

vv214_SU2020_Assignment 1

due to 28/05/2020

Part A

Problem 1

Find the *rref* and the rank of the following matrices:

a.
$$\begin{pmatrix}
 1 & 3 & 5 & -1 \\
 2 & -1 & -3 & 4 \\
 5 & 1 & -1 & 7 \\
 7 & 7 & 9 & 1
 \end{pmatrix}$$
b.
$$\begin{pmatrix}
 0 & 2 & -4 \\
 -1 & -4 & 5 \\
 3 & 1 & 7 \\
 0 & 5 & -10 \\
 2 & 3 & 0
 \end{pmatrix}$$

Show your work.

Problem 2

Apply Gauss-Jordan elimination to solve the linear system

$$\begin{cases} 3x_1 - 2x_2 - 5x_3 + x_4 = 3 \\ 2x_1 - 3x_2 + x_3 + 5x_4 = -3 \\ x_1 + 2x_2 - 4x_4 = -3 \\ x_1 - x_2 - 4x_3 + 9x_4 = 22 \end{cases}$$

Show your work.

Problem 3

Show that the linear systems

a.
$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 + 9x_2 - 3x_3 = 0 \end{cases}$$
 b.
$$\begin{cases} 3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0 \\ 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0 \\ x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0 \\ x_1 - 5x_2 + 2x_3 - 16x_4 + 3x_5 = 0 \end{cases}$$

have infinitely many solutions and find those solutions.

Problem 4

For which values of the constants b and c is the vector (3, b, c) a linear combination of the vectors (1,3,2), (2,6,4), (-1,-3,-2)?

Problem 5

Bretscher 1.2.38, p. 20

Problem 6

Show that the following sets are linear spaces:

LIALL

- **a.** the set $M_2(\mathbb{Q})$ of all square matrices over \mathbb{Q}
- **b.** the set $\mathbb{Z}_p[x]$ of all polynomials with coefficients from \mathbb{Z}_p where p is a prime.

Dr. Olga Danilkina

中国 上海闵行区东川路 800 号

邮编 200240

Part B

 $Type\ the\ following\ commands\ in\ MATLAB/MATLAB\ Online\ and\ save\ the\ inputs\ and\ outputs/m.$

files/graphs as a .pdf file

Operation	Type	Comments
To enter a matrix row by row	<i>A</i> = [1 2 3 4; 5 6 7 8; 9 8 7 6;	A space between row entries
	5 4 3 2]	and a semicolon between
		rows
To create the identity matrix	I=eye(5)	What is the size of the
		obtained matrix?
To create a random square matrix	B=rand(4)	4
To create a random matrix 7×6	C = rand(7,6)	
To round the entries of C to integers	C=round(C)	
To change the entree of the matrix	C(3,4)=7	To change $c_{34} \rightarrow 7$
To change the entries of the matrix	C(1,2:3)=[5,6]	To change the entries
		$c_{12} \rightarrow 5$ and $c_{13} \rightarrow 6$
To create a matrix of zeroes	0=zeros(3) 01=zeroes	
	(3,5)	
To create a matrix of entries 1	U=ones(3) $U1=ones(3,5)$	
To change the row of A	$A(3,:) = [0 -1 \ 0 \ 1]$	
To create a diagonal matrix	D=diag([1234])	
To create the diagonal matrix from <i>A</i>	D1=diag(diag(A))	What happens if you type
		diag(A)?
To create a lower triangular matrix	L=tril(A,k)	Use $k=-2,-1,0,1,2$
To create an upper triangular matrix	U=triu(A,k)	Use $k=-2,-1,0,1,2$
To create the transpose matrix of A	A'	
To create a row-vector	a=[1 2 3 4]	A space between row entries
To create a column vector	a1 = [-43 - 21]'	•
To create a matrix with columns a^T , $a1$	aa1=[a'a1]	
To create a vector a vector with	x=1:2:11	The syntax is
equispaced elements		x=1st value:step:end value
To create a vector with <i>Nv</i> elements with	y = linspace(0, 0.5, 10)	y=linspace(start,end,Nv)
the given start and end elements		
To obtain the reduced row echelon form	rref(A)	
of the matrix A		
To find the rank of the matrix A	Rank(A)	
To find the sum of two matrices	A+B	$A4\times4$, $B4\times4$
To find a scalar product	10* <i>C</i>	
To find the nth power of a matrix	A^5	
To solve a linear system $E\bar{x}=F$	$X=E\setminus F$	Check the cases
	,	1. <i>E</i> =[1 4 1; 4 13 7; 7 22 13]
		$F = [0 \ 0 \ 1]$
		$2. E = [1 \ 1 \ -1; 4 \ -1 \ 5; 6 \ 1 \ 4]$
		$F = [0 \ 0 \ 0]$

Dr. Olga Danilkina 中国 上海闵行区东川路 800 号 邮编 200240

Tel: +86-21-34206765 Ext. 4372 http://umji.sjtu.edu.cn