UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Tom Gornik Izrek o invarianci odprtih množic

Delo diplomskega seminarja

Mentor: izr. prof. dr. Jaka Smrekar

Kazalo

1. Izrek o invarianci odprtih množic	4
1.1. Navajanje literature	4
Literatura	7
Literatura	7

Izrek o invarianci odprtih množic

POVZETEK

Domain invariance theorem

Abstract

Math. Subj. Class. (2010): Ključne besede: Keywords:

1. IZREK O INVARIANCI ODPRTIH MNOŽIC

V prejšnjih poglavjih smo si pripravili vse potrebno za dokaz izreka o invarianci odprtih množic, zato se bomo brez ovinkarjenja lotili dokaza.

1.1. Navajanje literature. Članke citiramo z uporabo \cite{label}, \cite[text]{label}| ali pa več naenkrat s \cite\{label1, label2}. Tudi tukaj predhodno besedo in citat povežemo z nedeljivim presledkom ~. Na primer [?, ?], ali pa [?], ali pa [?, str. 12], [7, enačba (2.3)]. Vnosi iz .bib datoteke, ki niso citirani, se ne prikažejo v seznamu literature, zato jih tukaj citiram. [3], [2], [6], [1], [5], [4], [8].

Izrek 1.1 (Izrek o invarianci odprtih množic). Naj bo $U \subset \mathbb{R}^n$ odprta podmnožica evklidskega prostora \mathbb{R}^n in naj bo $h: U \to \mathbb{R}^n$ zvezna injektivna preslikava. Potem je tudi slika h(U) odprta množica v \mathbb{R}^n .

Dokaz. Naj bodo izpolnjene predpostavke izreka. Imamo množico U, ki je odprta podmnožica v \mathbb{R}^n in zvezno injektivno preslikavo $h:U\to\mathbb{R}^n$. Izrek bo dokazan, če pokažemo, da je za vsak element u iz množice U točka h(u) notranja točka za množico h(U). Ker je \mathbb{R}^n homogen prostor, take pa so tudi vse njegove odprte podmnožice, lahko predpostavimo, da je $u=0_n$ in pokažemo, da je h(0) notranja točka za h(U). Izberimo tako pozitivno realno število a>0, za katero je $\mathbb{I}^n\subset U$. Za dokaz izreka je dovolj pokazati vsebovanost $b := h(0) \in \operatorname{Int}(h(\mathbb{I}^n))$. Od tu naprej bomo dokazovali s protislovjem. Privzeli bomo, da je $b \in \partial h(\mathbb{I}^n)$ in konstruirali funkcijo $f: \mathbb{I}^n \to \mathbb{R}^n \setminus \{0\}$, tako da bo f zadoščala pogojem izreka ??. To pa bo protislovje, saj mora taka funkcija po izreku ?? vsaj eno točko slikati v 0. Na poti do protislovja si bomo seveda pomagali tudi z lemami, ki smo jih spoznali in dokazali v prejšnjih poglavjih. Predpostavimo torej, da je $b \in \partial(\mathbb{I}^n)$. Ker je \mathbb{I}^n kompaktna podmnožica \mathbb{R}^n in je \mathbb{R}^n houssdorfov prostor, je funkcija $h|_{\mathbb{I}^n}:\mathbb{I}^n\to\mathbb{R}^n$ homeomorfizem. Zato obstaja tako pozitivno realno število $\delta > 0$, za katerega je $h^{-1}(B(b,2\delta)) \subset \operatorname{Int}(\mathbb{I}^n)$. Ker je $b \in \partial h(\mathbb{I}^n)$ je mogoče poiskati tak $c \in B(b,\delta) \setminus h(I^n)$. Enostavno se je prepričati, da je $b \in B(c, \delta)$ in $h^{-1}(B(c, \delta)) \subset \operatorname{Int}(\mathbb{I}^n)$.

Označimo $X:=h(\mathbb{I}^n)\setminus B(c,\delta)$ in $Y:=\partial B(c,\delta)$. Definiramo zvezno preslikavo $l:h(\mathbb{I}^n)\cup Y\to X\cup Y$ s predpisom:

$$l(x) = \begin{cases} c + \frac{x-c}{\|x-c\|} \cdot \delta &, x \in h(\mathbb{I}^n) \cup B(c, \delta) \\ x &, x \in X. \end{cases}$$

