Iterated Elimination and Rationalizable Actions

Proposition

If $X = \times_{j \in N} X_j$ survives iterated elimination of strictly dominated actions in a finite strategic game $\{N, (A_i), (u_i)\}$ then X_j is the set of player j's rationalizable actions for each $j \in N$.

- (⇐) First show that if a_i is rationalizable then $a_i ∈ X_i^T$.
 - Let $(Z_j)_{j\in N}$ be the profile of sets that supports a_i .
 - For any t, $Z_j \subset X_j^t$ since each action in Z_j is a best response to some belief over Z_{-j} .
- (\Rightarrow) Now show that for any player i any action in X_i^T is rationalizable.
 - By definition if $a_i \in X_i^T$ then it is not strictly dominated and is a best response among actions in X_i^T to some belief $\mu_i(a_i)$ over X_{-i}^T .
 - It must also be a best response among the actions in A_i .
 - ▶ Otherwise $\exists t$, a_i is a best response over X_{-i}^t but not over X_{-i}^{t-1} .
 - ▶ $\exists b_i \in X_i^{t-1} \backslash X_i^t$ which is a best response to $\mu_i(a_i)$ over X_{-i}^{t-1} .
 - ▶ *b_i* cannot be strictly dominated in *t*th round.
 - Note that order is not important.