

What is Creep?

 Unlike elastic response which is instantaneously in most cases.

 ...is the time-dependent deformation of a solid material under a certain applied load.

Creep in Civil Engineering

Cementitious materials have a time dependent

response.

Asphalt

Objectives of the Viscoelastic Lab

- Become familiar with 4-element Burger's Model
- Obtain parameters that describe three polymers (acrylic, polycarbonate and HDPE) at room temperature undergoing creep

Test Setup

Test Setup and Procedure

Extensometer

- Identify the three distinct polymers in the lab
- Set the extensometer at the center of the dog bones (Lo = 1")
- Gently release weight avoiding out of plane movement.
- In the MTS computer you will acquire data that relates the measured strain and time.

Mass of 0.53 kg

Burger's model

We can solve the differential constitutive equation for a creep case:

$$\epsilon(t) = \sigma \left[\frac{1}{E_1} + \frac{1}{\lambda_1} t + \frac{1}{E_2} \left(1 - \exp\left(-\frac{E_2}{\lambda_2} t \right) \right) \right]$$

Burger's model: Behavior

At
$$t = 0$$

$$\epsilon = \sigma \left[\frac{1}{E_1} + \frac{1}{\lambda_1} t + \frac{1}{E_2} \left(1 - \frac{E_2}{\lambda_2} t \right) \right]$$

$$\epsilon(0) = \frac{\sigma}{E_1}$$

"Elastic Strain"

At
$$t \to \infty$$

$$\epsilon = \sigma \left[\frac{1}{E_1} + \frac{1}{\lambda_1} t + \frac{1}{E_2} \left(1 - \exp \left(\frac{E_2}{\lambda_2} t \right) \right) \right]$$

$$\varepsilon = \sigma \left[\frac{1}{E_1} + \frac{1}{\lambda_1} t + \frac{1}{E_2} \right]$$

Parameters

How to calculate E and λ ?

 λ_2 controls the curvature of section II and can be obtained by using Excel solver and minimizing least squares

$$\epsilon(t) = \sigma \left[\frac{1}{E_1} + \frac{1}{\lambda_1} t + \frac{1}{E_2} \left(1 - \exp\left(-\frac{E_2}{\lambda_2} t \right) \right) \right]$$

Section I - Instantaneous elastic response

$$E_1 = \frac{\sigma}{\epsilon_1}$$

Section III - Long-term viscous flow of the material

$$\lambda_1 = \frac{\sigma}{\dot{\epsilon_{\infty}}}$$

 $\mathbf{E_2}$ is a function of the delayed strain in section II:

$$E_2 = \frac{\sigma}{\epsilon^* - \epsilon_1}$$

What to Report (Rubric on BB)

		Criteria			NOTES
	Component	Marginal (1)	Acceptable (2)	Exceptional (3)	NOTES
1	Summary				
ı	1. Describes the goals of the	Identifies one goal of	Identifies most of the	Clearly identifies the goals of the	
ı	experiment	the lab	goals	laboratory	
ı	2. Describe the materials and	Describes one of the	Describes two of the	Accurately describes the materials	
ı	methodology	items	items	and methods. Identify some of the	
ı				challenges in viscoelasticity testing	
ı	3. Describe the model we are	Partially describes one.	Accurately describes	Accurately describe the model; BRIEF	
ı	using in the experiment and		one of the items	overview on how to calculate each	
ı	how to calculate each			parameter	
ı	parameter				
ı	Identify the major findings	Identify one major	Identify two major	Identify the major findings	
L	of the experiment	items	items		
2	Results				
ı	1. Figure 1: provide the strain	Doesn't convert values	Values are incorrect,	Values and shape of the curves are	Table captions = above
ı	time response of the three	to strain	but shape is correct.	correct.	Figure captions = below
ı	materials				
ı	Provide excel sheets in the	Trends are correct, but	Calculates at least one	Accurately calculates the parameters	Summary table should be memo, figures should
ı	appendix that calculation of 4	values are incorrect	of the compoenents	for the different materials	be in appendix
ı	viscoelastic parameters for each		correctly		
ı	material				To convert from displacment to strain, divide by
ı	3. Table 1: the parameters	Poor table formatting	Does not compare to	Prepares table of the parameters;	intial length (for clip gage this is 25.4mm)
ı	calculated and compare E1 to		literature values	compares E to literature values of	Remember to cite sources for Literature Young's
ı	literature values for Young's			Young's Modulus	Modulus
L	modulus				
3	Format and Clearly Organized	Not organized clearly.	Not formatted as a	Proper memo format; good	
ı		More than one page	memo, but is well	organization. ONE PAGE OR LESS	
┕			structured		
4	Format, Units, General	-	Average formatting.	Professional formatting. Proper	
1		units. Improper use of	Proper units. Improper	units. Proper significant figures.	
1		significant figures.	use of significant		
L			figures.		

The total for this lab report is 27 points.

Parameters: Excel Example

