บทที่ 5 วงจรคอมบิเนชั่น

บทน้ำ

การนำวงจรดิจิทัลไปใช้งาน จำเป็นจะต้องคำนึงถึงอินพุตและเอาต์พุตเพื่อให้การใช้งานวงจรดิจิทัลเป็นไป ตามความต้องการ ซึ่งวงจรดิจิทัลสามารถแบ่งได้ 2 ชนิด คือ วงจรคอมบิเนชั่น และวงจรซีเควนเชี่ยล ส่วนวิธีการ ออกแบบนั้น สามารถใช้ตารางความจริง,ฟังก์ชันของสมการ และไทม์มิ่งไดอะแกรม เพื่อสร้างสมการลอจิกที่ ต้องการขึ้นมาและลดรูปสมการโดยใช้พีคณิตบูลีน หรือแผนผังคาร์โนห์ ซึ่งจะใช้ลอจิกเกทพื้นฐานต่อร่วมกันเพื่อ สร้างวงจรลอจิกเกท หลังจากการลดรูปสมการดังกล่าวแล้ว

สาระการเรียนรู้

- 1. ความหมายของวงจรคอมบิเนชั่น
- 2. การออกแบบวงจรอมบิเนชั่น
- 3. การประยุกต์ใช้งานวงจรคอมบิเนชั่น

สรรถนะประจำหน่วย

- 1. แสดงความรู้เกี่ยวกับความหมายของวงจรคอมบิเนชั่นได้
- 2. แสดงความรู้เกี่ยวกับการออกแบบวงจรคอมบิเนชั่นได้
- 3. อธิบายการประยุกต์ใช้งานวงจรคอมบิเนชั่นได้

จุดประสงค์การเรียนรู้ เพื่อให้

- 1. มีความรู้ความเข้าใจเกี่ยวกับวงจรคอมบิเนชั่น
- 2. มีทักษะในการประยุกต์ใช้งานวงจรคอมบิเนชั่น
- 3. มีกิจนิสัยในการทำงานด้วยความรับผิดชอบ รอบคอบและปลอดภัย

5.1 ความหมายของวงจรคอมบิเนชั่น

วงจรคอมบิเนชั่น คือ วงจรรวมของลอจิกเกทชนิดต่างๆ เกิดจากการกำหนดอินพุต และเอาต์พุต เพื่อทำ ให้การทำงานของวงจรเป็นไปตามเอาต์พุตที่ต้องการและเอาต์พุตเป็นไปตามค่าของอินพุตในเวลาขณะนั้น ไม่ ขึ้นกับค่าอินพุตที่เวลาผ่านมา และไม่มีสัญญาณป้อนกลับจากเอาต์พุตมาทางอินพุต ซึ่งสามารถนำไปใช้ประโยชน์ ด้านต่างๆได้อย่ามากมาย เช่น วงจรปิด-เปิดไฟ 2 ทาง,วงจรปิด-เปิดประตู,วงจรบวกเลข,วงจรแสดงผล 7-Segment วงจรเข้ารหัส วงจรถอดรหัส เป็นต้น

ภาพที่ 5.1 แสดงอินพุต และเอาต์พุต ของวงจรคอมบิเนชั่น

จากภาพที่ 5.1 วงจรคอมบิเนชั่นสามารถกำหนด อินพุต เอาต์พุต ได้หลายอินพุต ขึ้นอยู่กับความต้องการ ในการใช้งาน

5.2 การออกแบบวงจรอมบิเนชั่น

การออกแบบวงจรคอมบิเนชั่น คือ การออกแบบวงจรลอจิกเกทเพื่อนำเอาต์พุตจากวงจรลอจิกเกทไปใช้ งานตามความต้องการซึ่งมีขั้นตอนดังนี้

- 1. กำหนดปัญหาและขอบเขตของปัญหา เพื่อความชัดเจนในการกำหนดอินพุตและเอาต์พุต
- 2. กำหนดความต้องการการใช้งานจากอินพุตและเอาต์พุตจากขอบเขตของปัญหา
- 3. กำหนดจำนวนตัวแปรของอินพุตและเอาต์พุต f b y
- 4. กำหนดชื่อแทนตัวแปรของอินพุตและเอาต์พุต 💍 🧷 🗸
- 5. เขียนตารางความจริงจากตัวแปรอินพุตและเอาต์พุต 🧷 🕴
- 6. เขียนสมการลอจิกจากตารางความจริง ในฟังก์ชันของ Minterm หรือ Maxterm
- 7. ลดรูปสมการ
- 8. ออกแบบวงจรลอจิกเกทตามสมการที่ลดรูป

5.3 การประยุกต์ใช้งานวงจรคอมบิเนชั่น

การประยุกต์ใช้งานวงจรคอมบิเนชั่น คือการกำหนดปัญหาทางเพื่อใช้วงจรคอมบิเนชั่นในการแก้ปัญหา โดยใช้ขั้นตอนในการออกแบบวงจรคอมบิเนชั่น

