Package 'nntcalc'

April 7, 2022

Type Package

Version 1.1

 $\textbf{Title} \ \ \text{The Number Needed to Treat (NNT) calculator}$

Author Valentin Vancak <valentin.vancak@gmail.com></valentin.vancak@gmail.com>
Maintainer Valentin Vancak <valentin.vancak@gmail.com></valentin.vancak@gmail.com>
Description This package provides functions to calculate the unadjusted, the conditional (adjusted) and the harmonic mean (marginal) Laupacis NNT with the corresponding 95% confidence intervals. Available models include normal distributed outcomes with equal and unequal variances, and exponential distribution. Available regression models include one way ANOVA, linear regression, logistic regression, and Cox model. In addition, the package provides a function to calculate the Kaplan Meier Laupacis NNT, and Kraemer & Kupfer's NNT.
Depends R (>= 3.5.0)
License MIT + file LICENSE
Imports boot, stats, MASS, survival, mytnorm
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
anova_data 2 linreg_data 2 logreg_data 3 nnt_kk 3 nnt_l 4 nnt_survreg 5 nnt_x 6 survreg_data 8
Index 9

2 linreg_data

anova_data

Data sample for the one-way ANOVA example

Description

Data sample for the one-way ANOVA example

Usage

```
data(anova_data)
```

Format

A data frame with 1000 rows, and 2 columns. Suitable for a one-way ANOVA model.

y is the continuous dependent variable

gr is the independent factor (treatments) with four distinct levels

Author(s)

V. Vancak

Examples

data(anova_data)

linreg_data

Data sample for the linear regression example

Description

Data sample for the linear regression example

Usage

```
data(linreg_data)
```

Format

A data frame with 1000 rows, and 3 columns. Suitable for a simple linear regression with a dummy variable.

y is the continuous dependent variable

 ${f gr}$ is the allocated arm of each subject, where 1 corresponds to treatment, and 0 to control

x_var is the independent continuous variable

Author(s)

V. Vancak

Examples

```
data(linreg_data)
```

logreg_data 3

logreg_data	Data sample for the logistic regression example

Description

Data sample for the logistic regression example

Usage

```
data(logreg_data)
```

Format

A data frame with 1000 rows, and 3 columns. Suitable for a logistic regression model.

y is the dependent binary 0/1 variable

gr is the allocated arm of each subject, where 1 corresponds to treatment, and 0 to control

x_var is the independent continuous variable

Author(s)

V. Vancak

Examples

data(logreg_data)

nnt_kk

Kraemer & Kupfer's NNT calculator

Description

Calculates the parametric and the non-parametric KK-NNT. Takes two numeric vectors that are the outcomes of the treatment and control arms, and returns the estimated KK-NNT using the specified method.

Usage

```
nnt_kk(type, treat, control, decrease, dist = "none", equal.var)
```

Arguments

type	specification of the estimation method; 'mle' (for the Maximum Likelihood estimator) and 'non-param' (for the non-parametric MLE)
treat	vector of response variable of the treatment group
control	vector of response variable of the control group
decrease	logical TRUE or FALSE. Indicates whether the MCID change is decrease in the response variable
dist	distribution type (only for the 'mle' type estimator); "norm" (Normal), "expon" (Exponential). The default value is 'none'
equal.var	logical TRUE or FALSE; Indicates whether the variances are equal - for normal distribution only. The default value is TRUE

4 nnt_1

Value

The estimated Kraemer & Kupfer's NNT and its confidence intervals using the specified estimation method.

References

Kraemer, H. C., & Kupfer, D. J. (2006). Size of treatment effects and their importance to clinical research and practice. Biological psychiatry, 59(11), 990-996.

Vancak, V., Goldberg, Y., & Levine, S. Z. (2020). Systematic analysis of the number needed to treat. Statistical Methods in Medical Research, 0962280219890635.

Examples

 nnt_1

Laupacis' unadjusted NNT calculator

Description

Calculates Laupacis' type NNT. Takes two numeric vectors that are the outcomes of the treatment and control arms, and returns the estimated NNT using the specified estimation method.

Usage

```
nnt_l(type, treat, control, cutoff, decrease, dist = "none", equal.var = TRUE)
```

Arguments

type	specification of the estimation method; 'mle' (for the Maximum Likelihood estimator), 'fl' (for Furukawa & Leucht's estimator), 'laupacis' (for the non-parametric MLE estimator)
treat	vector of response variable of the treatment group
control	vector of response variable of the control group
cutoff	a scalar that is the MCID
decrease	logical TRUE or FALSE. Indicates whether the MCID change is decrease in the response variable
dist	distribution type (if specified); "normal" (Normal), "expon" (Exponential). The default value is 'none'.
equal.var	logical TRUE or FALSE; Indicates whether the variances are equal - for normal distribution only. The default value is TRUE.

Value

The estimated Laupacis' NNT and its confidence intervals using the specified estimation method.

nnt_survreg 5

References

Laupacis, A., Sackett, D. L., & Roberts, R. S. (1988). An assessment of clinically useful measures of the consequences of treatment. New England journal of medicine, 318(26), 1728-1733.

Vancak, V., Goldberg, Y., & Levine, S. Z. (2020). Systematic analysis of the number needed to treat. Statistical Methods in Medical Research, 0962280219890635.

Furukawa, T. A., & Leucht, S. (2011). How to obtain NNT from Cohen's d: comparison of two methods. PloS one, 6(4), e19070.

