Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 39 Annihilating Polynomials of a Linear Operator.

Concepts & Notation

- (Sec. 5.3) permutation, $\det A$.
- (Sec. 6.2) characteristic value, characteristic vector, characteristic polynomial, diagonalizable linear operator.
- (Sec. 6.3) annihilating polynomial, minimal polynomial.

Review

- 1. What does it mean for a polynomial to annihilate a linear operator T?
- 2. What is the *minimal polymonial* of a linear operator T over a finite-dimensional vector space T? (Does it exist? What does it tell us?)
- 3. (Cayley-Hamilton Theorem) Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find the characteristic polynomial p of A and check that p(A) = 0.

New

4. Use p(A) to find A^{-1} .

- 5. (Cayley-Hamilton Theorem) Let $A \in \mathbb{F}^{n \times n}$. Let $p \in \mathbb{F}[x]$ be the characteristic polynomial of A. Then p(A) = 0.
- 6. (Cayley-Hamilton Theorem) Let V be a finite-dimensional vector space over a field \mathbb{F} and $T \in \mathcal{L}$. Let $p \in \mathbb{F}[x]$ be the characteristic polynomial of T. Then p(T) = 0.

The Special Case of Matrices over \mathbb{R}

7. We'll prove the following **claim:** The characteristic values of any symmetric matrix $A \in \mathbb{R}^{n \times n}$ are real.

The following steps are a **proof**. Your job will be to explain the steps.

Let $A \in \mathbb{R}^{n \times n}$.

(a) Why is the characteristic polynomial of A, det(xI - A), guaranteed to have n complex roots?

Let $c \in \mathbb{C}$, $\alpha \in \mathbb{C}^{n \times 1}$ ($\alpha \neq 0$) be such that $A\alpha = c\alpha$ (such a pair c, α must exist). And let $\bar{\alpha}$ be the $\mathbb{C}^{n \times 1}$ vector whose entries are the complex conjugates of the entries of α .

- (b) Argue that $\alpha^t \bar{\alpha}$ is real (or more precisely a 1×1 matrix with a real number entry).
- (c) Let \bar{A} be the matrix who entries are the complex conjugates of the entries of A. Explain why $\bar{A} = A$.

Let $\overline{A\alpha}$ be the matrix who entries are the complex conjugates of the entries of $A\alpha$.

(d) Explain why $\overline{A\alpha} = \overline{A}\overline{\alpha}$. (And thus $\overline{A\alpha} = A\overline{\alpha}$).

Let $\overline{c\alpha}$ be the matrix who entries are the complex conjugates of the entries of $c\alpha$.

(e) Explain why $\overline{c}\overline{\alpha} = \overline{c}\overline{\alpha}$.

So, $\overline{A\alpha} = \overline{c\alpha}$ implies $A\overline{\alpha} = \overline{c}\overline{\alpha}$, and $\alpha^t A\overline{\alpha} = \alpha^t \overline{c}\overline{\alpha} = \overline{c}\alpha^t \overline{\alpha}$.

Also, $A\alpha = c\alpha$ implies $(A\alpha)^t = (c\alpha)^t$, which implies $\alpha^t A = c\alpha^t$, and thus $\alpha^t A \bar{\alpha} = c\alpha^t \bar{\alpha}$.

- (f) Explain why $\bar{c}\alpha^t\bar{\alpha} = c\alpha^t\bar{\alpha}$.
- (g) Explain why $\bar{c} = c$.
- (h) Explain why c must be a real number (and thus every characteristic value of A is real).