Repaso Practica 5 Ejercicios

Ejercicio 2.

En la clase práctica anterior se probó usando el método H:

$$\{x \ge 0 \land y > 0\}$$
 Sdiv :: q := 0; r := x; while $r \ge y$ do r := $r - y$; q := q + 1 od $\{x = q \cdot y + r \land 0 \le r < y\}$

siendo Sdiv un programa que calcula por restas sucesivas la división entera de x sobre y en q, dejando el resto en r. Se pide ahora probar en H:

$$\{x > 0 \land y = 0\}$$
 Sdiv $\{false\}$

es decir que el programa Sdiv no termina a partir de la precondición ($x > 0 \land y = 0$).

$$p = (x = y.q + r ^ r > 0 ^ y = 0)$$

- a) $\{x > 0 \land y = 0\}$ q := 0; r := x; $\{x = y.q + r r > 0 r = 0\}$
- b) $\{x = y.q + r^r > = 0^y = 0\}$ while $r \ge y$ do r := r y; q := q + 1 od $\{x = y.q + r^r > = 0^y = 0^y = 0^y = 0^y = 0^y = 0$
- c) Aplicando SEC a (a) y (b) y aplicando CONS se llega a $\{x > 0 \land y = 0\}$ Sdiv $\{false\}$

Parte a)

- 1. $\{x = y.q + x^x > 0^y = 0\} r := x \{x = y.q + r^r > 0^y = 0\}$ (ASI)
- 2. $\{x = y.0 + x^x > 0^y = 0\} q := 0 \{x = y.q + x^x > 0^y = 0\}$ (ASI)
- 3. $\{x = y.0 + x^x > 0^y = 0\} q := 0; r := x \{x = y.q + r^r > 0^y = 0\}$ (1, 2, SEC)
- 4. $(x > 0 \land y = 0) \rightarrow (x = y.0 + x^x > 0^y = 0)$ (MAT)
- 5. $\{x > 0 \land y = 0\} \ q := 0; \ r := x \{x = y.q + r \land r > 0 \land y = 0\}$ (3, 4, CONS)

Parte b)

- 6. $\{x = y.(q+1) + r^r > 0^y = 0\} q := q+1 \{x = y.q+r^r > 0^y = 0\}$ (ASI)
- 7. $\{x = y.(q+1) + (r-y) \land (r-y) > 0 \land y = 0\} r := r y \{x = y.(q+1) + r \land r > 0 \land y = 0\}$ (ASI)
- 8. $\{x = y.(q+1) + (r-y) \land (r-y) > 0 \land y = 0\} r := r y ; q := q + 1 \{x = y.q + r \land r > 0 \land y = 0\}$ (6, 7, SEC)
- 9. $(x = y.q + r^r > 0^y = 0^r > y) \rightarrow \{x = y.(q+1) + (r-y)^r (r-y) > 0^y = 0\}$ (MAT)
- 10. $\{x = y.q + r^r > 0^y = 0^r \ge y\}$ r := r y; q := q + 1 $\{x = y.q + r^r > 0^y = 0\}$ (8, 9, CONS)
- 11. $\{x = y.q + r ^r > 0 ^y = 0\}$ while $r \ge y$ do r := r y; q := q + 1 od $\{x = y.q + r ^r > 0 ^y = 0 ^r (r \ge y)\}$ (10, REP)

Parte c)

```
12. \{x > 0 \land y = 0\} q := 0; r := x; while r \ge y do r := r - y; q := q + 1 od \{x = y.q + r \land r > 0 \land y = 0 \land \neg (r \ge y)\} (5, 11, SEC)
13. \{x = y.q + r \land r > 0 \land y = 0 \land \neg (r \ge y)\} (false) (MAT)
14. \{x > 0 \land y = 0\} q := 0; r := x; while r \ge y do r := r - y; q := q + 1 od \{false\} (12, 13, CONS)
```

Ejercicio 3.

