15-150 Fall 2013 Lecture 18

Stephen Brookes

Today

A case study in modular programming

- Implementing dictionaries
 - binary search trees
 - red-black trees

dictionaries

- Earlier we talked about sorting with respect to a comparison function
- Let's revisit this using modular programming
 - A signature for dictionaries
 - collections of entries, sorted by keys
 - An implementation of dictionaries as binary search trees, parameterized by an ordered type of keys

signatures

```
signature ORDERED =
sig
 type t
 val compare : t * t -> order
                                          signatures
end
                                         can contain
                                          structures
signature DICT =
 sig
  structure Key: ORDERED
  type 'a dict
  val empty: 'a dict
  val insert : Key.t * 'a -> 'a dict -> 'a dict
  val lookup: Key.t -> 'a dict -> 'a option
  val trav: 'a dict -> (Key.t * 'a) list
end
```

ordered types

```
structure Integers : ORDERED =
struct
  type t = int
  fun compare(x, y) =
    if x<y then LESS else
    if y<x then GREATER else EQUAL
 end
structure Strings : ORDERED =
 struct
   type t = string
   val compare = String.compare
  end
```

```
sig
type t
val compare : t * t -> order
end
```

A functor for dictionaries

functor BSTDict(Key : ORDERED) : DICT =
 struct

structure Key: ORDERED = Key
datatype 'a tree = Leaf | Node of 'a tree * (Key.t * 'a) * 'a tree
type 'a dict = 'a tree

val empty = Leaf

```
sig
    structure Key : ORDERED
    type 'a dict
    val empty : 'a dict
    val insert : Key.t * 'a -> 'a dict -> 'a dict
    val lookup : Key.t -> 'a dict -> 'a option
    val trav : 'a dict -> (Key.t * 'a) list
end
```

structures

can contain

structures

Leaf, Node not visible

BSTDict(Key: ORDERED): DICT (continued)

.

```
fun insert (k, v) Leaf = Node(Leaf, (k, v), Leaf)
     insert (k, v) (Node(l, (k', v'), r)) =
     case Key.compare(k, k') of
          EQUAL => Node(I, (k,v), r)
          LESS => Node(insert (k,v) I, (k',v'), r)
         GREATER => Node(I, (k',v'), insert (k,v) r)
 fun trav Empty = []
     trav (Node(I, (k,v), r)) = (trav I) @ (k,v) :: (trav r)
end
```

```
functor BSTDict(Key: ORDERED): DICT =
struct
  structure Key : ORDERED = Key
  datatype 'a tree = Leaf I Node of 'a tree * (Key.t * 'a) * 'a tree
 type 'a dict = 'a tree
 val empty = Leaf
 fun lookup k Leaf = NONE
   I lookup k (Node (I, (k', v'), r)) =
      case Key.compare (k, k') of
        EQUAL => SOME v'
       I LESS => lookup k l
       I GREATER => lookup k r
  fun insert (k, v) Leaf = Node(Leaf, (k, v), Leaf)
    insert (k, v) (Node(l, (k', v'), r)) =
     case Key.compare(k, k') of
          EQUAL => Node(I, (k,v), r)
         LESS => Node(insert (k,v) I, (k',v'), r)
          GREATER => Node(I, (k',v'), insert (k,v) r)
  fun trav Empty = []
      trav (Node(I, (k,v), r)) = (trav I) @ (k,v) :: (trav r)
end
```

Leaf, Node not visible

use of b.s.t's is NOT apparent from the signature

bst

- Leaf is a binary search tree
- Node(I, (k,v), r) is a binary search tree iff
 every key in I is K.compare-LESS than k
 every key in r is K.compare-GREATER than k
 and I and r are binary search trees

bst(T) = "T is a binary search tree"

properties

- Suppose K:ORDERED
 and K.compare is a comparison function for type K.t
- Let S = BSTDict(K)
- For all types entry, every value of type entry S.dict definable from S.empty and S.insert is a K.compare binary search tree

why?

- S.empty satisfies bst property for K.compare
- If T satisfies bst, so does S.insert (k,v) T

- Only S.empty and S.insert are visible to users
- S.Leaf and S.Node are not!

importance?

- By doing only local reasoning we guarantee a global property
- The correctness proof only examines code inside the structure ("local reasoning")
- Since users have limited access,
 they cannot break the abstraction barrier
 - representation invariant

results

```
structure S = BSTDict(Integers);
open S;
fun build [] = empty
    build (x::L) = insert (x, Int.toString x) (build L);
val D = build [1,2,3,4,5];
```

results

- val D = build [1,2,3,4,5];

val D = Node (Node (Node #,(#,#),Leaf),(5,"5"),Leaf)
: string dict

a binary search tree but badly balanced

so far

- We have a functor for building implementations of DICT
- But the work to evaluate lookup k T

is O(size T) in the worst case

even though we represent a dictionary as a binary search tree

balancing trees

- Now we'll implement red-black trees
- Binary search trees with colored nodes
- Color used to constrain tree structure
- Constraints ensure that the ratio of

longest path: shortest path is no worse than

2: I

why is this good?

- In a tree with 2ⁿ nodes and a path ratio bounded by 2, the cost of a lookup is O(n).
- For ordinary binary search trees, this cost is O(2ⁿ) in worst case.

balanced implies fast lookup and insert

colored trees

datatype color = Red I Black

datatype a tree = Leaf
I Node of 'a tree * (color * (Key.t * 'a)) * 'a tree

type 'a dict = 'a tree

red-black trees

nodes are red or black leaves are (implicitly) black

- Sorted as with binary search trees.
- Well-red: no red node has a red child.
- **Well-black**: every path from root to a leaf has the same number of black nodes
 - this is the black height of the tree

empty

val empty = Leaf

(This is a red-black tree!)

lookup

lookup: Key.t -> 'a dict -> 'a option

(colors are ignored by lookup)

insertion

Two kinds of inserts:

- insert (k,v) D is an update
 when k is EQUAL to a key already in D
 - doesn't change the tree structure
- insert (k,v) D is a new insertion
 when k is not EQUAL to any key in D
 - (k,v) goes in at a leaf node of D

What should we do about colors?

