Business Cycles and the Asset Structure of Foreign Trade

(IER, 1995)

Marianne Baxter, Mario J. Crucini

Contents

- 1 Introduction
- 2 Model
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- 5 Conclusion

Current Section

- 1 Introduction
- Mode
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- Conclusion

Motivation

- Reason: The extent of international financial integration is important for international business cycles.
 - Individuals' incentive to smooth consumption in response to fluctuations in income via financial markets.
 - The extent to which a country can trade on world financial markets will determine the extent to which its citizens can insure themselves against nation-specific components of business-cycle risk.
- Goal: To provide a detailed analysis of the channels through which international financial linkages affect international business cycles.

Current Section

- 1 Introduction
- 2 Model
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- Conclusion

Preferences

Preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{1-\sigma} [C_t^{\theta} L_t^{1-\theta}]^{1-\sigma}, \quad \text{home country;} \tag{1}$$

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{1-\sigma} [(C_t^*)^{\theta} (L_t^*)^{1-\theta}]^{1-\sigma}, \quad \text{foreign country.} \quad (2)$$

Time Constraints:

$$1 - L_t - N_t \ge 0, \quad \text{home country;} \tag{3}$$

$$1 - L_t^* - N_t^* \ge 0, \quad \text{foreign country.} \tag{4}$$

Technology

• Production Function:

$$Y_t = A_t K_t^{1-\alpha} (X_t N_t)^{\alpha}$$
, home country; (5)

$$Y_t^* = A_t^* (X_t^*)^{1-\alpha_*} (X_t^* N_t^*)^{\alpha_*},$$
 foreign country. (6)

where X_t and X_t^* are purely labor-augmenting technical change in the home and foreign countries, and grow at a common, constant gross rate: $\gamma = X_{t+1}/X_t = X_{t+1}^*/X_t^*$.

Capital Accumulations:

$$K_{t+1} = (1 - \delta)K_t + \phi(I_t/K_t)K_t, \text{ home country;}$$
 (7)

$$K_{t+1}^* = (1 - \delta)K_t^* + \phi(I_t^*/K_t^*)K_t^*,$$
 foreign country. (8)

Complete Markets

Social Planner's Problem

$$\max \mathcal{L} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \tilde{\beta}^{t} \{ [\pi u(c_{t}, L_{t}) + (1 - \pi)u(c_{t}^{*}, L_{t}^{*})]$$

$$+\pi w_{t} (1 - L_{t} - N_{t}) + (1 - \pi)w_{t}^{*} (1 - L_{t}^{*} - N_{t}^{*})$$

$$+\pi \lambda_{t} [(1 - \delta)k_{t} - (\gamma k_{t+1} - \phi(i_{t}/k_{t})k_{t})]$$

$$+ (1 - \pi)\lambda_{t}^{*} [(1 - \delta)k_{t}^{*} - (\gamma k_{t+1}^{*} - \phi(i_{t}^{*}/k_{t}^{*})k_{t}^{*})]$$

$$+ p_{t} [\pi (A_{t}F(k_{t}, N_{t}) - c_{t} - i_{t})$$

$$+ (1 - \pi)(A_{t}^{*}F(k_{t}^{*}, N_{t}^{*}) - c_{t}^{*} - i_{t}^{*})] \}$$

- where $\tilde{\beta} \equiv \beta \gamma^{\theta(1-\sigma)}$, the multipliers are interpreted as:
 - w_t, w_t^* : wage rate
 - λ_t, λ_t^* : price of existing capital
 - p_t: price of the final good(price of new capital)

Complete Markets

FOCs:

$$c_t: p_t = u_1(c_t, L_t) \tag{9}$$

$$L_t: w_t = u_2(c_t, L_t)$$
 (10)

$$N_t : w_t = p_t A_t F_2(k_t, N_t) (11)$$

$$i_t: p_t = \lambda_t \phi'(i_t/k_t) \tag{12}$$

$$k_{t+1}: \gamma \lambda_t = E_t \mu(\frac{i_{t+1}}{k_{t+1}}) \tilde{\beta} \lambda_{t+1} + \tilde{\beta} E_t p_{t+1} A_{t+1} F_1(k_{t+1}, N_{t+1})$$
 (13)

$$w_t: 1 - L_t - N_t = 0 (14)$$

$$\lambda_t : \gamma k_{t+1} = (1 - \delta)k_t + \phi(i_t/k_t)k_t \tag{15}$$

$$p_t : \pi[y_t - c_t - i_t] + (1 - \pi)[y_t^* - c_t^* - i_t^*] = 0$$
(16)

