IEEE Standard for Floating-Point Arithmetic: 754

G.E. Antoniou

Floating Point Standard: IEEE 754–1985/2008

Established in 1985 (2008) as homogeneous standard for binary floating point arithmetic

- In scientific calculations the range of the numbers can be very large or very small ...
- These numbers can be expressed with Floating Point Notation
- Floating Point Numbers (FPN) are processed in the Floating Point Unit (FPU).

It floats ...

- The "decimal" point in FPN is variable or is automatically adjusted or it floats
- A Floating Point Number (FPN) is defined as,

0

$$FPN = Fraction \times Base^{Exponent}$$
.

Example: Decimal Numbers

•
$$12345 = 12345 \times 10^{0}$$

$$= 1234.5 \times 10^1$$

$$= 123.45 \times 10^2$$

•
$$= 12.345 \times 10^3$$

$$= 1.2345 \times 10^4$$

• and ...

0

$$1234.567_{10} = 0.1234567 \times 10^4$$

General decimal Floating Point Number formula:

•

$$FPN_{10} = F \times 10^{Exponent}$$
.

Example: Binary Numbers

- 101₂
- $101_2 \times 2^0$
- $10.1_2 \times 2^1$
- $1.01_2 \times 2^2$
-
- Therefore the binary Floating Point Number formula is:

•

$$FPN_2 = F \times 2^{Exponent}$$
.

Signed (positive and negative) Numbers

The leftmost bit of a signed binary number determines the sign of the number:

- If the leftmost bit is 0:
- ... [The number is: Positive]
-
- If the leftmost bit is 1:
- ... [The number is: Negative]
- •
- Therefore our FPN formula becomes:

0

$$FPN = (-1)^S \times F \times 2^{Exponent}$$

- where,
- \circ S = Sign
- F = Fraction.

Problem of Uniqueness

A binary number can be represented as:

- 101₂
- $101_2 \times 2^0$
- $10.1_2 \times 2^1$
- $1.01_2 \times 2^2$
-
- There is no unique representation ...
- For a unique representation (IEEE—754 standard):
- Use only one digit to the left of the binary–point = **Normalization**.

FPN Normalization

- FPM Normalization ensures a unique floating—point representation of each number
- Normalized number: A number in scientific notation that has no leading zeros.

Examples

Not Normalized numbers

- $0.54_{10} \times 10^0$
- $54_{10} \times 10^{-2}$
- $0.0054_{10} \times 10^2$
-
- $101_2 \times 2^0$
- $10.1_2 \times 2^1$

Normalized numbers

- $5.4_{10} \times 10^{-1}$ (Decimal)
-
- $1.01_2 \times 2^2$ (Binary)

Packing, Hidden 1 Principle

To pack (include) more bits ... the **IEEE 754 standard** makes the leading 1 bit of the normalized binary numbers implicit.

•

Hidden 1 principle

-
- Using the normalization, the leading bit is always nonzero or 1
- Since the leading bit is always 1, why carry it?
- (There is no need to store it)
-
- To have one extra representation bit we can do the following:
- Shift left by one bit
- Leading 1 is discarded
- To get back the initial number " put back the 1".

Updated Formula

To represent the "hidden 1" and the "Fraction" use the formula:

•

$$F = 1 + significant$$

$$F = 1$$
.significant

• Using the above Hidden 1 principle our FPN formula now becomes:

•

$$FPN = (-1)^S \times (1.significant) \times 2^{Exponent}$$

•

$$FPN = (-1)^S \times (1 + significant) \times 2^{Exponent}$$
.

Precision Formats: 32-bit

IEEE-754 Floating Point Standard

- Single (32-bit) Precision Format (Occupies one four byte word)
 - S = 1
 - E = 8
 - F = 23

Precision Formats: 64-bit

IEEE-754 Floating Point Standard

- Double (64-bit) Precision Format
 - S = 1
 - E = 11
 - F = 52

Biased Notation

- Biasing the exponent improves accuracy with very small numbers
- We represent ...
- the most negative exponent as: 00.....00
- the most positive exponent as: 11.....11

Ordered Binary numbers (Exponent). Biased 127

Exponent	Real Exponent (Biased 127 Exponent)
0000 0000	-127_{10} (Reserved)
0000 0001	-126 ₁₀ (1-127)
0000 0010	-125_{10} (2-127)
0111 1110	-1_{10} (126-127)
0111 1111	0 ₁₀ (127-127)
1000 0000	+1 ₁₀ (128-127)
1000 0001	+2 ₁₀ (129-127)
1111 1110	+127 ₁₀ (254-127)
1111 1111	$+128_{10}$ (Reserved)

• For a 32-bit single-precision number, an exponent in the range: $-126_{10},...,+127_{10}$ is biased by adding 127 (bias) to get a value in the range 1,...,254 (0 and 255 are reserved).

IEEE-754 Standard; (Single Precision)

- The IEEE-754 standard specifies the exponent in the excess-127 format or bias for Single Precision
- ② In this format the number 127 is added to the value of the actual Unbiased Exponent so that
- Biased Exponent:

$$E = Unbiased Exponent + 127$$

• Solving for the Unbiased Exponent yields,

Unbiased Exponent =
$$E - 127$$

• Therefore our final FPN_{32} formula takes the form:

$$FPN_{32} = (-1)^S \times (1 + significand) \times 2^{E-127}$$
.