S pomočjo leme ?? lahko preslikavo $h|_X: X \to \mathbb{R}^n \setminus \{0\}$ razširimo do zvezne preslikave $g: X \cup Y \to \mathbb{R}^n \setminus \{0\}$, za katero za vsak $x \in X$ velja $||g(x) - h^{-1}(x)|| < a$. Sedaj lahko definiramo preslikavo $f = (f_1, f_2, \ldots, f_n): \mathbb{I}^n \to \mathbb{R} \setminus \{0\}$ kot kompozitum $f:=g \circ l \circ h$. Ker ta funkcija slika iz \mathbb{I}^n in ne zavzame ničle, je za protislovje dovolj, če se prepričamo, da funkcija ustreza pogojem izreka ??. Vzemimo $t \in \mathbb{I}_i^-$. Velja l(h(t)) = h(t), saj je $h(t) \in X$. Poglejmo normo ||f(t) - t|| = ||g(l(h(t))) - h - 1(h(t))|| = ||g(h(t) - h - 1(h(t))|| < a. Ker je $t_i = -a$ je $|f_i(t) - t_i| = |f_i(t) - (-a)| \le |f(t) - t| < a$ torej je $f_i(t) < 0$. Enako lahko sklepamo tudi v primeru, ko je $t_i \in \mathbb{I}_i^+$. Ugotovili smo, da je $f_i(\mathbb{I}_i^-) < 0$ in $f_i(\mathbb{I}_i^+) > 0$, zato bi po predpostavkah izreka ?? moral obstajati $x \in \mathbb{I}^n$, ki se z f slika v 0. To je protislovje, torej je $b \in \text{Int}(h(\mathbb{I}^n)$ in je h(U) odprta podmnožica v \mathbb{R}^n .

Izrek 1.2 (Izrek o invarianci dimenzije). Naj bosta m in n naravni števili, potem sta Evklidska prostora \mathbb{R}^m in \mathbb{R}^n homeomorfna, če in samo če je m = n.

SLIKA 1. Skica dokaza izreka 1.1.

Dokaz. Denimo, da sta za neki dve naravni števili m in n Evklidska prostora \mathbb{R}^m in \mathbb{R}^n homeomorfna. Torej obstaja zvezna bijektivna preslikava $f:\mathbb{R}^n \to \mathbb{R}^m$ z zveznim inverzom $f^{-1}:\mathbb{R}^m \to \mathbb{R}^n$. Dokazovali bomo s protislovjem. Predpostavimo, da je $m \neq n$, brez izgube splošnosti lahko predpostavimo , da je m < n. Označimo z i vložitev, torej preslikavo iz prostora \mathbb{R}^m v \mathbb{R}^n , ki je definirana s predpisom $i(x_1,\ldots,x_m)=(x_1,\ldots,x_m,0,\ldots,0)$. Tedaj je preslikava $h:\mathbb{R}^n \to \mathbb{R}^n$ definirana kot kompozitum $h:=i\circ f$ zvezna injektivna preslikava, zato je po izreku 1.1 odprta. Toda slika prostora \mathbb{R}^n , ki je odprta podmnožica same sebe, je množica $\{(x_1,x_2,\ldots,x_m,0,\ldots,0)\in\mathbb{R}^n;$ kjer so $x_i\in\mathbb{R}$ za vsak $i\in\{1,\ldots,m\}\}$, ki pa je zaprta podmnožica prostora \mathbb{R}^n . Torej mora biti res m=n.

LITERATURA

- [1] C. T. Ahlbach, A descrete aproach to Poincare-Miranda theorem, magistsko delo, Department of mathematics, Harvey mudd college, 2013.
- [2] Convex hull, [ogled 22. 4. 2020], dostopno na https://en.wikipedia.org/wiki/Convex_hull.
- [3] R. Engelking, General topology, Sigma series in pure mathematics 6, Heldermann Verlag, Berlin, 1989.
- [4] F. Q. Gouvêa, Was cantor surprised?, The American Mathematical Monthly 118(3) (2011) 198–209, doi: 10.4169/amer.math.monthly.118.03.198.
- [5] W. Kulpa, *Poincare and domain invariance theorem*, Acta Universitatis Carolinae. Mathematica et Physica **39**(1) (1998) 127-136, dostopno tudi na https://dml.cz/bitstream/handle/10338.dmlcz/702050/ActaCarolinae_039-1998-1_10.pdf.
- [6] H. P. Manning, Geometry of four dimensions, The Manmillan company, New York, 1914.
- [7] U. Schäfer, From Sperner's Lemma to Differential Equations in Banach Spaces: An Introduction to Fixed Point Theorems and their Applications, Karlsruher Institut für Technologie, 2014, doi: 10.5445/KSP/1000042944, dostopno tudi na https://d-nb.info/106449790X/34.
- [8] Simplex, [ogled 22. 4. 2020], dostopno na https://en.wikipedia.org/wiki/Simplex.