Practice Problem Set # 4

ENEL 469

1. Consider the circuit shown below where all the transistors are identical and, R_1 = 10 k Ω , R_B = 100 k Ω , R_C = 2 k Ω , β = 50, $V_{BE(ON)}$ = 0.7 V and V_A = ∞ . Find I_{B1} , I_{B2} , I_{B3} , V_{CE2} , and V_{CE3} . Do not ignore base currents.

2. Consider the following circuit with the parameters: V^+ = 5 V, V^- = -5 V, R_1 = 9.3 k Ω , β = 50, $V_{BE(ON)}$ = 0.7 V, and V_A = 80 V. Determine the change in I_0 as V_{CE2} changes from 0.7 V to 5V.

3. Consider the circuit shown below having the parameters: $V^+=3~V,~V^-=-3~V,~and~R_1=30~k\Omega.$ The parameters of the transistors Q_1 and Q_2 are $V_{BE1,2(on)}=0.7~V$ and $\beta=120$. The parameters of the transistor Q_3 are $V_{BE3~(on)}=0.6~V$ and $\beta_3=80$. Assume $V_A=\infty$ for all three transistors. Determine the value of each current indicated in the circuit.

4. Design a Widlar current source (find the values of R_1 and R_E) as shown in the following figure with the specifications:

Bias voltages: V+ = 5 V, V- = -5 V Currents: $I_{REF} = 1$ mA and $I_0 = 12$ μ A.

The transistors Q1 and Q2 are described as V_{BE} = 0.8 V at I_{C} = 10 mA and β = 50.

Do not ignore base currents.

5. In the following circuit assume that $I_{REF}=120~\mu A,~I_{S1}=I_{S2}=2\times 10^{-16}~A.$ a) Find $V_{BE1},~b)$ If $I_0=50~\mu A,~determine~V_{BE2}$ and $R_E,~c)$ Find I_0 if $R_E=700~\Omega,~what~is~V_{BE2}$?

6. Consider the circuit shown below. Neglect base currents and assume $VA = \infty$. Determine the value of R_E such that $I_O = I_{REF} = 100 \ \mu A$. Assume $V_{BE} = 0.7 \ V$ at a collector current of 1 mA.

7. For the circuit shown in the following figure assume transistor parameters $|V_{BE}| = |V_{EB}| = 0.7 \text{ V}$ for all transistors except Q3 and Q6 and let $\beta = \infty$. Find the collector current in each transistor. *This question requires trial and error method for finding I_{C3} and I_{C6}*.

