一、选择题(每小题4分)

- 1. 以下条件中,() 不是函数 f(x) 在点 x_0 连续的充分条件: (A) $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$; (B) $\lim_{x \to x_0} f(x) = f(x_0)$; (C) $f'(x_0)$ 存在; (D) f(x) 在 x_0 处可微.
- 2. 设 $f(x) = x^2 \sin x$, 下列等式正确的是():

(A)
$$\lim_{x \to 0} \frac{f(x)}{x^3} = 0$$
; (B) $\lim_{x \to 0} \frac{f(x)}{x^3} = 1$; (C) $\lim_{x \to \infty} \frac{f(x)}{x^2} = 0$; (D) $\lim_{x \to \infty} \frac{f(x)}{x^3} = 1$.

3. 以下条件中,()是 f(x) 函数在 x_0 点可导的充要条件:

(A)
$$f(x)$$
 在 x_0 点连续; (B) $f(x)$ 在 x_0 点可微; (C) $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{\Delta x}$ 存在; (D) $\lim_{x \to x_0} f'(x)$ 存在.

- 4. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 f'(x) > 0, 那么, 必有在 [a,b] 上 ():
 - (A) f(x) > 0; (B) f(x) 单调减少; (C) f(x) 单调增加; (D) f(x) 是上凸的.
- (A) 0 个; (B) 至多 1 个; (C) 2 个; (D) 至少 3 个.

二、填空题(每小题4分)

1. 设函数
$$f(x) = \begin{cases} (1-\sin x)^{1/x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续, 则 $a =$ ______

2. 曲线 $y = x + \sin^2 x$ 在点 $(\frac{\pi}{2}, 1 + \frac{\pi}{2})$ 处的切线方程是 _____

4. 设
$$a > 0$$
, 若 $\lim_{x \to a} (\sqrt{ax^2 + bx + c} - dx) = 3$, 则 $a = 0$ 的关系是 ______

5.
$$\% f(x) = x(x+1)(x+2)\cdots(x+15), \ \ \ \ \ f'(0) = \underline{\qquad}$$

三、求极限 (每小题 5 分)
$$\lim_{x \to +\infty} \frac{3x + 5\sin x}{4x - 3\cos x}$$
, $\lim_{x \to \infty} (e^{5/x} - 1)x$, $\lim_{x \to 0} (\frac{\sin x}{x})^{1/x^2}$

四、求下列函数的导数(每小题5分)

1. 说
$$y = \arctan \frac{x+1}{x-1}$$
, 求 $\frac{dy}{dx}$;

2. 设
$$y=y(x)$$
 是参数方程 $\begin{cases} x=\ln\sqrt{(1+t^2)} \\ y=\arctan t \end{cases}$ 所确定的函数, 求 $\frac{d^2y}{dx^2}$;

3. 设
$$f(x) = \begin{cases} \ln(x+e) & x > 0 \\ a^x & x \le 0 \end{cases}$$
 (a > 0) 问 a 取何值时, $f'(0)$ 存在?

4. 设方程
$$e^{x+y}=xy+1$$
 确定了隐函数 $y=y(x)$, 求 $\frac{dy}{dx}\big|_{x=0}$, 并求该曲线在 $x=0$ 处的切线方程.

五、证明下列不等式 (每小题 6 分)
$$x - \frac{x^2}{2} < \ln(1+x), \forall x > 0; \quad x^x \ge (\frac{1}{e})^{1/e}, \forall x > 0$$

六、(本题 7 分) 求函数 $f(x) = x^4 - 8x^2 + 2$ 在区间 [-3,3] 上的极值, 最大值, 最小值.

