MATH 2554: Midterm Review

Nifty rules

Derivation

1.
$$\frac{d}{dx}c = 0$$

5. $\frac{d}{dx}cf(x) = cf'(x)$

2. $\frac{d}{dx}f(x) + g(x) = f'(x) + g'(x)$

6. $\frac{d}{dx}f(x) - g(x) = f'(x) - g'(x)$

7. $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$

4. $\frac{d}{dx}x^n = xn^{n-1}$

8. $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

The above show the following rules: constant rule (1), constant multiple rule (5), sum rule (2 & 6), product rule (3), quotient rule (7), power rule (4), chain rule (8)

Limit of a Function: Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal) to a we say:

$$\lim_{x \to a} f(x) = L$$

Continuity Checklist: A function f will be continuous at a if $\lim_{x\to a} f(x) = f(a)$, which can be expanded to the following checklist which should be followed in order to determine continuity:

- 1. f(a) is defined (a is in domain of f)
- 2. $\lim_{x\to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

Intermediate Value Theorem: Suppose f is continuous on the interval [a,b] and L is a number strictly between f(a) and f(b). Then there exists at least one number c in (a,b) satisfying f(c)=L

Derivative of a Function at a Point :

1.
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 2. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Definition of the Derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Random Tips

- 1. $\lim_{x \to -a} f(x) \not\equiv \lim_{x \to a^-} f(x)$ as a^- implies a left-sided limit, don't make this simple mistake!
- 2. To follow correct limit notation, do not plug in your values with your limit sign still attached, e.g. $\lim_{x\to 5} 3x + 5 = 3(5) + 5 = 20$ NOT $\lim_{x\to 5} 3x + 5 = \lim_{x\to 5} 3(5) + 5 = 20$
- 3. Remember that **vertical asymptotes** x=a occur when $\lim_{x\to a} f(x)=\pm \infty$, $\lim_{x\to a^-} f(x)=\pm \infty$, or $\lim_{x\to a^+} f(x)=\pm \infty$ while a **horizontal asymptote** y=L occurs at $\lim_{x\to -\infty} f(x)=L$ or $\lim_{x\to \infty} f(x)=L$
- 4. Just as y=x gives the derivation y'=1, with the chain rule we can use **implicit differentiation** to find $y^2=x$ gives $2y \cdot y'=1$ which reduces to $y'=\frac{1}{2y}$. To find the second derivative, simply repeat and replace any y' with your first answer. Using the previous answer this gives $y''=-\frac{1}{2}y^{-2}\cdot y'=-\frac{1}{2}y^{-2}\cdot \frac{1}{2y}=-\frac{1}{4y^3}$
- 5. **Speed** is simply the absolute value of **velocity** (|v(t)| = speed). An object will **hit the ground** when the position function s(t) = 0, while an object will reach it's **highest point** when the tangent line of s(t) is horizontal, that is s'(t) = v(t) = 0

Basic derivative forms

Trig derivatives:

$$1. \ \frac{d}{dx}\sin x = \cos x$$

$$2. \ \frac{d}{dx}\cos x = -\sin x$$

$$3. \ \frac{d}{dx}\tan x = \sec^2 x$$

$$4. \ \frac{d}{dx}\cot x = -\csc^2 x$$

$$5. \ \frac{d}{dx}\sec x = \sec x \tan x$$

6.
$$\frac{d}{dx}\csc x = -\csc x \cot x$$

Exponential/Log derivatives:

$$1. \ \frac{d}{dx}e^x = e^x$$

$$2. \frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$3. \ \frac{d}{dx}b^x = b^x \ln b$$

$$4. \ \frac{d}{dx}\log_b|x| = \frac{1}{x\ln b}$$