Quantitative Analyse - Aufgabe 3

Praktikum zur analystischen Chemie

Verfasser: Maxim Gilsendegen

Matrikelnummer: 3650677

E-Mail-Adresse: 182513@stud.uni-stuttgart.de

Assistent: Robert Stelzer Abgabedatum: 19.07.2023

Inhaltsverzeichnis

1	Aufgabe	1
2	Durchführung	1
3	Auswertug	2
4	Literatur	2

1 Aufgabe

Bestimmung der Stoffmenge von I⁻ durch Fällung mit AgNO₃.

Die zu bestimmende Stoffmenge des Anions soll durch Reaktion zu einer schwerlöslichen Verbindung AgI und folgender Wiegung rechnerisch bestimmt werden.

2 Durchführung

Für diese Titration ist die Lichtempfindlichkeit der AgNO₃-Lösung zu beachten, da durch Lichteinstrahlung der Titerfaktor vor und während der Titration verändert werden kann. Es wurden 5 Aliquote Titriert, 4 mal 10 ml und 1 mal 25 ml, diese wurden jeweils in einen 250 ml Erlenmeyerkolben überführt und mit 50 ml demineralisiertem Wasser verdünnt. Nach Zugabe von 10 Tropfen einer 1%-igen Eosin-Lösung als Farbindikator, wird zu einem Umschlag von orange zu pink titriert.

3 Auswertug

I⁻ wird mit AgNO₃ nach Reaktionsgleichung 1 gefällt.

$$I_{(aq)}^- + Ag_{(aq)}^+ \longrightarrow AgI_{(s)}$$
 (1)

In Tabelle 1 können die Volumina der Maßlösung abgelesen werde, die bis zum Umschlagspunkt in die I⁻-Lösung titriert wurden. Aus diesen Volumina kann die Stoffmenge n von I⁻ berechnet werden, wobei für $c(\text{AgNO}_3) = 0.1004 \, \frac{\text{mol}}{1}$ gilt.

$$n(I^{-}) = V(AgNO_3) \cdot c(AgNO_3) \cdot \frac{100}{V_{Aliquot(in ml)}}$$

= 0.00311 \cdot 0.1004 \frac{mol}{1} \cdot 10
= 0.0031124 mol
= 3.1124 mmol

Analog dazu werden auch die anderen Aliquoten berechnet, dessen Stoffmengen in Tabelle 1 aufgeführt sind.

Tab.1: Verbrauchte Volumina nach Aliquoten und deren berechneten Stoffmengen

Aliquot	$V_{\text{Aliquot}} [\text{ml}]$	$\Delta V_{ m Maßl\"osung}$ [ml]	$n_{\mathrm{I}^-} \; [\mathrm{mmol}]$
1	10	3.1	3.1124
2	10	3.05	3.0622
3	10	3.05	3.0622
4	10	3.05	3.0622
5	25	7.65	3.07224

4 Literatur

[1] Skript zum Praktikum im Modul AC I: 19.07.2023