ERROR BOUNDS: AN OVERVIEW

NGUYEN DUY CUONG

Department of Mathematics,
College of Natural Sciences, Can Tho University.

OPTIMIZATION WEBINAR

2 April 2023

Outline

- INTRODUCTION
- BASIC TOOLS
- SUFFICIENT & NECESSARY CONDITIONS
- CONNECTIONS

Introduction

Nguyen Duy Cuong (CTU)

¹Rockafellar & Wets (1998), Mordukhovich (2006, 2018), loffe (2017) → 3 → 2 → 2 へ

Introduction

- functions: subderivatives & subdifferentials
- sets: tangent cones & normal cones
- set-valued mappings: derivatives & coderivatives

3/24

¹Rockafellar & Wets (1998), Mordukhovich (2006, 2018), loffe (2017) ← ≥ → ∞ ∞ ∞

Notations

- $\alpha_+ := \max\{0, \alpha\}$
- Sublevel set: $[f \le 0] := \{x \in X \mid f(x) \le 0\}$
- Domain: dom $f := \{x \in X \mid f(x) < +\infty\}$
- $B_{\delta}(\bar{x}) := \{x \in X \mid d(x,\bar{x}) < \delta\}$
- Dual space: X*
- Set-valued mapping: $F: X \Rightarrow Y$
- Distance function: $d(x,\Omega) := \inf_{\omega \in \Omega} d(x,\omega)$
- Indicator function: $i_{\Omega}(x) = 0$ if $x \in \Omega$ and $i_{\Omega}(x) = +\infty$ if $x \notin \Omega$

Journal of Research of the National Bureau of Standards

Vol. 49, No. 4, October 1952

Research Paper 2362

On Approximate Solutions of Systems of Linear Inequalities*

Alan I. Hoffman

Let $Ax \leq b$ be a consistent system of linear inequalities. The principal result is a quantitative formulation of the fact that if x "almost" satisfies the inequalities, then x "close" to a solution. It is further shown how it is possible in certain cases to estimate the size of the vector joining x to the nearest solution from the magnitude of the positive coordinates of Ax-b.

1. Introduction

In many computational schemes for solving a system of linear inequalities

$$\Lambda_{1} \cdot \mathbf{x} = a_{11}x_{1} + \dots + a_{1n}x_{n} \leq b_{1}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

 $A_m \cdot \mathbf{x} = a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m$ (briefly, $A\mathbf{x} \leq b$), one arrives at a vector $\overline{\mathbf{x}}$ that "almost" satisfies (1). It is almost obvious geo-

Theorem: Let (1) be a consistent system of inequalities and let F_n and F_m each satisfy (3). Then there exists a constant c>0 such that for any x there exists a solution x_0 of (1) with

$$F_n(\mathbf{x}-\mathbf{x}_0) \leq cF_m (A\mathbf{x}-b)^+).$$

The proof is essentially contained in two lemmas (2 and 3 below) given by Shmuel Agmon.²

Lemma 1. If F_m satisfies (3), there exists an e>0 such that for every y and every subset S of the half spaces (1)

$$F_m(\bar{\boldsymbol{y}}) \leq eF_m(\boldsymbol{y})$$

where $\mathbf{u} = (u_1, \dots, u_m), \overline{\mathbf{u}} = 0$

 $\vec{u} = (\vec{v}_1, \dots, \vec{v}_m)$. 2 April 2023

Nguyen Duy Cuong (CTU)

² **Theorem** Let A be a $m \times n$ matrix, $b \in \mathbb{R}^m$, $f(x) := \|(Ax - b)_+\|$ for $x \in \mathbb{R}^n$.

complementarity problems. Springer New York (2007)

²Hoffman, A. J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Standards 49, 263–265 (1952)

³Donchev, A.: Lectures notes on variational analysis, Springer (2021)

