ST720 Data Science

Binary Classification

Seung Jun Shin (sjshin@krea.ac.kr)

Department of Statistics, Korea University

Machine Learning

Machine learning refers the class of methods (or algorithms) that uncovers informative and structured signals burried in the data, often with large scales.

Figure 1: Find needles in a haystack.

Machine Learning

- ► This is, in fact, what statistican have always been doing for data analysis.
- ► Traditional statisticians focus more on inference based on the model to understand the (random) data generating process.
- Modren applications focus more on prediction of the outcome, without much understanding about the data generating process (non-stochastic & numerical algorithm becomes more popular).

Supervised vs Unsupervised Learning

- Supervised learning seeks the signals of the relation between response y_i vs predictor $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$, $i = 1, \dots, n$.
- Usupervised learning seeks the signlas of

the intra-relation in
$$\mathbf{x}_1, \dots, \mathbf{x}_n$$
.

- Clustering: signals between observations.
- Feature Extraction: signals between variables.

 (ex, PCA, Graphical Model)

Regression vs. Classification

- ► Supervised learning can be classified into two types:
 - ▶ Regression with quantatative/numerical responses.
 - ► Classification with qualitative/categorical (often binary) responses.
- In machine learning aplications, binary classification is much more popular.

Toy Example

► Consider a simple (linearly separable) example.

Toy Example

► A simple and obvious solution!

Hard Classification

► The line is called the classification/decision boundary.

$$f(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x} = 0$$

▶ Prediction of Y given $\mathbf{X} = \mathbf{x}$ is

$$\hat{Y} = sign\{f(\mathbf{x})\}$$

In this lecture, we assume linear classification function, unless stated otherwise.

Perceptron

- Proposed by Rosenblatt (1956)
- Works when linearly separable.

```
Given a linearly separble training set S and learning rate \eta \in \mathbb{R}^+
w_0 \to 0; b_0 \to 0; k < -0
R \to \max_i \|\mathbf{x}_i\|
repeat
        For i = 1, \dots, n
               if y_i(\beta_1^T \mathbf{x}_i) + \beta_0 < 0 then
                            \beta^{(t+1)} = \beta^{(t)} + \eta v_i \mathbf{x}_i
                            \beta_0^{t+1} = \beta_0^{(t)} + \eta y_i R^2
                            t = t + 1
                end if
        end for
until no mistakes made within the for loop.
retrun (\beta_0^{(t)}, \beta_0^{(t)}).
```

Perceptron

Solution (i.e., separting hyperplane) may not be unique.

Optimal Separating Hyperplane

▶ One example.

Optimal Separating Hyperplane

Optimal Separating Hyperplane

▶ Optimal Separating Hyperlane maximizes Gemetric Margin, M.

Geometric Margin

Figure 2: Geometric Margin

Geometric Margin

Let \mathbf{x}^* be the closest point to $\beta_0 + \boldsymbol{\beta}^T \mathbf{x} = 0$, then

$$\mathsf{cos}(heta) = rac{\langle \mathsf{x}^* - \mathsf{x}, oldsymbol{eta}
angle}{\|\mathsf{x}^* - \mathsf{x}\| \|oldsymbol{eta}\|}$$

Assuming $\|\beta\| = 1$ WLOG,

$$M = \cos(\theta) \|\mathbf{x}^* - \mathbf{x}\|$$
$$= \beta_0 + \beta^T \mathbf{x}^* (\mathbf{x}^* \text{ is on right})$$

Geometric Margin of \mathbf{x}^* is

$$M = \begin{cases} \beta_0 + \boldsymbol{\beta}^T \mathbf{x}^*, & y^* = 1 \\ -(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}^*), & y^* = -1 \end{cases}$$

Support Vector Machine

▶ In linearly separable case, SVM solves

$$\max_{\beta_0, \boldsymbol{\beta}} M$$
 subject to $y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq M, i = 1, \cdots, n;$ $\|\boldsymbol{\beta}\| = 1$

SVM (Maximal Margin Classifer)

▶ Let $\|\beta\| = 1/M$, SVM is

$$\begin{aligned} & \min_{\beta_0, \boldsymbol{\beta}} \boldsymbol{\beta}^T \boldsymbol{\beta} \\ \text{subject to} & y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq 1, & i = 1, \cdots, n. \end{aligned}$$

Binary Classification: Linearly Non-separable 1

Support Vector Machine (non-separable case)

No solution that satisfies

$$y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \ge M \text{ and } \|\boldsymbol{\beta}\| = 1 \qquad \Leftrightarrow \qquad y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \ge 1$$

Let's relax the constraints and add penalty *C* for the violations.

