

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Ejercicio 1 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$K = \{x \in E : ||x|| = 1\}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Ejercicio 2 Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (i) T es continua.
- (ii) T es continua en cero.
- (iii) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$\|Tx\|_F \leq M\|x\|_E.$$

(iv) Si $\overline{B(0,1)} = \{x \in E : \|x\|_E \le 1\}$, entonces la imagen directa T(B(0,1)) es un conjunto acotado de F.

Demostración. Para establecer la equivalencia entre estas afirmaciones, probaremos la cadena de implicaciones $(i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i)$.

- (i) \rightarrow (ii): Si T es continua en todo punto de E, en particular es continua en el origen.
- (ii) \rightarrow (iii): Supongamos que T es continua en el origen. Entonces, por definición de continuidad, dado $\varepsilon = \frac{1}{9}$, existe $\delta > 0$ tal que si $\|x\|_{E} < \delta$, entonces $\|Tx\|_{F} < \frac{1}{9}$.

Sea $x \in E$ con $x \ne 0$, y definamos $y = \frac{\delta x}{3\|x\|_E}$. Entonces, $\|y\|_E = \frac{\delta}{3} < \delta$, por lo que se cumple que $\|Ty\|_F < \frac{1}{9}$.

Utilizando la linealidad de T. tenemos

$$\begin{split} \left\| T \left(\frac{\delta x}{3 \|x\|_E} \right) \right\|_F &< \frac{1}{9}, \\ \frac{\delta}{3 \|x\|_E} \| Tx\|_F &< \frac{1}{9}, \\ \| Tx\|_F &< \frac{3}{\delta} \|x\|_E. \end{split}$$

Por lo tanto, si tomamos $M = \frac{3}{\delta}$, se tiene que para todo $x \in E$,

$$\|Tx\|_F \leq M\|x\|_E,$$

lo cual demuestra que T es acotada.

• (iii) \Rightarrow (iv): Supongamos que T es acotada. Entonces existe M>0 tal que para todo $x\in E$, se cumple que $\|Tx\|_F\leq M\|x\|_E$. En particular, si $x\in \overline{\mathcal{B}(0,1)}$, es decir, $\|x\|_E\leq 1$, entonces

$$\|Tx\|_F \leq M$$

como lo anterior se tiene para todo punto en $\overline{\mathcal{B}(0,1)}$, se tiene que $T(\overline{\mathcal{B}(0,1)})$ está contenido en la bola cerrada de radio M en F, lo que implica que $T(\overline{\mathcal{B}(0,1)})$ es un conjunto acotado.

• (iv) \Rightarrow (i): Supongamos que $T(\overline{B(0,1)})$ es acotado. Entonces existe una constante M > 0 tal que para todo $x \in \overline{B(0,1)}$, se cumple que

$$\|Tx\|_F \leq M$$
.

Sea $x \in E$ con $x \neq 0$. Tomemos $y = \|x\|_E \cdot \frac{x}{\|x\|_E}$, donde $\frac{x}{\|x\|_E} \in \overline{B(0,1)}$. Usando la linealidad de la tranformación T y la desigualdad anterior, obtenemos,

$$\|Tx\|_F = \left\|T\left(\|x\|_E \cdot \frac{x}{\|x\|_E}\right)\right\|_F = \|x\|_E \cdot \left\|T\left(\frac{x}{\|x\|_E}\right)\right\|_F \le \|x\|_E \cdot M.$$

Por lo tanto, T es acotada. Luego, para todo $\varepsilon > 0$ con $x', y' \in E$ tenemos que

$$||Tx' - Ty'|| = ||T(x' - y')|| = M||x' - y'|| < \varepsilon.$$

si se toma a $\delta = \frac{M}{\epsilon}$.

Con lo cual se concluye la demostración.

Ejercicio 3

Demuestre que si $T \in \mathcal{L}(E, F)$, entonces:

(i) $||Tx||_F \le ||T|| \, ||x||_E$, para todo $x \in E$.

(ii)
$$\|T\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}.$$

(iii)
$$\|T\| = \sup_{\|x\|_E=1} \|Tx\|_F$$
.

(iv)
$$||T|| = \inf\{M > 0 : ||Tx||_F \le M||x||_E, \forall x \in E\}.$$

Demostración.

