SUPPLEMENTARY MATERIALS: Supplementary Materials: A Comparative Study of Penalized Regression and Machine Learning Algorithms in High Dimensional Scenarios

Gabriel Ackall* and Connor Shrader†

Project advisor: Seongtae Kim[‡]

SM1. **Introduction**. This document contains all of the figures and tables of the results from our simulation study. Our simulation study used a factorial using the following features as factors:

- The choice of response function (linear or non-linear)
- n, the number of observations (50, 200, and 1000),
- p, the number of predictors (10, 100, and 2000),
- σ , the standard deviation of the random error (1, 3, and 6),
- The correlation matrix structure (independent, symmetric compound, autoregressive, and blockwise), and
- ρ , the correlation between predictors (0.2, 0.5, and 0.9).

The differences among the last three factors can be displayed in a single figure or table. However, each figure only uses a particular value for n and p; furthermore, each figure only shows the results for one metric for either the linear or non-linear response function.

The four metrics we computed were the **training mean squared error**, **test mean squared error**, β -sensitivity and β -specificity. The training mean squared error measures how well each model can make predictions using data that was used to train the model. The test mean squared error assesses how well each model makes predictions on data that was not used to train the model. β -sensitivity measures the ability for a model that performs variable selection to recognize predictors that are actually related to the response, while β -specificity measures how well models can recognize predictors that are not related to the response.

We used two different response functions for our simulations. Model 1 used a linear response,

(SM1.1)
$$\mathbf{y} = 1 + 2\mathbf{X}_1 - 2\mathbf{X}_2 + 0.5\mathbf{X}_5 + 3\mathbf{X}_6 + \mathbf{e}$$

where **e** is a random error with mean 0 and standard deviation σ (recall that σ is one of our factors).

Our non-linear response function (Model 2) used

(SM1.2)
$$\mathbf{y} = 6 \times 1_{\mathbf{X}_1 > 0} + \mathbf{X}_2^2 + 0.5\mathbf{X}_6 + 3\mathbf{X}_7 + 2 \times 1_{\mathbf{X}_8 > 0} \times 1_{\mathbf{X}_9 > 0} + \mathbf{e}$$

where $1_{\mathbf{X}_{i}>0}$ is the index function defined by

(SM1.3)
$$1_{\mathbf{X}_{i}>0} = \begin{cases} 0, & \mathbf{X}_{i} \leq 0 \\ 1, & \mathbf{X}_{i} > 0 \end{cases}.$$

All of the figures appear in this document before any tables. Each section contains the figures or tables for one type of response function, while each subsection contains the figures or tables from one of the metrics we considered. The caption for each figure has a hyperlink to the corresponding table, while each table has a link back to the figure it refers to.

^{*}Georgia Institute of Technology, Civil Engineering, Atlanta, GA (gackall@gatech.edu).

[†]University of Central Florida, Mathematics, Orlando, FL (connorshrader@knights.ucf.edu).

[‡]North Carolina A&T State University, Mathematics and Statistics, Greensboro, NC

SM2. Figures for the simulations Using Model 1.

SM2.1. Figures for the average training MSE for Model 1.

Figure SM1: Average training MSE for Model 1 when n=50 and p=10. See Table SM1 for the corresponding data.

Figure SM2: Average training MSE for Model 1 when n=50 and p=100. See Table SM2 for the corresponding data.

Figure SM3: Average training MSE for Model 1 when n=50 and p=2000. See Table SM3 for the corresponding data.

Figure SM4: Average training MSE for Model 1 when n=200 and p=10. See Table SM4 for the corresponding data.

Figure SM5: Average training MSE for Model 1 when n=200 and p=100. See Table SM5 for the corresponding data.

Figure SM6: Average training MSE for Model 1 when n=200 and p=2000. See Table SM6 for the corresponding data.

Figure SM7: Average training MSE for Model 1 when n=1000 and p=10. See Table SM7 for the corresponding data.

Figure SM8: Average training MSE for Model 1 when n=1000 and p=100. See Table SM8 for the corresponding data.

Figure SM9: Average training MSE for Model 1 when n=1000 and p=2000. See Table SM9 for the corresponding data.

SM2.2. Figures for the average testing MSE for Model 1.

Figure SM10: Average testing MSE for Model 1 when n = 50 and p = 10. See Table SM10 for the corresponding data.

Figure SM11: Average testing MSE for Model 1 when n=50 and p=100. See Table SM11 for the corresponding data.

Figure SM12: Average testing MSE for Model 1 when n=50 and p=2000. See Table SM12 for the corresponding data.

Figure SM13: Average testing MSE for Model 1 when n=200 and p=10. See Table SM13 for the corresponding data.

Figure SM14: Average testing MSE for Model 1 when n=200 and p=100. See Table SM14 for the corresponding data.

Figure SM15: Average testing MSE for Model 1 when n=200 and p=2000. See Table SM15 for the corresponding data.

Figure SM16: Average testing MSE for Model 1 when n=1000 and p=10. See Table SM16 for the corresponding data.

Figure SM17: Average testing MSE for Model 1 when n=1000 and p=100. See Table SM17 for the corresponding data.

Figure SM18: Average testing MSE for Model 1 when n=1000 and p=2000. See Table SM18 for the corresponding data.

SM2.3. Figures for the average β -sensitivity for Model 1.

Figure SM19: Average β -sensitivity for Model 1 when n=50 and p=10. See Table SM19 for the corresponding data.

Figure SM20: Average β -sensitivity for Model 1 when n=50 and p=100. See Table SM20 for the corresponding data.

Figure SM21: Average β -sensitivity for Model 1 when n=50 and p=2000. See Table SM21 for the corresponding data.

Figure SM22: Average β -sensitivity for Model 1 when n=200 and p=10. See Table SM22 for the corresponding data.

Figure SM23: Average β -sensitivity for Model 1 when n=200 and p=100. See Table SM23 for the corresponding data.

Figure SM24: Average β -sensitivity for Model 1 when n=200 and p=2000. See Table SM24 for the corresponding data.

Figure SM25: Average β -sensitivity for Model 1 when n=1000 and p=10. See Table SM25 for the corresponding data.

Figure SM26: Average β -sensitivity for Model 1 when n=1000 and p=100. See Table SM26 for the corresponding data.

Figure SM27: Average β -sensitivity for Model 1 when n=1000 and p=2000. See Table SM27 for the corresponding data.

SM2.4. Figures for the average β -specificity for Model 1.

Figure SM28: Average β -specificity for Model 1 when n=50 and p=10. See Table SM28 for the corresponding data.

Figure SM29: Average β -specificity for Model 1 when n=50 and p=100. See Table SM29 for the corresponding data.

Figure SM30: Average β -specificity for Model 1 when n=50 and p=2000. See Table SM30 for the corresponding data.

Figure SM31: Average β -specificity for Model 1 when n=200 and p=10. See Table SM31 for the corresponding data.

Figure SM32: Average β -specificity for Model 1 when n=200 and p=100. See Table SM32 for the corresponding data.

Figure SM33: Average β -specificity for Model 1 when n=200 and p=2000. See Table SM33 for the corresponding data.

Figure SM34: Average β -specificity for Model 1 when n=1000 and p=10. See Table SM34 for the corresponding data.

Figure SM35: Average β -specificity for Model 1 when n=1000 and p=100. See Table SM35 for the corresponding data.

Figure SM36: Average β -specificity for Model 1 when n=1000 and p=2000. See Table SM36 for the corresponding data.

SM3. Figures for the simulations Using Model 2.

SM3.1. Figures for the average training MSE for Model 2.

Figure SM37: Average training MSE for Model 2 when n=50 and p=10. See Table SM37 for the corresponding data.

Figure SM38: Average training MSE for Model 2 when n=50 and p=100. See Table SM38 for the corresponding data.

Figure SM39: Average training MSE for Model 2 when n=50 and p=2000. See Table SM39 for the corresponding data.

Figure SM40: Average training MSE for Model 2 when n=200 and p=10. See Table SM40 for the corresponding data.

Figure SM41: Average training MSE for Model 2 when n=200 and p=100. See Table SM41 for the corresponding data.

Figure SM42: Average training MSE for Model 2 when n=200 and p=2000. See Table SM42 for the corresponding data.

Figure SM43: Average training MSE for Model 2 when n=1000 and p=10. See Table SM43 for the corresponding data.

Figure SM44: Average training MSE for Model 2 when n=1000 and p=100. See Table SM44 for the corresponding data.

Figure SM45: Average training MSE for Model 2 when n=1000 and p=2000. See Table SM45 for the corresponding data.

SM3.2. Figures for the average testing MSE for Model 2.

Figure SM46: Average testing MSE for Model 2 when n = 50 and p = 10. See Table SM46 for the corresponding data.

Figure SM47: Average testing MSE for Model 2 when n=50 and p=100. See Table SM47 for the corresponding data.

Figure SM48: Average testing MSE for Model 2 when n=50 and p=2000. See Table SM48 for the corresponding data.

Figure SM49: Average testing MSE for Model 2 when n=200 and p=10. See Table SM49 for the corresponding data.

Figure SM50: Average testing MSE for Model 2 when n=200 and p=100. See Table SM50 for the corresponding data.

Figure SM51: Average testing MSE for Model 2 when n=200 and p=2000. See Table SM51 for the corresponding data.

Figure SM52: Average testing MSE for Model 2 when n=1000 and p=10. See Table SM52 for the corresponding data.

Figure SM53: Average testing MSE for Model 2 when n=1000 and p=100. See Table SM53 for the corresponding data.

Figure SM54: Average testing MSE for Model 2 when n=1000 and p=2000. See Table SM54 for the corresponding data.

SM3.3. Figures for the average β -sensitivity for Model 2.

Figure SM55: Average β -sensitivity for Model 2 when n=50 and p=10. See Table SM55 for the corresponding data.

Figure SM56: Average β -sensitivity for Model 2 when n=50 and p=100. See Table SM56 for the corresponding data.

Figure SM57: Average β -sensitivity for Model 2 when n=50 and p=2000. See Table SM57 for the corresponding data.

Figure SM58: Average β -sensitivity for Model 2 when n=200 and p=10. See Table SM58 for the corresponding data.

Figure SM59: Average β -sensitivity for Model 2 when n=200 and p=100. See Table SM59 for the corresponding data.

Figure SM60: Average β -sensitivity for Model 2 when n=200 and p=2000. See Table SM60 for the corresponding data.

Figure SM61: Average β -sensitivity for Model 2 when n=1000 and p=10. See Table SM61 for the corresponding data.

Figure SM62: Average β -sensitivity for Model 2 when n=1000 and p=100. See Table SM62 for the corresponding data.

Figure SM63: Average β -sensitivity for Model 2 when n=1000 and p=2000. See Table SM63 for the corresponding data.

SM3.4. Figures for the average β -specificity for Model 2.

Figure SM64: Average β -specificity for Model 2 when n=50 and p=10. See Table SM64 for the corresponding data.

Figure SM65: Average β -specificity for Model 2 when n=50 and p=100. See Table SM65 for the corresponding data.

Figure SM66: Average β -specificity for Model 2 when n=50 and p=2000. See Table SM66 for the corresponding data.

Figure SM67: Average β -specificity for Model 2 when n=200 and p=10. See Table SM67 for the corresponding data.

Figure SM68: Average β -specificity for Model 2 when n=200 and p=100. See Table SM68 for the corresponding data.

Figure SM69: Average β -specificity for Model 2 when n=200 and p=2000. See Table SM69 for the corresponding data.

Figure SM70: Average β -specificity for Model 2 when n=1000 and p=10. See Table SM70 for the corresponding data.

Figure SM71: Average β -specificity for Model 2 when n=1000 and p=100. See Table SM71 for the corresponding data.

Figure SM72: Average β -specificity for Model 2 when n=1000 and p=2000. See Table SM72 for the corresponding data.

SM4. Tables from the linear simulations.

SM4.1. Tables for the training MSE of the linear simulations.

Table SM1: Mean and standard deviation of the training MSE for Model 1 when n=50 and p=10. See Figure SM1 for the corresponding visualization.

	כא	0.17	0.17	0.19	0.T/ 0.19	0.22	0.30	0.23	0.30	0.27	0.26	0.25	0.19	0.19	0.01	0.27	1.49	1.61	1.72	1.61	1.71	2.07	1.66	2.07	2.66	2.27	2.23	1.71	0.11	1.03	2.43	5.95	6.44	0.00	6.84	6.67	8.26	99.9	8.26	10.63	70.6	6.91	6.85	0.50	4.12	20.11
	0.9 Mean	0.77	0.81	0.86	18.0	0.84	0.93	0.84	0.93	1.45	1.08	1.07	0.86	0.87	0.01	0.59	6.93	7.31	7.74	7.31	7.7	; - «	7.44	8.11	13.02	9.70	9.65	7.76	97.7	4.55	5.42	27.74	29.23	30.97	30.93	29.77	32.43	29.77	32.43	52.09	30.00 10.00	31.05	31.05	0.30	18.20	
	Ç	0.17	0.18	0.18	0.17	0.18	0.19	0.18	0.19	0.22	0.25	0.25	0.20	0.20	0.01	0.23	1.49	1.58	1.64	1.57	1.04	1.64	1.58	1.64	2.15	2.18	2.13	1.71	0.08	1.52	1.01	5.95	6.30	6.04	6.54	6.31	6.56	6.31	6.55	8.59		20.0	6.93	0.31	6.13	2
	0.5 Moan	0.77	0.81	0.85	20.0	0.82	0.86	0.82	0.86	1.14	1.07	1.07	0.86	0.80	1.00	0.25	6.93	7.31	7.63	7.30	7.36	7.73	7.36	7.73	10.24	9.55	9.50	7.90	0.05	8.90	2.09	27.74	29.25	30.51	30.51	29.43	30.92	29.44	30.93	40.95	38.20	31.50	31.70	0.22	35.60	5
ise																	1															l													7.13	
Blockw	0.2 Mean	0.77	0.81	0.85	0.0 10.0	0.83	0.85	0.81	0.85	1.05	1.08	1.08	0.86	0.86	0.01	0.20	6.93	7.33	7.67	7.33	7 37	2 2	7.37	7.68	9.51	9.77	9.76	7.72	0.05	10.19	1.91	27.74	29.33	30.07	30.67	29.47	30.74	29.47	30.74	38.05	39.08	30.04	30.93	0.18	40.79	2
																																													3.97	
	0.9 Mean	0.77	0.81	0.85	0.0 0.0 1.0 1.0	0.88	1.06	0.88	1.06	1.45	1.10	1.09	0.86	0.82	0.01	0.61	6.93	7.32	7.65	7.32	7.63	0.02	7.65	9.40	12.99	99.6	9.63	7.66	0.07	4.47	5.17	27.74	29.30	30.39	30.59	30.49	37.59	30.60	37.60	51.97	38.62	30.66	30.80	0.28	17.89	2
	C.	0.17	0.18	0.19	0.18	0.18	0.19	0.18	0.19	0.23	0.25	0.24	0.20	0.19	0.01	0.18	1.49	1.57	1.67	1.57	1.60	1.00	1.60	1.68	2.12	2.21	2.22	1.82	0.08	1.62	2.65	5.95	6.28	07.0	6.58	6.39	6.74	6.39	6.74	8.49	0 00 0 00 0 00	7 20	7.33	0.33	6.46	2
	0.5 Mean	0.77	0.81	0.86	18.0	0.82	98.0	0.82	98.0	1.12	1.06	1.05	0.88	0.88	0.01	0.23	6.93	7.32	7.66	7.32	7.00	7.70	7.35	7.72	10.22	9.61	9.58	7.90	0.06	9.13	2.46	27.74	29.29	30.04	30.60	29.40	30.87	29.41	30.87	40.86	38.42	31.60	31.56	0.21	36.47	5
gressive	כט	0.17	0.17	0.18	0.17	0.15	0.17	0.17	0.17	0.21	0.24	0.24	0.18	0.18	0.01	0.07	1.49	1.61	1.59	1.61	1.59	1.61	1.61	1.61	2.03	2.28	2.27	1.72	0.07	1.71	0.91	5.95	6.45	0.30 A5	6.35	6.45	6.45	6.44	6.45	8.08	9.11	70.0	6.94	0.25	6.80	5
Autoreg	0.2 Mean	0.77	0.81	0.85	20.0	0.81	98.0	0.81	98.0	1.05	1.08	1.08	0.86	0.86	1.18	0.19	6.93	7.31	7.68	7.31	7.93	7.2	7.37	7.72	9.49	9.80	9.76	7.76	0.04	10.34	1.76	27.74	29.25	30.70	30.70	29.48	30.87	29.48	30.87	37.97	39.19	31.06	30.94	0.18	41.34 6.80 7.04 3.64	2
	Ç	0.17	0.17	0.18	0.T.0	0.18	0.19	0.18	0.19	0.31	0.29	0.28	0.22	0.25	0.01	0.31	1.49	1.62	1.64	1.62	1.04	8	1.61	1.88	2.55	2.35	2.30	1.61	0.13	0.96	2.65	5.95	6.47	0.08	6.58	6.42	7.54	6.42	7.54	10.20	9.40	9.20	6.65	0.58	3.85	1000
	0.9 Mean	0.77	0.81	0.86	18.0	0.82	98.0	0.82	98.0	1.51	1.12	1.12	0.87	0.87	0.01	0.72	6.93	7.35	7.75	7.35	7.7	7 95	7.41	7.95	13.53	9.83	9.84	7.68	0.09	4.04	6.27	27.74	29.40	31.01 29.40	31.01	29.62	31.79	29.62	31.79	54.12	39.32	30.27	30.86	0.45	16.17	4 5 5
	G.	0.17	0.17	0.18	0.17	0.18	0.18	0.18	0.18	0.24	0.25	0.24	0.19	0.20	0.01	0.16	1.49	1.63	1.63	1.62	1.03	1.01	1.61	1.64	2.24	2.30	2.31	1.77	0.08	1.59	1.24	5.95	6.51	0.03 A8	6.53	6.45	6.53	6.45	6.55	8.98	9.T8	7.07	6.96	0.31	6.37	
	0.5 Mean	0.77	0.82	0.85	0.00 20.00 20.00 20.00	0.82	0.85	0.82	0.85	1.18	1.07	1.07	0.87	0.87	0.01	0.27	6.93	7.33	7.62	7.32	7.07	2 2	7.35	69.7	10.49	9.64	9.63	7.92	0.06	8.44	2.32	27.74	29.31	30.47	30.47	29.38	30.74	29.38	30.76	41.94	38.57	31.66	31.63	0.21	33.76 9.53	2
ric	ני	0.17	0.18	0.18	0.18	0.18	0.19	0.18	0.19	0.22	0.25	0.25	0.19	0.19	0.01	0.16	1.49	1.61	1.69	1.61	1.70	1 72	1.61	1.72	2.02	2.35	2.29	1.81	1.02	1.71	1.17	5.95	6.44	0.70	6.79	6.43	06.9	6.43	06.9	8.08	9.42	7.23	7.29	0.30	6.87	200
Symmetric	0.2 Mean	0.77	0.81	0.85	0.0 8.0	0.82	98.0	0.82	98.0	1.06	1.08	1.08	0.87	0.86	1.17	0.23	6.93	7.32	7.66	7.31	7.00	7.69	7.34	7.69	9.62	9.72	9.68	7.87	0.0	10.31	1.88	27.74	29.26	30.04	30.62	29.36	30.76	29.36	30.76	38.48	38.90	31.35	31.19	0.29	41.30	3
dent	ני	0.17	0.18	0.18	0.10	0.18	0.18	0.18	0.18	0.21	0.25	0.25	0.20	0.19	0.01	0.11	1.49	1.60	1.66	1.60	1.00	1.00	1.60	1.64	1.86	2.22	2.22	1.77	0.08	2.01	1.03	5.95	6.40	0.02	6.62	6.41	6.56	6.41	6.56	7.43	× × ×	7 0.03	86.9	0.32	8.00	7
Independent	0 Mean	0.77	0.81	0.85	0.0 0.0 1.0 1.0	0.81	98.0	0.81	0.86	1.04	1.09	1.08	0.87	0.87	0.01	0.23	6.93	7.30	7.67	7.30	7 33	47.7	7.33	7.74	9.37	9.83	9.75	7.84	0.06	11.21	2.02	27.74	29.19	30.08	30.68	29.31	30.94	29.31	30.94	37.50	39.32	31.35	31.25	0.24	44.87	1
Lype	Corr.	OLS	AIC B	G B	AICSB	AIC F	CF	AIC SF	CSF	Ridge	osso	E-net	SCAD	MCF	AGBoost	SVM	STO	CB	BIC B	CSB	2 C	1 E	AIC SF	BIC SF	Ridge	OSS	E-net	SCAD	3Boost	RF	SVM	S	AIC B	Z C	CSB	CF	CF	AIC SF	CSF	Ridge	Lasso	SCAD	MCP	XGBoost	RF	TAT
Ţ,			Ā	m :	Ϋ́Ω	Ā	B	A	B	R	Ľ	白	Š,	Z >	≺ ≅	S	3	A.	B.	ΑĠ	ηĀ	i ii	Ψ	B	R	ı,	di δ	ž Š	Σ×	. Z	S	O 9	ΑĠ	ηĀ	t M	A	B	A	B	삺,	ĭ	άŏ	Σ	×	K 5.	1

Table SM2: Mean and standard deviation of the training MSE for Model 1 when n=50and p = 100. See Figure SM2 for the corresponding visualization.

																			i							
		SD	0.89	0.55	0.55	0.43	0.46	0.00	0.11	0.55	6.31	4.69	4.74	3.56	3.28	0.00	0.94	4.15	25.25	18.77	18.97	14.24	13.13	0.00	3.76	16.59
	6.0	Mean	4.13	1.48	1.49	1.23	1.18	00.00	0.50	0.67	36.47	13.05	13.17	10.80	10.22	00.00	4.30	5.45	145.88	52.20	52.69	43.19	40.86	00.00	17.23	22.57
		SD	2.14	0.55	0.58	0.26	0.28	00.00	0.20	0.40	21.72	5.15	5.57	2.33	2.31	00.00	1.95	6.94	86.89	20.60	22.27	9.33	9.23	0.00	7.73	21.10
	0.5	Mean	10.64	1.27	1.29	0.94	0.96	0.00	1.12	0.41	93.78	11.97	12.28	8.62	8.84	0.00	10.11	4.64	375.14	47.89	49.11	34.49	35.38	0.00	40.47	17.19
		Ο̈́	3.09	0.43	0.46	0.29	0.30	0.00	0.30	0.71	26.46	4.51	4.70	2.56	2.75	0.00	2.55	6.70	.05.84	18.05	18.81	10.25	10.99	0.00	10.18	22.80
Blockwise	0.2	Mean S	14.80	1.36	1.38	06.0	96.0	0.00	1.56	0.42	130.48	11.52	11.69	7.90	8.22	0.00	13.82	4.59	521.93	46.08	46.77	31.62	32.86	0.00	55.32	16.49
_	_		H							0.24																
	0.0	Mean																								
			ı							0.45	ı															
	0.5	Mean	13.75	1.38	1.41	0.93	0.94	0.00	1.25	0.41	123.60	12.66	13.10	8.13	8.55	0.00	11.51	3.28	494.42	50.63	52.39	32.52	34.21	0.00	46.13	13.15
ressive		$^{\mathrm{SD}}$	3.74	0.50	0.55	0.28	0.28	0.00	0.33	1.36	30.76	4.69	4.99	2.40	2.40	0.00	2.58	11.52	123.04	18.76	19.95	9.61	9.59	0.00	10.29	33.19
Autoreg	0.2	Mean	ı								ı															
		SD	0.61	0.41	0.39	0.39	0.38	0.00	0.09	0.53	5.77	4.03	3.99	3.41	3.47	0.01	0.95	4.15	23.09	16.13	15.95	13.66	13.87	0.02	3.82	15.98
	6.0	Mean																								
										0.61																
	.5	Mean																								
	_	SD								0.53																
Symmetric	.2	Mean S								0.46																
			_							0.91	_								_							
Independent		Mean SD								0.54																
		_																	Ē							
Type	Corr.	Model	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$

Table SM3: Mean and standard deviation of the training MSE for Model 1 when n=50 and p=2000. See Figure SM3 for the corresponding visualization.

		$^{\mathrm{SD}}$	1.25	0.54	0.55	0.45	0.45	0.00	0.12	0.21	10.88	4.64	4.85	3.79	3.68	00.0	1.06	0.85	43.51	18.56	19.42	15.15	14.71	0.00	4.29	3.41
	6.0	Mean	2.39	1.91	1.92	1.52	1.58	0.00	0.54	0.22	21.61	16.86	16.97	14.12	14.29	0.00	4.67	1.75	86.42	67.46	88.79	56.46	57.17	0.00	18.75	7.00
		$^{\mathrm{SD}}$	4.31	1.75	1.73	0.61	0.87	0.00	0.26	1.52	35.08	14.24	13.92	5.48	8.47	0.00	2.58	14.85	140.32	56.97	55.69	21.92	33.86	0.00	10.35	49.83
	0.5	Mean	l					_			١.			_		_			١.	_				_	_	
е		SD	4.05	2.51	2.71	0.34	0.42	0.00	0.42	3.08	34.31	20.27	21.93	2.90	2.88	0.00	3.49	29.90	137.22	81.09	87.70	11.59	11.50	0.00	13.67	125.31
Blockwis	0.2	Mean									ı								l							
			⊢							1.97																
	6.0	Mean																								
	_									3.45																
	.5	Mean S																								
ssive	0		L	_				_	_	3.69		_			_	_			_	_	_			_		
utoregre	2	Mean S																								
∢	0																									
										9 0.54																
	6.0	Mean	2.9	1.7	1.7	1.4	1.4	0.0	0.4	0.8	26.0	14.9	14.7	13.0	12.6	0.0	4.1	7.7	104.1	59.8	59.1	52.1	50.4	0.0	16.4	31.8
		$^{\mathrm{SD}}$	2.21	1.62	1.68	0.37	0.45	0.00	0.28	1.35	19.36	15.15	15.38	4.71	5.25	0.00	2.38	15.02	77.44	60.62	61.53	18.84	21.00	0.00	9.50	58.93
	0.5	Mean	9.67	2.34	2.60	0.94	1.09	0.00	1.30	1.29	87.42	24.92	27.04	8.13	9.33	0.00	11.97	13.24	349.70	99.62	108.17	32.51	37.32	0.00	47.66	51.02
ric		SD	3.69	2.38	2.63	0.26	0.28	00.00	0.39	2.87	31.01	19.02	21.68	2.48	2.36	0.00	3.32	21.15	124.06	40.92	86.72	9.91	9.43	00.00	13.13	100.97
Symmet	0.2	Mean SD	15.65	5.69	3.07	0.82	0.94	0.00	1.90	2.45	137.31	24.16	27.98	7.49	8.85	0.00	16.43	17.95	549.25	96.63	111.94	29.97	35.41	0.00	65.66	81.76
		_	3.46	1.60	2.29	0.30	0.30	0.00	0.40	3.73	31.15	14.44	20.58	2.74	2.73	0.00	3.62	33.63	124.62	57.75	82.32	10.96	10.93	0.00	14.15	137.29
Independent	0	Mean	17.23	2.71	3.38	0.83	0.94	0.00	2.14	4.56	155.11	24.35	30.45	7.44	8.45	00.0	19.26	42.13	620.44	97.39	121.80	29.74	33.80	0.00	76.87	168.49
e e	r.	Model	ge	So	et	7	Ь	Boost		7	ge	So	et	\D	Ъ	Boost		7	ge	So	at	T Q	Ъ	Boost		7
Typ	Cor		Rid	Las	Ę-'n	SC_{ℓ}	MC	XG	RF	SVI	Rid	Las	Ę-'n	SC_{ℓ}	MC	XG	RF	SVI	Rid	Las	E-n	SC_{ℓ}	MC	XG	RF	SVI
		Ь	Г								3								9							

Table SM4: Mean and standard deviation of the training MSE for Model 1 when n=200and p=10. See Figure SM4 for the corresponding visualization.

	E		-												ŀ						
	Type	Independent	ndent	Symmetric	tric	ι. L		0 0		Autoregressive	ressive	ς υ		0		Blockwise 0.2	ee Se	ις		0	
ь	Model	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	OLS	0.95	0.09	0.95	0.09	0.95	0.09	0.95	60.0	0.95	60.0	0.95	60.0	0.95	60.0	0.95	0.09	0.95	60.0	0.95	0.09
	AIC B	0.96	0.00	0.97	0.09	0.97	0.09	0.97	0.09	0.97	0.09	96.0	0.09	96.0	60.0	96.0	0.09	0.97	0.09	96.0	0.09
	AIC SB	0.98	60.0	0.98	0.09	0.98	0.00	0.98	0.10	0.98	60.0	0.98	60.0	0.98	60.0	0.98	0.09	0.98	60.0	0.98	60.0
	BICSB	0.98	0.00	0.98	0.09	0.98	0.09	0.98	0.10	0.98	0.09	0.98	0.09	0.98	60.0	0.98	0.09	0.98	0.09	0.98	0.09
	AIC F	96.0	0.09	0.97	0.09	0.97	0.09	0.97	60.0	0.97	0.09	0.97	0.09	0.97	60.0	96.0	0.09	0.97	60.0	0.97	0.09
	BICF	0.98	0.00	0.98	0.09	0.98	0.09	0.99	0.10	0.98	0.09	0.98	0.09	0.99	0.09	0.98	0.09	0.98	0.09	0.98	0.09
	AIC SF BIC SF	0.96	0.09	0.97	0.09	0.97	0.00	0.97	0.09	0.97	0.00	0.97	0.09	0.97	0.09	0.96	0.09	0.97	0.09	0.97	0.09
	Didas	1.13	0.03	1 15	0.03	1.25	0.03	0.33 1 45	0.10	1.00	0.03	1.93	0.03	1.40	0.09	1.30	0.03	1.93	0.03	1.30	0.09
	Lasso	1.08	0.11	1.08	0.10	1.08	0.11	1.08	0.13	1.08	0.10	1.08	0.11	1.07	0.11	1.08	0.11	1.08	0.10	1.07	0.12
	E-net	1.08	0.11	1.08	0.11	1.08	0.11	1.08	0.11	1.08	0.11	1.08	0.11	1.07	0.11	1.08	0.11	1.08	0.11	1.07	0.11
	SCAD	0.97	0.09	0.98	0.09	0.98	0.09	0.98	0.09	86.0	0.09	0.97	0.09	96.0	0.09	0.97	0.09	0.97	0.09	86.0	0.09
	MCP	0.97	0.09	0.98	0.09	86.0	0.09	0.98	0.09	86.0	0.09	0.98	0.09	0.98	60.0	0.97	0.09	0.97	0.09	86.0	0.09
	XGBoost	0.29	0.08	0.28	0.09	0.30	0.07	0.18	0.17	0.28	0.08	0.28	0.08	0.22	0.16	0.30	0.07	0.28	0.09	0.26	0.15
	SVM	0.38	0.20	0.37	0.19	0.45	0.17	0.79	0.15	0.39	0.22	0.38	0.15	0.66	0.10	0.35	0.16	0.37	0.10	0.71	0.12
3	OLS	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81	8.57	0.81
	AIC B	8.68	08.0	8.69	0.82	8.68	0.82	8.68	0.81	8.68	0.81	8.68	0.82	8.68	0.81	8.69	0.81	8.68	0.81	8.68	0.82
	BICB	x 0 0 0 0 0 0 0	0.83	8.81	0.84	8.8 8.8	0.81	8. 8. 8.	0.84	8.81	0.83	8.82	0.82	x	0.85	8.79	0.83	8.82	0.82	98.80	0.83
	AIC SB	80.0	0.80	8.03	0.82	x 0 0 0 0 0	0.82	x x x x x x x	0.0	80.0	0.81	× 0.00	28.0	x 0 0 0 0 0 0	20.0	0.00	0.81	x 0 0 0 0 0	0.81	x 0.0 20.0 20.0	0.82
	AIC F	0.00	0.80	8.69	0.82	0.00	0.82	69.8	0.04	8.69	0.83	0.00	0.82	× 0.0	0.82	69.0	0.81	69.8	0.81	8.70	0.82
	BICF	8.82	0.83	8.81	0.84	8.82	0.81	8.87	0.83	8.81	0.83	8.84	0.83	8.86	0.85	8.79	0.83	8.83	0.82	8.87	0.84
	AIC SF	8.68	08.0	8.69	0.82	8.69	0.82	8.69	0.82	8.69	0.81	8.69	0.82	8.71	0.82	8.69	0.81	8.69	0.81	8.71	0.82
	BIC SF	8.82	0.83	8.81	0.84	8.82	0.81	8.87	0.83	8.81	0.83	8.84	0.83	8.86	0.85	8.79	0.83	8.83	0.82	8.87	0.84
	Ridge	10.11	0.95	10.25	0.87	10.96	0.91	13.15	1.14	10.26	0.94	10.89	1.02	12.66	1.06	10.27	0.93	10.84	0.91	13.06	1.07
	Lasso	9.74	0.97	9.70	0.97	9.70	96.0	9.72	96.0	9.74	0.97	9.72	0.97	9.66	0.99	9.71	0.98	9.67	0.99	9.68	0.97
	E-net	9.75	0.00	9.70	0.97	9.69	0.97	9.70	0.97	9.74	0.99	9.72	0.98	9.66	80.0	9.71	0.97	9.67	0.99	9.66	0.97
	MCP	x 0.7.2	00.00	x 0.70	0.00	α 2 2 3 3 3	0.00	0.70 70	20.0	x 0.70	0.00	× 0.1.2	0.01	× × ×	20.00	0 · 0 2 × 2	0.02	χ 2 ο ο	0.00	0.01	0.00
	XGBoost	2.66	0.62	2.62	0.72	2.64	0.74	1.80	1.62	2.61	0.68	2.65	0.71	2.00	1.45	2.61	0.63	2.51	0.84	2.03	1.41
	RF	5.59	0.51	5.64	0.45	5.09	0.42	2.89	0.28	2.67	0.54	5.81	0.51	3.24	0.35	2.67	0.43	5.80	0.49	3.47	0.39
	$_{ m SVM}$	3.39	1.84	3.24	1.54	4.06	1.55	7.12	1.01	3.29	1.61	3.19	1.02	6.10	1.04	3.26	1.64	3.41	1.03	6.41	1.07
9	OLS	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22	34.30	3.22
	BICB	35.27	3.31	35.26	3 2 2	35.29	3.26	35.40	3 2 2	35.25	3.31	35.30	3.28	35.36	3.40	35.14	3.31	35.27	3.28	35.42	3.33
	AIC SB	34.70	3.21	34.76	3.28	34.74	3.28	34.73	3.26	34.73	3.25	34.71	3.28	34.71	3.25	34.74	3.25	34.70	3.26	34.71	3.29
	BIC SB	35.27	3.31	35.26	3.35	35.29	3.26	35.40	3.35	35.25	3.31	35.30	3.28	35.36	3.40	35.14	3.31	35.27	3.28	35.42	3.33
	AIC F	34.71	3.22	34.76	3.28	34.75	3.28	34.77	3.27	34.74	3.25	34.76	3.27	34.83	3.29	34.75	3.25	34.75	3.23	34.82	3.27
	BIC F	35.27	3.31	35.26	3.35	35.29	3.26	35.49	3.32	35.25	3.31	35.34 37.76	3.32	35.44	3.38	35.17	3.33 2.53 7.53	35.30	3.29	35.50	3.38
	BICSF	35.27	3.31	35.26	3.35	35.29	3.26	35.49	3.32	35.25	3.31	35.34	3.32	35.45	3.40	35.17	3.33	35.30	3.29	35.50	3.38
	Ridge	40.44	3.81	41.01	3.48	43.83	3.63	52.60	4.57	41.06	3.78	43.57	4.09	50.65	4.23	41.08	3.72	43.35	3.64	52.23	4.26
	Lasso	38.96	3.89	38.81	3.87	38.79	3.85	38.89	3.93	38.96	3.89	38.86	3.89	38.66	3.97	38.82	3.92	38.68	3.96	38.72	3.88
	E-net	38.99	3.94	38.82	3.89	38.76	3.87	38.82	3.89	38.94	3.95	38.87	3.91	38.63	3.93	38.83	3.89	38.66	3.97	38.64	3.90
	SCAD	35.00	3.18	35.10	3.30	35.12	3.21	35.10	3.35	35.16	3.21	35.10	3.23	35.10	3.40	35.03	3.26	35.08	3.20	35.23	3.41
	XGBoost	35.07	2.51	10.55	2.78	10.27	3.22	7.50	6.52	10.24	2.80	10.08	2.98	7.75	5.92	55.04 10.13	2.88	10.01	3.38	8.79 8.79	5.38
	RF	22.38	2.08	22.55	1.79	20.35	1.66	11.55	1.10	22.70	2.18	23.22	2.04	12.96	1.39	22.69	1.73	23.17	1.96	13.89	1.53
	SVM	13.54	7.36	12.97	6.14	16.26	6.20	28.47	4.00	13.15	6.46	12.78	4.08	24.75	4.67	13.05	6.56	13.65	4.10	25.58	4.09

Table SM5: Mean and standard deviation of the training MSE for Model 1 when n=200 and p=100. See Figure SM5 for the corresponding visualization.

	Type	Independent	ndent	Symmetric	etric	1		0		Autoregressive	gressive	ì		0		Blockwise	se	1		0	
	Corr.	>		0.2		ი.ა		6.0		0.7		ი.ა		6.0		7.0		ი.ე		6.0	
Ь	Model	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	OLS	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07	0.50	0.07
	AIC F	99.0	0.10	99.0	0.10	0.67	0.10	0.67	0.10	0.66	0.10	0.70	0.11	0.81	0.12	0.67	0.10	0.68	0.10	0.80	0.12
	BICF	06.0	0.11	06.0	0.11	0.91	0.11	0.92	0.12	06.0	0.11	0.92	0.11	96.0	0.11	0.91	0.11	0.93	0.11	0.95	0.10
	AIC SF	99.0	0.10	99.0	0.09	0.67	0.10	0.67	0.10	99.0	0.10	0.70	0.10	0.81	0.12	0.67	0.10	0.68	0.11	08.0	0.12
	BIC SF	06.0	0.11	06.0	0.11	0.91	0.11	0.92	0.12	06.0	0.11	0.92	0.11	96.0	0.11	0.91	0.11	0.93	0.11	0.95	0.10
	Ridge	0.74	0.11	0.78	0.11	0.91	0.14	1.33	0.20	0.77	0.11	98.0	0.12	1.19	0.15	0.78	0.11	0.89	0.12	1.31	0.20
	Lasso	1.14	0.14	1.12	0.14	1.11	0.13	1.11	0.14	1.14	0.14	1.15	0.15	1.10	0.14	1.14	0.15	1.12	0.13	1.11	0.13
	E-net	1.16	0.14	1.13	0.14	1.11	0.13	1.11	0.14	1.15	0.14	1.16	0.15	1.10	0.14	1.15	0.15	1.13	0.13	1.11	0.13
	SCAD	0.95	0.12	0.95	0.11	96.0	0.11	1.00	0.11	0.95	0.11	0.95	0.11	0.99	0.11	0.95	0.11	0.95	0.11	0.98	0.11
	MCP	0.97	0.11	96.0	0.11	0.97	0.11	1.00	0.11	96.0	0.11	96.0	0.11	1.00	0.11	0.97	0.11	96.0	0.11	0.99	0.10
	XGBoost	0.03	0.02	0.04	0.01	0.05	0.02	80.0	0.07	0.03	0.02	0.04	0.02	0.07	0.02	0.04	0.02	0.05	0.03	80.0	0.07
	RF	0.85	0.07	0.88	0.07	0.73	0.07	0.35	0.04	0.87	0.07	0.80	0.07	0.35	0.04	0.87	0.07	0.70	90.0	0.34	0.04
	$_{ m SVM}$	0.21	0.05	0.21	90.0	0.23	90.0	0.62	0.19	0.21	0.04	0.18	0.03	0.20	0.04	0.21	0.04	0.21	90.0	0.46	0.17
3	OLS	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63	4.53	0.63
	AIC F	5.96	0.87	5.94	0.88	5.96	0.88	5.98	0.85	5.92	0.87	6.34	06.0	7.23	1.01	90.9	0.88	6.18	0.97	7.27	1.17
	BICF	8.08	0.99	8.23	1.03	8.26	0.95	8.23	96.0	8.16	0.95	8.22	0.99	8.58	1.01	8.20	0.91	8.34	1.01	8.57	0.93
	AIC SF	5.96	98.0	5.94	0.91	00.9	0.87	5.99	0.84	5.96	98.0	6.36	0.93	7.26	0.97	6.07	0.87	6.19	96.0	7.29	1.15
	BICSF	8.08	0.99	8.23	1.03	8.26	0.94	8.23	96.0	8.16	0.95	8.23	0.99	8.59	1.01	8.20	0.91	8.34	1.00	8.57	0.93
	Ridge	6.64	0.97	7.09	1.06	8.05	1.15	11.95	1.80	96.9	0.99	7.74	1.02	10.66	1.36	7.05	0.93	8.21	1.10	11.67	1.66
	Lasso	10.30	1.25	10.18	1.21	10.06	1.18	10.05	1.16	10.30	1.26	10.33	1.26	9.92	1.21	10.25	1.20	10.13	1.20	10.00	1.15
	E-net	10.40	1.29	10.22	1.21	10.06	1.19	10.06	1.13	10.35	1.32	10.37	1.29	9.91	1.20	10.32	1.25	10.13	1.21	10.04	1.19
	SCAD	8.55	1.04	8.60	0.98	89.8	0.91	8.90	1.03	8.57	86.0	8.51	96.0	8.90	0.95	8.55	0.93	8.58	0.93	8.89	96.0
	MCP	8.69	1.01	8.71	0.97	8.75	0.94	8.89	1.02	8.70	0.97	8.65	0.99	8.97	0.97	8.64	0.93	8.67	0.94	8.90	0.97
	XGBoost	0.32	0.13	0.35	0.15	0.45	0.26	0.71	69.0	0.31	0.15	0.35	0.20	0.55	0.42	0.30	0.18	0.41	0.22	0.56	0.57
	RF	7.62	0.63	7.84	0.61	6.46	09.0	3.13	0.35	7.75	0.62	7.24	0.61	3.18	0.39	7.90	99.0	6.47	0.53	3.01	0.28
	$_{ m SVM}$	1.91	0.41	1.83	0.31	2.00	0.43	5.76	1.46	1.85	0.36	1.70	0.40	1.76	0.36	2.02	0.46	2.06	0.53	3.96	1.07
9	OLS	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50	18.14	2.50
	AIC F	23.83	3.48	23.76	3.54	23.86	3.54	23.93	3.38	23.68	3.48	25.34	3.59	28.92	4.06	24.25	3.50	24.71	3.89	29.08	4.67
	BICF	32.30	3.97	32.93	4.11	33.04	3.79	32.92	3.83	32.64	3.79	32.89	3.97	34.33	4.04	32.79	3.63	33.34	4.02	34.26	3.71
	AIC SF	23.82	3.44	23.77	3.64	23.99	3.50	23.95	3.35	23.83	3.42	25.43	3.73	29.03	3.89	24.28	3.46	24.75	3.83	29.16	4.62
	BICSF	32.33	3.95	32.94	4.10	33.05	3.77	32.92	3.83	32.64	3.79	32.90	3.96	34.35	4.05	32.79	3.64	33.35	4.02	34.26	3.71
	Ridge	26.57	3.86	28.36	4.25	32.21	4.62	47.81	7.18	27.84	3.96	30.96	4.10	42.65	5.45	28.18	3.73	32.84	4.41	46.66	6.64
	Lasso	41.22	5.00	40.72	4.83	40.25	4.71	40.19	4.63	41.19	5.05	41.30	5.04	39.70	4.84	41.01	4.79	40.54	4.81	39.99	4.61
	E-net	41.58	5.16	40.88	4.83	40.26	4.75	40.23	4.53	41.39	5.28	41.48	5.17	39.62	4.78	41.29	5.01	40.52	4.82	40.18	4.77
	SCAD	34.19	4.18	34.41	3.91	34.73	3.66	35.58	4.12	34.29	3.91	34.03	3.84	35.58	3.79	34.20	3.70	34.30	3.74	35.55	3.83
	MCP	34.77	4.05	34.83	3.87	35.02	3.77	35.54	4.09	34.80	3.90	34.60	3.95	35.88	3.87	34.55	3.71	34.70	3.78	35.62	3.88
	XGBoost	1.20	0.62	1.45	0.58	1.94	0.93	2.79	2.75	1.19	0.63	1.39	0.81	2.38	1.67	1.31	89.0	1.58	0.93	2.38	2.31
	RF	30.43	2.48	31.36	2.45	25.82	2.40	12.51	1.40	30.99	2.50	28.96	2.45	12.74	1.55	31.58	2.59	25.90	2.14	12.03	1.13
	$_{ m SVM}$	7.63	1.64	7.31	1.26	8.01	1.73	23.11	6.48	7.38	1.43	6.81	1.61	7.04	1.42	8.08	1.85	8.26	2.11	16.28	5.51

Table SM6: Mean and standard deviation of the training MSE for Model 1 when n=200and p=2000. See Figure SM6 for the corresponding visualization.

			ı								ı								ı							
		$^{\mathrm{SD}}$	0.27	0.29	0.29	0.28	0.19	0.01	0.03	0.03	2.88	2.44	2.39	2.67	2.14	0.05	0.33	0.74	11.53	9.75	9.57	10.68	8.54	0.22	1.31	0
	6.0	Mean	2.55	1.22	1.23	1.13	1.04	0.01	0.35	0.16	23.39	10.90	11.05	10.28	9.72	80.0	3.18	1.48	93.58	43.60	44.21	41.14	38.88	0.29	12.71	000
		SD	1.43	0.19	0.20	0.14	0.13	0.00	80.0	80.0	14.02	1.63	1.71	1.13	1.08	0.01	69.0	0.81	56.06	6.51	6.83	4.50	4.34	0.03	2.76	000
	0.5	Mean																								
		Ü	3.13	0.19	0.21	0.13	0.13	0.00	0.11	0.31	26.48	1.43	1.59	1.23	1.08	0.00	0.86	5.23	.05.92	5.73	6.37	4.94	4.31	0.01	3.47	0 01
3lockwise	.2	Mean S	12.87	1.25	1.28	06.0	0.94	0.00	1.10	0.52	.15.88	11.40	11.62	8.11	8.46	0.01	9.91	5.02	163.51	45.62	46.47	32.43	33.82	0.02	39.62	1000
_	_		L							80.0															_	_
	0.0	Mean																								
										1.02																
	0.5	Mean	14.2	1.29	1.3	0.9	0.9	0.0	0.9	0.7	126.59	11.58	11.8	7.90	8.43	0.0	8.6	6.0	506.3	46.33	47.3	31.8	33.7.	0.0	34.50	0.4
ressive		$^{\mathrm{SD}}$	2.50	0.16	0.17	0.14	0.12	0.00	0.11	1.21	22.82	1.51	1.62	1.34	1.11	0.00	1.02	12.54	92.27	6.21	6.79	5.25	4.51	0.01	3.81	70
Autoreg	0.2	Mean	15.89	1.27	1.30	0.91	0.94	0.00	1.17	0.85	144.11	11.44	11.72	8.21	8.53	0.00	10.50	8.28	575.16	45.44	46.52	32.60	33.95	0.02	41.88	06 40
		SD	0.32	0.16	0.16	0.25	0.13	0.02	0.04	0.34	3.00	1.37	1.36	2.21	1.38	0.14	0.37	2.53	12.00	5.47	5.45	8.85	5.51	0.57	1.50	00 01
	9.6	Mean																								
	_									0.51																
	5	Mean S		_	_			_	_			_			_			_	l.		_	_				
			92	18	19	14	12	00	11	89	28	49	28	15	04	00	75	36	14	95	33	61	14	01	86	7
nmetric		Mean SD	28 2	.21 0	.22 0	.92 0	0 96.	0 00.	.15 0	.65 0	.74 21	.01	.11 1	.30 1	.59 1	.01 0	.37 0	.38 8	.95 87	.03 5	.46 6	.21 4	.34 4	.03 0	.51 2	22
Syn	0.2	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
ndent		$^{\mathrm{SD}}$	3.1	0.1	0.1	0.1	0.1	0.0	0.1	1.33	28.2	1.2	1.3	1.2	1.0	0.0	8.0	11.9	113.1	5.0	5.5	5.1	4.1	0.0	3.5	0.87
Indepe	0	Mean SD	16.61	1.27	1.30	06.0	0.96	0.00	1.14	0.86	149.45	11.44	11.72	8.10	8.61	0.00	10.28	7.86	597.82	45.78	46.87	32.40	34.43	0.02	41.06	21 78
be.	rr.	Model	dge	oss	net	(AD	J.P	Boost	e.	Ŋ	dge	sso	net	AD	J.P	Boost	6	M	dge	SSO	net	AD	J.P	Boost		11
Ę	S	Mo	Ric	La	급	SC	MC	XC	RF	SV	Ric	Las	급	SC	MC	XC	RF	SV	Ric	La	占	SC	MC	XC	RF	72

Table SM7: Mean and standard deviation of the training MSE for Model 1 when n=1000 and p=10. See Figure SM7 for the corresponding visualization.

Type	Independent	dent	Symmetric	tric					Autoregi	essive					Blockwi	se				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD
1 OLS	0.99	0.04	66.0	0.04	0.99	0.04	0.99		66.0	0.04	0.99	0.04	66.0	0.04	0.99	0.04	0.99	0.04	0.99	0.04
AIC B	1.00	0.04	1.00	0.04	1.00	0.04	1.00		0.99	0.04	0.99	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
BIC B	1.00	0.04	1.00	0.04	1.00	0.04	1.00		1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
AIC SB	1.00	0.04	1.00	0.04	1.00	0.04	1.00		0.99	0.04	0.99	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
BICSB	1.00	0.04	1.00	0.04	1.00	0.04	1.00		1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
AICF	1.00	0.04	9.5	0.04	1.00	0.04	1.00		1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
AICE	1.00	0.04	1.00	0.04	1.00	40.0	8.1		1.00	40.0	1.00	40.0	1.00	40.0	1.00	40.0	1.00	40.0	1.00	0.04
AIC SF BIC SF	1.00	50.0	1.00	0.04	1.00	40.0	9.1		1.00	40.0	1.00	40.0	1.00	40.0	1.00	40.0	1.00	40.0	00.1	0.04
Bidge	1.00	5.0	1.00	0.0	1 19	10.0	1.00		1 13	50.0	1.00	40.0	1.38	4.0.0	1 19	0.0	1.00	0.0	1.30	0.0
Lasso	1.04	0.05	1.04	0.05	1.04	0.05	1.04		1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05
F-net	1.04	0.05	1.04	0.05	1.04	0.05	1.04		1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05	1.04	0.05
SCAD	1.00	0.04	1.00	0.04	1.00	0.04	1.00		1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
MCP	1.00	0.04	1.00	0.04	1.00	0.04	1.00		1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04	1.00	0.04
XGBoost	0.74	0.04	0.74	0.03	0.74	0.04	0.73		0.73	0.04	0.74	0.03	0.77	80.0	0.73	0.04	0.74	0.03	0.79	0.03
RF	0.35	0.01	0.35	0.01	0.33	0.01	0.24		0.35	0.01	0.37	0.01	0.28	0.01	0.35	0.01	0.37	0.02	0.29	0.01
	0.45	0.03	0.49	0.04	0.68	0.11	0.91		0.47	0.03	0.58	0.10	0.85	90.0	0.48	0.03	0.63	0.10	0.85	0.06
3 OLS	8.93	0.39	8.93	0.39	8.93	0.39	8.93		8.93	0.39	8.93	0.39	8.93	0.39	8.93	0.39	8.93	0.39	8.93	0.39
AICB	00.00	0.39	00.00	0.39	00.00	0.39	00.00		00.00	0.39	00.00	0.09	00.00	0.39	00.00	0.00	00.00	0.39	00.00	0.39
PICP	0.00	0.40	00.00	0.09	90.00	65.0	00.00		00.0	0.39	0.00	0.09	0.00	0.09	00.0	0.00	0.00	0.00	90.0	0.59
AIC 3B BIC 5B	00.00	0.00	00.00 00.00	0.09	06.90	0.39	00.00		00.00	0.09	00.00	0.09	00.00	0.09	06.00	0.09	00.00	0.09	00.00	0.09
AIO P	80.0 90.0	0.40	80.8	0.00	90.00	30	66.9 96.9		96.8 96.8	0.00	90.00	30	90.00	0.00	60.00 90.00	0.00	90.8	0.00	80.8	0.00
BICF	66.8	0.40	86.00	0.39	8.99	0.39	80.00		00.00 00.00	0.39	80.00	0.39	66.8	0.39	66.8	0.39	66.8	0.39	66.8	0.39
AIC SF	8.96	0.39	8.96	0.39	8.96	0.39	8.96		8.96	0.39	8.96	0.39	8.96	0.39	8.96	0.39	8.96	0.39	8.96	0.39
BICSF	8.99	0.40	8.98	0.39	8.99	0.39	8.99		8.98	0.39	8.98	0.39	8.99	0.39	8.99	0.39	8.99	0.39	8.99	0.39
Ridge	9.97	0.43	10.14	0.42	10.76	0.45	12.74		10.14	0.42	10.66	0.43	12.39	0.52	10.13	0.42	10.65	0.44	12.49	0.50
Lasso	9.39	0.42	9.39	0.42	9.38	0.42	9.38		9.38	0.41	9.38	0.41	9.36	0.42	9.38	0.41	9.38	0.41	9.36	0.42
E-net	9.39	0.42	9.39	0.42	9.38	0.42	9.38		9.38	0.42	9.39	0.41	9.36	0.42	9.39	0.41	9.38	0.42	9.36	0.41
SCAD	86.8	0.39	8.97	0.39	8.97	0.39	8.97		8.97	0.39	8.97	0.40	8.97	0.39	8.98	0.39	8.98	0.40	8.97	0.39
MCP	8.98	0.39	8.97	0.39	8.97	0.39	8.97		8.97	0.39	8.97	0.40	8.97	0.39	8.98	0.39	8.98	0.40	8.98	0.39
XGBoost	6.62	0.33	6.64	0.33	6.64	0.30	6.28		6.64	0.35	6.63	0.32	6.51	1.88	6.64	0.31	6.65	0.33	2.06	0.34
RF	3.14	0.12	3.20	0.12	3.00	0.12	2.14		3.18	0.13	3.35 1.35 1.05	0.13	2.50	0.11	3.17	0.14	3.37	0.14	2.64	0.12
SIO	35.73	1.56	35.73	1 25	35 73	1.56	35.73	T	35 73	1.56	35.73	1.56	35.73	1.56	35.73	1.56	35.73	1.56	35.73	1.56
	35.83	1.56	35.83	1.56	35.82	1.56	35.82		35.82	1.56	35.82	1.56	35.82	1.56	35.83	1.57	35.82	1.56	35.83	1.57
BIC B	35.95	1.60	35.93	1.58	35.94	1.56	35.95		35.94	1.57	35.93	1.56	35.93	1.57	35.95	1.57	35.95	1.57	35.94	1.57
AIC SB	35.83	1.56	35.83	1.56	35.82	1.56	35.82		35.82	1.56	35.82	1.56	35.82	1.56	35.83	1.57	35.82	1.56	35.83	1.57
BIC SB	35.95	1.60	35.93	1.58	35.94	1.56	35.95		35.94	1.57	35.93	1.56	35.93	1.57	35.95	1.57	35.95	1.57	35.94	1.57
AIC F	35.83	1.56	35.83	1.56	35.83	1.56	35.82		35.83	1.56	35.84	1.56	35.85	1.56	35.83	1.57	35.83	1.57	35.84	1.56
BICF	35.95	1.60	35.93	1.58	35.95	1.56	35.95		35.94	1.57	35.93	1.56	35.94	1.58	35.95	1.57	35.95	1.57	35.94	1.57
AIC SF	35.83	1.56	35.83	1.56	35.83	1.56	35.82		35.83	1.56	35.84	1.56	35.85	1.56	35.83	1.57	35.83	1.57	35.84	1.56
BICSF	35.95	1.60	35.93	1.58	35.95	1.56	35.95		35.94	1.57	35.93	1.56	35.94	1.58	35.95	1.57	35.95	1.57	35.94	1.57
Klage	020.00	1.73	40.57	1.08	43.03	1.79	50.97		40.54	1.09	42.04	1.72	49.00	2.09	40.03	1.00	42.01	1.74	49.95	2.01
Lasso F not	07.57	1.07	07.54	1.66	07.00	1.07	07.00		97.51	1.00	57.54 57.55	1.00	57.45 97.45	1.00	57.04 77.74	1.05	07.02	1.05	07.44	1.07
SCAD	35.91	1.57	35.90	1.57	35.89	1.57	35.89		35.89	1.58	35.89	1.58	35.89	1.56	35.91	1.57	35.90	1.59	35.90	1.57
MCP	35.91	1.56	35.89	1.56	35.90	1.58	35.89		35.89	1.57	35.89	1.59	35.88	1.56	35.91	1.57	35.90	1.59	35.90	1.57
XGBoost	26.48	1.34	26.56	1.33	26.55	1.21	25.45		26.56	1.38	26.50	1.36	26.82	6.10	26.56	1.24	26.59	1.33	27.96	3.00
RF	12.54	0.50	12.80	0.47	12.01	0.50	8.54	0.41	12.73 0.54	0.54	13.41	0.53	10.02	0.44	12.69 0.	0.55	13.49	0.55	10.55	0.48
$_{ m SVM}$	16.16	1.04	17.81	1.68	23.79	3.20	32.74		16.77	1.06	20.59	3.10	30.65	2.15	17.29	1.38	22.72	3.48	30.66	1.84

Table SM8: Mean and standard deviation of the training MSE for Model 1 when n=1000and p = 100. See Figure SM8 for the corresponding visualization.

