Methods in Panel Data Models with Heterogeneous Time Trends

Master Thesis Presented to the

Department of Economics at the

Rheinische Friedrich-Wilhelms-Universität Bonn

In Partial Fulfillment of the Requirements for the Degree of Master of Science (M.Sc.)

Supervisor: Porf. Dr. Dominik Liebl Submitted in August 2023 by: Erik Ortiz Covarrubias Matriculation Number: 3395844

Contents

1	1 Introduction		1							
2	2 The Model		1							
	2.1 Interactive and additive fixed-effects		2							
	2.2 Factor modelling in economics		3							
3	3 Identification		3							
4	4 Estimation		4							
	4.1 Method by ?		4							
	4.2 Method by ?		5							
5	5 Asymptotics		6							
6	Finite Sample Properties via Simulations									
	6.1 Baseline scenario		18							
	6.2 Heteroskedastic error terms		18							
	6.3 Weakly autocrorrelated error terms		18							
	6.4 (18							
7	7 Application		18							

1 Introduction

Panel data models offer the ability to manage unobserved endogeneity and allow for broader forms of heterogeneity (?).

? propose estimating the time-varying individual effects nonparametrically. This is achieved through a two-stage procedure involving spline smoothing and principal component analysis.

2 The Model

We assume balanced panel data with n cross-sectional units and T time periods. We aim to model the variation of an independent variable y_{it} for $i \in \{1,...,n\}$ and $t \in \{1,...,T\}$ in dependent explanatory variables $x_{it} \in \mathbb{R}^P$. We consider the following panel data model:

$$y_{it} = \sum_{j=1}^{P} x_{itj} \beta_j + \nu_{it} + \varepsilon_{it}$$
 (1)

Where x_{itj} is the jth element of the vector of independent variables, ε_{it} are idiosyncratic errors, and $\nu_{it} \in \mathbb{R}$ are unobserved non-constant individual effects. Note that whenever x_{it} includes an intercept, identifiability requires v_{it} to be centred around zero. Otherwise, the non-constant individual effects are centred around the overall mean.

Our main goal is to estimate and analyze v_{it} . However, the estimation of β remains of interest to us. We assume that ν_{it} has a factor structure which can be parametrized in terms of d common factors as follows:

$$\nu_{it} = \begin{cases} v_{it} = \sum_{l=1}^{d} \lambda_{il} f_{lt} \\ v_i(t) = \sum_{l=1}^{d} \lambda_{il} f_l(t) \end{cases}$$
 (2)

Here λ_{il} are the individual loading parameters, f_{lt} are the common factors of the general model of ?, and $f_l(t)$ are the common factors for the model of ?.

? treats both λ_{il} and f_{lt} as fixed-effects parameters to be jointly estimated with β . Heteroskedasticity and dependency across time and cross-sectional units are allowed. Further, f_{lt} is modelled as an integrated or stationary process, which is allowed to have a non-zero mean. Both the individual loading parameters and the common factors parameters are allowed to be correlated with the regressors x_{it} .

In contrast, ? model the time-varying individual effects as linear combinations of a small number of unknown basis functions $(f_l(t))$, where the individual loading parameters

set the weight of every basis function for each cross-sectional unit. This translates into smooth, slowly varying local trends. The author's setup consequently allows for strongly correlated stationary and non-stationary factors.

This work will centre around the discussion of the model and estimation methods proposed by ?, and its comparison to the general model synthesized by ? and some of the estimation methods applicable to that setup.

2.1 Interactive and additive fixed-effects

The specification in (1) includes the classic panel data models with additive fixed-effects model as a special case. Indeed, for d=2, a first common factor $f_{1t}=1, \forall t$ with individual loading parameters λ_{i1} and a second common factor of the form f_{2t} with identical loading parameters $\lambda_{i2}=1, \forall i$ we get the classical two-way error component model:

$$y_{it} = \sum_{i=1}^{\rho} x_{itj} \beta_j + \lambda_{i1} + f_{2t} + \varepsilon_{it}$$

Nonetheless, unlike the case of classical additive effects panel models, well-known estimation methods, such as the within-transformation, are generally inadequate. To see this, consider the case where d=1, $y_{it}=\sum_{j=1}^{\rho}x_{itj}\beta_j+\lambda_{i1}f_{1t}+\varepsilon_{it}$. Then, the within-transformation $\dot{y}_{it}=y_{it}-\bar{y}_i=\sum_{j=1}^{\rho}(x_{it}-\bar{x}_i)\beta_j+\lambda_i(f_{1t}-\bar{f})+\varepsilon_{it}-\bar{\varepsilon}_i$ is unable to eliminate the interactive effects since, generally, $f_{1t}\neq\bar{f}$. Hence, the within estimator is inconsistent for the model as the potential endogeneity between regressors and unobservables can't be addressed (?).

It is worth noting that since interactive-effects models encompass additive-effects models as a specific case, a consistent estimator for the former will also be consistent for the latter, albeit less efficient than the classical estimator (?). To prevent inefficiency, it is possible to enhance model (1) by explicitly incorporating the classical additive effects,

$$y_{it} = \sum_{j=1}^{\rho} x_{itj} \beta_j + \nu_{it} + \alpha_i + \xi_t + \varepsilon_{it},$$
(3)

where α_i and ξ_t denote the unit- and time-specific fixed effects. This specification also allows for further interpretability. Model (3) can be estimated via augmented versions of the methods proposed by both ? and ?. This is discussed in detail ? and ?.

2.2 Factor modelling in economics

Model (1) can fit a wide range of economic phenomena where unobservables might be present as common factors. A few examples might elucidate the usefulness of the approach discussed in this paper.

Macroeconomics Let y_{it} be the growth rate for a country i in period t and x_{it} be a series of inputs, such as labour and capital. The factors f_{lt} could represent common macroeconomic shocks such as technological change and financial crises, and the individual loading parameters λ_{il} the heterogeneous impacts of such shocks to the countries' growth rates.

Microeconomics Consider a setup where y_{it} represents the wage for individual.

3 Identification

In the absence of any further constraints, the problem of the non-uniqueness of common factors leads to indeterminacy. This, and the ensuing normalizations, are easier understood when using matrix notation. Let $Y_i = (y_{i1}, \ldots, y_{iT})'$, $X_i = (x_{i1}, \ldots, x_{iT})$, $F = (F_1, \ldots, F_T)'$, $\lambda_i = (\lambda_{i1}, \ldots, \lambda_{id})'$ and $\varepsilon_i = (\varepsilon_{i1}, \ldots, \varepsilon_{iT})'$, with $F_t = (f_1(t), \ldots, f_d(t))'$. We then write the model as:

$$Y_i = X_i \beta + F \lambda_i' + \varepsilon_i \tag{4}$$

Now, since, for any invertible $d \times d$ matrix A, it holds that $FAA^{-1}\lambda'_i = F\lambda'_i$, the model, with factors FA and loading parameters $\lambda_i(A^{-1})'$ is also true. Hence, factors are only identifiable up to linear transformations of the form presented above. Sine matrix A has $d \times d$ free elements, we require d^2 restrictions on the model for identifiability.

Consider $\Lambda = (\lambda_1, \dots, \lambda_n)'$. The usual normalizations are then given by:

(a)
$$F'F/T = I_d$$

(b)
$$\Lambda' \Lambda = \operatorname{diag}(\sum_{i=1}^n \lambda_{i1}^2, \dots, \sum_{i=1}^n \lambda_{id}^2)$$

Where the former yields $\frac{d(d+1)}{2}$ restrictions, and the latter provides the additional $\frac{d(d-1)}{2}$ restrictions. Conditions (a) and (b) ensure identifiability up to sign changes since, e.g. -F and $-\lambda$ also satisfy these restrictions (??).

