

tdomenico@slawsoncompanies.com

SUNDRY NOTICES AND REPORTS ON WELLS - FORM 4

INDUSTRIAL COMMISSION OF NORTH DAKOTA OIL AND GAS DIVISION 600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840

Well File No. 22731

PLEASE READ INSTRUCTIONS BEFORE FILLING OUT FORM.

SFN 5749 (09-2006)

PLEASE SUBMIT THE ORIGINA	L AND ONE CO	PY.										
☐ Notice of Intent	Approximate S	Start Date				_		_	Spill Repo	ort		
				╽╙	Redrilling o	r Repair		□ s	Shooting			
☑ Report of Work Done	Date Work Co	mpleted		╽╻	Casing or L	iner.		□ A	cidizing			
	March 25, 2	2013			Plug Well			□ F	racture	Treatment		
☐ Notice of Intent to Begin a \	Norkover Projec	t that may Qualit	fv	╽┌	Supplemen	tal Histor	rv	Z c	Change F	Production N	/lethoc	
for a Tax Exemption Pursua												
	Approximate S	Start Date			Temporarily	y Abando	on	□R	Reclamat	ion		
					Other		A					_
	***			_								
Well Name and Number								24-HOU	IR PROD	DUCTION R	ATE	
Magnum 3-36-25H								Before			fter	
Footages				wnship	Range		Oil		-	Oil	530	Bbls
	65 F EL	SESE		153 N	1 101	W	Water	0	$\overline{}$	Water	130	Bbls
Field	Pool	I		County			Gas	0	MCF	Gas	0	MCF
Baker	Bak	<u>ken</u>		McKe	nzie							
Name of Contractor(s)												
Magna Energy Services												
Address				City			St	tate		Zip C	ode	
13886 Commercial Dr.				Willis	ton		IN	ID		588	01_	
			DETAILS	OF W	ORK							
FINISHED PREP RODS, I W/ 36" CENTRA, 100 3/4 ENVIRO BOX. PU PR, SE CLEANED HEAD & UNIT FORM PREVIOUS. OPER	RODS, 126 : ATED PUMP FROM PRE	7/8 RODS, 12 P, LOADED \ VIOUS OIL. I	231" ROD WITH PUN	S, STI 11P, PR	RIP TABLI RESSUREI	E, CHA D UP T	NGED (O 500 P	OVER S	STUFF OOD). F	ING BOX	(TO),	
Company Slawson Exploration Co	mpany, Inc.			Tele (72	phone Numb 0) 457-982	er 20		FOR	R STATE	USE ONL	Y	
Address						77	I O	eceived			oved	
1675	00							eceiveu		☐ ∨bbi	Oveu	
City Denver			State CO	Zip (Code 2 02		Date	10	-19	- 26	15	1
Signatule 111 S. D	m	Printed Nam	_{ie} Oomenico				Ву	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3	2	_	
্যitle Rroduction & Regulatory	Tech	Date October					Title	JÁF	REI) THU		nasa. naran
Email Address		<u> </u>								ing Tea		

Oil and Gas Division

Lynn D. Helms - Director

Bruce E. Hicks - Assistant Director

Department of Mineral Resources

Lynn D. Helms - Director

North Dakota Industrial Commission

www.dmr.nd.gov/oilgas/

October 5, 2017

SLAWSON EXPLORATION ATTENTION: KHEM SUTHIWAN 1675 BROADWAY, STE 1600 DENVER, CO 80202

RE:

GABRIEL 3-36-25H	THOR 1-31-30H	MAGNUM 1-36-25H
SWSE 36-153N-101W	SWSE 31-151N-99W	SWSW 36-153N-101W
MCKENZIE COUNTY	MCKENZIE COUNTY	MCKENZIE COUNTY
WELL FILE NO.: 21250	WELL FILE NO.: 21909	WELL FILE NO.: 22247
MAGNUM 2-36-25H	MAGNUM 3-36-25H	GABRIEL 2-36-25H
SESE 36-153N-101W	SESE 36-153N-101W	SESE 36-153N-101W
MCKENZIE COUNTY	MCKENZIE COUNTY	MCKENZIE COUNTY
WELL FILE NO.: 22249	WELL FILE NO.: 22731	WELL FILE NO.: 23536

Dear Khem Suthiwan:

A Sundry notice (Form 4) is needed for the above wells, detailing the changeover from flowing to well now on rod pump. If you have any questions, feel free to contact our office.

Sincerely,

Tom Delling

Petroleum Engineer - Field Inspector

TKD/RSD/RLR

North Dakota Industrial Commission Follow-up Spill Report

API Number	_						040								Well File or Facility No. 22731
					APR 1	1 2	Ulb		_						
Operator Slawson Ex	cplorati	on Co.	, Inc.	(40-	311 & G	ာဌာ	Divi	รเอท							Telephone Number 303-592-8880
Address 1675 Broad				IAD	J.1 W W				Cit	y e nver			State CO		Zip Code 80202
Well Name and			tv Nam	<u>е</u>					Fie				100		00202
MAGNUM 3	36-25l									AKER					
Location of We or Facility	all	Footage	s F	L		F		Qtr-Qtr		Section 36		nship 53 N	Range 101	18/	County McKENZIE
Description of	Spill Loca	ition if not		_	ility Site an	•	Distanc						101	**	INCRENZIE
													_		
Directions to S	ite														
Release Disco	vered By		Da	te Relea	se Discove	ed	Tim	ne Release	e Disc	covered	Date	Release	Controlled		Time Release Controlled
			_	ine 2, 2		_		<u>:</u>				e 2, 201	3		:
Company Pers	onnel No	tified	Ho	w Notifie	d							Notified e 3, 201	3		Time Notified
Type of Incider	nt				Root C	ause	of Rel	ease			<u>jour.</u>			ivities	Concluded
Treater Por				,				ilure/Ma				June 3			
Distance to Ne	arest Res	sidence o	r Occu	pied Buil	ding	Dis	tance	to Neares	Fres	sh Water W	eli				
Piping Specific	s Siz	ze (Decim	nal For	mat) Ty	pe							Location	of Piping		
(If Applicable)		I.a	11				—					<u> </u>			
Volume of Rele	ease	Oil 1	10.00	Barı	rels		Sal	twater 2.0	D	Barrels		Ot	her		
Volume of Rele	ease	Oil					Sal	twater				01	her		
Recovered Was Release (2 t - l		10.00	Bar				2.0	_	Barrels				-	
No	Jontained	i within L	JIKE	Yes	Was Relea	ise C	ontain	ea on vve	i Site	IT NO, W	as Ke	lease Con	tained on	Facili	ty Site or Pipeline ROW
Areal Extent of	Release	if not Wit	hin Dik					ected Med				G	eneral Lan	d Use	9
Describe Caus	e of Pelo	aco or Eir	o and (Other Tu	no of Incido	nto E		ell/Facil			200 01	nd Balana	ad Subata	2000	
Heater Tub				-						se, Land Us	ses, ai	io Releas	ed Substa	nces	•
		, -p	,					p							
Action Taken to						taker	<u>1</u>								
Vacuum tru	ick call	ed in.	Oily s	oil ren	noved.										
Potential Envir															
Spill did no	t reach	any su	urface	or gro	oundwate	er re	cept	ors.							
Planned Future Better mon					event Reoc	curre	<u>nce</u>								
Derrei IIIOII	itoring	UI III c ai	ter tu	Des.											
Where Were R		l Liquids I	Dispos	ed	,					e Were Rec	overe	d Solids D	isposed		
Weather	Wind Sp	eed W	ind Dir	ection	Temperati	re l	Skies		nuia	ati miiis	ĪΕ	stimated (Cleanup C	ost	Damage Value
Conditions	M	PH				° F						\$			\$
Regulatory Ago NDIC/NDDI		hers Noti	fied	Person I	Notified			Date Notif	ied		T	me Notifie	ed	Notifi	ed By
Fee Surfac		r									<u> </u>	-:			
												:_			
Federal Agenc	y Lease	e Numbei	<u> </u>	_							<u> </u>			_	
USFS											\dashv	<u>:</u>			
Report Origina	tor				Title							Date			
Signature		21			<u> </u> Envir	onm	enta	ıı/kegui	ator	y Anaiysi		Date	, 2016		
		1										April 8	, 2016		

Industrial Commission of North Dakota Oil and Gas Division Spill / Incident Report

Date/Time Reported : Jun 3 2013 / 10:40

State Agency person :

Responsible Party : Slawson

Well Operator : SLAWSON EXPLORATION COMPANY, INC.

Date/Time of Incident : 6/1/2013 12:00:00 AM

NDIC File Number : 22731

Facility Number :

Well or Facility Name: MAGNUM 3-36-25H

Type of Incident: Treater Popoff

Field Name : BAKER County : MCKENZIE

Section: 36 Township: 153 Range: 101

Quarter-Quarter : SE

Quarter : SE

Distance to nearest residence : 3380 Feet Distance to nearest water well : 3380 Feet

Release Oil : 10 barrels
Release Brine : 2 barrels
Release Other : 0 barrels
Recovered Oil : 8.5 barrels
Recovered Brine : 1.5 barrels
Recovered Other : 0 barrels

Has/Will the incident be reported to the NRC? : No Was release contained : Yes - On Constructed Well Site

Description of other released substance : -----

Immediate risk evaluation : none
Followup Report Requested Y/N : Y

Signature

Email Address

Engineering Technician

mglenn@slawsoncompanies.com

SUNDRY NOTICES AND REPORTS ON WELLS - FORM 4

INDUSTRIAL COMMISSION OF NORTH DAKOTA OIL AND GAS DIVISION 600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840 SFN 5749 (09-2006)

Well File No. 22731

PLEASE SUBMIT THE ORIGIN					4	62.82	1535		
✓ Notice of Intent	Approximate : November				Orilling Prognosis Redrilling or Repai		Spill R		
Report of Work Done	Date Work Co	ompleted			Casing or Liner		Acidizi	ng re Treatmer	nt
Notice of Intent to Begin for a Tax Exemption Pure		ction 57-51.1-03.			Supplemental Histo	on	=	e Productio	
Well Name and Number							24-HOUR PR	ODUCTION	N RATE
MAGNUM 3-36-25H							Before		After
Footages	005 - 5	Qtr-Qtr Section		wnship	Range	Oil	Bbl		Bbls
205 F S L	265 F E L	SESE 3	6	153 N	101 W	Wat	7.50		Bbls
Field BAKER	Pool	ken		County McKenz	io	Gas	MC	F Gas	MCF
DANLIN	Dar	Kell		INCRETIZ	ile				
Name of Contractor(s)						_			
See Below									
Address				City			State	Zi	ip Code
		D	ETAILS	OF WO	RK				
Slawson Exploration Cowner is the State of No. The water will be disposed once the fluids are remover the stabilized cuttive seeded. This constructions. Gold Star Productions. FMR Services Inc., 3. W.L. Neu Constructions.	orth Dakota. A sed of by Slav loved the cuttings in the pit littion will be con Services, LL 1767 County R	Any oil in the pives on at various on at various ones were dried and buried approprieted by one C, 6219, 39th Soad 99W, Orland	t will be s licens l and m proxima e of the street N ad, CA,	e skimmed Slaws ixed with itely 6 ft. three fo W, Plaza 95963	ed off and use son injection of the firm of the deep with ba dillowing contr	ed in li aciliti abilza ck fill	nvert Mud for es, such as th ation. The line and topsoil.	drilling one Sanisher will the Site of the	other wells. n 1-9SWD. en be folded
Company Slawson Exploration C	ompany, Inc.				one Number -457-9820		FOR STA	TE USE ON	NLY
Address 1675 Broadway, Suite 1	600						Received	A A	pproved
City Denver			State CO	Zip Cod	de 80202	Date	n-14.	-12	/

Printed Name

Matt Glenn Date

November 8, 2012

Ву Title

11126' to 21145'

Flowing Tubing Pressure (PSI)

Date of Test

7/16/2012

Date Well Completed (SEE INSTRUCTIONS)

24

Hours Tested Choke Size

810

Producing Method

Production for Test

7/15/2012 Flowing

Flowing Casing Pressure (PSI)

20 /64

R RECOMPLETION REPORT - FQ WELL COMPLETION

INDUSTRIAL COMMISSIO ORTH DAKOTA OIL AND GAS DIVISION

600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840 SFN 2468 (04-2010)

Well File No.

22731

PLEASE READ II				UIF	JRM.						Visor !	- 1	Q Sall		
PLEASE SUBMIT		L AND ONE	COPY.							_	CE DE	2871	937		
Designate Type o Oil Well Gas Well	Completion EOR		=	omplet er Sup	tion ply We	ell \square	Deepened	d W	ell A	dde	d Horizontal L	_eg	E>	rtended Horiz	ontal Leg
Well Name and N					p., ,			S	Spacing Unit D	esc	cription			_	
MAGNUM 3-3	6-25H							_	All of Sect	36	<u>& 25 T153</u>	N R	101W		_
Operator Slawson Exp	loration Con	npany, Ind	.			hone Num 457-982		E	ield BAKER						
Address 1675 Broadw	ay Suite 160	0						E	ool Bakken						
City Denver			State CO		Zip C 802 (P	Permit Type Wildcat		✓ De	velopr	ment	Exten	sion
					ı	OCATI	ON OF	WE	LL						
At Surface 205 F	S L	265	F E	L	Qtr-Q	tr ESE	Section 36		Township 153 N		Range 101 W		ounty c Kenzi	e	
Spud Date 5/7/2 012		ate TD Reach 111/2012	ned			g Contractors #41	tor and Ri	g Nı	umber	KE	B Elevation (F 2182	t) Gr	aded Ele	vation (Ft) 2156	
Type of Electric a OH Log Waiv					OP to	100' at	ove the	· TO	OC & GR t	o s	urface				
			NG & T	UBL	JLAR	S RECC	DRD (Re	ро	rt all string	gs :	set in well)			
Miall Bass	1	String	1		Set	Depth S				/	Anchor Set		ker Set	Sacks	Top of Cement
Well Bore Surface Hole	Type Surface	Size (<u> </u>	O Ft) 0	(MD F1 2192	t) (Inc		(Lbs/Ft) 36	\vdash	(MD Ft)	(IV	ID Ft)	Cement 841	Cement
Vertical Hole	Intermediate	7	<i>n</i> 0	_	0	11126			29 & 32	+				928	2200
Lateral1	Liner	4 1	/2	_	292	21145			11.6	T			9292		
										╙					
	1														
		Ι	Pt		_			<u>OL</u>	E INTERV	AL:	<u> </u>				
Well Bore	Well Bore TD Drillers Depth (MD Ft)	Comple Type		'		/Perforate I (MD,Ft) Bottom	Poi	int	Top of Casing Window (MD Ft)	ι	Date Perf'd or Drilled		Date plated	Isolation Method	Sacks Cement
Later al1	21175	Other		11	126	21145	952	22	11126	╁	6/11/2012	6/1	3/2012	PKR	
										╀					
										╀					
<u> </u>						_				\vdash					
<u> </u>										+					
<u></u>															
						DD C	DUCTIO	M							
Current Producing	g Open Hole or	Perforated In	iterval(s)	. This	Comp				(MD Ft)		Name	of Zn	ne (If Dif	ferent from P	ool Name)
	,		/	, . , 3	p	, . 0		,	···- · ·/		1.10.710	0			

Pumping-Size & Type of Pump

396.8

Oil (Bbls)

496

Gas (MCF) Water (Bbls)

318

Gas (MCF)

396.8

Oil (Bbls)

496

Calculated

24-Hour Rate

800

Flared

Gas-Oil Ratio

Well Status (Producing or Shut-In)

Producing up a 7" Casing

Oil Gravity-API (Corr.) Disposition of Gas

42.0°

Water (Bbls)

318

Middle Bakken

GEOLOGICAL MARKERS

(
PLUG	BACK	INFORMATIO	N

GEOLOG	ICAL MARKE	<u>KS</u>
Formation	MD (Ft)	TVD (Ft)
Greenhorn	4645	
Belle Fourche	4858	
Mowry	5052	
Inyan Kara	5458	
Swif	5922	
Rierdon	6496	
Pipe ²	6528	
Dunham Salt	6939	
Base Dunham Salt	6992	
Spearfish	6992	
Pine Salt	7297	
Base Pine Sale	7357	
Opeche	7444	
Minnelusa	absent	
Amsden	7693	
Tyler	7874	
Big \$nowy	8102	
Kibb∍y	8309	
Kibbay Lime	8444	
Charles	8586	
Base Last Salt	9268	
Mission Canyon	9482	
КОР	9522	
Lodgepole	10019	
Upper Bakken Shale	10772	
Middle Bakken	10787	
Middle Bakken Mkr		

	PLUG BACK	PLUG BACK INFORMATION									
Well Bore	Type of Plug	Top (Ft)	Bottom (Ft)	Sacks Cement							
				1							
				_							
			_								
				 							
		_		 							
				_							
			_								

CORES CUT

Top	(Ft)	Bottom (Ft)	Formation	Top (Ft)	Bottom (Ft)	Formation

Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Pipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Pipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Pipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Pipe Recovery Sample Chamber Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Pipe Recovery Sample Chamber Recovery	<u>Drill</u>	Stem Test								
Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Test	Date	Formation	Top (Ft)	Bottom (Ft)	BH Temp (°F)	CL ppm	H2S ppm	Shut-in 1 (PSIG)	Shut-in 2 (PSIG)
Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Drill F	ipe Recovery			<u> </u>					
Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Samp	le Chamber R	ecovery							
Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Test	Date	Formation	Top (Ft)	Bottom (Ft)	BH Temp (°F)	CL ppm	H2S ppm	Shut-in 1 (PSIG)	Shut-in 2 (PSIG)
Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Drill F	ipe Recovery							_	
Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Samp	le Chamber Ro	ecovery							
Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Test I	Date	Formation	Top (Ft)	Bottom (Ft)	BH Temp (°F)	CL ppm	H2S ppm	Shut-in 1 (PSIG)	Shut-in 2 (PSIG)
Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Drill F	ipe Recovery			•			'		
Drill Fipe Recovery Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Samp	le Chamber Ro	ecovery					_		
Sample Chamber Recovery Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Test I	Date	Formation	Top (Ft)	Bottom (Ft)	BH Temp (°F)	CL ppm	H2S ppm	Shut-in 1 (PSIG)	Shut-in 2 (PSIG)
Test Date Formation Top (Ft) Bottom (Ft) BH Temp (°F) CL ppm H2S ppm Shut-in 1 (PSIG) Shut-in 2 (PSIG) Drill Fipe Recovery	Drill F	ipe Recovery			<u> </u>					
Drill Fipe Recovery	Samp	le Chamber Re	ecovery							
	Test I	Date	Formation	Top (Ft)	Bottom (Ft)	BH Temp (°F)	CL ppm	H2S ppm	Shut-in 1 (PSIG)	Shut-in 2 (PSIG)
Sample Chamber Recovery	Drill F	ipe Recovery	•						<u>'</u>	
	Samp	le Chamber Ro	ecovery							

We⊪ Specific Stimul	lati	ions
---------------------	------	------

/e Specific S ate Stimulated	Stimulations Stimulated Fo	rmation		Top (F	t) Bottom (Ft)	Stimulation Stages	Volume	Volume Units
7/2:012	Middle Bakke			11126		35	40332	Barrels
yp∈ Treatment	1	Acid %	Lbs Pro			tment Pressure (PSI)		ent Rate (BBLS/Min)
and Frac			_ I _ ·	0945		7548		34.0
etails actured the Mid ad 40332 bbls of		35, stages us	ing fracturin	g sleeves	and packers,	with 320087# of 100 M	esh Sand, 3310858	# of 20/40 White S
te Stimulated	Stimulated Fo	rmation		Top (F	t) Bottom (Ft)	Stimulation Stages	Volume	Volume Units
p∈ Treatment		Acid %	Lbs Pro	ppant	Maximum Trea	tment Pressure (PSI)	Maximum Treatm	ent Rate (BBLS/Min
etails								
te Stimulated	Stimulated Fo	rmation		Top (F	t) Bottom (Ft)	Stimulation Stages	Volume	Volume Units
		TA -: 1 0/	lu - D		<u> </u>	Assess Description (DCI)	Indexion on Transfer	ant Bata (BBI S/Min
o∈ Treatment		Acid %	Lbs Pro	ppant	Maximum Trea	tment Pressure (PSI)	Maximum Treatm	ent Rate (BBLS/Min
te Stimulated	Stimulated Fo	rmation		Top (F		Stimulation Stages	Volume	Volume Units
oe Treatment		Acid %	Lbs Pro	ppant	Maximum Trea	tment Pressure (PSI)	Maximum Treatm	ent Rate (BBLS/Min
etails								
te Stimulated	Stimulated Fo	rmation		Top (F	t) Bottom (Ft)	Stimulation Stages	Volume	Volume Units
pe Treatment		Acid %	Lbs Pro	ppant	Maximum Trea	atment Pressure (PSI)	Maximum Treatm	ent Rate (BBLS/Mir
etails			•					
DDITIONAL I	NEORMATIO	N AND/OR	LIST OF A	TTACH	MENTS			
_	e Certified we	ell location pl	at and a w			e directional survey	s, Open hole log	s and CBL logs

Matthew Glopp	En airea airea Talah		
Printed Name	Title		
mglenn@slawsoncompanies.com			8/9/2012
Email Address		Date	
	mglenn@slawsoncompanies.com Printed Name	mglenn@slawsoncompanies.com Printed Name Title	mglenn@slawsoncompanies.com Printed Name Title

WELL LOCATION PLAT

Slawson Exploration Company, Inc. 1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

205 feet from the south line and 265 feet from the east line (surface location)
Section 36, T. 153 N., R. 101 W., 5th P.M.
250 feet from the north line and 1700 feet from the east line (bottom location)

Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site — State of North Dakota

Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location)

Latitude 48'03'09.063" North; Longitude 103°36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

riginal Stone Rebar & LS 3592 Cap 090°17'22" - 2625.79' (Megs.) 090'19'14" - 2636.98 (Meas.) 1/16 Line NW1; NE1, 359.56'30" 000105'55" 130.87 (Calc.) Original Stone, Rebar & LS 1225 Cap 1/4 Line True Quar 2640.98 1/16 Line SW1/ SE1/4 Well Site Elevation 2158' MSL 265 Iron Rebar LS 3592 089*59'07" - Section Line (Meas.) 090'00'22" - 2617.85' (Meas.) 3592 Cap Found

Confidentiality Notice: The information contained on this plot is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

NOTE: All land corners are assumed unless otherwise noted. The well location shown hereon is not an as-built location.

Brlan L. Schmalz Surveyed By N.D.P.L.S. # 6809 8/26/2011 Date

Vertical Control Datum Used Sea-Level Datum of NAVD 88 Based on elevation derived from OPUS Solution on CP*KLJ 15-152-10 (iron rebor) Located a distance of 6192.72' on an azimuth of 270'16'47" from the SW corner of Section 36, T.153N., R.101W., 5th P.M. being at 2134.39' Elevation MSL.

3712480 Project No. Book <u>OW-257 Pg. 47-50</u> Staking Professional Consulting Engineers and Surveyors

Registered in
North Dakota, South Dakota
Montana, Wyoming & Minnesota
Tele-Fax No. 701-483-2795
Bus. Phone No. 701-483-1284 P.O. Box 290
677 27th Ave. E.
Dickinson, North Dakota 58602
Certificate of Authorization #C-061

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey part shown become was made by me, or under my direction, from police model in the field, and the same is true and correct to the be

Kadrmas Lee & Jackson Engineers Survey Planners

Updated By: On:

WELLBORE DIAGRAM Magnum 3-36-25H

Location: 205' FSL and 265' FEL SESE Sec 36, T153N-R101W McKenzie County, North Dakota

ORIGINAL GL ELEVATION = 2,158' FINSIHED PAD ELEVATION = 2,156' KB ELEVATION = 2,182' API#: 33-053-04069 NDIC#: 22731

550000000000000000000000000000000000000	9-5/8" 36# J-55 STC @ 2,192
200000000000000000000000000000000000000	TOC @ 2,200° CBL
000000000000000000000000000000000000000	Packers Plus SF Liner Hanger with Pack-Off @ 9,292` MIN ID: 3.875"
	Facker 7' Shoe: 11,128' MD 10,810' TVD

Surface

239'

6,609'

9,421'

7" 32# HCP110 from

7" 29# HCP110 from

7" 32# HCP110 from

7" 29# HCP110 from

239'

6,609'

9,421'

11,126'

to

to

<u>Formation</u>	TVD
Pierre/base Foxhills	1,534'
Dakota (marine)	5,217'
Dunham Salt	6,682'
Spearfish	6,756'
Pine Salt	6,806'
Amsden	7,227'
Kibbey Lime	7,926'
Charles	8,083'
base last Charles salt	8,709'
Ratcliffe	8,759'
Top Ratcliffe Pay	8,833'
Base Ratcliffe Pay	8,845'
Mission Canyon	8,915'
Lodgepole	9,445'
Upper Bakken shale	10,199'
Top of Target	10,216'
Target	10,221'
Base of Target	10,225'

Packers Plus Completion System: 10,969' of 4-1/2" 11.6# P-110 BTC liner

with 40 packers, 39 sleeves and a liner hanger with pack-off (884' of tools). Set Liner at 21,145' Lateral TD @ 21,175' MD, 10,784' TVD 10,047' of Open Hole

Sleeve

AUTHORIZATION TO PURCHASE AND TRANSPORT OF

INDUSTRIAL COMMISSION OF NORTH DAKOTA OIL AND GAS DIVISION 600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840 SFN 5698 (03-2000)

Well File No.	
22731	
NDIC CTB No.	
1 (2213)	

			KA	(M68L	᠂᠘	7		
PLEASE READ INSTRUCTIONS BEFORE FILLI				68 F	3,5			
PLEASE SUBMIT THE ORIGINAL AND FOUR C	OPIES.		T					
Well Name and Number		Qtr-Qtr SESE	Section	Township	Rang		County	
Magnum 3-36-25H Operator			36	Field	101		McKenzie	
Slawson Exploration Company, Inc.		Telephone 720-457 -		Baker				
Address		City	3020	Dakei	State		Zip Code	
1675 Broadway, Suite 1600		Denver			CO		Lip oode	80202
Name of First Purchaser	1 4 4	Telephone	Number	% Purchas	ed	Date	Effective	
Tesoro Gerporation La Finis	Miktg.	720-258	0604	100	<u> </u>	July	y 1, 2012	
Principal Place of Business	<u> </u>	City			State		Zip Code	
1225 17th Street Plaza, Suite 1575		Denver			CO			80202
Field Address		City			State	1	Zip Code	
Name of Transporter		Telephone		% Transpo			Effective	
Tesoro Logistics Operations LLC		701-260-	8400	100	_		y 1, 2012	
Address 1225 17th Street Plaza, Suite 1575		City Denver			State	1	Zip Code	80202
The above named producer authorizes the above	named nurchaser to nurchase		of oil sta	ted above w		nrodi	uced from the le	
designated above until further notice. The oil will				ted above w	11101113	produ	acca iroin aic ic	200
				I .		To .		
Other First Purchasers Purchasing From This Lea	ase			% Purchas	ed	Date	Effective	
Other First Purchasers Purchasing From This Lea	356			% Purchas	ed	Date	Effective	
Other First Fundades Fundaming From This Edit	150			70 . 4.0.140	-		Litodavo	
Other Transporters Transporting From This Lease				% Transpo	rted	Date	Effective	
						<u></u>		
Other Transporters Transporting From This Lease	e			% Transpor	rted	Date	Effective	
Comments	1.4 1 144 111							
The Magnum 3-36-25H has just been	•	juest a verb	ai requ	est to sei	1 8,00	u ba	irreis to allo	w time
for the completion report to be subm	itted.							
I hereby swear or affirm that the information provi	ded is true, complete and corre	ect as determin	ed from al	l available re	ecords.		ate	
						J	<u>uly 20, 2012</u>	<u>:</u>
Signature	Printed Name		Tit	tle				
A. A. All	Matt Glenn		E	ngineerin	g Te	chnic	cian	
Above Signature Witnessed By								
Witness Signature	Witness Printed Name		W	itness Title		_		
applied all all all all all all all all all al	Achley Davene							
willing (1000)	Ashley Berens		A	<u>ccountan</u>				
Ú.								
<u> </u>		-		FOR S		USE C	DNLY	
		Date Ap	proved	2 4 20	12			
			000					

Ву

Title

Oil & Gas Production Analyst

Industrial Commission of North Dakota Oil and Gas Division

Well or Facility No 22731

Verbal Approval To Purchase and Transport Oil

Tight Hole

Yes

OPERATOR

Well Location

Operator SLAWSON EXPLORATION COMPANY, INC.

Representative Matt glenn Rep Phone

(720) 457-9820

WELL INFORMATION

Well Name MAGNUM 3-36-25H

Inspector

Richard Dunn

QQ Sec Twp Rng County

SESE 36 153 N 101 W **MCKENZIE**

Field

205 Footages

Feet From the S Line **BAKER** Pool

265 Feet From the E Line

BAKKEN

Date of First Production Through Permanent Wellhead

This Is Not The First Sales

PURCHASER / TRANSPORTER

Purchaser

Transporter

TESORO REFINING & MKTG.

TESORO HIGH PLAINS PIPELINE COMPANY LLC

TANK BATTERY

Unit Tank Battery Number:

SALES INFORMATION This Is Not The First Sales

ESTIMATED BARRELS	S TO BE SOLD	ACTUAL BARRELS SOLD	<u>DATE</u>
8000	BBLS	BBLS	
			1

DETAILS

Move up to 8000 bbls pending filing of completion report.

