

Fairness in Facial Recognition

Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure

Original Paper's Goal: Are these faces?

What **Biased** looks like

What **Debiased** *ideally*looks like

Original Paper: VAE and Classification

Input: Image (64-by-64)

VAE: Encodes and Decodes an image

- Encoding
 - Connects to classification layer and the latent space
- Goal: To train the encoder-decoder optimally to recognize faces.

Original Paper: Debiasing by Sampling 1/5

GOAL:

Create a weight for each image in the training set based on latent rarity

=> Sample more from latent rare over latent common

images.

Original Paper: Debiasing by Sampling %

Where to go: Calculate Q(z|X) which describes how common a latent space is for

Original Paper: Debiasing by Sampling %

Calculate Q using Q_i

$$\hat{Q}(z|X) \propto \prod_{i} \hat{Q}_{i}(z_{i}|X)$$

Assumes each latent variable **Q_i** is independent

Original Paper: Debiasing by Sampling %

Calculate Q_i by frequency

Each epoch, build up histogram of *every Q_i* for the entire dataset **X**

Original Paper: Debiasing by Sampling

Aggregate Q_i to form W
Get sampling
probabilities of images

$$W(z(x)|X) \propto \prod_{i} \frac{1}{\hat{Q}_{i}(z_{i}(x)|X) + \alpha}$$

=> Latent **rare** images have **higher W**

In the alpha parameter measures how much of the debiasing is applied. A lower alpha means more debiasing.

Original Paper: Experiments

Training

Faces from CelebA

Non-faces from **Imagenet**

Evaluation: PPB

Images annotated between skin-colors lightest to darkest

Original Paper: Evaluation method on PPB

- 1. Evaluate on faces only
- For each image, split image into sub-images
- 3. Find at least **one face** in the sub-images to classify the original image as true.
- Measure "accuracy" by the number of sub-images containing at least one face.

Original Paper: Results

	$\mathbb{E}[\mathcal{H}]$	$Var[\mathcal{A}]$
	(Precision)	(Measure of Bias)
No Debiasing	95.13	28.84
$\alpha = 0.1$	95.84	25.43
$\alpha = 0.05$	96.47	18.08
$\alpha = 0.01$	97.13	9.49
$\alpha = 0.001$	97.36	9.43

Our implementation: Problems

Unstable calculations

Bad evaluation method

Our implementation: Unstable calculations

- Formula for the weights is unstable when using a high-dimensional latent space
- W will either underflow or overflow
- This makes the formula unusable

$$W(z(x)|X) \propto \prod_{i} \frac{1}{\hat{Q}_{i}(z_{i}(x)|X) + \alpha}$$

Our implementation: Alternative formulas

- Alternate function was found in the code of one of the authors¹
- Instead of the product the max is taken
- Other methods were tried but were not so consistent

$$W(z(\mathbf{x})|X) = \max_{i} \left(\frac{1}{\hat{Q}_{i}(z|X) + \alpha}\right)$$

Our implementation: Results

Using max debias method similar results were achieved

Original Results

Our Results

Our implementation: Extending evaluation

- Original evaluation only focuses on classifying faces correctly
 - This is disregarding half of the problem in our opinion
- We have extended the evaluation to also classify non-faces
- Non-faces are evaluated using the same method
- Now we can calculate recall, precision and accuracy

Our implementation: Extending results

- The extended results shows the bigger picture
- Three conclusion can be made
 - Recall increases
 - Precision decreases stronger
 - Accuracy decreases

Precision, Recall and accuracy of models with varying degrees of debiasing

Conclusion

Pros:

- Results were able to be reproduced
- The variance in recall across groups reduces with debiasing
- Increased recall for all classes

Cons:

- Drop in precision and accuracy
- Metric accuracy was not used correctly, which can be misleading
- Evaluation dataset contains
 great contrast in image quality

Final verdict

The paper itself was **not sufficient** for reproduction,

however, the unofficial code **filled the critically missing** gaps.

Thank you for listening

