Problemas propostos

- **1.** Dados os vetores $\vec{u} = (2, -3, -1)$ e $\vec{v} = (1, -1, 4)$, calcular:
 - **a)** $2\vec{u} \cdot (-\vec{v})$

c) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$

b) $(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$

- **d)** $(\vec{u} + \vec{v}) \cdot (\vec{v} \vec{u})$
- 2. Sejam os vetores $\vec{u} = (2, a, -1)$, $\vec{v} = (3, 1, -2)$ e $\vec{w} = (2a 1, -2, 4)$. Determinar *a* de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot (\vec{v} + \vec{w})$.
- **3.** Dados os pontos A (4, 0, -1), B (2, -2, 1) e C (1, 3, 2) e os vetores $\vec{u} = (2,1,1)$ e $\vec{v} = (-1, -2, 3)$, obter o vetor \vec{x} tal que:
 - a) $3\vec{x} + 2\vec{v} = \vec{x} + (\overrightarrow{AB} \cdot \vec{u})\vec{v}$

- **b)** $(\overrightarrow{BC} \cdot \overrightarrow{v}) \overrightarrow{x} = (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v} 3\overrightarrow{x}$
- **4.** Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (2, -1, 3)$, tal que $\vec{v} \cdot \vec{u} = -42$.
- Determinar o vetor v do espaço, sabendo que |v|=5, v é ortogonal ao eixo Ox,
 v·w=6 e w=i+2j.
- **6.** Determinar o vetor \vec{v} , ortogonal ao eixo Oy, $\vec{v} \cdot \vec{v}_1 = 8$ e $\vec{v} \cdot \vec{v}_2 = -3$, sendo $\vec{v}_1 = (3,1,-2)$ e $\vec{v}_2 = (-1,1,1)$.
- 7. Dados os vetores $\vec{u} = (1,2,-3)$, $\vec{v} = (2,0,-1)$ e $\vec{w} = (3,1,0)$, determinar o vetor \vec{x} tal que $\vec{x} \cdot \vec{u} = -16$, $\vec{x} \cdot \vec{v} = 0$ e $\vec{x} \cdot \vec{w} = 3$.
- 8. Sabendo que $|\vec{\mathbf{u}}|=2$, $|\vec{\mathbf{v}}|=3$ e $\vec{\mathbf{u}}\cdot\vec{\mathbf{v}}=-1$, calcular:
 - a) $(\vec{u}-3\vec{v})\cdot\vec{u}$

c) $(\vec{u} + \vec{v}) \cdot (\vec{v} - 4\vec{u})$

b) $(2\vec{v} - \vec{u}) \cdot (2\vec{v})$

- **d)** $(3\vec{u}+4\vec{v})\cdot(-2\vec{u}-5\vec{v})$
- **9.** Calcular $\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$, sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $|\vec{u}| = 2$, $|\vec{v}| = 3$ e $|\vec{w}| = 5$.
- **10**. Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 20 cm. Calcular $\overrightarrow{AB} \cdot \overrightarrow{AC}$ e $\overrightarrow{AB} \cdot \overrightarrow{CA}$.
- **11**. O quadrilátero ABCD (Figura 2.16) é um losango de lado 2.

Calcular:

a) $\overrightarrow{AC} \cdot \overrightarrow{BD}$

d) $\overrightarrow{AB} \cdot \overrightarrow{BC}$

b) $\overrightarrow{AB} \cdot \overrightarrow{AD}$

e) $\overrightarrow{AB} \cdot \overrightarrow{DC}$

c) $\overrightarrow{BA} \cdot \overrightarrow{BC}$

f) $\overrightarrow{BC} \cdot \overrightarrow{DA}$

- 12. Calcular $|\vec{\mathbf{u}}+\vec{\mathbf{v}}|$, $|\vec{\mathbf{u}}-\vec{\mathbf{v}}|$ e $(\vec{\mathbf{u}}+\vec{\mathbf{v}})\cdot(\vec{\mathbf{u}}-\vec{\mathbf{v}})$, sabendo que $|\vec{\mathbf{u}}|=4$, $|\vec{\mathbf{v}}|=3$ e o ângulo entre $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ é de 60°.
- 13. Sabendo que $|\vec{\mathbf{u}}| = \sqrt{2}$, $|\vec{\mathbf{v}}| = 3$ e que $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ formam ângulo de $\frac{3\pi}{4}$ rad, determinar:
 - a) $|(2\vec{u} \vec{v}) \cdot (\vec{u} 2\vec{v})|$

