These are some notes from my Algebra I class. We use the textbook *Abstract Algebra* by Dummit and Foote, and will cover rings, groups, and modules.

PIDs, UFDs and All That

We always assume here that R is commutative and unital.

Preliminaries

Definition: If $a_1, \ldots, a_n \in R$, then the *ideal generated by* a_1, \ldots, a_n is given by

$$(\alpha_1,\ldots,\alpha_n)\coloneqq\bigcap\{I\mid\alpha_1,\ldots,\alpha_n\in I, I\text{ is an ideal in }R\}.$$

An ideal is called *principal* if I = (a) for some $a \in I$. We may write $I = a \cdot R$ in this case.

Definition: If I and J are ideals in R, then IJ is given by

$$IJ = \left\{ \sum_{i=1}^{n} x_i y_i \mid x_i \in I, y_i \in J, n \in \mathbb{N} \right\}.$$

Theorem (Isomorphism Theorems):

First Isomorphism Theorem: Let $\varphi \colon R \to S$ be a ring homomorphism. Then, $\overline{\varphi} \colon R/\ker(\varphi) \to \operatorname{im}(\varphi)$ is an isomorphism given by $\overline{\varphi}(\alpha + \ker(\varphi)) = \varphi(\alpha)$.

Second Isomorphism Theorem: Let R be a ring, $S \subseteq R$ a subring, and let $I \subseteq R$ be an ideal. Then,

- (i) I + S is a subring of R;
- (ii) I is an ideal of I + S;
- (iii) $I \cap S$ is an ideal of S;
- (iv) $S/I \cap S \cong I + S/I$.

Third Isomorphism Theorem: Let R be a ring, I, J ideals of R with $I \subseteq J$. Then, J/I is an ideal of R/I, and we have $(R/I)/(J/I) \cong R/J$.

Fourth Isomorphism Theorem: If R is a ring and I is an ideal, then there is a one-to-one correspondence between subrings of R/I and subrings of R containing I.

Definition: Let M be an ideal in R.

- (i) We say M is prime if $M \neq R$ and, for any $ab \in M$, we have either $a \in M$ or $b \in M$.
- (ii) We say M is maximal if $M \neq R$ and if $M \subseteq I \subseteq R$ where I is an ideal, then either I = M or I = R.

Theorem: Let M be an ideal in R.

- (i) M is prime if and only if R/M is an integral domain.
- (ii) M is maximal if and only if R/M is a field.

Proof.

(i) Let M be maximal, with $a + M \in R/M$, $a + M \ne 0 + M$. Then, $a \notin M$, so that the ideal (a) + M strictly contains M. Therefore, $1 + M \in (a) + M$, meaning there is some r + M such that (r + M)(a + M) = 1 + M. Thus, an inverse exists.

Now, if R/M is a field, and $M \subseteq I \subseteq R$, then I/M is an ideal of R/M, and since $I \supseteq M$, we have I/M $\neq 0 + M$. Since R/M is a field, its only ideals are either 0 + M and R/M, so I/M = R/M,

meaning I = R.

(ii) We have $P \subseteq R$ is prime if and only if $ab \in P$ implies $a \in P$ or $b \in P$. Yet, means that ab + P = 0 + P if and only if a = 0 + P or b = 0 + P.

Chinese Remainder Theorem

Definition: We say two ideals I and J are *coprime* if I + J = R, or that there exist $x \in I$ and $y \in J$ such that x + y = 1.

Theorem (Chinese Remainder Theorem): Let I_1, \ldots, I_n be pairwise coprime ideals of R. Then, for any $a_1, \ldots, a_n \in R$, there exists $x \in R$ with $x \equiv a_i$ modulo I_i for all i. In other words, there a solution to the system of congruences given by

$$x + I_1 = a_1 + I_1$$

 $x + I_2 = a_2 + I_2$
 \vdots
 $x + I_n = a_n + I_n$.

Proof. It suffices to construct elements y_1, \ldots, y_n such that $y_i \equiv 1 \mod 0$ otherwise. Then, we will be able to set $x = \sum_i \alpha_i y_i$ as our desired solution.

We construct y_1 as follows. From our assumption, $I_1 + I_j = R$ for all $j \ge 2$, so for each $j \ge 2$, there exists $u_j \in I_1$ and $v_j \in I_j$ such that $u_j + v_j = 1$. Taking the product, we find that

$$\prod_{j=2}^{n} (u_j + v_j) = 1$$

$$= \underbrace{v_2 \cdots v_n}_{=:y_1} \underbrace{+ \cdots + u_2 \cdots u_n}_{=:x_1}.$$

We verify that y_1 does the job, which we can see by the fact that $y_1 \equiv 0$ modulo I_j for $j \neq 1$, as $v_2 \cdots v_j \in I_2 \cdots I_j \subseteq I_j$ for each $j \geq 2$. Similarly, each summand in x_1 contains at least one u_j , so $x_1 \equiv 0$ modulo I_1 .

The rest of the y_i follow analogously.

We can restate the Chinese Remainder Theorem in a variety of ways.

Theorem (Chinese Remainder Theorem, Alternative Versions): Let I_1, \ldots, I_n be pairwise coprime ideals.

(i) There exists a surjective homomorphism

$$\varphi \colon R \to R/I_1 \times \cdots \times R/I_n$$

 $r \mapsto (r + I_1, \dots, r + I_n).$

This homomorphism induces an isomorphism

$$\overline{\phi} \colon R/(I_1 \cap \cdots \cap I_n) \to R/I_1 \times \cdots \times R/I_n.$$

(ii) If I_1, \ldots, I_n are pairwise coprime, then

$$R/I_1 \cdots I_n \cong R/I_1 \times \cdots \times R/I_n$$

are isomorphic.

Example: We observe that if $R = \mathbb{Z}$, and p_1, \dots, p_r are distinct primes with ℓ_1, \dots, ℓ_r positive integers, then

$$\mathbb{Z}/\mathfrak{p}_1^{\ell_1}\cdots\mathfrak{p}_r^{\ell_r}\mathbb{Z}\cong\mathbb{Z}/\mathfrak{p}_1^{\ell_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/\mathfrak{p}_r^{\ell_r}\mathbb{Z}.$$