MAT137 Lecture 41 —

Before next class:

Watch videos

A telescopic series

I want to calculate the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}.$

(A) Find a formula for the *k*-th partial sum
$$S_k = \sum_{n=1}^k \frac{1}{n^2 + 2n}$$
.

$$Hint: \quad \frac{1}{n^2 + 2n} = \frac{A}{n} + \frac{B}{n+2}$$

(B) Using the definition of series, compute the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

What is wrong with this calculation? Fix it

Claim:
$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1} = \ln 2$$

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \sum_{n=2}^{\infty} [\ln n - \ln(n+1)]$$

$$= \sum_{n=2}^{\infty} \ln(n) - \sum_{n=2}^{\infty} \ln(n+1)$$

$$= (\ln 2 + \ln 3 + \ln 4 + \dots) - (\ln 3 + \ln 4 + \dots)$$

$$= \ln 2$$

Trig series: convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} \sin(n\pi)$$
 (B) $\sum_{n=0}^{\infty} \cos(n\pi)$

Help me write the next assignment

In the next assignment I want to give you a series and ask you to calculate its value from the definition. I want the sequence of partial sums $\{S_n\}_{n=1}^{\infty}$ to be

$$\forall n \geq 1, \ S_n = n^2$$

What series should I ask you to calculate?

What can you conclude?

Assume $\forall n \in \mathbb{N}, \ a_n > 0$. Consider the series $\sum a_n$.

Let $\{S_n\}_{n=0}^{\infty}$ be its sequence of partial sums.

In each of the following cases, what can you conclude about the *series*? Is it convergent, divergent, or we do not know?

(A)
$$\forall n \in \mathbb{N}$$
, $\exists M \in \mathbb{R} \text{ s.t. } S_n \leq M$.

(B)
$$\exists M \in \mathbb{R} \text{ s.t.} \quad \forall n \in \mathbb{N}, \qquad S_n \leq M.$$

(C)
$$\exists M > 0$$
 s.t. $\forall n \in \mathbb{N}$, $a_n \leq M$.

(D)
$$\exists M > 0$$
 s.t. $\forall n \in \mathbb{N}$, $a_n \geq M$.

Harmonic series

For each n > 0 we define

 $r_n =$ smallest power of 2 that is greater than or equal to n

Consider the series
$$S = \sum_{n=1}^{\infty} \frac{1}{r_n}$$

- (A) Compute r_1 through r_8
- (B) Compute the partial sums S_1, S_2, S_4, S_8 for the series S.
- (C) Calculate $S = \sum_{n=1}^{\infty} \frac{1}{r_n}$.
- (D) Calculate $H = \sum_{n=1}^{\infty} \frac{1}{n}$.

Hint: "Compare" H and S.

True or False – Definition of series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- (A) IF the series $\sum_{n=0}^{\infty} a_n$ is convergent, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded.
- (B) IF the series $\sum_{n=0}^{\infty} a_n$ is convergent, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.
- (C) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

True or False – Definition of series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- (D) IF $\forall n > 0$, $a_n > 0$, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing.
- (E) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n > 0$, $a_n > 0$.
- (F) IF $\forall n > 0$, $a_n \ge 0$, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is non-decreasing.
- (G) IF the sequence $\{S_n\}_{n=0}^{\infty}$ is non-decreasing, THEN $\forall n > 0$, $a_n \geq 0$

Rapid questions: geometric series

Convergent or divergent?

$$(A) \sum_{n=0}^{\infty} \frac{1}{2^n}$$

(D)
$$\sum_{n=5}^{\infty} \frac{3^n}{2^{2n+1}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

(E)
$$\sum_{n=3}^{\infty} \frac{3^n}{1000 \cdot 2^{n+2}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$$

$$(\mathsf{F}) \ \sum_{n=0}^{\infty} (-1)^n$$

Geometric series

Calculate the value of the following series:

(A)
$$1 + \frac{13}{+} \frac{19}{+} \frac{1}{27} + \frac{1}{81} + \dots$$

(B)
$$\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \dots$$

(C)
$$\frac{3}{2} - \frac{9}{4} + \frac{27}{8} - \frac{81}{16} + \dots$$

(D)
$$1 + \frac{1}{2^{0.5}} + \frac{1}{2} + \frac{1}{2^{1.5}} + \frac{1}{2^2} + \frac{1}{2^{2.5}} + \dots$$

(E)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{2^{2n+1}}$$
 (F) $\sum_{n=k}^{\infty} x^n$

Is 0.9999999... = 1?

