

CNN, Detection, Segmentation

구름 도시공학과 일반대학원

한양대학교

- 1. CNN SOTA
- 2. Detection Algorithm
- 3. Segmentation

CNN State of the Art (SOTA)

https://paperswithcode.com/sota/image-classification-on-imagenet

Image Classification on ImageNet

MNIST

손 글씨 학습데이터 6만 개, 검증데이터 1만 개

LeNet (Gradient-based Learning Applied to Document Recognition) 1998

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

고해상도 이미지셋, 1000개 클래스, 120만개 학습이미지, 5만개 검증 이미지, Labeling 데이터 등

https://image-net.org/challenges/LSVRC/2012/2012-downloads.php

Images

- Training images (Task 1 & 2). 138GB. MD5: 1d675b47d978889d74fa0da5fadfb00e
- Training images (Task 3). 728MB. MD5: ccaf1013018ac1037801578038d370da
- Validation images (all tasks). 6.3GB. MD5: 29b22e2961454d5413ddabcf34fc5622
- Test images (all tasks). 13GB. MD5: e1b8681fff3d63731c599df9b4b6fc02

If you downloaded ILSVRC 2012 test images on or before 10/10/2019, please apply this patch to replace a subset of images (a total of 2 images are replaced). Note that training and validation images are not affected.

Terms of use: by downloading the image data from the above URLs, you agree to the following terms:

- 1. You will use the data only for non-commercial research and educational purposes.
- 2. You will NOT distribute the above URL(s).p
- 3. Stanford University and Princeton University make no representations or warranties regarding the data, including but not limited to warranties of non-infringement or fitness for a particular purpose.
- 4. You accept full responsibility for your use of the data and shall defend and indemnify Stanford University and Princeton University, including their employees, officers and agents, against any and all claims arising from your use of the data, including but not limited to your use of any copies of copyrighted images that you may create from the data.

Bounding Boxes

- Training bounding box annotations (Task 1 & 2 only) . 20MB. MD5: 9271167e2176350e65cfe4e546f14b17
- Training bounding box annotations (Task 3 only) . 1MB. MD5: 61ebd3cc0e4793899a841b6b27f3d6d8
- Validation bounding box annotations (all tasks) . 2.2MB. MD5: f4cd18b5ea29fe6bbea62ec9c20d80f0
- Test bounding box annotations (Task 3 only), 33MB, MD5: 2dfdb2677fd9661585d17d5a5d027624