⁴Facchinei, F., Pang, J.S.: Finite-dimentional variational inequalities and

² **Theorem** Let A be a $m \times n$ matrix, $b \in \mathbb{R}^m$, $f(x) := \|(Ax - b)_+\|$ for $x \in \mathbb{R}^n$. Then $\exists \tau > 0$ such that

$$\tau d(x, [f \le 0]) \le f(x)$$
 for all $x \in \mathbb{R}^n$.

complementarity problems. Springer New York (2007)

²Hoffman, A. J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Standards 49, 263–265 (1952)

³Donchev, A.: Lectures notes on variational analysis, Springer (2021)

⁴Facchinei, F., Pang, J.S.: Finite-dimentional variational inequalities and

² **Theorem** Let A be a $m \times n$ matrix, $b \in \mathbb{R}^m$, $f(x) := \|(Ax - b)_+\|$ for $x \in \mathbb{R}^n$. Then $\exists \tau > 0$ such that

$$\tau d(x, [f \leq 0]) \leq f(x)$$
 for all $x \in \mathbb{R}^n$.

Applications

- ³ Linear programming
- Polyhedral optimization
- ⁴ Variational inequalities

Nat. Bur. Standards 49, 263-265 (1952)

complementarity problems. Springer New York (2007)

²Hoffman, A. J.: On approximate solutions of systems of linear inequalities. J. Res.

³Donchev, A.: Lectures notes on variational analysis, Springer (2021)

⁴Facchinei, F., Pang, J.S.: Finite-dimentional variational inequalities and

• ⁵ (differentiable) convex functions on normed spaces

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials
- ⁷ locally Lipschitz functions on Banach spaces

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials
- 7 locally Lipschitz functions on Banach spaces
 - + EVP & Sum rule for Clarke subdifferentials.

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials
- 7 locally Lipschitz functions on Banach spaces
 - + EVP & Sum rule for Clarke subdifferentials.
- 8 lower semicontinuous functions on Asplund spaces

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials
- 7 locally Lipschitz functions on Banach spaces
 - + EVP & Sum rule for Clarke subdifferentials.
- 8 lower semicontinuous functions on Asplund spaces
 - + EVP & Sum rule for Fréchet subdifferentials

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

- ⁵ (differentiable) convex functions on normed spaces
- 6 polynomials
- 7 locally Lipschitz functions on Banach spaces
 - + EVP & Sum rule for Clarke subdifferentials.
- 8 lower semicontinuous functions on Asplund spaces
 - + EVP & Sum rule for Fréchet subdifferentials

⁵Li, W.: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

⁶Luo, X.D., Luo, Z.Q.: Extension of Hoffman's error bound to polynomial systems SIAM J. Optim. 4(2), 383–392 (1994)

⁷loffe, A. D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61-69 (1979)

⁸Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5), 643–670 (2002)

X - metric space, and $f(\bar{x}) \leq 0$.

Nguyen Duy Cuong (CTU)

 $^{^9}$ Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) \blacksquare + \blacksquare \blacksquare

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$\tau d(x, [f \leq 0]) \leq f_+(x)$$
 for all $x \in B_\delta(\bar{x})$.

⁹Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002)

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_\delta(\bar x).$$

•
$$^{9} \operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$$

Nguyen Duy Cuong (CTU) Error Bounds

⁹Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) → → → → →

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_\delta(\bar x).$$

- $^{9} \operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$
- Applications

Nguyen Duy Cuong (CTU)

⁹Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) ■ → ■ ■

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$\tau d(x, [f \leq 0]) \leq f_+(x)$$
 for all $x \in B_\delta(\bar{x})$.

•
$$^{9} \operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$$

- Applications
 - + convergence analysis

Nguyen Duy Cuong (CTU) Error Bounds

 $^{^9}$ Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) \bigcirc 12 \bigcirc 2

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_\delta(\bar x).$$

- 9 $\operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$
- Applications
 - + convergence analysis
 - + sensitivity analysis

8 / 24

 $^{^9}$ Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) \bigcirc 12 \bigcirc 2

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_\delta(\bar x).$$

• 9
$$\operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$$

- Applications
 - + convergence analysis
 - + sensitivity analysis
 - + metric subregularity, subtransversality, weak sharp minima, Kurdyka-Łojasiewicz inequality

Nguyen Duy Cuong (CTU) Error Bounds

 $^{^9}$ Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) $\sim 10^{-10}$

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+(x)$$
 for all $x \in B_\delta(\bar{x})$.