SVM (Soft Margin Classifier)

Introducing slack variables $\xi_i \geq 0$, SVM solves

$$\begin{aligned} \min_{\beta_0, \beta, \xi_i} \beta^T \beta + C \sum_{i=1}^n \xi_i \\ \text{subject to} \quad y_i (\beta_0 + \beta^T \mathbf{x}_i) \geq 1 - \xi_i, \quad i = 1, \cdots, n \\ \xi_i \geq 0, \qquad \qquad i = 1, \cdots, n. \end{aligned}$$

Computation of SVM

▶ Lagrangian primal function of the linear SVM is

$$\beta^{T}\beta + C\sum_{i=1}^{n} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} \{1 - y_{i}(\beta_{0} - \beta^{T} \mathbf{x}_{i}) - \xi_{i}\} - \gamma_{i} \sum_{i=1}^{n} \xi_{i} \quad (1)$$

▶ Taking derivative w.r.t primal variables β_0, β, ξ :

$$\frac{\partial}{\partial \beta} L_p : \quad \beta = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \tag{2}$$

$$\frac{\partial}{\partial \beta_0} L_p : \sum_{i=1}^n \alpha_i y_i = 0 \tag{3}$$

$$\frac{\partial}{\partial \xi_i} L_p : \quad \alpha_i = C - \gamma_i$$
 (4)

KKT complementary conditions:

$$\alpha_i \{ 1 - y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) - \xi_i \} = 0$$

$$\gamma_i \xi_i = 0$$

Computation of SVM

▶ Plugging (2)– (4) into (1), dual problem is the following QP:

$$\max_{\alpha_1, \cdots, \alpha_n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$
subject to $0 \le \alpha_i \le C, \quad i = 1, \cdots, n$

$$\sum_{i=1}^n \alpha_i y_i = 0.$$

Computation of SVM

▶ By KKT conditions, we must have for all $k \in \{i : 0 < \alpha_i < 1\}$ (a.k.a Support Vectors)

$$1 - y_k(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_k) = 0$$

▶ The intercept is computed by

$$\beta_0 = y_i - \frac{1}{\lambda} \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_k$$

for any support vector \mathbf{x}_k .

Binary Classification: Linearly Non-separable 2

Kernel Trick

- Linear learning is often limited and more flexible learning methods are required.
- A common strategy is changing the representation of the data (transformation).
- ▶ Ex) Newton's law of gravitation:

$$f(m_1,m_2,r)=C\frac{m_1m_2}{r}$$

- Linear machine cannot learning this law.
- However, a simple change of corrdinates

$$(m_1, m_2, r) \mapsto \mathbf{x} = (x_1, x_2, x_3) = (\ln m_1, \ln m_2, \ln r)$$

gives

$$g(\mathbf{x}) = c + x_1 + x_2 - 2x_3$$

Kernel Trick

- Need to select a set of non-linear features, and then learn the linear SVM on feature space.
- We now assume

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i \phi_i(\mathbf{x}) + b$$

where $\phi: X \mapsto F$ is a nonlinear map from the input sapce to a feature space.

▶ In linear SVM, we have

$$f(\mathbf{x}) = \beta_0 + \beta^T \mathbf{x} = \beta_0 + \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

where $\langle \mathbf{x}, \mathbf{x}' \rangle = \mathbf{x}^T \mathbf{x}'$ denotes inner product of the input space.

Kernel trick

- ▶ The decision function exploits the inputs through their inner products.
- ▶ On the feature space, the decision function is given by

$$f(\mathbf{x}) = b + \sum_{i=1}^{n} \alpha_i y_i \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}) \rangle$$

We define a function K as kernel iff

$$K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

where ϕ is a feature.

Suppose $K(\mathbf{x}, \mathbf{x}')$ is a symmetric function on \mathbf{x} . K is a kernel function iff

$$\mathbf{K} = \{K(\mathbf{x}_i, \mathbf{x}_j)\}_{ij} \in \mathbb{R}^{n \times n}$$

is positive semi-definite matrix.

