Perfect Square: When a polynomial is multiplied by itself, then it is a perfect square.

Difference of Two Squares: a squared polynomial subtracted from another squared polynomial Formula: The factored form of a polynomial that is a difference of two squares is the sum and difference of the square roots of the first and last terms.

 $a^2 - b^2 = (a+b)(a-b)$

 $1st^2 - 2nd^2 = (1st + 2nd)(1st - 2nd)$

Practice Exercises 1.2.3

Factor the following polynomials completely.

1. $36x^2 - 64$

In symbols,

- 2. $16x^4 49v^2z^2$ 3. $4a^2 - b^6$
- 4. $81m^4n^2 9z^6$
- 5. $a^4 16b^2$

- 10. $16m^4 64$

Activity 1.2.3

Factor the following polynomials completely.

- 1. $4x^2 49y^2$
- 6. $144x^6 100y^4$

6. $16m^8 - 81b^4$

8. $x^4y^2 - 36z^6$

9. $x^4y^2 - 49$

7. $c^4 - 1$

- 2. $a^2 100$
- 7. $a^2b^4 121$ 8. $x^6y^2 - 49z^8$
- 3. $y^8 16z^4$
- 9. $x^2y^4 64$
- 4. $y^4 1$
- 5. $25m^2 9$
- 10. $36m^6 81$

Lesson 1.2.3: Factoring the Difference of Two Squares

Perfect Square: When a polynomial is multiplied by itself, then it is a perfect square.

Difference of Two Squares: a squared polynomial subtracted from another squared polynomial

Formula: The factored form of a polynomial that is a difference of two squares is the sum and difference of the square roots of the first and last terms.

In symbols,

$$a^2 - b^2 = (a+b)(a-b)$$

or
 $1st^2 - 2nd^2 = (1st + 2nd)(1st - 2nd)$

Practice Exercises 1.2.3

Factor the following polynomials completely.

1.
$$36x^2 - 64$$

6.
$$16m^8 - 81b^4$$

2.
$$16x^4 - 49y^2z^2$$

3. $4a^2 - b^6$

7.
$$c^4 - 1$$

4.
$$81m^4n^2 - 9z^6$$

8.
$$x^4y^2 - 36z^6$$

9.
$$x^4y^2 - 49$$

5.
$$a^4 - 16b^2$$

Activity 1.2.3

Factor the following polynomials completely.

1.
$$4x^2 - 49y^2$$

6.
$$144x^6 - 100y^4$$

2.
$$a^2 - 100$$

7.
$$a^2b^4 - 121$$

3.
$$y^8 - 16z^4$$

8.
$$x^6y^2 - 49z^8$$

4.
$$y^4 - 1$$

9.
$$x^2y^4 - 64$$

5.
$$25m^2 - 9$$

Lesson 1.2.3: Factoring the Difference of Two Squares

Perfect Square: When a polynomial is multiplied by itself, then it is a perfect square.

Difference of Two Squares: a squared polynomial subtracted from another squared polynomial Formula: The factored form of a polynomial that is a difference of two squares is the sum and difference of the square roots of the first and last terms. In symbols,

$$a^2 - b^2 = (a+b)(a-b)$$

or
 $1st^2 - 2nd^2 = (1st + 2nd)(1st - 2nd)$

Practice Exercises 1.2.3

Factor the following polynomials completely.

1.
$$36x^2 - 64$$

6.
$$16m^8 - 81b^4$$

2.
$$16x^4 - 49y^2z^2$$

7.
$$c^4 - 1$$

8. $x^4y^2 - 36z^6$

3.
$$4a^2 - b^6$$

4. $81m^4n^2 - 9z^6$

9.
$$x^4y^2 - 49$$

5.
$$a^4 - 16b^2$$

Factor the following polynomials completely.

1.
$$4x^2 - 49y^2$$

6.
$$144x^6 - 100y^4$$

2.
$$a^2 - 100$$

3. $v^8 - 16z^4$

5. $25m^2 - 9$

7.
$$a^2b^4 - 121$$

8. $x^6y^2 - 49z^8$

4.
$$y^4 - 1$$

9.
$$x^2y^4 - 64$$

10. $36m^6 - 81$

Lesson 1.2.3: Factoring the Difference of Two Squares

Perfect Square: When a polynomial is multiplied by itself, then it is a perfect square.

Difference of Two Squares: a squared polynomial subtracted from another squared polynomial Formula: The factored form of a polynomial that is a difference of two squares is the sum and difference of the square roots of the first and last terms. In symbols,

$$a^2 - b^2 = (a+b)(a-b)$$

or
 $1st^2 - 2nd^2 = (1st + 2nd)(1st - 2nd)$

Practice Exercises 1.2.3

Factor the following polynomials completely.

1.
$$36x^2 - 64$$

6.
$$16m^8 - 81b^4$$

2.
$$16x^4 - 49y^2z^2$$

7.
$$c^4 - 1$$

8. $x^4y^2 - 36z^6$

3.
$$4a^2 - b^6$$

4. $81m^4n^2 - 9z^6$

9.
$$x^4y^2 - 49$$

5.
$$a^4 - 16b^2$$

Activity 1.2.3

10.
$$16m^4 - 64$$

5.
$$a^4 - 10b^2$$

Factor the following polynomials completely.

1.
$$4x^2 - 49y^2$$

6.
$$144x^6 - 100y^4$$

2.
$$a^2 - 100$$

3. $y^8 - 16z^4$

7.
$$a^2b^4 - 121$$

8. $x^6y^2 - 49z^8$

4.
$$y^4 - 1$$

9.
$$x^2y^4 - 64$$

5.
$$25m^2 - 9$$