Lecture 15: Supervised learning

Artificial Intelligence CS-GY-6613 Julian Togelius <u>julian.togelius@nyu.edu</u>

Why learning?

- So far in the course: we have specified the mechanism by which the agent should decide how to act
- So far in the course: the world is mostly known
- The agent might not know what the world is like, or what policies work well in the world
- The world may change
- You don't want to do all the programming

A (complex) learning agent

- How to drive from point A to point B, without hitting pedestrians
- What a human (or a cat, or bush) looks like
- Hand gestures
- How to drive in the style of a particular human (or according to that human's preferences)
- Which routes from A to B are actually fastest
- How far back you want your seat, temperature for the AC, favorite radio channel...
- Estimating distances

- How much a board position is worth
- What action to take in a specific situation
- What action a particular person would take in a specific situation
- Who is likely to win a game between two people, and how long it takes

- What actions a ghost would take
- The value of a state
- Dangerous positions
- What action to take in a specific situation

Types of learning

Supervised learning

Learning to predict or classify labels based on labeled input data

Unsupervised learning

Finding patterns in unlabeled data

Reinforcement learning

Learning well-performing behavior from state observations and rewards

Model construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification Algorithms

(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Using the model

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Classification vs prediction

- Classification: binary or nominal labels
 - Examples: pregnant or not, from which country, which type of road sign
- Prediction: continuous labels
 - Examples: future stock price, life expectancy, distance to obstacle

Terminology (supervised learning)

- Each line of data: instance / data point / tuple
- The features of each instance: features / attributes
- That which should be learned: labels / targets
- Each instance has features and a label
- We train on the training set...
- ...and test on the testing set

What's desirable?

- Accuracy
 classifier accuracy: predicting class label
 predictor accuracy: guessing value of predicted attributes
- Speed time to construct the model (training time) time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Interpretability
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Lazy vs Eager learning

- Lazy learning: Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Eager learning: Given a training set, constructs a classification model (smaller than the data) before receiving new data to classify
- Lazy: less time in training but more time in predicting

What's the simplest imaginable working classifier?

k-Nearest Neighbor Classification

- Simply look at the k instances in the training data which are closest to the instance you want to classify
- Choose the median/mean/mode of those values

k-Nearest Neighbor Classification

- All instances correspond to points in the n-D space
- The nearest neighbor is defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real-valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to xq
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

k-Nearest Neighbor Classification

- Distance-weighted nearest neighbor algorithm: Weigh the contribution of each of the k neighbors according to their distance to the query x_q , and give greater weight to closer neighbors $w = \frac{1}{d(x_q, x_i)^2}$
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
- To overcome it, stretch or shrink axes or eliminate the least relevant attributes

Distances

Euclidean distance for continuous attributes

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

 Hamming distance for binary/nominal attributes: how many of the attributes differ