4. 1. 2018

Zero-knowledge pro NP

Pokud existují OWP (jednosměrné permutace), pak každý jazyk v NP má ZK (zero-knowledge) interaktivní důkaz.

Konstrukce pro jeden NP-úplný jazyk je postačující

Idea Protocol

pro $L_{3\text{COL}}$ (obarvení grafu třemi barvami)

Společný vstup: graf G

Proverův vstup: validní obarvení G třemi barvami

- 1) Prover zvolí permutaci $\pi \leftarrow S_3$ barev, obarví G pomocí toho obarvení (po permutaci), zakryje graf pomocí kalíšků
 - 2) Verifier vybere hranu grafu $e \in E$ a pošle ji proverovi
 - 3) Ten odkryje kalíšky na hraně
 - 4) Verifier akceptuje, pokud je e obarvena různými barvami
 - 1)–4) opakujeme |V||E|krát

Důkaz správnosti:

Soundness Pokud graf není obarvitelný třemi barvami, verifier zvolí špatně obarvenou hranu s pravděpodobností aspoň $\frac{1}{|E|}$

Pravděpodobnost podvodu při |V||E| opakováních je $(1-\frac{1}{|E|})\approx e^{-|V|}=e^{-n}$.

Completeness Verifier akceptuje s pravděpodobností 1 pro $x \in L_{3COL}$

Co kdyby prover měl nějaké kalíšky, se kterými si může dělat, co chce?

Verifier vidí dvě náhodné různé barvy, je to zero-knowledge. Nepozná, jestli mu prover lže.

Kalíšky = commitment schemes

Prover musí být vždy schopen to otevřít jen na tu hodnotu, která v karbičce/kalíšku byla.

Protokol mezi Sender a Receiver – má dvě fáze

- 1) commit sender pošle receiverovi commitment c pro hodnotu v
- 2) reveal S pošle R decomitment r pro hodnotu v

Obrázek:

S
Comm_r(v), c
$$\rightarrow$$
 commit
 $v, r \rightarrow \text{reveal } c = \text{Comm}_r(v)$

Definice: (commitment scheme)

PPT algoritmus Comm nazýváme commitment scheme, pokud pro polynom l platí:

1) Binding $\forall n \in \mathbb{N}, v_0, v_1 \in \{0, 1\}^n, r_0, r_1 \in \{0, 1\}^{l(n)}$ platí:

$$Comm(v_0, r_0) \neq Comm(v_1, r_1)$$

tzv. Perfectly-binding

2) **Hiding** $\forall PPT$ distinguishera D existuje negligible ε tž. $\forall n \in \mathbb{N}, r_0, r_1 \in \{0,1\}^n$

$$|\mathrm{Pr}_{r \in \{0,1\}^{l(n)}}[D[\mathrm{Comm}(r_0,r)) = 1] - \Pr[D(\mathrm{Comm}(r_1,r)) = 1]| \leq \varepsilon$$

přes náhodné mince D.

Tvrzení pokud existují OWP, pak existují schémata pro commitment.

Důkaz: konstrukce pro commitment pro jeden bit

(pomocí hybridního argumentu lze rozšířit pro libovolně mnoho bitů)

Nechť f je OWPs hardcore bitem H. Pak můžeme definovat commitment (b,r) jako $f(r)||b \oplus h(r)$

Binding: Z konstrukce na základě toho, že f je permutace

Hiding: stejný důkaz jako v konstrukci PRG z OWP

Commitment je důležitý stavební prvek kryptografických protokolů

Protokol pro L_{3COL}

Společný vstup: G = (V, E0) |V| = n

Proverův vstup: wittness $y(c_1, \ldots c_n), c_i \in \{1, 2, 3\}, c'_i = \pi(c_i)$

- 1) Prover zvolí $\pi \leftarrow S_3$. Pro $i \in \{1, \ldots, n\}$ pošle verifierovi $\operatorname{Comm}_{r_i}(c_i')$
- 2) Verifier zvolí $(i, j) \in E$ a pošle (i, j) P
- 3) P pošle V (c'_i, r_i) a (c'_i, r_j)
- 4) V akceptuje, pokud $c'_i \neq c'_i$
- 1)-4) opakujeme n|E|krát

Tvrzení: protokol je zero-knowledge interaktivní důkaz pro $|_{COL}$, pokud comm je commitment scheme.