 Inserting with an existing key doesn't change tree structure, so copy the color We'll define

```
insert (k, v) (Node(l, (c,(k',v')),r))
= Node(l, (c,(k, v)), r)
when Key.compare(k, k') = EQUAL
```

 Inserting with an existing key doesn't change tree structure, so copy the color

We'll define

```
insert (k, v) (Node(l, (c,(k',v')),r))

= Node(l, (c,(k, v)), r)

when Key.compare(k, k') = EQUAL
```


 Inserting with an existing key doesn't change tree structure, so copy the color We'll define

```
insert (k, v) (Node(l, (c,(k',v')),r))
= Node(l, (c,(k, v)), r)
when Key.compare(k, k') = EQUAL
```

 Inserting with an existing key doesn't change tree structure, so copy the color We'll define

```
insert (k, v) (Node(l, (c,(k',v')),r))

= Node(l, (c,(k, v)), r)

when Key.compare(k, k') = EQUAL
```


new inserts

Let's define

insert (k, v) Leaf = Node(Leaf, (Red, (k, v)), Leaf)

Reason:

new insertions happen at leaf nodes and choosing **Black** would mess up the black height

new inserts

insert (k, v) (Node(I, (k', v'), r))

When Key.compare(k, k') is LESS we need to put (k,v) into the left subtree I

When Key.compare(k, k') is GREATER we need to put (k,v) into the right subtree r

inserting a new key

inserting a new key

re-balance

- The problem: we're trying to combine an almost red-black tree and a red-black tree
 - The left child is **almost** red-black
 - Has a red root and its left child is red
 - That's the only well-red violation
- We can re-balance, by rotating the tree at the root and re-coloring, to obtain a red-black tree...

balancing

same black height same traversal list same lookup behavior

results

- The original tree had an almost red-black child, and the rebalanced tree is red-black
- Same traversal lists!
- Same lookup behavior!

rebalancing **restores** the rbt property and **respects** the representation

more generally

- When doing a new insert into a red-black tree there are 4 awkward cases
- left child red
 left-left grandchild red

right child red right-left grandchild red

3 left child red left-right grandchild red

right child red right-right grandchild red

balancing

balance

and so on (all four cases)

using patterns

Node(Node(a, (Red, x), b), (Red, y), c), (Black, z), d)

Node(Node(a, (Black, x), b), (Red, y), Node(c, (Black, z), d))

(similarly for all four cases)

balance

balance: 'a tree * (color * (Key.t * 'a)) * 'a tree -> 'a tree * (color * (Key.t * 'a)) * 'a tree

```
fun balance (Node(Node(a,(Red,x),b), (Red,y), c), (Black, z), d)
= (Node(a,(Black,x),b), (Red,y), Node(c,(Black,z),d))
| balance (a,(Black,x), Node(Node(b,(Red,y),c), (Red, z), d))
= (Node(a,(Black,x),b), (Red,y), Node(c,(Black,z),d))
| balance (Node(a, (Red,x), Node(b, (Red,y),c)), (Black,z),d))
= (Node(a,(Black,x),b), (Red,y), Node(c,(Black,z),d))
| balance (a, (Black,x), Node(b, (Red,y), Node(c,(Red,z),d)))
= (Node(a,(Black,x),b), (Red,y), Node(c,(Black,z),d))
| balance p = p
```

not done yet

an almost red-black tree

(the only wellred failure is at the root node)

Not handled by **balance**

almost there

- It's easy to turn an *almost* rbt with just a root violation into a truly red-black tree...
 - blacken its root!

```
(* blackenroot : 'a dict -> 'a dict *)

fun blackenroot Leaf = Leaf

| blackenroot (Node(I, (_, (k,v)), r))

= Node(I, (Black, (k,v)), r);
```

insert

insert calls ins first, which balances at every recursive call,

We renamed the recursive inserting function ins...

and finishes with blackenroot

Thursday, October 31, 13

trav

Traversal ignores color

```
functor RBTDict(Key : ORDERED) : DICT =
struct
  structure Key: ORDERED = Key
  datatype color = Red I Black
  datatype 'a tree = Leaf I Node of 'a tree * (color * (Key.t * 'a)) * 'a tree
  type 'a dict = 'a tree
  val empty = Leaf
  fun lookup Leaf k = NONE
   I lookup (Node (I, (\_,(k', v')), r)) k =
      case Key.compare (k, k') of
         EQUAL => SOME v'
       I LESS => lookup I k
I GREATER => lookup r k
  fun balance ...
  fun blackenroot ...
  fun ins ...
  fun insert (k,v) D = blackenroot(ins (k,v) D)
  fun trav Empty = []
       trav (Node(I, (\_,(k,v)), r)) = (trav I) @ (k,v) :: (trav r)
 end
```

val
$$D_1$$
 = insert (5, "5") empty

val
$$D_2$$
 = insert (4, "4") D_1

val
$$D_3 = insert (3, "3") D_2$$

■ is Leaf

representation independence

- Every value built from empty and insert is a red-black tree
- Ignoring colors, also a binary search tree

```
Bst.insert (k_n,v_n) (...(Bst.insert (k_1,v_1) Bst.empty)...) and Rbt.insert (k_n,v_n) (...(Rbt.insert (k_1,v_1) Rbt.empty)...) represent the same dictionary
```