Start Date

7/20/2012

Date Approved 7/20/2012

Approved By

Robert Garbe

6724 Corporation Pkwy Fort Worth, Texas 76126 (817) 717-1820

Directional Survey Certification Form

Slawson	Magr	num 3-36-25H		M	ay 17, 2012
Company	V	Vell Name	50	Fina	Report Date
ND-SLW-0038	McKen	zie County, ND		33	-053-04069
Job Number	Co	ounty/State		Al	PI Number
N 48 1' 29.71560"	W 103	36' 16.88040"		3	6-153-101
Surface Latitude	Surfa	ce Longitude		Sec	TWP - Range
NAD83 ND State Plane, Northern Zone, US Feet	N	abors 419			22
Datum	Rig Co	ntractor/ Name		R	KB Height
Survey Depths	0	to	9319	_ft	
Type of Survey	Meas	surements While Dr	illing (MWD)	
Survey Depths	-			ft	
Type of Survey					
Site Supervisor	-	Jeromy Hagge	erty		
	rt represents a true a	and correct directions		17 /201 Date	<u>,</u>
This document has been subscribed Adams in the state of Colorado, to			ne county of	, 20	
Adding in the state of Goldrado, t	uay u		-		

Magnum 3-36-25H MWD 0' to 9319' Survey Report

(Def Survey)

Report Date: Client: Field: Structure / Slot: May 17, 2012 - 09:00 AM

ND, McKenzie County (NAD 83 NZ) 2011

Slawson (Magnum 3-36-25H) Nabors 419 / Magnum 3-36-25H

Well: Borehole: UWI / API#:

Survey Name: Survey Date: Tort / AHD / DDI / ERD Ratio:

Coordinate Reference System: Location Lat / Long: Location Grid N/E Y/X:

CRS Grid Convergence Angle: Grid Scale Factor:

Magnum 3-36-25H

Original Hole ND-SLW-0038 / 33-053-04069 Magnum 3-36-25H MWD 0' to 9319' May 17, 2012 23.485 ° / 95.117 ft / 3.349 / 0.010

NAD83 North Dakota State Plane, Northern Zone, US Feet N 48° 1' 29.71560°, W 103° 36' 16.88040°

N 389170,274 HUS, E 1208988,946 HUS

Survey / DLS Computation: Vertical Section Azimuth: Vertical Section Origin: TVD Reference Datum: TVD Reference Elevation: Seabed / Ground Elevation:

Magnetic Declination: Total Field Strength: Magnetic Dip Angle: Magnetic Declination Model: North Reference:

Grid Convergence Used: Total Corr Mag North->True

Minimum Curvature / Lubinski 351.860 " (True North) 0.000 ft, 0.000 ft

RKB 2178.000 ft above MSL 2156.000 ft above MSL

56559.441 nT 73.017 May 17, 2012 BGGM 2011 True North 0.000 "

Angle.	-2.31030200	North:	0,000
	0.99993638	Local Coord Referenced To:	Well H

Comments	MD (ft)	Inci (°)	Azim True	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	("/100ft)	Northing (ItUS)	Easting (ftUS)	(N/S * ' ")	(E/W * ' ")
Surface	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A	389170.27			W 103 36 18 88
ssumed Vertical	2192.00	0.00	0.00	2192.00	0.00	0.00	0.00	0.00	389170.27		48 1 29.72	W 103 36 16.88
lart MWD Survey	2196.00	1.14	201.83	2195.00	-0.03	-0.04	-0.01	28.50	389170.24			W 103 36 16.88
	2207.00 2255.00	1.14	209.57 252.46	2207.00 2254.99	-0.22 -0.68	-0.23 -0.82	-0.11 -0.67	1.40	389170.05 389169.49			W 103 36 16.88 W 103 36 16.89
	2255.00	244,1	232.40	22.54.50	-0.00	-0.02	-0.07	1.41	300100.40	1200000.04	40 120.77	19 100 20 10.00
	2298.00	2.46	266,26	2297.96	-0.69	-1.03	-2.27	2.84	389169.34			W 103 36 16.91
	2350.00	2.81	271.36	2349.91	-0.40	-1.07	-4,65 -9.36	0.81	389169.40 389169.75			W 103 36 16.95
	2446.00 2541.00	2.81	272.67 270.39	2445.79 2540.69	1.19	-0.90 -0.78	-13.87	0.21	389170.06			W 103 36 17.02 W 103 36 17.08
	2637.00	2.46	269.51	2636.59	1.80	-0.78	-18.14	0.19	389170.22			W 103 36 17.15
	Luis es				***				******			
	2732.00 2828.00	2.11	269.07 268.37	2731.51 2827.45	2.29	-0.83 -0.91	-21.93 -25.46	0.37	389170.33			W 103 36 17.25 W 103 36 17.25
	2923.00	2.11	270.83	2922.39	3.18	-0.93	-28,96	0.10	389170.51			W 103 36 17.3
	3019.00	1.93	263.53	3018.33	3.50	-1.09	-32.33	0.33	389170.49			W 103 36 17.36
	3113.00	2.02	268.28	3112.27	3.73	-1.32	-35,56	0.20	389170.39	1208953,36 N	48 1 29.70	W 103 35 17.4
	3209.00	1.67	270.48	3208.22	4.13	-1.35	-38.65	0.37	389170.48	1208950.27 N	48 1 29.70	W 103 36 17.45
	3305.00	0.62	271.18	3304.20	4.43	-1.33	-40,57	1.09	389170.58	1208948.35 M	48 1 29.70	W 103 36 17.48
	3401.00	0.62	261.86	3400 19	4.51	-1.39	-41.60	0.10	389170.58			W 103 36 17,46
	3496.00	0.70	266.52	3495.19	4.56	-1.50	-42.69	0.10	389170,49			W 103 36 17.51
	3591.00	0.62	244.72	3590.18	4.45	-1.76	-43.73	0.28	389170.28	1208945,18	46 1 29.70	W 103 36 17.52
	3688.00	0.53	281.02	3687.18	4.45	-1.90	44.65	0.38	389170.18	1208944.26 N	48 1 29.70	W 103 36 17.54
	3784.00	0.26	263.36	3783.17	4.60	-1,84	-45.30	0.31	389170.27			W 103 36 17.55
	3880.00	0.18	242.53	3879.17	4.55	-1.93	-45.65	0.12	389170.19			W 103 36 17 55
	3974,00	0.00	50.13	3973.17	4.50	-2.00	-45.78	0.19	389170.12			W 103 36 17.55
	4070.00	0.26	241.56	4069,17	4.43	-2.10	45.97	0.27	389170,03			W 103 36 17.56
	4165,00	0.26	196,47	4184 17	4.16	-2.41	-46.23	0.21	389169.73	1208942.66 N	48 1 29 69	W 103 36 17,56
	4261.00	0.18	145.06	4260.17	3.82	-2.74	-46.20	0.21	389169.39			W 103 36 17.56
	4356.00	0.44	144.27	4355.17	3.37	-3:16	-45.90	0.27	389168.96			W 103 36 17.58
	4452.00	0.18	171.34	4451.17	2.89	-3.61	-45.66	0.30	389168.51			W 103 36 17 5
	4547.00	0.09	57.52	4548.17	2.77	3.72	-45.58	0.24	389168.40			W 103 36 17.55
	4642.00	0.18	14.01	4641.17	2.94	-3.53	-45.48	0.14	389168.58	1208943.36 M	48 1 29.68	W 103 38 17.55
	4737 00	0.00	118.51	4736.17	3.08	-3.39	-45.44	0.19	389168.72			W 103 36 17 58
	4833,00	0.09	102.52	4832.17	3.05	-3.41	-45,37	0.09	389168.70			W 103 36 17.55
	4929.00	0.18	118.95	4925.17	2,94	-3.49	-45.16	0.10	389168.60	1208943.66 M	4 45 1 29.68	W 103 36 17.54
	5024.00	0.18	121.24	5023.17	2.75	-3.64	-44.91	0.01	389168.44	1208943.93	4 48 1 29.68	W 103 36 17 54
	5119.00	0.26	81.51	5118.17	2.66	-3.69	44.57	0.18	389168,38	1208944.27	48 1 29.68	W 103 36 17.54
	5215.00	0.53	125.98	5214.18	2,35	-3.92	-43.99	0.41	389168 13			W 103 36 17.53
	5310.00	0.70	69.38	5309.16	2.17	-3.97	-43.09	0.63	389168.04	1208945.73 M	48 1 29.68	W 103 36 17.5
	5406.00	0.79	96.28	5405.15	2.13	-3.54	-41.89	0.37	389168.13	1203946.94	48 1 29.68	W 103 36 17.50
	5501.00	0.88	98.65	5500.14	1.76	4.02	-40.51	0.10	389167.89			W 103 36 17.48
	5595.00	0.44	246.57	5595.14	1.45	-4.27	-40.13	1,34	389167.62	1208948.68	48 1 29.67	W 103 36 17.47
	5691.00	0.44	248.92	5690.14	1.26	-4.56	40.80	0.00	389167.36			W 103 36 17.48
	5786.00	0.79	256,41	5785.13	1.10	-4.86	-41.77	0.38	389167.10			W 103 36 17.49
	5882.00	1.23	247,36	5881 12	0.76	-5.41	-43.38	0.49	389166.62			W 103 36 17.52
	5977,00	0,53	252.46	5976,10	0.46	-5.94	-44 72	0.74	389166.15	1208944.02	48 1 29.66	W 103 36 17.54
	6072.00	0.26	309.94	6071_10	0.54	-5.93	-45,31	0.47	389186,18	1208943.44	48 1 29.66	W 103 36 17.55
	6167.00	0.52	27.99	6166.10	1.12	-5.34	-45.23	0.65	389166.76			W 103 36 17.55
	6263.00	0.70	15.59	6262.09	2.08	-4.31	-44.83	0.17	389167.77	1208943.98	48 1 29.67	W 103 36 17.54
	8359.00	0.70	16.47	6358.09	5.15	-3.19	-44.51	0.01	389168,88			W 103 36 17.54
	6454,00	0.79	26.14	6453.08	4.22	-2.04	-44.05	0.16	389170.01	1200844.05	4 40 1 29.70	W 103 36 17.53
	6550.00	0.44	17.53	6549.07	5.09	-1.10	-43.65	0.38	389170.94	1208945.29	48 1 29 70	W 103 36 17.53
	6644.00	0.53	19.02	6643.07	5.81	-0.34	-43.40	0.10	389171.68			W 103 36 17.52
	6740.00	0.52	29.13	6739.06	5.61	0.53	-43.00	0.14	389172,54			W 103 36 17.5
	6835.00	0.26	39.94	6834.06	7.17	1.15	-42.61	0.39	389173.14			W 103 36 17.5
	6930.00	0.09	119.39	6929.06	7.27	1.27	-42,41	0.27	389173.26	1208946.62	V 48 1.29.73	W 103 36 17.50
	7026,00	0.00	99.53	7025.06	7.22	1.24	-42,35	0.09	389173.22			W 103 36 17.56
	7122.00	0.26	129.94	7121.06	7.08	1.10	-42.18	0.27	389173.07			W 103 36 17.50
	7218,00	0.62	131.61	7217.06	6.50	0.61	-41.62	0,38	389172.56			W 103 36 17.4
	7314.00	0.26	120.89	7313.05 7408.05	5.97 5.66	0.16	-41.05 -40.52	0.38	389172.08 389171.83			W 103 36 17 4 W 103 36 17 4
	7409.00	0.44	108.85	7400,05	5.06	-0.07	-40,52	0.20	3691/1.03	1200040.40	40 129.71	103 30 17,4
	7503.00	0.53	142,68	7502.05	5.12	-0.54	-39.91	0.31	389171.35			W 103 36 17.4
	7599.00	0.62	161.05	7598.04	4.22	-1 38	-39.47	0.21	389170.49			W 103 36 17.4
	7695.00	0.62	164.63	7694.04	3.20	-2:37	-39.17	0.04	389169.48			W 103 36 17 4
	7790.00	0.53	174.94	7789,03	2.25	-3.31	-39.00	0.14	389168.54			W 103 36 17.4
	700-			7885.03	1.22	-4.31	-35.80	0.21	389167.53	1208950.01	4 46 1 79 67	VV 103 35 17 45
	7885.00	0.70	164.04	1000.00		- 0.51						17 100 50 17.55

Comments	MD (ft)	(°)	Azim True	TVD (ft)	VSEC (ft)	NS (ft)	(m)	(*/100R)	Northing (RUS)	Easting (NUS)	(N/S " " ")	Longitude (E/W * ' ")
	8077.00	0.79	224.86	8076.00	-1.80	-7.35	-38.70	1.08	389164.49	1208949.98	N 48 1 29.64	W 103 36 17.45
	8173.00	0.79	195.47	8171.99	-2.80	-8.45	-39.35	0.40	389163.41	1208949.29	N 48 1 29.63	W 103 36 17.46
	8268.00	0.68	197.97	8266.98	-4.05	-9.78	-39.76	0.10	389162.11	1208948.82	N 48 1 29.62	W 103 36 17.47
	8384.00	0.88	192.17	8362.97	-5.40	-11.20	-40.15	0.09	389160.70	1208948.38	N 48 1 29.61	W 103 36 17.47
	8460.00	0.88	204.73	8458.96	-6.71	-12.59	-40.61	0.20	389159.33	1208947.86	N 48 1 29.59	W 103 36 17.48
	8556.00	0.97	191.64	8554.95	-8.10	-14.05	41.08	0.24	389157.89	1208947.33	N 48 1 29,58	W 103 36 17.48
	8652.00	0.97	204.21	8650.93	-9.55	-15.59	-41.58	0.22	389156.37	1208946.77	N 48 1 29.56	W 103 36 17.49
	8746.00	7.14	198.05	8744.92	-11.06	-17.21	-42.20	0.22	389154.78	1208946,09	N 48 1 29.55	W 103 36 17.50
	8842.00	0.70	203.68	5840,91	-12.41	-18.65	-42.73	0.47	389153.36	1208945.50	N 48 1 29.53	W 103 36 17.51
	8935.00	0.53	208.51	0934.90	-13.25	-19.56	-43.17	0.19	389152.47	1208945.03	N 48 1 29.52	W 103 36 17.52
	9032.00	0.53	229,26	9030.90	-13.85	-20.24	-43.71	0.20	389151.82	1208944.45	N 48 1 29.52	W 103 36 17.52
	9127.00	0.44	221.52	9125.89	-14.32	-20.80	-44.29	0.12	389151.28	1208943.86	N 48 1 29.51	W 103 36 17.53
	9222.00	0.70	210.71	9220.89	-15.01	-21.57	-44.83	0.29	389150.53	1208943.29	N 48 1 29.50	W 103 36 17.54
End MWD Survey	9319.00	0.62	213.26	9317.88	-15.86	-22.52	-45.42	0.09	389149.61	1208942.66	N 48 1 29.49	W 103 36 17.55

Survey Type:

Def Surve

Survey Error Model:

ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma

Description	MD From	MD To	EOU Freq	Survey Tool Type	Borehole / Survey
	0.000	22,000	1/22,000	SLB BLIND+TREND-Depth Only	Original Hole / Magnum 3-36-25H MWD 0' to 9319'
	22.000	2192,000	1/98,425	SLB BLIND+TREND	Original Hole / Magnum 3-36-25H MWD 0' to 9319'
	2192.000	2192.000	Act Stns	SLB_BLIND+TREND	Original Hole / Magnum 3-36-25H MWD 0' to 9319'
	2192 000	9319 000	1/7127 000	SLB MWD-STD	Original Hole / Magnum 3-36-25H MWD 0' to 9319'

Survey Certification Sheet

Company Name: Slawson Exploration Company, INC.

Well Name: Magnum 3-36-25H Lease: Sec36, T153N, R101W

API#:33-053-04069

County and State: McKenzie, ND

Date: 7-27-12

Survey from a depth of: 2250 to a depth of 10290 MD

Type of survey: Magnometer

These Surveys are true to the best of our knowledge given the information received on location in regards to longitude and latitude and magnetic declaration at the time of the surveys. The surveys were checked by me and conform and meet all Weatherford International standards and procedures. This log represents a true and correct directional survey of this well based on original data obtained at well site.

Wireline Engineer: Jacob Lee

Weatherford International Ltd.

13988 West Front St. Williston, ND 58801

6360 EAST YELLOWSTONE HWY • EVANSVILLE, WY 82636

TEL: 307-472-5757 • FAX: 307-232-2097

Certified Survey Sheet

Customer: Slav

Slawson Exploration

Well:

Magnum 3-36-25H

Legal:

Sec. 36-T153N-R101W

County:

McKenzie County

State:

North Dakota

Calculation Method:

Minimum Curvature

I certify that the attached survey is true and correct to the best of my knowledge.

Bridget Brennecke

Well Planner

Slawson Exploration Company, Inc.

McKenzie County, ND Sec. 36-T153N-R101W Magnum 3-36-25H

Plan A

Survey: Sperry MWD Surveys

Sperry Drilling ServicesStandard Report

18 June, 2012

Well Coordinates: 389,191.53 N, 1,208,847.52 E (48° 01' 29.87" N, 103° 36' 18.97" W)

Ground Level: 2,156.00 ft

Local Coordinate Origin:

Centered on Well Magnum 3-36-25H

Viewing Datum:

RKB (22') @ 2178.00ft (Nabors 419)

TVDs to System:

North Reference:

True

Unit System:

API - US Survey Feet - Custom

Geodetic Scale Factor Applied Version: 2003.16 Build: 43I

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)
10,260.00	0.30	208.70	10,258.85	-28.20	-51.04	-20.69	0.00
Tie-On to W	Veatherford Gy	ro Surveys @	10260.00 ft.				
10,306.00	1.62	296.19	10,304.84	-28.02	-51.68	-20.42	3.55
First Sperry	y MWD Survey	@ 10306.00 f	t.				
10,338.00	7.05	305.96	10,336.74	-26.67	-53.68	-18.80	17.06
10,370.00	13.00	307.32	10,368.23	-23.33	-58.13	-14.86	18.61
10,401.00	17.32	308.65	10,398.15	-18.33	-64.51	-9.01	13.98
10,433.00	20.84	307.38	10,428.39	-11.90	-72.76	-1.48	11.08
10,465.00	24.02	307.63	10,457.96	-4.47	-82.44	7.25	9.94
10,497.00	27.23	307.09	10,486.81	3.93	-93.44	17.12	10.06
10,528.00	30.57	305.72	10,513.95	12.81	-105.51	27.62	10.98
10,560.00	33.88	306.47	10,541.01	22.87	-119.29	39.53	10.42
10,592.00	36.67	306.55	10,567.13	33.86	-134.14	52.51	8.72
10,624.00	39.47	307.55	10,592.32	45.75	-149.88	66.51	8.96
10,656.00	42.26	307.40	10,616.52	58.49	-166.50	81.47	8.72
10,688.00	45.33	307.94	10,639.62	72.02	-184.02	97.35	9.66
10,719.00	47.56	307.66	10,660.98	85.79	-201.78	113.50	7.22
10,751.00	49.90	307.17	10,682.08	100.40	-220.88	130.66	7.40
10,783.00	52.81	306.78	10,702.06	115.43	-240.84	148.37	9.14
10,815.00	55.97	306.97	10,720.69	131.04	-261.65	166.77	9.89
10,847.00	59.31	307.01	10,737.82	147.30	-283.24	185.92	10.44
10,878.00	62.99	306.48	10,752.78	163.54	-304.99	205.08	11.96
10,910.00	66.72	306.43	10,766.37	180.75	-328.29	225.41	11.66
10,942.00	69.49	307.49	10,778.30	198.60	-352.01	246.44	9.19
10,974.00	72.67	307.37	10,788.68	217.00	-376.05	268.06	9.94
11,006.00	76.14	307.35	10,797.28	235.70	-400.54	290.04	10.84
11,037.00	80.35	307.37	10,803.59	254.11	-424.66	311.68	13.58
11,069.00	85.53	306.66	10,807.52	273.22	-450.01	334.19	16.34
11,094.00	87.90	306.83	10,808.96	288.15	-470.01	351.80	9.50
11,128.00	89.54	303.08	10,809.72	307.62	-497.86	375.02	12.04
11,160.00	90.12	304.73	10,809.81	325.47	-524.42	396.45	5.47
11,223.00	90.62	306.19	10,809.40	362.02	-575.73	439.89	2.45
11,317.00	90.28	307.89	10,808.67	418.64	-650.76	506.56	1.84
11,412.00	91.02	310.59	10,807.59	478.72	-724.32	576.46	2.95
11,507.00	89.97	313.07	10,806.77	542.07	-795.10	649.19	2.83
11,601.00	89.85	316.64	10,806.91	608.36	-861.73	724.24	3.80
11,696.00	90.25	319.37	10,806.83	678.96	-925.28	803.13	2.90
11,791.00	90.06	322.96	10,806.57	752.95	-984.84	884.80	3.78
11,886.00	91.39	326.39	10,805.37	830.44	-1,039.76	969.29	3.87
11,981.00	91.02	327.00	10,803.37	909.82	-1,091.91	1,055.25	0.75
12,076.00	91.20	328.80	10,801.53	990.27	-1,142.38	1,142.05	1.90
12,171.00	90.68	331.23	10,799.98	1,072.54	-1,189.85	1,230.20	2.62
12,266.00	90.46	333.84	10,799.03	1,156.82	-1,233.66	1,319.84	2.76
12,361.00	89.11	335.66	10,799.39	1,242.74	-1,274.18	1,410.63	2.39
12,456.00	89.01	339.74	10,800.95	1,330.61	-1,310.22	1,502.71	4.30
12,551.00	89.17	342.14	10,802.45	1,420.38	-1,341.23	1,595.97	2.53
12,646.00	89.75	345.42	10,803.35	1,511.58	-1,367.76	1,690.01	3.51
12,741.00	89.91	348.94	10,803.63	1,604.20	-1,388.84	1,784.68	3.71
12,836.00	89.94	351.50	10,803.76	1,697.81	-1,404.98	1,879.63	2.69
12,932.00	90.12	353.75	10,803.71	1,793.01	-1,417.30	1,975.62	2.35

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Ī
13,027.00	90.15	354.79	10,803.48	1,887.53	-1,426.78	2,070.53	1.10	
13,122.00	90.59	358.52	10,802.87	1,982.35	-1,432.33	2,165.18	3.95	
13,154.00	90.68	359.58	10,802.51	2,014.34	-1,432.86	2,196.93	3.32	
13,217.00	90.80	358.90	10,801.70	2,077.33	-1,433.69	2,259.40	1.10	
13,280.00	91.17	359.12	10,800.62	2,140.31	-1,434.78	2,321.90	0.68	
13,312.00	91.57	358.96	10,799.85	2,172.30	-1,435.32	2,353.64	1.35	
13,375.00	90.74	359.33	10,798.58	2,235.28	-1,436.26	2,416.12	1.44	
13,407.00	90.12	359.34	10,798.34	2,267.28	-1,436.63	2,447.84	1.94	
13,501.00	89.85	359.72	10,798.37	2,361.27	-1,437.40	2,541.00	0.50	
13,596.00	89.63	359.26	10,798.80	2,456.27	-1,438.24	2,635.16	0.54	
13,691.00	90.00	358.68	10,799.10	2,551.25	-1,439.95	2,729.43	0.72	
13,787.00	89.51	358.94	10,799.52	2,647.23	-1,441.95	2,824.72	0.58	
13,882.00	90.12	358.72	10,799.82	2,742.21	-1,443.89	2,919.02	0.68	
13,976.00	89.81	359.01	10,799.88	2,836.19	-1,445.75	3,012.32	0.45	
14,071.00 14,164.00	89.75	358.30	10,800.24	2,931.16 3,024.11	-1,447.98	3,106.65 3,199.09	0.75	
14,164.00	89.11 90.93	357.96 357.85	10,801.17 10,801.14	,	-1,451.01 -1,454.48	,	0.78 1.92	
•	90.93			3,119.04	•	3,293.56 3,387.02		
14,353.00	90.55 89.69	358.04 359.08	10,799.92 10,799.73	3,212.97	-1,457.85 -1,460.22	,	0.45 1.44	
14,447.00 14,540.00	90.89	1.15	10,799.73	3,306.94 3,399.93	-1,460.22	3,480.37 3,572.40	2.57	
14,634.00	90.89 89.66	0.15	10,799.25	3,399.93	-1,458.96	3,572.40 3,665.29	2.57 1.69	
14,728.00	90.71	1.33	10,798.50	3,587.91	-1,456.96 -1,457.75	3,758.16	1.68	
•			•		•			
14,821.00	90.74	1.19	10,797.32	3,680.88	-1,455.71	3,849.91	0.15	
14,914.00	91.20	1.95	10,795.75	3,773.83	-1,453.16	3,941.56	0.96	
15,008.00	89.01	0.96	10,795.58	3,867.79	-1,450.77	4,034.24	2.56	
15,101.00	89.78	0.46	10,796.56	3,960.78	-1,449.62	4,126.13	0.99	
15,196.00	89.14	0.60	10,797.45	4,055.77	-1,448.74	4,220.04	0.69	
15,291.00	89.32	0.09	10,798.73	4,150.76	-1,448.17	4,313.99	0.57	
15,385.00	89.97	0.33	10,799.31	4,244.76	-1,447.82	4,406.99	0.74	
15,480.00	90.89	0.57	10,798.60	4,339.75	-1,447.08	4,500.92	1.00	
15,543.00	91.39	0.75	10,797.35	4,402.74	-1,446.35	4,563.17	0.84	
15,575.00 15,607.00	90.80 89.78	1.39 1.49	10,796.74 10,796.57	4,434.72 4,466.71	-1,445.75 -1,444.95	4,594.75 4,626.30	2.72 3.20	
,			•		•			
15,669.00 15,733.00	89.20 88.43	0.60 359.65	10,797.13 10,798.45	4,528.70 4,592.68	-1,443.82 -1,443.68	4,687.50 4,750.82	1.71 1.91	
15,764.00	88.58	359.03	10,798.43	4,623.67	-1,443.80	4,781.52	0.97	
15,796.00	89.85	359.79	10,799.20	4,655.67	-1,443.88	4,761.32	3.99	
15,860.00	89.75	359.57	10,799.92	4,719.67	-1,444.24	4,876.61	0.38	
15,955.00	89.97	359.60	10,800.15	4,814.67	-1,444.93	4,970.74	0.23	
16,050.00	90.34	359.37	10,799.89	4,909.66	-1,445.78	5,064.90	0.46	
16,144.00	91.33	359.89	10,798.52	5,003.65	-1,446.39	5,158.03	1.19	
16,240.00	89.48	0.84	10,797.85	5,099.64	-1,445.78	5,252.97	2.17	
16,335.00	89.69	0.31	10,798.53	5,194.63	-1,444.82	5,346.87	0.60	
16,430.00	90.37	359.83	10,798.48	5,289.63	-1,444.71	5,440.89	0.88	
16,462.00	90.31	359.93	10,798.29	5,321.63	-1,444.78	5,472.58	0.36	
16,525.00	90.46	359.70	10,797.87	5,384.63	-1,444.98	5,534.97	0.44	
16,557.00	90.71	0.34	10,797.54	5,416.62	-1,444.97	5,566.65	2.15	
16,621.00	90.59	1.11	10,796.82	5,480.62	-1,444.16	5,629.88	1.22	
16,716.00	90.22	1.38	10,796.15	5,575.59	-1,442.09	5,723.60	0.48	
16,804.00	89.29	2.84	10,796.52	5,663.53	-1,438.85	5,810.19	1.97	
16,835.00	88.37	3.17	10,797.16	5,694.48	-1,437.23	5,840.60	3.15	

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	
16,897.00	89.60	2.50	10,798.25	5,756.39	-1,434.16	5,901.46	2.26	
16,990.00	90.19	3.48	10,798.42	5,849.26	-1,429.31	5,992.71	1.23	
17,085.00	89.44	3.00	10,798.73	5,944.11	-1,423.94	6,085.84	0.94	
17,180.00	89.35	2.75	10,799.73	6,038.98	-1,419.18	6,179.08	0.28	
17,275.00	89.04	3.12	10,801.07	6,133.85	-1,414.31	6,272.30	0.51	
17,370.00	89.07	1.09	10,802.64	6,228.77	-1,410.83	6,365.77	2.14	
•				•	•	,		
17,465.00	89.54	1.09	10,803.79	6,323.74	-1,409.02	6,459.53	0.49	
17,559.00	89.75	1.33	10,804.37	6,417.72	-1,407.03	6,552.28	0.34	
17,654.00	90.03	0.14	10,804.55	6,512.71	-1,405.82	6,646.14	1.29	
17,749.00	90.46	0.36	10,804.15	6,607.71	-1,405.40	6,740.13	0.51	
17,813.00	90.62	0.45	10,803.54	6,671.70	-1,404.95	6,803.41	0.29	
17,844.00	90.56	0.02	10,803.22	6,702.70	-1,404.82	6,834.08	1.40	
17,939.00	89.97	359.51	10,802.79	6,797.70	-1,405.21	6,928.18	0.82	
18,034.00	89.88	358.43	10,802.91	6,892.68	-1,406.92	7,022.45	1.14	
18,065.00	90.25	358.80	10,802.87	6,923.67	-1,407.67	7,053.23	1.69	
18,129.00	90.74	358.76	10,802.32	6,987.66	-1,409.03	7,116.76	0.77	
18,192.00	91.33	359.10	10,801.18	7,050.63	-1,410.21	7,179.27	1.08	
18,224.00	91.51	359.19	10,800.39	7,082.62	-1,410.68	7,211.00	0.63	
18,256.00	91.63	359.36	10,799.51	7,114.61	-1,411.09	7,242.72	0.65	
18,319.00	90.65	358.75	10,798.26	7,177.58	-1,412.13	7,305.21	1.83	
18,415.00	90.96	358.78	10,796.91	7,273.55	-1,414.20	7,400.51	0.32	
18,510.00	91.30	359.23	10,795.04	7,368.52	-1,415.85	7,494.75	0.59	
18,606.00	90.65	358.98	10,793.40	7,464.49	-1,417.35	7,589.97	0.73	
18,670.00	90.52	358.90	10,792.75	7,528.48	-1,418.53	7,653.48	0.24	
18,701.00	90.49	358.63	10,792.48	7,559.47	-1,419.20	7,684.25	0.88	
18,795.00	90.80	358.98	10,791.42	7,653.44	-1,421.16	7,777.56	0.50	
18,827.00	91.02	358.99	10,790.91	7,685.43	-1,421.72	7,809.31	0.69	
18,890.00	89.54	359.39	10,790.60	7,748.43	-1,422.61	7,871.79	2.43	
18,953.00	89.69	359.32	10,791.03	7,811.42	-1,423.32	7,934.25	0.26	
18,985.00	89.75	359.67	10,791.18	7,843.42	-1,423.61	7,965.97	1.11	
19,080.00	88.92	358.98	10,792.29	7,938.40	-1,424.73	8,060.15	1.14	
19,112.00	88.64	358.76	10,792.97	7,970.39	-1,425.36	8,091.91	1.11	
19,175.00	90.31	358.98	10,793.54	8,033.37	-1,426.60	8,154.43	2.67	
19,269.00	90.86	359.30	10,792.59	8,127.36	-1,428.01	8,247.67	0.68	
19,363.00	90.43	359.32	10,791.53	8,221.34	-1,429.14	8,340.87	0.46	
19,458.00	89.88	358.85	10,791.27	8,316.33	-1,430.66	8,435.11	0.76	
19,553.00	90.00	358.92	10,791.37	8,411.31	-1,432.51	8,529.40	0.15	
19,648.00	88.89	358.32	10,792.29	8,506.28	-1,434.79	8,623.73	1.33	
19,743.00	89.91	359.83	10,793.28	8,601.26	-1,436.33	8,717.97	1.92	
19,838.00	91.08	0.74	10,792.46	8,696.25	-1,435.86	8,811.94	1.56	
19,933.00	91.30	1.23	10,790.49	8,791.22	-1,434.22	8,905.72	0.57	
19,964.00	91.14	1.52	10,789.83	8,822.20	-1,433.48	8,936.28	1.07	
19,996.00	90.43	1.44	10,789.39	8,854.19	-1,432.65	8,967.83	2.23	
20,027.00	89.54	0.69	10,789.40	8,885.18	-1,432.08	8,998.43	3.75	
20,122.00	89.51	1.18	10,790.19	8,980.16	-1,430.53	9,092.24	0.52	
20,154.00	90.59	1.79	10,790.16	9,012.15	-1,429.70	9,123.79	3.88	
20,217.00	89.69	2.26	10,790.01	9,075.11	-1,427.47	9,185.80	1.61	
20,312.00	90.03	2.26	10,790.24	9,170.04	-1,423.72	9,279.24	0.36	
20,407.00	91.17	2.80	10,789.24	9,264.94	-1,419.53	9,372.59	1.33	
20,502.00	91.36	3.27	10,787.15	9,359.78	-1,414.50	9,465.76	0.53	
20,597.00	90.09	2.29	10,785.94	9,454.66	-1,409.90	9,559.03	1.69	

Survey Report for Magnum 3-36-25H - Sperry MWD Surveys

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)
20,692.00	89.63	2.25	10,786.18	9,549.58	-1,406.13	9,652.47	0.49
20,786.00	92.03	2.58	10,784.81	9,643.48	-1,402.17	9,744.86	2.58
20,882.00	90.28	2.71	10,782.88	9,739.36	-1,397.74	9,839.14	1.83
20,945.00	90.52	4.26	10,782.44	9,802.24	-1,393.91	9,900.85	2.49
20,977.00	90.71	5.03	10,782.10	9,834.13	-1,391.32	9,932.05	2.48
21,071.00	88.52	4.08	10,782.73	9,927.82	-1,383.86	10,023.75	2.54
21,127.00	89.97	5.29	10,783.47	9,983.63	-1,379.29	10,078.34	3.37
Final Sperry	MWD Survey	@ 21127.00 f	t.				
21,175.00	89.97	5.29	10,783.49	10,031.43	-1,374.86	10,125.03	0.00
Straight Lin	e Projection to	TD @ 21175	.00 ft.				

Survey Annotations

Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-W	Comment
(ft)	(ft)	(ft)	(ft)	
10,260.00	10,258.85	-28.20	-51.04	Tie-On to Weatherford Gyro Surveys @ 10260.00 ft.
10,306.00	10,304.84	-28.02	-51.68	First Sperry MWD Survey @ 10306.00 ft.
21,127.00	10,783.47	9,983.63	-1,379.29	Final Sperry MWD Survey @ 21127.00 ft.
21,175.00	10,783.49	10,031.43	-1,374.86	Straight Line Projection to TD @ 21175.00 ft.

