25

5

WHAT IS CLAIMED IS:

1. An optimal high-speed multi-resolution retrieval method on a large capacity database comprising the steps of:

deriving the multi-resolution structure of a query "Q";

setting an initial minimum distance " $d_{\text{min}}\mbox{\ensuremath{^{\prime\prime}}}$ to have the infinite value.

setting respective values of "i" and "l" to be "1".

deriving " $d^1(X_i, Q)$ ";

deriving " $d^{L}(X_{1}, Q)$ "; and

selecting data having a final value of " $d_{\text{min}}{\mbox{\sc match.}}$ as the best match.

2. The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the step of deriving "d $^{1}(X_{i}, Q)$ " comprises the steps of:

if " $d^1(X_1, Q)$ " is more than " d_{min} ", then removing the current candidate " X_1 ", and updating respective values of "i" and "l" with "i + 1" and "l"; and

if "d'(X_i , Q)" is not more than "d_{min}", then updating "1" with "i + 1".

3. The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the step of deriving " $d^L(X_i, Q)$ " comprises the steps of:

25

5

if "d^L(Xi, Q)" is more than "dmin", then removing the current candidate "Xi"; and

if "d^L(X_i, Q)" is not more than "d_{min}", then updating "d_{min}" with "d^L(X_i, Q)", and updating respective values of "i" and "l" with "i + 1" and "l".

4. The optimal high-speed multi-resolution retrieval method according to claim 1, wherein the high-speed multi-resolution retrieval on the database is carried out using an inequality property expressed by the following expression:

$$d(X,Y) \equiv d^{L}(X,Y) \ge d^{L-1}(X,y) \ge \dots \ge d^{l}(X,Y) \ge \dots \ge d^{l}(X,Y) \ge d^{o}(X,Y)$$

5. An optimal high-speed multi-resolution retrieval method using a cluster-based multi-resolution search algorithm adapted to output one best match, comprising the steps of:

performing a high-speed multi-resolution exhaustive search algorithm, thereby searching for a cluster " k_{min} " having a minimum distance "d' $_{min}$ ";

setting an initial value of the " d_{min} " to " d'_{min} ", applying the high-speed multi-resolution exhaustive search algorithm to " Φ_{kmn} ", thereby updating " d_{min} ";

deriving " $d^{l_k}(C_k,Q)-\delta_k$ "; and

selecting data having a final value of " $d_{\text{min}}\text{"}$ is selected as the best match.

6. The optimal high-speed multi-resolution retrieval method according to claim 5, wherein the high-speed multi-resolution retrieval using the cluster-based multi-resolution search algorithm is carried out using an inequality property expressed by the following expression:

If
$$d^{l_k}(C_k,Q)-\delta_k>d_{\min}$$
, then $X_i\overset{\min}{\in}\Phi_k\;d(X_i,Q)>d_{\min}$ where, $l_k\leq \mathbf{L}$

7. The optimal high-speed multi-resolution retrieval method according to claim 5, wherein " d_{min} " is updated with a value expressed by the following expression:

$$d_{\min} = X_{i} \in \Phi_{k_{\min}} d^{L}(X_{i},Q) \; ,$$
 further comprising the steps of: setting "k" to "1"; and
$$\text{if } k = k_{\min}, \text{ updating "k" with "k + 1".}$$

- 20 8. The optimal high-speed multi-resolution retrieval method according to claim 5 or 6, further comprising:
 - $\label{eq:discontinuity} \text{if $``d^{l_k}(C_k,Q)-\delta_k"$ is more than ``d_{\min}"$, removing the cluster $``k"$;}$

if " $d^{l_k}(C_k,Q)-\delta_k$ " is not more than "d_{min}", applying the high-speed multi-resolution exhaustive search algorithm to " Φ_k ", thereby updating "d_{min}"; and updating "k" with "k + 1".

5

9. An optimal high-speed multi-resolution retrieval method using a cluster-based multi-resolution search algorithm adapted to output a plurality of more-significant best matches, comprising the steps of:

performing a high-speed multi-resolution exhaustive search algorithm, thereby searching for a cluster " k_{min} " having a minimum distance "d' $_{min}$ ";

if $n(\Phi_{k_{\min}}) \geq M$, searching for M more-significant best matches in accordance with an algorithm modified from the high-speed multi-resolution exhaustive search algorithm to search for the M more-significant best matches, and storing respective distance values of the searched more-significant best matches " $d_{\min}[\cdot]$ ";

setting "k" to "1", and if $k = k_{min}$, updating "k" with "k + 1";

if $d^{l_k}(C_k,Q)-\delta_k$ > $\mathrm{d_{min}}[0]$, removing the cluster "k", and updating "k" with "k + 1";

updating "d_min[\cdot]" while applying the modified high-speed multi-resolution exhaustive search algorithm to " Φ_k ", and updating "k" with "k + 1";

20

setting "k" to "1", and if it is determined that the cluster "k" has been searched for, updating "k" with "k + 1";

if $d^{l_k}(C_k,Q)-\delta_k$ > ${\rm d_{min}}$ [M - 1], removing the cluster "k", and updating "k" with "k + 1";

updating "d_min[\cdot]" while applying the modified high-speed multi-resolution exhaustive search algorithm to " Φ_k ", and updating "k" with "k + 1"; and

selecting M data corresponding to a final " $d_{min}[\cdot]$ " as best matches, respectively.

10. The optimal high-speed multi-resolution retrieval method according to claim 9, wherein the high-speed multi-resolution retrieval using the cluster-based multi-resolution search algorithm is carried out using an inequality property expressed by the following expression:

If
$$d(C_k,Q)-\delta_k>d_{\min}[M-1]$$
, then $X_i\overset{\min}{\in}\Phi_k\;d(X_i,Q)>d_{\min}[M-1]$

11. The optimal high-speed multi-resolution retrieval method according to claim 9, further comprising:

if $n(\Phi_{k_{\min}})$ < M, filling $n(\Phi_{k_{\min}})$ distance values in "d_{min}[·]" in the order of higher values, starting from the lowest value, and storing the remaining elements of "d_{min}[·]" with the infinite value.

25

20