The above normalizations lead to orthogonal vectors F_t and empirically uncorrelated coefficients λ_{il} . Further, under these restrictions, the problem of estimating factors F_t becomes that of principal component analysis (?).

4 Estimation

4.1 Method by?

The estimation approach developed by ? involves a two-step procedure. First, estimates for the common slopes $\hat{\beta}_j$ and initial estimates for the time-varying individual effects $\tilde{v}_i(t)$ are obtained via least squares, where a roughness penalty κ controls the smoothness of the latter. This first step of the estimation relies on the use of an auxiliary function $\vartheta_i(t)$ defined on the interval [1,T], so that $\hat{\vartheta}_i(t) := \tilde{v}_i(t)$.

Second, principal component analysis is used to estimate the common factors $f_l(t)$ and produce a final and more efficient estimate $\hat{v}_i(t)$ for the non-constant individual effects.

In what follows, each step will be discussed in detail.

Step 1: For a given $\kappa > 0$, the unobserved paramters β_j and $v_i(t)$ are estimated by the minimization of

$$\sum_{i=1}^{n} \frac{1}{T} \sum_{t=1}^{T} \left(y_{it} - \sum_{j=1}^{P} x_{itj} \beta_j - \vartheta_i(t) \right)^2 + \sum_{i=1}^{n} \kappa \int_{1}^{T} \frac{1}{T} \left(\vartheta_i^{(m)}(s) \right)^2 ds \tag{5}$$

over all $\beta_j \in \mathbb{R}$ and all functions $\vartheta_i(t)$ of class C^m , where $\vartheta_i^{(m)}(t)$ denotes the mth derivative of $\vartheta_i(t)$. Spline theory implies that any solution $\hat{\vartheta}_i(t)$ has an expansion in terms of a natural spline basis $z_1(t), \ldots, z_T(t)$ of order 2m such that $\hat{\vartheta}_i(t) = \sum_{s=1}^T \hat{\zeta}_{is} z_s(t)$. For a treatment of spline theory and spline smoothing see e.g. ?, ?.

Using the model in matrix notation (4) and the expansion of the time-varying individual effects, we can rewrite the objective function in (5) as:

$$S(\beta,\zeta) = \sum_{i=1}^{n} \left(\|Y_i - X_i\beta - Z\zeta_i\|^2 + \kappa \zeta_i' R\zeta_i \right)$$
 (6)

here $\zeta_i = (\zeta_{i1}, \dots, \zeta_{iT})'$, Z and R are $T \times T$ matrices with elements $\{z_s(t)\}_{s,t=1,\dots,T}$ and $\{\int z_s^{(m)}(t)z_k^{(m)}(t),dt\}_{s,k=1,\dots,T}$ respectively. Further, $\|\cdot\|$ denotes the eculidean norm in \mathbb{R}^T . Estimators $\hat{\beta},\hat{\zeta}_i$ and \tilde{v}_i are hence obtained by minimizing (6) over all $\beta \in \mathbb{R}^\rho$ and $\zeta \in \mathbb{R}^{T \times n}$. With $\mathcal{Z}_{\kappa} = Z(Z'Z + \kappa R)^{-1}Z'$, the solutions are given by:

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i' (I - \mathcal{Z}_{\kappa}) X_i\right)^{-1} \left(\sum_{i=1}^{n} X_i' (I - \mathcal{Z}_{\kappa}) Y_i\right)$$

$$\hat{\zeta}_i = \left(Z' Z + \kappa R\right)^{-1} Z' \left(Y_i - X_i \hat{\beta}\right), \text{ and}$$

$$\tilde{v}_i = \mathcal{Z}_{\kappa} \left(Y_i - X_i \hat{\beta}\right),$$
(7)

Step 2: The common factors are obtained as the principal components of the sample $\tilde{v}_1, \dots, \tilde{v}_n$. More precisely, let

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \tilde{v}_i \tilde{v}_i' \tag{8}$$

denote the empirical covariance matrix of $\tilde{v}_1, \ldots, \tilde{v}_n$. Let $\hat{\rho}_1 \geq, \ldots, \geq \hat{\rho}_T$ and $\hat{\gamma}_1, \ldots, \hat{\gamma}_T$ denote the eigenvalues and corresponding eigenvectors of (8). Then, the estimator of the common factor $f_l(t)$ is given by the lth scaled eigenvector

$$\hat{f}_l(t) = \sqrt{T}\hat{\gamma}_{lt}, \text{ for all } l = \{1, \dots, d\}, t = \{t = 1, \dots T\}$$
 (9)

where $\hat{\gamma}_{lt}$ is the tth element of the eigenvector $\hat{\gamma}_l$. The scaling factor \sqrt{T} yields that (9) fullfils condition (a) in Section 3. The estimates $\hat{\lambda}_{il}$ for the individual loading paramters are obtained via least squares of $(Y_i - X_i \hat{\beta})$ on $\hat{f}_l = (\hat{f}_l(1), \dots, \hat{f}_l(T))'$.

A crucial part of the method proposed by ? involves re-estimating the time-varying individual effects $v_i(t)$ in Step 2 by $\hat{v}_i(t) := \sum_{l=1}^d \hat{\lambda}_{il} \hat{f}_l(t)$, where the factor dimension d is determined by a stuiable dimensionality criterion. 6

4.2 Method by ?

? proposes to estimate parameters β , F and λ_i in model (4), given a known factor dimension d, by minimizing the least squares objective function defined as:

$$S(\beta, F, \lambda_i) = \sum_{i=1}^{n} \left\| Y_i - X_i \beta - F \lambda_i' \right\|^2$$
(10)

subject to conditions (a) and (b) in Section 3. Given the projection matrix $\mathcal{P}_d = I_T - F(F'F)^{-1}F' = I_T - FF'/T$, the least square estimator for β , given F is given by:

$$\hat{\beta}(F) = \left(\sum_{i=1}^{n} X_i' \mathcal{P}_d X_i\right)^{-1} \left(\sum_{i=1}^{n} X_i' \mathcal{P}_d Y_i\right)$$
(11)

Now, given β , an estimator for F is given, once again by the first d eigenvectors

 $\hat{\gamma} = (\hat{\gamma}_1, \dots, \hat{\gamma}_d)$ of the empirical covariance matrix $\hat{\Sigma} = (nT)^{-1} w_i w_i'$, where $w_i = Y_i - X_i \beta$. More concretely:

$$\hat{F}(\beta) = \sqrt{T}\hat{\gamma} \tag{12}$$

The solution for $\hat{\beta}$ and \hat{F} can then be obtained via iteration. Estimates for the individual loading parameters can then be obtained as follows:

$$\hat{\lambda}_i = \frac{1}{T}\hat{F}'(Y_i - X_i\hat{\beta}) \tag{13}$$

? propose agumenting the method by ?

5 Asymptotics

Assumption 1. For some fixed $d \in \{0,1,2,\ldots\}, d < T$ there exists an D- dimensional subspace \mathcal{D}_T of \mathbb{R}^T such that $v_i \in \mathcal{D}_T$ holds with probability 1.

