Universidad Politécnica de Madrid

DOCTORAL THESIS

Contribuciones al modelado del mutualismo en ecología

Author: Francisco Javier GARCÍA ALGARRA

Supervisor: Dr. Javier Galeano Prieto

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in the

Research Group Name Department or School Name

December 9, 2015

UNIVERSIDAD POLITÉCNICA DE MADRID

Abstract

Faculty Name Department or School Name

Doctor of Philosophy

Contribuciones al modelado del mutualismo en ecología

by Francisco Javier GARCÍA ALGARRA

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Indice

A	bstrac	et e e e e e e e e e e e e e e e e e e	iii
A	cknov	vledgements	v
1	Intr	oducción general	1
	1.1	El mutualismo en ecología	1
		1.1.1 Tipos de mutualismo	1
		1.1.2 Historia de los estudios sobre mutualismo	2
	1.2	Redes en ecología	2
		1.2.1 Redes mutualistas	2
		1.2.2 Tendencias actuales en el estudio de las redes mutualistas	2
	1.3	Estructura de la tesis	3
2	Mod	delado dinámico	5
	2.1	Dinámica de las comunidades mutualistas	5
		2.1.1 Modelos de población	5
	2.2	Modelo con capacidad de carga constante	6
		2.2.1 Análisis de estabilidad	6
	2.3	Modelo con saturación del beneficio	6
		2.3.1 Análisis de estabilidad	6
	2.4	Resultados	7
	2.5	Conclusiones	7
3	Estr	uctura del mutualismo	9
	3.1	Propiedades estructurales del mutualismo	9
		3.1.1 Magnitudes clásicas	9
	3.2	Descripción basada en la descompisión <i>k-core</i>	10
	3.3	K magnitudes	11
		3.3.1 Algoritmo de destrucción basado en <i>k-shell</i>	13
	3.4	Resultados	13
	2 5	Conduciones	10

4	Vist	ializaciones del mutualismo	15
	4.1	Representación clásica del mutualismo	15
		4.1.1 El diagrama bipartito	15
		4.1.2 La matriz de interacción	16
	4.2	Visualizaciones basadas en <i>k-magnitudes</i>	16
		4.2.1 El diagrama polar	16
		4.2.2 El diagrama zigurat	16
	4.3	Resultados	16
	4.4	Conclusiones	17
5	Con	clusiones de la tesis	19
	5.1	XXXX mutualismo	19
Bi	bliog	rafía	21

1 | Introducción general

1.1 El mutualismo en ecología

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Citando una figura de otro capítulo. Como se ve en la figura 4.2 Citando una fórmula de otro capítulo. Como se ve en la fórmula 2.2

1.1.1 Tipos de mutualismo

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat

volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

1.1.2 Historia de los estudios sobre mutualismo

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

1.2 Redes en ecología

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

1.2.1 Redes mutualistas

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

1.2.2 Tendencias actuales en el estudio de las redes mutualistas

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque

eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

1.3 Estructura de la tesis

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

2 | Modelado dinámico

2.1 Dinámica de las comunidades mutualistas

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

2.1.1 Modelos de población

El uso de modelos cuantitativos en el estudio de la dinámica de poblaciones fue una de las primeras aplicaciones de las matemáticas en el campo de la biología, con antecedentes tan remotos como Fibonacci y Malthus. Todo modelo supone una descripción simplificada del fenómeno que se quiere estudiar y las formulaciones clásicas,

como la de crecimiento de Verhulst o la de interacción presa-depredador de Lotka-Volterra resultaban muy atractivas por su sencillez, aunque limitadas a la hora de aplicarlas a escenarios reales. Los modelos se fueron refinando, pero el paradigma se mantuvo hasta finales del siglo XX

2.2 Modelo con capacidad de carga constante

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Probando fórmulas. Como dice la fórmula 2.1...

$$\frac{dN}{dt} = N (a - b P),$$

$$\frac{dP}{dt} = P (c N - d),$$
(2.1)

Otra fórmula más. Como se demuestra en 2.2...

$$A = r_1 + b_{12} N_2^{a0} - (\alpha_1 + c_1 b_{12} N_2^{a0}) N_1^{p0},$$

$$-B = r_2 + b_{21} N_1^{p0} - (\alpha_2 + c_2 b_{21} N_1^{p0}) N_2^{a0}.$$
(2.2)

2.2.1 Análisis de estabilidad

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.3 Modelo con saturación del beneficio

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.3.1 Análisis de estabilidad

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper.

Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.4 Resultados

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.5 Conclusiones

3 | Estructura del mutualismo

3.1 Propiedades estructurales del mutualismo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque

3.1.1 Magnitudes clásicas

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper.

Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

3.2 Descripción basada en la descompisión *k-core*

La descomposición k-core¹ fue utilizada por primera vez por Stefen Seidman para medir la densidad local y la cohesión en redes sociales [Sei83]. Dado un grafo no dirigido, un k-core es el subgrafo máximo el el que todos sus nodos están conectados con al menos otros k puntos [DGM06].