Is 0.999999... = 1?

- (A) Write the number 0.9999999... as a series *Hint*: 427 = 400 + 20 + 7.
- (B) Compute the first few partial sums
- (C) Add up the series.

 Hint: it is geometric.

Decimal expansions of rational numbers

We can interpret any finite decimal expansion as a finite sum. For example:

$$2.13096 = 2 + \frac{1}{10} + \frac{3}{10^2} + \frac{0}{10^3} + \frac{9}{10^4} + \frac{6}{10^5}$$

Similarly, we can interpret any infinite decimal expansion as an infinite series.

Interpret the following numbers as series, and add up the series to calculate their value as fractions:

- (A) 0.99999... (C) 0.252525...
- (B) 0.11111... (D) 0.3121212...

Hint: Use geometric series

Functions as series

You know that when |x| < 1:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Find similar ways to write the following functions as series:

(A)
$$g(x) = \frac{1}{1+x}$$
 (C) $A(x) = \frac{1}{2-x}$

(B)
$$h(x) = \frac{1}{1-x^2}$$

Functions as series

You know that when |x| < 1:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Find similar ways to write the following functions as series:

(A)
$$g(x) = \frac{1}{1+x}$$
 (C) $A(x) = \frac{1}{2-x}$

(B)
$$h(x) = \frac{1}{1-x^2}$$
 (D) $G(x) = \ln(1+x)$

Hint: For the last one, compute G'.

Challenge

We want to calculate the value of

$$A = \sum_{n=0}^{\infty} \frac{1}{2^n}, \qquad B = \sum_{n=1}^{\infty} \frac{n}{2^n}, \qquad C = \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

$$Let f(x) = \frac{1}{1-x}.$$

- (A) Recall that $f(x) = \sum_{n=0}^{\infty} x^n$ for |x| < 1. Use it to compute A.
- (B) Pretend you can take derivatives of series the way you take them of finite sums. Write f'(x) as a series.
- (C) Use it to compute *B*.
- (D) Do something similar to compute C.

Challenge - 2

We want to calculate the value of

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) \, 3^n}$$

- (A) Compute $\sum_{n=0}^{\infty} (-1)^n x^{2n}$
- (B) Compute $\frac{d}{dx} [\arctan x]$
- (C) Pretend you can take derivatives and antiderivatives of series the way you can take them of finite sums. Which series adds up to arctan x?
- (D) Now calculate the value of the original series.

Examples

(A) A series
$$\sum_{n=0}^{\infty} a_n$$
 may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

Give one example of each of the four results.

Examples

(A) A series $\sum_{n=0}^{\infty} a_n$ may be $\begin{cases} \text{convergent (a number)} \\ \text{divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$

Give one example of each of the four results.

(B) Now assume $\forall n \in \mathbb{N}, \ a_n \geq 0$. Which of the four outcomes is still possible?

True or False – The tail of a series

(A) IF the series $\sum_{n=0}^{\infty} a_n$ converges,

THEN the series $\sum_{n=0}^{\infty} a_n$ converges

(B) IF the series $\sum_{n=1}^{\infty} a_n$ converges,

THEN the series $\sum_{n=0}^{\infty} a_n$ converges

(C) IF the series $\sum_{n=0}^{\infty} a_n$ converges,

THEN the series $\sum a_n$ converges to a smaller number.

True or False – The Necessary Condition

(A) IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

(B) IF
$$\lim_{n\to\infty} a_n \neq 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.

(C) IF
$$\sum_{n=0}^{\infty} a_n$$
 is convergent THEN $\lim_{n\to\infty} a_n = 0$.

(D) IF
$$\sum_{n=0}^{\infty} a_n$$
 is divergent THEN $\lim_{n\to\infty} a_n \neq 0$.

True or False – Harder questions

(A) IF
$$\sum_{n=0}^{\infty} a_n$$
 is convergent, THEN $\lim_{k\to\infty} \left[\sum_{n=k}^{\infty} a_n\right] = 0$.