Kernel trick

▶ A kernel *K* defined on the input space uniquely determines the corresponding space:

$$\mathcal{H}_{\mathcal{K}} = \left\{ \sum_{i=1}^n heta_i \mathcal{K}(\mathbf{x}_i, \mathbf{x}), heta_i \in \mathbb{R}, \mathbf{x}_i \in \mathcal{X}
ight\}$$

which we call the reproducing kenrel Hilbert space (RKHS).

Kernel SVM

▶ Let's get back to the SVM:

$$f(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}$$
 \Rightarrow $f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \theta_i K(\mathbf{x}_i, \mathbf{x})$

Kernel SVM

Introducing slack variables $\xi_i \geq 0$, SVM solves

$$\begin{split} \min_{\beta_0, \boldsymbol{\theta}, \xi_i} \boldsymbol{\theta}^\mathsf{T} \mathbf{K} \boldsymbol{\theta} + C \sum_{i=1}^n \xi_i \\ \text{subject to} \ \ y_i \left(\beta_0 + \sum_{j=1}^n \theta_i \mathcal{K}(\mathbf{x}_j, \mathbf{x}_i) \right) \geq 1 - \xi_i, \quad i = 1, \cdots, n \\ \xi_i \geq 0, \qquad \qquad i = 1, \cdots, n. \end{split}$$

Computation of Kernel SVM

- Notice that $\theta = y_i \alpha_i$, $i = 1, \dots, n$.
- ► Kernel SVM solves

$$\begin{aligned} \max_{\alpha} \sum_{i=1}^{n} \alpha - \frac{1}{2} (\alpha \odot \mathbf{y})^{T} \mathbf{K} (\alpha \odot \mathbf{y}) \\ \text{subject to } \mathbf{0} \leq \alpha \leq C \mathbf{1} \\ \alpha^{T} \mathbf{y} = 0. \end{aligned}$$

▶ The decision function is

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$$

Kernel Function

- ▶ Popular choice of the kernel includes:
 - ▶ Linear: $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
 - Polynomial: $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')$
 - ► Radial (Gaussian): $K(\mathbf{x}, \mathbf{x}') = \frac{\exp(-\gamma ||\mathbf{x} \mathbf{x}'||)}{\exp(-\gamma ||\mathbf{x} \mathbf{x}'||)}$

Road Libraries and Data

```
library(e1071)
library(kernlab)
data(spam)

str(spam)

## 'data.frame': 4601 obs. of 58 variables:
```

```
## $ make : num 0 0.21 0.06 0 0 0 0 0 0.15 0.06 ...
## $ address : num 0.64 0.28 0 0 0 0 0 0 0.12 ...
## $ all : num 0.64 0.5 0.71 0 0 0 0 0.46 0.77
```

\$ all : num 0.64 0.5 0.71 0 0 0 0 0.46 0.77
\$ num3d : num 0 0 0 0 0 0 0 0 0 ...
\$ our : num 0.32 0.14 1.23 0.63 0.63 1.85 1.92

```
##
    $ over
                               0 0.28 0.19 0 0 0 0 0 0 0.32 ...
                        : num
                               0 0.21 0.19 0.31 0.31 0 0 0 0.3 0.
##
    $ remove
                        : num
                               0 0.07 0.12 0.63 0.63 1.85 0 1.88
##
    $ internet
                          num
##
    $ order
                               0 0 0.64 0.31 0.31 0 0 0 0.92 0.06
                        : num
```

\$ mail : num 0 0.94 0.25 0.63 0.63 0 0.64 0 0.7
\$ receive : num 0 0.21 0.38 0.31 0.31 0 0.96 0 0.7
\$ will : num 0.64 0.79 0.45 0.31 0.31 0 1.28 0

Test vs Training

```
set.seed(2)
index <- sample(n)
spamtrain <- spam[index[1:floor(n/10)], ]
spamtest <- spam[index[-(1:floor(n/10))], ]</pre>
```

► Tuning

► Final Model

```
model <- svm(type~., data = spamtrain,
             type = "C-classification".
             cost = best.C. scaled = F)
test.hat.y <- predict(model, spamtest[,-p])</pre>
test.table <- table(test.hat.y, spamtest[,p])</pre>
print(test.table)
##
## test.hat.y nonspam spam
      nonspam 2396 279
##
      spam 118 1348
##
test.err <- mean(spamtest[,p] != test.hat.y)</pre>
cat("test.error =", round(test.err, 4), "\n")
## test.error = 0.0959
```