Probar: $\langle x \ge 0 \land y \ge 0 \rangle$ Sprod :: prod := 0; k := y ; while k > 0 do prod := prod + x ; k := k - 1 od $\langle true \rangle$

Ayuda: Sprod calcula en la variable prod el producto entre x e y. Notar que k se decrementa en cada iteración y que se mantiene siempre mayor o igual que cero.

$$p = (x.y = x.k + prod ^ k \ge 0)$$
$$t = k$$

Inicializaciones:

1. i.
$$\langle x.y = x.y + \text{prod } ^ y \ge 0 \rangle$$
 k := y $\langle x.y = x.k + \text{prod } ^ k \ge 0 \rangle$ (ASI*)
ii. $\langle x.y = x.y + 0 ^ y \ge 0 \rangle$ prod := 0 ; $\langle x.y = x.y + \text{prod } ^ y \ge 0 \rangle$ (ASI*)
iii. $\langle x.y = x.y + 0 ^ y \ge 0 \rangle$ prod := 0 ; k := y $\langle x.y = x.k + \text{prod } ^ k \ge 0 \rangle$ (i, ii, SEC*)
iv. $(x \ge 0 \land y \ge 0) \rightarrow (x.y = x.y + 0 ^ y \ge 0)$ (MAT)
v. $\langle x \ge 0 \land y \ge 0 \rangle$ prod := 0 ; k := y $\langle x.y = x.k + \text{prod } ^ k \ge 0 \rangle$ (iii, iv, CONS*)

Prueba de las tres premisas de REP:

2. $\langle p \wedge B \rangle S \langle p \rangle$

```
i. (x.y = x.(k-1) + \text{prod }^{\wedge}(k-1) \ge 0) k := k-1 (x.y = x.k + \text{prod }^{\wedge}k \ge 0)
                                                                                                            (ASI*)
     ii. \langle x.y = x.(k-1) + (prod + x) \wedge (k-1) \ge 0 \rangle prod := prod + x \langle x.y = x.(k-1) + prod \wedge (k-1) \ge 0 \rangle
     iii. \langle x.y = x.(k-1) + (prod + x) \wedge (k-1) \ge 0 \rangle prod := prod + x; k := k - 1 \langle x.y = x.k + prod \wedge k
     ≥ 0) (i, ii, SEC*)
     iv. (x.y = x.k + prod ^ k \ge 0 ^ k > 0) \rightarrow (x.y = x.(k-1) + (prod + x) ^ (k-1) \ge 0)
                                                                                                                       (MAT)
     v. \langle x,y = x,k + \text{prod } \land k \ge 0 \land k > 0 \rangle prod := prod + x; k := k - 1 \langle x,y = x,k + \text{prod } \land k \ge 0 \rangle
                (iii, iv, CONS*)
3. \langle p \wedge B \wedge t = Z \rangle S \langle t < Z \rangle
     i. (x.y = x.(k-1) + \text{prod } (k-1) \ge 0) k := k-1 (x.y = x.k + \text{prod } k \ge 0)
                                                                                                            (ASI*)
     ii. \langle x.y = x.(k-1) + (prod + x) \wedge (k-1) \ge 0 \rangle prod := prod + x \langle x.y = x.(k-1) + prod \wedge (k-1) \ge 0 \rangle
                (ASI*)
     iii. \langle x.y = x.(k-1) + (prod + x) \wedge (k-1) \ge 0 \rangle prod := prod + x; k := k - 1 \langle x.y = x.k + prod \wedge k
                (i, ii, SEC*)
     iv. (x.y = x.k + prod ^ k \ge 0 ^ k > 0 ^ k = Z) \rightarrow (x.y = x.(k-1) + (prod + x) ^ (k-1) \ge 0)
                (MAT)
     v. (k < Z) \rightarrow (x.y = x.k + prod ^ k \ge 0) (MAT)
     vi. (x.y = x.k + prod ^ k \ge 0 ^ k > 0 ^ k = Z) prod := prod + x; k := k - 1 (k < Z) (iii, iv, v, v, v)
     CONS*)
4. p \to t >= 0
```

i.
$$(x.y = x.k + prod ^ k \ge 0) \rightarrow (k >= 0)$$
 (MAT)

