Практическое занятие №2 «Временной ряд: числовые характеристики»

План занятия

- 1. Модели временных рядов и их характеристики.
- 2. АСГ и РАСГ: определение, построение, анализ. Анализ стационарности ВР на основе АСГ и РАСГ.
- 1. Изучите простейшие модели временных рядов и их характеристики
 - белый шум (БШ) $y_t = \varepsilon_t$
 - линейный тренд $tr1_t = 0.1 + 0.1 * t + \varepsilon_t$
 - параболический тренд $tr2_t = 0.1 + 0.002t^2 + \varepsilon_t$
 - -случайное блуждание $y_t = y_{t-1} + \varepsilon_t$
 - случайное блуждание с дрейфом $y_t = \alpha + y_{t-1} + \varepsilon_t$
 - -случайный процесс как скользящее среднее для БШ

$$Z_t = 1/3(\varepsilon_{t-1} + \varepsilon_t + \varepsilon_{t+1})$$

- случайный процесс с периодической составляющей $Y_t = 3\cos(2\pi t/20) + \varepsilon_t$ математическое Вычислите аналитически ожидание дисперсию рассматриваемых процессов.

Пример (из лекции):

$$\begin{aligned} y_t &= y_{t-1} + \varepsilon_t, \varepsilon_t \sim WN(0, \sigma^2) \\ y_t &= y_{t-1} + \varepsilon_t = (y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t = (y_{t-3} + \varepsilon_{t-2}) + \varepsilon_{t-1} + \varepsilon_t = \dots = y_0 + \sum_{i=0}^{t-1} \varepsilon_{t-i} \\ E(y_t) &= E(y_0 + \sum_{i=0}^{t-1} \varepsilon_{t-i}) = y_0 + 0 = const \\ V(y_t) &= V(y_0 + \sum_{i=0}^{t-1} \varepsilon_{t-i}) = 0 + t\sigma^2 \neq const \end{aligned}$$

Вывод: процесс случайного блуждания не является стационарным.

2. Автокорреляционные функции АСГ/РАСГ процессов.

2.1. Как вычислить автокорреляционную функцию? Рассчитайте по формулам значение ACF/PACF 1, 2, 3-го порядка для численности населения. Схематично постройте график АСГ/РАСГ.

		Лаг	ACF	PACF
t	Yt	(τ)	$ ho_{ au}$	$\phi_{ au}$
2015	146,3	1		
2016	146,5	2		
2017	146,8	3		
2018	146,9			

Формулы: АСF - автокорреляционная функция

$$\rho_{1} = cor(y_{t}, y_{t-1});$$

$$\frac{1}{T} \sum_{t=1}^{T} (y_{t} - \overline{y}_{t})(y_{t-1} - \overline{y}_{t})$$

 $\hat{\rho}(1) = \hat{\rho}_1 = \frac{\frac{1}{T-1} \sum_{t=2}^{T} (\mathbf{y}_{\mathsf{t}} - \overline{\mathbf{y}}_{\mathsf{t}}) (\mathbf{y}_{\mathsf{t}-1} - \overline{\mathbf{y}}_{\mathsf{t}})}{\frac{1}{T} \sum_{t=1}^{T} (\mathbf{y}_{\mathsf{t}} - \overline{\mathbf{y}}_{\mathsf{t}})^2} \qquad \hat{\rho}(\tau) = \frac{\frac{1}{T-\tau} \sum_{t=\tau+1}^{T} (\mathbf{y}_{\mathsf{t}} - \overline{\mathbf{y}}_{\mathsf{t}}) (\mathbf{y}_{\mathsf{t}-\tau} - \overline{\mathbf{y}}_{\mathsf{t}})}{\frac{1}{T} \sum_{t=1}^{T} (\mathbf{y}_{\mathsf{t}} - \hat{\mu})^2}$ Родионова Л.А. Майнор «Прикладеной статистический анализ»

Временные ряды и их практическое применение 2021

РАСГ – Частная автокорреляционная функция

$$\begin{aligned} \varphi_{1} &= \rho_{_{uacm}}(1) == \rho_{_{1}}^{_{uacm}} \operatorname{Cor}(Y_{_{t}}, Y_{_{t+1}}) = \rho_{_{1}} \\ \varphi_{2} &= \operatorname{Cor}(Y_{_{t}}, Y_{_{t+2}} \mid Y_{_{t+1}} = \mu) = \frac{\rho_{_{2}} - \rho_{_{1}}^{^{2}}}{1 - \rho_{_{1}}^{^{2}}} \\ \varphi_{3} &= \dots \end{aligned}$$

2.2. Для выполнения дальнейшего анализа используйте сгенерированные данные (файл TS2).

Обозначение	Временной ряд
wn	белый шум
tr1	линейный тренд
tr2	параболический тренд
rw	случайное блуждание
rwd	случайное блуждание с дрейфом
cos	случайный процесс с периодической составляющей $Y_t = 3\cos(2\pi t/20) + \varepsilon_t$
s_wn	случайный процесс как скользящее среднее для БШ $Z_t = 1/3(\varepsilon_{t-1} + \varepsilon_t + \varepsilon_{t+1})$

Проанализируйте временные ряды, используя команды:

tsset t	Объявить переменную t переменной времени
tsline wn	Построить график временного ряда wn
ac wn	построить автокорреляционную функцию для wn
pac wn	построить частную автокорреляционную функцию для wn
corrgram wn	Вычислить значения автокорреляционной функций для wn

2.3. Для *белого шума* вычислите в Stata значения автокорреляции 1-го, 2-го и 3-го порядка 2 разными способами:

- как корреляцию между y_t и y_{t-i} (через лаговый оператор) **Команда Stata:** cor wn L.wn L2.wn L3.wn

- используя встроенную процедуру АСГ. Сравните результаты.

Команда Stata: ac wn

- 2.4. Вычислите ACF и PACF для всех процессов, используя встроенные процедуры. Как ведут себя графики ACF и PACF для рассмотренных выше стационарных и нестационарных процессов? Сделайте вывод.
- 2.5. Повторите пункт 2.3 и 2.4 для других изучаемых случайных процессов. Напишите do-файл и краткий отчет с выводами и полученными графиками.
- 2.6. Выполните пункты 2.2-2.5 в Gretl.

Текущее домашнее задание (ТДЗ) 1-2. «Временной ряд: введение» !!!См дедлайн в ЛМС.

Задание. По данным Всемирного банка выберите один показатель за 5-10 лет (опишите какой показатель был взят для анализа, за какой период).

Файл(эксель, архив): WDI. (закладка Data)

Рассчитайте:

1. Приросты (разности), темпы прироста. Заполните таблицу (расчет по формулам для последнего года обязательно), приведите необходимые формулы расчета, опишите полученные результаты. Как изменился выбранный Вами показатель за рассматриваемый период? За последний год? (расчет можно сделать в Эксель/любом пакете, обязательно к результатам дать пояснения!)

t	Yt	Yt-1	Yt-2	Yt-3	ΔΥt (прирост, разность)	Темп прироста	ΔlnYt

- 2. Рассчитайте **по формулам** значения ACF 1, 2, 3-го порядка для выбранного Вами показателя. Приведите подробные расчеты. Какие сложности возникли для маленькой выборки? Схематично постройте график ACF. Опишите поведение ACF.
- 3. Рассчитайте **по формулам** значения PACF 1, 2, 3-го порядка для выбранного Вами показателя. Приведите подробные расчеты. Схематично постройте график PACF. Опишите поведение PACF.

-	_		
	Лаг	ACF	PACF
	(τ)	$ ho_{ au}$	$\phi_{ au}$
	1		
	2		
	3		

4. **Задача.** Пусть сгенерирован случайный процесс x_t подбрасывания монетки и известен результат: 1- орел, (-1)- решка

t	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_{t}	1	1	-1	1	-1	-1	-1	1	-1	1

4.1. Постройте $y_t = 2 + x_t - 0.3x_{t-1}$, если $x_0 = 1$, n = 10.

t	1	2	3	4	5	6	7	8	9	10
y _t										

Чему равны $E(x_t)$ и $V(x_t)$? Рассчитайте $E(y_t)$?

- 4.2. Для y_t рассчитайте *теоретические* ковариации 1, 2, 3 порядка. Приведите формулы расчета и вычисления.
- 4.3. Для y_t рассчитайте *теоретические* корреляции 1, 2, 3 порядка? Приведите формулы расчета и вычисления. Заполните таблицу

τ	Теоретическая ковариация	Теоретическая корреляция
0		
1		
2		
3		

Выполненная домашняя работа загружается в LMS в формате pdf. Срок выполнения – 1 неделя.

Сдача работы в группе по 2 человека (не забывайте указывать авторов).

Простейшие команды Stata

	iipoeteniine komang
edit	редактирование данных (открытие редактора данных)
clear	очистить память компьютера
display	Вывод на экран значения переменной или выражения
dis	калькулятор
list	Вывод на экран значений переменных из активного
	множества данных
Описательные стат	гистики
list [v1]	вывести значения переменных (v1) на экран,
	кнопка BREAK (прервать выполнение команды)
describe [v1]	вывести описание переменных
sum [v1]	расчет дескриптивных статистик для переменной (v1)
Действия над перем	менными
gen v2=g(v1)	создать новую переменную v2 как функцию g от v1
drop v1	удалить переменную v1
ren v1 v2	переименовать переменную v1 в v2
egen t=seq()	Создание последовательности целых чисел
Работа с временны	ми рядами
tsset t	Объявить переменную t переменной времени
tsline y	Построить график временного ряда у
help tsvarlist	Time-series varlists
regress y t	Построить линейную регрессию
predict y1, xb	Сохранить предсказанные значения в у1
predict e1, residuals	Сохранить значения остатков в е1
ac y	построить автокорреляционную функцию для у
pac y	построить частную автокорреляционную функцию для у
corrgram y	Вычислить значения автокорреляционной функций для у
pergram y	Построение периодограммы для у
sktest e1	Тест на нормальность для е1
wntestq e1	Статистика Льюинга-Бокса для е1
estat dwatson	Статистика Дарбина-Уотсона на наличие автокорреляции
	1-го порядка
Число ПИ	_pi
dfuller y	Тест Дики-Фуллера для у

help tsvarlist

Operator Meaning L. lag (x_t-1) L2. 2-period lag (x_t-2) ... F. lead (x_t+1) F2. 2-period lead (x_t+2) ... D. difference (x_t - x_t-1) D2. difference of difference (x_t - 2x_t-1 + x_t-2) ... S. "seasonal" difference (x_t - x_t-1) 1ag-2 (seasonal) difference (x_t - x_t-2) ...