PROGRAMMING ASSIGNMENT 1: ADVERSARIAL ATTACKS AND DEFENSES

15-783: Trustworthy AI: Theory & Practice (Fall 2025)

https://www.cs.cmu.edu/~aditirag/teaching/15-783F25.html

OUT: Sep 7th DUE: Sep 29th

Resources

Papers:

Intriguing properties of neural networks
Towards Evaluating the Robustness of Neural Networks
Towards Deep Learning Models Resistant to Adversarial Attacks
Universal and Transferable Adversarial Attacks on Aligned Language Models

Code:

Adversarial training and evaluation code by Madry et al.

Different attack algorithms including GCG and GCG ensemble by Mantas et al.

Lightweight implementation of GCG

Part 1 — ImageNet Classifiers: Smallest ϵ That Breaks the Model (10 points)

Goal: Estimate the smallest perturbation ϵ (under ℓ_{∞} and ℓ_2 norms) required to flip classification for a pretrained model.

Model: ResNet-18 trained on ImageNet.

Losses: Cross-Entropy (CE), Carlini-Wagner margin (CW).

Attack: Sample 100 random images from the ImageNet-1K validation set. Perform both *untargeted* and *targeted* attacks. For targeted attacks, randomly sample one target class per image from the 999 non-true classes. Use PGD (with $\epsilon/4$ as the step size) to implement the attacks.

Deliverables

1. (2 points) Tables:

- Two tables: one for untargeted, one for targeted attacks.
- Each table should report median ϵ^* for all four conditions: (ℓ_{∞}, CE) , (ℓ_{∞}, CW) , (ℓ_{2}, CE) , (ℓ_{2}, CW) .
- 2. (2 points) Plots: Success Rate vs. ϵ : Produce four figures, all clearly labeled with axes, titles, and legends.
 - (a) Untargeted, ℓ_{∞} : success fraction vs. ϵ , curves for CE and CW.
 - (b) Untargeted, ℓ_2 : same format as above.
 - (c) Targeted, ℓ_{∞} : same format as above.
 - (d) Targeted, ℓ_2 : same format as above.

Fixed ϵ grids for comparability:

- ℓ_{∞} : $\{0, 1/255, 2/255, \dots, 8/255\}$.
- ℓ_2 : equally spaced values in [0, 3.0].

If attack success rate (ASR) does not reach 100% (equivalently, accuracy does not fall to 0%) within these ranges, continue increasing ϵ until full success is achieved.

- 3. (2 points) Example Image: Submit at least one example of a successfully attacked image.
 - Show the *original clean image* alongside its *adversarial version*.
 - Report the true class label and the predicted (misclassified) label.
 - Indicate the norm, loss function, and ϵ^* used.

4. (2 points) Discussion:

- Compare targeted vs. untargeted attacks: which requires larger ϵ^* ?
- Compare CE vs. CW: which achieves smaller ϵ^* and smoother success curves?
- 5. (2 points) Code to reproduce results.

Part 2 — Adversarial Training on MNIST (10 points)

Goal: Train a small CNN on MNIST to be robust to ℓ_{∞} perturbations.

Setup

- **Dataset:** MNIST train/test, inputs scaled to [0, 1].
- Model (standardized): $Conv(32, 5 \times 5) \rightarrow ReLU \rightarrow MaxPool(2 \times 2) \rightarrow Conv(64, 5 \times 5) \rightarrow ReLU \rightarrow MaxPool(2 \times 2) \rightarrow FC(1024) \rightarrow ReLU \rightarrow Dropout(p=0.5) \rightarrow FC(10)$.
- Optimization: Adam, learning rate 10^{-4} , batch size 50, max training steps 100,000 (report early stop if used).

Evaluation Attack (FGSM- ℓ_{∞})

For each $\epsilon \in \{0, 0.1, 0.2, 0.3\}$, craft

$$x^{\text{adv}} = \text{clip}(x + \epsilon \operatorname{sign}(\nabla_x \mathcal{L}(f_\theta(x), y)), 0, 1),$$

and report robust accuracy (% correct on $\{x^{\text{adv}}\}$). Use cross-entropy \mathcal{L} and the same preprocessing as during training.

