- Sex
- Age
- Marital State
- Disability
- Nativity
- Citizenship
- Language Skills
- School Level
- Employment Status

	Estimate	STD Error	P Value
::	::	::	::
(Intercept)	-0.9116	0.1592	1.018e-08
CITNotCitizen	-0.2039	0.09201	0.02672
AGEP	-0.003014	0.001907	0.1139
MARSingle	-0.5562	0.05486	3.68e-24
SCHLMSc	0.3229	0.05162	3.944e-10
SCHLPhD	0.4372	0.1103	7.392e-05
LANXmultiLang	0.1438	0.06576	0.02875
SEXFEMALE	-0.017	0.04433	0.7013
DISHealthy	1.125	0.1062	3.259e-26
NATIVITYNonNative	-0.08082	0.07654	0.291

We can see that the correlations of the "Sex", "Age", and "Nativity" with the output is not statistically sign by a collinearity between the input variables, which prevents them from being statistically significant. To reporting the variance inflation factor between the variables:

ı		ı	GVIF	ı	Df	ı
į:	:	į:	::	: :		i
İ	CIT	İ	1.439	İ	1	İ
	AGEP		1.402	ĺ	1	
	MAR		1.329		1	
	SCHL		1.036		2	
	LANX		1.886		1	
	SEX		1.013		1	
	DIS		1.03		1	
	NATIVITY		2.305		1	ĺ

It doesn't seem like it!

Income vs Sex

Income vs Nativity

Income vs Citizenship

Income vs Age

Income vs Education

Income vs Marital Status

Income vs Race

Income vs Employment Map across the States

Cor=0.903

RACE=Asian

Cor=0.33


```
> cor
```

[6] 0.3345368383 0.0003149281 0.3367420952 0.1302585273

AGE

```
> age <- ds%>%
+ filter(AGEP>=16&AGEP<=32)%>%
   group_by(ST)%>%
+ summarise(count = n())
> cor(data$value,age$count/stateTotal$count)
[1] 0.4576832
> plot(data$value,age$count/stateTotal$count)
> age <- ds%>%
+ filter(AGEP>=33&AGEP<=44)%>%
   group_by(ST)%>%
+ summarise(count = n())
> cor(data$value,age$count/stateTotal$count)
[1] 0.450071
> plot(data$value,age$count/stateTotal$count)
> age <- ds%>%
+ filter(AGEP>=45&AGEP<=54)%>%
   group_by(ST)%>%
  summarise(count = n())
> cor(data$value,age$count/stateTotal$count)
[1] 0.1916612
> plot(data$value,age$count/stateTotal$count)
> age <- ds%>%
+ filter(AGEP>=55&AGEP<=75)%>%
   group_by(ST)%>%
+ summarise(count = n())
> cor(data$value,age$count/stateTotal$count)
[1] -0.1506796
s nlot(detetualis acot count /ctatoTotal toount)
```

Marital Status

```
> cor
[1] -0.2036917 -0.5031219 -0.5386787 0.1030570 0.7206929
```

Nativity

Non-nativity vs income

Cor: 0.65

The rich

• The rich: whose annual Income >= \$120000