- b) $|\vec{u}-2\vec{v}|$
- **14.** Verificar para os vetores $\vec{u} = (4,-1,2)$ e $\vec{v} = (-3,2,-2)$ as desigualdades
 - **a)** $|\vec{u} \cdot \vec{v}| \le |\vec{u}| |\vec{v}|$ (Designaldade de Schwarz)
 - **b)** $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$ (Designaldade Triangular)
- **15.** Qual deve ser o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 2\vec{j} 4\vec{k}$ e $\vec{b} = 2\vec{i} + (1 2\alpha)\vec{j} + 3\vec{k}$ sejam ortogonais?
- 16. Dados os vetores $\vec{a} = (2,1,\alpha)$, $\vec{b} = (\alpha+2,-5,2)$ e $\vec{c} = (2\alpha,8,\alpha)$, determinar o valor de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} \vec{a}$.
- 17. Dados os pontos A(-1, 0, 5), B(2, -1, 4) e C(1, 1, 1), determinar x tal que \overrightarrow{AC} e \overrightarrow{BP} sejam ortogonais, sendo P(x, 0, x 3).
- **18**. Provar que os pontos A(-1, 2, 3), B(-3, 6, 0) e C(-4, 7, 2) são vértices de um triângulo retângulo.
- **19**. Dados os pontos A(m, 1, 0), B(m-1, 2m, 2) e C(1, 3, -1), determinar m de modo que o triângulo ABC seja retângulo em A. Calcular a área do triângulo.
- **20**. Encontrar os vetores unitários paralelos ao plano yOz e que são ortogonais ao vetor $\vec{v} = (4,1-2)$.
- **21.** Determinar o vetor \vec{u} tal que $|\vec{u}|=2$, sendo o ângulo entre \vec{u} e $\vec{v}=(1,-1,0)$ igual a 45° e \vec{u} seja ortogonal a $\vec{w}=(1,1,0)$.
- **22**. Seja o vetor $\vec{v} = (2, -1, 1)$. Obter:
 - a) um vetor ortogonal a \vec{v} ;
 - b) um vetor unitário ortogonal a $\vec{v};\;$
 - $\boldsymbol{\mathfrak{c}})$ um vetor de módulo 4 ortogonal a $\vec{v}.$
- 23. Sendo $\vec{a} \perp \vec{b}$, $|\vec{a}|=6$ e $|\vec{b}|=8$, calcular $|\vec{a}+\vec{b}|$ e $|\vec{a}-\vec{b}|$.
- **24**. Demonstrar que, sendo \vec{u} , \vec{v} e \vec{w} vetores dois a dois ortogonais, então:

a)
$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2$$

b)
$$|\vec{u} + \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2$$

- **25**. Determinar o ângulo entre os vetores:
 - a) $\vec{u} = (2, -1, -1)$ e $\vec{v} = (-1, -1, 2)$
- **b)** $\vec{u} = (1, -2, 1)$ e $\vec{v} = (-1, 1, 0)$
- **26**. Seja o triângulo de vértices A(3, 4, 4), B(2, -3, 4) e C(6, 0, 4). Determinar o ângulo interno ao vértice B. Qual o ângulo externo ao vértice B?
- **27**. Calcular os ângulos internos do triângulo de vértices A(2, 1, 3), B(1, 0, -1) e C(-1, 2, 1).
- **28**. Calcular o valor de m de modo que o ângulo entre os vetores $\vec{u} = (1,-2,1)$ e $\vec{v} = (-2,1,m+1)$ seja 120°.
- **29**. Calcular *n* para que o ângulo entre os vetores $\vec{v} = (-3,1,n)$ e \vec{k} seja de 30°.
- **30.** Se $|\vec{u}|=4$, $|\vec{v}|=2$ e 120° o ângulo entre os vetores \vec{u} e \vec{v} , determinar o ângulo entre $\vec{u}+\vec{v}$ e $\vec{u}-\vec{v}$ e construir uma figura correspondente a esses dados.
- **31**. Seja o cubo de aresta *a* representado na Figura 2.17. Determinar:

d)
$$|\overrightarrow{OB}|$$
 e $|\overrightarrow{OG}|$

c)
$$\overrightarrow{OE} \cdot \overrightarrow{OB}$$

f)
$$(\overrightarrow{ED} \cdot \overrightarrow{AB})\overrightarrow{OG}$$

- g) o ângulo agudo entre a diagonal do cubo e uma aresta;
- h) o ângulo agudo formado por duas diagonais x do cubo.

