

# THE PHILIPPINE JOURNAL OF SCIENCE

VOL. 32

APRIL, 1927

No. 4

## CONCRETE VALUE OF PHILIPPINE SAND, GRAVEL AND CRUSHED STONE

By R. H. AGUILAR

*Of the Division of General, Inorganic, and Physical Chemistry  
Bureau of Science, Manila*

FOUR TEXT FIGURES

### INTRODUCTION

In view of the constantly increasing volume of concrete construction work in the Philippine Islands, greater interest is now felt in and more attention paid by engineers and contractors engaged in concrete work to the quantity and quality of the sand, gravel, and stone deposits of the country. Systematic and reliable data on the possible extent of these natural deposits, and the comparative concrete value of the materials will no doubt be of interest.

### CONCRETE MATERIALS

Concrete is essentially made up of cement, sand, gravel or crushed stone (or mixtures of both), and water with which the materials are thoroughly incorporated. Its most important constituent is cement, ordinarily Portland or natural cement. In the Philippine Islands, Portland cement is exclusively used on all concrete construction work, and its efficiency as binding material is determined according to Circular 33 of the United States Bureau of Standards. Next in importance is sand.

Sand<sup>1</sup> in its commonly accepted sense, is a fine aggregate derived from a natural source, all of which will pass, when dry, a screen having circular opening  $\frac{1}{2}$  inch in diameter.

<sup>1</sup> Proc. Am. Soc. of Testing Materials 20 (1920) 137.

In the Philippine Islands, sand deposits are ordinarily found at the seashore and in river beds. Rocks can be quarried and crushed by mechanical means, and all particles that pass through  $\frac{1}{4}$ -inch openings can be considered sand. The use of this material in actual practice, however, has been very limited; in some cases it is only used as a substitute for a portion of the natural sand.

Gravel is defined by Dake<sup>2</sup> as "any aggregate of rock particles, coarser than sand and finer than boulders."

In concrete construction work this definition would be incomplete unless the size of the pebbles were specified. It is common engineering practice to limit the maximum size of the broken stone or gravel to 2.5 inches.<sup>3</sup> Furthermore, in selecting the size of stone or gravel, various factors must be taken into consideration; such as thickness of the concrete section, proximity to the reenforcements, size and spacing of the reenforcements, etc. Reid<sup>4</sup> states the following:

In reinforced concrete, the broken stone or screened gravel for the concrete surrounding the reinforcement ought never be larger than will pass a  $\frac{1}{2}$  inch screen when the reinforcement is small, or spaced close together or when placed near the surface. When larger sections are employed the stone may be increased in size, but should not exceed what will pass a  $1\frac{1}{4}$  inch screen.

Broken stone, as its name indicates, is the product obtained by mechanical crushing of rocks or boulders.

It used to be a common belief among practicing engineers that broken stone produces better concrete than does gravel, owing to the angular shape of the individual fragments. In this connection it is interesting to note the comparative crushing strengths given below of basaltic broken stone of good quality from Talim Island, Rizal Province, and two samples of gravel, one dark brown diorite from Pasig River, Rizal Province, and the other of a basaltic nature from Santa Cruz, Laguna Province.

| Specimen.                                | Crushing strength,<br>in pounds<br>per square inch. |
|------------------------------------------|-----------------------------------------------------|
| Gravel, from Santa Cruz, Laguna Province | 3,027                                               |
| Stone, from Talim Island, Rizal Province | 2,834                                               |
| Gravel, from Pasig River, Rizal Province | 2,404                                               |

<sup>2</sup> The sand and Gravel Resources of Missouri, Missouri Bureau of Geology and Mines II 15 (1918) 1.

<sup>3</sup> Taylor, F. W., and E. S. Thomson, Concrete, Plain and Reinforced, 3d ed., New York, John Wiley and Sons (1916) 13.

<sup>4</sup> Concrete and Reinforced Concrete Construction, New York, The Myron C. Clark Publishing Co. (1907) 44.

The proportion of the mixture in each case was 1 : 2 : 4 by volume, and the sand used, although from different sources, was of basaltic and andesitic origin of similar granulometric composition.

It is also interesting to note the seemingly conflicting opinions of certain authorities on this matter.

Taylor and Thomson<sup>5</sup> say:

Comparative tests of concrete made with broken stone and with gravel, in the same proportions by volume, show almost always that concrete made from hard broken stone, such as trap, gives higher compressive strength than concrete made from gravel. This appears to be the rule, not only when the materials are mixed by measured volumes, regardless of the percentages of void, but also when the broken stone and gravel are each screened to substantially the same size.

Reid,<sup>6</sup> on the other hand, expresses himself in the following words:

There is no ground for believing that rounded stone or rounded sand gives less strength with cement than materials composed of angular fragments.

The results shown above and the apparent conflicting opinions of authorities on the subject seem to lead to the conclusion that both gravel and broken stone have certain advantages and disadvantages. Gravel, on account of its rounded form, readily slips into place in concrete, thus reducing the volume to a minimum and forming a compact mass of higher density. On the other hand, the rough surface of the broken stone usually causes greater adhesive strength to develop than does the smooth surface of the gravel, which to a certain extent counterbalances the porosity and the relative lower density of the broken-stone concrete. Accordingly, a good hard and dense gravel is perfectly comparable as concrete material with a good broken stone and vice versa; and, if a poor gravel and a good broken stone are both available in a locality, they should be mixed in such proportion as to improve the concrete value of the former. As a matter of fact, a mixture of equal parts of Pasig River gravel and Talim Island broken stone was used in the construction of the Legislative Building in Manila.

<sup>5</sup> Concrete, Plain and Reinforced, 1st ed., New York, John Wiley and Sons (1905) 271-272; 3d ed. (1916) 324.

<sup>6</sup> Concrete and Reinforced Concrete Construction, New York, The Myron C. Clark Publishing Co. (1907) 43.

## PREVIOUS WORK ON PHILIPPINE AGGREGATES

In 1909, Adams<sup>7</sup> published an article on the sources and the nature of the sand, gravel, and stone deposits near the City of Manila. The granulometric composition and the relative strengths of a few specimens were briefly discussed. The testing of the materials was incomplete; but, as Adams stated, "is sufficient to show their relative efficiencies and to check the conclusions arrived at from the geologic examinations." So, the main object of the author was the study of the aggregates, from the geologic point of view.

A more extensive work was published by Reibling<sup>8</sup> in 1910. At that time concrete construction in the Philippine Islands was not so highly developed as it is at present. As a matter of fact, in 1909, while Reibling's investigation was being carried out, only one hundred specimens of cement aggregate and concrete were submitted for test. Some of the results given were not reliable, in as much as the specimens tested were not prepared under the direct supervision of the Bureau of Science, but under the direction of the men in charge of the various construction works; for which reason, the much spoken of "human factor" was very much in evidence. In this connection, Reibling himself made the following statements:

Concrete cubes tested as per "Request No. 68328" gave erratic results which were attributed to excess of sand and to the poor grading of the gravel. \* \* \*

At another time, laboratory and field tests did not agree. \* \* \*10

The facts above mentioned show the necessity of proper representative sampling and a uniform method for the treatment of concrete samples after they have been gauged. The same concrete preserved under different conditions will give variable results.

## OBJECT OF THE PRESENT ARTICLE

In this article, all the routine tests on sand, gravel, and stone specimens made in the cement laboratory of the Bureau of Science, covering a period of more than fifteen years, are discussed from both the theoretical and the practical points of view. The samples were collected by engineers and contractors and forwarded to the laboratory to be tested. The results

<sup>7</sup> Philip. Journ. Sci. § A 4 (1909) 463.

<sup>8</sup> Philip. Journ. Sci. § A 5 (1910) 117.

<sup>9</sup> Ibid. 129.

<sup>10</sup> Ibid. 133.

served as the basis for judging the quality of the materials for construction purposes. It is a compilation of the most reliable data so far published on Philippine aggregates.

#### METHODS OF PROCEDURE

It is an accepted principle that the strength of concrete is mainly due to the following factors, namely:<sup>11</sup> The quality and quantity of cement; the kind, size, and strength of the aggregates; the thoroughness with which the ingredients are balanced; the method of mixing; and its age. Variation in any of these factors will no doubt influence the strength of the concrete.

In order to secure results that would be comparable with each other, uniform methods of procedure were adopted. Only cement of good quality was used; the same proportional quantity was mixed with the sand and gravel samples; the ingredients were thoroughly balanced; fixed methods of gauging, mixing, and moulding were followed; and the moulded concrete specimens were invariably tested at the age of twenty-eight days. So the only variable factor was that which has reference to the quality of the aggregates.

According to Taylor and Thomson,<sup>12</sup>

There are two fundamental laws of strength which apply to mortars and concrete composed of the same cement with different proportion and sizes of sand and gravel.

(1) With the same aggregate, the strongest and most impermeable mortar is that containing the largest percentage of cement in a given volume of the mortar.

(2) With the same percentage of cement in a given volume of mortar, the strongest, and usually the most impermeable, mortar is that which has the greatest density, that is, which in a unit volume has the largest percentage of solid materials.

The first of these laws is understood by ordinary users of cement, but the second states a fact which is appreciated only by experts.

It is in connection with the second law that different authorities on concrete have made exhaustive studies, have written volumes of their experiences, and have even developed formulæ

<sup>11</sup> Reid, H. A., *Concrete and Reinforced Concrete Construction*, New York, The Myron C. Clark Publishing Co. (1907) 185. Similar factors are given by F. W. Taylor and S. E. Thomson, *Concrete, Plain and Reinforced*, 3d ed., New York, John Wiley and Sons (1916) 310.

<sup>12</sup> *Concrete, Plain and Reinforced*, 3d ed., New York, John Wiley and Sons (1916) 144.

and rules tending to reduce the pore space to a minimum to obtain the largest percentage of solid material per unit volume of concrete. The greatest handicap to the general practical application of these rules and formulæ is the large variety of materials that come under the denomination of aggregates.

The quality of the aggregates depends mainly upon three factors; namely, the geologic character of the rocks from which they are derived, the degree of chemical weathering, and the



FIG. 1. Tensile-strength curves computed on the basis of the tensile strength of standard Ottawa sand as 100 per cent.

granulometric composition. It is not within human power to change the geologic character and the degree of chemical weathering of any sand or gravel deposit; but the granulometric composition can be so adjusted as to obtain arbitrarily graded particles which, when mixed with cement, will produce mortar and concrete of the greatest density, containing the largest percentage of solid material per unit volume.



FIG. 2. Compressive-strength curves computed on the basis of the compressive strength of standard Ottawa sand as 100 per cent.

Feret, as long ago as 1892, after having made an extensive study on the mortar value of sand, arrived at the following conclusion:

The plastic mortars, which per unit volume, contain the greatest absolute volume of solid materials (cement + sand) are those in which there are no medium grains, and in which coarse grains are found in proportion double to that of fine grains, cement included.<sup>12</sup>

How much practical truth there is in this statement is illustrated in figs. 1 and 2. Each triangle represents Feret's<sup>13</sup> three-screen method of granulometric sand analysis and each point shows the granulometric composition of a sand specimen. All sand particles that pass through a 0.2-inch opening but are retained on No. 15 mesh are considered coarse; those that pass

<sup>12</sup> Ibid. (1905) 147; (1916) 161.

<sup>13</sup> Ibid. (1905) 145-156; (1916) 159-160.

No. 15 but are retained on No. 50, medium; and those that pass No. 50 are considered fine.<sup>15</sup>

The series of curves are loci of points representing sand samples of different granulometric composition, but which possess practically the same tensile and compressive strengths as shown in Tables 1 to 5.

From the general direction of the contour of the curves of which the inner ones represent higher tensile and compressive strengths than do the outer ones, it is possible to conceive a theoretical value of maximum strength, indicated by point A in fig. 1 and point B in fig. 2, representing the granulometric composition of sands composed of coarse and fine particles only but no medium particles. In these figures, however, the cement has not been included with the fine particles.

To substantiate this conclusion, mortar specimens were prepared for tensile and compressive strength tests, using Pasig River sand of uniform quality as to degree of hardness and mineralogic composition. The physical characters of the sample and the data on the sand-mortar specimens are as follows: Specific gravity, 2.5; percentage of voids, 29.6.

#### *Granulometric composition.*

| Screen No. | Particles passing through.<br>Per cent. |
|------------|-----------------------------------------|
| 4          | 100                                     |
| 10         | 58                                      |
| 20         | 32                                      |
| 30         | 18                                      |
| 40         | 10                                      |
| 50         | 6                                       |
| 80         | 4                                       |
| 100        | 3                                       |
| 200        | 2                                       |

\* The sieves used conform with the United States Bureau of Standard specifications as published in Proc. Am. Soc. of Testing Materials I 24 (1924) 719:

| Commercial<br>No. of sieve. | Size of openings.<br>Inch. | mm.   |
|-----------------------------|----------------------------|-------|
| 10                          | 0.0787                     | 1.999 |
| 20                          | 0.0331                     | 0.841 |
| 30                          | 0.0232                     | 0.589 |
| 40                          | 0.0165                     | 0.419 |
| 50                          | 0.0117                     | 0.297 |
| 60                          | 0.0098                     | 0.249 |
| 80                          | 0.0070                     | 0.178 |
| 100                         | 0.0059                     | 0.149 |
| 200                         | 0.0029                     | 0.074 |

TABLE 1.—*Sand specimens having an average tensile strength of 56.8 per cent on the basis of standard Ottawa sand as 100.*

| Province.              | Town.              | Location of deposit.   | Geologic classification.            | Labora-tory No. | Three-screen analysis. |              |       | Tensile strength.<br>Sand specimen<br>Ottawa sand × 100. |
|------------------------|--------------------|------------------------|-------------------------------------|-----------------|------------------------|--------------|-------|----------------------------------------------------------|
|                        |                    |                        |                                     |                 | Coarse.                | Me-<br>dium. | Fine. |                                                          |
| Batangas.....          | San Luis.....      | Beach.....             | Volcanic sand.....                  | 146593          | 4                      | 40           | 56    | 57.4                                                     |
| Benguet.....           | Baguio.....        | Government Center..... | Mostly silica.....                  | 150866          | 15                     | 15           | 70    | 58.0                                                     |
| Bohol.....             | Palo.....          | Seashore.....          | Mostly quartz.....                  | 145397          | 3                      | 44           | 53    | 57.7                                                     |
| Bulacan.....           | Pulilan.....       | Pullian River.....     | Basic volcanic rock.....            | 144591          | 7                      | 69           | 24    | 55.0                                                     |
| Cavite.....            | General Trias..... | Malabon River.....     | Vesicular lava and some quartz..... | 151029          | 14                     | 69           | 17    | 59.4                                                     |
| Leyte.....             | Palo.....          | Malirong River.....    | Basaltic sand.....                  | 147651          | 16                     | 68           | 16    | 59.0                                                     |
| Masbate.....           | Milagros.....      | Lumbang River.....     | Andesitic and basaltic.....         | 149505          | 25                     | 68           | 7     | 55.5                                                     |
| Mindanao.....          | Jolo.....          | Caldera Bay.....       | Basaltic and some quartz.....       | 148237          | 40                     | 58           | 2     | 55.6                                                     |
| Occidental Negros..... | Isabela.....       | Binalbagan River.....  | Andesitic and basaltic.....         | 153663          | 21                     | 66           | 13    | 54.0                                                     |

TABLE 2.—*Sand specimens having an average tensile strength of 76.2 per cent on the basis of standard Ottawa sand as 100.*

| Province.        | Town.         | Location of deposit. | Geologic classification. | Laboratory No. | Three-screen analysis. |              |       | Tensile strength.<br>Sand specimen<br>Ottawa sand × 100. |
|------------------|---------------|----------------------|--------------------------|----------------|------------------------|--------------|-------|----------------------------------------------------------|
|                  |               |                      |                          |                | Coarse.                | Me-<br>dium. | Fine. |                                                          |
| Albay.           | Camalig       | Cabarran River       | Basaltic and andesitic   | 119543         | 23                     | 58           | 19    | 76.0                                                     |
| Antique.         | Ipil          | Bungul River         | Andesitic                | 120133         | 21                     | 60           | 19    | 71.8                                                     |
| Batangas.        | Santo Tomas   | Tanawan River        | Basaltic                 | 147007         | 28                     | 61           | 11    | 75.3                                                     |
| Bohol.           | Calape        | Talisay shore        | Andesitic                | 145445         | 16                     | 46           | 38    | 72.8                                                     |
| Cavite.          | Kawit         | Rio Grande           | Igneous sand             | 122314         | 56                     | 36           | 8     | 79.5                                                     |
| Do.              | Noveleta      | Noveleta River       | Basaltic                 | 149506         | 40                     | 55           | 5     | 78.0                                                     |
| Cebu.            | Daan Bantayan | Beach                | Coralline                | 143761         | 33                     | 59           | 8     | 73.0                                                     |
| Do.              | Poro          | do                   | do                       | 164356         | 34                     | 59           | 7     | 78.0                                                     |
| Laguna.          | Santa Cruz    | Mahunod River        | Basaltic                 | 142380         | 32                     | 59           | 9     | 78.0                                                     |
| Leyte.           | Tabontabon    |                      | Magnetite and quartz     | 121416         | 21                     | 27           | 52    | 78.0                                                     |
| Oriental Negros. | Bais          | Bais River           | Coralline                | 122046         | 38                     | 53           | 9     | 77.7                                                     |
| Tayabas.         | Tayabas       | Alitao River         | Basaltic and andesitic   | 152450         | 47                     | 48           | 5     | 77.0                                                     |

TABLE 3.—*Sand specimens having an average tensile strength of 105.3 per cent on the basis of standard Ottawa sand as 100.*

| Province  | Town.     | Location of deposit. | Geologic classification. | Laboratory No. | Three-screen analysis. |              |       | Tensile strength.<br>Sand specimen<br>Ottawa sand × 100. |
|-----------|-----------|----------------------|--------------------------|----------------|------------------------|--------------|-------|----------------------------------------------------------|
|           |           |                      |                          |                | Coarse.                | Me-<br>dium. | Fine. |                                                          |
| Cebu.     | Carcar    | Mananga River        | Basaltic                 | 147129         | 28                     | 50           | 22    | 110                                                      |
| Laguna.   | San Pablo | Bafadero River       | Andesitic, diorite       | 142608         | 30                     | 53           | 17    | 105                                                      |
| Mindanao. | Jolo      | Ballwasan beach      | Basaltic and coralline   | 148237         | 46                     | 42           | 12    | 100                                                      |
| Do.       | Zamboanga | do                   | do                       | 127041         | 32                     | 52           | 16    | 107                                                      |
| Romblon.  | Romblon   | Seashore             | Coralline                | 144983         | 34                     | 34           | 32    | 104                                                      |
| Samar.    | Borongan  | Sunco beach          | Andesitic basaltic       | 151148         | 41                     | 46           | 18    | 100                                                      |
| Tayabas.  | Sariaya   | Munting River        | Basaltic                 | 125700         | 43                     | 46           | 11    | 111                                                      |

TABLE 4.—Sand specimens having an average compressive strength of 86.8 per cent on the basis of standard Ottawa sand as 100.

| Province.       | Town.            | Location of deposit.   | Geologic classification.                  | Laboratory No. | Three-screen analysis. |              |       | Compressive strength.<br>Sand specimen<br>Ottawa sand × 100 |
|-----------------|------------------|------------------------|-------------------------------------------|----------------|------------------------|--------------|-------|-------------------------------------------------------------|
|                 |                  |                        |                                           |                | Coarse.                | Me-<br>dium. | Fine. |                                                             |
| Bataan.....     | Orani.....       | Orani River.....       | Andesitic.....                            | 146278         | 19                     | 58           | 23    | 80.7                                                        |
| Batangas.....   | Bauang.....      | Bauang River.....      | Basaltic.....                             | 150352         | 62                     | 34           | 4     | 90.4                                                        |
| Bulacan.....    | Calumpit.....    | Calumpit River.....    | Volcanic rock.....                        | 144857         | 27                     | 68           | 5     | 87.0                                                        |
| Cavite.....     | Kawit.....       | Imus River.....        | Mostly basalt and scoria.....             | 122314         | 78                     | 20           | 2     | 87.0                                                        |
| Do.....         | do.....          | Rio Grande.....        | Partially weathered volcanic<br>rock..... | 123443         | 58                     | 38           | 4     | 88.6                                                        |
| Do.....         | do.....          | do.....                | Volcanic.....                             | 123521         | 60                     | 36           | 4     | 89.5                                                        |
| Do.....         | Noveleta.....    | San Juan River.....    | Scoriaceous basalt.....                   | 125977         | 68                     | 30           | 2     | 81.0                                                        |
| Cebu.....       | Pinamugahan..... | Beach.....             | Mostly quartz.....                        | 144970         | 97                     | 60           | 3     | 82.6                                                        |
| Ilocos Sur..... | Candon.....      | Santa Cruz River.....  | Andesitic and basaltic.....               | 151978         | 16                     | 65           | 19    | 80.0                                                        |
| Iloilo.....     | San Miguel.....  | Aganao River.....      | Magnetite and quartz.....                 | 144037         | 23                     | 52           | 25    | 86.0                                                        |
| Laguna.....     | Pagsanjan.....   | Pagsanjan River.....   | Basaltic rocks.....                       | 128903         | 43                     | 54           | 3     | 87.1                                                        |
| Do.....         | Santa Cruz.....  | Santa Cruz River.....  | Basaltic and andesitic.....               | 149829         | 50                     | 46           | 4     | 89.5                                                        |
| Leyte.....      | Alang-Alang..... | Dap-Dap River.....     | Basaltic and magnetite.....               | 147651 A       | 23                     | 49           | 28    | 85.7                                                        |
| Do.....         | Dagani.....      | Guinaronna River.....  | Basaltic rocks.....                       | 147651 B       | 34                     | 37           | 29    | 88.7                                                        |
| Pampanga.....   | Magalang.....    | Quitangil River.....   | Volcanic.....                             | 146671         | 13                     | 63           | 24    | 86.8                                                        |
| Pangasinan..... | San Jacinto..... | San Jacinto River..... | Andesitic.....                            | 145666         | 20                     | 68           | 12    | 89.8                                                        |
| Romblon.....    | Romblon.....     | Seashore.....          | Coralline.....                            | 144383         | 34                     | 34           | 32    | 84.0                                                        |

TABLE 5.—*Sand specimens having an average compressive strength of 105.5 per cent on the basis of standard Ottawa sand as 100.*

| Province.              | Town.           | Location of deposit.                | Geologic classification.      | Labora-<br>tory No. | Three-screen analysis. |              |       | Compressive strength.<br>Sand specimen<br>Ottawa sand × 100. |
|------------------------|-----------------|-------------------------------------|-------------------------------|---------------------|------------------------|--------------|-------|--------------------------------------------------------------|
|                        |                 |                                     |                               |                     | Coarse.                | Me-<br>dium. | Fine. |                                                              |
|                        |                 |                                     |                               |                     |                        |              |       |                                                              |
| Aibay.....             | Malinao.....    | Quilani River.....                  | Volcanic.....                 | 119707              | 33                     | 57           | 10    | 105                                                          |
| Antique.....           | Ipil.....       | Ipil River.....                     | Andesitic.....                | 120133B             | 38                     | 35           | 27    | 110                                                          |
| Do.....                | Sibalom.....    | Sibalom River.....                  | Andesitic and basaltic.....   | 151980              | 37                     | 56           | 7     | 108                                                          |
| Do.....                | Valderrama..... | Caranagan River.....                | Mostly andesitic.....         | 120133C             | 27                     | 48           | 25    | 108                                                          |
| Cebu.....              | Cebu.....       | Guadalupe River.....                | Andesitic.....                | 144671              | 61                     | 34           | 5     | 101                                                          |
| Do.....                | do.....         | Guadalupe.....                      | Basic volcanic rocks.....     | 145680              | 31                     | 58           | 11    | 106                                                          |
| Ilocos Norte.....      | Vintar.....     | Laoag River.....                    | Andesitic and basaltic.....   | 151190              | 52                     | 43           | 5     | 109                                                          |
| Iloilo.....            | San Miguel..... | Oton beach.....                     | Basaltic dioritic.....        | 145780              | 24                     | 51           | 25    | 102                                                          |
| Laguna.....            | Los Baños.....  | Laguna de Bay at Ba-<br>yog.....    | Basaltic.....                 | 86085A              | 41                     | 54           | 5     | 105                                                          |
| Do.....                | do.....         | Laguna de Bay at Ma-<br>yondon..... | do.....                       | 86085B              | 48                     | 46           | 6     | 100                                                          |
| Mindanao.....          | Zamboanga.....  | Tumaga River.....                   | Basaltic andesitic.....       | 122303B             | 79                     | 14           | 7     | 107                                                          |
| Occidental Negros..... | Maao.....       | Maragandang River.....              | Andesitic.....                | 150748              | 24                     | 50           | 26    | 106                                                          |
| Rizal.....             | McKinley.....   | Pasig River.....                    | do.....                       | 145643C             | 25                     | 58           | 17    | 100                                                          |
| Do.....                | do.....         | do.....                             | do.....                       | 145643D             | 32                     | 58           | 10    | 103                                                          |
| Do.....                | Pasig.....      | do.....                             | Basaltic and andesitic.....   | 154012              | 57                     | 38           | 5     | 109                                                          |
| Sorsogon.....          | Sorsogon.....   | Lantu River.....                    | Andesitic and dioritic.....   | 154358              | 34                     | 58           | 8     | 108                                                          |
| Tarlac.....            | Capaz.....      | Santiago River.....                 | Volcanic rock and quartz..... | 123447              | 62                     | 33           | 5     | 108                                                          |
| Tayabas.....           | Tayabas.....    | Alitao River.....                   | Basaltic and andesitic.....   | 152450              | 47                     | 48           | 5     | 109                                                          |

## SAND-MORTAR SPECIMENS

S<sub>1</sub>.—A portion of the sample of sand was made into test specimens as received.

S<sub>2</sub>.—Another portion was screened into sizes of the following granulometric composition: 63 per cent passing No. 4 screen (about 0.2-inch opening) but retained on No. 15 screen, and the rest, 37 per cent, passing No. 50 screen. According to the Feret three-screen method of sand analysis, this specimen is composed of coarse and fine particles only and no medium particles.

S<sub>3</sub>.—A third portion was screened into several parts according to sizes, and the proportional quantities so obtained were adjusted to form a combined specimen having a well-graded granulometric composition curve similar to a parabola.

Test specimens using standard Ottawa sand were also prepared for purposes of comparison. The results are shown in Table 6.

TABLE 6.—*Influence of the granulometric composition of sands upon the strength of mortars.*

[Age of test specimens, 28 days.]

| Item.                | Proportion by weight. | Per cent granulometric analysis on the basis of Feret's three-screen method. |         |       | Weight of mortars at test in pounds per cubic foot.* | Percent water of the dry mixture by weight. | Percent void of the dry sand. | Average strength in pounds per square inch. |               |
|----------------------|-----------------------|------------------------------------------------------------------------------|---------|-------|------------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|---------------|
|                      |                       | Coarse.                                                                      | Medium. | Fine. |                                                      |                                             |                               | Tensile.*                                   | Compressive.* |
| Ottawa....           | 1 : 3                 | 0                                                                            | 100     | 0     | 146                                                  | 13.0                                        | 34.4                          | 433                                         | 3,718         |
| S <sub>1</sub> ..... | 1 : 3                 | 57                                                                           | 37      | 6     | 153                                                  | 13.1                                        | 29.6                          | 452                                         | 4,762         |
| S <sub>2</sub> ..... | 1 : 3                 | 63                                                                           | 0       | 37    | 151                                                  | 13.5                                        | 32.9                          | 487                                         | 4,902         |
| S <sub>3</sub> ..... | 1 : 3                 | 48                                                                           | 24      | 28    | 148                                                  | 13.3                                        | 30.5                          | 422                                         | 4,092         |

\* The figures represent the average weight and strength of sixteen specimens.

The conclusion arrived at, that the theoretical points A and B (figs. 1 and 2), like those of Feret, are points of maximum strength, has been substantiated in this particular case. It should be noted, however, that mortar specimens under item S<sub>1</sub>, which were prepared from the sample of sand as received, appear to be denser and nearly as strong as those under item S<sub>2</sub>, which were prepared from sand composed of coarse and fine particles only. Mortar specimens under item S<sub>3</sub> appear to possess lower strength and lower density than do those under items S<sub>1</sub> and S<sub>2</sub>, indicating that the parabola is not the ideal granulometric composition curve of a sand of the highest density and strength.

Generalizing the results of tests shown in Table 8, wherein the strengths of sand mortars composed of sand of widely different geologic characters and variable granulometric composition are compared with the strength of standard Ottawa sand mortar (considering the latter as 100), it is possible to arrive at another conclusion somewhat different from that of Feret.

In fig. 3, two curves were drawn; namely, curve 1 and curve 2. Each point in curve 1 represents the average percentage of coarse particles of the sand specimens shown in Table 8, corresponding to a given compressive strength. Similarly, each point in curve 2 represents the corresponding percentage of



FIG. 3. Relation between compressive strength and the percentage of coarse, medium, and fine particles, representing the granulometric composition of sands.

fine particles of the same sand specimens. The vertical distance between the two curves represents the percentage of medium particles. Curve 1 may also be considered as the line of demarcation between the coarse and the medium particles, and curve 2, the line of demarcation between the medium and the fine particles.

It is apparent from the general direction of the curves that, as the comparative compressive strength increases, the proportion of coarse particles also increases, while the proportion of medium and fine particles decreases to a minimum. The general results, therefore, seem to point to the conclusion that

the theoretical point of maximum strength represents a uniformly graded sand composed of coarse particles with practically no fine and with the smallest amount of medium particles. In other words, sand mortars possessing exceptionally high strength are composed almost entirely of coarse sand and cement. Coarse sand is understood to be all particles that pass through a 0.2-inch opening and are retained on No. 15 mesh.

Between this conclusion and Feret's certain similarities and differences are observed; namely, both admit that the point of maximum strength represents the granulometric composition of a mortar composed of coarse and fine particles only, cement included, without medium particles. Feret's conclusion, however, admits of fine particles of sand with cement, while that drawn from fig. 3 does not admit of fine particles of sand, the cement taking its place entirely. Both conclusions appear to be applicable to sands of widely different geologic nature.

#### CONCRETE

In reference to the application to concrete of the second law of strength the results obtained by William B. Fuller<sup>16</sup> from a series of tests made in this connection, compared with the general results of tests shown in Table 9, are of interest. Fuller's<sup>17</sup> original theory was stated as follows:

The experience which the writer has had and the various experiments which he has made indicate that concrete which works the smoothest in placing and gives the highest breaking strength for a given percentage of cement is made from an aggregate whose mechanical analysis taken after mixing the sand and the stone forms a curve approaching that of a parabola, with its beginning at zero coördinates (0) and passing through the intersection of the curve of the coarsest stone with the 100% line, that is, passing through the upper end of the coarsest stone curve.

This conclusion is based upon the comparative transverse strengths of concrete beams. Although no definite relationship exists between transverse strength and compressive strength, yet for practical purposes either method of testing can be adopted for comparing the relative strength of different materials.

Later experiments performed by the same author indicate that the curve of maximum density and strength is more accu-

<sup>16</sup> Taylor, F. W., and S. E. Thomson, *Concrete, Plain and Reinforced*, 3d ed., New York, John Wiley and Sons (1916) 192.

<sup>17</sup> Taylor, F. W., and S. E. Thomson, *Concrete, Plain and Reinforced*, 1st ed., New York, John Wiley and Sons (1905) 195.

rately defined as the combination of an ellipse and a straight line than as a parabola.<sup>18</sup>

The ellipse-straight-line combination curve, however, represents the granulometric composition of the mixture of sand, gravel or stone, including cement, while the parabolic curve,<sup>19</sup> as above stated, represents the mixture of sand and stone, excluding cement.

By generalizing the results of concrete tests shown in Table 9 (that is, taking average values of the mechanical analyses of the sand and gravel, arbitrarily grouped according to their compressive strength), tabulating the values so obtained, and plotting the mechanical analysis curves of the gravel, some interesting conclusions may be drawn.

In Table 7 under the last column the three-screen method of presenting the mechanical analyses of gravel, similar to that of Feret, has been adopted. This is a very convenient means of discussing the general results of the tests. The different arbitrary limiting values adopted for coarse, medium, and fine sizes are as follows:

Coarse sizes are those passing holes 3 inches in diameter and retained on holes of 1.5 inches; medium sizes are those passing holes 1.5 inches in diameter and retained on holes 0.67 inch; and fine sizes are those passing holes 0.67 inch in diameter and retained on holes 0.2 inch.<sup>20</sup>

<sup>18</sup> Taylor, F. W., and S. E. Thomson, Concrete, Plain and Reinforced, 3d ed., New York, John Wiley and Sons (1916) 192-198.

<sup>19</sup> Taylor, F. W., and S. E. Thomson, Concrete, Plain and Reinforced, 1st ed., New York, John Wiley and Sons (1905) 194-209; 3d ed. (1916), Appendix I, 849-855.

#### Construction of the Parabola.

If  $D$ =Largest diameter of stone.

$d$ =Any given diameter.

$P$ =Per cent mixture smaller than any given diameter.

The equation of the parabola would be

$$d = \frac{P^2 D}{10,000}$$

<sup>20</sup> Feret's limiting values are as follows: Coarse, passing holes of 6 centimeters (2.36 inches) diameter and retained by holes of 4 centimeters (1.57 inches) diameter; medium, passing holes of 4 centimeters (1.57 inches) diameter and retained by holes of 2 centimeters (0.79 inch) diameter; fine, passing holes of 2 centimeters (0.79 inch) diameter and retained by holes of 1 centimeter (0.39 inch).

TABLE 7.—*Relation between the compressive strength of concrete and the mechanical analysis of the aggregates.*

[C, course; M, medium; F, fine. Figures express percentage composition.]

| No. | Strength,<br>pounds per<br>square inch, 28<br>days. | Three-screen granular<br>compositon<br>of sand. |      |      | Mechanical analysis of gravels,<br>per cent sizes passing through<br>various circular openings,<br>diameters in inches. |      |      |      |
|-----|-----------------------------------------------------|-------------------------------------------------|------|------|-------------------------------------------------------------------------------------------------------------------------|------|------|------|
|     |                                                     | C                                               | M    | F    | 3.00                                                                                                                    | 2.25 | 1.50 | 1.00 |
| 1.  | 1,000-1,500                                         | 22.0                                            | 56.7 | 21.3 | 100                                                                                                                     | 99.3 | 87.4 | 41.8 |
| 2.  | 1,500-2,000                                         | 28.2                                            | 59.3 | 12.5 | 100                                                                                                                     | 98.3 | 83.2 | 49.8 |
| 3.  | 2,000-2,500                                         | 30.9                                            | 56.7 | 12.4 | 100                                                                                                                     | 99.4 | 75.7 | 42.9 |
| 4.  | 2,500-3,000                                         | 40.4                                            | 46.6 | 13.0 | 100                                                                                                                     | 95.8 | 71.6 | 28.2 |
| 5.  | 3,000-3,500                                         | 41.0                                            | 49.6 | 9.4  | 100                                                                                                                     | 99.2 | 78.5 | 32.4 |

  

| No. | Strength,<br>pounds per<br>square inch, 28<br>days | Mechanical analysis of gravels;<br>per cent sizes passing through<br>various circular openings,<br>diameter in inches. |      |      |      |      | Three-screen method of mechanical<br>analysis of gravel. |    |    |
|-----|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|------|------|------|----------------------------------------------------------|----|----|
|     |                                                    | 0.67                                                                                                                   | 0.45 | 0.30 | 0.20 | 0.15 | C                                                        | M  | F  |
| 1.  | 1,000-1,500                                        | 26.3                                                                                                                   | 16.5 | 13.8 | 11.6 | 3.8  | 13                                                       | 61 | 26 |
| 2.  | 1,500-2,000                                        | 30.6                                                                                                                   | 16.1 | 13.3 | 7.1  | 5.6  | 17                                                       | 53 | 30 |
| 3.  | 2,000-2,500                                        | 21.7                                                                                                                   | 9.0  | 3.1  | 3.1  | 3.0  | 24                                                       | 61 | 22 |
| 4.  | 2,500-3,000                                        | 9.8                                                                                                                    | 1.9  | 0.8  | 0.4  | 0.1  | 28                                                       | 62 | 10 |
| 5.  | 3,000-3,500                                        | 18.3                                                                                                                   | 6.6  | 4.8  | 0.8  | 0.1  | 22                                                       | 62 | 14 |

The results shown in Table 7 under the second column reaffirm the conclusion arrived at for sand; namely, the larger the quantity of coarse particles of a given specimen of sand, the higher its compressive strength, from which it naturally follows that coarse sand makes a good aggregate, both for mortar and for concrete.

From the average mechanical-analysis curves of gravels shown in fig. 4, the following general conclusion is apparent:

Gravels showing satisfactory compressive strengths are composed of not less than 22 per cent coarse sizes and not more than 22 per cent fine sizes, the rest consisting of medium sizes.

This conclusion appears to be satisfactorily applicable to Fuller's<sup>21</sup> ellipse-straight-line theory,<sup>22</sup> but it is not in accordance

<sup>21</sup> Taylor, F. W., and S. E. Thomson, *Concrete, Plain and Reinforced*, 3d ed., New York, John Wiley and Sons (1916) 192-198.

<sup>22</sup> The straight line shown in fig. 4 corresponds to the proportional quantity of gravel present in Fuller's ellipse-straight-line curve, which includes cement, sand, and gravel.



FIG. 4. Average mechanical analysis curves of gravels used in the testing of concrete specimens, grouped according to their compressive strengths as shown in Table 7.

with his parabolic curve.<sup>23</sup> The parabola in fig. 4 is above the 22 per cent limiting value for fine sizes of gravel; it consists of 40 per cent coarse sizes and 28.5 per cent fine sizes. The straight line, on the other hand, consists of 53.5 per cent coarse sizes and 17 per cent fine sizes.

In view of these results, it is safe to assume, for the time being, the practical truth of the following conclusion:

Under similar conditions of hardness and general geologic character, the nearer the mechanical-analysis curve of a gravel specimen approaches a straight line, the higher is the crushing strength of concrete made from this gravel; provided the cement used is of good quality and the sand is mainly composed of coarse particles with the smallest proportion of medium particles and with practically no fine particles.

#### RESULTS OF TESTS

The results of tests for sand and gravel are shown in Tables 8 and 9, respectively. They are grouped by provinces to facilitate the location of the deposits. Many of the specimens show low tensile and compressive strengths. Such materials were sent to the laboratory for comparative test only, but have not been actually used in construction work. The supervising engineers of the Bureau of Public Works have always taken the necessary precautions to see that a better grade of aggregates was used in all cases, oftentimes at great expense because of the cost of transporting adequate materials from the sources of supply to the site of the job.

In order that the tensile and compressive strengths of the various sands for seven and for twenty-eight days might be comparable with each other, independently of the variation in the quality of the cement used, they were compared with the tensile and compressive strengths of specimens made of the same cement and standard Ottawa sand on the basis of 100; the results shown in the last columns of Table 8 were computed in this manner.

The mixture for mortar was invariably in the proportion of 1 : 3 by weight for tensile and compressive strength; and for gravel 1 : 2 : 4 by volume, considering the weight of 1 cubic foot of cement to be 94 pounds. The form and size of the specimens for compressive strength were cubes 2 by 2 by 2

<sup>23</sup> The curve shown in fig. 4 is a portion of the parabola corresponding to the proportional quantity of gravel present in the mixture of sand and gravel.

inches and cylinders 3.54 by 7 inches for mortar, and 6 by 6 by 6 inches for concrete. Deviations from this method were noted.

The relation between the unit strength of sand mortars tested in the form of cubes and those tested in the form of cylinders cannot be precisely established; it has been found to be very variable. However, the following average compressive strengths of standard Ottawa sand mortar representing eighty-two cylinders and thirty-four cubes are given for purposes of information:

| Age of specimens at test. | Compressive strengths<br>in pounds per square<br>inch. |        |
|---------------------------|--------------------------------------------------------|--------|
|                           | Cylinders.                                             | Cubes. |
| Days.                     |                                                        |        |
| 7                         | 1,656                                                  | 1,762  |
| 28                        | 2,468                                                  | 3,134  |

The above results show that the cubes are 6.4 per cent stronger than the cylinders at the age of seven days, and 26.98 per cent stronger than the cylinders at the age of twenty-eight days.

It is apparent that the cubes attain their maximum strength much sooner than do the cylinders; as a matter of fact, the average increase in strength of the cylinders from seven to twenty-eight days is 49 per cent and that of the cubes, 78 per cent. The increase in strength varies, for cylinders, from 19 to 77 per cent; and for cubes, from 49 to 110 per cent.

According to Feret—<sup>24</sup>

The form and dimensions of the specimen do not greatly influence the strength per unit area in compression when the height and width of the block are approximately equal.

In view of this conclusion, therefore, the above difference in the unit strength between cylinders and cubes should be attributed to the inequality of the width and height of the cylinders rather than to the difference in the size of the specimens tested, and cylindrical specimens having approximate dimensions of 7 inches in diameter by 7 inches in height would give nearly the same unit strength as the 2 by 2 by 2 inch specimens.

<sup>24</sup> Taylor, F. W., and S. E. Thomson, *Concrete, Plain and Reinforced*, 3d ed., New York, John Wiley and Sons (1916) 145.

All the tests shown in Tables 8 and 9 were performed in the cement laboratory of the Bureau of Science, under the direct supervision of W. C. Reibling, F. D. Reyes, A. W. King, and myself.

## I

## GENERAL GEOLOGIC CHARACTERS OF THE AGGREGATES

Most of the Philippine sands and gravels used for construction work are either andesitic or basaltic. This undoubtedly is due to the fact that nearly all the volcanic rocks of the Islands are andesitic, though basalts with variable amounts of olivine are also abundant.<sup>25</sup>

Sand and gravel containing relatively greater percentages of feldspar are found in the beds of rivers that flow through Pangasinan, Tarlac, and Zambales Provinces. Many of these rivers derive their water from the northeastern and southwestern sections of the western cordillera. According to Smith,<sup>26</sup> the main sources of sands of this kind are feldspar porphyry of the same character as the rocks that compose Mount Pinatubo.

Sand and gravel of calcareous nature, consisting mainly of coralline limestone, are found in large quantities in Cebu, Bohol, and Romblon Provinces. According to Becker,<sup>27</sup> Cebu is covered for the most part by a mantel of coral a hundred or more feet in thickness, which reaches from the crest of the island to the sea; Smith<sup>28</sup> believes that the geologic formations of Bohol are similar to those of Cebu. A great deal of the sand used in Romblon is taken from Tablas Island at sitio Bantayan; both islands are largely of limestone formation.<sup>29</sup>

The sand and gravel specimens from Cavite and Batangas are of a scoriaceous and tuffaceous nature, and show at a glance their volcanic origin. The rivers from which the materials were taken derive their waters from the mountains and ridges situated in the neighborhood of Taal Volcano, which are composed of volcanic ash and tuff deposits.<sup>30</sup>

<sup>25</sup> Iddings, J. P., Philip. Journ. Sci. § A 5 (1910) 155.

<sup>26</sup> Philip. Journ. Sci. § A 4 (1909) 22-23.

<sup>27</sup> Report on the Geology of the Philippine Islands (1901) 19.

<sup>28</sup> Geology and Mineral Resources of the Philippine Islands, Bur. Sci. Pub. 19 (1924) 195.

<sup>29</sup> Ibid. 200.

<sup>30</sup> Adams, G. I., Philip. Journ. Sci. § A 5 (1910) 95.

All the tests shown in Tables 8 and 9 were performed in the cement laboratory of the Bureau of Science, under the direct supervision of W. C. Reibling, F. D. Reyes, A. W. King, and myself.

## I

## GENERAL GEOLOGIC CHARACTERS OF THE AGGREGATES

Most of the Philippine sands and gravels used for construction work are either andesitic or basaltic. This undoubtedly is due to the fact that nearly all the volcanic rocks of the Islands are andesitic, though basalts with variable amounts of olivine are also abundant.<sup>25</sup>

Sand and gravel containing relatively greater percentages of feldspar are found in the beds of rivers that flow through Pangasinan, Tarlac, and Zambales Provinces. Many of these rivers derive their water from the northeastern and southwestern sections of the western cordillera. According to Smith,<sup>26</sup> the main sources of sands of this kind are feldspar porphyry of the same character as the rocks that compose Mount Pinatubo.

Sand and gravel of calcareous nature, consisting mainly of coralline limestone, are found in large quantities in Cebu, Bohol, and Romblon Provinces. According to Becker,<sup>27</sup> Cebu is covered for the most part by a mantel of coral a hundred or more feet in thickness, which reaches from the crest of the island to the sea; Smith<sup>28</sup> believes that the geologic formations of Bohol are similar to those of Cebu. A great deal of the sand used in Romblon is taken from Tablas Island at sitio Bantayan; both islands are largely of limestone formation.<sup>29</sup>

The sand and gravel specimens from Cavite and Batangas are of a scoriaceous and tuffaceous nature, and show at a glance their volcanic origin. The rivers from which the materials were taken derive their waters from the mountains and ridges situated in the neighborhood of Taal Volcano, which are composed of volcanic ash and tuff deposits.<sup>30</sup>

<sup>25</sup> Iddings, J. P., Philip. Journ. Sci. § A 5 (1910) 155.

<sup>26</sup> Philip. Journ. Sci. § A 4 (1909) 22-23.

<sup>27</sup> Report on the Geology of the Philippine Islands (1901) 19.

<sup>28</sup> Geology and Mineral Resources of the Philippine Islands, Bur. Sci. Pub. 19 (1924) 195.

<sup>29</sup> Ibid. 200.

<sup>30</sup> Adams, G. I., Philip. Journ. Sci. § A 5 (1910) 95.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands.*

| Tracing No. | Province. | Municipality. | Location of deposit.                    | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of—     | Estimated cost per cubic meter delivered at the job site. | Laboratory No. | Date sample was received. | Mineralogic classification.          |
|-------------|-----------|---------------|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|----------------|---------------------------|--------------------------------------|
| 1           | Albay     | Camalig       | Cabraran River                          | A                                                                             | Guinobatan-Jovellar bridges.        | pesos.                                                    | 119543         | Dec. 7, 1924              | Basaltic and andesitic.              |
| 2           | Do.       | Daraga        | Yawa River                              | U                                                                             | Albay High School                   | 1.50                                                      | 149637         | Jan. 4, 1924              | Sharp-grained volcanic.              |
| 3           | Do.       | Malinao       | Quinali River                           |                                                                               |                                     |                                                           | 119707         | Jan. 25, 1915             | Volcanic.                            |
| 4           | Do.       | Oas           | Creek, Legaspi-Agus road, kilometer 32. | A                                                                             | Oas School building                 | 2.00                                                      | 157832         | July 6, 1925              | Vesicular lava.                      |
| 5           | Do.       | do            | Creek, Legaspi-Agus road, kilometer 36. | A                                                                             | do                                  | 2.50                                                      | 157833         | do                        | Slightly weathered vesicular basalt. |
| 6           | Do.       | do            | Quinali River                           | U                                                                             | do                                  | 1.50                                                      | 157382         | June 9, 1925              | Scoriaceous sand.                    |
| 7           | Do.       | Polangui      | Polangui River                          | U                                                                             | Boranguit Bridge                    | 2.00                                                      | 145626         | Feb. 3, 1923              | Basaltic.                            |
| 8           | Do.       | do            | do                                      |                                                                               | Libon Bridge on Quinali River       |                                                           | 120494         | July 3, 1915              | Andesitic, basaltic.                 |
| 9           | Antique   |               | Bungol River                            |                                                                               | Bungol River Bridge                 |                                                           | 120133A        | May 7, 1915               | Andesitic.                           |
| 10          | Do.       | Ipil          | Ipil River                              |                                                                               | do                                  |                                                           | 120133B        | do                        | Do.                                  |
| 11          | Do.       | Sibalom       | Magranca beach                          | A                                                                             | Sibalom-San José irrigation project | 1.00                                                      | 154419A        | Dec. 8, 1924              | Andesitic and basaltic.              |
| 12          | Do.       | do            | do                                      | A                                                                             | do                                  | 1.00                                                      | 154419B        | do                        | Do.                                  |
| 13          | Do.       | do            | Sibalom River                           | A                                                                             | do                                  | 1.00                                                      | 152180A        | Jan. 23, 1924             | Do.                                  |
| 14          | Do.       | do            | do                                      | A                                                                             | do                                  | 1.00                                                      | 152180B        | do                        | Do.                                  |
| 15          | Do.       | do            | do                                      | A                                                                             | do                                  | 1.00                                                      | 151469         | May 6, 1924               | Do.                                  |
| 16          | Do.       | do            | do                                      | A                                                                             | do                                  | 1.00                                                      | 151652         | May 16, 1924              | Do.                                  |
| 17          | Do.       | do            | do                                      | A                                                                             | do                                  | 1.00                                                      | 151980         | June 10, 1924             | Andesitic and basaltic (washed).     |

|    |          |            |                             |   |                                 |      |         |                |                                        |
|----|----------|------------|-----------------------------|---|---------------------------------|------|---------|----------------|----------------------------------------|
| 18 | Do.      | do.        | Timpulan River              | A | do.                             | 1.00 | 151981  | do.            | Andesitic and basaltic<br>(weathered). |
| 19 | Do.      | do.        | do.                         | A | do.                             | 1.00 | 152179A | June 23, 1924  | Andesitic and basaltic.                |
| 20 | Do.      | do.        | do.                         | A | do.                             | 1.00 | 152179B | do.            | Andesitic, basaltic,<br>and magnetite. |
| 21 | Do.      | Valderrama | Caranagan River             | A | Bungol River Bridge             |      | 120133C | May 7, 1915    | Andesitic.                             |
| 22 | Bataan   | Balanga    | Talisay River               | U | Balanga Elementary<br>School.   | 1.50 | 158269  | July 31, 1926  | Basaltic and feldspar.                 |
| 23 | Do.      | Mariveles  | Mariveles beach             | A | Bureau of Navigation<br>works.  |      | 117596  | Oct. 2, 1913   | Andesitic.                             |
| 24 | Do.      | Orani      | Orani River                 |   | U. S. Army building             |      | 94269   | Nov. 17, 1911  | Quartz and feldspar.                   |
| 25 | Do.      | do.        | do.                         | U | Orani market                    | 2.00 | 144546  | Nov. 11, 1922  | Weathered dioritic.                    |
| 26 | Do.      | do.        | do.                         | U | do.                             | 2.00 | 144935  | Dec. 6, 1922   | Weathered andesitic.                   |
| 27 | Do.      | do.        | Orani River (Mu-<br>lawin). | U | do.                             | 4.00 | 145278A | Jan. 4, 1923   | Andesitic.                             |
| 28 | Do.      | do.        | Patolo River                | U | do.                             | 3.00 | 145278B | do.            | Do.                                    |
| 29 | Do.      | do.        | Talisay River               | U | do.                             | 6.00 | 145278C | do.            | Do.                                    |
| 30 | Do.      | Orion      | Araro River                 | U | Arellano Memorial<br>School.    | 3.00 | 147304A | June 16, 1923  | Feldspar.                              |
| 31 | Do.      | do.        | Orion River                 | U | do.                             | 2.50 | 147304B | do.            | Feldspar and basaltic.                 |
| 32 | Do.      | do.        | San Vicente River           | U | do.                             | 2.50 | 147304C | do.            | Do.                                    |
| 33 | Batangas | Batangas   | Batangas beach              | A | Batangas Provincial<br>Capitol. |      | 158598  | Aug. 22, 1925  | Volcanic tuff.                         |
| 34 | Do.      | do.        | Calumpang River             | A | do.                             |      | 158266  | July 31, 1925  | Do.                                    |
| 35 | Do.      | do.        | Lubiran River               | A | do.                             |      | 158671  | Aug. 27, 1925  | Do.                                    |
| 36 | Do.      | do.        | Sabang River                | A | do.                             |      | 158610  | Aug. 24, 1925  | Do.                                    |
| 37 | Do.      | Bauan      | Bauan River                 | A | Bauan waterworks                |      | 150352  | Feb. 25, 1924  | Basaltic.                              |
| 38 | Do.      | Calaca     | Lumbang River               | A | Calaca municipal<br>building.   |      | 158311  | Aug. 4, 1925   | Volcanic tuff.                         |
| 39 | Do.      | Rosario    | Pagsinsigan River           | L | Rosario waterworks              |      | 159498  | Oct. 21, 1925  | Volcanic tuff, very<br>much weathered. |
| 40 | a        | Do.        | Tembol hill                 | L | do.                             |      | 158969  | Sept. 16, 1925 | Volcanic tuff.                         |
| 41 | Do.      | do.        | San Luis                    | U | San Luis municipal<br>building. | 0.54 | 146593  | Apr. 20, 1923  | Volcanic.                              |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Province.          | Municipality.         | Location of deposit.                   | Estimated<br>quantity<br>available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the con-<br>struction of—          | Esti-<br>mated<br>cost per<br>cubic<br>meter<br>delivered<br>at the<br>job site. | Laboratory<br>No. | Date sample<br>was received. | Mineralogic classifi-<br>cation.                 |
|---------------------|--------------------|-----------------------|----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|-------------------|------------------------------|--------------------------------------------------|
| 42                  | Batangas . . . . . | Santo Tomas . . . . . | Tanauan River . . . . .                | U                                                                                   | General Malvar Memo-<br>rial School . . . . . | Pesos.                                                                           | 147007            | May 24, 1923                 | Basaltic sand.                                   |
| 43                  | Do. . . . .        | Talisay . . . . .     | Talisay beach (Taal<br>Lake). . . . .  | A                                                                                   | Talisay waterworks . . . . .                  |                                                                                  | 159123            | Sept. 25, 1925               | Volcanic tuff.                                   |
| 44                  | Benguet . . . . .  | Baguio . . . . .      | Engineers hill . . . . .               |                                                                                     | Baguio public-works<br>project . . . . .      |                                                                                  | 150866A           | Mar. 26, 1924                | Chert.                                           |
| 45                  | Do. . . . .        | do . . . . .          | Government Center . . . . .            |                                                                                     | do . . . . .                                  |                                                                                  | 150866B           | do . . . . .                 | Quartz.                                          |
| 46                  | Do. . . . .        | do . . . . .          | Limestone quarry . . . . .             |                                                                                     |                                               |                                                                                  | 123024            | Aug. 9, 1916                 | Limestone-rock<br>screenings.                    |
| 47                  | Do. . . . .        | Trinidad . . . . .    |                                        |                                                                                     |                                               |                                                                                  | 110110A           | Nov. 26, 1912                | Sand from sedimen-<br>tary and igneous<br>rocks. |
| 48                  | Do. . . . .        | do . . . . .          |                                        |                                                                                     |                                               |                                                                                  | 110110B           | Nov. 26, 1925                | Altered andesite.                                |
| 49                  | Bohol . . . . .    | Batuan . . . . .      | Batuan beach . . . . .                 | U                                                                                   | Culverts . . . . .                            | 12.00                                                                            | 144207            | Oct. 19, 1922                | Shell and some<br>quartz.                        |
| 50                  | Do. . . . .        | Calape . . . . .      | Barrio Sijoton Creek . . . . .         | A                                                                                   | Calape water reservoir . . . . .              | 3.00                                                                             | 157988            | July 16, 1925                | Hardened clay.                                   |
| 51                  | Do. . . . .        | do . . . . .          | Talisay seashore . . . . .             | U                                                                                   | Calape public buildings . . . . .             | 2.50                                                                             | 145445            | Jan. 18, 1923                | Shell and coral.                                 |
| 52                  | Do. . . . .        | Colonia . . . . .     | Masing River (in-<br>land) . . . . .   | A                                                                                   | Bridges and culverts . . . . .                | 1.00                                                                             | 145401            | Jan. 13, 1923                | Feldspar.                                        |
| 53                  | Do. . . . .        | Dauis . . . . .       | Magtubo beach . . . . .                | U                                                                                   | Dauis Bridge . . . . .                        | 0.90                                                                             | 146940            | May 19, 1923                 | Coralline and shells.                            |
| 54                  | Do. . . . .        | do . . . . .          | Mans-o! seashore . . . . .             | U                                                                                   | Bohol dispensary pa-<br>villion . . . . .     | 3.00                                                                             | 156615            | Apr. 21, 1925                | Do.                                              |
| 55                  | Do. . . . .        | do . . . . .          | Umpas-Sunculan sea-<br>shore . . . . . | U                                                                                   | do . . . . .                                  | 3.00                                                                             | 156616            | do . . . . .                 | Do.                                              |

|    |     |             |                                    |   |                                 |         |               |                                |                                    |
|----|-----|-------------|------------------------------------|---|---------------------------------|---------|---------------|--------------------------------|------------------------------------|
| 56 | Do. | Dimiao      | Tanguhay seashore                  | U | Miscellaneous public buildings. | 2.00    | 145398        | Jan. 13, 1923                  | Volcanic.                          |
| 57 | Do. | Duero       | Duero seashore                     | U | Duero public works.             | 1.27125 | Feb. 19, 1918 | Granite, sand and some shells. |                                    |
| 58 | Do. | do          | do                                 | U | Bridges and culverts.           | 2.00    | 145399        | Jan. 13, 1923                  | Volcanic rock.                     |
| 59 | Do. | Guindulman  | Guindulman beach                   | U | Culverts.                       | 1.50    | 144889        | Dec. 4, 1922                   | Volcanic rock, shell, and quartz.  |
| 60 | Do. | do          | do                                 | U | Bridges and culverts.           | 2.00    | 145400        | Jan. 13, 1923                  | Decayed serpentine.                |
| 61 | Do. | Jetafe      | Jetafe seashore                    | U | Jetafe municipal building.      | 1.50    | 152172A       | June 29, 1924                  | Coralline and quartz.              |
| 62 | Do. | do          | do                                 | U | do                              | 1.50    | 152172B       | do                             | Coralline.                         |
| 63 | Do. | Loay        | Loay River, 8 kilometers distant.  | U | Loay waterworks.                | 2.00    | 125375A       | Sept. 19, 1917                 | Rounded quartz.                    |
| 64 | Do. | do          | Loay River, 14 kilometers distant. | U | do                              |         | 125375B       | do                             | Rounded coral.                     |
| 65 | Do. | do          | Loay River, 16 kilometers distant. | U | For use as sand blast.          | 2.50    | 130432        | June 11, 1919                  | Feldspar, some corals, and shells. |
| 66 | Do. | do          | Seashore, kilometer 25.            | U | Laboc water reservoir.          | 6.50    | 157257A       | May 28, 1925                   | Coralline.                         |
| 67 | Do. | do          | do                                 | U | do                              |         | 157257B       | do                             | Do.                                |
| 68 | Do. | Maribojoc   | Seashore at Punta Cruz.            | U | Provincial Trade School.        | 6.00    | 155542        | Feb. 21, 1921                  | Do.                                |
| 69 | Do. | Palo (Loay) | Seashore at Palo                   | U | Beacon bridges.                 | 2.00    | 145397        | Jan. 13, 1923                  | Angular quartz.                    |
| 70 | Do. | Tagbilaran  | Seashore at Dauis.                 | U | Provincial High School.         | 2.50    | 144208A       | Oct. 19, 1922                  | Corals and shells.                 |
| 71 | Do. | do          | Seashore at Dauis (Manaoil).       | U | do                              | 2.50    | 144208B       | do                             | Do.                                |
| 72 | Do. | do          | Manaoil beach near Beacon.         | U | do                              | 2.50    | 144208C       | do                             | Do.                                |
| 73 | Do. | do          | Tagbilaran beach                   | U | do                              | 2.50    | 144208D       | do                             | Do.                                |
| 74 | Do. | do          | do                                 | U | do                              | 2.00    | 143950        | Sept. 26, 1922                 | Do.                                |
| 75 | Do. | do          | Beach at mouth of creek.           | U | Bohol dispensary pavilion.      | 7.00    | 156614        | Apr. 21, 1925                  | Coralline.                         |
| 76 | Do. | Valencia    | Valencia beach                     | U | Valencia barrio school          | 2.50    | 150416A       | Feb. 28, 1924                  | Do.                                |
| 77 | Do. | do          | Mouth of Panangatan River.         | U | do                              | 2.50    | 150416B       | do                             | Do.                                |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province. | Municipality. | Location of deposit.   | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site. | Laboratory No. | Date sample was received. | Mineralogic classification.         |
|-------------|-----------|---------------|------------------------|-------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------|---------------------------|-------------------------------------|
| 78          | Bohol     | Valencia      | Valencia beach         | U                                                                             | Valencia barrio school          | Peso.<br>2.00                                             | 149877         | Jan. 24, 1924             | Coralline.                          |
| 79          | Bulacan   | Angat         | Angat River            |                                                                               | Angat River dam                 |                                                           | 142811         | June 3, 1922              | Hard basalt and andesite.           |
| 80          | Do.       | Bocage        |                        |                                                                               | Bocage Bridge                   |                                                           | 66785          | Mar. 18, 1909             |                                     |
| 81          | Do.       | do            | Bocage River           | A                                                                             |                                 |                                                           | 121142A        | Oct. 12, 1915             | Basalt, magnetite, and quartz.      |
| 82          | Do.       | do            | do                     | A                                                                             | Irrigation canal structures.    |                                                           | 149420         | Dec. 14, 1923             | Basaltic and andesitic.             |
| 83          | Do.       | do            | do                     | A                                                                             | Angat irrigation project        |                                                           | 155434         | Feb. 14, 1925             | Do.                                 |
| 84          | Do.       | do            | Bocage River at bridge | A                                                                             | do                              |                                                           | 155545A        | Feb. 21, 1925             | Do.                                 |
| 85          | Do.       | do            | do                     | A                                                                             | do                              |                                                           | 155545B        | do                        | Do.                                 |
| 86          | Do.       | do            | do                     | A                                                                             | do                              |                                                           | 155545C        | do                        | Basaltic and andesitic (weathered). |
| 87          | Do.       | Bustos        | Angat River            |                                                                               | do                              |                                                           | 142896         | June 21, 1922             | Hard andesitic.                     |
| 88          | Do.       | Calumpit      | Bagbag River           |                                                                               | Malolos waterworks              |                                                           | 145288A        | Jan. 4, 1923              | Basaltic.                           |
| 89          | Do.       | do            | Calumpit River         |                                                                               | do                              |                                                           | 144857         | Dec. 1, 1922              | Hard basalt and andesite.           |
| 90          | Do.       | do            | Pulilan River          |                                                                               | do                              |                                                           | 145288B        | Jan. 4, 1923              | Basaltic, round-grained.            |
| 91          | Do.       | do            | Pulilan River at Tibag |                                                                               | do                              |                                                           | 145288C        | do                        | Basaltic, round-grained quartz.     |
| 92          | Do.       | Hagonoy       |                        |                                                                               | Hagonoy market                  |                                                           | 110032         | Nov. 23, 1912             | Quartz and magnetite.               |
| 93          | Do        | do            | Santo Niño River       |                                                                               |                                 |                                                           | 121142B        | Oct. 12, 1925             | Basaltic and quartz.                |

|     |                    |               |                                              |   |                                         |         |               |                                    |                                          |
|-----|--------------------|---------------|----------------------------------------------|---|-----------------------------------------|---------|---------------|------------------------------------|------------------------------------------|
| 94  | Do.                | Malolos       |                                              |   | Malolos Trade School                    | 62645   | Nov. 25, 1908 |                                    |                                          |
| 95  | Do.                | do            | Paombong River                               |   | Malolos waterworks                      | 144856  | Dec. 1, 1922  | Basaltic.                          |                                          |
| 96  | Do.                | Pulilan       | Pulilan River                                | A | Pulilan market                          | 121142C | Oct. 12, 1915 | Basaltic and quartz.               |                                          |
| 97  | Do.                | do            | do                                           | A | Malolos waterworks                      | 2.50    | 144591        | Nov. 15, 1922                      | Basic volcanic.                          |
| 98  | Do.                | San Ildefonso | Ma-asim River                                |   | Bureau of Public Works<br>project M211. | 110874  | Dec. 25, 1912 | Andesite, hematite,<br>and quartz. |                                          |
| 99  | Do.                | Santa Maria   | Santa Maria River                            |   | Santa Maria Bridge                      | 125491  | Oct. 13, 1917 | Vesicular basalt.                  |                                          |
| 100 | Do.                | San Miguel    | San Miguel River                             | U | Bolo Bridge                             | 113991  | Apr. 23, 1913 |                                    |                                          |
| 101 | Do.                | do            | do                                           | U | San Miguel Bridge                       | 2.50    | 147908        | Aug. 2, 1923                       | Basalt and andesite.                     |
| 102 | Cagayan            | Aparri        | Aparri beach                                 | U | Aparri shore protection                 | 0.40    | 149619        | Jan. 3, 1924                       | Basalt and feldspar.                     |
| 103 | Do.                | do            | Casabalanigan, 42<br>kilometers from<br>town | U | do                                      |         | 151295        | Apr. 23, 1924                      | Basalt and andesite.                     |
| 104 | Do.                | do            | Aparribeach                                  | U | do                                      | 0.40    | 150666        | Mar. 15, 1924                      | Basalt and quartz.                       |
| 105 | Do.                | do            | Santa Maria (Lallo)                          | A | do                                      | 3.50    | 151833        | May 29, 1924                       | Basalt and andesite.                     |
| 106 | Camarines<br>Norte | Paracale      | Tugos Creek                                  |   | Paracale waterworks                     | 3.00    | 158424        | Aug. 11, 1925                      | Quartz.                                  |
| 107 | Capiz              | Capiz         | Lawan and Capiz<br>River junction            | U | Libas Bridge                            | 1.25    | 121658        | Dec. 29, 1915                      | Quartz, magnetite,<br>olivine, and clay. |
| 108 | Do.                | Doa           | Panay River                                  | U | Balucuan Bridge                         | 1.75    | 121656        | do                                 | Basaltic.                                |
| 109 | Do.                | Iloisan       | Bar at Lawan-Capiz<br>River                  | U | Iloisan School                          | 2.50    | 121434        | Nov. 22, 1915                      | Quartz, hornblende,<br>tuff, and basalt. |
| 110 | Cavite             | General Trias | Malabon River                                | U | General Trias School                    | 3.50    | 151029        | Apr. 5, 1924                       | Vesicular lava and<br>quartz.            |
| 111 | Do.                | Imus          | Imus River                                   |   |                                         |         | 123445        | Nov. 1, 1916                       | Soft volcanic scoria.                    |
| 112 | Do.                | Indang        | Mountain stream                              |   | Indang and Alfonso<br>School            |         | 122322        | Apr. 27, 1916                      | Vesicular basalt.                        |
| 113 | Do.                | Kawit         | Imus River                                   |   | Aguinaldo School                        |         | 122314A       | Apr. 28, 1916                      | Volcanic tuff and<br>scoria.             |
| 114 | Do.                | do            | Rio Grande                                   |   | do                                      |         | 122314B       | do                                 | Volcanic.                                |
| 115 | Do.                | do            | do                                           |   | Calero River Bridge                     |         | 123443        | Nov. 1, 1916                       | Do.                                      |
| 116 | Do.                | do            | do                                           |   |                                         |         | 123521        | Nov. 15, 1916                      | Ferromagnesian.                          |
| 117 | Do.                | Noveleta      | Noveleta River                               | U | Cavite waterworks                       | 3.00    | 149506        | Dec. 22, 1923                      | Basaltic.                                |
| 118 | Do.                | do            | San Juan River at<br>bridge                  |   | Noveleta-Cavite road                    |         | 125977        | Jan. 2, 1918                       | Scoriaceous basalt.                      |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province. | Municipality.  | Location of deposit.                        | Estimated quantity available.<br>A, abundant;<br>J., limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site.<br><i>Pesos.</i> | Laboratory No. | Date sample was received. | Mineralogic classification.      |
|-------------|-----------|----------------|---------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|----------------|---------------------------|----------------------------------|
| 119         | Cavite.   | Ternate.       | River bed opposite town.                    |                                                                                | U. S. Military buildings.       |                                                                            | 94269          | Nov. 17, 1911             | Scoria, pumice, and tuff.        |
| 120         | Cebu.     | Argao.         | Argao beach.                                | A                                                                              | Concrete culverts.              |                                                                            | 147975A        | Aug. 11, 1923             | Coraline.                        |
| 121         | Do.       | do.            | Argao River.                                | A                                                                              | do.                             |                                                                            | 147975B        | do.                       | Basaltic (screenings).           |
| 122         | Do.       | Asturias.      | Asturias beach.                             | A                                                                              | Asturias School building.       | 3.00                                                                       | 146321         | Mar. 31, 1923             | Volcanic, quartz, and shells.    |
| 123         | Do.       | Badian.        | Badian Island.                              | U                                                                              | Bridges and culverts.           | 3.50                                                                       | 145190         | Dec. 27, 1922             | Corals and shells.               |
| 124         | Do.       | Barili.        | Japitan beach.                              | A                                                                              | Barili School building.         | 2.40                                                                       | 152599         | July 24, 1924             | Coraline.                        |
| 125         | Do.       | do.            | Stream, Barili south road, kilometer 115.8. |                                                                                | Barili south road.              |                                                                            | 114829         | May 8, 1913               |                                  |
| 126         | Do.       | Carcar.        | Mananga River.                              | U                                                                              | Carcar waterworks.              | 2.40                                                                       | 147129         | June 2, 1923              | Weathered basalt.                |
| 127         | Do.       | Catmon.        | Bau River bed.                              | U                                                                              | Miscellaneous construction.     |                                                                            | 145879         | Feb. 26, 1923             | Angular volcanic.                |
| 128         | Do.       | Cebu.          | Buhisan River.                              |                                                                                | Dam, Osmeña waterworks.         | 1.00                                                                       | 152214         | June 26, 1924             | Basaltic, andesitic (weathered). |
| 129         | Do.       | do.            | Guadalupe River.                            | U                                                                              | Cebu Normal School.             | 1.60                                                                       | 144671         | Nov. 20, 1922             | Volcanic scoria.                 |
| 130         | Do.       | do.            | do.                                         | U                                                                              | do.                             | 2.20                                                                       | 145880         | Feb. 26, 1923             | Do.                              |
| 131         | Do.       | do.            | Mananga River.                              |                                                                                |                                 |                                                                            | 78560          | May 16, 1910              |                                  |
| 132         | Do.       | do.            | do.                                         |                                                                                |                                 |                                                                            | 123328         | Oct. 7, 1916              | Derived from sedimentary rocks.  |
| 133         | Do.       | Daan Bantayan. | Town beach.                                 | A                                                                              | Tank.                           |                                                                            | 143761         | Sept. 8, 1922             | Corals and shells.               |
| 134         | Do.       | do.            | Bogo beach.                                 | A                                                                              | do.                             |                                                                            | 144247         | Oct. 21, 1922             | Do.                              |

|     |              |                 |                              |   |                                  |         |                |                                  |
|-----|--------------|-----------------|------------------------------|---|----------------------------------|---------|----------------|----------------------------------|
| 135 | Do.          | Dalaguete Alcoy | Beach near cemetery.         | A | Culverts.....                    | 147399  | June 21, 1923  | Calcareous.                      |
| 136 | Do.          | Danao           | Danao River.....             |   |                                  | 78560   | May 16, 1910   |                                  |
| 137 | Do.          | Dumanjug        | Dumanjug beach ..            | A | Dumanjug School..... 1.40        | 144888  | Dec. 4, 1922   | Corals and shells.               |
| 138 | Do.          | Liloan          | Liloan beach.....            | A | Cebu public works.....           | 146141  | Mar. 16, 1923  | Hard basalt and quartz.          |
| 139 | Do.          | Mandawe         | Mandawe beach.....           |   |                                  | 123327  | Oct. 7, 1916   | Quartz.                          |
| 140 | Do.          | Opon            | Butuanon River at Mandawe.   | A | Mactan School..... 3.50          | 155075  | Jan. 15, 1925  | Andesitic and basaltic.          |
| 141 | Do.          | Pinamugahan     | Pinamugahan beach..          | U | Miscellaneous public works.      | 144970  | Dec. 8, 1922   | Angular quartz.                  |
| 142 | Do.          | Poro            | Poro beach.....              | A | Poro municipal building.         | 154356  | Dec. 4, 1924   | Coralline.                       |
| 143 | Do.          | San Remigio     | San Remigio River.....       | A | San Remigio municipal building.  | 139931  | Aug. 31, 1921  | Corals and shells.               |
| 144 | Do.          | Santander       | Beach at mouth of creek.     | A | Santander municipal building.    | 156037  | Mar. 19, 1925  | Coralline.                       |
| 145 | Do.          | Toledo          | Tajao River.....             |   |                                  | 122395  | May 12, 1916   | Basalt, shells, and corals.      |
| 146 | Ilocos Norte | Laoag           | Laoag River bed.....         |   | Road and bridges.....            | 121023  | Sept. 22, 1915 | Andesite, diorite, and quartz.   |
| 147 | Do.          | do              | Laoag River bank.....        | A | Laoag Normal School..... 1.20    | 149318  | Dec. 6, 1923   | Andesite and quartz.             |
| 148 | Do.          | Vintar          | Vintar River at dam.         | A | Laoag-Vintar irrigation project. | 150853  | Mar. 25, 1924  | Weathered andesite and basalt.   |
| 149 | Do.          | do              | do.....                      | A | do.....                          | 151190  | Apr. 15, 1921  | Andesite, basalt, and quartz.    |
| 150 | Ilocos Sur   | Candon          | Santa Cruz River bed.        | U | Candon School..... 8.00          | 151978  | June 10, 1924  | Do.                              |
| 151 | Do.          | Vigan           | Govantes River bed.          | U | Provincial Hospital..... 2.00    | 151931A | Apr. 25, 1924  | Basaltic.                        |
| 152 | Do.          | do              | Govantes River bed (washed). | U | do..... 4.50                     | 151885  | June 3, 1924   | Andesitic, basaltic, and quartz. |
| 153 | Do.          | do              | Mestizo River.....           | U | do..... 2.00                     | 151331B | Apr. 25, 1924  | Basaltic.                        |
| 154 | Iloilo       | Iloilo          | Jaro River.....              | U | Iloilo Normal School..... 2.50   | 154417  | Dec. 8, 1924   | Basaltic, feldspar, and quartz.  |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province. | Municipality.  | Location of deposit.                         | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site.<br><i>Pesos.</i> | Laboratory No. | Date sample was received. | Mineralogic classification.      |
|-------------|-----------|----------------|----------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|----------------|---------------------------|----------------------------------|
| 155         | Iloilo.   | La Paz.        |                                              |                                                                               | Iloilo Provincial Prison.       | 88922                                                                      | June 14, 1911  |                           |                                  |
| 156         | Do.       | Molo.          |                                              |                                                                               | Molo Bridge.                    | 84978                                                                      | Dec. 9, 1910   |                           |                                  |
| 157         | Do.       | San Miguel.    | Aganao River.                                |                                                                               | Aganao irrigation project.      | 142721                                                                     | May 25, 1922   |                           | Andesite, basalt, and quartz.    |
| 158         | Do.       | do.            | do.                                          | A                                                                             | do.                             | 1.50                                                                       | 144037         | Oct. 3, 1922              | Magnetite and quartz.            |
| 159         | Do.       | do.            | Oton beach.                                  | A                                                                             | do.                             | 1.00                                                                       | 145780         | Feb. 17, 1928             | Basalt and diorite.              |
| 160         | Do.       | Santa Barbara. | Santa Barbara River.                         | U                                                                             | Bainica River bridge.           | 2.84                                                                       | 155603         | Feb. 26, 1925             | Basalt, andesite, and limestone. |
| 161         | Do.       | do.            | do.                                          | U                                                                             | Capiz Elementary School.        | 2.84                                                                       | 159394         | Oct. 14, 1925             | Andesite and basalt.             |
| 162         | Laguna.   | Bay.           | Bay River.                                   |                                                                               | Culverts.                       | 145378                                                                     | Jan. 12, 1928  |                           | Do.                              |
| 163         | Do.       | Los Baños.     | Bayog, near lake.                            | A                                                                             | Miscellaneous buildings.        | 86085A                                                                     | Jan. 26, 1911  |                           | Do.                              |
| 164         | Do.       | do.            | Bay River.                                   | U                                                                             | do.                             | 130307                                                                     | May 22, 1919   |                           | Volcanic tuff and scoria.        |
| 165         | Do.       | do.            | Los Baños Bay.                               | A                                                                             |                                 | 189310                                                                     | July 18, 1921  |                           |                                  |
| 166         | Do.       | do.            | Mayondon No. 1.                              | U                                                                             | Miscellaneous improvements.     | 86085B                                                                     | Jan. 26, 1911  |                           | Basalt and shells.               |
| 167         | Do.       | do.            | Mayondon No. 2,<br>100 meters from<br>No. 1. | U                                                                             | do.                             | 86085C                                                                     | do.            |                           | Do.                              |
| 168         | Do.       | Majayjay.      | Majayjay River.                              | A                                                                             | Majayjay waterworks.            | 132068                                                                     | Dec. 6, 1919   |                           | Andesite and basalt.             |
| 169         | Do.       | do.            | Olla River.                                  | U                                                                             | Majayjay market.                | 158671                                                                     | Aug. 27, 1925  |                           | Oxidized argillaceous matter.    |

|     |       |            |                                              |                         |         |                |                                     |                                        |
|-----|-------|------------|----------------------------------------------|-------------------------|---------|----------------|-------------------------------------|----------------------------------------|
| 170 | Do.   | Pagsanjan  | Pagsanjan River                              | Pagsanjan waterworks    | 128903  | Dec. 6, 1918   | Angular basaltic sand.              |                                        |
| 171 | Do.   | Rizal      | Mayton River                                 | U Rizal School          | 143644  | Aug. 29, 1922  | Scoriaceous basalt.                 |                                        |
| 172 | Do.   | do         | do                                           | U do                    | 145733  | Feb. 14, 1923  | Do.                                 |                                        |
| 173 | Do.   | Santa Cruz | Malunod River                                | Bañadero River Bridge   | 142380  | Apr. 20, 1922  | Weathered basaltic sand.            |                                        |
| 174 | Do.   | do         | Santa Cruz River                             | A Santa Cruz Hospital   | 149829  | Jan. 21, 1924  | Basaltic and andesitic.             |                                        |
| 175 | Do.   | San Pablo  | Bañadero River                               | A Bañadero River Bridge | 142608  | May 12, 1922   | Andesitic dioritic.                 |                                        |
| 176 | Do.   | do         | Lucena beach                                 | do                      | 142926  | June 16, 1922  | Do.                                 |                                        |
| 177 | Leyte | Alangalang | Dapdap River                                 | Provincial public works | 147651A | July 11, 1923  | Basaltic and magnetite.             |                                        |
| 178 | Do.   | do         | Lingayon River                               | do                      | 147651B | do             | Weathered basaltic sand.            |                                        |
| 179 | Do.   | Barugo     | Tunga River                                  | do                      | 147651C | do             | Do.                                 |                                        |
| 180 | Do.   | do         | Barugo beach                                 | Barugo School           | 121025  | Sept. 22, 1915 | Basaltic.                           |                                        |
| 181 | Do.   | Bato       | Bato beach                                   | do                      | 120782  | Aug. 12, 1915  | Quartz, ferromagnesian, and shells. |                                        |
| 182 | Do.   | Burauen    | Burauen River                                | Provincial public works | 147651D | July 11, 1923  | Basalt and quartz.                  |                                        |
| 183 | Do.   | Carigara   | Carigara River                               | U Carigara School       | 145326  | Jan. 8, 1923   | Volcanic.                           |                                        |
| 184 | Do.   | Dagami     | Guinarona River                              | Provincial public works | 147651E | July 11, 1923  | Fairly hard basaltic.               |                                        |
| 185 | Do.   | Dulag      | Tibuz River                                  | do                      | 147651F | do             | Weathered basalt.                   |                                        |
| 186 | Do.   | Magelian   | Triana beach                                 | U Limasawa School       | 149996  | Feb. 1, 1924   | Coralline.                          |                                        |
| 187 | Do.   | Ormoc      | Anilao River                                 | U Ormoc market          | 1.50    | 159886         | Basalt and andesite.                |                                        |
| 188 | Do.   | Palo       | Malitrong River                              | Provincial public works | 147651G | July 11, 1923  | Basaltic (weathered).               |                                        |
| 189 | Do.   | Pastrana   | Calogcog River                               | do                      | 147651H | do             | Coarse basalt.                      |                                        |
| 190 | Do.   | Tabontabon | do                                           | Tabontabon School       | 121416  | Nov. 24, 1915  | Magnetite, quartz, and pyroxene.    |                                        |
| 191 | Do.   | Tacloban   | Beach, kilometer 4, Tacloban-Cari-gara road. | Tacloban wharf          | 2.00    | 150161A        | Feb. 12, 1924                       | Andesite, a little quartz, and shells. |
| 192 | Do.   | do         | Beach, kilometer 5, Tacloban-Cari-gara road. | U For use as sand blast | 2.20    | 130434         | June 12, 1919                       | Andesite and trachyte.                 |
| 193 | Do.   | do         | Camp Bampuo                                  | U Tacloban wharf        | 0.75    | 146284A        | Mar. 27, 1923                       | Quartz, corals, and shells.            |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province.       | Municipality.        | Location of deposit.      | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site.<br><i>Pesos.</i> | Laboratory No. | Date sample was received. | Mineralogic classification.          |
|-------------|-----------------|----------------------|---------------------------|-------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|----------------|---------------------------|--------------------------------------|
| 194         | Leyte .....     | Tacloban.....        | Dagulitan River.....      | U                                                                             | For use as sand blast.....      | 2.50                                                                       | 130433         | June 11, 1919             | Andesite, some feldspar, and quartz. |
| 195         | Do.....         | do.....              | Kilometer 4.....          | U                                                                             | Tacloban wharf.....             | 0.75                                                                       | 146284B        | Mar. 27, 1923             | Quartz, corals, and shells.          |
| 196         | Do.....         | do.....              | Sabang beach.....         | U                                                                             | do.....                         | 0.75                                                                       | 146284C        | do.....                   | Do.                                  |
| 197         | Do.....         | do.....              | do.....                   | U                                                                             | do.....                         | 2.00                                                                       | 150161B        | Feb. 12, 1924             | Fine andesite and quartz.            |
| 198         | Do.....         | do.....              | Tigbao River.....         |                                                                               | Tacloban port works.....        | 0.80                                                                       | 121583         | Dec. 15, 1915             | Quartz, sandstone, and andesite.     |
| 199         | Do.....         | Tanauan.....         | Malaguicay River.....     |                                                                               | Provincial public works.....    |                                                                            | 147651I        | July 11, 1923             | Basalt and magnetite.                |
| 200         | Marinduque..... | Boac.....            | Boac seashore.....        | U                                                                             | Boac pier construction.....     | 1.20                                                                       | 155971         | Mar. 17, 1925             | Andesite, basalt, and quartz.        |
| 201         | Do.....         | Gasan.....           | Gasan beach.....          |                                                                               | Gasan-Buenavista road.....      |                                                                            | 119706         | Jan. 25, 1915             |                                      |
| 202         | Do.....         | do.....              | Matandang Asan River..... | U                                                                             | Matandang Asan Bridge.....      | 0.50                                                                       | 151128A        | Apr. 11, 1924             | Weathered basalt.                    |
| 203         | Do.....         | do.....              | Gasan beach.....          | U                                                                             | do.....                         | 0.50                                                                       | 151128B        | do.....                   | Andesite and quartz.                 |
| 204         | Do.....         | do.....              | Tiguijan River.....       |                                                                               | Gasan-Buenavista road.....      |                                                                            | 119706         | Jan. 25, 1915             |                                      |
| 205         | Masbate.....    | Masbate.....         | Baleno seashore.....      | A                                                                             | Masbate market.....             | 5.00                                                                       | 153778         | Oct. 23, 1924             | Andesite and diorite.                |
| 206         | Do.....         | do.....              | Togbo River.....          | A                                                                             | do.....                         | 5.00                                                                       | 152783         | Aug. 7, 1924              | Andesite and basalt.                 |
| 207         | Do.....         | Milagros.....        | Asid River.....           | U                                                                             | Milagros School.....            | 5.00                                                                       | 149618         | Dec. 26, 1923             | Andesite and basalt (weathered).     |
| 208         | Do.....         | do.....              | Lumbang River.....        | U                                                                             | do.....                         | 7.00                                                                       | 149505         | Dec. 22, 1923             | Do.                                  |
| 209         | Mindanao b..... | Cagayan (Misamis). . | Cagayan River.....        |                                                                               | Cagayan wharf.....              |                                                                            | 122045A        | Mar. 10, 1916             | Basalt and quartz.                   |

221904-3

|     |     |                        |                                      |                            |                            |         |               |                                            |
|-----|-----|------------------------|--------------------------------------|----------------------------|----------------------------|---------|---------------|--------------------------------------------|
| 210 | Do. | do.                    | Cagayan beach                        | do.                        |                            | 122045B | do.           | Basalt, quartz, and shells.                |
| 211 | Do. | do.                    | Cagayan River                        | Cagayan Central School.    | 2.00                       | 123101  | Aug. 24, 1916 | Do.                                        |
| 212 | Do. | do.                    | Iponan River                         | Iponan and Molugan School. |                            | 141781  | Feb. 20, 1922 | Weathersed andesite, quartz, and feldspar. |
| 213 | Do. | do.                    | Mouth of Cugman River.               | Macabalan wharf.           |                            | 122187  | Apr. 10, 1916 | Magnetite, olivine, and quartz.            |
| 214 | Do. | Cotabato (Cotabato).   | Cotabato River                       | U                          | Cotabato Hospital tank.    | 1.50    | 148647        | Tuff, pumice, and cinders.                 |
| 215 | Do. | do.                    | Rio Grande                           | U                          | do.                        | 1.50    | 147911        | Limestone-rock screenings.                 |
| 216 | Do. | do.                    | Linunc beach                         |                            | do.                        |         | 121499        | Quartz and shells.                         |
| 217 | Do. | do.                    | do.                                  |                            | do.                        |         | 124391        | Corals, shells, and quartz.                |
| 218 | Do. | Davao (Davao).         | Davao River, 2.5 kilometers distant. | U                          | Davao wharf.               | 2.75    | 157985        | Basalt and andesite.                       |
| 219 | Do. | do.                    | Davao River, 3.5 kilometers distant. | U                          | do.                        | 2.75    | 157986        | Do.                                        |
| 220 | Do. | Jolo (Sulu).           |                                      |                            | Miscellaneous works.       |         | 118287        | Corals and shells.                         |
| 221 | Do. | do.                    | Baliwasan beach (Zamboanga).         | U                          | Jolo wharf.                | 8.00    | 148237A       | Basalt and coralline.                      |
| 222 | Do. | do.                    | do.                                  | U                          | do.                        | 8.00    | 148237B       | Do.                                        |
| 223 | Do. | do.                    | Caldera Bay                          | U                          | do.                        | 5.00    | 148237C       | Basalt and quartz.                         |
| 224 | Do. | do.                    | Tumaga River (Zamboanga).            | U                          | do.                        | 10.00   | 148237D       | Do.                                        |
| 225 | Do. | do.                    | Maimbung River                       |                            | Culverts.                  | 4.50    | 125574        | Volcanic sand and quartz.                  |
| 226 | Do. | Surigao (Surigao).     | Surigao beach                        |                            | High School building.      |         | 152656        | Basalt and andesite.                       |
| 227 | Do. | Zamboanga (Zamboanga). | Baliwasan beach                      | U                          | Zamboanga wharf extension. | 1.50    | 156546A       | Basalt, andesite, and corals.              |
| 228 | Do. | do.                    | do.                                  | U                          | do.                        | 1.50    | 156546B       | Do.                                        |

• Tested at the age of 18 days and 30 days, respectively.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province.         | Municipality.             | Location of deposit.         | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site.<br>Pclos. | Laboratory No. | Date sample was received. | Mineralogic classification.    |
|-------------|-------------------|---------------------------|------------------------------|-------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|----------------|---------------------------|--------------------------------|
| 229         | Mindanao          | Zamboanga<br>(Zamboanga). | Tumaga River<br>(Zamboanga). |                                                                               | Zamboanga waterworks.           |                                                                     | 122303A        | Apr. 26, 1916             | Basalt, andesite, and quartz.  |
| 230         | Do.               | do.                       | do.                          |                                                                               | do.                             |                                                                     | 122303B        | do.                       | Do.                            |
| 231         | Do.               | do.                       | Zamboanga beach              | U                                                                             | Jolo wharf.                     | 1.50                                                                | 147515         | July 2, 1923              | Basaltic.                      |
| 232         | Do.               | do.                       | do.                          | U                                                                             | do.                             | 2.00                                                                | 154786         | Jan. 6, 1925              | Basalt and corals.             |
| 233         | Do.               | do.                       |                              |                                                                               | Zamboanga Normal.               | 2.00                                                                | 127040         | Feb. 6, 1918              | Decayed metamorphic.           |
| 234         | Do.               | do.                       |                              |                                                                               | do.                             | 0.90                                                                | 127041         | do.                       | Hard basalt and corals.        |
| 235         | Nueva Ecija       | Caranglan                 | Caranglan River              | U                                                                             | Kabolinawan Bridge              | 1.50                                                                | 147350         | June 19, 1923             |                                |
| 236         | Do.               | Cabanatuan                | Rio Grande                   | U                                                                             | Provincial Hospital             | 2.00                                                                | 150669         | Mar. 15, 1924             | Basalt and andesite.           |
| 237         | Occidental Negros | Bacolod                   | Lupit River                  | U                                                                             | Bacolod Provincial Hospital     | 3.00                                                                | 149510         | Dec. 22, 1923             | Basalt and feldspar.           |
| 238         | Do.               | do.                       | do.                          | U                                                                             | do.                             | 2.50                                                                | 156703         | Apr. 27, 1925             | Andesite and feldspar.         |
| 239         | Do.               | Bago                      | Bago River                   | U                                                                             | Bago School extension           | 2.00                                                                | 151982         | June 10, 1924             | Basalt, andesite, and quartz.  |
| 240         | Do.               | Binalbagan                | Binalbagan River             | U                                                                             | Binalbagan School               | 2.00                                                                | 149507         | Dec. 22, 1923             | Basalt.                        |
| 241         | Do.               | Cadiz                     | Talabaan River               |                                                                               | Cadiz municipal market          | 5.00                                                                | 158885         | Sept. 10, 1925            | Weathersed argillaceous.       |
| 242         | Do.               | Himamaylan                | Talabaan-Diot River          | U                                                                             | Himamaylan School               | 4.00                                                                | 150355         | Mar. 25, 1924             | Andesite and basalt weathered. |
| 243         | Do.               | Isabela                   | Binalbagan River             | U                                                                             | Isabela School                  | 3.50                                                                | 153663         | Oct. 16, 1924             | Do.                            |
| 244         | Do.               | do.                       | Quintubhan River             | U                                                                             | do.                             | 3.50                                                                | 154169         | Dec. 21, 1924             | Andesitic porphyry.            |
| 245         | Do.               | La Carlota                | Alejandria River             | U                                                                             | La Carlota School               | 2.00                                                                | 148964         | Nov. 3, 1923              | Basal.                         |

|     |                  |               |                        |   |                                  |      |         |                |                                 |
|-----|------------------|---------------|------------------------|---|----------------------------------|------|---------|----------------|---------------------------------|
| 246 | Do.              | La Castellana | Bungahin River         |   | La Castellana municipal building | 2.50 | 158983  | Sept. 17, 1925 | Basalt and hornblende.          |
| 247 | Do.              | do            | do                     | U | do                               | 2.00 | 159768  | Nov. 3, 1925   | Basic igneous.                  |
| 248 | Do.              | Maa           | Maragandang River      | U | Maa School                       | 3.00 | 150748  | Mar. 19, 1924  | Andesite and quartz.            |
| 249 | Do.              | Pulupandan    | Bago River             | U | Pulupandan wharf                 |      | 158271  | July 31, 1925  | Andesite and basalt, weathered. |
| 250 | Do.              | Talisay       | Matabang River         | U | Talisay School                   | 2.00 | 151004  | Apr. 3, 1924   | Andesite and quartz.            |
| 251 | Oriental Negros. | Bais          | Bais River             |   | Bais River Bridge                |      | 122046  | Mar. 10, 1916  | Coralline and quartz.           |
| 252 | Do.              | Dumaguete     | Banica River           | U | Storage tank                     | 2.40 | 145642A | Feb. 5, 1923   | Granitic sand and quartz.       |
| 253 | Do.              | do            | Ocoy River             | U | do                               | 6.00 | 145642B | do             | Do.                             |
| 254 | Palawan          | Coron         | Banga River            | U | Coron wharf                      | 4.00 | 155109  | Jan. 28, 1925  | Feldspar, very much weathered.  |
| 255 | Do.              | do            | Beach near wharf       | U | do                               |      | 157987  | July 16, 1925  | Feldspar.                       |
| 256 | Do.              | do            | Coron beach            |   | do                               |      | 124014  | Feb. 6, 1917   | Iron-stained quartz.            |
| 257 | Pampanga         | Angeles       | Abacan River           | A | Angeles Bridge No. 89            | 3.00 | 146673  | Apr. 25, 1923  | Angular glassy feldspar.        |
| 258 | Do.              | do            | do                     | A | do                               |      | 147419  | June 22, 1923  | Andesite.                       |
| 259 | Do.              | Floridablanca | Valdez River           | A | Floridablanca market             |      | 159229  | Oct. 2, 1925   | Limestone and quartz.           |
| 260 | Do.              | do            | do                     | A | do                               |      | 159887  | Nov. 11, 1925  | Feldspar and quartz.            |
| 261 | Do.              | Magalang      | Quintangil River       | A | Magalang municipal building      | 2.50 | 146671  | Apr. 25, 1923  | Basalt and quartz.              |
| 262 | Do.              | Mexico        | Barrio San Agustin     | A | Santa Ana School                 |      | 149486A | Dec. 20, 1923  | Andesite and quartz.            |
| 263 | Do.              | do            | Barrio Santo Rosario   | A | do                               |      | 149486B | do             | Do.                             |
| 264 | Pangasinan       | Aguilar       | Aguilar River          | U | Aguilar School                   | 1.75 | 146985  | May 22, 1923   | Diorite.                        |
| 265 | Do.              | Alcala        | Barrio San Juan        | U | Alcala School                    | 3.50 | 144572  | Nov. 14, 1922  | Basalt and feldspar.            |
| 266 | Do.              | Anda          | Balincanguin River     | U | Anda School                      | 5.00 | 146986  | May 22, 1923   | Ferrromagnesian and feldspar.   |
| 267 | Do.              | Balungao      | Villasias River        | U | Balungao School                  | 4.00 | 146157  | Mar. 17, 1923  | Basic volcanic and feldspar.    |
| 268 | Do.              | Bautista      | Agno River             | U | Bayambang School                 | 3.70 | 147818  | July 25, 1923  | Basalt, andesite, and feldspar. |
| 269 | Do.              | Bani          | Agno River at Labrador | U | Bani School                      | 5.00 | 145627  | Feb. 3, 1923   | Angular feldspar.               |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Province.  | Municipality. | Location of deposit.              | Estimated<br>quantity<br>avail-<br>able.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the con-<br>struction of— | Estimated<br>cost per<br>cubic<br>meter<br>delivered<br>at the<br>job site. | Laboratory<br>No. | Date sample<br>was received. | Mineralogic classifi-<br>cation.             |
|---------------------|------------|---------------|-----------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|-------------------|------------------------------|----------------------------------------------|
|                     |            |               |                                   |                                                                                          |                                      | Pesos.                                                                      |                   |                              |                                              |
| 270                 | Pangasinan | Bolinao       | Piluluban River                   | U                                                                                        | Bolinao School                       | 5.00                                                                        | 152865            | Aug. 14, 1924                | Coralline limestone.                         |
| 271                 | Do.        | Burgos        | Tambacan                          | U                                                                                        | Burgos Central School                | 4.00                                                                        | 145188            | Dec. 27, 1922                | Volcanic rock.                               |
| 272                 | Do.        | Calasiao      | Abeloleng River at<br>San Jacinto | U                                                                                        | Calasiao Central School              | 4.00                                                                        | 144639            | Nov. 17, 1922                | Basalt and feldspar.                         |
| 273                 | Do.        | do            | Calasiao-Malabago<br>River        | U                                                                                        | Provincial Hospital                  | 3.50                                                                        | 153589            | Oct. 11, 1924                | Do.                                          |
| 274                 | Do.        | do            | Malabago River                    | U                                                                                        | Calasiao School                      | 2.60                                                                        | 144200            | Oct. 18, 1922                | Feldspar.                                    |
| 275                 | Do.        | do            | Mariquita River                   | U                                                                                        | do                                   | 4.00                                                                        | 146277            | Jan. 4, 1923                 | Do.                                          |
| 276                 | Do.        | do            | Santa Barbara River               | U                                                                                        | do                                   | 3.00                                                                        | 145189            | Dec. 27, 1922                | Feldspar and quartz.                         |
| 277                 | Do.        | do            | Tarlac River                      | U                                                                                        | do                                   | 2.00                                                                        | 145099            | Dec. 19, 1922                | Glassy feldspar.                             |
| 278                 | Do.        | Dagupan       | San Jacinto-Cane-<br>leng River   | U                                                                                        | Provincial Hospital                  | 4.00                                                                        | 152549            | July 22, 1924                | Basalt and andesite.                         |
| 279                 | Do.        | Lingayen      | Labrador River                    | U                                                                                        | Lingayen High School                 | 3.50                                                                        | 149973            | Jan. 31, 1924                | Do.                                          |
| 280                 | Do.        | Malasiqui     | Malasiqui River                   | U                                                                                        | Malasiqui School                     | 2.00                                                                        | 146044            | Mar. 10, 1923                | Ferromagnesian and<br>quartz.                |
| 281                 | Do.        | do            | do                                | U                                                                                        | do                                   | 2.40                                                                        | 146427            | Apr. 10, 1923                | Andesitic.                                   |
| 282                 | Do.        | Manaoag       | Asingan River                     | U                                                                                        | Manaoag School build-<br>ing         | 2.20                                                                        | 152247            | June 30, 1924                | Weathered grains, ba-<br>salt, and andesite. |
| 283                 | Do.        | Santa Barbara | Santa Barbara<br>River            | U                                                                                        | Provincial Hospital                  | 4.50                                                                        | 153605            | Oct. 13, 1924                | Andesite and feld-<br>spar.                  |
| 284                 | Do.        | San Carlos    | Ano Nilintap (Ma-<br>lasiqui)     | U                                                                                        | San Juan Bridge                      | 2.80                                                                        | 149821            | Jan. 21, 1924                | Basalt, feldspar, and<br>shells.             |
| 285                 | Do.        | do            | Abeloleng River                   | U                                                                                        | San Carlos School                    | 144407                                                                      | Nov. 3, 1922      | Basalt and quartz.           |                                              |
| 286                 | Do.        | do            | Bogtung River                     | U                                                                                        | San Juan Bridge                      | 2.30                                                                        | 150493            | Mar. 5, 1924                 | Basalt, andesite, and<br>shells.             |

|     |       |              |                           |   |                                                    |      |         |               |                                |
|-----|-------|--------------|---------------------------|---|----------------------------------------------------|------|---------|---------------|--------------------------------|
| 287 | Do.   | do.          | Malabago River.           | U | San Carlos School building.                        | 2.50 | 143742  | July 7, 1922  | Feldspar and andesite.         |
| 288 | Do.   | do.          | River bank at San Fabian. | A | do.                                                | 4.20 | 143265  | July 19, 1922 | Volcanic and feldspar.         |
| 289 | Do.   | San Jacinto. | Mapandan River.           | A | San Jacinto School building.                       | 3.00 | 145345  | Jan. 9, 1923  | Do.                            |
| 290 | Do.   | do.          | San Jacinto River.        | A | do.                                                | 2.00 | 145666  | Feb. 7, 1923  | Andesite angular.              |
| 291 | Do.   | Tayug.       | Aguo River.               | A | Tayug School.                                      | 1.50 | 144072  | Oct. 6, 1922  | Andesite and feldspar.         |
| 292 | Rizal | Las Piñas.   | Las Piñas River.          |   | Las Piñas Bridge.                                  |      | 80997   | Aug. 16, 1910 | Vesicular lava.                |
| 293 | Do.   | Mariquina.   | Mariquina River.          | A | Angona Bridge.                                     |      | 121816  | Jan. 27, 1916 | Basalt, magnetite, and quartz. |
| 294 | Do.   | do.          | do.                       | U | Zamboanga water-works.                             |      | 122021  | Mar. 7, 1916  | Andesite, basalt, and quartz.  |
| 295 | Do.   | do.          | do.                       | U | Pier No. 7, Manila.                                |      | 158001  | July 17, 1925 | Andesite and basalt.           |
| 296 | Do.   | do.          | do.                       | U | do.                                                |      | 158318A | Aug. 4, 1925  | Do.                            |
| 297 | Do.   | do.          | do.                       | U | do.                                                |      | 158318B | do.           | Do.                            |
| 298 | Do.   | McKinley.    | Pasig River.              | U | Legislative Building, Manila.                      | 2.00 | 151600A | May 14, 1924  | Do.                            |
| 299 | Do.   | do.          | do.                       | U | do.                                                | 2.00 | 151600B | do.           | Do.                            |
| 300 | Do.   | do.          | do.                       | U | Jones Bridge subway.                               |      | 151984  | June 10, 1924 | Do.                            |
| 301 | Do.   | do.          | do.                       | U | Legislative Building, Manila.                      | 2.50 | 152145  | June 20, 1924 | Do.                            |
| 302 | Do.   | Novaliches.  | Novaliches River.         |   | Novaliches Bridge.                                 |      | 65401   | Feb. 24, 1909 |                                |
| 303 | Do.   | Pasig River. | Pasig River.              | A | Fort McKinley.                                     |      | 94269   | Nov. 17, 1911 | Basalt and shells.             |
| 304 | Do.   | do.          | do.                       | U | Legislative Building, Manila.                      | 2.00 | 130366  | May 26, 1919  | Basalt and andesite.           |
| 305 | Do.   | do.          | do.                       | U | San Luis municipal building, Batangas.             | 3.00 | 146939  | May 19, 1923  | Andesite, diorite, and quartz. |
| 306 | Do.   | do.          | do.                       | U | Indang waterworks, Cavite.                         | 4.50 | 147803  | June 16, 1923 | Basalt.                        |
| 307 | Do.   | do.          | do.                       | U | University of the Philippines chemical laboratory. | 3.00 | 149466  | Dec. 18, 1923 | Basalt and andesite.           |
| 308 | Do.   | do.          | do.                       | U | Legislative Building, Manila.                      | 2.40 | 145643A | Feb. 5, 1923  | Andesite.                      |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Province.    | Municipality.  | Location of deposit.          | Estimated<br>quantity<br>available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the con-<br>struction of— | Esti-<br>mated<br>cost per<br>cubic<br>meter<br>delivered<br>at the<br>job site.<br><br>Pesos. | Laboratory<br>No. | Date sample<br>was received. | Mineralogic classifi-<br>cation.  |
|---------------------|--------------|----------------|-------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------|-------------------|------------------------------|-----------------------------------|
| 309                 | Rizal.....   | Pasig .....    | Pasig River.....              | U                                                                                   | Legislative Building,<br>Manila.     | 2.40                                                                                           | 145643B           | Feb. 5, 1923                 | Andesite.                         |
| 310                 | Do.....      | do.....        | do.....                       | U                                                                                   | do.....                              | 2.40                                                                                           | 145643C           | do.....                      | Do.                               |
| 311                 | Do.....      | do.....        | do.....                       | U                                                                                   | do.....                              | 2.40                                                                                           | 145643D           | do.....                      | Do.                               |
| 312                 | Do.....      | do.....        | do.....                       | U                                                                                   | Passy concrete road.....             | 3.50                                                                                           | 149566            | Jan. 8, 1924                 | Basalt and andesite.              |
| 313                 | Do.....      | do.....        | do.....                       | U                                                                                   | do.....                              | 4.00                                                                                           | 149777            | Jan. 17, 1924                | Basalt and diorite.               |
| 314                 | Do.....      | do.....        | Pasig River (Bam-<br>bang).   | U                                                                                   | Jones Bridge, Manila.....            | 2.40                                                                                           | 152173            | June 23, 1924                | Basalt and andesite.              |
| 315                 | Do.....      | do.....        | Pasig River.....              | U                                                                                   | Legislative Building,<br>Manila.     | 2.50                                                                                           | 154012            | Nov. 11, 1924                | Do.                               |
| 316                 | Do.....      | do.....        | do.....                       | U                                                                                   | Philippine General<br>Hospital.      | 3.20                                                                                           | 153845            | Oct. 29, 1923                | Basalt and andesite.              |
| 317                 | Romblon..... | Romblon.....   | Seashore.....                 | U                                                                                   | Romblon concrete pier.....           | 3.00                                                                                           | 144383            | Nov. 1, 1922                 | Coralline.                        |
| 318                 | Do.....      | do.....        | do.....                       | U                                                                                   | do.....                              | 3.00                                                                                           | 144776            | Nov. 25, 1922                | Corals and shells.                |
| 319                 | Do.....      | do.....        | do.....                       | U                                                                                   | do.....                              | 3.00                                                                                           | 144777            | do.....                      | Coralline.                        |
| 320                 | Do.....      | do.....        | Beach at Sitio Ban-<br>tayan. | U                                                                                   | Romblon radio tower.....             | 138831                                                                                         | June 11, 1921     | Do.                          |                                   |
| 321                 | Samar.....   | Borongan ..... | Bato River at Ca-<br>nabong.  |                                                                                     | Borongan Bridge.....                 |                                                                                                | 151148A           | Apr. 12, 1924                | Andesite and basalt.              |
| 322                 | Do.....      | do.....        | Borongan River at<br>Sulop.   |                                                                                     | do.....                              |                                                                                                | 151148B           | do.....                      | Weathered andesite<br>and basalt. |
| 323                 | Do.....      | do.....        | Canabon beach.....            |                                                                                     | do.....                              |                                                                                                | 151148C           | do.....                      | Andesite and basalt.              |
| 324                 | Do.....      | do.....        | Mayhaligue River.....         | U                                                                                   | do.....                              |                                                                                                | 150108A           | Feb. 8, 1924                 | Very much weathered<br>ka.....    |

|     |          |              |                             |   |                                   |      |         |                |                                  |
|-----|----------|--------------|-----------------------------|---|-----------------------------------|------|---------|----------------|----------------------------------|
| 325 | Do.      | do.          | Sabang River                | U | do.                               |      | 150108B | do.            | Slightly weathered basalt.       |
| 326 | Do.      | do.          | Soribas beach               |   | do.                               |      | 151148D | Apr. 12, 1924  | Andesite and basalt.             |
| 327 | Do.      | do.          | Sunco beach near Sabang.    |   | do.                               |      | 151148E | do.            | Do.                              |
| 328 | Do.      | Calbayog     | Calbayog beach              |   | Calbayog north and south bridges. |      | 118232A | Feb. 12, 1924  | Andesite.                        |
| 329 | Do.      | do.          | do.                         |   | do.                               |      | 119453  | Nov. 16, 1924  | Do.                              |
| 330 | Do.      | do.          | Calbayog beach (pit)        |   | do.                               |      | 118232B | Feb. 12, 1924  | Sandstone, shale, and quartz.    |
| 331 | Do.      | do.          | Malapalo Tinambacan.        |   | Calbayog municipal building.      | 3.00 | 154091  | Nov. 14, 1924  | Andesite and feldspar.           |
| 332 | Do.      | do.          | Tagdaranao beach            | U | do.                               | 5.00 | 154357  | Dec. 4, 1924   | Andesite.                        |
| 333 | Do.      | Catarman     | Seashore.                   | U | Catarman market                   |      | 151088  | Apr. 9, 1924   | Quartz.                          |
| 334 | Do.      | Catbalogan   | Near water reservoir        | U | Catbalogan waterworks             |      | 145565  | Jan. 27, 1923  | Volcanic and quartz.             |
| 335 | Do.      | Llorente     | River at Sinacan            |   | Llorente School building.         | 2.00 | 152714  | Aug. 2, 1924   | Andesite and basalt.             |
| 336 | Do.      | do.          | Llorente beach              |   | do.                               | 0.80 | 152715  | do.            | Do.                              |
| 337 | Do.      | do.          | Llorente River at Lubuagan. |   | do.                               | 2.00 | 152730  | do.            | Do.                              |
| 338 | Sorsogon | Bulan        | San Ramon River             | U | Bulan market                      |      | 160425  | Dec. 23, 1925  | Basalt and andesite.             |
| 339 | Do.      | Castilla     | Yawa River (Daraga)         | U | Kinadkad Bridge                   |      | 159122  | Sept. 25, 1925 | Volcanic.                        |
| 340 | Do.      | do.          | do.                         | U | do.                               |      | 159767  | Nov. 3, 1925   | Do.                              |
| 341 | Do.      | Donsol       | Donsol River                | U | Donsol market                     | 4.00 | 147547  | July 5, 1923   | Basalt.                          |
| 342 | Do.      | Gubat        | Ariman River                | U | Sagurong Bridge                   | 3.00 | 150908  | Mar. 28, 1924  | Weathersed andesite and quartz.  |
| 343 | Do.      | do.          | Sagurong River              | U | do.                               | 2.50 | 150246  | Feb. 16, 1924  | Weathersed basalt.               |
| 344 | Do.      | Juban        | Juban River                 | U | Juban School                      | 1.50 | 150556  | Mar. 28, 1924  | Weathersed andesite.             |
| 345 | Do.      | do.          | Talinga River               | U | do.                               | 2.00 | 151089  | Apr. 9, 1924   | Andesite and quartz.             |
| 346 | Do.      | Sorsogon     | Lantic River                |   | Sorsogon waterworks               | 1.60 | 154358  | Dec. 4, 1924   | Andesite and weathersed diorite. |
| 347 | Do.      | do.          | Sorsogon                    | A | do.                               | 1.80 | 153779  | Oct. 23, 1924  | Volcanic.                        |
| 348 | Do.      | do.          | do.                         | A | Provincial Hospital               |      | 160254  | Dec. 10, 1925  | Diorite, angular.                |
| 349 | Surigao  | Bilangbilang | Surigao River               | A | Bilangbilang wharf                |      | 121256  | Oct. 25, 1915  | Limestone and quartz.            |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Province. | Municipality. | Location of deposit.                | Estimated quantity available.<br>A, abundant;<br>L, limited;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter delivered at the job site. | Laboratory No. | Date sample was received. | Mineralogic classification.         |
|-------------|-----------|---------------|-------------------------------------|-------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------|---------------------------|-------------------------------------|
| 350         | Surigao.  | Bilangbilang. | Surigao River at wharf.             | A                                                                             | Bilangbilang wharf.             | Peso.                                                     | 121267         | Oct. 25, 1915             | Quartz, basalt, and andesite.       |
| 351         | Tarlac.   | Camiling.     | Camiling River.                     |                                                                               | Camiling market.                |                                                           | 117776         | Oct. 30, 1913             | Feldspar, ferromagnesian.           |
| 352         | Do.       | Capaz.        | Santiago River.                     |                                                                               | Capaz-Concepcion road.          |                                                           | 123447         | Nov. 1, 1916              | Feldspar.                           |
| 353         | Do.       | O'Donnell.    | O'Donnell River.                    |                                                                               | O'Donnell irrigation works.     |                                                           | 84660A         | Nov. 22, 1910             | Feldspar, pumice, and quartz.       |
| 354         | Do.       | do.           | do.                                 |                                                                               | do.                             |                                                           | 84560B         | do.                       | Do.                                 |
| 355         | Do.       | Paniqui.      | Tarlac River.                       |                                                                               | Paniqui School building.        |                                                           | 157694         | June 27, 1925             | Feldspar and quartz.                |
| 356         | Do.       | San Miguel.   | Cuteut River.                       |                                                                               | O'Donnell irrigation works.     |                                                           | 158312         | Aug. 4, 1925              | Granitic and quartz.                |
| 357         | Do.       | do.           | O'Donnell River.                    | U                                                                             | do.                             |                                                           | 160177         | Dec. 3, 1925              | Quartz and feldspar.                |
| 358         | Do.       | Tarlac.       | Tarlac River.                       | U                                                                             | do.                             |                                                           | 75663          | Jan. 6, 1910              | Andesite, feldspar, and hornblende. |
| 359         | Do.       | do.           | Tarlac.                             | U                                                                             | do.                             |                                                           | 76663          | do.                       | Do.                                 |
| 360         | Tayabas.  | Candelaria.   | Candelaria-Tiaong, 18.2 kilometers. |                                                                               | Lucena-Tiaong road.             |                                                           | 125876         | Dec. 8, 1917              | Angular volcanic.                   |
| 361         | Do.       | do.           | Cuyapo River.                       | A                                                                             | Candelaria water-works.         | 2.50                                                      | 156807         | May 4, 1925               | Andesite and diorite.               |
| 362         | Do.       | Infanta.      | Agos River.                         | A                                                                             | Infanta municipal building.     | 2.50                                                      | 158970         | Sept. 16, 1925            | Diorite.                            |
| 363         | Do.       | do.           | Lamigan River.                      | A                                                                             | do.                             | 3.50                                                      | 158375         | Aug. 7, 1925              | Weathered andesite.                 |

