Electronic Circuits: Final Examination

10:20~12:00, 1/13/2006

1. (14%) Suppose a feedback resistor R_F is connected from the upper input terminal to the upper output terminal of the amplifier circuit in Fig. 1. Find $R_i' = v_{in}/i_{in}$ and $A_v = v_{out}/v_s$ (expressed as a function of other parameters).

2. (16%) Let $R = 3\Omega$ and $i_s = 4A$ in Fig. 2. Use node analysis to calculate v_1, v_2, i_1 , and i_2 .

 $\frac{1}{3}(V_2-V_1)+\frac{U_2}{\zeta}=\frac{1}{4}(30-V_2)$

- 3. Consider the circuit in Fig. 3.
 - (a) (10%) Derive the parameters a, b, c, and d, e, f, in terms of C, R, L:

$$\begin{cases} i''_L + ai'_L + bi_L = ci_S \\ v''_C + dv'_C + ev_C = fi'_S \end{cases} -2 k_L e^{2t} cos 4t -2 k_2 e^{2t} sh^{-2t}$$

$$-2 k_L e^{2t} cos 4t -2 k_2 e^{2t} sh^{-2t} c$$

(b) (10%) Find the step response of $i_L(t)$ when $i_S = 3u(t)$, $C = \frac{1}{40}$ F, $R = 10\Omega$, and L = 2H.

6. (20%) Consider a circuit described by $\frac{d^2i}{dt^2} + 4\frac{di}{dt} + 3i = x$. Find the complete response i(t) for t > 0, when x(t) = 5 for t < 0, and $x(t) = \sin t$ for t > 0. Please feel free to use \times , $|\cdot|$, $\sqrt{\cdot}$ and \tan^{-1} wherever appropriate.

and \tan^{-1} wherever appropriate.

7. (15%) Given $F(s) = \frac{2s^2 + 5}{(s-3)(s^2 + 4s + 40)}$, find the corresponding time-domain function f(t) via inverse Laplace transform. Also find $f(\infty)$ using the final-value theorem, or explain why the theorem is not applicable. Please feel free to use \times , $|\cdot|$, $\sqrt{\cdot}$ and \tan^{-1} wherever appropriate.