Definición 1. Sea un grafo no dirigido $G = \{V, E\}$, donde V y E son los conjuntos de nodos y enlaces respectivamente. Llamamos $deg_G(v)$ al grado del nodo v en el grafo G. El subgrafo $M = \{C, E | C\}$ inducido por el subconjunto de nodos $C \subseteq V$ es un k-core si $\forall v \in C : (deg_G(v) \geq k)$ y M es el subgrafo máximo que cumple la condición. Se denomina k-shell al conjunto de nodos del k-core que no pertenecen al k+1-core.

La *descomposición k-core* se ha utilizado de forma habitual como mecanismo de reducción de información para estudiar redes de distinta naturaleza [Kit+10; Zha+10; Bar+14]. El resultado ofrece una visión organizada en capas, con los nodos más centrales en la *shell* de mayor k. Esta cifra puede llegar al orden de las centenas en redes grandes. Hasta donde nosotros sabemos, no hay literatura sobre su aplicación al estudio del mutualismo, ya que son redes bipartitas de un tamaño mínimo comparado con los sistemas sociales o tecnológicos a los que se ha aplicado.

Existen diversos algoritmos para llevar a cabo la descomposición en función de las dimensiones de la red[MDPM13]. El más sencillo y válido para el caso de las redes mutualistas, es el algoritmo de podado (*pruning*), que se describe con la ayuda de la figura 3.1, una red bipartita ficticia, con ocho nodos de una clase y siete de la opuesta. A la hora de aplicar el algoritmo resulta irrelevante que la red sea bipartita, pues solo se basa en el número de enlaces y no en la naturaleza de los nodos que conectan.

Se empieza eliminando enlaces de aquellos nodos que solo tienen un enlace, por ejemplo el que une el nodo de color verde número 8 con el de color chocolate número 4. Se sigue realizando la operación mientras queden nodos con un único enlace, hasta que llegue el momento en que todos los nodos restantes tengan dos o más. Los nodos que han quedado desconectados forman la 1-shell. Repetimos el procedimiento para dos enlaces y así sucesivamente, clasificando todos los nodos en su shell correspondiente. En este ejemplo sencillo el k máximo es 3. Nótese que cada nodo pertenece a una shell.

Según la definición 1, el *1-core* es la unión de las tres *shell*, mientras que el *2-core* es la unión de la *2-shell* y la *1-shell*. El *k-core* máximo coincide con la *k-shell* máxima.

Como estamos tratando de redes bipartitas, distinguimos dos subconjuntos en cada k-shell, el de los nodos de la clase A y el de los de la clase B. Los llamaremos K_j^A, K_j^B , donde j es el índice de la k-shell. Es posible que uno de ellos sea vacío, es decir, no todas las k-shell tienen nodos de ambas clases necesariamente. Al valor máximo de k, lo llamamos ks_{max} , que corresponde a shell más interna de la red $ks_{max} \equiv C^{A,B}$.

¹Utilizamos la expresión original en inglés por ser prevalente en la bibliografía, a pesar de que algunos autores han propuesto traducciones como textitnúcleos de grado k [Her00] o *k-núcleos* [Car+06; MT+11]

FIGURA 3.1: Descomposición *k-core* de una red bipartita ficticia.

Esta nomenclatura simplifica la definición de las *k-magnitudes* que surgen de la red descompuesta siguiendo el procedimiento descrito.

3.3 K magnitudes

Las especies más conectadas de una red mutualista son resistentes a las perturbaciones externas porque el beneficio que reciben depende de múltiples fuentes. Esta parece ser la razón por la que las redes mutualistas tienden al anidamiento, una conexión directa con el centro de la red aumenta las probabilidades de supervivencia. Para medir la 'distancia' desde un nodo cualquiera a la k-shell más interna de la clase opuesta, hemos definido el kradius.

Definición 2. El k_{radius} del nodo m de la clase A es el valor medio de la distancia a las especies de C^B .

$$k_{radius}^{A}m = \frac{1}{|C^{B}|} \sum_{j \in C^{B}} dist_{mj} \qquad m \in A$$
(3.1)

En la fórmula 2 $dist_{mj}$ es el camino más corto de la especie m a cada una de las j especies que forman el conjuto C^B . La misma definción es válida para especies de la clase B, calculando la distancia media a las especies de C^A . El valor mínimo posible de k_{radius} es 1 para un nodo perteciente a C^B conectado con todas las especies de C^A (y viceversa).

La parte superior izquierda de la figura 3.2 es el esquema de otra red ficticia muy sencilla, con solo siete nodos, tres de la clase A y cuatro de la B. La descomposición k-core indica que la especie B4 es la única de la 1-shell. El resto pertenecen a la 2-shell, que por ser la más interna sirve de base para medir el k_{radius} .

FIGURA 3.2: Cálculo de k_{radius} y k_{degree} en una red ficticia.

