IOI 2018 中国国家队选拔赛暨精英赛

CTSC 2018

第一试

时间: 2018 年 5 月 7 日 08:30 ~ 13:30

题目名称	假面	暴力写挂	青蕈领主
题目类型	传统型	传统型	传统型
目录	faceless	wronganswer	green
可执行文件名	faceless	wronganswer	green
输入文件名	faceless.in	wronganswer.in	green.in
输出文件名	faceless.out	wronganswer.out	green.out
113 113 113 113	14662633.046	wi onganswei toae	8
每个测试点时限	6.0 秒	4.0 秒	3.0 秒
每个测试点时限	6.0 秒	4.0 秒	3.0 秒

提交源程序文件名

对于 C++ 语言	faceless.cpp	wronganswer.cpp	green.cpp
对于 C 语言	faceless.c	wronganswer.c	green.c
对于 Pascal 语言	faceless.pas	wronganswer.pas	green.pas

编译选项

对于 C++ 语言	-02 -1m	-02 -1m	-02 -1m
对于 C 语言	-02 -1m	-02 -1m	-02 -1m
对于 Pascal 语言	-02	-02	-02

假面 (faceless)

【题目背景】

针针是绿绿的好朋友。

【题目描述】

针针喜欢玩一款叫做 DotA (**D**efense **o**f **t**he **A**lgorithm)的游戏,在这个游戏中,针针会操纵自己的英雄与队友一起对抗另一支队伍。

针针在 DotA 中最喜欢使用的英雄叫做假面 (Faceless), 该英雄有 2 个技能:

- 锁定: 对一名指定的敌方单位使用,以 p 的概率对该单位造成 1 点伤害(使其减少 1 点生命值)。
- 结界:在一片区域施放结界,让该区域内的所有其他单位无法动弹。 在游戏中,如果一个单位的生命值降至 0 或 0 以下,那么该单位就会死亡。 针针操纵假面的水平一般,因此他决定勤加练习。

现在有 n 个敌方单位 (编号从 1 至 n),编号为 i 的敌方单位有 h_i 点生命值。针针已经安排好了练习的计划,他会按顺序施放 Q 个技能:

- 对于锁定技能: 针针会指定一个敌方单位 id,并对它施放。由于决定概率系数 p 的因素很多,因此每次的 p 都不一定相同。
 - 特别地,如果该敌方单位已经死亡,那么该技能不会造成任何效果。
- 对于结界技能:针针会希望对 k 个指定的敌方单位施放,但由于针针并不擅长施放该技能,因此他只能命中恰好 1 个敌方单位。命中每个存活的敌方单位的概率是相等的(也就是说已经死亡的敌方单位不会有任何影响)。
 - 特别地,如果这 k 个敌方单位均已死亡,那么该技能同样不会命中任何敌方单位。

现在, 围观针针进行练习的绿绿想知道:

- 1. 对于针针施放的每个结界技能,它命中各敌人的概率分别是多少。
- 2. 在针针的所有技能施放完毕后,所有敌方单位剩余生命值的期望分别是多少。由于绿绿还要围观针针训练,所以请你帮他解决这两个问题。

为了防止精度误差,对于所有需要输出的数值,请输出其在模 998,244,353 意义下的值。

由于结界为假面的终极技能,因此针针施放该技能的次数不会太多。具体请见【子任务】。

【输入格式】

从文件 faceless.in 中读入数据。

- 第 1 行为 1 个正整数 n,表示敌方单位的数量。
- 第 2 行为 n 个正整数 m_1, \ldots, m_n ,依次表示各敌方单位的初始生命值。
- 第 3 行为 1 个非负整数 O,表示针针施放技能的数量。
- 第 4 行至第 Q+3 行,每行描述一个技能,第 i+3 行描述第 i 个技能。
 - 每行的开头为一个整数 op, 表示该技能的种类。
 - 如果 op = 0,则表示锁定技能。并在此后跟随着 3 个正整数 id, u, v,表示技能施放的目标为 id,技能命中的概率为 $p = \frac{u}{v}$ 。(保证 $1 \le id \le n$, $0 < u \le v < 998, 244, 353)$
 - 如果 op = 1,则表示结界技能。并在此后跟随着 1 个正整数 k 表示技能施放的目标数量,随后还有额外的 k 个数 $id_1, ..., id_k$ 描述技能施放的所有目标。(保证所有 $1 \le id_i \le n$ 互不相同)