	Type	Independent	ndent	Symmetric	etric	ì.		0		Autoregressive	ressive	ì.		0		Blockwise	se	ì.		0	
	Corr.	, ,	ļ	7.7	Ç	0.0	ļ	e	į	7.0	ļ	o.,	Ç	n.,	į	7.7	į	o.,	į	e.,	į
ь	Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
ī	OLS	06.0	0.02	06.0	0.05	06.0	0.02	06.0	0.05	06.0	0.05	06.0	0.02	06.0	0.05	06.0	0.05	06.0	0.05	06.0	0.05
	AIC F	0.94	0.02	0.94	0.02	0.94	0.05	0.94	0.05	0.94	0.02	0.95	0.02	0.96	0.05	0.94	0.02	0.94	0.05	96.0	0.02
	BICF	0.99	0.02	0.99	0.05	0.99	0.02	0.99	0.05	0.99	0.05	0.99	0.02	0.99	0.05	0.99	0.05	0.99	0.05	1.00	0.05
	AIC SF	0.94	0.05	0.94	0.05	0.94	0.05	0.94	0.02	0.94	0.05	0.95	0.02	96.0	0.05	0.94	0.02	0.94	0.05	96.0	0.05
	BICSF	0.99	0.02	0.99	0.05	0.99	0.02	0.99	0.02	0.99	0.02	0.99	0.02	0.99	0.02	0.99	0.02	0.99	0.05	1.00	0.05
	Ridge	1.02	0.05	1.05	0.05	1.12	0.05	1.37	0.07	1.04	0.05	1.09	90.0	1.30	90.0	1.04	0.02	1.12	90.0	1.35	90.0
	Lasso	1.05	0.02	1.05	0.05	1.05	0.02	1.04	0.05	1.05	0.02	1.05	0.05	1.05	0.05	1.05	0.02	1.05	0.05	1.04	0.05
	E-net	1.05	0.02	1.05	0.05	1.05	0.02	1.04	0.02	1.05	0.05	1.05	0.02	1.05	0.05	1.05	0.02	1.05	0.05	1.04	0.05
	SCAD	0.99	0.02	0.99	0.05	0.99	0.02	1.00	0.02	0.99	0.02	0.99	0.05	0.99	0.05	0.99	0.02	0.99	0.05	0.99	0.05
	MCP	0.99	0.02	0.99	0.05	0.99	0.02	1.00	0.02	1.00	0.02	1.00	0.05	0.99	0.05	0.99	0.02	1.00	0.05	0.99	0.05
	XGBoost	0.51	0.03	0.52	0.03	0.56	0.03	0.58	0.26	0.51	0.03	0.53	0.03	0.48	0.29	0.52	0.03	0.55	0.03	0.42	0.33
	RF	0.43	0.02	0.45	0.02	0.41	0.03	0.25	0.01	0.44	0.02	0.46	0.02	0.28	0.01	0.44	0.02	0.40	0.02	0.25	0.01
	$_{ m NNM}$	0.15	0.01	0.15	0.01	0.15	0.01	0.65	0.04	0.15	0.01	0.13	0.01	0.19	0.01	0.15	0.01	0.15	0.01	0.42	0.03
3	OLS	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41	8.11	0.41
	AIC F	8.47	0.43	8.48	0.43	8.47	0.43	8.47	0.44	8.47	0.44	8.52	0.45	8.69	0.46	8.47	0.43	8.51	0.43	8.66	0.45
	BICF	8.91	0.45	8.93	0.44	8.92	0.44	8.92	0.43	8.91	0.45	8.93	0.44	8.95	0.43	8.90	0.43	8.93	0.44	8.95	0.43
	AIC SF	8.47	0.43	8.48	0.42	8.47	0.43	8.47	0.44	8.47	0.44	8.52	0.45	8.69	0.47	8.47	0.43	8.52	0.43	8.66	0.45
	BICSF	8.91	0.45	8.93	0.44	8.92	0.44	8.92	0.43	8.91	0.45	8.93	0.44	8.95	0.43	8.91	0.43	8.93	0.44	8.95	0.43
	Ridge	9.16	0.48	9.39	0.46	10.09	0.44	12.30	0.62	9.34	0.47	9.88	0.51	11.73	0.55	9.38	0.44	10.03	0.48	12.16	0.55
	Lasso	9.44	0.47	9.44	0.47	9.43	0.48	9.40	0.48	9.45	0.48	9.47	0.48	9.45	0.49	9.44	0.48	9.43	0.48	9.39	0.48
	E-net	9.45	0.48	9.46	0.47	9.43	0.48	9.40	0.48	9.46	0.49	9.49	0.48	9.43	0.49	9.45	0.48	9.45	0.48	9.40	0.47
	SCAD	8.94	0.45	8.95	0.44	8.96	0.44	8.97	0.43	8.94	0.45	8.95	0.43	8.93	0.43	8.94	0.44	8.95	0.44	8.94	0.44
	MCP	8.95	0.44	8.96	0.44	8.96	0.44	8.97	0.43	8.96	0.44	8.96	0.43	8.94	0.43	8.95	0.45	8.95	0.44	8.95	0.44
	XGBoost	4.60	0.23	4.72	0.28	5.08	0.27	5.27	2.33	4.64	0.27	4.80	0.25	4.35	2.60	4.69	0.26	4.93	0.27	4.18	2.88
	RF	3.89	0.16	4.00	0.15	3.69	0.15	2.26	0.10	3.95	0.18	4.17	0.17	2.55	0.12	3.96	0.15	3.63	0.13	2.23	0.09
	$_{ m SVM}$	1.39	90.0	1.35	90.0	1.34	0.11	5.84	0.41	1.32	90.0	1.20	0.05	1.67	0.13	1.34	0.07	1.30	0.08	3.75	0.30
9	STO	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66	32.45	1.66
	AIC F	33.87	1.72	33.91	1.70	33.87	1.73	33.86	1.75	33.89	1.76	34.07	1.79	34.75	1.86	33.88	1.74	34.05	1.70	34.65	1.82
	BICF	35.65	1.79	35.71	1.75	35.67	1.76	35.70	1.74	35.65	1.79	35.72	1.74	35.80	1.72	35.62	1.74	35.71	1.78	35.81	1.74
	AIC SF	33.87	1.72	33.92	1.70	33.88	1.74	33.87	1.75	33.89	1.76	34.09	1.79	34.75	1.86	33.89	1.74	34.06	1.70	34.66	1.81
	BICSF	35.65	1.79	35.71	1.75	35.67	1.76	35.70	1.74	35.65	1.79	35.72	1.74	35.80	1.72	35.62	1.74	35.71	1.78	35.81	1.74
	Ridge	36.64	1.91	37.58	1.84	40.37	1.78	49.19	2.46	37.36	1.87	39.50	2.02	46.91	2.21	37.51	1.76	40.12	1.92	48.65	2.20
	Lasso	37.74	1.90	37.75	1.88	37.72	1.90	37.60	1.91	37.79	1.93	37.89	1.91	37.70	1.96	37.74	1.91	37.74	1.90	37.56	1.90
	E-net	37.82	1.92	37.82	1.88	37.74	1.92	37.60	1.92	37.85	1.95	37.96	1.93	37.70	1.97	37.79	1.93	37.79	1.91	37.60	1.90
	SCAD	35.76	1.80	35.79	1.77	35.83	1.75	35.88	1.71	35.76	1.80	35.81	1.73	35.73	1.72	35.78	1.77	35.79	1.77	35.78	1.74
	MCP	35.80	1.77	35.83	1.76	35.84	1.76	35.88	1.72	35.82	1.76	35.85	1.70	35.76	1.72	35.79	1.78	35.82	1.76	35.80	1.76
	XGBoost	18.39	0.92	18.87	1.10	20.32	1.10	21.07	9.31	18.54	1.08	19.18	0.99	18.46	9.67	18.76	1.03	19.70	1.07	16.19	11.69
	RF	15.56	0.64	15.98	0.59	14.74	0.58	9.03	0.41	15.81	0.73	16.68	0.70	10.18	0.48	15.84	09.0	14.51	0.53	8.91	0.37
	$_{ m SVM}$	5.57	0.25	5.41	0.24	5.37	0.43	23.34	1.62	5.29	0.24	4.80	0.22	6.67	0.53	5.37	0.27	5.19	0.33	14.98	1.21

Table SM9: Mean and standard deviation of the training MSE for Model 1 when n=1000and p=2000. See Figure SM9 for the corresponding visualization.

			$^{\mathrm{SD}}$	0.14	90.0	90.0	0.02	0.02	0.09	0.01	0.32	1.25	0.50	0.49	0.77	0.42	0.39	0.10	2.88	5.00	1.98	1.98	3.08	1.67	0.00	0.42	11.75
		6.0	Mean	2.76	1.07	1.07	1.03	1.03	0.02	0.27	1.02	24.75	9.61	99.6	9.32	9.56	0.04	2.37	9.13	00.66	38.46	38.62	37.29	37.04	0.00	9.49	36.55
			SD	0.45	90.0	90.0	0.02	0.02	0.03	0.03	0.03	4.28	0.49	0.51	0.42	0.41	0.29	0.15	0.25	17.10	1.97	2.04	1.66	1.63	0.55	09.0	1.00
		0.5	Mean	7.92	1.08	1.08	1.01	1.00	0.31	0.50	0.29	71.54	89.6	9.72	9.11	8.97	2.71	4.45	2.52	286.16	38.72	38.90	36.45	35.88	10.92	17.79	10.07
			D	0.65	0.05	0.05	0.05	0.05	0.01	0.02	0.05	6.31	0.51	0.51	0.41	0.41	0.13	0.19	0.41	5.25	2.02	2.06	1.62	1.62	0.51	0.78	1.63
	3 lockwise	.2	Mean 5	10.43	1.07	1.08	1.00	1.00	0.26	0.55	0.37	92.71	9.62	9.70	8.99	8.96	2.30	4.94	3.22	370.85	38.60	38.82	35.95	35.85	9.20	19.77	12.89
ŀ	_	_																		L							
			$^{\mathrm{SD}}$	0.23	0.07	0.07	0.0	0.0	0.06	0.01	0.01	2.18	0.62	0.63	0.85	0.42	0.52	0.13	0.12	8.77	2.47	2.53	3.42	1.69	1.75	0.51	0.47
		0.0	Mean	5.40	1.10	1.10	1.05	1.04	0.01	0.28	0.15	48.73	9.94	9.97	9.43	9.33	0.09	2.56	1.35	194.92	39.75	39.90	37.74	37.33	0.25	10.24	5.39
			SD	0.70	90.0	90.0	0.05	0.02	0.01	0.03	0.04	6.30	0.51	0.53	0.41	0.41	0.12	0.19	0.39	25.20	2.02	2.11	1.65	1.64	0.48	0.77	1.56
		0.5	Mean	9.91	1.08	1.09	1.00	1.00	0.27	0.57	0.34	89.35	9.73	9.80	9.03	8.97	2.39	5.12	3.05	357.42	38.92	39.21	36.12	35.88	9.54	20.47	12.18
	ssive																										
	λ utoregre	.2	Mean S	11.24	1.07	1.08	1.00	1.00	0.25	0.54	0.08 0.39 0.05	.01.17	9.62	9.72	8.99	8.97	2.22	4.87	3.56	05.48	38.65	38.88	35.96	35.86	8.91	19.45	14.25
	7	_	_			_	_						_	_	_	_	_	_		7	_	_	_	_	_	_	_
		6.0	Mean	2.79	1.07	1.07	1.04	1.03	0.45	0.28	0.67	24.97	9.64	9.69	9.45	9.26	4.08	2.48	6.00	88.66	38.57	38.75	37.79	37.05	16.90	9.93	24.00
			$^{\mathrm{SD}}$	0.62	90.0	90.0	0.02	0.02	0.02	0.02	0.05	4.85	0.51	0.51	0.42	0.41	0.15	0.18	0.37	19.39	2.03	2.03	1.69	1.62	0.59	0.70	1.48
		0.5	Mean	8.23	1.06	1.06	1.01	1.00	0.33	0.50	0.36	74.04	9.54	9.54	9.11	8.97	3.00	4.49	3.19	296.15	38.17	38.18	36.45	35.89	12.01	17.96	12.77
	ic		SD	92.0	90.0	90.0	0.05	0.02	0.01	0.03	90.0	6.77	0.50	0.51	0.40	0.40	0.11	0.20	0.42	27.07	1.99	2.03	1.62	1.62	0.44	0.82	1.68
	Symmetric	0.2	Mean	10.43	1.07	1.07	1.00	1.00	0.27	0.56	0.38	94.37	9.62	9.65	8.99	8.97	2.38	5.07	3.48	377.48	38.46	38.61	35.97	35.86	9.53	20.27	13.92
	ent		SD	0.94	0.05	90.0	0.05	0.05	0.01	0.02	0.02	8.48	0.49	0.50	0.41	0.41	0.12	0.17	0.46	33.94	1.97	1.99	1.63	1.63	0.46	69.0	1.86
	Independent	_		11.51	_						0.42																
ŀ																				1							
	Type	Corr.	Model	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	SCAD	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	SCAD	MCP	XGBoos	RF	$_{ m SVM}$
			ь	1								3								9							

SM4.2. Tables for the testing MSE of the linear simulations.

Table SM10: Mean and standard deviation of the testing MSE for Model 1 when n=50and p = 10. See Figure SM10 for the corresponding visualization.

	ָב	700	0.26	0.26	0.26	0.20	0.39	0.31	0.40	0.48	0.40	0.40	0.25	0.73	99.0	1.08	2.26	2.29	2.29	2.17	2.31	2.98	2.31	2.98	4.47	3.64	2.54	2.58	5.93	6.02	9.03	9.15	8.60	9.15	0.0	11.92	9.23	11.92	17.89	14.55	14.58	10.33	25.90	24.11	40.17
	0.9	iviedii	1.28	1.17	1.22	1.17	1.26	1.23	1.26	1.91	1.40	1.41	1.17	2.86	2.91	3.20	11.48	10.60	11.10	10.70	11.00	11.17	11.01	11.17	16.58	12.63	10.77	10.79	26.26	25.48	45 93	44.39	42.75	44.39	42.00	44.70	44.03	44.70	66.31	50.52	50.70	43.18	105.88	101.87	00.011
	נ	700	0.25	0.25	0.25	0.50	0.25	0.25	0.25	0.46	0.38	0.39	0.26	1.17	1.47	1.53	2.26	2.39	2.38	2.39	2.33	2.31	2.36	2.30	3.86	3.05	2.15	2.16	96.6	13.17	9.03	9.55	9.56	9.50	0.00	9.25	9.42	9.18	15.43	12.09	8 60	8.66	40.92	52.49	04.16
	0.5	Medii	1.28	1.19	1.22	1.13	1.19	1.22	1.19	1.72	1.40	1.41	1.20	3.74	5.85	4.79	11.48	10.05	11.07	10.92	11.00	10.82	11.02	10.81	15.83	12.74	11.02	11.04	34.35	52.87	41.73	44.19	43.66	44.27	45.00	43.30	44.09	43.25	63.33	50.96	51.30 44.06	44.16	137.13	211.40	100.94
se	Ę,	700	0.25	0.28	0.26	0.00	0.28	0.26	0.28	0.38	0.36	0.37	0.27	80.	1.53	1.45	2.26	07.70	2.25	2.30	2.24	2.30	2.24	2.30	3.81	3.48	2.33	2.33	9.91	17.22	9 03	8.99	9.20	8.99	9.70	9.20	8.95	9.20	15.22	13.98	13.91	9.32	43.08	68.82	01.10
Blockwi	0.2	Medil	1.28	1.20	1.22	1.20	1.20	1.22	1.20	1.60	1.37	1.38	1.21	3.86	6.73	5.30	11.48	10.97	10.97	10.62	10.88	10.62	10.88	10.62	14.76	12.67	10.87	10.83	33.34	61.25	45.09	43.87	42.49	43.87	42.49	42.46	43.53	42.46	59.05	50.70	50.95 43.49	43.31	137.05	245.15	190.90
	Ę	200	0.25	0.25	0.25	0.00	0.38	0.30	0.38	0.52	0.44	0.44	0.27	0.73	0.63	1.36	2.26	27.78	2.25	2.19	2.63	3.69	2.68	3.69	4.26	3.72	2.27	2.29	7.49	6.27	9 03	9.13	8.76	9.00	10.53	14.76	10.71	14.76	17.06	14.84	9 0 0	9.00	29.00	24.80	40.12
	0.9	Mean	1.23	1.20	1.23	1.20	1.35	1.27	1.35	1.85	1.40	1.41	1.20	2.95	2.78	3.43	11.48	10.76	11.07	10.76	11.15	12.52	11.15	12.52	16.69	12.48	10.95	10.95	26.31	24.71	45 93	44.35	43.05	44.29	45.03	50.08	44.59	50.08	66.75	49.91	50.20	43.78	106.84	98.71	110.10
	Ę	700	0.25	0.24	0.25	10.0 10.0	0.23	0.25	0.23	0.40	0.33	0.32	0.24	1.14	1.32	1.54	2.26	2.49	2.43	2.42	2.45	2.41	2.46	2.41	3.63	3.21	2.36	2.35	8.71	12.10	9 03	96.6	9.74	96.6	00.00 00.00	9.63	9.83	9.63	14.53	12.83	13.08	9.38	36.04	48.38	10.00
	0.5	Mean	1.28	1.17	1.21	1.17	1.16	1.20	1.16	1.71	1.39	1.40	1.19	3.80	5.80	4.99	11.48	10.05	11.16	10.92	11.07	10.90	11.07	10.90	15.46	12.88	10.97	10.98	33.36	52.84 75.84	45.05	44.63	43.82	44.63	45.07	43.60	44.29	43.60	61.86	51.53	01.78 43.88	43.93	135.79	211.29	102.00
ressive	ָב	70	0.25	0.28	0.26	0.70	0.27	0.27	0.27	0.37	0.33	0.33	0.26	0.97	1.75	1.83	2.26	2.30	2.30	2.36	2.34	2.35	2.31	2.35	3.95	3.51	2.35	2.39	10.04	15.73	9.03	9.20	9.46	9.20	0.40	9.41	9.24	9.41	15.81	13.98	14.04	9.54	39.97	63.00	00.00
Autoreg	0.2	Mean	1.28	1.18	1.22	1 29	1.18	1.22	1.18	1.59	1.40	1.40	1.20	89	6.78	5.62	11.48	10.91	10.91	10.59	10.83	10.61	10.81	10.61	14.53	12.80	10.81	10.81	34.84	62.44	49.10	43.65	42.35	43.65	42.50	42.43	43.26	42.43	58.14	51.21	01.38	43.23	139.77	249.60	190.00
	5	200	0.25	0.27	0.25	20.0	0.27	0.25	0.27	0.42	0.36	0.35	0.31	0.72	0.65	1.43	2.26	77.7	2.27	2.26	2.26	2.63	2.26	2.63	3.86	3.21	2.28	2.32	6.47	12.39	19.64	9.07	9.03	9.07	0.00	10.50	9.04	10.50	15.44	12.76	12.82	9.29	27.35	21.77	00.00
	0.9	Mean	1.23	1.18	1.22	1.10	1.19	1.21	1.19	1.93	1.44	1.44	1.22	2.84	2.66	3.00	11.48	10.96	10.96	10.68	10.90	10.81	10.90	10.81	16.52	12.33	10.83	10.80	24.49	22.82	45 93	43.84	42.74	43.84	13.74	43.25	43.58	43.25	66.07	49.32	49.60	43.21	98.96	91.31	TO 1.11
	ç	700	0.25	0.27	0.26	0.08	0.27	0.26	0.27	0.50	0.39	0.39	0.26	1.07	1.34	1.69	2.26	2.30	2.31	2.45	2.31	2.47	2.31	2.44	4.41	3.89	2.32	2.39	9.76	11.28	0 03	9.22	9.81	9.23	0.01	9.87	9.24	9.78	17.65	15.09	0.08	9.26	39.19	45.02	00.00
	0.5	Medii	1.28	1.21	1.23	1.21	1.21	1.23	1.21	1.72	1.38	1.39	1.21	89.5	5.17	4.33	11.48	10.96	10.96	10.81	10.94	10.75	10.94	10.73	15.83	12.60	10.94	10.95	35.35	20.60	45 93	43.82	43.26	43.83	45.20	43.00	43.76	42.93	63.31	50.42	50.79	43.81	140.36	191.50	109.04
tric	Ę	70	0.25	0.24	0.25	4.0	0.24	0.25	0.24	0.41	0.36	0.36	0.26	1.04	1.66	1.72	2.26	2.37	2.36	2.33	2.34	2.25	2.34	2.25	3.73	2.98	2.23	2.28	7.22	13.48	9 03	9.48	9.31	9.44	0.00	9.00	9.35	9.00	14.93	11.93	8 91	9.11	31.97	53.56	06.10
Symme	0.2 Mees en	Mean	1.28	1.19	1.21	1.13	1.18	1.21	1.18	1.61	1.39	1.40	1.20	3.73	6.50	5.41	11.48	10.99	10.98	10.56	10.92	10.49	10.92	10.49	14.76	12.43	10.65	10.79	32.77	58.75	49.20	43.95	42.23	43.93	42.23	41.98	43.69	41.98	59.04	49.71	49.91	43.16	130.40	234.96	197.11
ndent	5	200	0.25	0.24	0.25	4.00	0.25	0.25	0.25	0.35	0.33	0.33	0.24	1.23	1.76	1.71	2.26	42.24	2.24	2.19	2.22	2.27	2.22	2.27	3.13	2.93	2.20	2.26	10.78	15.76	9 03	8.96	8.76	8.96	0 00	60.6	8.89	60.6	12.52	11.71	07.11	9.06	42.27	63.21	01.00
Independent	0	Mean	1.28	1.16	1.22	1.10	1.16	1.21	1.16	1.59	1.38	1.38	1.20	3.77	06.9	5.77	11.48	10.96	10.96	10.47	10.88	10.43	10.88	10.43	14.28	12.45	10.78	10.78	33.98	62.03	45 93	43.85	41.89	43.85	41.09	41.72	43.53	41.72	57.10	49.81	49.78	43.11	135.14	248.10	701.11
Type	Corr.	Model	AIC B	BIC B	AIC SB	AIC F	BICF	AIC SF	BICSF	$\mathbf{R}^{\mathrm{idge}}$	Lasso	E-net	SCAD	XGBoost	RF	$_{ m SVM}$	OLS	AICB	AICSB	BICSB	AIC F	BIC F	AIC SF	BICSF	Ridge	Lasso E-net	SCAD	MCP	XGBoost	RF.	N V S	AIC B	BIC B	AIC SB	AIC ED	BICF	AIC SF	BICSF	Ridge	Lasso	E-net SCAD	MCP	XGBoost	RF	N V IVI
	,	5 -	-														က														9)													

Table SM11: Mean and standard deviation of the testing MSE for Model 1 when n=50 and p=100. See Figure SM11 for the corresponding visualization.

	Type	Independent	dent	Symmetric	ric					Autoreg	ressive					Blockwi	se				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		0.9		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	SD Mean SD	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean S	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
1	Ridge	18.51	3.90	15.63	3.59	10.83	2.32	3.43	0.87	17.49	3.48	14.57	2.86	7.83	1.69	16.27	3.51	11.94	2.74	4.71	0.94
	Lasso	1.92	0.65	1.89	0.62	1.77	0.46	1.87	0.57	2.02	0.74	2.06	0.68	2.16	99.0	1.82	0.53	1.92	0.71	1.83	0.50
	E-net	2.01	0.71	1.98	0.68	1.85	0.49	1.90	0.55	2.14	0.80	2.20	0.73	2.22	0.69	1.92	0.58	2.04	0.75	1.88	0.50
	SCAD	1.30	0.31	1.24	0.27	1.22	0.29	1.60	0.62	1.33	0.35	1.28	0.29	1.77	0.56	1.26	0.28	1.25	0.28	1.60	0.51
	MCP	1.29	0.31	1.23	0.27	1.23	0.27	1.58	0.62	1.33	0.35	1.28	0.30	1.77	0.51	1.26	0.29	1.28	0.32	1.55	0.52
	XGBoost	6.74	2.46	92.9	1.98	6.29	1.61	3.20	92.0	7.25	2.44	6.70	1.84	3.35	0.89	6.79	2.55	6.15	1.65	3.14	0.80
	RF	11.11	3.11	9.82	2.21	7.30	1.67	2.95	0.65	10.62	2.69	7.78	1.89	3.19	1.00	9.49	2.48	98.9	1.52	2.93	0.74
	SVM	15.26	3.20	12.86	2.73	9.14	1.97	3.84	1.37	14.69	2.89	11.91	2.28	6.32	1.63	13.25	3.00	9.85	2.02	5.32	1.63
3	Ridge	166.58	35.12	146.49	29.65	100.52	21.75	31.74	8.08	156.80	33.54	130.27	25.90	70.46	15.25	154.31	37.41	113.86	29.99	41.15	8.65
	Lasso	17.31	5.86	17.67	4.92	17.37	5.17	16.77	4.56	17.25	6.83	19.15	8.23	19.61	6.05	16.89	5.78	17.43	6.11	16.92	4.39
	E-net	18.12	6.35	18.58	5.17	18.34	5.48	17.22	4.76	18.31	8.02	20.67	9.37	20.14	6.39	17.95	6.23	18.54	6.80	17.39	4.40
	SCAD	11.72	2.76	11.51	2.70	11.18	2.59	14.86	5.24	11.49	2.57	11.56	2.63	16.15	5.04	11.62	2.85	11.04	2.23	14.61	5.16
	MCP	11.57	2.76	11.38	2.68	11.30	2.82	14.86	5.67	11.43	2.75	11.49	2.72	16.23	4.97	11.83	3.15	11.12	2.35	14.40	5.60
	XGBoost	60.79	22.15	61.23	19.91	59.02	16.41	30.04	7.65	64.66	22.84	58.64	17.35	29.40	8.20	65.29	24.72	54.70	14.36	30.14	7.51
	RF	99.91	28.06	90.95	21.92	67.66	14.67	27.40	09.9	94.63	25.22	68.89	16.25	28.45	8.93	91.36	24.31	65.25	16.79	27.45	6.03
	SVM	137.17	29.08	119.12	22.96	85.63	17.58	35.49	12.53	132.14	29.74	107.00	21.71	56.73	14.52	126.79	29.55	93.70	22.88	48.56	13.77
9	Ridge	666.34	140.48	585.98	118.58	402.09	86.99	126.97	32.31	627.21	134.14	521.08	103.61	281.85	61.00	617.24	149.63	455.45	119.98	164.62	34.62
	Lasso	69.24	23.45	70.66	19.70	69.49	20.69	67.07	18.26	00.69	27.33	76.61	32.91	78.42	24.21	67.58	23.12	69.74	24.45	99.29	17.57
	E-net	72.48	25.40	74.31	20.69	73.37	21.93	68.88	19.05	73.22	32.08	82.68	37.49	80.55	25.58	71.78	24.93	74.15	27.19	69.58	17.60
	SCAD	46.89	11.04	46.03	10.80	44.70	10.34	59.44	20.96	45.96	10.28	46.22	10.53	64.60	20.15	46.47	11.40	44.15	8.94	58.44	20.66
	MCP	46.29	11.03	45.51	10.72	45.18	11.30	59.44	22.66	45.73	11.00	45.95	10.89	64.93	19.89	47.33	12.59	44.50	9.39	57.58	22.39
	XGBoost	245.25	97.07	248.21	81.12	238.05	61.65	121.91	30.26	262.52	93.47	232.99	70.12	119.33	32.43	265.31	101.58	218.01	59.65	120.72	28.45
	RF	398.68	111.80	364.36	88.11	271.02	59.26	109.62	26.27	377.42	66.66	275.74	64.80	113.58	35.70	365.86	97.51	261.06	67.10	109.81	23.97
	$_{ m SVM}$	549.06	116.25	476.33	90.43	342.46	70.89	141.92	50.27	528.25	118.21	428.04	86.09	227.35	59.29	506.23	118.23	373.93	91.39	193.51	54.17

Table SM12: Mean and standard deviation of the testing MSE for Model 1 when n=50and p=2000. See Figure SM12 for the corresponding visualization.

Type	Ind	Independent	Symmetric	netric				Autoreg	ressive					Blockwis	še.				
Corr.	0		0.2		0.5		6.0	0.2		0.5		6.0		0.2		0.5		6.0	
r Model	Mean	an SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD Mean SD	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean S	SD	Mean	$^{\mathrm{SD}}$	Mean	SD
Ridge		.26 4.0	9 16.45	5 3.62	11.07	2.61	3.24	17.70	3.71	15.45	2.64		2.74	17.19	3.53	15.28	3.46	5.26	1.64
Lasso				3.55	4.05	2.20	2.56	5.04	3.76	6.20	2.28		0.74	5.38	3.74	5.67	2.40	2.26	0.57
E-net			3 4.94	4 3.75	4.56	2.32	2.63	5.97	3.97	6.79	2.27		0.79	6.32	3.87	6.11	2.40	2.39	0.61
SCAD			_	~	1.36	0.72	2.13	1.35	0.36	2.69	2.03		0.44	1.38	0.56	1.64	1.13	1.96	0.56
MCP		1.31 0.27	_	~	1.47	0.92	2.01	1.49	1.42	3.11	2.11		0.42	1.41	0.56	2.14	2.22	2.00	0.50
XGBoos			_	٠.	9.00	2.21	3.45	12.15	3.90	9.36	2.26		1.26	11.23	3.36	8.77	2.42	3.54	0.91
RF			0 12.37	_	9.19	2.08	3.07	13.18	3.65	9.76	2.01		1.42	12.53	3.15	9.23	2.37	3.40	98.0
$_{ m SVM}$				4 3.07	10.81	2.45	4.04	17.59	3.69	15.31	2.66		2.62	16.72	3.48	14.30	3.21	7.52	1.74
Ridge			_		97.78	23.37	28.75	159.29	32.76	138.96	23.87	ı	25.33	154.77	32.38	134.34	28.18	47.45	14.78
Lasso			_		36.76	18.69	22.65	46.96	36.21	57.89	21.14		7.53	40.63	26.95	48.49	17.55	20.31	4.58
E-net					41.16	19.31	23.33	55.23	39.39	62.92	22.16		7.87	49.11	28.88	52.55	17.53	21.39	4.62
SCAD					11.76	4.85	18.98	12.02	3.26	23.02	17.75		3.32	12.46	89.9	14.02	9.41	18.62	4.86
MCP					13.14	8.51	19.18	12.55	5.32	25.93	19.00		3.36	12.14	3.50	17.08	13.36	19.18	5.37
XGBoos					79.55	18.57	30.29	109.00	30.53	81.55	18.59		12.68	98.03	23.80	77.15	20.33	31.76	7.92
RF					81.23	15.94	27.61	119.64	31.55	87.90	20.24		13.27	112.97	29.21	79.94	20.82	30.55	7.88
$_{ m SVM}$	163.59	.59 36.25	$5 \mid 139.97$		97.76	21.06	36.16	158.19	32.83	137.72	23.81		24.66	151.22	31.29	125.19	25.12	68.14	15.74
Ridge					391.11	93.49	114.98	635.49	129.34	555.83	95.49	l	101.34	619.07	129.52	537.36	112.74	189.79	59.14
Lasso					147.04	74.76	90.58	191.58	142.86	231.54	84.58		30.12	162.51	107.79	193.95	70.18	81.23	18.30
E-net			_		164.64	77.22	93.33	222.48	149.93	251.66	88.64		31.48	196.43	115.53	210.21	70.10	85.55	18.46
SCAD					47.03	19.41	75.91	47.31	12.16	92.09	71.01		13.26	49.83	26.73	56.09	37.62	74.47	19.45
MCP			_		52.55	34.03	76.73	52.76	45.99	103.71	76.00		13.43	48.56	14.01	68.31	53.44	76.72	21.48
XGBoos					321.26	76.75	120.60	427.40	130.84	323.66	75.19		51.63	401.51	100.54	307.25	84.34	125.67	32.82
RF					323.89	63.22	110.63	475.33	125.96	351.50	88.08		52.79	451.61	116.15	319.99	83.11	122.12	31.12
$_{ m SVM}$					390.52	84.30	144.29	631.61	128.77	551.01	97.28		97.82	604.68	124.27	501.74	101.37	272.56	62.96

Table SM13: Mean and standard deviation of the testing MSE for Model 1 when n=200 and p=10. See Figure SM13 for the corresponding visualization.

Ty	Type	Independent	dent	Symmetric	ric					Autoregr	essive					Blockwi	ise				
Corr	Corr.	0 Mean	C.	0.2 Mean	C.	0.5 Mean	ני	0.9 Mean	C.	0.2 Mean	כט	0.5 Mean	ני	0.9 Mean	ני	0.2 Mean		0.5 Mean	ני	0.9 Mean	ני
	S	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11	1.05	0.11
AIC	AIC B	1.04	0.11	1.04	0.11	1.03	0.11	1.04	0.11	1.03	0.10	1.04	0.11	1.04	0.11	1.04	0.11	1.03	0.11	1.04	0.11
BIC	BIC B	1.02	0.10	1.02	0.10	1.02	0.11	1.03	0.11	1.02	0.11	1.02	0.10	1.03	0.11	1.02	0.10	1.02	0.11	1.03	0.11
AIC	AIC SB	1.04	0.11	1.04	0.11	1.03	0.11	1.04	0.11	1.03	0.10	1.04	0.11	1.04	0.11	1.04	0.11	1.03	0.11	1.04	0.11
BIG	CSB	1.02	0.10	1.02	0.10	1.02	0.11	1.03	0.11	1.02	0.11	1.02	0.10	1.03	0.11	1.02	0.10	1.02	0.11	1.03	0.11
AIG	AIC F	1.04	0.11	1.03	0.11	1.03	0.11	1.04	0.11	1.03	0.10	1.04 0.1	0.10	1.03	0.11	1.04	0.11	1.03	0.1I	1.03	0.11
AIC	1 C	1.02	0.10	1.02	0.10	1.02	0.11	20.1	11.0	1.02	0.10	1.02	0.10	1.03	0.11	20.1	0.10	1.02	0.10	1.03	0.11
BIC	BICSF	1.02	0.10	1.02	0.10	1.02	0.11	1.03	0.11	1.02	0.11	1.02	0.10	1.03	0.11	1.02	0.10	1.02	0.10	1.03	0.11
Ric	Ridge	1.21	0.14	1.25	0.15	1.31	0.17	1.54	0.17	1.23	0.14	1.31	0.16	1.48	0.17	1.25	0.14	1.30	0.16	1.52	0.16
Las	Lasso	1.12	0.13	1.11	0.13	1.11	0.14	1.12	0.13	1.11	0.12	1.12	0.13	1.12	0.13	1.11	0.12	1.11	0.14	1.12	0.13
<u>Б</u>	E-net	1.12	0.13	1.12	0.13	1.11	0.14	1.12	0.13	1.11	0.12	1.13	0.13	1.12	0.13	1.11	0.13	1.11	0.14	1.13	0.13
SC	SCAD	1.02	0.10	1.02	0.10	1.02	0.11	1.03	0.11	1.02	0.10	1.02	0.10	1.04	0.11	1.02	0.10	1.02	0.11	1.04	0.11
MC	GP :	1.02	0.11	1.02	0.11	1.02	0.11	1.03	0.11	1.02	0.10	1.02	0.11	1.04	0.10	1.02	0.10	1.02	0.11	1.04	0.11
XGI	XGBoost	1.74	0.24	1.81	0.24	1.77	0.28	1.71	0.24	1.76	0.26	1.77	0.25	1.76	0.28	1.75	0.22	1.77	0.23	1.73	0.24
$_{ m SVM}$	W.	3.31	0.56	3.07	0.52	3.18 2.34	0.50	1.81	0.19	3.52	0.51	3.62 2.72	0.48	1.77	0.24	3.03	0.53	3.04 2.43	0.49	1.67	0.22
3 OFS	δί	9.43	96.0	9.43	96.0	9.43	96.0	9.43	96.0	9.43	0.98	9.43	96.0	9.43	0.98	9.43	0.98	9.43	86.0	9.43	96.0
AIC	AIC B	9.33	0.97	9.32	0.98	9.31	96.0	9.35	0.98	9.30	96.0	9.30	0.97	9.31	0.98	9.30	96.0	9.31	0.95	9.33	0.97
BIC	BIC B	9.19	0.94	9.21	96.0	9.17	0.95	9.26	96.0	9.20	0.92	9.20	0.93	9.29	0.92	9.21	0.95	9.18	0.92	9.56	96.0
AIC	AIC SB	9.33	0.97	9.32	0.98	9.31	0.96	9.35	0.98	9.30	0.96	9.30	0.97	9.31	0.98	9.30	0.96	9.31	0.95	9.33	0.97
BIC	BICSB	9.19	0.94	9.21	0.96	9.17	0.95	9.56	96.0	9.20	0.92	9.20	0.93	9.29	0.92	9.21	0.95	9.18	0.92	9.56	0.96
BIC	4 E	0.00	20.0	9.52	0.90	9.30	0.00	0.00 70.00	0.00	9.29	0.90	9.30	0.0	87.0 80.0	0.97	9.29	0.90	9.30	0.00	0.00	0.00
AIC	CSF	9.33	0.97	9.32	0.98	9.30	0.96	6.33	0.98	9.29	0.96	9.30	0.97	9.29	0.97	9.29	0.96	9.30	0.95	9.30	0.96
BIC	BICSF	9.19	0.94	9.21	0.96	9.17	0.95	9.25	0.95	9.20	0.92	9.19	0.94	9.27	0.91	9.20	0.95	9.17	0.92	9.25	0.98
Ric	Ridge	10.91	1.25	11.23	1.26	11.85	1.50	13.72	1.65	11.13	1.31	11.77	1.55	13.21	1.60	11.12	1.34	11.77	1.38	13.66	1.84
Lat	Lasso	10.09	1.18	10.17	1.14	10.06	1.13	10.07	1.19	10.10	1.15	10.06	1.24	10.07	1.22	10.01	1.24	86.6	1.09	66.6	1.31
표 	E-net	10.10	1.18	10.19	1.14	10.08	1.14	10.06	1.20	10.10	1.15	10.08	1.25	10.08	1.22	10.02	1.23	10.00	1.09	10.01	1.32
	MCP	27.6	20.0	9.21	86.0	9.20	0.00	0.00	1.00	9.10	0.99	07.6	0.90	0.00	0.94	9.19	0.92	9.T9	0.94	0.00	0.30
XG	XGBoost	15.58	2.00	16.16	2.44	16.15	2.00	15.29	2.42	16.02	2.12	16.04	2.25	15.54	2.34	15.87	2.19	15.88	2.00	15.44	2.07
RF		31.64	4.75	32.85	4.75	28.97	4.01	16.25	2.26	32.44	4.66	32.31	4.55	17.87	2.13	32.17	5.06	31.90	3.85	19.16	2.41
	Į.	29.78	2.08	27.23	5.11	21.54	4.34	14.17	3.81	28.19	4.64	23.99	3.91	15.92	3.71	27.32	5.18	21.34	3.50	15.54	3.21
STO 9	ىز. د	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91	37.70	3.91
BIC	AIC B	36.75	3.76	36.84	3.84	36.67	3.78	37.06	3.82	36.78	3.68	36.79	3.71	37.15	3.67	36.82	3.83	36.72	3.70	37.03	3.86 3.86
ĀIC	AIC SB	37.31	3.90	37.29	3.91	37.22	3.85	37.39	3.92	37.21	3.86	37.22	3.88	37.25	3.91	37.19	3.83	37.22	3.80	37.30	3.88
BIG	CSB	36.75	3.76	36.84	3.84	36.67	3.78	37.06	3.85	36.78	3.68	36.79	3.71	37.15	3.67	36.82	3.82	36.72	3.70	37.03	3.86
AIC	C FJ	37.30	3.88	37.29	3.91	37.22	3.85	37.32	3.93	37.18	3.82	37.21	3.87	37.15	3.89	37.18	3.82	37.20	3.78	37.21	3.84
BIC	BICF	36.75	3.76	36.84	3.84	36.67	3.78	37.01	3.80	36.78	3.68	36.75	3.75	37.10	3.66	36.82	3.81	36.68	3.70	37.01	3.90
AIG	2 0 0	37.30	200	37.29	16.6	37.72	0,00	37.32	20.00	37.18	20.00	37.21	0.00	37.15	90.00	37.18	20.0	37.20	200	37.20	40.00
Ric	Bidge	43.63	4.99	44.93	0. 70 0. 0. 4	47.39	6.70	54.89	9.00	44.53	20.00	47.08	6.22	52.84	6.42	44.47	20.01	47.08	0 70 7.70 7.70	54.62	2.36
Las	Lasso	40.35	4.71	40.68	4.55	40.26	4.54	40.28	4.74	40.40	4.62	40.22	4.97	40.28	4.88	40.03	4.96	39.91	4.35	39.97	5.25
E-r	E-net	40.41	4.72	40.75	4.55	40.32	4.57	40.26	4.79	40.42	4.59	40.31	5.00	40.33	4.87	40.10	4.92	40.00	4.37	40.03	5.27
SC	SCAD	36.86	3.78	36.86	3.87	36.78	3.78	37.31	3.99	36.71	3.74	36.80	3.73	37.40	3.75	36.78	3.69	36.75	3.75	37.34	3.93
WC	٠. ا کا	36.88	3.81	36.89	3.93	36.81	3.81	37.31	4.01	36.73	3.73	36.81	3.74	37.48	3.77	36.79	3.74	36.75	3.74	37.34	3.91
X N N	XGBoost	62.13	7.92	64.48	9.29	65.16	9.26	60.70	8.03	64.10	8.41	64.53	8.87	62.70	9.49	63.99	9.03	63.65	7.75	61.81	8.13
HH.		126.58	18.92	131.48	19.00	115.91	16.03	65.01	9.07	129.72	18.65	129.29	18.29	71.50	8.58	128.72	20.24	127.61	15.45	76.65	9.62
SVM	M	119.10	20.32	108.91	20.40	60.10	17.37	50.01	15.04	112.70	18.08	90.91	10.03	03.83	14.70	109.20	ZU. / I	\$9.30	13.99	02.11	12.87

Table SM14: Mean and standard deviation of the testing MSE for Model 1 when n=200and p = 100. See Figure SM14 for the corresponding visualization.

E																				
Type	Inde	Independent	Symmetric	etric	C L		0		Autoregr	ressive	м		0		BIOCKWIS 0.2	se se	п		0	
σ Model	Mean	n SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS	2.(0.28	2.05	0.28	2.05	0.28	2.05		2.05	0.28	2.05	0.28	2.05	0.28	2.05	0.28	2.02	0.28	2.05	0.28
AIC F	1.1	50 0.23	1.49	0.21	1.47	0.22	1.49		1.51		1.42	0.20	1.25	0.20	1.46	0.21	1.47	0.20	1.26	0.20
BICF	1	11 0.14	1.11	0.14	1.10	0.14	1.11		1.11		1.10	0.12	1.08	0.15	1.10	0.13	1.08	0.12	1.06	0.12
AIC SF	1.5	П	1.50	0.21	1.47	0.23	1.50		1.52		1.42	0.20	1.25	0.20	1.46	0.21	1.49	0.22	1.27	0.23
BIC SF	1		1.11	0.14	1.10	0.14	1.11		1.11		1.10	0.12	1.08	0.15	1.10	0.13	1.08	0.12	1.06	0.12
Ridge	2.:		2.27	0.35	2.25	0.35	1.91		2.29		2.32	0.33	1.96	0.24	2.27	0.36	2.24	0.32	1.94	0.24
Lasso	1.21		1.18	0.12	1.18	0.15	1.18		1.21		1.23	0.15	1.23	0.15	1.20	0.14	1.18	0.15	1.21	0.16
E-net	1.1	•	1.20	0.13	1.19	0.15	1.20		1.23		1.25	0.15	1.25	0.15	1.22	0.14	1.20	0.15	1.22	0.16
$_{\text{SCAD}}$	1.03		1.04	0.11	1.03	0.11	1.05		1.05		1.04	0.11	1.06	0.11	1.04	0.11	1.04	0.12	1.06	0.11
MCP			1.04	0.11	1.04	0.12	1.05		1.04		1.04	0.11	1.06	0.11	1.03	0.11	1.04	0.12	1.06	0.12
XGBoost			2.25	0.33	2.33	0.33	2.05		2.24		2.30	0.34	2.23	0.26	2.23	0.31	2.28	0.34	2.08	0.28
RF			5.66	0.75	4.65	0.53	2.21		5.63		5.21	0.56	2.21	0.25	5.57	0.80	4.45	0.58	2.09	0.23
$_{ m SVM}$			7.54		5.18	0.64	2.32		8.19		7.05	0.64	3.92	0.48	7.76	06.0	6.09	0.69	3.21	0.45
3 OLS	18.	46 2.55	18.46		18.46	2.55	18.46		18.46		18.46	2.55	18.46	2.55	18.46	2.55	18.46	2.55	18.46	2.55
AIC F	13.		13.53		13.50	2.14	13.51		13.56		12.69	1.65	11.26	1.61	13.32	1.90	12.94	1.90	11.23	1.75
BICF	10.0		9.84		9.88	1.21	10.07		9.97		98.6	1.10	9.72	1.32	9.87	1.16	9.74	1.10	9.67	1.15
AIC SF	13.8		13.56		13.54	2.11	13.55		13.59		12.68	1.64	11.25	1.70	13.40	1.98	13.00	1.93	11.20	1.69
BIC SF	10.0		9.84		9.88	1.21	10.08		96.6		9.87	1.10	9.72	1.33	88.6	1.17	9.74	1.11	9.67	1.15
Ridge	20.1		20.56		20.27	2.80	16.79		20.53		20.70	3.32	17.67	2.17	19.91	3.20	20.68	3.36	17.35	2.13
Lasso	10.8		10.70		10.91	1.43	10.65		10.83		11.05	1.33	11.11	1.35	10.72	1.33	10.73	1.36	10.96	1.47
E-net	11.0		10.83		11.02	1.41	10.74		10.94		11.20	1.37	11.20	1.34	10.85	1.35	10.84	1.40	11.08	1.48
$_{\text{SCAD}}$.6		9.31		9.33	1.05	09.6		9.33		9.36	1.04	9.52	1.05	9.29	0.99	9.35	1.03	9.49	1.08
MCP			9.30		9.31	1.04	9.59		9.31		9.34	1.02	9.26	1.07	9.27	0.99	9.32	1.05	9.49	1.08
XGBoost	_		20.51		21.01	2.95	18.51		20.31		20.81	3.37	19.81	2.34	20.50	3.49	20.58	3.12	18.56	2.46
RF			50.03		42.19	4.73	19.64		49.84		46.91	5.75	19.85	2.37	50.11	7.19	41.09	5.37	18.97	2.13
$_{ m SVM}$	75.55		65.95	7.59	46.92	5.58	20.73	2.96	72.85		63.65	6.84	35.29	4.32	70.26	8.28	56.81	6.45	29.01	3.91
STO 9	73.8	85 10.20	73.85		73.85	10.20	73.85		73.85		73.85	10.20	73.85	10.20	73.85	10.20	73.85	10.20	73.85	10.20
AIC F	53.5		54.10		54.00	8.55	54.05		54.24		50.77	09.9	45.04	6.44	53.27	7.61	51.78	7.59	44.91	66.9
BIC F	40.1		39.37		39.53	4.85	40.29		39.88		39.43	4.40	38.86	5.28	39.50	4.64	38.95	4.39	38.68	4.60
AIC SF	54		54.23		54.14	8.43	54.21		54.36		50.72	6.57	44.99	6.80	53.61	7.93	51.99	7.73	44.80	6.75
BICSE	40.1		39.36		39.51	4.85	40.31		39.90		39.46	4.39	38.89	5.30	39.50	4.67	38.97	4.46	38.68	4.60
Ridge	80		82.26		81.09	11.18	67.17		82.13		82.79	13.27	40.02	8.69	79.64	12.80	82.72	13.44	69.39	8.50
Lasso	43.		42.82		43.65	5.70	42.61		43.32		44.21	5.34	44.44	5.41	42.88	5.31	42.92	5.44	43.84	5.87
E-net	44.1		43.31		44.09	5.64	42.96		43.76		44.81	5.47	44.79	5.37	43.41	5.39	43.37	5.61	44.33	5.91
$_{\text{SCAD}}$	37				37.30	4.19	38.40		37.34		37.45	4.17	38.09	4.19	37.15	3.97	37.38	4.10	37.95	4.32
MCP					37.23	4.15	38.38		37.23		37.35	4.09	38.25	4.27	37.09	3.95	37.27	4.20	37.96	4.31
XGBoost	٠				83.66	11.57	73.85		81.59		83.32	11.49	79.39	9.53	81.52	13.48	82.41	12.54	74.43	10.21
RF	197.:		_		168.74	18.86	78.56		199.18		187.66	23.04	79.45	9.49	200.43	28.80	164.34	21.50	75.85	8.45
$_{ m SVM}$	302	19 30.36	263.81		187.68	22.31	82.96		291.40		254.60	27.34	141.17	17.27	281.04	33.10	227.25	25.80	116.19	15.89

Table SM15: Mean and standard deviation of the testing MSE for Model 1 when n=200and p=2000. See Figure SM15 for the corresponding visualization.

		SD	0.40	0.26	0.27	0.36	0.25	0.32	0.27	0.54	3.33	2.05	2.13	3.18	2.70	2.74	2.45	4.25	13.30	8.18	8.51	12.71	10.80	11.54	9.85	16.98
	6.0	Mean																								
		SD	1.39	0.18	0.19	0.13	0.12	09.0	0.70	1.14	11.60	1.61	1.71	1.08	1.08	4.40	6.04	9.93	46.40	6.42	6.83	4.30	4.33	19.04	24.23	39.70
	0.5	Mean	10.99	1.41	1.46	1.10	1.08	3.23	5.49	10.77	100.31	12.63	13.05	9.84	6.67	29.13	49.46	98.33	401.23	50.53	52.19	39.36	38.70	117.61	197.82	393.34
n		Ü	1.94	0.21	0.23	0.11	0.11	0.58	1.05	1.65	5.34	1.80	1.92	1.10	1.02	4.72	8.93	2.99	1.37	7.20	7.68	4.40	4.10	8.04	2.67	1.50
Blockwis	0.2	Mean	16.55	1.38	1.43	1.08	1.06	3.02	7.70	15.73	147.09	12.48	12.90	9.83	99.6	27.44	68.14	139.80	588.38	49.92	51.59	39.30	38.63	109.21	272.60	558.84
			Т		_		_	_	_	1.15		_	_		_	_	_	_		_	_	_	_		_	_
	6.0	Mean																								
	0									1.39																
		Mean Sl																								
ve	0.5																									
regressi										49 1.64	ı								l							
Auto	0.2	Mean	\vdash		_		_	_		_		_	_		_		_	_		_		_	_		_	
		SD	0.34	0.17	0.18	0.30	0.14	0.32	0.32	0.50	2.98	1.58	1.61	2.96	1.67	2.49	2.40	4.26	11.90	6.33	6.44	11.82	6.70	9.34	9.60	17.11
	6.0	Mean	2.95	1.31	1.34	1.17	1.08	2.54	2.56	3.03	26.52	12.02	12.29	10.86	9.89	22.88	22.99	27.14	106.09	48.10	49.17	43.43	39.57	90.81	91.89	108.60
		$^{\mathrm{SD}}$	1.14	0.18	0.19	0.11	0.12	0.56	0.74	1.07	9.26	1.51	1.59	1.03	1.02	5.28	6.29	9.37	38.25	6.04	6.38	4.11	4.07	21.45	25.28	37.47
	0.5	Mean	10.03	1.35	1.39	1.08	1.07	3.22	6.01	9.67	88.81	11.97	12.33	9.76	9.60	28.35	52.80	85.01	355.23	47.88	49.33	39.03	38.41	113.79	211.28	340.05
ric		SD	1.72	0.20	0.21	0.12	0.11	0.46	1.02	1.50	13.97	1.55	1.65	1.01	0.95	5.37	89.6	11.43	55.90	6.19	6.61	4.03	3.81	20.20	38.51	45.68
Symmet	0.2	Mean SD	15.37	1.36	1.40	1.07	1.06	2.92	7.80	14.70	137.35	12.07	12.43	89.6	9.52	26.96	69.60	129.86	549.41	48.26	49.72	38.73	38.07	107.83	278.41	519.38
			1.78	0.16	0.17	0.11	0.11	0.42	1.21	1.69	15.99	1.45	1.57	1.02	0.97	3.90	10.01	15.21	63.95	5.79	6.27	4.09	3.89	14.70	43.37	60.83
Independ	0	Mean SD	18.24	1.36	1.41	1.08	1.06	2.86	7.80	17.61	164.19	12.26	12.67	9.71	9.51	25.69	70.19	158.45	656.77	49.05	50.68	38.84	38.04	102.38	280.84	633.86
		Model	dge	SSO	net	AD	GP GP	Boost	r-	_M	dge	sso	net	AD	GP	Boost	r-	"M	dge	SSO	net	AD	GP	Boost	r-	'M
Ę	ర	σ Mc	1 Ri	Гa	占	SC	Ň	×	RI	1 S	3 Ri	La	丏	SC	Ň	×	RI	S	6 Ri	Гa	占	SC	Ň	×	RI	S
			1								l								l							

Table SM16: Mean and standard deviation of the testing MSE for Model 1 when n=1000and p = 10. See Figure SM16 for the corresponding visualization.

	Type	Independent	ndent	Symme	tric					Autorea	ressive					Blockwi	Se				
	Corr.	0		0.2		75.		6.0		0.2		75.		0.9		0.2)	5.5		0.9	
Ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean SD	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean S	SD	Mean	SD	Mean	SD
_	OLS	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	AIC B	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	BIC B	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	AIC SB	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	BICSB	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	AIC F	1.01	70.0	1.01	40.0	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	AICE	1.01	70.0	1.01	40.0	1.01	40.0	1.01	40.0	1.01	50.0	1.01	40.0	1.01	40.0	1.01	0.04	1.01	0.04	1.01	0.04
	RIC SE	1.01	70.0	1.01	40.0	1.01	# O.O	1.01	40.0	1.01	50.0	1.01	0.04	1.01	40.0	1.01	40.0	1.01	0.04	1.01	0.04
	Ridge	1.01	#0.0 90.0	1.01	0.04	1 22	0.0	1.01	# o. o	1.01	0.04	1.01	0.04	1.01	0.04 0.06	1.01	0.04	1.01	0.04	1.01	0.04
	Lasso	1.06	0.00	1.15	0.00	1.22	0.00	1.5	0.0	1.15	0.00	1.01	20.0	1.10	0.00	1.15	0.00	1.20	0.00	1.1	0.0
	F-net	1.06	0.0	1.05	0.02	1.05	0.05	1.06	0.00	1.05	0.05	1.05	0.00	1.05	0.05	1.05	0.02	1.05	0.05	1.05	0.05
	SCAD	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	MCP	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04
	XGBoost	1.22	0.07	1.23	90.0	1.22	90.0	1.22	90.0	1.22	90.0	1.22	0.05	1.21	90.0	1.22	90.0	1.21	90.0	1.21	90.0
	RF	2.03	0.15	2.05	0.15	1.93	0.11	1.37	90.0	2.04	0.14	2.17	0.13	1.61	80.0	2.03	0.15	2.16	0.14	1.68	80.0
	$_{ m SVM}$	1.85	0.14	1.78	0.12	1.55	0.11	1.16	80.0	1.81	0.12	1.66	0.12	1.26	60.0	1.78	0.12	1.61	0.10	1.23	80.0
က	OLS	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40	9.13	0.40
	AIC B	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.40	9.10	0.40
	BICB	9.07	0.40	80.6	0.40	9.07	0.40	9.07	0.39	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40
	AICSB	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.40	9.10	0.40
	BICSB	9.07	0.40	80.6	0.40	9.07	0.40	9.07	0.39	9.07	0.40	9.07	0.40	9.02	0.40	9.07	0.40	9.07	0.40	9.07	0.40
	AIC F	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.40	9.09	0.40	9.10	0.40	9.10	0.40	9.10	0.40
	BIC F	9.07	0.40	80.6	0.40	9.07	0.40	9.07	0.39	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40
	AIC SF	9.10	0.40	9.10	0.40	9.10	0.39	9.10	0.40	9.10	0.40	9.10	0.40	9.09	0.40	9.10	0.40	9.10	0.40	9.10	0.40
	BICSF	9.07	0.40	80.0	0.40	9.07	0.40	9.07	0.39	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40	9.07	0.40
	Kidge	10.24	0.50	10.38	0.50	10.93	0.58	12.85	0.64	10.34	0.52	10.85	0.58	12.68	0.58	10.29	0.52	10.82	0.01	12.63	0.00
	Lasso F zot	9.5 1.51	0.45	84.0	0.44	9.47	0.45	9.47	0.45 74	84.0	0.46	9.47	0.44	9.50	0.43	9.46	0.47	9.44	0.45	9.46	0.45
	E-net	9.91	0.450	9.40	0.44	9.47	0.45	9.00	0.40	4.0	0.40	04.0	0.40	00.0	0.44	04.0	0.47	0.4.0	0.40	04.0	0.44
	MCP	9.07	0.40	80.0	0.40	80.0	0.40	80.0	0.40	00.6	0.40	00.0	0.39	00.0	0.40	00.0	0.40	00.6	0.40	00.0	0.40
	XGBoost	11.00	0.59	10.94	0.50	10.91	0.52	11.03	0.69	10.98	0.55	10.94	0.55	11.07	0.71	10.97	0.57	10.93	0.53	10.87	0.50
	RF	18.28	1.33	18.29	1.11	17.19	1.02	12.36	0.59	18.25	1.36	19.44	1.14	14.55	69.0	18.33	1.24	19.33	1.17	15.06	0.67
	$_{ m SVM}$	16.69	1.28	16.02	1.07	13.84	0.88	10.42	0.75	16.22	1.11	14.93	1.04	11.24	92.0	16.04	0.95	14.39	0.91	11.08	0.67
9	OLS	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59	36.50	1.59
	BICB	36.28	1.60	36.30	1.60	36.28	1.59	36.26	1.58	36.30	1.60	36.29	1.59	36.29	1.61	36.29	1.60	36.28	1.60	36.28	1.59
	AIC SB	36.41	1.60	36.40	1.59	36.40	1.57	36.41	1.60	36.40	1.60	36.41	1.57	36.39	1.62	36.41	1.58	36.41	1.61	36.39	1.60
	BIC SB	36.28	1.60	36.30	1.60	36.28	1.59	36.26	1.58	36.30	1.60	36.29	1.59	36.29	1.61	36.29	1.60	36.28	1.60	36.28	1.59
	AIC F	36.41	1.60	36.40	1.59	36.40	1.58	36.41	1.60	36.40	1.60	36.39	1.58	36.37	1.60	36.41	1.58	36.40	1.61	36.39	1.61
	BICF	36.28	1.60	36.30	1.60	36.27	1.59	36.26	1.58	36.30	1.60	36.29	1.59	36.28	1.62	36.29	1.60	36.28	1.60	36.28	1.59
	AICSF	30.41	1.60	36.40	1.59	36.40	1.58	36.41	1.60	30.40	1.60	30.39	1.58	30.37	1.60	30.41	1.58	36.40	1.01	30.39	1.01
	Bidoe	40.95	2.00	41.53	2.03	43.71	2.31	51.41	2.5	41.35	2.00	43.42	2.32	50.71	2.31	41.16	2.00	43.29	2.44	50.20	2.65
	Lasso	38.04	1.82	37.90	1.76	37.87	1.81	37.86	1.79	37.90	28.1	37.90	1.78	37.99	1.73	37.85	88.1	37.78	1.82	37.83	1.78
	E-net	38.04	1.81	37.91	1.76	37.87	1.82	37.88	1.79	37.90	1.83	37.91	1.79	38.01	1.74	37.86	1.89	37.81	1.84	37.84	1.76
	SCAD	36.29	1.58	36.32	1.59	36.33	1.59	36.33	1.59	36.32	1.61	36.32	1.58	36.32	1.61	36.31	1.59	36.32	1.58	36.33	1.62
	MCP	36.30	1.58	36.32	1.59	36.32	1.59	36.33	1.59	36.32	1.61	36.32	1.58	36.32	1.61	36.31	1.59	36.32	1.58	36.33	1.62
	XGBoost	44.01	2.36	43.77	2.01	43.65	2.07	44.17	7.87	43.91	2.19	43.78	2.25	44.12	20.0	43.87	2.29	43.71	2.14	43.52	2.05
	KF	66.76	5.32	73.I5	4.43	08.75 55.37	4.08 2.73	49.43	3.30	64.87	5.46 7.45	70.77	4.55	58.20 44.95	2.78 0.78	64.14	4.97	77.34 77.77	4.71 2.65	00.24	2.03
		2		2017					1	0170	27.7		0717	00177	000		2		200		2

Table SM17: Mean and standard deviation of the testing MSE for Model 1 when n=1000 and p=100. See Figure SM17 for the corresponding visualization.

