

HC32L072 系列 / HC32L073 系列

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32L072 / HC32L073 系列具有灵活的功耗管 理系统
 - 1.2μA@3V深度休眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器、RAM 和 CPU 数据保存状态 时的功耗
 - 1.6μA @3V 深度睡眠模式+ RTC 工作
 - 9μA @32.768KHz 低速工作模式: CPU 和外设运行,从 FLASH 运行程序
 - 35μA/MHz@3V@24MHz 休眠模式: CPU 停止,外设运行,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式: CPU 和外设运行,从 FLASH 运行程序
 - 4μS 唤醒时间,使模式切换更加灵活高效, 系统反应更为敏捷
- 128K 字节 FLASH 存储器,具有擦写保护功能
- 16K 字节 RAM 存储器, 附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (86IO/100PIN,50IO/64PIN, 36IO/48PIN)
- 时钟、晶振

外部高速晶振 4~32MHz 外部低速晶振 32.768KHz

- 内部高速时钟 4/8/16/22.12/24MHz

内部低速时钟 32.8/38.4KHzPLL 时钟 8~48MHz

- 内部高速 USB 时钟 48MHz

硬件支持内外时钟校准和监控

● 定时器/计数器

- 3 个通用 16 位定时器,支持 1 组互补 PWM 输出,支持 2 倍主频 PWM 输出,最高支持 96MHz PWM 输出
- 1 个高级 16 位定制器,支持 3 相互补 PWM 输出,支持 2 倍主频 PWM 输出,最高支持 96MHz PWM 输出
- 3个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
- 1 个超低功耗脉冲计数器 PCNT, 具备低功 耗模式下自动定时唤醒功能, 最大定时达 1024 秒
- 1 个可编程 16 位定时器 PCA, 支持 5 通道 捕获比较, 5 通道 PWM 输出

- 1 个 20 位可编程看门狗电路,内建专用 10KHz 振荡器提供 WDT 计数

● 通讯接口

- 4路 UART 标准通讯接口
- 2路 LPUART 低功耗通讯接口,深度休眠模式下可工作
- 2路 SPI 标准通讯接口
- 2路 I2C 标准通讯接口
- 2路 I2S 音频通信接口
- 1路 Crystal-less USB Full Speed Device
- 1 路 CAN 2.0B 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16/32 模块
- 硬件 32 位除法器
- AES-128/192/256 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 4*52 / 6*50 / 8*48 LCD 驱动(仅限 073 系列)
- 全球唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC,内 置运放,可测量外部微弱信号
- 2路 12位 500Ksps DAC
- 集成 5 个多功能运算放大器,其中两个 OPA 可以作为 2 路 DAC 的输出 Buffer
- 集成 3 路电压比较器,具有 6 位 DAC 和可编程比较基准
- 集成低电压侦测器,可配置 16 阶比较电平,可 监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: LOFP100/64/48

支持型号

HC32L072PATA-LQFP100	HC32L072KATA-LQFP64		
HC32L072JATA-LQ48	HC32L073PATA-LQFP100		
HC32L073KATA-LQFP64	HC32L073JATA-LQ48		

声明

- ▶ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第 三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"™"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性		1
声	明		2
目	录		3
1	简介		6
	1.1	32 位 CORTEX M0+ 内核	7
	1.2	128K Byte FLASH	7
	1.3	16K Byte RAM	7
	1.4	时钟系统	7
	1.5	工作模式	8
	1.6	硬件实时时钟 RTC	8
	1.7	通用 IO 端口	8
	1.8	中断控制器	8
	1.9	复位控制器	9
	1.10	DMAC	10
	1.11	定时器/计数器	10
	1.12	超低功耗脉冲计数器 PCNT	12
	1.13	看门狗 WDT	13
	1.14	通用异步收发器 UART0~UART3	13
	1.15	低功耗异步收发器 LPUART0~LPUART1	
	1.16	同步串行接口 SPI	14
	1.17	I2C 总线	15
	1.18	I2S	15
	1.19	USB	15
	1.20	CAN	
	1.21	CTS	16
	1.22	蜂鸣器 Buzzer	16
	1.23	时钟校准电路	16
	1.24	唯一识别号 UID	16
	1.25	CRC16/32 硬件循环冗余校验码	17
	1.26	32 位硬件除法器	17
	1.27	AES 硬件加密	
	1.28	TRNG 真随机数发生器	17
	1.29	12 Bit SARADC	17
	1.30	12 Bit DAC	18
	1.31	电压比较器 VC	
	1.32	低电压检测器 LVD	18
	1.33	运放 OPA	
	1.34	LCD 驱动	
	1.35	嵌入式调试系统	20
	1.36	编程模式	20

	1.37	高安全性	20
2	产品	容	21
	2.1	产品名称	21
	2.2	功能	22
3	引脚	· 置及功能	24
	3.1	封装示意图	24
	3.2	引脚功能说明	30
	3.3	模块信号说明	43
4	功能	图	46
5	存储[映射图	47
6	电气物	性	49
	6.1	测试条件	49
		6.1.1 最小和最大数值	49
		6.1.2 典型数值	49
		6.1.3 典型应用电路图	50
	6.2	绝对最大额定值	51
	6.3	工作条件	53
		6.3.1 通用工作条件	53
		6.3.2 上电和掉电时的工作条件	53
		6.3.3 内嵌复位和 LVD 模块特性	54
		6.3.4 内置的参考电压	56
		6.3.5 供电电流特性	56
		6.3.6 从低功耗模式唤醒的时间	61
		6.3.7 外部时钟源特性	62
		6.3.7.1 外部输入高速时钟	62
		6.3.7.2 外部输入低速时钟	62
		6.3.7.3 高速外部时钟 XTH	63
		6.3.7.4 低速外部时钟 XTL	
		6.3.8 内部时钟源特性	
		6.3.8.1 内部 RCH 振荡器	
		6.3.8.2 内部 RCL 振荡器	
		6.3.8.3 内部 USB 专用 RCH48M 振荡器	68
		6.3.9 PLL 特性	69
		6.3.10 存储器特性	69
		6.3.11 EFT 特性	69
		6.3.12 ESD 特性	70
		6.3.13 I/O 端口特性	
		6.3.13.1 输出特性——端口	
		6.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP	
		6.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock	
		6.3.13.4 端口漏电特性——PA,PB,PC,PD,PE,PF	73
		6.3.14 RESETB 引脚特性	74

		6.3.15 ADC 特性	74
		6.3.16 VC 特性	
		6.3.17 OPA 特性	78
		6.3.18 DAC 特性	79
7	封装信	信息	80
	7.1	封装尺寸	80
		丝印说明	
8	订购信	信息	84
版才	记录	& 联系方式	85

1 简介

HC32L072 / HC32L073 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、宽电压工作范围的 MCU。集成 12 位 1Msps 高精度 SARADC, 2 个 12 位 DAC以及集成了比较器、运放、内置高性能 PWM 定时器、LCD 显示、多路 UART、SPI、I2C、I2S、USB、CAN 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用、物联网应用
- 智能仪表、无线模块、温控器、货架标签
- 智能交通、报警系统
- 智能家居、医疗设备

1.1 32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点
	(watch point)

1.2 128K Byte FLASH

内建全集成 FLASH 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

1.3 16K Byte RAM

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

1.4 时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4us,全电压全温度范围内的频率偏差小于 ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL。

- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。
- 一个频率为 8~48MHz 输出的 PLL。

1.5 工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止,低功耗功能模块运行。

1.6 硬件实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32.768KHz 晶振作为 其时钟,能实现万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间 模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

1.7 通用 IO 端口

最多可提供 86 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种深度休眠模式下把 MCU 唤醒到工作模式。支持位置位、位清零、位置位清零操作。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 18mA 的电流驱动能力。所有通用 IO 可支持外部异步中断。

1.8 中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC/GPIO_PE
[3]	GPIO_PD/GPIO_PF
[4]	DMAC
[5]	TIM3
[6]	UART0/UART2
[7]	UART1/UART3
[8]	LPUART0
[9]	LPUART1
[10]	SPI0/I2S0
[11]	SPI1/I2S1
[12]	I2C0
[13]	I2C1
[14]	TIM0
[15]	TIM1
[16]	TIM2
[17]	LPTIM0/LPTIM1
[18]	TIM4
[19]	TIM5
[20]	TIM6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC/DAC
[25]	PCNT
[26]	VC0/VC1/VC2/ LVD
[27]	USB
[28]	CAN
[29]	LCD
[30]	RAM FLASH
[31]	CLKTRIM /CTS

1.9 复位控制器

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会指向起始地址。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

