R1: Basic Data Wrangling

Data manipulation with {dplyr} in {tidyverse}

Andreas Reschreiter

2023-11-12

Table of contents

1	Tidy 1.1 1.2	data modelling 2 Tidy data and tidyverse 2 Tidy data 2
2	Pipe	operator 2
	2.1	The {tidyverse} pipe %>%
	2.2	The base R pipe > operator
3	Mak	e tibbles
	3.1	From data frames
	3.2	Column-wise
	3.3	Row-wise
4	Basi	c data manipulation
	4.1	select() columns 6
	4.2	filter() rows
		4.2.1 filter() composed conditions
		4.2.2 filter() specified range
	4.3	mutate() variables
		4.3.1 Modify existing variables
		4.3.2 Add new variable (based on an existing ones)
		4.3.3 Add new variable (independent variable)
		4.3.4 Remove variable
	4.4	rename() variables
	4.5	arrange() rows to sort data 10
	4.6	top_n() for top rows
	4.7	summarize() columns
	4.8	group_by() to group columns data

1 Tidy data modelling

Packages used in this notebook:

```
suppressPackageStartupMessages({
   library(tidyverse)
})
```

1.1 Tidy data and tidyverse

The "{tidyverse}" is a set of related R packages designed for data science. One of the core packages is {dplyr} used for transformation of data frames or, better, "tibble()". A tibble() (from the abbreviation "tbl" for table) is basically a data frame that "behaves" and prints in a slightly better way than standard R data.frame().

1.2 Tidy data

Tidy data satisfies the following criteria:

- Each column represents a variable (i.e. feature)
- Each row is an observation (i.e. case) of data

Data in tibble() and data.frame() is tipically tidy data.

2 Pipe operator

The {tidyverse} pipe %>% (magrittr pipe) and base R pipe |> (native pipe).

2.1 The {tidyverse} pipe %>%

- The function f(x,a) can be written as x % % f(a).
- The pipe %>% simplifies the execution of several functions.
- For example h(g(f(x,a),b),c) becomes the more readable expression x %% f(a) %% g(b) %% h(c) as the functions are placed one after the other.
- The {tidyverse} pipe %>% is part of the {magrittr} package that contains additional pipe operators. The %>% is therefore known as {magrittr} pipe.
- The pipe %>% requires tidy data and reads as "and then".

¹The {tidyverse} has this tidy data principle in its name.

- The %>% operator must always appear at the end of lines.
- To persist changes

```
- data <- data %>% ... or:
- data %<>% ...
```

• By default piped into first function argument

```
- x \%\% foo(y) becomes foo(x, y)
```

• Non default piped into not first function argument

```
- y %>% foo(x, .) becomes foo(x, y)
- d %>% lm(y~x,data=.) becomes lm(y~x,data=d)
- mydata %>% .[[1]] becomes mydata[[1]]
```

2.2 The base R pipe |> operator

- Since R version 4.1 a base R pipe |> operator exists. It is called **native pipe** (needs no loading of a package).
- By default |> pipes into first function argument

```
x \mid > foo(y) becomes foo(x, y)
```

Non default pipe by naming (all) arguments
 y |> foo(a=x,b=) becomes foo(a=x,b=y)

```
d |> lm(formula=y~x,data=)
```

 Non default pipe by function definition mydata |> \(x) lm(y~x, data = x) mydata |> \(.) lm(y~x, data = .)

3 Make tibbles

From data.frame() with as_tibble(), column-wise from vectors with tibble() and row-wise with tribble().

