Globally Synchronized time via Datacenter Networks

Ki Suh Lee Cornell University

Joint work with Han Wang, Vishal Shrivastav and Hakim Weatherspoon

Synchronized Clocks

- Fundamental for network and distributed systems
 - OWD, Monitoring, Coordination, Snapshots, Updates, ...
- Goal: Minimized and bounded precision with scalability
 - Minimized and bounded precision: hundreds of nanoseconds
 - Scalability: Entire datacenter

Clock Synchronization Protocol

- Offset: Time difference between two clocks
- Precision: The worst case of offset

Clock Synchronization Protocol

• RTT =
$$(t_4 - t_1) - (t_3 - t_2)$$

Offset =

Current time protocols do NOT provide <u>bounded</u> precision, due to uncertainty in measured RTT!

Challenge: RTT is not accurate

- Errors from
 - Oscillator skew
 - Inaccurate Timestamping
 - Network Stack
 - Network Jitter

Challenge: RTT is not accurate

- Errors from
 - Oscillator skew
 - Inaccurate Timestamping
 - Network Stack
 - Network Jitter

- PTP
 - Hardware timestamping
 - PTP-enabled switches
 - Filtering / Smoothing

Challenge: Scalability

- Re-synchronization period vs. Network overhead
- Limited number of clients

Synchronization Protocols

	Precision	Scalability	Overhead	Extra Hardware
NTP	us	Good	Moderate	None
PTP	sub-us	Good	Moderate	PTP-enabled devices
GPS	ns	Bad	None	Timing signal receivers, cables

Solution: Use *the PHY* to synchronize clocks

Application

Transport

Network

Data Link

Physical

- Protocol in the PHY
 - Each physically link is already synchronized!
 - No protocol stack overhead
 - No network overhead
 - Scalable: peer-to-peer and decentralized

Application

Transport

Network

Data Link

Physical

Highly Scalable with <u>bounded</u> precision!

- ~25ns (4 clock ticks) between peers
- ~150ns for a datacenter with six hops
- No Network Traffic
- Internal Clock Synchronization
- End-to-End: ~200ns precision!

Outline

- Introduction
- Design
- Evaluation
- Discussion
- Conclusion

Application

10G Background

Transport

Continuous /I/s when there is no packet

Network

At least 12 /l/s between two Ethernet frames

Data Link

Physical

Application

Transport

Network

Data Link

Physical

- 10G Background
 - Continuous /I/s when there is no packet
 - At least 12 /l/s between two Ethernet frames
 - -1 Control block (/E/, 66bit) = 8 /I/s
 - At least 1 /E/ between any two frames
 - The PHY is run by 156.25MHz
 - Period is 6.4ns

DTP overwrites /E/ to send protocol messages **Application Transport** Frequent messaging No overhead to Ethernet (L2) Network Data Link **Physical** 2bit 8bit 3bit 53bit **DTP Payload** Syncheader **DTP MSG Type** BlockType /E/ /E/ /E/ /E/ Packet i Packet i+1 Packet i+2

10GbE Network Stack

8/26/16 SoNIC NSDI 2013

DTP

Application

Transport

Network

Data Link

Physical

Runs in two phases between two peers

- Init Phase: Measuring OWD

Beacon Phase: Re-Synchronization

DTP: Init Phase

Application

Transport

Network

Data Link

Physical

- $delay = (t_4 t_1 \alpha)/2$
 - $-\alpha$ =3: Ensure *delay* is always less than actual delay
- Introduce 2 clock tick errors
 - Due to oscillator skew, timing and Sync FIFO

DTP: Beacon Phase

Application

Transport

Network

Data Link

Physical

- local = max (local, remote+delay)
- Frequent messages
 - Every 1.2 us (200 clock ticks) with MTU packets
 - Every 7.2 us (1200 clock ticks) with Jumbo packets
- Introduces 2 clock tick errors

DTP Switch

Application

Transport

Network

Data Link

Physical

- global = max(local counters)
- Propagates global via Beacon messages

Physical

local delay **Physical**

local delay **Physical**

local delay **Physical**

local delay **Physical**

local delay

DTP Daemon

- End-to-End precision
- Access the DTP counter via PCle
- Estimate DTP time using invariant TSC counter