Statistical Learning

- In statical learning, data are regarded as (realizations of) random variables.
 - Handling Non-separable case is now natural.
- ► Fundamental target is the data generating process or simply the distribution of (*Y*, **X**).

$$(Y, \mathbf{X}) \sim P(y, \mathbf{x}) = P(\mathbf{x}) \times P(y \mid \mathbf{x})$$

Regression with quantatative/numerical responses:

$$P(Y \le y \mid \mathbf{X} = \mathbf{x}), \quad -\infty < y < \infty$$

Classification with qualitative/categorical (often binary) responses.

$$P(Y = k \mid X = x), \quad k \in \{1, \dots, K\}$$

Regression

- ▶ Direct estimation of $P(y \mid \mathbf{x})$ is often difficult.
- ▶ We often focus on summary of the distribution of $Y \mid \mathbf{X} = \mathbf{x}$.
- ▶ Conditional expectation of Y given $\mathbf{X} = \mathbf{x}$ is a natrual choice.

$$f(\mathbf{x}) = E(Y \mid \mathbf{X} = \mathbf{x})$$

▶ We call f(x) regression function, its estimation is of primal interest in regression.

Linear Regression

► Linear regression tackles

$$f(\mathbf{x}) = E(Y \mid \mathbf{X} = \mathbf{x})$$

▶ Given $(y_i, \mathbf{x}_i) \in \mathbb{R} \times \mathbb{R}^p$, $i = 1, \dots, n$, linear regression assumes

$$y_i = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i + \varepsilon_i, \qquad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

where $\boldsymbol{\beta} = (\beta_1, \cdots, \beta_p)^T$.

Estimates can be obtained by solving

$$(\hat{\beta}_0, \hat{\beta})^T = \min_{\beta} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta^T \mathbf{x}_i)^2.$$

(Least Square Estimation / Maxmum Likelihood Estimation)

Soft Classification

▶ In the binary classification, the fundamental target is

$$p(x) = P(Y = 1 \mid X = x) = 1 - P(Y \neq 1 \mid X = x)$$

which we call p(x) class probability,

- \triangleright $p(\mathbf{x})$ contains a complete information for the classification.
- \triangleright $p(\mathbf{x})$ provides the uncertainty of the prediction.
- Soft classification seeks $p(\mathbf{x})$, not $f(\mathbf{x}) = 0$ a target of hard classification.

Bayes Classification Rule

Misclassification Probability is

$$P\{\hat{Y} \neq Y \mid X = x\} = P\{f(x)Y < 0 \mid X = x\}$$

Bayes classification boundary is the theorical opitmal that minimizes the true misclassification probability:

$$f^*(\mathbf{x}) = \underset{f(\mathbf{x}) \in \mathbb{R}}{\operatorname{argmin}} \ E\{\mathbb{1}\{Yf(\mathbf{x}) < 0\}\},$$

► This yields

$$sign\{f^*(\mathbf{x})\} = sign\{p(\mathbf{x}) - 0.5\}$$

This reveals the theoretical connection between p(x) and f(x).

Naive Appraches 1: Naive Bayes Classifier

Bayes Theorem states

$$= \frac{P(Y = 1 \mid \mathbf{X} = \mathbf{x})}{P(\mathbf{X} = \mathbf{x} \mid Y = 1)P(Y = 1)}$$

$$= \frac{P(\mathbf{X} = \mathbf{x} \mid Y = 1)P(Y = 1) + P(\mathbf{X} = \mathbf{x} \mid Y = -1)P(Y = -1)}{P(\mathbf{X} = \mathbf{x} \mid Y = 1)P(Y = -1)}$$

- ▶ P(Y = 1): Sample proportion of the positive class.
- ▶ Indpendence assumption of $\mathbf{X} = (X_1, \dots, X_p)^T$ implies

$$P(X = x \mid Y = 1) = P(X_1 = x_1 \mid Y = 1) \times P(X_p = x_p \mid Y = 1)$$

each of which on the RHS can be estimated by the corresponding sample proportions.

