22. Равномерная непрерывность. $f \in C(A) \iff \forall x_0 \in A \quad f \in C(x_0) \iff \forall x_0 \in A \quad \lim_{x \to x_0} f(x) = f(x_0) \iff f \in C(x_0) \iff f \in C$ (=> +x0+A +E>0 = 6(E)>0: |x-x6|<8 => 1f1x)-f(x6)/<E $S = S'(E, \infty_o)$ ong. φ -8 f(x) Hay-ce pabhanepho heurep-oci ha un-be A (=) (=> $\forall \epsilon > 0 \Rightarrow \delta = \delta(\epsilon) > 0$; $\forall x', x'' \in A \mid x' - x'' \mid < \delta \Rightarrow \forall f(x') - f(x'') \mid < \epsilon$ 3 averance: pabh-8 newp-tue => relup-tus: $\alpha'' = 20 \quad \forall 6>0 \; \exists 870: \; |\alpha'-\alpha_0| < \delta \Rightarrow |f(x')-f(\alpha_0)| < \xi$ For $f \in C(x_0)$, $O = x_0 \in C(x_0)$, $O = x_$ - He 961-as pabs. seems-is 49 (0,7]. our-ne moro, rimo q-9 f fie abs-ce poeb H. Herry HB A, can out ple-is a time to our- uno pab H- is telesp- will,

Teoperis Kanasopa, Ecres p-+ f(x) menp-ns ng [a,6], in ong pabh-no neup, na [a,6], ∂0x-60; rycins f(x) ∈ C[a,6], Typegu-u, zins f(x) re dbu-ce pæβr. reup-zi ra $(a,6](=> ∃ ε_0>0: ∀ δ>0$ $∃ α_{5,3}' ∈ [a,6]! | x_{6}-x_{5}''| < δ, ro | f(x_{5}')-f(x_{5}'') > ε_0$ $\forall n \in \mathbb{N}$ $S = \frac{1}{n}$ $\exists x_n', x_n' \in [a, b]: |x_n' - x_n''| < \frac{1}{n}$ 1+(xn)-f/x") > Eo. (1) Pareer-4 { xis, 7. k. the N xi & [a, 6], to 2xis-orp. => =)] { \(\mathbb{X}\)_{\kappa_{\sigma}} ! \(\mathbb{X}\)_{\kappa_{\sigma}} ? \(\mathbb ¥ k ∈ N OCn, ∈ [a,6] => 3 ∈ [a,6]. Paccell-y { $\mathcal{L}_{n_{\kappa}}$ } $\mathcal{L}_{k=1}^{\prime\prime}$. | $\mathcal{L}_{n_{\kappa}} - \mathcal{L}_{n_{\kappa}}^{\prime\prime}$ | $\mathcal{L}_{n_{\kappa}}$ | \mathcal{L}

Nx 1 => lim Nx = 0 => \(\mathcal{L}_{n_k}\) \(\frac{1}{k-700}\) \(\frac{2}{k-700}\) f & C (a,6) => limf(x'nx)=f(3), limf(x'nx)=f(3)=> =) $\lim \{f(x'_{n_k}) - f(x''_{n_k})\} = 0$ => $\forall \mathcal{E} \neq 0$ =] $K \in IN$; $\forall \mathcal{E} \neq \mathcal{E}$ marin, f palot. Hellp. Ha [a, 6]

ТЕМА. ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ.

23. Понятие производной.

f:
$$(a, e) \rightarrow \mathbb{R}$$
, $\alpha_0 \in (a, e)$, $\Delta x \neq 0$, $\alpha_0 + \Delta x \in (a, e)$, oup: upupayenue φ -im $y = f(x) + b$ \hat{m} . α_0 , coonfearing by to use expression of α_0 and α_0 operations a:

$$\Delta y = f(x_0 + \Delta x) - f(x_0).$$

Sense: $f \in C(\alpha_0) = f(x_0)$ $f(x_0) = f(x_0)$.

4
$$f \in C(\infty)$$
 (=> $\lim_{x \to x_0} f(x) = f(x_0)$ $\int_{x \to x_0}^{x - x_0} f(x) = \int_{x \to x_0}^{x - x_0} f(x)$

oup: ruceo lim f/26+Dx)-f/x.) (upu yeuobru, ruo suon 4-m = f(x) 6 m. No. $Obogm: f'(x), f'(x)|_{\infty=\infty}, y'(x), \frac{df}{dx}(x), \frac{df}{dx}(x)$ dS x=x0. Typu erepoi: 1) $f(x) = \begin{cases} x \sin \frac{1}{2}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ $f(x) = \begin{cases} x \sin \frac{1}{2}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \sin \frac{1}{x} = 0 = f(0) \Rightarrow f \in C(0)$ $f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} - \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} - \lim_{\Delta x \to 0} \frac{1}{\Delta x} - 0$

=
$$\lim_{\Delta x \to 0} \sin \frac{1}{\Delta x} = \left| \frac{1}{1} = \lim_{\Delta x \to 0} \sin \frac{1}{x} \right| + \lim_{\Delta x \to 0} \sin \frac{1}{x} = \int_{-\infty}^{\infty} \left| \frac{1}{x} \right| + \lim_{\Delta x \to 0} \left| \frac{1}{x$$

3)
$$f(x) = |x|$$
, $f \in C(0)$, $f'(0) = ?$

Ay

 $y = |x|$
 $\lim_{\Delta X \to 0} \frac{f(0 + \Delta X) - f(0)}{\Delta X} = \lim_{\Delta X \to 0} \frac{f(\Delta X) - f(0)}{\Delta X} = \lim_{\Delta X \to 0} \frac{f(\Delta X) - f(0)}{\Delta X}$
 $\lim_{\Delta X \to 0} \frac{f(0 + \Delta X) - f(0)}{\Delta X} = \lim_{\Delta X \to 0} \frac{|\Delta X|}{\Delta X} = \lim_{\Delta X \to 0} \frac{$

Oup: upable upouzh-s q-uel y=f/x) & \overline{u} , x_0 : $f'_+(x_0) = \lim_{\Delta x \to +0} f(x_0 + \Delta x) - f(x_0)$ rebær upouzh-s q-w y=f(x) b us. 20; $\frac{\int 1(2i\sigma)}{\int 2\pi} = \lim_{n \to \infty} \frac{\int 1(2n+\Delta x) - \int 1(2n)}{\Delta x}$