

TRANSACCIONES FRAUDULENTAS

Victoria Vallejo 14/09/2022

CONTENIDOS

ACTUALIDAD

Transacciones fraudulentas en el presente.

02

EDA

Exploramos la base de datos.

MODELOS

Árbol de Decisión

Reg Logística

04

CONCLUSIÓN

¿Qué modelo elegimos?

RECOMENDACIONES

En base a los resultados

ACTUALDAD

En el primer semestre del año, la Condusef detectó 3.5 millones de fraudes cibernéticos y los negocios en internet, sin importar el tamaño, son uno de los sectores más afectados.

El fraude bancario aumenta un 159% y las transacciones alcanzan los volúmenes anteriores a la pandemia

Entre la espada y la pared: una nueva investigación revela que la banca de EE. UU. está atrapada por el aumento de los delitos financieros y la complejidad tecnológica percibida

El fraude con tarjetas de crédito resultó en la pérdida de \$ 3 mil millones para las instituciones financieras de América del Norte en 2017. El auge de los sistemas de pagos digitales como Apple Pay, Android Pay y Venmo ha significado que se espera que aumenten las pérdidas debido a actividades fraudulentas. Deep Learning presenta una solución prometedora al

AUMENTO

DATASET

Conjunto de datos sintéticos generados usando el simulador PaySim.
PaySim utiliza datos agregados del conjunto de datos privados para generar un conjunto de datos sintéticos que se asemeja a la operación normal de las transacciones.

VARIABLES

CORRELACIÓN

Numeric Features

FRAUDES EN LA BASE

8213

REGISTROS DE FRAUDES

DE FRAUDES


```
Si se eliminan sólo para el siguiente gráfico los registros con "type"=
"CASH_IN";"DEBIT";"PAYMENT"
quedarían

2770409

11
```

SIN FRAUDE / CON FRAUDE

Los registros sin fraude presentan en su mayoría "cash_out" (retiro efectivo), mientras que en los registros con fraude la frecuencia de "cash_out" y "transfer" es casi idéntica lo cuál podría ser útil a la hora de predecir fraude.

AMOUNT (LOG10)

Fraude: El monto muestra una distribución más homogénea que sin fraude.

Sin fraude: El monto se encuentra frecuentemente en 100000

Amount será una variable significativa a la hora de predecir isFraud.

CHI Q TEST

Que sea fraude o no (isFraud) es independiente de tener un monto (amount) mayor a 100000?

H0: fraude <= 100000

Ha: fraude > 100000

a = table (df\$isFraud,df\$amount>100000) # se discretiza la variable numerica chisq.test(a)

Pearson's Chi-squared test with Yates' continuity correction

data: a X-squared = 3988.3, df = 1, p-value < 2.2e-16

P-value < 0.05 → el modelo es significativo a un 95% de confianza por lo tanto rechazamos H0. X- squared es lejano al 0, no son independientes.

O3 MODELOS

SAMPLE

Al presentar una gran cantidad de registros R no corre. Fue necesario reducir los registros a un 10% para poder realizar los modelos.

Los modelos fueron realizados con 636261 registros de la base.

ÁRBOL DE DECISIÓN

Partición en Train y Test

set.seed(8); particion= createDataPartition(y=df_numc\$isFraud, p=0.8, list=FALSE)

Train ← df_numc[particion,]

Test ← df_numc[-particion,]

MATRIZ DE CONFUSIÓN

ÁRBOL DE DECISIÓN

Prediction / Reference	No Fraude	Fraude
No Fraude	635413	337
Fraude	24	487

P = 80%

ÁRBOL DE DECISIÓN

TEST

ACCURACY: 0.9994 = 99.94%

P = 80%

REGRESIÓN LOGÍSTICA

P = 80%

MATRIZ DE CONFUSIÓN

REGRESIÓN LOGÍSTICA

Prediction / Reference	No Fraude	Fraude
No Fraude	634058	404
Fraude	847	2070

REGRESIÓN LOGÍSTICA

TEST

ACCURACY: 0.9980373 = 98.80%

CONCLUSIÓN

MODELO

Las variables "type" y "amount" son significativas para predecir el fraude.

El modelo más efectivo para utilizar al predecir fraudes es el Árbol de decisión con una accuracy del **99.94%**

TECOMENDACIONES

1. Implementar mayores medidas de seguridad para transacciones del tipo cash_out (retiro efectivo) y transfer (transferencia), donde se encuentran las transacciones fraudulentas por ejemplo mediante autenticación obligatoria de dos pasos y biometría.

2. Reforzar la seguridad de la plataforma bancaria.

3. Establecer y comunicar de un único medio de contacto oficial con los clientes por parte del banco para evitar ataques phishing (el atacante envía un correo electrónico o SMS con un enlace para que la persona entre a la cuenta para solucionar algún problema o llevar a cabo una acción necesaria)

4. Educar al cliente sobre los pasos a seguir una vez identificado un fraude bancario.

- 5. Campaña "Tome medidas para protegerse" donde se alentará al cliente a:
 - Habilitar la biometría (inicio de sesión con huellas dactilares o reconocimiento facial)
 - Mantener su información de contacto actualizada
 - Fortalecer sus contraseñas
 - Activar las alertas automáticas en la aplicación del banco.

GRACIAS!

