Konvergenzbegriffe in der Ökonometrie

Sei $X_n, n = 1, 2, \dots$ eine Folge von Zufallsvariablen, X ein Grenzwert (abhängig von der Konvergenzart). Für die im Folgenden definierten Konvergenzbegriffe gilt folgende Logik:

$$X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X$$

	Fast sichere Konvergenz $(\xrightarrow{a.s})$	Konvergenz in Wahrscheinlichkeit $(\underset{n\to\infty}{\text{plim}}, \xrightarrow{P})$	
Definition	$\forall \epsilon > 0 : P(\lim n \to \infty X_n - X < \epsilon)$ $= P(\{\omega \in \Omega \lim n \to \infty X_n(\omega) = X(\omega)\}) = 1$	$\forall \epsilon > 0: \lim n \to \infty \ P(X_n - X < \epsilon) = 1$	$\lim n \to \infty F_{X_n}(x) = F_X(x)$ $\iff \lim n \to \infty P(X_n \le x) = P(X \le x) \forall x \in \mathbb{R}$
Bedeutung	Die Folge der Zufallsvariablen und der Grenzwert stimmen in fast allen Punkten bzw. Realisationen überein. Anders formuliert: Umso größer n ist, umso mehr Funktionswerte des Folgenglieds stimmen mit dem des Grenzwerts überein.	Es werden keine Realisationen (bzw. Funktionswerte) betrachtet, sondern der Limes einer Wahrscheinlichkeitsfolge von Ereignissen.	Analog zur fast sicheren Konvergenz, in der die Zufallsvariablen punktweise übereinstimmen, stimmen hier die Verteilungsfunktionen fast überall überein, obwohl es unterschiedliche Zufallsvariablen sein können.
Eigenschaften		Konsistenz eines Schätzers: Sei nun $\hat{\beta}_n$ ein Schätzer für β der Stichprobe $1,,n$, betrachtet als Zufallsvariable. Der Schätzer heißt konsistent , falls für den wahren Wert β gilt, dass $\hat{\beta}_n \stackrel{P}{\longrightarrow} \beta$, also als Zufallsvariable in Wahrscheinlichkeit gegen den wahren Wert β konvergiert.	
Rechenregeln		Falls die Grenzwerte plim $y_n =: y$, plim $z_n =: z$ von Zufallsvektorfolgen und plim $A_n := A$ der Zufallsmatrixfolge existieren, so gelten folgende arithmetische Operationen: plim $(y_n + z_n) = \text{plim} (y_n) + \text{plim} (z_n)$ $\sum_{\substack{n \to \infty \\ n \to \infty}} (y_n^T z_n) = (\text{plim} (y_n))^T (\text{plim} (z_n))$ $\sum_{\substack{n \to \infty \\ n \to \infty}} (A_n z_n) = (\text{plim} (A_n)) (\text{plim} (z_n))$ $\sum_{\substack{n \to \infty \\ n \to \infty}} (A_n z_n) = (\sum_{n \to \infty$	Falls die Grenzwerte des Vektors $a_n \stackrel{d}{\longrightarrow} a$ und der Matrx $A_n \stackrel{d}{\longrightarrow} A$ in Verteilung existieren, so existiert auch der Grenzwert ihres Produkts: $A_n a_n \stackrel{d}{\longrightarrow} Aa$
Gesetz der großen Zahlen Law of Large Numbers (LLN)	Sei X_i eine unabhängige voneinander und identische verteilte (IID-)Folge von Zufallsvariablen mit endlichem Erwartungswert μ , dann gilt für $\hat{\mu}:=n^{-1}\sum_{i=1}^n X_i$: Starkes Gesetz der großen Zahlen $\hat{\mu} \xrightarrow{a.s.} \mu$	Sei X_i eine unabhängige voneinander und identische verteilte (IID-)Folge von Zufallsvariablen mit endlichem Erwartungswert μ , dann gilt für $\hat{\mu}:=n^{-1}\sum_{i=1}^n X_i$: Schwaches Gesetz der großen Zahlen $\hat{\mu} \xrightarrow{P} \mu$ bzw. plim $\hat{\mu})=\mu$	
Wichtige Sätze		Slutsky's Theorem Sei $\underset{n\to\infty}{\text{plim}} X_n = X \text{ und } g(\cdot) \text{ stetig an der Stelle } X. \text{ Dann gilt:}$ $\underset{n\to\infty}{\text{plim}} g(X_n) = g(\underset{n\to\infty}{\text{plim}} X_n) = g(X)$ $(\text{Man darf den plim} \text{ in die Funktion ziehen})$	Continuous Mapping Theorem Sei $X_n \stackrel{d}{\longrightarrow} X$ und $h(\cdot)$ eine stetige Funktion von Zufallsvariablen. Dann gilt: $h(X_n) \stackrel{d}{\longrightarrow} h(X)$ Cramér-Wold Device Für eine Folge von Zufallsvektoren x_n gilt: $x_n \stackrel{d}{\longrightarrow} x \iff \lambda^T x_n \stackrel{d}{\longrightarrow} \lambda^T Sx$
Gegenbeispiele	Beispiel für fast sicher konvergent, aber keine math. Konvergenz: Sei S das Einheitsintervall $[0,1]$ mit Gleichverteilung darauf. Betrachte $X_n(s):=s+s^n \text{ und } X(s)=s.$	Beispiel für in Wahrscheinlichkeit konvergent, nicht fast sicher: Sei S wieder $[0,1]$ mit Gleichverteilung. Betrachte $X_1(s):=s+I_{[0,1]}(s), X_2(s):=s+I_{[0,1/2]}(s), \\ X_3(s):=s+I_{[1/2,1]}(s), X_4(s):=s+I_{[0,1/3]}(s), \\ X_5(s):=s+I_{[1/3,2/3]}(s), \dots$ und $X(s):=s$	Beispiel für in Verteilung konvergent, nicht in Warscheinlichkeit: Betrachte die Zufallsvariablen X_n, X auf $\Omega = \{0,1\}$ mit $P(\omega=0) = P(\omega=1) = \frac{1}{2} \colon$ $X_n := \begin{cases} 1, \text{wenn } \omega = 1 \\ 0, \text{wenn } \omega = 0 \end{cases} \text{ und } X := \begin{cases} 1, \text{wenn } \omega = 0 \\ 0, \text{wenn } \omega = 1 \end{cases}$