[Speaker Zoom video]

Investigating the relationship between Sea Level Rise and Extreme Events in Indonesia

Anthea Guo, Siyu Xue, Tanisha Garg, Camille Mora, Bharti Dharapuram, Srinath Namburi (Bactrosaurus_Lavani Sostenutos)

Agenda

Comment from Camille: WOW, this looks fantastic. You guys are brilliant, as demonstrated by the amazing insights you have pulled:) Sorry I wasn't able to keep up with the programming

[Speaker Zoom video]

- Introduction (Camille) (30 seconds)
- Research Questions & Hypothesis (Camille) (15 seconds)
- Data and Analyses (Bharti) (30 seconds)
- Results (2.5 minutes)
 - Satellite measurements of SLR in Indonesia (Anthea)
 - Tidal gauge measurements of SLR in Indonesia (Anthea)
 - Extreme weather events in Indonesia (Siyu)
- Conclusion (1 minute) (Bharti)

Introduction

Literature Review

- Climate Change is an existential physical threat globally
 - Impacts are not evenly distributed
- Indonesia is both impacted by SLR and extreme events
- Socio-economic impacts of SLR and extremes are significant
- Limited research on correlation between SLR and extremes in Indonesia

Research Questions & Hypothesis

Final Hypothesis:

"In Indonesia, SLR and climatological extreme events, such as precipitation and temperature anomalies, are positively correlated and this creates compounding socio-economic impacts."

Sea level data

Sea Surface Height (m)* ECCO: 1992-2017

Tidal gauge (mm above msl) UHSLC

Climate data

Precipitation (mm/day)* GPCP: 1979-2023

Sea Surface Temperature (degC)*

*plots show mean values across years

[Speaker Zoom video]

1. Calculate **anomalies** for representative months (Jan and July) for all data

For eg. SSH_{Jan} climatology = mean (SSH_{Jan} observations) SSH_{Jan} anomaly = SSH_{Jan} observations - SSH_{Jan} climatology [Speaker Zoom video]

2. Calculate Pearson correlation coefficient between sea level anomaly and climate anomaly

Results

SSH, TOS, Tidal Gauge and Precipitation graphs for all six locations

[Speaker Zoom video]

Natural disasters and extreme events in Indonesia

← Monthly Precipitation (mm/day)

7.0

6.5

5.5

5.0

4.5

Results overview

Correlation	SST - 1 deg	Precipitation - 2.5 deg
SSH (ECCO) - 0.5 deg	No Significant Correlation	Positive Correlation for Jan and July: ~0.5**
SSH (Tidal Gauge)	Positive Correlation for Jan and July in Padang and Prigi ~0.75*	Positive Correlation for annual data: ~0.8* No Correlation for monthly data in January and July

Conclusions

Thank you!

Any Questions?

