STAT 3100 Lecture Note

Week Eleven (Nov 22 & 24, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Nov/24 13:28:10

Asymptotic properties of MLE (con'd)

Consistency (or consistence, CB Sec 10.1.1)

• $T_n = T_n(X_1, \dots, X_n)$ is consistent for θ iff $T_n \stackrel{p}{\to} \theta$ as $n \to \infty$ — A sufficient condition for consistency: $\mathrm{E}(T_n \mid \theta) \to \theta$ and $\mathrm{var}(T_n \mid \theta) \to 0$ as $n \to \infty$

CB Example 5.5.3

• Suppose that iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Prove that $-S_n^2 = (n-1)^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2;$ $-\widehat{\sigma^2}_{\mathrm{ML}} = n^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2 \text{ too.}$

to θ ; - Violated by, e.g., Unif $(0,\theta)$; - θ_0 is an interior point of parameter space Θ .

Example of inconsistent MLE

There are independent $X_{i1}, X_{i2} \sim \mathcal{N}(\mu_i, \sigma^2), i = 1, ..., n$. Then $\widehat{\sigma^2}_{ML}$ is NOT consistent for σ^2 .

Examples of consistent MLE with the regularity conditions violated

- iid $X_1, \ldots, X_n \sim \text{Ber}(1)$
- iid $X_1, \ldots, X_n \sim \text{Unif}(0, \theta)$

Efficiency

- (HMC Def 6.2.2) For an estimator, say T_n , unbiased for $\tau(\theta)$, the (finite-sample) efficiency of T_n is the ratio of the CRLB to $\text{var}(T_n)$, i.e., $[\{\tau'(\theta)\}^2/I_n(\theta)]/\text{var}(T_n \mid \theta)$.
 - The higher efficiency the better;
 - the efficiency = $1 \iff$ an efficient estimator.
- (CB Def 10.1.9) If $k_n\{T_n \tau(\theta)\} \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$, then σ^2 is the asymptotic variance of T_n .
- (CB Def 10.1.11) T_n is asymptotically efficient for $\tau(\theta) \iff \sqrt{n}\{T_n \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2/I_1(\theta)),$ where

$$I_1(\theta) = -\mathbb{E}\left\{\frac{\partial^2}{\partial \theta^2} \ln f(X_i \mid \theta) \mid \theta\right\} = -\mathbb{E}\{H(\theta; X_i) \mid \theta\} \text{ is the Fisher information of one single observation.}$$

- i.e., the asymptotic variance of T_n is $\{\tau'(\theta)\}^2/I_1(\theta)$, attaining the CRLB

• (CB Def 10.1.16 & HMC Def 6.2.3(c)) Denote by T_n and W_n two estimators for $\tau(\theta)$. Suppose that $\sqrt{n}\{T_n-\tau(\theta)\} \xrightarrow{d} \mathcal{N}(0,\sigma_T^2)$ and $\sqrt{n}\{W_n-\tau(\theta)\} \xrightarrow{d} \mathcal{N}(0,\sigma_W^2)$. The asymptotic relative efficiency (ARE) of T_n with respect to W_n is defined as

$$ARE(T_n, W_n) = \sigma_W^2 / \sigma_T^2.$$

- $-T_n$ is asymptotically more efficient than $W_n \iff ARE(T_n, W_n) > 1$
- T_n is asymptotically efficient $\iff \{\tau'(\theta)\}^2/\{I_1(\theta)\sigma_T^2\}=1$

CB Example 10.1.17 & Ex. 10.9

- iid $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$. To estimate $\Pr(X_i = 0) = \exp(-\lambda)$.
 - a. Consider $T_n = n^{-1} \sum_i \mathbf{1}_{\{0\}}(X_i)$ and MLE $W_n = \exp(-\bar{X}_n)$. Compute ARE (T_n, W_n) , the ARE of T_n with respect to W_n .
 - b. Find the UMVUE for $Pr(X_i = 0)$, say U_n , and then calculate $ARE(U_n, W_n)$.
 - Hint: $\sqrt{n}(U_n W_n) \xrightarrow{p} 0$ (derived from S. Portnoy, The Annals of Statistics, 1977, Vol. 5, pp. 522–529, Theorem 1) and $\sum_{i=1}^{n} X_i \sim \text{Poisson}(n\lambda)$

Asymptotic efficiency of MLE (CB Thm 10.1.12 & Ex. 10.7)

- $\sqrt{n}\{\tau(\hat{\theta}_{\mathrm{ML}}) \tau(\theta_0)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta_0)\}^2/I_1(\theta_0))$, provided that $\hat{\theta}_{\mathrm{ML}}$ is the MLE for θ_0 , τ is differentiable and we have the previous four regularity conditions (for the consistency of MLE) plus the following two more (CB Sec 10.6.2):
 - For each $x \in \text{supp}(X)$, $f(x \mid \theta)$ is three time continuously differentiable with respect to θ ; and $\int f(x \mid \theta) dx$ can be differentiated three times under the integral sign;
 - for each $\theta \in \Theta$, there exists $c(\theta) > 0$ and $M(x,\theta)$ such that $\left|\frac{\partial^3}{\partial \theta^3} \ln f_X(x \mid \theta)\right| \leq M(x,\theta)$ for all $x \in \text{supp}(X) \text{ and } \theta \in (\theta - c(\theta), \theta + c(\theta)).$
- · In practice,
 - $nI_1(\theta_0) = I_n(\theta_0) \approx I_n(\hat{\theta}_{\mathrm{ML}}) \approx \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$
 - * (Expected) Fisher information (number) $I_n(\theta_0) = -\mathbb{E}\{H(\theta_0; \mathbf{X})\}$ * Observed Fisher information (number) $\hat{I}_n(\hat{\theta}_{\mathrm{ML}}) = -\frac{\partial^2}{\partial \theta^2} \ln L(\theta; \mathbf{x})|_{\theta = \hat{\theta}_{\mathrm{ML}}} = -H(\hat{\theta}_{\mathrm{ML}}; \mathbf{x})$ Hence $\operatorname{var}\{\tau(\hat{\theta}_{\mathrm{ML}})\} \approx \{\tau'(\theta_0)\}^2 / I_n(\theta_0) \approx \{\tau'(\hat{\theta}_{\mathrm{ML}})\}^2 / I_n(\hat{\theta}_{\mathrm{ML}}) \approx \{\tau'(\hat{\theta}_{\mathrm{ML}})\}^2 / \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$

Take-home exercises (NOT to be submitted; to be potentially covered in labs)

• CB Ex. 10.3, 10.17(a-c)