CS 481

Artificial Intelligence Language Understanding

February 9, 2023

Announcements / Reminders

- Please follow the Week 05 To Do List instructions
- Quiz #04 due on Sunday (02/12/23) at 11:59 PM CST
- PA #01 due on Monday (02/20/23) at 11:59 PM CST

Exam dates:

• Midterm: 03/02/2023 during Thursday lecture time

■ Final: 04/27/2023 during Thursday lecture time

Plan for Today

Parts of Speech tagging - continued

Part of Speech Tagging

Task:

■ Map sequence $x_1,...,x_n$ of words to $y_1,...,y_n$ of POS tags

Parts of Speech: Tagset Example

Parts of Speech in the Universal Dependencies tagset

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Open Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
D	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
ben	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
<u>~</u>		spacial, temporal, or other relation	
Closed Class Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
ass	DET	Determiner: marks noun phrase properties	a, an, the, this
2	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
12	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	;,()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Parts of Speech: Tagset Example

Penn Treebank Parts-of-speech tags:

Tag Description	Example	Tag	Description	Example	Tag	Description	Example
CC coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
subordin-conj						ple	
JJ adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Sample Tagged Sentence

There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC

Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

Standard POS Tagging Models

- Supervised Machine Learning Algorithms:
 - Hidden Markov Models
 - Conditional Random Fields (CRF) / Maximum Entropy Markov Models (MEMM)
 - Neural sequence models (RNNs or Transformers)
 - Large Language Models (like BERT), finetuned
- All required a hand-labeled training set, all about equal performance (97% on English)
 - All make use of information sources we discussed
 - Via human created features: HMMs and CRFs
 - Via representation learning: Neural LMs

Part of Speech: Conditional Probability

$$P(Category = NOUN \mid word = flies) = \frac{P(word = flies, Category = NOUN)}{P(Word = flies)}$$

where
$$P(Word = flies) > 0$$

Part of Speech: Conditional Probability

$$P(C = NOUN \mid w = flies) = \frac{P(w = flies, C = NOUN)}{P(w = flies)}$$

where
$$P(w = flies) > 0$$

Most Frequent Class Tagging

With:

$$P(w = flies) = 1000/1 273 000 = 0.0008$$

 $P(w = flies, C = NOUN) = 400/1 273 000 = 0.0003$
 $P(w = flies, C = VERB) = 600/1 273 000 = 0.0005$

$$P(C = NOUN \mid w = flies) = rac{P(w = flies, C = NOUN)}{P(w = flies)} = rac{0.0003}{0.0008}$$

VS.

 $P(w = flies, C = VERB) = 0.0005$

$$P(C = VERB \mid w = flies) = \frac{P(w = flies, C = VERB)}{P(w = flies)} = \frac{0.0005}{0.0008}$$

With this approach flies will ALWAYS be tagged as a VERB.

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Given a sequence of words (a "sentence"):

$$W_1, W_2, W_3, ..., W_T$$

there is going to be a corresponding sequence of lexical categories:

$$C_1, C_2, C_3, ..., C_T$$

What is most likely sequence of categories?

To answer this we would want to find a conditional probability:

$$P(C_1, C_2, C_3, ..., C_T | w_1, w_2, w_3, ..., w_T)$$

In other words: what is the probability of having a sequence of lexical categories

$$C_1, C_2, C_3, ..., C_T$$

GIVEN that the sequence of words is

$$w_1, w_2, w_3, ..., w_T$$
?

The probability we are looking for

$$P(C_1, C_2, C_3, ..., C_T | w_1, w_2, w_3, ..., w_T)$$

will require a lot of data, which we most likely won't have. We can use Bayes' Theorem:

$$P(C_1, C_2, C_3, ..., C_T \mid w_1, w_2, w_3, ..., w_T) =$$

$$= \frac{P(w_1, w_2, w_3, \dots, w_T \mid C_1, C_2, C_3, \dots, C_T) * P(C_1, C_2, C_3, \dots, C_T)}{P(w_1, w_2, w_3, \dots, w_T)}$$

In order to find the most likely sequence:

$$C_1, C_2, C_3, ..., C_T$$

we need to maximize (most likely sequence!):

$$P(C_1, C_2, C_3, ..., C_T \mid w_1, w_2, w_3, ..., w_T) =$$

$$= \frac{P(w_1, w_2, w_3, \dots, w_T \mid C_1, C_2, C_3, \dots, C_T) * (C_1, C_2, C_3, \dots, C_T)}{P(w_1, w_2, w_3, \dots, w_T)}$$

Maximizing:

$$P(C_1, C_2, C_3, ..., C_T \mid w_1, w_2, w_3, ..., w_T)$$

in practice means maximizing the numerator:

$$\frac{P(w_1, w_2, w_3, \dots, w_T \mid C_1, C_2, C_3, \dots, C_T) * P(C_1, C_2, C_3, \dots, C_T)}{P(w_1, w_2, w_3, \dots, w_T)}$$

as denominator $P(w_1, w_2, w_3, \dots, w_T)$ will not change:

Estimating:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) * P(C_1, C_2, C_3, ..., C_T)$$

using counts once again requires a lot of data that we will likely not have.

