Introductory Econometrics I

Limited Dependent Variable Models*

Yingjie Feng

School of Economics and Management

Tsinghua University

June 1, 2024

Review: Assumptions for OLS

- Recall the classical linear model (CLM) assumptions for OLS regression:
 - MLR.1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + u$
 - ▶ MLR.2: random sampling from the population
 - ▶ MLR.3: no perfect collinearity in the sample
 - ▶ MLR.4: $\mathbb{E}[u|x_1,...,x_k] = \mathbb{E}[u] = 0$ (exogenous explanatory variables)
 - ▶ MLR.5: $\mathbb{V}[u|x_1,...,x_k] = \mathbb{V}[u] = \sigma^2$ (homoskedasticity)
 - ▶ MLR.6: $u|x_1, \dots, x_k \sim \mathsf{Normal}(0, \sigma^2)$
- We have endeavored to relax MLR.2, MLR.4, MLR.5, MLR.6
- MLR.3 is mild (just used to guarantee the existence of OLS estimators)
- Now, we focus on MLR.1 (linear in parameters), which may be inappropriate in some scenarios.
 - Note: Linearity in x_j is not a big issue, since x_j can be nonlinear transformation of underlying variables (log, quadratics, etc.)

Outline

Limited Dependent Variables

2 Logit and Probit Models

3 Maximum Likelihood Estimation of Logit/Probit Models

Limited Dependent Variables

- ullet In many scenarios, the dependent variable takes values in a restricted range
 - ▶ Binary response: labor force participation
 - ▶ Multiple choice: choice of transportation mode
 - ▶ Positive integers: number of times arrested during a year
- We have discussed binary response before.
 - ► Linear probability model (LPM) works (some issues need to be taken care of, e.g., heteroskedasticity)
 - ▶ But LPM does have several disadvantages
 - \star The predicted probability is not guaranteed to be between 0 and 1
 - * The partial effect of x on the response probability is a constant, which is inappropriate in this case
- Today, we will focus on binary responses and discuss two nonlinear models,
 logit and probit, that help address these issues.

Binary Choice

 \bullet Suppose $y \in \{0,1\}$ is binary. Our goal is to characterize response probability

$$\mathbb{P}(y=1|\boldsymbol{x}) = \mathbb{P}(y=1|x_1,\cdots,x_k) = \mathbb{E}[y|x_1,\cdots,x_k]$$

- \triangleright Example: y is an employment indicator, and x can be education, age, etc.
- Recall that in linear probability model, we set

$$\mathbb{P}(y=1|\boldsymbol{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

• By contrast, we can specify a nonlinear model, for example,

$$\mathbb{P}(y=1|\mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

G is some known nonlinear function such that $0 \leq G(z) \leq 1$ for all $z \in \mathbb{R}$

Outline

Limited Dependent Variables

2 Logit and Probit Models

3 Maximum Likelihood Estimation of Logit/Probit Models

Logit and Probit Models

• In **logit** model, we set

$$G(z) = \frac{\exp(z)}{1 + \exp(z)} = \Lambda(z)$$

- \wedge $\Lambda(z)$ is the cumulative distribution of standard logistic distribution
- In **probit** model, we set

$$G(z) = \Phi(z) = \int_{-\infty}^{z} \phi(v)dv$$

- lacktriangledown $\Phi(z)$ is the cumulative distribution of standard normal distribution
- Recall a cumulative distribution function take values between zero and one
 - $G(z) \to 0$ as $z \to -\infty$
 - $G(z) \to 1 \text{ as } z \to +\infty$

Logit and Probit Models

Justification: Latent Variable Models

• We can justify logit/probit by latent variable models

$$y^* = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + e, \quad y^* \text{ not observed}$$
$$y = \mathbb{1}(y^* > 0) = \begin{cases} 0 & \text{if } y^* \le 0\\ 1 & \text{if } y^* > 0 \end{cases}$$

• Assume e is independent of \boldsymbol{x} and follows the distribution given by $G(\cdot)$.

$$\mathbb{P}(y=1|\mathbf{x}) = \mathbb{P}(y^* > 0|\mathbf{x}) = \mathbb{P}(e > -\beta_0 - \beta_1 x_1 - \dots - \beta_k x_k | \mathbf{x})$$
$$= 1 - G(-\beta_0 - \beta_1 x_1 - \dots - \beta_k x_k)$$

• For logit/probit, G is symmetric w.r.t. zero, i.e., G(-z) = 1 - G(z). So

$$\mathbb{P}(y=1|\boldsymbol{x}) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

