

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =135A $R_{DS(ON)}$ =3.65m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =3.5m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- Pb-free Mold Compound

Schematic Diagram

Package Marking and Ordering Information

			т		
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N036-TC	VST10N036	TO-220C	-	-	-
VST10N036-T3	VST10N036	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	135	A A A W	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	108		
Pulsed Drain Current	I _{DM}	540		
Maximum Power Dissipation	P _D	220		
Derating factor		1.47	W/°C	
Avalanche Current ^(Note 1)	I _{AR}	55	А	
Single pulse avalanche energy (Note 5)	E _{AS}	1156	mJ ℃	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175		

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	Rejc	0.68	°C/W	
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	50	°C/W	

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition		Min	Тур	Max	Unit
Off Characteristics				•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	Body Leakage Current I _{GSS} V _{GS} =±20V,V _{DS} =0V		os=0V	-	-	±100	nA
On Characteristics (Note 3)							
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =65A	TO-220	-	3.65	3.9	mΩ
DIAIII-Source OII-State Resistance			TO-263		3.5	3.9	mΩ
Gate resistance	R _G				1.5	-	Ω
Forward Transconductance	g FS	V _{DS} =5V,I _D =65A			90	-	S
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V, F=1.0MHz		-	7450	9685	PF
Output Capacitance	C _{oss}			-	618	803	PF
Reverse Transfer Capacitance	C _{rss}			-	37	60	PF
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}			-	20	-	nS
Turn-on Rise Time			-	11.5	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω		-	48	-	nS
Turn-Off Fall Time	t _f			-	10	-	nS
Total Gate Charge	Qg	\/ F0\/\ 05A		-	116	150	nC
Gate-Source Charge	v _{DS} =50V, I _D =65A, Q_{gs}		•	-	39	50	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V		-	32	42	nC
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =65A		-		1.2	V
Diode Forward Current (Note 2)	Is			-	-	135	Α
Reverse Recovery Time	Recovery Time t_{rr} $T_J = 25^{\circ}C$, $I_F = I_S$		-	76	-	nS	
Reverse Recovery Charge	e Recovery Charge Qrr di/dt = 100A/µs ^(Note3)		_	150	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance