Университет ИТМО

Кафедра пивоварения

Элитное подразделение Университета ИТМО

Конспект лекций по функциональному анализу

Додонова Николая Юрьевича

Оглавление

1	Понятия о функциональных пространствах. Некоторые понятия общей то-	
	пологии	2
	1.1 Общая топология	2
	1.1.1 Определение топологического пространства	2
2	Метрические пространства	3
3	Нормированные пространства	4
	3.1 Нормированное пространство	4
	3.2 Баноховое пространства	4
	3.3 Теорема Риса	4
4	Евклидовые пространства	5

Понятия о функциональных пространствах. Некоторые понятия общей топологии

1.1 Общая топология

1.1.1 Определение топологического пространства

Пусть X — некоторое множество. Рассмотрим набор $\mathcal T$ его подмножеств, для которого:

- $1 \varnothing, X \in \mathcal{T}$
- 2 Объединение любого семейства множеств, принадлежащих совокупности \mathcal{T} , также принадлежит совокупности \mathcal{T}
- 3 Пересечение любого конечного семейства множеств, принадлежащих совокупности \mathcal{T} , также принадлежит совокупности \mathcal{T}

В таком случае:

- 1 \mathcal{T} есть топологическая структура или просто топология в множестве X;
- 2 множество X с выделенной топологической структурой \mathcal{T} (т.е. пара (X,\mathcal{T})) называется топологическим пространством;
- 3 элементы множества X называются точками этого топологического пространства;
- 4 элементы множества \mathcal{T} называются открытыми множествами пространства (X, \mathcal{T}) .

Примеры топологий:

 $\mathcal{T} = \{\emptyset, X\}$ - тривиальная топология.

 $\mathcal{T}=2^x$ - дискретная топология.

 $F = \overline{G} = X \backslash G \in \mathcal{T}$ - замкнутое множество.

Метрические пространства

Нормированные пространства

- 3.1 Нормированное пространство
- 3.2 Баноховое пространства
- 3.3 Теорема Риса

Евклидовые пространства