4 Myths about in-memory databases busted

Yiftach Shoolman – Co-Founder & CTO @ Redis Labs

Background - Redis

Created by Salvatore Sanfilippo (@antirez)

OSS, in-memory NoSQL k/v database/data-structure engine

Backgroud – Redis Labs

Founded in 2011. HQ in Mountain View CA, R&D in Tel-Aviv IL

The largest commercial company behind OSS Redis

- 5000+ paying customers
- 30,000+ free users
- 100,000+ databases under management
- ±200 new databases/day

Provide enterpsie class Redis deployement

- As a service Redis Cloud
- On-premises Redis Labs Enterprise Cluster (RLEC)

\$28MM VC funding

Why an in-memory operational DBMS?

Why an in-memory analytics DBMS?

Myth #1 all in-memory databases are equally fast

1xc3.8xlarge EC2 instance

How many servers to get 1M writes/sec on GCE?

How many servers to get 1M writes/sec on GCE?

How many servers to get 1M writes/sec on GCE?

Real-world write intensive app

NoSQL Performance Benchmark

Hbase+Internal Cache vs. Hbase+Redis

Same Redis core, same HW, different performance

So why aren't in-memory DBs equally fast?

Most are written in C/C++.... but programming language isn't the only thing to consider

What affects in-memory DB performance?

- (1) Complexity of processing commands
- → How many lines of code per command? What is the computation complexity (e.g. in Redis most commands are O(1))?

- (2) Query efficiency
- → Is it limited to blob queries? Can you query a discrete value?

- (3) Pipelining
- → Can you send multiple requests at once to get lower latency and less context switches?

What affects in-memory DB performance?

- (4) Protocol efficiency
- → How long it takes to parse a request or to serialize a response

- (5) TCP overhead
- → Long-lived (connection pool) vs. short-lived connections

What affects in-memory DB performance?

- (6) Single-threaded or multi-threaded architecture
- → Lock-free vs. parallel computing

(7) Shared-nothing (the best) vs. shared-something vs. shared-everything

(8) Built-in acceleration components

Myth #2 A single node is not a cluster

The truth: A single node can be a cluster but not a HA cluster

In the new containers/VMs world a cluster is:

A bunch of processes that together look like one big process

A real-world example

A Binary Option platform; 400MB dataset; 1,000,000 ops/sec

Myth #3 In-memory databases are inconsistent and unreliable

A few facts/questions about consistency

Almost all NoSQL databases (not just in-memory) ack the client before committing to disk

Almost all in-memory databases can commit to disk before they *ack* the client

However, even if you ack after everything is committed:

- Is your driver memory buffer persistent and consistent?
- Is your storage system cache persistent and consistent?

Most in-memory databases are async most of the time

Some of them can partially sync

A few of them fully sync

CAP and in-memory databases

Behavior during network splits

Inconsistency

Full-consistency

Are in-memory databases reliable?

Redis Labs facts:

- Provisioned 100s of TBs of RAM
- 500+ node failure events \rightarrow 1 failure every 2 days
- ~30 complete data-center outages → 1 outage every month
- Users with high availability (HA) features enabled haven't lost a single byte of data

Myth #4 In-memory databases are expensive

Which one costs more?

Real-world use case:

- 500+GB
- 400K writes/sec
- 1500 reads/sec
- 37.5KB average object size

1.5Gbps

No extra work at app level

6-node cluster

120Gbps

Tons of work at app level

30+ node cluster

Which one costs more (2)?

	Redis Labs	Aerospike/ Couchbase	Cassandra
Read			
Write			
Cost	<\$\$	\$	\$

Sometimes in-memory can be very expensive

HA deployment of 10TB in-memory dataset on EC2

Total cost (reserved instances) = \$2,132,250/yr

Do we really need 2 replicas?

Efficient HA deployment of 10TB in-memory dataset on EC2

Total cost (reserved instances) = \$1,421,500/yr

Savings = \$710,750/yr

Can we save more?

Price/performance of memory technologies

1GB memory - cost vs read/write performance

Redis on Flash

Flash used as a RAM extender and NOT as persistent storage

How to achieve optimal price/performance

By dynamically setting RAM/Flash ratio

Single server performance - 10% in RAM / 90% in Flash

RAM Hits Ratio	Ops/Sec	Latency			
Low latency scenarios					
100%	1.35M	1.00 msec			
80%	340K	1.07 msec			
50%	200K	0.96 msec			
20%	160K	1.00 msec			
High throughput scenarios					
100%	2.00M	2.40 msec			
80%	671K	6.20 msec			
50%	483K	10.00 msec			
20%	366K	14.50 msec			

10TB Redis deployment on EC2

	Redis (on RAM) 2 replicas	Redis (on RAM) 1 replicas	Redis on Flash 1 replica
Instance type	r3.8xlarge	r3.8xlarge	i2.8xlarge
# of instances	150	100	10
RAM	30TB	20TB	2TB
Flash	-	-	64TB
Persistent storage (EBS)	150TB	100TB	80TB
1yr costs (reserved instances)	\$2,132,250	\$1,421,500	\$318,090
Yearly savings	_	\$710,750	\$1,814,160
Savings %	-	33.33%	85.08%

Summary

4 myths about in-memory databases busted

All in-memory databases are NOT equally fast

You can create a single node in-memory cluster

In-memory databases can be consistent and reliable

With the right technology, in-memory databases are not expensive

Thank you

Click to get more info about Redis, Redis Labs, Redis Cloud and RLEC