

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

A lis	st of oxides, A to H , is shown.
Α	calcium oxide
В	aluminium oxide
С	silicon(IV) oxide
D	sulfur dioxide
Е	carbon dioxide
F	iron(III) oxide
G	silver oxide
Н	carbon monoxide
	wer the following questions about the oxides, A to H . The letter may be used once, more than once or not at all.
Sta	te which of the oxides, A to H:
(a)	is responsible for acid rain
	[1]
(b)	has a giant covalent structure[1]
(c)	is a reducing agent in the blast furnace [1]
(d)	is the main constituent of bauxite
(e)	is the main impurity in iron ore
(f)	can be reduced by heating with copper.
	[1]
	[Total: 6
	110101 ()

Fluorine, chlorine ar	nd bromine are	in Group VII of	the Periodic Tab	le.
(a) State the name	given to Grou	p VII elements.		
				[1]
(b) Explain why Gro	oup VII elemer			
				[1]
(c) Complete Table	2.1 to show th	ne colour and sta	te at r.t.p. of sor	me Group VII elements.
		Table 2.	1	
	element	colour	state at r.t	t.p.
	fluorine	pale yellow		
	chlorine			
	bromine		liquid	
			-	 [3]
(d) Bromine has tw	o naturally occ	curring isotopes,	⁷⁹ Br and ⁸¹ Br.	
(i) State the te	erm given to th	e numbers 79 ar	nd 81 in these is	otopes of bromine.
				[1]
(ii) Complete 1	able 2.2 to sh	ow the number	of protons, neut	rons and electrons in the atom
	promine showr	1.		
		Table 2.2	2	
		⁷⁹ Br	⁸¹ Br ⁻	
	pro	tons		
	neut	rons		
	elec	trons		
				[3]

(iii) Table 2.3 shows the relative abundances of the two naturally occurring isotopes of bromine.

Table 2.3

isotope	⁷⁹ Br	⁸¹ Br
relative abundance	55%	45%

Calculate the relative atomic mass of bromine to **one** decimal place.

		relative atomic mass = [2]
(e)		orine displaces bromine from aqueous potassium bromide but does not displace fluorine naqueous sodium fluoride.
	(i)	Write the symbol equation for the reaction between chlorine and aqueous potassium bromide.
	(ii)	State why chlorine does not displace fluorine from aqueous sodium fluoride.
		[1]
(f)	Aqı	ueous silver nitrate is a colourless solution containing Ag⁺(aq) ions.
	(i)	Describe what is seen when aqueous silver nitrate is added to aqueous sodium chloride.
		[1]
	(ii)	Write the ionic equation for the reaction between aqueous silver nitrate and aqueous sodium chloride.
		Include state symbols.
		[3]
		ITotal: 18

Ove	er 20	0 million tonnes of sulfuric acid are manufactured every year.
(a)	Sta	te the name of the process used to manufacture sulfuric acid.
		[1]
(b)	Par	t of the manufacture of sulfuric acid involves converting sulfur dioxide to sulfur trioxide.
	(i)	Describe two methods by which sulfur dioxide is obtained.
		1
		2
		[2]
		conversion of sulfur dioxide to sulfur trioxide is a reversible reaction which can reach illibrium.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
	/ii\	State two features of an equilibrium.
	(")	•
	(11)	1
	(11)	
	(11)	1
((iii)	1
(1
(1
(1

(iv) Complete Table 3.1 to show the effect, if any, when the following changes are applied to the conversion of sulfur dioxide to sulfur trioxide.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The forward reaction is exothermic.

Only use the words increases, decreases or no change.

Table 3.1

change	effect on the rate of the forward reaction	effect on the concentration of SO ₃ (g) at equilibrium
temperature decreases	decreases	
pressure increases		
no catalyst	decreases	

		[4]
	(v)	Explain in terms of collision theory why reducing the temperature decreases the rate of the forward reaction.
		[3]
(c)	Sulf	furic acid contains SO_4^{2-} ions.
	The	e oxidation number of O atoms in SO_4^{2-} ions is -2 .
	Det	ermine the oxidation number of S atoms in SO_4^{2-} ions. Show your working.

oxidation number =[2]

[Total: 17]

Sol	id so	dium hydroxide is a base which dissolves to form an aqueous solution, NaOH(aq).	
(a)	Sta	te what is meant by the term base.	
			[1]
(b)	Sta	te the term given to a base which dissolves to form an aqueous solution.	
			[1]
(c)	Sta	te the colour of thymolphthalein in NaOH(aq).	
			[1]
(d)	Cor	nplete the word equation for the reaction of NaOH(aq) with ammonium chloride.	
sodiu nydrox		+ ammonium	
			[3]
(e)	Sor	ne metal oxides react with NaOH(aq).	
	(i)	State the term given to metal oxides which react with bases such as NaOH(aq).	
	(ii)	Name a metal oxide which reacts with NaOH(aq).	[1]
			[1]

- (f) Ethanoic acid, CH₃COOH, is a weak acid.
 - (i) Complete the dot-and-cross diagram in Fig. 4.1 of a molecule of ethanoic acid.

