CS 325: Assignment 1

Jared Wasinger

October 3, 2016

- 1. Intersection of $8n^2$ and $64nlog_2n \approx 43.5593$. Insertion sort will beat merge sort at n >= 44
- 2. Table:)
- 3. Base Case(n=2):

$$2lg2 = 2$$

Inductive Step:

$$T(2^{k+1}) = 2^{k+1} lg(2^{k+1})$$

$$T(2^{k+1}) = 2^k * 2 * lg(2^k * 2)$$

$$T(2^{k+1}) = 2^k * 2 * lg(2^k * 2)$$

$$T(2^{k+1}) = 2^k * 2 * lg(2^k * 2)$$

$$T(2^{k+1}) = 2^k * 2 * lg(2^k) * 2lg2$$

$$T(2^k * 2) = 2^k * 2 * lg(2^k)$$

$$T(2^k) = 2^k * lg(2^k)$$

$$T(2^k * 2) = 2^k * 2 * lg(2^k)$$

$$T(2^k) = 2^k * lg(2^k)$$

$$T(2^{k+1})$$
 implies $T(2^k)$

- 4. Answers:
 - (a) $\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} n^{0.75}/n^{0.5} = \lim_{x\to\infty} n^{0.25} = \infty$ $f(n) = \Omega(g(n))$
 - (b) $\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} \frac{n}{\log^2 n} = \infty$ (L.H. doesn't simplify re $f(n) = \Omega(g(n))$

(c)
$$\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} \frac{\log(n)}{\log_2 n} = \log(2) \ f(n) = \Theta(g(n))$$

(d)
$$\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} \frac{e^n}{2^n} = \infty \ f(n) = \Omega(g(n))$$

(e)
$$\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} \frac{e^n}{2^n} = \infty$$
 $f(n) = \Omega(g(n))$

(f)
$$\lim_{x\to\infty} f(x)/g(x) = \lim_{x\to\infty} \frac{2^n}{2^n-1} = \lim_{x\to\infty} 2^n - (n-1) = 2 f(n) = \Theta(g(n))$$

 $f(n) = \Omega(g(n))$

- 5. Algorithm:
 - (a) Split array into pairs of consecutive values
 - (b) Sort pair elements into local minima maxima (2 arrays): n/2 comparisons

- (c) Compare all local minima (associatively) to find global minimum: $\rm n/2\ comparisons$
- (d) Compare all local maxima (associatively) to find global maximum: $\rm n/2$ comparisons

Worst case performance: 1.5n comparisons

Example: A=[9,3,5,10,1,7,12], n=7

- (a) (9,3), (5,10), (1,7), (12)
- (b) Local Minima: [3,5,1,12], Local Maxima: [9, 10, 7, 12] = 3 comparisons
- (c) Global Maximum: 12 = 3 comparisons
- (d) Global Minimum: 1 = 3 comparisons
- (e) Total number of comparisons: 9. 9/7 = 1.28n comparisons

	n (recursive)	time (recursive)	n (iterative)	time (iterative)
6. Results:	a	b	c	d
	a	b	С	d

1 Introduction

Here is the text of your introduction.

$$\alpha = \sqrt{\beta} \tag{1}$$

1.1 Subsection Heading Here

Write your subsection text here.

2 Conclusion

Write your conclusion here.