对于每一行,如果行内包含多个数,则用单个空格将它们隔开。

【输出格式】

输出到文件 faceless.out 中。

输出包 C+1 行 (其中 C 为结界技能的数量):

- 前 C 行依次对应每个结界技能,对于每行:
 - 输出 k 个数,第 i 个数表示结界命中敌方单位 id_i 的概率。
- 第 C+1 行输出 n 个数,第 i 个数表示在所有技能施放完毕后,敌方单位 i 剩余 生命值的期望值。

对于每一行,如果行内包含多个数,则用单个空格将它们隔开。

对于所有数值,请输出它们对 998,244,353 取模的结果:即设答案化为最简分式后的形式为 $\frac{a}{b}$,其中 a 和 b 的互质。输出整数 x 使得 $bx \equiv a \mod 998244353$ 且 $0 \le x < 998244353$ 。(可以证明这样的整数 x 是唯一的)

【样例1输入】

3

1 2 3

6

0 2 1 1

1 1 2

0 2 1 1

0 3 1 1

1 1 2

1 3 1 2 3

【样例1输出】

1

0

499122177 0 499122177

1 0 2

【样例1解释】

针针按顺序施放如下技能:

- 1. 对敌方单位 2 施放技能锁定: 以 1 的概率对其造成 1 点伤害。
 - 此时 2 号敌方单位必定剩余 1 点生命值。
- 2. 对敌方单位 2 施放技能结界: (由于 2 号敌方单位尚存活,)必定命中 2 号单位。
- 3. 对敌方单位 2 施放技能锁定: 以 1 的概率对其造成 1 点伤害。
- 4. 对敌方单位 3 施放技能锁定: 以 1 的概率对其造成 1 点伤害。
 - 此时三个敌方单位的生命值一定分别为 1,0,2, 敌方单位 2 一定死亡。
- 5. 对敌方单位 2 施放技能结界: (由于 2 号敌方单位已死亡,)必定不命中任何单位。
- 6. 对敌方单位 1,2,3 施放技能结界: 命中敌方单位 1,3 的概率是相等的,即各位 $\frac{1}{2}$ 。 最终,三个敌方单位的剩余生命值一定为 1,0,2。

【样例 2 输入】

3

1 1 1

4

0 2 1 2

1 2 1 2

0 3 2 3

1 3 1 2 3

【样例 2 输出】

249561089 748683265 804141285 887328314 305019108

1 499122177 332748118

【样例2解释】

对于各结界技能的分析:

- 1. 第 1 个结界(目标为敌方单位 1,2):
 - 2 号敌方单位存活的概率为 $\frac{1}{2}$, 1 号敌方单位必定存活。
 - 如果 2 号敌方单位存活,那么结界命中 1,2 的概率相等,均为 ½;如果 2 号敌方单位死亡,那么结界必定命中 1 号敌方单位。
 - 因此: 命中 1 号敌方单位的概率为 $\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$; 命中 2 号敌方单位的概率为 $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 。
- 2. 第 2 个结界(目标为敌方单位 1,2,3):
 - 三个敌方单位存活的概率分别为 $1, \frac{1}{2}, \frac{1}{3}$ 。
 - 1,2,3 同时存活的概率为 $\frac{1}{6}$; 只有 1,2 存活的概率为 $\frac{1}{3}$; 只有 1,3 存活的概率为 $\frac{1}{6}$; 只有 1 存活的概率为 $\frac{1}{3}$ 。
 - 因此: 命中 1 号敌方单位的概率为 $\frac{1}{6} \times \frac{1}{3} + \left(\frac{1}{3} + \frac{1}{6}\right) \times \frac{1}{2} + \frac{1}{3} \times 1 = \frac{23}{36}$; 命中 2 号敌方单位的概率为 $\frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} = \frac{2}{9}$; 命中 3 号敌方单位的概率为 $\frac{1}{6} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{2} = \frac{5}{36}$ 。

