

New directions in earthquake seismology

Introduction to Back-projection Exercise 1

Bo Li

E-mail: bli@geophysik.uni-muenchen.de

December 16, 2021

Install conda:

https://docs.conda.io/projects/conda/en/latest/commands/install.html

Set up python environment

https://docs.conda.io/projects/conda/en/latest/user-quide/getting-started.html

Next, use pip to install some necessary libraries

Open terminal window: pip install pydsm Pip install obspy Pip install geopy

Exercise 1:

- ARF test with different arrays
- Data request and processing
- Beamforming with an ideal point source and array
- Beamforming a real earthquake using recorded array data

Example_1

Array response function (ARF)

The ratio of the amplitude of the output of the array to that of the same number of elements concentrated at one location (Sherrif & Geldart, 1995)

Files array_linear_cross.txt and array_ok.txt are two txt files containing the array locations

Array1.txt is the synthetic array used to perform beamforming in an ideal case Exercise1_ARF_2021.ipynb: ARF exercise

Exercise1_Beamforming_2021.ipynb : Beamforming exercise

ARF for different array configuration

ARF for various frequency/wavenumber

ARF

Data process and beamforming

Example_2

Data process and beamforming

Beamforming with an ideal case

Beamforming of a real earthquake in Southern CA:

- Download data
- Remove instrument response
- Beamforming for each array
- Find earthquake location

Global arrays & stations recorded the 2019 Ridgecrest earthquake

Data Request and Process

Request data from web: http://ds.iris.edu/wilber3/find_event

Data Request and Process

https://ds.iris.edu/mda/?

https://ds.iris.edu/gmap/#network=*&starttime=2011-06-06T00:00:00&endtime=2011-06-06T23:59:59&max lat=33.75&maxlon=-116.2&minlat=33.5&minlon=-117&drawingmode=box&planet=earth

Beam Back-projection

Beam Back-projection

P phase beamforming for a Mg 1.4 events in Helsinki. Each dashed line shows the slowness vector direction in each bootstrap beamforming result. The red star represents catalog location.

After calibration

Beam Back-projection MAXIMILIANSUNIVERSITÄT MÜNCHEN

