Тропический закон взаимности Вейля

Магин Матвей Ильич

Санкт-Петербургский государственный университет, МЦМУ им. Леонарда Эйлера

matheusz.magin@gmail.com

Соавторы: Калинин Никита Сергеевич

Секция: Геометрия

В комплексной геометрии широко известен закон взаимности Вейля: если f и g — мероморфные функции на компактной римановой поверхности S с непересекающимися дивизорами, то выполняется тождество $\prod_{z\in S} f(z)^{\operatorname{ord}_z g} = \prod_{z\in S} g(z)^{\operatorname{ord}_z f}$, где $\operatorname{ord}_z f$ — минимальная степень в разложении f в ряд Лорана в окрестности точки z. Топологическое доказательство этого результата принадлежит A. Бейлинсону.

Мы с Никитой Калининым двумя существенно различными способами доказали полный тропический аналог этого утверждения. А именно, что для тропических мероморфных функций f и g на компактной тропической кривой Γ выполняется тождество $\sum_{x\in\Gamma}\operatorname{ord}_x g\cdot f(x)=\sum_{x\in\Gamma}\operatorname{ord}_x f\cdot g(x)$.

Доказательство Никиты Сергеевича опирается на технику тропической модификации и использует тропическую теорему Менелая. Идея моего доказательства состоит в том, что утверждение можно доказать для ребра, а затем проверить, что произведение Вейля выдерживает склейку. Оказалось, что аналогично можно делать для римановой поверхности: разрезать её на цилиндры и штаны и выразить произведение Вейля через интеграл от некоторой функции по границе куска. Таким образом при помощи идей доказательства тропического закона Вейля было также получено альтернативное топологическое доказательство "классического" закона Вейля. Доклад будет посвящен изложению этих результатов.

- [1] Nikita Kalinin, A guide to tropical modifications, arXiv, 2024.
- [2] A. Khovanskii, Logarithmic functional and the Weil reciprocity law, Computer Algebra 2006, 85-108.