• 9
$$\operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$$

- Applications
 - + convergence analysis
 - + sensitivity analysis
 - + metric subregularity, subtransversality, weak sharp minima, Kurdyka-Łojasiewicz inequality
 - + nonsmooth calculus

⁹Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) ≥ → 4 ≥ → ≥

X - metric space, and $f(\bar{x}) \leq 0$.

Definition f has a error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_\delta(\bar x).$$

• 9
$$\operatorname{Er} f(\bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \le 0])}$$

- Applications
 - + convergence analysis
 - + sensitivity analysis
 - + metric subregularity, subtransversality, weak sharp minima, Kurdyka-Łojasiewicz inequality
 - + nonsmooth calculus

⁹Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002) ■ → ■ ■

Example: linear error bounds

Example: linear error bounds

It holds that

$$d(x, [f \le 0]) = f_+(x)$$
 for all $x \in \mathbb{R}$.

Example: no linear error bounds

Example: no linear error bounds

Let
$$\varphi(t) = t^{\frac{1}{3}}$$
. Then

$$d(x, [f \le 0]) = \varphi(f_+(x))$$
 for all $x \in \mathbb{R}$.

X-metric space, and $f(\bar{x}) \leq 0$.

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x, [f \le 0]) \le \varphi(f_+(x))$$
 for all $x \in B_\delta(\bar{x})$.

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x,[f\leq 0])\leq arphi(f_+(x)) \ \ ext{for all} \ \ x\in B_\delta(ar x).$$

Special cases

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x, [f \le 0]) \le \varphi(f_+(x))$$
 for all $x \in B_\delta(\bar{x})$.

Special cases

• $\varphi(t) := \tau^{-1}t$

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq \varphi(f_+(x))$$
 for all $x \in B_\delta(\bar{x})$.

Special cases

- $\varphi(t) := \tau^{-1}t$
- $\varphi(t) := \tau^{-1}t^q$

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq \varphi(f_+(x))$$
 for all $x \in B_\delta(\bar{x})$.

Special cases

- $\varphi(t) := \tau^{-1}t$
- $\varphi(t) := \tau^{-1}t^q$
- $\varphi(t) =: \tau^{-1}(t + t^q)$

Extensions

X-metric space, and $f(\bar{x}) \leq 0$.

Definition

• f has a q-error bound at \bar{x} if $\exists \tau, \delta > 0$ such that

$$au d(x, [f \leq 0]) \leq f_+^{\mathbf{q}}(x)$$
 for all $x \in B_{\delta}(\bar{x})$.

• f has a φ -error bound at \bar{x} if $\exists \delta > 0$ such that

$$au d(x, [f \le 0]) \le \varphi(f_+(x))$$
 for all $x \in B_\delta(\bar{x})$.

Special cases

- $\varphi(t) := \tau^{-1}t$
- $\varphi(t) := \tau^{-1}t^q$
- $\varphi(t) =: \tau^{-1}(t + t^q)$

X-normed space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f$.

X-normed space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f$.

• Fréchet differential:

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0$$

X-normed space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f$.

• Fréchet differential:

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0$$

Fréchet subdifferential:

$$\partial^{F} f(\bar{x}) := \left\{ x^* \in X^* \mid \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \ge 0 \right\}$$

X-normed space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f$.

• Fréchet differential:

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0$$

• Fréchet subdifferential:

$$\partial^{F} f(\bar{x}) := \left\{ x^* \in X^* \mid \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \ge 0 \right\}$$

f – convex:

$$\partial f(\bar{x}) := \{ x^* \in X^* \mid \langle x^*, x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in X \}$$

X-normed space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f$.

