1 Generative modelling

Learn $p_{\text{model}} \approx p_{\text{data}}$, sample from p_{model} . Explicit density:

- Approximate:
- * Variational: VAE, Diffusion
- * Markov Chain: Boltzmann machine
- Tractable:
- FVSBN/NADE/MADE * Autoregressive:
- Normalizing Flows
- Implicit density:
- Direct: Generative Adversarial Networks
- MC: Generative Stochastic Networks
- are NNs. Optimal linear autoencoder is PCA. Undercomplete: |Z| < |X|, else overcomplete. Overcomp. is for denoising, inpainting. Latent space should be continuous and inter

polable. Autoencoder spaces are neither, so they are only good for reconstruction.

2 Variational AutoEncoder (VAE)

Sample z from prior $p_{\theta}(z)$, to decode use con ditional $p_{\theta}(x \mid z)$ defined by a NN.

 $D_{\text{KL}}(P||Q) := \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$: KL diver gence, measure similarity of prob. distr. $D_{\text{KL}}(P||Q) \neq D_{\text{KL}}(Q||P), D_{\text{KL}}(P||Q) \geq 0$ Likelihood $p_{\theta}(x) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$ is hard

to max., let enc. NN be $q_{\phi}(z \mid x)$, $\log p_{\theta}(x^{i}) =$ $\mathbb{E}_{z} \left[\log p_{\theta}(x^{i} \mid z) \right] - D_{\mathrm{KL}} (q_{\phi}(z \mid x^{i}) || p_{\theta}(z)) +$ use ≥ 0 to ignore it; Orange is reconstruction Use conv. stacks to mask correctly.

loss, clusters similar samples; Purple makes posterior close to prior, adds cont. and interp. hard to evaluate others. Orange – Purple is **ELBO**, maximize it.

 $x \xrightarrow{\text{enc}} \mu_{z|x}, \Sigma_{z|x} \xrightarrow{\text{sample}} z \xrightarrow{\text{dec}} \mu_{x|z}, \Sigma_{x|z} \xrightarrow{\text{sample}}$ Backprop through sample by reparametr.: z = $\mu + \sigma \epsilon$. For inference, use μ directly.

with semi-supervised learning by making zconditionally independent of given features y.

Disentangle by $\max_{\theta,\phi} \mathbb{E}_x \left[\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x \mid z) \right]$ s.t. $D_{\text{KL}}(q_{\phi}(z \mid x) \| p_{\theta}(z)) < \delta$, with KKT: $|\mathbf{x}_t|$ is a convex combination of the past steps max Orange – β Purple.

3 Autoregressive generative models

variable at previous time steps

maybe with Y missing. Sequence models are |M| to avoid looking into the future: generative: from $x_i \dots x_{i+k}$ predict x_{i+k+1} .

Tabular approach: $p(\mathbf{x}) = \prod_i p(x_i \mid \mathbf{x}_{< i}),$ needs 2^{i-1} params. Independence assumption is too strong. Let $p_{\theta_i}(x_i \mid \mathbf{x}_{< i}) =$ Bern($f_i(\mathbf{x}_{< i})$), where f_i is a NN. Fully Visi-

ble Sigmoid Belief Networks: $f_i = \sigma(\alpha_0^{(i)} + \alpha_0^{(i)})$ Pixel(C/R)NN, WaveNet/TCN, Autor. Transf., $\alpha^{(i)} \mathbf{x}_{< i}^{\mathsf{T}}$, complexity n^2 , but model is linear.

Neural Autoregressive Density Estimator: add hidden layer. $\mathbf{h}_i = \sigma(\mathbf{b} + \mathbf{W}_{... < i} \mathbf{x}_{< i}), \hat{x}_i =$ fixed. Train by max log-likelihood in O(TD)Autoencoder: $X \rightarrow Z \rightarrow X$, $g \circ f \approx id$, f and $g \mid_{can}$ use 2nd order optimizers, can use **teacher**

forcing: feed GT as previous output.

