EL9343 Homework 11

(Due Apr 29th, 2022)

No late assignments accepted

All problem/exercise numbers are for the third edition of CLRS text book

- 1. Design a greedy algorithm for arranging the queuing order in a supermarket. Suppose there are n customers come to the counter at the same time, noted as $c_1, c_2, ..., c_n$, the time to service i-th customer is $s_i, i = 1, 2 ... n$, and the absolute time to finish i-th customer is $T_i, i = 1, 2 ... n$. Your goal is to decide a queuing order of n customers to minimize the average completion time(waiting time + service time) of all n customers, that is, to minimize $\frac{1}{n}\sum_{i=1}^n T_i$. For example, there are two customers, c_1 , and c_2 with service time $s_1 = 7$, and $s_2 = 3$, if c_1 is served before c_2 , then $T_1 = 7$, $T_2 = 10$, average completion time= (7+10)/2=8.5; If c_2 is served before c_1 , then $t_1 = 10$, $t_2 = 3$, average completion time= (3+10)/2=6.5.
 - (1) Provide an algorithm to solving this issue.
 - (2) Prove your algorithm has the greedy choice property and optimal substructure.
 - (3) Justify the running time of your algorithm.
- 2. How many bits are required to encode the message "aaabccxxxyyyyzz" using Huffman Codes?
- 3. Demonstrate Prim's algorithm for the given undirected weighted graph. (Use A as the source.)

4. If we run Kruskal's algorithm for the given graph, what will be the sequence in which edges are added to the MST?