七、(本题 6 分) 设
$$f(x)$$
 在区间 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(1) = f(0) = 0$, 证明: (1) 存在 $\xi \in (0,1)$, 使 $f'(\xi) + \xi f(\xi) = 0$; (2) 存在 $\eta_1 \in (0,\frac{1}{2}), \eta_2 \in (\frac{1}{2},1)$, 使 $f(\eta_1) + \eta_1 f'(\eta_1) + \frac{1}{2} f'(\eta_2) = 0$

2015(7) "一元函数微分"

- 一、选择题(每小题4分)
- 1. 设 $\lim_{x\to 0} \frac{f(x)}{\sin x} = 1$, 则 当 $x\to 0$ 时, 函数 f(x) 与 () 是等价无穷小: (A) $\ln(1-x)$; (B) $\sin |x|$; (C) $\sqrt{1+2x}-1$; (D) $1-\cos |x|$.
- 2. 设 $f(x) = |x \sin x| e^{\cos x}, x \in (-\infty, \infty)$, 则函数 f(x) 是 (): (A) 有界函数; (B) 单调函数; (C) 周期函数; (D) 偶函数.
- 3. 设 f(x) 对任意 x 满足 f(x+1) = af(x), 且 f'(0) = b, 其中 a,b 为非零常数,则 f(x) 在 x = 1 处 (): (A) 不可导; (B) 可导,且 f'(1) = a; (C) 可导,且 f'(1) = ab; (D) 可导,且 f'(1) = b.
- 4. 设函数 $f(x) = (\sin x) \sin \frac{1}{x}$, 则 x = 0 是 f(x) 的 (): (A) 可去间断点; (B) 跳跃间断点; (C) 无穷间断点; (D) 振荡间断点
- 5. 设 f(x) 在 x = 1 处有连续的导函数, 又 $\lim_{x \to 1} \frac{f'(x)}{x 1} = 1$, 则 x = 1 是函数 f(x) 的 (), (A) 驻点, 但不是极值点; (B) 驻点, 且是极小值点; (C) 驻点, 且是极大值点; (D) 以上答案都不正确.

二、填空题(每小题4分)

1.
$$\lim_{x \to 0} (\frac{1}{\sin x} - \frac{1}{x}) = \underline{\hspace{1cm}}$$

2.
$$\lim_{x \to \infty} \frac{2x^2 + 1}{3x - 1} \sin \frac{1}{x + 1} = \underline{\hspace{1cm}}$$

- 3. 函数 $y = \ln[\cos(\arctan x)]$, 则 $\frac{dy}{dx} =$ ______
- 4. 设曲线 $y = ax^2 + bx$ 在点 (1,0) 处的切线与直线 y = x 平行,则 $a = _____, b = _____.$

5.
$$\[\psi \] f(x) = \begin{cases} (\cos x)^{1/x^2} & x \neq 0 \\ a & x = 0 \end{cases} \] \text{ if } x = 0 \] \psi \notin \[\psi, \psi \] = \underbrace{\qquad \qquad }_{a = 0}$$

三、求极限 (每小题 5 分)
$$\lim_{n\to\infty}(\sqrt{n+3\sqrt{n}}-\sqrt{n-\sqrt{n}}); \quad \lim_{x\to 0}(\frac{1}{\ln(1+x)}-\frac{1}{x}); \quad \lim_{n\to\infty}\sqrt[n^2]{n!}$$

四、求下列函数的导数(每小题5分)

2. 设
$$y = y(x)$$
 是参数方程 $\begin{cases} x = at \cos t \\ y = at \sin t \end{cases}$ 所确定的函数, $(a \neq 0)$, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$;

- 3. 设 y = y(x) 由方程 $y \sin x \cos(x y) = 3y$ 所确定, 求 $\frac{dy}{dx}$;
- 4. 设 $f(x) = x^2 \ln(1+x)$, 求 f(x) 在 x = 0 处的 2014 阶导数值.

五、证明下列不等式 (每小题 6分)
$$\ln(1+x) > \frac{\arctan x}{1+x}, \forall x > 0; \sin x + \tan x > 2x, \forall x \in (0, \frac{\pi}{2})$$

六、(本题 7 分) 设函数 f(x) 在区间 $[0, \frac{\pi}{2}]$ 上连续, 在 $(0, \frac{\pi}{2})$ 内可导, 且 f(0) = 0, 证明: 存在 $\xi \in (0, \frac{\pi}{2})$, 使 $f'(\xi)\cos\xi - f(\xi)\sin\xi = 0$.

