DATA WAREHOUSING AND DATA MINING

- S. Sudarshan
- Krithi Ramamritham
- IIT Bombay
- sudarsha@cse.iitb.ernet.in
- krithi@cse.iitb.ernet.in

Course Overview

- # The course: what and how
- **#** 0. Introduction
- **#** I. Data Warehousing
- **#** II. Decision Support and OLAP
- # III. Data Mining
- **# IV. Looking Ahead**
- ★ Demos and Labs

0. Introduction

- # Data Warehousing, OLAP and data mining: what and why (now)?
- **# Relation to OLTP**
- **#** A case study

demos, labs

A producer wants to know....

Data, Data everywhere yet ...

- # I can't find the data I need
 - □ data is scattered over the network

- # I can't get the data I need
 - need an expert to get the data
- # I can't understand the data I
 found
 - available data poorly documented
- # I can't use the data I found
 - □ results are unexpected
 - □ data needs to be transformed from one form to other

What is a Data Warehouse?

A single, complete and consistent store of data obtained from a variety of different sources made available to end users in a what they can understand and use in a business context.

[Barry Devlin]

What are the users saying...

- # Data should be integrated across the enterprise
- Summary data has a real value to the organization
- # Historical data holds the key to understanding data over time
- What-if capabilities are required

What is Data Warehousing?

 A process of transforming data into information and making it available to users in a timely enough manner to make a difference

[Forrester Research, April 1996]

Evolution

- **#** 60's: Batch reports
 - □ hard to find and analyze information
 - □ inflexible and expensive, reprogram every new request
- **#** 70's: Terminal-based DSS and EIS (executive information systems)
- **80's:** Desktop data access and analysis tools
 - query tools, spreadsheets, GUIs
 - easier to use, but only access operational databases
- # 90's: Data warehousing with integrated OLAP engines and tools

Warehouses are Very Large Databases

Very Large Data Bases

- **#** Terabytes -- 10^12 bytes:
- **#** Petabytes -- 10^15 bytes:
- **#** Exabytes -- 10^18 bytes:
- # Zettabytes -- 10^21 bytes:
- # Zottabytes -- 10^24 bytes:

- ► Walmart -- 24 Terabytes
- Geographic Information Systems
- National Medical Records
- Weather images
- Intelligence Agency Videos

Data Warehousing --It is a process

** Technique for assembling and managing data from various sources for the purpose of answering business questions. Thus making decisions that were not previous possible

** A decision support database maintained separately from the organization's operational database

Data Warehouse

- **#** A data warehouse is a
- collection of data that is used primarily in organizational decision making.
 - -- Bill Inmon, Building the Data Warehouse 1996

Explorers, Farmers and Tourists

Tourists: Browse information harvested by farmers

Farmers: Harvest information from known access paths

Explorers: Seek out the unknown and previously unsuspected rewards hiding in the detailed data

Data Warehouse Architecture

Data Warehouse for Decision Support & OLAP

- # Putting Information technology to help the knowledge worker make faster and better decisions
 - Which of my customers are most likely to go to the competition?

Decision Support

- **x** Used to manage and control business
- **#** Data is historical or point-in-time
- **#** Optimized for inquiry rather than update
- # Use of the system is loosely defined and can be ad-hoc
- Used by managers and end-users to understand the business and make judgements

Data Mining works with Warehouse Data

Data Warehousing provides
the Enterprise with a memory

#Data Mining provides
the Enterprise with
intelligence

We want to know ...

- **#** Given a database of 100,000 names, which persons are the least likely to default on their credit cards?
- Which types of transactions are likely to be fraudulent given the demographics and transactional history of a particular customer?
- # If I raise the price of my product by Rs. 2, what is the effect on my ROI?
- # If I offer only 2,500 airline miles as an incentive to purchase rather than 5,000, how many lost responses will result?
- # If I emphasize ease-of-use of the product as opposed to its technical capabilities, what will be the net effect on my revenues?
- **#** Which of my customers are likely to be the most loyal?

Data Mining helps extract such information

Application Areas

Industry

Finance

Insurance

Telecommunication

Transport

Consumer goods

Data Service providers

Utilities

Application

Credit Card Analysis

Claims, Fraud Analysis

Call record analysis

Logistics management

promotion analysis

Value added data

Power usage analysis

Data Mining in Use

- ** The US Government uses Data Mining to track fraud
- ***** A Supermarket becomes an information broker
- **#** Basketball teams use it to track game strategy
- **#** Cross Selling
- ****** Warranty Claims Routing
- **#** Holding on to Good Customers
- # Weeding out Bad Customers

What makes data mining possible?

- ** Advances in the following areas are making data mining deployable:
 - data warehousing
 - <u>better and more data</u> (i.e., operational, behavioral, and demographic)

 - - -- Gartner Group

Why Separate Data Warehouse?

Performance

DML

- Op dbs designed & tuned for known txs & workloads.
- □ Complex OLAP queries would degrade perf. for op txs.
- Special data organization, access & implementation methods needed for multidimensional views & queries.

Function

- Missing data: Decision support requires historical data, which op dbs do not typically maintain.
- Data consolidation: Decision support requires consolidation (aggregation, summarization) of data from many heterogeneous sources: op dbs, external sources.
- □ Data quality: Different sources typically use inconsistent data representations, codes, and formats which have to be reconciled.

