Generative Models

Given training data, generate new samples from same distribution

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Given training data, generate new samples from same distribution

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors**:

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from $p_{model}(x)$ w/o explicitly defining it

Why Generative Models?

Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Generative models

Can compute p(x)

- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Image Generation Models

likelihood

sampling

Cons

Tractable likelihood

Relatively inefficient during

$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i x_1,, x_{i-1})$ Encoder (\mathbf{X}) $x \sim p_{\theta}(x \mid z)$			where the $\max_{m{x}} V(D,G)$ $p_{ ext{data}}(m{x})[\log D(m{x})] + \mathbb{E}_{m{z} \sim p_{m{z}}(m{z})}[\log (1 - D(G(m{z})))].$	$\mathbf{x} \sim p(\mathbf{x}_T) \prod_{t=1}^{T} q_{\theta}(\mathbf{x}_{t-1} \mathbf{x}_t)$	
	Autoregressive Models	VAE	GAN	Diffusion Models	
Pros	simple and stable training process	Efficient inference with approximate latent	Generate sharp image No need for any Markov Chain	Simple and stable training process	

	i=1	$\mathbb{E}_{oldsymbol{x} \sim p_0}$	$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]. \qquad \qquad \mathbf{x} \sim p(\mathbf{x}_T) \prod_{t=1} q_{\theta}(\mathbf{x}_{t-1} \mathbf{x}_t)$		
	Autoregressive Models	VAE	GAN	Diffusion Models	
Pros	simple and stable training process Currently gives the best log	Efficient inference with approximate latent variables	Generate sharp image No need for any Markov Chain or approx networks during	Simple and stable training process Best samples!	

Generated samples

tend to be blurry

sampling

Difficult to optimize due to

unstable training dynamics

Relatively inefficient during

sampling

Image Generation Models

Current research interest in image generation:

$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i x_1,, x_{i-1})$ $Encoder$ $\mathbf{x} \sim p_{\theta}(\mathbf{x} \mathbf{z})$ $\min_{G} \max_{D} V(D, G)$ $= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))].$				
	Autoregressive Models	VAE	GAN	Diffusion Models
Pros	simple and stable training	Efficient inference with	Generate sharp image	Simple and stable training

$p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i x_1,, x_{i-1})$ $= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))].$ $\mathbf{x} \sim p(\mathbf{x}_T) \prod_{t=1}^{T} q_{\theta}(\mathbf{x}_{t-1} \mathbf{x}_t)$					
	Autoregressive Models	VAE	GAN	Diffusion Models	
Pros	simple and stable training process Currently gives the best log	Efficient inference with approximate latent variables	Generate sharp image No need for any Markov Chain or approx networks during	Simple and stable training process Best samples!	

likelihood sampling

Tractable likelihood

Relatively inefficient during Generated samples Difficult to optimize due to Relatively inefficient during

Cons

tend to be blurry unstable training dynamics sampling sampling