Vertical Section Information

Angle		Origin		Orig	Start	
Туре	Target	Azimuth (°)	Type	+N/_S (ft)	+E/-W (ft)	TVD (ft)
Target	Magnum 3-36-25H Plan A BHL	351.86	Slot	0.00	0.00	0.00

Survey tool program

From	То	Survey/Plan	Survey Too
(ft)	(ft)		
2,196.00	9,319.00	Extreme Gyro Surveys	NS-GYRO-MS
9,320.00	10,260.00	Weatherford Surveys	NS-GYRO-MS
10,306.00	21,175.00	Sperry MWD Surveys	MWD

48° 1' 29.869 N 103° 36' 18.972 W

HALLIBURTON

Targets

Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	Latitude	Longitude
Magnum 3-36-25H §	0.00	0.00	-2.00	0.01	0.00	389,191.53	1,208,847.52	48° 1' 29.869 N	103° 36′ 18.972 W
survey misses tPolygon	arget cer	iter by 1	0261.01ft at	10260.00ft MD) (10258.85 ⁻	TVD, -28.20 N	I, -51.04 E)		
Magnum 3-36-25H §	0.00	0.00	-2.00	0.01	0.00	389,191.53	1,208,847.52	48° 1' 29.869 N	103° 36′ 18.972 W
survey misses tPolygon	arget cer	iter by 1	0261.01ft at	10260.00ft MD	(10258.85	TVD, -28.20 N	I, -51.04 E)		
Magnum 3-36-25H F	0.00	0.00	10,756.00	10,033.01	-1,435.00	399,273.59	1,207,818.27	48° 3' 8.878 N	103° 36′ 40.093 W
survey misses tPoint	arget cer	iter by 6	6.02ft at 211	71.01ft MD (10)783.49 TVD), 10027.46 N,	, -1375.23 E)		

Magnum 3-36-25H (0.00 0.00 -2.00 0.01 0.00 389,191.53 1,208,847.52 - survey misses target center by 10261.01ft at 10260.00ft MD (10258.85 TVD, -28.20 N, -51.04 E) - Polygon

North Reference Sheet for Sec. 36-T153N-R101W - Magnum 3-36-25H - Plan A

All data is in US Feet unless otherwise stated. Directions and Coordinates are relative to True North Reference.

Vertical Depths are relative to RKB (22') @ 2178.00ft (Nabors 419). Northing and Easting are relative to Magnum 3-36-25H

Coordinate System is US State Plane 1983, North Dakota Northern Zone using datum North American Datum 1983, ellipsoid GRS 1980

Projection method is Lambert Conformal Conic (2 parallel)

Central Meridian is 100° 30' 0.000 W°, Longitude Origin:0° 0' 0.000 E°, Latitude Origin:48° 44' 0.000 N°

False Easting: 1,968,500.00ft, False Northing: 0.00ft, Scale Reduction: 0.99993638

Grid Coordinates of Well: 389,191.53 ft N, 1,208,847.52 ft E

Geographical Coordinates of Well: 48° 01' 29.87" N, 103° 36' 18.97" W

Grid Convergence at Surface is: -2.31°

Based upon Minimum Curvature type calculations, at a Measured Depth of 21,175.00ft the Bottom Hole Displacement is 10,125.20ft in the Direction of 352.20° (True).

Magnetic Convergence at surface is: -10.96° (5 April 2012, , BGGM2011)

Project: McKenzie County, ND Site: Sec. 36-T153N-R101W Well: Magnum 3-36-25H

Slawson Exploration Company, Inc.

Project: McKenzie County, ND Site: Sec. 36-T153N-R101W Well: Magnum 3-36-25H

Slawson Exploration Company, Inc.

Slawson Exploration Company, Inc.

Magnum 3-36-25H

205' FSL & 265' FEL SE SE Section 36, T153N, R101W Baker Field / Middle Bakken McKenzie County, North Dakota

BOTTOM HOLE LOCATION:

10,031.43' North & 1,374.86' West of surface location or approx. 265.17' FNL & 1,639.86' FEL, NW NE Section 25, T153N, R101W

Prepared for:

Bob Bogle Slawson Exploration Company, Inc 1675 Broadway, Suite 1600, Denver, CO 80202

Prepared by:

Brandon Hill, Donovon Wilczynski PO Box 51297; Billings, MT 59105 2150 Harnish Blvd., Billings, MT 59101 (406) 259-4124 geology@sunburstconsulting.com www.sunburstconsulting.com

WELL EVALUATION

<u>Figure 1:</u> Nabors 419 drills Magnum 3-36-25H in McKenzie County, ND (Brandon Hill, for Sunburst Consulting).

INTRODUCTION

The **Slawson Exploration Co.** *Magnum 3-36-25H* [SE SE Sec. 36, T153N, R101W] is located ~15 miles southwest of the town of Williston in McKenzie County, North Dakota. The well was the third of three wells drilled in Section 36. *Magnum 3-36-25H* was planned with one 10,386' long northbound leg with intent to intersect regional fracture trends that might enhance reservoir quality within the Middle Bakken Member.

Directional tools were utilized to build a curve and land within the 200' legal setbacks of Section 36. Vertical deviation drilling was used to help ensure the wellbore crossed the eastern hard-line. A single horizontal lateral in the Middle Bakken was proposed to be drilled into the NE ¼ of NE ¼ of Section 25.

OFFSET INFORMATION

Three previously completed nearby wells were used as offset control on *Magnum 3-36-25H*. The *Lindvig 1-35* was drilled in August of 1981 by Texas Gas exploration Co 1.1 miles west of the *Magnum 3-36-25H*. The *Magnum 1-36-25H* was the first of three laterals drilled in Section 36 by Slawson Exploration Co and was spud in January of 2012. The third offset was the Slawson Exploration Co.'s *Magnum 2-36-25H*, spud in March of 2012. The *Magnum 2-36-25H* was drilled on the same pad and parallels the subject well to the east.

During the curve, gamma ray measurements were constantly compared to offset data to help determine a proper landing depth. To aid in the landing of the curve, a table (Table 1) was constructed utilizing isopach thicknesses to target of select gamma markers from the offset wells. Due to variances of offset isopachs, a weighted average was used in forecasting a landing depth. Comparing gamma ray markers at the *Magnum 3-36-25H* to correlative markers from the offsets made it easier to predict the probable TVD depth of the Middle Bakken target. With its proximity, the *Magnum 2-36-25H* most closely resembled gamma ray signatures at the *Magnum 3-36-25H*.

TARGET PROXIMATION

Formation/ Zone:	Proposed Top of Target From:						
	Lindvig 1-35	Magnum 1-36-25H	Magnum 2-36-25H	Average of Offset Wells			
Kibbey Lime	10,811'	10,810'	10,847'	10,823'			
Charles	10,812'	10,785'	10,793'	10,797'			
Base Last Salt	10,803'	10,808'	10,797'	10,803'			
Mission Canyon	10,798'	10,807'	10,790'	10,798'			
Lodgepole	10,794'	10,802'	10,798'	10,798'			
LP 1	-	•	-	-			
LP 2	10,800'	10,806'	•	10,803'			
LP 3	-	-	-	-			
False Bakken	10,807'	10,802'	10,802'	10,804'			
Upper Bakken Shale	10,806'	10,805'	10,805'	10,805'			
Middle Bakken	10,805'	10,805'	10,805'	10,805'			
M. Bakken (Target)	10,807'	10,807'	10,807'	10,807'			

<u>Table 1:</u> Using isopach thicknesses of gamma markers from offset wells to determine a proposed landing target.

VERTICAL OPERATIONS

The *Magnum 3-36-25H* was spud on May 07, 2012 with the Nabors #419 drilling rig. A 13 ½" hole was drilled with fresh water to 2,192' MD and isolated with 9 5/8" 36# K-55 casing cemented to surface. On May 12, 2012 vertical operations began. Upon casing exit the drilling fluid was changed to diesel invert with a target weight of 9.4 to 9.7 ppg for use in the remaining vertical and curve. The area surrounding *Magnum 3-36-25H* was a highly prosperous and well developed Mission Canyon field. *Magnum 3-36-25H* was the first of the three wells drilled in section 36 to avoid significant loss of drilling fluid upon reaching the Mission Canyon. Slides in the vertical were put in place to cause the vertical to drift west away from the nearby *Magnum 2-36-25H*.

The vertical was drilled to a KOP of 10,306' MD with 2 HDBS bits. The first drilled from under casing to 8,979' MD where it was pulled as planned for the Kibbey bit trip. The second HDBS bit was replaced at 10,300' MD when the preliminary KOP was reached. An additional 6' would be drilled with the curve assembly before kicking off.

The first bit drilled 6,787' in 48 hours for an average ROP of 141.39 ft/hr. The second bit completed the vertical after drilling 1,321' in 32.7 hours for an average ROP of 40.39 ft/hr. Vertical operations were completed on May 16, 2012.

DIRECTIONAL OPERATIONS

Sperry Sun provided equipment and personnel for MWD and directional services. Sunburst Consulting geologists worked closely throughout the project with Sperry Sun to make steering decisions and maximize the amount of borehole in the pay zone. Attention was also paid to providing a smooth lateral wellbore to ease the implementation of the aggressive production fracture program. Tight adherence to the drill plan was required to prevent collision with previously drilled laterals. As such, surveys were monitored closely to ensure a safe distance from *Magnum 2-36-25H*.

Curve Build

The curve was to drill down 477' TVD in 750' MD and required 12 degrees of build per 100' (Figures 2 & 3). The curve was drilled with a single 8 34" PDC bit. After completing the build section 7" casing was set at 11,128' MD, 10,809.74' TVD, ~22' below the Upper Bakken Shale. The single HDBS bit drilled 843' in 45.8 hours for an average drilling rate of 18.40 ft/hr.

The HDBS FXD55M combined with the Sperry directional motor drilled quickly while providing predictable and generous build rates. The optimal performance of the curve assembly allowed for increased rotation whilst decreasing time spent on the build section. The added benefit of predictable build rates made forecasting the TVD of the False Bakken and Upper Bakken Shale from penetration rates more reliable; this in turn allowed for on the fly adjustments to landing target and insured a landing within the desired objective.

Figure 2: Drill plan provided by Slawson.

Figure 3: Curve as drilled. Illustrated on the Sunburst Profile.

Lateral

Lateral drilling fluid was ~10.1– 9.7 ppg diesel invert. Three trips were required while drilling the *Magnum 3-36-25H* lateral. The first came as penetration rates began to fall and sliding became difficult at 16,798' MD. A fresh motor and Security bit were put in place to continue the lateral. Along with the BHA, a NOV agitator was picked up to ease the difficulty in sliding. Drilling continued until 18,112' MD when penetration rates dropped to zero as a result of a failed motor. A new motor was put behind a fresh Security bit. Once back on bottom, the motor drilled for 528' before penetration rates again dropped to zero. A new slow speed BICO motor was run with the same Security bit to finish out the lateral. The final BHA improved penetration rates dramatically. The slow speed BICO proved to be the best performing motor of the lateral.

The first assembly drilled 5,655' in 148.08 hours, much of that for a lateral turn, for an average ROP of 38.18 ft/hr. The Second assembly drilled 1,314' in 44.58 hours for an average speed of 29.47 ft/hr. The third assembly drilled 528' in 18.34 hours for an average speed of 28.78 ft/hr. The final assembly with the BICO motor drilled 2,535' in 48.00 hours for and average of 52.81ft/hr. The well reached a total depth (TD) of 21,175' MD at 02:45 CDT June 10, 2012.

GEOLOGIC EVALUATION AND HYDROCARBON SHOWS

Methods

Geologic supervision of *Magnum 3-36-25H* was provided by Sunburst Consulting, Inc. with two wellsite geologists. A digital gas detector was interfaced with a Pason electronic data recorder system. Pason provided drill rate, on-off bottom, and pump strokes to the gas detection computer and received total gas information from Sunburst for viewing around location. Rig crews caught lagged samples under the direction of Sunburst geologists (see LITHOLOGY for sample lag intervals and descriptions). Sample cuttings were examined wet and dry under a binocular microscope using both plain (broad spectrum) and transmitted light. Sunburst personnel also closely examined MWD gamma ray information and penetration rates to aid in steering decisions and dip rate estimations.

Lithology and Hydrocarbon Shows

Geologic evaluation began at 8,400' MD in the Anhydrite and Limestone of the **Kibbey Formation** [Mississippian, Big Snowy Group]. Samples from this area were described as:

ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity;

SILTSTONE: orange, friable, sub blocky to sub platey, calcareous cement, moderately cemented, no visible porosity;

ANHYDRITE: off white, cryptocrystalline, soft, massive, amorphous texture, no visible porosity.

The **Charles Formation** [Mississippian, Madison Group] was penetrated at 8,592' TVD (-6,425'). The **Base of the Last Charles Salt** was drilled at 9,265' TVD (-7,087'), 6' high to *Magnum 2-36-25H*. Samples from this interval (Figure 4) were described as:

SALT: translucent, crystalline, hard, anhedral to trace subhedral, crystalline texture, no visible porosity; trace ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity:

LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity.

Figure 4: Photograph of salt, anhydrite, and limestone found in Charles Formation.

The **Mission Canyon** [Mississippian, Madison Group] was penetrated at 9,480' TVD (-7,302'), 13' high to *Magnum 2-36-25H*. Surrounding the *Magnum 3-36-25H* was a heavily produced Mission Canyon field. Large amounts of LCM prevented losses of drilling fluid, but made it difficult to evaluate overall Mission Canyon potential. Due to heavy sample contamination, pictures of cuttings from the Mission Canyon are not available. Samples from the Mission Canyon were described as:

LIMESTONE: mudstone, light brown gray, light brown, trace medium brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace pinpoint porosity, rare spotty light to medium brown oil stain;

DOLOMITE: mudstone, light gray brown, friable, earthy texture, trace pinpoint porosity very trace light brown oil stain;

LIMESTONE: mudstone, dark gray, common off white to cream, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown spotty oil stain;

DOLOMITIC LIMESTONE: mudstone, off white to cream, tan to light brown, light gray brown, very fine grained, firm to hard, crystalline texture, trace alga laminated, slightly argillaceous, trace light brown oil stain, no visible porosity.

The **Lodgepole Formation** [Mississippian, Madison Group] top was drilled at 10,017' TVD (-7,839'), 5' high to *Magnum 2-36-25H*. Approximately 745' TVD of limestone, much of it argillaceous mudstone with common pyrite and sparry calcite, was drilled in the Lodgepole. Samples collected from the Lodgepole (Figure 5) were described as:

ARGILLACEOUS LIMESTONE: mudstone, medium gray to rare off white to rare medium brown, microcrystalline, firm to common hard, dense, earthy to rare crystalline texture, no visible porosity;

LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, possible intercrystalline porosity, no visible oil stain.

<u>Figure 5</u>: Photograph of limestone from the upper Lodgepole Formation (note live oil stain).

The "False Bakken" was penetrated at 10,762' TVD (-8,584'), evidence of a 10,804' TVD target depth. The underlying Scallion interval showed gas peaks as high as 1,947 units.

The **Upper Shale** of the **Bakken Formation** [Mississippian – Devonian] was drilled at 10,772' TVD (-8,594'), supporting a casing point of 10,805' TVD. The Bakken came in 2' low to the *Magnum 2-36-25H*. Sample returns were typical black, carbonaceous, and petroliferous shale (Figure 6), characterized by gamma ray values in excess of 400 API. Total gas readings displayed peaks up to 477 units with background measurements ranging between 250 and 350 units. Samples were described as:

SHALE: black, firm to friable, sub blocky to sub platy, earthy texture, petroliferous, carbonaceous, abundant disseminated pyrite, nodular pyrite, no visible porosity.

<u>Figure 6</u>: Photograph of typical black carbonaceous Bakken Shale.

The **Middle Member** of the **Bakken Formation** was penetrated at 10,970' MD, (10,787 TVD), 2' low to the *Magnum 2-36-25H*, evidence supporting a target of 10,805' TVD (Table 1). While drilling the *Magnum 3-36-25H*, samples varied only slightly within the target area. Some differences in *oil staining* could be seen. The targeted interval consisted of a series of high gamma (110-120 API) and cool gamma (85-95 API) intervals stacked upon one another. Commonly in the high gamma markers samples would consist of silty sandstone mixed with light gray siltstone stringers. The facies of cool gamma were primarily well cemented sandstone with marker F2 showing occasional stringers of lime packstone. Samples collected from the Middle Bakken (Figure 7& 8) were described as:

SILTSTONE: medium brown, friable to trace firm, sub blocky to sub platy, calcareous cement, poorly to trace moderately cemented, trace disseminated pyrite, no visible porosity.

SILTY SANDSTONE: cream to off white, very fine grained, friable to trace firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to trace moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace dark brown spotty oil stain.

<u>Figure 7:</u> Photograph of siltstone found above and below zone (L). <u>Figure 8:</u> Photograph of silty sandstone found throughout target zone (R).

The lateral began with a background gas of about 150 units with an average connection gas above 200 units (Note: See Figure 9 for visual representation of this section). Gas levels decreased slightly by 11,400 MD with average background measurements around 100 units and peaks reaching only 150 units. With lower gas levels in the middle of the target zone, the bit was allowed to climb up to about 2'-3' from the top of zone. As the bit approached the top of zone, gas levels rose slightly to 150 units with connections averaging around 250 units. By 12,200 MD' the wellbore had reached its pinnacle and began to descend in formation. As the bit traveled back down through zone, gas levels remained steady. The wellbore would then flatten low in zone within the F4 marker. This low in zone position was accompanied with waning hydrocarbon gas. By 13,000' MD the average background gas was less then 150 units. Despite relatively low backgrounds connections averaged above 500 units. Average gas measurements climbed slightly around 13,900' MD when the bit entered the middle portion of zone passing through marker F2. Background gas levels doubled to an average of 250-300 units with connections averaging above 600 units. Gas levels remained fairly steady until ~15,200' MD where they rose to their highest levels thus far (Figure 10). Background gas levels between 15,200' and 15,700' MD would average around 400 units with connections nearing 700 units. Additionally within this interval, increases in *spotty black oil stain* as well as the *more common* dark brown oil stain was seen in cuttings. The total gas increase was localized and measurements decreased to a lateral low by 16,000' MD despite maintaining an approximate stratigraphic position.

Figure 9: Sunburst profile showing gas levels as tied to lateral progression.

<u>Figure 10</u>: Magnum 3-36-25H log segment showing peak gas levels.

Decreasing background gas levels were less than half of previous measurements, around 150 units with connections barely averaging over 250 units. The decrease in gas did coincide with a *very slight decrease in oil staining* and a more common hardening of calcite cement. It is possible that the increased cementing caused porosity occlusion. Relatively low gas levels would continue until roughly 16,900' MD when they began to rise despite being low within the target interval. The average background gas would hover around 350-400 units, but connections lowered slightly to 400-500 units. Gas levels were higher here then any previous trips to bottom of our targeted interval.

Gas levels would remain steady over the next 1,000' before decreasing slightly. By 18,300' MD, average background gas was less then 300 units and connections were barely distinguishable. At this point in the lateral the bit had just reentered the bottom of the targeted interval. As the wellbore climbed in section gas levels would increase. Beginning at 18,700' MD, gas levels climbed briefly, approaching 600 units, before declining and leveling off around 18,850 MD. Hydrocarbon gas levels remained steady with backgrounds averaging of 250-300 units and occasionally as high as 400 units. While the wellbore approached TD, the bit began climbing aggressively. It soon passed to its highest point within zone and background levels increased to a lateral high. The average background would reach 500+ units with connections over 800 units.

During the lateral there were three trips to surface for BHA changes. The change-outs allowed for the recording of trip gases of 1,017, 3,081, and 1,388 units. The second was punctuated by a 10'-15' flare.

Marker F1: This marker made up the first 2' of the zone (Note: See Figure 11 for visual representation of this section). Overlying Marker F1 was a dark siltstone with *trace* spotty brown *oil stain* and low *porosity*. Increases in pyrite and gray sandstone were also observed. Decreased *oil staining* and *intergranular porosity* was common in this marker.

Marker F2: Marker F2 began about 3' into the target zone and continued until 5' into zone. This facies was encountered early in the tangent section before setting casing. It was similar in nearly every way to Marker F4. Common characteristics of this marker were increasing white to cream sandstone and increasing pyrite levels. On occasion this marker would contain trace amounts of lime packstone. It is important to note that *exceptional porosity* was observed in offset electric logs within this interval, showing porosity up to 13%. It is unclear how permeable this interval is, but with production fracturing the increased porosity will likely benefit overall production. Typically within this marker, *rare to occasional spotty brown oil staining* was seen with areas of *spotty black oil stain*. This marker shared gamma characteristics with F4 and F6, averaging 85-95 API.

Marker F3: Marker F3 extended from 4'-6' into the target. This marker appeared slightly warmer then surrounding markers reaching 105-110 API. Samples were identical to that of Marker F1. *Trace to rare light brown oil staining* was typical, but occasionally increased to include *spotty light black staining*. Some hydrocarbon staining may have been obscured by the darker colors of the sandstone in this marker. Hydrocarbon gas levels were generally higher in the warm gamma intervals found at Markers F3 and F5. This may be due to the tight nature of the cream and off white sandstones found in the low gamma intervals.

Marker F4: The F4 marker began about 6' from the top of zone and in the lateral averaged a 95-105 API gamma signature. The lower cool gamma marker did not show staining that would set it apart for other areas within zone. Cream to off white sandstone made up the majority of samples examined in this marker. The sandstone was identical to marker F2 though packstone was never observed within this interval.

Marker F5: Marker F5 ranged from 9'-12' below the top of zone. This marker made up the last 3' of zone, comprised of sand and siltstones much like Marker F1. Proceeding downward through section in this marker, gamma measurements increased above 120 API, indicating an exit from the bottom of zone. Sands within this interval showed *trace dark brown oil stain*. The siltstones show virtually *no oil staining* and were tight in nature with grayish brown coloration.

<u>Figure 11</u>: Type gamma ray profile of the Middle Bakken from the near-by Fossum well.

Geo-Steering

The **target zone** within the Middle Bakken is defined as the 14' zone below gamma marker "MBKMGR" (Marker F1; Figure 11). The target zone in the Middle Bakken was established based on the samples and electric logs from nearby offset wells. Prognosis predicted 35' of viable zone between the Bakken shales, the first 13' of which is above the desired target. The *Magnum 3-36-25H* required turning the lateral from northwest to due north shortly after exiting intermediate casing which resulted in the implementation of slides purely for azimuth. The initial prognosis called for a regional dip of a nearly flat 0.09° down which predicted the pay zone to drop ~16' over the course of the two section lateral. Gamma markers from a large collection of offset data showed little to no definition within the targeted interval. As the lateral progressed, the low gamma valleys of makers F2, F4, and F6 became the most recognizable.

The bit exited the Upper Bakken Shale at 10,970' MD (10,787' TVD) and passed into the top of the target interval at 11,017' MD (Note: See Figure for visual representation of this section). The wellbore landed at a casing point of 11,128' MD (10,810' TVD), approximately 23' into the

Middle Bakken and 10' below the "MBKMGR" marker (Marker F1). The wellbore continued through zone until contact with Marker F4 was seen at 11,851' MD. Stratigraphically, that put the bit 5' from the bottom of zone. The bit was pushed up to gain separation from the bottom of zone. The top of target was estimated to have dropped approximately 2' for dip of 0.14° up. While turning due north, the bit was also pushed up through zone. At 12,504' MD, Marker F4 was seen again with a 4' change in TVD, evidence of a dip change to ~0.36° up.

The bit continued within zone when gamma suggested the bit had contacted Marker F2 at 13,229' MD. Contact with this marker suggested the bit was roughly 4' below the top of target and dip flattened. The bit would rise and fall through target until making contact with Marker F2 at 13,604' MD. This showed that dip had increased dramatically to 0.40° up. As the lateral progressed repeated contact with Marker F4 at 14,741' and 15,502' MD showed dip decreasing to 0.07° and flat, respectively. The lateral remained within the targeted interval until 17,465' MD, when the wellbore exited the bottom of the target and slides had to be executed to redirect drilling back into zone. Local dip rates as high as 0.25° up made returning to zone difficult. After ~900' the bit reentered zone. Contact with Marker F4 at 19,530' MD would turn drilling back down as dip flatten to 0.06° up. As the lateral came to a close, gamma was evidence of dip steepening slightly to 0.08° up. As the wellbore approached TD, the bit began to build aggressively on rotation and nearly reach the top of zone. The final data point showed that formation had flattened.

The well ended with the bit about 16' below the Upper Bakken Shale at 21,175' MD. The final bottom hole location of *Magnum 3-36-25H* is 10,031.43' North and 1,374.86' west of surface location or approximately 265.17' FNL and 1,639.86' FEL, NW NE Sec. 25 T153N, R101W.

Figure 12: Dip profile showing lateral progression and dip calculations.

Conclusions

The *Magnum 3-36-25H* shows moderate potential for hydrocarbon production. The intervals marked as F1, F2, and F3 are recorded to have as much as 13% porosity on offsets. The Slawson fracture program will likely maximize the local porosity matrix and allow for increased production value. Gas levels were lower at the *Magnum 3-36-25H* than recorded at the previous Magnum laterals, but initial production numbers from *Magnum 1-36-25H* provide encouragement. The wellbore remained with in the targeted interval for over 90% of the lateral total footage which will help to maximize frac potential.

SUMMARY

- 1) The *Magnum 3-36-25H* was spud on May 07, 2012 with the Nabors #419 drilling rig. Vertical operations were completed on May 15, 2012.
- 2) Localized depletion of the Mission Canyon made vertical operations difficult; however, quick and effective use of LCM helped to prevent the loss of drilling fluid that was seen on the *Magnum 1-36-25H* and *Magnum 2-36-25H*.
- 3) A single HDBS bit drilled a 843' curve in 45.80 hours for an average drilling rate of 18.41 ft/hr. Four BHA's were required to complete the 10,047' long lateral
- 4) Lateral hole drag was reduced with the use of an inline reamer. The ease at which the bit was able to reach bottom while sliding should indicate a nicely groomed wellbore for liner insertion.
- 5) *Magnum 3-36-25H* reached TD at 02:45 CDT on June 10, 2012. The wellbore remained within the targeted interval for 91% of the total lateral footage.
- 6) The Slawson Exploration Co. *Magnum 3-36-25H* awaits completion operations to determine its ultimate production potential. 4" production liner will be set to bottom to facilitate an aggressive fracture stimulation program.

Respectfully submitted,

Brandon Híll C/o Sunburst Consulting, Inc. 10 June 2012

WELL DATA SUMMARY

OPERATOR:	Slawson Exploration Company, Inc
ADDRESS:	1675 Broadway, Suite 1600, Denver, CO 80202
WELL NAME:	Magnum 3-36-25H
<u>API #:</u>	33-053-04069
WELL FILE #:	22731
SURFACE LOCATION:	205' FSL & 265' FEL SE SE Section 36, T153N, R101W
FIELD/ PROSPECT:	Baker Field / Middle Bakken
COUNTY, STATE	McKenzie County, North Dakota
BASIN:	Williston
WELL TYPE:	Middle Bakken Horizontal
ELEVATION:	GL: 2,156' KB: 2,178"
SPUD/ RE-ENTRY DATE:	May 7, 2012
BOTTOM HOLE LOCATION:	10,031.43' North & 1,374.86' West of surface location or approx. 265.17' FNL & 1,639.86' FEL, NW NE Section 25, T153N, R101W
CLOSURE COORDINATES:	Closure Direction: 352.20° Closure Distance: 10,125.21'
TOTAL DEPTH / DATE:	21,175' on June 10, 2012 91% within target interval
TOTAL DRILLING DAYS:	35 days

Nabors #419

CONTRACTOR:

PUMPS: #1 & #2 - PZ Gardener 10 (stroke length - 10") 7", 5,0" liner

TOOLPUSHERS: Mark Olsen, Luke Croegaert, Kelly Krueger

FIELD SUPERVISORS: Bill Kinden, Kevin Wehrung

CHEMICAL COMPANY: Geo

MUD ENGINEER: Mark Dudley

MUD TYPE: Fresh water in surface hole

Diesel invert in vertical, curve, and lateral

MUD LOSSES: Invert Mud: 136 bbls

PROSPECT GEOLOGIST: Bob Bogle

WELLSITE GEOLOGISTS: Brandon Hill, Donovon Wilczynski

GEOSTEERING SYSTEM: Sunburst Digital Wellsite Geological System

ROCK SAMPLING: 30' from 8,400' - 11,150' & 50' from 11,150' -21,175' (TD)

SAMPLE EXAMINATION: Binocular microscope & fluoroscope

SAMPLE CUTS: N/A: Samples washed in diesel

GAS DETECTION: MSI (Mudlogging Systems, Inc.) TG- total gas

ELECTRIC LOGS: Weatherford

DIRECTIONAL DRILLERS: Sperry Sun

Tom Cobb, Mike Janes, Chris Dempsey

MWD: Sperry Sun

Aaron Craver, Joshua Flannagan

CASING: Surface: 9 5/8" 50 jts 36# K-55 set to 2,192'

Intermediate: 7" 184 JTS 29# HCP 110 , 71 JTS 32# HCP-110

set to 11,128'

SAFETY/ H₂S MONITORING: Oilind Safety

KEY OFFSET WELLS:

Texas Gas Exploration Corp. Lindvig 1-35

SE SE Sec. 35, T153N, R101W

McKenzie County, ND

Slawson Exploration Company, Inc

Magnum 1-36-25H

SW SW Section 36, T153N, R101W

McKenzie County, ND

Slawson Exploration Company, Inc

Magnum 2-36-25H

SE SE Section 36, T153N, R101W

McKenzie County, ND

WELL LOCATION PLAT
Slawson Exploration Company, Inc.
1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

205 feet from the south line and 265 feet from the east line (surface location)
Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location) Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site — State of North Dakota

Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location)

Latitude 48°03'09.063" North; Longitude 103°36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

NOTE: All land corners are assumed unless otherwise noted. The well location shown hereon is not an as-built location.

Brian L. Schmalz 8/26/2011 Surveyed By N.D.P.L.S. # 6809 Date

Vertical Control Datum Used Sea-Level Datum of NAVD 88 Based on elevation derived from OPUS Solution on CP*KLJ 15-152-10 (iron rebar) Located a distance of 6192.72' on an azimuth of 270'16'47" from the SW corner of Section 36, T.153N., R.101W., 5th P.M. being at 2134.39' Elevation MSL.

Project No. 3712480 Book <u>OW-257</u> Pg. <u>47-50</u> Staking

Professional Consulting Engineers and Surveyors Registered in Registered in
North Dakota, South Dakota
Montana, Wyoming & Minnesota
Tele−Fax No. 701−483−2795
Bus. Phone No. 701−483−1284
P.O. Box 290
677 27th Ave. E.
Dickinson, North Dakota 58602
Certificate of Authorization ∦C−061

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plut shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee& **Jackson**

HORIZONTAL SECTION PLAT
Slawson Exploration Company, Inc.
1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

Magnum 3-30-25H

205 feet from the south line and 265 feet from the east line (surface location)

Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location)

Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site — State of North Dakota

Latitude 48*01'29.869" North; Longitude 103*36'18.972" West (surface location)

Latitude 48*03'09.063" North; Longitude 103*36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

All corners shown on this plat were found in the field during Slawson Exploration Company Magnum 3-36-25H oil well survey on August 26, 2011. Distances to all others are calculated. All azimuths are based on the south line of the southwest quarter of Section 36, being on an azimuth of 090'00'22".

