BAB IV

GRAPHICAL USER INTERFACE (GUI) DENGAN STREAMLIT

I. TUJUAN

• Mampu membuat aplikasi berbasis GUI dengan Streamlit dan aplikasi web interaktif yang dapat dijalankan dari browser.

II. PENDAHULUAN

Graphical User Interface (GUI) adalah antarmuka pengguna dengan program aplikasi dalam bentuk grafik. GUI memudahkan pengguna untuk mengoperasikan program tanpa harus memahami baris perintah. Beberapa elemen GUI meliputi teks, tombol, slider, dan gambar.

Streamlit adalah library Python untuk membuat aplikasi berbasis GUI dan web yang interaktif dengan mudah. Dibandingkan dengan alat lain, Streamlit memiliki kelebihan:

- Sederhana digunakan, terutama untuk aplikasi berbasis data.
- Mendukung integrasi dengan berbagai library Python seperti pandas dan numpy.
- Aplikasi dapat dijalankan langsung dari browser tanpa instalasi tambahan.
 Adapun komponen utama *Streamlit* adalah sebagai berikut.
- st.title("judul"): Menampilkan judul utama aplikasi.

Gambar 4.1 Hasil tampilan dari st.title("Judul")

• st.write("teks"): Menampilkan teks atau elemen apapun yang ingin dicetak di layar (termasuk data, grafik, dan lainnya).

Gambar 4.2 Hasil tampilan dari st.write("teks")

- st.number_input("label"): Membuat input angka dengan label untuk pengguna.
 - o Parameter:
 - label: Teks yang akan ditampilkan di atas input angka.
 - value: Nilai default yang muncul saat aplikasi dibuka pertama kali.
 - o Contoh: angka = st.number_input("Masukkan angka:") akan menampilkan
 input angka dengan label "Masukkan angka:".

Gambar 4.3 Hasil tampilan dari : angka = st.number_input("Masukkan angka:")

- st.button("label"): Membuat tombol interaktif dengan teks tertentu. Saat tombol diklik, aksi tertentu akan dijalankan.
 - O Contoh: if st.button("Hitung"): akan menjalankan kode dalam blok if ketika tombol "Hitung" ditekan.

Gambar 4.4 Hasil tampilan dari st.button("Hitung")

• st.slider("label"): Membuat slider untuk memilih nilai dalam rentang tertentu.

Gambar 4.5 Hasil tampilan dari st.slider("label")

• st.text input ("label"): Membuat input teks dengan label tertentu.

Gambar 4.6 Hasil tampilan dari st.text_input("label")

• st.success("pesan"), st.error("pesan"): Menampilkan pesan status seperti sukses atau error secara visual.

Gambar 4.7 Hasil tampilan dari st.success("pesan sukses"), st.error("pesan error")

PyInstaller memungkinkan pengguna untuk membuat aplikasi mandiri (standalone application) yang dapat dijalankan tanpa Python terinstal di sistem target. File yang dihasilkan dapat berupa executable untuk sistem operasi tertentu.

III. LANGKAH PRAKTIKUM

- 1. Langkah Praktikum Pembuatan GUI dengan Streamlit
 - **1. Install Library yang Dibutuhkan.** Buka terminal atau command prompt, kemudian ketikkan perintah berikut:

```
pip install streamlit pyinstaller pandas numpy
```

Perintah tersebut berfungsi untuk menginstall *packages* yang kita butuhkan dan yang kita pakai nantinya. Dan berikut adalah contoh tampilan jika sudah berhasil diinstal:

Gambar 4.8 Tampilan pada terminal setelah berhasil menginstal packages yang dibutuhkan

2. Membuat File Python. Buat file baru dengan nama app.py dan isi dengan kode berikut:

Aplikasi Penjumlahan dan Perkalian Sederhana

```
import streamlit as st
st.title("Aplikasi Penjumlahan dan Perkalian")
# Input angka
angkal = st.number_input("Masukkan Angka 1", min_value=0, value=0)
angka2 = st.number_input("Masukkan Angka 2", min_value=0, value=0)
# Tombol untuk operasi
if st.button("Kali"):
hasil = angkal * angka2
    st.success(f"Hasil perkalian: {hasil}")
if st.button("Bagi"):
    if angka2 != 0:
        hasil = angkal / angka2
        st.success(f"Hasil pembagian: {hasil}")
else:
    st.error("Angka 2 tidak boleh 0 untuk pembagian!")
```

3. Menjalankan Aplikasi. Untuk menjalankan aplikasi, ketik perintah berikut di terminal:

```
streamlit run app.py
```

Aplikasi akan terbuka di browser seperti berikut.

Gambar 4.9 Hasil tampilan setelah program dijalankan

4. Tampilan Aplikasi

- Tampilan input angka
- Tombol operasi kali dan bagi
- Hasil operasi ditampilkan seara interaktif

Gambar 4.10 Tampilan Ketika aplikasi dioperasikan

Program Tahun Kabisat

```
import streamlit as st

st.title("Pemeriksa Tahun Kabisat")

tahun = st.number_input("Masukkan Tahun", min_value=0, value=2024, step=1)

if st.button("Periksa"):
   if (tahun % 4 == 0 and tahun % 100 != 0) or (tahun % 400 == 0):
        st.success(f"{tahun} adalah tahun kabisat!")
   else:
        st.error(f"{tahun} bukan tahun kabisat.")
```


Gambar 4.11 Hasil tampilan pemeriksaan tahun kabisat

Program Luas dan Volume Balok

```
import streamlit as st

st.title("Menghitung Luas dan Volume Balok")
panjang = st.number_input("Masukkan Panjang", min_value=0.0, value=1.0)
lebar = st.number_input("Masukkan Lebar", min_value=0.0, value=1.0)
tinggi = st.number_input("Masukkan Tinggi", min_value=0.0, value=1.0)

if st.button("Hitung"):
    luas = 2 * (panjang * lebar + panjang * tinggi + lebar * tinggi)
    volume = panjang * lebar * tinggi
    st.success(f"Luas Balok: {luas}")
    st.success(f"Volume Balok: {volume}")
```


Gambar 4.12 Tampilan hasil dari menghitung luas dan volume balok

IV. TUGAS PRAKTIKUM

- 1. Buatlah aplikasi berbasis GUI untuk memeriksa tahun, apakah tahun yang dimasukkan merupakan tahun kabisat!
- 2. Buatlah program untuk menghitung luas dan volume balok berbasis GUI dengan Streamlit!
- 3. Buatlah contoh lain dari aplikasi mandiri berbasis Streamlit menggunakan PyInstaller!