Capítulo

4

Leis de Newton

Paula Ferreira: psfer@pos.if.ufrj.br

4.1. Dinâmica

Agora vamos estudar dinâmica, ou seja, tudo aquilo que causa movimento a uma partícula.

Força: é a ação pela qual um corpo acelera outro e que desaparece quando a distância entre os corpos tende ao infinito. É uma grandeza vetorial.

Partícula isolada: conceito idealizado de uma partícula que não sofre influência de nenhum outro corpo do universo por estar infinitamente distante deles. Exemplo: estrelas fixas.

4.2. Tipos de forças

4.2.1. Força de contato

Envolve contato direto entre corpos.

4.2.1.1. Força normal

Superfície exerce força sobre um corpo.

4.2.1.2. Força de atrito

Contrária ao movimento, age paralelamente à superfície. Superfície lisa: idealização de superfície sem atrito.

4.2.1.3. Força de tensão

Exercida por corda ou fio.

Fio ideal: massa desprezível e não estica.

4.2.2. Forças de longo alcance

Forças que atuam mesmo quando não há contato direto.

Força gravitacional: exercida sobre corpos com massa. A atração gravitacional que a Terra exerce sobre corpos próximos à superfície é o seu peso (\vec{P}) .

4.3. Superposição de forças

Efeito produzido por um número qualquer de forças é o efeito da força resultante (\vec{F}_R) .

$$\vec{F}_R = \sum_i \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$
 (1)

Podemos utilizar suas componentes:

$$\vec{F}_{Rx} = \sum_{i} \vec{F}_{ix} = (F_{1x} + F_{2x} + ...)\hat{\mathbf{i}}$$
 (2)

$$\vec{F}_{Ry} = \sum_{i}^{l} \vec{F}_{iy} = (F_{1y} + F_{2y} + ...)\hat{\mathbf{j}}$$
(3)

4.4. Primeira Lei de Newton

"Todo corpo persiste em seu estado de repouso, ou de movimento retilíneo uniforme, a menos que seja compelido a modificar este estado pela ação de forças impressas sobre ele."

- Força resultante é zero: $\sum_i \vec{F}_i = 0$.
- Corpo em repouso ou se movendo em linha reta com velocidade constante.
- Inércia: tendência de se manter em movimento.
- A primeira lei de Newton só é valida em referenciais inerciais.

• Um referencial que se move com velocidade constante em relação a um referencial inercial, também é inercial.

Se estiver num referencial inercial, podemos afirmar que uma partícula isolada está em repouso ou em MRU.

4.5. Segunda Lei de Newton

Em relação a um referencial inercial qualquer variação de velocidade (aceleração) deve estar associada à ação de forças.

- Corpo acelera na direção da força resultante.
- Deve existir um coeficiente inversamente proporcional à "inércia"do corpo.
- Massa inercial: coeficiente de inércia.

$$m = \frac{|\sum \vec{F}|}{a} \tag{4}$$

2ª Lei de Newton:

$$\vec{F}_R = m\vec{a} \tag{5}$$

Só é válida em um sistema de referencial inercial.

$$1N = 1kg \cdot m/s^2$$

4.5.1. Exemplo

4.5 Young & Freedman.

4.6. Massa e peso

- Massa: inércia
- Peso: força de atração gravitacional exercida por um corpo massivo (exemplos: Terra, Sol).
- Massa gravitacional = massa inercial.

$$\vec{P} = mg(-\hat{\mathbf{j}}) \tag{6}$$

4.6.1. Exemplo: Teste sua compreensão 4.4 Young & Freedman

Astronauta em $g = 19,6 m/s^2$

- a) É mais fácil ou mais difícil caminhar em comparação com a Terra?
- b) E apanhar uma bola que se move horizontalmente a 12 m/s?

4.7. Forças

Forças aplicadas (ou forças de origem física ou forças externas): forças causadas por efeitos físicos. Essas forças apresentam constantes específicas determinadas experimentalmente. Exemplos: força peso, lei de Coulomb.

Forças vinculares (ou de origem geométrica): são forças dadas por relações geométricas entre as diversas partes de um sistema. Exemplo: força normal, força de tração, força de atrito estático.

4.8. Força gravitacional

"Cada partícula de matéria do universo atrai qualquer outra com uma força diretamente proporcional ao produto de suas respectivas massas e inversamente proporcional ao quadrado da distância que as separa."

Sejam duas partículas 1 e 2, de massas m_1 e m_2 e de posições \vec{r}_1 e \vec{r}_2 . A posição relativa da partícula 1 em relação a 2 é $\vec{r}_{12} = \vec{r}_1 - \vec{r}_2$.

A força gravitacional sobre a partícula 1 exercida pela partícula 2 é:

$$\vec{F}_{12} = -G \frac{m_1 m_2}{|\vec{r}_1 - \vec{r}_2|^2} \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|} = -G \frac{m_1 m_2}{|\vec{r}_1 - \vec{r}_2|^2} \hat{\mathbf{r}}_{12}$$
(7)

onde $G = 6.6742 \times 10^{-11} N m^2 / kg^2$ é a constante de gravitação universal.

$$|\vec{F}_{12}| = G \frac{m_1 m_2}{|\vec{r}_1 - \vec{r}_2|^2} \tag{8}$$

Para uma partícula fixa na origem com massa M do sistema utilizado, a força gravitacional de M sobre m, a uma distância \vec{r} será:

$$\vec{F} = -G\frac{mM}{r^2}\hat{\mathbf{r}} \tag{9}$$

4.8.1. Peso

Colocando a Terra na origem do sistema de coordenadas, a força exercida sobre a partícula de massa *m* pela Terra é:

$$m\vec{a} = -G\frac{mM}{r^2}\hat{\mathbf{r}}$$
$$\vec{g} = -G\frac{M}{r^2}\hat{\mathbf{r}}$$

A expressão indica que o peso cai com o quadrado da distância, a atração tende a zero quando $r \to \infty$. Próximo à superfície, r é grande e aproximamos a aceleração da gravidade como um vetor vertical $\vec{g} = g(-\hat{\mathbf{j}})$. Assim, com $r = r_{Terra}$ temos $g \approx 9.8 \, m/s^2$.

Referências

- [1] Herch Moysés Nussenzveig. *Curso de fisica básica: Mecânica (vol. 1)*. Vol. 394. Editora Blucher, 2013.
- [2] Hugh D Young, A Lewis Ford e Roger A Freedman. Fisica I Mecânica. 2008.