ILSVRC2012

ILSVRC2012_val_ 00000001.JPEG

ILSVRC2012_val_ 00000002.JPEG

ILSVRC2012_val_

00000003.JPEG

ILSVRC2012_val 00000004.JPEG

00000005.JPEG

ILSVRC2012_val_ 00000006.JPEG

ILSVRC2012_val_ 00000007.JPEG

ILSVRC2012_val_ 00000008.JPEG

ILSVRC2012_val_ 00000009.JPEG

ILSVRC2012_val_ 00000010.JPEG

ILSVRC2012_val_ 00000011.JPEG

ILSVRC2012_val_ 00000012.JPEG

ILSVRC2012_val_ 00000013JPEG

ILSVRC2012_val_ 00000014.JPEG

ILSVRC2012_val_ 00000015.JPEG

ILSVRC2012_val_ 00000016.JPEG

ILSVRC2012_val_ 00000017.JPEG

ILSVRC2012_val_ 00000018.JPEG

ILSVRC2012_val_ 00000019.JPEG

ILSVRC2012_val_ 00000020.JPEG

ILSVRC2012_val_ 00000021.JPEG

ILSVRC2012_val_ 00000022.JPEG

ILSVRC2012_val_ 00000023.JPEG

ILSVRC2012_val_ 00000024.JPEG

ILSVRC2012_val_ 00000025.JPEG

ILSVRC2012_val_ 00000026.JPEG

ILSVRC2012_val_ 00000027.JPEG

ILSVRC2012_val_ 00000028.JPEG

ILSVRC2012_val_ 00000029.JPEG

ILSVRC2012_val 00000030.JPEG

ILSVRC2012_val_ 00000031.JPEG

ILSVRC2012_val_ 00000032.JPEG

ILSVRC2012_val_ 00000033.JPEG

ILSVRC2012_val_ 00000034.JPEG

ILSVRC2012_val_ 00000035.JPEG

ILSVRC2012_val_ 00000036.JPEG

ILSVRC2012_val_ 00000037.JPEG

ILSVRC2012_val_ 00000038.JPEG

ILSVRC2012_val_ 00000039.JPEG

ILSVRC2012_val_ 00000040.JPEG

ILSVRC2012_val_ 00000041.JPEG

00000051.JPEG

ILSVRC2012_val_ 00000043.JPEG

ILSVRC2012_val_ 00000044.JPEG

ILSVRC2012_val_ 00000045.JPEG

ILSVRC2012_val 00000046.JPEG

ILSVRC2012 val ILSVRC2012 val 00000047.JPEG 00000048.JPEG

ILSVRC2012_val

00000049.JPEG

ILSVRC2012 val 00000050.JPEG

ILSVRC2012 val

ILSVRC2012 val 00000053.JPEG

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

AlexNet (ImageNet Classification with Deep Convolutional Neural Networks) 2012

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

AlexNet Architecture

3.1 ReLU Nonlinearity

AlexNet Architecture

3.2 Training on Multiple GPUs

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details

AlexNet Architecture

3.3 Local Response Normalization

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

3.4 Overlapping Pooling

AlexNet Reducing Overfitting

4.1 Data Augmentation

이미지 반전, 이미지 자르기 등을 통해 학습 이미지 양 증가

4.2 Dropout

(a) Standard Neural Net

(b) After applying dropout.

CIFAR (Canadian Institute For Advanced Research)

32x32 크기의 5만개 학습데이터와 1만개 검증데이터셋

https://www.cs.toronto.edu/~kriz/cifar.html

Here are the classes in the dataset, as well as 10 random images from each:

Keras 지원 데이터 셋

https://keras.io/api/datasets/

Available datasets

MNIST digits classification dataset

load_data function

CIFAR10 small images classification dataset

• load_data function

CIFAR100 small images classification dataset

• load_data function

IMDB movie review sentiment classification dataset

- load data function
- get_word_index function

Reuters newswire classification dataset

- load_data function
- get_word_index function

Fashion MNIST dataset, an alternative to MNIST

• load_data function

Boston Housing price regression dataset

load_data function

Keras 지원 학습 모델

https://keras.io/api/applications/

1. Very Deep CNN

2. Residual Learning

3. DenseNet

4. EfficientNet

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	0.790	0.945	22,910,480	126	109.42	8.06
VGG16	528	0.713	0.901	138,357,544	23	69.50	4.16
VGG19	549	0.713	0.900	143,667,240	26	84.75	4.38
ResNet50	98	0.749	0.921	25,636,712	-	58.20	4.55
ResNet101	171	0.764	0.928	44,707,176	-	89.59	5.19
ResNet152	232	0.766	0.931	60,419,944	-	127.43	6.54
ResNet50V2	98	0.760	0.930	25,613,800	-	45.63	4.42
ResNet101V2	171	0.772	0.938	44,675,560	-	72.73	5.43
ResNet152V2	232	0.780	0.942	60,380,648	-	107.50	6.64
InceptionV3	92	0.779	0.937	23,851,784	159	42.25	6.86
InceptionResNetV2	215	0.803	0.953	55,873,736	572	130.19	10.02
MobileNet	16	0.704	0.895	4,253,864	88	22.60	3.44
MobileNetV2	14	0.713	0.901	3,538,984	88	25.90	3.83
DenseNet121	33	0.750	0.923	8,062,504	121	77.14	5.38
DenseNet169	57	0.762	0.932	14,307,880	169	96.40	6.28
DenseNet201	80	0.773	0.936	20,242,984	201	127.24	6.67
NASNetMobile	23	0.744	0.919	5,326,716	-	27.04	6.70
NASNetLarge	343	0.825	0.960	88,949,818	-	344.51	19.96
EfficientNetB0	29	-	-	5,330,571	-	46.00	4.91
EfficientNetB1	31	-	-	7,856,239	-	60.20	5.55
EfficientNetB2	36	-	-	9,177,569	-	80.79	6.50
EfficientNetB3	48	-	-	12,320,535	-	139.97	8.77
EfficientNetB4	75	-	-	19,466,823	-	308.33	15.12
EfficientNetB5	118	-	-	30,562,527	-	579.18	25.29
EfficientNetB6	166	-	-	43,265,143	-	958.12	40.45
EfficientNetB7	256	-	-	66,658,687	-	1578.90	61.62

