Lecture 1: Vectors & Index notation

I, Review of Vectors

Def: Vector is a quantily with a magnitude & direction

Examples: force, velocities, displacements, ...

Q: Is it possible to have vector without direction?

Def: Vector space, \mathcal{V} , is a collection of objects that is closed under addition and scalar multiplication. $u \in \mathcal{V} \quad v \in \mathcal{V} \quad x \in \mathbb{R}$

Q1: Do vectors in R3 form vector space?

Q2: Do vectors in Rt form vector space?

$$\underline{a} \bullet \underline{b} = |\underline{a}||\underline{b}||\cos\theta|$$
 $\theta \in [0,\pi]$

$$a \cdot b = 0$$
 $a \perp b$

$$\underline{a} \cdot \underline{a} = |\underline{a}|^2$$

$$a \cdot b = b \cdot a$$

a · b = b · a commutative

Projection: ê unit vector l v & 2

$$\sqrt{} = \sqrt{} e + \sqrt{} e$$

$$\underline{\underline{V}}_{\underline{e}}^{\perp} = \underline{\underline{V}} - \underline{\underline{V}}_{\underline{e}}^{\parallel}$$

Vector product: a, b & 2

$$9 \times 6 = |9| |9| \sin \theta \in [0, \pi]$$

ê unit vector I to a & b direction right-hand rule

|axb| = Area of paralelogram spanned by a & b

Note:
$$a \times b = -(b \times a)$$
 not commutative

Q: What does it mean when $a \times b = 0$?

($a \neq 0$, $b \neq 0$) point i paralle (

Triple scalar product a, b, c & V

 $(\underline{a} \times \underline{b}) \cdot \underline{c} = |\underline{a}||\underline{b}||\underline{c}| \sin \theta \cos \delta$

- e right handled normal to a and b
- 0 augle from ê to e

 $(\underline{a} \times \underline{b}) \cdot \underline{c} = \underline{0} \Rightarrow \underline{a}, \underline{b}, \underline{c}$ linearly dependent $(\underline{a} \times \underline{b}) \cdot \underline{c} > 0 \Rightarrow \underline{a}, \underline{b}, \underline{c}$ form right handed system $(\underline{a} \times \underline{b}) \cdot \underline{c} < 0 \Rightarrow \underline{a}, \underline{b}, \underline{c}$ form left handed system

$$(\underline{a} \times \underline{b}) \cdot \underline{c} = (\underline{b} \times \underline{c}) \cdot \underline{a} = (\underline{c} \times \underline{a}) \cdot \underline{b}$$

⇒ Volume of parallelepiped spanned by a, b, e

Q: (axb)·c = (bxa)·e

Triple vector product

This may be new - well talk more about it lates

$$(\underline{a} \times \underline{b}) \times \underline{c} = (\underline{a} \cdot \underline{c}) \underline{b} - (\underline{b} \cdot \underline{c}) \underline{a}$$

 $\underline{a} \times (\underline{b} \times \underline{c}) = (\underline{a} \cdot \underline{c}) \underline{b} - (\underline{a} \cdot \underline{b}) \underline{c}$

Basis for a vector space

Def.: Basis for V is a set of linearly independent vectors {e} that span the space.

Examples in 2D: {e} = {e, ,e2}

many choices => not unique

In this class we will always choose a right-handed orthonormal basis {e, , e, e, e, }

ortho-normal: e, xe2=e3, e2xe3=e1, e3xe,=e2

right handed: (e,xez)·e3=1

⇒ called <u>Cartesian</u> reference frame

Components of a vector in a basis

Project v onto basis vectors to get components.

Here [v] is the representation of vin {e,,e,,e,}

The distinction between a vector and its representation is important for this class.

The vector is the same but representation is not.

Index Notation

 $a = a_1 e_1 + a_2 e_2 + a_3 e_3 = \sum_{i=1}^{3} a_i e_i = a_i e_i$ Here the sum is always to 3?

1 Dunny index

îs repeated twice in a term

⇒ Einstein summation conventien

N

Zaibi = aibi

Note: symbol for index does not matter $\underline{a} = a_i \underline{e}_i = a_K \underline{e}_K$

-> rename dummy indices

2) Free judex

A free index occurs only once

Example! ai = c, b, b; i = free index
j = dummy index

free judex represents a group of equation

$$i=1:$$
 $a_1 = \sum_{j=1}^{3} c_j b_j b_1$
 $i=2:$ $a_2 = \sum_{j=1}^{3} c_j b_j b_2$
 $i=3:$ $a_3 = \sum_{j=1}^{3} c_j b_j b_3$

Note: · all terms must have some free indices

- · more than one free index (Aij)
- · same symbol cannot be used for free and dummy judex
- · dummy indices con only be repeated twice What is wrong?

2)
$$a;b;=c;c;d;d;$$
 j is used balle as

3. $a:b:=c;c;d;d;$ dunny & free index

To express vector operations me meet to indroduce new segmbols

Kronecker delta

just consequence of orthonormal basis Properties of Kron. delta:

$$S_{ij} = S_{ji}$$
 symmetry
$$e_i = S_{ij}e_j \quad \text{traws} \text{ proposty}$$

$$(e_i = S_{ij}e_j)$$

Example: Project vector ou basis vector u = u;e;

 $u \cdot e_j = (u_i e_i) \cdot e_j = u_i e_i \cdot e_j = u_i S_{ij} = u_j$

 e_1 j=2

Example: scalar product

 $a \cdot b = 3$ a = a; e; b = b; e;

 $(a;e;) \cdot (b;e;) = a;b;e;e;=a;b;s;$ s;j = a;b;=a;b; $= \sum_{j=1}^{2} a;b;$ = a,b,+a,b,+a,b,

>> Kroueche della expresses scalar product in jobex notation

Permutation symbol (Levi-Civita)

To express cross product we introduce

Flipping any two indias changes sign

Altouative de finition

For any orthonormal frame

Example: Vector product $a \times b = c$ $a = a_i e_i$ $b = b_j e_j$ $c = c_k e_k$ what is c_k in terms of a_i b; $a \times b = (a_i e_i) \times (b_j e_j) = a_i b_j$ $e_{ijk} e_k$ $e_{ijk} e_k$

$$c_{1} = \sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{ij1} a_{i} b_{j}$$

$$= \epsilon_{111}^{3} a_{11} b_{11} + \epsilon_{121}^{3} a_{11} b_{21} + ...$$