EIA's Annual Energy Outlook 2012

A comprehensive assessment of the U.S. energy picture

For

National Governors Association

May 30, 2012 | Washington, DC

By

Howard Gruenspecht, Acting Administrator

U.S. Energy Breakdown by Fuel and Sector

Source: EIA Annual Energy Review 2010

Key results from the *AEO2012* Reference case, which assumes current laws remain unchanged

- Projected growth of energy use slows over the projection period reflecting an extended economic recovery and increasing energy efficiency in end-use applications
- Domestic crude oil production increases, reaching levels not experienced since 1994 by 2020
- With modest economic growth, increased efficiency, growing domestic production, and continued adoption of nonpetroleum liquids, net petroleum imports make up a smaller share of total liquids consumption
- Natural gas production increases throughout the projection period and exceeds consumption early in the next decade
- Renewables and natural gas fuel a growing share of electric power generation
- Total U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2035

What is included (and excluded) in developing EIA's "Reference case" projections?

- Generally assumes current laws and regulations
 - excludes potential future laws and regulations (e.g., proposed greenhouse gas legislation and proposed fuel economy standards are not included)
 - provisions generally sunset as specified in law (e.g., renewable tax credits expire)
- Some grey areas
 - adds a premium to the capital cost of CO₂-intensive technologies to reflect current market behavior regarding possible future policies to mitigate greenhouse gas emissions
 - assumes implementation of existing regulations that enable the building of new energy infrastructure and resource extraction
- Includes technologies that are commercial or reasonably expected to become commercial over next decade or so
 - includes projected technology cost and efficiency improvements, as well as cost reductions linked to cumulative deployment levels
 - does not assume revolutionary or breakthrough technologies

Energy use grows slowly over the projection in response to a slow and extended economic recovery and improving energy efficiency

Energy and CO₂ per dollar of GDP continue to decline; per-capita energy use also declines

In the AEO2012 Reference case, energy-related CO₂ emissions never get back to pre-recession levels by 2035

billion metric tons carbon dioxide

Electricity

In 2010, U.S. electricity generation was 70% fossil fuels, 20% nuclear, and 10% renewable

Source: EIA, Annual Energy Review, October 2011

The fuel mix for electricity generation varies widely across U.S. regions (2010)

Source: EIA AEO2012 (Early Release), based on Form EIA-923

While electricity consumption grows by 23% over the projection, the annual rate of growth slows

Electricity mix gradually shifts to lower-carbon options, led by growth in renewables and natural gas

electricity net generation trillion kilowatthours per year

Non-hydro renewable sources more than double between 2010 and 2035

non-hydropower renewable generation billion kilowatthours per year

The average delivered price of coal to electricity generators varies widely across U.S. regions – transport costs are a key reason

Operating costs: existing plants with and without a value on carbon

Fuel Cost for Existing Coal and Combined Cycle Natural Gas Units with a Value Placed on Carbon Dioxide Emissions

- The "crossover point" for least-cost dispatch of coal and natural gas capacity depends on both fuel prices and the carbon value. At lower natural gas prices, the "crossover" occurs at a lower carbon value.
 - Environmental operating costs and retrofit costs for pollution controls at existing coal-fired plants can "raise the bar" for their continued operation.
 - For retrofit decisions, the unit's perceived "useful life," which plays a critical role, can be affected by views regarding future climate policies

Examples of updated environmental retrofit costs

Flue Gas Desulfurization (2010\$/kW)			
	Capital Costs (\$/kW)	VOM (\$/MWh)	
300 MW	\$602		
500 MW	\$521	\$1.72	
700 MW	\$474		

Selective Catalytic Reduction (2010 \$/kW)				
	Capital			
	Costs	VOM		
	(\$/kW)	(\$/MWh)		
300 MW	\$203			
500 MW	\$185	\$1.30		
700 MW	\$177			

Dry Sorbent Injection + Full Fabric Filter (Baghouse) (2010\$/kW)				
Size (MW)	Capital Cost (\$/kW)	VOM (\$/MWh)		
300	197			
500	180	6.72		
700	171			

Source: EPA IPM v4.1 Documentation

http://www.epa.gov/airmarkets/progsregs/epa-ipm/docs/suppdoc.pdf http://www.epa.gov/airmarkt/progsregs/epa-ipm/docs/v410/Chapter5.pdf

Natural Gas

Underground sources of natural gas

Source: modified from U.S. Geological Survey Fact Sheet 0113-01

Shale gas plays, Lower 48 States

Source: Energy Information Administration based on data from various published studies.

