EMD 538 - Lecture 01

2024-08-28

Table of contents

Probability Distributions	1
Discrete Probability Distributions	1
Normal Distribution	2

Probability Distributions

- Discrete versus continuous etc
- PDF vs CDF
 - PDFs (for discrete it's a mass function) and is the probability that the variable X takes on exactly some value \boldsymbol{x}
 - * goes to 0 as $x \to \infty$
 - CDF is the probability that the random variable X is less than or equal to some value x
 - * goes to 1 as $x \to \infty$
 - the integral of the PDF gives us the CDF
 - Notation:

$$F(x) = \int_{-\infty}^{x} f(u)du$$

Discrete Probability Distributions

- Bernoulli
- Binomial
- Multinomial

- probability of exactly x_i outcomes of type i in n independent trials, where p_i is the probability of success in a single trial of type i
- this is a generalization of the bernoulli distribution for more than 2 possible outcomes
- Geometric
- Negative Binomial
- Poisson

Normal Distribution

- Normal (Gaussian)
- Exponential
 - distribution of time between events occuring independently at a constant rate λ
- Gamma
 - distribution of time required for exactly r events to occur assuming events take place at a constant rate λ (generalization of the exponential).