En la parte superior derecha de la imagen, se reproduce el detalle de las conexiones de la especie A1, perteneciente a C^A . Como está directamente conectada con los tres nodos de C^B la el camino más corto a cada uno de ellos es 1, y en consecuencia $k_{radius}^A 1$ es 1. En la parte inferior derecha, la especie A2 que también pertenece a C^A no tiene enlace directo con B2, aunque sí con B1 y B3. El camino más corto, marcado en color violeta, pasa por B1 y A1, y mide 3. El $k_{radius}^A 2$ vale $\frac{5}{3}$. En la parte inferior izquierda, vemos el esquema de conexiones de la especie B4, que no forma parte de C^B . Como cabía esperar, su k_{radius} es mayor, $\frac{7}{3}$.

Podemos definir una magnitud global, teniendo en cuenta los k_{radius} de todas las especies.

Definición 3. El \overline{k}_{radius} de una red se obtiene promediando los k_{radius} de todos los nodos, sin importar la clase a la que pertenezcan.

$$\overline{k}_{radius} = \frac{1}{|A \cup B|} \sum_{l \in A \cup B} k_{radius} l \tag{3.2}$$

A network with all its nodes connected to the innermost core (full-connected or square adjacency matrix) will exhibit $\overline{k}_{radius}=1$ and a network with a triangular adjacency matrix will exhibit $\overline{k}_{radius}=1.5$. In our example network of Figure 3.2, the value

is 11/7. From an intuitive point of view, \overline{k}_{radius} will be small for strongly nested networks. Generalists are very interconnected and specialists have direct ties to higher k-shells. On the other hand, a random link distribution means low nestedness and longer paths.

 k_{radius} is a useful magnitude to measure nestedness but it not a good measure of centrality. For instance, its value for an isolated specialist linked to the maximum core is low. To attend this necessity, we define a second k-magnitude, the k_{degree} :

$$k_{degree}^{A}m = \sum_{j} \frac{a_{mj}}{k_{radius}j} \quad m \in A, \forall j \in B$$
 (3.3)

where a_{mj} is the element of the interaction matrix that represents the link. So the $k_{degree}m$ is the sum of the inverse of k_{radius} for each node linked to m. A node of the innermost shell will have a high degree, whereas specialists have only one or two links and so a low k_{degree} . In the example of Figure ??, this magnitude is 1+3/5+3/5=11/5 for node B3, while only 3/7 for node B4. This magnitude reminds the definition of the $Harary\ index\ [Pla+93]$ but only considering paths to the nodes in the core.

3.3.1 Algoritmo de destrucción basado en k-shell

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

3.4 Resultados

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

3.5 Conclusiones

4 Visualizaciones del mutualismo

4.1 Representación clásica del mutualismo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

4.1.1 El diagrama bipartito

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper.

Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.1.2 La matriz de interacción

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.2 Visualizaciones basadas en *k-magnitudes*

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.2.1 El diagrama polar

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.2.2 El diagrama zigurat

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.3 Resultados

FIGURA 4.1: Ejemplo de diagrama polar.

4.4 Conclusiones

FIGURA 4.2: Ejemplo de diagrama zigurat.

5 | Conclusiones de la tesis

5.1 XXXX mutualismo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Bibliografía

- [Bar+14] P Barberá et al. "The Critical Periphery in the Growth of Social Protests." In: *PloS one* 10.11 (2014), e0143611–e0143611.
- [Car+06] Alberto Cardona et al. "Taxomonía de los modelos de topología de internet". In: *Mecánica Computacional* 25 (2006), pp. 2597–2612.
- [DGM06] Sergey N Dorogovtsev, Alexander V Goltsev, and Jose Ferreira F Mendes. "K-core organization of complex networks". In: *Physical review letters* 96.4 (2006), p. 040601.
- [Her00] Reyes Herrero. "La terminología del análisis de redes: problemas de definición y de traducción". In: *Política y sociedad* 33 (2000), pp. 199–206.
- [Kit+10] Maksim Kitsak et al. "Identification of influential spreaders in complex networks". In: *Nature Physics* 6.11 (2010), pp. 888–893.
- [MDPM13] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. "Distributed k-core decomposition". In: *Parallel and Distributed Systems, IEEE Transactions on* 24.2 (2013), pp. 288–300.

- [MT+11] María del Rocío Martínez-Torres et al. "Aplicación de algoritmos genéticos a la identificación de la estructura de enlaces en portales web". In: *Revista española de documentación científica* 34.2 (2011), pp. 232–252.
- [Pla+93] Dejan Plavšić et al. "On the Harary index for the characterization of chemical graphs". In: *Journal of Mathematical Chemistry* 12.1 (1993), pp. 235–250.
- [Sei83] Stephen B Seidman. "Network structure and minimum degree". In: *Social networks* 5.3 (1983), pp. 269–287.
- [Zha+10] Haohua Zhang et al. "Using the k-core decomposition to analyze the static structure of large-scale software systems". In: *The Journal of Super-computing* 53.2 (2010), pp. 352–369.