IKT484 Makine Öğrenmesi 2. İlk kNN Modeli

Öğretim Görevlisi:

Bora GÜNGÖREN

bora.gungoren@atilim.edu.tr

- · kNN, sınıflandırma (ve regresyon) için kullanılan çok basit bir makine öğrenme tekniğidir.
 - · Başlangıçta bir sınıf kümesinin tanımlanmasını gerektirdiği için denetlenen bir öğrenme tekniğidir.
 - Başlangıçtaki sınıf kümesi, etiketlerin sınıflar olduğu bir dizi etiketli veri noktası olarak sunulur. Bu, gerekli eğitim kümesidir.
 - Daha sonra sunulan her yeni veri noktası eğitim kümesiyle karşılaştırılır ve etiketlenir.
 - · Eğitim kümesine yeni veri noktaları ekleyebilir veya eklemeyebilirsiniz. Bu, uygulamanıza bağlıdır.

- · Yöntem basit.
- · Her yeni veri noktası için
 - · Eğitim veri setindeki veri noktaları ile yeni veri noktası arasındaki mesafeleri hesaplıyoruz.
 - · "Mesafe" kavramını nasıl tanımladığımız çok önemlidir.
 - En yakın komşuları seçiyoruz, böylece mahallede zaten var olan sınıflandırmayı gösteren bir örneğimiz var.

- · Yöntem basit.
 - · Her yeni veri noktası için
 - Sınıflandırma atamalarını sayıyor ve çoğunluğu buluyoruz ve yeni veri noktasını bu çoğunluğa atıyoruz. ("Mahalledeki çoğunluğa aitsiniz")
 - · Sayım sürecine genellikle oy denir.
 - · Çoğunluk kuralı uygulamanıza göre değişebilir.
 - · Bu atamanın bir tahmin olduğunu unutmayın.
 - Dolayısıyla KNN, sınıflandırma sonucunu tahmin etmek için bir tür regresyon kullanır.

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Point Distance

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

- Dikkatli seçilmiş özellikler ve iyi tasarlanmış bir mesafe metriği olmadan KNN'nin saf bir uygulaması genellikle büyük bir yanlış sınıflandırma oranına sahiptir.
 - Yanlış sınıflandırma oranı, olumlu ve olumsuz tahminler arasında ayrım yapmadan yanlış tahminlerin bir kısmını söyleyen bir performans metriğidir.
 - Öte yandan, veri kümesi dengesiz olduğunda (prevalans çok yüksek veya çok düşük olduğunda) yanlış sınıflandırma oranı çok yanıltıcı bir metrik olabilir.

- · Karışıklık Matrisini (Confusion Matrix) hatırlayalım.
 - Doğruluk: Genel olarak, sınıflandırıcı ne sıklıkla doğrudur?
 - Yanlış sınıflandırma oranı: Genel olarak, ne sıklıkla yanlış?
 - Prevalans: EVET koşulu gerçekten örneğimizde ne sıklıkla meydana gelir?
- · Çok dengesiz bir eğitim veri seti ile başladığımızda ne olur?
- Eğitim veri setinin gerçeği yeterince iyi temsil ettiğinden nasıl emin olabiliriz?

- KNN öğretimde çok popülerdir, çünkü denetimli öğrenmenin hem güçlü hem de zayıf yönlerini kolayca gösterir.
 - · Bu nedenle hemen hemen tüm yöntemler performans metriklerini KNN ile karşılaştırır.
 - · Bazı yöntemler KNN'den daha kötü performans gösterirse, uygun değildir.

- · Hız ve bellek nasıl?
 - · En yakın komşuları tanımlamak için kolay bir mesafe metriği ve hızlı bir arama yöntemi göz önüne alındığında, KNN nispeten hızlı çalışır.
 - · Bellek kullanımını optimize etmek için gelişmiş veri yapılarınız yoksa KNN çok fazla bellek kullanma eğilimindedir.
 - · Bir tür veri seti için, bu ikisinin gelmesi zordur, bu nedenle KNN çok kötü bir seçimdir.
- · Sadece bir PC kullanarak veri kümeleri ile oynadığınızda, bunu yapmanız gerekmedikçe büyük veri kümelerinde KNN kullanmayın.