Ē	Indononal	4000	Carron and Carrie	4					Autono	00000					Dlealenni	9				
Corr.	0	mann	0.2	2110	0.5		6.0		0.2	24 1992 19	0.5		6.0		0.2	D a	0.5		6.0	
σ Model	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean SD	SD	Mean	SD	Mean		Mean S	SD	Mean	SD	Mean	SD
1 OLS	1.11	0.05	1.11	0.05	1.11	0.05	1.11	0.05	1.11	0.05	1.11	0.05	1.11		1.11	0.05	1.11	0.05	1.11	0.05
AIC F	1.07	0.05	1.07	0.05	1.07	0.05	1.07	0.05	1.07	0.05	1.06	0.02	1.04		1.06	0.05	1.06	0.05	1.04	0.05
BICF	1.01	0.02	1.01	0.04	1.01	0.02	1.01	0.02	1.01	0.04	1.01	0.04	1.01		1.02	0.05	1.01	0.04	1.01	0.05
AIC SF	1.07	0.02	1.07	0.02	1.07	0.02	1.07	0.05	1.07	0.02	1.06	0.02	1.04		1.06	0.02	1.06	0.05	1.04	0.05
BIC SF	1.01	0.02	1.01	0.04	1.01	0.02	1.01	0.05	1.01	0.04	1.01	0.04	1.01	0.05	1.02	0.02	1.01	0.04	1.01	0.05
Ridge	1.23	90.0	1.25	0.02	1.33	80.0	1.51	60.0	1.25	90.0	1.32	80.0	1.46		1.27	0.07	1.33	20.0	1.50	80.0
Lasso	1.05	0.02	1.06	0.02	1.06	0.05	1.06	0.02	1.06	0.02	1.06	0.02	1.07		1.06	0.02	1.06	0.05	1.06	0.05
E-net	1.06	0.02	1.06	0.02	1.06	0.02	1.06	0.02	1.06	0.05	1.06	0.02	1.07		1.06	0.05	1.06	0.05	1.06	0.05
SCAD	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01		1.01	0.04	1.01	0.04	1.01	0.04
MCP		0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01	0.04	1.01		1.01	0.04	1.01	0.04	1.01	0.04
XGBoost		0.07	1.32	0.07	1.32	0.07	1.32	80.0	1.33	80.0	1.33	0.07	1.36		1.33	0.07	1.31	90.0	1.34	60.0
RF		0.21	2.84	0.19	2.65	0.18	1.63	60.0	2.80	0.21	2.99	0.20	1.82		2.84	0.21	2.59	0.14	1.57	80.0
$_{ m SVM}$	2.42	0.15	2.42	0.17	1.95	0.14	1.43	0.09	2.44	0.14	2.53	0.15	2.23		2.56	0.14	2.48	0.15	1.81	0.12
3 OFS	10.00	0.45	10.00	0.45	10.00	0.45	10.00	0.45	10.00	0.45	10.00	0.45	10.00		10.00	0.45	10.00	0.45	10.00	0.45
AIC F	9.59	0.46	9.59	0.42	9.61	0.45	9.59	0.46	9.58	0.45	9.54	0.45	9.37		9.59	0.44	9.53	0.46	9.38	0.46
BICF	9.11	0.41	9.10	0.42	9.12	0.41	9.11	0.41	9.11	0.41	9.10	0.41	60.6		9.13	0.41	9.10	0.41	80.6	0.41
AIC SF	9.59	0.46	9.59	0.42	9.60	0.45	9.58	0.45	9.58	0.45	9.53	0.45	9.37		9.58	0.44	9.53	0.46	9.38	0.46
BIC SF	9.11	0.41	9.10	0.42	9.12	0.41	9.11	0.41	9.11	0.41	9.10	0.41	60.6		9.13	0.41	9.10	0.41	80.6	0.41
Ridge	11.07	0.54	11.28	0.56	12.00	0.71	13.67	99.0	11.29	0.54	11.86	0.67	13.13		11.29	89.0	11.96	0.71	13.56	0.73
Lasso	9.49	0.45	9.50	0.46	9.52	0.48	9.54	0.42	9.51	0.44	9.57	0.45	9.59		9.52	0.48	9.53	0.50	9.53	0.44
E-net	9.52	0.46	9.53	0.46	9.54	0.49	9.56	0.42	9.53	0.45	9.59	0.46	9.62		9.54	0.49	9.56	0.50	9.55	0.44
SCAD	9.02	0.40	9.02	0.40	9.02	0.40	90.6	0.40	9.02	0.41	9.02	0.40	60.6		90.6	0.41	9.02	0.39	80.6	0.41
MCP		0.40	9.02	0.40	90.6	0.40	90.6	0.40	9.02	0.41	9.02	0.39	60.6		90.6	0.41	9.02	0.39	80.6	0.41
XGBoost		0.64	11.87	0.61	11.89	0.61	11.96	0.74	11.89	0.62	11.92	0.64	12.28		11.83	0.62	11.80	0.59	12.09	0.64
RF	24.80	1.93	25.38	1.78	23.66	1.45	14.79	69.0	25.37	1.82	26.91	1.85	16.32		25.14	1.94	23.47	1.39	14.26	0.64
	21.78	1.35	21.74	1.54	17.65	1.28	12.96	0.77	22.00	1.14	22.72	1.38	20.11		22.84	1.49	22.27	1.44	16.41	0.91
STO 9	40.01	1.82	40.01	1.82	40.01	1.82	40.01	1.82	40.01	1.82	40.01	1.82	40.01		40.01	1.82	40.01	1.82	40.01	1.82
AIC F	38.35	1.82	38.35	1.69	38.42	1.79	38.34	1.82	38.32	1.82	38.15	1.80	37.49		38.34	1.75	38.11	1.83	37.52	1.83
BIC F	36.46	1.63	36.41	1.69	36.47	1.63	36.43	1.62	36.46	1.64	36.41	1.62	36.36		36.51	1.64	36.39	1.64	36.31	1.64
AIC SF	38.35	1.82	38.35	1.69	38.41	1.79	38.33	1.82	38.32	1.82	38.14	1.79	37.49		38.33	1.75	38.11	1.82	37.51	1.83
BIC SF	36.46	1.63	36.41	1.69	36.47	1.63	36.43	1.62	36.46	1.64	36.41	1.62	36.36		36.50	1.64	36.39	1.64	36.31	1.64
Ridge	44.28	2.16	45.14	2.23	48.00	2.84	54.66	2.64	45.17	2.18	47.43	2.67	52.52		45.17	2.71	47.83	2.83	54.24	2.93
Lasso	37.97	1.79	38.00	1.83	38.06	1.93	38.16	1.66	38.04	1.77	38.27	1.81	38.38		38.10	1.94	38.12	1.99	38.13	1.76
E-net	38.07	1.84	38.11	1.85	38.15	1.95	38.24	1.68	38.14	1.78	38.38	1.82	38.46		38.17	1.96	38.23	1.99	38.21	1.76
SCAD	36.21	1.59	36.22	1.60	36.21	1.59	36.26	1.61	36.20	1.64	36.22	1.58	36.34		36.23	1.62	36.21	1.58	36.30	1.64
MCP	36.21	1.60	36.22	1.61	36.22	1.59	36.24	1.59	36.20	1.64	36.22	1.58	36.35		36.24	1.63	36.20	1.57	36.32	1.62
XGBoost	47.39	2.56	47.50	2.42	47.56	2.45	47.85	2.96	47.58	2.48	47.68	2.58	48.83		47.32	2.48	47.18	2.36	48.47	2.81
RF	99.19	7.73	101.52	7.11	94.67	5.82	59.16	2.74	101.49	7.30	107.66	7.45	65.28		100.55	7.76	93.89	5.55	57.07	2.58
$_{ m SVM}$	87.11	5.38	86.96	6.15	70.61	5.12	51.82	3.09	88.02	4.57	90.87	5.51	80.44		91.34	5.95	89.09	5.76	65.65	3.63

Table SM18: Mean and standard deviation of the testing MSE for Model 1 when n=1000and p=2000. See Figure SM18 for the corresponding visualization.

Type	Independent	ndent	Symmetric	tric					Autoreg	ressive					Blockwis	ě				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	SD Mean SD	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean S	SD	Mean	SD	Mean	SD
Ridge	16.02	0.72	13.43	0.71	9.13		2.81	0.13	15.24	0.73	13.09	0.67	92.9	0.32	13.72	0.64	9.35	0.44	2.96	0.13
Lasso	1.08	0.05	1.09	0.05	1.08		1.09	90.0	1.08	0.05	1.09	0.05	1.17	90.0	1.09	90.0	1.08	0.05	1.10	0.05
E-net	1.09	0.02	1.09	0.02	1.09		1.10	90.0	1.09	0.05	1.10	0.05	1.18	90.0	1.09	90.0	1.09	0.02	1.11	90.0
SCAD	1.01	0.04	1.01	0.04	1.03		1.05	0.10	1.01	0.04	1.01	0.04	1.06	0.10	1.01	0.04	1.02	0.02	1.04	0.04
MCP	1.01	0.04	1.01	0.04	1.01		1.04	0.04	1.01	0.04	1.01	0.04	1.05	0.04	1.01	0.04	1.01	0.04	1.04	0.04
XGBoost	1.42	0.08	1.44	0.07	1.45		1.48	80.0	1.42	0.07	1.46	80.0	1.70	0.10	1.42	80.0	1.44	0.09	1.56	80.0
RF	3.62	0.26	3.86	0.27	3.40		1.89	0.10	3.64	0.24	3.89	0.25	1.92	0.10	3.69	0.28	3.35	0.20	1.79	80.0
$_{ m SVM}$	14.80	99.0	12.24	09.0	7.98	0.39	2.56	0.14	13.98	0.61	11.79	0.57	5.46	0.25	12.59	0.58	8.82	0.40	3.71	0.18
Ridge	144.14	6.47	120.54	5.17	82.87		25.16	1.14	137.01	6.46	117.91	6.16	08.09	3.01	124.21	6.22	85.45	3.89	26.35	1.29
Lasso	9.75	0.46	9.72	0.47	9.72		9.85	0.47	9.74	0.45	98.6	0.49	10.51	0.56	9.76	0.49	9.84	0.50	9.87	0.48
E-net	9.81	0.46	9.78	0.47	9.77		9.94	0.47	9.82	0.47	9.92	0.50	10.65	0.56	9.85	0.50	9.91	0.51	9.95	0.49
SCAD	9.07	0.37	80.6	0.40	9.24		9.54	1.17	80.6	0.39	9.11	0.38	9.54	98.0	60.6	0.39	9.24	0.45	9.39	0.82
MCP	9.02	0.37	9.02	0.39	9.07		9.35	0.40	9.02	0.39	9.02	0.38	9.42	0.38	90.6	0.38	9.07	0.39	9.32	0.39
XGBoost	12.77	0.68	12.82	0.68	13.06		13.25	0.65	12.78	0.54	13.19	0.72	15.22	0.88	12.87	0.71	13.07	0.74	13.86	0.67
RF	32.62	2.32	33.79	2.41	30.43		16.83	0.82	32.76	2.23	35.04	2.26	17.35	0.88	33.63	2.42	30.35	1.77	15.90	0.74
$_{ m SVM}$	133.24	5.90	109.90	4.45	72.46		22.81	1.06	125.71	5.40	106.06	5.17	49.15	2.38	114.38	5.38	80.51	3.58	32.75	1.54
Ridge	576.56	25.87	482.14	20.69	331.47		100.64	4.58	548.28	25.71	471.63	24.65	243.21	12.05	496.84	24.88	341.80	15.58	105.42	5.15
Lasso	38.98	1.82	38.89	1.88	38.87		39.38	1.86	39.00	1.81	39.44	1.95	42.06	2.23	39.03	1.96	39.34	1.99	39.48	1.93
E-net	39.24	1.84	39.13	1.90	39.09		39.74	1.90	39.26	1.83	39.81	1.98	42.60	2.24	39.29	2.00	39.63	2.04	39.80	1.95
SCAD	36.27	1.49	36.32	1.58	36.95		38.16	4.69	36.31	1.58	36.45	1.53	38.16	3.44	36.35	1.54	36.96	1.82	37.55	3.27
MCP	36.19	1.49	36.19	1.55	36.30		37.39	1.62	36.21	1.55	36.19	1.51	37.69	1.53	36.23	1.51	36.26	1.55	37.29	1.57
XGBoost	51.08	2.73	51.24	2.72	52.21		52.85	2.67	51.44	2.71	52.78	2.88	60.95	3.75	51.48	2.83	52.20	2.85	55.40	2.96
RF	130.46	9.58	135.14	99.6	121.75		67.30	3.26	130.90	8.92	140.14	9.02	69.44	3.53	134.46	9.61	121.42	7.05	63.58	2.97
$_{ m SVM}$	532.95	23.61	439.60	17.79	289.85		91.22	4.25	502.81	21.47	424.26	20.66	196.59	9.51	457.51	21.50	322.04	14.34	131.03	6.13

SM4.3. Tables for the $\beta\text{-sensitivity}$ of the linear simulations.

Table SM19: Mean and standard deviation of the β -sensitivity for Model 1 when n=50and p=10. See Figure SM19 for the corresponding visualization.

Cyry Object Description Strong s			SD	0.0000	0.0995	0.0858	0.0995	0.0858	0.1190	0.1496	0.1185	0.1496	0.0000	0.1229	0.1225	0.0903	0.0916	0.0000	0.1040	0.1006	0.1040	0.1006	0.1155	0.1477	0.1155	0.1477	0.0000	0.1336	0.1283	0.0972	0.0988	0.0000	0.1040	0.1006	0.1040	0.1006	0.1100	O.1417	0.1100	0.1477	0.0000	0.1283	0.0972	
Cype Object Name Sp. Alterogressive Alterogressiv		6.0	Mean	1.000	0.886	0.848	0.886	0.848	0.872	0.816	0.870	0.816	1.000	0.838	0.844	0.856	0.850	1.000	0.910	0.872	0.910	0.872	0.902	0.840	0.902	0.840	1.000	0.856	0.870	0.862	0.856	1.000	0.910	0.872	0.910	0.872	0.902	0.040	0.302	1 000	0.000	0.870	0.862	1 0
Type Independent Symmetric 0.5 0.9 0.0 0.9 0.0 0.9 0.0			SD	0.0000	0.0697	0.0858	0.0697	0.0858	0.0718	0.0870	0.0718	0.0870	0.0000	0.0858	0.0846	0.0903	0.0912	0.0000	0.0629	0.0858	0.0629	0.0858	0.0676	0.0882	0.0697	0.0882	0.000	0.0789	0.0697	0.0959	0.0989	0.0000	0.0629	0.0858	0.0029	0.0858	0.0070	0.0007	600.0	0.0000	0.0000	0.0697	0.0959	
Cyrype Independent Symmetric G.S. O.9 O.5 O.5 O.9 O.5		0.5	Mean	1.000	0.972	0.952	0.972	0.952	0.970	0.950	0.970	0.950	1.000	0.952	0.954	0.944	0.942	1.000	0.978	0.952	0.978	0.952	0.974	0.948	0.972	0.948	1.000	0.962	0.972	0.930	0.918	1.000	0.978	0.952	0.970	0.952	0.974	0.340	4 50 0	1 000	000.1	0.972	0.930	1 0
Type Independent Symmetric 0.5 Mean SD Autoregrossive CD 0.5 CD Autoregrossive CD <	95	2	SD	0.0000	0.0394	0.0513	0.0394	0.0513	0.0394	0.0513	0.0394	0.0513	0.0000	0.0603	0.0477	0.0653	0.0697	0.0000	0.0513	0.0629	0.0513	0.0629	0.0477	0.0629	0.0477	0.0629	0.000.0	0.0737	0.0697	0.0755	0.0819	0.0000	0.0513	0.0629	0.0000	0.0629	0.0477	0.0023	0.0400	0.0000	0.0000	0.0697	0.0755	0 1 0 0
Type OLG Symmetric OLG	Rlockwi	0.2	Mean	1.000	0.992	0.986	0.992	0.986	0.992	0.986	0.992	0.986	1.000	0.980	0.988	0.976	0.972	1.000	0.986	0.978	0.986	0.978	0.988	0.978	0.988	0.978	1.000	0.968	0.972	0.966	0.958	1.000	0.986	0.978	0.900	0.978	0.000	0.870	0.900	1.000	000.1	0.972	0.966	0 0
Type Model Mean SD Mean SD Autoregressive Autoregressive OFT 1 Type 1 Model Mean SD Mean			SD	0.000.0	0.1016	0.0899	0.1011	0.0899	0.1626	0.1997	0.1609	0.1980	0.0000	0.1408	0.1154	0.0916	0.0886	0.000.0	0.0945	0.0867	0.0952	0.0867	0.1342	0.2148	0.1329	0.2148	0.000.0	0.1314	0.1285	0.1058	0.1040	0.0000	0.0945	0.0867	0.0932	0.0867	0.1342	0.4140	0.1323	0.0000	0.0000	0.1285	0.1058	070
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6.0	Mean	1.000	0.876	0.840	0.874	0.840	0.832	0.730	0.828	0.728	1.000	0.872	0.904	0.836	0.832	1.000	0.866	0.842	0.868	0.842	0.858	0.718	0.854	0.718	1.000	0.890	0.908	0.846	0.836	1.000	0.866	0.842	0.000	0.842	0.00	0.710	0.00	1 000	000.7	0.908	0.846	9600
Type Independent Symmetric 0.5 Attoring resistive OAS Independent Symmetric 0.5 Attoring resistive OAS Model Model SD Attoring resistive OLS 1.000 0.000 1.000 0.000 1.000 0.000			SD	0.000.0	0.0603	0.0789	0.0603	0.0789	0.0603	0.0789	0.0603	0.0789	0.000.0	0.0545	0.0394	0.0912	0.0930	0.000.0	0.0718	0.0882	0.0718	0.0870	0.0697	0.0882	0.0697	0.0882	0.0000	0.0477	0.0438	0.0921	0.0980	0.0000	0.0718	0.0882	0.0710	0.0870	0.0097	0.0007	0.0097	0.000	0.0000	0.0438	0.0921	0000
Type O.S. Symmetric 0.0 Action Autoregree Corr. Model S.D. Mean S.D.		0.5	Mean	1.000	0.980	0.962	0.980	0.962	0.980	0.962	0.980	0.962	1.000	0.984	0.992	0.942	0.938	1.000	0.970	0.948	0.970	0.950	0.972	0.948	0.972	0.948	1.000	0.988	0.66.0	0.940	0.922	1.000	0.970	0.948	0.970	0.950	0.972	0.840	0.0	1.000	0000	0.990	0.940	0.00
Type Independent Symmetric 0.5 0.5 0.9 Corr. Mean SD Mean SD Mean SD Mean Alc B 1.000 0.0000 1.000 0.0000 1.000 0.0000 AlC B 1.000 0.0000 1.000 0.0000 1.000 0.0000 AlC B 0.998 0.0200 0.0438 0.974 0.0678 0.0829 0.090 AIC B 0.998 0.0200 0.0438 0.990 0.0438 0.974 0.0678 0.0829 0.090 AIC B 0.998 0.0200 0.0438 0.0718 0.0676 0.886 0.099 AIC SF 0.998 0.0200 0.0438 0.0718 0.0676 0.886 0.091 AIC SF 0.998 0.0200 0.0438 0.974 0.0676 0.884 0.100 AIC SF 0.999 0.0438 0.944 0.0548 0.954 0.0576 0.089 AIC SF	ovice	20100	SD	0.000.0	0.0200	0.0513	0.0200	0.0513	0.0394	0.0513	0.0394	0.0513	0.000.0	0.0394	0.0343	0.0629	0.0653	0.000.0	0.0281	0.0513	0.0281	0.0513	0.0343	0.0575	0.0343	0.0575	0.000.0	0.0394	0.0343	0.0653	0.0737	0.000.0	0.0281	0.0513	0.0201	0.0513	0.0343	0.0070	0.0545	0.000	0.0000	0.0343	0.0653	0.0737
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Anforegr	0.2	Mean	1.000	0.998	0.986	0.998	986.0	0.992	986.0	0.992	986.0	1.000	0.992	0.994	0.978	0.976	1.000	966.0	0.986	966.0	0.986	0.994	0.982	0.994	0.982	1.000	0.992	0.994	926.0	0.968	1.000	0.996	0.986	0.990	0.986	0.994	700.0	0.004	1 000	0000	0.994	0.976	8900
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SD	0.000.0	0.1002	0.0937	0.1002	0.0937	0.0995	0.1008	0.0995	0.1008	0.000.0	0.1506	0.1417	0.1019	0.1085	0.000.0	0.1005	0.0921	0.1005	0.0921	0.1005	0.1162	0.1005	0.1162	0.000.0	0.1360	0.1188	0.1072	0.1066	0.0000	0.1005	0.0921	0.1003	0.0921	0.1003	0.1102	0.1169	2011.0	0.000	0.1188	0.1072	0 1066
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.0	Mean	1.000	0.892	0.854	0.892	0.854	0.886	0.844	988.0	0.844	1.000	0.834	0.854	0.846	0.844	1.000	868.0	0.860	868.0	0.860	868.0	0.832	868.0	0.832	1.000	0.878	968.0	898.0	0.866	1.000	0.898	0.860	0.030	0.860	0.030	700.0	0.030	1.000	0.000	0.896	0.868	9980
Type Independent Symmetric Corr. 0 0.2 Model 1.000 0.0000 AIC B 0.998 0.0200 0.0000 AIC BB 0.998 0.0200 0.090 0.0438 BIC B 0.998 0.0200 0.990 0.0438 AIC SB 0.998 0.0200 0.990 0.0438 BIC SB 0.999 0.0200 0.996 0.0513 AIC SF 0.999 0.0200 0.996 0.0513 BIC F 0.999 0.0438 0.974 0.0675 BIC SF 0.999 0.0438 0.970 0.0718 BIC SF 0.999 0.0438 0.970 0.0718 MCP 0.090 0.0438 0.970 0.0718 MCP 0.990 0.0438 0.970 0.0718 MCP 0.990 0.0438 0.972 0.0693 AIC B 0.990 0.0438 0.972 0.0693 AIC B			SD	0.000.0	0.0629	0.0833	0.0629	0.0833	0.0676	0.0870	0.0676	0.0870	0.000.0	0.0676	0.0545	0.0892	0.0938	0.000.0	0.0629	0.0804	0.0629	0.0804	0.0629	0.0819	0.0629	0.0819	0.000.0	0.0697	0.0653	0.0965	0.0970	0.000.0	0.0629	0.0804	0.0029	0.0804	0.0029	0.0019	0.0023	0.000	0.000.0	0.0653	0.0965	0.000.0
Type Independent Symmetric Corr. 0 0.2 Moder. 0 0.20 Moder. 1.000 0.0000 0.0000 AIC SB 0.998 0.0200 0.974 0.0676 BIC B 0.998 0.0200 0.974 0.0676 AIC SB 0.998 0.0200 0.990 0.0438 BIC SB 0.999 0.0200 0.996 0.0513 BIC SF 0.998 0.0200 0.986 0.0513 BIC SF 0.999 0.0438 0.974 0.0678 BIC SF 0.999 0.0438 0.970 0.0718 BIC SF 0.999 0.0438 0.970 0.0718 MCP 0.992 0.0438 0.970 0.0718 MCP 0.992 0.0693 0.070 0.0718 MCP 0.998 0.0200 0.998 0.072 0.0718 AIC B 0.999 0.0438 0.972 0.0693		0.5	Mean	1.000	0.978	0.956	0.978	0.956	0.974	0.950	0.974	0.950	1.000	0.974	0.984	0.946	0.936	1.000	0.978	0.960	0.978	0.960	0.978	0.958	0.978	0.958	1.000	0.972	926.0	0.928	0.926	1.000	0.978	0.960	0.970	0.960	0.00	0.000	0.370	1 000	0.000	9.6.0 0.976	0.928	9200
Type Independent Symmetr Corr. 0 0.2 Model 1.000 0.0000 AIC B 0.998 0.0200 BIC SB 0.990 0.0438 BIC SB 0.998 0.0200 BIC SF 0.998 0.0200 BIC SF 0.998 0.0200 BIC SF 0.990 0.0438 BIC SF 0.990 0.0438 COLS 0.090 0.0438 MCP 0.090 0.0438 OLS 0.090 0.0438 AIC SB 0.990 0.0438 BIC SB 0.990 0.0438 AIC SB 0.990 0.0438 BIC SB 0.990 0.0438 BIC SB 0.990 0.0438 BIC SB 0.990 0.0438		2																_														_												
Type Independent Corr. 0 Model Mean SD Model 1.000 0.0000 AIC B 0.998 0.0200 BIC B 0.998 0.0200 BIC B 0.998 0.0200 BIC SB 0.990 0.0438 AIC SB 0.998 0.0200 BIC F 0.998 0.0200 BIC SF 0.998 0.0200 BIC SF 0.998 0.0438 E-ret 0.990 0.0438 E-ret 0.990 0.0438 MCP 0.090 0.0438 AIC B 0.990 0.0438 AIC B 0.990 0.0438 AIC B 0.990 0.0438 AIC SB 0.990 0.0438 BIC SB 0.990 0.0438 BIC SB 0.990 0.0438 BIC SB 0.990 0.0438 AIC B 0.990 0.0438 AIC B <td< td=""><td>Sympote</td><td>).2</td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>	Sympote).2			_	_	_			_		_										_											_									_		
Type Independ Corr. Model Mean Model Mean MCDLS 1.000 AIC BB 0.998 BIC B 0.990 AIC SB 0.998 BIC F 0.990 AIC SF 0.990 BIC F 0.990 BIC F 0.990 BIC SF 0.990 BIC SF 0.990 BIC SB 0.990 AIC SB 0.990 AIC SB 0.990 AIC SB 0.990 BIC SB 0.990 BIC SB 0.990 AIC SF 0.990 BIC SB 0.990 BIC SB 0.990 BIC SB 0.990 AIC SB 0.990	F			ļ	_	_	_	_	_	_		_	_		_		_	L	_	_		_	_	_	_	_				_														_
Type Cour. Model OLS AIC BB BIC B AIC BB BIC F AIC SF BIC	Independe	0			_												_						_								_													0.972
	90	7 F														_										Œ			-	_				_										1
1 0 1 9	Tar	Coi	σ Mo	1 OL	AIC	BIC	AIC	BIC	AIC	BIC	AIC	BIC	Rid	Las	E-n	SC.		3 OF	AIC	BIC	AIC	BIC	AIC	BIC	AIC	BIC	Ria	Las	<u>Б</u> -г	SC.	MC	9 OF	AIC	BIC	AIG.	BIC	AIG	DIV) I d	Pid	Lac		SCAD	MCP

Table SM20: Mean and standard deviation of the β -sensitivity for Model 1 when n=50See Figure SM20 for the corresponding visualization. and p = 100.

	Type	Independent	ndent	Symmetric	tric					Autoreg	utoregressive					Blockwise	ise				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
1	Ridge	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.000.0	1.000	0.0000	1.000	0.0000	1.000	0.0000
	Lasso	0.936	0.0938	0.936	0.0938	0.912	0.0998	0.694	0.1347	0.948	0.0882	0.958	0.0819	0.614	0.1664	0.946	0.0892	0.922	0.1021	0.702	0.1620
	E-net	0.938	0.0930	0.940	0.0921	0.912	0.0998	0.710	0.1283	0.958	0.0819	0.968	0.0737	0.716	0.1339	0.956	0.0833	0.928	0.1006	0.744	0.1506
	SCAD	0.948	0.0882	0.948	0.0882	0.886	0.0995	0.610	0.1738	0.934	0.0945	0.890	0.1000	0.504	0.1595	0.938	0.0930	0.874	0.0970	0.612	0.1903
	MCP	0.934	0.0945	0.926	0.0970	0.864	0.0938	0.610	0.1872	0.912	0.0998	0.876	0.0976	0.488	0.1486	0.916	0.0992	0.842	0.0819	0.618	0.1888
8	Ridge	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.0000	1.000	0.0000
	Lasso	0.936	0.0938	0.926	0.0970	0.906	0.1003	0.736	0.1630	0.956	0.0833	0.954	0.0979	0.622	0.1580	0.934	0.0945	0.914	0.1073	0.716	0.1454
	E-net	0.938	0.0930	0.922	0.0980	806.0	0.1002	0.746	0.1527	0.964	0.0772	0.960	0.0943	0.710	0.1374	0.932	0.0952	0.920	0.1064	0.738	0.1469
	SCAD	0.948	0.0882	0.934	0.0945	0.876	0.0976	0.630	0.1894	0.940	0.0921	968.0	0.1004	0.498	0.1544	0.930	0.0959	898.0	0.0952	0.624	0.1892
	MCP	0.934	0.0945	806.0	0.1002	0.850	0.0870	0.616	0.1963	0.932	0.0952	0.872	0.0965	0.478	0.1474	0.900	0.1005	0.842	0.0819	0.630	0.1894
9	Ridge	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.000	1.000	0.0000
	Lasso	0.936	0.0938	0.926	0.0970	0.906	0.1003	0.736	0.1630	0.956	0.0833	0.954	0.0979	0.622	0.1580	0.934	0.0945	0.914	0.1073	0.716	0.1454
	E-net	0.938	0.0930	0.922	0.0980	0.908	0.1002	0.746	0.1527	0.964	0.0772	0.960	0.0943	0.710	0.1374	0.932	0.0952	0.920	0.1064	0.738	0.1469
	$_{\text{SCAD}}$	0.948	0.0882	0.934	0.0945	0.876	0.0976	0.630	0.1894	0.940	0.0921	968.0	0.1004	0.498	0.1544	0.930	0.0959	0.868	0.0952	0.624	0.1892
	MCP	0.934	0.0945	806.0	0.1002	0.850	0.0870	0.616	0.1963	0.932	0.0952	0.872	0.0965	0.478	0.1474	0.900	0.1005	0.842	0.0819	0.630	0.1894

50Table SM21: Mean and standard deviation of the β -sensitivity for Model 1 when n=1and p = 2000. See Figure SM21 for the corresponding visualization.

ŀ																				
Independent		dent	Symme	tric					Autoregressiv	gressive					Blockwise	se				
0			0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Mean	_	SD	Mean SD	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1.00		0.000.0	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.000.0	1.000	0.000.0	1.000	0.000.0	1.000	0.0000
0.81	9	0.0972	0.798	0.1463	0.754	0.1298	0.538	0.1162	0.796	0.1928	0.558	0.2016	0.550	0.1514	0.754	0.1726	0.636	0.1185	909.0	0.0722
0.79	2	0.1061	0.776	0.1512	0.750	0.1219	0.556	0.1157	0.784	0.1942	0.558	0.2016	0.668	0.1246	0.736	0.1703	0.636	0.1115	0.632	0.0886
0.8	94	0.1003	868.0	0.1005	0.842	0.0912	0.466	0.1451	0.902	0.1005	0.746	0.1772	0.412	0.0477	0.892	0.1116	908.0	0.1003	0.412	0.0686
0.8	64	0.0938	0.860	0.0921	0.794	0.0874	0.454	0.1388	0.862	0.1162	0.648	0.1972	0.410	0.0438	0.840	0.0943	0.748	0.1382	0.406	0.0528
1.0	00	0.000.0	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.000.0	1.000	0.000.0	1.000	0.000.0	1.000	0.0000
0.8	16	0.0972	0.794	0.1434	0.732	0.1399	0.534	0.1241	0.788	0.1838	0.534	0.1799	0.544	0.1479	0.788	0.1297	0.646	0.1096	0.610	0.0916
0	792	0.1061	0.784	0.1441	0.716	0.1369	0.542	0.1216	0.766	0.1950	0.528	0.1875	0.668	0.1309	0.772	0.1334	0.640	0.0899	0.642	0.0955
8.0	94	0.1003	0.872	0.0965	0.840	0.0804	0.470	0.1460	0.888	0.0998	0.750	0.1714	0.410	0.0438	0.882	0.0989	0.800	0.1064	0.414	0.0586
8.0	864	0.0938	0.842	0.0819	0.794	0.0827	0.448	0.1425	0.866	0.0945	0.694	0.1852	0.408	0.0394	0.850	0.0870	0.756	0.1351	0.404	0.0400
1	000	0.000.0	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.000.0	1.000	0.0000	1.000	0.000.0	1.000	0.0000
٠ <u>.</u>	816	0.0972	0.794	0.1434	0.732	0.1399	0.534	0.1241	0.780	0.1959	0.534	0.1799	0.544	0.1479	0.788	0.1297	0.646	0.1096	0.610	0.0916
0.7	.92	0.1061	0.784	0.1441	0.716	0.1369	0.542	0.1216	0.754	0.2047	0.528	0.1875	0.668	0.1309	0.772	0.1334	0.640	0.0899	0.642	0.0955
0.8	394	0.1003	0.872	0.0965	0.840	0.0804	0.470	0.1460	0.900	0.1005	0.750	0.1714	0.410	0.0438	0.882	0.0989	0.800	0.1064	0.414	0.0586
	64	0.0938	0.842	0.0819	0.794	0.0827	0.448	0.1425	0.864	0.1059	0.694	0.1852	0.408	0.0394	0.850	0.0870	0.756	0.1351	0.404	0.0400

Table SM22: Mean and standard deviation of the β -sensitivity for Model 1 when n=200 and p=10. See Figure SM22 for the corresponding visualization.

	Type	Inder	Independent	3	Symmetric						Antores	Antorogramosivo					Blockwise	9				
	Corr.	O	arran arran	0.2	2)	5.5		6.0		0.2	24 1000 15	5.5		0.9		0.2	S S	5.0		6.0	
ь	Model	Mean	N SD	Ĭ	чu	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD
1	OLS	1	0	1	0		1	0	1.000	0.0000	1	0	1.000	0.00	1.000	0.0000	1	0		0	1.000	0.0000
	AIC B	-	0	_	0		1	0	0.960	0.0804	1	0	1.000	0.00	0.976	0.0653	1	0	1	0	0.978	0.0629
	BIC B		0	_	0		1	0	0.918	0.0989	1	0	1.000	0.00	0.930	0.0959	1	0	1	0	0.938	0.0930
	AIC SB	-	0		0		1	0	0.960	0.0804	1	0	1.000	0.00	0.976	0.0653	1	0	П	0	0.978	0.0629
	$_{ m BICSB}$		0	_	0		1	0	0.918	0.0989	1	0	1.000	0.00	0.930	0.0959	1	0	1	0	0.940	0.0921
	AIC F	-	0	_	0		1	0	0.958	0.0819	1	0	1.000	0.00	0.972	0.0697	1	0	1	0	0.972	0.0697
	BIC F		0	_	0		1	0	0.914	0.0995	1	0	1.000	0.00	0.932	0.0952	1	0	1	0	0.938	0.0930
	AIC SF		0	_	0		1	0	0.958	0.0819	1	0	1.000	0.00	0.972	0.0697	1	0	1	0	0.972	0.0697
	BIC SF		0	-	0		1	0	0.914	0.0995	1	0	1.000	0.00	0.932	0.0952	1	0	1	0	0.938	0.0930
	Ridge	-	0	-	0		1	0	1.000	0.0000	1	0	1.000	0.00	1.000	0.000.0	1	0	1	0	1.000	0.000
	Lasso		0	-	0		1	0	0.968	0.0737	1	0	1.000	0.00	0.992	0.0394	1	0	1	0	0.938	0.0930
	E-net		0	_	0		1	0	0.972	0.0697	1	0	1.000	0.00	0.996	0.0281	1	0	1	0	0.954	0.0846
	SCAD		0	_	0			0	0.920	0.0985	1	0	1.000	0.00	0.930	0.0959	1	0	1	0	0.930	0.0959
	MCP	П	0	-	0		1	0	0.914	0.0995	1	0	1.000	0.00	0.930	0.0959	1	0	-	0	0.926	0.0970
2	OLS		0	-	0		1	0	1.000	0.0000	1	0	1.000	0.00	1.000	0.000.0	1	0	1	0	1.000	0.0000
	AIC B	_	0	_	0			0	0.970	0.0718	1	0	1.000	0.00	0.980	0.0603	1	0	1	0	0.972	0.0697
	BIC B	-	0	_	0		1	0	0.924	0.0976	1	0	866.0	0.02	0.934	0.0945	1	0	1	0	0.930	0.0959
	AIC SB		0	_	0		1	0	0.970	0.0718	1	0	1.000	0.00	0.980	0.0603	1	0	1	0	0.972	0.0697
	BIC SB		0	-	0		_	0	0.924	0.0976	1	0	0.998	0.02	0.934	0.0945	1	0	1	0	0.930	0.0959
	AIC F	-	0	_	0		_	0	0.970	0.0718	1	0	1.000	0.00	0.978	0.0629	1	0	1	0	0.970	0.0718
	BIC F		0	-	0		1	0	0.920	0.0985	1	0	0.998	0.02	0.936	0.0938	1	0	1	0	0.926	0.0970
	AIC SF		0	_	0		1	0	0.970	0.0718	1	0	1.000	0.00	0.978	0.0629	1	0	1	0	0.970	0.0718
	BIC SF		0	_	0		1	0	0.920	0.0985	1	0	0.998	0.02	0.936	0.0938	1	0	_	0	0.926	0.0970
	Ridge		0	-	0		_	0	1.000	0.000.0	1	0	1.000	0.00	1.000	0.000.0	1	0	1	0	1.000	0.000
	Lasso		0	_	0		1	0	0.954	0.0846	1	0	1.000	0.00	0.992	0.0394	1	0	-	0	0.924	0.0976
	E-net	-	0	_	0		1	0	0.972	0.0697	1	0	1.000	0.00	0.994	0.0343	1	0	1	0	0.944	0.0903
	SCAD	-	0	_	0		-	0	0.930	0.0959	1	0	1.000	0.00	0.936	0.0938	1	0	-	0	0.930	0.0959
	MCP	1	0	1	0		1	0	0.924	0.0976	1	0	1.000	0.00	0.932	0.0952	1	0	1	0	0.932	0.0952
9	OLS		0	-	0		-	0	1.000	0.0000	1	0	1.000	0.00	1.000	0.000.0	1	0		0	1.000	0.000.0
	AIC B	-	0	_	0		_	0	0.970	0.0718	_	0	1.000	0.00	0.980	0.0603	_	0	1	0	0.972	0.0697
	BIC B		0	_	0			0	0.924	0.0976	_	0	0.998	0.02	0.934	0.0945		0		0	0.930	0.0959
	AIC SB	-	0	_	0		1	0	0.970	0.0718	1	0	1.000	0.00	0.980	0.0603	1	0	1	0	0.972	0.0697
	$_{ m BICSB}$	_	0	_	0		1	0	0.924	0.0976	1	0	0.998	0.02	0.934	0.0945	1	0	1	0	0.930	0.0959
	AIC F	-	0	_	0		1	0	0.970	0.0718	1	0	1.000	0.00	0.978	0.0629	1	0	1	0	0.970	0.0718
	BIC F	-	0	_	0		1	0	0.920	0.0985	1	0	0.998	0.02	0.936	0.0938	1	0	1	0	0.926	0.0970
	AIC SF	_	0	_	0			0	0.970	0.0718	1	0	1.000	0.00	0.978	0.0629	1	0	1	0	0.970	0.0718
	$_{ m BIC}$ SF	-	0	_	0		1	0	0.920	0.0985	1	0	0.998	0.02	0.936	0.0938	1	0	1	0	0.926	0.0970
	\mathbf{Ridge}	_	0	_	0		1	0	1.000	0.0000	1	0	1.000	0.00	1.000	0.000.0	1	0	1	0	1.000	0.0000
	Lasso	-	0	-	0		1	0	0.954	0.0846	1	0	1.000	0.00	0.992	0.0394	1	0	1	0	0.924	0.0976
	E-net	-	0	_	0		1	0	0.972	0.0697	1	0	1.000	0.00	0.994	0.0343	1	0	1	0	0.944	0.0903
	SCAD		0	_	0		1	0	0.930	0.0959	1	0	1.000	0.00	0.936	0.0938	1	0	1	0	0.930	0.0959
	MCP	-	0		0		1	0	0.924	0.0976	1	0	1.000	0.00	0.932	0.0952	1	0	-	0	0.932	0.0952

Table SM23: Mean and standard deviation of the β -sensitivity for Model 1 when n=200See Figure SM23 for the corresponding visualization. and p = 100.

	Type	Independent	ndent	Symmetric	stric					Autoregressive	ressive					Blockwise	rise				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Ь	Model	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
1	OLS	1	0	1	0	1.000	0.00	1.000	0.000.0	1	0	1.000	0.0000	1.000	0.0000	1	0	1.000	0.0000	1.000	0.000
	AIC F	1	0	1	0	1.000	0.00	0.952	0.0858	_	0	1.000	0.000.0	0.966	0.0755	-	0	1.000	0.0000	0.954	0.0846
	BIC F	1	0	1	0	1.000	0.00	0.880	0.0985		0	1.000	0.000.0	0.920	0.1101	1	0	1.000	0.0000	0.920	0.0985
	AIC SF	1	0	1	0	1.000	0.00	0.950	0.0870	1	0	1.000	0.000.0	0.960	0.0804	1	0	0.998	0.0200	0.950	0.0870
	BICSF	1	0	1	0	1.000	0.00	0.880	0.0985	1	0	1.000	0.000.0	0.920	0.1101	1	0	1.000	0.000.0	0.920	0.0985
	Ridge	1	0	1	0	1.000	0.00	1.000	0.0000	1	0	1.000	0.000.0	1.000	0.000.0	1	0	1.000	0.0000	1.000	0.000
	Lasso	1	0	1	0	1.000	0.00	0.904	0.1004	_	0	1.000	0.000.0	0.972	0.0697	-	0	1.000	0.0000	0.940	0.0921
	E-net	1	0	1	0	1.000	0.00	0.916	0.0992	_	0	1.000	0.000.0	0.980	0.0603	-	0	1.000	0.0000	0.948	0.0882
	SCAD	1	0	1	0	1.000	0.00	0.826	0.0676	1	0	0.994	0.0343	0.832	0.0737	1	0	966.0	0.0281	0.842	0.0819
	MCP	1	0	1	0	0.998	0.02	0.828	0.0697	1	0	0.996	0.0281	0.820	0.0603	1	0	0.996	0.0281	0.834	0.0755
8	OLS	1	0	1	0	1.000	0.00	1.000	0.000.0	1	0	1.000	0.000.0	1.000	0.000.0	1	0	1.000	0.000.0	1.000	0.0000
	AIC F	1	0	1	0	1.000	0.00	0.96.0	0.0804	_	0	1.000	0.000.0	0.962	0.0789	-	0	1.000	0.0000	0.946	0.0892
	BIC F	1	0	1	0	1.000	0.00	868.0	0.1005		0	1.000	0.000.0	0.924	0.1093	1	0	1.000	0.0000	0.900	0.1005
	AIC SF	1	0	1	0	1.000	0.00	0.958	0.0819	1	0	1.000	0.000.0	0.962	0.0789	1	0	1.000	0.0000	0.942	0.0912
	BIC SF	1	0	1	0	1.000	0.00	0.896	0.1004	_	0	1.000	0.000.0	0.922	0.1097	-	0	1.000	0.0000	0.900	0.1005
	$_{ m Ridge}$	1	0	-	0	1.000	0.00	1.000	0.000.0		0	1.000	0.0000	1.000	0.0000	1	0	1.000	0.0000	1.000	0.0000
	Lasso	1	0	1	0	0.998	0.02	0.910	0.1000		0	1.000	0.000.0	0.972	0.0697	-	0	1.000	0.000.0	0.914	0.0995
	E-net	1	0		0	1.000	0.00	0.922	0860.0		0	1.000	0.000.0	0.984	0.0545	Ţ	0	1.000	0.0000	0.926	0.0970
	SCAD	1	0	1	0	1.000	0.00	0.834	0.0755		0	0.998	0.0200	0.828	0.0697	1	0	0.994	0.0343	0.836	0.0772
	MCP	1	0	1	0	0.998	0.02	0.836	0.0772	1	0	866.0	0.0200	0.816	0.0545	1	0	0.994	0.0343	0.834	0.0755
9	OLS	1	0	1	0	1.000	0.00	1.000	0.000.0	1	0	1.000	0.000.0	1.000	0.000.0	1	0	1.000	0.000.0	1.000	0.0000
	AIC F	1	0	1	0	1.000	0.00	0.96.0	0.0804		0	1.000	0.000.0	0.962	0.0789	-	0	1.000	0.000.0	0.946	0.0892
	BICF	1	0	1	0	1.000	0.00	868.0	0.1005	1	0	1.000	0.000.0	0.924	0.1093	_	0	1.000	0.0000	0.900	0.1005
	AIC SF	1	0	1	0	1.000	0.00	0.958	0.0819		0	1.000	0.000.0	0.962	0.0789	1	0	1.000	0.0000	0.942	0.0912
	BIC SF	1	0	1	0	1.000	0.00	0.896	0.1004	_	0	1.000	0.000.0	0.922	0.1097	-	0	1.000	0.0000	0.900	0.1005
	$_{ m Ridge}$	1	0	1	0	1.000	0.00	1.000	0.000.0	_	0	1.000	0.000.0	1.000	0.000.0	-	0	1.000	0.0000	1.000	0.0000
	Lasso	1	0	1	0	0.998	0.02	0.910	0.1000		0	1.000	0.000.0	0.972	0.0697	-	0	1.000	0.000.0	0.914	0.0995
	E-net	1	0	1	0	1.000	0.00	0.922	0860.0	1	0	1.000	0.000.0	0.984	0.0545	_	0	1.000	0.0000	0.926	0.0970
	$_{\text{SCAD}}$	-	0	1	0	1.000	0.00	0.834	0.0755	1	0	0.998	0.0200	0.828	0.0697	1	0	0.994	0.0343	0.836	0.0772
	MCP		0	-1	0	0.998	0.02	0.836	0.0772	1	0	0.998	0.0200	0.816	0.0545	-1	0	0.994	0.0343	0.834	0.0755

Table SM24: Mean and standard deviation of the β -sensitivity for Model 1 when n=200and p = 2000. See Figure SM24 for the corresponding visualization.

Type	Indepe	Independent	Symme	tric					Autore	gressive					Blockwise	ise				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	$^{\mathrm{SD}}$	Mean SD	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Ridge	_	0	1.000	0.0000		0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.00	1.000	0.000.0	1.000	0.0000
Lasso	1	0	966.0	0.0281		0.0438	0.848	0.0904	0.998	0.0200	0.998	0.0200	0.674	0.1050	1.000	0.00	0.994	0.0343	0.806	0.1406
E-net		0	966.0	0.0281		0.0438	0.858	0.0955	0.998	0.0200	1.000	0.000.0	0.782	0.0642	1.000	0.00	966.0	0.0281	0.820	0.1407
SCAD	1	0	966.0	0.0281		0.0513	0.770	0.0772	966.0	0.0281	0.992	0.0394	0.656	0.1635	1.000	0.00	0.966	0.0755	0.750	0.1251
MCP	-	0	966.0	0.0281		0.0697	0.792	0.0486	0.996	0.0281	0.992	0.0394	0.714	0.1484	1.000	0.00	0.968	0.0737	0.772	0.1026
Ridge	_	0	1.000	0.0000		0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.00	1.000	0.000.0	1.000	0.0000
Lasso	_	0	0.998	0.0200		0.0343	0.836	0.0916	0.998	0.0200	0.998	0.0200	0.670	0.1000	0.998	0.02	0.994	0.0343	0.826	0.1440
E-net	1	0	1.000	0.000.0		0.0343	0.844	0.0925	0.998	0.0200	1.000	0.000.0	0.784	0.0615	0.998	0.02	0.998	0.0200	0.842	0.1512
SCAD	_	0	1.000	0.000.0		0.0281	0.774	0.0787	0.996	0.0281	0.994	0.0343	0.664	0.1580	1.000	0.00	0.980	0.0603	0.730	0.1403
MCP		0	1.000	0.000.0		0.0603	0.786	0.0711	0.996	0.0281	0.994	0.0343	0.714	0.1511	1.000	0.00	0.976	0.0653	0.746	0.1359
Ridge	_	0	1.000	0.0000		0.0000	1.000	0.0000	1.000	0.0000	1.000	0.000.0	1.000	0.0000	1.000	0.00	1.000	0.000.0	1.000	0.0000
Lasso	_	0	0.998	0.0200		0.0343	0.836	0.0916	0.998	0.0200	0.998	0.0200	0.670	0.1000	0.998	0.02	0.994	0.0343	0.826	0.1440
E-net	1	0	1.000	0.000.0		0.0343	0.844	0.0925	0.998	0.0200	1.000	0.000.0	0.784	0.0615	0.998	0.02	0.998	0.0200	0.842	0.1512
SCAD	_	0	1.000	0.000.0		0.0281	0.774	0.0787	0.996	0.0281	0.994	0.0343	0.664	0.1580	1.000	0.00	0.980	0.0603	0.730	0.1403
MCP	-	_	1.000	0.000		0.0603	0.786	0.0711	966.0	0.0281	0.994	0.0343	0.714	0.1511	1.000	0.0	0.976	0.0653	0.746	0.1359

Table SM25: Mean and standard deviation of the β -sensitivity for Model 1 when n=1000 and p=10. See Figure SM25 for the corresponding visualization.

	Type	Independent	ldent	Symmetric	tric					Autoreg	ressive					Blockw	ise				
	Corr.	0		0.2		0.5		6.0		0.2	0.2	0.5		0.9		0.2		0.5		6.0	
ь	Model	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	OLS	1	0	1	0	1	0	1	0	1	0	1	0	1.000	00.0	1	0	1	0	1.000	0.00
	AIC B	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	BIC B	1	0	-	0	1	0	1	0	1	0	1	0	0.998	0.02	_	0	1	0	1.000	0.00
	AIC SB	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	BICSB	1	0	-	0	1	0	1	0	1	0	1	0	0.998	0.02	1	0	1	0	1.000	0.00
	AIC F	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	BICF	-	0	-	0	-	0	-	0		0	-	0	0.998	0.02		0	-	0	1.000	0.00
	AIC SF	-	0	-	0	-	0	1	0		0	-	0	1.000	0.00	-	0	-	0	1.000	0.00
	BICSF		0		0		0		0		0		0	0.998	0.02		0		0	1.000	0.00
	Ridge		0	-	0	-	0	-	0		0		0	1.000	0.00		0	-	0	1.000	0.00
	Lasso	-		-	0	-	· C	-				-		1.000	0.0	-	0	-	· C	1.000	0.00
	E-net	-	0	-	0	-	0	-	0		0	-	0	1.000	0.00		0	-	0	1.000	0.00
	SCAD	-	· C	-	· C	-	· C	-			· C	-		1.000	0.0	-	· C	-	· C	1.000	0.00
	MCP	П	0	-	0	П	0	1	0	1	0	1	0	1.000	0.00	-	0	-	0	1.000	0.00
cc	OLS	-	0	Ŀ	0	-	0	-	0		0		0	1.000	0.00	-	О	-	0	1.000	0.00
ı	AIC B	-		-	· C	-	· C	-			· C	-		1.000	0.0	-		-	· C	1.000	0.00
	BICB	. –												1.000	0.00					1.000	0.00
	AIC SB													1 000	000					1 000	000
	as Ola	٠.		٠.	0 0		o c				0 0		o c	1.000	00.0	٠.	o c		0 0	1.000	00.0
	717 P	٠.				-	0 0		-		0 0		0 0	1.000 1.000	00.0				0 0	1.000	0.00
	1010	٠.	0 0	٠.	0 0	٦.	0 0	٠.						1.000	00.0			٠.	0 0	1.000	00.0
	BICF	7	0	1	0 (7	0	٦,	0	٦,	0	٦,	0	T.000	0.00	7	o i	7	0 -	1.000	0.00
	AIC SF	-	0	-	0	П	0	1	0	_	0	1	0	1.000	0.00	1	0	-	0	1.000	0.00
	BICSF	1	0	1	0	1	0	-	0	1	0	-	0	1.000	0.00	1	0	-	0	1.000	0.00
	Ridge	П	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00		0	1	0	1.000	0.00
	Lasso	1	0		0	1	0	1	0	_	0	1	0	1.000	0.00	1	0	1	0	0.998	0.02
	E-net	П	0	-1	0	1	0	1	0	1	0	1	0	1.000	0.00	-	0	1	0	0.998	0.02
	SCAD	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	MCP	П	0	1	0	1	0	1	0	1	0	1	0	1.000	0.00		0	1	0	1.000	0.00
9	STO	1	0	1	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	AIC B	1	0	-	0	-	0	1	0	1	0	1	0	1.000	0.00	1	0	-	0	1.000	0.00
	BIC B		0		0	1	0	1	0	1	0	1	0	1.000	0.00	_	0	-	0	1.000	0.00
	AIC SB	1	0	1	0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	BIC SB	1	0		0	1	0	1	0	_	0	1	0	1.000	0.00		0	1	0	1.000	0.00
	AIC F	1	0		0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	BICF	1	0		0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	1.000	0.00
	AIC SF	П	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00		0	1	0	1.000	0.00
	BICSF	1	0	1	0	1	0	1	0	1	0	1	0	1.000	0.00		0	1	0	1.000	0.00
	Ridge	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	_	0	1	0	1.000	0.00
	Lasso	1	0		0	1	0	1	0	1	0	1	0	1.000	0.00	1	0	1	0	0.998	0.02
	E-net	-	0		0	1	0	1	0	1	0	1	0	1.000	0.00	-	0	1	0	0.998	0.02
	SCAD	1	0	-	0	1	0	1	0	1	0	1	0	1.000	0.00	_	0	1	0	1.000	0.00
	MCP	П	0	1	0	1	0	1	0	1	0	1	0	1.000	0.00		0	-	0	1.000	0.00

Table SM26: Mean and standard deviation of the β -sensitivity for Model 1 when n=1000See Figure SM26 for the corresponding visualization. and p = 100.

σ Color Mean SD 0.9 No.5 0.9 No.5 0.9 No.9 0.9 No.9 No.9 No.5 No.9 No.9 No.5 No.5 No.9 No.9 No.5 No.2 No.9 No.9 No.9 No.9 No.9 No.9 No.9 No.9 No.2 No.9 N		Type	Independent	ndent	Symmetric	tric					Autoreg	Autoregressive					Blockwise	ise				
		Corr.	0		0.2		0.5		6.0		0.2		0.5		0.0		0.2		0.5		6.0	
MCF 1 0	ь	Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
AICF 1 0 1 0 0.998 0.0200 1 0 1.000 0.0000 1 0 1.000 AICF 1 0 1 0 0.998 0.0220 1 0 1.000 0.0000 1 0 1.000 BIGSF 1 0 1 0 0.998 0.0200 1 0 1.000 0.0000 1 0 1.000 </td <td>-</td> <td>OLS</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1.000</td> <td>0.0000</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1.000</td> <td>0.0000</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1.000</td> <td>0.0000</td>	-	OLS	1	0	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
		AIC F	1	0	1	0	1	0	866.0	0.0200	1	0	1	0	1.000	0.000.0	1	0	1	0	1.000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BIC F	1	0	-	0	1	0	866.0	0.0200		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
HCSF 1 0 1 0 0.998 0.0220 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 0.998 0.0200 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 0.994 0.0000 1 0 0.994 0.0000 1 0 0.994 0.0000 1 0 0.994 0.0000 1 0 0.994 0.0000 1 0 0.994 0.0000 1 0		AIC SF	П	0	П	0	1	0	866.0	0.0200	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BIC SF	1	0	-1	0	1	0	866.0	0.0200	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
		Ridge	1	0	-	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
		Lasso	1	0	1	0	1	0	866.0	0.0200	_	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
SCAD 1 0 1 0 1994 0.0343 1 0 0.994 0.0343 1 0 0.994 0.0394 0.0394 0.000 0.000 0 0 0.994 0.0343 1 0 0.994 0.0394 1 0 0.994 0.0394 1 0 0.994 0.0394 1 0 0.994 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0 1 0 1.000 0.000 1 0 1.000 0 1 0 1.000 0 1 0 1.000 0 1 0 1.000 0 1.000 0 1.000		E-net	1	0	-	0	1	0	866.0	0.0200		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$_{\text{SCAD}}$	1	0	-	0	1	0	0.994	0.0343	1	0	1	0	0.994	0.0343	1	0	1	0	0.998	0.0200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MCP	1	0	-1	0	П	0	0.994	0.0343	1	0	1	0	0.992	0.0394	1	0	1	0	1.000	0.0000
AIC F 1 0 1 0 1.000 0.0000 1 0 1.000 <th< td=""><td>3</td><td>OLS</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1.000</td><td>0.0000</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1.000</td><td>0.0000</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1.000</td><td>0.0000</td></th<>	3	OLS	1	0	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
BIC F 1 0 1 0 0.996 0.0281 1 0 1		AIC F	1	0	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
AIC SF 1 0 1 0 1.000 0.000 1 0 1 0 1.000 0.000 Ridges 1 0 1 0 0.0281 1 0 1.000 0.000 1 0 1.000 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 1.000 0.000 1 0 0.994 0.034 1 0 0.994 0.034 1 0 0.994 0.034 1 0 0.994 0.034 1 0 0.994 0.034 1 0 0.994 0.034 1 0 0.994		BICF	1	0	1	0	1	0	966.0	0.0281	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
BIC SF 1 0 1 0 0.056 0.0281 1 0 1		AIC SF	1	0	-	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		BIC SF	1	0	-1	0	1	0	966.0	0.0281	_	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ridge	1	0	1	0	1	0	1.000	0.0000		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
		Lasso	1	0	1	0	1	0	0.996	0.0281	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
SCAD 1 0 1 0 0.994 0.0343 1 0 0.994 0.0343 1 0 0.996 0.996 MCP 1 0 1 0 0.094 0.034 0.034 1 0 0.996 0.996 MCP 1 0 1 0 1.000 0.0000 1 0 1.000 0.099 0.0994 0.0394 0 0.090 0.0000 1 0 0.090 0.090 0.0000 1 0 0 0.090 0.0000 1 0		E-net	1	0	1	0	1	0	1.000	0.0000		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
MCP 1 0 1 0 0.996 0.0281 1 0 1.000 0.994 1 0 0.994 1 0 0.994 1 0 0.994 0 0.994 0 0.994 0 0.994 0 0.994 0 0.994 0 0.0000 1 0		$_{\text{SCAD}}$	1	0	П	0	П	0	0.994	0.0343	-	0	1	0	0.994	0.0343	1	0	1	0	0.996	0.0281
OLS 1 0		MCP	1	0	-1	0	П	0	0.996	0.0281	1	0	1	0	0.992	0.0394	1	0	1	0	0.994	0.0343
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	OLS	1	0	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AIC F	1	0	П	0	П	0	1.000	0.000.0	-	0	1	0	1.000	0.000.0	1	0	1	0	1.000	0.0000
F 1 0 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0.0000 1 0 1.000 0		BICF	1	0	1	0	1	0	966.0	0.0281		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
F 1 0 1 0 0.996 0.0281 1 0 0		AIC SF	1	0	П	0	П	0	1.000	0.000.0	-	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{vmatrix} 1 & 0 & & 1 & 0 & & 1 & 0 & & 1 & 0 & & 1.000 & 0.0000 & & 1 & 0 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 1.000 & 0.0000 & & 0.00000 & & 0.00000 & & 0.0000 & $		BIC SF	1	0	1	0	1	0	0.996	0.0281	1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
$ \begin{vmatrix} 1 & 0 & & 1 & 0 & & 1 & 0 & & 0 & 0.996 & 0.0281 & & 1 & 0 & & 1 & 0 & & 0.0000 & & 1 & 0 & & 1 & 0 & & 1.000 & 0.0000 & & 1 & 0 & & 1.000 & & 1.$		Ridge	1	0	1	0	1	0	1.000	0.0000		0	1	0	1.000	0.0000	1	0	1	0	1.000	0.0000
		Lasso	1	0	1	0	1	0	966.0	0.0281	-	0	-	0	1.000	0.000.0	1	0	-	0	1.000	0.000.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E-net	1	0	1	0	1	0	1.000	0.000.0	1	0	1	0	1.000	0.000.0	1	0	1	0	1.000	0.0000
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		SCAD	1	0	н	0	П	0	0.994	0.0343	1	0	1	0	0.994	0.0343	1	0	1	0	0.996	0.0281
		MCP	1	0	1	0	1	0	966.0	0.0281	1	0	1	0	0.992	0.0394	1	0	1	0	0.994	0.0343

Table SM27: Mean and standard deviation of the β -sensitivity for Model 1 when n=1000and p=2000. See Figure SM27 for the corresponding visualization.

Type	Indepe	Independent	Symmetric	etric					Autore	Autoregressive					Blockwise	ise				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
Ridge	1	0	-1	0	1	0	1.000	0.0000	_	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.00
Lasso	1	0	1	0	1	0	0.992	0.0394	1	0	1	0	0.998	0.0200	1	0	1	0	1.000	0.00
E-net	1	0	1	0	1	0	0.992	0.0394	П	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.00
SCAD	П	0	1	0	1	0	0.798	0.0200	П	0	1	0	0.796	0.0281	1	0	П	0	0.800	0.00
MCP	1	0	1	0	1	0	0.800	0.0000	_	0	1	0	0.800	0.0000	-	0	1	0	0.800	0.00
Ridge	1	0	-1	0	1	0	1.000	0.0000	_	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.00
Lasso	П	0	1	0	1	0	0.992	0.0394	П	0	1	0	0.998	0.0200	1	0	П	0	866.0	0.02
E-net	1	0	1	0	1	0	1.000	0.0000	П	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.00
SCAD	П	0	-	0	1	0	0.796	0.0281	П	0	1	0	0.796	0.0281	1	0	П	0	0.800	0.00
MCP	1	0	1	0	1	0	0.800	0.0000	_	0	1	0	0.800	0.0000	-	0	1	0	0.800	0.00
Ridge	-	0	-1	0	1	0	1.000	0.0000	_	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.00
Lasso	1	0	1	0	1	0	0.992	0.0394	_	0	1	0	0.998	0.0200	1	0	1	0	0.998	0.02
E-net	1	0	-1	0	1	0	1.000	0.0000	1	0	1	0	1.000	0.000.0	1	0	1	0	1.000	0.00
SCAD	П	0	1	0	1	0	0.796	0.0281	1	0	1	0	0.796	0.0281	1	0	1	0	0.800	0.00
MCP	1	0	-	0	П	0	0.800	0.0000	1	0	1	0	0.800	0.0000	T	0	1	0	0.800	0.00

SM4.4. Tables for the $\beta\text{-specificity}$ of the linear simulations.

Table SM28: Mean and standard deviation of the β -specificity for Model 1 when n=50and p = 10. See Figure SM28 for the corresponding visualization.

	Type	Independent	dent	Symmetric	tric					Autoregressive	essive					Blockwise	41				
0	Corr.	, 0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ρ	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean 3	SD
1	OLS	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000				0.000.0	0.000.0	0.000.0		0.000.0		0.0000	0000.0
¥	AIC B	0.7600	0.1929	0.7817	0.1846	0.8050	0.1774	0.7767	0.1823	0.7500	0.1932	_	0.1854	0.7550	0.2030	0.7900		0.7933	0.1806	0.7483	0.1873
Щ	BICB	0.9133	0.1450	0.9150	0.1431	0.9067	0.1261	0.9200	0.1123	0.9167	0.1350	_		0.8850	0.1355	0.9300		0.9267			0.1391
¥	AIC SB	0.7600	0.1929	0.7817	0.1846	0.8050	0.1774	0.7767	0.1823	0.7500		0.7600 (0.1840	0.7500	0.2003	0.7883		0.7917			0.1873
E	BICSB	0.9133	0.1450	0.9150	0.1431	0.9050	0.1281	0.9200	0.1123	0.9167		0.9200	.1123	0.8850	0.1355	0.9300		0.9267			0.1391
¥	AIC F	0.7783	0.1836	0.8083	0.1731	0.8183	0.1677	0.8183	0.1555	0.7767	0.1808	0.7950 (0.1639	0.8250	0.1630	0.8117	0.1735	0.8133	0.1663	0.8150	0.1587
H	BIC F	0.9333	0.1231	0.9333	0.1136	0.9233	0.1044	0.9267	0.1094	0.9333	0.0977	Ŭ		0.9400	0.0963	0.9300	0.1090	0.9367		0.9333	0.1086
Ą	AIC SF	0.7783	0.1836	0.8083	0.1731	0.8200	0.1636	0.8183	0.1555	0.7767		Ĭ		0.8333	0.1607	0.8117		0.8133			0.1598
E	BICSF	0.9333	0.1231	0.9333	0.1136	0.9233	0.1044	0.9267	0.1094	0.9333		_		0.9483	8060.0	0.9300		0.9367			0.1054
ъ	Ridge	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0		_	0.000.0	0.000.0	0.000.0	0.000.0		0.000.0	0.000.0		0.0000
Γ	Lasso	0.8317	0.2072	0.8283	0.1946	0.8067	0.2075	0.8050	0.1881	0.8250		_		0.7367	0.1776	0.8367		0.7683			0.1878
H	E-net	0.7867	0.2261	0.8000	0.2132	0.7767	0.2108	0.7667	0.2079	0.7950				0.6883	0.1751	0.8000		0.7333			0.1957
S	SCAD	0.7383	0.3091	0.7750	0.2905	0.8417	0.2432	0.8367	0.2669	0.7283			0.2322	0.8067	0.2389	0.7967	0.2558	0.7950			0.2709
4	MCP	0.7967	0.2955	0.8133	0.3055	0.8783	0.2130	0.8600	0.2342	0.7700	0.3331			0.8233	0.2460	0.8483		0.8333			0.2714
3	STO	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0			0.000.0	0.000.0	0.000.0	0.000.0		0.000.0	0.000.0	0.000.0	0.000.0
Ą	AIC B	0.7600	0.1929	0.7867	0.1710	0.7967	0.1701	0.7767	0.1942	0.7683		0.7933 (0.7683	0.2064	0.8000		0.7917			0.1838
Д	BIC B	0.9133	0.1450	0.9183	0.1124	0.9033	0.1258	0.9100	0.1285	0.9183	_	_		0.8900	0.1445			0.9017			0.1070
¥	AIC SB	0.7600	0.1929	0.7850	0.1713	0.7950	0.1689	0.7767	0.1942	0.7683		0.7933 (0.1710	0.7683	0.2064			0.7867			0.1838
H	BIC SB	0.9133	0.1450	0.9167	0.1124	0.9033	0.1258	0.9100		0.9183		_		0.8900	0.1445			0.9017			0.1071
¥	AIC F	0.7783	0.1836	0.8000	0.1675	0.8067	0.1512	0.8133		0.8000		_		0.8283	0.1827			0.8100	0.1554		0.1451
E	BICF	0.9333	0.1231	0.9233	0.1017	0.9200	0.1018	0.9250		0.9250		_		0.9383	0.0967		0.1030	0.9233		0.9333	0.0977
¥	AIC SF	0.7783	0.1836	0.8000	0.1675	0.8067	0.1512	0.8133	0.1761	0.8017		_		0.8483	0.1677			0.8100	0.1554		0.1441
П	BICSF	0.9333	0.1231	0.9233	0.1017	0.9217	0.0990	0.9250	0.1095	0.9250		_		0.9417	0.0959	0.9350		0.9250			0.0977
Ä	Ridge	0.0000	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	_	0000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0		0.000.0	0.000.0
Γ	Lasso	0.8317	0.2072	0.8000	0.2065	0.7883	0.1878	0.7683		0.8383		_		0.7483	0.1873	0.8283		0.7650			0.1970
Ħ	E-net	0.7867	0.2261	0.7600	0.2214	0.7467	0.1857	0.7300		0.8067		_		0.7083	0.1944	0.7917		0.7250	0.1794		0.2084
S	SCAD	0.7383	0.3091	0.7800	0.2761	0.8250	0.2631	0.8083	_	0.7367		0.8033 (0.2577	0.7900	0.2955	0.7533	0.3057	0.8217			0.2557
N	MCP	0.7967	0.2955	0.8033	0.3009	0.8483	0.2733	0.8333	0.2638	0.7800				0.8217	0.2587	0.8117		0.8750			0.2436
9	OLS	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0		_		0.000.0	0.000.0	0.000.0		0.000.0			0.000.0
Ą	AIC B	0.7600	0.1929	0.7867	0.1710	0.7967	0.1701	0.7767	0.1942	0.7683		0.7933 (0.7683	0.2064	0.8000		0.7917	0.1681	0.7767	0.1838
Щ	BIC B	0.9133	0.1450	0.9183	0.1124	0.9033	0.1258	0.9100	0.1285	0.9183	_		0.1193	0.8900	0.1445	0.9317		0.9017			0.1070
Ą.	AIC SB	0.7600	0.1929	0.7850	0.1713	0.7950	0.1689	0.7767	0.1942	0.7683				0.7683	0.2064	0.8000		0.7867			0.1838
Щ	BICSB	0.9133	0.1450	0.9167	0.1124	0.9033	0.1258	0.9100	0.1285	0.9183	_	0.9083 (0.8900	0.1445	0.9317		0.9017			0.1071
Ä	IIC F	0.7783	0.1836	0.8000	0.1675	0.8067	0.1512	0.8133	0.1761	0.8000		0.8100		0.8283	0.1827	0.8200		0.8100			0.1451
Щ	BICF	0.9333	0.1231	0.9233	0.1017	0.9200	0.1018	0.9250	0.1095	0.9250		0.9233 (0.9383	0.0967	0.9350	0.1030	0.9233		0.9333	0.0977
₹.	IC SF	0.7783	0.1836	0.8000	0.1675	0.8067	0.1512	0.8133	0.1761	0.8017		0.8117 (0.8483	0.1677	0.8200	0.1752	0.8100		.8333	0.1441
Щ	SIC SF	0.9333	0.1231	0.9233	0.1017	0.9217	0.0990	0.9250	0.1095	0.9250		0.9233 (0.9417	0.0959	0.9350	0.1030	0.9250	0.1121	0.9333	0.0977
щ.	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0000.0		0.0000	0.000.0	0.000.0	0.0000	0.0000		0.000.0	0.0000
⊣	Lasso	0.8317	0.2072	0.8000	0.2065	0.7883	0.1878	0.7683	0.2036	0.8383	0.1842	0.7867	0.1896	0.7483	0.1873	0.8283	0.2351	0.7650		0.7367	0.1970
मा	E-net	0.7867	0.2261	0.7600	0.2214	0.7467	0.1857	0.7300	0.2142	0.8067	_).7533 (0.1975	0.7083	0.1944	0.7917	0.2489	0.7250		0.6967	7.5084
Ω,	SCAD	0.7383	0.3091	0.7800	0.2761	0.8250	0.2631	0.8083	0.2905	0.7367	_	0.8033 (0.2577	0.7900	0.2955	0.7533	0.3057	0.8217	0.2213	0.8500	0.2557
N	MCF	0.7967	0.2955	0.8033	0.3009	0.8483	0.2733	0.8333	0.2638	0.7800	0.3186	-	0.2445	0.8217	0.2587	0.8117	0.3131	0.8750	0.1886	0.8800	0.2436

50Table SM29: Mean and standard deviation of the β -specificity for Model 1 when n=1See Figure SM29 for the corresponding visualization. and p = 100.

Type	Independent	ndent	Symmetric	tric					Autoregressive	ressive					Blockwise	, ge				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 Ridge	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000	0.0000	0.000.0	0.000.0	0.000	0.000
Lasso	0.9611	0.0382	0.9552	0.0464	0.9400	0.0505	0.9600	0.0315	0.9588	0.0409	0.9455	0.0395	0.9781	0.0434	0.9577	0.0403	0.9384	0.0470	0.9634	0.0368
E-net	0.9525	_	0.9433	0.0485	0.9273	0.0531	0.9426	0.0315	0.9462	0.0520	0.9336	0.0418	0.9718	0.0397	0.9475	0.0429	0.9262	0.0517	0.9499	0.0338
SCAD	0.9559	_	0.9665	0.0364	0.9833	0.0192	0.9971	0.0054	0.9666	0.0346	0.9738	0.0353	0.9817	0.0228	0.9628	0.0376	0.9777	0.0249	0.9852	0.0134
MCP	0.9836	0.0208	0.9870	0.0176	0.9944	0.0105	0.9978	0.0048	0.9877	0.0182	0.9880	0.0203	0.9899	0.0153	0.9862	0.0181	0.9902	0.0154	0.9909	0.0091
3 Ridge	0.0000		0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000	0.000
Lasso	0.9611	Ĭ	0.9495	0.0561	0.9416		0.9568	0.0297	0.9464	0.0594	0.9384	0.0483	0.9803	0.0391	0.9490	0.0468	0.9424	0.0415	0.9628	0.0429
E-net	0.9525	_	0.9406	0.0543	0.9308	0.0512	0.9385	0.0304	0.9369	0.0585	0.9289	0.0471	0.9729	0.0365	0.9383	0.0485	0.9305	0.0459	0.9484	0.0409
SCAD	0.9559	_	0.9659	0.0342	0.9845	0.0182	0.9962	0.0117	0.9649	0.0405	0.9679	0.0372	0.9838	0.0216	0.9642	0.0329	0.9825	0.0245	0.9850	0.0145
MCP	0.9836			0.0162	0.9952	0.0080	0.9970	0.0063	0.9843	0.0230	0.9869	0.0211	0.9925	0.0122	0.9836	0.0204	0.9931	0.0114	0.9897	0.0105
6 Ridge	0.0000	0.000.0	Γ	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000	0.0000
Lasso	0.9611	0.0382		0.0561	0.9416	0.0491	0.9568	0.0297	0.9464	0.0594	0.9384	0.0483	0.9803	0.0391	0.9490	0.0468	0.9424	0.0415	0.9628	0.0429
E-net	0.9525	0.0386	0.9406	0.0543	0.9308	0.0512	0.9385	0.0304	0.9369	0.0585	0.9289	0.0471	0.9729	0.0365	0.9383	0.0485	0.9305	0.0459	0.9484	0.0409
SCAD	0.9559	0.0458	0.9659	0.0342	0.9845	0.0182	0.9962	0.0117	0.9649	0.0405	0.9679	0.0372	0.9838	0.0216	0.9642	0.0329	0.9825	0.0245	0.9850	0.0145
MCP	0.9836	0.0208	0.9873	0.0162	0.9952	0.0080	0.9970	0.0063	0.9843	0.0230	0.9869	0.0211	0.9925	0.0122	0.9836	0.0204	0.9931	0.0114	0.9897	0.0105

50Table SM30: Mean and standard deviation of the β -specificity for Model 1 when n=1and p = 2000. See Figure SM30 for the corresponding visualization.

		_	0.9 SD Mean 9	0.9 SD Mean 3 0.0000 0.0000 0	O.9 Nean SD Mean SO 0.0000 0.0000 0.0000 0.0988 0	O.9 Nean SD Mean SO 0.0000 0.0000 0.0000 0.0988 0 0.0020 0.9969 0	SD Mean S 0.0000 0.0000 0.0000 0.0020 0.99999 0.0029 0.99999 0.0029 0.99999 0.0029 0.99990 0.0029 0.9990 0.0029	O.9 SD Mean S 0.0020 0.0000 0.0020 0.9988 0.0020 0.0029 0.9990 0.0029 0.0012 0.9996 0	SD Mean 8 0.0000 0.0000 0.0020 0.9988 0.0020 0.9699 0.0020 0.9699 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	SD Mean 8 0.0000 0.0000 0.0000 0.0020 0.9988 0.0020 0.9988 0.0020 0.9989 0.0029 0.0012 0.9990 0.0012 0.9996 0.0030 0.0030 0.9987 0.0030	SD Mean S 0.0000 0.0000 0.0000 0.0020 0.988 0.0020 0.9989 0.0020 0.09990 0.0012 0.09990 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029 0.0029 0.0029 0.99887 0.0029 0.99887	SD Mean 6.9 0.0000 0.0000 0.0000 0.0020 0.9988 0.0022 0.9989 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0029 0.9999 0.0022 0.9999 0.0022 0.0022 0.9999	SD Mean 8 0.0000 0.0000 0.0000 0.0020 0.9969 0.0022 0.9969 0.0012 0.0996 0.0000 0.0000 0.0020 0.0025 0.9990 0.0025 0.9990 0.00025 0.9990 0.00025 0.9990 0.00025 0.9990 0.00025 0.9990 0.00025 0.9990 0.00025 0.9990 0.00025	SD Mean S 0.0000 0.0000 0.0000 0.00000 0.000	SD Mean (1) 0.0000 0.0000 0.0000 0.0020 0.988 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	SD 0.0000 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0003 0.0025 0.0025 0.0025 0.0025 0.0003 0.0003 0.0003
SD	SD			_	_	_	0.0010	-	_	_	_	_	_	_	_	_
	0.2	Mean	Ľ	_	_	_	_	Ľ	_	_	_	_	Ľ	_	_	_
			-	_	_	_	3 0.0012	-	_	_	_	_	-	_	_	_
	6.0	Mean														
		SD	0.0000	0.0028	0.0028	0.0035	0.0010	0.0000	0.0021	0.0022	0.0032	0.0015	0.0000	0.0021	0.0022	0.0032
	0.5	Mean	0.0000	0.9983	0.9983	0.9964	0.9994	0.0000	0.9987	0.9986	0.9960	0.9988	0.0000	0.9987	0.9986	0.9960
Casive		SD	0.000.0	0.0022	0.0027	0.0029	0.0000	0.000.0	0.0025	0.0026	0.0031	0.0000	0.000.0	0.0027	0.0023	0.0029
Autoregressive	0.2	Mean	0.0000	0.9977	0.9972	0.9972	0.9994	0.0000	0.9976	0.9973	0.9971	0.9994	0.0000	0.9976	0.9975	0.9971
		SD	0.0000	0.0022	0.0024	0.0019	0.0003	0.0000	0.0020	0.0023	0.0021	0.0004	0.0000	0.0020	0.0023	0.0021
	6.0	Mean	0.000.0	0.9961	0.9928	0.9990	0.9998	0.000.0	0.9958	0.9924	0.9989	0.9998	0.000.0	0.9958	0.9924	0.9989
		SD	0.000.0	0.0032	0.0031	0.0019	0.0005	0.000.0	0.0030	0.0030	0.0021	0.000.0	0.000.0	0.0030	0.0030	0.0021
	0.5	Mean	0.000.0	0.9955	0.9948	0.9984	0.9997	0.000.0	0.9964	0.9955	0.9982	0.9996	0.000.0	0.9964	0.9955	0.9982
ric		SD	0.000.0	0.0026	0.0032	0.0028	0.0000	0.000.0	0.0029	0.0030	0.0026	0.0008	0.000.0	0.0029	0.0030	0.0026
Symmetric	0.2	Mean	0.000.0	0.9964	0.9958	0.9973	0.9994	0.0000	0.9962	0.9958	0.9972	0.9994	0.0000	0.9962	0.9958	0.9972
dent		SD	0.000.0	0.0023	0.0025	0.0033	0.0010	0.000.0	0.0023	0.0025	0.0033	0.0010	0.000.0	0.0023	0.0025	0.0033
Independent	0	Mean	0.0000	0.9976	0.9972	0.9972	0.9993	0.0000	0.9976	0.9972	0.9972	0.9993	0.0000	0.9976	0.9972	0.9972
Type	Corr.	Model	Ridge	Lasso	E-net	SCAD	MCP	Ridge	Lasso	E-net	SCAD	MCP	Ridge	Lasso	E-net	SCAD
		ь	1					3					9			

Table SM31: Mean and standard deviation of the β -specificity for Model 1 when n=200and p=10. See Figure SM31 for the corresponding visualization.

F	Jan and	1	5						A A											
Independent	m)	nt	Symmetric	ric	1		0		Autoregressive	ressive	ì		0		Blockwise	se	ì		0	
) (Cook	- 7	- 6	0.7 Mass	ני	V.0	ני	0.9 Mac.	Ç	0.2	Ç	0.0	ני	0.9	5	0.2 Moss	Ç	0.0	ני	V.9	ני
Mean	r) C	0000	Mean	מס	Mean	0000	Mean	2000	Mean	00000	Mean	0000	Mean	0000	Mean	20000	Mean	20000	Mean	0000
0.8017	0	0.1752	0.7967	0.1564	0.8017	0.1752	0.7933	0.1609	0.8117	0.1767	0.8033	0.1648	0.7750	0.1944	0.7700	0.1585	0.8267	0.1534	0.7700	0.1753
0.9717	0	0.0672	0.9767	0.0581	0.9750	0.0686	0.9633	0.0840	0.9683	0.0738	0.9683	0.0877	0.9550	0.1107	0.9667	0.0711	0.9700	0.0763	0.9633	0.0771
0.8017	0	0.1752	0.7967	0.1564	0.8017	0.1752	0.7933	0.1609	0.8117	0.1767	0.8017	0.1636	0.7750	0.1944	0.7700	0.1585	0.8267	0.1534	0.7683	0.1755
0.9717	0	0.0672	0.9767	0.0581	0.9750	0.0686	0.9633	0.0840	0.9683	0.0738	0.9683	0.0877	0.9550	0.1107	0.9667	0.0711	0.9700	0.0763	0.9633	0.0771
0.8050	0	0.1659	0.8133	0.1446	0.8217	0.1679	0.8050	0.1642	0.8300	0.1691	0.8333	0.1498	0.8517	0.1439	0.7767	0.1575	0.8467	0.1492	0.8083	0.1698
0.9717	0	0.0672	0.9767	0.0581	0.9750	0.0686	0.9633	0.0840	0.9683	0.0738	0.9783	0.0697	0.9783	0.0611	0.9667	0.0711	0.9733	0.0700	0.9683	0.0699
0.8050	0	0.1659	0.8133	0.1446	0.8217	0.1679	0.8050	0.1642	0.8300	0.1691	0.8333	0.1498	0.8517	0.1439	0.7767	0.1575	0.8467	0.1492	0.8083	0.1698
0.9717	0	0.0672	0.9767	0.0581	0.9750	0.0686	0.9633	0.0840	0.9683	0.0738	0.9783	0.0697	0.9783	0.0611	0.9667	0.0711	0.9733	0.0700	0.9683	0.0699
0.0000	0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.9167		0.1733	0.8833	0.1716	0.8683	0.1612	0.8433	0.1689	0.9167	0.1391	0.8983	0.1496	0.7983	0.1594	0.8883	0.1608	0.8600	0.1653	0.7433	0.1579
0.8983		0.1739	0.8617	0.1820	0.8217	0.1914	0.8000	0.1880	0.8833	0.1733	0.8517	0.1690	0.7617	0.1745	0.8467	0.1815	0.8317	0.1667	0.6917	0.1763
0.8017		0.2624	0.8333	0.2369	0.8650	0.2329	0.8600	0.2635	0.8550	0.2305	0.8583	0.2137	0.8050	0.2873	0.7683	0.2977	0.8850	0.1891	0.8317	0.2906
0.8567		0.2518	0.8700	0.2388	0.9033	0.2121	0.8650	0.2635	0.8933	0.2165	0.9050	0.1943	0.8067	0.2956	0.8217	0.2933	0.9100	0.1901	0.8533	0.2609
0.0000		0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.000.0
0.8017		0.1752	0.8150	0.1587	0.8033	0.1613	0.7950	0.1639	0.8017	0.1584	0.7917	0.1731	0.7783	0.1925	0.8333	0.1553	0.7817	0.1905	0.7750	0.1731
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9583	0.0898	0.9700	0.0686	0.9717	0.0713	0.9500	0.1019	0.9650	0.0796	0.9633	0.0840	0.9650	0.0796
0.8017		0.1752	0.8150	0.1587	0.8033	0.1613	0.7950	0.1639	0.8017	0.1584	0.7917	0.1731	0.7783	0.1925	0.8333	0.1553	0.7817	0.1905	0.7750	0.1731
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9583	0.0898	0.9700	0.0686	0.9717	0.0713	0.9500	0.1019	0.9650	0.0796	0.9633	0.0840	0.9650	0.0796
0.8050		0.1659	0.8150	0.1587	0.8067	0.1584	0.8133	0.1680	0.8100	0.1499	0.8167	0.1615	0.8300	0.1553	0.8400	0.1552	0.8083	0.1714	0.8217	0.1663
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9717	0.0713	0.9700	0.0686	0.9783	0.0563	0.9650	0.0796	0.9683	0.0738	0.9700	0.0726	0.9750	0.0643
0.8050		0.1659	0.8150	0.1587	0.8067	0.1584	0.8133	0.1680	0.8100	0.1499	0.8167	0.1615	0.8317	0.1526	0.8400	0.1552	0.8083	0.1714	0.8233	0.1638
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9717	0.0713	0.9700	0.0686	0.9783	0.0563	0.9667	0.0786	0.9683	0.0738	0.9700	0.0726	0.9750	0.0643
0.0000		0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.9167		0.1733	0.9133	0.1371	0.8583	0.1747	0.8817	0.1541	0.9183	0.1329	0.8917	0.1369	0.7917	0.1794	0.9183	0.1265	0.8567	0.1642	0.7633	0.1791
0.8983		0.1739	0.8867	0.1656	0.8317	0.1932	0.8533	0.1745	0.9017	0.1423	0.8533	0.1558	0.7417	0.1901	0.8983	0.1399	0.7950	0.1817	0.7083	0.1794
0.8017		0.2624	0.8467	0.2389	0.8617	0.2346	0.8067	0.3095	0.8650	0.1963	0.8400	0.2209	0.8000	0.2670	0.8567	0.2171	0.8433	0.2425	0.8250	0.2943
0.8567		0.2518	0.8917	0.2289	0.8817	0.2349	0.8183	0.2969	0.9083	0.1944	0.8833	0.2017	0.8100	0.2773	0.9067	0.1929	0.8850	0.2281	0.8233	0.2957
0.0000		0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.8017		0.1752	0.8150	0.1587	0.8033	0.1613	0.7950	0.1639	0.8017	0.1584	0.7917	0.1731	0.7783	0.1925	0.8333	0.1553	0.7817	0.1905	0.7750	0.1731
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9583	0.0898	0.9700	0.0686	0.9717	0.0713	0.9500	0.1019	0.9650	0.0796	0.9633	0.0840	0.9650	0.0796
0.8017		0.1752	0.8150	0.1587	0.8033	0.1613	0.7950	0.1639	0.8017	0.1584	0.7917	0.1731	0.7783	0.1925	0.8333	0.1553	0.7817	0.1905	0.7750	0.1731
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9583	0.0898	0.9700	0.0686	0.9717	0.0713	0.9500	0.1019	0.9650	0.0796	0.9633	0.0840	0.9650	0.0796
0.8050		0.1659	0.8150	0.1587	0.8067	0.1584	0.8133	0.1680	0.8100	0.1499	0.8167	0.1615	0.8300	0.1553	0.8400	0.1552	0.8083	0.1714	0.8217	0.1663
0.9717		0.0672	0.9717	0.0713	0.9650	0.0864	0.9717	0.0713	0.9700	0.0686	0.9783	0.0563	0.9650	0.0796	0.9683	0.0738	0.9700	0.0726	0.9750	0.0643
0.8050		0.1659	0.8150	0.1587	0.8067	0.1584	0.8133	0.1680	0.8100	0.1499	0.8167	0.1615	0.8317	0.1526	0.8400	0.1552	0.8083	0.1714	0.8233	0.1638
0.9717	0	0.0672	0.9717	0.0713	0.9650	0.0864	0.9717	0.0713	0.9700	0.0686	0.9783	0.0563	0.9667	0.0786	0.9683	0.0738	0.9700	0.0726	0.9750	0.0643
0.0000	0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.9167		0.1733	0.9133	0.1371	0.8583	0.1747	0.8817	0.1541	0.9183	0.1329	0.8917	0.1369	0.7917	0.1794	0.9183	0.1265	0.8567	0.1642	0.7633	0.1791
0.8983		0.1739	0.8867	0.1656	0.8317	0.1932	0.8533	0.1745	0.9017	0.1423	0.8533	0.1558	0.7417	0.1901	0.8983	0.1399	0.7950	0.1817	0.7083	0.1794
0.8017		0.2624	0.8467	0.2389	0.8617	0.2346	0.8067	0.3095	0.8650	0.1963	0.8400	0.2209	0.8000	0.2670	0.8567	0.2171	0.8433	0.2425	0.8250	0.2943
0.8567	0	0.2518	0.8917	0.2289	0.8817	0.2349	0.8183	0.2969	0.9083	0.1944	0.8833	0.2017	0.8100	0.2773	0.9067	0.1929	0.8850	0.2281	0.8233	0.2957

Table SM32: Mean and standard deviation of the β -specificity for Model 1 when n=200See Figure SM32 for the corresponding visualization. and p = 100.

	Type	Independent	dent	Symmetric	ric				_	Autoregressive	essive				_	Blockwise	se.				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	OLS	0.0000	0.000.0	0.000.0	0.000.0	0.0000		0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
	AIC F	0.7760	0.0636	0.7742	0.0629	0.7844	0.0596	0.7791	0.0664	0.7776	0.0623	0.8079	0.0655	0.8916	0.0676	0.7840	0.0607	0.7899	0.0639	0.8858	0.0711
	BICF	0.9732	0.0155	0.9757	0.0181	0.9771	0.0149	0.9781	0.0171	0.9754	0.0182	0.9795	0.0151	0.9894	0.0121	0.9774	0.0166	0.9831	0.0156	0.9908	0.0114
	AIC SF	0.7794	0.0571	0.7812	0.0566	0.7901	0.0573	0.7837	0.0623	0.7808	0.0586	0.8162	0.0619	0.8968	0.0628	0.7876	0.0596	0.7931	0.0658	0.8869	0.0733
	BIC SF	0.9736	0.0148	0.9758	0.0178	0.9771	0.0150	0.9781	0.0171	0.9756	0.0177	0.9795	0.0151	0.9894	0.0121	0.9774	0.0166	0.9832	0.0155	0.9908	0.0114
	$_{ m Ridge}$	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9900	0.0144	0.9743	0.0248	0.9669	0.0260	0.9602	0.0304	0.9857	0.0204	0.9774	0.0259	0.9111	0.0376	0.9838	0.0191	0.9703	0.0216	0.9568	0.0243
	E-net	0.9854	0.0169	0.9659	0.0285	0.9578	0.0271	0.9473	0.0322	0.9791	0.0264	0.9686	0.0318	0.8998	0.0403	0.9785	0.0206	0.9619	0.0238	0.9473	0.0277
	$_{\text{SCAD}}$	0.9625	0.0383	0.9567	0.0374	0.9760	0.0254	0.9979	0.0066	0.9601	0.0460	0.9581	0.0377	0.9772	0.0299	0.9624	0.0372	0.9585	0.0322	0.9874	0.0170
	MCP	0.9866	0.0200	0.9861	0.0229	0.9942	0.0116	0.9980	0.0055	0.9839	0.0254	0.9856	0.0224	0.9907	0.0159	0.9873	0.0226	0.9858	0.0162	0.9909	0.0150
ဂ	OLS	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	AIC F	0.7760	0.0636	0.7662	0.0549	0.7760	0.0629	0.7783	0.0557	0.7682	0.0619	0.8160	0.0554	0.8895	0.0673	0.7869	0.0525	0.8017	0.0635	0.8929	0.0670
	BICF	0.9732	0.0155	0.9789	0.0179	0.9805	0.0177	0.9783	0.0150	0.9760	0.0174	0.9793	0.0139	0.9889	0.0121	0.9786	0.0155	0.9833	0.0159	0.9896	0.0121
	AIC SF	0.7794	0.0571	0.7708	0.0567	0.7851	0.0555	0.7829	0.0488	0.7784	0.0559	0.8212	0.0542	0.8971	0.0589	0.7919	0.0528	0.8065	0.0589	0.8974	0.0603
	BIC SF	0.9736	0.0148	0.9791	0.0174	0.9807	0.0175	0.9782	0.0151	0.9760	0.0174	0.9795	0.0137	0.9890	0.0122	0.9786	0.0156	0.9834	0.0157	0.9896	0.0121
	$_{ m Ridge}$	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
	Lasso	0.9900	0.0144	0.9769	0.0245	0.9694	0.0268	0.9690	0.0243	0.9864	0.0226	0.9774	0.0291	0.9120	0.0362	0.9833	0.0209	0.9719	0.0193	0.9556	0.0236
	E-net	0.9854	0.0169	0.9671	0.0289	0.9566	0.0310	0.9568	0.0293	0.9778	0.0286	0.9668	0.0346	0.9011	0.0391	0.9767	0.0247	0.9620	0.0222	0.9465	0.0267
	SCAD	0.9625	0.0383	0.9676	0.0355	0.9800	0.0231	0.9953	0.0156	0.9605	0.0388	0.9570	0.0375	0.9791	0.0280	0.9631	0.0373	0.9645	0.0304	0.9883	0.0170
	MCP	0.9866	0.0200	0.9877	0.0210	0.9959	0.0094	0.9958	0.0144	0.9869	0.0235	0.9849	0.0223	0.9916	0.0135	0.9849	0.0203	0.9881	0.0145	0.9929	0.0130
9	OLS	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
	AIC F	0.7760	0.0636	0.7662	0.0549	0.7760	0.0629	0.7783	0.0557	0.7682	0.0619	0.8160	0.0554	0.8895	0.0673	0.7869	0.0525	0.8017	0.0635	0.8929	0.0670
	BICF	0.9732	0.0155	0.9789	0.0179	0.9805	0.0177	0.9783	0.0150	0.9760	0.0174	0.9793	0.0139	0.9889	0.0121	0.9786	0.0155	0.9833	0.0159	0.9896	0.0121
	AIC SF	0.7794	0.0571	0.7708	0.0567	0.7851	0.0555	0.7829	0.0488	0.7784	0.0559	0.8212	0.0542	0.8971	0.0589	0.7919	0.0528	0.8065	0.0589	0.8974	0.0603
	BIC SF	0.9736	0.0148	0.9791	0.0174	0.9807	0.0175	0.9782	0.0151	0.9760	0.0174	0.9795	0.0137	0.9890	0.0122	0.9786	0.0156	0.9834	0.0157	0.9896	0.0121
	$_{ m Ridge}$	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9900	0.0144	0.9769	0.0245	0.9694	0.0268	0.9690	0.0243	0.9864	0.0226	0.9774	0.0291	0.9120	0.0362	0.9833	0.0209	0.9719	0.0193	0.9556	0.0236
	E-net	0.9854	0.0169	0.9671	0.0289	0.9566	0.0310	0.9568	0.0293	0.9778	0.0286	0.9668	0.0346	0.9011	0.0391	0.9767	0.0247	0.9620	0.0222	0.9465	0.0267
	SCAD	0.9625	0.0383	0.9676	0.0355	0.9800	0.0231	0.9953	0.0156	0.9605	0.0388	0.9570	0.0375	0.9791	0.0280	0.9631	0.0373	0.9645	0.0304	0.9883	0.0170
	MCP	0.9866	0.0200	0.9877	0.0210	0.9959	0.0094	0.9958	0.0144	0.9869	0.0235	0.9849	0.0223	0.9916	0.0135	0.9849	0.0203	0.9881	0.0145	0.9929	0.0130

Table SM33: Mean and standard deviation of the β -specificity for Model 1 when n=200and p = 2000. See Figure SM33 for the corresponding visualization.

		ľ												-						
Type	Independent	ndent	Symmetric	tric					Autoregressive	ressive					Blockwise	se.				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Ridge	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9989	0.0017	0.9971	0.0029	0.9958	0.0026	0.9958	0.0026	0.9989	0.0015	0.9971	0.0040	0.9996	0.0026	0.9981	0.0032	0.9968	0.0025	0.9930	0.0050
E-net	0.9984	0.0021	0.9960	0.0031	0.9945	0.0027	0.9946	0.0028	0.9983	0.0017	0.9961	0.0047	0.9992	0.0029	0.9975	0.0037	0.9954	0.0030	0.9920	0.0051
SCAD	0.9943	0.0051	0.9957	0.0036	0.9981	0.0018	1.0000	0.0000	0.9951	0.0046	0.9939	0.0047	0.9947	0.0048	0.9944	0.0047	0.9963	0.0032	0.9989	0.0011
MCP	0.9987	0.0016	0.9990	0.0013	0.9996	0.0007	1.0000	0.0000	0.9985	0.0021	0.9979	0.0024	0.9972	0.0023	0.9984	0.0023	0.9986	0.0016	0.9995	9000.0
Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9989	0.0017	0.9974	0.0022	0.9953	0.0028	0.9957	0.0023	0.9988	0.0017	0.9971	0.0033	0.9996	0.0026	0.9985	0.0019	0.9966	0.0028	0.9928	0.0049
E-net	0.9984	0.0021	0.9961	0.0027	0.9939	0.0031	0.9945	0.0024	0.9983	0.0021	0.9961	0.0040	0.9991	0.0027	0.9978	0.0025	0.9952	0.0032	0.9920	0.0047
SCAD	0.9943	0.0051	0.9956	0.0037	0.9979	0.0020	1.0000	0.0000	0.9952	0.0043	0.9934	0.0047	0.9954	0.0040	0.9945	0.0048	0.9964	0.0028	0.9990	0.0012
MCP	0.9987	0.0016	0.9987	0.0016	0.9996	0.0007	1.0000	0.0000	0.9986	0.0021	0.9979	0.0021	0.9977	0.0022	0.9983	0.0020	0.9987	0.0014	0.9995	0.0007
Ridge	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9989	0.0017	0.9974	0.0022	0.9953	0.0028	0.9957	0.0023	0.9986	0.0022	0.9971	0.0033	0.9996	0.0026	0.9985	0.0019	0.9966	0.0028	0.9928	0.0049
E-net	0.9984	0.0021	0.9961	0.0027	0.9939	0.0031	0.9945	0.0024	0.9979	0.0026	0.9961	0.0040	0.9991	0.0027	0.9978	0.0025	0.9952	0.0032	0.9920	0.0047
SCAD	0.9943	0.0051	0.9956	0.0037	0.9979	0.0020	1.0000	0.0000	0.9947	0.0047	0.9934	0.0047	0.9954	0.0040	0.9945	0.0048	0.9964	0.0028	0.9990	0.0012
MCP	0.9987	0.0016	0.9987	0.0016	0.9996	0.0007	1.0000	0.0000	0.9984	0.0021	0.9979	0.0021	0.9977	0.0022	0.9983	0.0020	0.9987	0.0014	0.9995	0.0007

Table SM34: Mean and standard deviation of the β -specificity for Model 1 when n=1000 and p=10. See Figure SM34 for the corresponding visualization.

E	ŀ														-					
Corr		Independent 0	Symmetric 0.2	tric	75		6 0		Autoregressive 0.2	essive	75		6 0		Blockwise 0.2	ě	75		6.0	
σ Model	l Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS			Ľ	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000
AIC B			_	0.1431	0.8200	0.1548	0.8317	0.1562	0.8367	0.1479	0.8050	0.1774	0.8067	0.1949	0.8417	0.1542	0.8300	0.1724	0.8350	0.1700
BICB		_	_	0.0454	0.9917	0.0435	0.9933	0.0328	0.9883	0.0489	0.9900	0.0398	0.9817	0.0707	0.9933	0.0328	0.9950	0.0286	0.9883	0.0427
AIC			_	0.1431	0.8200	0.1548	0.8317	0.1562	0.8367	0.1479	0.8050	0.1774	0.8050	0.1954	0.8417	0.1542	0.8300	0.1724	0.8350	0.1700
BICS	<u> </u>			0.0454	0.9917	0.0435	0.9933	0.0328	0.9883	0.0489	0.9900	0.0398	0.9817	0.0707	0.9933	0.0328	0.9950	0.0286	0.9883	0.0427
AICF			_	0.1430	0.8400	0.1478	0.8483	0.1443	0.8400	0.1439	0.8333	0.1589	0.8700	0.1528	0.8417	0.1542	0.8467	0.1686	0.8517	0.1622
BICA				0.0454	0.9950	0.0286	0.9933	0.0328	0.9917	0.0365	0.9900	0.0398	0.9917	0.0435	0.9933	0.0328	0.9950	0.0286	0.9883	0.0427
AICSF				0.1430	0.8400	0.1478	0.8483	0.1443	0.8400	0.1439	0.8333	0.1589	0.8700	0.1528	0.8417	0.1542	0.8467	0.1686	0.8517	0.1622
DIG	0.9917		0.9867	0.0454	0.9950	0.0280	0.9933	0.0328	0.9917	0.0303	0.9900	0.0398	0.9917	0.0435	0.9933	0.0328	0.9950	0.0286	0.9883	0.0427
Lasso		3 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000
F-net			_	0.0840	0.9433	0.0954	0.9150	0.1219	0.9867	0.0512	0.9467	0.0944	0.8100	0.1461	0.9600	0.0890	0.9067	0.1283	0.7250	0.1731
SCAD			_	0.2275	0.8950	0.2353	0.9417	0.1429	0.8833	0.2178	0,8533	0.2845	0.9183	0.1989	0.8967	0.2232	0.9017	0.2310	0.9267	0.1972
MCP				0.2308	0.9000	0.2439	0.9450	0.1320	0.8867	0.2271	0.8650	0.2810	0.9217	0.1827	0.9133	0.2216	0.9233	0.2189	0.9333	0.1925
3 OFS	0.0000	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
AIC B	B 0.8317	7 0.1526	0.8450	0.1576	0.8217	0.1729	0.8183	0.1573	0.8317	0.1633	0.8250	0.1747	0.8200	0.1934	0.8183	0.1710	0.8183	0.1726	0.8317	0.1633
BIC B	3 0.9917		_	0.0489	0.9900	0.0463	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9850	0.0631	0.9933	0.0328	0.9917	0.0365	0.9917	0.0365
AIC SB	_		_	0.1576	0.8217	0.1729	0.8183	0.1573	0.8317	0.1633	0.8250	0.1747	0.8183	0.1926	0.8183	0.1710	0.8183	0.1726	0.8317	0.1633
BICS	SB 0.9917	7 0.0365		0.0489	0.9900	0.0463	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9850	0.0631	0.9933	0.0328	0.9917	0.0365	0.9917	0.0365
AIC F		Ī	_	0.1601	0.8250	0.1698	0.8217	0.1540	0.8383	0.1525	0.8600	0.1530	0.8717	0.1399	0.8250	0.1613	0.8400	0.1640	0.8517	0.1551
BICF			_	0.0489	0.9933	0.0328	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9917	0.0435	0.9933	0.0328	0.9917	0.0365	0.9917	0.0365
AIC SF			_	0.1573	0.8250	0.1698	0.8217	0.1540	0.8383	0.1525	0.8600	0.1530	0.8717	0.1399	0.8250	0.1613	0.8400	0.1640	0.8517	0.1551
BIC SF	ſr.		_	0.0489	0.9933	0.0328	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9917	0.0435	0.9933	0.0328	0.9917	0.0365	0.9917	0.0365
Ridge			_	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.c
Lasso			_	0.0581	0.9567	0.0966	0.9317	0.1062	0.9883	0.0427	0.9683	0.0738	0.8733	0.1404	0.9900	0.0619	0.9333	0.1059	0.8267	0.1400
E-net			_	0.0796	0.9367	0.1155	0.9050	0.1237	0.9750	0.0598	0.9550	0.0849	0.8167	0.1633	0.9800	0.0760	0.8933	0.1287	0.7467	0.1411
SCAD	-		_	0.2057	0.8933	0.2375	0.9100	0.2030	0.8833	0.2278		0.2363	0.9067	0.2083	0.9150	0.2165	0.8950	0.2458	0.9267	0.1915
				0.1961	0.9133	0.2241	0.9100	0.1872	0.8983	0.2183		0.2250	0.9083	0.2043	0.9250	0.21111	0.9117	0.2302	0.9317	0.1867
9 OFS			_	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0		0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0
AICB			_	0.1576	0.8217	0.1729	0.8183	0.1573	0.8317	0.1633		0.1747	0.8200	0.1934	0.8183	0.1710	0.8183	0.1726	0.8317	0.1633
BICB			_	0.0489	0.9900	0.0463	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9850	0.0631	0.9933	0.0328	0.9917	0.0365	0.9917	J.U365
AICSB				0.1576	0.8217	0.1729	0.8183	0.1573	0.8317	0.1633	0.8250	0.1747	0.8183	0.1926	0.8183	0.1710	0.8183	0.1726	0.8317	J.1633
BIC	m			0.0489	0.9900	0.0463	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9850	0.0631	0.9933	0.0328	0.9917	0.0365	0.9917	J.U365 J.T.T.1
AICF	0.8317	7 0.1526	0.8467	0.1601	0.8250	0.1098	0.8217	0.1540	0.8383	0.1525	0.8600	0.1330	0.8/1/	0.1399	0.8250	0.1013	0.8400	0.1640	0.8517	J.1551
TO CIV	Ĺ.			0.0463	0.0000	0.0020	0.9930	1570	0.3630	0.0 1 2 2 1	0.3600	0.0000	0.3311	0.0435	0.0000	0.0020	0.3311	0.0000	0.9317	0.0000
BIC				0.0489	0.9933	0.0328	0.9950	0.0371	0.9883	0.0427	0.9850	0.0535	0.9917	0.0435	0.9933	0.0328	0.9917	0.0365	0.9917	0.0365
Ridge				0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0,000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000.0	0,000
Lasso			_	0.0581	0.9567	0.0966	0.9317	0.1062	0.9883	0.0427	0.9683	0.0738	0.8733	0.1404	0.9900	0.0619	0.9333	0.1059	0.8267	0.1400
E-net	0.9850			0.0796	0.9367	0.1155	0.9050	0.1237	0.9750	0.0598	0.9550	0.0849	0.8167	0.1633	0.9800	0.0760	0.8933	0.1287	0.7467	0.1411
SCAD			_	0.2057	0.8933	0.2375	0.9100	0.2030	0.8833	0.2278	0.8833	0.2363	0.9067	0.2083	0.9150	0.2165	0.8950	0.2458	0.9267	0.1915
MCP			_	0.1961	0.9133	0.2241	0.9100	0.1872	0.8983	0.2183	0.9033	0.2250	0.9083	0.2043	0.9250	0.2111	0.9117	0.2302	0.9317	0.1867

Table SM35: Mean and standard deviation of the β -specificity for Model 1 when n=1000and p = 100. See Figure SM35 for the corresponding visualization.

		$^{\mathrm{SD}}$	0.0000	0.0434	0.0053	0.0429	0.0053	0.0000	0.0227	0.0238	0.0172	0.0140	0.0000	0.0505	0.0071	0.0494	0.0071	0.0000	0.0209	0.0225	0.0174	0.0106	0.0000	0.0505	0.0071	0.0494	0.0071	0.0000	0.0209	0.0225	0.0174	0.0106
	6.0	Mean	0.0000	0.9079	0.9972	0.9096	0.9972	0.000	0.9670	0.9595	0.9805	0.9876	0.000.0	0.9071	0.9967	0.9080	0.9967	0.0000	0.9696	0.9617	0.9826	0.9900	0.000.0	0.9071	0.9967	0.9080	0.9967	0.000	0.9696.0	0.9617	0.9826	0.9900
		$^{\mathrm{SD}}$	0.0000	0.0457	0.0084	0.0452	0.0084	0.000.0	0.0153	0.0188	0.0267	0.0101	0.000.0	0.0428	0.0087	0.0421	0.0087	0.000.0	0.0174	0.0229	0.0310	0.0159	0.000.0	0.0428	0.0087	0.0421	0.0087	0.000.0	0.0174	0.0229	0.0310	0.0159
	0.5	Mean	0.000.0	0.8484	0.9930	0.8492	0.9930	0.000.0	0.9897	0.9842	0.9851	0.9956	0.000.0	0.8538	0.9929	0.8548	0.9929	0.000.0	0.9874	0.9804	0.9840	0.9928	0.000.0	0.8538	0.9929	0.8548	0.9929	0.000.0	0.9874	0.9804	0.9840	0.9928
se		$^{\mathrm{SD}}$	0.0000	0.0382	0.0108	0.0372	0.0108	0.0000	0.0104	0.0130	0.0328	0.0203	0.0000	0.0438	0.0103	0.0416	0.0100	0.0000	0.0129	0.0168	0.0349	0.0234	0.0000	0.0438	0.0103	0.0416	0.0100	0.0000	0.0129	0.0168	0.0349	0.0234
Blockwise	0.2	Mean	0.0000	0.8422	0.9896	0.8434	0.9896	0.0000	0.9943	0.9919	0.9825	0.9908	0.0000	0.8367	0.9901	0.8390	0.9902	0.0000	0.9943	0.9907	0.9834	0.9895	0.0000	0.8367	0.9901	0.8390	0.9902	0.0000	0.9943	0.9907	0.9834	0.9895
		SD	0.0000	0.0481	0.0061	0.0455	0.0061	0.0000	0.0307	0.0330	0.0306	0.0165	0.000.0	0.0434	0.0061	0.0421	0.0061	0.0000	0.0320	0.0361	0.0277	0.0168	0.000.0	0.0434	0.0061	0.0421	0.0061	0.0000	0.0320	0.0361	0.0277	0.0168
	6.0	Mean	0.0000	0.9081	0.9959	0.9110	0.9959	0.0000	0.9441	0.9329	0.9693	0.9844	0.0000	0.9124	0.9960	0.9152	0.9960	0.0000	0.9436	0.9311	0.9727	0.9850	0.0000	0.9124	0.9960	0.9152	0.9960	0.0000	0.9436	0.9311	0.9727	0.9850
		$^{\mathrm{SD}}$	0.0000	0.0436	0.0097	0.0421	0.0086	0.0000	0.0125	0.0191	0.0364	0.0189	0.0000	0.0408	0.0076	0.0397	0.0076	0.0000	0.0089	0.0145	0.0384	0.0173	0.0000	0.0408	0.0076	0.0397	0.0076	0.0000	0.0089	0.0145	0.0384	0.0173
	0.5	Mean	0.0000	0.8538	0.9927	0.8556	0.9929	0.0000	0.9935	0.9885	0.9832	0.9922	0.0000	0.8506	0.9932	0.8530	0.9932	0.0000	0.9954	0.9906	0.9846	0.9931	0.0000	0.8506	0.9932	0.8530	0.9932	0.0000	0.9954	0.9906	0.9846	0.9931
Autoregressive		$^{\mathrm{SD}}$	0.0000	0.0395	0.0098	0.0390	0.0098	0.0000	0.0093	0.0126	0.0384	0.0223	0.000.0	0.0447	0.0098	0.0436	0.0098	0.000.0	0.0086	0.0124	0.0443	0.0176	0.000.0	0.0447	0.0098	0.0436	0.0098	0.0000	0.0086	0.0124	0.0443	0.0176
Autores	0.5	Mean	0.0000	0.8299	0.9907	0.8307	0.9907	0.0000	0.9965	0.9944	0.9834	0.9916	0.0000	0.8366	0.9906	0.8377	0.9906	0.0000	0.9960	0.9934	0.9785	0.9911	0.0000	0.8366	0.9906	0.8377	0.9906	0.0000	0.9960	0.9934	0.9785	0.9911
		$^{\mathrm{SD}}$	0.0000	0.0428	0.0099	0.0430	0.0099	0.0000	0.0231	0.0259	0.0091	0.0083	0.0000	0.0481	0.0088	0.0474	0.0088	0.0000	0.0243	0.0268	0.0082	0.0050	0.0000	0.0481	0.0088	0.0474	0.0088	0.0000	0.0243	0.0268	0.0082	0.0050
	6.0	Mean	0.0000	0.8382	0.9920	0.8391	0.9920	0.000	0.9788	0.9655	0.9972	0.9977	0.000	0.8306	0.9922	0.8316	0.9922	0.000.0	0.9788	0.9696	0.9972	0.9984	0.0000	0.8306	0.9922	0.8316	0.9922	0.000.0	0.9788	0.9696	0.9972	0.9984
		$^{\mathrm{SD}}$	0.0000	0.0429	0.0092	0.0424	0.0092	0.0000	0.0191	0.0236	0.0261	0.0178	0.0000	0.0421	0.0087	0.0403	0.0087	0.0000	0.0161	0.0222	0.0207	0.0095	0.0000	0.0421	0.0087	0.0403	0.0087	0.0000	0.0161	0.0222	0.0207	0.0095
	0.5	Mean	0.0000	0.8345	0.9929	0.8353	0.9929	0.0000	0.9865	0.9788	0.9875	0.9941	0.0000	0.8341	0.9919	0.8354	0.9919	0.0000	0.9882	0.9778	0.9889	0.9962	0.0000	0.8341	0.9919	0.8354	0.9919	0.0000	0.9882	0.9778	0.9889	0.9962
tric		$^{\mathrm{SD}}$	0.0000	0.0458	0.0093	0.0459	0.0093	0.0000	0.0163	0.0214		0.0165		0.0419	0.0099	0.0413	0.0099	0.0000	0.0141	0.0195	0.0353	0.0193	0.0000	0.0419	0.0099	0.0413	0.0099	0.0000	0.0141	0.0195	0.0353	0.0193
Symmetric	0.2	Mean	0.0000	0.8362	0.9928	0.8364	0.9928	0.000	0.9919	0.9874	0.9829	0.9920	0000.0	0.8353	0.9928	0.8364	0.9928	0.000	0.9936		_	0.9915	0000.0	0.8353	0.9928	0.8364	0.9928	0.000	0.9936	0.9883	0.9828	0.9915
ndent		SD	0.0000	0.0391	0.0112	0.0389	0.0112	0.000.0	0.0087	0.0145	0.0413	0.0211	0.0000	0.0391	0.0112	0.0389	0.0112	0.0000	0.0087	0.0145	0.0413	0.0211	0.0000	0.0391	0.0112	0.0389	0.0112	0.000.0	0.0087	0.0145	0.0413	0.0211
Independent	0	Mean	0.0000	0.8329	0.9905	0.8334	0.9905	0.0000	0.9969	0.9943	0.9791	0.9898	0.0000	0.8329	0.9905	0.8334	0.9905	0.0000	0.9969	0.9943	0.9791	0.9898	0.0000	0.8329	0.9905	0.8334	0.9905	0.0000	0.9969	0.9943	0.9791	0.9898
Lype	Corr.	Model	OLS	AIC F	BIC F	AIC SF	3IC SF	Ridge	Lasso	E-net	SCAD	MCP	STC	AIC F	BIC F	AIC SF	BIC SF	Ridge	Lasso	E-net	SCAD	MCP	OLS	AIC F	BIC F	AIC SF	3IC SF	Ridge	Lasso	E-net	SCAD	MCP
	•	ρ	1	7	_	7			-		-1	-	3	7	-	7	7	_			J 1		9	7	_	7		-	7	_	-1	

Table SM36: Mean and standard deviation of the β -specificity for Model 1 when n=1000and p=2000. See Figure SM36 for the corresponding visualization.