3.1 From data frames

Use the command as_tibble() to create a tibble from a data frame. Consider the datasets::iris data frame

```
str(iris)
```

```
150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
               : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
  data = as_tibble(iris)
  str(data)
tibble [150 x 5] (S3: tbl_df/tbl/data.frame)
$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species
               : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
Note: The resulting tibble() is still also a data.frame() and all operations for a
data.frame() still work (due to class inheritance).
  class(data)
[1] "tbl df"
                 "tbl"
                               "data.frame"
  as_tibble(iris)
# A tibble: 150 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                                 <dbl> <fct>
          <dbl>
                      <dbl>
                                    <dbl>
1
            5.1
                         3.5
                                      1.4
                                                   0.2 setosa
2
            4.9
                         3
                                      1.4
                                                   0.2 setosa
3
            4.7
                         3.2
                                      1.3
                                                   0.2 setosa
                                                   0.2 setosa
4
            4.6
                         3.1
                                      1.5
5
            5
                        3.6
                                      1.4
                                                   0.2 setosa
6
            5.4
                        3.9
                                      1.7
                                                   0.4 setosa
7
            4.6
                        3.4
                                      1.4
                                                   0.3 setosa
8
            5
                        3.4
                                      1.5
                                                   0.2 setosa
9
            4.4
                        2.9
                                      1.4
                                                   0.2 setosa
10
            4.9
                         3.1
                                      1.5
                                                   0.1 setosa
# i 140 more rows
```

The iris data in the format of a tibble prints on "one screen" in contrast to the original iris data in the data frame that prints out the whole data (in the R-Markdown output).

3.2 Column-wise

Create a tibble column-wise from data vectors with the command tibble():

```
tibble(A = 1:26, B = letters)
# A tibble: 26 x 2
       A B
   <int> <chr>
1
       1 a
2
       2 b
 3
       3 c
 4
       4 d
5
       5 e
6
       6 f
7
       7 g
8
       8 h
9
       9 i
10
      10 j
# i 16 more rows
```

3.3 Row-wise

Create a tibble by row-wise data specification with the command tribble(). This is particularly useful for adding new cases of data (observations) via new lines of data entries.

4 Basic data manipulation

The ground functions of the {dplyr} package are: select(), filter(), mutate(), arrange(), and group_by() / summarize().

4.1 select() columns

select() is used to choose and exclude columns:

```
select(data, Petal.Width, Species)
  select(data, -Sepal.Length, -Sepal.Width, -Petal.Length)
# A tibble: 150 x 2
                                       # A tibble: 150 x 2
  Petal.Width Species
                                          Petal.Width Species
         <dbl> <fct>
                                                 <dbl> <fct>
1
           0.2 setosa
                                        1
                                                   0.2 setosa
2
           0.2 setosa
                                        2
                                                   0.2 setosa
                                                   0.2 setosa
3
           0.2 setosa
                                        3
4
           0.2 setosa
                                        4
                                                   0.2 setosa
5
           0.2 setosa
                                        5
                                                  0.2 setosa
6
                                        6
           0.4 setosa
                                                   0.4 setosa
7
           0.3 setosa
                                        7
                                                   0.3 setosa
8
           0.2 setosa
                                        8
                                                   0.2 setosa
9
           0.2 setosa
                                        9
                                                   0.2 setosa
           0.1 setosa
                                                   0.1 setosa
10
                                       10
# i 140 more rows
                                       # i 140 more rows
```

select() on parts of column name:

4.2 filter() rows

filter() to choose or exclude rows

```
# NOTE filter first and select afterwards
filter(data, Species == "versicolor") |> select(1:2)
```

```
# A tibble: 6 x 2
                          # A tibble: 6 x 2
                                                    # A tibble: 6 x 2
  Sepal.Length Sepal.Width Sepal.Length Petal.Length Sepal.Length Petal.Length
         <dbl>
                     <dbl>
                                   <dbl>
                                                <dbl>
                                                             <dbl>
                                                                           <dbl>
           5.1
                       3.51
                                     5.1
                                                               5.1
                                                                             1.4
1
                                                  1.14
2
           4.9
                       3 2
                                     4.9
                                                  1.24
                                                               4.9
                                                                             1.4
3
           4.7
                       3.23
                                     4.7
                                                  1.33
                                                               4.7
                                                                             1.3
4
           4.6
                       3.14
                                     4.6
                                                  1.45
                                                               4.6
                                                                            1.5
5
           5
                       3.65
                                     5
                                                  1.54
                                                               5
                                                                            1.4
           5.4
                       3.96
                                     5.4
                                                               5.4
                                                                            1.7
                                                  1.67
```

```
filter(data, Species != "versicolor") |> select(last_col())
```