- · Önden Öğrenen ve Geç Öğrenen
 - · Erken Öğrenen algoritmalar öğrenmek için daha fazla zaman harcar ve daha az zaman harcarlar.
 - · Geç Öğrenen Algoritmalar öğrenmek ve tahmin etmek için daha az zaman harcarlar.
- KNN hangisidir? Neden?

- · Boyutsallık laneti
 - KNN, çok sayıda özellikten daha az sayıda özellik ile daha iyi performans gösterir.
 - · Aşırı öğrenmeyi önlemek için, boyut sayısını artırdıkça gerekli verilerin katlanarak büyümesi gerekecektir.
- · Özellik seçimi KNN için önemlidir.

- · Bu algoritma için k değerini nasıl seçeriz?
 - · Bu zor bir seçim.
 - Genellikle k = 2'den bir üst sınırdan deneriz ve farklı k değerleri için performans metriklerini karşılaştırırız.
- Neden k = 1 olmasın? Bu herhangi bir pratik uygulamada mantıklı olur mu?

- · KNN için verileri nasıl işleriz?
 - Örneğimiz, birisinin çikolata muz milkshake'i sevip sevmediğini tahmin etmekle ilgilidir.
- · İşte eğitim veri seti.
 - · Bazı değişkenler kategoriktir.
 - KNN, sayısal verilerle mesafe ve ortak mesafe metrikleri çalışmasını gerektirir.
 - · Şanslıyız çünkü çoğu kategori ikili.
 - · Likert benzeri ölçeklerle de çalışabiliriz.

NI-	^	C	0	Lillian			1 :1
No	Age	Sex	Occupation	Likes Bananas	Likes Chocolate	Lactose	Likes Chocolate
				Bananas	Chocolate	intolerant	Banana
							Milkshake
1	35	Male	Engineer	Yes	Yes	No	Yes
2	36	Male	Teacher	Yes	No	No	No
3	35	Male	Engineer	No	No	No	No
4	39	Male	Medical Docto	No	Yes	Yes	No
5	37	Male	Truck Driver	Yes	Yes	Yes	Yes
6	40	Male	Truck Driver	Yes	Yes	No	Yes
7	24	Male	Teacher	Yes	No	No	Yes
8	58	Male	Chef	Yes	Yes	No	Yes
9	18	Male	Cashier	No	Yes	No	Yes
10	19	Male	Student	Yes	Yes	No	Yes
11	50	Male	Engineer	Yes	Yes	No	Yes
12	43	Male	Teacher	Yes	No	Yes	No
13	59	Male	Retired	Yes	No	No	No
14	44	Male	Waiter	Yes	Yes	Yes	Yes
15	18	Male	Student	Yes	Yes	Yes	No
16	58	Male	Lawyer	Yes	No	Yes	No
17	33	Female	Medical Docto	Yes	Yes	No	Yes
18	65	Female	Retired	No	Yes	No	Yes
19	24	Female	Student	No	Yes	Yes	Yes
20	61	Female	Retired	Yes	Yes	No	Yes
21	23	Female	Student	Yes	Yes	Yes	Yes
22	59	Female	Medical Docto	No	No	Yes	No
23	56	Female	Teacher	Yes	Yes	Yes	No
24	26	Female	Student	No	Yes	No	Yes
25	34	Female	Teacher	No	Yes	No	Yes
26	48	Female	Teacher	Yes	No	No	Yes
27	49	Female	Medical Docto	No	Yes	No	Yes
28	18	Female	Student	Yes	Yes	Yes	Yes
29	44	Female	Engineer	Yes	Yes	No	Yes
30	32	Female	Medical Docto	Yes	Yes	Yes	No
31	20	Female	Student	Yes	Yes	Yes	Yes
32	50	Female	Nurse	No	Yes	Yes	No
33	38	Female	Lawyer	Yes	Yes	No	Yes
34	58	Female	Retired	No	Yes	Yes	No

