ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

A new strategy for utilization of NIR from solar energy—Promotion effect generated from photothermal effect of Fe₃O₄@SiO₂ for photocatalytic oxidation of NO

Jing Hu^{a,b}, Haiqiang Wang^{a,b,*}, Fan Dong^c, Zhongbiao Wu^{a,b,*}

- ^a Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China
- b Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027, PR China
- ^c Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, 400067 Chongqing, PR China

ARTICLE INFO

Article history: Received 19 September 2016 Received in revised form 17 November 2016 Accepted 3 December 2016 Available online 6 December 2016

Keywords:
Photothermal effect
Fe₃O₄@SiO₂
Photocatalytic oxidation

ABSTRACT

Photothermal effect was for the first time utilized to capture the energy from infrared light and to promote the photocatalytic oxidation activity of NO by a simply mechanical mixing of traditional photocatalysts and core-shell structured Fe₃O₄@SiO₂. Fe₃O₄@SiO₂ absorbed the infrared light, transferred it into thermal energy based on photothermal effect, which then accelerated the NO photocatalytic activity of traditional photocatalysts. This promotion effect led by the addition of Fe₃O₄@SiO₂ was confirmed by several classical photocatalysts such as TiO₂, g-C₃N₄, BiOl and CeO₂. To quantitatively characterize the photothermal effect, thermo images were taken with a thermo imager to obtain the average temperature rise of samples under the illumination of simulated solar light. Specially, P25/Fe₃O₄@SiO₂ was studied in depth for illustration of the promotion mechanism. Experimental results showed that with the contribution of SiO₂ shell, the photocorrosion of Fe₃O₄ didn't occur during photocatalytic oxidation process and the photothermal effect of Fe₃O₄ was maintained. The quantity of Fe₃O₄@SiO₂ was a vital factor for promotion of photocatalytic activity and the optimum mass ratio of P25 and Fe₃O₄@SiO₂ was 3-1. After 120 min of illumination, the temperature of optimum P25/Fe₃O₄@SiO₂ rose to 57.4 °C from 25 °C and its NO conversion capability showed an enhancement of 38.9% with the comparison to pure P25. The experimental results confirmed that the rise of temperature was attributed to the photothermal effect and its contribution was the same as the directly heating of photocatalysts. Furthermore, the enhancement of NO conversion capability around 30-40% was observed for the Fe₃O₄@SiO₂ mixed anatase TiO₂, g-C₃N₄, ZnO, BiOI and CeO2. In sum, we developed a new strategy for utilization of NIR light of solar energy to facilitate the photocatalytic reactions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Efficient harvesting of solar energy is always a big challenge and a worldwide target for human being. For this challenge, heterogeneous photocatalysis using nano-scale semiconductor materials has attracted enormous interests. TiO_2 was a famous nanomaterial among these semiconductors and has been widely used as photocatalyst. However, TiO_2 has a large bandgap of $\sim 3.2 \, \text{eV}$ [1,2] (for anatase phase) and requires UV light (<380 nm) to be activated, while the percentage of UV light in solar energy was only $\sim 5\%$ and more than 90% of overall solar spectrum consisted of visible light (about $\sim 49\%$) and near infrared (NIR) light (about $\sim 46\%$). In the past ten years, researchers paid lots of attentions to the utilization of visible light energy and they gained remarkable progress. Photocatalysts with narrow bandgap and broad absorption spectrum were developed or discovered. Besides the metal or non-metal modified TiO_2 [3], a lot of new photocatalysts such as g-C₃N₄ [4], (BiO)₂CO₃

^{*} Corresponding authors at: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China.

E-mail addresses: haiqiangwang@zju.edu.cn, wanghaiqiang2008@126.com (H. Wang), zbwu@zju.edu.cn (Z. Wu).

[5], BiOX [6], etc. appeared. However, the utilization of NIR light which accounts for about 44% in the solar spectrum [7] is seldom reported [8].

The photothermal effect of nanoparticles on tumor photothermal ablation therapy (PTA) has been a research focus currently [9,10]. With the irradiation of NIR, the tumor cells containing proper photothermal agents were killed due to high temperature resulted from photothermal effect. Photothermal agents such as organic compounds (indocyanine green [11], polyaniline nanoparticles [12], etc.), noble metal nanomaterials (Au [13], Ag [14] and Pd [15], etc.), carbon-based materials (carbon nanotubes [16], graphene [9,17,18], etc.) and transition metal nanoparticles (Fe₃O₄ [19–21], Cu_3BiS_3 [22], Cu_9S_5 [23] and Ti_8O_{15} [1], etc.) have been studied. Noble metal nanoparticles (NPs) of Au, Ag, and Pd that support LSPR in the visible spectrum were the most studied plasmonic NPs, but they were expensive for application. Compared to noble metal NPs, transition metal NPs-Fe₃O₄ showed a list of desirable properties for efficient and stable photothermal reactions: (i) a substantial photon absorption cross-section, (ii) strong intraparticle bonds, (iii) strong bonds to any surfactants, and (iV)environmental friendly and economical [24]; that's why it attracted researchers' attention in photothermal applications.

Nowadays, the studies on graphene-based nanocomposites, NaYF₄:Yb,Tm@TiO₂ and Ti@TiO₂ for photocatalysis inspired us and attract our interesting for the utilization of NIR light. Zhixing Gan et al. [25] reported that the photothermal effect of graphenebased nanocomposites could play an important role in enhancing photocatalytic performance. Yanna Tang et al. had synthesized a core-shell NaYF4:Yb,Tm@TiO2 by using a solvothermal method to response to NIR. It was found that the upconversion luminescence NaYF₄:Yb, Tm core could absorb NIR light and give out UV light which could be absorbed by the anatase TiO₂ shell [26]. Also, a stable core-shell Ti@TiO₂ with NIR response was reported. The photocatalyst could response from UV to NIR light region and exhibited photothermal effect as a result of Ti core [27]. These works pointed out a new path for the utilization of NIR light energy, but currently there was very few studies focused on Fe₃O₄ and gas-solid phase photocatalytic reaction.

As one of the major air pollutants, NO is difficult to be removed by the widely used wet scrubbing methods because NO is nearly insoluble in water [28]. At present, the most effective method of NO removal, selective catalytic reduction (SCR), is expensive and requires extreme conditions including high temperature and toxic ammonia. Therefore, photocatalytic oxidation of NO, in which NO is oxidized into soluble species at low temperature and without introduction of toxic ammonia, costs less and has good potential in industrial application [29]. Herein, for the first time, we selected Fe₃O₄ NPs as photothermal agent to improve utilization of NIR light from solar energy for photocatalytic oxidation of NO. We intended to take advantage of this energy to enhance NO conversion of photocatalysts. But we also concerned that Fe₃O₄ NPs would be oxidized while it exposed to photocatalyst due to the producted HNO₃. To prevent this oxidation, Fe₃O₄ NPs was coated with a passive material, such as SiO2, to form a coreshell structured Fe₃O₄@SiO₂. Series of composed photocatalysts were synthesized by simply mixing traditional photocatalysts and core-shell structured Fe₃O₄@SiO₂ together mechanically, such as $g-C_3N_4/Fe_3O_4@SiO_2$, BiOI/Fe₃O₄@SiO₂, and CeO₂/Fe₃O₄@SiO₂. The physicochemical properties of prepared photocatalysts were studied and a new characterization method-thermo image was used to obtain the average surface temperature rise on the photocatalysts by photothermal effect (i.e. analyzing the photothermal effect quantitatively). The promotion effect caused by photothermal effect from NIR light in photocatalytic oxidation of NO was discussed and its promotion mechanism was proposed.

2. Experimental

2.1. Sample preparation

FeCl₃·6H₂O, NH₃·H₂O solution (25%–28%) and PEG2000 were purchased from Sinopharm Chemical Reagent Co. Ltd., China. FeSO₄·7H₂O was purchased from Quzhou JuHua reagent Co., Ltd., China. P25 was purchased from Evonik Degussa, AG. TEOS was obtained from Aladdin Industrial Co., Shanghai, China.

2.1.1. Fe_3O_4 and Fe_3O_4 @SiO₂

Fe $_3$ O $_4$ was prepared using a coprecipitation method under an atmosphere of nitrogen as reported previously [20]. In a typical synthesis, FeCl $_3$ ·6H $_2$ O (9.41 g) and FeSO $_4$ ·7H $_2$ O were dissolved in 50 mL DI water by ultrasonic in a three-necked round-bottom flask with nitrogen bubbling. Under vigorous mechanical stirring, 50 mL PEG2000 solution (400 g/L) was added to the solution. When the solution was homogeneous blended, 70 mL NH $_3$ ·H $_2$ O (8%) was introduced dropwise to the solution. After stirring for 1 h and left for another 1 h at 60 °C, the black precipitate was washed with ethanol and DI water for three times.

The as prepared Fe_3O_4 was coated with silica by the Stöber method whereas $0.4\,\mathrm{g}$ of Fe_3O_4 was thoroughly dispersed in $40\,\mathrm{mL}$ ethanol with sonication for $30\,\mathrm{min}$, and then $2\,\mathrm{mL}$ of the ammonia solution was added into the solution. With mechanical stirring, $1.6\,\mathrm{mL}$ TEOS was added to the solution. After stirring for $3\,\mathrm{h}$, the products were washed with ethanol and DI water for several times and finally dried at $60\,^{\circ}\mathrm{C}$ in vacuum for $6\,\mathrm{h}$.

2.1.2. Composed photocatalyst/ $Fe_3O_4@SiO_2(x:1)$

Composed photocatalyst/ Fe_3O_4 @ $SiO_2(x:1)$ was prepared by solid–solid mixing method. Base photocatalyst represents sample with photocatalytic capability for NO oxidation, that is P25, anatase TiO_2 (A- TiO_2), g- C_3N_4 , ZnO, BiOl, or CeO_2 . The x:1 stands for the mass ratio of base photocatalyst and Fe_3O_4 @ SiO_2 . In particular, sample with optimum mass ratio is recorded as Base photocatalyst/ Fe_3O_4 @ SiO_2 .

A-TiO₂ [30], g-C₃N₄ [31], ZnO [32], BiOI [33] and CeO₂ [30] were prepared by the methods reported in References.

2.2. Characterization

X-ray diffraction (XRD, model D/max RA, Rigaku Co., Japan with Cu K α radiation) was conducted to analyze the crystal phase and composition of the samples. X-ray photoelectron spectroscopy (XPS) measurements for analyzing the surface properties were performed using a Thermo ESCALAB 250 instrument equipped with Al K α X-ray irradiation (1486.6 eV) at 150 W. The binding energy scale was corrected referenced to the C1s level at 285 eV. The morphology of the samples was obtained from scanning electron microscopy (SEM, FEI-quanta 200F, USA) and transmission electron microscope (TEM, H-600, Hitachi, Ltd., Japan). The specific surface areas were determined with a static adsorption instrument (JW-BK 132F, Beijing JWGB Sci & Tech Co., China) by the Brunauer-Emmett-Teller (BET) method. UV-vis-NIR spectra were obtained from a UV-vis-NIR spectrophotometer (SOLID3700, Shimadzu, Japan). Thermo images were taken with a thermo imager (Testo Co., Ltd., Testo 885) to perform quantitative analyses of photothermal effect of samples. A testo IR soft was used to obtain the average temperature distribution for every thermo image. Thermogravimetry (TG) was measured by a simultaneous thermal analyzer (STA 409 PC NETZSCH, Germany) at a heating rate of 10°C/min in air flowing of 20 mL/min. Raman spectra were obtained from a SPEX-1403 laser Raman spectroscopy at room temperature. A 514.5 nm Ar-ion laser in a backscattering configuration was used to excite the crystals (Raman: Lab RAM-HR, SPEX-1403, France). Insitu Fourier Transform Infrared Spectroscopy (in-situ FTIR) spectra were obtained from a Tensor 27 (Bruker, Germany).

2.3. Photocatalytic experiments

Photocatalytic experiments were carried out in a continuous flow rectangular reactor with controllable temperature. The stainless steel reactor consisting of 5 S-shaped channels $(30 \text{ mm} \times 100 \text{ mm} \times 20 \text{ mm})$ was covered with quartz glass. A 500 W Xenon lamp (Shenzhen AHD Opto Technology Co. Ltd.) with adjustable voltage was placed above the reactor and the voltage was set to 7 V for every test. The photocatalysts were coated on five glass slide (28 mm \times 95 mm) with a dip-coating method and 0.05 g photocatalyst was used for every slide. Photocatalysts were naturally dried before the experiment. 50 ppm of NO gas was obtained from an air cylinder, a N₂ cylinder (99.9%) and a NO cylinder (10,000 ppm, diluted by N₂). The relative humidity (RH) was regulated to 70% by passing the air stream through a humidification chamber and RH was monitored by a relative humidity analyzer (Testo Co., Ltd., Model 605-H1). The flow rate was controlled at 2 L/min and the residence time was 9 s. After thoroughly mixed in a gas blender, the streams got into the reactor. When the concentration of NO in inlet and outlet achieved equilibrium, the lamp was turned on and the photocatalytic reaction continued for 120 min. The concentration of NO and NO2 was measured by a NOx analyzer (Kane International Ltd., Model KM-9106). The NO conversion was calculated as NO conversion (%)= $(1-NO_{out}/NO_{in}) \times 100\%$, where NO_{out} and NO_{in} represented the concentration of NO in outlet and inlet separately. The NO₂ selectivity was calculated as NO₂ selectiv $ity(\%) = (NO_{2,out} - NO_{2,in})/(NO_{in} - NO_{out}) \times 100\%$, where $NO_{2,out}$ and NO_{2.in} represented the concentration of NO₂ in outlet and inlet separately.

The reactor was controlled at $25\,^{\circ}$ C, $50\,^{\circ}$ C, $60\,^{\circ}$ C, $70\,^{\circ}$ C respectively to study the influence of temperature on photocatalytic activity of P25. Without specially illustration, photocatalytic experiments were conducted at $25\,^{\circ}$ C. In order to acquire the photocatalytic activity of photocatalysts free from infrared (P25-cut IR and P25/Fe₃O₄@SiO₂(3:1)-cut IR), an infrared cut-off filter (Rayan Technology Co. Ltd., Model SP730) was placed on the quarts of the reactor. Another optical filter (China Nantong yinxing Optical Products Co. Ltd., HWB 780) was used to obtain NIR and the photocatalytic activity under NIR was studied.

3. Results and discussion

3.1. Crystal phase analysis by XRD

Fig. 1 shows the XRD patterns of investigated samples. The XRD patterns of Fe₃O₄ indicated that the prepared Fe₃O₄ was with a highly crystalline cubic spinel structure (PDF no. 85-1436). The positions and intensities of reflection peaks of sample agreed well with Fe₃O₄ reported in previous study [34], and the core-shell structure of Fe₃O₄@SiO₂ didn't affect the phase structure of Fe₃O₄ after the coating of SiO₂. Characteristic peaks at $2\theta = 30.38^{\circ}$, 35.34° , 43.38°, 53.88°, 57.36° and 62.94° which were respectively corresponded to lattice plane (220), (311), (400), (422), (511) and (440) of Fe₃O₄, were all observed on Fe₃O₄@SiO₂. After solid mixing of Fe₃O₄@SiO₂, the intensities of characteristic peaks for anatase and rutile of P25/Fe₃O₄@SiO₂ were slightly weaker compared to that of P25. The peaks at 25.05°(101), 37.96°(004), 38.75°(112), $48.05^{\circ}(200)$, $54.08^{\circ}(105)$, $55.22^{\circ}(211)$, $62.80^{\circ}(204)$, $70.46^{\circ}(200)$ were corresponded to anatase phase (PDF no. 21-1272), the peaks at 27.62°(110), 36.20°(101), 62.80°(002), 69.14°(301) were corresponded to rutile phase (PDF no. 21-1276) and the peaks at 35.34° and 57.36° confirmed the existence of Fe₃O₄. Also, the XRD spec-

Fig. 1. XRD patterns of samples.

Table 1The physical characteristics of prepared samples.

Sample	Surface area $(m^2 \cdot g^{-1})$	Pore volume ($cm^3 \cdot g^{-1}$)	Pore size (nm)
P25	49.49	0.17	8.67
Fe ₃ O ₄ Fe ₃ O ₄ @SiO ₂	59.54 26.75	0.33 0.08	15.62 5.59
P25/Fe ₃ O ₄ @SiO ₂		0.23	8.85

tra of A TiO_2/Fe_3O_4 @ SiO_2 , $g-C_3N_4/Fe_3O_4$ @ SiO_2 , ZnO/Fe_3O_4 @ SiO_2 , $BiOI/Fe_3O_4$ @ SiO_2 , and CeO_2/Fe_3O_4 @ SiO_2 were shown in Fig. S1. The existence of Fe_3O_4 and other photocatalysts were all confirmed and no other crystal phase was detected in the XRD spectra.

3.2. Morphology, pore structure and formation mechanism

The morphology, particles size and micro-structure of samples were shown in Fig. 2. The SEM image of Fe₃O₄ was shown in Fig. 2a. As depicted, uniform spherical Fe₃O₄ nanoparticles were synthesized and the average diameter of Fe₃O₄ NPs was around 22 nm. Fig. 2b shows the SEM image of Fe₃O₄@SiO₂. After the coating of SiO₂, all Fe₃O₄ NPs were coated by a uniform SiO₂ shell and the average diameter of Fe₃O₄@SiO₂ was enlarged to 30-40 nm. Fig. 2c shows the SEM image of P25/Fe₃O₄@SiO₂. TiO₂ NPs and Fe₃O₄@SiO₂ NPs were mixed uniformly and there was no evident difference compared to Fe₃O₄ NPs. The high resolution TEM image of prepared samples was also shown in Fig. 2. Fig. 2d shows the TEM image of Fe₃O₄ NPs. As shown in image, Fe₃O₄ was spherical structure and the average diameter was around 20-30 nm. With the coating of SiO₂, a core-shell structure of Fe₃O₄@SiO₂ was investigated in Fig. 2e. Obviously, the core-shell structure was composed of a Fe₃O₄ core (20–30 nm) and a SiO₂ shell (3–5 nm). TEM image of P25/Fe₃O₄@ SiO₂ was shown in Fig. 2f. It confirmed that TiO₂ NPs was uniformly mixed with Fe₃O₄@SiO₂ NPs.

Table 1 shows the specific surface area, pore volume and pore size for photocatalysts. After coating of SiO₂, the surface area of Fe₃O₄@SiO₂ decreased from 59.54 m²·g⁻¹ of Fe₃O₄ to 26.75 m²·g⁻¹. When P25 and Fe₃O₄@SiO₂ were mixed, the physical characteristics of P25/Fe₃O₄@SiO₂ were similar to those of P25 because of the low mixture percentage of Fe₃O₄@SiO₂.

After analyzing TEM images and physical characteristics of the samples, the formation process of core-shell structured P25/Fe₃O₄@SiO₂ was proposed and shown in Fig. 3.

 $\textbf{Fig. 2.} \hspace{0.5cm} \textbf{SEM images of } Fe_3O_4(a), Fe_3O_4@SiO_2(b), P25/Fe_3O_4@SiO_2(c) \hspace{0.5cm} and \hspace{0.5cm} \textbf{HR-TEM images of } Fe_3O_4(d), Fe_3O_4@SiO_2(e), P25/Fe_3O_4@SiO_2(f). \\$

Fig. 3. The schematic diagrams of formation process of P25/Fe $_3O_4$ @SiO $_2$ and the promotion process of photothermal effect.

3.3. Elemental analysis by XPS

X ray photoelectron spectroscopy (XPS) was used to determine the detailed elemental composition and oxidation state of the asprepared samples, specially for the distribution of iron element. The Fe 2p spectra of Fe₃O₄, Fe₃O₄@SiO₂ and P25/Fe₃O₄@SiO₂(3:1) were shown in Fig. 4. Fe 2p_{3/2}(710.7 eV), Fe 2p_{1/2}(723.9 eV) and two satellite peaks of Fe₃O₄ were clearly demonstrated in the XPS spectrum of Fe₃O₄ [35], and this result correlated with the result of XRD spectrum. Furthermore, the characteristic peaks of Fe₃O₄ nearly disappeared in the XPS spectrum of Fe₃O₄@SiO₂ and disappeared in the XPS spectrum of P25/Fe₃O₄@SiO₂(3:1). The XPS results confirmed that Fe₃O₄ was well coated by SiO₂ with the coreshell structure of Fe₃O₄@SiO₂ [36]. The XPS spectra of Ti, O and Si

Fig. 4. Fe 2p spectra of Fe_3O_4 , $Fe_3O_4@SiO_2$ and $P25/Fe_3O_4@SiO_2$.

elements are also presented in Fig. S2. The spectra demonstrated that Ti, O and Si elements coexisted in the as-prepared samples, and no peaks of any other elements were detected.

3.4. UV-vis-NIR light absorption

Fig. 5 shows the UV–vis–NIR light absorption spectra of prepared photocatalysts. Obviously, P25 exhibited a strong light absorption in UV light region and a very slight absorption in infrared region. However, Fe_3O_4 and Fe_3O_4 @SiO₂ exhibited a strong absorption in the full light spectrum including the ultra violet light, the visible light and the infrared light region. After the coating of SiO₂ shell, the absorbance of Fe_3O_4 @SiO₂ was weaker than that of Fe_3O_4 . For the

Fig. 5. UV-vis-NIR DRS spectra of photocatalysts.

mixture of P25 and $Fe_3O_4@SiO_2$ (P25/ $Fe_3O_4@SiO_2$), the absorption strength fell in between P25 and $Fe_3O_4@SiO_2$, and covered the full spectrum too.

Otherwise, absorption strength of P25/Fe₃O₄@SiO₂ was enhanced with increased percentage of Fe₃O₄@SiO₂. The absorption in full light spectrum of P25/Fe₃O₄@SiO₂ made it possible to use solar energy of NIR light. Also, the UV–vis-NIR spectra of A TiO₂/Fe₃O₄@SiO₂, g-C₃N₄/Fe₃O₄@SiO₂, ZnO/Fe₃O₄@SiO₂, BiOI/Fe₃O₄@SiO₂ and CeO₂/Fe₃O₄@ SiO₂ were shown in Fig. S3. UV–vis-NIR spectra verified that the addition of Fe₃O₄ enhanced the NIR light absorption of prepared samples.

3.5. Thermo stability investigation

The antioxidation properties of SiO_2 shell was analyzed by TG curves of Fe_3O_4 and Fe_3O_4 @SiO₂ in Fig. 6a as reported [37]. For Fe_3O_4 , a little weight loss was observed when the temperature was lower than $122\,^{\circ}C$, and then the loss mass began to increase at $122\,^{\circ}C$ and approached the maximum value at $211\,^{\circ}C$ due to the oxidation of Fe_3O_4 . After the coating of SiO_2 shell, Fe_3O_4 @SiO₂ showed a weight loss around 2% due to desorption of water and organic materials in the first stage (from $50\,^{\circ}C$ to $150\,^{\circ}C$). After that, the mass of Fe_3O_4 @SiO₂ showed little change in the calcination pro-

Fig. 7. Transient photocurrent responses of P25 and as-synthesized P25/Fe₃O₄@SiO₂ under the irradiation of UV-vis-NIR light.

cedure. That meant the oxidation of Fe₃O₄ was inhibited by the core-shell structure of Fe₃O₄@SiO₂. The protection effect of SiO₂ can also be verified by comparison of Fe₃O₄ and Fe₃O₄@SiO₂ after photocatalytic reaction in Fig. 6b. For Fe₃O₄ and Fe₃O₄@SiO₂, the peaks at 355, 496 and $718 \, \text{cm}^{-1}$ were assigned to the E_g, T_{2g}, and A_{1g} modes of a typical magnetite Fe₃O₄ [38]. After the photocatalytic process, new peaks at 220, 286 and 405 cm⁻¹ representing α -Fe₂O₃ appeared [39], confirming the oxidation of Fe₃O₄. However, no remarkable change was observed for Fe₃O₄@SiO₂ after the reaction. To further illustrate the protection of SiO₂, Fe 2p spectra of Fe₃O₄ and Fe₃O₄@SiO₂ treated at different temperatures for 2h were shown in Fig. S4a and the comparison of samples after photocatalytic performance was shown in Fig. S4b. Obviously, the Fe 2p spectra of Fe₃O₄ after treated at 120°C or after photocatalytic reaction exhibited shift compared to the Fe₃O₄, which may be attributed to the oxidation of Fe₃O₄. Relatively, the Fe 2p spectra of Fe₃O₄@SiO₂ remained unchanged after treated in hot circumstances or after the reaction.

3.6. Photoelectric current investigation

To better understand the promotion mechanism, photo-electric current experiments were carried out to investigate the photo-triggered charges density over P25 and P25/Fe₃O₄@SiO₂ under UV-vis-NIR light irradiation. As shown in Fig. 7, the photocurrent intensity of P25/Fe₃O₄@SiO₂ showed little change compared to P25 under the irradiation of UV-vis-NIR light. Thus it confirmed that

Fig. 6. TG curves of Fe_3O_4 and Fe_3O_4 @SiO₂ (a) and Raman spectra of samples after photocatalytic reaction (b).

Fig. 8. Thermo images of samples (a) and (b), and photothermal effect of samples (c) and (d).

the photo-triggered charges density of P25 was not affected by the introduced Fe_3O_4 @SiO₂.

3.7. IR thermo images

In this study, we used IR thermo images to measure the photothermal effect quantitatively by the surface temperature rise of samples obtained by the UV-vis-NIR irradiation via IR thermo images. The whole increment of thermal energy during photocatalytic reaction can be divided into two parts—directly thermal radiation from Xeon lamp and thermal energy generated by photothermal effect of plasmonic particles (if it existed in the system). In generally, the increment of thermal energy caused by directly thermal radiation can be regarded as a constant under the same irradiation condition. Thus it can be concluded there will be a positive contribution for the whole increment of thermal energy if the photothermal effect takes place in the system.

To take IR thermo images, experiments were carried out as follows. Samples were loaded on glass slide with the same method as photocatalytic experiments and placed in the channels of the reactor. The temperature of the reactor was controlled at $25\,^{\circ}\text{C}$. IR thermo images were taken at 0, 10, 30, 60, 90 and 120 min after the Xeon lamp on. When taking the thermo images free from the irradiation of infrared light (P25-cut IR and P25/Fe $_3\text{O}_4\text{@SiO}_2\text{-cut IR}$), the infrared cut-off filter was used in the experiments.

The IR thermo images of samples were shown in Fig. 8a and b. The color of images was varied with the degree of temperature and the left scales corresponding to different color (Thermo images of "T" shape Fe_3O_4 in the center of P25 were shown in Fig. S5). With the irradiation of UV–vis–NIR light, temperature of every sample rose with the increase of irradiation time. The color of images of P25/ Fe_3O_4 @SiO $_2$ became brighter, when more Fe_3O_4 @SiO $_2$ NPs were added (Fig. 8a). However, the color of the image of P25 showed inconspicuous change with a 120 min light irradiation, same as that

of blank glass slide. The specific temperature data (Fig. 8c) was also obtained to present the photothermal effect accurately. The temperature of blank glass slide (Fig. 8c) with no sample rose gradually from 25 °C to 42 °C after illumination for 120 min. Compared to glass slide, the temperature of the surface of P25 (Fig. 8c) rose a little more to 44.7 °C, indicating that P25 exhibited a slight photothermal effect contributed by the combination of hole and electron during the UV light irradiation. When Fe₃O₄@SiO₂ was mixed with P25 (Fig. 8c), the temperature of photocatalysts rose obviously. The surface temperature of $P25/Fe_3O_4@SiO_2(1:1)$, $P25/Fe_3O_4@SiO_2(3:1)$ and P25/Fe₃O₄@SiO₂(5:1) increased form 25 °C to 59.7 °C, 57.4 °C and 52.1 °C, respectively. With the increase of Fe₃O₄@SiO₂, the rise of temperature became more evident. From above findings, we can conclude that the increment of thermal energy was mainly attributed to the photothermal effect of Fe₃O₄@SiO₂ and depended on the content of Fe₃O₄@SiO₂.

The protection effect of SiO₂ shell to Fe₃O₄ NPs and the influence of infrared light were analyzed in Fig. 8d. It was found that temperature rise of Fe₃O₄ NPs was higher than that of Fe₃O₄@SiO₂ NPs in the first 30 min. However, the increment of temperature became weaker in the followed irradiation time and even appeared a decline trend. For the comparison of P25/Fe₃O₄ and P25/Fe₃O₄@SiO₂, P25/Fe₃O₄@SiO₂ got a higher increment of temperature during the whole illumination time and the variation trend of temperature of P25/Fe₃O₄ was similar to that of Fe₃O₄. Based on the analysis of the four samples, the photothermal effect of Fe₃O₄ and P25/Fe₃O₄ was weakened with increased irradiation time and increased surface temperature. However, Fe₃O₄@SiO₂ and P25/Fe₃O₄@SiO₂ maintained the photothermal effect during the entire experiment. After reaction, photothermal effect of Fe₃O₄ disappeared while photothermal effect of Fe₃O₄@SiO₂ maintained in Fig. S6. Combining the result of TG and Raman (Fig. 5), it could be concluded that Fe₃O₄ NPs was oxidized by products from photocatalytic reaction or oxygen under this hot circumstance and

Fig. 9. Photocatalytic oxidation of NO of samples (a) and the impact of NIR on NO conversion (b).

its photothermal effect was destroyed. Nevertheless, Fe₃O₄@SiO₂ NPs maintained its photothermal effect because of the protection of SiO₂. In addition, the temperature curves of P25-cut IR and P25/Fe₃O₄@SiO₂-cut IR (Fig. 7d) nearly overlap with the cutting of infrared light, which demonstrated that infrared light was indispensable for photothermal effect of Fe₃O₄@SiO₂.

3.8. Photocatalytic oxidation of NO and proposed promotion mechanism

The NO conversion of the prepared samples was shown in Fig. 9. In the experiments, pure Fe₃O₄ and Fe₃O₄@SiO₂ had no capacity to convert NO under the irradiation of UV-vis-NIR light. As shown in Fig. 9a, NO conversion of P25 was 21.6% in steady condition. Obviously, the photocatalytic activity of P25/Fe₃O₄@SiO₂ was changed with the addition of Fe₃O₄@SiO₂. With the increasing ratio of Fe₃O₄@SiO₂, NO conversion increased at first then decreased and the optimal mass ratio of P25 and Fe₃O₄@SiO₂ was 3:1. For P25/Fe₃O₄@SiO₂(3:1), the NO conversion achieved 30% and an activity enhancement of 38.9% was achieved. It could be deduced that an excess of Fe₃O₄@SiO₂ would occupy the irradiation surface of photocatalysts and result in insufficient P25 with photocatalytic activity for the reaction on the surface. Whereas the lack of Fe₃O₄@SiO₂ could not realize the effective usage of thermal energy generated from photothermal effect. Reasonably, an optimized P25/Fe₃O₄@SiO₂(3:1) was obtained with proper amount of P25 and Fe₃O₄@SiO₂ to provide active species and photothermal effect. The influence of the introduction of Fe₃O₄@SiO₂ on the selectivity of photocatalytic products was investigated. In the initial of the photocatalytic process, HNO₃ and NO₂ were the main products for both P25 and P25/Fe₃O₄@SiO₂ [40], and the NO₃⁻ coated on the photocatalyst could be detected in the in-situ FTIR spectra in Fig. S7 (peaks at 1538, 1419, 1330 and 1290 cm⁻¹) [41-43]. With the reaction time increased, NO₂ gradually became the only product, which could be verified by the NO₂ selectivity of the composed samples in Fig. S8. After 40 min, the NO₂ selectivity for every photocatalyst reached 100%, which indicated that the introduction of Fe₃O₄@SiO₂ had no influence on the selectivity of products during photocatalytic process.

To confirm the protection effect of SiO_2 shell, the photocatalytic activity of $P25/Fe_3O_4(3:1)$ was also measured in the experiment. With the irradiation of UV–vis-NIR light, $P25/Fe_3O_4(3:1)$ exhibited higher photocatalytic activity compared to P25 in the first 40 min. But its photocatalytic activity decreased gradually with the progress of reaction and even got an 18% NO conversion in

Fig. 10. Photocatalytic oxidation of NO by P25 under different reaction temperatures.

the end of experiment, which was lower than that of pure P25. Evidently, the enhancement of photocatalytic activity in the first 40 min was attributed to the photothermal effect of Fe₃O₄ and this effect disappeared with the oxidation or corrosion of Fe₃O₄. For the description of promotion effect, the influence of infrared light on photocatalytic activity was shown in Fig. 9b. When an infrared light cut-off filter placed on the quarts, the NO conversion of P25 (P25-cut IR) decreased slightly. However, the NO conversion of P25/Fe₃O₄@SiO₂(3:1) (P25/Fe₃O₄@SiO₂(3:1)-cut IR) decreased to 16%. Besides, after experiment conducted, P25/Fe₃O₄@SiO₂ exhibited no photocatalytic activity under NIR light irradiation. Therefore, it could be concluded that the irradiation of NIR light was the control factor for the promotion of photocatalytic activity of P25/Fe₃O₄@SiO₂.

In order to verify the promotion mechanism led by the photothermal effect, the photocatalytic oxidation of NO under different reaction temperatures were conducted in Fig. 10. With the rise of reaction temperature, NO conversion of P25 increased at first and then decreased in the followed procedure and the optimal reaction temperature reached at $60\,^{\circ}$ C. The increase of temperature would increase the ratio of activated molecules and then enhance the photocatalytic activity of NO. However, the increase of temperature was in favor of desorption of NO. Thus it is not difficult to understand that an optimum reaction temperature around $60\,^{\circ}$ C was obtained due to the balance between molecule activation and desorption of NO. Based on the photocurrent intensity analysis of P25/Fe₃O₄@SiO₂ and P25 (Fig. 7), we figured that the hot electrons excited by plasmonic nanocrystals didn't transfer to the

Fig. 11. Promotion of photocatalytic activity for different photocatalysts (a) and promotion mechanism of the photothermal effect based on infrared light for photocatalytic reaction (b).

antibonding orbitals of P25. Thus, P25/Fe $_3O_4$ @SiO $_2$ (3:1) obtained NO conversion close to that of P25 under 60 °C, which could be attributed to the approximate temperature (Shown in Fig. 8c) caused by the photothermal effect.

To verify the promotion mechanism of photothermal effect led by Fe $_3$ O $_4$ @SiO $_2$, the photocatalytic activity of NO of five kinds of typical photocatalysts mixed with Fe $_3$ O $_4$ @SiO $_2$ were also measured in the study (Fig. 11a). It was worth mentioning that the activity of A TiO $_2$ /Fe $_3$ O $_4$ @SiO $_2$, g-C $_3$ N $_4$ /Fe $_3$ O $_4$ @SiO $_2$, ZnO/CeO $_2$ /Fe $_3$ O $_4$ @SiO $_2$, BiOI/Fe $_3$ O $_4$ @SiO $_2$ and CeO $_2$ /Fe $_3$ O $_4$ @SiO $_2$ were all enhanced by the addition of Fe $_3$ O $_4$ @SiO $_2$. Evidently, an increment of NO conversion capability around 30–40% was observed for the Fe $_3$ O $_4$ @SiO $_2$ mixed A TiO $_2$, g-C $_3$ N $_4$, ZnO, BiOI and CeO $_2$. Finally, the promotion mechanism of photothermal effect based on infrared light for photocatalysis reaction was proposed and shown in Fig. 11b.

4. Conclusion

In conclusion, photothermal effect was first utilized in this study to capture the energy of infrared light and promoted the photocatalytic oxidation capability of NO simply by mixing base photocatalyst—P25 and core-shell structured Fe_3O_4 @SiO₂. Fe_3O_4 @SiO₂ absorbed the infrared light, transferred it to thermal energy based on photothermal effect, and then accelerated the NO photocatalytic activity of base photocatalysts.

The addition of Fe₃O₄@SiO₂ enhanced the NIR light absorption of P25/Fe₃O₄@SiO₂ in UV-vis-NIR spectrum. But, the photocurrent intensity of P25/Fe₃O₄@SiO₂ showed little change with comparison to pure P25 under the irradiation of UV-vis-NIR light. And it confirmed that the photo-triggered charges density of P25 was not affected by the introduced Fe₃O₄@SiO₂. With the protection of the SiO₂ shell, oxidation of Fe₃O₄ was inhibited during the photocatalytic procedure. When Fe₃O₄@SiO₂ was mixed with P25, the temperature of P25/Fe₃O₄@SiO₂ rose obviously and the rise of temperature showed a positive relation with the percentage of Fe₃O₄@SiO₂. The amount of Fe₃O₄@SiO₂ was a vital factor for the promotion of photocatalytic activity and the optimum mass ratio of P25 and Fe₃O₄@SiO₂ was 3-1. Under the optimum mass ratio of P25 and Fe₃O₄@SiO₂, an activity enhancement of 38.9% was reached compared to pure P25. The photocatalytic experiments under different reaction temperature verified that the contribution of photothermal effect was same as the directly heating of photocatalysts. Furthermore, the enhancement of NO conversion capability around 30–40% was observed for the Fe₃O₄@SiO₂ mixed

A TiO₂, g-C₃N₄, ZnO, BiOI and CeO₂. We hope this new strategy for the utilization of NIR light of solar energy could inspire more advanced and sophisticated catalyst designed with rational ideas aiming at the usage of solar energy.

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (NSFC-51578488), Special Program for Social Development of Key Science and Technology Project of Zhejiang Province (2014C03025), Zhejiang Provincial "151" Talents Program, and the Program for Zhejiang Leading Team of S&T Innovation (Grant No. 2013TD07).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2016. 12.009.

References

- [1] G. Ou, Z.W. Li, D.K. Li, L. Cheng, Z. Liu, H. Wu, Nano Res. 9 (2016) 1236-1243.
- [2] E.S. Elmolla, M. Chaudhuri, Desalination 252 (2010) 46–52
- [3] J. Andersen, C. Han, K. O'Shea, D.D. Dionysiou, Appl. Catal. B: Environ. 154 (2014) 259–266.
- [4] S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26 (2010) 3894-3901.
- [5] Y. Huang, W. Wang, Q. Zhang, J.J. Cao, R.J. Huang, W.K. Ho, S.C. Lee, Sci. Rep. 6 (2016).
- [6] M. Li, H.W. Huang, S.X. Yu, N. Tian, F. Dong, X. Du, Y.H. Zhang, Appl. Surf. Sci. 386 (2016) 285–295.
- [7] W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Chem. Commun. 46 (2010) 2304–2306.
- [8] M. Mao, Y. Li, J. Hou, M. Zeng, X. Zhao, Appl. Catal. B: Environ. 174–175 (2015) 496–503.
- [9] K. Yang, L.Z. Feng, X.Z. Shi, Z. Liu, Chem. Soc. Rev. 42 (2013) 530-547.
- [10] Q.W. Tian, M.H. Tang, Y.G. Sun, R.J. Zou, Z.G. Chen, M.F. Zhu, S.P. Yang, J.L. Wang, J.H. Wang, J.Q. Hu, Adv. Mater. 23 (2011) 3542–3547.
- [11] G. Shafirstein, W. Baumler, L.J. Hennings, E.R. Siegel, R. Friedman, M.A. Moreno, J. Webber, C. Jackson, R.J. Griffin, Int. J. Cancer 130 (2012) 1208–1215.
- [12] J. Yang, J. Choi, D. Bang, E. Kim, E.K. Lim, H. Park, J.S. Suh, K. Lee, K.H. Yoo, E.K. Kim, Y.M. Huh, S. Haam, Angew. Chem. Int. Ed. 50 (2011) 441–444.
- [13] H. Zakaria, W.S. Abdelaziz, T. Youssef, Lasers Med. Sci. 31 (2016) 625-634.
- [14] J.J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C.F. Zhang, Z.Z. Zhang, Biomaterials 35 (2014) 5847–5861.
- [15] W.J. Fang, S.H. Tang, P.X. Liu, X.L. Fang, J.W. Gong, N.F. Zheng, Small 8 (2012) 3816–3822.
- [16] L. Wang, J.J. Shi, H.L. Zhang, H.X. Li, Y. Gao, Z.Z. Wang, H.H. Wang, L.L. Li, C.F. Zhang, C.Q. Chen, Z.Z. Zhang, Y. Zhang, Biomaterials 34 (2013) 262–274.
- [17] O. Akhavan, E. Ghaderi, Small 9 (2013) 3593-3601.

