Japanese Patent Application Laid-open

Laid-open Number:

Hei 2-27320

Laid-open Date:

January 30, 1990

Application Number: Sho 63-176919

Filing Date:

July 18, 1988

Inventor:

Takashi Aoyama et al.

Applicant:

Hitachi Ltd

SPECIFICATION

1. Title of the Invention

Thin film semiconductor display device and its manufacture

- 2. Claim
- 1. A thin film semiconductor display device at least comprising:
- a display portion having pixels arranged in a matrix form, said pixel comprising a first active element comprising a thin film semiconductor, a pixel electrode, and a display medium; and
- a controlling circuit having a second active element comprising a thin film semiconductor for controlling the display portion,

wherein a crystallinity of a channel portion of the first active element is lower than that of the second active element and that of source and drain portions of the first active element.

2. A method of manufacturing a thin film semiconductor display device characterized in that an impurity in a first active element of the thin film semiconductor display device is activated by an energy beam once or more, and crystallinity of a second active element is improved once or more and an impurity in the second active element is activated once or more, respectively.

3. Detailed Description of Invention

[Industrial Field of Invention]

The present invention relates to a thin film semiconductor device, in particular, relates to an active matrix display device using a liquid crystal or the like.

[Prior Art]

Recently, a thin film transistor (Thin Film Transistor: hereinafter referred to as a TFT) is formed on a transparent insulating substrate such as glass by using a semiconductor thin film formed at a low temperature. The display device in which a liquid crystal is driven by the TFT, is actively developed. As a semiconductor material, a polycrystalline silicon (Poly-Si) or an amorphous silicon (A-Si) is used. Conventionally, an integrated circuit was externally mounted to drive the liquid crystal display device. However, in order to reduce

the cost for the display device, the following has been attempted: a driver circuit is formed with TFTs and built in the same substrate as the display device. (Solid State Dev, and Mater, Ext, Abst, Tokyo, 1987 p.55) Therefore, as a semiconductor material, a poly-Si having large carrier mobility is used. The Poly-Si has an advantage that carrier mobility thereof is larger than that of A-Si by one digit or more. However, in the case where a transistor having a MOS (Metal Oxide Semiconductor) structure is formed, the Poly-Si has a disadvantage that reversed leak current is large. When reverse leak current of TFTs is large in the display device, it is difficult to display colors having a half tone (full-color display), and at least eight colors (multi-color display) can be displayed. Namely, it is possible to display a half-tone by using an A-si material, though peripheral circuits should be provided on the outside. On the other hand, when a Poly-Si material is used, peripheral circuits can be built-in the display device. However, it is difficult to display a half-tone. Therefore, there are such attempts that TFTs are formed by using A-Si materials, and only peripheral circuit portions are treated with laser irradiation, thereby carrier mobility is increased. In general, since TFTs fabricated by using an A-Si material has reverse stagger structure (for example, see Appl. Phys. Lett., 45, 171(1984)), it is difficult to perform laser annealing on an interface region between a gate insulating film and an A-Si. Further, carrier mobility does not sufficiently increase and it is difficult to drive peripheral circuits.

[Problems to be solved by the Invention]

Since the conventional technique mentioned above did not take the process of forming a display device into consideration, it was practically difficult to provide TFTs having different characteristics in the peripheral circuit portion and in the pixel portion, respectively.

The purpose of the present invention is to built-in the peripheral circuits and also to provide a structure of a display device having good display characteristics and manufacturing method thereof.

[Means to solve the problem]

The above purpose is attained by making a crystallinity of a TFT of a channel region of the display portion (pixel portion) lower than that of a TFT of source and drain regions of the display portion and that of a TFT of peripheral driving circuit portion in the display device. Further, detailed description will be follow: TFTs of a peripheral driving circuit portion in the display device are formed by using Poly-Si and source and drain regions are formed by Poly-Si, and a channel region is formed by A-Si in the case of pixel portion TFTs. Further, the above purpose is attained by using the manufacturing method in which crystallization of A-Si and an activation of impurity atoms are performed by laser to form TFTs of a peripheral circuit portion in the display device, and an activation of impurity atoms is performed by laser to form TFTs for the pixel portion.

