Advanced Digital Signal Processing: Imaging and Image Processing

Exercise 4: Image Formation Due date: 29.06.2015

Problem 1 - Backprojection

In this exercise, you will implement a reconstruction algorithms for the simulated images in exercise 3. Before the image is reconstructed, the space of the final image has to be discretized.

a) Given the sampling frequency f_s and the wave propagation speed c, find a plausible value for the distance d_s between neighboring elements (resolution) in the discretized image.

The image *I* is reconstructed by

$$I(x,y) = \sum_{l=1}^{N_l} s s_l(t_d(x,y)).$$

where $ss_l(t)$ is the modulated received pulse compressed signal. The position in the scene is denoted by $x_l \le x \le x_h$ and $y_l \le y \le y_h$. For the implementation, proceed as follows.

- b) For each ping and position in the discretized image space, compute the distances to the sensors, $d_x(x, y)$, $d_y(x, y)$, and the corresponding time delays $t_d(x, y)$.
- c) Next, modulate the phase of $ss_l(t_d(x, y))$ by computing

$$ss_l(t_d(x,y)) = ss_{l,b}(t_d(x,y)) \exp\{j2\pi f_c t_d(x,y)\}.$$
 (1)

Finally, compute I(x, y).

Note: $ss_{l,b}(t_d(x,y))$ is the baseband signal corresponding to $ss(\tau_d(x,y))$.

Figure 1: Original scene (left) and reconstruction (right).

1