INTEGRATED CIRCUITS 1

LAB01

Yossef Ibrahim Abdel Aziz El Sayed Nada

PART 1: LOW PASS FILTER SIMULATION:

1. Transient Analysis

- 1 Design a first order low pass filter that has $R=1k\Omega$ and 1ns time constant.
- Apply a square wave input with $T_{high} = Pulse\ Width = 10ns$, $T_{clk} = Period = 20ns$, and $T_{rise} = T_{fall} = 100ps$.
- Report transient analysis results for two periods (use max time step = $T_{clk}/100$).
- 4 Calculate rise and fall time (10% to 90%) using Cadence calculator expressions. Export the expressions to adexl.
- 5/ Compare simulation with analytical results in a table.
- Do parametric sweep for R=1: 1: $5k\Omega$. Report overlaid results. Comment on the results.

Outputs Setup	Run Preview	Results [Diagnostics		
Detail 🔻 🕠 🔘 🍔 🔟 🔁 🖊 🚾 Replace					
Point ^	Test	Output	Nominal	Spec	
1	IC1_Lab:lab1:1	tpdf	2.195n		
1	IC1_Lab:lab1:1	tpd	2.195n		
1	IC1_Lab:lab1:1	NOUT	<u>L</u>		
1	IC1_Lab:lab1:1	/VIN	<u></u>		
Parameters: F	L1=2k				
2	IC1_Lab:lab1:1	tpdr	4.391n		
2	IC1_Lab:lab1:1	tpdf	4.391n		
2	IC1_Lab:lab1:1	tpd	4.391n		
2	IC1_Lab:lab1:1	NOUT	<u>L</u>		
2	IC1_Lab:lab1:1	NIN	<u>L</u>		
Parameters: F	L1=3k				
3	IC1_Lab:lab1:1	tpdr	6.589n		
3	IC1_Lab:lab1:1	tpdf	6.589n		
3	IC1_Lab:lab1:1	tpd	6.589n		
3	IC1_Lab:lab1:1	NOUT	<u>L</u>		
3	IC1_Lab:lab1:1	NIN	<u>L</u>		
Parameters: F	L1=4k				
4	IC1_Lab:lab1:1	tpdr	8.787n		
4	IC1_Lab:lab1:1	tpdf	8.787n		
4	IC1_Lab:lab1:1	tpd	8.787n		
4	IC1_Lab:lab1:1	NOUT	<u></u>		
4	IC1_Lab:lab1:1	MIN	<u>L</u>		
Parameters: F	L1=5k				
5	IC1_Lab:lab1:1	tpdr	eval err		
5	IC1_Lab:lab1:1	tpdf	eval err		
5	IC1_Lab:lab1:1	tpd	eval err		
5	IC1_Lab:lab1:1	NOUT	<u>L</u>		
5	IC1_Lab:lab1:1	NIN	<u>L</u>		

2. AC Analysis

- Report Bode Plot (magnitude and phase) for the previous LPF.
- Calculate DC gain and 3dB bandwidth using Cadence calculator expressions. Export the expressions to adexl.
- 3/ Compare simulation with analytical results in a table.
- Do parametric sweep for $R=1,10,100,1000k\Omega$. Report overlaid results. Comment on the results.

B		6	
Point ^	Test	Output	Nominal
Parameters: I			
1	IC1_Lab:lab1:1	NOUT	
1	IC1_Lab:lab1:1	mag(v("/VOUT" ?result "ac"))	느
1	IC1_Lab:lab1:1	phase(v("NOUT" ?result "ac"))	
1	IC1_Lab:lab1:1	BW	158.8M
1	IC1_Lab:lab1:1	dB20(mag(v("/VOUT" ?result	
Parameters:	RL1=10k		
2	IC1_Lab:lab1:1	NOUT	<u>L</u>
2	IC1_Lab:lab1:1	mag(v("/VOUT" ?result "ac"))	<u> </u>
2	IC1_Lab:lab1:1	phase(v("NOUT" ?result "ac"))	<u>L</u>
2	IC1_Lab:lab1:1	BW	15.88M
2	IC1_Lab:lab1:1	dB20(mag(v("/VOUT" ?result	2
Parameters:	RL1=100k		
3	IC1_Lab:lab1:1	NOUT	<u>L</u>
3	IC1_Lab:lab1:1	mag(v("/VOUT" ?result "ac"))	<u>L</u>
3	IC1_Lab:lab1:1	phase(v("NOUT" ?result "ac"))	<u>L</u>
3	IC1_Lab:lab1:1	BW	1.588M
3	IC1_Lab:lab1:1	dB20(mag(v("/VOUT" ?result	<u>L</u>
Parameters:	RL1=1M		
4	IC1_Lab:lab1:1	NOUT	<u>L</u>
4	IC1_Lab:lab1:1	mag(v("NOUT" ?result "ac"))	<u>L</u>
4	IC1_Lab:lab1:1	phase(v("NOUT" ?result "ac"))	<u>L</u>
4	IC1_Lab:lab1:1	BW	158.8k
4	IC1_Lab:lab1:1	dB20(mag(v("/VOUT" ?result	<u>L</u>

3. [Optional] Pole Zero Analysis

Report pole zero analysis results.