- [18] P. Kalluru, R. Vankayala, C.S. Chiang, K.C. Hwang, Biomaterials 95 (2016) 1-10.
- [19] M.Q. Chu, Y.X. Shao, J.L. Peng, X.Y. Dai, H.K. Li, Q.S. Wu, D.L. Shi, Biomaterials 34 (2013) 4078–4088.
- [20] J. Chen, Z. Guo, H.B. Wang, M. Gong, X.K. Kong, P. Xia, Q.W. Chen, Biomaterials 34 (2013) 571–581.
- [21] P. An, F. Zuo, X.H. Li, Y.P. Wu, J.H. Zhang, Z.H. Zheng, X.B. Ding, Y.X. Peng, Nano 8 (2013).
- [22] J. Liu, P.Y. Wang, X. Zhang, L.M. Wang, D.L. Wang, Z.J. Gu, J.L. Tang, M.Y. Guo, M.J. Cao, H.G. Zhou, Y. Liu, C.Y. Chen, ACS Nano 10 (2016) 4587–4598.
- [23] Q.W. Tian, F.R. Jiang, R.J. Zou, Q. Liu, Z.G. Chen, M.F. Zhu, S.P. Yang, J.L. Wang, J.H. Wang, J.Q. Hu, ACS Nano 5 (2011) 9761–9771.
- [24] R.J.G. Johnson, K.M. Haas, B.J. Lear, Chem. Commun. 51 (2015) 417–420.
- [25] Z.X. Gan, X.L. Wu, M. Meng, X.B. Zhu, L. Yang, P.K. Chu, ACS Nano 8 (2014) 9304–9310.
- [26] Y.N. Tang, W.H. Di, X.S. Zhai, R.Y. Yang, W.P. Qin, ACS Catal. 3 (2013) 405-412.
- [27] S.I. Nikitenko, T. Chave, C. Cau, H.P. Brau, V. Flaud, ACS Catal. 5 (2015) 4790–4795.
- [28] P. Dong, N. Xu, Y. Xu, X. Wang, Catal. Commun. 84 (2016) 142-146.
- [29] Y. Wang, S. Zhang, Y. Zeng, M. Ou, Q. Zhong, J. Mol. Catal. A: Chem. 423 (2016) 339–346.
- [30] S. Cao, H.Q. Wang, F.X. Yu, M.P. Shi, S. Chen, X.L. Weng, Y. Liu, Z.B.A. Wu, J. Colloid Interface Sci. 463 (2016) 233–241.
- [31] F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, J. Mater. Chem. 21 (2011) 15171–15174.

- [32] K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Appl. Surf. Sci. 356 (2015) 333–340.
- [33] J. Cao, C.C. Zhou, H.L. Lin, B.Y. Xu, S.F. Chen, Mater. Lett. 109 (2013) 74-77.
- [34] X.J. Liang, W.W. Huan, X.C. Jia, H.J. Ding, Y.X. Yang, X.N. Liu, Nano 5 (2010) 203–214.
- [35] R.J. Wang, X.Y. Liu, R.H. Wu, B.W. Yu, H.L. Li, X.L. Zhang, J.R. Xie, S.T. Yang, RSC Adv. 6 (2016) 8594–8600.
- [36] J.S. Choi, H.K. Youn, B.H. Kwak, Q. Wang, K.S. Yang, J.S. Chung, Appl. Catal. B: Environ. 91 (2009) 210–216.
- [37] Y.H. Leng, K. Sato, Y.G. Shi, J.G. Li, T. Ishigaki, T. Yoshida, H. Kamiya, J. Phys. Chem. C 113 (2009) 16681–16685.
- [38] F. Jiang, X. Wang, D. Wu, Appl. Energy 134 (2014) 456-468.
- [39] V.I. Al'myashev, K.G. Gareev, S.A. Ionin, V.S. Levitskii, V.A. Moshnikov, E.I. Terukov, Phys. Solid State 56 (2014) 2155–2159.
- [40] S. Devahasdin, C. Fan, K.Y. Li, D.H. Chen, J. Photochem. Photobiol. A: Chem. 156 (2003) 161–170.
- [41] L. Sivachandiran, F. Thevenet, A. Rousseau, D. Bianchi, Appl. Catal. B: Environ. 198 (2016) 411–419.
- [42] R.V. Mikhaylov, A.A. Lisachenko, B.N. Shelimov, V.B. Kazansky, G. Martra, S. Coluccia, J. Phys. Chem. C 117 (2013) 10345–10352.
- [43] K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami, Y. Kera, Appl. Catal. B: Environ. 30 (2001) 429–436.