(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年12 月24 日 (24.12.2003)

PCT

(10) 国際公開番号 WO 03/106676 A1

(51) 国際特許分類7:

C12N 15/09,

C12Q 1/68, G01N 33/53, 33/569, 37/00

(21) 国際出願番号: PCT/JP03/07620

(22) 国際出願日: 2003 年6月16日 (16.06.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-174564 2002年6月14日(14.06.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 日立ソフトウエアエンジニアリング株式会社 (HITACHI SOFTWARE ENGINEERING CO., LTD.) [JP/JP]; 〒230-0045 神奈川県 横浜市鶴見区末広町 一丁目 1番 4 3 Kanagawa (JP). 株式会社三菱化学ビーシーエル (MITSUBISHI KAGAKU BIO-CLINICAL LABORA-TORIES, INC.) [JP/JP]; 〒174-8555 東京都 板橋区 志村3-30-1 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 橋田 順也 (HASHIDA,Junya) [JP/JP]; 〒140-0002 東京都 品川 区東品川 4丁目 12番7号日立ソフトウエアエンジニアリング株式会社内 Tokyo (JP). 上野 紳吾 (UENO,Shingo) [JP/JP]; 〒140-0002 東京都 品川区東品川 4丁目 12番7号日立ソフトウエアエンジニアリング株式会社内 Tokyo (JP). 武藤勇 (MUTO,Isamu) [JP/JP]; 〒140-0002 東京都 品川区東品川 4丁目 12番7号日立ソフトウエアエンジニアリング株式会社内 Tokyo (JP). 成瀬貴美子 (NARUSE,Kimiko) [JP/JP]; 〒140-0002 東京都 品川区東品川 4丁目 12番7号日立ソフトウエアエンジニアリング株式会社内 Tokyo (JP). 田村美穂 (TAMURA,Miho) [JP/JP]; 〒174-8555 東京都 板橋区 志村3-30-1 株式会社三菱化学ビーシーエル内 Tokyo (JP). 松田 耕

/続葉有/

- (54) Title: PROBES FOR IDENTIFYING MICROORGANISM AND IDENTIFICATION METHOD USING THE SAME
- (54) 発明の名称: 微生物同定用プローブ及びそれを用いた同定方法

A...PCR PRODUCT (500bp)

B...V1 REGION (50mer)

C...V2 REGION (50mer)

D...V3 REGION (50mer)

- (57) Abstract: It is intended to provide specific probes for detecting and identifying a microorganism and a detection and/or identification method using the same. Probes for detecting and identifying one or more microorganisms which are harmful in the fields of medicines, foods, etc. such as *Actinobacillus actinomycetemcomitans*, *Acinetobacter calcoaceticus* or *Haemophilus influenzae*, comprising 20 to 100 bp base sequence(s) in the V1, V2 and/or V3 regions of the 16S rRNA of the microorganism to be identified or a complementary sequence thereof. A method of detecting and/or identifying a microorganism with the use of one or more probes as described above.
- (57) 要約: 微生物を検出同定する特異的プローブ及びそれを用いた検出及び/又は同定方法の提供。 アクチノバチルス・アクチノマイセテムコミタンス、アシネトバクター・カルコアセチカス、ヘモフィルス・インフルエンザ等の医療及び食品等の分野において有害な1又は複数の微生物を検出同定するためのプローブであって、同定すべき微生物の16SrRNAのV1、V2及び/又はV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブ。また、前記プローブの1種以上を用いる、微生物の検出及び/又は同定方法。

一郎 (MATSUDA,Koichiro) [JP/JP]; 〒174-8555 東京都 板橋区 志村3-30-1 株式会社三菱化学ビーシーエル内 Tokyo (JP). 島津 光伸 (SHIMADZU,Mitsunobu) [JP/JP]; 〒174-8555 東京都 板橋区 志村3-30-1 株式会社三菱化学ビーシーエル内 Tokyo (JP). 小林 寅喆 (KOBAYASHI,Intetsu) [JP/JP]; 〒174-8555 東京都板橋区 志村3-30-1 株式会社三菱化学ビーシーエル内 Tokyo (JP). 石古 博昭 (ISHIKO,Hiroaki) [JP/JP]; 〒174-8555 東京都板橋区 志村3-30-1 株式会社三菱化学ビーシーエル内 Tokyo (JP).

(74) 代理人: 平木 祐輔 , 外(HIRAKI,Yusuke et al.); 〒 105-0001 東京都港区虎ノ門一丁目17番1号 虎ノ門5 森ビル 3階 Tokyo (JP).

- (81) 指定国 (国内): CN, JP, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

微生物同定用プローブ及びそれを用いた同定方法

技術分野

本発明は、微生物、特に医療及び食品等の分野において有害な細菌を検出、同定する特異的なプローブ及びそれを用いた検出及び/又は同定方法に関する。

背景技術

表1に記載した細菌の検出は、種々の医学、公衆衛生に関して重要であり、検 出方法については次の2つの方法が知られている。

表 1

微生物	微生物名	微生物番号
ID		N — 10 — 3
01	Actinobacillus actinomycetemcomitans	ATCC 29522
02	Acinetobacter calcoaceticus	ATCC 23055
03	Haemophilus influenzae	ATCC 33391
04	Stenotrophomonas maltophilia	ATCC 13637
05	Proteus mirabilis	ATCC 29906
06	Streptococcus pneumoniae	ATCC 33400
07	Pseudomonas aeruginosa	ATCC 27853
08	Citrobacter freundii	ATCC 8090
09	Veillonella parvula	ATCC 10790
10	Providencia stuartii	ATCC 49809
11	Neisseria gonorrhoeae	ATCC 49226
12	Streptococcus agalactiae	ATCC 13813
13	Morganella morganii	ATCC 25830
14	Bacteroides fragilis	ATCC 25285
15	Staphylococcus hominis	ATCC 27844
16	Staphylococcus warneri	ATCC 27836
17	Staphylococcus haemolyticus	ATCC 29970
18	Enterobacter cloacae	ATCC 13047
19	Enterobacter aerogenes	ATCC 13048
20	Staphylococcus epidermidis	ATCC 14990
21	Streptococcus constellatus	ATCC 27823
22	Serratia marcescens	ATCC 8100
23	Streptococcus anginosus	ATCC 33397
24	Escherichia coli	ATCC 11775
25	Klebsiella pneumoniae	ATCC 13883
26	Enterococcus faecalis	ATCC 19433
27	Enterococcus faecium	ATCC 19434
28	Streptococcus sanguis	ATCC 10556
29	Streptococcus mitis	ATCC 49456
30	Streptococcus intermedius	ATCC 27335
31	Listeria monocytogenes	ATCC 15313
32	Clostridium perfringens	ATCC 13124
33	Corynebacterium aquatium	IFO 15710
34	Streptococcus oralis	ATCC 35037
35 36	Staphylococcus aureus	ATCC 12600
	Neisseria meningitidis	IID 854
37	Campylobacter fetus	ATCC 27374
	Enterococcus gallinarum	ATCC 49573
39 40	Enterococcus casseliflavus	ATCC 25788
	Aeromonas hydrophila	ATCC 7966
41 42	Salmonella paratyphi A	ATCC 9281
	Salmonella typhi	ATCC 19430
43 44	Streptococcus equisimilis	ATCC 35666
	Streptococcus canis	ATCC 43496
45	Klebsiella oxytoca	ATCC 13182
46	Staphylococcus saprophyticus	ATCC 15305
47	Pasteurella multocida	ATCC 43137
48	Eikenella corrodens	ATCC 23834
	Streptococcus pyogenes	ATCC 12344
50	Moraxella catarrhalis	ATCC 25238

51	Legionella pneumophila	ATCC 33152	
52	Mycobacterium tuberculosis	ATCC 27294	
53	Mycobacterium avium	ATCC 25291	
54	Mycobacterium intracellulare	ATCC 13950	
55	Mycobacterium kansasii	ATCC 12478	
56	Mycobacterium gordonae	ATCC 14470	

第1の方法としては、検体材料の患者糞便・血液及び食品等から、基本的には 血液寒天培地、マッコンキー培地(便の場合、SS寒天培地等)、各種確認培地、 診断用免疫血清を用いて微生物の同定を行う方法がある。しかしながらこの方法 は、同定に時間がかかってしまうという問題がある。

第2の方法としては、迅速に検査を行うことができる PCR (ポリメラーゼ連鎖 反応) 法と呼ばれる方法が開発され実用化されている。この PCR 法では細菌を同 定するプローブとして 16S rRNA または 23S rRNA の塩基配列を使用することが知 られている。このようなリボソームの塩基配列を使用した細菌同定用プローブ及 び同定方法は、例えば特許第 3116353 号、特許第 3135909 号、特許第 3030034 号、特願 2002-17356 号、特開 2002-34578 号などに開示されている。

しかしながら、これらの出願には、16S rRNA 分子の 5' 末端に由来の 400~500 塩基の領域が系統学的に保存された属の近縁の種間を識別するために有効な領域であり、それらの領域の一部の塩基配列を有するプローブを調製してある特定の微生物を検出、同定することは報告されてはいるが、16S rRNA の塩基配列のうち、微生物間の保存性が低く、特定の種に対して特異性が高い V1、V2 及び V3 領域は個々に特定されておらず、その領域の塩基配列からプローブを調製し、本願発明の表 1 に示す微生物を効率よく特異的に検出、同定する方法については全く報告されていない。

発明の開示

従って、本発明は、医療及び食品等の分野において有害な微生物を、16S rRNA の特定の種に対して特異性が高い V1、V2 及び V3 領域の塩基配列に基づいて、迅速かつ確実に微生物を検出及び/又は同定するプローブ及びそのプローブを用いた検出及び/又は同定方法を提供することを目的とする。

本発明者らは、上記課題を解決するため、鋭意研究を行った結果、16S rRNA 塩基配列のうち、特に種に対して特異性が高い特定の V1、V2 及び V3 領域の塩基配列に着目し、医療及び食品等の分野において有害な細菌を特異的に検出及び/又は同定し得るプローブを見出し、本発明を完成させるに至った。

すなわち、本発明は、以下の1~66を提供する。

アクチノバチルス・アクチノマイセテムコミタンス (Actinobacillus actinomycetemcomitans)、アシネトバクター・カルコアセチカス (Acinetobacter calcoaceticus)、ヘモフィルス・インフルエンザ (Haemophilus influenzae)、ス テノトロフォモナス・マルトフィリア (Stenotrophomonas maltophilia)、プロテ ウス・ミラビリス (Proteus mirabilis)、ストレプトコッカス・ニューモニエ (Streptococcus pneumoniae)、シュードモナス・エルギノサ (Pseudomonas aeruginosa)、シトロバクター・フレンディ (Citrobacter freundii)、ベイヨネ ラ・パルブーラ (Veillonella parvula)、プロビデンシア・スチュアーティ (Providencia stuartii)、ナイセリア・ゴノローエ (Neisseria gonorrhoeae)、 ストレプトコッカス・アガラクチエ (Streptococcus agalactiae)、モルガネラ・ モルガニ (Morganella morganii)、バクテロイデス・フラジリス (Bacteroides fragilis)、スタフィロコッカス・ホミニス (Staphylococcus hominis)、スタフ ィロコッカス・ワルネリ (Staphylococcus warneri)、スタフィロコッカス・ヘモ リティカス (Staphylococcus haemolyticus)、エンテロバクター・クロアカ (Enterobacter cloacae)、エンテロバクター・アエロゲネス (Enterobacter aerogenes)、スタフィロコッカス・エピデルミディス (Staphylococcus epidermidis)、ストレプトコッカス・コンステラータス (Streptococcus constellatus)、セラチア・マルセッセンス (Serratia marcescens)、ストレプト コッカス・アンギノサス (Streptococcus anginosus)、エシェリシア・コリ (Escherichia coli)、クレブセラ・ニューモニエ (Klebsiella pneumoniae)、エ ンテロコッカス・フェカリス (Enterococcus faecalis)、エンテロコッカス・フ ェシウム (Enterococcus faecium)、ストレプトコッカス・サングイス (Streptococcus sanguis)、ストレプトコッカス・ミティス(Streptococcus mitis)、 ストレプトコッカス・インターメディウス (Streptococcus intermedius)、リス

テリア・モノサイトゲネス (Listeria monocytogenes)、クロストリジウム・パー フリンゲンス (Clostridium perfringens)、コリネバクテリウム・アクアチウム (Corynebacterium aquatium)、ストレプトコッカス・オラリス (Streptococcus oralis)、スタフィロコッカス・アウレウス (Staphylococcus aureus)、ナイセリ ア・メニンギチディス (Neisseria meningitidis)、カンピロバクター・フェタス (Campylobacter fetus)、エンテロコッカス・ガリナルム (Enterococcus gallinarum)、エンテロコッカス・カセリフラバス(Enterococcus casseliflavus)、 エロモナス・ハイドロフィラ (Aeromonas hydrophila)、サルモネラ・パラチフィ A (Salmonella paratyphi A)、サルモネラ・チフィ (Salmonella typhi)、スト レプトコッカス・エクイシミリス (Streptococcus equisimilis)、ストレプトコ ッカス・カニス (Streptococcus canis)、クレブセラ・オキシトカ (Klebsiella oxytoca)、スタフィロコッカス・サプロフィティカス (Staphylococcus saprophyticus)、パスツレラ・ムルトシダ (Pasteurella multocida)、エイケネ ラ・コロデンス (Eikenella corrodens)、ストレプトコッカス・ピオゲネス (Streptococcus pyogenes)、モラキセラ・カタラリス (Moraxella catarrhalis)、 レジオネラ・ニューモフィラ (Legionella pneumophila)、マイコバクテリウム・ ツベルクロシス (Mycobacterium tuberculosis)、マイコバクテリウム・アビウム (Mycobacterium avium)、マイコバクテリウム・イントラセルラレ (Mycobacterium · intracellulare)、マイコバクテリウム・カンサシ (Mycobacterium kansasii)、 マイコバクテリウム・ゴルドネ (Mycobacterium gordonae) から選択される1又 は複数の微生物を検出及び/又は同定するためのプローブであって、検出及び/ 又は同定すべき微生物の 16S rRNA の V1、V2 及び/又は V3 領域内の 20~100bp の各塩基配列又はその相補配列からなるプローブ。

- (2) 配列番号 $1\sim152$ で示される塩基配列またはその相補配列から選ばれる、
- (1) に記載のプローブ。
- (3) 配列番号1、2又は3に示される塩基配列、又はその相補配列を含む、アクチノバチルス・アクチノマイセテムコミタンスを検出及び/又は同定するためのプローブ。
- (4) 配列番号4、5又は6に示される塩基配列、又はその相補配列を含む、

アシネトバクター・カルコアセチカスを検出及び/又は同定するためのプローブ。

- (5) 配列番号7、8又は9に示される塩基配列、又はその相補配列を含む、 ヘモフィルス・インフルエンザを検出及び/又は同定するためのプローブ。
- (6) 配列番号 10、11 又は 12 に示される塩基配列、又はその相補配列を含む、ステノトロフォモナス・マルトフィリアを検出及び/又は同定するためのプローブ。
- (7) 配列番号 13、14 又は 15 に示される塩基配列、又はその相補配列を含む、 プロテウス・ミラビリスを検出及び/又は同定するためのプローブ。
- (8) 配列番号 16、17 又 18 に示される塩基配列、又はその相補配列を含む、 ストレプトコッカス・ニューモニエを検出及び/又は同定するためのプローブ。
- (9) 配列番号 19、20 又は 21 に示される塩基配列、又はその相補配列を含む、 シュードモナス・エルギノサを検出及び/又は同定するためのプローブ。
- (10) 配列番号 22、23 又は 24 に示される塩基配列、又はその相補配列を含む、シトロバクター・フレンディを検出及び/又は同定するためのプローブ。
- (11) 配列番号 25、26 又は 27 に示される塩基配列、又はその相補配列を含む、ベイヨネラ・パルブーラを検出及び/又は同定するためのプローブ。
- (12) 配列番号 28、29 又は 30 に示される塩基配列、又はその相補配列を含む、プロビデンシア・スチュアーティを検出及び/又は同定するためのプローブ。
- (13) 配列番号 31、32 又は 33 に示される塩基配列、又はその相補配列を含む、ナイセリア・ゴノローエを検出及び/又は同定するためのプローブ。
- (14) 配列番号 34、35 又は 36 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・アガラクチエを検出及び/又は同定するためのプローブ。
- (15) 配列番号 37、38 又は 39 に示される塩基配列、又はその相補配列を含む、モルガネラ・モルガニを検出及び/又は同定するためのプローブ。
- (16) 配列番号 40、41 又は 42 に示される塩基配列、又はその相補配列を含む、バクテロイデス・フラジリスを検出及び/又は同定するためのプローブ。
- (17) 配列番号 43、44 又は 45 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ホミニスを検出及び/又は同定するためのプローブ。

(18) 配列番号 46、47 又は 48 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ワルネリを検出及び/又は同定するためのプローブ。

- (19) 配列番号 49、50 又は 51 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ヘモリティカスを検出及び/又は同定するためのプローブ。
- (20) 配列番号 52、23 又は 53 に示される塩基配列、又はその相補配列を含む、エンテロバクター・クロアカを検出及び/又は同定するためのプローブ。
- (21) 配列番号 54、55 又は 56 に示される塩基配列、又はその相補配列を含む、エンテロバクター・アエロゲネスを検出及び/又は同定するためのプローブ。
- (22) 配列番号 57、58 又は 59 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・エピデルミディスを検出及び/又は同定するためのプローブ。
- (23) 配列番号 60、61 又は 62 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・コンステラータスを検出及び/又は同定するためのプローブ。
- (24) 配列番号 63、23 又は 64 に示される塩基配列、又はその相補配列を含む、セラチア・マルセッセンスを検出及び/又は同定するためのプローブ。
- (25) 配列番号 65、66 又は 67 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・アンギノサスを検出及び/又は同定するためのプローブ。
- (26) 配列番号 68、69 又は 70 に示される塩基配列、又はその相補配列を含む、エシェリシア・コリを検出及び/又は同定するためのプローブ。
- (27) 配列番号 54、71 又は 72 に示される塩基配列、又はその相補配列を含む、クレブセラ・ニューモニエを検出及び/又は同定するためのプローブ。
- (28) 配列番号 73、74 又は 75 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・フェカリスを検出及び/又は同定するためのプローブ。
- (29) 配列番号 76、77 又は 78 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・フェシウムを検出及び/又は同定するためのプローブ。
 - (30) 配列番号 79、80 又は81 に示される塩基配列、又はその相補配列を含

む、ストレプトコッカス・サングイスを検出及び/又は同定するためのプローブ。

- (31) 配列番号 82、83 又は 18 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・ミティスを検出及び/又は同定するためのプローブ。
- (32) 配列番号 60、84 又は 67 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・インターメディウスを検出及び/又は同定するためのプローブ。
- (33) 配列番号 85、86 又は 87 に示される塩基配列、又はその相補配列を含む、リステリア・モノサイトゲネスを検出及び/又は同定するためのプローブ。
- (34) 配列番号 88、89 又は 90 に示される塩基配列、又はその相補配列を含む、クロストリジウム・パーフリゲンスを検出及び/又は同定するためのプローブ。
- (35) 配列番号 91、92 又は 93 に示される塩基配列、又はその相補配列を含む、コリネバクテリウム・アクアチウムを検出及び/又は同定するためのプローブ。
- (36) 配列番号 94、95 又は 18 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・オラリスを検出及び/又は同定するためのプローブ。
- (37) 配列番号 96、97 又は 98 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・アウレウスを検出及び/又は同定するためのプローブ。
- (38) 配列番号 99、100 又は 101 に示される塩基配列、又はその相補配列を含む、ナイセリア・メニンギチディスを検出及び/又は同定するためのプローブ。
- (39) 配列番号 102、103 又は 104 に示される塩基配列、又はその相補配列を含む、カンピロバクター・フェタスを検出及び/又は同定するためのプローブ。
- (40) 配列番号 105、106 又は 107 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・ガリナルムを検出及び/又は同定するためのプローブ。
- (41) 配列番号 108、106 又は 109 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・カセリフラバスを検出及び/又は同定するためのプローブ。
- (42) 配列番号 110、111 又は 112 に示される塩基配列、又はその相補配列を含む、エロモナス・ハイドロフィラを検出及び/又は同定するためのプローブ。

(43) 配列番号 113、114 又は 53 に示される塩基配列、又はその相補配列を含む、サルモネラ・パラチフィAを検出及び/又は同定するためのプローブ。

- (44) 配列番号 115、114 又は 53 に示される塩基配列、又はその相補配列を含む、サルモネラ・チフィを検出及び/又は同定するためのプローブ。
- (45) 配列番号 116、117 又は 118 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・エクイシミリスを検出及び/又は同定するためのプローブ。
- (46) 配列番号 119、120 又は 121 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・カニスを検出及び/又は同定するためのプローブ。
- (47) 配列番号 52、23 又は 122 に示される塩基配列、又はその相補配列を含む、クレブセラ・オキシトカを検出及び/又は同定するためのプローブ。
- (48) 配列番号 46、123 又は 124 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・サプロフィティカスを検出及び/又は同定するためのプローブ。
- (49) 配列番号 125、126 又は 127 に示される塩基配列、又はその相補配列を含む、パスツレラ・ムルトシダを検出及び/又は同定するためのプローブ。
- (50) 配列番号 128、129 又は 130 に示される塩基配列、又はその相補配列を含む、エイケネラ・コロデンスを検出及び/又は同定するためのプローブ。
- (51) 配列番号 131、132 又は 133 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・ピオゲネスを検出及び/又は同定するためのプローブ。
- (52) 配列番号 134、135 又は 136 に示される塩基配列、又はその相補配列を含む、モラキセラ・カタラリスを検出及び/又は同定するためのプローブ。
- (53) 配列番号 137、138 又は 139 に示される塩基配列、又はその相補配列を含む、レジオネラ・ニューモフィラを検出及び/又は同定するためのプローブ。
- (54) 配列番号 140、141 又は 142 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・ツベルクロシスを検出及び/又は同定するためのプローブ。
- (55) 配列番号 143、144 又は 145 に示される塩基配列、又はその相補配列を

含む、マイコバクテリウム・アビウムを検出及び/又は同定するためのプローブ。

- (56) 配列番号 146、147 又は 145 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・イントラセルラレを検出及び/又は同定するためのプローブ。
- (57) 配列番号 148、149 又は 145 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・カンサシを検出及び/又は同定するためのプローブ。
- (58) 配列番号 150、151 又は 152 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・ゴルドネを検出及び/又は同定するためのプローブ。
- (59) 複数の微生物の 16S rRNA の塩基配列における相同性検索によって、それぞれの微生物における V1、V2、V3 領域を特定し、該 V1、V2、V3 領域の塩基配列において 2 種以上の微生物間で比較してミスマッチ部位を決定し、該ミスマッチ部位を含み、かつ塩基長が $20\sim100$ bp の領域を決定することを含む、プローブの設計方法。
- (60) (1) 又は(2) に記載のプローブの1種以上を用いることを特徴と する、アクチノバチルス・アクチノマイセテムコミタンス、アシネトバクター・ カルコアセチカス、ヘモフィルス・インフルエンザ、ステノトロフォモナス・マ ルトフィリア、プロテウス・ミラビリス、ストレプトコッカス・ニューモニエ、 シュードモナス・エルギノサ、シトロバクター・フレンディ、ベイヨネラ・パル ブーラ、プロビデンシア・スチュアーティ、ナイセリア・ゴノローエ、ストレプ トコッカス・アガラクチエ、モルガネラ・モルガニ、バクテロイデス・フラジリ ス、スタフィロコッカス・ホミニス、スタフィロコッカス・ワルネリ、スタフィ ロコッカス・ヘモリティカス、エンテロバクター・クロアカ、エンテロバクター・ アエロゲネス、スタフィロコッカス・エピデルミディス、ストレプトコッカス・ コンステラータス、セラチア・マルセッセンス、ストレプトコッカス・アンギノ サス、エシェリシア・コリ、クレブセラ・ニューモニエ、エンテロコッカス・フ ェカリス、エンテロコッカス・フェシウム、ストレプトコッカス・サングイス、 ストレプトコッカス・ミティス、ストレプトコッカス・インターメディウス、リ ステリア・モノサイトゲネス、クロストリジウム・パーフリンゲンス、コリネバ クテリウム・アクアチウム、ストレプトコッカス・オラリス、スタフィロコッカ

ス・アウレウス、ナイセリア・メニンギチディス、カンピロバクター・フェタス、エンテロコッカス・ガリナルム、エンテロコッカス・カセリフラバス、エロモナス・ハイドロフィラ、サルモネラ・パラチフィA、サルモネラ・チフィ、ストレプトコッカス・エクイシミリス、ストレプトコッカス・カニス、クレブセラ・オキシトカ、スタフィロコッカス・サプロフィティカス、パスツレラ・ムルトシダ、エイケネラ・コロデンス、ストレプトコッカス・ピオゲネス、モラキセラ・カタラリス、レジオネラ・ニューモフィラ、マイコバクテリウム・ツベルクロシス、マイコバクテリウム・アビウム、マイコバクテリウム・イントラセルラレ、マイコバクテリウム・カンサシ、マイコバクテリウム・ゴルドネから選択される1又は複数の微生物の検出及び/又は同定方法。

- (61) 微生物由来の塩基配列とプローブの塩基配列間でミスマッチが4個以上ある場合にハイブリダイズしないストリンジェンシー条件を用いて両配列をハイブリダイズさせることを含む、(60)に記載の方法。
- (62) 同定すべき微生物の 16S rRNA の V1、V2 及び V3 領域内の 20~100bp の塩基配列又はその相補配列からなるプローブの塩基配列とのミスマッチが 3 個以下である塩基配列を有する 2 種以上の微生物を検出し、該 2 種以上の微生物と異なる微生物の V1、V2 及び V3 領域内の 20~100bp の塩基配列又はその相補配列からなるプローブの 1 種以上を用い、該 2 種以上の微生物のうち 1 種の微生物をさらに同定することを含む、(60)又は(61)に記載の方法。
- (63) 以下の工程:(a)同定すべき微生物から核酸を調製する工程、(b)該核酸を請求項1又は2に記載のプローブとハイブリダイズさせる工程、(c) 工程(b)におけるハイブリダイズの有無を検出し、各プローブに対するその検出シグナルパターンを特定する工程、(d)工程(c)において得られた検出シグナルパターンと、予め特定しておいた微生物の検出シグナルパターンとを比較して同定すべき微生物の種類を特定する工程、からなる(60)又は(61)に記載の方法。
- (64) 配列番号 153 及び 154 で示されるプライマーを用いて標的配列を含む ヌクレオチドを増幅した後にプローブとハイブリダイズさせる、(60) \sim (63) のいずれかに記載の方法。
- (65) 標的配列を含むヌクレオチドの増幅の際に、蛍光物質を用いて標識を

行う、(60)~(64)のいずれかに記載の方法。

(66) DNA チップ上で検出する、(60)~(65)のいずれかに記載の方法。 本明細書は本願の優先権の基礎である特願 2002-174564 号の明細書および/または図面に記載される内容を包含する。

図面の簡単な説明

図1は、微生物の16SrRNAの塩基配列中のV1、V2及びV3領域を示す図である。

配列表の説明

配列番号 153 は合成 DNA である。

配列番号 154 は合成 DNA である。

発明を実施するための形態

本発明の微生物検出同定用のプローブ及びそれを用いた検出及び/又は同定方法についてさらに詳細に説明する。

本発明の第1の態様は、前述の表1に示す微生物から選択される1または複数の微生物を検出及び/又は同定するためのプローブであって、検出及び/又は同定すべき微生物の16S rRNAのV1、V2及びV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブである。

