1.9 Matrix of a Linear Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then \exists a unique matrix A Such that T(x) = Ax for all x in \mathbb{R}^n

In fact, A is the man matrix whose jun column is the vector T(iej), where ej is the jun column of the identity matrix in IR^n :

We call A the standard matrix of the transformation

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if soun $b \in \mathbb{R}^m$ if the image of at least one X in \mathbb{R}^n

A mapping $T: \mathbb{R}^n \to \mathbb{R}^n$ is raid to be one—to-are if each b in \mathbb{R}^m is the summary of all must are x in \mathbb{R}^n

Example: Let T be a linear transformation whose standard matrix is:

[1 -4 8 1] Print in every row, so
$$Ax=b$$
 is consistent. So T roops IR^{4} to IR^{3}

Dues T map IR4 onto IR3? Is T me - to -me?

Since There is a free

Variable, each b is the

Image of > 1 x. So no, not

are - to - one

Then II: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then, T is one-to-one if f the equation T(x) = 0 has only the trivial solution (linear independence)

Theorem 12: Let T: IR" -> IR" be a linear transformation and let A be the standard matrix for T. Then,

- a) T maps IR" and IR" IFF THE Edymna of A span IR"
- b) T is one 70 one iff The columns of A are linear independent