Partial Effects

- Partial effect (PE) of some x_j on the response probability
 - ► In LPM:

$$\frac{\partial}{\partial x_i} \mathbb{P}(y = 1 | \boldsymbol{x}) = \beta_j$$

► In nonlinear models:

$$\frac{\partial}{\partial x_i} \mathbb{P}(y=1|\boldsymbol{x}) = \beta_j G'(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k), \quad G'(z) = \frac{d}{dz} G(z)$$

- For probit/logit, G is strictly increasing $(G'(\cdot) > 0)$. So the partial effect of x_j has the same sign as β_j
- But PE is no longer a constant; it depends on particular values of the explanatory variables. Some parameters of interest are

PE of
$$x_j$$
 at average of each x_l : $\beta_j G' \Big(\beta_0 + \beta_1 \mathbb{E}[x_1] + \dots + \beta_k \mathbb{E}[x_k] \Big)$
Average PE of x_j : $\mathbb{E} \Big[\beta_j G' (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) \Big]$

Partial Effects

- Partial effect (PE) of some x_j on the response probability
 - ► In LPM:

$$\frac{\partial}{\partial x_j} \mathbb{P}(y = 1 | \boldsymbol{x}) = \beta_j$$

► In nonlinear models:

$$\frac{\partial}{\partial x_j} \mathbb{P}(y=1|\mathbf{x}) = \beta_j G'(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k), \quad G'(z) = \frac{d}{dz} G(z)$$

• Sometimes you want to see the effect of a dummy variable, say x_1 . Then, the goal is to estimate

$$G(\beta_0 + \beta_1 + \beta_2 x_2 + \dots + \beta_k x_k) - G(\beta_0 + \beta_2 x_2 + \dots + \beta_k x_k)$$

▶ Again, you want to choose particular values x_2, \dots, x_k (or take average)

Partial Effects

- Once we have parameter estimates $\hat{\beta}_j$'s, the estimates of these effects are available.
 - ▶ The estimated partial effect of x_j evaluated at the average of each x_l (PEA_j)

$$\widehat{PEA}_j = \hat{\beta}_j G'(\hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \dots + \hat{\beta}_k \bar{x}_k)$$

▶ The estimated average partial effect of x_j (APE_j)

$$\widehat{APE}_j = \frac{1}{n} \sum_{i=1}^n \hat{\beta}_j G'(\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik})$$

- In Stata,
 - use probit/logit to estimate the parameters in the model (via maximum likelihood method)
 - use margins to obtain the partial effects

- Women's labor force participation (MROZ.DTA)
- Linear regression (LPM)

reg inlf nwifeinc educ exper age

	Source	SS	df	MS	Number of obs	-	753
-					F(4, 748)	-	42.44
	Model	34.1681574	4	8.54203935	Prob > F	-	0.0000
	Residual	150.559598	748	.201282885	R-squared	-	0.1850
_					Adj R-squared	-	0.1806
	Total	184.727756	752	.245648611	Root MSE	-	.44865

inlf	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
nwifeinc	0037402	.0015182	-2.46	0.014	0067206	0007599
educ	.0358477	.0076757	4.67	0.000	.0207792	.0509162
exper	.0231594	.0022352	10.36	0.000	.0187714	.0275475
age	0111411	.0022111	-5.04	0.000	0154819	0068004
_cons	.430941	.1342506	3.21	0.001	.1673883	.6944938

- Women's labor force participation (MROZ.DTA)
- Logit estimation
 - . logit inlf nwifeinc educ exper age

```
Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -438.66346
Iteration 2: log likelihood = -437.87224
Iteration 3: log likelihood = -437.86993
Iteration 4: log likelihood = -437.86993
```

Logistic regression Number of obs 753 LR chi2(4) 154.01 Prob > chi2 0.0000 Pseudo R2 0.1496

Log likelihood = -437.86993

inlf	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nwifeinc	0188992 .1852325	.0076755	-2.46 4.55	0.014	0339428 .1053604	0038555 .2651046
educ exper	.1165652	.0129169	9.02	0.000	.0912485	.141882
age _cons	0506876 6320442	.0112326 .6734115	-4.51 -0.94	0.000 0.348	072703 -1.951906	0286722 .6878181

- Women's labor force participation (MROZ.DTA)
- Probit estimation, with **robust** standard error