本発明においてプローブとは、核酸の相補的な配列が互いに特異的に結合する性質を利用して、DNA や RNA 断片の中から特定の断片を検出し得るオリゴヌクレオチド DNA や RNA であり、特に、微生物由来の 16S rRNA または 16S rDNA に含まれるヌクレオチド配列を有する標的核酸と特異的に結合するオリゴヌクレオチド配列である。

本発明の各微生物を検出及び/又は同定し得るプローブは、各微生物の 16S rRNA の V1、V2 及び V3 領域について検出同定対象の 2 種以上の微生物間でマルチプルアライメントを行ってミスマッチ部位を決定し、特に各微生物に対して特異性が高い領域を決定して当該プローブを作製することができる (図 1 参照)。本明細書において、V1、V2、V3 領域とは、各微生物の 16S rRNA の 5'領域遺伝子配列

(約 500bp) のうち、保存性の低い3つの領域であって、V1 領域は5'末端からおおよそ第50~第120番目の塩基の領域であり、V2 領域はおおよそ第150~第260番目の塩基の領域であり、V3 領域はおおよそ第420~第520番目の塩基の領域である。

これらの V1~V3 領域から作製し得る検出同定用プローブは、検出、同定感度の 点から検出同定すべき微生物間においてミスマッチが多い領域を用いるのが適当 であり、ミスマッチは4ヶ所以上存在するのが好ましい。また、同定方法におけ る検出感度、コスト等を考慮すると、プローブの塩基配列は20~100bp が好まし く、特に30~80bp が好ましい。なお、これらのプローブは、対応する各々の領域 に応じて、v1 プローブ、v2 プローブ、v3 プローブと称する。

これらのプローブは、表1に示す微生物が特異的に検出、同定出来る限り、一部が修飾され、又はその塩基配列に欠失、置換又は付加が存在していてもよい。

具体的には、表 1 に記載した微生物の 16S rRNA の塩基配列における相同性検索によってそれぞれの微生物における V1、V2、V3 領域を特定し、該 V1、V2、V3 領域において 2種以上の微生物の塩基配列を比較してミスマッチ部位を決定する。その結果を基にして、該ミスマッチ部位を含み、かつ塩基長が 20~100bp のプローブを作製する。ミスマッチ部位はプローブの中央付近になるように設計するのが好ましい。表 1 に示す微生物のうち、その微生物自身の V1~V3 領域の塩基配列とその微生物以外の微生物由来の v1~v3 プローブの塩基配列の間に最小ミスマッチ数が 4 個以上ある微生物は、プローブを単独で用いることによって検出、同定可能な微生物である。また、最小ミスマッチ数が 3 個以下の微生物は、複数のプローブによる検出結果を総合的に判断することによって検出、同定可能な微生物である。

各微生物に対する検出同定用プローブの ID とその配列番号を表2及び表3に示す。

表 2

微生物名	同定プローブIDとその配列番号(括
<u>阪土</u> 初石	弧内が配列番号)
A ship she silly a gating any cost amount to po	の1v2(2), 01v3(3)
Actinobacillus actinomycetemcomitans Acinetobacter calcoaceticus	02v1(4), 02 v2(5), 02 v3(6)
Haemophilus influenzae	03v2(8), 03 v3(9)
	03v2(8), 03 v3(9) 04 v1(10), 04 v3(12)
Stenotrophomonas maltophilia	
Proteus mirabilis	05 v2(14)
Pseudomonas aeruginosa	07 v1(19), 07 v2(20), 07v3(21)
Citrobacter freundii	08 v3(24)
Veillonella parvula	09 v1(25), 09 v2(26), 09 v3(27)
Providencia stuartii	10 v2(29), 10 v3(30)
Neisseria gonorrhoeae	11 v3(33)
Streptococcus agalactiae	12 v1(34), 12 v2(35), 12 v3(36)
Morganella morganii	13 v2(38), 13 v3(39)
Bacteroides fragilis	14 v1(40), 14v2(41), 14 v3(42)
Enterobacter aerogenes	19 v3(56)
Streptococcus constellatus	21 v3(63)
Serratia marcescens	22 v1(63), 22 v3(64)
Streptococcus anginosus	23 v1(65), 23 v2(66)
Escherichia coli	24 ∨3(70)
Enterococcus faecalis	26 v1(73), 26 v2(74), 26 v3(75)
Enterococcus faecium	27 v1(76), 27 v2(77)
Streptococcus sanguis	28 v1(79), 28 v2(80)
Listeria monocytogenes	31 v1(85), 31 v2(86), 31 v3(87)
Clostridium perfringens	32 v1(88), 32 v2(89), 32 v3(90)
Corynebacterium aquatium	33 v1(91), 33 v2(92), 33 v3(93)
Streptococcus oralis	34 v1(94)
Staphylococcus aureus	35 v1(96)
Neisseria meningitidis	36 v3(101)
Campylobacter fetus	37 v1(102), 37 v2(103), 37 v3(104)
Aeromonas hydrophila	40 v1(110), 40 v2(111), 40 v3(112)
Streptococcus equisimilis	43 v2(117)
Streptococcus canis	44 v1(119), 44 v2(120), 44 v3(121)
Staphylococcus saprophyticus	46 v2(123)
Pasteurella multocida	47 v2(126), 47 v3(127)
Eikenella corrodens	48 v1(128), 48 v2(129), 48 v3(130)
Streptococcus pyogenes	49 v2(132)
Moraxella catarrhalis	50 v1(134), 50 v2(135), 50 v3(136)
Legionella pneumophila	51 v1(137), 51 v2(138), 51v3(139)
Mycobacterium tuberculosis	52 v2(141)
Mycobacterium avium	53 v2(144)
Mycobacterium intracellulare	54 v2(147)
Mycobacterium kansasii	55 v2(149)
Mycobacterium gordonae	56 v1(150), 56 v2(151)
ing occurring gor dondo	100 . 1(100)1 00 42(101)

表 3

微生物名	同定に使用するプローブIDとその配列番号(括弧内が配列番号)
Streptococcus pneumoniae	06 v1~v3(16~18), 29 v1~v3(82, 83, 18), 34 v1~v3(94, 95, 18)
Staphylococcus hominis	20 v1~v3(57~19), 46 v1~v3(46, 123, 124), 15 v1~v3(43~45), 17 v1~v3(49~51), 16 v1~v3(46~48), 35 v1(96)
Staphylococcus warneri	20 $v1 \sim v3(57 \sim 19)$, 46 $v1 \sim v3(46$, 123, 124), 15 $v1 \sim v3(43 \sim 45)$, 17 $v1 \sim v3(49 \sim 51)$, 16 $v1 \sim v3(46 \sim 48)$, 35 $v1(96)$
Staphylococcus haemolyticus	20 v1~v3(57~19), 46 v1~v3(46, 123, 124), 15 v1~v3(43~45), 17 v1~v3(49~51), 16 v1~v3(46~48), 35 v1(96)
Enterobacter cloacae	08 v1~v3(22~24), 18 v1~v3(52, 23, 53), 22 v1~v3(63, 23, 64), 41 v1~v3(113, 114, 53), 42 v1~v3(115, 114, 53), 45 v1~v3(52, 23, 122), 19 v1~v3(54~56), 25 v1~v3(54, 71, 72), 24 v1~v3(68, 270)
Staphylococcus epidermidis	20 v1~v3(57~19), 46 v1~v3(46, 123, 124), 15 v1~v3(43~45), 17 v1~v3(49~51), 16 v1~v3(46~48), 35 v1(96)
Klebsiella pneumoniae	08 v1~v3(22~24), 18 v1~v3(52, 23, 53), 22 v1~v3(63, 23, 64), 41 v1~v3(113, 114, 53), 42 v1~v3(115, 114, 53), 45 v1~v3(52, 23, 122), 19 v1~v3(54~56), 25 v1~v3(54, 71, 72), 24 v1~v3(68, 270)
Streptococcus mitis	06 v1~v3(16~18), 29 v1~v3(82, 83, 18), 34 v1~v3(94, 95, 18)
Streptococcus intermedius	$21 \text{ v1} \sim \text{v3}(60 \sim 62)$, $23 \text{ v1} \sim \text{v3}(65 \sim 67)$, $30 \text{ v1} \sim \text{v3}(60, 84, 67)$
Enterococcus gallinarum	28 v1~v3(79~81), 38 v1~v3(105~107), 39 v1~v3(108, 106, 109), 27 v1~v3(76~78)
Enterococcus casseliflavus	28 v1~v3(79~81), 38 v1~v3(105~107), 39 v1~v3(108, 106, 109), 27 v1~v3(76~78)
Salmonella paratyphi A	08 v1~v3(22~24), 18 v1~v3(52, 23, 53), 22 v1~v3(63, 23, 64), 41 v1~v3(113, 114, 53), 42 v1~v3(115, 114, 53), 45 v1~v3(52, 23, 122), 19 v1~v3(54~56), 25 v1~v3(54, 71, 72), 24 v1~v3(68~70)
Salmonelia typhi	08 v1~v3(22~24)、18 v1~v3(52、23、53)、22 v1~v3(63、23、64)、41 v1~v3(113、114、53)、42 v1~v3(115、114、53)、45 v1~v3(52、23、122)、19 v1~v3(54~56)、25 v1~v3(54、71、72)、24 v1~v3(68~70)
Klebsiella oxytoca	08 v1~v3(22~24), 18 v1~v3(52, 23, 53), 22 v1~v3(63, 23, 64), 41 v1~v3(113, 114, 53), 42 v1~v3(115, 114, 53), 45 v1~v3(52, 23, 122), 19 v1~v3(54~56), 25 v1~v3(54, 71, 72), 24 v1~v3(68~70)

表2は、単独で微生物の同定が可能なプローブを、表3は、組み合わせて同定が可能なプローブの例を示す。

例えば、表 2 からわかるように、アクチノバチルス・アクチノマイセテムコミタンスを単独で特異的に検出同定し得るプローブは、配列番号 2 に示される塩基配列を有する 01 v2 プローブ及び配列番号 3 に示される塩基配列を有する 01 v3 プローブ、またはそれぞれの相補配列を有するプローブであり、アシネトバクター・カルコアセティカスを単独で特異的に検出同定し得るプローブは、配列番号 4 に示される塩基配列を有する 02 v1 プローブ、配列番号 5 に示される塩基配列を有する 02 v2 プローブ、配列番号 6 に示される塩基配列を有する 02 v3 プローブ、またはそれぞれの相補配列を有するプローブである。

また、表 3 には、他の微生物との 16S rRNA 遺伝子配列が類似しているため、単独プローブによる検出・同定が困難な微生物を示してある。これら微生物の場合には、該当微生物の検出用に設計されたプローブだけでなく、他の微生物の検出用に設計されたプローブによるハイブリダイゼーションパターンを利用して、個々の微生物の検出同定を行う。例えば、表 4 に示されるように、ストレプトコッカス・ニューモニエを検出するための配列番号 16~18 のプローブ 06 v1~v3 はいずれも、V1~V3 領域で他の微生物との間で最小のミスマッチ数が 3 塩基以内であるため、単独でストレプトコッカス・ニューモニエの検出・同定が困難である。そこで、配列番号 16~18 のプローブ 06 v1~v3 だけでなく、配列番号 82、83、18 のプローブ 29 v1~v3 および、配列番号 94、95、18 のプローブ 34 v1~v3、またはそれぞれの相補配列を有するプローブの検出結果を組み合わせて利用することで、検出・同定を行う。

これらのプローブは、天然由来のものであっても、化学合成等の常法によるものであってもよく、化学合成は、例えば ABI 社(Applied Biosystem Inc.)の DNAシンセサイザーを用いてホスホロアミダイト法により合成できる。また、公知のリン酸トリエステル法、Hーホスホネート法、ホスファイト法等を用いることもできる。

本発明の第2の態様は、表1に示す微生物から選択される1または複数の微生物の検出及び/又は同定方法であって、検出同定すべき微生物の16S rRNAの V1、

V2 及び V3 領域内の 20~100bp の塩基配列又はその相補配列からなるプローブの 1以上を用いることを特徴とする方法である。

すなわち、具体的には、本発明の検出同定方法は、微生物又はそれ由来の核酸を含む被検体に上記プローブを接触させてハイブリダイゼーションを行い、標識を指標にして表1の微生物を検出、同定する方法である。

微生物又はそれ由来の核酸を含む被検体は、核酸が微量である場合には、表1 に示す微生物の 16S rDNAの V1~V3 領域を含む塩基配列を増幅させることができ るプライマーを用いて増幅させる。なお、プライマーとは、核酸の合成反応にあ たりポリヌクレオチド鎖が伸長していく出発点として働くポリヌクレオチドであ り、本発明におけるフォワードプライマーは、V1 領域より上流の各微生物間にお いて保存性の高い領域であるおおよそ1から 70 番目の塩基に存在する領域から 設計するのが好ましく、リバースプライマーは、V3 領域より下流の各微生物間に おいて保存性の高い領域であるおおよそ 450 から 620 番目の塩基に存在する領域 から設計するのが好ましい。また、そのサイズは、15~35mer が好ましく、特に 18~30mer が好ましい。例えば、一例として、フォワードプライマーとしては、 おおよそ第1から第70番目の塩基に位置する、以下の配列番号153に示される 27F プライマー、リバースプライマーとしては、おおよそ第 450 から第 620 番目 の塩基に位置する、以下の配列番号 154 に示される 525R を用いることができる。 これらのプライマーは天然由来のものであっても、常法により化学合成されたも のであってもよい。化学合成は、例えば ABI 社 (Applied Biosystem Inc.) の DNA シンセサイザーを用いてホスホロアミダイト法により合成できる。また、公知の リン酸トリエステル法、Hーホスホネート法、ホスファイト法等を用いることもで きる。

フォワードプライマー27F (配列番号 153): 5'agagtttgatcctggctcag 3' リバースプライマー525R (配列番号 154): 5'gtattaccgcggctgctggcag 3'

微生物又はそれ由来の核酸を含む被検体は、予め以下のような常法により調製し、上記のプライマーを用いた PCR 増幅に供する。例えば、サンプルから遠心分離法やメンブランフィルター等を用いて捕集された微生物に溶菌酵素、界面活性剤、アルカリ等の公知の処理方法を用いて核酸を抽出する。このうち、抽出の効

率や純度、操作性の点などから、溶菌酵素を加える方法を用いるのが好ましい。 なお、本発明において、核酸には RNA、DNA が含まれる。また、本発明では、核酸 が数分子から数十分子以上存在すれば PCR は達成され得る。サンプルとしては、 例えば、糞便、尿、血液、組織ホモジェネート等の臨床検査材料、及び、食品材 料等が挙げられる。

次に、抽出した核酸を鋳型とし、上記のプライマーを用いてPCR法(Science 230, 1350 (1985))を実施する。本発明においては、上記プライマー(配列番号 153 及び 154)を用いることによって、微生物の 16S rDNA の塩基配列の 5' 末端からおおよそ第 27~第 525 番目の塩基及びその近傍の配列を増幅させることが好ましい。PCR 法の反応条件や反応溶液は公知の情報に基づいて任意に設定することができる。例えば、熱変性:90~95℃で1~30 秒、アニーリング:37~65℃で0~30 秒、伸長反応:50~75℃で10~60 秒、これを1サイクルとして30~50サイクル行って増幅するのが好ましい。PCR 法の増幅結果は、必要に応じ、反応を終えた溶液をそのままアガロールゲル電気泳動にかけることで、増幅されたヌクレオチドの存在、及びその長さを確認することができる。

増幅された微生物の核酸は、上記の本発明のプローブを用いたハイブリダイゼーションに用いることができる。本発明において、ハイブリダイゼーションとは、特定の条件下において、相補的な配列を有する2つの1本鎖の塩基配列が結合して、2本鎖を形成することを意味する。また、特定の条件とは、ハイブリダイゼーションにおけるストリンジェンシーな条件を意味し、特に、本発明では、微生物由来の塩基配列と本発明のプローブの塩基配列間でミスマッチが4個以上ある場合にハイブリダイズしない条件を意味する。ストリンジェンシーな条件は、実施されるハイブリダイゼーションの条件によって異なるが、当業者であればハイブリダイゼーションのプロトコルに基づいて、温度、塩濃度、活性剤濃度等の溶媒組成等の条件を適宜設定することができる。一例としては、50merのプローブとのハイブリダイゼーションの場合、55℃、0.5×SSC、0.2% SDS で実施することができる。なお、目的に応じ、ストリンジェンシーを高くすることによって、ミスマッチ数が3個以上、2個以上、又は1個以上でハイブリダイズすることができないように設定することが可能である。また、ストリンジェンシーを低くする

ことによって、ミスマッチが5個以下、6個以下等でもハイブリダイズできるよ うに設定することもできる。

ハイブリダイズの可否は、上記のように調製した微生物から抽出し、増幅した 核酸を予めフルオロセインイソチオシアネートやテトラメチルローダミンイソチ オシアネート等の蛍光物質やハプテン等で標識し、プローブを前記の標識化した 核酸とハイブリダイズさせた後、蛍光色素等の標識を測定することによって確認 することができる。標識化は、例えば、ニックトランスレーション法、DNA ポリ メラーゼを用いる方法や 5'側の末端が蛍光物質またはハプテン等で標識された 標識化プライマーを用いて核酸増幅を行うことにより得ることができる。

本発明の検出同定方法には、単独のプローブの使用によって、表 2 に示す特定の微生物を検出、同定する方法が含まれる。例えば、同定すべき微生物自身の V1 ~V3 領域内の 20~100bp の塩基配列又はその相補配列からなるプローブの塩基配列と、その微生物以外の微生物由来の塩基配列との間に最小ミスマッチ数が 4 個以上存在する前記プローブを使用することによって、微生物を検出するとともに同定することができる(表 2 及び表 4 を参照)。

また、本発明の方法には、本発明の複数のプローブによる検出結果を総合的に判断することによって、表3に示す特定の微生物を検出し、さらに同定する方法も含まれる。具体的には、第1ステップとして、同定すべき微生物の16S rRNAのV1、V2及びV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブの塩基配列とのミスマッチが3個以下である塩基配列を有する2種以上の微生物を検出し、第2ステップとして、該2種以上の微生物と異なる微生物のV1、V2及びV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブの1種以上を用い、該2種以上の微生物のうち1種の微生物をさらに同定する方法である。

例えば、一例を表 61 に示している(実施例 3 参照)。ID 06 微生物(ストレプトコッカス・ニューモニエ)の 06 $v1\sim v3$ プローブと ID 29 微生物(ストレプトコッカス・ミティス)に対応する塩基配列とはミスマッチが 3 個以下であるので、 06 $v1\sim v3$ プローブを用いて検出される微生物は、ID 06 微生物と ID 29 微生物のいずれであるかまでは同定できない。しかしながら、第 2 ステップとして、ID 34

微生物 (ストレプトコッカス・オラリス) 由来の 34 v1~v3 プローブを用いて検出方法を行うと、ID 06 微生物は 34 v3 プローブとのみハイブリダイズしてシグナルが検出され、ID 29 微生物は 34 v2 及び v3 プローブとそれぞれハイブリダイズしてシグナルが検出される。従って、06 v1~v3 プローブを用いて検出された微生物は、さらに ID 34 微生物 (ストレプトコッカス・オラリス) 由来の 34 v1~v3 プローブを用いた検出を行うことによって、ID 06 微生物であるか ID 29 微生物であるかを同定することができる。

なお、臨床や食品衛生の分野において、検出すべき微生物が試料中に存在する 可能性があるか否かをいち早く確認することが必要であり、微生物の同定まで行 う必要がない場合、また、同時に検出され得る複数の微生物が近縁の種であり、 それら複数の微生物に対する治療方法などの対処方法がすでに明らかである場合 には、上記の第1ステップを実施するだけでよい。

また、本発明の方法には、(a) 同定すべき微生物から核酸を調製する工程、(b) 該核酸を本発明のプローブとハイブリダイズさせる工程、(c) 工程(b) におけるハイブリダイズの有無を検出し、各プローブに対するその検出シグナルパターンを特定する工程、(d) 工程(c) において得られた検出シグナルパターンと、予め特定しておいた、表1に示す微生物の検出シグナルパターンとを比較して同定すべき微生物の種類を特定する工程からなる方法も含まれる。この場合、検出シグナルパターンをコンピュータ処理等によって解析することによって、微生物の検出、同定効率を一層高めることができる。また、この検出シグナルパターンによる方法は、DNA チップ上で実施することによって、より迅速に、効果的に行うことができる。

DNA チップ上での検出同定方法としては、具体的には、以下のように実施することができる。本発明のプローブを、例えば、ガラス、シリコン等の支持体上の各位置 (スポット) に共有結合等により固定化する。その支持体上に、上記のようにして得られた標識化核酸を含む溶液をかけると、各スポット内のプローブの塩基配列に相補的な塩基配列を有する試料中の微生物由来核酸の塩基配列がハイブリダイズして二本鎖を形成し、支持体上に残る。ハイブリダイゼーションした結合体の標識又はハイブリダイゼーションしなかった標識を測定することによっ

て、被検体中の微生物を検出同定することができる。

実施例

以下に実施例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。

[実施例1] 微生物同定用プローブの調製と同定チップの作製

(プローブ調製用微生物)

本発明のプローブを調製するために、表1に示す微生物を標準菌株として用いた。なお、微生物は、American Type Culture Collection (ATCC 株)、独立行政法人 製品評価技術基盤機構 生物遺伝資源部門(財団法人発酵研究所(IFO)の微生物株分譲業務を引継ぎ、微生物の分譲を行っている)(IFO 株)、東京大学医科学研究所(IID 株)等から入手可能である。

(微生物の 16S rDNA 5'領域遺伝子配列(約 500bp)の V1、V2、V3 領域の決定と プローブとして利用可能な塩基配列の決定とプローブの調製)

表1に示す微生物の V1、V2、V3 領域は、16S rRNA をシーケンサー (Applied Biosystem 社) で解読した塩基配列についてマルチプルアライメント (日立ソフト DNASIS Pro) を実行し、決定した。更に、ブラストと呼ばれるアルゴリズム(日立ソフト DNASIS Pro) を用いて、それらの領域においてミスマッチ部位を特定した。該ミスマッチ部位が中央付近にくるようにプローブの塩基配列を設計した。

表4に、それぞれの微生物について設計された v1~v3 プローブについて、各プローブが由来する微生物以外の微生物の V1~V3 領域の配列とハイブリダイズさせることを想定した場合のミスマッチ塩基数の中で最小となる数値(最小ミスマッチ数)を示す。v1~v3 プローブのいずれかにおいて最小ミスマッチ数が 4 以上であれば、単独のプローブによってその微生物が検出・同定可能である。v1~v3プローブのいずれにおいても最小ミスマッチ数が 3 以下であるばあいには単独のプローブによって検出・同定ができないが、後述するように本発明の方法によって検出・同定できる。なお、表4中、none とは、有意な相同性のある配列がなかったということを表す。

表 4

微生物	微生物名	V1領域で	V2領域で	V3領域で	単独プロー	複数のプ
ID						ローブで検出
		ブレの最小	ブンの最小	ブレの最小	可能が微	可能となる
ŀ		ミスフッチ类が	ミスマッチ数	ミスマッチ数	生物	微生物
ŀ		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2/11/190		100.11.700
01	Actinobacillus actinomycetemcomitans	1	9	5	0	
02	Acinetobacter calcoaceticus	12	7	15	0	
03	Haemophilus influenzae	1	9	5	0	
04	Stenotrophomonas maltophilia	4	3	18	Ō	
05	Proteus mirabilis	3	7	3	0	
06	Streptococcus pneumoniae	1	2	0		0
07	Pseudomonas aeruginosa	12	6	14	0	
08	Citrobacter freundii	3	0	4	Ö	
09	Veillonella parvula	17	none	27	Ö	
10	Providencia stuartii	3	5	7	Ö	
11	Neisseria gonorrhoeae	2	2	4	Ŏ	
12	Streptococcus agalactiae	8	6	4	Ö	
13	Morganella morganii	3	5	8	Ŏ	,
14	Bacteroides fragilis	5	23	none	Ö	
15	Staphylococcus hominis	1	1	1		0
16	Staphylococcus warneri	0	3	2		ŏ
17	Staphylococcus haemolyticus	1	1	2		ŏ
18	Enterobacter cloacae	0	0	0		ŏ
19	Enterobacter aerogenes	0	1	4	0	
20	Staphylococcus epidermidis	1	3	2		0
21	Streptococcus constellatus	0	1	4	0	
22	Serratia marcescens	5	0	10	0	
23	Streptococcus anginosus	33	9	0	0	
24	Escherichia coli	1	1	9	0	
	Klebsiella pneumoniae	0	1	3		0
	Enterococcus faecalis	15	11	7	0	
27	Enterococcus faecium	4	12	2	0	
28	Streptococcus sanguis	4	11	1	0	
29	Streptococcus mitis	1	1	0	-	0
30	Streptococcus intermedius	0	0	0		0
31	Listeria monocytogenes	9	17	4	0	
32	Clostridium perfringens	19	27	15	0	
33	Corynebacterium aquatium	10	none	24	0	
34	Streptococcus oralis	8	1	0	0	
35	Staphylococcus aureus	4	3	2	0	
	Neisseria meningitidis	2	2	4	0	
37	Campylobacter fetus	15	23	13	0	
38	Enterococcus gallinarum	1	0	2		0
39	Enterococcus casseliflavus	1	0	2		0
40	Aeromonas hydrophila	22	4	17	0	
41	Salmonella paratyphi A	1	0	0		0
42	Salmonella typhi	1	0	0		0
43	Streptococcus equisimilis	2	7	1	0	
44	Streptococcus canis	4	6	7	0	
45	Klebsiella oxytoca	0	0	3		0

46	Staphylococcus saprophyticus	0	5	1	0	
47	Pasteurella multocida	2	9	15	0	
48	Eikenella corrodens	24	9	13	0	
49	Streptococcus pyogenes	2	6	1	0	
50	Moraxella catarrhalis	22	20	14	0	
51	Legionella pneumophila	12	15	20	0	
52	Mycobacterium tuberculosis	1	6	0	0	
	Mycobacterium avium	2	5	0	0	
	Mycobacterium intracellulare	2	5	0	0	
55	Mycobacterium kansasii	1	6	0	0	
56	Mycobacterium gordonae	5	5	2	0	

(DNA チップの作製)

表 1 に示す微生物の各 v1~v3 プローブを合成し、HPLC精製の後凍結乾燥した状態で保存した。これらを $20\,\mu$ Mに調整し、マイクロアレイスポッティングソリューション(ジェネティックス社)と 1:1 で混合した。全てのサンプルをスポッター(日立ソフト社 SPBIO)にて 2×4 ブロックにスポットし、レプリカを含め合計 4×4 ブロックとした。それぞれのブロックの 4 端にはポジティブコントロールをスポットした。スポッターで使用するピンは、ステンレス・スチールピン $150\,\mu$ m とした。スポットした後、 $0.2\,\%$ SDS 溶液・水・沸騰水に入れ、スライドウォッシャー (バイオフィールド社) にてチップを洗浄し、以下の実験に用いた。

[実施例2] 微生物同定プローブを用いた微生物の同定方法

(微生物 DNA 抽出溶液の調製)

