Research Problem AI misdiagnoses minorities

healthcare

Imbalanced datasets w/ POC Diagnostic AIs trained

Diagnostic AIs disproportionately

Objective: improve the fairness of a skin disease detector AI for POC

Background Techniques to increase fairness

Increases diversity

Significant increase in accuracy

& fairness (retinal dataset) [21

realistic (mode collapse) [23] **Realism-diversity trade-off**

Stable Diffusion Model Use controlled statistical variation to generate diverse, realistic images

Generates diverse & realistic skin disease images Increased accuracy [27]

> Not yet used to balance medical datasets by race (This work)

Statistically significant increases in fairness have not yet been achieved for a skin disease dataset

Research Questions

- 1. Will using stable diffusion-generated images of POC to balance a skin disease detector's training dataset significantly improve its fairness?
- 2. Will the detector's diagnostic performance be sustained?

Improving the Fairness of Artificially Intelligent Skin Disease Detectors Using Stable Diffusion

ROB0069

*All images & graphs were created by the student unless otherwise noted

Methodology

Dataset

Disease	Lightest Skin Tone	Darkest Skin Tone	
Folliculitis	145	42	
Lichen planus	160	117	
Squamous cell carcinoma	298	51	

- Images from Fitzpatrick17K dataset
 - 3 diseases, 2 skin tones
 - Lightest skin tone: 74.2%, Darkest skin tone: 25.8%
 - 210 testing images (35 from each skin tone-disease combination)

at least N images

603 training images (remaining images)

<u>Diffusion model-based augmented oversampling</u>

Fine tuning the diffusion model

Diffusion model: Stability AI's Stable Diffusion 2.0

- Pre-trained on LAION-5B
 - Few skin disease images
- Fine-tune on 5 images + descriptive prompts from each skin tone-disease combination w/ DreamBooth → generate realistic skin disease images

Fine-tuning the Diffusion Model

Prompt engineering

Input prompts into fine-tuned model -> model creates images as prompts describe via reverse process

- Vary disease location in prompts -> generate diverse images
- Prompt distribution described below

% Images generated per prompt Skin disease + tone Skin disease + tone + "on arm" Skin disease + tone + "on leg" Skin disease + tone + "on face"

Oversampling Each skin tone/disease combination should have

images to generate = N - # dataset images

Sweep 4 values for threshold N: 0 (control), 50, 100, 150

Add generated images to dataset until each skin tone/disease combination has N images \rightarrow balanced dataset

Evaluating fairness using diagnostic AIs

Diagnostic AI architecture

Modified VGG-16 neural network pretrained on ImageNet

- As per Fitzpatrick17K creators
- Train 17 networks on each of the 4 balanced datasets (4 values of threshold N)
 - Trained using Keras & TensorFlow packages on Google Colaboratory platform

Fairness evaluation

Minimize difference between performance on dark & light skin tones -> fair AI

Statistical Parity Difference (SPD) = $|PR_{dark} - PR_{light}|$

PR – positive diagnosis rate Doesn't consider accuracy of diagnosis

Equal Opportunity Difference (EOD) = $|TPR_{dark} - TPR_{light}|$

Doesn't consider inaccurate diagnoses

TPR – true/correct positive diagnosis rate

Average Odds Difference (AOD) = $\frac{|TPR_{dark} - TPR_{light}| + |FPR_{dark} - FPR_{light}|}{|TPR_{dark} - TPR_{light}|}$

FPR - false/incorrect positive diagnosis rate Considers both correct & incorrect diagnosis

Overall performance should be sustained

Measured using **Area Under Receiver Operating Curve** (AUROC)

Results

Image generation with stable diffusion

Fine-tuning & generated images for folliculitis on dark skin shown on right

- Generated images diverse due to prompt engineering
- Generated images realistic due to diffusion model & DreamBooth efficacy

Fine-tuning Images for

Sample images generated of "folliculitis on a dark skin tone"

Results cont.

Evaluating Synthetic Images

- Principal Component Analysis on real & generated images
- Projects images onto dataset's 2 largest eigenvectors to represent in 2D space
- Generated images overlap real
- Indicates realism

Fairness of diagnostic AIs Mean SPD per threshold (n=17) Mean EOD per threshold (n=17) Mean AOD per threshold (n=17) % Decrease % Decrease 53%, p = 0.0052 58%, p = 0.0004 44%, p = 0.0087

- Threshold inc. → SPD, AOD, EOD dec. → Fairness increases
- Statistically significant

Threshold Value

Due to diversity of images generated

Overall performance of diagnostic AIs

- AUROC scores increase as image threshold increases → overall performance improves
- Due to realism of generated images

Comparison to other works (Fitzpatrick17K)

Approach	Technique	Fairness		Performance	Analysis of Results
		% dec EOD	% dec AOD	% inc Accuracy	Analysis of Results
air [34]	Loss function	5.6% 5.70% to 5.38%	3.5% 10.5% to 10.2%	0.43% 87.5% to 87.9%	No new images → fairness-accuracy trade-off
nirAdaBN [9]		29% 5.70% to 4.08%	27% 10.5% to 7.7%	-3.21% 87.5% to 84.7%	
oupDRO [35]		21.2% 5.70% to 4.49%	22% 10.5% to 8.23%	-1.04% 87.5% to 86.6%	
nD [36]		10.3% 5.70% to 5.12%	13% 10.5% to 9.20%	-0.83% 87.5% to 86.8%	
esampling [37]	Oversampling	-1.23% 5.70% to 5.77%	-2.3% 10.5% to 10.8%	0.23% 87.5% to 84.7%	Decreases diversity → decreased fairness
nang et al. [22]	GAN	generated unrealistic images Image from [22]			Small, diverse dataset → overfit discriminator → mode collapse
nis work	Stable diffusion	53% 4.43% to 2.07 %	58% 5.38% to 2.24%	0.76% 73.8% to 74.3%	Highest fairness, no accuracy trade-off

Conclusion

Balanced training dataset with new, realistic, diverse diffusion-generated images → increased AI fairness & performance

Contributions

- First to apply stable diffusion to address race imbalance in datasets to the best of our knowledge
- First to achieve a statistically significant increase in the fairness of a skin disease detector to the best of our knowledge
- Largest increases in fairness & accuracy among Fitzpatrick17K works
- Diffusion models require lots of memory to train

Future Work

Limitations

- Implement algorithm to confirm realism of generated images
- Test on 6 skin tones for more realistic diversity representation
- Test on other applications with underrepresented minorities (e.g. facial recognition, criminal justice)