No	Age	Sex				Intolerant	Likes Chocolate Banana Milkshake	Binary Sex	Binary Banana	Binary Chocolate	Binary Lactose	Binary Milkshake
1	35	Male	Engineer	Yes	Yes	No	Yes	0	1	. 1	. 0	1
2	36	Male	Teacher	Yes	No	No	No	0	1	. 0	0	0
3	35	Male	Engineer	No	No	No	No	0	0	0	0	0
4	39	Male	Medical Docto	No	Yes	Yes	No	0	0	1	. 1	. 0
5	37	Male	Truck Driver	Yes	Yes	Yes	Yes	0	1	. 1	. 1	. 1
6	40	Male	Truck Driver	Yes	Yes	No	Yes	0	1	. 1	. 0	1
7	24	Male	Teacher	Yes	No	No	Yes	0	1	. 0	0	1
8	58	Male	Chef	Yes	Yes	No	Yes	0	1	. 1	. 0	1
9	18	Male	Cashier	No	Yes	No	Yes	0	0	1	. 0	1
10	19	Male	Student	Yes	Yes	No	Yes	0	1	. 1	. 0	1
11	50	Male	Engineer	Yes	Yes	No	Yes	0	1	. 1	. 0	1
12	43	Male	Teacher	Yes	No	Yes	No	0	1	. 0	1	. 0
13	59	Male	Retired	Yes	No	No	No	0	1	. 0	0	0
14	44	Male	Waiter	Yes	Yes	Yes	Yes	0	1	. 1	. 1	. 1
15	18	Male	Student	Yes	Yes	Yes	No	0	1	. 1	. 1	. 0
16	58	Male	Lawyer	Yes	No	Yes	No	0	1	. 0	1	. 0
17	33	Female	Medical Docto	Yes	Yes	No	Yes	1	. 1	. 1	. 0	1
18	65	Female	Retired	No	Yes	No	Yes	1	. 0	1	. 0	1
19	24	Female	Student	No	Yes	Yes	Yes	1	. 0	1	. 1	. 1
20	61	Female	Retired	Yes	Yes	No	Yes	1	. 1	. 1	. 0	1
21	23	Female	Student	Yes	Yes	Yes	Yes	1	. 1	. 1	. 1	. 1
22	59	Female	Medical Docto	No	No	Yes	No	1	. 0	0	1	. 0
23	56	Female	Teacher	Yes	Yes	Yes	No	1	. 1	. 1	. 1	. 0
24	26	Female	Student	No	Yes	No	Yes	1	. 0	1	. 0	1
25	34	Female	Teacher	No	Yes	No	Yes	1	. 0	1	. 0	1
26	48	Female	Teacher	Yes	No	No	Yes	1	. 1	. 0	0	1
27	49	Female	Medical Docto	No	Yes	No	Yes	1	. 0	1	. 0	1
28	18	Female	Student	Yes	Yes	Yes	Yes	1	. 1	. 1	. 1	. 1
29	44	Female	Engineer	Yes	Yes	No	Yes	1	. 1	. 1	. 0	1
30	32	Female	Medical Docto	Yes	Yes	Yes	No	1	. 1	. 1	. 1	. 0
31	20	Female	Student	Yes	Yes	Yes	Yes	1	. 1	. 1	. 1	1
32	50	Female	Nurse	No	Yes	Yes	No	1	. 0	1	. 1	. 0
33	38	Female	Lawyer	Yes	Yes	No	Yes	1	. 1	. 1	. 0	1
34	58	Female	Retired	No	Yes	Yes	No	1	. 0	1	. 1	. 0

- Böylece aşağıdaki değişkenleri uzaktan metrikte girdi olarak kullanabiliriz:
 - Yaş (sayısal)
 - · Cinsiyet (ikili)
 - · Muz sevmek (ikili)
 - · Çikolata sevmek (ikili)
 - · Laktoz intolerant (ikili)