DTP Property

- Bounded Precision in hardware
 - Bounded by 4T (=25.6ns, T=oscillator tick is 6.4ns)
 - Network precision bounded by 4TD
 - D is network diameter in hops
- Requires NIC and switch modifications
 - PTP also requires PTP-enabled devices

DTP vs PTP

	PTP	DTP	
Oscillator Skew			
Timestamping	HW - timestamping	PHY timestamping	
Network Stack	Not involved	Not involved	
Network Jitter	Transparent Clock Boundary Clock	No jitter	
Precision	Unbounded Tens to Hundreds ns (When Idle)	Bounded	

DTP: Topics discussed in paper

- Handling failure
- Different standards: 1GbE, 25GbE, 40GbE, 100GbE, etc
- External synchronization (i.e. synchronizing to true time)
- Incremental deployment

Handling failure

- Bit Errors
 - Ignores Bit errors in MSBs
 - Appends checksum for low LSBs

- Faulty Devices
 - When too many jumps outside the bound

Different Standards

Data Rate	Encoding	Data Width	Frequency	Period	Δ
1 GbE	8b/10b	8bit	125MHz	8ns	25
10 GbE	64b/66b	32bit	156.25MHz	6.4ns	20
40 GbE	64b/66b	64bit	625MHz	1.6ns	5
100 GbE	64b/66b	64bit	1562.5MHz	0.64ns	2

External Synchronization

- A master server
 - Connected to a reference time
 - Broadcasts the mapping between DTP and wall time
- Client servers
 - Interpolates time using DTP counters

Incremental Deployment

- Updates per rack
 - DTP-enabled switch
 - DTP-enabled NICs
 - One server acting as a master for wall time

- Synchronizing Racks
 - DTP-enabled switch
 - DTP beacon-join message for synchronizing DTP counters
 - Select a new master

Outline

- Introduction
- Design
- Evaluation
- Discussion
- Conclusion

Evaluation

- DTP Prototype
 - Terasic DE5 board with Altera Stratix V
 - Using Bluespec and Connectal framework

Evaluation: DTP Topology

Measured offsets between peers

Evaluation: Logger

- Offset between peers: $t_3 t_2 OWD$
- Offset between SW and HW: t_2-t_1

Evaluation: DTP Topology

Evaluation: PTP Topology

Evaluation: PTP Topology

Evaluation: PTP Topology

PTP: Idle Network (No traffic)

Tens to hundreds of nanosecond precision

PTP: Medium Loaded (4 Gbps)

Tens of microseconds precision

PTP: Heavily Loaded (9 Gbps)

Tens to hundreds of microsecond precision

DTP: Heavily Loaded

• Always within 25.6ns (4 clock ticks) between peers

DTP Daemon

DTP Daemon (after smoothing)

Usually can access the counter with 25.6 ns precision

Outline

- Introduction
- Design
- Evaluation
- Discussion
- Conclusion

Next Steps

- Integration with OSNT (Open Source Network Tester)
 - NetFPGA SUME Board with Xilinx Virtex-7

Some Related Work

- Synchronous Ethernet (SyncE)
 - Synchronize the *frequency* of clocks
 - DTP, PTP synchronizes the *time* of clocks
- WhiteRabbit: PTP + SyncE
 - Sub-nanosecond precision
 - 1GbE only yet
- Commercial PTP + SyncE
 - Tens to hundreds of nanoseconds

Conclusion

- DTP provides bounded precision and scalability
 - Bounded precision: 4 clock ticks (25.6ns) between peers
 - Scalability: 153.6ns for a datacenter with six hops
 - Free: No Network Traffic
 - Applications: Usually within 25.6ns (without bounds)
 - End-to-End: 153.6 + 25.6 * 2 = 200ns!

Questions?

- http://github.com/hanw/sonic-lite
- http://sonic.cs.cornell.edu
- Email: kslee@cs.cornell.edu

Come to Poster session tomorrow!