表 1 に示す微生物を LB 培地寒天培地(酵母エキス 5g、トリプトン 10g、NaCl 5g、寒天 20g、蒸留水 1L、pH7.4)で培養した後、集菌した。 $300\,\mu\,1$ の 1% Tween 20(シグマ),60Unit Lytic Enzyme(Gentra Systems),600Unit Achromopeptidase(和光純薬)を含む Cell Suspension Solution(Gentra Systems)溶液(溶菌酵素液)を加え懸濁し、37℃で 2 時間加温した。次に、600mU $/\mu\,1$ Proteinase K溶液を $30\,\mu\,1$ 加え、70℃で 10 分間加温した。

この溶液に 5M グアニジン塩酸-100mM トリス塩酸溶液 (pH 8. 0) を $330 \mu 1$ 加え、 10 分間混合した。その後、TE 飽和フェノール:クロロホルム液(1:1) $600 \mu 1$ を 加えて懸濁した後、微量高速遠心分離機を用い 15,000rpm 10 分間 25 で遠心分離した。上層を $600 \mu 1$ 分取し、 $60 \mu 1$ の 3M 酢酸ナトリウム (pH6. 0)、 $1800 \mu 1$ の

99. 5%エタノールを加え混和し、-80℃で 10 分間放置後、8, 000rpm 15 分間 4℃で遠心分離した。70%冷エタノールでリンスした後、沈殿を乾燥させ、滅菌蒸留水 $100\,\mu\,1$ を加えて十分に溶解した。この溶液を PCR に供した。

(PCR によるターゲット DNA の増幅)

PCR は、GeneAmp9600 システム(Roche diagnostics 社)を使用し、 $50\mu1$ の反応液量で行った。反応液 $50\mu1$ 中には、 $1\mu1$ の鋳型 DNA(上記微生物 DNA 抽出溶液)、 $5\mu1$ の10Xバッファー(Z-Taq用)、0.75 units Z-Taq(宝酒造)、6 nmole dNTPs、フォワードプライマー27F(配列番号 153)、リバースプライマー525R(配列番号 154)各 6 pmole が含まれる。

PCR の条件は、98℃で 2 分の後、98℃で 1 秒、60℃で 90 秒を 1 サイクルとし、35 サイクル反応させ、微生物中のターゲット遺伝子の PCR 増幅産物を得た。反応終了後、Sephadex $^{\mathbb{N}}$ G50 Fine (Amersham pharmacia biotech)によるスピンカラム法により基質を除去後、凍結乾燥により濃縮乾固させ、 $10 \mu 1$ の滅菌超純水にて溶解し、ターゲット DNA 溶液とした。

(PCR 増幅産物の標識)

Nick Translation Kit (ロシュ・ダイアグノスティックス社)を用いて、上記のターゲット DNA を FluoroLink Cy 5 -dUTP (Amersham pharmacia biotech)で標識した。標識反応液 $20\,\mu\,1$ 中には、 $1\,\mu\,g\,o$ 上記ターゲット DNA 溶液、 $3.5\,\mu\,1$ Enzyme mixture、 $0.04\,\mathrm{mM}$ dATP、 $0.04\,\mathrm{mM}$ dCTP、 $0.04\,\mathrm{mM}$ dGTP、 $2\,\mu\,1$ 10x buffer、 $0.1\,\mathrm{mM}$ FluoroLink Cy 5 -dUTP が含まれる。反応条件は、 $15\,\mathrm{C}$ 、 $2\,\mathrm{th}$ 間で行った。反応後、Sephadex G5 0 Fine (Amersham pharmacia biotech)によるスピンカラム法で精製した。精製した反応物を凍結乾燥し、 $10\,\mu\,1$ 滅菌超純水に溶解した。

(ハイブリダイゼーション)

 $2 \mu 1$ の上記標識ターゲット DNA を加えて、最終濃度が 50% ホルムアミド、5x SSC、2% SDS、1% BSA となるようにハイブリダイゼーション溶液を調整した。この溶液 $15 \mu 1$ を 98%、2 分間ディネイチャーさせた。

実施例1で作製した微生物同定チップ上に滴下し、24 x 25mm ハイブリカバースライド(ビーエム機器社)を乗せ、55℃の恒温槽で2時間反応させた。反応後、細菌同定チップを2x ssc 溶液に浸し、ハイブリカバースライドを滑り落とした。

さらに、 $2 \times SSC$ 、0.2% SDS 溶液へ移し、5 分間洗浄後、 $0.2 \times SSC$ 、0.2% SDS で 5 分間洗浄した。 さらに $0.5 \times SSC$ で 1 分間洗浄した。

微生物同定チップを 2000rpm、1 分間遠心乾燥した後、ScanArray 4000 (Packard BioChip Technologies, LLC) で常温、室温の元、シグナル検出した。なお、シグナルの強度をより明確に判断するために、検出されたシグナルを日立ソフト DNASIS (登録商標) Array によって数値化し、輝度値とした。

表 5 には、微生物 ID 01 のアクチノバチルス・アクチノマイセテムコミタンスの 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドを微生物同定チップに調製された各微生物の v1 プローブ、v2 プローブ及び v3 プローブとハイブリダイズさせ、シグナルの輝度値が高かった上位 10 種類のプローブを各領域毎に示した。表 5 中、プローブ ID は、表 1 に示す微生物 ID の番号と v1~v3 領域を組み合わせて示している。

例えば、アクチノバチルス・アクチノマイセテムコミタンスの 16S rRNA の V1 領域の結果をみると、プローブ 01 v1 の輝度値が著しく高いので、プローブ 01 v1 は被検体中にアクチノバチルス・アクチノマイセテムコミタンスが存在する可能性があることを検出することができる。ただし、この場合、プローブ 01 v1 以外にプローブ 03 v1 が類似の輝度値を示すので、プローブ 01 v1 の単独使用による同定はできない。これは、プローブ 01 v1 の塩基配列が他の微生物由来の塩基配列に対してミスマッチ塩基数が 3 個以下であるため、類似のプローブ 01 v1 と相同性の高い塩基配列を有する他の微生物ともハイブリダイズしてしまうからである (表1を参照)。従って、プローブ 01 v1 によって検出された微生物がいずれの微生物であるかを詳細に同定する必要がある場合には、さらなる同定ステップを行う必要がある。

一方、アクチノバチルス・アクチノマイセテムコミタンスの 16S rRNA V2 領域 の結果をみると、プローブ 01 v2 の輝度値のオーダーが他のプローブに比べて著 しく高いので、プローブ 01 v2 を用いて被検体中のアクチノバチルス・アクチノ マイセテムコミタンスの存在を検出、同定することができる。

また、アクチノバチルス・アクチノマイセテムコミタンスの 16S rRNA V3 領域 の結果をみると、プローブ 01 v3 の輝度値のオーダーが他のプローブに比べて著

しく高いので、プローブ 01 v3 を用いて被検体中のアクチノバチルス・アクチノマイセテムコミタンスの存在を検出、同定することができる。

また、V1 領域、V2 領域、V3 領域のプローブの組合せから総合的に判断して、v1 プローブにおいて比較的シグナル強度の高いプローブは 03 v1 および 01 v1 であり、v2 プローブにおいて比較的シグナル強度の高いプローブは 01 v2 であり、v3 プローブにおいて比較的シグナル強度の強いプローブは 01 v3 であることから、対象微生物は、全ての領域に共通して強いシグナル強度が検出されたアクチノバチルス・アクチノマイセテムコミタンスであると検出・同定することができる。

表 5

プローブ ID	領域	発光シグナル強度
03 v1	V1 領域	24292772
01 v1	V1 領域	23806916
05 v1	V1 領域	6665238
47 v1	V1 領域	3385259
24 v1	V1 領域	2169069
41 v1	V1 領域	2168168
42 v1	V1 領域	2021318
13 v1	V1 領域	1865555
08 v1	V1 領域	1833450
36 v1	V1 領域	1520337
01 v2	V2 領域	24106717
03 v2	V2 領域	8121296
08_18_22_45 v2	V2 領域	507673
25 v2	V2 領域	473566
20 v2	V2 領域	467841
07 v2	V2 領域	457081
19 v2	V2 領域	452294
47 v2	V2 領域	444574
23 v2	V2 領域	444368
26 v2	V2 領域	443460
01 v3	V3 領域	44018306
03 v3	V3 領域	1563637
53_54 v3	V3 領域	1008301
05 v3	V3 領域	458131
46 v3	V3 領域	446885
12 v3	V3 領域	441418
16 v3	V3 領域	440355
45 v3	V3 領域	437947
15 v3	V3 領域	436469
26 v3	V3 領域	433456

表6は、アシネトバクター・カルコアセチカス (微生物 ID 02) の16S rRNA のV1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表6の結果から、アシネトバクター・カルコアセチカスは、プローブ 02 v1、02 v2、02 v3の単独使用により検出、同定できることが明らかである。また、v1、v2、v3プローブの組合せで総合的に判断した場合でも、v1プローブでは 02 v1、v2プローブでは 02 v2、v3プローブでは 02 v3が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたアシネトバクター・カルコアセチカスであると検出・同定することができる。

表 6

プローブ ID	領域	発光シグナル強度
02 v1	V1 領域	13924050
07 v1	V1 領域	1862320
20 v1	V1 領域	1378305
32 v1	V1 領域	1327221
13 v1	V1 領域	1232256
17 v1	V1 領域	1145747
50 v1	V1 領域	1133280
35 v1	V1 領域	1115164
16_46 v1	V1 領域	1091812
22 v1	V1 領域	1072129
02_v2	V2 領域	14595023
04_v2	V2 領域	6953521
07 v2	V2 領域	5933146
36 v2	V2 領域	4666635
40 v2	V2 領域	3464230
50 v2	V2 領域	1883560
05 v2	V2 領域	1765482
11 v2	V2 領域	1536763
10 v2	V2 領域	545853
08_18_22_45 v2	V2 領域	321589
02 v3	V3 領域	17774582
08 v3	V3 領域	240445
05 v3	V3 領域	240110
19 v3	V3 領域	232178
38 v3	V3 領域	206877
22 v3	V3 領域	204959
25 ∨3	V3 領域	190615
04 v3	V3 領域	189167
40 v3	V3 領域	179787
07 v3	V3 領域	176742

表 7 は、ヘモフィルス・インフルエンザ(微生物 ID 03)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 7 の結果から、ヘモフィルス・インフルエンザは、プローブ 03 v2、03 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 03 v1、01 v1、v2 プローブでは 03 v2、v3 プローブでは 03 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたヘモフィルス・インフルエンザであると検出・同定することができる。

表 7

プローブ ID	領域	発光シグナル強度
03 v1	V1 領域	2378623
01 v1	V1 領域	1906842
47 v1	V1 領域	1016080
41 v1	V1 領域	859149
42 v1	V1 領域	829649
05 v1	V1 領域	741202
24 v1	V1 領域	670298
13 v1	V1 領域	657089
29 v1	V1 領域	569133
18_45 v1	V1 領域	563785
03 ∨2	V2 領域	17021408
01 v2	V2 領域	1131659
08_18_22_45 v2	V2 領域	488172
23 v2	V2 領域	467092
04 v2	V2 領域	456739
49 v2	V2 領域	450377
24 v2	V2 領域	447638
33 v2	V2 領域	444928
07 v2	V2 領域	444421
26 v2	V2 領域	444320
03 v3	V3 領域	34956972
01 v3	V3 領域	7686990
53_54 v3	V3 領域	992698
33 v3	V3 領域	930101
25 v3	V3 領域	851733
50 v3	V3 領域	585611
47 v3	V3 領域	565322
48 v3	V3 領域	552483
05 v3	V3 領域	459296
37 v3	V3 領域	458129

表8は、ステノトロフォモナス・マルトフィリア(微生物 ID 04)の16S rRNAの V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表8の結果から、ステノトロフォモナス・マルトフィリアは、プローブ 04 v1、04 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 04 v1、v2 プローブでは 04 v2、02 v2、v3 プローブでは 04 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたステノトロフォモナス・マルトフィリアであると検出・同定することができる。

表 8

プローブ ID	領域	発光シグナル強度
04 v1	V1 領域	10553679
36 v1	V1 領域	466306
55 v1	V1 領域	418442
52 v1	V1 領域	399038
56 v1	V1 領域	392406
53 v1	V1 領域	385465
11 v1	V1 領域	350646
39 v1	V1 領域	345370
54 v1	V1 領域	340987
38 v1	V1 領域	325138
04 v2	V2 領域	10010827
02 v2	V2 領域	9289489
07 v2	V2 領域	1682837
40 v2	V2 領域	1168392
36 v2	V2 領域	1016436
05 v2	V2 領域	547876
11 v2	V2 領域	393560
19 v2	V2 領域	293886
08_18_22_45 v2	V2 領域	286031
24 v2	V2 領域	276338
04 ∨3	V3 領域	17018787
32 v3	V3 領域	318622
53_54 v3	V3 領域	294460
05 ∨3	V3 領域	273603
36 v3	V3 領域	156275
21 v3	V3 領域	153557
25 v3	V3 領域	148719
51 v3	V3 領域	144205
48 v3	V3 領域	143748
28 v3	V3 領域	142935

表9は、プロテウス・ミラビリス(微生物 ID 05)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表9の結果から、プロテウス・ミラビリスは、プローブ 05 v2の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 05 v1、01 v1、v2プローブでは 05 v2、v3プローブでは 05 v3、45 v3が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたプロテウス・ミラビリスであると検出・同定することができる。

表 9

プローブ ID	領域	発光シグナル強度
05 v1	V1 領域	20827926
01 v1	V1 領域	15475009
13 v1	V1 領域	9362993
10 v1	V1 領域	7681042
03 v1	V1 領域	7004544
22 v1	V1 領域	3735229
07 v1	V1 領域	2610601
24 v1	V1 領域	2389560
20 v1	V1 領域	2128154
47 v1	V1 領域	1946520
05 v2	V2 領域	40877654
04 v2	V2 領域	4549427
10 v2	V2 領域	3936746
02 v2	V2 領域	2747031
13 v2	V2 領域	1756674
25 ∨2	V2 領域	1579401
07 v2	V2 領域	1459845
11 v2	V2 領域	1214739
08_18_22_45 v2	V2 領域	1008826
19 v2	V2 領域	965000
05 v3	V3 領域	35771120
45 v3	V3 領域	16469087
25 v3	V3 領域	4041990
18_41_42 v3	V3 領域	3949284
24 v3	V3 領域	1675672
19 v3	V3 領域	1537185
13 v3	V3 領域	1386238
22 v3	V3 領域	1287333
09 ∨3	V3 領域	902008
28 ∨3	V3 領域	847886

表 10 は、ストレプトコッカス・ニューモニエ (微生物 ID 06) の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 10 の結果から、ストレプトコッカス・ニューモニエは、プローブ 06 v1~06 v3 の単独使用により同定はできなかった。しかしながら、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 06 v1、29 v1、v2 プローブでは 06 v2、29 v2、v3 プローブでは 06_29_34 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・ニューモニエであると検出・同定することができる。

表 10

プローブ ID	領域	発光シグナル強度
06 v1	V1 領域	32776982
29 v1	V1 領域	24913740
28 v1	V1 領域	3110079
50 v1	V1 領域	1357875
49 v1	V1 領域	1340127
44 v1	V1 領域	1236456
56 v1	V1 領域	1130233
34 v1	V1 領域	1113826
09 v1	V1 領域	1051008
12 v1	V1 領域	1028524
06 v2	V2 領域	16260350
29 v2	V2 領域	12945967
49 v2	V2 領域	2105404
34 v2	V2 領域	1956232
04 v2	V2 領域	1679713
40 v2	V2 領域	1628915
36 ∨2	V2 領域	1375584
47 v2	V2 領域	1324113
13 v2	V2 領域	1149926
11 v2	V2 領域	1147775
06_29_34 v3	V3 領域	8779509
28 v3	V3 領域	3711672
23_28 ∨3	V3 領域	3321379
21 v3	V3 領域	2636024
49 v3	V3 領域	1168139
32 v3	V3 領域	1070569
43 v3	V3 領域	987691
44 v3	V3 領域	773228
12 v3	V3 領域	654725
37 v3	V3 領域	567160

表 11 は、シュードモナス・エルギノサ(微生物 ID 07)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 11 の結果から、シュードモナス・エルギノサは、プローブ 07 v1、07 v2、07 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 07 v1、v2 プローブでは 07 v2、v3 プローブでは v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたシュードモナス・エルギノサであると検出・同定することができる。

表 11

プローブ ID	領域	発光シグナル強度
07 v1	V1 領域	21582444
35 v1	V1 領域	1140158
31 v1	V1 領域	1069940
50 v1	V1 領域	1047192
15 v1	V1 領域	1017726
14 v1	V1 領域	971673
02 v1	V1 領域	955063
13 v1	V1 領域	916576
17 v1	V1 領域	897631
20 v1	V1 領域	872552
07 ∨2	V2 領域	8962135
36 v2	V2 領域	2597328
04 v2	V2 領域	1886057
29 v2	V2 領域	1688042
11 v2	V2 領域	1565487
24 v2	V2 領域	1410365
02 v2	V2 領域	1142371
19 v2	V2 領域	1000455
41_42 v2	V2 領域	934199
40 v2	V2 領域	814738
07 v3	V3 領域	7269868
40 ∨3	V3 領域	784278
37 v3	V3 領域	524732
24 v3	V3 領域	488503
13 v3	V3 領域	469384
32 v3	V3 領域	438322
05 v3	V3 領域	408564
45 ∨ 3	V3 領域	404611
31 v3	V3 領域	388594
06_29_34 v3	V3 領域	387010

表 12 は、シトロバクター・フレンディ(微生物 ID 08)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 12 の結果から、シトロバクター・フレンディは、プローブ 08 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 08 v1、 18_45 v1、v2 プローブでは 41_42 v2、 $08_18_22_45$ v2、24 v2、19 v2、v3 プローブでは 08 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたシトロバクター・フレンディであると検出・同定することができる。

表 12

プロ―ブ ID	領域	発光シグナル強度
08 v1	V1 領域	12042247
18_45 v1	V1 領域	8702122
01 v1	V1 領域	1482998
52 v1	V1 領域	1481121
04 v1	V1 領域	1387682
53 v1	V1 領域	1311987
36 v1	V1 領域	1234712
42 v1	V1 領域	1180221
41 v1	V1 領域	1180112
56 v1	V1 領域	1078698
41_42 v2	V2 領域	24978187
08_18_22_45 v2	V2 領域	20819098
24 v2	V2 領域	16861254
19 v2	V2 領域	12857791
25 v2	V2 領域	7169295
11 v2	V2 領域	2316184
40 v2	V2 領域	1966698
36 v2	V2 領域	1305178
10 v2	V2 領域	1201810
13 v2	V2 領域	981693
08 v3	V3 領域	31353656
19 v3	V3 領域	10317886
18_41_42 v3	V3 領域	8251997
25 v3	V3 領域	3888031
10 v3	V3 領域	2857964
22 v3	V3 領域	1232473
45 v3	V3 領域	970905
53_54 v3	V3 領域	905069
02 v3	V3 領域	859252
13 v3	V3 領域	597583

表 13 は、ベイヨネラ・パルブーラ(微生物 ID 09)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 13 の結果から、ベイヨネラ・パルブーラは、プローブ 09 v1、09 v2、09 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 09 v1、v2 プローブでは 09 v2、v3 プローブでは 09 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたベイヨネラ・パルブーラであると検出・同定することができる。

表 13

プローブ ID	領域	発光シグナル強度
09 v1	V1 領域	11262606
39 v1	V1 領域	1525696
38 v1	V1 領域	1386804
31 v1	V1 領域	1279271
52 v1	V1 領域	1273860
36 v1	V1 領域	1201348
27 v1	V1 領域	1175722
53 v1	V1 領域	1154955
11 v1	V1 領域	1154121
50 v1	V1 領域	1087600
09 v2	V2 領域	4576479
36 v2	V2 領域	1594541
11 v2	V2 領域	1457529
07 v2	V2 領域	1312259
49 v2	V2 領域	1052090
41_42 v2	V2 領域	1040564
04 v2	V2 領域	1024936
24 ∨2	V2 領域	1011879
40 v2	V2 領域	998230
13 ∨2	V2 領域	963780
09 v3	V3 領域	5145378
53_54 v3	V3 領域	841703
32 v3	V3 領域	770670
11 v3	V3 領域	724183
06_29_34 v3	V3 領域	701800
52_55 v3	V3 領域	692188
31 v3	V3 領域	691998
22 v3	V3 領域	683726
37 ∨3	V3 領域	679404
13 v3	V3 領域	678675

表 14 は、プロビデンシア・スチュアーティ(微生物 ID 10)の 16S rRNA の V1 \sim V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 14 の結果から、プロビデンシア・スチュアーティは、プローブ 10 v1、10 v2、10 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 10 v1、13_v1、v2 プローブでは 10 v2、v3 プローブでは 10 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたプロビデンシア・スチュアーティであると検出・同定することができる。

表 14

プローブ ID	領域	発光シグナル強度
10 v1	V1 領域	7987691
13 v1	V1 領域	5972673
05 v1	V1 領域	1197313
22 v1	V1 領域	1076876
07 v1	V1 領域	986987
19_25 v1	V1 領域	907682
20 v1	V1 領域	829768
04 v1	V1 領域	788987
40 ∨1	V1 領域	787867
01 v1	V1 領域	781687
10 v2	V2 領域	14879362
11 v2	V2 領域	2737726
40 v2	V2 領域	2233598
51 v2	V2 領域	1483104
08_18_22_45 ∨2	V2 領域	947619
19 v2	V2 領域	879936
25 v2	V2 領域	877404
36 ∨2	V2 領域	839596
41_42 v2	V2 領域	693910
02 ∨2	V2 領域	693016
10 v3	V3 領域	25810166
45 ∨ 3	V3 領域	765859
25 v3	V3 領域	760872
13 v3	V3 領域	755829
19 v3	V3 領域	668770
08 v3	V3 領域	596139
49 v3	V3 領域	538412
18_41_42 v3	V3 領域	514935
05 v3	V3 領域	470843
26 v3	V3 領域	464401

表 15 は、ナイセリア・ゴノローエ(微生物 ID 11)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 15 の結果から、ナイセリア・ゴノローエは、プローブ 11 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 11 v1、36 v1、v2 プローブでは 11 v2、36 v2、v3 プローブでは 11 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたナイセリア・ゴノローエであると検出・同定することができる。

表 15

プローブ ID	領域	発光シグナル強度
11 v1	V1 領域	26218769
36 v1	V1 領域	20136531
04 v1	V1 領域	1148687
17 v1	V1 領域	1123692
56 v1	V1 領域	795876
53 v1	V1 領域	709876
54 v1	V1 領域	658782
52 v1	V1 領域	647787
53 v1	V1 領域	638967
18_45 v1	V1 領域	629876
11 v2	V2 領域	30109876
36 v2	V2 領域	23409746
40 v2	V2 領域	3997698
51 v2	V2 領域	2598790
10 v2	V2 領域	1207098
08_18_22_45 v2	V2 領域	1027869
07 ∨2	V2 領域	1011769
19 ∨2	V2 領域	908763
04 v2	V2 領域	792340
41_42 v2	V2 領域	748769
11 v3	V3 領域	18694137
36 v3	V3 領域	884298
07 v3	V3 領域	390902
39 v3	V3 領域	387087
25 v3	V3 領域	378093
46 v3	V3 領域	375906
53_54 v3	V3 領域	374803
45 v3	V3 領域	370866
15 v3	V3 領域	367255
13 v3	V3 領域	365979

表 16 は、ストレプトコッカス・アガラクチエ(微生物 ID 12)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 16 の結果から、ストレプトコッカス・アガラクチエは、プローブ 12 v1、12 v2、12 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 12 v1、v2 プローブでは 12 v2、v3 プローブでは 12 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・アガラクチエであると検出・同定することができる。

表 16

プローブ ID	領域	発光シグナル強度
12 v1	V1 領域	44947674
06 v1	V1 領域	3873241
34 v1	V1 領域	2703603
29 v1	V1 領域	2651862
44 v1	V1 領域	2623306
43 v1	V1 領域	2484804
49 v1	V1 領域	1889335
28 v1	V1 領域	1818534
21_28 v1	V1 領域	1810848
01 v1	V1 領域	1490870
12 v2	V2 領域	30700769
49 v2	V2 領域	6918627
19 v2	V2 領域	3579300
06 v2	V2 領域	3512292
24 v2	V2 領域	3464250
29 ∨2	V2 領域	3287064
07 v2	V2 領域	3106369
25 v2	V2 領域	3007513
08_18_22_45 v2	V2 領域	2691057
34 v2	V2 領域	2579428
12 v3	V3 領域	53581492
49 v3	V3 領域	8548413
43 v3	V3 領域	6200222
44 v3	V3 領域	3240147
27 v3	V3 領域	2352093
39 v3	V3 領域	2291647
38 v3	V3 領域	2219299
32 v3	V3 領域	1785051
21 v3	V3 領域	1329525
06_29_34 v3	V3 領域	1211039

表 17 は、モルガネラ・モルガニ (微生物 ID 13) の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 17 の結果から、モルガネラ・モルガニは、プローブ 13 v2、13 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3プローブの組合せで総合的に判断した場合でも、v1プローブでは 13 v1、10 v1、v2プローブでは 13 v2、v3プローブでは 13 v2、v3プローブでは 13 v2、v3プローブでは 13 v3が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたモルガネラ・モルガニであると検出・同定することができる。

表 17

プローブ ID	領域	発光シグナル強度
13 v1	V1 領域	28976987
10 v1	V1 領域	20876298
05 v1	V1 領域	5987986
22 v1	V1 領域	2376987
07 v1	V1 領域	1187687
20 v1	V1 領域	1176876
17 v1	V1 領域	1089768
35 v1	V1 領域	997987
14 v1	V1 領域	949879
16_46 v1	V1 領域	893987
13 ∨2	V2 領域	20920924
10 v2	V2 領域	2053932
25 v2	V2 領域	1500548
19 v2	V2 領域	1021487
08_18_22_45 v2	V2 領域	1001221
41_42 v2	V2 領域	902148
36 v2	V2 領域	803154
04 ∨2	V2 領域	728878
11 v2	V2 領域	700703
24 ∨2	V2 領域	699761
13 v3	V3 領域	14425456
18_41_42 v3	V3 領域	1160989
10 v3	V3 領域	1102065
19 v3	V3 領域	1092044
53_54 v3	V3 領域	856732
05 v3	V3 領域	823358
45 v3	V3 領域	470306
08 v3	V3 領域	454786
50 v3	V3 領域	386009
52_55 v3	V3 領域	370832

表 18 は、バクテロイデス・フラジリス(微生物 ID 14)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 18 の結果から、バクテロイデス・フラジリスは、プローブ 14 v1、14 v2、14 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 14 v1、v2 プローブでは 14 v2、v3 プローブでは 14 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたバクテロイデス・フラジリスであると検出・同定することができる。

表 18

プローブ ID	領域	発光シグナル強度
14 v1	V1 領域	26790920
47 v1	V1 領域	1187411
05 v1	V1 領域	527363
36 v1	V1 領域	507633
22 v1	V1 領域	485571
13 v1	V1 領域	452603
50 v1	V1 領域	414464
20 v1	V1 領域	391619
07 v1	V1 領域	383929
37 v1	V1 領域	383808
14 v2	V2 領域	21293063
25 v2	V2 領域	629025
19 v2	V2 領域	606147
07 v2	V2 領域	360263
08_18_22_45 v2	V2 領域	289452
15 v2	V2 領域	288112
54 v2	V2 領域	282965
16 v2	V2 領域	281543
41_42 v2	V2 領域	278321
50 v2	V2 領域	277973
14 v3	V3 領域	17838095
37 v3	V3 領域	301773
25 v3	V3 領域	283236
16 v3	V3 領域	279815
51 v3	V3 領域	275369
18_41_42 v3	V3 領域	268313
50 v3	V3 領域	267447
13 v3	V3 領域	264208
56 v3	V3 領域	263492
08 v3	V3 領域	263058