Indep	Independent	Symmetric	tric					Autoregressive	ressive					Blockwise	se				
0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
0.000			0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000
0.999			0.0012	0.9977	0.0022	0.9973	0.0019	0.9997	0.0008	0.9994	0.0015	0.9886	0.0052	0.9998	0.0006	0.9991	0.0015	0.9949	0.0021
0.9998			0.0017	0.9964	0.0025	0.9959	0.0022	0.9996	0.0011	0.9990	0.0019	0.9863	0.0058	0.9996	0.0008	0.9985	0.0019	0.9938	0.0023
1.000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
1.0000	0000000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000.0
0.000			0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.999			0.0013	0.9977	0.0018	0.9974	0.0020	0.9997	0.0009	0.9995	0.0011	0.9890	0.0048	0.9998	0.0006	0.9991	0.0012	0.9949	0.0024
0.9998			0.0017	0.9963	0.0022	0.9962	0.0024	0.9995	0.0011	0.9991	0.0016	0.9867	0.0052	0.9996	0.0009	0.9985	0.0016	0.9938	0.0027
1.000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
1.000			0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000
0.000			0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
0.999			0.0013	0.9977	0.0018	0.9974	0.0020	0.9997	0.0009	0.9995	0.0011	0.9890	0.0048	0.9998	0.0006	0.9991	0.0012	0.9949	0.0024
0.9998			0.0017	0.9963	0.0022	0.9962	0.0024	0.9996	0.0010	0.9991	0.0016	0.9867	0.0052	0.9996	0.0009	0.9985	0.0016	0.9938	0.0027
1.000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
1.0000			0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0001	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

 $\begin{array}{c} 151 \\ 152 \\ 153 \\ 154 \\$

SM5. Tables from the non-linear simulations.

SM5.1. Tables for the training MSE of the non-linear simulations.

Table SM37: Mean and standard deviation of the training MSE for Model 2 when n=50and p = 10. See Figure SM37 for the corresponding visualization.

	Type	Independent	lent	Symmetric	ric					Autoregressive						Blockwise					
	Corr.	0	1	0.5	į	0.2	į	6.0												6.0	į
ь	Model	Mean	SD	Mean	SD	άΣI	SD	Mean	SD	Mean	SD	Mean	SD	Mean	Ц,	- 1.	SD	Mean	SD	Mean	SD
П	OLS	4.99	1.44	5.39	1.30	5.24	1.51	5.73	1.58	5.06	1.24	4.99	1.17	5.13 7.45	1.55	5.06	1.35	86.4 80.0	1.34	5.12 5.45	1.5
	BICB	5.68	1.69		1.51		1.64	6.57	1.80	5.76	1.42	5.70	388	5.74	1.71	2 8.5	1.56	5.63	1.64	. x.	1.7
	AIC SB	5.31	1.59	5.73	1.40	5.60	1.62	6.14	1.70	5.39	1.33	5.30	1.26	5.45	1.68	5.37	1.47	5.28	1.43	5.44	1.6
	BIC SB	5.68	1.69	6.11	1.51		1.64	6.57	1.81	5.76	1.42	5.70	1.38	5.74	1.71	5.85	1.58	5.63	1.64	5.84	1.7
	AIC F	5.33	1.60	5.81	1.42		1.61	6.29	1.71	5.41	1.35	5.41	1.27	5.62	1.69	5.41	1.48	23.38	1.59	5.55	1.7
	BICF	5.72	1.68	6.22	1.60	0.00	1.64	6.65	i 0	5.82	1.44	5.78	1.34	5.93	1.74	5.92	1.59	5.72	1.65	5.94	1 00
	AIC SF	0.00	1.00	0.81	1.42		1.01	6.29	 	24.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	1.35	5.77	1.27	0.02 4.02	1.08	5.41	1.48	0.00	1.09 1.65	0.00 0.00	- x
	Ridge	7.64	3.48	8.36	2.98	-	3.11	9.20	3.19	7.48	2.40	7.55	2.84	8.30	3.01	7.58	2.72	7.80	2.91	8.03	3.0
	Lasso	7.86	2.77	8.28	2.54	7.77	2.58	8.23	2.86	7.79	2.17	7.47	2.24	7.37	2.65	7.91	2.72	7.41	2.45	7.25	2.8
	E-net	7.87	2.80	8.29	2.55	7	2.57	8.27	2.85	7.81	2.20	7.45	2.26	7.39	2.68	7.91	2.72	7.41	2.50	7.27	2.9
	SCAD	5.80	1.79	6.30	1.57	6.01	1.82	6.60	1.87	5.95	1.55	7.0 r 80.0	1.39	75.7 48.6	- 5	5.97	1.76	7.0 r 00 0	1.67	5.74	1.9
	MCF XGBoost	5.85	80.1	0.44	1.02	0.07	1.90 0.01	0.00	L.90	5.98	1.02	0.00	1.38	0.82	8.10	0.00	1.7	0.00	1.72	0.04	200
	RF	1.39	0.0	1.35	0.34	1.14	0.33	0.67	0.0	1.34	0.27	1.36	0.29	1.00	0.04	1.37	0.29	1.29	0.29	1.11	0.0
	$_{ m SVM}$	0.76	0.70	0.89	0.97	1.07	06.0	1.62	0.80	0.78	0.65	96.0	0.88	1.55	0.84	0.94	1.01	1.03	0.87	1.72	0.8
က	OLS	124.27	64.80			127.72	68.62	121.50	63.02	122.36	63.24	133.23	68.31	123.59	69.03	131.64	65.01	129.48	64.95	116.63	60.4
	AIC B	133.48	68.73	145.07		136.72	72.97	130.26	67.08	131.53	67.67	142.74	75.11	132.31	75.35	141.40	69.78	139.36	71.13	124.53	63.5
	AIC SB	133.44	68.74		68.00	136.72	72.97	130.04	67.09	131.52	67.67	153.22	80.08 74.52	132.26	75.37	151.40	69.77	139.19	71.18	124.47	63.4
	BICSB	145.55	73.75		70.24	146.46	77.70	139.94	71.34	142.18	72.90	153.00	80.20	140.35	77.33	151.15	75.96	149.22	76.75	131.44	67.4
	AIC F	135.07	69.26		68.72	139.23	73.61	134.89	70.30	133.13	68.46	145.07	76.04	137.22	74.71	143.53	72.56	142.83	74.94	130.03	67.1
	BICF	146.57	73.44	156.20	70.40	150.31	78.23	145.12	73.00	143.09	74.12	155.87	80.64	147.05	89.22	152.87	76.04	153.72	80.50	136.05	72.5
	AICSF	135.07	69.26	146.71	68.72	139.22	73.61	134.94	70.32	133.17	68.44	145.12	76.01	137.80	76.42	143.55	72.54	142.84	74.94	130.06	66.9
	BICSF	146.57	73.44	156.20		150.53	78.28	145.20	73.01	143.09	74.12	155.87	80.64	147.52	89.38	152.87	76.04	153.76	80.45	136.06	72.5
	Lasso	223.07	100.71	247.35	113.58	231.15	113.39	210.51	134.88	218.74	108.40	243.97	118.13	224.39	141.49	255.59	118.06	235.95	113.27	195.77	98.7
	E-net	219.27	107.79	241.24		1 (1	113.20	203.41	135.57	214.21	108.06	234.77	115.76	213.59	142.52	228.60	117.65	228.71	113.68	195.84	99.2
	$_{\text{SCAD}}$	152.31	85.32	164.37	83.14	155.41	90.77	142.84	79.66	151.87	90.15	162.55	93.73	146.79	90.47	161.90	84.44	155.95	89.31	136.91	74.1
	MCP	152.32	81.54	163.86	81.56	152.53	86.65	141.02	78.10	152.52	85.68	164.39	95.01	145.66	90.12	162.04	82.69	158.48	91.53	136.89	73.9
	XGBoost	0.10	0.11	0.10	0.11	0.14	0.14	0.00	0.15	0.12	0.13	0.13	0.12	0.13	0.15	0.11	0.11	0.12	0.13	0.15	0.1
	SVM	24.58	18.12	26.67	14.08 25.99	23.51	33.49	14.02 22.33	12.41	19.42	12.36 25.55	24.84	13.01	17.75 20.41	13.42	26.16	14.39 23.95	24.25	19.90	17.43	7.0
9	OLS		1007.22	2043.56	10		1077.30	1796.53	968.68	1834.81	1012.53	2000.52	1052.33	1853.66	1054.10	1986.77	1043.11	1962.07	1032.92	1728.95	941.8
	AIC B		1082.74	2197.58	1078.92	20	1179.20	1922.67	1026.71	1984.03	-	2161.73 1		1980.64	1124.63	~	1133.12	2101.71	1096.03	1847.13	993.2
	BIC B	2188.99	1156.36	2369.72	1162.31		1210.93	CI I	1119.25	2150.02	ΔI.	2321.75		2100.63	1155.00		1226.73	2272.28	1233.88	1967.21	1062.6
	AIC SB	2017.39	1077.21	2197.58	1078.92	2050.88	1178.59	1921.64	1025.53	1980.99	1096.71	2157.83 1	1149.88	1979.34	1123.34	2142.84	1131.17	2101.71	1096.03	1846.56	993.6
	AIC F	2038.74	1075.83	2243.78	1115.76	1 8	1189.68	2012.68	1095.66	1995.88		2194.35		2090.45	1283.45		1152.23	2165.66	1152.33	1915.58	1087.4
	BICF	2214.93	1165.89	2417.29	1205.08		1240.92	2164.77	1178.25	2168.97		2339.38 1		2182.46	1284.83		1231.95	2313.72	1249.85	2032.92	1132.3
	AIC SF	2039.41	1077.35	2244.43	1115.40	2	1191.36	2014.72	1098.59	1995.85		2195.56		2094.56	1287.42		1152.09	2170.95		1916.98	1087.3
	BICSF	2215.99	1165.90	2420.57	1205.39		1240.92	2166.64	1178.20	2168.97		2339.38 1	~ .	2184.35	1288.72	2320.72	1231.95	2313.72		2032.92	1132.3
	Kidge	2885.95	1357.52	3182.05	1589.38	m 8	1591.92	2892.60	1740.08	2745.67		3040.68		2917.16	1786.44	3000.91	1544.14	3000.55		2633.77	1239.0
	Lasso F-net	2870.99	1364.93	3162.46	1575.78	3008.76	1605 99	2824.02	1744.41	2736.25	1479.32	3029.87	1470.26	2840.51	1770 13	2979.42	1545.15 1545.76	2977.84	1393.19	2608.21	1239.0
	SCAD	2405.07	1328.00	2581.99	1318.44		1465.81	2205.05	1218.54	2347.47		2581.78	. ~	2360.42	1703.17	2600.94	1495.54	2468.32	1358.00	2115.69	1181.5
	MCP	2414.44	1359.68	2594.76	1323.94	2372.18	1466.15	2170.21	1197.48	2346.58	1433.23	2599.57	1515.14	2359.86	1770.47	2623.59	1511.00	2456.60	1376.18	2113.73	1148.2
	XGBoost	0.47	0.49			0.54	0.65	0.17	0.40	0.56	0.68	0.63	0.64	0.37	0.60	0.55	0.51	0.61	0.65	0.88	0.0
	RF.	280.08	21.08	312.67	222.88	269.55	172.59	173.35	168.22	268.82	194.95	282.22	304.63	202.16	203.21	314.01	230.89	273.35	155.01	181.81	103.6
	D V IVI	990.00	012.04			ါ	402.03	70.417	010.44	909.09	410.04	040.13	304.03	304.20	000.03	420.13	411.00	977.776	20.062	70.177	200.0

Table SM38: Mean and standard deviation of the training MSE for Model 2 when n=50and p=100. See Figure SM38 for the corresponding visualization.

		SD	2.57	3.46	3.42	2.69	2.51	0.00	0.19	09.0	117.28	112.69	112.27	79.93	80.89	0.00	6.83	19.71	1464.83	1494.43	1493.70	1299.63	1309.96	0.01	104.28	243.82
	6.0	ru	12.78	8.27	8.31	7.10	6.90	0.00	0.73	0.79	240.03	212.21	211.92	144.76	142.52	0.00	14.44	19.60	2817.89	2732.31	2736.15	2182.22	2227.68	0.01	184.85	294.14
		SD	3.17	2.04	2.06	1.56	1.55	0.00	0.36	0.58	80.76	108.81	108.69	84.70	86.86	0.00	12.11	38.63	1229.20	1256.91	1255.40	1324.98	1363.84	0.00	158.20	616.21
	0.5		16.87	7.77	7.73	5.80	6.05	0.00	1.44	0.50	265.06	228.08	229.59	156.99	159.22	0.00	28.40	33.87	2929.04	2897.90	2899.24	2495.77	2570.48	0.00	325.55	663.99
_	_	SD	4.06	2.61	2.62	1.48	1.62	0.00	0.33	0.43	107.19	112.53	111.89	91.14	96.40	0.00	15.28	65.03	1484.25	1460.26	1466.71	1433.83	1473.16	0.00	240.74	794.44
Blockwise	0.2	an	19.35	8.22	8.29	5.00	5.52	0.00	1.72	0.42	264.52	225.53	227.48	142.07	157.98	0.00	31.24	52.41	2883.26	2828.19	2834.54	2342.91	2438.19	0.00	356.90	897.00
_	_	SD	3.57	2.98	3.01	2.40	2.61	0.00	0.34	0.34	150.34	154.69	155.17	111.00	126.36	0.00	13.25	52.03	816.80	1871.34	870.31	821.86	852.01	0.00	186.07	758.20
	6.	Mean S	19.51	8.55	8.62	6.42	82.9	0.00	1.21	0.53	298.23	250.77	251.11	170.90	176.43	0.00	23.53	36.92	3288.13 1	3194.62	3197.39	2743.75 1	2827.36	0.00	286.66	746.94
	0	SD N	4.59	2.63	2.69	1.63	1.58	0.00	0.41	0.68	95.45	102.11	101.78	79.61	85.88	0.00	11.97	50.74	335.18 3	324.47 3	325.90 3	271.40 2	297.71 2	0.00	169.24	857.16
	0.5	Mean S	21.67	8.58	8.71	5.40	5.90	0.00	1.87	0.55	256.18	213.10	215.51	132.43	143.63	0.00	29.23	43.98	744.40 1	672.10 1	675.10 1	Ξ	2272.11 1	0.00	333.49	995.55
sive	0	SD N	4.32	2.90	3.10	1.55	1.70	0.00	0.41	1.57	89.40	106.29			86.75	0.00	13.34	61.39	307.91 2	349.68 2	350.46 2	310.85 2	315.58 2	0.00	179.97	015.63
Autoregressive	0.2	чu	21.14	9.58	9.20	5.49	6.11	0.00	1.91	1.04	261.68	529.66	231.28	149.03	163.22	0.00	30.55	53.58	3	2886.09 1	2885.11 13	2439.46 13	2517.08 1	0.00	343.79	152.75
∢	0		2.77	5.89	2.84	2.03	1.95	0.00	0.23	1.89	. 56.69	11.96	.13.35	75.22	78.65	0.01	12.46	36.03	1830.14 29	843.63 2	837.15 28	309.12 2	311.80 2	0.03	173.90	183.30
	6.0	ean SD	10.38	8.00	8.03	7.10	92.9	0.00	0.80	1.66	239.19	204.33	205.93	148.31	146.55	0.00	14.55	23.71	2986.54 18	2890.52 18	2884.31 18	277.18 13	2282.24 13	0.01	182.32	327.06 4
	0.9		3.32	3.24	3.30	2.16	2.30	0.00	0.34	98.0	87.14 2		90.00	54.13 1	70.23 1	0.00	9.26	36.86	120.15 29	122.18 28	124.19 28	993.13 22	981.77 22	0.00	127.37 1	304.71 3
		an SD	.5.12	7.71	7.53	6.05	6.26	0.00	1.50	0.70	3	m	-	0.05	8.33	0.00	6.29	2	3 1	1	7	7	0	0.00	_	_
	0.5	Mean	4.54	3.42	3.41	1.85	1.99	0.00	0.43	1.55	9.81 23	9.35 20	9.41 20	3.26 - 14	2.06 - 14	0.00	2.92	3.21 3	4.56 270	3.20 264	7.69 264	3.87 216	4.72 220	0.00	6.65 29	8.41 60
nmetric		Mean SD	8.23	8.42	8.37	5.30	5.89	0.00	1.78	0.73	6 99.6	5.80 10	$6.65 ext{10}$	9.03 7	6.21 7	0.00	1.26 1	36.88 4	6.79 131	0.98 137	5.17 136	8.80 124	8.95 133	0.00	8.40 18	4.60 69
Syn	0.2	Mea									ı								l							
Independent		n SD	17	.28	.51	52	80.9	00.0	.78	.96 1.68	3.54 9.	103	3.07 109	36 93	1.31	00.0	.44 1:	3.71 68	5.40 1370	3.69 1410	5.87 1413	3.51 149	2.77 148	00.0	3.70 188	3.38 117
		Mean			_					96.0					_											
Type	Corr.	Model	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	$_{\text{SCAD}}$	MCP	XGBoos	RF	$_{ m SVM}$	Ridge	Lasso	E-net	SCAD	MCP	XGBoos	RF	$_{ m SVM}$
											_								_							

Table SM39: Mean and standard deviation of the training MSE for Model 2 when n=50 and p=2000. See Figure SM39 for the corresponding visualization.

Table SM40: Mean and standard deviation of the training MSE for Model 2 when n=200and p=10. See Figure SM40 for the corresponding visualization.

	E	To Jane	1							V					ŀ	-10					
	туре Согг.	Independent	dent	Symmetric 0.2	ric	0.5		6.0		Autoregressive 0.2	essive	0.5		0.9		Diockwise 0.2		5.5		6.0	
ь	Model	Je	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	an	SD	an	SD	Mean	SD	Mean	SD	Mean	SD
1	OLS	6.26	0.63	6.43	0.74	6.34	69.0	7.11	1.03	6.31	0.81	6.29	0.70	6.42	0.81	6.32	08.0	6.22	89.0	6.23	0.83
	AIC B	6.35	0.64	6.52	0.76	6.43	0.70	7.23	1.04	6.40	0.83	6.38	0.71	6.50	0.82	6.41	0.82	6.30	0.70	6.32	0.84
	BICB	6.54	0.67	6.69	0.80	6.57	0.72	7.38	1.07	6.57	0.86	6.53	0.74	6.63	0.80	6.57	0.80	6.45	0.72	6.45	0.87
	AIC SB BIC SB	0.35 2.75	0.64	6.52	90	6.43	0.70	7.23	1.04	6.40	0.83	0.0 0.0 0.0 0.0 0.0	0.71	0.50	0.82	6.41	0.82	6.30	0.70	6.32 7.72	48.0
	AIC F	6.35	0.64	6.52	0.76	6.43	0.70	7.24	1.04	6.40	0.83	6.39	0.71	6.52	0.83	6.41	0.82	6.31	0.69	6.33	0.86
	BICF	6.54	0.67	69.9	0.80	6.58	0.72	7.39	1.07	6.57	0.86	6.54	0.75	6.65	0.86	6.58	0.86	6.47	0.73	6.46	0.87
	AIC SF	6.35	0.64	6.52	0.76	6.43	0.70	7.24	1.04	6.40	0.83	6.39	0.71	6.52	0.83	6.41	0.82	6.31	0.69	6.33	98.0
	BIC SF	6.54	0.67	69.9	0.80	6.58	0.72	7.39	1.07	6.57	98.0	6.54	0.75	6.65	0.86	6.58	98.0	6.47	0.73	6.46	0.87
	Ridge	7.08	0.77	7.36	0.97	7.32	0.90	8.61	1.36	7.17	1.05	7.26	1.01	7.80	1.22	7.27	1.05	7.17	0.97	7.50	1.16
	Lasso	7.36	0.84	7.52	1.01	7.26	0.90	8.12	1.30	7.39	1.12	7.32	1.01	7.46	1.15	7.45	1.08	7.21	0.97	7.17	1.14
	E-net	7.35	0.84	7.50	1.00	7.22	0.89	8.13	1.29	7.37	1.11	7.31	0.99	7.46	1.17	7.43	1.07	7.17	0.96	7.15	1.12
	SCAD	6.44	0.72	6.61	0.76	6.51	0.74	7.33	1.09	6.47	0.87	6.47	92.0	6.64	98.0	6.49	0.85	6.40	0.76	6.40	0.87
	MCP	6.44	0.72	6.62	0.77	6.51	0.74	7.33	1.08	6.47	0.85	6.48	0.79	6.62	0.87	6.51	0.88	6.40	0.77	6.41	98.0
	XGBoost	0.36	0.12	0.38	0.10	0.36	0.15	0.14	0.20	0.39	0.10	0.39	0.09	0.30	0.20	0.38	0.12	0.39	0.11	0.40	0.13
	RF	0.70	0.08	0.70	0.08	0.58	0.07	0.36	0.05	0.71	0.08	0.67 1 55	0.07	0.47	0.06	0.71	0.08 7.08	0.65	0.08	0.52 1.95	0.06
c	SIC	154 90	20.71	152.57	28 17	163.70	36.41	160.50	28.41	18. 18. 18. 18.	41.05	163 30	27.25	161 13	27.67	160 40	37.48	154.51	33.98	163 39	30.25
5	AIC B	157.39	29.98			166.24	36.98	163.32	39.04	168.47	43.01	165.86	38.00	163.76	38.36	162.92	38.28	157.06	34.20	165.84	39.81
	BICB	161.94	31.79			170.54	38.29	166.71	30.83	173.71	44.44	170.61	39.77	167.45	90 00	167.90	39.75	161.08	34.69	169.06	41.12
	AIC SB	157.39	29.98		39.17	166.24	36.98	163.32	39.04	168.47	43.01	165.84	38.00	163.74	38.35	162.92	38.28	157.06	34.20	165.84	39.81
	BIC SB	161.94	31.79	160.18	39.97	170.54	38.29	166.71	39.83	173.71	44.44	170.54	39.68	167.33	38.72	167.86	39.80	161.08	34.69	169.06	41.12
	AIC F	157.50	29.94	156.28	39.28	166.61	37.03	163.85	39.37	168.70	43.02	166.58	38.32	165.18	38.51	162.96	38.24	157.47	34.20	166.48	39.89
	BIC F	162.21	31.97	160.18	39.97	170.93	38.16	167.19	39.83	174.00	44.66	170.87	39.53	167.78	38.73	168.10	39.91	161.34	34.88	169.40	41.32
	AIC SF	157.50	29.94	156.28	39.28	166.61	37.03	163.85	39.37	168.70	43.02	166.59	38.30	165.35	38.54	162.98	38.26	157.47	34.20	166.48	39.89
	BIC SF	162.21	31.97	_		170.93	38.16	167.19	39.83	174.00	44.66	170.90	39.55	167.84	38.81	168.10	39.91	161.34	34.88	169.45	41.32
	Ridge	202.77	46.62		58.64	216.45	57.97	207.53	56.20	222.76	71.59	215.96	58.54	212.98	57.10	212.96	59.95	201.79	50.27	217.28	63.89
	Lasso	199.78	42.76		55.75	210.26	54.10	199.86	53.41	220.57	68.39	212.77	54.49	205.36	54.46	210.30	54.81	198.52	48.98	212.73	64.01
	E-net	200.40	42.61	199.66	56.25	210.12	54.72	199.43	53.79	220.80	68.36	212.83	54.45	205.34	54.57	210.89	55.38	199.13	48.99	212.90	64.13
	SCAD	162.29	31.87		41.90	171.16	38.97	166.40	39.36	173.79	45.34	171.44	39.37	166.98	39.14	168.28	39.87	161.18	34.86	168.88	41.98
	MCF	162.40	32.06	160.84	42.42	2 24	38.73	100.11	39.41	2 01	45.64	171.57	39.37	167.15 2.19	39.23	168.24	40.60	2 04	34.90	2 18	41.92
	AGBOOSI	11.59			0.03	10.54	3 11	1.05 1.5	17.1	19.70	0.07 7.02	11 98	3.31	2.12	0 53 5 53	11.83	3 30	10.04	3 10	0.10	0.13
	SVM	10.87	. 4		4.97	13.02	10.19	14.25	13.26	14.54	13.38	12.56	7.79	13.70	2 7	11.70	6.67	11.57	2.5	14.27	0 00
9	OLS	2314.26	4	22	599.97	2447.43	574.49	2369.54	611.07	2495.68	666.82	1	594.11		601.25	2418.21	591.93	1.	530.74	1	616.49
	AIC B	2356.52	475.66	2337.63	612.63	2488.15	584.03	2413.01	623.12	2547.33	683.64		604.05		609.71		604.90	~		_	627.64
	BIC B	2413.76	493.67	2393.08	625.02	2549.08	591.97	2458.09	626.63	2609.52	701.23		617.59		617.22	_	615.35		_	_	645.36
	AIC SB	2356.52	475.66		612.63	2488.15	584.03	2413.01	623.12	2546.76	683.47		604.05	_	609.71		604.90			_	327.64
	BICSE	2413.76	493.67	2393.08	625.02	2549.08	591.97	2458.09	626.63	2609.52	701.23	2558.15 (618.16	2508.61	617.22	2524.09	615.35	2411.66	563.39		645.36
	AIC F	2501.92	410.19		60.00	2495.90	10.70E	2422.50	69.4.00	2549.55	700 64				16.710		610 50	-			020.07
	AIC SE	2357.92	476.79		612.80	2494.09	582.73	2422.56	624.65	2549.35	682.70	2503.96	60.019	2476.62	617.68	# 1	605.34			2529.03	626.85
	BICSF	2413.76	493.67	2396.27	628.23	2557.38	597.35	2469.35	632.08	2610.98	700.64				620.86		619.50				645.60
	Ridge	2795.38	529.90	2830.29	692.81	3038.70	732.88	2944.29	821.55	3048.87	792.26		684.73		88.062	10	689.35				719.21
	Lasso	2781.75	536.48	2809.82	698.72	3015.88	740.48	2906.39	826.43	3041.13	799.12	2984.55 (691.05		792.29		692.88	2812.83			726.67
	E-net	2782.18	535.88		695.93	3017.04	740.42	2907.02	828.26	3042.75	797.79		02.689		795.46		693.30		621.58		726.76
	SCAD	2419.19	499.14		642.99	2544.84	593.10	2443.93	638.28	2621.34	727.07		631.85		611.26		631.76		558.04		672.98
	MCF	2427.87	500.60	2407.76	648.48	2541.56	589.67	2445.19	635.17	2625.14	714.69	2574.18 (635.95 4.46	2500.87	630.79	2526.16	627.93 2.08	2410.43	549.34	2572.92 (19.63	659.62
	AGBOOST	113 93	20.4		20.07	100 77	0.12 16.66	07.0	26.26	137.07	73.08	116.40	4 1.1 1.1 1.1 1.1	7 0. r.	7.00	110.36	0.30	10.07	16.50	85 10	94.99
	SVM	166.87	83.36		84 93	187.93	150.34	138.28	170.54	235.16	236.04	187.50	51.55 127.94	149.88	41.72	182.09	54.66 112.71	163.80	46.20 96.49	55.10	04.22
))))	2	1)	1)	1)	>>>	1)	,	1	> 1

Table SM41: Mean and standard deviation of the training MSE for Model 2 when n=200and p = 100. See Figure SM41 for the corresponding visualization.

Independent Symmetric 0.5 0.9
lean SD Mean SD
0.52 3.31 0.51
0.74 4.37 0.71
5.98 0.89 6.13 0.84 6.38 4.31 0.73 4.36 0.71 4.51
6.13 0.84 6.39
2.00 7.19 1.70 7.93
1.25 7.67 1.14 7.50
1.25 7.63 1.13 7.43
1.05 6.60 0.88 6.88
1.05 6.68 0.90 7.01
0.03 0.06 0.02
0.12 0.87 0.10 0.72
0.15 0.36 0.10
26.20 84.90
35.65 113.92 28.96 110.83
47.64 157.88 39.86 156.09
35.92 114.35 29.41 111.17
47.80 157.92 39.84 156.21
71.11 245.92 63.77 234.33
67.40 215.23 57.57 207.41
67.50 216.12 58.13 207.38
50.70 168.15 41.57 166.11
53.88 170.15 42.07 167.56
$0.18 \mid 0.54 0.11$
5.48 15.17 3.25 13.32
29.85 16.61 21.61
412.05 1272.10 330.10
541.70 1707.72 443.80 1632.99
745.64 2369.30 634.70 2328.02
546.68 1711.97 449.70 1643.46
1 745.64 2369.72 634.51 2329.64
299
2979.96 841.58 2944.74 719.25 2933.14 759.8
841.29 2946.41 717.84 2935.67
2507.91 684.56 2439.95
842.08 2542.40 671.18 2456.82
0.61 2.60 0.59 3.02
86.00 139.10 46.21 127.63
48

Table SM42: Mean and standard deviation of the training MSE for Model 2 when n=200and p=2000. See Figure SM42 for the corresponding visualization.

	Type	Independent	ent	Symmetric	ric					Autoregr	essive					Blockwis	še.				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
L	Ridge	20.99	2.78	17.45	2.57	14.36	1.83	9.68	1.25	22.46	2.93	22.16	5.30	13.17	2.72	12.71	3.12	98.6	1.83	8.69	1.40
	Lasso	8.59	1.05	7.72	1.21	7.34	1.15	7.59	1.21	8.59	1.25	7.91	0.99	7.47	1.29	8.25	1.11	7.78	1.54	8.38	1.37
	E-net	8.74	1.10	7.61	1.21	7.18	1.12	7.55	1.23	8.71	1.31	76.7	1.02	7.51	1.29	8.30	1.12	7.75	1.55		1.37
	SCAD	6.67	0.97	6.26	0.99	6.54	0.99	7.68	1.14	6.56	1.23	6.41	1.10	6.36	1.09	6.67	1.03	6.77	1.21		1.23
	MCP	6.87	0.94	6.58	0.91	66.9	0.96	7.58	1.03	6.94	0.96	6.63	0.89	6.54	1.05	6.93	1.03	6.95	1.14		1.17
	XGBoost	00.00	0.00	00.0	00.00	0.00	00.00	00.00	0.01	00.00	0.00	00.00	0.00	00.00	0.00	0.00	00.00	00.00	0.00		00.00
	RF	1.03	0.14	0.98	0.12	0.89	0.11	0.46	90.0	1.10	0.14	1.01	0.11	0.61	0.09	1.02	0.13	0.81	0.10		90.0
	SVM		2.41	09.0	0.70	0.64	0.57	1.18	0.43	1.30	2.12	0.87	0.82	0.68	0.24	0.48	0.19	0.42	0.10	0.48	0.05
3	Ridge		52.42	261.26	50.94	234.91	58.62	185.75	54.76	281.02	59.92	277.01	50.50	284.41	74.63	268.60	60.62	259.90	80.72		67.52
	Lasso		61.01	216.57	52.79	219.55	61.90	192.92	60.28	243.81	73.25	216.54	57.09	211.56	55.74	215.14	60.45	227.72	69.18		59.33
	E-net		61.14	217.85	53.29	218.95	62.61	193.17	60.64	245.10	73.16	218.25	57.22	212.35	56.73	217.01	60.91	228.97	70.19		59.19
	SCAD		43.24	158.90	38.32	164.20	34.01	159.68	42.17	174.48	22.67	157.63	45.00	166.60	40.75	155.79	40.25	171.82	45.54		40.08
	MCP		47.21	167.14	38.30	171.04	35.84	159.43	42.68	187.55	54.87	165.88	44.17	169.69	40.35	166.70	44.05	181.22	46.60		41.11
	XGBoost		0.00	0.01	0.00	0.03	0.01	0.04	0.12	0.01	0.00	0.01	0.00	0.01	0.01	0.01	00.00	0.02	0.01		90.0
	RF		4.28	19.54	4.08	17.70	4.40	8.12	2.11	21.00	6.45	19.42	4.07	12.35	2.90	19.02	5.04	17.15	5.20		3.11
	SVM	58.68	50.36	41.22	35.01	28.87	18.88	21.10	14.15	67.91	61.57	42.47	37.83	34.87	18.02	33.32	24.74	31.99	21.42		14.07
9	Ridge		772.37	2956.94	331.21	3044.57	766.15	2737.62	786.21	3171.84	826.06	2944.17	680.38	3091.20	643.14	2936.40	731.56	3202.54	851.92		779.02
	Lasso		786.18	2926.92	358.65	3050.54	765.53	2821.98	90.092	3158.84	837.16	2911.66	691.71	2984.14	666.15	2918.63	740.54	3170.64	857.34		781.94
	E-net		785.09	2929.49	356.32	3047.41	762.15	2822.39	761.10	3160.18	835.80	2915.59	691.05	2986.69	666.55	2919.35	739.05	3173.89	856.45		782.34
	SCAD		816.83	2419.49	891.43	2467.24	603.58	2350.18	62.929	2720.37	970.25	2356.06	807.42	2510.67	669.44	2370.08	760.55	2524.58	791.94		355.73
	MCP		757.81	2492.18	357.12	2556.17	622.16	2338.43	687.36	2798.28	866.06	2467.98	734.03	2538.14	683.26	2476.70	718.68	2637.46	789.03		373.83
	XGBoost		0.03	90.0	0.03	0.12	0.09	0.32	0.65	0.04	0.02	0.04	0.02	0.07	90.0	0.05	0.02	0.07	0.05		0.24
	RF		59.79	173.49	58.94	157.20	09.09	82.86	34.69	198.72	88.97	176.20	57.35	117.29	39.53	169.99	71.42	167.18	74.37		46.39
	SVM	1058.14	683.48	850.64	596.04	509.02	251.03	264.07	154.47	1324.14	997.37	1093.20	751.74	1148.18	755.53	1046.25	659.42	778.30	567.76		224.21

Table SM43: Mean and standard deviation of the training MSE for Model 2 when n=1000and p=10. See Figure SM43 for the corresponding visualization.

20	5.24 5.24	7 4 7 4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SD N N N N N N N N N N N N N N N N N N N				66 66 66 66 66 66 66 66 66 66 66 66 66	0.5 Mean SI 6.57 6.57 6.58 6.61 6.58 6.61 6.58 6.61 6.58 6.61 6.58 6.61 6.58 6.61 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59			OS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.2 Mean 6.60 6.61 6.63 6.63 6.63 6.63 6.63 6.63 6.63	5D 0.36 0.36 0.36 0.36	0.5 Mean 6.58 6.59 6.62 6.59 6.62	SD N. 0.38 0.38 0.38 0.38 0.38		SD 0.38
33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5.25	889 990 990 990 991 991 74	388 388 388 388 388 388 388 388 388 388	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25. 52 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Mean SI 6.65 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.67 6.69 6.69	666666666666666666666666666666666666666	S 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	335 335 335 335 335 335 335 335 335 335	75 75 75 75 75 75 75 75 75 75	O.S. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	60 61 63 63 63 63 63	1.36 1.36 1.36 1.36	86268	38 39 39	55 55 55	D 0.38
		6.89 6.90 6.90 6.90 6.90 6.90 6.93 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	7.59 7.61 7.61 7.61 7.61 7.65 7.65 7.65 8.33 8.03 8.03 8.03 7.63 7.63 7.63 7.63 7.63 17.45 177.45	44444444444444444444444444444444444444	2 0	0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36		0.35 0.35 0.35 0.35 0.35 0.35 0.41 0.41 0.35 0.35 0.35 1.85 1.85 1.85	6.75 6.80 6.80 6.80 6.77 6.77 6.81 7.16 7.15 6.77 6.77 7.16 6.77 7.15 7.15 7.15 7.17 7.17 7.16	84.0 84.4 84.0 84.0 84.0 84.0 84.0 84.0	6.60 6.61 6.63 6.63 6.63 6.63 6.63 6.63	0.36 0.36 0.36 0.36 0.36	6.58 6.59 6.59 6.59 6.62	0.38 0.39 0.39 0.39 8 6 6	6.63 6.65 6.69 6.65	0.38
		6.90 6.90 6.93 6.93 6.93 6.93 6.91 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.03 0.03 0.03 0.02 0.02 0.02	7.61 7.65 7.65 7.65 7.65 7.65 7.65 8.33 8.03 8.03 7.63 7.63 7.63 17.63 17.63 17.63 17.63 17.63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.44 0.44 0.44 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038		0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	6.76 6.76 6.77 6.81 6.81 6.81 7.36 7.15 6.77 6.77 6.77 7.15 6.77 7.15 7.15 7.15 7.15 7.15 7.15 7.17 7.17	6.000000000000000000000000000000000000	6.61 6.63 6.63 6.61 6.63 6.63	0.36 0.36 0.36 0.36	6.59 6.62 6.59 6.62	0.38 0.39 0.39 88 0.39	6.65 6.69 6.65	
		0.93 0.93 0.93 0.93 0.93 0.93 7.25 7.25 7.25 0.34 0.34 1.76.24	0.38 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.38 0.38 0.02 16.02	7.65 7.65 7.65 7.65 7.65 8.33 8.03 8.03 7.63 7.63 0.05 0.05 1.17 177 178 178 178 178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.36 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.44 0.038 0.38 0.31 0.31 0.31		0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	6.80 6.80 6.81 6.77 6.81 6.81 7.36 7.36 7.16 7.15 6.77 6.77 6.77 6.77 6.77	2	6.63 6.63 6.63 6.63 6.63	0.36 0.36 0.36	6.59 6.59 6.62	0.30 88.00 88.00 88.00 88.00	6.65 6.65	0.38
		6.93 6.90 6.90 6.93 6.93 7.33 7.25 7.25 6.91 6.91 6.91 2.02 1.76.24	0.38 0.38 0.38 0.38 0.44 0.44 0.38 0.38 0.38 0.02 116.02	7.65 7.61 7.61 7.65 7.65 8.03 8.03 8.03 7.63 0.05 0.05 0.05 1.11 177.45 178.06	25 25 25 25 25 25 25 25 25 25 25 25 25 2		0.36 0.36 0.36 0.36 0.44 0.44 0.44 0.43 0.36 0.36 0.03 0.03 0.03 0.03 0.03 0.0		$\begin{array}{c} 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.28\\ 0.18.73\\ 18.52\\ 18.52\\ 18.53\\ 1$	6.77 6.77 6.77 6.77 6.77 7.36 7.16 7.15 6.77 6.77 6.77 6.77 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7	8 8 8 8 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.63 6.63 6.63 6.63	0.36	6.62	0.39	00.0	00.00
		6.90 6.93 6.93 6.93 7.25 7.25 7.25 6.91 6.91 0.56 0.34 176.24	$\begin{array}{c} 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.44 \\ 0.44 \\ 0.38 \\ 0.38 \\ 0.02 \\ 0.02 \\ 17.02 \\ \end{array}$	7.61 7.65 7.65 7.65 8.33 8.03 8.03 7.63 0.05 0.05 177.45 177.45 178.06	0.44 0.44 0.44 0.53 0.52 0.52 0.45 0.45		0.36 0.36 0.36 0.36 0.44 0.44 0.44 0.36 0.36 0.36 0.37 20.81 20.83		$\begin{array}{c} 0.35 \\ 0.34 \\ 0.34 \\ 0.35 \\ 0.35 \\ 0.41 \\ 0.41 \\ 0.35 \\ 0.35 \\ 0.35 \\ 0.28 \\ 0.18.49 \\ 0.18.52 \\ 18.72 $	6.77 6.81 6.81 6.81 7.15 7.15 6.77 6.77 6.77 6.77 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1	8 4 4 4 4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.61 6.63 6.61 6.63		1	38	69.9	0.38
		6.93 6.93 6.93 7.25 7.25 7.25 6.91 6.91 0.34 1.76.24	0.38 0.38 0.44 0.44 0.44 0.38 0.38 0.38 0.02 0.02 116.97	7.65 7.65 7.65 8.33 8.03 8.03 7.63 0.05 0.05 177.45 177.45 177.45	0.44 0.44 0.44 0.52 0.52 0.45 0.45		0.36 0.36 0.44 0.44 0.44 0.36 0.36 0.38 0.03 20.89 21.00 22.89		0.34 0.35 0.35 0.41 0.41 0.35 0.35 0.35 0.39 18.49 18.43	6.81 6.77 6.77 6.77 7.15 6.77 6.77 6.77 6.77 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7	84.0 84.0 84.0 84.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86	6.63 6.61 6.63	0.36	09.9	5.5	6.65	0.38
		0.90 0.93 7.25 7.25 6.91 0.34 0.34 2.02 2.02 176.24	0.38 0.44 0.44 0.44 0.38 0.38 0.38 0.02 0.02 116.97	7.65 7.65 8.33 8.03 8.03 7.63 7.63 7.63 0.24 0.24 177.45 177.45 177.00	4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.36 0.44 0.44 0.36 0.36 0.31 0.03 20.89 21.00		0.35 0.41 0.41 0.41 0.35 0.35 0.03 0.02 0.02 0.28 18.49 18.73	6.81 7.36 7.16 7.15 6.77 6.77 6.77 0.28 2.24 175.25	0.00000 4.4.000000000000000000000000000	0.01	0.36	6.62	0.39	6.69	0.38
0.39 0.39 0.30 0.32 0.32 0.32 0.32 0.32 0.32 17.71 17.7		7.33 7.25 7.25 7.25 6.91 6.91 0.34 2.02 2.02 176.24 176.24	0.44 0.44 0.38 0.38 0.02 0.02 0.02 0.27	8.33 8.05 8.03 8.03 7.63 7.63 0.24 0.24 177.45 177.45 177.45 177.00 178.06	0.53 0.52 0.45 0.45 0.15		0.44 0.44 0.44 0.36 0.36 0.31 0.31 20.89 21.00		0.41 0.41 0.41 0.35 0.35 0.03 0.02 0.18 18.49 18.52 18.73	7.36 7.15 7.15 6.77 6.77 0.62 0.28 2.24 175.25	0.00 42.0 0.03 84.0 84.0		0.36	0.00	0.38	0.00 0.00	0.38
0.39 0.40 0.32 0.32 0.32 0.03 17.57 17.71 1		7.25 7.25 6.91 6.91 0.56 0.34 2.02 176.24	0.44 0.44 0.38 0.38 0.44 0.02 0.27 16.97	8.05 8.03 7.63 7.63 0.05 0.05 0.24 2.11 177.45 178.06 179.02	0.52 0.52 0.45 0.45 0.15		0.44 0.44 0.36 0.36 0.31 0.03 20.89 21.00		$\begin{array}{c} 0.41 \\ 0.41 \\ 0.35 \\ 0.35 \\ 0.02 \\ 0.02 \\ 0.18.49 \\ 18.52 \\ 18.73 \\ 18.52 \\ 18.$	7.16 6.77 6.77 6.77 0.62 0.28 2.24 175.25	0.53 0.53 84.0 84.0	6.99	0.41	66.9	0.45	7.25	0.50
0.40 0.32 0.32 0.32 0.32 0.02 17.53 17.57 17.71		7.25 6.91 6.91 0.56 0.34 2.02 176.24	0.44 0.38 0.38 0.44 0.02 0.27 16.97	8.03 7.63 7.63 0.05 0.24 2.11 177.45 178.06 179.02	0.52 0.45 0.45		0.44 0.36 0.36 0.41 0.03 0.31 20.89 20.89		$\begin{array}{c} 0.41 \\ 0.35 \\ 0.35 \\ 0.39 \\ 0.02 \\ 0.28 \\ \hline 18.49 \\ 18.52 \\ 18.52 \\ 18.52 \\ 18.52 \\ \end{array}$	7.15 6.77 6.77 0.62 0.28 2.24 175.25	0.53	86.9	0.41	6.94	0.45	7.05	0.49
0.32 0.32 0.44 0.44 0.02 0.03 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.57 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.77 17.71 17.77 1		6.91 6.91 0.56 0.34 2.02 176.24 176.74	0.38 0.38 0.44 0.02 0.27 16.97	7.63 7.63 0.05 0.24 2.11 177.45 178.06 179.02	0.45		0.36 0.36 0.41 0.03 0.31 20.89 20.89 20.89		0.35 0.35 0.39 0.02 0.28 18.49 18.52 18.52	6.77 6.77 0.62 0.28 2.24 175.25	0.48	86.9	0.41	6.93	0.45	7.04	0.48
0.32 0.03 0.02 0.02 0.03 0.35 17.71 1		6.91 0.56 0.34 2.02 176.24 176.74	0.38 0.44 0.02 0.27 16.97 17.02	7.63 0.05 0.24 2.11 177.45 178.06 179.02	0.45		0.36 0.41 0.03 0.31 20.81 20.89 20.89		0.35 0.39 0.02 0.28 18.49 18.52 18.73	6.77 0.62 0.28 2.24 175.25	00	6.62	0.36	09.9	0.39	99.9	0.39
0.44 0.02 0.35 17.57 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.73 17.73 17.74 17.		0.56 0.34 2.02 176.24 176.74	0.44 0.02 0.27 16.97 17.02	0.05 0.24 2.11 177.45 178.06 179.02	0.15		0.41 0.03 0.31 20.81 20.89 20.89		0.39 0.02 0.28 18.49 18.52 18.73	0.62 0.28 2.24 175.25	04.0	6.62	0.36	6.60	0.39	99.9	0.39
0.35 0.35 17.53 17.57 17.71 17		2.02 2.02 176.24 176.74	0.02 0.27 16.97 17.02	2.11 2.11 177.45 178.06 179.02 178.06	-		20.83 20.83 20.89 20.89 20.89		0.02 0.28 18.49 18.52 18.73	2.24 175.25 175.78	0.38	0.49	0.45	0.53	0.44	0.78	0.25
17.53 17.57 17.57 17.57 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.73 17.76		176.24	16.97 17.02	177.45 178.06 179.02 178.06	0.01		20.81 20.89 21.00 20.89		18.49 18.52 18.73 18.52	175.25	0.02	1.94	0.02	2.04	0.02	2.18	0.02
17.57 17.57 17.57 17.57 17.71 17.71 17.71 17.71 17.73 21.68 21.58 21.58 21.58 21.58		176.74	17.02	178.06 179.02 178.06	18.24		20.89 21.00 20.89		18.52 18.73 18.52	175.78	20.84	172.15	20.80	171.37	20.88	170.51	82.81
17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.76 17.76				179.02 178.06	18.32		20.89		18.73 18.52	000	20.90	172.66	20.86	171.85	20.92	171.00	09.81
17.57 17.71 17.71 17.71 17.71 17.71 17.71 21.86 21.58 21.58 21.58 17.73 17.73		177.87	17.22	178.06	18.31		20.89		18.52	176.83	21.01	173.67	21.06	172.95	21.01	171.95	18.67
17.71 17.57 17.57 17.57 17.57 17.71 21.86 21.58 21.60 17.73 17.76		176.74	17.02	000	18.32	173.34 2			1	175.78	20.90	172.66	20.86	171.85	20.92	171.00	09.81
21.86 21.86 21.58 21.58 21.60 17.73 17.73		176.76	17.03	178 14	18.31		00.12		18.71	175.00	20.07	173.67	21.00	171.87	21.01		10.01
17.57 17.71 21.86 21.58 21.60 17.73 17.73		177.92	17.21	179.05	18.33	174.65	21.00	172.92	18.72	176.85	20.93	173.70	21.08	173.01	21.03	171.97	8.65
17.71 21.86 21.58 21.60 17.73 17.76		176.76	17.03	178.14	18.35		20.89		18.53	176.00	20.94	172.67	20.86	171.87	20.90		18.64
21.86 21.58 21.60 17.73 17.76		177.92	17.21	179.05	18.33	-	21.00		18.72	176.85	20.99	173.70	21.08	173.01	21.03		18.65
21.58 21.60 17.73 17.76 0.38		196.58	20.41	198.62	22.26	-	26.55		23.18	195.76	25.24	192.23	26.69	191.67	27.17		23.43
17.73 17.76 0.38		195.37	20.09	195.62	22.02	193.27 2	26.27	191.51	23.06	193.37	25.25	192.81	26.10	191.13	26.68	188.30	23.49
17.76	22.53	177.27	17.00	178.62	18.27		21.00	•	18.58	176.51	20.02	173.35	20.96	172.45	20.74		18.84
0.38		177.21		178.55	18.28	173.80 2	20.88		18.60	176.56	20.91	173.33	20.99	172.45	21.03	171.54	18.77
100		7.20		4.57	3.43		0.37		0.77	7.12	1.26	7.20	0.34	7.20	0.33		0.76
0.91		4.65	0.64	3.17	0.58	5.53	0.94	5.39	0.85	3.83	0.78	5.60	1.02	5.16	0.00	4.15	0.54
2.70	2.60	33		. I	_	_	2.88		.	ľ	4.69	ľ	2.85	_	ͺ,		2.33
	354.27	4. 1.	. 71	<u> </u>		_				~	332.73		329.31	-			288.75
2607.71 280.16 2614.22 2627.22 284.50 2631.19	358.98	2648.47 2	265.41 2	2655.37 28	279.76	2609.59 32 2630.36 33	328.57 28	2594.10 28	295.58 2	2645.77	334.14	2602.01	332.75	26.883.92	334.77 2 336.31 9	2578.21 28	289.28
280.16	355.52	47	I CN	~	79.76		CA		on.		334.14		330.57				289.28
284.50	358.98	20	_	10			•		•		336.50		332.75				290.71
280.27	356.13	94			280.68		•		•	•	333.83		330.56				290.05
283.86	358.98	0.01			280.79		332.26 26				335.28		332.75			2589.59 28	290.70
	356.13	2649.94 2			280.08						333.33						20.02
2627.49 283.86 2631.19 3899.43 312.70 3915.72	358.98 405.81	10.	205.94 2	2009.75 28 2068 64 37	244 65	2031.15 33 2012.15 38	332.26 20	2012.39 28	340.99 2	06.0002	413 08	2621.06	352.75	200021	360.06	2589.59 2	230.70
315.03	408.74	19	•	# K	38.39		4 6				407.10						334.82
2887.20 316.33 2898.70	405.56	60	306.19	~	340.02		-				406.50		376.36		372.39		335.22
283.62	358.37	44									335.14						290.71
285.59 26	359.10	47		^1	279.01	_	332.85 26		_		335.40	2621.69			_	2588.79 29	290.22
1.65		92.	4.42		14.41	_	1.77		4.49	25.83	10.97	29.71	4.31	29.98	3.27	28.38	8.33
49.00 14.70 45.43	13.96	40.77	10.15	_	8.32		14.93		12.64	29.41	10.97	88.88	17.02	43.02	16.03		7.38
45.70		7.7	34.39	84.09	53.30	126.31 5	53.03	108.66	41.92	94.99	67.69	126.15	50.92	102.07	48.48	86.44	41.25

Table SM44: Mean and standard deviation of the training MSE for Model 2 when n=1000and p=100. See Figure SM44 for the corresponding visualization.

Type)e	Independent	nt	Symmetric	ic					Autoregressive	ressive					Blockwise					
Corr.	r.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
σ Model	_	Mean S	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean S	SD	Mean 5	SD
1 OL!	20	6.07	0.34	6.02	0.29	6.25	0.36	6.88	0.46	6.03	0.32	5.97	0.32	6.11	0.43	6.04	0.34	6.22	0.34	6.97	0.45
AIC F	F	6.34	0.36	6.28	0.30	6.52	0.38	7.18	0.47	6.30	0.34	6.27	0.34	6.55	0.46	6.31	0.37	6.52	0.37	7.49	0.50
BICF	EL C	6.65	0.36	09.9	0.30	6.88	0.38	7.58	0.48	6.63	0.35	6.58	0.36	6.75	0.47	6.64	0.38	98.9	0.39	7.73	0.49
AIC	AIC SF	6.34	0.36	6.28	0.30	6.52	0.38	7.18	0.47	6.30	0.34	6.27	0.35	6.55	0.46	6.31	0.37	6.52	0.37	7.49	0.50
BIC	BIC SF	6.65	0.36	09.9	0.30	6.88	0.38	7.58	0.48	6.63	0.35	6.58	0.36	6.75	0.47	6.64	0.38	98.9	0.39	7.73	0.49
Ridge	ge	6.61	0.41	6.61	0.40	6.98	0.52	8.40	0.70	6.56	0.38	6.56	0.40	7.18	09.0	6.63	0.42	6.97	0.48	8.46	0.64
Lasso	so	7.13	0.43	7.03	0.38	7.24	0.48	7.95	0.56	7.07	0.40	6.98	0.38	7.13	0.56	7.07	0.44	7.24	0.47	8.12	0.57
E-net	et	7.14	0.43	7.03	0.39	7.23	0.48	7.90	0.55	7.08	0.40	86.98	0.39	7.14	0.56	7.08	0.44	7.24	0.47	8.10	0.56
SCAD	4D	6.64	0.38	6.58	0.31	6.87	0.39	7.65	0.49	09.9	0.36	6.57	0.36	6.78	0.47	6.63	0.39	6.83	0.38	7.77	0.50
MCP	Ъ	6.67	0.38	09.9	0.31	68.9	0.39	7.65	0.49	6.64	0.36	6.59	0.37	6.79	0.47	6.65	0.39	6.85	0.39	7.76	0.51
XG.	XGBoost	0.57	0.23	0.59	0.21	0.54	0.28	0.02	0.13	0.58	0.23	0.54	0.24	0.42	0.32	0.51	0.27	0.46	0.30	0.02	0.12
RF		0.48	0.03	0.49	0.02	0.41	0.02	0.25	0.01	0.48	0.03	0.43	0.05	0.29	0.03	0.48	0.03	0.38	0.02	0.25	0.01
$_{ m SVM}$		0.32	0.05	0.33	0.04	0.47	0.06	1.75	0.16	0.31	0.02	0.31	0.04	09.0	0.05	0.32	0.04	0.40	0.04	1.25	0.24
3 OLS	S		17.82	155.69	18.25	161.40	18.60	160.80	16.72	155.51	17.24	155.76	18.64	157.00	17.98	156.41	18.50	156.79	17.74	158.50	16.62
AIC F	TH.		18.65	162.74	19.10	168.73	19.46	168.38	17.49	162.45	18.12	163.56	19.56	167.96	19.34	163.45	19.36	164.67	18.68	170.22	17.97
BICF	压		19.76	171.41	19.43	177.99	19.91	177.50	18.52	171.19	19.00	171.84	20.57	173.79	19.88	172.66	20.32	173.35	19.49	175.41	18.00
AIC	AIC SF		18.66	162.78	19.10	168.74	19.47	168.38	17.49	162.47	18.12	163.61	19.58	168.05	19.37	163.48	19.36	164.74	18.69	170.24	17.98
BIC	BIC SF		19.76	171.41	19.43	178.00	19.90	177.50	18.52	171.19	19.00	171.84	20.57	173.79	19.88	172.66	20.32	173.35	19.49	175.41	18.00
Ridge	ge		26.13	192.95	29.02	206.23	28.25	202.09	24.44	190.80	26.24	191.40	26.77	196.86	26.02	193.55	26.57	198.22	26.92	198.40	21.96
Lasso	so		24.46	191.32	24.59	198.40	24.14	194.86	24.18	192.12	22.78	191.41	24.67	192.13	25.03	192.91	24.56	192.16	24.09	191.98	21.34
E-net	et	196.19	24.72	191.27	24.82	198.14	24.16	194.25	24.06	192.41	23.00	191.36	24.51	192.22	24.81	192.82	24.61	191.74	23.89	191.87	21.52
SCAD	4D		20.36	171.31	19.50	178.56	19.75	178.86	18.95	171.50	18.95	172.26	20.93	174.22	20.30	172.90	20.36	173.39	19.46	176.21	18.27
MCP	Ъ		20.58	171.89	19.34	178.81	19.77	178.79	18.90	172.11	19.09	172.98	21.06	174.31	20.19	173.51	20.49	173.74	19.60	176.23	18.25
XG.	XGBoost	5.24	0.27	5.25	0.31	5.57	0.31	2.42	3.11	5.22	0.30	5.24	0.26	5.69	0.88	5.22	0.28	5.37	0.29	4.05	2.93
RF		6.35	1.06	6.27	0.86	5.67	0.84	3.49	0.65	6.57	0.92	6.36	0.83	4.34	0.82	6.17	0.77	5.40	0.63	3.29	0.46
$_{ m SVM}$			8.06	25.58	6.46	17.36	5.39	13.30	4.11	32.33	6.87	28.08	6.73		4.45		6.57	18.54	4.00		3.07
STO 9	23		284.68	2343.04	291.46	2417.00		2398.79	260.81	2344.14	274.45	2346.38	293.99	2356.64	280.73		295.57	2346.93 2	281.60	2357.14	260.56
AIC F	Ē		297.30		305.34	2528.02		2513.08	273.64	2452.01		2466.42	308.80		301.55		309.86		295.81		280.13
BIC	压		350.98		311.17	2668.93		2647.17	290.28	2586.37		2590.68	322.24		310.81		325.59		308.50		283.64
AIC	AIC SF		297.29		305.43	2528.61	302.30	2513.58	273.89	2452.28		2467.44	309.51		301.61		309.49		296.19		279.93
BIC	BIC SF		320.98		311.17	2668.93		2647.17	290.28	2586.37		2590.68	322.24		310.74		325.59		308.50		283.56
Ridge	ge		337.87	2945.00	360.06	3061.52		2966.06	372.53	2939.33		2949.98	368.38		370.22		360.83		364.27		331.23
Lasso	so		359.86	2861.78	369.05	2980.66	369.46	2929.00	380.56	2873.90	341.75	2868.95	367.11		366.56	2895.61	374.60	2886.40	373.36		332.40
E-net			359.79	2862.70	370.14	2984.08		2930.19	381.92	2877.00		2871.28	368.06		367.03		373.28		374.20		333.14
SCAD	_		322.42	2596.87	310.09	2684.43	305.38	2656.50	290.03	2602.34		2605.05	324.72		313.59		332.26		313.14		285.85
MCP	Ъ		325.29	2602.47	312.83	2686.59	310.22	2653.29	290.87	2605.40		2609.89	327.96		315.34		332.58		314.88		285.07
XG.	XGBoost		1.27	22.55	1.38	23.45	2.73	9.23	12.39	22.30		22.15	3.39		6.01		1.29		4.13		12.53
RF			16.67		14.05	48.84	13.19	29.47	9.47	54.73		52.05	11.21		13.36	50.39	11.70	46.95	10.01	27.37	6.82
$_{ m SVM}$		665.59 1.	159.86		109.35	332.71	87.91	151.71	57.50	641.56	113.67	563.78	112.13		73.68	565.39	110.03	376.11	70.43	177.86	44.16

Table SM45: Mean and standard deviation of the training MSE for Model 2 when n=1000and p=2000. See Figure SM45 for the corresponding visualization.

