Continual Learning: Quirks and Assumptions

Puneet K. Dokania

(University of Oxford & Five AI Ltd., UK)

Presented at

RE.Work, Deep Learning 2.0 Virtual Summit
Deep Learning Landscape Stage
28th Jan 2021

 $\bullet \theta_0$

- Define Knowledge
 - Input-Output Behaviour (knowledge distillation type)
 - Parameters

- Define Knowledge
 - Input-Output Behaviour (knowledge distillation type)
 - Parameters
- Preserve Knowledge? Avoid Forgetting

- Define Knowledge
 - Input-Output Behaviour (knowledge distillation type)
 - Parameters
- Preserve Knowledge? Avoid Forgetting
- Update Knowledge? Avoid Intransigence (inability to learn new tasks)

Why Continual Learning?

Why Continual Learning?

- Efficiency An example of extremely large scale classification (Mahajan et. al., ECCV2018)
 - Training images 3.5B
 - GPUs 336
 - Training -22 days
 - What if say one million new training data is available?

Why Continual Learning?

- Efficiency An example of extremely large scale classification (Mahajan et. al., ECCV2018)
 - Training images 3.5B
 - GPUs 336
 - Training -22 days
 - What if say one million new training data is available?
- Personalization
 - Imagine (say) Alexa trained on millions of diverse examples before deployment
 - How to efficiently update on some user-specific data without forgetting about the tasks it was trained on before deployment?
 - Privacy what if the training or user-specific data can't be shared?

•

Data stream

•

Puneet Dokania

Arrow of time

(Birds, Cats)

Task 1

Task boundary

(Dogs, Horses)

(Birds, Cats)

Task 1

Task boundary

(Dogs, Horses)

X

(Birds, Cats)

Task boundary

If allowed to use multiple times — **offline**

• Multiple epoch over the train of new task

(Birds, Cats)

Task boundary

X

If allowed to use multiple times — **offline**

• Multiple epoch over the train of new task

If can be used only once — **online**

• Only one pass over the train data of new task

Task boundary

If allowed to use multiple times — **offline**• Multiple epoch over the train of new task

If can be used only once — **online**• Only one pass over the train data of new task

Replay buffer

Memory based

Task boundary

If allowed to use multiple times — offline

• Multiple epoch over the train of new task

If can be used only once — online

• Only one pass over the train data of new task

Store?

Replay buffer

• Memory based

Task boundary

(Dogs, Horses)

 y_1 y_2 y_3 y_4 y_4 y_5 y_5

Task boundary

If allowed to use multiple times — offline

• Multiple epoch over the train of new task

If can be used only once — online

• Only one pass over the train data of new task

Store?

Replay buffer

• Memory based

$$\mathbf{X} \longrightarrow \left[\begin{array}{c} f_{\theta} \\ \hline f_{\theta} \\ \hline \end{array}\right] \begin{array}{c} y_{4} \\ y_{3} \\ \hline \end{array} \begin{array}{c} T_{2} \text{ (Dogs, Horses)} \\ y_{2} \\ y_{1} \\ \end{array}$$

$$T_{1} \text{ (Birds, Cats)}$$

Task id known — Task Incremental (Multi-head)

• If task = 1, then either bird or cats

Task boundary

(Dogs, Horses)

$$\mathbf{X} \longrightarrow \begin{bmatrix} f_{\theta} \\ f_{\theta} \end{bmatrix} \underbrace{\begin{cases} y_{4} \\ y_{3} \end{cases}} T_{2} \text{ (Dogs, Horses)}$$

$$\underbrace{\begin{cases} y_{2} \\ y_{1} \end{cases}} T_{1} \text{ (Birds, Cats)}$$

Task id known — Task Incremental (Multi-head)

• If task = 1, then either bird or cats

Task id unknown — Class Incremental (Single-head)

- Can be {bird, cats, dog, horse}
- Much harder, more realistic

Continual Learning — Various formulations

Form.	CI-CL	Online	Disjoin	t Papers	Regularize	Memory	Distill I	Param iso
A	✓	✓	✓	MIR[11], GMED[12]	×	✓	×	×
	✓	×	✓	LwM[13], DMC[14]	×	×	✓	×
В				SDC [15]	✓	×	×	×
				BiC[16], iCARL[4]				
				UCIR[17], EEIL[18]	×	✓	✓	×
				IL2M[19], WA[20]				
				PODNet[21], MCIL[22]				
				RPS-Net[23], iTAML[24]	×	✓	✓	✓
				CGATE[25]	×	✓	×	✓
				RWALK[8]	✓	✓	×	×
	×	×	✓	PNN[26], DEN[27]	×	×	×	✓
				DGR [28]	×	✓	×	×
				LwF[3]	×	×	\checkmark	×
				P&C[29]	×	×	\checkmark	1
\mathbf{C}				APD[30]	✓	×	×	✓
				VCL[31]	✓	✓	×	×
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	✓	×	×	×
				EWC[6]				
D	×	./	✓	TinyER[34], HAL[35]	×	✓	×	×
D	^	٧	V	GEM[7], AGEM[36]	✓	✓	×	×
E	✓	✓	×	GSS[37]	×	✓	×	×

