

Suite TCP/IP

Transmission Control Protocol Internet Protocol

Arquitectura de TCP/IP

Filosofía de Internet

Servicios de Aplicación

Servicio de Transporte Confiable

Servicio de Entrega de Paquetes Connectionless

IP = Servicio "Connectionless"

- No confiable significa que los paquetes pueden ser:
 - Perdidos
 - Duplicados
 - Desordenados
 - Demorados
- Connectionless paquetes tratados independientemente
 - No existe un "estado" en los routers acerca de cómo fueron tratados los paquetes anteriores, ni qué contenían.
- Entrega Best-Effort el software realiza un serio intento por entregar el paquete (sin garantía)

0 4		3	16 1	9 2	<u>24 3</u> 1	
Vers.	HLEN	ToS	Longitud Total			
Identificación			FLAGS	S Desplazamiento de Fragmento		
Т	TTL Protocolo		Checksum del encabezado			
Dirección IP Fuente						
Dirección IP Destino						
Opciones (si las hay) Relleno						
DATOS						
•••						

Datagrama IP (rfc 760)

- *Version*: IPv4 = 0100
- HLEN: Longitud del encabezado X 4
 - Valor máximo: 15 => máximo HLEN = 60 bytes
 - Encabezado más común (sin opciones ni padding) = 20 bytes
- Longitud Total (incluyendo la cabecera IP)
 - 16 bits => tamaño máximo de un datagrama = 65.536 bytes
- *Identificación*: identifica unívocamente a cada datagrama
- Time To Live (TTL):
 - Decrementado por cada router
 - Cuando llega a 0 (cero) el datagrama es descartado

- Identificador de Protocolo: (ICMP=1,TCP=6, UDP=17)
- Dirección IP Origen y Destino
- Checksum de la Cabecera
 - Solo controla errores en la cabecera
 - Fácil implementación por software
 - El receptor calcula el mismo Checksum
 - Si encuentra errores, descarta el datagrama. No se generan mensajes de error
- FLAGS (Banderas)
 - 1er bit sin uso
 - No fragmentar
 - Más fragmentos

• TOS (Type of Service) - 4 bits

Solo uno puede estar encendido

- "Minimize delay" bit
- "Maximize throughput" bit
- "Maximize reliabilty" bit
- "Minimize cost" bit

Valores recomendados de ToS (RFC1349)

APLICACION	Minimize Delay	Maximize throughput	Maximize Reliability	Minimize Cost
Telnet / Rlogin	1	0	0	0
FTP - Control	1	0	0	0
DNS Query (UDP)	1	0	0	0
FTP - Data	0	1	0	0
ICMP	0	0	0	0

- MTU: Maximum Transfer Unit
 - Cada tecnología de conmutación de paquetes, fija un límite máximo para la cantidad de datos que pueden transmitirse en una única trama

Red	MTU (Bytes)	
Token Ring 16 Mbps	17914	
IEEE 802.3	1500	
X.25	576	

- IP oculta los detalles de la tecnología subyacente. Divide los datagramas en fragmentos
- •Los fragmentos deben ser reensamblados en Destino

Datagram Header	Data1 600 bytes	 	Data2 600 bytes	Data3 280 bytes
Fragment1 Header	Data1		Fragment '	1 (Offset 0)
Fragment2 Header	Data2		Fragment 2	2 (Offset 600-75)
Fragment3 Header	Data3		Fragment 3	3 (Offset 1200-150

• El tamaño de fragmento se elige múltiplo de 8 bytes más próximo al MTU del trayecto

- Cada Fragmento se convierte en un datagrama independiente
- •Tiene el mismo Identicador, Dirección Origen y Destino que el Datagrama Original
- •El FLAG "Más Fragmentos" = 0 si es el último o el único fragmento
- •El FLAG "No fragmentar" impide la fragmentación
 - •El datagrama se descarta y se genera un mensaje ICMP

Desventajas de la Fragmentación

- Duplica la probabilidad de pérdida de un datagrama
- •Genera mayor carga de procesamiento en los routers
- No compatible con el balanceo de carga (server farm)

Direccionamiento

- Dirección única en Internet
- 32 bits de longitud
- 4 bytes separados por "." con notación decimal (ej. 24.232.218.197)
- La máscara identifica RED / HOST
 (ej.: 255.255.255.0 ó /24 24 bits)

Dirección IP

	8 bits	8 bits	8 bits	8 bits
Dirección de 32 bits	10011000	00000001	00110110	00110000
Notación Decimal	152 .	1 .	54 .	48

Loopback address: 127.0.0.0

Clases de direcciones

CLASE A Network ID (7bits) Host ID (24 bits) **CLASE B** 1 0 Network ID (14bits) Host ID (16 bits) CLASE C 1 1 0 Network ID (21bits) Host ID (8 bits) CLASE D 1 1 1 0 Multicast Address (28 bits) CLASE E 1 1 1 1 0 Reservado para uso futuro (27 bits)

Direccionamiento

Clase	Cantidad de redes	Red más baja	Red más alta	Cantidad de hosts por red
Α	2 ⁷ (128)	1.0.0.0	126.0.0.0	2 ²⁴ (16M)
В	2 ¹⁴ (16K)	128.1.0.0	191.255.0.0	2 ¹⁶ (64K)
С	2 ²¹ (2M)	192.0.1.0	223.255.255.0	28(256)

Direccionamiento

• Direccionamiento Privado (definido en RFC1918)

10.0.0.0 - 10.255.255.255 (10/8 prefix)

172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

VLSM & CIDR

Variable-Length subnet Mask (192.168.2.64/28)

Classless Interdomain Routing (192.168.0.0/16)