SBML Model Report

Model name: "Lockwood2006 - Alzheimer's Disease PBPK model"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Matthew Grant Roberts¹ and James Lawson² at February twelveth 2018 at 12:01 a.m. and last time modified at February 14th 2018 at 3:38 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	29	unit definitions	2
rules	15	initial assignments	0

Model Notes

Lockwood2006 - AlzheimersDisease PBPKmodelA mathematical model to predict theeffectiveness of CI-1017 (muscarinic agonist) for Alzheimer's disease by evaluating changes in ADAScog score.

¹EMBL-EBI, mroberts@ebi.ac.uk

²Auckland Bioengineering Institute, j.lawson@auckland.ac.nz

This model is described in the article: Application of clinical trial simulation to compare proof-of-concept study designs for drugs with a slow onset of effect; an example in Alzheimer's disease. Lockwood P, Ewy W, Hermann D, Holford N.Pharm. Res. 2006 Sep; 23(9): 2050-2059

Abstract:

OBJECTIVE: Clinical trial simulation (CTS) was used to select a robust design to test the hypothesis that a new treatment was effective for Alzheimer's disease (AD). Typically, a parallel group, placebo controlled, 12-week trial in 200-400 AD patients would be used to establish drug effect relative to placebo (i.e., Ho: Drug Effect = 0). We evaluated if a crossover design would allow smaller and shorter duration trials. MATERIALS AND METHODS: A family of plausible drug and disease models describing the time course of the AD assessment scale (ADAS-Cog) was developed based on Phase I data and literature reports of other treatments for AD. The models included pharmacokinetic, pharmacodynamic, disease progression, and placebo components. Eight alternative trial designs were explored via simulation. One hundred replicates of each combination of drug and disease model and trial design were simulated. A 'positive trial' reflecting drug activity was declared considering both a dose trend test (p < 0.05) and pair-wise comparisons to placebo (p < 0.025). RESULTS: A 4 x 4 Latin Square design was predicted to have at least 80% power to detect activity across a range of drug and disease models. The trial design was subsequently implemented and the trial was completed. Based on the results of the actual trial, a conclusive decision about further development was taken. The crossover design provided enhanced power over a parallel group design due to the lower residual variability. CONCLUSION: CTS aided the decision to use a more efficient proof of concept trial design, leading to savings of up to US 4 M dollars in direct costs and a firm decision 8-12 months earlier than a 12-week parallel group trial.

This model is hosted on BioModels Database and identified by: BIOMD0000000673.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment	Compartment		3	1	litre	Z	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one ml.

Name Compartment

4 Parameters

This model contains 29 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
SO	S0		30.000		
alpha	alpha		0.016		$ \mathbf{Z} $
MODEL_TIME	MODEL_TIME		1.000		Z
PD_CeP	PD_CeP		-0.311		⊿ ⊟
PD_CeA	PD_CeA		-0.311 -2.003		
epsilon	epsilon		0.000		
epsiion S	S		27.702		⊿ ⊟
Beta_P	Beta_P		-3.000		
	Keq_P		0.116		\mathbf{Z}
Keq_P Kel_P	Keq_r Kel_P		0.110		
t_half_eq	t_half_eq		6.000		
t_half_eq	t_half_el		7.000		
C_mair_er Beta_A	Beta_A		-0.047		
CeA	CeA		25.000		
	ECeA_50		21.000		
ECeA_50	Emax		-3.000		\mathbf{Z}
Emax					
n C-A II	n CoA II		4.000 0.000		
CeA_U ICea_U	CeA_U		0.000		
	ICea_U ECea_U50		18.000		
ECea_U50					
ICea_U50	ICea_U50		38.000		$ \mathbf{Z} $
MODEL_TYPE	MODEL_TYPE		3.000		
ANT_AGONIST-	ANT_AGONIST-		0.000		\square
_COMBINATION	_COMBINATION		0.000		
Model-	Model_Inactive		0.000		
_Inactive	Model_active-		1 175		
Model-			-1.175		\Box
_active-	_Linear				
Linear	Madal action		1 620		
Model-	Model_active-		-1.630		
_active-	_Hyperbolic				
_Hyperbolic	Model active		2 002		
Model-	Model_active-		-2.003		
_active-	_Sigmoidal				
_Sigmoidal	Madal arthur II		0.000		
Model-	Model_active_U-		0.000		\Box
_active_U-	_Shaped				
_Shaped	ADAC COC D		0.211		
ADAS_COG_P	ADAS_COG_P		-0.311		

5 Rules

This is an overview of 15 rules.

