INSTITUT de FINANCEMENT du DEVELOPPEMENT du MAGHREB ARABE

CONCOURS DE RECRUTEMENT DE LA XXIXème PROMOTION

- juillet 2009 -Epreuve de Méthodes Quantitatives Durée : 1h 30 Nombre de pages : 02

Aucun document n'est autorisé. L'usage de la calculatrice est permis

Exercice 1 : (10 points : 1 point par question)

On considère une grandeur x_t positive telle que :

$$y_t = Log(x_t) = a t + b + u_t$$
 pour $t = 1, 2, ..., T$

avec u_t des termes d'erreur indépendants, suivant la loi normale centrée réduite : $E(u_t) = 0$; $V(u_t) = 1$. On pose $\Delta y_t = y_t - y_{t-1}$

- **1** Prouver que si l'on néglige le terme d'erreur, le paramètre a est le taux de croissance moyen de la grandeur x_t
 - **2-** Calculer l'espérance mathématique et la variance de Δy_t
 - **3-** Prouver que le coefficient de corrélation linéaire entre Δy_t et Δy_{t-1} est égal à $-\frac{1}{2}$
 - **4-** Calculer le coefficient de corrélation linéaire entre Δy_t et Δy_{t-2}
 - **5** -On suppose dans cette question que b = 0,
- i- Déterminer en fonction des valeurs de y_t et de t pour t = 1, 2, ..., T l'expression de l'estimation de a par les moindres carrés ordinaires
 - ii- Exprimer cette estimation en fonction des valeurs de x_t et de t pour t = 1, 2, ..., T
 - **6** -On suppose dans cette question que a = b = 0
 - i- Déterminer la fonction de répartition de x_t
 - ii- En déduire la densité de probabilité de x_t
- iii- Déterminer la moyenne géométrique de x_t pour t = 1, 2, ..., T en fonction de la moyenne arithmétique des variables u_t .
 - iv- En déduire l'espérance mathématique de cette moyenne géométrique.

Exercice 2: (10 points: 1 point par question)

On considère la relation entre le revenu disponible (R_t) et la consommation finale (C_t) définie par :

$$C_t = a + bR_t + \varepsilon_t$$
, pour $t = 1, 2, \dots, T$

 ε_t un terme d'erreur vérifiant les hypothèses de la méthode des moindres carrés ordinaires (mco).

On dispose des informations suivantes: $\overline{C} = 7.5$; $\overline{R} = 8$ qui désignent respectivement les moyennes empiriques de C_t et de R_t ; V(C) = 2.5; V(R) = 4 et Cov(C,R) = 3 qui désignent respectivement les variances empiriques de C_t et de R_t et leur covariance et le nombre d'observations est T = 30.

1- Commenter la relation définie précédemment en précisant les interprétations

économiques des paramètres a et b

- **2-** Déterminer les valeurs numériques des estimateurs des paramètres a et b obtenus par les par MCO; notés respectivement \hat{a} et \hat{b} .
 - **3-** Prouver que la variance expliquée est égale à : \hat{b} . Cov(C,R)
 - **4-** En déduire une estimation sans biais de la variance σ^2 des erreurs.
- **5** Sous l'hypothèse de la normalité des termes d'erreur, tester au seuil de 5%, la significativité du paramètre b. On rappelle que pour une loi de Student notée S, nous avons approximativement : Probabilité $[\mid S\mid>2]=0.05$
 - 6- On considère à présent que le modèle est défini par :

$$C_t = a + b_0 R_t + b_1 R_{t-1} + b_2 R_{t-2} + \varepsilon_t$$
, avec $t = 1, 2, \dots, T$

- i- Commenter la relation définie précédemment.
- ii-Donner l'expression des effets de court terme et de long terme d'une variation unitaire du revenu disponible sur la consommation finale ; notés respectivement EC et EL.
- **iii** On suppose que les paramètres b_i vérifient la relation suivante : $b_i = \theta_0 + \theta_1 i$ pour i = 0, 1 et 2. Réécrire le modèle en fonction des paramètres θ_0 et θ_1 .
- iv- Exprimer EC et EL en fonction de θ_0 et θ_1 ; calculer leurs estimateurs sachant que $\hat{\theta}_0 = 0.2$ et; $\hat{\theta}_1 = 0.05$. Commenter.
 - **v** Recalculer EL en fonction de α et b_0 si l'on l'on admet que :

$$C_t = \alpha C_{t-1} + b_0 R_t + \varepsilon_t,$$

avec $\mid \alpha \mid < 1$.