All About MEMS Pressure Sensors for Medical Devices

Medical Electronics Symposium, Portland OR

Alissa M. Fitzgerald, Ph.D. | 19 September 2014

Outline

- About us
- MEMS pressure sensors in medical devices
- Basic principles
- How MEMS sensors are made and packaged
- Typical challenges with integrating MEMS

AMFitzgerald: Your Partner in MEMS Product Development

Complete services from concept to production

- Multi-disciplinary, expert engineering team
- Custom MEMS development from start to finish
- Design and process integration for volume production
- In-house prototype fabrication, easy transition to production

Micro Electro Mechanical Systems

- Micro
 - Feature sizes range 0.5 um to 1 mm
- <u>Electrical sensing/actuation</u>
 - Capacitive
 - Piezoelectric
 - Piezoresistive
- Mechanical devices with a third dimension
- Systems
 - Multiple functions on one piece of silicon

AMFitzgerald

AMFitzgerald

IMD

Birth of MEMS

- Evolved from semiconductor processes
- 1970's: using silicon processing to make mechanical devices, not transistors
 - Accelerometers
 - Pressure sensors
 - Inkjet nozzles
- 1982: Petersen's "Silicon as a Mechanical Material"

Popular Science, June 1984

Why MEMS are exciting for medical applications

- Ease of electronics integration enables sophisticated capabilities in small form factor:
 - Signal processing and analysis
 - Wireless capability
 - Battery-less operation (power/read)
 - Telemetry for medical sensor network (with cell phone)

Stacked MEMS and ASIC chips, wirebonded

Integrated Pressure Sensor

Source: IMD

Source: Chipworks/Kionix

MEMS Pressure Sensors

- Used in non-invasive medical equipment since 1980's
 - Respiratory equipment
 - Blood pressure cuffs
- Invasive uses increasing
 - Guidewire, catheter tip sensors
- Many manufacturers:
 - GE Sensors
 - Measurement Specialties
 - Silicon Microstructures
 - ISSYS
 - Tronics

Source: ISSYS

Ultra-miniature medical pressure

St. Jude Medical: CardioMEMS Pressure Sensor

FDA-approved

- Aorta stent graft monitoring
- Pulmonary artery pressure measurement
- Mean pressure, systolic pressure, diastolic pressure, heart rate and cardiac output
- Capacitive pressure sensor with wireless readout, catheter deployed
- Readout at doctor's office

Fused silica (glass) capacitive pressure sensor

St. Jude Medical: Guidewires

PressureWire Aeris

- Fractional flow reserve measurements (pressure drop across coronary artery stenosis)
- Also temperature, flow
- Stent or balloon treatment

St.Jude Medical PressureWire with AgileTip

 Piezoresistive pressure sensor

Source: KTH, Sweden

Sensimed Triggerfish IOP monitor

- Continuous intraocular pressure (IOP) measurement for glaucoma diagnosis
 - Size: 2.2mm x 2.5mm x 50microns
- Disposable lens
- Strain gage with wireless telemetry
- Under evaluation in Europe

Recorder syncs with doctor's computer via Bluetooth

Basic principles: MEMS pressure sensors

Piezoresistive

Capacitive

Plan view

Source: Tronics

Common embodiment: passive LC resonant sensors

- Battery-free
- Power limited by inductor coil size
- Large, external reader with power source

Fig 2. MEMS pressure sensor (a) top view (b) cross section

From: Yvanoff and Venkataraman, "Implantable LC Sensors for Biotelemetry"

MEMS pressure sensors: typical specs

	Piezoresistive	Capacitive	
Value	Resistor change, mΩ	Capacitor change, pF	
Readout	Wheatstone bridge	ASIC, digital	
Туре	Absolute or gage	Absolute or gage	
Pressure range (mmHg)	30 – 300	30 – 300	
Edge length (mm)	0.5 - 2.0	0.5 - 2.0	
Thickness (mm)	0.15 - 0.65	0.15 - 0.65	
Wireless readout	Not typical	Yes	

MEMS pressure sensors available today

Vendor	Acuity	GE	Murata
Model	AC3030	P161	SCB10H
Туре	Piezoresistive	Piezoresistive	Capacitive
Pressure Range (mmHg)	0 to 375	-50 to 300	0 to 900
Die Size (mm)	1.6 x 1.6 x 0.4	1.2 x 0.7 x 0.17	1.4 x 1.4 x 0.85

Many more available...

Silicon – the purest material refined by humans

Start

Silicon dioxide

"Pulling" crystals

Ingot

Finish

Solar cell wafer

Silicon process technology

Developed to make transistors and integrated circuits

Images from: http://www.intel.com/education/chips/index.htm

Wafer dicing

Similar to cutting tile

A pressure sensor wafer may have 50,000+ die!

Dicing leaves sharp corners and edges

Die attach and wire-bonding

25 micron (1 mil) gold wire

Typical package architecture – pressure, microphones

Challenge of packaging MEMS sensors for medical

 MEMS/IC packaging techniques and materials were originally developed to place chips on rigid printed circuit boards

Packaging challenges

- Packaging is ~70% of unit cost of a MEMS sensor
- Where MEMS companies spend the most time and effort during development
- Invasive or implant use of MEMS further complicates packaging/assembly
 - Mechanical stress management
 - Hermeticity
 - Fracture protection
 - Electrical interconnect

Environmental challenges

Medical environment

- Moisture
- Radiation
- Magnetic fields
- Sterilization
- Biocompatibility
 - Sharp edges on chip are thrombogenic
 - Silicon's biocompatibility not yet established
 - Chips will need some level of encapsulation
 - Silicones, parylenes

Buy vs. Make

- Many MEMS pressure sensors available off the shelf
 - Low prices (\$0.10 \$2.00 per sensor)
 - Reliability data available
 - Many IDMs restrict use in invasive medical applications
 - Generally sized/spec'd for consumer electronics apps
- Customization attractive, but:
 - Low volume MEMS have high unit costs (> \$5 per sensor)
 - Environmental and reliability qualification testing is expensive
 - Custom development is long (> 3 years) and expensive (> \$1M
 - simple sensor, > \$5M complex sensor with ASIC)

AMFitzgerald's RocketMEMS®: Semi-custom sensors

Variety of RocketMEMS Pressure Sensors

- Customizable pressure sensors for OEMs and system integrators
 - Based on AMFitzgerald reference designs
 - Low cost, fast turn time (~6 months)
- Customer provides desired sensor specification
- 2. AMFitzgerald tailors sensor design to meet customer's spec
- 3. ISO-certified foundry manufactures wafers
- 4. AMFitzgerald tests and delivers sensors to customer

Summary

- MEMS pressure sensors present a huge opportunity for medical devices, particularly for invasive and implantable uses
 - Sophisticated sensor functions
 - Electronics system integration
 - Clinically-relevant data
- Integration challenges are primarily in packaging and assembly
 - Solutions will be specific to usage and form factor
- We can help you find the right solution for your product

Contact

- Alissa Fitzgerald: amf@amfitzgerald.com
- 650 347 MEMS x101

