

Jetson Nano, Jetson TX2 NX, and Jetson Xavier NX Camera Module Hardware

Design Guide

Document History

DG-09729-001 v1.2

	_	
Version	Date	Description of Change
1.0	November 8, 2019	Initial Release
1.1	May 5, 2020	Added Jetson Xavier NX camera information
1.2	February 22, 2021	Added Jetson TX2 NX
		Updated figures
		Updated camera connector pinout tables

Table of Contents

Chapter 1.	Introduction	1
1.1 R	eferences	1
1.2 Al	bbreviations and Definitions	2
Chapter 2.	Jetson Camera Modules	3
2.1 Sy	ystem Setup	3
2.2 C	amera Connections	6
2.2.1	Developer Kit Camera Sensor Module Case	6
2.2.2	Custom Carrier Board Multiple Camera Case	8
2.3 C	amera Sensor Modules	10
Chapter 3.	Camera Interface Details	12
Chapter 4.	Power	16
Chapter 5.	I2C Address	17
Chapter 6.	Components	18
6.1 12	C MUX	18
6.2 D	eveloper Kit Camera Connector(s)	18
Chapter 7.	Optional	19
7.1 12	C GPIO Expander	19
7.2 C	lock Buffer and XTAL	19

List of Figures

Figure 2-1.	Jetson Nano Developer Kit (A02) Carrier Board	.4
Figure 2-2.	Jetson Nano Developer Kit (B01) Carrier Board	.4
Figure 2-3.	Jetson Nano 2GB Developer Kit Carrier Board	.5
Figure 2-4.	Jetson Xavier NX Developer Kit Carrier Board	.5
Figure 2-5.	Jetson Nano Developer Kit Carrier Board (A02) Camera Sensor Connector	.6
Figure 2-6.	Jetson Nano Developer Kit Carrier Board (B01) Camera Sensor Connectors	.7
Figure 2-7.	Jetson Nano 2GB Developer Kit Carrier Board Camera Sensor Connector	.7
Figure 2-8.	Jetson Xavier NX Developer Kit Carrier Board Camera Sensor Connectors	.8
Figure 2-9.	Custom Carrier Board Multiple Camera Connections	10
Figure 2-10.	Developer Kit Camera Sensor Module	11
Figure 2-11.	Custom Carrier Board Camera Sensor Module	11

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 3-1.	Developer Kit Carrier Board Camera Connector #1 Pinout	12
Table 3-2.	Developer Kit Carrier Board Camera Connector #2 Pinout	13
Table 3-3.	Camera Related Pin Descriptions for Jetson Nano, Jetson TX2 NX, Xavier NX Modules	
Table 5-1.	I2C Address	

Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from the camera connector supported on the NVIDIA® Jetson Nano™, Jetson Nano 2GB, or Jetson Xavier™ NX Developer Kit carrier boards, or on a custom carrier board for Jetson Nano, Jetson™ TX2 NX, or Jetson Xavier NX modules that brings out additional camera interface pins.

1.1 References

Refer to the following documents or models for more information. Always use the latest revision of all documents.

- Jetson Nano Developer Kit Carrier Board Specification
- Jetson Xavier NX Developer Kit Carrier Board Specification
- ▶ Jetson Nano Product Design Guide
- Jetson TX2 NX Product Design Guide
- ▶ Jetson Xavier NX Product Design Guide

1.2 **Abbreviations and Definitions**

Table 1-1 lists abbreviations that may be used throughout this design guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition
ADDR	Address
AF	Auto Focus
B2B	Board-to-Board
CSI	MIPI spec. Camera Serial Interface
GPI0	General Purpose Input/Output
FM	Fast Mode of I2C (400 KHz)
I2C	Inter IC
MUX	Multiplexer
LD0	Low Dropout (voltage regulator)
XTAL	Crystal Oscillator

Chapter 2. Jetson Camera Modules

This design guide is to be used when designing a camera module for use with the Jetson Nano, Jetson Nano 2GB, or Jetson Xavier NX Developer Kit carrier boards or when designing a custom carrier board and camera module(s). The Jetson TX2 NX modules can be used with the Jetson Xavier NX Developer Kit carrier board.

Items to be checked:

- Power distribution and usage
- ▶ I2C addressing
- Camera connector pinout table and full module camera interface pin descriptions
- Mechanical (developer kit connector details)

Note: Refer to the Jetson Nano, Jetson TX2 NX, or Jetson Xavier NX product design guide for CSI routing guidelines. The carrier board PCB routing plus any camera flex cable should meet the requirements.

