Assume :(1)
$$x^*$$
 primal optimum

(2) (x^*, v^*) alual optimum

(3) $P = D$ strong duality

 $\int_{x \in \mathcal{A}} L(x, x^*, v^*) = \min_{x \in \mathcal{A}} L(x, x^*, v^*)$ definition

$$\int_{x \in \mathcal{A}} L(x^*, x^*, v^*) = \int_{x^*} L(x^*) + \sum_{i=1}^{r} v_i^* h_i(x^*)$$

$$= \int_{0} (x^*) + \sum_{i=1}^{m} x_i^* f_i(x^*) + \sum_{j=1}^{r} v_j^* h_j(x^*)$$

But $P = D$ from strong duality

KKT conditions

1. Primal feasibility
$$f_i(x^*) \leq 0$$
, $h_i(x^*) = 0$

2. Dual feasibility
$$\lambda_i^* \gg 0$$

3. Complementary slackness:
$$\lambda_i^* f_i^*(x^*) = 0$$

=) either $\lambda_i^* = 0$ or $f_i(x^*) = 0$

4. Stationarity condition
$$x^* = \underset{x \in \mathcal{A}}{\operatorname{arg min}} L(x, x^*, v^*)$$

unconstrained case: $\nabla_{x} L(x, \lambda^{*}, \nu^{*}) = D$

for convex problems

1) optimum
$$(x^*, \lambda^*, v^*)$$
 \longrightarrow KKT conditions $P = D$

Note: convex \$\frac{1}{2} \text{KKT or } P=D_{\text{...}}

Slater's Thm

P=D X* finite KKT conditions

 $J\tilde{x}$ s.t. $f_i^{\circ}(\tilde{x}) < D$ $\forall i = 1...m$ for non-linear f_i°

Eg
$$P = min \frac{1}{2}x^{T}Px + q^{T}x$$

$$Ax = b \qquad convex$$

$$(fi = 0)$$

$$b \in \mathbb{R}(A) \implies feasible \\ + not unbounded below $\implies P$ fimile$$

$$\Rightarrow P=D \qquad \& \qquad (1) \quad Ax^*=b$$

$$(2) \quad \nabla L(x,v) = 0 = Px^* + q + A^Tv^*$$

$$L(x,v) : \quad \frac{1}{2}x^TPx + q^Tx + v^T(Ax-b)$$

$$\text{Solve KKT ?} \qquad \left[P \quad A^T \right] \left[x^* \right] = \begin{bmatrix} -q \\ b \end{bmatrix}$$

$$\Rightarrow (x^*, v^*)$$