表 19 は、スタフィロコッカス・ホミニス (微生物 ID 15) の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 19 の結果から、スタフィロコッカス・ホミニスは、プローブ 15 v1~15 v3 の単独使用により検出、同定できることができなかったが、 v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 16_46 v1、 15 v1、17 v1、v2 プローブでは 15 v2、16 v2、v3 プローブでは 15 v3、16 v3 が 比較的強いシグナル強度をもつため、各領域で高い強度が検出されたスタフィロコッカス・ホミニスもしくはスタフィロコッカス・ワルネリの存在が示唆された。 表 19

プローブ ID	領域	発光シグナル強度
16_46 v1	V1 領域	9636297
15 v1	V1 領域	8688319
17 v 1	V1 領域	7822648
20 v1	V1 領域	2690099
35 v1	V1 領域	756910
53 v1	V1 領域	499825
02 v1	V1 領域	451079
07 v1	V1 領域	412397
32 v1	V1 領域	395656
13 v1	V1 領域	377834
15 v2	V2 領域	8187686
16 v2	V2 領域	7896897
35 v2	V2 領域	1897098
20 v2	V2 領域	987973
56 v2	V2 領域	398768
46 v2	V2 領域	298767
02 v2	V2 領域	208768
50 v2	V2 領域	201767
07 v2	V2 領域	198769
31 v2	V2 領域	188678
15 v3	V3 領域	12898732
16 v3	V3 領域	11866243
35 v3	V3 領域	4776521
20 v3	V3 領域	886287
46 v3	V3 領域	517652
17 ∨3	V3 領域	418761
04 v3	V3 領域	239766
32 v3	V3 領域	221876
36 v3	V3 領域	198767
37 v3	V3 領域	191852

表 20 は、スタフィロコッカス・ワルネリ(微生物 ID 16)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 20 の結果から、スタフィロコッカス・ワルネリは、 プローブ 16 v1~16 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 16_46 v1、15 v1、17 v1、v2 プローブでは 16 v2、35 v2、v3 プローブでは 16 v3、35 v3、15 v3 が比較的 強いシグナル強度をもつため、各領域で高い強度が検出されたスタフィロコッカス・ワルネリの検出・同定が可能であった。

表 20

プローブ ID	領域	発光シグナル強度
16_46 v1	V1 領域	12218165
15 v1	V1 領域	10730234
17 v1	V1 領域	10255526
20 v1	V1 領域	3853200
07 v1	V1 領域	1431817
02 v1	V1 領域	1404253
35 v1	V1 領域	1231964
22 v1	V1 領域	1205675
13 v1	V1 領域	1077816
50 v1	V1 領域	1004618
16 v2	V2 領域	4960969
35 v2	V2 領域	3516006
20 v2	V2 領域	1151056
46 v2	V2 領域	508899
15 v2	V2 領域	375549
38_39 v2	V2 領域	280287
50 v2	V2 領域	272678
17 v2	V2 領域	248168
04 v2	V2 領域	221243
27 v2	V2 領域	216260
16 v3	V3 領域	8009052
35 v3	V3 領域	4977219
15 v3	V3 領域	3067127
20 v3	V3 領域	2269730
46 v3	V3 領域	1633000
17 v3	V3 領域	1125631
04 v3	V3 領域	858224
32 ∨3	V3 領域	537561
14 v3	V3 領域	310394
36 v3	V3 領域	294464

表 21 は、スタフィロコッカス・ヘモリティカス(微生物 ID 17)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 21 の結果から、スタフィロコッカス・ヘモリティカスは、プローブ 17 v1~17 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 17 v1、15 v1、16_46 v1、v2 プローブでは 17 v2、15 v2、v3 プローブでは 17 v3、20 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたスタフィロコッカス・ヘモリティカスであると検出・同定することができた。

表 21

プローブ ID	領域	発光シグナル強度
17 v1	V1 領域	9140975
15 v1	V1 領域	9067760
16_46 v1	V1 領域	6804271
20 v1	V1 領域	1905673
50 v1	V1 領域	1064254
02 v1	V1 領域	995094
35 v1	V1 領域	854346
31 v1	V1 領域	835559
13 v1	V1 領域	807708
07 v1	V1 領域	713656
17 v2	V2 領域	2983744
15 v2	V2 領域	2442856
35 v2	V2 領域	857752
46 v2	V2 領域	820022
20 ∨2	V2 領域	536312
16 v2	V2 領域	337042
03 v2	V2 領域	289615
38_39 v2	V2 領域	237405
19 v2	V2 領域	230281
04 v2	V2 領域	225625
17 v3	V3 領域	4176321
20 ∨3	V3 領域	2798760
15 v3	V3 領域	1197281
46 v3	V3 領域	1119872
35 v3	V3 領域	1022122
16 v3	V3 領域	796758
32 v3	V3 領域	567851
37 √3	V3 領域	396112
14 v3	V3 領域	289868
22 v3	V3 領域	217865

表 22 は、エンテロバクター・クロアカ(微生物 ID 18)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 22 の結果から、エンテロバクター・クロアカは、プローブ 18 v1、18 v2、18 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せを総合的に考えた場合、v1 プローブでは 18_45 v1、v2 プローブでは 08_18_22_45 v2、41_42 v2、24 v2、v3 プローブでは 18_41_42 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエンテロバクター・クロアカであると検出・同定することができた。

表 22

プローブ ID	領域	発光シグナル強度
18_45 v1	V1 領域	24178609
19_25 v1	V1 領域	10966958
08 v1	V1 領域	3226628
56 v1	V1 領域	2249984
55 v1	V1 領域	1955213
52 v1	V1 領域	1825328
53 v1	V1 領域	1746709
36 v1	V1 領域	1714315
01 v1	V1 領域	1658325
04 v1	V1 領域	1634919
08_18_22_45 v2	V2 領域	34967588
41_42 v2	V2 領域	26612959
24 ∨2	V2 領域	22463213
25 ∨2	V2 領域	16145401
19 v2	V2 領域	16030188
11 v2	V2 領域	3678267
40 v2	V2 領域	2477658
51 v2	V2 領域	2156539
36 ∨2	V2 領域	2094885
13 v2	V2 領域	2021289
18_41_42 v3	V3 領域	58668243
08 v3	V3 領域	12496515
05 ∨3	V3 領域	5472813
25 v3	V3 領域	5283913
13 v3	V3 領域	3228907
45 ∨3	V3 領域	2914331
24 ∨3	V3 領域	2546582
22 v3	V3 領域	1839215
53_54 v3	V3 領域	1434928
19 ∨3	V3 領域	1238023

表 23 は、エンテロバクター・アエロゲネス(微生物 ID 19)の 16S rRNA の V1 ~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 23 の結果から、エンテロバクター・アエロゲネスは、プローブ 19 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 19_25 v1、v2 プローブでは 19 v2、08_18_22_45 v2、v3 プローブでは 19 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエンテロバクター・アエロゲネスであると検出・同定することができる。

表 23

プローブ ID	領域	発光シグナル強度
19_25 v1	V1 領域	28812260
18_45 v1	V1 領域	9383804
05 v1	V1 領域	2187459
13 v1	V1 領域	1854417
22 v1	V1 領域	1802189
14 v1	V1 領域	1390057
07 v1	V1 領域	1316013
20 v1	V1 領域	1235029
10 v1	V1 領域	1210090
32 v1	V1 領域	1158607
19 v2	V2 領域	38919738
08_18_22_45 v2	V2 領域	24987198
25 v2	V2 領域	13987281
41_42 v2	V2 領域	12981961
24 v2	V2 領域	11964021
11 v2	V2 領域	1890122
07 v2	V2 領域	1825411
36 v2	V2 領域	1487611
40 v2	V2 領域	1298731
13 v2	V2 領域	1016732
19 v3	V3 領域	53121093
08 v3	V3 領域	10985176
45 v3	V3 領域	8292437
25 v3	V3 領域	2575095
05 v3	V3 領域	1383349
13 v3	V3 領域	1288969
11 v3	V3 領域	1268765
22 v3	V3 領域	1245965
18_41_42 v3	V3 領域	1200845
10 v3	V3 領域	1152808

表 24 は、スタフィロコッカス・エピデルミディス(微生物 ID 20)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブと ハイブリダイズさせた結果を示す。表 24 の結果から、スタフィロコッカス・エピ デルミディスは、プローブ 20 v1、20 v2、20 v3 の単独使用により同定はできな かったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 20 v1、15 v1、v2 プローブでは 20 v2、35 v2、17 v2、v3 プローブでは 20 v3、46 v3、17 v3、16 v3、15 v3 が比較的強いシグナル強度をもつため、各領域で高 い強度が検出されたスタフィロコッカス・エピデルミディスであると検出・同定 することができる。

表 24

プローブ ID	領域	発光シグナル強度
20 v1	V1 領域	5564151
15 v1	V1 領域	4297641
13 v1	V1 領域	2298763
50 v1	V1 領域	2276511
17 v1	V1 領域	2192611
16_46 v1	V1 領域	2017652
14 v1	V1 領域	2012511
31 v1	V1 領域	1918761
02 v1	V1 領域	1876181
32 v1	V1 領域	1586519
20 v2	V2 領域	3711401
35 v2	V2 領域	3544303
17 v2	V2 領域	2252854
16 v2	V2 領域	1447884
46 v2	V2 領域	1188084
15 v2	V2 領域	1179760
56 v2	V2 領域	750663
04 v2	V2 領域	587370
32 v2	V2 領域	554422
52 v2	V2 領域	550275
20 v3	V3 領域	8696647
46 v3	V3 領域	5234071
17 v3	V3 領域	5181402
16 v3	V3 領域	4043267
15 v3	V3 領域	3725666
35 v3	V3 領域	2211902
37 ∨3	V3 領域	1747232
32 v3	V3 領域	1455263
36 v3	V3 領域	859988
14 v3	V3 領域	759021

表 25 は、ストレプトコッカス・コンステラータス(微生物 ID 21)の 16S rRNA の領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 25 の結果から、ストレプトコッカス・コンステラータスは、プローブ 21 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 21_30 v1、v2 プローブでは 30 v2、21 v2、v3 プローブでは 21 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・コンステラータスであると検出・同定することができる。

表 25

プローブ ID	領域	発光シグナル強度
21_30 v1	V1 領域	13493205
49 v1	V1 領域	626462
14 v1	V1 領域	472249
28 v1	Vi 領域	406692
09 v1	V1 領域	372127
23 v1	V1 領域	334462
04 v1	V1 領域	281259
39 v1	V1 領域	264440
33 v1	V1 領域	261432
44 v1	V1 領域	231431
30 v2	V2 領域	40001310
21 v2	V2 領域	37777213
36 v2	V2 領域	442244
13 v2	V2 領域	435228
04 v2	V2 領域	434745
25 v2	V2 領域	405090
11 v2	V2 領域	389678
19 v2	V2 領域	386999
41_42 v2	V2 領域	365454
23 v2	V2 領域	362880
21 ∨3	V3 領域	48491419
06_29_34 v3	V3 領域	16236812
28 v3	V3 領域	10188066
23_30 v3	V3 領域	1704489
32 v3	V3 領域	501471
33 v3	V3 領域	255113
49 v3	V3 領域	240367
04 v3	V3 領域	221273
12 v3	V3 領域	216686
44 v3	V3 領域	215405

表 26 は、セラチア・マルセッセンス(微生物 ID 22)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 26 の結果から、セラチア・マルセッセンスは、プローブ22 v1、22 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 22 v1、v2 プローブでは 08_18_22_45 v2、v3 プローブでは 22 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたセラチア・マルセッセンスであると検出・同定することができる。

表 26

プローブ ID	領域	発光シグナル強度
22 ∨1	V1 領域	2799986
19_25 v1	V1 領域	645042
05 v1	V1 領域	464262
14 v1	V1 領域	403849
13 v1	V1 領域	348639
10 v1	V1 領域	340365
08 v1	V1 領域	334770
56 v1	V1 領域	329794
07 v1	V1 領域	319945
20 v1	V1 領域	301988
08_18_22_45 v2	V2 領域	8881924
41_42 v2	V2 領域	3611108
19 v2	V2 領域	3501442
24 v2	V2 領域	3388138
25 v2	V2 領域	1364269
36 v2	V2 領域	440534
11 v2	V2 領域	437523
10 v2	V2 領域	351575
07 v2	V2 領域	333596
13 v2	V2 領域	330089
22 v3	V3 領域	4336423
25 v3	V3 領域	552973
19 v3	V3 領域	376449
18_41_42 v3	V3 領域	370767
05 v3	V3 領域	359246
08 ∨3	V3 領域	317135
53_54 v3	V3 領域	251368
40 v3	V3 領域	241465
02 v3	V3 領域	183823
13 v3	V3 領域	156441

表 27 は、ストレプトコッカス・アンギノサス(微生物 ID 23)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 27 の結果から、ストレプトコッカス・アンギノサスは、プローブ 23 v1、23 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 23 v1、v2 プローブでは 23 v2、v3 プローブでは 23_30 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・アンギノサスであると検出・同定することができる。

表 27

プローブ ID	領域	発光シグナル強度
23 v1	V1 領域	13621920
21_30 ∨1	V1 領域	1429074
12 v1	V1 領域	351954
54 v1	V1 領域	322529
06 v1	V1 領域	313548
29 v1	V1 領域	285465
56 v1	V1 領域	279073
52 v1	V1 領域	277580
55 v1	V1 領域	270510
53 v1	V1 領域	265961
23 v2	V2 領域	17801418
08_18_22_45 v2	V2 領域	939544
41_42 v2	V2 領域	853515
19 v2	V2 領域	767853
36 v2	V2 領域	678990
25 v2	V2 領域	661394
24 v2	V2 領域	660099
40 v2	V2 領域	629656
13 v2	V2 領域	614760
11 v2	V2 領域	463405
23_30 v3	V3 領域	34042714
06_29_34 v3	V3 領域	2910169
21 ∨3	V3 領域	2028456
28 v3	V3 領域	1845357
32 v3	V3 領域	1117260
25 v3	V3 領域	522676
37 v3	V3 領域	364237
33 v3	V3 領域	281238
09 v3	V3 領域	274590
13 v3	V3 領域	261961

表 28 は、エシェリシア・コリ(微生物 ID 24)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 28 の結果から、エシェリシア・コリは、プローブ 24 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 24 v1、41 v1、v2 プローブでは 08_18_22_45 v2、24 v2、41_42 v2、v3 プローブでは 24 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエシェリシア・コリであると検出・同定することができる。

表 28

プローブ ID	領域	発光シグナル強度
24 v1	V1 領域	17987542
41 v1	V1 領域	15887613
42 v1	V1 領域	4765198
03 v1	V1 領域	2191683
01 v1	V1 領域	1486217
08 v1	V1 領域	1329111
56 v1	V1 領域	991762
52 v1	V1 領域	978628
55 v1	V1 領域	987780
53 v1	V1 領域	926175
08_18_22_45 ∨2	V2 領域	9827911
24 ∨2	V2 領域	9218763
41_42 v2	V2 領域	4907915
19 v2	V2 領域	3896124
25 v2	V2 領域	1778622
11 v2	V2 領域	598792
36 ∨2	V2 領域	597517
10 ∨2	V2 領域	527651
13 v2	V2 領域	486981
40 v2	V2 領域	479617
24 v3	V3 領域	4646334
05 v3	V3 領域	676154
25 v3	V3 領域	614952
18_41_42 v3	V3 領域	587388
53_54 v3	V3 領域	506098
07 v3	V3 領域	475754
32 v3	V3 領域	435473
45 ∨3	V3 領域	409346
13 v3	V3 領域	332258
19 ∨3	V3 領域	276499

表 29 は、クレブセラ・ニューモニエ(微生物 ID 25)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 29 の結果から、クレブセラ・ニューモニエは、プローブ 25 v1、25 v2、25 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せを総合的に判断すると、v1 プローブでは 19_25 v1、 18_45 v1、v2 プローブでは 25 v2、19 v2、v3 プローブでは 25 v3、45 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたクレブセラ・ニューモニエであると検出・同定することができる。

表 29

18_45 v1 V1 領域 13 v1 V1 領域 05 v1 V1 領域 22 v1 V1 領域 10 v1 V1 領域 14 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 07 v2 V2 領域 07 v2 V2 領域	
13 v1 V1 領域 05 v1 V1 領域 22 v1 V1 領域 10 v1 V1 領域 10 v1 V1 領域 07 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 07 v2 V2 領域 07 v2 V2 領域	44899827
05 v1 V1 領域 22 v1 V1 領域 10 v1 V1 領域 10 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 07 v2 V2 領域 07 v2 V2 領域	22296940
22 v1 V1 領域 10 v1 V1 領域 14 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	5066743
10 v1 V1 領域 14 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 07 v2 V2 領域 07 v2 V2 領域	4572823
14 v1 V1 領域 07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 07 v2 V2 領域 07 v2 V2 領域	3932829
07 v1 V1 領域 20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	3095199
20 v1 V1 領域 32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	2864113
32 v1 V1 領域 25 v2 V2 領域 19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	2658302
25 v2	2612310
19 v2 V2 領域 08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	2529941
08_18_22_45 v2 V2 領域 41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	56236707
41_42 v2 V2 領域 24 v2 V2 領域 07 v2 V2 領域	52302190
24 v2 V2 領域 07 v2 V2 領域	22930464
07 v2 V2 領域	20291404
	15891725
	3433724
11 v2 V2 領域	3330589
13 v2 V2 領域	2995258
40 v2 V2 領域	2330892
36 v2 V2 領域	2213813
25 v3 V3 領域 Z	14576411
45 v3 V3 領域 2	27662864
19 v3 V3 領域	13943196
18_41_42 v3 V3 領域	6416896
05 v3 V3 領域	6387121
08 v3 V3 領域	4853371
24 v3 V3 領域	2016550
10 v3 V3 領域	1424743
13 v3 V3 領域	1402032
53_54 v3 V3 領域	1042800

表 30 は、エンテロコッカス・フェカリス(微生物 ID 26)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 30 の結果から、エンテロコッカス・フェカリスは、 プローブ 26 v1、26 v2、26 v3 の単独使用により検出、同定できることが明らか である。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 26 v1、v2 プローブでは 26 v2、v3 プローブでは 26 v3 が比較的強 いシグナル強度をもつため、各領域で高い強度が検出されたエンテロコッカス・フェカリスであると検出・同定することができる。

表 30

プローブ ID	領域	発光シグナル強度
26 ∨1	V1 領域	6245244
50 ∨1	V1 領域	1519767
31 v1	V1 領域	997402
03 v1	V1 領域	971075
08 v1	V1 領域	749485
27 v1	V1 領域	743405
01 ∨1	V1 領域	683398
41 v1	V1 領域	630838
07 v1	V1 領域	627885
13 v1	V1_領域	616087
26 v2	V2 領域	6899137
41_42 v2	V2 領域	575015
08_18_22_45 v2	V2 領域	494906
19 v2	V2 領域	492700
24 v2	V2 領域	427571
36 v2	V2 領域	415871
40 v2	V2 領域	410203
07 v2	V2 領域	381812
04 v2	V2 領域	374505
25 v2	V2 領域	358563
26 v3	V3 領域	4672443
31 v3	V3 領域	439560
27 v3	V3 領域	369990
39 v3	V3 領域	337964
32 v3	V3 領域	330311
38 v3	V3 領域	317024
37 v3	V3 領域	311826
13 v3	V3 領域	245796
10 v3	V3 領域	213954
12 v3	V3 領域	187308

表 31 は、エンテロコッカス・フェシウム(微生物 ID 27)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 31 の結果から、エンテロコッカス・フェシウムは、プローブ 27 v1、27 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 27 v1、v2 プローブでは 27 v2、v3 プローブでは 27 v3、39 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエンテロコッカス・フェシウムであると検出・同定することができる。

表 31

プローブ ID	領域	発光シグナル強度
27 v1	V1 領域	9778728
39 ∨1	V1 領域	3061690
56 v1	V1 領域	2755188
53 v1	V1 領域	2721149
54 ∨1	V1 領域	2565777
38 ∨1	V1 領域	2549340
26 v1	V1 領域	2330722
52 v1	V1 領域	2263885
55 v1	V1 領域	2049533
09 v1	V1 領域	969809
27 v2	V2 領域	9929701
46 v2	V2 領域	1671138
38_39 v2	V2 領域	331665
26 v2	V2 領域	312678
07 v2	V2 領域	278453
16 v2	V2 領域	260282
04 v2	V2 領域	239858
15 v2	V2 領域	238161
24 v2	V2 領域	235895
19 v2	V2 領域	223883
27 ∨3	V3 領域	8639767
39 v3	V3 領域	7896327
38 v3	V3 領域	2376811
31 v3	V3 領域	1098762
44 ∨3	V3 領域	675861
26 v3	V3 領域	589761
19 v3	V3 領域	318761
32 v3	V3 領域	307681
05 v3	V3 領域	297987
08 v3	V3 領域	278768

表 32 は、ストレプトコッカス・サングイス(微生物 ID 28)の 16S rRNA の V1 ~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 32 の結果から、ストレプトコッカス・サングイスは、プローブ 28 v1、28 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブで 28 v1、v2 プローブでは 28 v2、v3 プローブでは 28 v3、06_29_34 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・サングイスであると検出・同定することができる。

表 32

プローブ ID	領域	発光シグナル強度
28 v1	V1 領域	16338885
06 v1	V1 領域	1181797
29 v1	V1 領域	730573
21_30 v1	V1 領域	483231
34 v1	V1 領域	472055
43 v1	V1 領域	459749
44 v1	V1 領域	404106
12 v1	V1 領域	381948
49 v1	V1 領域	376569
09 v1	V1 領域	351832
28 v2	V2 領域	12909216
24 v2	V2 領域	503344
36 v2	V2 領域	499619
41_42 v2	V2 領域	431345
13 v2	V2 領域	424502
19 v2	V2 領域	417881
25 v2	V2 領域	403362
08_18_22_45 v2	V2 領域	395035
04 v2	V2 領域	394017
11 v2	V2 領域	374090
28 v3	V3 領域	45542140
06_29_34 v3	V3 領域	35114448
21 v3	V3 領域	15435778
23_30 v3	V3 領域	1521965
32 v3	V3 領域	739219
24 v3	V3 領域	465434
49 v3	V3 領域	450890
43 v3	V3 領域	427491
44 v3	V3 領域	396805
01 v3	V3 領域	355158

表 33 は、ストレプトコッカス・ミティス(微生物 ID 29)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 33 の結果から、ストレプトコッカス・ミティスは、 プローブ 29 v1、29 v2、29 v3 の単独使用により同定はできなかったが、v1、v2、 v3 プローブの組合せで総合的に判断すると、v1 プローブでは 29 v1、28 v1、v2 プローブでは 29 v2、06 v2、v3 プローブでは 06_29_34 v3、28 v3 が比較的強い シグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・ミティスであると検出・同定することができる。

表 33

プローブ ID	領域	発光シグナル強度
29 v1	V1 領域	38198721
28 v1	V1 領域	24682981
06 v1	V1 領域	5817621
21_30 v1	V1 領域	2119781
34 v1	V1 領域	1087983
12 v1	V1 領域	909878
49 v1	V1 領域	687611
44 v1	V1 領域	576586
43 v1	V1 領域	467651
27 v1	V1 領域	416581
29 v2	V2 領域	46472243
06 v2	V2 領域	24406385
34 v2	V2 領域	12962338
08_18_22_45 v2	V2 領域	902177
12 v2	V2 領域	866635
19 v2	V2 領域	849684
30 v2	V2 領域	826972
25 v2	V2 領域	743509
24 v2	V2 領域	736106
36 v2	V2 領域	669629
06_29_34 v3	V3 領域	43974721
28 v3	V3 領域	28728883
21 v3	V3 領域	11488220
23_30 v3	V3 領域	3778464
32 v3	V3 領域	1193519
47 v3	V3 領域	600238
12 v3	V3 領域	288689
43 v3	V3 領域	258797
49 v3	V3 領域	253604
08 v3	V3 領域	237332

表 34 は、ストレプトコッカス・インターメディウス(微生物 ID 30)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 34 の結果から、ストレプトコッカス・インターメディウスは、プローブ 30 v1、30 v2、30 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 21_30 v1、v2 プローブでは 30 v2、21 v2、v3 プローブでは 23_30 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・インターメディウスであると検出・同定することができる。

表 34

プローブ ID	領域	発光シグナル強度
21_30 v1	V1 領域	17443911
23 v1	V1 領域	430260
06 v1	V1 領域	417406
09 v1	V1 領域	411180
28 v1	V1 領域	357081
29 v1	V1 領域	333449
43 v1	V1 領域	321388
49 v1	V1 領域	295344
44 v1	V1 領域	290890
39 v1	V1 領域	270773
30 v2	V2 領域	28660345
21 v2	V2 領域	26065824
36 v2	V2 領域	564178
24 v2	V2 領域	552656
25 v2	V2 領域	542309
19 v2	V2 領域	525497
08_18_22_45 v2	V2 領域	510266
04 v2	V2 領域	509800
41_42 v2	V2 領域	498506
49 v2	V2 領域	473932
23_30 v3	V3 領域	26887538
06_29_34 v3	V3 領域	4386868
21 ∨3	V3 領域	2120637
28 v3	V3 領域	2097411
32 v3	V3 領域	663634
25 v3	V3 領域	630821
37 v3	V3 領域	296965
43 v3	V3 領域	243304
49 v3	V3 領域	233886
27 v3	V3 領域	193883

表 35 は、リステリア・モノサイトゲネス(微生物 ID 31)の 16S rRNAの V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 35 の結果から、リステリア・モノサイトゲネスは、 プローブ 31 v1、31 v2、31 v3 の単独使用により検出、同定できることが明らか である。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 31 v1、v2 プローブでは 31 v2、v3 プローブでは 31 v3 が比較的強 いシグナル強度をもつため、各領域で高い強度が検出されたリステリア・モノサイトゲネスであると検出・同定することができる。

表 35

プローブ ID	領域	発光シグナル強度
31 v1	V1 領域	10579601
50 v1	V1 領域	2532393
55 v1	V1 領域	984441
56 v1	V1 領域	891055
53 v1	V1 領域	853211
52 v1	V1 領域	828320
02 v1	V1 領域	776127
01 v1	V1 領域	726470
13 v1	V1 領域	719011
07 v1	V1 領域	691938
31 v2	V2 領域	10336138
06 v2	V2 領域	691113
52 v2	V2 領域	311987
56 v2	V2 領域	280315
55 v2	V2 領域	269230
24 v2	V2 領域	254150
14 v2	V2 領域	251251
51 v2	V2 領域	250609
28 v2	V2 領域	247383
49 v2	V2 領域	243528
31 v3	V3 領域	7713541
27 v3	V3 領域	807508
39 v3	V3 領域	606205
38 v3	V3 領域	519822
32 v3	V3 領域	367659
37 v3	V3 領域	338211
26 v3	V3 領域	275414
53_54 v3	V3 領域	249554
46 v3	V3 領域	248050
15 v3	V3 領域	245416

表 36 は、クロストリジウム・パーフリンゲンス(微生物 ID 32)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブと ハイブリダイズさせた結果を示す。表 36 の結果から、クロストリジウム・パーフリンゲンスは、プローブ 32 v1、32 v2、32 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 32 v1、v2 プローブでは 32 v2、v3 プローブでは 32 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたクロストリジウム・パーフリンゲンスであると検出・同定することができる。