1.10 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC 能提高系统性能。

- DMAC 配有独立的总线,所以即便是在使用 CPU 总线的同时, DMAC 也可进行传输操作。
- 由 2 条通道组成,能执行 2 种相互独立的 DMA 传输。
- 可设置传输目标地址、传输源地址、传输数据大小、传输请求源以及传输模式,并能控制各通道的传输操作启动、传输的强行终止以及传输的暂停。
- 可控制所有通道批量传输的启动、强行终止及暂停。
- 多通道同时操作时,可用固定方法或循环方法选择操作通道的优先级。
- 支持使用外设中断信号的硬件 DMA 传输。
- 遵从系统总线(AHB),支持32位地址空间(4GB)。

1.11 定时器/计数器

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
			32/64/256	下计数/			
				上下计数			
低功耗定	LPTIM0	16	1/2/4/8/16/	上计数	无	无	无
时器			32/64/256				
	LPTIM1	16	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			_

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出,互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

低功耗定时器 LPTIM 是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部 低速 RC 或者外部低速晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
甘未分化	• 缓存功能
基本功能	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
	死区时间错误中断

1.12 超低功耗脉冲计数器 PCNT

PCNT (Pulse Counter)模块用以对外部脉冲进行计数,支持单路以及双路(正交编码与非交叉编码)脉冲。它可以在低功耗休眠模式下无需软件参与进行计数。

脉冲计数器特性:

- 支持重载功能的 16 bit 计数器
- 单通道脉冲计数
- 双通道非交脉冲计数
- 双通道正交脉冲计数,不失码
- 加/减计数溢出中断

- 脉冲超时中断
- 4种解码错误中断,非交脉冲模式
- 1种方向改变中断,正交脉冲模式
- 多级脉冲宽度滤波
- 输入脉冲极性可配置
- 支持低功耗模式计数
- 支持唤醒低功耗模式下 MCU
- 支持任意脉冲沿间距不小于 1 个计数时钟周期
- 具备低功耗模式下自动定时唤醒功能,最大定时达 1024 秒

1.13 看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10KHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

1.14 通用异步收发器 UART0~UART3

- 4 路通用异步收发器(Universal Asynchronous Receiver/Transmitter),UART0~UART3。 通用 UART 基本功能:
 - 半双工和全双工传输
 - 8/9-Bit 传输数据长度
 - 硬件奇偶校验
 - 1/1.5/2-Bit 停止位
 - 四种不同传输模式
 - 16-Bit 波特率计数器
 - 多机通讯
 - 硬件地址识别
 - DMAC 硬件传输握手
 - 硬件流控
 - 支持单线模式

1.15 低功耗异步收发器 LPUART0~LPUART1

2 路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter),LPUART0/LPUART1。

LPUART 基本功能:

- 传输时钟 SCLK (SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器
- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控
- 支持单线模式

1.16 同步串行接口 SPI

2 路同步串行接口(Serial Peripheral Interface)

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 系统时钟
- 从机模式最大波特率为 1/4 系统时钟
- 可配置的串行时钟极性和相位
- 支持中断

- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

1.17 I2C 总线

2 路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。 I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

1.18 I2S

2路 I2S 音频通信接口

- 支持 Philip/ MSB/LSB /PCM 模式
- 支持 MCK 输出
- 支持 5 种音频采样率: 48、44.1、32、16、8 KHz
- 支持 3 种数据长度: 16、24、32 Bit
- 支持 2 种帧长度: 16、32 Bit
- 支持 DMA 数据传输
- 支持全双工收发(2个I2S配合)
- 支持 master 发送、接收
- 支持 slave 发送、接收

1.19 USB

USB 全速(USBFS) 控制器为便携式设备提供了一套 USB 通信解决方案。USBFS 控制器支持设备模式,且芯片内部集成全速 PHY。设备模式下支持全速(FS,12Mb/s)收发器。USBFS 控制器支持 USB 1.1 协议所定义的所有四种传输方式(控制传输、批量传

输、中断传输和同步传输)。

1.20 CAN

CAN 通信接口模块配备 512 字节的 RAM 用于存储发送接收的数据。支持 ISO11898-1 规定的 CAN2.0B 协议和 ISO11898-4 规定的 TTCAN 协议。

1.21 CTS

时钟校准定时器可以调整校准 RCH48M 时钟频率,以便提供给 Crystal-less USB 使用。 也可以调整校准其他 RC 振荡的时钟频率,还可以作为一个通用定时器来使用。

1.22 蜂鸣器 Buzzer

4 个通用定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 18mA 的 sink 电流,互补输出,不需要额外的三极管。

1.23 时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 6 种待校准时钟源
- 支持中断方式

1.24 唯一识别号 UID

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。UID 地址为: 0x00100E74 - 0x00100E7D。

1.25 CRC16/32 硬件循环冗余校验码

CRC16 符合 ISO/IEC13239 中给出的多项式 $X^{16} + X^{12} + X^5 + 1$ 。

CRC32 符合 ISO/IEC13239 中给出的多项式 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ 。

1.26 32 位硬件除法器

HDIV(Hardware Divider)是一个 32 位有/无符号整数硬件除法器。

HDIV 硬件除法器基本特性:

- 可配置有符号/无符号整数除法计算
- 32 位被除数, 16 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 10 个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

1.27 AES 硬件加密

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000 年 10 月 2 日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 Bit,而密钥长度支持 128/192/256 Bit。

1.28 TRNG 真随机数发生器

TRNG 是一个真随机数发生器,用来产生真随机数。

1.29 12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5V 或 2.5V)或从外部输入或电源电压。41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电

压、1 路内建 BGR 1.2V 电压、5 路 OPA 输出。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、所有 OPA 输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测:
- 软件可配置 ADC 的转换速率:
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

1.30 12 Bit DAC

2 通道 12Bit 500Ksps DAC,可以进行数模转换。

1.31 电压比较器 VC

内建 3 路 VC, 芯片管脚电压监测/比较电路。16 个可配置的正外部输入通道,11 个可配置的负外部输入通道; 5 个内部负输入通道,包括 1 路内部温度传感器电压、1 路内建 BGR 2.5V 参考电压、1 路内建 BGR 1.2V 电压、1 路 64 阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

1.32 低电压检测器 LVD

对芯片电源电压或芯片管脚电压进行检测。16档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4 路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

1.33 运放 OPA

OPA0/1/2 模块可以灵活配置,适用于简易滤波器和 Buffer 应用。OPA3/4 模块可以作为 DAC buffer 使用,也可以配置为运放使用。

1.34 LCD 驱动

注: 仅限 HC32L073 系列。

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子(COM)和 48 个区段端子(SEG),用以驱动 208 (4x52)或 384 (8x48) 个 LCD 图像元素。可以选择电容分压或电阻分压,支持内部电阻分压。内部电阻分压可以调节对比度。支持 DMA 硬件数据传输。

LCD 基本特性:

- 高度灵活的帧速率控制。
- 支持静态、1/2、1/3、1/4、1/6 和 1/8 占空比。
- 支持 1/2、1/3 偏置。
- 多达 16 个寄存器的 LCD 数据 RAM。
- 可通过软件配置 LCD 的对比度。
- 3 种驱动波形生成方式。
 - 内部电阻分压、外部电阻分压,外部电容分压方式
 - 可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 Active、Sleep、DeepSleep 模式下进行显示。
- 可配置帧中断。
- 支持 LCD 闪烁功能且可配置多种闪烁频率。

• 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能。

1.35 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

1.36 编程模式

支持两种编程模式: 在线编程、离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

支持统一编程接口: ISP 协议与 SWD 协议共用 SWD 端口。

当复位时 BOOT0(PF11)管脚为高电平,芯片工作于编程模式,可使用编程器对 FLASH 进行编程。

当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用户模式,芯片执行 FLASH 内的程序代码。

1.37 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

- 2 产品阵容
- 2.1 产品名称

2.2 功能

	产品名称	НС32L072РАТА НС32L073РАТА	HC32L072KATA HC32L073KATA	HC32L072JATA HC32L073JATA			
引脚数		100 64		48			
GPIO 引脚数		86	86 50				
	内核	Cortex M0+					
CPU	频率		48MHz				
电测	東电压范围		1.8 ~5.5V				
温度	更范围		-40 ~ 85℃				
调话	式 功能		SWD 调试接口				
唯-	一识别码		支持				
		UAR	T0/1/2/3	UART0/1			
		LPU	ART0/1	LPUART0/1			
通信	言接口	SI	PI0/1	SPI0/1			
		I2	I2C0/1				
		I2S0/1 I2S0/1					
		通用定时器 TIM0/1/2/3					
定时	才器	高级定时器 TIM4/5/6					
		低功耗定时器 LPTIM0/1					
A/D	转换器	12Bit					
模排	以电压比较器	VC0/1/2					
实时	寸 时钟		有				
端口	1中断	86	50	36			
低申	且压检测复位	1					
内部高速振荡器		RCH 4/8/16/22.12/24MHz					
时	内部低速振荡器	RCL 32.8/38.4KHz					
钟	PLL						
	外部高速晶振振荡器	4~32MHz					
蜂	鸣器	Max 4ch					
闪	存安全保护	支持					