			.61	.65	.64	.50	.50	.04	.02	.44	11	.86	.95	.75	.95	.10	.49	.83	.21	.52	26.	.02	.63	.58	.32	,
		$^{\mathrm{SD}}$	3 0.							5 0.44																
	6.0	Mean	9.33	8.00	7.96	7.75	7.75	00.00	0.26	0.85	199.38	192.99	192.64	175.72	175.58	1.63	3.70	12.67	2937.92	2894.24	2895.11	2589.11	2589.99	5.98	32.09	010
		SD	0.67	0.52	0.51	0.42	0.44	0.13	0.05	0.04	29.13	25.12	25.21	21.18	20.94	0.16	0.85	6.90	347.70	364.67	364.46	312.32	316.19	1.99	13.25	11004
	0.5	Mean	12.36	7.34	7.33	66.9	6.94	0.26	0.45	0.40	225.87	198.08	198.03	175.75	177.41	2.92	6.63	27.30	3071.03	2953.93	2958.00	2648.28	2659.98	12.87	58.15	00 07
se.		SD	06.0	0.37	0.37	0.37	0.35	0.06	0.03	0.07	30.01	23.19	23.12	19.23	19.14	0.15	0.92	7.56	300.74	333.06	332.66	292.85	294.68	0.71	12.76	000
Blockwis	0.2	Mean S	13.84	7.24	7.25	6.64	69.9	0.30	0.57	0.41	240.45	194.88	195.19	172.40	173.60	2.64	7.54	29.60	2999.08	2890.96	2893.62	2592.94	2607.53	11.92	59.66	1001
		SD	⊢	0.47	0.47	0.42	0.42	0.16	0.03	90.0	26.86	24.27	24.13	20.98	20.63	0.19	0.82	8.71	391.00	383.50	383.51	323.76	319.47	2.84	13.07	0 11 11 11 11 11 11 11 11 11 11 11 11 11
	6.0		15.90	7.17						0.43																
		SD	1.09	0.39	0.39	0.40	0.37	0.07	0.03	80.0	36.49	24.29	24.27	19.32	18.53	0.14	1.05	7.57	97.11	39.43	38.17	92.26	83.45	0.62	14.99	7 1
	0.5		15.49							0.49																
sive	0	SD N	1.37						0.03									7.65								
Autoregressive	0.2		15.39	7.15	7.17	6.51	6.57	0.29	0.57	0.52																
<	0																									_
		$^{\mathrm{SD}}$								5 0.28																
	6.0	Mean	9.6	7.9	7.9	7.8	7.8	0.0	0.2	1.25	196.7	193.9	192.9	178.0	177.8	1.8	3.9	15.7	2764.4	2916.5	2918.2	2620.8	2618.7	8.1	33.2	0000
		$^{\mathrm{SD}}$	ı							0.00	ı															
	0.5	Mean	13.64	7.24	7.19	96.9	6.95	0.33	0.49	0.44	232.43	199.47	198.79	176.53	178.17	3.22	7.05	23.24	3013.85	2996.57	2997.39	2664.60	2682.95	13.89	60.51	161 11
ic		SD	1.35	0.47	0.47	0.41	0.42	0.04	0.04	0.07	24.31	21.74	21.71	17.66	17.20	0.16	0.90	6.36	289.79	317.39	317.74	271.75	278.07	0.79	13.11	017 70
Symmetric	0.2	Mean	14.84	7.13	7.11	6.58	6.61	0.32	09.0	0.43	255.39	199.84	200.05	174.31	175.92	2.73	7.88	29.49	3066.65	2962.98	2966.12	2639.78	2660.02	12.26	63.35	750.50
ant		SD	1.38	0.44	0.45	0.42	0.38	0.04	0.03	80.0	26.81	23.79	23.77	20.62	20.54	0.14	0.94	8.39	323.58	340.19	339.40	317.11	318.02	0.67	14.99	307 00
Independent	0	Mean									ı							30.17								
be	rr.	del	lge	sso	net .	AD	J.P	Boost	_	SVM	lge	sso	net	AD	J.P	Boost		M	lge	sso	net	AD	J.P	Boost		1,1
Tyı	Col		Rid	Las	F-n	SC	MC	XG	RF	SV		Las	F-n	SC	MC	XG	RF	SV		Las	E-n	SC	MC	XG	RF	0.17
		ь									က								9							

SM5.2. Tables for the testing MSE of the non-linear simulations.

50Table SM46: Mean and standard deviation of the testing MSE for Model 2 when nand p = 10. See Figure SM46 for the corresponding visualization.

		SD	2.96	3.02	3.03	3.00	3.09	3.11	3.12	3.16	3.53	3.54	3.55	3.36	5.12	1.52	2.88	143.83	139.84	136.33	142.51	136.84	133.44	136.73	133.17	143.72	147.18	146.49	134.38	133.03	104.03	121.94 121.65	2291.74	2264.20	2075.80	2263.58	20.76.11	20000	2235.85	2083.13	2025.65	2046.11	2044.23	2070.88	2065.46	1410.27	1990.70
	6.0	Mean	8.88	8.77 2.77	8.77	8.71	8.68	8.63	8.68	8.69	9.77	9.62	9.64	8.79	0.00	4.57 6.50	7.64	229.57	218.46	211.62	219.58	211.02	207.64	211.75	207.47	253.56	245.98	246.44	215.18	213.92	79.24	97.82	3469.61	3306.95	3152.95	3312.98	3154.19	2060 19	3191.37	3069.18	3065.59	3061.42	3061.47	3111.24	3096.02	824.42	1141.59
		SD	2.73	2.66	2.66	2.45	2.44	2.41	2.44	2.41	3.39	2.85	2.92	2.41	24.2	2.74	3.26	107.72	105.20	102.17	105.46	101.49	105.02	101.61	105.06	104.03	104.33	104.02	101.64	103.28	55.20	69.51	1669.64	1606.88	1638.03	1606.88	1639.55	1659.43	1629.89	1658.12	1342.73	1339.77	1339.98	1596.98	1564.80	835.82	921.00
	0.5	Mean	8.59	8.41	8.41	8.16	8.24	8.04	8.24	8.04	10.33	9.23	9.30	7.87	0.00	7.98	10.05	236.54	223.90	219.57	224.20	219.57	216.11	219.46	216.17	253.48	245.45	245.80	213.61	215.38	133 67	138.06	3568.65	3403.66	3341.54	3403.66	3342.98	00.4700	3329 64	3248.38	3051.09	3052.12	3052.69	3139.39	3152.14	303.31	1380.90
9	2	SD	2.66	2.61	2.61	2.41	2.57	2.35	2.57	2.35	3.47	2.90	2.98	2.35	6.50	2.67	2.88	127.17	124.11	121.53	124.12	121.60	122.48	121.43	122.48	115.49	119.74	118.43	124.36	125.25	54.67	85.58	1964.95	1918.89	1881.76	1917.09	1007.70	1907.99	1908 06	1890.02	1620.44	1642.48	1637.55	1937.80	1936.54	1009 97	1093.27
Blockwise	0.2	Mean	9.05	8.91	8.91	8.56	8.85	8.56	8.82	8.56	10.68	9.49	9.56	8.4 8.4 8.5	0.01	9.24 8.26	10.53	236.95	227.11	217.58	227.12	991 93	216.38	221.35	216.38	252.87	244.57	245.16	214.79	213.23	73.38	154.76	3598.89	3393.78	3262.57	3391.27	3264.74	995974	3331 03	3253.74	2984.83	2990.72	2989.50	3068.85	3085.66	145.90	1454.33
		SD	2.26	2.19	2.19	2.21	2.23	2.16	2.20	2.16	3.23	2.58	2.65	2.14	0.0	1.74	3.56	134.20	130.81	128.52	130.79	1.06.71	123.24	128.12	122.30	131.05	131.10	130.77	130.76	132.53	56.11	78.99	2133.05	2117.88	2035.95	2117.27	2036.75	1040.70	2017.50	1946.41	1664.95	1719.77	1713.66	1916.87	1965.21	817.07	974.30
	6.0	Mean	9.23	x 0x	8.88	8.57	8.65	8.36	8.65	8.36	9.94	9.45	9.46	8.41	0.07	4.75 5.65	8.42	254.80	245.63	238.15	245.57	938 13	233.24	239.37	232.90	271.32	268.59	268.62	241.80	245.58	82.02	97.56	3844.98	3694.69	3555.73	3695.86	3554.98	2466 10	3535.57	3464.77	3358.96	3352.05	3350.89	3412.80	3436.23	1000	1099.23
		SD	2.11	2.18	2.18	2.01	2.19	2.06	2.20	2.06	3.41	2.59	2.61	1.99	2.00	2.48	2.89	113.08	113.91	116.28	114.10	119.68	111.19	114.12	111.19	109.03	108.73	108.73	111.04	113.52	62.10	75.53	1785.13	1811.93	1826.53	1814.25	1760 04	1765 76	1769 22	1765.76	1537.10	1547.39	1544.02	1736.18	1716.84	1100.08	1123.72
	0.5	Mean	8.97	80.00 0.00 0.00 0.00	8.69	8.53	8.50	8.43	8.50	8.41	10.54	9.56	9.60	8.28	0.0	8.10	10.69	242.48	234.66	226.51	235.08	931.43	222.37	232.05	222.37	272.21	260.54	261.23	222.27	224.40	76.55	147.20	3666.41	3483.19	3340.98	3491.90	2335.71	00) m	3298.42	3204.82	3209.15	3207.61	3209.68	3201.48	1423.97	1451.43
avisadr	2000	SD	2.13	2.00	2.00	1.91	2.01	1.91	2.01	1.91	3.38	2.59	2.67	1.79	1.01	2.37	2.94	103.87	102.96	100.93	101.95	103 13	102.35	103.06	102.35	99.45	100.77	100.42	101.50	102.71	51.60	77.87	1645.90	1624.77	1637.29	1624.44	1638.71	1657.00	1622 97	1657.99	1390.92	1391.06	1390.47	1491.17	1482.91	749.05	913.83
Antorporpsive	0.2	Mean	89.8	8.59 8.44	8.59	8.44	8.56	8.39	8.57	8.39	10.38	9.57	9.63	8.17	0.23	5.10 7.95	10.55	234.93	226.48	218.33	226.49	225.04	217.90	225.16	217.90	261.83	249.84	250.86	215.47	216.29	73.20	163.78	3540.52	3373.34	3252.85	3375.76	3250.55	9910 99	3350 61	3219.23	3150.50	3139.22	3140.15	3088.41	3128.34	1463 75	1403.73
		SD	3.08	3.16	3.16	2.93	3.03	2.87	3.15	2.83	3.73	3.30	3.33	08.2	1.00	1.89	4.60	124.25	126.54	123.81	126.60	-	124.63	121.92	_		125.43	125.10	129.18	130.71	44.41	92.92	1978.31	1993.58			1894.40	1745 66	1957.36	1743.32	1560.59	1556.13	1553.01	1939.65	1956.99	051.13	794.34
	6.0	Mean	10.50	9.99	66.6	9.77	9.87	9.78	9.89	9.77	11.23	10.90	10.89	10.01	10.02	4.27	7.06	263.25			253.99	245.50	241.47	248.23	241.92	268.99	265.26	263.87	249.62	251.13	71.12	88.04	3939.45	0.5		050	3594.29	946.19	3646 71	3455.33	3367.64	3348.09	3346.17	3531.73	3521.21	794.54	905.05
		SD	2.32	2.25	2.25	2.08	2.19	2.09	2.19	2.09	2.76	2.69	2.69	2.29	2.10	1.61	3.74	116.11	116.80	109.74	100.30	114 50	108.81	115.43	108.87	109.80	107.75	108.30	115.92	115.18	71.68	97.70	1828.70	1795.53	1767.32	1796.25	1770 99	1730 01	1776.80	1728.91	1547.37	1520.39	1526.71	1813.53	1809.90	1105.31	1105.85
	0.5	Mean	9.17	x x x 25.25	8.85	8.73	8.78	8.69	8.78	8.69	10.34	9.63	9.65	8.64	0.04	6.25	10.06	254.50	244.90	234.77	244.90									. 4		135.78	100	3636.60			3496.18	9906 99	3576 27	3398.22	3189.77	3185.17	3186.40	3356.30	3457.17		1373.20
ric	2	SD	2.34	2.26								2.96		2.25				131.00			128.20								127.85			69.55	2	2034.33	2059.92	2034.33	20.93.92	2010 75	2013.13	2014.40	1349.80	1351.14	1350.98	2121.56	2125.56	549.66	818.83
Symme	0.2	Mean		χ 2. α			8.61							8.15		7.53		246.45	239.87	229.43	239.87	936 10	226.96	236.19	226.96	263.87	254.55	255.01	226.24	227.73	73.03	157.92	3740.49	3589.31	3460.08	3589.31	3460.08	00.000.00	3542.59	3404.96	3081.78	3083.70	3083.59	3336.62	3356.26	17.700	1409.67
dent	aron,	SD														2.44			87.95		88.01		88.60		88.60						49.63		1453.28				1430.16								1409.95		954.03
Independent	0	Mean	22.8	8.63	8.63	8.41	8.57	8.34	8.58	8.34	10.40	9.28	9.33	8.13	0.TO	4.98	10.30	227.12	219.56	208.66	219.46	917 01	207.16	217.01	207.16	245.43	233.09	233.79	205.17	205.29	70.20	156.19	3416.08	3220.16	3113.66	3221.95	3113.66	9100.10	3190 94	3105.66	3024.74	3020.04	3020.38	3008.60	3006.58	1417 71	1417.71
Tvne	Corr.	Model	STO	AIC B	AIC SB	BIC SB	AIC F	BICF	AIC SF	BICSF	Ridge	Lasso	E-net	SCAD	JOF 10 P	AGBOOST	SVM	OLS	AIC B	IC B	AICSB	IC FD	BIC F	AIC SF	BICSF	Ridge	Lasso	E-net	SCAD	MCP	XGBoost	SVM	OLS	AIC B	BIC B	AIC SB	BIC SE	AIC F	AIC SE	BIC SF	Ridge	Lasso	E-net	SCAD	MCP	AGBoost	L.F.
L	, ()	ρ	1 C	4. Π	. ₹	Щ	¥.	Д.	₹ I	Щ	ц,	1	1 11	Ω.	4 2	ς Δ	· w	3	Ą	щ •	≪ C	1 4	, pr	1 ≪	щ	д	П	щ	SO.	< }	< Δ	ı w	9	A	Д.	₹ í	ц <	цД	1 4	, ш	1 000	· 」	피	S	4 >	Κ.Ε	4

Table SM47: Mean and standard deviation of the testing MSE for Model 2 when n=50 and p=100. See Figure SM47 for the corresponding visualization.

	Type	Independent	dent	Symmetric	ric					Autoregressive	essive					Blockwise	e				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean S	SD
1	Ridge	22.46	4.48	21.00	4.44	17.33	3.89	12.09	3.35	24.14	4.26	24.94	4.11	23.61	4.28	24.39	5.31	20.61	4.02	15.06	3.06
	Lasso	11.13	3.28	10.88	3.31	10.94	3.61	11.79	3.36	11.29	3.28	10.71	2.79	10.23	2.85	10.59	2.90	10.62	2.56	10.77	3.11
	E-net	11.46	3.40	11.02	3.32	11.15	3.63	11.69	3.29	11.63	3.44	10.95	2.84	10.28	2.86	10.80	2.96	10.72	2.55	10.78	3.03
	SCAD	8.45	1.99	8.67	2.23	9.18	3.17	11.61	3.64	8.46	2.01	8.32	1.85	9.36	3.04	8.22	1.91	9.41	2.77	10.65	3.26
	MCP	8.46	2.01	8.61	2.14	9.85	4.39	11.41	3.56	8.41	2.00	8.25	1.89	10.15	3.41	8.22	1.84	9.43	2.81	10.95	3.51
	XGBoost	7.95	2.54	7.82	2.66	7.16	2.40	4.69	1.67	8.16	2.78	8.09	3.13	6.04	2.01	7.54	2.53	7.22	4.49	4.46	1.76
	RF	11.64	2.99	11.12	3.26	9.64	2.62	5.06	1.64	12.73	3.52	12.63	3.77	7.51	2.13	11.33	3.34	9.05	2.33	4.76	1.87
	$_{ m SVM}$	19.53	3.99	18.14	3.88	15.07	3.58	7.61	3.90	20.97	3.88	20.49	3.54	17.73	3.65	19.97	3.97	17.31	3.66	12.68	4.33
က	Ridge	279.04	94.20	272.39	92.06	299.31	111.12	281.15	159.29	277.87	94.00	282.91	84.54	314.01	106.52	304.34	112.15	307.88	98.93	307.68	135.90
	Lasso	254.68	95.46		93.27	280.59	115.68	272.69	158.47	256.70	96.59	245.20	85.85	271.00	114.54	272.29	116.03	270.35	110.97	289.46	136.46
	E-net	256.19	94.79		93.36	281.24	116.18	271.72	157.98	257.71	96.41	247.60	85.85	271.36	114.54	274.11	115.69	272.29	111.07	288.22	135.85
	SCAD	222.48	92.05		90.77	240.74	101.40	249.51	118.57	231.50	98.23	208.02	84.60	226.28	97.39	240.04	120.37	229.40	101.26	248.19	132.88
	MCP	221.60	90.35		96.46	247.56	104.83	254.03	120.70	221.68	96.29	206.34	85.85	223.10	95.00	239.34	122.18	232.72	104.90	250.31	138.03
	XGBoost	151.10	67.73	135.08	59.94	137.33	63.55	81.95	55.37	158.40	76.84	151.10	73.15	111.19	53.83	167.93	97.42	138.56	66.47	90.12	66.53
	RF	202.65	78.08		80.09	192.55	74.87	90.52	64.95	201.31	85.72	194.62	74.74	137.22	62.52	218.01	69.76	183.11	71.31	106.44	75.65
	$_{ m SVM}$	263.83			88.03	215.50	79.88	101.51	92.90	261.73	93.46	257.04	85.52	230.48	79.00	274.69	109.24		79.83	158.97	102.19
9	Ridge	3151.80	1310.95	2876.59 1215.47	1215.47	3376.02	1377.19	3287.23	1781.41	3127.63	1395.41	3011.73	1207.88	3258.58	1278.07	3341.77	1643.31	3204.49	l	3499.60	1672.78
	Lasso	3124.13	1317.89	2884.72	1256.48		1392.12	3270.99	1781.95	3137.87	1401.69	3004.37	1207.20	3248.91	1279.02	3356.92	1663.40			3496.55	1690.54
	E-net	3126.36	1317.58	2881.13	1243.69	3368.48	1391.61	3261.95	1781.33	3137.77	1400.25	3004.76	1207.35	3249.32	1279.63	3353.36	1661.42	3197.81		3495.08	96.0691
	SCAD	3068.49		2804.71	1255.80	3341.16	1408.84	3560.15	2180.05	3133.93	1435.10	3011.23	1220.56	3267.35	1377.43	3389.09	1770.02	3159.79	1575.78	3520.36	1811.26
	MCP	3101.06	1320.18	2855.92	1255.17	3429.55	1483.67	3554.70	2141.29	3152.61	1461.94	3021.61	1260.19	3297.36	1345.15	3370.02	1801.84	3213.17	1610.95	3560.48	1841.78
	XGBoost	1367.70	850.22	П		1164.46	809.21	867.68	813.63	1387.51	1147.71	1386.44	1002.48	1004.68	615.20	1710.75	1393.73	1191.70	1016.53	1043.00	1018.88
	RF	2243.56	1118.57	2006.92	1047.67	2095.75	1000.91	1104.69	929.39	2274.79	1234.93	2136.64	1013.60	1594.29	876.68	2476.77	1490.61	2031.75	1054.92	1330.42	1049.45
	$_{ m SVM}$	3115.70	1335.92	2745.72	1234.93	2674.80	1168.25	1251.15	1150.82	3106.22	1411.77	2959.97	1262.70	2835.28	1102.72	3261.57	1653.97	2835.09	1226.89	1875.05	1217.84

Table SM48: Mean and standard deviation of the testing MSE for Model 2 when n=50and p = 2000. See Figure SM48 for the corresponding visualization.

Type	Independent	lent	Symmetric	ric					Autoregressive	ressive					Blockwise	še				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	ru	SD
Ridge	22.28	4.18	23.02	5.74	16.87	3.31	11.25	2.55	24.33	4.80	26.82	4.75	42.20	7.93	28.12	5.41	27.83	7.29	18.77	5.66
Lasso	15.83	5.25	13.57			3.84	11.74	3.16	14.86	4.62	14.61	5.20	11.10	4.23	13.46	4.67	12.73	4.34	12.10	3.64
E-net	16.39	5.15	14.04			3.77	11.61	3.13	15.55	4.54	15.28	5.17	11.32	4.50	14.05	4.69	13.09	4.43	12.06	3.63
SCAD	10.53	4.87	9.97	4.59	10.88	3.46	12.10	3.08	9.80	3.48	98.6	3.55	10.73	3.43	9.59	2.81	10.83	3.91	11.94	3.18
MCP	10.52	4.75	9.97			4.87	12.56	3.30	9.63	3.51	9.60	3.64	11.36	3.87	9.16	2.74	11.31	4.88	11.90	3.08
XGBoost	12.72	4.76	11.39			3.49	5.45	2.00	12.88	4.46	12.35	5.08	96.9	2.84	11.07	3.73	9.23	3.10	4.98	1.70
RF	17.40	4.68	15.76			3.12	5.76	1.43	18.34	4.58	18.84	4.80	10.85	3.77	16.60	4.52	13.52	4.01	6.10	1.96
$_{ m SVM}$	22.20	4.06	20.82			3.78	7.52	3.42	24.20	4.85	26.57	4.81	40.28	7.62	26.76	5.06	28.76	5.69	26.08	4.72
Ridge	275.16	101.18	274.34	81.95		99.70	222.66	111.16	294.30	125.36	296.19	103.90	366.93	136.71	300.56	126.20	333.43	128.76	307.60	128.09
Lasso	263.78	106.37	259.03			98.18	253.56	120.06	278.18	124.10	275.74	102.28	294.35	126.01	281.60	133.60	295.15	125.50	267.06	128.52
E-net	264.84	105.92	260.23			98.06	253.28	123.29	279.82	124.30	277.70	102.51	296.83	126.31	283.11	133.08	297.61	125.79	266.72	129.77
SCAD	242.80	109.09	226.29		231.12	96.56	226.90	109.14	250.99	114.91	246.71	106.13	248.97	119.65	257.90	144.30	257.02	112.33	241.06	106.89
MCP	235.55	106.41	226.08			111.61	237.57	110.55	246.23	117.76	241.28	105.98	246.38	121.08	249.24	129.56	253.87	121.25	244.22	103.09
XGBoost	258.07	111.22	230.48			95.53	83.02	45.50	252.08	116.29	243.70	94.71	195.07	104.72	257.87	115.33	237.73	100.72	103.24	56.70
RF	251.20	101.43	229.58			81.02	83.59	45.67	261.98	119.43	255.23	60.60	201.75	112.10	258.91	118.13	242.62	106.24	115.44	66.04
$_{ m SVM}$	275.92	103.66	251.44	78.91		91.21	93.20	63.70	294.24	128.01	296.29	105.01	359.97	136.25	294.67	127.87	310.23	118.27	260.09	101.35
Ridge	3162.64	1580.01	2974.67	1140.33	3104.03	1429.27	3099.37	1559.22	3342.73	1853.27	3184.88	1486.69	3504.06	1670.63	3291.90	1731.31	3470.73	1560.07	3207.90	1468.19
Lasso	3161.45	1581.05	2975.47	1136.57	3122.67	1435.69	3107.47	1551.61	3346.18	1853.53	3188.95	1497.14	3453.56	1623.46	3284.44	1734.65	3453.57	1541.20	3157.81	1479.73
E-net	3161.64	1580.99		1135.87	3123.16	1436.00	3111.79	1557.54	3347.47	1853.02	3187.51	1496.30	3455.51	1627.47	3285.39	1733.96	3450.40	1543.86	3157.80	1478.02
SCAD	3224.52	1631.18		1237.75	3066.71	1373.85	3122.84	1590.92	3499.15	1931.62	3244.93	1537.01	3427.21	1544.75	3294.07	1730.88	3426.82	1541.69	3222.48	1665.21
MCP	3188.01	1592.86	3039.49	1222.96		1410.48	3191.00	1608.55	3506.72	1966.68	3228.99	1577.52	3428.71	1566.27	3309.53	1735.73	3460.21	1569.71	3336.00	1728.81
XGBoost	2845.99	1614.96	2444.29			1390.77	829.71	637.82	2751.56	1539.94	2913.11	1466.27	2426.51	1529.11	2932.59	1561.86	2891.76	2028.38	1494.57	1348.33
RF	2958.06	1550.83	2659.94			1193.17	1032.01	668.38	3101.20	1793.24	2969.93	1414.42	2668.81	1534.78	3036.09	1600.36	2977.22	1384.81	1607.95	982.46
$_{ m SVM}$	3170.45	1604.25	2877.11	1144.59	2540.77	1262.32	1132.02	822.15	3353.56	1887.85	3204.39	1517.47	3499.77	1701.79	3275.51	1756.74	3430.75	1544.96	2961.02	1378.05

Table SM49: Mean and standard deviation of the testing MSE for Model 2 when n=200and p = 10. See Figure SM49 for the corresponding visualization.

		SD	1.12	1.12	1.10	1.12	1.13	1.10	1.12	1.10	1.26	1.19	1.19	1.12	1.13	0.33	0.55	45.58	44.80	43.72	44.80	43.72	44.71	43.94	43.97	57.48	59.13	59.45	44.33	11.71	17.66	15.91	722.34	721.42	721.42	707.14	721.60	709.06	700.06	737.94	743.55	743.35	707.46	182.59	188.70	188.49
	6.0	Mean	7.05	7.02	6.99	6.02	7.01	86.9	7.01	6.98	8.01	7.80	7.79	7.01	7.01	2.08	3.00	181.74	179.25	177.51	179.25	177.51	177.65	178.54	177.62	215.48	210.28	211.06	179.24	27.80	48.05	38.73	2748.06	2714.70	2714.70	2677.76	2700.88	2671.09	2671 00	2916.64	2905.24	2905.94	2692.26	2681.04	280.086	300.94
		$^{\mathrm{SD}}$	0.92	0.91	0.91	0.91	0.91	0.90	0.91	06.0	1.10	1.03	1.04	06.0	06.0	0.36	0.64	49.04	48.25	47.62	48.25	47.62	48.00	47.54	47.54	52.47	52.02	51.95	48.19	12.12	24.66	25.17	775.50	754.82	772.39	754.82	768.80	758.85	700.00	773.77	775.68	775.20	763.93	755.57	2000 1000 1000	300.04
	0.5	Mean	66.9	6.99	7.03	0.99	00.0	7.04	66.9	7.03	7.72	7.54	7.53	7.02	7.03	2.22	3.64	186.22	184.47	183.95	184.47	183.95	184.19	184.08	184.08	219.68	213.19	213.95	184.43	26.94	64.87	60.79	2807.69	2785.32	2765.32	2732.05	2761.24	2727.40	2727 40	3005.56	2993.85	2994.19	2743.85	2738.18	609 49	2
se		$^{\mathrm{SD}}$	0.83	0.82	0.78	0.82	00	0.02	0.81	0.78	1.10	1.01	1.01	0.78	0.78	0.32	0.61	41.70	41.27	42.37	41.27	42.35	41.30	42.60	42.60	51.45	51.04	51.32	43.13	10.61	21.24	22.38	655.64	665.34	681.89	665.34	664.00	669.02	660.03	703.58	708.28	708.20	692.99	151.55	207.20	111
Blockwise	0.2	Mean	6.93	6.95	7.05	0.95 7.0E	0.00	7.04	96.9	7.04	7.80	7.67	7.67	7.01	7.02	2.25	3.91 6.89	181.68	180.33	179.86	180.33	179.87	120.34	180.37	179.60	217.63	208.58	209.22	178.80	25.35	61.70	71.37	2732.13	2699.04	2699.04	2656.22	2696.02	2654.23	2657.72	2888.26	2877.75	2878.16	2655.23	2654.15	776 77	4, 0,0
		SD	1.06	1.06	1.05	1.05	1.06	1.06	1.06	1.06	1.32	1.23	1.28	1.03	1.07	0.42	0.49	4	•	49.44	•	49.42						60.55	49.08	10.74	17.45	25.66		755.02	-	-		768.30					758.05	165.51	322.57	
	6.0	Mean	7.26	7.21	7.17	7.21	7 10	7.18	7.19	7.18	8.18	7.97	8.00	7.20	7.23	2.15	2.59 4.74	187.32	185.88	184.71	185.88	184.58	169.04	183.49	183.46	222.01	215.59	216.11	184.72	27.61	42.63	43.02	2811.58	27.75.52	2775.52	2756.36	2753.01	2731.89	2721.80	3049.81	3035.75	3036.18	2749.46	2740.88	270 07	5 5 7 7
		$^{\mathrm{SD}}$	0.85	0.86	0.85	0.80	0.00	0.00	0.86	0.85	1.00	1.05	1.05	0.85	0.85	0.34	1.00	47.66	47.08	47.70	47.07	47.70	47.39	47.39	47.71	60.63	58.13	58.10	47.99	11.76	25.92	26.74	755.44	751.61	751.61	745.46	755.99	747.10	747 10	759.95	761.53	761.42	746.83	162.59	277.02	2
	0.5	Mean	7.07	7.10	7.17	7.09	7.00	7.17	7.09	7.17	7.90	7.75	7.75	7.13	7.15	2.25	3.73 6.70	183.76	182.87	181.47	182.85	181.47	182.41	181.31	181.35	221.13	213.58	213.85	181.20	25.64	62.53	70.16	2775.74	2675.47	2738.28	2675.73	2730.16	2672.55	2672 55	2980.23	2964.88	2967.23	2697.69	2700.59	776 97	,
essive		$^{\mathrm{SD}}$	0.82	0.83	0.83	0.83	20.0	833	0.83	0.83	1.00	1.01	1.01	0.82	0.83	0.38	0.76	39.63	39.87	40.44	39.87	40.44	40.04	40.04	40.38	47.96	46.35	46.78	40.76	13.49	21.72	19.71	618.83	616.50 621.72	615.79	621.72	612.51	620.24	620.21	643.36	645.92	645.24	630.71	636.40 223.78	2000	
Autoregressive	0.2	Mean	66.9	6.99	7.04	0.99	86.9	7.04	86.9	7.04	7.70	7.60	7.60	7.01	7.02	2.24	3.92	180.64	178.73	177.73	178.73	177.73	178.05	178.65	177.76	220.25	211.81	212.25	177.88	25.02	62.17	72.48	2716.47	2673.40	2674.60	2613.25	2669.40	2611.69	2611 69	2881.42	2871.14	2872.16	2624.79	2620.82	766 90	
		SD	1.20	1.21	1.17	1.21	1.17	1.17	1.20	1.17	1.33	1.30	1.31	1.16	1.15	0.43	1.35							52.27				65.53	72.87	15.45	16.74	28.71	838.09	831.74	831.74	830.54	821.62	816.88	20.120	920.28	925.30	925.02	836.40	936.86	050 63	
	6.0	Mean	8.32	8.24	8.18	42.0	8 22	× × ×	8.22	8.18	9.23	8.89	8.92	8.18	8.19	2.08	3.88	194.36	192.46	190.72	192.46	190.72	100.00	192.09	190.20	223.26	218.19	218.03	191.85	28.94	34.99	37.65	2893.56	2857.72	2857.72	2819.68	2848.40	2807.31	2807.31	3111.91	3093.25	3094.34	2857.67	2847.17	27176	- 1
		SD	1.06	1.05	1.03	1.05	1.05	1.03	1.05	1.03	1.05	1.03	1.02	1.04	1.05	0.49	0.60	50.87	51.44	51.68	51.44	51.68	51.04	51.64	51.72	56.31	57.03	57.72	51.31	13.69	23.79	28.47	796.89	809.57	809.57	800.56	811.86	802.82	803.80	809.59	815.83	815.76	800.46	197.53	221.75	7.47
	0.5	Mean	7.33	7.34	7.43	7.34	7 33	7.43	7.33	7.43	8.00	7.83	7.81	7.38	7.38	2.30	3.29 6.20	195.38	194.56	192.21	194.56	192.21	194.40	192.16	192.16	228.86	219.94	220.48	192.99	27.83	58.64	63.36	2929.16	2898.66	2898.66	2839.12	2889.62	2835.04	2825.07	3120.98	3099.63	3100.70	2842.93	2850.51	1 0 0	
			0.79	0.81	0.81	0.81	18.0	0.81	0.81	0.81	0.99	0.95	0.94	0.80	0.80	0.40	0.71	43.63	43.48	42.90	43.48	42.90	43.32	42.80	42.80	49.90	48.24	48.53	42.61		22.10			684.89 674.66				678.32				_		681.74 162.83		
Symmetric		Mean	7.12	7.11	7.17	7.11	7 11	7.18	7.11	7.18	7.94	7.74	7.74	7.15	7.16	2.28	3.94 6.99	191.74	190.96	188.93	190.96	188.93	180.75	189.04	189.04	225.25	215.02	215.76	188.83	27.63	68.40			2847.87				2797.16						2805.50		
lent		SD	0.93	0.94	0.92	46.0	0.92	0.93	0.94	0.92	1.01	1.00	0.99	0.92	0.92	0.44	0.72	43.24	43.45	42.12	43.45	42.12	42.89	41.95	41.95	46.06	45.23	45.58	42.85	10.14	23.82	20.85	666.76	654.65	663.10	654.65	660.67	654.65	000.07 674.67	663.09	665.42	665.13	667.33	147.80	316.69	
Independent	0	Mean	7.13	7.08	7.12	7.08	7 00	7.12	7.09	7.12	7.78	7.65	7.65	7.10	7.10	2.32	3.99 6.97	188.43	186.50	185.66	186.50	185.66	180.31	185.38	185.38	219.63	209.98	210.73	186.08	24.56	65.08	73.56	2843.38	2801.08	2801.08	2750.01	2798.82	2750.01	2750.02	2949.87	2933.37	2933.80	2765.01	190.56	628 39	20.02
Type	Corr.	Model	OLS	AIC B	BICB	AICSB	1 C	BIC F	CSF	BICSF	Ridge	Lasso	E-net	SCAD	MCP	XGBoost	KF. SVM	OLS	AIC B	BIC B	AIC SB	BICSB	AIC F	CSF	BICSF	Ridge	Lasso	E-net	MCP	XGBoost	RF	SVM	STO	AIC B BIC B	AIC SB	BIC SB	E F	IC F	RICSF	Ridge	Lasso	E-net	SCAD	MCF	3	_
F	ŭ	σ M	1 0.	Y	M .	₫ [d E	Ā	B	2	Ľ	ഥ	S	M	ŔΪ	X S	3		B	A.	m ?	4 ₽	ŭ (4	B	Ri	Ľ	ங் 8	ΣŽ	žΧ	R		ō ; 9	A E	Ψ	B	¥,	M. <	4 12	n 22	Ľ.	卤	ĭ,	Σ×	E E	Ġ

Table SM50: Mean and standard deviation of the testing MSE for Model 2 when n=200and p=100. See Figure SM50 for the corresponding visualization.

		SD	2.57	1.84	1.33	1.81	1.33	1.37	1.19	1.18	1.28	1.32	0.38	0.38	0.99	74.19	61.59	50.66	61.63	50.66	69.51	65.08	65.71	52.68	51.21	14.51	16.81	35.01	1126.30	962.26	792.22	960.03	792.28	902.18	908.17	908.19	795.94	797.79	224.94	281.80	463.73
	6.0	ru	15.61	9.97	8.37	9.98	8.37	96.6	8.91	8.96	8.24	8.18	2.33	2.41	7.55	366.12	238.08	199.30	238.57	199.30	236.69	226.28	227.47	198.68	197.79	32.54	41.13	87.89	428.55	3486.70	953.00	3486.52	953.19	3236.02	3213.22	3213.99	932.99	927.29	269.38	434.23	079.35
		SD	2.12	1.54	1.08	1.63	1.08	1.60	1.17	1.18	0.95	0.95	0.49	0.75	1.20	75.44	63.08	44.13	64.14	44.00	55.69	59.92	59.86	42.30	42.09	12.75	20.40				709.38								158.45		
	rc.	Mean S	14.34	10.39	7.90	10.43	7.90	11.05	8.24	8.25	7.58	7.62	2.77	4.37	11.61	357.67	258.29	195.77	360.65	195.95	249.64	221.52	221.55	184.06	85.18	32.28	73.90	170.95	П					011.63	973.05	975.39	722.78	718.68	249.46	375.13	204.90
	Ċ		1	1.58	86.0	1.61	0.99	1.63	1.12	1.13	08.0	0.78	0.52	86.0	1.41												29.99		l										205.82		
Plochmico	CKWISE	Mean SD	13.81	10.10	7.81	10.14	7.81	11.79	8.10	8.14	7.35	7.36	2.79	5.35	13.09	58.91	63.95	04.12	99.29	04.20	65.14	26.08	26.90	89.30	89.97	34.08	94.40	6			3019.70 7								267.14 2		
	4 0		_	1.50	1.09	1.52	1.09	1.30	1.19	1.16	1.04	1.19	0.40	0.59	1.11								58.74 2								_		_						262.70 - 2		
		an SD	3.63	8.62	7.26	8.61	7.27	9.47	7.90	7.93	7.13	7.33	2.57	3.21	0.54												57.28		5224.72 11										287.83 20		
	0.9	Mean	1.90					1.62			_		0.50	0.81	1.32					45.60 18							32.15 5			_									280.49 28		
		n SD	3.27	.67	.55	.65	.54	31	.86		7.20		8.78	5.12	.93												95.89 3		-												
	 	Mean		1.53										.81	1.42 12	72.29 342							50.80 219			_		,,	.90 5135.89										.28 292.62	12	91
riooca.	Autoregressiv	$^{\mathrm{SD}}$	ئتر						_			#	0 68	0 99	٠.										•				-		55 708.58							76 660.63		79 373.	
Α11+01	0.2	Mean	7 13.	1 10.10	20		_			•			1.2	8 5.66	··		10	_				_		0			6 95.32		-	_						_		~	1 293.97	-	_
		$^{\mathrm{SD}}$	3 2.3	3 1.7	3 1.18	1.7	1.1	3 1.4	1.2	5 1.2	3 1.13	1.0	9.0	5 0.3	3 0.9	72.2				7 44.66				4.	4				1				688.43					695.18		215.4	
	6.0	Mean		11.53						9.18		8.2	2.45	2.55	5.13		261.19			194.57				189.09	188.06	32.8	42.32	56.48	l		2846.57						2788.38	2768.36	246.37	416.91	655.75
		SD	2.55	1.70	1.15	1.71	1.15	1.56	1.08	1.11	0.92	0.93	0.51	0.66	1.25	76.34	58.66	48.57	58.75	48.53	58.90	54.92	55.27	45.98	45.43	16.70	27.68	37.21	1195.24	919.61	755.40	934.25	755.13	746.63	737.42	737.10	701.84	88.669	231.34	351.66	552.21
	0.5	Mean	14.38	10.80	8.07	10.86	8.07	11.29	8.35	8.38	7.60	7.69	2.91	4.62	10.11	354.59	266.63	201.19	266.54	201.28	250.56	221.76	222.99	187.33	189.53	37.16	83.67	154.46	5307.31	4001.70	2980.67	4002.54	2979.63	3087.92	3061.34	3063.43	2818.31	2825.19	287.38	761.70	2006.52
	2	SD	2.31	1.80	1.15	1.86	1.15	1.77	1.15	1.15	0.97	0.96	0.50	96.0	1.53	77.76	61.35	47.51	61.21	47.50	49.67	49.63	49.97	45.69	45.81	15.36	32.29	44.50	1185.49	980.34	754.07			718.48		725.22		714.07	209.22	403.60	686.57
- transmit	3ymmetric 0.2	Mean	13.92	10.50	7.88	10.58	7.89	11.94	8.11	8.15	7.32	7.38	2.92	5.52	12.75	360.26	262.62	198.55	263.72	198.55	260.53	221.45	222.73	186.14	187.37	34.49	94.79	204.54	5388.83	3903.83	2934.06	3923.92	2933.16	3009.38	92.7662	2998.53	2783.32	2770.50	251.33	831.30	2680.94
r		SD	1.99	1.70	1.04	1.76	1.04	1.95	1.27	1.28	0.97	0.97	0.52	0.93	1.48	82.14	65.20	49.96	65.96	50.06	51.88	56.87	56.84	48.59	48.46	14.23	30.59		10	_	0	₹!	0	778.14	776.01	2 97.777		_	205.71		
Indopondont	naepenae)	Mean S	13.57	10.24	7.89	10.32	7.89	12.48	8.22	8.29	7.30	7.32	2.95	5.72	13.89	355.54	262.80	202.08	263.97	202.15	255.57	222.00	222.82	184.69	185.24	32.45	90.16	221.97				_	2951.76	977.85	968.70	66.896	2770.83	2752.32	236.16	809.42	864.89
		-		ᅜ	Į.	SF	SF	е	-	t	О	_	oost						_									_				_	ĹŦ,							-	
Trans	Corr.	Model	OLS	AIC F	BICF	AIC SF	BICSE	Ridge	Lasso	E-net	SCAD	MCP	XGBoost	RF	$_{ m SVM}$	OLS	AIC	BIC F	AIC SF	BICSF	Ridge	Lass	E-net	SCAD	MCP	XGBoost	RF	$_{ m SNM}$	OLS	$_{ m AIC}$	BIC	AIC SF	BICSE	Ridge	Lasso	E-net	SCAD	MCP	XGBoost	RF	$_{ m SVM}$
		Ь	-													3													9												

Table SM51: Mean and standard deviation of the testing MSE for Model 2 when n=200and p=2000. See Figure SM51 for the corresponding visualization.

		0	1.37	1.19	1.18	1.43	1.38	0.51	0.53	1.35	38.12	35.49	35.36	45.17	14.01	15.00	20.46	39.40	57.93	59.92	57.24	685.76	19.95	35.45	76.57	36.79
		ın Sl	1.58	9.26	9.33	89.8	8.62	2.67	5.86																	
	6.0	Mea	=				_		_	13.20																
		$^{\mathrm{SD}}$	1.80	1.31	1.32	1.15	1.20	0.75	0.90	1.69	64.91	59.14	59.23	52.10	52.51	27.73	38.66	59.10	869.97	878.84	878.36	847.80	839.06	350.26	533.17	875.66
	0.5	Mean	17.33	8.62	8.69	7.68	7.70	3.50	5.45	18.55	284.19	230.16	231.97	194.93	195.24	51.18	105.79	246.31	3169.32	3143.84	3146.46	2899.14	2874.97	428.11	981.70	2976.76
		SD	2.23	1.10	1.13	0.84	0.89	0.77	1.11	1.96	48.06	51.93	52.17	45.29	44.64	23.54	37.25	47.41	711.92	714.58	714.68	720.21	719.29	304.72	470.63	713.01
Blockwise	0.2	Mean	22.80	8.64	8.76	7.53	7.57	3.68	6.91	22.67	286.34	228.57	230.51	191.68	190.86	51.03	127.42	267.24	3085.27	3068.63	3069.46	2859.75	2821.11	437.19	1095.63	3045.24
		SD	3.14	1.31	1.33	1.10	1.25	0.63	0.93	3.24	67.21	59.22	10.09	45.37	45.63	86.02	28.55	58.79	77.73	15.04	13.87	36.85	40.99	60.85	383.72	84.46
	6.0		28.77	8.27	8.34					31.43									_			-	-			-
	0.5	Me	55	20	23																					
		$^{\mathrm{SD}}$	8	3 1.						7 2.37									`	•	•	•	•	• •	4	•
	0.5	Mean	26.1	8.6	8.7	7.55	7.5	3.6	7.0	25.07	290.9	230.0	231.8	189.4	188.9	50.3	130.2	284.4	3111.7	3086.8	3089.9	2876.9	2839.8	404.3	1119.4	3106.3
essive		SD	2.16	1.13	1.16	0.88	0.87	0.64	1.03	2.09	46.64	50.76	50.62	41.85	41.10	19.94	31.62	47.08	727.16	731.23	730.88	702.88	709.51	274.39	434.42	735.78
Autoregr	0.2	Mean	23.15	8.71	8.88	7.34	7.33	3.77	7.03	22.42	269.78	232.68	233.97	187.53	185.95	48.15	120.12	266.25	3049.50	3039.29	3040.40	2887.97	2850.15	406.84	1066.04	3042.26
		SD	1.37	1.41	1.43	1.51	1.52	0.51	0.55	1.34	56.09	63.28	63.23	52.10	52.13	20.34	23.27	36.45	57.22	41.43	41.42	795.63	14.19	98.76	43.09	67.23
	6.0		10.23	9.41	9.47	8.79		2.89										71.91						_		853.28 4
	0.9		99.	.20	.19	.81	.82	0.75	.02									40.89		•	•	•	•			
		$^{\mathrm{SD}}$	42 1	83 1	.93 1	_	57 0	0 96	99 1										•	•	•	_	•	٠.	•••	11.5
	0.5	Mean	15.	œ	œ	7.	7.	33	5.	14.28	238.	228.	229.	183.	185.	52.	110.	188.	3044.	3043.	3043.	2778.	2787.	364.	931.	2285.71
ic		SD	1.99	1.13	1.15	0.94	0.95	0.82	1.10	1.69	55.95	52.21	52.45	47.54	47.35	21.06	38.30	49.91	753.30	755.18	756.22	749.72	753.82	307.56	458.02	731.24
Symmetric	0.2	Mean	19.87	8.66	8.78	7.42	7.46	3.98	6.74	18.94	277.61	231.17	232.95	191.52	191.81	52.66	131.89	249.18	3092.28	3076.83	3078.60	2895.28	2887.96	420.99	1096.10	2927.46
nt		SD	1.86	1.20	1.24	0.91	0.93	0.81	0.99	1.85	49.76	49.23	49.35	44.11	44.11	20.14	33.31	50.48	16.41	20.44	20.02	02.21	.06.73	71.79	22.05	725.72
Independent	0	Mean S	22.02	8.83	9.00	7.46	7.47	3.99	6.87	21.44				188.46								2821.62 7				2969.59 7
		16	0	_		٥		oost		-	n	_		0	_	oost										
Type	Corr.	Mode	Ridge	Lassc	E-net	SCAI	MCP	XGBoost	RF	$_{ m SVM}$	Ridge	Lassc	E-net	SCAI	MCP	XGB	RF	$_{ m SVM}$	Ridge	Lassc	E-net	$_{\text{SCAD}}$	MCP	XGB	RF	$_{ m SVM}$
		ь	-								က								9							

Table SM52: Mean and standard deviation of the testing MSE for Model 2 when n=1000and p = 10. See Figure SM52 for the corresponding visualization.

	Type	Independent	dent	Symmet	ric					Antoregresiv	essive					Blockwise					
	Corr.	0	_	0.2		0.5		6.0		0.2		0.5		6.0		0.2	,	0.5	_	6.0	
σ	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD		SD	Mean S	SD	Mean	SD	Mean	SD	Mean	SD	Mean S	SD
	OLS	6.83	0.37	6.91		7.01	0.39	7.78	0.56	92.9	0.36	6.83	0.34	68.9	0.49	89.9	0.34	6.74	0.37	6.74	0.42
	AIC B	6.81	0.37	6.90	0.38	7.00	0.39	7.78	0.56	6.74	0.36	6.82	0.34	6.89	0.49	6.67	0.34	6.73	0.37	6.74	0.41
	AICE	6.79	0.37	0.88		7.01	0.39	1.80	0.00	6.73	0.35	0.81 8.0	0.30	06.90	0.49	0.00	0.34	0.13	0.37	0.17	0.41
	RICSB	6.79	0.37	0.00		7.00	0.39	2.00	2.5	6.73	33.0	6.81	0.0	6.00	0.49	9.0	0.34	6.73	0.37	6.77	0.41
	AIC F	6.81	0.37	6.90		7.00	0.39	7.78	0.56	6.74	0.36	6.81	0.34	6.88	0.49	6.67	0.34	6.73	0.37	6.74	0.41
	BIC F	6.79	0.37	6.88		7.01	0.39	7.80	0.55	6.73	0.35	6.81	0.35	68.9	0.49	99.9	0.34	6.73	0.37	6.77	0.41
	AIC SF	6.81	0.37	06.90		7.00	0.39	7.78	0.56	6.74	0.36	6.81	0.34	6.88	0.49	6.67	0.34	6.73	0.37	6.74	0.41
	BICSF	6.79	0.37	6.88		7.01	0.39	7.80	0.55	6.73	0.35	6.81	0.35	68.9	0.49	99.9	0.34	6.73	0.37	6.77	0.41
	Ridge	7.18	0.45	7.26		7.45	0.44	8.45	0.56	7.15	0.40	7.20	0.39	7.42	0.48	7.05	0.37	7.13	0.40	7.30	0.50
	Lasso	7.12	0.45	7.19		7.32	0.42	8.19	0.50	7.10	0.39	7.11	0.38	7.24	0.44	66.9	0.37	7.03	0.41	7.12	0.48
	E-net	7.12	0.45	7.19		7.32	0.42	8.18	0.51	7.10	0.38	7.11	0.38	7.23	0.45	66.9	0.37	7.03	0.40	7.11	0.47
	SCAD	6.80	0.37	6.90		7.00	0.39	7.79	0.55	6.74	0.36	6.81	0.35	68.9	0.49	6.67	0.34	6.73	0.37	6.75	0.41
	MCP	6.81	0.37	06.90	0.38	7.00	0.39	7.79	0.55	6.74	0.36	6.81	0.35	68.9	0.49	6.67	0.34	6.73	0.37	6.75	0.41
	XGBoost	1.53	0.11	1.56		1.52	0.10	1.46	0.09	1.52	0.09	1.52	0.10	1.42	0.11	1.54	0.09	1.52	0.10	1.37	60.0
	RF	2.30	0.20	2.31	0.18	1.97	0.14	1.39	0.00	2.28	0.18	2.17	0.18	1.58	0.12	2.27	0.17	2.12	0.20	1.71	0.13
67	SIC	178 48	20.20	178.54	ľ	179.81	19.21	180 63	24 23	174.55	16.46	176.55	18.20	178 48	20.84	177 10	20.22	176 41	2 × × × × × × × × × × × × × × × × × × ×	176.12	18 98
)	AIC B	178.14	20.33	178.14		179.48	19.77	180.31	24.29	174.31	16.46	176.08	18.07	178.28	20.95	176.90	20.13	176.23	18.52	175.96	18.86
	BICB	177.68	20.18	177.96		179.31	19.64	180.33	24.15	173.97	16.23	176.04	18.19	178.07	20.92	176.63	20.08	175.79	18.66	175.82	18.83
	AIC SB	178.14	20.33	178.14		179.48	19.77	180.31	24.29	174.31	16.46	176.08	18.07	178.28	20.95	176.90	20.13	176.23	18.52	175.96	18.86
	BIC SB	177.68	20.18	177.96		179.31	19.64	180.33	24.15	173.97	16.23	176.07	18.18	178.07	20.92	176.63	20.08	175.79	18.66	175.82	18.83
	AIC F	178.14	20.33	178.14		179.45	19.77	180.28	24.28	174.29	16.46	176.02	18.09	178.19	21.00	176.90	20.13	176.21	18.51	175.89	18.87
	BIC F	177.68	20.18	177.96		179.27	19.62	180.30	24.16	173.97	16.23	176.04	18.17	178.14	20.94	176.58	20.13	175.80	18.66	175.86	18.92
	AIC SF	178.14	20.33	178.14		179.45	19.77	180.28	24.28	174.29	16.46	176.02	18.09	178.18	21.00	176.90	20.13	176.21	18.51	175.89	18.87
	BIC SF	177.68	20.18	177.96		179.27	19.62	180.30	24.16	173.97	16.23	176.04	18.17	178.14	20.94	176.58	20.13	175.80	18.66	175.86	18.92
	Ridge	196.16	24.13	197.32		197.50	19.88	198.32	24.32	191.23	18.79	194.59	20.98	195.82	22.71	195.70	23.53	195.42	21.44	193.11	20.32
	Lasso	194.60	23.36	195.30		195.66	20.49	196.07	24.79	189.92	18.94	192.95	21.34	193.37	22.98	194.33	23.24	193.45	21.14	191.25	20.97
	E-net	194.69	23.36	195.41		195.78	20.46	196.08	24.77	189.92	19.01	192.92	21.52	193.44	23.21	194.55	23.47	193.55	21.00	191.24	21.06
	SCAD	177.99	20.40	178.20		179.53	19.76	180.55	24.22	174.13	16.40	176.36	18.27	178.28	21.06	176.90	20.21	176.11	18.65	175.99	18.79
	MCF	177.96	20.36	128.18	_	19.57	19.68	14 70	24.17	174.21	10.39	176.40	18.23	178.19	20.95	10.89	20.03	19 40	18.00	19.65	18.92
	AGBOOSE	20.03	01.7	15.10	1.30 7.43	10.70 28 83	10.7	14.70	0.27	10.04	0.1.0	28.60	4 7 7 4 0 7	20 53	0.17	20.45	4. v	15.40	7.7	20.00	00.7
	SVM	10.88	24.5	35.75		27.00	, r	16.01	1 00	27.17	2 19	32.00	5.6	20.02	6.44	37.10	0.00	30.70	0 t	20.25	200
9	SIO	2685.11	321.65	2681.03	92	26.12	315.60	26.88.88	380.44	86.7.28	264.68		290.75	2681.07	329.88	2669.62	319.31		Ι.		301.03
	AIC B	2680.84	321.36	2676.94	290.66	2689.45	316.70	2680.40	379.80	2623.09	265.06		288.61		330.21		319.28				299.83
	BIC B	2673.93	321.96	2672.07		2683.69	315.27	2669.74	377.79	2614.05	263.04		289.57		332.51		315.24		295.29		302.84
	AIC SB	2680.84	321.36	2676.94	290.66	2689.45	316.70	2680.40	379.80	2623.09	265.06		288.61	2674.36	330.21	2668.99	319.28		296.26		299.83
	BICSB	2673.93	321.96	2672.07	287.70	2683.69	315.27	2669.74	377.79	2614.05	263.04		289.57	2668.42	332.51	2662.65	315.24		295.29		302.84
	AIC F	2680.75	321.34	2676.10	289.96	2688.15	316.80	2677.23	380.46		265.04		288.27		329.52		319.03				300.73
	BICF	2673.34	322.12	2672.07		2683.29	315.45	2669.74	377.79		263.20				332.92		315.24			2646.63	303.15
	AICSF	2080.75	321.34	2676.10		2088.15	316.80	2677.23	380.40		265.04				329.52	2008.55	319.03				00.73
	BICSF	20/3.34	277.72	26/2.07	287.70	2083.29	315.45	2009.74	311.19		203.20			2007.02	332.91	2002.00	510.24	_	295.07	2040.03	03.13
	Klage	2929.29	349.07	2942.89		2967.01	317.15	2952.10	500.10		281.97				500.01		349.24				09.37
	Lasso	2909.34	355.91	2919.02	298.62	2930.73	322.98	2916.61	393.04	2840.92	67.787	2895.79	320.95	2913.09	373.81	2899.60	351.35	2890.65	310.92	2869.77	309.43
	SCAD	2810.20	310.07	2860.01	285 50	2833.54	315.75	2820.11	378 27	2640.57	265 59		521.25 585 33		331.78		315.87				301.39
	MCP	2670.54	321.23	2670.15	286.41	2684.56	316.55	2675.12	379.17		264.16		286.19	2671.26	331.36	2664.08	317.07		293.95		300.31
	XGBoost	71.61	30.49	72.48		78.96	39.04	88.96	45.11	_	44.15		32.46	86.77	44.52	77.80	36.14		40.18		39.51
	RF	230.96	87.62	223.44		208.00	74.51	128.85	48.22	227.64	87.04	221.12	73.08	148.76	62.29	233.35	77.15	222.54	74.22	152.12	47.85
	$_{ m SVM}$	412.21	101.23	364.13		257.55	89.05	132.26	83.16	386.81	87.26	317.43	85.82	171.73	90.10	385.23	91.51	295.24	83.96	171.48	79.94

Table SM53: Mean and standard deviation of the testing MSE for Model 2 when n=1000 and p=100. See Figure SM53 for the corresponding visualization.

