Kontextfreien Grammatiken in CNF

Überführe die folgenden kontextfreien Grammatiken in CNF

(a) $P = \{$ $S \rightarrow 0S1 \,|\, \epsilon \ \}$

(i) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

$$P = \{$$

$$S \rightarrow 0S1 \mid 01$$

}

flaci.com/Ghje1ygz9

(ii) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren.

☑ Nichts zu tun

(iii) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_{σ} ersetzt und die Menge der Produktionen durch die Regel $S_{\sigma} \to \sigma$ ergänzt.

$$N = Null, E = Eins$$

 $P = {$

$$S \rightarrow NSE \mid NE$$

$$N \rightarrow 0$$

$$E \rightarrow 1$$

(iv) Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots$, $A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \{$$

$$S \rightarrow NR \mid NE$$

$$R \to SE$$

$$N \rightarrow 0$$

$$E \rightarrow 1$$

(b) $P = \{$

$$S \to a \mid aA \mid B$$

$$A \to aBB \mid \epsilon$$

$$B \to Aa \mid b$$

}

flaci.com/G54gubr9i

(i) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

$$P = \{$$

$$S \to a \mid aA \mid B$$

$$A \to aBB$$

$$B \to Aa \mid b \mid a$$
}

Das leere Wort ist nicht in der Sprache ($\epsilon \notin L(G)$). In der Sprache sind immer Wörter mit mindestens einem Buchstaben. In der ersten Produktionsregel wird aus $aA \to a\epsilon$ nur das a. Das ist aber bereits in der ersten Regel enthalten. In der zweiten Regel wird das leere Wort weg gelassen. In der dritten Regel wird noch ein a hinzugefügt, das aus $Aa \to \epsilon a \to a$ entstanden ist.

(ii) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren.

$$P = \{$$

$$S \to a \mid aA \mid Aa \mid b$$

$$A \to aBB$$

$$B \to Aa \mid b \mid a$$
}

Wir schreiben die Regel, die keine einzelnes Nonterminal auf der rechten Seite enthalten, ab. In der ersten Regel wird B mit Aa|b|a ersetzte, wobei das letzte a, dann weggelassen werden kann, da es bereits am Anfang der rechten Seite vorkommt. Die B-Regel kann nicht weggelassen werden, weil sie in der A-Regel vorkommt.

(iii) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_{σ} ersetzt und die Menge der Produktionen durch die Regel $S_{\sigma} \to \sigma$ ergänzt.

$$P = \{$$

$$S \rightarrow a \mid VA \mid AV \mid b$$
 $A \rightarrow VBB$
 $B \rightarrow AV \mid b \mid a$
 $V \rightarrow a$

(iv) Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n, A_{n-1} \to A_{n-2}B_{n-1}, \dots, A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \{ \\ S \rightarrow a \mid VA \mid AV \mid b \\ A \rightarrow VC \\ B \rightarrow AV \mid b \mid a \\ V \rightarrow a \\ C \rightarrow BB \\ \}$$

(c) $P = \{$

$$S \to ABC$$

$$A \to aCD$$

$$B \to bCD$$

$$C \to D \mid \epsilon$$

$$D \to C$$

}

flaci.com/Grxwcync2

(i) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

$$P = \{ \\ S \rightarrow ABC \mid AB \\ A \rightarrow aCD \mid aD \\ B \rightarrow bCD \mid bD \\ C \rightarrow D \\ D \rightarrow C \mid \epsilon$$

}

In der letzten Regel entsteht ein neues ϵ . Es muss in der nächsten Iteration entfernt werden.

$$P = \{$$

$$S \rightarrow ABC \mid AB$$

$$A \rightarrow aCD \mid aD \mid aC \mid a$$

$$B \rightarrow bCD \mid bD \mid bC \mid b$$

$$C \rightarrow D$$

$$D \rightarrow C$$

(ii) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren.

$$P = \{$$

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$
 $\}$

C und D sind nicht produktiv. $C \to D$ und $D \to C$ können gestrichen werden.

(iii) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_{σ} ersetzt und die Menge der Produktionen durch die Regel $S_{\sigma} \to \sigma$ ergänzt.

☑ Nichts zu tun

(iv) Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots$, $A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht

☑ Nichts zu tun