

Bezpieczeństwo

- **Bezpieczeństwo** jest miarą ufności, że integralność systemu i danych zostanie zachowana.
- Cztery najważniejsze funkcje bezpieczeństwa:
 - Uwierzytelnianie / Autentyczność
 - Poufność
 - Integralność
 - o Rozliczalność / Niezaprzeczalność.
- Zasoby systemu komputerowego:
 - o Informacje (dane, kod)
 - Czas procesora
 - o Pamięć główna, pamięć zapasowa
 - Dostęp do sieci komputerowej
 - o etc.

Aspekty biznesowe

- Utrata informacji przez jej bezpowrotne usunięcie.
- Kompromitacja informacji przez jej ujawnienie.
- Wykorzystanie zasobów przedsiębiorstwa, np do rozsyłania spamu, tzw. kopania kryptowalut lub ataku na inne systemy komputerowe.

Problem bezpieczeństwa

- System jest **bezpieczny**, kiedy dostęp do jego zasobów oraz ich wykorzystanie odbywa się zgodnie z ustalonym przeznaczeniem.
- Z jednej strony można wprowadzać coraz mocniejsze zabezpieczenia.
- Z drugiej strony, zabezpieczenia nie mogą powodować uciążliwości w korzystaniu z systemu (patrz: odłączenie od sieci internet).
- Dobór zabezpieczeń (i ich koszt) musi być dopasowany do wartości przechowywanych informacji, czy krytyczności działania systemu oraz potencjalnych zagrożeń (nie ma sensu wprowadzać firewall do systemu bez dostępu do internetu)

Zarządzanie informacją

- Pozyskiwanie
- Parsowanie
- Oczyszczanie
- Transformacja
- Przetwarzanie
- Przechowywanie

- Backup
- Archiwizacja
- Przesyłanie
- Dodawanie
- Zmiana
- Usuwanie

Pozyskiwanie

- Ang. acquiring pobieranie do systemu danych ze źródeł zewnętrznych.
- Źródła pozyskiwania danych:
 - Skaner dokumentów papierowych
 - Sieć komputerowa (inne hosty)
 - Urządzenie pomiarowe cyfrowe
 - Urządzenia akwizycji sygnałów analogowych
 - o itp.

Parsowanie

- Ang. parsing proces wyuskiwania interesujących nas danych z ciągów znaków, obrazów, sygnałów, itp.
- Parsowanie tekstu realizowane jest najczęściej w technice wyrażeń regularnych (ang. regular expression).
- Przykład: Dziś jest piątek trzynastego Jeśli parsowanie ma wyuskać dni tygodnia to z tego ciągu otrzymamy 'piątek'.

Oczyszczanie

- Ang. cleaning proces markowania danych, które są błędne.
- Oczyszczanie realizowane jest podobnie do parsowania.
- Przykład: Skanning laserowy prowadzony z samolotu-awionetki w rozdzielczości 12 punktów na 1 m^2 wykazał na obszarze oznaczonym jako jezdnia pewne osoby. Jeśli celem jest stworzenie ortofotomapy, to dane związane z rozpoznanymi osobami oznaczyć należy jako błędne.

Transformacja

- Ang. transforming proces przekształcania danych między formatami.
- ETL ang. Extract Transform Load ciąg trzech procesów wyciągania danych z bazy danych źródłowych, transformacji do innego formatu i załadowanie do bazy danych docelowych.
- Przykład: Pobranie danych ze strony WWW MPK, przekształcenie na strefę czasową UTC i załadowanie do bazy MySQL.

Przetwarzanie

 Ang. processing – obróbka danych za pomocą algorytmów charakterystycznych dla danego problemu.

Przechowywanie

- Ang. storing przechowywanie danych na nośnikach o dostępie bezpośrednim (ang. direct access).
- Przechowywanie w warstwie:
 - W warstwie fizycznej (dane binarne)
 - W warstwie logicznej systemu plików
 - W warstwie logicznej bazy danych

Backup i archiwizacja

- Ang. backuping sposób utworzenia kopii danych w celu szybkiego ich odtworzenia na wypadek wystąpienia awarii.
- Ang. archiving sposób utworzenia kopii danych w celu długotrwałego przechowywania.
- Archiwizacja:
 - Pełna (ang. mirroring),
 - o Przyrostowa (ang. incremental).

Przesyłanie

- Ang. transfering tworzenie kopii danych w innym systemie komputerowym za pomocą sieci komputerowej.
- Szybkość przesyłania liczona jest w bitach (kilobitach, megabitach, gigabitach) na sekundę.
- Przykłady:
 - o 1 b/s = 1 bps
 - \circ 1024 b/s = 1 Kbps
 - o 1048576 b/s = 1Mbps

Zarządzanie bezpieczeństwem

- Poufność
- Integralność
- Dostępność
- Rozliczalność
- Identyfikacja / Uwierzytelnianie
- Autoryzacja
- Awaria / Niezawodność

- Anonimowość
- Zagrożenie
- Ryzyko
- Podatność
- Zabezpieczenie
- Monitorowanie
- Odtwarzanie

Poufność

- Ang. confidentiality ochrona danych przed ich ujawnieniem osobom i/lub procesom.
- Poufność realizowana jest przez szyfrowanie danych i/lub kanałów komunikacji.
- Szyfrowanie: symetryczne i asymetryczne.

Integralność

- Ang. integrity rozpoznanie zmiany, dodania lub usunięcia danych.
- Narzędziem do badania integralności są sumy kontrolne, kody korekcyjne CRC, kody MAC.
- Zaawansowane badanie integralności opiera się o podpis cyfrowy.

Dostępność

- Ang. availability własność danej polegająca na tym, że jest ona dostępna dla osoby / procesu w zadanym przedziale czasu i zadanym miejscu.
- Dostępność to także stosunek czasu bezawaryjnego działania danej usługi w odniesieniu do całości założonego czasu.

Rozliczalność / Niezaprzeczalność

- Ang. *accountability* / ang. nonrepudiation zapewnienie, że aktywność danej osoby / procesu może zostać bezsprzecznie stwierdzona.
- Rozliczalność realizowana jest za pomocą logowania (rejestrowanie zdarzeń).

Identyfikacja / Uwierzytelnianie

- Ang. *authenticity* weryfikacja osoby / procesu.
- Weryfikację poprzedza identyfikacja (ang. identification).
- Weryfikacja realizowana jest za pomocą loginu i hasła, haseł jednorazowych, albo technik biometrycznych.

Zobacz: https://doi.org/10.1016/j.ins.2017.05.041

Autoryzacja

• Ang. authorization - przyznanie uprawnień.

Awaria

- Ang. *malfunction* stan niesprawności systemu uniemożliwiający jego normalne użytkowanie i działanie.
- Awaria definiowana jest zwykle jako nagła i nieprzewidywalna (choć mogą wystąpić oznaki wskazujące zbliżającą się awarię).
- Awaria dotyczyć może całego systemu, lub niektórych funkcjonalności (zwykle kluczowych).

Niezawodność

- Ang. reliability własność obiektu / systemu stwierdzająca prawdopodobieństwo nie wystąpienia awarii:
 - \circ $R(t) = P\{t > = r\}$
 - R(t) niezawodność po czasie t
 - r założony czas pracy
- $\lim_{t \to \infty} t \to \lim_{t \to \infty} R(t) = 0$
- Niezawodność R(1h) = 90% oznacza, że w pierwszej godzinie wystąpi 10% awarii.
- Niezawodność realizowana jest przez redundancję i nadmiarowość.

Anonimowość

- Ang. *anonymity* własność związana z brakiem możliwości identyfikacji osoby / procesu, czy też powiązania zdarzenia, utworu z osobą / procesem.
- Anonimowość w sieci realizowana jest przez serwery proxy, NAT, sieć 'cebulową'.
- Anonimowość technicznie nie jest możliwa ale jest możliwa prawnie.

Anonimizacja danych - jednokierunkowa zmiana wartości identyfikacyjnych.

Zagrożenie i ryzyko

- Ang. threat stan obniżonego bezpieczeństwa.
- Ang. risk prawdopodobieństwo, że zagrożenie zmieni stan osoby / procesu / zasobu / systemu z pozytywnego w negatywny (w tym w awarię).

- Zagrożeniem jest włamanie, a z uwagi na hasła słownikowe ryzyko jest wysokie.
- Zagrożeniem jest uszkodzenie dysku (awaria), ale redundancja obniża ryzyko.

Podatność i zabezpieczenie

- Ang. susceptibility wysokie ryzyko zmiany zagrożenia w awarię.
- Ang. protection obniżanie ryzyka zmaterializowania zagrożenia (awarii).

Podatny system na włamania można zabezpieczyć uruchamiając firewall.

Monitorowanie

- Ang. monitoring realizacja procesów obserwacji osoby / procesu / systemu o charakterze ciągłym i długotrwałym.
- Monitoring realizowany jest przez ciągłe analizowanie logów (rozliczalność), odpytywanie o stan, obserwację bezinwazyjną.

Odtwarzanie

- Przywracanie stanu systemu sprzed awarii.
- Przywracanie może być pełne lub częściowe.
- Przywracanie może wyłączać system z użycia lub trwać w trakcie jego pracy.

Podstawowe typy ataków

- Naruszenie poufności, integralności, czy dostępności do danych.
- Kradzież usługi, np. przez przechwycenie danych uwierzytelniających.
- Odmowa usługi (ang. Denial-of-service, DOS) oraz DDOS (and. distributed denial of service).
- Powtarzanie operacji (ang. reply attack), czyli wykonanie powtórne tej samej operacji (np. przelew).
- Atak ang. man-in-the-middle polegający na umieszczeniu atakującego pomiędzy stronami.
- Atak ang. session hijacking polegający na przechwyceniu sesji (może poprzedzać powyższy atak).
- Eskalacja uprawnień (ang. privilege escalation) przekazywanie i rozszerzanie uprawnień.

Cztery poziomy bezpieczeństwa

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Jednak najsłabszym ogniwem zwykle jest: człowiek (socjotechnika, ang. social engineering).

Oprogramowanie naruszające bezpieczeństwo

- Malware oprogramowanie przeznaczone do wykorzystania, zablokowania lub uszkodzenia systemu komputerowego. Podstawa działania: uruchamianie z uprawnieniami innego użytkownika.
- **Koń trojański** oprogramowanie realizujące w ukryty sposób szkodliwą funkcjonalność, na przykład: pobieranie informacji o danych do logowania, kontakty użytkownika, itp.
- **Spyware** odmiana konia trojańskiego, którego funkcjonalność polega na wykorzystaniu informacji o użytkowniku, np. w celu dobrania właściwych reklam.
- Ransomware jego działanie polega na szyfrowaniu danych użytkownika celem wyłudzenia od niego opłaty za odzyskanie danych.
- **Back door** celowo pozostawione przez twórców oprogramowania luki w zabezpieczeniach pozwalające na nieuprawniony dostęp (w tym logowanie klawiszy, ang. *keystroke logger*).
- Logic bomb rodzaj luki w oprogramowaniu, która uaktywnia się pod specjalnymi warunkami.

Podstawowy sposób obrony

Zasada minimalnych uprawnień.

Wstrzykiwanie kodu

- Wstrzykiwanie kodu (ang. code-injection attack) - rodzaj ataku polegający na zmianie lub rozszerzeniu kodu uruchamialnego.
- Wstrzykiwanie kodu zwykle jest wynikiem wadliwego stosowania paradygmatów programowania w językach niskiego poziomu, np. C/C++, które umożliwiają na swobodne poruszanie się po pamięci.