Extensions: Convolutional; Real-valued: conditionals by mixture of gaussians; Order-less $p_z(f^{-1}(x)) \left| \det \frac{\partial f(z)}{\partial z} \right|^{-1}$. Map $Z \to X$ with a and deep: one DNN predicts $p(x_k \mid x_{i_1} \dots x_{i_i})$. Masked Autoencoder Distribution Estima-

tor: mask out weights s.t. no information flows from x_d ... to \hat{x}_d . Large hidden layers needed. Trains as fast as autoencoders, but sampling needs *D* forward passes. **PixelRNN**: generate pixels from corner, de-

pendency on previous pixels is by RNN (LSTM). **PixelCNN**: also from corner, but condition by CNN over context region (perceptive field) \Rightarrow parallelize. For conditionals use masked convolutions. Channels: model R from context, G from R + cont., B from G + R + cont. Training $D_{\text{KL}}(q_{\phi}(z \mid x^i) || p_{\theta}(z \mid x^i))$. Red is intractable, is parallel, but inference is sequential \Rightarrow slow.

NLL is a natural metric for autoreg. models, Sample $z \sim p_z$ and get x = f(z).

WaveNet: audio is high-dimensional. Use dilated convolutions to increase perceptive field with multiple layers.

AR does not work for high res images/video. Disentanglement: features should correspond | convert the images into a series of tokens with to distinct factors of variation. Can be done an AE: Vector-quantized VAE. The codebook

is a set of vectors. $x \xrightarrow{\text{enc}} z \xrightarrow{\text{codebook}} z_q \xrightarrow{\text{dec}} \hat{x}$.

We can run an AR model in the latent space.

Attention

with access to all past steps. For $X \in \mathbb{R}^{T \times D}$ $K = XW_K, V = XW_V, Q = XW_O$. Check pair Autoregression: use data from the same input wise similarity between query and keys via dot product: let attention weights be α Discriminative: $P(Y \mid X)$, generative: P(X,Y), Softmax (QK^T/\sqrt{D}) , $\alpha \in \mathbb{R}^{1 \times T}$. Adding mask Conditional coupling: add parameter w to β . don't vanish. Adding gradient penalty for D

$$X = \operatorname{Softmax} \left(\frac{(XW_Q)(XW_K)^{\mathsf{T}}}{\sqrt{D}} + M \right) (XW_K)^{\mathsf{T}}$$

Multi-head attn. splits W into h heads, then | **StyleFlow**: Take StyleGAN and replace the concatenates them. Positional encoding injects information about the position of the token. Attn. is $O(T^2D)$.

Normalizing Flows

 $\begin{pmatrix} y^A \\ y^B \end{pmatrix} = \begin{pmatrix} h(x^A, \beta(x^B)) \\ x^B \end{pmatrix}$

AR models have no latent space. Want both. Change of variable for xnew image \mathbf{x}_{B}^{2} : $\mathbf{x}_{B}^{2} = f_{\phi}(\mathbf{z}_{B}^{1} | \mathbf{z}_{A}^{2})$. f(z): $p_x(x) = p_z(f^{-1}(x)) \left| \det \frac{\partial f^{-1}(x)}{\partial x} \right|$

$$\left| p_z(f^{-1}(x)) \right| \det \frac{\partial f(z)}{\partial z} \right|^{-1}. \text{ Map } Z \to X \text{ with a}$$

, where β is any

$$\begin{pmatrix} x^A \\ x^B \end{pmatrix} = \begin{pmatrix} h^{-1}(y^A, \beta(y^B)) \\ y^B \end{pmatrix}, J = \begin{pmatrix} h' & h'\beta' \\ 0 & 1 \end{pmatrix}$$

mentwise.

ActNorm

Stack these for expressivity, $f = f_k \circ \dots f_1$. $\left| p_x(x) = p_z(f^{-1}(x)) \prod_k \left| \det \frac{\partial f_k^{-1}(x)}{\partial x} \right| \right|$

Squeeze: reshape, increase chan.

 ActNorm: batchnorm with init. s.t. output $\sim \mathcal{N}(0, \mathbf{I})$. $\mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$, $\mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$, $\log \det = H \cdot W \cdot$ $\sum_{i} \log |\mathbf{s}_{i}|$: linear.