Surveyed By	Field Book
B. Schmalz	OW-257
Computed & Drawn By	Project No.
Z. Theisen	3712480

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plat shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee & lacks<u>on</u> Engineers Surveyors Planners

HORIZONTAL SECTION PLAT Slawson Exploration Company, Inc. 1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

205 feet from the south line and 265 feet from the east line (surface location)

Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location)

Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site - State of North Dakota

Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location)

Latitude 48'03'09.063" North; Longitude 103°36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Scale 1"=1000"

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

All corners shown on this plat were found in the field during Slawson Exploration Company Magnum 3-36-25H oil well survey on August 26, 2011. Distances to all others are calculated. azimuths are based on the south line of the southwest quarter of Section 36, being on an azimuth of 090 00 22".

Surveyed By	Field Book
B. Schmalz	OW-257
Computed & Drawn By	Project No.
Z. Theisen	3712480

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plat shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee & **lackson**

BOTTOM HOLE LOCATION PLAT Slawson Exploration Company, Inc. 1675 Broadway, Suite 1600, Denver, Colorado 80202 Magnum 3-36-25H 205 feet from the south line and 265 feet from the east line (surface location) Section 36, T. 153 N., R. 101 W., 5th P.M. 250 feet from the north line and 1700 feet from the east line (bottom location) Section 25, T. 153 N., R. 101 W., 5th P.M. McKenzie County, North Dakota Surface owner @ well site — State of North Dakota Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location) Latitude 48°03'09.063" North; Longitude 103°36'39.969" West (bottom location) [Derived from OPUS Solution NAD-83(CORS96)] 090'39'56" - 5267.70' (Meas.) D. No. 5999, made by me, the same is Professional Land Surveyor, N.D. 1/16 Line survey plat notes of m that do hereby or under true and 090°19'14" - 2636.98 090°17<u>'22" - 2</u>625.79' (Meas.) (Megs.) 1/16 Line 000105'55' 130.87 (Cal rell Lices to all ot Lices to all ot the distribution of Section 3. † 090'00'22" fidential i you are that any lation is Confidentiality Notice: The inform legally privileged and confidential the use of recipients. If you are you are hereby notified that any or copying of this information is _ | = E | = E 090'00'22" - 2617.85' (Megs.) 089'59'07" - 2633.37' (Megs.) Scale 1"=1500" Kadrmas Computed & Drawn By Surveyed By Approved By Date Lee & Schmalz В. 1"=1500'Theisen Obrigewitsch 3/23/2012

Project No.

3712480

Layout

Revised

Materia

B.<u>H.</u>

ield Book

OW-

Jackson

Engineers Surve Planners

TIME VS DEPTH

Slawson Exploration Company, Inc Magnum 3-36-25H

DAILY DRILLING SUMMARY

	Formation	-		Niobrara	Niobrara	Dakota	Opeche	Kibbey	Charles	Mission Canyon
	24 Hr Activity	Repair mud pump motor coolong fan (electrical). Spud in at 13:30 on may 7, 2012. Drill from 80 - 1121. Received 54 joints 9 5/8 j55 36# casing from stock at black hills	Drill surface from 1121 - 1828. Service rig. Drill surface from 1828 - 2162 Circulate hole clean. Wiper trip to bit and back, no troubles. Drill from 2162 - 2192. Circulate hole clean. Trip out of hole for casing.	Lay down 8 inch drill collars. Rig up Wyoming casing. Make up float equipment and start running casing Repair pipe skate (downtime) Run 53 jnts 9-5/8 K55 36# STC casing,(2196.47 threads off, 2214 threads on) FC @ 2147 shoe @ 2192. 5 centralizers. Circulate casing while rigging up Baker Hughes cementers. Cement with 591 sks premium lite cement with 68%stf+3%cacl+.25 lbs/sk cello flake + 1% bwoc sodium metasilicate + 1 gals/100 sk fp-131 + 12% bwoc bentonitell (12 ppg and 2.39 yield) lead cement and 250 sks class G with .08%stf+2%cacl+.25 lbs/sk cello flake + 1 gals/100 sk FP-13L. (15.8 ppg and 1.16 yield) tail cement. Displace with 166.5 bbls fresh water. Plug down at 1918, floats held. Rig down cementers and cut off casing. Weld on cameron well head. Nipple up BOP's.	Nipple up BOP's. Pressure test BOP's 250 low, 5000 high, annular to 250 low, 3500 high. Clean surface water out of mud system, install wear bushing. Pick up mud motor and MWD. Trip in hole. Downtime for blown hose on top drive. Trip in hole. Displace water out of hole with invert. Install rotating heac rubber.	Rig serviceDrill cement and float equipment. Drill from 2192 - 5801 ROP = 156.9 fph	Drill from 5801 - 7068 ROP = 115.1 fph. Rig service. Drill from 7068 - 7245 ROP = 88.5 fph. Rig on down time for crack in pulsation block on only available pump. Tripping out of hole while being welded. Drill from 7245 - 7473 ROP = 76 fph. Rig on down time for crack in pulsation block on only available pump. Tripping out of hole while being welded.	Trip back in hole from shoe (downtime for pump repair). Wash 60 feet to bottom Drill from 7473 - 8410 ROP = 62.4 fph Rig service. Drill from 8410 - 8521 ROP = 37 fph.	Drill 8,519' - 8,596', Rig service, Drill 8,596' - 8,979', TOOH, Lay down BHA, Pick up BHA, TIH, Slip and cut drill line, Rig service, TIH	TIH, Ream/wash last 5 stands, Drill 8,979' - 9,073', Rig service, Drill 9,073' - 9,660'. Rig service, Drill 9,660' - 9,753'
	GPM	ı	ı		1	461	461	484	480	428
	SPM 2	1	1		1	26	102	102	101	
	SPM 1				-	26	100	0	0	06
	PP				1	2790	2790	2498	2719	2347
	RPM (MM)	1	1		1	150	174	140	139	124
	RPM (RT)	1	1		ı	20	90	90	20	50
WOB	(KIbs) MM	,			-		1	12	16	
WOB	(Klbs) RT					16	20	25	18	22
	Bit #	7	_	2	2	2	7	2	က	က
:	24 Hr Footage	ı	2,112	0	0	3,609	1,672	1,048	458	774
Depth	(0600 Hrs)	,08	2,192'	2,192'	2,192'	5,801	7,473'	8,521'	8,979'	9,753'
	Date 2012	8/9	6/9	5/10	5/11	5/12	5/13	5/14	5/15	5/16
	Day	~	2	ಣ	4	2	9	2	8	6

DAILY DRILLING SUMMARY

DAILY DRILLING SUMMARY

Day	Date 2012	Depth (0600 Hrs)	24 Hr Footage Bit #	Bit #	WOB (Klbs) RT	WOB (Kibs) MM	RPM (RT)	RPM (MM)	PP (SPM 1	SPM 1 SPM 2 GPM	GPM	24 Hr Activity	Formation
29	9/9	18,112'	183	9	6	28	55	257	3826	1	100	242	Drill 17,929' - 18,039', Rig service/work on top drive, Drill 18,039' - 18,112', Circulate bottoms up, TOOH, Lay down BHA	Middle Bakken
30	9/9	18,295'	183	7	11	38	53	244	3596	,	92	230	TOOH, Lay down BHA, Pick up BHA, TIH, Rig service, TIH, Drill 18,112' - 18,295'	Middle Bakken
31	2/9	18,640'	345	7	12	35	52	257	3733	100	-	242	242 Drill 18,295' - 18,639', Circulate bottoms up, TOOH	Middle Bakken
32	8/9	19,173	533	7RR	18	73	52	134	3871	94	ı	228	TOOH, Lay down BHA, Pick up BHA, TIH, Rig Service, TIH, Slip and cut, 228 TIH, Drill 18,640' - 19,173'	Middle Bakken
33	6/9	20,459	1,286	7RR	19	33	53	132	3933	93	-	225	225 Drill 19,173' - 19,791', Rig service, Drill 19,791' - 20,459'	Middle Bakken
34	6/10	21,174	2,001	7RR	19	49	53	132	3974	93	1	225	Drill 20,459' - 20,835', Rig service, Drill 20,835' - 21,175', TD well, Circulate 225 bottoms up, Wiper trip	Middle Bakken

DAILY MUD SUMMARY

'n/ ss 's)								2	2				6												5	8						
Gain/ Loss (bbls)	_	_	_	-	-	_	_	-/12	-/35	-/-	-/-	-/-	6/-	_	_	_	_	-/-	-/-	_	-/-	-/-	-/-	-/-	-/35	-/48	-/-	-/-	-/-	-/-	-/-	,
(%) Res/ HGS			-	4.48/5.94	4.66/5.65	4.51/5.06	3.66/5.65	5.86/4.49	6.51/5.00	6.24/5.35	6.24/5.35	5.29/6.01	5.44/6.15	-	-	-	-	5.26/4.85	5.26/4.77	-	5.11/5.20	5.10/5.33	5.25/5.46	5.26/5.33	89'5/05'9	7.35/5.47	5.38/5.41	5.25/5.59	5.97/5.86	5.36/5.55	5.28/6.67	1
300	-	i	-	25/31	53/28	18.5/22	22/29	24.5/34	32.5/42	34.5/44	36/48	29.5/38	27/34	-	-	-	-	31/38	22.5/29	-	25/33	25/33	24.5/33	27/37	27.5/38	28.5/39	26.5/35	25.5/34	26/35	23/31	22/29	10,10
Salinity (ppm)	1	-	-	212188	236891	264606	236891	229960	265761	311818	311818	311818	311818	-	-	-	-	279307	302345	-	311818	311818	311818	311818	251245	301190	996908	311818	301190	306966	286110	0017
Electrical Stability	•	-	-	670	735	825	820	840	610	635	610	202	800	-	-	-	-	525	755	-	820	890	900	920	980	1020	950	1030	1130	1050	1150	4000
AIK			-	0.5	2.4	2.6	2.1	2.3	2	1.7	1.95	2.2	2.2	-	-	-	-	2	2.55	-	4.3	4.3	4.2	4.2	3.3	3.8	3.7	3.7	3.7	3.7	1.5	
Excess Lime (lb/bbl)	1	1	-	0.65	3.12	3.38	2.73	2.99	2.6	2.21	2.54	2.86	2.86	-	-	-	-	2.6	3.32	-	5.59	5.59	5.46	5.46	4.29	4.94	4.81	4.81	4.81	4.81	1.95	
Cl ⁻ (mg/L)	1		-	28K	30k	34k	30k	29k	35k	43.5k	45k	45k	45k	-	-	-	-	46k	46k	-	45k	43k	44k	41k	32k	37k	38K	37k	37k	36K	35k	Ĺ
NAP/ H ₂ 0 (ratio)	1			77/23	77/23	77/23	77/23	77/23	76/24	76/24	76/24	76/24	76/24					20/30	72/28		76/24	77/23	77/23	76/24	76/24	77/23	77/23	78/22	77/23	78/22	77/23	70/02
NAP/ H20 (% by vol)	•		1	68/21.58	69/20/69	69.5/20.94	71/20.69	69/20.65	67/21.49	67/21.41	67/21.41	67/21.69	67/21.41	1	1	1	1	63/26.89	65/24.96	1	68/21.69	69/20.57	69/20.29	68/21.41	67/20.82	67/20.18	69/20.21	70/19.16	68/20.18	70/19.09	68/20.05	70/47 40
Cor. Solids (%)			-	10.42	10.31	9.56	9.31	10.35	11.51	11.59	11.59	11.31	11.59	-	-	-	-	10.11	10.04	-	10.31	10.43	10.71	10.59	12.18	12.82	10.79	10.84	11.82	10.91	11.95	07.04
Cake (API/ HTHP)	1			2	2	2	2	2	2	2	2	2	2					2	2		2	2	2	2	2	2	2	2	2	2	2	c
Gels (lbs/ 100 ft²)		-	-	6/2	2/8	2/2	6/8	9/10	12/14	11/12	14/16	10/13	10/12	-	-	-	-	9/11	2/8	-	11/14	11/14	11/13	12/15	13/15	14/15	12/13	11/12	12/13	11/12	9/10	40/44
YP (lbs/ 100 ft2)	1			12	12	7	14	19	19	19	24	17	14					14	13		16	16	17	20	21	21	17	17	18	16	14	77
PV (cP)			-	19	11	15	15	15	23	22	24	21	20	-		-	-	24	16	-	11	17	16	17	17	18	18	17	17	15	15	17
VIS (sec/q t)	ı		•	69	24	24	12	29	64	99	23	99	25	•	-	-	•	92	25	•	09	62	09	63	09	63	9	19	92	53	54	5.1
Mud WT (ppg)	8.3	8.3	8.3	2.6	9.6	9.2	9.2	9.2	9.8	6.6	6.6	9:02	10	-	-	-	-	9.75	9.7	-	2.6	9.7	9.75	9.7	6.6	10	9.7	9.7	6.6	9.7	10	0
Mud Depth	655	1,520'	2,168'	3,090'	7,045'	7,530'	8,704'	9,035	9,882'	10,300'	10,322	10,765	11,117	-	-	-	-	11,170	12,110'	-	13,440'	14,431	15,555'	16,255'	16,798'	16,798'	17,451'	18,037	18,112'	18,443'	18,640'	10 506'
Date 2012	80/90	60/90	05/10	05/11	05/12	05/13	05/14	05/15	05/16	05/17	05/18	05/19	05/20	05/21	05/22	05/23	05/24	05/25	05/26	05/27	05/28	05/29	02/30	05/31	06/01	06/02	06/03	06/04	90/90	90/90	20/90	00/30
Day	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	30	31

DAILY MUD SUMMARY

	F																		ľ
ă	υ (Day Date Mud W	힉ᆫ	b/ɔəs)		PV YP (lbs/	Gels (lbs/	Cake (API/	Cake Cor. N	AP/ H20 (NAP/ H20		Excess Lime Alk	Alk	Electrical Salinity	Salinity		LGS/ HGS	Gain/ Loss
5	7	Deptin	(ppg)	t)	(CF)	100 112)	100 ft²)	00 ft²) HTHP)	(%)	by voi)	(ratio) (mg/L) (ib/bbi)	(mg/L)	(lqq/ql)		Stability	(ppini)	300	(20)	(slqq)
~	60	32 06/09 20,722'	8.6		15	18	11/12	2	11.72	70/18.28	78/22	31k	2.6	2	1025	276997	24/33	276997 24/33 5.89/5.82	-/-
3	10	33 06/10 20,722'	9.8	23	15	18	11/12	2	11.72	70/18.28	78/22	31k	5.6	2	1025	276997	24/33	276997 24/33 5.89/5.82	-/-

BIT RECORD

Bit#	Size	Туре	Make	Model	Serial #	Jets	Depth In	Depth Out	Footage	Hours	Accum. Hours	Vert. Dev.
1	13 1/2	PDC		S11A	7-1-02d8	4x20	80,	2,192'	2,112'	40	40.00	Surface
2	8 3/4	PDC	SBOH	G59X3	11907278	4x16	2,192'	'676,8	6,787	48	88.00	Vertical
3	8 3/4	PDC	SBOH	G59X3	1195460	4x16	8,979'	10,300'	1,321	32.7	120.70	Vertical
4	8 3/4	PDC	SBQH	FXD55M	12003497	5x18	10,300'	11,143'	843'	45.8	166.50	Curve
2	9	PDC	HLIWS	SDI513	JE2393	5x16	11,143'	16,798'	5,655'	148.08	314.58	Lateral
9	9	PDC	Security	FX64	11975872	6x20	16,798'	18,112'	1,314'	44.58	359.16	Lateral
7	9	PDC	Security	FX64	11997490	6x20	18,112'	18,640'	528'	18.34	377.50	Lateral
7RR	9	PDC	Security	FX64	11997490	6x20	18,640'	21,175'	2,535'	48	425.50	Lateral

PLAN VIEW

FORMATION MARKERS & DIP ESTIMATES Slawson Exploration Company, Inc. - Magnum 3-36-25H

Dip Change Points	MD	TVD	TVD diff.	MD diff.	Dip	Dipping	Type of
						nb/down	Marker
Marker							
Gamma Marker F 4	11,072'	10,800.00				Flat	Gamma
Gamma Marker F 4	11,851'	10,798.09	-1.91	779.00	0.14	dN	Gamma
Gamma Marker F 4	12,504'	10,793.98	-4.11	653.00	0.36	dN	Gamma
Gamma Marker F 2	13,229'	10,793.98	0.00	725.00	0.00	Flat	Gamma
Gamma Marker F 2	13,604'	10,791.34	-2.64	375.00	0.40	dN	Gamma
Gamma Marker F 4	14,741	10,790.00	-1.34	1137.00	0.07	dN	Gamma
Gamma Marker F 4	15,502'	10,790.00	0.00	761.00	0.00	Flat	Gamma
Gamma Marker F 4	15,940'	10,792.62	2.62	438.00	-0.34	Down	Gamma
Gamma Marker F 2	16,574'	10,789.80	-2.82	634.00	0.25	dN	Gamma
Gamma Marker F 4	17,550'	10,788.30	-1.50	976.00	60.0	dN	Gamma
Gamma Marker F 4	18,731	10,783.20	-5.10	1181.00	0.25	dN	Gamma
Gamma Marker F 4	19,530'	10,782.30	-0.90	799.00	90.0	dN	Gamma
Gamma Marker F2	20,478'	10,781.00	-1.30	948.00	0.08	dN	Gamma
Gamma Marker F 1	21,175'	10,781.00	0.00	00.769	0.00	Flat	Gamma
Gross Dip							
Initial Target Contact	11,015'	10,800.00					
Projected Final Target Contact	21,175'	10,780.80	-19.20	10160.00	0.11	dΩ	Projection

Operator: Slawson Exploration Company, Inc. Well: Magnum 3-36-25H McKenzie State: ND County: QQ: SE SE Section: 36 Township: 153 N/S: W 101 E/W: Range: Footages: 205 FN/SL: 265

Kick-off: 5/18/2012
Finish: 6/9/2012
Directional Supervision:
Sperry Sun

Date: 6/18/2012 Time: 11:43

E F9 to re-calculate
Minimum Curvature Method (SPE-3362) Froposed dir:

[North and East are positive and South and West are negative, relative to surface location]

Proposed dir: 351.86

[F	TRUE		.,		,	DLS/
No.	MD	INC	AZM	TVD	N-S	E-W	SECT	100
Tie	10260.00	0.30	208.70	10258.85	-28.20	-51.04	-20.69	0.05
1	10306.00	1.62	296.19	10304.84	-28.02	-51.68	-20.42	3.55
2	10338.00	7.05	305.96	10336.74	-26.66	-53.68	-18.80	17.06
3	10370.00	13.00	307.32	10368.24	-23.33	-58.13	-14.86	18.61
4	10401.00	17.32	308.65	10398.15	-18.33	-64.51	-9.01	13.98
5	10433.00	20.84	307.38	10428.39	-11.90	-72.76	-1.47	11.08
6	10465.00	24.02	307.63	10457.96	-4.46	-82.44	7.26	9.94
7	10497.00	27.23	307.09	10486.81	3.93	-93.44	17.12	10.06
8	10528.00	30.57	305.72	10513.95	12.81	-105.51	27.62	10.98
9	10560.00	33.88	306.47	10541.02	22.87	-119.29	39.53	10.42
10	10592.00	36.67	306.55	10567.14	33.86	-134.14	52.52	8.72
11	10624.00	39.47	307.55	10592.33	45.76	-149.88	66.52	8.96
12	10656.00	42.26	307.40	10616.53	58.49	-166.50	81.48	8.72
13	10688.00	45.33	307.94	10639.62	72.03	-184.02	97.36	9.66
14	10719.00	47.56	307.66	10660.98	85.79	-201.77	113.50	7.22
15	10751.00	49.90	307.17	10682.09	100.41	-220.88	130.67	7.40
16	10783.00	52.81	306.78	10702.07	115.43	-240.84	148.37	9.14
17	10815.00	55.97	306.97	10720.70	131.04	-261.65	166.77	9.89
18	10847.00	59.31	307.01	10737.82	147.31	-283.24	185.93	10.44
19	10878.00	62.99	306.48	10752.78	163.55	-304.99	205.08	11.96
20	10910.00	66.72	306.43	10766.37	180.75	-328.29	225.42	11.66
21	10942.00	69.49	307.49	10778.31	198.61	-352.01	246.45	9.19
22	10974.00	72.67	307.37	10788.68	217.00	-376.05	268.06	9.94
23	11006.00	76.14	307.35	10797.28	235.70	-400.54	290.04	10.84
24	11037.00	80.35	307.37	10803.60	254.12	-424.66	311.68	13.58
25	11069.00	85.53	306.66	10807.53	273.23	-450.01	334.19	16.34
26	11094.00	87.90	306.83	10808.96	288.16	-470.01	351.80	9.50
27	11128.00	89.54	303.08	10809.72	307.63	-497.86	375.02	12.04
28	11160.00	90.12	304.73	10809.82	325.48	-524.42	396.45	5.47
29	11223.00	90.62	306.19	10809.41	362.02	-575.73	439.90	2.45
30	11317.00	90.28	307.89	10808.67	418.64	-650.76	506.57	1.84
31	11412.00	91.02	310.59	10807.59	478.73	-724.32	576.46	2.95
32	11507.00	89.97	313.07	10806.77	542.08	-795.10	649.20	2.83
33	11601.00	89.85	316.64	10806.92	608.37	-861.72	724.25	3.80
34	11696.00	90.25	319.37	10806.84	678.96	-925.28	803.14	2.90
35	11791.00	90.06	322.96	10806.58	752.95	-984.84	884.81	3.78
36	11886.00	91.39	326.39	10805.38	830.44	-1039.76	969.30	3.87
37	11981.00	91.02	327.00	10803.38	909.82	-1091.91	1055.26	0.75
38	12076.00	91.20	328.80	10801.54	990.28	-1142.38	1142.05	1.90
39	12171.00	90.68	331.23	10799.98	1072.55	-1189.85	1230.21	2.62

351.86

Operator: Slawson Exploration Company, Inc. Well: Magnum 3-36-25H County: McKenzie State: ND QQ: SE SE Section: 36 Township: 153 N/S: W E/W: Range: 101 Footages: 205 FN/SL: 265 FE/WL:

Kick-off: 5/18/2012
Finish: 6/9/2012
Directional Supervision:
Sperry Sun

Date: 6/18/2012 Time: 11:43

F9 to re-calculate

Minimum Curvature Method (SPE-3362)

Proposed dir:

[North and East are positive and South and West are negative, relative to surface location]

[North	and East are	positive and S		est are negativ	e, relative to	surface locati	ion]	
			TRUE					DLS/
No.	MD	INC	AZM	TVD	N-S	E-W	SECT	100
40	12266.00	90.46	333.84	10799.03	1156.83	-1233.66	1319.85	2.76
41	12361.00	89.11	335.66	10799.39	1242.74	-1274.18	1410.64	2.39
42	12456.00	89.01	339.74	10800.95	1330.61	-1310.22	1502.72	4.30
43	12551.00	89.17	342.14	10802.46	1420.38	-1341.23	1595.98	2.53
44	12646.00	89.75	345.42	10803.35	1511.58	-1367.76	1690.02	3.51
45	12741.00	89.91	348.94	10803.64	1604.20	-1388.84	1784.69	3.71
46	12836.00	89.94	351.50	10803.76	1697.81	-1404.98	1879.64	2.69
47	12932.00	90.12	353.75	10803.71	1793.01	-1417.30	1975.63	2.35
48	13027.00	90.15	354.79	10803.49	1887.54	-1426.78	2070.54	1.10
49	13122.00	90.59	358.52	10802.87	1982.36	-1432.33	2165.19	3.95
50	13154.00	90.68	359.58	10802.52	2014.35	-1432.86	2196.94	3.32
51	13217.00	90.80	358.90	10801.70	2077.34	-1433.69	2259.41	1.10
52	13280.00	91.17	359.12	10800.62	2140.32	-1434.78	2321.91	0.68
53	13312.00	91.57	358.96	10799.86	2172.31	-1435.32	2353.65	1.35
54	13375.00	90.74	359.33	10798.59	2235.28	-1436.26	2416.13	1.44
55	13407.00	90.12	359.34	10798.35	2267.28	-1436.63	2447.85	1.94
56	13501.00	89.85	359.72	10798.37	2361.28	-1437.40	2541.01	0.50
57	13596.00	89.63	359.26	10798.80	2456.27	-1438.24	2635.17	0.54
58	13691.00	90.00	358.68	10799.11	2551.26	-1439.95	2729.44	0.72
59	13787.00	89.51	358.94	10799.52	2647.23	-1441.94	2824.73	0.58
60	13882.00	90.12	358.72	10799.83	2742.21	-1443.88	2919.03	0.68
61	13976.00	89.81	359.01	10799.88	2836.20	-1445.75	3012.33	0.45
62	14071.00	89.75	358.30	10800.25	2931.17	-1447.98	3106.66	0.75
63	14164.00	89.11	357.96	10801.17	3024.11	-1451.01	3199.10	0.78
64	14259.00	90.93	357.85	10801.14	3119.05	-1454.48	3293.56	1.92
65	14353.00	90.55	358.04	10799.93	3212.98	-1457.85	3387.03	0.45
66	14447.00	89.69	359.08	10799.73	3306.94	-1460.22	3480.38	1.44
67	14540.00	90.89	1.15	10799.26	3399.94	-1460.03	3572.41	2.57
68	14634.00	89.66	0.15	10798.81	3493.93	-1458.96	3665.30	1.69
69	14728.00	90.71	1.33	10798.50	3587.92	-1457.75	3758.17	1.68
70	14821.00	90.74	1.19	10797.33	3680.89	-1455.70	3849.92	0.15
71	14914.00	91.20	1.95	10795.75	3773.84	-1453.16	3941.57	0.96
72	15008.00	89.01	0.96	10795.58	3867.80	-1450.77	4034.25	2.56
73	15101.00	89.78	0.46	10796.56	3960.79	-1449.62	4126.14	0.99
74	15196.00	89.14	0.60	10797.46	4055.78	-1448.74	4220.05	0.69
75	15291.00	89.32	0.09	10798.73	4150.77	-1448.17	4314.00	0.57
76	15385.00	89.97	0.33	10799.32	4244.76	-1447.82	4407.00	0.74
77	15480.00	90.89	0.57	10798.60	4339.76	-1447.08	4500.93	1.00
78	15543.00	91.39	0.75	10797.35	4402.74	-1446.35	4563.17	0.84
79	15575.00	90.80	1.39	10796.74	4434.73	-1445.75	4594.76	2.72

351.86

Operator: Slawson Exploration Company, Inc. Well: Magnum 3-36-25H County: McKenzie State: ND QQ: SE SE Section: 36 Township: 153 N/S: W E/W: Range: 101 Footages: 205 FN/SL: 265 FE/WL:

Kick-off: 5/18/2012
Finish: 6/9/2012
Directional Supervision:
Sperry Sun

Date: 6/18/2012 Time: 11:43

F9 to re-calculate

Minimum Curvature Method (SPE-3362)

Proposed dir:

[North and East are positive and South and West are negative, relative to surface location]

[North	and East are	positive and S	South and We	est are negativ	e, relative to	surface locat	ion]	
			TRUE					DLS/
No.	MD	INC	AZM	TVD	N-S	E-W	SECT	100
80	15607.00	89.78	1.49	10796.58	4466.72	-1444.95	4626.31	3.20
81	15669.00	89.20	0.60	10797.13	4528.70	-1443.82	4687.51	1.71
82	15733.00	88.43	359.65	10798.45	4592.69	-1443.68	4750.83	1.91
83	15764.00	88.58	359.91	10799.26	4623.68	-1443.80	4781.52	0.97
84	15796.00	89.85	359.79	10799.70	4655.67	-1443.88	4813.21	3.99
85	15860.00	89.75	359.57	10799.92	4719.67	-1444.24	4876.61	0.38
86	15955.00	89.97	359.60	10800.16	4814.67	-1444.93	4970.75	0.23
87	16050.00	90.34	359.37	10799.90	4909.66	-1445.78	5064.91	0.46
88	16144.00	91.33	359.89	10798.53	5003.65	-1446.39	5158.04	1.19
89	16240.00	89.48	0.84	10797.85	5099.64	-1445.78	5252.97	2.17
90	16335.00	89.69	0.31	10798.54	5194.63	-1444.82	5346.87	0.60
91	16430.00	90.37	359.83	10798.49	5289.63	-1444.71	5440.90	0.88
92	16462.00	90.31	359.93	10798.30	5321.63	-1444.77	5472.59	0.36
93	16525.00	90.46	359.70	10797.88	5384.63	-1444.98	5534.98	0.44
94	16557.00	90.71	0.34	10797.55	5416.63	-1444.97	5566.65	2.15
95	16621.00	90.59	1.11	10796.82	5480.62	-1444.16	5629.88	1.22
96	16716.00	90.22	1.38	10796.15	5575.59	-1442.09	5723.61	0.48
97	16804.00	89.29	2.84	10796.53	5663.53	-1438.85	5810.20	1.97
98	16835.00	88.37	3.17	10797.16	5694.48	-1437.23	5840.61	3.15
99	16897.00	89.60	2.50	10798.26	5756.39	-1434.16	5901.46	2.26
100	16990.00	90.19	3.48	10798.43	5849.27	-1429.31	5992.71	1.23
101	17085.00	89.44	3.00	10798.74	5944.11	-1423.94	6085.84	0.94
102	17180.00	89.35	2.75	10799.74	6038.99	-1419.18	6179.09	0.28
103	17275.00	89.04	3.12	10801.07	6133.85	-1414.31	6272.31	0.51
104	17370.00	89.07	1.09	10802.64	6228.77	-1410.83	6365.78	2.14
105	17465.00	89.54	1.09	10803.79	6323.75	-1409.02	6459.54	0.49
106	17559.00	89.75	1.33	10804.38	6417.72	-1407.03	6552.29	0.34
107	17654.00	90.03	0.14	10804.56	6512.71	-1405.81	6646.15	1.29
108	17749.00	90.46	0.36	10804.15	6607.71	-1405.40	6740.13	0.51
109	17813.00	90.62	0.45	10803.55	6671.71	-1404.95	6803.42	0.29
110	17844.00	90.56	0.02	10803.23	6702.71	-1404.82	6834.09	1.40
111	17939.00	89.97	359.51	10802.79	6797.70	-1405.21	6928.18	0.82
112	18034.00	89.88	358.43	10802.91	6892.69	-1406.92	7022.45	1.14
113	18065.00	90.25	358.80	10802.88	6923.68	-1407.67	7053.24	1.69
114	18129.00	90.74	358.76	10802.33	6987.66	-1409.03	7116.77	0.77
115	18192.00	91.33	359.10	10801.19	7050.64	-1410.21	7179.28	1.08
116	18224.00	91.51	359.19	10800.40	7082.62	-1410.68	7211.01	0.63
117	18256.00	91.63	359.36	10799.52	7114.61	-1411.09	7242.73	0.65
118	18319.00	90.65	358.75	10798.26	7177.59	-1412.13	7305.22	1.83
119	18415.00	90.96	358.78	10796.92	7273.56	-1414.20	7400.51	0.32

351.86

Operator: Slawson Exploration Company, Inc. Well: Magnum 3-36-25H McKenzie State: ND County: QQ: SE SE Section: 36 Township: 153 N/S: W E/W: Range: 101 205 FN/SL: Footages: 265 FE/WL:

Kick-off: 5/18/2012
Finish: 6/9/2012
Directional Supervision:
Sperry Sun

Date: 6/18/2012 Time: 11:43

F9 to re-calculate

Minimum Curvature Method (SPE-3362)

Proposed dir:

[North and East are positive and South and West are negative, relative to surface location]