ตัวอย่างที่ 1 จงออกแบบวงจรลอจิกเกทควบคุมประตูทางเข้า โดยมีระบบความปลอดภัย 3 ระบบ คือ

- 1. การสแกนลายนิ้วมือ
- 2. การสแกนคีย์การ์ด
- 3. สวิตช์ควบคุมประตู

ชึ่งมีการใช้งานคือ ให้ผู้ขอเข้าประตูยืนยันตัวบุคคลโดยการสแกนลายนิ้วมือ,สแกนคีย์การ์ด อย่างใดอย่าง หนึ่งหรือทั้งสองอย่าง เมื่อผ่านแล้ว ให้ผู้ควบคุมประตูเป็นผู้กดสวิตช์เพื่อเปิดประตู ผู้ขอเข้าประตูจึงสามารถเข้า ประตูได้

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 3 ตัวแปร คือ A, B และ C กำหนดให้เอาต์พุตมีทั้งหมด 1 ตัวแปร คือ Y

ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต

สวิตช์	ลายนิ้วมือ	คีย์การ์ด	เอาต์พุต	ฟังก์ชัน
А	В	С	Y (ประตู)	Minterm
0	0	0	0	-
0	0	1	0	-
0	1	0	0	-
0	1	1	0	-
1	0	0	0	-
1	0	1	1	A⋅B̄⋅C
1	1	0	1	A⋅B⋅C̄
1	1	1	1	A·B·C

ตารางที่ 5.1 ตารางความจริงวงจรควบคุมประตู

สมการลอจิก คือ Y = $(A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$

ลดรูปสมการโดยใช้แผนผังคาร์โนห์

สรุป Y = (A·B·C)+(A·B·C)+(A·B·C) ลดรูปสมการได้ สมการลอจิก คือ Y = (A·B)+(A·C)

ผลจากการลดรูปสมการ เขียนเป็นวงจรลอจิกเกท

ภาพที่ 5.2 วงจรลอจิกเกทควบคุมประตูทางเข้า

ตัวอย่างที่ 2 จงออกแบบวงจรบวกเลขฐานสอง จำนวน 2 บิต โดยไม่คิดตัวทด ซึ่งมีการใช้งานคือ เมื่อ ป้อนค่าเลขฐานสองจำนวน 2 บิตแล้ว ให้แสดงผลการบวก และแสดงผลว่ามีตัวทดในการบวกครั้งนั้นหรือไม่

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 2 ตัวแปร คือ A และ B กำหนดให้เอาต์พุตมีทั้งหมด 2 ตัวแปร คือ C_o และ Y ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต

อินพุต 1	อินพุต 2	เอาต์พุต 1	ฟังก์ชัน	เอาต์พุต 2	ฟังก์ชัน
A	В	Y (ผลลัพธ์)	Minterm	C _o (ตัวทด)	Minterm
0_	0	0/	-	0	-
0 _	1_	1 /	Ā·B	0	-
1_	٥	1/	$A \cdot \overline{B}$	0	_ (
1	1	0	-	(1)	(A·B)

ตารางที่ 5.2 ตารางความจริงวงจรบวกเลขฐานสองแบบไม่คิดตัวทด

สมการลอจิก เอาต์พุต 1 คือ Y = $(\overline{A} \cdot B) + (A \cdot \overline{B})$

สมการลอจิก เอาต์พุต 2 คือ $C_o = (A \cdot B)$

ลดรูปสมการโดยใช้แผนผังคาร์โนห์ ของเอาต์พุต 1 คือ Y = $(\overline{A}\cdot B)+(A\cdot \overline{B})$

สรุป Y = $(\overline{A} \cdot B) + (A \cdot \overline{B})$ ลดรูปสมการได้ สมการลอจิก คือ Y = $(\overline{A} \cdot B) + (A \cdot \overline{B})$ ไม่สามารถลดรูปสมการได้ เนื่องจากไม่เข้าเงื่อนไขการลดรูปของแผนผังคาร์โนห์ จึงเปลี่ยนวิธีโดยใช้การลดรูปด้วยวิธีพีชคณิตบุลลีน

$$Y = (\overline{A} \cdot B) + (A \cdot \overline{B})$$

ลดรูปสมการโดยใช้แผนผังคาร์โนห์ ของเอาต์พุต 2 คือ $C_o = (A \cdot B)$

สรุป $C_o = (A\cdot B)$ ลดรูปสมการได้ คือ $C_o = (A\cdot B)$ ไม่สามารถลดรูปสมการได้เนื่องจากไม่เข้าเงื่อนไขการ ลดรูปของแผนผังคาร์โนห์

ผลจากการลดรูปสมการ เขียนเป็นวงจรลอจิกเกท

สมการลอจิก เอาต์พุต 1 คือ Y = A⊕B

สมการลอจิก เอาต์พุต 2 คือ $C_o = (A \cdot B)$

ภาพที่ 5.3 วงจรบวกเลขฐานสอง จำนวน 2 บิต โดยไม่คิดตัวทด

ตัวอย่างที่ 3 จงออกแบบวงจรบวกเลขฐานสอง จำนวน 2 บิต โดยคิดตัวทด ซึ่งมีการใช้งานคือ เมื่อป้อน ค่าเลขฐานสองจำนวน 2 บิตแล้ว ให้แสดงผลการบวกโดยคิดตัวทด และแสดงผลตัวทด