Alternative: approximate it with N-grams (here bigrams):

$$P(C_1, C_2, C_3, ..., C_T) = \prod_{i=1}^T P(C_i \mid all \ categories \ preceding \ C_i)$$

$$P(C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-})$$

Estimating:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) * P(C_1, C_2, C_3, ..., C_T)$$

Approximate it with N-grams (here bigrams):

$$P(C_1, C_2, C_3, ..., C_T) = \prod_{i=1}^T P(C_i \mid all \ categories \ preceding \ C_i)$$

$$P(C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-1})$$

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(w_i \mid C_i)$$

With approximations:

$$P(w_{1}, w_{2}, w_{3}, ..., w_{T} \mid C_{1}, C_{2}, C_{3}, ..., C_{T}) * P(C_{1}, C_{2}, C_{3}, ..., C_{T}) \cong$$

$$\cong \prod_{i=1}^{T} P(w_{i} \mid C_{i}) * P(C_{i} \mid C_{i-1})$$

and we want to maximize:

$$\prod_{i=1}^{T} P(\mathbf{w_i} \mid \mathbf{C_i}) * P(\mathbf{C_i} \mid \mathbf{C_{i-1}})$$

Individual probabilities can now be estimated using corpus counts!

POS Tagging: Simple Tagset

Let's assume we have a simple tagset:

- N NOUN
- V VERB
- ART ARTICLE
- P PREPOSITION

and a some synthetic corpus.

Estimations with corpus counts:

$$P(C_i = VERB \mid C_{i-1} = NOUN) = \frac{Count (NOUN \text{ at position } i - \text{ and } VERB \text{ at } i)}{Count(NOUN \text{ at position } i-)}$$

Sample bigram probabilities from our synthetic corpus:

Category	Count at i	Pair	Count at i,i+1	P(Bigram)	Estimate
<s></s>	300	<s>, ARTICLE</s>	213	P(ARTICLE <s>)</s>	0.71
<s></s>	300	<s>, NOUN</s>	87	P(NOUN <s>)</s>	0.29
ARTICLE	558	ARTICLE, NOUN	558	P(NOUN ARTICLE)	1.00
NOUN	833	NOUN, VERB	358	P (VERB NOUN)	0.43
NOUN	833	NOUN, NOUN	108	P (NOUN NOUN)	0.13
NOUN	833	NOUN, PREPOSITION	366	P(PREPOSITION NOUN)	0.44
VERB	300	VERB, NOUN	75	P (NOUN VERB)	0.35
VERB	300	VERB, ARTICLE	194	P(ARTICLE VERB)	0.65
PREPOSITION	307	PREPOSITION, ARTICLE	226	P (ARTICLE PREPOSITION)	0.74
PREPOSITION	307	PREPOSITION, NOUN	81	P(NOUN PREPOSITION)	0.26

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P (NOUN PREPOSITION)	0.26

Consider a following sequence of categories (tags):

<s>, ARTICLE, NOUN, VERB, NOUN

What's the probability of its occurence in our synthetic corpus?

Hidden Markov Model (HMM)

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P (NOUN PREPOSITION)	0.26

The word "Hidden" in Hidden Markov Model means that for a specific sequence (of words) it is unclear what state the model is in.

The word *flies* could be generated from state NOUN and state VERB.

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P (VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P(ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

Probability of occurrence of a sequence of categories (tags):

$$P(C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-1})$$

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P (VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P(ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P (NOUN PREPOSITION)	0.26

Probability of occurrence of a sequence of categories (tags):

P(<s>, ARTICLE, NOUN, VERB, NOUN) =

 $\cong P(ART|<s>) * P(N|ART) * P(V|N) * P(N|V) = 0.71 * 1.00 * 0.43 * 0.35 = 0.107$

Synthetic Corpus: Word/Tag Counts

Summary of selected word counts in the synthetic corpus:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	4 4
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