(i) Sea $\mathcal{L}(E, F)$ un espacio vectorial con la norma

$$\|T\| = \sup_{\substack{x \in E \\ \|x\| \le 1}} \frac{\|Tx\|_F}{\|x\|_E}.$$

Por definición de supremo, se tiene que $||Tx|| \le ||T||$ para todo $x \in E$ con $||x|| \le 1$.

Si x=0, la desigualdad se cumple trivialmente. Tomemos ahora $x\in E$ con $x\neq 0$, y definamos

 $y = \frac{x}{\|x\|}.$

Entonces, usando la linealidad de T, se tiene:

$$||Ty|| = \left||T\left(\frac{x}{||x||}\right)\right|| = \frac{1}{||x||}||Tx||.$$

Por la definición del supremo, como ||y|| = 1, se cumple que $||Ty|| \le ||T||$, y por lo tanto:

$$\frac{1}{\|\mathbf{x}\|}\|\mathsf{T}\mathbf{x}\| \leq \|\mathsf{T}\|.$$

Multiplicando ambos lados por ||x||, obtenemos:

$$\|\mathsf{T}\mathsf{x}\| \leq \|\mathsf{T}\| \|\mathsf{x}\|.$$

Así, se concluye que para todo $x \in E$, se cumple $||Tx|| \le ||T|| ||x||$, como queríamos.

(ii-iv) Definamos:

$$\begin{split} \alpha &= \sup_{\|x\|_E = 1} \|Tx\|_F, \\ \beta &= \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}, \\ \gamma &= \inf\{M > 0 : \|Tx\|_F \leq M \|x\|_E, \, \forall x \in E\}. \end{split}$$

Veamos que $\|Tx\| \le \alpha$ para todo $x \in E$ con $\|x\| = 1$. Tomemos $y \in E$ con $y \ne 0$ tal que $x = \frac{y}{\|y\|}$, entonces:

$$\|Tx\| = \left\|T\left(\frac{y}{\|y\|}\right)\right\| = \frac{\|Ty\|}{\|y\|} \le \alpha.$$

Como esto vale para todo $y \in E$ con $y \neq 0$, se concluye que $\beta \leq \alpha$.

Por otro lado, para todo $x \in E$ con $x \neq 0$, se cumple:

$$\frac{\|\mathsf{T}x\|}{\|x\|} \leq \beta.$$

3

Entonces, usando la linealidad de T,

$$\left\| T\left(\frac{x}{\|x\|}\right) \right\| \leq \beta.$$

Si definimos $y = \frac{x}{\|x\|}$, entonces $\|y\| = 1$, y se obtiene que $\|Ty\| \le \beta$ para todo $y \in E$ con $\|y\| = 1$. Por lo tanto, $\alpha \le \beta$.

En consecuencia, $\alpha = \beta$.

Ahora, si M>0 es cualquier número en el conjunto que define a γ , entonces se cumple que $\|Tx\| \le M\|x\|$ para todo $x \in E$. Esto implica que

$$\frac{\|Tx\|}{\|x\|} \le M,$$

y por lo tanto, $\beta \leq M$ para todo M en dicho conjunto. En consecuencia, $\beta \leq \gamma$.

Por otro lado, ya sabemos que $\frac{\|Tx\|}{\|x\|} \le \beta$ para todo $x \in E$, $x \ne 0$, lo cual equivale a $\|Tx\| \le \beta \|x\|$. Es decir, β también cumple la propiedad que del conjunto que define γ , así que $\gamma \le \beta$. Concluimos entonces que:

$$\alpha = \beta = \gamma$$
.

Finalmente, notemos que $||T|| \ge \alpha$, ya que:

$${x \in E : ||x|| = 1} \subseteq {x \in E : ||x|| \le 1}.$$

Por otro lado, si M pertenece al conjunto que define a γ , entonces para todo $x \in E$ con $\|x\| \le 1$, se tiene $\|Tx\| \le M$, y como M es una cota superior de $\|Tx\|$ sobre la bola unitaria, se concluye que $\|T\| \le M$. Por ser esto válido para todo M del conjunto que define a γ , se tiene que $\|T\| \le \gamma$.

Por lo tanto,

$$\|T\| = \alpha = \beta = \gamma$$
.

Ejercicio 4.

Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Suponga que F es un espacio de Banach. Muestre que $\mathcal{L}(E, F)$ es un espacio de Banach con la norma usual de $\mathcal{L}(E, F)$. En particular, concluya que $E^* = \mathcal{L}(E, \mathbb{R})$ y $E^{**} = \mathcal{L}(E^*, \mathbb{R})$ son espacios de Banach.

Demostración.

Sea $(E, \|\cdot\|_E)$ un espacio normado y sea $(F, \|\cdot\|_F)$ un espacio de Banach. Consideremos el conjunto $\mathcal{L}(E, F)$ de todas las aplicaciones lineales y continuas de E en F, provisto de la norma definida por

$$\|\mathsf{T}\| := \sup_{\|\mathsf{x}\|_{\mathsf{F}} < 1} \|\mathsf{T}(\mathsf{x})\|_{\mathsf{F}}.$$

Queremos demostrar que $\mathcal{L}(E,F)$, con esta norma, es un espacio de Banach. Sea $(T_n)_{n\in\mathbb{N}}\subseteq\mathcal{L}(E,F)$ una sucesión de Cauchy. Por definición, para todo $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que para todo $n, m \ge N$,

$$\|T_n - T_m\| < \epsilon$$
.

Es decir, para todo $x \in E$ con $||x||_E \le 1$, se tiene

$$\|\mathsf{T}_{\mathsf{n}}(\mathsf{x}) - \mathsf{T}_{\mathsf{m}}(\mathsf{x})\|_{\mathsf{F}} < \varepsilon$$
.

Ahora, sea $x \in E$ arbitrario (no necesariamente de norma menor o igual que uno). Para todo $n, m \ge N$, se cumple

$$\|T_n(x) - T_m(x)\|_F = \|(T_n - T_m)(x)\|_F \le \|T_n - T_m\| \cdot \|x\|_E.$$

Dado $\varepsilon > 0$, si $x \neq 0$, se puede tomar $\delta := \varepsilon/\|x\|_E$, y por ser (T_n) de Cauchy, existe $N \in \mathbb{N}$ tal que para todo $n, m \geq N$,

$$\|T_n - T_m\| < \delta = \frac{\varepsilon}{\|x\|_F},$$

lo que implica

$$\|\mathsf{T}_{\mathsf{n}}(\mathsf{x}) - \mathsf{T}_{\mathsf{m}}(\mathsf{x})\|_{\mathsf{F}} < \varepsilon$$
.

En el caso x=0, se tiene trivialmente que $T_n(0)=0$ para todo n, por lo que la sucesión es constante y, en particular, de Cauchy. Así, se concluye que para todo $x\in E$, la sucesión $(T_n(x))_{n\in\mathbb{N}}\subseteq F$ es de Cauchy.

Como F es un espacio de Banach, existe un elemento $T(x) \in F$ tal que

$$T_n(x) \to T(x) \in F$$
.

Esto define una aplicación $T : E \rightarrow F$ mediante

$$T(x) := \lim_{n \to \infty} T_n(x).$$

Veamos que T es lineal. Sean $x,y\in E$ y $\lambda\in \mathbb{K}$ (donde $\mathbb{K}=\mathbb{R}$ o \mathbb{C}). Como cada T_n es lineal, se tiene

$$T_n(\lambda x + y) = \lambda T_n(x) + T_n(y),$$

y como los límites existen en F, se concluye que

$$T(\lambda x + y) = \lim_{n \to \infty} T_n(\lambda x + y) = \lim_{n \to \infty} (\lambda T_n(x) + T_n(y)) = \lambda T(x) + T(y),$$

es decir, T es lineal.

Mostremos ahora que T es acotada. Como (T_n) es Cauchy en $\mathcal{L}(E,F)$, existe una constante M>0 tal que $\|T_n\|\leq M$ para todo $n\in\mathbb{N}$. Entonces, para todo $x\in E$,

$$\|T_n(x)\|_F < \|T_n\| \cdot \|x\|_F < M\|x\|_F$$

y pasando al límite cuando $n \to \infty$,

$$\|T(x)\|_{F} < M\|x\|_{F}$$
.

Esto demuestra que $T \in \mathcal{L}(E, F)$, es decir, T es lineal y continua.

Finalmente, veamos que $T_n \to T$ en $\mathcal{L}(E,F)$. Dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que para todo $n,m \geq N$,

$$\|T_n - T_m\| < \epsilon$$
.

Fijado $n \ge N$, y tomando el límite cuando $m \to \infty$, se obtiene

$$\|T_n-T\|=\sup_{\|x\|_E\leq 1}\|T_n(x)-T(x)\|_F\leq \epsilon.$$

Por tanto, $\|T_n - T\| \to 0$, lo que implica que $T_n \to T$ en $\mathcal{L}(E,F)$.

Concluimos que $\mathcal{L}(E,F)$, con la norma $\|\cdot\|$, es un espacio de Banach.

Ejercicio 5 Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (no se asume que F sea de dimensión finita).

(i) Muestre que todas las normas asignadas a E son equivalentes.

Demostración. Sea E un espacio vectorial normado de dimensión finita N. Para esta demostación basta probar que E es isomorfo al espacio ℓ_1^N . Por consiguiente, dadas dos normas en E, estas serán isomorfas a ℓ_1^N para cada una de estas normas, y de esto deduciremos la equivalencia de las normas.

Sea $\mathcal{B}=\{e_1,e_2,\ldots,e_n\}$ la base canónica de ℓ_1^N . Tomemos una base $\mathcal{B}'=\{\nu_1,\nu_2,\ldots,\nu_n\}$ para E. Definamos una aplicación $T:\ell_1^N\to E$ tal que $T(e_i)=\nu_i$ para todo $1\le i\le N$. Por su definición, tenemos que T es transformación lineal.

Veamos ahora que T es continua, para ello veremos que es acotada.

Sea
$$x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
, luego $x=\sum_{i=1}^Nx_ie_i$. Por lo cual,

$$T(x) = \sum_{i=1}^{N} x_i T(e_i) = \sum_{i=1}^{N} x_i v_i.$$

Así,

$$\begin{split} \|T(x)\|_E &= \left\| \sum_{i=1}^N x_i \nu_i \right\|_E \\ &\leq \sum_{i=1}^N \|x_i \nu_i\|_E \\ &= \sum_{i=1}^N |x_i| \cdot \|\nu_i\|_E \\ &\leq \sum_{i=1}^N |x_i| \cdot \max_{1 \leq i \leq N} \|\nu_i\|_E \end{split}$$

si $K = m \acute{a} x_{1 \le i \le N} \| \nu_i \|_E$, entonces T está acotada y por ende es continua. Adicionalmente, T es biyectiva por su definición.

Ahora, razonando por reducción al absurdo suponga que T^{-1} no es una transformación lineal continua, lo cual por las equivalencias mostradas en el ejercicio 2 la no continuidad debe fallar en 0. Esto nos indica que podemos encontrar una sucesión $\{y_n\}$ en V y un número real $\varepsilon > 0$ tal que $\|T^{-1}(y_n)\|_1 > \varepsilon$ mientras que $y_n \to 0$. Definamos

$$z_n = \frac{y_n}{\|\mathsf{T}^{-1}(y_n)\|_1},$$

entonces cuando $z_n \rightarrow 0$

$$\begin{split} \|\mathsf{T}^{-1}(z_n)\|_1 &= \left\|\mathsf{T}^{-1}\left(\frac{y_n}{\|\mathsf{T}^{-1}(y_n)\|_1}\right)\right\|_1 \\ &= \frac{1}{\|\mathsf{T}^{-1}(y_n)\|_1} \cdot \|\mathsf{T}^{-1}(y_n)\|_1 \\ &= 1. \end{split}$$

Ahora bien, mostremos que el siguiente conjunto es compacto, sea

$$B = \left\{ x \in \ell_1^N : \|x\|_1 \le 1 \right\},\,$$

note que B es cerrado y acotado, y al ser la topología en ℓ_1^N es la misma que con la topología usual en \mathbb{R}^N . tenemos que B es también secuencialmente compacto, y entonces, por definición, existe una subsucesión $\{z_{n_k}\}$ tal que $\{T^{-1}(z_{n_k})\}$ es convergente.

Sea $T^{-1}(z_{n_k}) \to x$, teniendo en cuenta que $\|T^{-1}(z_{n_k})\|_1 = 1$ y $T^{-1}(z_{n_k}) \to x$, entonces $\|x\|_1 = 1$.

Dado que T es continua,

$$\lim \mathsf{T}(\mathsf{T}^{-1}(z_{n_k})) = \mathsf{T}(\mathsf{x}),$$

es decir,

$$z_{n_k} \to \mathsf{T}(\mathsf{x}),$$

lo cual implica que T(x) = 0. Pero T es una aplicación 1-1 y $||x||_1 = 1$, por consiguiente $x \neq 0$, lo cual prueba que $T(x) \neq 0$. Esto nos lleva a una contradicción. Por ende, T^{-1} debe ser continua.

Por lo cual, para cualquier norma en E, la aplicación T es siempre un isomorfismo entre ℓ_1^N y E, lo cual implica que la aplicación de $(E, \|\cdot\|_{E_1})$ y $(E, \|\cdot\|_{E_2})$ también lo será, concluyendo así que las dos normas son equivalentes.

(ii) Muestre que toda transformación lineal $T: E \to F$ es continua.

Demostración. Sea $T: E \to F$ una transformación lineal, veamos que T es continua, para esto de acuerdo con el ejercicio 2 de este taller, sabemos que basta con mostrar que es acotada.

Como E es un espacio vectorial de dimensión finita, tomemos la base de E como $\mathcal{B} = \{\nu_1, \nu_2, \dots, \nu_n\}$, luego si $x \in E$ tenemos que $x = \sum_{i=1}^n x_i \nu_i$, entonces la transformación lineal T es de la forma,

$$\begin{split} Tx &= T\left(\sum_{i=1}^n x_i \nu_i\right) \\ &= \sum_{i=1}^n x_i T(\nu_i), \\ &= \sum_{i=1}^n x_i \nu_i \max_{1 \leq i \leq n} T(\nu_i), \end{split}$$

luego, tenemos que

$$||T||_{E} = \left\| \sum_{i=1}^{n} x_{i} T(v_{i}) \right\|_{E}$$

$$\leq \sum_{i=1}^{n} ||x_{i} T(v_{i})||_{E}$$

$$= \sum_{i=1}^{n} |x_{i}| \cdot ||T(v_{i})||_{E},$$

por el punto anterior, como E es un espacio de dimensión finita existen constantes positivas C_1 y C_2 , tal que $C_1\|x\|_E \le \|x\|_1 \le C_2\|x\|_E$ y si tomamos a $M_1 = \max_{1 \le i \le n} \|T(\nu_i)\|_E$, entonces,

$$\begin{split} \sum_{i=1}^{n} |x_{i}| \cdot \|T(\nu_{i})\|_{E} &= \|x\|_{1} \max_{1 \leq i \leq n} \|T(\nu_{i})\|_{E}, \\ &\leq M_{1}C_{2} \|x\|_{E} \\ &= M \|x\|_{E}, \end{split}$$

por lo cual, T es acotado y continuo.

(iii) Dé un ejemplo donde se verifique que (ii) puede ser falsa si E es de dimensión infinita.

Solución. Sea $T:(C^1([0,1]),\|\cdot\|_{\infty}) \longrightarrow (\mathbb{R},|\cdot|)$ donde por $f\mapsto f'(0)$. Note que T es una tranformación lineal.

Como queremos mostrar que la tranformación no es continua, demostremos que T no es acotada.

Demostración. Supongamos que $T \in \mathcal{L}(E,\mathbb{R})$ con $\|\cdot\|_{\mathcal{L}^{\infty}}$, por lo cual, existe M>0 tal que

$$|T(x)| = |f'(0)| \le M \|f\|_{\mathcal{L}^\infty} \quad \text{para todo } f \in C^1([0,1]).$$

Sea $n \ge 2$ y $f(x) = (1 - x)^n$, entonces,

$$\|f\|_{\mathcal{L}^{\infty}} = 1$$
, $f'(x) = -n(1-x)^{n-1}$, $f'(0) = -n$.

Reemplazando

$$n = |f'(0)| \le M ||f||_{\infty} = M.$$

Por tanto, cuando $n \to \infty$, se tendría $n \le M$ para todo $n \ge 2$, lo cual es una contradicción. Entonces T no es acotada.

Ejercicio 6

Considere $E = c_0$, donde

$$c_0 = \left\{ u = \{u_n\}_{n \geq 1} : \text{tales que } u_n \in \mathbb{R}, \ \lim_{n \to \infty} u_n = 0 \right\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a cero. Dotamos a este espacio con la norma $\|u\|_{\ell^\infty}=\sup_{n\in\mathbb{Z}^+}|u_n|$. Considere el funcional $f:E\to\mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (ii) ¿Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?