Fréchet differential:

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} = 0$$

• Fréchet subdifferential:

$$\partial^{F} f(\bar{x}) := \left\{ x^* \in X^* \mid \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \ge 0 \right\}$$

f – convex:

$$\partial f(\bar{x}) := \{ x^* \in X^* \mid \langle x^*, x - \bar{x} \rangle \le f(x) - f(\bar{x}) \text{ for all } x \in X \}$$

• f-Fréchet differentiable: $\partial f(\bar{x}) = \{\nabla f(\bar{x})\}$

Example

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$

14 / 24

Nguyen Duy Cuong (CTU) Error Bounds 2 April 2023

¹⁰Zălinescu, C.: Convex analysis in general vector spaces . World Scientific Publishing Co. Inc., River Edge, NJ (2002)

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ 10 **Theorem** Let f_1, f_2 -convex, f_1 be continuous in a point in dom f_2 .

¹⁰Zălinescu, C.: Convex analysis in general vector spaces . World Scientific Publishing Co. Inc., River Edge, NJ (2002)

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ 10 **Theorem** Let f_1, f_2 -convex, f_1 be continuous in a point in dom f_2 .

Then

$$\partial(f_1+f_2)(\bar{x})=\partial f_1(\bar{x})+\partial f_2(\bar{x})$$

¹⁰Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002)

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}, \ \bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$

¹⁰ **Theorem** Let f_1, f_2 —convex, f_1 be continuous in a point in dom f_2 .

Then

$$\partial(f_1+f_2)(\bar{x})=\partial f_1(\bar{x})+\partial f_2(\bar{x})$$

¹¹ **Theorem** Let X – Asplund, f_1 – Lipschitz, f_2 – lower semicontiuous.

¹⁰Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002)

¹¹Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51–56 (1989)

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}, \bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ Theorem Let f_1, f_2 —convex, f_1 be continuous in a point in dom f_2 .

Then

$$\partial(f_1+f_2)(\bar{x})=\partial f_1(\bar{x})+\partial f_2(\bar{x})$$

¹¹ **Theorem** Let X – Asplund, f_1 – Lipschitz, f_2 – lower semicontiuous. Then, for any $x^* \in \partial^F(f_1 + f_2)(\bar{x})$ and $\varepsilon > 0$, $\exists x_1, x_2 \in X$ with $||x_i - \bar{x}|| < \varepsilon$, $|f_i(x_i) - f_i(x)| < \varepsilon$ (i = 1, 2), such that $x^* \in \partial^F f_1(x_1) + \partial^F f_2(x_2) + \varepsilon \mathbb{B}^*.$

$$x^* \in \partial^F f_1(x_1) + \partial^F f_2(x_2) + \varepsilon \mathbb{B}^*.$$

Nguyen Duy Cuong (CTU) 2 April 2023 14 / 24

¹⁰Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002)

¹¹Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51-56 (1989)

X-normed space, $f_1, f_2: X \to \mathbb{R} \cup \{+\infty\}$, $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ 10 **Theorem** Let f_1, f_2 -convex, f_1 be continuous in a point in dom f_2 .

Then

$$\partial(f_1+f_2)(\bar{x})=\partial f_1(\bar{x})+\partial f_2(\bar{x})$$

¹¹ **Theorem** Let X – Asplund, f_1 – Lipschitz, f_2 – lower semicontiuous.

Then, for any $x^* \in \partial^F(f_1 + f_2)(\bar{x})$ and $\varepsilon > 0$, $\exists x_1, x_2 \in X$ with $||x_i - \bar{x}|| < \varepsilon$, $|f_i(x_i) - f_i(x)| < \varepsilon$ (i = 1, 2), such that

$$x^* \in \partial^F f_1(x_1) + \partial^F f_2(x_2) + \varepsilon \mathbb{B}^*.$$

Notes: Clarke/proximal/abstract subdifferentials

¹⁰Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002)

¹¹Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51–56 (1989)

X - metric space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $x \in \text{dom } f$.