Assumption 2. There exist a nondecreasing function c(T) of T such that for all $l, k = 1, ..., d, l \neq k$:

1.
$$E(\frac{1}{T}\sum_{t=1}^{T}v_i(t)^2) = O(c(T)),$$

2.
$$\frac{1}{n}\sum_{i=1}^{n}\lambda_{il}^2 = O_P(c(T))$$

3.
$$c(T) = 0_P(\sum_{i=1}^n \lambda_{il}^2)$$

4.
$$\sum_{i=1}^{n} \lambda_{il}^2 = O_P(c(T)^2)$$

5.
$$c(T) = O_P(|\sum_{i=1}^n \lambda_{il}^2 - \sum_{i=k}^n \lambda_{il}^2|)$$

Assumption 3. There exists a nonincreasing function b(T) such that as $n, T \to \infty$, the second-order differences of $v_i(t)$ satisfy:

$$E\left(\frac{1}{T}\sum_{t=2}^{T-1}v_i(t-1) - 2v_i(t) + v_i(t+1)^2\right) = O(b(T))$$

Assumption 4. There exists a nondecreasing function $d(T) \leq c(T)$ with d(T) = o(T) such that $n, T \to \infty E(\frac{1}{T} \sum x_{itj}^2 = O(d(T))$ holds for all $j = 1, ..., \rho$. Furthermore, there is a constant $C_0 < \infty$ such that for all $\kappa \geq 1$:

$$E\left(\kappa_{\max}\left(\left[\sum_{i=1}^{n} (X_i'(I-\mathcal{Z}_k)X_i\right]^{-1}\right)\right) \le C_0 \frac{1}{nT}$$

Assumption 5. The error terms ε_{it} are i.i.d with $E(\varepsilon_{it}) = 0$, $Var(\varepsilon_{it}) = \sigma^2 > 0$, and $E(\varepsilon_{it}^4) < \infty$. Moreover ε_{it} is independent form $v_i(s)$ and x_{isj} for all t, s, j.

Theorem 1. Under the above assumptions, it holds that as $n, T \to \infty$:

1.

6 Finite Sample Properties via Simulations

The finite sample properties of the estimators presended above are studied via Monte Carlo simulations. In addition to the KSS and Eup methods, we also consider the classical time-invariant fixed effects estimator. The setup of the simulation study is taken form ?.

The panel-data model is given by.

$$y_{it} = \sum_{j=1}^{P} x_{itj} \beta_j + v_i(t) + \varepsilon_{it} \quad i = 1, \dots, n; \quad t = 1, \dots, T$$
 (14)

we and simulate samlpes of size n = 30, 100, 300 with T = 12, 30 in a model with P = 2 regressors. The slope parameters' true values given by $\beta_1 = \beta_2 = 0.5$. The regressors $X_{it} = (x_{it1}, x_{it2})'$ are generated according to a bivariate vetor autoregression model:

$$X_{it} = RX_{i,t-1} + \eta_{it}$$
 with $R = \begin{pmatrix} 0.4 & 0.05 \\ 0.05 & 0.4 \end{pmatrix}$ and $\eta_{it} \sim N(0, I_2)$ (15)

To intitalize the simulation, we set $X_{i1} \sim N(0, (I_2 - R^2)^{-1})$ and generate the rest of the sample according to (15). Thereafter, the *n* regressor-series $(x_{1i1}, x_{2i1})', \dots, (x_{1iT}, x_{2iT})'$ are additionally shifted such that there are three different mean-value-clusters, fixed at $\mu_1 = (5,5)', \mu_2 = (7.5,7.5)',$ and $\mu_3 = (10,10)'.$ This is to get a reasonable cloud of points for the regressors (?).

We generate time-varying individual effects following five different data generating processes:

DGP1:
$$v_i(t) = \theta_{i0} + \theta_{i1} \frac{t}{T} + \theta_{i2} \left(\frac{t}{T}\right)^2$$
,

DGP2: $v_i(t) = \phi_i r_t$,

DGP3: $v_i(t) = v_{i1} \sin(\pi t/4) + v_{i2} \cos(\pi t/4)$,

DGP4: $v_i(t) = \xi_i$,

Table 1: DGP 1, homoskedastic errors

MSE of Effects										
\overline{n}	T	KSS	Eup	d_{KSS}	d_{Eup}					
30	12	0.4760	0.7438	2.0010	2.9270					
	30	0.2075	0.2995	2.0240	2.4150					
100	12	0.3118	0.3579	2.0000	2.4850					
	30	0.1561	0.1700	2.0070	2.2590					
300	12	0.2593	0.2639	2.0000	2.2240					
	30	0.1430	0.1407	2.0000	2.2220					

	MSE, Bias, Variance for Coefficients									
		T = 12			T = 30					
	KSS	Eup	Within	KSS	Eup	Within				
n = 30										
MSE	0.00375	0.00540	0.02982	0.00119	0.00144	0.01021				
BIAS1	-0.00029	0.00052	0.00278	-0.00082	-0.00071	0.00067				
BIAS2	0.00144	0.00140	0.08113	0.00051	0.00082	0.07531				
VAR1	0.06651	0.06282	0.12900	0.03638	0.03396	0.07339				
VAR2	0.01181	0.01174	0.02390	0.00699	0.00687	0.01428				
n = 100										
MSE	0.00123	0.00137	0.00939	0.00036	4e-04	0.00377				
BIAS1	-0.00012	-0.00042	-0.00386	-0.00099	-0.00093	-0.00555				
BIAS2	0.00098	0.00062	0.07835	0.00049	0.00077	0.07291				
VAR1	0.03521	0.03391	0.06941	0.01943	0.01860	0.03977				
VAR2	0.00615	0.00601	0.01283	0.00367	0.00359	0.00770				
n = 300										
MSE	0.00038	0.00037	0.00326	0.00013	0.00015	0.00113				
BIAS1	-0.00229	-0.0019	-0.00694	0.00092	0.00095	-0.00276				
BIAS2	0.00105	0.00097	0.07717	0.00044	0.00075	0.07261				
VAR1	0.02031	0.01949	0.04073	0.01118	0.01078	0.02337				
VAR2	0.00350	0.00341	0.00739	0.00209	0.00205	0.00445				

DGP5: $v_i(t) = v_{i1}e^{-\frac{t}{4}}\sin(\pi t/4)$

where $\theta_{ij}(j=0,1,2) \sim \text{i.i.d.} \, 5N(0,1), \xi_i, v_{ij}(j=1,2) \sim \text{i.i.d.} \, 3N(0,1), \text{ and } r_{t+1} = r_t + \delta_t,$ with $\delta_t, r_1 \sim \text{i.i.d.} \, 3N(0,1).$

The second regressor x_{it2} is allowed to be endogenous with a correlation with $v_i(t)$ of $\rho = 0.5$. Let w_{it} be the endogenous part of the regressor, so that $w_{it} = \rho v_i(t) + \sigma_v \sqrt{1 - \rho^2} \epsilon_{it}^{-1}$, where σ_v is the standard deviation of $v_i(t)$ and $\epsilon_{it} \sim N(0, 1)$. We then define the endogenous regressor as $\tilde{x}_{it2} = x_{it2} + w_{it}$.

	T_{ϵ}	Table 2: DGP 2, homoskedastic errors							
		N	ISE of Eff	ects					
	\overline{n}	T KSS	S Eup	d_{KSS}	d_{Eup}				
	30	12 28.02	42 0.430		2.6140				
		30 14.67	77 0.073	2 1.0410	1.0200				
	100	12 22.59	74 0.095	0 1.0450	1.0010				
		30 13.45	57 0.044	0 1.0060	1.0000				
	300	12 20.89	49 0.087	4 1.0080	1.0000				
		30 12.61	96 0.036	6 1.0000	1.0000				
	N	ISE, Bias,	Variance f	or Coefficie	ents				
		T = 12			T = 30				
	KSS	Eup	Within	KSS	Eup	Within			
n = 30									
MSE	0.15096	0.00068	0.79135	0.06411	1e-04	0.62111			
BIAS1	-0.00537	-2e-05	0.01034	-0.00627	0.00014	-0.01656			
BIAS2	0.10071	0.00026	0.28647	0.04526	-3e-05	0.28446			
VAR1	0.29218	0.01437	0.61181	0.16205	0.00730	0.55454			
VAR2	0.01956	0.00445	0.03695	0.00707	0.00171	0.02276			
n = 100									
MSE	0.04572	5e-05	0.20256	0.02031	2e-05	0.22889			
BIAS1	-0.00703	-0.00013	0.00115	-0.0024	-0.00026	-0.03364			
BIAS2	0.10011	-5e-05	0.27875	0.04465	1e-05	0.27166			
VAR1	0.15527	0.00673	0.32295	0.08580	0.00401	0.30113			
VAR2	0.01038	0.00222	0.01992	0.00369	0.00088	0.01215			
n = 300									
MSE	0.01606	2e-05	0.06997	0.00734	1e-05	0.07304			
BIAS1	-0.00628	0.00013	0.00583	-0.00462	-4e-05	-0.01025			
BIAS2	0.09846	3e-05	0.27707	0.04177	-4e-05	0.27273			
VAR1	0.08818	0.00389	0.19778	0.04839	0.00226	0.17906			
VAR2	0.00569	0.00122	0.01144	0.00201	5e-04	0.00706			

