Generated on 2017-06-02 20:30:35 by gEcon version 1.0.2 (2016-12-05) Model name: epstein_zin

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, I_t} U_t = \beta \left(\mathbb{E}_t \left[U_{t+1}^{1-\theta^{EZ}} \right] \right)^{\left(1-\theta^{EZ}\right)^{-1}} + \left(-1 + C_t^{1-\eta}\right) \left(1 - \eta\right)^{-1}$$
(1.1)

s t

$$C_t + I_t = \pi_t + K_{t-1}^{\mathrm{s}} r_t + L_t^{\mathrm{s}} W_t \quad \left(\lambda_t^{\mathrm{CONSUMER}^1}\right)$$
(1.2)

$$K_t^{\rm s} = I_t + K_{t-1}^{\rm s} \left(1 - \delta\right) \quad \left(\lambda_t^{\rm CONSUMER^2}\right) \tag{1.3}$$

1.2 Identities

$$L_t^{\rm s} = 1 \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t^{\text{CONSUMER}^{U}} + \beta q_{t-1}^{\text{CONSUMER}^{1-1+\left(1-\theta^{\text{EZ}}\right)^{-1}}} U_t^{-\theta^{\text{EZ}}} = 0 \quad (U_t)$$

$$(1.5)$$

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \mathbf{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{U}} \left(\lambda_{t+1}^{\text{CONSUMER}^{1}} r_{t+1} + \lambda_{t+1}^{\text{CONSUMER}^{2}} \left(1 - \delta \right) \right) \right] = 0 \quad (K_{t}^{s})$$
 (1.6)

$$-\lambda_t^{\text{CONSUMER}^1} + C_t^{-\eta} = 0 \quad (C_t)$$
(1.7)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t)$$
 (1.8)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}, Y_t} \pi_t = Y_t - L_t^{\rm d} W_t - r_t K_t^{\rm d}$$
(2.1)

st.

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{\text{d}^{-1+\alpha}} L_t^{\text{d}^{1-\alpha}} = 0 \quad (K_t^{\text{d}})$$
(2.3)

$$-W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{d^{\alpha}} L_t^{d^{-\alpha}} = 0 \quad (L_t^d)$$
(2.4)

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (Y_t) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1}+\alpha} L_t^{\mathrm{d}^{1}-\alpha} = 0 \quad (K_t^{\mathrm{d}})$$

$$(2.6)$$

$$-W_t + Z_t (1 - \alpha) K_t^{d\alpha} L_t^{d-\alpha} = 0 \quad (L_t^d)$$

$$(2.7)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\rm d} = K_{t-1}^{\rm s}$$
 (3.1)

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$q_t^{\text{CONSUMER}^1} - \mathcal{E}_t \left[U_{t+1}^{1-\theta^{\text{EZ}}} \right] = 0$$
 (5.1)

$$-r_t + \alpha Z_t 1^{1-\alpha} K_{t-1}^{s}^{-1+\alpha} = 0 (5.2)$$

$$-W_t + Z_t (1 - \alpha) 1^{-\alpha} K_{t-1}^{s \alpha} = 0$$
 (5.3)

$$-Y_t + Z_t 1^{1-\alpha} K_{t-1}^{s}{}^{\alpha} = 0 (5.4)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} = 0 \tag{5.5}$$

$$\beta q_t^{\text{CONSUMER}^{1-1+\left(1-\theta^{\text{EZ}}\right)^{-1}}} \mathcal{E}_t \left[\left(r_{t+1} C_{t+1}^{-\eta} + \left(1-\delta\right) C_{t+1}^{-\eta} \right) U_{t+1}^{-\theta^{\text{EZ}}} \right] - C_t^{-\eta} = 0$$
 (5.6)

$$-C_t - I_t + Y_t = 0 (5.7)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.8)$$

$$U_t - \beta q_t^{\text{CONSUMER}^1 (1 - \theta^{\text{EZ}})^{-1}} - (-1 + C_t^{1-\eta}) (1 - \eta)^{-1} = 0$$
 (5.9)

6 Steady state relationships (after reduction)

$$q_{\rm ss}^{\rm CONSUMER^1} - U_{\rm ss}^{1-\theta^{\rm EZ}} = 0 \tag{6.1}$$

$$-r_{\rm ss} + \alpha Z_{\rm ss} 1^{1-\alpha} K_{\rm ss}^{\rm s}^{-1+\alpha} = 0 \tag{6.2}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) 1^{-\alpha} K_{\rm ss}^{\rm s \alpha} = 0$$
 (6.3)

$$-Y_{\rm ss} + Z_{\rm ss} 1^{1-\alpha} K_{\rm ss}^{\rm s \alpha} = 0 \tag{6.4}$$

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{6.5}$$

$$\beta \left(r_{\rm ss} C_{\rm ss}^{-\eta} + (1 - \delta) C_{\rm ss}^{-\eta} \right) q_{\rm ss}^{\rm CONSUMER^{1-1} + \left(1 - \theta^{\rm EZ} \right)^{-1}} U_{\rm ss}^{-\theta^{\rm EZ}} - C_{\rm ss}^{-\eta} = 0$$
 (6.6)

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} = 0 (6.7)$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0$$
 (6.8)

$$U_{\rm ss} - \beta q_{\rm ss}^{\rm CONSUMER^1 (1-\theta^{\rm EZ})^{-1}} - (-1 + C_{\rm ss}^{1-\eta}) (1-\eta)^{-1} = 0$$
 (6.9)

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\phi = 0.95 \tag{8.4}$$

$$\theta^{EZ} = 0.05 \tag{8.5}$$

9 Steady-state values

	Steady-state value
q^{CONSUMER^1}	58.4346
r	0.0351
C	3.6213
I	1.4427
$K^{ m s}$	57.7077
U	72.3856
W	3.0384
Y	5.064
Z	1

10 Model parameters

	Value
α	0.4
β	0.99
δ	0.025
η	2
ϕ	0.95
$ heta^{ ext{EZ}}$	0.05

11 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{ccc} & K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K_{t}^{\mathrm{s}} & \left(\begin{array}{ccc} 0.9792 & 0.0632 \\ 0 & 0.95 \end{array} \right) \end{array}$$

Matrix Q

$$\begin{array}{c} \epsilon^{\rm Z} \\ K^{\rm s} & \left(\begin{array}{c} 0.0665 \\ 1 \end{array} \right) \end{array}$$

Matrix R

	K_{t-1}^{s}	Z_{t-1}
$q_t^{\text{CONSUMER}^1}$	(0.0571)	0.0806
r_t	-0.6	0.95
C_t	0.4918	0.3212
I_t	0.1696	2.5283
U_t	0.0614	0.0852
W_t	0.4	0.95
Y_t	0.4	0.95 /

Matrix S

	$\epsilon^{ m Z}$
q^{CONSUMER^1}	(0.0848)
r	1
C	0.3381
I	2.6613
U	0.0897
W	1
Y	$\setminus 1$

12 Model statistics

12.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
C	3.6213	0.4567	0.2085	Y
K^{s}	57.7077	0.3108	0.0966	Y
W	3.0384	1.301	1.6926	Y
I	1.4427	3.4658	12.0115	Y
r	0.0351	1.3291	1.7664	Y
Y	5.064	1.301	1.6926	Y

12.2 Correlation matrix

	r	C	I	K^{s}	W	Y
r	1	0.887	0.988	0.074	0.972	0.972
C		1	0.948	0.527	0.97	0.97
I			1	0.228	0.997	0.997
K^{s}				1	0.305	0.305
W					1	1
Y						1

12.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	$\mid Y_{t+5} \mid$
r_t	1.022	0.113	0.232	0.376	0.547	0.746	0.972	0.632	0.355	0.135	-0.034	-0.159
C_t	0.351	-0.129	-0.001	0.167	0.383	0.649	0.97	0.767	0.582	0.418	0.275	0.153
I_t	2.664	0.035	0.16	0.316	0.506	0.733	0.997	0.694	0.441	0.233	0.068	-0.059
K_t^{s}	0.239	-0.486	-0.429	-0.33	-0.181	0.028	0.305	0.491	0.602	0.652	0.654	0.622
W_t	1	-0.006	0.121	0.282	0.48	0.719	1	0.719	0.48	0.282	0.121	-0.006
Y_t	1	-0.006	0.121	0.282	0.48	0.719	1	0.719	0.48	0.282	0.121	-0.006

12.4 Autocorrelations

	Lag 1	${\rm Lag}\ 2$	Lag 3	Lag 4	Lag 5
r	0.713	0.471	0.271	0.109	-0.017
C	0.753	0.534	0.345	0.185	0.053
I	0.714	0.472	0.272	0.111	-0.015
K^{s}	0.96	0.865	0.732	0.578	0.415
W	0.719	0.48	0.282	0.121	-0.006
Y	0.719	0.48	0.282	0.121	-0.006

13 Impulse response functions

Figure 1: Impulse responses (C,K^{s},W,I,r) to ϵ^{Z} shock

Figure 2: Impulse response (Y) to $\epsilon^{\mathbb{Z}}$ shock