線形写像の単射性と表現行列

線形写像 f が単射であることを、表現行列 A の性質として述べると、次の ref: 行列と行列式の基 ような言い換えができる

礎 p67~68

- $frac{1}{4}$ 線形写像の単射性と表現行列 線形写像 $f: \mathbb{R}^n o \mathbb{R}^m$ の 表現行列を A とするとき、次はすべて同値である
 - i. f は単射
 - ii. Ax = 0 は自明な解しか持たない
 - iii. rank(A) = n

証明

$(i) \iff (ii)$

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が単射であることの言い換えは、

$$f(\mathbf{x}) = \mathbf{o} \Longrightarrow \mathbf{x} = \mathbf{o}$$

であり、Ax = 0 が自明解しか持たないことは、

$$A\mathbf{x} = \mathbf{o} \Longrightarrow \mathbf{x} = \mathbf{o}$$

が成り立つということである

 $f(\mathbf{x}) = A\mathbf{x}$ であるから、これらの 2 つの条件は同値であ

$(ii) \iff (iii)$

斉次形の方程式 Ax = 0 に自明解しか存在しないことと

$$rank(A) = n$$

と同値であることは以前証明済み

線形写像の全射性と表現行列

単射性と対比して、全射性についても表現行列の言葉で整理する

ref: 行列と行列式の基 礎 p67~68

- - i. *f* は全射
 - ii. 任意の $\boldsymbol{b} \in \mathbb{R}^m$ に対して、 $A\boldsymbol{x} = \boldsymbol{b}$ には解が存在する
 - iii. rank(A) = m

☎ 証明

$(i) \Longleftrightarrow (ii)$

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が全射であることの言い換えは、

$$\forall \boldsymbol{b} \in \mathbb{R}^m, \exists \boldsymbol{x} \in \mathbb{R}^n, f(\boldsymbol{x}) = \boldsymbol{b}$$

であり、これは

$$\forall b \in \mathbb{R}^m$$
, $A\mathbf{x} = \mathbf{b}$ に解が存在する

と同値である

よって、これらの2つの条件は同値である

$(ii) \iff (iii)$

 $\operatorname{rank}(A) = m$ が、次の条件

 $\forall \boldsymbol{b} \in \mathbb{R}^m$, $A\boldsymbol{x} = \boldsymbol{b}$ の解が存在する

ことと同値であることは、以前証明済み ■