Отчёт о лабораторной работе №3

Владимиров Эдуард, группа Б05-928 6 декабря 2022 г.

1 Введение

Дано видео движения двухуровневый маятника в качестве исходного временного ряда и два временных ряда, которые соответствуют значениям углов, в качестве целевого временного ряда. Необходимо, используя элемент фазового пространства, предсказать значения углов.

Весь код расположен по ссылке

2 Постановка задачи

Введём обозначения:

 $\underline{X} \in \mathbb{R}^{N \times I \times J}$ — временной ряд кадров: число кадров \cdot размеры изображения

 $Y \in \mathbb{R}^{N imes 2}$ — временной ряд звуков

 $T \in \mathbb{N}$ — размерность траекторного пространства

 $\mathbf{X} \in \mathbb{H}_X \subset \mathbb{R}^{(N-T+1) \times T \times I \times J}$ — траекторная матрица кадров и пространство траекторий

 $\mathbf{Y} \in \mathbb{H}_Y \subset \mathbb{R}^{(N-T+1) \times T \times 2}$ — траекторная матрица углов и пространство траекторий

 $\mathbf{f}: \mathbb{H}_X \to \mathbb{H}_Y$ — предсказательная модель, полученная из HOPLS О том, как выглядит эта модель, будет сказано ниже.

 $\widehat{\mathbf{Y}} = \mathbf{f}(\mathbf{X})$ — предсказания модели

$$Q\left(\widehat{\mathbf{Y}},\mathbf{Y}\right)=1-rac{||\widehat{\mathbf{Y}}-\mathbf{Y}||_F^2}{||\mathbf{Y}||_F^2}$$
 — критерий качества модели

2.1 HOPLS

Для начала вспомним, как работает обычный PLS. Для ранее нормированных по столбцам матриц \mathbf{X} и \mathbf{Y} и числа компонент K алгоритм работает следующим образом. Положим $\mathbf{X}_1 = \mathbf{X}, \, \mathbf{Y}_1 = \mathbf{Y}$. Далее для каждого $k \in [1, K]$:

- 1. вычисляем $\mathbf{a}_k \in \mathbb{R}^d$ и $\mathbf{b}_k \in \mathbb{R}^s$, первые левые и правые сингулярные вектора матрицы $\mathbf{X}_k^T \mathbf{Y}_k$; из определения следует, что $(\mathbf{a}_k, \mathbf{b}_k) = \operatorname*{argmax} \mathrm{Cov}(\mathbf{X}_k \mathbf{a}, \mathbf{Y}_k \mathbf{b})$.
- 2. проецируем матрицы \mathbf{X}_k и \mathbf{Y}_k на сингулярные вектора: $\mathbf{t}_k = \mathbf{X}_k \mathbf{a}_k, \ \mathbf{u}_k = \mathbf{Y}_k \mathbf{b}_k$.
- 3. регрессируем матрицу \mathbf{X}_k по вектору \mathbf{t}_k , то есть находим вектор \mathbf{p}_k такой, что матрица $\mathbf{t}_k \mathbf{p}_k^\mathsf{T}$ является наилучшим одноранговым приближением матрицы \mathbf{X}_k по норме Фробениуса; делаем то же самое с матрицей \mathbf{Y}_k и вектором \mathbf{u}_k и получаем вектор \mathbf{q}_k .
- 4. вычитаем из матрицы \mathbf{X}_k её одноранговое приближение из предыдущего шага, обозначим эту матрицу \mathbf{X}_{k+1} ; аналогичным образом получаем матрицу \mathbf{Y}_{k+1} .

Метод HOPLS является расширением метода PLS на тензоры: вместо SVD-разложения произведения двух матриц — HOOI-разложение тензорно-скалярного произведения двух тензоров и т.д.

2.2 Двухуровневый маятник

3 Вычислительный эксперимент

Было взято видео движения маятника с разрешением 176×240 , частотой 30 кадров в секунду и длительностью ≈ 6 минут. Общее число кадров равно 10802. Отдельно стоит подчеркнуть, что видео снималось в замедленном режиме: 1 секунде реального времени соответствует 500 видео кадров, то есть частота составляет 500 Γ ц.

Затем для экономии памяти частота видеоряда уменьшается в 3 раза: с 500 Гц до 166.67 Гц, и сам видеоряд обрезается до 1500 кадров. Для тестовой выборки взяты следующие 300 кадров.

Размерность траекторного пространства равна 3.

```
Algorithm 1 The Higher-order Partial Least Squares (HOPLS) Algorithm for a Tensor \underline{\mathbf{X}} and a Tensor \underline{\mathbf{Y}}
```

```
Input: \underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}, \underline{\mathbf{Y}} \in \mathbb{R}^{J_1 \times \cdots \times J_M}, N \geq 3, M \geq 3
      and I_1 = J_1.
      Number of latent vectors is R and number of loading
vectors are \{L_n\}_{n=2}^N and \{K_m\}_{m=2}^M.

Output: \{\mathbf{P}_r^{(n)}\}; \{\mathbf{Q}_r^{(m)}\}; \{\underline{\mathbf{G}}_r\}; \{\underline{\mathbf{D}}_r\}; \mathbf{T}
      r = 1, ..., R; n = 1, ..., N - 1; m = 1, ..., M - 1.
      Initialization: \underline{\mathbf{E}}_1 \leftarrow \underline{\mathbf{X}}, \quad \underline{\mathbf{F}}_1 \leftarrow \underline{\mathbf{Y}}.
      for r = 1 to R do
             if \|\underline{\mathbf{E}}_r\|_F > \varepsilon and \|\underline{\mathbf{F}}_r\|_F > \varepsilon then
                   \underline{\mathbf{C}}_r \leftarrow < \underline{\mathbf{E}}_r, \underline{\mathbf{F}}_r >_{\{1,1\}};
                   Rank-(L_2, ..., L_N, K_2, ..., K_M)
                                                                                                                                orthogonal
                   Tucker decomposition of \underline{\mathbf{C}}_r by HOOI [16] as
                   \underline{\mathbf{C}}_r \approx [\underline{\mathbf{G}}_r^{(C_r)}; \underline{\mathbf{P}}_r^{(1)}, \dots, \underline{\mathbf{P}}_r^{(N-1)}, \underline{\mathbf{Q}}_r^{(1)}, \dots, \underline{\mathbf{Q}}_r^{(M-1)}];
                   \mathbf{t}_r \leftarrow the first leading left singular vector by
                                SVD \left[\left(\underline{\mathbf{E}}_r \boxtimes_{\mathbf{2}} \mathbf{P}_r^{(1)T} \times_3 \cdots \times_N \mathbf{P}_r^{(N-1)T}\right)_{(1)}\right];
                   \underline{\mathbf{G}}_r \leftarrow [\![\underline{\mathbf{E}}_r; \mathbf{t}_r^T, \mathbf{P}_r^{(1)T}, \dots, \mathbf{P}_r^{(N-1)T}]\!]; \\ \underline{\mathbf{D}}_r \leftarrow [\![\underline{\mathbf{F}}_r; \mathbf{t}_r^T, \mathbf{Q}_r^{(1)T}, \dots, \mathbf{Q}_r^{(M-1)T}]\!];
                   Deflation:
                   \underline{\mathbf{E}}_{r+1} \leftarrow \underline{\mathbf{E}}_r - [\![\underline{\mathbf{G}}_r; \mathbf{t}_r, \mathbf{P}_r^{(1)}, \dots, \mathbf{P}_r^{(N-1)}]\!];
                   \underline{\underline{\mathbf{F}}}_{r+1} \leftarrow \underline{\underline{\mathbf{F}}}_r - [\![\underline{\mathbf{D}}_r; \mathbf{t}_r, \mathbf{Q}_r^{(1)}, \dots, \mathbf{Q}_r^{(M-1)}]\!];
             else
                   Break;
             end if
      end for
```

Рис. 1: Полное описание алгоритма HOPLS

3.4 Prediction of the Response Variables

Predictions from the new observations $\underline{\mathbf{X}}^{new}$ are performed in two steps: projecting the data to the low-dimensional latent space based on model parameters $\underline{\mathbf{G}}_r$, $\mathbf{P}_r^{(n)}$, and predicting the response data based on latent vectors \mathbf{T}^{new} and model parameters $\mathbf{Q}_r^{(m)}$, $\underline{\mathbf{D}}_r$. For simplicity, we use a matricized form to express the prediction procedure as

$$\underline{\hat{\mathbf{Y}}}_{(1)}^{new} \approx \mathbf{T}^{new} \mathbf{Q}^{*T} = \mathbf{X}_{(1)}^{new} \mathbf{W} \mathbf{Q}^{*T}, \tag{26}$$

where W and Q^* have R columns, represented by

$$\mathbf{w}_{r} = \left(\mathbf{P}_{r}^{(N-1)} \boxtimes \cdots \otimes \mathbf{P}_{r}^{(1)}\right) \underline{\mathbf{G}}_{r(1)}^{+},$$

$$\mathbf{q}_{r}^{*} = \underline{\mathbf{D}}_{r(1)} \left(\mathbf{Q}_{r}^{(M-1)} \otimes \cdots \otimes \mathbf{Q}_{r}^{(1)}\right)^{T}.$$
(27)

Рис. 2: Предсказательная модель ${\bf f}$, полученная из HOPLS

Далее применяется HOPLS со следующими гиперпараметрами: число компонент равняется 30, размер core tensor-а -48×48 . Результаты модели показаны на графиках 5, 6.

Из приведённых графиков можно заключить следующее:

- 1. Качество предсказания растёт с увеличением числа компонент
- 2. HOPLS неплохо предсказывает значения углов на обучающей выборке, но на тестовой ведёт себя как константа. Предполагается, что это связано с наличием нелинейности в данных и с тем, что следующие значения целевой переменной сильно зависят от предыдущих. Её можно уменьшить, если вместо кумулятивных значений углов предсказывать обычные.

Результаты поиска по сетке для обучающей выборки приведены в таблице **3**

Также сравнены значения предсказаний кумулятивного и азимутного углов маятника, результаты приведены в таблице 3 и графике 4.

Рис. 3: Внешний вид маятника

		φ_{0}			$arphi_{1}$		
	$ m Kernel \ angle R$	16	32	48	16	32	48
MSE	16	8050	6025	5855	31309	20308	19915
	32	7645	8774	8774	34576	32797	32794
	48	8623	7203	7055	40114	24345	19883
MAE	16	63.4	55.3	58.2	149.6	104.6	101.2
	32	64.9	77.1	77.1	152.9	145.6	145.6
	48	70.6	61.9	63.2	152.7	116.0	104.9
$ m R^2$	16	0.640	0.730	0.738	0.750	0.837	0.841
	32	0.658	0.607	0.607	0.723	0.738	0.738
	48	0.615	0.678	0.684	0.679	0.805	0.841

Таблица 1: Метрики качества (MSE, MAE, R^2) модели предсказания кумулятивных углов маятника φ_0 , φ_1 для разного числа компонент (R) и размера core tensor-a (Kernel)

	Cı	ım	Azi		
Metric \Angle	φ_{0}	φ_{1}	φ_{0}	φ_{1}	
MSE	7541	27800	7951	3708	
MAE	63.9	120.6	70.6	39.4	
\mathbb{R}^2	0.662	0.778	0.442	0.723	

Таблица 2: Метрики качества (MSE, MAE, R^2) модели предсказания кумулятивного (Cum) и азимутного (Azi) углов

Рис. 4: Результаты предсказания азимута угла на обучающей и тестовой выборках

Рис. 5: Зависимость качества предсказания модели от числа компонент

Рис. 6: Результаты предсказания на обучающей и тестовой выборках

4 Литература

- 1. Статья про HOPLS: ссылка
- 2. Данные двухуровневого маятника: ссылка