## Algorithm complexity analysis

Algoritmos e Estruturas de Dados, L.EIC, 2023/2024

P Diniz, AP Rocha, A Costa, B Leite, F Ramos, J Pires, PH Diniz, V Silva

#### Algorithm

#### Algorithm

set of precise instructions for solving a problem

algorithm ≠ program

#### Algorithm analysis:

- *Correctness*: prove the algorithm is correct
- *Efficiency*: determine the resources requested by the algorithm (time, space)
  - Compare the resource requested by different algorithms that solve the same problem: a more efficient algorithm requires less resources
  - Predict the increasing of required resources as the input size increases

#### Complexity

- Algorithm space complexity:
   memory space needed to execute
   S(n) memory space required depending on input size (n)
- Algorithm time complexity:
   time it takes to execute
   T(n) execution time depending on input size (n)

Complexity ↑ versus Eficiência ↓

Sometimes, complexity is calculated for the "best case" (not too useful), the "worst case" (more useful) and the "average case" (equally useful)

### Complexity

- In general, we are not so much interested in the time and space complexity for small inputs
- What is important is the **growth** of the complexity functions
  - The growth of time and space complexity with increasing input size
     n is a suitable measure for the comparison of algorithms.
- Evaluate growth rate
  - As a function of various terms, growth is determined by the fastest growing term (dominant term)
  - Constant coefficients influence the initial progress

#### \*Dominant term

Supose you use  $n^3$  to estimate  $n^3 + 350n^2 + n$ 

- for n = 10000
  - real value = 1 0003 5000 010 000
  - estimated value = 1 000 000 000 000
  - error = 0.35% (not significant)
- for high values of *n* 
  - the <u>dominant term</u> is indicative of the behavior of the algorithm
- for small values of n
  - The dominant term is not necessarily indicative of the behavior, but usually programs run so quickly that it doesn't matter

#### The growth of functions

The growth of functions is usually described using the big-O notation

#### Definition

$$f(n) = O(g(n))$$

if there are positive constants c and  $n_0$  such that  $f(n) \le cg(n)$ , for all  $n > n_0$ 



- The idea behind the big-O notation is to establish an upper boundary for the growth of a function f(n) for large n
  - This boundary is specified by a function g(n) that is usually much simpler than f(n)
  - We accept the constant c in the requirement  $f(n) \le cg(n)$  whenever  $n > n_0$ , because c does not grow with n
  - We are only interested in large n, so it is OK if f(n) > cg(n) for  $x \le n_0$

#### The growth of functions

Example:  $f(n) = n^2 + 2n + 1$ 

- for n > 1:

$$n^2 + 2n + 1 \le n^2 + 2n^2 + n^2$$
  
 $\Rightarrow n^2 + 2n + 1 \le 4n^2$ 

- therefore, for c=4 and  $n_0=1$ :  $f(n) \le cn^2$ , whenever  $n > n_0$  $\Rightarrow f(n) = O(n^2)$ 

Question: if f(n) is  $O(n^2)$ , is it also  $O(n^3)$ ?

- yes;  $n^3$  grows faster than  $n^2$ , so  $n^3$  grows also faster than f(n)
- therefore, we always have to find the smallest simple function g(n) for which f(n) is O(g(n))

#### The growth of functions

#### more examples:

- $c_k n^k + c_{k-1} n^{k-1} + ... + c_0 = O(n^k)$  (c<sub>i</sub> constants)
- $\log_2 n = O(\log n)$  (changing the base is to multiply by a constant)
- -4 = O(1) (use 1 for constant order)

#### **Big-O** notation

#### Notation for functions growth

$$- f(n) = O(g(n))$$

if there are positive constants c and  $n_0$  such that  $f(n) \le cg(n)$ , for  $n \ge n_0$ 



$$- f(n) = \Omega(g(n))$$

if there are positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$ , for  $n \ge n_0$ 



#### **Big-O** notation

#### Notation for functions growth

$$- f(n) = \Theta(g(n))$$
if  $f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$ 



$$- f(n) = o(g(n))$$

if there are positive constants c and  $n_0$  such that f(n) < cg(n), for  $n \ge n_0$ 

#### Most common orders of growth



### Case study: maximum subsequence

#### Problem

- Given a set of integer values (positive and/or negative)  $a_1$ ,  $a_2$ , ...,  $a_n$ , determine the highest subsequence sum
- The largest sum subsequence is zero if all values are negative

#### Examples

$$1, -3, 4, -2, -1, 6$$



```
template <class Comparable>
Comparable maxSubSum1(const vector<Comparable> &a)
{
    Comparable maxSum = 0;
    for (int i = 0; i < a.size(); i++)
       for (int j = i; j < a.size(); j++)
         Comparable thisSum = 0;
          for (int k = i; k \le j; k++)
             thisSum += a[k];
          if (thisSum > maxSum)
             maxSum = thisSum;
    return maxSum;
```

