
 - Obvykle výpočtovo komplexnejšie
 - Ako vyhodnocujem úspešnosť?

- Príklady:
 - Zhlukovacie algoritmy
 - Anomálie
 - Autoenkódery

Učenie bez učiteľa

Učenie bez učiteľa - clustering

- Príklad:

▲ InvoiceNo =	∆ StockCode =	△ Description =	# Quantity =	☐ InvoiceDate =	# UnitPrice =	∞ CustomerID =	Country
25900 unique values	4070 unique values	4224 unique values	-80995 81.0k	12Jan10 10Dec11	-11.1k 39k	12.3k 18.3k	4
536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850	United Kingdom
536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850	United Kingdom
536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850	United Kingdom
536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850	United Kingdom
536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850	United Kingdom
536365	22752	SET 7 BABUSHKA NESTING BOXES	2	01-12-2010 08:26	7.65	17850	United Kingdom
536365	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6	01-12-2010 08:26	4.25	17850	United Kingdom
536366	22633	HAND WARMER UNION JACK	6	01-12-2010 08:28	1.85	17850	United Kingdom

Učenie bez učiteľa - clustering

Poznámky:

- Triedy (typy zákazníkov) neboli určené dopredu, analýza bola spravená po natrénovaní modelu
- Zhluky boli vytvorené pomocou všetkých kategórii zo vstupu
- Zhlukovanie vyberá (malo by) vyberať tie triedy tak, aby:
 - Vzorky v rámci jedného zhluku si navzájom najpodobnejšie (intratriedna vzdialenosť)
 - Zhluky medzi sebou (intertriedna vzdialenosť) sú si čo najmenej podobné

- 1. Ako určím podobnosť medzi vzorkami?
- 2. Aký je správny počet zhlukov?

Meranie vzdialeností

- Opäť potrebujeme číselné reprezentácie pre každý vstup
- Minkowski vzdialenosť:

$$d = \left(\sum_{i=1}^{n} |A_i - B_i|^p\right)^{1/p}$$

- Manhattanská vzdialenosť p=1
- Euklidovská vzdialenosť p=2

Kosínusová vzdialenosť:

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

- Mahalanobis, Hamming ...

- Connectivity models

- Hierarchické modely
- Nevhodná pre veľké datasety
- AHC

- Centroid models

- Počet zhlukov určený predom
- Citlivé na inicializáciu a outliers
- K-means

- Distribution models

- Založené na pravdepodobnosti
- Náchylné na pretrénovanie
- Gaussian Mixture Models

- Hľadajú "husto obsadené" podpriestory
- DBSCAN

- Connectivity models

- Hierarchické modely
- Nevhodná pre veľké datasety
- Chinese whispers

- Centroid models

- Počet zhlukov určený predom
- Citlivé na inicializáciu a outliers
- K-means

- Distribution models

- Založené na pravdepodobnosti
- Náchylné na pretrénovanie
- Gaussian Mixture Models

- Hľadajú "husto obsadené" podpriestory
- DBSCAN

- Connectivity models

- Hierarchické modely
- Nevhodná pre veľké datasety
- Chinese whispers

Centroid models

- Počet zhlukov určený predom
- Citlivé na inicializáciu a outliers
- K-means

- Distribution models

- Založené na pravdepodobnosti
- Náchylné na pretrénovanie
- Gaussian Mixture Models

- Hľadajú "husto obsadené" podpriestory
- DBSCAN

- Connectivity models

- Hierarchické modely
- Nevhodná pre veľké datasety
- Chinese whispers

Centroid models

- Počet zhlukov určený predom
- Citlivé na inicializáciu a outliers
- K-means

- Distribution models

- Založené na pravdepodobnosti
- Náchylné na pretrénovanie
- Gaussian Mixture Models

- Hľadajú "husto obsadené" podpriestory
- DBSCAN

K-means clustering

- 1. Zvoľme počet clusterov, každému prislúcha jeden centroid zvolený náhodne
- 2. Každý bod priradíme ku tomu zhluku, ktorého centroid je mu najbližšie
- 3. Každému zhluku vypočítame nový centroid ako priemer bodov priradených zhluku
- 4. Opakujeme bod 2-3 do konvergencie alebo zastavujúcej podmienky

Príklad:

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

DBSCAN

- 1. Vyberme bod, ktorý ešte nebol navštívený.
- 2. Ak má v okolí (d<hyperparameter ε) dostatočný počet bodov (hyperparameter minPoints), stáva sa z neho počiatok clustra. Body z okolia pridáme do clustra. Označíme ho ako navštívený.
- 3. Pre každý nenavštívený bod v clustri, pridáme všetky body z jeho okolia do clustra a označíme ho ako navštívený.
- 4. Opakujeme bod 3, kým je čo pridať.
- 5. Opakujeme bod 1-4 do konvergencie alebo zastavujúcej podmienky.

Príklad: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Agglomerative Hierarchical Clustering

- 1. Každý bod je vlastným zhlukom.
- 2. Skombinujeme 2 najbližšie zhluky do jedného. (Vyberáme akým spôsobom počítame vzdialenosti medzi zhlukmi).
- 3. Opakujeme bod 2, kým nie sú všetky body v jednom zhluku.

Gaussian Mixture Models

- 1. Vyberieme počet zhlukov a náhodne inicializujeme parametre pre Gaussovo rozdelenie pravdepodobnosti
- 2. Vypočítame pravdepodobnosť, že bod patrí do zhluku
- 3. Upravíme parametre tak, aby sme maximalizovali pravdepodobnosti, že body patria k zhluku
- 4. Opakujeme bod 2-3 do konvergencie alebo zastavujúcej podmienky

Exploratory Data Analysis

- Wikipedia:
 - In statistics, exploratory data analysis is an approach to analyzing data sets to summarize their main characteristics, often with visual methods.
- Začiatok práce s datasetom hľadá vzory, odpovedá na otázky o dátach, odhaľuje skryté vzťahy, pomáha pri feature engineering
- Príklady:
 - https://www.kaggle.com/lmorgan95/r-suicide-rates-in-depth-stats-insights
 - https://www.kaggle.com/donyoe/exploring-youtube-trending-statistics-eda
 - https://www.kaggle.com/adhok93/eda-with-plotly
 - https://www.kaggle.com/xvivancos/eda-tweets-during-cavaliers-vs-warriors
 - https://www.kaggle.com/danilodiogo/google-play-store-eda-plotting-with-highcharts
 - https://www.kaggle.com/xvivancos/eda-the-cure-discography
 - https://www.kaggle.com/erikbruin/gun-violence-in-the-us-eda-and-rshiny-app
 - https://www.kaggle.com/lucian18/matching-loans-with-poverty-problems

