1 Representación e inferencia lógicas

Camilo Palazuelos Calderón

REPRESENTACIÓN DEL CONOCIMIENTO Grado en Ingeniería Informática Mención en Computación

Curso 2023-2024

Información útil

Sobre la práctica y su entrega

Objetivos de la práctica

- Manejar estructuras de datos básicas en Python
- Implementar el encadenamiento hacia delante en lógica proposicional
- Desarrollar un algoritmo que decida si el encadenamiento es completo
- Laboratorio: 6 y 13 de octubre de 14:30 a 16:30
 - □ La fecha límite de entrega es el 19 de octubre a las 23:59

L	M	X	J	V
2	3	4	5	6
9	10	11	12	13
16	17	18	19	20
23	24	25	26	27
30	31			

Qué entregar

- Memoria con respuestas a las preguntas formuladas en el guion de la práctica
- Código desarrollado (y material adicional si lo consideráis oportuno)

Lógicas y modelos

De la semántica a la consecuencia lógica

- Las lógicas son lenguajes formales que posibilitan razonar
 - 1 representando e
 - La sintaxis del lenguaje indica qué fórmulas están bien formadas;
 - la semántica, el valor de verdad de cada fórmula en cada modelo
 - 2 infiriendo
 - $M(\varphi) = \{\mu \mid \mu(\varphi)\}, \text{ donde } \mu(\varphi) \text{ es el valor de verdad de } \varphi \text{ en } \mu \}$
 - Una fórmula φ implica otra ψ si y solo si $\mu(\psi)$ para todo $\mu \in M(\varphi)$

Representación lógica

$$M(\underbrace{\varphi_1 \wedge \cdots \wedge \varphi_k}) = \bigcap_i M(\varphi_i)$$

Base de conocimiento BC

Inferencia lógica

$$\mathsf{BC} \models \psi \Longleftrightarrow M(\mathsf{BC}) \subseteq M(\psi)$$
Verificación de modelos

Inferencia y satisfacibilidad

La inferencia en lógica proposicional se reduce a SAT

Proposición 1.1. Sean BC y ψ dos fórmulas proposicionales.

$$\mathsf{BC} \models \psi \Longleftrightarrow \mathsf{BC} \land \neg \psi$$
 es insatisfacible

- Una fórmula φ es *insatisfacible* si $\neg \mu(\varphi)$ para todo modelo μ

	$\mu_i(BC)$	$\mu_i(\psi)$	$\mu_i(BC \wedge eg \psi)$
1			
2		1	
3	1		1
4	1	1	

BC $\models \psi$ en lógica proposicional es un problema co-NP-completo

Lógicas y demostraciones

De la sintaxis a la consecuencia lógica

- Sea P un conjunto de fórmulas y κ , una fórmula
 - □ Una *regla de inferencia* (P, κ) indica que de P se deriva κ
 - \square A *P* se lo denomina conjunto de *premisas* y a κ , *conclusión*
- Un encadenamiento de reglas i permite demostrar que BC $\vdash_i \psi$
 - □ Si y solo si \forall BC $\forall \psi$ [BC $\vdash_i \psi \Longrightarrow$ BC $\models \psi$], se dice que i es *correcto*
 - □ Si y solo si \forall BC \forall ψ [BC \models ψ \Longrightarrow BC \vdash _i ψ], se dice que *i* es *completo*

Modus ponens

$$\left. egin{array}{c} arphi
ightarrow \kappa \ \dfrac{arphi}{\kappa} \end{array}
ight\} extcolor{P}$$

Encadenamiento de reglas (BC $\vdash_i \psi$)

$$\begin{array}{l} \textbf{while} \ \exists \varphi \ \exists \kappa \ [\{\varphi \rightarrow \kappa, \varphi\} \subseteq \mathsf{BC} \ \textbf{and} \ \kappa \not \in \mathsf{BC}] \\ \mathsf{BC} \leftarrow \mathsf{BC} \cup \{\kappa\} \\ \mathsf{return} \ \psi \in \mathsf{BC} \end{array}$$

Encadenamiento de modus ponens

Completo en lógica proposicional para BC de Horn

Proposición 1.2. Para toda BC de Horn proposicional,

$$\{q \mid \mathsf{BC} \vdash_i q\} = \{q \mid \mathsf{BC} \models q\}$$

Una BC de Horn es una conjunción de cláusulas de Horn

Modus ponens

$$rac{
ho_1 \wedge \dots \wedge
ho_\ell
ightarrow q}{rac{
ho_1, \dots,
ho_\ell}{q}}$$

Cláusulas de Horn

 $op op ext{0} hecho$ $p_1 \wedge \cdots \wedge p_\ell o q ext{2} ext{regla}$ $p_1 \wedge \cdots \wedge p_\ell o \bot ext{3} ext{objetivo}$

BC $\models \psi$ con BC de Horn proposicionales es un problema **P-completo**

Tareas y preguntas

Qué hacer y a qué dar respuesta en la memoria

- [8 PUNTOS] Codificación de los algoritmos descritos
 - Implementad el encadenamiento hacia delante en lógica proposicional
 - Desarrollad un algoritmo que decida si el encadenamiento es completo
- [2 PUNTOS] Eficacia de vuestras propuestas
 - Mostrad, con ejemplos variados, que todo funciona correctamente