Assignment

Kevin Guillen MATH 200 — Algebra I — Fall 2021

Problem 3.19 Let G and H be groups. Does there exist a product G and H in **Grp**?

Proof. Yes. The product will be the direct product of the groups G and H, and we know this forms a new group $G \times H$ that will be an object in Grp, together with,

$$\begin{aligned} p:G\times H &\to G\\ (g,h) &\mapsto g\\ q:G\times H &\to H\\ (g,h) &\mapsto h. \end{aligned}$$

We see for any group in $Z \in \mathbf{Grp}$, we have the following bijective map,

$$\varphi: Hom_{Grp}(Z, G \times H) \to Hom_{Grp}(Z, G) \times Hom_{Grp}(Z, H)$$
$$f \mapsto (p \circ f, q \circ f).$$

We will prove that it is bijective by first proving it is injective.

Consider any $f, f' \in Hom_{Grp}(Z, G \times H)$. If $\varphi(f) = \varphi(f')$ we see the following,

$$\begin{split} \phi(f) &= \phi(f') \\ (p \circ f, q \circ f) &= (p \circ f', q \circ f') \\ \rightarrow (p \circ f) &= (p \circ f') \text{ and } (q \circ f) = (q \circ f') \end{split}$$

but p and q are injective, and thus f = f'.