CIRCUITOS TRIFÁSICOS

4.1 Introdução

Este capítulo inicia-se com algumas definições importantes, que serão utilizadas ao longo do texto. Em seguida são apresentados métodos de cálculo para a análise de circuitos trifásicos alimentando cargas trifásicas equilibradas, ligadas através das duas formas possíveis, em estrela e em triângulo. Em continuação, apresenta-se o tópico de potência em sistemas trifásicos, quando são definidos os conceitos de potência ativa, reativa e aparente.

Define-se como "sistema de tensões trifásico e simétrico" (a 3 fases) um sistema de tensões do tipo:

$$e_{1} = E_{M} \cos \omega t = \Re e \left[E_{M} e^{j\omega t} \right]$$

$$e_{2} = E_{M} \cos(\omega t - 2\pi/3) = \Re e \left[E_{M} e^{-j2\pi/3} e^{j\omega t} \right]$$

$$e_{3} = E_{M} \cos(\omega t - 4\pi/3) = E_{M} \cos(\omega t + 2\pi/3) = \Re e \left[E_{M} e^{j2\pi/3} e^{j\omega t} \right]$$

E, pelos fasores, tem-se:

$$\dot{E}_{1} = E + j \, 0 = E \, \underline{0^{\circ}}
\dot{E}_{2} = E \left[\cos(-2\pi/3) + j \, sen(-2\pi/3) \right] = E \left(-\frac{1}{2} - j \, \frac{\sqrt{3}}{2} \right) = E \, \underline{-120^{\circ}}
\dot{E}_{3} = E \left[\cos(+2\pi/3) + j \, sen(+2\pi/3) \right] = E \left(-\frac{1}{2} + j \, \frac{\sqrt{3}}{2} \right) = E \, \underline{/120^{\circ}}$$
(4.1)

em que $E = E_M/\sqrt{2}$ representa o valor eficaz da tensão.

Para entendimento de como um sistema trifásico é gerado, parte-se de um gerador monofásico. Nos terminais de uma bobina que gira com velocidade angular constante, no interior de um campo magnético uniforme, surge uma tensão senoidal cuja expressão é

$$e = E_M \cos(\omega t + \theta),$$

em que θ representa o ângulo inicial da bobina. Ou melhor, adotando-se a origem dos tempos coincidente com a direção do vetor indução, θ representa o ângulo formado pela direção da bobina com a origem dos tempos no instante t=0.

Assim, é óbvio que, se sobre o mesmo eixo forem dispostas três bobinas deslocadas entre si de $2\pi/3$ rad e girar o conjunto com velocidade angular constante no sentido horário, no interior de um campo magnético uniforme, nos terminais das bobinas aparecerá um sistema de tensões de mesmo valor máximo e defasadas entre si de $2\pi/3$ rad, conforme Figura. 4.1.

(a) - Bobinas do gerador

(b) - Valores instantâneos das tensões

Figura 4.1. Obtenção de um sistema trifásico de tensões

Define-se, para um sistema polifásico simétrico, "seqüência de fase" como sendo a ordem pela qual as tensões das fases passam pelo seu valor máximo. Por exemplo, no sistema trifásico da Figura. 4.1, a seqüência de fase é A-B-C, uma vez que as tensões passam consecutivamente pelo valor máximo na ordem A-B-C. Evidentemente, uma alteração cíclica não altera a seqüência de fase, isto é, a seqüência A-B-C é a mesma que B-C-A e que C-A-B. À seqüência A-B-C é dado o nome "seqüência direta" ou "seqüência

55

positiva", e à sequência A-C-B, que coincide com C-B-A e B-A-C, dá-se o nome de "sequência inversa" ou "sequência negativa".

Exemplo 4.1

Um sistema trifásico simétrico tem sequência de fase negativa, *B-A-C*, e $\dot{V}_C = 220 / 40^\circ V$. Determinar as tensões \dot{V}_A e \dot{V}_B .

Solução: Sendo a sequência de fase *B-A-C*, a primeira tensão a passar pelo valor máximo será v_B , a qual será seguida, na ordem, por v_A e v_C . Portanto, deverá ser:

$$v_B = V_M \cos(\omega t + \theta)$$
 , $v_A = V_M \cos(\omega t + \theta - 2\pi/3)$, $v_C = V_M \cos(\omega t + \theta - 4\pi/3)$

em que θ representa o ângulo inicial ou a rotação de fase em relação à origem. No instante t=0, tem-se:

$$v_B = V_M \cos \theta$$
, $v_A = V_M \cos(\theta - 2\pi/3)$, $v_C = V_M \cos(\theta - 4\pi/3)$

Sendo $V = V_M / \sqrt{2}$, fasorialmente tem-se:

$$\dot{V}_{B} = V/\underline{\theta}$$
 , $\dot{V}_{A} = V/\theta - 2\pi/3$, $\dot{V}_{C} = V/\theta - 4\pi/3$

Por outro lado, sendo dado $V_C = 220/40^{\circ} V$, resulta

$$V = 220 \ V$$
 ; $\theta + 120^{\circ} = 40^{\circ} \ \text{ou} \ \theta = -80^{\circ}$.

e portanto
$$\vec{V}_B = 220 / -80^{\circ} V$$
, $\vec{V}_A = 220 / -200^{\circ} V$, $\vec{V}_C = 220 / 40^{\circ} V$

Ao definir os sistemas trifásicos, observa-se que, entre as grandezas que os caracterizam, há uma rotação de fase de $\pm 120^{\circ}$; portanto é bastante evidente pensar num operador que, aplicado a um fasor, perfaça tal rotação de fase. Assim, define-se o operador α , que é um número complexo de módulo unitário e argumento 120° , de modo que, quando aplicado a um fasor qualquer, transforma-o em outro de mesmo módulo e adiantado de 120° . Em outras palavras,

$$\alpha = 1/120^{\circ} = -\frac{1}{2} + j\frac{\sqrt{3}}{2} \tag{4.2}$$

No tocante à potenciação, o operador α possui as seguintes propriedades:

$$\alpha^{1} = \alpha = 1/120^{\circ}$$

$$\alpha^{2} = \alpha \cdot \alpha = 1/120^{\circ} \cdot 1/120^{\circ} = 1/-120^{\circ}$$

$$\alpha^{3} = \alpha^{2} \cdot \alpha = 1/-120^{\circ} \cdot 1/120^{\circ} = 1/0^{\circ}$$

$$\alpha^{4} = \alpha^{3} \cdot \alpha = 1/0^{\circ} \cdot 1/120^{\circ} = 1/120^{\circ}$$

Além dessas, o operador α possui ainda a propriedade:

$$1 + \alpha + \alpha^{2} = 1/0^{\circ} + 1/120^{\circ} + 1/-120^{\circ} = 0 , \qquad (4.3)$$

que é muito importante e será amplamente utilizada neste texto.

4.2 SISTEMAS TRIFÁSICOS SIMÉTRICOS E EQUILIBRADOS COM CARGA EQUILIBRADA — LIGAÇÕES

4.2.1 LIGAÇÕES EM ESTRELA

Supondo que sejam alimentadas, a partir dos terminais das três bobinas do item precedente, três impedâncias quaisquer, $\overline{Z} = Z/\underline{\varphi} = R + j X$, porém iguais entre si (carga equilibrada). É evidente que os três circuitos assim constituídos (Figura. 4.2) formam três circuitos monofásicos, nos quais circularão as correntes:

$$\dot{I}_{A} = \frac{\dot{E}_{A N_{A}}}{\overline{Z}} = \frac{E + 0 j}{Z/\underline{\varphi}} = \frac{E}{Z}/\underline{-\varphi}$$

$$\dot{I}_{B} = \frac{\dot{E}_{B N_{B}}}{\overline{Z}} = \frac{E/-120^{\circ}}{Z/\underline{\varphi}} = \frac{E}{Z}/-120^{\circ}-\underline{\varphi}$$

$$\dot{I}_{C} = \frac{\dot{E}_{C N_{C}}}{\overline{Z}} = \frac{E/+120^{\circ}}{Z/\underline{\varphi}} = \frac{E}{Z}/+120^{\circ}-\underline{\varphi}$$

Isto é, nos três circuitos circularão correntes de mesmo valor eficaz e defasadas entre si de $2\pi/3$ rad (ou 120°).

