Multicore Computers

Multicore Computers

- Komputer multi-core adalah sistem yang menggunakan lebih dari satu core dalam satu chip prosesor
- Tujuan: meningkatkan kinerja, efisiensi daya, dan kemampuan multitasking.
- Setiap core: memiliki register, unit aritmatika-logika (ALU), unit kontrol, dan cache L1.
- Interconnect: Jalur komunikasi antara core dan komponen lain dalam prosesor serta antara prosesor dan memori utama.

Contoh Prosesor Multi-Core

- Intel Core Series: Prosesor seperti Intel Core i3, i5, i7, dan i9, yang memiliki beberapa core (biasanya 2, 4, 6, 8, atau lebih).
- AMD Ryzen: Prosesor yang juga memiliki beberapa core dan dikenal karena kinerja multi-core yang kuat.
- ARM Cortex-A Series: Digunakan dalam banyak perangkat mobile dan embedded, seperti smartphone dan tablet, dengan berbagai konfigurasi core.

Hardware Performance Issues (masalah)

- Microprocessors telah mengalami peningkatan kinerja secara eksponensial
 - Improved organization
 - Increased clock frequency
- Increase in Parallelism
 - Pipelining
 - Superscalar: terdiri dari beberapa pipeline
 - Simultaneous multithreading (SMT): beberapa thread (utas) dieksekusi secara bersamaan pada satu core prosesor fisik.
- Hasil yang semakin berkurang
 - Kompleksitas yang lebih besar membutuhkan lebih banyak logika
 - Increasing chip area for coordinating and signal transfer logic
 - Harder to design, make and debug

Alternative Chip Organizations

(a) Superscalar

(b) Simultaneous multithreading

(c) Multicore

L1-I (Level 1 Instruction Cache):

L1-D (Level 1 Data Cache):

Intel Hardware Trends

Increased Complexity

- Kebutuhan daya tumbuh secara eksponensial seiring dengan kepadatan chip dan frekuensi clock
 - Dapat menggunakan lebih banyak area chip untuk cahce
 - Lebih kecil
 - Urutan kebutuhan daya yang lebih rendah
- By 2015
 - 100 billion transistors on 300mm² die (kepadatan transistor)
 - Cache of 100MB
 - 1 billion transistors for logic
- Pollack's rule:
 - Kinerja kira-kira sebanding dengan akar kuadrat peningkatan kompleksitas
 - Double complexity gives 40% more performance
- Multicore memiliki potensi peningkatan yang hampir linier
- Tidak mungkin satu inti dapat menggunakan semua cache secara efekti

Pertimbangan Power dan Memory

(b) Chip area

Pemanfatan Chip Transistor

Software Performance Issues

- Manfaat kinerja bergantung pada eksploitasi sumber daya paralel yang efektif
- Bahkan sejumlah kecil kode serial akan berdampak pada kinerja
 - 10% serial inheren pada sistem prosesor 8 hanya memberikan kinerja 4,7 kali lipat
- Communication, distribution of work and cache coherence overheads
- Beberapa aplikasi secara efektif mengeksploitas prosesor multicore

Effective Applications for Multicore Processors

- Database
- Servers handling independent transactions
- Multi-threaded native applications
 - Lotus Domino, Siebel CRM
- Multi-process applications
 - Oracle, SAP, PeopleSoft
- Java applications
 - Java VM is multi-thread with scheduling and memory management
 - Sun's Java Application Server, BEA's Weblogic, IBM Websphere, Tomcat
- Multi-instance applications
 - One application running multiple times
- E.g. Value Game Software

Multicore Organization

- Number of core processors on chip
- Number of levels of cache on chip
- Amount of shared cache
- Next slide examples of each organization:
- (a) ARM11 MPCore
- (b) AMD Opteron
- (c) Intel Core Duo
- (d) Intel Core i7

Multicore Organization

(a) Dedicated L1 cache

(b) Dedicated L2 cache

(c) Shared L2 cache

(d) Shared L3 cache

Advantages of shared L2 Cache

- Interferensi konstruktif mengurangi tingkat kesalahan secara keseluruhan
- Data yang dishare oleh multiple cores tidak direplikasi pada level cache
- Dengan algoritma frame replacement yang tepat berarti jumlah cache bersama yang didedikasikan untuk setiap core bersifat dinamis
 - Threads with less locality can have more cache
- Komunikasi antar proses yang mudah melalui memori bersama
- Cache coherency terbatas pada L1
- Cache L2 khusus memberi setiap core akses yang lebih cepat
 - Good for threads with strong locality
- Cache L3 bersama juga dapat meningkatkan kinerja

Individual Core Architecture

- Intel Core Duo menggunakan superscalar cores
- Intel Core i7 menggunakan simultaneous multi-threading (SMT)
 - Meningkatkan jumlah threads yang disupport
 - 4 SMT cores, masing-masing mendukung 4 threads muncul sebagai 16 core

Intel x86 Multicore Organization - Core Duo (1)

