

VOLTAGE REGULATOR

POWER SUPPLY BUILDING BLOCKS

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Zener Diode

Linear Voltage Regulator IC

ZENER DIODE

VOLTAGE REGULATOR

<u>Voltage regulator</u> provides a <u>constant</u> DC output voltage by adjusting their internal resistance to compensate for input voltage or load variations.

Power Supply Block Diagram

ZENER DIODE

Characteristic Curve

Zener diode operates in the reverse bias region, where it allows current to flow once the reverse voltage reaches a specific value known as the Zener voltage (v_z).

Conduction direction

STATE OF ZENER DIODE

Determine the state of Zener diode by **removing** it from the network and calculating the voltage across the resulting open circuit.

STATE OF ZENER DIODE

Determine the state of Zener diode by <u>removing</u> it from the network and calculating the voltage across the resulting open circuit.

$$v_{open} = v_o \frac{R_L}{R_1 + R_L}$$

"ON" state equivalent circuit

"OFF" state equivalent circuit

For the given circuit, determine the voltage across the load, the voltage across $1K\Omega$ resistor, the current flowing through the Zener diode, and the power dissipated by the Zener diode.

$$V_{2}(open) = V_{0} \frac{RL}{R_{1} + RL}$$

$$V_{2}(\text{open}) = 16 \frac{1.2 \text{K}}{1 \text{K} + 1.2 \text{K}}$$

$$Vz(open) = 8.73 V$$

$$V_L = 8.75V$$

For the given circuit, determine the voltage across the load, the voltage across $1K\Omega$ resistor, the current flowing through the Zener diode, and the power dissipated by the Zener diode.

$$v_1 = v_0 - v_a$$

$$v_1 = 16 - 8.73$$

$$v_1 = 7.27 V$$

$$i_7 = 0$$

$$P_2 = 0$$

In reference to the previous problem, assume the load resistance is changed to $3K\Omega$.

$$V_{2}(open) = V_{0} \frac{R_{L}}{R_{1} + R_{L}}$$

$$V_{2}(\text{open}) = 16 \frac{3k}{1k + 3k}$$

$$\therefore V_L = 10V$$

In reference to the previous problem, assume the load resistance is changed to $3K\Omega$.

$$V_1 = V_0 - V_0$$

$$v_1 = 16 - 10$$

$$v_1 = Gv$$

In reference to the previous problem, assume the load resistance is changed to $3K\Omega$.

$$\frac{|\mathcal{K}CL@a|}{-il+i2+il=0}$$

$$\frac{i2=il-il}{i2=\frac{7}{12}-\frac{7}{12}}$$

$$\frac{i2=\frac{6}{12}-\frac{10}{312}}{i2=\frac{6}{12}-\frac{10}{312}}$$

$$\frac{i2=\frac{6}{12}-\frac{10}{312}}{i2=\frac{2.67}{12}}$$

$$f_{2} = i_{2} V_{2}$$
 $f_{2} = 2.67m(10)$
 $f_{2} = 26.7mW$
ans

For the given circuit, determine the range of load resistance and load current that will ensure the load voltage remains regulated at 10V.

Solution

tor min Rz

$$V_{\frac{1}{2}(\text{open})} = \frac{V_0}{E_1 + E_1}$$

$$\frac{V_{\overline{z}(open)}}{v_{\overline{o}}} = \frac{k_{1}}{k_{1} + k_{2}} \longrightarrow \frac{v_{\overline{o}}}{v_{\overline{z}(open)}} = \frac{k_{1} + k_{2}}{k_{2}}$$

$$\frac{v_0}{v_1(open)} - 1 = \frac{t_1}{t_1}$$

$$R_{L} = \frac{R}{\frac{10}{10} - 1} \implies R_{L} = \frac{1}{\frac{50}{10} - 1}$$

For the given circuit, determine the range of load resistance and load current that will ensure the load voltage remains regulated at 10V.

$$\frac{|k\alpha| \cdot \alpha}{-i_1 + i_2 + i_1 = 0}$$

$$i_1 = i_1 - i_2$$

$$i_1 = \frac{v_1}{l_1} - i_2$$

$$i_1 = \frac{v_0 - v_0}{l_1} - i_2$$

$$i_1 = \frac{v_0 - v_0}{l_1} - i_2$$

$$i_2 = \frac{v_0 - v_0}{l_2} - 3v_0$$

For the given circuit, determine the range of load resistance and load current that will ensure the load voltage remains regulated at 10V.

$$P_{L} = \frac{v_{L}}{i_{L}}$$

$$R = \frac{10}{8m}$$

Determine the range of input (source) voltage for which the Zener diode remains in its conducting state in the given circuit.

$$V_{z}(open) = V_{o} \frac{R_{L}}{L_{1} + R_{L}}$$

$$v_0 = \frac{v_2(open)(k_1 + k_2)}{k_2}$$

$$v_0 = \frac{20(220 + 1.2 \text{K})}{1.2 \text{K}}$$

Determine the range of input (source) voltage for which the Zener diode remains in its conducting state in the given circuit.

$$i_1 = 60m + \frac{20}{1.2k}$$

Determine the range of input (source) voltage for which the Zener diode remains in its conducting state in the given circuit.

LINEAR VOLTAGE REGULATOR IC

LINEAR VOLTAGE REGULATOR

Positive voltage regulator

TIN OUT 3
78xx Series

A <u>linear voltage regulator</u> compares the output to a reference voltage and adjusts a pass transistor (BJT or MOSFET) to maintain a steady output.

Negative voltage regulator

DROPOUT VOLTAGE

The <u>dropout voltage</u>, typically 2V, is the <u>minimum</u> amount of voltage across input—output terminals that must be maintained if the IC is to operate as regulator.

Positive voltage regulator

IC	Output Voltage(V)	Minimum Input Voltage(V)
7805	+5	7.3
7810	+10	12.5
7812	+12	14.6

Negative voltage regulator

IC	Output Voltage(V)	Minimum Input Voltage(V)
7906	-6	-8.4
7909	-9	-11.5
7915	- 15	-17.7

VOLTAGE REGULATOR CONNECTION

Fixed Voltage Regulator

Adjustable Voltage Regulator

LABORATORY

