Lecture 1.4

Phylogenetic Methods

Maximum parsimony

Popular phylogenetic methods

- 1. Maximum parsimony
- 2. Distance-based methods
- 3. Maximum likelihood
- 4. Bayesian inference

Model-based methods

Neighbour joining

brown bear

CGTTAGTACACT

cave bear

CGATAGTTCACT

black bear

CGTTAGTTTACC

giant panda

CATTGGTTTACT

giant panda brown bear black bear cave bear

brown bear cave bear

black bear

giant panda

Neighbour joining

brown bear

CGTTAGTACACT

cave bear

CGATAGTTCACT

black bear

CGTTAGTTTACC

giant panda

CATTGGTTTACT

brown bear cave bear black bear giant panda

brown bear cave bear

.1 -

black bear

.3 .3

giant panda

.4 .5 .4

Neighbour joining

brown bear

CGTTAGTACACT

cave bear

CGATAGTTCACT

black bear

CGTTAGTTTACC

giant panda

CATTGGTTTACT

Distance-based methods

Clustering algorithms

- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- Neighbour joining

Tree searching using optimality criteria

- Minimum evolution
- Least-squares inference

Strengths and weaknesses

Strengths

- Very quick method
- Deals with multiple substitutions and long-branch attraction

Weaknesses

- Does not use all information in alignment
- Loss of information in pairwise comparisons
- Unable to implement sophisticated evolutionary models

Likelihood of hypothesis *H* =

Probability of the data, given the hypothesis

Probability of?

Likelihood optimisation

- Search through the space of possible trees and parameter values
- Calculate the likelihood for these
- Find best tree and model parameter values
- Multivariate optimisation

Finding the best tree

• For *n* taxa, the number of possible unrooted trees (B_n) is:

$$B_n = 1 \times 3 \times 5 \times ... \times (2n - 5) = \prod_{i=3}^{n} (2i - 5)$$

- For example:
 - 4 taxa \rightarrow 3 trees
 - 5 taxa \rightarrow 15 trees
 - 10 taxa \rightarrow 2,027,025 trees

Finding the best tree

Maximum-likelihood estimates

A single set of maximum-likelihood estimates of model parameters

A single maximum-likelihood tree

Strengths and weaknesses

Strengths

- Rigorous statistical method
- Deals with multiple substitutions and long-branch attraction
- Highly robust to violations of assumptions

Weaknesses

- Not feasible to implement very parameter-rich models
- Searching tree space can be difficult

Software

RAxML

PhyML

Montpellier Bioinformatics Platform

MEGA

PAML

IQ-TREE

RAxML

- Randomized Axelerated Maximum Likelihood
- Compile to suit your processor architecture
- Can run sequentially or in parallel
- Rapid bootstrapping (Stamatakis et al. 2008)

Nonparametric bootstrap

- Uncertainty in the estimate of the tree is inferred indirectly using bootstrapping analysis
- "pull oneself up by one's bootstraps"

- Bootstrapping analysis can be used in various phylogenetic methods:
 - Maximum parsimony
 - Distance-based methods
 - Maximum likelihood

Bootstrapping

Bootstrapping

ML tree

Bootstrapping

ML tree

Interpreting bootstrap values

Felsenstein (1985)

bootstrapping provides a confidence interval that contains the phylogeny that would be estimated from repeated sampling of many characters from the underlying set of all characters

- Bootstrap values are measures of repeatability
 - High when the data set is large
 - Not meaningful when analysing genome-scale data

Methods in practice

Maximum parsimony

- Commonly used to analyse morphological data
- Rarely used to analyse molecular data

Distance-based methods

- Popular in some fields of research
- Used to analyse very large data sets with many taxa

Maximum likelihood

Widely used, but has been losing ground to Bayesian methods

Useful references

Molecular phylogenetics: principles and practice

Yang & Rannala (2012) Nature Reviews Genetics 13: 303-314.