Find the pole frequency and compare it with the bandwidth calculated from AC analysis.

PART 2: MOSFET CHARACTERISTICS:

- 1) Plot I_D-V_{GS} characteristics for NMOS and PMOS devices. Set $V_{DS}=V_{DD}$, and $V_{GS}=0$: 10m: V_{DD} . Use $V_{DD}=1.2V$ for 130nm technology and $V_{DD}=1.8V$ for 180nm technology. Plot the results overlaid for the following:
 - Short channel device: $W = 1 \mu m$ and L = 200 nm
 - Long channel device: $W=10\mu m$ and $L=2\mu m$. Hint: Set L as a parameter and set $W=5\times L$

- 2) Comment on the differences between short channel and long channel results.
 - Which one has higher current? Why?
 - Is the relation linear or quadratic? Why?
- 3) Comment on the differences between NMOS and PMOS.
 - Which one has higher current? Why?
 - What is the ratio between NMOS and PMOS currents at VGS = VDD?
 - Which one is more affected by short channel effects?

-> from The graphs we find that. as for NMOS: long channel NMOS has higher current Than short channel (as expected) That is because of The Short channel effects (velocity Saburation and mobility degradation) -> long channel is quadratic while Short channel is linear That's because of velocity sat pinel off sat (in long channel) -> ID a V652 Velocity sat. (in short clannel) > ID & VGC Pros has much less effects which we will discuss on the 2rd point-3-1) NMOS has higher awrent because of The diff. in mobility Datio electrons have higher mobility than holes @ at VGS = Vpp The Patrio between NMOS and PMOS is mobility Ratio, which 16 739.3×10-6 153.9×10-6 = 4.8 factors - NOMOS is more affected by Short channel effects because of the mobility Ratio, The mobility of holes is small when Compared to electrons So it doesn't saturate as fast as electrons (NMOS)

- 1) Plot g_m vs V_{GS} for NMOS device. Set $V_{DS} = V_{DD}$, and $V_{GS} = 0$: 10m: V_{DD} . Plot the results overlaid for the following:
 - Short channel device: $W = 1 \mu m$ and L = 200 nm
 - Long channel device: $W = 10 \mu m$ and $L = 2 \mu m$.

- Does g_m increase linearly? Why?
- Does g_m saturate? Why?

- 1) Plot $I_D V_{DS}$ characteristics for NMOS device. Set $V_{DS} = 0$: 10m: V_{DD} , and $V_{GS} = 0$: 0.2: V_{DD} (nested sweep). Plot the results overlaid for the following:
 - Short channel device: $W = 1\mu m$ and L = 200nm
 - Long channel device: $W=10\mu m$ and $L=2\mu m$.

\checkmark . [Optional] g_m and r_o in Triode and Saturation

1) Plot g_m and r_o vs V_{DS} for NMOS device. Use $W=10\mu m$ and $L=2\mu m$, $V_{DS}=0$: 10m: V_{DD} , and $V_{GS}\approx V_{TH}+0.5V$.

Hint: You can get an estimate of V_{TH} from the I_D vs V_{GS} characteristics, or you can print the operating point parameters of the transistor from DCOP/TRAN in Pyxis.

- 2) Comment on the variation of g_m vs V_{DS} .
 - In the first part of the curve, is the relation linear? Why?
 - Does g_m saturate? Why?
 - Where do you want to operate the transistor for analog amplifier applications? Why?

- 3) Comment on the variation of r_o vs V_{DS} .
 - ullet Does r_o saturate just after the transistor enters saturation similar to gm? Why?
 - ullet Does r_o increase if the transistor is biased more into saturation?
 - Should we operate the transistor at the edge of saturation?
 - Where do you want to operate the transistor for analog amplifier applications? Why?

There is a little amount
There is a little amount of the dependence of the dependence of the salo rates
before it satorates
3) ro takes time before it saturates
because of elt , to merease with elt
until other short channel effects kicks in
to starts decreasing.
y ·
increase 9
o will decrease as we further go
into subviction due to other channel length of
modulation policing
modulation Quodrolicule 105
The Fage of Saturation will seetisfy both
Regions it might have properties of both.
Saturation legion as 1+'s used as yees
7
before it stowts decreasing to give a stable gain
to will increase as we go firther into
Subviction due to CLH cutil a point comes
where The effect of other factors of short
channel effects makes it dierease. DIBL, SCBE
Julimately it depends on the application
at The Edge of saturation there . the eq.
of the triode with will hold and thus the
Of the triode with will hold and thus the relation of The triode will depend on Ups (Quadratic region)
which will not be ideal if we would to use it
are a Mass (Thus No the Shouldn't)
as a Vocs. (Thus No, we shouldn't)