Harold's Parent Functions "Cheat Sheet"

20 September 2016

Function Name	Parent Function	Graph	Characteristics
Algebra			
Constant	f(x) = c	$(0,c) \qquad y=c$	Domain: $(-\infty, \infty)$ Range: $[c, c]$ Inverse Function: Undefined (asymptote) Restrictions: c is a real number Odd/Even: Even General Form: Ay + B = 0
Linear or Identity	f(x) = x	y = x 5 4 3 2 1 1 2 3 4 5 4 5 4 5 5 4 5 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: g(x) = x Restrictions: $m \neq 0$ Odd/Even: Odd General Forms: Ax + By + C = 0 y = mx + b $y - y_0 = m(x - x_0)$
Quadratic or Square	$f(x) = x^2$	(2.6) 4 (2.6) 3 2 1 (0.1) 2 3 4 5 1 1 2 3 3 4 5 1 1 2 3 3 4 5 1 1 2 3 3 4 5 1 1 2 3 3 4 5 1 1 2 2 3 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ Inverse Function: $g(x) = \sqrt{x}$ Restrictions: None Odd/Even: Even General Form: $Ax^2 + By + Cx + D = 0$
Square Root	$f(x) = \sqrt{x}$	2 1 1 -2 -1 1 2 3 4 5	Domain: $[0, \infty)$ Range: $[0, \infty)$ Inverse Function: $g(x) = x^2$ Restrictions: $x \ge 0$ Odd/Even: Neither General Form: $f(x) = a\sqrt{b(x-h)} + k$

Function Parent Graph		Cuanh	Characteristics	
Name	Function	Graph	Characteristics	
Absolute Value	f(x) = x	y = x $y = x $	Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ Inverse Function: $f(x) = x \text{ for } x \ge 0$ Restrictions: $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ Odd/Even: Even General Form: f(x) = a b(x-h) + k	
Cubic	$f(x) = x^3$	-4 -2 2 4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -	$f(x) = a b(x-h) + k$ Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = \sqrt[3]{x}$ Restrictions: None Odd/Even: Odd General Form: $f(x) = a(b(x-h))^3 + k$ Domain: $(-\infty, \infty)$	
Cube Root	$f(x) = \sqrt[3]{x}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = x^3$ Restrictions: None Odd/Even: Odd General Form: $f(x) = a\sqrt[3]{b(x-h)} + k$	
Exponential	$f(x) = 10^{x}$ or $f(x) = e^{x}$	(0, 1) (1, e)	Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ Inverse Function: $g(x) = \log x$ or $g(x) = \ln x$ Restrictions: None, x can be imaginary Odd/Even: Neither General Form: $f(x) = a \ 10^{(b(x-h))} + k$	
Logarithmic	$f(x) = \log x$ or $f(x) = \ln x$	$y = \log_{10}x$	Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = 10^x$ or $g(x) = e^x$ Restrictions: $x > 0$ Odd/Even: Neither General Form: $f(x) = a \log(b(x - h)) + k$	

Function Name	Parent Function	Graph	Characteristics
Reciprocal or Rational	$f(x) = \frac{1}{x}$	5 4 3 2 4 0 1 2 3 4 5	Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, 0) \cup (0, \infty)$ Inverse Function: $g(x) = \frac{1}{x}$ Restrictions: $x \neq 0$ Odd/Even: Odd General Form: $f(x) = a\left[\frac{b}{(x-h)}\right] + k$
Greatest Integer or Floor	f(x) = [x]	3	Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ whole numbers only Inverse Function: Undefined (asymptotic) Restrictions: Real numbers only Odd/Even: Neither General Form: f(x) = a[b(x-h)] + k
Inverse Functions	$If f(x) = y,$ $then$ $f^{-1}(y)$ $= f^{-1}(f(x))$ $= x$	$f^{-1}(x)$ $f(x)$	Domain of $x \rightarrow$ Domain of y Range of $y \rightarrow$ Range of x Inverse Function: By definition Restrictions: None Odd/Even: Odd General Form: f(x) = a f(b(x - h)) + k
Conic Sections			
Circle	$x^2 + y^2 = r^2$	-1 (x,y)	Domain: $[-r+h, r+h]$ Range: $[-r+k, r+k]$ Inverse Function: Same as parent Restrictions: None Odd/Even: Both Focus: (h,k) General Forms: $(x-h)^2 + (y-k)^2 = r^2$ $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ $where A = C \ and B = 0$