[North	and East are	positive and s	TRUE	est are negativ	e, relative to	surface local	ionj	DLS/
No.	MD	INC	AZM	TVD	N-S	E-W	SECT	100
120	18510.00	91.30	359.23	10795.04	7368.52	-1415.85	7494.76	0.59
121	18606.00	90.65	358.98	10793.41	7464.50	-1417.34	7589.98	0.73
122	18670.00	90.52	358.90	10792.76	7528.48	-1417.54	7653.49	0.73
123	18701.00	90.49	358.63	10792.70	7559.47	-1419.20	7684.26	0.24
123	18795.00	90.49	358.98	10792.48	7653.45	-1419.20	7777.56	0.50
125	18827.00	91.02	358.99	10791.42	7685.44	-1421.70	7809.31	0.69
125	18890.00	89.54	359.39	10790.92	7748.43	-1421.72	7809.31 7871.80	2.43
120	18953.00	89.69	359.39	10790.01	7811.42	-1422.01	7934.26	0.26
127	18985.00	89.09 89.75	359.52 359.67	10791.03	7811.42 7843.42	-1423.52 -1423.61	7934.20 7965.97	1.11
129	19080.00	88.92	358.98	10792.29	7938.41	-1424.72	8060.16	1.14
130	19112.00	88.64	358.76	10792.97	7970.39	-1425.36	8091.91	1.11
131	19175.00	90.31	358.98	10793.55	8033.38	-1426.60	8154.44	2.67
132	19269.00	90.86	359.30	10792.59	8127.36	-1428.01	8247.67	0.68
133	19363.00	90.43	359.32	10791.53	8221.35	-1429.14	8340.87	0.46
134	19458.00	89.88	358.85	10791.27	8316.33	-1430.66	8435.12	0.76
135	19553.00	90.00	358.92	10791.37	8411.32	-1432.51	8529.41	0.15
136	19648.00	88.89	358.32	10792.29	8506.28	-1434.79	8623.74	1.33
137	19743.00	89.91	359.83	10793.29	8601.26	-1436.33	8717.98	1.92
138	19838.00	91.08	0.74	10792.47	8696.25	-1435.85	8811.95	1.56
139	19933.00	91.30	1.23	10790.50	8791.22	-1434.22	8905.72	0.57
140	19964.00	91.14	1.52	10789.83	8822.20	-1433.48	8936.29	1.07
141	19996.00	90.43	1.44	10789.40	8854.19	-1432.65	8967.84	2.23
142	20027.00	89.54	0.69	10789.40	8885.18	-1432.08	8998.44	3.75
143	20122.00	89.51	1.18	10790.19	8980.17	-1430.53	9092.24	0.52
144	20154.00	90.59	1.79	10790.16	9012.16	-1429.70	9123.79	3.88
145	20217.00	89.69	2.26	10790.01	9075.12	-1427.47	9185.80	1.61
146	20312.00	90.03	2.26	10790.24	9170.04	-1423.72	9279.24	0.36
147	20407.00	91.17	2.80	10789.25	9264.94	-1419.53	9372.59	1.33
148	20502.00	91.36	3.27	10787.15	9359.78	-1414.50	9465.77	0.53
149	20597.00	90.09	2.29	10785.95	9454.66	-1409.90	9559.04	1.69
150	20692.00	89.63	2.25	10786.18	9549.59	-1406.13	9652.47	0.49
151	20786.00	92.03	2.58	10784.82	9643.49	-1402.17	9744.87	2.58
152	20882.00	90.28	2.71	10782.88	9739.36	-1397.74	9839.15	1.83
153	20945.00	90.52	4.26	10782.44	9802.24	-1393.91	9900.85	2.49
154	20977.00	90.71	5.03	10782.10	9834.13	-1391.32	9932.06	2.48
155	21071.00	88.52	4.08	10782.73	9927.83	-1383.86	10023.75	2.54
156	21127.00	89.97	5.29	10783.47	9983.63	-1379.28	10078.35	3.37
PTB	21175.00	89.97	5.29	10783.50	10031.43	-1374.86	10125.03	0.00
	211,5.00	07.71	5.27	10,05.50	10051.15	1371.00	10125.05	0.00

DEVIATION SURVEYS

Depth	Inclination	Azimuth
0	0.00	0.00
2192	0.00	0.00
2196	1.14	201.83
2207	1.14	209.57
2255	1.32	252.46
2298	2.46	266.26
2350	2.81	271.36
2446	2.81	272.67
2541	2.64	270.39
2637	2.46	269.51
2732	2.11	269.07
2828	2.11	268.37
2923	2.11	270.83
3019	1.93	263.53
3113	2.02	268.28
3209	1.67	270.48
3305	0.62	271.18
3401	0.62	261.86
3496	0.70	266.52
3591	0.62	244.72
3688	0.53	281.02
3784	0.26	263.36
3880	0.18	242.53
3974	0.00	50.13
4070	0.26	241.56
4165	0.26	196.47
4261	0.18	145.06
4356	0.44	144.27
4452	0.18	171.34
4547	0.09	57.52
4642	0.18	14.01
4737	0.00	118.51
4833	0.09	102.52
4929	0.18	118.95
5024	0.18	121.24
5119	0.26	81.51
5215	0.53	125.98
5310	0.70	69.38
5406	0.79	96.28
5501	0.88	98.65
5596	0.44	246.57
5691	0.44	246.92
5786	0.79	256.41
5882	1.23	247.36
5977	0.53	252.46
6072	0.26	309.94

Depth	Inclination	Azimuth
6167	0.62	27.99
6263	0.70	15.59
6359	0.70	16.47
6454	0.79	26.14
6550	0.44	17.53
6644	0.53	19.02
6740	0.62	29.13
6835	0.26	39.94
6930	0.09	119.39
7026	0.00	99.53
7122	0.26	129.94
7218	0.62	131.61
7314	0.26	120.89
7409	0.44	108.85
7503	0.53	142.68
7599	0.62	161.05
7695	0.62	164.83
7790	0.53	174.94
7886	0.70	164.04
7982	1.23	168.79
8077	0.79	224.86
8173	0.79	196.47
8268	0.88	197.97
8364	0.88	192.17
8460	0.88	204.73
8556	0.97	191.64
8652	0.97	204.21
8746	1.14	198.05
8842	0.70	203.68
8936	0.53	208.51
9032	0.53	229.26
9127	0.44	221.52
9222	0.70	210.71
9319	0.62	213.26
9320	0.70	218.20
9340	0.70	222.10
9360	0.60	223.70
9380	0.60	223.70
9400	0.60	219.80
9420	0.70	214.40
9440	0.60	220.30
9460	0.60	223.00
9480	0.60	227.00
9500	0.60	216.20
9520	0.60	218.40
9540	0.60	224.40

Depth	Inclination	Azimuth
9560	0.60	226.90
9580	0.60	228.20
9600	0.60	229.70
9620	0.60	232.50
9640	0.60	239.20
9660	0.60	235.00
9680	0.60	221.60
9700	0.60	236.20
9720	0.50	221.20
9740	0.50	225.80
9760	0.40	221.20
9780	0.40	224.00
9800	0.40	226.80
9820	0.40	232.00
9840	0.40	222.00
9860	0.40	225.70
9880	0.30	219.70
9900	0.30	226.30
9920	0.40	234.90
9940	0.50	230.50
9960	0.50	225.20
9980	0.50	222.00
10000	0.50	225.60
10020	0.50	225.70
10040	0.40	227.50
10060	0.40	227.80
10080	0.40	227.90
10100	0.40	226.30
10120	0.40	225.00
10140	0.40	226.60

Depth	Inclination	Azimuth
10160	0.30	219.60
10180	0.40	219.10
10200	0.30	219.30
10220	0.30	213.50
10240	0.30	210.70
10260	0.30	208.70
10306	1.62	296.19
10060	0.40	227.80
10080	0.40	227.90
10100	0.40	226.30
10120	0.40	225.00
10140	0.40	226.60
10160	0.30	219.60
10180	0.40	219.10
10200	0.30	219.30
10220	0.30	213.50
10240	0.30	210.70
10260	0.30	208.70
10306	1.62	296.19
10080	0.40	227.90
10100	0.40	226.30
10120	0.40	225.00
10140	0.40	226.60
10160	0.30	219.60
10180	0.40	219.10
10200	0.30	219.30
10220	0.30	213.50
10240	0.30	210.70
10260	0.30	208.70
10306	1.62	296.19

FORMATION TOPS & STRUCTURAL RELATIONSHIPS

					Subject Well:	≝					Offset Wells:	;;
Operator:				Slawson Ex	Slawson Exploration Company, Inc	ompany, lı	JC					
Well Name:				Ma	Magnum 3-36-25H	·25H						
Location:				205	205' FSL & 265' FEL	FEL						
				SE SE Sec	SE SE Section 36, T153N, R101W	33N, R101M	/					
Elevation:	GL: 2,156' Sub: 22	Sub: 22'	KB:	KB: 2,178'								
Formation/	Prog.	Prog.	Driller's	Driller's	E-Log	Datum	Interval	Thickness	Dip To	Dip To	Dip To	Dip To
Zone	Тор	Datum (MSL)	Depth Top (MD)	Depth Top Depth Top Top (TVD) (MD) (TVD)	Top (TVD)	(MSL)	Thickness	to Target	Prog.	Lindvig 1-35	Magnum 1-36-25H	Magnum 2-36-25H
Tyler					8,095	-5,917	348'	2,712'		-251	-240′	
Kibbey Lime	8,299'	-6,121	8,443'	8,443	8,445	-6,265	149'	2,364'	-144'	-41	-32	-44'
Charles	8,446'	-6,268'	8,592'	8,592	8,591	-6,414	.829	2,215'	-146'	-42'	.2-	10,
Base Last Salt	9,254'	-2,076'	9,265	9,265	9,266'	-7,087	215'	1,542'	-11'	-33	-30,	.9
Mission Canyon	9,446'	-7,268'	9,480	9,480	9,483	-7,302	232	1,327	-34	-28	-29'	13'
Lodgepole	10,016'	-7,838'	10,017	10,017	10,017	-7,839'	•	790'	-1,	-24'	-24'	5'
LP 1	-	-	-	-	-	-	-	1	-	-	-	-
LP 2	-	-	10,497	10,486		-8,308	-	321'	•	-30,	-28′	-1.
LP 3	-	-		•		•	-	-	•	-	•	
False Bakken	-	-	10,898'	10,762'		-8,584	10,	45'	-	-37	-26'	1,
Upper Bakken Shale	10,736'	-8,558	10,992'	10,772'		-8,594	15'	35'	-36	-36	-28	-2'
Middle Bakken	-		10,970'	10,787		-8,609	20,	20'		-32	-27	-2'
M. Bakken (Target)	10,758'	-8,580	11,015'	10,807		-8,629'	•	,0	-49'	-37'	-29'	-4'

CONTROL DATA

Operator:	Te	Texas Gas E	Exploration Corp.	orp.	Slaws	on Explora	Slawson Exploration Company, Inc	ny, Inc	Slaws	on Explora	Slawson Exploration Company, Inc	ny, Inc
Well Name:		Lind	dvig 1-35			Magnur	Magnum 1-36-25H			Magnur	Magnum 2-36-25H	
Location:	SE	SE SE Sec. 38	35, T153N, R101W	01W	SW S	W Section	SW SW Section 36, T153N, R101W	101W	SES	E Section ;	SE SE Section 36, T153N, R101W	101W
		McKenzie	ie County, ND			McKenzie	McKenzie County, ND			McKenzie	McKenzie County, ND	
	<u>,</u>	1.1 mi. W of N	Magnum3-36-25H	25H	0.75	5 mi. W of №	0.75 mi. W of Magnum 3-36-25H	-25H	2	4' W of Ma	24' W of Magnum 3-36-25H	Η
Elevation:		KB:	2,226'			KB:	KB: 2,209'			KB:	KB: 2,178'	
Formation/	E-Log	Datum	Interval	Thickness	E-Log	Datum	Interval	Thickness	E-Log	Datum	Interval	Thickness
Zone	Тор	(MSL)	Thickness	to Target	Тор	(MSL)	Thickness	to Target	Тор	(MSL)	Thickness	to Target
Tyler	7,892'	-2,666'	.829	2,926'	7,886	-2,677	,955	2,923'	7,858'	-	-	
Kibbey Lime	8,450'	-6,224	148'	2,368'	8,442'	-6,233	174'	2,367'	8,399	-6,221	203'	2,404'
Charles	8,598'	-6,372	682'	2,220'	8,616'	-6,407	,099	2,193'	8,602	-6,424	,699	2,201
Base Last Salt	9,280'	-7,054	220'	1,538'	9,266'	-7,057	216'	1,543'	9,271	-7,093	222'	1,532
Mission Canyon	9,500'	-7,274'	541'	1,318'	9,482'	-7,273	542'	1,327	9,493'	-7,315	529'	1,310'
Lodgepole	10,041	-7,815	163'	.222	10,024	-7,815	168	785	10,022	-7,844	-	781'
LP 1	10,204'	-7,978'	300,	614'	10,192'	-2,983	767	617	-	-	-	-
LP 2	10,504'	-8,278'	259'	314'	10,489	-8,280	•	320'	10,485	-8,307	-	-
LP3	10,763'	-8,537	10,	.22	-	-	•		-	-	-	-
False Bakken	10,773'	-8,547	11,	45'	10,767	-8,558	,8	42'	10,763'	-8,585	.2	40'
Upper Bakken Shale	10,784'	-8,558'	16'	34'	10,775	-8,566'	16'	34'	10,770'	-8,592	15'	33'
Middle Bakken	10,800'	-8,574	18,	18'	10,791	-8,582	18,	18'	10,785	-8,607	18,	18'
M. Bakken (Target)	10,818'	-8,592'	16'	,0	10,809'	-8,600′	17.	,0	10,803'	-8,625'	16'	,0
Lower Bakken Shale	10,834'	-8,608'		-16'	10,826'	-8,617		-17'	10,819'	-8,641		-16'

SUNBURST ■ Magnum 3-36-25H ■ Magnum 1-36-25H ■ Magnum 2-36-25H Sledy Todal ■ Lindvig 1-35 UBANET BSIE Slawson Exploration Company, Inc - Magnum 3-36-25H **۵ چ**> **INTERVAL THICKNESS '**%> %OGS (100) LOSILES LOSS IN 1/65 1/6 1 6 8 E E Selfer OUIT AODDIN 750' 250' 100 800' 700 650' 600' 550' 500' 450' 350' 300' 200' 150' 50' 400' Interval Thickness (ft)

TARGET PROXIMATION

Formation/ Zone:		Proposed Top	Proposed Top of Target From:	
	Lindvig 1-35	Magnum 1-36-25H	Magnum 2-36-25H	Average of Offset Wells
Kibbey Lime	10,811'	10,810'	10,847	10,823'
Charles	10,812'	10,785	10,793'	10,797'
Base Last Salt	10,803	10,808′	10,797'	10,803'
Mission Canyon	10,798'	10,807	10,790′	10,798′
Lodgepole	10,794'	10,802′	10,798'	10,798'
LP 1			ı	
LP 2	10,800'	10,806′		10,803'
LP3				
False Bakken	10,807	10,802′	10,802′	10,804'
Upper Bakken Shale	10,806'	10,805	10,805'	10,805'
Middle Bakken	10,805	10,805	10,805'	10,805'
M. Bakken (Target)	10,807'	10,807′	10,807'	10,807'
, ,				

■ Magnum 3-36-25H ☐ Magnum 1-36-25H ■ Magnum 2-36-25H ■Lindvig 1-35 Slawson Exploration Company, Inc - Magnum 3-36-25H **ISOPACH TO TARGET** 1,500' 1,200' 1,100' 1,000,1 800 7007 200, 2,400 2,300 2,200 2,100 2,000 1,900,1 1,800 1,700′ 1,600,1 1,400 1,300' ,006 ,009

Distance to Target (ft)

CONTRACT SUDDIN

Sets Leaves 18 day

LOANGE OSIE

,^>

چ>

'~>

*/_{O(36)00}>

LOALES LOSSEIN

1/85 1/8 1 8 8 E. P. S. S. E. P. S. E.

out Jaggist

100

300' - 200' -

LITHOLOGY

Rig crews caught samples in 30' intervals from 8,400' – 11,150' MD and 50' samples from 11,150'–21,128' MD (TD). Gamma ray marker tops have been inserted into the sample descriptions below for reference. Samples were examined wet and dry under a binocular microscope. Sample descriptions begin just above the Kibbey Lime. The drilling fluid was diesel invert mud from surface casing exit (2,192' MD) to 21,175' MD (TD).

Drilling in Kibbey Formation [Miss, Big Snowy Gp]

8400-8430 SILTSTONE: orange, friable, sub blocky to sub platy, calcareous cement, moderately cemented, no visible porosity

"Kibbey Lime" [Miss, Big Snowy Gp]

8,443' MD (8,443' TVD, -6,265')

8430-8460 ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, silty grained in part, no visible porosity; SILTSTONE: as above

8460-8490 LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; SILTSTONE: pink orange, firm to trace hard, sub blocky to sub platy, calcareous cement, well to trace very well cemented, no visible porosity

8490-8520 LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; SILTSTONE: pink orange, firm to trace hard, sub blocky to sub platy, calcareous cement, well to trace very well cemented, no visible porosity

8520-8550 ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, silty grained in part, no visible porosity,

8550-8592 ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, silty grained in part, no visible porosity

Charles [Miss, Madison Gp]

8,592' MD (8,592' TVD, -6,414')

8592-8610 ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, silty grained in part, no visible porosity; salt

8610-8640 ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, silty grained in part, no visible porosity; salt

8640-8670 SALT: frosted to trace translucent to trace milky, crystalline, hard, anhedral, no visible porosity

8670-8700 SALT: frosted to trace translucent to trace milky, crystalline, hard, anhedral, no visible porosity; ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity

8700-8730 SALT: frosted to trace translucent to trace milky, crystalline, hard, anhedral, no visible porosity; ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity

8730-8760 SALT: frosted to trace translucent to trace milky, crystalline, hard, anhedral, no visible porosity; ARGILLACEOUS LIMESTONE: light gray to gray, mudstone to wackestone, microcrystalline, firm, earthy texture, no visible porosity

8760-8790 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity

8790-8820 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

8820-8850 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity;

8850-8880 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

8880-8910 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

8910-8940 SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity

8940-8970 SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity

8970-9000 SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

9000-9030 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity: LIMESTONE: mudstone, gray, light gray, firm, microcrystalline to very fine crystalline, dolomitic in part, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

9030-9060 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity: LIMESTONE: mudstone, gray, light gray, firm, microcrystalline to very fine crystalline, dolomitic in part, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity

9060-9090 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; ANHYDRITE: off white, cryptocrystalline, soft, amorphous texture, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity

9090-9120 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; ANHYDRITE: cream to off white, soft, amorphous; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity

9120-9150 ANHYDRITE: cream to off white, soft, amorphous; ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; LIMESTONE: mudstone, light brown, medium to light gray, firm, microcrystalline to very fine crystalline, dolomitic in part, no visible porosity;

9150-9180 ANHYDRITE: cream to off white, soft, amorphous; ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity

9180-9210 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; LIMESTONE: mudstone, gray, light gray, firm, microcrystalline to very fine crystalline, dolomitic in part, no visible porosity

9210-9240 ARGILLACEOUS LIMESTONE: mudstone, gray, light gray, occasional off white, firm, microcrystalline to very fine crystalline, no visible porosity; SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity

9240-9265 SALT: frosted to occasional clear, crystalline, hard, anhedral to trace subhedral, no visible porosity

Base of Charles Salt [Miss., Madison Gp]

9,265' MD (9,265' TVD, -7,087')

9265-9300 very poor sample quality ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, firm, microcrystalline to very fine crystalline, no visible porosity; trace ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture

9300-9330 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown to light brown gray, microcrystalline, friable to firm, earthy to slightly crystalline texture; ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture

9330-9360 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown to light brown gray, microcrystalline, friable to firm, earthy to slightly crystalline texture; ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture

9360-9390 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown to light brown gray, microcrystalline, friable to firm, earthy to slightly crystalline texture, no visible porosity; ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture, no visible porosity or oil stain

9390-9420 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown to light brown gray, occasional medium brown, trace of white, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, no visible porosity, trace spotty light brown oil stain

9420-9450 Sample highly contaminated with LCM, ARGILLACEOUS LIMESTONE: mudstone, light gray to gray, microcrystalline, friable, earthy texture, trace disseminated pyrite, no visible porosity; ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture, no visible porosity

9450-9480 Sample highly contaminated with LCM, ARGILLACEOUS LIMESTONE: mudstone, medium to light brown, light gray to gray, microcrystalline, friable, earthy texture, trace disseminated pyrite, no visible porosity; trace ANHYDRITE: cream to milky white, microcrystalline, soft, chalky texture, no visible porosity

9480-9510 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown gray, light to ms brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace vuggy porosity, trace spotty light brown oil stain; trace ARGILLACEOUS LIMESTONE: mudstone, medium to light gray brown, microcrystalline, friable, earthy texture, trace disseminated pyrite, no visible porosity or oil stain

9510-9540 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown gray, light brown, trace medium brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace pinpoint porosity, rare spotty light to medium brown oil stain DOLOMITE: mudstone, light gray brown, friable, earthy texture, trace pinpoint porosity very trace light brown oil stain

9540-9570 Sample highly contaminated with LCM, LIMESTONE: mudstone, light brown gray, light brown, trace medium brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace pinpoint porosity, rare spotty light to medium brown oil stain; trace ARGILLACEOUS LIMESTONE: mudstone, medium to light gray brown, microcrystalline, friable, earthy texture, rare disseminated pyrite, no visible porosity or oil stain; trace ANHYDRITE: as above

9570-9600 Sample highly contaminated with LCM, LIMESTONE: mudstone, dark gray, common off white to cream, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown spotty oil stain; trace ARGILLACEOUS LIMESTONE: as above

9600-9630 Sample highly contaminated with LCM, LIMESTONE: mudstone, dark gray, common off white to cream, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown spotty oil stain; trace ARGILLACEOUS LIMESTONE: as above

9630-9660 Sample highly contaminated with LCM, LIMESTONE: mudstone, dark gray, common off white to cream, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown spotty oil stain, trace ARGILLACEOUS LIMESTONE: as above

9660-9690 Sample highly contaminated with LCM, LIMESTONE: mudstone, light to medium brown, occasional light brown gray, rare cream, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, no visible porosity

9690-9720 Sample highly contaminated with LCM, LIMESTONE: mudstone, light to medium brown, occasional light brown gray, rare cream, microcrystalline, firm to friable, earthy to slightly crystalline texture, rare algal material, trace disseminated pyrite, no visible porosity

9720-9750 Sample highly contaminated with LCM, LIMESTONE: mudstone, light to medium brown, occasional light brown gray, rare cream, microcrystalline, firm to friable, earthy to slightly crystalline texture, rare algal material, trace disseminated pyrite, no visible porosity

9750-9780 LIMESTONE: mudstone, light gray to gray brown, microcrystalline to very fine crystalline, firm to hard, earthy, slightly dolomitic, trace disseminated pyrite, no visible porosity; DOLOMITIC LIMESTONE: mudstone, off white to cream, tan to light brown, light gray brown, very fine crystalline, firm to hard, crystalline texture, trace alga laminated, slightly argillaceous, trace light brown oil stain, no visible porosity

9780-9810 LIMESTONE: mudstone, light gray to gray brown, microcrystalline to very fine crystalline, firm to hard, earthy, slightly dolomitic, trace disseminated pyrite, no visible porosity; DOLOMITIC LIMESTONE: mudstone, off white to cream, tan to light brown, light gray brown, very fine crystalline, firm to hard, crystalline texture, trace alga laminated, slightly argillaceous, trace light brown oil stain, no visible porosity

9810-9840 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, dolomitic in part, trace intercrystalline porosity, trace light black oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

9840-9870 LIMESTONE: mudstone, light brown gray, light brown, trace medium brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace pinpoint porosity, rare spotty light to medium brown oil stain; DOLOMITE: mudstone, light gray brown, friable, earthy texture, trace pinpoint porosity very trace light brown oil stain

9870-9900 LIMESTONE: mudstone, light brown gray, light brown, trace medium brown, microcrystalline, firm to friable, earthy to slightly crystalline texture, trace disseminated pyrite, trace pinpoint porosity, rare spotty light to medium brown oil stain; DOLOMITE: mudstone, light gray brown, friable, earthy texture, trace pinpoint porosity, very trace light brown oil stain

9900-9930 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, dolomitic in part, trace intercrystalline porosity, trace light black oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

9930-9960 ARGILLACEOUS LIMESTONE: mudstone, light gray to gray brown, microcrystalline to very fine crystalline, firm to hard, earthy, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, off white to cream, dark gray, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown dead spotty oil stain

9960-9990 ARGILLACEOUS LIMESTONE: mudstone, light gray to gray brown, microcrystalline to very fine crystalline, firm to hard, earthy, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, off white to cream, dark gray, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown dead spotty oil stain

9990-10017 LIMESTONE: mudstone, off white to cream, dark gray, microcrystalline, firm, dense, earthy to trace crystalline texture, rare dark brown dead spotty oil stain; ARGILLACEOUS LIMESTONE: mudstone, light gray to gray brown, microcrystalline to very fine crystalline, firm to hard, earthy, trace disseminated pyrite, no visible porosity

Lodgepole Formation [Miss., Madison Gp] 10,017' M

10,017' MD (10,017' TVD, -7,839')

10017-10050 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

10050-10080 ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain

10080-10110 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

10110-10140 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

10140-10170 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

10170-10200 ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture; LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain

10200-10230 ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture; LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, possible intercrystalline porosity, no visible oil stain

10230-10260 LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, trace intercrystalline porosity, no visible oil stain; ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture

10260-10290 ARGILLACEOUS LIMESTONE: mudstone, tan, light gray brown, light gray, microcrystalline, firm soft, earthy texture; LIMESTONE: cream to white, gray, light gray, light brown, very fine crystalline, friable, microsucrosic texture, argillaceous in part, possible intercrystalline porosity, no visible oil stain

10290-10320 ARGILLACEOUS LIMESTONE: mudstone, medium gray to rare off white to rare medium brown, microcrystalline, firm to common hard, dense, earthy to rare crystalline texture, no visible porosity

10320-10350 ARGILLACEOUS LIMESTONE: mudstone, medium gray to rare off white to rare medium brown, microcrystalline, firm to common hard, dense, earthy to rare crystalline texture, no visible porosity

10350-10380 ARGILLACEOUS LIMESTONE: mudstone, medium gray to rare off white to rare medium brown, microcrystalline, firm to common hard, dense, earthy to rare crystalline texture, no visible porosity

10380-10410 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10410-10440 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10440-10470 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10470-10500 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10500-10530 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10530-10560 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10560-10590 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10590-10620 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10620-10650 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10650-10680 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10680-10710 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10710-10740 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10740-10770 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10770-10800 ARGILLACEOUS LIMESTONE: mudstone, light to medium gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10800-10830 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10830-10860 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

10860-10898 ARGILLACEOUS LIMESTONE: mudstone, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity; LIMESTONE: mudstone, cream, light tan, medium to light gray, microcrystalline, firm to hard, dense, earthy to trace crystalline texture, trace disseminated pyrite, no visible porosity

False Bakken [Miss., Madison Gp]

10,898' MD (10,762' TVD, -8,584)

10898-10922 ARGILLACEOUS LIMESTONE: mudstone, light gray to occasional cream to rare medium gray, microcrystalline, firm, dense, earthy to trace crystalline texture, trace disseminated pyrite, trace siliceous, no visible porosity; SHALE: dark gray, dark brown, black, blocky to platy, friable, occasionally soft, calcareous in part, trace fracture porosity

10922-10950 SHALE: black, firm, subblocky, earthy texture, carbonaceous, petroliferous, common disseminated pyrite, rare nodular pyrite, no visible porosity; LIMESTONE: wackestone to mudstone, light gray, white, cream, microcrystalline to very fine crystalline, firm to hard, earthy to slightly microsucrosic, slightly dolomitic, occasional sparry calcite trace light black oil stain occasional intercrystalline porosity, occasional fractured porosity

10950-10977 SHALE: black, firm, subblocky, earthy texture, carbonaceous, petroliferous, common disseminated pyrite, rare nodular pyrite, no visible porosity; SILTSTONE: medium gray, friable, sub blocky to sub platy, calcareous cement, moderately cemented, occasional disseminated pyrite, no visible porosity

Middle Bakken [Dev.-Miss.]