Examples

nnt_survreg

NNT-KM and NNT-COX calculator

Description

Calculates Laupacis' type conditional (adjusted) and harmonic mean (marginal) NNT(ylx) for survival data. Takes a data-set suitable for a survival analysis, a fixed time point y, and an explanatory variables x, and returns the estimated conditional (adjusted) NNT(ylx), and the estimated unadjusted and harmonic mean (marginal) NNT(y). In the Cox-model-based estimators, the baseline hazard is estimated by the Breslow's nonparametric MLE. In the unadjusted estimator of NNT(y), the survival probabilities are estimated by the Kaplan-Meier nonparametric MLE.

Usage

```
nnt_survreg(response, status, x, group, adj, time.point, data)
```

Arguments

response	vector of the response variable; times of the events/censoring
status	column that contains $0/1$ indicator, where 1 is failure time, and 0 is censoring time.
x	vector of the explanatory variable.
group	allocated arm variable where 1 corresponds to the treatment arm, and 0 to the control arm.
adj	the x value that the $NNT(y x)$ need to be conditioned on (adjusted for). The default value is the mean of x.
time.point	the fixed time point y for $NNT(y x)$, and $NNT(y)$
data	analyzed data frame that contains the required variables for the computations.

6 nnt_x

Value

The estimated unadjusted, harmonic mean (marginal) and conditinoal (adjusted) NNTs with their corresponding 95 percent confidence intervals.

References

Vancak, V., Goldberg, Y., & Levine, S. Z. (2021). Guidelines to understand and compute the number needed to treat. Evidence-Based Mental Health, 24(4), 131-136.

Therneau, T. M., & Lumley, T. (2014). Package survival. Survival analysis Published on CRAN, 2, 3.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), 457-481.

Cox, D. R., & Oakes, D. (1984). Analysis of survival data (Vol. 21). CRC Press.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202.

Examples

nnt_x

Laupacis' conditional (adjusted) and harmonic mean (marginal) NNT calculator in linear and generalized regression models.

Description

Calculates Laupacis' unadjusted, conditional (adjusted) and harmonic mean (marginal) NNT. Takes a data-set suitable for a regression analysis and returns the estimated conditional (adjusted) NNT(x), the estimated unadjusted, and the estimated harmonic mean (marginal) NNT given the explanatory variable, and a specified model.

Usage

```
nnt_x(model, response, x, cutoff, base, group, adj, decrease, data)
```

Arguments

model specification of the regression model; anova for the one-way ANOVA model,

linreg for the linear regression, and logreg for the logistic regression with the

logit link-function.

response vector of the response variable (i.e., the dependent variable).

x vector of the explanatory variable.

nnt_x 7

cutoff	the MCID threshold. This argument is suitable for continuous response variables, namely for ANOVA and linear regression.
base	control group of the x variable in the one-way ANOVA model.
group	allocated arm variable where 1 corresponds to the treatment arm, and 0 to the control arm. Suitable for linear and logistic regression.
adj	value that the NNT need to be condtioned on (adjusted for). The default value is mean of \boldsymbol{x} .
decrease	logical TRUE or FALSE. Indicates whether the MCID change is decrease in the response variable
data	data frame that contains the required variables for the computations.

Value

The estimated unadjusted, harmonic mean (marginal) and conditional (adjusted) NNT with their corresponding 95 percent confidence intervals given a specified model, and conditioned on (adjusted for) a specified value of the explanatory variables.

Examples

```
data(anova_data)
### SUCCESS = INCREASE
nnt_x(
              model
                        = "anova",
              response = anova_data$y,
                        = anova_data$gr,
              cutoff
                       = 0,
              base
                      = 1,
              decrease = FALSE,
              data
                        = anova_data)
### SUCCESS = DECREASE
nnt_x(
                        = "anova",
              response = anova_data$y,
                        = anova_data$gr,
              cutoff = 2,
              base
                      = 4,
              decrease = TRUE,
              data
                      = anova_data)
data(linreg_data)
### SUCCESS = INCREASE
nnt_x(
              model
                     = "linreg",
              response = linreg_data$y,
                     = linreg_data$x_var,
              cutoff = 3,
                     = linreg_data$gr,
              group
              decrease = FALSE,
                      = 2.6,
              adj
              data
                       = linreg_data )
### SUCCESS = DECREASE
inv_data = data.frame( y = linreg_data$y, x_var = linreg_data$x_var, gr = 1 - linreg_data$gr )
```

8 survreg_data

```
nnt_x( model
                = "linreg",
      response = inv_data$y,
                = inv_data$x_var,
       cutoff = 3,
       group = inv_data$gr,
       decrease = TRUE,
       adj
               = 2.6,
       data
                = inv_data )
data(logreg_data)
               = "logreg",
nnt_x( model
      response = logreg_data$y,
              = logreg_data$x_var,
      group = logreg_data$gr,
               = 1.5,
      adj
               = logreg_data )
      data
```

survreg_data

Data sample for the survival analysis example

Description

Data sample for the survival analysis example

Format

A data frame with 1000 rows, and 4 columns. Suitable for the Cox regression model. The file was generated using the simple.surv.sim function from the survsim package.

status is the status of each subject, where 1 corresponds to event, and 0 to censoring

stop is the time of the event/censoring

x is the allocated arm of each subject where 1 corresponds to treatment, and 0 to control

x.1 is continuous explanatory variable

Author(s)

V. Vancak

References

Moriña, D., Navarro, A., & Soler, M. D. M. (2018). Package survsim.

Examples

```
data(survreg_data)
```

Index

```
* datasets
    anova_data, 2
    linreg_data, 2
    logreg_data, 3
    survreg_data, 8

anova_data, 2

linreg_data, 2
logreg_data, 3

nnt_kk, 3

nnt_l, 4

nnt_survreg, 5

nnt_x, 6

survreg_data, 8
```