CS & IT

ENGINEERING

Digital logic Logic GATE

Lecture No. 4

By- CHANDAN SIR

TOPICS TO BE COVERED 02 XOR GATE

03 X-NOR GATE

04 Discussion

NAND

NOR

NAND=
$$(2n-2)+k$$

 $n=5$ $k=1$
 $(10-2)+1$
 (9)

$$NOR = (3n-3)-k$$
 $12-1=(1)$

9/

$$F = A + B + C$$
 $N = 3 \quad k = 1$
 $NAND = (3x3 - 3) - 1$
 $= 5$

$$140R(2n-2)+k$$

=)(2x3-2)+1
= 5

$$Q f = \overline{A} + B + \overline{C} + D$$

NAND =
$$(3n-3)-k$$

= $(3x4-3)-2$
= $12-3-2$
= \mp

NOR=
$$(2n-2)+k$$

= $(2x4-2)+2$
= 8

$$Q f = \overline{A} + B + \overline{C} + D$$

NAND =
$$(3n-3)-k$$

= $(3x4-3)-2$
= $(7+)$

$$Q f = \bar{A} + B + \bar{C} + D$$

$$NOR = (2n-2) + K$$

$$= 8$$

TYPE 3 + = AB+CD

S=CHAN to.on muminiM

$$f = A \cdot A + B \cdot B$$

Ex f=A+BC

Minimum no. of NAND=?

$$f = A \cdot A + B \cdot C$$

$$Ex$$
 $f = \overline{AB} + CD$

TYPE
$$\Phi$$
 $f = (A+B) \cdot (C+D)$

Minimum No. of NOR=?

$$f = \overline{A} \cdot B \cdot \overline{c} \cdot D \cdot \cdot \cdot$$

 $NAND = (2n-2) + k$
 $NOR = (3n-3) - k$

$$f = A + B + C + D + \cdots$$

 $NAND = (3n-3) - K$
 $NOR = (2n-2) + K$

Froduct of sum (POS)

$$f = (A+B) \cdot C(+D)$$
 Type

 $NOR = 3$
 $OR - AND$
 $NOR - NOR$

$$\overline{AB+AB} = ABB$$

NAND=4

TRANPOSE THEOREM

$$(A+B)(A+B) = AB+AB=ABB$$

XOR GATE, X-NOR GATE

XOR GATE

Symbol

Truth Table

Α	1	$A \oplus B$		
в	-1 レ/	$\bar{A}B + A\bar{B}$		
		(A+B) (A+B)		

A	В	$Y = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	. 0

$$A = R$$

$$y = 0$$

$$A = R$$

$$y = 1$$

$$A = R$$

$$A = 0 \oplus A$$

$$= \int_{-\infty}^{\infty} A\Theta B = C$$

$$A \oplus 1 = \overline{A}$$

When ODDD number of i's are

Present in the input then olp of

X-OR GATE is high.

INVERTER

© A⊕B⊕C

Recimal	A	B	C	ABBBC
$o \rightarrow$	0	0	0	0
1)	0	0	1	1
(2)	0	1	0	1
3->	0	1	1	0
(A)>	1	0	0	J
5→	1	0	1	0
6->	T	1	0	0
A)	Ţ	1	1	1

'n' inpuls -> Total combination=2n

Find the output y.

Find the output y.

Find the output y.

The Boolean function given below: $f(A, B) = A \oplus B \oplus AB$ which statement is/are correct?

- A It is a OR GATE
- B It is a NAND GATE
- It requires 3 NAND gate to implement the function
- It required 2 NAND gates to implement the function

Minimized expression will be $Y = A \oplus (A + B)$

- $A \oplus B$
- B A⊙B
- C Ā·B
- D A + B

Thank you

Seldiers!