Figura 2.17

- **32**. Calcular os ângulos diretores do vetor $\vec{v} = (6, -2, 3)$.
- 33. Os ângulos diretores de um vetor \vec{a} são 45°, 60° e 120° e $|\vec{a}|$ =2. Determinar \vec{a} .
- **34**. Os ângulos diretores de um vetor podem ser de 45°, 60° e 90°? Justificar.
- **35**. Mostrar que existe vetor cujos ângulos diretores são 30°, 90° e 60°, respectivamente, e determinar aquele que tem módulo 10.
- **36**. Determinar um vetor unitário ortogonal ao eixo Oz e que forme 60° com o vetor i.
- 37. Determinar o vetor \vec{a} de módulo 5, sabendo que é ortogonal ao eixo Oy e ao vetor $\vec{v} = \vec{i} 2\vec{k}$, e forma ângulo obtuso com o vetor \vec{i} .
- **38.** Determinar o vetor \vec{v} nos seguintes casos:

- a) \vec{v} é ortogonal ao eixo Oz, $|\vec{v}|=8$, forma ângulo de 30° com o vetor \vec{i} e ângulo obtuso com \vec{j} ;
- b) \vec{v} é ortogonal ao eixo Ox, $|\vec{v}|=2$, forma ângulo de 60° com o vetor \vec{j} e ângulo agudo com \vec{k} .
- **39.** O vetor \vec{v} é ortogonal aos vetores $\vec{u} = (1,2,0)$ e $\vec{w} = (2,0,1)$ e forma ângulo agudo com o vetor \vec{i} . Determinar \vec{v} , sabendo que $|\vec{v}| = \sqrt{21}$.
- **40**. Dados os vetores $\vec{\mathbf{u}} = (3,0,1)$ e $\vec{\mathbf{v}} = (-2,1,2)$, determinar proj_{$\vec{\mathbf{v}}$} $\vec{\mathbf{u}}$ e proj_{$\vec{\mathbf{u}}$} $\vec{\mathbf{v}}$.
- **41**. Determinar os vetores projeção de $\vec{v} = 4\vec{i} 3\vec{j} + 2\vec{k}$ sobre os eixos cartesianos x, y e z.
- 42. Para cada um dos pares de vetores ū e v, encontrar a projeção ortogonal de v sobre ū e decompor v como soma de v₁ com v₂, sendo v₁ || ū e v₂ ⊥ ū.
 - a) $\vec{u} = (1,2,-2)$ e $\vec{v} = (3,-2,1)$
- c) $\vec{u} = (2,0,0)$ e $\vec{v} = (3,5,4)$

b) $\vec{u} = (1,1,1)$ e $\vec{v} = (3,1,-1)$

- **d)** $\vec{u} = (3,1,-3)$ e $\vec{v} = (2,-3,1)$
- **43**. Sejam A(2, 1, 3), B(m, 3, 5) e C(0, 4, 1) vértices de um triângulo (Figura 2.18) responda:
 - a) Para qual valor de m o triângulo ABC é retângulo em A?

b) Calcular a medida da projeção do cateto AB sobre a hipotenusa BC.

