Dependent types

Ali Caglayan

University of Bath

February 17, 2019

Ali Caglayan Dependent types 1 / 9

Simply typed lambda calculus

- Simply typed lambda calculus is a formal system.
- We start with some "atomic" types
- We can make new types out of "type constructors" known as introduction rules
- Usually we only have function types, but we can have more...

When adding a new type we must write down rules to define how it will behave. Usually these are sorted into 4 kinds of rules:

- Formation rules (how to make the type)
- Constructors (how to make terms of the type)
- Eliminators (how to break terms of the type)
- Computation rules (how a function coming out of the type computes)

Note: Computation rules can usually be derived from the other rules for positive types, and therefore can be omitted.

Ali Caglayan Dependent types 2 / 9

Product types

Formation

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma \vdash B \text{ Type}}{\Gamma \vdash A \times B \text{ Type}}$$

Constructors

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B}$$

Eliminators

$$\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \mathsf{fst}(t) : A}$$

$$\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \mathsf{snd}(t) : B}$$

Computation rules

$$(fst(t), snd(t)) \equiv t$$

Sum types

Formation

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma \vdash B \text{ Type}}{\Gamma \vdash A + B \text{ Type}}$$

Constructors

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{inl}(a) : A + B}$$

$$\frac{\Gamma \vdash b : B}{\Gamma \vdash \mathsf{inr}(b) : A + B}$$

Eliminators

$$\frac{\Gamma \vdash f : A \to C \qquad \Gamma \vdash g : B \to C}{\Gamma \vdash \mathsf{ind}_{A+B}(f,g) : A + B \to C}$$

What are dependent types?

- Functions allow terms to depend on other terms
- Polymorphism allows types to depend on other types
- Terms already depend on types
- Dependent types allow types to depend on terms

What problems can dependent types solve?

- Encoding hard to encode data types such as lists (or vectors) of fixed length.
- It is equivalent to first-order logic in some suitable sense. (Dependent Curry-Howard)
- Generalises polymorphism, GADT, inductive types etc.

Ali Caglayan Dependent types 5 / 9

Pi types

What if the target of a function type could change depending on the input?

Introduction

$$\frac{\Gamma \vdash A \text{ Text} \qquad \Gamma, x : A \vdash B \text{ Type}}{\Gamma \vdash \prod_{(x:A)} B \text{ Type}}$$

Constructors

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash \lambda(x : A).b : \prod_{(x : A)} B}$$

Eliminators and Computation rules

$$\frac{\Gamma \vdash f : \prod_{(x:A)} B \qquad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B[a/x]} \qquad \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash a : A}{\Gamma \vdash (\lambda(x : A).b)(a) \equiv b[a/x] : B[a/x]}$$

Ali Caglayan Dependent types 6 / 9

Sigma types

When making the type of dates, we could write

$$\mathsf{Days} \times \mathsf{Months} \times \mathsf{Years}$$

However this would give us completely nonsense dates such as 31/02/2019.

Some times product types are not enough. In this case we need **sigma types**.

$$\sum_{(y: \text{Years})} \sum_{(m: \text{Months})} \mathsf{Days}(y, m)$$

A term of which would look like (2019; (01; 31)) (the order doesn't really matter). We might call such a term a dependent pair. Note: Days is a family of types, i.e. a type depending on the given year and month.

• Sigma types generalise product types.

Ali Caglayan Dependent types 7 / 9

(Dependent) Curry-Howard

Propositional logic	Type theory
$\forall a \in A, P(a)$	pi type $\prod_{(a:A)} P(a)$
$\exists a \in A, P(a)$	sigma type $\sum_{(a:A)} P(a)$
proposition A	A Type
proof of A	term of A
and $A \wedge B$	product type $A \times B$
or $A \lor B$	sum type $A + B$
implies $A \Longrightarrow B$	function type $A o B$
true	unit type $oldsymbol{1}$
false	empty type $oldsymbol{0}$
not A	A ightarrow 0

Ali Caglayan Dependent types 8 / 9

How can we model type theories?

Answer:

Categorical semantics.

This allows us to use category theory to reason about the metatheory of our type theory.

But theres more...

When modelling "type theories" in mathematics it was found that there is really a two way correspondance.

Type theory \rightleftharpoons Category theory

Type theory can be used to reason about a category. Lots of people have investigated this, notably Topos theorists.

Ali Caglayan Dependent types 9 /