10,970' MD (10,787' TVD, -8,609')

10977-11010 SILTSTONE: medium gray, friable, sub blocky to sub platy, calcareous cement, moderately cemented, occasional disseminated pyrite, no visible porosity

11010-11040 SILTSTONE: medium gray, friable, sub blocky to sub platy, calcareous cement, moderately cemented, occasional disseminated pyrite, no visible porosity; SILTY SANDSTONE: light gray to trace cream, very fine grained, friable, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace dark brown spotty to even oil stain

11040-11070 SILTY SANDSTONE: light gray to trace cream, very fine grained, friable, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace dark brown spotty to even oil stain; SILTSTONE: medium gray, friable, sub blocky to sub platy, calcareous cement, moderately cemented, occasional disseminated pyrite, no visible porosity

11070-11100 SILTY SANDSTONE: light to medium gray, occasional cream, light brown, very fine grained, friable, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, common disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain

11100-11130 SILTY SANDSTONE: gray to light brown, common light gray to cream, trace medium brown, trace dark gray, very fine grained, friable to soft, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, common disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain

11130-11150 SILTY SANDSTONE: gray to light brown, common light gray to cream, trace medium brown, trace dark gray, very fine grained, friable to soft, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, common disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain

11150-11200 SILTY SANDSTONE: white, tan, light gray to light brown, trace medium brown, very fine grained, friable to soft, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

11200-11250 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain

- 11250-11300 SILTY SANDSTONE: light brown, common light gray to cream, tan, trace medium brown, very fine grained, friable to soft, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, trace light black oil stain
- 11300-11350 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain
- 11350-11400 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11400-11450 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11450-11500 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11500-11550 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11550-11600 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11600-11650 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11650-11700 SILTY SANDSTONE: light gray to light brown, off white to tan, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare dark brown spotty oil stain
- 11700-11750 SILTY SANDSTONE: light gray to light brown, off white to tan, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare dark brown spotty oil stain
- 11750-11800 SILTY SANDSTONE: light gray to light brown, off white to tan, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare dark brown spotty oil stain
- 11800-11850 SILTY SANDSTONE: light gray to occasional cream, very fine grained, friable, trace firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated pyrite, possible intergranular porosity, trace, light black oil stain, rare dark brown spotty oil stain
- 11850-11900 SILTY SANDSTONE: medium to light gray, gray to light brown, off white to tan, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

11900-11950 SILTY SANDSTONE: light gray to light brown, off white to tan, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain trace LIMESTONE: packstone, white to off white, cream to tan, microcrystalline, friable to firm, crystalline texture, common oolites and pellets, possible intercrystalline porosity

11950-12000 SILTY SANDSTONE: light gray to light brown, off white to tan, rare medium brown, very fine grained to fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare to occasional dark to light brown spotty oil stain trace LIMESTONE: packstone, white to off white, cream to tan, microcrystalline, friable to firm, crystalline texture, common oolites and pellets, possible intercrystalline porosity

12000-12050 SILTY SANDSTONE: medium to light gray, gray to light brown, off white to tan, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

12050-12100 SILTY SANDSTONE: light gray to light brown, off white to tan, rare medium brown, very fine grained to fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare to occasional dark to light brown spotty oil stain trace LIMESTONE: packstone, white to off white, cream to tan, microcrystalline, friable to firm, crystalline texture, common oolites and pellets, possible intercrystalline porosity

12100-12150 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12150-12200 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12200-12250 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12250-12300 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12300-12350 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12350-12400 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12400-12450 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12450-12500 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12500-12550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12550-12600 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12600-12650 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12650-12700 SILTY SANDSTONE: medium to light gray, gray to light brown, off white to tan, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

12700-12750 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12750-12800 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12800-12850 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12850-12900 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12900-12950 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

12950-13000 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13000-13050 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13050-13100 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13100-13150 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13150-13200 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13200-13250 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13250-13300 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13300-13350 SILTY SANDSTONE: light gray to light brown, off white to tan, rare medium brown, very fine grained to fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare to occasional dark to light brown spotty oil stain trace LIMESTONE: packstone, white to off white, cream to tan, microcrystalline, friable to firm, crystalline texture, common oolites and pellets, possible intercrystalline porosity

13350-13400 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13400-13450 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13450-13500 SILTY SANDSTONE: light gray to light brown, off white to tan, rare medium brown, very fine grained to fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare to occasional dark to light brown spotty oil stain trace LIMESTONE: packstone, white to off white, cream to tan, microcrystalline, friable to firm, crystalline texture, common oolites and pellets, possible intercrystalline porosity

13500-13550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13550-13600 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13600-13650 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13650-13700 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13700-13750 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13750-13800 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13800-13850 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13850-13900 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13900-13950 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

13950-14000 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14000-14050 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14050-14100 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14100-14150 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14150-14200 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14200-14250 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14250-14300 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14300-14350 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14350-14400 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14400-14450 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14450-14500 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14500-14550 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

14550-14600 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

14600-14650 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14650-14700 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14700-14750 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14750-14800 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14800-14850 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14850-14900 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14900-14950 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

14950-15000 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15000-15050 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15050-15100 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15100-15150 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15150-15200 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

15200-15250 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15250-15300 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15300-15350 SILTY SANDSTONE: off white to tan, light gray to light brown, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

15350-15400 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15400-15450 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15450-15500 SILTY SANDSTONE: off white to tan, light gray to light brown, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

15500-15550 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15550-15600 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15600-15650 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15650-15700 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15700-15750 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15750-15800 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15800-15850 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15850-15900 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15900-15950 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

15950-16000 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16000-16050 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16050-16100 SILTY SANDSTONE: off white to tan, light gray to light brown, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

16100-16150 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16150-16200 SILTY SANDSTONE: off white to tan, light gray to light brown, rare medium brown, very fine grained, friable to firm, sub angular to sub rounded, poorly sorted, calcareous cement, moderately to poorly cemented, trace disseminated and nodular pyrite, possible intergranular porosity, rare light brown spotty oil stain

16200-16250 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16250-16300 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16300-16350 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16350-16400 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16400-16450 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16450-16500 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16500-16550 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16550-16600 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16600-16650 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16650-16700 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16700-16750 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16750-16800 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16800-16850 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16850-16900 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16900-16950 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

16950-17000 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

17000-17050 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17050-17100 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17100-17150 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17150-17200 SILTY SANDSTONE: light brown to light gray, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

17200-17250 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17250-17300 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17300-17350 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17350-17400 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

17400-17450 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17450-17500 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17500-17550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17550-17600 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17600-17650 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17500-17550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17700-17750 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17500-17550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17800-17850 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17850-17900 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17900-17950 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

17950-18000 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18000-18050 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18050-18100 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18100-18150 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18150-18200 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18200-18250 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18250-18300 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18300-18350 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18350-18400 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18400-18450 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18450-18500 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18500-18550 SILTY SANDSTONE: light gray to light brown, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain; SILTSTONE: medium gray brown, soft to friable, sub blocky to sub platy, very fine grained, dolomitic cement, moderately cemented, occasional disseminated pyrite, possible intergranular porosity

18550-18600 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

18600-18650 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18650-18700 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18700-18750 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18750-18800 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18800-18850 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18850-18900 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18900-18950 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

18950-19000 SILTY SANDSTONE: off white to tan, light brown to light gray, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

19000-19050 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19050-19100 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19100-19150 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19150-19200 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19200-19250 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19250-19300 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

19300-19350 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

19350-19400 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19400-19450 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

19450-19500 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19500-19550 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

19550-19600 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

19600-19650 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace dark brown spotty oil stain, spotty light black oil stain

19650-19700 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19700-19750 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19750-19800 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19800-19850 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19850-19900 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19900-19950 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

19950-20000 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

20000-20050 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

20050-20100 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

20100-20150 SILTY SANDSTONE: light gray to light brown, trace off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, trace disseminated and nodular pyrite, possible intergranular porosity, trace dark to light brown spotty oil stain

20150-20200 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20200-20250 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20250-20300 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20300-20350 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20350-20400 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20400-20450 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20450-20500 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

20500-20550 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

20550-20600 SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20600-20650 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

20650-20700 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20700-20750 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20750-20800 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20800-20850 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20850-20900 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

20900-20950 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

20950-21000 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

21000-21050 SILTY SANDSTONE: off white to light brown, tan, light gray, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, weakly laminated, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

21000-21100 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

21100-21150 SILTY SANDSTONE: tan, trace medium brown, light gray to light brown, off white, very fine grained, friable to firm, sub angular to sub rounded, well to moderately sorted to well laminated, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, common dark to light brown spotty oil stain, trace light black oil stain

21150-21175 SILTY SANDSTONE: SILTY SANDSTONE: light brown to light gray, off white to tan, trace medium brown, very fine grained, friable to firm, sub angular to sub rounded, well sorted, calcareous cement, poorly to moderately cemented, rare disseminated and nodular pyrite, possible intergranular porosity, trace light to dark brown spotty oil stain

ELECTRIC LOG REPORT

OPERATOR - WELL NAME: Slawson Exploration Company, Inc. - Magnum 3-36-25H

LOCATION: 205' FSL & 265' FEL SE Section 36, T153N, R101W

LOGGING COMPANY: Weatherford

ENGINEER: Mike Grainger

WITNESSED BY: Brandon Hill, Kevin Wehrung

DATE: May,17, 2012

DRILLER'S TD DEPTH: 10,300'

DRILLER'S CASING DEPTH: 2,192'

LOGGER'S TD DEPTH: 10,290'

LOGGER'S CASING DEPTH: 2,187'

ELEVATION: GL: 2,156'

KB: 2,178

MUD CONDITIONS: Mud type: Oil-based

Wt: 9.8 lb/gal Vis: 45 s

LOGGING TIME: Arrived: 11:00 CDT Jan 6, 2012

First tool on bottom: 11:32 CDT Jan 6, 2012 Last tool on surface: 06:15CDT Jan 6, 2012 Departed: 6:45 CDT Jan 6, 2012

LOGGING PROGRAM: Run #1: Array Induction Log

Run #2: (Compensated Photo Density, Compensated Duel neutron Log) 10,286' TD - 7,700' Run #3: Hole Volume Caliper Log 10,286' TD - 2,187' (casing)

HOLE CONDITION: No sticky spots or excess rugosity.

TECHNICAL PROBLEMS: Run #1: No problems.

Run #2: No problems.

Run #3: No problems.

COMMENTS: Repeat runs show acceptable overlap; overall data quality good and

comparable to Lindvig 1-35

TOPS:	Niobrara	4,219'	-2,041'
	Carlile	4,512'	-2,334'
	Greenhorn	4,639'	-2,461'
	Belle Fouche	4,859'	-2,681'
	Mowry(Dakota Group)	5,053'	-2,875'
	New Castle	5,206'	-3,028'
	Skull Creek	5,227'	-3,049'
	Inyan Kara (Dakota Sands)	5,460'	-3,282'
	Swift	6,018'	-3,840'
	Rierdon	6,413'	-4,235'
	Piper	6,528'	-4,350'
	Dunham Salt	6,934'	-4,756'
	Spearfish	6,993'	-4,815'
	Pine Salt	7,298'	-5,120'
	Minnekahta	7,415'	-5,237'
	Opeche	7,436'	-5,258'
	Opeche Salt A		
	Opeche Salt B		
	Broom Creek(Minnelusa Group)	7,496'	-5,318'
	Amsden	7,983'	-5,805'
	Tyler	8,095'	-5,917'
	Otter	8,158'	-5,980'
	Kibbey	8,411'	-6,233'

Kibbey "Lime"

Base Last Salt

Mission Canyon

Charles

Ratcliffe

Lodgepole

Midale

PROSPECTIVE INTERVALS: Tyler (8,011'-8,017') has 6' 24-27% cross-plot porosity yielding an Sw of 45-50%. Tyler (8,019'-8,030') has 11' 26-37% cross-plot porosity yielding an Sw of 7%-49%. Tyler (8,032'-8,039') has 7' 23-29% cross-plot porosity yielding an Sw of 28-50 %. Tyler (8,054'-8,062') has 8' 19-33% cross-plot porosity yielding an Sw of 8-48%. Tyler (8,070'-8,079') has 9' 17-26% cross-plot porosity yielding an Sw of 32-49%. Tyler (8,090'-8,097') has 7' 18-36% cross-plot porosity yielding an Sw of 36-49%. Mission Canyon (9,856'-9,866') has 10' 6-9% cross-plot porosity yielding an Sw of 22-38%

8,445'

8,591'

9,266'

9,306'

9,389'

9,483'

10,017'

-6,267'

-6,413'

-7,088'

-7,128'

-7,211'

-7,305'

-7,839'

LOG CALCULATIONS

Depth	X-Plot Porosity	Rt	Sw	
Amsden	Rw=	0.02		
7709	0.056	10.235	0.792	
7710	0.071	7.191	0.741	
7711	0.078	3.368	0.988	
7712	0.078	2.974	1.052	
7713	0.075	2.836	1.122	
7714	0.071	3.818	1.018	
7715	0.085	5.615	0.700	
7716	0.091	4.720	0.718	
7717	0.089	6.883	0.605	
7718	0.079	8.366	0.620	
7719	0.079	4.446	0.845	
7720	0.082	3.343	0.945	
7721	0.088	4.227	0.778	
7722	0.095	3.514	0.791	
7723	0.137	2.463	0.656	
7724	0.136	1.726	0.792	
7725	0.134	1.360	0.906	
7726	0.139	1.366	0.868	
7727	0.139	1.430	0.852	
7728	0.147	1.501	0.787	
7729	0.191	1.520	0.601	
7730	0.222	1.537	0.513	
7731	0.239	1.612	0.466	
7732	0.266	1.638	0.415	
7733	0.252	1.704	0.431	
7734	0.229	1.426	0.518	
7735	0.208	1.206	0.620	
7736	0.149	1.680	0.732	
7737	0.123	2.204	0.775	
7738	0.128	3.607	0.581	
7739	0.115	9.021	0.409	
7740	0.089	10.007	0.500	
7741	0.080	17.469	0.424	
7742	0.068	19.890	0.466	
Amsden	Amsden Rw= 0.02			
7743	0.070	7.071	0.760	
7744	0.071	5.372	0.863	
7745	0.066	8.951	0.716	
7746	0.083	2.452	1.084	
7747	0.126	1.124	1.060	
7748	0.153	0.903	0.972	
7749	0.160	1.054	0.862	
7750	0.154	1.520	0.747	
7751	0.133	2.701	0.646	
7752	0.102	8.896	0.463	
7753	0.082	16.052	0.430	
7754	0.076	22.523	0.392	

7755	0.073	25.901	0.383
7756	0.071	63.522	0.251
7757	0.072	51.001	0.276
7758	0.066	34.273	0.368
7759	0.063	10.167	0.701
7760	0.075	3.196	1.057
7761	0.095	3.168	0.837
7762	0.079	14.890	0.467
7763	0.066	41.967	0.331
Amsden		0.02	
7764	0.065	63.021	0.274
7765	0.079	37.148	0.296
7766	0.099	4.296	0.691
7767	0.113	2.557	0.783
7768	0.106	3.585	0.706
7769	0.110	3.158	0.725
7770	0.110	2.162	0.795
	0.121		
7771	-	1.948	0.868
7772	0.134	2.146	0.719
7773	0.165	1.450	0.713
7774	0.141	1.735	0.759
7775	0.076	7.114	0.699
7776	0.056	9.454	0.825
Amsden		0.02	
7780	0.060	24.361	0.475
7781	0.074	46.821	0.279
7782	0.084	39.025	0.269
7783	0.079	68.309	0.218
7784	0.078	16.875	0.442
7785	0.087	3.607	0.858
7786	0.119	1.648	0.928
7787	0.163	1.130	0.818
7788	0.150	1.215	0.856
7789	0.101	2.402	0.902
7790	0.067	5.920	0.866
Amsden	Rw=	0.02	
7796	0.050	13.059	0.784
7797	0.075	3.641	0.992
7798	0.083	3.900	0.866
7799	0.070	13.647	0.550
7800	0.069	9.196	0.673
7801	0.070	5.360	0.868
7802	0.081	5.392	0.750
7803	0.097	8.393	0.505
7804	0.141	18.606	0.233
7805	0.148	21.900	0.204
7806	0.134	7.311	0.391
7807	0.126	3.190	0.626
7808	0.116	2.331	0.799
7809	0.131	1.687	0.831
7810	0.139	1.963	0.728
7811	0.128	2.108	0.758

•	T			
7812	0.136	1.773	0.781	
7813	0.161	2.040	0.614	
7814	0.186	0.976	0.768	
7815	0.183	0.918	0.806	
7816	0.134	1.470	0.870	
7817	0.111	1.887	0.925	
7818	0.105	2.654	0.827	
7819	0.114	2.809	0.741	
7820	0.138	3.041	0.589	
7821	0.166	4.384	0.406	
7822	0.157	4.013	0.450	
7823	0.152	1.399	0.788	
7824	0.150	1.465	0.778	
7825	0.133	2.178	0.723	
7826	0.147	0.997	0.966	
7827	0.170	0.847	0.906	
7828	0.182	0.853	0.840	
7829	0.189	1.000	0.747	
7830	0.178	1.096	0.758	
7831	0.169	0.767	0.956	
7832	0.192	0.380	1.195	
7833	0.200	0.404	1.113	
7834	0.158	0.786	1.011	
7835	0.128	3.122	0.624	
7836	0.145	2.150	0.667	
7837	0.160	1.460	0.729	
7838	0.162	1.379	0.743	
7839	0.180	0.819	0.870	
7840	0.195	0.701	0.866	
7841	0.192	0.771	0.840	
7842	0.173	0.933	0.846	
7843	0.135	1.019	1.039	
7844	0.153	0.738	1.073	
7845	0.174	0.724	0.953	
7846	0.158	0.837	0.982	
7847	0.144	1.186	0.903	
7848	0.118	3.993	0.601	
7849	0.116	4.814	0.558	
7850	0.142	3.349	0.544	
7851	0.152	3.712	0.483	
7852	0.111	3.606	0.673	
7853	0.046	9.501	0.999	
Amsden Rw= 0.02				
7873	0.046	11.634	0.907	
7874	0.082	5.833	0.715	
7875	0.126	5.085	0.498	
7876	0.155	4.782	0.417	
7877	0.172	4.633	0.382	
7878	0.165	4.937	0.386	
7879	0.138	4.970	0.460	
7880	0.103	6.661	0.534	
7881	0.123	5.698	0.481	

7882	0.152	3.736	0.480
7883	0.167	3.349	0.463
7884	0.178	3.373	0.434
7885	0.182	3.656	0.406
7886	0.168	3.651	0.439
7887	0.161	3.263	0.486
7888	0.163	3.166	0.488
7889	0.176	2.749	0.484
7890	0.186	2.400	0.490
7891	0.197	2.515	0.452
7892	0.203	2.529	0.438
7893	0.192	2.545	0.462
7894	0.204	2.669	0.425
7895	0.225	2.620	0.389
7896	0.221	2.528	0.403
7897	0.218	2.455	0.414
7898	0.221	2.318	0.421
7899	0.217	2.100	0.450
7900	0.228	1.827	0.458
7901	0.239	1.776	0.444
7902	0.231	2.297	0.404
7903	0.212	3.119	0.377
7904	0.159	4.713	0.410
7905	0.087	6.553	0.638
7906	0.123	5.187	0.505
7907	0.202	3.548	0.373
7908	0.249	2.881	0.335
7909	0.241	3.077	0.334
7910	0.226	3.210	0.350
7911	0.223	2.649	0.390
7912	0.219	2.409	0.415
7913	0.222	2.376	0.414
7914	0.217	2.236	0.435
7915	0.208	1.928	0.490
7916	0.249	1.700	0.436
7917	0.302	1.662	0.363
7918	0.257	1.766	0.413
7919	0.241	1.959	0.418
7920	0.212	2.053	0.464
7921	0.199	2.206	0.478
7922	0.198	2.843	0.423
7923	0.244	3.050	0.332
7924	0.262	2.443	0.345
7925	0.262	2.560	0.337
7926	0.248	2.486	0.362
7927	0.223	2.241	0.424
7928	0.217	2.031	0.458
7929	0.215	1.956	0.470
7930	0.205	1.976	0.490
7931	0.223	1.841	0.468
7932	0.261	1.859	0.398
7933	0.255	2.017	0.390

7986	0.070	12.703	0.567
Tyler Rw= 0.02			
7983	0.068	22.838	0.435
7982	0.133	7.038	0.400
7981	0.171	3.399	0.448
7980	0.200	2.087	0.489
7979	0.202	2.207	0.471
7978	0.168	2.974	0.488
7977	0.133	5.113	0.470
7976	0.132	5.663	0.450
7975	0.107	7.770	0.472
7974	0.083	7.243	0.630
7973	0.139	2.315	0.667
7972	0.224	1.336	0.545
7971	0.251	1.210	0.512
7970	0.124	1.535	0.623
7969	0.103	2.887	0.671
7968	0.112	4.395	0.658
7967	0.112	3.360	0.687
7966	0.117	4.857	0.554
7965	0.098	5.689	0.505
7963	0.070	5.384	0.625
7962 7963	0.095 0.070	4.952 12.109	0.668 0.578
	0.129		0.785
7960 7961	0.158	1.568 1.944	0.713
7959	0.165	1.420	0.718
7958	0.171	1.352	0.712
7957	0.181	1.494	0.640
7956	0.201	1.696	0.540
7955	0.214	1.609	0.520
7954	0.212	1.482	0.548
7953	0.198	1.625	0.561
7952	0.189	1.575	0.595
7951	0.204	1.372	0.593
7950	0.227	1.370	0.533
7949	0.219	1.901	0.467
7948	0.180	3.343	0.430
7947	0.154	3.040	0.528
7946	0.178	2.311	0.524
7945	0.208	1.807	0.507
7944	0.206	2.034	0.482
7943	0.168	3.042	0.482
7942	0.134	4.739	0.485
7941	0.128	4.380	0.527
7940	0.139	2.655	0.623
7939	0.147	1.701	0.738
7938	0.156	1.410	0.762
7937	0.184	1.578	0.610
7936	0.209	1.982	0.482
7935	0.234	2.121	0.415
7934	0.250	2.110	0.389

7987	0.136	3.417	0.561
7988	0.211	1.431	0.559
7989	0.251	1.104	0.536
7990	0.255	1.125	0.524
7991	0.273	1.215	0.470
7992	0.218	1.506	0.529
7993	0.166	2.110	0.587
7994	0.161	2.315	0.576
7995	0.144	3.388	0.532
7996	0.170	2.842	0.493
7997	0.226	1.655	0.487
7998	0.229	1.422	0.518
7999	0.221	1.412	0.537
8000	0.228	1.336	0.537
8001	0.233	1.349	0.522
8002	0.235	1.419	0.506
8003	0.223	1.467	0.523
8004	0.227	1.476	0.513
8005	0.227	1.473	0.514
8006	0.209	1.525	0.548
8007	0.205	1.500	0.563
8008	0.217	1.464	0.538
8009	0.221	1.455	0.531
8010	0.234	1.446	0.503
8011	0.264	1.397	0.453
8012	0.274	1.372	0.440
8013	0.244	1.337	0.500
8014	0.245	1.296	0.507
8015	0.258	1.252	0.490
8016	0.266	1.236	0.478
8017	0.248	1.267	0.506
8018	0.239	1.235	0.532
8019	0.265	1.186	0.491
8020	0.268	1.210	0.480
8021	0.270	1.147	0.489
8022	0.310	1.014	0.452
8023	0.310	1.215	0.413
8024	0.297	3.120	0.269
8025	0.287	16.815	0.120
8026	0.343	31.873	0.073
8027	0.375	28.043	0.071
8028	0.306	3.347	0.253
8029	0.277	1.274	0.452
8030	0.292	0.972	0.490
8031	0.234	1.240	0.542
8032	0.235	2.359	0.392
8033	0.284	3.093	0.283
8034	0.264	2.205	0.361
8035	0.264	1.886	0.390
8036	0.269	2.200	0.354
8037	0.261	2.235	0.362
8038	0.282	1.256	0.448

8039	0.293	0.909	0.505
8040	0.254	0.953	0.571
8041	0.223	1.007	0.632
8042	0.240	0.907	0.619
8043	0.259	0.868	0.586
8044	0.259	0.868	0.586
8045	0.266	0.865	0.572
8046	0.239	0.983	0.596
8047	0.229	1.112	0.585
8048	0.240	1.050	0.575
8049	0.244	0.915	0.605
8050	0.275	0.870	0.551
8051	0.318	0.815	0.493
8052	0.327	0.844	0.471
8053	0.261	1.042	0.530
8054	0.192	3.278	0.406
8055	0.276	14.716	0.133
8056	0.410	18.348	0.080
8057	0.330	14.622	0.112
8058	0.234	6.603	0.235
8059	0.219	3.720	0.334
8060	0.223	2.147	0.433
8061	0.258	1.676	0.423
8062	0.242	1.496	0.477
8063	0.225	1.045	0.615
8064	0.253	0.887	0.592
8065	0.269	1.175	0.485
8066	0.263	1.272	0.476
8067	0.271	1.085	0.501
8068	0.257	0.914	0.575
8069	0.287	0.930	0.512
8070	0.264	1.259	0.477
8071	0.224	2.061	0.440
8071	0.220	2.840	0.382
8073	0.174	6.277	0.324
8073	0.174	5.576	0.348
8075	0.229	1.876	0.450
8075	0.260	1.229	0.490
8077	0.257	1.414	0.462
8078	0.251	1.984	0.401
8079	0.230	2.163	0.419
8080	0.230	1.854	0.524
8081	0.198		0.604
		1.799	
8082	0.154	1.852 2.215	0.673
8083	0.161		0.591
8084	0.203	2.153	0.475 0.487
8085	0.223	1.698	
8086	0.204	1.864	0.508
8087	0.181	2.065	0.544
8088	0.144	2.879	0.580
8089	0.125	4.070	0.562
8090	0.183	3.082	0.440

8091	0.234	2.304	0.398
8092	0.240	2.155	0.402
8093	0.263	2.404	0.346
8094	0.294	1.778	0.361
8095	0.327	1.109	0.411
8096	0.359	0.881	0.420
8097	0.323	0.800	0.489
8098	0.299	0.729	0.555
8099	0.301	0.747	0.543
8100	0.253	1.084	0.538
8101	0.208	1.743	0.515
8102	0.176	1.290	0.710
8103	0.159	1.292	0.781
8104	0.154	2.044	0.643
8105	0.148	2.055	0.667
8106	0.129	2.615	0.678
8107	0.110	3.835	0.658
8108	0.099	6.422	0.564
8109	0.059	17.106	0.579
Tyler	Rw=	0.02	
8112	0.061	13.796	0.621
8113	0.070	5.599	0.849
8114	0.089	3.063	0.909
8115	0.094	3.395	0.816
8116	0.106	3.407	0.722
8117	0.110	5.302	0.559
8118	0.088	17.760	0.381
8119	0.094	7.959	0.531
8120	0.134	2.696	0.642
8121	0.151	2.160	0.637
8122	0.151	2.227	0.626
8123	0.189	1.348	0.645
8124	0.187	1.228	0.683
8125	0.168	1.552	0.677
8126	0.142	2.226	0.670
8127	0.116	3.456	0.657
8128	0.121	2.276	0.773
8129	0.146	1.347	0.833
8130	0.154	1.187	0.842
8131	0.175	1.062	0.785
8132	0.208	1.062	0.660
8133	0.226	1.225	0.566
8134	0.218	1.446	0.540
8135	0.180	1.752	0.592
8136	0.166	1.859	0.624
8137	0.179	1.486	0.648
8138	0.194	1.138	0.685
8139	0.213	1.035	0.652
8140	0.204	1.429	0.581
8141	0.189	1.924	0.540
8142	0.213	1.405	0.561
8143	0.233	1.195	0.555

8144	0.234	1.113	0.574
8145	0.218	0.971	0.657
8146	0.200	1.241	0.634
8147	0.167	1.345	0.728
8148	0.157	0.962	0.920
8149	0.176	1.056	0.783
8150	0.178	1.344	0.686
8151	0.141	1.933	0.719
8152	0.146	1.616	0.760
8153	0.161	1.658	0.682
8154	0.119	3.638	0.624
8155	0.089	7.262	0.590
8156	0.079	6.340	0.708
8157	0.090	4.546	0.737
8158	0.123	2.561	0.717
8159	0.140	2.244	0.674
8160	0.148	2.211	0.642
8161	0.150	2.185	0.636
8162	0.127	3.339	0.610
8163	0.089	6.384	0.630
8164	0.077	7.231	0.685
8165	0.078	6.416	0.715
8166	0.058	7.372	0.902
Otter		= 0.02	
8171	0.039	16.786	0.895
8172	0.071	5.200	0.872
8173	0.089	4.451	0.751
8174	0.065	7.679	0.788
8175	0.055	5.928	1.065
8176	0.101	1.903	1.018
8177	0.141	1.142	0.938
8178			
	0.150	1.111	0.893
8179	0.150 0.129	1.111 1.754	0.893 0.826
8179 8180	0.129	1.754	0.826
8180	0.129 0.109	1.754 2.596	0.826 0.806
8180 8181	0.129 0.109 0.094	1.754 2.596 4.125	0.826 0.806 0.743
8180 8181 8182	0.129 0.109 0.094 0.101	1.754 2.596 4.125 3.525	0.826 0.806 0.743 0.745
8180 8181	0.129 0.109 0.094 0.101 0.128	1.754 2.596 4.125 3.525 2.670	0.826 0.806 0.743
8180 8181 8182 8183	0.129 0.109 0.094 0.101 0.128 0.133	1.754 2.596 4.125 3.525	0.826 0.806 0.743 0.745 0.677 0.663
8180 8181 8182 8183 8184 8185	0.129 0.109 0.094 0.101 0.128	1.754 2.596 4.125 3.525 2.670 2.555	0.826 0.806 0.743 0.745 0.677
8180 8181 8182 8183 8184	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132	1.754 2.596 4.125 3.525 2.670 2.555 2.137	0.826 0.806 0.743 0.745 0.677 0.663 0.718
8180 8181 8182 8183 8184 8185 8186 8187	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688
8180 8181 8182 8183 8184 8185 8186 8187 8188	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142 0.140	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363 1.534	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854 0.815
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142 0.140	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363 1.534 1.354	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854 0.815 0.865
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142 0.140 0.140 0.154	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363 1.534 1.354 1.215	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854 0.815 0.865 0.835
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142 0.140 0.140 0.154 0.134	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363 1.534 1.354 1.215 1.510	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854 0.815 0.865 0.835 0.861
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195	0.129 0.109 0.094 0.101 0.128 0.133 0.135 0.132 0.108 0.090 0.086 0.092 0.113 0.142 0.140 0.140 0.154	1.754 2.596 4.125 3.525 2.670 2.555 2.137 2.256 3.647 6.649 5.806 4.667 1.919 1.363 1.534 1.354 1.215	0.826 0.806 0.743 0.745 0.677 0.663 0.718 0.712 0.688 0.608 0.608 0.684 0.714 0.904 0.854 0.815 0.865 0.835

8199	0.099	3.046	0.818
8200	0.131	2.159	0.735
8201	0.136	2.256	0.692
8202	0.140	2.446	0.647
8203	0.140	2.861	0.597
8204	0.128	2.196	0.744
8205	0.134	1.414	0.889
8206	0.123	2.610	0.713
8207	0.098	5.073	0.640
8208	0.091	3.493	0.829
8209	0.071	3.501	1.059
8210	0.076	3.218	1.032
8211	0.083	3.473	0.911
8212	0.033	11.515	1.277
Otter	Rw=	= 0.02	
8222	0.070	6.083	0.823
8223	0.117	6.552	0.474
8224	0.109	5.986	0.531
8225	0.092	5.022	0.683
8226	0.070	7.228	0.749
8227	0.021	41.755	1.064
Otter	Rw=	= 0.02	
8231	0.049	9.689	0.930
8232	0.075	4.347	0.904
8233	0.127	2.101	0.770
8234	0.159	1.704	0.682
8235	0.172	1.791	0.616
8236	0.176	1.633	0.628
8237	0.140	2.212	0.680
8238	0.116	3.345	0.669
8239	0.133	2.010	0.750
8240	0.169	1.289	0.736
8241	0.125	1.769	0.850
8242	0.054	5.268	1.148
8243	0.083	3.534	0.901
8244	0.150	2.151	0.643
8245	0.167	1.920	0.613
8246	0.183	1.680	0.596
8247	0.191	1.544	0.597
8248	0.195	1.374	0.619
8249	0.175	1.720	0.615
8250	0.142	2.660	0.611
8251	0.101	3.381	0.760
8252	0.089	4.710	0.733
8253	0.105	4.428	0.638
8254	0.133	3.332	0.584
8255	0.146	2.870	0.570
8256	0.146	2.514	0.609
8257	0.137	2.729	0.623
8258	0.145	3.147	0.549
8259	0.158	2.611	0.554
8260	0.151	3.117	0.532

8261	0.141	3.279	0.552
8262	0.147	2.462	0.613
8263	0.155	2.328	0.599
8264	0.151	2.404	0.603
8265	0.141	3.876	0.511
8266	0.139	3.255	0.564
8267	0.144	2.220	0.661
8268	0.128	2.972	0.639
8269	0.091	4.308	0.747
8270	0.061	5.898	0.962
8271	0.081	6.224	0.696
8272	0.126	2.342	0.732
8273	0.150	1.916	0.683
8274	0.104	4.960	0.608
8275	0.077	5.998	0.747
8276	0.108	3.647	0.686
8277	0.124	3.973	0.572
8278	0.127	3.129	0.630
8279	0.124	3.133	0.643
8280	0.131	5.209	0.471
8281	0.141	4.981	0.450
8282	0.108	5.296	0.571
8283	0.067	7.250	0.787
Otter	Rw=	0.02	
8285	0.06022976	9.157434	0.776
8286	0.07594803	6.134557	0.752
8287	0.08279042	6.017636	0.696
8288	0.05621449	9.623783	0.811
8289	0.07131949	5.932989	0.814
8290	0.10328177	4.017126	0.683
8291	0.08447086	5.402591	0.720
8292	0.04988516	7.926273	1.007
Otter	Rw=	0.02	
8294	0.070	5.329	0.879
8295	0.106	4.680	0.617
8296	0.121	4.751	0.538
8297	0.116	4.438	0.579
8298	0.087	6.416	0.641
8299	0.072	6.908	0.746
8300	0.072	6.816	0.756
8301	0.074	7.448	0.701
8302	0.076	6.303	0.740
8303	0.075	5.692	0.790
8304	0.086	4.605	0.766
8305	0.091	4.321	0.748
8306	0.098	4.105	0.712
8307	0.106	3.587	0.705
8308	0.074	5.001	0.859
8309	0.072	4.122	0.973
8310	0.101	3.032	0.801
8311	0.087	4.096	0.801
8312	0.052	7.052	1.029