	T	Table 3: DGP 3, homoskedastic errors						
			I	MSE of	Effec	ts		
	\overline{n}	T	KS	S E	up	d_{KSS}	d_{Eup}	
	30	12	1.12	57 0.3	859	2.5650	2.8740	
		30	21.92	290 0.1	364	0.9990	2.0460	
	100	12	0.60	88 0.1	907	2.5300	2.0410	
		30	21.29	968 0.0	859	1.0000	2.0000	
	300	12	0.48	27 0.1	722	2.6220	2.0000	
		30	21.36	319 0.0	730	1.0000	2.0000	
	N	ΛSE,	Bias,	Varianc	e for	Coeffici	ents	
		T	= 12				T = 30	
-	KSS	Е	up	Within	1	KSS	Eup	Within
n = 30								
MSE	0.00952	0.00	0061	0.0317	2 (0.01324	0.00018	0.01181
BIAS1	0.00751	-5€	-05	0.0001	5 -	0.01363	0.00084	-0.0172
BIAS2	0.05446	0.00	0031	0.4574	1 (0.46035	-0.00057	0.45038
VAR1	0.09374	0.02	2110	0.1529	9 (0.09570	0.01248	0.09049
VAR2	0.02824	0.0°	1993	0.0496	1 (0.03147	0.01187	0.03039
n = 100								
MSE	0.00275	0.00	0013	0.0094	7 (0.00432	4e-05	0.00423
BIAS1	0.00256	0.00	0092	-0.0195	9 -	0.01869	0.00012	-0.02833
BIAS2	0.05339	-7€	-04	0.4591	0 (0.46390	-2e-05	0.45317
VAR1	0.04960	0.0	1081	0.0824	4 (0.05176	0.00660	0.04909
VAR2	0.01501	0.0°	1030	0.0270	9 (0.01700	0.00629	0.01660
n = 300								
MSE	9e-04	4e	-05	0.0034	9 (0.00148	2e-05	0.00142
BIAS1	0.00182	0.00	0036	-0.0095	6 -	0.01371	0.00011	-0.01759
BIAS2	0.05352	-0.0	0028	0.4607	7 (0.46381	-9e-05	0.45380
VAR1	0.02838	0.00	0616	0.0483	0 (0.02985	0.00379	0.02864
VAR2	0.00854	0.00	1507	0.0156	5 (0.00978	0.00361	0.00959

		Table 4	errors							
					E of Effe	ects				
	n	T	KS	S	Eup	d_{KSS}	d_{Eup}			
	30	12	0.34	37	0.7783	1.0000	2.6290			
		30	0.11	44	0.1612	1.0000	1.0080			
	100) 12	0.15	13	0.1545	1.0000	1.0040			
		30	0.05	60	0.0653	1.0000	1.0000			
	300) 12	0.10	90	0.1070	1.0000	1.0000			
		30	0.04	14	0.0441	1.0000	1.0000			
		MSE,	Bias,	Vai	riance fo	or Coeffic	ients			
$T = 12 \qquad T = 30$										
	KSS	Ει	ıp	W	ithin	KSS	Eup	Within		
n = 30										
MSE	0.00387	0.00)551	0.0	00306	0.00116	0.00131	0.00106		
BIAS1	0.00283	0.00)414	0.0	00173	5e-05	0.00092	0.00065		
BIAS2	0.00112	0.00	0126	9	e-04	0.00013	0.00031	2e-04		
VAR1	0.06024	0.05	5148	0.0	05332	0.03368	0.02959	0.03178		
VAR2	0.02191	0.02	2128	0.0	02035	0.01290	0.01247	0.01242		
n = 100										
MSE	0.00099	0.00	0088	0.0	00083	0.00031	0.00031	0.00028		
BIAS1	-0.0015	-0.0	011	-0.	00109	8e-05	0.00029	0.00013		
BIAS2	2e-05	3e-	-05	5	e-05	0.00017	0.00022	0.00018		
VAR1	0.03226	0.02	2808	0.0	02875	0.01812	0.01680	0.01718		
VAR2	0.01154	0.01	.086	0.0	01085	0.00684	0.00667	0.00666		
n = 300										
MSE	0.00036	0.00	0029	0.0	00028	0.00012	0.00011	0.00011		
BIAS1	0.00035	0.00	0055	6	e-04	-5e-05	6e-05	4e-05		
BIAS2	0.00041	0.00	036	0.0	00036	-0.00026	-0.00024	-0.00025		
VAR1	0.01868	0.01	671	0.0	01685	0.01046	0.00995	0.01003		
VAR2	0.00662	0.00	0625	0.0	00625	0.00392	0.00384	0.00384		

		Ta	Table 5: DGP 5, homoskedastic errors									
				N	ISE	E of Effe	cts					
	-	n	T	KSS)	Eup	d_{K}	SS	d_{I}	Eup		
	-	30	12	1.042	0	0.4061		200	2.6	140		
			30	0.477	0	0.0794	1.4	850	1.0	070		
		100	12	0.710	4	0.0961	1.6	550	1.0	050		
			30	0.365	6	0.0466	1.7	220	1.0	000		
		300	12	0.623	8	0.0874	1.7	840	1.0	000		
			30	0.326	9	0.0379	1.9	380	1.0	000		
		N	ISE,	Bias, V	Var	riance fo	r Co	effici	ents			
				= 12						7 = 30		
	K	SS	Е	up	V	Vithin	K	SS		Eup	V	Vithin
n = 30				•						-		
MSE	0.00	0461	0.0	0183	0	.00523	0.00	148	0.	00046	0.	.00137
BIAS1	0.00	0261	-0.0	0011	-0	.00151	-8e	-05	-0	.0010	-0	.00325
BIAS2	0.07	7052	0.0	0058	0	.18376	0.05	5202	9	e-04	0.	.09410
VAR1	0.07	7130	0.0	3465	0	.06717	0.03	8863	0.	02182	0.	.03553
VAR2	0.05	5572	0.0	3446	0	.05288	0.03	3 470	0.	02179	0.	.03200
n = 100												
MSE	0.00	0153	0.0	0039	0	.00169	0.00	0046	0.	00014	0.	.00046
BIAS1	0.00	0035	-0.0	0042	-0	.00719	-3e	-04	-2	2e-04	-0	.00545
BIAS2	0.07	7454	0.0	0044	0	.18431	0.05	370	0.	00022	0.	.09321
VAR1	0.03	3767	0.0	1788	0	.03632	0.02	2077	0.	01181	0.	.01926
VAR2	0.02	2938	0.0	1780	0	.02863	0.01	864	0.	01179	0.	.01736
n = 300												
MSE	0.00	0049	0.0	0012	0	.00056	0.00	014	5	e-05	0.	.00014
BIAS1	-0.0	0031	5e	-05	-0	.00422	0.00	017	0.	00054	-0	.00317
BIAS2	0.07	7495	0.0	0012	0	.18718	0.05	248	-0.	00054	0.	.09379
VAR1	0.02	2167	0.0	1027	0	.02123	0.01	195	0.	00679	0.	.01124
VAR2	0.0	1686	0.0	1022	0	.01664	0.01	.070	0.	00678	0.	.01011