|     |          |               |                               |   |                              |        |                |                                       |
|-----|----------|---------------|-------------------------------|---|------------------------------|--------|----------------|---------------------------------------|
| 354 | Do.      | Lopez         | Saint beach                   | A | Lopez municipal building.    | 160352 | Dec. 18, 1925  | Andesite, limestone, and quartz.      |
| 365 | Do.      | Lucena        | Dumacaas River                | A | Hospital building            | 149688 | Jan. 10, 1924  | Andesite.                             |
| 366 | Do.      | Sariaya       | Munting River, Pit No. 1.     | A | Lucena-Tiaong road           | 125700 | Nov. 22, 1917  | Basalt.                               |
| 367 | Do.      | Saint         | Saint beach                   | A |                              | 159068 | Sept. 22, 1925 | Quartz, limestone, and shells.        |
| 368 | Do.      | Tayabas       | Alitao River                  | A | Tayabas market               | 152450 | July 12, 1924  | Weathered basalt and andesite.        |
| 369 | Do.      | Tiaong        | 300 meters from bridge.       | A | Lagnas River Bridge          | 142927 | June 16, 1922  | Scoriaceous basalt and quartz.        |
| 370 | Do.      | do            | Just below bridge             | U | do                           | 143315 | July 24, 1922  | Weathered basalt.                     |
| 371 | Do.      | do            | Mainit River                  | U | Tiaong waterworks            | 156808 | May 4, 1925    | Weathered andesite.                   |
| 372 | Do.      | Unisan        | Banks of Kalyayan River       | U | Kalyayan Bridge              | 154615 | Dec. 20, 1924  | Quartz and diorite.                   |
| 373 | Zambales | Alhambra      | Mouth of Lucapón River        | U | Lucapón Bridge               | 123119 | Aug. 28, 1916  | Volcanic quartz and shells.           |
| 374 | Do.      | Cabangan      | Anunang River                 | U | Anunang Bridge               | 121917 | Feb. 16, 1925  | Weathered andesite and quartz.        |
| 375 | Do.      | do            | Mouth of Cauayan River        | U | Iba-Subic Road Bridge        | 121641 | Dec. 23, 1925  | Feldspar.                             |
| 376 | Do.      | do            | Kauayan-Kiling River          | U | do                           | 121640 | do             | Andesite, basalt, and feldspar.       |
| 377 | Do.      | do            | Lauis River                   | U | Yamot River Bridge           | 122530 | June 5, 1916   | Andesite and feldspar.                |
| 378 | Do.      | do            | Yamot River                   | U | do                           | 122531 | do             | Feldspar, some olivine, and pyroxene. |
| 379 | Do.      | Candelaria    | Sitio Galagala                | U | Candelaria School building   | 123118 | Aug. 28, 1916  | Volcanic and feldspar.                |
| 380 | Do.      | Santa Cruz    | Bayto River                   | U | Santa Cruz School            | 146669 | Apr. 25, 1923  | Basalt.                               |
| 381 | Do.      | do            | Perpetuo River                | U | do                           | 145824 | Feb. 21, 1923  | Ferromagnesian.                       |
| 382 | Do.      | San Marcelino | Santo Tomas River at Santa Fé | U | Santo Tomas irrigation works | 153274 | Sept. 15, 1924 | Feldspar and quartz.                  |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Granulometric analysis.<br>Per cent particles passing through screens. |    |    |    |    |    |    |     |     |       | Three-screen analysis.<br>Per cent particles. |              |       | Specific gravity. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |     |                   |     | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |      |                   |      | Strength at the<br>age of 28 days.<br>Specimen<br>standard $\times 100$ . |                   |       |
|---------------------|------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-------|-----------------------------------------------|--------------|-------|-------------------|----------------------------------------------------------------|-----|-------------------|-----|--------------------------------------------------------------------|------|-------------------|------|---------------------------------------------------------------------------|-------------------|-------|
|                     |                                                                        |    |    |    |    |    |    |     |     |       | Coarse.                                       | Me-<br>dium. | Fine. |                   | Sand<br>specimens.                                             |     | Standard<br>sand. |     | Sand<br>specimens.                                                 |      | Standard<br>sand. |      | Ten-<br>sile.                                                             | Com-<br>pressive. |       |
|                     | 10                                                                     | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | days. |                                               |              |       |                   | 7                                                              | 28  | 7                 | 28  | 7                                                                  | 28   | 7                 | 28   | days.                                                                     | days.             |       |
| 1                   | 88                                                                     | 66 | 41 | 27 | 19 | 13 | 6  | 4   | —   | 23    | 58                                            | 19           | 2.72  | 40.1              | 3.1                                                            | 217 | 246               | 267 | 324                                                                | 1460 | 2010              | 1861 | 2610                                                                      | 76.1              | 77.1  |
| 2                   | 93                                                                     | 66 | 38 | 22 | 13 | 7  | 4  | 3   | 1   | 20    | 67                                            | 13           | 2.75  | 37.1              | 3.2                                                            | 250 | 304               | 327 | 317                                                                | 1930 | 3410              | 1910 | 3380                                                                      | 87.6              | 100.9 |
| 3                   | 85                                                                     | 55 | 27 | 17 | 10 | 3  | 1  | 0.7 | —   | 33    | 57                                            | 10           | 2.69  | 42.1              | 2.8                                                            | 246 | 352               | 354 | 402                                                                | 1375 | 2660              | 1611 | 2172                                                                      | 87.3              | 105.2 |
| 4                   | 85                                                                     | 52 | 26 | 12 | 7  | 4  | 3  | 2   | 1   | 34    | 59                                            | 7            | 2.72  | 41.2              | 2.4                                                            | 206 | 317               | 284 | 403                                                                | 1877 | 3283              | 2119 | 2780                                                                      | 104.5             | 118.2 |
| 5                   | 71                                                                     | 48 | 29 | 17 | 12 | 7  | 3  | 2   | 1   | 40    | 48                                            | 12           | 2.85  | 41.5              | 3.5                                                            | 211 | 323               | 284 | 403                                                                | 1533 | 2890              | 2119 | 2780                                                                      | 81.4              | 104.2 |
| 6                   | 87                                                                     | 62 | 38 | 21 | 12 | 6  | 3  | 2   | 1   | 26    | 62                                            | 12           | 2.61  | 40.9              | 2.6                                                            | 165 | 233               | 213 | 361                                                                | 1361 | 2115              | 1878 | 2168                                                                      | 64.5              | 85.6  |
| 7                   | 91                                                                     | 41 | 25 | 16 | 9  | 7  | 4  | 3   | 2   | 40    | 51                                            | 9            | 2.58  | 34.3              | 3.3                                                            | 196 | 234               | 255 | 365                                                                | 1659 | 2593              | 1923 | 2777                                                                      | 63.9              | 93.5  |
| 8                   | 79                                                                     | 53 | 35 | 22 | 16 | 10 | 5  | 2   | —   | 38    | 46                                            | 16           | 2.80  | 37.1              | 4.2                                                            | 250 | 380               | 270 | 382                                                                | 1550 | 2337              | 1925 | 2737                                                                      | 105.0             | 93.1  |
| 9                   | 96                                                                     | 68 | 34 | 25 | 19 | 14 | 10 | 5   | —   | 21    | 60                                            | 19           | 2.73  | 33.1              | 3.6                                                            | 275 | 280               | 316 | 390                                                                | 2115 | 2955              | 2550 | 2906                                                                      | 71.8              | 101.5 |
| 10                  | 82                                                                     | 53 | 40 | 34 | 27 | 23 | 12 | 9   | —   | 38    | 35                                            | 27           | 2.66  | 27.1              | 6.1                                                            | 291 | 348               | 317 | 333                                                                | 2528 | 3500              | 2182 | 3182                                                                      | 104.1             | 110.1 |
| 11                  | 98                                                                     | 25 | 8  | —  | —  | —  | —  | —   | —   | 52    | 48                                            | 8            | 2.70  | 36.1              | 2.1                                                            | 258 | 380               | 238 | 349                                                                | 1470 | 2920              | 1330 | 2994                                                                      | 109.1             | 97.6  |
| 12                  | 86                                                                     | 10 | 2  | —  | —  | —  | —  | —   | —   | 72    | 28                                            | 0            | 2.70  | 35.1              | 1.6                                                            | 271 | 409               | 236 | 319                                                                | 1540 | 2994              | 1330 | 2994                                                                      | 117.1             | 100   |
| 13                  | 94                                                                     | 57 | 33 | 16 | 9  | 4  | 2  | 1   | —   | 30    | 61                                            | 9            | 2.61  | 33.2              | 2.5                                                            | 163 | 327               | 241 | 339                                                                | 904  | 2197              | 1704 | 2328                                                                      | 96.5              | 94.4  |
| 14                  | 94                                                                     | 44 | 15 | 5  | 3  | 2  | —  | —   | —   | 36    | 61                                            | 3            | 2.62  | 35.1              | 2.1                                                            | 210 | 322               | 241 | 339                                                                | 1330 | 2884              | 1704 | 2328                                                                      | 95.1              | 121.1 |
| 15                  | 100                                                                    | 97 | 93 | 77 | 54 | 28 | 14 | 8   | 2   | 2     | 44                                            | 54           | 2.97  | 39.7              | 1.6                                                            | 115 | 229               | 241 | 316                                                                | 998  | 1179              | 2148 | 3108                                                                      | 66.2              | 37.9  |
| 16                  | 92                                                                     | 74 | 52 | 33 | 17 | 9  | 4  | 3   | 2   | 16    | 67                                            | 17           | 2.62  | 36.7              | 2.3                                                            | 119 | 235               | 222 | 310                                                                | 799  | 1525              | 2100 | 3230                                                                      | 69.1              | 47.3  |
| 17                  | 82                                                                     | 48 | 24 | 12 | 7  | 4  | 3  | 2   | —   | 37    | 56                                            | 7            | 2.65  | 36.1              | 2.7                                                            | 206 | 316               | 220 | 313                                                                | 1410 | 2693              | 1575 | 2118                                                                      | 99.1              | 103.1 |
| 18                  | 88                                                                     | 62 | 42 | 27 | 12 | 7  | 2  | 1   | —   | 26    | 62                                            | 12           | 2.62  | 44.1              | 2.6                                                            | 175 | 303               | 220 | 313                                                                | 1018 | 2039              | 1121 | 2994                                                                      | 97.1              | 68.1  |
| 19                  | 74                                                                     | 32 | 22 | 5  | 3  | 2  | —  | —   | —   | 46    | 51                                            | 3            | 2.80  | 36.2              | 2.3                                                            | 290 | 356               | 241 | 339                                                                | 1476 | 2921              | 1704 | 2323                                                                      | 105.1             | 125.8 |
| 20                  | 96                                                                     | 76 | 37 | 16 | 9  | 3  | 2  | —   | —   | 16    | 75                                            | 9            | 2.65  | 35.9              | 1.9                                                            | 157 | 260               | 211 | 339                                                                | 935  | 1813              | 1704 | 2328                                                                      | 76.7              | 79.1  |
| 21                  | 88                                                                     | 63 | 43 | 32 | 25 | 16 | 8  | 6   | —   | 27    | 48                                            | 25           | 2.73  | 33.1              | 3.7                                                            | 269 | 307               | 215 | 402                                                                | 2410 | 3173              | 2175 | 3203                                                                      | 76.4              | 77.1  |
| 22                  | 92                                                                     | 53 | 17 | 4  | 3  | 2  | 2  | 1   | —   | 22    | 75                                            | 3            | 2.70  | 42.1              | 2.1                                                            | 286 | 395               | 286 | 403                                                                | 1560 | 2720              | 2100 | 2722                                                                      | 98.1              | 99.8  |
| 23                  | 100                                                                    | 98 | 88 | 78 | 66 | 38 | 18 | 9   | —   | 1     | 43                                            | 56           | 2.75  | 50.1              | 1.9                                                            | 141 | 249               | 277 | 366                                                                | 673  | 948               | —    | 68.1                                                                      | —                 | —     |

|    |     |    |    |     |     |     |     |     |     |    |    |      |      |      |     |     |     |     |      |      |      |      |      |       |       |
|----|-----|----|----|-----|-----|-----|-----|-----|-----|----|----|------|------|------|-----|-----|-----|-----|------|------|------|------|------|-------|-------|
| 24 | 95  | 74 | 36 | 21  | 8   | 3   | 2   | 1   | ... | 29 | 63 | 8    | 2.55 | ...  | 2.1 | ... | 312 | ... | 340  | ...  | 4587 | ...  | 1286 | 91.8  | 107.1 |
| 25 | 98  | 80 | 40 | 21  | 9   | 7   | 5   | 3   | 2   | 11 | 80 | 9    | 2.67 | 33.1 | 2.1 | 180 | 262 | 251 | 370  | 1065 | 1963 | 1608 | 2671 | 70.8  | 71.2  |
| 26 | 89  | 57 | 33 | 18  | 9   | 7   | 5   | 3   | 2   | 32 | 59 | 9    | 2.68 | 33.6 | 2.5 | 202 | 261 | 230 | 371  | 1172 | 2719 | 1737 | 2477 | 70.5  | 111.1 |
| 27 | 92  | 71 | 52 | 37  | 23  | 13  | 7   | 4   | 2   | 19 | 58 | 23   | 2.93 | 37.2 | 3.1 | 262 | 281 | 332 | 1763 | 3219 | 1997 | 2595 | 80.7 | 121.1 |       |
| 28 | 84  | 60 | 37 | 27  | 20  | 12  | 8   | 7   | 5   | 27 | 53 | 20   | 2.82 | 29.3 | 4.1 | 211 | 216 | 281 | 352  | 1672 | 2571 | 1897 | 2505 | 70.0  | 99.1  |
| 29 | 94  | 48 | 17 | 9   | 7   | 4   | 3   | 2   | 1   | 31 | 62 | 7    | 2.67 | 38.5 | 2.4 | 219 | 311 | 281 | 352  | 1422 | 2371 | 1897 | 2593 | 97.9  | 91.5  |
| 30 | 98  | 92 | 73 | 51  | 30  | 20  | 12  | 7   | 3   | 4  | 66 | 30   | 2.76 | 40.1 | 2.3 | 107 | 220 | 282 | 333  | 889  | 1737 | 1711 | 2318 | 66.1  | 75.1  |
| 31 | 83  | 48 | 23 | 9   | 5   | 3   | 2   | 1   | ... | 33 | 62 | 5    | 2.66 | 35.5 | 2.3 | 213 | 331 | 282 | 333  | 1678 | 2903 | 1711 | 2318 | 89.5  | 125.6 |
| 32 | 78  | 44 | 21 | 12  | 8   | 4   | 3   | 2   | 1   | 40 | 52 | 8    | 2.61 | 34.2 | 3.1 | 209 | 328 | 282 | 333  | 1698 | 2283 | 1711 | 2318 | 98.5  | 98.5  |
| 33 | 71  | 33 | 14 | 8   | 4   | 3   | 2   | 1   | ... | 46 | 50 | 4    | 2.26 | 41.6 | 2.7 | 210 | 300 | 304 | 410  | 1510 | 2342 | 1950 | 2830 | 73.2  | 82.9  |
| 34 | 88  | 57 | 28 | 12  | 6   | 3   | 2   | 2   | 1   | 28 | 66 | 6    | 2.31 | 41.1 | 2.3 | 160 | 239 | 290 | 403  | 1111 | 1376 | 2130 | 2722 | 59.3  | 50.5  |
| 35 | 97  | 67 | 25 | 8   | 4   | 2   | 1   | ... | 14  | 82 | 4  | 2.30 | 39.1 | 2.1  | 128 | 220 | 214 | 350 | 653  | 1337 | 1803 | 2397 | 62.8 | 55.8  |       |
| 36 | 98  | 74 | 53 | 32  | 17  | 7   | 3   | 2   | ... | 16 | 67 | 17   | 2.52 | 42.1 | 3.1 | 164 | 242 | 304 | 410  | 995  | 1815 | 1950 | 2830 | 59.1  | 65.2  |
| 37 | 57  | 26 | 12 | 6   | 4   | 3   | 2   | 1   | ... | 62 | 34 | 4    | 2.24 | 37.1 | 3.2 | 208 | 281 | 268 | 387  | 1194 | 2059 | 1596 | 2279 | 73.3  | 90.1  |
| 38 | 93  | 77 | 54 | 37  | 26  | 14  | 8   | 6   | 2   | 14 | 60 | 26   | 2.55 | 39.8 | 3.1 | 206 | 305 | 246 | 235  | 1310 | 2236 | 2102 | 2712 | 91.1  | 82.5  |
| 39 | 61  | 28 | 15 | 8   | 5   | 3   | 2   | 1   | ... | 60 | 35 | 5    | 2.32 | 46.4 | 3.1 | 173 | 265 | 269 | 394  | 906  | 1693 | 1668 | 2708 | 67.3  | 62.5  |
| 40 | 99  | 76 | 43 | 24  | 16  | 9   | 6   | 4   | 2   | 8  | 76 | 16   | 2.66 | 51.1 | 2.7 | 152 | 214 | 251 | 370  | 773  | 1583 | 1811 | 2762 | 57.8  | 57.2  |
| 41 | 100 | 96 | 87 | 75  | 56  | 30  | 15  | 8   | 2   | 4  | 40 | 56   | 2.75 | 44.2 | 2.1 | 137 | 207 | 252 | 351  | 943  | 1709 | 1913 | 3045 | 57.4  | 56.1  |
| 42 | 94  | 50 | 26 | 17  | 11  | 8   | 5   | 4   | 2   | 28 | 61 | 11   | 2.43 | 41.1 | 2.9 | 169 | 257 | 276 | 341  | 1118 | 2309 | 1948 | 2609 | 75.3  | 88.5  |
| 43 | 97  | 72 | 37 | 27  | 7   | 3   | 2   | 1   | ... | 11 | 82 | 7    | 2.81 | 41.1 | 2.1 | 198 | 306 | 255 | 390  | 1235 | 2320 | 1756 | 2688 | 78.5  | 86.0  |
| 44 | 48  | 23 | 13 | 8   | 6   | 4   | 3   | 3   | ... | 14 | 80 | 6    | 2.55 | 38.4 | 4.6 | 331 | 456 | 240 | 326  | 1990 | 3500 | 1732 | 2121 | 140.1 | 164.6 |
| 45 | 91  | 83 | 77 | 74  | 70  | 66  | 63  | 58  | 30  | 15 | 15 | 70   | 2.66 | 49.6 | 4.1 | 131 | 189 | 240 | 326  | 611  | 1110 | 1732 | 2121 | 58.1  | 52.2  |
| 46 | 74  | 43 | 24 | 17  | 12  | 8   | 6   | 4   | 2   | 45 | 43 | 12   | 2.60 | 39.6 | 4.5 | 460 | 452 | 258 | 336  | 1209 | 2783 | 1027 | 1576 | 134.6 | 108.1 |
| 47 | 99  | 94 | 79 | 69  | 42  | 25  | 14  | 6   | ... | 4  | 54 | 42   | 2.85 | 44.5 | 2.1 | 148 | 220 | 266 | 343  | ...  | ...  | ...  | ...  | 64.1  | ...   |
| 48 | 70  | 44 | 32 | 23  | 20  | 17  | 15  | 12  | ... | 47 | 83 | 20   | 2.54 | 44.8 | 8.4 | 395 | 504 | 266 | 313  | ...  | ...  | ...  | ...  | 147.0 | ...   |
| 49 | --- | 97 | 86 | 79  | 60  | 32  | 17  | 1   | ... | 21 | 79 | 2.67 | 39.8 | 2.4  | 132 | 168 | 276 | 332 | 1672 | 2078 | 2145 | 3199 | 50.6 | 59.4  |       |
| 50 | 70  | 35 | 17 | 9   | 7   | 4   | 3   | 2   | ... | 49 | 44 | 7    | 2.29 | 45.8 | 3.1 | 164 | 220 | 310 | 432  | 657  | 996  | 2631 | 3428 | 50.8  | 29.6  |
| 51 | 97  | 77 | 59 | 47  | 38  | 26  | 17  | 12  | 3   | 16 | 46 | 38   | 2.69 | 39.4 | 3.2 | 235 | 270 | 319 | 371  | 1722 | 2393 | 2394 | 3394 | 72.8  | 70.5  |
| 52 | 97  | 81 | 53 | 32  | 20  | 12  | 7   | 3   | 2   | 8  | 72 | 20   | 2.56 | 43.4 | 2.1 | 153 | 239 | 273 | 388  | 1350 | 2098 | 2559 | 2969 | 61.6  | 70.7  |
| 53 | 98  | 88 | 65 | 43  | 28  | 16  | 10  | 7   | 3   | 6  | 66 | 28   | 2.65 | 31.1 | 2.7 | 186 | 255 | 254 | 319  | 821  | 1413 | 1810 | 2155 | 80.1  | 65.6  |
| 54 | 98  | 95 | 86 | 71  | 46  | 14  | 4   | 2   | ... | 4  | 50 | 46   | 2.77 | 46.1 | 1.5 | 123 | 225 | 285 | 373  | 660  | 864  | 1881 | 2310 | 82.3  | 37.4  |
| 55 | 47  | 8  | 3  | ... | ... | ... | ... | ... | ... | 53 | 47 | 2    | 2.67 | 48.9 | 2.5 | 253 | 353 | 289 | 392  | 1805 | 2648 | 1886 | 2730 | 90.1  | 96.8  |
| 56 | 97  | 83 | 47 | 13  | 7   | 3   | 2   | 2   | 2   | 10 | 83 | 7    | 2.62 | 37.8 | 1.5 | 256 | 322 | 273 | 388  | 1794 | 3088 | 2559 | 2969 | 83.1  | 104.1 |

\* Proportion of mortar mixture by weight 1 : 2.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Granulometric analysis.<br>Per cent particles passing through screen. |     |    |    |    |    |    |     |     | Three-screen analysis.<br>Per cent particles. |         |       | Specific gravity. | Percentage of voids,<br>P | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Strength at the<br>age of 28 days.<br>Specimen<br>standard $\times 100$ . |                   |       |  |
|-------------|-----------------------------------------------------------------------|-----|----|----|----|----|----|-----|-----|-----------------------------------------------|---------|-------|-------------------|---------------------------|----------------------------------------------------------------|-------------|-------------------|-------------|--------------------------------------------------------------------|-------------|-------------------|-------------|---------------------------------------------------------------------------|-------------------|-------|--|
|             |                                                                       |     |    |    |    |    |    |     |     | Coarse.                                       | Medium. | Fine. |                   |                           | Sand<br>specimens.                                             |             | Standard<br>sand. |             | Sand<br>specimens,                                                 |             | Standard<br>sand. |             | Ten-<br>sile.                                                             | Com-<br>pressive. |       |  |
|             | 10                                                                    | 20  | 30 | 40 | 50 | 60 | 80 | 100 | 200 |                                               |         |       |                   |                           | 7<br>days.                                                     | 28<br>days. | 7<br>days.        | 28<br>days. | 7<br>days.                                                         | 28<br>days. | 7<br>days.        | 28<br>days. |                                                                           |                   |       |  |
| 57          | 82                                                                    | 38  | 15 | 6  | 3  | 2  | 2  | 1   |     | 7                                             | 87      | 6     | 2.68              | 32.3                      | 1.7                                                            | 214         | 301               | 240         | 299                                                                | 1148        | 1919              | 2012        | 3045                                                                      | 100.8             | 63.1  |  |
| 58          | 100                                                                   | 96  | 61 | 35 | 17 | 10 | 7  | 4   | 2   | 2                                             | 81      | 17    | 2.75              | 37.4                      | 2.1                                                            | 228         | 279               | 273         | 388                                                                | 2239        | 3466              | 2559        | 2969                                                                      | 72.1              | 117.1 |  |
| 59          | 100                                                                   | 98  | 94 | 67 | 36 | 6  | 3  | 2   | 1   | 1                                             | 63      | 36    | 2.81              | 40.4                      | 1.7                                                            | 190         | 252               | 247         | 309                                                                | 1385        | 2132              | 2127        | 3379                                                                      | 81.5              | 63.1  |  |
| 60          | 97                                                                    | 87  | 56 | 25 | 10 | 4  | 3  | 2   |     | 3                                             | 82      | 10    | 2.65              | 40.1                      | 1.7                                                            | 149         | 242               | 273         | 840                                                                | 1585        | 2159              | 2559        | 3189                                                                      | 71.1              | 67.7  |  |
| 61          | 99                                                                    | 98  | 95 | 73 | 60 | 20 | 6  | 3   | 2   |                                               | 40      | 60    | 2.66              | 40.3                      | 1.2                                                            | 151         | 216               | 279         | 367                                                                | 734         | 1534              | 1734        | 3020                                                                      | 58.8              | 50.9  |  |
| 62          | 98                                                                    | 48  | 13 | 7  | 5  | 4  | 3  | 2   | 1   | 20                                            | 75      | 5     | 2.68              | 39.1                      | 1.8                                                            | 185         | 293               | 279         | 367                                                                | 1624        | 2390              | 1784        | 3020                                                                      | 80.1              | 79.2  |  |
| 63          | -----                                                                 | 100 | 93 | 84 | 57 | 38 | 22 | 2   |     | 0                                             | 16      | 84    | 2.73              | 42.6                      | 2.3                                                            | 151         | 192               | 257         | 319                                                                | 408         | 580               | 1092        | 2109                                                                      | 60.3              | 20.6  |  |
| 64          | 98                                                                    | 96  | 80 | 42 | 18 | 8  | 2  | 1   | 0.5 | 3                                             | 79      | 18    | 2.67              | 39.3                      | 1.7                                                            | 183         | 259               | 257         | 319                                                                | 651         | 1264              | 1092        | 2109                                                                      | 81.2              | 57.1  |  |
| 65          | 93                                                                    | 75  | 45 | 13 | 4  | 2  | 2  |     |     | 14                                            | 82      | 4     | 2.59              | 38.5                      | 1.7                                                            | 187         | 232               | 300         | 342                                                                | 895         | 1450              | 1616        | 2002                                                                      | 67.8              | 72.5  |  |
| 66          | 28                                                                    | 4   | 2  | 1  |    |    |    |     |     | 88                                            | 12      | 0     | 2.63              | 37.2                      | 2.7                                                            | 313         | 322               | 240         | 369                                                                | 2042        | 2780              | 1916        | 3245                                                                      | 106.2             | 85.5  |  |
| 67          | 85                                                                    | 60  | 16 | 4  | 2  | 1  |    |     |     | 28                                            | 70      | 2     | 2.69              | 41.3                      | 1.7                                                            | 264         | 369               | 240         | 369                                                                | 2139        | 2450              | 1916        | 3245                                                                      | 100.0             | 75.5  |  |
| 68          | 24                                                                    | 4   | 2  |    |    |    |    |     |     | 90                                            | 10      | 0     | 2.53              | 43.3                      | 2.6                                                            | 234         | 314               | 247         | 358                                                                | 1198        | 2297              | 1330        | 2363                                                                      | 89.1              | 96.8  |  |
| 69          | 100                                                                   | 97  | 92 | 86 | 53 | 15 | 7  | 4   | 1   | 3                                             | 44      | 53    | 2.67              | 41.4                      | 2.1                                                            | 113         | 182               | 223         | 332                                                                | 811         | 1704              | 1758        | 2969                                                                      | 55.1              | 57.4  |  |
| 70          | 98                                                                    | 93  | 75 | 35 | 14 | 7  | 4  | 3   | 0   | 4                                             | 82      | 14    | 2.81              | 53.6                      | 1.6                                                            | 154         | 202               | 276         | 332                                                                | 1164        | 1371              | 2145        | 3199                                                                      | 69.8              | 39.2  |  |
| 71          | -----                                                                 | 98  | 94 | 87 | 65 | 22 | 16 | 12  | 6   | 1                                             | 34      | 65    | 2.78              | 46.4                      | 1.5                                                            | 172         | 218               | 276         | 332                                                                | 1165        | 1576              | 2145        | 3499                                                                      | 65.7              | 39.4  |  |
| 72          | 82                                                                    | 60  | 32 | 16 | 5  | 7  | 3  | 2   | 0   | 30                                            | 65      | 5     | 2.79              | 46.8                      | 2.1                                                            | 162         | 257               | 276         | 332                                                                | 1188        | 1319              | 2145        | 3199                                                                      | 77.4              | 38.4  |  |
| 73          | 97                                                                    | 88  | 77 | 58 | 39 | 16 | 12 | 6   | 2   | 5                                             | 55      | 39    | 2.83              | 47.6                      | 2.1                                                            | 167         | 270               | 276         | 332                                                                | 1236        | 1834              | 2145        | 3499                                                                      | 81.3              | 52.5  |  |
| 74          | 98                                                                    | 92  | 76 | 63 | 39 | 16 | 8  | 6   | 1   | 6                                             | 55      | 39    | 2.72              | 46.1                      | 1.8                                                            | 220         | 306               | 301         | 408                                                                | 1913        | 2531              | 2986        | 3783                                                                      | 75.1              | 66.8  |  |
| 75          | 68                                                                    | 39  | 21 | 11 | 6  | 4  | 2  | 1   |     | 48                                            | 46      | 6     | 2.62              | 41.8                      | 3.4                                                            | 275         | 371               | 285         | 373                                                                | 1813        | 2359              | 1886        | 2310                                                                      | 99.5              | 101.8 |  |
| 76          | 98                                                                    | 58  | 25 | 12 | 7  | 3  | 2  | 1   |     | 19                                            | 74      | 7     | 2.68              | 37.1                      | 2.2                                                            | 203         | 258               | 241         | 331                                                                | 1012        | 1626              | 1590        | 2564                                                                      | 78.1              | 63.2  |  |
| 77          | 27                                                                    | 4   | 1  |    |    |    |    |     |     | 88                                            | 12      |       | 2.55              | 38.1                      | 2.6                                                            | 296         | 388               | 241         | 331                                                                | 2020        | 2689              | 1590        | 2564                                                                      | 117.1             | 104.8 |  |
| 78          | 98                                                                    | 98  | 72 | 48 | 10 | 8  | 3  | 2   |     | 4                                             | 86      | 10    | 2.65              | 30.1                      | 1.8                                                            | 177         | 237               | 281         | 388                                                                | 1210        | 1930              | 2230        | 3730                                                                      | 70.1              | 51.7  |  |
| 79          | 93                                                                    | 58  | 27 | 15 | 10 | 7  | 6  | 5   | 3   | 26                                            | 64      | 10    | 2.74              | 28.1                      | 2.4                                                            | 331         | 398               | 251         | 330                                                                | 2551        | 4706              | 1940        | 2760                                                                      | 111.1             | 174.1 |  |

|     |     |    |    |    |    |    |    |      |      |      |      |     |      |      |      |      |      |      |       |       |       |      |      |       |       |
|-----|-----|----|----|----|----|----|----|------|------|------|------|-----|------|------|------|------|------|------|-------|-------|-------|------|------|-------|-------|
| 80  | 92  | 71 | 34 | 17 | 20 | 63 | 17 | 2.69 | 41.8 | 3.4  | 170  | 248 | 1775 | 2469 |      |      |      |      |       |       |       |      |      |       |       |
| 81  | 49  | 14 | 8  | 5  | 73 | 24 | 3  | 2.67 | 34.8 | 3.6  | 1807 | 221 | 337  | 1620 | 2420 | 1800 | 2720 | 91.1 | 89.1  |       |       |      |      |       |       |
| 82  | 92  | 67 | 30 | 13 | 18 | 75 | 7  | 2.62 | 35.1 | 2.1  | 193  | 221 | 337  | 1403 | 2469 | 1532 |      |      |       |       |       |      |      |       |       |
| 83  | 87  | 67 | 43 | 27 | 17 | 59 | 17 | 2.72 | 39.6 | 3.1  | 217  | 234 |      |      |      |      |      |      |       |       |       |      |      |       |       |
| 84  | 67  | 52 | 27 | 17 | 10 | 48 | 10 | 2.71 | 34.2 | 4.2  | 223  | 387 | 261  | 414  | 1885 | 3336 | 1875 | 3429 | 93.5  | 97.4  |       |      |      |       |       |
| 85  | 84  | 64 | 39 | 25 | 16 | 58 | 16 | 2.69 | 38.2 | 2.7  | 216  | 350 | 261  | 414  | 1617 | 3324 | 1875 | 3429 | 84.6  | 97.1  |       |      |      |       |       |
| 86  | 94  | 90 | 80 | 61 | 28 | 65 | 28 | 2.62 | 40.7 | 1.8  | 110  | 191 | 261  | 414  | 712  | 1309 | 1875 | 3429 | 46.2  | 38.2  |       |      |      |       |       |
| 87  | 72  | 41 | 21 | 13 | 10 | 42 | 10 | 2.63 | 21.8 | 3.8  | 307  | 518 | 261  | 353  | 2485 | 4336 | 2133 | 2820 | 146.1 | 153.5 |       |      |      |       |       |
| 88  | 97  | 68 | 40 | 22 | 11 | 71 | 11 | 2.80 | 30.7 | 2.2  | 254  | 356 | 258  | 352  | 1428 | 2626 | 1711 | 2622 | 101.1 | 100.1 |       |      |      |       |       |
| 89  | 94  | 55 | 27 | 13 | 5  | 27 | 68 | 5    | 2.73 | 30.5 | 2.3  | 203 | 272  | 272  | 349  | 1935 | 2138 | 1900 | 2624  | 78.1  | 81.2  |      |      |       |       |
| 90  | 95  | 75 | 43 | 18 | 13 | 74 | 13 | 2.73 | 28.4 | 2.7  | 207  | 306 | 258  | 352  | 1273 | 2113 | 1711 | 2622 | 87.1  | 80.6  |       |      |      |       |       |
| 91  | 97  | 55 | 27 | 17 | 11 | 7  | 4  | 2.72 | 26.9 | 2.7  | 209  | 311 | 258  | 352  | 1382 | 2208 | 1711 | 2622 | 88.5  | 121.8 |       |      |      |       |       |
| 92  | 94  | 71 | 32 | 15 | 7  | 42 | 11 | 2.72 | 26.9 | 2.7  | 209  | 311 | 258  | 352  | 1382 | 2208 | 1711 | 2622 | 88.5  | 121.8 |       |      |      |       |       |
| 93  | 98  | 89 | 63 | 46 | 15 | 75 | 7  | 2.67 | 41.5 | 1.8  | 223  | 384 | 266  | 348  |      |      |      |      | 97.5  |       |       |      |      |       |       |
| 94  | 87  | 78 | 65 | 13 | 2  | 18 | 75 | 7    | 2.70 | 36.8 | 1.7  |     |      |      |      |      |      |      | 1507  |       |       |      |      |       |       |
| 95  | 94  | 80 | 46 | 18 | 6  | 80 | 2  | 2.69 | 40.4 | 1.3  | 264  | 271 | 228  | 270  |      |      |      |      |       |       |       |      |      |       |       |
| 96  | 60  | 32 | 21 | 17 | 9  | 2  | 12 | 82   | 6    | 2.68 | 31.8 | 1.9 | 260  | 360  | 272  | 349  | 1682 | 2281 | 1900  | 2624  | 103.1 | 87.1 |      |       |       |
| 97  | 97  | 87 | 67 | 43 | 24 | 7  | 6  | 2.72 | 28.2 | 4.7  |      |     |      |      |      |      |      |      | 2460  |       |       |      |      |       |       |
| 98  | 97  | 85 | 55 | 43 | 25 | 12 | 6  | 2.69 | 32.4 | 2.1  | 156  | 213 | 251  | 370  | 1078 | 1817 | 1608 | 2612 | 57.7  | 69.6  |       |      |      |       |       |
| 99  | 84  | 58 | 36 | 23 | 12 | 7  | 4  | 2.63 | 44.8 | 2.5  | 183  | 230 | 246  | 279  |      |      |      |      | 82.5  |       |       |      |      |       |       |
| 100 | 99  | 82 | 36 | 20 | 7  | 4  | 31 | 57   | 12   | 2.68 | 31.6 | 2.8 | 244  | 360  | 310  | 374  | 1130 | 2310 | 1474  | 2385  | 96.2  | 96.8 |      |       |       |
| 101 | 58  | 14 | 4  | 2  | 1  | 68 | 31 | 1    | 2.51 | 34.1 | 2.6  | 203 | 271  | 246  | 316  | 1535 | 2480 | 1750 | 2630  | 87.5  | 91.5  |      |      |       |       |
| 102 |     | 96 | 87 | 48 | 22 | 12 | 3  | 87   | 2.90 | 40.1 | 1.7  | 155 | 222  | 227  | 347  | 926  | 1510 | 1910 | 3380  | 64.1  | 41.7  |      |      |       |       |
| 103 | 93  | 77 | 50 | 27 | 17 | 10 | 6  | 4    | 2    | 15   | 68   | 17  | 2.71 | 35.1 | 2.4  | 184  | 272  | 271  | 366   | 1495  | 2117  | 1620 | 3402 | 74.3  | 62.1  |
| 104 |     | 94 | 67 | 40 | 13 | 6  |    |      |      |      | 33   | 67  | 2.70 | 41.2 | 1.5  | 127  | 181  | 261  | 374   | 517   | 757   | 1414 | 2190 | 48.5  | 34.5  |
| 105 | 98  | 92 | 65 | 38 | 24 | 13 | 7  | 4    |      | 3    | 73   | 24  | 2.71 | 34.8 | 2.2  | 125  | 244  | 262  | 380   | 1093  | 1693  | 1911 | 2786 | 64.2  | 60.8  |
| 106 | 72  | 42 | 28 | 19 | 13 | 8  | 5  | 3    |      | 46   | 41   | 13  | 2.63 | 38.1 | 4.3  | 306  | 424  | 300  | 381   | 2790  | 4008  | 1712 | 2607 | 111.7 | 153.8 |
| 107 | 97  | 91 | 72 | 63 | 38 | 17 | 4  | 2    |      | 7    | 55   | 83  | 2.63 | 41.2 | 1.7  |      |      |      |       | 1375  |       | 2955 |      | 46.6  |       |
| 108 | 69  | 42 | 22 | 15 | 8  | 5  | 2  |      |      | 31   | 61   | 8   | 2.63 | 31.7 | 3.9  |      |      |      |       | 2723  |       | 2824 |      | 96.6  |       |
| 109 | 100 | 92 | 80 | 70 | 55 | 22 | 8  | 4    |      | 6    | 39   | 55  | 2.64 | 38.7 | 1.7  | 191  | 279  | 342  | 428   | 8116  | 3600  | 3487 | 3910 | 65.2  | 92.1  |
| 110 | 99  | 71 | 43 | 27 | 17 | 8  | 5  | 4    | 2    | 14   | 63   | 17  | 2.55 | 44.7 | 2.6  | 134  | 224  | 272  | 377   | 789   | 1988  | 1904 | 2410 | 59.4  | 58.2  |

\* Proportion of mortar mixture by weight 1 : 2.

\* Tested at the age of 18 days and 30 days, respectively.

\* Tarlac sand was used instead of Ottawa sand.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Granulometric analysis.<br>Per cent particles passing through screen. |    |    |    |    |     |    |     |     |            | Three-screen analysis.<br>Per cent particles. |              |       | Specific gravity. | Percentage of voids. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Strength at the<br>age of 28 days.<br>Specimen<br>standard × 100. |                   |  |  |
|-------------|-----------------------------------------------------------------------|----|----|----|----|-----|----|-----|-----|------------|-----------------------------------------------|--------------|-------|-------------------|----------------------|----------------------------------------------------------------|-------------|-------------------|-------------|--------------------------------------------------------------------|-------------|-------------------|-------------|-------------------------------------------------------------------|-------------------|--|--|
|             |                                                                       |    |    |    |    |     |    |     |     |            | Coarse.                                       | Me-<br>dium. | Fine. |                   |                      | Sand<br>specimens.                                             |             | Standard<br>sand. |             | Sand<br>specimens.                                                 |             | Standard<br>sand. |             | Tensile.                                                          | Com-<br>pressive. |  |  |
|             | 10                                                                    | 20 | 30 | 40 | 50 | 60  | 80 | 100 | 200 | 7<br>days. |                                               |              |       |                   |                      | 7<br>days.                                                     | 28<br>days. | 7<br>days.        | 28<br>days. | 7<br>days.                                                         | 28<br>days. | 7<br>days.        | 28<br>days. |                                                                   |                   |  |  |
| 111         | 72                                                                    | 31 | 9  | 3  | 2  | 1   |    |     |     | 55         | 43                                            | 2            | 2.37  | 50.3              | 2.6                  | 244                                                            | 281         | 257               | 354         | 1534                                                               | 1998        | 1783              | 2328        | 79.4                                                              | 85.8              |  |  |
| 112         | 87                                                                    | 65 | 41 | 32 | 11 | 6   | 3  | 1   | 0.5 | 27         | 62                                            | 11           | 2.39  | 34.7              | 2.4                  | 192                                                            | 273         | 238               | 318         | 834                                                                | 1870        | 1427              | 2130        | 86.1                                                              | 87.8              |  |  |
| 113         | 47                                                                    | 8  | 4  | 3  | 2  | 2   | 2  | 15  | 1   | 78         | 20                                            | 2            | 2.35  | 40.2              | 2.5                  | 231                                                            | 286         | 263               | 329         | 1258                                                               | 1807        | 1427              | 2130        | 87.1                                                              | 75.2              |  |  |
| 114         | 60                                                                    | 34 | 18 | 13 | 8  | 4   | 2  | 2   | 1   | 56         | 36                                            | 8            | 2.46  | 36.1              | 4.2                  | 204                                                            | 261         | 263               | 329         | 1059                                                               | 1376        | 1427              | 2130        | 79.5                                                              | 84.5              |  |  |
| 115         | 63                                                                    | 32 | 17 | 10 | 4  | 4   | 3  | 2   | 1   | 58         | 38                                            | 4            | 2.41  | 44.2              | 3.7                  | 266                                                            | 314         | 257               | 354         | 783                                                                | 1878        | 1584              | 2804        | 88.6                                                              | 66.8              |  |  |
| 116         | 63                                                                    | 28 | 13 | 7  | 4  | 3   | 2  | 1   | 0.5 | 60         | 36                                            | 4            | 2.33  | 34.3              | 3.2                  | 210                                                            | 287         | 261               | 321         | 602                                                                | 1113        | 657               | 1824        | 89.5                                                              | 61.1              |  |  |
| 117         | 82                                                                    | 38 | 16 | 8  | 5  | 3   | 2  | 2   | 1   | 40         | 55                                            | 5            | 2.30  | 32.1              | 2.6                  | 192                                                            | 303         | 275               | 389         | 1390                                                               | 2220        | 1786              | 2410        | 78.1                                                              | 92.1              |  |  |
| 118         | 62                                                                    | 17 | 6  | 2  | 2  | 1   | 1  | 0.5 |     | 68         | 30                                            | 2            | 1.97  | 37.3              | 2.2                  | 161                                                            | 234         | 231               | 278         | 743                                                                | 1250        | 1729              | 2002        | 84.1                                                              | 61.8              |  |  |
| 119         | 71                                                                    | 29 | 9  | 4  | 1  | 0.5 |    |     |     | 57         | 42                                            | 1            | 2.14  |                   | 2.6                  | 327                                                            | —           | 340               | —           | 3845                                                               | —           | 4288              | 96.3        | 80.1                                                              |                   |  |  |
| 120         | 99                                                                    | 97 | 40 | 7  | 2  |     |    |     |     | 2          | 96                                            | 2            |       |                   |                      | 213                                                            | 254         | 307               | 365         | 1548                                                               | 2020        | 1657              | 2400        | 69.5                                                              | 84.1              |  |  |
| 121         | 45                                                                    | 23 | 13 | 10 | 7  | 4   | 3  | 2   | 1   | 70         | 23                                            | 7            |       |                   |                      | 435                                                            | 502         | 307               | 365         | 3032                                                               | 3974        | 1657              | 2100        | 137.1                                                             | 165.1             |  |  |
| 122         | 98                                                                    | 83 | 50 | 26 | 16 | 10  | 7  | 4   | 2   | 7          | 77                                            | 16           | 2.67  | 30.2              | 2.3                  | 218                                                            | 331         | 281               | 352         | 1682                                                               | 2117        | 1808              | 2759        | 94.2                                                              | 76.7              |  |  |
| 123         | 98                                                                    | 93 | 81 | 60 | 31 | 17  | 10 | 6   | 1   | 6          | 63                                            | 31           | 2.77  | 38.5              | 2.1                  | 219                                                            | 323         | 237               | 384         | 1468                                                               | 2550        | 2227              | 3770        | 84.1                                                              | 67.6              |  |  |
| 124         | 78                                                                    | 57 | 38 | 25 | 13 | 5   | 2  |     |     | 32         | 55                                            | 13           | 2.57  | 41.9              | 4.1                  | 154                                                            | 239         | 294               | 369         | 916                                                                | 1677        | 1488              | 2844        | 65.1                                                              | 53.8              |  |  |
| 125         | 94                                                                    | 65 | 16 | 7  | 3  | 2   | 2  | 2   |     | 25         | 72                                            | 3            | 2.63  |                   | 1.7                  | 188                                                            | 249         | 219               | 325         | —                                                                  | —           | —                 | 76.5        |                                                                   |                   |  |  |
| 126         | 83                                                                    | 64 | 48 | 34 | 22 | 12  | 8  | 6   | 2   | 28         | 50                                            | 22           | 2.62  | 30.5              | 3.1                  | 267                                                            | 373         | 274               | 339         | 2375                                                               | 3313        | 2274              | 2857        | 110.1                                                             | 116.1             |  |  |
| 127         | 60                                                                    | 28 | 17 | 12 | 8  | 5   | 4  | 3   | 2   | 40         | 52                                            | 8            | 2.67  | 30.1              | 5.1                  | 159                                                            | 330         | 199               | 337         | 1532                                                               | 1997        | 1434              | 2041        | 98.1                                                              | 97.7              |  |  |
| 128         | 95                                                                    | 83 | 62 | 37 | 19 | 10  | 6  | 3   | 1   | 11         | 70                                            | 19           | 2.55  | 40.7              | 1.2                  | 123                                                            | 221         | 278               | 320         | 743                                                                | 1171        | 1664              | 2972        | 69.1                                                              | 49.5              |  |  |
| 129         | 57                                                                    | 41 | 28 | 16 | 5  | 4   | 3  | 2   | 1   | 61         | 34                                            | 5            | 2.60  | 27.1              | 3.9                  | 237                                                            | 411         | 219               | 379         | 2155                                                               | 2683        | 2219              | 2658        | 108.1                                                             | 101.2             |  |  |
| 130         | 68                                                                    | 43 | 28 | 19 | 11 | 7   | 5  | 4   | 2   | 31         | 58                                            | 11           | 2.61  | 30.1              | 4.1                  | 161                                                            | 284         | 199               | 337         | 1210                                                               | 2180        | 1134              | 2041        | 81.5                                                              | 106.5             |  |  |
| 131         | —                                                                     | —  | —  | —  | —  | —   | —  | —   | —   | —          | —                                             | —            | —     | —                 | 263                  | —                                                              | —           | —                 | —           | —                                                                  | —           | —                 | —           | —                                                                 |                   |  |  |
| 132         | 94                                                                    | 75 | 63 | 37 | 28 | 19  | 14 | 8   | 3   | 17         | 55                                            | 28           | 2.69  | 37.8              | 3.1                  | 231                                                            | —           | 251               | 310         | 1523                                                               | 2103        | 1856              | 2108        | 133.1                                                             | 111.1             |  |  |
| 133         | 75                                                                    | 61 | 33 | 14 | 8  | 6   | 3  | 2   | 1   | 33         | 59                                            | 8            | 2.65  | 39.1              | 2                    | —                                                              | —           | 208               | 206         | 2611                                                               | 2517        | 3811              | 43.1        | 69.3                                                              |                   |  |  |

|     |    |    |    |    |    |     |    |     |     |    |    |      |      |      |     |     |     |     |     |       |      |      |      |       |       |
|-----|----|----|----|----|----|-----|----|-----|-----|----|----|------|------|------|-----|-----|-----|-----|-----|-------|------|------|------|-------|-------|
| 134 | 98 | 70 | 14 | 3  | 2  | 2   | 1  | 1   | 17  | 81 | 2  | 2.68 | 39.3 | 1.3  | 200 | 261 | 252 | 340 | 798 | 1553  | 1364 | 2271 | 77.1 | 68.4  |       |
| 135 | 97 | 87 | 26 | 9  | 7  | 4   | 3  | 2   | 1   | 6  | 87 | 7    | 2.65 | 41.1 | 1.4 | 226 | 240 | 238 | 361 | 1784  | 2340 | 2504 | 3865 | 23.5  | 65.8  |
| 136 |    |    |    |    |    |     |    |     |     |    |    |      |      |      |     | 172 | 244 |     |     |       |      |      |      |       |       |
| 137 | 98 | 96 | 81 | 37 | 20 | 7   | 5  | 2   | 1   | 2  | 78 | 20   |      |      |     |     |     |     |     |       |      |      |      |       |       |
| 138 | 97 | 85 | 50 | 23 | 10 | 4   | 3  | 2   | 1   | 7  | 83 | 10   | 2.70 | 35.1 | 1.6 | 237 | 258 | 253 | 316 | 1635  | 2176 | 1829 | 2525 | 81.6  | 86.3  |
| 139 | 97 | 81 | 73 | 63 | 32 | 12  | 3  | 2   |     | 11 | 57 | 82   | 2.67 | 38.6 | 1.7 | 226 | 292 | 254 | 310 | 1570  | 2103 | 1856 | 2108 | 91.2  | 99.9  |
| 140 | 64 | 31 | 11 | 7  | 4  | 3   | 2  | 1   | 0.5 | 57 | 39 | 4    | 2.62 | 39.7 | 3.3 | 272 | 371 | 279 | 369 | 1812  | 3125 | 1739 | 3127 | 100.1 | 169.5 |
| 141 | 87 | 43 | 22 | 7  | 3  | 2   | 2  | 2   |     | 37 | 60 | 3    | 2.65 | 32.4 | 2.5 | 213 | 260 | 258 | 352 | 1779  | 2356 | 2053 | 2845 | 74.1  | 82.6  |
| 142 | 82 | 57 | 40 | 26 | 7  | 5   | 3  | 2   |     | 34 | 59 | 7    | 2.70 | 36.1 | 3.1 | 221 | 321 | 251 | 412 | 1'000 | 2618 | 1740 | 3228 | 78.1  | 81.2  |
| 143 | 99 | 87 | 68 | 47 | 35 | 18  | 9  | 6   | 1   | 10 | 55 | 35   | 2.75 | 39.6 | 2.3 | 185 | 231 | 268 | 357 | 2020  | 2715 | 2210 | 2878 | 65.1  | 91.4  |
| 144 | 86 | 12 | 5  | 3  | 2  | 1.5 | 1  | 0.5 |     | 67 | 31 | 2    | 2.63 | 44.1 | 1.7 | 227 | 341 | 255 | 289 | 1759  | 2356 | 1872 | 3185 | 119   | 74.1  |
| 145 | 80 | 53 | 8  | 1  |    |     |    |     |     | 36 | 64 | 2    | 2.66 | 33.4 | 1.8 | 268 | 380 | 241 | 340 | 810   | 1660 | 1008 | 1320 | 112.1 | 126.1 |
| 146 | 97 | 85 | 58 | 43 | 22 | 15  | 9  | 7   |     | 11 | 67 | 22   | 2.70 | 36.8 | 2.8 |     |     |     |     |       |      |      |      |       |       |
| 147 | 94 | 79 | 45 | 14 | 3  | 2   | 1  | 0.5 |     | 12 | 85 | 3    | 2.70 | 35.1 | 1.6 | 225 | 332 | 235 | 326 | 1310  | 2230 | 1790 | 2370 | 102.1 | 94.1  |
| 148 | 94 | 67 | 34 | 15 | 7  | 4   | 3  | 2   | 2   | 20 | 73 | 7    | 2.53 | 38.1 | 2.1 | 116 | 228 | 215 | 339 | 759   | 1666 | 1725 | 2177 | 67.3  | 76.6  |
| 149 | 72 | 29 | 10 | 5  | 5  | 2   | 1  | 0.5 |     | 52 | 43 | 5    | 2.48 | 34.3 | 2.5 | 211 | 310 | 234 | 328 | 1191  | 2608 | 1650 | 2375 | 94.5  | 109.8 |
| 150 | 92 | 76 | 56 | 33 | 19 | 11  | 7  | 5   | 2   | 16 | 65 | 19   | 2.73 | 37.6 | 2.4 | 199 | 323 | 266 | 422 | 1220  | 2385 | 1540 | 2981 | 77.8  | 80.1  |
| 151 | 98 | 96 | 88 | 68 | 28 | 14  | 9  | 5   | 1   | 3  | 69 | 28   | 2.75 | 40.1 | 1.7 | 112 | 230 | 262 | 331 | 697   | 1356 | 1724 | 2370 | 69.5  | 57.2  |
| 152 | 92 | 82 | 65 | 43 | 30 | 14  | 7  | 3   | 1   | 12 | 58 | 30   | 2.75 | 34.9 | 2.1 | 212 | 320 | 276 | 352 | 1339  | 2325 | 1772 | 3040 | 91.1  | 76.5  |
| 153 | 98 | 97 | 88 | 58 | 30 | 12  | 6  | 3   | 1   | 3  | 67 | 30   | 2.77 | 39.1 | 1.8 | 135 | 239 | 262 | 331 | 691   | 1275 | 1724 | 2370 | 72.2  | 53.8  |
| 154 | 95 | 87 | 68 | 47 | 28 | 11  | 6  | 4   | 2   | 8  | 64 | 28   | 2.60 | 39.0 | 2.1 | 142 | 260 | 310 | 243 | 359   |      |      |      |       | 86.4  |
| 155 | 97 | 84 | 70 | 57 | 30 | 15  | 7  | 3   |     | 13 | 57 | 30   | 2.62 |      | 1.9 | 260 | 310 | 243 | 359 |       |      |      |      | 95.1  |       |
| 156 | 96 | 89 | 75 | 66 | 35 | 20  | 1  | 1   |     | 7  | 58 | 35   | 2.61 | 40.1 | 2.1 | 231 | 324 | 265 | 311 |       |      |      |      |       |       |
| 157 | 89 | 75 | 55 | 36 | 24 | 15  | 9  | 7   | 2   | 18 | 58 | 24   | 2.63 | 27.4 | 2.8 | 200 | 349 | 276 | 355 | 1293  | 2115 | 1601 | 2311 | 98.4  | 104.5 |
| 158 | 87 | 67 | 52 | 34 | 25 | 17  | 13 | 11  | 8   | 23 | 52 | 25   | 2.63 | 39.1 | 4.7 | 240 | 359 | 253 | 363 | 1358  | 2137 | 1729 | 2482 | 99.1  | 86.1  |
| 159 | 83 | 67 | 53 | 37 | 25 | 14  | 8  | 7   | 2   | 24 | 51 | 25   | 2.65 | 25.9 | 3.1 | 180 | 317 | 253 | 341 | 1433  | 2566 | 1698 | 2512 | 93.1  | 102.1 |
| 160 | 91 | 74 | 48 | 27 | 13 | 7   | 3  | 2   | 1   | 17 | 70 | 13   | 2.65 | 36.7 | 2.3 | 218 | 328 | 284 | 407 | 1384  | 2665 | 1921 | 2973 | 80.7  | 89.7  |
| 161 | 78 | 61 | 44 | 28 | 20 | 13  | 10 | 8   | 2   | 30 | 50 | 20   | 2.73 | 45.7 | 3.7 | 322 | 467 | 250 | 351 | 1727  | 2389 | 1616 | 2505 | 133.1 | 154.3 |
| 162 | 75 | 42 | 27 | 16 | 10 | 7   | 4  | 3   | 2   | 44 | 46 | 10   |      |      | 3.8 | 203 | 291 | 221 | 345 | 1858  | 3012 | 1481 | 3144 | 86.8  | 95.6  |
| 163 | 91 | 41 | 16 | 11 | 5  | 2   | 1  | 1   |     | 41 | 54 | 5    | 2.58 | 37.6 | 2.6 | 274 | 338 | 275 | 320 |       |      |      |      | 105.6 |       |
| 164 | 57 | 26 | 9  | 6  | 3  | 2   | 2  | 1   |     | 62 | 35 | 3    | 2.22 | 36.1 | 2.9 | 242 | 276 | 304 | 373 | 1345  | 1635 | 1156 | 2088 | 73.8  | 79.8  |
| 165 | 90 | 64 | 47 | 29 | 16 | 4   | 2  | 1   |     | 22 | 62 | 16   |      |      | 247 | 330 | 259 | 332 | 833 | 1613  | 1302 | 2257 | 84.7 | 71.6  |       |
| 166 | 77 | 39 | 18 | 11 | 6  | 3   | 2  | 2   |     | 48 | 46 | 6    | 2.45 | 45.1 | 3.1 | 239 | 321 | 275 | 320 |       |      |      |      | 100.1 |       |