- · Komşuları seçmek için mesafeleri kullanabiliriz.
 - · Manhattan mesafesi
 - · Öklid mesafesi.
- · "Komşularımız" mesafede kullanacağımız ölçütlere göre "bize en yakın olanlar"
 - Dolayısı ile buradaki ölçütler nedeni ile "bize en yakın" olanlar nasıl hesaplanacak? (Buna geleceğiz)

- · Örneklem temsil gücü?
 - · 4 ikili değişken ve bir adet sayısal değişken.
 - · 2⁴ = 16 varyasyon (ikili değişkenler)
 - · 34 örnekten gelen veri.
 - · Çok iyi bir durum değil.
- · Belki daha az değişken ile denemek gerekir.
 - Daha belirgin bir etkisi olan değişkenler bulunabilir.

- · Sadece eğitim verilerimizi anlamak için,
 - İkili olanlar da dahil olmak
 üzere bu değişkenler için
 basit korelasyon
 katsayılarını hesaplayacağız.
 - Normalde bunu ikili veriler için yapmamalıyız.

	Age	Binary Sex	Binary Banana			Binary Milkshake
Age	1,000	0,094	-0,088	-0,214	-0,071	-0,286
Binary Sex		1,000	-0,274	0,311	0,126	0,167
Binary Banana			1,000	-0,087	-0,019	0,147
Binary Chocolate				1,000	0,074	0,461
Binary Lactose					1,000	-0,459
Binary Milkshake						1,000

- · Sonuç?
 - · Kötü bir eğitim veri seti değil.
 - İki özellik (çikolata sevmek ve laktoz intoleransı)
 diğerlerinden çok daha güçlü etkiye sahip.
 - İki özelliğe dayalı sınıflandırıcı ile hızlı biçimde karar alabilir miyiz?
 - · Acaip iyi de değil.

	Age		Binary Banana			Binary Milkshake
Age	1,000	0,094	-0,088	-0,214	-0,071	-0,286
Binary Sex		1,000	-0,274	0,311	0,126	0,167
Binary Banana			1,000	-0,087	-0,019	0,147
Binary Chocolate				1,000	0,074	0,461
Binary Lactose					1,000	-0,459
Binary Milkshake						1,000

- · Tek kişilik deneme örneklemi:
 - · Yaş: 42, erkek, muz seviyor, çikolatayı seviyor, laktoz intolerör değil.
- · Tahminde Adımlar:
 - · 1. Adım: mesafeleri hesapla.
 - 2. Adım: En yakın k komşuyu ara (K = 2,3,4,5)
 - · 3. Adım: Oylama yoluyla tahmin gerçekleştir.

- · Ayrıca ölçeklendirme ile ilgili bir sorunumuz var.
 - "Doğrusal ölçeklendirme" sonrası yaş aralıkları.

	Age	Binary Sex	Binary Banana	Binary Chocolate	Binary Lactose	
Test Subject	42	0	Dariaria 1	1	0	
rest edisject			_	_		ļ
			Banana	Chocolage	Lactose	Total
No	Age Distance	Sex Distance	Distance	Distance	Distance	Distance
1	0,149	0,000	0,000	0,000	0,000	0,149
2	0,128	0,000	0,000	1,000	0,000	1,128
3	0,149	0,000	1,000	1,000	0,000	2,149
4		0,000	1,000	0,000	1,000	2,064
5	0,106	0,000	0,000	0,000	1,000	1,106
6	0,043	0,000	0,000	0,000	0,000	0,043
7	0,383	0,000	0,000	1,000	0,000	1,383
8	0,340	0,000	0,000	0,000	0,000	0,340
9	0,511	0,000	1,000	0,000	0,000	1,511
10	0,489	0,000	0,000	0,000	0,000	0,489
11	0,170	0,000	0,000	0,000	0,000	0,170
12	0,021	0,000	0,000	1,000	1,000	2,021
13	0,362	0,000	0,000	1,000	0,000	1,362
14	0,043	0,000	0,000	0,000	1,000	1,043
15	0,511	0,000	0,000	0,000	1,000	1,511
16	0,340	0,000	0,000	1,000	1,000	2,340
17	0,191	1,000	0,000	0,000	0,000	1,191
18	0,489	1,000	1,000	0,000	0,000	2,489
19	0,383	1,000	1,000	0,000	1,000	3,383
20	0,404	1,000	0,000	0,000	0,000	1,404
21	0,404	1,000	0,000	0,000	1,000	2,404
22	0,362	1,000	1,000	1,000	1,000	4,362
23	0,298	1,000	0,000	0,000	1,000	2,298
24	0,340	1,000	1,000	0,000	0,000	2,340
25	0,170	1,000	1,000	0,000	0,000	2,170
26	0,128	1,000	0,000	1,000	0,000	2,128
27	0,149	1,000	1,000	0,000	0,000	2,149
28	0,511	1,000	0,000	0,000	1,000	2,511
29	0,043	1,000	0,000	0,000	0,000	1,043
30	0,213	1,000	0,000	0,000	1,000	2,213
31	0,468	1,000	0,000	0,000	1,000	2,468
32	0,170	1,000	1,000	0,000	1,000	3,170
33	0,085	1,000	0,000	0,000	0,000	1,085
34	0,340	1,000	1,000	0,000	1,000	3,340