What are Operational Systems?

- # They are OLTP systems
- **Run mission critical** applications
- ** Need to work with stringent performance requirements for routine tasks
- **#** Used to run a business!

RDBMS used for OLTP

- **#** Database Systems have been used traditionally for OLTP
 - clerical data processing tasks
 - □ detailed, up to date data

 - □ read/update a few records
 - isolation, recovery and integrity are critical

Operational Systems

- **#** Run the business in real time
- **#** Based on up-to-the-second data
- Coptimized to handle large numbers of simple read/write transactions
- # Optimized for fast response to predefined transactions
- # Used by people who deal with customers, products -- clerks, salespeople etc.
- ** They are increasingly used by customers

Examples of Operational Data

Data	Industry	Usage	Technology	Volumes
Customer File	All	l e e e e e e e e e e e e e e e e e e e	egacy application, flat files, main frames	Small-medium
Account Balance	Finance		egacy applications, ierarchical databases, mainframe	Large
Point-of- Sale data	Retail		ERP, Client/Server, elational databases	Very Large
Call Record	Telecomm- unications	_	egacy application, ierarchical database, mainframe	Very Large
Production Record	Manufact- uring	Control Production r	ERP, elational databases, AS/400	Medium

So, what's different?

Application-Orientation vs. Subject-Orientation

OLTP vs. Data Warehouse

- ** OLTP systems are tuned for known transactions and workloads while workload is not known a priori in a data warehouse
- # Special data organization, access methods and implementation methods are needed to support data warehouse queries (typically multidimensional queries)
 - ▶e.g., average amount spent on phone calls between 9AM-5PM in Pune during the month of December

OLTP vs Data Warehouse

OLTP

- Application
 Oriented
- Used to run business
- □ Detailed data
- Current up to date
- □ Repetitive access
- □ Clerical User

- Warehouse (DSS)
 - Subject Oriented
 - Used to analyze business
 - Summarized and refined
 - Snapshot data
 - ▶ Integrated Data
 - ▶ Ad-hoc access
 - Knowledge User (Manager)

OLTP vs Data Warehouse

OLTP

- □ Performance Sensitive
- Few Records accessed at a time (tens)
- □ Read/Update Access
- No data redundancy
 ■
- □ Database Size 100MB 100 GB

- Data Warehouse
 - Performance relaxed
 - Large volumes accessed at a time (millions)
 - Mostly Read (Batch Update)
 - Redundancy present
 - Database Size 100GB few terabytes

OLTP vs Data Warehouse

OLTP

- Transaction throughput is the performance metric
- □ Thousands of users

- Data Warehouse
 - Query throughput is the performance metric
 - ▶ Hundreds of users
 - Managed by subsets

To summarize ...

OLTP Systems are used to "run" a business

#The Data
Warehouse helps
to "optimize" the
business

Mhy Now?

- ★ Data is being produced
 ✓
- ★ ERP provides clean data ✓
- st The computing power is available ightharpoonup
- * The computing power is affordable ~
- # The competitive pressures are strong
- ****** Commercial products are available \checkmark

Myths surrounding OLAP Servers and Data Marts

- ** Data marts and OLAP servers are departmental solutions supporting a handful of users
- # Million dollar massively parallel hardware is needed to deliver fast time for complex queries
- **#** OLAP servers require massive and unwieldy indices
- **#** Complex OLAP queries clog the network with data
- Data warehouses must be at least 100 GB to be effective
 - Source -- Arbor Software Home Page

Wal*Mart Case Study

- # Founded by Sam Walton

 ✓
- ****** One the largest Super Market Chains in the US \checkmark
- ★ Wal*Mart: 2000+ Retail Stores
- **SAM's Clubs** 100+Wholesalers Stores

☑This case study is from Felipe Carino's (NCR <u>Teradata</u>) presentation made at Stanford Database Seminar

Old Retail Paradigm

₩ Wal*Mart

- □ Inventory Management
- Merchandise Accounts Payable
- Purchasing
- Supplier Promotions: National, Region, Store Level

Suppliers

- Accept Orders
- ▶ Promote Products
- Provide special Incentives
- Monitor and Track The Incentives
- Bill and Collect Receivables
- Estimate Retailer Demands

New (Just-In-Time) Retail Paradigm

- **#** No more deals
- ** Shelf-Pass Through (POS Application)
 - □ One Unit Price
 - Suppliers paid once a week on ACTUAL items sold
 - - □ Daily Inventory Restock
 - Suppliers (sometimes SameDay) ship to Wal*Mart
- # Warehouse-Pass Through
 - Stock some Large Items
 - □ Delivery may come from supplier
 - Distribution Center
 - Supplier's merchandise unloaded directly onto Wal*Mart Trucks

Wal*Mart System

- **#** NCR 5100M 96 Nodes:
- ****** Number of Rows:
- **#** Historical Data:
- ****** New Daily Volume:
- **# Number of Users:**
- Number of Queries: ► 60,000 per week

- ▶ 24 TB Raw Disk; 700 -1000 Pentium CPUs
- > 5 Billions
- ▶ 65 weeks (5 Quarters)
- ► Current Apps: 75 Million
- New Apps: 100 Million +
- ▶ Thousands