CLAIMS

What is claimed is:

1	1. A fiber-based optical low-coherence reflectometer comprising:
2	a polarization-maintaining source path;
3	a polarization-maintaining reference path;
4	a polarization-maintaining sample path optically aligned with a collimating lens, a
5	variable wave retarder, and a focusing lens, wherein the focusing lens is disposed to focus light
6	on a sample; and
7	a polarization-maintaining detection path,
8	wherein the polarization-maintaining source path, reference path, sample path and
9	detection path are each connected to a polarization-maintaining path coupler.
1	2. The fiber-based optical low-coherence reflectometer of claim 1, wherein the
1	polarization-maintaining path coupler separates light into polarization-maintaining sample and
2	reference paths while maintaining energy separation of optical signals.
3	
1	3. The fiber-based optical low-coherence reflectometer of claim 1, wherein the
2	polarization-maintaining source path comprises:
3	a first polarization-maintaining fiber having a first end and a second end, wherein the first
4	end of the first polarization-maintaining fiber is coupled to a light source and the second end is
5	connected to a polarizer that splits the light source into a first and second polarization channels
6	with independent phase components; and
Ü	
1	a second polarization-maintaining fiber having a first end and a second end, the first end
2	connected to the polarizer and the second end connected to the polarization-maintaining path
3	coupler.

4. The fiber-based optical low-coherence reflectometer of claim 1, wherein the polarization-maintaining reference path comprises:

a third polarization-maintaining fiber having a first end and a second end, the first end connected to the polarization-maintaining path coupler, the second end connected to a phase modulator; and

a fourth polarization-maintaining fiber having a first end and a second end, the first end connected to the phase modulator, the second end to a connector and optically aligned with a first collimator that collimates light emitting from the second end of the fourth polarization-maintaining fiber into an optical delay line.

- 5. The fiber-based optical low-coherence reflectometer of claim 1, wherein the polarization-maintaining sample path further comprises a fifth polarization-maintaining fiber having a first and a second end, the first end connected to the polarization-maintaining path coupler, the second end to a connector and optically aligned with a second collimator that collimates light emitting from the second end of the fifth polarization-maintaining fiber to the variable wave retarder and the focusing lens.
 - 6. The fiber-based optical low-coherence reflectometer of claim 1, wherein the polarization-maintaining detection path comprises:
 - a sixth polarization-maintaining fiber having a first end and a second end, the first end connected to the polarization-maintaining path coupler, the second end aligned with a third collimator that collimates light emitting from the sixth polarization-maintaining fiber onto a polarizing beam splitter, wherein the polarizing beam splitter splits light from the sixth polarization-maintaining fiber into a first beam and a second beam that are mutually orthogonal and capable of producing a first and second output signal.
- The fiber-based optical low-coherence reflectometer of claim 6, wherein the first beam of the detection path is detected by a first photodetector and produces the first output signal and the second beam of the detection path is detected by a second photodetector and produces the second output signal.

1	8. The fiber-based optical low-coherence reflectometer of claim 1, wherein the
2	polarization-maintaining detection path further comprises:
3	a first and second output signal pass from a first and second photodetector, each output
4	signal pass having a bandpass filter and amplifier to produce a first and a second filtered signal;
5	an analog-to-digital converter connected to the bandpass filter-amplifier; and
6	a processor connected to the analog-to-digital converter.
1	9. The fiber-based optical low-coherence reflectometer of claim 8, wherein the
2	analog-to-digital converter is a two channel 12-bit analog-to-digital converter.
1	10. The fiber-based optical low-coherence reflectometer of claim 1, wherein variation
2	of the variable wave retarder is from zero to one wavelength.
1	11. The fiber-based optical low-coherence reflectometer of claim 3, wherein the light
2	source is a broadband light source.
1	12. The fiber-based optical low-coherence reflectometer of claim 3, wherein the light
2	source is an optical semiconductor amplifier.
1	13. The fiber-based optical low-coherence reflectometer of claim 3, wherein the
2	polarizer is a fiber bench polarizer.
1	14. The fiber-based optical low-coherence reflectometer of claim 1, wherein back
2	reflected light from the polariation-maintaining reference and sample path mix at the path
3	coupler to form interference signals.
1	15. The fiber-based optical low-coherence reflectometer of claim 1, wherein the
2	fiber-based optical low-coherence reflectomoter is used to characterize birefringence of sample
3	selected from the group consisting of a turbid sample, transparent sample, and microfluidic chip
1	The fiber-based optical low-coherence reflectometer of claim 4, wherein the

optical delay line includes a diffraction grating and dispersion control.

