Prediction Markets.

Alexey Osipov

20.02.2020

Equal probabilities experiment.

■ Suppose we vote on an unbiased coin (50%-50%). What should be the ratio of votes?

Suppose we bet instead of voting? What should be the ratio of volumes?

Inequal probabilities experiment.

Suppose we vote on a biased coin (80%-20%). What should be the ratio of votes?

Suppose we bet instead of voting? What should be the ratio of volumes?

What is a prediction market?

It is a market of betting on events with a random outcome. The probabilities of the outcome are identified from the bets. In most cases the outcome probability is almost constant.

Examples of prediction markets:

- 1 www.betfair.com (betting)
- www.crowdmed.com (medicine)

Non-examples:

- stock market
- 2 betting company
- ? www.ladbrokes.com ?
- Could they be used in insurance?

Bet for and bet against.

Suppose we have an outcome.

- A bet for the outcome by price k is a contract: either get k-1 or loose 1 depending on the event outcome.
- A bet against the outcome by price k is a contract: either loose k-1 or get 1 depending on the event outcome.

Naturally, they are complementary.

A bet against the outcome can be considered as the bet for the alternative outcome and vice versa (see the next slide).

Simple betting example.

Let k_1, k_2 be the prices:

$$p_1 = \frac{1}{k_1}, \quad p_2 = \frac{1}{k_2}, \qquad \frac{1}{k_1} + \frac{1}{k_2} = 1.$$

Let s_1, s_2 be the volumes. We expect:

$$s_1/p_1=s_2/p_2$$

if the prices agree with probabilities.

The prices that agree with probabilities are **equilibrium prices**.

Suppose we are allowed to adjust the prices depending on the volumes. If we do it in a reasonable way, the prices will converge to **equilibrium prices**.

The question is how soon...

Components of prediction market.

- The way of matching orders of different people into bets.
- The way of identifying the outcome probability by orders and bets.
- The policy about cancellation of orders.
- The policy about visibility of orders and bets.
- The market-maker (usually, it is used).

Order book.

Number of voices	Ray	Price	Ray	Number of voices
50	<= 0.8	1.25 5		
31	<= 0.7	1.43 3.33		
85	<= 0.65	1.54 2.85		
		1.76 2.32	>= 0.57	78
		2 2	>= 0.5	96
		2.49 1.67	>= 0.4	32
		5 1.25	>= 0.2	14

Identifying the probability.

If the outcome probability does not change, at some point the prices should stabilize.

Once they are more or less stable, we can say

$$p=1/k$$
.

There are problems with this approach:

- What to do if there are not enough orders/bets (cold start)?
- What to do if bid-ask spread is too large (non-liquid market)?

We try to resolve this problems with a model.

Key model components.

- \blacksquare Small world assumption: M is the maximal amount of capital.
- Utility functions:

$$U(v,\lambda) = \frac{1 - e^{-\lambda x/W}}{1 - e^{-\lambda M/W}}.$$

- 3 Predictions of gamblers come from the same distribution (like $N(\mu, \sigma)$).
- Maximization of a likelihood function.
- 5 Iterative optimization for finding μ , σ , λ .
- **6** Once μ (and λ , σ are found) we may define p and k by:

$$p = \mu$$
, $k = 1/p$.