[Operation]

The effect of the present invention will be explained using an example of coplanar

type TFTs structure as shown in Fig. 1. These TFTs have an n^+ -i- n^+ type constitution. As shown in Fig. 1(a), since the n^+ -i- n^+ region is formed with Poly-Si, large carrier mobility is obtained, thereby a circuit is easily driven. Large reverse leak current is flown in the TFT, however, on/off of driving mode is performed by positive current and zero current. Therefore, driving of circuit is not affected. Regarding TFTs for a pixel portion, as shown in Fig. 1(b), n^+ region is formed by Poly-Si and i-region is formed by A-Si. In general, carrier mobility and reverse leak current of TFTs are determined by crystallinity and resistivity of a silicon in the channel region, respectively. Since the channel region is formed by A-Si, the mobility of the channel region is small as about $1 \text{cm}^2/\text{Vs}$, however, since the resistivity is $10^7 \Omega \text{cm}$ or more, a leak current is small as 10^{-12}A , and a half tone can be displayed.

The manufacturing method of the present invention using such as laser will be explained. On a glass substrate, an A-Si film is formed by reduced pressure CVD (Low pressure CVD: LPCVD). After an SiO₂ film for capping is deposited, a peripheral driving circuit forming region is irradiated with laser of about 300mJ/cm², the region is converted to Poly-Si. Then, the silicon film is photo-etched to islands and a silicon film for gate electrode is deposited by LPCVD. After the photo-etching process, phosphorus is doped by an ion-doping method. Then, laser of about 200mJ/cm² is irradiated to the peripheral driving circuit region and the pixel region. Impurity atoms of source and drain in the peripheral driving circuit region are activated. Further, in source and drain regions of a gate region and a pixel region, the crystallization of A-Si and the activation of an impurity are performed simultaneously. Since the upper portion of the channel portion in pixel region is covered with a gate electrode, A-Si is remained without being converted to Poly-Si. According to the manufacturing method, the display device in which a peripheral driving circuit region is constituted with Poly-Si, source and drain regions of the pixel portion are constituted with Poly-Si, and a channel region is constituted with A-Si.

Hereinafter, an embodiment of the present invention will be explained.

[Embodiment]

Fig. 1(a) and (b) show an example of cross sectional structure of TFTs used in the peripheral circuit portion and the pixel portion. The source, drain, and channel regions of TFTs shown in Fig. 1(a) are constituted with Poly-Si. Therefore, the carrier mobility is $35\text{cm}^2/\text{Vs}$ and reverse leak current is $5 \times 10^{-11}\text{A}$ when -5V voltage is applied to the gate electrode. The source and drain regions of TFTs shown in Fig. 1(b) are constituted with Poly-Si and on the other hand, the channel region is constituted with A-Si. Therefore, the carrier mobility is small as about $1\text{cm}^2/\text{Vs}$ and reverse leak current is $3 \times 10^{-12}\text{A}$ when -5V voltage is applied to the gate electrode. TFTs shown in Fig. 1(a) and (b) are used in the peripheral circuit portion and the pixel portion, respectively, thereby fine circuit driving and liquid crystal driving for a half-tone display can be performed.

Fig. 2 shows an example of the manufacturing method of the present invention. On a glass substrate, an A-Si film having a thickness of 800Å is formed at a temperature of

550℃ by LPCVD. After an SiO₂ film for capping is deposited to a thickness of 1000Å by atmospheric pressure CVD, only peripheral circuit portion is irradiated with excimer laser (wavelength; 308nm, energy; 300mJ/cm²) as shown in Fig. 2(a), so that the A-Si film is converted to a poly-silicon film. After photo-etching process, an LPCVD film having a 1000 Å thick for forming a gate electrode is deposited at a temperature of 550°C. After photo-etching process, phosphorus is doped by ion doping at a dose amount of 5 x 10¹⁵ with energy of 30KeV. The SiO₂ film for capping is deposited to a thickness of 1000 Å. As shown in Fig. 2(b) and (b)', both of the peripheral circuit portion and the pixel portion are irradiated with excimer laser of 200mJ/cm². By doing this, impurities of source and drain regions in the peripheral circuit portion are activated. Further, in the gate electrode portion shown in Fig. 2(b) and (b)' and the source and drain regions of the pixel portion shown in Fig. 2(b)', activation of an impurity and crystallization of A-Si are performed simultaneously. In the channel region of the pixel portion shown in Fig. 2(b)', crystallization does not occur because laser energy is absorbed into the gate electrode portion. After photo-etching process, Al is deposited for wirings. Then, a transparent electrode, ITO (Indium Titan Oxyde) is deposited after the photo-etching process. After the photo-etching process, liquid crystal is injected between other glass substrate (a polarizing plate and a color filter are attached), thereby the display device is completed. Fig. 3 shows upper schematic view of the present invention. The shift register, level shifter and multiplexer are built in the scanning circuit of the peripheral circuit. Inverter and multiplexer are built in the signal circuit of the peripheral circuit. In the display portion, pixels having 396 x 133 dots are arranged and numerical aperture is 70 %.