# A tibbl	e: 50 x 2		# A tibble: 100 x 1
Sepal.	Length Sep	al.Width	Species
	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	7	3.2	1 setosa
2	6.4	3.2	2 setosa
3	6.9	3.1	3 setosa
4	5.5	2.3	4 setosa
5	6.5	2.8	5 setosa
6	5.7	2.8	6 setosa
7	6.3	3.3	7 setosa
8	4.9	2.4	8 setosa
9	6.6	2.9	9 setosa
10	5.2	2.7	10 setosa
# i 40 mo	re rows		# i 90 more rows

4.2.1 filter() composed conditions

```
# NOTE uses chunk option: #| layout-nrow: 2
filter(data, Sepal.Length > 5 & Sepal.Width > 4) ## same as next
filter(data, Sepal.Length > 5 , Sepal.Width > 4) ## same as above
```

A tibble: 3 x 5 Sepal.Length Sepal.Width Petal.Length Petal.Width Species <dbl> <dbl> <dbl> <dbl> <fct> 1 5.7 4.4 1.5 0.4 setosa 5.2 2 4.1 1.5 0.1 setosa 3 5.5 # A tibble: 3 x 5 4.2 1.4 0.2 setosa Sepal.Length Sepal.Width Petal.Length Petal.Width Species <dbl> <fct> <dbl> <dbl> <dbl> 1 5.7 4.4 1.5 0.4 setosa 2 5.2 4.1 0.1 setosa 1.5

1.4

0.2 setosa

4.2.2 filter() specified range

5.5

```
filter(data, between(Petal.Length, 1, 1.2))
```

4.2

A tibble: 4 x 5

3

Sepal.Length Sepal.Width Petal.Length Petal.Width Species <dbl> <dbl> <dbl> <dbl> <fct> 1 4.3 3 1.1 0.1 setosa 2 5.8 4 1.2 0.2 setosa 0.2 setosa 3 4.6 3.6 1 3.2 1.2 4 5 0.2 setosa

4.3 mutate() variables

4.3.1 Modify existing variables

```
mutate(data, Sepal.Length = round(Sepal.Length)) %>%
head(3)
```

A tibble: 3 x 5

Sepal.Length Sepal.Width Petal.Length Petal.Width Species <dbl> <dbl> <dbl> <dbl> <fct> 3.5 1.4 0.2 setosa 1 5 2 5 3 1.4 0.2 setosa 3 5 3.2 1.3 0.2 setosa

4.3.2 Add new variable (based on an existing ones)

```
mutate(data, Sepal = ifelse(Sepal.Length > 5, "Long", "Short"), .after = 2) %>%
    head()
# A tibble: 6 x 6
 Sepal.Length Sepal.Width Sepal Petal.Length Petal.Width Species
         <dbl>
                                        <dbl>
                    <dbl> <chr>
                                                   <dbl> <fct>
1
           5.1
                       3.5 Long
                                          1.4
                                                      0.2 setosa
2
           4.9
                           Short
                                         1.4
                                                      0.2 setosa
3
          4.7
                       3.2 Short
                                          1.3
                                                      0.2 setosa
4
          4.6
                      3.1 Short
                                          1.5
                                                      0.2 setosa
           5
                       3.6 Short
5
                                          1.4
                                                      0.2 setosa
6
          5.4
                       3.9 Long
                                          1.7
                                                      0.4 setosa
```

4.3.3 Add new variable (independent variable)

```
# A tibble: 6 x 6
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
               <dbl>
  <chr>
                          <dbl>
                                       <dbl>
                                                   <dbl> <fct>
1 id 1
                 5.1
                            3.5
                                         1.4
                                                     0.2 setosa
2 id 2
                4.9
                            3
                                         1.4
                                                     0.2 setosa
3 id 3
                4.7
                            3.2
                                         1.3
                                                     0.2 setosa
4 id 4
                4.6
                            3.1
                                         1.5
                                                     0.2 setosa
                5
5 id 5
                            3.6
                                          1.4
                                                     0.2 setosa
                                                     0.4 setosa
6 id 6
                5.4
                            3.9
                                         1.7
```