• 1×1 conv: permutation along channel dim. Init W as rand. or-

PL(U + diag(s)), where P is a random fixed use k previous D for each G update. permut. matrix, L is lower triang. with $\overline{1s}$ on DCGAN: pool \rightarrow strided convolution, batch-

SRFlow: use flows to generate many high-res images from a low-res one. Adds affine injector between conv. and coupling layers. h^{n+1} = $X = \operatorname{Softmax} \left(\frac{(XW_Q)(XW_K)^{\mathsf{T}}}{\sqrt{D}} + M \right) (XW_V) \left| \begin{array}{l} \text{tor between conv. and coupling layers. } \mathbf{h}^{n+1} = \\ \exp(\beta_{\theta,s}^n(\mathbf{u})) \cdot \mathbf{h}^n + \beta_{\theta,b}(\mathbf{u}), \mathbf{h}^n = \exp(-\beta_{\theta,s}^n(\mathbf{u})) \cdot \\ \end{array} \right|$ $(\mathbf{h}^{n+1} - \beta_{\theta,h}^n(\mathbf{u})), \log \det = \sum_{i,j,k} \beta_{\theta,s}^n(\mathbf{u}_{i,j,k}).$

> network $z \rightarrow w$ (aux. latent space) with a normalizing flow conditioned on attributes. **C-Flow**: condition on other normalizing flows:

multimodal flows. Encode original image \mathbf{x}_{R}^{1} : $\sigma(c_i + \mathbf{V}_i, \mathbf{h}_i)$. Order of \mathbf{x} can be arbitrary but VAs dont have a tractable likelihood, $|\mathbf{z}_B^1 = f_{\phi}^{-1}(\mathbf{x}_B^1 | \mathbf{x}_A^1)$; encode extra info (image, $\begin{vmatrix} \mathbf{n} \\ \mathbf{n} \end{vmatrix}$ segm. map, etc.) \mathbf{x}_A^2 : $\mathbf{z}_A^2 = g_\theta^{-1}(\mathbf{x}_A^2)$; generate

> Flows are expensive for training and low res. The latent distr. of a flow needn't be \mathcal{N} .

Generative Adversarial Networks (GANs) deterministic invertible f_{θ} . This can be a NN, Log-likelihood is not a good metric. We can but computing the determinant is $O(n^3)$. If have high likelihood with poor quality by mixthe Jacobian is triangular, the determinant ing in noise and not losing much likelihood; or is O(n). To do this, add a coupling layer: low likelihood with good quality by remembering input data and having sharp peaks there.

Generator $G: \mathbb{R}^Q \to \mathbb{R}^D$ maps noise z to model, and h is eledata, **discriminator** $D: \mathbb{R}^D \to [0,1]$ tries to decide if data is real or fake, receiving both gen. outputs and training data. Train D for k steps for each step of *G*.

Training GANs is a min-max process, which are hard to optimize. V(G,D) = $|\mathbb{E}_{\mathbf{x} \sim p_{d}} \log(D(\mathbf{x})) + \mathbb{E}_{\hat{\mathbf{x}} \sim p_{m}} \log(1 - D(\hat{\mathbf{x}}))|$ For *G* the opt. $D^* = p_d(\mathbf{x})/(p_d(\mathbf{x}) + p_m(\mathbf{x}))$.

Jensen-Shannon divergence (symmetric): $D_{\rm JS}(p||q) = \frac{1}{2}D_{\rm KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{\rm KL}(p||\frac{p+q}{2}).$ Global minimum of $D_{IS}(p_d||p_m)$ is the glob. min. of V(G, D) and $V(G, D^*) = -\log(4)$.

If G and D have enough capacity, at each update step D reaches D^* and p_m improves $V(p_{\rm m}, D^*) \propto \sup_{D} \int_{\mathbf{x}} p_{\rm m}(\mathbf{x}) \log(-D(\mathbf{x})) d\mathbf{x},$

then $p_{\rm m} \to p_{\rm d}$ by convexity of $V(p_{\rm m}, D^*)$ wrt. $p_{\rm m}$. These assumptions are too strong. If D is too strong, G has near zero gradients

and doesn't learn $(\log'(1-D(G(z))) \approx 0)$. Use gradient ascent on $\log(D(G(z)))$ instead.

togonal $\in \mathbb{R}^{C \times C}$ with det $\mathbf{W} = 1$. log det = | Model collapse: G only produces one sample $H \cdot W \cdot \log |\det \mathbf{W}|$: $O(C^3)$. Faster: $\mathbf{W} := |$ or one class of samples. Solution: **unrolling** –

diag., U is upper triang. with 0s on diag., s norm, no FC, ReLU for G, LeakyReLU for D. is a vector. Then $\log \det = \sum_i \log |\mathbf{s}_i|$: O(C) | Wasserstein GAN: different loss, gradients W, add noise at each layer.

ulate images in latent space, inpainting. If \overline{G} NN learns to predict the added noise. predicts image and segmentation mask, we can Training: img \mathbf{x}_0 , $t \sim \text{Unif}(1...T)$, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, use inversion to predict mask for any image, even outside the training distribution.

