T: Ketony – budowa, nazewnictwo i otrzymywanie.

Ketony to jednofunkcyjne pochodne węglowodorów, które zawierają jako grupę funkcyjną grupę karbonylową o wzorze :

gdzie: R_1 i R_2 – grupy alkilowe lub grupy arylowe (R_1 i R_2 mogą być takie same lub różne, ale nie mogą być to atomy wodoru)

..... grupa karbonylowa

Rodzaj występujących wiązań w ketonach:

W grupie ketonowej jedno wiązanie pomiędzy C a tlenem jest typu σ a drugie typu π , pozostałe wiązania zaliczamy do wiązań typu σ .

$$O = \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$$

Liczba wiązań σ: Liczba wiązań π:

Nazewnictwo ketonów:

Nazwy systematyczne ketonów tworzy się poprzez dodanie do nazwy odpowiedniego weglowodoru końcówki "– on " . Jeżeli cząsteczka ketonu zawiera podstawniki, to nazwę

zaczynamy od wymienienia podstawników w kolejności alfabetycznej z podaniem ich lokantów.

Liczba	Nazwa	Wzór	Wzór strukturalny
atomów		półstrukturalny	
C			
3	propan-2-on		
	keton		
	dimetylowy		
4			
5			
5			

Zad.90, str. 326 (f, g, h)

Ketony tworzą izomery szkieletowe, funkcyjne, położenia:

d)
$$CH_3 - C - CH - CH_3$$

Izomery szkieletowe:a i d......

Izomery funkcyjne:a i c.....

Izomery położenia grupy funkcyjnej:a i b......

Otrzymywanie ketonów:

Ketony otrzymuje się w reakcji utleniania alkoholi drugorzędowych za pomocą słabych utleniaczy, np. CuO.

$$\text{CH}_3$$
- CH - CH_3 + CuO $\text{temp.} \square$ CH_3 - C - CH_3 + Cu + H_2O

$$\text{CH}_3\text{-}\ \text{CH}_2$$
 - CH - CH_3 + CuO $^{\text{temp.}}\Box$ OH

T: Właściwości ketonów.

alkohole I-rzędowe utlenianie słabym utleniaczem □ aldehydy

alkohole II-rzędowe utlenianie słabym utleniaczem □ ketony

alkohole III-rzędowe utlenianie słabym utleniaczem □ reakcja nie zachodzi

Dośw. 1 Badanie zachowania alkoholi wobec utleniaczy.

Schemat dośw.

Obserwacje:

a)

1, 2, 3 – zmiana koloru z pomarańczowego na zielony,

4 – brak zmian

b)

1, 2, 3 – nastąpiło odbarwienie roztworu,

4 – brak zmian

Wnioski:

Alkohole III- rzędowe nie ulegają utlenianiu. Alkohole I-rzędowe utleniają się do aldehydów, a II-rzędowe do ketonów.

Właściwości ketonów:

- w temperaturze pokojowej są cieczami,
- są bardziej lotne od alkoholi o tej samej liczbie atomów węgla,
- ketony o niewielkich masach cząsteczkowych dobrze rozpuszczają się w wodzie (tworzą wiązania wodorowe z cząsteczkami wody),

- posiadają odczyn obojętny,
- nie ulegają dysocjacji jonowej,

Reakcje jakim ulegają ketony:

1) ulegają redukcji do alkoholi drugorzędowych

CH₃-
$$\frac{0}{6}$$
-CH₃ + H₂ $\frac{k\omega t}{2}$ CH₃- $\frac{0}{6}$ H-CH₃
CH₃CH₂ $\frac{0}{6}$ CH₃CH₃CH-CH₃

Jak odróżnić ketony od aldehydów:

Doświadczenie:

Schemat dośw.

Obserwacje:

1 – zmiana koloru z niebieskiego na ceglasto-czerwony

2 – brak zmian

Wnioski:

W wyniku reakcji siarczanu(VI) miedzi(II) z wodorotlenkiem sodu powstaje osad wodorotlenku miedzi(II). Z osadem reaguje jedynie aldehyd, który ma właściwości redukujące.

 $CuSO_4 \ + \ 2 \ NaOH \ \ \Box \ \ Cu(OH)_2 \ + \ Na_2SO_4$

$$2(u(0H)_2 + CH_3(H0) \xrightarrow{harf.} CU_3COOH + Cu_2O + 2H_2O$$

 $Cu(0H)_2 + CH_3CCUH_3 \xrightarrow{harf.} r. nie &achoodsi.$

Ketony nie wykazują właściwości redukujących i nie ulegają próbie Tollensa i Trommera.