EE 235, Winter 2018, Homework 10: Laplace Transforms Due Friday March 9, 2018 via Canvas Submission Write down ALL steps for full credit

HW10 Topics:

- Laplace Transform and Inverse Laplace Transform
- Laplace Transform ROC and Signal Properties
- Laplace Transform ROC and LTI System Properties

HW10 Course Learning Goals Satisfied:

- Goal 1: Describe signals in different domains and map characteristics in one domain to those in another.
- Goal 2: Understand the implications of different system properties and how to test for them.
- Goal 4: Analyze LTI systems given different system representations, and translate between these different representations.

HW10 References: OWN Sections 9.1 - 9.2, 9.5 - 9.6, 9.7

HW10 Problems (Total = 60 pts):

1. Laplace Transform. (10 pts)

Find the Laplace Transform of the following signals and sketch the corresponding pole-zero plot for each signal. In the plot, indicate the regions of convergence (ROC). Write X(s) as a single fraction in the form of $\frac{N(s)}{D(s)}$.

(a) (2 pts)
$$x(t) = e^{-4t}u(t) + e^{-6t}u(t)$$
. Show that $X(s) = \frac{2s+10}{(s+4)(s+6)}$ with ROC of $Re\{s\} > -4$.

Solution.

$$\begin{array}{l} x(t)=e^{-4t}u(t)+e^{-6t}u(t)\ X(s)=\frac{1}{s+4}+\frac{1}{s+6}=\frac{2s+10}{(s+4)(s+6)}\\ poles:\ s=-4,\ -6\\ zero:\ s=-5\\ ROC:\ Re\{s\}>-4 \end{array}$$

(b)
$$(4 \text{ pts}) \ x(t) = e^{4t}u(-t) + e^{8t}u(-t).$$

Solution.

$$\begin{array}{l} x(t)=e^{4t}u(-t)+e^{8t}u(-t)\ Rewriting\ x(t)\ in\ correct\ form\\ x(t)=-[-e^{4t}u(-t)]-[-e^{8t}u(-t)]\\ X(s)=-\frac{1}{s-4}-\frac{1}{s-8}=\frac{-2s+12}{(s-4)(s-8)}\\ poles:\ s=4,\ 8\\ zero:\ s=6\\ ROC:\ Re\{s\}<4 \end{array}$$

(c) (4 pts)
$$x(t) = \delta(t) - u(-t)$$
.

Solution.

$$x(t)=\delta(t)+u(t)$$
 $X(s)=1+\frac{1}{s}=\frac{s+1}{s}$ poles: $s=0$ zero: $s=-1$

 $ROC: Re\{s\} < 0$

- 2. Inverse Laplace Transform. (14 pts) Find x(t) for given X(s) and ROC. Plot pole-zero plots.
 - (a) (2 pts) $X(s) = \frac{1}{s^2 + 5s + 6}$, ROC: $Re\{s\} > -2$. Show that x(t) is $x(t) = e^{-2t}u(t) e^{-3t}u(t)$.

Solution.

$$\begin{split} X(s) &= \frac{1}{s^2 + 5s + 6} = \frac{1}{(s + 2)(s + 3)} \\ poles: \ s &= -2, \ -3, \ no \ zero \\ Using \ partial \ fraction \ expansion, \ X(s) &= \frac{A}{S + 2} + \frac{B}{s + 3} \\ A &= 1 \ and \ B &= -1. \\ Hence, \ X(s) &= \frac{1}{s + 2} - \frac{1}{s + 3} \\ Then, \ both \ are \ 'right' \ sided \ using \ ROC \ condition. \ x(t) &= e^{-2t}u(t) - e^{-3t}u(t) \end{split}$$

(b) $(4 \text{ pts}) \ X(s) = \frac{s-3}{s^2+5s+6}, \ \text{ROC: } -3 < Re\{s\} < -2.$

Solution.

$$\begin{array}{l} X(s) = \frac{s-3}{s^2+5s+6} \\ poles: \ s = -2, \ -3 \\ zero: \ s = 3 \\ Using \ partial \ fraction \ expansion, \ X(s) = \frac{-5}{s+2} + \frac{6}{s+3} \\ From \ ROC, \ x(t) = 6e^{-3t}u(t) + 5e^{-2t}u(-t) \end{array}$$

(c) (4 pts) $X(s) = \frac{s+2}{s^2+4s+20}$, ROC: $Re\{s\} < -2$.

Solution.

Solution:
$$X(s) = \frac{s+2}{(s+2)^2+16}, \ ROC: \ Re\{s\} < -2$$

$$X(s) = \frac{s+2}{(s+2)^2+(4)^2}$$

$$a = 2$$

$$w_o = 4$$

$$Re\{s\} < -2 \rightarrow left\text{-}sided$$

$$x(t) = -e^{-2t}\cos(4t)u(-t)$$

(d) (4 pts) $X(s) = \frac{s}{s^2+9}$, ROC: $Re\{s\} < 0$.

