Devoir maison 13 - Applications linéaires

Soient E un espace vectoriel de dimension 3, $\mathscr{B}=(e_1,e_2,e_3)$ une base de E, m un réel et $f_m\in\mathscr{L}(E)$ dont la matrice dans la base $\mathcal B$ est :

$$M = \begin{pmatrix} \frac{1}{3} & m & m \\ m & \frac{1}{3} & m \\ m & m & \frac{1}{3} \end{pmatrix}$$

1. Déterminer les valeurs du paramètre m pour que f_m soit bijective.

On est en dimension finie donc f_m est bijective si, et seulement si elle est injective. On cherche donc m tel que $Ker(f_m) = \{0\}.$

On trouve $m \notin \left\{\frac{1}{3}, -\frac{1}{6}\right\}$.

2. On suppose que m=1, et on note $f=f_1$.

Déterminer les réels λ tels que $g_{\lambda} = f - \lambda \operatorname{Id}_{E}$ ne soit pas bijective.

$$\lambda \in \left\{ -\frac{2}{3}, \frac{7}{3} \right\}.$$

b. Pour chacune de ces valeurs λ , déterminer $\operatorname{Ker}(g_{\lambda})$.

$$\operatorname{Ker}\left(g_{-\frac{2}{3}}\right) = \operatorname{Vect}\{(1, -1, 0), (0, 1, -1)\} \quad \text{ et } \quad \operatorname{Ker}\left(g_{\frac{7}{3}}\right) = \operatorname{Vect}\{(1, 1, 1)\}.$$

Déterminer une base \mathscr{B}' de E telle que la matrice de f dans \mathscr{B}' soit diagonale.

Soient
$$v_1 = (1, 1, 1), v_2 = (1, -1, 0), v_3 = (0, 1, -1).$$

On vérifie rapidement que la famille $\{v_1, v_2, v_3\}$ est libre, et comme elle est de cardinal 3, c'est une base de E.

D'après ce qui précède,
$$f(v_1) = \frac{7}{3}v_1$$
, $f(v_2) = -\frac{2}{3}v_3$ et $f(v_3) = -\frac{2}{3}v_3$.
Ainsi la matrice de f dans la base $\mathscr{B}' = (v_1, v_2, v_3)$ est :

$$\operatorname{mat}_{\mathscr{B}'}(f) = \begin{pmatrix} \frac{7}{3} & 0 & 0\\ 0 & -\frac{2}{3} & 0\\ 0 & 0 & -\frac{2}{3} \end{pmatrix}$$