System Setup

- Jetson Nano, Jetson Nano 2GB, or Jetson Xavier NX Developer Kit or custom carrier board
- Compatible camera sensor module(s)

Figure 2-1. Jetson Nano Developer Kit (A02) Carrier Board

Figure 2-2. Jetson Nano Developer Kit (B01) Carrier Board

Note: The camera connector J13 on both the Jetson Nano A02 and B01 developer kit carrier boards receive the same CSI, clock, and power down signals. On B01, the I2C interface passes through an I2C multiplexer, where on A02, CAM_I2C connects directly to the camera connector.

Figure 2-3. Jetson Nano 2GB Developer Kit Carrier Board

Figure 2-4. Jetson Xavier NX Developer Kit Carrier Board

Note: The position of camera connector #1 (connected to CSI0) and camera connector #2 (connected to CSI2) are swapped on the Jetson Xavier NX Developer Kit compared to the Jetson Nano Developer Kit (B01).

2.2 Camera Connections

The following sections gives information regarding the camera connections for use with one of the developer kits or a custom carrier board design.

Developer Kit Camera Sensor Module Case 2 2 1

The Jetson Nano Developer Kit A02 version supports a 2-lane CSI interface which is routed to a single flex connector. The Jetson Nano Developer Kit B01 version or Jetson Xavier NX Developer Kit supports two, 2-lane flex connectors. A camera module could be connected directly if it is compatible with the power and controls provided, otherwise an interposer board of some type would be required.

Figure 2-5. Jetson Nano Developer Kit Carrier Board (A02) Camera Sensor Connector

Jetson Nano Developer Kit Carrier Board (B01) Camera Figure 2-6. Sensor Connectors

Figure 2-7. Jetson Nano 2GB Developer Kit Carrier Board Camera Sensor Connector

Figure 2-8. Jetson Xavier NX Developer Kit Carrier Board Camera Sensor Connectors

Custom Carrier Board Multiple Camera Case 2.2.2

The Jetson Nano module supports 12 CSI lanes and can support the following configurations:

- ▶ 3 x4 lane cameras
- ▶ 2 x4 lane cameras plus 2 x2 lane cameras
- 1 x4 lane camera plus 3 x2 lane cameras
- 4 x2 lane cameras

The Jetson TX2 NX module supports 12 CSI lanes and can support the following configurations:

- ▶ 3 x4 lane cameras
- ▶ 2 x4 lane cameras plus 2 x2 lane cameras
- 1 x4 lane camera plus 4 x2 lane cameras
- ▶ 5 x2 lane cameras

The Jetson Xavier NX module supports 14 CSI lanes (12 can be used in a design) and can support the following configurations:

- ▶ 3 x4 lane cameras
- ▶ 2 x4 lane cameras plus 2 x2 lane cameras
- ▶ 1 x4 lane camera plus 4 x2 lane cameras
- ▶ 6 x2 lane cameras

Any of the x2 lane interfaces can be used to support a single x1 lane camera as well. The CSI lanes, clock(s) and control signals can be brought to camera module connectors on the carrier board, or to a main connector that an interposer board connects to. In the following example, 3 x4 lane camera modules connect to a custom carrier board or carrier board/interposer as required. Jetson Nano, Jetson TX2 NX, and Jetson Xavier NX all support two MCLKs and two GPIOs for power-down or other purposes. There are two additional pins on the Jetson modules that can be used to support two more camera MCLKs. These are GPI001 and GPI011. A clock buffer may be needed if more than 4 cameras are supported, or if this will improve routing and signal integrity. An I2C mux would likely be required unless the camera modules have unique I2C addresses and the routing on a single I2C interface would not adversely affect the signal quality.

Figure 2-9. Custom Carrier Board Multiple Camera Connections

Camera Sensor Modules 2.3

Figure 2-10 is a high-level block diagram for a camera sensor module compatible with the developer kit carrier board camera connectors.

Figure 2-10. Developer Kit Camera Sensor Module

Note: LDO supplies shown are for example only - actual voltages required on camera module depend on sensor and other circuitry implemented on the module.

Figure 2-11 is the high-level block diagram for a camera sensor module for use on a custom carrier board when there are multiple camera sensors.

Figure 2-11. Custom Carrier Board Camera Sensor Module

*Flash / AF driver are optional

Chapter 3. Camera Interface Details

This chapter contains the camera connector pinouts for Jetson Nano, Jetson Nano 2GB, and Jetson Xavier NX developer kits. Also included are camera related pin descriptions for Jetson Nano, Jetson TX2 NX, and Jetson Xavier NX modules.

Note: In Table 3-1 through Table 3-3, "Output" is to the camera module and "Input" is from the camera module.

Developer Kit Carrier Board Camera Connector #1 Pinout Table 3-1.