4.3.4 Remove variable

```
mutate(data, Species = NULL) %>% head()
```

A tibble: 6 x 4

•••				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	5.1	3.5	1.4	0.2
2	4.9	3	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

4.4 rename() variables

```
rename(data, Sepal_Length = "Sepal.Length") %>% head()
```

A tibble: 6 x 5

<dbl> <dbl> <dbl> <dbl> <dbl> <dc>fc 1 5.1 3.5 1.4 0.2 set 2 4.9 3 1.4 0.2 set 3 4.7 3.2 1.3 0.2 set 4 4.6 3.1 1.5 0.2 set 5 5 3.6 1.4 0.2 set 6 5.4 3.9 1.7 0.4 set</dc></dbl></dbl></dbl></dbl></dbl>		Sepal_Length	Sepal.Width	Petal.Length	Petal.Width	Species
2 4.9 3 1.4 0.2 set 3 4.7 3.2 1.3 0.2 set 4 4.6 3.1 1.5 0.2 set 5 5 3.6 1.4 0.2 set		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
3 4.7 3.2 1.3 0.2 set 4 4.6 3.1 1.5 0.2 set 5 5 3.6 1.4 0.2 set	1	5.1	3.5	1.4	0.2	setosa
4 4.6 3.1 1.5 0.2 set 5 5 3.6 1.4 0.2 set	2	4.9	3	1.4	0.2	setosa
5 5 3.6 1.4 0.2 set	3	4.7	3.2	1.3	0.2	setosa
	4	4.6	3.1	1.5	0.2	setosa
6 5.4 3.9 1.7 0.4 set	5	5	3.6	1.4	0.2	setosa
	6	5.4	3.9	1.7	0.4	setosa

4.5 arrange() rows to sort data

Sort ascending:

```
arrange(data, Sepal.Length) # NOTE sort ascending is default
```

A tibble: 150 x 5

2	4.4	2.9	1.4	0.2 setosa
3	4.4	3	1.3	0.2 setosa
4	4.4	3.2	1.3	0.2 setosa
5	4.5	2.3	1.3	0.3 setosa
6	4.6	3.1	1.5	0.2 setosa
7	4.6	3.4	1.4	0.3 setosa
8	4.6	3.6	1	0.2 setosa
9	4.6	3.2	1.4	0.2 setosa
10	4.7	3.2	1.3	0.2 setosa

i 140 more rows

Sort Species descending and then according to Sepal.Length ascending:

```
arrange(data, desc(Species), Sepal.Length)
```

A tibble: 150 x 5

	Sepal.Length <pre><dbl></dbl></pre>	Sepal.Width <dbl></dbl>	Petal.Length <dbl></dbl>		Species <fct></fct>
4					
Т	4.9	2.5	4.5	1.7	virginica
2	5.6	2.8	4.9	2	virginica
3	5.7	2.5	5	2	virginica
4	5.8	2.7	5.1	1.9	virginica
5	5.8	2.8	5.1	2.4	virginica
6	5.8	2.7	5.1	1.9	virginica
7	5.9	3	5.1	1.8	virginica
8	6	2.2	5	1.5	virginica
9	6	3	4.8	1.8	virginica
10	6.1	3	4.9	1.8	virginica

i 140 more rows

4.6 top_n() for top rows

```
top_n(data, 5, Sepal.Width)
```

A tibble: 6 x 5

1	5.4	3.9	1.7	0.4 setosa
2	5.8	4	1.2	0.2 setosa
3	5.7	4.4	1.5	0.4 setosa
4	5.4	3.9	1.3	0.4 setosa
5	5.2	4.1	1.5	0.1 setosa
6	5.5	4.2	1.4	0.2 setosa

Note that 6 rows are returned because of ties, and data are not sorted.

