Distributed Computing

A-07. Queueing and Scheduling

Queues: The Simplest Model

A Little Bit of Queueing Theory

 Let's consider a simple case, for the moment: we have a single server and a queue of **jobs** it has to serve (web pages, computations, ...)

(image by Tsaitgast on Wikipedia, CC-BY-SA 3.0 license)

- λ and μ are the average frequencies (**rates**) at which jobs respectively join the queue and leave the system when they are complete: in time dt, the probability a job arrives or leaves when being served are respectively λdt and μdt
- Jobs are served in a First-In-First-Out fashion

The Simplest Model

Reference: Harrison & Patel, 1992, chapters 4-5

- This is called M/M/1 (Kendall notation) queue because
 - Jobs arrive in a memoryless fashion: no matter what happened until now, the probability of seeing a new job in a time unit never changes
 - Jobs are served in a **memoryless** fashion: the probability of a job finishing does not depend on how long it's been served, or anything else
 - Just one server

Wait--Why This Model?

- "All models are wrong, but some are useful" (George Box)
- Real systems are **not** like this, but some of the insight does apply to real-world use cases
 - The memoryless property makes it much easier to derive closed-form formulas
 - (Some of) the insight we get will be useful
 - We can compare & contrast with simulations
 - And we need to verify whether simulations are representative too

Let's Analyze M/M/1

(image by Gareth Jones on Wikipedia, CC-BY-SA 3.0 license)

- How does this model behave on the long run?
 - What is the probability of having x jobs in the queue?
 - What is the **amount of time** a typical job will wait before being served?
- We will start by looking at the first question, looking for an equilibrium probability distribution

M/M/1 Equilibrium

- To be an equilibrium we need
 - $-\lambda < \mu$, otherwise the number of elements in the queue will keep growing
 - That in any moment the probability of moving from state *i* to *i*+1 is the same of moving in the opposite direction:

$$\lambda p_i dt = \mu p_{i+1} dt$$
$$p_{i+1} = \frac{\lambda}{\mu} p_i$$

Some Easy Algebra

• Let's simplify and say $\mu=1$ (just change the time unit)

$$p_{i+1} = \lambda p_i$$

hence

$$p_1 = \lambda p_0, p_2 = \lambda^2 p_0, \dots, p_i = \lambda^i p_0$$

• Since this is a probability distribution, its sum must be one. We can then solve everything:

$$\sum_{i=0}^{\infty} \lambda^{i} p_{0} = 1; \frac{1}{1-\lambda} p_{0} = 1; p_{0} = 1-\lambda; p_{i} = (1-\lambda)\lambda^{i}$$

The average queue length is

$$L = \sum_{i=0}^{\infty} i p_i = (1 - \lambda) \sum_{i=0}^{\infty} (i \lambda^i) = (1 - \lambda) \frac{\lambda}{(1 - \lambda)^2} = \frac{\lambda}{1 - \lambda}$$

Little's Law

 Beautifully simple: L equals the average time spent in the system W times the arrival rate:

$$L = \lambda W$$

- Why? Consider this: if a time unit spent in the system by a job "costs" 1€, then jobs would spend W€ on average.
- In an average time unit, the system will collect $L \in \mathbb{R}$ (because on average L jobs are in queue); in equilibrium and on average λ jobs will arrive and leave the system, spending a total of λW .

So We've Got Our Result

 The average time spent in the system for an M/M/1 FIFO queue is

$$W = \frac{L}{\lambda} = \frac{\left(\frac{\lambda}{1 - \lambda}\right)}{\lambda} = \frac{1}{1 - \lambda}$$

Multiple Servers

Multi-Server Version

- Rather than a single server, there are n servers
- You have a load balancer to divide the load between servers
- How to assign load to servers?
 - If randomly, you can handle a load of $n\lambda$ with the performance of a single server having load λ
 - Can we do better?
 - We can assign jobs to the least loaded server!

Supermarket Queueing

- Idea: rather than querying *n* servers to find out their queue length, just ask a small number d of them and assign to the shortest queue
- Mitzenmacher (2001) finds that the fraction of queues with at least I jobs drops from λ^i to

$$\lambda^{\frac{d^i-1}{d-1}}$$

Theoretical Queue Length

Beyond First-In-First-Out

Preemptive Policies

- In the real world, you very often have many very small jobs and a few extremely large ones
 - The memoryless property doesn't apply!
- You can preempt running jobs: pause them and resume them later
- Practical, widely adopted, solution: round-robin scheduling, where you run a job for a given timeslot and then pass the turn to another one
 - If n jobs are in the queue, each proceeds at speed 1/n
 - Often adapted with priorities reflecting job importance

Size-Based Scheduling

- If you know for how long a job will be running (its size),
 you can do something smarter
 - E.g., you may know how long an algorithm will take or how big is the file you're serving
- To minimize the average time spent W, the optimal policy is Shortest Remaining Processing Time (SRPT), which always serves the job needing the least work to complete
 - Theoretical possibility of **starvation**: large jobs are never served—not really relevant in practice (Harchol-Balter et al., 2003)
 - Sketch of optimality proof at the blackboard (Schrage, 1968)

Errors in Size Estimation

- SRPT may behave catastrophically if jobs' size information is incorrect
 - If large jobs are underestimated, their "remaining processing time" goes below 0 and "blocks" the system until they are finished
 - Particularly problematic with very diverse job sizes
- Simple solution: forget about the "remaining" processing time and schedule first the jobs with smallest estimated size!
 - Shown to work well both in simulations and theory
 - Assuming estimation error is proportional to real size

Conclusions

Evaluating Distributed Systems

- Mathematical models
 - Good: "hard truths" for the modeled world
 - Bad: needs simplifications: the modeled world is not the real world
- Experiments & measurements on real systems
 - Good: evaluating the "real thing"
 - Bad: overly focused on implementation details, expensive, limited
- Simulations
 - Good: (to some extent) scalable, cheap
 - Bad: trade-off between scalability and precision

Scheduling For Your System

- Apply the "supermarket" technique, scheduling on the machine with the least jobs in queue
- Beware of FIFO! Consider preemption and roundrobin scheduling
- If half-decent size estimates are possible, consider prioritizing shortest jobs
 - Make sure mistakes won't completely stop everything else
 - If malicious behavior is possible, consider its impact though