where $\mu(z) \equiv [\phi(z) - z\phi_1(z) + (1 - \delta)].$

Small Open Economy: Partial Equilibrium

• The economy is too small to affect the world interest rate. Flow budget constraint: . $(P_t^B \equiv (1 + r_t)^{-1})$

$$\gamma P_t^B b_{t+1} + c_t + i_t \le y_t + b_t \tag{17}$$

$$\max \mathcal{L} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \tilde{\beta}^{t} \{ u(c_{t}, L_{t}) + w_{t} (1 - L_{t} - N_{t}) + \lambda_{t} [(1 - \delta)k_{t} - (\gamma k_{t+1} - \phi(i_{t}/k_{t})/k_{t})] + p_{t} (y_{t} + b_{t} - \gamma P_{t}^{B} b_{t+1} - c_{t} - i_{t}) \}$$

Additional FOCs:

$$b_{t+1} : \tilde{\beta} E_t p_{t+1} - \gamma p_t P_t^B = 0$$
 (18)

$$p_t: b_t + A_t F(k_t, N_t) - c_t - i_t - \gamma P_t^B b_{t+1} = 0$$
 (19)

Transversality Conditions:

$$\lim_{t \to \infty} \tilde{\beta}^t \, p_t b_{t+1} = 0 \tag{20}$$

General Equilibrium with Restricted Asset Markets

 Each country can trade a noncontingent real bond with residents of the other country. The interest rate adjusts to clear the bond market.
 Bond-market clearing condition:

$$\pi b_t + (1 - \pi)b_t^* = 0 \tag{21}$$

Aggregate financial asset accumulation satisfies:

$$\gamma \pi P_t^B b_{t+1} + \gamma (1 - \pi) P_t^B b_{t+1}^* \le \pi [b_t + y_t - c_t - i_t] + (1 - \pi) [b_t^* + y_t^* - c_t^* - i_t^*]$$
(22)

which implies

$$\pi(A_t F(k_t, N_t) - i_t - c_t) + (1 - \pi)(A_t^* F(k_t^*, N_t^*) - c_t^* - i_t^*) \ge 0$$
 (23)

General Equilibrium with Restricted Asset Markets

FOCs:

$$b_{t+1} : \tilde{\beta} E_t \, p_{t+1} - \gamma \, p_t \, P_t^{\,B} = 0 \tag{24}$$

$$b_{t+1}^* : \tilde{\beta} E_t p_{t+1}^* - \gamma p_t^* P_t^B = 0$$
 (25)

$$p_t: b_t + A_t F(k_t, N_t) - c_t - i_t - \gamma P_t^B b_{t+1} = 0$$
 (26)

$$p_t: b_t^* + A_t^* F(k_t^*, N_t^*) - c_t^* - i_t^* - \gamma P_t^B b_{t+1}^* = 0$$
 (27)

The interest rate is endogenously determined:

$$P_t^B = \tilde{\beta} E_t(p_{t+1}/\gamma p_t) = \tilde{\beta} E_t(p_{t+1}^*/\gamma p_t^*)$$

Current Section

- 1 Introduction
- Mode
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- Conclusion

Business Cycle Statistics

TABLE 1

		Rela volat	Contemporaneous correlation			
Country	σ_c/σ_y	σ_i/σ_y	$\sigma_{nx/y}$	ρ_y	$\rho(c, y)$	$\rho(i, y)$
Australia	0.69	2.17	1.46	0.67	0.62	0.55
Canada	0.88	2.83	0.83	0.79	0.72	0.62
France	0.89	1.92	0.81	0.79	0.58	0.45
Germany	0.70	3.40	0.88	0.71	0.64	0.80
Italy	0.82	2.49	1.76	0.78	0.70	0.80
Japan	1.12	2.31	0.93	0.74	0.47	0.60
Switzerland	0.77	2.88	1.50	0.70	0.74	0.73
United States	0.67	3.00	0.41	0.84	0.88	0.90

Correlation with same U.S. variable

Additional labor market consumption statistics for the U.S. Country output Australia 0.24 0.11 0.84 σ_N/σ_v : Canada 0.77 0.65 0.57 $\sigma_{\rm prod}/\sigma_{\rm y}$: 0.50 $\rho(N, y)$ 0.83 France 0.28Germany 0.44 0.45 $\rho(\text{prod}, y)$: 0.54 Italy 0.47 0.23 $\rho(\text{prod}, N)$: -0.04Japan 0.42 0.41 Switzerland 0.28 0.22 United States 1.00 1.00

