

100A

Xiaowu Da

Basics
Population
Region

Coin

Markov

asics

Throw n points into Ω . m of them fall into A.

$$P(A) = \frac{|A|}{|\Omega|} \approx \frac{m}{n}.$$

As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability. P(A) can be interpreted as **long run frequency**.

Fluctuations

100A

Xiaowu Dai

Basics Population

Region

Markov

Repeat random sampling n times independently. Throw n points into $\Omega.$ m of them fall into A. Among all equally likely possibilities, 99.999% are like below, where m/n is close to P(A).

.00000001% are like below, where m/n are far from P(A).

Can prove $P(|\frac{m}{n} - P(A)| > \epsilon) \to 0$ for any fixed $\epsilon > 0$.

Monte Carlo

100A

Region

Example 3: π

Throw n points into Ω . m of them fall into A.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\pi}{4} \approx \frac{m}{n}.$$

Monte Carlo method:

$$\hat{\pi} = \frac{4m}{m}.$$

As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability. P(A) can be interpreted as **long run frequency**.

Sampling from population

100A

Region

Deterministic method

Go over all the $n=100=10^2$ tiny squares, count inner or outer measure, i.e., how many (m) fall into A.

3-dimensional? $n=10^3$ tiny cubes.

4-dimensional? $n = 10^4$ tiny cells.

10000-dimensional? $n = 10^{10000}$ tiny cells.

Monte Carlo: sample n = 1000 points in the hyper-cube.

Count how many (m) fall into A.

Buffon needle

100A

Xiaowu Da

Population

Region

Coin

Markov

Example 3: π , buffon needle

Lazzarini threw n=3408 times.

$$P(A) \approx \frac{m}{n}$$
.

Monte Carlo method:

$$\hat{\pi} = \frac{355}{113}$$

Too accurate. m is random.

happens in the long run.

For fixed n, m is random. m/n fluctuates around P(A). As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability, law of large number. P(A) can be interpreted as long run frequency, how often A

100A

Xiaowu Da

Basics
Populatio
Region

Coin

Reasoning

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2$. $A = \{(x,y) : x < 1/2\}$.

$$P(A) = P(X < 1/2) = \frac{|A|}{|\Omega|} = 1/2.$$

100A

Xiaowu Dai

Basics
Population
Region
Coin

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2$. $B = \{(x,y): x+y<1\}$.

$$P(B) = P(X + Y < 1) = \frac{|B|}{|\Omega|} = 1/2.$$

Conditional probability

100A

Xiaowu Da

Basics
Populatio
Region

Coin

Reasonin

Example 3: throwing point into region

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{1/2 - 1/8}{1/2} = 3/4.$$
$$P(X < 1/2|X + Y < 1).$$

(1) randomly throw a point into B, as if B is the sample space. Then what is the probability the point falls into A?

100A

Xiaowu Da

Basics
Population
Region
Coin

Example 3: throwing point into region

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{1/2 - 1/8}{1/2} = 3/4.$$

$$P(X < 1/2|X + Y < 1).$$

(2) Consider throwing a lot of points into Ω . How often A happens? How often B happens? When B happens, how often A happens? Among all the points in B, what is the fraction belongs to $A_{1/89}^{\circ}$

Coin flipping

100A

Coin

Experiment \rightarrow **outcome** \rightarrow **number Example 4: Coin flipping**

(4.1) Flip a coin \rightarrow head or tail \rightarrow 1 or 0

(4.2) Flip a coin twice \rightarrow (head, head), or (head, tail), or (tail, head) or (tail, tail) \rightarrow 11 or 10 or 01 or 00

The sample space is {HH, HT, TH, TT}

Sample space

100A

Coin

Experiment \rightarrow **outcome** \rightarrow **number**

Example 4: Coin flipping

(4.3) Flip a coin n times $\rightarrow 2^n$ binary sequences.

Sample space Ω : all 2^n sequences.

Each $\omega \in \Omega$ is a sequence.

Randomly pick a sequence from 2^n sequences.

 $Z_i(\omega)=1$ if *i*-th flip is head; $Z_i(\omega)=0$ if *i*-th flip is tail.

Event

100A

Xiaowu Da

Basics
Population
Region
Coin

Example 4: Coin flipping

 $Z_i(\omega)=1$ if *i*-th flip is head; $Z_i(\omega)=0$ if *i*-th flip is tail.

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTT

Flip a fair coin 4 times independently, let A be the event that there are 2 heads.

Randomly pick a sequence from 16 sequences.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{2^4} = \frac{3}{8}.$$

$$A = \{\omega : Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega) = 2\}.$$

Number of heads

100A

Coin

Example 4: Coin flipping

 $Z_i(\omega) = 1$ if *i*-th flip is head; $Z_i(\omega) = 0$ if *i*-th flip is tail.

```
H H H H 4 heads
HHTT 2 heads
    H T 2 heads
HTTH2heads
    H T 2 heads
T H T H 2 heads
    H H 2 heads
H T T T 1 heads
T H T T 1 heads
T T T H 1 heads
T T T T Oheads
```

Let $X(\omega)$ be the number of heads in the sequence ω .

$$X(\omega) = Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega).$$

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = p_k.$$

$$(p_k, k = 0, 1, 2, 3, 4) = (1, 4, 6, 4, 1)/16.$$

Probability

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Reasoning

Example 4: Coin flipping

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

$$|A_2| = 6.$$

 $|A_2| = {4 \choose 2} = \frac{4 \times 3}{2}.$

4 positions, choose 2 of them to be heads, and the rest are tails.

Multiplication: table

100A

Xiaowu Da

Basics
Population
Region
Coin

Marko

Reasonin

Ordered pair: roll a die twice

	1	2	3	4	5	6
1						
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Experiment 1 has n_1 outcomes. For each outcome of experiment 1, experiment 2 has n_2 outcomes. The number of all possible pairs is $n_1 \times n_2$.

Multiplication: tree

100A

Xiaowu Dai

_ . .

Population

Region

Coin

Markov

Reasonin

Ordered pair: flip a coin and roll a die

Multiplication: tree

100/

Xiaowu Dai

Basics Population

Region Coin

Markov

Reasoni

Multiplication

Ordered triplet

Sample space of sequences: coin

100A

Xiaowu Dai

Basics
Population
Region
Coin

Flip a fair coin n times independently.

Sample space Ω_n : all possible sequences of heads and tails.

$$|\Omega_n|=2^n$$
.

$$\Omega_n = \Omega_1 \times \Omega_1 \times \dots \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space of flipping the fair coin once.

 Ω_n : hyper sample space of flipping n times independently.

Population of sequences.

Sample space of sequences: die

100A

Xiaowu Da

Basics Population Region

Coin Markov

Reasonin

Roll a fair die n times independently.

Sample space Ω_n : all possible sequences of numbers.

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$|\Omega_n| = 6^n$$
.

$$\Omega_n = \Omega_1 \times \Omega_1 \times ... \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space of rolling the fair die once.

 Ω_n : hyper sample space of rolling n times independently.

Population of sequences.

Combination

100A

Xiaowu Da

Population .

Coin

Markov

Each combination corresponds to k! permutations.

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
$$\binom{4}{2} = \frac{4 \times 3}{2} = 6.$$