Solution.

$$X(s) = \frac{s}{s^2+9}, \ ROC: \ Re\{s\} < 0$$

 $X(s) = \frac{s}{(s)^2+(3)^2}$
 $w_o = 3$
 $Re\{s\} < 0 \rightarrow left\text{-}sided$

 $x(t) = -\cos(3t)u(-t)$

- 3. ROC and Signal Properties. (10 pts)
 - (a) (5 pts) Suppose x(t) is a real signal with rational Laplace transform X(s) with the following properties:
 - i. X(s) has two poles and one zero, with one pole at s = -1 2j,
 - ii. the Fourier transform of $e^{2t}x(t)$ does not exist,

iii.
$$\int_{-\infty}^{\infty} x(t)dt = -2$$
,

iv.
$$\int_{-\infty}^{\infty} e^{-t} x(t) dt = 0.$$

Find x(t) (the time-domain signal).

Solution. Because x(t) is real, from (i),

the two poles must be conjugate to each other, we can assume that

$$X(s) = \frac{k(s-a)}{(s+1-2j)(s+1+2j)} = \frac{k(s-a)}{(s+1)^2+4}$$

From (ii), We know that the ROC of X(s-2) does not include the imaginary axis, so it must be

 $right ext{-}sided.$

Thus, the ROC of X(s) is also right-sided $Re\{s\} > -1$

From (iii) and (iv), $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$

When
$$s = 0$$
, $X(0) = \int_{-\infty}^{\infty} x(t)dt = -2 = \frac{-ka}{2}$

When
$$s = 1$$
, $X(1) = \int_{-\infty}^{\infty} x(t)e^{-t}dt = 0 \Rightarrow a = 1 \Rightarrow k = 10$

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

$$When s = 0, X(0) = \int_{-\infty}^{\infty} x(t)dt = -2 = \frac{-ka}{5}$$

$$When s = 1, X(1) = \int_{-\infty}^{\infty} x(t)e^{-t}dt = 0 \Rightarrow a = 1 \Rightarrow k = 10$$

$$Thus, X(s) = \frac{10(s-1)}{(s+1)^2+2^2} = \frac{10(s+1-2)}{(s+1)^2+2^2} = \frac{10(s+1)}{(s+1)^2+2^2} - \frac{10\cdot 2}{(s+1)^2+2^2}$$

$$x(t) = 10e^{-t}cos(2t)u(t) - 10e^{-t}sin(2t)u(t)$$

$$ROC: Re\{s\} > -1$$

$$x(t) = 10e^{-t}\cos(2t)u(t) - 10e^{-t}\sin(2t)u(t)$$

 $ROC: \overline{Re\{s\}} > -1$

- (b) (5 pts) Signal x(t) has the following properties:
 - i. X(s) is rational with 1 zero and 2 poles
 - ii. x(t) is real

iii. X(s) has its zero at s=1 and a known pole at s=1 - 2j

iv. Area under x(t) is equal to 1

v. $e^{-3t}x(t)$ is absolutely integrable (so Fourier Transform of $e^{-3t}x(t)$ does exist)

Deduce the expression for signal x(t).

Solution. From (i) to (iii), we have
$$X(s) = \frac{k(s-1)}{(s-1+2j)(s+1+2j)} = \frac{k(s-1)}{(s-1)^2+2^2}$$

From (iv), we have $X(0) = \frac{k(-1)}{(-1)^2+4} = \frac{-k}{5} = 1 \Rightarrow k = -5$
From (v), since $e^{-3t}x(t)$ is absolutely integrable, its ROC includes jw -axis, we know that the correct ROC is $Re\{s\} > 1$

Thus,
$$X(s) = \frac{-5(s-1)}{(s-1)^2+4}$$
 and the corresponding ROC is $Re\{s\} > 1$ $x(t) = \boxed{-5e^t cos(2t)u(t)}$

- 4. ROC and LTI Systems. (16 pts)
 - (a) (5 pts) Consider another system described by: $-2y(t) \frac{dy(t)}{dt} + \frac{d^2y(t)}{dt} = 3x(t) + \frac{dx(t)}{dt}$. Solution. Find H(s): $-2Y(s) sY(s) + s^2Y(s) = 3X(s) + sX(s)$ $H(s) = \frac{s+3}{s^2-s-2} = \frac{s+3}{(s-2)(s+1)}$
 - i. (1 pt) Specify the ROC corresponding to H(s) if it is known the system is causal. Also, sketch the pole-zero plot and associated ROC.

Solution. $ROC = at \ least \ Re\{s\} > -1 \cap Re\{s\} > 2 = at \ least \ Re\{s\} > 2$

ii. (2 pts) Specify the ROC corresponding to H(s) if it is known the system is stable. Also, sketch the pole-zero plot and associated ROC.