- 1 17. The fiber-based optical low-coherence reflectometer of claim 1, wherein light 2 back scattered from the sample after traversing through the variable wave retarder is elliptically 3 polarized.
- 1 18. The fiber-based optical low-coherence reflectometer of claim 5, wherein the connector is an angle-cleaved connector.
- 1 19. The fiber-based optical low-coherence reflectometer of claim 4, wherein the phase modulator is a Lithium Niobate waveguide electro-optic phase modulator.
- 1 20. The fiber-based optical low-coherence reflectometer of claim 4, wherein the 2 phase modulator provides a stable carrier frequency and permits measurement of fast transient 3 birefringence.
- 1 21. The fiber-based optical low-coherence reflectometer of claim 1, wherein the fiber-2 based optical low-coherence reflectometer is rotationally insensitive of the measured retardation 3 of a birefringent sample.

1	22. A method for characterizing birefringence of a sample comprising the steps of
2	creating a polarization-maintaining optical source path using a broadband light source;
3	creating a polarization-maintaining optical reference path that is optically coupled to a
4	first collimator directed to an optical delay line with dispersion control;
5	creating a polarization-maintaining optical sample path that is optically coupled to a
6	second collimator, a variable wave retarder, and a focusing lens, wherein the focusing lens
7	focuses light on the sample;
8	creating a polarization-maintaining optical detection path optically coupled to a third
9	collimator and a polarizing beam splitter, wherein the polarizing beam splitter is optically
10	coupled to a first and second photodetectors that produce a first and second output signal,
11	respectively;
••	•
12	connecting the polarization-maintaining source path, reference path, sample path and the
13	detection path to a polarization-maintaining path coupler;
14	converting the first and second output signals from the polarization-maintaining optical
15	detection path with an analog-to-digital converter; and
16	connecting a processor to the analog-to-digital converter for collection of birefringent
17	data about the sample.
1	The method of claim 22, wherein the first and second output signals from the
2	polarization-maintaining optical detection path initially pass through a bandpass filter and
3	amplifier to produce a first and second filtered signals.
	24. The method of claim 22, wherein birefringent data about the sample is selected
1	from the groups consisting of retardation and orientation of the birefringent axes of sample and
2	
3	depth resolved birefringence.
1	25. The method of claim 22, wherein birefringence is characterized with a single or
2	multiple measurements

- 1 26. A polarization-maintaining optical fiber sample path optically aligned with a 2 collimating lens, a variable wave retarder, and a focusing lens, wherein the focusing lens is 3 disposed to focus light on a sample to characterize birefringence about the sample with rotation 4 insensitivity of the measured retardation of the birefringent sample.
- 1 27. A polarization-maintaining optical fiber sample path optically aligned with a 2 collimating lens, a quarter wave retarder, and a focusing lens, wherein the focusing lens is 3 disposed to focus light on a sample and light back scattered from the birefringent sample after 4 traversing through the quarter wave retarder is elliptically polarized.
- 1 28. The polarization-maintaining optical fiber sample path of claim 26 further 2 comprising an optical catheter probe used for imaging.
- 1 29. The polarization-maintaining optical fiber sample path of claim 26 configured to 2 interrogate a sensor.

1	30. A method of optically analyzing a sample comprising the steps of:
2	placing a sample in front of a polarization-maintaining optical sample path that is
3	optically coupled to a first collimator, a variable wave retarder, and a focusing lens, wherein the
4	focusing lens is disposed to focus light on the sample;
5	creating a polarization-maintaining optical source path to introduce light;
6	creating a polarization-maintaining optical reference path that is optically coupled to a
7	second collimator, wherein the collimator is directed into a rapid scanning delay line to be used
8	as a reference; and
9	detecting light changes on the sample using a polarization-maintaining optical detection
10	path optically coupled to a third collimator and a polarizing beam splitter, wherein the polarizing
11	beam splitter is optically coupled to a first and second photodetectors that produce a first and
12	second output signals, respectively, wherein the first and second output signals are filtered and
13	converted with an analog-digital converter to digital data about the sample;
14	wherein the polarization-maintaining optical source path, reference path, sample path and
15	detection path are connected to a polarization-maintaining path coupler.

1	31. A system of characterizing birefringence of a sample comprising:
2	a broad bandwidth optical light source;
3	a polarization-maintaining optical source path incorporating a polarizing element and
4	correlates optical signals in fast and slow fiber polarization channels and optically connects both
5	channels to a polarization-maintaining path coupler;
6	a polarization-maintaining path coupler that separates light into polarization-maintaining
7	optical sample and reference paths while maintaining energy separation of optical signals in the
8	fast and slow fiber polarization channels;
9	a polarization-maintaining optical reference path optically connected to the polarization-
10	maintaining path coupler and optically coupled to an optical delay line;
11	a polarization-maintaining optical sample path optically connected to the polarization-
12	maintaining path coupler, wherein the polarization-maintaining optical sample path comprises a
13	quarter wave retarder and a focusing lens, wherein the focusing lens is disposed to focus light on
14	the sample;
15	said sample placed in front of the polarization-maintaining optical sample path from
16	which birefringence is characterized;
17	a polarization-maintaining optical detection path optically connected to the polarization-
18	maintaining path coupler and a polarizing beam splitter that is optically coupled to a first and
19	second photodetectors that produce first and second output signals, respectively, wherein the first
20	and second output signals are filtered and amplified;
21	an analog-to-digital converter connected to the filter-amplifier; and
22	a processor connected to the analog-to-digital converter.

- 1 32. A method for determining depth-resolved phase retardation of a sample
- 2 birefringence comprising the steps of:
- initially estimating pseudo fast axis orientation $[\phi_f(i=0), \theta_f(i=0)]$ and cone apex-
- angle $[\theta_o(i=0)]$, wherein the fast axis orientation is $F(\phi_f, \theta_f)$ and the cone apex-angle is θ_o ;
- determining F and θ_o using a Levenberg-Marquardt method; and
- 6 computing the least square determination of depth-resolved phase retardation $[\delta(z, \Delta z)]$.
- 1 33. A method for determining depth-resolved phase retardation $[\delta(z, \Delta z)]$ of a
- 2 sample comprising the step of:
- computing $\delta(z, \Delta z) = N_p m$, wherein N_p is the number of data points about a sample
- 4 recorded over optical depth Δz .
- 1 34. A method for determining an unbiased estimate of $[F(\phi_f, \theta_f), \theta_o]$ comprising
- 2 the steps of:
- 3 minimizing a residual function, wherein the residual function is

$$R(\varphi_f, \theta_f, \theta_o) = \sum_{i} \sin^2(\varepsilon_i); \text{ where } \varepsilon_i = \cos^{-1}(S_i \cdot n(\varphi_f, \theta_f)) - \theta_o,$$

- 5 wherein ε_i is the shortest distance between an i'th data point (S_i) and an arc on a
- 6 Poincaré sphere specified by $[\phi_f, \theta_f, \theta_o]$.
- 1 35. The method of claim 34, wherein the residual function is formed by the composite
- sum of distances (ε_i) on the Poincaré sphere formed between the data points (S_i) and the arc
- 3 specified by $[\phi_f, \theta_f, \theta_o]$.

36. A fiber-based optical low-coherence reflectometer comprising:

a path coupler that separates light into sample and reference paths while maintaining energy separation of optical signals into fast and slow fiber polarization channels;

a source path comprising a first polarization-maintaining optical fiber having a first end and a second end, wherein the first end of the first optical fiber is coupled to a light source and the second end is connected to a polarizer that splits the light source into a first and second polarization channels with independent phase components; and a second polarization-maintaining optical fiber having a first end and a second end, the first end connected to the polarizer and the second end connected to the path coupler;

a reference path comprising a third and fourth polarization-maintaining optical fiber, the third polarization-maintaining optical fiber having a first end and a second end, the first end connected to the path coupler, the second end connected to a phase modulator; and a fourth polarization-maintaining optical fiber having a first end and a second end, the first end connected to the phase modulator, the second end to a connector and optically aligned with a first collimator that collimates light emitting from the second end of the fourth polarization-maintaining optical fiber into an optical delay line;

a sample path comprising a fifth polarization-maintaining optical fiber having a first and a second end, the first end connected to the path coupler, the second end to a connector and optically aligned with a second collimator that collimates light emitting from the second end of the fifth polarization-maintaining optical fiber to a variable wave retarder and a focusing lens, wherein the focusing lens is aligned to focus light on a sample; and

a detection path comprising a sixth polarization-maintaining optical fiber having a first end and a second end, the first end connected to the path coupler, the second end aligned with a third collimator that collimates light emitting from the sixth polarization-maintaining optical fiber onto a polarizing beam splitter, wherein the polarizing beam splitter splits the light from the sixth polarization-maintaining optical fiber into a first beam and a second beam that are mutually orthogonal and capable of producing a first and second output signal about the sample.