. probit inlf nwifeinc educ exper age, robust

```
Iteration 0: log pseudolikelihood = -514.8732
Iteration 1: log pseudolikelihood = -438.85547
Iteration 2: log pseudolikelihood = -438.71697
Iteration 3: log pseudolikelihood = -438.71695
```

Probit regression Number of obs = 753

Wald chi2(4) = 114.67

Prob > chi2 = 0.0000

Log pseudolikelihood = -438.71695 Pseudo R2 = 0.1479

inlf	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
nwifeinc	0110665	.0046413	-2.38	0.017	0201632	0019698
educ	.1089496	.0245473	4.44	0.000	.0608378	.1570614
exper	.0685406	.0078943	8.68	0.000	.0530681	.0840131
age	0314559	.0066097	-4.76	0.000	0444107	018501
_cons	303706	.4047309	-0.75	0.453	-1.096964	. 489552

- Women's labor force participation (MROZ.DTA)
- After probit/logit, you can use margins to get partial/marginal effects

```
. margins, dvdx(*)
Average marginal effects
                                                   Number of obs
                                                                                753
Model VCF
              : Robust
Expression : Pr(inlf), predict()
dv/dx w.r.t. : nwifeinc educ exper age
                           Delta-method
                     dy/dx
                             Std. Err.
                                                             [95% Conf. Interval]
                                                   P>|z|
    nwifeinc
                 - . 0036778
                             .0015222
                                                   0.016
                                                             - . 0066613
                                                                         - . 0006943
                                          -2.42
        educ
                  .0362077
                             .0078099
                                          4.64
                                                   0.000
                                                              .0209006
                                                                          .0515149
       exper
                  .0227784
                             .0021427
                                          10.63
                                                   0.000
                                                              .0185787
                                                                          .0269781
         age
                 - 0104539
                              0021128
                                           -4.95
                                                   0.000
                                                             - 0145949
                                                                         - . 0063129
```

This table reports the average partial effects (APE)

Final Remarks

- Coefficient from LPM, logit and probit cannot be directly compared, but you can compare the partial effects
- The distribution function $G(\cdot)$ of standard logistic and that of standard normal are similar. In practice, the logit and probit estimates usually do not differ much. If they do, maybe you want to re-specify your model.
- Various robust standard errors are still available in probit/logit estimation.

Outline

Limited Dependent Variables

2 Logit and Probit Models

3 Maximum Likelihood Estimation of Logit/Probit Models

Review: Maximum Likelihood Estimation

- Recall the idea of MLE is to maximize the likelihood of the observed sample by choosing the parameters
- For example, assume (y_i, \mathbf{x}_i) are i.i.d. and the conditional density function of y given \mathbf{x} is $f(y|\mathbf{x}; \boldsymbol{\beta})$ where $\boldsymbol{\beta}$ is a vector of parameters of interest

individual likelihood :
$$L_i(\beta) := f(y_i|x_i;\beta)$$

joint likelihood :
$$L(\boldsymbol{\beta}) := \prod_{i=1}^n L_i(\boldsymbol{\beta}) = \prod_{i=1}^n f(y_i|\boldsymbol{x}_i;\boldsymbol{\beta})$$

log likelihood:
$$\ell(\boldsymbol{\beta}) := \sum_{i=1}^{n} \log f(y_i | \boldsymbol{x}_i; \boldsymbol{\beta})$$

• Maximum likelihood estimator:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,max}} \ \ell(\boldsymbol{\beta})$$

• Technical notes: as before, our anlays is is conditional on all explanatory variables, so we only characterize conditional distribution of y given x

MLE of Logit/Probit Models

- Conditional on $\mathbf{x} = (1, x_1, \dots, x_k)$, y can only take two values, 0 and 1.
- In statistics, such binary variables are said to follow Bernoulli distribution.

$$y_i = \begin{cases} 1 & \text{with prob. } G(\boldsymbol{x}_i \boldsymbol{\beta}) \\ 0 & \text{with prob. } 1 - G(\boldsymbol{x}_i \boldsymbol{\beta}) \end{cases}$$

• The conditional density of y_i given x_i can be written as

$$f(y_i|x_i;\beta) = [G(x_i\beta)]^{y_i}[1 - G(x_i\beta)]^{1-y_i}, \quad y_i = 0,1$$

• MLE:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg max}} \sum_{i=1}^{n} \left(y_i \log[G(\boldsymbol{x}_i \boldsymbol{\beta})] + (1 - y_i) \log[1 - G(\boldsymbol{x}_i \boldsymbol{\beta})] \right)$$