5.1 Rule Keq_P

Rule Keq_P is an assignment rule for parameter Keq_P:

$$Keq_P = \frac{ln 2}{t_half_eq}$$
 (1)

5.2 Rule Kel_P

Rule Kel_P is an assignment rule for parameter Kel_P:

$$Kel P = \frac{\ln 2}{t \text{ half el}}$$
 (2)

5.3 Rule Emax

Rule Emax is an assignment rule for parameter Emax:

$$Emax = \begin{cases} 4 & \text{if MODEL_TYPE} = 2\\ \begin{cases} 3 & \text{if MODEL_TYPE} = 3\\ \\ 6 & \text{if MODEL_TYPE} = 4\\ 0 & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}$$

$$(3)$$

5.4 Rule n

Rule n is an assignment rule for parameter n:

$$n = \begin{cases} 4 & \text{if MODEL_TYPE} = 3 \\ \begin{cases} 3 & \text{if MODEL_TYPE} = 4 \\ 0 & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}$$
 (4)

5.5 Rule CeA_U

Rule CeA_U is an assignment rule for parameter CeA_U:

5.6 Rule ICea_U

Rule ICea_U is an assignment rule for parameter ICea_U:

5.7 Rule Model_Inactive

Rule Model_Inactive is an assignment rule for parameter Model_Inactive:

$$Model_Inactive = 0 \cdot CeA \tag{7}$$

5.8 Rule Model_active_Linear

Rule Model_active_Linear is an assignment rule for parameter Model_active_Linear:

$$Model_active_Linear = Beta_A \cdot CeA$$
 (8)

5.9 Rule Model_active_Hyperbolic

Rule Model_active_Hyperbolic is an assignment rule for parameter Model_active_Hyperbolic:

$$Model_active_Hyperbolic = \frac{Emax \cdot CeA}{ECeA_50 + CeA}$$
 (9)

5.10 Rule Model_active_Sigmoidal

Rule Model_active_Sigmoidal is an assignment rule for parameter Model_active_Sigmoidal:

$$Model_active_Sigmoidal = \frac{Emax \cdot CeA^n}{ECeA_50^n + CeA^n}$$
 (10)

5.11 Rule Model_active_U_Shaped

Rule Model_active_U_Shaped is an assignment rule for parameter Model_active_U_Shaped:

$$Model_active_U_Shaped = Emax \cdot \left(\frac{CeA_U^n}{ECea_U50^n + CeA_U^n} - \frac{ICea_U^n}{ICea_U50^n + ICea_U^n} \right) \quad (11)$$

5.12 Rule PD_CeA

Rule PD_CeA is an assignment rule for parameter PD_CeA:

5.13 Rule ADAS_COG_P

Rule ADAS_COG_P is an assignment rule for parameter ADAS_COG_P:

$$ADAS_COG_P = \frac{Beta_P \cdot Keq_P}{Keq_P - Kel_P}$$

$$\cdot (exp(1 \cdot Kel_P \cdot MODEL_TIME) - exp(1 \cdot Keq_P \cdot MODEL_TIME))$$
(13)

5.14 Rule PD_CeP

Rule PD_CeP is an assignment rule for parameter PD_CeP:

$$PD_{CeP} = ADAS_{COG_{P}}$$
 (14)

5.15 Rule S

Rule S is an assignment rule for parameter S:

$$S = SO + alpha \cdot MODEL_TIME + PD_CeP + PD_CeA + epsilon$$
 (15)

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany