Esercitazione

Configurare e virtualizzare la rete mostrata in figura

Esercitazione

- Configurare e virtualizzare la rete mostrata in figura:
 - Node1, Node2 e Node3 usino i primi indirizzi IP disponibile nelle rispettive sottoreti
 - NodeG12 occupi i penultimi indirizzi IP delle sottoreti di cui fa parte

- NodeG23 occupi gli ultimi indirizzi IP delle sottoreti di cui fa

parte

Soluzione esercitazione: analisi

 LAN 2 ha una netmask formata da 17 bit a 1, mentre LAN1 e LAN 3 hanno netmask con 18 bit a 1

- LAN1, LAN3: $255.255.192.0 \rightarrow /18$

- LAN2: $255.255.128.0 \rightarrow /17$

- Nelle netmask, 128 corrisponde a un byte con il MSB a 1, mentre 192
 (128+64) corrisponde a un byte con i due MSB a 1
- Imporre NetId del tipo **10.7.x.y** equivale a imporre una operazione di subnetting in cui il range a disposizione è **10.7.0.0/16**
 - Rispetto al range a disposizione (/16), LAN2 (/17) occupa la metà degli indirizzi, mentre LAN1 e LAN3 (/18) occupano un quarto ciascuna
- Nella scelta dei NetId dobbiamo essere sicuri di non creare conflitti fra le subnet!

Relazione di subnetting con sole netmask

Subnetting con NetID

Soluzione esercitazione

- LAN1 è già data dalla configurazione:
 - LAN1: 10.7.0.0/18; Min: 10.7.0.1; Max: 10.7.63.254
- Alternative nella scelta di LAN2 (/17 → 1 bit 1 nel terzo byte):
 - 10.7.0.0 → 00000000 NO, conflitto LAN1
 - $-10.7.128.0 \rightarrow 10000000 \text{ OK}$

Soluzione esercitazione (2)

Reti già assegnate (LAN1 da consegna, LAN2 scelta):

- LAN1: 10.7.0.0/18 : 10.7.0.1 - 10.7.63.254

- LAN2: 10.7.128.0/17 : 10.7.128.2 - 10.7.255.254

Alternative nella scelta di LAN3 (/18 → 2 bit 1 nel terzo byte):

10.7.0.0 → 00000000 NO, conflitto LAN1

 $-10.7.64.0 \rightarrow 01000000 \text{ OK}$

- 10.7.128.0 → 10000000 NO, conflitto LAN2

- 10.7.192.0 → 11000000 NO, conflitto LAN2

Soluzione esercitazione (3)

		NetId	HostId
LAN1:	10.7.0.0/18	00001010.00000111.00	000000.00000000
• HostMin:	10.7.0.1	00001010.000000111.00	000000.00000001
HostMax:	10.7.63.254	00001010.00000111.00	111111.11111110
LAN2:	10.7.128.0/17	00001010.00000111.1	0000000.00000000
• HostMin:	10.7.128.1	00001010.00000111.1	0000000.00000001
HostMax:	10.7.255.254	00001010.00000111.1	111111.11111110
LAN3:	10.7.64.0/18	00001010.00000111.01	000000.00000000
HostMin:	10.7.64.1	00001010.00000111.01	000000.00000001
 HostMax[*] 	10 7 127 254	00001010.00000111.01	111111 11111110

Soluzione esercitazione (3) Notazione con "subnet id"

			NetId	Subnet	ild H	HostId
LAN1:	10.7.0.0/18	00001010	.000001	11.00	000000.	00000000
HostMin:	10.7.0.1	00001010	.000001	11.00	000000.	00000001
HostMax:	10.7.63.254	00001010	.000001	11.00	111111.	11111110
LAN2:	10.7.128.0/17	00001010	.000001	11.1	9000000.	00000000
HostMin:	10.7.128.1	00001010	.000001	11.1	000000.	00000001
HostMax:	10.7.255.254	00001010	.000001	11.1 1	111111.	11111110
LAN3:	10.7.64.0/18	00001010	.000001	11.01	000000.	00000000
HostMin:	10.7.64.1	00001010	.000001	11.01	000000.	00000001
HostMax:	10.7.127.254	00001010	.000001	11.01	111111.	11111110

Rappresentazione assegnazione reti

Soluzione esercitazione (4)

"Node1, Node2 e Node3 usino i primi indirizzi IP disponibili nelle rispettive sottoreti"

Node1, primo host della subnet 10.7.0.0/18:

eth0: 10.7.0.1 /18

Node2, primo host della subnet 10.7.128.0/17:

eth0: 10.7.128.1 /17

Node3, primo host della subnet 10.7.64.0/18:

eth0: 10.7.64.1 /18

Soluzione esercitazione (5)

"NodeG12 occupi i penultimi indirizzi IP delle sottoreti di cui fa parte"

 NodeG12, penultimi indirizzi delle subnet 10.7.0.0/18 e 10.7.128.0/17:

eth0: 10.7.63.253 /18

eth1: 10.7.255.253 /17

"NodeG23 occupi gli ultimi indirizzi IP delle sottoreti di cui fa parte"

NodeG23, ultimi indirizzi delle subnet 10.7.64.0/18 e 10.7.128.0/17:

eth0: 10.7.255.254 /17

eth1: 10.7.127.254 /18

Soluzione esercitazione: Rete con indirizzi

Configurazione (1)

Si propone una soluzione che implementa regole di instradamento basate sulle subnet (e non sui singoli host) non permanenti. Per la configurazione permanente della rete modificare i file di configurazione come visto nelle lezioni precedenti.

Node 1: interfaccia di rete eth0 e regole di routing verso LAN2 e LAN3 attraverso NodeG12

• Configurazione eth0:

ifconfig eth0 10.7.0.1 netmask 255.255.192.0 up

Route verso LAN2:

route add -net 10.7.128.0 netmask 255.255.128.0 gw 10.7.63.253

Route verso LAN3:

route add -net 10.7.64.0 netmask 255.255.192.0 gw 10.7.63.253

Configurazione (2)

Node 2: interfaccia di rete eth0 e regole di routing verso LAN1 attraverso NodeG12, e verso LAN3 attraverso NodeG23

Configurazione eth0:

```
ifconfig eth0 10.7.128.1 netmask 255.255.128.0 up
```

Route verso LAN1 attraverso NodeG12:

```
route add -net 10.7.0.0 netmask 255.255.192.0 \ gw 10.7.255.253
```

Route verso LAN3 attraverso NodeG23:

```
route add -net 10.7.64.0 netmask 255.255.192.0 \ gw 10.7.255.254
```

Configurazione (3)

Node 3: interfaccia di rete eth0 e tabella di routing verso LAN1 e LAN2 attraverso NodeG23

Configurazione eth0:

```
ifconfig eth0 10.7.64.1 netmask 255.255.192.0 up
```

Route verso LAN1 attraverso NodeG23:

```
route add -net 10.7.0.0 netmask 255.255.192.0 \ gw 10.7.127.254
```

Route verso LAN2 attraverso NodeG23:

```
route add -net 10.7.128.0 netmask 255.255.128.0 \ gw 10.7.127.254
```

Configurazione (4)

Node G12: interfacce di rete eth0 ed eth1 e tabella di routing verso LAN3 attraverso NodeG23

• Configurazione eth0: ifconfig eth0 10.7.63.253 netmask 255.255.192.0 up

Configurazione eth1:
 ifconfig eth1 10.7.255.253 netmask 255.255.128.0 up

Route verso LAN3 attraverso NodeG23:

```
route add -net 10.7.64.0 netmask 255.255.192.0 \ gw 10.7.255.254
```

Configurazione (5)

Node G23: interfacce di rete eth0 ed eth1 e tabella di routing verso LAN1 attraverso NodeG12

Configurazione eth0:

```
ifconfig eth0 10.7.255.254 netmask 255.255.128.0 up
```

Configurazione eth1:

```
ifconfig eth1 10.7.127.254 netmask 255.255.192.0 up
```

Route verso LAN1 attraverso NodeG12:

```
route add -net 10.7.0.0 netmask 255.255.192.0 \ gw 10.7.255.253
```

Aggregazione regole

- È possibile valutare la possibilità di **aggregare** regole di routing che **condividono lo stesso gateway**
- Nella rete considerata, è possibile configurare Node1 (Node3) per raggiungere LAN2 e LAN3 (LAN1 e LAN2) tramite la configurazione di un'unica regola di routing
 - node1# route add -net 10.7.0.0/16 gw 10.7.63.253 node3# route add -net 10.7.0.0/16 gw 10.7.127.254
- Nonostante l'apparente conflitto con la regola già presente per le rispettive reti locali, il routing avviene conflitto per via delle priorità alle regole più "precise" (longest prefix)