Function Name	Parent Function	Graph	Characteristics
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{d_1 + d_2 = 2a}{d_1 + d_2}$ $\frac{d_1 + d_2 = 2a}{d_2 + d_2}$ $\frac{d_1 + d_2 = 2a}{d_2 + d_2}$	Domain: $[-a+h, a+h]$ Range: $[-b+k, b+k]$ Inverse Function: $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ Restrictions: None Odd/Even: Both Foci : $c^2 = a^2 - b^2$ General Forms: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ where $B^2 - 4AC < 0$
Parabola	$y = ax^2$	y dd1 = d2 y dd1 = d2 y dd1 = d2 vertex y -p directrix	Domain: $(-\infty, \infty)$ Range: $[k, \infty)$ or $(-\infty, k]$ Inverse Function: $g(x) = \sqrt{x}$ Restrictions: None Odd/Even: Even Vertex: (h, k) Focus: $(h, k + p)$ General Forms: $(x - h)^2 = 4p(y - k)$ $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ where $B^2 - 4AC = 0$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$ d_1 - d_2 = 2a$ $ d_2 - d_2 = 2a$ $ d_1 - d_2 = 2a$ $ d_2 - d_2 = 2a$ $ d_1 - d_2 = 2a$ $ d_2 - d_2 = 2a$ $ d_3 - d_2 = 2a$ $ d_4 - d_2 = 2a$ $ d_4 - d_2 = 2a$ $ d_4 - d_2 = 2a$	Domain: $(-\infty, -a+h] \cup [a+h, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ Restrictions: Domain is restricted Odd/Even: Both Foci : $c^2 = a^2 + b^2$ General Forms: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ where $B^2 - 4AC > 0$

Function	nction Parent Graph		Characteristics	
Name	Function	Graph	Characteristics	
Trigonometry				
Sine	$f(x) = \sin x$	$\frac{1}{\pi}$ $\frac{1}{2\pi}$ x	Domain: $(-\infty, \infty)$ Range: $[-1, 1]$ Inverse Function: $g(x) = sin^{-1} x$ Restrictions: None Odd/Even: Odd General Form: f(x) = a sin(b(x - h)) + k	
Cosine	$f(x) = \cos x$	π 2π	Domain: $(-\infty, \infty)$ Range: $[-1, 1]$ Inverse Function: $g(x) = cos^{-1} x$ Restrictions: None Odd/Even: Even General Form: $f(x) = a cos (b(x - h)) + k$	
Tangent	$f(x) = \tan x$ $= \frac{\sin x}{\cos x}$	-3n/2 - n - n/2 n/2 n 3n/2 2	Domain: $(-\infty, \infty)$ except for $x = \frac{\pi}{2} \pm n\pi$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = tan^{-1}x$ Restrictions: Asymptotes at $x = \frac{\pi}{2} \pm n\pi$ Odd/Even: Odd General Form: $f(x) = a tan (b(x - h)) + k$	
Secant	$f(x) = \sec x$ $= \frac{1}{\cos x}$	3.0 Y 2.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Domain: $(-\infty, \infty)$ except for $x = \frac{\pi}{2} \pm n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Inverse Function: $g(x) = sec^{-1} x$ Restrictions: Range is bounded Odd/Even: Even General Form: $f(x) = a \sec (b(x - h)) + k$	
Cosecant	$f(x) = \csc x$ $= \frac{1}{\sin x}$	3.0 2.0 1.0 1.0 2.0 -2.0 -3.0	Domain: $(-\infty, \infty)$ except for $x = \pm n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Inverse Function: $g(x) = csc^{-1}x$ Restrictions: Range is bounded Odd/Even: Odd General Form: $f(x) = a \ csc \ (b(x-h)) + k$	
Cotangent	$f(x) = \cot x$ $= \frac{1}{\tan x}$	-3n/2 -n -n/2 n/2 n 3n/2 2 -5.0	Domain: $(-\infty, \infty)$ except for $x = \pm n\pi$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = \cot^{-1} x$ Restrictions: Asymptotes at $x = \pm n\pi$ Odd/Even: Odd General Form: $f(x) = a \cot (b(x - h)) + k$	