Figura 2.18

- c) Determinar o ponto H, pé da altura relativa ao vértice A.
- d) Mostrar que $\overrightarrow{AH} \perp \overrightarrow{BC}$.
- **44.** Determinar o valor de k para que os vetores $\vec{u} = (-2,3)$ e $\vec{v} = (k,-4)$ sejam:
 - a) paralelos

- b) ortogonais
- **45**. Obter os dois vetores unitários ortogonais a cada um dos vetores:
 - a) $4\vec{i} + 3\vec{j}$

b) (-2, 3)

- c) (-1, -1)
- 46. Determinar um par de vetores unitários e ortogonais entre si, em que um deles seja paralelo a $\vec{v} = 6\vec{i} + 8\vec{j}$.
- **47**. Determinar, aproximadamente, o ângulo entre os pares de vetores:
 - **a)** $\vec{u} = (2,1)$ e $\vec{v} = (4,-2)$

c) $\vec{u} = (1,1)$ e $\vec{v} = (-1,1)$

b) $\vec{u} = (1,-1)$ e $\vec{v} = (-4,-2)$

- **48.** Dados os vetores $\vec{u} = \vec{i} \vec{j}$ e $\vec{v} = 2\vec{i} + \vec{j}$, determinar o módulo e o ângulo que os seguintes vetores formam com o vetor \vec{i} :
 - a) <u>u</u>

c) $\vec{u} + \vec{v}$

e) $\vec{v} - \vec{u}$

b) \vec{v}

- d) $\vec{u} \vec{v}$
- **49.** Determinar o valor de *a* para que seja 45° o ângulo entre os vetores $\vec{u} = (2,1)$ $e \vec{v} = (1,a).$
- 50. Para cada um dos pares de vetores ü e v, encontrar o vetor projeção ortogonal de \vec{v} sobre \vec{u} e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , sendo $\vec{v}_1 \| \vec{u}$ e $\vec{v}_2 \perp \vec{u}$.
 - a) $\vec{u} = (1,0)$ e $\vec{v} = (4,3)$
- **b)** $\vec{u} = (1,1)$ e $\vec{v} = (2,5)$ **c)** $\vec{u} = (4,3)$ e $\vec{v} = (1,2)$

Respostas de problemas propostos

- 1. a) -2
- **b)** 21 **c)** -4
- d) 4

2.
$$a = \frac{5}{8}$$

- 3. a) (3, 6, -9) b) $(-\frac{1}{3}, -\frac{2}{3}, 1)$

4.
$$\vec{v} = (-6,3,-9)$$

- **5.** $\vec{v} = (0,3,4)$ ou $\vec{v} = (0,3,-4)$
- **6.** $\vec{v} = (2,0,-1)$
- 7. $\vec{x} = (2, -3, 4)$

- 8. a) 7 b) 38 c) -4 d) -181
- **9**. -19
- **10**. 200 e −200
- **11.** a) 0
- b) 2 c) -2 d) 2 e) 4
- **1**) -4

- **12.** $\sqrt{37}$, $\sqrt{13}$ e 7
- **13. a)** 37 **b)** $\sqrt{50}$
- **15.** $\alpha = -5$
- **16.** $\alpha = 3$ ou $\alpha = -6$
- 17. $x = \frac{25}{2}$
- **18.** $\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$

19.
$$m = 1 e^{-\sqrt{30}}$$

20.
$$(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$$
 ou $(0, -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$

21.
$$\vec{u} = (1, -1, \sqrt{2})$$
 ou $\vec{u} = (1, -1, -\sqrt{2})$

- 22. a) Entre os infinitos possíveis: (1, 1, -1)
 - **b)** Um deles: $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ **c)** Um deles: $(\frac{4}{\sqrt{3}}, \frac{4}{\sqrt{3}}, -\frac{4}{\sqrt{3}})$
- **23**. 10 e 10
- **25. a)** 120° **b)** 150°
- **26**. 45° e 135°
- **27.** $\hat{A} \cong 50^{\circ}57', \hat{B} \cong 57^{\circ}1' \text{ e } \hat{C} \cong 72^{\circ}2'$
- **28.** m = 0 ou m = -18
- **29.** $n = \sqrt{30}$
- **30.** arc $\cos \frac{3}{\sqrt{21}} \cong 49^{\circ}6'$
- **31.** a) 0
- **c)** 0
- **e)** a^2 **g)** $arc cos \frac{\sqrt{3}}{3} \cong 54^{\circ}44'$