¹²De Giorgi, E., Marino, A., Tosques, M.: Evolution problerns in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

X - metric space, $f:X \to \mathbb{R} \cup \{+\infty\}$, $x \in \mathrm{dom}\, f$.

$$|\nabla f|(x) := \limsup_{u \to x, u \neq x} \frac{[f(x) - f(u)]_+}{d(x, u)}.$$

¹² De Giorgi, E., Marino, A., Tosques, M.: Evolution problems in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

X - metric space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $x \in \text{dom } f$.

$$|\nabla f|(x) := \limsup_{u \to x, u \neq x} \frac{[f(x) - f(u)]_+}{d(x, u)}.$$

• $^{12} |\nabla f|(x)$ provides the rate of steepest descent of f at x.

¹² De Giorgi, E., Marino, A., Tosques, M.: Evolution problems in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

X - metric space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $x \in \text{dom } f$.

$$|\nabla f|(x) := \limsup_{u \to x, u \neq x} \frac{[f(x) - f(u)]_+}{d(x, u)}.$$

- $^{12} |\nabla f|(x)$ provides the rate of steepest descent of f at x.
- If f is Fréchet differentiable at x, then $|\nabla f|(x) = ||f'(x)||$.

¹² De Giorgi, E., Marino, A., Tosques, M.: Evolution problems in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

X - metric space, $f: X \to \mathbb{R} \cup \{+\infty\}$, $x \in \text{dom } f$.

$$|\nabla f|(x) := \limsup_{u \to x, u \neq x} \frac{[f(x) - f(u)]_+}{d(x, u)}.$$

- $^{12} |\nabla f|(x)$ provides the rate of steepest descent of f at x.
- If f is Fréchet differentiable at x, then $|\nabla f|(x) = ||f'(x)||$.
- $|\nabla f|(x) \le d(0, \partial^F f(x))$. The equality holds when f-convex.

¹² De Giorgi, E., Marino, A., Tosques, M.: Evolution problems in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

¹³ "But the most fundamental contribution of

Azé, D., Corvellec, J.N., Lucchetti, R.E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49(5, Ser. A: Theory Methods), 643–670 (2002)

seems to be the very fact that the slope of De Giorgi-Mario-Tosques for the first time has appeared in the context of metric regularity theory."

¹³loffe, A.D.: Towards metric theory of metric regularity. In: Approximation, optimization and mathematical economics (Pointe-à-Pitre, 1999), pp. 165–176. Physica, Heidelberg (2001)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$.

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

Theorem X - complete metric space, f—lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

Nguyen Duy Cuong (CTU) Error Bounds 2 April 2023

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

• $d(\hat{x}, x) < \lambda$ and $f(\hat{x}) \leq f(x)$;

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

- $d(\hat{x}, x) < \lambda$ and $f(\hat{x}) \leq f(x)$;
- $f(u) + (\varepsilon/\lambda)d(u,\hat{x}) \ge f(\hat{x})$ for all $u \in X$.

Nguyen Duy Cuong (CTU)

or Bounds

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

- $d(\hat{x}, x) < \lambda$ and $f(\hat{x}) \leq f(x)$;
- $f(u) + (\varepsilon/\lambda)d(u,\hat{x}) \ge f(\hat{x})$ for all $u \in X$.

Let X—Banach.

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal.. Appl. 47, 324–353 (1974)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

- $d(\hat{x}, x) < \lambda$ and $f(\hat{x}) \leq f(x)$;
- $f(u) + (\varepsilon/\lambda)d(u,\hat{x}) \ge f(\hat{x})$ for all $u \in X$.

Let X-Banach. The function

$$u \mapsto f(u) + (\varepsilon/\lambda) \|u - \hat{x}\|$$

attains the minimum at $u := \hat{x}$

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal.. Appl. 47, 324–353 (1974)

¹⁴ **Theorem** X - complete metric space, f-lower semicontinuous, $x \in X$, $\varepsilon, \lambda > 0$. If $f(x) < \inf_X f + \varepsilon$, then $\exists \hat{x} \in X$ such that

- $d(\hat{x}, x) < \lambda$ and $f(\hat{x}) \leq f(x)$;
- $f(u) + (\varepsilon/\lambda)d(u,\hat{x}) \ge f(\hat{x})$ for all $u \in X$.

Let X-Banach. The function

$$u \mapsto f(u) + (\varepsilon/\lambda) \|u - \hat{x}\|$$

attains the minimum at $u := \hat{x}$, and consequently,

$$0 \in \partial^{F}(f(\cdot) + (\varepsilon/\lambda) \| \cdot -\hat{x} \|)(\hat{x})$$

17 / 24

Nguyen Duy Cuong (CTU) Error Bounds 2 April 2023

¹⁴Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

Theorem X-complete metric space, f-lower semicontinuous.

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

• $\nabla f(x) \geq \tau$;

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

for all $x \in B_{\delta}(\bar{x})$

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

for all $x \in B_{\delta}(\bar{x})$, then

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_{\frac{\delta}{2}}(\bar{x}).$$

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

for all $x \in B_{\delta}(\bar{x})$, then

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_{\frac{\delta}{2}}(\bar{x}).$$

Theorem Let X-normed space, and f-convex.

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

for all $x \in B_{\delta}(\bar{x})$, then

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_{\frac{\delta}{2}}(\bar{x}).$$

Theorem Let X-normed space, and f-convex.If there exist $\tau > 0$ and $\delta > 0$ such that $\tau d(x, [f \leq 0]) \leq f_+(x)$ for all $x \in B_{\delta}(\bar{x})$

Theorem X-complete metric space, f-lower semicontinuous. If $\exists \tau, \delta > 0$ such that one of the following conditions is satisfied:

- $\nabla f(x) \geq \tau$;
- X-Asplund and $d(0, \partial^F f(x)) \ge \tau$

for all $x \in B_{\delta}(\bar{x})$, then

$$au d(x,[f\leq 0])\leq f_+(x) \ \ ext{for all} \ \ x\in B_{\frac{\delta}{2}}(\bar{x}).$$

Theorem Let X-normed space, and f-convex.If there exist $\tau > 0$ and $\delta > 0$ such that $\tau d(x, [f \leq 0]) \leq f_+(x)$ for all $x \in B_{\delta}(\bar{x})$, then

$$|\nabla f|(x) \ge \tau$$
 for all $x \in B_{\delta}(\bar{x})$.

Metric subregularity & Error bounds

X, Y- metric spaces, $F: X \Rightarrow Y, (\bar{x}, \bar{y}) \in \operatorname{gph} F$.

Nguyen Duy Cuong (CTU)

19 / 24

¹⁵Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

X, Y- metric spaces, $F: X \Rightarrow Y$, $(\bar{x}, \bar{y}) \in \operatorname{gph} F$. Consider the problem:

Find $x \in X$ such that $\bar{y} \in F(x)$.

19 / 24

¹⁵Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

X, Y- metric spaces, $F: X \Rightarrow Y, (\bar{x}, \bar{y}) \in gph F$. Consider the problem:

Find $x \in X$ such that $\bar{y} \in F(x)$.

The solution set: $F^{-1}(\bar{y})$.

19 / 24

¹⁵Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

X, Y- metric spaces, $F: X \Rightarrow Y, (\bar{x}, \bar{y}) \in gph F$. Consider the problem:

Find $x \in X$ such that $\bar{y} \in F(x)$.

The solution set: $F^{-1}(\bar{y})$.

¹⁵**Definition** F is metrically subregular at (\bar{x}, \bar{y}) if there exist $\tau > 0$ and $\delta > 0$ such that

$$\tau d(x, F^{-1}(\bar{y})) \leq d(\bar{y}, F(x))$$

for all $x \in B_{\delta}(\bar{x})$.