Naive Appraches 1: Naive Bayes Classifier

50

##

##

setosa ## versicolor

virginica

```
library(e1071)
data(iris) # iris data
obj <- naiveBayes (Species ~ ., data = iris) # fit NB clssifier
fitted <- predict(obj, iris[,-5] )</pre>
print(table(fitted, iris[,5]))
##
## fitted
                setosa versicolor virginica
```

47

47

Naive Appraches 2: K Nearest Neighbor Classifier

 Compute sample proportion of the positive class based on k-nearest observations from x

$$P(Y=1|\mathbf{X}=\mathbf{x}) \approx \frac{1}{k} \sum_{i \in \mathcal{N}_k} \mathbb{1}(y_i=1)$$

where $\mathcal{N}_k = \{\text{indices of k-nearest observations from } \mathbf{x} \}$

Naive Appraches 2: K Nearest Neighbor Classifier

```
x <- iris[,-5] # predictors
cl <- factor(iris[,5]) # class labels</pre>
cv.error <- NULL
for (k in 1:50) { # CV starts
   cl.hat \leftarrow knn.cv(x, cl, k = k) # CV fit
   cv.error[k] <- mean(cl.hat != cl) # CV error</pre>
opt.k <- max(which(cv.error == min(cv.error)))</pre>
cl.hat \leftarrow knn(train = x, test = x, cl = cl, k = opt.k)
print(table(cl, cl.hat))
##
                cl.hat
## cl
                 setosa versicolor virginica
                      50
##
     setosa
## versicolor
                                  48
##
    virginica
                                             49
```

Revisit: Bayes Classifier

▶ Recall that Bayes Classifier minimzes the missclassification error rate:

$$f^* = \underset{f}{\operatorname{argmin}} P[Y \neq \operatorname{sign}\{f(\mathbf{x})\}]$$

$$= \underset{f}{\operatorname{argmin}} E[\mathbb{1}\{Yf(\mathbf{x}) < 0\}]$$

- ▶ Margin: m = Yf(x) (the larger the better).
- Loss: $L(m) = \mathbb{1}\{m < 0\}$ (decreasing).
- ▶ Risk : $E\{L(m)\}$ (Expected Loss).

0-1 loss.

▶ Bayes Classifier is a minimzer of the 0–1 Risk.

► In statistical learning, a lot of methods can be formulated as a risk minimzation problem.

Empirical Risk Minization (ERM)

▶ Given (y_i, \mathbf{x}_i) , $i = 1, \dots, n$, it is natural to solve

$$\begin{split} \hat{f} &= \underset{f}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{y_{i} f(\mathbf{x}_{i}) < 0\} \\ &= \underset{f}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} L_{0\text{-}1}(m_{i}) \ \ (\text{Empirical Risk}) \\ &\approx \underset{f}{\operatorname{argmin}} \ E\{L_{0\text{-}1}(m)\} \end{split}$$

Last line holds by the law of large numbers.

Linear Regression as an ERM Problem

▶ In regression we define margin (a.k.a residual) as

$$m_i = y_i - f(\mathbf{x}_i)$$

- ▶ The cloeser m_i to 0 the better f.
- Linear regression solves

$$\hat{f} = \underset{f}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \{y_i - f(\mathbf{x}_i)\}^2$$

$$= \underset{f}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} L_2(m_i) \ (\text{Empirical Risk})$$

$$\approx \underset{f}{\operatorname{argmin}} \ E\{L_2(m)\}.$$

where

$$L_2(m) = m^2$$
. (L_2 loss function)

Convex Surrogate of 0–1 loss.

- $L_{0-1}(m) = \mathbb{1}(m < 0)$ is difficult to handle.
- ► Relace it with convex functions.
- Examples:

(Logistic)
$$L_{\text{logit}}(m) = \log\{1 + \exp(-m)\}$$

(Hinge) $L_{\text{hinge}}(m) = [1 - m]_{+}$
(Exponential) $L_{\text{exp}}(m) = \exp(-m)$

Convex Surrogate of 0–1 loss.

Revisit: Linear Regression

► Linear Regression Model

$$y_i = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i + \epsilon_i, \qquad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

which is equivalent

$$Y \mid \mathbf{X} = \mathbf{x}_i \sim N(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i, \sigma^2)$$

and implies

$$E(Y \mid \mathbf{X} = \mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$$

- ▶ For binary $Y \in \{0,1\}$, the normal distribution is inadequate.
- Bernoulli distribution is a natural choice.

$$Y \mid \mathbf{X} = \mathbf{x}_i \sim \mathsf{Bernoulli}(p(\mathbf{x}_i))$$

where

$$p(\mathbf{x}) = P(Y = 1 \mid \mathbf{X} = \mathbf{x})$$

= $E(Y \mid \mathbf{X} = \mathbf{x})$.

