Advanced Artificial Intelligence: Spring 2016

Tokyo Institute of Technology

Professors: Nitta, Inoue, and Shinoda

Hoang Nguyen - 15M54097 Monday, July 25, 2016 Quiz 1 - Lecture 12 (Prof. Shinoda)

Quiz 1 - Lecture 12 (Prof. Shinoda)

- 1. Prove the second formula in Slide 25.
- 2. Prove the second formula in Slide 36.
- 3. We think about an 1-dimension with mean μ , variance σ . Prove that the distribution which maximize the entropy is a Gaussian distribution.

Collaborators: None.

Exercise 1-1.

Consider the expectations of the variation with respect to the data set values, which comes from a Gaussian distribution with parameter μ and σ^2 . Prove the following formula:

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

Represent the statement "It is not true that all P's are not Q's" in first-order logic. Then, prove that this is logically equivalent to the statement "Some P's are not Q's".

Solution: By equivalent translation to first-order logic, we have the following representation:

Exercise 1-2. [15 points] Recurrence Relation Resolution

For each of the following recurrence relations, pick the correct asymptotic runtime:

() [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{ and } \\ T(x,y) &=& \Theta(x+y) + T(x/2,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Solution: 1

() [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ T(x,y) & = & \Theta(x) + T(x,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Solution: 1

() [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lll} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(x,y) &=& \Theta(x) + S(x,y/2), \\ S(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{ and } \\ S(x,y) &=& \Theta(y) + T(x/2,y). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Solution: 1

Peak-Finding

In Lecture 1, you saw the peak-finding problem. As a reminder, a *peak* in a matrix is a location with the property that its four neighbors (north, south, east, and west) have value less than or equal to the value of the peak. We have posted Python code for solving this problem to the website in a file called psl.zip. In the file algorithms.py, there are four different algorithms which have been written to solve the peak-finding problem, only some of which are correct. Your goal is to figure out which of these algorithms are correct and which are efficient.

Exercise 1-3. [16 points] Peak-Finding Correctness

- (d) [4 points] Is algorithm1 correct?
 1. Yes.
 2. No.
 Solution: 1
 (e) [4 points] Is algorithm2 correct?
 1. Yes.
 2. No.
 - **Solution:** 1
- (f) [4 points] Is algorithm3 correct?
 - 1. Yes.
 - 2. No.

Solution: 1

- (g) [4 points] Is algorithm4 correct?
 - 1. Yes.
 - 2. No.

Solution: 1

Exercise 1-4. [16 points] Peak-Finding Efficiency

- (h) [4 points] What is the worst-case runtime of algorithm1 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Solution: 1

- (i) [4 points] What is the worst-case runtime of algorithm2 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.

6. $\Theta(2^n)$.

Solution: 1

- (j) [4 points] What is the worst-case runtime of algorithm3 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Solution: 1

- (k) [4 points] What is the worst-case runtime of algorithm4 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Solution: 1

Exercise 1-5. [19 points] Peak-Finding Proof

Please modify the proof below to construct a proof of correctness for the *most efficient correct algorithm* among algorithm2, algorithm3, and algorithm4.

The following is the proof of correctness for algorithm1, which was sketched in Lecture 1.

We wish to show that algorithm1 will always return a peak, as long as the problem is not empty. To that end, we wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm1 will always return a location. Say that we start with a problem of size $m \times n$. The recursive subproblem examined by algorithm1 will have dimensions $m \times \lfloor n/2 \rfloor$ or $m \times (n - \lfloor n/2 \rfloor - 1)$. Therefore, the number of columns in the problem strictly decreases with each recursive call as long as n > 0. So algorithm1 either returns a location at some point, or eventually examines a subproblem with a non-positive number of columns. The only way for the number of columns to become strictly negative, according to the formulas that determine the size of the subproblem, is to have n = 0 at some point. So if algorithm1 doesn't return a location, it must eventually examine an empty subproblem.

We wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm1 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $m \times 1$ or $m \times 2$. If the problem is of size $m \times 1$, then calculating the maximum of the central column is equivalent to calculating the maximum of the entire problem. Hence, the maximum that the algorithm finds must be a peak, and it will halt and return the location. If the problem has dimensions $m \times 2$, then there are two possibilities: either the maximum of the central column is a peak (in which case the algorithm will halt and return the location), or it has a strictly better neighbor in the other column (in which case the algorithm will recurse on the non-empty subproblem with dimensions $m \times 1$, thus reducing to the previous case). So algorithm1 can never recurse into an empty subproblem, and therefore algorithm1 must eventually return a location.

2. If algorithm1 returns a location, it will be a peak in the original problem. If algorithm1 returns a location (r_1, c_1) , then that location must have the best value in column c_1 , and must have been a peak within some recursive subproblem. Assume, for the sake of contradiction, that (r_1, c_1) is not also a peak within the original problem. Then as the location (r_1, c_1) is passed up the chain of recursive calls, it must eventually reach a level where it stops being a peak. At that level, the location (r_1, c_1) must be adjacent to the dividing column c_2 (where $|c_1 - c_2| = 1$), and the values must satisfy the inequality $val(r_1, c_1) < val(r_1, c_2)$.

Let (r_2, c_2) be the location of the maximum value found by algorithm1 in the dividing column. As a result, it must be that $val(r_1, c_2) \leq val(r_2, c_2)$. Because the algorithm chose to recurse on the half containing (r_1, c_1) , we know that $val(r_2, c_2) < val(r_2, c_1)$. Hence, we have the following chain of inequalities:

$$val(r_1, c_1) < val(r_1, c_2) \le val(r_2, c_2) < val(r_2, c_1)$$

But in order for algorithm1 to return (r_1, c_1) as a peak, the value at (r_1, c_1) must have been the greatest in its column, making $val(r_1, c_1) \geq val(r_2, c_1)$. Hence, we have a contradiction.

Solution: Write your proof here.

Exercise 1-6. [19 points] **Peak-Finding Counterexamples**

For each incorrect algorithm, upload a Python file giving a counterexample (i.e. a matrix for which the algorithm returns a location that is not a peak).

Solution:

```
problemMatrix = [
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
```

```
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]

problemMatrix = [
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
]
```