Důkaz: completeness + soundness stejné (díky binding)

Obrázek:

P V

cm₁,...cm_n
$$\rightarrow$$
 commit

 $\leftarrow (i,j)$
 $(c'_i, r_i), (c'_i, r_j) \rightarrow \text{reveal } c = \text{Comm}_r(v)$

Simulátor:

S(G,Z):

- 1) vyber náhodnou hranu (i_s, j_s) grafu a dvě náhodné barvy za podmínky, že jsou různé definujme $c_k'=1$ pro $k\notin\{i,j\}$
- 2) zkonstruuj commitment cm_i pro všechny c'_i emuluj $V^*(x, z, cm_1, \ldots, cm_n)$

Nechť odpověď V^* je (i, j)

- 3) Pokud $(i,j)=(i_s,j_s)$, pak otevři cm_{i_s} a cm_{j_s} a vrať odpovídající view $_{V^*}=(X,Z,r^*,cm_1,\ldots,cm_n,(c'_{i_s},r_{i_s}))$ V opačném případě se vrať na 1)
- 4) Pokud neuspějeme ani po n|E| iteracích, vrať fail

Simulátor pouze pro jednu iteraci protokolu

(pro všechny iterace ze sekvenční kompozice Z_k) Zbývá ukázat, že $\forall PPT$ D existuje negl. ε tž. $\forall x \in L_{3COL}, y \in R_{L_{3COL}}(x), z \in \{0, 1\}^*$:

$$|\Pr[D(\text{view }V^*(P(x,y)\leftrightarrow V^*(x,z)))=1] - \Pr[D(S(x,z))=1]| \leq \varepsilon(n)$$

Pro spor předpokládejme, že existuje PPT D, který rozliší $\{\text{view }(P(x,y)\leftrightarrow V^*(x,z))\}$ a S(x,z)s pravděpodobností $\geq \frac{1}{p(n)}$ pro polynom p a nekonečně mnoho $x \in L_{3COL}, y \in R_{3COL}(x)$ a $z \in \{0,1\}^*$

Hybridní simulátory

S'(x,z,y): postupuje jako S kromě volby c'_{is} a c'_{is} spočítá cm_{is} a cm_{js} jako $P[c'_{is} = \pi(c_{is})]$ a $P[c_{js} = \pi(c_{js})]$ pro $\pi \leftarrow S_3$ distribuce $\{S(x,z)\}$ a $\{S'(x,z,y)\}$ jsou identické S''(x,z,y): postupuje jako S, commitment pro obarvení kompletně jako prover pokud se V^* zeptá na (i,j) různé od (i_S,j_S) , pak iteruje znovu a případně vrátí fail pokud S'' nevrátí fail, pak jsou distribuce $\{viewV^*(P(x,y)\leftrightarrow V^*(x,z))\}$ a $\{S''(x,zy)\}$ identické jsou-li (i,j) a (i_S,j_S) nezávislé, pak S'' vrátí fail s pravděpodobností $\leq (1-\frac{1}{|E|})^{n|E|} \approx e^{-n} \leq \frac{1}{2p(n)}$ D rozliší tyhle distribuce s pravděpodobností $\leq \frac{1}{2p(n)}$

pro distribuce S' a S" platí, že D je rozlišuje s p
pstí alespoň $\frac{1}{2p(n)}$

 $S\equiv S'$ (p
pst pro rozlišení $\geq \frac{1}{2p(n)}$ S'' (pravděpodobnost pro rozlišení
 $\leq \frac{1}{2p(n)}(P,V^*)$ – schematicky to, co je napsáno výše

Pro alespoň jeden z hybridů budeme mít přechod, který nám umožní prolomit hiding toho commitmentu

Shrnutí: mezi S' a S'' lze zkonstruovat polynomiálně (q(n)) mnoho hybridů, které se liší v jednom commitmentu , z toho musí existovat dvojice hybridů, které lze rozlišit s ppstí alespoň $\frac{1}{q(n)p(n)}$, tedy spor s hiding property commitmentu

Aplikace

```
ZeroCash – anonymní varianta BTC na základě ZK coin = (r, sn, cm), kde cm = Comm_r(sn) (serial number)

na ledger umístíme transakci TX_{Mint}
cm; 1BTC \rightarrow POOL\text{-}BEC

pro utracení zveřejníme sn a dokážeme pomocí ZK znám r tž. cm = Comm_r(sn) je v CMList

\frac{tx_{spent}}{sn,\pi,1ZEC=1BTC}
máme tzv. ZK-SNARK = ZK-sufficient non-interactive argument of knowledge \pi – důkaz má konstantní délku a je neinteraktivní –veřejně ověřit!

pro aplikaci výše můžeme dokazovat, že je Listem pro CMTree s kořenem Root 2014 – ZK-verifikace transakce u BTC
```

Předpoklady

```
dělíme na :
```

Falsifiable – lze falsifikovat (neexistuje algoritmus na...) Non-falsifiable – "pro každý vstup existuje algoritmus..." False – můžeme pro tento předpoklad dokázat, co chceme :)