

Consider polyforms formed by facets of an n-dimensional hypercube. If such a polyform has k cells, call it a k-polyfacet. Count these up to symmetries of the cube.

Figure 1: On the left, the two 3-polyfacets on the cube, and on the right, the two 4-polyfacets on the cube. The 0-, 1-, 2-, 5-, and 6-polyfacets are unique on the cube.

Question. How many k-polyfacets live on the n-cube?

Note. The following table gives the number of k-polyfacets on an n-cube:

n\k 0		1	2																		21	n-1		•
2 1		1,	1,																			1,		
3 1	1,	1,	1,	2,																	2,	1,	1	
4 1	1,	1,	1,	2,	3,															2,	2,	1,	1	
5 1	1,	1,	1,	2,	3,	3,													3,	2,	2,	1,	1	
6 1	1,	1,	1,	2,	3,	3,	4,											3,	3,	2,	2,	1,	1	
7 1	1,	1,	1,	2,	3,	3,	4,	4,									4,	3,	3,	2,	2,	1,	1	
8 1	1,	1,	1,	2,	3,	3,	4,	4,	5,							4,	4,	3,	3,	2,	2,	1,	1	
9 1	1,	1,	1,	2,	3,	3,	4,	4,	5,	5,					5,	4,	4,	3,	3,	2,	2,	1,	1	
10 1	1,	1,	1,	2,	3,	3,	4,	4,	5,	5,	6,			5,	5,	4,	4,	3,	3,	2,	2,	1,	1	
11 1	1,	1,	1,	2,	3,	3,	4,	4,	5,	5,	6,	6,	6,	5,	5,	4,	4,	3,	3,	2,	2,	1,	1	1

Notice that T(n,k) = T(n,n-k) for all $k \notin \{2,n-2\}$. In this case, T(n,2) = 1 and T(n,n-2) = 2.

Related.

- 1. How many d-dimensional k-poly-d-faces live on the n-cube?
- 2. How many d-dimensional k-poly-d-faces live on the n-simplex?
- 3. How many d-dimensional k-poly-d-faces live on the n-orthoplex?
- 4. How many k-polyfacets live on the n-demicube?
- 5. How many fixed polyforms? One-sided polyforms?
- 6. If we chop up the hypercube into an $\ell \times \cdots \times \ell$ "Rubik's" hypercube, how many polyfacets live on this subdivision?
- 7. Let T(n,k) denote the k-polyfacets on an n-cube. Which of the T(n,k) polyfacets has the most symmetry? The least?

References.

Problems 72, 101.