T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with Financial Time Series Data

Juan Diego Sánchez-Torres 1 Juan Francisco Muñoz-Elguezabal ¹

¹Mathematics & Physics Department - Western Institute of Technology and Higher Education (ITESO)

Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive Modeling Process using Financial Time Series Data.

Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, **OHLC** data. GMT timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.

Experiment: A classification problem is formulated as to predict the target variable, CO_{t+1} , which is defined as the sign($Close_{t+1} - Open_{t+1}$). For the explanatory variables, the base definition is to use only those of endogenous nature, that is, to create them using only **OHLC** values.

A discrete representation

Let V_t be the value of a financial asset at any given time t, and S_t as a discrete representation of V_t if there is an observable transaction Ts_t . Similarly, if there is a set of discrete Ts_t observed during an interval of time T of n = 1, 2, ..., n units of time, $\{S_T\}_{T=1}^n$, can be represented by $OHLC_T$: $\{Open_t, High_t, Low_t, Close_t\}$. The frequency of sampling T, can be arbitrarly defined.

OHLC data

Timestamp: The date and time for each interval. Open: The first price of the interval. **H**igh: The highest price during the interval. Low: The lowest price during the interval. Close: The last price of the interval

Intra-day micro-information: volatility: HL_t , price-change: CO_t uptrend: HO_t , downtrend: OL_t

Candlestick Visual Representation (Figure 1)

The base calculations are:

 $HL_t = High_t - Low_t$ $OL_t = Open_t - Low_t$ $CO_t = Close_t - Open_t$ $HO_t = High_t - Open_t$

T-Fold-SV (Steps)

1.- Folds Formation

Depends on labeling, can be calendar based.

- 2.- Target and Feature Engineering
- In-Fold exclusive or Global and then divide.
- 3.- Information matrix

To asses information sparsity among Folds.

- 4.- Predictive Modeling
- Hyperparameter optimization Train-Val sets.
- 5.- Generalization Assessment

Out-Of-Sample and/or Out-Of-Distribution.

1: Folds Formation (Figure 2)

2: Target Variable (labeling)

A continuous variable prediction (regression problem), into a discrete variable prediction (classification problem), a time-based labeling can be stated as:

 $\hat{y}_t = sign\left\{CO_t\right\}$

Interesting enough, this target variable never had an imbalace of classes more than 5.5%

2: Feature Engineering

with $\{OL\}_{t-k}$, $\{HO\}_{t-k}$, $\{HL\}_{t-k}$, $\{CO\}_{t-k}$ for values of k = 1, 2, ...K, with K as a proposed memory parameter. Then perform some fundamental operations: Simple Moving Average SMA_t , lag: LAG_t , Standard Deviation: SD_t and Cumulative Sumation: $CUMSUM_{t}$.

Then symbolic variables where generated using Genetic Programming.

3.1: Information Representation and Sparsity

A gamma distribution to fit the PDF of two set of variables, and the Kullback-Leibler Divergence to measure the similarity between the two:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \quad \text{for} \quad x > 0 \quad \alpha, \beta > 0$$
 (1)

 $\Gamma(\alpha)$: The gamma function $\forall \alpha \in \mathbb{Z}^+$ and the $D_{KL}(P||Q)$: Kullback-Liebler Divergence, which for unknown continuous random variables, P, Q, or for p, q as empirically adjusted Probability Density Functions (PDF) is denoted by:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx \qquad (2)$$

3.2: Information matrix

An Information Matrix (IM) represents the similarity in information, for the target varible, among every Fold.

$$IM = \begin{bmatrix} D_{KL(1,1)} & D_{KL(1,2)} & \dots & D_{KL(1,n)} \\ D_{KL(2,1)} & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & D_{KL(n-1,n)} \\ D_{KL(n,1)} & \dots & D_{KL(n,n-1)} & D_{KL(n,n)} \end{bmatrix}$$

 D_{KL} is a non-conumtative operation, hence $D_{KL}(P||Q) \neq D_{KL}(Q||P)$. That means the *Information Matrix* (IM), is not symmetric, but has 0's in its diagonal.

3.3: Matrix Characterization

If an *Information Threshold* is defined, and then applied to every value in IM, then the latter can be characterized according to a counting of following:

- Sparse:

All the elements of IM are sufficient disimilar among each other.

- Weakly Sparse:

There exists one or more very similar pairs of elements.

- Non-sparse:

ALl elements are highly similar to each other.

The ideal in theory is to have a Sparse Information Matrix to train any model, so to use non-repeated data.

4.1: Cost Function and Regularization

One common component of the predictive modeling process is binary-logloss cost function with *elasticnet* regularization:

$$J(w) = J(w) + C \frac{\lambda}{m} \sum_{j=1}^{n} \|w_j\|_1 + (1 - C) \frac{\lambda}{2m} \sum_{j=1}^{n} \|w_j\|_2^2$$

Where $\Sigma_{j=1}^n \|w_j\|_1 = L_1$ and $\Sigma_{j=1}^n \|w_j\|_2^2 = L_2$ are also known as Lasso and Ridgerespectively, with C as the coefficient to regulate the effect between the two.

4.2: Model's Params

Logistic Regression

- $L1_L2_Ratio = 1.0 (Lasso)$ - Inverse of regularization (C): 1.5 - Parameter repetitions (Stability): Yes

ANN-MLP

- Hidden Layers: 2, 80 neurons each
- Activations: ReLU
- Dropout: 10% all layers

4.3: Results

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

Metric	ann-mlp	logistic	Metric
acc-train	0.9155	0.8311	auc-weighted
acc-val	0.8245	0.7368	auc-inv-weighted
acc-weighted	0.4486	0.4061	logloss-train
acc-inv-weighted	0.4213	0.3778	logloss-val
auc-train	0.9924	0.9300	logloss-weighted
auc-val	0.8401	0.8017	logloss-inv-weighted

Train-Logistic

Validation-Logistic

Train-NeuralNet

Validation-NeuralNet

ann-mlp logistic

0.4810

0.4353

0.2290

6.0595

0.6975

2.4467

0.4521

0.4137

5.8333

9.0892

3.2422

4.2190

ROCs-Train-Logistic

ROCs-Validation-Logistic

ROCs-Train-NeuralNet

ROCs-Validation-NeuralNet

References

- Lopez de Prado, Marcos M (2018), Advances in Financial Machine Learning, Wiley.
- Pezeshki et al (2020). Gradient Starvation: A Learning Proclivity in Neural Networks, Mohammad Pezeshki, Sekou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie, arXiv:2011.09468.
- Goddfellow et al (2017), *Deep Learning*, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press