<sup>a</sup> Mortar mixture by weight 1 : 2.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Granulometric analysis.<br>Per cent particles passing through screen. |    |    |    |    |    |    |     |     |        | Three-screen analysis.<br>Per cent particles. |      |                         | Specific gravity. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |          |                |          | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |          |                |          | Strength at the<br>age of 28 days.<br>Specimen X 100.<br>standard. |              |       |
|-------------|-----------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|--------|-----------------------------------------------|------|-------------------------|-------------------|----------------------------------------------------------------|----------|----------------|----------|--------------------------------------------------------------------|----------|----------------|----------|--------------------------------------------------------------------|--------------|-------|
|             |                                                                       |    |    |    |    |    |    |     |     |        |                                               |      |                         |                   | Sand specimens.                                                |          | Standard sand. |          | Sand specimens.                                                    |          | Standard sand. |          |                                                                    |              |       |
|             | 10                                                                    | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | Coarse | Medium                                        | Fine | Uniformity coefficient. |                   | 7 days.                                                        | 28 days. | 7 days.        | 28 days. | 7 days.                                                            | 28 days. | 7 days.        | 28 days. | Tensile.                                                           | Compressive. |       |
| 167         | 98                                                                    | 82 | 37 | 18 | 3  | 2  | 1  | 1   | —   | 10     | 87                                            | 3    | 2.58                    | 44.5              | 2.1                                                            | 214      | 259            | 275      | 320                                                                | —        | —              | —        | —                                                                  | 81.1         | —     |
| 168         | 73                                                                    | 42 | 25 | 15 | 10 | 6  | 4  | 3   | 1   | 45     | 45                                            | 10   | 2.63                    | 40.1              | 3.6                                                            | 305      | 310            | 237      | 311                                                                | 1510     | 2142           | 1287     | 1949                                                               | 99.8         | 110.1 |
| 169         | 99                                                                    | 64 | 38 | 23 | 14 | 7  | 5  | 3   | —   | 18     | 68                                            | 14   | 2.64                    | 45.7              | 2.7                                                            | 111      | 164            | 244      | 350                                                                | 742      | 1485           | 1803     | 2397                                                               | 46.8         | 62.1  |
| 170         | 72                                                                    | 27 | 10 | 6  | 3  | 3  | 2  | 2   | 1   | 43     | 54                                            | 3    | 2.62                    | 30.1              | 2.3                                                            | 171      | 233            | 313      | 325                                                                | 1630     | 2516           | 1490     | 2218                                                               | 87.1         | 114.1 |
| 171         | 78                                                                    | 10 | 5  | 4  | 3  | 2  | 2  | 1   | 0   | 64     | 33                                            | 3    | 2.70                    | 37.9              | 1.7                                                            | 290      | 370            | 251      | 354                                                                | 3049     | 4721           | 2050     | 2701                                                               | 104.5        | 174.6 |
| 172         | 83                                                                    | 59 | 42 | 18 | 10 | 7  | 5  | 3   | 2   | 32     | 58                                            | 10   | 2.54                    | 29.4              | 2.6                                                            | 301      | 386            | 216      | 338                                                                | 1772     | 2654           | 1482     | 2173                                                               | 114.2        | 107.1 |
| 173         | 90                                                                    | 68 | 56 | 28 | 9  | 8  | 7  | 4   | 3   | 32     | 59                                            | 9    | 2.44                    | 41.1              | 2.7                                                            | 168      | 244            | 225      | 313                                                                | 993      | 1960           | 1433     | 1996                                                               | 78.1         | 98.2  |
| 174         | 75                                                                    | 30 | 12 | 6  | 4  | 2  | 1  | 0.5 | —   | 50     | 46                                            | 4    | 2.77                    | 43.1              | 2.6                                                            | 258      | 317            | 281      | 388                                                                | 2370     | 4390           | 2230     | 3738                                                               | 89.5         | 117.3 |
| 175         | 88                                                                    | 57 | 33 | 22 | 17 | 12 | 8  | 7   | 4   | 30     | 53                                            | 17   | 2.67                    | 33.4              | 4.1                                                            | 244      | 355            | 249      | 337                                                                | 1469     | 2721           | 1154     | 2174                                                               | 105.2        | 125.3 |
| 176         | 78                                                                    | 50 | 28 | 17 | 12 | 9  | 6  | 3   | —   | 37     | 51                                            | 12   | 2.65                    | 29.3              | 3.6                                                            | 256      | 367            | 333      | 423                                                                | 1657     | 2640           | 1660     | 2211                                                               | 86.8         | 119.3 |
| 177         | 90                                                                    | 65 | 48 | 36 | 28 | 19 | 12 | 8   | 3   | 23     | 49                                            | 28   | 2.66                    | 34.1              | 4.1                                                            | 189      | 249            | 246      | 343                                                                | 1258     | 2350           | 1791     | 2742                                                               | 72.6         | 85.7  |
| 178         | 97                                                                    | 85 | 65 | 43 | 25 | 12 | 5  | 3   | 1   | 8      | 67                                            | 25   | 2.64                    | 41.8              | 2.1                                                            | 118      | 169            | 216      | 343                                                                | 650      | 1235           | 1791     | 2742                                                               | 49.3         | 45.1  |
| 179         | 97                                                                    | 86 | 68 | 50 | 37 | 22 | 14 | 8   | 3   | 6      | 57                                            | 37   | 2.76                    | 41.9              | 2.7                                                            | 140      | 220            | 216      | 343                                                                | 856      | 1415           | 1791     | 2742                                                               | 64.2         | 51.6  |
| 180         | 99                                                                    | 92 | 60 | 43 | 15 | 7  | 4  | 2   | —   | 7      | 78                                            | 15   | 2.73                    | 49.8              | 2.1                                                            | —        | —              | —        | —                                                                  | —        | —              | —        | —                                                                  | —            | —     |
| 181         | 98                                                                    | 96 | 95 | 93 | 80 | 50 | 22 | 8   | 2   | 3      | 17                                            | 80   | 2.65                    | 47.1              | 1.7                                                            | 193      | 291            | 277      | 400                                                                | 1147     | 1338           | 2173     | 3152                                                               | 73.1         | 38.7  |
| 182         | 98                                                                    | 94 | 86 | 68 | 44 | 27 | 17 | 8   | 2   | 4      | 52                                            | 44   | 2.85                    | 40.2              | 2.1                                                            | 164      | 214            | 213      | 343                                                                | 715      | 1420           | 1791     | 2742                                                               | 63.4         | 51.7  |
| 183         | 98                                                                    | 92 | 61 | 36 | 22 | 12 | 7  | 4   | 2   | 3      | 75                                            | 22   | 2.83                    | 36.7              | 2.1                                                            | 175      | 263            | 289      | 414                                                                | 988      | 2359           | 1819     | 2678                                                               | 63.8         | 88.2  |
| 184         | 75                                                                    | 57 | 48 | 38 | 29 | 21 | 12 | 8   | 2   | 34     | 37                                            | 29   | 2.80                    | 31.4              | 6.3                                                            | 201      | 321            | 216      | 343                                                                | 1810     | 3370           | 2150     | 3800                                                               | 93.8         | 88.7  |
| 185         | 96                                                                    | 80 | 57 | 37 | 23 | 11 | 7  | 3   | 2   | 10     | 67                                            | 23   | 2.49                    | 37.6              | 2.5                                                            | 58       | 102            | 216      | 313                                                                | 375      | 515            | 1791     | 2712                                                               | 30.1         | 18.9  |
| 186         | 98                                                                    | 97 | 92 | 76 | 56 | 20 | 6  | 3   | 2   | 2      | 42                                            | 56   | 2.82                    | 44.6              | 1.4                                                            | 190      | 256            | 270      | 384                                                                | 1245     | 1660           | 1970     | 2935                                                               | 69.3         | 66.6  |
| 187         | 87                                                                    | 64 | 41 | 27 | 18 | 11 | 7  | 5   | 2   | 23     | 59                                            | 18   | 2.83                    | 45.1              | 3.2                                                            | 230      | 322            | 262      | 367                                                                | 1126     | 2656           | 1600     | 2500                                                               | 87.8         | 106.1 |
| 188         | 93                                                                    | 74 | 47 | 28 | 16 | 9  | 6  | 3   | 2   | 16     | 68                                            | 16   | 2.78                    | 37.1              | 2.5                                                            | 119      | 202            | 246      | 343                                                                | 1112     | 2140           | 1794     | 2742                                                               | 59.1         | 78.1  |
| 189         | 77                                                                    | 52 | 36 | 29 | 14 | 7  | 3  | 2   | 1   | 36     | 51                                            | 14   | 2.78                    | 34.1              | 5.1                                                            | 223      | 281            | 246      | 343                                                                | 1655     | 2900           | 1794     | 2742                                                               | 82.1         | 105.7 |

|     |     |    |    |    |    |    |     |     |     |     |    |    |    |      |      |     |     |     |     |     |      |      |      |      |       |       |     |
|-----|-----|----|----|----|----|----|-----|-----|-----|-----|----|----|----|------|------|-----|-----|-----|-----|-----|------|------|------|------|-------|-------|-----|
| 190 | 87  | 74 | 63 | 57 | 52 | 46 | 23  | 13  | ... | 21  | 27 | 52 | 2  | 72   | ...  | 1.9 | 231 | 340 | 327 | 436 | 2801 | 3694 | 3316 | 3612 | 78.1  | 102.4 |     |
| 191 | 97  | 87 | 67 | 26 | 13 | 8  | 6   | 2   | ... | 2   | 72 | 26 | 2  | 64   | 42.1 | 1.6 | 148 | 190 | 234 | 318 | 656  | 999  | 1690 | 2445 | 59.8  | 40.8  |     |
| 192 | 100 | 94 | 68 | 38 | 21 | 8  | 5   | 3   | 2   | 4   | 73 | 21 | 2  | 69   | 41.1 | 2.1 | 145 | 210 | 300 | 342 | 876  | 1194 | 1476 | 2896 | 61.4  | 41.3  |     |
| 193 | ... | 97 | 92 | 85 | 70 | 25 | 7   | 2   | 0   | 15  | 85 | 2  | 68 | 38.3 | 1.1  | 134 | 163 | 264 | 334 | 606 | 945  | 1543 | 2481 | 48.8 | 38.1  |       |     |
| 194 | 99  | 96 | 88 | 76 | 57 | 21 | 14  | 8   | 2   | 3   | 40 | 57 | 2  | 64   | 43.3 | 2.2 | 125 | 171 | 300 | 342 | 615  | 722  | 1516 | 2002 | 50.1  | 36.1  |     |
| 195 | ... | 98 | 96 | 86 | 55 | 17 | 7   | 3   | 2   | 0   | 45 | 55 | 2  | 69   | 37.6 | 1.3 | 99  | 160 | 264 | 334 | 595  | 1136 | 1543 | 2481 | 48.1  | 45.7  |     |
| 196 | ... | 98 | 94 | 86 | 74 | 45 | 20  | 12  | 3   | 0   | 26 | 74 | 2  | 71   | 39.3 | 1.8 | 94  | 128 | 264 | 334 | 519  | 925  | 1513 | 2181 | 38.4  | 37.2  |     |
| 197 | ... | 97 | 78 | 48 | 27 | 13 | 9   | 6   | 2   | 2   | 71 | 27 | 2  | 68   | 41.1 | 1.9 | 139 | 185 | 234 | 318 | 767  | 1164 | 1690 | 2445 | 58.2  | 47.7  |     |
| 198 | 76  | 37 | 11 | 5  | 2  | 1  | 0.5 | ... | ... | 48  | 50 | 2  | 2  | 74   | 36.2 | 2.4 | 231 | ... | ... | ... | 3946 | ...  | 5004 | ...  | 78.4  | ...   |     |
| 199 | 98  | 84 | 45 | 20 | 11 | 7  | 4   | 3   | 1   | 8   | 81 | 11 | 2  | 63   | 41.3 | 2.1 | 138 | 228 | 246 | 343 | 756  | 1950 | 1794 | 2742 | 66.5  | 71.1  |     |
| 200 | 88  | 67 | 52 | 42 | 32 | 18 | 12  | 7   | 2   | 23  | 45 | 32 | 2  | 70   | 36.1 | 3.5 | 257 | 368 | 252 | 353 | 1367 | 2666 | 1747 | 2556 | 104.3 | 102.8 |     |
| 201 | 98  | 81 | 36 | 22 | 13 | 8  | 3   | 1   | ... | 11  | 76 | 13 | 2  | 70   | 35.1 | 2.4 | 314 | 428 | 313 | 403 | 2520 | 3320 | 2586 | 3100 | 106.2 | 107.2 |     |
| 202 | ... | 99 | 97 | 93 | 87 | 72 | 48  | 25  | 1   | 0   | 13 | 87 | 2  | 73   | 41.1 | 1.7 | 110 | 188 | 256 | 334 | 400  | 887  | 1700 | 2400 | 56.4  | 36.9  | ... |
| 203 | 96  | 74 | 52 | 27 | 15 | 8  | 5   | 4   | 1   | 1.6 | 69 | 15 | 2  | 75   | 37.9 | 2.2 | 234 | 320 | 256 | 334 | 1789 | 2650 | 1700 | 2400 | 96.1  | 110.3 |     |
| 204 | 95  | 79 | 48 | 28 | 18 | 12 | 7   | 5   | ... | 14  | 68 | 18 | 2  | 55   | 39.1 | 2.7 | 220 | 314 | 315 | 386 | 1225 | 1731 | 1970 | 2340 | 81.2  | 74.2  |     |
| 205 | 98  | 88 | 67 | 43 | 24 | 12 | 8   | 5   | 2   | 4   | 72 | 24 | 2  | 76   | 41.3 | 2.3 | 198 | 293 | 247 | 342 | 971  | 2008 | 1663 | 2680 | 85.8  | 74.7  |     |
| 206 | 93  | 69 | 45 | 22 | 11 | 6  | 3   | 2   | ... | 17  | 72 | 11 | 2  | 69   | 42.2 | 2.3 | 124 | 196 | 221 | 326 | 792  | 1711 | 1623 | 2300 | 60.2  | 74.5  |     |
| 207 | 74  | 43 | 22 | 8  | 3  | 2  | ... | ... | ... | 44  | 53 | 3  | 2  | 61   | 34.1 | 2.7 | 166 | 283 | 227 | 347 | 1440 | 2080 | 1910 | 3380 | 81.5  | 61.5  |     |
| 208 | 90  | 58 | 31 | 15 | 7  | 2  | 1   | ... | ... | 25  | 68 | 7  | 2  | 50   | 38.1 | 2.3 | 182 | 216 | 361 | 389 | 834  | 1480 | 1868 | 2580 | 55.5  | 57.4  |     |
| 209 | 99  | 86 | 52 | 27 | 13 | 8  | 6   | 3   | 2   | 7   | 80 | 18 | 2  | 71   | 44.2 | 2.1 | ... | ... | ... | ... | ...  | ...  | ...  | ...  | ...   | ...   |     |
| 210 | 98  | 84 | 48 | 29 | 18 | 10 | 5   | 2   | 0   | 9   | 74 | 18 | 2  | 63   | 41.6 | 2.4 | ... | ... | ... | ... | ...  | ...  | ...  | ...  | ...   | ...   |     |
| 211 | 40  | 10 | 5  | 3  | 2  | 1  | ... | ... | ... | 78  | 20 | 2  | 2  | 70   | 32.9 | 2.9 | 394 | 589 | 335 | 458 | 2608 | 5508 | 1508 | 2827 | 128.1 | 195.1 |     |
| 212 | 97  | 88 | 71 | 45 | 25 | 13 | 8   | 5   | 1   | 8   | 67 | 25 | 2  | 65   | 33.7 | 2.1 | 190 | 315 | 235 | 371 | 1475 | 2391 | 2113 | 3180 | 85.1  | 76.2  |     |
| 213 | 98  | 73 | 40 | 23 | 9  | 3  | 2   | 1   | 0   | 15  | 76 | 9  | 2  | 79   | 38.1 | 2.1 | 217 | 338 | 252 | 308 | 1644 | 2322 | 1356 | 2235 | 109.8 | 104.1 |     |
| 214 | 98  | 88 | 66 | 47 | 27 | 13 | 7   | 3   | 1   | 5   | 68 | 27 | 2  | 51   | 48.1 | 2.2 | 260 | 354 | 512 | 522 | 2255 | 3305 | 4370 | 5080 | 68.1  | 65.2  |     |
| 215 | 82  | 50 | 32 | 18 | 12 | 6  | 4   | 3   | 1   | 36  | 52 | 12 | 2  | 58   | 31.1 | 3.3 | 286 | 302 | 272 | 342 | 2154 | 3016 | 2065 | 2609 | 88.3  | 115.6 |     |
| 216 | 98  | 92 | 76 | 61 | 28 | 15 | 7   | 1   | ... | 5   | 67 | 28 | 2  | 64   | 36.2 | 1.8 | ... | ... | ... | ... | 2559 | 4327 | 3201 | 4637 | ...   | 93.7  |     |
| 217 | 95  | 89 | 80 | 52 | 27 | 12 | 4   | 2   | 1   | 9   | 64 | 27 | 2  | 71   | 38.7 | 1.9 | 247 | 342 | 281 | 323 | ...  | ...  | ...  | ...  | 106.0 | ...   |     |
| 218 | 72  | 54 | 35 | 22 | 18 | 8  | 7   | 4   | 2   | 38  | 49 | 13 | 2  | 80   | 32.1 | 3.7 | 361 | 528 | 288 | 410 | 2350 | 3398 | 1800 | 2693 | 112.9 | 112.6 |     |
| 219 | 97  | 91 | 67 | 44 | 18 | 8  | 4   | 2   | 1   | 6   | 78 | 18 | 2  | 60   | 35.1 | 1.7 | 166 | 290 | 288 | 410 | 741  | 1438 | 1800 | 2693 | 70.7  | 58.3  |     |
| 220 | 100 | 97 | 78 | 60 | 28 | 10 | 4   | 3   | 1   | 2   | 70 | 28 | 2  | 20   | 41.6 | 2.5 | 160 | 217 | 281 | 343 | 774  | 938  | 1279 | 2080 | 68.3  | 46.1  |     |
| 221 | 99  | 94 | 86 | 74 | 56 | 50 | 25  | 6   | 2   | 3   | 41 | 56 | 2  | 64   | 36.1 | 1.6 | 107 | 263 | 245 | 845 | 690  | 1610 | 1654 | 2639 | 76.2  | 61.1  |     |
| 222 | 77  | 73 | 21 | 16 | 12 | 8  | 7   | 4   | 2   | 46  | 42 | 12 | 2  | 64   | 33.1 | 4.1 | 246 | 345 | 245 | 345 | 1786 | 3188 | 1654 | 2539 | 100.0 | 121.2 |     |
| 223 | 93  | 27 | 4  | 3  | 2  | 2  | 2   | 1   | 0   | 40  | 58 | 2  | 2  | 59   | 36.1 | 1.7 | 166 | 192 | 245 | 345 | 1193 | 2050 | 1654 | 2639 | 55.6  | 78.1  |     |
| 224 | 97  | 28 | 16 | 12 | 10 | 7  | 5   | 4   | 2   | 40  | 50 | 10 | 2  | 58   | 41.1 | 3.3 | 101 | 228 | 245 | 345 | 812  | 1800 | 1654 | 2689 | 66.1  | 68.3  |     |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Granulometric analysis.<br>Per cent particles passing through screen. |    |    |    |    |    |     |     |     | Three-screen analysis.<br>Per cent particles. |             |      | Specific gravity. | Unsaturation coefficient. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |             |            |             | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |             |            |             | Strength at the<br>age of 28 days.<br>Specimen<br>standard × 100. |                   |       |
|---------------------|-----------------------------------------------------------------------|----|----|----|----|----|-----|-----|-----|-----------------------------------------------|-------------|------|-------------------|---------------------------|----------------------------------------------------------------|-------------|------------|-------------|--------------------------------------------------------------------|-------------|------------|-------------|-------------------------------------------------------------------|-------------------|-------|
|                     | 10                                                                    | 20 | 30 | 40 | 50 | 60 | 80  | 100 | 200 | Coarse                                        | Me-<br>dium | Fine |                   |                           | 7<br>days.                                                     | 28<br>days. | 7<br>days. | 28<br>days. | 7<br>days.                                                         | 28<br>days. | 7<br>days. | 28<br>days. | Ten-<br>sile.                                                     | Com-<br>pressive. |       |
|                     |                                                                       |    |    |    |    |    |     |     |     |                                               |             |      |                   |                           |                                                                |             |            |             |                                                                    |             |            |             |                                                                   |                   |       |
| 225                 | 84                                                                    | 57 | 41 | 28 | 22 | 17 | 12  | 8   | 1   | 34                                            | 44          | 22   | 2.50              | 39.9                      | 4.8                                                            | 147         | 210        | 317         | 356                                                                | 562         | 821        | 1161        | 1731                                                              | 59.1              | 47.4  |
| 226                 | 67                                                                    | 38 | 24 | 16 | 11 | 6  | 4   | 2   | 1   | 50                                            | 39          | 11   | 2.63              | 35.1                      | 4.3                                                            | 264         | 341        | 258         | 353                                                                | 1934        | 3164       | 1572        | 2729                                                              | 96.7              | 116.1 |
| 227                 | 65                                                                    | 17 | 8  | 7  | 5  | 4  | 3   | 2   | 1   | 68                                            | 27          | 5    | 2.63              | 35.9                      | 2.5                                                            | 235         | 405        | 277         | 404                                                                | 2386        | 3335       | 1594        | 3247                                                              | 100.1             | 102.6 |
| 228                 | 58                                                                    | 13 | 5  | 3  | 2  | 1  | 0.5 | —   | —   | 73                                            | 25          | 2    | 2.64              | 34.4                      | 2.3                                                            | 321         | 432        | 277         | 401                                                                | 2633        | 3838       | 1594        | 3217                                                              | 107.1             | 118.1 |
| 229                 | 86                                                                    | 72 | 57 | 50 | 35 | 25 | 16  | 9   | —   | 24                                            | 41          | 35   | 2.57              | 36.8                      | 3.8                                                            | 170         | 220        | 263         | 370                                                                | 544         | 1202       | 1427        | 2130                                                              | 59.4              | 56.4  |
| 230                 | 36                                                                    | 74 | 10 | 8  | 7  | 5  | 3   | 3   | 0   | 79                                            | 14          | 7    | 2.59              | 33.7                      | 4.8                                                            | 215         | 371        | 263         | 370                                                                | 1268        | 2294       | 1427        | 2130                                                              | 101.1             | 107.8 |
| 231                 | 89                                                                    | 53 | 20 | 7  | 3  | 2  | 1   | —   | —   | 23                                            | 71          | 3    | 2.52              | 36.4                      | 2.1                                                            | 154         | 214        | 250         | 367                                                                | 631         | 1251       | 1784        | 2700                                                              | 58.3              | 46.5  |
| 232                 | 65                                                                    | 19 | 7  | 4  | 3  | 2  | 2   | 1   | —   | 62                                            | 35          | 3    | 2.63              | 35.7                      | 2.4                                                            | 339         | 405        | 215         | 385                                                                | 2235        | 3908       | 1444        | 2241                                                              | 105.2             | 174.1 |
| 233                 | 86                                                                    | 59 | 88 | 21 | 10 | 5  | 2   | 1   | —   | 28                                            | 62          | 10   | 2.61              | 45.7                      | 2.1                                                            | 209         | 298        | 270         | 334                                                                | 317         | 661        | 912         | 1450                                                              | 89.5              | 45.5  |
| 234                 | 84                                                                    | 57 | 38 | 25 | 16 | 10 | 6   | 3   | 1   | 32                                            | 52          | 16   | 2.66              | 39.1                      | 3.2                                                            | 213         | 358        | 273         | 334                                                                | 738         | 1298       | 912         | 1450                                                              | 107.1             | 89.5  |
| 235                 | 77                                                                    | 30 | 13 | 7  | 5  | 3  | 2   | 2   | 1   | 44                                            | 51          | 5    | 2.64              | 33.2                      | 2.2                                                            | 231         | 361        | 264         | 346                                                                | 1508        | 2374       | 1631        | 2189                                                              | 105.2             | 117.6 |
| 236                 | 22                                                                    | 10 | 7  | 5  | 4  | 3  | 2   | 1   | —   | 87                                            | 9           | 4    | 2.78              | 36.8                      | 3.4                                                            | 339         | 509        | 261         | 374                                                                | 2657        | 3760       | 1414        | 2190                                                              | 136.1             | 171.8 |
| 237                 | 93                                                                    | 62 | 30 | 16 | 8  | 5  | 4   | 3   | 2   | 20                                            | 72          | 8    | 2.45              | 37.1                      | 2.2                                                            | 238         | 301        | 361         | 389                                                                | 1360        | 2020       | 1868        | 2580                                                              | 77.5              | 78.4  |
| 238                 | 90                                                                    | 54 | 24 | 12 | 6  | 2  | 1   | —   | —   | 29                                            | 63          | 6    | 2.50              | 43.2                      | 2.7                                                            | 232         | 294        | 289         | 392                                                                | 1606        | 2708       | 1886        | 2730                                                              | 75.1              | 99.3  |
| 239                 | 98                                                                    | 82 | 51 | 20 | 13 | 7  | 2   | 1   | —   | 8                                             | 80          | 12   | 2.67              | 42.8                      | 2.1                                                            | 176         | 251        | 213         | 370                                                                | 1154        | 1722       | 1584        | 2546                                                              | 67.7              | 67.6  |
| 240                 | 89                                                                    | 56 | 24 | 12 | 8  | 6  | 4   | 3   | 2   | 21                                            | 68          | 8    | 2.52              | 36.1                      | 2.4                                                            | 252         | 315        | 361         | 389                                                                | 1270        | 1780       | 1868        | 2580                                                              | 81.1              | 69.1  |
| 241                 | 97                                                                    | 72 | 46 | 28 | 17 | 8  | 5   | 3   | 1   | 13                                            | 70          | 17   | 2.51              | 41.7                      | 2.6                                                            | 102         | 202        | 229         | 375                                                                | 469         | 1184       | 1411        | 2365                                                              | 51.1              | 50.2  |
| 242                 | 96                                                                    | 68 | 30 | 15 | 9  | 6  | 4   | 3   | 2   | 17                                            | 74          | 9    | 2.52              | 38.7                      | 2.1                                                            | 127         | 258        | 215         | 339                                                                | 768         | 1632       | 1728        | 2177                                                              | 76.2              | 75.1  |
| 243                 | 91                                                                    | 66 | 37 | 22 | 13 | 7  | 4   | 2   | 2   | 21                                            | 66          | 13   | 2.55              | 40.7                      | 2.7                                                            | 136         | 211        | 211         | 392                                                                | 635         | 1424       | 1637        | 2151                                                              | 54.1              | 58.1  |
| 244                 | 96                                                                    | 62 | 31 | 16 | 7  | 4  | 3   | 2   | 1   | 21                                            | 72          | 7    | 2.58              | 34.1                      | 2.1                                                            | 156         | 262        | 229         | 330                                                                | 1082        | 1983       | 1328        | 2263                                                              | 79.4              | 87.5  |
| 245                 | 82                                                                    | 47 | 20 | 10 | 5  | 3  | 2   | 2   | 1   | 18                                            | 77          | 5    | 2.62              | 39.1                      | 2.6                                                            | 212         | 336        | 320         | 415                                                                | 1690        | 3260       | 2380        | 3610                                                              | 81.1              | 90.5  |
| 246                 | 98                                                                    | 94 | 82 | 65 | 47 | 23 | 13  | 8   | 3   | 4                                             | 49          | 47   | 2.89              | 45.1                      | 2.1                                                            | 212         | 344        | 251         | 370                                                                | 880         | 1917       | 1811        | 2762                                                              | 83.1              | 69.3  |
| 247                 | 83                                                                    | 55 | 29 | 14 | 8  | 4  | 3   | 2   | —   | 30                                            | 62          | 8    | 2.70              | 42.1                      | 2.5                                                            | 233         | 375        | 270         | 392                                                                | 1515        | 3509       | 1913        | 3771                                                              | 66.6              | 95.2  |

|     |     |    |    |    |    |    |    |    |     |    |    |    |      |      |     |     |     |     |     |      |      |      |      |       |       |
|-----|-----|----|----|----|----|----|----|----|-----|----|----|----|------|------|-----|-----|-----|-----|-----|------|------|------|------|-------|-------|
| 248 | 92  | 64 | 46 | 33 | 26 | 17 | 11 | 8  | 1   | 24 | 50 | 26 | 2.68 | 38.6 | 3.8 | 183 | 305 | 235 | 310 | 1564 | 2389 | 1670 | 2248 | 98.5  | 106.2 |
| 249 | 96  | 68 | 40 | 22 | 12 | 7  | 4  | 3  | 2   | 17 | 71 | 12 | 2.57 | 40.1 | 2.5 | 197 | 298 | 286 | 403 | 1329 | 1983 | 2100 | 2722 | 73.9  | 72.8  |
| 250 | 84  | 56 | 37 | 23 | 14 | 7  | 4  | 3  | 1   | 31 | 55 | 14 | 2.49 | 38.1 | 3.2 | 188 | 322 | 260 | 389 | 1375 | 2720 | 1769 | 3040 | 82.7  | 89.5  |
| 251 | 78  | 49 | 26 | 15 | 9  | 6  | 3  | 1  |     | 38 | 53 | 9  | 2.61 | 40.3 | 3.4 | 197 | 312 | 316 | 402 | 779  | 2199 | 1704 | 2425 | 77.7  | 90.5  |
| 252 | 96  | 71 | 37 | 18 | 12 | 6  | 4  | 3  | 2   | 15 | 73 | 12 | 2.55 | 36.1 | 2.5 | 159 | 232 | 255 | 365 | 1313 | 1832 | 1920 | 2777 | 63.6  | 66.1  |
| 253 | 87  | 65 | 47 | 35 | 25 | 17 | 13 | 10 | 5   | 22 | 53 | 25 | 2.58 | 32.9 | 2.8 | 130 | 231 | 255 | 365 | 1180 | 2060 | 1920 | 2777 | 64.1  | 71.2  |
| 254 | 97  | 77 | 44 | 27 | 15 | 9  | 4  | 3  | 2   | 12 | 73 | 15 | 2.62 | 45.7 | 2.5 | 90  | 162 | 283 | 364 | 725  | 1181 | 1523 | 2861 | 44.3  | 41.3  |
| 255 | 78  | 57 | 41 | 29 | 19 | 11 | 6  | 3  | 0   | 33 | 48 | 19 | 2.59 | 38.7 | 3.7 | 225 | 352 | 310 | 432 | 1818 | 2105 | 2631 | 3428 | 81.4  | 70.2  |
| 256 | 85  | 66 | 47 | 34 | 22 | 12 | 8  | 5  |     | 26 | 52 | 22 | 2.56 | 40.3 | 2.9 | 216 | 309 | 265 | 325 | 854  | 1149 | 1618 | 2618 | 95.1  | 41.1  |
| 257 | 95  | 71 | 54 | 36 | 24 | 13 | 7  | 4  | 1   | 14 | 62 | 21 | 2.61 | 35.4 | 2.6 | 235 | 350 | 277 | 364 | 1604 | 2930 | 1517 | 2928 | 96.2  | 100.1 |
| 258 | 84  | 62 | 43 | 34 | 22 | 12 | 7  | 5  | 2   | 29 | 49 | 22 | 2.62 | 30.6 | 3.4 | 218 | 309 | 251 | 325 | 1505 | 2597 | 1560 | 2164 | 95.1  | 105.2 |
| 259 | 97  | 81 | 50 | 28 | 16 | 7  | 3  | 2  | 1   | 8  | 76 | 16 | 2.65 | 38.7 | 2.2 | 217 | 338 | 265 | 389 | 1180 | 2538 | 1604 | 2606 | 86.8  | 97.3  |
| 260 | 95  | 77 | 38 | 13 | 10 | 2  | 1  | 1  |     | 5  | 85 | 10 | 2.65 | 47.1 | 1.8 | 183 | 313 | 262 | 367 | 1134 | 2003 | 1600 | 2500 | 85.3  | 80.3  |
| 261 | 94  | 77 | 56 | 37 | 21 | 13 | 7  | 4  | 2   | 13 | 63 | 24 | 2.54 | 32.2 | 2.5 | 193 | 268 | 277 | 364 | 1417 | 2545 | 1517 | 2928 | 73.5  | 86.8  |
| 262 | 98  | 94 | 82 | 60 | 32 | 12 | 4  | 3  | 2   | 4  | 64 | 32 | 2.76 | 37.1 | 2.7 | 221 | 286 | 257 | 312 | 2150 | 2550 | 1700 | 3040 | 91.5  | 84.1  |
| 263 | 95  | 74 | 48 | 30 | 20 | 11 | 7  | 4  | 2   | 13 | 67 | 20 | 2.70 | 39.1 | 1.8 | 185 | 281 | 257 | 312 | 1270 | 2000 | 1700 | 3040 | 90.1  | 65.7  |
| 264 | 87  | 60 | 37 | 18 | 10 | 4  | 2  | 1  |     | 27 | 63 | 10 | 2.91 | 33.7 | 2.7 | 274 | 389 | 255 | 338 | 1536 | 3631 | 2089 | 2703 | 115.1 | 134.1 |
| 265 | 95  | 80 | 50 | 18 | 13 | 8  | 6  | 3  | 2   | 11 | 76 | 13 | 2.67 | 31.3 | 2.1 | 231 | 333 | 233 | 347 | 1343 | 2146 | 1718 | 2527 | 96.1  | 85.1  |
| 266 | 88  | 66 | 38 | 18 | 7  | 3  | 2  | 1  | 1   | 18 | 75 | 7  | 2.83 | 33.1 | 2.3 | 214 | 279 | 255 | 338 | 1571 | 2706 | 2089 | 2703 | 82.5  | 100.1 |
| 267 | 93  | 70 | 43 | 17 | 7  | 3  | 2  | 2  | 1   | 17 | 76 | 7  | 2.71 | 30.2 | 2.1 | 216 | 300 | 253 | 315 | 1959 | 3083 | 1829 | 2625 | 95.2  | 122.1 |
| 268 | 98  | 94 | 70 | 37 | 18 | 9  | 6  | 4  | 2   | 2  | 80 | 18 | 2.68 | 32.1 | 2.1 | 218 | 279 | 246 | 356 | 1198 | 1800 | 1552 | 2610 | 78.6  | 69.1  |
| 269 | 98  | 89 | 73 | 45 | 23 | 12 | 8  | 7  | 5   | 7  | 70 | 23 | 2.77 | 34.8 | 2.1 | 170 | 235 | 208 | 290 | 923  | 1801 | 1375 | 2512 | 81.1  | 71.8  |
| 270 | 95  | 78 | 66 | 51 | 30 | 10 | 3  |    |     | 15 | 55 | 30 | 2.58 | 41.1 | 1.8 | 139 | 204 | 223 | 338 | 803  | 1311 | 1636 | 2622 | 60.1  | 50.1  |
| 271 | 92  | 64 | 27 | 12 | 5  | 2  | 2  | 2  | 1   | 22 | 73 | 5  | 2.77 | 33.8 | 2.1 | 207 | 368 | 267 | 419 | 1720 | 3012 | 2566 | 4197 | 88.1  | 72.1  |
| 272 | 97  | 90 | 79 | 36 | 25 | 14 | 10 | 7  | 2   | 4  | 71 | 25 | 2.66 | 32.7 | 2.1 | 175 | 284 | 247 | 368 | 1102 | 1900 | 1799 | 2585 | 77.2  | 73.5  |
| 273 | 97  | 78 | 44 | 17 | 7  | 4  | 2  | 1  | 0.5 | 12 | 81 | 7  | 2.60 | 32.1 | 1.7 | 218 | 277 | 275 | 351 | 1225 | 2028 | 1478 | 2353 | 79.1  | 86.4  |
| 274 | 100 | 97 | 77 | 35 | 17 | 7  | 4  | 2  | 1   | 0  | 83 | 17 | 2.72 | 33.4 | 1.6 | 202 | 278 | 260 | 376 | 1911 | 2796 | 2758 | 3411 | 74.1  | 80.7  |
| 275 | 100 | 92 | 77 | 60 | 45 | 12 | 7  | 3  | 2   | 5  | 50 | 45 | 2.71 | 31.5 | 1.6 | 181 | 271 | 281 | 352 | 1324 | 2188 | 1897 | 2595 | 77.1  | 84.4  |
| 276 | 97  | 75 | 36 | 12 | 4  | 3  | 2  | 2  | 2   | 10 | 86 | 4  | 2.73 | 33.1 | 1.5 | 196 | 308 | 243 | 326 | 1791 | 2824 | 2139 | 3934 | 94.5  | 72.1  |
| 277 | 93  | 78 | 47 | 29 | 18 | 7  | 6  | 4  | 2   | 15 | 67 | 18 | 2.68 | 32.9 | 2.4 | 223 | 322 | 234 | 355 | 1343 | 2481 | 1893 | 2406 | 90.8  | 103.1 |
| 278 | 98  | 95 | 83 | 59 | 33 | 12 | 5  | 3  | 1   | 3  | 64 | 33 | 2.68 | 42.1 | 1.8 | 201 | 248 | 265 | 339 | 946  | 1420 | 1520 | 2820 | 73.3  | 50.4  |
| 279 | 98  | 75 | 45 | 27 | 18 | 11 | 8  | 7  | 3   | 10 | 72 | 18 | 2.80 | 40.1 | 2.8 | 200 | 314 | 244 | 381 | 1414 | 2340 | 1848 | 2610 | 82.5  | 89.5  |
| 280 | 98  | 90 | 67 | 30 | 15 | 7  | 4  | 2  | 1   | 5  | 80 | 15 | 2.70 | 31.9 | 1.7 | 164 | 218 | 230 | 320 | 995  | 1749 | 1585 | 2311 | 68.1  | 75.6  |
| 281 | 81  | 46 | 31 | 23 | 12 | 7  | 5  | 4  | 3   | 43 | 45 | 12 | 2.78 | 29.1 | 2.1 | 181 | 311 | 232 | 334 | 1887 | 3418 | 1677 | 2340 | 93.3  | 146.1 |
| 282 | 96  | 62 | 31 | 17 | 8  | 4  | 3  | 2  |     | 20 | 72 | 8  | 2.69 | 34.9 | 2.2 | 148 | 332 | 227 | 278 | 1036 | 2553 | 1394 | 2220 | 123.1 | 115.1 |

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Tracing No. | Granulometric analysis.<br>Per cent particles passing through screen. |    |    |    |    |    |    |     |     |         | Three-screen analysis.<br>Per cent particles. |       |         | Specific gravity. | Uniformity coefficient. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |         |                |         | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |          |                |       | Strength at the<br>age of 28 days.<br>Specimen<br>standard × 100. |       |  |
|-------------|-----------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|---------|-----------------------------------------------|-------|---------|-------------------|-------------------------|----------------------------------------------------------------|---------|----------------|---------|--------------------------------------------------------------------|----------|----------------|-------|-------------------------------------------------------------------|-------|--|
|             |                                                                       |    |    |    |    |    |    |     |     |         |                                               |       |         |                   |                         | Sand specimens.                                                |         | Standard sand. |         | Sand specimens.                                                    |          | Standard sand. |       |                                                                   |       |  |
|             | 10                                                                    | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | Coarse. | Medium.                                       | Fine. | 7 days. | 28 days.          | 7 days.                 | 28 days.                                                       | 7 days. | 28 days.       | 7 days. | 28 days.                                                           | Tensile. | Compressive.   |       |                                                                   |       |  |
| 283         | 99                                                                    | 91 | 65 | 28 | 8  | 3  | 2  | 1   |     | 4       | 88                                            | 8     | 2.71    | 38.4              | 1.4                     | 148                                                            | 249     | 287            | 360     | 1031                                                               | 1999     | 1567           | 2950  | 69.2                                                              | 67.7  |  |
| 284         | 94                                                                    | 72 | 40 | 16 | 7  | 4  | 3  | 2   |     | 16      | 77                                            | 7     | 2.76    | 35.1              | 2.1                     | 172                                                            | 218     | 247            | 341     | 1410                                                               | 2358     | 1770           | 2290  | 64.1                                                              | 103.1 |  |
| 285         | 98                                                                    | 92 | 63 | 32 | 14 | 7  | 5  | 3   | 2   | 5       | 81                                            | 14    | 2.71    | 33.7              | 1.8                     | 141                                                            | 242     | 210            | 322     | 860                                                                | 1715     | 1457           | 2627  | 75.2                                                              | 65.2  |  |
| 286         | 98                                                                    | 93 | 72 | 30 | 17 | 8  | 4  | 3   | 2   | 4       | 79                                            | 17    | 2.73    | 40.3              | 1.7                     | 186                                                            | 240     | 252            | 344     | 1193                                                               | 1837     | 1715           | 2473  | 70.1                                                              | 74.2  |  |
| 287         | 100                                                                   | 98 | 77 | 45 | 21 | 12 | 3  | 1   | 0   | 2       | 74                                            | 24    | 2.72    | 31.1              | 1.8                     | 172                                                            | 242     | 260            | 341     | 982                                                                | 1735     | 1595           | 2217  | 71.1                                                              | 79.1  |  |
| 288         | 100                                                                   | 95 | 66 | 31 | 15 | 7  | 5  | 2   | 1   | 3       | 82                                            | 15    | 2.77    | 33.2              | 1.7                     | 185                                                            | 269     | 257            | 321     | 1101                                                               | 1978     | 1478           | 2253  | 83.1                                                              | 87.7  |  |
| 289         | 98                                                                    | 89 | 62 | 25 | 7  | 3  | 2  | 2   | 1   | 5       | 88                                            | 7     | 2.73    | 33.5              | 1.4                     | 175                                                            | 285     | 223            | 549     | 696                                                                | 2871     | 1229           | 4734  | 51.9                                                              | 60.8  |  |
| 290         | 93                                                                    | 75 | 43 | 20 | 12 | 6  | 3  | 2   | 1   | 20      | 68                                            | 12    | 2.67    | 32.6              | 2.1                     | 189                                                            | 331     | 242            | 311     | 1756                                                               | 2714     | 1902           | 3023  | 97.2                                                              | 89.8  |  |
| 291         | 83                                                                    | 47 | 29 | 16 | 6  | 4  | 2  | 2   | 1   | 40      | 54                                            | 6     | 2.71    | 29.1              | 3.0                     | 326                                                            | 432     | 251            | 373     | 2759                                                               | 3233     | 2260           | 3466  | 115.6                                                             | 95.1  |  |
| 292         | 76                                                                    | 24 | 2  | 1  |    |    |    |     |     | 57      | 43                                            | 0     | 2.17    | 51.5              | 2.3                     | 332                                                            | 378     |                |         | *3110                                                              | *3700    |                |       |                                                                   |       |  |
| 293         | 84                                                                    | 61 | 36 | 25 | 16 | 8  | 3  | 2   |     | 28      | 56                                            | 16    | 2.92    | 38.6              | 2.8                     | 335                                                            | 428     | 367            | 351     | 1662                                                               | 2164     | 2030           | 2654  | 122.1                                                             | 81.7  |  |
| 294         | 83                                                                    | 52 | 34 | 18 | 10 | 4  | 3  | 2   |     | 37      | 53                                            | 10    | 2.63    | 32.1              | 3.1                     | 296                                                            | 470     | 259            | 371     | 1493                                                               | 2577     | 1901           | 2940  | 121.1                                                             | 87.8  |  |
| 295         | 86                                                                    | 74 | 60 | 42 | 27 | 12 | 7  | 3   |     | 20      | 53                                            | 27    | 2.58    | 37.4              | 2.3                     | 175                                                            | 265     | 310            | 432     | 803                                                                | 1439     | 2630           | 3128  | 60.5                                                              | 42.1  |  |
| 296         | 91                                                                    | 77 | 59 | 38 | 23 | 8  | 5  | 3   | 2   | 18      | 59                                            | 23    | 2.51    | 39.1              | 2.1                     | 191                                                            | 287     | 266            | 367     | 926                                                                | 1619     | 2102           | 2191  | 78.2                                                              | 66.2  |  |
| 297         | 89                                                                    | 81 | 68 | 46 | 29 | 13 | 6  | 3   | 2   | 14      | 57                                            | 29    | 2.62    | 31.5              | 2.1                     | 160                                                            | 260     | 266            | 367     | 801                                                                | 1156     | 2102           | 2191  | 70.8                                                              | 58.5  |  |
| 298         | 66                                                                    | 42 | 23 | 17 | 10 | 5  | 3  | 2   | 1   | 47      | 43                                            | 10    | 2.77    | 31.9              | 4.1                     | 279                                                            | 371     | 230            | 334     | 1701                                                               | 3565     | 1676           | 2472  | 112.1                                                             | 144.5 |  |
| 299         | 86                                                                    | 66 | 43 | 23 | 13 | 7  | 2  | 1   |     | 23      | 62                                            | 13    | 2.67    | 34.8              | 2.3                     | 171                                                            | 236     | 280            | 334     | 937                                                                | 1988     | 1676           | 2472  | 107.1                                                             | 80.5  |  |
| 300         | 87                                                                    | 65 | 42 | 25 | 12 | 7  | 3  | 1   |     | 23      | 65                                            | 12    | 2.69    | 37.1              | 2.5                     | 211                                                            | 315     | 211            | 313     | 1418                                                               | 2527     | 1448           | 2907  | 92.1                                                              | 90.1  |  |
| 301         | 70                                                                    | 43 | 24 | 13 | 8  | 4  | 3  | 2   | 1   | 46      | 46                                            | 8     | 2.65    | 34.1              | 3.4                     | 299                                                            | 323     | 255            | 349     | 1313                                                               | 2807     | 1393           | 3022  | 91.1                                                              | 93.5  |  |
| 302         | 66                                                                    | 26 |    |    |    |    |    |     |     |         |                                               |       | 2.68    | 56.1              |                         | 169                                                            |         | 197            |         |                                                                    | *2057    |                |       |                                                                   |       |  |
| 303         | 96                                                                    | 89 | 77 | 68 | 18 | 26 | 9  | 3   |     | 8       | 43                                            | 48    | 2.60    |                   | 1.7                     |                                                                | *270    |                | *310    |                                                                    | *3245    |                | *4288 | 79.4                                                              | 75.8  |  |
| 304         | 87                                                                    | 66 | 62 | 35 | 20 | 11 | 7  | 4   | 1   | 21      | 56                                            | 20    | 2.43    | 27.6              | 2.7                     | 192                                                            | 252     | 212            | 302     | 1200                                                               | 1660     | 1650           | 2165  | 83.5                                                              | 67.2  |  |
| 305         | 77                                                                    | 50 | 30 | 17 | 11 | 7  | 6  | 4   | 2   | 40      | 49                                            | 11    | 2.78    | 30.2              | 3.4                     | 262                                                            | 429     | 258            | 331     | 2161                                                               | 3408     | 2385           | 3228  | 127.1                                                             | 105.3 |  |

|     |     |    |    |    |    |     |    |     |    |    |    |      |      |      |     |     |     |     |     |      |      |      |      |       |       |
|-----|-----|----|----|----|----|-----|----|-----|----|----|----|------|------|------|-----|-----|-----|-----|-----|------|------|------|------|-------|-------|
| 306 | 78  | 39 | 22 | 13 | 9  | 7   | 4  | 3   | 2  | 44 | 47 | 9    | 2.67 | 29.7 | 3.6 | 276 | 400 | 282 | 333 | 1665 | 2815 | 1714 | 2318 | 120.1 | 121.6 |
| 307 | 85  | 75 | 61 | 38 | 20 | 12  | 7  | 4   | 2  | 26 | 51 | 20   | 2.63 | 31.6 | 2.6 | 222 | 315 | 236 | 343 | 1670 | 2620 | 1900 | 2550 | 101.1 | 104.1 |
| 308 | 78  | 48 | 28 | 18 | 12 | 8   | 5  | 4   | 2  | 40 | 48 | 12   | 2.65 | 26.1 | 3.7 | 182 | 312 | 235 | 330 | 1860 | 3371 | 1896 | 2671 | 94.7  | 126.3 |
| 309 | 87  | 66 | 45 | 26 | 17 | 10  | 7  | 5   | 2  | 23 | 60 | 17   | 2.65 | 27.5 | 2.9 | 171 | 277 | 235 | 330 | 1260 | 2094 | 1896 | 2671 | 81.1  | 78.4  |
| 310 | 88  | 67 | 43 | 26 | 17 | 10  | 7  | 5   | 2  | 25 | 58 | 17   | 2.66 | 28.7 | 2.8 | 195 | 289 | 235 | 330 | 1442 | 2691 | 1896 | 2671 | 87.5  | 100.8 |
| 311 | 81  | 56 | 37 | 20 | 10 | 4   | 2  | 1   | 0  | 32 | 58 | 10   | 2.68 | 26.9 | 2.8 | 227 | 314 | 235 | 330 | 1818 | 2749 | 1896 | 2671 | 95.2  | 103.1 |
| 312 | 78  | 49 | 27 | 13 | 7  | 3   | 2  | 1   | -  | 36 | 57 | 7    | 2.60 | 32.1 | 2.9 | 218 | 318 | 249 | 318 | 1130 | 2210 | 1700 | 2460 | 100.0 | 90.1  |
| 313 | 63  | 31 | 18 | 12 | 7  | 4   | 3  | 2   | 1  | 53 | 40 | 7    | 2.69 | 32.1 | 4.3 | 281 | 372 | 298 | 390 | 2180 | 2750 | 2190 | 3450 | 95.1  | 80.1  |
| 314 | 71  | 46 | 27 | 15 | 9  | 6   | 3  | 2   | -  | 44 | 47 | 9    | 2.64 | 32.5 | 3.8 | 203 | 317 | 224 | 340 | 1117 | 2510 | 1767 | 2932 | 93.1  | 85.6  |
| 315 | 62  | 26 | 12 | 17 | 5  | 3   | 2  | 1   | -  | 57 | 38 | 5    | 2.66 | 34.5 | 3.2 | 251 | 405 | 266 | 391 | 1235 | 3340 | 1387 | 3045 | 104.1 | 109.7 |
| 316 | 77  | 39 | 17 | 7  | 3  | 2   | -  | -   | -  | 46 | 51 | 3    | 2.65 | 35.5 | 2.7 | 277 | 343 | 254 | 370 | 1604 | 3046 | 1673 | 2435 | 93.1  | 125.1 |
| 317 | 87  | 70 | 51 | 41 | 32 | 26  | 17 | 14  | 10 | 31 | 34 | 32   | 2.71 | 34.8 | 6.5 | 276 | 364 | 276 | 350 | 2414 | 2947 | 2218 | 3506 | 104.1 | 84.1  |
| 318 | 94  | 63 | 20 | 10 | 5  | 2   | 1  | -   | -  | 22 | 73 | 5    | 2.58 | 44.2 | 1.7 | 211 | 280 | 281 | 354 | 1534 | 1929 | 2028 | 3626 | 70.1  | 52.8  |
| 319 | 84  | 51 | 47 | 36 | 25 | 17  | 13 | 9   | 3  | 38 | 47 | 25   | 2.67 | 35.1 | 4.6 | 315 | 395 | 281 | 398 | 2106 | 3558 | 2026 | 2626 | 99.5  | 135.2 |
| 320 | 98  | 89 | 60 | 32 | 18 | 8   | 3  | 2   | -  | 5  | 77 | 18   | 2.71 | 35.6 | 2.1 | -   | 310 | -   | 400 | -    | 1649 | -    | 2340 | 85.1  | 70.3  |
| 321 | 76  | 47 | 27 | 15 | 13 | 7   | 5  | 4   | 2  | 41 | 46 | 13   | 2.84 | 37.5 | 3.3 | 257 | 381 | 274 | 310 | 1707 | 3375 | 1678 | 2126 | 112.1 | 139.2 |
| 322 | 80  | 42 | 22 | 12 | 7  | 4   | 3  | 2   | -  | 44 | 49 | 7    | 2.42 | 40.3 | 3.1 | 114 | 189 | 271 | 310 | 508  | 980  | 1678 | 2126 | 55.6  | 40.4  |
| 323 | 99  | 91 | 65 | 42 | 29 | 18  | 12 | 5   | -  | 3  | 68 | 29   | 2.87 | 37.6 | 2.4 | 263 | 348 | 274 | 340 | 2088 | 3055 | 1678 | 2126 | 102.3 | 126.1 |
| 324 | 52  | 26 | 7  | 2  | 1  | -   | -  | -   | -  | 63 | 36 | 1    | 2.46 | 37.1 | 3.4 | 130 | 252 | 223 | 312 | 972  | 1331 | 1965 | 3011 | 73.5  | 44.3  |
| 325 | 78  | 56 | 33 | 21 | 12 | 7   | 4  | 3   | -  | 32 | 56 | 12   | 2.50 | 37.1 | 3.1 | 152 | 276 | 229 | 342 | 984  | 1699 | 1965 | 3011 | 80.8  | 56.4  |
| 326 | 94  | 44 | 7  | 2  | 0  | -   | -  | -   | -  | 30 | 70 | 0    | 2.94 | 35.1 | 1.7 | 196 | 294 | 274 | 340 | 1625 | 2530 | 1678 | 2426 | 86.5  | 104.2 |
| 327 | 84  | 42 | 25 | 17 | 13 | 8   | 7  | 5   | 2  | 41 | 46 | 13   | 2.83 | 37.9 | 3.9 | 217 | 340 | 274 | 340 | 1601 | 2775 | 1678 | 2426 | 100.0 | 114.2 |
| 328 | 100 | 99 | 98 | 95 | 77 | 47  | 25 | 3   | -  | 23 | 77 | 2.61 | 46.9 | 1.5  | 161 | 206 | 253 | 300 | -   | -    | -    | -    | 68.7 | -     |       |
| 329 | 69  | 22 | 2  | 1  | 0  | 0.1 | -  | -   | -  | 62 | 38 | 0    | 2.77 | 39.1 | 2.3 | 330 | 457 | 326 | 330 | 1392 | 4124 | 1735 | 2975 | 138.2 | 138.6 |
| 330 | 98  | 71 | 26 | 10 | 8  | 2   | 1  | -   | -  | 18 | 79 | 3    | 2.63 | 43.8 | 1.8 | 176 | 246 | 262 | 330 | -    | -    | -    | -    | 74.5  | -     |
| 331 | 96  | 79 | 40 | 22 | 12 | 7   | 4  | 3   | 2  | 12 | 76 | 12   | 2.64 | 41.5 | 2.3 | 164 | 262 | 247 | 344 | 1037 | 1790 | 1995 | 2970 | 76.2  | 60.3  |
| 332 | 94  | 43 | 17 | 7  | 4  | 3   | 2  | 2   | 1  | 30 | 66 | 4    | 2.77 | 35.1 | 2.5 | 292 | 365 | 259 | 369 | 1810 | 3155 | 1673 | 2377 | 99.1  | 182.6 |
| 333 | 98  | 63 | 82 | 14 | 6  | 3   | 2  | 1   | -  | 12 | 82 | 6    | 2.62 | 38.1 | 1.8 | 239 | 320 | 260 | 344 | 1520 | 2279 | 1920 | 2830 | 98.1  | 80.5  |
| 334 | 100 | 95 | 78 | 55 | 33 | 7   | 3  | 2   | 1  | 3  | 64 | 33   | 2.89 | 31.4 | 1.6 | 228 | 309 | 269 | 373 | 1550 | 2246 | 2107 | 2846 | 82.7  | 79.1  |
| 335 | 67  | 18 | 5  | 3  | 2  | 2   | 1  | 0.5 | -  | 60 | 88 | 2    | 2.63 | 36.1 | 2.3 | 230 | 355 | 207 | 337 | 1633 | 2915 | 1525 | 2224 | 105.2 | 181.1 |
| 336 | 97  | 68 | 33 | 17 | 9  | 3   | 2  | 1   | -  | 16 | 75 | 9    | 2.99 | 32.9 | 2.3 | 222 | 373 | 207 | 337 | 1693 | 3269 | 1525 | 2224 | 111.6 | 146.7 |
| 337 | 92  | 75 | 24 | 15 | 8  | 4   | 3  | 2   | -  | 14 | 78 | 8    | 2.66 | 38.4 | 2.1 | 205 | 291 | 285 | 362 | 1068 | 1849 | 1783 | 3136 | 80.4  | 59.1  |
| 338 | 98  | 92 | 73 | 52 | 37 | 23  | 16 | 8   | 3  | 4  | 59 | 37   | 2.81 | 42.1 | 2.4 | 179 | 281 | 227 | 339 | 918  | 2180 | 1239 | 2598 | 59.3  | 84.1  |

\* Proportion of mortar mixture by weight 1:2.

