Riddler Express (Marbles problem)

Pramod Mathai

June 25, 2021

If the number of marbles of each color are p, q, r, then the probability of choosing exactly one of each color is $pqr/\binom{100}{3}$, which equals 1/5 by the hypothesis. Thus

$$p + q + r = 100$$
, and (1)

$$pqr = 2^2 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 = 32340. \tag{2}$$

This has the unique (upto exchange) solution p=35, q=44, r=21 among positive integers less than 100. The following argument eliminates the need for a computer-search to prove uniqueness; Maclaurin's inequality and the prime factorization in (2) are used to that end.

Substituting x = p, y = q, z = r in Maclaurin's inequality

$$\left(\frac{xy + xz + yz}{3}\right)^{1/2} \leqslant \frac{x + y + z}{3} \tag{3}$$

and using (1) and (2), we infer that p must satisfy

$$\frac{980}{11p} + \frac{p(100 - p)}{363} \le 9. \tag{4}$$

Inspecting this inequality – in particular, its monotonicity for small values of p – reveals that p (and, by symmetry, q and r) should exceed 18. Since 19 is not one of the factors in the RHS of (2), we have

$$p, q, r \geqslant 20. \tag{5}$$

Substituting x = pq, y = pr, z = qr in (3), and using (1) we find

$$\left(\frac{pqr(p+q+r)}{3}\right)^{1/2} = \left(\frac{pq^2r + qp^2r + pr^2q}{3}\right)^{1/2} \leqslant \frac{pq + pr + qr}{3} = \frac{p(100-p) + qr}{3}.$$
(6)

Since $p(100-p) \le 2500$ for $1 \le p \le 100$, we can infer that $\frac{32340}{p} = qr \ge 614$. This implies that $p \le 53$. Since 51, 52 and 53 have prime factors which are absent in the RHS of (2), we can infer that p (and, by symmetry, q and r) must satisfy

$$p, q, r \leqslant 50. \tag{7}$$

The rest of the analysis relies on using the prime factorization in (2) along with the bounds (5) and (7). Without loss of generality (w.l.o.g.), assume that the prime 5 in (2) is a factor of p. If 2 is a factor of p but 4 is not then, no matter how the other primes in (2) are distributed, p+q+r will be odd, violating (1). This implies that either 4 is a factor of p or p is odd. If 4 is a factor of p, then – since 5 is also a factor – the upper bound (7) implies that p=20. If p is odd, then 4 must divide exactly one of the other two – say q, w.l.o.g. – else p+q+r will be odd, violating (1). Altogether, we have the two cases

$$p = 20, (8)$$

or

$$p = 5 \cdot a, \ q = 4 \cdot b. \tag{9}$$

If (8) holds then, w.l.o.g., let 11 be a factor of q. The bounds (5) and (7) and the factors in (2) then imply that q=33 and thus r=49. This violates (1) and so we rule out (8) as a possibility.

If (9) holds, then the bounds (5) and (7) imply that a = 7 and that b is either 7 or 11. Clearly, b = 11 is the only choice. The choices a = 7, b = 11 in (9) leave us with the unique solution p = 35, q = 44, r = 21.