	T	able 6: D	GP 1, heter		rrors	
			MSE of Eff			
	n	T K:	SS Eup	d_{KSS}	d_{Eup}	
	30	12 57.0	0611 110.53	74 1.0100	2.9330	
		30 20.1	377 54.310	03 - 1.0390	2.0280	
	100	12 28.6	31.124	48 1.0020	1.1570	
		30 12.2	2606 14.890	09 1.0110	1.0000	
	300	12 20.5	5047 19.819	92 1.0060	1.0000	
		30 9.7	311 10.280	03 - 1.0000	1.0000	
	Ι	MSE, Bia	s, Variance f	for Coefficie	nts	
		T=12	2		T = 30	
-	KSS	Eup	Within	KSS	Eup	Within
n = 30						
MSE	0.62852	0.4725	5 0.52730	0.18555	0.27007	0.18209
BIAS1	0.01764	-0.2943	0.02406	-0.00199	-0.31411	-0.00916
BIAS2	0.00215	0.0842	9 0.08419	0.00179	0.06344	0.07546
VAR1	0.77857	0.1364	0.69299	0.43312	0.09164	0.40988
VAR2	0.14083	0.0821	1 0.12931	0.08434	0.06315	0.08004
n = 100						
MSE	0.18401	0.1049	3 0.15098	0.05824	0.06526	0.05866
BIAS1	-0.01846	-0.1420	5 -0.02519	0.00353	-0.16503	-0.00286
BIAS2	0.00292	0.0667	8 0.08058	0.00279	0.05494	0.07409
VAR1	0.41923	0.0740	0.37487	0.23347	0.05286	0.22202
VAR2	0.07450	0.0486	3 0.06938	0.04473	0.03465	0.04304
n = 300						
MSE	0.05573	0.0276	4 0.04843	0.01731	0.01546	0.01663
BIAS1	0.00776	-0.0656	0.00801	0.00136	-0.07466	0.00143
BIAS2	0.00406	0.0575	9 0.07932	0.00412	0.05269	0.07410
VAR1	0.24191	0.0472	3 0.21890	0.13492	0.03514	0.12981
VAR2	0.04247	0.0279	0 0.03972	0.02558	0.02024	0.02471

	T	Table 7: DGP 2, heteroskedastic errors								
				E of Ef	fects			_		
	n	T I	KSS	Eu	•	d_{KSS}	d_{Eup}			
	30	12 262	2.1845	326.3	663	1.0440	2.9310			
		30 234	1.3432	323.7	860	1.1280	1.9400			
	100	12 148	3.2636	131.3	483	1.0170	1.4810			
		30 157	7.6732	79.61	l51	1.0360	1.0100			
	300	12 117	7.6485	67.87	770	0.9940	1.0180			
		30 138	3.0031	60.87	781	1.0100	1.0000			
		MSE, B	ias, Va	riance	for C	Coefficie	nts			
T = 12 T = 30										
	KSS	Eup) /	Within		KSS	Eup	Within		
n = 30										
MSE	2.48822	0.208	56 2	2.58247	1.	74984	0.12441	2.13680		
BIAS1	-0.04624	-0.042	232 -(0.06031	0.	04446	-0.05006	-0.00289		
BIAS2	0.15999	0.006	90 0	0.27926	0.	11237	0.00232	0.27522		
VAR1	1.46153	0.131	44 1	.37026	1.	19766	0.13200	1.20275		
VAR2	0.08884	0.061	77 C	0.08427	0.	04694	0.04795	0.04671		
n = 100										
MSE	0.76397	0.037	82 0	.77390	0.	50429	0.02605	0.62673		
BIAS1	-0.0420	-0.012	202 -0	0.05248	0.	00587	-0.01459	-0.00038		
BIAS2	0.15692	0.004	48 0	0.28455	0.	10934	-0.00081	0.27538		
VAR1	0.79463	0.077	93 0	0.75118	0.	64468	0.07457	0.65242		
VAR2	0.04714	0.040	07 0	0.04549	0.	02529	0.02872	0.02554		
n = 300										
MSE	0.23800	0.013	02 0	.22304	0.	16342	0.01004	0.18119		
BIAS1	-0.03609	-0.00	59 -(0.02566	-0.	.00075	-0.00402	0.00021		
BIAS2	0.15333	-0.002	206 0	.27695	0.	10635	-0.00142	0.26285		
VAR1	0.45201	0.043	82 0	.43368	0.	37018	0.04417	0.37816		
VAR2	0.02700	0.023	79 0	0.02623	0.	01447	0.01654	0.01467		

	T	Table 8: DGP 3, heteroskedastic errors									
			MSE of Effe	ects							
	\overline{n}	$T ext{KSS}$	S Eup	d_{KSS}	d_{Eup}						
	30	12 67.81	42 72.147	3 0.7710	2.8160						
		30 37.24	63 19.895	3 0.8350	0.7100						
	100	12 41.88	52 9.6719	0.8150	0.0400						
		30 28.07	34 8.9661	0.9370	0.0000						
	300	12 36.03	79 8.9588	0.9120	0.0000						
		30 25.92	76 8.9699	1.0000	0.0000						
	N	MSE, Bias,	Variance for	or Coefficie	ents						
		T = 12			T = 30						
	KSS	Eup	Within	KSS	Eup	Within					
n = 30											
MSE	0.52781	0.22845	0.41759	0.16613	0.15740	0.15649					
BIAS1	0.03267	-0.34558	0.02024	-0.01135	-0.36663	-0.01424					
BIAS2	0.47459	0.32114	0.45964	0.47240	0.37129	0.46527					
VAR1	0.59655	0.11359	0.63227	0.35356	0.07995	0.37664					
VAR2	0.21294	0.11258	0.20716	0.12921	0.08342	0.12703					
n = 100											
MSE	0.14288	0.16306	0.12161	0.04639	0.15729	0.03964					
BIAS1	-0.00666	-0.38891	-0.02027	-0.01889	-0.39083	-0.02365					
BIAS2	0.48182	0.39625	0.46373	0.45878	0.39609	0.44996					
VAR1	0.33237	0.05917	0.34088	0.20544	0.04240	0.20347					
VAR2	0.11490	0.06269	0.11218	0.07026	0.04483	0.06903					
n = 300											
MSE	0.05246	0.15834	0.04188	0.01398	0.15469	0.01352					
BIAS1	-0.01124	-0.3928	-0.0190	-0.02397	-0.39153	-0.02713					
BIAS2	0.48727	0.40301	0.46496	0.46256	0.39875	0.45158					
VAR1	0.20706	0.03522	0.19948	0.12384	0.02492	0.11880					
VAR2	0.06706	0.03734	0.06487	0.04059	0.02629	0.03982					

	T	able 9: DG	P 4,heteros	kedastic e	rrors					
		N	MSE of Effe	ects						
	\overline{n}	T KSS	S Eup	d_{KSS}	d_{Eup}					
	30	12 43.86	41 81.5951		2.8810					
		30 15.06	69 33.7164	4 0.9960	1.5570					
	100	12 21.03	56 15.3963	3 0.9960	0.3900					
		30 7.334	10.6590	1.0000	0.4540					
	300	12 14.45	03 10.0594	4 1.0000	0.1040					
		30 5.310	02 8.6405	1.0000	0.3680					
	N	MSE, Bias,	Variance fo	r Coefficie	ents					
$T = 12 \qquad T = 30$										
	KSS	Eup	Within	KSS	Eup	Within				
n = 30										
MSE	0.47333	0.28342	0.38989	0.15610	0.16529	0.14492				
BIAS1	0.02637	-0.30957	0.05343	0.00768	-0.28908	0.01454				
BIAS2	0.02037	0.15203	0.00494	0.00513	0.18288	0.00372				
VAR1	0.66735	0.13374	0.61825	0.38758	0.09112	0.36649				
VAR2	0.24894	0.12192	0.23537	0.14961	0.08743	0.14415				
n = 100										
MSE	0.14360	0.15110	0.11745	0.04344	0.11362	0.03901				
BIAS1	-0.01736	-0.30349	-0.0189	0.00128	-0.27938	0.00092				
BIAS2	-0.00328	0.27670	-0.00584	-0.00874	0.20710	-0.00894				
VAR1	0.37128	0.06677	0.33248	0.20886	0.04875	0.19802				
VAR2	0.13345	0.06534	0.12568	0.07900	0.04719	0.07689				
n = 300										
MSE	0.04684	0.14835	0.03717	0.01267	0.10763	0.01198				
BIAS1	0.01079	-0.35718	0.00973	0.00783	-0.27351	0.00911				
BIAS2	5e-04	0.35418	0.00153	-0.00058	0.24673	-0.00089				
VAR1	0.21561	0.03720	0.19444	0.12060	0.02892	0.11568				
VAR2	0.07638	0.03720	0.07220	0.04524	0.02661	0.04423				

