Normal Parameters

PARAMETERS	DEFINITION
F	Set of Contents
V	Set of Nodes
Pr_f	Original Provider of Content f
T	Set of Tasks
C_{size}	Maximum Cacheable Node Size
f_{size}	Size of File f
B_{size}	Maximum Bandwidth Size
T_{now}	Present Synchronized Time
$Original_f$	Time of File f update
$limit_f$	Time limit for file f update
$power_v$	Power Consumption when any request or response is passed through node v
$power_{max}$	Maximum Power constraint
$delay(V_i, V_j)$	Time delay between node V_i, V_j
P_f	Probability that file f is requested

Decision Parameters

Decision Variable	Definition
$X_{f,j}$	Specifies file f is cached in node j or not
$y_{t,v}$	Node v executes task t or not
$z_{t,v}$	Offloading decision
$k_{i,j}^{v,f}$	Specifies there is a path between node i and node j if file f is requested by node v

PROBLEM FORMULATION

The optimization problem is:

minimize

$$\Sigma_{f \in F} \Sigma_{v_i, v_j \in V} q_{i,f} P_f \big(\left. X_{f,j} delay (\left. v_i, v_j \right) + (1 - X_{f,j}) \right. delay (\left. v_i, pr_f \right) \big) \\ + \Sigma_{t \in T} \Sigma_{v_i \in V} y_{t,v} z_{t,v} delay (\left. v_i, S \right) \\ + \left. \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 - X_{f,j} \right) delay \left(\left. v_i, pr_f \right) \right) \\ + \left(1 -$$

Subject to constraints:

1. Sum of probabilities of all files is 1

$$\sum_{f \in F} P_f = 1$$

2. The content is definitely present in the original provider

$$\forall i (\Sigma_{v \in V} X_{i,v} \ge 1)$$

3. The size should not maximum cacheable node for each node

$$\forall v \in V(\Sigma_{f \in F} X_{f,v} f_{size} \le C_{size})$$

4. Bandwidth Constraint

$$\forall (i,j) \in V : (\sum_{v \in V} \sum_{f \in F} q_{v,f} Z_{i,j}^{v,f} f_s ize \leq B_{size})$$

5. Content Freshness Constraint

$$\sum_{f \in F} \sum_{v \in V} X_{f,v} (T_{now} - Original_f) \le limit_f$$

6. Delay Energy Constraint

$$\forall (i,j) \in V : (\sum_{v \in V} \sum_{f \in F} q_{v,f} Z_{i,j}^{v,f} power_j \leq power_{max})$$

7. Task Offloading Energy Constraint

$$\sum_{t \in T} \sum_{v \in V} y_{t,v}(z_{t,v}power_s + (1 - z_{t,v})power_v) \leq power_{max}$$