Tutorial 13

SC-220 Groups and linear algebra Autumn 2019 (Diagonalization, eigen values and eigen vectors)

(1) Can these matrices be diagonalized? If so find an invertible matrix P such that $P^{-1}AP$ is diagonal

a)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 over \mathbb{R} b) $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ over \mathbb{R}
c) $A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix}$ over \mathbb{C} d) $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$ over \mathbb{C}

- (2) Let D denote the derivative map which is a linear map on the space of differentiable functions. Show that the functions $\sin kx$ and $\cos kx$ $(k \neq 0)$ are eigenvectors of D^2 . What are the eigenvalues?
- (3) Let $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ be such that $T(A) = A^T$. Is T diagonalizable? If so find a a diagonal representation and change of basis matrix in which T can be diagonalized.
- (4) Let A, B be linear maps from a vector space V onto itself. If AB = BA then show that if v is an eigenvector of A with eigenvalue λ then Bv is also an eigen vector of A with eigenvalue λ . (assume Bv not equal to zero).
- (5) Show that the eigen values of a Unitary operator are of the form $e^{i\theta}$ for some θ
- (6) Solve the following system of differential equations

$$\dot{x}_1(t) = 3x_1 + x_2 + x_3
\dot{x}_2(t) = 2x_1 + 4x_2 + 2x_3
\dot{x}_3(t) = -x_1 - x_2 + x_3$$