Import libraries

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.stats import skew,norm,zscore
from scipy.signal import periodogram
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from statsmodels.tsa.deterministic import DeterministicProcess, CalendarFourier
from sklearn.model_selection import train_test_split, cross_val_score, TimeSeriesSplit, GridSearchCV, cross_validate
from sklearn.metrics import mean_squared_error, make_scorer, mean_squared_log_error, mean_absolute_error, mean_absolute_percentag
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.neural_network import MLPRegressor
from sklearn.decomposition import PCA
from random import shuffle
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import mean_squared_log_error as msle
from tadm import tadm
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import Pool, CatBoostRegressor
import optuna
```

Loading the dataset

```
In [2]:
```

```
holidays_events = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/holidays_events.csv", parse_dates=['date'])
oil = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/oil.csv", parse_dates=['date'])
stores = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/stores.csv")
transactions = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/transactions.csv", parse_dates=['date'])

test = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/test.csv", parse_dates=['date'])
train = pd.read_csv("/kaggle/input/store-sales-time-series-forecasting/train.csv", parse_dates=['date'])
```

```
In [3]:
```

```
important_dates = {
    'train_start_date': '2013-01-01',
    'train_end_date': '2017-08-15',
    'test_start_date': '2017-08-16',
    'test_end_date': '2017-08-31',
    'forest_start_date': '2016-06-01'
}
```

Prepare Data

```
In [4]:
```

```
def add_store_details(main_df, train, test):
    df = main_df.copy()

df['uniquestore'] = df.city.apply(lambda x: 0 if x in ['Quito', 'Guayaquil', 'Santo Domingo', 'Cuenca', 'Manta', 'Machala', '
    df['newstore'] = df.store_nbr.apply(lambda x: 1 if x in [19, 20, 21, 28, 35, 41, 51, 52] else 0)

df = pd.concat([train, test], axis=0).merge(df, on=['store_nbr'], how='left')
    df = df.rename(columns={'type' : 'store'})

return df
```

In [5]:

```
final_df = add_store_details(stores, train, test)
final_df
```

Out[5]:

	id	date	store_nbr	family	sales	onpromotion	city	state	store	cluster	uniquestore	newstore
0	0	2013-01- 01	1	AUTOMOTIVE	0.0	0	Quito	Pichincha	D	13	0	0
1	1	2013-01- 01	1	BABY CARE	0.0	0	Quito	Pichincha	D	13	0	0
2	2	2013-01- 01	1	BEAUTY	0.0	0	Quito	Pichincha	D	13	0	0
3	3	2013-01- 01	1	BEVERAGES	0.0	0	Quito	Pichincha	D	13	0	0
4	4	2013-01- 01	1	BOOKS	0.0	0	Quito	Pichincha	D	13	0	0
3029395	3029395	2017-08- 31	9	POULTRY	NaN	1	Quito	Pichincha	В	6	0	0
3029396	3029396	2017-08- 31	9	PREPARED FOODS	NaN	0	Quito	Pichincha	В	6	0	0
3029397	3029397	2017-08- 31	9	PRODUCE	NaN	1	Quito	Pichincha	В	6	0	0
3029398	3029398	2017-08- 31	9	SCHOOL AND OFFICE SUPPLIES	NaN	9	Quito	Pichincha	В	6	0	0
3029399	3029399	2017-08- 31	9	SEAFOOD	NaN	0	Quito	Pichincha	В	6	0	0

3029400 rows × 12 columns

In [6]:

```
def add_holiday_details(main_df):
     df = main_df.copy()
     df.loc[297, 'transferred'] = df.loc[297, 'transferred'] = False
     df = df.query("transferred!=True")
     df = df.drop(index=holidays_events[holidays_events[['date', 'locale_name']].duplicated()].index.values)
     df.loc[df.type=='Event', 'type'] = df.description.apply(lambda x: x[0:7])
    nat_df = df.query("locale=='National'")
loc_df = df.query("locale=='Local'")
reg_df = df.query("locale=='Regional'")
     df = final_df.merge(nat_df, left_on=['date'], right_on=['date'], how='left')
     df = df.merge(loc_df, left_on=['date', 'city'], right_on=['date', 'locale_name'], how='left')
df = df.merge(reg_df, left_on=['date', 'state'], right_on=['date', 'locale_name'], how='left')
     df['firstday'] = df.description x.apply(lambda x: 1 if x=='Primer dia del ano' else 0)
    df.loc[~df.type_x.isnull(), 'event_type'] = df.type_x.apply(lambda x: x)
df.loc[~df.type_y.isnull(), 'event_type'] = df.type_y.apply(lambda x: x)
     df.loc[~df.type.isnull(), 'event_type'] = df.type.apply(lambda x: x)
     df.loc[df.event_type.isnull(), 'event_type'] = df.event_type.apply(lambda x: 'norm')
df = df.drop(columns=['type_x', 'type_y', 'type'])
     df['isevent'] = df.event_type.apply(lambda x: 'y' if x!='norm' else 'n')
     df.loc[df.date.isin(['2017-04-16', '2016-03-27', '2015-04-05', '2014-04-20', '2013-03-31']), 'isevent'] = df.isevent.apply(la
df.loc[df.date.isin(['2017-04-16', '2016-03-27', '2015-04-05', '2014-04-20', '2013-03-31']), 'event_type'] = df.event_type.ap
     df['isclosed'] = df.groupby(by=['date', 'store_nbr'])['sales'].transform(lambda x: 1 if x.sum()==0 else 0)
     df.loc[(df.date.dt.year==2017) & (df.date.dt.month==8) & (df.date.dt.day>=16) , 'isclosed'] = df.isclosed.apply(lambda x: 0)
df.loc[df.date.isin(['2017-01-01']), 'isevent'] = df.isevent.apply(lambda x: 'n')
     return df
```

In [7]:

```
final_df = add_holiday_details(holidays_events)
final_df
```

Out[7]:

	id	date	store_nbr	family	sales	onpromotion	city	state	store	cluster	uniquestore	newstore	firstday	event_t
0	0	2013- 01-01	1	AUTOMOTIVE	0.0	0	Quito	Pichincha	D	13	0	0	1	Holi
1	1	2013- 01-01	1	BABY CARE	0.0	0	Quito	Pichincha	D	13	0	0	1	Holi
2	2	2013- 01-01	1	BEAUTY	0.0	0	Quito	Pichincha	D	13	0	0	1	Holi
3	3	2013- 01-01	1	BEVERAGES	0.0	0	Quito	Pichincha	D	13	0	0	1	Holi
4	4	2013- 01-01	1	BOOKS	0.0	0	Quito	Pichincha	D	13	0	0	1	Holi
3029395	3029395	2017- 08-31	9	POULTRY	NaN	1	Quito	Pichincha	В	6	0	0	0	nı
3029396	3029396	2017- 08-31	9	PREPARED FOODS	NaN	0	Quito	Pichincha	В	6	0	0	0	nı
3029397	3029397	2017- 08-31	9	PRODUCE	NaN	1	Quito	Pichincha	В	6	0	0	0	nı
3029398	3029398	2017- 08-31	9	SCHOOL AND OFFICE SUPPLIES	NaN	9	Quito	Pichincha	В	6	0	0	0	n
3029399	3029399	2017- 08-31	9	SEAFOOD	NaN	0	Quito	Pichincha	В	6	0	0	0	n
3029400	rows × 16	colum	ns											

In [8]:

```
print(f"Total null entries in oil: \n{oil.set_index('date').resample('D').mean().isnull().sum()}")
```

Total null entries in oil: dcoilwtico 529 dtype: int64

In [9]:

```
def add_oil_details(main_df):
    df = main_df.copy()

    df = df.set_index('date').resample("D").mean().interpolate(limit_direction='backward').reset_index()

    for i in [1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30, 60, 90]:
        df['lagoil_' + str(i) + '_dcoilwtico'] = df['dcoilwtico'].shift(i)

    df['oil_week_avg'] = df['dcoilwtico'].rolling(7).mean()
    df['oil_2weeks_avg'] = df['dcoilwtico'].rolling(14).mean()
    df['oil_month_avg'] = df['dcoilwtico'].rolling(30).mean()

    df.dropna(inplace = True)

    df = final_df.merge(df, on=['date'], how='left')
    return df
```

In [10]:

```
final_df = add_oil_details(oil)
final_df
```

Out[10]:

	id	date	store_nbr	family	sales	onpromotion	city	state	store	cluster	 lagoil_7_dcoilwtico	lagoil_10_dcoilwt
0	0	2013- 01-01	1	AUTOMOTIVE	0.0	0	Quito	Pichincha	D	13	 NaN	N
1	1	2013- 01-01	1	BABY CARE	0.0	0	Quito	Pichincha	D	13	 NaN	N
2	2	2013- 01-01	1	BEAUTY	0.0	0	Quito	Pichincha	D	13	 NaN	N
3	3	2013- 01-01	1	BEVERAGES	0.0	0	Quito	Pichincha	D	13	 NaN	N
4	4	2013- 01-01	1	BOOKS	0.0	0	Quito	Pichincha	D	13	 NaN	N
3029395	3029395	2017- 08-31	9	POULTRY	NaN	1	Quito	Pichincha	В	6	 47.24	47
3029396	3029396	2017- 08-31	9	PREPARED FOODS	NaN	0	Quito	Pichincha	В	6	 47.24	47
3029397	3029397	2017- 08-31	9	PRODUCE	NaN	1	Quito	Pichincha	В	6	 47.24	47
3029398	3029398	2017- 08-31	9	SCHOOL AND OFFICE SUPPLIES	NaN	9	Quito	Pichincha	В	6	 47.24	47
3029399	3029399	2017- 08-31	9	SEAFOOD	NaN	0	Quito	Pichincha	В	6	 47.24	47
3029400	rows × 33	3 colum	ns									
4												•

In [11]:

```
def add_transaction_details(main_df):
    df = main_df.copy()
    df = final_df.merge(df, on=['date', 'store_nbr'], how='left')

    df.loc[(df.transactions.isnull()) & (df.isclosed==1), 'transactions'] = df.transactions.apply(lambda x: 0)
    group_df = df.groupby(by=['store_nbr', 'date']).transactions.first().reset_index()
    group_df['avg_tra'] = group_df.transactions.rolling(15, min_periods=10).mean()
    group_df['16_tra'] = group_df.transactions.shift(16)
    group_df['30_tra'] = group_df.transactions.shift(30)
    group_df['30_tra'] = group_df.transactions.shift(60)
    group_df.drop(columns='transactions', inplace=True)
    df = df.merge(group_df, on=['date', 'store_nbr'], how='left')
    df.loc[(df.transactions.isnull()) & (df.isclosed==0), 'transactions'] = df.avg_tra
    df.drop(columns='avg_tra', inplace=True)
    df.loc[(df.date.dt.year==2017) & (df.date.dt.month==8) & (df.date.dt.day>=16), 'transactions'] = df.transactions.apply(lambd)
    df['tot_store_day_onprom'] = df.groupby(by=['date', 'store_nbr']).onpromotion.transform(lambda x: x.sum())
    return df
```

In [12]:

```
final_df = add_transaction_details(transactions)
final_df
```

Out[12]:

	id	date	store_nbr	family	sales	onpromotion	city	state	store	cluster	 lagoil_90_dcoilwtico	oil_week_avg	¢
0	0	2013- 01-01	1	AUTOMOTIVE	0.0	0	Quito	Pichincha	D	13	 NaN	NaN	_
1	1	2013- 01-01	1	BABY CARE	0.0	0	Quito	Pichincha	D	13	 NaN	NaN	
2	2	2013- 01-01	1	BEAUTY	0.0	0	Quito	Pichincha	D	13	 NaN	NaN	
3	3	2013- 01-01	1	BEVERAGES	0.0	0	Quito	Pichincha	D	13	 NaN	NaN	
4	4	2013- 01-01	1	BOOKS	0.0	0	Quito	Pichincha	D	13	 NaN	NaN	
3029395	3029395	2017- 08-31	9	POULTRY	NaN	1	Quito	Pichincha	В	6	 47.68	46.825714	
3029396	3029396	2017- 08-31	9	PREPARED FOODS	NaN	0	Quito	Pichincha	В	6	 47.68	46.825714	
3029397	3029397	2017- 08-31	9	PRODUCE	NaN	1	Quito	Pichincha	В	6	 47.68	46.825714	
3029398	3029398	2017- 08-31	9	SCHOOL AND OFFICE SUPPLIES	NaN	9	Quito	Pichincha	В	6	 47.68	46.825714	
3029399	3029399	2017- 08-31	9	SEAFOOD	NaN	0	Quito	Pichincha	В	6	 47.68	46.825714	
3029400	rows × 39	olum	ins										
4												+	

In [13]:

```
def add_time_features (main_df):
    df = main_df.copy()
    df['year'] = df.index.year.astype('int')
    df['quarter'] = df.index.quarter.astype('int')
    df['month'] = df.index.month.astype('int')
    df['day'] = df.index.day.astype('int')
    df['dayofweek'] = df.index.day_of_week.astype('int')
    df['weekofyear'] = df.index.week.astype('int')
    df['isweekend'] = df.dayofweek.apply(lambda x: 1 if x in (5,6) else 0)
    df['startschool'] = df.month.apply(lambda x: 1 if x in (4,5,8,9) else 0)
    df['daysinmonth'] = df.index.days_in_month.astype('int')
    df = pd.get_dummies(df, columns=['year'], drop_first=True)
df = pd.get_dummies(df, columns=['quarter'], drop_first=True)
    df = pd.get_dummies(df, columns=['dayofweek'], drop_first=True)
df = pd.get_dummies(df, columns=['store'], drop_first=True)
    df = pd.get_dummies(df, columns=['event_type'], drop_first=True)
    df = pd.get_dummies(df, columns=['isevent'], drop_first=True)
df = pd.get_dummies(df, columns=['state'], drop_first=True)
    # DeterministicProcess
    fourierA = CalendarFourier(freq='A', order=5)
    fourierM = CalendarFourier(freq='M', order=2)
fourierW = CalendarFourier(freq='W', order=4)
    dp = DeterministicProcess(index=df.index,
                               seasonal=False,
                               constant=False,
                               additional_terms=[fourierA, fourierM, fourierW],
                               drop=True)
    dp_df = dp.in_sample()
    df = pd.concat([df, dp_df], axis=1)
    df['outliers'] = df.sales.apply(lambda x: 1 if x>30000 else 0)
    df.drop(columns=['daysinmonth', 'month', 'city'], inplace=True)
    return df
```

In [14]:

final_df = final_df.set_index('date').loc[important_dates['forest_start_date']:,:]
final_df

Out[14]:

	id	store_nbr	family	sales	onpromotion	city	state	store	cluster	uniquestore	 lagoil_90_dcoilwtico	oil_week_a
date												
2016- 06-01	2216808	1	AUTOMOTIVE	3.0	0	Quito	Pichincha	D	13	0	 34.56	49.1742
2016- 06-01	2216809	1	BABY CARE	0.0	0	Quito	Pichincha	D	13	0	 34.56	49.1742
2016- 06-01	2216810	1	BEAUTY	4.0	0	Quito	Pichincha	D	13	0	 34.56	49.1742
2016- 06-01	2216811	1	BEVERAGES	2199.0	37	Quito	Pichincha	D	13	0	 34.56	49.1742
2016- 06-01	2216812	1	BOOKS	0.0	0	Quito	Pichincha	D	13	0	 34.56	49.1742
2017- 08-31	3029395	9	POULTRY	NaN	1	Quito	Pichincha	В	6	0	 47.68	46.8257
2017- 08-31	3029396	9	PREPARED FOODS	NaN	0	Quito	Pichincha	В	6	0	 47.68	46.8257
2017- 08-31	3029397	9	PRODUCE	NaN	1	Quito	Pichincha	В	6	0	 47.68	46.8257
2017- 08-31	3029398	9	SCHOOL AND OFFICE SUPPLIES	NaN	9	Quito	Pichincha	В	6	0	 47.68	46.8257
2017- 08-31	3029399	9	SEAFOOD	NaN	0	Quito	Pichincha	В	6	0	 47.68	46.8257
812592	2 rows × 3	38 columns										

```
In [15]:
```

```
df = add_time_features(final_df).loc[:important_dates['test_end_date'],:].reset_index(().set_index(['store_nbr', 'family', 'date']
df['16_tra'] = df['16_tra'].fillna(0)
df['21_tra'] = df['21_tra'].fillna(0)
df['30_tra'] = df['30_tra'].fillna(0)
df['60_tra'] = df['60_tra'].fillna(0)
df
```

/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:10: FutureWarning: weekofyear and week have been depre cated, please use DatetimeIndex.isocalendar().week instead, which returns a Series. To exactly reproduce the behav ior of week and weekofyear and return an Index, you may call pd.Int64Index(idx.isocalendar().week)
Remove the CWD from sys.path while we load stuff.

Out[15]:

			id	sales	onpromotion	cluster	uniquestore	newstore	firstday	isclosed	dcoilwtico	lagoil_1_dcoilwtico
store_nbr	family	date										
		2016- 06-01	2216808	3.0	0	13	0	0	0	0	49.070000	49.100000
		2016- 06-02	2218590	1.0	0	13	0	0	0	0	49.140000	49.070000
1	AUTOMOTIVE	2016- 06-03	2220372	4.0	0	13	0	0	0	0	48.690000	49.140000
		2016- 06-04	2222154	9.0	0	13	0	0	0	0	49.030000	48.690000
		2016- 06-05	2223936	2.0	0	13	0	0	0	0	49.370000	49.030000

		2017- 08-27	3022139	NaN	0	3	1	0	0	0	46.816667	47.233333
		2017- 08-28	3023921	NaN	0	3	1	0	0	0	46.400000	46.816667
54	SEAFOOD	2017- 08-29	3025703	NaN	0	3	1	0	0	0	46.460000	46.400000
		2017- 08-30	3027485	NaN	0	3	1	0	0	0	45.960000	46.460000
		2017- 08-31	3029267	NaN	0	3	1	0	0	0	47.260000	45.960000
312592 rov	ws × 95 column	ıs										
(•

Modeling

```
def train_val_split_function(df):
    train, val = train_test_split(df, test_size=0.1, shuffle=False)
    return [train.drop(columns=['sales']), val.drop(columns=['sales']), train['sales'], val['sales']]
def get_model(name):
    RF_param = {
        'criterion': 'squared error',
        'bootstrap': 'False',
        'max_depth': 9733,
        'max_features': 'auto',
        'max_leaf_nodes': 4730,
        'n_estimators': 159,
        'min_samples_split': 3,
        'min_samples_leaf': 8
    switcher = {
        "GB": GradientBoostingRegressor(n_estimators=20,min_samples_split=30, subsample=0.3),
        "RF": RandomForestRegressor(**RF_param, random_state=0),
        "Ridge": Ridge(alpha=0.5),
        "LR": LinearRegression(),
        "CB": CatBoostRegressor(),
        "XGB": XGBRegressor()
    }
    return switcher.get(name, switcher.get("RF"))
def get_predicitions(final_predictions):
    sample_submission = pd.read_csv('../input/store-sales-time-series-forecasting/sample_submission.csv')
    sample_submission['sales'] = sample_submission['id'].map(final_predictions)
   sample_submission['sales'] = np.exp(sample_submission['sales']) - 1
    return sample_submission
```

In [17]:

```
def train(pca=None):
    train error = val error = count = 0
    final_predictions = {}
    for i in tqdm(df.index.get_level_values(0).unique()):
       for j in df.index.get_level_values(1).unique():
            current_df = df.loc[(i, j)]
            test_id = current_df[current_df['sales'].isna()]['id']
            current_df = current_df.drop(columns=['id', 'transactions'])
            train = current_df[~current_df['sales'].isna()]
           X_test = current_df[current_df['sales'].isna()].drop(columns=['sales'])
           X_train, X_val, y_train, y_val = train_val_split_function(train)
           if pca:
               pca.fit(X_train)
                X_train = pca.transform(X_train)
                X_val = pca.transform(X_val)
               X_test = pca.transform(X_test)
            y_train = np.log1p(y_train)
            y_val = np.log1p(y_val)
           model = get_model("RF")
           model.fit(X_train, y_train)
            train_pred = model.predict(X_train).clip(0.0)
            val_pred = model.predict(X_val).clip(0.0)
            train_error += msle(np.exp(y_train) - 1, (np.exp(train_pred) - 1).clip(0))
            val_error += msle(np.exp(y_val) - 1, (np.exp(val_pred) - 1).clip(0))
            count += 1
            test_preds = model.predict(X_test).clip(0.0)
            for q in range(test_preds.shape[0]):
                final_predictions[test_id[q]] = test_preds[q]
       print(f"Train Performance: {(train_error / count)**0.5}; Val Performance: {(val_error / count)**0.5}")
    return final_predictions
```

Train without PCA

```
In [20]:
```

```
predictions = train()
predictions = get_predictions(predictions)
predictions.to_csv('/kaggle/working/without_pca.csv',index=False)
```

With PCA

```
In [21]:
```

```
predictions = train(pca=PCA(n_components=10))
predictions = get_predicitions(predictions)
predictions.to_csv('/kaggle/working/with_pca.csv',index=False)
 2%||
               | 1/54 [00:12<11:23, 12.90s/it]
Train Performance: 0.376240411156621; Val Performance: 0.38727815021678813
               | 2/54 [00:25<11:09, 12.88s/it]
Train Performance: 0.3727576897575212; Val Performance: 0.37559824498430233
  6%|
               | 3/54 [00:38<10:55, 12.85s/it]
Train Performance: 0.37124555352408073; Val Performance: 0.3660436352747978
               | 4/54 [00:51<10:44, 12.89s/it]
Train Performance: 0.3698769529214687; Val Performance: 0.3629608728637732
               | 5/54 [01:04<10:32, 12.92s/it]
 9%
Train Performance: 0.36777165090428204; Val Performance: 0.3767625829677819
              | 6/54 [01:16<10:11, 12.74s/it]
11%|
```

With Extra features from: <u>artemchistyakov (https://www.kaggle.com/code/artemchistyakov/store-sales-eda-rf)</u>	

```
def tags_to_dict():
    tags = {
      'AUTOMOTIVE': [4, 7, 30, 10, 'family'],
'BABY CARE': [-8, 2, 25, 5, 'family'],
'BEAUTY': [-8, 7, 25, 5, 'other'],
      'BEVERAGES': [0, 0, 50, 15, 'other'],
'BOOKS': [0, 0, 55, 15, 'other'],
'BOOKS': [0, 0, 55, 15, 'other'],
     'BREAD/BAKERY': [-3, 0, 30, 30, 'food'],
'CELEBRATION': [-5, 5, 50, 20, 'family'],
      'CLEANING': [-8, 3, 40, 20, 'food'],
     'DAIRY': [-4, 0, 40, 40, 'food'],
'DELI': [3, 6, 40, 20, 'food'],
'EGGS': [-4, -5, 40, 20, 'food'],
      'FROZEN FOODS': [-4, -3, 40, 20, 'food'],
      'GROCERY I': [-4, 3, 40, 20, 'food'],
     'GROCERY II': [-4, 3, 40, 20, 'food'],
'HARDWARE': [10, 10, 30, 20, 'other'],
'HOME AND KITCHEN I': [-10, 4, 40, 20, 'family'],
      'HOME AND KITCHEN II': [-10, 4, 40, 20, 'family'],
      'HOME APPLIANCES': [0, 4, 40, 20, 'family'],
      'HOME CARE': [-10, 4, 40, 20, 'family'],
      'LADIESWEAR': [-10, 4, 40, 20, 'other'],
      'LAWN AND GARDEN': [-10, 4, 40, 20, 'family'],
     'LINGERIE': [-10, 4, 40, 2, 'other'],
      'LIQUOR, WINE, BEER': [4, 8, 40, 20, 'food'],
     'MAGAZINES': [-6, -7, 50, 20, 'other'],
'MEATS': [-4, 5, 40, 20, 'food'],
'PERSONAL CARE': [-5, 5, 40, 20, 'family'],
'PET SUPPLIES': [-5, 0, 40, 20, 'family'],
      'PLAYERS AND ELECTRONICS': [5, 5, 25, 10, 'other'],
      'POULTRY': [-7, -4, 40, 20, 'food'],
      'PREPARED FOODS': [0, 6, 30, 10, 'food'],
      'PRODUCE': [0, 0, 40, 40, 'other'],
     'SCHOOL AND OFFICE SUPPLIES': [3, 3, 25, 15, 'family'],
      'SEAFOOD': [-5, 8, 40, 20, 'food']
    sex_dict = {}
    luxury_dict = {}
    age mean dict = {}
    age var dict = {}
    type_dict = {}
    for i in tags.keys():
         sex_dict[i] = tags[i][0]
         luxury_dict[i] = tags[i][1]
         age_mean_dict[i] = tags[i][2]
         age_var_dict[i] = tags[i][3]
         type_dict[i] = tags[i][4]
    return [sex_dict, luxury_dict, age_mean_dict, age_var_dict, type_dict]
def get_oil_dict(oil):
     # estimate price of gaps (market don't work on weekends and holidays)
    price_estim = [-1] * (oil['days_from_2013'][oil.shape[0] - 1] + 1)
    price_estim[0] = 93.14
    for i in range(1, oil.shape[0]):
         price_estim[oil['days_from_2013'][i]] = oil['dcoilwtico'][i]
    for i in range (len(price_estim)):
         if price_estim[i] == -1 or math.isnan(price_estim[i]):
             tj = -1
              for j in range(i + 1, len(price_estim)):
                   if price_estim[j] != -1 and (not math.isnan(price_estim[j])):
                        ti = i
                       break
              for j in range(i, tj):
                  price_estim[j] = ((tj - j) * price_estim[i - 1] + (j - i) * price_estim[tj]) / (tj - i)
    oil_dict = dict(zip(np.arange(len(price_estim)), price_estim))
    return oil_dict
import math
def add custom features(df):
    train = pd.read_csv('../input/store-sales-time-series-forecasting/train.csv')
    oil = pd.read_csv('.../input/store-sales-time-series-forecasting/oil.csv')
    trans = pd.read_csv('../input/store-sales-time-series-forecasting/transactions.csv')
    # add 'days_from_2013' for easy shifting
    df['days_from_2013'] = (pd.to_datetime(df.index.get_level_values(2)) - pd.to_datetime('2013-01-01')).days
```