According to the above mentioned structure and processes, a display device having peripheral circuits built in the same substrate, and can be obtained enabling a half-tone display having 64 colors.

[Effect of the Invention]

According to the present invention, a half-tone color can be displayed and there is an effect that a display device having a peripheral circuit built in the same substrate can be obtained.

4. Brief description of drawings

Fig. 1 shows a structural drawing of an embodiment of the present invention, Fig. 2 shows a schematic drawing of the manufacturing method of the present invention, and Fig. 3 shows a plane structural drawing of an embodiment of the present invention.

1 ... glass substrate, 2 ... source, 3 ... drain, 4 ... channel region (polycrystalline silicon), 5 ... channel region (amorphous silicon), 6 ... gate insulating film, 7 ... gate electrode, 8 ... passivation film, 9 ... aluminum electrode, 10 ... LPCVD film, 11 ... cap film, 12 ... laser light

DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2003 EPO. All rts. reserv.

9129485

Basic Patent (No, Kind, Date): JP 2027320 A2 900130 < No. of Patents: 001>

THIN FILM SEMICONDUCTOR DISPLAY DEVICE AND ITS MANUFACTURE

(English)

Patent Assignee: HITACHI LTD

Author (Inventor): AOYAMA TAKASHI; KOIKE YOSHIHIKO; KO NAKAYUKI;

OKAJIMA YOSHIAKI

IPC: *G02F-001/136; H01L-027/12; H01L-029/784 Derwent WPI Acc No: *C 90-072623; C 90-072623

JAPIO Reference No: *140173P000088; 140173P000088

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2027320 A2 900130 JP 88176919 A 880718 (BASIC)

Priority Data (No,Kind,Date): JP 88176919 A 880718

9日本国特許庁(JP)

⑩特許出類公開

@ 公 開 特 許 公 報 (A) 平2-27320

®Int. Cl. ⁵

識別記号

庁内整理番号

@公開 平成2年(1990)1月30日

G 02 F 1/136 H 01 L 27/12 29/784 500

7370-2H 7514-5F

8624-5F H 01 L 29/78

311 A

審査請求 未請求 請求項の数 2 (全4頁)

日発明の名称 薄膜

薄膜半導体表示装置とその製造方法

A

②特 顧 昭63-176919

②出 願 昭63(1988) 7月18日

@発明者 青山

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

@発明者 小池

養彦

降

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

@発明者 胡

中 行

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

個一発明 者

岡島 義昭

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

の出 顋 人 株式

株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

四代理 人 弁理士 小川 勝男

外2名

朔 紅 書

1.発明の名称

()

・薄膜半導体表示装置とその製造方法

- 2. 特許請求の範囲
 - 1. 少くとも、辞願半導体から成る第1の館動業子と画素電極と表示媒質から成る画素をマトリクス状に配列した表示部と、前記表示部を制御する辞願半導体から成る第2の館動業子を含む制御回路とを有する辞願半導体表示装置において、前記第1の館動業子テヤネル部の結晶性を前記第2の館動業子の結晶性および前記第1の館動業子のソース、ドレイン部の結晶性よりも低くしたことを特徴とする辞願半導体表示装置。
 - 2. 前記薄膜半導体表示装置の第1の飽動業子の 不執物の話性化をエネルギビームを用いて1度 以上行い、第2の飽動業子の結晶性の向上およ び不執物の話性化をおのおの一度以上行うこと を特徴とする薄膜平導体表示装置の製造方法。
- 3.発明の詳細な説明