Fig. 4.1

[3]

(g)	In a titration, 25.0 cm ³ of 0.0800 mol/dm ³ aqueous potassium hydroxide, KOH(aq), is neutralised
	by 20.0 cm ³ of dilute sulfuric acid, H ₂ SO ₄ (aq).

$$2\mathsf{KOH}(\mathsf{aq}) \ + \ \mathsf{H_2SO_4}(\mathsf{aq}) \ \rightarrow \ \mathsf{K_2SO_4}(\mathsf{aq}) \ + \ 2\mathsf{H_2O(I)}$$

Calculate the concentration of $\rm H_2SO_4$, in $\rm g/dm^3$ using the following steps.

• Calculate the number of moles of KOH used.

	mo
	Determine the number of moles of H ₂ SO ₄ which react with the KOH.
•	mo Calculate the concentration of $\mathrm{H_2SO_4}$ in $\mathrm{mol/dm^3}$.
	$\rm mol/dm^3$ Calculate the concentration of $\rm H_2SO_4$ in $\rm g/dm^3$.

[Total: 21]

[5]

..... g/dm³

Propan	e and propene both react with chlorine.	
	nen a molecule of propane, C_3H_8 , reacts with chlorine in the presence of ultraviolet lighom of hydrogen is replaced by one atom of chlorine.	t, one
(i)	State the term given to reactions in which one atom in an alkane is replaced by ar atom.	other
		[1]
(ii)	State the purpose of ultraviolet light in this reaction.	F 4 1
(iii)	State the term given to any reaction which requires ultraviolet light.	[1]
(is d)	Write the symbol equation for the reaction between propose and oblering	[1]
(iv)	Write the symbol equation for the reaction between propane and chlorine.	[2]
(b) A r	molecule of propene, C_3H_6 , is unsaturated and will react with chlorine at room tempera	
(i)	State why propene is an unsaturated molecule.	
		[1]
(ii)	Give the structural formula of the product of this reaction.	
(a) Dw		[1]
	opene undergoes addition reactions with steam. ere are two possible products, A and B .	
Dra	aw the displayed formula and name each product.	
dis	splayed formula of product A	
na	me of product A	
	splayed formula of product B	
na	me of product B	[4]

© UCLES 2023 0620/42/M/J/23

[Total: 11]

Car	boxy	lic acids can be converted to esters.	
(a)	Nar	me the ester formed when butanoic acid, $CH_3CH_2CH_2COOH$, reacts with ethanol, $CH_3CH_2CH_3$)H
			[1
(b)	Ide	ntify the other product formed in this reaction.	
			[1
(c)	Dec	duce the empirical formula of the ester formed.	
			[1
(d)	PE ⁻	T is a polyester. Part of the structure of PET is shown in Fig. 6.1.	
		Fig. 6.1	
	(i)	Circle one repeat unit of this polymer.	[1
	(ii)	Draw the structures of the monomers which make up PET. Draw the functional grounding displayed formulae.	ıps
			[2
	(iii)	State the type of polymerisation used in making PET.	
			[1

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

[Total: 7]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

			_									_									 Б
		Z H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	kryptor 84	54	Xe	xenon 131	98	R	radon	118	O	oganessor
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αţ	astatine -	117	<u>S</u>	tennessine -
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡			5	Ф	boron 11	13	Αί	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l1	thallium 204	113	R	nihonium –
										30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										29	D C	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	Ż	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ğ				-						27	ပိ	cobalt 59	45	몬	rhodium 103	77	Ä	iridium 192	109	Ĭ	meitnerium -
		- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium -
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	٦	tantalum 181	105	Вb	dubnium –
					ato	rek				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			က	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	ቷ	francium -

7.1	Γn	lutetium 175	103	۲	lawrencium	-
70	Υp	ytterbium 173	102	%	nobelium	_
69	Tm	thulium 169	101	Md	mendelevium	1
89	Ē	erbium 167	100	Fm	ferminm	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	Dy	dysprosium 163	86	ŭ	californium	I
99	Д	terbium 159	26	Ř	berkelium	ı
64	Gd	gadolinium 157	96	Cm	curium	_
63	En	europium 152	92	Am	americium	_
62	Sm	samarium 150	94	Pn	plutonium	-
61	Pm	promethium -	93	ď	neptunium	_
09	PN	neodymium 144	92	\supset	uranium	238
59	Ą	praseodymium 141	91	Ра	protactinium	231
28	Se	cerium 140	06	드	thorium	232
22	Га	lanthanum 139	68	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).