Pin	Description	Volt	Type/Dir.	Signal Name	Pin	Description
1	Ground	_	_	GND	2	Not used
3	0	1.2	Input	CSI0_D0_N	4	Not used
5	Camera Lane 0	1.2	Input	CSI0_D0_P	6	Not used
7	Ground	_	_	GND	8	Not used
9	Camera Lane 1	1.2	Input	CSI0_D1_N	10	Not used
11	Camera Lane i	1.2	Input	CSI0_D1_P	12	Not used
13	Ground	_	_	GND	14	Not used
15	0	1.2	Input	CSI0_CLK_N	16	Not used
17	Camera clock lane	1.2	Input	CSIO_CLK_P	18	Not used
19	Ground	_	_	GND	20	Not used
21	Camera Power-down GPIO	1.8	Output	CAM0_PWDN	22	Not used
23	Camera MCLK	1.8	Output	CAM0_MCLK	24	Not used
25	Camera I2C clock	3.3 OD	Bidirectional	CAM_I2C_SCL	26	Not used
27	Camera I2C data	3.3 OD	Bidirectional	CAM_I2C_SDA	28	Not used
29	3.3V supply	_	-	VDD_3V3_SYS	30	Not used

Note: Camera Connector #1 is J13 on Jetson Nano and J1 Jetson Xavier NX.

Table 3-2. Developer Kit Carrier Board Camera Connector #2 Pinout

Pin	Description	Volt	Type/Dir.	Signal Name	Pin	Description
1	Ground	_	_	GND	2	Not used
3	00	1.2	Input	CSI2_D0_N	4	Not used
5	Camera Lane 0	1.2	Input	CSI2_D0_P	6	Not used
7	Ground	_	_	GND	8	Not used
9	Comena Lana 1	1.2	Input	CSI2_D1_N	10	Not used
11	Camera Lane 1	1.2	Input	CSI2_D1_P	12	Not used
13	Ground	_	_	GND	14	Not used
15	0	1.2	Input	CSI2_CLK_N	16	Not used
17	Camera Clock Lane	1.2	Input	CSI2_CLK_P	18	Not used
19	Ground	_	_	GND	20	Not used
21	Camera Power-down GPIO	1.8	Output	CAM1_PWDN	22	Not used
23	Camera MCLK	1.8	Output	CAM1_MCLK	24	Not used
25	Camera I2C clock	3.3 OD	Bidirectional	CAM_I2C_SCL	26	Not used
27	Camera I2C data	3.3 OD	Bidirectional	CAM_I2C_SDA	28	Not used
29	3.3V supply	-	-	VDD_3V3_SYS	30	Not used

Note: Camera Connector #2 is J49 on Jetson Nano (B01 only) and J9 on Jetson Xavier NX.

Table 3-3. Camera Related Pin Descriptions for Jetson Nano, Jetson TX2 NX, and Jetson Xavier NX Modules

Module Pin	Description	Volt	Direction	Signal Name
10	Camera, CSI 0 Clock	1.2	Input	CSI_0_CLK_N
12				CSI_0_CLK_P
4	Camera, CSI 0 Data 0	1.2	Input	CSI_0_D0_N
6				CSI_0_D0_P
16	Camera, CSI 0 Data 1	1.2	Input	CSI_0_D1_N
18				CSI_0_D1_P
9	Camera, CSI 1 Clock (TX2 NX and	1.2	Input	CSI_1_CLK_N
11	Xavier NX only)			CSI_1_CLK_P
3	Camera, CSI 1 Data 0	1.2	Input	CSI_1_D0_N
5				CSI_1_D0_P
15	Camera, CSI 1 Data 1	1.2	Input	CSI_1_D1_N
17				CSI_1_D1_P
28	Camera, CSI 2 Clock	1.2	Input	CSI_2_CLK_N
30				CSI_2_CLK_P
22	Camera, CSI 2 Data 0	1.2	Input	CSI_2_D0_N
24				CSI_2_D0_P
34	Camera, CSI 2 Data 1	1.2	Input	CSI_2_D1_N
36				CSI_2_D1_P
27	Camera, CSI 3 Clock	1.2	Input	CSI_3_CLK_N
29				CSI_3_CLK_P
21	Camera, CSI 3 Data 0	1.2	Input	CSI_3_D0_N
23				CSI_3_D0_P
33	Camera, CSI 3 Data 1	1.2	Input	CSI_3_D1_N
35				CSI_3_D1_P
52	Camera, CSI 4 Clock	1.2	Input	CSI_4_CLK_N
54				CSI_4_CLK_P
46	Camera, CSI 4 Data 0	1.2	Input	CSI_4_D0_N
48				CSI_4_D0_P
58	Camera, CSI 4 Data 1	1.2	Input	CSI_4_D1_N
60				CSI_4_D1_P
40	Camera, CSI 4 Data 2	1.2	Input	CSI_4_D2_N
42				CSI_4_D2_P
64	Camera, CSI 4 Data 3	1.2	Input	CSI_4_D3_N