19 / 24

¹⁵Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

• $f(x) := d(\bar{y}, F(x))$ - not lower semicontinuous

 $^{^{16}}$ Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)

¹⁷loffe, A.D.: Variational analysis of regular mappings. Theory and Applications.

Springer Monographs in Mathematics. Springer (2017)

¹⁸Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

- $f(x) := d(\bar{y}, F(x))$ not lower semicontinuous
- $^{16} f(x) := \liminf_{u \to x} d(\bar{y}, F(u))$ always lower semicontinuous

 $^{^{16}}$ Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)

¹⁷loffe, A.D.: Variational analysis of regular mappings. Theory and Applications.

Springer Monographs in Mathematics. Springer (2017)

¹⁸Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

- $f(x) := d(\bar{y}, F(x))$ not lower semicontinuous
- 16 $f(x) := \liminf_{u \to x} d(\bar{y}, F(u))$ always lower semicontinuous
- ¹⁷ $f(x) := d((x, \bar{y}), \operatorname{gph} F)$ Lipschitz

 $^{^{16}}$ Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)

¹⁷Ioffe, A.D.: Variational analysis of regular mappings. Theory and Applications.

Springer Monographs in Mathematics. Springer (2017)

¹⁸Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

- $f(x) := d(\bar{y}, F(x))$ not lower semicontinuous
- $^{16} f(x) := \liminf_{u \to x} d(\bar{y}, F(u))$ always lower semicontinuous
- ¹⁷ $f(x) := d((x, \bar{y}), \operatorname{gph} F)$ Lipschitz
- ¹⁸ $f(x,y) := d(y,\bar{y}) + i_{gph F}(x,y)$ lower semicontinuous when gph F is closed

 $^{^{16}}$ Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)

¹⁷loffe, A.D.: Variational analysis of regular mappings. Theory and Applications.

Springer Monographs in Mathematics. Springer (2017)

¹⁸Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

X - normed space, $A, B \subset X$.

¹⁹Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

X - normed space, $A, B \subset X$. Consider the problem: ¹⁹ "Find $x \in A \cap B$ ".

¹⁹Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185-212 (1993)

X - normed space, $A, B \subset X$. Consider the problem: ¹⁹ "Find $x \in A \cap B$ ".

¹⁹Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185-212 (1993)

X - normed space, $A, B \subset X$. Consider the problem: ¹⁹ "Find $x \in A \cap B$ ".

Definition $\{A,B\}$ is subtransversal at \bar{x} if $\exists \tau,\delta>0$ such that

$$au d(x,A\cap B) \leq \max\{d(x,A),d(x,B)\} \ \ \text{for all} \ \ x\in \mathbb{B}_{\delta}(\bar{x}).$$

¹⁹Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185-212 (1993)

X - normed space, $A, B \subset X$. Consider the problem: ¹⁹ "Find $x \in A \cap B$ ".

Definition $\{A,B\}$ is subtransversal at \bar{x} if $\exists \tau,\delta>0$ such that

$$au d(x,A\cap B) \leq \max\{d(x,A),d(x,B)\} \ \ ext{for all} \ \ x\in \mathbb{B}_\delta(\bar{x}).$$

Let
$$f(x) := \max\{d(x,A), d(x,B)\}.$$

¹⁹Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

X - normed space, $A, B \subset X$. Consider the problem: ¹⁹ "Find $x \in A \cap B$ ".

Definition $\{A,B\}$ is subtransversal at \bar{x} if $\exists \tau,\delta>0$ such that

$$au d(x,A\cap B) \leq \max\{d(x,A),d(x,B)\} \ \ ext{for all} \ \ x\in \mathbb{B}_{\delta}(\bar{x}).$$

Let
$$f(x) := \max\{d(x, A), d(x, B)\}$$
. Then, $[f \le 0] = A \cap B$.

 $^{^{19}}$ Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993) $_{\odot}$ $_{\odot}$

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$.

