Optimisation via Quantum Computing

Vivek Katial

22/01/2020

Introduction

troduction Background References

About Me

- Vivek Katial (vkatial@student.unimelb.edu.au)
 - PhD Candidate (Optimisation on Quantum Computers)

croduction Background References

Talk Structure

- Background
- Proposed Research
- Overview of Literature
- Current Progress
- What's next?

ntroduction Background References

Main Research Question

 What instances characteristics of optimisation problems make them predisposed to being solved on a Quantum Computer?

Background

troduction Background References

Adiabatic Quantum Computing (AQC)

 Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous *Schrödinger Equation* is well-known to describe the time evolution of a quantum state:

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous *Schrödinger Equation* is well-known to describe the time evolution of a quantum state:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle$$

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous Schrödinger Equation is well-known to describe the time evolution of a quantum state:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle$$

• $|\psi(t)\rangle$ is our state vector, H(t) is the time dependent Hamiltonian. A Hamiltonian of an n-qubit system H(t) is given by $2^n \times 2^n$ matrix.

troduction Background References

Adiabatic Quantum Computing (AQC)

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

$$H_B$$
 \longrightarrow H_P $|\psi_B
angle$ transform $H(t)$ $|\psi_P
angle$ known state unknown

•

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

$$egin{array}{ccccc} H_B & & & & & H_P \\ |\psi_B
angle & & {
m transform} \; H(t) & & |\psi_P
angle \\ {
m known state} & & {
m unknown} \end{array}$$

 Loosely speaking, the adiabatic theorem tells us that if we vary from H_B to H_P slowly enough the system will remain in its ground state. This fact is a direct result of the Adiabatic Theorem [1].

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

How fast?

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

How fast?

$$T = \frac{1}{\min_t g(t)^2}$$

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=Tsuch that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

How fast?

$$T = \frac{1}{\min_t g(t)^2}$$

 Where g(t) is the difference between the first two smallest eigenvalues of H(t)

3SAT (Exact Cover)

 The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [2]

3SAT (Exact Cover)

- The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [2]
- The basic SAT formulation can be described as follows: Given a boolean formula (AND \land , OR \lor , NOT \neg) over n variables $(z_1, z_2, ..., z_n)$. Can one set z_i 's in a manner such that the Boolean formula is true?

3SAT (Exact Cover)

- The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [2]
- The basic SAT formulation can be described as follows: Given a boolean formula (AND \land , OR \lor , NOT \neg) over n variables $(z_1, z_2, ..., z_n)$. Can one set z_i 's in a manner such that the Boolean formula is true?
- A clause is an expression which the variables must satisfy. For example $z_1 \wedge z_2 \implies z_1 = z_2 = 1$

Consider a 4-bit number with two clauses:

- Consider a 4-bit number with two clauses:
 - $z_1 \wedge z_2 \wedge z_3$

- Consider a 4-bit number with two clauses:
 - $z_1 \wedge z_2 \wedge z_3$
 - $z_1 \wedge z_3 \wedge z_4$

- Consider a 4-bit number with two clauses:
 - $z_1 \wedge z_2 \wedge z_3$
 - $z_1 \wedge z_3 \wedge z_4$
- Here we have 16 possible assignments, namely:

- Consider a 4-bit number with two clauses:
 - $z_1 \wedge z_2 \wedge z_3$
 - $z_1 \wedge z_3 \wedge z_4$
- Here we have 16 possible assignments, namely:

•

$$\mathcal{Z} = \{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111, 1111\}$$

- Consider a 4-bit number with two clauses:
 - $z_1 \wedge z_2 \wedge z_3$
 - $z_1 \wedge z_3 \wedge z_4$
- Here we have 16 possible assignments, namely:

•

$$\mathcal{Z} = \{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111, 1111\}$$

• However, our **satisfying assignment** is only $\vec{z} = 1111$

ntroduction Background References

Mapping 3SAT to AQC

• How do we construct H_B and H_P so that we can solve our optimisation problem?

Mapping 3SAT to AQC

- How do we construct H_B and H_P so that we can solve our optimisation problem?
- Farhi et al.[3] describe this construction in considerable detail.

Mapping 3SAT to AQC

- How do we construct H_B and H_P so that we can solve our optimisation problem?
- Farhi et al.[3] describe this construction in considerable detail.
- We then evolve our system with the following interpolation:

Mapping 3SAT to AQC

- How do we construct H_B and H_P so that we can solve our optimisation problem?
- Farhi et al.[3] describe this construction in considerable detail.
- We then evolve our system with the following interpolation:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

- How do we construct H_B and H_P so that we can solve our optimisation problem?
- Farhi et al.[3] describe this construction in considerable detail.
- We then evolve our system with the following interpolation:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

• Finally, complete measurement and our solution is our final state $|\psi(t=T)\rangle$

ntroduction Background References

Proposed Research

 Depending on different structures of instances, classical algorithms may perform differently to Quantum ones. troduction Background References

Proposed Research

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:

Proposed Research

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we have simulated AQC and probe the "quantumness" of each instance:

Proposed Research

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we have simulated AQC and probe the "quantumness" of each instance:
 - 1. Minimum Energy Gap g_{min}

Proposed Research

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we have simulated AQC and probe the "quantumness" of each instance:
 - 1. Minimum Energy Gap g_{\min}
 - 2. Entropy of Entanglement

Proposed Research

This will involve large amounts of generating experimental data

Proposed Research

- This will involve large amounts of generating experimental data
- To survey the instances we will deploy the instance space analysis methodology [4–6]

Proposed Research

- This will involve large amounts of generating experimental data
- To survey the instances we will deploy the instance space analysis methodology [4–6]
- Ultimately, we can build a prediction model which maps instance features of different 3SAT instances to their inherent "Quantumness"

Proposed Research

 Given that we have access to IBM's Quantum Computer, we can also use this approach on QAOA and produce results from a universal quantum computer.

Proposed Research

- Given that we have access to IBM's Quantum Computer, we can also use this approach on QAOA and produce results from a universal quantum computer.
- This methodology can then be further extended to other optimisation problems that can be mapped to Quadratic Unconstrained Binary Optimisation (QUBO) problems.

Algorithm Selection

 Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice [7].

Algorithm Selection

 Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice [7].

Algorithm Selection

 Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice [7].

 However, what we are interested in is probing the strengths and weaknesses of AQC for different instances of SAT.

Instance Space Methodology

• The instance space methodology presented in [4–6] extends Rice's framework.

Instance Space Methodology

• The instance space methodology presented in [4–6] extends Rice's framework.

Instance Space Methodology

• The instance space methodology presented in [4–6] extends Rice's framework.

Instance Space Methodology

Instance Space Methodology

Hardness Features for 3SAT

• Selman et. al demonstrated [8] the existence of a phase transition for random 3SAT problems.

- Selman et. al demonstrated [8] the existence of a phase transition for random 3SAT problems.
- SATZilla and Nudelman et. al have identified 84 different features for SAT instances [9,10].

- Selman et. al demonstrated [8] the existence of a phase transition for random 3SAT problems.
- SATZilla and Nudelman et. al have identified 84 different features for SAT instances [9,10].

- Selman et. al demonstrated [8] the existence of a phase transition for random 3SAT problems.
- SATZilla and Nudelman et. al have identified 84 different features for SAT instances [9,10].
- 1. Problem Size Features
- 2. Variable-Clause Graph Features
- 3. Variable Graph Features
- 4. Clause Graph Features
- 5. Proximity to Horn Formula

- Selman et. al demonstrated [8] the existence of a phase transition for random 3SAT problems.
- SATZilla and Nudelman et. al have identified 84 different features for SAT instances [9,10].
- 1. Problem Size Features
- 2. Variable-Clause Graph Features
- 3. Variable Graph Features
- 4. Clause Graph Features
- 5. Proximity to Horn Formula

- 6. Balance Features
- 7. DPLL Probing Features
- 8. Local Search Probing Features
- 9. LP-Based Features

Quantum Computing Research into Hard SAT problems

• In their seminal paper [3] Farhi et al. aswell as Hogg et al. [11] touched on the phase transition and showed that the minimum energy gap perhaps scaled polynomially with n as roughly N^2 .

- In their seminal paper [3] Farhi et al. aswell as Hogg et al. [11] touched on the phase transition and showed that the minimum energy gap perhaps scaled polynomially with n as roughly N^2 .
- However in 2009, Young et al [12]. demonstrated via monte-carlo simulations of N=256 that some USA instances have a quantum phase transition.

- In their seminal paper [3] Farhi et al. aswell as Hogg et al. [11] touched on the phase transition and showed that the minimum energy gap perhaps scaled polynomially with n as roughly N^2 .
- However in 2009, Young et al [12]. demonstrated via monte-carlo simulations of N=256 that some USA instances have a quantum phase transition.
- Their research indicated that as $N \to \infty$ the system is expected to lead to an exponentially small gap, and hence an exponential complexity.

- In their seminal paper [3] Farhi et al. aswell as Hogg et al. [11] touched on the phase transition and showed that the minimum energy gap perhaps scaled polynomially with n as roughly N^2 .
- However in 2009, Young et al [12]. demonstrated via monte-carlo simulations of N=256 that some USA instances have a *quantum phase transition*.
- Their research indicated that as $N \to \infty$ the system is expected to lead to an exponentially small gap, and hence an exponential complexity.
- Farhi et al. [13] also investigated different evolution paths and their results suggested it is possible to overcome the exponentially small minimum gap by selecting random initial Hamiltonians

Quantum Computing Research into Hard SAT problems

• Latorre et al. probed the entropy of entanglement for 250 USA Instances of Exact-Cover [14], their results showed that entropy of entanglement scales linearly with *N*.

- Latorre et al. probed the entropy of entanglement for 250 USA Instances of Exact-Cover [14], their results showed that entropy of entanglement scales linearly with *N*.
- However, their results also showed that for large N, the minimum gap scaling is exponential and can be associated with a quantum phase transition [14].

- Latorre et al. probed the entropy of entanglement for 250 USA Instances of Exact-Cover [14], their results showed that entropy of entanglement scales linearly with *N*.
- However, their results also showed that for large N, the minimum gap scaling is exponential and can be associated with a quantum phase transition [14].
- Hauke et al. [15] ran simulations of adiabatic quantum optimisation with n=16. Their results indicated that large entanglement entropy has little significance for the success probability of the optimisation task.

• Choi et al. [16] showed that problem Hamiltonian parameters can affect the minimum spectral gap of AQC.

- Choi et al. [16] showed that problem Hamiltonian parameters can affect the minimum spectral gap of AQC.
- Gabor et al. [17] shows that the phase transition from 3SAT persists in some form (but possibly to a lesser extent) in AQC via real experimental results on D-WAVE.

- Choi et al. [16] showed that problem Hamiltonian parameters can affect the minimum spectral gap of AQC.
- Gabor et al. [17] shows that the phase transition from 3SAT persists in some form (but possibly to a lesser extent) in AQC via real experimental results on D-WAVE.
- Most signficant for us is that none of this work approaches instances in a robust manner such as the MATILDA framework

Current Progress

1. Learning Quantum Mechanics and Quantum Computing

Current Progress

- 1. Learning Quantum Mechanics and Quantum Computing
- 2. Conducting literature review on current advances in Adiabatic Quantum Computing.

Current Progress

- 1. Learning Quantum Mechanics and Quantum Computing
- Conducting literature review on current advances in Adiabatic Quantum Computing.
- Developed working environment, set up GitHub, scripts, organizational tools enabling an efficient working environment.

Current Progress

4. Developed an architecture to run reproducible experiments at scale

Current Progress

- 4. Developed an architecture to run reproducible experiments at scale
- Provisioned all infrastructure required for above on Melbourne Research Cloud and SPARTAN

Current Progress

- 4. Developed an architecture to run reproducible experiments at scale
- Provisioned all infrastructure required for above on Melbourne Research Cloud and SPARTAN
- 6. Developed a working implementation of Adiabatic Quantum Computing on different instances of 3SAT.

