Neuron Model

Introduction

- An ANN learns through an interactive process of adjustments to its synaptic weights and bias levels
- A set of well-defined rules for solving the learning problem is called a *learning algorithm*.
- There is no single learning algorithm for all ANNs.
 We rather have a variety of learning algorithms,
 each with its own advantages
- Also, different ways for an ANN to relate to its environment (and hence, learn) lead us to different learning paradigms

Error-Correction Learning

- Neuron k is driven by signal vector x(n) produced by hidden layers
- n denotes discrete time step
- y_k(n) is the output of neuron k at time n
- d_k(n) denotes desired output at time n
- After comparing actual and desired outputs, we obtain an error signal, $e_k(n)$ $e_k(n) = d_k(n) y_k(n)$

(a) Block diagram of a neural network, highlighting the only neuron in the output layer

(b) Signal-flow graph of output neuron

FIGURE 2.1 Illustrating error-correction learning.

Error-Correction Learning

- e_k(n) actuates a control mechanism (a sequence of corrective adjustments to synaptic weights of neuron k)
- The aim of these adjustments is to make $y_k(n)$ come closer to $d_k(n)$ step-by-step.
- To do this, we need to minimize a cost function

$$\xi(n) = \frac{1}{2}e_k^2(n)$$

(instant value of error energy)

(a) Block diagram of a neural network, highlighting the only neuron in the output layer

(b) Signal-flow graph of output neuron

FIGURE 2.1 Illustrating error-correction learning.

Error-Correction Learning

- The adjustments to the weights are continued until system reaches a steady state
- Delta rule: the adjustment $\Delta w_{kj}(n)$ for the weight w_{kj} at time step n is

$$\Delta w_{kj}(n) = \eta e_k(n) x_j(n)$$

where η is the learning rate parameter

 When this is calculated, synaptic weight is updated with

$$W_{kj}(n+1) = W_{kj}(n) + \Delta W_{kj}(n)$$

(a) Block diagram of a neural network, highlighting the only neuron in the output layer

(b) Signal-flow graph of output neuron

FIGURE 2.1 Illustrating error-correction learning.

Memory-Based Learning

- All (or most) past experiences are stored as correctly classified input-output examples $\{(\mathbf{x}_i, d_i)\}_{i=1}^N$
- When a new input signal, x_{test} is given, system responds by <u>looking at nearby</u> known data
 - E.g., nearest neighbor, k-nearest neighbors, radial-basis function network, etc.

Hebbian Learning

- Neuropsychologist Hebb's postulate of learning (1949) says (in short) that, when cell A repeatedly and persistently takes part in firing cell B, changes take place so that A fires B better.
- In ANN context, this is expressed as a two-part rule
 - If neurons on either side of a synapse are activated simultaneously, then synapse strength is increased
 - If neurons on either side of a synapse are activated asynchronously, then synapse strength is decreased.
- Such a synapse is called a Hebbian synapse.
- A Hebbian synapse uses a time-dependent, highly local, and strongly interactive mechanism to increase synaptic efficiency as a function of correlation between presynaptic and postsynaptic activities.

Hebbian Learning

- Synaptic weight w_{ki} for neuron k with presynaptic signal x_i and postsynaptic signal y_k . The adjustment to w_{ki} at time n (in general form) is
- where F(...) is a function of both \bar{p} and p st (n)synaptic signals.
 - Hebb's hypothesis
 - Covariance hypothesis
 - ariance hypothesis $\Delta w_{kj}(n) = \eta y_k(n) x_j(n)$ and are time averaged values $\Delta w_{kj} = \eta (x_j \bar{x})(y_k \bar{y})$

$$\bar{x}$$
 \bar{y}

Hebbian Learning

FIGURE 2.3 Illustration of Hebb's hypothesis and the covariance hypothesis.

Competitive Learning

- The output neurons of a neural network compete among themselves to become active.
 - a set of neurons that are all the same (except for synaptic weights)
 - a limit imposed on the strength of each neuron
 - a mechanism that permits the neurons to compete -> a winner-takes-all

graph of a simple competitive learning network with feedforward (excitatory) connections from the source nodes to the neurons, and lateral (inhibitory) connections among the neurons; the lateral connections are signified by open arrows.

Competitive Learning

The standard competitive learning rule

$$\Delta w_{kj} = \eta(x_j-w_{kj})$$
 if neuron k wins the competition = 0 if neuron k loses the competition

Note: all the neurons in the network are constrained to have the same length.

Boltzmann Learning

 The neurons constitute a recurrent structure and they operate in a binary manner. The machine is characterized by an energy function E where x_kand x_j are neuron states

$$E = -\frac{1}{2}\sum_{i}\sum_{k} w_{kj}x_{k}x_{j} , j \neq k$$

 Machine operates by choosing a neuron at random then flipping the state of neuron k from state x_k to state
 -x_k at some temperature T with probability

$$P(x_k \rightarrow -x_k) = 1/(1 + \exp(-\Delta E_k/T))$$

where ΔE_k is the energy change and T is a pseudotemperature

Boltzmann Learning

Clamped condition: the visible neurons are all clamped onto specific states determined by the environment

Free-running condition:
all the neurons (=visible
and hidden) are
allowed to operate
freely

 The Boltzmann learning rule:

 $\Delta w_{kj} = \eta(\rho^+_{kj} - \rho^-_{kj}), j \neq k,$ note that both ρ^+_{kj} and ρ^-_{kj} range in value from -1 to +1.