Basic notions

Definition 0.1 We consider a chance experiment. The set of all outcomes that may appear in a realization of this experiment is called **sample space**, denoted by Ω . We call $\omega \in \Omega$ **sample points** and the associated sets $\{\omega\}$ **elementary events** for this experiment. A given subset $A \subset \Omega$ is called **event**.

Definition 0.2 Let Ω be a sample space and $A, B \subseteq \Omega$ events.

- A and B are equivalent, if A = B.
- The union of A and B is $A \cup B$.
- The intersection of A and B is $A \cap B$.
- A and B are disjoint or mutually exclusive if $A \cap B = \emptyset$.
- The complement of A is $\bar{A} := \Omega \setminus A$.

Definition 0.3 Let Ω be a sample space and $P: \mathcal{P}(\Omega) \to \mathbb{R}$ a real-valued function on events on Ω . P is called **probability on** Ω , if the following axioms hold:

- 1. P(A) > 0 for all events A.
- 2. $P(\Omega) = 1$.
- 3. If A_1, A_2, \ldots is a pairwise disjoint sequence of events, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

The real number P(A) is the **probability of the event** A.

Definition 0.4 Let Ω be a sample space, $B\subseteq \Omega$ be an event with P(B)>0 and $A\subseteq \Omega$ be an arbitrary event. We define the **conditional probability of** A **given** B as

$$P(A|B) := \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Toss of two coins $\Omega_2 = \{HH, HT, TH, TT\}$

Definition 0.5 Let $A, B \subseteq \Omega$ be events. They are called **independent** if $P(A \cap B) = P(A)P(B).$

Otherwise, they are called ${\bf dependent}.$

Discrete random variables

Definition 0.6 Let Ω be a sample space. We call a function

$$X:\Omega\to\mathbb{R}$$

random variable, if for any interval $I \subset \mathbb{R}$, the set $\{\omega \in \Omega | X(\omega) \in I\}$ is an event on Ω . By $P(X \in I)$, we denote the probability of X to take values on I.

Definition 0.7 Let $X:\Omega\to\mathbb{R}$ be a random variable. The function $F:\mathbb{R}\to\mathbb{R}$ with

$$F(t) = P(X \leq t) = P(\omega \in \Omega | X(\omega) \leq t)$$

is called (cumulative) distribution function (CDF) of X.

Definition 0.8 Let Ω be a sample space and X a random variable on Ω . We call X a **discrete random variable** if X can take only a finite or at most infinite but countable number of values. In this case, the CDF F of X is called **discrete distribution**.

Definition 0.9 Let $X:\Omega\to\mathbb{R}$ be a discrete random variable. We call the function $p:\mathbb{R}\to\mathbb{R}$ with

$$p(x) := P(X = x)$$

probability (mass) function (PMF) of X. It describes the probability of the event X = x, i.e. that X takes the value x.

 $\begin{array}{ll} \textbf{Definition 0.10} & \text{Let } X \text{ be a discrete random variable with PMF } p \text{ and range } R_X. \text{ The } \\ \textbf{expected value / expectation / mean of } X \text{ is denoted by } E(X) \text{ and is given by } \\ \end{array}$

$$\mathbf{E}\left(X\right) = \sum_{x \in R_X} x \, p(x) = \sum_{x \in R_X} x \, P(X=x) \,,$$

under the assumption that this series converges absolutely. The expectation does not exist, if this assumption is not fulfilled.

Throw of dice

$$X:\Omega\to\mathbb{R}$$

$$p(x) = \begin{cases} \frac{1}{6} & x \in R_X \\ 0 & \text{else} \, . \end{cases}$$

$$\mathrm{E}\left(X\right) = \sum_{x \in R_X} x \, p(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \ldots + 6 \cdot \frac{1}{6} = 3.5$$

1 Discrete random variables

We condsider the chance experiment of rolling two fair dices.

 Introduce the random variable X of the sum of the thrown values. 4. Give the PMF n of X.

5. Compute the mean of X.

$$\mathbb{G} \Rightarrow \{3,3,\dots,5\}$$

$$\mathbb{R} \Rightarrow \{2,3,-,12\}$$

3)
$$\times$$
 , $\Omega \rightarrow \{2,3,-,12\}$ $\times (\omega) = \times ((a,b)) := a \cdot b$

$$P(2) = P(X=2) = P(\{(\Lambda, \Lambda)\}) = \frac{1}{6} = \frac{1}{36}$$

$$P(3) = P(X=2) = P(X=3)$$

$$P(3) = P(X=2)$$

 $P(3) = P(X=3)$

$$P(3) = P(x=2)$$

$$P(3) = P(\lambda = 3) = P(\{(1,2),(2,1)\}) = 2 \cdot \frac{1}{36} = \frac{1}{28}$$
5) $E(X) = \sum_{x \in R_X} x p(x) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{1}{18} + 2 + 12 \cdot \frac{1}{36} = 7$

alternative:
$$X_1: \Omega_A \rightarrow \{1, 16\}$$

alternative:
$$X_1: \Omega_n \to \{1, 16\}$$

$$E(X^{1}, X^{5}) = E(X^{3}) + E(X^{5}) = 3.2 \cdot 3.2 = \frac{1}{2}$$

Vabe {1, -, 6}

Continuous random variables

Definition 0.12 Let Ω be a sample space and X a random variable on Ω . We call its CDF $F(t) = P(X \leq t)$ a **continuous distribution**, if F is continuous everywhere. A random variable with a continuous distribution is called **continuous random variable**. It has an uncountable range.

Definition 0.13 Let X be a continuous RV. Let us assume that there exists a function $\rho: \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that it holds

$$P(X \in A) = \int \rho(x)dx$$

for all subsets $A \subseteq \mathbb{R}$ that can be written as the union of a finite / infinite number of intervals. If ρ and the above integral exist, we call X absolutely continuous and ρ the (probability) density function (PDF) or density of X.

Definition 0.14 Let X be a continuous RV with density ρ . We define the **expected value** / **expectation** / **mean** of X by

$$E(X) = \int_{-\infty}^{\infty} x \rho(x) dx$$

under the assumption that the integral exists and converges absolutely, hence

$$\int_{-\infty}^{\infty} |x| \, \rho(x) dx < \infty \, .$$

If the assumption is not fulfilled, the expectation of X does not exist.

 $X:\Omega\to[0,4]$

$$\rho(x) = \frac{3}{32}(4x - x^2)$$

$$\mathbf{E}\left(X\right) = \int_{0}^{4} x (4x - x^{2}) dx = \left[4 \cdot \frac{1}{3} x^{3} - \frac{1}{4} x^{4}\right]_{0}^{4} = \dots$$

2 Continuous random variables

Let X be a uniformly distributed RV $X \sim \mathcal{U}[-1,1]$.

- 1. Give its density.
 - 2. Give its CDF and plot it.
 - 3. Compute its mean.

$$= \begin{cases} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{cases}$$

1)
$$\rho(x) = \begin{cases} \frac{1}{1-(1)} & \frac{1}{2} & \frac{1}{2} \\ 0 & \text{olse} \end{cases}$$

$$(X \neq F) = \begin{cases} \rho(x) \end{cases}$$

$$2) \forall (t) = P(x \neq t) = \int_{0}^{t} \rho(x) dx$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{1}{2}$$
 × $\frac{1}{2}$ × $\frac{1}{2}$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$-\left(-\frac{1}{2}\right)$$