七、(本题 6 分) 设 f(x) 在区间 [a,b] 上连续, 在 (a,b) 内有二阶导数, 且 $f'(\frac{a+b}{2}) = 0$, 证明: 存在 $\xi \in (a,b)$, 使 $\frac{4}{(b-a)^2}|f(b)-f(a)| \leq |f'(\xi)|$.

2016(7) 一元函数微分

一、选择题(每小题4分)

- 1. 函数 f(x) 在 x_0 点有极限是函数 f(x) 在点 x_0 连续的 (): (A) 充分条件; (B) 必要条件; (C) 充分必要条件; (D) 不充分, 也不必要条件.
- 2. 当 $x \to 0$ 时, 下列无穷小量中最高阶的是 (): (A) $2x^2$; (B) $1 \cos x$; (C) $\sqrt{1 + x^2} 1$; (D) $3x^3$.
- 3. 极限 $\lim_{x\to 0} \frac{\ln(1+x)}{(x-1)^2}$ 的值为 (): (A) ∞ ; (B)1; (C)0; (D)-1;
- 4. 设 $f(x) = x^2 \ln(1+x)$, 则 (3 阶导数)f'''(0) 是 (): (A) 6; (B) 5; (C) 4; (D) 3.
- 5. 曲线 $y^3 = 6y x^2$ 在 (-2, 2) 处的切线斜率为 (), (A) 1/3; (B) 2/3; (C) 1/2; (D) 1.

二、填空题(每小题4分)

- 2. 设 f(x) 为可导函数, 且 f'(1) = 1, 令 $F(x) = f(1/x) f(x^2)$, 则 F'(1) =_____.
- 3. $\lim_{x \to \infty} \frac{3\sin x + (e^x 1)}{\ln(1 + 4x)} = \underline{\hspace{1cm}}.$
- 4. 设函数 $f(x) = x(x+1)(x+2)\cdots(x+16)$, 则 f'(0) =_____.

5.
$$\lim_{x \to +\infty} \left[\frac{x^2 + 1}{x + 1} - (ax + b) \right] = 1, \ \mathbb{M} \ a = \underline{\qquad}, b = \underline{\qquad}.$$

三、求下列极限 (每小题 5 分)
$$\lim_{x \to \infty} (\cos \frac{1}{x} + 3 \sin \frac{1}{x})^x; \quad \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}; \quad \lim_{x \to +\infty} (x^2 + e^x)^{1/x}$$

四、求下列函数的导数(每小题5分)

2. 设
$$y = y(x)$$
 是参数方程
$$\begin{cases} x = \ln(1+t^2) \\ y = t^2 \sin t \end{cases}$$
 所确定的函数, 求 $\frac{dy}{dx}$;

3. 设
$$y=y(x)$$
 由方程 $\arctan\frac{y}{x}=\frac{1}{2}\ln(x^2+y^2)$ 所确定, 求 $\frac{dy}{dx}$.

五、证明下列不等式 (每小题 6 分)
$$(1+\sin x)\ln(1+\sin x) > x\cos x, \forall x \in (0,\frac{\pi}{2}]; \quad 2\ln(1+x) < x + \frac{x}{1+x}, \forall x > 0$$

六、(本题 6 分) 求函数
$$f(x) = 2x^3 + 3x^2 - 12x + 6$$
 的极值.

七、(本题 6 分) 设函数
$$f(x) = \begin{cases} 0, & x \leq 0 \\ x^{\alpha} \cos \frac{1}{x^{\beta}}, & x > 0 \end{cases}$$
,其中 $\alpha, \beta > 0$,

试分别讨论 α, β 满足什么条件时 (1)f'(0) 存在; (2)f'(x) 在 x=0 处连续.

八、(本题 6 分) 设
$$f(x)$$
 在区间 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0) = 0$, $f(1) = 1$, 证明:(1) 存在 $\xi \in (0,1)$, 使 $f(\xi) = 1 - \xi$; (2) 存在不同的 $\alpha, \beta \in (0,1)$, 使 $f'(\alpha)f'(\beta) = 1$.