► A linear model:

$$p(\mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$$

yet, not accepable since $0 \le p(\mathbf{x}_i) \le 1$.

▶ LR emplys the logit transformation:

$$logit\{p(\mathbf{x}_i)\} = log\left\{\frac{p(\mathbf{x}_i)}{1 - p(\mathbf{x}_i)}\right\} = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i.$$

LR regression

$$y_i \mid \mathbf{x}_i \sim \mathsf{Bernoulli}(p_\beta(\mathbf{x}_i))$$

where $y_i \in \{0,1\}$ and

$$\log \left\{ \frac{p_{\beta}(\mathbf{x}_i)}{1 - p_{\beta}(\mathbf{x}_i; \beta)} \right\} = \beta_0 + \beta^T \mathbf{x}_i$$

or equivalently

$$p_{eta}(\mathbf{x}_i) = rac{\exp(oldsymbol{eta}^T \mathbf{x}_i)}{1 + \exp(oldsymbol{eta}^T \mathbf{x}_i)}.$$

▶ Subscript β is used to emphasize that p_{β} is a function of parameters.

Logistic Regression: Application to Spam Data

```
logit <- glm(type ~., data = spamtrain, family = "binomial")</pre>
fit.logit <- predict(logit, newdata = spamtest[,-p])</pre>
test.logit.y <- ifelse(fit.logit> 0.5, "spam", "nonspam")
table(spamtest$type, test.logit.y)
##
           test.logit.y
##
             nonspam spam
    nonspam 2253 261
##
##
     spam 259 1368
lg.test.err <- mean(spamtest$type != test.logit.y)</pre>
cat("test.error =", round(lg.test.err, 4), "\n")
## test.error = 0.1256
```

▶ To estimate β , we employ the maximum likelihood estimator (MLE) that solves

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmax} \prod_{i=1}^{n} L(\boldsymbol{\beta}; \mathbf{x}_i)$$

where the likelihood is given by

$$L(\boldsymbol{\beta}; \mathbf{x}_i) = \{p_{\boldsymbol{\beta}}(\mathbf{x}_i)\}^{y_i} \cdot \{1 - p_{\boldsymbol{\beta}}(\mathbf{x}_i)\}^{1 - y_i}$$

▶ It is equivalent to minimze its negative of the logarithm:

$$\begin{split} -\sum_{i=1}^{n} \left[y_i \log\{ p_{\beta}(\mathbf{x}_i) \} + (1-y_i) \log\{1-p_{\beta}(\mathbf{x}_i) \} \right] \\ = \sum_{i=1}^{n} \left[\log(1 + \exp(\boldsymbol{\beta}^T \mathbf{x}_i)) - y_i \boldsymbol{\beta}^T \mathbf{x}_i \right] \end{split}$$

Logistic Regression: ERM formulation

▶ Inner part is

$$\begin{cases} \log\left\{1 + \exp(-\boldsymbol{\beta}^{T}\mathbf{x}_{i})\right\}, & \text{if } y_{i} = 1\\ \log\left\{1 + \exp(\boldsymbol{\beta}^{T}\mathbf{x}_{i})\right\}, & \text{if } y_{i} = 0 \end{cases}$$

▶ For $y_i \in \{-1, 1\}$, it is equivalent to

$$\log\left\{1+\exp(-y_if(\mathbf{x}_i))\right\}$$

and thus LR solves

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \log \left\{ 1 + \exp(-y_i f(\mathbf{x}_i)) \right\} \approx E\{L_{\text{logit}}(m)\},$$

where
$$f(\mathbf{x}_i) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$$
 and $m_i = y_i f(\mathbf{x}_i)$.

Fisher Consistency

- Logistic loss is one example of convex surrogate of the zero-one loss function.
- ▶ Can we use any convex function? Certainly not.
- ▶ It is desired for a convex loss function L(m) to satisfy

$$sign\{f^*(\mathbf{x})\} = sign\{p(\mathbf{x}) - 0.5\}$$

where

$$f^* = \underset{f}{\operatorname{argmin}} E[L\{Yf(\mathbf{x})\}]$$

▶ If this holds, we say the loss function *L* is Fisher consistent.

