Notebook

October 21, 2024

1 Problem 2. AntCipher 2.0

1.1 Problem:

• Giving this CNF C:

```
C = (x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor x_3 \lor \neg x_5) \land (\neg x_1 \lor \neg x_3 \lor x_5) \land (x_2 \lor x_3 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3 \lor x_5) \land (x_1 \lor x_2 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_5) \land (x_1 \lor x_3 \lor x_5) \land (\neg x_1 \lor \neg x_3 \lor \neg x_5) \land (x_2 \lor x_3 \lor x_5) \land (\neg x_1 \lor \neg x_3 \lor \neg x_5) \land (x_2 \lor x_3 \lor \neg x_5) \land (x_1 \lor x_4 \lor x_6) \land (\neg x_1 \lor \neg x_4 \lor x_6) \land (x_2 \lor x_4 \lor \neg x_6) \land (\neg x_2 \lor \neg x_4 \lor x_6) \land (x_3 \lor x_4 \lor x_6) \land (\neg x_3 \lor \neg x_4 \lor \neg x_6) \land (x_1 \lor x_2 \lor \neg x_6) \land (\neg x_1 \lor \neg x_2 \lor \neg x_6) \land (x_2 \lor x_3 \lor \neg x_6) \land (\neg x_2 \lor \neg x_3 \lor \neg x_6) \land (x_1 \lor \neg x_4 \lor x_7) \land (\neg x_2 \lor \neg x_4 \lor x_7) \land (x_2 \lor x_4 \lor \neg x_7) \land (\neg x_2 \lor \neg x_4 \lor x_7) \land (x_3 \lor x_4 \lor \neg x_8) \land (\neg x_2 \lor \neg x_4 \lor x_8) \land (\neg x_2 \lor \neg x_8)
```

- This CNF represents a nonlinear function F_C where C = 1, taking a 4-bit input (x1, x2, x3, x4) and producing a 4-bit output (x5, x6, x7, x8). In the i-th iteration of the cipher, a 64-bit value of R is divided into 16 4-bit sequences, which are given to F_C as inputs. Then 16 4-bit outputs are produced and concatenated thus forming a 64-bit K_i that is written to R and is used as a keystream. Given some infomation:
- 1704th ciphertext: 1001 1000 0011 1101 0110 0011 1101 0101 1011 0011 1011 0111 0101 0000 0000 1000 0011
- The 1702nd keystream: 0101 1001 1111 0011 00X1 X111 1X00 00X0 111X X000 XXXX XXXX XXXX XXXX XXXX

Our goal is to find the plaintext in iteration 1704 to locate the ant.

1.2 Solution:

We can simulate the nonlinear function F_C by this python function:

```
clause9 = (x1 \text{ or } x4 \text{ or } (not x6))
   clause10 = ((not x1) or (not x4) or x6)
   clause11 = (x2 \text{ or } x4 \text{ or } (not x6))
   clause12 = ((not x2) or (not x4) or x6)
   clause13 = (x1 \text{ or } x3 \text{ or } (\text{not } x7))
   clause14 = ((not x1) or (not x3) or x7)
   clause15 = (x1 \text{ or } x4 \text{ or } (not x7))
   clause16 = ((not x1) or (not x4) or x7)
   clause17 = (x3 \text{ or } x4 \text{ or } (not x7))
   clause18 = ((not x3) or (not x4) or x7)
   clause19 = (x2 \text{ or } x3 \text{ or } (\text{not } x8))
   clause20 = ((not x2) or (not x3) or x8)
   clause21 = (x2 or x4 or (not x8))
   clause22 = ((not x2) or (not x4) or x8)
   clause23 = (x3 or x4 or (not x8))
   clause24 = ((not x3) or (not x4) or x8)
   return (clause1 and clause2 and clause3 and clause4 and clause5 and clause6_{\sqcup}
            clause7 and clause8 and clause9 and clause10 and clause11 and
⇔clause12 and
            clause13 and clause14 and clause15 and clause16 and clause17 and
⇔clause18 and
            clause19 and clause20 and clause21 and clause22 and clause23 and
⇔clause24)
```

With this function, we can form a mapping table which 4-bit input and 4-bit output satisfying C = 1

```
[31]: mapping
```

```
'0111': '1111',
'1000': '0000',
'1001': '0110',
'1010': '1010',
'1011': '1111',
'1100': '1100',
'1101': '1111',
'1110': '1111',
'1111': '1111'}
```

- Suppose that we are generating the n-th keystream to the (n+1)-th keystream using this mapping. We can see that all block in n-th keystream must be one of the output of the mapping because it 's the keystream generated by (n-1)-th keystream. So that in the mapping, some keys are not necessary.
- We can reduce the mapping like this.

```
[32]: values = list(mapping.values())
      keys = list(mapping.keys())
      for k in keys:
          if k not in values:
              mapping.pop(k)
      print(mapping)
     {'0000': '0000', '0011': '0011', '0101': '0101', '0110': '1001', '1001': '0110',
      '1010': '1010', '1100': '1100', '1111': '1111'}
[33]: def recover(K1, K2):
          if all(c == "X" for c in K2):
              if 'X' in K1:
                   # case when K2 is full of X
                   # replace the unknown X in K2 with 0 and 1 to check possible \Box
       \hookrightarrow mappings
                  K1_0 = K1.replace('X', '0')
                   K1_1 = K1.replace('X', '1')
                   if K1_0 in mapping.keys():
                       # check if K1_0 is in mapping.keys()
                       return mapping [K1_0]
                   else:
                       # if not, then K1_1 must be in mapping.keys()
                       return mapping [K1_1]
              else:
                   return mapping[K1]
          elif 'X' not in K2:
               # case when K2 is cleared
              return K2
          else:
              # case when K2 has 1 character X
               # replace X in K2 with O and 1
```

```
K2_0 = K2.replace('X', '0')
K2_1 = K2.replace('X', '1')
if K2_0 in mapping.keys():
    # check if K2_0 is in mapping.keys()
    return K2_0
else:
    # if not, then K2_1 must be in mapping.keys()
    return K2_1
```

Now, let's divide the keystream into 4-bit blocks and recover all values

With the recovered K_1703, we can easily generate the 1704th keystream, XOR it with the given ciphertext to recover the plaintext, and convert it into a pair of floating-point values.

```
[35]: K_1704 = ""
for i in range(0, len(recovered), 4):
    K_1704 += mapping[recovered[i:i+4]]
print(K_1704)
```



```
[36]: plaintext = ciphertext ^ int(K_1704, 2)
import struct
latitude = plaintext >> 32
longtitude = plaintext % (1<<32)

latitude = struct.unpack('!f', struct.pack('!I', latitude))[0]
longtitude = struct.unpack('!f', struct.pack('!I', longtitude))[0]
print(latitude, longtitude)</pre>
```

-25.79496192932129 146.58416748046875

So, the latitude and longitude are -25.79496192932129 and 146.58416748046875 respectively.