产品名称	HC32L072PATA	HC32L072KATA	HC32L072JATA	
	HC32L073PATA	HC32L073KATA	HC32L073JATA	
RAM 奇偶校验		支持		

3 引脚配置及功能

3.1 封装示意图

HC32L072PATA-LQFP100

HC32L073PATA-LQFP100

HC32L072KATA-LQFP64

HC32L073KATA-LQFP64

HC32L072JATA-LQ48

HC32L073JATA-LQ48

图 3-1 封装示意图

3.2 引脚功能说明

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
1			PE02	PCA_ECI	
2			PE03	PCA_CH0	
3			PE04	PCA_CH1	
4			PE05	PCA_CH2	
5			PE06	PCA_CH3	
6	1	1	VCAP		
7	2	2	PC13	RTC_1HZ TIM3_CH1B	LVD0
8	3	3	PC14		XTLI
9	4	4	PC15		XTLO
10			PF09	TIM0_CHA	-
11			PF10	TIM0_CHB	
12	5	5	PF00	I2C0_SDA	XTHI
				CRS_SYNC	
				UART1_TXD	
13	6	6	PF01	I2C0_SCL	ХТНО
				TIM4_CHB	
				UART1_RXD	
14	7	7	RESETB		
15	8		PC00	LPTIM_GATE	AIN10,
				PCNT_S0	VC0_INP0
				UART1_CTS	VC1_INN0
				UART2_RTS	SEG27
16	9		PC01	LPTIM_TOG	AIN11
				TIM5_CHB	VC0_INP1
				UART1_RTS	VC1_INN1
				PCNT_S0FO	SEG26
				UART2_CTS	
17	10		PC02	SPI1_MISO	AIN12,
				LPTIM_TOGN	VC0_INP2
				PCNT_S1	VC1_INN2
				UART2_RXD	SEG25
18	11		PC03	SPI1_MOSI	AIN13
				LPTIM_ETR	VC0_INP3
				LPTIM_TOGN	VC1_INN3
					SEG24

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
				PCNT_S1FO	
				UART2_TXD	
19			PF02		
20	12	8	AVSS		
21	13	9	AVCC		
22			PF03		
23	14	10	PA00	UART1_CTS	AIN0
				LPUART1_TXD	VC0_INP4
				TIM0_ETR	VC0_INN0
				VC0_OUT	VC1_INP0
				TIM1_CHA	VC1_INN4
				TIM3_ETR	SEG23
				TIM0_CHA	
24	15	11	PA01	UART1_RTS	AIN1
				LPUART1_RXD	VC0_INP5
				TIM0_CHB	VC0_INN1
				TIM1_ETR	VC1_INP1
				TIM1_CHB	VC1_INN5
				HCLK_OUT	SEG22
				SPI1_MOSI	
25	16	12	PA02	UART1_TXD	AIN2
				TIM0_CHA	VC0_INP6
				VC1_OUT	VC0_INN2
				TIM1_CHA	VC1_INP2
				TIM2_CHA	SEG21
				PCLK_OUT	
				SPI1_MISO	
26	17	13	PA03	UART1_RXD	AIN3
				TIM0_GATE	VC0_INP7
				TIM1_CHB	VC0_INN3
				TIM2_CHB	VC1_INP3
				SPI1_CS	SEG20
				TIM3_CH1A	
				TIM5_CHA	
27	18		DVSS		
28	19		DVCC		
			PF04		
			PF05		

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
29	20	14	PA04	SPIO_CS UART1_TXD PCA_CH4 TIM2_ETR TIM5_CHA LVD_OUT TIM3_CH2B	AIN4 VC0_INP8 VC0_INN4 VC1_INP4 OP3_OUT DAC0_OUT SEG19
30	21	15	PA05	SPIO_SCK TIMO_ETR PCA_ECI TIMO_CHA TIM5_CHB XTL_OUT XTH_OUT	AIN5 VC0_INP9 VC0_INP5 VC1_INP5 VC2_INP0 VC2_INN0 OP4_OUT DAC1_OUT SEG18
31	22	16	PA06	SPI0_MISO PCA_CH0 TIM3_BK TIM1_CHA VC0_OUT TIM3_GATE LPUART0_CTS	AIN6 VC0_INP10 VC0_INN6 OP4_INN SEG17
32	23	17	PA07	SPI0_MOSI PCA_CH1 HCLK_OUT TIM3_CH0B TIM2_CHA VC1_OUT TIM4_CHB	AIN7 VC0_INP11 VC0_INN7 OP4_INP SEG16
33	24		PC04	LPUART0_TXD TIM2_ETR IR_OUT VC2_OUT	AIN14 VC0_INN8 SEG15
34	25		PC05	LPUART0_RXD TIM6_CHB PCA_CH4	AIN15 VC0_INN9 OP3_INN SEG14

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
35	26	18	PB00	PCA_CH2 TIM3_CH1B LPUART0_TXD TIM5_CHB RCH_OUT RCL_OUT PLL_OUT	AIN8 VC1_INN6 OP3_INP SEG13
36	27	19	PB01	PCA_CH3 PCLK_OUT TIM3_CH2B TIM6_CHB LPUART0_RTS VC2_OUT TCLK_OUT	AIN9/EXVREF VC1_INP6 VC1_INN7 VC2_INP1 VC2_INN1 SEG12
37	28	20	PB02	LPTIM_TOG PCA_ECI LPUART1_TXD TIM4_CHA TIM1_BK TIM0_BK TIM2_BK	AIN16, VC1_INP7 VC1_INN8 OP2_INN SEG11
38			PE07	TIM3_ETR LPTIM1_GATE	
39			PE08	TIM3_CH0B LPTIM1_EXT	OP2_OUT4
40			PE09	TIM3_CH0A LPTIM1_TOG	VC2_INP2 OP2_OUT3
41			PE10	TIM3_CH1B LPTIM1_TOGN	VC2_INP3 OP2_OUT2
42			PE11	TIM3_CH1A	VC2_INP4 VC2_INN2 OP2_OUT1
43			PE12	TIM3_CH2B SPI0_CS UART3_CTS	OP1_OUT4 SEG51
44			PE13	TIM3_CH2A SPI0_SCK UART3_RTS	VC2_INP5 OP1_OUT3 SEG50

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
45			PE14	TIM3_CH0B	VC2_INP6
				SPI0_MISO	OP1_OUT2
				UART3_RXD	SEG49
46			PE15	TIM3_BK	AIN23,
				SPI0_MOSI	VC2_INP7
				UART3_TXD	VC2_INN3
					OP1_OUT1
					SEG48
47	29	21	PB10	I2C1_SCL	AIN17,
				SPI1_SCK	VC1_INP8
				TIM1_CHA	OP2_INP
				LPUART0_TXD	SEG10
				TIM3_CH1A	
				LPUART1_RTS	
				UART1_RTS	
48	30	22	PB11	I2C1_SDA	AIN18,
				TIM1_CHB	VC2_INP8
				LPUART0_RXD	VC2_INN4
				TIM2_GATE	OP2_OUT
				TIM6_CHA	SEG9
				LPUART1_CTS	
				UART1_CTS	
49	31	23	DVSS		
50	32	24	DVCC		
51	33	25	PB12	SPI1_CS	AIN19
				TIM3_BK	VC1_INP9
				LPUART0_TXD	OP1_INN
				TIM0_BK	SEG8
				LPUARTO_RTS	
				TIM6_CHA	
52	34	26	PB13	SPI1_SCK	AIN20
				I2C1_SCL	VC1_INP10
				TIM3_CH0B	OP1_INP
				LPUARTO_CTS	SEG7
				TIM1_CHA	
				TIM1_GATE	
				TIM6_CHB	

AIN21, VC1_INP11 VC2_INP9 VC2_INN5
VC2_INP9 VC2_INN5
VC2_INN5
OD1 OUT
OP1_OUT
SEG6
AIN22,
OP0_INN
SEG5
OP0_OUT4
SEG47
VC2_INP10
OP0_OUT3
SEG46
VC2_INP11
VC2_INN6
OP0_OUT2
SEG45
VC2_INP12
VC2_INN7
OP0_OUT1
SEG44
SEG43
SEG42
SEG41
SEG40
OP0_INP
SEG4