#### Space complexity

S(n) = O(1), does not depend on the input size

#### Time complexity

- cycle of *n* iterations within another cycle of *n* iterations within another cycle of *n* iterations  $\rightarrow T(n) = O(n^3)$
- value estimated by excess, some cycles have less than *n* iterations

#### How to improve time complexity

- remove a cycle
- inner cycle is not necessary
- thisSum for next j can be easily calculated from the old value of thisSum

```
template <class Comparable>
Comparable maxSubSum2(const vector<Comparable> &a)
    Comparable maxSum = 0;
    for (int i = 0; i < a.size(); i++)
      Comparable thisSum = 0;
       for (int j = i; j < a.size(); j++)
         thisSum += a[j];
          if (thisSum > maxSum)
             maxSum = thisSum;
    return maxSum;
```

#### Time complexity

- cycle of n iterations within another cycle of n iterations  $\rightarrow T(n) = O(n^2)$
- value estimated by excess, some cycles have less than n iterations

#### • Is it possible to improve?

- linear algorithm is better: execution time is proportional to input size (hard to do better)
- if  $a_{ij}$  is a subsequence with negative cost,  $a_{iq}$  with q>j is not the maximum subsequence

```
template <class Comparable>
Comparable maxSubSum3(const vector<Comparable> &a)
{
    Comparable thisSum = 0; Comparable maxSum = 0;
    for (int j=0; j < a.size(); j++)
       thisSum += a[j];
       if (thisSum > maxSum)
           maxSum = thisSum;
       else if (thisSum < 0)</pre>
           thisSum = 0;
                                           Time complexity
    return maxSum;
                                               T(n) = O(n)
```

- Divide and conquer
  - divide the sequence in half
  - the maximum subsequence is:
    - a) in the first half
    - b) in the second half



- c) starts in the first half, goes to the last element of it, continues with the first element of the second half, and ends with an element of it
- calculates the three hypotheses and determines the maximum

- a) and b): recursively calculated
- c): calculated with two sequential cycles

```
template <class Comparable>
Comparable maxSubSum (const vector<Comparable> &a, int left,
                                               int right)
  Comparable maxLeftBorderSum = 0, maxRightBorderSum = 0
  Comparable leftBorderSum = 0, rightBorderSum = 0;
  int center = (left + right ) / 2;
  if (left == right)
      return ( a[left] > 0 ? a[left] : 0 )
  Comparable maxLeftSum = maxSubSum (a, left, center);
  Comparable maxRightSum = maxSubSum (a, center + 1, right);
```

```
for (int i = center ; i >= left ; i--)
   leftBorderSum += a[i];
   if (leftBorderSum > maxLeftBorderSum)
      maxLeftBorderSum = leftBorderSum;
for (int j = center +1 ; j \le right ; j++)
   rightBorderSum += a[j];
   if (rightBorderSum > maxRightBorderSum)
      maxRightBorderSum = rightBorderSum;
return max3 ( maxLeftSum, maxRightSum,
                  maxLeftBorderSum + maxRightBorderSum);
```



#### Time complexity

Let T(n) = execution time for input size n

$$\begin{cases}
T(1) = 1 \\
T(n) = 2 \times T(n/2) + n
\end{cases}$$

(remember that constants don't matter)

- two recursive calls, each of input size n/2; execution time of each recursive call is T(n/2)
- execution time of c) is *n*

#### recurrence relation

$$T(n/2) = 2 \times T(n/4) + n/2$$

$$T(n/4) = 2 \times T(n/8) + n/4$$

. . .

$$T(n) = 2 \times 2 \times T(n/4) + 2 * n/2 + n$$

$$T(n) = 2 \times 2 \times 2 \times T(n/8) + 2 \times 2 \times n/4 + 2 \times n/2 + n$$

. . .

$$T(n) = 2^k \times T(n/2^k) + k \times n$$

$$T(n) = 2^k \times T(n/2^k) + k \times n$$

- we know that T(1) = 1
- $(n/2^k) = 1 \rightarrow k = \log_2 n$

$$T(n) = n \times 1 + \log_2 n \times n = O(n \times \log n)$$

Space complexity

$$S(n) = O(\log n)$$

## Tower of Hanoi problem

Tower of Hanoi is a puzzle invented in 1883

- consists of three rods and multiple disks
- initially, all the disks are placed on one rod, one over the other in ascending order of size



- the objective is to move the stack of disks from the initial rod to another rod, following these rules:
  - A disk cannot be placed on top of a smaller disk
  - No disk can be placed on top of the smaller disk

Time complexity?

Space complexity?