表 36

プローブ ID	領域	発光シグナル強度
32 v1	V1 領域	13777878
02 v1	V1 領域	6313849
50 v1	V1 領域	4552246
07 v1	V1 領域	3595672
13 v1	V1 領域	3360097
20 v1	V1 領域	2960479
17 v1	V1 領域	2794853
16_46 v1	V1 領域	2575870
15 v1	V1 領域	2569927
22 v1	V1 領域	2336865
32 v2	V2 領域	19353147
13 v2	V2 領域	816957
41_42 v2	V2 領域	757723
25 v2	V2 領域	716127
08_18_22_45 v2	V2 領域	690633
24 v2	V2 領域	644953
19 v2	V2 領域	635561
35 v2	V2 領域	585284
03 v2	V2 領域	531673
26 v2	V2 領域	525063
32 v3	V3 領域	16219819
35 v3	V3 領域	650373
37 v3	V3 領域	565610
18_41_42 v3	V3 領域	500354
16 v3	V3 領域	497630
05 v3	V3 領域	496913
15 v3	V3 領域	496064
08 v3	V3 領域	487976
17 v3	V3 領域	484020
20 ∨3	V3 領域	476998

表 37 は、コリネバクテリウム・ アクアチウム (微生物 ID 33) の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 37 の結果から、コリネバクテリウム・ アクアチウムは、プローブ 33 v1、33 v2、33 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 33 v1、v2 プローブでは 33 v2、v3 プローブでは 33 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたコリネバクテリウム・アクアチウムであると検出・同定することができる。

表 37

プローブ ID	領域	発光シグナル強度
33 v1	V1 領域	28909022
09 ∨1	V1 領域	2068941
56 v1	V1 領域	1810656
54 v1	V1 領域	1617630
27 v1	V1 領域	1480859
55 v1	V1 領域	1439777
50 v1	V1 領域	1409621
26 v1	V1 領域	1387770
53 v1	V1 領域	1291271
39 v1	V1 領域	1138148
33 v2	V2 領域	25700462
24 ∨2	V2 領域	457898
49 v2	V2 領域	456921
54 v2	V2 領域	428638
01 v2	V2 領域	411464
36 v2	V2 領域	400441
04 ∨2	V2 領域	393293
53 v2	V2 領域	390216
17 v2	V2 領域	384017
51 v2	V2 領域	382889
33 v3	V3 領域	28292530
53_54 v3	V3 領域	5160490
36 v3	V3 領域	674367
09 v3	V3 領域	446040
14 v3	V3 領域	412684
12 v3	V3 領域	404894
11 v3	V3 領域	400830
45 v3	V3 領域	400482
51 v3	V3 領域	395914
37 v3	V3 領域	386918

表 38 は、ストレプトコッカス・オラリス (微生物 ID 34) の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 38 の結果から、ストレプトコッカス・オラリスは、プローブ 34 v1 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 34 v1、v2 プローブでは 34 v2、29 v2、v3 プローブでは 06_29_34 v3、28 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・オラリスであると検出・同定することができる。

表 38

プローブ ID	領域	発光シグナル強度
34 v1	V1 領域	24080197
28 v1	V1 領域	1861839
06 v1	V1 領域	1204010
29 v1	V1 領域	1170109
21_30 v1	V1 領域	885996
12 v1	V1 領域	551619
44 ∨1	V1 領域	371715
09 v1	V1 領域	337683
43 v1	V1 領域	333226
49 v1	V1 領域	332371
34 ∨2	V2 領域	33175215
29 ∨2	V2 領域	19338371
06 v2	V2 領域	11360152
08_18_22_45 v2	V2 領域	758561
19 v2	V2 領域	656311
25 v2	V2 領域	613932
24 ∨2	V2 領域	543703
13 v2	V2 領域	501048
36 v2	V2 領域	495447
49 v2	V2 領域	487737
06_29_34 ∨3	V3 領域	36729451
28 v3	V3 領域	28871172
21 v3	V3 領域	13393371
23_30 v3	V3 領域	4976666
25 v3	V3 領域	475218
32 v3	V3 領域	343167
08 v3	V3 領域	287733
43 v3	V3 領域	222977
49 v3	V3 領域	213318
39 v3	V3 領域	177710

表 39 は、スタフィロコッカス・アウレウス (微生物 ID 35) の 16S rRNA の V1 ~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 39 の結果から、スタフィロコッカス・アウレウスは、プローブ 35 v1 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 35 v1、v2 プローブでは 35 v2、20 v2、v3 プローブでは 35 v3、16 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたスタフィロコッカス・アウレウスであると検出・同定することができる。

表 39

プローブ ID	領域	発光シグナル強度
35 v1	V1 領域	2697296
13 v1	V1 領域	474763
20 v1	V1 領域	454987
10 v1	V1 領域	428401
17 v1	V1 領域	426633
15 v1	V1 領域	413146
16_46 v1	V1 領域	405001
32 v1	V1 領域	404788
07 v1	V1 領域	401440
31 v1	V1 領域	399650
35 v2	V2 領域	7879871
20 v2	V2 領域	5687671
46 v2	V2 領域	387611
17 v2	V2 領域	381876
15 v2	V2 領域	381541
16 v2	V2 領域	378876
38_39 v2	V2 領域	326987
19 v2	V2 領域	329887
49 v2	V2 領域	318761
34 ∨2	V2 領域	309919
35 ∨3	V3 領域	19330782
16 v3	V3 領域	14291750
15 v3	V3 領域	5158030
17 v3	V3 領域	2649605
20 v3	V3 領域	2643488
46 v3	V3 領域	2466902
04 v3	V3 領域	519443
37 v3	V3 領域	457426
32 v3	V3 領域	445579
24 v3	V3 領域	419666

表 40 は、ナイセリア・メニンギチディス(微生物 ID 36)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 40 の結果から、ナイセリア・メニンギチディスは、 プローブ 36 v3 の単独使用により検出、同定できることが明らかである。 また、 v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 36 v1、11 v1、v2 プローブでは 36 v2、11 v2、v3 プローブでは 36 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたナイセリア・メニンギチディスであると検出・同定することができる。

表 40

プローブ ID	領域	発光シグナル強度
36 v1	V1 領域	32691113
11 v1	V1 領域	17218976
04 v1	V1 領域	4765111
50 v1	V1 領域	2786176
08 v1	V1 領域	1567121
09 v1	V1 領域	1387629
52 v1	V1 領域	1018762
53 v1	V1 領域	908761
54 v1	V1 領域	892145
56 v1	V1 領域	882165
36 v2	V2 領域	35287615
11 v2	V2 領域	18876111
07 v2	V2 領域	5876819
04 v2	V2 領域	4876112
40 v2	V2 領域	3087611
02 v2	V2 領域	2898798
24 v2	V2 領域	2787687
41_42 ∨2	V2 領域	2287657
08_18_22_45 v2	V2 領域	2098791
19 v2	V2 領域	2007611
36 v3	V3 領域	24445975
11 v3	V3 領域	1785303
49 v3	V3 領域	685013
38 v3	V3 領域	640621
53_54 v3	V3 領域	615719
04 v3	V3 領域	567466
48 v3	V3 領域	470694
33 v3	V3 領域	420137
28 v3	V3 領域	272902
52_55 v3	V3 領域	270469

表 41 は、カンピロバクター・フェタス(微生物 ID 37)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 41 の結果から、カンピロバクター・フェタスは、プローブ 37 v1、37 v2、37 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 37 v1、v2 プローブでは 37 v2、v3 プローブでは 37 v2 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたカンピロバクター・フェタスであると検出・同定することができる。

表 41

プローブ ID	領域	発光シグナル強度
37 v1	V1 領域	28176245
50 v1	V1 領域	6876182
09 v1	V1 領域	3876141
39 v1	V1 領域	3201876
38 v1	V1 領域	3016411
53 v1	V1 領域	2787635
55 v1	V1 領域	2516252
31 v1	V1 領域	2387613
27 v1	V1 領域	2298713
52 v1	V1 領域	2017824
37 ∨2	V2 領域	38923509
35 v2	V2 領域	352512
16 v2	V2 領域	341168
15 v2	V2 領域	333426
03 ∨2	V2 領域	330858
26 ∨2	V2 領域	326179
04 ∨2	V2 領域	317611
17 v2	V2 領域	308803
38_39 v2	V2 領域	307528
05 ∨2	V2 領域	306582
37 v3	V3 領域	32361007
05 ∨3	V3 領域	620284
33 v3	V3 領域	556400
32 v3	V3 領域	444124
45 √3	V3 領域	344770
13 v3	V3 領域	341006
11 v3	V3 領域	331067
48 v3	V3 領域	323257
17 v3	V3 領域	322958
35 v3	V3 領域	319217

表 42 は、エンテロコッカス・ガリナルム (微生物 ID 38) の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 42 の結果から、エンテロコッカス・ガリナルムは、プローブ 38 v1、38 v2、38 v3 の単独使用により同定はできなかったが、v1、v2、 v3 プローブの組合せで総合的に判断すると、v1 プローブでは 38 v1、39 v1、v2 プローブでは 38_39 v2、v3 プローブでは 38 v3、39 v3 が比較的強いシグナル強 度をもつため、各領域で高い強度が検出されたエンテロコッカス・ガリナルムも しくはエンテロコッカス・カセリフラバスの存在が検出可能であった。

表 42

プローブ ID	領域	発光シグナル強度
38 v1	V1 領域	6517750
39 v1	V1 領域	4901402
27 v1	V1 領域	789749
55 ∨1	V1 領域	676041
53 v1	V1 領域	672402
56 v1	V1 領域	668186
52 v1	V1 領域	665378
54 v1	V1 領域	628486
50 v1	V1 領域	586201
09 v1	V1 領域	540023
38_39 v2	V2 領域	4946381
27 v2	V2 領域	324809
46 v2	V2 領域	283923
04 v2	V2 領域	266692
07 v2	V2 領域	243399
26 v2	V2 領域	237094
36 v2	V2 領域	225802
35 v2	V2 領域	220052
24 v2	V2 領域	199337
16 v2	V2 領域	198654
38 ∨3	V3 領域	2487517
39 v3	V3 領域	1886944
27 v3	V3 領域	678538
31 v3	V3 領域	491787
28 v3	V3 領域	348711
06_29_34 v3	V3 領域	298851
32 v3	V3 領域	281756
37 ∨ 3	V3 領域	278761
26 v3	V3 領域	215761
23_30 v3	V3 領域	198725

表 43 は、エンテロコッカス・カセリフラバス(微生物 ID 39)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 43 の結果から、エンテロコッカス・カセリフラバスは、プローブ 39 v1、39 v2、39 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 39 v1、38 v1、v2 プローブでは 38_39 v2、v3 プローブでは 39 v3、38 v3、27 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエンテロコッカス・カセリフラバスもしくはエンテロコッカス・ガリナルムの存在が検出できる。

表 43

プローブ ID	領域	発光シグナル強度
39 v1	V1 領域	10173097
38 v1	V1 領域	9707541
27 v1	V1 領域	1919310
26 v1	V1 領域	1016063
52 v1	V1 領域	905910
53 v1	V1 領域	841171
56 v1	V1 領域	801008
55 v1	V1 領域	754869
54 v1	V1 領域	746869
09 v1	V1 領域	729929
38_39 v2	V2 領域	10097683
27 v2	V2 領域	308179
04 v2	V2 領域	288203
33 v2	V2 領域	253786
07 v2	V2 領域	243847
36 v2	V2 領域	232551
28 v2	V2 領域	225088
06 v2	V2 領域	222919
14 v2	V2 領域	222342
46 v2	V2 領域	221837
39 v3	V3 領域	7611583
38 v3	V3 領域	5728271
27 v3	V3 領域	2777612
31 v3	V3 領域	611879
28 v3	V3 領域	528693
44 v3	V3 領域	329722
32 v3	V3 領域	294821
23_30 ∨3	V3 領域	281214
37 v3	V3 領域	277122
21 v3	V3 領域	223212

表 44 は、エロモナス・ハイドロフィラ(微生物 ID 40)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 44 の結果から、エロモナス・ハイドロフィラは、プローブ 40 v1、40 v2、40 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 40 v1、v2 プローブでは 40 v2、v3 プローブでは 40 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエロモナス・ハイドロフィラであると検出・同定することができる。

表 44

プローブ ID	領域	発光シグナル強度
40 ∨1	V1 領域	8192676
14 v1	V1 領域	1257526
13 v1	V1 領域	1086045
32 v1	V1 領域	943819
02 v1	V1 領域	840592
22 v1	V1 領域	715704
10 v1	V1 領域	707947
07 v1	V1 領域	696602
50 v1	V1 領域	615060
36 v1	V1 領域	560709
40 v2	V2 領域	20473111
11 ∨2	V2 領域	5040956
04 ∨2	V2 領域	4658427
36 v2	V2 領域	3038991
10 v2	V2 領域	1562511
51 v2	V2 領域	1443971
41_42 v2	V2 領域	1240287
25 v2	V2 領域	1048912
07 v2	V2 領域	1011046
19 v2	V2 領域	921406
40 v3	V3 領域	17741881
53_54 v3	V3 領域	878575
22 v3	V3 領域	788368
08 v3	V3 領域	361891
19 v3	V3 領域	265936
25 v3	V3 領域	260828
18_41_42 v3	V3 領域	227853
46 v3	V3 領域	222916
07 v3	V3 領域	220238
05 v3	V3 領域	217679

表 45 は、サルモネラ・パラチフィA(微生物 ID 41)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 45 の結果から、サルモネラ・パラチフィAは、プローブ41 v1、41 v2、41 v3 の単独使用により同定はできなかったが、41 v1、41 v2、41 v3 の単独使用により同定はできなかったが、41 v1、41 v2、41 v3 の単独使用により同定はできなかったが、41 v1、41 v1、41 v2、41 v3 が比較的強いシブでは 41 v2、41 v2、41 v3 が比較的強いシブナル強度をもつため、各領域で高い強度が検出されたサルモネラ・パラチフィAもしくはサルモネラ・チフィの存在が検出可能であった。

表 45

プローブ ID	領域	発光シグナル強度
41 v1	V1 領域	11027871
42 v1	V1 領域	9997321
24 ∨1	V1 領域	4213278
01 v1	V1 領域	1698719
56 ∨1	V1 領域	1349871
39 v1	V1 領域	1321897
55 v1	V1 領域	1299873
52 v1	V1 領域	1288176
03 ∨1	V1 領域	1284125
53 v1	V1 領域	1187664
41_42 v2	V2 領域	14866236
08_18_22_45 v2	V2 領域	11103694
24 v2	V2 領域	7643623
19 v2	V2 領域	6381197
25 v2	V2 領域	4083972
11 v2	V2 領域	1708635
36 ∨2	V2 領域	1151729
40 ∨2	V2 領域	987650
13 v2	V2 領域	861170
07 v2	V2 領域	838110
18_41_42 v3	V3 領域	44477558
08 v3	V3 領域	3883445
2 5 ∨3	V3 領域	2592177
13 v3	V3 領域	2196040
05 v3	V3 領域	2070933
24 v3	V3 領域	1238550
45 v3	V3 領域	1144361
22 v3	V3 領域	1019021
19 v3	V3 領域	788897
10 v3	V3 領域	687740

表 46 は、サルモネラ・チフィ(微生物 ID 42)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 46 の結果から、サルモネラ・チフィは、プローブ 42 v1、42 v2、42 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 41 v1、42 v1、v2 プローブでは 41_42 v2、08_18_22_45 v2、v3 プローブでは 18_41_42 v3 が比較的強いシグナル強度をもっため、各領域で高い強度が検出されたサルモネラ・チフィもしくはサルモネラ・パラチフィAの存在が検出可能であった。

表 46

プローブ ID	領域	発光シグナル強度
41 v1	V1 領域	19765781
42 v1	V1 領域	18519837
26 v1	V1 領域	5918762
24 v1	V1 領域	4891983
05 v1	V1 領域	4151873
56 v1	V1 領域	3924512
55 v1	V1 領域	3518762
52 v1	V1 領域	3401191
53 v1	V1 領域	2998712
01 v1	V1 領域	2122987
41_42 v2	V2 領域	20917542
08_18_22_45 v2	V2 領域	16851388
24 v2	V2 領域	7913337
19 v2	V2 領域	5278967
25 v2	V2 領域	3466704
11 v2	V2 領域	2547883
36 v2	V2 領域	1767852
40 v2	V2 領域	1730755
02 v2	V2 領域	1500814
07 v2	V2 領域	1405621
18_41_42 v3	V3 領域	21554387
05 v3	V3 領域	4929756
08 v3	V3 領域	3710485
25 v3	V3 領域	3325205
13 v3	V3 領域	2317940
45 v3	V3 領域	1974662
24 v3	V3 領域	1796852
19 ∨3	V3 領域	1366178
22 v3	V3 領域	1361857
53_54 v3	V3 領域	1049738

表 47 は、ストレプトコッカス・エクイシミリス(微生物 ID 43)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブと ハイブリダイズさせた結果を示す。表 47 の結果から、ストレプトコッカス・エクイシミリスは、プローブ 43 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 43 v1、49 v1、44 v1、v2 プローブでは 43 v2、v3 プローブでは 43 v3、49 v3が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・エクイシミリスであると検出・同定することができる。

表 47

プローブ ID	領域	発光シグナル強度
43 v1	V1 領域	17876978
49 v1	V1 領域	10987138
44 v1	V1 領域	7918732
07 v1	V1 領域	617263
21_30 v1	V1 領域	601987
28 v1	V1 領域	578186
06 v1	V1 領域	558761
12 v1	V1 領域	497867
09 v1	V1 領域	481649
29 v1	V1 領域	463278
43 v2	V2 領域	16515111
44 v2	V2 領域	1114371
24 v2	V2 領域	552425
25 v2	V2 領域	528801
19 v2	V2 領域	496115
36 v2	V2 領域	434616
08_18_22_45 v2	V2 領域	432575
13 v2	V2 領域	432559
04 v2	V2 領域	416492
49 v2	V2 領域	407134
43 v3	V3 領域	43685987
49 v3	V3 領域	27404940
45 v3	V3 領域	1861661
12 v3	V3 領域	1662885
44 ∨3	V3 領域	1586160
32 v3	V3 領域	1171556
28 v3	V3 領域	433031
06_29_34 v3	V3 領域	290481
23_30 v3	V3 領域	286664
21 v3	V3 領域	272138

表 48 は、ストレプトコッカス・カニス(微生物 ID 44)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 48 の結果から、ストレプトコッカス・カニスは、プローブ 44 v1、44 v2、44 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 44 v1、v2 プローブでは 44 v2、v3 プローブでは 44 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・カニスであると検出・同定することができる。

表 48

プローブ ID	領域	発光シグナル強度
44 v1	V1 領域	35094631
43 v1	V1 領域	2427565
47 v1	V1 領域	1943075
49 v1	V1 領域	1355586
52 v1	V1 領域	1229788
28 ∨1	V1 領域	1151650
53 v1	V1 領域	1026335
21_30 v1	V1 領域	1010370
12 v1	V1 領域	993928
39 v1	V1 領域	985182
44 v2	V2 領域	23079672
25 v2	V2 領域	1627031
24 v2	V2 領域	1529748
19 v2	V2 領域	1427430
08_18_22_45 v2	V2 領域	1348247
13 v2	V2 領域	1306064
43 v2	V2 領域	1276319
36 v2	V2 領域	1220998
49 v2 ·	V2 領域	1088665
04 v2	V2 領域	1081821
44 v3	V3 領域	21280416
43 v3	V3 領域	3751773
49 v3	V3 領域	3344193
12 v3	V3 領域	2123092
32 v3	V3 領域	1237399
46 v3	V3 領域	1066998
28 v3	V3 領域	985713
21 v3	V3 領域	943735
06_29_34 v3	V3 領域	714979
39 ∨3	V3 領域	690467

表 49 は、クレブセラ・オキシトカ(微生物 1D 45)の 16S rRNA の $V1\sim V3$ 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 49 の結果から、クレブセラ・オキシトカは、プローブ 45 v1、45 v2、45 v3 の単独使用により同定はできなかったが、v1、v2、v3 プローブの組合せで総合的に判断すると、v1 プローブでは 18_45 v1、 19_25 v1、v2 プローブでは 41_42 v2、 $08_18_22_45$ v2、v3 プローブでは 45 v3、v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたクレブセラ・オキシトカであると検出・同定することができる。

表 49

プローブ ID	領域	発光シグナル強度
18_45 v1	V1 領域	2898674
19_25 v1	V1 領域	1208235
26 v1	V1 領域	755934
35 v1	V1 領域	721250
52 v1	V1 領域	717318
42 v1	V1 領域	660524
41 ∨1	V1 領域	634164
55 v1	V1 領域	613698
53 v1	V1 領域	601442
08 v1	V1 領域	593709
41_42 v2	V2 領域	8934930
08_18_22_45 v2	V2 領域	5101372
24 ∨2	V2 領域	2385253
19 v2	V2 領域	1623113
25 v2	V2 領域	1112476
11 v2	V2 領域	721183
40 v2	V2 領域	661800
51 v2	V2 領域	567220
36 v2	V2 領域	535714
10 v2	V2 領域	534958
45 v3	V3 領域	7431501
05 v3	V3 領域	4897697
18_41_42 v3	V3 領域	1598792
25 v3	V3 領域	1298790
08 v3	V3 領域	778610
13 v3	V3 領域	72987
19 v3	V3 領域	619873
15 v3	V3 領域	58876
31 v3	V3 領域	568712
26 v3	V3 領域	51279

表 50 は、スタフィロコッカス・サプロフィティカス (微生物 ID 46) の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 50 の結果から、スタフィロコッカス・サプロフィティカスは、プローブ 46 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 16_46 v1、17 v1、15 v1、v2 プローブでは 46 v2、v3 プローブでは 46 v3、15 v3、20 v3、16 v3、17 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたスタフィロコッカス・サプロフィティカスであると検出・同定することができる。

表 50

プローブ I D	領域	発光シグナル強度
16_46 v1	V1 領域	10277032
17 v1	V1 領域	9674540
15 v1	V1 領域	8769172
20 ∨1	V1 領域	3283426
07 v1	V1 領域	1892855
02 v1	V1 領域	1889753
22 v1	V1 領域	1546011
13 v1	V1 領域	1243847
50 ∨1	V1 領域	1070738
35 v1	V1 領域	1003672
46 v2	V2 領域	4786129
17 v2	V2 領域	1887621
35 v2	V2 領域	1717876
15 v2	V2 領域	886876
16 v2	V2 領域	478765
20 v2	V2 領域	437165
01 v2	V2 領域	258761
04 ∨2	V2 領域	231987
24 v2	V2 領域	228761
51 ∨2	V2 領域	217861
46 v3	V3 領域	6991183
15 v3	V3 領域	6554178
20 v3	V3 領域	5145896
16 v3	V3 領域	4530444
17 v3	V3 領域	4503253
35 ∨3	V3 領域	2942362
04 v3	V3 領域	456583
32 ∨3	V3 領域	366061
49 v3	V3 領域	334503
09 ∨3	V3 領域	281250

表 51 は、パスツレラ・ムルトシダ(微生物 ID 47)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 51 の結果から、パスツレラ・ムルトシダは、プローブ 47 v2、47 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3プローブの組合せで総合的に判断した場合でも、v1プローブでは 47 v1、01 v1、v2プローブでは 47 v2、v3プローブでは 47 v2、v3プローブでは 47 v2、v3プローブでは 47 v2、v3が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたパスツレラ・ムルトシダであると検出・同定することができる。

表 51

プローブ ID	領域	発光シグナル強度
47 v1	V1 領域	26718761
01 v1	V1 領域	18765112
03 v1	V1 領域	8876112
14 v1	V1 領域	6987991
24 v1	V1 領域	5989798
42 v1	V1 領域	5587619
41 v1	V1 領域	5287681
56 v1	V1 領域	3987911
50 v1	V1 領域	3387162
05 v1	V1 領域	2589761
47 v2	V2 領域	37586588
03 v2	V2 領域	4960568
24 v2	V2 領域	446406
01 v2	V2 領域	347257
19 v2	V2 領域	304368
48 v2	V2 領域	302776
07 v2	V2 領域	301324
25 v2	V2 領域	293772
08_18_22_45 v2	V2 領域	288850
41_42 v2	V2 領域	286261
47 v3	V3 領域	33921374
53_54 v3	V3 領域	1892549
14 v3	V3 領域	261579
01 v3	V3 領域	257277
04 v3	V3 領域	250816
23_30 v3	V3 領域	250456
28 v3	V3 領域	247470
11 v3	V3 領域	246482
21 v3	V3 領域	245279
49 v3	V3 領域	244577

表 52 は、エイケネラ・コロデンス(微生物 ID 48)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 52 の結果から、エイケネラ・コロデンスは、プローブ 48 v1、48 v2、48 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 48 v1、v2 プローブでは 48 v2、v3 プローブでは 48 v2、v3 プローブでは 48 v1、v2 プローブでは 48 v2、v3 プローブでは 48 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたエイケネラ・コロデンスであると検出・同定することができる。

表 52

プローブ ID	領域	発光シグナル強度
48 v1	V1 領域	13502759
56 v1	V1 領域	990652
53 v1	V1 領域	901384
55 v1	V1 領域	896907
54 v1	V1 領域	853309
51 v1	V1 領域	751093
52 v1	V1 領域	730236
50 v1	V1 領域	557710
36 v1	V1 領域	468439
40 v1	V1 領域	427702
48 v2	V2 領域	14921478
7 v2	V2 領域	1825342
40 v2	V2 領域	1026522
4 v2	V2 領域	732834
36 v2	V2 領域	514674
50 v2	V2 領域	389476
8_18_22_45 v2	V2 領域	360461
55 v2	V2 領域	357967
51 v2	V2 領域	356507
11 ∨2	V2 領域	353923
48 v3	V3 領域	10069025
53_54 v3	V3 領域	794485
50 v3	V3 領域	440359
51 v3	V3 領域	376628
47 v3	V3 領域	366841
52_55 v3	V3 領域	349558
40 v3	V3 領域	344429
2 v3	V3 領域	326945
56 v3	V3 領域	324890
36 √3	V3 領域	324201

表 53 は、ストレプトコッカス・ピオゲネス(微生物 ID 49)の 16S rRNA の V1 \sim V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 53 の結果から、ストレプトコッカス・ピオゲネスは、プローブ 49 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 49 v1、43 v1、v2 プローブでは 49 v2、v3 プローブでは 49 v3、43 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたストレプトコッカス・ピオゲネスであると検出・同定することができる。

表 53

プローブ ID	領域	発光シグナル強度
49 v1	V1 領域	9198798
43 ∨1	V1 領域	7387612
28 v1	V1 領域	987988
21_30 v1	V1 領域	787618
44 v1	V1 領域	678681
19_25 v1	V1 領域	571614
17 v1	V1 領域	571185
16_46 v1	V1 領域	479871
4 v1	V1 領域	408791
53 v1	V1 領域	387987
4 9 ∨2	V2 領域	14086816
7 v2	V2 領域	431324
25 ∨2	V2 領域	361329
4 v2	V2 領域	350067
19 v2	V2 領域	348217
24 v2	V2 領域	342690
41_42 v2	V2 領域	323245
36 v2	V2 領域	317579
34 v2	V2 領域	305133
8_18_22_45 v2	V2 領域	301791
49 v3	V3 領域	14313338
43 v3	V3 領域	14017125
12 v3	V3 領域	1716148
32 v3	V3 領域	551288
44 v3	V3 領域	525264
45 v3	V3 領域	464793
46 v3	V3 領域	359604
8 v3	V3 領域	358468
24 v3	V3 領域	355960
22 v3	V3 領域	339749

