TODOs

1: Deckblatt	2
2: Glossar	4
3: Englische Begriffe für die Datenstrukturen	4
4: Akronyme	4
5: Mehr Überblick	4
6: Stand der Technik	5
7: Ablauf als Bild	5
8: Separierung in Bäume	5
9: Background Option für weißen Hintergrund für Bilder	6
10: Mehr Baumeigenschaften	7
11: Baumeigenschaften +? → Segmente	7
12: Segmente + Eigenschaften +? → Klassifizierung?	
13: Meshing	7
14: Oben/Unten Teilung in 2 Segmente für Debug	8
15: Orthogonal?	
16: Bedienung/Interface	
17. Referenzen	10

Masterarbeit

Todo: Deckblatt

Inhaltsverzeichnis

1. Glossar	4
I. Überblick	
1. Punktwolke	4
2. Daten	
3. Stand der Technik	
5. Staria dei Technik	
II. Berechnung	
1. Ablauf	
2. Separierung in Bäume	
3. Baumeigenschaften	5
3.1. Krümmung	5
3.2. Punkthöhe	6
3.3. Varianz in Scheibe	6
4. Segmentierung von einem Baum	7
5. Eigenschaften für Visualisierung	7
5.1. Normale	7
5.2. Punktgröße	7
5.2.1. Detailstufe	7
6. Baumart	7
III. Meshing	
IV. Visualisierung	
1. Technik	7
2. Punkt	
3. Dynamische Eigenschaft	
4. Subpunktwolken (Bäume)	
4.1. Selektion (Raycast)	
5. Eye Dome	
6. LOD Octree	
6.1. Kostenbudget?	
7. Kamera/Projektion	
7.1. Kontroller	
7.1.1. Orbital	
7.1.2. First person	
7.1.2. Projektion	
7.2.1. Perspektive	
·	
7.2.2. Orthogonal?	
8. Bedienung/Interface	10

1. Glossar

Į	Todo: Glossar
Octree Leaf Branch Root	I
	Note: Englische Begriffe für die Datenstrukturen
Punktv Punkt Norma Arial Terrest	le
	Todo: Akronyme

I. Überblick

1. Punktwolke

- Menge von Punkten
- mindestens Position

2. Daten

- Waldstücke
- Deutschland
- terrestrial und arial
- zusätzlich manuelle Datenbestimmung
- nur Position bekannt

Todo: Mehr Überblick

3. Stand der Technik

Todo: Stand der Technik

II. Berechnung

1. Ablauf

Todo: Ablauf als Bild

- 1. Eingabedateien
 - · Dateien laden
- 2. Punktmenge
 - · Segmentierung in Bäume, Boden...
- 3. Liste von Bäumen
 - Analyse der Bäume
- 4. Liste von analysierten Bäumen
 - · Generierung von Octree
- 5. Octree + LOD für Visualisierung

getrennte Phasen (Phase ist in sich parallelisiert)

- 1. Laden der Dateien
- 2. Segmentierung
- 3. Analyse + Generierung

2. Separierung in Bäume

Todo: Separierung in Bäume

3. Baumeigenschaften

3.1. Krümmung

- 1. Hauptkomponentenanalyse
 - λ_i mit $i \in \mathbb{N}_0^2$ und $\lambda_i > \lambda_j$ wenn i > j
- 2. $c \frac{3\lambda_2}{\lambda_0 + \lambda_1 + \lambda_2}$ $c \in [0, 1]$

Todo: Background Option für weißen Hintergrund für Bilder

3.2. Punkthöhe

1.
$$h = \frac{p_y - y_{min}}{y_{max} - y_{min}}$$
• $h \in [0, 1]$

3.3. Varianz in Scheibe

- 1. 5 cm Scheiben
- 2. geometrischen Schwerpunkt berechnen

3. Varianz
$$v$$
 berechnen
4. $x = \frac{v_i}{v_{\text{max}}}$
• $x \in [0, 1]$

Todo: Mehr Baumeigenschaften

4. Segmentierung von einem Baum

Todo: Baumeigenschaften +? → Segmente

5. Eigenschaften für Visualisierung

5.1. Normale

- 1. Hauptkomponentenanalyse
- 2. Eigenvektor für λ_2

5.2. Punktgröße

- 1. Durchschnittliche Abstand zu umliegenden Punkten
- 2. Ausgleichsfaktor?

