Laboratorio di Calcolo per Fisici, Prova pratica del 03/05/2023

Tutti i canali – A.A. 2022-2023

Nome	Cognome
Matricola	Ritirato/a

Lo scopo di questa prova d'esame è di scrivere un programma in C e uno script in python seguendo la traccia riportata di seguito. Si tenga presente che:

- 1. Per svolgere il compito avete a disposizione 3 ore.
- 2. Si possono usare libri di testo, prontuari e gli appunti, ma non è ammesso parlare con nessuno né utilizzare cellulari, tablet o laptop, pena l'annullamento del compito.
- 3. Seguite <u>pedissequamente</u> le istruzioni che trovate nel testo (nomi delle funzioni, dei file, delle variabili, formati di stampa, ecc).
- 4. Il programma va scritto e salvato esclusivamente sul computer del laboratorio, a cui si deve accedere utilizzando come username **studente** e come password **informatica**
- 5. Tutti i file vanno salvati in una cartella chiamata EXLR_NOME_COGNOME nella home directory, dove NOME e COGNOME indicano rispettivamente il vostro nome e cognome. Ad esempio lo studente Marco Rossi deve creare una cartella chiamata EXLR_MARCO_ROSSI contenente tutti i file specificati nel testo. Tutto ciò che non si trova all'interno della cartella non verrà valutato. All'inizio di tutti i programmi e script va inserito un commento con nome, cognome e numero di matricola.
- 6. Consegnate il presente testo indicando nome, cognome e numero di matricola, barrando la casella "Ritirato/a" se ci si vuole ritirare, ovvero se non si vuole che l'elaborato venga valutato.

► Background

La funzione log(1+x) si può sviluppare in serie nell'intervallo aperto (-1,1) secondo la formula

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \mathcal{O}(x^5) \tag{1}$$

Il compito consiste nel calcolare il valore approssimato della funzione con i primi 4 termini della serie per valori di x generati casualmente, confrontandolo con il valore esatto $\log(1+x)$.

▶ Prima parte

Scrivete un codice log.c che utilizzi l'Eq. (1) per calcolare il valore approssimato del logaritmo e la funzione log() per calcolarne il valore esatto per N=100 punti generati casualmente, stampando la differenza (in valore assoluto) tra i due numeri. In particolare il programma deve

- 1. definire, attraverso un'opportuna direttive #define, la costante N;
- 2. stampare sullo schermo una breve descrizione di cosa farà il programma;
- 3. contenere una funzione approx_log() che accetta in ingresso il valore di x, applica la formula (1) e restituisce il valore approssimato di $\log(1+x)$;
- 4. chiamare ripetutamente la funzione approx_log() all'interno di un ciclo in cui viene estratto a caso il valore di x compreso tra -1 e +1, estremi esclusi. Il ciclo deve estrarre x e calcolarne il logaritmo per N=100 iterazioni;
- 5. calcolare, ad ogni iterazione, la differenza tra il valore esatto $\log(1+x)$ calcolato usando la funzione \log del C, e il valore approssimato calcolato dalla funzione $\operatorname{approx_log}()$, memorizzando la differenza calcolata in un array.
- 6. stampare i valori contenuti nell'array delle differenze in un file di nome diff.dat.

ightharpoonup Seconda parte

Scrivete uno script Python log.py che grafichi la curva contenuta nel file diff.dat. Lo script deve salvare il grafico, che dovrà contenere una legenda e opportuni *label* sugli assi, nel file log.png.