Controle Linear: Capítulo 3 - Análise no Domínio do Tempo

Prof. Ana Isabel Castillo

May 16, 2025

Objetivos do Capítulo 3

- ► Analisar o comportamento temporal de sistemas lineares.
- Compreender respostas ao degrau, impulso e rampa.
- Calcular parâmetros transitórios (overshoot, tempo de acomodação).
- Avaliar a estabilidade de sistemas (Routh-Hurwitz).
- ► Aplicar no contexto financeiro (ex.: recuperação de portfólios).

Respostas Transitórias

- ▶ Resposta ao degrau: Reação a uma entrada constante (u(t) = 1).
- **Resposta ao impulso**: Reação a um pulso instantâneo $(u(t) = \delta(t))$.
- **Resposta à rampa**: Reação a uma entrada linear (u(t) = t).
- Exemplo financeiro: Resposta de um portfólio a um choque de mercado (degrau).

Parâmetros Transitórios

- ▶ Para sistemas de $2^{\frac{2}{3}}$ ordem $(G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2})$:
 - Overshoot (M_p) : $M_p = e^{-\pi \zeta/\sqrt{1-\zeta^2}}$.
 - **Tempo de subida** (t_r) : Tempo para atingir o valor final.
 - ▶ Tempo de acomodação (t_s) : $t_s \approx \frac{4}{\zeta \omega_n}$.
- Exemplo: Tempo para um portfólio se estabilizar após uma queda.

Estabilidade de Sistemas

- ▶ Um sistema é estável se todas as raízes do denominador de G(s) têm parte real negativa.
- Critério de Routh-Hurwitz: Constrói uma tabela para verificar estabilidade sem calcular raízes.
- Exemplo: $s^3 + 3s^2 + 2s + 1 = 0$. Tabela Routh:

$$\begin{array}{c|cccc}
s^3 & 1 & 2 \\
s^2 & 3 & 1 \\
s^1 & \frac{5}{3} & 0 \\
s^0 & 1 & 0
\end{array}$$

Sistema estável se não houver mudanças de sinal.

Exemplo Financeiro: Recuperação de Portfólio

- ► Modelo: $\frac{d^2V}{dt^2} + 2\frac{dV}{dt} + V = u(t)$, onde V(t) é o valor do portfólio, u(t) é um choque.
- ► Função de transferência: $G(s) = \frac{1}{s^2 + 2s + 1}$.
- ▶ Resposta ao degrau: $V(t) = 1 e^{-t} te^{-t}$.
- ▶ Parâmetros: $\zeta = 1$, $\omega_n = 1$, sem overshoot, $t_s \approx 4s$.

Resumo

- Respostas transitórias (degrau, impulso, rampa) descrevem o comportamento temporal.
- Parâmetros como overshoot e tempo de acomodação quantificam desempenho.
- Estabilidade é verificada por Routh-Hurwitz ou raízes.
- Aplicação financeira: Analisar recuperação de portfólios após choques.

Exercício

Para $G(s) = \frac{1}{s^2 + s + 1}$, calcule o overshoot e o tempo de acomodação. Interprete como a resposta de um ativo financeiro.