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
64	38		PC07	PCA_CH1 TIM5_CHA TIM2_CHB LPTIM1_EXT UART3_TXD	VC2_INP13 VC2_INN8 OP0_OUT SEG3
65	39		PC08	PCA_CH2 TIM6_CHA TIM2_ETR LPTIM1_TOG UART3_CTS	SEG2
66	40		PC09	PCA_CH3 TIM4_CHB TIM1_ETR LPTIM1_TOGN UART3_RTS	SEG1
67	41	29	PA08	UARTO_TXD TIM3_CH0A CRS_SYNC TIM1_GATE TIM4_CHA TIM3_BK	SEG0
68	42	30	PA09	UARTO_TXD TIM3_CH1A TIM0_BK I2C0_SCL HCLK_OUT TIM5_CHA	COM0
69	43	31	PA10	UARTO_RXD TIM3_CH2A TIM2_BK I2C0_SDA TIM2_GATE PCLK_OUT TIM6_CHA	COMI
70	44	32	USBDM		
71	45	33	USBDP		

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
72	46	34	PA13	IR_OUT UARTO_RXD LVD_OUT TIM3_ETR RTC_1HZ PCNT_S1 VC2_OUT	SWDIO
73			PF06	I2C1_SCL LPUART1_CTS UART0_CTS	COM2
			PF07	I2C1_SDA LPUART1_RTS UART0_RTS	
74	47	35	AVSS_USB		
75	48	36	AVCC_USB		
76	49	37	PA14	UARTI_TXD UART0_TXD TIM3_CH2A LVD_OUT RCH_OUT RCL_OUT PLL_OUT	SWCLK
77	50	38	PA15	SPIO_CS UARTI_RXD LPUARTI_RTS TIMO_ETR TIMO_CHA TIM3_CH1A	COM3
78	51		PC10	LPUART1_TXD LPUART0_TXD PCA_CH2	COM4/ SEG39
79	52		PC11	LPUARTI_RXD LPUART0_RXD PCA_CH3 PCNT_S0FO	COM5/ SEG38
80	53		PC12	LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO	COM6/ SEG37
81			PD00	SPI1_CS	

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
82			PD01	SPI1_SCK	
83	54		PD02	PCA_ECI	COM7/ SEG36
				LPUARTO_RTS	
				TIM1_ETR	
84			PD03	UART1_CTS	
				SPI1_MISO	
				LPTIM1_TOG	
85			PD04	UART1_RTS	
				SPI1_MOSI	
				LPTIM1_TOGN	
86			PD05	UART1_TX	
				LPTIM1_GATE	
				CAN_STBY	
87			PD06	UART1_RX	
				LPTIM1_EXT	
88			PD07	UART1_TX	
89	55	39	PB03	SPI0_SCK	VC1_INN9
				TIM0_CHB	SEG35/VLCDH
				TIM1_GATE	
				TIM3_CH0A	
				LPTIM_GATE	
				XTL_OUT	
				XTH_OUT	
90	56	40	PB04	SPI0_MISO	VC0_INP12
				PCA_CH0	VC1_INP12
				TIM2_BK	OP2_OUT4
				UART0_CTS	OP2_OUT4
				TIM2_GATE	SEG34/ VLCD3
				TIM3_CH0B	
				LPTIM_ETR	
91	57	41	PB05	SPI0_MOSI	VC0_INP13
				TIM1_BK	SEG33/ VLCD2
				PCA_CH1	
				LPTIM_GATE	
				PCNT_S0	
				UART0_RTS	

LQFP100	LQFP64	LQFP48	NAME	DIGITAL	ANALOG
92	58	42	PB06	I2C0_SCL	VC0_INP14
				UART0_TXD	VC1_INP14
				TIM1_CHB	SEG32/ VLCD1
				TIM0_CHA	
				LPTIM_ETR	
				TIM3_CH0A	
				LPTIM_TOG	
93	59	43	PB07	I2C0_SDA	VC1_INP15
				UART0_RXD	LVD2
				TIM2_CHB	SEG31
				LPUART1_CTS	
				TIM0_CHB	
				LPTIM_TOGN	
				PCNT_S1	
94	60	44	BOOT0/PF11		SEG30
95	61	45	PB08	I2C0_SCL	LVD1
				TIM1_CHA	SEG29
				TIM2_CHA	
				TIM0_GATE	
				TIM3_CH2A	
				UART0_TXD	
96	62	46	PB09	I2C0_SDA	SEG28
				IR_OUT	
				SPI1_CS	
				TIM2_CHA	
				TIM2_CHB	
				UART0_RXD	
97			PE00	TIM1_CHA	
98			PE01	TIM2_CHA	
99	63	47	DVSS		
100	64	48	DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

	,						
PSEL	1	2	3	4	5	6	7
PA00	UART1_CTS	LPUART1_TXD	TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA
PA01	UART1_RTS	LPUART1_RXD	TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA
PA04	SPI0_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	LPUART0_CTS
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB
PA08	UART0_TXD	TIM3_CH0A	CRS_SYNC	CAN_STBY	TIM1_GATE	TIM4_CHA	TIM3_BK
PA09	UART0_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA
PA10	UART0_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA
PA11	UART0_CTS	TIM3_GATE	I2C1_SCL	CAN_RX	VC0_OUT	SPI0_MISO	TIM4_CHB
PA12	UART0_RTS	TIM3_ETR	I2C1_SDA	CAN_TX	VC1_OUT	SPI0_MOSI	PCNT_S0
PA13	IR_OUT	UART0_RXD	LVD_OUT	TIM3_ETR	RTC_1HZ	PCNT_S1	VC2_OUT
PA14	UART1_TXD	UART0_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT
PA15	SPI0_CS	UART1_RXD	LPUART1_RTS	TIM0_ETR	TIM0_CHA	TIM3_CH1A	
PB00	PCA_CH2	TIM3_CH1B	LPUART0_TXD	TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB	LPUART0_RTS	VC2_OUT	TCLK_OUT
PB02	LPTIM_TOG	PCA_ECI	LPUART1_TXD	TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A	LPTIM_GATE	XTL_OUT	XTH_OUT
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UART0_CTS	TIM2_GATE	TIM3_CH0B	LPTIM_ETR
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1	LPTIM_GATE	PCNT_S0	UARTO_RTS
PB06	I2C0_SCL	UART0_TXD	TIM1_CHB	TIM0_CHA	LPTIM_ETR	TIM3_CH0A	LPTIM_TOG
PB07	I2C0_SDA	UART0_RXD	TIM2_CHB	LPUART1_CTS	TIM0_CHB	LPTIM_TOGN	PCNT_S1
PB08	I2C0_SCL	TIM1_CHA	CAN_RX	TIM2_CHA	TIM0_GATE	TIM3_CH2A	UART0_TXD
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA	CAN_TX	TIM2_CHB	UART0_RXD
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA	LPUART0_TXD	TIM3_CH1A	LPUART1_RTS	UART1_RTS
PB11	I2C1_SDA	TIM1_CHB	LPUART0_RXD	TIM2_GATE	TIM6_CHA	LPUART1_CTS	UART1_CTS
PB12	SPI1_CS	TIM3_BK	LPUART0_TXD	TIM0_BK		LPUART0_RTS	TIM6_CHA
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B	LPUART0_CTS	TIM1_CHA	TIM1_GATE	TIM6_CHB
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA	RTC_1HZ	LPUART0_RTS	TIM1_BK
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE			LPUART1_RXD
PC00	LPTIM_GATE	PCNT_S0	UART1_CTS	UART2_RTS	I2S0_MCK		
PC01	LPTIM_TOG	TIM5_CHB	UART1_RTS	PCNT_S0FO	I2S0_SD	UART2_CTS	
PC02	SPI1_MISO	LPTIM_TOGN	PCNT_S1	UART2_RXD			
PC03	SPI1_MOSI	LPTIM_ETR	LPTIM_TOGN	PCNT_S1FO	UART2_TXD		
PC04	LPUART0_TXD	TIM2_ETR	IR_OUT	VC2_OUT	I2S0_WS		_
PC05	LPUART0_RXD	TIM6_CHB	PCA_CH4		I2S0_SDIN		
			<u> </u>				<u> </u>

