80818 Intuitionistic Logic - Exercise Sheet 10

November 11, 2021

- 1. Let σ and τ be finite types. Write $\mathbf{Inj}^{\sigma,\tau}$ to mean there exists an injective function from σ to τ . Write $\mathbf{Ext}^{\sigma,\tau}$ to mean function extensionality for functions from σ to τ , and \mathbf{Ext} to mean function extensionality for all sorts σ and τ .
 - (a) Show that $\mathbf{Inj}^{N \to N,N}$ together with $\mathbf{Ext}^{N,N}$ implies \mathbf{WLPO} .
 - (b) Show that $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{C}\mathbf{T}_{0}! + \mathbf{A}\mathbf{C}^{N \to N,N} + \mathbf{E}\mathbf{x}\mathbf{t}^{N,N}$ implies $\mathbf{Inj}^{N \to N,N}$.
 - (c) Hence or otherwise, show that $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{C}\mathbf{T}_{0}! + \mathbf{A}\mathbf{C}^{N \to N,N} + \mathbf{E}\mathbf{x}\mathbf{t}^{N,N}$ is not consistent, i.e. it proves \perp .
 - (d) Show that the following theories are consistent (you may assume the law of excluded middle and the axiom of choice in the metatheory).
 - i. $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{C}\mathbf{T}_{0}! + \mathbf{A}\mathbf{C} + \mathbf{Inj}^{N \to N,N}$
 - ii. $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{C}\mathbf{T}_{0}! + \mathbf{E}\mathbf{x}\mathbf{t}$
 - iii. $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{A}\mathbf{C} + \mathbf{E}\mathbf{x}\mathbf{t}$
- 2. Suppose we are given any function $\delta: \mathbb{N} \to \mathbb{N}$. Write $\mathcal{T}^{\delta+}$ for the smallest set containing constants $\mathbf{k}, \mathbf{s}, 0, S, P, \mathbf{d}$ and δ , and containing an element $s \cdot t$ whenever $t, s \in \mathcal{T}^{\delta+}$. We define the relation $t \to_k r$ the same as for \mathcal{T}^+ , except with the additional rule $\delta \underline{n} \to_k \delta(n)$ for all $n, k \in \mathbb{N}$.
 - (a) Verify that the subset of normal terms gives an extended pca, and that δ is $\mathcal{T}_0^{\delta+}$ -computable.
 - (b) Outline a proof that there is an ω -pca where δ is representable.
 - (c) Show the following theory is consistent $\mathbf{H}\mathbf{A}_{\omega} + \mathbf{A}\mathbf{C} + \mathbf{Inj}^{N \to N,N} + \neg \mathbf{CT}_0!$.
- 3. (a) Let \mathcal{A} be any ω -pca. Write T for the set $\{a \in \mathcal{A} \mid \forall b \in \mathcal{A} \ ab \downarrow \}$. Show there is no representable surjection from \mathcal{A} to T.
 - (b) Work in **HAS**. A binary relation from a set X to a set Y is a set Z such that for all $z \in Z$ there exists $x \in X$ and $y \in Y$ such that $z = \langle x, y \rangle$. A function from X to Y is a binary relation that is functional. Show that it is consistent with **HAS** that there is no surjective function from \mathbb{N} to $\{n \mid \forall m \, n \cdot m \downarrow\}$, where application is as in \mathcal{K}_1 .