5.2.1. Detailstufe

- 1. Grid
 - Größe abhängig von Leafgröße, wird gröber für größere Blätter
- 2. Kombination von Punkten
 - · Größe als Fläche addieren
 - Normale Durchschnitt
 - · Position durchschnitt
 - · Eigenschaften?

6. Baumart

Todo: Segmente + Eigenschaften + ? → Klassifizierung?

- out of scope?
- neural?

III. Meshing

Todo: Meshing

IV. Visualisierung

1. Technik

- Rust
- WebGPU (wgpu)
- native Window (website?)
- LAS/LAZ

2. Punkt

- Instancing
- quad rect
- · Ausdehnung mit Normale
- Discard mit Distanz für Kreis (Kreisfläche)

3. Dynamische Eigenschaft

- eigenschaften als 32 bit unsigned integer
- look up table für farbe basierend auf eigenschaftwert

4. Subpunktwolken (Bäume)

- Punkte in einem Leaf gehören zum gleichen Segment
- Raycast durch den Octree zum ersten Leaf
- Segment vom leaf auswählen
 - nur nodes anzeigen, die zum Segment gehören
 - · infos für segment anzeigen

Note: Oben/Unten Teilung in 2 Segmente für Debug

4.1. Selektion (Raycast)

- · von root bis leaf
- bestimme intersection mit knoten
- leaf mit geringstem anstand als ergebnis
 - To-do?: besserer Algorithmus (ist schlecht aber gut genug)

5. Eye Dome

- 1. Post processing
- 2. depth image
- 3. anliegender Pixel mit maximalem Abstand 1. (-1,0), (0,-1), (1,0), (0,1)
- 4. Parameter *m*
- 5. $x = \frac{\text{maximaler abstand}}{m}$
- 6. auf [0, 1] beschränken
- 7. Parameter color?
- 8. Pixel mit color und x als α überlagern

6. LOD Octree

- 1. (Octree begriffe in English)
- 2. Octree mit maximaler Blattgröße 1 ≪ 15? (32k)
- 3. Blätter mit mehr Punkten werden in 8 Kinderknoten geteilt
 - Punkte auf Kinder verteilen
- 4. non Leaf Knoten wird LOD aus Kindern berechnet
 - 1. Punkte kombinieren
 - 2. Für Eigenschaften wert von einem Punkt übernehmen
- 5. rekursiv von Kindern bis zum Root
- 6. beim rendern für entferne Punkte nur Lod Stufe verwenden
 - 1. je näher so genauere LOD Stufe

6.1. Kostenbudget?

- · Anpassung der Genauigkeit
 - Verringerung des Aufwands
- Iteratives anpasssen an das Budget?

7. Kamera/Projektion

7.1. Kontroller

- bewegt Kamera
- kann gewechselt werden, ohne die Kameraposition zu ändern

7.1.1. Orbital

- · rotieren um einem Punkt im Raum
- Kamera fokussiert zum Punkt
- Entfernung der Kamera zum Punkt variabel
- Punkt entlang der horizontalen Ebene bewegbar
- To-do: Oben-Unten Bewegung

7.1.2. First person

- rotieren um die Kamera Position
- · Bewegung zur momentanen Blickrichtung
- Bewegungsgeschwindigkeit variabel
- To-do: Oben-Unten Bewegung

7.2. Projektion

7.2.1. Perspektive

• Projektion mit Field of View Kegel

7.2.2. Orthogonal?

Todo: Orthogonal?

8. Bedienung/Interface

Todo: Bedienung/Interface

Todo: Referenzen