5.1 3D GANs

3D GAN: voxels instead of pixels. Platonic- $|\mathbf{z} \sim \mathcal{N}(0, I)|$ if t > 1 else $\mathbf{z} = 0$; GAN: 2D input, 3D output differentiably ren- $|\mathbf{x}_{t-1}| = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t)) + \sigma_t \mathbf{z}$. dered back to 2D for D.

HoloGAN: 3D GAN + 2D superresolution GAN GRAF: radiance fields more effic. than voxels GIRAFFE: GRAF + 2D conv. upscale EG3D: use 3 2D images from StyleGAN for that add something to block outputs.

features, project each 3D point to tri-planes. 5.2 Image Translation

E.g. sketch $X \to \text{image } Y$. Pix2Pix: $G: X \to Y$ $D: X, Y \rightarrow [0, 1]$. GAN loss $+L_1$ loss between $\begin{bmatrix} 6.2 \end{bmatrix}$ sketch and image. Needs pairs for training. CycleGAN: unpaired. Two GANs $F: X \rightarrow |$ dict in latent space, decode with a decoder. $Y, G: Y \to X$, cycle-consistency loss $F \circ G \approx$ id; $G \circ F \approx$ id plus GAN losses for F and G. BicycleGAN: add noise input.

Vid2vid: video translation.

6 Diffusion models

High quality generations, better diversity, more stable/scalable.

Diffusion (forward) step q: adds noise to \mathbf{x}_t (not learned). Denoising (reverse) step p_{θ} : removes noise from \mathbf{x}_t (learned).

$$q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_{t}, t), \sigma_{t}^{2}\mathbf{I})$$

$$eta_t$$
 is the variance schedule (monotone \uparrow). Let $\alpha_t \coloneqq 1 - \beta_t, \overline{\alpha}_t \coloneqq \prod \alpha_i$, then $q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0, (1-\overline{\alpha}_t)\mathbf{I}) \Rightarrow \mathbf{x}_t = \sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\overline{\alpha}_t}\epsilon$. Denoising is not tractable naively: $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = q(\mathbf{x}_t \mid \mathbf{x}_{t-1})q(\mathbf{x}_{t-1})/q(\mathbf{x}_t), \ q(\mathbf{x}_t) = \int q(\mathbf{x}_t \mid \mathbf{x}_0)q(\mathbf{x}_0)\mathrm{d}\mathbf{x}_0$.

Conditioning on \mathbf{x}_0 we get a Gaussian. Learn model $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \approx q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$ by predicting the mean.

 $\log p(\mathbf{x}_0) \ge \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log(p(\mathbf{x}_{0:T})/q(\mathbf{x}_{1:T} \mid \mathbf{x}_0)) =$ $\mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)}\log p_{\theta}(\mathbf{x}_0\mid\mathbf{x}_1) - D_{\mathrm{KL}}(q(\mathbf{x}_T\mid\mathbf{x}_0)||p(\mathbf{x}_T)) \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) || p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)),$ where orange and purple are the same as in VAEs, and blue are the extra loss functions. In a sense VAEs are 1-step diffusion models.

stabilizes training. Hierarchical GAN: generate low-res image, then high-res during training. StyleGAN: learn intermediate latent space \mathcal{W} so we want $\mu_{\theta}(\mathbf{x}_{t},t) \approx \mu_{q}(\mathbf{x}_{t},\mathbf{x}_{0})$. $\mu_{q}(\mathbf{x}_{t},\mathbf{x}_{0})$ with FCs, batchnorm with scale and mean from can be written as $\frac{1}{\sqrt{\alpha_t}} \mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha_t}}\sqrt{\alpha_t}} \epsilon_0$, and GAN inversion: find z s.t. $G(z) \approx x \Rightarrow \text{manip-} \Big| \mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{\alpha_t}} \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}} \sqrt{\alpha_t}} \hat{\epsilon}_{\theta}(\mathbf{x}_t, t)$, so the

GD on $\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t) \|^2$. Sampling: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$, for t = T downto 1:

 $\sigma_t^2 = \beta_t$ in practice. t can be continuous.

Conditional generation

Add input *y* to the model.

ControlNet: don't retrain model, add layers

Guidance: mix predictions of a conditional and unconditional model, because conditional models are not diverse.

Latent diffusion models

High-res images are expensive to model. Pre-