From the table we can calculate lexical generation probabilities P(w|C) estimates:

$$P(the|ART) = 300/558 = 0.54$$

$$P(a|ART) = 201/558 = 0.36$$

$$P(flies|N) = 21/833 = 0.025$$

$$P(a|N) = 1/833 = 0.001$$

$$P(flies|V) = 23/300 = 0.076$$

$$P(flower|N) = 53/833 = 0.063$$

$$P(like|V) = 30/300 = 0.1$$

$$P(flower|V) = 15/300 = 0.05$$

$$P(like|P) = 21/307 = 0.068$$

$$P(like|N) = 10/833 = 0.012$$

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

We need to maximize:

$$P(w_{1}, w_{2}, w_{3}, ..., w_{T} \mid C_{1}, C_{2}, C_{3}, ..., C_{T}) * P(C_{1}, C_{2}, C_{3}, ..., C_{T}) \cong \prod_{i=1}^{T} P(w_{i} \mid C_{i}) * P(C_{i} \mid C_{i-1})$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^{T} P(w_i \mid C_i)$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

Synthetic Corpus: Word/Tag Counts

Summary of selected word counts in the synthetic corpus:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

From the table we can calculate lexical generation probabilities P(w|C) estimates:

$$P(the|ART) = 300/558 = 0.54$$

$$Z(tne|AKI) = 300/558 = 0.54$$

$$P(flies|N) = 21/833 = 0.025$$

$$P(flies|V) = 23/300 = 0.076$$

$$P(like|V) = 30/300 = 0.1$$

$$P(like|P) = 21/307 = 0.068$$

$$P(a|ART) = 201/558 = 0.36$$

$$P(a|N) = 1/833 = 0.001$$

$$P(flower|N) = 53/833 = 0.063$$

$$P(flower|V) = 15/300 = 0.05$$

$$P(like|N) = 10/833 = 0.012$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = 0.025 * 0.1 * 0.36 * 0.063 = 5.4 * 0$$

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P (VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

For any sequence of categories (tags), their probability is:

$$P(C_1, C_2, C_3, \dots, C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-1})$$

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

For any sequence of categories (tags), their probability is:

$$\prod_{i=1}^{T} P(C_i \mid C_{i-1}) = P(N \mid < s >) * (V \mid N) * (ART \mid V) * (N \mid ART)$$

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P (ARTICLE PREPOSITION)	0.74
P (NOUN PREPOSITION)	0.26

For any sequence of categories (tags), their probability is:

$$\prod_{i=1}^{T} P(C_i \mid C_{i-1}) = 0.29 * 0.43 * 0.65 * 1.00 = 0.081$$

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

For example:

P(Flies, like, a, flower | N, V, ART, N) * P(N, V, ART, N)

$$\cong 5.4 * 10^{-5} * 0.081$$

POS Tagging: Simple Tagset

Let's assume we have a simple tagset:

- N NOUN
- V VERB
- ART ARTICLE
- P PREPOSITION

and some synthetic corpus. Ex. sentence:

Flies like a flower

Hidden Markov Model

Transition probability matrix A										
	$egin{array}{cccccccccccccccccccccccccccccccccccc$									
\mathbf{q}_0	a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	row sum = 1				
$\mathbf{q_1}$	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	row sum = 1				
\mathbf{q}_{2}	a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	row sum = 1				
q_3	a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	row sum = 1				
q_4	a ₄₀	a ₄₁	a ₄₂	a ₄₃	a ₄₄	row sum = 1				

HMMs are specified with:

A set of N states:

$$Q = \{q_1, q_2, ..., q_N\}$$

- A transition probability matrix
 A, where each a_{ij} represents
 the probability of moving from
 state q_i to state q_i
- A sequence of observations O:

$$O = O_1, O_2, ..., O_T$$

 A sequence of observation likelihoods (emission probabilities): probability of observation o_T being generated by a state q_i

$$B = b_i(o_t)$$

Special <s> and end (final) states

 q_0 and q_E

POS Tagging: General Approach

Estimations with corpus counts:

$$P(C_i = VERB \mid C_{i-1} = NOUN) = \frac{Count (NOUN \ at \ position \ i-1 \ and \ VERB \ at \ i)}{Count(NOUN \ at \ position \ i-1)}$$

Sample bigram probabilities from our synthetic corpus:

Category	Count at i	Pair	Count at i,i+1	P(Bigram)	Estimate
<s></s>	300	<s>, ARTICLE</s>	213	P(ARTICLE <s>)</s>	0.71
<s></s>	300	<s>, NOUN</s>	87	P(NOUN <s>)</s>	0.29
ARTICLE	558	ARTICLE, NOUN	558	P(NOUN ARTICLE)	1.00
NOUN	833	NOIN VERR	358	P (VERB NOUN)	0.43
NOUN	833	Transition	108 >	P (NOUN NOUN)	0.13
NOUN	833	NOUN, PREPOSITION	366	P(PREPOSITION NOUN)	0.44
VERB	300	VERB, NOUN	75	P (NOUN VERB)	0.35
VERB	300	VERB, ARTICLE	194	P(ARTICLE VERB)	0.65
PREPOSITION	307	PREPOSITION, ARTICLE	226	P (ARTICLE PREPOSITION)	0.74
PREPOSITION	307	PREPOSITION, NOUN	81	P(NOUN PREPOSITION)	0.26

Synthetic Corpus: Word/Tag Counts

Summary of selected word counts in the synthetic corpus:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

From the table we can calculate lexical generation probabilities P(w|C) estimates:

$$P(the|ART) = 300/558 = 0.54$$

$$P(a|ART) = 201/558 = 0.36$$

$$P(flies|N) = 21/833 = 0.025$$

$$P(a|N) = 1/833 = 0.001$$

$$P(flies|V) = 23/300 = 0.076$$

$$P(flower|N) = 53/833 = 0.063$$

$$P(like|V) = 30/300 = 0.1$$

$$P(flower|V) = 15/300 = 0.05$$

$$P(like|P) = 21/307 = 0.068$$

$$P(like|N) = 10/833 = 0.012$$

Emission probabilities

Hidden Markov Model

	Transition probability matrix											
	<s> ARTICLE NOUN VERB PREPOSITION</s>											
<s></s>	0.00	0.71	0.29	0.00	0.00							
ARTICLE	0.00	0.00	1.00	0.00	0.00							
NOUN	0.00	0.00	0.13	0.43	0.44							
VERB	0.00	0.65	0.35	0.00	0.00							
PREPOSITION	0.00	0.74	0.26	0.00	0.00							

	Emission probability matrix									
flies like a flower										
<s></s>	0.000	0.000	0.000	0.000						
ARTICLE	0.000	0.000	0.360	0.000						
NOUN	0.025	0.012	0.001	0.063						
VERB	0.076	0.100	0.000	0.050						
PREPOSITION	0.000	0.068	0.000	0.000						

Hidden Markov Model

Based on corpus: how frequently a word X is tagged with Y

	Transition probability matrix											
	<s> ARTICLE NOUN VERB PREPOSITION</s>											
<s></s>	0.00	0.71	0.29	0.00	0.00							
ARTICLE	0.00	0.00	1.00	0.00	0.00							
NOUN	0.00	0.00	0.13	0.43	0.44							
VERB	0.00	0.65	0.35	0.00	0.00							
PREPOSITION	0.00	0.74	0.26	0.00	0.00							

	Emission probability matrix									
flies like a flower										
<s></s>	0.000	0.000	0.000	0.000						
ARTICLE	0.000	0.000	0.360	0.000						
NOUN	0.025	0.012	0.001	0.063						
VERB	0.076	0.100	0.000	0.050						
PREPOSITION	0.000	0.068	0.000	0.000						

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

We need to maximize:

$$P(w_{1}, w_{2}, w_{3}, ..., w_{T} \mid C_{1}, C_{2}, C_{3}, ..., C_{T}) * P(C_{1}, C_{2}, C_{3}, ..., C_{T}) \cong \prod_{i=1}^{T} P(w_{i} \mid C_{i}) * P(C_{i} \mid C_{i-1})$$

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

For example:

P(Flies, like, a, flower | N, V, ART, N) * P(N, V, ART, N)

$$\cong 5.4 * 10^{-5} * 0.081$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^{T} P(w_i \mid C_i)$$

Example: Best Option

Best option will be:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies \mid N) * P(like \mid V) * P(a \mid ART) * P(flower \mid N)$$

Example: All Possible Sequences

Brute force approach time complexity: O(KL)

$$K = 20, L = 10 \rightarrow 20^{10} = 10240000000000$$

Example: Best Option

How can we efficiently find:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies \mid N) * P(like \mid V) * P(a \mid ART) * P(flower \mid N)$$

Hidden Markov Model

Transition probability matrix A											
	$old q_0 \qquad old q_1 \qquad old q_2 \qquad old q_3 \qquad old q_4 \qquad old Notes$										
\mathbf{q}_0	a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	row sum = 1					
$\mathbf{q_1}$	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	row sum = 1					
\mathbf{q}_{2}	a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	row sum = 1					
q_3	a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	row sum = 1					
q_4	a ₄₀	a ₄₁	a ₄₂	a ₄₃	a ₄₄	row sum = 1					