最终,三个敌方单位的剩余生命值的期望值为 $1, \frac{1}{2}, \frac{1}{3}$ 。

【样例 3】

见选手目录下的 *faceless/faceless3.in* 与 *faceless/faceless3.ans*。

【样例 4】

见选手目录下的 *faceless/faceless4.in* 与 *faceless/faceless4.ans*。

【子任务】

我们记C为结界技能的数量。

n =	Q =	C =	测试点编号	u, v	其他限制
5	21	6	1		无
	199,992	500	2		所有 p 均相等
	23	6	3	,,,,	所有 $m_i = 1$
60	199,994	500	4	u < v	$m_i = 1$
19	199,995	300	5		
	199,996 0 6				
	199,997	500	7	u = v	
200	199,998		8	u < v	<i>)</i> L
	199,999	1000	9		
	200,000		10		

为了优化你的阅读体验,我们把<u>测试点编号</u>放在了表格的中间,请注意这一点。 对于所有测试点,保证 $n \leq 200$, $Q \leq 200,000$, $C \leq 1000$, $m_i \leq 100$ 。

【提示】

- 1. 第 3 个样例满足测试点 1 的数据规模限制。
- 2. 第 4 个样例满足限制 "所有 p 均相等"。
- 3. Q 的个位可以帮助你快速确定测试点的编号。
- 4. 测试点顺序可能与难度无关。

暴力写挂 (wronganswer)

【题目描述】

temporaryDO 是一个很菜的 OIer。在 4 月,他在省队选拔赛的考场上见到了《林克卡特树》一题,其中 k=0 的部分分是求树 T 上的最长链。可怜的 temporaryDO 并不会做这道题,他在考场上抓猫耳挠猫腮都想不出一点思路。

这时,善良的板板出现在了空中,他的身上发出璀璨却柔和的光芒,荡漾在考场上。"题目并不难。"板板说。那充满磁性的声音,让 temporaryDO 全身充满了力量。他决定:写一个枚举点对求 LCA 算距离的 k=0 的 $O(n^2 \log n)$ 的部分分程序!于是,temporaryDO 选择以 1 为根,建立了求 LCA 的树链剖分结构,然后写了二重 <u>for</u> 循环枚举点对。

然而,菜菜的 temporaryDO 不小心开小了数组,于是数组越界到了一片神秘的内存区域。但恰好的是,那片内存区域存储的区域恰好是另一棵树 T'。这样一来,程序并没有 RE,但他求 x 和 y 的距离的时候,计算的是

$$\operatorname{depth}(x) + \operatorname{depth}(y) - (\operatorname{depth}(\operatorname{LCA}(x, y)) + \operatorname{depth}'(\operatorname{LCA}'(x, y)))$$

最后程序会输出每一对点对 i, j ($i \le j$) 的如上定义的"距离"的最大值。

temporaryDO 的程序在评测时光荣地爆零了。但他并不服气,他决定花好几天把自己的程序跑出来。请你根据 T 和 T' 帮帮可怜的 temporaryDO 求出他程序的输出。

【输入格式】

从文件 wronganswer.in 中读入数据。

第一行包含一个整数 n,表示树上的节点个数;

第 2 到第 n 行,每行三个整数 x、y、v,表示 T 中存在一条从 x 到 y 的边,其长 度为 v;

第 n+1 到第 2n-1 行,每行三个整数 x、y、v,表示 T' 中存在一条从 x 到 y 的 边,其长度为 v。

【输出格式】

输出到文件 wronganswer.out 中。

输出一行一个整数,表示 temporaryDO 的程序的输出。

【样例1输入】

6

1 2 2

- 1 3 0
- 2 4 1
- 2 5 -7
- 3 6 0
- 1 2 -1
- 2 3 -1
- 2 5 3
- 2 6 -2
- 3 4 8

【样例1输出】

5

【样例1解释】

点对 (3,4) 的距离计算为 3+0-(0+(-2))=5。

【样例 2】

见选手目录下的 wronganswer/wronganswer2.in 与 wronganswer/wronganswer2.ans。

【子任务】

对于所有数据, $n \le 366,666$, $|v| \le 2,017,011,328$ 。 详细数据范围见下表,表格中的"无"表示无特殊限制。

测试点编号	n <=	ν	T 是一条链	T' 是一条链	
1	36	= 1	否	否	
2	366				
3	1388				
4	1999	> 0			
5	2666				
6	5666				
7	8666	 			
8	11111	无			
9	12345				
10		> 0	是	是	
11		无			
12		> 0 无 > 0		否	
13					
14					
15	366666			是	
16					
17			否		
18		无		否	
19					
20					