No	Age Distance	Sex Distance	Banana Distance	Chocolage Distance	Lactose Distance	Total Distance	Binary Milkshake
6	0.043	0.000	0.000	0.000	0.000		
1	0,149	0,000	-,	-,	0.000	-,	
11	0,170	0,000	0,000	0,000	0,000	,	
8	0,340	0,000	0,000	0,000	0.000		
10	0,489	0,000	0,000	0,000	0,000	0,489	1
14	0,043	0,000	0,000	0,000	1,000	1,043	0
29	0,043	1,000	0,000	0,000	0,000	1,043	0
33	0,085	1,000	0,000	0,000	0,000	1,085	0
5	0,106	0,000	0,000	0,000	1,000	1,106	1
2	0,128	0,000	0,000	1,000	0,000	1,128	1
17	0,191	1,000	0,000	0,000	0,000	1,191	1
13	0,362	0,000	0,000	1,000	0,000	1,362	0
7	0,383	0,000	0,000	1,000	0,000	1,383	
20	0,404	1,000	0,000	0,000	0,000	1,404	
9	0,511	0,000	1,000	0,000	0,000	1,511	0
15	0,511	0,000	0,000	0,000	1,000	1,511	
12	0,021	0,000	0,000	1,000	1,000	2,021	1
4	0,064	0,000	1,000	0,000	1,000	2,064	
26	0,128	1,000	0,000	1,000	0,000	2,128	
3	0,149	0,000	1,000	1,000	0,000		
27	0,149	1,000	1,000	0,000	0,000	,	
25	0,170	1,000	1,000	0,000	0,000	_,	
30	0,213	1,000	0,000	0,000	1,000		
23	0,298	1,000	0,000	0,000	1,000	_,	
16	0,340	0,000	0,000	1,000	1,000		
24	0,340	1,000	1,000	0,000	0,000		1
21	0,404	1,000	0,000	0,000	1,000		0
31	0,468	1,000	0,000	0,000	1,000		
18	0,489	1,000	1,000	0,000	0,000		
28	0,511	1,000	0,000	0,000	1,000	,	1
32	0,170	1,000	1,000	0,000	1,000		
34	0,340	1,000	1,000		1,000		
19	0,383	1,000	1,000	0,000	1,000		
22	0,362	1,000	1,000	1,000	1,000	4,362	0

k	Çoğunluk	Sonuç
2	1 (%100)	Seviyor
3	1 (%67)	Seviyor
4	1 (%75)	Seviyor
5	1 (%80)	Seviyor
6	1 (%67)	Seviyor

- Gerçekten güzel bir sonuç, ama tüm örneklem için kesin bir gösterge midir?
- · Sonuçlarımızı nasıl değerlendirmeliyiz?

- · Aşırı takma, istatistiksel bir model tam olarak eğitim verilerine uyduğunda gerçekleşir.
 - · Model gürültüyü ezberlediğinde ve eğitim setine çok yakından uyduğunda, model "aşırı şişirme" olur ve yeni verilere iyi genelleme yapamaz.
 - · Bir model yeni veriler için iyi genelleme yapamazsa, amaçlandığı sınıflandırma veya tahmin görevlerini yerine getiremez.
- Düşük hata oranları ve yüksek varyans, aşırı uymanın iyi göstergeleridir.
- · Eğitim verilerinin düşük bir hata oranı varsa ve test verilerinin yüksek bir hata oranı varsa, aşırı uymaya işaret eder.

- Modellerimiz gerçek
 tahminler yapmak için
 kullanılmadan önce
 kaçınabilmemiz için aşırı
 öğrenmeyi tespit edebilmeliyiz
 (yani sınıflandırmalar).
 - S-kat-çapraz validasyonu hatırlayın.
 - · Her çalışma için performans metriklerini hesaplayın.
- · Bu metriklerin varyansını gözlemleyin.

- · Aşırı öğrenmeden kaçınabilir miyiz? Kesin çözüm yoktur, ancak bazı teknikler vardır.
 - Erken durdurma, model modeldeki gürültüyü öğrenmeye başlamadan önce eğitimi durdurur. Bu yaklaşım, eğitim sürecini çok erken durdurma riskiyle karşı karşıya kalır ve bunun tersine eksik öğrenme sorununa yol açabilir.
 - Veri büyütme, daha kararlı bir model yaratmak için gürültü içeren veri ekler. Teorik olarak eklenen gürültü, mevcut gürültüye aşırı uyum sağlamayı zorlaştıracaktır.
 Ancak, bu yaklaşımı yönetmenin güvenilir bir yolu yoktur.

- · Aşırı öğrenmeden kaçınabilir miyiz? Kesin çözüm yoktur, ancak bazı teknikler vardır.
 - · Özellik seçimi, eğitim verileri içindeki en önemli olanları tanımlama ve daha sonra alakasız veya gereksiz olanları ortadan kaldırma sürecidir. Bu genellikle boyutsallık azaltma ile karıştırılır, ancak farklıdır.
 - Düzenli hale getirme (regularization), daha sonra modeldeki varyans miktarını sınırlayan daha büyük katsayılara sahip giriş parametrelerine bir ceza uygular. Bu yöntemler verilerdeki gürültüyü tanımlamayı ve azaltmayı amaçlamaktadır. Ayrıca hiperparametre optimizasyon yöntemleri altında sınıflandırılırlar.

- Aşırı öğrenmeden kaçınabilir miyiz?
 - Hiper parametre
 optimizasyonları çok
 başarılı bir şekilde
 kullanabiliyorsanız,
 sunulan gibi çift yönlü
 başarılı bir eğri ile
 sonuçlanabilirsiniz.
 - Çoğu derin öğrenme modelleri bunu vaat ediyor. Elbette sundukları şey değişir.

- · Önyargı-varyans değiş tokuşu (dengesi)
 - Önyargı, öğrenme algoritmasındaki yanlış varsayımlardan kaynaklanan bir tür hatadır. Yüksek önyargı, bir algoritmanın seçilen girdiler ve hedef çıktılar arasındaki ilgili ilişkileri kaçırmasına neden olabilir.
 - Varyans, eğitim setindeki küçük dalgalanmalara duyarlılıktan kaynaklanan bir hatadır. Yüksek varyans, bir algoritmanın gerçek sonuçlar yerine eğitim verilerindeki rastgele gürültüyü modellemesine neden olabilir.

- KNN ile ilgili olarak, girişe bakılmaksızın sonucu K'ye göre tanımlayan bir "karar sınırı" vardır.
 - · Ne olursa olsun neden?
 - · Bu "iyi bir K?"
- · Çok güzel bir açıklama ile karar sınırını gösteren örnek kod:
 - https://medium.com/30-Days-of-machine-learning/ day-3-k-nearest-neghborsand-variance-tadeoff-75f84d515bdb

Sorular?

CONTACT:

bora.gungoren@atilim.edu.tr

License: Creative Commons Attribution Non-Commercial Share Alike 4.0 International (CC BY-NC-SA 4.0)