HMMs are specified with:

A set of N states:

$$Q = \{q_1, q_2, ..., q_N\}$$

- A transition probability matrix
 A, where each a_{ij} represents
 the probability of moving from
 state q_i to state q_j
- A sequence of observations O:

$$O = O_1, O_2, ..., O_T$$

 A sequence of observation likelihoods (emission probabilities): probability of observation o_T being generated by a state q_i

$$B = b_i(o_t)$$

Special <s> and end (final) states

 q_0 and q_E

Hidden Markov Model

	Transition probability matrix											
	<s> ARTICLE NOUN VERB PREPOSITION</s>											
<s></s>	0.00	0.71	0.29	0.00	0.00							
ARTICLE	0.00	0.00	1.00	0.00	0.00							
NOUN	0.00	0.00	0.13	0.43	0.44							
VERB	0.00	0.65	0.35	0.00	0.00							
PREPOSITION	0.00	0.74	0.26	0.00	0.00							

	Emission probability matrix									
flies like a flower										
<s></s>	0.000	0.000	0.000	0.000						
ARTICLE	0.000	0.000	0.360	0.000						
NOUN	0.025	0.012	0.001	0.063						
VERB	0.076	0.100	0.000	0.050						
PREPOSITION	0.000	0.068	0.000	0.000						

Hidden Markov Models: Decoding

The task of determining which sequence of variables is the underlying source of some sequence of observations is called the decoding:

Given as input an HMM α = (A, B) and a sequence of observations o_1 , o_2 , ..., o_T find the most probable sequence of states q_1 , q_2 , ..., q_T .

or in our case:

Given as input an HMM α = (A, B) and a sequence of **words** w_1 , w_2 , ..., w_T find the most probable sequence of **tags/states** C_1 , C_2 , ..., C_T .

- A transition probabilities matrix
- **B** emission probabilities matrix

Viterbi Algorithm: the Idea

In other words: maximize P() for all "sub-sentences".

Example: Possible Tag Sequences

Brown corpus tags:

RB - adverb

NN - commn noun
NNP - singular proper noun
DT - singular determiner
VB - verb, base form
JJ - adjcective
MD - modal auxiliary

	NNP	MD	VB	JJ	NN	RB	DT		Janet	will	back	the	bill
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	NNP	0.000032	0	0	0.000048	0
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	MD	0	0.308431	0	0	0
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	VB	0		0.000672	0	0.000028
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231		0	0.000028			
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	JJ	0	0	0.000340		0
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	NN	0	0.000200	0.000223	0	0.002337
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	RB	0	0	0.010446	0	0
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	DT	0	0	0	0.506099	0

Transition probabilities matrix

Emission probabilities matrix

Viterbi Algorithm: Pseudocode

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
      backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Algorithm: Pseudocode

```
function VITERBI (observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


Viterbi Algorithm: Pseudocode

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


Transition probabilities matrix

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Emission probabilities matrix

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

```
Initialization step:
v_1(1) = v_1(NNP) = P(T)*P(E) =
(NNP|<s>)*P(Janet|NNP)
v_1(2) = v_1(MD) = P(T)*P(E) =
(MD|<s>)*P(Janet|MD)
v_1(3) = v_1(VB) = P(T)*P(E) =
(VB|<s>)*P(Janet|VB)
V_1(4) = V_1(JJ) = P(T)*P(E) =
(JJ|<s>)*P(Janet|JJ)
v_1(5) = v_1(NN) = P(T)*P(E) =
(NN | <s>)*P(Janet | NN)
v_1(6) = v_1(RB) = P(T)*P(E) =
(RB | <s>)*P(Janet | RB)
v_1(7) = v_1(DT) = P(T)*P(E) =
(DT|<s>)*P(Janet|DT)
P(T) - P(transition)
P(E) - P(emission)
```

Viterbi Algorithm: Pseudocode

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]
                                         ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


For each state q_j at time t, compute: $v_t(j) = \max_{i=1toN} v_{t-1}(i) * a_{ij} * b_j(o_t)$

For each state q_j at time t, compute: $v_t(j) = \max_{i=1t} v_{t-1}(i) * P(transition) * P(emisssion)$

Viterbi Algorithm: the Idea

In other words: maximize P() for all "sub-sentences".

Some paths need not to be explored!

Example: Viterbi

L words in a sentence

Viterbi algorithm approach time complexity: O(L * K²)

$$K = 20, L = 10 \rightarrow 10 * 20^2 = 4000$$

versus brute force approach time complexity: O(KL)

$$K = 20, L = 10 \rightarrow 20^{10} = 10240000000000$$