		SD	0.49	0.46	0.44	0.46	0.44	0.49	0.45	0.45	0.43	0.43	0.10	0.12	0.31	19.38	18.75	18.61	18.78	18.61	23.11	23.05	22.53	18.76	18.78	3.07	4.03	9.10	306.22	294.07	294.35	294.26	294.35	369.20	367.59	366.49	299.01	89.86	37.10	55.72	119.93
	0.0	Mean S	8.59	8.02	7.83	8.02	7.83	8.81	8.21	8.21	7.85	7.85	1.50	1.57	5.08	200.29	187.16	182.36	187.18	182.36	205.66	199.16	199.44	182.82	182.82	15.50	20.60		2985.81												
	J	SD	0.45	0.44	0.40	0.44	0.40	0.48	0.39	0.40	0.39	0.39	0.10	0.17	0.42	21.14	20.78	20.65	20.81	20.65	22.20	22.21	22.25	20.48	20.59	5.69	6.75													92.79	
	0.5	an	7.74	7.39	7.08	7.39	7.08	8.11	7.38	7.39	7.09	7.08	1.62	2.44	7.30	197.29	188.00	179.54	188.01	179.54	210.38	196.42	196.24	179.61	179.55	14.84	33.63			_	_	2817.92									
	0	SD N	0.40	0.39	0.37	0.39	0.37	0.44	0.40	0.40	0.37	0.37	0.10	0.27	0.39	18.21	17.77	18.17	17.78	18.17	21.07	20.93	20.88	18.13	18.17	2.27	6.91		288.37 2	•	. 4	. 4									_
Slockwise	0.2	Mean S	7.49	7.18	6.83	7.18	6.83	7.81	7.18	7.18	6.84	6.83	1.65	3.00	7.96												38.20	_	l											298.37	
	-	SD N	0.51	0.47	0.45	0.48	0.45	0.46	0.43	0.43	0.46	0.46	0.09	0.13	0.34	02.03	20.12	9.72	0.11	9.72	31.18	1.26	1.04	19.26	9.24	2.28	4.06		323.00 2												
	6	an	7.58	7.09	6.94	7.09	6.94	7.78	7.25	7.26	6.95	96.9	1.53	1.79	7.05												25.28	^1												192.32	
	0.0		0.41	38	0.34	3.38	0.34	0.40	0.36	0.35	0.34	0.34	0.10	0.24	0.36									20.59 1			7.40		331.58 29												
		Mean SD	7.43 (_				_			6.79		1.60	2.68	7.95												38.04		2925.03 33												
Ve	0.5		.40	.40	0.35	.40	.35	.43	0.38	0.39	0.35	0.35	0.10	0.27	.41			20.12 17			-			20.32			_														
regressi	0.2	n SD	.43 0	7.11 0						7.13 0		.77 0	0 99'1	0 90"	.97 0									174.89 20			38.60 8													0.58 108.90	
Ante	0.2	Mean	9	_								9	_	0	2										_	_	_	_	4 2908.75											9 290.58	
		SD	2 0.5	_		_			4 0.46			~	60.0 C	4 0.10	3 0.2								1 23.74		3 19.27								3 301.20							3 37.69	
	6.0	Mean	8.6	8.2	7.93	8.2	7.9	8.8	8.24	8.2	7.94	7.93	1.50	1.6	3.5	201.64	192.8	184.6	192.8	184.6	205.1	199.8	199.9	184.75	184.8	15.3	20.68	29.6	3001.7	2869.1	2742.98	2869.1	2742.9	3003.6	2980.1	2982.0	2739.7	2736.3	86.4	162.33	307.8
		SD	0.45	0.45	0.43	0.44	0.43	0.50	0.46	0.45	0.41	0.42	0.13	0.21	0.33	18.99	18.92	19.25	18.90	19.30	21.46	21.44	21.51	18.71	18.79	4.54	5.89	99.6	299.07	297.74	298.38	297.49	298.38	324.26	336.71	336.16	294.00	297.22	78.31	82.44	149.53
	0.5	Mean	7.73	7.41				8.06		7.40	7.07	70.7	1.64	2.58	6.18	196.61	188.16	179.52	188.19	179.56	209.58	195.44	195.55	178.84	179.04	15.31	33.83	89.10	2937.05	2813.85	2675.13	2813.50	2675.13	3002.52	2919.80	2923.27	2657.41	2664.17	91.07	271.23	1213.69
j.	2	SD	0.43	0.40	0.37	0.40	0.37	0.43	0.38	0.38	0.37	0.37	0.10	0.26	0.40	17.64	17.57	18.19	17.57	18.19	21.25	20.48	20.60	18.22	18.25	2.64	6.42	13.86	278.66	279.84	283.05	279.99	283.05	288.42	301.12	301.38	286.40	286.47	35.39	78.07	218.16
Symmetr	0.2	Mean	7.53	7.23	68.9	7.23	68.9	7.87	7.22	7.23	68.9	68.9	1.65	3.14	7.63	194.18	186.28	178.03	186.27	178.03	209.45	193.68	193.70	177.24	177.14	14.80	39.06	145.73	2917.31	2798.02	2676.45	2798.13	2676.45	2974.47			2650.57			298.50	
F		SD	0.34	0.33	0.31	0.33	0.31	0.39	0.37	0.37	0.32	0.32	0.10	0.23	0.35	20.51	20.09	19.98	20.08	19.98	22.18	21.81	22.03	20.01	20.18	3.43	8.14	18.16	331.02	322.73	328.84	322.53	328.84	315.25	340.05	341.05	320.52	320.67		105.81	
Independent	0	Mean	7.47	7.17	6.84	7.17	6.84	7.80	7.22	7.23	6.84	6.84	1.65	3.09	7.96	198.84	190.68	181.93	190.68	181.93	213.07	197.97	198.26	181.27	181.32	14.91	38.88					2881.26	2741.65							306.17	
		16	S	AIC F	E C	AIC SF	SF	Ridge	sso	net	AD	J.P	XGBoost		M	S	AIC F	BICF	AIC SF	BICSF	Ridge	sso	net	AD	J.P	XGBoost	_	M	S	AIC F	C Fi	SF	BICSF	Ridge	sso		_	J.P	XGBoost		
Type	Corr.	σ Mo	1 OLS	AIC	BIC	AIC	BIC	Ric	Lasso	E-net	SCAD	MCP	XG	RF	$_{ m SVM}$	3 OLS	AIC	BIC	AIC	BIC	Ric	Lasso	E-net	SCAD	MCP	XG	RF	$_{ m SVM}$	STO 9	AIC	BIC	AIC	BIC	Ric	Lasso	E-net	SCAD	MCP	XG	RF	$_{ m SVM}$

Table SM54: Mean and standard deviation of the testing MSE for Model 2 when n=1000and p=2000. See Figure SM54 for the corresponding visualization.

		SD	0.59	0.56	0.56	0.50	0.50	0.12	0.12	0.47	21.21	20.87	20.89	17.03	17.02	3.07	4.81	9.51	338.43	337.77	336.92	276.77	276.32	35.67	65.85	140.09
	6.0	Mean	10.02	8.22	8.24	7.81	7.81	1.58	1.76	69.6	205.95	194.74	195.08	179.58	179.55	16.80	23.72	98.84	2955.37	2893.53	2896.08	2638.15	2639.24	95.99	197.82	1213.28
		SD	89.0	0.46	0.46	0.41	0.41	0.11	0.21	0.57	24.75	24.35	24.35	21.83	21.78	4.19	8.58	20.19	353.46	372.17	370.63	347.32	347.17	55.42	118.05	324.09
	0.5		14.89	7.48	7.49	7.15	7.12	1.73	2.96	14.04	l								l							2629.77
	-	SD	0.73	0.41			0.36											22.45								347.39
3lockwise	0.2		18.65	7.32	7.33	6.95	6.92	1.75	3.76	17.40																
_	_	SD								0.77																
	6.0		20.43							16.64	l								l							
	0		0.94							0.84																
	0.5	an SD	21.64							19.90																
ve	0.5		3 96																							
Autoregressive		SD	0 66							68 0.91										• •		• •	• •			
Auto	0.2	Mean	20.	7.	7	9.	9	Ξ.	33	19.68	268.	194.	194.	178.	178.	15.	48.	252.	2978.	2878.	2882.	2651.	2648.	88.	367.	2953.
		SD	0.48	0.47	0.47	0.43		0.12		0.32									l						46.92	
	6.0	Mean	9.68	8.35	8.38	7.90	7.90	1.63	1.94	5.00	193.27	192.88	193.34	178.29	178.51	17.22	24.93	51.33	2728.49	2850.12	2853.14	2631.89	2640.00	90.70	198.64	582.15
		SD	0.63	0.43	0.43	0.38	0.39	0.12	0.24	0.53	22.21	22.65	22.76	19.98	20.05	2.95	6.51	14.35	367.96	355.82	355.19	313.00	313.43	38.79	89.39	223.66
	0.5	Mean	14.40	7.56	7.58	7.21	7.18	1.78	3.23	12.19	230.35	197.11	197.36	180.45	180.62	17.09	44.66	170.84	2965.62	2930.25	2931.91	2663.38	2665.88	95.22	361.20	2134.83
		SD								0.75																
Symmetric	0.2									16.67																
ent		SD								0.87																
Independent	0	Mean S	20.36	7.36	7.38	6.90	98.9	1.79	3.92	19.17	262.79	195.12	195.58	177.52	176.92	16.37	48.74	250.15	2952.93	2880.77	2882.67	2637.34	2635.39	91.99	371.61	2935.73
		lel	H		_					SVM		_			_		_	_		_					_	
Typ	Corr	Mod	Ridg	Lass	E-ne	SCA	MCI	XGE	RF	SVN	Ridg	Lass	E-ne	SCA	MCI	XGE	RF	SVN	Ridg	Lass	E-ne	SCA	MCI	XGE	RF	SVN
		L-	1																							

SM5.3. Tables for the $\beta\text{-sensitivity}$ of the non-linear simulations.

Table SM55: Mean and standard deviation of the β -sensitivity for Model 2 when n=50and p = 10. See Figure SM55 for the corresponding visualization.

	Type	Independent	dent	Symmetric	ric					Autoregressive						Blockwise	a				
	Corr.	0		0.2		0.5		6.0		0.2)	0.5		0.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean S	SD	Mean	SD	Mean	SD	Mean	SD		SD
1	OLS	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	_	_	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0000.0
	AIC B	0.4517	0.1729	0.4350	0.1673	0.4150	0.1749	0.3417	0.1731	0.4167	0.1598 (0.4317 (0.1677	0.4117	0.1946	0.4583	0.1915	0.4300	0.1678	0.3933	0.1812
	BIC B	0.3217	0.1540	0.3067	0.1396	0.3000	0.1361	0.2167	0.1219	0.3017		_	0.1369	0.2933	0.1556	0.3000	0.1231	0.3033	0.1348	_	0.1328
	AIC SB	0.4517	0.1729	0.4350	0.1673	0.4150	0.1749	0.3433	0.1738	0.4167		_		0.4150	0.1932	0.4583	0.1915	0.4300	0.1678	_	0.1799
	BIC SB	0.3217	0.1540	0.3050	0.1403	0.3017	0.1355	0.2183		0.3017		_		0.2933	0.1556	0.3000	0.1231	0.3033	0.1348		0.1328
	AIC F	0.4450	0.1693	0.4067	0.1559	0.3983	0.1690	0.2917		0.4100	0.1631 (_	0.1593	0.3250	0.1613	0.4317	0.1726	0.3967	0.1620	_	0.1639
	BICF	0.3117	0.1434	0.2800	0.1273	0.2850	0.1191	0.2000	0.1086	0.2900		0.2683 (0.1182	0.2333	0.0948	0.2833	0.1124	0.2900	0.1267		0.1005
	AIC SF	0.4433	0.1679	0.4067	0.1559	0.3967	0.1671	0.2900	0.1472	0.4083		0.3867	0.1569	0.3150	0.1551	0.4317	0.1726	0.3950	0.1601		0.1648
	BICSF	0.3117	0.1434	0.2800	0.1273	0.2850	0.1191	0.1983	0.1078	0.2900	_	_	0.1182	0.2267	0.0933	0.2833	0.1124	0.2900	0.1267		0.0951
	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	Ĭ	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0		0.0000
	Lasso	0.3033	0.1779	0.3317	0.1858	0.4100	0.1945	0.3767	0.1652	0.3033			0.1648	0.4150	0.1580	0.3367	0.1953	0.3733	0.1897		0.1708
	E-net	0.3150	0.1849	0.3550	0.1919	0.4450	0.2025	0.5117	0.1777	0.33333		_	0.1725	0.5233	0.1725	0.3600	0.1978	0.4233	0.1795		0.1725
	SCAD	0.4100	0.2362	0.3983	0.2208	0.4267	0.2620	0.2617	0.2014	0.4033		0.3667	0.2235	0.3133	0.2226	0.4250	0.2599	0.3483	0.1955	0.3533 (0.2532
	MCP	0.3667	0.2333	0.3133	0.2109	0.3567	0.2563	0.2517	0.2125	0.3400		_	0.1964	0.3083	0.2420	0.3567	0.2649	0.2867	0.1881		0.2438
က	OLS	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000		_		1.0000	0.000.0	1.0000		1.0000	0.000.0		0.000.0
	AIC B	0.4150	0.1873	0.4100	0.1748	0.4267	0.1825	0.3750		0.3750		0.3950 (0.3517	0.1879	0.3917	0.1681	0.4050	0.1540	0.3650 (0.1653
	BIC B	0.2800	0.1273	0.2833	0.1489	0.2967	0.1433	0.2283	0.1312	0.2600		_		0.2417	0.1348	0.2767		0.2967	0.1331		0.1350
	AIC SB	0.4150	0.1873	0.4100	0.1748	0.4267	0.1825	0.3767	0.1685	0.3750		_		0.3517	0.1879	0.3917		0.4083			0.1658
	BIC SB	0.2800	0.1273	0.2833	0.1489	0.2967	0.1433	0.2283	0.1312	0.2617		0.2750 (0.2400	0.1347	0.2783		0.2967	0.1331	0.2550 (0.1350
	AIC F	0.3933	0.1733	0.3850	0.1736	0.3833	0.1781	0.3050	0.1625	0.3450		_		0.2800	0.1379	0.3667		0.3717			0.1511
	BICF	0.2683	0.1158	0.2667	0.1361	0.2600	0.1215	0.1783	0.1066	0.2567		Ĭ		0.1950	0.1186	0.2650	0.1138	0.2667			0.1076
	AIC SF	0.3933	0.1733	0.3850	0.1736	0.3833	0.1781	0.3033	0.1596	0.3450		_		0.2700	0.1377	0.3667	0.1553	0.3700			0.1384
	BICSF	0.2683	0.1158	0.2667	0.1361	0.2600	0.1215	0.1767	0.1055	0.2567		_	0660.0	0.1883	0.1128	0.2650	0.1138	0.2667	0.1161		0.1043
	$_{ m Ridge}$	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000		_	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0		0.000.0
	Lasso	0.1550	0.1729	0.1300	0.1331	0.2117	0.1689	0.2683	0.1952	0.1183		_	0.1075	0.2133	0.1790	0.1317	0.1504	0.1517	0.1626		0.1505
	E-net	0.1567	0.1786	0.1350	0.1415	0.2283	0.1875	0.3500	0.2327			0.1333 (0.1111	0.2833	0.2291	0.1350	0.1566	0.1633			0.1842
	SCAD	0.3983	0.2550	0.3867	0.2391	0.3933	0.2351	0.2917	0.2577			_	0.2373	0.2617	0.2238	0.3317	0.2017	0.4167	0.2524	0.2917	0.2214
	MCP	0.3533	0.2419	0.3333	0.2540	0.3533	0.2565	0.2783	0.2649	0.2783		_	0.2218	0.2483	0.2501	0.2950	0.1951	0.3500			0.2109
9	OLS	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		_		1.0000	0.000.0	1.0000	0.000.0	1.0000			0.000.0
	AIC B	0.3900	0.1792	0.3733	0.1852	0.3800	0.1969	0.3500	0.1633	0.3433		0.3583 (0.3150	0.1995	0.3750	0.1731	0.3750	0.1681		0.1854
	BIC B	0.2433	0.1525	0.2317	0.1690	0.2450	0.1544	0.1900	0.1441	0.2200		_		0.1933	0.1548	0.2267	0.1287	0.2417	0.1306		0.1369
	AIC SB	0.3933	0.1797	0.3733	0.1852	0.3783	0.1994	0.3500	0.1633	0.3467		_		0.3150	0.1995	0.3767		0.3750			0.1854
	BIC SB	0.2433	0.1525	0.2317	0.1690	0.2450	0.1544	0.1917	0.1448	0.2217		0.2233 (0.1950	0.1554	0.2300	0.1293	0.2433		0.2083 (0.1369
	AIC F	0.3617	0.1693	0.3333	0.1820	0.3183	0.1742	0.2500	0.1667	0.3233		_		0.2083	0.1747	0.3417	0.1505	0.3317			0.1595
	BICF	0.2300	0.1437	0.2083	0.1467	0.2067	0.1463	0.1317	0.1119	0.2050		0.2100 (0.1245	0.1383	0.1162	0.2200	0.1273	0.2283	0.1176	_	0.1241
	AIC SF	0.3617	0.1676	0.3333	0.1820	0.3150	0.1739	0.2483	0.1650	0.3217		0.3167 (0.1526	0.2017	0.1646	0.3417	0.1505	0.3233	0.1586	_	0.1488
	BICSF	0.2283	0.1415	0.2050	0.1418	0.2067	0.1463	0.1300	0.1100	0.2050		_	0.1245	0.1383	0.1162	0.2200	0.1273	0.2283	0.1176	_	0.1241
	$_{ m Ridge}$	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	_	_	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	0000.1	0.000.0
	Lasso	0.0300	0.1193	0.0217	0.0907	0.0600	0.1220	0.1000	0.1553	0.0217	_	_	9990.0	0.0700	0.1385	0.0217	0.0611	0.0367	0.1100	0.0433 (0.0966
	E-net	0.0300	0.1193	0.0233	0.0948	0.0650	0.1273	0.1167	0.1812	0.0217		_	9990.0	0.0850	0.1700	0.0217	0.0611	0.0367	0.1150		0.1129
	SCAD	0.2767	0.2755	0.2850	0.3027	0.3083	0.2827	0.1967	0.2522	0.2283	_	_	0.2433	0.1717	0.1887	0.1900	0.1939	0.2833	0.2935		0.2235
	MCP	0.2417	0.2684	0.2533	0.3057	0.2767	0.2894	0.1933	0.2548	0.1967	0.2500	0.1800	0.2006	0.1500	0.1796	0.1550	0.1761	0.2600	0.2826	0.1850	0.2144

50Table SM56: Mean and standard deviation of the β -sensitivity for Model 2 when n=1See Figure SM56 for the corresponding visualization. and p = 100.

	Type	Independent	dent	Symmetric	tric					Autoregressiv	ressive					Blockwise	se				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
-	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.2067	0.1008	0.2383	0.1066	0.2633	0.1365	0.1933	0.1270	0.2267	0.1073	0.2483	0.1124	0.4000	0.1675	0.2583	0.1306	0.3233	0.1655	0.3317	0.1667
	E-net	0.2117	0.1029	0.2550	0.1147	0.2867	0.1573	0.2367	0.1258	0.2317	0.1108	0.2767	0.1324	0.5400	0.1837	0.2683	0.1338	0.3583	0.1731	0.4200	0.1649
	SCAD	0.2767	0.1236	0.2600	0.1168	0.2400	0.1094	0.1083	0.1121	0.2783	0.1480	0.2350	0.1062	0.1917	0.0898	0.2550	0.1097	0.2383	0.1092	0.1517	0.1233
	MCP	0.2183	0.0877	0.2083	0.0833	_	0.0666	0.0783	0.0931	0.2117	0.0943	0.2083	0.0763	0.1633	0.0748	0.2117	0.0849	0.1950	0.0713	0.1150	0.0968
က	Ridge	1.0000	0.0000	1.0000	0.0000	Γ	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.0950	0.1118	0.1200	0.1162	_	0.1201	0.0933	0.1119	0.1050	0.1200	0.1383	0.1137	0.2033	0.1546	0.1150	0.0996	0.1467	0.1282	0.1567	0.1514
	E-net	0.0950	0.1142	0.1233	0.1222	_	0.1254	0.1283	0.1316	0.1017	0.1182	0.1350	0.1129	0.2417	0.1959	0.1167	0.1046	0.1500	0.1391	0.2150	0.1824
	SCAD	0.2383	0.1214	0.2550	0.1264	0.1983	0.1103	0.0733	0.1014	0.2433	0.1369	0.2383	0.1142	0.1967	0.0988	0.2233	0.1091	0.2250	0.1239	0.1300	0.1352
	MCP	0.1917	0.1069	0.2117		_	0.0881	0.0633	0.0847	0.1917	0.1043	0.1933	0.0811	0.1483	0.0883	0.1783	0.0829	0.1683	0.0870	0.0883	0.0931
9	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000
	Lasso	0.0250	0.0833	0.0333		0.0350	0.0956	0.0267	0.0614	0.0150	0.0631	0.0267	0.0739	0.0417	0.1069	0.0300	0.0959	0.0183	0.0622	0.0233	0.0581
	E-net	0.0250	0.0833	0.0333	0.1033	0.0367	0.0993	0.0400	0.0790	0.0183	0.0707	0.0267	0.0776	0.0467	0.1233	0.0283	0.0949	0.0200	0.0682	0.0367	0.0771
	SCAD	0.1400	0.1548	0.1350	0.1334	0.1033	0.1356	0.0350	0.0760	0.1333	0.1460	0.1517	0.1462	0.1250	0.1542	0.1417	0.1448	0.1183	0.1407	0.0633	0.0941
	MCP	0.1017	0.1338	0.1100	0.1258	0.0567	0.0893	0.0267	0.0658	0.1017	0.1229	0.1133	0.1205	0.0617	0.0875	0.1050	0.1200	0.0617	0.0937	0.0483	0.0796

50Table SM57: Mean and standard deviation of the β -sensitivity for Model 2 when n=1and p = 2000. See Figure SM57 for the corresponding visualization.

	Type	Independent	dent	Symmetric	tric					Autoregressiv	ressive					Blockwi	se				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
L	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.1383	0.0672	0.1733	0.0525	0.1800	0.0565	0.0783	0.0836	0.1667	0.0711	0.1967	0.0959	0.3567	0.1480	0.1867	0.0722	0.2533	0.1098	0.1850	0.1158
	E-net	0.1383	0.0672	0.1750	0.0549	0.1817	0.0585	0.0950	0.0984	0.1650	0.0767	0.2050	0.1082	0.4750	0.1596	0.1983	0.0844	0.2650	0.1187	0.2533	0.1544
	$_{\text{SCAD}}$	0.1783	0.0721	0.1867	0.0594	0.1683	0.0443	0.0550	0.0788	0.2033	0.0733	0.1933	0.0739	0.1933	0.1270	0.1967	0.0726	0.2067	0.0890	0.1133	0.1228
	MCP	0.1583	0.0435	0.1767	0.0520	0.1467	0.0544	0.0367	0.0694	0.1767	0.0520	0.1767	0.0463	0.1250	0.0866	0.1717	0.0286	0.1633	0.0669	0.0633	0.0813
3	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
	Lasso	0.0500	0.0768	0.0933	0.0927	0.0950	0.0894	0.0233	0.0581	0.0733	0.0896	0.0683	0.0950	0.1517	0.1443	0.0683	0.0920	0.1267	0.1278	0.0783	0.1147
	E-net	0.0517	0.0810	0.0883	0.0931	0.1000	0.0917	0.0300	0.0686	0.0700	0.0923	0.0717	0.1012	0.1967	0.1930	0.0667	0.0917	0.1283	0.1316	0.1100	0.1324
	$_{\text{SCAD}}$	0.1600	0.0915	0.1717	0.0869	0.1300	0.0905	0.0217	0.0563	0.1700	0.0947	0.1733	0.1206	0.1650	0.1046	0.1550	0.0955	0.1833	0.1046	0.0633	0.0879
	MCP	0.1417	0.0833	0.1383	0.0856	0.0917	0.0866	0.0183	0.0524	0.1500	0.0902	0.1517	0.1008	0.1250	0.0763	0.1333	0.0821	0.1367	0.0799	0.0517	0.0775
9	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
	Lasso	0.0033	0.0235	0.0067	0.0328	0.0100	0.0463	0.0017	0.0167	0.0050	0.0286	0.0083	0.0435	0.0267	0.0877	0.0083	0.0365	0.0283	0.0822	0.0133	0.0512
	E-net	0.0033	0.0235	0.0067	0.0328	0.0117	0.0489	0.0067	0.0328	0.0050	0.0286	0.0067	0.0405	0.0333	0.1111	0.0083	0.0365	0.0300	0.0834	0.0200	0.0722
	$_{\text{SCAD}}$	0.0500	0.0838	0.0567	0.0924	0.0333	0.0786	0.0067	0.0328	0.0700	0.1037	0.0650	0.1108	0.0967	0.1235	0.0583	0.1015	0.0833	0.1148	0.0333	0.0821
	MCP	0.0267	0.0614	0.0417	0.0763	0.0150	0.0479	0.0033	0.0235	0.0400	0.0825	0.0483	0.0896	0.0567	0.0793	0.0400	0.0754	0.0533	0.0883	0.0200	0.0544

Table SM58: Mean and standard deviation of the β -sensitivity for Model 2 when n=200 and p=10. See Figure SM58 for the corresponding visualization.

6								-						ŀ	-					
Corr	Independent	ndent	Symmetric 0.2	rıc	75		6 0		Autoregressive 0.2	essive	15		6.0		Blockwise 0.2	n)	75		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0000.0
AIC B	0.5467	0.1537	0.5333	0.1641	0.4833	0.1489	0.3583	0.1560	0.5317	_	0.4683		0.3950	0.1635	0.5083	0.1284	0.4883	0.1407	0.3733	0.1519
BIC B	0.3400	0.1296	0.3600	0.1247	0.3300	0.1319	0.2250	0.0898	0.3583		0.3200		0.2567	0.1017	0.3550	0.1223	0.3383	0.1097	0.2383	0.0925
AIC SB	0.5467	0.1537	0.5333	0.1641	0.4833	0.1489	0.3583	0.1560	0.5333		0.4700	0.1284	0.3950	0.1635	0.5083	0.1284	0.4883	0.1407	0.3733	0.1519
BICSB	0.3400	0.1296	0.3600	0.1247	0.3300	0.1319	0.2250	0.0898	0.3583		0.3217		0.2567	0.1017	0.3550	0.1223	0.3383	0.1097	0.2383	0.0925
AIC F	0.5433	0.1582	0.5317	0.1619	0.4783	0.1492	0.3367	0.1553	0.5233		0.4583	0.1284	0.3683	0.1466	0.5050	0.1307	0.4750	0.1284	0.3617	0.1536
BICF	0.3400	0.1296	0.3567	0.1208	0.3250	0.1284	0.2200	0.0850	0.3567		0.3183		0.2517	0.0902	0.3483	0.1187	0.3317	0.1124	0.2350	0.0889
AIC SF	0.5433	0.1582	0.5317	0.1619	0.4783	0.1492	0.3367	0.1553	0.5233		0.4567		0.3683	0.1466	0.5000	0.1276	0.4767	0.1319	0.3633	0.1542
BIC SF	0.3400	0.1296	0.3567	0.1208	0.3250	0.1284	0.2200	0.0850	0.3550		0.3167		0.2517	0.0902	0.3483	0.1187	0.3300	0.1085	0.2333	0.0886
Ridge	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.3467	0.1875	0.4250	0.1714	0.4967	0.1606	0.4933	0.1707					0.4633	0.1564	0.3767	0.1617	0.4583	0.1747	0.4833	0.1796
E-net	0.3600	0.1891	0.4600	0.1710	0.5550	0.1608	0.6350	0.1784	0.3867	0.1802		0.1290	0.5867	0.1469	0.4150	0.1598	0.5183	0.1673	0.6417	0.1747
SCAD	0.6250	0.2610	0.6017	0.2679	0.5350	0.2555	0.3083	0.2070					0.2833	0.1749	0.6017	0.2528	0.5417	0.2663		0.2339
MCP	0.5750	0.2837	0.5417	0.2876	0.4883	0.2735	0.3000	0.2038					0.3033	0.1841	0.5300	0.2695	0.5050	0.2847		0.2308
3 OFS	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0		0.000.0			1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
AIC B	0.3733	0.1573	0.3850	0.1636	0.3767	0.1491	0.3200	0.1548			0.3900		0.3967	0.1688	0.3933	0.1508	0.3683	0.1559	0.3683	0.1646
BIC B	0.2250	0.0898	0.2400	0.0927	0.2400	0.1041	0.1967	0.0763			0.2383		0.2317	0.0974	0.2283	0.0875	0.2133	0.0857	0.2250	9980.0
AIC SB	0.3733	0.1573	0.3850	0.1636	0.3767	0.1491	0.3200	0.1548	0.3667	0.1535	0.3917	0.1648	0.3983	0.1690	0.3933	0.1508	0.3683	0.1559	0.3683	0.1646
BIC SB	0.2250	0.0898	0.2400	0.0927	0.2400	0.1041	0.1967	0.0763	0.2383				0.2333	0.0948	0.2300	0.0879	0.2133	0.0857	0.2250	9980.0
AIC F	0.3633	0.1560	0.3767	0.1565	0.3550	0.1374	0.2933	0.1384	0.3583				0.3233	0.1476	0.3883	0.1499	0.3450	0.1522	0.3333	0.1517
BICF	0.2217	0.0856	0.2417	0.0929	0.2333	0.0977	0.1867	0.0722	0.2367				0.2267	0.0871	0.2233	0.0828	0.2100	0.0808	0.2167	0.0803
AIC SF	0.3633	0.1560	0.3767	0.1565	0.3550	0.1374	0.2933	0.1384	0.3583			0.1522	0.3083	0.1284	0.3867	0.1458	0.3450	0.1522	0.3333	0.1517
BIC SF	0.2217	0.0856	0.2417	0.0929	0.2333	0.0977	0.1867	0.0722	0.2367				0.2267	0.0871	0.2233	0.0828	0.2100	0.0808	0.2150	0.0796
Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000				1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.C
Lasso	0.1733	0.0576	0.1917	0.0929	0.2167	0.1019	0.2917	0.1239	0.1633				0.2667	0.1319	0.1650	0.0374	0.1883	0.0773	0.2683	0.1673
E-net	0.1733	0.0576	0.2117	0.1132	0.2383	0.1118	0.4483	0.1905	0.1683				0.3333	0.1460	0.1667	0.0474	0.1967	8680.0	0.3500	0.2017
SCAD	0.3583	0.2466	0.4067	0.2715	0.3667	0.2496	0.2683	0.2144	0.3817		0.3383	0.2215	0.2900	0.1962	0.3717	0.2437	0.3433	0.2195	0.3183	0.2273
	0.3217	0.2187	0.3683	0.2641	0.3200	0.2400	0.2600	0.2083	0.3483				0.2650	0.1852	0.3417	0.2544	0.3100	0.2451	0.2900	0.2046
STO 9	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000				1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
AIC B	0.3583	0.1486	0.3867	0.1496	0.3750	0.1681	0.2883	0.1587	0.3617				0.3617	0.1642	0.3767	0.1472	0.3467	0.1511	0.3433	0.1754
BICB	0.2217	0.0856	0.2433	0.1017	0.2233	0.1039	0.1467	0.0956	0.2300		0.2250		0.2000	0.1161	0.2333	0.1005	0.2133	0.0889	0.2183	0.1051
AIC SB	0.3583	0.1486	0.3867	0.1496	0.3750	0.1681	0.2883	0.1587	0.3617		0.3650	0.1670	0.3617	0.1642	0.3767	0.1472	0.3467	0.1511	0.3433	0.1754
BIC SB	0.2217	0.0856	0.2433	0.1017	0.2233	0.1039	0.1467	0.0956	0.2300		0.2267		0.2000	0.1161	0.2333	0.1005	0.2133	0.0889	0.2183	0.1051
AIC F	0.3517	0.1458	0.3783	0.1438	0.3517	0.1723	0.2500	0.1544	0.3450		0.3350		0.2867	0.1500	0.3600	0.1435	0.3283	0.1469	0.2933	0.1482
BICF	0.2217	0.0856	0.2400	0.1041	0.2067	0.0921	0.1233	0.0842	0.2283		0.2217		0.1783	0.1039	0.2250	0.0929	0.2117	0.0882	0.2067	0.1008
AIC SF	0.3517	0.1458	0.3783	0.1438	0.3500	0.1700	0.2500	0.1544	0.3450		0.3333		0.2783	0.1442	0.3583	0.1389	0.3283	0.1469	0.2917	J.1448
BIC SF	0.2217	0.0856	0.2400	0.1041	0.2067	0.0921	0.1233	0.0842	0.2283		0.2217		0.1783	0.1039	0.2250	0.0929	0.2117	0.0882	0.2067	0.1008
Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.0383	0.0849	0.0633	0.1054	0.0533	0.0944	0.1017	0.1399	0.0317	0.0699	0.0450	0.0849	0.0733	0.1304	0.0250	0.0643	0.0350	0.0831	0.0500	0.1019
E-net	0.0383	0.0849	0.0600	0.1047	0.0567	0.1039	0.1350	0.1799	0.0317	0.0699	0.0450	0.0882	0.0917	0.1542	0.0250	0.0643	0.0350	0.0831	0.0583	0.1170
SCAD	0.3417	0.2070	0.3717	0.2414	0.3483	0.2273	0.2717	0.2400	0.3400	0.2170	0.3500	0.2254	0.2767	0.1957	0.3933	0.2502	0.3300	0.2024	0.3033	0.2084
MCP	0.2817	0.2006	0.3167	0.2422	0.3117	0.2602	0.2250	0.2373	0.2750	0.2057		0.2246	0.2567	0.2177	0.3367	0.2518	0.2750	0.1841	0.2650	0.2025

Table SM59: Mean and standard deviation of the β -sensitivity for Model 2 when n=200See Figure SM59 for the corresponding visualization. and p = 100.

	Type	Independent	dent	Symmetric	tric					Autoregressive	ressive					Blockwise	ge .				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD
1	OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
	AIC F	0.5500	0.1781	0.5567	0.1465	0.4783	0.1799	0.3850	0.1784	0.5617	0.1686	0.5267	0.1670	0.3833	0.1431	0.5183	0.1569	0.5367	0.1798	0.3883	0.1499
	BICF	0.3583	0.1448	0.3250	0.1262	0.2833	0.1371	0.2050	0.0705	0.3383	0.1147	0.3450	0.0894	0.2533	0.0962	0.3517	0.1273	0.3200	0.1128	0.2133	0.0789
	AIC SF	0.5483	0.1746	0.5400	0.1443	0.4767	0.1804	0.3883	0.1805	0.5367	0.1634	0.5067	0.1588	0.3700	0.1331	0.5033	0.1571	0.5217	0.1669	0.3883	0.1518
	BICSF	0.3550	0.1415	0.3250	0.1262	0.2783	0.1362	0.2033	0.0694	0.3367	0.1111	0.3450	0.0894	0.2517	0.0991	0.3517	0.1273	0.3183	0.1114	0.2133	0.0789
	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000	1.0000	0.000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000	1.0000	0.000.0
	Lasso	0.2400	0.1261	0.3333	0.1479	0.3650	0.1435	0.3183	0.1321	0.2733	0.1351	0.3967	0.1293	0.4767	0.1910	0.3583	0.1486	0.4500	0.1633	0.4200	0.1580
	E-net	0.2533	0.1308	0.3683	0.1447	0.3850	0.1454	0.3583	0.1486	0.2983	0.1427	0.4367	0.1293	0.6050	0.1875	0.3917	0.1369	0.4983	0.1733	0.5433	0.1798
	SCAD	0.3683	0.1972	0.3700	0.1617	0.2883	0.1294	0.1800	0.0512	0.3417	0.1596	0.3650	0.1548	0.1883	0.0655	0.3917	0.1524	0.3483	0.1742	0.1783	0.0489
	MCP	0.2983	0.1680	0.3100	0.1461	0.2300	0.0999	0.1750	0.0365	0.2867	0.1383	0.2917	0.1095	0.1867	0.0594	0.3250	0.1542	0.2833	0.1330	0.1800	0.0512
8	OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000	1.0000	0.000.0
	AIC F	0.4283	0.1761	0.3967	0.1637	0.3983	0.1864	0.3250	0.1648	0.4417	0.1578	0.3750	0.1681	0.3250	0.1448	0.4367	0.1769	0.3933	0.1812	0.3083	0.1429
	BICF	0.2300	0.0970	0.2233	0.0893	0.2117	0.0744	0.1600	0.0915	0.2433	0.1017	0.2300	0.0847	0.2150	0.0864	0.2433	0.0960.0	0.2217	0.0949	0.1700	0.0626
	AIC SF	0.4083	0.1630	0.3900	0.1539	0.3783	0.1722	0.3200	0.1583	0.4367	0.1549	0.3750	0.1714	0.3117	0.1415	0.4383	0.1751	0.3783	0.1786	0.3000	0.1421
	BIC SF	0.2300	0.0970	0.2233	0.0893	0.2117	0.0744	0.1600	0.0915	0.2417	0.1015	0.2300	0.0847	0.2100	0.0842	0.2433	0.0960.0	0.2200	0.0914	0.1700	0.0626
	\mathbf{Ridge}	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
	Lasso	0.1450	0.0655	0.1750	0.0725	0.2000	0.0821	0.1867	0.0830	0.1567	0.0520	0.1767	0.0398	0.2717	0.1374	0.1683	0.0604	0.1933	0.1025	0.2500	0.1219
	E-net	0.1450	0.0655	0.1750	0.0725	0.2100	0.0874	0.2183	0.1103	0.1567	0.0520	0.1783	0.0427	0.3667	0.1725	0.1700	0.0669	0.2150	0.1191	0.3533	0.1745
	SCAD	0.2517	0.1265	0.2533	0.1172	0.2333	0.1005	0.1533	0.0810	0.2400	0.1215	0.2250	0.0898	0.1850	0.0974	0.2767	0.1445	0.2567	0.1218	0.1583	0.0763
	MCP	0.1983	0.0810	0.2150	0.0926	0.2017	0.0760	0.1417	0.0799	0.2033	0.0806	0.2033	0.0733	0.1450	0.0773	0.2200	0.0944	0.1983	0.0699	0.1583	0.0643
9	OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
	AIC F	0.4000	0.1708	0.4000	0.1498	0.4033	0.1999	0.2850	0.1958	0.4217	0.1525	0.3717	0.1833	0.2633	0.1502	0.4450	0.1820	0.3633	0.1714	0.2133	0.1693
	BIC F	0.2200	0.0883	0.2183	0.0938	0.1917	0.0959	0.0500	0.0902	0.2300	0.0879	0.2367	0.0953	0.1500	0.1019	0.2233	0.0893	0.1900	0.1060	0.0850	0.0870
	AIC SF	0.3917	0.1630	0.4017	0.1519	0.3967	0.1936	0.2767	0.1838	0.4117	0.1430	0.3667	0.1788	0.2483	0.1470	0.4417	0.1810	0.3533	0.1646	0.2033	0.1651
	BIC SF	0.2200	0.0883	0.2183	0.0938	0.1900	0.0977	0.0500	0.0902	0.2300	0.0879	0.2367	0.0953	0.1483	0.0974	0.2233	0.0893	0.1883	0.1077	0.0850	0.0870
	Ridge	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000	1.0000	0.000.0
	Lasso	0.0183	0.0575	0.0250	0.0686	0.0550	0.0978	0.0417	0.0866	0.0200	0.0639	0.0333	0.0749	0.0683	0.1114	0.0400	0.0825	0.0533	0.0914	0.0650	0.1133
	E-net	0.0167	0.0556	0.0250	0.0686	0.0550	0.0978	0.0533	0.1056	0.0183	0.0575	0.0333	0.0749	0.0883	0.1411	0.0400	0.0825	0.0533	0.0973	0.0817	0.1451
	SCAD	0.2367	0.1235	0.2450	0.1147	0.2167	0.1124	0.0700	0.0923	0.2417	0.1217	0.2433	0.1070	0.1683	0.1242	0.2433	0.1390	0.2367	0.1323	0.1333	0.1517
	MCP	0.1883	0.0907	0.1933	0.0909	0.1800	0.0938	0.0650	0.0851	0.2067	0.1036	0.2050	0.0780	0.1233	9060.0	0.1967	0.0898	0.1900	0.1137	0.0967	0.0827

Table SM60: Mean and standard deviation of the β -sensitivity for Model 2 when n=200and p = 2000. See Figure SM60 for the corresponding visualization.

Type	Independent	dent	Symmetric	tric					Autoreg.	ressive					Blockwi	şe.				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD		SD	Mean	SD	Mean	SD	Mean	SD	Mean		Mean	SD	Mean	SD	Mean	SD	Mean	SD
Ridge	1.0000	0.000.0	_		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.1783	0.0489			0.2133	0.0823	0.1767	0.0619	0.2200	0.0944	0.3217		0.4467	0.1496	0.2883	0.1205	0.3467	0.1375	0.2700	0.1203
E-net	0.1800	0.0512			0.2183	0.0877	0.1817	0.0674	0.2367	0.1037	0.3500		0.5733	0.1559	0.3117	0.1223	0.3783	0.1378	0.3300	0.1460
SCAD	0.2167	0.0902			0.2117	0.0816	0.1550	0.0489	0.2483	0.1098	0.2350		0.1683	0.0167	0.2633	0.1258	0.2117	0.0849	0.1600	0.0328
MCP	0.1817	0.0535	0.2050	0.0849	0.1817	0.0479	0.1383	0.0629	0.2167	0.0902	0.2067	0.0754	0.1667	0.0237	0.2183	0.0968	0.1850	0.0524	0.1567	0.0398
Ridge	1.0000	0.000.0	_		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000
Lasso	0.1500	0.0503			0.1683	0.0443	0.1083	0.0898	0.1383	0.0672	0.1700		0.2467	0.1329	0.1650	0.0167	0.1867	0.0639	0.1733	0.1003
E-net	0.1483	0.0524			0.1700	0.0529	0.1217	0.0849	0.1367	0.0686	0.1700		0.2983	0.1466	0.1650	0.0167	0.1967	0.0763	0.1950	0.1112
$_{\text{SCAD}}$	0.1950	0.0672			0.1867	0.0544	0.0983	0.0889	0.1867	0.0594	0.2117		0.1817	0.0789	0.2000	0.0786	0.1983	0.0699	0.1400	0.0877
MCP	0.1800	0.0454			0.1700	0.0333	0.0833	0.0902	0.1750	0.0365	0.1883		0.1533	0.0656	0.1800	0.0512	0.1733	0.0328	0.1200	0.0789
Ridge	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000
Lasso	0.0133	0.0454	0.0267		0.0333	0.0749	0.0117	0.0427	0.0150	0.0479	0.0283		0.0517	0.1024	0.0233	0.0581	0.0383	0.0882	0.0233	0.0671
E-net	0.0133	0.0454	0.0267		0.0333	0.0749	0.0133	0.0454	0.0133	0.0454	0.0283		0.0617	0.1223	0.0233	0.0581	0.0350	0.0896	0.0250	0.0686
$_{\text{SCAD}}$	0.1733	0.0974	0.1800		0.1400	0.0969	0.0167	0.0503	0.1550	0.0829	0.1967		0.2100	0.1394	0.1850	0.0883	0.1917	0.0898	0.0733	0.1068
MCP	0.1600	0.0851	0.1567		0.1100	0.0924	0.0117	0.0427	0.1467	0.0796	0.1683		0.1150	0.0810	0.1733	0.0818	0.1667	0.0854	0.0433	0.0735

Table SM61: Mean and standard deviation of the β -sensitivity for Model 2 when n=1000 and p=10. See Figure SM61 for the corresponding visualization.

E	-	-	[-							-					
Lype Corr.	Independent	ndent	Symmetric 0.2	cric	75.		6.0		Autoregressive 0.2	essive	5.5		6.0		Blockwise 0.2	o o	75.0		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	00000.0
AIC B	0.6183	0.1143	0.6217	0.1250	0.6100	0.1258	0.4550	0.1587	0.5933	0.1144	0.6183	0.1304	0.4883	0.1366	0.6017	0.1158	0.5800	0.1148	0.4850	0.1423
BIC B	0.5100	0.0520	0.5100	0.0619	0.4700	0.0834	0.2850	0.1041	0.5017	0.0374	0.4800		0.3383	0.0553	0.5050	0.0500	0.4800	0.0830	0.3217	0.0894
AIC SB	0.6183	0.1143	0.6217	0.1250	0.6100	0.1258	0.4550	0.1587	0.5933	0.1144	0.6183	0.1304	0.4883	0.1366	0.6017	0.1158	0.5800	0.1148	0.4850	0.1423
BICSB	0.5100	0.0520	0.5100	0.0619	0.4700	0.0834	0.2850	0.1041	0.5017	0.0374	0.4800		0.3383	0.0553	0.5050	0.0500	0.4800	0.0830	0.3217	0.0894
AIC F	0.6183	0.1143	0.6217	0.1250	0.6067	0.1197	0.4367	0.1494	0.5917	0.1145	0.6067		0.4533	0.1255	0.5983	0.1138	0.5700	0.1064	0.4700	0.1327
BICF	0.5100	0.0520	0.5100	0.0619	0.4700	0.0834	0.2833	0.1019	0.5017	0.0374	0.4817	0.0883	0.3350	0.0443	0.5050	0.0500	0.4767	0.0750	0.3200	0.0876
AIC SF	0.6183	0.1143	0.6217	0.1250	0.6067	0.1197	0.4367	0.1494	0.5917	0.1145	0.6067		0.4500	0.1173	0.5983	0.1138	0.5700	0.1064	0.4700	0.1327
BIC SF	0.5100	0.0520	0.5100	0.0619	0.4700	0.0834	0.2833	0.1019	0.5017	0.0374	0.4800		0.3350	0.0443	0.5050	0.0500	0.4767	0.0750	0.3200	0.0876
Ridge	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.4867	0.0967	0.5267	0.0739	0.5833	0.1219	0.5700	0.1425	0.4900	0.0463	0.5217		0.5350	0.1522	0.4933	0.0525	0.5433	0.0966	0.5733	0.1347
E-net	0.5017	0.0837	0.5467	0.0920	0.6183	0.1238	0.7600	0.1577	0.4983	0.0374	0.5267	0.0939	0.6383	0.1480	0.5000	0.0474	0.5600	0.1099	0.7100	0.1528
SCAD	0.6783	0.1484	0.6617	0.1732	0.6667	0.1880	0.3800	0.1955	0.6717	0.1507	0.6583		0.5417	0.2577	0.6567	0.1722	0.6350	0.1653	0.5633	0.2770
MCP	0.6283	0.1457	0.6450	0.1703	0.6433	0.2024	0.3850	0.2020	0.6150	0.1548	0.6233	0.1767	0.5333	0.2462	0.6067	0.1684	0.5983	0.1693	0.5550	0.2763
3 OFS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
AIC B	0.4233	0.1449	0.4333	0.1692	0.4100	0.1648	0.3367	0.1589	0.4500	0.1562	0.4133		0.3633	0.1560	0.3900	0.1539	0.4033	0.1444	0.3600	0.1355
BIC B	0.2200	0.0816	0.2233	0.0954	0.2150	0.0896	0.1983	0.0699	0.2367	0.0860	0.2217		0.2017	0.0760	0.2117	0.0882	0.2050	0.0744	0.2000	0.0749
AIC SB	0.4233	0.1449	0.4333	0.1692	0.4100	0.1648	0.3367	0.1589	0.4500	0.1562	0.4133	0.1598	0.3633	0.1560	0.3900	0.1539	0.4033	0.1444	0.3600	0.1355
BIC SB	0.2200	0.0816	0.2233	0.0954	0.2150	0.0896	0.1983	0.0699	0.2367	0.0860	0.2250		0.2017	0.0760	0.2117	0.0882	0.2050	0.0744	0.2000	0.0749
AIC F	0.4233	0.1449	0.4217	0.1732	0.4017	0.1626	0.3167	0.1508	0.4483	0.1548	0.3900		0.3217	0.1386	0.3900	0.1575	0.3950	0.1374	0.3317	0.1350
BICF	0.2200	0.0816	0.2233	0.0954	0.2100	0.0842	0.1983	0.0699	0.2367	0.0860	0.2217		0.2050	0.0744	0.2083	0.0763	0.2017	0.0722	0.1983	0.0738
AIC SF	0.4233	0.1449	0.4217	0.1732	0.4017	0.1626	0.3167	0.1508	0.4483	0.1548	0.3900	0.1557	0.3167	0.1350	0.3883	0.1536	0.3950	0.1374	0.3317	0.1350
BIC SF	0.2200	0.0816	0.2233	0.0954	0.2100	0.0842	0.1983	0.0699	0.2367	0.0860	0.2217		0.2050	0.0744	0.2083	0.0763	0.2017	0.0722	0.1983	0.0738
Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.1683	0.0167	0.1817	0.0479	0.2133	0.1035	0.3167	0.1544	0.1717	0.0286	0.1850		0.2783	0.1232	0.1700	0.0235	0.1833	0.0556	0.2917	0.1348
E-net	0.1700	0.0235	0.1833	0.0503	0.2400	0.1192	0.5433	0.1635	0.1733	0.0405	0.1867		0.4133	0.1632	0.1733	0.0328	0.1917	0.0686	0.4517	0.1729
SCAD	0.4700	0.2455	0.4933	0.2710	0.4517	0.2725	0.3267	0.2461	0.5567	0.2418	0.4733	0.2790	0.3017	0.2206	0.4367	0.2538	0.4400	0.2590		0.2134
	0.3983	0.2495	0.3967	0.2730	0.4267	0.2933	0.3317	0.2479	0.4933	0.2710	0.4117		0.2667	0.2197	0.3817	0.2544	0.3967	0.2760		0.2056
STO 9	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000		1.0000	0.000.0	1.0000	0.000	1.0000	0.0000	1.0000	0.0000
AIC B	0.3667	0.1401	0.3633	0.1681	0.3867	0.1739	0.3350	0.1451	0.4017	0.1423	0.3767		0.3500	0.1633	0.3583	0.1648	0.3617	0.1422	0.3583	0.1306
BICB	0.2183	0.0844	0.2200	0.0850	0.2233	0.0861	0.1867	0.0594	0.2183	0.0908	0.2150	0.0760	0.2067	0.0825	0.2067	0.0715	0.2050	0.0705	0.2150	0.0760
AIC SB	0.3667	0.1401	0.3633	0.1681	0.3867	0.1739	0.3350	0.1451	0.4017	0.1423	0.3767		0.3500	0.1633	0.3583	0.1648	0.3617	0.1422	0.3583	0.1306
BICSB	0.2183	0.0844	0.2200	0.0850	0.2233	0.0861	0.1867	0.0594	0.2183	0.0908	0.2150		0.2067	0.0825	0.2067	0.0715	0.2050	0.0705	0.2150	0920.0
AIC F	0.3650	0.1375	0.3533	0.1576	0.3550	0.1565	0.3000	0.1340	0.3933	0.1372	0.3500	0.1615	0.2967	0.1373	0.3483	0.1626	0.3417	0.1409	0.3283	0.1195
BICF	0.2167	0.0838	0.2200	0.0850	0.2217	0.0856	0.1867	0.0594	0.2133	0.0789	0.2133	0.0752	0.2050	0.0816	0.2067	0.0715	0.2017	0.0682	0.2167	0.0768
AIC SF	0.3650	0.1375	0.3533	0.1576	0.3550	0.1565	0.3000	0.1340	0.3933	0.1372	0.3500	0.1615	0.2967	0.1373	0.3483	0.1626	0.3417	0.1409	0.3283	0.1195
BIC SF	0.2167	0.0838	0.2200	0.0850	0.2217	0.0856	0.1867	0.0594	0.2133	0.0789	0.2133	0.0752	0.2050	0.0816	0.2067	0.0715	0.2017	0.0682	0.2167	0.0768
Ridge	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0
Lasso	0.0933	0.0831	0.1133	0.0850	0.1467	0.0544	0.2117	0.1205	0.1167	0.0803	0.1350	0.0657	0.1650	0.0690	0.0983	0.0824	0.1167	0.0768	0.1667	0.1059
E-net	0.0933	0.0831	0.1167	0.0870	0.1483	0.0575	0.2800	0.1848	0.1167	0.0803	0.1367	0.0686	0.1917	0.0959	0.0983	0.0824	0.1167	0.0768	0.1933	0.1396
SCAD	0.2900	0.1889	0.3083	0.2277	0.3017	0.2231	0.2617	0.1943	0.3233	0.2343	0.2967	0.1798	0.2517	0.1932	0.2850	0.2123	0.3000	0.1953	0.2700	0.1753
MCP	0.2750	0.1973	0.2633	0.1985	0.2700	0.2116	0.2567	0.1795	0.2783	0.2052	0.2633	0.1927	0.2283	0.1601	0.2567	0.1988	0.2683	0.2023	0.2517	0.1716

Table SM62: Mean and standard deviation of the β -sensitivity for Model 2 when n = 1000See Figure SM62 for the corresponding visualization. and p = 100.

	Type	Independent	dent	Symmetric	ric					Autoregressive	ressive					Blockwise	se				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ο	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$
-	OLS	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	AIC F	0.6150	0.1177	0.6067	0.1197	0.6133	0.1273	0.4150	0.1633	0.5967	0.1165	0.6117	0.1232	0.4533	0.1362	0.6250	0.1306	0.5900	0.1146	0.3933	0.1330
	BICF	0.5117	0.0592	0.5167	0.0556	0.4433	0.0983	0.2300	0.0911	0.5017	0.0443	0.4767	0.0821	0.3283	0.0440	0.5100	0.0571	0.4567	0.0842	0.2583	0.1095
	AIC SF	0.6150	0.1177	0.6067	0.1197	0.6117	0.1255	0.4150	0.1633	0.5983	0.1163	0.6117	0.1232	0.4450	0.1341	0.6250	0.1306	0.5900	0.1096	0.3950	0.1354
	BIC SF	0.5117	0.0592	0.5167	0.0556	0.4433	0.0983	0.2300	0.0911	0.5017	0.0443	0.4767	0.0821	0.3283	0.0440	0.5100	0.0571	0.4567	0.0842	0.2583	0.1095
	\mathbf{Ridge}	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.4533	0.1062	0.5183	0.0622	0.5300	0.0959	0.4183	0.1470	0.4883	0.0489	0.5100	0.0881	0.5367	0.1373	0.5117	0.0721	0.5400	0.0980	0.5267	0.1416
	E-net	0.4633	0.0905	0.5200	0.0639	0.5400	0.0921	0.4867	0.1492	0.4917	0.0435	0.5167	0.0870	0.6600	0.1400	0.5217	0.0843	0.5700	0.1141	0.6300	0.1599
	$_{\text{SCAD}}$	0.5733	0.1168	0.5617	0.0875	0.5217	0.0843	0.2100	0.0874	0.5383	0.0780	0.5433	0.1127	0.3017	0.0775	0.5600	0.0963	0.5167	0.0991	0.2217	0.0978
	MCP	0.5250	0.0833	0.5333	0.0670	0.4650	0.1093	0.2033	9080.0	0.5200	0.0594	0.4850	0.1088	0.2950	0.0744	0.5217	0.0773	0.4783	0.0875	0.2233	0.0954
က	OLS	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	AIC F	0.4083	0.1714	0.3917	0.1596	0.3700	0.1813	0.3250	0.1505	0.4050	0.1594	0.4083	0.1389	0.3317	0.1650	0.4200	0.1700	0.3800	0.1573	0.3133	0.1387
	BICF	0.2267	0.0871	0.2183	0.0877	0.1900	0.0581	0.1850	0.0524	0.2200	0.0944	0.2183	0.0810	0.2083	0.0799	0.2133	0.0789	0.2067	0.0790	0.1983	0.0657
	AIC SF	0.4083	0.1714	0.3883	0.1608	0.3700	0.1813	0.3250	0.1505	0.4017	0.1573	0.4083	0.1389	0.3200	0.1529	0.4167	0.1667	0.3800	0.1591	0.3117	0.1395
	BIC SF	0.2267	0.0871	0.2183	0.0877	0.1900	0.0581	0.1850	0.0524	0.2200	0.0944	0.2183	0.0810	0.2083	0.0799	0.2133	0.0789	0.2067	0.0790	0.1983	0.0657
	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.1683	0.0167	0.1717	0.0371	0.1883	0.0697	0.2183	0.0844	0.1767	0.0571	0.1800	0.0512	0.2683	0.1273	0.1767	0.0398	0.2033	0.0873	0.2717	0.1223
	E-net	0.1683	0.0167	0.1783	0.0489	0.2050	0.0882	0.2733	0.1197	0.1783	0.0592	0.1883	0.0611	0.3700	0.1668	0.1833	0.0556	0.2317	0.1108	0.4067	0.1647
	$_{\text{SCAD}}$	0.2933	0.1300	0.3050	0.1403	0.2550	0.1195	0.1717	0.0286	0.2917	0.1560	0.2917	0.1505	0.1933	0.0776	0.3017	0.1415	0.2950	0.1438	0.1850	0.0524
	MCP	0.2383	0.1142	0.2633	0.1189	0.2017	0.0722	0.1700	0.0235	0.2483	0.1371	0.2150	0.0831	0.1783	0.0427	0.2500	0.1173	0.2200	0.0914	0.1833	0.0503
9	OLS	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	AIC F	0.3933	0.1392	0.3683	0.1522	0.3417	0.1409	0.3050	0.1554	0.3600	0.1493	0.3533	0.1427	0.3000	0.1381	0.3617	0.1403	0.33333	0.1479	0.2917	0.1327
	BIC F	0.2167	0.0803	0.2050	0.0705	0.1900	0.0581	0.1417	0.0725	0.2033	0.0733	0.2033	0.0733	0.2083	0.0799	0.2067	0.0754	0.1933	0.0614	0.1783	0.0638
	AIC SF	0.3900	0.1365	0.3683	0.1522	0.3433	0.1418	0.3017	0.1548	0.3600	0.1493	0.3517	0.1419	0.2967	0.1393	0.3633	0.1409	0.3317	0.1470	0.2917	0.1327
	BIC SF	0.2167	0.0803	0.2050	0.0705	0.1900	0.0581	0.1417	0.0725	0.2033	0.0733	0.2033	0.0733	0.2067	0.0754	0.2067	0.0754	0.1933	0.0614	0.1783	0.0638
	Ridge	1.0000	0.0000	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.0000
	Lasso	0.0917	0.0866	0.1300	0.0771	0.1383	0.0672	0.1417	0.0898	0.1100	0.0793	0.1317	0.0722	0.1683	0.0902	0.1200	0.0857	0.1400	0.0739	0.1817	0.1008
	E-net	0.0900	0.0868	0.1300	0.0771	0.1433	0.0750	0.1600	0.0945	0.1100	0.0793	0.1317	0.0722	0.1850	0.1083	0.1200	0.0857	0.1400	0.0739	0.2083	0.1306
	$_{\text{SCAD}}$	0.2200	0.0883	0.2267	0.0903	0.1950	0.0672	0.1450	0.0655	0.2217	0.1186	0.2067	0.0890	0.1833	0.0556	0.2250	0.1043	0.2117	0.0943	0.1817	0.0631
	MCP	0.1967	0.0686	0.2017	0.0796	0.1817	0.0479	0.1550	0.0592	0.1983	0.0908	0.1850	0.0622	0.1617	0.0602	0.2067	0.0858	0.1950	0.0672	0.1733	0.0576

Table SM63: Mean and standard deviation of the β -sensitivity for Model 2 when n=1000and p=2000. See Figure SM63 for the corresponding visualization.