Training Protocols

- 1. **Baseline** (Natural Training). Train on clean MNIST only (no adversarial perturbations) by minimizing $CE(f_{\theta}(x), y)$.
- 2. **FGSM Adversarial Training.** Train with one-step FGSM at $\epsilon_{\text{train}} = 0.3$.
- 3. **TRADES** (one-step KL-FGSM). Approximate the inner maximization with a single FGSM step on the KL term at $\epsilon_{\text{train}} = 0.3$:

$$x_{\text{train}}^{\text{adv}} = \text{clip}\Big(x + \epsilon_{\text{train}} \operatorname{sign}\Big(\nabla_{x'} \text{KL}\big(f_{\theta}(x) \parallel f_{\theta}(x')\big)\Big)\Big|_{x'=x}, \ 0, 1\Big),$$

then minimize $\mathrm{CE}(f_{\theta}(x),y) + \beta \, \mathrm{KL} \big(f_{\theta}(x) \, \| \, f_{\theta}(x_{\mathrm{train}}^{\mathrm{adv}}) \big)$ with default $\beta = 6$.

Deliverables

- 1. (6 points) Figure—Accuracy vs. ϵ (FGSM evaluation).
 - X-axis: $\epsilon \in \{0, 0.1, 0.2, 0.3\}$ (extend if you evaluated beyond 0.3).
 - Y-axis: accuracy (%).
 - Curves: **Baseline**, **FGSM-trained**, **TRADES**. (Point at $\epsilon = 0$ is clean accuracy.)
- 2. (2 points) Discussion: Compare Baseline vs. FGSM vs. TRADES; comment on robustness decay with ϵ .
- 3. (2 points) Code to reproduce results.

Part 3 — Attacking Aligned Language Models with Adversarial Suffixes (10 points)

Goal: Implement a Greedy Coordinate Gradient (GCG)-style suffix optimizer on open-weight LMs. Use 10-20 tokens as the suffix length.

Models (choose one family):

- Llama (non-reasoning): Llama-3.2-1B-Instruct, 3B, 11B.
- Qwen (reasoning): Qwen3-0.6B, 1.7B, 4B, 8B.

Note: When targeting reasoning models, consider the following attack strategies if the default algorithm isn't working well:

- Instead of eliciting an affirmative output, try targeting initial harmful reasoning within think tags.
- Alternatively, prefill the model's "thinking" trace and then optimize for an affirmative response that appears only *after* the

Tasks

1. Learn suffixes. Implement the GCG-style suffix optimizer for a chosen model.

Target a policy-prohibited query e.g., How to build a bomb that the model refuses by default.

Plots/Outputs:

- Optimization loss (or objective) vs. iterations; mark the first iteration achieving a non-refusal event (success).
- Final learned suffix and model output.

2. Explore universality or transferability (choose one).

- (A) Universality via behavior ensembling: (slightly easier)
 - Train suffixes on 10 harmful behaviors from the HarmBench validation set and test on 10 unseen prompts from the test set.
 - Report Attack Success Rate (ASR) = fraction of prompts that flip from refusal to non-refusal.
 - **Plot:** ASR on validation and test vs. iterations (same checkpoints).
- (B) **Transferability via model ensembling:** (2 points extra credit if you choose transferability)
 - Pick one prohibited behavior; verify all selected models refuse it at baseline.
 - Train one suffix jointly on at least two models; test transfer on a held-out model.
 - Repeat for 10 behaviors; report transfer rate (fraction transferring).
 - Plot: attack success rate for both seen and unseen models (bars) and vs. iterations (lines).

Deliverables

- 1. **(6 points) Figures:** Plots from Task 1 and 2. Log every 20 iterations.
- 2. (2 points) Outputs: Example suffix and output from Task 1.
- 3. (2 points) Code to reproduce results.