Bayesian Modelling – Problem Sheet 2

Please hand in your solutions for Problems 3-6 by 6pm on Wednesday 20/02/2019

Problem 1 (Jacobian formula in one dimension)

Let $X \sim f_X$ be a real-valued random variable having a continuous probability density function f_X , $g: \mathbb{R} \to \mathbb{R}$ be a one-to-one and continuously differentiable mapping and $Y = g^{-1}(X)$. Show that $Y \sim f_Y$ where $f_Y: \mathbb{R} \to \mathbb{R}_+$ is defined by

$$f_Y(y) = \left| \frac{\mathrm{d}}{\mathrm{d}y} g(y) \right| f_X(g(y)), \quad y \in \mathbb{R}.$$

Problem 2

Let x_1, \ldots, x_n be n observations that we model as independent random variables such that

$$X_k \sim \tilde{f}(x_1|\theta), \quad k = 1, \dots n$$

with $\theta \in \Theta \subset \mathbb{R}^d$ an unknown parameter.

Let $I_n(\theta)$ be the Fisher information matrix of this model (we assume that \tilde{f} is such that $I_1(\theta)$ is well-defined). Show that $I_n(\theta) = nI_1(\theta)$ and conclude that the Jeffreys prior for this model does not depend on the sample size n.

Problem 3

Let $x \in \mathbb{R}^d$ be an observation that we model as a $\mathcal{N}_d(\theta, I_d)$ random variable, with $\theta \in \Theta := \mathbb{R}^d$ and I_d the d-dimensional identity matrix. Let $\pi(\theta)$ be the Laplace's prior for this model.

- 1. Show that the Laplace's prior is also the Jeffreys prior for this model.
- 2. Compute $\mathbb{E}_{\pi}[\theta|x]$, the posterior expectation of θ given x.
- 3. Assume now that we are interested in the parameter $\eta = \|\theta\|^2$. Show that $\mathbb{E}_{\pi}[\eta|x] = \|x\|^2 + d$.
- 4. For $c \in \mathbb{R}$ let $\delta_c : \mathbb{R}^d \to \mathbb{R}_+$ be the estimator of η defined by

$$\delta_c(z) = ||z||^2 + c, \quad z \in \mathbb{R}^d.$$

Show that, under the quadratic loss function and for any $\theta \in \mathbb{R}^d$, the frequentist risk $R(\|\theta\|^2, \delta_c)$ is minimized for c = -d. Deduce that

$$R(\|\theta\|^2, \delta_{-d}) < R(\|\theta\|^2, \delta_d), \quad \forall \theta \in \Theta$$

and thus that the estimator $\mathbb{E}_{\pi}[\eta|\cdot]$ is not admissible.

5. Show that, for any $c \in \mathbb{R}$, we have $\sup_{\theta \in \Theta} R(\|\theta\|^2, \delta_c) = +\infty$.

Problem 4

Let x_1, \ldots, x_n be n observations that we model as independent Poisson random variables,

$$X_k | \theta \sim \text{Poisson}(\theta), \quad k = 1, \dots n,$$

where $\theta \in \Theta := \mathbb{R}_{>0}$ is an unknown parameter. The likelihood function of observation $x_1 \in \{0\} \cup \mathbb{N}$ is therefore given by

$$\tilde{f}(x_1|\theta) = \frac{\theta^{x_1}}{x_1!}e^{-\theta}, \quad \theta \in \Theta.$$

We assign to θ a Gamma(α_0, β_0) prior distribution, i.e.

$$\pi(\theta) = \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \theta^{\alpha_0 - 1} e^{-\beta_0 \theta}, \quad \theta \in \Theta,$$

where $\alpha_0, \beta_0 \in (0, +\infty)$ are positive hyper-parameters. Below we denote by $x = (x_1, \dots, x_n)$ the vector of observations.

- 1. Derive the posterior distribution of θ . Is the prior conjugate? Explain your answer.
- 2. Compute the posterior mean and posterior variance of θ .
- 3. Using the observation x and a quadratic loss function, compute the estimate of the loss $L(\theta, \mathbb{E}_{\pi}[\theta|x])$ obtained by minimizing the posterior expected loss.
- 4. Consider now the Laplace's prior defined by

$$\pi(\theta) \propto 1, \quad \theta \in \Theta.$$

- a) Derive the posterior mean $\mathbb{E}_{\pi}[\theta|x]$ and the posterior variance. How are these quantities related to those obtained in part 2?
- b) Show that, for the quadratic loss function, the integrated risk of the estimator $\delta^{\pi} := \mathbb{E}_{\pi}[\theta|\cdot]$ is infinite; that is, $r(\pi, \delta^{\pi}) = +\infty$.

Hint: The following result may be useful: If Y_1, \ldots, Y_n are independent Poisson(λ) random variables then $\sum_{k=1}^{n} Y_i \sim \text{Poisson}(n\lambda)$ (with $\lambda > 0$).

- 5. We now consider the Jeffreys' prior for this model.
 - a) Compute the Jeffreys' prior for this model. Is this prior proper or improper?
 - b) Derive the posterior mean and posterior variance under this prior.

Problem 5

The probability of success θ in a Bernoulli trial lies in the interval $\Theta := [0, 1]$, so if we are completely ignorant of its true value the uniform distribution on the unit interval seems to be the natural prior to use:

$$\pi(\theta) = \mathbb{1}_{[0,1]}(\theta), \quad \theta \in \Theta. \tag{1}$$

But if we are completely ignorant of θ , we are also completely ignorant of

$$\eta := \frac{\theta}{1-\theta}$$

which takes values in the positive real line.

- 1. Compute $\pi^*(\eta)$, the prior distribution for $\eta \in \mathbb{R}_+$ which is implied by the prior distribution on θ specified in (1). Check that $\pi^*(\eta)$ is a proper density function on \mathbb{R}_+ .
- 2. For $a \ge 0$ compute $\pi^*(\{\eta : \eta \le a\})$; that is, the probability that $\eta \le a$ under the prior $\pi^*(\eta)$. Compute this probability for a = 3.
- 3. Using the results obtained in parts 1 and 2, comment on whether the prior density $\pi^*(\eta)$ can be interpreted as a non-informative prior density.

Problem 6

Observations x_1, \ldots, x_n are modelled as independent Geometric random variables,

$$X_k | \theta \sim \text{Geom}(\theta) \quad \text{for } k = 1, \dots, n$$

where $\theta \in \Theta := [0, 1]$ is an unknown parameter. Note that $x_1 \in \{1, 2, ...\}$ and that the likelihood function of observation x_1 is given by

$$\tilde{f}(x_1|\theta) = (1-\theta)^{x_1-1}\theta, \quad \theta \in \Theta.$$

- 1. Derive the Jeffreys' prior for this model. Is the prior proper or improper?
- 2. Show that the Jeffreys' prior yields a valid posterior distribution. Compute this latter as well as the posterior mean.