Best Practices for Good Data Management

Shelley Knuth shelley.knuth@colorado.edu Andrew Johnson andrew.m.johnson@colorado.edu

www.data.colorado.edu

Link to survey on this topic: http://goo.gl/forms/8VidcwOhRT

Slides:

https://github.com/ResearchComputing/Final_Tutorials/blob/master/Intro_Data_ Management/best_practices_data_management_demo.pdf

Outline

- What is research data and why do we care about managing it?
- How do I write a good data management plan?
 - Examples
 - DMP Tool
- Resources

What is research data?

- White House Office of Management and Budget:
 - "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings."
- Data itself can really, can be anything!
 - Anything that can be stored on your system

Why do we care about managing research data?

- Good for science:
 - Reproducibility
 - Efficiency
 - Innovation
- Good for you:
 - Let's keep that data safe!
 - More usage (including citations)
 - More exposure to potential collaborators
 - More competitive grant applications
- Becoming increasingly required
 - Funding agencies, DMPs

Successful DMPs

- Should include, at a minimum:
 - A description of the data, including type(s) and size
 - A plan for preserving the data long term
 - How you will describe the data so that others can reuse it
 - How you will provide as widespread access to the data as possible

DMPTool

- With the DMP Tool, you can:
- Create a new DMP based on funding agency templates
- Review public DMPs
- Review requirements for DMPs from different funding agencies
- Contact your institution directly for help or feedback (once logged in)

Sample DMP

- Let's cover a sample DMP we generated for a hypothetical NSF Division of Atm. and Geospace Sciences proposal
 - Funding requirements:
 https://dmptool.org/guidance
- Sample plan:

https://dmptool.org/plans/10130.pdf

Products of research – What does this mean?

- Section shows you've thought about your data
- How large will my files be?
- What can I expect for growth rates?
 - Manage this dataset with current resources?
- How will I collect my data?
- Existing data?
 - What products may be collected or generated?
- Your data?
- https://dmptool.org/plans/10130.pdf

Data format and metadata – what does this mean?

- Data formats:
 - Avoid proprietary formats
 - Know what software can be used to read the data
- Metadata:
 - It's data about data!
 - Describes relevant data for re-creation and re-use

Data formats

- Data formats:
 - Avoid proprietary formats
- Non-proprietary file formats are the most appropriate to use to ensure access to the data in the future
- Proprietary formats:
 - .docx
 - .pptx
 - .xlsx
 - .psd
 - mov

- Non-proprietary formats:
 - .txt
 - .pdf
 - .CSV
 - .tif
 - .mp4

Know what software can be used to read the data

Metadata

- Data about data!
- Describes relevant data for re-creation and re-use
- Information to include:
 - Contact information about who is in charge of data
 - How the data was collected
 - Important information in collection process
 - Date, location of collection, etc
 - Units
 - Other relevant information
- Your data?
- https://dmptool.org/plans/10130.pdf

How do I create metadata?

- As simple as a text file! Example:
 http://www.usap-data.org/entry/NSF-ANT07-39464/2013-01-22 09-39-50/
- Other options: Standardized XML code
- Good metadata should follow community- or discipline-based standards: http://www.dcc.ac.uk/resources/metadata-standards
- Use consistent and documented conventions in the absence of standards

Data access and sharing – what does this mean?

- Data sharing becoming very important to funding agencies
 - Reproduce existing research
 - Promote further research
- To share data, must properly manage it
 - Proper formats
 - Metadata
 - Stored properly
 - Might be able to combine sharing and storage in one

Data access and sharing – what does this mean?

- Proper ways to share data:
- Data must be made easily available
 - Not "by request" only
- Share with a place that has a digital object identifier (DOI)
- Embargo periods are ok, within reason
 - Data should be published when articles using data are published
- Security issues?
 - Must consider privacy and intellectual property issues before making data available

Where can I share my data?

- Trusted repositories
 - Can store and share data
 - Some charge a fee, some are free
 - Want one with a DOI
- Free example: <u>figshare</u>
- Disciplinary repository
 - http://www.re3data.org/browse/by-subject/
- Generic
 - Dryad
- Personal website?
 - Not great
 - If choose must come up with a schedule for maintenance
- Your data?
- https://dmptool.org/plans/10130.pdf

Policies for re-use and re-distribution – what does this mean?

- Are there any conditions for people to re-use your data?
 - Proper citation is a good condition
- Any disclaimers?
- You must justify properly any limitations you have on who can use your data
- You must also describe how you advertise any restrictions
- Your data?
- https://dmptool.org/plans/10130.pdf

Policies for archiving data – what does this mean?

- What will you do to ensure that the data collected as part of this important project is properly stored and preserved?
- You should have a sound plan in place for storage and preservation
 - Who? How long? Where? What?
- Store data, metadata, products, anything needed to reuse the data
- Before and after project may be different

Good practices for data archiving and preservation

- Trusted repository is best!
 - Somewhere people make sure it's safe so you don't have to
 - Disciplinary repository
 - http://www.re3data.org/browse/by-subject/
 - Otherwise somewhere more generic
 - Dryad
 - Or somewhere more local
 - University/industry/research group storage facilities
 - At CU: PetaLibrary

Data storage: PetaLibrary

- NSF Major Research Instrumentation grant
- Large data collections from faculty and students
- Deposition and storing of data
- Researchers pay for the medium (disk or tape)
- No HIPAA, FERPA, ITAR data
- Infrastructure guaranteed for 4 years

(Some) data publishing: CU Scholar

- Website: http://scholar.colorado.edu
- Can be used to publish some data sets
- Data sets should be relatively small (<2 GB)
- Must be "publishable" (completed, well-documented)
- Contact Andrew Johnson

 (andrew.m.johnson@colorado.edu) for assistance with depositing data

- Your data?
- https://dmptool.org/plans/10130.pdf

Available Resources

- CU Boulder has many services available free of charge
 - Research Data Services
 - data.colorado.edu
 - data-help@colorado.edu
 - Twitter: @cu_data
 - Facebook: CU Boulder Data
 - DMP Tool: http://dmptool.org

Thank you!

- Copyright 2016 by Andrew Johnson and Shelley Knuth
- This work is licensed under a <u>Creative Commons Attribution</u>
 3.0 Unported License.
- Questions? Email <u>data-help@colorado.edu</u>
- Link to survey on this topic: http://goo.gl/forms/8Vidcw@bpt-0
- Slides: https://github.com/ResearchComputing/Final_Tutorials/blob/master/Intro_Data_Management/best_practices_data_management_demo.pdf