PC07 PCA_CH1 TIM5_CHA TIM2_CHB LPTIM1_ETR I2S1_MCK UART3_TXD PC08 PCA_CH2 TIM6_CHA TIM2_ETR LPTIM1_TOG I2S1_SD UART3_CTS PC09 PCA_CH3 TIM4_CHB TIM1_ETR LPTIM1_TOGN I2S1_WS UART3_RTS PC10 LPUART1_TXD LPUART0_TXD PCA_CH2 PCNT_S0FO PCNT_S0FO PC11 LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO PCNT_S1FO PC13 RTC_1HZ TIM3_CH1B I2S0_SCK PC14 PC15 PC15 PC15 PC15 PC16	7
PC08 PCA_CH2 TIM6_CHA TIM2_ETR LPTIM1_TOG 12S1_SD UART3_CTS PC09 PCA_CH3 TIM4_CHB TIM1_ETR LPTIM1_TOGN 12S1_WS UART3_RTS PC10 LPUART1_TXD LPUART0_TXD PCA_CH2 PCA_CH2 PC11 LPUART1_RXD LPUART0_RXD PCA_CH3 PCNT_S0FO PC12 LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO PC13 RTC_1HZ TIM3_CH1B 12S0_SCK PC14 PC15 PC15 PC16	
PC09 PCA_CH3 TIM4_CHB TIM1_ETR LPTIM1_TOGN I2S1_WS UART3_RTS PC10 LPUART1_TXD LPUART0_TXD PCA_CH2	
PC10 LPUART1_TXD LPUART0_TXD PCA_CH2 PC11 LPUART1_RXD LPUART0_RXD PCA_CH3 PCNT_S0FO PC12 LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO PC13 RTC_1HZ TIM3_CH1B I2S0_SCK PC14 PC15 I2S0_SCK	
PC11 LPUART1_RXD LPUART0_RXD PCA_CH3 PCNT_S0FO PC12 LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO PC13 RTC_1HZ TIM3_CH1B I2S0_SCK PC14 PC15 PC15	
PC12 LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO PC13 RTC_1HZ TIM3_CH1B 12S0_SCK PC14 PC15 PC15	_
PC13 RTC_1HZ TIM3_CH1B 12S0_SCK PC14 PC15 I2S0_SCK	
PC14 PC15	
PC15	
DD00 CAN DV CDVI CC	
PD00 CAN_RX SPI1_CS	
PD01 CAN_TX SPI1_SCK	
PD02 PCA_ECI LPUART0_RTS TIM1_ETR	
PD03 UART1_CTS SPI1_MISO LPTIM1_TOG I2S1_SCK	
PD04 UART1_RTS SPI1_MOSI LPTIM1_TOGN I2S1_MCK	
PD05 UART1_TXD LPTIM1_GATE CAN_STBY I2S1_SD	
PD06 UART1_RXD LPTIM1_ETR I2S1_WS	
PD07 UART1_TXD I2S1_SDIN	
PD08 LPUART0_TXD I2S0_SCK	
PD09 LPUART0_RXD I2S0_MCK	
PD10 LPUARTO_TXD I2SO_SD	
PD11 LPUARTO_CTS I2SO_WS	
PD12 LPUARTO_RTS UART2_RTS	
PD13 UART2_RXD I2S0_SDIN	
PD14 UART2_TXD	
PD15 CRS_SYNC UART2_CTS	
PE00 TIM1_CHA	
PE01 TIM2_CHA	
PE02 PCA_ECI	
PE03 PCA_CH0	
PE04 PCA_CH1	
PE05 PCA_CH2	
PE06 PCA_CH3	
PE07 TIM3_ETR LPTIM1_GATE	
PE08 TIM3_CH0B LPTIM1_ETR	
PE09 TIM3_CH0A LPTIM1_TOG	
PE10 TIM3_CH1B LPTIM1_TOGN	
PE11 TIM3_CH1A	
PE12 TIM3_CH2B SPI0_CS UART3_CTS	
PE13 TIM3_CH2A SPI0_SCK UART3_RTS	
PE14 TIM3_CH0B SPI0_MISO UART3_RXD	

PSEL	1	2	3	4	5	6	7
PE15	TIM3_BK	SPI0_MOSI	UART3_TXD				
PF00	I2C0_SDA	CRS_SYNC	UART1_TXD				
PF01	I2C0_SCL	TIM4_CHB	UART1_RXD				
PF02							
PF03							
PF04							
PF05							
PF06	I2C1_SCL	LPUART1_CTS	UART0_CTS				
PF07	I2C1_SDA	LPUART1_RTS	UART0_RTS				
PF09	TIM0_CHA						
PF10	TIM0_CHB						
PF11							

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	AVCC_USB	USB模块电源(不大于3.6V,详见电气特性)
	AVSS_USB	USB模块地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接不小于1uF
		的去耦电容)
ISP	BOOT0	当复位时BOOT0(PF11)管脚为高电平,芯片工作于编程
		模式,可使用编程器对FLASH进行编程
		当复位时BOOT0(PF11)管脚为低电平,芯片工作于用户
		模式,芯片执行FLASH内的程序代码
ADC	AIN0~AIN35	ADC输入通道0~35
	ADC_VREF	ADC外部参考电压
VC	VCIN0~VCIN15	VC输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
	VC2_OUT	VC2比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPx_INN	OPA负端输入
x=0,1,2,3,4	OPx_INP	OPA正端输入
	OPx_OUTy	OPA输出
LCD	COMx	LCD公共端输出
x=0~7	SEGy	LCD区段端输出
y=0-52	VLCDz	外部电阻模式,外部电容模式使用管脚
z=1,2,3,H		
UART	UARTx_TXD	UARTx数据发送端
x=0,1,2,3	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTx RTS
LPUART	LPUARTx_TXD	LPUART数据发送端
x=0,1	LPUARTx_RXD	LPUART数据接收端
	LPUARTx_CTS	LPUART CTS
	LPUARTx_RTS	LPUART RTS

模块	引脚名称	描述
I2S	I2S_CK	I2S模块时钟信号
x=0,1	I2S_WS	I2S模块字选信号
	I2S_MCK	I2S模块主模式时钟输出
	I2S_SD	I2S模块数据输入输出
USB	USB_DP	USB 信号
	USB_DM	USB 信号
CAN	CAN_TX	CAN TX输出信号
	CAN_RX	CAN RX输入信号
	CAN_STBY	CAN STBY 信号
CTS	CTS_SYNC	CTS 外部同步信号
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号
x=0,1	SPIx_MOSI	SPI模块主机输出从机输入数据信号
	SPIx_SCK	SPI模块时钟信号
	SPIx_CS	SPI片选
I2C	I2Cx_SDA	I2C模块数据信号
x=0,1	I2Cx_SCL	I2C模块时钟信号
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A
TIMx	TIMx_CHB	Timer的捕获输入比较输出B
x=0,1,2	TIMx_ETR	Timer的外部计数输入信号
X=0,1,2	TIMx_GATE	Timer的门控信号
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B
y=0,1,2	TIM3_ETR	Timer的外部计数输入信号
y=0,1,2	TIM3_GATE	Timer的门控信号
低功耗定时器	LPTIMx_TOG	LPTimer的翻转输出信号
LPTIMx	LPTIMx_TOGN	LPTimer的翻转输出反向信号
x=0,1	LPTIMx_EXT	LPTimer的外部计数输入信号
	LPTIMx_GATE	LPTimer的门控信号
可编程计数阵列	PCA_ECI	外部时钟输入信号
PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0
	PCA_CH1	捕获输入/比较输出/PWM输出 1
	PCA_CH2	捕获输入/比较输出/PWM输出 2
	PCA_CH3	捕获输入/比较输出/PWM输出 3
	PCA_CH4	捕获输入/比较输出/PWM输出 4
PCNT	PCNT_S0	PCNT脉冲计数输入0
	PCNT_S1	PCNT脉冲计数输入1
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A
		

模块	引脚名称	描述
	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B

表 3-1 模块信号说明

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 功能框图

5 存储区映射图

0x2000_4000	保留	
	SRAM (16KByte)	
0x2000_0000		
	/II iSn	
	保留	
0x0002_0000		
	主闪存区 (128KByte)	
0x0000_0000	-	

6 电气特性

6.1 测试条件

除非特别说明,所有电压的都以 VSS 为基准。

6.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试(TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

6.1.2 典型数值

除非特别说明,典型数据是基于 TA=25° C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

6.1.3 典型应用电路图

注意:

- AVCC 与 DVCC 电压必须相同。
- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

6.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
AVCC_USB	USB模块供电电压 ⁽²⁾	3.0	3.6	V
V_{IN}	在其它引脚上的输入电压 ⁽³⁾	VSS-0.3	VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大值电气参数		V

表 6-1 电压特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. AVCC_USB 不可高于 AVCC/DVCC 0.3V。
- 3. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > VCC 时,有一个正向注入电流;当 V_{IN} < VSS 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I_{VCC}	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
I_{VSS}	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
I_{IO}	任意I/O和控制引脚上的输出灌电流	25	mA
	任意I/O和控制引脚上的输出电流	-25	mA
$I_{\text{INJ(PIN)}}^{(2) (3)}$	RESETB引脚的注入电流	+/-5	mA
	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流 ⁽⁴⁾	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 6-2 电流特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. I_{INJ(PIN)}绝对不可以超过它的极限,即保证 V_{IN}不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 I_{INJ(PIN)}不超过其最大值。当 V_{IN}>VCC 时,有一个正向注入电流;当 VIN<VSS 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 $4 \land I/O$ 端口上 $\sum I_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
TSTG	储存温度范围	-60 ~ + 150	$^{\circ}\mathrm{C}$
TJ	最大结温度	105	$^{\circ}\!\mathrm{C}$

