

Problem R-03E. Below are given the aliphatic carbons of ¹³C NMR spectra of 2-methylenebicyclo[2.2.1]heptene, and the ¹³C NMR spectrum of a mixture of stereoisomeric 2-ethylidenebicyclo[2.2.1]heptenes (complete spectra are shown on the following page). Your task is to assign some of the resonances and determine which isomer is which in the mixture of isomers. (Source: Aldrich Spectra Viewer).

(a) Assign the aliphatic signals of 1 by writing the δ values next to the appropriate carbons

(b) Assign the aliphatic signals of compounds ${\bf 2}$ and ${\bf 3}$ by writing the δ values next to the appropriate carbons

(c) Which isomer (2 or 3) is the major one?_____ Briefly explain the basis for your assignment of structure. Be specific. Use the numbering scheme shown in your answer.

Problem R-03E. Below are given the aliphatic carbons of ¹³C NMR spectra of 2-methylenebicyclo[2.2.1]heptene, and the ¹³C NMR spectrum of a mixture of stereoisomeric 2-ethylidenebicyclo[2.2.1]heptenes (complete spectra are shown on the following page). Your task is to assign some of the resonances and determine which isomer is which in the mixture of isomers. (Source: Aldrich Spectra Viewer).

(a) Assign the aliphatic signals of 1 by writing the δ values next to the appropriate carbons

(b) Assign the aliphatic signals of compounds 2 and 3 by writing the δ values next to the appropriate carbons

(c) Which isomer (2 or 3) is the major one? ____3 Briefly explain the basis for your assignment of structure. Be specific. Use the numbering scheme shown in your answer.

In compound 3, C-3 should see a γ -effect and be upfield of C-3 in 1 and 2. The minor isomer has a C-3 chemical shift almost identical to that of 1, thus it must be 2. The major isomer is then 3. Similar argument for C-1, which should be upfield in 2 compared to those in 1 and 3. Chemical shifts for C4 and C-7 should be close in both isomers.