TABLE 8.—*Granulometric composition and tensile and compressive strengths of Philippine sands—Continued.*

| Trac-<br>ing<br>No. | Granulometric analysis.<br>Per cent particles passing through screen. |    |    |    |    |    |    |     |     |            | Three-screen analysis.<br>Per cent particles. |              |       | Specific gravity. | Tensile strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Compressive strength in<br>pounds per square inch<br>(1:3 mortar). |             |                   |             | Strength at the<br>age of 28 days.<br>Specimen<br>standard × 100. |                   |       |
|---------------------|-----------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|------------|-----------------------------------------------|--------------|-------|-------------------|----------------------------------------------------------------|-------------|-------------------|-------------|--------------------------------------------------------------------|-------------|-------------------|-------------|-------------------------------------------------------------------|-------------------|-------|
|                     |                                                                       |    |    |    |    |    |    |     |     |            | Coarse.                                       | Me-<br>dium. | Fine. |                   | Sand<br>specimens.                                             |             | Standard<br>sand. |             | Sand<br>specimens.                                                 |             | Standard<br>sand. |             | Ten-<br>sile.                                                     | Com-<br>pressive. |       |
|                     | 10                                                                    | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | 7<br>days. |                                               |              |       |                   | 7<br>days.                                                     | 28<br>days. | 7<br>days.        | 28<br>days. | 7<br>days.                                                         | 28<br>days. | 7<br>days.        | 28<br>days. |                                                                   |                   |       |
| 339                 | 98                                                                    | 76 | 33 | 7  | 3  | 1  | —  | —   | —   | 8          | 89                                            | 3            | 2.51  | 44.2              | 1.8                                                            | 147         | 242               | 255         | 390                                                                | 868         | 1621              | 1756        | 2688                                                              | 62.1              | 60.4  |
| 340                 | 87                                                                    | 60 | 31 | 16 | 10 | 4  | 3  | 2   | —   | 26         | 64                                            | 10           | 2.68  | 43.3              | 2.5                                                            | 192         | 307               | 277         | 393                                                                | 1858        | 2472              | 1700        | 2578                                                              | 78.2              | 96.2  |
| 341                 | 97                                                                    | 85 | 54 | 28 | 17 | 7  | 4  | 3   | 1   | 6          | 77                                            | 17           | 2.84  | 39.1              | 2.1                                                            | 254         | 323               | 252         | 343                                                                | 1183        | 2027              | 1945        | 2404                                                              | 94.1              | 84.2  |
| 342                 | 79                                                                    | 58 | 38 | 22 | 15 | 8  | 4  | 3   | 1   | 32         | 53                                            | 15           | 2.51  | 30.3              | 3.1                                                            | 162         | 247               | 324         | 392                                                                | 1042        | 2110              | 1736        | 2350                                                              | 63.1              | 90.1  |
| 343                 | 92                                                                    | 75 | 58 | 40 | 24 | 10 | 7  | 4   | 1   | 17         | 59                                            | 24           | 2.67  | 40.1              | 2.2                                                            | 111         | 195               | 247         | 417                                                                | 1026        | 2084              | 1590        | 3367                                                              | 79.0              | 61.8  |
| 344                 | 98                                                                    | 84 | 65 | 28 | 14 | 7  | 4  | 3   | 2   | 10         | 76                                            | 14           | 2.59  | 44.4              | 2.1                                                            | 112         | 171               | 236         | 366                                                                | 1014        | 1541              | 1758        | 3200                                                              | 46.8              | 48.2  |
| 345                 | 88                                                                    | 78 | 67 | 42 | 23 | 13 | 7  | 4   | 2   | 22         | 55                                            | 23           | 2.67  | 41.2              | 2.5                                                            | 173         | 283               | 259         | 344                                                                | 1480        | 2454              | 1707        | 3176                                                              | 82.3              | 77.3  |
| 346                 | 80                                                                    | 53 | 30 | 17 | 8  | 3  | 2  | 1   | —   | 34         | 58                                            | 8            | 2.70  | 40.1              | 2.7                                                            | 243         | 347               | 260         | 369                                                                | 1304        | 2563              | 1673        | 2377                                                              | 94.1              | 108.8 |
| 347                 | 81                                                                    | 57 | 38 | 26 | 17 | 9  | 4  | 3   | 2   | 33         | 50                                            | 17           | 2.78  | 39.5              | 3.5                                                            | 200         | 308               | 247         | 342                                                                | 1163        | 2346              | 1663        | 2568                                                              | 90.1              | 91.5  |
| 348                 | 96                                                                    | 67 | 43 | 27 | 16 | 10 | 6  | 4   | 2   | 18         | 66                                            | 16           | 2.80  | 47.7              | 3.1                                                            | 188         | 311               | 263         | 365                                                                | 971         | 1928              | 1570        | 2590                                                              | 85.2              | 74.4  |
| 349                 | 98                                                                    | 96 | 83 | 65 | 21 | 11 | 6  | 3   | —   | 2          | 77                                            | 21           | 2.63  | 41.7              | 1.6                                                            | 150         | 229               | 253         | 363                                                                | 598         | 894               | 1116        | 1956                                                              | 62.3              | 45.7  |
| 350                 | 98                                                                    | 86 | 51 | 34 | 13 | 7  | 4  | 2   | —   | 2          | 85                                            | 13           | 2.69  | 40.5              | 2.2                                                            | 217         | 299               | 314         | 386                                                                | 876         | 1534              | 1113        | 2078                                                              | 77.5              | 74.1  |
| 351                 | 99                                                                    | 85 | 54 | 27 | 14 | 8  | 3  | 2   | —   | 7          | 79                                            | 14           | 2.86  | 44.6              | —                                                              | 271         | 346               | 295         | 313                                                                | 974         | 2135              | 1642        | 2025                                                              | 101.5             | 105.2 |
| 352                 | 58                                                                    | 27 | 14 | 8  | 6  | 3  | 2  | 2   | 1   | 62         | 33                                            | 5            | 2.71  | 36.7              | 3.7                                                            | 290         | 382               | 257         | 354                                                                | 2185        | 2995              | 1783        | 2878                                                              | 108.1             | 104.2 |
| 353                 | —                                                                     | 86 | 65 | 54 | 28 | 16 | —  | 2   | —   | 12         | 60                                            | 28           | 2.62  | —                 | 2.2                                                            | 215         | 258               | 276         | 348                                                                | —           | —                 | —           | —                                                                 | 74.2              | —     |
| 354                 | —                                                                     | 76 | 44 | 32 | 17 | 9  | —  | 2   | —   | 15         | 68                                            | 17           | 2.63  | —                 | 2.6                                                            | 226         | 263               | 276         | 318                                                                | —           | —                 | —           | —                                                                 | 75.5              | —     |
| 355                 | 97                                                                    | 87 | 72 | 54 | 37 | 15 | 8  | 7   | 3   | 7          | 66                                            | 37           | 2.66  | 38.7              | 1.7                                                            | 201         | 329               | 283         | 372                                                                | 1413        | 1855              | 2394        | 3677                                                              | 88.4              | 50.5  |
| 356                 | 98                                                                    | 61 | 25 | 12 | 8  | 4  | 3  | 2   | —   | 20         | 72                                            | 8            | 2.64  | 40.1              | 2.1                                                            | 220         | 334               | 246         | 335                                                                | 1830        | 2608              | 2102        | 2712                                                              | 99.7              | 96.2  |
| 357                 | 97                                                                    | 87 | 70 | 50 | 33 | 20 | 12 | 6   | 2   | —          | 60                                            | 33           | 2.59  | 38.1              | 2.2                                                            | 233         | 343               | 261         | 405                                                                | 1213        | 2011              | 1503        | 2552                                                              | 81.8              | 78.8  |
| 358                 | 100                                                                   | 98 | 93 | 88 | —  | 50 | —  | 15  | —   | 53         | 47                                            | 2.65         | 42.5  | 2.8               | 208                                                            | 277         | 319               | 376         | 1245                                                               | 2120        | 2140              | 3180        | 73.6                                                              | 60.9              |       |
| 359                 | 85                                                                    | 64 | 39 | 31 | 20 | 14 | —  | 2   | —   | 18         | 62                                            | 20           | 2.59  | 38.3              | 3.3                                                            | 274         | 357               | 319         | 376                                                                | 2140        | 3680              | —           | —                                                                 | 95.1              | —     |
| 360                 | 87                                                                    | 69 | 48 | 27 | 17 | 10 | 7  | 4   | 2   | 23         | 60                                            | 17           | 2.66  | 31.1              | 2.9                                                            | 250         | 338               | 318         | 374                                                                | 955         | 1392              | 1652        | 1947                                                              | 90.8              | 71.6  |
| 361                 | 58                                                                    | 40 | 27 | 12 | 6  | 3  | 2  | 1   | —   | 60         | 34                                            | 6            | 2.60  | 39.1              | 3.4                                                            | 174         | 282               | 351         | 392                                                                | 1671        | 3148              | 2283        | 272                                                               | 22.1              | 115.1 |

|     |     |    |    |    |    |     |    |   |   |    |    |    |      |      |      |     |     |     |     |      |      |      |      |       |       |       |
|-----|-----|----|----|----|----|-----|----|---|---|----|----|----|------|------|------|-----|-----|-----|-----|------|------|------|------|-------|-------|-------|
| 362 | 91  | 72 | 45 | 25 | 14 | 8   | 4  | 2 | 1 | 18 | 68 | 14 | 2.70 | 41.9 | 2.4  | 199 | 281 | 251 | 370 | 1224 | 2633 | 1811 | 2762 | 25.8  | 95.3  |       |
| 363 | —   | 99 | 90 | 60 | 20 | 6   | 3  | 1 | — | —  | 80 | 20 | 2.58 | 40.7 | 1.5  | 166 | 247 | 267 | 388 | 583  | 997  | 2004 | 2191 | 63.7  | 40.1  |       |
| 364 | 100 | 97 | 54 | 18 | 7  | 4   | 2  | 1 | — | —  | 91 | 7  | 2.73 | 40.1 | 1.6  | 247 | 392 | 269 | 988 | 1209 | 2108 | 1555 | 2598 | 102.1 | 92.7  |       |
| 365 | 92  | 65 | 38 | 22 | 13 | 6   | 3  | 2 | — | 20 | 67 | 13 | 2.68 | 41.1 | 2.5  | 272 | 382 | 276 | 373 | 1530 | 2510 | 1795 | 2499 | 102.5 | 100.5 |       |
| 366 | 76  | 47 | 28 | 17 | 11 | 7   | 4  | 3 | 2 | —  | 43 | 46 | 11   | 2.67 | 32.4 | 4.1 | 203 | 417 | 280 | 375  | 2196 | 3685 | 2005 | 2323  | 111.1 | 158.5 |
| 367 | 96  | 74 | 27 | 4  | 2  | 0.5 | —  | — | — | 11 | 87 | 2  | 2.70 | 38.8 | 1.7  | 225 | 311 | 255 | 390 | 1448 | 2172 | 1756 | 2688 | 79.7  | 80.7  |       |
| 368 | 73  | 32 | 11 | 7  | 5  | 1   | —  | — | — | 47 | 48 | 5  | 2.65 | 39.7 | 2.1  | 184 | 273 | 216 | 365 | 1250 | 3010 | 1570 | 2748 | 77.1  | 109.1 |       |
| 369 | 96  | 78 | 57 | 41 | 28 | 16  | 11 | 7 | 2 | —  | 18 | 59 | 28   | 2.75 | 34.6 | 2.9 | 210 | 298 | 330 | 423  | 1493 | 2052 | 1660 | 2211  | 70.4  | 93.1  |
| 370 | 98  | 60 | 25 | 10 | 5  | 3   | 2  | 1 | 1 | —  | 21 | 71 | 5    | 2.67 | 39.6 | 2.5 | 216 | 356 | 228 | 361  | 1506 | 3008 | 1592 | 2068  | 98.8  | 145.1 |
| 371 | 90  | 66 | 34 | 17 | 9  | 4   | 3  | 2 | — | —  | 22 | 69 | 9    | 2.51 | 40.7 | 2.3 | 149 | 241 | 251 | 380  | 1266 | 2378 | 1228 | 3206  | 63.5  | 74.1  |
| 372 | 84  | 51 | 28 | 16 | 10 | 7   | 4  | 3 | 2 | —  | 33 | 57 | 10   | 2.70 | 39.2 | 3.1 | 132 | 238 | 241 | 335  | 1014 | 2054 | 1406 | 2382  | 71.1  | 90.1  |
| 373 | 97  | 72 | 46 | 28 | 20 | 10  | 2  | 1 | — | —  | 17 | 63 | 20   | 2.67 | 33.5 | 2.6 | 157 | 430 | 263 | 309  | 1176 | 1679 | 1279 | 2115  | 139.1 | 79.5  |
| 374 | 96  | 83 | 57 | 38 | 17 | 8   | 3  | 2 | — | —  | 12 | 71 | 17   | 2.68 | 38.2 | 2.2 | 288 | 403 | 288 | 386  | 1964 | 2069 | 2303 | 2312  | 105.2 | 89.5  |
| 375 | 98  | 84 | 50 | 25 | 8  | 4   | 2  | — | — | —  | 6  | 86 | 8    | 2.83 | 37.3 | 1.8 | —   | —   | —   | —    | —    | 3773 | —    | 3120  | —     | 121.1 |
| 376 | 84  | 55 | 15 | 8  | 4  | 3   | 2  | — | — | —  | 36 | 60 | 4    | 2.63 | 35.9 | 2.9 | —   | —   | —   | —    | —    | 2870 | —    | 2918  | —     | 98.5  |
| 377 | 88  | 64 | 25 | 12 | 6  | 3   | 2  | 1 | — | —  | 27 | 67 | 6    | 2.75 | 31.9 | 2.2 | 290 | 436 | 299 | 380  | 1700 | 3127 | 1593 | 2679  | 114.8 | 111.6 |
| 378 | 99  | 90 | 50 | 22 | 7  | 3   | 2  | 1 | — | —  | 2  | 91 | 7    | 2.72 | 38.3 | 1.7 | 215 | 274 | 322 | 366  | 1325 | 1959 | 1593 | 2679  | 75.1  | 73.2  |
| 379 | 96  | 66 | 33 | 18 | 12 | 6   | 3  | 2 | — | —  | 22 | 68 | 12   | 2.79 | 31.9 | 2.5 | 256 | 380 | 263 | 309  | 923  | 1234 | 1176 | 1679  | 123.1 | 73.6  |
| 380 | 88  | 66 | 33 | 14 | 7  | 4   | 3  | 2 | 2 | —  | 24 | 69 | 7    | 2.62 | 38.7 | 2.1 | 255 | 375 | 277 | 364  | 1658 | 2675 | 1517 | 2928  | 103.1 | 91.5  |
| 381 | 94  | 67 | 23 | 7  | 3  | 2   | 1  | 1 | — | —  | 18 | 79 | 8    | 2.55 | 33.6 | 1.7 | 143 | 184 | 206 | 321  | 590  | 1406 | 1382 | 2590  | 57.3  | 54.3  |
| 382 | 97  | 87 | 68 | 47 | 31 | 16  | 9  | 7 | 2 | —  | 7  | 62 | 31   | 2.66 | 38.1 | 2.3 | 201 | 311 | 248 | 401  | 1542 | 2523 | 1795 | 2745  | 77.7  | 95.6  |

<sup>a</sup> Proportion of mortar mixture by volume 1 : 8.

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels.*

[Two test specimens were prepared from each sample of gravel.]

| Tracing No. | Province. | Municipality. | Location of deposit.        | Estimated quantity available.<br>A, abundant;<br>U, unlimited. | For use in the construction of—      | Estimated cost per cubic meter at the job site. | Laboratory No. | Date sample was received. | Mineralogic classification.    |
|-------------|-----------|---------------|-----------------------------|----------------------------------------------------------------|--------------------------------------|-------------------------------------------------|----------------|---------------------------|--------------------------------|
| 1           | Albay     | Camalig       | Cabrarán River              |                                                                | Guinobatan-Jovellar Bridge.          | Pesos.                                          | 119543         | Dec. 7, 1914              | Vesicular andesite.            |
| 2           | Do.       | Daraga        | Yawa River                  |                                                                | Albay High School                    |                                                 | 149636         | Jan. 4, 1924              | Andesite.                      |
| 3           | Do.       | Oas           | Quinali River               |                                                                | Oas School building                  |                                                 | 157381         | June 9, 1925              | Diorite, andesite, and basalt. |
| 4           | Do.       | Polangui      | Polangui River              |                                                                | Boracuit Bridge                      |                                                 | 145625         | Feb. 8, 1923              | Basalt.                        |
| 5           | Antique   | Sibalom       | Tipuluan River              | A                                                              | Sibalom-San José irrigation project. | 1.00                                            | 151651         | May 16, 1924              | Basalt and andesite.           |
| 6           | Batangas  | Balanga       | Talisay River               |                                                                | Balanga Elementary School.           |                                                 | 158268         | July 31, 1925             | Andesite and diorite.          |
| 7           | Do.       | Orani         | Orani River                 |                                                                | Orani market                         |                                                 | 144545         | Nov. 11, 1922             | Diorite.                       |
| 8           | Do.       | Orion         | Pamdan River                |                                                                | Aredano Memorial School              |                                                 | 147805         | June 16, 1923             |                                |
| 9           | Do.       | Sisiman       | Sisiman quarry              | A                                                              | Cañacao U. S. Naval Hospital         |                                                 | 158945         | Sept. 15, 1925            | Andesite.                      |
| 10          | Benguet   | Baguio        | Government Center           |                                                                | Baguio public works projects.        |                                                 | 150805         | Mar. 26, 1924             | Silicious.                     |
| 11          | Do.       | do            | Engineers hill              |                                                                | do                                   |                                                 | 150865         | do                        | Silicious cherty.              |
| 12          | Do.       | do            | City quarry                 |                                                                | do                                   |                                                 | 150865         | do                        | Limestone.                     |
| 13          | Bohol     | Calape        | Creek, barrio Sojoton       |                                                                | Calape water reservoir               |                                                 | 157089         | July 16, 1925             | Diorite and limestone.         |
| 14          | Do.       | Dauis         | Dauis field                 |                                                                | Dauis Bridge                         |                                                 | 146041         | May 19, 1923              | Limestone.                     |
| 15          | Do.       | do            | Punta Cruz beach, Maribohoc |                                                                | do                                   |                                                 | 148048         | Aug. 18, 1923             | Hard limestone.                |

|    |         |               |                                        |   |                                    |         |               |                                 |
|----|---------|---------------|----------------------------------------|---|------------------------------------|---------|---------------|---------------------------------|
| 16 | Do.     | Jetafe        | Brook, barrio Salog                    |   | Jetafe municipal building.         | 152175  | Jan. 23, 1926 | Weathered basalt.               |
| 17 | Do.     | do            | do                                     |   | do                                 | 152175  | do            | Do.                             |
| 18 | Do.     | Loay          | Beach, kilometer 25.                   |   | Loboc water reservoir              | 157236  | May 28, 1925  | Coralline.                      |
| 19 | Do.     | do            | do                                     |   | do                                 | 157236  | do            | Do.                             |
| 20 | Do.     | Maribahoe     | Punta Cruz beach,<br>kilometers 14-22. |   | Provincial Trade<br>School.        | 155541  | Feb. 21, 1924 | Do.                             |
| 21 | Do.     | Valencia      | Seashore at Valencia.                  |   | Barrio school.                     | 149876  | Jan. 11, 1924 | Limestone gravel.               |
| 22 | Bulacan | Angat         | Angat River                            | U | Angat River dam                    | 142812  | June 3, 1922  | Andesite.                       |
| 23 | Do.     | Baliuag       | Angat River at Baliuag.                | U | Angat River irrigation<br>project. | 110912  | Dec. 26, 1912 |                                 |
| 24 | Do.     | Bocage        | Bocage River                           | U | Puiman market                      | 121142A | Oct. 12, 1915 | Altered basalt.                 |
| 25 | Do.     | do            | do                                     | U | Legislative Building,<br>Manila.   | 115640A | Feb. 5, 1923  | Angular andesite.               |
| 26 | Do.     | do            | do                                     | U | do                                 | 145640B | do            | Do.                             |
| 27 | Do.     | do            | do                                     | U | do                                 | 145640C | do            | Do.                             |
| 28 | Do.     | do            | do                                     | U | do                                 | 145640D | do            | Do.                             |
| 29 | Do.     | do            | do                                     | U | Angat canal structures             | 147909  | Aug. 2, 1923  |                                 |
| 30 | Do.     | Bustos        | Angat River                            | U | Angat River irrigation<br>project. | 142997  | June 21, 1922 |                                 |
| 31 | Do.     | Hagonoy       |                                        | U | Hagonoy market                     | 110032  | Nov. 23, 1912 | Slightly weathered<br>andesite. |
| 32 | Do.     | Malolos       |                                        | U | Malolos Trade School               | 62645   | Nov. 25, 1908 |                                 |
| 33 | Do.     | do            | Pulilan River                          | U | Malolos waterworks                 | 144590  | Nov. 15, 1922 |                                 |
| 34 | Do.     | Pulilan       | do                                     | U | Pulilan market                     | 121142B | Oct. 12, 1915 | Basalt.                         |
| 35 | Do.     | do            | do                                     | U | Santa Ana School<br>(Pampanga).    | 149972  | Jan. 31, 1924 | Basalt and andesite.            |
| 36 | Do.     | San Ildefonso | Ma-asim River                          |   | Angat River irrigation<br>works.   | 110874  | Dec. 25, 1912 |                                 |
| 37 | Do.     | Santa Maria   | Santa Maria River                      |   | Santa Maria River<br>Bridge.       | 125490  | Oct. 13, 1917 | Weathered volcanic.             |
| 38 | Do.     | San Miguel    | San Miguel River                       |   | Bolo River Bridge                  | 113991A | Apr. 23, 1913 |                                 |
| 39 | Do.     | do            | do                                     |   | San Miguel Bridge                  | 147909  | Aug. 2, 1923  | Andesite and quartz.            |
| 40 | Do.     | do            | At Sibul                               |   | Bolo River Bridge                  | 113991B | Apr. 23, 1913 |                                 |

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Tracing No. | Province. | Municipality. | Location of deposit.             | Estimated quantity available.<br>A, abundant;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter at the job site.<br><i>Pesos.</i> | Laboratory No. | Date sample was received. | Mineralogic classification.       |
|-------------|-----------|---------------|----------------------------------|----------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|----------------|---------------------------|-----------------------------------|
| 41          | Cagayan   | Aparri        | Cagayan River                    |                                                                | Aparri shore protection         | 151294                                                           | Apr. 23, 1924  |                           | Andesite.                         |
| 42          | Do        | do            | Magapit hills                    |                                                                | do                              | 150665                                                           | Mar. 15, 1924  |                           | Limestone.                        |
| 43          | Capiz     | Capiz         | Barrio Tanza quarry              |                                                                | Bainica River Bridge            | 155602                                                           | Feb. 26, 1925  |                           | Andesite and basalt.              |
| 44          | Do        | do            | Kilometer 9, Capiz-Paintan road. |                                                                | Capiz Elementary School         | 159395                                                           | Oct. 14, 1925  |                           | Diorite.                          |
| 45          | Cavite    | Cavite        | Rio Grande                       |                                                                | General Trias School            | 123520                                                           | Nov. 15, 1916  |                           | Volcanic.                         |
| 46          | Do        | General Trias | Malabon River                    |                                                                | do                              | 151023                                                           | Apr. 5, 1924   |                           | Hard basaltic.                    |
| 47          | Do        | Imus          | Imus River                       |                                                                |                                 |                                                                  |                |                           | Vesicular basalt.                 |
| 48          | Do        | Kawit         | do                               |                                                                | Aguinaldo School                | 123446                                                           | Nov. 1, 1916   |                           | Basalt and andesite.              |
| 49          | Do        | do            | Rio Grande                       |                                                                | do                              | 122318A                                                          | Apr. 28, 1916  |                           | Basalt and volcanic.              |
| 50          | Do        | do            | do                               |                                                                | Calero River Bridge             | 122318B                                                          | do             |                           | Weathered volcanic.               |
| 51          | Do        | Noveleta      | San Juan River                   |                                                                | Kawit-Noveleta road             | 123444                                                           | Nov. 1, 1926   |                           |                                   |
| 52          | Do        | do            | Rio Grande                       |                                                                | Noveleta-Cavite road            | 81888                                                            | Sept. 6, 1910  |                           |                                   |
| 53          | Do        | do            | San Juan River at bridge         |                                                                | do                              | 123306                                                           | Oct. 6, 1916   |                           | Volcanic.                         |
| 54          | Do        | do            | Barrio Bacao                     |                                                                | do                              | 125976                                                           | do             |                           | Weathered scoriaeous basalt.      |
| 55          | Cebu      | Barili        | Barrio Guibuanigan               |                                                                | Barili School                   | 125976                                                           | July 24, 1924  |                           | Hard vesicular basalt.            |
| 56          | Do        | Carcar        | Open field out of town           |                                                                | Carcar waterworks               | 152600                                                           | June 2, 1923   |                           | Coralline.                        |
| 57          | Do        | Cebu          | Buhisan Creek                    |                                                                | Osmena waterworks               | 1.50                                                             | 152215         | June 26, 1924             | Hard limestone.                   |
| 58          | Do        | do            | do                               |                                                                | do                              | 154355                                                           | Dec. 4, 1924   |                           | Basalt and siliceous limestone.   |
| 59          | Do        | do            | Guadalupe River                  |                                                                | Cebu Normal School              | 2.25                                                             | 144670         | Nov. 20, 1922             | Diorite, andesite, and limestone. |
| 60          | Do        | do            | do                               |                                                                | do                              | 2.25                                                             | 145779         | Feb. 17, 1923             | Decayed volcanic.                 |
|             |           |               |                                  |                                                                |                                 |                                                                  |                |                           | Weathered diorite.                |

|    |               |                |                      |  |                                   |         |                |                                  |
|----|---------------|----------------|----------------------|--|-----------------------------------|---------|----------------|----------------------------------|
| 61 | Do.           | do.            | Mananga River.       |  |                                   | 78560A  | May 16, 1910   |                                  |
| 62 | Do.           | Danao.         | Danao River.         |  |                                   | 78560B  | do.            |                                  |
| 63 | Do.           | do.            | Rock quarry.         |  | Repairs of provincial bridges.    | 81168A  | Sept. 13, 1910 | Silicious limestone.             |
| 64 | Do.           | Dumanjug.      | River at Dumanjug    |  | Dumanjug School building.         | 144887  | Dec. 4, 1922   | Rounded limestone.               |
| 65 | Do.           | Santander.     | Santander beach.     |  | Santander municipal building.     | 156036  | Mar. 19, 1925  | Coralline.                       |
| 66 | Do.           | Talisay.       | Mananga River.       |  | Repairs of provincial bridges.    | 81168B  | Sept. 13, 1910 | Basalt and andesite.             |
| 67 | Do.           | Toledo.        | Tajao River.         |  |                                   | 122395  | May 12, 1916   | Basalt and corals.               |
| 68 | Ilocos Norte. | Laoag.         | Laoag River.         |  | Laoag Normal School.              | 149320  | Dec. 6, 1923   | Basalt and andesite.             |
| 69 | Do.           | do.            | do.                  |  | Construction of road and bridges. | 121023  | Sept. 22, 1915 | Andesite.                        |
| 70 | Ilocos Sur.   | Candon.        | Santa Cruz River.    |  | Candon School building            | k151979 | June 10, 1924  | Do.                              |
| 71 | Do.           | Vigan.         | Govantes River.      |  | Provincial Hospital.              | 151330  | Apr. 25, 1924  | Andesite and diorite.            |
| 72 | Do.           | do.            | Mestizo River.       |  | do.                               | 151330  | do.            | Do.                              |
| 73 | Iloilo.       | Oton.          |                      |  | Iloilo Provincial Prison.         | 88922A  | June 14, 1911  |                                  |
| 74 | Do.           | Santa Barbara. | Santa Barbara River. |  | do.                               | 88922B  | do.            |                                  |
| 75 | Do.           | do.            | do.                  |  | Balucuan-Libas Bridge (Capiz).    | 121659  | Dec. 29, 1915  | Basalt and quartz.               |
| 76 | Do.           | do.            | Tigum River.         |  | Santa Barbara irrigation project. | 137630  | Feb. 17, 1921  | Diorite and limestone.           |
| 77 | Do.           | do.            | Santa Barbara River. |  | Iloilo Normal School.             | 154416  | Dec. 8, 1924   | Basalt andesite and trachyte.    |
| 78 | Do.           | do.            | Santa Barbara Pit.   |  | Bainica River Bridge.             | 155601  | Feb. 25, 1924  | Basalt and andesite.             |
| 79 | Do.           | San Miguel.    | Aganao River.        |  | Aganao River irrigation project.  | 142720  | May 25, 1922   | Sandstone, andesite, and quartz. |
| 80 | Do.           | do.            | do.                  |  | do.                               | 144036  | Oct. 3, 1922   |                                  |
| 81 | Do.           | do.            | Oton beach.          |  | do.                               | 145778  | Feb. 17, 1923  | Andesite and diorite.            |
| 82 | Laguna.       | Los Baños.     | Quarry, lower ledge. |  | Military barracks.                | 83395A  | Oct. 17, 1910  | Basalt.                          |
| 83 | Do.           | do.            | Quarry, upper ledge. |  | do.                               | 83395B  | do.            | Do.                              |
| 84 | Do.           | do.            | Quarry, lower ledge. |  | do.                               | 83395C  | do.            | Do.                              |
| 85 | Do.           | Majayjay.      | Majayjay River.      |  | Majayjay waterworks.              | 132070  | Dec. 6, 1919   | Andesite and trachyte.           |

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Tracing No. | Province.  | Municipality.      | Location of deposit.          | Estimated quantity available.<br>A, abundant;<br>U, unlimited. | For use in the construction of— | Estimated cost per cubic meter at the job site. | Laboratory No. | Date sample was received. | Mineralogic classification.     |
|-------------|------------|--------------------|-------------------------------|----------------------------------------------------------------|---------------------------------|-------------------------------------------------|----------------|---------------------------|---------------------------------|
| 86          | Do.        | do.                | Majuyjay rock quarry.         |                                                                | do.                             | Pesos.                                          | 132071         | do.                       |                                 |
| 87          | Do.        | do.                | Olia River stone.             |                                                                | Majayjay market.                |                                                 | 158670         | Aug. 27, 1926             | Worn andesite.                  |
| 88          | Do.        | Pagsanjan          | Pagsanjan River, hand picked. |                                                                | Pagsanjan waterworks.           |                                                 | 128904         | Dec. 6, 1918              | Andesite and diorite porphyry.  |
| 89          | Do.        | Rizal              | Paac River.                   |                                                                | Rizal School.                   |                                                 | 145191         | Dec. 27, 1922             | Vesicular basalt and andesite.  |
| 90          | Do.        | Santa Cruz         | Santa Cruz River.             |                                                                | Santa Cruz Hospital.            |                                                 | 149828         | Jan. 21, 1924             | Basalt.                         |
| 91          | Leyte      | Barugo             | Baluguhay River.              |                                                                | Barugo School.                  |                                                 | 121025         | Sept. 22, 1915            | Andesite.                       |
| 92          | Do.        | Carigara           | Punong River.                 |                                                                | Carigara School.                |                                                 | 145825         | Jan. 8, 1923              | Diorite, slightly weathered.    |
| 93          | Do.        | Ormoc              | Anilao River.                 |                                                                | Ormoc market.                   |                                                 | 159885         | Nov. 11, 1926             | Weathered diorite and andesite. |
| 94          | Do.        | Tacloban           | Tigbau River.                 |                                                                | Tacloban wharf.                 |                                                 | 145557         | Jan. 26, 1923             | Diorite.                        |
| 95          | Do.        | do.                | Punta Anibong                 |                                                                | do.                             |                                                 | 150160         | Feb. 12, 1924             | Andesite, highly weathered.     |
| 96          | Marinduque | Boac               | River bed at Boac.            |                                                                | Boac pier.                      | 3.00                                            | 155970         | Mar. 17, 1925             | Diorite.                        |
| 97          | Do.        | Gasan              | Gasan seashore                |                                                                | Matandang Asan Bridge.          |                                                 | 151127         | Apr. 11, 1924             | Andesite and basalt.            |
| 98          | Masbate    | Masbate            | Togbo River.                  |                                                                | Masbate market building.        |                                                 | 152784         | Aug. 7, 1924              | Andesite.                       |
| 99          | Mindanao   | Cagayan (Misamis). | Cagayan River.                |                                                                | Cagayan wharf.                  |                                                 | 122044A        | Mar. 10, 1916             | Basalt and andesite.            |
| 100         | Do.        | do.                | Cagayan beach.                |                                                                | do.                             |                                                 | 122044B        | do.                       | Do.                             |

|     |                       |                      |                             |                                        |        |               |                                          |
|-----|-----------------------|----------------------|-----------------------------|----------------------------------------|--------|---------------|------------------------------------------|
| 101 | Do....                | do                   | Cagayan River.              | Cagayan Central School.                | 123102 | Aug. 24, 1916 | Volcanic scoria.                         |
| 102 | Do.....               | Cotabato (Cotabato). | Limapatoy River             | Cotabato Hospital.                     | 121600 | Nov. 30, 1916 | Porous coralline.                        |
| 103 | Do.....               | do                   | Rio Grande.                 | do.                                    | 147912 | Aug. 2, 1923  | Limestone.                               |
| 104 | Do.....               | Davao (Davao)        | Davao River.                | Davao wharf.                           | 157984 | Aug. 20, 1925 | Basalt andesite.                         |
| 105 | Do.....               | do                   | do                          | do.                                    | 157984 | do.....       | Do.                                      |
| 106 | Do.....               | Jolo (Sulu).         | do                          | Jolo public works.                     | 118287 | Feb. 21, 1914 | Coralline.                               |
| 107 | Do.....               | do                   | Zamboanga River.            | Jolo wharf.                            | 147514 | July 2, 1923  | Hard andesite.                           |
| 108 | Do.....               | do                   | Crushed rock from<br>ledge. | do.                                    | 154787 | Jan. 6, 1925  | Gneiss, basalt, and ve-<br>sicular lava. |
| 109 | Do....                | Surigao (Surigao).   | Beach, Bilar point.         | High School building                   | 152657 | July 29, 1924 | Andesite and diorite.                    |
| 110 | Do.....               | Zamboanga            | Baliwasan beach             | Zamboanga wharf.                       | 156544 | Apr. 16, 1925 | Vesicular basalt and<br>some limestone.  |
| 111 | Do.....               | do                   | do                          | do.                                    | 156544 | do.....       | Do.                                      |
| 112 | Do.....               | do                   | do                          | do.                                    | 156545 | do.....       | Andesite, basalt, and<br>corals.         |
| 113 | Do.....               | do                   | do                          | do.                                    | 156545 | do.....       | Do.                                      |
| 114 | Nueva Ecija           | Cabanatuan           | Rio Grande.                 | Provincial Hospital                    | 2.50   | 150668        | Mar. 15, 1924                            |
| 115 | Do.....               | Caranglan            | River at Caranglan          | Kabolipanan Bridge                     |        | 147349        | June 19, 1923                            |
| 116 | Occidental<br>Negros. | Bacolod              | Lupit River.                | Provincial Hospital                    |        | 156702        | Apr. 27, 1925                            |
| 117 | Do.....               | Bago                 | Bago River.                 | Bago School                            |        | 151985        | Andesite, basalt, and<br>diorite.        |
| 118 | Do.....               | Cadiz                | Talabaan River              | Cadiz municipal mar-<br>ket.           | 3.00   | 158884        | June 10, 1924                            |
| 119 | Do.....               | La Castellana        | Bungahin River              | La Castellana munic-<br>ipal building. |        | 158982        | Sept. 10, 1925                           |
| 120 | Do.....               | Maa (Bago)           | Maragandang River.          | Maa School                             |        | 150747        | Andesite.                                |
| 121 | Do.....               | Pulupandan           | Bago River.                 | Pulupandan wharf.                      |        | 158272        | Andesite, basalt, and<br>diorite.        |
| 122 | Do.....               | Talisay              | Matabang River.             | Talisay School                         |        | 151003        | Diorite.                                 |
| 123 | Do.....               | Isabela              | Binalbagan River            | Isabela School                         |        | 153664        | Andesite and diorite.                    |

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Trac-<br>ing<br>No. | Province.             | Municipality. | Location of deposit. | Estimated<br>quantity<br>available.<br>A, abundant;<br>U, unlimited. | For use in the con-<br>struction of—           | Esti-<br>mated<br>cost per<br>cubic<br>meter at<br>the job<br>site | Labora-<br>tory No. | Date sample<br>was received. | Mineralogic classi-<br>fication.             |
|---------------------|-----------------------|---------------|----------------------|----------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|---------------------|------------------------------|----------------------------------------------|
| 124                 | Oriental Ne-<br>gros. | Amblan        | Amblan River         |                                                                      | Bureau of Public<br>Works project H. H.<br>44. | Pesos.                                                             | 79103               | June 18, 1910                |                                              |
| 125                 | Do.                   | Bais          | Bais River           |                                                                      | Bais River Bridge                              |                                                                    | 122047A             | Mar. 10, 1916                | Weathered basalt.                            |
| 126                 | Do.                   | do            | do                   |                                                                      | do                                             |                                                                    | 122047B             | do                           | Do.                                          |
| 127                 | Do.                   | Dumaguete     | Bainica River        |                                                                      | Storage tank                                   |                                                                    | 145641              | Feb. 5, 1923                 | Vesicular basalt and<br>hard gabbro.         |
| 128                 | Do.                   | Tanhay        | Tanhay River         |                                                                      | Bureau of Public<br>Works H. H. 44.            |                                                                    | 79103               | June 18, 1910                |                                              |
| 129                 | Palawan               | Coron         | Banga River          |                                                                      | Coron wharf                                    |                                                                    | 155108              | Jan. 23, 1925                | Ferruginous chert and<br>weathered feldspar. |
| 130                 | Do.                   | do            | Coron beach          |                                                                      | do                                             |                                                                    | 124027              | Feb. 8, 1917                 | Iron-stained quartz.                         |
| 131                 | Pampanga              | Angeles       | Abacan River         |                                                                      | Angeles Bridge No. 89.                         |                                                                    | 146672              | Apr. 25, 1923                | Diorite.                                     |
| 132                 | Do.                   | do            | do                   |                                                                      | Angeles Bridge                                 |                                                                    | 147418              | June 22, 1923                |                                              |
| 133                 | Do.                   | Magalang      | Paitan River         |                                                                      | Magalang municipal<br>building                 |                                                                    | 146670              | Apr. 25, 1923                | Scoriaceous basalt.                          |
| 134                 | Rizal                 | Binangonan    | Angono River         |                                                                      | Angono Bridge                                  |                                                                    | 121842              | Feb. 3, 1916                 | Basalt.                                      |
| 135                 | Do.                   | do            | Talim Island quarry  |                                                                      | Pasay concrete road                            |                                                                    | 149665              | Jan. 8, 1924                 | Do.                                          |
| 136                 | Do.                   | do            | do                   |                                                                      | do                                             |                                                                    | 149776              | Jan. 17, 1924                | Basalt.                                      |
| 137                 | Do.                   | do            | do                   |                                                                      | Legislative building                           |                                                                    | 152782              | Aug. 17, 1924                | Do.                                          |
| 138                 | Do.                   | Malabon       | Tinajero River       |                                                                      | Legislative building                           |                                                                    | 150919              | Mar. 29, 1924                | Basalt and andesite.                         |
| 139                 | Do.                   | do            | do                   | A                                                                    | do                                             |                                                                    | 152146A             | June 20, 1924                | Andesite and basalt.                         |
| 140                 | Do.                   | do            | Talim Island quarry  | A                                                                    | do                                             |                                                                    | 152146B             | do                           | Basalt.                                      |
| 141                 | Do.                   | McKinley      | Pasig River          | A                                                                    | do                                             |                                                                    | 152146C             | do                           | Andesite and basalt.                         |
| 142                 | Do.                   | do            | do                   | A                                                                    | do                                             |                                                                    | 151599              | May 14, 1924                 | Andesite and quartz.                         |

|     |        |          |                               |                                                               |                                                 |         |               |                                |                                 |
|-----|--------|----------|-------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------|---------------|--------------------------------|---------------------------------|
| 143 | Do.    | do.      | do.                           | Jones Bridge subway                                           |                                                 | 151983  | June 10, 1924 | Andesite and a few<br>small, - |                                 |
| 144 | Do.    | Pasig.   | Pasig River (Talam-<br>pas).  | University of the Phil-<br>ippines engineering<br>laboratory. |                                                 | 147904  | Aug. 2, 1923  | Slightly weathered<br>basalt.  |                                 |
| 145 | Do.    | do.      | do.                           | University of the Phil-<br>ippines chemical lab-<br>oratory.  |                                                 | 149465  | Dec. 18, 1923 | Basalt and andesite.           |                                 |
| 146 | Do.    | do.      | do.                           | A                                                             | University of the Phil-<br>ippines High School. | 149997  | Feb. 1, 1924  | Basalt.                        |                                 |
| 147 | Do.    | do.      | Pasig River (Bam-<br>bang).   | A                                                             | Jones Bridge.                                   | 152274  | June 23, 1924 | Andesite and basalt.           |                                 |
| 148 | Do.    | San Juan | Pasig River (Santo-<br>lan).  |                                                               | Legislative building                            | 154013A | Nov. 11, 1924 | Andesite and basalt.           |                                 |
| 149 | Do.    | do.      | do.                           |                                                               | do.                                             | 154013B | do.           | Weathered diorite.             |                                 |
| 150 | Do.    | do.      | do.                           |                                                               | Philippine General<br>Hospital.                 | 154014  | do.           | Dark brown diorite.            |                                 |
| 151 | Samar. | Borongan | Maylibas River                |                                                               | Borongan Bridge                                 | 3.00    | 150107A       | Feb. 8, 1924                   | Andesite.                       |
| 152 | Do.    | do.      | do.                           |                                                               | do.                                             | 3.00    | 150107B       | do.                            | Do.                             |
| 153 | Do.    | do.      | Sunco beach                   |                                                               | Borongan public build-<br>ings.                 |         | 151147A       | Apr. 12, 1924                  | Do.                             |
| 154 | Do.    | do.      | Bato River at Ca-<br>nabong.  |                                                               | do.                                             |         | 151147B       | do.                            | Do.                             |
| 155 | Do.    | Calbayog | Malopalo, Tinanba-<br>can.    |                                                               | Calbayog municipal<br>building.                 | 4.50    | 154084        | Nov. 14, 1924                  | Andesite porphyry.              |
| 156 | Do.    | do.      | Marcatubig, Tinan-<br>bacan.  |                                                               | do.                                             | 4.50    | 154084        | do.                            | Diorite.                        |
| 157 | Do.    | Catarman | River at Catarman             |                                                               | Catarman market                                 |         | 151087        | Apr. 9, 1924                   | Slightly weathered<br>andesite. |
| 158 | Do.    | Llorente | Llorente beach                |                                                               | Llorente School Build-<br>ing.                  | 0.90    | 152723        | Aug. 4, 1924                   | Andesite.                       |
| 159 | Do.    | do.      | Llorente River (Pa-<br>yaun). |                                                               | do.                                             | 2.00    | 152724        | do.                            | Do.                             |
| 160 | Do.    | do.      | Llorente River<br>(Agus)      | A                                                             | do.                                             | 2.00    | 152725        | do.                            | Do.                             |

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Trac-<br>ing<br>No. | Province. | Municipality.  | Location of deposit.          | Estimated<br>quantity<br>available.<br>A, abundant;<br>U, unlimited. | For use in the con-<br>struction of— | Esti-<br>mated<br>cost per<br>cubic<br>meter at<br>the job<br>site. | Labora-<br>tory No. | Date sample<br>was received. | Mineralogic classi-<br>fication.        |
|---------------------|-----------|----------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------|------------------------------|-----------------------------------------|
| 161                 | Sorsogon. | Bulan          | San Ramon River               | U                                                                    | Bulan market                         | Pesos.                                                              | 160424              | Dec. 23, 1925                | Slightly weathered andesite and basalt. |
| 162                 | Do.       | Castilla       | Kumadkad River                | U                                                                    | Kumadkad Bridge                      | 159121                                                              |                     | Sept. 25, 1925               | Andesite.                               |
| 163                 | Do.       | Donao          | Donsol River                  |                                                                      | Market building                      | 14,546                                                              |                     | July 5, 1923                 | Do.                                     |
| 164                 | Do.       | Gubat          | Sagorong River                | U                                                                    | Sagorong River Bridge                | 2.50                                                                | 150245              | Feb. 16, 1924                | Hard andesite.                          |
| 165                 | Do.       | Juban          | Juban River                   | U                                                                    | Juban School building                | 2.50                                                                | 150565              | Mar. 7, 1924                 | Do.                                     |
| 166                 | Tarlac    | San Miguel     | Cutcut River                  |                                                                      | O'Donnell irrigation project         | 158313                                                              |                     | Aug. 4, 1925                 | Quartz, diorite.                        |
| 167                 | Do.       | do             | O'Donnell River               |                                                                      | do                                   | 160178                                                              |                     | Dec. 3, 1925                 | Diorite.                                |
| 168                 | Tayabas   | Candelaria     | Cuyapo River                  |                                                                      | Candelaria waterworks                | 156805                                                              |                     | May 4, 1925                  | Andesite and basalt.                    |
| 169                 | Do.       | Lucena         | Dumacaia River                |                                                                      | Hospital building                    | 149687                                                              |                     | Jan. 10, 1924                | Do.                                     |
| 170                 | Do.       | Tayabas        | Alitao River                  |                                                                      | Tayabas market                       | 152467                                                              |                     | July 14, 1924                | Basalt diorite.                         |
| 171                 | Do.       | Tiaong         | Gugulman River                |                                                                      | Tiaong waterworks                    | 156806                                                              |                     | May 4, 1925                  | Andesite and basalt.                    |
| 172                 | Zambales  | Alhambra       | At source of Uacon River      |                                                                      | Lucapon Bridge                       | 123121                                                              |                     | Aug. 28, 1916                | Volcanic.                               |
| 173                 | Do.       | Cabaigan       | Cabaigan River                |                                                                      | Iba-Subic Road Bridge                | 121639                                                              |                     |                              |                                         |
| 174                 | Do.       | Candelaria     | Gala-gala beach               |                                                                      | Candelaria School building           | 123120                                                              |                     | Nov. 23, 1915                | Metamorphic.                            |
|                     |           |                |                               |                                                                      |                                      |                                                                     |                     | Aug. 28, 1916                | Volcanic.                               |
| 175                 | Do.       | do             | Lauis River                   | U                                                                    | Gamot River Bridge                   | 3.33                                                                | 122529              | June 5, 1916                 | Do.                                     |
| 176                 | Do.       | Santa Cruz     | Bayto River                   | U                                                                    | Santa Cruz School building           | 4.00                                                                | 146668              | Apr. 25, 1923                | Hard andesite.                          |
| 177                 | Do.       | do             | Perpetuo River                | U                                                                    | do                                   | 2.50                                                                | 145823              | Feb. 21, 1923                |                                         |
| 178                 | Do.       | San Marcellino | Santo Tomas River at Santa Fé |                                                                      | Santo Tomas Irrigation project       | 153275                                                              |                     | Sept. 15, 1924               | Weathered basalt. Andesite.             |

| Trac-<br>ing<br>No. | Mechanical analysis.<br>Per cent passing through screens (circular openings). |       |       |       |       |       |       |       |       |                | Specific<br>gravity | Per-<br>centage<br>of voids. | Sand used<br>with gravel<br>or stone.<br>Labor-<br>atory No. | Compressive strength in pounds per<br>square inch at the age of 28 days. |           | Mode of<br>failure.<br>M., mor-<br>tar.<br>M. G.,<br>mortar-<br>gravel.<br>M. S.,<br>mortar-<br>stone. |
|---------------------|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|---------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------|
|                     | 3.00"                                                                         | 2.25" | 1.50" | 1.00" | 0.87" | 0.45" | 0.30" | 0.20" | 0.15" | Initial crack. |                     |                              |                                                              | Ultimate.                                                                | Ultimate. |                                                                                                        |
| 1                   | 100                                                                           | 83    | 66    | 46    | 23    | 6     | 1     | 0.4   | —     | 2.25           | 27.1                | 119513                       | —                                                            | 1977                                                                     | 2210      | —                                                                                                      |
| 2                   | —                                                                             | 100   | 81    | 42    | 12    | 2     | —     | —     | —     | —              | —                   | 149637                       | 2502                                                         | 2155                                                                     | 3290      | 3430                                                                                                   |
| 3                   | —                                                                             | 100   | 98    | 73    | 39    | 10    | 2.3   | 0.35  | 0.3   | —              | —                   | 157382                       | 2082                                                         | 2282                                                                     | 2547      | 2151                                                                                                   |
| 4                   | —                                                                             | 100   | 32    | —     | 8     | —     | 0.7   | —     | —     | —              | —                   | 145626                       | —                                                            | 1900                                                                     | 2539      | —                                                                                                      |
| 5                   | 100                                                                           | 98    | 51    | 12    | 1     | —     | —     | —     | —     | —              | —                   | 151652                       | 1231                                                         | 1171                                                                     | 1607      | 1539                                                                                                   |
| 6                   | —                                                                             | 100   | 75    | 39    | 9.8   | 0.7   | —     | —     | —     | —              | —                   | 158269                       | 3914                                                         | 2686                                                                     | 4234      | 4260                                                                                                   |
| 7                   | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | —              | —                   | 144546                       | 1010                                                         | 1095                                                                     | 1888      | 1882                                                                                                   |
| 8                   | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | —              | —                   | 147304                       | 1112                                                         | 1187                                                                     | 1952      | 1636                                                                                                   |
| 9                   | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | —              | —                   | —                            | (*)                                                          | 1954                                                                     | 2050      | 2673                                                                                                   |
| 10                  | —                                                                             | 100   | 99    | 41    | 9     | 3     | 1     | —     | —     | 2.67           | —                   | 150866B                      | 686                                                          | 754                                                                      | 1069      | 1119                                                                                                   |
| 11                  | —                                                                             | —     | 100   | 86    | 48    | 17    | 6     | —     | —     | —              | —                   | 150866A                      | 1640                                                         | 1694                                                                     | 2122      | 2099                                                                                                   |
| 12                  | —                                                                             | —     | 100   | 98    | 68    | 25    | 13    | —     | —     | —              | —                   | —                            | —                                                            | —                                                                        | —         | M. G.                                                                                                  |
| 13                  | —                                                                             | —     | 100   | 91    | 18    | 0.5   | —     | —     | —     | —              | —                   | —                            | —                                                            | —                                                                        | —         | M. G.                                                                                                  |
| 14                  | 100                                                                           | 98    | 26    | 0.3   | —     | —     | —     | —     | —     | —              | —                   | 157988                       | —                                                            | —                                                                        | 1060      | 1108                                                                                                   |
| 15                  | 100                                                                           | 96    | 53    | 7     | 0.2   | —     | —     | —     | —     | —              | —                   | 146940                       | 1846                                                         | 1433                                                                     | 2400      | 2356                                                                                                   |
| 16                  | —                                                                             | 100   | 92    | 71    | 31    | 7     | 6     | 5     | 4     | —              | —                   | 146940                       | 1002                                                         | 1034                                                                     | 1372      | 1532                                                                                                   |
| 17                  | —                                                                             | 100   | 92    | 71    | 31    | 7     | 6     | 5     | 4     | —              | —                   | 152172A                      | 1620                                                         | 1560                                                                     | 1680      | 1678                                                                                                   |
| 18                  | —                                                                             | 100   | 85    | 13    | 1.3   | 0.3   | —     | —     | —     | —              | —                   | 152172B                      | 1800                                                         | 1838                                                                     | 2116      | 2248                                                                                                   |
| 19                  | —                                                                             | 100   | 85    | 13    | 1.3   | 0.3   | 6     | 5     | 4     | —              | —                   | 157257A                      | 1954                                                         | 2319                                                                     | 2988      | 3176                                                                                                   |
| 20                  | —                                                                             | 100   | 91    | 49    | 6     | 0.6   | —     | —     | —     | —              | —                   | 157257B                      | 1853                                                         | 1632                                                                     | 1518      | 1569                                                                                                   |
| 21                  | —                                                                             | 100   | 78    | 14    | 8     | —     | —     | —     | —     | —              | —                   | 155542                       | 2478                                                         | 2243                                                                     | 2829      | 2685                                                                                                   |
| 22                  | —                                                                             | 100   | 81    | 12    | 0.5   | —     | —     | —     | —     | —              | —                   | 149877                       | 1011                                                         | 1057                                                                     | 1404      | 1392                                                                                                   |
| 23                  | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | —              | —                   | 142811                       | 1074                                                         | 1010                                                                     | 2484      | 2673                                                                                                   |
| 24                  | —                                                                             | 100   | 77    | 50    | 30    | 26    | 0.4   | —     | —     | 2.62           | 38.1                | 121142A                      | 110874                                                       | 2055                                                                     | 2282      | —                                                                                                      |
|                     |                                                                               |       |       |       |       |       |       |       |       |                |                     |                              | 2017                                                         | 2506                                                                     | 2017      | 2506                                                                                                   |

\* Sand No. 147304B.

\* Sand No. 147304C.

\* Ottawa sand.

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Trac-<br>ing<br>No. | Mechanical analysis.<br>Per cent passing through screens (circular openings). |       |       |       |       |       |       |       |       |                | Specific<br>gravity. | Per-<br>centage<br>of voids. | Sand used<br>with gravel<br>or stone.<br>Laboratory<br>No. | Compressive strength in pounds per<br>square inch at the age of 28 days. |      |       |       | Mode of<br>failure.<br>M., mor-<br>tar.<br>M. G.,<br>mortar-<br>gravel.<br>M. S.,<br>mortar-<br>stone. |  |
|---------------------|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------------|------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------|-------|-------|--------------------------------------------------------------------------------------------------------|--|
|                     | 3.00"                                                                         | 2.25" | 1.50" | 1.00" | 0.67" | 0.45" | 0.30" | 0.20" | 0.15" | Initial crack. |                      |                              |                                                            | Ultimate.                                                                |      |       |       |                                                                                                        |  |
| 25                  | 100                                                                           | 99    | 99    | 87    | 57    | 39    | 24    | 16    | —     | 145643         | 859                  | —                            | 1774                                                       | —                                                                        | —    | —     | M. G. |                                                                                                        |  |
| 26                  | 100                                                                           | 99    | 78    | 46    | 18    | 6     | 1     | —     | —     | 145643         | 820                  | —                            | 1650                                                       | —                                                                        | —    | —     | M. G. |                                                                                                        |  |
| 27                  | 100                                                                           | 89    | 60    | 30    | 7     | 2     | —     | 0.4   | 0.2   | 145643         | 868                  | —                            | 1885                                                       | —                                                                        | —    | —     | M. G. |                                                                                                        |  |
| 28                  | 100                                                                           | 96    | 83    | 62    | 30    | 17    | 8     | 5     | —     | 145643         | 1004                 | —                            | 1798                                                       | —                                                                        | —    | —     | M. G. |                                                                                                        |  |
| 29                  | 100                                                                           | 97    | 90    | 82    | 62    | 45    | 22    | —     | —     | 149120         | 1260                 | 1160                         | 1615                                                       | 1670                                                                     | M.   | —     |       |                                                                                                        |  |
| 30                  | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | 112996         | 1445                 | 1466                         | 2120                                                       | 2195                                                                     | M.   | —     |       |                                                                                                        |  |
| 31                  | 100                                                                           | 83    | 65    | 41    | 25    | 12    | 7     | —     | 2.45  | 29.1           | 11032                | (d)                          | (d)                                                        | (d)                                                                      | (d)  | (d)   | M.    |                                                                                                        |  |
| 32                  | 100                                                                           | 81    | —     | —     | —     | —     | 40    | —     | 2.71  | 35.5           | 62645                | —                            | —                                                          | 1180                                                                     | —    | —     | M.    |                                                                                                        |  |
| 33                  | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | 114591         | 1022                 | 998                          | 1227                                                       | 1236                                                                     | M.   | —     |       |                                                                                                        |  |
| 34                  | 100                                                                           | 83    | 40    | 18    | 0.2   | —     | —     | —     | —     | 2.70           | 32.3                 | 121142C                      | 2246                                                       | 2029                                                                     | 2129 | 2929  | —     |                                                                                                        |  |
| 35                  | 100                                                                           | 99    | 95    | 79    | 57    | —     | —     | —     | —     | 149486         | 1112                 | 1280                         | 1280                                                       | 1676                                                                     | M.   | —     |       |                                                                                                        |  |
| 36                  | —                                                                             | —     | —     | —     | —     | —     | —     | —     | —     | 110874         | 1986                 | 1820                         | 2102                                                       | 1976                                                                     | —    | —     |       |                                                                                                        |  |
| 37                  | 100                                                                           | 83    | 63    | 27    | 5     | 0.5   | —     | —     | —     | 2.64           | 53.2                 | 125491                       | 1460                                                       | 1222                                                                     | 1460 | 1222  | M.    | —                                                                                                      |  |
| 38                  | 100                                                                           | 96    | 89    | 67    | 43    | 2     | 1     | —     | 2.42  | 35.1           | 113991               | 1472                         | 1680                                                       | 1591                                                                     | 1720 | —     | —     |                                                                                                        |  |
| 39                  | 100                                                                           | 97    | 66    | 31    | 6     | 0.4   | —     | —     | —     | —              | 117908               | 1784                         | 1760                                                       | 2337                                                                     | 2541 | —     | —     |                                                                                                        |  |
| 40                  | 100                                                                           | 71    | 57    | 37    | 22    | 11    | 10    | —     | 2.45  | 38.4           | 113991               | 1611                         | —                                                          | 1699                                                                     | —    | —     |       |                                                                                                        |  |
| 41                  | 100                                                                           | 76    | 35    | 16    | 14    | 11    | 2     | —     | —     | —              | 151295               | 1903                         | 1916                                                       | 1007                                                                     | 1113 | M.    | —     |                                                                                                        |  |
| 42                  | 100                                                                           | 93    | 21    | 3     | 1     | —     | —     | —     | —     | —              | 150668               | 991                          | 1023                                                       | 1146                                                                     | 1229 | —     | —     |                                                                                                        |  |
| 43                  | 100                                                                           | 87    | 29    | 5.5   | 0.1   | —     | —     | —     | —     | —              | 1555603              | 2150                         | 2158                                                       | 2527                                                                     | 2578 | M. S. | —     |                                                                                                        |  |
| 44                  | 100                                                                           | 98    | 76    | 15    | 2     | 0.5   | 0.1   | —     | —     | —              | 159391               | 2558                         | 2528                                                       | 3243                                                                     | 3291 | M. S. | —     |                                                                                                        |  |
| 45                  | 100                                                                           | 99    | 64    | 51    | 40    | 24    | 11    | 2     | 1     | 2.44           | 35.4                 | 123521                       | 785                                                        | —                                                                        | 1037 | —     | —     |                                                                                                        |  |
| 46                  | 100                                                                           | 90    | 48    | 12    | 1     | —     | —     | —     | —     | —              | 151029               | 1389                         | —                                                          | 1531                                                                     | —    | M.    | —     |                                                                                                        |  |
| 47                  | 100                                                                           | 73    | 70    | 62    | 51    | 42    | 25    | 8     | 2.10  | 45.9           | 123445               | 786                          | —                                                          | 1038                                                                     | —    | —     |       |                                                                                                        |  |
| 48                  | 100                                                                           | 90    | 78    | 63    | 46    | 27    | 8     | —     | 2.35  | 37.3           | 122314A              | 881                          | —                                                          | 1688                                                                     | —    | —     |       |                                                                                                        |  |

|    |     |     |    |     |     |     |     |    |      |      |                  |        |        |        |              |      |
|----|-----|-----|----|-----|-----|-----|-----|----|------|------|------------------|--------|--------|--------|--------------|------|
| 49 |     | 100 | 87 | 70  | 46  | 34  | 22  | 12 | 2.40 | 25.4 | 122314B          | 1134   | 2913   |        |              |      |
| 50 | 100 | 74  | 67 | 53  | 44  | 30  | 19  | 9  | 2.60 | 39.1 | 123443           | 1875   | b 1664 | 2709   | b 2020       |      |
| 51 |     | 100 | 90 | 77  | 51  | 27  | 13  | 8  | 2.39 | 33.4 | ( <sup>a</sup> ) | m 1651 |        | 1667   |              |      |
| 52 |     | 100 | 91 | 78  | 56  | 38  | 16  | 9  | 2.27 | 34.3 | ( <sup>a</sup> ) | 930    |        | 940    |              |      |
| 53 |     | 100 | 97 | 83  | 66  | 37  | 15  | 2  | 2.37 | 38.1 | 125977           |        |        | 807    | 795 M.       |      |
| 54 | 100 | 97  | 91 | 67  | 45  | 23  | 12  | 1  | 2.35 | 45.1 | 125977           |        |        | 1135   | 1098 M.      |      |
| 55 |     | 100 | 63 | 2   |     |     |     |    |      |      | 152599           | 1755   | 1668   | 1893   | 1784 M. S.   |      |
| 56 |     |     |    |     |     |     |     |    |      |      | 147129           | 1133   | 1490   | 2740   | 2560         |      |
| 57 |     | 100 | 43 | 1.5 | 0.5 | 0.4 |     |    |      |      | 152214           | 1438   | 1343   | 1602   | 1453 M. G.   |      |
| 58 |     | 100 | 69 | 17  | 2.7 | 0.5 | 0.2 |    |      |      | ( <sup>a</sup> ) | 2088   | 2151   | 2278   | 2318 M. S.   |      |
| 59 | 100 | 98  | 90 | 67  | 44  | 18  | 6   | 1  |      |      | 144671           | 1168   | 765    | 1589   | 1558 M. G.   |      |
| 60 |     | 100 | 79 | 23  | 3   | 0.1 |     |    |      |      | 145880           | 791    |        | 1485   |              |      |
| 61 |     |     |    |     |     |     |     |    |      |      | 78560            | 1448   | 1494   | 1757   | 1874         |      |
| 62 |     |     |    |     |     |     |     |    |      |      | 78560            | 899    | 901    | 1385   | 1474         |      |
| 63 |     |     |    |     |     |     |     |    | 2.69 | 46.9 | ( <sup>a</sup> ) | 2597   | 1639   | 3104   | 3183 M. G.   |      |
| 64 |     | 100 | 89 | 9   | 2   |     |     |    |      |      | 144888           | 1207   | 1036   | 1665   | 1584 M.      |      |
| 65 | 100 | 96  | 67 | 22  | 6   | 0.5 |     |    |      |      | 156037           | 1933   | 1949   | 2193   | 2149 M. G.   |      |
| 66 |     |     |    |     |     |     |     |    | 2.70 | 45.2 | ( <sup>a</sup> ) | 2341   | 2042   | 2687   | 2797 M. G.   |      |
| 67 | 100 | 65  | 59 | 27  | 1   |     |     |    | 2.70 | 41.5 | ( <sup>a</sup> ) | 2441   |        | 2961   | M.           |      |
| 68 |     | 100 | 99 | 91  | 67  | 29  | 9   | 2  |      |      | 149318           | 1650   | 1315   | 1837   | 1827         |      |
| 69 |     | 100 | 92 | 88  | 65  | 18  | 9   | 1  |      | 2.64 | 35.6             | 121023 | 1527   | 1171   | 2281         | 1943 |
| 70 |     | 100 | 94 | 54  | 22  | 3   | 1   |    |      |      | 151978           | 1292   | 1203   | 1423   | 1535 M.      |      |
| 71 |     |     |    |     |     |     |     |    | 2.67 | 27.9 | 151331A          | 1020   | 1068   | 1120   | 1200 M.      |      |
| 72 |     |     |    |     |     |     |     |    | 2.65 | 28.1 | 151331B          | 1034   | 996    | 1180   | 1157 M.      |      |
| 73 |     |     |    |     |     |     |     |    |      |      | 2278             |        | 2352   |        | M. G.        |      |
| 74 |     |     |    |     |     |     |     |    |      |      | 88922            | 2667   |        | 2715   | M. G.        |      |
| 75 | 100 | 78  | 67 | 43  | 28  | 17  | 8   | 2  | 2.61 | 35.2 | ( <sup>a</sup> ) | b 2427 |        | b 2578 |              |      |
| 76 | 100 | 85  | 79 | 68  | 54  | 32  | 16  | 4  | 2    | 2.60 | 28.9             | b 1244 | b 1156 | b 2464 | b 2347 M. G. |      |
| 77 |     | 100 | 96 | 87  | 67  | 44  | 28  | 18 | 6    |      | 154417           | 1437   | 1385   | 1511   | 1460 M.      |      |

<sup>a</sup> No tests on strengths.<sup>b</sup> Sand from Pampanga.<sup>c</sup> Proportion of concrete mixture 1:2.5:5.<sup>d</sup> Sand from Iloilo.<sup>e</sup> Proportion of concrete mixture 1:1.5:8.<sup>f</sup> Sand from Imus River.<sup>1</sup> Sand from Rio Grande.<sup>2</sup> Washed and screened.<sup>3</sup> Pasig River.<sup>m</sup> Proportion of concrete mixture 1:2:5.<sup>n</sup> Rio Grande.<sup>o</sup> Proportion of concrete mixture 1:2:4.

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Trac-<br>ing<br>No. | Mechanical analysis.<br>Per cent passing through screens (circular openings). |       |       |       |       |       |       |       |       |                | Specific<br>gravity. | Per-<br>centage<br>of voids. | Sand used<br>with gravel<br>or stone.<br>Laboratory<br>No. | Compressive strength in pounds per<br>square inch at the age of 28 days. |      |       |  | Mode of<br>failure.<br>M., mor-<br>tar.<br>M.G.,<br>mortar-<br>gravel.<br>M.S.,<br>mortar-<br>stone. |
|---------------------|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------------|------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------|-------|--|------------------------------------------------------------------------------------------------------|
|                     | 3.00"                                                                         | 2.25" | 1.50" | 1.00" | 0.67" | 0.45" | 0.30" | 0.20" | 0.15" | Initial crack. |                      |                              |                                                            | Ultimate.                                                                |      |       |  |                                                                                                      |
| 78                  | 100                                                                           | 80    | 32    | 11    | 1.3   | 0.1   |       |       |       |                | 155603               | 2183                         | 2151                                                       | 2558                                                                     | 2411 | M. G. |  |                                                                                                      |
| 79                  | 100                                                                           | 89    | 65    | 43    | 27    | 16    | 8     | 5     | 2.56  |                | 142721               | 1000                         | 830                                                        | 1665                                                                     | 1296 |       |  |                                                                                                      |
| 80                  | 100                                                                           | 96    | 84    | 68    | 40    | 22    | 10    | 5     |       |                | 144037               | 1456                         |                                                            | 1977                                                                     |      |       |  |                                                                                                      |
| 81                  | 100                                                                           | 85    | 62    | 44    | 17    | 5     | 0.2   |       |       |                | 145780               | 856                          |                                                            | 1531                                                                     |      | M.    |  |                                                                                                      |
| 82                  | 100                                                                           | 22    | 6     | 2     | 0.3   |       |       |       | 2.58  | 44.6           | 86085A               | 1328                         | 1611                                                       | 2078                                                                     | 1945 | M.    |  |                                                                                                      |
| 83                  | 100                                                                           | 16    | 2     | 0.1   |       |       |       |       | 2.58  | 44.5           | 86085C               |                              |                                                            | 1347                                                                     |      | M. G. |  |                                                                                                      |
| 84                  | 100                                                                           | 16    | 2     | 0.1   |       |       |       |       | 2.58  | 44.5           | 86085B               | 1450                         | 1000                                                       | 1728                                                                     | 1647 | M.    |  |                                                                                                      |
| 85                  | 100                                                                           | 94    | 70    | 46    | 23    | 14    | 8     | 4     | 2.41  | 35.8           | 132068               | 1566                         | 1701                                                       | 1863                                                                     | 2002 | M. G. |  |                                                                                                      |
| 86                  | 100                                                                           | 88    | 38    | 4     | 2     |       |       |       | 2.37  | 46.2           | 132068               | 2045                         | 2012                                                       | 2636                                                                     | 2778 | M. G. |  |                                                                                                      |
| 87                  | 100                                                                           | 98    | 44    | 3     |       |       |       |       |       |                | 158671               | 2222                         | 2347                                                       | 3098                                                                     | 3245 | M. S. |  |                                                                                                      |
| 88                  |                                                                               |       |       |       |       |       |       |       | 2.28  | 28.1           | 128903               | 1636                         | 1555                                                       | 2290                                                                     | 2170 |       |  |                                                                                                      |
| 89                  |                                                                               | 100   | 67    | 32    | 1     |       |       |       |       |                | 145733               | 1591                         |                                                            | 3260                                                                     |      | M. G. |  |                                                                                                      |
| 90                  |                                                                               | 88    | 50    | 26    | 8     | 2     | 1     |       |       |                | 149829               | 2155                         | 2311                                                       | 3098                                                                     | 3027 | M. G. |  |                                                                                                      |
| 91                  | 100                                                                           | 88    | 59    | 42    | 14    | 0.2   |       |       | 2.31  | 30.6           | 121025               | 1387                         | 1925                                                       | 1895                                                                     | 2155 | M. G. |  |                                                                                                      |
| 92                  | 100                                                                           | 94    | 14    | 0.5   | 0.1   |       |       |       | 2.42  |                | 145326               | 350                          | 275                                                        | 1416                                                                     | 1673 | M. G. |  |                                                                                                      |
| 93                  | 100                                                                           | 64    | 17    | 3.5   | 0.2   |       |       |       | 2.40  | 48.7           | 159886               | 1808                         | 1751                                                       | 2449                                                                     | 2443 | M. G. |  |                                                                                                      |
| 94                  | 100                                                                           | 97    | 90    | 75    | 43    | 29    | 15    | 6     |       |                | 121583               | 1125                         |                                                            | 1223                                                                     |      | M. G. |  |                                                                                                      |
| 95                  | 100                                                                           | 83    | 33    | 5     | 1     |       |       |       |       |                | 150161A              | 1215                         | 1120                                                       | 1634                                                                     | 1584 | M. G. |  |                                                                                                      |
| 96                  |                                                                               | 100   | 92    | 66    | 42    | 19    | 5.6   | 0.15  | 0.05  |                | 155971               | 1629                         | 1634                                                       | 1744                                                                     | 1771 | M. G. |  |                                                                                                      |
| 97                  |                                                                               |       | 100   | 89    | 46    | 8     | 1     |       |       |                | 151128               | 1327                         | 541                                                        | 1612                                                                     | 680  | M.    |  |                                                                                                      |
| 98                  | 100                                                                           | 97    | 62    | 27    | 9     | 1     | 0.2   |       |       |                | 152783               | 1560                         | 1690                                                       | 2065                                                                     | 2181 | M. G. |  |                                                                                                      |
| 99                  |                                                                               |       | 100   | 98    | 88    | 62    | 40    | 18    | 12    | 2.61           | 35.4                 |                              |                                                            |                                                                          |      |       |  |                                                                                                      |
| 100                 |                                                                               |       |       | 100   | 33    | 3     | 0     |       | 2.62  | 41.1           |                      |                              |                                                            |                                                                          |      |       |  |                                                                                                      |

\* Proportion of concrete mixture 1 : 2.5 : 5.

\* Proportion of concrete mixture 1 : 2 : 5.

|     |     |     |     |    |     |     |     |     |      |      |         |        |        |        |        |       |
|-----|-----|-----|-----|----|-----|-----|-----|-----|------|------|---------|--------|--------|--------|--------|-------|
| 101 |     | 100 | 83  | 34 | 20  |     |     |     | 2.70 | 39.6 | 123101  | • 385  | • 354  | • 558  | • 537  | M.    |
| 102 |     |     | 90  | 56 | 20  | 2   | 0.3 |     | 2.37 | 45.1 | 121499  | 3024   | 2686   | 3024   | 2686   | M. G. |
| 103 |     | 100 | 90  | 56 | 20  |     |     |     |      |      | 147911  | 1445   | 1163   | 2320   | 2188   |       |
| 104 |     |     | 68  | 24 | 6.7 | 11  | 0.3 |     |      |      | 157985  | 2189   | 2011   | 3085   | 2948   | M. G. |
| 105 |     | 100 | 68  | 24 | 6.7 | 11  | 0.3 |     |      |      | 157986  | 1742   | 1600   | 2374   | 1960   | M. G. |
| 106 |     |     | 100 | 96 | 85  | 49  | 19  | 15  | 10   | 2.39 | 56.3    | 118287 | 982    | 1217   |        | M.    |
| 107 | 100 | 88  | 26  | 10 |     |     |     |     |      |      | 147515  | 1227   | 1218   | 2244   | 2433   |       |
| 108 | 100 | 99  | 64  | 9  |     |     |     |     |      |      | 154786  | 2733   | 2628   | 3844   | 3680   | M. S. |
| 109 |     | 100 | 96  | 66 | 35  | 9   | 2   | 0.1 |      |      | 152656  | 1755   | 1716   | 1970   | 1894   | M. G. |
| 110 |     | 100 | 78  | 8  | 2   | 0.3 | 0.1 |     |      |      | 156546A | 2373   | 2658   | 3482   | 3233   | M.    |
| 111 |     | 100 | 78  | 8  | 2   | 0.3 | 0.1 |     |      |      | 156546B | 2459   | 2256   | 3019   | 3053   | M.    |
| 112 |     | 100 | 89  | 48 | 22  | 5.6 | 1.7 | 0.5 | 0.15 |      | 156546A | 3019   | 2904   | 3257   | 3083   | M. G. |
| 113 |     | 100 | 89  | 48 | 22  | 5.6 | 1.7 | 0.5 | 0.15 |      | 156546B | 2556   | 2667   | 3194   | 3201   | M. G. |
| 114 |     | 100 | 96  | 81 | 49  | 12  | 1   |     |      |      | 150669  | 1186   | 1711   | 1952   | 2186   | M.    |
| 115 | 100 | 97  | 57  | 5  | 0.1 |     |     |     |      |      | 147350  | 1361   | 1330   | 2235   | 2068   | M. G. |
| 116 |     | 100 | 81  | 50 | 31  | 8   | 1   | 0.4 | 0.1  |      | 156703  | 1944   | 2375   | 2593   | 2711   | M.    |
| 117 |     | 100 | 90  | 19 | 0.2 |     |     |     |      |      | 151982  | 1390   | 1367   | 1823   | 1732   | M.    |
| 118 |     | 100 | 69  | 19 | 3.7 |     |     |     |      |      | 158885  | 1564   | 1699   | 2198   | 2220   | M.    |
| 119 |     | 100 | 86  | 48 | 17  | 2.4 | 0.2 |     |      |      | 158983  | 1994   | 2006   | 2509   | 2456   | M. G. |
| 120 | 100 | 98  | 97  | 52 | 31  | 11  | 2   |     |      |      | 150748  | 1355   | 1389   | 1732   | 1710   | M.    |
| 121 | 100 | 87  | 47  | 53 | 0.7 |     |     |     |      |      | 158271  | 2744   | 2618   | 4150   | 3769   | M. G. |
| 122 |     | 100 | 78  | 21 | 3   | 1   |     |     |      |      | 151004  | 1847   | 1948   | 2742   | 2466   | M. G. |
| 123 | 100 | 96  | 67  | 38 | 15  | 1   |     |     |      |      | 153663  | 1523   | 1614   | 1752   | 1811   | M.    |
| 124 |     |     |     |    |     |     |     |     |      | (*)  | 1900    | 1976   | 2147   | 2300   |        |       |
| 125 |     | 100 | 76  | 46 | 18  | 3   | 0.4 |     | 2.34 | 28.4 | 122046  |        |        |        |        |       |
| 126 |     | 100 | 59  | 48 | 26  | 8   | 2   | 0.4 | 2.52 | 33.8 |         | 1090   | 1455   | 2053   | 1875   | M. G. |
| 127 |     | 100 | 95  | 48 | 10  | 1   | 0.5 |     |      |      | 145642  | • 1008 | • 1792 | • 1122 | • 1977 | M. G. |
| 128 |     |     |     |    |     |     |     |     |      | (*)  | 1809    | 1822   | 2025   | 2539   |        |       |

<sup>m</sup> Proportion of concrete mixture 1 : 2 : 5.<sup>n</sup> Proportion of concrete mixture 1 : 2 : 4.<sup>o</sup> Sand No. 151128B.<sup>p</sup> Sand No. 151128A.<sup>q</sup> Cylinders 8 inches by 16 inches, mixture 1 : 2.5 : 5.<sup>t</sup> Amblan River.<sup>u</sup> Sand No. 145642A.<sup>v</sup> Sand No. 145642B.<sup>w</sup> Tanhay River.<sup>x</sup> Test pieces, cylinders 8 inches by 16 inches.<sup>y</sup> Pasig River.

TABLE 9.—*Mechanical analysis and compressive strengths of Philippine gravels—Continued.*

| Trac-<br>ing<br>No. | Mechanical analysis.<br>Per cent passing through screens (circular openings). |       |       |       |       |       |       |       |       |                | Specific<br>gravity. | Per-<br>centage<br>of voids. | Sand used<br>with gravel<br>or stone.<br>Laboratory<br>No. | Compressive strength in pounds per<br>square inch at the age of 28 days. |        |         |       | Mode of<br>failure.<br>M. mor-<br>tar.<br>M. G.,<br>mortar-<br>gravel.<br>M. S.,<br>mortar-<br>stone. |
|---------------------|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------------|------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|--------|---------|-------|-------------------------------------------------------------------------------------------------------|
|                     | 3.00"                                                                         | 2.25" | 1.50" | 1.00" | 0.67" | 0.45" | 0.30" | 0.20" | 0.15" | Initial crack. |                      |                              |                                                            | Ultimate.                                                                |        |         |       |                                                                                                       |
| 129                 | 100                                                                           | 98    | 49    | 14    | 1     |       |       |       |       |                |                      | 155109                       | 1392                                                       | 1383                                                                     | 1469   | 1453    | M. G. |                                                                                                       |
| 130                 |                                                                               |       |       |       |       |       |       |       |       |                |                      | 124014                       | 1986                                                       | —                                                                        | 2443   | —       | M. G. |                                                                                                       |
| 131                 | 100                                                                           | 54    | 2     | 0.1   |       |       |       |       |       |                | 2.66                 | 44.1                         | 146673                                                     | 1082                                                                     | —      | 2430    | —     | M. G.                                                                                                 |
| 132                 | 100                                                                           | 44    | 5     | 0.6   |       |       |       |       |       |                |                      | 147419                       | 1117                                                       | 1343                                                                     | 2077   | 2277    | M. G. |                                                                                                       |
| 133                 | 100                                                                           | 92    | 64    | 35    | 13    | 3     | 1     |       |       |                |                      | 146671                       | 1036                                                       | 1899                                                                     | —      | —       | M. G. |                                                                                                       |
| 134                 | 100                                                                           | 84    | 82    | 56    | 45    | 29    | 17    | 4     | 0.4   | 2.73           | 38.7                 | 121816                       | * 901                                                      | * 1052                                                                   | * 1356 | * 1686  | M. G. |                                                                                                       |
| 135                 | 100                                                                           | 99    | 42    | 29    | 28    | 18    | 9     | 4     |       |                |                      | 149666                       | 1394                                                       | 1470                                                                     | 2400   | 2456    | M. S. |                                                                                                       |
| 136                 | 100                                                                           | 94    | 52    | 28    | 23    | 21    | 20    | 20    |       |                |                      | 149777                       | 1861                                                       | —                                                                        | 3250   | —       | M. S. |                                                                                                       |
| 137                 | 100                                                                           | 87    | 42    | 11    | 1     |       |       |       |       |                |                      | 152145                       | 2185                                                       | 2066                                                                     | 2952   | 2834    | M. S. |                                                                                                       |
| 138                 | 100                                                                           | 69    | 32    | 19    | 7     | 3     |       |       |       |                |                      | (*)                          | 1493                                                       | 1552                                                                     | 1846   | 1882    | M.    |                                                                                                       |
| 139                 | 100                                                                           | 98    | 89    | 62    | 33    | 10    | 4     | 0.6   | 0.3   |                |                      | 152145                       | 1670                                                       | 1650                                                                     | 2303   | 2235    | M. *  |                                                                                                       |
| 140                 | 100                                                                           | 55    | 5     | 0.7   | 0.1   |       |       |       |       |                |                      | 152145                       | 1632                                                       | 1676                                                                     | 2227   | 2294    | M. *  |                                                                                                       |
| 141                 | 100                                                                           | 97    | 86    | 64    | 28    | 12    | 3     | 0.4   |       |                |                      | 152145                       | † 1598                                                     | †† 1170                                                                  | † 1900 | †† 1374 | M. *  |                                                                                                       |
| 142                 | 100                                                                           | 98    | 82    | 52    | 23    | 12    | 3     | 0.3   |       |                |                      | 151600                       | —                                                          | —                                                                        | —      | —       | M. *  |                                                                                                       |
| 143                 | 100                                                                           | 98    | 91    | 65    | 32    | 3     |       |       |       |                |                      | 151984                       | 1342                                                       | 1311                                                                     | 1506   | 1452    | M. *  |                                                                                                       |
| 144                 | 100                                                                           | 92    | 76    | 61    | 38    | 22    | 12    | 8     |       |                |                      | (*)                          | 786                                                        | 773                                                                      | 1260   | 1241    | M. *  |                                                                                                       |
| 145                 | 100                                                                           | 99    | 92    | 73    | 46    | 20    | 10    | 4     |       |                |                      | 149466                       | 1288                                                       | 1260                                                                     | 2295   | 2422    | M. G. |                                                                                                       |
| 146                 | 100                                                                           | 92    | 76    | 47    | 20    | 12    | 8     |       |       |                |                      | (*)                          | 1561                                                       | 1427                                                                     | 1787   | 1665    | M. *  |                                                                                                       |
| 147                 | 100                                                                           | 91    | 75    | 49    | 21    | 14    | 9     | 7     |       |                |                      | 152173                       | 1464                                                       | 1475                                                                     | 1518   | 1555    | M. *  |                                                                                                       |
| 148                 | 100                                                                           | 97    | 91    | 81    | 68    | 44    | 25    | 9     |       |                |                      | 154012                       | 1780                                                       | 1866                                                                     | 1833   | 1975    | M. G. |                                                                                                       |
| 149                 | 100                                                                           | 94    | 87    | 84    | 42    | 16    | 7     | 3     |       |                |                      | 154012                       | 1814                                                       | 1696                                                                     | 1919   | 1786    | M. G. |                                                                                                       |
| 150                 | 100                                                                           | 80    | 47    | 15    | 1     |       |       |       |       |                |                      | 153845                       | 2208                                                       | 2086                                                                     | 2394   | 2404    | M. G. |                                                                                                       |
| 151                 | 100                                                                           | 96    | 66    | 28    | 10    | 2     |       |       |       |                |                      | 150108B                      | 1172                                                       | 1189                                                                     | 1455   | 1393    | M. *  |                                                                                                       |
| 152                 | 95                                                                            | 77    | 61    | 45    | 18    | 2     |       |       |       |                |                      | 150108A                      | 1393                                                       | 1444                                                                     | 1778   | 1797    | M. *  |                                                                                                       |
| 153                 | 100                                                                           | 95    | 85    | 55    | 18    | 2     |       |       |       |                |                      | 151148E                      | 1444                                                       | 1617                                                                     | 1854   | 1991    | M. *  |                                                                                                       |

**Pasig River.**

<sup>a</sup> Equal volumes of Talm Island crushed stone and Pasig River gravel.

† Sand No. 151600A.

† Sand No. 151500B.

††† Cylindrical specimen 8 inches by 16 inches.

PHYSICAL CHARACTERS OF THE AGGREGATES AS REPORTED IN  
TABLES 8 AND 9

## ALBAY PROVINCE

The sand specimens from Albay Province are well graded, the coarse and medium particles being well balanced, with a relatively smaller percentage of fine particles. The uniformity coefficient, as well as the specific gravity, is fairly high and indicates the good quality of the sands. They possess good mortar strength, both tensile and compressive.

Few gravel specimens were received from Albay Province; all of them, however, possess good compressive strength, when properly used in concrete with sand from the same locality.

## ANTIQUE PROVINCE

There is wide variation in the physical characters of the sands from Antique Province. In general, they are composed of medium-coarse particles; the average specific gravity is fairly high; the uniformity coefficient varies from 1.6 to 6.1. Three samples from Sibalom River are of widely different granulometric composition: No. 151469 is medium-fine sand, No. 151652 is medium sand, and No. 151980 is medium-coarse sand. The first two specimens have low tensile and compressive strengths; the third, however, is very satisfactory. Another poor specimen is that from Timpuluan River, No. 152179B; this is medium sand, has very few coarse particles, and has a low uniformity coefficient. The tensile and compressive strengths of this sand are somewhat low. On the other hand, a coarse sand from Magranca beach (No. 154419), in spite of its low uniformity coefficient (1.8), has shown very high tensile and compressive strengths.

There is only one gravel specimen from Antique Province; it is from Timpuluan River. Its low strength is due to poor grading and to the poor quality of the sand used. Indications are that gravel deposits are found also in the beds of Sibalom River, but they are of inferior quality.

## BATAAN PROVINCE

The sands from Bataan Province are composed mainly of medium-coarse particles; they have fairly high specific gravity, and a rather variable uniformity coefficient. In general, they have high tensile and compressive strengths. A medium-fine sand specimen from Mariveles beach, No. 117596, has exceptionally low compressive strength, undoubtedly owing to its high percentage of voids and low uniformity coefficient.

A few gravel specimens were received from Bataan Province. No. 158268, from Talisay River, mixed with the sand from the same locality, has exceptionally high compressive strength; on the other hand, No. 144545, from Orani River, has somewhat low compressive strength, because of the poor quality of the sand used.

#### BATANGAS PROVINCE

Owing to the volcanic nature of the origin of the sand specimens from Batangas Province, their specific gravity is relatively low; the granulometric composition is fairly variable, but variation in the uniformity coefficients is small. The highest tensile strength registered was 305 pounds and the highest compressive strength was 2,343 pounds per square inch; the average values are very much lower, indicating that the sands from this region are of inferior quality.

Some gravel specimens were received from Batangas Province. The results of the tests, however, were not incorporated in the tables, because reliable data on the location of the deposits were not furnished. Like the sands, they are of inferior quality.

#### BENGUET SUBPROVINCE

The sand specimens from Benguet Subprovince, with the exception of those from Trinidad, are not natural sands; they are screenings. The medium-coarse natural sand from Trinidad, No. 110110B, showed a tensile strength of 504 pounds against 220 pounds of the medium-fine sand, No. 110110A, from the same place. The coarser stone screenings gave very much higher tensile and compressive strengths than did the finer screenings.

Only crushed stones and no gravel were received from Benguet. The limestone and chert mixed with the screenings from the same rocks gave fairly good compressive strength.

#### BOHOL PROVINCE

The medium-sized particles predominate in the greater number of the sand specimens from Bohol Province. The specific gravity is fairly high, but the uniformity coefficient is very low. The presence of the medium particles and especially the medium-fine particles in predominating quantities and, to a certain extent, the low uniformity coefficient are no doubt the causes of the low tensile and compressive strengths of the greater number of the Bohol sands. Satisfactory results were obtained with the coarse sands taken from the mouth of Panangatan River, No. 150416B; from Punta Cruz beach, No. 155542; and from

kilometer 25 at Loay, No. 157257A. The medium-coarse sands from the seashores of Tagbilaran, No. 156614, and Umpas, No. 156616, and the medium sands from the seashores of Tanguhay and Duero, Nos. 145398 and 145399, also gave satisfactory results.

Many gravel specimens from Bohol are likewise of low quality; however, the two specimens from Punta Cruz beach, No. 155541, and from kilometer 25 at Loay, No. 157256, showed exceptionally high strength. Some mortar failures should be attributed partly to the poor quality of the sand used and partly to the poor grading of the gravels.

#### BULACAN PROVINCE

Although the sand specimens from Bulacan Province are mostly composed of medium particles, as a whole they have good tensile and compressive strengths. The specific gravity is fairly high and there is little variation in the uniformity coefficient. Three samples, Nos. 142811, 142996, and 145288C, composed of medium-coarse particles and having a low percentage of voids, are especially mentioned here because of their exceptionally high compressive strength, the three samples showing 4,706, 4,336, and 3,200 pounds per square inch, respectively. These sands were taken from Angat River; the first at Angat, the second at Bustos, and the third at Pulilan. The Bustos sand is well graded, showing a low percentage of voids (21.8), a fairly high uniformity coefficient (3.85), and an exceptionally high tensile strength (518 pounds per square inch), which is far above that of Ottawa sand.

Gravel of good quality from Bulacan Province comes mainly from Angat River. Gravels taken from Bocaue River, with the exception of one, No. 121142B, showed somewhat low compressive strength. However, it is always possible, by mixing this gravel with that from Angat or some other locality in Bulacan Province, to obtain a fairly good concrete material.

#### CAGAYAN PROVINCE

Few sand specimens were received from Cagayan Province. Unfortunately, none of them has given satisfactory results, no doubt because of the poor granulometric composition of the sand, which is composed mostly of fine particles and medium-fine particles.

Two gravel specimens were received from Cagayan Province, and both showed very low compressive strength.

**CAMARINES NORTE PROVINCE**

The only sample of sand received from Camarines Norte Province is a medium-coarse quartz sand, possessing a high uniformity coefficient, and exceptionally high tensile and compressive strengths.

No gravel specimen was received from this province.

**CAPIZ PROVINCE**

The sand specimen from Panay River, No. 121656, and one of the two specimens from the junction of Lauan and Capiz Rivers, No. 121434, have fairly high compressive strength. It is interesting to note the great difference in the compressive strength of the sands from two points of the same river junction, Nos. 121658 and 121434. Their granulometric composition is about the same; both are composed mainly of medium and fine particles; both have practically the same specific gravity; they have the same uniformity coefficient; and there is very slight difference in the percentage of voids. However, the compressive strength of No. 121434 is about 260 per cent of the compressive strength of that of No. 121658. This is possibly due to the quantity of clay, about 5.5 per cent, and a small amount of weathered material contained in No. 121658.

No gravel specimen from Capiz Province was submitted for test. The crushed stones taken from quarries, one located at barrio Tanza, and one at the Capiz-Paintan road, kilometer 9, are of good quality and both possess the strength required for use in concrete construction work.

**CAVITE PROVINCE**

The sands from Cavite Province, like those from Batangas Province, are characterized by low specific gravity, owing to their volcanic origin. Their granulometric composition is good; they are mainly composed of medium-coarse particles, and a very small proportion of fine particles; the uniformity coefficient is fairly high, but the tensile and compressive strengths are low, with the exception of sample No. 149506, from Noveleta River, which has a compressive strength of 2,220 pounds per square inch.

The gravels, like the sands, are of volcanic origin. With the exception of No. 122313B, from the Rio Grande, the specimens tested are of poor quality for use in concrete work.

**CEBU PROVINCE**

There is considerable variation in the granulometric composition and uniformity coefficient of the sands from Cebu Province. Most of the specimens are composed of medium-coarse sands, have fairly high compressive strength, and in some cases correspondingly high tensile strength. One sample, from Argab River, No. 147975B, composed almost entirely of coarse screenings, is especially mentioned here, because of its unusually high tensile and compressive strength.

Gravel of good quality is also available in many localities in Cebu. Two samples, one from a limestone quarry at Danao and another from Mananga River, Nos. 81168A and 81168B, mixed with Pasig River sand, showed compressive strengths of 3,183 and 2,797 pounds per square inch, respectively.

**ILOCOS NORTE PROVINCE**

The few sand specimens from Ilocos Norte Province were taken from Laoag River. They are fairly good, except the specimen taken at the dam site (No. 150853) which, being somewhat weathered, gave low tensile and compressive strengths.

Two gravel specimens were also taken from Laoag River. They possess fairly good strength. Better selection and proper proportioning and grading of the materials will give better results.

**ILOCOS SUR PROVINCE**

The sands from Ilocos Sur Province are mainly composed of medium-fine particles possessing low uniformity coefficient, and high specific gravity. Indications are that sands of good quality can be secured from Ilocos Sur Province.

The few gravel specimens received from Ilocos Sur Province are of good quality, being mainly composed of hard andesitic fragments. Their low compressive strength is due to the poor quality of the sands used.

**ILOILO PROVINCE**

The sands from Iloilo Province in general are medium-coarse sands possessing rather variable uniformity coefficient but fairly uniform specific gravity. The tensile and compressive strength at the age of twenty-eight days is also uniformly high, with the exception of the specimen from Jaro River, No. 154417. The Iloilo sands, judged by the results of the test, are quite satisfactory for use on concrete construction work.

The gravels, likewise, possess satisfactory compressive strength, except No. 142720, from Aganao River, which contains 15 per cent clay and silt; No. 145778, from Oton beach, which was tested under special conditions (that is, exposed in the open air for twenty-eight days); and No. 154416, from Santa Barbara River, which failed because of the poor quality of the sand.

#### LAGUNA PROVINCE

The sands from Laguna Province are composed of medium-coarse particles, and the specific gravity, uniformity coefficient, and the tensile and compressive strengths are very variable. The highest two compressive strengths registered were 4,721 and 4,390 pounds per square inch, corresponding to No. 143644, from Mayton River, and No. 149829, from Santa Cruz River, respectively. Incidentally, these two specimens have also the highest specific gravity, 2.70 and 2.77, respectively. With very few exceptions, the Laguna Province sands can be considered of satisfactory quality for use in concrete work.

The gravels also possess high compressive strength, especially those from Santa Cruz and Olla Rivers. The low results shown by a few specimens were due to the poor sands used. The crushed stone from a Los Baños quarry, No. 83395, is of poor quality.

#### LEYTE PROVINCE

Most of the Leyte sands are composed of medium-fine particles with very little or practically no coarse particles. Although the specific gravity is fairly high, the tensile and compressive strength is unsatisfactory, owing perhaps to the general low uniformity coefficient and the high percentage of voids of the specimens submitted; as a matter of fact, only seven of twenty-two samples, or about 33 per cent, gave satisfactory results.

Few gravel specimens were received from Leyte Province. With the exception of the sample from Baluguahay River, No. 121025, they show low compressive strength.

#### MARINDUQUE PROVINCE

The sands from Marinduque Province, although of medium-fine particles, have high specific gravity, and a low percentage of voids; it is for this reason that they have fairly good tensile and compressive strengths, except the fine sand from Matandang River.

Only two gravel specimens were received. Both have low compressive strength.

## MASBATE PROVINCE

Few sand specimens were received from Masbate Province. Three are medium sand and one is medium-coarse. The specific gravity is fairly high and the uniformity coefficient slightly variable and fairly good, but the tensile and compressive strengths are relatively low.

Only one gravel sample was received from Masbate Province; it was taken from Tagbo River. It has fair compressive strength, in spite of the relatively low strength of the sand with which it was mixed.

## MINDANAO ISLAND

In as much as there are only a few well-organized municipalities in Mindanao, the exact locations of the deposits of the aggregates were not clearly stated on the cards attached to the specimens; for this reason, all the aggregates are here considered under one heading.

The sands were gathered mainly from the seashores and only a few from the rivers. In general, they possess good tensile and compressive strengths. Good sands are not localized in any definite section of the island; they are found in Zamboanga, as well as in Sulu, Cotabato, Davao, and Cagayan. The following specimens have given exceptionally high tensile and compressive strengths: No. 123101, from Cagayan River; No. 154786, from Zamboanga beach; Nos. 156546A and 156546B, from Baliwasan beach; and No. 157985, from Davao River. These sands are characterized by low percentage of voids, fair specific gravity, and the presence of a higher proportion of coarse grains.

The gravels, like the sands, have given very satisfactory compressive strength. Many of the specimens have a breaking strength of 3,000 pounds or more per square inch.

## NUEVA ECIJA PROVINCE

Two sand specimens were received from Nueva Ecija Province; one, composed of medium-coarse particles, and the other of coarse particles. Both specimens possess good tensile and compressive strengths.

Also, two gravel specimens were received. Both can be considered of fair quality for use in concrete work.

## OCCIDENTAL NEGROS PROVINCE

In general, the sand specimens from Occidental Negros Province may be rated as fair. They are composed mostly of medium particles; the specific gravity, on the whole, is below

the average and, although the percentage of voids is relatively lower, the tensile and compressive strengths are not very satisfactory. However, samples No. 148964, from Alejandra River, and No. 159768, from Bungalin River, have given compressive strengths of 3,260 and 3,509 pounds per square inch, respectively.

The gravels, on the other hand, have good compressive strength. The low results registered were due to mortar failures, owing to the poor quality of the sands used.

#### ORIENTAL NEGROS PROVINCE

Three sand specimens were received from Oriental Negros Province. Like those of Occidental Negros, they are composed of medium particles. Their specific gravity and tensile and compressive strengths are below the average values for good concrete aggregates.

The gravels, however, have fairly good compressive strength.

#### PALAWAN PROVINCE

The sands from Palawan Province are mainly composed of medium particles; they have a fairly good uniformity coefficient but low specific gravity, due to the weathered condition of the particles. The percentage of voids is high, with the exception of No. 157987, from Coron beach, at the wharf. The tensile and compressive strengths of this specimen were 352 and 2,405 pounds per square inch, respectively.

The gravel specimen from Coron beach is likewise of good quality, but that from Bonga River is very poor.

#### PAMPANGA PROVINCE

The sand specimens from Pampanga Province are of medium-fine particles and have fair specific gravity and uniformity coefficient, and a comparatively low percentage of voids. The sands, although lacking in coarse particles, are well graded, and consequently possess good compressive strength.

The few gravel specimens submitted from Pampanga Province are of fair quality and, with the exception of No. 146670, from Paitan River, possess the necessary strength required for concrete work.

#### PANGASINAN PROVINCE

The sands from Pangasinan Province possess the good qualities of high specific gravity and low percentage of voids. They are composed of medium particles and, in general, have a low uniformity coefficient. It is possibly for this reason that the tensile strength is low, although the greater proportion of

the specimens have good compressive strength. Sands No. 144072, from Agno River, and No. 146985, from Aguilar River, have exceptionally high tensile and compressive strengths. Several other specimens have shown higher strength than the standard sand mortars.

No gravel samples were received from Pangasinan Province. Our records on concrete specimens submitted for test, however, indicate that gravels of good quality are found in the beds of many rivers, such as the Abeloleng, the Anonilintap, the Manaog, the San Jacinto, etc.

#### RIZAL PROVINCE

Perhaps no other sand deposit in the Philippine Islands has been so extensively developed as has that of Pasig River, Rizal Province. Proximity to the City of Manila, where concrete construction work is constantly increasing in volume, is the main cause of this development. Abundant material is available almost any time and prices are reasonable. The materials delivered at the job site cost about 2 pesos and 5 pesos per cubic meter of sand and gravel, respectively.

In general, the sand specimens from Rizal Province are composed of medium-coarse particles; they have fairly good average specific gravity, and a tolerably low percentage of voids. With a few exceptions, the tensile and compressive strengths are very satisfactory; as a matter of fact, in many instances, the Pasig River sand showed higher strength than did standard Ottawa sand.

Pasig River gravel is also of good quality. The low compressive strength registered in the majority of the cases was due to mortar failures. The smooth surface of this gravel, the fact that, oftentimes, it is covered with a film of dirt difficult to remove and, to a certain extent, the poor grading of the materials used in the mixtures are possibly the reasons for the low strength of concrete made from it. In no case has concrete made from this gravel shown the exceptionally high compressive strength that the concrete made from certain specimens from Mindanao and Occidental Negros showed; but, for ordinary purposes, it is a reliable concrete aggregate. Mixtures in the proportion of 1 : 2 : 4 would easily pass the minimum limit of 2,000 pounds per square inch, at the age of twenty-eight days, specified by the Bureau of Public Works.

In this connection, the experience of two practicing engineers of the City of Manila is of interest. In view of the frequent low strength noted in specimens submitted by these engineers for test at the Bureau of Science, they decided to study the cause of the trouble. After several weeks of observation at the site of the work where these materials were being used, they arrived at the conclusion that thorough washing of the materials and conscientious grading of the gravel particles are the necessary requisites to prepare 1 : 2 : 4 concrete cubes that will give a compressive strength of over 2,000 pounds per square inch at the age of twenty-eight days.

To correct the low strength of concrete made of concrete materials from Pasig River, some contractors used, for the coarse aggregate, equal proportions of river gravel and crushed stone from Talim Island. This practice has given very satisfactory results. The gravels taken from Angono, Tinajero, and San Juan Rivers are of similar concrete value as are the Pasig River gravels.

#### ROMBLON PROVINCE

Few sands were received from Romblon Province; they are of a calcareous nature, either coralline limestone or marble débris. They are medium sands with fairly high specific gravity and rather variable uniformity coefficient. In this particular province, where the specimens are of similar mineralogic classification, those having higher specific gravity, higher uniformity coefficient, and a low percentage of voids also possess higher tensile and compressive strengths.

No gravel or crushed stone specimens were received from Romblon Province. It is safe to assume, however, that crushed marble from marble rocks, which are found in large quantities in this province, will give satisfactory results as concrete aggregates.

#### SAMAR PROVINCE

The sands from Samar Province are composed mainly of medium-coarse particles, a relatively low percentage of voids, and variable uniformity coefficient and specific gravity. Wide variation is also observed in the tensile and compressive strengths. A coarse-medium sand, No. 119453, from Calbayog beach, has exceptionally high tensile and compressive strengths. This sand has a specific gravity of 2.77. Another medium-

coarse sand, No. 151148B, from Borongan River, gave the lowest tensile and compressive strengths. The specific gravity of the sand is 2.42. There was plenty of clay in the sample.

The gravels from Samar, with the exception of the two specimens from Maylibas River, gave satisfactory compressive strength. All the failures were mortar failures, indicating sand of poor quality or dirty gravel.

#### SORSOGON PROVINCE

The sand specimens from Sorsogon Province are mainly composed of medium and medium-coarse particles. The variation in the uniformity coefficient is small, but the variation in the specific gravity is noticeable. Although the compressive strength is fairly satisfactory, the tensile strength is low. Sand samples having the highest specific gravity have registered the highest tensile strength, showing once more the close relationship between density and strength.

The gravels from Sorsogon Province are hard dense rocks of good quality for concrete work. The low compressive strength should be attributed partly to the poor granulometric composition of the specimens and partly to the poor quality of the sands used.

#### SURIGAO PROVINCE

Two sand samples were received from Surigao Province and both have low tensile and compressive strengths. They are medium sands, of low uniformity coefficient and with a high percentage of voids, but with fairly good specific gravity.

No gravel was received from Surigao.

#### TARLAC PROVINCE

The Tarlac sands are medium-fine sands, possessing fairly good specific gravity, rather variable uniformity coefficient, and a somewhat high percentage of voids. The tensile and compressive strengths, with few exceptions, are generally good. The low strength of the specimens from O'Donnell River is due mainly to the mineralogic character of the sands. Sand No. 123447, from Santiago River, which registered the highest tensile and compressive strengths,<sup>31</sup> possesses all the good properties of a good mortar sand; namely, coarse particles, high

<sup>31</sup> Highest of the 1: 3 mixture.

specific gravity, high uniformity coefficient, and low percentage of voids.

Two gravel specimens were received from Tarlac Province, one from Cutcut River, the other from O'Donnell River; they possess exceptionally high compressive strength.

#### TAYABAS PROVINCE

The granulometric composition of the sands from Tayabas Province is fairly good. These sands are composed mainly of medium particles, but many of the specimens also contain a good proportion of coarse particles. The average specific gravity is high and the uniformity coefficient somewhat variable. The highest tensile and compressive strengths were registered by a medium coarse sand with a low percentage of voids and a high uniformity coefficient. Some specimens showed good compressive strength but low tensile strength.

Few gravel specimens were received from Tayabas Province. They all possessed good compressive strength without gravel failures.

#### ZAMBALES PROVINCE

The sands from Zambales Province are composed mainly of medium particles, the uniformity coefficient is fairly low, the average specific gravity good, and the percentage of voids fair. They possess better tensile strength than compressive strength. Sands Nos. 123118 and 123119, from sitio Galagala and Lucapon River, respectively, are especially interesting in this respect. The tensile strengths are 123.1 per cent and 139.1 per cent, respectively, of the corresponding tensile strength of the standard Ottawa sand mortar, while the compressive strengths are lower, 73.6 per cent and 79.5 per cent, respectively, of the corresponding compressive strength of the standard Ottawa sand. Judged from the point of view of their tensile strength, the sands are of a superior grade; but, from the results of compressive-strength tests, they are of poor quality for use in concrete work. The two samples are from volcanic rocks, while the rest are andesitic and quartz.

The gravels, in general, possess low compressive strength. Sample No. 153275, from Santo Tomas River, mixed into concrete with sand from the same locality, gave fairly high compressive strength.

#### SUMMARY AND CONCLUSIONS

Natural deposits of sand and gravel are found in all the provinces of the Philippine Islands.

Sands consisting mainly of medium and fine particles are the most abundant.

Fewer gravel deposits containing large quantities of the material have been located at easily accessible places.

Good aggregates are found in relatively large proportion in Albay, Bulacan, Cebu, Laguna, and Rizal Provinces and on Mindanao Island.

For a given proportion of cement, the mortar and concrete values of hard-grained aggregates depend, to a considerable extent, upon the granulometric composition of the sand and the mechanical analysis of the gravel.

Coarse sand makes stronger mortar than does fine or medium sand. Coarse sand, mixed with well-graded gravel, makes stronger concrete than does coarse sand mixed with poorly graded gravel.

A gravel specimen that contains stones of a maximum size of 3 inches may be considered well graded when not more than 22 per cent will pass through holes 0.67 inch in diameter, and not less than 22 per cent is retained on a sieve with holes 1.5 inches in diameter. Its apparent ideal mechanical analysis graph is a straight line.

## ILLUSTRATIONS

### TEXT FIGURES

- FIG. 1. Tensile-strength curves computed on the basis of the tensile strength of standard Ottawa sand as 100 per cent.
2. Compressive-strength curves computed on the basis of the compressive strength of standard Ottawa sand as 100 per cent.
3. Relation between compressive strength and the percentage of coarse, medium, and fine particles, representing the granulometric composition of sands.
4. Average mechanical analysis curves of gravels used in the testing of concrete specimens, grouped according to their compressive strengths as shown in Table 7.

## EFFECT OF CARBON TETRACHLORIDE, CHENOPODIUM, AND THYMOL ON THE OVA OF EXPELLED HOOKWORMS

By C. MANALANG

*Of the Philippine Health Service, Zamboanga*

The object of this study was to find out whether a drug against hookworm exerts any action on the ova contained in the uteri of expelled female worms. If it can be demonstrated that a vermifuge is capable of inhibiting the development of the larvæ or completely killing the ova even when these are kept under favorable conditions, then such ovicidal action not only may indicate the ancylostomcidal power of the drug but also may possibly be used as an index or coefficient of efficiency.

In a series of observations on hookworms removed from patients and cadavers to determine the maturity and fertility of the females, it was observed that those obtained from autopsy when left in clean tap water at room temperature (25 to 30° C.) for twenty-four hours always, on being crushed between slides, showed motile, free-swimming larvæ, or at least moving, coiled larvæ in the shells, provided the ova had been fertilized.

It was observed that, when the number of parasites was large, almost every female had been fertilized. In only rare cases could an immature or unfertilized female be found.

The present observations were made on female hookworms, removed by treatment, from twenty-five patients. The drugs used in this study were carbon tetrachloride in the dose of 1 cubic centimeter to 7 kilograms and 1 cubic centimeter to 5.5 kilograms of body weight, and without any purgative; chenopodium, 3 cubic centimeters given in 1.5-cubic centimeter doses followed by magnesium sulphate; thymol, 2.6 grams given in 1.3-gram doses followed by magnesium sulphate. All observations were on first treatments, on twenty-four-hour stools, collected and screened (80 meshes to the square inch). Usually half the number of worms were crushed the first twenty-four hours and the other half twenty-four hours later.

Table 1 shows that, in seven patients treated with carbon tetrachloride, a total of one hundred fifty-three female worms

did not show development of active larvæ, either free-swimming or motile in the shell. The ova usually showed swelling and fine granulation with filling up of the shell. In some the shell could hardly be distinguished. Fat globules were frequently seen in the ova.

TABLE 1.—*Worms from patients treated with carbon tetrachloride.*

| Patient.   | Amount of carbon tetrachloride.<br>cc. | Ancylostoma. |          | Necator. |         | Females with larvæ. | Females without larvæ. |
|------------|----------------------------------------|--------------|----------|----------|---------|---------------------|------------------------|
|            |                                        | Male.        | Female.* | Male.    | Female. |                     |                        |
| 1-IC.....  | 10                                     | 0            | 2        | 70       | 68      | 0                   | 68                     |
| 4-MP.....  | 10                                     | 0            | 0        | 2        | 3       | 0                   | 3                      |
| 7-YK.....  | 11                                     | 0            | 0        | 1        | 4       | 0                   | 4                      |
| 8-SM.....  | 10                                     | 0            | 0        | 0        | 3       | 0                   | 3                      |
| 9-MC.....  | 7                                      | 6            | 4        | 9        | 17      | 0                   | 17                     |
| VA.....    | 10.5                                   | 1            | 0        | 2        | 5       | 0                   | 5                      |
| DB.....    | 6.3                                    | 2            | 1        | 48       | 53      | 0                   | 53                     |
| Total..... |                                        |              |          |          | 153     | .....               | 153                    |

\* Not examined.

Table 2 shows that, in ten patients treated with chenopodium, eighty-five female worms showed larval development while three did not, out of eighty-eight worms examined.

TABLE 2.—*Worms from patients treated with chenopodium.*

| Patient.   | Amount of chenopodium.<br>cc. | Ancylostoma. |         | Necator. |         | Females with larvæ. | Females without larvæ. |
|------------|-------------------------------|--------------|---------|----------|---------|---------------------|------------------------|
|            |                               | Male.        | Female. | Male.    | Female. |                     |                        |
| JM.....    | 3                             | 2            | 0       | 17       | 13      | 13                  | 0                      |
| TR.....    | 3                             | 0            | 0       | 4        | 8       | 8                   | 0                      |
| JT.....    | 3                             | 0            | 0       | 3        | 3       | 3                   | 0                      |
| FS.....    | 3                             | 0            | 0       | 18       | 24      | 24                  | 0                      |
| EA.....    | 3                             | 10           | 1       | 6        | 5       | 6                   | 0                      |
| DF.....    | 3                             | 0            | 0       | 6        | 7       | 4                   | 3                      |
| IT.....    | 3                             | 0            | 0       | 0        | 1       | 1                   | 0                      |
| DB.....    | 3                             | 1            | 0       | 4        | 8       | 8                   | 0                      |
| RC.....    | 3                             | 1            | 0       | 6        | 12      | 12                  | 0                      |
| SP.....    | 3                             | 0            | 0       | 7        | 6       | 6                   | 0                      |
| Total..... |                               |              | 1       | .....    | 87      | 85                  | 3                      |

Table 3 shows that, in eight patients treated with thymol, eighty-eight female worms showed active larvæ while eleven did not, out of ninety-nine worms examined.

TABLE 3.—Worms from patients treated with thymol.

| Patient. | Amount<br>of<br>thymol. | Ancylostoma. |         | Necator. |         | Females<br>with<br>larvae. | Females<br>without<br>larvae. |
|----------|-------------------------|--------------|---------|----------|---------|----------------------------|-------------------------------|
|          |                         | Male.        | Female. | Male.    | Female. |                            |                               |
| g.       |                         |              |         |          |         |                            |                               |
| J.I.     | 2.6                     | 0            | 0       | 3        | 14      | 13                         | 1                             |
| JE       | 2.6                     | 0            | 0       | 2        | 5       | 1                          | 4                             |
| MA       | 2.6                     | 1            | 0       | 33       | 36      | 35                         | 0                             |
| P.d.I.R. | 2.6                     | 4            | 3       | 9        | 10      | 9                          | 1                             |
| JB       | 2.6                     | 0            | 0       | 10       | 14      | 13                         | 1                             |
| MB       | 2.6                     | 0            | 0       | 13       | 17      | 16                         | 2                             |
| SV       | 2.6                     | 0            | 0       | 0        | 1       | 1                          | 0                             |
| MG       | 2.6                     | 0            | 0       | 5        | 3       | 1                          | 2                             |
| Total    |                         |              |         |          | 90      | 88                         | 11                            |

\* Not examined.

Ten female worms in the patients treated with carbon tetrachloride, three in those treated with chenopodium, and eleven in those treated with thymol were found to be without ova (immature) or with ova but showing no division in them (probably mature but not fertilized).

These findings show that carbon tetrachloride as administered is ovicidal, while chenopodium and thymol are not. The observations were mostly on *Necator*, as *Ancylostoma* were few in this series. The findings also seem to confirm the superiority of carbon tetrachloride over the other drugs in this respect.

It may be mentioned here that fifty-six female worms expelled from three adult patients treated with 2 cubic centimeters of tetrachlorethylene did not show larval development except that two female worms contained motile larvae. One worm from one patient had a free motile larva at the forty-eighth hour after recovery from the stool and another worm from another patient had a coiled moving larva in the shell, also at the forty-eighth hour after recovery.

Thymol was found many times in small lumps in the stool, though it was in very finely powdered form when put into the capsules. In one case two pieces of thymol of the shape of and practically the same size as the capsules administered were encountered in screening the stool. This finding seems very significant, as the frequent failure of this drug may be due to lump formation. It is possible that this may happen not only in the case of solid drugs but also with carbon tetrachloride, the tendency of which is to form globules of varying

sizes in the dependent portion of the container even when thoroughly emulsified. If this could be shown to occur in the intestinal tract (due to failure of peristaltic movements to keep the drug in finely divided form), then the most rational thing to do would be to prepare the drug in such a way as to keep it well separated or emulsified during its journey through the small intestines.

An inert, porous, powdered solid is suggested as a vehicle for anthelmintics, to be triturated with the drug in case it is solid or mixed in the form of paste in the case of a liquid and put up in capsules. The powdered condition of the vehicle, or "carrier," will mechanically prevent fusion of solid drugs. Owing to porosity it will absorb liquid drugs in minute quantities. Charcoal or chalk will probably serve; both are relatively nonirritating, and they do not predispose the mucosa to absorption.

#### SUMMARY

1. Twenty-five patients were divided into three groups; those of the first group were given carbon tetrachloride in doses of 1 cubic centimeter to every 5.5 kilograms of body weight and 1 cubic centimeter to every 7 kilograms of body weight; those of the second group were given chenopodium, 3 cubic centimeters in two 1.5-cubic centimeter doses, followed by magnesium sulphate; and those of the third group were given thymol, 2.6 grams in two doses of 1.3 grams each, followed by magnesium sulphate.

All stools for twenty-four hours were saved and screened, and the parasites left in separate Petri dishes with tap water at room temperature (25 to 30° C.). They were crushed between slides, some of them twenty-four hours after recovery of parasites and the others the following twenty-four hours.

2. The female parasites expelled by carbon tetrachloride failed to show development of ova into active larvæ, while those expelled by chenopodium and thymol all showed active larval development, except a few, probably immature or unfertilized ones. Mostly *Necator* were examined, as *Ancylostoma duodenale* were few in this series.

3. This ovicidal property of carbon tetrachloride seems to confirm its superiority over chenopodium and thymol in the treat-

ment of ancylostomiasis. Tetrachlorethylene has also been found to be ovicidal.

4. If the results of this study could be confirmed in a larger number of cases, it might be of value in determining the ancylostomicidal coefficient of a drug.
5. Improper emulsification of a vermifuge in the intestine may be responsible for failure.
6. The use of an inert, porous, powdered solid as a vehicle for anthelmintics is suggested.

## NEW OR NOTEWORTHY PHILIPPINE BIRDS, V

By RICHARD C. McGREGOR

*Ornithologist, Bureau of Science, Manila*

TWO PLATES AND ONE TEXT FIGURE

This paper contains descriptions of two new species of Philippine birds and notes on other species that are of particular interest for one reason or another.<sup>1</sup>

### **MEGAPODIUS CUMINGI Dillwyn.**

In May, 1922, Mr. Luis J. Reyes, of the Philippine Bureau of Forestry, left in my office an egg of the tabon with a note that it had been collected near Agloloma, Luzon, on April 7. As the mound builder is not common in Luzon I asked Mr. Reyes for any notes he might have about this bird. On May 16, he sent me the following notes and description of the nesting habits:

Agloloma is a sitio of the Municipality of Mariveles, Bataan, located about seven or eight miles northeast of the town.

Tabon birds are not familiar to me, but I was interested in the description of the manner these birds lay their eggs, as told by the man who collected them. He said that a small flock came one day, and after flying around the place for sometime alighted on the sandy beach. The egg was laid on the surface, and after resting one or two minutes the bird held it on one of its feet and began diving into the sand, using head, wings, and the other foot. He said that while yet near the surface, one could see the sand rise to a considerable height due to the rapid action of its wings. He pointed out to me certain marks on the shell of the egg which he claimed are scratches of the bird's claws. I examined these scratches with a magnifier and I am somewhat convinced that they really are scratches of some kind. He told me also that tabon birds deposit their eggs about a meter deep. The man further told me that once he hatched an egg by burying it deep in unhusked rice. It hatched in about fourteen or fifteen days, and to his surprise, after the newly hatched bird dried its feathers, it flew for a distance of about five meters!

I hope that these notes will be of interest to you. Of course, I cannot vouch for the accuracy of his statements, although I think that the man is fairly reliable.

<sup>1</sup> Part IV of this series was published in Philip. Journ. Sci. 19 (1921) 691-703.

**GALLICOLUMBA KEAYI (Clarke). Plate 1.**

Through the courtesy of Mr. William Parsons, of Manila, I have seen a living male specimen of the Negros puñalada, and Mr. M. Ligaya has made a water-color sketch of it. This bird was sent to Mr. Parsons from San Carlos, Negros, and was in his aviary for some months until made into a skin. The wing, somewhat imperfect, measures 152 millimeters; tail, 100; culmen from base, 22; tarsus, 37; middle toe with claw, 34.

**LIMNOBÆNUS FUSCUS (Linnaeus).**

G. Taguibao and F. Rivera collected a male on April 9 and a female on April 25, 1923, at Santa Maria, Laguna Province, Luzon.

**CHLIDONIAS LEUCOPAREIA (Temminck).**

On October 15, 1923, I received from Mr. U. C. Roush, of Tacloban, Leyte, a wing and a leg of a whiskered tern, a species so far unknown from Leyte. This is the species formerly called *Hydrochelidon hybrida* (Pallas).

**STERNA SINENSIS Gmelin.**

*Sterna minuta* was recorded from Mindanao by Steere,<sup>2</sup> and this is cited by Saunders in the synonymy of *Sterna sinensis*.<sup>3</sup> Mr. E. H. Taylor collected a male of the white-shafted tern on May 1, 1923, at "Saob" (probably Saub), Cotabato Province, Mindanao, which he presented to the Bureau of Science.

**PLUVIALIS FULVUS (Gmelin).**

On October 15, 1923, I received from Mr. U. C. Roush, of Tacloban, Leyte, a fresh unstuffed skin of a golden plover. Tweeddale<sup>4</sup> recorded this species from Leyte on the basis of a pair collected by Everett.

**NUMENIUS ARQUATUS (Linnaeus).**

A male of the common curlew (Bureau of Science No. 13198) was collected by Andres Celestino near Obando, Bulacan Province, Luzon, on October 12, 1915. I have examined a female of this species that was killed by a hunter in the same region on October 22, 1923.

<sup>2</sup> Birds and Mammals Collected by the Steere Expedition to the Philippines. Ann Arbor, Mich. (1890) 27.

<sup>3</sup> Cat. Birds Brit. Mus. 25 (1896) 114.

<sup>4</sup> Proc. Zool. Soc. London (1877) 549.

**MESOSCOLOPAX MINUTUS (Gould).**

Macario Ligaya saw three pygmy curlews in a plowed field near Calamba, Laguna Province, Luzon, and collected a female, on September 24, 1922. Francisco Rivera collected a male and a female, near Baliuag, Bulacan Province, on November 2, 1924.

**TOTANUS STAGNATILIS Bechstein.**

A male of this long-legged sandpiper was collected by Andres Celestino at Obando, Bulacan Province, Luzon, on January 31, 1926.<sup>5</sup> Wing, 135 millimeters; tail, 57; exposed culmen, 39; tarsus, 53; middle toe with claw, 31. Stuart Baker<sup>6</sup> gives the trivial name "marsh sandpiper" to this species. The long slender legs suggest "stilt sandpiper" as appropriate, but that name is in use for *Micropalama himantopus* (Bonaparte), a slightly smaller American species.

**ACTITIS HYPOLEUCOS (Linnaeus).**

A female example of the common sandpiper was collected on Linapacan Island, between Palawan and Culion, on October 10, 1922, by Andres Celestino. This common species has been recorded from twenty-eight islands of the Philippines and can be expected to occur on many more.

**CROCETHIA ALBA (Pallas).**

I have examined a male sanderling that was collected by Braulio Barboza at Malabon, near Manila, on March 19, 1905.

**CALIDRIS TENUIROSTRIS (Horsfield).**

A female of the Asiatic knot was collected by Andres Celestino near Obando, Bulacan Province, Luzon, on January 31, 1926. The wing measures 177 millimeters; tail, 76; exposed culmen, 42; tarsus, 33; middle toe with claw, 30.

**CALIDRIS ROGERSI (Mathews).**

A female short-billed knot, collected by Andres Celestino near Obando, Bulacan Province, Luzon, on January 31, 1926, is in gray winter plumage. The wing measures 162 millimeters; tail, 65; exposed culmen, 34; tarsus, 31; middle toe with claw, 27. This is the third specimen of this species that we have collected near Obando.

<sup>5</sup> See Philip, Journ. Sci. § D 11 (1916) 274 and § D 13 (1918) 8 for previous Philippine records of this species.

<sup>6</sup> Journ. Bombay Nat. Hist. Soc. 28 (1920) 218.

**LIMICOLA FALCINELLUS (Pontoppidan).**

The first Philippine specimens of the interesting broad-billed sandpiper seem to have been collected in Bohol by Everett, in Palawan by Platen, and in Negros by the Steere Expedition. Later I found it in Cuyo, Cebu, and Luzon. From this it can be seen that the species is well scattered over the Islands when it comes from the north on its way to Australia. Birds of this species are probably more abundant in the fall migration than these few records indicate. Few collectors have paid much attention to Philippine shore and water birds, so that little is known about the occurrence and abundance of such species.

Mathews<sup>1</sup> uses the name *Limicola falcinellus siberica* (Dresser) for Australian examples of the broad-billed sandpiper, and Philippine birds doubtless belong to that race if it differs from the European one.

We collected this species in Cuyo, January 14 and 15, 1903; at Minglanilla, Cebu, November 23, 1906; and at Obando, Bulacan Province, Luzon, November 15, 1910; October 10, 1915; and February 2, 1925. In January, 1926, for the first time we encountered many birds of this species, and the measurements of fifteen specimens collected at that time are here given.

