Stepper Library

Constructor:

- Stepper()
 - Creates a new Object called "Stepper"
 - o Is made for a4988 driver
 - Use init()-method to initialize the driver

Methods:

- boolean getAllowed()
 - Get allowed-state of driver
- boolean getEnabled()
 - Get enabled-state of driver
- boolean getOnPosition()
 - Check if driver is on position
- byte getDir()
 - Get direction of driver
- double getPosition()
 - Get the driven distance
- boolean halfStep()
 - Make a half step (change step state from low to high or from high to low
 - This function must be called in a loop without or with minimal delay
 - Delay with accelration and braking is integrated
 - o Returns true if steps can be made
- void init(byte stepPin, byte dirPin, byte enablePin)
 - Initialize driver by pins step, dir and enable.
- void setAccelration(float accelration)
 - Set steppers accelration in m/(s*s)
- void setDiameter(float diameter)
 - Set wheel diameter in mm
- void setDir(byte direction)
 - Set direction of driver

- void setAllowed(boolean allowed)
 - Set allowed state for driver
 - If this is false, the stepper would stay fixed on position (only used for switchStep())
- void setEnabled(boolean enabled)
 - Set enabled state for driver
 - o If this is false, the stepper has no current anymore
- void setFeedrate(float feedrate)
 - Set feedrate in m/s
- void setPosition(double position)
 - Set position to drive in mm
- void setStepsPerRotation(int stepsPerRotation)
 - Set steps per rotation
 - Don't use steps per rotation from steppers datasheet
 - You have to calculate with your driver configuration
- void setStepState(boolean state)
 - Set driver state to low or high
 - Can be used to control stepper manually
- void setStopFeedrate(float feedrate)
 - Set minimum feedrate by braking
 - o After reaching this feedrate, the movement will be stopped
- void switchStep()
 - Switch on step pin from low to high or high to low ignoring all parameters excepting allowed-state