```
train['days_from_2013'] = (pd.to_datetime(train['date']) - pd.to_datetime('2013-01-01')).dt.days
    oil['days from 2013'] = (pd.to datetime(oil['date']) - pd.to datetime('2013-01-01')).dt.days
    trans['days_from_2013'] = (pd.to_datetime(trans['date']) - pd.to_datetime('2013-01-01')).dt.days
    # groupby features
    gr_day = train.groupby('days_from_2013')['sales'].mean()
    gr_store = train.groupby('store_nbr')['sales'].mean()
    gr_family = train.groupby('family')['sales'].mean()
    days = [16, 18, 20, 21, 25, 28, 30, 35, 42, 60, 90, 120, 180, 365]
    for i in days:
                  ' + str(i)] = df['days_from_2013'] - i
        df['days_
        df['days_lagged' + str(i)] = df['days_' + str(i)].map(gr_day).fillna(0)
df = df.drop(columns=['days_' + str(i)])
    df['store_gb'] = df.index.get_level_values(0).map(gr_store)
    df['family_gb'] = df.index.get_level_values(1).map(gr_family)
    oil_dict = get_oil_dict(oil)
    # Lagged oil
    days = [0, 1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30, 60, 90, 120, 180, 360]
    for i in days:
        df['days_' + str(i)] = df['days_from_2013'] - i
        df['oil_lagged' + str(i)] = df['days_' + str(i)].map(oil_dict)
        df = df.drop(columns=['days_' + str(i)])
    # lagged transactions
    # # fill trans dict
    trans dict = {}
    for ii in range(trans.shape[0]):
        i = trans.loc[ii]
        trans_dict[tuple([i['store_nbr'], i['days_from_2013']])] = i['transactions']
    def transaction_get_value(a, b):
           return trans_dict[tuple([a, (pd.to_datetime(b) - pd.to_datetime('2013-01-01').dt.days)])]
        except:
            return 0
    days = [16, 18, 20, 21, 25, 28, 30, 35, 42, 60, 90, 120, 180, 365]
    for i in days:
        df['days_' + str(i)] = df['days_from_2013'] - i
        df['oil_lagged' + str(i)] = df['days_' + str(i)].map(oil_dict)
        df['trans_lagged' + str(i)] = [transaction_get_value(*a) for a in tuple(zip(df.index.get_level_values(0),
                                                                           df.index.get level values(2)))]
        df = df.drop(columns=['days_' + str(i)])
    sex_dict, luxury_dict, age_mean_dict, age_var_dict, type_dict = tags_to_dict()
    df['tag_sex'] = df.index.get_level_values(1).map(sex_dict)
    df['tag_luxury'] = df.index.get_level_values(1).map(luxury_dict)
    df['tag_age_mean'] = df.index.get_level_values(1).map(age_mean_dict)
    df['tag_age_var'] = df.index.get_level_values(1).map(age_var_dict)
    df['tag_type'] = df.index.get_level_values(1).map(type_dict)
    df = pd.get_dummies(df, columns=['tag_type'])
    df['tag_age_min'] = df['tag_age_mean'] - df['tag_age_var']
    df['tag_age_max'] = df['tag_age_mean'] + df['tag_age_var']
    return df
def custom_split_function(main_df, train_start_date='2013-01-01', train_end_date='2017-08-30', val_start_date='2017-09-01', val_e
    train_start_date = (pd.to_datetime(train_start_date) - pd.to_datetime('2013-01-01')).days
    train_end_date = (pd.to_datetime(train_end_date) - pd.to_datetime('2013-01-01')).days
val_start_date = (pd.to_datetime(val_start_date) - pd.to_datetime('2013-01-01')).days
    val_end_date = (pd.to_datetime(val_end_date) - pd.to_datetime('2013-01-01')).days
    train = main_df[(main_df['days_from_2013'] >= train_start_date) & (main_df['days_from_2013'] <= train_end_date)]</pre>
    val = main_df['main_df['days_from_2013'] >= val_start_date) & (main_df['days_from_2013'] <= val_end_date)]</pre>
    return [train.drop(columns=['sales']), val.drop(columns=['sales']), train['sales'], val['sales']]
def get weights distribution(tp, dates):
    if tp == 1:
        return np.ones(dates.shape)
    if tp == 2:
        return np.exp((400 - (pd.to_datetime('2017-08-16') - pd.to_datetime(dates)).days) / 100)
    if tp == 3:
        return np.exp((400 - (pd.to_datetime('2017-08-16') - pd.to_datetime(dates)).days) / 200)
    if tp == 4:
        return np.exp((400 - (pd.to_datetime('2017-08-16') - pd.to_datetime(dates)).days) / 300)
    if tp == 5:
        return np.exp((400 - (pd.to_datetime('2017-08-16') - pd.to_datetime(dates)).days) / 400)
```