表 54 は、モラキセラ・カタラリス(微生物 ID 50)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 54 の結果から、モラキセラ・カタラリスは、プローブ 50 v1、50 v2、50 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せを総合的に判断した場合でも、v1 プローブでは 50 v1、v2 プローブでは 50 v2、v3 プローブでは 50 v2、v3 プローブでは 50 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたモラキセラ・カタラリスであると検出・同定することができる。

表 54

プローブ ID	領域	発光シグナル強度
50 v1	V1 領域	33692348
31 v1	V1 領域	2237951
07 v1	V1 領域	1491773
08 v1	V1 領域	1395166
01 v1	V1 領域	1184515
20 v1	V1 領域	1133034
09 v1	V1 領域	1067291
17 v1	V1 領域	935114
16_46 v1	V1 領域	911298
03 v1	V1 領域	907361
50 v2	V2 領域	8304820
04 v2	V2 領域	3299611
07 v2	V2 領域	893720
08_18_22_45 v2	V2 領域	827816
40 v2	V2 領域	788590
19 v2	V2 領域	758554
25 v2	V2 領域	743874
36 v2	V2 領域	654115
02 v2	V2 領域	591388
11 v2	V2 領域	589922
50 v3	V3 領域	5799671
31 v3	V3 領域	319034
18_41_42 v3	V3 領域	312670
24 v3	V3 領域	308527
25 v3	V3 領域	290458
05 v3	V3 領域	281378
45 v3	V3 領域	254033
19 v3	V3 領域	252532
07 v3	V3 領域	244682
20 v3	V3 領域	239298

表 55 は、レジオネラ・ニューモフィラ(微生物 ID 51)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブリダイズさせた結果を示す。表 55 の結果から、レジオネラ・ニューモフィラは、プローブ 51 v1、51 v2、51 v3 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 51 v1、v2 プローブでは 51 v2、v3 プローブでは 51 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたレジオネラ・ニューモフィラであると検出・同定することができる。

表 55

プローブ ID	領域	発光シグナル強度
51 v1	V1 領域	24876818
52 v1	V1 領域	5287611
55 v1	V1 領域	5119832
53 v1	V1 領域	3871811
54 v1	V1 領域	2876861
56 v1	V1 領域	1976817
09 ∨1	V1 領域	1387681
50 ∨1	V1 領域	1287681
48 v1	V1 領域	1198711
39 v1	V1 領域	1019871
51 v2	V2 領域	21387192
52 v2	V2 領域	8987614
55 v2	V2 領域	1989729
54 v2	V2 領域	1898798
53 v2	V2 領域	1598791
56 ∨2	V2 領域	1498791
40 ∨2	V2 領域	1467611
11 v2	V2 領域	1298711
10 ∨2	V2 領域	1119821
36 ∨2	V2 領域	987123
51 v3	V3 領域	14398704
52_55 v3	V3 領域	1319899
53_54 v3	V3 領域	491713
56 v3	V3 領域	448711
38 v3	V3 領域	418731
07 v3	V3 領域	389816
19 v3	V3 領域	387681
39 v3	V3 領域	379918
37 v3	V3 領域	368761
25 v3	V3 領域	351875

表 56 は、マイコバクテリウム・ツベルクロシス(微生物 ID 52)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブと ハイブリダイズさせた結果を示す。表 56 の結果から、マイコバクテリウム・ツベルクロシスは、プローブ 52 v2 の単独使用により検出、同定できることが明らかである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 52 v1、55 v1、v2 プローブでは 52 v2、v3 プローブでは 52_55 v3、53_54 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出された マイコバクテリウム・ツベルクロシスであると検出・同定することができる。

表 56

プローブ ID	領域	発光シグナル強度
52 v1	V1 領域	17196053
55 v1	V1 領域	10411849
53 v1	V1 領域	6047891
54 v1	V1 領域	3971764
71 v1	V1 領域	3827331
09 v1	V1 領域	1197595
50 ∨1	V1 領域	863188
48 v1	V1 領域	843273
39 v1	V1 領域	746841
38 v1	V1 領域	672658
52 v2	V2 領域	17398118
55 v2	V2 領域	3193388
54 v2	V2 領域	1821709
53 v2	V2 領域	1598909
56 v2	V2 領域	777591
40 v2	V2 領域	408032
51 v2	V2 領域	287459
11 v2	V2 領域	251307
10 v2	V2 領域	250094
36 v2	V2 領域	240315
52 55 v3	V3 領域	20381022
53_54 v3	V3 領域	11192775
56 v3	V3 領域	8461940
39 v3	V3 領域	220756
07 v3	V3 領域	157302
19 v3	V3 領域	150205
39 v3	V3 領域	148797
37 v3	V3 領域	148389
25 v3	V3 領域	142268
20 v3	V3 領域	140806

表 57 は、マイコバクテリウム・アビウム (微生物 ID 53) の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 57 の結果から、マイコバクテリウム・アビウムは、 プローブ 53 v2 の単独使用により検出、同定できることが明らかである。 また、 v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 53 v1、54 v1、v2 プローブでは 53 v2、v3 プローブでは 56 v3、53_54 v3、52_55 v3 が 比較的強いシグナル強度をもつため、各領域で高い強度が検出されたマイコバク テリウム・アビウムであると検出・同定することができる。

表 57

プローブ ID	領域	発光シグナル強度
53 v1	V1 領域	46987988
54 v1	V1 領域	36176731
52 v1	V1 領域	6876819
55 v1	V1 領域	6198763
56 v1	V1 領域	1879132
10 v1	V1 領域	1198723
13 v1	V1 領域	939714
38 v1	V1 領域	879813
05 v1	V1 領域	826813
27 v1	V1 領域	771568
53 v2	V2 領域	21270538
40 v2	V2 領域	2009083
10 v2	V2 領域	1205790
11 v2	V2 領域	963480
04 v2	V2 領域	697372
51 v2	V2 領域	694035
07 v2	V2 領域	654143
19 v2	V2 領域	604806
54 v2	V2 領域	583414
52 v2	V2 領域	566515
56 v3	V3 領域	9459717
53_54 v3	V3 領域	7329665
52_55 v3	V3 領域	5980193
20 v3	V3 領域	469364
17 v3	V3 領域	441098
25 v3	V3 領域	380680
07 v3	V3 領域	347194
46 v3	V3 領域	315047
15 v3	V3 領域	289176
10 v3	V3 領域	275267

表 58 は、マイコバクテリウム・イントラセルラレ(微生物 ID 54)の 16S rRNA の V1~V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブと ハイブリダイズさせた結果を示す。表 58 の結果から、マイコバクテリウム・イントラセルラレは、プローブ 54 v2 の単独使用により検出、同定できることが明ら かである。また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 54 v1、53 v1、v2 プローブでは 54 v2、v3 プローブでは 56 v3、53_54 v3 が比較的強いシグナル強度をもつため、各領域で高い強度が検出されたマイコ バクテリウム・イントラセルラレであると検出・同定することができる。

表 58

プローブ ID	領域	発光シグナル強度
54 v1	V1 領域	7189766
53 v1	V1 領域	4722876
52 v1	V1 領域	1118766
55 v1	V1 領域	1028713
56 v1	V1 領域	881676
22 v1	V1 領域	741657
38 v1	V1 領域	681913
10 v1	V1 領域	397984
39 v1	V1 領域	368282
26 v1	V1 領域	359116
54 v2	V2 領域	12115269
40 v2	V2 領域	554944
53 v2	V2 領域	552453
55 v2	V2 領域	517305
52 v2	V2 領域	386649
11 v2	V2 領域	381540
51 v2	V2 領域	336898
10 v2	V2 領域	324627
04 v2	V2 領域	258716
56 ∨2	V2 領域	257203
56 v3	V3 領域	12357477
53_54 v3	V3 領域	9349485
52_55 v3	V3 領域	7247924
51 v3	V3 領域	215854
46 v3	V3 領域	214074
17 v3	V3 領域	213057
15 v3	V3 領域	212109
35 v3	V3 領域	210126
19 v3	V3 領域	209265
45 ∨3	V3 領域	207525

表 59 は、マイコバクテリウム・カンサシ(微生物 ID 55)の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 59 の結果から、マイコバクテリウム・カンサシは、 プローブ 55 v2 の単独使用により検出、同定できることが明らかである。 また、 v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 55 v1、52 v1、v2 プローブでは 55 v2、v3 プローブでは 52_55 v3、56 v3 が比較的強い シグナル強度をもつため、各領域で高い強度が検出されたマイコバクテリウム・カンサシであると検出・同定することができる。

表 59

プローブ ID	領域	発光シグナル強度
55 v1	V1 領域	27987135
52 v1	V1 領域	18971812
53 v1	V1 領域	4786132
54 v1	V1 領域	3987133
56 v1	V1 領域	2187634
38 v1	V1 領域	1387681
39 v1	V1 領域	1287731
27 v1	V1 領域	1216765
26 v1	V1 領域	1098791
05 v1	V1 領域	798716
55 v2	V2 領域	44217188
52 v2	V2 領域	1171394
40 v2	V2 領域	1161661
54 v2	V2 領域	1123512
11 v2	V2 領域	942604
53 v2	V2 領域	872231
56 v2	V2 領域	826313
10 v2	V2 領域	695878
51 v2	V2 領域	689889
07 v2	V2 領域	663997
52_55 v3	V3 領域	39856910
56 v3	V3 領域	20350562
53_54 v3	V3 領域	16127395
18_41_42 v3	V3 領域	392542
08 v3	V3 領域	368803
20 v3	V3 領域	352527
07 v3	V3 領域	347768
17 v3	V3 領域	347648
45 v3	V3 領域	343925
19 v3	V3 領域	332638

表 60 は、マイコバクテリウム・ゴルドネ (微生物 ID 56) の 16S rRNA の V1~ V3 領域を含む配列を有するポリヌクレオチドをチップ上の各プローブとハイブ リダイズさせた結果を示す。表 60 の結果から、マイコバクテリウム・ゴルドネは、プローブ 56 v1、56 v2 の単独使用により検出、同定できることが明らかである。 また、v1、v2、v3 プローブの組合せで総合的に判断した場合でも、v1 プローブでは 56 v1、v2 プローブでは 56 v2、v3 プローブでは 56 v3、53_54 v3 が比較的強 いシグナル強度をもつため、各領域で高い強度が検出されたマイコバクテリウム・ゴルドネであると検出・同定することができる。

表 60

プロ ー ブ ID	領域	発光シグナル強度
56 v1	V1 領域	30688338
54 v1	V1 領域	2713077
53 v1	V1 領域	2497231
52 v1	V1 領域	2093852
55 v1	V1 領域	1112548
36 v1	V1 領域	788790
10 v1	V1 領域	725818
05 v1	V1 領域	542286
13 v1	V1 領域	538930
39 v1	V1 領域	533300
56 v2	V2 領域	7578904
52 v2	V2 領域	1892398
40 v2	V2 領域	1364607
51 v2	V2 領域	984604
11 v2	V2 領域	585449
10 v2	V2 領域	580267
55 v2	V2 領域	486057
02 ∨2	V2 領域	450110
41_42 ∨2	V2 領域	408259
54 v2	V2 領域	397348
56 v3	V3 領域	56594408
53_54 v 3	V3 領域	28772559
52_55 v3	V3 領域	11861849
12 v3	V3 領域	406138
20 v3	V3 領域	296776
07 v3	V3 領域	292847
44 v3	V3 領域	290502
11 v3	V3 領域	289832
17 v3	V3 領域	284805
50 v3	V3 領域	282254

「実施例3] 複数のプローブによるシグナル結果に基づく微生物の同定方法

上記表3に記載された微生物由来の v1、v2 及び v3 プローブは、いずれもその塩基配列と他の微生物由来の塩基配列とのミスマッチが3個以下であるため、他の微生物由来の塩基配列とクロスハイブリダイゼーションを起こしやすく、単独のプローブによって検出、同定することが困難であった。このため、上記表3に記載された微生物については、その検出シグナルの傾向からグループ分けを行い、それら微生物由来の v1、v2 及び v3 プローブを用いたハイブリダイゼーションの検出シグナルの結果を総合的に検討し、その微生物がいずれの属種であるかを同定した。

例えば、ストレプトコッカス・ニューモニエ(微生物 ID 06)、ストレプトコッカス・ミティス(微生物 ID 29)及びストレプトコッカス・オラリス(微生物 ID 34)は同属の菌であるため相同性が高く、互いの区別が困難であり、特にストレプトコッカス・ニューモニエおよびストレプトコッカス・ミティスは単独プローブによる区別が不可能であった。そこでこれらをグループAとしてまとめ、被検体がこれら3種のいずれかであると判定された場合、各々に対応する3種の v1~v3プローブを用いた更なる同定作業を行った。そして、ストレプトコッカス・ニューモニエ(微生物 ID 06)、ストレプトコッカス・ミティス(微生物 ID 29)及びストレプトコッカス・オラリス(微生物 ID 34)の3種類の微生物について、検出シグナルの結果を各微生物の各プローブについて表 61 のようにまとめた。

表 61

	ID 06	ID 29	ID 34
	微生物	微生物	微生物
06 ∨1プローブ	0	O(1)	×
06 ∨2プローブ	0	O(2)	×
06 ∨3プローブ	0	0	0
29 v1プローブ	O(1)	0	×
29 ∨2プローブ	O(2)	0	O(1)
29 v3プローブ	0	0	0
34 v1プローブ	×	×	0
34 v2プローブ	×	O(1)	0
34 ∨3プローブ	0	0	0

◎は微生物とプローブの間の塩基配列にミスマッチがなくシグナル強度が強いもの

〇は微生物とプローブの間の塩基配列に3個以下のミスマッチがありシグナル強度が強いもの、()内はミスマッチ数

×は微生物とプローブの間の塩基配列に4個以上のミスマッチがありシグナル強度が弱いもの

表 61 から明らかなように、グループAの各徴生物は各プローブに対して独自の検出シグナルパターンを有する。すなわち、ストレプトコッカス・ニューモニエ (微生物 ID 06) は、34 v1 及び v2 プローブのシグナル強度が弱く、他の 06 v1 ~v3 プローブ、29 v1~v3 プローブ、34 v3 プローブではシグナル強度が強いので、これらのスポットにおける発色の程度を総合的に判断することによって、被検体がストレプトコッカス・ニューモニエ (微生物 ID 06) であるか否かを同定することができた。また、同様に、ストレプトコッカス・ミティス (微生物 ID 29)及びストレプトコッカス・オラリス (微生物 ID 34) についても、06 v1~v3、29 v1~v3、34 v1~v3 のプローブに対して特有のシグナル強度呈示パターンを有するので、これらのプローブのスポットにおける発色の程度を総合的に判断することによって、被検体がストレプトコッカス・ミティス (微生物 ID 29) あるいはストレプトコッカス・オラリス (微生物 ID 34)、ストレプトコッカス・ニューモニエ (微生物 ID 06) であるか否かを同定することができた。

同様に、スタフィロコッカス・ホミニス(微生物 ID 15)、スタフィロコッカス・ワルネリ(微生物 ID 16)、スタフィロコッカス・ヘモリティカス(微生物 ID 17)、スタフィロコッカス・エピデルミディス(微生物 ID 20)、スタフィロコッカス・アウレウス(微生物 ID 35)、スタフィロコッカス・サプロフィティカス(微生物 ID 46)は同属であるために 16S rRNA 遺伝子配列の類似性が高く、互いの区別が困難であり、特に、スタフィロコッカス・ホミニス、ストレプトコッカス・ワルネリ、スタフィロコッカス・ヘモリティカス、スタフィロコッカス・エピデルミディスは、単独プローブによる区別が不可能であった。そのため、これら微生物をグループBとして、各微生物の各プローブに対する独自の検出シグナルパターンを検討した。その結果を表 62 に示す。その結果、各微生物の有する独自の検出シグナルパターンに基づいて、微生物を同定することができることがわかった。

表 62

	ID 15	ID 16	ID 17	ID 20	ID 35	ID 46
	微生物	微生物	微生物	微生物	微生物	微生物
15 v1プローブ	0	O(2)	O(1)	O(1)	×	O(2)
15 ∨2プローブ	0	×	O(1)	×	×	×
15 ∨3プローブ	0	O(3)	O(2)	O(2)	O(3)	O(1)
16 ∨1プローブ	O(2)	0	O(1)	O(3)	×	O
16 v2プローブ	×	0	×	O(3)	×	×
16 v3プローブ	O(3)	0	×	O(3)	O(2)	×
17 v1プローブ	O(1)	O(1)	0	O(2)	×	O(1)
17 v2プローブ	O(1)	×	0	×	×	×
17 v3プローブ	O(2)	×	0	O(2)	×	O(3)
20 v1プローブ	O(1)	O(3)	×	0	×	O(3)
20 v2プローブ	×	O(3)	×	0	×	×
20 ∨3プローブ	O(2)	O(3)	O(2)	0	O(3)	O(3)
35 v1プローブ	×	×	×	×	0	×
46 v1プローブ	O(2)	0	O(1)	O(3)	×	0
46 ∨2プローブ	×	×	×	×	×	0
46 v3プローブ	O(1)	×	O(3)	O(3)	×	0

◎は微生物とプローブの間の塩基配列にミスマッチがなくシグナル強度が強いもの

〇は微生物とプローブの間の塩基配列に3個以下のミスマッチがありシグナル強度が強いもの、()内はミスマッチ数

×は微生物とプローブの間の塩基配列に4個以上のミスマッチがありシグナル強度が弱いもの

同様に、シトロバクター・フレンディ(微生物 ID 08)、エンテロバクター・クロアカ(微生物 ID 18)、エンテロバクター・アエロゲネス(微生物 ID 19)、セラチア・マルセッセンス(微生物 ID 22)、エシェリシア・コリ(微生物 ID 24)、クレブセラ・ニューモニエ(微生物 ID 25)、サルモネラ・パラチフィA(微生物 ID 41)、サルモネラ・チフィ(微生物 ID 42)、クレブセラ・オキシトカ(微生物 ID 45)は 16S rRNA 遺伝子配列の類似性が高く、互いの区別が困難であり、特にエンテロバクター・クロアカ、クレブセラ・ニューモニエ、サルモネラ・パラチフィA、サルモネラ・チフィ、クレブセラ・オキシトカは単独ブローブによる区別が不可能であった。そのため、これら微生物をグループCとして、各微生物の各プローブに対する独自の検出シグナルパターンを検討した。その結果を表 63 に示す。その結果、各微生物の有する独自の検出シグナルパターンに基づいて、微生物を同定することができることがわかった。ただし、このうち、サルモネラ・パラチフィA、サルモネラ・チフィの場合はいずれかの微生物が存在することを検出可能であった。

表 63

	ID 18	ID 25	ID 41	ID 42			ID 22		ID 24
-	微生物	微生物	微生物	微生物	微生物	微生物	微生物	微生物	微生物
18 v1プローブ	0	O(2)	×	×	0	O(3)	×	O(2)	×
18 ∨2プローブ	0	O(2)	O(1)	O(1)	0	0	0	O(1)	O(1)
18 ∨3プローブ	0	×	0	0	×	×	×	×	×
25 v1プローブ	O(2)	0	×	×	O(2)	×	×	0	×
25 v2プローブ	O(2)	0	O(3)	O(3)	O(2)	O(2)	O(2)	O(1)	O(3)
25 v3プローブ	×	0	×	×	O(3)	×	×	×	×
41 v1プローブ	×	×	0	O(1)	×	×	×	×	O(1)
41 v2プローブ	O(1)	O(3)	0	0	O(1)	O(1)	O(1)	O(2)	O(2)
│ 41 v3プローブ	0	×	0	0	×	×	×	×	X
42 v1プローブ	×	×	O(1)	0	×	×	×	×	O(2)
42 v2プローブ	O(1)	O(3)	O	0	O(1)	O(1)	O(1)	O(2)	O(2)
42 v3プローブ	0	×	0	0	×	×	×	X	×
45 v1プローブ	0	O(2)	×	×	0	O(3)	×	O(2)	×
45 ∨2プローブ	0	O(2)	O(1)	O(1)	0	0	0	O(1)	O(1)
45 ∨3プローブ	×	O(3)	×	×	0	×	×	×	×
08 v1プローブ	O(3)	×	×	×	O(3)	0	×	×	X
08 ∨2プローブ	0	O(2)	O(1)	O(1)	0	0	0	O(1)	O(1)
08 v3プローブ	×	×	×	×	×	0	×	×	×
22 ∨1プローブ	×	×	×	×	×	×	0	×	×
】22 v2プローブ	0	O(2)	O(1)	O(1)	0	O	0	O(1)	O(1)
22 v3プローブ	×	×	×	×	×	×	0	×	×
19 ∨1プローブ	O(2)	0	×	×	O(2)	×	X	0	X (0)
19 v2プローブ	O(1)	O(1)	O(2)	O(2)	O(1)	O(1)	O(1)	0	O(2)
19 v3プローブ	<u> </u>	×	X	×	×	×	×	0	×
24 v1プローブ	×	×	O(1)	O(2)	×	×	X	X	0
24 ∨2プローブ	O(1)	O(3)	O(2)	O(2)	O(1)	O(1)	O(1)	O(2)	0
24 v3プローブ	×	×	×	X	×	<u> </u>	<u> × </u>	×	0

◎は微生物とプローブの間の塩基配列にミスマッチがなくシグナル強度が強いもの

〇は微生物とプローブの間の塩基配列に3個以下のミスマッチがありシグナル強度が強いもの、()内はミスマッチ数

×は微生物とプローブの間の塩基配列に4個以上のミスマッチがありシグナル強度が弱いもの

同様に、エンテロコッカス・フェシウム(微生物 ID 27)、ストレプトコッカス・サングイス(微生物 ID 28)、エンテロコッカス・ガリナルム(微生物 ID 38)、エンテロコッカス・カセリフラバス(微生物 ID 39)は 16S rRNA 遺伝子配列の類似性が高く、互いの区別が困難であり、特に、エンテロコッカス・ガリナルム、エンテロコッカス・カセリフラバスは区別が不可能であった。そのため、これら微生物をグループDとして、各微生物の各プローブに対する独自の検出シグナルパターンを検討した。その結果を表 64 に示す。その結果、各微生物の有する独自の検出シグナルパターンに基づいて、微生物を同定することができることがわかった。ただし、このうち、エンテロコッカス・ガリナルム、エンテロコッカス・カセリフラバスの場合はいずれかの微生物であることが検出可能であった。

表 64

			T	
	ID 38	ID 39	ID 27	ID 28
	微生物	微生物	微生物	微生物
38 v1プローブ	0	O(1)	×	×
38 ∨2プローブ	0	0	×	×
38 v3プローブ	0	O(2)	O(3)	×
39 ∨1プローブ	O(1)	0	×	×
39 v2プローブ	0	0	×	×
39 ∨3プローブ	O(2)	0	O(2)	×
27 v1プローブ	×	×	0	×
27 v2プローブ	×	×	0	×
27 v3プローブ	O(3)	O(2)	0	×
28 v1プローブ	×	×	×	0
28 ∨2プローブ	×	×	×	0
28 ∨3プローブ	×	×	×	0

◎は微生物とプローブの間の塩基配列にミスマッチがなくシグナル強度が強いもの

〇は微生物とプローブの間の塩基配列に3個以下のミスマッチがありシグナル強度が強いもの、()内はミスマッチ数

×は微生物とプローブの間の塩基配列に4個以上のミスマッチがありシグナル強度が弱いもの

同様に、ストレプトコッカス・コンステラータス(微生物 ID 21)、ストレプトコッカス・アンギノサス(微生物 ID 23)、ストレプトコッカス・インターメディウス(微生物 ID 30)は同属であり、16S rRNA遺伝子配列の類似性が高く、互いの区別が困難であり、特にストレプトコッカス・インターメディウスは単独プローブによる区別が不可能であった。そのため、これら微生物をグループEとして、各微生物の各プローブに対する独自の検出シグナルパターンを検討した。その結果を表 65 に示す。その結果、各微生物の有する独自の検出シグナルパターンに基づいて、微生物を同定することができることがわかった。

表 65

	ID 30	ID 21	ID 23
	微生物	微生物	微生物
30 v1プローブ	0	0	×
30 ∨2プローブ	0	0	×
30 ∨3プローブ	0	×	0
21 v1プローブ	0	0	×
21 v2プローブ	0	0	×
21 ∨3プローブ	×	0	×
23 v1プローブ	×	×	0
23 ∨2プローブ	×	×	0
23 v3プローブ	0	×	

◎は微生物とプローブの間の塩基配列にミスマッチがなくシグナル強度が強いもの

〇は徽生物とプローブの間の塩基配列に3個以下のミスマッチがありシグナル強度が強いもの、()内はミスマッチ数

×は微生物とプローブの間の塩基配列に4個以上のミスマッチがありシグナル強度が弱いもの

以上のように、本発明のプローブを用いることによって表1に示す微生物を検 出及び/又は同定することが可能となった。また、その検出シグナルパターンが 明らかになったので、その検出シグナルパターンをコンピュータ等の記憶分析媒 体に予め登録させることによって、被検体の微生物を迅速に確実に検出、同定す ることができる。

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

産業上の利用可能性

本発明の微生物の 16S rRNA 塩基配列のうち、特に特異性が高い V1、V2 及び V3 領域の塩基配列から設計したプローブを用い、被検体である微生物から抽出した核酸を鋳型として PCR 法によって増幅を行い、得られた増幅産物を解析することにより、医療及び食品等の分野において有害な細菌を特異的にかつ迅速に検出、同定することができる。

請求の範囲

アクチノバチルス・アクチノマイセテムコミタンス (Actinobacillus actinomycetemcomitans)、アシネトバクター・カルコアセチカス (Acinetobacter calcoaceticus)、ヘモフィルス・インフルエンザ (Haemophilus influenzae)、ス テノトロフォモナス・マルトフィリア (Stenotrophomonas maltophilia)、プロテ ウス・ミラビリス (Proteus mirabilis)、ストレプトコッカス・ニューモニエ (Streptococcus pneumoniae)、シュードモナス・エルギノサ (Pseudomonas aeruginosa)、シトロバクター・フレンディ (Citrobacter freundii)、ベイヨネ ラ・パルブーラ (Veillonella parvula)、プロビデンシア・スチュアーティ (Providencia stuartii)、ナイセリア・ゴノローエ (Neisseria gonorrhoeae)、 ストレプトコッカス・アガラクチエ (Streptococcus agalactiae)、モルガネラ・ モルガニ (Morganella morganii)、バクテロイデス・フラジリス (Bacteroides fragilis)、スタフィロコッカス・ホミニス (Staphylococcus hominis)、スタフ ィロコッカス・ワルネリ (Staphylococcus warneri)、スタフィロコッカス・ヘモ リティカス (Staphylococcus haemolyticus)、エンテロバクター・クロアカ (Enterobacter cloacae)、エンテロバクター・アエロゲネス (Enterobacter aerogenes)、スタフィロコッカス・エピデルミディス(Staphylococcus epidermidis)、ストレプトコッカス・コンステラータス (Streptococcus constellatus)、セラチア・マルセッセンス (Serratia marcescens)、ストレプト コッカス・アンギノサス (Streptococcus anginosus)、エシェリシア・コリ (Escherichia coli)、クレブセラ・ニューモニエ (Klebsiella pneumoniae)、エ ンテロコッカス・フェカリス (Enterococcus faecalis)、エンテロコッカス・フ ェシウム (Enterococcus faecium)、ストレプトコッカス・サングイス (Streptococcus sanguis)、ストレプトコッカス・ミティス(Streptococcus mitis)、 ストレプトコッカス・インターメディウス (Streptococcus intermedius)、リス テリア・モノサイトゲネス (Listeria monocytogenes)、クロストリジウム・パー フリンゲンス (Clostridium perfringens)、コリネバクテリウム・アクアチウム (Corynebacterium aquatium)、ストレプトコッカス・オラリス (Streptococcus

oralis)、スタフィロコッカス・アウレウス (Staphylococcus aureus)、ナイセリア・メニンギチディス (Neisseria meningitidis