	Ta	ble 10: DC	errors			
			MSE of Effe	ects		
	\overline{n}	T KSS	S Eup	d_{KSS}	d_{Eup}	
	30	12 56.36	41 66.981		2.8300	
		30 18.23	81 14.405	7 0.8000	0.8590	
	100	12 22.17	74 0.8852	0.7380	0.0080	
		30 8.252	0.2734	0.7580	0.0000	
	300	12 13.07	14 0.6763	3 0.6700	0.0000	
		30 5.229	0.2702	0.7380	0.0000	
	N	, ,	Variance fo	or Coefficie		
		T = 12			T = 30	
•	KSS	Eup	Within	KSS	Eup	Within
n = 30						
MSE	0.46420	0.25203	0.38805	0.13472	0.06628	0.12373
BIAS1	0.01746	-0.14949	0.01153	-0.00576	-0.05988	-0.0037
BIAS2	0.15933	0.10339	0.20800	0.08291	0.04917	0.09076
VAR1	0.60235	0.19443	0.59734	0.34681	0.13973	0.35441
VAR2	0.48530	0.19276	0.46947	0.31657	0.14004	0.31915
n = 100						
MSE	0.13145	0.05039	0.10850	0.04164	0.02077	0.03851
BIAS1	0.01382	-0.10706	0.00945	-0.00206	-0.0491	-0.00265
BIAS2	0.15523	0.10825	0.18454	0.08804	0.05013	0.09198
VAR1	0.31639	0.10022	0.32272	0.18435	0.07490	0.19202
VAR2	0.25730	0.10089	0.25477	0.16860	0.07514	0.17296
n = 300						
MSE	0.04324	0.02507	0.03498	0.01431	0.00902	0.01356
BIAS1	-0.02195	-0.11542	-0.01616	-0.0156	-0.05595	-0.0129
BIAS2	0.15130	0.11975	0.18112	0.08552	0.05563	0.09455
VAR1	0.17560	0.05795	0.18858	0.10554	0.04446	0.11204
VAR2	0.14461	0.05804	0.14804	0.09671	0.04456	0.10075

Table 11: DGP 1, weakly autocorrelated errors

MSE of Effects						
\overline{n}	T	KSS	Eup	d_{KSS}	d_{Eup}	
30	12	0.5847	0.8074	2.1870	2.9970	
	30	0.2374	0.3804	2.5000	2.9090	
100	12	0.3092	0.3528	2.0000	2.4760	
	30	0.1733	0.2078	2.5400	2.7190	
300	12	0.2424	0.2373	2.0000	2.0420	
	30	0.1502	0.1447	2.0080	2.4520	
1 /	ran	D: 17	· ·	a	-	

MSE, Bias, Variance for Coefficients						
		T=12			T = 30	
	KSS	Eup	Within	KSS	Eup	Within
n = 30						
MSE	0.00361	0.00482	0.02878	0.00125	0.00167	0.01093
BIAS1	-0.00028	0.0027	0.00038	-0.00193	-0.00112	6e-04
BIAS2	2e-04	0.00038	0.08084	-0.00012	0.00021	0.07660
VAR1	0.06629	0.03973	0.12689	0.03688	0.02774	0.07300
VAR2	0.01136	0.00724	0.02361	0.00695	0.00543	0.01431
n = 100						
MSE	0.00114	0.00126	0.00931	0.00039	0.00046	0.00362
BIAS1	-0.00078	-0.00044	-0.00336	0.00024	6e-05	-0.00301
BIAS2	0.00127	0.00095	0.07842	0.00023	0.00035	0.07294
VAR1	0.03527	0.02452	0.06967	0.01915	0.01580	0.03981
VAR2	0.00612	0.00441	0.01282	0.00356	0.00294	0.00771
n = 300						
MSE	0.00043	0.00044	0.00274	0.00012	0.00013	0.00115
BIAS1	9e-04	0.00116	-0.00347	-9e-05	-8e-05	-0.00356
BIAS2	0.00089	0.00079	0.07757	5e-04	0.00065	0.07307
VAR1	0.02043	0.01445	0.04071	0.01117	0.00928	0.02332
VAR2	0.00354	0.00261	0.00738	0.00209	0.00175	0.00445

6.1 Baseline scenario

6.2 Heteroskedastic error terms

6.3 Weakly autocrorrelated error terms

6.4 (

Strongly autocrorrelated error terms

7 Application

article booktabs

¹In generating w_{it} , the effects $v_i(t)$ is multiplied by 10 to balance with the magnitude of x_{it2} .

Table 12: DGP 2, weakly autocorrelated errors						
MSE of Effects						
	\overline{n}	T KS	S Eup	d_{KSS}	d_{Eup}	
	30	12 28.83	0.4372	2 1.1090	2.6190	
		30 14.69	903 - 0.0837	7 1.0350	1.0480	
	100	12 21.83	0.3339	1.0350	2.2620	
		30 12.49	957 0.0670	1.0100	1.0010	
	300	12 21.58	824 0.1082	1.0280	1.0000	
		30 13.35	566 0.0487	7 1.0020	1.0000	
	M	SE, Bias,	Variance for	or Coefficie	ents	
		T = 12			T = 30	
-	KSS	Eup	Within	KSS	Eup	Within
n = 30						
MSE	0.16805	0.00076	0.89272	0.06091	9e-05	0.80917
BIAS1	-0.01858	0.00192	-0.00797	0.00185	0.00015	0.02906
BIAS2	0.09459	0.00032	0.27393	0.04554	8e-05	0.27930
VAR1	0.29633	0.01048	0.62208	0.16277	0.00678	0.55561
VAR2	0.01901	0.00300	0.03631	0.00717	0.00148	0.02254
n = 100						
MSE	0.04166	2e-04	0.20167	0.01921	3e-05	0.22681
BIAS1	-0.00989	0.00023	-0.02138	0.00577	0.00029	-0.02044
BIAS2	0.10470	0.00016	0.28553	0.04406	-4e-05	0.28084
VAR1	0.15080	0.00672	0.31884	0.08384	0.00403	0.30323
VAR2	0.01043	0.00172	0.02014	0.00363	0.00078	0.01234
n = 300						
MSE	0.01549	2e-05	0.07863	0.00690	1e-05	0.06897
BIAS1	-0.00076	-1e-05	-0.0209	0.00184	-1e-05	-0.01544
BIAS2	0.10308	8e-05	0.27216	0.04846	0.00000	0.27573
VAR1	0.08772	0.00326	0.19121	0.04880	0.00220	0.17187
VAR2	0.00592	0.00101	0.01139	0.00219	0.00046	0.00706