Next Steps (untill Confirmation)

1. Complete Literature Review of current advances in AQC.

troduction Background References

- 1. Complete Literature Review of current advances in AQC.
- 2. Implement scripts to generate **hard** instances of 3SAT with respect to *instance characteristics*.

- 1. Complete Literature Review of current advances in AQC.
- 2. Implement scripts to generate **hard** instances of 3SAT with respect to *instance characteristics*.
- Apply Instance Space Methodology from MATILDA to find decision boundaries for Entanglement Entropy and Minimum Energy Gap

ntroduction Background References

Next Steps (untill Confirmation)

Extend implementation to work on QAOA and VQE with QisKit

- Extend implementation to work on QAOA and VQE with QisKit
- 5. Learn C++ effectively, this will be required when implementing larger simulations.

- Extend implementation to work on QAOA and VQE with QisKit
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations

- Extend implementation to work on QAOA and VQE with QisKit
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations
- 7. Further advance knowledge of Quantum Physics (possibly through taking a course in Quantum Computing)

- Extend implementation to work on QAOA and VQE with QisKit
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations
- 7. Further advance knowledge of Quantum Physics (possibly through taking a course in Quantum Computing)
- 8. Extend research to look at other optimisation problems

References

References I

- 1. Born M, Fock V (1928) Beweis des adiabatensatzes. Zeitschrift für Physik 51: 165–180.
- 2. Cook SA (1971) The complexity of theorem-proving procedures, In, *Proceedings of the third annual acm symposium on theory of computing*, ACM, 151–158.
- 3. Farhi E, Goldstone J, Gutmann S, et al. (2001) A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. *Science* 292: 472–475.
- 4. Smith-Miles K, Bowly S (2015) Generating new test instances by evolving in instance space. *Computers & Operations Research* 63: 102–113.
- 5. Smith-Miles K, Lopes L (2012) Measuring instance difficulty for combinatorial optimization problems. *Computers & Operations Research* 39: 875–889.

References II

- 6. Smith-Miles K, Baatar D, Wreford B, et al. (2014) Towards objective measures of algorithm performance across instance space. *Computers & Operations Research* 45: 12–24.
- 7. Rice JR, others (1976) The algorithm selection problem. *Advances in computers* 15: 5.
- 8. Selman B, Mitchell DG, Levesque HJ (1996) Generating hard satisfiability problems. *Artificial Intelligence* 81: 17–29.
- 9. Xu L, Hutter F, Hoos HH, et al. (2008) SATzilla: Portfolio-based algorithm selection for sat. *Journal of artificial intelligence research* 32: 565–606.
- 10. Nudelman E, Leyton-Brown K, Hoos HH, et al. (2004) Understanding random sat: Beyond the clauses-to-variables ratio, In: Wallace M (Ed.), *Principles and practice of constraint programming cp 2004*, Berlin, Heidelberg, Springer Berlin Heidelberg, 438–452.

References III

- 11. Hogg T (2002) Adiabatic quantum computing for random satisfiability problems. *Phys Rev A 67 022314 (2003)*.
- 12. Young AP, Knysh S, Smelyanskiy VN (2009) First order phase transition in the quantum adiabatic algorithm. *Phys Rev Lett 104, 020502 (2010)*.
- 13. Farhi E, Goldstone J, Gosset D, et al. (2009) Quantum adiabatic algorithms, small gaps, and different paths. *arXiv preprint* arXiv:09094766.
- 14. Latorre JI, Orús R (2004) Adiabatic quantum computation and quantum phase transitions. *Physical Review A* 69: 062302.
- 15. Hauke P, Bonnes L, Heyl M, et al. (2015) Probing entanglement in adiabatic quantum optimization with trapped ions. *Frontiers in Physics* 3: 21.

References IV

- 16. Choi V (2020) The effects of the problem hamiltonian parameters on the minimum spectral gap in adiabatic quantum optimization. *Quantum Information Processing* 19: 90.
- 17. Gabor T, Zielinski S, Feld S, et al. (2019) Assessing solution quality of 3SAT on a quantum annealing platform, In, *International workshop on quantum technology and optimization problems*, Springer, 23–35.