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION (VGGnet, Visual Geometry Group)

https://arxiv.org/pdf/1409.1556.pdf

Deep Residual Learning for Image Recognition (ResNet)

https://arxiv.org/pdf/1512.03385.pdf

Figure 2. Residual learning: a building block.

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Densely Connected Convolutional Networks (DenseNet)

https://arxiv.org/pdf/1608.06993.pdf

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

SVHN(The Street View House Numbers)

$ \begin{array}{ c c c c c } \hline Layers & Output Size & DenseNet-121 & DenseNet-169 & DenseNet-201 & DenseNet-264 \\ \hline \hline Convolution & 112 \times 112 & 7 \times 7 \text{ conv, stride 2} \\ \hline Pooling & 56 \times 56 & 3 \times 3 \text{ max pool, stride 2} \\ \hline Dense Block & 56 \times 56 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \\ \hline Convolution & 28 \times 28 & 28 \times 28 & 28 \times 28 \times 28 & 28 \times 28 \times$										
$ \begin{array}{ c c c c c c } \hline Pooling & 56 \times 56 & 3 \times 3 \text{ max pool, stride 2} \\ \hline Dense Block & 1 \times 1 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 6 & \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 6 & \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 6 & \end{bmatrix} \times 6 \\ \hline Transition Layer & 56 \times 56 & 1 \times 1 \text{ conv} \\ (1) & 28 \times 28 & 2 \times 2 \text{ average pool, stride 2} \\ \hline Dense Block & 28 \times 28 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv} & 3 \times 12 \\ \end{bmatrix} & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} & 3 \times 3 \text{ conv}$	Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264				
$\begin{array}{ c c c c c c } \hline Dense Block & 56 \times 56 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 & \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 &$	Convolution	112 × 112	7×7 conv, stride 2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pooling	56 × 56	3 × 3 max pool, stride 2							
	Dense Block	56 × 56	[1×1 conv]	[1×1 conv]	[1×1 conv]	[1×1 conv]				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$3 \times 3 \text{ conv}$ $\begin{bmatrix} \times 6 \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \begin{bmatrix} 3 \\ 3 \times 3 \text{ conv} \end{bmatrix}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Transition Layer	56 × 56	1 × 1 conv							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	28 × 28	2×2 average pool, stride 2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dense Block	20 20	[1 × 1 conv] 12	[1 × 1 conv]12	[1 × 1 conv]12	[1 × 1 conv]12				
	(2)	28 × 28	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$3 \times 3 \text{ conv}$ $\right] \times 12$ $\left[3 \times 3 \text{ conv} \right] \times 12$ $\left[3 \times 3 \text{ conv} \right] \times 3 \times $		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Transition Layer	28×28	$1 \times 1 \text{ conv}$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2)	14 × 14	14×14 2×2 average pool, stride 2							
	Dense Block	14 × 14	[1 × 1 conv] , 24	$1 \times 1 \text{ conv}$ $1 \times 1 \text{ conv}$ $1 \times 1 \text{ conv}$	[1 × 1 conv]	[1 × 1 conv]				
	(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 46$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 64$				
Dense Block (4) 7×7 $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$ Classification 1×1 7×7 global average pool	Transition Layer	14×14 $1 \times 1 \text{ conv}$								
$ \begin{array}{c cccc} (4) & 7 \times 7 & \boxed{3 \times 3 \text{ conv}} \times 16 & \boxed{3 \times 3 \text{ conv}} \times 32 & \boxed{3 \times 3 \text{ conv}} \times 32 & \boxed{3 \times 3 \text{ conv}} \times 48 \\ \hline \text{Classification} & 1 \times 1 & 7 \times 7 \text{ global average pool} \\ \end{array} $	(3)	7×7 2×2 average pool, stride 2								
(4) $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$ Classification $\begin{bmatrix} 1 \times 1 \end{bmatrix}$ $\begin{bmatrix} 1 \times 3 \times$	Dense Block	7 7	[1 × 1 conv]	[1 × 1 conv] , 22	[1 × 1 conv] , 22	[1 × 1 conv]				
8-1-1-1	(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 16}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$				
Layer 1000D fully-connected, softmax	Classification	1 × 1	7 × 7 global average pool							
	Layer	1000D fully-connected, softmax								