Observa-se que os três circuitos são eletricamente independentes, e portanto pode-se interligar os pontos N_A , N_B e N_C , designados por N, sem que isso venha a causar qualquer alteração nos mesmos. Por outro lado, observa-se que os pontos N_A' , N_B' e N_C'

57

estão ao mesmo potencial que o ponto N; logo, podem ser interligados designando-os por N'

A corrente que circula pelo condutor NN' é dada por

$$\dot{I}_{NN'} = \dot{I}_A + \dot{I}_B + \dot{I}_C = 0$$

pois as três correntes aferentes ao nó N' têm o mesmo valor eficaz e estão defasadas entre si de $2\pi/3$ rad. Deve-se salientar a mesma conclusão poderia ser obtida, observando que os pontos N e N' estão no mesmo potencial.

(a) - Três circuitos monofásicos

Figura 4.2. Sistema trifásico com gerador e carga ligados em estrela

(b) - Circuito trifásico

O condutor que interliga os pontos N e N' recebe o nome de *fio neutro* ou *quarto fio*. Evidentemente, sendo nula a corrente que o percorre, poderia ser retirado do circuito.

Observa-se aqui uma das grandes vantagens dos sistemas trifásicos. Para a transmissão da mesma potência, são utilizados 3 ou 4 fios, enquanto seriam necessários 6 fios se fossem utilizados 3 circuitos monofásicos (conforme observa-se da Figura. 4.2).

Ao esquema de ligação assim obtido é dado o nome de circuito trifásico simétrico com gerador ligado em "estrela" (Y) e carga "equilibrada em estrela" (Y), dando-se o nome de "centro-estrela" ao ponto N ou N'.

Definem-se:

(1) Tensão de fase: tensão medida entre o centro-estrela e qualquer um dos terminais

do gerador ou da carga;

(2) Tensão de linha: tensão medida entre dois terminais (nenhum deles sendo o "centro-

estrela") do gerador ou da carga. Evidentemente, define-se a tensão de linha como sendo a tensão medida entre os condutores que

ligam o gerador à carga;

(3) Corrente de fase: corrente que percorre cada uma das bobinas do gerador ou, o que é

o mesmo, corrente que percorre cada uma das impedâncias da

carga;

(4) Corrente de linha: corrente que percorre os condutores que interligam o gerador à

carga (exclui-se o neutro).

Salienta-se que as tensões e correntes de linha e de fase num sistema trifásico simétrico e equilibrado têm, em todas as fases, valores eficazes iguais, estando defasadas entre si de $2\pi/3$ rad. Em vista deste fato, é evidente que a determinação desses valores num circuito trifásico com gerador em Y e carga em Y, resume-se à sua determinação para o caso de um circuito monofásico constituído por uma das bobinas ligada a uma das impedâncias por um condutor de linha, lembrando ainda que a intensidade de corrente no fio neutro é nula.

Em tudo o que se segue, valores de fase são indicados com um índice F e os de linha com índice L ou sem índice algum.

De acordo com as definições apresentadas, tem-se a Tabela. 4.1, que apresenta todos os valores de linha e de fase para o circuito da Figura. 4.1.

Valores de fase				Valores de linha			
Gerador		Carga		Gerador		Carga	
Corrente	Tensão	Corrente	Tensão	Corrente	Tensão	Corrente	Tensão
$I_{\scriptscriptstyle AN}$	$V_{_{AN}}$	$I_{A'\!N'}$	$V_{_{A^{\prime}\!N^{\prime}}}$	$I_{\scriptscriptstyle A}$	$V_{_{AB}}$	$I_{\scriptscriptstyle A}$	$V_{_{A^{\prime}\!B^{\prime}}}$
$I_{\scriptscriptstyle BN}$	$V_{_{BN}}$	$I_{\scriptscriptstyle B'\!N'}$	$V_{{\scriptscriptstyle B'\!N'}}$	$I_{\scriptscriptstyle B}$	$V_{_{BC}}$	$I_{\scriptscriptstyle B}$	$V_{{\scriptscriptstyle B'C'}}$
$I_{\scriptscriptstyle CN}$	$V_{\scriptscriptstyle CN}$	$I_{C'N'}$	$V_{\scriptscriptstyle C'\!N'}$	$I_{\scriptscriptstyle C}$	$V_{\scriptscriptstyle CA}$	$I_{\scriptscriptstyle C}$	$V_{{\scriptscriptstyle C'\!A'}}$

Tabela 4.1. Grandezas de fase e linha (em módulo) num trifásico simétrico e equilibrado ligado em estrela

Passa-se a determinar as relações existentes entre os valores de fase e de linha, iniciando por observar que, para a ligação estrela, as correntes de linha e de fase são iguais, isto é,

$$\dot{I}_{AN} = \dot{I}_{A}$$
 , $\dot{I}_{BN} = \dot{I}_{B}$, $\dot{I}_{CN} = \dot{I}_{C}$

Para a determinação da relação entre as tensões, adota-se um trifásico com seqüência de fase direta, ou seja,

$$\begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

As tensões de linha são dadas por

$$\begin{aligned} \dot{V}_{AB} &= \dot{V}_{AN} - \dot{V}_{BN} \\ \dot{V}_{BC} &= \dot{V}_{BN} - \dot{V}_{CN} \\ \dot{V}_{CA} &= \dot{V}_{CN} - \dot{V}_{AN} \end{aligned}$$

Utilizando matrizes, tem-se:

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} - \dot{V}_{AN} \begin{bmatrix} \alpha^2 \\ \alpha \\ 1 \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 - \alpha^2 \\ \alpha^2 - \alpha \\ \alpha - 1 \end{bmatrix}$$

Salienta-se porém que

$$1 - \alpha^2 = 1 - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}j\right) = \sqrt{3}\left(\frac{\sqrt{3}}{2} + \frac{1}{2}j\right) = \sqrt{3}/30^\circ$$
$$\alpha^2 - \alpha = \alpha^2(1 - \alpha^2) = \alpha^2\sqrt{3}/30^\circ$$
$$\alpha^2 - 1 = \alpha (1 - \alpha^2) = \alpha \sqrt{3}/30^\circ$$

Portanto

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = \sqrt{3} \, \underline{/30^{\circ}} \, \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix} = \begin{bmatrix} \dot{V}_{AN} \, \sqrt{3} \underline{/30^{\circ}} \\ \dot{V}_{BN} \, \sqrt{3} \underline{/30^{\circ}} \\ \dot{V}_{CN} \, \sqrt{3} \underline{/30^{\circ}} \end{bmatrix}$$
(4.4)

Da Equação. (4.4), observa-se que, para um sistema trifásico simétrico e equilibrado, na ligação estrela, com seqüência de fase direta, passa-se de uma das tensões de fase à de linha correspondente multiplicando-se o fasor que a representa pelo número complexo $\sqrt{3}$ /30°.

Exemplo 4.2

Uma carga equilibrada ligada em estrela é alimentada por um sistema trifásico simétrico e equilibrado com sequência de fase direta. Sabendo-se que $\dot{V}_{BN}=220 \, \underline{/58^\circ} \, V$, pede-se determinar:

- (a) as tensões de fase na carga;
- (b) as tensões de linha na carga.

Solução:

(a) Tensões de fase na carga

Sendo o trifásico simétrico, sabe-se que os módulos de todas as tensões de fase são iguais entre si. Logo,

$$V_{AN} = V_{BN} = V_{CN} = 220 V$$

Por outro lado, sendo a sequência de fase direta, sabe-se que, partindo da fase B, deverão passar pelo máximo, ordenadamente, as fases C e A. Logo, o fasor \dot{V}_{BN} está adiantado de 120° sobre o fasor \dot{V}_{CN} e este está adiantado de 120° sobre \dot{V}_{AN} . Portanto, com relação às fases, tem-se:

61

fase de
$$\dot{V}_{CN}$$
 = fase de \dot{V}_{BN} - 120° = 58°-120° = -62° fase de \dot{V}_{AN} = fase de \dot{V}_{CN} - 120° = -62°-120° = -182° = 178°

Finalmente, resulta:

Usando matrizes, tem-se:

$$\begin{bmatrix} \dot{V}_{BN} \\ \dot{V}_{CN} \\ \dot{V}_{AN} \end{bmatrix} = \dot{V}_{BN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} = 220 / 58^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} = \begin{bmatrix} 220 / 58^{\circ} \\ 220 / -62^{\circ} \\ 220 / 178^{\circ} \end{bmatrix} V$$

(b) Tensões de linha na carga

De (4.4), resulta:

$$\begin{split} \dot{V}_{AB} &= 220 \, / \! 178^{\circ} \, \sqrt{3} \, / \! 30^{\circ} = 380 \, / \! 208^{\circ} \, V = \, 380 \! / \! - \! 152^{\circ} \, V \\ \dot{V}_{BC} &= 220 \, / \! 58^{\circ} \, \sqrt{3} \, / \! 30^{\circ} = 380 \, / \! 88^{\circ} \, V \\ \dot{V}_{CA} &= 220 \, / \! - \! 62^{\circ} \, \sqrt{3} \, / \! 30^{\circ} = 380 \, / \! - \! 32^{\circ} \, V \end{split}$$

Figura 4.3. Diagrama de fasores para o Ex. 4.2

Exemplo 4.3

Resolver o exemplo 4.2 admitindo-se sequência de fase inversa.

Solução:

(a) Cálculo das tensões de fase na carga

Como no exemplo precedente, os módulos das tensões de fase são todos iguais e valem $220\ V$.

Para a determinação da fase de \dot{V}_{CN} e \dot{V}_{AN} salienta-se que, em sendo a sequência de fase inversa (*B-A-C*) o fasor \dot{V}_{AN} está atrasado de 120° em relação ao fasor \dot{V}_{BN} , e o fasor \dot{V}_{CN} está atrasado 120° em relação ao \dot{V}_{AN} . Logo,

$$\dot{V}_{BN} = 220 / 58^{\circ} V$$

$$\dot{V}_{AN} = 220 / 58^{\circ} - 120^{\circ} = 220 / -62^{\circ} V$$

$$\dot{V}_{CN} = 220 / -62^{\circ} - 120^{\circ} = 220 / -182^{\circ} = 220 / 178^{\circ} V$$

(b) Cálculo das tensões de linha na carga

De (2.2), resulta:

$$\dot{V}_{AB} = 220 / -62^{\circ} \sqrt{3} / -30^{\circ} = 380 / -92^{\circ} V$$

$$\dot{V}_{BC} = 220 / 58^{\circ} \sqrt{3} / -30^{\circ} = 380 / 28^{\circ} V$$

$$\dot{V}_{CA} = 220 / 178^{\circ} \sqrt{3} / -30^{\circ} = 380 / 148^{\circ} V$$

Para a resolução de circuitos trifásicos, pode-se proceder do mesmo modo que para os monofásicos, isto é, pode-se utilizar análise de malha ou nodal ou, ainda, qualquer dos métodos aplicáveis à resolução dos circuitos monofásicos. Porém, como será visto a seguir, o cálculo do circuito fica bastante simplificado levando-se em conta as simetrias existentes nos trifásicos simétricos com carga equilibrada.

Exemplificando, suponha que se queira resolver o circuito da Figura. 4.4, no qual conhecem-se as tensões de fase do gerador (seqüência direta) e as impedâncias da linha e da carga, \overline{Z}' e \overline{Z} , respectivamente. Pretende-se determinar as correntes nas três fases. São conhecidos:

$$\begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = E / \underline{\theta} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} , \quad \overline{Z} = Z / \underline{\varphi}_1 \quad e \quad \overline{Z}' = Z' / \underline{\varphi}_2$$

Figura 4.4. Circuito trifásico em estrela

Pode-se resolver o circuito, observando que, num sistema trifásico simétrico e equilibrado com carga equilibrada, os pontos N e N' estão ao mesmo potencial, ou seja

$$\dot{V}_{AN} = \dot{V}_{AN'}$$

Logo, pode-se interligá-los por um condutor sem alterar o circuito, dado que nesse condutor não circulará corrente. Nessas condições, o circuito da Figura. 10 transforma-se no da Figura. 4.5, no qual têm-se três malhas independentes:

NAA'N'N, NBB'N'N e NCC'N'N

Salienta-se que as impedâncias das três malhas são iguais e valem $(\overline{Z} + \overline{Z}')$, e as f.e.m. das malhas valem \dot{E} , $\alpha^2 \dot{E}$, $\alpha \dot{E}$.

Portanto as três correntes valerão

$$\dot{I}_{AA'} = \frac{\dot{E}}{\overline{Z} + \overline{Z}'} , \qquad \dot{I}_{BB'} = \frac{\alpha^2 \dot{E}}{\overline{Z} + \overline{Z}'} = \alpha^2 \dot{I}_{AA'} , \qquad \dot{I}_{CC'} = \frac{\alpha \dot{E}}{\overline{Z} + \overline{Z}'} = \alpha \dot{I}_{AA'}$$

Figura 4.5. Circuito trifásico em estrela com neutro

Deve-se notar que tudo se passa como se fosse resolvido o circuito monofásico da Figura. 4.6, no qual interligam-se os pontos N e N' por um fio de impedância nula.

Figura 4.6. Circuito monofásico equivalente

Exemplo 4.4

Um alternador trifásico alimenta por meio de uma linha equilibrada uma carga trifásica equilibrada. São conhecidos:

- (1) a tensão de linha do alternador (380 V) e a freqüência (60 Hz);
- (2) o tipo de ligação do alternador (Y);
- (3) o número de fios da linha (3);
- (4) a resistência $(0,2 \Omega)$ e a reatância indutiva $(0,5 \Omega)$ de cada fio da linha;
- (5) a impedância da carga $(3 + j + 4 \Omega)$.

Pedem-se:

- (a) as tensões de fase e de linha no gerador;
- (b) as correntes de fase e de linha fornecidas pelo gerador;
- (c) as tensões de fase e de linha na carga;

65

(d) a queda de tensão na linha (valores de fase e de linha);

Solução:

(a) Tensões de fase e de linha no gerador

Admitindo-se sequência de fase A-B-C, e adotando V_{AN} com fase inicial nula, resulta

$$\dot{V}_{AN} = 220 / 0^{\circ} V$$

 $\dot{V}_{BN} = 220 / -120^{\circ} V$
 $\dot{V}_{CN} = 220 / 120^{\circ} V$

e portanto

$$\dot{V}_{AB} = \sqrt{3} / 30^{\circ} \dot{V}_{AN} = \sqrt{3} / 30^{\circ} . 220 / 0^{\circ} = 380 / 30^{\circ} V$$
 $\dot{V}_{BC} = \sqrt{3} / 30^{\circ} \dot{V}_{BN} = \sqrt{3} / 30^{\circ} . 220 / -120^{\circ} = 380 / -90^{\circ} V$
 $\dot{V}_{CA} = \sqrt{3} / 30^{\circ} \dot{V}_{CN} = \sqrt{3} / 30^{\circ} . 220 / 120^{\circ} = 380 / 150^{\circ} V$

(b) Determinação da intensidade de corrente

O circuito a ser utilizado para a determinação da corrente é o da Figura. 4.7.b, no qual temse

$$\dot{V}_{AN} = \dot{I}_A \left[R + R_C + j \left(X + X_C \right) \right]$$

isto é,

$$\dot{I}_{A} = \frac{\dot{V}_{AN}}{R + R_{C} + j(X + X_{C})} = \frac{220 + j0}{3.2 + j4.5} = \frac{220 / 0^{\circ}}{5.52 / 54.6^{\circ}} = 39.84 / -54.6^{\circ} A$$

Logo,

$$\dot{I}_A = 39.84 / -54.6^{\circ} A$$

$$\dot{I}_B = 39.84 / -174.6^{\circ} A$$

$$\dot{I}_C = 39.84 / 65.4^{\circ} A$$

(a) Circuito trifásico

Figura 4.7. Determinação do circuito monofásico equivalente.