〔産業上の利用分野〕

本発明は薄膜平準体装置に係り、特に、被晶などを用いたアクテイブマトリクス方式の表示装置 に関する。

〔従来の技術〕

近年、ガラスなどの透明な絶縁基板上に、低温 で形成した半導体薄膜を用いて薄膜トランジスタ (Thin Film Transistors:以上、TFTと略称す る)を形成し、これを用いて液晶を駆動させる表 示装置の開発が接続に行なわれている。単進体材 料としては、多結晶シリコン(Polycrystalline Silicon: 略してPoly-Si)かアモルフアスシリコ ン(Amorphous Silicon:略してA-Si) が用い られている。この被晶表示装置を駆動するための 回路は、従来、集積回路を用いて外付けしていた。 しかしながら、表示装置の価格を低下させるため に、運動回路をTFTで形成し表示装置と同一基 桜上に内蔵しようとする試みがなされてきている (Solid State Dev, and Mater, Ext, Abst, Tokyo, 19879.55)。このため、半導体材料とし ては、キヤリア移動度の大きいPolyーSiが用いら

れる。Poly-SiはA-Siに比べキヤリアの移動 度が1折以上大きいという長折を存する反面。 MOS (Netal Quide Semiconductor) 構造のトラ ンジスタを形成した場合、逆方向リーク電流リー ク電流が大きいという短所がある。表示装置にお けるTFTの逆方向リーク電流が大きいと、中間 調を有する色彩の表示(フルカラー表示)が難し く、せいぜい8色表示(マルチガラー表示)が段 度である。つまり、A-Si材料を用いれば中間 調表示が可能であるが、周辺回路を外付けしなけ。 ればならず、一方、Poly-Si材料を用いれば周辺 回路を表示装置に内蔵できるが、中間欝表示が整 しいということになる。このため、A-Si材料 を用いてTPTを形成し、周辺回路部分のみをレ 一ザなどの処理を行うことによつてキヤリアの移 動度を大きくしようとする試みがある。一般に、 A-Si材料を用いたTFTは逆スタが構造(例 えば、Appl. Phys. Lett., 45, 171(1984)参 順)を有しており、ゲート電を低温に保つたまま チヤネル領域、とりわけゲート絶象膜とA-Si

との界面領域をレーザアニールすることは難しい。 したがつて、キヤリア移動度が十分に増加せず、 異辺回路の駆動も難しい。

(発明が解決しようとする課題)

上記従来技術は、表示装置を形成するためのプロセスについて十分に配慮されておらず、従つて、周辺回路部と画楽部に異なった特性のTPTを分組させることが実際問題として困難であった。

本発明の目的は、周辺回路を内蔵し、かつ、表示特性のすぐれた表示装置の構造とその製造方法を提供することである。

〔機屈を解決するための手段〕

上記目的は、表示装置の表示部(西書部)の TFTチヤネル領域の結晶性を、表示部のTFT ソース・ドレイン領域の結晶性、および周辺駆動 回路部のTFTの結晶性よりも低くすることによ つて達成される。さらに具体的な場合を述べれば、 表示装置の周辺駆動回路部分のTFTをPoly-Si で形成し、画書部のTFTでは、ソースとドレイ ン領域をPoly-Siで、チヤネル領域をA-Siで

形成する構造によって達成される。また、上記目的は、表示装置の周辺回路部分のTFTを形成するのに、レーザなどを用いてAISiの結晶化と不純物原子の話性化を行い、避者部のTFTを形成するのに、レーザなどを用いて不純物原子の活性化を行う製造方法によって達成される。

(作用)

本発明の作用を第1図に示すようなコープレーナ型のTFT構造を例に説明する。これらのTFTは n+-i-n+型の構成を有する。周辺駆動回路 部のTFTは、第1図(a)に示すように、n+ であれるとの大きなキャリアの移動度を有し、回路の駆動が容易に行なが流れるが、周辺回路における駆動モードのオン、オフは正とゼロの電圧で行われるとか、カフは正とゼロの電圧で行われるため、 が まりは で が ない。 n+領域はPoly-Siで形成され、 i 領域は A-Siで形成されている。一般に、TFTにおけるキャリアの移動度と