Calibration

	CALIBRATED PARAMETER VALUES									
σ	2	coefficient of relative risk aversion								
α	0.58	labor share								
β		is set so that the steady state annual real interest rate is 6.5%								
γ	1.004	the average quarterly gross growth rate of the economy								
δ	0.025	quarterly depreciation rate								
η	15	the elasticity of the investment-capital ratio with respect to Tobin's Q								

BKK's Productivity Shocks Process

$$\begin{bmatrix} \log A_t \\ \log A_t^* \end{bmatrix} = \begin{bmatrix} \rho & \nu \\ \nu^* & \rho^* \end{bmatrix} \begin{bmatrix} \log A_{t-1} \\ \log A_{t-1}^* \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \epsilon_t^* \end{bmatrix}$$

$$\begin{aligned} & \text{U.S.:} \\ & \text{Canada:} \begin{bmatrix} \log A_t \\ \log A_t^* \end{bmatrix} = \begin{bmatrix} 0.796 & 0.131 \\ (0.079) & (0.052) \\ 0.000 & 0.989 \\ (0.093) & (0.060) \end{bmatrix} \begin{bmatrix} \log A_{t-1} \\ \log A_{t-1}^* \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \epsilon_t^* \end{bmatrix}; & \rho(\epsilon_t, \epsilon_t^*) = 0.434 \\ & \text{U.S.:} \\ & \text{Europe:} \begin{bmatrix} \log A_t \\ \log A_t^* \end{bmatrix} = \begin{bmatrix} 0.904 & 0.052 \\ (0.074) & (0.041) \\ 0.149 & 0.908 \\ (0.064) & (0.036) \end{bmatrix} \begin{bmatrix} \log A_{t-1} \\ \log A_{t-1}^* \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \epsilon_t^* \end{bmatrix}; & \rho(\epsilon_t, \epsilon_t^*) = 0.258. \end{aligned}$$

- Shocks to productivity are highly persistent, and there is some evidence of transmission of shocks from one country to another.
- The innovations to productivity are positively correlated across countries.

Unit Root Test

 H_0 : The Solow residuals follow a random walk without spillovers, but with possibly correlated innovations. \Rightarrow Fail to reject.

TABLE 2
STATISTICAL PROPERTIES OF INTERNATIONAL SOLOW RESIDUALS

Panel A: Park and Choi J(p, q) test for unit root

The null hypothesis is a unit root: the hypothesis is rejected if the test statistic is smaller than the critical value.

Measure of Solo	w	Test statistic							
Residual (time p	eriod)	J(1, 2)	J(1, 3)	J(1, 4)	J(1,5)				
United States	(1965:3-1988:3)	0.124	0.645	0.699	0.745				
Canada	(1965:3-1988:3)	0.343	1.346	1.948	3.461				
United States	(1970:2-1986:4)	0.010	0.255	0.275	0.309				
Europe	(1970:2-1986:4)	0.740	0.946	0.967	1.179				
critical values:		1% 8.6e-5	0.011	0.055	0.123				
		5% 0.002	0.055	0.160	0.295				
		10% 0.009	0.120	0.290	0.452				

Cointegration Tests

TABLE 2 STATISTICAL PROPERTIES OF INTERNATIONAL SOLOW RESIDUALS

Panel B: Tests for cointegration

We used Park's canonical cointegrating regression to estimate α_1 such that $\log A_i - \alpha \log A_i^* = \epsilon_i$, a stationary random variable. Next, we used Park's H(p,q) test for stochastic cointegration; p-values are given in the table below. In each case, the United States is the unstarred variable (i.e., α is the coefficient on Canada and Europe).

			p-values							
	$\hat{\alpha}$	$se(\hat{\alpha})$	H(1,2)	H(1,3)	H(1,4)	H(1,5)				
United States-Canada	0.580	0.061	0.313	0.523	0.707	0.462				
United States-Europe	0.603	0.041	0.046	0.039	0.082	0.145				

Panel C: Estimates of stochastic processes for Solow residuals

 Δ denotes the first difference of the log of a variable, i.e., $\Delta A_t \equiv \log A_t - \log A_{t-1}$; as before the United States is the unstarred country. Standard errors are in parentheses.