- (c) Tensão na carga
 - (i) valores de fase:

$$\dot{V}_{A'N'} = \overline{Z}_C \dot{I}_A = 5 \underline{/53,1^{\circ}} .39,84 \underline{/-54,6^{\circ}} = 199,2 \underline{/-1,5^{\circ}} V$$

$$\dot{V}_{B'N'} = 199,2 \underline{/-121,5^{\circ}} V$$

$$\dot{V}_{CN'} = 199,2 \underline{/-118,5^{\circ}} V$$

(ii) valores de linha:

$$\dot{V}_{A'B'} = \sqrt{3} \, \underline{/30^{\circ}} \, \dot{V}_{A'N'} = \sqrt{3} \, .199,2 \, \underline{/28,5^{\circ}} = 345 \, \underline{/28,5^{\circ}} \, V$$

$$\dot{V}_{B'C'} = \sqrt{3} \, \underline{/30^{\circ}} \, \dot{V}_{B'N'} = \sqrt{3} \, .199,2 \, \underline{/-91,5^{\circ}} = 345 \, \underline{/-91,5^{\circ}} \, V$$

$$\dot{V}_{C'A'} = \sqrt{3} \, \underline{/30^{\circ}} \, \dot{V}_{C'N'} = \sqrt{3} \, .199,2 \, \underline{/148,5^{\circ}} = 345 \, \underline{/148,5^{\circ}} \, V$$

- (d) Queda de tensão na linha
 - (i) valores de fase:

$$\dot{V}_{AN} - \dot{V}_{A'N'} = \dot{V}_{AA'} = \overline{Z} \dot{I}_{A} = 0.54 / \underline{68.2^{\circ}} .39.84 / \underline{-54.6^{\circ}} = 21.5 / \underline{13.6^{\circ}} V$$

$$\dot{V}_{BN} - \dot{V}_{B'N'} = \dot{V}_{BB'} = 21.5 / \underline{-106.4^{\circ}} V$$

$$\dot{V}_{CN} - \dot{V}_{C'N'} = \dot{V}_{CC'} = 21.5 / \underline{133.6^{\circ}} V$$

(ii) valores de linha:

$$\dot{V}_{AB} - \dot{V}_{A'B'} = \overline{Z} \left(\dot{I}_A - \dot{I}_B \right) = \overline{Z} \, \dot{I}_A \left(1 - \alpha^2 \right) = \overline{Z} \, \dot{I}_A \sqrt{3} \, \underline{/30^\circ} = 21.5 \, \underline{/13.6^\circ} \, . \, \sqrt{3} \, \underline{/30^\circ} = 37.2 \, \underline{/43.6^\circ} \, V$$

$$\dot{V}_{BC} - \dot{V}_{B'C'} = 37.2 \, \underline{/-76.4^\circ} \, V$$

$$\dot{V}_{CA} - \dot{V}_{C'A'} = 37.2 \, \underline{/163.6^\circ} \, V$$

4.2.2 LIGAÇÕES EM TRIÂNGULO

Suponha as três bobinas do item anterior, porém ligadas a três impedâncias \overline{Z} iguais entre si, conforme indicado na Figura. 4.8. Notar que as malhas $AA'N'_AN_AA$, $BB'N'_BN_BB$ e $CC'N'_CN_CC$ são eletricamente independentes; logo, pode-se interligar os pontos C e N_B sem alterar em nada o circuito. Por outro lado, os pontos C' e N'_B estão ao mesmo potencial; logo, podem ser interligados, e pode-se substituir os condutores C-C' e N_B - N'_B por um único condutor. Os pontos comuns CN_B e $C'N'_B$ serão designados por C e C', respectivamente. Após realizar a interligação desses pontos, observa-se que a malha $AA'N'_AN_AA$ é eletricamente independente do restante do circuito; portanto, por raciocínio análogo, pode-se interligar os pontos AN_C e $A'N'_C$, designados por A e A', respectivamente. Finalmente, observa-se que os pontos B e N_A estão ao mesmo potencial, pois

$$\dot{V}_{BN_A} = \dot{V}_{BN_B} + \dot{V}_{CN_C} + \dot{V}_{AN_A} = 0 \tag{4.5}$$

e que os pontos B' e N'_A também estão ao mesmo potencial, pois

$$\dot{V}_{B'N'_A} = \dot{V}_{B'N'_B} + \dot{V}_{C'N'_C} + \dot{V}_{A'N'_A} = \dot{I}_{B'N'_B} \ \overline{Z} + \dot{I}_{C'N'_C} \ \overline{Z} + \dot{I}_{A'N'_A} \ \overline{Z}$$

isto é,

$$\dot{V}_{B'N'_{A}} = \overline{Z} \left(\dot{I}_{B'N'_{B}} + \dot{I}_{C'N'_{C}} + \dot{I}_{A'N'_{A}} \right) = \overline{Z} \cdot 0 = 0$$

Portanto, pode-se interligar os pontos BN_A e $B'N'_A$ obtendo os pontos B e B', respectivamente.

Assim, tem-se o circuito da Figura. 4.8.b, no qual o gerador e a carga estão ligados em triângulo.

(a) - Três circuitos monofásicos

(b) - Circuito trifásico com gerador e carga em triângulo

Figura 4.8. Representação da ligação triângulo

Salienta-se que a Equação. (4.5) é condição necessária para que seja possível ligar um gerador em triângulo sem que haja corrente de circulação.

De acordo com as definições anteriores, as tensões de fase são:

no gerador:

$$\dot{V}_{AN_A} = \dot{V}_{AB}$$
 , $\dot{V}_{BN_B} = \dot{V}_{BC}$, $\dot{V}_{CN_C} = \dot{V}_{CA}$

na carga:

$$\dot{V}_{A'N'_A} = \dot{V}_{A'B'}$$
 , $\dot{V}_{B'N'_B} = \dot{V}_{B'C'}$, $\dot{V}_{C'N'_C} = \dot{V}_{C'A'}$

As tensões de linha no gerador e na carga são:

$$\dot{V}_{AB}$$
 , \dot{V}_{BC} , \dot{V}_{CA} e $\dot{V}_{A'B'}$, $\dot{V}_{B'C'}$, $\dot{V}_{C'A'}$

As correntes de fase são:

no gerador:

$$\dot{I}_{AN_A} = \dot{I}_{BA}$$
 , $\dot{I}_{BN_B} = \dot{I}_{CB}$, $\dot{I}_{CN_C} = \dot{I}_{AC}$

na carga:

$$I_{A'N'_A} = I_{A'B'}$$
 , $I_{B'N'_B} = I_{B'C'}$, $I_{C'N'_C} = I_{C'A'}$

As correntes de linha são:

$$\dot{I}_{AA}$$
 , \dot{I}_{BB} e \dot{I}_{CC}

Na ligação triângulo, quanto às tensões é evidente que há igualdade entre as de fase e as de linha. Para a determinação da relação entre as correntes de linha e de fase, adota-se

inicialmente um sistema trifásico simétrico e equilibrado com sequência de fase direta, ou seja,

$$\dot{I}_{A'B'} = I_F / \theta$$

$$\dot{I}_{B'C'} = I_F / \theta - 120^{\circ}$$

$$\dot{I}_{C'A'} = I_F / \theta + 120^{\circ}$$

ou, com matrizes,

$$\begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \\ \dot{I}_{C'A'} \end{bmatrix} = \dot{I}_{A'B'} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Aplicando aos nós A', B' e C' da Figura. 4.8.b a 1ª lei de Kirchhoff, obtem-se:

$$\begin{split} \dot{I}_{AA'} &= \dot{I}_{A'B'} - \dot{I}_{C'A'} \\ \dot{I}_{BB'} &= \dot{I}_{B'C'} - \dot{I}_{A'B'} \\ \dot{I}_{CC'} &= \dot{I}_{C'A'} - \dot{I}_{B'C'} \end{split}$$

Matricialmente, tem-se:

$$\begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \\ \dot{I}_{C'A'} \end{bmatrix} - \begin{bmatrix} \dot{I}_{C'A'} \\ \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \end{bmatrix} = \dot{I}_{A'B'} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} - \dot{I}_{A'B'} \begin{bmatrix} \alpha \\ 1 \\ \alpha^2 \end{bmatrix}$$

ou seja,

$$\begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \dot{I}_{A'B'} \begin{bmatrix} 1 - \alpha \\ \alpha^2 - 1 \\ \alpha - \alpha^2 \end{bmatrix}$$

Porém, como visto anteriormente,

$$1 - \alpha = \sqrt{3} / -30^{\circ}$$
, $\alpha^2 - 1 = \alpha^2 \sqrt{3} / -30^{\circ}$, $\alpha - \alpha^2 = \alpha \sqrt{3} / -30^{\circ}$

logo será

$$\begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \sqrt{3} / \underline{-30^{\circ}} \dot{I}_{A'B'} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$$

$$(4.6)$$

Ou seja, num circuito trifásico simétrico e equilibrado, seqüência direta, com carga equilibrada ligada em triângulo, obtém-se as correntes de linha multiplicando as correspondentes de fase pelo número complexo $\sqrt{3}$ / -30° .