Module Pin	Description	Volt	Direction	Signal Name
66				CSI_4_D3_P
76	Camera, CSI 5 Clock (NX only)	1.2	Input	DSI_CLK_N
78				DSI_CLK_P
70	Camera, CSI 5 Data 0 (NX only)	1.2	Input	DSI_D0_N
72				DSI_D0_P
82	Camera, CSI 5 Data 1 (NX only)	1.2	Input	DSI_D1_N
84				DSI_D1_P
213	Camera I2C clock	3.3 OD	Bidirectional	CAM_I2C_SCL
215	Camera I2C Data	3.3 OD	Bidrectional	CAM_I2C_SDA
116	Camera 0 Master Clock	1.8	Output	CAM0_MCLK
114	Camera 0 Power-down GPIO	1.8	Output	CAM0_PWDN
122	Camera 1 Master Clock	1.8	Output	CAM1_MCLK
120	Camera 1 Power-down GPIO	1.8	Output	CAM1_PWDN
118	GPIO / Camera 2 Master Clock	1.8	Output	GPI001
216	GPIO / Camera 3 Master Clock	1.8	Output	GPI011

Note: Rows highlighted are not supported on Jetson Nano but are supported on Jetson TX2 NX and/or Jetson Xavier NX only.

Chapter 4. Power

The Jetson Nano, Jetson Nano 2GB, and Jetson Xavier NX Developer Kit camera connectors provide a single power source (VDD 3V3 SYS). This power source is shared by other devices on the carrier board or connected to the developer kit such as:

- Level shifters on carrier board
- VESA® DisplayPort® output display
- ► M.2 Key E modules
- ▶ Peripherals connected to 40-pin expansion header

The VDD_3V3_SYS supply is "always on" so it should not be used directly if it must be sequenced with other supplies generated on the connected camera sensor module.

Whether the developer kit or a custom carrier board is used, proper power sequencing is required in order not to damage the Jetson module. The sequencing should be controlled by the Jetson module.

Chapter 5. I2C Address

This chapter provides the I2C address description for the camera interposer module and camera sensor module. The Jetson Nano (B01) and Jetson Xavier NX Developer Kits use a mux to direct CAM_I2C to either of the two camera connectors. This mux does not have an I2C address and selects between the two connectors using a GPIO. An I2C mux (or I2C expander) may be required for a multiple sensor design and a recommended device is included in the following table.

Table 5-1. I2C Address

Jetson Carrier Board	Camera Interposer	Each Camera Sensor Module			
CAM_I2C	I2CMUX for custom carrier board - TCA9548A	7'h70	*Flash driver IC (optional)		
	*I2C GPIO Expander (optional)		*Auto focus driver (optional)		

Note: The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40

Chapter 6. Components

12C MUX 6.1

An I2C MUX may be required to isolate the different camera sensor modules, especially if the cameras have the same I2C address. As mentioned previously, the Jetson Nano (B01) and Jetson Xavier NX Developer Kits use a MUX to direct CAM I2C to either of the two camera connectors that does not have an I2C address and selects between the two connectors using a GPIO. If an I2C MUX (or I2C expander) is required for a multiple sensor design, a recommended device is described with the following features.

- ► 4-Channel outputs
- ▶ I2C-compatible up to 400 KHz (FM) at 1.8V
- ► TCA9548A from TI is recommended

Developer Kit Camera Connector(s) 6.2

The Jetson Nano, Jetson Nano 2GB, and Jetson Xavier NX carrier board camera connectors are from TE Connectivity (Part Number: 1-734248-5). These connectors are used to mate with flex cables from the camera hoards/modules

Chapter 7. Optional

7.1 **I2C GPIO Expander**

- ► An I2C GPIO expander can be used to expand control signals for camera sensor module(s)
- ► Features:
 - 8-bit bi-directional GPIO expansion
 - I2C-compatible up to 400 KHz (FM) at 1.8V

Clock Buffer and XTAL

- ▶ There are up to four clock outputs from the Jetson module:
 - CAM0_MCLK
 - CAM1 MCLK
 - GPI001 (MCLK #2)
 - GPI011 (MCLK #3)
- It is recommended to use the clocks from Jetson, but a clock buffer can be used to drive multiple clocks from a single source
- A Crystal can be used if dynamic frequency switching from the SoC is not needed for the sensor

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this specification.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, Jetson Nano, and Jetson Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019, 2020, 2021 NVIDIA Corporation. All rights reserved.