- **b)** 0 **d)** $a\sqrt{2} e a\sqrt{3}$ **f)** (a^3, a^3, a^3) **h)** $arc cos(\frac{1}{3}) \cong 70^\circ 31'$
- **32.** $\alpha = \operatorname{arc} \cos(\frac{6}{7}) \cong 31^{\circ}$, $\beta = \operatorname{arc} \cos(-\frac{2}{7}) \cong 107^{\circ}$ e $\gamma = \operatorname{arc} \cos(\frac{3}{7}) \cong 65^{\circ}$
- **33.** $\vec{a} = (\sqrt{2}, 1, -1)$
- **34.** Não, pois $\cos^2 45^\circ + \cos^2 60^\circ + \cos^2 90^\circ \neq 1$
- **35.** $(5\sqrt{3},0,5)$
- **36.** $(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0)$ ou $(\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$
- **37.** $\vec{a} = (-2\sqrt{5}, 0, -\sqrt{5})$
- **38.** a) $(4\sqrt{3}, -4, 0)$ b) $(0, 1, \sqrt{3})$

39.
$$\vec{v} = (-2,1,4)$$

40.
$$\operatorname{proj}_{\vec{v}}\vec{u} = (\frac{8}{9}, -\frac{4}{9}, -\frac{8}{9}) \operatorname{e} \operatorname{proj}_{\vec{u}}\vec{v} = (-\frac{6}{5}, 0, -\frac{2}{5})$$

41.
$$4\vec{i}$$
, $-3\vec{j}$, $2\vec{k}$

42. a)
$$\vec{v}_1 = (-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}), \vec{v}_2 = (\frac{10}{3}, -\frac{4}{3}, \frac{1}{3})$$

b)
$$\vec{v}_1 = (1,1,1)$$
 e $\vec{v}_2 = (2,0,-2)$

c)
$$\vec{v}_1 = (3,0,0)$$
 e $\vec{v}_2 = (0,5,4)$

d)
$$\vec{v}_1 = (0,0,0)$$
 (\vec{u} e \vec{v} são ortogonais) e $\vec{v}_2 = \vec{v}$

43. **a)**
$$m = 3$$

b)
$$\frac{9}{26}\sqrt{26}$$

c)
$$H(\frac{51}{26}, \frac{87}{26}, \frac{94}{26})$$

44. a)
$$\frac{8}{3}$$

45. a)
$$(\frac{3}{5}, -\frac{4}{5})$$
 e $(-\frac{3}{5}, \frac{4}{5})$

45. a)
$$(\frac{3}{5}, -\frac{4}{5})$$
 e $(-\frac{3}{5}, \frac{4}{5})$ b) $(\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}})$ e $(-\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}})$

c)
$$(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) e(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

46.
$$(\frac{3}{5}, \frac{4}{5}) e(-\frac{4}{5}, \frac{3}{5}) ou(\frac{3}{5}, \frac{4}{5}) e(\frac{4}{5}, -\frac{3}{5})$$

47. a) arc
$$\cos(\frac{3}{5}) \cong 53^{\circ}$$

b) arc
$$\cos(-\frac{1}{\sqrt{10}}) \cong 108^{\circ}$$

48. a)
$$\sqrt{2},45^{\circ}$$

d)
$$\sqrt{5}$$
, arc $\cos(-\frac{1}{\sqrt{5}}) = 117^{\circ}$

b)
$$\sqrt{5}$$
, arc $\cos(\frac{2}{\sqrt{5}}) \cong 26^{\circ}$ **e)** $\sqrt{5}$, arc $\cos(\frac{1}{\sqrt{5}}) \cong 63^{\circ}$

e)
$$\sqrt{5}$$
, arc $\cos(\frac{1}{\sqrt{5}}) \cong 63^{\circ}$

49.
$$\alpha = 3$$
 ou $\alpha = -\frac{1}{3}$

50. a)
$$\vec{v}_1 = (4,0)$$
, $\vec{v}_2 = (0,3)$

50. a)
$$\vec{v}_1 = (4,0)$$
, $\vec{v}_2 = (0,3)$ **b)** $\vec{v}_1 = (\frac{7}{2}, \frac{7}{2})$, $\vec{v}_2 = (-\frac{3}{2}, \frac{3}{2})$

c)
$$\vec{v}_1 = (\frac{8}{5}, \frac{6}{5}), \vec{v}_2 = (-\frac{3}{5}, \frac{4}{5})$$