Pode-se demonstrar que, analogamente a quanto foi feito, sendo a seqüência de fase inversa, as correntes de linha estarão adiantadas de 30° sobre as correspondentes de fase, isto é, para a seqüência de fase inversa, tem-se:

$$\dot{I}_{AA'} = \dot{I}_{A'B'} \sqrt{3} / 30^{\circ}
\dot{I}_{BB'} = \dot{I}_{B'C'} \sqrt{3} / 30^{\circ}
\dot{I}_{CC'} = \dot{I}_{C'A'} \sqrt{3} / 30^{\circ}$$
(4.7)

No caso da determinação das correntes de fase conhecendo-se as de linha, surge uma indeterminação. De fato, supondo-se uma seqüência de fase direta, os valores

$$\begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \\ \dot{I}_{C'A'} \end{bmatrix} = \frac{\dot{I}_{AA'}}{\sqrt{3} / -30^{\circ}} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$$

representam uma terna de fasores de correntes de fase que satisfazem aos dados de linha.

Conforme já foi dito, os sistemas trifásicos podem ser resolvidos utilizando-se qualquer dos métodos de resolução de circuitos, porém, devido às simetrias existentes nos trifásicos, empregam-se soluções particulares que muito simplificam a resolução.

Suponha ter que resolver um circuito trifásico simétrico e equilibrado em que tem-se um gerador fictício ligado em triângulo que alimenta por meio de uma linha de impedância \overline{Z}' uma carga com impedância de fase \overline{Z} , ligada em triângulo (Figura. 4.9).

Figura 4.9. Circuito trifásico em triângulo

Resolvendo-se o sistema por correntes fictícias de malhas, resultam as equações:

$$\dot{V}_{CA} = (2\overline{Z}' + \overline{Z}) \alpha - \overline{Z}'\beta - \overline{Z}\gamma
\dot{V}_{AB} = -\overline{Z}'\alpha + (2\overline{Z}' + \overline{Z}) \beta - \overline{Z}\gamma
0 = -\overline{Z}\alpha - \overline{Z}\beta + 3\overline{Z}\gamma$$

das quais poderemos determinar os valores de $\,\alpha\,$, $\,\beta\,$ e $\,\gamma\,$.

Como a resolução do sistema acima é por demais trabalhosa, procura-se um novo caminho, a partir da aplicação da lei de Ohm à malha AA'B'BA e das simetrias do sistema, para determinar o valor da corrente $I_{A'B'}$. Adotando-se sequência de fase direta, resulta

sendo

$$\dot{I}_{A} - \dot{I}_{B} = \sqrt{3} I_{F} / \underline{-30^{\circ}} - \alpha^{2} \sqrt{3} I_{F} / \underline{-30^{\circ}} = \sqrt{3} I_{F} / \underline{-30^{\circ}} \left(1 - \alpha^{2}\right) = \sqrt{3} I_{F} / \underline{-30^{\circ}} \sqrt{3} / \underline{30^{\circ}} = 3 I_{F} / \underline{-30^{\circ}} \left(1 - \alpha^{2}\right) = \sqrt{3} I_{F} / \underline{-30^{\circ}} \sqrt{3} / \underline{30^{\circ}} = 3 I_{F} / \underline{-30^{\circ}} / \underline{30^{\circ}} = 3 I_{F} / \underline{30^{\circ}} = 3 I_{F} / \underline{30^{\circ$$

ou $\dot{I}_A - \dot{I}_B = 3 I_F$; logo

$$\dot{V}_{AB} = (3\,\overline{Z}' + \overline{Z})\,I_F \tag{4.8}$$

Adotando-se $\dot{V}_{AB} = V / \underline{\varphi}$, resulta

$$V \cos \varphi = I_F (3 R' + R)$$

 $V \sin \varphi = I_F (3 X' + X)$

e portanto

$$I_F = \frac{V}{\sqrt{(3R'+R)^2 + (3X'+X)^2}} = \frac{V}{|3\overline{Z}' + \overline{Z}|}$$

$$\varphi = arc tg \frac{3X' + X}{3R' + R}$$

Assim, tem-se

$$\dot{I}_{A'B'} = \frac{V}{\left| \ 3 \ \overline{Z}' + \overline{Z} \ \right|} \underline{/0^{\circ}} \ , \quad \dot{I}_{B'C'} = \frac{V}{\left| \ 3 \ \overline{Z}' + \overline{Z} \ \right|} \underline{/-120^{\circ}} \ , \quad \dot{I}_{C'A'} = \frac{V}{\left| \ 3 \ \overline{Z}' + \overline{Z} \ \right|} \underline{/120^{\circ}}$$

A Equação. (4.8) mostra que o problema proposto transforma-se no da determinação da corrente que circula numa malha cuja f.e.m. vale V_{AB} e cuja impedância é $3 \overline{Z}' + \overline{Z}$.

Chega-se ao mesmo resultado muito mais facilmente substituindo a carga ligada em triângulo por outra que lhe seja equivalente, ligada em estrela (Figura. 4.10). De fato, lembrando a transformação triângulo-estrela, deveremos substituir a carga em triângulo cuja impedância de fase vale \overline{Z} , por carga em estrela cuja impedância de fase vale $\overline{Z}/3$. Substituindo-se o gerador em triângulo por outro em estrela, de modo que a tensão de linha seja a mesma, recai-se no caso já estudado de ligação em estrela, resultando

$$\dot{V}_{AN'} = \dot{V}_{AN} = \dot{I}_{AA'} \left(\overline{Z}' + \frac{\overline{Z}}{3} \right)$$

logo,

$$\dot{I}_{AA'} = \frac{3\dot{V}_{AN}}{3\overline{Z}' + \overline{Z}}$$

Finalmente, a corrente de fase, na carga em triângulo, é dada por

$$\dot{I}_{A'B'} = \frac{\dot{I}_{AA'}}{\sqrt{3} \, \underline{/-30^{\circ}}} = \frac{3 \, \dot{V}_{AN}}{\left(\, 3 \, \overline{Z}' \, + \, \overline{Z} \, \right) \sqrt{3} \, \underline{/-30^{\circ}}} = \frac{\dot{V}_{AN} \, \sqrt{3} \, \underline{/30^{\circ}}}{3 \, \overline{Z}' \, + \, \overline{Z}} = \frac{\dot{V}_{AB}}{3 \, \overline{Z}' \, + \, \overline{Z}}$$

73

- (a) Circuito trifásico em estrela
- (b) Circuito monofásico equivalente

Figura 4.10. Substituição do circuito em triângulo por equivalente ligado em estrela

Exemplo 4.5

Um gerador trifásico alimenta por meio de uma linha uma carga trifásica equilibrada. São conhecidos:

- (1) o tipo de ligação do gerador (Δ) e da carga (Δ);
- (2) a tensão de linha do gerador (220 V), a freqüência (60 Hz), e a seqüência de fase (direta):
- (3) a impedância de cada um dos ramos da carga, $(3 + j4) \Omega$;
- (4) a resistência 0,2 Ω e a reatância indutiva 0,15 Ω de cada fio da linha,