)、カンピロバクター・フェタス (Campylobacter fetus)、エンテロコッカス・ガ リナルム (Enterococcus gallinarum)、エンテロコッカス・カセリフラバス (Enterococcus casseliflavus)、エロモナス・ハイドロフィラ (Aeromonas hydrophila)、サルモネラ・パラチフィA (Salmonella paratyphi A)、サルモネ ラ・チフィ (Salmonella typhi)、ストレプトコッカス・エクイシミリス (Streptococcus equisimilis)、ストレプトコッカス・カニス (Streptococcus canis)、クレブセラ・オキシトカ (Klebsiella oxytoca)、スタフィロコッカス・ サプロフィティカス (Staphylococcus saprophyticus)、パスツレラ・ムルトシダ (Pasteurella multocida)、エイケネラ・コロデンス (Eikenella corrodens)、 ストレプトコッカス・ピオゲネス (Streptococcus pyogenes)、モラキセラ・カタ ラリス (Moraxella catarrhalis)、レジオネラ・ニューモフィラ (Legionella pneumophila)、マイコバクテリウム・ツベルクロシス (Mycobacterium tuberculosis)、マイコバクテリウム・アビウム (Mycobacterium avium)、マイコ バクテリウム・イントラセルラレ (Mycobacterium intracellulare)、マイコバク テリウム・カンサシ (Mycobacterium kansasii)、マイコバクテリウム・ゴルドネ (Mycobacterium gordonae) から選択される1又は複数の微生物を検出及び/又 は同定するためのプローブであって、検出及び/又は同定すべき微生物の 16S rRNA の V1、V2 及び/又は V3 領域内の 20~100bp の各塩基配列又はその相補配列 からなるプローブ。

- 2. 配列番号 $1\sim152$ で示される塩基配列またはその相補配列から選ばれる、 請求項 1 に記載のプローブ。
- 3. 配列番号1、2又は3に示される塩基配列、又はその相補配列を含む、アクチノバチルス・アクチノマイセテムコミタンスを検出及び/又は同定するためのプローブ。
- 4. 配列番号4、5又は6に示される塩基配列、又はその相補配列を含む、アシネトバクター・カルコアセチカスを検出及び/又は同定するためのプローブ。
 - 5. 配列番号7、8又は9に示される塩基配列、又はその相補配列を含む、

ヘモフィルス・インフルエンザを検出及び/又は同定するためのプローブ。

- 6. 配列番号 10、11 又は 12 に示される塩基配列、又はその相補配列を含む、ステノトロフォモナス・マルトフィリアを検出及び/又は同定するためのプローブ。
- 7. 配列番号 13、14 又は 15 に示される塩基配列、又はその相補配列を含む、プロテウス・ミラビリスを検出及び/又は同定するためのプローブ。
- 8. 配列番号 16、17 又 18 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・ニューモニエを検出及び/又は同定するためのプローブ。
- 9. 配列番号 19、20 又は 21 に示される塩基配列、又はその相補配列を含む、シュードモナス・エルギノサを検出及び/又は同定するためのプローブ。
- 10. 配列番号 22、23 又は 24 に示される塩基配列、又はその相補配列を含む、シトロバクター・フレンディを検出及び/又は同定するためのプローブ。
- 11. 配列番号 25、26 又は 27 に示される塩基配列、又はその相補配列を含む、ベイヨネラ・パルブーラを検出及び/又は同定するためのプローブ。
- 12. 配列番号 28、29 又は 30 に示される塩基配列、又はその相補配列を含む、プロビデンシア・スチュアーティを検出及び/又は同定するためのプローブ。
- 13. 配列番号 31、32 又は 33 に示される塩基配列、又はその相補配列を含む、ナイセリア・ゴノローエを検出及び/又は同定するためのプローブ。
- 14. 配列番号 34、35 又は 36 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・アガラクチエを検出及び/又は同定するためのプローブ。
- 15. 配列番号 37、38 又は 39 に示される塩基配列、又はその相補配列を含む、モルガネラ・モルガニを検出及び/又は同定するためのプローブ。
- 16. 配列番号 40、41 又は 42 に示される塩基配列、又はその相補配列を含む、バクテロイデス・フラジリスを検出及び/又は同定するためのプローブ。
- 17. 配列番号 43、44 又は 45 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ホミニスを検出及び/又は同定するためのプローブ。
- 18. 配列番号 46、47 又は 48 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ワルネリを検出及び/又は同定するためのプローブ。

19. 配列番号 49、50 又は 51 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・ヘモリティカスを検出及び/又は同定するためのプローブ。

- 20. 配列番号 52、23 又は 53 に示される塩基配列、又はその相補配列を含む、エンテロバクター・クロアカを検出及び/又は同定するためのプローブ。
- 21. 配列番号 54、55 又は 56 に示される塩基配列、又はその相補配列を含む、エンテロバクター・アエロゲネスを検出及び/又は同定するためのプローブ。
- 22. 配列番号 57、58 又は 59 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・エピデルミディスを検出及び/又は同定するためのプローブ。
- 23. 配列番号 60、61 又は 62 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・コンステラータスを検出及び/又は同定するためのプローブ。
- 24. 配列番号 63、23 又は 64 に示される塩基配列、又はその相補配列を含む、セラチア・マルセッセンスを検出及び/又は同定するためのプローブ。
- 25. 配列番号 65、66 又は 67 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・アンギノサスを検出及び/又は同定するためのプローブ。
- 26. 配列番号 68、69 又は 70 に示される塩基配列、又はその相補配列を含 また、エシェリシア・コリを検出及び/又は同定するためのプローブ。
- 27. 配列番号 54、71 又は72 に示される塩基配列、又はその相補配列を含む、クレブセラ・ニューモニエを検出及び/又は同定するためのプローブ。
- 28. 配列番号 73、74 又は 75 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・フェカリスを検出及び/又は同定するためのプローブ。
- 29. 配列番号 76、77 又は 78 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・フェシウムを検出及び/又は同定するためのプローブ。
- 30. 配列番号 79、80 又は81 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・サングイスを検出及び/又は同定するためのプローブ。
 - 31. 配列番号82、83又は18に示される塩基配列、又はその相補配列を含

む、ストレプトコッカス・ミティスを検出及び/又は同定するためのプローブ。

- 32. 配列番号 60、84 又は 67 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・インターメディウスを検出及び/又は同定するためのプローブ。
- 33. 配列番号 85、86 又は 87 に示される塩基配列、又はその相補配列を含む、リステリア・モノサイトゲネスを検出及び/又は同定するためのプローブ。
- 34. 配列番号 88、89 又は 90 に示される塩基配列、又はその相補配列を含む、クロストリジウム・パーフリンゲンスを検出及び/又は同定するためのプローブ。
- 35. 配列番号 91、92 又は 93 に示される塩基配列、又はその相補配列を含む、コリネバクテリウム・アクアチウムを検出及び/又は同定するためのプローブ。
- 36. 配列番号 94、95 又は 18 に示される塩基配列、又はその相補配列を含 te、ストレプトコッカス・オラリスを検出及び/又は同定するためのプローブ。
- 37. 配列番号 96、97 又は 98 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・アウレウスを検出及び/又は同定するためのプローブ。
- 38. 配列番号 99、100 又は 101 に示される塩基配列、又はその相補配列を含む、ナイセリア・メニンギチディスを検出及び/又は同定するためのプローブ。
- 39. 配列番号 102、103 又は 104 に示される塩基配列、又はその相補配列を含む、カンピロバクター・フェタスを検出及び/又は同定するためのプローブ。
- 40. 配列番号 105、106 又は 107 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・ガリナルムを検出及び/又は同定するためのプローブ。
- 41. 配列番号 108、106 又は 109 に示される塩基配列、又はその相補配列を含む、エンテロコッカス・カセリフラバスを検出及び/又は同定するためのプローブ。
- 42 配列番号 110、111 又は 112 に示される塩基配列、又はその相補配列を含む、エロモナス・ハイドロフィラを検出及び/又は同定するためのプローブ。
- 43. 配列番号 113、114 又は 53 に示される塩基配列、又はその相補配列を含む、サルモネラ・パラチフィAを検出及び/又は同定するためのプローブ。

44. 配列番号 115、114 又は 53 に示される塩基配列、又はその相補配列を含む、サルモネラ・チフィを検出及び/又は同定するためのプローブ。

- 45. 配列番号 116、117 又は 118 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・エクイシミリスを検出及び/又は同定するためのプローブ。
- 46. 配列番号 119、120 又は 121 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・カニスを検出及び/又は同定するためのプローブ。
- 47. 配列番号 52、23 又は 122 に示される塩基配列、又はその相補配列を含む、クレブセラ・オキシトカを検出及び/又は同定するためのプローブ。
- 48. 配列番号 46、123 又は 124 に示される塩基配列、又はその相補配列を含む、スタフィロコッカス・サプロフィティカスを検出及び/又は同定するためのプローブ。
- 49. 配列番号 125、126 又は 127 に示される塩基配列、又はその相補配列を含む、パスツレラ・ムルトシダを検出及び/又は同定するためのプローブ。
- 50. 配列番号 128、129 又は 130 に示される塩基配列、又はその相補配列を含む、エイケネラ・コロデンスを検出及び/又は同定するためのプローブ。
- 51. 配列番号 131、132 又は 133 に示される塩基配列、又はその相補配列を含む、ストレプトコッカス・ピオゲネスを検出及び/又は同定するためのプローブ。
- 52. 配列番号 134、135 又は 136 に示される塩基配列、又はその相補配列を含む、モラキセラ・カタラリスを検出及び/又は同定するためのプローブ。
- 53. 配列番号 137、138 又は 139 に示される塩基配列、又はその相補配列を含む、レジオネラ・ニューモフィラを検出及び/又は同定するためのプローブ。
- 54. 配列番号 140、141 又は 142 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・ツベルクロシスを検出及び/又は同定するためのプローブ。
- 55. 配列番号 143、144 又は 145 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・アビウムを検出及び/又は同定するためのプローブ。
 - 56. 配列番号 146、147 又は 145 に示される塩基配列、又はその相補配列を

含む、マイコバクテリウム・イントラセルラレを検出及び/又は同定するための プローブ。

- 57. 配列番号 148、149 又は 145 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・カンサシを検出及び/又は同定するためのプローブ。
- 58. 配列番号 150、151 又は 152 に示される塩基配列、又はその相補配列を含む、マイコバクテリウム・ゴルドネを検出及び/又は同定するためのプローブ。
- 59. 複数の微生物の 16S rRNA の塩基配列における相同性検索によって、それぞれの微生物における V1、V2、V3 領域を特定し、該 V1、V2、V3 領域の塩基配列において 2 種以上の微生物間で比較してミスマッチ部位を決定し、該ミスマッチ部位を含み、かつ塩基長が $20\sim100$ 的の領域を決定することを含む、プローブの設計方法。
- 請求項1又は2に記載のプローブの1種以上を用いることを特徴とす 60. る、アクチノバチルス・アクチノマイセテムコミタンス、アシネトバクター・カ ルコアセチカス、ヘモフィルス・インフルエンザ、ステノトロフォモナス・マル トフィリア、プロテウス・ミラビリス、ストレプトコッカス・ニューモニエ、シ ュードモナス・エルギノサ、シトロバクター・フレンディ、ベイヨネラ・パルブ ーラ、プロビデンシア・スチュアーティ、ナイセリア・ゴノローエ、ストレプト コッカス・アガラクチエ、モルガネラ・モルガニ、バクテロイデス・フラジリス、 スタフィロコッカス・ホミニス、スタフィロコッカス・ワルネリ、スタフィロコ ッカス・ヘモリティカス、エンテロバクター・クロアカ、エンテロバクター・ア エロゲネス、スタフィロコッカス・エピデルミディス、ストレプトコッカス・コ ンステラータス、セラチア・マルセッセンス、ストレプトコッカス・アンギノサ ス、エシェリシア・コリ、クレブセラ・ニューモニエ、エンテロコッカス・フェ カリス、エンテロコッカス・フェシウム、ストレプトコッカス・サングイス、ス トレプトコッカス・ミティス、ストレプトコッカス・インターメディウス、リス テリア・モノサイトゲネス、クロストリジウム・パーフリンゲンス、コリネバク テリウム・アクアチウム、ストレプトコッカス・オラリス、スタフィロコッカス・ アウレウス、ナイセリア・メニンギチディス、カンピロバクター・フェタス、エ ンテロコッカス・ガリナルム、エンテロコッカス・カセリフラバス、エロモナス・

ハイドロフィラ、サルモネラ・パラチフィA、サルモネラ・チフィ、ストレプトコッカス・エクイシミリス、ストレプトコッカス・カニス、クレブセラ・オキシトカ、スタフィロコッカス・サプロフィティカス、パスツレラ・ムルトシダ、エイケネラ・コロデンス、ストレプトコッカス・ピオゲネス、モラキセラ・カタラリス、レジオネラ・ニューモフィラ、マイコバクテリウム・ツベルクロシス、マイコバクテリウム・アビウム、マイコバクテリウム・イントラセルラレ、マイコバクテリウム・カンサシ、マイコバクテリウム・ゴルドネから選択される1又は複数の微生物の検出及び/又は同定方法。

- 61. 微生物由来の塩基配列とプローブの塩基配列間でミスマッチが4個以上ある場合にハイブリダイズしないストリンジェンシー条件を用いて両配列をハイブリダイズさせることを含む、請求項60に記載の方法。
- 62. 同定すべき微生物の16S rRNAのV1、V2及びV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブの塩基配列とのミスマッチが3個以下である塩基配列を有する2種以上の微生物を検出し、該2種以上の微生物と異なる微生物のV1、V2及びV3領域内の20~100bpの塩基配列又はその相補配列からなるプローブの1種以上を用い、該2種以上の微生物のうち1種の微生物をさらに同定することを含む、請求項60又は61に記載の方法。
- 63. 以下の工程:(a)同定すべき微生物から核酸を調製する工程、(b)該核酸を請求項1又は2に記載のプローブとハイブリダイズさせる工程、(c) 工程(b)におけるハイブリダイズの有無を検出し、各プローブに対するその検出シグナルパターンを特定する工程、(d)工程(c)において得られた検出シグナルパターンと、予め特定しておいた微生物の検出シグナルパターンとを比較して同定すべき微生物の種類を特定する工程、からなる請求項60又は61に記載の方法。
- 64. 配列番号 153 及び 154 で示されるプライマーを用いて標的配列を含む ヌクレオチドを増幅した後にプローブとハイブリダイズさせる、請求項 60~6 3のいずれか 1 項に記載の方法。
- 65. 標的配列を含むヌクレオチドの増幅の際に、蛍光物質を用いて標識を 行う、請求項60~64のいずれか1項に記載の方法。
 - 66. DNA チップ上で検出する、請求項60~65のいずれか1項に記載の

方法。

図1

SEQUENCE LISTING

<110> A probe for identifying a microorganism and a method for identifying a microorganism using the same

<120> Hitachi Software Engineering Co., Ltd.

Mitsubishi Kagaku Bio-Clinical Laboratories, Inc.

<130> PH-1819-PCT

<150> JP 2002-174564

<151> 2002-06-14

<160> 154

<170> PatentIn Ver. 2.1

<210> 1

<211> 50

<212> DNA

<213> Actinobacillus actinomycetemcomitans

<400> 1

ggacggtagc aggagaaagc ttgctttctt gctgacgagt ggcggacggg

50

<210> 2

<211> 50

<212> DNA

<213> Actinobacillus actinomycetemcomitans

<400> 2	
gctaataccg cgtagggtcg ggagacgaaa gtgcgggact ttatggccgc	50
<210> 3	
<211> 50	
<212> DNA	
<213> Actinobacillus actinomycetemcomitans	
<400> 3	
ggtattgagg aaggttggtg tgttaatagc atgccaaatt gacgttaaat	50
<210> 4	
<211> 50°	
<212> DNA	
<213> Acinetobacter calcoaceticus	
<400> 4	
aagtcgagcg gagtgatggt gcttgcacta tcacttagcg gcggacgggt	50
<210> 5	
<211> 50	
<212> DNA	
<213> Acinetobacter calcoaceticus	
<400> 5	
ggagaaagca ggggatcttc ggaccttgcg ctaatagatg agcctaagtc	50
<210≻ 6	

<211>	50	
<212>	DNA	
<213>	Acinetobacter calcoaceticus	
<400>	6	
ctttaa	agoga ggaggaggot actgaagtta ataccttcag atagtggacg	50
<210>	7	
<211>	50	
<212>	DNA	
<213>	Haemophilus influenzae	
<400>		
gaacg	gtagc aggagaaagc ttgctttctt gctgacgagt ggcggacggg	50
<210>	8	
<211>	50	
<212>	DNA	
<213>	Haemophilus influenzae	
<400>		
atgaa	agtgc gggactgaga ggccgcatgc cataggatga gcccaagtgg	50
<210>		
<211>		
⟨212⟩		
	Haemophilus influenzae	
<400>		
ggtat	tgagg atggttgatg tgttaatagc acatcaaatt gacgttaaat	50

<210>	10	
<211>	50	
<212>	DNA	
<213>	Stenotrophomonas maltophilia	
<400>		
cgaac	ggcag cacaggagag cttgctctct gggtggcgag tggcggacgg 5	0
<210>	11	
<211>	50	
<2 12 >	DNA	
<213>	Stenotrophomonas maltophilia	
<400>		- 0
cgcta	atacc gcatacgacc tacgggtgaa agcaggggat cttcggacct	50
<210>	2 12	
<211>	> 50	
<212>		
<213>	Stenotrophomonas maltophilia	
<400>		50
	gggaaa gaaatccagc tggttaatac ccggttggga tgacggtacc	50
<210		
<2112	> 50	
	> DNA	
<213	> Proteus mirabilis	

WO 03/106676	PCT/JP03/07620
--------------	----------------

<400> 13	
agcggtaaca ggagaaagct tgctttcttg ctgacgagcg gcggacgggt	50
<210> 14	
<211> 50	
<212> DNA	
<213> Proteus mirabilis	
<400> 14	
cggaccaaag caggggctct tcggaccttg cactatcgga tgaacccata	50

⟨210⟩ 15	
<211> 50	
<212> DNA	
<213> Proteus mirabilis	
<400> 15	50
agcggggagg aaggtgataa ggttaatacc cttgtcaatt gacgttaccc	50
<210> 16	
<211> 50	
<212> DNA	
<213> Streptococcus pneumoniae	
<400> 16	
aagtagaacg ctgaaggagg agcttgcttc tctggatgag ttgcgaacgg	50
<210> 17	
<211> 50	
<212> DNA	

<213> Streptococcus pneumoniae	
<400> 17 aataccgcat aagagtggat gttgcatgac atttgcttaa aaggtgcact	50
<210> 18 <211> 50	
<212> DNA <213> Streptococcus pneumoniae	
<400> 18 agaagaacga gtgtgagagt ggaaagttca cactgtgacg gtatcttacc	50
<210> 19 <211> 50 <212> DNA	
<213> Pseudomonas aeruginosa <400> 19	50
gtcgagcgga tgaagggggc ttgctcctgg attcagcggc ggacgggtga	50
<211> 50 <212> DNA	
<213> Pseudomonas aeruginosa	
<400> 20 gcgctaatac cgcatacgtc ctgagggaga aagtggggga tcttcggacc	50

<210> 21	
<211> 50	
<212> DNA	
<213> Pseudomonas aeruginosa	
<400> 21	
tgggaggaag ggcagtaagt taataccttg ctgttttgac gttaccaaca	50
⟨210⟩ 22	
<211> 50	
<212> DNA	
<213> Citrobacter freundii	
⟨400⟩ 22	
gaacggtagc acagaggagc ttgctccttg ggtgacgagt ggcggacggg	50
<210> 23	
<211> 50	
<212> DNA	
<213> Citrobacter freundii	
<400> 23	
agctaatacc gcataacgtc gcaagaccaa agagggggac cttcgggcct	50
<210> 24	
<211> 50	
<212> DNA	
<213> Citrobacter freundii	

<400> 24

tcagcgagga ggaaggcgct gtggttaata accgcagcga ttgacgttac	50
<210> 25	
<211> 50	
<212> DNA	
<213> Veilonella parvula	
⟨400⟩ 25	
cgaagagcga tggaagcttg cttctatcaa tcttagtggc gaacgggtga	50
<210> 26	
<211> 50	
<212> DNA	
<213> Veilonella parvula	
<400> 26	
ctcggcatcg aggaaagatg aaaggtggcc tctatttata agctatcact	50
⟨210⟩ 27	
<211> 50	
<212> DNA	
<213> Veilonella parvula	
<400> 27	
gggacgaaag gccttcttgc gaacagttag aaggattgac ggtaccggaa	50
⟨210⟩ 28	
<211> 50	
<212> DNA	

<400> 28

gtcgagcggt aacaggggaa gcttgcttct cgctgacgag cggcggacgg 50

⟨210⟩ 29

<211> 50

<212> DNA

<213> Providencia stuartii

<400> 29

gggaccttcg ggccttgcgc tgtcggatga acccatatgg gattagctag 50

<210> 30

<211> 50

<212> DNA

<213> Providencia stuartii

<400> 30

tcagtcggga ggaaggcgtt gatgttaata ccatcaacga ttgacgttac 50

<210> 31

<211> 50

<212> DNA

<213> Neisseria gonorrhoeae

<400> 31

cggacggcag cacagggaag cttgcttctc gggtggcgag tggcgaacgg 50

<210> 32

<211> 50	
<212> DNA	
<213> Neisseria gonorrhoeae	
⟨400⟩ 32	
agctaatacc gcatacgtct tgagagggaa agcaggggac cttcgggcct	50
<210> 33	
⟨211⟩ 50	
<212> DNA	
<213> Neisseria gonorrhoeae	
<400> 33	50
tcagggaaga aaaggccgtt gccaatatcg gcggccgatg acggtacctg	30
(010) 04	
<210> 34	
<211> 50	
<212> DNA (212) Street account agalactics	
<213> Streptococcus agalactiae	
<400> 34	
tcagggaaga aaaggccgtt gccaatatcg gcggccgatg acggtacctg	50
<210≻ 35	
<211> 50	
<212> DNA	
<213> Streptococcus agalactiae	

<400> 35

50
50
50
50

<400>	39					
gtcggg	gagga ag	ggtgtcaag	gttaataacc	ttggcaattg	acgttaccga	50
<210>	40					
<211>	50					
<212>	DNA					
<213>	Bactero	oides frag	ilis			
<400>	40					
catgca	agtc ga	aggggcatc	aggaagaaag	cttgctttct	ttgctggcga	50
<210>	41					
<211>	50					
<212>	DNA					
<213>	Bactero	oides frag	ilis			
<400>	41					
gaaaga	attaa t	acccgatag	cataatgatt	ccgcatggtt	tcattattaa	5
<210>	42					
<211>	50					
<212>	DNA					
<213>	Bactero	oides frag	ilis			
<400>	42					
gtagc	gtgaa g	gatgaaggc	tctatgggtc	gtaaacttct	tttatataag	50
<210>	43					
<211>	50					

<212> DNA		
<213> Staphylococcus hominis		
<400> 43		
gagcgaacag acgaggagct tgctcc	tttg acgttagcgg cggacgggtg	50
<210> 44		
<211> 50		
<212> DNA		
<213> Staphylococcus hominis		
<400> 44		
ataccggata atatttcgaa ccgcat	ggtt cgatagtgaa agatggcttt	50
<210> 45		
<211> 50		
<212> DNA		
<213> Staphylococcus hominis		
<400> 45		
ttattaggga agaacaaacg tgtaag	taac tgtgcacgtc ttgacggtac 5	50
<210> 46		
<211> 50		
<212> DNA		
<213> Staphylococcus warneri		
<400> 46		
gagcgaacag ataaggagct tgctcc	tttg acgttagcgg cggacgggtg 5	50

<210> 47	
<211> 50	
<212> DNA	
<213> Staphylococcus warneri	
<400> 47	
taccggataa catattgaac cgcatggttc aatagtgaaa ggcggctttg	50
<210> 48	
⟨211⟩ 50	
<212> DNA	
<213> Staphylococcus warneri	
<400> 48	
ttatcaggga agaacaaatg tgtaagtaac tgtgcacatc ttgacggtac	50
<210> 49	
<211> 50	
<212> DNA	
<213> Staphylococcus haemolyticus	
<400> 49	50
gagcgaacag acaaggagct tgctcctttg acgttagcgg cggacgggtg	50
<210> 50	
<211> 50	
<212> DNA	
<213> Staphylococcus haemolyticus	

<400> 50	
ttcgaaccgc atggttcgat agtgaaagat ggttttgcta tcacttatag	50
<210> 51	
<211> 50	
<212> DNA	•
<213> Staphylococcus haemolyticus	
<400> 51	50
ttattaggga agaacatacg tgtaagtaac tatgcacgtc ttgacggtac	50
<210> 52	
<210 52 <211 50	
<212> DNA	
<213> Enterobacter cloacae	
<400> 52	
agtcgaacgg tagcacagag agcttgctct cgggtgacga gtggcggacg	50
<210> 53	
<211> 50	
<212> DNA	
<213> Enterobacter cloacae	
<400> 53	=0
cggggaggaa ggtgttgtgg ttaataaccg cagcaattga cgttacccgc	50
<210> 54	
<211> 50	
<212> DNA	

<213> E	Interobacter	aerogenes

<400> 54

agtcgagcgg tagcacagag agcttgctct cgggtgacga gcggcggacg

50

<210> 55

<211> 50

<212> DNA

<213> Enterobacter aerogenes

<400> 55

agctaatacc gcataacgtc gcaagaccaa agtgggggac cttcgggcct

50

<210> 56

<211> 50

<212> DNA

<213> Enterobacter aerogenes

<400> 56

agctaatacc gcataacgtc gcaagaccaa agtgggggac cttcgggcct

50

<210> 57

<211> 50

<212> DNA

<213> Staphylococcus epidermidis

<400> 57

gagcgaacag acgaggagct tgctcctctg acgttagcgg cggacgggtg

50

<210> 58

<211> 50 <212> DNA <213> Staphylococcus epidermidis <400> 58 50 taataccgga taatatattg aaccgcatgg ttcaatagtg aaagacggtt <210> 59 <211> 50 <212> DNA <213> Staphylococcus epidermidis <400> 59 taataccgga taatatattg aaccgcatgg ttcaatagtg aaagacggtt 50 <210> 60 <211> 50 <212> DNA <213> Streptococcus constellatus <400> 60 50 acaggatgca ccgtagttta ctacaccgta ttctgtgagt tgcgaacggg <210> 61 <211> 50 <212> DNA <213> Streptococcus constellatus <400> 61

aataccgcat aagaacattt actgcatggt agatgtttaa aaggtgcaag	50
<210> 62	
<211> 50	
<212> DNA	
<213> Streptococcus constellatus	
<400> 62	
ttgttaagga agaacgtgtg tgagagtgga aagttcacac agtgacggta	50
<210> 63	
<211> 50	
<212> DNA	
<213> Serratia marcescens	
<400> 63	50
agcggtagca caggggagct tgctccctgg gcgacgagcg gcggacgggt	50
<210> 64	
<211> 50	
<212> DNA	
<213> Serratia marcescens	
<400> 64	
gaggaggaag gtggtgaact taatacgttc atcaattgac gttactcgca	50
5455465445 5 V56 V5440 V V4440 V V V V V V V V V V V V V V	
<210> 65	
<211> 50	
<212> DNA	

