國立虎尾科技大學電機工程系 專題製作報告

指導教授:蘇輝凱老師

應用於淨水廠水質監控物聯網系統

班 級:四技電機四乙

參與成員:吳育成 吳東翰

NATIONAL FORMO陳俊信IIVERSITY

羅堃連

中華民國 年 月 日

摘要

科技日新月異,科技產業蓬勃發展以及地球氣候變遷,許多 珍貴的自然資源愈來愈稀少,其中水是我們人類維持生命不可或 缺的其中一種資源,但是在生活當中有很多因素讓這些重要的水 資源流失或是被汙染,但目前監控系統有種種問題,並且國人對 於水資源如何被處理並非很了解。

所以本計畫以建立一個監控及控制水資源的軟硬體系統為目標,結合資料庫、PAC (Programmable Automation Controllers,可程式自動化控制器)以及各種感應器,使得操作人員能夠在第一時間更精確的判斷各數值的正確性,以最短時間作出最佳的處理方法提升工作效率,並減少人員工作量,降低人員操作失誤所造成的損失,並使得管理人員更加方便管理,大大提升管理層與操作人員之間對於彼此的信心,利用該系統來達成管理方便及操作輕鬆的雙贏的局面。

NATIONAL FORMOSA UNIVERSITY

目錄

第	一章	緒論	0
	1.1 動機	}	1
	1.2 執行	、 行目標	1
姑	- * -	獻探討	2
矛	一早又		
	2.1	PHP (Hypertext Preprocessor)	
	2.2	MARIADB	
	2.3	CSS (CASCADING STYLE SHEETS, 層疊樣式表)	
	2.4	JAVASCRIPT	
	2.5	PAC(PROGRAMMABLE AUTOMATION CONTROLLER,可程式自動化控制器)	3
第	三章 研	究方法	5
	3.1	文件蒐集與研讀	
	3.2	需求分析	
	3.3	系統設計	
	3.4	系統軟體選用	
	3.5	元件設計	
		奥製作	
四	、執行身	奥製作	10
	4.1	工作分配	10
	4.2	PAC	11
	4.3	資料庫 網頁	12
	4.4	網頁	12
五	、作品质	REIONAL FORMOSA UNIVERSITY	14
	E 1 _b &d	· 環系統	1.4
		[
	• • •		
六	、結論.		16
	6.1	系統運行結果	16
	6.2	未來展望	16
+	、杂老	文獻	17
_	ツーつ ン	~病/、	/

圖目錄

圖	3.1 使用案例圖	5
圖	3.2 系統設計圖	7
圖	3.3 軟體堆疊圖	8
圖	3.4 GE_PAC RX3i	9
圖	3.5 水質感測元件	9
圖	4.1 GE_PAC 流程圖(a)	11
圖	4.1 GE_PAC 流程圖(b)	12
圖	4.2 網頁流程圖	13
圖	5.1 水循環系統	14
圖	5.2 首頁	14
圖	5.3 監控介面	15

表目錄

表	3.1 網站基本架構表
表	3.2 GE PAC Rx3i 規格表

國立虎尾科技大學

NATIONAL FORMOSA UNIVERSITY

第一章緒論

1.1 動機

可利用的水資源日益稀少所以對於水資源的監控與控制的議 題越來越重要,過去能利用各種感測器監測水的流量、流速及水 質等等數據,並將數據進行分析後顯示給操作人員,進行場區的 控制,但目前多數系統對於大數據分析處理得資料量到一定數量 時易造成當機的問題,使得操作人員無法對水系統進行判斷及處 理,造成極大的損失,我們將資料上傳至資料庫進行資料的分析, 達到最佳的精確度,讓系統本身自動控制場區內各個機具,協助 操作人員更加準確的判斷及讓管理人員更加了解各操作人員工作 狀況。

1.2 執行目標

目標為研究如何利用 GE_PAC 加上各種感測器與 Linux Ubuntu 作業系統內的免費軟體,架構一平台,降低其他系統所需的授權費,在利用 PHP 架構一網頁,讓人能夠對於各數據更一目瞭然,同時利用 MySQL 建立資料庫,傳送所監控到的各數據至資料庫進行分析,若數值發生異常立刻對操作人員發出警告提醒,並立刻控制各機具使異常被排除,而這些數據將同步顯示於網頁讓各工作人員更及時了解,對於所用的水能夠使人更加安心。