Pedem-se:

- (a) as tensões de fase e de linha no gerador;
- (b) as correntes de linha;
- (c) as correntes de fase na carga;
- (d) as tensões de fase e de linha na carga;

Solução:

(a) Tensões de fase e de linha no gerador

As tensões de fase coincidem com as de linha e valem, para a seqüência A-B-C,

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = 220 \, \underline{/0^{\circ}} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix} \, V$$

(b) Determinação das correntes de linha

Substituindo a carga em triângulo por outra equivalente em estrela, tem-se o circuito da Figura. 4.11, obtendo:

$$\dot{I}_{AA'} = \frac{\dot{V}_{AN}}{\overline{Z}' + \overline{Z}/3} = \frac{(220 / 0^{\circ}) / (\sqrt{3} / 30^{\circ})}{1,2 + j 1,48}$$

Logo,

$$\dot{I}_{AA'} = \frac{127 / -30^{\circ}}{1.9 / 51^{\circ}} = 66.6 / -81^{\circ} A$$

e então

$$\dot{I}_{BB'} = 66.6 / -201^{\circ} A$$
, $\dot{I}_{CC'} = 66.6 / 39^{\circ} A$

Figura 4.11. Circuito equivalente para o Ex. 4.5

(c) Determinação das correntes de fase na carga

Na carga em triângulo, tem-se:

$$\dot{I}_{A'B'} = \frac{\dot{I}_{AA'}}{\sqrt{3} / -30^{\circ}} = \frac{66.6 / -81^{\circ}}{\sqrt{3} / -30^{\circ}} = 38.5 / -51^{\circ} A$$

$$\dot{I}_{B'C'} = 38.5 / -171^{\circ} A$$

$$\dot{I}_{C'A'} = 38.5 / 69^{\circ} A$$

(d) Determinação das tensões na carga

Da Figura. 4.11, obtém-se:

$$\dot{V}_{A'N'} = \dot{I}_{AA'} \frac{\overline{Z}}{3} = \frac{66,6 / -81^{\circ} .5 / 53,1^{\circ}}{3} = 111 / -27,9^{\circ} V$$

$$\dot{V}_{B'N'} = 111 / -147,9^{\circ} V$$

$$\dot{V}_{C'N'} = 111 / 92,1^{\circ} V$$

As tensões de fase e de linha na carga são iguais, e valem:

4.3 POTÊNCIA EM SISTEMAS TRIFÁSICOS

Seja uma carga trifásica na qual os valores instantâneos das tensões e correntes de fase são:

$$\begin{aligned} v_A &= V_{A_M} \, \cos \left(\omega t + \theta_A \right) & i_A &= I_{A_M} \, \cos \left(\omega t + \delta_A \right) \\ v_B &= V_{B_M} \, \cos \left(\omega t + \theta_B \right) & i_B &= I_{B_M} \, \cos \left(\omega t + \delta_B \right) \\ v_C &= V_{C_M} \, \cos \left(\omega t + \theta_C \right) & i_C &= I_{C_M} \, \cos \left(\omega t + \delta_C \right) \end{aligned}$$

A potência instantânea em cada fase é dada por

$$p_{A} = v_{A} i_{A} = V_{F_{A}} I_{F_{A}} \cos(\theta_{A} - \delta_{A}) + V_{F_{A}} I_{F_{A}} \cos(2 \omega t + \theta_{A} + \delta_{A})$$

$$p_{B} = v_{B} i_{B} = V_{F_{B}} I_{F_{B}} \cos(\theta_{B} - \delta_{B}) + V_{F_{B}} I_{F_{B}} \cos(2 \omega t + \theta_{B} + \delta_{B})$$

$$p_{C} = v_{C} i_{C} = V_{F_{C}} I_{F_{C}} \cos(\theta_{C} - \delta_{C}) + V_{F_{C}} I_{F_{C}} \cos(2 \omega t + \theta_{C} + \delta_{C})$$

$$(4.9)$$

em que V_{F_A} , V_{F_B} e V_{F_C} são os valores eficazes das tensões de fase e I_{F_A} , I_{F_B} e I_{F_C} são os valores eficazes das correntes de fase. Fazendo-se

$$\theta_A - \delta_A = \varphi_A$$

$$\theta_B - \delta_B = \varphi_B$$

$$\theta_C - \delta_C = \varphi_C$$

resulta

$$p_{A} = V_{F_{A}} I_{F_{A}} \cos \varphi_{A} + V_{F_{A}} I_{F_{A}} \cos \left(2 \omega t + \theta_{A} - \varphi_{A}\right)$$

$$p_{B} = V_{F_{B}} I_{F_{B}} \cos \varphi_{B} + V_{F_{B}} I_{F_{B}} \cos \left(2 \omega t + \theta_{B} - \varphi_{B}\right)$$

$$p_{C} = V_{F_{C}} I_{F_{C}} \cos \varphi_{C} + V_{F_{C}} I_{F_{C}} \cos \left(2 \omega t + \theta_{C} - \varphi_{C}\right)$$

A potência total é dada por

$$p = p_A + p_B + p_C$$

Portanto, o valor médio da potência será

$$P = P_A + P_B + P_C = V_{F_A} I_{F_A} \cos \varphi_A + V_{F_B} I_{F_B} \cos \varphi_B + V_{F_C} I_{F_C} \cos \varphi_C$$

A potência complexa será

$$\overline{S} = \overline{S}_A + \overline{S}_B + \overline{S}_C = \dot{V}_{F_A} \dot{I}_{F_A}^* + \dot{V}_{F_B} \dot{I}_{F_B}^* + \dot{V}_{F_C} \dot{I}_{F_C}^*$$

Tratando-se de trifásico simétrico, com seqüência direta, tem-se

$$V_{F_A} = V_{F_B} = V_{F_C} = V_F$$

$$\theta_B = \theta_A - 2\pi/3$$

$$\theta_C = \theta_A + 2\pi/3$$

e, sendo a carga equilibrada,

$$\varphi_A = \varphi_B = \varphi_C = \varphi$$

$$I_{F_A} = I_{F_B} = I_{F_C} = I_F$$

Substituindo esses valores na Equação. (4.9) resulta

$$p_{A} = V_{F} I_{F} \cos \varphi + V_{F} I_{F} \cos \left(2 \omega t + \theta_{A} - \varphi\right)$$

$$p_{B} = V_{F} I_{F} \cos \varphi + V_{F} I_{F} \cos \left(2 \omega t + \theta_{A} - 4\pi/3 - \varphi\right)$$

$$p_{C} = V_{F} I_{F} \cos \varphi + V_{F} I_{F} \cos \left(2 \omega t + \theta_{A} + 4\pi/3 - \varphi\right)$$

e portanto, a potência instantânea total é dada por

$$p = p_A + p_B + p_C = 3V_F I_F \cos \varphi = P$$
 (4.10)

isto é, nos trifásicos simétricos e equilibrados a potência instantânea coincide com a potência média.

