

SEQUENCE.LISTING.ST25 SEQUENCE LISTING

<110> Benson, Timothy Durbin, Jim Prince, D. Bryan

<120> CRYSTALLIZATION AND STRUCTURE DETERMINATION OF GLYCOSYLATED HUM AN BETA SECRETASE, AN ENZYME IMPLICATED IN ALZHEIMER'S DISEASE

<130> 00481

<140> 09/747,420

<141> 2000-12-23

<160> 5

<170> PatentIn version 3.0

<210> 1

<211> 385

<212> PRT

<213> Homo sapiens

<400> 1

Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val

Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp 20 25 30

Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu 35 40 45

His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg 50 60

Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu 65 70 75 80

Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg 85 90 95

Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly 100 105 110

Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg 115 120 125

Page 1

The state of the s

SEQUENCE.LISTING.ST25

	Pro	Asp 130	Asp	Ser	Leu	Glu	Pro 135	Phe	Phe	Asp	Ser	Leu 140	Val	Lys	Gln	Thr
He Hall High High Hoop Hoop Hoop And There I W Chen I Higher A	His 145	Val	Pro	Asn	Leu	Phe 150	Ser	Leu	Gln	Leu	Cys 155	Gly	Ala	Gly	Phe	Pro 160
	Leu	Asn	Gln	Ser	Glu 165	Val	Leu	Ala	Ser	Val 170	Gly	Gly	Ser	Met	Ile 175	Ile
	Gly	Gly	Ile	Asp 180	His	Ser	Leu	Tyr	Thr 185	Gly	Ser	Leu	Trp	Tyr 190	Thr	Pro
	Ile	Arg	Arg 195	Glu	Trp	Tyr	Tyr	Glu 200	Val	Ile	Ile	Val	Arg 205	Val	Glu	Ile
	Asn	Gly 210	Gln	Asp	Leu	Lys	Met 215	Asp	Cys	Lys	Glu	Tyr 220	Asn	Tyr	Asp	Lys
	Ser 225	Ile	Val	Asp	Ser	Gly 230	Thr	Thr	Asn	Leu	Arg 235	Leu	Pro	Lys	Lys	Val 240
	Phe	Glu	Ala	Ala	Val 245	Lys	Ser	Ile	Lys	Ala 250	Ala	Ser	Ser	Thr	Glu 255	Lys
	Phe	Pro	Asp	Gly 260	Phe	Trp	Leu	Gly	Glu 265	Gln	Leu	Val	Cys	Trp 270	Gln	Ala
	Gly	Thr	Thr 275	Pro	Trp	Asn	Ile	Phe 280	Pro	Val	Ile	Ser	Leu 285	Tyr	Leu	Met
	Gly	Glu 290	Val	Thr	Asn	Gln	Ser 295	Phe	Arg	Ile	Thr	Ile 300	Leu	Pro	Gln	Gln
	Tyr 305	Leu	Arg	Pro	Val	Glu 310	Asp	Val	Ala	Thr	Ser 315	Gln	Asp	Asp	Cys	Tyr 320
	Lys	Phe	Ala	Ile	Ser 325	Gln	Ser	Ser	Thr	Gly 330	Thr	Val	Met	Gly	Ala 335	Val
	Ile	Met	Glu	Gly 340	Phe	Tyr	Val	Val	Phe 345	Asp	Arg	Ala	Arg	Lys 350	Arg	Ile
	Gly	Phe	Ala 355	Val	Ser	Ala	Cys	His 360	Val	His	Asp	Glu	Phe 365	Arg	Thr	Ala
	Ala	Val 370	Glu	Gly	Pro	Phe	Val 375	Thr	Leu	Asp	Met	Glu 380	Asp	Cys	Gly	Tyr
									Page	2						

Page 2

SEQUENCE.LISTING.ST25

```
Asn
385
<210>
       2
<211>
       21
<212>
       PRT
<213>
       Artificial
<220>
<223>
       Histidine Tag
<400>
       2
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Met His Thr Glu His
                                      10
His His His His
             20
<210>
       3
<211>
       13
<212>
       PRT
<213>
       Artificial
<220>
<223>
       Synthetic Peptide
<220>
<221>
       MOD RES
<222>
       (5)..(5)
<223>
       Statine
<400>
       3
Ser Glu Val Asn Xaa Val Ala Glu Phe Arg Gly Gly Cys
1
                                      10
<210>
       4
<211>
       32
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Primer
<400>
```

SEQUENCE.LISTING.ST25

cgctttggat ccgtggacaa cctgaggggc aa 32

<210> 5
<211> 40
<212> DNA
<213> Artificial
<220>
<223> Primer

<400> 5 cgctttggta ccctatgact catctgtctg tggaatgttg

 40^{-}