ASSIGNMENT 5

JONAS TREPIAKAS

Exercise 0.1. Show that $\operatorname{Hom}(X \otimes Y, Z) \simeq \operatorname{Bil}(X, Y; Z)$ for all vector spaces. In particular, $(X \otimes Y)' \simeq \operatorname{Bil}(X, Y)$.

Solution. Suppose $B \in \text{Bil}(X,Y;Z)$. By universality, there exists a unique linear map $L \colon X \otimes Y \to Z$ such that

$$\begin{array}{c} X\times Y \stackrel{\otimes}{\longrightarrow} X\otimes Y \\ \downarrow^L \\ Z \end{array}$$

commutes, i.e., we can define a map $\mathrm{Bil}\,(X,Y;Z)\to\mathrm{Hom}\,(X\otimes Y,Z)$ by sending $M\mapsto L.$

Similarly, given some linear map $L \in \text{Hom}(X \otimes Y, Z)$, we have

$$L \circ \otimes (a_1 x_1 + a_2 x_2, y) = L ((a_1 x_1 + a_2 x_2) \otimes y) = L (a_1 x_1 \otimes y + a_2 x_2 \otimes y)$$
$$= a_1 L (x_1 \otimes y) + a_2 L (x_1 \otimes y)$$

so $L \circ \otimes$ is linear in x, and by doing the same for y, $L \circ \otimes$ is seen to be linear in y as well. Hence $L \circ \otimes$ is bilinear, so each L induces a map M as well such that the diagram above commutes.

Furthermore, it is clear that if $L \mapsto M$, then $M \mapsto L$ and vice versa, so we, in fact, have a bijective correspondence between the classes $\operatorname{Hom}(X \otimes Y, Z)$ and $\operatorname{Bil}(X, Y; Z)$.

It remains to check that the maps $M \mapsto L$ and $L \mapsto M$ are linear.

Suppose we have a bilinear map $a_1M_1 + a_2M_2$. Let L_1 and L_2 be the linear maps corresponding to M_1 and M_2 . Then

$$(a_1M_1 + a_2M_2)(x,y) = a_1M_1(x,y) + a_2M_2(x,y) = a_1L_1(x \otimes y) + a_2L_2(x \otimes y)$$
$$= (a_1L_1 + a_2L_2) \circ \otimes (x,y)$$

so by uniqueness of the universal property, $a_1M_1 + a_2M_2$ maps to $a_1L_1 + a_2L_2$ which is indeed linear. Now, since the inverse map of a bijective linear map is also linear, we get that the other map is also linear. Since, as we remarked above, the composition of them is the identity, we find that $\operatorname{Hom}(X \otimes Y, Z) \simeq \operatorname{Bil}(X, Y; Z)$.

1

Choosing Z = F, we get $(X \otimes Y)' \simeq \text{Bil}(X, Y)$.