Learning

We have seen machine learning with different representations:

- (1) Decision trees -- symbolic representation of various decision rules -- "disjunction of conjunctions"
- (2) Perceptron -- learning of weights that represent alinear decision surface classifying a set of objects into two groups

Different representations give rise to different <u>hypothesis</u> or <u>model spaces</u>. Machine <u>learning algorithms search</u> these model spaces for the <u>best fitting model</u>.

Perceptron Learning Revisited

```
Initialize \overline{w} and b to random values.

repeat

for each (\overline{x}_i, y_i) \in D do

if \hat{f}(\overline{x}_i) \neq y_i then

Update \overline{w} and b incrementally.

end if

end for

until D is perfectly classified.

return \overline{w} and b
```


Constructs a line (hyperplane) as a classifier.

What About Non-Linearity?

Can we learn this decision surface? ... Yes! Multi-Layer Perceptronsl.

Multi-Layer Perceptrons

How do we train?

Perceptron was easy:

```
Initialize \overline{w} and b to random values.

repeat

for each (\overline{x}_i, y_i) \in D do

if \hat{f}(\overline{x}_i) \neq y_i then

Update \overline{w} and b incrementally.

end if

end for

until D is perfectly classified.

return \overline{w} and b
```

Every time we found an error of the predicted value $f(x_i)$ compared to the label in the training set y_i , we update w and b.

Artificial Neural Networks

Feed-forward with Backpropagation

We have to be a bit smarter in the case of ANNs: compute the error (feed forward) and then use the error to update all the weights by propagating the error back.

Backpropagation

$$\Delta = (t - y)^2$$

$$\delta_o = y(1 - y)\Delta$$

$$w_{ho} \leftarrow w_{ho} + \alpha_o \delta_o$$

$$\delta_h = y(1-y)w_{ho}\delta_c$$

$$w_{ih} \leftarrow w_{ih} + \alpha_h\delta_h$$

This only works because

$$\delta_o = y(1 - y)\Delta = \frac{\partial \Delta}{\partial \vec{w} \cdot \vec{x}} = \frac{\partial (t - y)^2}{\partial \vec{w} \cdot \vec{x}}$$

and the output y is differentiable because the transfer function is differentiable. Also note, everything is based on the *rate of change* of the error...we are searching in the direction where the rate of change will minimize the output error.

Backpropagation Algorithm

Note: this algorithm is for a NN with a single output node o and a single hidden layer. It can easily be generalized.

```
Initialize the weights in the network (often randomly) Do  
For each example e in the training set  
// forward pass  
y = compute neural net output  
t = label for e from training data  
Calculate error \Delta = (t - y)^2 at the output units  
// backward pass  
Compute error \delta_o for weights from a hidden node h to the output node o using \Delta  
Compute error \delta_h for weights from an input node i to hidden node h using \delta_o  
Update the weights in the network
Until all examples classified correctly or stopping criterion satisfied  
Return the network
```

Source: http://en.wikipedia.org/wiki/Backpropagation

Neural Network Learning

Define the network error as

$$\Delta_{x} = (t - y)^{2}$$

for some $x \in X$, where i is an index over the output units.

- Let $\Delta_x(w)$ be the error E_x as a function of the weights w.
- Use the gradient (slope) of the error surface to guide the search towards appropriate weights:

Representational Power

- Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer.
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Hidden Layer Representations

Target Function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Hidden Layer Representations

Input		Hidden			Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Hidden layers allow a network to invent appropriate internal representations.

MLPClassifier

```
import pandas as pd
from sklearn.neural network import MLPClassifier
from sklearn.model selection import cross val score
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion matrix
# get data
df = pd.read csv("wdbc.csv")
df = df.drop(["ID'],axis=1)
X = df.drop(['Diagnosis'],axis=1)
y = df['Diagnosis']
# neural network
model = MLPClassifier(hidden layer sizes=(15,))
# do the 5-fold cross validation
scores = cross_val_score(model, X, y, cv=5)
print("Fold Accuracies: {}".format(scores))
print("Accuracy: {}".format(scores.mean()))
```

Fold Accuracies: [0.87591241 0.95620438 0.95620438 0.98540146 0.98518519]

Accuracy: 0.9517815625844823

MLP Grid Search

We can also perform a grid search

BEWARE: a grid search over all possible parameters of an MLP is almost impossible - combinatoric explosion, too many different combinations possible.

Here we only perform a grid over the *number of nodes in a single hidden layer*.

MLP Grid Search

```
# neural network
model = MLPClassifier(max iter=2000)
# grid search
param grid = {'hidden layer sizes': [(5,), (6,), (7,), (8,), (9,), (10,),
                        (11,), (12,), (13,), (14,), (15,), (16,),
                        (17.), (18.), (19.), (20.)]}
grid = GridSearchCV(model, param grid, cv=5)
grid.fit(X, actual y)
print("Grid Search: best parameters: {}".format(grid.best_params_))
# evaluate the best model
best model = grid.best estimator
predict y = best model.predict(X)
print("Accuracy: {}".format(accuracy score(actual y, predict y)))
# build the confusion matrix
labels = ['benign', 'malignant']
cm = confusion matrix(actual y, predict y, labels=labels)
cm df = pd.DataFrame(cm, index=labels, columns=labels)
print("Confusion Matrix:\n{}".format(cm df))
# boostrapped confidence interval
print("Confidence interval best MLP: {}".format(bootstrap(best_model,df,'class')))
```

MLP Grid Search

Team Exercise

Use the Crohn's Disease dataset: CrohnD

https://vincentarelbundock.github.io/Rdatasets/datasets.html

You will need to preprocess this before you can use it:

Build a ANN/MLP with the best cross-validated performance you can find.

Compare it to either a tree or a KNN (or both).

Report if the difference between the models is statistically significant.

Teams:

Team 0: Shehjar Harout Geron

Team 1: Aakash Cory Christopher

Team 2: Maurice Kevin Ben

Team 3: Najib Aguilar Ronil

Team 4: Joe Shamal Gabe

Team 5: Kermalyn Peter David_M

Team 6: Matt Alexander Alber

Team 7: Evelyn Susallin David_P