Comunicarea interprocese (IPC)

SO: Curs 4

Recapitulare procese

- Un proces = o unitate de execuţie
- Fiecare proces are:
 - Propriu spațiu virtual de memorie
 - Tabelă de descriptori
- Stari proces:
 - READY
 - RUNNING
 - WAITING
- Multi-tasking: SO planifică procesele pe procesoarele existente

Comunicare interproces

Semnale

Pipe

Memorie partajată

Sockets

Controlul proceselor în UNIX

Implementarea controlului proceselor

Ce se întâmplă cand

- Tastăm Ctrl-c?
 - Tastatura generează întrerupere hardware
 - Întreruperea este tratată de SO
 - SO trimite un semnal 2/SIGINT
- Tastăm Ctrl-z?

5

- Tastatura generează întrerupere hardware
- Întreruperea este tratată de SO
- SO trimite un semnal 20/SIGSTOP
- Tastăm comanda "kill –sig pid"?
 - SO trimite un semnal sig procesului cu id-ul pid
- Tastăm "fg" sau "bg"?
 - SO transmite semnalul 18/SIGCONT (şi alte lucruri!)

Semnale: definiție

Semnalele permit SO sa comunice cu procesul

Semnal: o notificare transmisă unui proces

- SO descoperă un eveniment (e.g. întrerupere)
- SO opreşte procesul (unde îl nimereşte)
- Handlerul de semnal se execută până la capăt
- Procesul continuă de unde a rămas

Process

Handler de semnal

- Implicit:
 - De cele mai multe ori "omoară procesul"
- Probleme semnale:
 - Asincrone cu execuția procesului: race conditions
 - Apelurile blocante pot fi intrerupte (read/write):
 EINTR
 - Nu se pot apela decât funcții reentrante în handler-urile de semnal

Pipe

- Comunicație unidirecțională
- Pipe: anonime și cu nume
- Pipe anonime: apelul pipe()
 - Întoarce doi descriptori: unul folosit pentru scriere, altul pentru citire
 - Comunicare între procese înrudite (pârinte/copil)
- Pipe cu nume: comunicare între orice procese
 - mkfifo / mknod
 - open / ...

Folosire pipe

• În linia de comanda |

Anonime: comunicare dupa fork()

Cu nume: comunicare pe un sistem fizic

Memorie partajată

- Fiecare proces are propria memorie
- O zonă de memorie poate fi partajată între procese
 - shmget / shmat
 - mmap
- Comunicare fără nici un fel de overhead
 - Fără trecere în nucleu
 - Acces la memorie
 - Necesită sincronizare

Sockets

- Cea mai răspândită formă de IPC
- Unix sockets: similar cu named pipes
- BSD sockets
 - TCP / UDP
 - Cross-machine
 - Sincronizare explicită (apeluri blocante)
- API: reliable byte stream
 - socket / connect / accept / send / recv