Since January 2007, U.S. shale gas production has increased over 7-fold and in 2011 comprised over 30 percent of total U.S. dry production

monthly shale gas production (dry) billion cubic feet per day

Sources: Lippman Consulting, Inc. gross withdrawal estimates as of March 2012 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play.

Natural gas consumption is quite dispersed; electric power and industrial use drives much of the future demand growth

U.S. dry gas consumption trillion cubic feet per year

*Includes combined heat-and-power and lease and plant fuel. **Includes pipeline fuel.

Shale gas offsets declines in other U.S. natural gas production sources

U.S. dry gas production trillion cubic feet per year

Petroleum

U.S. dependence on imported petroleum continues to decline

U.S. imports of liquid fuels continue to decline due to increased production of gas liquids and biofuels and greater fuel efficiency

U.S. liquid fuels supply million barrels per day

Efficiency improvements mostly offset underlying drivers of growth in transportation services

	2010	2035	Growth (2010-2035)
Light duty vehicles			
Fuel consumption (million barrels per day oil equivalent)	8.6	8.8	2%
Number of licensed drivers (millions)	209	265	27%
Miles per licensed driver	12,700	13,600	7%
Efficiency of vehicle stock (mpg)	20.4	27.8	36%*
Heavy duty vehicles			
Fuel consumption (million barrels per day oil equivalent)	2.4	2.8	18%
Manufacturing output (billion 2005 dollars)	4,260	6,270	47%
Number of freight trucks (millions)	9.3	13.4	44%
Miles per vehicle	25,300	25,700	1.3%
Efficiency of vehicle stock (mpg)	6.7	8.2	23%**

^{*} Equal to a 27% reduction in fuel use per mile. ** Equal to an 19% reduction in fuel use per mile.

Probability of WTI crude oil exceeding different price levels by September 2012

Note: All prices represent rolling 5-day averages.

Source: U.S. Energy Information Administration, Chicago Mercantile Exchange (CME)

What makes up the price at the pump?

Source: U.S. Energy Information Administration

Gasoline prices vary regionally

U.S. Regular Gasoline Prices* (dollars per gallon)

20	ful	l hi	sto	rv
100	I GI		310	·y

		05/07/12 05/14/12 0		Change from	
	05/07/12		05/21/12	week ago	year ago
U.S.	3.790	3.754	3.714	↓ -0.040	↓ -0.135
East Coast (PADD1)	3.762	3.698	3.631	↓ -0.067	↓ -0.228
New England (PADD1A)	3.880	3.828	3.781	↓ -0.047	↓ -0.196
Central Atlantic (PADD1B)	3.809	3.764	3.707	↓ -0.057	↓ -0.205
Lower Atlantic (PADD1C)	3.692	3.610	3.530	-0.080	↓ -0.254
Midwest (PADD2)	3.721	3.641	3.626	♣ -0.015	↓ -0.191
Gulf Coast (PADD3)	3.622	3.558	3.489	↓ -0.069	↓ -0.221
Rocky Mountain (PADD4)	3.764	3.762	3.754	-0.008	1 0.021
West Coast (PADD5)	4.135	4.255	4.242	♣ -0.013	1 0.206
West Coast less California	4.001	4.063	4.081	1 0.018	1 0.193

Source: U.S. Energy Information Administration

Probability of U.S. retail gasoline exceeding different price levels by September 2012

Note: All prices represent rolling 5-day averages.

Source: U.S. Energy Information Administration, Chicago Mercantile Exchange (CME)

