Class BS Data Science

Subject: Text Mining

Day 1: Date: 25/11/2024

Topic: TF-IDF

Recommended Books

- 1. Text Mining with R: A Tidy Approach by Julia Silge and David Robinson
- 2. Foundations of Statistical Natural Language Processing by Christopher Manning and Hinrich Schütze
- **3.** Mining the Social Web by Matthew A. Russell
- 4. Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS

Slide 1: Title Slide

Title: Understanding TF-IDF: A Key Text Mining Technique **Subtitle:** Enhancing Text Analysis with Weight-Based Features

Presented by: [Your Name]

Date: [Insert Date]

Slide 2: What is TF-IDF?

• Definition:

TF-IDF is a statistical measure that evaluates how important a word is to a document within a collection (or corpus).

• Purpose:

Assigns higher weights to words that are unique or relevant to a document and lower weights to common words across the corpus.

Slide 3: Components of TF-IDF

1. Term Frequency (TF):

Measures the frequency of a word in a document.

$$TF(w,d) = \frac{\text{Number of occurrences of word } w \text{ in document } d}{\text{Total number of words in document } d}$$

2. Inverse Document Frequency (IDF):

Measures how unique a word is across all documents in the corpus.

$$IDF(w) = \log\left(\frac{N}{1 + DF(w)}\right)$$

Where:

- o N: Total number of documents.
- o DF(w): Number of documents containing the word www.
- o Adding 1 to DF(w) avoids division by zero.

0

3. **TF-IDF Score:**

The product of TF and IDF.

$$TF$$
- $IDF(w, d) = TF(w, d) \cdot IDF(w)$

Slide 4: Why Use TF-IDF?

- Removes the bias of frequently occurring but less important words (e.g., "and," "the").
- Helps identify words that uniquely represent a document.
- Commonly used in tasks like text classification, clustering, and information retrieval.

Slide 5: Example Corpus for TF-IDF Calculation

Corpus of 3 Documents:

- 1. Document 1: "Text mining is fun."
- 2. Document 2: "Mining data helps extract insights."
- 3. Document 3: "Data mining and text analytics are valuable."

Slide 6: Step 1: Compute Term Frequencies (TF)

Word	TF (Doc 1)	TF (Doc 2)	TF (Doc 3)
Text	1/4	0	1/6
Mining	1/4	1/5	1/6
Is	1/4	0	0
Fun	1/4	0	0
Data	0	1/5	1/6
Helps	0	1/5	0
Extract	0	1/5	0
Insights	0	1/5	0
And	0	0	1/6
analytics	0	0	1/6
Are	0	0	1/6
Valuable	0	0	1/6

Slide 7: Step 2: Compute Document Frequencies (DF)

Word DF (Number of Documents Containing the Word)

Text 2 Mining 3

Is 1

Fun 1

Data 2

Helps 1

Extract 1

Insights 1

And 1

analytics 1

Are 1

valuable 1

Slide 8: Step 3: Compute IDF

Using the formula:

$$IDF(w) = \log \left(rac{N}{1 + DF(w)}
ight)$$

Where N=3 (Total documents):

Word	IDF
text	$\log\left(rac{3}{1+2} ight)=0$
mining	$\log\left(rac{3}{1+3} ight) = -0.1249$
is	$\log\left(rac{3}{1+1} ight)=0.4055$
fun	$\log\left(rac{3}{1+1} ight)=0.4055$
data	$\log\left(rac{3}{1+2} ight) = 0$

Continue similarly for other words. This will result in feature vectors for each document.

Slide 10: Applications of TF-IDF

1. Text Classification:

o Example: Spam detection using email data.

2. Information Retrieval:

o Example: Search engines rank documents based on relevance.

3. Text Clustering:

o Example: Grouping news articles by topic.

Lab work

from sklearn.feature_extraction.text import TfidfVectorizer

```
# Define the corpus
corpus = [
    "Text mining is fun",
    "Mining data helps extract insights",
    "Data mining and text analytics are valuable"
]
# Initialize TF-IDF Vectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(corpus)
# Display results
print("TF-IDF Feature Names:", vectorizer.get_feature_names_out())
print("TF-IDF Matrix:\n", tfidf_matrix.toarray())
```