Suppose A is a non-empty, bounded subset of \mathbb{R} . Is it always the case that $\inf A \leq \sup A$? Give either a proof or a counterexample.

- Suppose $\alpha = \sup A, \beta = \inf A$. Then $x \leq \alpha, \beta \leq x \ \forall x \in A$.
- Proof by contradiction: Suppose sup A < inf A
- Then $\alpha < \beta \le x \in A$, which contradicts to $\beta \le x \le \alpha$
- Thus $infA \leq supA$.
- Consider a set $A = \{999\}$. In case of this, $infA = supA = \{999\}$.
- Hence infA and supA does not always have to be infA < supA.

Question 2

Suppose A and B are non-empty and bounded subsets of \mathbb{R} such that $A \subset B$.

- (i) Prove $supA \leq supB$
 - Since $A \subset B$, supB is an upper bound for A such that $a \leq supB \ \forall a \in A$.
 - As a subset of B, the greatest element of A, sup A, cannot be larger than any element of B.
 - Hence $supA \leq supB$.
- (ii) Is it always true that $infA \leq supB$? Give a proof or counterexample.
 - By definition, $infA \leq supA$.
 - We proved supA < supB in (i).
 - Hence $infA \leq supB$.
- (iii) Is it always true that $infB \leq supA$? Prove or give a contradiction.
 - As we proved previously, $infB \leq infA$.
 - By definition, infA < sup A.
 - Hence $infB \leq supA$.

Let $A \subset \mathbb{R}$ be a non-empty bounded set of integers. Prove that supA is an integer.

- Suppose not. Consider $\alpha = \sup A$ such that $x \leq \alpha \ \forall x \in A$.
- Then $\exists x \text{ such that } \alpha 1 < x \leq \alpha$.
- However, there must be only one integer in the interval $(\alpha 1, \alpha)$.
- \bullet Clearly x is an integer, and it lies in the interval.
- \bullet i.e. x is the only integer in the interval.
- Hence, there is no such α as a supremum of A.
- Thus the least upper bound of A should be an integer.

Let $A = \{\frac{n}{2n+1} | n \in \mathbb{N}\}$. Prove that $sup A = \frac{1}{2}$.

- $\frac{n}{2n+1} < \frac{n}{2n} = \frac{1}{2}$ leads to that $\frac{1}{2}$ is an upper bound for A.
- Suppose $x = \sup A < \frac{1}{2}$.
- Then $\frac{n}{2n+1} \le x \Leftrightarrow n \le 2nx + x \Leftrightarrow n(1-2x) \le x \Leftrightarrow n \le \frac{x}{1-2x}$
- However, by Archimedean Property, $n > \frac{x}{1-2x} > 0$ for some n.
- Therefore, our initial assumption, $x < \frac{1}{2}$, is not valid.
- Since $\frac{1}{2}$ is an upper bound and $x \nleq \frac{1}{2}$, $sup A = \frac{1}{2}$.

Question 5

Let $A = \{\frac{2^n}{2^n+1} | n \in \mathbb{N} \}$. Prove that sup A = 1.

- $\frac{2^n}{2^n+1} < \frac{2^n}{2^n} = 1$ meaning 1 is an upper bound for A.
- Consider $x \epsilon < \frac{2^n}{2^{n+1}} \le x$, and let $x = \sup A$.
- Suppose $\frac{2^{n+1}}{2^{n+1}+1}$ such that $x < \frac{2^{n+1}}{2^{n+1}+1}$
- In order $\frac{2^{n+1}}{2^{n+1}+1}$ on the right hand side to make $\frac{2^n}{2^n+1}$ in the middle, multiply by $\frac{2^{n+1}+1}{2(2^n+1)}$.
- Put $x \epsilon = x \cdot \frac{2^{n+1}+1}{2(2^n+1)}$
- Then $x \cdot \frac{2^{n+1}+1}{2(2^n+1)} < \frac{2^n}{2^n+1} \le x$, and multiply by $\frac{2(2^n+1)}{2^{n+1}+1}$ this inequality.
- Then we obtain $x < \frac{2^{n+1}}{2^{n+1}+1} \in A$.
- Since 1 is an upper bound for A and $x \nleq 1$, sup A = 1.

Archimedean property and variations

- (i) Prove the Archimedean property of the real numbers directly from the least upper bound axiom.
 - Suppose $x, y \in \mathbb{R}$ such that x > 0. Then $\exists n \in \mathbb{N}$ such that y < nx.
 - Let A be the set of all nx, and $\alpha = sup A$.
 - Consider $x > 0 \Leftrightarrow -x < 0$. Then $\alpha x < \alpha$.
 - Consider, further, an integer m such that $\alpha x < mx < \alpha$ where $mx \in A$ and αx is lower bound of A.
 - Then $\alpha x < mx \Leftrightarrow \alpha < (m+1)x$.
 - Since $(m+1)x \in A$, α cannot be a supremum of A.
 - Therefore there exists such n satisfies y < nx.
- (ii) Show that for any pair of real numbers x < y there is a rational number $r \in \mathbb{Q}$ with x < r < y.
 - $x < y \Leftrightarrow 0 < y x$. By Archimedean Property, $\exists n$ such that $1 < n(y x) \Leftrightarrow 1 + nx < ny$ where $n \in \mathbb{N}$.
 - Consider integers m_1, m_2 such that $-m_1 < nx, nx < m_2$.
 - Consider, further, m such that $-m_2 < m < m_1, m-1 < nx \le m$
 - Then we obtain an inequality $nx \le m < nx + 1 < ny \Leftrightarrow nx \le m < ny$
 - Further, $x \leq \frac{m}{n} < y$. Obviously $\frac{m}{n} \in \mathbb{Q}$ since both $m, n \in \mathbb{Z} \subset \mathbb{Q}$.
 - We proved such r between x and y.
- (iii) Show that the set $A = \{3n | n \in \mathbb{N}\}$ is unbounded, i.e. show that for every real number x, there is an integer n with 3n > x.
 - Suppose not. Suppose A is bounded.
 - Then $\exists \alpha = \sup A$ such that $x \leq \alpha \ \forall x \in A$.
 - However, by Archimedean Property, $n \cdot 1 > x \Leftrightarrow 3n > n > x$.
 - Hence the set A is unbounded.
- (iv) Show that the set $\{\frac{n^2}{n+1}|n\in\mathbb{N}\}$ is unbounded.
 - Suppose not. Suppose A is bounded.
 - Then $\exists \alpha = \sup A$ such that $x \leq \alpha \ \forall x \in A$.
 - However, by Archimedean Property, $n \cdot 1 > x \Leftrightarrow n \cdot \frac{n}{n+1} > x$.
 - \bullet Hence the set A is unbounded.

- (v) Show that the set $\{n!|n\in\mathbb{N}\}$ is unbounded.
 - Suppose not. Suppose A is bounded.
 - Then $\exists \alpha = \sup A$ such that $x \leq \alpha \ \forall x \in A$.
 - However, by Archimedean Property, $n \cdot 1 > x \Leftrightarrow n! > n > x$.
 - Hence the set A is unbounded.
- (vi) Show that the set $\{\sqrt{n}|n\in\mathbb{N}\}$ is unbounded.
 - Suppose not. Then $\exists \alpha = \sup A \text{ such that } \sqrt{n} \leq \alpha$.
 - Consider $\sqrt{n+1}$ such that $\alpha < \sqrt{n+1}$.
 - In order $\sqrt{n+1}$ make to \sqrt{n} , multiply by $\frac{\sqrt{n}}{\sqrt{n+1}}$.
 - Put $\alpha \epsilon = \alpha \cdot \frac{\sqrt{n}}{\sqrt{n+1}}$ where $\alpha \epsilon < \sqrt{n} \le \alpha$.
 - Then $\alpha \cdot \frac{\sqrt{n}}{\sqrt{n+1}} < \sqrt{n} < \alpha$, and multiply by $\frac{\sqrt{n+1}}{\sqrt{n}}$.
 - Then we obtain $\alpha < \sqrt{n+1} \in A$.
 - Hence we showed that α is not sup A.
 - \bullet Thus A is unbounded.
- (vii) Let $A = \{a_1, a_2, a_3, ...\}$ be a set of real numbers where $a_{n+1} \ge a_n + 1$ holds for all $n \in \mathbb{N}$. Show that A is unbounded.
 - Proof by contradiction: Suppose $\exists \alpha = sup A$.
 - Then we can obtain $\alpha \epsilon < a_n \le \alpha$.
 - Fix $\epsilon = 1$. $\alpha 1 < a_n \Leftrightarrow \alpha < a_n + 1 \le a_{n+1} \in A$.
 - Hence $\alpha \neq sup A$.
 - \bullet We proved that A is unbounded.

Let $E = \{\frac{1}{n} | n \in \mathbb{N}\}$, and let $F = E \cup 0$. Find all the limit points of E and of F. Are either of E or F closed?

- Recall the definition limit point. A limit point is a point such that $\{N_{\epsilon}(x) \cap E\} \setminus \{x\}$.
- Let x = 0. Then choose an arbitrary ϵ ; the interval is becoming $(0 \epsilon, 0 + \epsilon)$.
- No matter how it is small, there must be $\frac{1}{n}$ such that $\frac{1}{n} < 0 + \epsilon$
- We proved \exists a point within the interval other than x = 0.
- Hence 0 is a limit point of E.
- Meanwhile, consider any other point. Suppose x = 1.
- Then the interval is $(1 \epsilon, 1 + \epsilon)$.
- However, in case where $\epsilon < \frac{1}{2}$, $\{N_{\epsilon}(x) \cap E\} \setminus \{x\} = \phi$.
- Hence any other $\frac{1}{n}$ is unable to be a limit point.
- Thus E is an open set.
- Since 0 is the only and all limit point of E, $F = E \cup \{0\}$ is a closed set by definition.

Let $A = \{\frac{m}{m+2} | m \in \mathbb{N}\}$ and $B = \{\frac{m}{m-2} | m \in \mathbb{N}, m \geq 3\}$. Find all limit points of the set A and of the set B.

- Since $\frac{m}{m+2} < \frac{m+2}{m+2} = 1$, 1 is an upper bound for A.
- Since $1 = \frac{m-2}{m-2} < \frac{m}{m-2}$, 1 is an lower bound for B.
- Each $\frac{m}{m+2}$ or $\frac{m}{m-2}$ is an isolated point because $\{N_{\epsilon}(x) \cap \{\frac{m}{m+2} \text{ or } \frac{m}{m-2}\}\} \setminus \{x\} = \phi$ for some ϵ .
- However, in case where x = 1, $\{N_{\epsilon}(x) \cap \{\frac{m}{m+2} \text{ or } \frac{m}{m-2}\}\} \setminus \{x\} \neq \phi \ \forall \ \epsilon$.
- Thus all limit points of the set A and B is {1}.

Question 9

Find a subset $E \subset \mathbb{R}$ with exactly three limit points. (justify your answer.)

$$\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{1 + \frac{1}{n} \mid n \in \mathbb{N}\} \cup \{2 + \frac{1}{n} \mid n \in \mathbb{N}\}\$$

Proof was given in Question 7.

Let $E \subset \mathbb{R}$ be a bounded subset, and let m be a limit point of E. Show that $m \leq \sup E$.