```
In [23]:
```

```
df = add_custom_features(df)
df
```

Out[23]:

			id	sales	onpromotion	cluster	uniquestore	newstore	firstday	isclosed	dcoilwtico	lagoil_1_dcoilwtico
store_nbr	family	date										
		2016- 06-01	2216808	3.0	0	13	0	0	0	0	49.070000	49.100000
		2016- 06-02	2218590	1.0	0	13	0	0	0	0	49.140000	49.070000
1	AUTOMOTIVE	2016- 06-03	2220372	4.0	0	13	0	0	0	0	48.690000	49.140000
		2016- 06-04	2222154	9.0	0	13	0	0	0	0	49.030000	48.690000
		2016- 06-05	2223936	2.0	0	13	0	0	0	0	49.370000	49.030000
		2017- 08-27	3022139	NaN	0	3	1	0	0	0	46.816667	47.233333
		2017- 08-28	3023921	NaN	0	3	1	0	0	0	46.400000	46.816667
54	SEAFOOD	2017- 08-29	3025703	NaN	0	3	1	0	0	0	46.460000	46.400000
		2017- 08-30	3027485	NaN	0	3	1	0	0	0	45.960000	46.460000
		2017- 08-31	3029267	NaN	0	3	1	0	0	0	47.260000	45.960000
812592 rov	ws × 160 colum	nns										

In [24]:

- 4

```
def train_best():
    train_error = val_error = count = 0
    final_predictions = {}
    for i in tqdm(df.index.get_level_values(0).unique()):
        for j in df.index.get_level_values(1).unique():
    current_df = df.loc[(i, j)]
            test_id = current_df[current_df['sales'].isna()]['id']
            current_df = current_df.drop(columns=['id', 'transactions'])
            train = current_df[~current_df['sales'].isna()]
X_test = current_df[current_df['sales'].isna()].drop(columns=['sales'])
            X_train, X_val, y_train, y_val = custom_split_function(train)
            y_train = np.log1p(y_train)
#
              y_val = np.log1p(y_val)
            model = get_model("RF")
            weights = get_weights_distribution(5, X_train.index)
            model.fit(X_train, y_train, sample_weight=weights)
            train_pred = model.predict(X_train).clip(0.0)
              val_pred = model.predict(X_val).clip(0.0)
            train_error += msle(np.exp(y_train) - 1, (np.exp(train_pred) - 1).clip(0))
              val_error += msle(np.exp(y_val) - 1, (np.exp(val_pred) - 1).clip(0))
            count += 1
            test_preds = model.predict(X_test).clip(0.0)
            for q in range(test_preds.shape[0]):
                 final_predictions[test_id[q]] = test_preds[q]
        print(f"Train Performance: {(train_error / count)**0.5}; Val Performance: {(val_error / count)**0.5}")
    return final_predictions
```

Submission

In [25]:

```
final_preds = train_best()
best_submission = get_predicitions(final_preds)
best_submission.to_csv('/kaggle/working/best.csv', index=False)
best_submission
```

id sales **0** 3000888 3.218919 1 3000889 0.000000 **2** 3000890 4.031745 **3** 3000891 2420.409059 **4** 3000892 0.115015 **28507** 3029395 340.372360 **28508** 3029396 113.848349 **28509** 3029397 1272.751190 **28510** 3029398 116.628746 **28511** 3029399 13.446688

In []:

In []: