CS4248 AY 2022/23 Semester 1 Tutorial 4

1. A perceptron F receives inputs $x_1, ..., x_n$ and outputs the following:

$$F(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Give 3 weights w_0 , w_1 , w_2 such that F implements the Boolean function $x_1 \vee x_2$.
- (b) Give 3 weights w_0 , w_1 , w_2 such that F implements the Boolean function $\neg x_1 \land x_2$.
- 2. Consider a neural network defined as follows:

$$s_1 = \begin{bmatrix} i_1 & i_2 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

$$h_1 = \tanh(s_1) = \frac{e^{s_1} - e^{-s_1}}{e^{s_1} + e^{-s_1}}$$

$$\begin{bmatrix} o_1 & o_2 & o_3 \end{bmatrix} = \begin{bmatrix} h_1 & 1 \end{bmatrix} \begin{bmatrix} w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix}$$

$$L = (o_1 - t_1)^2 + (o_2 - t_2)^2 + (o_3 - t_3)^2$$

where $[i_1 \quad i_2]$ is the input vector, $[o_1 \quad o_2 \quad o_3]$ is the output vector, $[t_1 \quad t_2 \quad t_3]$ is the target output vector, L is the loss function, and w_1, w_2, \ldots, w_9 are the weight parameters to be learned.

The weights w_i are initialized as follows:

w_1	W_2	W_3	W_4	W_5	W_6	w_7	W_8	W_9
0.25	0.25	0.1	0.1	-0.1	0.2	0.3	-0.2	-0.3

The learning rate is 0.5. The neural network is given one training example as follows: $i_1 = 0.2$, $i_2 = 0.8$, $t_1 = 1$, $t_2 = 0$, $t_3 = 0$.

- (a) Derive an expression for $\frac{\partial L}{\partial w_3}$ in terms of (some of) $i_1, i_2, o_1, o_2, o_3, t_1, t_2, t_3, h_1, w_1, w_2, \dots, w_9$. Show clearly the steps of your derivation and provide appropriate justification.
- (b) For the given training example, carry out forward computation to compute the value of

1

the loss function L. Show clearly all your intermediate calculations.

- (c) Use backpropagation to compute the weight w_3 after one iteration of weight update. Show clearly the steps of your calculation.
- 3. Consider the use of dropout in neural network training when the non-linear activation function is tanh. Dropout applies a random masking vector m to a hidden layer vector h, as follows:

$$h = \tanh(xW + b)$$
$$\widetilde{h_1} = m \odot h$$

where \odot is element-wise multiplication, and $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

John proposes a different formula for computation:

$$\widetilde{h_2} = \tanh(m \odot (xW + b))$$

- (a) Is John's proposal a correct approach of implementing dropout? Give your justification. Be as precise as possible.
- (b) Suppose the nonlinear activation function is changed from tanh to the sigmoid function σ :

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Is John's proposal a correct approach of implementing dropout? Give your justification. Be as precise as possible.