- Proof by contradiction: Suppose $m > \sup E$.
- If m is a limit point, then $m \in \{\{B_{\epsilon}(x) \cap E\} \setminus \{x\} \mid x \in \mathbb{R}, \epsilon > 0\} \neq \phi$.
- Consider $\epsilon = \frac{d(m, supE)}{2}$. Then m is strictly detached from E.
- i.e. $m \in \{\{B_{\epsilon}(x) \cap E\} \setminus \{x\} \mid x \in \mathbb{R}, \epsilon > 0\} = \phi$ meaning m is not a limit point.
- Thus $m \leq \sup E$.

Question 11

Let (X, d) be some metric space, $a \in X$ some point in X, and r > 0.

- (i) Show that the set $E = \{x \in X \mid d(x, a) > r\}$ is open.
 - Consider h > 0 such that d(x, a) = r + h for some h, and let $\epsilon = \frac{h}{2}$.
 - Then $\{\{B_{\epsilon}(x) \cap E\} \setminus \{x\} \mid x \in \mathbb{R}, \epsilon > 0\} = \phi$
 - i.e. $E^c \cap B_{\epsilon}(x) = \phi$, so x is an interior point of E.
 - Thus E is open.
- (ii) Let F be some subset of $B_r(a)$, and let p be a limit point of F. Show that $d(p,a) \leq r$.
 - Suppose not: d(p, a) > r.
 - Then $\exists h$ such that d(p, a) = r + h.
 - Consider h > 0 such that d(p, a) = r + h for some h, and let $\epsilon = \frac{h}{2}$.
 - Then $\{\{B_{\epsilon}(p) \cap E^c\} \setminus \{p\} \mid p \in \mathbb{R}, \epsilon > 0\} = \phi$, meaning p is not a limit point.
 - Hence $d(p, a) \leq r$ so that p is to be a limit point.

Question 12

Find all limit point points of the set $\mathbb{N} \subset \mathbb{R}$.

- Since $n \in \mathbb{N}$ is discrete, $\exists \epsilon > 0$ such that $\{\{N_{\epsilon}(x) \cap \mathbb{N}\} \setminus \{x\} \mid x \in \mathbb{R}\} = \phi$.
- Thus the set of all limit points of \mathbb{N} is ϕ .

(About open and closed sets) Notation: $A^c = X \setminus A = \{x \in X \mid x \notin A\}.$

- (i) True or false? if $A \subset \mathbb{R}$ is open then A contains none of its limit points (i.e. prove the statement, or give a counterexample.)
 - By the definition of open set, if $\{E^c \cap N_{\epsilon}(x)\} = \phi$, then the set is open.
 - Hence \exists a limit point of A $p \in \{\{B_{\epsilon}(p) \cap A\} \setminus \{p\}\} \neq \phi$.
 - Therefore this statement is false.
- (ii) True or false? If $A \subset \mathbb{R}$ is open then there is a limit point p of A that lies outside A.
 - \bullet Consider a point p which is exactly on the boundary.
 - $p \notin A$, but $\{\{B_{\epsilon}(p) \cap A\} \setminus \{p\}\} \neq \phi$.
 - Hence this statement is true.
- (iii) True or false? If $E \subset X$ is closed, then E contains no limit points of its complement (i.e. E contains no limit points of E^c .)
 - E^c is an open set for this case.
 - As we considered in (i), one of limit points of an open set E^c which is exactly on the boundary is not an element of E^c , but it is still a limit point of E^c .
 - This statement is false.
- (iv) True or false? If $E \subset X$ is open, then E contains no limit points of its complement (i.e. E contains no limit points of E^c .)
 - Suppose any point $p \in E^c$
 - Consider h such that r+h=d(x,p) for some $h>0, x\in E$, and let $\epsilon=\frac{h}{2}$.
 - Then $\{\{B_{\epsilon}(p) \cap E\} \setminus \{p\}\} = \phi$. i.e. there is no such p that is a limit point of E.
 - Therefore this statement is true.