4.7 summarize() columns

Create summary statistics (UK summarise() is same as summarize()):

4.8 group_by() to group columns data

Summaries on grouped data:

```
summarize(group_by(data, Species),
           N = n(),
           minimum = min(Sepal.Length),
           maximum = max(Sepal.Length),
           mean = mean(Petal.Width))
# A tibble: 3 x 5
 Species
              N minimum maximum mean
 <fct>
            <int> <dbl> <dbl> <dbl>
              50
                     4.3
                           5.8 0.246
1 setosa
2 versicolor
              50
                     4.9
                            7 1.33
                  4.9 7.9 2.03
3 virginica
              50
```

Examples of using group_by() without aggregation:

```
mutate(group_by(data, Species), id = 1:n())
```

- # A tibble: 150 x 6
 # Groups: Species [3]
- Sepal.Length Sepal.Width Petal.Length Petal.Width Species id <dbl> <dbl> <dbl> <dbl> <fct> <int> 5.1 3.5 1 1.4 0.2 setosa 1 2 4.9 3 1.4 0.2 setosa 2 3 4.7 3.2 1.3 3 0.2 setosa 4 4.6 4 3.1 1.5 0.2 setosa 5 5 3.6 1.4 0.2 setosa 5 6 5.4 3.9 1.7 6 0.4 setosa 7 7 4.6 3.4 1.4 0.3 setosa 8 3.4 1.5 0.2 setosa 8 9 4.4 2.9 1.4 0.2 setosa 9 10 4.9 3.1 1.5 0.1 setosa 10 # i 140 more rows

This gives each group in the Species an index id:

```
slice(mutate(group_by(data, Species), id = 1:n()), 1:3)
```

- # A tibble: 9 x 6
- # Groups: Species [3]

	1 1					
	Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species	id
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<int></int>
1	5.1	3.5	1.4	0.2	setosa	1
2	4.9	3	1.4	0.2	setosa	2
3	4.7	3.2	1.3	0.2	setosa	3
4	7	3.2	4.7	1.4	versicolor	1
5	6.4	3.2	4.5	1.5	versicolor	2
6	6.9	3.1	4.9	1.5	versicolor	3
7	6.3	3.3	6	2.5	virginica	1
8	5.8	2.7	5.1	1.9	virginica	2
9	7.1	3	5.9	2.1	virginica	3

Using the pipe $\$ to achieve the same result:

```
data %>% group_by(Species) %>% mutate(id = 1:n()) %>% slice(1:3)
```

A tibble: 9 x 6

Groups: Species [3]

	Sepal.Length	${\tt Sepal.Width}$	Petal.Length	${\tt Petal.Width}$	Species	id
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<int></int>
1	5.1	3.5	1.4	0.2	setosa	1
2	4.9	3	1.4	0.2	setosa	2
3	4.7	3.2	1.3	0.2	setosa	3
4	7	3.2	4.7	1.4	${\tt versicolor}$	1
5	6.4	3.2	4.5	1.5	${\tt versicolor}$	2
6	6.9	3.1	4.9	1.5	${\tt versicolor}$	3
7	6.3	3.3	6	2.5	virginica	1
8	5.8	2.7	5.1	1.9	virginica	2
9	7.1	3	5.9	2.1	virginica	3

Group on two columns:

```
data %>% mutate(Sepal = ifelse(Sepal.Length > 5, "Long", "Short")) %>%
  group_by(Species, Sepal) %>%
  mutate(id = 1:n()) %>%
  slice(1:2)
```

A tibble: 11 x 7

Groups: Species, Sepal [6]

	Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species	Sepal	id
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<chr></chr>	<int></int>
1	5.1	3.5	1.4	0.2	setosa	Long	1
2	5.4	3.9	1.7	0.4	setosa	Long	2
3	4.9	3	1.4	0.2	setosa	Short	1
4	4.7	3.2	1.3	0.2	setosa	Short	2
5	7	3.2	4.7	1.4	versicolor	Long	1
6	6.4	3.2	4.5	1.5	versicolor	Long	2
7	4.9	2.4	3.3	1	versicolor	Short	1

8	5	2	3.5	1	versicolor	Short	2
9	6.3	3.3	6	2.5	virginica	Long	1
10	5.8	2.7	5.1	1.9	virginica	Long	2
11	4.9	2.5	4.5	1.7	virginica	Short	1

Note: operations using group_by() follow the split/transform/combine paradigm.