First name: Last name:	Student ID:
------------------------	-------------

Algebra 1 Homework

- 1. Let A be the sum of ten positive real numbers and let B be the sum of the reciprocals of these ten numbers. What is the smallest possible value for AB?
- 2. For which real numbers a does the equation |x-1|-2|x-2|+2|x-3|-|x-5|=a have a unique solution. Here |x| denotes the absolute value of x, defined by |x|=x if $x \ge 0$ and |x|=-x if x < 0.
- 3. Let \Box be a binary operation defined on the set of nonnegative integers. (This means that if x and y are any two nonnegative integers, then $x \Box y$ is a nonnegative integer determined by x and y.) Now suppose that

(a)
$$(x+1) \square 0 = (0 \square x) + 1$$

(b)
$$0 \square (y+1) = (y \square 0) + 1$$
, and

(c)
$$(x+1) \Box (y+1) = (x \Box y) + 1$$

are satisfied for all nonnegative integers x and y. If 1100 = 450 = 2000, find 1723 = 3421 and prove that your answer is correct.

- 4. Let \Box be a binary operation defined on the set of nonnegative integers. (This means that if x and y are any two nonnegative integers, then $x \Box y$ is a nonnegative integer determined by x and y.) Now suppose that the formula $(x \Box y)(y \Box z) = x \Box z$ holds for all nonnegative integers x, y and z. If $23 \Box 47 \neq 0$, compute $61 \Box 89$.
- 5. Find all positive real numbers x, y and z such that $x = \frac{1+z}{1+y}$, $y = \frac{1+x}{1+z}$, $z = \frac{1+y}{1+x}$.