Solution. Stable \Rightarrow must include jw-axis $\Rightarrow -1 < Re\{s\} < 2$

iii. (2 pts) Specify the ROC corresponding to H(s) if it is known the system is left-sided. Also, sketch the pole-zero plot and associated ROC.

Solution. Left-sided \Rightarrow ROC left-sided Re $\{s\}$ < -1

(b) (5 pts) Let H(s) represent the system function for a causal, stable LTI system. The input to the system consists of the sum of three terms, one of which is an impulse $\delta(t)$ and the second term is a complex exponential e^{s_0t} , where s_0 is a complex constant. The output of the system is:

$$y(t) = e^{-t}u(t) + \frac{10}{34}e^{4t}\cos(3t) + \frac{6}{34}e^{4t}\sin(3t).$$

Determine h(t) and s_0 consistent with this information.

Hint1: What happens when a complex exponential is passed through an LTI system?

Hint2: One thing to note is that the output is real even if s_0 was complex. This indicates that the third term consists of $e^{s_0^*t}$, where s_0^* is the complex conjugate of s_0 .

Solution. Recall that y(t) = x(t) * h(t) for an LTI system. Also recall that $h(t) * \delta(t) = h(t)$. Since the input x(t) has a $\delta(t)$ in it, it must be that one of the terms in y(t) has a h(t). We claim that $h(t) = e^{-t}u(t)$. To verify this claim, we would need to prove that the output is indeed the convolution of the input and h(t). Note that $H(s) = \frac{1}{s+1}$. Also when e^{s_0t} is passed through an LTI system, we get as the output $H(s_0)e^{s_0t}$. We don't know what s_0 is - But the output has an e^{4t} term in it. We can thus guess that $Re(s_0) = 4$. Let $s_0 = \alpha + j\beta$. We need to figure out α, β . We have that,

$$(\delta(t) + e^{s_0 t} + e^{-s_0 t}) * h(t) = h(t) + H(s_0)e^{s_0 t} + H(s_0^*)e^{s_0^* t}$$

$$= h(t) + \frac{1}{s_0 + 1}e^{s_0 t} + \frac{1}{s_0^* + 1}e^{s_0^* t}$$

$$= h(t) + e^{\alpha t} \left(\frac{1}{(\alpha + 1) + j\beta}e^{j\beta t} + \frac{1}{(\alpha + 1) - j\beta}e^{-j\beta t} \right)$$

$$= h(t) + e^{\alpha t} \left(\frac{1}{(\alpha + 1) + j\beta} \frac{(\alpha + 1) - j\beta}{(\alpha + 1) - j\beta}e^{j\beta t} + \frac{1}{(\alpha + 1) - j\beta} \frac{(\alpha + 1) + j\beta}{(\alpha + 1) + j\beta}e^{-j\beta t} \right)$$

$$= h(t) + e^{\alpha t} \left(\frac{(\alpha + 1) - j\beta}{(\alpha + 1)^2 + \beta^2}e^{j\beta t} + \frac{(\alpha + 1) + j\beta}{(\alpha + 1)^2 + \beta^2}e^{-j\beta t} \right).$$
(1)

Clearly $\alpha=4$, since e^{4t} shows up in the output, y(t). Also note that $(\alpha+1)^2+\beta^2$ shows up in the denominator of both the second term and the third term. Since the denominator in the given problem is 34, we have that $\beta^2=34-(4+1)^2=34-25=9$. Thus, $\beta=3$. It can now be verified that the last equation in (1) does simplify to y(t) as given in the problem. Hence, we have that $h(t)=\boxed{e^{-t}u(t)}$. Also, $s_0=\boxed{4+3j}$.

- (c) For each of the cases below, draw a pole-zero plot and ROC for a system that matches the description:
 - i. (2 pts) The system is stable; the impulse response is two-sided; and the system frequency response approaches a non-zero constant at high frequencies.

Solution. The system is stable \Rightarrow The plot contains jw axis The impulse response is two-sided \Rightarrow The signal is two-sided The system frequency response approaches a non-zero constant at high frequencies \Rightarrow Highpass filter, H(0) = 0

ii. (2 pts) The system is not stable and contains complex poles in the left half plane.

Solution. The system is not stable \Rightarrow The plot does not contain jw axis The system contains complex poles in the left half plane \Rightarrow The signal is left-sided

iii. (2 pts) The impulse-response is two-sided and absolutely integrable, and the system behaves like a lowpass filter.

Solution. The impulse-response is two-sided \Rightarrow The signal is two-sided The system is absolutely integrable \Rightarrow The system is stable \Rightarrow The plot contains jw axis The system behaves like a lowpass filter \Rightarrow $H(0) \neq 0$

5. Homework Self-Reflection

(10 pts) After completing your homework, go to the following link to rate your skill or concept understanding level for each item listed. Y our self-reflection must be completed by the due date. All submissions are time-stamped, so please give yourself plenty of time to complete and submit your self-reflection.

http://bit.ly/2FFYTAd