77

A potência complexa será dada por

$$\overline{S} = V_{F_A} I_{F_A}^* + \alpha^2 V_{F_A} (\alpha^2 I_{F_A})^* + \alpha V_{F_A} (\alpha I_{F_A})^*$$

mas, sendo

$$\alpha^* = \alpha^2$$
 e $(\alpha^2)^* = \alpha$

resulta

$$\overline{S} = \dot{V}_{F_A} \dot{I}_{F_A}^* + \dot{V}_{F_A} \dot{I}_{F_A}^* + \dot{V}_{F_A} \dot{I}_{F_A}^* = 3 \dot{V}_{F_A} \dot{I}_{F_A}^*$$

Desenvolvendo, obtém-se

$$\overline{S} = 3V_F / \theta_A \cdot I_F / -\delta_A = 3V_F I_F / \theta_A - \delta_A = 3V_F I_F / \varphi$$

então

$$\overline{S} = 3V_E I_E \cos \varphi + j \, 3V_E I_E \sin \varphi \tag{4.11}$$

Da Equação. (4.11), nota-se que

$$S = 3V_F I_F$$

$$P = 3V_F I_F \cos \varphi$$

$$Q = 3V_F I_F \sin \varphi$$
(4.12)

Uma vez que, usualmente, nos sistemas trifásicos não se dispõe dos valores de tensão e corrente de fase, é oportuno transformar as Equação. (4.12) de modo a ter a potência complexa em função dos valores de tensão de linha, V_L , e da corrente de linha, I_L . Para tanto, suponha inicialmente a carga ligada em estrela; tem-se

$$V_F = \frac{V_L}{\sqrt{3}} \qquad , \qquad I_F = I_L$$

Logo,

$$\overline{S} = 3 \frac{V_L}{\sqrt{3}} I_L \cos \varphi + j 3 \frac{V_L}{\sqrt{3}} I_L \sin \varphi = \sqrt{3} V_L I_L \cos \varphi + j \sqrt{3} V_L I_L \sin \varphi$$

ou seja,

$$S = \sqrt{3} V_L I_L$$

$$P = \sqrt{3} V_L I_L \cos \varphi$$

$$Q = \sqrt{3} V_L I_L \sin \varphi$$
(4.13)

Admitindo-se a carga ligada em triângulo, tem-se

$$V_F = V_L$$
 , $I_F = \frac{I_L}{\sqrt{3}}$

Logo,

$$\overline{S} = 3V_L \frac{I_L}{\sqrt{3}} \cos \varphi + j \, 3V_L \frac{I_L}{\sqrt{3}} \sin \varphi = \sqrt{3} \, V_L \, I_L \cos \varphi + j \, \sqrt{3} \, V_L \, I_L \sin \varphi$$

ou seja,

$$S = \sqrt{3} V_L I_L$$

$$P = \sqrt{3} V_L I_L \cos \varphi$$

$$Q = \sqrt{3} V_L I_L \sin \varphi$$
(4.14)

As Equações. (4.13) e (4.14) mostram que a expressão geral da potência complexa para trifásicos simétricos com carga equilibrada é função exclusivamente dos valores da tensão de linha, da corrente de linha, e da defasagem, para uma mesma fase, entre a tensão de fase e a corrente de fase. Define-se *fator de potência de uma carga trifásica equilibrada* como sendo o cosseno do ângulo de defasagem entre a tensão e a corrente numa mesma fase. Em se tratando de carga desequilibrada, o fator de potência é definido pela relação P/S ou $P/\sqrt{P^2+Q^2}$. Em conclusão, pode-se afirmar que:

- Num sistema trifásico simétrico e equilibrado, com carga equilibrada, a potência aparente fornecida à carga é dada pelo produto da tensão de linha pela corrente de linha e por $\sqrt{3}$.
- Num sistema trifásico simétrico e equilibrado, com carga equilibrada, a potência ativa fornecida à carga é dada pelo produto da tensão de linha pela corrente de linha, pelo fator de potência e por $\sqrt{3}$.
- Num sistema trifásico simétrico e equilibrado, com carga equilibrada, a potência reativa fornecida à carga é dada pelo produto da tensão de linha pela corrente de linha, pelo seno do ângulo de defasagem entre a tensão e a corrente na fase e por $\sqrt{3}$.

79

Isto é, num trifásico simétrico e equilibrado com carga equilibrada, qualquer que seja o tipo de ligação, são válidas as equações

$$S = \sqrt{3} V_L I_L$$

$$P = \sqrt{3} V_L I_L \cos \varphi$$

$$Q = \sqrt{3} V_L I_L \sin \varphi$$

$$\overline{S} = P + j Q = 3 \dot{V}_{F_A} I_{F_A}^*$$
(4.15)

Exemplo 4.6

Uma carga trifásica equilibrada tem fator de potência 0,8 indutivo. Quando alimentada por um sistema trifásico simétrico, com sequência de fase direta e com $V_{AB}=220\,\underline{/25^\circ}\ V$, absorve 15200 W. Pede-se determinar o fasor da corrente de linha.

Solução:

(a) Determinação do módulo da corrente (1)

Tem-se

$$I = \frac{P}{\sqrt{3} \ V \cos \varphi} = \frac{15200}{\sqrt{3} \cdot 220 \cdot 0.8} \cong 50 \ A$$

(b) Determinação do ângulo de fase da corrente de linha

Admitindo inicialmente a carga ligada em triângulo, as tensões de linha coincidem com as de fase:

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = 220 / \underline{\theta} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} = 220 / \underline{25}^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} V$$

As correntes de fase estão defasadas das tensões correspondentes de $\varphi = arc \cos \left(fator \ de \ potência \right)$

Salienta-se que, para cargas indutivas, a corrente está atrasada e, para capacitivas, adiantada. Logo, neste caso,

$$\varphi = \theta - \delta = arc \cos(0.8) = 37^{\circ}$$

e portanto

$$\dot{I}_{AB} = I_{F_A} / \underline{\delta} = \frac{I_L}{\sqrt{3}} / \theta - \varphi = \frac{50}{\sqrt{3}} / 25^{\circ} - 37^{\circ} = \frac{50}{\sqrt{3}} / -12^{\circ} A$$

$$\dot{I}_{BC} = \frac{50}{\sqrt{3}} / -132^{\circ} A$$

$$\dot{I}_{CA} = \frac{50}{\sqrt{3}} / 108^{\circ} A$$

Sendo a sequência de fase direta, as correntes de linha serão obtidas pela aplicação de (4.6), resultando:

$$\begin{bmatrix} \dot{I}_A \\ \dot{I}_B \\ \dot{I}_C \end{bmatrix} = \sqrt{3}/-30^{\circ} \begin{bmatrix} \dot{I}_{AB} \\ \dot{I}_{BC} \\ \dot{I}_{CA} \end{bmatrix} = 50/-42^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} A$$

Admitindo-se a carga ligada em estrela, as tensões de linha e de fase serão dadas por:

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = V / \underline{\theta} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} = 220 / \underline{25}^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} V$$

$$\begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = \frac{V / \underline{\theta}}{\sqrt{3} \, \underline{/30^{\circ}}} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix} = 127 / \underline{-5^{\circ}} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix} V$$

A corrente $\dot{I}_{AN}=\dot{I}_A$ deverá estar atrasada 37° em relação a \dot{V}_{AN} . Logo,

$$\begin{bmatrix} \dot{I}_{AN} \\ \dot{I}_{BN} \\ \dot{I}_{CN} \end{bmatrix} = \begin{bmatrix} \dot{I}_A \\ \dot{I}_B \\ \dot{I}_C \end{bmatrix} = 50 / -5^\circ - 37^\circ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} = 50 / -42^\circ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} A$$

81

Observa-se que, quer a carga esteja em triângulo, quer esteja em estrela, a defasagem entre a tensão de linha e a corrente na mesma linha, sendo a sequência de fase direta, é $\varphi + 30^{\circ}$ (Figura. 4.12). Ou seja, sendo $\varphi = 37^{\circ}$:

- defasagem entre \dot{V}_{AB} e \dot{I}_A : θ_{AB} δ_A = 25°-(-42°) = 67° = φ + 30°
- defasagem entre \dot{V}_{BC} e \dot{I}_B : θ_{BC} δ_B = -95°-(-162°) = 67° = φ + 30°
- defasagem entre \dot{V}_{CA} e \dot{I}_{C} : θ_{CA} δ_{C} = 145°-(78°) = 67° = φ + 30°

Figura 4.12. Defasagem entre tensão e corrente

Exemplo 4.7

Um sistema trifásico simétrico alimenta carga equilibrada, formada por três impedâncias iguais, que absorve 50 MW e 20 MVAr quando alimentada por tensão de 200 kV. Sendo a sequência de fase inversa e a tensão $V_{AB} = 220/12^{\circ}$ kV, pede-se determinar a corrente de linha.