<213>	Streptococcus anginosus	
<400> atgcaa		50
<210>	66	
<211>	50	
<212>	DNA	
<213>	Streptococcus anginosus	
<400> atgcaa	66 agtag gacgcacagt ttataccgta gcttgctaca ccatagactg	50
<210>	67	
<211>	50	
<212>	DNA	
<213>	Streptococcus anginosus	
<400>	67	
atgca	agtag gacgcacagt ttataccgta gcttgctaca ccatagactg	50
<210><211><211><212><213>	50	
<400> tcgaa	68 acggta acaggaagca gcttgctgtt ttgctgacga gtggcggacg	50

19/43

<210> 69

WO 03/106676 PCT/JP03/07620 <211> 50 <212> DNA <213> Escherichia coli <400> 69 50 agctaatacc gcataacgtc gcaagaccaa agagggggac cttagggcct <210> 70 <211> 50 <212> DNA <213> Escherichia coli <400> 70 cggagaggaa gggagtaaag ttaatacctt tgctcattga cgttacccgc 50 <210> 71 <211> 50 <212> DNA <213> Klebsiella pneumoniae <400> 71 50 agctaatacc gcataatgtc gcaagaccaa agtgggggac cttcgggcct <210> 72 <211> 50 <212> DNA <213> Klebsiella pneumoniae <400> 72

50

tcagcgggga ggaaggcgat gaggttaata acctcatcga ttgacgttac

<210> 73	
<211> 50	
<212> DNA	
<213> Enterococcus faecalis	
<400> 73	
atgcaagtcg aacgcttctt ttctcccgag tgcttgcact caattggaaa	50
<210> 74	
⟨211⟩ 50	
<212> DNA	
⟨213⟩ Enterococcus faecalis	
<400> 74	
ataccgcata acagtttatg ccgcatggca taagagtgaa aggcgctttc	50
<210> 75	
<211> 50	
<212> DNA	
<213> Enterococcus faecalis	
<400> 75	
ttagagaaga acaaggacgt tagtaactga acgtcccctg acggtatcta	50
<210> 76	
<211> 50	
<212> DNA	
<213> Enterococcus faecium	

	v
<400> 76	
atgcaagtcg aacgcttctt tttccaccgg agcttgctcc accggaaaaa	50
<210> 77	
<211> 50	
<212> DNA	
<213> Enterococcus faecium	
<400> 77	F.0
taataccgta taacaatcga aaccgcatgg ttttgatttg aaaggcgctt	50
<210> 78	
⟨211⟩ 50	
<212> DNA	
<213> Enterococcus faecium	
<400> 78	
gttgttagag aagaacaagg atgagagtaa ctgttcatcc cttgacggta	50
gitgitagag aagaadaagg abgagagaaa cogorrani co co	
<210> 79	
<211> 50	
<212> DNA	
<213> Streptococcus sanguis	
<400> 79	
catgcaagta gaacgctgaa gagaggagct tgctcttctt ggatgagttg	50
<210> 80	
<211> 50	

PCT/JP03/07620

WO 03/106676

<212> DNA	
<213> Streptococcus sanguis	
⟨400⟩ 80	
aataccgcat aaaattgatt attgcatgat aattaattga aagatgcaat	50
<210> 81	
<211> 50	
<212> DNA	
<213> Streptococcus sanguis	
<400> 81	
agaagaacgg gtgtgagagt ggaaagttca cactgtgacg gtatcttacc	50
<210> 82	
⟨211⟩ 50	
<212> DNA	
<213> Streptococcus mitis	
⟨400⟩ 82	
aagtagaacg ctgaaggagg agcttgcttc tccggatgag ttgcgaacgg	50
⟨210⟩ 83	
<211> 50	
<212> DNA	
<213> Streptococcus mitis	
⟨400⟩ 83	-
aataccgcat aagagtagat gttgcatgac atttgcttaa aaggtgcaat	50

<210> 84 <211> 50 <212> DNA <213> Streptococcus intermedius <400> 84 50 ctaataccgc ataagaacat ttactgcatg gtagatgttt aaaaggtgca <210> 85 <211> 50 <212> DNA <213> Listeria monocytogenes <400> 85 50 gaacgaacgg aggaagagct tgctcttcca atgttagtgg cggacgggtg <210> 86 <211> 50 <212> DNA <213> Listeria monocytogenes <400> 86 accgaatgat aaagtgtggc gcatgccacg cttttgaaag atggtttcgg 50 <210> 87 <211> 50 <212> DNA <213> Listeria monocytogenes

<400> 87

ttagagaaga acaaggataa gagtaactgc ttgtcccttg acggtatcta	50
<210> 88	
<211> 50	
<212> DNA	
<213> Clostridium perfringens	
<400> 88	
gcaagtcgag cgatgaagtt tccttcggga aacggattag cggcggacgg	50
<210> 89	
<211> 50	
<212> DNA	
<213> Clostridium perfringens	
<400> 89	FO
tgaaagatgg catcatcatt taaccaaagg agcaatccgc tatgagatgg	50
(010) 00	
<210> 90	
<211> 50	
<212> DNA <213> Clostridium perfringens	
(712) Clostididii beililingens	
<400> 90	
ttcggatcgt aaagctctgt ctttggggaa gataatgacg gtacccaagg	50
<210> 91	
⟨211⟩ 50	
<212> DNA	

<213> Corynebacterium aquatium	
<400> 91 caagtcgaac gatgaaccag gagcttgctc ttggg	gatta gtggcgaacg 50
<210> 92	
<211> 50	
<212> DNA	
<213> Corynebacterium aquatium	
<400> 92 gaactgcgaa ggcatcttca gcagttggaa agaac	ttcgg tcaaggatgg 50
<210> 93	
⟨211⟩ 50	
<212> DNA	
<213> Corynebacterium aquatium	
<400> 93	
gttgtaaacc tcttttagta gggaagaagc gaaag	rtgacg gtacctgcag 50
<210> 94	
<211> 50	
<212> DNA	
<213> Streptococcus oralis	
<400> 94	
caagtagaac gctgaagctt ggtgcttgca ccga	gcggat gagttgcgaa 50

<210>	95	
<211>	50	
<212>	DNA	
<213>	Streptococcus oralis	
<400>	95	
taata	ccgca taagagtaga tgttgcatga catttactta aaaggtgcaa	50
<210>		
<211>	50	
<212>	DNA	
<213>	Staphylococcus aureus	
<400>	96	
gagcg	aacgg acgagaagct tgcttctctg atgttagcgg cggacgggtg	50
<210>	97	
<211>	50	
<212>	DNA	
<213>	Staphylococcus aureus	
<400>	97	
ttcaa	aagtg aaagacggtc ttgctgtcac ttatagatgg atccgcgctg	50
<210>	98	
<2112	> 50	
<212	> DNA	•
<213	> Staphylococcus aureus	
<400	> 98	

ttattaggga agaacatatg tgtaagtaac tgtgcacatc ttgacggtac	50
<210> 99	
<211> 50	
<212> DNA	
<213> Neisseria meningitidis	
<400> 99	
catgcaagtc ggacggcagc acagagaagc ttgcttcttg ggtggcgagt	50
<210> 100	
<211> 50	
<212> DNA	
<213> Neisseria meningitidis	
<400> 100	50
agctaatacc gcatacgtct tgagagagaa agcaggggat cttcgggcct	50
<210> 101	
<211> 50	
<212> DNA	
<213> Neisseria meningitidis	
<400> 101	
gggaagaaaa ggctgttgct aatatcagcg gctgatgacg gtacctgaag	50
gggaagaaaa ggoogoogoo aasaasaaga g o o o o o o	
<210> 102	
<211> 50	
<212> DNA	
<213> Camphylobacter fetus	

<400> 102			
catgcaagtc go	cacggagta ttaagagagc ttgcto	ctttt aatacttagt	50
<210> 103			
<211> 50			
<212> DNA			
<213> Camphyl	obacter fetus		
<400> 103			
aaatgactgc ta	atactcca tactccttct taacat	aagt taagtcggga	50
<210> 104			
<211> 50			
<212> DNA			
<213> Camphy	obacter fetus		
<400> 104			
ccgcgtggag ga	atgacactt ttcggagcgt aaactc	cttt tgttagggaa	50
<210> 105			
<211> 50			
<212> DNA			
<213> Enterod	coccus gallinarum		
<400> 105			
atgcaagtcg as	acgettttt ettteacegg agettg	ctcc accgaaagaa	50
<210> 106			
⟨211⟩ 50			

<212> DNA	
<213> Enterococcus gallinarum	
<400> 106	
ttccgcatgg aagaaagttg aaaggcgctt ttgcgtcact gatggatgga	50
<210> 107	
<211> 50	
<212> DNA	
<213> Enterococcus gallinarum	
<400> 107	50
gttgttagag aagaacaagg atgagagtag aacgttcatc ccttgacggt	50
<210> 108	
<211> 50	
<212> DNA	
<213> Enterococcus casseliflavus	
<400> 108	
atgcaagtcg aacgcttttt ctttcaccgg agcttgctcc accggaagaa	50
<210> 109	
<211> 50	
<212> DNA	
<213> Enterococcus casseliflavus	
<400> 109	
gttgttagag aagaacaagg atgagagtaa aatgttcatc ccttgacggt	50

<210> 110	
<211> 50	
<212> DNA	
<213> Aeromonas hydrophila	
<400> 110	
caagtcgagc ggcagcggga aagtagcttg ctacttttgc cggcgagcgg	50
<210> 111	
<211> 50	
<212> DNA	
<213> Aeromonas hydrophila	
<400> 111	
tgctaatacc gcatacgccc tacgggggaa agcaggggac cttcgggcct	50
<210> 112	
<211> 50	
<212> DNA	
<213> Aeromonas hydrophila	
<400≻ 112	
cgaggaggaa aggttgatgc ctaatacgta tcaactgtga cgttactcgc	50
<210> 113	
<211> 50	
<212> DNA	
<213> Salmonella paratyphi A	

WO 03/106676	PCT/JP03/07620
<400> 113	

tcgaacggta acaggaagca gcttgctgct ttgctgacga gtggcggacg 50

<210> 114

<211> 50

<212> DNA

<213> Salmonella paratyphi A

<400> 114

ggctaatacc gcataacgtc gcaagaccaa agagggggac cttcgggcct 50

<210> 115

<211> 50

<212> DNA

<213> Salmonella typhi

<400> 115

tcgaacggta acaggaagca acttgctgct ttgctgacga gtggcggacg 50

<210> 116

<211> 50

<212> DNA

<213> Streptococcus equisimilis

<400> 116

agtagaacgc tgaggactgg tgcttgcacc ggtccaagga gttgcgaacg 50

<210> 117

<211> 50

<212> DNA

<213> Streptococcus equisimilis	
<400> 117	
aataccgcat aaaagtgttt aacccatgtt aaacatttaa aaggtgcaat	50
<210> 118	
<211> 50	
<212> DNA	
<213> Streptococcus equisimilis	
<400> 118	
gagaagaatg atggtgggag tggaaaatcc accatgtgac ggtaactaac	50
<210> 119	
<211> 50	
<212> DNA	
<213> Streptococcus canis	
<400> 119	
agtagaacgc tgaggacagg tgcttgcact agtctaagga gttgcgaacg	50
<210> 120	
<211> 50	
<212> DNA	
<213> Streptococcus canis	
(400) 100	
<400> 120	
ctaataccgc ataaaagtgc ttaacacatg ttaagaactt aaaaggggca	50

<210> 121 <211> 50 <212> DNA <213> Streptococcus canis <400> 121 50 gagaagaacg gtaatgggag tggaaaaccc attatgtgac ggtaactaac ⟨210⟩ 122 <211> 50 <212> DNA <213> Klebsiella oxytoca <400> 122 50 agcggggagg aaggcgataa ggttaataac cttgtcgatt gacgttaccc <210> 123 <211> 50 <212> DNA <213> Staphylococcus saprophyticus <400> 123 50 taataccgga taacatttgg aaccgcatag ttctaaagtg aaagatggtt ⟨210⟩ 124 <211> 50 <212> DNA

<213> Staphylococcus saprophyticus

<400> 124	
ttattaggga agaacaaacg tgtaagtagc tgtgcacgtc ttgacggtac	50
<210> 125	
<211> 50	٥
<212> DNA	,
<213> Pasteurella multocida	
<400> 125	
agtcgaacgg tagcaggaag aaagcttgct ttctttgctg acgagtggcg	50
⟨210⟩ 126	
<211> 50	
<212> DNA	
<213> Pasteurella multocida	
<400> 126	
cagctaatac cgcgtattct ctgaggagga aagggtggga ccttagggcc	50
Cagotaatac ogogtattot oogaggagga aagggogga aagggogg	
<210> 127	
<211> 50	
<212> DNA	
<213> Pasteurella multocida	
<400> 127	
taatgaggaa gggatgttgt taaatagata gcatcattga cgttaattac	50
<210> 128	
<211> 50	
<212> DNA	

<213> Eikenella corrodens	
<400> 128	50
gaacggcagc ggggtagtgc ttgcactact gtccggcgag tggcgaacgg	50
⟨210⟩ 129	
<211> 50	
<212> DNA	
<213> Eikenella corrodens	
<400> 129	
gagaaagcgg gggatcgcaa gacctcgcgt tattcgagcg gccgataact	50
<210> 130	
<211> 50	
<212> DNA	
<213> Eikenella corrodens	
<400> 130	
tagggaagaa aagggaagtg ctaataccac tttttgctga cggtacctaa	50
<210> 131	
<211> 50	
<212> DNA	
<213> Streptococcus pyogenes	
7710) Diloptococan blogomen	
Z400\ 191	
<400> 131	ΕΛ
agtagaacgc tgagaactgg tgcttgcacc ggttcaagga gttgcgaacg	50
<210≻ 132	

<211> 50

<212> DN	NA	
<213> St	treptococcus pyogenes	
<400> 13	32	
ctaataco	cgc ataagagaga ctaacgcatg ttagtaattt aaaaggggca	50
<210> 13	33	
<211> 50	0	
<212> DN	NA	
<213> St	treptococcus pyogenes	
<400> 13		
gagaaga	atg atggtgggag tggaaaatcc accaagtgac ggtaactaac	50
<210> 13	34	
<211> 5		
<212> D		
<213> M	oraxella catarrhalis	
<400> 1		۲۸
gtcgaac	gaa gttaggaagc ttgcttctga tacttagtgg cggacgggtg	50
(04.0) 4		
<210> 1		
<211> 5		
<212> D		
<213> M	Moraxella catarrhalis	
/400\ T		
<400> 1	tgaa agggggcttt tagctctcgc tattagatga gcctaagtcg	50
tacgggt	igaa agggggciii tagcicicgo tartagatga gootaagtog	-

<210> 136	
<211> 50	
<212> DNA	
<213> Moraxella catarrhalis	
<400> 136	
ggggaggaaa agcttatggt taatacccat aagccctgac gttacccaca	50
⟨210⟩ 137	
<211> 50	
<212> DNA	
<213> Legionella pneumophila	
<400≻ 137	50
agtcgaacgg cagcattgtc tagcctgcta gacagatggc gagtggcgaa	50
<210> 138	
<211> 50	
<212> DNA	
<213> Legionella pneumophila	
<400> 138	E.C.
acgaaagctg gggaccttcg ggcctggcgc tttaagatta gcctgcgtcc	50
(010) 100	
<210> 139	
<211> 50	
<212> DNA	
<213> Legionella pneumophila	

<400≻ 139	
agtggggagg agggttgata ggttaagagc tgattaactg gacgttaccc	50
<210> 140	
<211> 50	
<212> DNA	
<213> Mycobacterium tuberculosis	
<400> 140	5 0
gcaagtcgaa cggaaaggtc tcttcggaga tactcgagtg gcgaacgggt	50
⟨210⟩ 141	
⟨211⟩ 50	
<212> DNA	
<213> Mycobacterium tuberculosis	
<400> 141	50
gatgcatgtc ttgtggtgga aagcgcttta gcggtgtggg atgagcccgc	50
<210> 142	
<211> 50	
<212> DNA	
<213> Mycobacterium tuberculosis	
<400> 142	50
tttcaccatc gacgaaggtc cgggttctct cggattgacg gtaggtggag	
(010) 140	
<210> 143	
⟨211⟩ 50	

WO 03/106676 PCT/JP03/07620 <212> DNA <213> Mycobacterium avium <400> 143 gcaagtcgaa cggaaaggcc tcttcggagg tactcgagtg gcgaacgggt 50 <210> 144 <211> 50 <212> DNA <213> Mycobacterium avium <400> 144 ggtctaatac cggataggac ctcaagacgc atgtcttctg gtggaaagct 50 <210> 145 <211> 50 <212> DNA

<400> 145

<213> Mycobacterium avium

ggccttcggg ttgtaaacct ctttcaccat cgacgaaggt ccgggttttc 50

<210> 146

<211> 50

<212> DNA

<213> Mycobacterium intracellulare

<400> 146

gcaagtcgaa cggaaaggcc ccttcggggg tactcgagtg gcgaacgggt 50

<210> 147 <211> 50 <212> DNA <213> Mycobacterium intracellulare <400> 147 50 ggtctaatac cggataggac ctttaggcgc atgtctttag gtggaaagct ⟨210⟩ 148 <211> 50 <212> DNA <213> Mycobacterium kansasii <400> 148 50 gcaagtcgaa cggaaaggtc tcttcggaga cactcgagtg gcgaacgggt <210> 149 <211> 50 <212> DNA <213> Mycobacterium kansasii <400> 149 ggtctaatac cggataggac cacttggcgc atgccttgtg gtggaaagct 50 <210> 150 <211> 50 <212> DNA <213> Mycobacterium gordonae

<400> 150				
atgcaagtcg aacggtaa	gg cccttcgggg	tacacgagtg	gcgaacgggt	50
<210> 151				
<211> 50				
<212> DNA				
<213> Mycobacterium	gordonae			
<400> 151				
actgggtcta ataccgaa	ta ggaccacagg	acacatgtcc	tgtggtggaa	50
<210> 152				
<211> 50				
<212> DNA				
<213> Mycobacterium	gordonae			
<400> 152				
ttcaccatcg acgaaggt	cc gggttttctc	gggctgacgg	taggtggaga	50
<210> 153				
<211> 20				•
<212> DNA				
<213> Artificial Se	equence			
<220>				
<223> Synthetic DNA	A			
(100) 150				
<400> 153				0.0
agagtttgat cctggcto	cag			20

- <210> 154
- 〈211〉 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic DNA
- <400> 154

gtattaccgc ggctgctggc ag

22

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07620

A.		SIFICATION OF SUBJECT MATTER		
		Cl ⁷ C12N15/09, C12Q1/68, G01N	33/53, 33/569, 37/00	
Acc	ording t	o International Patent Classification (IPC) or to both n	ational classification and IPC	
В.	FIELD	S SEARCHED		
Min		ocumentation searched (classification system followed C1 ⁷ C12N15/09, C12Q1/68, G01N		
Doc	umentai	ion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched
Elec		ata base consulted during the international search (nan ed, BIOSIS/WPI (DIALOG), JSTPlu		
C.	DOCU	MENTS CONSIDERED TO BE RELEVANT		
	gory*	Citation of document, with indication, where ap		Relevant to claim No.
	Y	Kaplan JB, et al., Population diversity of Actinobacillus strains isolated from localizeriodontitis patients., J.C. April, Vol.40, No.4, pages 1	actinomycetemcomitans zed juvenile lin.Microbiol., 2002	1-3,59-63, 65,66
	Y	Hedegaard J. et al., Phyloger Haemophilus as determined by infB sequences., Microbiology Vol.147, pages 2599 to 2609	comparison of partial	1-3,59-63, 65,66
×	Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 		ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family 	
	09 S	ectual completion of the international search eptember, 2003 (09.09.03)	Date of mailing of the international search 24 September, 2003	-
		ailing address of the ISA/ nese Patent Office	Authorized officer	
Facs	imile N	o.	Telephone No.	

PCT/JP03/07620

<u> </u>	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Tran SD et al., Improved multiplex PCR using conserved and species-specific 16S rRNA gene primers for simultaneous detection of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, and Porphyromonas gingivalis., J.Clin. Microbiol., 1999 November, Vol.37, No.11, pages 3504 to 3508	1-3,59-63, 65,66
Y	Hughes MS et al., Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome., J.Clin.Microbiol., 2000 March, Vol.38, No.3, pages 953 to 959	1-3,59-63, 65,66
Y	Peters S. et al., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes., Appl.Environ.Microbiol., 2000 March, Vol.66, No.3, pages 930 to 936	1-3,59-63, 65,66
Y	Randazzo CL et al., Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis., Appl.Environ.Microbiol., 2002 April, Vol.68, No.4, pages 1882 to 1892	1-3,59-63, 65,66
Y	Schmalenberger A. et al., Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling., Appl.Environ.Microbiol., 2001 August, Vol.67, No.8, pages 3557 to 3563	1-3,59-63, 65,66
Y	Simpson JM. et al., Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53., Appl.Environ. Microbiol., 2000 November, Vol.66, No.11, pages 4705 to 4714	1-3,59-63, 65,66
		•
	·	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07620

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: (See extra sheet)
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: (See extra sheet)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/07620

Continuation of Box No.II of continuation of first sheet(1)

References:

- 1. Hughes MS, et al., Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome. J Clin Microbiol. 2000 Mar, vol.38, no.3, p.953-959
- 2. Peters S, et al., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol. 2000 Mar, vol.66, no.3, p.930-936
- 3. Randazzo CL, et al., Diversity, dynamics, and activity of bacterial communties during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl. Environ Microbial. 2002 Apr, vol.68, no.4, p.1882-1892
- 4. Schmalenberger A, et al., Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol. 2001 Aug, vol.67, no.9, p.3557-3563
- 5. Simpson JM, et al., Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol. 2000 Nov, vol.66, no.11, p.4705-4714

In the references 1 to 5, it is described that various microorganisms were detected by using probes or primers corresponding to the V1, V2 and V3 regions of 16S rRNA.

Thus, detection of 56 microorganisms as set forth in claims of the present case with the use of probes corresponding to the V1, V2 and V3 regions of 16S rRNA cannot be considered as having a technical relationship involving the same "special technical features". (The expression "special technical features" as used herein means those technical features that define a contribution which each of the claimed inventions, considered as a whole, makes over the prior art. (See, if necessary, Patent Corporation Treaty, Rule 13.2)). Although the statement in the description of the present case is taken into consideration, no other "special technical feature" can be confirmed or seen.

Thus, the probes corresponding respectively to the 56 microorganisms cannot be considered as relating to a group of inventions so linked as to form a single general inventive concept. Such being the case, the present application has 56 inventions corresponding to the 56 microorganisms as set forth in the claims.

Continuation of Box No.II-4 of continuation of first sheet(1)

Since no required additional fee was paid, this international search report was made exclusively on the invention as set forth in claim 3 and the inventions relating to Actinobacillus actinomycetemcomitans among the inventions as set forth in claims 1, 2, 59 to 63, 65 and 66.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int C1 C12N 15/09, C12Q 1/68, G01N 33/53, 33/569, 37/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int C17 C12N 15/09, C12Q 1/68, G01N 33/53, 33/569, 37/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

PubMed, BIOSIS/WPI(DIALOG), JSTPlus(JOIS), GenBank/EMBL/DDBJ/GeneSeq

C. 関連する	らと認められる文献 	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Kaplan JB, et al., Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol. 2002 Apr, vol. 40, no. 4, p. 1181-1187	1-3, 59-63, 65, 66
Y	Hedegaard J, et al., Phylogeny of the genus Haemophilus as determined by comparison of partial infB sequences. Microbiology. 2001 Sep, vol. 147, p. 2599-2609	1-3, 59-63, 65, 66

⋉ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 09.09.03 国際調査報告の発送日 24.09.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 小春 道明 小春 道明 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3448

C (続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	Tran SD, et al., Improved multiplex PCR using conserved and species-specific 16S rRNA gene primers for simultaneous detection of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, and Porphyromonas gingivalis. J Clin Microbiol. 1999 Nov, vol. 37, no. 11, p. 3504-3508	1-3, 59-63, 65, 66
Y	Hughes MS, et al., Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome. J Clin Microbiol. 2000 Mar, vol. 38, no. 3, p. 953-959	1-3, 59-63, 65, 66
Y	Peters S, et al., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol. 2000 Mar, vol.66, no.3, p.930-936	1-3, 59-63, 65, 66
Y	Randazzo CL, et al., Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ Microbiol. 2002 Apr, vol. 68, no. 4, p. 1882-1892	1-3, 59-63, 65, 66
Y	Schmalenberger A, et al., Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol. 2001 Aug, vol. 67, no. 8, p. 3557-3563	1-3, 59-63, 65, 66
Y	Simpson JM, et al., Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol. 2000 Nov, vol. 66, no. 11, p. 4705-4714	1-3, 59-63, 65, 66

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条	※第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	いった。
1. 🗌	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	つまり、
2. 🗍	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
U	ない国際出願の部分に係るものである。つまり、
3. []	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に过	上べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
(特	特別ページ)参照。
1. 🗌	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
з. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
	イリックのつうに少くの言語をの単位四のみでこうV・C TFDX した。
	l
4. 🗵	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
4. 🗵	
	されている発明に係る次の請求の範囲について作成した。
	されている発明に係る次の請求の範囲について作成した。 (特別ページ) 参照。
	されている発明に係る次の請求の範囲について作成した。 (特別ページ) 参照。 至手数料の異議の中立てに関する注意

参照文献:

- 1. Hughes MS, et al., Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome.

 J Clin Microbiol. 2000 Mar, vol. 38, no. 3, p. 953-959
- 2. Peters S, et al., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol. 2000 Mar, vol. 66, no. 3, p. 930-936
- 3. Randazzo CL, et al., Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis.

 Appl Environ Microbiol. 2002 Apr, vol. 68, no. 4, p. 1882-1892
- 4. Schmalenberger A, et al., Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling.
 - Appl Environ Microbiol. 2001 Aug, vol. 67, no. 8, p. 3557-3563
- 5. Simpson JM, et al., Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53.

 Appl Environ Microbiol. 2000 Nov, vol.66, no.11, p.4705-4714

参照文献1-5には、16S rRNAのV1、V2及びV3領域に対応するプローブ若しくはプライマーを用いて様々な微生物を検出することが記載されている。

したがって、本願の請求の範囲に記載された56種類の微生物に関して、

16S rRNAのV1、V2及びV3領域に対応するプローブを用いてそれぞれを検出することは、同一の「特別な技術的特徴」を含む技術的な関係を有しているものとはいえない。(なお、ここで言う、「特別な技術的特徴」とは、請求の範囲に記載された各発明が全体として「先行技術」に対して行う貢献を明示する技術的特徴のことである。(必要なら、特許協力条約に基づく規則13.2参照。))また、本願明細書の記載を参酌しても、それ以外の「特別な技術的特徴」の存在は確認も推認もできない。

よって、上述した56種類の微生物に対応するプローブどうしは、単一の一般的発明概念を形成するように関連している一群の発明であるとはいえないず、この出願には、請求の範囲に記載された56種類の微生物に対応した、56個の発明が包含されているといえる。

そして、追加手数料が納付されなかったので、請求の範囲3に記載された発明、並びに、 請求の範囲1、2、59-63、65及び66に記載された発明のうちアクチノバチルス・ アクチノマイセテムコミタンスに関する発明についてのみ国際調査報告を作成した。