United States-Canada:

$$\Delta A_{t} = 0.003 + 0.113 \Delta A_{t-1} + 0.048 \Delta A_{t-1}^* - 0.074 (A_{t-1} - A_{t-1}^*) + u_t$$

 $(0.001) (0.117) (0.101) (0.052)$
 $\Delta A_{t}^* = 0.005 + 0.283 \Delta A_{t-1} + 0.035 \Delta A_{t-1}^* + 0.021 (A_{t-1} - A_{t-1}^*) + u_t^*$
 $(0.001) (0.131) (0.112) (0.058)$
 $\hat{\sigma}_{t}^2 = 8.38e^{-3}; \quad \hat{\sigma}_{t}^2 = 9.34e^{-3}; \quad \hat{\rho}(u, u^*) = 0.392,$

United States-Europe: (error-correction term omitted due to lack of cointegration)

 $\Delta A_{t} = 0.002 + 0.003 \Delta A_{t-1} + 0.193 \Delta A_{t-1}^{*} + u_{t}$

Trend Stationary Productivity with Spillovers

$$\rho = \rho^* = 0.906, \nu = \nu^* = 0.088, \rho(\epsilon_t, \epsilon_t^*) = 0.258.$$

TABLE 3
TREND STATIONARY SHOCKS

(1) Results for complete markets economy
(2) Results for economy trading noncontingent bonds and goods only

	Standard deviation				Correlation w/y , lag 0			Ot			
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)		(1)	(2)
Output	2.01	1.99	1.00	1.00	0.75	0.76	1.00	1.00	y, y*	0.04	0.06
Consumption	0.97	0.98	0.48	0.49	0.81	0.81	0.82	0.84	c, c*	0.95	0.92
Investment	3.72	3.55	1.85	1.79	0.73	0.74	0.98	0.97	i, i*	0.02	0.12
Labor	1.07	1.02	0.53	0.51	0.73	0.72	0.91	0.91	N, N*	-0.70	-0.67
Wage	1.13	1.14	0.56	0.57	0.80	0.80	0.92	0.93	w, w*	0.75	0.72
Net exports	0.57	0.59	0.29	0.30	0.80	0.80	0.65	0.65	s, i	0.95	0.94
Bonds	0.00	3.22	0.00	1.62	0.00	0.98	0.00	0.23	w, N	0.66	0.69

Random-Walk Productivity without Spillovers

$$\rho = \rho^* = 1, \nu = \nu^* = 0.$$

TABLE 4
UNIT ROOT IN PRODUCTIVITY

(1) Results for complete markets economy

(2) Results for economy trading noncontingent bonds and goods only

	Standard deviation				Correlation w/y, lag 0			Other correlations			
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)		(1)	(2)
Output	2.58	1.59	1.00	1.00	0.87	0.82	1.00	1.00	y, y*	-0.41	0.54
Consumption	1.03	1.67	0.40	1.05	0.82	0.80	0.72	0.85	c, c*	0.89	-0.28
Investment	11.84	4.74	4.60	2.98	0.77	0.78	0.71	0.74	i, i*	-0.92	-0.50
Labor	1.58	0.71	0.61	0.45	0.89	0.78	0.93	0.19	N, N*	-0.91	-0.56
Wage	1.25	1.62	0.48	1.02	0.83	0.80	0.89	0.90	w, w*	0.50	-0.11
Net exports	2.39	1.61	0.93	1.01	0.81	0.77	-0.18	-0.28	s, i	0.74	0.04
Bonds	0.00	8.18	0.00	5.13	0.00	0.98	0.00	0.35	w, N	0.66	-0.25

Cross-Country Correlation v.s. Persistence

Current Section

- Introduction
- 2 Mode
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- **5** Conclusion

Trend-Stationary Shocks with Spillovers

FIGURE 6

TREND-STATIONARY PRODUCTIVITY WITH SPILLOVERS:
PRICE AND INTEREST RATE RESPONSES TO POSITIVE PRODUCTIVITY SHOCK IN HOME COUNTR

Introduction Model Implications Dynamic Analysis Conclusion

Random Walk Productivity

FIGURE

RANDOM WALK PRODUCTIVITY WITHOUT SPILLOVERS:

Current Section

- Introduction
- 2 Mode
- 3 Implications for Business Cycles
- 4 Dynamic Response to a Productivity Shock
- 5 Conclusion

Crucial Findings

- 1 Incomplete Markets v.s. Complete Markets model
 - Trend stationary international productivity process with substantial international "spillovers" of productivity shocks, indistinguishable.
 - Productivity in each country follows a random walk without spillovers but with correlated innovations, quite different.
- Major differences in the macroeconomic response to shocks under the alternative asset structures are due almost entirely to differential wealth effects.
- (3) Incomplete markets with random-walk productivity specification can generate results which are closer to data.