Solução:

(a) Determinação da potência absorvida quando a tensão é 220 kV

Admitindo a carga ligada em estrela, tem-se

$$P = \sqrt{3} V I \cos \varphi$$
 e $I = \frac{V/\sqrt{3}}{Z}$

logo,

$$P = \frac{V^2}{Z}\cos\varphi$$

Sendo a impedância da carga constante, qualquer que seja o valor da tensão, resulta imediatamente que

$$\frac{P'}{P} = \frac{V'^2}{V^2}$$

isto é,

$$P' = \left(\frac{V'}{V}\right)^2 P = \left(\frac{220}{200}\right)^2 .50 = 60.5 MW$$

Analogamente,

$$Q' = \left(\frac{V'}{V}\right)^2 Q = \left(\frac{220}{200}\right)^2 . 20 = 24.2 \ MVAr$$

(b) Determinação do módulo da corrente

Tem-se

$$\frac{Q}{P} = \frac{\sqrt{3} V I sen \varphi}{\sqrt{3} V I cos \varphi} = tg \varphi$$

Logo,

$$tg \ \varphi = \frac{24,2}{60.5} = 0,4$$

e portanto

$$|\varphi| = 21.8^{\circ} \implies \cos \varphi = 0.928$$

Então

$$I = \frac{60.5 \cdot 10^3}{\sqrt{3} \cdot 220 \cdot 0.928} = 171.8 \ A$$

(c) Determinação do ângulo de fase da corrente

Sendo a sequência de fase inversa, tem-se

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = V / \underline{\theta} \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix} = 220 / 12^{\circ} \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix} kV$$

Considerando a carga ligada em estrela, tem-se:

$$\begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = \frac{V / \underline{\theta}}{\sqrt{3} / \underline{-30^{\circ}}} \begin{bmatrix} 1 \\ \alpha \\ \alpha^{2} \end{bmatrix} = 127 / \underline{42^{\circ}} \begin{bmatrix} 1 \\ \alpha \\ \alpha^{2} \end{bmatrix} kV$$

Como a potência reativa fornecida à carga é positiva, conclui-se que o fator de potência é 0,928 indutivo, isto é, a corrente de fase está atrasada de 21,8° em relação à tensão correspondente ($\varphi = \theta - \delta = 21,8$ °). Logo,

$$\begin{bmatrix} \dot{I}_A \\ \dot{I}_B \\ \dot{I}_C \end{bmatrix} = 171.8 \, \underline{/20.2^{\circ}} \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix} A$$

Neste caso, observa-se que, quer a carga esteja em triângulo, quer esteja em estrela, a rotação de fase entre a tensão de linha e a corrente na mesma linha, sendo a seqüência de fase inversa, é $\varphi - 30^{\circ}$.

Exemplo 4.8

Um gerador de 220 V (tensão de linha), 60 Hz, trifásico simétrico, alimenta as seguintes cargas equilibradas:

- (1) Iluminação: 25 kW, fator de potência unitário.
- (2) Compressor: motor de indução de 100 cv com rendimento de 92 % e fator de potência 0,85 indutivo.
- (3) Máquinas diversas: motores de indução, totalizando 46,7 kW, com fator de potência 0,75 indutivo.

Pede-se:

- (a) A potência total fornecida pelo gerador.
- (b) O fator de potência global.
- (c) O banco de capacitores a ser instalado para que o fator de potência global da instalação seja 0,95 indutivo.
- (d) A corrente antes e após a inserção do banco de capacitores.

Solução:

- (a) Potência fornecida pelo gerador
- Tensões

Assume-se sequência de fase direta e a tensão de fase \dot{V}_{AN} com fase inicial nula, isto é

$$\dot{V}_{AN} = \frac{220}{\sqrt{3}} \underline{/0^{\circ}} \ V, \quad \dot{V}_{BN} = \frac{220}{\sqrt{3}} \underline{/-120^{\circ}} \ V, \quad \dot{V}_{CN} = \frac{220}{\sqrt{3}} \underline{/120^{\circ}} \ V,$$

$$\dot{V}_{AB} = 220 \underline{/30^{\circ}} \ V, \quad \dot{V}_{BC} = 220 \underline{/-90^{\circ}} \ V, \quad \dot{V}_{CA} = 220 \underline{/150^{\circ}} \ V$$

- Potência total

Tem-se:

$$\begin{split} \overline{S}_{ilum} &= \left(25,0\,+\,0\,j\right) \; kVA, \\ \overline{S}_{comp} &= \frac{100,0\,\cdot\,0,736}{0,92} \left(1\,+\,tan\!\left(cos^{-1}\,0,85\right)j\right) = \left(80\,+\,49,58\,j\right) \; kVA, \\ \overline{S}_{maq.} &= \,46,7\,+\,46,7\,\cdot\,tan\!\left(cos^{-1}\,0,75\right)j \,= \left(46,7\,+\,41,18\,j\right) \; kVA, \\ \overline{S}_{tot.} &= \,151,7\,+\,90,76\,j \,= \,176,777\,\underline{/30,89^{\circ}} \;\; kVA \end{split}$$

Observa-se que a potência aparente não é a soma das potências aparentes das cargas. A potência ativa total, por sua vez, é igual à soma das potências ativas das cargas, o mesmo ocorrendo com a potência reativa, ou seja, as potências ativa e reativa se conservam.

(b) Fator de potência

Pode-se definir o fator de potência, além dos modos já apresentados, pela relação entre as potências, ativa e aparente, absorvidas pela carga, isto é

$$\cos \varphi = \frac{151.7}{176.777} = \cos (30.89^\circ) = 0.8581$$

(c) Banco de capacitores para corrigir o fator de potência

Ao ligar, em paralelo com a carga, um banco de capacitores, a potência ativa absorvida pela carga, como é evidente, permanece inalterada, variando somente as potências reativa e aparente. Assim, sendo $\overline{S}_{banco} = 0 + j Q_{banco}$ a potência complexa absorvida pelo banco, tem-se:

$$\overline{S}_{tot} + \overline{S}_{banco} = P_{tot} + j(Q_{tot} + Q_{banco}) = S/\underline{\psi}$$

Desejando que o fator de potência seja 0,95, resulta imediatamente

$$tan \psi = \frac{Q_{tot} + Q_{banco}}{P} = tan (arc \cos 0.95) = 0.3287$$

ou seja

$$Q_{banco} = P_{tot} \cdot 0.3287 - Q_{tot} = 151.7 \cdot 0.3287 - 90.76 = -40.896 \ kVAr$$

e a potência complexa do paralelo entre conjunto de cargas e o banco de capacitores passará a ser

$$\overline{S} = \overline{S}_{tot} + \overline{S}_{banco} = 151.7 + (90.76 - 40.896)j = 151.7 + 49.864j = 159.685/18.19° kVA$$

(d) Corrente sem e com banco de capacitores

A corrente antes da inserção do banco de capacitores é dada por

$$|I| = \frac{S_{tot}}{\sqrt{3} V} = \frac{176777}{\sqrt{3} \cdot 220} = 463,92 A$$

e, lembrando a hipótese básica de geração e carga ligada em estrela, resulta

$$\dot{I}_{A} = \dot{I}_{AN} = I \frac{\dot{V}_{AN}}{|\dot{V}_{AN}| / arc \cos(P/S)} = 463.92 \cdot \frac{\frac{220}{\sqrt{3}} / 0^{\circ}}{\frac{220}{\sqrt{3}} / 30.89^{\circ}} = 463.92 / -30.89^{\circ} A$$

e

$$\dot{I}_B = \dot{I}_{BN} = 463,92 / -150,89^{\circ} A$$
, $\dot{I}_C = \dot{I}_{CN} = 463,92 / 89,11^{\circ} A$

Por se tratar de trifásico simétrico e equilibrado procede-se, como método alternativo, ao cálculo da corrente, após a inserção do banco de capacitores, a partir da potência de fase, isto é

$$\dot{I}'_{A} = \dot{I}'_{AN} = \frac{\overline{S}^{*}}{3 \cdot \dot{V}_{AN}} = \frac{159685 / -18,19^{\circ}}{3 \cdot 127 / 0^{\circ}} = 419,06 / -18,19^{\circ}$$
 A

e

$$\dot{I}'_{B} = \dot{I}'_{BN} = 419,06 / -138,19^{\circ} A$$
 e $\dot{I}'_{C} = \dot{I}'_{CN} = 419,06 / 101,81^{\circ} A$