Table 13: DGP 3, weakly autocorrelated errors MSE of Effects \overline{T} KSS Eup d_{KSS} d_{Eup} n30 12 1.20740.37382.5000 2.9220 21.9435 30 0.26740.9990 2.8850 100 12 0.6996 0.39453.6600 2.945030 21.1519 0.0662 1.0000 2.0000300 12 0.53140.16462.3860 2.2840 30 21.3893 0.0490 1.0000 2.0000 MSE, Bias, Variance for Coefficients $T = \overline{12}$ T = 30KSS Eup Within KSS Eup Within n = 30**MSE** 0.036030.011000.000570.01238 0.000280.01117BIAS1 0.0025-0.00037-0.00945-0.01525-0.00046-0.0182BIAS2 0.064090.000390.456880.462720.000860.45254VAR1 0.09616 0.014700.152710.09536 0.01053 0.09014VAR2 0.029370.014170.049880.031300.009640.03022n = 100**MSE** 0.001940.010550.000250.004434e-050.00440BIAS1 0.00013-0.02168 -7e-05-2e-05-0.02143-0.03172BIAS2 -0.000210.457946e-050.040100.463910.45336VAR1 0.045630.008690.08204 0.05181 0.005660.04914 VAR2 0.013710.007500.026990.016990.016600.00548n = 300**MSE** 0.001250.001134e-050.003110.001302e-05BIAS1 0.00347-0.00063-0.00745-0.013550.00018-0.01732BIAS2 0.071480.000560.460110.46405-0.000210.45414VAR1 0.030090.004850.048210.02991 0.00326 0.028700.00469 VAR2 0.009100.015660.009600.009780.00317

Table 14: DGP 4, weakly autocorrelated errors MSE of Effects T d_{KSS} KSS Eup d_{Eup} n30 12 0.29800.72171.0000 2.8090 30 0.10300.15291.0230 1.0000 100 12 0.11480.31901.0000 2.2240 30 0.03770.04741.0000 1.0000 300 12 0.11160.1123 1.0000 1.0000 30 0.03890.04161.0000 1.0000 MSE, Bias, Variance for Coefficients T = 12T = 30KSS Eup Within KSS Eup Within n = 30**MSE** 0.003470.004170.002670.001050.001250.00098BIAS1 0.000460.000610.000535e-040.000470.00082BIAS2 0.001890.001730.000370.000210.000330.00225VAR1 0.060920.033950.054070.033790.02490 0.03190VAR2 0.022070.014430.020510.013030.010810.01254n = 100MSE 0.00089 0.000670.000278e-040.000270.00024BIAS1 0.00039-0.00029 -7e-04-0.000280.000490.00036BIAS2 0.000310.00026-0.000120.00032-8e-05-0.00011VAR1 0.032870.02009 0.02931 0.018240.01370 0.01730VAR2 0.011780.011070.006890.006700.008150.00583n = 300**MSE** 9e-050.000320.000280.000271e-049e-05BIAS1 0.000380.000270.00026-0.00068-0.00062-0.00073BIAS2 -0.00023 -0.00014-0.000170.000230.000150.00016VAR1 0.018620.01287 0.016780.01046 0.008600.01003VAR2 0.006600.006230.003920.003840.004850.00337

Table 15: DGP 5, weakly autocorrelated errors MSE of Effects \overline{T} KSS d_{KSS} Eup $d_{E\underline{up}}$ n30 12 0.8148 0.56881.92102.959030 0.5215 0.08041.0320 1.3210 0.8940100 12 0.15511.52201.5020 30 0.30650.04961.7880 1.0010 300 12 0.75990.07291.7940 1.0000 30 0.37920.03571.89601.0000 MSE, Bias, Variance for Coefficients $T = \overline{12}$ T = 30Eup KSS Within KSS Eup Within n = 30**MSE** 0.00441 0.00239 0.005970.001510.000520.00146BIAS1 0.001858e-05-0.00405-0.00371-0.00104-0.00489BIAS2 0.034160.001840.183390.060020.001020.09416VAR1 0.073020.02546 0.066000.03832 0.01890 0.03569VAR2 0.056540.024980.051910.034290.018870.03201n = 100**MSE** 0.001590.001673e-040.000440.00015 0.00045BIAS1 0.00098-5e-05-0.00688 -0.00046-0.00049-0.00621BIAS2 0.089620.000130.183340.045970.000510.09380VAR1 0.038460.014180.036620.02103 0.01073 0.01924VAR2 0.029940.014130.018840.017330.028840.01071n = 300**MSE** 0.000540.000110.000560.000144e-050.00015BIAS1 0.00092-0.00067-0.00411-0.00138-0.00015-0.00417BIAS2 0.087840.000660.186790.059347e-050.09467VAR1 0.021910.008410.021360.01188 0.00606 0.01126

0.01064

0.00605

0.01012

VAR2

0.01706

0.00837

 \overline{T} KSS d_{KSS} Eup d_{Eup} n30 12 0.87900.91153.54603.000030 0.8399 0.8227 5.0000 7.38900.77420.7510100 12 3.6220 3.0000 30 0.70320.60297.8030 5.0000 300 12 0.84600.79543.9860 3.0000 30 0.81720.69998.6520 5.0000 MSE, Bias, Variance for Coefficients $T = \overline{12}$ T = 30KSS Eup Within KSS Eup Within n = 30**MSE** 0.030750.001370.00218 0.000420.001050.01061 BIAS1 -0.000820.000720.004470.00100.00266-0.00571BIAS2 3e-050.000110.079561e-052e-050.07665VAR1 0.045090.02697 0.124930.027540.01911 0.07237VAR2 0.007200.004600.023010.004470.003280.01403n = 100MSE 0.000530.009990.000740.000220.00039 0.00383BIAS1 -0.00061-0.00789-0.00049 -0.00025-6e-05-0.00353BIAS2 1e-05-6e-050.07822-5e-051e-050.07378VAR1 0.02609 0.016730.067800.01737 0.013060.03944VAR2 0.004120.012500.002800.007670.002770.00221n = 300

0.00053

0.07770

0.03934

0.00712

5e-05

-0.00012

-2e-05

0.00778

0.00123

8e-05

-0.00012

2e-05

0.00640

0.00104

0.00106

-0.0045

0.07256

0.02293

0.00436

MSE

BIAS1

BIAS2

VAR1

VAR2

0.00011

6e-04

5e-05

0.01229

0.00191

0.00015

0.00097

4e-05

0.00827

0.00135

Table 16: DGP 1, strongly autocorrelated errors
MSE of Effects

 \overline{T} KSS Eup d_{KSS} d_{Eup} n30 12 29.84430.85241.09603.000014.6219 0.6941 30 1.0410 4.9730 12 22.3905 100 0.64671.0330 3.0000 30 13.2654 0.67271.0050 5.0000 300 12 20.19820.63571.0300 3.0000 30 12.45921.00400.54265.0000 MSE, Bias, Variance for Coefficients $T = \overline{12}$ T = 30Eup KSS Within KSS Within Eup n = 30**MSE** 0.670090.143860.001580.06133 9e-040.71645BIAS1 4e-05-0.00062-0.03949-0.003830.00142-0.03157BIAS2 0.10246-2e-050.280560.04392-9e-050.27759VAR1 0.296670.014610.593580.159360.00931 0.55479VAR2 0.019830.001960.036240.006950.001080.02248n = 100**MSE** 0.043440.208660.000340.217440.017562e-04BIAS1 0.002510.00639-0.00084-0.00203 -0.00039 0.01174BIAS2 0.097008e-050.269080.045241e-050.26709

0.01962

0.07598

0.00164

0.27847

0.18998

0.01149

0.08467

0.00364

0.00662

-0.00229

0.04409

0.04810

0.00207

0.00645

0.00051

6e-05

0.0000

1e-05

0.00410

0.00034

0.29845

0.01207

0.07634

-0.01219

0.27567

0.17669

0.00706

VAR1

VAR2

n = 300 MSE

BIAS1

BIAS2

VAR1

VAR2

0.15119

0.01004

0.01304

0.00713

0.09807

0.08502

0.00568

0.00875

0.00128

8e-05

0.00068

-5e-05

0.00547

0.00073

Table 17: DGP 2, strongly autocorrelated errors
MSE of Effects

 $\frac{\text{Table 18: DGP 3, strongly autocorrelated errors}}{\text{MSE of Effects}}$

