(3) X is sequentially compact.

(1) = (2) Done by Thm 28.1

Given condition (2) = (3) Let (2n) be a seg of points of limit point compact x.

If $A = (x_n) \cap \epsilon 2^+ \le is$ finite, then $\exists x s.k \quad x = x_n$ for infinitely many n's.

yıyı · 으3 두번 Subseg 존재 → Seguentially compact.

Thus (xn) has a convergent subsequence that is constant

If A is infinite, then A has a limit point α .

First choose n_i so that $\alpha_{n_i} \in B(\kappa, l)$.

Then suppose that the positive integer n_{i-1} is given.

(B) 시설은 무수히 많은! A의 원소 존해.

 $\beta(\chi, \frac{1}{2}) \ni \chi_{n_2} (n_2 > n_1)$

 $\beta(\alpha,1) \ni \alpha_n$

Because $B(x,\frac{1}{\lambda})$ intersects A in infinitely many points, choose $n_i > n_{i+1}$ s.t. $x_{n_i} \in B(x,\frac{1}{\lambda})$.

Then the subsequence $\chi_{n_1}, \chi_{n_2}, \dots$ Converges to χ .

(3) ≠ (1) (Step 1) We show that Lebesgue number lemma holds for sequentally compact X.

Let A be an open covering of X.

Assume that \$1>0 s.t each set of diameter <1 has an element of A containing it.

For each $n \in \mathbb{Z}_+$, $\exists C_n$ of diameter $< \frac{1}{n}$, not contained in any element of A.

Choose each $x_n \in C_n$, and then a subsequence (x_n) of (x_n) converges to a. (sequentially compact of $0 \le 1$)

Now $\exists A \in A$ containing a, and choose $\varepsilon > 0$ s.t $B(a,\varepsilon) \subset A$

Some i satisfies both $\frac{1}{h} < \frac{\mathcal{E}}{2}$ and $\beta(\chi_{n_i}, a) < \frac{\mathcal{E}}{2}$.

Therefore, $C_{n_{\hat{a}}} \subset B(x_{n_{\hat{a}}}, \frac{\varepsilon}{2}) \subset B(a, \varepsilon) \subset A$, a contradiction.

→ Satisfying Lebesgue number

(Step 2) We show that $\forall \epsilon > 0$, \exists a finite covering of X by open ϵ -balls.

Assume that $\exists \varepsilon > 0$ s.t X cannot be covered by finitely many ε -balls.

 $x_i \in X$, and then $\beta(x_i, \epsilon) \neq X$ (otherwise an ϵ -ball covers X).

Choose $x_2 \in X - B(x_1, E)$ and similarly $B(x_1, E) \cup B(x_2, E) \neq X$.
Given x_1, \dots, x_{n-1} , choose $x_n \in X - \beta(x_1, \epsilon) \cup \dots \cup \beta(x_{n-1}, \epsilon)$ so that $d(x_n, x_\lambda) \ge \epsilon$ for $i = 1, \dots, n-1$
Therefore. (2n) cannot have a convergent subsequence, a contradiction.
och ch ch finite 계호 케비가 가능
(Step 3) We finally show that X is compact.
Given any open covering A of X. It has a Lebesgue number & by Step 1.
By Step 2. \exists a finite covering ob X by open $\frac{\delta}{3}$ - balls. $\leftarrow \varepsilon = \frac{\delta}{3}$