- 2006
- Two x86 superscalar, shared L2 cache
- Dedicated L1 cache per core
 - 32KB instruction and 32KB data
- Unit Thermal control per core
 - Mengelola pembuangan panas chip
 - Memakasimalkan kinerja dalam Batasan.
 - Peningkatan ergonomics
- Advanced Programmable Interrupt Controlled (APIC)
 - Inter-process menginterupsi antar cores
 - Merutekan interupsi ke core yang sesuai
 - Termasuk pengatur timer sehingga OS dapat interupsi core

Intel x86 Multicore Organization - Core Duo (2)

- Power Management Logic
 - Memonitor kondisi panas dan aktivitas CPU
 - Menyesuaikan voltage dan power consumption
 - Dapat mengganti individual logic subsystems
- 2MB shared L2 cache
 - Dynamic allocation
 - MESI support for L1 caches
 - Diperluas untuk mendukung multiple Core Duo in SMP
 - L2 data shared between local cores or external
- Bus interface

Intel x86 Multicore Organization - Core i7

- November 2008
- Empat x86 SMT processors
- Dedicated L2, shared L3 cache
- Speculative pre-fetch for caches
- On chip DDR3 memory controller
 - Tiga 8 byte channels (192 bits) memberikan 32GB/s
 - No front side bus
- QuickPath Interconnection
 - Cache coherent point-to-point link
 - High speed communications antara processor chips
 - 6.4G transfers per second, 16 bits per transfer
 - Dedicated bi-directional pairs
 - Total bandwidth 25.6GB/s

Comparation i7

	Core i7-7820X	Core i7-8700K	Core i9-9900K	Core i7-9700K
Release Date	June 2017	October 2017	October 2018	
Cores / Threads	8/16	6/12	8/16	8/8
Base Frequency	3.6 GHz	3.5 GHz	3.6 GHz	3.6 GHz
Max Boost Frequency	4.3 GHz	4.7 GHz	5.0 GHz	4.9 GHz
L2 Cache	8 MB	1.5 MB	2 MB	2 MB
L3 Cache	11 MB	12 MB	16 MB	12 MB
Memory Config	Quad-Channel	Dual-Channel		
Max Mem Support		DDR4-2666		
TDP	140 W		95 W	
MSRP	\$600	\$360	\$500	\$374

ARM11 MPCore

- Up to 4 processors each with own L1 instruction and data cache
- Distributed interrupt controller
- Timer per CPU
- Watchdog
 - Warning alerts for software failures
 - Counts down from predetermined values
 - Issues warning at zero
- CPU interface
 - Interrupt acknowledgement, masking and completion acknowledgement
- CPU
 - Single ARM11 called MP11
- Vector floating-point unit
 - FP co-processor
- L1 cache
- Snoop control unit
 - L1 cache coherency

ARM11 MPCore Block Diagram

ARM11 MPCore Interrupt Handling

- Distributed Interrupt Controller (DIC) collates from many sources
- Masking
- Prioritization
- Distribution to target MP11 CPUs
- Status tracking
- Software interrupt generation
- Number of interrupts independent of MP11 CPU design
- Memory mapped
- Accessed by CPUs via private interface through SCU
- Can route interrupts to single or multiple CPUs
- Provides inter-process communication
 - Thread on one CPU can cause activity by thread on another CPU

New ARM Cortex

DIC Routing

- Direct to specific CPU
- To defined group of CPUs
- To all CPUs
- OS can generate interrupt to:
 - All but self
 - Self
 - Other specific CPU
- Typically combined with shared memory for interprocess communication
- 16 interrupt ids available for inter-process communication

Interrupt States

- Inactive
 - Non-asserted
 - Completed by that CPU but pending or active in others
- Pending
 - Asserted
 - Processing not started on that CPU
- Active
 - Started on that CPU but not complete
 - Can be pre-empted by higher priority interrupt

Interrupt Sources

- Inter-process Interrupts (IPI)
 - Private to CPU
 - ID0-ID15
 - Software triggered
 - Priority depends on target CPU not source
- Private timer and/or watchdog interrupt
 - ID29 and ID30
- Legacy FIQ line
 - Legacy FIQ pin, per CPU, bypasses interrupt distributor
 - Directly drives interrupts to CPU
- Hardware
 - Triggered by programmable events on associated interrupt lines
 - Up to 224 lines
 - Start at ID32

ARM11 MPCore Interrupt Distributor

Cache Coherency

- Snoop Control Unit (SCU) resolves most shared data bottleneck issues
- L1 cache coherency based on MESI
- Direct data Intervention
 - Copying clean entries between L1 caches without accessing external memory
 - Reduces read after write from L1 to L2
 - Can resolve local L1 miss from rmote L1 rather than L2
- Duplicated tag RAMs
 - Cache tags implemented as separate block of RAM
 - Same length as number of lines in cache
 - Duplicates used by SCU to check data availability before sending coherency commands
 - Only send to CPUs that must update coherent data cache
- Migratory lines
 - Allows moving dirty data between CPUs without writing to L2 and reading back from external memory

Recommended Reading

- Stallings chapter 18
- ARM web site

Intel Core i7 Block Diagram

Intel Core Duo Block Diagram

Front-Side Bus

Performance Effect of Multiple Cores

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

(b) Speedup with overheads

Recommended Reading

- Multicore Association web site
- ARM web site

TERIMAKASIH

