Blatt 3

Aufgabe 2

a) Bestimmen Sie, ob $f \in \mathcal{O}(g)$ oder $f \in \Omega(g)$ oder beides (d.h. $f \in \Theta(g)$). Beweisen Sie Ihre Aussagen.

1.
$$f(n) = \pi \cdot 3^{\frac{n}{2}}, g(n) = 2^n$$

$$\lim_{n o\infty}rac{f(n)}{g(n)}=\lim_{n o\infty}rac{\pi\cdot 3^{rac{n}{2}}}{2^n}=\lim_{n o\infty}\pi\cdot rac{(\sqrt{3})^n}{2^n}=0$$

Da $\sqrt{3} < 2$.

Damit folgt: $f \in o(g) \subseteq O(g)$

2.
$$f(n) = n \log n, g(n) = n \log(n^{\frac{1}{3}})$$

$$\lim_{n o\infty}rac{f(n)}{g(n)}=\lim_{n o\infty}rac{n\log n}{n\log(n^{rac{1}{3}})}=\lim_{n o\infty}rac{\log n}{\log(n^{rac{1}{3}})}=\lim_{n o\infty}rac{3\log n}{\log n}=3$$

Damit folgt: $f \in \Theta(g)$

3.
$$f(n) = \frac{\log(n)}{n}, g(n) = \frac{\sqrt{n}}{n}$$

$$\lim_{n o\infty}rac{f(n)}{g(n)}=\lim_{n o\infty}rac{rac{\log n}{n}}{rac{\sqrt{n}}{n}}=\lim_{n o\infty}rac{\log n}{\sqrt{n}}$$

Da sowohl Zähler als auch Nenner gegen unendlich streben, vergleiche wir hier nach Hopital die Ableitungen:

$$\lim_{n o\infty}rac{\log n}{\sqrt{n}}\stackrel{abl.}{=}\lim_{n o\infty}rac{rac{1}{n}}{rac{1}{2\sqrt{n}}}=\lim_{n o\infty}rac{2\sqrt{n}}{n}=\lim_{n o\infty}rac{2}{\sqrt{n}}=0$$

Damit folgt: $f \in o(g) \subseteq O(g)$

b) Sei $g(n)=\frac{1}{n}.$ Zeigen Sie, dass eine Funktion $f\in o(g)$ existiert, oder beweisen Sie, dass $o(g)=\emptyset.$

$$f(n) := \frac{1}{n^2}$$

$$\lim_{n o\infty}rac{f(n)}{g(n)}=\lim_{n o\infty}rac{rac{1}{n^2}}{rac{1}{n}}=\lim_{n o\infty}rac{n}{n^2}=\lim_{n o\infty}rac{1}{n}=0$$

Damit folgt: $f \in o(g) \subseteq O(g)$

Also ist o(g) nicht leer bzw enthält mindestens eine Funktion.