Conclusión de REP*: $\langle p \rangle$ while B do S od $\langle p ^ \neg B \rangle$:

5. $\langle x.y = x.k + \text{prod } ^k \ge 0 \rangle$ while k > 0 do prod := prod + x; k := k - 1 od $\langle x.y = x.k + \text{prod } ^k \ge 0 ^n = (k > 0) \rangle$ (2, 3, 4, REP*)

Programa completo:

- 6. $\langle x \ge 0 \land y \ge 0 \rangle$ prod := 0; k := y; while k > 0 do prod := prod + x; k := k 1 od $\langle x.y = x.k + prod \land k \ge 0 \land \neg (k > 0) \rangle$ (1v, 5, SEC*)
- 7. $(x.y = x.k + prod ^k \ge 0 ^ ¬(k > 0)) \rightarrow (true)$ (MAT)
- 8. $\langle x \ge 0 \land y \ge 0 \rangle$ prod := 0; k := y; while k > 0 do prod := prod + x; k := k 1 od $\langle \text{true} \rangle$ (6,7, CONS*)

Ejercicio 4.

Probar la sensatez de la regla de invariancia vista en clase:

$$\{p\} S \{q\}$$

$$\frac{}{\{r \land p\} S \{r \land q\}}$$

cuando las variables libres de r son disjuntas con las variables modificables por S.

Ayuda: Utilizar inducción sobre la longitud de las pruebas, como hicimos en clase

Dado $|-H\{r^p\} S\{r^q\}$ hay que probar $|=\{r^p\} S\{r^q\}$

 $|-H \{r ^p\} S \{r ^q\}$ se obtiene de $|-H \{p\} S \{q\}$ (pruebas más cortas)

Hipótesis inductiva: $|= \{p\} S \{q\}$. Veamos que $|= \{r \land p\} S \{r \land q\}$

- Sea $\sigma = \{r \land p\}$ y asumamos que S termina desde σ en un estado $\sigma' = \{r \land p\}$
- Si σ |= p, entonces por hipótesis inductiva vale σ ' |= q

Entonces $|-H\{r^p\}S\{r^q\} \rightarrow |=\{r^p\}S\{r^q\}$

Ejercicio 5.

Probar sin recurrir a la completitud de H (es decir que la prueba debe ser sintáctica) que para todo programa S y toda aserción q se cumple:

Tr |- {false} S {q}

Ayuda: Utilizar inducción estructural sobre la forma de los programas S, similar a lo visto en clase para probar sintácticamente la fórmula {true} S {true}.

Base de la inducción

S::skip

Por axioma SKIP se cumple |- {false} S {false}

Por MAT: false \rightarrow q

Por CONS: |- {false} S {q}

S :: x := e

Por axioma ASI se cumple |- {false} x := e {false}

Por MAT: false \rightarrow q

Por CONS: $|-\{false\}x := e\{q\}$

Paso inductivo:

S:: S1; S2

Por hipótesis inductiva |- {false} S1 {false} y |- {false} S2 {false}

Por MAT: false \rightarrow q

Por SEC: |- {false} S1; S2 {false}

Por CONS: |- {false} S1; S2 {q}

S:: if B then S1 else S2 fi

Por hipótesis inductiva |- {false} S1 {false} y |-{false} S2 {false}

Por MAT: false \rightarrow q

Por MAT: false A B \rightarrow false A false A false

Por CONS: |- {false ^ B} S1 {false} y |- {false ^ -B} S2 {false}

Por COND: |- {false} if B then S1 else S2 fi {false}

Por CONS: |- {false} if B then S1 else S2 fi {q}

S:: while B do S od

Por hipótesis inductiva |- {false} S {false}

Por MAT: false ^ B → false

Por CONS: |- {false ^ B} S {false}

Por REP: |- {false} while B do S od {false ^ -B}

Por MAT: false $^-B \rightarrow q$

Por CONS: $|-\{false\}\ while\ B\ do\ S\ od\ \{q\}$