Otter	Rw=	0.02	
8317	0.067	9.388	0.692
8318	0.078	7.822	0.645
8319	0.088	6.163	0.646
8320	0.093	5.782	0.633
8321	0.080	6.571	0.687
8322	0.034	14.057	1.124
8323	0.028	14.043	1.356
8324	0.084	3.819	0.860
8325	0.123	2.175	0.782
8326	0.134	1.531	0.854
8327	0.147	1.368	0.821
8328	0.117	1.864	0.887
8329	0.091	2.570	0.971
8330	0.095	3.134	0.837
8331	0.093	3.560	0.803
8332	0.103	3.639	0.719
8333	0.133	3.822	0.544
8334	0.120	4.249	0.571
8335	0.087	4.868	0.735
8336	0.074	6.700	0.741
8337	0.070	6.478	0.798
8338	0.092	4.134	0.753
8339	0.108	3.787	0.672
8340	0.078	4.558	0.847
8341	0.061	6.559	0.912
Otter	Rw=	0.02	
Otter 8343	Rw = 0.067	0.02 10.210	0.658
			0.658 0.605
8343	0.067	10.210	
8343 8344	0.067 0.088	10.210 7.114	0.605
8343 8344 8345	0.067 0.088 0.117	10.210 7.114 4.898 3.540 2.671	0.605 0.545
8343 8344 8345 8346	0.067 0.088 0.117 0.142 0.135 0.127	10.210 7.114 4.898 3.540 2.671 2.365	0.605 0.545 0.531 0.643 0.727
8343 8344 8345 8346 8347	0.067 0.088 0.117 0.142 0.135 0.127 0.114	10.210 7.114 4.898 3.540 2.671 2.365 2.324	0.605 0.545 0.531 0.643
8343 8344 8345 8346 8347 8348 8349	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655	0.605 0.545 0.531 0.643 0.727 0.817 0.880
8343 8344 8345 8346 8347 8348 8349 8350 8351	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885
8343 8344 8345 8346 8347 8348 8349 8350 8351	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8353	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8354	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355 8356 8357	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355 8356 8357 8358	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8358	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355 8356 8357 8358 8359 8360 8361	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186 0.128	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355 8356 8357 8358 8359 8360 8361	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186 0.128 0.127	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228 3.318	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994 0.609
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186 0.128 0.127 0.146	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228 3.318 4.051	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994 0.609 0.482
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186 0.128 0.127 0.146 0.140	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228 3.318 4.051 4.101	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994 0.609 0.482 0.499
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.193 0.186 0.128 0.127 0.146 0.140 0.133	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228 3.318 4.051 4.101 3.346	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994 0.609 0.482 0.499 0.582
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363	0.067 0.088 0.117 0.142 0.135 0.127 0.114 0.125 0.179 0.219 0.233 0.212 0.181 0.141 0.129 0.153 0.193 0.186 0.128 0.127 0.146 0.140	10.210 7.114 4.898 3.540 2.671 2.365 2.324 1.655 0.799 0.493 0.483 0.520 0.697 1.173 1.761 1.190 0.802 0.775 1.228 3.318 4.051 4.101	0.605 0.545 0.531 0.643 0.727 0.817 0.880 0.885 0.919 0.875 0.927 0.933 0.927 0.826 0.850 0.817 0.865 0.994 0.609 0.482 0.499

8368	0.104	4.434	0.648
8369	0.105	5.747	0.560
8370	0.108	5.814	0.544
8371	0.113	5.487	0.536
8372	0.114	4.558	0.582
8373	0.118	3.706	0.622
8374	0.123	3.285	0.637
8375	0.129	2.892	0.642
8376	0.160	2.023	0.620
8377	0.168	1.401	0.710
8378	0.162	1.121	0.823
8379	0.176	0.904	0.844
8380	0.190	0.752	0.858
8381	0.182	0.774	0.881
8382	0.159	1.091	0.853
8383	0.132	1.658	0.834
8384	0.146	1.727	0.737
8385	0.157	1.391	0.762
8386	0.164	1.207	0.787
8387	0.167	1.331	0.733
8388	0.143	1.732	0.752
8389	0.129	1.920	0.790
8390	0.129	2.056	0.765
8391	0.096	3.000	0.852
8392	0.080	5.015	0.786
8393	0.081	5.768	0.726
8394	0.075	6.320	0.748
8395	0.085	4.901	0.753
8396	0.095	4.593	0.694
8397	0.090	5.511	0.670
8398	0.068	8.304	0.726
Kibbey	Rw	z= 0.02	
8493	0.057	10.892	0.748
8494	0.070	4.039	1.001
8495	0.074	4.483	0.898
8496	0.079	3.845	0.915
8497	0.111	2.840	0.757
8498	0.127	3.572	0.589
8499	0.104	3.784	0.696
8500	0.091	3.714	0.809
8501	0.076	5.136	0.818
8502	0.063	6.594	0.879
8503	0.070	4.463	0.960
8504	0.081	3.600	0.926
8505	0.078	4.598	0.845
8506	0.076	5.225	0.817
8507	0.067	6.354	0.833
Kibbey	Rw	z= 0.02	
8516	0.059	9.021	0.804
8517	0.073	5.789	0.810
8518	0.093	3.244	0.845
8519	0.088	3.164	0.905

8520	0.071	5.123	0.876
8521	0.062	6.074	0.922
8522	0.066	5.028	0.956
8523	0.082	3.931	0.873
8524	0.087	3.339	0.890
8525	0.083	3.366	0.927
8526	0.076	4.004	0.928
8527	0.059	5.081	1.062
Kibbey	Rw:	= 0.02	
8535	0.056	8.534	0.860
8536	0.077	6.981	0.698
8537	0.097	4.173	0.713
8538	0.105	3.435	0.730
8539	0.097	3.308	0.803
8540	0.089	3.244	0.880
8541	0.076	3.637	0.973
8542	0.072	4.231	0.952
8543	0.074	4.367	0.920
8544	0.080	4.678	0.817
8545	0.094	3.950	0.758
8546	0.083	3.814	0.874
8547	0.063	6.483	0.883
Kibbey	Rw:	= 0.02	
8569	0.104	2.172	0.919
8570	0.099	2.541	0.900
8571	0.096	2.444	0.946
8572	0.100	2.419	0.910
8573	0.085	3.493	0.895
8574	0.074	5.067	0.854
8575	0.074	5.489	0.812
8576	0.079	3.874	0.913
8577	0.068	3.806	1.061
8578	0.069	4.967	0.925
8579	0.092	4.320	0.739
8580	0.092	4.487	0.728
8581	0.092	6.180	0.616
8582	0.096	6.000	0.599
8583	0.093	5.924	0.623
8584	0.092	6.851	0.588
8585	0.088	6.479	0.634
8586	0.079	7.658	0.643
8587	0.094	10.667	0.458
8588	0.099	15.037	0.370
8589	0.103	17.170	0.332
Midale		= 0.02	
9390	0.067	7.727	0.755
9391	0.101	2.862	0.826
9392	0.117	2.046	0.848
9393	0.113	2.565	0.784
9394	0.096	3.526	0.788
9395	0.097	3.457	0.787
9396	0.073	5.042	0.866

9397	0.048	15.084	0.759		
Midale	Rw=	0.02			
9489	0.056	4.516	1.196		
9490	0.073	4.363	0.931		
9491	0.094	3.873	0.767		
9492	0.075	4.831	0.855		
9493	0.051	6.914	0.051 6.914	1.058	
9494	0.055	5.757	1.075		
9495	0.076	3.781	0.955		
9496	0.077	2.894	1.082		
9497	0.060	3.699	1.230		
Mission Canyon:	Rw=	0.02			
9856	0.058	54.787	0.331		
9857	0.076	43.471	0.283		
9858	0.082	40.767	0.269		
9859	0.086	40.267	0.258		
9860	0.091	35.030	0.263		
9861	0.083	31.083	0.307		
9862	0.083	24.646	0.342		
9863	0.076	24.101	0.378		
9864	0.061	37.249	0.378		
9865	0.071	81.447	0.221		
9866	0.066	63.419	0.268		

Oil and Cas Division

Lynn D. Helms - Director

Bruce E. Hicks - Assistant Director

Department of Mineral Resources

Lynn D. Helms - Director

North Dakota Industrial Commission

www.oilgas.nd.gov

BOB BOGLE

Date: 4/17/2012

SLAWSON EXPLORATION COMPANY, INC. 1675 BROADWAY SUITE 1600

DENVER, CO 80202 USA

RE: CORES AND SAMPLES

Well Name:

MAGNUM 3-36-25H Well File No.: 22731

Location:

SESE 36-153-101 County: MCKENZIE

Permit Type:

Development - HORIZONTAL

Field:

BAKER Target Horizon: BAKKEN

Dear BOB BOGLE:

North Dakota Century Code (NDCC) Section 38-08-04 provides for the preservation of cores and samples and their shipment to the State Geologist when requested. The following is required on the above referenced well:

- 1) All cores, core chips and samples must be submitted to the State Geologist as provided for the NDCC Section 38-08-04 and North Dakota Administrative Code 43-02-03-38.1.
- 2) Samples shall include all cuttings from:

Base of the Last Charles Salt

Samples of cuttings shall be taken at 30' maximum intervals through all vertical, build and horizontal sections. Samples must be washed, dried, packed in sample envelopes in correct order with labels showing operator, well name, location and depth, and forwarded in standard boxes to the State Geologist within 30 days of the completion of drilling operations.

- 3) <u>Cores: ALL CORES</u> cut shall be preserved in correct order, properly boxed, and forwarded to the State Geologist within 90 days of completion of drilling operations. Any extension of time must have written approval from the State Geologist.
- 4) All cores, core chips, and samples must be shipped, prepaid, to the State Geologist at the following address:

ND Geological Survey Core Library Campus Road and Cornell Grand Forks, ND 58202

5) NDCC Section 38-08-16 allows for a civil penalty for any violation of Chapter 38 08 not to exceed \$12,500 for each offense, and each day's violation is a separate offense.

Sincerely

Richard A. Suggs Geologist

SUNDRY NOTICES AND REPORTS ON WELLS - FORM 4

INDUSTRIAL COMMISSION OF NORTH DAKOTA Well File No. OIL AND GAS DIVISION 600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840 SFN 5749 (09-2006) PLEASE READ INSTRUCTIONS BEFORE FILLING OUT FORM. PLEASE SUBMIT THE ORIGINAL AND ONE COPY. ☐ Drilling Progi Approximate Start Date ■ Notice of Intent Spill Report ☐ Redritting or Repair ☐ Shooting Report of Work Done **Date Work Completed** ☐ Casing or Liner ☐ Acidizing ☐ Plug Well ☐ Fracture Treatment ☐ Notice of Intent to Begin a Workover Project that may Qualify ☐ Supplemental History ☐ Change Production Method for a Tax Exemption Pursuant to NDCC Section 57-51.1-03. ☐ Temporarily Abandon ☐ Reclamation Approximate Start Date **OH Logging Waiver** ✓ Other Well Name and Number 24-HOUR PRODUCTION RATE Magnum #3-36-25H **Before** Footages Qtr-Qtr Section Township Range Oil Bbls Oil **Bbls** 205 F S 265 F EL SESE 36 101 W 153 N Water Bbis Water Bbls Field Pool County Gas MCF Gas MCF Baker Bakken McKenzie Name of Contractor(s) none Address City State Zip Code **DETAILS OF WORK** Slawson Exploration Company, Inc. (SECI) respectfully requests an open hole logging waiver for the proposed Magnum 2-36-25H well. It is located within one mile from the Lewis Federal 5300 31-31H well, which was drilled by Oasis Petroleum with open hole logs completed. Geologie control for the Magnum 3-36-25H will be achieved utilizing mudlogs and the gamma ray log from the MWD tool to be run in this well. A CBL/GR log will also be run from the KOP to 100' above TOC and to the surface with the GR.

Company Slawson Exploration Company, In	Telephone Number (720) 457-9821				
Address 1675 Broadway, Suite 1600					
City		State	Zip Code		
Denver		co	80202		
Signature ////////////////////////////////////	Printed Name Khem Suthiwan				
Title	Date				
Permitting Manager	March 29	9, 2012			
Email Address ksuthiwan@slawsoncompanies.c	om				

FOR	STATE USE ONLY
Received	Approved
Date 4-1	10-2012
By	1108
Title Ric	hard A. Suggs
	Geologist

Oil and Gas Division

Lynn D. Helms - Director

Bruce E. Hicks - Assistant Director

Department of Mineral Resources

Lynn D. Helms - Director

North Dakota Industrial Commission

www.oilgas.nd.gov

April 10, 2012

Khem Suthiwan
Permitting Manager
SLAWSON EXPLORATION COMPANY, INC.
1675 Broadway, Suite 1600
Denver, CO 80202

RE: HORIZONTAL WELL

MAGNUM 3-36-25H SESE Section 36-153N-101W

McKenzie County Well File # 22731

Dear Khem:

Pursuant to Commission Order No. 18012, approval to drill the above captioned well is hereby given. The approval is granted on the condition that all portions of the well bore not isolated by cement, be no closer than the 200' setback from the north & south boundaries and 500' setback from the east & west boundaries within the 1280 acre spacing unit consisting of All of Sections 36 & 25 T153N R101W.

PERMIT STIPULATIONS: SLAWSON EXPLORATION must contact NDIC Field Inspector Marc Binns at 701-220-5989 prior to location construction. A PERIMETER DIKE IS REQUIRED DUE TO THE ADJACENT DRAINAGE AT THE NDIC INSPECTOR'S DISCRETION.

Drilling pit

NDAC 43-02-03-19.4 states that "a pit may be utilized to bury drill cuttings and solids generated during well drilling and completion operations, providing the pit can be constructed, used and reclaimed in a manner that will prevent pollution of the land surface and freshwaters. Reserve and circulation of mud system through earthen pits are prohibited. All pits shall be inspected by an authorized representative of the director prior to lining and use. Drill cuttings and solids must be stabilized in a manner approved by the director prior to placement in a cuttings pit."

Form 1 Changes & Hard Lines

Any changes, shortening of casing point or lengthening at Total Depth must have prior approval by the NDIC. The proposed directional plan is at a legal location. The minimum legal coordinate from the well head at casing point is: 235W. Also, based on the azimuth of the proposed lateral the maximum legal coordinate from the well head is: 10096N & 235W.

Location Construction Commencement (Three Day Waiting Period)

Operators shall not commence operations on a drill site until the 3rd business day following publication of the approved drilling permit on the NDIC - OGD Daily Activity Report. If circumstances require operations to commence before the 3rd business day following publication on the Daily Activity Report, the waiting period may be waived by the Director. Application for a waiver must be by sworn affidavit providing the information necessary to evaluate the extenuating circumstances, the factors of NDAC 43-02-03-16.2 (1), (a)-(f), and any other information that would allow the Director to conclude that in the event another owner seeks revocation of the drilling permit, the applicant should retain the permit.

Permit Fee & Notification

Payment was received in the amount of \$100 via credit card. It is requested that notification be given immediately upon the spudding of the well. This information should be relayed to the Oil & Gas Division, Bismarck, via telephone. The following information must be included: Well name, legal location, permit number, drilling contractor, company representative, date and time of spudding. Office hours are 8:00 a.m. to 12:00 p.m. and 1:00 p.m. to 5:00 p.m. Central Time. Our telephone number is (701) 328-8020, leave a message if after hours or on the weekend.

Survey Requirements for Horizontal, Horizontal Re-entry, and Directional Wells

NDAC Section 43-02-03-25 (Deviation Tests and Directional Surveys) states in part (that) the survey contractor shall file a certified copy of all surveys with the director free of charge within thirty days of completion. Surveys must be submitted as one electronic copy, or in a form approved by the director. However, the director may require the directional survey to be filed immediately after completion if the survey is needed to conduct the operation of the director's office in a timely manner. Certified surveys must be submitted via email in one adobe document, with a certification cover page to certsurvey@nd.gov.

Survey points shall be of such frequency to accurately determine the entire location of the well bore.

Specifically, the Horizontal and Directional well survey frequency is 100 feet in the vertical, 30 feet in the curve (or when sliding) and 90 feet in the lateral.

Confidential status

Your request for confidential status of all information furnished to the Director, or his representatives, is hereby granted. Such information, except production runs, shall remain confidential for six months commencing on the date the well is spud.

Confidential status notwithstanding, the Director and his representatives shall have access to all well records wherever located. Your company personnel, or any person performing work for your company shall permit the Director and his representatives to come upon any lease, property, well, or drilling rig operated or controlled by them, complying with all safety rules, and to inspect the records and operation of such wells and to have access at all times to any and all records of wells. The Commission's field personnel periodically inspect producing and drilling wells. Any information regarding such wells shall be made available to them at any time upon request. The information so obtained by the field personnel shall be maintained in strict confidence and shall be available only to the Commission and its staff.

Surface casing cement

Tail cement utilized on surface casing must have a minimum compressive strength of 500 psi within 12 hours, and tail cement utilized on production casing must have a minimum compressive strength of 500 psi before drilling the plug or initiating tests.

Logs

NDAC Section 43-02-03-31 requires the running of a Cement Bond Log from which the presence of cement can be determined in every well in which production or intermediate casing has been set and a Gamma Ray Log must be run from total depth to ground level elevation of the well bore. All logs must be submitted as one paper copy and one digital copy in LAS (Log ASCII) format, or a format approved by the Director. Image logs that include, but are not limited to, Mud Logs, Cement Bond Logs, and Cyberlook Logs, cannot be produced in their entirety as LAS (Log ASCII) files. To create a solution and establish a standard format for industry to follow when submitting image logs, the Director has given approval for the operator to submit an image log as a TIFF (*.tif) formatted file. The TIFF (*.tif) format will be accepted only when the log cannot be produced in its entirety as a LAS (Log ASCII) file format. The digital copy may be submitted on a standard CD, or attached to an email sent to digitallogs@nd.gov Thank you for your cooperation.

Sincerely,

Todd L. Holweger Mineral Resources Permit Manager

APPLICATION FOR PERMIT TO DRILL HORIZONTAL WELL - FORM 1H

Approximate Date Work Will Start

90 Feet

Directional Drilling Co.

Confidential Status

Type of Work

INDUSTRIAL COMMISSION OF NORTH DAKOTA OIL AND GAS DIVISION 600 EAST BOULEVARD DEPT 405 BISMARCK, ND 58505-0840 SFN 54269 (08-2005)

Type of Well

PLEASE READ INSTRUCTIONS BEFORE FILLING OUT FORM.

MWD Every 100 Feet

PLEASE SUBMIT THE ORIGINAL AND ONE COPY.

New Location		Ó	il & Ga	S							04 / 15 / 2012				Yes			
Operator SLAWSON EXP	LORATIO	N CC	MPAN	Y, INC) .										ephone 0-457-			
Address 1675 Broadway,	Suite 160	00							City Den	ver				Sta			Code 202	
WELL INFORMA			✓ perm	nanently	y occ	provided upied dw	vellin	ng withi	ner of any n 1,320 f	y feet.	als on	√ page 2	feet o	well is n		ed wi	thin five h	undred
Well Name MAGNUM										Number 6-25H								
Surface Footages 205 F	S L		265 F	E		r-Qtr SESE		Sectio	n 8 6	Townshi	•	Range 101	w	County	McKe	nzi	e	
Longstring Casing Po	-	;	706 F	Е		r-Qtr SESE		Sectio	n 86	Townshi	•	Range 101	w	County	McKe	enzi	е	
Longstring Casing Po			om Well F 1 W Fro		- 1	zimuth 292.	5 °	11	031 Fe	al Depth eet MD	10) 758 F	eet TV	D				
Bottom Hole Footage 264 F	l L		1798 F		L	r-Qtr NWNE		Section 2	25	Townshi 153	N		W	County	McKe		е	
Bottom Hole Coordinate 10032 N From	om WH	153	3 W Fro			DP Later 10281		et MD	Azim	uth Latera		1	417 Fe	et MD	Lateral	107	'58 Feet	t TVD
Latitude of Well Head	29.87 "	_	tude of Wo	ell Hea 36			IAD Vac	Refere)83	nce	Descript Spacia		nit:			IDIC App 6 & 25		al) 53N R1 (01W
Ground Elevation 2158 Feet Above		res in	Spacing/D 1280		Unit	Spa			Unit Se eet N/S	tback Re	•	ent 0 Feet	E/W	Indust		miss 1 80	ion Order 12	
North Line of Spacing	g/Drilling Unit 5268 Fe		South Lin	ne of S _l	oacin	g/Drilling 5252			East Lin	e of Spac	-	illing Un 1488 F		West L	ine of S		ng/Drilling 10549 F	
Objective Horizons Bakken										_				2030				
Proposed Surface Casing	Size 9 - 5/8	3 "	Weight 36 Lt	o./Ft.	Depth 213 5	5 Feet	t 6	60	/olume Sacks	NOTE: S		asing m	ust be	cemen	ted bac	k to	surface.	
Proposed Longstring Casing	Size 7 - 0	"	Weight(s) 29 & 3	,	./Ft.	Longstr 1103	-		•	58 Feet	TVD	Cemen 679	t Volum Sack		ment Top 83 Fe	p - eet	Гор Dakot 5383	a Sand Feet
Base Last Charles Sa 925	alt (If Applica 54 Feet	ble)	NOTE: Ir	nterme	diate	or long	ıstriı	ng cas	ing strin	ng must k	oe cen	nented a	bove t	he top l	Dakota (Grou	ıp Sand.	
Proposed Logs OH Log Waiver	- CBL w/	GR a	nd CCL	_ fron	ı KC)P to 1	00'	abov	e the T	TOC & (GR to	surfa	ce					
Drilling Mud Type (Ve Invert	ertical Hole -	Below	Surface (Casing)				_	Mud Type - See C	•	,						
Survey Type in Vertice	al Portion of	Well	Su	rvey Fr	eque	ncy: Bu	ild S	ection	Surve	ey Freque	ency: I	ateral		Survey	/ Contra	ctor		

NOTE: A Gamma Ray log must be run to ground surface and a CBL must be run on intermediate or longstring casing string if set.

Surveys are required at least every 30 feet in the build section and every 90 feet in the lateral section of a horizontal well. Measurement inaccuracies are not considered when determining compliance with the spacing/drilling unit boundary setback requirement except in the following scenarios: 1) When the angle between the well bore and the respective boundary is 10 degrees or less; or 2) If Industry standard methods and equipment are not utilized. Consult the applicable field order for exceptions.

30 Feet

If measurement inaccuracies are required to be considered, a 2° MWD measurement inaccuracy will be applied to the horizontal portion of the well bore. This measurement inaccuracy is applied to the well bore from KOP to TD.

REQUIRED ATTACHMENTS: Certified surveyor's plat, horizontal section plat, estimated geological tops, proposed mud/cementing plan, directional plot/plan, \$100 fee. See Page 2 for Comments section and signature block.

Field

Pool

BAKER

BAKKEN

COMMENTS, ADDITIONAL INFORMATION, AND/OR LIST OF ATTACHMENTS

Permit Type

DEVELOPMENT

No occupied dwelling within 1,320 ft. Lateral will be drilled with CaCl water unless pressure is encountered, then will switch to 80/20 invert mud. KB @ 2,180°. Certified surveyors well location plat, horizontal sections, pad layout, pad x-sections, topo map, proposed directional survey & plots, and drilling program will be emailed. The proposed well will be located on the existing Magnum 2-36-25H well pad (W22249).

Lateral 2											
KOP Lateral 2	Azimuth Lateral 2	Estimat	ed Total D	epth Lateral 2		K	OP Coordina	ites F	rom Well F	lead	
Feet MD	0		Feet	MD	Feet TV	'D		F	rom WH		From WH
Formation Entry Point C	coordinates From We	II Head	Botto	m Hole Coordina	ites From Well	l Head					
From	WH	From W	/H	Fro	m WH		From W	н			
KOP Footages From Ne	earest Section Line		Qtr-C	tr Sectio	n Towr	nship	Range		County		
F	L	F	L			N		W			
Bottom Hole Footages F	rom Nearest Section	n Line	Qtr-C	tr Sectio	n Towr	nship	Range		County		
F	L	F	L			N		W			
Lateral 3					<u>"</u>						
KOP Lateral 3	Azimuth Lateral 3	Estimat	ed Total D	epth Lateral 3		K	OP Coordina	ites F	rom Well F	lead	
Feet MD	0		Feet		Feet TV				rom WH		From WH
Formation Entry Point C	Coordinates From We	II Head	1	m Hole Coordina				Ť			
From		From W			m WH	rriodd	From W	нΙ			
KOP Footages From Ne		1 10111 **	Qtr-C			nship	Range		County		
F	L	F	L		110001	N		W	County		
Bottom Hole Footages F			Qtr-C	tr Sectio	n Towr	nship	Range	**	County		
F	L	F	,	ii Secilo	II IIOWI	N N		W	County		
Lateral 4	<u>L</u>	I.	L			- 11		**			
KOP Lateral 4	Azimuth Lateral 4	Estimat	ed Total D	epth Lateral 4		K(OP Coordina	toc E	rom Wall L	load	
Feet MD	0	Louina	Feet	•	Feet TV		OF Cooldina		rom WH	leau	From WH
	Coordinates From Ma	II Llood		m Hole Coordina				$\frac{\Gamma}{\Gamma}$	TOTTI VVII		FIOIII WH
Formation Entry Point C						пеац	\\				
From		From W			m WH	1. 1	From W	н	0		
KOP Footages From Ne	earest Section Line	_	Qtr-C	tr Sectio	n Howr	nship	Range	14/	County		
F	L	F	L			<u>N</u>	_	W	_		
Bottom Hole Footages F			Qtr-C	tr Sectio	n Towr	nship	Range		County		
F	L	F	L			N		W			
Lateral 5	T	I=									
KOP Lateral 5	Azimuth Lateral 5	Estimat		epth Lateral 5			OP Coordina	ites F	rom Well F	lead	
Feet MD	0		Feet		Feet TV			F	rom WH		From WH
Formation Entry Point C	coordinates From We	II Head	Botto	m Hole Coordina	ites From Well	l Head					
From		From W	/H	Fro	m WH		From W	Н			
KOP Footages From Ne	earest Section Line		Qtr-C	tr Sectio	n Towr	nship	Range		County		
F	L	F	L			N		W			
Bottom Hole Footages F	From Nearest Section	n Line	Qtr-C	tr Sectio	n Towr	nship	Range		County		
F	L	F	L			N		W			
									D	ate	
I hereby swear or affirm	the information prov	ided is tru	e, comple	te and correct as	determined fr	om all	available red	cords.			29 / 2012
		Р	rinted Nar	ne			Title				
ePer	mit	F	Khem S	uthiwan			Permitti	ng N	<i>l</i> lanager		
		-					!	-			
	FOR STATE U	SE ONLY					F	OR ST	ATE USE	ONLY	
Permit and File Number		Number			Date	Appro	ved				
22731		33 - 0)53 - 04	1069					4 / 10) / 2012	!

Ву

Title

Todd L. Holweger

Mineral Resources Permit Manager

WELL LOCATION PLAT
Slawson Exploration Company, Inc.
1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

205 feet from the south line and 265 feet from the east line (surface location)
Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location) Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site — State of North Dakota

Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location)

Latitude 48°03'09.063" North; Longitude 103°36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

NOTE: All land corners are assumed unless otherwise noted. The well location shown hereon is not an as-built location.

Brian L. Schmalz 8/26/2011 Surveyed By N.D.P.L.S. # 6809 Date

Vertical Control Datum Used Sea-Level Datum of NAVD 88 Based on elevation derived from OPUS Solution on CP*KLJ 15-152-10 (iron rebar) Located a distance of 6192.72' on an azimuth of 270'16'47" from the SW corner of Section 36, T.153N., R.101W., 5th P.M. being at 2134.39' Elevation MSL.

Project No. 3712480 Book <u>OW-257</u> Pg. <u>47-50</u> Staking

Professional Consulting Engineers and Surveyors Registered in Registered in
North Dakota, South Dakota
Montana, Wyoming & Minnesota
Tele−Fax No. 701−483−2795
Bus. Phone No. 701−483−1284
P.O. Box 290
677 27th Ave. E.
Dickinson, North Dakota 58602
Certificate of Authorization ∦C−061

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plut shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee& **Jackson**