Nguyen Duy Cuong (CTU) Error Bounds 2

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

22 / 24

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

A is surjective

Nguyen Duy Cuong (CTU) Error Bounds 2 April 2023

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- A is surjective
- A is open

22 / 24

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- A is surjective
- A is open
- $O \in \text{int}A(\text{int}\mathbb{B})$

22 / 24

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- A is surjective
- A is open
- $O \in \text{int}A(\text{int}\mathbb{B})$
- $\exists \tau > 0$ such that for all $y \in Y$, $\exists x \in X$ with Ax = y and $\tau ||x|| \le ||y||$

Nguyen Duy Cuong (CTU) Error Bounds 2 April 2023

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- A is surjective
- A is open
- $O \in \text{int}A(\text{int}\mathbb{B})$
- $\exists \tau > 0$ such that for all $y \in Y$, $\exists x \in X$ with Ax = y and $\tau ||x|| \le ||y||$

The last statement can be rewritten as:

22 / 24

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

²⁰Theorem

Let X, Y - Banach spaces, $A \in \mathcal{L}(X, Y)$. The following statements are equivalent:

- A is surjective
- A is open
- $O \in \text{int} A(\text{int} \mathbb{B})$
- $\exists \tau > 0$ such that for all $y \in Y$, $\exists x \in X$ with Ax = y and $\tau ||x|| < ||y||$

The last statement can be rewritten as:

" $\exists \tau > 0$ such that $\tau d(x, A^{-1}(y)) \leq d(y, Ax)$ for all $x \in X, y \in Y$ ".

²⁰Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis, Springer New York (2014)

• ²¹ weak sharp minima

inequality systems with applications, Linear Algebra and its Applications, 493, 183-205 (2016)

²¹Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439–469 (2002)

²²Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

²³Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions:

necessary and sufficient conditions. Nonlinear Anal. 75(3), 1124–1140 (2012)

²⁴Ha, T.X.D.: Slopes, error bounds and weak sharp Pareto minima of a vector-valued

map, Journal of Optimization Theory and Applications, 176, 634–649 (2018) ²⁵T.D. Chuong, V. Jeyakumar: Robust global error bounds for uncertain linear

- ²¹ weak sharp minima
- ²² Kurdyka-Łojasiewicz inequality

²¹Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439–469 (2002)

²²Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

²³Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions:

necessary and sufficient conditions. Nonlinear Anal. 75(3), 1124–1140 (2012)

²⁴Ha, T.X.D.: Slopes, error bounds and weak sharp Pareto minima of a vector-valued map, Journal of Optimization Theory and Applications, 176, 634–649 (2018)

²⁵T.D. Chuong, V. Jeyakumar: Robust global error bounds for uncertain linear inequality systems with applications, Linear Algebra and its Applications, 493, 183-205 (2016)

- ²¹ weak sharp minima
- ²² Kurdyka-Łojasiewicz inequality
- 23 24 vector-valued functions

²¹Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439–469 (2002)

²²Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

²³Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions:

necessary and sufficient conditions. Nonlinear Anal. 75(3), 1124–1140 (2012)

²⁴Ha, T.X.D.: Slopes, error bounds and weak sharp Pareto minima of a vector-valued map, Journal of Optimization Theory and Applications, 176, 634–649 (2018)

²⁵T.D. Chuong, V. Jeyakumar: Robust global error bounds for uncertain linear inequality systems with applications, Linear Algebra and its Applications, 493, 183-205 (2016)

- ²¹ weak sharp minima
- ²² Kurdyka-Łojasiewicz inequality
- 23 24 vector-valued functions
- 25 error bounds with uncertain data

²⁵T.D. Chuong, V. Jeyakumar: Robust global error bounds for uncertain linear inequality systems with applications, Linear Algebra and its Applications, 493, 183-205 (2016)

²¹Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439-469 (2002)

²²Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556-572 (2007)

²³Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions:

necessary and sufficient conditions. Nonlinear Anal. 75(3), 1124-1140 (2012)

²⁴Ha, T.X.D.: Slopes, error bounds and weak sharp Pareto minima of a vector-valued map, Journal of Optimization Theory and Applications, 176, 634-649 (2018)