Type	Independent	dent	Symmetric	ric					Autoreg	ressive					Blockwi	se				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD		SD
Ridge	1.0000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0		0.0000
Lasso	0.3900			0.0714	0.4367	0.1027	0.2517	0.1046	0.4650	0.0831	0.4800	0.0760	0.5500	0.1391	0.4983	0.0690.0	0.5183	0.0817		0.1549
E-net	0.4033			0.0619	0.4483	0.0996	0.2633	0.1141	0.4783	0.0736	0.4950	0.0766	0.6733	0.1274	0.5083	0.0598	0.5300	0.0834		0.1601
SCAD	0.4950			0.0626	0.4167	0.1073	0.1667	0.0000	0.5200	0.0682	0.4917	0.0763	0.1800	0.0454	0.5233	0.0671	0.4650	0.0896		0.0000
MCP	0.4767		0.4917	0.0549	0.3550	0.1246	0.1667	0.000.0	0.5067	0.0746	0.4400	0.0871	0.1800	0.0454	0.4883	0.0681	0.3950	0.1102	0.1667	0.0000
Ridge	1.0000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0		0.0000
Lasso	0.1667			0.0167	0.1733	0.0328	0.1700	0.0235	0.1667	0.000.0	0.1700	0.0235	0.2633	0.1280	0.1717	0.0286	0.1850	0.0524		0.1002
E-net	0.1667			0.0167	0.1817	0.0479	0.1750	0.0365	0.1667	0.000.0	0.1700	0.0235	0.3983	0.1551	0.1717	0.0286	0.2017	0.0682		0.1418
SCAD	0.1883			0.0733	0.1867	0.0544	0.1667	0.0000	0.2167	0.0838	0.2133	0.0857	0.1967	0.0726	0.2300	0.1080	0.2167	0.0768		0.0435
MCP	0.1850			0.0479	0.1767	0.0398	0.1667	0.000.0	0.1950	0.0672	0.1950	0.0672	0.1733	0.0328	0.1983	0.0699	0.1817	0.0479		0.0286
Ridge	1.0000			0.0000	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.000.0	1.0000	0.0000	1.0000	0.000.0		0.0000
Lasso	0.1050			0.0793	0.1317	0.0760	0.1200	0.0752	0.1167	0.0768	0.1017	0.0817	0.1567	0.0881	0.1233	0.0735	0.1350	0.0699		0.1012
E-net	0.1033			0.0799	0.1300	0.0771	0.1267	0.0715	0.1150	0.0775	0.1000	0.0821	0.1783	0.1142	0.1217	0.0744	0.1350	0.0738		0.1134
SCAD	0.1850			0.0524	0.1867	0.0544	0.1400	0.0658	0.1967	0.0644	0.2000	0.0749	0.1750	0.0435	0.1967	0.0726	0.1750	0.0365		0.0427
MCP	0.1750			0.0427	0.1733	0.0328	0.1167	0.0768	0.1883	0.0563	0.1850	0.0524	0.1617	0.0440	0.1817	0.0479	0.1717	0.0286		0.0503

SM5.4. Tables for the $\beta\text{-specificity}$ of the non-linear simulations.

Table SM64: Mean and standard deviation of the β -specificity for Model 2 when n=50and p = 10. See Figure SM64 for the corresponding visualization.

$\widetilde{\mathrm{Type}}$	Independent	ndent	Symmetric	tric	1		0		Autoregressive	essive	1		0		Blockwise	ise	i c		0	
Corr.	-		0.5		0.5		6.0		0.2		0.5		6.0		7.0		0.5		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS		0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.0000
AIC B		0.1472	0.408	0.1656	0.428	0.1505	0.486	0.1664	0.398	0.1670	0.428	0.1558	0.458	0.1713	0.382	0.1708	0.432	0.1497	0.466	0.1609
BIC B	0.506	0.1081	0.500	0.1255	0.518	0.1104	0.590	0.1314	0.496	0.1255	0.526	0.1125	0.546	0.1417	0.508	0.1220	0.514	0.1279	0.566	0.1241
AIC SE		0.1472	0.408	0.1656	0.428	0.1505	0.486	0.1664	0.398	0.1670	0.428	0.1558	0.458	0.1713	0.382	0.1708	0.432	0.1497	0.464	0.1605
BIC SB		0.1081	0.498	0.1255	0.518	0.1104	0.590	0.1314	0.496	0.1255	0.526	0.1125	0.546	0.1417	0.512	0.1183	0.514	0.1279	0.566	0.1241
AIC F		0.1441	0.440	0.1477	0.444	0.1493	0.528	0.1621	0.404	0.1705	0.466	0.1335	0.480	0.1504	0.392	0.1606	0.460	0.1435	0.488	0.1665
BICF	0.512	0.1076	0.514	0.1247	0.522	0.1060	909.0	0.1153	0.504	0.1222	0.542	0.0997	0.544	0.1209	0.524	0.1093	0.538	0.1013	0.572	0.1102
AIC SF	F 0.416	0.1441	0.440	0.1477	0.448	0.1453	0.528	0.1621	0.406	0.1693	0.468	0.1309	0.504	0.1406	0.394	0.1594	0.460	0.1435	0.508	0.1433
BICSF	ج 0.512	0.1076	0.514	0.1247	0.522	0.1060	909.0	0.1153	0.504	0.1222	0.542	0.0997	0.562	0.1126	0.524	0.1093	0.538	0.1013	0.586	0.0995
Ridge		0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000
Lasso	0.512	0.1249	0.476	0.1525	0.430	0.1541	0.412	0.1552	0.490	0.1432	0.478	0.1418	0.420	0.1717	0.476	0.1628	0.454	0.1629	0.428	0.1682
E-net	0.500	0.1348	0.462	0.1575	0.396	0.1504	0.324	0.1628	0.476	0.1498	0.460	0.1435	0.352	0.1611	0.464	0.1630	0.434	0.1609	0.372	0.1776
SCAD	0.410	0.1872	0.424	0.1870	0.434	0.1908	0.548	0.2082	0.416	0.1879	0.478	0.1727	0.492	0.1830	0.416	0.2063	0.496	0.1595	0.472	0.2118
MCP	0.450	0.1829	0.496	0.1669	0.474	0.1790	0.542	0.1996	0.460	0.1959	0.512	0.1641	0.470	0.1829	0.464	0.2087	0.524	0.1525	0.512	0.1849
3 OLS		0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000
AIC B		0.2118	0.524	0.1881	0.546	0.1702	0.598		0.538	0.1857	0.560	0.1886	0.550	0.1977	0.572	0.1753	0.542	0.1827	0.582	0.1559
BIC B		0.1512	0.634	0.1609	0.656	0.1479	0.702		989.0	0.1429	0.694	0.1286	0.666	0.1241	0.682	0.1306	0.658	0.1590	0.668	0.1278
AIC SB	-	0.2118	0.524	0.1881	0.546	0.1702	0.598		0.538	0.1857	0.558	0.1913	0.548	0.2002	0.570	0.1761	0.538	0.1813	0.582	0.1559
BIC SE		0.1512	0.634	0.1609	0.652	0.1494	0.700		0.690	0.1403	0.690	0.1314	0.666	0.1273	0.682	0.1306	0.658	0.1590	0.668	0.1278
AIC F		0.1825	0.554	0.1839	0.574	0.1721	0.648		0.564	0.1761	0.584	0.1900	0.606	0.1830	0.596	0.1752	0.584	0.1600	0.660	0.1463
BICF	0.666	0.1423	0.648	0.1480	0.672	0.1464	0.730	_	969.0	0.1286	0.710	0.1185	0.688	0.1217	0.696	0.1222	0.692	0.1346	0.706	0.1188
AIC SF		0.1825	0.554	0.1839	0.574	0.1721	0.648	_	0.566	0.1754	0.588	0.1860	0.620	0.1853	0.598	0.1717	0.584	0.1600	0.662	0.1469
BICSF		0.1423	0.648	0.1480	0.676	0.1415	0.730	0.1040	969.0	0.1286	0.710	0.1185	0.700	0.1155	0.696	0.1222	0.694	0.1317	0.706	0.1188
Ridge	0.000	0.0000	0.000	0.000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0
Lasso	0.752	0.1396	0.756	0.1085	0.666	0.1683	0.656	0.1800	0.784	0.0615	0.768	0.0931	0.670	0.1567	0.766	0.0807	0.734	0.1506	0.710	0.1541
E-net	0.752	0.1396	0.746	0.1201	0.654	0.1749	0.574	0.2121	0.780	0.0667	0.766	0.0987	0.616	0.1813	0.764	0.0871	0.728	0.1544	0.684	0.1686
SCAD	0.540	0.2535	0.548	0.2584	0.536	0.2460	0.634	0.2345	0.590	0.2153	0.576	0.2332	0.602	0.2265	809.0	0.1968	0.536	0.2393	0.644	0.2022
	0.590	0.2627	0.580	0.2629	0.610	0.2468	0.626	0.2321	0.656	0.2071	0.642	0.2226	0.594	0.2317	0.664	0.1795	0.598	0.2486	0.662	0.2004
STO 9		0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0
AIC B		0.1979	0.578	0.1883	0.590	0.1691	0.590	0.1829	0.612	0.1725	0.634	0.1799	0.570	0.1936	0.644	0.1623	0.584	0.1791	0.590	0.1617
BIC B		0.1271	0.706	0.1347	0.700	0.1287	0.700	0.1318	0.740	0.1223	0.732	0.1246	0.690	0.1432	0.744	0.0988	902.0	0.1347	0.688	0.1402
AIC SB		0.1979	0.578	0.1883	0.588	0.1677	0.590	0.1829	0.612	0.1725	0.634	0.1821	0.568	0.1943	0.642	0.1615	0.584	0.1791	0.588	0.1629
BIC SE		0.1271	0.706	0.1347	0.700	0.1287	0.700	0.1318	0.740	0.1223	0.730	0.1283	0.690	0.1432	0.744	0.0988	0.704	0.1348	0.686	0.1400
AIC F		0.1853	0.614	0.1688	0.620	0.1764	0.662	0.1674	0.624	0.1615	0.664	0.1703	0.654	0.1500	0.676	0.1357	0.642	0.1615	0.626	0.1574
BICF		0.1174	0.722	0.1133	0.734	0.1066	0.738	0.1013	0.750	0.11115	0.750	0.0959	0.724	0.1129	0.748	0.0926	0.738	0.1013	0.714	0.1215
AIC SI		0.1840	0.616	0.1674	0.622	0.1750	0.664	0.1630	0.622	0.1630	999.0	0.1683	0.658	0.1458	0.678	0.1330	0.646	0.1553	0.628	0.1558
BICSE		0.1174	0.722	0.1133	0.734	0.1066	0.740	0.0964	0.750	0.11115	0.750	0.0959	0.726	0.1088	0.748	0.0926	0.738	0.1013	0.714	0.1215
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000
Lasso	0.794	0.0445	0.796	0.0281	0.778	0.0746	0.762	0.0930	0.798	0.0200	0.798	0.0200	0.756	0.1085	0.798	0.0200	0.788	0.0477	0.778	0.0799
E-net	0.794	0.0445	0.796	0.0281	0.778	0.0746	0.740	0.1318	0.798	0.0200	0.796	0.0281	0.742	0.1281	0.798	0.0200	0.792	0.0394	0.772	0.0944
SCAD	0.640	0.2395	0.640	0.2494	0.612	0.2341	0.694	0.1958	0.684	0.1710	0.688	0.1849	0.670	0.1957	0.734	0.1304	0.634	0.2413	0.660	0.2040
MCF	0.678	0.2230	0.668	0.2465	0.042	0.2383	0.690	0.1850	0.722	0.1630	0.7.26	0.1599	0.094	0.1808	0.746	0.1201	0.666	0.2328	0.688	0.1996

50Table SM65: Mean and standard deviation of the β -specificity for Model 2 when n=1See Figure SM65 for the corresponding visualization. and p = 100.

	Type	Independent	ndent	Symmetric	tric					Autoregressive	essive					Blockwise	se				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
-	Ridge	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9598	0.0430	0.9418	0.0409	0.9181	0.0427	0.9151	0.0302	0.9639	0.0279	0.9627	0.0284	0.9657	0.0159	0.9592	0.0216	0.9491	0.0263	0.9438	0.0221
	E-net	0.9571	0.0455	0.9338	0.0406	0.9009	0.0476	0.8793	0.0312	0.9604	0.0311	0.9591	0.0293	0.9612	0.0162	0.9547	0.0232	0.9413	0.0271	0.9240	0.0220
	SCAD	0.9241	0.0358	0.9226	0.0379	0.9457	0.0272	0.9641	0.0301	0.9295	0.0368	0.9321	0.0411	0.9486	0.0266	0.9273	0.0377	0.9424	0.0319	0.9625	0.0210
	MCP	0.9591	0.0216	0.9588	0.0231	0.9669	0.0177	0.9743	0.0108	0.9621	0.0208	0.9639	0.0193	0.9653	0.0178	0.9578	0.0236	0.9646	0.0163	0.9700	0.0163
က	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9858	0.0114	0.9823	0.0190	0.9724	0.0228	0.9578	0.0267	0.9847	0.0170	0.9851	0.0154	0.9800	0.0248	0.9831	0.0190	0.9787	0.0183	0.9714	0.0198
	E-net	0.9852	0.0140	0.9802	0.0215	0.9661	0.0292	0.9385	0.0368	0.9836	0.0212	0.9845	0.0170	0.9762	0.0285	0.9826	0.0154	0.9768	0.0186	9096.0	0.0254
	SCAD	0.9361	0.0434	0.9365	0.0391	0.9493	0.0278	0.9680	0.0226	0.9415	0.0478	0.9412	0.0364	0.9638	0.0249	0.9386	0.0413	0.9529	0.0295	0.9671	0.0188
	MCP	0.9672			0.0282	0.9769	0.0140	0.9795	0.0123	0.9739	0.0204	0.9734	0.0210	0.9762	0.0193	0.9709	0.0214	0.9723	0.0219	0.9766	0.0142
9	Ridge	0.0000	Ι-	Г	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
	Lasso	0.9871		_	0.0335	0.9848	0.0137	0.9805	0.0151	0.9873	0.0211	0.9865	0.0162	0.9847	0.0236	0.9868	0.0193	0.9882	0.0066	0.9851	0.0111
	E-net	0.9871	0.0152	0.9839	0.0290	0.9840	0.0154	0.9742	0.0249	0.9872	0.0211	0.9857	0.0184	0.9841	0.0247	0.9867	0.0203	0.9881	0.0074	0.9828	0.0157
	SCAD	0.9636	0.0389	0.9613	0.0357	0.9648	0.0268	0.9734	0.0182	0.9633	0.0385	0.9617	0.0359	0.9715	0.0286	0.9602	0.0381	0.9671	0.0279	0.9719	0.0238
	MCP	0.9758	0.0235	0.9761	0.0209	0.9798	0.0137	0.9819	0.0108	0.9793	0.0177	0.9773	0.0176	0.9818	0.0159	0.9797	0.0158	0.9792	0.0160	0.9803	0.0149

50Table SM66: Mean and standard deviation of the β -specificity for Model 2 when n=1and p = 2000. See Figure SM66 for the corresponding visualization.

	Type	Independent	dent	Symmetric	tric					Autoregressive	ressive					Blockwise	e e				
	Corr.	0		0.2		0.2		6.0		0.5		0.5		6.0		0.5		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
_	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.866.0	0.0024	0.9959	0.0027	0.9929	0.0028	0.9931	0.0020	0.9976	0.0025	0.9981	0.0018	0.9981	0.0012	0.9979	0.0017	0.9965	0.0020	0.9962	0.0017
	E-net	0.9978	0.0029	0.9951	0.0029	0.9911	0.0028	0.9894	0.0024	0.9974	0.0027	0.9979	0.0021	0.9977	0.0014	0.9974	0.0021	0.9958	0.0021	0.9942	0.0018
	$_{\text{SCAD}}$	0.9918	0.0035	0.9929	0.0026	0.9941	0.0028	0.9960	0.0030	0.9916	0.0028	0.9921	0.0033	0.9952	0.0034	0.9927	0.0032	0.9944	0.0030	0.9976	0.0020
	MCP	0.9973	0.0014	0.9977	0.0012	0.9981	0.0008	0.9988	0.0004	0.9974	0.0013	0.9977	0.0012	0.9981	0.0014	0.9976	0.0012	0.9979	0.0012	0.9988	0.0009
3	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9993	0.0006	0.9985	0.0025	0.9978	0.0021	0.9970	0.0020	0.9994	0.0004	0.9991	0.0020	0.9991	0.0010	0.9992	0.0013	0.9983	0.0023	0.9982	0.0011
	E-net	0.9993	0.0000	0.9983	0.0027	0.9973	0.0023	0.9949	0.0032	0.9993	0.0005	0.9990	0.0023	0.9989	0.0013	0.9991	0.0015	0.9980	0.0026	0.9972	0.0019
	$_{\text{SCAD}}$	0.9939	0.0042	0.9935		0.9952	0.0023	0.9972	0.0022	0.9934	0.0044	0.9945	0.0042	0.9951	0.0039	0.9946	0.0039	0.9950	0.0030	0.9971	0.0021
	MCP	0.9984	0.0011	0.9980		0.9986	0.0000	0.9990	0.0004	0.9982	0.0014	0.9985	0.0013	0.9984	0.0014	0.9984	0.0013	0.9985	0.0010	0.9986	0.0012
9	Ridge	0.0000	0.0000	0.0000		0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9994	0.0006	0.9994		0.9990	0.0015	0.9989	0.0012	0.9995	0.0001	0.9993	0.0016	0.9993	0.000.0	0.9995	0.0002	0.9991	0.0017	0.9991	0.0007
	E-net	0.9994	0.0007	0.9994		0.9989	0.0016	0.9984	0.0021	0.9995	0.0001	0.9993	0.0015	0.9993	0.0011	0.9995	0.0002	0.9990	0.0019	0.9989	0.0012
	$_{\text{SCAD}}$	0.9971	0.0034	0.9958		0.9965	0.0027	0.9981	0.0015	0.9966	0.0038	0.9971	0.0037	0.9975	0.0028	0.9967	0.0038	0.9969	0.0032	0.9977	0.0021
	מכוי	0000	0011	1000		0000	0000	0000	7000	0000	00.0	0000	0.000	0000	0100	0000	0.000	0000	0000	0000	1 1 1 1

Table SM67: Mean and standard deviation of the β -specificity for Model 2 when n=200 and p=10. See Figure SM67 for the corresponding visualization.

Ē	Ladonogadont	4000+	O Comments	4.00					Automotiv	0.000					Dleolemico					
Corr.	odanii	mann	0.2	2110	5.5		6.0		Autoregressive 0.2	Lessive	5.5		0.9		D.2	Ď	75.0		6.0	
σ Model	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD
1 OLS	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0
AIC B	0.348	0.1159	0.368	0.1053	0.394	0.1462	0.452	0.1494	0.358	0.1249	0.372	0.1364	0.436	0.1514	0.358	0.1281	0.368	0.1355	0.454	0.1417
BIC B	0.450	0.1000	0.454	0.1058	0.480	0.1137	0.556	0.0833	0.474	0.0970	0.472	0.1190	0.540	0.1119	0.466	0.1066	0.480	0.1137	0.562	0.0930
AIC SB	0.348	0.1159	0.368	0.1053	0.394	0.1462	0.452	0.1494	0.358	0.1249	0.372	0.1364	0.434	0.1532	0.358	0.1281	0.368	0.1355	0.454	0.1417
BICSB	0.450	0.1000	0.454	0.1058	0.480	0.1137	0.556	0.0833	0.474	0.0970	0.472	0.1190	0.540	0.1119	0.466	0.1066	0.480	0.1137	0.562	0.0930
AIC F	0.348	0.1087	0.368	0.1053	0.400	0.1449	0.472	0.1436	0.362	0.1196	0.382	0.1306	0.456	0.1395	0.360	0.1271	0.380	0.1318	0.470	0.1403
BIC F	0.450	0.1000	0.454	0.1058	0.486	0.1146	0.562	0.0789	0.474	0.0970	0.480	0.1101	0.548	0.1010	0.470	0.1078	0.494	0.1081	0.562	0.0885
AIC SF	0.348	0.1087	0.368	0.1053	0.400	0.1449	0.472	0.1436	0.362	0.1196	0.382	0.1306	0.456	0.1395	0.360	0.1271	0.382	0.1306	0.472	0.1379
BIC SF	0.450	0.1000	0.454	0.1058	0.486	0.1146	0.562	0.0789	0.474	0.0970	0.480	0.1101	0.550	0.1000	0.470	0.1078	0.494	0.1081	0.564	0.0871
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.0000
Lasso	0.480	0.1239	0.418	0.1140	0.370	0.1642	0.378	0.1554	0.460	0.1255	0.440	0.0985	0.386	0.1457	0.466	0.1273	0.426	0.1383	0.388	0.1578
E-net	0.456	0.1242	0.396	0.1063	0.338	0.1625	0.282	0.1533	0.452	0.1259	0.434	0.0945	0.310	0.1251	0.448	0.1210	0.394	0.1377	0.276	0.1793
SCAD	0.266	0.1950	0.284	0.1994	0.346	0.2086	0.500	0.1741	0.294	0.1958	0.336	0.1773	0.502	0.1595	0.294	0.1979	0.322	0.2008	0.482	0.1930
MCP	0.306	0.1999	0.328	0.2021	0.376	0.2036	0.508	0.1643	0.324	0.1985	0.376	0.1975	0.486	0.1589	0.334	0.2071	0.358	0.2189	0.496	0.1809
3 OLS	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.0000
AIC B	0.428	0.1364	0.452	0.1521	0.480	0.1633	0.588	0.1677	0.412	0.1653	0.464	0.1554	0.580	0.2020	0.432	0.1497	0.474	0.1468	0.562	0.1698
BIC B	0.608	0.1447	0.586	0.1279	0.628	0.1393	0.708	0.1152	0.626	0.1411	0.642	0.1281	0.720	0.1239	0.596	0.1333	0.622	0.0980	0.656	0.1104
AIC SB	0.428	0.1364	0.452	0.1521	0.480	0.1633	0.588	0.1677	0.412	0.1653	0.464	0.1554	0.580	0.2020	0.432	0.1497	0.474	0.1468	0.562	0.1698
BIC SB	0.608	0.1447	0.586	0.1279	0.628	0.1393	0.708	0.1152	0.626	0.1411	0.642	0.1281	0.718	0.1242	0.596	0.1333	0.622	0.0980	0.656	0.1104
AIC F	0.432	0.1355	0.454	0.1527	0.496	0.1669	0.614	0.1589	0.432	0.1746	0.494	0.1644	0.654	0.1604	0.432	0.1497	0.498	0.1318	0.586	0.1664
BIC F	0.616	0.1383	0.588	0.1266	0.640	0.1172	0.720	0.1101	0.636	0.1345	0.650	0.1251	0.732	0.1145	0.598	0.1318	0.626	0.1011	0.664	0.1133
AIC SF	0.432	0.1355	0.454	0.1527	0.496	0.1669	0.614	0.1589	0.432	0.1746	0.494	0.1644	0.658	0.1539	0.432	0.1497	0.498	0.1318	0.586	0.1664
BIC SF	0.616	0.1383	0.588	0.1266	0.640	0.1172	0.720	0.1101	0.636	0.1345	0.650	0.1251	0.738	0.1090	0.598	0.1318	0.626	0.1011	0.664	0.1133
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000
Lasso	0.762	0.0930	0.720	0.1363	0.654	0.1553	0.614	0.1735	0.774	0.0787	0.740	0.1287	0.658	0.1565	0.774	0.0733	0.746	0.1096	0.690	0.1432
E-net	0.760	0.0943	0.682	0.1533	0.618	0.1777	0.472	0.1832	0.770	0.0823	0.732	0.1340	0.562	0.1698	0.762	0.0930	0.740	0.1189	0.642	0.1689
SCAD	0.492	0.2549	0.426	0.2338	0.516	0.2415	0.676	0.1965	0.466	0.2801	0.560	0.2238	0.648	0.2380	0.466	0.2221	0.492	0.2097	0.582	0.2091
	0.542	0.2531	0.478	0.2308	0.564	0.2402	0.664	0.2028	0.496	0.2835	0.610	0.2209	0.636	0.2351	0.518	0.2311	0.552	0.2110	0.626	0.1900
STO 9	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0
AIC B	0.616	0.1674	0.620	0.1595	0.602	0.1764	0.634	0.1584	0.616	0.1698	0.616	0.1600	0.616	0.1879	0.604	0.1608	0.632	0.1442	0.602	0.1717
BIC B	0.748	0.0926	0.748	0.0926	0.750	0.0916	0.734	0.0987	0.760	0.0804	992.0	0.0755	0.740	0.1155	0.744	0.0988	0.750	0.0916	0.724	0.1296
AIC SB	0.616	0.1674	0.620	0.1595	0.602	0.1764	0.634	0.1584	0.612	0.1701	0.616	0.1600	0.616	0.1879	0.604	0.1608	0.632	0.1442	0.602	0.1717
BIC SB	0.748	0.0926	0.748	0.0926	0.750	0.0916	0.734	0.0987	0.760	0.0804	0.766	0.0755	0.740	0.1155	0.744	0.0988	0.750	0.0916	0.724	0.1296
AIC F	0.618	0.1660	0.624	0.1538	0.624	0.1712	0.654	0.1500	0.614	0.1712	0.642	0.1565	0.672	0.1596	0.612	0.1578	0.658	0.1372	0.648	0.1507
BIC F	0.748	0.0926	0.752	0.0858	0.754	0.0892	0.740	0.0921	0.762	0.0789	0.772	0.0697	0.750	0.0959	0.746	0.0979	0.756	0.0833	0.736	0.1097
AIC SF	0.618	0.1660	0.624	0.1538	0.624	0.1712	0.654	0.1500	0.614	0.1712	0.644	0.1520	0.680	0.1477	0.612	0.1578	0.658	0.1372	0.650	0.1460
BIC SF	0.748	0.0926	0.752	0.0858	0.754	0.0892	0.740	0.0921	0.762	0.0789	0.772	0.0697	0.750	0.0959	0.746	0.0979	0.756	0.0833	0.736	0.1097
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.0000
Lasso	0.798	0.0200	0.800	0.0000	0.786	0.0652	0.758	0.0997	0.800	0.000.0	0.794	0.0343	0.770	0.0772	0.800	0.000.0	0.796	0.0400	0.790	0.0522
E-net	0.798	0.0200	0.800	0.000.0	0.784	0.0677	0.732	0.1340	0.800	0.000.0	0.792	0.0394	0.754	0.1019	0.800	0.000.0	0.796	0.0400	0.784	0.0735
SCAD	0.612	0.2306	0.580	0.2370	0.624	0.2243	0.652	0.2082	0.624	0.2114	0.632	0.2197	0.668	0.2014	0.576	0.2483	0.646	0.1904	0.662	0.1984
MCP	0.674	0.2232	0.644	0.2267	0.648	0.2544	0.672	0.1875	0.678	0.1926	989.0	0.2261	0.668	0.2150	0.630	0.2580	0.688	0.1783	0.688	0.1783

Table SM68: Mean and standard deviation of the β -specificity for Model 2 when n=200See Figure SM68 for the corresponding visualization. and p = 100.

Type	Independent	dent	Symmetric	tric					Autoregressive	essive					Blockwise	eg.				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
σ Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0
AIC F	0.7469	0.0585	0.7458	0.0646	0.7442	0.0611	0.7608	0.0620	0.7596	0.0636	0.7777	0.0675	0.8578	0.0631	0.7524	0.0691	0.7621	0.0750	0.8635	0.0707
BICF	0.9434	0.0196	0.9476	0.0174	0.9526	0.0180	0.9606	0.0165	0.9472	0.0193	0.9526	0.0166	0.9704	0.0116	0.9493	0.0185	0.9586	0.0169	0.9682	0.0111
AIC SF	0.7496	0.0589	0.7485	0.0625	0.7518	0.0586	0.7651	0.0632	0.7614	0.0594	0.7833	0.0613	0.8657	0.0562	0.7620	0.0650	0.7712	0.0686	0.8655	0.0672
BIC SF	0.9438	0.0191	0.9476	0.0174	0.9528	0.0175	9096.0	0.0165	0.9472	0.0193	0.9528	0.0164	0.9708	0.0115	0.9492	0.0186	0.9586	0.0169	0.9682	0.0111
Ridge	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9658	0.0263	0.9429	0.0321	0.9112	0.0300	0.9040	0.0328	0.9691	0.0180	0.9674	0.0112	0.9669	0.0091	0.9593	0.0220	0.9485	0.0232	0.9440	0.0185
E-net	0.9635	0.0264	0.9316	0.0325	0.8913	0.0322	0.8589	0.0355	0.9657	0.0226	0.9644	0.0138	0.9618	0.0133	0.9551	0.0232	0.9386	0.0252	0.9218	0.0224
SCAD	0.9227	0.0595	0.9282	0.0421	0.9399	0.0310	0.9729	0.0104	0.9359	0.0539	0.9344	0.0465	0.9665	0.0258	0.9208	0.0498	0.9397	0.0361	0.9625	0.0165
MCP	0.9531	0.0346	0.9537	0.0258	0.9669	0.0140	0.9740	0.0088	0.9575	0.0341	0.9552	0.0344	0.9649	0.0189	0.9525	0.0282	0.9631	0.0189	0.9701	0.0122
3 OFS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000	0.0000
AIC F	0.7575	0.0567	0.7624	0.0660	0.7613	0.0603	0.7647	0.0629	0.7569	0.0645	0.7880	0.0625	0.8727	0.0661	0.7687	0.0734	0.7819	0.0801	0.8625	0.0894
BICF	0.9546	0.0198	0.9600	0.0153	0.9631	0.0186	0.9685	0.0172	0.9546	0.0204	0.9613	0.0205	0.9725	0.0150	0.9580	0.0161	0.9641	0.0161	0.9768	0.0112
AIC SF	0.7645	0.0532	0.7689	0.0621	0.7652	0.0571	0.7699	0.0616	0.7614	0.0611	0.7937	0.0576	0.8825	0.0585	0.7739	0.0676	0.7868	0.0703	0.8677	0.0796
BIC SF	0.9551	0.0193	0.9601	0.0153	0.9634	0.0184	0.9689	0.0168	0.9546	0.0204	0.9615	0.0197	0.9732	0.0137	0.9579	0.0163	0.9640	0.0163	0.9768	0.0112
Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9882	0.0064	0.9849	0.0119	0.9687	0.0246	0.9502	0.0214	0.9884	0.0076	0.9882	0.0043	0.9811	0.0091	0.9867	0.0068	0.9792	0.0136	0.9682	0.0151
E-net	0.9878	0.0071	0.9829	0.0149	0.9617	0.0293	0.9177	0.0281	0.9884	0.0076	0.9877	0.0050	0.9766	8600.0	0.9856	0.0094	0.9749	0.0154	0.9492	0.0205
SCAD	0.9455	0.0481	0.9402	0.0418	0.9475	0.0313	0.9767	0.0192	0.9547	0.0425	0.9613	0.0403	0.9668	0.0300	0.9435	0.0407	0.9503	0.0306	0.9749	0.0210
MCP	0.9679	0.0357_{1}	0.9633	0.0278	0.9722	0.0228	0.9824	0.0095	0.9725	0.0268	0.9781	0.0253	0.9746	0.0193	0.9651	0.0286	0.9745	0.0183	0.9786	0.0138
STO 9	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
AIC F	0.7606	0.0585	0.7713	0.0672	0.7565	0.0677	0.7659	0.0712	0.7684	0.0662	0.7958	0.0599	0.8738	8090.0	0.7815	0.0692	0.7931	0.0754	0.8723	0.0852
BICF	0.9626	0.0178	0.9681	0.0159	0.9681	0.0202	0.9717	0.0124	0.9607	0.0198	0.9661	0.0188	0.9774	0.0122	0.9655	0.0166	0.9705	0.0146	0.9774	0.0132
AIC SF	0.7664	0.0560_{1}	0.7766	0.0646	0.7674	0.0590	0.7749	0.0690	0.7777	0.0581	0.8015	0.0570	0.8805	0.0557	0.7877	0.0629	0.7997	0.0707	0.8774	0.0763
BIC SF	0.9626	0.0178	0.9682	0.0157	0.9683	0.0199	0.9717	0.0124	0.9608	0.0196	0.9662	0.0185	0.9774	0.0122	0.9655	0.0166	0.9708	0.0138	0.9775	0.0130
Ridge	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9893	0.0021	0.9895	0.0000	0.9868	0.0080	0.9789	0.0158	0.9895	0.000.0	0.9888	0.0044	0.9874	0.0050	0.9892	0.0023	0.9885	0.0034	0.9847	0.0101
E-net	0.9893	0.0021	0.9894	0.0011	0.9862	0.0099	0.9725	0.0243	0.9895	0.000.0	0.9888	0.0044	0.9863	0.0068	0.9892	0.0023	0.9883	0.0039	0.9815	0.0149
SCAD	0.9491	0.0470	0.9448	0.0376	0.9458	0.0304	0.9700	0.0205	0.9509	0.0411	0.9557	0.0383	0.9596	0.0302	0.9471	0.0411	0.9536	0.0244	0.9667	0.0176
MCP	0.9726	0.0254	0.9723	0.0220	0.9734	0.0200	0.9815	0.0000	0.9746	0.0221	0.9759	0.0203	0.9758	0.0175	0.9735	0.0233	0.9772	0.0133	0.9763	0.0137

Table SM69: Mean and standard deviation of the β -specificity for Model 2 when n=200and p = 2000. See Figure SM69 for the corresponding visualization.

Type	Independent	dent	Symmetric	hric					Autoreg	ressive					Blockwise	ě				
Corr.	0		0.2		0.2		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Ridge	0.0000	0.0000	0.000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9988	0.0005	0.9948	0.0031	0.9911		0.9907	0.0023	0.9984	0.0016	0.9983	0.0013	0.9982	8000.0	0.9980	0.0013	0.9958	0.0048	0.9955	0.0013
E-net	0.9986	0.0009	0.9931	0.0033	0.9889		0.9864	0.0028	0.9982	0.0020	0.9980	0.0017	0.9980	0.0007	0.9976	0.0016	0.9948	0.0048	0.9932	0.0016
SCAD	0.9959	0.0045	0.9937	0.0048	0.9942		0.9973	0.0037	0.9944	0.0071	0.9954	0.0062	0.9961	0.0044	0.9948	0.0055	0.9959	0.0046	0.9967	0.0019
MCP	0.9979	0.0022	0.9971	0.0020	0.9982	0.0009	0.9989	0.0003	0.9977	0.0022	0.9979	0.0019	0.9978	0.0020	0.9976	0.0022	0.9980	0.0017	0.9979	0.0012
Ridge	0.0000	0.0000	0.0000	0.0000	0.0000		0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9995	0.0002	0.9991	0.0011	0.9976		0.9957	0.0020	0.9995	0.0001	0.9994	0.0002	0.9992	0.0004	0.9994	0.0000	0.9989	0.0000	0.9977	0.0011
E-net	0.9995	0.0002	0.9990	0.0013	0.9969		0.9929	0.0027	0.9995	0.0002	0.9994	0.0002	0.9989	0.0004	0.9994	0.0008	0.9986	0.0011	0.9961	0.0015
SCAD	0.9948	0.0059	0.9943	0.0042	0.9950		0.9961	0.0031	0.9936	0.0066	0.9948	0.0062	0.9972	0.0039	0.9943	0.0059	0.9958	0.0041	0.9979	0.0019
MCP	0.9984	0.0018	0.9980	0.0017	0.9984		0.9991	0.0004	0.9982	0.0018	0.9982	0.0022	0.9988	0.0012	0.9982	0.0018	0.9987	0.0013	0.9988	0.0011
Ridge	0.0000	0.0000	0.0000	0.0000	0.0000		0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0
Lasso	0.9995	0.0002	0.9994	0.0008	0.9992	_	0.9987	0.0011	0.9995	0.000.0	0.9995	0.0001	0.9994	0.0002	0.9995	0.0001	0.9995	0.0002	0.9992	0.0005
E-net	0.9995	0.0002	0.9994	0.0000	0.9991	0.0010	0.9981	0.0018	0.9995	0.000.0	0.9995	0.0001	0.9994	0.0002	0.9995	0.0001	0.9994	0.0003	0.9991	0.0009
SCAD	0.9952	0.0061	0.9946	0.0051	0.9944	_	0.9977	0.0016	0.9949	0.0069	0.9939	0.0073	0.9969	0.0032	0.9945	0.0061	0.9945	0.0044	0.9969	0.0021
MCP	0.9982	0.0020	0.9979	0.0018	0.9983	0.0009	0.9990	0.0003	0.9980	0.0018	0.9979	0.0023	0.9986	0.0016	0.9981	0.0020	0.9983	0.0014	0.9986	0.0011

Table SM70: Mean and standard deviation of the β -specificity for Model 2 when n=1000 and p=10. See Figure SM70 for the corresponding visualization.

E	-	-												r	-					
Corr	Independent	ndent	Symmetric 0.2	tric	75		6.0		Autoregressive 0.2	ressive	75		6.0		Blockwise 0.2	ee ee	75		6.0	
σ Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1 OLS	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0
AIC B	0.326	0.1125	0.336	0.0980	0.338	0.0930	0.440	0.1206	0.316	0.1143	0.338	0.1052	0.348	0.1259	0.340	0.0964	0.336	0.1059	0.356	0.1157
BIC B	0.400	0.0284	0.392	0.0394	0.402	0.0449	0.504	0.1044	0.400	0.0284	0.396	0.0281	0.496	0.1118	0.392	0.0394	0.394	0.0343	0.492	0.1116
AIC SB	0.326	0.1125	0.336	0.0980	0.338	0.0930	0.440	0.1206	0.316	0.1143	0.338	0.1052	0.348	0.1259	0.340	0.0964	0.336	0.1059	0.356	0.1157
BICSB	0.400	0.0284	0.392	0.0394	0.402	0.0449	0.504	0.1044	0.400	0.0284	0.396	0.0281	0.496	0.1118	0.392	0.0394	0.394	0.0343	0.492	0.1116
AIC F	0.326	0.1125	0.336	0.0980	0.338	0.0930	0.448	0.1210	0.318	0.1140	0.344	0.1028	0.374	0.1125	0.342	0.0997	0.340	0.1005	0.370	0.1150
BICF	0.400	0.0284	0.392	0.0394	0.402	0.0449	0.506	0.1043	0.400	0.0284	0.396		0.496	0.1082	0.392	0.0394	0.394	0.0343	0.494	0.1118
AIC SF	0.326	0.1125	0.336	0.0980	0.338	0.0930	0.448	0.1210	0.318	0.1140	0.344		0.378	0.1097	0.344	0.0946	0.340	0.1005	0.370	0.1150
BIC SF	0.400	0.0284	0.392	0.0394	0.402	0.0449	0.506	0.1043	0.400	0.0284	0.396		0.496	0.1082	0.392	0.0394	0.394	0.0343	0.494	0.1118
Ridge	0.000	0.000.0	0.000	0.000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000		0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0
Lasso	0.400	0.0402	0.382	0.0642	0.340	0.0964	0.342	0.1281	0.402	0.0348	0.394		0.322	0.1203	0.392	0.0394	0.354	0.0937	0.320	0.1393
E-net	0.396	0.0400	0.368	0.0790	0.308	0.1220	0.186	0.1311	0.400	0.0284	0.392		0.282	0.1140	0.388	0.0477	0.342	0.0997	0.198	0.1348
SCAD	0.264	0.1501	0.280	0.1421	0.278	0.1501	0.446	0.1654	0.280	0.1363	0.276		0.320	0.2089	0.276	0.1386	0.286	0.1511	0.312	0.2016
MCP	0.308	0.1376	0.316	0.1369	0.292	0.1542	0.448	0.1660	0.318	0.1336	0.302		0.324	0.2104	0.312	0.1373	0.316	0.1339	0.330	0.1977
3 OFS	0.000	0.000.0	0.000	0.000	0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000		0.000	0.000.0	0.000	0.0000	0.000	0.000.0	0.000	0.000.0
AIC B	0.338	0.1013	0.326	0.1050	0.354	0.1132	0.504	0.1435	0.324	0.1093	0.338		0.438	0.1469	0.328	0.1083	0.350	0.1040	0.458	0.1485
BIC B	0.430	0.0718	0.436	0.0823	0.468	0.0952	0.652	0.0926	0.448	0.0858	0.454		0.600	0.1025	0.422	0.0799	0.452	0.0882	909.0	0.0600
AIC SB	0.338	0.1013	0.326	0.1050	0.354	0.1132	0.504	0.1435	0.324	0.1093	0.338		0.438	0.1469	0.328	0.1083	0.350	0.1040	0.458	0.1485
BIC SB	0.430	0.0718	0.436	0.0823	0.468	0.0952	0.652	0.0926	0.448	0.0858	0.454		0.600	0.1025	0.422	0.0799	0.452	0.0882	909.0	0.0600
AIC F	0.338	0.1013	0.328	0.1045	0.356	0.1122	0.520	0.1421	0.326	0.1088	0.344		0.484	0.1454	0.330	0.1078	0.354	0.1058	0.492	0.1316
BICF	0.430	0.0718	0.436	0.0823	0.470	0.0959	0.656	0.0903	0.448	0.0858	0.458		0.612	0.1094	0.422	0.0799	0.456	0.0903	809.0	0.0563
AIC SF	0.338	0.1013	0.328	0.1045	0.356	0.1122	0.520	0.1421	0.326	0.1088	0.344		0.486	0.1484	0.330	0.1078	0.354	0.1058	0.492	0.1316
BIC SF	0.430	0.0718	0.436	0.0823	0.470	0.0959	0.656	0.0903	0.448	0.0858	0.458	0.1037	0.612	0.1094	0.422	0.0799	0.456	0.0903	809.0	0.0563
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000	0.000	0.000.0
Lasso	0.724	0.1232	0.624	0.1564	0.528	0.1349	0.490	0.1738	0.698	0.1407	0.658	0.1615	0.490	0.1691	0.670	0.1592	0.596	0.1530	0.560	0.1633
E-net	0.706	0.1317	0.592	0.1555	0.466	0.1241	0.296	0.1595	0.672	0.1621	809.0	0.1727	0.398	0.1491	0.654	0.1604	0.580	0.1491	0.466	0.2071
SCAD	0.306	0.1669	0.306	0.1594	0.326	0.1697	0.558	0.2226	0.248	0.1685	0.312	0.1914	0.502	0.1938	0.302	0.1463	0.322	0.1679	0.502	0.1809
	0.360	0.1449	0.352	0.1636	0.356	0.1898	0.556	0.2231	0.302	0.1875	0.358	0.1996	0.510	0.1915	0.340	0.1435	0.362	0.1722	0.534	0.1659
9 OFS	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000.0
AIC B	0.478	0.1727	0.516	0.1686	0.542	0.1640	0.640	0.1752	0.492	0.1739	0.526	0.1649	0.586	0.1870	0.476	0.1628	0.508	0.1619	0.624	0.1485
BICB	0.700	0.1189	0.712	0.1076	0.730	0.0959	0.776	0.0653	0.710	0.1219	0.724	0.1093	0.756	0.0880	0.712	0.1148	0.682	0.1029	0.710	0.1040
AIC SB	0.478	0.1727	0.516	0.1686	0.542	0.1640	0.640	0.1752	0.492	0.1739	0.526	0.1649	0.586	0.1870	0.476	0.1628	0.508	0.1619	0.624	0.1485
BIC SB	0.700	0.1189	0.712	0.1076	0.730	0.0959	0.776	0.0653	0.710	0.1219	0.724	0.1093	0.756	0.0880	0.712	0.1148	0.682	0.1029	0.710	0.1040
AIC F	0.480	0.1729	0.520	0.1729	0.558	0.1590	0.676	0.1603	0.498	0.1764	0.542	0.1689	0.656	0.1479	0.476	0.1628	0.522	0.1554	0.648	0.1453
BIC F	0.702	0.1155	0.712	0.1076	0.732	0.0952	0.776	0.0653	0.712	0.1183	0.726	0.1088	0.756	0.0925	0.712	0.1148	0.690	0.1040	0.712	0.1037
AIC SF	0.480	0.1729	0.520	0.1729	0.558	0.1590	0.676	0.1603	0.498	0.1764	0.544	0.1635	0.658	0.1430	0.476	0.1628	0.522	0.1554	0.648	0.1453
BIC SF	0.702	0.1155	0.712	0.1076	0.732	0.0952	0.776	0.0653	0.712	0.1183	0.726	0.1088	0.760	0.0853	0.712	0.1148	0.690	0.1040	0.712	0.1037
Ridge	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000	0.000.0	0.000	0.000.0	0.000	0.0000	0.000	0.000	0.000	0.000.0
Lasso	0.800	0.000.0	0.800	0.000	0.798	0.0200	0.730	0.1150	0.800	0.000.0	0.800	0.000.0	0.738	0.1126	0.800	0.0000	0.800	0.000.0	0.782	0.0575
E-net	0.800	0.0000	0.800	0.000.0	0.790	0.0522	0.646	0.1604	0.800	0.000.0	0.800	0.000.0	0.682	0.1366	0.800	0.0000	0.800	0.000.0	0.774	0.0836
SCAD	0.610	0.2385	0.602	0.2535	0.628	0.2292	0.720	0.1798	0.582	0.2576	0.630	0.2209	0.682	0.2185	0.584	0.2489	0.572	0.2089	0.650	0.1936
MCP	0.650	0.2263	0.640	0.2327	0.684	0.1973	0.716	0.1587	0.632	0.2441	0.678	0.2008	0.676	0.1985	0.632	0.2339	0.628	0.2128	999.0	0.1821

Table SM71: Mean and standard deviation of the β -specificity for Model 2 when n=1000and p = 100. See Figure SM71 for the corresponding visualization.

	Type	Independent	dent	Symmetric	tric					Autoregressive	-essive					Blockwise	ge ge				
	Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
ь	Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	OLS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000	0.000.0	0.0000
	AIC F	0.8161	0.0338	0.8169	0.0391	0.8104	0.0384	0.8092	0.0443	0.8105	0.0378	0.8213	0.0394	0.8896	0.0397	0.8105	0.0407	0.8269	0.0478	0.8899	0.0492
	BIC F	0.9606	0.0093	0.9609	0.0095	0.9601	0.0093	0.9659	0.0083	0.9601	0.0084	0.9617	0.0087	0.9713	0.0076	0.9607	0.0102	0.9631	0.0092	0.9696.0	0.0080
	AIC SF	0.8165	0.0331	0.8181	0.0382	0.8119	0.0377	0.8104	0.0450	0.8112	0.0383	0.8237	0.0391	0.8935	0.0387	0.8120	0.0397	0.8273	0.0476	0.8912	0.0488
	BICSF	0.9606	0.0093	0.9609	0.0095	0.9601	0.0093	0.9659	0.0083	0.9601	0.0084	0.9617	0.0087	0.9713	0.0076	0.9607	0.0102	0.9631	0.0092	0.9696.0	0.0080
	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9660	0.0061	0.9524	0.0235	0.9157	0.0292	0.8825	0.0289	0.9662	0.0113	0.9679	0.0023	0.9659	0.0058	0.9656	0.0061	0.9527	0.0157	0.9349	0.0202
	E-net	0.9654	0.0072	0.9437	0.0264	0.8922	0.0311	0.8260	0.0327	0.9654	0.0144	0.9674	0.0038	0.9639	0.0056	0.9646	0.0077	0.9441	0.0177	0.9066	0.0221
	SCAD	0.8940	0.0469	0.8994	0.0487	0.9156	0.0358	0.9714	0.0105	0.8898	0.0535	0.8942	0.0498	0.9498	0.0255	0.9012	0.0526	0.9054	0.0369	0.9574	0.0219
	MCP	0.9412	0.0276	0.9423	0.0295	0.9514	0.0209	0.9727	0.0085	0.9399	0.0312	0.9364	0.0325	0.9649	0.0158	0.9436	0.0345	0.9436	0.0195	0.9626	0.0174
3	OLS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	AIC F	0.8044	0.0392	0.8121	0.0388	0.8123	0.0415	0.8241	0.0338	0.8115	0.0379	0.8305	0.0417	0.8878	0.0427	0.8112	0.0434	0.8280	0.0443	0.9041	0.0459
	BIC F	0.9619	0.0117	0.9623	0.0085	0.9624	0.0113	0.9760	0.0075	0.9614	0.0106	0.9657	0.0118	0.9769	9900.0	0.9636	0.0092	0.9665	0.0094	0.9793	0.0072
	AIC SF	0.8051	0.0388	0.8135	0.0387	0.8128	0.0419	0.8242	0.0338	0.8119	0.0377	0.8327	0.0404	0.8911	0.0416	0.8123	0.0427	0.8304	0.0429	0.9047	0.0448
	BIC SF	0.9619	0.0117	0.9623	0.0085	0.9625	0.0112	0.9760	0.0075	0.9614	0.0106	0.9657	0.0118	0.9769	9900.0	0.9636	0.0092	0.9665	0.0094	0.9793	0.0072
	\mathbf{Ridge}	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9865	0.0062	0.9793	0.0118	0.9667	0.0184	0.9361	0.0307	0.9862	0.0059	0.9833	0.0089	0.9755	0.0094	0.9806	0.0080	0.9733	0.0104	0.9634	0.0148
	E-net	0.9860	0.0065	0.9765	0.0136	0.9548	0.0262	0.8768	0.0311	0.9852	0.0070	0.9809	0.0095	0.9696	0.0079	0.9792	0.0082	0.9685	0.0121	0.9320	0.0173
	SCAD	0.9144	0.0504	0.9076	0.0451	0.9238	0.0327	0.9785	0.0107	0.9138	0.0485	0.9244	0.0516	0.9544	0.0288	0.9228	0.0506	0.9272	0.0323	0.9702	0.0196
	MCP	0.9483	0.0345	0.9439	0.0255	0.9562	0.0197	0.9809	0.0089	0.9468	0.0361	0.9568	0.0276	0.9694	0.0164	0.9514	0.0295	0.9559	0.0197	0.9791	0.0119
9	OLS	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	AIC F	0.8105	0.0412	0.8216	0.0420	0.8236	0.0457	0.8323	0.0377	0.8239	0.0384	0.8416	0.0421	0.8984	0.0444	0.8242	0.0431	0.8373	0.0481	0.9121	0.0466
	BICF	0.9788	0.0104	0.9765	0.0111	0.9775	0.0110	0.9801	0.0091	0.9768	0.0105	0.9802	0.0113	0.9840	0.0080	0.9757	0.0119	0.9799	0.0089	0.9853	0.0075
	AIC SF	0.8114	0.0407	0.8220	0.0421	0.8251	0.0444	0.8332	0.0377	0.8245	0.0380	0.8443	0.0411	0.9015	0.0422	0.8254	0.0421	0.8389	0.0465	0.9122	0.0466
	$_{ m BIC}$ SF	0.9788	0.0104	0.9765	0.0111	0.9775	0.0110	0.9801	0.0091	0.9768	0.0105	0.9802	0.0113	0.9840	0.0080	0.9757	0.0119	0.9799	0.0089	0.9854	0.0072
	Ridge	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
	Lasso	0.9895	0.0000	0.9892	0.0023	0.9889	0.0023	0.9697	0.0214	0.9895	0.000.0	0.9894	0.0011	0.9872	0.0049	0.9895	0.000.0	0.9893	0.0015	0.9824	8600.0
	E-net	0.9895	0.0000	0.9888	0.0036	0.9879	0.0057	0.9527	0.0315	0.9895	0.000.0	0.9894	0.0011	0.9857	0.0059	0.9894	0.0011	0.9889	0.0031	0.9743	0.0167
	SCAD	0.9666	0.0371	0.9579	0.0413	0.9633	0.0325	0.9755	0.0219	0.9656	0.0423	0.9734	0.0355	0.9783	0.0217	0.9612	0.0508	0.9639	0.0364	0.9771	0.0171
	MCP	0.9777	0.0240	0.9749	0.0246	0.9786	0.0184	0.9837	0.0081	0.9762	0.0279	0.9834	0.0167	0.9832	0.0126	0.9749	0.0296	0.9781	0.0199	0.9818	0.0115

Table SM72: Mean and standard deviation of the β -specificity for Model 2 when n=1000and p=2000. See Figure SM72 for the corresponding visualization.

Type	Independent	dent	Symmetric	ric					Autoregressive	ressive					Blockwis	ě				
Corr.	0		0.2		0.5		6.0		0.2		0.5		6.0		0.2		0.5		6.0	
Model	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD	Mean	$^{\mathrm{SD}}$	Mean	SD	Mean	SD
Ridge	0.0000	0.000.0		0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9984	0.0004		0.0031	0.9903	0.0030	0.9886	0.0028	0.9984	0.0003	0.9985	0.0002	0.9984	0.0003	0.9982	0.0004	0.9964	0.0014	0.9948	0.0014
E-net	0.9983	0.0006		0.0035	0.9874	0.0032	0.9826	0.0034	0.9984	0.0004	0.9985	0.0002	0.9982	0.0003	0.9979	0.0007	0.9954	0.0015	0.9916	0.0015
SCAD	0.9914	0.0060		0.0040	0.9937	0.0027	0.9990	0.000.0	0.9902	0.0079	0.9913	0.0053	0.9987	0.0005	0.9914	0.0057	0.9960.0	0.0018	0.9990	0.0001
MCP	0.9960	0.0025		0.0024	0.9973	0.0011	0.9990	0.0000	0.9957	0.0029	0.9965	0.0022	0.9988	0.0004	0.9959	0.0028	0.9973	0.0012	0.9990	0.0001
Ridge	0.0000	0.000.0		0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9994	0.0002		0.0007	0.9971	0.0023	0.9945	0.0021	0.9994	0.0003	0.9993	0.0003	0.9988	0.0004	0.9992	0.0003	0.9986	0.0008	0.9973	0.0012
E-net	0.9994	0.0003		0.0010	0.9957	0.0027	0.9892	0.0026	0.9993	0.0003	0.9993	0.0004	0.9985	0.0004	0.9991	0.0004	0.9981	0.0011	0.9944	0.0013
SCAD	0.9943	0.0057		0.0058	0.9920	0.0031	0.9989	0.0007	0.9926	0.0068	0.9949	0.0053	0.9960	0.0045	0.9936	0.0051	0.9928	0.0048	0.9980	0.0021
MCP	0.9970	0.0027	0.9960	0.0023	0.9973	0.0012	0.9993	0.0002	0.9968	0.0025	0.9973	0.0022	0.9980	0.0021	0.9970	0.0020	0.9971	0.0016	0.9987	0.0011
Ridge	0.0000	0.000.0		0.000.0	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Lasso	0.9995	0.000.0		0.0000	0.9993	0.0005	0.9977	0.0015	0.9995	0.000.0	0.9995	0.000.0	0.9994	0.0002	0.9995	0.000	0.9995	0.0001	0.9988	0.0009
E-net	0.9995	0.000.0		0.000.0	0.9992	0.0007	0.9964	0.0024	0.9995	0.000.0	0.9995	0.000.0	0.9992	0.0003	0.9995	0.0000	0.9995	0.0001	0.9982	0.0013
SCAD	0.9970	0.0043		0.0043	0.9964	0.0031	0.9969	0.0032	0.9960	0.0060	0.9970	0.0045	0.9979	0.0029	0.9970	0.0034	0.9975	0.0029	0.9982	0.0020
MCP	0.9985	0.0022		0.0018	0.9988	0.0010	0.9992	0.0003	0.9985	0.0019	0.9989	0.0011	0.9990	0.0010	0.9989	0.0013	0.9989	0.0011	0.9990	0.0009