Function Parent Graph		Characteristics	
Name	Function		
Arcsine	$f(x) = \sin^{-1} x$	$\frac{\pi}{2}$ 1 0 1 x $-\frac{\pi}{2}$	Domain: $[-1, 1]$ Range: $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ or Quadrants I & IV Inverse Function: $g(x) = \sin x$ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: $f(x) = a \sin^{-1} \left(b(x-h)\right) + k$
Arccosine	$f(x) = \cos^{-1} x$	$\frac{x}{2}$ $1 - \frac{x}{2}$ $-1 0 1 x$	Domain: $[-1, 1]$ Range: $[0, \pi]$ or Quadrants I & II Inverse Function: $g(x) = \cos x$ Restrictions: Range & Domain are bounded Odd/Even: None General Form: $f(x) = a \cos^{-1} \left(b(x-h) \right) + k$ Domain: $(-\infty, \infty)$
Arctangent	$f(x) = \tan^{-1} x$	$ \begin{array}{c c} & \xrightarrow{x} \\ \hline & \\ & \\$	Range: $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ or Quadrants I & IV Inverse Function: $g(x) = \tan x$ Restrictions: Range is bounded Odd/Even: Odd General Form:
Arcsecant	$f(x) = \sec^{-1} x$	$y \rightarrow \pi$ $\frac{\pi}{2}$ $1 \qquad y = \operatorname{arcsec} x$ $-1 0 1 \qquad x$	$f(x) = a \tan^{-1} \left(b(x-h)\right) + k$ Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$ or Quadrants I & II Inverse Function: $g(x) = \sec x$ Restrictions: Range & Domain are bounded Odd/Even: Neither General Form: $f(x) = a \sec^{-1} \left(b(x-h)\right) + k$
Arccosecant	$f(x) = csc^{-1}x$	$y \uparrow \frac{\pi}{2}$ $y = \arccos x$ -1 0 1 x	Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]$ or Quadrants I & IV Inverse Function: $g(x) = csc x$ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: $f(x) = a \ csc^{-1} \left(b(x-h)\right) + k$
Arccotangent	$f(x) = \cot^{-1} x$	$ \frac{x}{x} $ $ \frac{\pi}{2} y = \operatorname{arccot} x $ $ 0 1 x $	Domain: $(-\infty, \infty)$ Range: $(0,\pi)$ or Quadrants I & II Inverse Function: $g(x) = \cot x$ Restrictions: Range is bounded Odd/Even: Neither General Form: $f(x) = a \cot^{-1} (b(x-h)) + k$

Function	Parent	Graph	Characteristics
Name	Function	Grapii	Characteristics
Hyperbolics			
Hyperbolic Sine	$f(x) = \sinh x$ $= \frac{e^x - e^{-x}}{2}$	sinhx 20 10 -1 -2 -20	Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = \sinh^{-1} x$ Restrictions: None Odd/Even: Odd General Form: $f(x) = a \sinh (b(x-h)) + k$
Hyperbolic Cosine	$f(x) = \cosh x$ $= \frac{e^x + e^{-x}}{2}$	10	Domain: $(-\infty, \infty)$ Range: $[1, \infty)$ Inverse Function: $g(x) = \cosh^{-1} x$ Restrictions: None Odd/Even: Even General Form: $f(x) = a \cosh (b(x-h)) + k$
Hyperbolic Tangent	$f(x) = \tanh x$ $= \frac{e^{2x} - 1}{e^{2x} + 1}$	0.5 0.5 -4 -2 2 4 x	Domain: $(-\infty, \infty)$ Range: $(-1, 1)$ Inverse Function: $g(x) = tanh^{-1}x$ Restrictions: Asymptotes at $y = \pm 1$ Odd/Even: Odd General Form: $f(x) = a tanh (b(x - h)) + k$
Hyperbolic Secant	$f(x) = \operatorname{sech} x$ $= \frac{1}{\cosh x}$	Nech x 1.0 0.8 0.6 0.4 0.2 2 4 x	Domain: $(-\infty, \infty)$ Range: $(0, 1]$ Inverse Function: $g(x) = sech^{-1} x$ Restrictions: Asymptote at $y = 0$ Odd/Even: Even General Form: $f(x) = a \ sech (b(x - h)) + k$
Hyperbolic Cosecant	$f(x) = \operatorname{csch} x$ $= \frac{1}{\sinh x}$	cschy 2 1	Domain: $(-\infty,0) \cup (0,\infty)$ Range: $(-\infty,0] \cup [0,\infty)$ Inverse Function: $g(x) = csch^{-1}x$ Restrictions: Asymptotes at $x=0,y=0$ Odd/Even: Odd General Form: $f(x) = a \ csch \left(b(x-h)\right) + k$
Hyperbolic Cotangent	$f(x) = \coth x$ $= \frac{e^{2x} + 1}{e^{2x} - 1}$	-d -2 2 d X	Domain: $(-\infty,0) \cup (0,\infty)$ Range: $(-\infty,1) \cup (1,\infty)$ Inverse Function: $g(x) = \coth^{-1} x$ Restrictions: Asymptotes at $x=0,y=\pm 1$ Odd/Even: Odd General Form: $f(x) = a \coth (b(x-h)) + k$