及磁性士

第二章 文獻探討

2.1PHP (Hypertext Preprocessor)

PHP 全名為 Hypertext Preprocessor, PHP 是嵌入在 HTML 中伺服器端腳本語言,它可用來管理動態內容、數據資料庫(MySQL、Informix), PHP 在 Unix 系統裡做為 Apache 編輯模組時,具有極大的執行能力,而 PHP 語言結合了 C、Java、Perl 以及 PHP 自創的新語法,因此非常容易上手[1]。

PHP 可以比 CGI 或者 Perl 更快速的執行動態網頁用 PHP 做出的動態頁面與其他的編程語言相比。PHP 是將程序對入到HTML 文件檔中去執行,執行效率比完全生成 HTML 標記的 CGI 要高許多;PHP 還可以執行編譯後代碼,編譯可以達到加密和優化代碼運行,使代碼運行更快。PHP 具有非常強大的功能,所有的 CGI 的功能 PHP 都能實現,而且支持幾乎所有流行的數據庫以及操作系統[1]。

2.2 MariaDB

MariaDB資料庫管理系統是從 MySQL 獨立出來的另一套衍生資料庫,主要由開源社群在維護,採用 GPL 授權授權。會開發這套系統的原因之一是:Oracle 公司收購了 MySQL 後,有將 MySQL 閉源的潛在風險,因此開源社群採用 MariaDB 來避開這個此問題。雖然 MariaDB 和 MySQL 是同源開發出來的程式碼,但運作的理念大不相同。MySQL 在簡易查詢時有較高的效率,而在圖形處理上效率較差;而 MariaDB 當初設計的目的是脫離 Oracle 的控制,採用新的儲存引擎,並且以 MySQL 5.5 版為基礎,目前已有許多公司及使用者轉用為 MariaDB[2]。

2.3 CSS (Cascading Style Sheets, 層疊樣式表)

層疊樣式表(Cascading Style Sheets, CSS),又稱串樣式列表,是一種用來為結構化文件(如HTML文件或XML應用)添加樣式(字型、間距和顏色等)的電腦語言,由W3C定義和維護。

CSS 並不是一種程式設計語言,而是用於網頁排版的標記性語言。目前最新版本是CSS2.1,為 W3C 的推薦標準。CSS3現在已被大部分現代瀏覽器支援[4]。

CSS 樣式表的優點如下[5]:

- (1) 精簡代碼,建設重構難度。也就是說將樣是抽象的為 一類,節省許多代碼,讓我們容易理解及維護,重構 時也只需更改設計文件就好。
- (2) 網頁訪問速度。由於瀏覽器解釋代碼執行時,由於樣 式的封裝,確保了解釋的統一,以提高瀏覽時的速度。
- (3) 瀏覽器兼容性。現在主流的瀏覽器基本上支援 CSS, 讓我們的頁面兼容性有了一個很大的提升。

2.4 JavaScript

JavaScript 是一種跨平台、物件導向、弱型別的腳本語言。作為獨立語言並不實用,而是為了能簡單嵌入其他產品和應用程式(網頁瀏覽器)而設計。JavaScript 若寄宿在主體環境(Host environment)時,可以與環境中的物件(Object)相連,並以程式控制這些物件[6]。

JavaScript 包含了物件的核心集合(Array、 Date、 Math)及語言成份的核心集合(運算子、控制結構、敘述)。在 JavaScript 還能做出各式功能,例如[6]:

- (1) 改進網站性能 (例如:歸功於 Ajax)。
- (2) 修復瀏覽器缺陷,例如對 CSS 較新特性的支援。
- (3) 用於行動裝置(取決於裝置) 🖟 🖂 💮
- (4) 正確使用時事非常可靠。
- (5) 將一些處理從伺服器改到客戶端,降低伺服器的附載。

2.5 PAC(Programmable Automation Controller,可程式自動化控制器)

可程式自動化控制器(Programmable Automation Controller,PAC)為結合可程式控制器(PLC)與工業電腦(IPC)的多功能工業用自動化控制器,硬體結合可程式控制器的耐用度以及工業

電腦的強大功能,而且採用 IEC 61131-3 開放式且高彈性的軟體架構。本次實驗所使用的系統 General Electric Company 所開發的 PACSystems* RX3i 控制器,其使用的開發環境為 Proficy Machine Edition。

PACSystems* RX3i 控制器之優點如下[7]:

- 1. 實現工業互聯網提供強大的保障
 - (1) 基於 PROFINET 的即插即用型設備,使得機器、 數據與人員能夠三者互聯。
 - (2) 在任何設備上,可通過瀏覽器創建、配置、仿真、 發布和運營控制。
 - (3) 開放多個的通信協議。
 - (4) 支持熱插拔新模塊。
- 2. 互操作性延長系統壽命並且降低成本
 - (1) 支持高密度離散 I/O,通用模擬量 (TC, RTD,變 形測量器,每個通道的電壓和電流配置)高密度模 擬量,高速計數器和運動模塊。
 - (2) 擴展 I/O 助您實現更快速的處理,高級診斷和一 系列可配置中斷。
- 3. 高性能助您提升生產力
 - (1) 高速處理器與可靠技術助您實現更快速的輸出, 避免了信息瓶頸。
 - (2) 雙重底板總線支持每個模組卡槽: <1>高速,基於 PCI,實現快速輸出。
- - (3) 提供多個 CPU,滿足不同性能需求。

第三章 研究方法

3.1 文件蒐集與研讀

在文件蒐集部分,本計畫收集了Linux、GE_PAC以及架設網站所要用到的程式:HTML、JavaScript、CSS、PHP、MariaDB等相關書籍,而書籍內容大致上分為Linux的基礎操作,架設網站的基本程式撰寫,以及GE_PAC的通訊與程式撰寫。

關於研讀部分,首先我們須要了解Linux的基本架構與操作方式,再來了解如何架設網站和如何撰寫程式,以及GE_PAC的通訊協定及操作方式,並且蒐集相關範本及相關資料,使其這整個系統能夠順利地相互運作。

3.2 需求分析

圖 3.1 使用案例圖

透過圖 3.1 我們可以將需求分析分成功能性與非功能性這兩種需求:

3.2.1 功能性的需求

- (1)水廠作業人員可透過網頁遠端操作淨水控制,調整 抽水馬達及水閥之自動控制,或是透過現場的圖控 軟體操控。
- (2)設計網頁平台介面時,每一項都要清楚顯示數據圖 表和控制端目前的運作情形。
- (3) 系統必須設有階級權限,修改參數、觀看數據圖與 遠端操作等不同功能之權限。
- (4)水質感測的數據經由 GE_PAC 透過乙太網路至 Linux 資料庫做儲存以及分析,最後呈現在網頁的 數據圖表上和目前的參數值。
- (5)當有故障或是數據異常時,在現場或是網頁上需設 有強制跳出警告標訊息和急停按鈕,現場是以實體 按鈕為主,網頁是設有加密保護的按鈕,以防誤觸 按鈕。
- (6)水廠管理員可透過權限觀看目前的數據分析及修 改參數之功能,管理員可利用遠端登入到控制端電 腦進行程式碼的修改和維護伺服器運作。

3.2.2 非功能的需求

- (1) 系統介面整潔、數據圖樣歸類清楚,使系統使用 者對系統感到滿意。
- (2) 系統對於網頁讀取資料時間需在 3 秒內完成。
 - (3) 系統必須允許多個使用者同時使用。

3.3 系統設計

圖 3.2 系統設計圖

我們依照圖 3.2 箭頭指示來說明:

- 3.3.1 水循環系統的硬體設備,包括了水管、抽水馬達、 以及偵測儀器。
- 3.3.2 經過偵測儀器量測後,數值資料傳送到 GE PAC。
- 3.3.3 利用乙太網路,把 GE_PAC 傳送給工業資料庫做 統整及分析。
- 3.3.4 Linux 資料庫統整後內容會顯示在網頁上,可得知 目前流量狀況,必要時,控制者可以進一步去依照分 析結果改善或更改訊號控制儀器。
- 3.3.5 GE_PAC 接受到調整訊號,立即調整儀器。

3.4 系統軟體選用

圖 3.3 為本計畫的軟體架構,在架設網站,我們選用的作業系統為 Linux, Linux OS 相較於其他作業系統的優點:穩定的系統、時常在更新、安全性、漏洞修補、資源多、多工多使用者、使用者與群組的規劃、使用彈性較高。

因為 Linux 的軟體大部分都是 Open Source, 在網路上易取得,也利於修改,相較於 Closed Source 的版權軟體, Open Source 軟體有更佳的開放性,以原始碼為基礎,可根據自己

所需的功能進行開發,在安全性與漏洞皆能透過同源社群的 共同開發,快速修改並改善,且對於電腦硬體設備要求不高, 對於剛入門是最佳的選擇。

圖 3.3 軟體堆疊圖

Linux 為主要的作業系統,我們使用了HTTPd、CSS、JavaScript、PHP 架設出一個基本的網站,而這些程式的特色如表 3.1 所示。我們先以 Joomla 架設出我們所需要的功能,使用 MariaDB 建立出可以儲存 GE_PAC 所傳回來的數據並且管理網站的帳號及密碼。

表 3.1 網站基本架構表

10 m 114 m 114 m		
軟體名稱	特色	
HTTPd	可在大多數作業系統中運行,由於可跨平台及安	
HIIPa	全性,被廣泛使用。	
(C) 12	JavaScript 是弱型別的腳本語言,不會有嚴謹的數	
JavaScript	據類型與 C 相似,易於學習,還可添加 HTML 網	
NATION	頁的動態功能,像是響應用戶的各種操作。	
	精簡代碼,設計好的介面若要修改,其修改介面	
CSS	時只需更改設計文件即可,也容易維護及理解。	
PHP	PHP 的語法與 C 類似,因此容易上手。	

HTTPd、JavaScript、CSS、PHP 為我們架設網站所需要的程式,也因為他們與 C 語言相似,因而好上手,且這些程式在各領域廣泛的被運用,因此選擇這些來當作我們架設網站的開發工具。

3.5 元件設計

整個系統是藉由圖 3.5 水質感測元件傳送至 GE_PAC 圖 3.4,統整完後透過乙太網路傳送至 MariaDB 資料庫,再透過 PHP 架構網頁,顯示出所需的數據,再將調整資料傳回 GE_PAC 做控制。

圖 3.4 GE PAC RX3i

圖 3.5 水質感測元件

GE_PAC RX3i 控制器跟以前我們所學的三菱 PLC 撰寫階梯圖大同小異,而且它支援 C 語言,可以將撰寫好的封包呼叫出來使用,同時它本身支援多種的通訊界面,如表 3.2 所示,在做整個互聯網的架構相容性是非常的好,同時它擁有強大的運算能力,因此我們選用了此 PAC 當作我們水質檢測的控制器。

表 3.2 GE_PAC RX3i 規格表	表 3.2	GE_{\bot}	PAC	RX3i	規格表
-----------------------	-------	-------------	-----	------	-----

GE模組	CPE305
微處理器	1.1GHz Intel Z510PT Silverthorne XL ATOM
操作系統	VxWorks
隨機存取記憶體	最大 5Mbytes
最大程序塊數量	512
程序塊最大容量	128KB
工作溫度	0℃ 到 60℃
I/O 點位	32Kbits
通訊接口	乙太網路 RJ-45(10BaseT/100BaseT RJ-45)、
	RS-232 \ RS-485 \ USB-A 2.0
網路協定	Modbus RTU 從站、SNP 從站、Modbus TCP

四、執行與製作

4.1 工作分配

組長:陳俊億

架設 Linux 伺服器主機及網路相關設定。 架構 OpenWRT 之系統。 規劃各設備之配線圖。 設計 GE PAC 系統架構。 設計網頁之人機介面。 規劃水路圖及水路製作。 系統整合。

專題報告撰寫。

組員:吳東翰

Linux 防火牆架設及設定。

MariaDB 資料庫建立整合管理。

網頁功能流程設計及主視覺製作。

網頁API設計。

GE_PAC mODBUS TCP 通訊協定設定。

水循環系統材料採買及製作。

水路感測器校正。

專題報告撰寫。

組員:吳育誠

設計網頁的主頁及網頁操作流程圖。

組員:羅堃連

規劃水路圖及採買所需之器材或設備。 設計 GE PAC 基本程式流程架構。

4.2 PAC

可程式自動化控制器選用 GE_PAC RX3i,在程式設計上分為網路通訊、手動程序、自動程序、異常處理程序以及數據分析。網路通訊區塊會透過乙太網路與資料庫的API 進行連線,讀取目前所需要的設定參數以及傳送目前感測器的參數值,設定參數可從網頁上進行修改,再將接收到的參數進行程式上的調整,在水循環程式上分為手動程序與自動控制。手動程序透過網頁的控制介面進行操作,主要是以測試各設備狀態為主;自動程序當設備都正常,就全自動執行。當有發生異常所有程序皆執行異常程序,排除所有異常才可解除異常,回至初始狀態,如圖4.1 所示。

