4) Introduction to Data

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from Introductory Statistics with Randomization and Simulation

Diez et al. (2014): Ch 1 - Introduction to Data

50 E-mail Dataset

import pandas as pd

$$\label{eq:file} \begin{split} &\text{file} = \text{"https://github.com/VitorKamada/ECO5100/raw/master/Data/email50.csv"} \\ &\text{email50} = \text{pd.read_csv(file)} \\ &\text{email50.head()} \end{split}$$

	spam	num_char	line_breaks	format	number
1	no	21,705	551	html	small
2	no	7,011	183	html	big
3	yes	631	28	text	none
:	:	:	:	:	÷
50	no	15,829	242	html	small

email50.describe()

count mean std min 25% 50% 75%	dollar 50.000000 0.900000 3.518174 0.000000 0.000000 0.000000	inherit 50.0 0.0 0.0 0.0 0.0 0.0	viagra 50.0 0.0 0.0 0.0 0.0 0.0	password 50.000000 0.460000 1.631451 0.000000 0.000000 0.000000	num_char 50.000000 11.598220 13.125261 0.057000 2.535500 6.889500 15.410750	line_breaks 50.00000 267.30000 290.81983 5.00000 60.25000 162.50000 459.000000	
max	23.000000	0.0	0.0	8.000000	64.401000	1167.00000	
count mean std min 25% 50%	format 50.000000 0.740000 0.443087 0.000000 0.250000 1.000000	re_subj 50.000000 0.280000 0.453557 0.000000 0.000000	50 0 7 0 0 0 0 0 0	.000000 .060000 .239898 .000000 .000000	rgent_subj 50.0 0.0 0.0 0.0 0.0	exclaim_mess 50.000000 4.420000 7.661433 0.000000 1.0000000 1.5000000	
75% max	1.000000 1.000000	1.000000		.000000	0.0 0.0	4.000000 43.000000	

Scatterplot

```
import matplotlib.pyplot as plt
plt.scatter(email50["num_char"], email50["line_breaks"])
plt.xlabel('# of Characters (in thousands)')
plt.ylabel('# of Lines')
```


Sample Mean (\bar{x})

import numpy as np np.mean(email50["num_char"])

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n} = 11.6$$

Histogram

```
plt.hist(email50["num_char"], bins=20)
plt.title('Histogram of # num_char')
```


Population Variance (σ^2) and Standard Deviation (σ)

np.var(email50["num_char"])

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} = 168.83$$

np.std(email50["num_char"])

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = 12.98$$

Sample Variance (s^2) and Standard Deviation (s)

from statistics import variance, stdev variance(email50["num_char"])

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = 172.27$$

stdev(email50["num_char"])

$$s = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})^2}{n-1}} = 13.12$$

Boxplot

np.median(email50["num_char"]) 6.9
from scipy import stats
scipy.stats.iqr(email50["num_char"]) 12.87
plt.boxplot(email50["num_char"])

Robust Statistics

	robust		not robust	
scenario	median	IQR	$ar{x}$	s
original num_char data	6,890	12,875	11,600	13,130
drop 66,924 observation	6,768	11,702	$10,\!521$	10,798
move 66,924 to 150,000	6,890	12,875	13,310	$22,\!434$

Barplot

```
email =
pd.read_csv("https://github.com/VitorKamada/ECO5100/raw/master/Data/email.csv")
```

email["number"].value_counts().plot(kind='bar')

Pie Chart

email["number"].value_counts().plot(kind='pie')

Frequency Table

pd.crosstab(email["spam"], columns="count")
pd.crosstab(email["number"], columns="count")

spam	count
0	3554
1	367

number	count
big	545
none	549
small	2827

Contingency Table

```
pd.crosstab(email["spam"],
columns=email["number"], margins=True)
```

```
    number
    big
    none
    small
    All

    spam
    0
    495
    400
    2659
    3554

    1
    50
    149
    168
    367

    All
    545
    549
    2827
    3921
```

```
pd.crosstab(email["spam"],
columns=email["number"], normalize='columns')
```

number	big	none	small	
spam				
0	0.908257	0.728597	0.940573	
1	0.091743	0.271403	0.059427	< ≣ →

Presidential Run

Global Warming

Tax Cuts

Unemployment Rate

December 2018