

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Métodos Numéricos II

Autor: Jesús Muñoz Velasco

Índice general

1.	Tem	a 1: Resolución numérica de ecuaciones y sistemas no lineales	5
	1.1.	Introducción	1
	1.2.	Métodos elementales: bisección	-
	1.3.	Métodos de Newton-Raphson y secante	-
		1.3.1. Comportamiento del Método de Newton-Raphson	1

1. Tema 1: Resolución numérica de ecuaciones y sistemas no lineales

1.1. Introducción

Resolver una ecuación es encontrar una expresión explícita de la solución en términos de operaciones elementales. Sabemos resolver ecuaciones polinómicas y además, que hasta grado 5 siempre podemos encontrar una solución de este tipo (esto lo demostró Galois). Hay ecuaciones como $xe^x=0$ de las que no se puede encontrar una solución explícita. Es por esto que conviene dar una solución aproximada a este tipo de ecuaciones, de las que no podemos calcular una solución explícita.

En general, resolver una ecuación f(x) = 0 con $f: \Omega \subseteq \mathbb{R} \to \mathbb{R}$ es encontrar una solución s que sea cero o raíz de la función f(x).

El objetivo será construir una sucesión $x_0, x_1, \ldots, x_n, \ldots$ de aproximaciones tales que

$$\lim_{n \to \infty} f(x_n) = 0$$

1.2. Métodos elementales: bisección

1.3. Métodos de Newton-Raphson y secante

1.3.1. Comportamiento del Método de Newton-Raphson