圖 4.1 GE_PAC 流程圖 (a)正常程序流程圖(b)異常程序流程圖

4.3 資料庫

資料庫系統選用 MariaDB 10.1.41,並以 phpMyadmin 進行資料庫管理,以上系統架設於 Ubuntu 18.04,環境架設利用 Ubuntu 本身提供

LAMP(Linux,Apache,MariaDB,PHP)封包快速安裝,防火牆利用 Ubuntu 的 UFW 進行架設達到基本防護,以及使用 xrdp 讓 Windows 系統能夠進行遠端連線,方便進行系統更新維護。

4.4 網頁

網頁伺服器選用 Apache 2.4.29, 與資料庫一同架設於 Ubuntu 18.04, 並用 PHP 編寫網頁後台功能如資料庫連結,網頁顯示利用以 HTML 為主架構,並以 CSS 進行外觀設計,再以 JavaScript、JQuery、Bootstrap 和 Highcharts 進行前台功能如登入系統的帳號密碼輸入輸入後經由

JavaScript 傳送至 PHP 再藉由 PHP 對前台資料與資料庫進行比對並將結果回傳。

目前網頁可執行功能為人員登入、登出和註冊,及時數據監控,觀看歷史數據,感測器數據修改,遠端機台控制,其動作流程如圖 4.3 所示。

五、作品成果

5.1 水循環系統

圖 5.1 水循環系統

5.2 網頁

圖 5.2 首頁

圖 5.3 監控介面

(a)及時數據監測介面(b)歷史數據記錄介面 (c)感測器修改參數介面(d) 機台控制介面

六、結論

6.1 系統運行結果

6.1.1 PAC

目前為藉由放置於水箱內的硬度、溫度和pH 值感測器以及設置在管路的水流計如圖所示,經由 PAC之 modbus 協定和 Python 編寫的 API 傳送至 MariaDB 資料庫內並藉由網頁顯示數據與判別其數 據是否已達設定之參數值,若以達所設定參數值將 對使用者發出警告並回傳參數至 PAC 使其進入故 障模式,方便人員進行維修,若維修完畢,人員需 在現場機台按下故障排除鈕使機台回至正常模式, 不得從遠端解除故障模式,避免維修人員因遠端誤 觸解除鈕而身陷危險之中。

6.1.2 網頁

目前進入網頁先進到首頁如圖 5.1 所示,首頁 顯示專題摘要以及研究動機和機台動作影片如圖 5.2 至圖 5.3 所示,在導覽條進行登入,按下後登入 對話窗跳出進行登入及帳號註冊,如圖 5.4 所示, 工作人員登入成功後可於工作人員專區進入數據監 測監測頁面,該介面以四個標籤式選單選擇所需的 功能四個功能分別為數據即時監測、數據歷史紀 錄、修改數據和機台控制,如圖 5.5 所示,在導覽 條選擇登出後將會回到首頁。

6.2 未來展望

IoT 在未來 5G 網路環境中發展與應用會更加多元及快速,在未來希能將更多 PAC 或 PLC 並接,甚至將不同品牌的系統進行整合並連接更多感測器,運用在更多系統不僅止於水系統的監控,更加廣泛運用於工業界。

七、参考文獻

- [1] David Sklar, 2016, <u>Learning PHP</u>, O'Reilly Media Inc., Sebastopol, California
- [2] 黃縉華,2015,更純正開放的 MySQL: MariaDB 完全制霸手 冊,佳魁資訊,桃園
- [3] CSS, https://zh.wikipedia.org/wiki/CSS
- [4] Christopher Murphy, Richard Clark, Oliver Studgolme, Divya Manian, 2015, 完美掌握 HTML5 與 CSSS3(初版), 李屹, 基峰資訊股份有限公司,台北市
- [5] Larry Ullman, 2013, JavaScript 設計與開發:透視新技術關鍵 +完全實力養成,姚軍,博碩文化股份有限公司,新北市
- [6] GE_PAC RX3i , "GE_PAC RX3i 詳細規格", http://www.geautomation.com/cn/products/pacsystems-rx3i-controller
- [7] 酆士昌,2017,Ubuntu17完全自學手冊:桌面、系統與網路應用全攻略,博碩文化股份有限公司,新北市
- [8] 蔡明志,2018, Python 程式設計|大數據資料分析, 基峰資訊 股份有限公司, 台北市