Binary analysis: Malware Detection & Analysis

Yue Duan

Outline

- Malware basics
- Research papers:
 - Semantics-Aware Malware Detection
 - Panorama: Capturing System-wide
 Information Flow for Malware Detection and
 Analysis
 - BareCloud: Bare-metal Analysis-based
 Evasive Malware Detection

Malware Detection Basics

- Malware
 - Software intentionally designed to cause damage
- Malware Detection techniques
 - Static analysis
 - Dynamic analysis

Malware Detection Basics

- Static analysis
 - testing and evaluation of an application by examining the code without executing the application
 - o Pros:
 - Good code coverage
 - Time efficiency
 - Cons:
 - False positives
 - code obfuscation
 - Encryption

Malware Detection Basics

- Dynamic analysis
 - testing and evaluation of an application during runtime
 - o Pros:
 - Capture behaviors accurately
 - Cons:
 - Poor code coverage
 - High runtime overhead

Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, Randal E. Bryant

IEEE S&P 2005

- State-of-the-art techniques pattern matching
 - susceptible to obfuscations
 - purely syntactic
 - ignore the semantics of instructions

- Attacker's goal preserve behaviors
 - Transformation of code and data
 - Addition of new code and data

No Resilience to Obfuscations

False Negative Rate for Obfuscated Worms

Source: "Testing Malware Detectors" (ISSTA 2004)

- Major contributions
 - Introduce semantic signatures
 - Combine syntactic and semantic information
 - Develop a prototype based on the signatures
 - Empirical study shows that one semantic signature can detection a malware family

- Example: detect mass-mailing virus
 - Detect email capability
 - Detect self-propagation

```
s = socket (...);
connect (s);
...

sprintf (buf, "EHLO %S", dnsname);
send (s, buf);
```

```
Possible syntactic signature:

socket()
connect()

"EHLO"
send()
```

- Variant 1: string manipulation
 - Hide known constants
 - Syntactic signature does not match

```
s = socket (...);
connect (s);

...
char str [80];
strcpy (str, "EH");
strcat (str, "LO %S");
sprintf (buf, str, dnsname);
send (s, buf);

Possible syntactic signature:
socket()
connect()

"EHLO"
send()
```

- Variant 2: string obfuscation
 - Hide known constants using simple encryption techniques

```
Possible syntactic
                                                           signature:
s = socket (...);
                                                           socket()
connect (s);
                                                           connect()
char* str = decrypt (encrypted string);
sprintf (buf, str, dnsname);
                                                           "EHLO"
send (s, buf);
                                                           send()
```

- Attackers
 - Same behavior in different forms
 - contain same semantics
- Semantic signatures
 - Combine syntactic info and semantic info
 - Detect any variant

Evaluation

Netsky.C	1
Netsky.D	1
Netsky.0	✓
Netsky.P	✓
Netsky.T	V
Netsky.W	/

McAfee uses individual signatures for each worm.

Semantic signatures provide forward detection.

Evaluation: Obfuscation resilient

Objustation Time	Semantics-Aware Detection		Madfoo
Obfuscation Type	Average Time	Detection Rate	McAfee
Nop insertion	74.81 s	100%	75%
Stack op. insertion	159.10 s	100%	25%
Math op. insertion	186.50 s	95%	5%

Panorama: Capturing System-wide Information Flow for Malware Detection and Analysis

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, Engin Kirda

ACM CCS 2007

- Malware detection
 - Signature based detection
 - Cannot detect new malware and variants
 - Semantic-aware signature can detect some
 - Behavior based
 - Heuristics: high false positives and false negatives
 - Hooking-based
- Malware analysis
 - Manual process

Observation

- Information access and processing (IAP) behavior
 - malicious/suspicious IAP
 behaviors as traces for malware
 detection and analysis
 - Steal, tamper, or leak sensitive information

- Approach: Whole-system dynamic taint analysis
 - Run the system in an emulator
 - Selectively mark data as tainted
 - Monitor taint propagation
 - Extract OS-level knowledge
 - Generate taint graphs
 - Graph based detection and analysis

TAINT ANALYSIS

Taint Graph

Instruction and hardware level raw events

- Graph-based Detection and Analysis
 - Anomalous information access
 - Keyloggers:
 - Text: when sending keystrokes to a text editor
 - Password: when sending password to a web form
 - Backdoors:
 - ICMP: when pinging a remote host
 - FTP: when logging into a server
 - etc
 - Anomalous information leakage
 - URL: the keystrokes sent to the address bar
 - HTTP: the incoming HTTP traffic

Evaluation: effectiveness

- Evaluation: performance
 - Curl, scp, gzip: 20x slowdown on average
 - o Test cases: 10-15 mins

Category	Total	FNs	\mathbf{FPs}
Keyloggers	5	0	-
Password thieves	2	0	- 2
Network sniffers	2	0	-
Stealth backdoors	3	0	-
Spyware/adware	22	0	-
Rootkits	8	0	-
Browser plugins	16	-	1
Multi-media	9	-	0
Security	10	-	2
System utilities	9	-	0
Office productivity	4	-	0
Games	4	_	0
Others	4	1 - 2	0
Sum	98	0	3

Browser accelerator

Personal firewall

Google Desktop obtains the incoming HTTP traffic, saves it into two index files, and then sends it out though an HTTPS connection, to a remote Google Server

BareCloud: Bare-metal Analysis-based Evasive Malware Detection

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel

Usenix Security 2014

• VM environment is different from real machine.

- VM detection and evasion:
 - CPU instruction semantics
 - Timing attacks
 - VM bugs
 - o Etc
- Motivation:
 - Can we automatically identify evasive malware while preserving transparency?
- Key idea:
 - Collect behavioral information on multiple platforms and compare the behaviors

System overview

- Prescreening
 - Select interesting samples
 - Likely to have environment-sensitive behaviors
 - Use Anubis platform

Execution

- Run malware sample on 4 platforms simultaneously
 - Bare-metal
 - Anubis (emulator)
 - Ether (Intel VT)
 - Virtualbox (Type2 hypervisor)

- Behavior extraction
 - Two common ways
 - VMI based approach
 - In-guest monitoring
 - Problem:
 - Not transparent enough

Behavior extraction

- BareCloud extracts file system behaviors and network behaviors
 - File system: compare the disk contents from before and after the malware execution
 - Network: use an external traffic capture component

Behavior comparison

 Compare the behavior profiles in a hierarchical way

Evaluation

- 110,000+ malware samples
- 5835 evasive malware samples are found

Environment	Detection count	Percentage
Anubis	4,947	84.78
Ether	4,562	78.18
VirtualBox	3,576	61.28
All	2,530	43.35
Total	5,835	

Summary

- Malware detection and analysis
 - Static analysis
 - Dynamic analysis
- Semantics-Aware Malware Detection, IEEE S&P 2005
- Panorama: Capturing System-wide Information Flow for Malware Detection and Analysis, ACM CCS 2007
- BareCloud: Bare-metal Analysis-based Evasive Malware Detection, Usenix Security 2015

Thank you! Question?