*Measurements of Limicola falcinellus (Pontoppidan) from Obando, Bulacan Province, Luzon.*

[Measurements are in millimeters.]

| Date.           | Sex.        | Wing. | Tail. | Exposed culmen. | Tarsus. | Middle toe with claw. |
|-----------------|-------------|-------|-------|-----------------|---------|-----------------------|
| 1926            |             |       |       |                 |         |                       |
| January 13..... | Male.....   | 97    | 35    | 28              | 22      | 21                    |
| Do.....         | do.....     | 104   | 43    | 31              | 23      | 22                    |
| Do.....         | do.....     | 105   | 36    | 30              | 20.5    | 20.5                  |
| Do.....         | Female..... | 103   | 42    | 34              | 22.5    | 22.5                  |
| Do.....         | do.....     | 106   | 41    | 35.5            | 23      | 23                    |
| January 14..... | do.....     | 105   | 40    | 32              | 22      | 21                    |
| January 16..... | do.....     | 106   | 46    | 36              | 23      | 22.5                  |
| Do.....         | do.....     | 108   | 44    | 36              | 21      | 23                    |
| Do.....         | do.....     | 106   | 42    | 29              | 22      | 22                    |
| January 31..... | Male.....   | 102   | 41    | 30              | 22      | 21                    |
| Do.....         | do.....     | 104   | 44.5  | 30              | 22      | 22                    |
| Do.....         | Female..... | 106   | 42    | 33              | (*)     | 20                    |
| Do.....         | do.....     | 108   | 46.5  | 34              | 22      | 22                    |
| Do.....         | do.....     | 100   | 38    | 29              | 20      | 20                    |
| Do.....         | do.....     | 111   | 42    | 33              | 23      | 22                    |

<sup>a</sup> Worn.

<sup>b</sup> Broken.

**DUPETOR FLAVICOLLIS** (Latham).

Mr. Mauricio Santiago, of Navotas, Rizal Province, Luzon, secured a specimen of the black bittern at Orani, Bataan Province, Luzon, on September 3, 1924. There are few Philippine records of this species.

**QUERQUEDULA QUERQUEDULA** (Linnaeus).

I have examined a male of the Asiatic blue-winged teal that was collected by Braulio Barboza on Laguna de Bay, Luzon, March 12, 1904.

**PITHECOPHAGA JEFFERYI** Grant. Plate 2.

I have noted the capture of several individuals of this large endemic eagle; but, as is true of other forest-inhabiting Raptore, it is only rarely that this species can be seen. On July 14, 1926, a female monkey-eating eagle was mounted for the owner at the Bureau of Science. It was stated that the bird had been caught, while it was on the ground drenched with rain, near Pagbilao, Tayabas Province, Luzon. The body of the bird was very thin, and the tail feathers were being molted. The weight was 3.02 kilograms. Length, 1,065 millimeters; expanse of wings, 2,000; wing, 590; tail, 600; tarsus, 123; depth of bill at nostril, 53; chord of culmen from cere, 72. The upper mandible has an extremely long overhang. Iris king's blue; bill black, the base light Payne's gray; legs and feet deep colonial buff, nails black; cere and skin about base of bill black.

**PHODILINÆ**

*Photodilinae* BLANFORD, Fauna Brit. India, Bds. 3 (1893) 268; SHARPE, Hand-list 1 (1899) 300.

**Genus PHODILUS I. Geoffroy Saint-Hilaire**

*Phodilus* I. GEOFFROY SAINT-HILAIRE, Ann. Sci. Nat. 21 (1830) 196-203 (*Strix badia*); SHARPE, Cat. Bds. Brit. Mus. 2 (1875) 309. *Pholidus* HORSFIELD and MOORE, Cat. Bds. Mus. East India Co. 1 (1854) 80 (error).

*Photodilus* BLANFORD, Fauna Brit. India, Bds. 3 (1895) 268; SHARPE, Hand-list 1 (1899) 300 (emendation).

*Generic characters.*—Facial disk incomplete; ear tufts long; tarsus completely feathered; toes without hairs or bristles; inner toe shorter than middle toe; inner side of middle claw with a

sharp edge, not pectinate;<sup>8</sup> tail about half as long as wing; inner web emarginate on four outer primaries.

Only two species of this genus are known; namely, *P. badius*, (Horsfield) and *P. assimilis* Hume. The first is found in the eastern Himalayas, Burma, the Malay Peninsula, Java, and Borneo. The second is confined to Ceylon. A specimen from Samar may belong to the type species, but probably it represents an undescribed race. I have no specimen of *P. badius*, so can make no comparisons.

**PHODILUS RIVERÆ sp. nov.**

*Specific characters.*—A medium-sized owl; general color of upper parts chestnut with irregular, bold black streaks; scapulars warm buff on outer webs, the tips black; lighter below, cinnamon rufous anteriorly, pinkish cinnamon posteriorly, with a few bold blackish brown shaft stripes; middle of abdomen white.

*Type.*—No. 13346, male, Bureau of Science. Collected at Lo-  
quilocon, Wright (Paranas), Samar, June 9, 1924, by R. C.  
McGregor and party. Iris brown; bill dull greenish, the tip  
white; feet gray; nails gray, tips blackish. Length of skin,  
about 320 millimeters; wing, 220; tail, 115; culmen from base,  
35; bill from nostril, 23; tarsus, 54. This species is named for  
my assistant Francisco Rivera, who flushed the bird from a  
wooded hillside. The stomach contained the remains of a small  
snake.

**CAPRIMULGUS JOTAKA Temminck and Schlegel.**

Among some specimens collected in Mindoro by B. Barboza,  
Mr. W. Parsons and I found a male of the Japanese nightjar,  
which was killed near Calapan on March 19 (1908?). This  
species has been recorded several times from Palawan and once  
from Calayan, one of the small islands north of Luzon, and will  
probably be found in Luzon and other large islands.

**CHÆTURA DUBIA McGregor.**

In April, 1925, large swifts were fairly abundant at Balete  
Pass (altitude about 1,000 meters), on the road between Nueva

<sup>8</sup>The claw is certainly not pectinate in the only specimen at hand, but this may be an individual variation. Blanford, Fauna Brit. India, Bds. 3 (1895) 268, in a footnote, says that the serration or pectination in good specimens, of which there are between twenty and thirty in the British Museum, is precisely similar to that of *Strix*. Wait, Birds of Ceylon (1925) 245, under the subfamily Photodilinae, says: "As in the genus *Tyto*, the inner margin of the middle claw is furnished with a slightly serrated, file-like process, or comb."

Ecija and Nueva Vizcaya Provinces, Luzon. The birds were most in evidence in the early morning and early evening. They flew from one side of the mountain to the other, passing fairly low over the small cleared area near the rest house. On April 10, Dr. Otto Bartels, of Manila, shot a female (Bureau of Science No. 13344), which is similar to the female type of *Chætura dubia* from Mindoro, but has longer wings and tail.

**XEOCEPHUS CYANESCIENS Sharpe.**

Andres Celestino collected a slightly immature male of the large blue flycatcher on Bantac, a small island about 16 kilometers northeast of Busuanga, Palawan Province, on October 12, 1922. This specimen closely resembles the young male described by me some time ago,<sup>9</sup> except that in the former the head, the chin, and the throat are fully feathered and of almost the same blue as in the adult.

**CHLOROPSPSIS FLAVIPENNIS (Tweeddale).**

A female of the yellow-quilled leafbird was collected by Andres Celestino, near Davao, Mindanao, on September 26, 1922. I can find no difference between this specimen and two females that were collected in Cebu in October.

**KITTACINCLA NIGRA Sharpe.**

Andres Celestino collected a slightly immature male of the Palawan shama on Bantac Island,<sup>10</sup> Palawan Province, on October 12, 1922. This specimen has most of the black and white plumage of the adult, but some of the wing quills and their coverts are edged with tawny to ochraceous tawny and the flanks are slightly tawny. The three outer, white rectrices are fully grown, but the inner, black ones are shorter than the outermost white pair. In a young female collected at Puerto Princesa, June 27, 1910, by Worcester and Celestino, the entire head, neck, back, chin, throat, and breast are spotted.

**Genus PRIONOCHILUS Strickland**

*Prionochilus* STRICKLAND, Proc. Zool. Soc. London (1841) 29.

*Anaimos* REICHENBACH, Handbuch der speciellen Ornithologie, Scansoriae (1853) 245.

In the original generic description Strickland assigns three of Temminck's species to *Prionochilus* and enumerates them as *P. percussus*, *P. thoracicus*, and *P. maculatus*. Sharpe<sup>11</sup> gives

<sup>9</sup> Philip Journ. Sci. 18 (1921) 79.

<sup>10</sup> See ante, under *Xeocephalus cyanescens*.

<sup>11</sup> Cat. Bds. Brit. Mus. 10 (1885) 63.

the type as "P. ignicapillus," doubtless meaning *Dicæum ignicapillum* Eyton, a species not mentioned by Strickland. Oberholser<sup>12</sup> mentions the fixation of the type, by Gray, in 1842, as / *Pardalotus percussus* Temminck. He rejects *Prionochilus* because of *Prionocheilus* Chevrolat, 1837, used for a genus of Coleoptera. Oberholser proposes to use *Anaimos* Reichenbach, 1853. This name is mentioned by Sharpe, but the date is misprinted 1883. (This error is repeated by both Oberholser and Hartert.) Stuart Baker<sup>13</sup> and Hartert retain *Prionochilus*, and Hartert<sup>14</sup> says—

Oberholser rejects the name *Prionochilus* because of the earlier name *Prionocheilus*, and adopted the name *Anaimos* Reichenbach, 1883. Though the two names are evidently only different Latin renderings of the same Greek name, I suppose they are easily distinguishable and should both be accepted. No nomenclatorial rule demands the contrary.

**PRIONOCHILUS PARSONSI sp. nov. Fig. 1. b.**

*Specific characters.*—Male similar to the male of *Prionochilus olivaceus* Tweeddale, but lores, cheeks, and sides of throat and of breast black, not mouse gray. No sign of white on lores. In the female the black is replaced by dark mouse gray.

*Type.*—No. 13345, male, Bureau of Science. Collected at Malinao, Tayabas Province, Luzon, January 9, 1926, by Francisco Rivera.

*Description of type.*—Upper parts greenish yellow (near Ridgway's pyrite yellow), extending to sides of neck, and a wide line under eye; lores and sides of chin, throat, and breast black; center of chin, throat, and breast, and abdomen and under tail coverts white; flanks black and white, lightly washed with olivaceous; thighs black and white; axillars, wing lining, and long pectoral tufts white. Bill, legs, and nails black. Wing, 55 millimeters; tail, 30; culmen from base, 11; tarsus, 14.5.

*Female.*—Malinao, Tayabas Province, Luzon; January 9, 1926; Francisco Rivera, collector. Collection of W. Parsons. Similar to the male, but the black replaced by dark mouse gray, much darker than the gray areas of *P. olivaceus*. Bill, legs, and nails black. Wing, 53 millimeters; tail, 24; culmen from base, 10; tarsus, 15.

<sup>12</sup> Smiths. Misc. Colls. article 7, 60 (1913) 22. Article 7 was published on October 26, 1912.

<sup>13</sup> Hand-list Bds. Indian Empire (1923) 125.

<sup>14</sup> Nov. Zool. 27 (1920) 430, footnote.



FIG. 1. Bills of various species of *Prionochilus* and of the genotype of *Dicæum*; a. *Prionochilus johannae* Sharpe; b. *P. parsonsi* sp. nov.; c. *P. anthonyi* McGregor; d. *P. quadricolor* Tweeddale; e. *P. inexpectatus* Hartert; f. *P. aeruginosus* Bourns and Worcester; g. *P. squalidus* (Burton); h. *Dicæum cruentatum* (Linnaeus).

The type of *Prionochilus olivaceus* came from Dinagat Island, east of Leyte and north of Mindanao, and the species has been recorded from Basilan, Mindanao, Bohol, Samar, and Leyte. I have at hand three males and two females from Basilan, one female from Bohol, and one male from Samar. These specimens show neither sexual nor individual differences, except that the gray of the lower parts is slightly darker in the males. In all except the male from Samar the bases of the loral feathers are white. In *P. parsonsi* there is no sign of white on the lores,

and the sexes are strikingly different in color. This species is named for Mr. William Parsons, of Manila, in recognition of his interest in Philippine ornithology.

In the Bureau of Science collection there is a male *Prionochilus olivaceus* of the year that was collected by Bourns and Worcester at Catbalogan, Samar, on August 15, 1892. This probably indicates that eggs were laid early in June.

*Prionochilus samarensis* Steere<sup>15</sup> is described as differing from *P. olivaceus* "in having the breast and sides of the throat ash brown, nearly snuff brown, instead of ashy olive." Grant<sup>16</sup> did not recognize this as a valid species, and until I see more material I shall follow Grant.

**Subgenus POLISORNIS novum**

Type, *Prionochilus anthonyi* McGregor.

Family Dicaeidæ; differs from *Prionochilus* Strickland (type, *Pardalotus percussus* Temminck) in having the bill shorter and wider. Serrations of the bill obsolete and extending for a shorter distance from the tip; those of lower mandible scarcely distinguishable. Loral bristles numerous, extending forward and upward, partly protecting but not concealing the nostrils; no bristles on nasal operculum. Tenth primary lacking, the outermost about 3 millimeters short of tip of wing. Tail square, without white spots.

Seemingly, *Prionochilus quadricolor* and *P. bicolor* belong to this subgenus also; surely, Sharpe's<sup>17</sup> assignment of them to different genera is incorrect.

Sharpe,<sup>18</sup> in the monograph of the Dicæidæ, subordinates *Pachyglossa* Hodgson (1843) type *Micrura melanoxantha*, *Piprisoma* Blyth (1844) type *Pipra squalida*, and *Anaimos* Reichenbach (1853) type *Pardalotus thoracicus* as synonyms of *Prionochilus* Strickland (1841) type *Pardalotus percussus*. Oates<sup>19</sup> recognizes *Prionochilus*, *Pachyglossa*, and *Piprisoma* as valid genera and adds *Aemonorhynchus*, type and only species *Prionochilus vincens*. Dubois<sup>20</sup> unites all under *Prionochilus*. Sharpe<sup>21</sup> recognizes all of these genera except *Anaimos*. The species of

<sup>15</sup> Birds and Mammals of the Steere Expedition (1890) 22.

<sup>16</sup> Ibis (1897) 239.

<sup>17</sup> Hand-list 5 (1909) 31.

<sup>18</sup> Cat. Birds Brit. Mus. 10 (1885) 63.

<sup>19</sup> Fauna Brit. India, Bds. 2 (1890) 381-386.

<sup>20</sup> Syn. Av. 1 (1902) 674.

<sup>21</sup> Hand-list 5 (1909) 30-32.

these genera as arranged by Sharpe, with the addition of three Philippine species not known to him, are the following:

*Prionochilus*:

- percussus* (Temminck), genotype.
- ignecapillus* (Eyton).
- xanthopygius* Salvadori.
- johannae* Sharpe, synonym, *plateni* Blasius. Palawan.
- thoracicus* (Temminck).
- maculatus* (Temminck).
- obsoletus* (Müller and Schlegel).
- olivaceus* Tweeddale. Philippines.
- parsonsi* sp. nov. Not known to Sharpe.
- everetti* Sharpe.
- anthonyi* McGregor. Not known to Sharpe.
- bicolor* Bourns and Worcester. Philippines.
- inexpectatus* Hartert. Philippines.

*Acmonorhynchus*:

- vincens* (Slater), genotype.
- aeruginosus* (Bourns and Worcester). Philippines.
- affinis* Zimmer. Not known to Sharpe.
- quadricolor* (Tweeddale). Philippines.
- aureolimbatus* (Wallace).
- sangirensis* (Salvadori).
- annae* Büttikofer.

*Piprisoma*:

- squalidum* (Burton), genotype.
- modestum* (Hume).

*Pachyglossa*:

- melanozantha* Hodgson, genotype.

I have one specimen of *Prionochilus ignecapillus*; this species resembles *P. johannae* in the color pattern as well as in the rather slender bill and short distal primary. *Prionochilus maculatus*, of India, has a shorter distal primary and the bill is similar to that of *P. ignecapillus*; above there is a similar red crown patch, but the general color is green instead of blue; the colors of the underparts are white, yellow, and dark olive, arranged in a pattern similar to that of *P. olivaceus* of the Philippines. The last-named species has a wider bill. I have no specimen of *P. percussus*.

*Prionochilus aeruginosus* Bourns and Worcester, transferred to *Piprisoma* by Grant,<sup>22</sup> resembles *Piprisoma squalidum* (genotype)<sup>23</sup> in having no tenth primary and in the pattern of the

<sup>22</sup> Ibis (1895) 454.

<sup>23</sup> I have examined but one specimen, loaned by the United States National Museum.

dull streaked plumage. Grant says, on the basis of a single specimen, that the Bourns and Worcester species has "the nostrils perfectly bare of hairs." This is not true of numerous specimens before me, for they have as many loral hairs, overhanging and partly concealing the nostrils, as do the typical species of *Prionochilus*, and some have more. There are also short hairs on the upper border of the nasal operculum. The Bourns and Worcester species has a very stubby bill, actually equal in length to that of *Piprisoma squalidum*, but much wider and deeper; the length of gonys is equal to a ramus. This species does not seem to be a *Piprisoma*; Sharpe put it in *Acmonorhynchus*, a genus that was described for *Prionochilus vincens* with the following diagnosis:<sup>24</sup>

It differs from both these genera [*Prionochilus* and *Pachyglossa*] in possessing only nine primaries. From *Dicæum* it may be recognized by its very large, coarse bill, and from *Piprisoma* by its rounded tail and the numerous hairs which cover the nostrils.

In Oates's text figure showing the head of *Acmonorhynchus vincens* the nostril appears to be entirely covered by hairs, but the drawing is too small to show whether these hairs spring from the lore or partly from the upper border of the nostril.

*Prionochilus æruginosus* has a square tail and a white spot on the inner web of the outermost two rectrices. The color pattern is different from that of *Acmonorhynchus vincens*, judging from the descriptions; I have seen no specimen of the latter.

Hartert<sup>25</sup> calls attention to the difficulty in using the key to the genera of *Dicaeidae*,<sup>26</sup> because *Prionochilus* falls in the section "With a distinct bastard primary," whereas some of the species placed in that genus by Sharpe have no first primary.

Hartert says further—

If the absence or presence of a distinct bastard primary is a good generic character, the species without a distinct bastard primary must either be united with *Dicæum*, or be kept generically distinct under the name of *Pachyglossa* Blyth.

Unfortunately, I have never seen an example of *Pachyglossa*, but after reading Oates's diagnosis<sup>27</sup> I assumed that *Pachyglossa* offers as much difficulty to the species in question as does *Prionochilus*.

<sup>24</sup> Oates, Fauna Brit. India, Bds. 2 (1890) 381, fig. 105.

<sup>25</sup> Novit. Zool. 2 (1895) 65.

<sup>26</sup> Cat. Bds. Brit. Mus. 10 (1885) 2.

<sup>27</sup> Fauna Brit. India, Bds. 2 (1890) 485.

Without any desire to increase the number of genera among the known species of this group, I propose two new subgeneric names as follows:

*Polisornis* subg. nov., type, *Prionochilus anthonyi* McGregor; other species of the subgenus, *Prionochilus quadricolor* Tweeddale, *P. bicolor* Bourns and Worcester, *P. inexpectatus* Hartert. From "Polis," type locality of the type species, and "ornis."

*Bournsia* subg. nov., type, *Prionochilus æruginosus* Bourns and Worcester; other species of the subgenus, *Aemonorhynchus affinis* Zimmer. Named for Frank S. Bourns, an American physician and naturalist, a member of the Steere Expedition and of the Manage Expedition.

*Prionochilus johannæ*, confined to Palawan, is the only Philippine species that is a strictly typical member of the genus; in other words, *Prionochilus* is not represented in the Philippines by a typical species, outside of Palawan.

If all of the Philippine species of the thick-billed Dicæidæ be kept in *Prionochilus* they should be arranged as follows:

Genus *Prionochilus*:

Subgenus *Prionochilus*—

*johannæ* Sharpe.

*olivaceus* Tweeddale.

*parsonsi* sp. nov.

Subgenus *Polisornis*—

*anthonyi* McGregor.

*quadricolor* Tweeddale.

*bicolor* Bourns and Worcester.

*inexpectatus* Hartert.

Subgenus *Bournsia*—

*æruginosus* Bourns and Worcester.

*affinis* (Zimmer).

***STURNIA PHILIPPENSIS* (Forster).**

Three specimens of the violet-backed starling were collected by Andres Celestino on Linapacan Island, between Palawan and Culion, on October 10, 1922. This species has been recorded from Palawan and from a few other islands of the Philippines. It appears during migration and may be very abundant for a few days. A somewhat similar species, *Sturnia sinensis* (Gmelin), has been recorded from Calayan and Luzon, and should be watched for when the commoner species appears.

## ILLUSTRATIONS

### PLATE 1

*Gallicolumba keayi* (Clarke);  $\times \frac{3}{4}$ . (Water-color drawing from a specimen in the flesh, by Macario Ligaya.)

### PLATE 2

*Pithecophaga jefferyi* Grant. (Photographs of a living bird from Pagbilao, Tayabas Province, Luzon, by Eustaquio Cortes.)

### TEXT FIGURE

- FIG. 1. Bills of various species of *Prionochilus* and of the genotype of *Dicæum*;  $\times \frac{1}{3}$ . (Drawings by Macario Ligaya.)
- a, *Prionochilus (Prionochilus) johannæ* Sharpe; Palawan, male.
  - b, *Prionochilus (Prionochilus) parsonsi* sp. nov.; Luzon, male; drawn from the type.
  - c, *Prionochilus (Polisornis) anthonyi* McGregor; Luzon, male; drawn from the type.
  - d, *Prionochilus (Polisornis) quadricolor* Tweeddale; Cebu, male.
  - e, *Prionochilus (Polisornis) inexpectatus* Hartert; Luzon, male.
  - f, *Prionochilus (Bournsia) æruginosus* Bourns and Worcester; Luzon, female.
  - g, *Prionochilus (Piprisoma) squalidus* (Burton); Assam, India, female, A. M. Primrose, collector. United States National Museum No. 263739.
  - h, *Dicæum cruentatum* (Linnaeus), genotype; Trong (or Trang), Siam, male, W. L. Abbott, collector. Bureau of Science No. 10072; ex United States National Museum No. 154193.



PLATE I. *GALLICOLUMBA KEAYI* (CLARKE).



PLATE 2. *PITHECOPHAGA JEFFERYI GRANT.*

## SOME PHILIPPINE AND MALAYSIAN MACHÆROTIDÆ (CERCPIOIDEA)

By C. F. BAKER

*Of Los Baños, Philippine Islands*

### FOUR PLATES

In a previous paper<sup>1</sup> an attempt was made to review the true machærotids of Malaysia and the Philippines. Without sufficient material it was impossible to include in that paper the allies of *Enderleinia*. In the seven years intervening, some remarkable relatives of *Enderleinia* have been found in the Philippines and considerable Australian material of the same group has come to hand, some collected by Mr. H. Peterson, and some loaned by the Australian Museum at Sydney and by the South Australian Museum at Adelaide.<sup>2</sup> This has made possible a rearrangement of the whole group. Certain genera previously supposed to be Cercopidæ s. str. (=Aphrophorinæ auctt.) have been found to be true machærotids. While the Australian species are still in more or less confusion, the relationships of the genera are now clear, and it is possible to recognize *Hindola* as the typical genus of its subfamily with various other genera grouped closely about it.

Both *Clastoptera* (Neotropical) and *Iba* (Palæotropical) present some striking resemblances to certain machærotids in their elongate scutella and tegminal venation and appendices. These genera are, however, as far from Machærotidæ as from Cercopidæ s. str. and should constitute a separate family. Besides, they are not tube-dwellers. No representative of the Machærotidæ is known from the Americas.

In the Cercpioidea, just as in the Jassoidea, there is in general a remarkable uniformity, even through series of types quite diverse otherwise, in the venation of the hind wings, in strong contrast with the high degree of modification in the venation of the tegmina. Therefore, where distinct departures occur in the wing venation, these are of great importance in taxonomy,

<sup>1</sup> Philip. Journ. Sci. 15 (1919) 67-78, pls. 1-3.

<sup>2</sup> The Australian material will be fully treated in a forthcoming paper.

as in the eupterygids, balcluthids, and machærotids. In other characters the machærotids present the greatest range of body structure in the Cercopioidea, but certain venational characters are highly uniform and diagnostic.

## Superfamily CERCPIOIDEA

### *Key to families.*

- a<sup>1</sup>. Outer fork of radius in hind wings always present (sometimes broken at apex), thus forming a supernumerary (first) apical cell, the cubitus apically forked or simple; claval veins (if present) usually distant and without connecting cross vein; scutellum comparatively small and short (except in Clastopteridæ).
- b<sup>1</sup>. Pronotal margin between eyes usually straight or slightly arcuate; front commonly more or less swollen apically; supraantennal ridges thickened and lobate; pronotum commonly strongly enlarged and much broader than head, and with anterolateral margins usually as long as or longer than posterolateral.  
    *Tomaspididæ* (=Cercopinæ auctt., =Rhinaulaciniæ auctt.).
- b<sup>2</sup>. Pronotal margin between eyes usually strongly arcuate or subangulate; front usually swollen basally, if at all; supraantennal ridges not lobate, or greatly thickened; pronotum never greatly enlarged and rarely much wider than head, the anterolateral margins usually much shorter than the posterolateral.
- c<sup>1</sup>. Clavus narrowly acute or subacute apically; corial appendix either a narrow continuous membranous margin or wanting, never bent inward beyond clavus to overlap at end of body; corial venation various, but never as in Clastopteridæ; scutellum usually much shorter than pronotum.  
    *Cercopidæ* s. str. (=Aphrophorinæ auctt., =Ptyelinae auctt.).
- c<sup>2</sup>. Clavus obliquely truncate at apex; corial appendix divided into two very broad subequal portions, these at rest infolded at end of the short and broad body to overlap; fork of radius in wing forming a very short first apical cell considerably before apex; cubitus in wings not forked apically; corium with three apical cells and two (or less) subapicals; scutellum longer than pronotum.  
    *Clastopteridæ* (including Ibaini).  
a<sup>2</sup>. Outer fork of radius in wing always absent, therefore no supernumerary (first) apical cell; claval veins (when two) adnate at middle or with a connecting cross vein; scutellum as long as or longer than pronotum, either simply long acuminate, or greatly elevated posteriorly and with a strongly curved free apical spine projecting caudad  
    ..... *Machærotidæ*.

## MACHÆROTIDÆ

### *Key to subfamilies.*

- a<sup>1</sup>. Scutellum not raised apically or with free apical spinous appendage; anterolateral margins of pronotum always very short, far shorter than posterolateral margins, the hind margin always more or less

deeply emarginate; anterior margin of pronotum strongly extended between eyes; head never broader than anterior width of pronotum and never strongly roundly swollen in front of eyes, usually obtuse-angulate; cubitus in hind wing apically forked; four apical corial cells arranged obliquely or even transversely to long axis of corium, the third from within never pedicellate or strongly projecting beyond and apically bounding fourth (outer).

Hindoliinæ (= Enderleiniiæ).

- a<sup>1</sup>. Scutellum usually greatly raised apically, always with a free apical spinous appendage extended caudad; anterolateral margins of pronotum longer than posterolateral, the hind margin not or but very shallowly emarginate; anterior margin of pronotum but very slightly extended between eyes; head somewhat broader than anterior width of pronotum and strongly, usually roundly, swollen and extended in front of eyes; cubitus in hind wings not forked; four apical corial cells arranged nearly longitudinally (in line with long axis of tegmen), the third from within pedicellate and extending strongly beyond and apically bounding fourth (outer).
- b<sup>1</sup>. Form slender, body of scutellum high arched posteriorly with strong dorsal furrow; pronotum without laminately extended lateral angles; anterior margin of pronotum somewhat angulate between eyes ..... Machærotinæ.
- c<sup>1</sup>. Frons not vertically produced; hind tibiæ without lateral spur. Machærotini.
- c<sup>2</sup>. Frons vertically angularly produced to high above head; hind tibiæ with one lateral spur ..... Sigmasomini.
- b<sup>2</sup>. Form very thick and stout; body of scutellum nearly flat and with dorsal furrow subobsolete; pronotum with lateral angles produced into high, thin, spreading laminæ; anterior margin of pronotum broadly, gently arcuate between eyes ..... Maxudeinæ.

#### HINDOLIINÆ

##### *Key to genera.*

- a<sup>1</sup>. Clavus narrowly acute apically, its terminal appendix very small and narrow; body more elongate, not clastopteroid, the tegmina never bent inward beyond clavus (Hindolini).
- b<sup>1</sup>. Scutellum basally strongly convexly raised above highest part of pronotum; pronotum smooth, finely punctured; crown of head nearly vertical, the head very short and broadly rounded (profile) from base to apex; tegmen with numerous irregular cells occupying apical half; two claval veins adnate at middle. Apomachærota Schmidt.
- b<sup>2</sup>. Scutellum basally never raised above highest part of pronotum; crown of head usually oblique; tegmen with three or four very regular apical cells and two or three anteapicals.
- c<sup>1</sup>. Claval veins separated and joined at middle only by a cross vein; scutellum with an elongate fossa.
- d<sup>1</sup>. Anteapical cells elongate and subequal in length; cubitus distant from claval suture throughout; both claval veins forked apically. (East Africa.) ..... Neuromachærota Schmidt.

*d.* Anteapical cells broad, the second much shorter than the others; cubitus apically approximate to claval suture; claval veins simple; pronotum strongly transversely wrinkled; tegminal veins with scattered black granulations; head as wide as pronotum, the latter rather broadly arcuate-margined between eyes; scutellum shorter than pronotum. (Ceylon.)

*Machæropsis Melichar*

*c.* Claval veins always adnate for some distance at middle.

*d.* Scutellum longer than pronotum and apically with two high, longitudinal, raised edges, forming a large, deep fossa; hind tibiae with two strong subapical spurs. (Togo.)

*Enderleinia Schmidt*

*d.* Scutellum simple or with but slight discal depression; hind tibiae with but one subapical spur (though frequently also with a reduced subbasal spur.)

*e.* Cubitus lying for some distance at middle, on the claval suture, strongly curved, the base and apex distant from claval suture; corium with two subapical cells, second short; scutellum longer than pronotum; head a little more than half the width of pronotum.....*Serreia* g. nov.

*e.* Cubitus distant from claval suture and nearly straight; corium with three anteapical cells, the middle hardly half the length of the other two; scutellum shorter than pronotum; head but slightly narrower than pronotum.

*f.* Scutellum with a large, shallow, subcircular depression occupying a large part of disk; crown, pronotum, and scutellum with very large, deep, crowded punctures; claval and part of corial veins with scattered dark granules, some of which near apex are bullate; all the veins strong and dark; crown (profile) lying in plane of anterior slope of pronotum and not at all depressed; hind tibia with a very large spur at middle.....*Parahindola* g. nov.

*f.* Scutellum plane or slightly convex, smooth; hind tibial spur always nearer to apex than to base.

*g.* Body slenderer, not thickened and robust; head very little, if any, narrower than pronotum; surface of the largely subhyaline tegmina nearly plane, veins usually weak and indistinct, pronotum coarsely or finely punctured, and often with indications of transverse rugae or wrinkles, but the puncturing usually predominant; sexes very similar.

*Hindola* Stål (=*Pectinariophyes* Kirkaldy=*Polytrichophyes* Schmidt=*Modiglianella* Schmidt=*Taihorina* Schumacher, =*Quinguatrus* Distant, =*Xenaias* Distant).

*g.* Body thick and robust; head appreciably narrower than pronotum, the latter strongly transversely wrinkled with more or less of intermingled punctures; surface of tegmina strongly irregular with deep depressions be-

tween the strong veins, the tegmina as a whole rather strongly convex; sexes strongly dimorphic.

**Chaetophyes Schmidt.**

a<sup>1</sup>. Clavus broad apically, obliquely subtruncate, its terminal appendix short but broad; form of body rather strikingly clastopteroid, short and compact, the tegmina apically bent across apex of body behind clavus, and there overlapping; crown broadly rounded on to the strongly convex face (*Hindoloidesincis*).

b<sup>1</sup>. Veins scattered granulate on the subhyaline corium; crown almost vertical, very short, transverse; corium with three small apical cells; corial appendix not yet described or figured.

**Polychætophyes Kirkaldy.<sup>4</sup>**

b<sup>2</sup>. Veins not granulate, the discal veins very obscure except by transmitted light; crown oblique, more elongate; terminal corial appendix of great width with subparallel inner and outer margins, and reaching entirely across apex of tegmina; corium with apical cells entirely absent..... *Hindoloides* Distant.

**Genus CONMACHÆROTA Schmidt**

In a synopsis of the Malaysian species of the genus *Machærota* Burmeister<sup>4</sup> the species were divided into two groups, the first comprising those with the claval vein apically forked (possibly two partly adnate claval veins) and the second those with the claval vein (single) simple. Between the writing of this paper and its publication, Schmidt<sup>5</sup> separated the first group as a distinct genus under the name *Conmachærota*, with *notoceras* Schmidt as the type. Two new species of this group have recently been encountered in the Philippines, and their relation to the species previously discussed is given in the following key.

*Key to species of the genus Conmachærota Schmidt.*

a<sup>1</sup>. Pronotum and scutellum in profile very broad, the narrow, basal portion of scutellum very short, basal portion of scutellum with a prominent yellow stripe on either side; length of crown much more than half the width between eyes; greatest profile width of scutellum into length of spine twice or a little more.

b<sup>1</sup>. Scutellum in profile with greatest width much less than length; basal portion forming a distinct "neck;" its dorsal sulcus reaching about half the length of body of scutellum.

c<sup>1</sup>. Females pale in color, males much darker; body densely fine pubescent; entire scutellum about twice as long as head and thorax together; crown anteriorly rather broadly rounded.

**C. notoceras Schmidt.**

<sup>4</sup> Possibly founded on males of *Hindola* or *Chaetophyes*, and may not belong to this tribe.

<sup>5</sup> Philip. Journ. Sci. 15 (1919) 69.

<sup>6</sup> Stett. Ent. Zeit. 79 (1918) 371.

- c<sup>2</sup>. Female dark chocolate brown, same as males; body less densely pubescent; entire scutellum distinctly more than twice longer than head and thorax together; crown anteriorly subangulate at apex..... *C. mindanaensis* sp. nov.
- b<sup>2</sup>. Scutellum in profile with greatest width about equal to length, basal portion not forming a distinct "neck;" its dorsal sulcus reaching about three-fourths of body of scutellum; crown anteriorly subangulate at apex..... *C. philippinensis* Baker.
- a<sup>2</sup>. Pronotum and scutellum in profile very narrow, basal narrow portion of scutellum very long, this due to the strong flattening of both pronotum and scutellum; basal portion of scutellum without lateral yellow stripes; length of crown about half the width between eyes, anterior margin strongly subangulate; greatest profile width of scutellum into length of spine four times..... *C. attenuata* sp. nov.

**CONMACHÆROTA MINDANAENSIS** sp. nov.

*Female*.—Length to end of abdomen, 4.75 millimeters; to end of spine, 7.5; length of spine alone, 3.5.

Color of body very deep chocolate brown, the body of scutellum much paler, the spine golden brown. Broad central band of front shining black. Pale yellow are five oblique lines on sides of front, curved lateral stripes on body of scutellum, its apical margin below spine, the usual dorsal spot at base of spine, entire basal segment of abdomen and remaining tergites at middle, and basal article of hind tarsus except extreme base and apex.

Sculpturation very similar to that of *philippinensis*, but the median carina of pronotum is strong throughout, strongest on middle third. Scutellar sulcus (fig. 6) broader and shallower than in *philippinensis*. Crown subangulate anteriorly (fig. 5). Diagnostic characters otherwise as stated in the key. Proportions in profile as in fig. 4.

*Male*.—Length to end of abdomen, 4 millimeters; to end of tegmina, 5; to end of spine, 6.5.

Colors same as in the female, differing in this respect from both *notoceras* and *philippinensis*.

Appears to be common in northern Mindanao, specimens coming from Surigao, Surigao Province, and from Iligan, Lanao Province (Baker).

**CONMACHÆROTA ATTENUATA** sp. nov.

*Male*.—Length to end of abdomen, 3.5 millimeters; to end of tegmina, 5; to end of spine, 6.5.

Color very deep chocolate brown, body of scutellum not paler, the spine golden brown. Frons yellow with dark oblique stripes on sides; only the apex of crown (extreme base of frons) shining

black. Sides of body of scutellum entirely without yellow stripes, but area of sulcus paler, and hind margin narrowly yellowish. Lateral margins of pronotum very narrowly yellowish. Fore and middle legs pale fulvous. Hind basitarsus, except extreme base and apex, yellow. Abdomen without yellow markings except on basal tergite. Venation on apical half of tegmina darker than in either *notoceras*, *philippinensis*, or *mindanaensis*.

Sculpturation very similar to that of *mindanaensis*. Scutellar sulcus (fig. 3) short and small, less than one-half length of body of scutellum. Crown (fig. 2) more strongly angulate anteriorly. Diagnostic characters otherwise as in synopsis above. The profile proportions (fig. 1) are unique in this group.

A single specimen from Zamboanga, Mindanao (Baker).

#### Genus SERREIA novum

Diagnostic characters as given in the synopsis above. In general form this genus resembles the robust and strongly humpbacked *Apomachærota* and its allies rather than the slenderer, cercopiod *Hindola* and allies. Of the latter it resembles *Chaetophyes* in having the surface of the tegmina very uneven, with a deep, sharply curved, longitudinal depression on base of corium, and the apical and subapical cells concave. The corial appendix is much larger and reaches nearer to apex of corium (fig. 11) than in *Hindola* or any of its near relatives. The hind femora are shallowly concave on lower surface, subequal in length to hind tarsi, and much shorter than their tibiæ; hind tarsi with first article (seen from above) subequal to remaining two together; hind tibiæ with subapical spur very stout, the basal minute. The rostrum slightly surpasses the middle coxæ.

This notable genus is dedicated to a notable man, Mons. Paul Serre, Consul of France, "citizen of the world," formerly resident of many tropical countries, now in Auckland, New Zealand. He is accomplished in agricultural science and takes an enthusiastic interest in all scientific endeavor. He is widely known for his thoroughgoing monographs on Havana tobacco and New Zealand hemp.

#### SERREIA NOTABILIS sp. nov.

*Female*.—Length to end of closed tegmina, 7 millimeters; width of head, 2; of pronotum, 3; length of tegmen, 5.75; width at end of clavus, 3.5.

Color deep chocolate brown, head, pronotum, and tegmina smooth and shining. Face and all below somewhat paler and with a yellowish cast; the slight convexity before apex of scutellum with a sordid yellowish transverse mark. Frons without oblique dark lateral arcs. Tegmen hyaline, the yellowish veins margined throughout middle of corium with minute brown dots, with two discal groups of such dots, the larger proximal one extending to costal margin, the distal smaller one at base of the antepical cell; the veins bordering apical cells broadly margined with very deep chocolate brown, cubital veins with several larger superposed brown dots. Corial appendix smoky at base and at apex. Clavus suffused with pale yellowish which narrowly invades corium, the inner apical fork of claval vein margined with minute brown dots.

Frons shining, minutely obscurely wrinkled with shallow, oblique lateral folds near base; loræ with scattered large punctures. Clypeus (fig. 10) strongly compressed apically, forming a high median ridge, the lateral surfaces of this portion concave and coarsely transversely wrinkled. Crown shining, but the surface very uneven due to low, coarse, indistinct wrinkles of no regular arrangement. In direct view vertical to crown (fig. 7), the length of crown is more than three-fourths width between eyes, the distance between ocelli is less than length of true vertex; exposed superior surface of front as long as greatest width. Pronotum (fig. 8) smooth and shining with obsolescent coarse transversal wrinkles and large scattered punctures; no median carina. Length of pronotum two-thirds of its width, the anterior margin evenly arcuate, the posterior shallowly emarginate. Scutellum (fig. 9) evenly convex, smooth and shining with scattered obsolescent punctures, lying in the general curve of pronotum, and with the apical profile margin bisinuate. Venation of tegmen and wing as shown in figs. 11 and 12. Clavus near apex with a large, round, strongly convex, concolorous bulla.

*Male*.—Length to end of closed tegmina, 5.5 millimeters; width of head, 1.5; of pronotum, 2.5; length of tegmen, 4.5; width at end of clavus, 2.5.

Color darker than in female, the scutellum piceous. Veins of tegmina darker, the brown margins of apical veins narrower, the claval bulla shining black. Face and all below black or

piceous, legs a little paler. Puncturation of pronotum and scutellum deeper and the latter with quite obvious coarse transverse wrinkles.

Two specimens of this remarkable insect were taken near Zamboanga, Mindanao, and fortunately represent the two sexes.

A single male specimen which must be referred here, at least until the corresponding female is known, was taken on Mount Maquiling in central Luzon. It differs in having the hind legs pale yellowish, and the claval bulla not conspicuously shining black. It may bear the varietal name *luzonensis*.

#### Genus PARAHINDOLA novum

Diagnostic characters as in above generic synopsis. No member of the *Hindola* group of species possesses the unique scutellar structure of *P. borneensis*, and none possesses the extremely coarse sculpturation uniformly covering crown, pronotum, and scutellum. The shallow scutellar depression is roundish and saucer-shaped, but has a thickly obtuse and little raised rim. The subobsolete median pronotal carina is more distinct near the anterior margin. There is a greater number of cross veins in the outer (radial) cell, the cubital vein is more strongly curved, and the corial appendix is much longer than in *Hindola*. Hind tibiæ with a very large and long spur inserted at middle, only a minute rudiment of the subbasal spur remaining. Basal article of hind tarsi as long as the two distal together.

While in all species of *Hindola* known to me the general plane of face is nearly horizontal and lies nearly in line with the long axis of the body, in *Parahindola* it is distinctly oblique to the axial line.

#### PARAHINDOLA BORNEENSIS sp. nov.

*Female*.—Length to end of closed tegmina, 6.5 millimeters; width of head, 2.5; of pronotum, 2.75; length of tegmen, 5; width at end of clavus, 2.

Color stramineous; front chocolate brown; femora except apex piceous, remainder of legs pale brownish, hind tibiæ yellowish. Abdomen pale yellowish basally. Tegmina with basal fourth pale bronzy brownish, remainder hyaline; claval and basal corial veins indistinct, remainder dark and distinct; claval and basal corial veins with scattering superposed dark brown

dots and a sparse row of such dots about the entire outer corial periphery; veins on apical half of corium more or less broadly marginated with deep brown.

Front a little shining above, subopaque below, very gently convex, the surface microscopically crowded lacunose with some scattered indistinct punctures on median area. Subantennal portion of cheek thickly rugose, subocellar area transversely wrinkled, loræ coarsely punctured. Crown (fig. 13) like pronotum and scutellum, with very coarse deep and crowded irregular punctures. Interocellar distance nearly equal to twice length of true vertex, superior face of front (vertical view) much wider than long, and at a little less than half its length from base with a strongly raised, arcuate transverse ridge, the surface posterior to this having the large punctures grouped in deeper cavities. Pronotum with median carina distinct only on anterior fourth; length somewhat less than two-thirds width, anterior margin medially subangulate, posteriorly very obtuse angulately emarginate. Surface of scutellum in profile view (fig. 14) nearly plane and lying considerably below the posterior convexity of pronotum, the apex depressed before the acuminate tip. Length of scutellum little greater than that of pronotum. Venation of tegmen as shown in fig. 15, the wing venation normal for this group. Tegmen shining, the clavus and basal half of corium with large, scattering shallow punctures. The two large brown spots on the two middle apical veins are somewhat bullate and the veins appear to be somewhat bent within them (not shown in the figure).

A single specimen taken at Sandakan, British North Borneo (Baker).

#### Genus HINDOLA Kirkaldy

*Hindola* was described by Stål<sup>6</sup> as *Carystus* (praeocc.) and based upon *Ptyelus viridicans* Stål,<sup>7</sup> a common species of Singapore. Later Spangberg<sup>8</sup> described four species from Australia, none of which appears to be true *Hindola*. Never having seen true *Hindola*, Kirkaldy<sup>9</sup> described *Pectinariophyes*, which is *Hindola*. *Polychætophyes* Kirkaldy is questionably a clastopteroid genus; but Kirkaldy referred to it a second species (*aequalior*) which evidently does not belong in it and

<sup>6</sup> Berl. Ent. Zeit. 6 (1862) 303.

<sup>7</sup> Ofv. Vet. Ak. Forh. 11 (1854) 251.

<sup>8</sup> Ofv. Vet. Ak. Forh. 34 (1887).

<sup>9</sup> Haw. Sugar Planters' Exp. Sta. Bull. 12 (1913) 10.

Schmidt, without having seen this very insufficiently described species, bases on it his genus *Polytrichophyes*.<sup>10</sup> This also may be *Hindola*. Later Schmidt,<sup>11</sup> who had not seen *Hindola*, described *Modiglianella* from Sumatra and not one of the supposedly diagnostic characters given but falls within the limits of specific characters in *Hindola*.

Schumacher<sup>12</sup> describes a genus *Taihorina*, based upon *T. geisha* from Formosa. The numerous characters mentioned in the generic descriptions all fall within the range of specific characters in *Hindola*, which was evidently unknown to this author. The species, however, appears to be a distinct one. Finally, Distant, who knew *Hindola viridicans* and had described several other species of the genus, described a new genus, *Quinquatrus*,<sup>13</sup> based upon *Q. dohertyi* from Tenasserim and another, called *Xenaias*, based upon *X. notandus* from the Nilgiris. His figures present nothing distinctive, and it is certain that no diagnostic characters are given. These, therefore, must also be referred questionably to synonymy until the details of structure, especially venation, are made known.

We were fortunately able to collect in Singapore a series of the type species of *Hindola* and with this as a starting point have been able to make illuminating comparisons with Australian, Bornean, and Philippine species. In this study it was found that some of the characters previously used as of generic significance were not even of specific value, the degree of obliquity of the head sometimes differing considerably in the two sexes. Also there are sometimes considerable sexual differences in sculpture, as has been indicated in the description of the scutellum of *Serreia*, as well as in color. The basal spur of the hind tarsi varies greatly in size and is often nearly or quite obsolete, and may be present on one side and absent on the other in a single specimen. In describing the genus, Stål refers to the transversely depressed crown with fore and hind borders raised. Some of the Australian species show this equally well, but this has all gradations to a crown that is obliquely plane and with only the hind margin raised or with neither margin elevated. In all we find the same general pattern of venation in the perfectly plane, subhyaline, rarely colored tegmina, the

<sup>10</sup> Stett. Ent. Zeit. 73 (1912) 173.

<sup>11</sup> Stett. Ent. Zeit. 79 (1918) 366.

<sup>12</sup> Mitt. Zool. Mus. Berlin 8 (1915) 84.

<sup>13</sup> Fauna Brit. Ind. Rhynch 6 (1916) 197.

veins usually decolored and inconspicuous except by transmitted light. The scutellum is evenly convex and usually very lightly punctuate or wrinkled. In the type species the pronotum is thickly, obliquely punctate-rugose and in other species there are variable admixtures of punctures and rugæ. Even those that have a proponderance of punctures will be found usually to have well-defined wrinkles laterally. Genera cannot be based on these differences. There is the greatest need, for a proper understanding of this group and its various species, to have rearings made of good series of both males and females from the curious calcareous tubes which the nymphs inhabit, and it is hoped that these remarkable insects will receive the active attention of all Indo-Malayan and Australian entomologists. The tubes in this group are much smaller than are those of *Machærota* and are more easily overlooked, but they are abundant in many districts, as the collection of mature forms shows. The correct association of the sexes in each case will help a great deal toward the proper elucidation of the species and also of the genera.

**HINDOLA VIRIDICANS Stål.**

Anatomical details of this common Singapore species, the type of the genus, are given in figs. 16 to 21. There is an appreciable difference in the length of the crown and in its obliquity in the two sexes. While the head (fig. 16) is in this species distinctly narrower than the pronotum, it varies to nearly as wide in some other species. The description of Stål gives clearly the general characters of the species. The extent of reddish suffusion on crown, pronotum, and scutellum is very variable.

**HINDOLA LUZONENSIS sp. nov.**

*Male*.—Length to end of closed tegmina, 6.25 millimeters; width of head, 2; of pronotum, 2.25; length of tegmen, 5.25; width at end of clavus, 2.

Color olive green, crown reddish stramineous; face piceous, a median oval frontal dot on line of antennal insertions; clypeus sordid yellowish. Mid and fore legs pale brownish, hind legs sordid yellowish. Inner half of clavus olive green, outer half and entire corium evenly pale chocolate brown.

Frons gently convex, slightly swollen basally, microscopically transversely lacunose, lateral raised arcs obsolete, entire genæ and loræ thickly finely rugose. Crown (fig. 22) with very

uneven surface, rather strongly depressed along frontal suture, on lateral area, and on disk of superior portion of front; hind margin sharply raised but anterior margin not raised; all parts of surface of crown with very coarse, obtuse, irregular wrinkles; in vertical view (fig. 23) the crown is rather strongly angulate anteriorly, the interocellar distance is actually subequal to the length of the true vertex (not apparent on the curved surface as seen from above). Length of pronotum two-thirds of its width, anteriorly obtusely subangulate, posteriorly very obtuse angulately emarginate, its surface rather strongly transversely punctate wrinkled. Scutellum not quite as long as pronotum on median line, its surface very slightly convex and finely transversely wrinkled. Tegmina densely, coarsely, very uniformly punctate throughout, resembling in this character some of the Australian species.

A single fully mature male taken at Baguio, Benguet Sub-province, northern Luzon (Baker). Another male specimen, juvenile and pale in color throughout, but with the same structural characters, and evidently of this species, was taken at Imugan, Nueva Vizcaya Province, not a great distance from Baguio.

One of the most deeply colored of this group, and in this resembling certain *Chaetophyes*, but in form and structure a typical *Hindola*.

**HINDOLA FULVA** sp. nov.

*Female*.—Length to end of tegmina, 4.75 millimeters; width of head, 2; length of tegmen, 3.75; width at end of clavus, 1.75.

Color of crown, pronotum, and scutellum deep uniform fulvous; a narrow transverse arcuate stripe before apical margin of pronotum pale yellowish; all below with pleuræ, abdomen, and legs pale yellowish. Tegmina hyaline; basal half of clavus somewhat thickened callose and lemon yellow; clavus apically with a pale brownish commissural spot; numerous very scattered brownish dots occur on the veins, most numerous near and along costal margin, the two middle apical veins with larger brownish spots.

Frons medially somewhat flattened, remainder gently convex; surface of front, genæ and loræ minutely, thickly, obscurely rugose. Entire surface of crown, pronotum, and scutellum thickly, deeply, but very minutely punctate-rugose, giving these surfaces a velvety appearance. Crown (fig. 26) somewhat depressed, most strongly in ocellocular area, somewhat concave in

profile, though the general plane is oblique in general line of slope of anterior part of pronotum; interocellar distance slightly greater than length of true vertex; superior face of front sharp margined around its strong obtuse angulate apex, its surface with a blunt thick median wrinkle and its middle crossed transversely by a similar but arcuate wrinkle. Head and pronotum proportionally very broad, the former slightly the narrower. Pronotum with a strong median carina on anterior half, its length but little more than half the width. The posterolateral margins rather strongly sinuate. Scutellum considerably longer than pronotum, its surface gently evenly convex, slightly depressed before apex. Subbasal hind tibial spur stronger than usual but not half the size of subapical. Venation of tegmen and wing (figs. 27 and 28) typically that of *Hindola*, but corial appendix somewhat longer.

*Male*.—Length to end of tegmen, 4.5 millimeters; width of head, 1.75; length of tegmen, 3.5; width at end of clavus, 1.5. Closely similar in all respects to the female.

This species is not uncommon in Singapore and it will be of the highest interest and importance to discover its tubes and to compare them with those of *Hindola viridicans*.

It was this and the following species that led me to doubt the feasibility or wisdom of attempting to divide the *Hindola* group into several genera on our present knowledge. These two species have longer crown, broader head and pronotum, and a more compact squat appearance than has the type of *Hindola*. They also possess brown-dotted tegmina. The sculpture is as distinctive in its way as is that of *Parahindola*, but in another direction.

The next species, *nitida*, very close to *fulva* in form and structure, has sculpturation of an entirely different type. On close comparison of all of the above characters that might be used for generic distinction they were found to exist in all degrees in the various species, and in all combinations. The description of the following species will illustrate this point.

**HINDOLA NITIDA sp. nov.**

*Female*.—Length to end of tegmina, 4.75 millimeters; width of head, 2; length of tegmen, 3.75; width at end of clavus, 2.

Color olive green, usually with an evanescent reddish suffusion invading more or less of crown, pronotum, and scutellum. Sternum and lower half of face piceous, shading on face into sordid yellowish on upper half. All femora, except extreme bases and

apices, piceous, remainder of legs sordid yellowish. Tibial spurs as in *H. fulva*. Tegmina hyaline, extreme base and a narrow stripe extending from claval commissure before its apex to center of corium, pale brown; darker brownish dots occur on the veins as shown in fig. 31. Abdomen dark colored with the first tergite laterally conspicuously paler.

Frons very gently convex, smooth and shining, with slight, very indistinct, microscopical remnants of sculpturing; surface of clypeus, loræ and genæ thickly coarsely rugose. Crown (fig. 30) very similar to that of *H. fulva* but hind margin strongly raised, the superior frontal surface shorter for its breadth, with no transverse wrinkle, the median fold broader and more obscure. The pronotum (fig. 29) like that of *H. fulva* but median carina reduced to a remnant near anterior border, the surface shining, the sculpturing a delicate shallow transverse wrinkling with scattering punctures; this type of sculpturation is still more indistinct on the scutellum. Venation (fig. 31) closely similar to that of *H. fulva*.

*Male*.—Length to end of tegmina, 4 millimeters; width of head, 1.75; length of tegmen, 3.25; width at end of clavus, 1.5.

Very similar in all respects to the female, but in these specimens with the scutellum very strongly reddened.

This species was found to be not uncommon at Sandakan, British North Borneo (Baker). Differs from all other species in the short transverse brown stripe on clavus and inner half of corium.

#### Genus CHAETOPHYES Schmidt

This seems to represent a well-distinguished generic group. The body is very thick and stout and more "humpbacked" than in *Hindola*. The surface of tegmina is farther from uneven than in any *Hindola* and the width is greater in proportion to the length. The basal frontal suture is nearer to the ocelli (these being nearer to it than to base of head) a condition not noted in any *Hindola*. The interocellar distance is also proportionally less than the ocellocular. Form of crown, pronotum, and scutellum are indicated in figs. 32 and 33. The venation (figs. 34 and 35) is essentially that of *Hindola*. The cross vein in middle antecapital cell in fig. 34 is abnormal.

Several Walkerian species are to be referred here, and doubtless some of Spangberg's "*Hindolas*" belong here. One of the most marked characters of the genus lies in the strong dimor-

phism of the sexes. Schmidt described *Chaetophyes bicolor*<sup>14</sup> from female specimens, while the smaller black males of the same species he described as *C. unicolor*. I have large series of these taken standing together on the same plant, the *bicolor* form all females, and the *unicolor* form all males. This species has apparently been redescribed by Hacker as *Polychaetophyes perkinsi*.<sup>15</sup> The acute clavus of the latter apparently excludes it from *Polychaetophyes*. Walker seems, likewise, to have separated sexes of this group as distinct species.

#### Genus HINDOLOIDES Distant

Distant describes this genus<sup>16</sup> with the species *H. indicans* from Calcutta, as a relative of *Hindola*, both of which he places among ptyeline cercopids. He does not remark its strong resemblance to *Clastoptera* nor the remarkable fact that the clavus is broadly truncate apically as in that genus. He speaks of three "apical cells" in corium, but apical cells are entirely absent (fig. 38), the cells present being the anteapicals of *Hindola*, the space of the apicals being occupied by the enormously developed corial appendix. The wing venation (fig. 39) is typically machaerotid. Outlines of crown, pronotum, and scutellum are given in figs. 36 and 37. The figures are prepared from Calcutta specimens.

Kirkaldy gave a very imperfect description of *Polychaetophyes* and did not figure the venation, but he apparently noted and appreciated the importance of the extraordinary structure of the clavus. Recently Hacker<sup>17</sup> described a species, *appendiculata*, his figure showing the same remarkable corial appendix that occurs in *Hindoloides*, but which Kirkaldy does not mention for *Polychaetophyes*. In Hacker's figure it appears that true apical cells are present in the corium, and this may distinguish it from *Hindoloides*. Kirkaldy may have overlooked the broad appendix which at rest is folded closely under the apex of abdomen. This emphasizes the great need of clear figures illustrating *Polychaetophyes serpulida* Kirkaldy, the type of the genus.

<sup>14</sup> Stett. Ent. Zeit. 79 (1918) 367.

<sup>15</sup> Mem. Queensl. Mus. 8 (1926) 246, fig. 6.

<sup>16</sup> Ann. & Mag. Nat. Hist. 16 (1915) 506.

<sup>17</sup> Mem. Queensl. Mus. 8 (1926) 247, fig. 1.

It is hoped that Indian entomologists will soon locate the calcareous tubes of *Hindolooides* and compare them with those of *Polychætophyes serpulida*, figured by both Hacker and Kirkaldy.

Hacker<sup>18</sup> gives a very interesting account of the emergence of two of these remarkable tube-dwelling machærotids. His determination of the species, however, seems questionable as to *Polychætophyes*, the lower insect in his fig. 4 apparently being not of that genus at all, since it has an acute clavus. At any rate, *P. serpulida* of Hacker's figure and his later *P. appendiculata* have no near generic relationship. If Hacker's 1922 figure really represents *Polychætophyes*, then it seems possible that we are wrongly interpreting Kirkaldy's description of the clavus, in which case *Chætophyes* will be synonymous, and *Hindolooides* will stand quite by itself.

Some time after this paper was submitted for publication, Mr. W. E. China very kindly sent to me the accompanying illuminating figures (Plate 4) made directly from the types of *Quinquatrus* and *Xenaias*. These figures fully confirm my assignment of these two genera to *Hindola*. Distant's description of *Xenaias*<sup>19</sup> is entirely made up of generalities applying to any member of this group. It is evident from Mr. China's figure that the minute basal spine was overlooked by Distant, since he described the posterior tibiæ as having only one spine; and this is a matter of no importance in this group, since the very weak basal spine may be present or absent in the same species. Mr. China remarks (in litt.) of *Xenaias notandus* Distant:

Pronotum strongly reticulately rugose, the reticulations fine and almost obsolete along the anterior margin and on vertex. Basal half of scutellum slightly concave, and rugose. Tegmina somewhat rugosely reticulate, extending about one-third their length beyond tip of abdomen; venation obscure, and variable in details.

To these points may be added the elongate form of tegmina with the very long anteapical cells, elongate third apical cell of wing, and wider vertex with slightly more angulate apex. All of these characters well mark the species *notandus*, but none of them can serve as generic distinctions since they all

<sup>18</sup> Mem. Queensl. Mus. 7<sup>4</sup> (1922) 282, 480, 2 pls.

<sup>19</sup> Fauna Brit. Ind. Rhynch. 6 (1916) 198.

fall within the limits of *Hindola* species. I have already shown the occurrence of great variety in sculpture and form in various combinations in *Hindola*.

*Quinquatus* (Plate 4, fig. 1) is just as clearly *Hindola*, the general lineaments, like those of *Xenaias*, being unmistakably those of *Hindola*. Of *Q. dohertyi* Mr. China (in litt.) says:

Anterior two-thirds of pronotum obliquely rugosely wrinkled on each side of middle line; the posterior third almost smooth. Anterior margin and vertex much more strongly and irregularly rugose. Tegmen obscurely, coarsely punctate: veins of tegmen obscure, somewhat variable in detail.

Distant described the same pronotal sculpture as "thickly finely punctate," and punctures will doubtless be evident among the rugose wrinkles in certain lights, a character of great variety in *Hindola*. Distant's statement "pronotum about twice as broad as centrally long," is entirely incorrect, even according to his own figure. His statement "tegmina with three apical cells" is also incorrect; but the outer apical cell in this group is often indistinct. There is no character mentioned in connection with this species that can possibly be used for generic distinction and it must therefore be left in *Hindola*, in the neighborhood of *H. fulva* and *H. nitida*, described above, which it resembles.

The cases of *Xenaias* and *Quinquatus* clearly illustrate the utter insufficiency which characterizes the descriptions of Distant's genera of Cercopoidea, as well as of Jassoidea. Such anatomical figures as those presented by Mr. China would make it readily possible to understand all of them and to place them properly among other described genera. As it is, they are an almost insuperable obstacle to the formation of any usable classification of Indian and Malayan forms. Mr. China's magnanimous willingness to supply figures, in this as well as other cases of the sort, is very highly appreciated and is of the greatest constructive utility.

Since I wrote the above, my attention has been called to the fact that the genus *Hindoloides* has been redescribed by Haupt<sup>20</sup> under the name "Weigoldella."

<sup>20</sup> Deutsch. Ent. Zeitsch. (1923) 299.

## ILLUSTRATIONS

### PLATE 1

- Figs. 1 to 3. *Connachærota attenuata* sp. nov.; 1, profile of head, pronotum, and scutellum; 2, crown, vertical to its plane; 3, dorsum of body of scutellum.
- 4 to 6. *Connachærota mindanaensis* sp. nov.; 4, profile of head, pronotum, and scutellum; 5, crown, vertical to its plane; 6, dorsum of body of scutellum.
- 7 to 12. *Serreia notabilis* sp. nov.; 7, crown, vertical to its plane; 8, pronotum; 9, profile of head, pronotum, and scutellum; 10, sublateral view of head; 11, tegmen; 12, wing.

### PLATE 2

- Figs. 13 to 15. *Parahindola borneensis* sp. nov.; 13, dorsum of head, pronotum, and scutellum; 14, profile view of head, pronotum, and scutellum; 15, tegmen.
- 16 to 21. *Hindola viridicans* Stål; 16, dorsum of head, pronotum, and scutellum; 17, crown, vertical to its plane; 18, profile view of head and pronotum; 19, face; 20, tegmen; 21, wing.
- 22 to 24. *Hindola luzonensis* sp. nov.; 22, dorsum of head, pronotum, and scutellum; 23, crown, vertical to its plane; 24, tegmen.

### PLATE 3

- Figs. 25 to 28. *Hindola fulva* sp. nov.; 25, dorsum of head, pronotum, and scutellum; 26, crown, vertical to its plane; 27, tegmen; 28, wing.
- 29 to 31. *Hindola nitida* sp. nov.; 29, dorsum of head, pronotum, and scutellum; 30, crown, vertical to its plane; 31, tegmen.
- 32 to 35. *Chaetophyes bicolor* Schmidt; 32, dorsum of head, pronotum, and scutellum; 33, crown, vertical to its plane; 34, tegmen; 35, wing.
- 36 to 39. *Hindoloides indicus* Distant; 36, dorsum of head, pronotum, and scutellum; 37, crown, vertical to its plane; 38, tegmen; 39, wing.

### PLATE 4

- FIG. 1. *Quinquatrus dohertyi* Distant, female. (Drawings by W. E. China, from the type specimen in the British Museum.)
2. *Xenaias notandus* Distant. (Drawings by W. E. China, from the type specimen in the British Museum.)



PLATE 1.







Quingualous dolichopterus Dic. ♀

1



Xoniasia rufinervis Dic.

2

UEBER EINIGE TOMASPIDINÆ (RHYNCHOTA,  
HOMOPTERA) VON DEN PHILIPPINEN

Von A. JACOBI

Dresden, Saxony, Germany

Mehrere Cercopiden von den Philippinen, um deren Bestimmung mich Herr Baker ersuchte, erwiesen sich als neue Arten, deren Bekanntmachung in dem Philippine Journal of Science er freundlichst vermittelte; die Typen sind im Museum für Tierkunde in Dresden aufbewahrt. Näher eingegangen wird dabei auf die Gattung *Mioscarta* Bredd., die im Archipel der Philippinen einen ziemlichen Artenreichtum entwickelt zu haben scheint. Diese Gattung hat auffallend lange und noch mit langen Anhängseln versehene Subgenitalplatten oder Gonapophysen, aber diese scheinen nicht zu spezifischen Unterschieden ausgebildet zu sein, wenigstens nicht in diesem Faunengebiete, weshalb ich sie in den Artbeschreibungen unerwähnt lasse. Auch die schwarze Zeichnung der Vorderbeine ist bei den dortigen Arten von einer Einförmigkeit, die zu der sonstigen Verschiedenheit der Färbung im Gegensatze steht.

Die Masse sind einschliesslich der angelegten Deckflügel genommen.

**MIOSCARTA FERRUGINEA** (Walker).

Habitat, Samar (*Baker*) ; 2 Weiber.

**MIOSCARTA SEMPERI** Jacobi.

Diese Art, welche Lallemand auf meine Veranlassung hin als Synonym zu der vorigen gestellt hatte, ist doch spezifisch verschieden durch die scharfe Abtrennung des orangegelben Basalteils von dem distalen dunkeln durch eine schwarze Linie und durch die Scheitelzeichnung. Es sind nämlich nur zwei kleine schwarze Pünktchen auf der Quernaht vor den Ocellen vorhanden, während die Gegend zwischen Ocellen und Augen einfarbig ist wie der ganze übrige Scheitel. *Mioscarta ferruginea* hat dagegen immer diesen Zwischenraum der Sehorgane schwarz ausgefüllt und das Rosenrot in der Apikalhälfte der Deckflügel ist weiter ausgedehnt. *Mioscarta rubens* E. Schmidt hat wieder den

Scheitel einfarbig und das Rosenrot in der Apikalhälfte der Deckflügel ist weiter ausgedehnt.

**MIOSCARTA BASILANA sp. nov.**

Kopf und Brustteil scherbengelb; zwei Pünktchen in den Hinterwinkeln des Stirnscheitelteils, Fühler, Seiten der Stirn in der Basalhälfte und bis zu den Augen und ein sehr feiner, vom Kopf fast verdeckter Vordersaum des Pronotums schwarz. Beine wie sonst gezeichnet. Deckflügel im Basalviertel scherbengelb, im übrigen schwarzbraun, an der Grenze gegen den hellen Basalteil zu schwarz verdunkelt, in der Apikalhälfte aufgehellt und mit einem breiten trübroten Costalsaum, der sich bis zur Apikalspitze ausdehnt; die ganze Fläche der Deckflügel mit dicht anliegendem gelben Filz bedeckt. Hinterleib in der Basalhälfte scherbengelb, apikad schwarz. Im Körperbau sind keine Abweichungen die beständig wären.

Länge, 7 Millimeter.

Habitat, Insel Basilan (*Baker*); 4 Weiber.

**MIOSCARTA FLAVOBASALIS sp. nov.**

Kopf, Brustabschnitt und Beine ockergelb; Augen braun und scherbengelb marmoriert; neben den Augen eine mehr oder weniger dunkle Trübung. Hinterleib an der Basis und mehr oder weniger in der Mitte der Ober- und Unterseite ockergelb, sonst pechschwarz. Deckflügel im Basalviertel ockergelb, sonst schwarz, der netzadrige Teil aussen mit einem schmalen, rotbraunen Aussensaume. Flügel dunkel rauchgrau, nach der Basis hin noch dunkler, diese selber ockergelb. Im Bau nicht merklich von den übrigen Arten, insbesondere *M. ferruginea*, verschieden.

Länge, 10 bis 11 Millimeter.

Habitat, Insel Samar (*Baker*); 1 Mann und 1 Weib.

**POECILOTERPA ATRA sp. nov.**

Dunkel pechbraun, im Apikalteil der Deckflügel etwas aufgehellt. Seiten der Stirn, Schnabel und Beine heller braun, gelegentlich ins rötliche ziehend. Strukturell in jeder Beziehung *P. latipennis* E. Schmidt gleich, bis auf das schärfer herausgepresste apikale Geäder der Deckflügel; auch ist diese Art etwas kleiner.

Länge, 4 Millimeter.

Habitat, Insel Polillo (*Böttcher*); 2 Weiber.

Nach dem Aderverlauf in den Flügeln schliesst sich die Gattung *Poeciloterpa* Stål sehr nahe an *Mioscarta* Bredd. an, insofern ihr ebenfalls die Querader zwischen Subcosta und Radius, fehlt, aber die Subcosta ist in der Gegend, wo sie sonst von der Quer-

ader getroffen wird, noch viel stärker nach innen ausgeschweift, sodass sie dort zweimal fast im rechten Winkel gebogen ist.

**EOSCARTA BOREALIS Distant.**

Habitat, Mindanao, Davao (*Micholitz*) ; 1 Weib.

Das einzige Exemplar ist von solchen aus Assam und Laos nicht zu unterscheiden, wobei an die Möglichkeit der Einschleppung in jüngster Zeit gedacht werden darf.

Zwischen *E. laoensis* E. Schmidt und *E. liternoides* Bredd. scheint kein fester Unterschied zu bestehen, da auch die letztere Art in den Diskal- und Apikalzellen dunkle Flecke von verschiedenen starker Tönung zu haben pflegt.

**EOSCARTA COLONA sp. nov.**

Schmutzig erdbraun, die Vorderfassette der Stirn blass ocker-gelb, die Stirnseiten schwärzlich; Hinterhälfte des Pronotums, Gegend des Clavus und der Apikalteil der Deckflügel dunkelbraun, das Geäder im Apikalenteile wieder hell herausgehoben. Hinterleib auf den Sterniten mit Schwarzen Querbinden. Vorderrand des Kopfes ziemlich stark halbmondförmig gebogen, woraus der Stirn-Scheitelteil wieder etwas hervorragt. Stirn mit groben Seitenfurchen, der Längseindruck bleibt um ein Drittel seiner Länge unter der Basis. Costalrand wenig gebogen, das Apikalgeäder tritt wenig heraus und ist unregelmässig genetzt. Am nächsten wohl mit *E. ferruginea* Distant verwandt.

Länge, 8 bis 9.5 Millimeter.

Habitat, Ostindien, Pondicherry; 1 Mann und 1 Weib.

**COSMOSCARTA LATERALIS sp. nov.**

Kopf, Pronotum, Schildchen, Pro- und Mesostethium, Deckflügel schokoladenbraun, bisweilen an der Stirn rötlich aufgehellt; vordere Seitenränder des Pronotums und die Zeichnung der Deckflügel rötlich ockergelb; letztere besteht aus drei Flecken an der Basis, drei mittleren in Corium und Clavus und einer gewinkelten Querbinde vor dem Apikalenteile. Ocellen bernstein- bis rötlichgelb. Flügel hell rauchgrau, die Adern an der Basis hellrot. Beine dunkel ziegelrot, beim Mann (1 Exemplar) die Vorder- und Mittelbeine dunkelbraun. Hinterleib gelbrot bis ziegelrot, in schwankender Ausdehnung geschwärzt.

Ocellen unter sich und von den Augen gleichweit entfernt. Pronotum in der Mitte stark gewölbt, vordere und hintere Seitenränder sanft gebogen. Basaldorn der Hinterschienen winzig klein.

Länge, 12.5 bis 15 Millimeter.

Habitat, Insel Samar (*Baker*) ; 1 Mann und 1 Weib.

## FOUR NEW CHALCID FLIES FROM THE PHILIPPINES

By A. A. GIRAULT

*Of the Department of Agriculture, Brisbane, Queensland*

The following chalcid flies were received from and collected by Prof. C. F. Baker. The types are in the Queensland Museum. The generic position of *Macrodontomerus silvifilia* sp. nov. is uncertain, but its description gives all essentials necessary.

### EUPELMINIÆ

#### EUPELMINI

##### CALOSOTA SPLENDIDA sp. nov.

Ovipositor stylate, compressed, nearly half of rest of abdomen, exceeding any segment; eyes naked; scutellum margined laterad. Antennæ at end of eyes, scrobes deep, joining halfway up and attaining median ocellus, a curved, narrow sulcus from each antenna to end of head. Furrows half complete, faint sutures well separated, nearly straight lines from cephalad and not far from median line. Postmarginal over twice the well-developed stigmal. Large, rather slender.

Brilliant green, scape except apex and legs except coxae red; apex tegula dark red; abdomen above and a large conic marking from cephalic end of scutum (green along the furrows) to near center of scutellum (blunt at its apex) coppery; forewing lightly infuscated and with a narrow middle line of dark fuscous from apex to under base of bend of submarginal.

Prothorax shining, some hairs on each side cephalad; face and lower cheeks umbilately punctate, parapsides more coarsely and densely so; rest of mesonotum finely punctate and reticulate, densely pilose; spiracle large, oval; upper occiput densely pilose; mesopleurum naked, reticulated, this sculpture gradually changing to punctuation cephalad. Funicle 1 twice longer than wide, equal to 8, a bit shorter than pedicel; 2 elongate, thrice 1; the rest gradually shortening, club equal 5.

A female, Cuernos Mountains, Occidental Negros, Negros. Not typical for the genus.

## TRYDYMİNÆ

## METASTENINI

## METASTENOIDES FERUS sp. nov.

Clypeus strongly bidentate at meson; less robust than in the genotype, propodeum noncarinate, with an obscure cross ridge before middle; segment 7 longest, then 2 and 6, the three united half of surface; 3 to 5 equal, each not two-thirds of 2.—

Aeneous, wings clear, coxae, femora concolorous, tibiae 1 and 2 save apex, 3 at proximal one-half, dark brown, rest of tibiae, tarsus 3 and 1 of tarsi 1 and 2, white. Scape, pedicel red brown, rest of antennae black, a bit suffused reddish. Lateral ocelli closer to median than to eye.

Scape twice the club; funicle 1 two and a half times longer than wide, 2 and 3 twice longer than wide, 5 one-third longer than wide, equal pedicel.

Tegulae yellow; postmarginal nearly twice the elongate stigmal. Ciliation to about middle bend of submarginal, then after a short space more loosely to base on more than cephalic half.

A female, Cuernos Mountains, Occidental Negros, Negros.

## CLEONYMINÆ

## Genus THAUMASURELLOIDES novum

Differs from typical *Thaumasura* in having 13-jointed antennæ, club 3-jointed, ring joint large; abdomen rounded above and with only four segments between propodeum and stylate part, the first (or 2) very short, the fourth (or 5) longest and with a median carina; 6 and 7 stylate, 6 longest segment and 7 next, ovipositor extruded beyond them for over the length of 6 and 7; stylus and ovipositor over twice the rest of body, straight. Fore and hind femora slender, unarmed, large.

Type, *Thaumasurelloides silvae* sp. nov.

## THAUMASURELLOIDES SILVAE sp. nov.

Dark blue, wings subhyaline, base of scape, tibiae except 3 at basal one-half more or less, femora except 1 and 3 more or less, tarsi, tegulae dark red. Densely punctate including propodeum and abdomen, finest on pronotum and vertex, almost reticulation on occiput, coarser on thorax than on abdomen, nearly reticulation on stylate segments which are carinate at meson above. Ciliation to base of wing except caudad. Funicle 1 somewhat longer than wide, 2 longest, two and one-half times longer than wide, 3 twice longer than wide, 8 quadrate. Club 1 half that region. Hind tibial spurs short, subequal.

Propodeum with short, strong median carina, spiracle large, curved, no sulcus. Segment 5 of abdomen longer than wide. Lateral ocellus a bit closer to median than to eye but farther apart from each other than to eye. Eyes hairy, upper thorax pilose. Pedicel not elongate, distinctly shorter than funicle 2; club short but longer than distal funicle.

A female, Mount Maquiling, Luzon (*Baker*), type.

Cotype, a half smaller female, Cuernos Mountains, Occidental Negros, Negros.

This remarkable form belongs to a group difficult to classify, since it has been divided upon a variable amount of swelling in the femora, and recent studies lead me to believe that some duplication of genera has taken place.

#### TORYMINÆ

##### MONODONTOMERINI

###### MACRODONTOMERUS SILVIFILIA sp. nov.

Antennæ 13-jointed, one ring joint; hind femur beneath armed with a distinct, rather large, acute pale tooth; scutellum with distinct cross suture. Hind femur excised distad of tooth. Maxillary 4-labial, palpi 3-jointed. Abdomen compressed, the ovipositor slightly exceeding it. Propodeum noncarinate, at base with four large foveæ, the two at meson very large; a large slitlike spiracle from which a wide sulcus runs. Postmarginal over twice the short, curved stigmal.

Brilliant green, wings clear. Knees, tibiæ, tarsi, scape white; a little over distal half of the clavate tibiæ 3 black. Pedicel brownish.

Scutellum umbilically punctate, glabrous beyond cross suture, rimmed at apex. Scutum and parapsides with numerous smaller punctures and cross striation, punctures denser and larger on lateral parapside. Axillæ subglabrous at base. Head pilose and with pin punctures, rougher on vertex and with cross rugæ. Upper occiput margined. Lateral ocellus slightly closer to median than to eye. Upper thorax and vertex pilose.

Funicle 1 a half longer than wide, 7 slightly longer than wide, much exceeding the cup-shaped pedicel. Ring joint cup-shaped. Jaws 3-dentate, 1 and 2 acute, 3 wide.

Two females, Cuernos Mountains, Occidental Negros, Negros (*Baker*).

## INTRAHEPATIC ADMINISTRATION OF DRUGS

By F. A. FIDELINO and P. A. PANGAN

*Of the Department of Pharmacology, College of Medicine  
University of the Philippines, Manila*

SIX PLATES

### INTRODUCTION

In 1923 Waddell<sup>1</sup> called attention to the intrahepatic route as a convenient method of administering drugs to small animals such as turtles, rats, and frogs. He claimed that the dosage and the time of absorption were more uniform under this method than with application direct to the organs (dropping the solution on them) or with subcutaneous or gastrointestinal administration. The quick onset of effect was attributed by him to rapid absorption.

We also have obtained quick action from intrahepatic administration, but this was not always due to absorption and the effects of the drugs were not uniform. The response of a frog's heart to stimulant drugs was capricious. Moreover, we have obtained effect from plain Ringer solution that was sometimes indistinguishable from that from caffeine or epinephrine. The main feature of our work, which is based on more than one hundred fifty experiments, is reported in this paper.

*Method.*—The plan of the experiment was simple. It consisted simply of injecting drug and control solutions into the liver substance and recording the cardiac contractions. Frogs (*Rana vittigera*) were used in the experiments. The animal was pithed; the liver and the heart were exposed by a median ventral incision. The pericardium was opened and the apex of the heart was connected in the usual manner with a light lever. The cardiac contractions were recorded on a slowly revolving drum. A tuberculin syringe was filled with the solution and was so arranged that the point of the needle was deep in the liver substance and injection could be made without disturbing the record of the kymograph. Both of us were able to make such

<sup>1</sup>Journ. Phamacol. & Exp. Therap. 21 (1923) 225.

injections after a little practice. In order to avoid distention of the auricles the volume of the solution should be small and it should be injected slowly.

*Mechanism of absorption.*—The quick onset of systemic effect from intrahepatic injection has been attributed to rapid absorption. We have frequently observed that injections producing such effect also caused slight but definite distention of the auricles. With dead frogs of medium size 3 minims of a solution slowly injected also caused auricular distention. It is apparent that increasing degrees of distention would result if a series of injections were made of a preparation the circulation of which tends to weaken to a standstill, the maximum distention occurring at the complete cessation of the arterial circulation. In other words, by intrahepatic administration, at least part of the solution is apparently injected directly into the heart. As a matter of fact, air bubbles and colored solutions could be easily injected into the heart by the intrahepatic route. Colored solutions can be readily seen in the heart after its blood has been replaced by Ringer solution. That absorption from intrahepatic injection occurs there is no question, but we believe that the quick onset of effect is largely due to the portion of the solution that is injected directly into the heart.

*Response of the heart.*—Drugs intrahepatically administered produced variable results. This was especially true with heart stimulants such as caffeine and epinephrine. When the heart was still strong these drugs frequently produced a weaker contraction and an increased tone which could not be attributed to a toxic dose, for the same dose sometimes caused stimulation in the same frog. Stimulation usually occurred if the drug was administered when the heart had been weakened through prolonged contraction. The dose producing stimulation was usually ineffective on second administration. Ether and chloroform regularly brought about their characteristic depressant action. The method is indeed simple for demonstrating the action of these drugs upon the heart. However, it cannot be used to show the characteristic effect of caffeine and epinephrine, for Ringer or saline solution produced stimulation similar to that caused by those drugs. The stimulation in the one instance is sometimes indistinguishable from that in the other. With strophanthin the effect is gradually increasing tone to a standstill. This is similar to the effect of strophanthin as

described by Straub<sup>2</sup> in connection with his well-known preparation. The intrahepatic route demonstrates beautifully the antagonism of pilocarpine and atropine.

*Intrahepatic administration vs. perfusion in situ.*—The frog's heart responded regularly to the drugs that were used in these experiments when the heart was perfused with Ringer solution through the vena cava, as in Mines's method,<sup>3</sup> using a cannula with a "chimney" for introducing drugs to the heart. The insertion of the cannula in the vena cava in this method is more difficult than is the introduction of the needle in the intrahepatic; but, in testing the effects of drugs on the heart, the former method gives more satisfying results.

#### SUMMARY

1. Intrahepatic administration is at least partly intravenous or intracardiac injection.

2. The effects of caffeine and epinephrine on the frog's heart are variable when these drugs are administered by the intrahepatic route. They may cause depression or stimulation, depending upon the condition of the heart at the time of the injection.

3. Ringer and plain physiological salt solution injected intrahepatically produce cardiac stimulation which is sometimes indistinguishable from that caused by caffeine or epinephrine.

4. The intrahepatic administration is convenient for demonstrating the effects on the heart of cardiac depressants, the antagonism of atropine and pilocarpine, and the increased tone produced by digitalis.

5. Frog's heart responds more regularly to drugs administered by way of the vena cava, as in Mines's method, than by intrahepatic administration.

<sup>2</sup> Biochem. Zeitschr. 28 (1910) 392.

<sup>3</sup> Journ. Physiol. 46 (1913) 188.

## ILLUSTRATIONS

[In all cases the tracings read from left to right: the upstrokes show systoles. The time, when indicated, is marked in seconds.]

### PLATE 1. INTRAHEPATIC ADMINISTRATION

- Figs. 1 and 2. Caffeine and epinephrine depression.  
3 and 4. Caffeine and epinephrine stimulation.

### PLATE 2. INTRAHEPATIC ADMINISTRATION

- FIG. 1. Epinephrine at the beginning of the experiment.  
2. Epinephrine on the same heart later.  
3. First dose of epinephrine stimulant; second dose of the same size ineffective.

### PLATE 3. INTRAHEPATIC ADMINISTRATION

- FIG. 1. Ether.  
2. Chloroform.

### PLATE 4. INTRAHEPATIC ADMINISTRATION

- Figs. 1 and 2. Ringer solution.  
3. Caffeine.

### PLATE 5

- FIG. 1. Intrahepatic strophanthin.  
2. Pilocarpine-atropine antagonism by intrahepatic injection.

### PLATE 6. PERfusion OF HEART IN SITU THROUGH THE VENA CAVA WITH DRUGS ADMINISTERED BY WAY OF THE "CHIMNEY" OF THE CANNULA

- FIG. 1. Chloroform.  
2. Caffeine.  
3. Epinephrine.



1



2



3



4

PLATE 1.



1



2



3

PLATE 2.



1



2

PLATE 3.



1



PLATE 4



1



2

PLATE 5.



1



2



3

## INDEX

[New generic and specific names and new combinations are printed in clarendon; synonyms and names of species incidentally mentioned in the text are printed in italic.]

### A

- Abacang bayan*, 77.
- Abo-abo*, 8.
- Actinorhynchus*, 522.
  - seruginosus* (Bourns & Worcester), 523.
  - affinis* Zimmer, 523, 525.
  - annae* Büttikofer, 523.
  - aureolimbatus* (Wallace), 523.
  - quadricolor* (Tweedd.), 523.
  - sangirensis* (Salv.), 523.
  - vincens* (Scalater), 523, 524.
- Actitis hypoleucos* (Linn.), 515.
- AGUILAR**, R. H., Concrete value of Philip-  
pine sand, gravel, and crushed stone,  
421.
- ALICANTE**, M. M., Nitrifying power of  
some Philippine soils, 1.
- Alloiothucha* Drake, 58, 59.  
*necopinata* Drake, 59.  
*philippinensis* Drake, 58, 59.
- Alnus*, 107, 108.
- Alternaria*, 79, 96.
- Amiota* Loew, 361, 362, 364.  
*albodorsata* Sturtevant, 362.  
*leucophengoides* Sturtevant, 363.
- Anaimos* Reichb., 519, 520, 522.
- Ananas sativus* Schultes, 153.
- Anaya*, 399.
- Ancylostoma*, 509.  
*duodenale*, 510.
- Anilides and toluides of chaulmoogric acid,  
85.
- Anomala camarinensis* Ohaus, 61.  
*fuscaosarea* Ohaus, 61.  
*inconsuta* Ohaus, 61.
- Anona*, 171.
- Aphrophorinae*, 530.
- Apia lineolata* Dist., 894.
- Apomacharota* Schmidt, 531, 535.
- Aqueductuum*, 112.
- Arthrosporiella* Sherb., 110, 118.
- Aspergillus*, 95.
  - flavus* Link, 76, 78-83, 92, 96.
  - fumigatus*, 78-83, 85, 88, 89, 96.
  - glaucus* Link, 79-81, 88, 96.
  - niger* van Tiegh., 76, 78-83, 96.
  - wentii* Wehmer, 79-81, 88, 96.
- Atracis lurida* Mel., 400.

### B

- Bacillus radiobacter*, 23.
- BAKER**, C. F., and G. BODEN KLOSS,  
*Spolia Mentawiensis*: Homoptera-Ful-  
goroidea, 391; Some Philippine and  
Malaysian Machaerotidae (Cercopioidea),  
529.
- Biology of the large Philippine forest scor-  
pion, 875.
- Bournsia* McGregor, 525.  
*seruginosus* Bourns & Worcester, 525.  
*affinis* (Zimmer), 525.
- C**
- Caesio*, 413, 415.
- Cajanus indicus* Spreng, 180.
- Calambayungan and Larap iron-ore deposits  
of Mambulao, Camarines Norte Prov-  
ince, Philippine Islands, 265.
- Calidris rogersi* (Mathews), 515.  
*tenuirostris* (Horsf.), 515.
- Calonectria*, 104, 170.  
*hibiscicola* P. Henn., 171.  
*niciae* A. Zimm., 171.  
*rigidiuscula* (Berk. & Br.) Sacc., 169-171.  
*squamulosa* Rehm, 171.  
*sulcata* Starbuck, 171.  
*tetraspora* (Seaver) Sacc., 171.
- Calosota splendida* Girault, 553.
- Caprimulgus jotaka* Temm. & Schegel, 518.
- Carica papaya* Linn., 126, 230.
- Carystus*, 538.
- Centromeria speilinea* Walk., 396.
- Cercopidae*, 530.
- Cercopina*, 530.
- Cercopioidea*, 530.
- Chaetodrosophila*, 367.
- Chaetodrosophilella*, 366.
- Chaetomium elatum* Kunze, 79-83, 96.  
*funicolum* Cke., 78-83, 96.  
*olivaceum* C. & E., 79-83, 96.  
*olivaceum* var. *chartarum* Ehrenb.,  
79-81, 88, 96.
- Chaetophyes* Schmidt, 533, 535, 541, 543, 545.
- Cercopioidea*, 530.
- Chaetodrosophila*, 367.
- Chaetodrosophilella*, 366.

- Chaetomium elatum* Kunze, 79-83, 96.  
*funicolum* Cke., 78-83, 96.  
*olivaceum* C. & E., 79-83, 96.  
*olivaceum* var. *chartarum* Ehrenb., 79-81,  
  83, 96.
- Chaetophyes* Schmidt, 538, 535, 541, 543, 545.  
*bicolor*, 544.  
*unicolor*, 544.
- Chætura dubia* McGregor, 518, 519.
- Chalcid flies from the Philippine, four new,  
  553.
- Chlamydomucor racemosus* Brefeld, 79-81, 83
- Chlamydospora* Wr., 109, 112.
- Chlidonias leucopareia* (Temm.), 514.
- Chloropsis flavigaster* (Tweedd.), 519.
- Citrus aurantiifolia* Swingle, 149, 216, 220.  
*sinensis* Osb., 211.
- Clastoptera*, 525, 544.
- Clastopteridae*, 530.
- Cleonymiae*, 554.
- Concrete value of Philippine sand, gravel,  
  and crushed stone, 421.
- Connacherota* Schmidt, 538.  
*attenuata* Baker, 534.  
*mindanaensis* Baker, 534, 535.  
*notoceras* Schmidt, 533-535.  
*philippinensis* Baker, 534, 535.
- Constrictum* Wr., 111, 152, 184.
- Corythucha* Stål, 58.
- Cosmophila erosa* Hübner, 68.
- Cosmoscarta lateralis* Jac., 551.
- Crocethia alba* (Pallas), 515.
- Curtonotum*, 872.
- Cyanostroma* Wr., 187, 205.
- D
- Daradax nasutus* Mel., 408.  
*robustus* Baker, 394, 407.
- Datura alba* Nees and *Datura fastuosa* Linneus from the Philippines, a pharmacognostical study on, 275.  
*metel*, 275.  
*stramonium*, 278.
- Daucas carota* Linn., 149.
- Deterioration of abacá (Manila hemp) fiber  
  through mold action, 75.
- Determination of bromine in organic compounds, a modified combustion method for the, 815.
- Detya batuanis* Baker, 394, 401.  
*fusconebulosa* Dist., 401, 402.  
*sublineata* Walk., 401.
- Dicoidiae*, 522.
- Dicæum*, 524.  
*eruentatum* (Linn.), 521.  
*ignicapillum* Eyton, 520.
- Dictyophara pallida* Don, 398.
- Dictyopharidae*, 393, 396.
- Diplocysta nimia* Drake, 54, 55, 56.  
*nubila* Drake, 55.
- Discolor*, 104, 116, 124, 141, 167, 169.
- Discomyza punctipennis* Wulp, 370.
- DRAKE, CARL J., Tingitidae from the Far East (Hemiptera), 53.
- Drosophila* Duda, 368.  
*albomicans* Duda, 369.  
*ampelophila* Loew, 370.  
*ananassae* Doleschall, 371.  
*bistrigata* de Meij., 365.  
*ciliifemur* Villeneuve, 367.  
*elongata* Sturtevant, 372.  
*finigutta* Walk., 373.  
*hirtiscutellata* Sturtevant, 372.  
*hydei* Sturtevant, 372.  
*hypocasta* O. S., 367, 368.  
*illata* Walk., 373.  
*immigrans*, 368, 374.  
*lateralis* Walk., 373.  
*lurida* Walk., 373.  
*melanogaster* Meij., 370, 371, 375.  
*melanospila* Walk., 373.  
*montium* de Meij. var. *atropyga* Duda,  
  371.
- obscuricornis* (de Meij.), 374.  
*pictipennis* Kertesz, 367.  
*pinguis* Walk., 373.  
*repleta*, 372.  
*rudis* Walk., 373, 374.  
*solennis* Walk., 374.  
*takahashii* Sturtevant, 361, 371.  
*tripunctata*, 367.  
*tristipennis* Duda, 371.  
*(Chaetodrosophilella) quadrilineata* de Meij., 367.  
*(Hirtodrosophila) longicornita* Duda, 367.  
*(Paradrosophila) acuta* Sturtevant, 370.  
*(Paradrosophila) Jurida* Walk., 370.  
*(Spinulophila) balneorum* Sturtevant,  
  367, 369.  
*(Spinulophila) immigrans* Sturtevant,  
  367.  
*(Spinulophila) immigrans* var. *formosana* Sturtevant, 367, 368.  
*(Spinulophila) monochaeta* Sturtevant,  
  367, 368.  
*(Spinulophila) nasuta* Lamb, 367, 369.  
*(Spinulophila) rubra* Sturtevant, 367,  
  369.
- Dudu dudu*, 35.
- Dupetor flavicollis* (Latham), 517.
- E
- Elegans* Wr., 104, 110, 124, 166, 167, 176,  
  192, 205.
- Enderleinia* Schmidt, 529, 532.
- Enderleininae* 531.
- Eoscarta borealis* Dist., 551.  
*colona* Jac., 551.  
*ferruginea* Dist., 551.  
*laoensis* E. Schmidt, 551.  
*liternoides* Bredd., 551.
- Eostegana* (Hendel), 362.
- Epora subtilis* Walk., 408.
- Euchlora hortensis* Ohaus, 61.  
*latefemorata* Ohaus, 61, 62.

*Eupelmini*, 553.  
*Eupelminiae*, 553.  
*Euphria discolor* Guer., 394.  
*Eupionnotes* Wr., 109, 112.  
*Eurybrachidæ*, 393, 394.

## T

*Ferruginosum*, 136.  
*Ficus pseudopalma*, 171.  
 sp., 228, 237.  
**FIDELINO**, F. A., and P. A. PANGAN, Intrahepatic administration of drugs, 557.  
*Flatidæ*, 393, 398.  
*Forculæ Dist.*, 407.  
*Forculoidæ Dist.*, 407.  
 Free toxin in the blood during the course of tetanus toxæmia, 29.  
*Fulgora oculata* Westw., 394.  
*Fulgoridæ*, 393, 394.  
*Fusarium Link*, 103, 104, 106, 107, 109, 111, 170.  
*acuminatum* Ell. & Ev. emend. Wr., 110, 141, 142.  
*alluviale* Wr., & Rkg., 111, 213.  
*anguicoides* Sherb., 110, 129, 130.  
*anthophilum* (A. Br.) Wr., 110, 130, 148, 149.  
*aurantiacum* (Link) Sacc., 105, 111.  
*aurantiacum* (Link) Sacc. emend. Wr., 201.  
*aurantiacum* Wr., 200.  
*batatas* Wr., 184.  
*bostrycoïdes* Wr., & Rkg., 110, 177.  
*bulbilgenum* Cke. & Mass., 105, 111, 184, 185.  
*bullatum* Sherb., 110, 136.  
*bullatum* Sherb. var. *brevius* Wr. & Rkg., 110, 134, 137.  
*bullatum* Sherb. var. *minus* Wr., & Rkg., 110, 133.  
*campyloceras* Wr. & Rkg., 110, 121.  
*caudatum* Wr., 110, 144.  
*chlamydosporum* Wr. & Rkg., 110, 115, 116.  
*cubense* Erw. F. Sm., 103, 104, 107, 111, 192, 194-196, 201.  
*cubense* var. *inodorum* Brandes, 192.  
*decomcellulare* Brick, 110, 169, 171.  
*dimerum* Penz., 109, 112, 113.  
*diversiporum* Sherb., 110, 126.  
*ensiforme* Wr. & Rkg., 111, 237, 242.  
*falcatum* App. & Wr., 110, 139, 140.  
*filiferum* (Preuss) Wr., 146.  
*flacciforme*, 118.  
*fructigenum* Fr. var. *maiis* Wr., 110.  
*fructigenum* Fr. var. *maiis forma 1* Wr. & Rkg., 167.  
*herbarum* Corda, 148.  
*herbarm* (Corda) Fr., 142.  
*hevæa* P. Henn., 234.  
*hyperoxysporum* Wr., 204, 205.  
*incarnatum* (Rob.) Sacc., 110, 123.  
*javanicum* Koord., 111, 232, 241.  
*longipes* Wr. & Rkg., 110, 142, 146.

*Fusarium Link*—Continued.  
*luteolum* Sherb., 111, 203-205.  
*macroceras* Wr. & Rkg., 110, 173.  
*martii* App. & Wr., 111, 216, 222-224, 227, 229.  
*martii* App. & Wr. var. *minus* Sherb., 111, 216, 221, 223.  
*martii* App. & Wr. var. *viride* Sherb., 111, 216, 220.  
*moniliforme* Sheld., 104, 110, 152, 158, 184.  
*moniliforme* Sheld. var. *erumpens* Wr. & Rkg., 110, 156.  
*moniliforme* Sheld. var. *maiis* Wr. & Rkg., 110, 162.  
*moniliforme* Sheld. var. *subglutinans* Wr. & Rkg., 110, 158.  
*neoceras* Wr. & Rkg., 110, 163.  
*orthoceras* App. & Wr. 110, 124, 179, 181.  
*orthoceras* App. & Wr. var. *triseptatum* Wr., 110, 181.  
*ossiculum* (Berk. & Curt.) Sacc., 110, 138.  
*oxysporum* Schlecht., 104, 111, 187, 188, 192, 193, 204, 205.  
*oxysporum* Schlecht. emend. Wr., 187.  
*oxysporum* Schlecht. var. *nicotianae* Johnson, 104, 111, 191, 193, 195, 196, 201.  
*pooe* (Peck) Wr., 115.  
*pusillum* Wr., 109, 112.  
*radicicola* Wr., 111, 188, 226, 227.  
*semitectum* Berk. & Rav., 110, 118, 119, 122, 124.  
*solani* var. *cyanum*, 208.  
*solani* (Mart. pro parte) App. & Wr., 111, 207, 208, 210, 223, 227, 229.  
*solani* (Mart. pro parte) App. & Wr. var. *minus* Wr., 111, 206.  
*solani* (Mart. pro parte) App. & Wr. var. *suffuscum* Sherb., 111, 208.  
*spicariae colorantii* (van Hall-de Jonge) Sacc. & Trott., 171.  
*sporotrichioides* Sherb., 115.  
*sporotrichum*, 116.  
*striatum* Sherb., 111, 229.  
*theobromae* App. & Strk., 111, 234, 235, 241.  
*trichothecioidea* Wr., 124.  
*viride* (Lechm.) Wr., 111, 224.

G

*Gallicolumba leayi* (Clarke), 614.  
*Gallionymus splendidus* Herre, 416.  
*Gargaphia* Stål, 58.  
*Garumna lepida* Mel., 409, 410.  
*melichari* Baker, 394, 409.  
*Gelastyrax latifrons* Mel., 403.  
*Gelchosia Kirk., 56.  
*Gergithus signatifrons* Mel., 403.  
*Gibberella*, 104, 152, 153, 158, 167, 173.  
*aceralis* (Moug.) Wr., 152.  
*moniliformis* (Sheld.) Wineland, 152.*

- Gibbosum Wr., 104, 110, 116, 132, 142, 143.  
 GIRAULT A. A., Four new chalcid flies from  
     the Philippines, 553.  
 Glyphotonga acuminata Schmidt, 406.  
     <sup>cyardiformis</sup> Mel., 407.  
 Goniopsis mystica Mel., 402.

## II

- Hemisphaerius imitatus Mel., 403.  
 Hemitonga Schmidt, 407.  
 HERRE, ALBERT W., A new genus and  
     three new species of Philippine fishes,  
     413.  
 HERRERA-BATTEKE, PILAR, Anilides  
     and toluides of chaulmoogric acid, 85.  
*Hibiscus*, 65, 67, 69, 70.  
     *rosa-sinensis* Linn., 65, 66, 68, 70, 134.  
     *sabdariffa* Linn., 170, 171.  
     *schizopetalus*, 171.  
*Hindola*, 529, 533, 535, 537, 544, 546.  
*Hindola Kirk.*, 538.  
*Hindola Stål*, 532.  
     *fulva* Baker, 541, 542, 543, 546.  
     *luzonensis* Baker, 540.  
     *nitida* Baker, 542, 546.  
     *viridicana* Stål, 539, 540, 542.  
*Hindoliinae*, 631.  
*Hindolini*, 531.  
*Hindoloidea* Dist., 533, 544-546.  
     *indicans*, 544.  
*Hindoloidesini*, 533.  
*Hirtodrosophila longecrinita* Duda, 367.  
 Homoptera-Fulgoroidea, 393.  
 Hookworms, effect of carbon tetrachloride,  
     chenopodium, and thymol on the ova  
     of expelled, 507.  
*Hormidas pictus* Dist., 56, 57.  
     *vicarius* Drake, 56.  
*Hydrocarpus alcaea* C. DC., 35.  
*Hydrochelidon hybrida* (Pallas), 514.  
 Hypocreales, 240.  
*Hypomyces*, 104, 206, 232, 235, 237, 242.  
*Hypomyces* (Fr.), 111.  
*Hypomyces* (Fr.) Tul., 240.  
     *haematoecoccus* (Berk. & Br.) Wr., 242.  
     *ipomoeae* (Hals.) Wr., 111, 240-242.

## I

- Iba*, 529.  
*Ibaini*, 530.  
*Impatiens sultani*, 207.  
 Imperfect hermaphroditism in flowers of  
     *Hibiacus*, removed by surgical opera-  
     tion, 65.  
*Incisurifrons* Duda, 367.  
 Intrahepatic administration of drugs, 557.  
*Iporisa* Walk., 408.  
*Iporisella* Baker, 408.  
     *siporensis* Baker, 394, 408.  
*Isidiae*, 393, 403.

## J

- JACOBI, A., Ueber einige Tomaspidae  
     (Rhynchota, Homoptera) von den  
     Philippinen, 549.

## K

- Kachubung, 275.  
*Kittacincla nigra* Shp., 519.  
 KLOSS, C. BODEN, see BAKER and KLOSS.

## L

- Lateritium Wr., 110, 152, 166, 177.  
*Lawana optata* Mel., 398.  
*Leptobrysa* Stål, 58.  
*Leptosphaeria* sp., 76.  
*Leucophenga*, 362-364, 374.  
     *argentata* de Meij., 364.  
     *bezzii* Sturtevant, 364.  
     *halteropunctata* Duda, 364.  
     *salatiae* de Meij., 373.  
*Limicola falcinellus* (Pontoppidan), 516.  
     *falcinellus siberica* (Dresser), 516.  
*Limnobaenus fuscus* (Linn.), 514.  
*Lisea* (Sacc.) Wr., 152.  
*Liscola* Wr., Sherb., Rkg., Joh., & Bail., 104,  
     110, 152, 166.  
*Lophopidae*, 393, 394.  
*Lophops carinatus* Kby., 396.  
     *mentawiensis* Baker, 393, 395.  
     *zebra*, 396.  
*Lycopersicum esculentum* Mill., 118.

## M

- Machaeropsis* Mel., 532.  
*Machaerota* Burm., 533, 540.  
*Machaerotidae*, 530.  
*Machaerotinae*, 531.  
*Macherotini*, 531.  
*Macrodontomerus silvillia* Girault, 553, 555.  
 MANALANG, O., Effect of carbon tetra-  
     chloride, chenopodium, and thymol on  
     the ova of expelled hookworms, 507.  
*Martiella* Wr., 105, 109, 111, 206, 219, 226.  
*Maxudeinæ*, 531.  
 McGREGOR, RICHARD C., New or notewor-  
     thy Philippine birds, V, 513.  
*Megapodus eumingi* Dillwyn, 518.  
*Melia azedarach*, 171.  
*Melicharis fuscomarginata* Mel., 398, 399.  
     *karnyi* Baker, 393, 398, 399.  
     *niveina* Walk., 399.  
     *quadrata*, 398, 399.  
     (*Anaya*) *fuscomarginata*, 398.  
*Melilotus*, 107, 108.  
 MENDIOLA, NEMESIO B., Imperfect her-  
     maphroditism in flowers of *Hibiscus*,  
     removed by surgical operation, 65.  
*Mesoscolopax minutus* (Gould), 515.  
*Metastenini*, 554.

*Metastenoides ferus* Girault, 554.  
*Miasa rubrovittata* Schmidt, 396.  
*Microdrosophila* Malloch, 367.  
*Micropalama himantopus* (Bp.), 515.  
*Micrura melanoxantha* Blyth, 552.  
*Mioscartia* Bredd., 549, 550.  
  <sub>basilana</sub> Jac., 550.  
  <sub>ferruginea</sub> (Walk.), 549, 550.  
  <sub>flavobassalis</sub> Jac., 550.  
  <sub>rubens</sub> W. Schmidt, 549.  
  <sub>semperi</sub> Jac., 549.  
*Mirolabrichthys* Herre, 413.  
  <sub>tuka</sub> Herre and Montalban, 413.  
*Modiglianella* Schmidt, 532, 539.  
*Monanthia evidens* Drake, 53, 54.  
  <sub>formosa</sub> Drake, 53, 54.  
  <sub>sauteri</sub> Drake, 53.  
*Moniliiforme* Sherb., 152.  
*Monodontomerini*, 555.  
*Musa*, 192.  
  <sub>sapientium</sub> Linn., 112, 114, 116, 118, 122,  
  134, 137, 138, 146, 149, 153, 155, 159,  
  162, 164, 181, 185, 195, 196, 204, 216.  
*Mycodrosophila*, 366, 373.

## N

**NAÑAGAS, JUAN C.**, and **LEON C. SANTIAGO**. Vital capacity and physical standards of students of the University of the Philippines, 325.  
*Narcissus*, 185.  
*Necator*, 509, 510.  
*Nectria*, 104, 114.  
  <sub>haematoecocca</sub> Berk. & Br., 242.  
*Neodelia moultoni* Dist., 407.  
*Neommatissus*, 398.  
*Nephesa coramandelliana* Spinola, 598.  
  <sub>rosea</sub> Spinola, 398.  
*Neuromachærota* Schmidt, 531.  
*Nisotra gemella* Erichs., 68.  
  sp., 68.  
Nitrifying power of some Philippine soils, 1.  
*Nitrobacter*, 24.  
*Nitrosomonas*, 24.  
*Notiphila*, 365.  
  <sub>lineosa</sub> Walk., 374.  
*Numenius arquatus* (Linn.), 514.

## O

**OHAUS, F.**, Zwei neue Anomala-Arten der Philippinen (Coleoptera, Lamellicornia, Ruteliden), 61.  
*Oncophysa constantis* Drake, 54.  
  <sub>vesiculata</sub> Stål, 54.  
  <sub>vesiculosus</sub> Stål, 54.  
*Ornithoptera nephorea* Gray, 69.  
*Orthocera* Wr., 110, 177.  
*Orthophana* Mel., 407.  
*Ozychara*, 406.  
*Oxyperorum* Wr., 187, 205.  
*Ozyxana* Dist., 407.

## P

*Pachyglossa*, 524.  
*Pachyglossa*, Blyth, 524.  
*Pachyglossa* Hodgson, 522.  
  <sub>melanoxantha</sub> Hodgson, 523.  
*Palamnaeus longimanus* Herbst, 375.  
  <sub>catesii</sub> Pocock, 375.  
*Pallens*, 205.  
**PANGAN, P. A.**, see **FIDELINO** and **PANGAN**.  
*Paradrosophilida*, 367, 373.  
*Parahindula* Baker, 532, 537, 542.  
  <sub>borneensis</sub> Baker, 537.  
*Paratetra* distanti Baker, 394, 405.  
*Paratonga* Schmidt, 407.  
*Pardalotus percussus* Temm., 520, 522.  
  <sub>thoracicus</sub>, 522.  
*Pectinariophyes* Kirk., 532, 538.  
*Penicillium glaucum* (Link?) Brefeld, 76,  
  79, 80, 81, 83, 96.  
*Penthicodes atomaria* Weber, 394.  
  <sub>niasensis</sub> Schmidt, 394.  
  <sub>scutellata</sub> White, 394.  
*Periplaneta americana* Linn., 378.  
*Phaneroptera furcifera* Stål, 68.  
*Phaseolus vulgaris* Linn., 149, 174.  
*Phenacoccus hirsutus* Green, 68.  
Philippine and Malaysian Machaerotidae (Ceropioidea), 529.  
  and other Oriental Drosophilidae, 361.  
birds, new or noteworthy, 518.  
fishes, a new genus and three new species of, 418.  
lumbang oil, an odoriferous oil and two new linolic tetrabromides from, 41.  
*Tomaspidinae* (Rhynchota, Homoptera), 549.  
*Phodilinae*, 517.  
*Phodilus* I. Geoffroy Saint-Hilaire, 517.  
  <sub>riversi</sub> McGregor, 518.  
*Pholidus* Horsf. & Moore, 517.  
*Phorticida* Schiner, 361.  
*Phorticella* Duda, 365.  
*Photodilina* Blanford, 517.  
*Photodilus assimilis* Hume, 518.  
  <sub>badius</sub> (Horsf.), 518.  
*Pipra squalida* Reichb., 522.  
*Pipriacoma* Blyth, 522.  
  <sub>modestum</sub> (Hume), 523.  
  <sub>squalidum</sub> (Burton), 523, 524.  
*Pirus*, 221.  
*Pisum*, 220.  
*Pithecophaga jefferyi* Gr., 517.  
*Plantago* sp., 240.  
*Pluvialis fulvus* (Gmel.), 514.  
*Poehzia fuscata* F., 400.  
  <sub>marginata</sub> Walk., 400.  
  <sub>ochracea</sub> Schmidt, 401.  
  <sub>sinuata</sub> Stål, 401.  
*Poeciloterpa* Stål, 550.  
  <sub>atra</sub> Jac., 550.  
  <sub>latipennis</sub> E. Schmidt, 550.

*Polisornis* McGregor, 522, 525.  
*anthonyi* McGregor, 525.  
*bicolor* Bourne & Worcester, 525.  
*inexpectatus* Hartert, 525.  
*quadricolor* Tweed, 525.  
*Polychætophyes* Kirk., 533, 538.  
*aegualior* Kirk., 538.  
*appendiculata*, 544, 545.  
*perkinsi*, 544.  
*serpulida* Kirk., 544, 545.  
*Polytrichophyes* Schmidt, 532, 539.  
*Prionocheilus* Chevr., 520.  
*Prionochilus* Strickland, 519, 522.  
*xeroginosus* Bourne & Worcester, 521, 523-525.  
*anthonyi* McGregor, 521-523, 525.  
*bicolor* Bourne & Worcester, 522, 523, 525.  
*everetti* Shp., 523.  
*igneocapillus* (Eyton), 523.  
*ignicapillum*, 520.  
*inexpectatus* Hartert, 523, 525.  
*johannae* Shp., 521, 523, 525.  
*maculatus* (Temm.), 519, 523.  
*obsoletus* (Müller & Schlegel), 523.  
*olivaceus* Tweed, 520-523, 525.  
*parsonsi* McGregor, 520, 521, 523, 525.  
*percussus* (Temm.), 519, 523.  
*plateni* Blasius, 523.  
*quadricolor* Tweed, 521, 522, 525.  
*samarensis* Steere, 522.  
*squalidus* (Burton), 521.  
*thoracicus* (Temm.), 519, 523.  
*vincenti*, 522, 524.  
*xanthopygus* Salv., 523.  
*Pseudomartiella* Wr., 111, 206.  
*Ptyelina* 530.  
*Ptyelus viridicans* Stål, 538.

## Q

*Querquedula querquedula* (Linn.), 517.  
*Quinquatrus* Dist., 532, 545, 546.  
*dohertyi* China, 539, 546.

## R

*Rana vittigera*, 557.  
Reduction of linolenic and linolic bromides  
and rebromination of the free acids,  
297.  
REINKING, O. A., and H. W. WOLLEN-  
WEBER, Tropical Fusaria, 108.  
Rhinaulacinae, 530.  
*Rhizopus nigricans* Ehrenb., 76, 79-81.  
*oryzae* Went., 79-81.  
*Rhyparobia maderae* F., 378.  
*Ricania disciptera* Stål, 401.  
*marginalis* Walk., 401.  
*signata* Stål, 401.  
*stupida* Walk., 401.  
*Ricaniidae*, 393, 400.  
*Ricanoptera meijerborgii* Stål, 401.  
*Roseum* Wr., 107, 110, 126, 130, 142, 143, 148.

## S

*Saccharum officinarum* Linn., 201, 207.  
SANTIAGO, LEON C., see NAÑAGAS and  
SANTIAGO.  
SANTIAGO, SIMEONA, and AUGUSTUS P.  
WEST, An odoriferous oil and two new  
linolic tetrabromides from Philippine  
lumbang oil, 41.  
SANTOS, JOSÉ K., A pharmacognostical  
study on *Datura alba* Nees and *Datu-*  
*ra fastuosa* Linneus from the Phil-  
ippines, 275.  
*Sarima* sp., 405.  
*Saubinetii* Wr., 110, 173.  
*Scamandra rosea* Guer., 394.  
SCHÖBL, OTTO, see YASUYAMA and SCHÖBL.  
SCHULTZE, W., Biology of the large Phil-  
ippine forest scorpion 375.  
*Sciomyza leucomelana* Walk., 374.  
*Scoleconectria tetraspora* Seaver, 171.  
*Saliza siaporensis* Baker, 393, 400.  
SERRANO, FELICISIMO B., Deterioration  
of abacá (Manila hemp) fiber through  
mold action, 75.  
*Serreria* Baker, 532, 535, 539.  
*luzonensis*, 537.  
*notabilis* Baker, 535.  
*Sigmasomini*, 531.  
SMITH, 2D. F. L., A modified combustion  
method for the determination of bro-  
mine in organic compounds, 815.  
SMITH, 2D. F. L., and AUGUSTUS P.  
WEST, Reduction of linolenic and li-  
nolic bromides and rebromination of  
the free acids, 297.  
*Solanum*, 220.  
*tuberosum* Linn., 230.  
*Spicaria*, 169.  
*colorata* van Hall-de Jonge, 169, 171.  
*Spicarioides* Wr., 169.  
*Spicarioides* (Wr. subsection) Wr., Sherb.,  
Rkg., Joh., & Ball., 110, 169.  
*Spinophilida* Duda, 367, 369, 374.  
*albomicans* Duda, 367.  
*signata* Duda, 367.  
*Spolia* Mentawiensis: Homoptera-Fulgoro-  
idea, 391.  
*Sporotrichiella* Lewis, 115.  
*Sporotrichiella* Wr., 110, 115.  
*Stacotooides typicus*, 397.  
*Stegana* Meig., 361-363, 374.  
*bakeri* Sturtevant, 363.  
*Stephanitis* Stål, 58.  
*Stephanolepis nigrolineatus* Herre, 415.  
*Sterna minuta*, 514.  
*sinensis* Gmel., 514.  
*Strix*, 518.  
*badia*, 517.  
*Sturnia philippensis* (Forst.), 525.  
*sinensis* (Gmel.), 525.  
STURTEVANT, A. H., Philippine and other  
Oriental Drosophilidae, 361.

**T**

*Taihorina* Schumacher, 532.  
*geisha*, 539.

Talong-punay itim, 275.  
punay puti, 275.

TEGENGREN, F. R., The Calambayungan and Larap iron-ore deposits of Mambulac, Camarines Norte Province, Philippine Islands, 255.

Tempsa malaya Stål, 406.

*Thabenoides albinotatus* Dist., 404.  
smedleyi Baker, 394, 404.

*Thaumasura*, 554.

*Thaumasurelloides* Girault, 554.  
*silvae* Girault, 554.

*Theobroma cacao* Linn., 122, 149, 169-171, 179, 208.

*Thessitus insignis* Westw., 394.  
Tingitidae from the Far East (Hemiptera), 53.

*Tomaspidae*, 580.

*Tonga*, 407.

*Torula nigra* Guill., 79.

Torymidae, 555.

*Totanus stagnatilis* Bechstein, 515.

*Trobolophya*, 398.

*batuensis* Baker, 393, 396, 397.  
*jacobsoni* Mel., 397.

Tropical Fusaria, 103.

*Tropidophora javana* Leth., 396.

*Tropiduchidae*, 393, 407.

Trydyminæ, 554.

*Tyto*, 518.

**U**

*Uhlerites* Drake, 56.  
(*Phyllontocheila*) *debile* Uhler, 56.

**V**

*Varma fervens* Walk., 408

Vital capacity and physical standards of students of the University of the Philippines, 325.

**W**

*Weigoldella*, 546.

WEST, AUGUSTUS P., see SANTIAGO and WEST; see also SMITH and WEST.

WOLLENWEBER, H. W., see REINKING and WOLLENWEBER.

**X**

*Xenias* Dist., 532, 545, 546.

*notandus* Dist., 539, 545.

*Xenotingis* Drake, 57.

*bakeri* Drake, 57, 58.

*horni* Drake, 57, 58.

*Xeocephalus cyanescens* Shp., 519.

**Y**

YASUYAMA, K., and OTTO SCHÖBL, Free toxin in the blood during the course of tetanus toxæmia, 29.

**Z**

*Zaprionus* Duda, 365, 374.

*albicornis* End., 365.

*bakeri* Sturtevant, 365.

*bilineata* (Williston), 365.

*lineosa* (Walk.), 365.

*multistriata* Sturtevant, 365.

*orbitalis* (Sturtevant), 365.

(*Phorticella*) *bakeri* Sturtevant, 366.

*Zea mays* Linn., 126, 153.

Zwei neue Anomala-Arten der Philippinen (Coleoptera, Lamellicornia, Ruteliden), 61.