表 6-3 温度特性

6.3 工作条件

6.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK0	内部APB0时钟频率		0	48	MHz
fPCLK1	内部APB1时钟频率		0	48	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC_USB	USB模块供电电压 ⁽¹⁾		3.0	3.6	V
AVCC ⁽²⁾	模拟部分工作电压	必须与DVCC ⁽³⁾ 相同	1.8	5.5	V
PD	功率耗散 TA=85℃	LQFP100		476	mW
	功率耗散 TA=85℃	LQFP64		455	mW
	功率耗散 TA=85℃	LQFP48		364	mW
TA	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(4)	-40	105	°C
TJ	结温度范围		-40	105	°C

表 6-4 通用工作条件

- 1. AVCC_USB 不可高于 AVCC/DVCC 0.3V。
- 2. 当使用 ADC 时,参见 ADC 电气参数。
- 3. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 4. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

6.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tVcc	VCC上升速率		0	∞	μs/V
tVcc	VCC下降速率		10	∞	μs/V

表 6-5 上电和掉电的工作条件

6.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 6-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 6-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000	1.7	1.8	1.9	V
		LVD_CR.VTDS =0001	1.8	1.9	2.0	
		LVD_CR.VTDS =0010	1.9	2.0	2.1	
		LVD_CR.VTDS =0011	2.0	2.1	2.2	
		LVD_CR.VTDS =0100	2.1	2.2	2.3	
		LVD_CR.VTDS=0101	2.2	2.3	2.4	
		LVD_CR.VTDS=0110	2.3	2.4	2.5	
		LVD_CR.VTDS=0111	2.4	2.5	2.6	
		LVD_CR.VTDS=1000	2.5	2.6	2.7	
		LVD_CR.VTDS=1001	2.6	2.7	2.8	
		LVD_CR.VTDS=1010	2.7	2.8	2.9	
		LVD_CR.VTDS=1011	2.8	2.9	3.0	
		LVD_CR.VTDS=1100	2.9	3.0	3.1	
		LVD_CR.VTDS=1101	3.0	3.1	3.2	
		LVD_CR.VTDS=1110	3.1	3.2	3.3	
		LVD_CR.VTDS=1111	3.2	3.3	3.4	
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		uS
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV

表 6-7 LVD 模块特性

6.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40 ~ 85°C; 2.8 ~ 5.5V	2.463	2.5	2.525	$V^{[1]}$
V _{REF15}	Internal 1.5V Reference Voltage	常温25°C 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40 ~ 85°C; 1.8 ~ 5.5V	1.477	1.5	1.519	V ^[1]
T_{Coeff}	Internal 2.5V 1.5V temperature coefficient	-40 ~ 85°C			120	ppm/ °C

^{1.} 数据基于考核结果,不在生产中测试

6.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、 I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的 位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fPCLK0 = fHCLK, fPCLK1 = fHCLK。

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit	
IDD (AVCC_USB)		Active			4		mA
				4M	990		
		Vcap=1.5V	_{CC} =3.3V	8M	1960		
	All peripherals			16M	3870		
I_{DD}	clock ON,			22.12M	5360		uA
(Run in RAM)	Run while(1) in	$T_A=2xC$		24M	5780		uA
	RAM	TA-ZAC	PLL RCH4M	32M	7910		
			to xxM clock source	48M	11770		

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit
				4M	340		
			D.C.U	8M	650		
	All peripherals	1.51	RCH	16M	1240		
	clock OFF,	Vcap=1.5V	clock source	22.12M	1700		
	Run while(1) in	$V_{CC}=3.3V$		24M	1840		uA
	RAM	T _A =2xC	PLL RCH4M	32M	2690		
			to xxM clock source	48M	3950		
				4M	840		
			D GV	8M	1530		
${ m I}_{ m DD}$	All peripherals	Vcap=1.5V	RCH	16M	2970		
(Run	clock OFF,	V _{CC} =3.3V	clock source	22.12M	3980		uA
CoreMark)	Run CoreMark in	$T_A=2xC$		24M	4290		
	Flash		PLL RCH4M to xxM	48M FlashWait=1	6780		
				4M	1330	1800	
		Vcap=1.5V		8M	2490	3430	uA
		$V_{CC}=1.8-5.5V$	RCH	16M	4990	6570	
		$T_A=N40-85$ °C	clock source	22.12M	6760	8960	
				24M	6080	9680	
				16M	5270	6550	
		Vcap=1.5V V _{CC} =1.8-5.5V	V PLL RCH4M to xxM clock source	24M	7390	9260	
				32M FlashWait=1	9200	10640	
	All peripherals clock ON,	T _A =N40C-		40M FlashWait=1	11350	13150	uA
I _{DD} (Run mode)	Run while(1) in Flash			48M FlashWait=1	13470	15750	
				16M	5350	6620	
				24M	7460	9390	
		Vcap=1.5V	PLL RCH8M	32M FlashWait=1	9250	10740	
		$V_{CC}=1.8-5.5V$ $T_{A}=N40-85^{\circ}C$	to xxM clock source	40M FlashWait=1	11380	13290	uA
				48M FlashWait=1	13560	15850	
		Vcap=1.5V		4M	670	1080	1
	All peripherals	s $V_{CC}=1.8-5.5V$ RCH clock source		8M	1190	1990	uA
	clock OFF.		16M	2280	3580		

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit				
	Run while(1) in			22.12M	3070	4790					
	Flash			24M	3290	5120					
				16M	2560	3530					
				24M	3450	4780					
		Vcap=1.5V	Vcap=1.5V V _{CC} =1.8-5.5V	PLL RCH4M to xxM	32M FlashWait=1	3950	4670	uA			
		$T_A = N40-85$ °C	clock source	40M FlashWait=1	4800	5710	uA				
			48M FlashWait=1	5680	6780						
				16M	2620	3610					
				24M	3510	4860					
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4010	4730	uA						
									4850	5760	u.A
					5730	6850					
				4M	840	950					
		Vcap=1.5V	RCH	8M	1640	1880					
		V _{CC} =1.8-5.5V	clock source	16M	3240	3680	uA				
		T _A =N40-85°C	T _A =N40-85°C	Clock source	22.12M	4490	5120				
				24M	4850	5570					
				16M	3550	4070					
				24M	5060	5770					
		Vcap=1.5V Vcc=1.8-5.5V	PLL RCH4M to xxM	32M FlashWait=1	6680	7640	uA				
I _{DD} (Sleep mode)	All peripherals	$T_A = N40-85$ °C	clock source	40M FlashWait=1	8300	9510	uA				
(Sieep mode)	CIOCK OIV			48M FlashWait=1	9920	11370					
				16M	3620	4120					
				24M	5120	5850					
		Vcap=1.5V	PLL RCH8M	32M FlashWait=1	6740	7710					
		V _{CC} =1.8-5.5V T _A =N40-85°C	to xxM clock source	40M FlashWait=1	8340	9580	uA				
				48M FlashWait=1	9980	11430					

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit																													
				4M	180	230																														
		Vcap=1.5V	D.C.U	8M	330	390																														
		V _{CC} =1.8-5.5V	RCH	16M	600	690	uA																													
		T _A =N40-85°C	clock source	22.12M	820	930																														
				24M	880	1000																														
				16M	900	1020																														
				24M	1110	1260																														
		PLL RCH4M to xxM	32M FlashWait=1	1410	1610	uA																														
	All peripherals clock OFF	V_{CC} =1.8-5.5V T_{A} =N40-85°C	clock source	40M FlashWait=1	1730	1970	uA																													
	CIGOR GIT			48M FlashWait=1	2040	2330																														
				16M	960	1090																														
				24M	1170	1330																														
		Vcap=1.5V V _{CC} =1.8-5.5V T _A =N40-85°C	V _{CC} =1.8-5.5V	V _{CC} =1.8-5.5V	V _{CC} =1.8-5.5V	PLL RCH8M	32M FlashWait=1	1470	1670	4																										
																	to xxM clock source	40M FlashWait=1	1780	2030	uA															
				48M FlashWait=1	2100	2390																														
	All peripherals clock ON,	Vcap=1.5V V _{CC} =1.8-5.5V	Vcan=1 5V XTL32K	T _A =N40- 25C	14	19																														
	Run while(1) in		_	_	_	_	V _{CC} =1.8-5.5V	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	-	_	_	_	_	clock source	T _A =50C	15	20
I_{DD}	Flash		Driver=0x0	T _A =85C	21	28	1																													
(LP Run)	All peripherals clock OFF,	Vcap=1.5V	XTL32K	T _A =N40- 25C	9	13																														
	Run while(1) in	V _{CC} =1.8-5.5V	clock source	T _A =50C	10	14	uA																													
	Flash		Driver=0x0	T _A =85C	16	22																														
	All peripherals	Vcap=1.5V	XTL32K	T _A =N40- 25C	9	10																														
	clock ON	$V_{CC}=1.8-5.5V$	clock source	T _A =50C	10	11	uA																													
			Driver=0x0	T _A =85C	16	18																														
I _{DD} (LP Sleep)	All peripherals	Vcap=1.5V	XTL32K	T _A =N40- 25C	4	4																														
	clock OFF	$V_{CC}=1.8-5.5V$	clock source	T _A =50C	5	5	uA																													
		V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	11	13																														
		Vcap=1.5V V _{CC} =1.8-5.5V		T _A =N40-	4	4	uA																													

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit
	LpTimer+RTC+3		XTL32K	T _A =50C	5	6	
	2K clk ON, Other clk OFF		clock source Driver=0x0	T _A =85C	11	13	
	RTC+WDT+LPT	Vcap=1.5V	XTL32K	T _A =N40- 25C	1750	2040	
	+XTL32K	$V_{CC}=1.8-5.5V$	Driver=0x0	T _A =50C	2460	2990	nA
	+DeepSleep			T _A =85C	6940	8620	
	LPT+XTL32K	Vcap=1.5V	XTL32K	T _A =N40- 25C	1630	1910	
	+DeepSleep	V _{CC} =1.8-5.5V	Driver=0x0	T _A =50C	2340	2850	nA
				T _A =85C	6810	8510	1
	RTC+XTL32K	Vcap=1.5V	XTL32K	T _A =N40- 25C	1590	1870	
$ m I_{DD}$	+DeepSleep	$V_{CC}=1.8-5.5V$	Driver=0x0	T _A =50C	2300	2810	nA
				T _A =85C	6800	8470	
	XTL32K	Vcap=1.5V	XTL32K	T _A =N40- 25C	1580	1860	
(DeepSleep	+DeepSleep	$V_{CC}=1.8-5.5V$	TV Driver=0x0	T _A =50C	2290	2790	nA
mode)				T _A =85C	6750	8410	
	IRC32K	Vcap=1.5V		T _A =N40- 25C	1570	1830	
	+DeepSleep	V _{CC} =1.8-5.5V		T _A =50C	2270	2750	nA
				T _A =85C	6750	8410	
	WDT	Vcap=1.5V		T _A =N40- 25C	1300	1520	
	+DeepSleep	$V_{CC}=1.8-5.5V$		T _A =50C	1990	2430	nA
				T _A =85C	6410	8020	
	Vcan=1.5V	Vcap=1.5V		T _A =N40- 25C	1190	1400	
	DeepSleep	Vcap=1.5 V V _{CC} =1.8-5.5 V		T _A =50C	1880	2310	nA
				T _A =85C	6330	7970	

- 1. 若没有其他指定条件,该 Typ 的值是在 25 ° C & $V_{CC} = 3.3V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 ° C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试。

表 6-1 工作电流特性

6.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		$F_{MCLK} = 24MHz$		4.0		μs

^{1.} 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

6.3.7 外部时钟源特性

6.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

由设计保证,不在生产中测试。

6.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				50	ns
Tf(XTH)	下降的时间(1)				50	ns
Tw(XTH)	输入高或低的时间(1)		450			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比	_	30	_	70	%
IL	输入漏电流	_		_	±1	μΑ

由设计保证,不在生产中测试。

6.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
$C_{LX}^{(3)}$	负载电容	两个管脚都有负载电容	12		24	pF
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾	电流	32M Xtal, CL=12pF, ESR=30ohm		600		uA
T _{start} (5)	启动时间	32MHz		300		us
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2} 。对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该根据晶振的频率和 ESR 等参数,并且将 PCB 和 MCU 引脚的容抗考虑在内。在晶振频率为 32M 时, C_{LX} 需要选择小的电容值, $XTH_CR.Driver$ 为 1110 时,可以选择 C_{LX} 为 12pF。
- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变 化较大。

6.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率			32.768		KHz
ESR _{CLK}	支持的晶振ESR范围			65	85	KOhm
C_{Lx}	负载电容	两个管脚都有负载电容		12		pF
DC_{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 KOhm		350	1000	nA
	· 电机	C _L =12 pF				
T _{start} ⁽⁴⁾	启动时间	ESR=65 KOhm,		500		ms
		$C_L=12 pF$,				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2}。对于 C_{L1} 和 C_{L2},建议使用高质量的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该将 PCB 和 MCU 引脚的容抗考虑在内。
- 3. 典型值为XTL_CR.Driver=1001时的功耗。选择具有较小ESR值的高质量振荡器,可以通过减小XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

6.3.8 内部时钟源特性

6.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User trimming step for given		0.25		%
		VCC and TA conditions				
		$VCC = 1.8 \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F_{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μА
		$F_{MCLK} = 8MHz$		100		μΑ
		$F_{MCLK} = 16MHz$		120		μА
		$F_{MCLK} = 24MHz$		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

6.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User trimming step for		0.5		%
		given VCC and TA				
		conditions				
		$VCC = 1.8 \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-1.5		+1.5	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
T_{CLK}	启动时间			150		uS
DC _{CLK}	占空比(1)		25	50	75	%
I_{CLK}	功耗			0.35		μА

^{1.} 由综合评估得出,不在生产中测试。

6.3.8.3 内部 USB 专用 RCH48M 振荡器

Parameter	Description	Min	Тур	Max	Units	Condition
DVCC	Analog 5V Supply	1.8	3.3	5.5	V	
T	Junction Temperature	-40	27	105	deg C	
F _{RCH48M}	Frequency	-	48	1	MHz	-
TRIM	RCH48M user-trimming step	$0.06^{(2)}$	0.12	$0.2^{(2)}$	%	-
DUCy _{RCH48M}	Duty cycle	45(2)	-	55 ⁽²⁾	%	-
		6(3)	-	6(3)	%	T _A =-40 to 105 °C
ACC	Accuracy of the RCH48M	TBD ⁽³⁾	-	TBD ⁽³⁾	%	T _A =-10 to 85 °C
ACC _{RCH48M}	oscillator(factory calibrated)	TBD ⁽³⁾	-	TBD ⁽³⁾	%	TA=0 to 70 °C
		2 ⁽³⁾	-	2 ⁽³⁾	%	TA=25 °C
t _{su(RCH48M)}	RCH48M oscillator startup time	-	-	20(2)	uS	
I _{DDA(RCH48M)}	RCH48M oscillator power consumption	-	270	350 ⁽²⁾	uA	

- 1. AVCC=3.3V, TA=-40 to 105 °C unless otherwise specified
- 2. Guatanteed by design, not tested in production
- 3. Data based on characterization results, not tested in production

6.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	us

^{1.} 由综合评估得出,不在生产中测试。

6.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{FLASH}	擦写次数	Regulator	20K			cycles
		voltage=1.5V,				
		$T_{AMB} = 25^{\circ}C$				
RET _{FLASH}	数据保存期限	$T_{AMB} = 85 ^{\circ}\text{C}$	20			Years
		常温	100			Years
T _{w_prog}	编程时间		6		7.5	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

6.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2KV
(IEC61000-4-4)	Class:4
EFT to Power	4KV
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

6.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

6.3.13 I/O 端口特性

6.3.13.1 输出特性——端口

符号	参数	条件	最小值	最大值	单位
V _{OH}	High level output	Sourcing 4 mA, $VCC = 3.3 \text{ V}$	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing 8 mA, $VCC = 3.3 \text{ V}$	VCC-0.6		V
		(see Note 2)			
V _{OL}	Low level output voltage	Sinking 5 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 14 mA, $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output	Sourcing 8 mA, $VCC = 3.3 \text{ V}$	VCC-0.25		V
	voltage	(see Note 1)			
	Double source Current	Sourcing 18 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V _{OLD}	Low level output voltage	Sinking 8 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 18 mA , $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			

表 6-4 端口输出特性

NOTES: 1. The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 6-2 输出端口 VOH/VOL 实测曲线

6.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP

符号	参数	条件	最小值	典型值	最大值	单位	
V _{IH}	Positive-going	VCC=1.8V	1.2			V	
	input	VCC=3.3V	2.0			V	
	threshold voltage	VCC=5.5V	3.3			V	
V _{IL}	Negative-going	VCC=1.8V			0.5	V	
	input	VCC=3.3V			1.0	V	
	threshold voltage	VCC=5.5V			1.6	V	
V _{hys(1)}	Input voltage	VCC=1.8V		0.3		V	
	hysteresis	VCC=3.3V		0.4		V	
	$(V_{IH} - V_{IL})$	VCC=5.5V		0.6		V	
$R_{pullhigh} \\ (USB_DP)$	Pullup resistor	Transmitting	1425		3090	ohm	
		Idle	900		1575		
R _{pullhigh}	Pullup resistor	Pullup enabled		80		Kohm	
(GPIO)		VCC=3.3V					
R _{pulllow}	Pulldown resistor	Pulldown enabled		40		Kohm	
(GPIO)		VCC=3.3V					
Cinput	Input capacitance			5		pf	

^{1.} 由综合评估得出,不在生产中测试。

6.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8V	30		ns
	timing	interrupt flag (see Note 1)	3.3V	30		ns
			5.5V	30		ns
t(cap)	Timer capture	Timer4/5/6 capture pulse	1.8V	0.5		us
	timing	width	3.3V	0.5		us
		Fsystem = 4MHz	5.5V	0.5		us
t(clk)	Timer clock	Timer0/1/2/4/5/6 external	1.8V		PCLK/2	MHz
	frequency applied	clock input	3.3V		PCLK/2	MHz
	to pin	Fsystem = 4MHz	5.5V		PCLK/2	MHz
t(pca)(2)	PCA clock	PCA external clock input	1.8V		PCLK/8	MHz
	frequency	Fsystem = 4MHz	3.3V		PCLK/8	MHz
	applied to pin		5.5V		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

2. 由综合评估得出,不在生产中测试。

6.3.13.4 端口漏电特性——PA, PB, PC, PD, PE, PF

符号	参数	条件	最小值	典型值	最大值	单位
I _{lkg(Px.y)}	Leakage current	$V_{(Px,y)}$ (see Note 1, 2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

^{2.} The port pin must be selected as input.

6.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{RESETB})}^{(1)}$	输入低电平电压		-0.3		0.8	V
$V_{\text{IH}(\text{RESETB})}$	输入高电平电压		0.8*VCC		VCC+0.5	V
$V_{\text{hys}(\text{RESETB})}$	施密特触发器电压迟滞			200		mV
$R_{ m PU}$	弱上拉等效电阻	$V_{\text{IN}} = V_{\text{SS}}$		80		ΚΩ
$V_{\text{F(RESETB)}}^{(1)}$	输入滤波脉冲				100	ns
$V_{\text{NF(RESETB)}}^{(1)}$	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

6.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		mA
I _{ADC2}	Active current without reference generator and buffer	1Msps		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		KOhm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	KOhm
F _{ADCCLK}	ADC clock Frequency				24M	Hz
T _{ADCSTART}	Startup time of reference generator and ADC core			30		μS
T _{ADCCONV}	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF		10.3		Bit
		1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V		10.3		Bit

符号	参数	条件	最小值	典型值	最大值	单位
		200Ksps@VCC>=1.8V				
		REF=VCC				
		200Ksps@VCC>=1.8V		9.4		Bit
		REF=internal 1.5V		9.4		ы
		200Ksps@VCC>=2.8V		9.4		Bit
		REF=internal 2.5V		9.4		BIL
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V		68.2		dB
		200Ksps@VCC>=1.8V		08.2		uБ
		REF=EXREF				
		1Msps@VCC>=2.7V				
SNR	Signal to Noise Ratio	500Ksps@VCC>=2.4V		68.2		dB
SINK		200Ksps@VCC>=1.8V				UD
		REF=VCC				
		200Ksps@VCC>=1.8V		60		dB
		REF=internal 1.5V		00		ав
		200Ksps@VCC>=2.8V		60		dB
		REF=internal 2.5V				uБ
DNL ⁽¹⁾	Differential non-linearity	200Ksps;	-1		1	LSB
DNL	Differential non-infearity	VREF=EXREF/AVCC	-1		1	LSD
INL ⁽¹⁾	Integral non-linearity	200Ksps;	-3		3	LSB
integral non-integrity	VREF=EXREF/AVCC	-3		3	LOD	
Eo	Offset error			0		LSB
E_g	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表。

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (KOhm)	$F_{ADC}(KHz)$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

6.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25°C 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		uS
	when one input cross	VCx_BIAS_SEL=01		5		
	another	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		uS
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable			20		uS
	to 1.2V BGR reference					
	Temp sensor voltage, ADC					
	internal 1.5V \ 2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μS
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

6.3.17 OPA 特性

OPA: (AVCC= $2.2 \sim 5.5 \text{ V}$, AVSS=0 V, Ta= $-40 \sim +85 ^{\circ}\text{C}$)

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压 ⁽¹⁾		0.1	-	AVCC- 0.2	V
Io	输出电流 ⁽¹⁾				1	mA
RL	负载电阻 ⁽¹⁾		5K			Ohm
Tstart	初始化时间(2)				20	us
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=5KΩ, Rs=50 pF		±6		mV
PM	相位裕度(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		80	-	deg
UGBW	单位增益带宽(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		9.3		MHz
SR	压摆率 ⁽¹⁾	RL=5KΩ, CL=50pF		8		V/uS

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

6.3.18 DAC 特性

符号	参数	工作条件	最小	典型	最大	单位
V_{DACOUT}	Output voltage range	AVCC voltage reference, single ended	0		Vcc	V
V_{DACCM}	Output common mode voltage range		0		Vcc	V
I_{DAC}	Active current	500KSamples/s		15		uA
SR_{DAC}	Sample rate				500	Ksps
t _{DACCONV}	Conversion time		2			us
t _{DACSETTLE}	Setting time			5		us
SNR_{DAC}	Signal to Noise Ratio			59		dB
SNDR _{DAC}	Signal to Noise and Distortion Ratio			57		dB
SFDR _{DAC}	Spurious Free Dynamic Range			56		dB
V _{DACOFFSET}	Offset voltage	w/o buffer		2		mV
DNL _{DAC}	Differential non- linearity			±1		LSB
INL _{DAC}	Integral non- linearity			±5		LSB

7 封装信息

7.1 封装尺寸

LQFP100 封装

	Millimeter					
Symbol		Willimeter				
•	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
С	0.13		0.17			
c1	0.12	0.13	0.14			
D	15.80	16.00	16.20			
D1	13.90	14.00	14.10			
E	15.80	16.00	16.20			
E1	13.90	14.00	14.10			
eВ	15.05		15.35			
e	0.50BSC					
L	0.45		0.75			
L1	1.00REF					
θ	0		7°			

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

SECTION B-B

WITH PLATING

BASE METAL

LQFP64 封装

	LQFP64 (10x10)					
Symbol	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
c	0.13		0.17			
c1	0.12	0.13	0.14			
D	11.80	12.00	12.20			
D1	9.90	10.00	10.10			
Е	11.80	12.00	12.20			
E1	9.90	10.00	10.10			
eB	11.05		11.25			
e	0.50BSC					
L	0.45		0.75			
L1	1.00REF					
θ	0°		7°			

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

DETAIL: F

	Millimeter					
Symbol	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
c	0.13		0.17			
c1	0.12	0.13	0.14			
D	8.80	9.00	9.20			
D1	6.90	7.00	7.10			
E	8.80	9.00	9.20			
E1	6.90	7.00	7.10			
eВ	8.10		8.25			
e	0.50BSC					
L	0.40		0.65			
L1		1.00REF				
θ	0		7°			

NOTE:

Dimensions "D1" and "E1" do not include mold flash.

7.2 丝印说明

LQFP100 封装 LQFP64 封装

LQFP48 封装

8 订购信息

Part Number		HC32L072PATA- LQFP100	HC32L072KATA- LQFP64	HC32L072JATA- LQ48	HC32L073PATA- LQFP100	HC32L073KATA- LQFP64	HC32L073JATA- LQ48
Memory (bytes)	Flash	128K	128K	128K	128K	128K	128K
	RAM	16K	16K	16K	16K	16K	16K
1/0		86	50	36	86	50	36
TIMER	GTIMER	4	4	4	4	4	4
	ATIMER	3	3	3	3	3	3
	LPTIMER	2	2	2	2	2	2
	RTC	√	√	√	√	√	√
	PCNT	1	1	1	1	1	1
Connectivity	UART	4	4	2	4	4	2
	LPUART	2	2	2	2	2	2
	I2C	2	2	2	2	2	2
	SPI	2	2	2	2	2	2
	USB	√	√	√	√	√	√
	CAN	√	√	√	√	√	√
	IIS	√	√	√	√	√	√
Analog	ADC*12bit	24ch	23ch	17ch	24ch	23ch	17ch
	DAC*12bit	2ch	2ch	2ch	2ch	2ch	2ch
	OP	5	5	3	5	5	3
	Comp	3	3	3	3	3	3
Display	LCD	-	-	=	4*52/6*50/8*48	4*40/6*38/8*36	4*26/6*24/8*22
Security	AES	√	√	√	√	√	√
LV	/D	√	√	√	√	√	√
LVR		√	√	√	√	√	√
Votage	Vdd	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V
Package		LQFP100(14*14)	LQFP64(10*10)	LQFP48(7*7)	LQFP100(14*14)	LQFP64(10*10)	LQFP48(7*7)
出货形式		盘装	盘装	盘装	盘装	盘装	盘装
脚间距		0.5mm	0.5mm	0.5mm	0.5mm	0.5mm	0.5mm

版本记录 & 联系方式

版本	修订日期	修订内容摘要
v1.0	2019/05/27	初稿发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