Fisher Consistency

► Fisher Consistency is a minimal condition for any convex surrogate loss function should possess.

Lemma (Sufficient Condition for Fisher Consistency)

If L'(m) exists at m = 0 and negiative, then L is Fisher consistent.

▶ Check that all the aforementioned loss functions are Fisher consistent.

ERM formulation for Binary Classifier

Any resonable binary classifier solves

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L(m_i) \approx E\{L(m)\}$$

for any Fisher consistent loss function *L*.

▶ The optimization is not difficult when $f(\mathbf{x})$ is linear, i.e.,

$$f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}$$

- ▶ What if the parameter space of *f* is too rich?
 - ▶ *f* is finite dimensional but too high (i.e., too many covariates)?
 - f is an arbitrary function?

Regularization

- ▶ The idea of regularzation is simple.
- ▶ Restrict the parameter space, and focus of functions satisfying

for a given constant C > 0 and J(f) being the functional of f that maeasues the complexity of f.

▶ For linear $f(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}$, a common choice is

$$J(f) = \|f(\mathbf{x})\|_2^2 \propto \boldsymbol{\beta}^T \boldsymbol{\beta} (= \|\boldsymbol{\beta}\|_2^2).$$

Regularization: Ridge Regression

Linear regression solves

$$\min_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \boldsymbol{\beta}^T \mathbf{x}_i)^2.$$

▶ When p > n, a regularization can be considered:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \{ y_i - \beta_0 - \beta^T \mathbf{x}_i \}^2, \quad \text{s.t. } \boldsymbol{\beta}^T \boldsymbol{\beta} < C.$$

Equivalently written as

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta^T \mathbf{x}_i)^2 + \lambda \beta^T \beta.$$

where
$$\lambda > 0 \ (\propto C^{-1})$$
.

Regularization: LR

▶ LR solves

$$\min_{\beta_0,\beta} \frac{1}{n} \sum_{i=1}^n \log \left\{ 1 + \exp(-y_i f(\mathbf{x}_i)) \right\}$$

► Ridge LR:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \log \left\{ 1 + \exp(-y_i f(\mathbf{x}_i)) \right\} + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

Kernel Logistic Regression

▶ Emplying the kernel trick, we have

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \theta_i K(\mathbf{x}_i, \mathbf{x})$$

where K is a kerel function.

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \log \left\{ 1 + \exp(-y_i f(\mathbf{x}_i)) \right\} + \lambda \boldsymbol{\theta}^{T} \mathbf{K} \boldsymbol{\theta}$$

Revisit: SVM

Original formulation:

$$\begin{aligned} \min_{\beta_0, \beta, \xi_i} \boldsymbol{\beta}^T \boldsymbol{\beta} + C \sum_{i=1}^n \xi_i \\ \text{subject to} \ \ y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq 1 - \xi_i, \quad i = 1, \cdots, n \\ \xi_i \geq 0, \qquad \qquad i = 1, \cdots, n. \end{aligned}$$

Statistical/ERM formulation:

$$\min_{\beta_0,\beta} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)]_+ + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

where $\lambda \propto C^{-1}$.

SVM vs Logistic

SVM

$$\min_{\beta_0, \boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)]_+ + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

► Ridge LR

$$\min_{\beta_0, \boldsymbol{\beta}} \ \frac{1}{n} \sum_{i=1}^n \log \left\{ 1 + \exp(-y_i (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)) \right\} + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

SVM vs Logistic as ERM problems

▶ Both are ERM problems (Ridge-Penalized)

$$\min_{\beta_0,\beta} \frac{1}{n} \sum_{i=1}^n \{L(m_i)\} + \lambda J(f)$$

ERM in ML

- Most, if not all, existing ML algorithms can be viewed as ERM problem (with regularzation if needed).
- ERM can be uniquely determined by combination of
 - Loss function L
 - ▶ Logistic / Hinge / Exponental
 - Large margine Unified Machine
 - ψ -loss / Truncated Hinge
 - ·
 - Model f: Beyond Linear
 - Generalized Additive Model
 - ► Piecewise Constant: Tree
 - Composite function: NN