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Table 2: Error rates (%) on CIFAR and SVHN datasets. *k* denotes network's growth rate. Results that surpass all competing methods are **bold** and the overall best results are **blue**. "+" indicates standard data augmentation (translation and/or mirroring). * indicates gresults run by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are obtained using Dropout. DenseNets achieve lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

https://arxiv.org/abs/1905.11946

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio. 20

- 1. CNN SOTA
- 2. Detection Algorithm
- 3. Segmentation

Object Detection in 20 Years: A Survey

https://arxiv.org/pdf/1905.05055.pdf

Fig. 2. A road map of object detection. Milestone detectors in this figure: VJ Det. [10, 11], HOG Det. [12], DPM [13–15], RCNN [16], SPPNet [17], Fast RCNN [18], Faster RCNN [19], YOLO [20], SSD [21], Pyramid Networks [22], Retina-Net [23].

Rich feature hierarchies for accurate object detection and semantic segmentation

https://arxiv.org/pdf/1311.2524.pdf

R-CNN: Regions with CNN features

Fast R-CNN

https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

https://arxiv.org/pdf/1506.01497.pdf

(YOLO) You Only Look Once: Unified, Real-Time Object Detection

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

https://github.com/ultralytics/yolov5

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDat aSe=realm&dataSetSn=165

- 1. CNN SOTA
- 2. Detection Algorithm
- 3. Segmentation

#토지피복

항공사진

#위성영상

토지 피복지도 항공위성 이미지(강원 및 충청)

분야 재난안전환경

갱신년월 : 2022-10

구축년도: 2020 조회수: 265 다운로드: 163 용량: 35.59 GB

https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=142

Raster File, tiff format

- 10 건물
- 20 주차장
- 30 도로
- 40 가로수
- 50 논
- 60 밭
- 70 산림
- 80 나지
- 100 비대상지

```
[100, 100, 100, 100, 100, 100, 10, 10,
                 10,
                   10,
                       10, 10],
[100, 100, 100, 100, 100, 100, 10, 10,
                 10, 10, 10,
                       10, 10],
[100, 100, 100, 100, 100, 100, 10, 10,
                 10,
                   10,
                     10,
                       10, 10],
[100, 100, 100, 100, 100, 100, 100,
               10,
                 10,
                   10, 10,
                         10],
[100, 100, 100, 100, 100, 100, 100,
               10,
                 10,
                   10,
                         10],
[100, 100, 100, 100, 100, 100, 100, 10,
                 10, 10,
                       10, 10],
[100, 100, 100, 100, 100, 100, 100, 10,
                 10, 10, 10,
                       10, 10],
[100, 100, 100, 100, 100, 100, 100,
               10,
                 10,
                   10,
                         10],
10,
                   10,
                     10,
                       10,
                         10],
10, 10, 10,
                       10, 10],
10, 10,
                     10,
                       10,
                         10],
10, 10, 10,
                       10, 10],
10, 10, 10,
                         10],
10,
                         10],
10, 10],
dtype=uint8)
```

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/pdf/1505.04597.pdf

Multiclass semantic segmentation using DeepLabV3+

https://keras.io/examples/vision/deeplabv3_plus/

High-resolution networks and Segmentation Transformer for Semantic Segmentation

https://github.com/HRNet/HRNet-Semantic-Segmentation

Segment Anything

https://segment-anything.com/

Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a promptable segmentation *task*, a segmentation *model* (SAM) that powers data annotation and enables zero-shot transfer to a range of tasks via prompt engineering, and a *data* engine for collecting SA-1B, our dataset of over 1 billion masks.

