Review Question 1

Tutorial 4

YANG YANG

The Australian National University

Week 5, 2017

Overview

Review

2 Question 1

Confidence Intervals for $\hat{\beta_0}$ and $\hat{\beta_1}$

A 95% confidence interval for $\hat{\beta_0} \longrightarrow \hat{\beta_0} \pm t(0.975) \times se(\hat{\beta_0})$

A 95% confidence interval for $\hat{\beta_1} \longrightarrow \hat{\beta_1} \pm t (0.975) \times se(\hat{\beta_1})$

Review

Confidence Interval for parameters

- It is an observed interval (i.e., it is calculated from the observations), that potentially includes the unobservable true parameter of interest.
- How frequently the observed interval contains the true parameter if the experiment is repeated is called the confidence level.
- ullet population mean μ and population standard deviation σ
- "We are 95% confident that the **true value of the parameter** is in our confidence interval."

Review Question 1

Prediction Interval for future observations

- It is an estimated interval in which future observations will fall, with a certain probability, given what has already been observed.
- Prediction intervals predict the distribution of observable future points.
- ullet observations or sample point X_{n+1}
- "On repeated applications of this computation, the future observation X_{n+1} will fall in the predicted interval 95% of the time."

Confidence Intervals for Prediction

We often interested in predicting the response value for future observations at particular values of predictor (e.g., x_0).

$$\hat{Y}(x_0) = b_0 + b_1 x_0$$

Associated standard error of the estimate

$$\mathsf{Var}\{\hat{Y}(x_0)\} = \sigma^2 \left\{ \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right\}$$

Substitute our estimator, s, for the scale parameter, σ , we then have an estimate of the standard error of prediction

$$s\{\hat{Y}(x_0)\} = s\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

Confidence intervals for prediction

Assuming normal errors, a $100(1-\alpha)\%$ interval for the expected response $E(Y|x_0)$ is

$$\hat{Y}(x_0) \pm t_{n-2}(1 - \alpha/2)s\{\hat{Y}(x_0)\}$$

This interval is indeed a confidence interval, since in gives a plausible range for a **fixed**, **population quantity**.

Prediction intervals for a future response value

We also make prediction for the value of a single future response value, Y_0 , at a particular value of the predictor value, x_0 . It is called a prediction interval since we want to find a likely range for a random quantity.

A future value Y_0 is independent of the observed data used to estimate b_0 and b_1 . So,

$$\mathsf{Var}\{Y_0 - \hat{Y}(x_0)\} = \mathsf{Var}(Y_0) + \mathsf{Var}\{\hat{Y}(x_0)\} = \sigma^2 + \sigma^2 \left\{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right\}$$

Prediction intervals for a future response value

Since $E\{Y_0-\hat{Y}(x_0)\}=0$, the standard normal theory assumptions show that $\frac{Y_0-\hat{Y}(x_0)}{}\sim t_{r=0}$

$$\frac{Y_0 - \hat{Y}(x_0)}{s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}} \sim t_{n-2}.$$

(see Page 19 of Lecture Notes)

A $100(1-\alpha)\%$ confidence interval for a given value x_0 :

$$\hat{Y}(x_0) \pm t_{\alpha/2, n-2} \times s\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}^2}}$$

A $100(1-\alpha)\%$ prediction interval for a given value x_0 :

$$\hat{Y}(x_0) \pm t_{\alpha/2, n-2} \times s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}^2}}$$

- The further away from the \bar{x} we are predicting, the wider our prediction interval will be.
- ullet PI is wider than CI for the same value of x_0

Hypothesis test of the $\rho_{x,y}$

Step One: $H_0: \rho_{x,y} = 0$ v.s. $H_A: \rho_{x,y} \neq 0$

Step Two: Test Statistic $=\frac{r-0}{se(r)}=\frac{r\sqrt{n-2}}{1-r^2}$

Step Three: Refers to the t distribution table with n-2 degrees of freedom and find the critical values.

Step Four: Compare the calculated test statistics with the critical values and make a decision.

Step Five: Conclusion

Review Question 1

Question 1 (d)-(g)

tervals and prediction intervals

• Cl: predict(object_newdata=as.data_frame(cbind(col_name=new_x))

In R, we use "predict()" command to compute 95% confidence in-

- CI: predict(object,newdata=as.data.frame(cbind(col.name=new.x)), interval="confidence")
- PI: predict(object,newdata=as.data.frame(cbind(col.name=new.x)), interval="prediction")