Argiris Sakellariou^{1,2}

 $[1\mbox{cm}]$ 1 Biomedical Informatics Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

 $\mbox{[0cm]}\ ^2$ Department of Informatics and Telecommunications, National and Kapodistrian Univ. of Athens, Athens, Greece

[Ocm] argisake@gmail.com

May 8, 2019

Contents

1	Introduction							
2	lden	dentification of deferentially expressed genes						
	2.1	Breast cancer data	2					
	2.2	Data normalization and transformation.	3					
	2.3	mAPKL gene selection	5					
	2.4	Building and evaluating classification models	6					
3	Advanced usage of the package							
	3.1	Annotation analysis	8					
	3.2	Network characteristics	11					
4	Repo	orting	14					
5	Sess	sion info	14					
6	Refe	erence	16					

1 Introduction

The mAPKL bioconductor R package implements a hybrid gene selection method, which is based on the hypothesis that among the statistically significant genes in a ranked list, there should be clusters of genes that share similar biological functions related to the investigated disease. Thus, instead of keeping a number of N top ranked genes, it would be more appropriate to define and keep a number of gene cluster exemplars.

The proposed methodology combines filtering and cluster analysis to select a small yet highly discriminatory set of non-redundant genes. Regarding the filtering step, a multiple hypothesis testing approach from *multtest* r-package (maxT) is employed to rank the genes of the training set according to their differential expression. Then the top N genes (e.g. N = 200) are reserved for cluster analysis. First the index of Krzanowski and Lai as included in the *ClusterSim* r-package is applied on the disease samples of the training set to determine the number of clusters. The Krzanowski and Lai index is defined by $DIFF(k) = (k-1)^{\frac{2}{p}} W_{k-1} - k^{\frac{2}{p}} W_k$ when choosing the number of clusters (k) to maximize the quantity $KL(k) = \left| \frac{DIFF(k)}{DIFF(k+1)} \right|$. The W_k denotes the within-cluster sum of squared errors.

Finally, cluster analysis is performed with the aid of Affinity Propagation (AP) clustering algorithm, which detects n(n=k the Krzanowski and Lai index) clusters among the top N genes, the so called exemplars. Those n exemplars are expected to form a classifier that shall discriminate between normal and disease samples (Sakellariou et al. 2012, BMC Bioinformatics 13:270). This package implements the pre-mentioned methodology through a core function, the mAPKL. In the upcoming sections follows a guidance of the included functions and its functionality through differential expression analysis scenarios on a breast cancer dataset (GSE5764) which is part of the mAPKLData package.

2 Identification of deferentially expressed genes

2.1 Breast cancer data

Throught this tutorial we utilized a publicly available breast cancer dataset comprised of 30 samples, where 20 of them represent normal cases and the remaining 10 samples stand for tumor cases. We first load the package and then the breast cancer data. Then with the aid of the *sampling* function we create a separate training and validation sets where 60% of the samples will be used for training and the rest 40% of the samples will be used for evaluation purposes.

```
library(mAPKL)
library(mAPKLData)
data(mAPKLData)
varLabels(mAPKLData)
breast <- sampling(Data=mAPKLData, valPercent=40, classLabels="type", seed=135)</pre>
```

The sampling function returns an S3 class (breast) with two eSet class objects that nest the relevant training and validation sampes. Those two objects are used throughout the rest of the analysis.

```
breast
## $trainData
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 54675 features, 18 samples
   element names: exprs
## protocolData: none
## phenoData
    sampleNames: GSM134588 GSM134687 ... GSM134695 (18 total)
##
    varLabels: title type
     varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
##
     pubMedIds: 17389037
## Annotation: hgu133plus2
##
## $testData
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 54675 features, 12 samples
##
     element names: exprs
## protocolData: none
## phenoData
     sampleNames: GSM134584 GSM134696 ... GSM134698 (12 total)
##
    varLabels: title type
     varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
```

```
## pubMedIds: 17389037
## Annotation: hgu133plus2
```

2.2 Data normalization and transformation

We perform normalization to the expression values through the *preprocess* function.

```
normTrainData <- preprocess(breast$trainData)
normTestData <- preprocess(breast$testData)</pre>
```

The *preprocess* function produces a list of several available normalization and transformation options. Besides density plots per method are produced and saved to current working directory to assist the user to decide upon which method to select before proceeding to mAPKL analysis.

```
attributes(normTrainData)

## $names

## [1] "rawdata" "mc.normdata" "z.normdata" "q.normdata"

## [5] "cl.normdata" "mcL2.normdata" "zL2.normdata" "qL2.normdata"

## [9] "clL2.normdata"
```

The following graph presents the density plots of 8 possible normalization process with or without log2 transformation. The *preprocess* function applies all of them and it is up to the user, which one will engage for the rest of the analysis. In brief, the available approaches are mean-centering, z-score, quantile, and cyclic loess. During this case study we will proceed with the expression values following log2 transformation and cyclic loess normalization.

2.3 mAPKL gene selection

In this example we employ the expresion values of log2 transformation and cyclic loess normalization to proceed with the mAPKL analysis.

Figure 1: Density plots of normalized intensity values

```
## b=10 b=20 b=30 b=40 b=50 b=60 b=70 b=80 b=90 b=100

## b=110 b=120 b=130 b=140 b=150 b=160 b=170 b=180 b=190 b=200

## b=210 b=220 b=230 b=240 b=250 b=260 b=270 b=280 b=290 b=300

## b=310 b=320 b=330 b=340 b=350 b=360 b=370 b=380 b=390 b=400

## b=410 b=420 b=430 b=440 b=450 b=460 b=470 b=480 b=490 b=500

## b=510 b=520 b=530 b=540 b=550 b=560 b=570 b=580 b=590 b=600

## b=610 b=620 b=630 b=640 b=650 b=660 b=670 b=680 b=690 b=700

## b=710 b=720 b=730 b=740 b=750 b=760 b=770 b=780 b=790 b=800
```

```
## b=810 b=820 b=830 b=840 b=850 b=860 b=870 b=880 b=890 b=900
## b=910 b=920 b=930 b=940 b=950 b=960 b=970 b=980 b=990 b=1000
## Please wait! The (KL) cluster indexing may take several minutes...
## Asking for 22 number of clusters
## Warning in .local(s, x, ...): algorithm did not converge; turn
on details
## and call plot() to monitor net similarity. Consider
## increasing 'maxits' and 'convits', and, if oscillations occur
## also increasing damping factor 'lam'.
## Warning in .local(s, x, ...): algorithm did not converge; turn
on details
## and call plot() to monitor net similarity. Consider
## increasing 'maxits' and 'convits', and, if oscillations occur
## also increasing damping factor 'lam'.
## Warning in .local(s, x, ...): algorithm did not converge; turn
on details
## and call plot() to monitor net similarity. Consider
## increasing 'maxits' and 'convits', and, if oscillations occur
## also increasing damping factor 'lam'.
## Warning in .local(s, x, ...): algorithm did not converge; turn
on details
## and call plot() to monitor net similarity. Consider
## increasing 'maxits' and 'convits', and, if oscillations occur
## also increasing damping factor 'lam'.
## fc according to limma
```

2.4 Building and evaluating classification models

After having get the exemplars from *mAPKL* analysis we build an SVM classifier to test their discriminatory performance. Regarding the SVM setup, we utilize a linear kernel for which the cost attribute is inferred by the tune.svm function. however, the user may freely use another kernel and a different Cross Validation approach than 5-folds.

```
clasPred <- classification(out.clL2@exemplTrain, "type", out.clL2@exemplTest)
## The training set has 10 Negative and 8 Positive samples. Using
## k-fold=5 C-V</pre>
```

```
## ######## THE BEST PARAMETERS TUNING STAGE ##################
##
## Call:
## svm.default(x = train.mtx, y = lbls, scale = FALSE, type = "C-classification",
      kernel = "linear", gamma = best_gamma, cost = best_cost, cross = k_fold)
##
##
## Parameters:
     SVM-Type: C-classification
##
## SVM-Kernel: linear
##
       cost: 2
       gamma: 0.125
##
##
## Number of Support Vectors: 6
Test Labels Prediction Labels
##
## GSM134584
                   0
                                  1
## GSM134696
                                  0
## GSM134705
                   0
                                  0
## GSM134702
                   0
                                  0
## GSM134709
                   0
                                  0
## GSM134693
                   0
                                  0
## GSM134708
                   0
                                  0
## GSM134697
                   0
                                  0
## GSM134703
                   0
                                  1
## GSM134586
                   0
                                  0
## GSM134710
                   1
                                  1
## GSM134698
                   1
                                  1
## Negative samples: 10
## Positive samples: 2
## TN=8
```

```
## FP=2
## TP=2
## FN=0
## AUC=0.90
## Accuracy=83.00
## MCC=0.63
## Specificity=0.80
## Sensitivity=1.00
```

The output of the *classification* inform us about the SVM set up, the number of Support Vectors and finally show the the predicted labels along with the initial. In this example there is a validation set different from the training set and therefore we may use the respective labels to obtain the performance characteristcs. The relevant function *metrics* called inside the *classification* function, calculates five key measures: the Area Under the ROC curve AUC, the classification accuracy, the Matthews correlation coefficient MCC classification measure, the degree of true negative's identification Specificity, and finally the degree of true positive's identification Sensitivity.

3 Advanced usage of the package

3.1 Annotation analysis

For each contemporary chip technology, there is a relevant annotation file, in which the user may drag several *genome oriented* information. Regarding the breast cancer microarray data, the gene expression values were stored on Affumetrix gene chips. Using the *annotate* function, the user may obtain several info related to probe id, gene symbol, Entrez id, ensembl id, and chromosomal location.

```
gene.info <- annotate(out.clL2@exemplars, "hgu133plus2.db")</pre>
gene.info@results
##
           PROBEID
                          SYMBOL ENTREZID
                                                     ENSEMBL
                                                                     MAP
## 1
         239492_at
                         SEC14L4
                                     284904 ENSG00000133488
                                                                 22q12.2
## 2
         229947_at
                             PI15
                                      51050 ENSG00000137558
                                                                 8q21.13
```

17q21.33	ENSG00000108821	1277	COL1A1	1556499_s_at	3	##
16q12.2	ENSG00000087245	4313	MMP2	201069_at	4	##
21q22.11	ENSG00000156284	9073	CLDN8	214598_at	5	##
1p31.1	ENSG00000116761	1491	СТН	217127_at	6	##
1p21.1	ENSG00000060718	1301	COL11A1	37892_at	7	##
19q13.32	ENSG00000185800	1762	DMWD	33768_at	8	##
20q13.13	ENSG00000158445	3745	KCNB1	217637_at	9	##
21q22.11	ENSG00000226527	101928107	L0C101928107	1569828_at	10	##
4q35.1	ENSG00000154553	27295	PDLIM3	210170_at	11	##
17q21.2	ENSG00000173801	3728	JUP	212236_x_at	12	##
17q21.2	ENSG00000128422	3872	KRT17	212236_x_at	13	##
<na></na>	<na></na>	<na></na>	<na></na>	220932_at	14	##
6q13-q14.1	ENSG00000111799	1303	COL12A1	225664_at	15	##
3q25.32	ENSG00000118849	5918	RARRES1	206391_at	16	##
<na></na>	<na></na>	<na></na>	<na></na>	243177_at	17	##
<na></na>	<na></na>	<na></na>	<na></na>	1565733_at	18	##
<na></na>	<na></na>	<na></na>	<na></na>	1555926_a_at	19	##
1q21.3	ENSG00000143569	9898	UBAP2L	201377_at	20	##
<na></na>	<na></na>	<na></na>	<na></na>	220033_at	21	##
5q35.1	ENSG00000094755	2568	GABRP	205044_at	22	##
16p12.3	ENSG00000174628	124152	IQCK	215131_at	23	##

We may exploit the output of the *annotate* function to extent our analysis. For instance, we may perform *pathway analysis* on the exemplars. For this purpose we will utilize the *probes2pathways* function that utilizes the *reactome.db* package. This function employs the probe ids to identify the relevant pathways.

```
probes2pathways(gene.info)
                                                                                  R-HSA-10958
##
##
                                                                   "Homo sapiens: Hemostasis
                                                                                  R-HSA-10958
##
##
                                                                   "Homo sapiens: Hemostasis
                                                                                  R-HSA-11460
##
                                            "Homo sapiens: GPVI-mediated activation cascade
##
                                                                                 R-HSA-128021
##
                                                       "Homo sapiens: Adaptive Immune System
##
```

```
##
                                                                                R-HSA-144249
                                                        "Homo sapiens: Collagen degradation
##
##
                                                                                R-HSA-144249
##
                                                        "Homo sapiens: Collagen degradation
                                                                                R-HSA-147422
##
                                     "Homo sapiens: Degradation of the extracellular matrix
##
##
                                                                                R-HSA-147422
##
                                     "Homo sapiens: Degradation of the extracellular matrix
##
                                                                                R-HSA-147424
                                           "Homo sapiens: Extracellular matrix organization
##
                                                                                R-HSA-147424
##
                                           "Homo sapiens: Extracellular matrix organization
##
                                                                                R-HSA-147429
##
                                                           "Homo sapiens: Collagen formation
##
##
                                                                                 R-HSA-16258
##
                                                         "Homo sapiens: Signal Transduction
##
                                                                                R-HSA-165081
                                 "Homo sapiens: Collagen biosynthesis and modifying enzymes
##
##
                                                                                 R-HSA-16825
##
                                                                "Homo sapiens: Immune System
##
                                                                                 R-HSA-19893
   "Homo sapiens: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
##
                                                                                R-HSA-202209
               "Homo sapiens: Assembly of collagen fibrils and other multimeric structures
##
##
                                                                                 R-HSA-20273
##
                             "Homo sapiens: Cell surface interactions at the vascular wall
##
                                                                                 R-HSA-21243
                                               "Homo sapiens: Generic Transcription Pathway
##
##
                                                                                 R-HSA-216083
                                          "Homo sapiens: Integrin cell surface interactions
##
##
                                                                                 R-HSA-21608
##
                                          "Homo sapiens: Integrin cell surface interactions
                                                                                R-HSA-217378
##
                       "Homo sapiens: Binding and Uptake of Ligands by Scavenger Receptors
##
##
                                                                                R-HSA-221432
```

"Homo sapiens: Anchoring fibril formation	##
R-HSA-2243919	##
"Homo sapiens: Crosslinking of collagen fibrils	##
R-HSA-3000170	##
"Homo sapiens: Syndecan interactions	##
R-HSA-3000171	##
"Homo sapiens: Non-integrin membrane-ECM interactions	##
R-HSA-3000171	##
"Homo sapiens: Non-integrin membrane-ECM interactions	##
R-HSA-3000178	##
"Homo sapiens: ECM proteoglycans	##
R-HSA-3000178	##
"Homo sapiens: ECM proteoglycans	##
R-HSA-3000480	##
"Homo sapiens: Scavenging by Class A Receptors	##
R-HSA-430110	##
"Homo sapiens: GP1b-IX-V activation signalling	##
R-HSA-5653650	##
"Homo sapiens: Vesicle-mediated transport	##
R-HSA-6806834	##
"Homo sapiens: Signaling by MET	##
R-HSA-7385	##
"Homo sapiens: RNA Polymerase II Transcription	##
R-HSA-74160	##
"Homo sapiens: Gene expression (Transcription)	##
R-HSA-75892	##
"Homo sapiens: Platelet Adhesion to exposed collagen	##
R-HSA-75892	##
"Homo sapiens: Platelet Adhesion to exposed collagen	##
R-HSA-76003	##
"Homo sapiens: Platelet activation, signaling and aggregation	##
R-HSA-76009	##
"Homo sapiens: Platelet Aggregation (Plug Formation)	##
R-HSA-8874081	##
"Homo sapiens: MET activates PTK2 signaling	##

```
R-HSA-887587
##
##
                                                   "Homo sapiens: MET promotes cell motility
##
                                                                                 R-HSA-887816
                                         "Homo sapiens: Transcriptional regulation by RUNX2
##
                                                                                 R-HSA-894097
##
                                  "Homo sapiens: RUNX2 regulates osteoblast differentiation
##
##
                                            "Homo sapiens: RUNX2 regulates bone development
##
##
                                                                                 R-HSA-894821
                                                "Homo sapiens: Collagen chain trimerization
##
                                                                                 R-HSA-900693
##
##
                                      "Homo sapiens: Signaling by Receptor Tyrosine Kinases
```

3.2 Network characteristics

Regarding the network charcteristics, we compute through the *netwAttr* function three different types of centralities (degree, closeness, betweenness) and a meassure for clustering coefficient called transitivity. The degree centrality of a node refer to the number of connections or edges of that node to other nodes. The closeness centrality describes the reciprocal accumulated shortest length distance from a node to all other connected nodes. The betweeness centrality depicts the number of times a node intervenes along the shortest path of two other nodes. Transitivity meassures the degree of nodes to create clusters within a network. For all four network meassures we provide both global and local values. Furthermore, we compose an edge list (Node1-Node2-weight) based on the *N* top ranked genes. We may exploit that meassures to depict the exemplars' network characteristics

```
Global.val <- round(Global.val, 2)</pre>
exempl.netattr <- rbind(wDegreeL, wClosenessL, wBetweenessL, wTransitivityL)</pre>
netAttr <- cbind(Global.val, exempl.netattr)</pre>
netAttr <- t(netAttr)</pre>
netAttr
##
                 wDegreeL wClosenessL wBetweenessL wTransitivityL
## Global.val
                   350.90
                                  0.02
                                             1542.12
                                                                0.53
## 239492_at
                   387.54
                                  0.02
                                                0.00
                                                                0.13
## 229947_at
                   320.55
                                  0.02
                                             1342.00
                                                                0.13
## 1556499_s_at
                                                0.00
                                                                0.13
                   363.44
                                  0.02
## 201069_at
                                  0.02
                   294.55
                                            17550.00
                                                                0.13
## 214598_at
                   400.74
                                  0.02
                                             1564.00
                                                                0.13
## 217127_at
                   301.88
                                  0.02
                                                2.00
                                                                0.13
## 37892_at
                   384.02
                                  0.02
                                                0.00
                                                                0.13
## 33768_at
                   295.85
                                  0.02
                                             1286.00
                                                                0.13
## 217637_at
                   310.87
                                  0.02
                                                2.00
                                                                0.13
## 1569828_at
                   344.24
                                  0.02
                                                0.00
                                                                0.13
## 210170_at
                   310.57
                                  0.02
                                                0.00
                                                                0.12
## 212236_x_at
                   412.59
                                  0.02
                                             1176.00
                                                                0.14
## 220932_at
                   321.35
                                  0.02
                                                0.00
                                                                0.13
## 225664_at
                   366.51
                                  0.02
                                              764.00
                                                                0.13
## 206391_at
                                  0.02
                   343.50
                                              524.00
                                                                0.13
## 243177_at
                   364.64
                                  0.02
                                                4.00
                                                                0.13
## 1565733_at
                   390.27
                                  0.02
                                              470.00
                                                                0.13
## 1555926_a_at
                   352.14
                                  0.02
                                             3360.00
                                                                0.13
## 201377_at
                                              397.00
                   499.64
                                  0.02
                                                                0.14
## 220033_at
                   460.89
                                  0.02
                                              396.00
                                                                0.14
## 205044_at
                   310.78
                                  0.02
                                                0.00
                                                                0.12
## 215131_at
                   308.69
                                  0.02
                                                0.00
                                                                0.14
```

and identify potential hubs. The calculations of this example are based on the "clr" network reconstruction method. However, there are for the time being two more options, including the "aracne.a" and "aracne.m".

```
# For local degree > global + standard deviation
sdev <- sd(net.attr@degree$WdegreeL)
msd <- net.attr@degree$WdegreeG + sdev
hubs <- wDegreeL[which(wDegreeL > msd)]
hubs

## 214598_at 212236_x_at 201377_at 220033_at
## 400.74 412.59 499.64 460.89
```

Finally, we may plot the network for those nodes that their local weighted degree is greater than Global weithed degree plus 2 times the standard deviation. We set this rule for both significance and illustration purposes (that edge list has dimension 604×3).

Figure 2: Degree centrality network

4 Reporting

The overall analysis is summarized in an **html** report produced by the *report* function. It covers the dataset repsresentation depicting the samples' names and their respective class labels, the exemplars section where statistical results and network characteristics are included. The classification performance section illustrates the performance metrics achieved in either cross-validation or hold-out validation. Finally, several annotation info are presented if an annotation analysis has occured.

5 Session info

```
sessionInfo()
## R version 3.6.0 Patched (2019-05-02 r76456)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17134)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Greek_Greece.1253 LC_CTYPE=Greek_Greece.1253
## [3] LC_MONETARY=Greek_Greece.1253 LC_NUMERIC=C
## [5] LC_TIME=Greek_Greece.1253
## attached base packages:
## [1] stats4
                 parallel stats
                                     graphics grDevices utils
                                                                   datasets
## [8] methods
                 base
##
## other attached packages:
```

```
[1] igraph_1.2.4.1
                             hgu133plus2.db_3.2.3 org.Hs.eg.db_3.8.2
##
    [4] AnnotationDbi_1.46.0 IRanges_2.18.0
##
                                                   S4Vectors_0.22.0
                                                   Biobase_2.44.0
##
    [7] mAPKLData_1.15.0
                             mAPKL_1.15.1
## [10] BiocGenerics_0.30.0
                             knitr_1.22
##
## loaded via a namespace (and not attached):
    [1] bit64_0.9-7
                                jsonlite_1.6
                                                         splines_3.6.0
   [4] modeest_2.3.3
                                shiny_1.3.2
                                                         BiocManager_1.30.4
##
##
   [7] highr_0.8
                                blob_1.1.1
                                                         yaml_2.2.0
## [10] RSQLite_2.1.1
                                lattice_0.20-38
                                                         limma_3.40.0
## [13] rmutil_1.1.3
                                digest_0.6.18
                                                         manipulateWidget_0.10.0
## [16] promises_1.0.1
                                R2HTML_2.3.2
                                                         htmltools_0.3.6
## [19] httpuv_1.5.1
                                Matrix_1.2-17
                                                         pkgconfig_2.0.2
                                                         genefilter_1.66.0
## [22] timeDate_3043.102
                                XML_3.98-1.19
## [25] reactome.db_1.68.0
                                xtable_1.8-4
                                                         webshot_0.5.1
## [28] later_0.8.0
                                stable_1.1.4
                                                         annotate_1.62.0
## [31] spatial_7.3-11
                                survival_2.44-1.1
                                                         magrittr_1.5
## [34] mime_0.6
                                memoise_1.1.0
                                                         evaluate_0.13
## [37] apcluster_1.4.7
                                MASS_7.3-51.4
                                                         class_7.3-15
## [40] tools_3.6.0
                                BiocStyle_2.12.0
                                                         formatR_1.6
                                                         bazar_1.0.11
## [43] stringr_1.4.0
                                clusterSim_0.47-3
## [46] cluster_2.0.8
                                stabledist_0.7-1
                                                         kimisc_0.4
## [49] ade4_1.7-13
                                compiler_3.6.0
                                                         e1071_1.7-1
## [52] timeSeries_3042.102
                                grid_3.6.0
                                                         RCurl_1.95-4.12
## [55] htmlwidgets_1.3
                                crosstalk_1.0.0
                                                         miniUI_0.1.1.1
## [58] bitops_1.0-6
                                                         multtest_2.40.0
                                rmarkdown_1.12
## [61] DBI_1.0.0
                                statip_0.2.0
                                                         R6_2.4.0
## [64] bit_1.1-14
                                parmigene_1.0.2
                                                         clue_0.3-57
                                stringi_1.4.3
## [67] fBasics_3042.89
                                                         Rcpp_1.0.1
## [70] rpart_4.1-15
                                rgl_0.100.19
                                                         xfun_0.6
```

6 Reference

Sakellariou, A., D. Sanoudou, and G. Spyrou. "Combining Multiple Hypothesis Testing and Affinity Propagation Clustering Leads to Accurate, Robust and Sample Size Independent Classification on Gene Expression Data. " BMC Bioinformatics 13 (2012): 270.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5764

Figure 3: mAPKL analysis report