LCD con caracteres nuevos

Integrantes:

- Cazares Cruz Jeremy Sajid
- Bucio Barrera Oscar Daniel
- Perez Ortiz Saúl
- Acosta Cortes Gerardo

El programa de Arduino presentado se enfoca en la utilización de una pantalla LCD con interfaz I2C para mostrar caracteres personalizados. A través de la biblioteca LiquidCrystal_I2C, se establecen nuevos caracteres (CharA a CharJ) mediante matrices de bytes, cada una representando un patrón gráfico específico.

Documentación del código.

1. Inclusión de Bibliotecas:

```
#include<Wire.h>
#include<LiquidCrystal I2C.h>
```

Incluye las bibliotecas necesarias para la comunicación I2C y para controlar la pantalla LCD.

2. Inicialización de la LCD:

```
LiquidCrystal_I2C lcd(0x27, 16, 2);
```

Inicializa la LCD con la dirección I2C 0x27 y una configuración de 16 columnas por 2 filas.

3. Definición de Caracteres Personalizados:

El código define 10 caracteres personalizados (CharA a CharJ) utilizando matrices de bytes. Cada byte en la matriz representa una fila de píxeles en el carácter personalizado.

```
byte CharA[8] = {
  B00000,
  B01110,
  B10001,
  B10001,
  B01010,
  B01110,
```

```
B00000
};
byte CharB[8] = {
 в00000,
  B00100,
  B01010,
  B01010,
  B01110,
  B01010,
  B01010,
  B00000
} ;
byte CharC[8] = {
  B00100,
  в01110,
  B10101,
  B00100,
  B00100,
  B00100,
  в00100,
  B00000
} ;
byte CharD[8] = {
  B00100,
  B01010,
  B10001,
  B01010,
  в00100,
  в01010,
  B10001,
  B00000
} ;
byte CharE[8] = {
 B00000,
  B01010,
  в01010,
  B00000,
  B10001,
  в01110,
  B00000,
  B00000
};
byte CharF[8] = {
 в00000,
  B01010,
  B01010,
  B00000,
  B01110,
  B10001,
  B00000,
  В00000
} ;
```

```
byte CharG[8] = {
 B00100,
 B00100,
 B00100,
 B00100,
 B10101,
 B01110,
 B00100,
 B00000
};
byte CharH[8] = {
 B10001,
 в01010,
 в00100,
 B01010,
 B10001,
 B00100,
 B01010,
 В00000
};
byte CharI[8] = {
 B01110,
 B10001,
 B10001,
 B01110,
 B01110,
 B01110,
 B01110,
 B00000
};
byte CharJ[8] = {
 B11111,
 B10001,
 B10001,
 B10001,
 B10001,
 B10001,
 B11111,
 В00000
};
void setup() {
 //inicializar la LCD
 lcd.init();
 //Encender luz de fondo
 lcd.backlight();
 //Crear nuevos caracteres
 lcd.createChar (0, CharA);
 lcd.createChar (1, CharB);
 lcd.createChar (2, CharC);
 lcd.createChar (3, CharD);
 lcd.createChar (4, CharE);
 lcd.createChar (5, CharF);
 lcd.createChar (6, CharG);
```

```
lcd.createChar (7, CharH);
lcd.createChar (8, CharI);
lcd.createChar (9, CharJ);
```

4. Función de Configuración (Setup):

```
void setup() {
  // Inicialización de la LCD
  lcd.init();
  lcd.backlight();
  // Creación y asignación de caracteres personalizados
  lcd.createChar(0, CharA);
  lcd.createChar(1, CharB);
  // ... (repetir para CharC a CharJ)
  // Escritura de texto en la LCD
  lcd.setCursor(0, 0);
  lcd.print("Clase 6VC2");
  // Escritura de caracteres personalizados en la LCD
  lcd.setCursor(0, 1);
  for (int i = 0; i < 10; ++i) {</pre>
    lcd.write(byte(i));
    lcd.print(" ");
}
```

Configura la LCD, crea y asigna los caracteres personalizados, y escribe un mensaje en la LCD utilizando caracteres estándar y personalizados.

5. Función de Bucle Principal (Loop):

```
void loop() {
   // Bucle vacío, ya que no se requiere operación continua
en este ejemplo
}
```

La función loop está vacía en este caso, ya que el código no requiere una operación continua.

Resultados

Cuando ejecutas este código en el Arduino se muestra el mensaje "Clase 6VC2" en la primera línea de la LCD y los caracteres personalizados (CharA a CharJ) en la segunda línea.