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 3 ตัวแปร คือ A, B และ C

กำหนดให้เอาต์พุตุมีทั้งหมด 2 ตัวแปร คือ C_{o} และ Y

ทรางความจริงจากตัวแปรปืนพุตและเอาต์พุต

อินพุต 1	อินพุต 2	อินพุต 3	เอาต์พุต 1	ฟังก์ชัน	เอาต์พุต 2	ฟังก์ชัน
А	В	C (ตัวทดเข้า)	C _o (ตัวทดออก)	Minterm	Y (ผลลัพธ์)	Minterm
0	0	0	0	-	0	-(
0	0	1	0	-	1	Ā.B.C
0	1	0	0		1	Ā·B·Ē
0	1	1	1	Ā·B·C	0	_
1	0	0	0	_	1	A∙B∙C
1	0	1	1	A∙ <u>B</u> ∙C	0	-
1	1	0	1	A⋅B⋅ ¯	0	
1	1	1	1	A-B-C	1	A·B·C

ตารางที่ 5.3 ตารางความจริงวงจรบวกเลขฐานสองโดยคิดตัวทด

สมการลอจิก เอาต์พุต 1 คือ $C_o = (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$ สมการลอจิก เอาต์พุต 2 คือ $Y = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot C)$

ลดรูปสมการโดยใช้แผนผังคาร์โนห์ ของเอาต์พุต 1 คือ $C_o=(\overline{A}\cdot B\cdot C)+(A\cdot \overline{B}\cdot C)+(A\cdot B\cdot \overline{C})+(A\cdot B\cdot C)$

สรุป $C_o=(\overline{A}\cdot B\cdot C)+(A\cdot \overline{B}\cdot C)+(A\cdot B\cdot \overline{C})+(A\cdot B\cdot C)$ ลดรูปสมการได้ $C_o=(A\cdot B)+(B\cdot C)+(A\cdot C)$ ลดรูปสมการโดยใช้แผนผังคาร์โนห์ ของเอาต์พุต 2 คือ $Y=(\overline{A}\cdot \overline{B}\cdot C)+(\overline{A}\cdot B\cdot \overline{C})+(A\cdot \overline{B}\cdot \overline{C})+(A\cdot B\cdot C)$

สรุป Y = ($\overline{A}\cdot\overline{B}\cdot C$)+($\overline{A}\cdot\overline{B}\cdot\overline{C}$)+($\overline{$

 $Y = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot C)$

 $Y = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$

 $Y = \overline{A}(\overline{B} \cdot C + B \cdot \overline{C}) + A(\overline{B} \cdot \overline{C} + B \cdot C)$

 $Y = \overline{A}(B \oplus C) + A(\overline{B \cdot C} + B \cdot C)$

 $Y = \overline{A}(B \oplus C) + A(\overline{B \cdot \overline{C} \cdot B \cdot C})$

 $Y = \overline{A}(B \oplus C) + A(\overline{B} + \overline{C} \cdot \overline{B} + \overline{C})$

 $Y = \overline{A}(B \oplus C) + A(\overline{B + C \cdot \overline{B} + \overline{C}})$

 $Y = \overline{A}(B \oplus C) + A(\overline{B \oplus C})$

 $Y = A \oplus B \oplus C$

สรุป Y = $(\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot B \cdot C)$ ลดรูปสมการได้ Y = $A \oplus B \oplus C$

ผลจากการลดรูปสมการ เขียนเป็นวงจรลอจิกเกท สมการลอจิก เอาต์พุต 1 คือ Y = A⊕B⊕C สมการลอจิก เอาต์พุต 2 คือ C_o = (A·B)+(B·C)+(A·C)

ภาพที่ 5.4 วงจรบวกเลขฐานสอง จำนวน 2 บิต โดยคิดตัวทด

แบบประเมินผลท้ายหน่วยการเรียนรู้หน่วยที่ 5

1. จงอธิ	ับายความหมายของวงจ	ามหมายของวงจรคอมบิเนชั่น		
2. จงอธิ	บายขั้นตอนการออกแบ	บวงจรอมบิเนชั่น		
2. จงอธิ	บายขั้นตอนการออกแบ	บวงจรอมบิเนชั่น		
2. จงอธิ	บายขั้นตอนการออกแบ	บวงจรอมบิเนชั่น		
2. จงอธิ	บายขั้นตอนการออกแบ	บวงจรอมบิเนชั่น		

le. 3	Input /	2 ontput	
Malinan	A B C	y _a y _a	
ΠA	0 0 0	<u>0</u>	
В	0 1 0	0 0	
	0 1 1	1 1	
	1 0 0	1 0	
	1 0 1	<u>9</u>	
	1 9 0		
		·····	
Mill	2	, ,	
	9	-D-D	
RO N	• !		