(B) IF
$$\lim_{k\to\infty} \left[\sum_{n=k}^{\infty} a_n\right] = 0$$
, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

(C) IF
$$\sum_{n=1}^{\infty} a_{2n}$$
 and $\sum_{n=1}^{\infty} a_{2n+1}$ are convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

(D) IF
$$\sum_{n=1}^{\infty} a_n$$
 is convergent,

THEN
$$\sum_{n=1}^{\infty} a_{2n}$$
 and $\sum_{n=1}^{\infty} a_{2n+1}$ are convergent.

Series are linear

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $c \in \mathbb{R}$. Prove that

- IF $\sum_{n=0}^{\infty} a_n$ is convergent.
- THEN $\sum_{n=0}^{\infty} (ca_n)$ is convergent and $\sum_{n=0}^{\infty} (ca_n) = c \left[\sum_{n=0}^{\infty} a_n \right]$.

Write a proof directly from the definition of series.

Rapid questions: improper integrals

Convergent or divergent?

(A)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

(B)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

(C)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

Rapid questions: improper integrals

Convergent or divergent?

(A)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 (D) $\int_{1}^{\infty} \frac{x+1}{x^3+2} dx$

(B)
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 (E) $\int_{1}^{\infty} \frac{\sqrt{x^2 + 5}}{x^2 + 6} dx$

(C)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 (F) $\int_{1}^{\infty} \frac{x^2 + 3}{\sqrt{x^5 + 2}} dx$

For which values of $a \in \mathbb{R}$ are these series convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{a^n}$$

(C)
$$\sum_{n=1}^{\infty} a^n$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n^a}$$

(D)
$$\sum_{n=1}^{\infty} n^a$$

Quick comparisons: convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} \frac{n+1}{n^2+1}$$
 (C) $\sum_{n=0}^{\infty} \frac{\sqrt{n}+1}{n^2+1}$

(B)
$$\sum_{n=0}^{\infty} \frac{n^2 + 3n}{n^4 + 5n + 1}$$
 (D) $\sum_{n=0}^{\infty} \frac{\sqrt[3]{n^2 + 1} + 1}{\sqrt{n^3 + n} + n + 1}$

Slow comparisons: convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} \frac{2^{n}-40}{3^{n}-20}$$

(D)
$$\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^3}$$

(B)
$$\sum_{n=0}^{\infty} \frac{(\ln n)^{20}}{n^2}$$

(E)
$$\sum_{n=0}^{\infty} \frac{1}{n \ln n}$$

(C)
$$\sum_{n=0}^{\infty} \sin^2 \frac{1}{n}$$

(F)
$$\sum_{n=0}^{\infty} e^{-n^2}$$

Convergence tests: ninja level

We know

- $\forall n \in \mathbb{N}, a_n > 0.$
- the series $\sum_{n=1}^{\infty} a_n$ is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

(A)
$$\sum_{n=0}^{\infty} \sin a_n$$
 (C) $\sum_{n=0}^{\infty} \sqrt{a_n}$ (B) $\sum_{n=0}^{\infty} \cos a_n$ (D) $\sum_{n=0}^{\infty} (a_n)^2$

Are all decimal expansions well-defined?

We had defined a real number as "any number with a decimal expansion". Now we understand what it means to write a number with an infinite decimal expansion. It is a series!

$$0.a_1a_2a_3a_4a_5\cdots = \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{1000} + \dots$$

for any "digits" a_1 , a_2 , a_3 , ...

But this raises a question: are these series always convergent, no matter which infinite string of digits we choose?

Yes, they are! Prove it.

(Hint: all the terms in the series are positive.)

Rapid questions: alternating series test

Convergent or divergent?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n^{0.5}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{0.5}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

$$(\mathsf{E}) \ \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{\sin n}$$

$$(\mathsf{F}) \ \sum_{n=1}^{\infty} \frac{(-1)^n}{\sin n}$$

True or False - Odd and even partial sums

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

(A) IF
$$\lim_{n\to\infty} S_{2n}$$
 exists, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

(B) IF
$$\lim_{n\to\infty} S_{2n}$$
 exists and $\lim_{n\to\infty} S_{2n+1}$ exists, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

(C) IF
$$\lim_{n \to \infty} S_{2n}$$
 exists and $\lim_{n \to \infty} a_n = 0$, THEN $\sum_{n=0}^{\infty} a_n$ is convergent.

