2.5. Bernoulli Trials and the Binomial Distribution

- 1. Definition. A Bernoulli trial is an experiment with two, and only two, possible outcomes.
- 2. *Example*. The toss of a coin is a Bernoulli trial.

3. Definition. Let X be a random variable, and let p be a constant such that $0 \le p \le 1$. If

$$P(X = 1) = p, \quad P(X = 0) = 1 - p,$$

then we say X has the Bernoulli(p) distribution.

4. Let $X \sim \text{Bernoulli}(p)$, our convention is to consider the event X=1 as a success and the event X=0 as a failure. In this context, p is usually called the success rate or success probability, 1-p is often called the failure rate.

5. Example. Think of a multiple-choice question with three choices only one of which is correct. Suppose that we decide to make a random guess. Define

$$X = \begin{cases} 1, & \text{we get the right answer,} \\ 0, & \text{we don't get the right answer.} \end{cases}$$

Then, X is a Bernoulli random variable. And, X has pmf

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x) & \frac{2}{3} & \frac{1}{3} \end{array}$$

Here, the event X=1 is a success, $\frac{1}{3}$ is the success rate; the event X=0 is a failure, $\frac{2}{3}$ is the failure rate.

6. Definition. Suppose that $X \sim \text{Bernoulli}(p)$. Suppose that X_1, X_2, \dots, X_n are a sample from the population X.

Let $Y = X_1 + X_2 + \cdots + X_n$. Then the range of Y is $\{0, 1, 2, 3, \cdots, n\}$, and we can show that (will be proved later) pmf of Y is

$$f(y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, 1, 2, \dots, n.$$

We say Y has the Binomial(n, p) distribution.

7. Example. An algebra test has five multiple choice questions. Each question has three choices, of which only one is correct. Suppose a certain student just randomly guesses on each of the five questions. Let Y be the number of questions this student will answer correctly. Find the distribution of Y.

— Solution. For each i=1,2,3,4,5, define the random variable X_i as:

$$X_i = \begin{cases} 1, & \text{the } i\text{-th question is answered correctly,} \\ 0, & \text{the } i\text{-th question is not answered correctly.} \end{cases}$$

Then, each X_i is a Bernoulli random variable. And, X_1, X_2, \cdots, X_5 have a common pmf

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x) & \frac{2}{3} & \frac{1}{3} \end{array}$$

It is obvious that X_1, X_2, \dots, X_5 are independent. So, by definition, X_1, X_2, \dots, X_5 form a sample of size five from the population f(x). Here, the population is the Bernoulli $\left(\frac{1}{3}\right)$ distribution. It is also clear that

$$Y = X_1 + X_2 + \dots + X_5.$$

Y has possible values 0,1,2,3,4,5. We will now find, for each i=0,1,2,3,4,5,

$$P(Y=i)$$
.

In fact, we can show that, for each i=0,1,2,3,4,5,

$$P(Y=i) = {5 \choose i} \left(\frac{1}{3}\right)^i \left(\frac{2}{3}\right)^{5-i}.$$

The proof is combinatorial in nature, and will be provided later. The key point is, the event Y=i can occur in $\binom{5}{i}$ ways, and the probability of each of these ways is $\left(\frac{1}{3}\right)^i\left(\frac{2}{3}\right)^{5-i}$.

(Example continues on the next page.)

Let consider the P(Y=3) in detail. Y=3 means three questions are answered correctly, and these three questions can be any three of the five questions. So Y=3 is a not a single sample point but a subset of the sample space. In fact, the event Y=3 can occur in $\binom{5}{3}=10$ ways, and the probability of each of these ten ways is $\left(\frac{1}{3}\right)^3\left(\frac{2}{3}\right)^2$ — two failures plus three successes. The ten ways in which the event Y=3 can occur are listed in the table on the next page, and each of the ten ways corresponds to a 3-element subset of $\{1,2,3,4,5\}$.

Since the set $\{1,2,3,4,5\}$ has $\binom{5}{3}=10$ 3-element subsets, so the event Y=3 can occur in $\binom{5}{3}=10$ ways. It follows that

$$P(Y=3) = {5 \choose 3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^2.$$

X_1	X_2	X_3	X_4	X_5	corresponding set	
1	1	1	0	0	$\{1, 2, 3\}$	
1	1	0	1	0	$\{1, 2, 4\}$	
1	1	0	0	1	$\{1, 2, 5\}$	
1	0	1	1	0	$\{1, 3, 4\}$	
1	0	1	0	1	$\{1, 3, 5\}$	
1	0	0	1	1	$\{1, 4, 5\}$	
0	1	1	1	0	$\{2, 3, 4\}$	
0	1	1	0	1	$\{2, 3, 5\}$	
0	1	0	1	1	$\{2, 4, 5\}$	
0	0	1	1	1	${3,4,5}$	