Linear algebra, Exercise 8

Luqing Ye*

August 16, 2014

Exercise (Tao). For this question,the field of scalars will be the complex numbers instead of the reals(i.e,all matrices,etc.are allowed to have complex entries). Let θ be a real number, and let A be the 2×2 rotational matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$

- Show that A has eigenvalues $e^{i\theta}, e^{-i\theta}$. What are the eigenvectors corresponding to $e^{i\theta}$ and $e^{-i\theta}$?
- Write $A = QDQ^{-1}$ for some invertible matrix Q and diagonal matrix D.

Proof.

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix},$$

so

$$\begin{pmatrix} \cos\theta - \lambda & -\sin\theta \\ \sin\theta & \cos\theta - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

where $(x, y) \neq (0, 0)$. So

$$(\cos\theta - \lambda)^2 + \sin^2\theta = 0 \iff \lambda^2 - 2\lambda\cos\theta + 1 = 0 \iff \lambda = \cos\theta \pm i\sin\theta.$$

When $\lambda = \cos \theta + i \sin \theta$, then

$$\begin{pmatrix} -i\sin\theta & -\sin\theta \\ \sin\theta & -i\sin\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

So when $\theta = \pi k, k \in \mathbf{Z}$, the eigenvector corresponding to $e^{i\theta}$ is arbitary, otherwise, the eigenvector is in the form of $(iy,y),y \in \mathbf{C}\setminus\{0\}$.

When $\lambda = \cos \theta - i \sin \theta$, then $ix \sin \theta - y \sin \theta = 0$. When $\theta = \pi k, k \in \mathbf{Z}$, then the eigenvector corresponding to $e^{i\theta}$ is arbitrary. Otherwise, the eigenvector is in the form of $(x, ix), x \in \mathbf{C} \setminus \{0\}$.

• Denote the linear transformation corresponding to the matrix A by L_A . The eigenvector of A,(i,1) and (1,i),are linearly independent in C.Let $\alpha = ((i,1),(1,i)) = (w_1,w_2)$ be an ordered basis,let $\beta = ((1,0),(0,1)) = (v_1,v_2)$ be another ordered basis.Then

$$[L_A]^{\alpha}_{\alpha} = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}.$$

And

$$\begin{cases} w_1 = iv_1 + v_2, \\ w_2 = v_1 + iv_2. \end{cases}$$

So

$$[I]_\alpha^\beta = \begin{pmatrix} \mathfrak{i} & 1 \\ 1 & \mathfrak{i} \end{pmatrix}, [I]_\beta^\alpha = \begin{pmatrix} \frac{-\mathfrak{i}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-\mathfrak{i}}{2} \end{pmatrix}.$$

^{*}叶卢庆 (1992—),E-mail:yeluqingmathematics@gmail.com

So

$$A = [L_A]_{\beta}^{\beta} = [I]_{\alpha}^{\beta} [L_A]_{\alpha}^{\alpha} [I]_{\beta}^{\alpha}.$$

blog sciencenet, children with the contraction of t