Function Name	Parent Function	Graph	Characteristics
Hyperbolic Arcsine	$f(x) = \sinh^{-1} x$ $= \ln(x + \sqrt{x^2 + 1})$	sinh ⁻¹ x 2 1 -4 -2 2 4 x	Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = \sinh x$ Restrictions: None Odd/Even: Odd General Form: $f(x) = a \sinh^{-1} (b(x - h)) + k$
Hyperbolic Arccosine	$f(x) = \cosh^{-1} x$ $= \ln(x + \sqrt{x^2 - 1})$	cosh ⁴ x 3 5 10 X	Domain: $[1, \infty)$ Range: $[0, \infty)$ Inverse Function: $g(x) = \cosh x$ Restrictions: $y \ge 0$ Odd/Even: Neither General Form: $f(x) = a \cosh^{-1} (b(x-h)) + k$
Hyperbolic Arctangent	$f(x) = tanh^{-1} x$ $= \frac{1}{2} ln \left(\frac{1+x}{1-x} \right)$	tanh 1 x	Domain: $(-1, 1)$ Range: $(-\infty, \infty)$ Inverse Function: $g(x) = \tanh x$ Restrictions: Asymptotes at $x = \pm 1$ Odd/Even: Odd General Form: $f(x) = a \tanh^{-1} (b(x - h)) + k$
Hyperbolic Arcsecant	$f(x) = \operatorname{sech}^{-1} x$ $= \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)$	sech 'x	Domain: $(0, 1]$ Range: $[0, \infty)$ Inverse Function: $g(x) = \operatorname{sech} x$ Restrictions: Odd/Even: Neither General Form: $f(x) = a \operatorname{sech}^{-1} (b(x - h)) + k$
Hyperbolic Arccosecant	$f(x) = \operatorname{csch}^{-1} x$ $= \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right)$	csch 1 x 2 x	Domain: $(-\infty,0) \cup (0,\infty)$ Range: $(-\infty,0] \cup [0,\infty)$ Inverse Function: $g(x) = \operatorname{csch} x$ Restrictions: Asymptotes at $x=0,y=0$ Odd/Even: Odd General Form: $f(x) = a \operatorname{csch}^{-1} \left(b(x-h)\right) + k$
Hyperbolic Arccotangent	$f(x) = \coth^{-1} x$ $= \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$	coth ¹ x	Domain: $[-\infty, -1) \cup (1, \infty]$ Range: $(-\infty, 0) \cup (0, \infty)$ Inverse Function: $g(x) = \coth x$ Restrictions: Asymptotes at $x = 0, y = \pm 1$ Odd/Even: Odd General Form: $f(x) = a \coth^{-1} (b(x - h)) + k$

Graphing Tips

All Functions

The Seven Function $y = a f(b(x - h)) + k$		Graphing Tips	
1) Move up/down 🗘	k (Vertical translation)	"+" Moves it up	
2) Move left/right ↔	h (Horizontal translation)	"+" Moves it right	
3) Stretch up/down 🗘	a (Vertical dilation)	Larger stretches it taller or makes it grow faster	
4) Stretch left/right ↔	b (Horizontal dilation)	Larger stretches it wider	
5) Flip about x-axis ひ	a → −a	$f(x) \rightarrow -f(x)$ If $f(x) = -f(-x)$ then odd function	
6) Flip about y-axis ひ	b → -b	$f(x) \rightarrow f(-x)$ If $f(x) = f(-x)$ then even function	
7) Rotate CW/CCW び	$\cot 2\theta = \frac{A - C}{B}$	"+" θ rotates CCW For conic sections, where: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$	

Trigonometric Functions

The Six Trig "Levers"	y = a sin (b (x - h)) + k	Graphing Tips	Notes
1) Move up/down 🗘	k (Vertical translation)	$k = \frac{(max + min)}{2}$	If $k = f(x)$ then x-axis is replaced by $f(x)$ -axis
2) Move left/right ↔	h (Phase shift)	'+' shifts right	$sin(x) = cos(x - \pi/2)$
3) Stretch up/down 🗘	a (Amplitude)	$a = \frac{(max - min)}{2}$	a is NOT peak-to-peak on y-axis
4) Stretch left/right ↔	b (Frequency • 2π)	$T = \frac{2\pi}{ b } = \frac{1}{f}$	T = peak-to-peak on θ-axis $T = \frac{\pi}{b} \text{ for } tan \ (bx)$
5) Flip about x-axis ひ	a → –a	$f(x) \to -f(-x)$	Odd Function: $sin(x) = -sin(-x)$
6) Flip about y-axis び	b → -b	$f(x) \to f(-x)$	Even Function: $cos(x) = cos(-x)$