C.Física Moderna: Taller 3 Solución

1. Efecto Doppler

Desde una galaxia A se emite luz a 550 nm(verde). La galaxia A tiene una velocidad relativa a las galaxias B y C de v_B y v_C respectivamente. Sabiendo que las galaxias ven lineas de absorción de 450 nm(azul) y 700 nm(rojo) respectivamente, calcule v_B y v_C . Diga si se están acercando o alejando a la galaxia A.

Solución

Utilizando la fórmula para efecto doppler relativista se tiene:

$$\frac{\lambda_o}{\lambda_s} = \frac{\sqrt{1+\beta}}{\sqrt{1-\beta}}$$

Despejamos para la velocidad:

$$\beta = \frac{\left(\frac{\lambda_o}{\lambda_s}\right)^2 - 1}{1 + \left(\frac{\lambda_o}{\lambda_s}\right)^2} = \frac{\lambda_o^2 - \lambda_s^2}{\lambda_s^2 + \lambda_o^2} \tag{1}$$

Por lo tanto se tiene:

$$\beta_B = \frac{450^2 - 550^2}{550^2 + 450^2} = -\frac{20}{101} = -0.198$$
$$\beta_C = \frac{700^2 - 550^2}{550^2 + 700^2} = \frac{75}{317} = 0.237$$

Por lo tanto la galaxia B se se acerca a A mientras que C se aleja de ella. Note que esto se podía saber sin hacer ningún cálculo: Si la fuente se acerca al observador, la frecuencia con la que llega aumenta y por lo tanto la longitud de onda disminuye(ya que $\lambda = c/f$).

2. Energía relativa

Dos partículas de masa en reposo m_0 se dirigen al mismo punto con velocidades $v_1 = -v_2$ relativas a un marco de referencia inercial. ¿Cuál es la energía total de una partícula medida desde el marco en reposo de la otra?

Solución

La velocidad de una partícula vista por la otra es:

$$v' = \frac{2v}{1 + (v/c)^2} \tag{2}$$

Por lo que la energía es:

$$E' = m_0 c^2 \gamma(v') = m_0 c^2 \frac{1 + (v/c)^2}{1 - (v/c)^2}$$
(3)

3. Colisión totalmente inelástica

Una partícula de masa m y rapidez v colisiona y se queda pegada a una partícula estacionaria de masa M. ¿Cuál es la velocidad final de la partícula compuesta?

Solución

El momento y energía inicial son:

$$p_i = mv\gamma(v)$$

$$E_i = mc^2\gamma(v) + Mc^2$$

Luego de la colisión el momento y energía final son:

$$p_f = M_f v_f \gamma(v_f)$$
$$E_f = M_f c^2 \gamma(v_f)$$

Utilizando la conservación de momento y energía:

$$mv\gamma(v) = M_f v_f \gamma(v_f)$$
$$mc^2 \gamma(v) + Mc^2 = M_f c^2 \gamma(v_f)$$

Dividiendo las últimas dos igualdades:

$$\frac{mv\gamma(v)}{mc^2\gamma(v) + Mc^2} = \frac{v_f}{c^2} \tag{4}$$

Por lo que la velocidad final es:

$$v_f = v \frac{m\gamma(v)}{m\gamma(v) + M} \tag{5}$$

Fórmulas útiles

Indice o es para observador y s para fuente(source).

$$\frac{f_s}{f_o} = \frac{\lambda_o}{\lambda_s} = \frac{\sqrt{1+\beta}}{\sqrt{1-\beta}}$$

Adición de velocidades

 u_x es una velocidad medida desdeS y u_x^\prime desde $S^\prime.$

$$u_x = \frac{u_x' + v}{1 + vu_x'/c^2}$$

Momento y energía relativista

Para las siguientes formulas m es la masa en reposo.

$$p = mv\gamma$$

$$E = mc^{2}\gamma$$

$$K = mc^{2}(\gamma - 1)$$

$$E^{2} = (pc)^{2} + (mc^{2})^{2}$$