Final IEEE-754 standard formula for *FPN*₃₂

 $FPN_{32} = (-1)^S \times (1 + significand) \times 2^{E-127}$

$$FPN_{32} = (-1)^S \times (1.significand) \times 2^{E-127}.$$

Example Exponents

- Unbiased Exponent 2 is stored as $(127 + 2) = 129 = 1000 0001_2$ (Biased Exponent)
- ② Unbiased Exponent -2 is stored as $(127 + (-2) = 125 = 0111 \ 1101_2)$ (Biased Exponent).

IEEE-754 Standard; FPN₆₄, (Double Precision)

- The IEEE 754 standard specifies the exponent in the excess—1023 format or bias for Double Precision
- ② In this format the number 1023 is added to the value of the actual exponent so that,

$$FPN_{64} = (-1)^S \times (1 + significand) \times 2^{E-1023}$$

$$FPN_{64} = (-1)^S \times (1.significand) \times 2^{E-1023}$$

Largest and Smallest Values

- Single Precision, FPN₃₂
 - Largest normalized value:
 - $2^{127} = \pm 3.4 \times 10^{38}$
 - Smallest normalized value:
 - $2^{-126} = \pm 1.18 \times 10^{-38}$
- 2 Double Precision, FPN₆₄
 - Largest normalized value:
 - $2^{1023} = \pm 2.225073858507202010^{-308}$
 - Smallest normalized value:
 - 2^{-1022}

Examples ...

Illustrative examples follow ...

- Decimal to FPN₃₂
- FPN₃₂ to Decimal

Decimal to FPN₃₂

Example-1: -5_{10}

Given the Decimal Number: -5_{10} . Find the FPN_{32} representation in single precision notation (127 bias).

- $5_{10} = 101_2$
- $5_{10} = 101_2 = 1.01 \times 2^2$
- Unbiased Exponent = 2
- Biased Exponent: $E = 127 + 2 = 129_{10}$
- The unsigned binary equivalent of 129₁₀ is 10000001₂
- Since, -5_{10} , is negative: $\rightarrow S = 1$
- Therefore:

•

Example-2: -28_{10}

Given the Decimal Number: -28_{10} . Find the FPN_{32} representation in single precision notation (127 bias).

- -28_{10} in single precision notation (127 bias)
- $-28_{10} = 11100_2$
- $-28_{10} = 11100_2 = 1.11 \times 2^4$
- Biased Exponent: $E = 127 + 4 = 131_{10}$
- The unsigned binary equivalent of 131₁₀ is 10000011₂
- S = 1
- Therefore:

•

Example-3: 0.75₁₀

- 3. Given the Decimal Number: 0.75_{10} . Find the FPN_{32} representation in single precision notation (127 bias).
 - First let us find the binary equivalent of 0.75₁₀ ...
 - $0.75 \times 2 = 1.50$
 - $0.50 \times 2 = 1.00$
 - $0.00 \times 2 = 0.00 [stop]$
 - Therefore, top-bottom the answer is: $(0.11)_2$

Read more: http://www.exploringbinary.com/binary-converter/

Example-4: 0.75₁₀

- \bullet 0.75₁₀ = 0.11₂ = 1.1 × 2⁻¹
- Biased Exponent: $E = 127 1 = 126_{10}$
- The unsigned binary equivalent of 126₁₀ is: 01111110₂
- S = 0
- Therefore:

•

Example-5: 1₁₀

Given the Decimal Number: 1_{10} . Find the FPN_{32} representation in single precision notation (127 bias).

- 1₂
- $1_2 = 1.0_2 \times 2^0$
- Biased Exponent: $E = 127 0 = 127_{10}$
- The unsigned binary equivalent of 127₁₀ is: 01111111₂
- S = 0
- Therefore:
- a

FPN₃₂ to Decimal

- Find: -14_{10}
- Why?

Example-1: FPN₃₂

- Given the Floating Point Number:

- Find the Decimal representation.
- The sign (S) is: 1
- The biased Exponent (E) is: $10000010_2 = 130_{10}$
- FPN Formula: $FPN = (-1)^S \times (1.significand) \times 2^{E-127}$
- Result = $(-1)^1 \times (1.11) \times 2^{130-127} = (-1)^1 \times 1.11 \times 2^3$
- Result = $-(1.11) \times 2^3$
- Result = -1110_2
- Result= -14_{10}

2 minutes

• Decimal number?

Example-2: FPN₃₂

- Given the Floating Point Number:

- Find the Decimal representation.
- The sign (S) is: 1
- The biased Exponent (E) is: $10000001_2 = 129_{10}$
- FPN Formula: $FPN = (-1)^S \times (1.significand) \times 2^{E-127}$
- Result = $(-1)^1 \times (1.01) \times 2^{129-127} = (-1)^1 \times 1.01 \times 2^2$
- Result = $-(1.01) \times 2^2$
- Result = -101_2
- Result = -5_{10}

ARM Cortex RISC CPU – A57 – FP operations

- FP operations are performed within a special unit called; Floating Point Unit (FPU).
- Communication via the CPU and the FPU is done by special FP registers.
- The CPU and FPU can work in parallel on different data.
- (instruction-level parallelism)
- Today FPU and CPU can be in the same chip

ARM Cortex RISC CPU - A57

Floating-Point in Java, C and C++

- Java, C and C++ have two kinds of floating-point numbers (IEEE-754):
 - Float (32-bit; 4-bytes)
 - Double (64-bit; 8-bytes)

(end)