向リーク電波は、それぞれ、チヤネル領域のシリコンの結晶性と抵抗率によつて決る。チヤネル領域をA-Siで形成しているため、キヤリアの移動度は約1 cl/V s と小さいが、抵抗率が1 0 ⁷ Ω cs 以上あるためリーク電流は10 ⁻¹² A と小さく、中間調表示が可能である。

ース、ドレイン領域はA-Siの結晶化と不純物の活性化を同時に行わせる。調素領域のチャネル部は上部がゲート電報でおおわれているため、A-SiはPoly-Siに変換されずに残る。この製造方法によれば、周辺駆動国路部がPoly-Siで構造され、画書部のソース、ドレインはPoly-Siにより、チャネル領域はA-Siにより構成される設示装置が得られる。

〔実施例〕

()

・以下、本発明の実施例を説明する。

第1回(a)、(b)は、それぞれ、周辺回路部と両来部とに用いられるTFTの断面構造の例を示す。(a)のTFTにおけるソース、ドレイン、チヤネル領域はPolyーSiで構成されている。このため、キヤリアの移動度は35 cml/Vs、ゲートに-5 Vの電圧を印加したときの逆方向リーク電流は5×10⁻¹¹A である。(b)のTFTにおけるソースとドレイン領域はPolyーSiで構成されているが、チヤネル領域はA-Siで構成されている。このため、キヤリアの移動度は約1 cml

これにより、周辺回路部のソース、ドレイン領域 の不統物が活性化される。また、 (b) と(b)' のゲート電極部と (b)′の資素部のソース。ド レイン領域は不純物の活性化と共にA-Siの給 晶化が行なわれる。 (b) ′の画者部のチャネル 領域は、レーザエネルギがゲート電極部に吸収さ れるため結晶化は起らない。ホト,エツチ工程の 後、配線用のAAを堆積させる。ホト,エツチエ 程の後透明電極であるITO (Indium Titam Qxyde)を堆積させる。ホト,エツチ工程の後、他 の一枚のガラス基板(個光板およびカラーフィル タ付)との間に液晶を封入して表示装置が完成す る。第3回に、本実施例上面観略回を示す。 周辺 回路である走査回路には、シフトレジスタ,レベ ルシフタ,マルチプレクサが内蔵されている。周 辺回路である信号回路には、インバータとマルチ プレクサが内離されている。表示部には396× 133ドツトの留者を並べた。閉口率は70%で ある.

以上のような 造とプロセスにより、周辺回路

/V s と小さいが、ゲート電極に - 5 V を印加したときの逆方向リーク電流は 3 × 10⁻¹² A と小さい。 (a), (b) のTPTを、それぞれ、異辺回路部と西菜部とに用いると、良好な回路駆動と中間調表示用液晶駆動を行う。

第2回は本発明の製造方法の一例を示す。ガラス基板上にLPCVD法により550ででAーSi膜を800人堆積する。キヤツピング用のSiOz 膜を常圧CVD法により1000人堆積させた後、(a)に示すように、周辺国路部のみエキシマレーザ(被長;308nm,エネルギー:300mJ/od)を照射し、AーSi膜をPolyーSi膜に変換する。ホト,エツチ工程の後、ゲート電板用にLPCVD膜を550でで1000人堆積させる。ホツ,エツチ工程の後、イオン打込み法により(P(リン)を30KeVのエネルギで5×101mのドース最を打込む。キャツピング用のSiOz膜を1000人堆積させる。(b),(b)、に示すように、周辺回路部と両素部いずれも200mJ/odのエキシマレーザを感射する。

を同一基板に内積した64色の中面調色巻の表示が可能となる表示装置が得られる。

(発明の効果)

本発明によれば、中間調色彩表示が可能で、周辺回路を阿一基板上に内蔵した表示装置を可能にする効果がある。

4. 図面の簡単な説明

第1回は本発明の一実施例の構造図、第2回は本発明の製造方法の概略図、第3図は本発明の一 実施例の平面構造図である。

1 …ガラス基板、2 …ソース、3 …ドレイン、4 …チヤネル領域(多結品シリコン)、5 …チヤネル領域(アモルフアスシリコン)、6 …ゲート総数数、7 …ゲート電極、8 …パツシベーション膜、9 …アルミ電極、10 … L P C V D 膜、11 …キヤツブ膜、12 … レーザ光。

代理人 弁理士 小川野男

特閒平2-27320(4)

第 1 図

