Семинар № 1: Решение алгебраических уравнений Цель: найти корни уравнения f(x) = 0 с точностью до ε

- 0. Считаем, что f(x) непрерывная функция.
- 1. Первым этапом нахождения корней уравнения f(x) = 0 является их локализация. Надо найти такие интервалы, на которых корень существует и единственный, после чего применять для каждого интервала какой-то метод.
- 2. Допустим, мы знаем, что на интервале [a,b] есть корень. Предположим, что f(a) < 0, f(b) > 0 (случай f(a) > 0, f(b) < 0 рассматривается аналогично). Будем искать корень методом дихотомии:

Возьмём c = (a + b)/2

Если $|f(c)| < \varepsilon$, то будем считать, что c это корень, останавливаем поиск.

Если $f(c) > \varepsilon$, то заменим отрезок [a, b] на [a, c] и повторим процедуру.

Если $f(c) < -\varepsilon$, то заменим отрезок [a,b] на [c,b] и повторим процедуру.

3. Теперь предположим, что мы знаем, что есть корень на интервале $[a, +\infty)$. Хотим от бесконечного интервала перейти к конечному. Предположим, что f(a) < 0 (случай f(a) > 0 рассматривается аналогично). Зададим шаг Δ , на который мы будем сдвигаться вправо. Алгоритм поиска выглядит следующим образом:

Если $f(a + \Delta) > 0$, останавливаем поиск. Искомый отрезок $[a, a + \Delta]$.

Если $f(a+2\Delta) > 0$, останавливаем поиск. Искомый отрезок $[a+\Delta, a+2\Delta]$.

. . .

Если $f(a+k\Delta) > 0$, останавливаем поиск. Искомый отрезок $[a+(k-1)\Delta, a+k\Delta]$

4. Если мы знаем, что на интервале $(-\infty, a]$ существует корень уравнения, то от бесконечного инвервала к конечному мы переходим аналогично пункту 3.

Решение квадратного уравнения. $f(x) = ax^2 + bx + c$

- 1. Находим $D = b^2 4ac$.
- 2. Если D < 0, то не существует вещественных корней.
- 3. Если D = 0, то корень один: x = -b/(2a).
- 4. Если D>0, то два корня: $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$

Если коэффициент при x кратен двум, т.е. $f(x) = ax^2 + 2bx + c$, то можем немного переписать пункты:

- 1. Находим $\hat{D} = D/4 = b^2 ac$.
- 2. Если $\hat{D} < 0$, то не существует вещественных корней.
- 3. Если $\hat{D}=0$, то корень один: x=-b/a.
- 4. Если $\hat{D}>0$, то два корня: $x_{1,2}=\frac{-b\pm\sqrt{\hat{D}}}{a}$

Решение кубического уравнения. $f(x) = x^3 + ax^2 + bx + c$

Смотрим производную $f'(x) = 3x^2 + 2ax + b$. Находим дискриминант D.

- 1. Если $D \le 0$, то f(x) строго монотонно возрастает и имеет только один корень.
 - а) Если $|f(0)| < \varepsilon$, то x = 0 корень.
 - б) Если $f(0) < -\varepsilon$, то корень находится на интервале $[0, +\infty)$.

- в) Если $f(0) > \varepsilon$, то корень находится на интервале $(-\infty, 0]$.
- 2. Пусть D > 0. Находим α, β нули производной. Причём $\alpha < \beta$.
 - а) Если $f(\alpha) > \varepsilon$, $f(\beta) > \varepsilon$, то f(x) имеет один корень на интервале $(-\infty, \alpha)$.
 - б) Если $f(\alpha) < -\varepsilon$, $f(\beta) < -\varepsilon$, то f(x) имеет один корень на интервале $(\beta, +\infty)$.
- в) Если $f(\alpha) > \varepsilon$, $|f(\beta)| < \varepsilon$, то f(x) имеет два корня: первый это β (кратности 2), а второй находится на интервале $(-\infty, \alpha)$.
- г) Если $|f(\alpha)| < \varepsilon$, $f(\beta) < -\varepsilon$, то f(x) имеет два корня: первый это α (кратности 2), а второй находится на интервале $(\beta, +\infty)$.
- д) Если $f(\alpha) > \varepsilon$, $f(\beta) < -\varepsilon$, то f(x) имеет три корня: первый на интервале $(-\infty, \alpha)$, второй (α, β) , третий $(\beta, +\infty)$.
- е) Случай $|f(\alpha)| < \varepsilon$, $|f(\beta)| < \varepsilon$ особый. Будем в программе выдавать, что корень тут один и он равен $(\alpha + \beta)/2$.

Как должна выглядеть программа

На вход подаётся: ε , Δ , a, b, c.

На выходе: корни кубического уравнения $x^3 + ax^2 + bx + c = 0$, условие остановки $|f(x_*)|$ для каждого корня.