An Alternating Series Test example

Verify carefully the 3 hypotheses of the Alternating Series Test for

$$\sum_{n=0}^{\infty} (-1)^n \frac{n-\pi}{e^n}$$

Can we conclude it is convergent?

Estimation

Estimate the sum

$$S = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$$

with an error smaller than 0.001. Write your final answer as a rational number (i.e. as a quotient of two integers).

Not exactly alternating

Are these series convergent or divergent?

$$A = 1 + \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} - \frac{1}{7} - \frac{1}{8} + \frac{1}{9} + \frac{1}{10} - \frac{1}{11} - \frac{1}{12} + \dots$$

$$B = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} - \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} - \dots$$

Suggestion: Draw the partial sums on the real line.

A counterexample to Alternating Series Test?

Construct a series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$ such that

- $b_n > 0$ for all $n \ge 1$
- $\bullet \lim_{n\to\infty}b_n=0$
- the series $\sum_{n=1}^{\infty} (-1)^n b_n$ is divergent.

Absolutely convergent or conditionally convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{0.5}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1.5}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin n}$$

True or False - Absolute Values

- (A) IF $\{a_n\}_{n=1}^{\infty}$ is convergent, THEN $\{|a_n|\}_{n=1}^{\infty}$ is convergent.
- (B) IF $\{|a_n|\}_{n=1}^{\infty}$ is convergent, THEN $\{a_n\}_{n=1}^{\infty}$ is convergent.
- (C) IF $\sum_{n=1}^{\infty} a_n$ is convergent, THEN $\sum_{n=1}^{\infty} |a_n|$ is convergent.
- (D) IF $\sum_{n=1}^{\infty} |a_n|$ is convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

- Let $\sum a_n$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

- Let $\sum a_n$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

IF \sum (P. I.) is	AND \sum (N.1.) is	THEN $\sum a_n$ may be
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

- Let $\sum a_n$ be a series.
- \bullet \sum (P.T.) = sum of only the positive terms of the same series.
- \sum (N.T.) = sum of only the negative terms of the same series.

- Let $\sum a_n$ be a series.
- \sum (N.T.) = sum of only the negative terms of the same series.

	\sum (P.T.) may be	\sum (N.T.) may be
If $\sum a_n$ is CONV		
If $\sum a_n $ is CONV		
If $\sum a_n$ is ABS CONV		
If $\sum a_n$ is COND CONV		
${}$ If $\sum a_n = \infty$		
If $\sum a_n$ is DIV oscillating		

Quick review: Convergent or divergent?

(A)
$$\sum_{n=0}^{\infty} (1.1)^n$$
 (E) $\sum_{n=0}^{\infty} \frac{(-1)^n}{\ln n}$

(B)
$$\sum_{n=0}^{\infty} (0.9)^n$$
 (F) $\sum_{n=0}^{\infty} \frac{(-1)^n}{e^{1/n}}$

(C)
$$\sum_{n=0}^{\infty} \frac{1}{n}$$
 (G)
$$\sum_{n=0}^{\infty} \frac{n^3 + n}{n}$$

(D)
$$\sum_{n=0}^{\infty} \frac{1}{n^{0.9}}$$
 (H) $\sum_{n=0}^{\infty} \frac{\sqrt{n^5 + 2n + 16}}{n^4 - 11n + 7}$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$$
 (G) $\sum_{n=1}^{\infty} \frac{n^3 + n^2 + 11}{n^4 + 2n - 3}$

Ratio Test: Convergent or divergent?

Use Ratio Test to decide which series are convergent.

(A)
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
 (C)
$$\sum_{n=2}^{\infty} \frac{n!}{n^n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2 3^{n+1}}$$
 (D) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$

Root test

Here is a new convergence test

Theorem

Let $\sum a_n$ be a series. Assume the limit $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists.

- IF $0 \le L < 1$ THEN the series is ???
- IF L > 1 THEN the series is ???

Without writing an actual proof, guess the conclusion of the theorem and argue why it makes sense.

Hint: Imitate the argument on Video 13.18 for the Ratio Test. For large values of n, what is $|a_n|$ approximately?