	WISE OF EHOODS						
	\overline{n}	T	KSS	Eup	d_{KSS}	d_{Eup}	
	30	12	1.0779	0.8383	3 4.9100	3.0000	
		30 2	21.4318	0.7917	7 1.3040	5.0000	
	100	12	0.9907	0.6738	5.7830	3.0000	
		30 2	21.6087	0.6763	1.0290	5.0000	
	300	12	0.9030	0.5372	2 5.6840	3.0000	
		30 2	21.6825	0.5802	2 1.0000	5.0000	
	N	MSE, E	Bias, Var	iance fo	or Coefficie	ents	
		T =	12			T = 30	
	KSS	Eu	p W	ithin	KSS	Eup	Within
n = 30							
MSE	0.00188	0.002	246 0.0	03330	0.01267	0.00116	0.01145
BIAS1	0.00178	0.001	.08 -0.	00508	-0.02052	0.00054	-0.02208
BIAS2	0.02214	0.000	0.4	45621	0.45217	0.00014	0.45236
VAR1	0.04685	0.019	0.14	14830	0.09516	0.01142	0.08935
VAR2	0.01390	0.010	0.0	04835	0.03118	0.00646	0.02997
n = 100							
MSE	0.00058	0.000	0.065 0.0	00998	0.00386	0.00034	0.00395
BIAS1	0.00057	-0.00	123 -0.	02912	-0.0170	0.00046	-0.02778
BIAS2	0.02277	0.000	013 0.4	45894	0.46410	1e-04	0.45279
VAR1	0.02423	0.012	210 0.0	08031	0.05099	0.00771	0.04832
VAR2	0.00716	0.005	682 0.0	02640	0.01676	0.00364	0.01636
n = 300							
MSE	0.00028	0.000	0.0	00357	0.00139	9e-05	0.00134
BIAS1	3e-04	-0.000	046 -0.	01523	-0.01135	-0.00085	-0.01518
BIAS2	0.02755	-4e-(0.4	46061	0.46422	0.00018	0.45417
VAR1	0.01789	0.006	668 0.0	04761	0.02953	0.00493	0.02831
VAR2	0.00528	0.003	377 O.O	01543	0.00968	0.00230	0.00949

 $\frac{\text{Table 19: DGP 4, strongly autocorrelated errors}}{\text{MSE of Effects}}$

	\overline{n}	T	KSS	Eup	d_{KSS}	d_{Eup}	
	30	12 0	.8588	0.9413	3.2640	3.0000	
		30 0	.8246	0.8268	7.1850	4.9990	
	100	12 - 0	.8504	0.8324	3.7170	3.0000	
		30 0	.8200	0.7289	8.2940	5.0000	
	300	12 - 0	.8416	0.8039	3.8920	3.0000	
		30 0	.7082	0.5812	8.1220	5.0000	
	l	MSE, Bi	as, Va	riance fo	or Coefficie	ents	
		T=1	.2			T = 30	
	KSS	Eup	1	Vithin	KSS	Eup	Within
n = 30							
MSE	0.00172	0.0020	69 0	.00281	0.00054	0.00127	0.00144
BIAS1	-6e-05	-0.000	17 -(0.00126	-9e-05	-0.00081	-0.00163
BIAS2	0.00036	0.000	61 -(0.00018	-2e-05	6e-04	0.00049
VAR1	0.04901	0.027	34 0	.04462	0.02900	0.01899	0.02887
VAR2	0.01618	0.009	91 0	.01713	0.00954	0.00679	0.01135
n = 100							
MSE	0.00035	0.000	48 0	.00074	0.00014	0.00026	5e-04
BIAS1	-0.0012	-0.000	39 -(0.00103	-0.00018	-0.00016	0.00086
BIAS2	-0.00019	-4e-0	4 -(0.00043	8e-05	0.00019	0.00025
VAR1	0.02142	0.013	50 0	.02213	0.01388	0.01072	0.01541
VAR2	0.00685	0.004	52 0	.00833	0.00442	0.00357	0.00596
n = 300							
MSE	0.00012	0.000	17 0	.00027	6e-05	0.00011	0.00015
BIAS1	-0.00012	0.0008	89 0	.00058	-0.00013	2e-05	-0.00041
BIAS2	0.00012	9e-0	5	9e-05	4e-05	0.00013	0.00036
VAR1	0.01221	0.007	98 0	.01302	0.00958	0.00745	0.00942
VAR2	0.00386	0.002	63 - 0	.00481	0.00306	0.00247	0.00359

Table 20: DGP 5, strongly autocorrelated errors MSE of Effects \overline{T} KSS d_{KSS} Eup d_{Eup} n30 12 0.98040.90703.6030 3.000030 0.8361 0.7796 5.0000 7.3200 100 12 0.90010.80543.9960 3.0000 30 0.76870.62708.1760 5.0000 300 12 0.80990.70243.8680 3.0000 30 0.70740.54048.2160 5.0000 MSE, Bias, Variance for Coefficients T = 12T = 30KSS Eup Within KSS Eup Within n = 30**MSE** 0.00187 0.00194 0.006170.000660.00105 0.00195BIAS1 -0.00059-0.00199-0.00361-3e-05-6e-04-0.00357BIAS2 0.019850.002770.184020.009960.001040.09630VAR1 0.053240.02143 0.060450.032520.01566 0.03345VAR2 0.040400.019630.047350.028690.015300.03008n = 100**MSE** 0.00044 0.001740.00021 0.000410.00031 0.00059BIAS1 0.00052-0.00028-0.00855-0.00099 9e-04-0.00454BIAS2 0.016830.000770.184010.011245e-050.09358VAR1 0.02411 0.01144 0.031530.017230.00960 0.01829VAR2 0.018290.024830.015230.010030.009290.01651n = 300**MSE** 0.000220.00017 0.000597e-050.000110.00022BIAS1 0.001550.00023 -0.002890.00039-0.00096-0.00377BIAS2 0.000120.018340.000470.185540.010840.09457VAR1 0.01608 0.00743 0.019270.01032 0.005950.01076

0.00910

0.00573

0.00968

VAR2

0.01222

0.00664

Table 21: Testing the Presence of Interactive Effects - Test of Kneip, Sickles, and Song (2012)

Test-Statistic	p-value	critvalue	siglevel
38.49	0.00	2.33	0.01

Table 22:	Slope-	Coeff	icients
-----------	--------	-------	---------

	Table 22. Slope Coefficients					
	Estimate	Std.Err	Z value	Pr(>z)		
dem	-0.000210	0.000259	-0.81	0.418		
lag(l.d.gdp.a, 1)	0.268000	0.022200	12.00	<2e-16 ***		
lag(l.d.gdp.a, 2)	0.021100	0.022700	0.93	0.352		
lag(l.d.gdp.a, 3)	-0.019400	0.022200	-0.87	0.384		
lag(l.d.gdp.a, 4)	0.021600	0.020800	1.04	0.300		

Call:

Eup.default(formula = 1.d.gdp.a ~ dem + lag(1.d.gdp.a, 1) + lag(1.d.gdp.a,
2) + lag(1.d.gdp.a, 3) + lag(1.d.gdp.a, 4) - 1,
additive.effects = "twoways", dim.criterion = "PC3", error.type = 5)

Residuals:

Min 1Q Median 3Q Max -0.025100 -0.001840 0.000138 0.002140 0.019000

Additive Effects Type: twoways

Dimension of the Unobserved Factors: 7

Residual standard error: 0.004821 on 2325 degrees of freedom, R-squared: 0.7418