Example 1:

$$k = \frac{\Delta y}{\Delta x} = \frac{y(2) - y(1)}{x(2) - x(1)} = \frac{5 - 3}{2 - 1} = 2$$

$$y = 2x + m$$

$$y(1) = 3 = 2 \cdot 1 + m = 2 + m \iff m = 1$$

$$k = \frac{\Delta y}{\Delta x} = \frac{y(2) - y(1)}{x(2) - x(1)} = \frac{5 - 3}{2 - 1} = 2$$

$$y = 2x + m$$

$$y(1) = 3 = 2 \cdot 1 + m = 2 + m \iff m = 1$$

$$y = 2x + 1$$

This gives an estimation of y for every x

POLYNOMIAL RESPONSE SURFACES

Example 1: y = 2x + 1 is an example for 1 variable and order 1.

Solving it with matrices:

)

$$\overline{X} \overline{\beta} = \overline{y} = \begin{pmatrix} 1 & \chi(1) \\ 1 & \chi(2) \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} y(1) \\ y(2) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \end{pmatrix} \implies \begin{cases} \beta_0 + \beta_1 = 3 \iff \beta_0 = 3 - 2 = 1 \\ \beta_1 = 2 \end{cases}$$

$$\Rightarrow \widehat{y} = 1 + 2x$$

Example 2: Fit a second order response surface to the data and find the minimum value

$$\frac{x \mid y}{0 \mid 1/4}$$

$$1D \Rightarrow \hat{y} = \beta_0 + \beta_1 x + \beta_{11} x^2$$

$$x \mid y \mid y$$

$$x \mid y$$

Find the optimum analytically or by using an optimization algorithm.

$$\frac{\partial \hat{y}}{\partial x} = -1 + 2x = 0 \iff x = -\frac{1}{2}$$

$$x = \frac{1}{2}, y = \frac{1}{4} - \frac{1}{2} + \frac{1}{4} = 0$$

$$\frac{\partial \hat{y}}{\partial x} = 2 > 0 \implies \text{minimum}$$
(s the minimum)

Example 3: 2D. Second Order Response Surface $2D \Rightarrow \hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$ $b \beta_1 \Rightarrow \text{We need at least 6 experiments/samples}$

$$\hat{\beta} = (\bar{x}^t \bar{x})^{-1} \bar{x}^t \bar{y} = (10 - 212 - 2)^t$$

$$\Rightarrow \hat{y} = 1 - 2x_1 + x_1^2 + 2x_2^2 - 2x_1x_2$$

Interpolation

Estimate the value at a new point as a linear combination of the values at known points

$$\hat{y} = \sum_{i=1}^{n} w_i Y_i(x_i)$$

Example: Estimate the value at $\bar{x} = (2, 1)$

J
1
3
6

pont	distance to Bill	W	ツ	y.w
1	2	0.30	1	0.30
2	52	0.43	3	1.28
()	15	0.27	6	1,62
sum >	5.65	1		3.20

$$\Rightarrow \hat{y}(21) = 3.20$$

DESIGN OF EXPERIMENTS

Airplane example: Two variables, x, real number

x, real number 0 ± x, ± 270

X2, integer 1,2,3,4,5

Central Composite Design

X,	X2	1
135	3	center
0	3	
270	3	axis
135	١	1 wis
135	5	J
200	2	7
200	4	1 corner
70	2	runs
70	4	J

LATIN HYPERCUBE SAMPLING

X,	XZ
27	4
81	La
135	3
189	5
243	A CONTRACTOR OF THE PARTY OF TH
A.Phudish.cos.31	