【提示】

 $\operatorname{depth}(p)$ 和 $\operatorname{depth}'(p)$ 分别表示树 T 、 T' 中点 1 到点 p 的距离,这里规定,距离指的是经过的**边**的边权总和,其中 $\operatorname{depth}(1)=0$ 。

LCA(x,y) 和 LCA'(x,y) 分别表示树 T、T' 中点 x 与点 y 的最近公共祖先,即在 从 x 到 y 的最短路径上的距离根**经过边数最少**的点。

青蕈领主 (green)

【题目背景】

"也许,我的生命也已经如同风中残烛了吧。"小绿如是说。

【题目描述】

小绿同学因为微积分这门课,对"连续"这一概念产生了浓厚的兴趣。小绿打算把连续的概念放到由整数构成的序列上,他定义一个长度为m的整数序列是连续的,当且仅当这个序列中的最大值与最小值的差,不超过m-1。例如 $\{1,3,2\}$ 是连续的,而 $\{1,3\}$ 不是连续的。

某天,小绿的顶头上司板老大,给了小绿 T 个长度为 n 的排列。小绿拿到之后十分欢喜,他求出了每个排列的每个区间是否是他所定义的"连续"的。然而,小绿觉得被别的"连续"区间包含住的"连续"区间不够优秀,于是对于每个排列的所有右端点相同的"连续"区间,他只记录下了长度最长的那个"连续"区间的长度。也就是说,对于板老大给他的每一个排列,他都只记录下了在这个排列中,对于每一个 $1 \le i \le n$,右端点为 i 的最长"连续"区间的长度 L_i 。显然这个长度最少为 1,因为所有长度为 1 的整数序列都是连续的。

做完这一切后,小绿爬上绿色床,美美地做了一个绿色的梦。

可是第二天醒来之后,小绿惊讶的发现板老大给他的所有排列都不见了,只剩下他记录下来的 T 组信息。小绿知道自己在劫难逃,但是作为一个好奇的青年,他还是想知道:对于每一组信息,有多少个和信息符合的长度为 n 的排列。

由于小绿已经放弃治疗了,你只需要告诉他每一个答案对 998244353 取模的结果。 我们并不保证一定存在至少一个符合信息的排列,因为小绿也是人,他也有可能 犯错。

【输入格式】

从文件 green.in 中读入数据。

输入的第一行包含两个整数 T,n,分别表示板老大给小绿的排列个数、以及每个排列的长度。

接下来 T 行,每行描述一组信息,包含 n 个正整数,第 i 组信息的从左往右第 j 个整数 $L_{i,i}$ 表示第 i 个排列中右端点为第 j 个数的最长"连续"区间的长度。

对于每一行,如果行内包含多个数,则用单个空格将它们隔开。

【输出格式】

输出到文件 green.out 中。

对于每组信息,输出一行一个整数表示可能的排列个数对 998244353 取模的结果。由于是计算机帮你算,所以我们不给你犯错的机会。

【样例1输入】

1 3

1 1 3

【样例1输出】

2

【样例 2】

见选手目录下的 *green/green2.in* 与 *green/green2.ans*。

【样例 3】

见选手目录下的 *green/green3.in* 与 *green/green3.ans*。

【子任务】

测试点编号	$n \leq$	$T \leq$	特殊性质	
1 ~ 2	10	1	无	
3 ~ 4	10	100		
5		1	$L_{i,j}=j$	
6	300	1	$L_{i,j} = 1 \perp j < n$	
7 ~ 8		100	无	
9	1000	1	$L_{i,j} = 1 \perp j < n$	
10 ~ 12	1000			
13 ~ 16	5000	100	无	
17 ~ 20	50,000			

对于所有测试数据, $1 \le T \le 100$, $1 \le N \le 50000$, $1 \le L_{i,j} \le j$ 。

【提示】

本题部分测试点的输入规模较大,请注意读入效率。