1675 Broadway, S				_ =		- CD			Phone #	303-592	
Denver, Co. 8020)2		9		Laws	DANY inc			Fax:	303-592	2-8881
				oxp.	o. 41. 01. 00	oury, mo.			Log Fax:		
GENERAL WELL	INFORMATION										
LEASE NAME AN			Magnun	n 3-36-25H	- single-latera	al Bakken p	oroducer	with stage-	frac compl	etion	
ORIGINAL GL:		2,158	3'	FOOTAGE	CALLS - SUR	RFACE HOL	.E	205'	FSL	265'	FEL
FINISHED PAD E	2,156		SURFACE	HOLE LOCAT	ΓΙΟΝ		SESE	36,	153N,	101W	
KB(24')		2,180			IOLE LOCATI	ON		NENE			101W
PROPOSED TVD		10,75		LATITUDE	_				48° 01' 29.		
PROPOSED TMD		21,41		LONGITUD COUNTY/S					103° 36' 18.		
LATERAL LENGT FIELD	П (ГІ.)	10,38 Wildo		COUNT 1/S	DIAIE				McKenzie (JO, ND	
DIRECTIONS TO	WELL:	VVIIGO	at								
ESTIMATED TOP		SUBSEA		TVD	ESTIMATED	TOPS		SUBSEA			VD
Pierre/base Foxhil	lls	150'		2,030'	Charles	1 1		-6,266'			446'
Dakota (marine) Dunham Salt		-3,203' -4,565'		5,383' 6.745'	base last Ch			-7,074' -7,266'			254'
Base Dunham Salt	l t	-4,565' -4,583'		6,745	Mission Can	yun		-7,266			446' ,016'
Pine Salt		-4,836'		7,016'	Upper Bakke	en shale		-8,556'			,736'
Base Pine Salt		-4,870'		7,050'	Top of Targe			-8,571'			,751'
Opeche		-4,895'		7,075'	Target			-8,578'		10	,758'
Minnelussa		-5,100'		7,280'	Base of Targ	jet		-8,585'		10	,765'
Kibbey Lime		-6,119'		8,299'		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100				
MUD PROGRAM	Charter of (ft.)				Туре	Viscosity	Weight	Fluid	Loss	L	CM
Start at (ft.)	2,130'	(Through Sเ	urface Co	oing Donth)	fresh water	28-32	8.34	N			
2.130'	7" csg point	(Through St	пасе Са	sing Depth)	80/20 invert		9.6-10.5		10		
7" csg point	Total MD				80/20 invert		10.5-12.5		10		
, cog ponit	TOTAL IVID				00/20 1111011	10 00	10.0 12.0	, ,	10		
Maximum anticip	ated bottom hol	e pressure is	4,658#;	BOPs	to be tested	to 5000psi					
LOGGING PROG		e pressure is	s 4,658#;	BOPs	to be tested	to 5000psi					
LOGGING PROG Open Hole	RAM Triple Combo - DIL,0		4,658#;	BOPs	to be tested	to 5000psi				Į.	
LOGGING PROG Open Hole Cased Hole	RAM		4,658#;	BOPs	to be tested		ADOCD AN				
LOGGING PROG Open Hole Cased Hole BIT PROGRAM	RAM Triple Combo - DIL,(CBL/GR/CCL	CNL,CDL				CASING F			start	end	footage
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size	RAM Triple Combo - DIL,(CBL/GR/CCL Casing	CNL,CDL Bit Type	Model	Manu	facturer_	CASING P			start	end	footage
LOGGING PROG Open Hole Cased Hole BIT PROGRAM	RAM Triple Combo - DIL,(CBL/GR/CCL	CNL,CDL		<u>Manu</u> R		CASING F	CASING	:	start '	_	footage
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2"	RAM Triple Combo - DIL, CBL/GR/CCL Casing 95/8" 7" 7"	Bit Type Roller-Cone PDC PDC	<u>Model</u>	Manu R S	facturer Letip SEC SEC	CASING P	36#	: K55	start '	2135 end	
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6"	RAM Triple Combo - DIL,(CBL/GR/CCL Casing 95/8" 7" 7" 41/2"	Bit Type Roller-Cone PDC	Model 655ZX	Manu R S	facturer etip SEC	CASING F SURFACE 9-5/8" PRODUCT	36# FION CAS	: K55 K55 P-110	'	2135 end 6,595'	1 2135' footage 6,595'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI	RAM Triple Combo - DIL,(CBL/GR/CCL Casing 95/8" 7" 7" 41/2"	Bit Type Roller-Cone PDC PDC PDC	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7"	36# 36# 10N CAS 29# 32#	K55 SING: P-110 P-110	start ' 6,595'	end 6,595' 9,408'	footage 6,595' 2,813'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI	RAM Triple Combo - DIL,(CBL/GR/CCL Casing 95/8" 7" 7" 41/2"	Bit Type Roller-Cone PDC PDC PDC 10,281'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT	36# FION CAS	: K55 K55 P-110	start	2135 end 6,595'	footage 6,595' 2,813'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate	RAM Triple Combo - DIL, (CBL/GR/CCL Casing 95/s" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC PDC 10,281' 12.0°/100'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7"	36# 36# 10N CAS 29# 32#	K55 SING: P-110 P-110	start ' 6,595'	end 6,595' 9,408'	footage 6,595' 2,813'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.)	RAM Triple Combo - DIL, (CBL/GR/CCL Casing 95/s" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC PDC 10,281' 12.0°/100' 10,386'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7"	36# TION CAS 29# 32# 29#	K55 ING: P-110 P-110 P-110	start ' 6,595' 9,408'	end 6,595' 9,408' 11,031'	footage 6,595' 2,813' 1,623'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth	RAM Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55°	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29#	36# TION CAS 29# 32# 29# 8,218'	K55 SING: P-110 P-110	start ' 6,595' 9,408'	end 6,595' 9,408' 11,031'	footage 6,595' 2,813' 1,623'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (1	RAM Triple Combo - DIL,(CBL/GR/CCL Casing 95/8" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE	36# TION CAS 29# 32# 29# 8,218' NGTH:	K55 ING: P-110 P-110 P-110 Total 32#	start ' 6,595' 9,408' 2,813' start	end 6,595' 9,408' 11,031'	footage 6,595' 2,813' 1,623' 11,031' Length
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth	RAM Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55°	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2"	36# 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6#	K55 ING: P-110 P-110 P-110	start 6,595' 9,408' 2,813' start 10,271'	end 6,595' 9,408' 11,031' end 21,397'	footage 6,595' 2,813' 1,623' 11,031' Length 11,126'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (TL Landing point (TV)	RAM Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM	Bit Type Roller-Cone PDC PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pacl	36# 36# 7ION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assem	K55 BING: P-110 P-110 P-110 Total 32#	start 6,595' 9,408' 2,813' start 10,271' " liner - Pac	end 6,595' 9,408' 11,031' end 21,397' cker dept	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' ths to be
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV) Target zone botton	RAM Triple Combo - DIL,(CBL/GR/CCL Casing 95/6" 7" 7" 4½" ROGRAM	Bit Type Roller-Cone PDC PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pacl	36# 36# 7ION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assem	K55 BING: P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2	start 6,595' 9,408' 2,813' start 10,271' " liner - Pac	end 6,595' 9,408' 11,031' end 21,397' cker dept	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' ths to be
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM D) TVD) D) m (TVD) HED DIRECTION	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643	Manu R S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pacl provided a run.	36# 36# 7ION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assem	K55 BING: P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2	start 6,595' 9,408' 2,813' start 10,271' " liner - Pac	end 6,595' 9,408' 11,031' end 21,397' cker dept	footage 6,595' 2,813' 1,623' 11,031' Length 11,126'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 6552X 3641 643	Manu R S S	facturer etip SEC SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run.	36# 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The	E K55 BING: P-110 P-110 P-110 Total 32# P-110 bly on 4-1/2 e sleeves and	start ' 6,595' 9,408' 2,813' start 10,271' " liner - Pacd packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provice	footage 6,595' 2,813' 1,623' 11,031' Length 11,126'
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ***** SEE ATTAC CEMENT PROGR SURFACE CASIN	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643	Manu R S S	facturer Letip SEC SEC	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run.	36# 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The	E K55 BING: P-110 P-110 P-110 Total 32# P-110 bly on 4-1/2 e sleeves and	start ' 6,595' 9,408' 2,813' start 10,271' " liner - Pacd packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provice	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' ths to be
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess	RAM Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM TVD) D) m (TVD) HED DIRECTION RAM IG	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643	Manu R S S S S	facturer etip SEC SEC SEC Instructions t to surface w	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run.	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The	E K55 BING: P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and bly on 4-1/2 e sleeves a	start ' 6,595' 9,408' 2,813' start 10,271' " liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provice	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' ths to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ***** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM D) TVD) D) m (TVD) HED DIRECTION RAM IG	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 6552X 3641 643	Manu R S S S C Cemer	facturer Setip SEC SEC SEC SEC State of the	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run.	8,218' 8,218' NGTH: 11.6# Ker assemt TD. The	K55 P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and 62 SX "G" ta	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provice	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' ths to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess	Triple Combo - DIL, CBL/GR/CCL Casing 95/8" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION RAM IG ASING and a 9" hole	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643	Manu R S S S C Cemer 1.65 ft	facturer etip SEC SEC SEC Instructions t to surface w	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX	8,218' 8,218' NGTH: 11.6# Are assemt TD. The	EK55 ING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 a sleeves and a ft3/sx) lead 00' above Da	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess	Triple Combo - DIL, CBL/GR/CCL Casing 95/8" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION RAM IG ASING and a 9" hole	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643	Cemer 1.65 ft 500' ab	Instructions at to surface w	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. ith 398 SX	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce	Triple Combo - DIL, CBL/GR/CCL Casing 95/8" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION RAM IG ASING and a 9" hole	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417'	Model 655ZX 3641 643 Size 95%" 7"	Cemer 1.65 ft 500' at to 7" sh	Instructions at to surface w at w/ 303 sx lit B/sx) tail. Calcove Dakota to	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (N culated cem to 150' above ment Volur	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ***** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce Recommendation	Triple Combo - DIL, CBL/GR/CCL Casing 95/8" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION RAM IG ASING and a 9" hole dure for Float Equ	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417' IAL PLAN	Model 655ZX 3641 643 Size 95%" 7"	Cemer 1.65 ft 500' at to 7" st	Instructions at to surface w at w/ 303 sx lit B/sx) tail. Calcove Dakota to noe. Total Cer	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (N culated cem to 150' above ment Volur RMATION	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce Recommendation Engineering:	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION ASING and a 9" hole dure for Float Equ	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417' IAL PLAN	Model 655ZX 3641 643	Cemer 1.65 ft 500' at to 7" st	Instructions at to surface w at w/ 303 sx lit a/sxx) tail. Calc bove Dakota to noe. Total Cer	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (\) culated cem to 150' above ment Volur RMATION	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce Recommendation Engineering: Mark McCallister	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) D) m (TVD) HED DIRECTION ASING and a 9" hole dure for Float Equ	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417' IAL PLAN Lipment	Model 655ZX 3641 643	Cemer 1.65 ft 500' ab to 7" sl WSON CON	Instructions at to surface w at w/ 303 sx lit a/sx) tail. Calc bove Dakota to anoe. Total Cer NTACT INFOR	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (\) culated cem to 150' above ment Volur RMATION ell 3-1602	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce Recommendation Engineering:	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) HED DIRECTION ASING and a 9" hole dure for Float Equ	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417' IAL PLAN Lipment	Model 655ZX 3641 643	Cemer 1.65 ft 500' at to 7" st	Instructions at to surface w at w/ 303 sx lit a/sxx) tail. Calc bove Dakota to noe. Total Cer	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (\) culated cem to 150' above ment Volur RMATION ell 3-1602	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when
LOGGING PROG Open Hole Cased Hole BIT PROGRAM Hole Size 13-1/2" 8-3/4" Vertical 8-3/4" Curve 6" DIRECTIONAL PI KOP Build rate Lateral length, (ft.) Curve Azimuth Target zone top (T Landing point (TV Target zone botton Total MD ****** SEE ATTAC CEMENT PROGR SURFACE CASIN Use 60% excess PRODUCTION C/ Use 30% excess See Drilling Proce Recommendation Engineering: Mark McCallister	Triple Combo - DIL, CBL/GR/CCL Casing 95/6" 7" 7" 41/2" ROGRAM FVD) D) m (TVD) D) m (TVD) HED DIRECTION ASING and a 9" hole dure for Float Equ	Bit Type Roller-Cone PDC PDC 10,281' 12.0°/100' 10,386' 292.55° 10,751' 10,758' 10,765' 21,417' IAL PLAN Lipment	Model 655ZX 3641 643	Cemer 1.65 ft 500' ab to 7" sl WSON CON	Instructions at to surface w at w/ 303 sx lit a/sx) tail. Calc bove Dakota to anoe. Total Cer NTACT INFOR	CASING F SURFACE 9-5/8" PRODUCT 7" 7" 7" Total 29# LINER LE 4-1/2" Mech Pack provided a run. with 398 SX e Pozmix (\) culated cem to 150' above ment Volur RMATION ell 3-1602	CASING 36# FION CAS 29# 32# 29# 8,218' NGTH: 11.6# Ker assemt TD. The Tig" and 20 Field: 2.56 Fient top 50 Field: 2.56	EK55 BING: P-110 P-110 P-110 P-110 Total 32# P-110 ably on 4-1/2 e sleeves and ft3/sx) lead 00' above Day, Tail covera	start 6,595' 9,408' 2,813' start 10,271' "liner - Pac d packers w	end 6,595' 9,408' 11,031' end 21,397' cker dept vill provic	footage 6,595' 2,813' 1,623' 11,031' Length 11,126' this to be ded when

The SHL is 205' FSL & 265 FWL (SESE), Section 36, T153N, R101W, McKenzie County, ND. The state setback is 500' FEL & FWL, 200' FNL & FSL.

<u>7" Casing:</u> 8-3/4" hole: KOP at 10,281'. Build curve at **12**°/**100'** to 90° inclination at 11,031' MD (**10,758' TVD**) at an azimuth of 292.55°. Set 7" casing 388' FSL & 706' FEL, SESE, Section 36, T153N, R101W).

Lateral: After drillind out of the 7: casing shoe, increase the azimuth to 360° at 3°/100'. Drill a 6" horizontal well building to an azimuth of 360.00° to TD at a depth of 21,714' MD (**10,758' TVD**), 250' FNL & 1,798' FEL (NWNE) Section 25, T153N, R101W. Expect an inclination of 90.00°. Total 6" lateral is 10,386'.

 $\begin{tabular}{lll} \textbf{Magnum 3-36-25H} \\ KB = 2,180' & KOP = 10,281' & Target = 10,343'\,TVD \\ & \textbf{Based on True North} \\ \end{tabular}$

Based on True North									
MD	Incl.	Azi.	TVD	North	East	DLS	Vertical Section	UTM N	UTM E
0.00	0.00	292.55	0.00	0.00	0.00	0.00	0.00	205.00	-265.00
10,200.00	0.00	292.55	10,200.00	0.00	0.00	0.00	0.00	205.00	-265.00
10,280.50	0.00	292.55	10,280.50	0.00	0.00	0.00	0.00	205.00	-265.00 KOP
10,330.50	6.00	292.55	10,330.36	1.00	-2.41	12.00	2.61	206.00	-267.41
10,380.50	12.00	292.55	10,379.68	4.00	-9.62	12.00	10.42	209.00	-274.62
10,430.50	18.00	292.55	10,377.00	8.96	-21.55	12.00	23.34	213.96	-286.55
10,480.50	24.00	292.55	10,427.91		-38.08	12.00	41.24	220.82	-303.08
10,480.50	30.00		10,474.33	15.82 24.51	-58.08 -59.01	12.00	63.90	229.51	-324.01
		292.55							
10,580.50	36.00	292.55	10,560.90	34.94	-84.12	12.00	91.09	239.94	-349.12
10,630.50	42.00	292.55	10,599.70	46.99	-113.14	12.00	122.51	251.99	-378.14
10,680.50	48.00	292.55	10,635.01	60.53	-145.75	12.00	157.82	265.53	-410.75
10,730.50	54.00	292.55	10,666.43	75.41	-181.59	12.00	196.63	280.41	-446.59
10,780.50	60.00	292.55	10,693.62	91.47	-220.26	12.00	238.50	296.47	-485.26
10,830.50	66.00	292.55	10,716.29	108.53	-261.35	12.00	282.99	313.53	-526.35
10,880.50	72.00	292.55	10,734.18	126.41	-304.40	12.00	329.60	331.41	-569.40
10,930.50	78.00	292.55	10,747.10	144.91	-348.94	12.00	377.83	349.91	-613.94
10,980.50	84.00	292.55	10,754.91	163.83	-394.48	12.00	427.15	368.83	-659.48
11,030.50 Magnum 3-36-25H	90.00	292.55	10,757.52	182.96	-440.53	12.00	477.01	387.96	-705.53 EOC, 7" Csg
11,030.50	90.00	292.55	10,757.52	182.96	-440.53	12.00	477.01	387.96	-705.53 Begin Lateral
,			10,757.52						S
11,130.50	90.00	295.55	*	223.71	-531.81	3.00	576.95	428.71	-796.81
11,230.50	90.00	298.55	10,757.52	269.18	-620.84	3.00	676.68	474.18	-885.84
11,330.50	90.00	301.55	10,757.52	269.18	-620.84	3.00	676.68	474.18	-885.84
11,430.50	90.00	304.55	10,757.52	321.44	-705.94	3.00	775.68	526.44	-970.94
11,530.50	90.00	307.55	10,757.52	380.28	-786.76	3.00	873.84	585.28	-1,051.76
11,630.50	90.00	310.55	10,757.52	443.26	-864.39	3.00	971.42	648.26	-1,129.39
11,730.50	90.00	313.55	10,757.52	510.22	-938.61	3.00	1,068.32	715.22	-1,203.61
11,830.50	90.00	316.55	10,757.52	580.97	-1,009.23	3.00	1,164.50	785.97	-1,274.23
11,930.50	90.00	319.55	10,757.52	655.32	-1,076.05	3.00	1,259.89	860.32	-1,341.05
12,030.50	90.00	322.55	10,757.52	733.07	-1,138.89	3.00	1,354.42	938.07	-1,403.89
12,130.50	90.00	325.55	10,757.52	814.00	-1,197.57	3.00	1,448.02	1,019.00	-1,462.57
12,230.50	90.00	328.55	10,757.52	897.89	-1,251.93	3.00	1,540.63	1,102.89	-1,516.93
12,330.50	90.00	331.55	10,757.52	984.51	-1,301.83	3.00	1,632.18	1,189.51	-1,566.83
12,430.50	90.00	334.55	10,757.52	1,073.62	-1,347.13	3.00	1,722.62	1,278.62	-1,612.13
12,530.50	90.00	337.55	10,757.52	1,164.98	-1,387.70	3.00	1,811.87	1,369.98	-1,652.70
12,630.50	90.00	340.55	10,757.52	1,258.34	-1,423.44	3.00	1,899.89	1,463.34	-1,688.44
12,730.50	90.00	343.55	10,757.52	1,353.44	-1,454.24	3.00	1,986.61	1,558.44	-1,719.24
12,830.50	90.00	346.55	10,757.52	1,450.02	-1,480.02	3.00	2,071.96	1,655.02	-1,745.02
12,930.50	90.00	349.55	10,757.52	1,547.82	-1,500.71	3.00	2,155.89	1,752.82	-1,765.71
13,030.50	90.00	352.55	10,757.52	1,646.57	-1,516.25	3.00	2,238.35	1,851.57	-1,781.25
13,130.50	90.00	355.55	10,757.52	1,746.00	-1,526.60	3.00	2,319.27	1,951.00	-1,791.60
13,230.50	90.00	358.55	10,757.52	1,845.83	-1,531.74	3.00	2,398.61	2,050.83	-1,796.74
13,330.50	90.00	360.00	10,757.52	1,945.81	-1,533.00	1.45	2,477.15	2,150.81	-1,798.00
13,430.50	90.00	360.00	10,757.52	2,045.81	-1,533.00	0.00	2,556.45	2,250.81	-1,798.00
13,530.50	90.00	360.00	10,757.52	2,145.81	-1,533.00	0.00	2,637.16	2,350.81	-1,798.00
13,630.50	90.00	360.00	10,757.52	2,245.81	-1,533.00	0.00	2,719.15	2,450.81	-1,798.00
13,730.50	90.00	360.00	10,757.52	2,345.81	-1,533.00	0.00	2,802.31	2,550.81	-1,798.00
13,830.50	90.00	360.00	10,757.52	2,445.81	-1,533.00	0.00	2,886.53	2,650.81	-1,798.00
13,930.50	90.00	360.00	10,757.52	2,545.81	-1,533.00	0.00	2,971.74	2,750.81	-1,798.00
14,030.50	90.00	360.00	10,757.52	2,645.81	-1,533.00	0.00	3,057.84	2,850.81	-1,798.00
14,130.50	90.00	360.00	10,757.52	2,745.81	-1,533.00	0.00	3,144.77	2,950.81	-1,798.00
14,130.50	90.00	360.00	10,757.52	2,745.81 2,845.81	-1,533.00	0.00	3,232.45	3,050.81	-1,798.00 -1,798.00
14,230.50	90.00	360.00	10,757.52	2,845.81	-1,533.00	0.00	3,320.83	3,150.81	-1,798.00
	90.00		10,757.52		-1,533.00	0.00		3,250.81	-1,798.00 -1,798.00
14,430.50		360.00		3,045.81			3,409.85		<i>'</i>
14,530.50	90.00	360.00	10,757.52	3,145.81	-1,533.00	0.00	3,499.46	3,350.81	-1,798.00
14,630.50	90.00	360.00	10,757.52	3,245.81	-1,533.00	0.00	3,589.62	3,450.81	-1,798.00
14,730.50	90.00	360.00	10,757.52	3,345.81	-1,533.00	0.00	3,680.29	3,550.81	-1,798.00
14,830.50	90.00	360.00	10,757.52	3,445.81	-1,533.00	0.00	3,771.43	3,650.81	-1,798.00
14,930.50	90.00	360.00	10,757.52	3,545.81	-1,533.00	0.00	3,863.01	3,750.81	-1,798.00
15,030.50	90.00	360.00	10,757.52	3,645.81	-1,533.00	0.00	3,955.00	3,850.81	-1,798.00
15,130.50	90.00	360.00	10,757.52	3,745.81	-1,533.00	0.00	4,047.37	3,950.81	-1,798.00
15,230.50	90.00	360.00	10,757.52	3,845.81	-1,533.00	0.00	4,140.09	4,050.81	-1,798.00
15,330.50	90.00	360.00	10,757.52	3,945.81	-1,533.00	0.00	4,233.14	4,150.81	-1,798.00
15,430.50	90.00	360.00	10,757.52	4,045.81	-1,533.00	0.00	4,326.51	4,250.81	-1,798.00
15,530.50	90.00	360.00	10,757.52	4,145.81	-1,533.00	0.00	4,420.16	4,350.81	-1,798.00
15,630.50	90.00	360.00	10,757.52	4,245.81	-1,533.00	0.00	4,514.09	4,450.81	-1,798.00
15,730.50	90.00	360.00	10,757.52	4,345.81	-1,533.00	0.00	4,608.27	4,550.81	-1,798.00
15,830.50	90.00	360.00	10,757.52	4,445.81	-1,533.00	0.00	4,702.69	4,650.81	-1,798.00
15,930.50	90.00	360.00	10,757.52	4,545.81	-1,533.00	0.00	4,797.34	4,750.81	-1,798.00

21,416.69	90.00	360.00	10,757.52	10,032.00	-1,533.00	0.00	10,148.45	10,237.00	-1,798.00 l
21,330.50	90.00	360.00	10,757.52	9,945.81	-1,533.00	0.00	10,063.26	10,150.81	-1,798.00
21,230.50	90.00	360.00	10,757.52	9,845.81	-1,533.00	0.00	9,964.44	10,050.81	-1,798.00
21,130.50	90.00	360.00	10,757.52	9,745.81	-1,533.00	0.00	9,865.64	9,950.81	-1,798.00
21,030.50	90.00	360.00	10,757.52	9,645.81	-1,533.00	0.00	9,766.87	9,850.81	-1,798.00
20,930.50	90.00	360.00	10,757.52	9,545.81	-1,533.00	0.00	9,668.12	9,750.81	-1,798.00
20,830.50	90.00	360.00	10,757.52	9,445.81	-1,533.00	0.00	9,569.40	9,650.81	-1,798.00
20,730.50	90.00	360.00	10,757.52	9,345.81	-1,533.00	0.00	9,470.71	9,550.81	-1,798.00
20,630.50	90.00	360.00	10,757.52	9,245.81	-1,533.00	0.00	9,372.04	9,450.81	-1,798.00
20,530.50	90.00	360.00	10,757.52	9,145.81	-1,533.00	0.00	9,273.40	9,350.81	-1,798.00
20,430.50	90.00	360.00	10,757.52	9,045.81	-1,533.00	0.00	9,174.79	9,250.81	-1,798.00
20,330.50	90.00	360.00	10,757.52	8,945.81	-1,533.00	0.00	9,076.21	9,150.81	-1,798.00
20,230.50	90.00	360.00	10,757.52	8,845.81	-1,533.00	0.00	8,977.66	9,050.81	-1,798.00
20,130.50	90.00	360.00	10,757.52	8,745.81	-1,533.00	0.00	8,879.15	8,950.81	-1,798.00
20,030.50	90.00	360.00	10,757.52	8,645.81	-1,533.00	0.00	8,780.67	8,850.81	-1,798.00
19,930.50	90.00	360.00	10,757.52	8,545.81	-1,533.00	0.00	8,682.22	8,750.81	-1,798.00
19,830.50	90.00	360.00	10,757.52	8,445.81	-1,533.00	0.00	8,583.81	8,650.81	-1,798.00
19,730.50	90.00	360.00	10,757.52	8,345.81	-1,533.00	0.00	8,485.44	8,550.81	-1,798.00
19,630.50	90.00	360.00	10,757.52	8,245.81	-1,533.00	0.00	8,387.10	8,450.81	-1,798.00
19,530.50	90.00	360.00	10,757.52	8,145.81	-1,533.00	0.00	8,288.81	8,350.81	-1,798.00
19,430.50	90.00	360.00	10,757.52	8,045.81	-1,533.00	0.00	8,190.55	8,250.81	-1,798.00
19,330.50	90.00	360.00	10,757.52	7,945.81	-1,533.00	0.00	8,092.34	8,150.81	-1,798.00
19,230.50	90.00	360.00	10,757.52	7,845.81	-1,533.00	0.00	7,994.17	8,050.81	-1,798.00
19,130.50	90.00	360.00	10,757.52	7,745.81	-1,533.00	0.00	7,896.05	7,950.81	-1,798.00
19,030.50	90.00	360.00	10,757.52	7,645.81	-1,533.00	0.00	7,797.98	7,850.81	-1,798.00
18,930.50	90.00	360.00	10,757.52	7,545.81	-1,533.00	0.00	7,699.96	7,750.81	-1,798.00
18,830.50	90.00	360.00	10,757.52	7,345.81	-1,533.00	0.00	7,504.07	7,650.81	-1,798.00
18,730.50	90.00	360.00	10,757.52	7,345.81	-1,533.00	0.00	7,504.07	7,550.81	-1,798.00
18,630.50	90.00	360.00	10,757.52	7,245.81	-1,533.00	0.00	7,406.20	7,450.81	-1,798.00
18,530.50	90.00	360.00	10,757.52	7,145.81	-1,533.00	0.00	7,308.40	7,350.81	-1,798.00
18,430.50	90.00	360.00	10,757.52	7,045.81	-1,533.00	0.00	7,210.65	7,250.81	-1,798.00
18,330.50	90.00	360.00	10,757.52	6,945.81	-1,533.00	0.00	7,112.97	7,150.81	-1,798.00
18,230.50	90.00	360.00	10,757.52	6,845.81	-1,533.00	0.00	7,015.35	7,050.81	-1,798.00
18,130.50	90.00	360.00	10,757.52	6,745.81	-1,533.00	0.00	6,917.81	6,950.81	-1,798.00
18,030.50	90.00	360.00	10,757.52	6,645.81	-1,533.00	0.00	6,820.33	6,850.81	-1,798.00
17,930.50	90.00	360.00	10,757.52	6,545.81	-1,533.00	0.00	6,722.92	6,750.81	-1,798.00
17,830.50	90.00	360.00	10,757.52	6,445.81	-1,533.00	0.00	6,625.60	6,650.81	-1,798.00
17,730.50	90.00	360.00	10,757.52	6,345.81	-1,533.00	0.00	6,528.35	6,550.81	-1,798.00
17,630.50	90.00	360.00	10,757.52	6,245.81	-1,533.00	0.00	6,431.19	6,450.81	-1,798.00
17,530.50	90.00	360.00	10,757.52	6,145.81	-1,533.00	0.00	6,334.12	6,350.81	-1,798.00
17,430.50	90.00	360.00	10,757.52	6,045.81	-1,533.00	0.00	6,237.14	6,250.81	-1,798.00
17,330.50	90.00	360.00	10,757.52	5,945.81	-1,533.00	0.00	6,140.26	6,150.81	-1,798.00
17,230.50	90.00	360.00	10,757.52	5,845.81	-1,533.00	0.00	6,043.47	6,050.81	-1,798.00
17,130.50	90.00	360.00	10,757.52	5,745.81	-1,533.00	0.00	5,946.80	5,950.81	-1,798.00
17,030.50	90.00	360.00	10,757.52	5,645.81	-1,533.00	0.00	5,850.24	5,850.81	-1,798.00
16,930.50	90.00	360.00	10,757.52	5,545.81	-1,533.00	0.00	5,753.79	5,750.81	-1,798.00
16,830.50	90.00	360.00	10,757.52	5,445.81	-1,533.00	0.00	5,657.47	5,650.81	-1,798.00
16,730.50	90.00	360.00	10,757.52	5,345.81	-1,533.00	0.00	5,561.27	5,550.81	-1,798.00
16,630.50	90.00	360.00	10,757.52	5,245.81	-1,533.00	0.00	5,465.22	5,450.81	-1,798.00
16,530.50	90.00	360.00	10,757.52	5,145.81	-1,533.00	0.00	5,369.31	5,350.81	-1,798.00
16,430.50	90.00	360.00	10,757.52	5,045.81	-1,533.00	0.00	5,273.55	5,250.81	-1,798.00
16,330.50	90.00	360.00	10,757.52	4,945.81	-1,533.00	0.00	5,177.95	5,150.81	-1,798.00
16,230.50	90.00	360.00	10,757.52	4,845.81	-1,533.00	0.00	5,082.52	5,050.81	-1,798.00
16,130.50	90.00	360.00	10,757.52	4,745.81	-1,533.00	0.00	4,987.26	4,950.81	-1,798.00
16,030.50	90.00	360.00	10,757.52	4,645.81	-1,533.00	0.00	4,892.20	4,850.81	-1,798.00
4 4 0 0 0 0 0									4 = 00 00

End Lateral 10,386.19

HORIZONTAL SECTION PLAT
Slawson Exploration Company, Inc.
1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

Magnum 3-30-25H

205 feet from the south line and 265 feet from the east line (surface location)

Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location)

Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site — State of North Dakota

Latitude 48*01'29.869" North; Longitude 103*36'18.972" West (surface location)

Latitude 48*03'09.063" North; Longitude 103*36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

All corners shown on this plat were found in the field during Slawson Exploration Company Magnum 3-36-25H oil well survey on August 26, 2011. Distances to all others are calculated. All azimuths are based on the south line of the southwest quarter of Section 36, being on an azimuth of 090'00'22".

Surveyed By	Field Book
B. Schmalz	OW-257
Computed & Drawn By	Project No.
Z. Theisen	3712480

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plat shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee & lacks<u>on</u> Engineers Surveyors Planners

HORIZONTAL SECTION PLAT Slawson Exploration Company, Inc. 1675 Broadway, Suite 1600, Denver, Colorado 80202

Magnum 3-36-25H

205 feet from the south line and 265 feet from the east line (surface location)

Section 36, T. 153 N., R. 101 W., 5th P.M.

250 feet from the north line and 1700 feet from the east line (bottom location)

Section 25, T. 153 N., R. 101 W., 5th P.M.

McKenzie County, North Dakota

Surface owner @ well site - State of North Dakota

Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location)

Latitude 48'03'09.063" North; Longitude 103°36'39.969" West (bottom location)

[Derived from OPUS Solution NAD-83(CORS96)]

Scale 1"=1000"

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

All corners shown on this plat were found in the field during Slawson Exploration Company Magnum 3-36-25H oil well survey on August 26, 2011. Distances to all others are calculated. azimuths are based on the south line of the southwest quarter of Section 36, being on an azimuth of 090 00 22".

Surveyed By	Field Book
B. Schmalz	OW-257
Computed & Drawn By	Project No.
Z. Theisen	3712480

I, Quentin Obrigewitsch, Professional Land Surveyor, N.D. No. 5999, do hereby certify that the survey plat shown hereon was made by me, or under my direction, from notes made in the field, and the same is true and correct to the best of my knowledge and belief.

Kadrmas Lee & **lackson**

BOTTOM HOLE LOCATION PLAT Slawson Exploration Company, Inc. 1675 Broadway, Suite 1600, Denver, Colorado 80202 Magnum 3-36-25H 205 feet from the south line and 265 feet from the east line (surface location) Section 36, T. 153 N., R. 101 W., 5th P.M. 250 feet from the north line and 1700 feet from the east line (bottom location) Section 25, T. 153 N., R. 101 W., 5th P.M. McKenzie County, North Dakota Surface owner @ well site — State of North Dakota Latitude 48°01'29.869" North; Longitude 103°36'18.972" West (surface location) Latitude 48°03'09.063" North; Longitude 103°36'39.969" West (bottom location) [Derived from OPUS Solution NAD-83(CORS96)] 090'39'56" - 5267.70' (Meas.) D. No. 5999, made by me, the same is Professional Land Surveyor, N.D. 1/16 Line survey plat notes of m that do hereby or under true and 090°19'14" - 2636.98 090°17<u>'22" - 2</u>625.79' (Meas.) (Megs.) 1/16 Line 000105'55' 130.87 (Cal rell Lices to all ot Lices to all ot the distribution of Section 3. † 090'00'22" fidential i you are that any lation is Confidentiality Notice: The inform legally privileged and confidential the use of recipients. If you are you are hereby notified that any or copying of this information is _ | = E | = E 090'00'22" - 2617.85' (Megs.) 089'59'07" - 2633.37' (Megs.) Scale 1"=1500" Kadrmas Computed & Drawn By Surveyed By Approved By Date Lee & Schmalz В. 1"=1500'Theisen Obrigewitsch 3/23/2012

Project No.

3712480

Layout

Revised

Materia

B.<u>H.</u>

ield Book

OW-

Jackson

Engineers Surve Planners

Magnum 3-36-25H, Magnum 2-36-25H Cross Sections

Confidentiality Notice: The information contained on this plat is legally privileged and confidential information intended only for the use of recipients. If you are not the intended recipients, you are hereby notified that any use, dissemination, distribution or copying of this information is strictly prohibited.

Z. Theisen	Surveyed By B. Schmalz	Approved By Q. Obrigewitsch		Date 3/23/2012
Field Book OW-257	Material Cross Sections	Revised —	Project No. 3711645, 3712480	Drawing No.

Kadrmas
Lee &
Jackson
Engineers Surveyors
Planners

Slawson Exploration Company, Inc. Magnum 3-36-25H, Magnum 2-36-25H Section 36, T. 153 N., R. 101 W., 5th P.M. McKenzie County, North Dakota

Magnum 3-36-25H Well Site Elevation 2158.1' MSL Magnum 2-36-25H Well Site Elevation 2158.1' MSL Well Pad Elevation 2155.6' MSL

Excavation Plus Pit	16,530 C.Y. 1,480 C.Y. 18,010 C.Y.
Embankment Plus Shrinkage (+30%)	8,565 C.Y. 2,570 C.Y. 11,135 C.Y.
Stockpile Pit	1,480 C.Y.
Stockpile Top Soil (8")	4,850 C.Y.
Production Rehabilitation	0 C.Y.
Road Embankment & Stockpile from Pad	545 C.Y.
Disturbed Area From Pad	4.51 Acres

NOTE:

All cut end slopes are designed at 1:1 slopes & All fill end slopes are designed at 1 1/2:1 slopes

Magnum 3-36-25H	Magnum 2-36-25H
205' FSL	205' FSL
265' FEL	240' FEL

Confidentiality Notice:
The information
contained on this plat is
legally privileged and
confidential information
intended only for the
use of recipients. If you
are not the intended
recipients, you are
hereby notified that any
use, dissemination,
distribution or copying
of this information is
strictly prohibited.

Drawn By		Approved By	Scale	Date
Z. Theisen		Q. Obrigewitsch	None	3/23/2012
Field Book OW-257	Material Quantities	Revised —	Project No. 3711645, 3712480	Drawing No. 5

Kadrmas
Lee &
Jackson
Ragineers Surveyors
Planners