Most algorithms

- Focus on one particular setting
- Most of these are oversimplified
- Often fail to generalize

Most algorithms

- Sensitive to hyperparameters
- Small scale experiments
 - No practical benefit

Hard to understand if the algorithms are actually capturing all the intricacies involved in the continual learning scenario

- No hyperparameter
- Not restricted to one of the formulations
 - Can be applied offline/online task/class incremental
- Nothing special to prevent forgetting
 - No regularization
 - No knowledge distillation
 - No bias correction

•

- No hyperparameter
- Not restricted to one of the formulations
 - Can be applied offline/online task/class incremental
- Nothing special to prevent forgetting
 - No regularization
 - No knowledge distillation
 - No bias correction

•

- Use memory greedily store data given memory budget
- Train only on the memory when asked

Learning

Continual Learning — GDumb (ECCV2020, Oral) (evaluation)

Form.	. Designed in	n Model (Dataset)	memory (k)	Metric	CI-CL	Online	Disjoint
A1	[11]	MLP-400 (MNIST);	300, 500;	Acc. (at end)			
	F 7	ResNet18 (CIFAR10)	200, 500, 1000				
A2	[12]	MLP-400 (MNIST);	500;	Acc. (at end)	\checkmark	\checkmark	\checkmark
		ResNet18 (CIFAR10)	500				
A3	[41]	MLP-400 (MNIST);	500;	Acc. (at end)			
		ResNet18 (CIFAR10)	1000				
B1	[42];	MLP-400 (MNIST);	4400	Acc. (at end)			
	[23]	ResNet18 (SVHN)		, ,			
B2	[4]	ResNet32 (CIFAR100)	2000	Acc. (avg in t)	\checkmark	×	\checkmark
B3	[21]	ResNet32 (CIFAR100);	1000-2000	Acc. (avg in t)			
		ResNet18 (ImageNet100)	(+20) x50	, ,			
C1	[42]	MLP-400 (MNIST)	4400	Acc. (at end)	×	×	√
C2	[9]	Many (TinyImageNet)	4500,9000	Acc. (at end)	^	^	•
D	[36]	ResNet-18-S (CIFAR10)	0-1105	Acc. (at end)	×	✓	$\overline{\qquad}$
		, ,	(+65) x17	, ,			
${f E}$	[37]	MLP-100 (MNIST);	300;	Acc. (at end)	\checkmark	\checkmark	×
	. ,	ResNet-18 (CIFAR10)	500	, ,			

Continual Learning — GDumb (ECCV2020, Oral)

(Evaluation — Task-incremental, offline)

Method	MNIST			
(k)	(4400)			
GEM [7]	98.42 ± 0.10			
EWC [6]	98.64 ± 0.22			
SI [5]	99.09 ± 0.15			
Online EWC [29]	99.12 ± 0.11			
MAS [32]	99.22 ± 0.21			
DGR [28]	99.50 ± 0.03			
LwF [3]	99.60 ± 0.03			
DGR+Distil [28]	99.61 ± 0.02			
RtF	99.66 ± 0.03			
GDumb	99.77 ± 0.03			
(C1)				

Method	Parameters	Regularization	Accuracy		
No stored samples					
mean-IMM [33]	3.5M	none	32.42		
mode-IMM [33]	9.0M	dropout	42.41		
SI [5]	3.5M/9.0M	L2/dropout	43.74		
HAT [51]	3.5M/9.0M	L2	44.19		
EWC [6]	613K	none	45.13		
LwF [3]	9.0M	L2	48.11		
EBLL [52]	9.0M	L2	48.17		
MAS [32]	3.5M/9.0M	none	48.98		
PackNet [53]	613K/3.5M	L2/dropout	55.96		
k=4500					
GEM [7]	613K/3.5M	none/dropout	44.23		
GDumb	834K	cutmix	45.50		
iCARL [4]	$613\mathrm{K}/3.5\mathrm{M}$	dropout	48.55		
k=9000					
GEM [7]	613K/3.5M	none/dropout	45.27		
iCARL [4]	$613\mathrm{K}/3.5\mathrm{M}$	dropout	49.94		
GDumb	834K	cutmix	57.27		
(C2)					

Continual Learning — GDumb (ECCV2020, Oral) (Conclusions)

- GDumb performed extremely well on almost all the simplified forms of continual learning
- This is **alarming** as the methods we compared against were
 - specifically designed for the evaluation setting
 - had hyperameters to tune
 - etc. etc.

Continual Learning — GDumb (ECCV2020, Oral) (Conclusions)

- GDumb performed extremely well on almost all the simplified forms of continual learning
- This is **alarming** as the methods we compared against were
 - specifically designed for the evaluation setting
 - had hyperameters to tune
 - etc. etc.
- Perhaps, the assumptions are too simplified
- These assumptions should be motivated from practical usefulness point of view
 - For example, there is no need to restrict on memory budget if we can afford to train
 - The online assumption, etc.
- It is important to try these algorithms on large scale problems to verify their usefulness
- Proper benchmarking is necessary

Thank You

