Name.....

B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2011

First Semester

MATRICES, CALCULUS AND LAPLACE TRANSFORMS

(Complementary Course to B.C.A.)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions.

Answer all questions.

Each Bunch of four questions has weight 1.

Define a skew-symmetric matrix with an example.

2 If
$$A = \begin{bmatrix} 3 & 6 \\ 7 & 2 \end{bmatrix}$$
, find A^{-1} .

3 Show that is indempotent.

4 Find the rank of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$$
 is idempotent.

II. 5 Evaluate:
$$\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$$
.

6 Find the equation of the tangent line at (6, 4) on the graph of the function $f(x) = \frac{8}{\sqrt{x-2}}$.

7 If
$$y = \frac{x^4}{2} - \frac{3}{2}x^2 - x$$
, find $\frac{d^2y}{dx^2}$.

8 Explain local and global extrema.

Turn over

- III. 9 Form the partial differential equation by eliminating the arbitrary constants from $Z = f(x^2 y^2)$.
 - 10 Define the order and degree of a partial differential equation.
 - 11 Write the Lagrange's linear equation of the first order.
 - 12 Explain the term particular Integral for a partial differential equation.
- IV. 13 If $L\{F(t)\}=f(s)$, how to find $L\{\frac{F(t)}{t}\}$.
 - 14 Find $L^{-1} \left\{ \frac{1}{s^2 1} \right\}$.
 - 15 State the Convolution theorem of Laplace transforms.
 - 16 Find L $\{e^{-3t}\cos 5t\}$.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight 1.

- 17. Explain the normal form of a matrix.
- 18. Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$ by reducing it to the Canonical form.
- 19. Prove that $\frac{d}{dx}(\sin x) = \cos x$.
- 20. State the Mean Value theorem.
- 21. Solve $\frac{\partial^2 z}{\partial x^2} = xy$.
- 22. Find the differential equation of all spheres whose centres lie on the z-axis.
- 23. Show that $L\{t \sin at\} = \frac{2as}{\left(s^2 + a^2\right)^2}$.
- 24. Find L¹ $\left\{ \frac{s+3}{s^2-4s+13} \right\}$.

 $(5\times1=5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- 25. If A is a non-singular square matrix then prove the following:-
 - (i) A^T is invertible.

(ii)
$$(A^T)^1 = (A^{-1})^T$$
.

- 26. Find the rank of A where $A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$ by reducing it to the normal form.
- 27. State the Rolle's theorem. Give its geometrical meaning.
- 28. A dynamic blast blows a heavy rock straight up with a launch velocity of 160 ft/sec. It reaches a height of $s = 160 t 16t^2$ ft after t seconds.
 - (a) How high does the rock go?
 - (b) What is the velocity and speed of the rock when it is 256 ft above the ground on the way up? One the way down?
- 29. Use Lagrange method to solve $x^2(y-z)p+y^2(z-x)q=z^2(x-y)$.
- 30. Use Convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right)$.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

31. Test for consistency and solve the system of linear equations

$$x+2y+z=2$$

$$3x + y - 2z = 1$$

$$4x - 3y - z = 3$$

$$2x + 4y + 2z = 4.$$

Turn over

- 32. (i) If $x^5 y^3 = (x + y)^8$, show that $y = x \frac{dy}{dx}$.
 - (ii) Evaluate $\sqrt[3]{25}$ approximately by use of differentials.
- 33. (i) If F(t) is a periodic function with period T, Prove that $L\{F(t)\} = \frac{\int_0^T e^{-st} F(t) dt}{1 e^{-sT}}$.

(ii) Find L {F(t)} if F(t) =
$$\begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \\ 0, & t > 2 \end{cases}$$

 $(2\times 4=8)$