Źródło: A. Silberschatz, Operating Systems Concepts Essentials

Wirusy i robaki

Wirus - fragment kodu dołączony do programu, który potrafi sam się replikować infekując inne programy. Działanie wirusa może prowadzić w lekkiej postaci tylko do rozprzestrzeniania, a w przypadku kodu złośliwego, do niszczenia danych. Wirusy są problemem głównie dla systemów z rodziny Windows. Wirusy roznoszone są między systemami przez e-mail (w tym ataki phishingu), pobieranie zawirusowanego oprogramowania.

Robak - rodzaj oprogramowania "wędrującego" po sieci internet.

Zagrożenia systemowe i sieciowe

- Model 'secure by default', czyli wszystko, co nie jest dozwolone, jest zabronione.
- **Zombie system** opanowany przez atakującego system, z którego prowadzony jest atak.
- **Sniffing** podsłuchiwanie.
- **Spoofing** podszywanie.
- Scanning skanowanie.

Podstawy kryptografii

- M Tekst jawny (ang. plaintext, cleartext)
- E() Szyfrowanie (ang. encryption) oparty o algorytm kryptograficzny (ang. cipher)
- C = E(M) Kryptogram (ang. ciphertext)
- M = D(C) Deszyfrowanie (ang. decryption) => D(E(M)) = M
- Kryptografia nauka zajmująca się zabezpieczaniem informacji.
- Kryptoanaliza nauka zajmująca się łamaniem kryptogramów.
- Kryptologia = Kryptografia + Kryptoanaliza.
- H() Funkcja skrótu (ang. hash function)
- h = H(M) Skrót (ang. hash)
- *S*() Podpisywanie cyfrowe (ang. *digital signing*)
- V() Weryfikacja podpisu (ang. digital verification): V(S(M)) = M

Podstawy szyfrowania

- Poufność algorytmu jeśli bezpieczeństwo zaszyfrowanej wiadomości oparte jest o siłę algorytmu (skomplikowany algorytm).
- Poufność klucza jeśli bezpieczeństwo zaszyfrowanej wiadomości oparte jest o siłę
- klucza (długość):
 - Algorytm symetryczny (np. DES Data Encryption Standard):
 - Algorytm asymetryczny (np. RSA *Rivest Shamir Adleman*):
 - $D_{k1}(E_{k2}(M)) = M$
 - $D_{k2}(E_{k1}(M)) = M$

Funkcja skrótu

• Operuje na dowolnej długości wiadomości wejściowej *M*. Zwraca wartość hash o stałej długości *h*.

h=H(M), gdzie h ma długość m

- Własności:
 - Łatwo obliczalna: mając *M* łatwo obliczyć *h*.
 - Jednokierunkowa: mając *h* trudno wyznaczyć źródłowe *M*: *H*(*M*)=*h*.
- Wolna od kolizji, ale suriekcja: istnieją takie dwie różne M i M, że H(M)=H(M').
- Jednoznaczna: dla każdego M: H(M)=H(M).
- Dyfuzja, czyli cecha powodująca rozsianie bitów wiadomości jawnej w skrócie.
- Konfuzja, czyli cecha ukrywająca powiązanie pomiędzy wiadomością jawną, a skrótem.

Podpis odręczny

- Trudny do podrobienia.
- Łatwy do zweryfikowania.
- Nieprzenoszalny na inny dokument.
- Dokumentu nie można zmienić.
- Podpisu nie można się wyprzeć.

(Nie zawsze możliwe)

Podpis cyfrowy

- k1 klucz prywatny, k2 klucz publiczny
- $S_{k1}(M) = E_{k1}(H(M))$ podpis cyfrowy M
- $V_{k2}(S_{k1}(M), M)$ weryfikacja podpisu $D_{k2}(S_{k1}(M)) = ? = H(M)$ $D_{k2}(E_{k1}(H(M))) = ? = H(M)$ H(M) = ? = H(M)

Infrastruktura Klucza Publicznego

Secure Socket Layer

Klient

HTTPS

Serwer

POP3S SMTPS

