WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED I	INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 98/58027
C09C 3/08, C04B 33/14, 14/02, D21H 17/67, 19/38, D06P 1/44, B27K 5/02, C08K 9/04, C09B 63/00, 67/00		(43) International Publication Date: 23 December 1998 (23.12.98)
(21) International Application Number: PCT/EPS (22) International Filing Date: 12 June 1998 (1)		BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
(30) Priority Data: 1476/97 17 June 1997 (17.06.97)	c	MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(71) Applicant: CIBA SPECIALTY CHEMICALS HO INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Bas		
(72) Inventors: ZAMBOUNIS, John; Maiengasse 27, G Basel (CH). VERHOUSTRAETEN, Patrick; Ta D-79540 Lörrach (DE). DUBAS, Henri; Stor 6, CH-4104 Oberwil (CH). HAO, Zhimin; F Centre 19, CH-1723 Marly (CH). BUJARD, Pat Meadowbank Road, Kennett Square, PA 19348 (UK)	llweg 5 rchenw Route 6 rice; 7	2, Published With international search report. Before the expiration of the time limit for amending the

(54) Title: PIGMENTED POROUS MATERIAL

(57) Abstract

The present invention relates to a coloured porous material comprising in its pores an effectively colouring amount of an organic pigment which is obtainable by fragmenting a meltable or solvent-soluble pigment precursor, and to a process for its preparation. The present invention also relates to the use of the instant coloured porous material powders as pigments for high molecular weight organic materials.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belglum	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	· GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NB	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
RE	Estonia	LR	Liberia	SG	Singapore		

WO 98/58027 PCT/EP98/03557

- 1 -

Pigmented porous material

The present application relates to porous materials given coloured pigmentation with organic pigments localized in their pores and to a process for their preparation.

Porous materials are commonly coloured with dyes that are applied, for example, as stains. In order to achieve satisfactory colouring results with this method a requirement is that the porous material to be coloured has a high and uniform affinity for the dye; this requirement, however, is seldom met. Porous materials coloured with dyes possess, moreover, an undesirably low light stability, and in contact with water or organic liquids (beverages, for example) marks may be formed on articles that are in contact with the materials, since the dyes are in some cases leached out again.

Another method of imparting a coloured appearance to porous materials is to provide them with a pigmented coating. This method, however, has the disadvantage that the pores become sealed by the pigmented coating material, with the result that it becomes difficult if not impossible to perceive visually the nature of the porous material. This is a great disadvantage, especially with natural porous materials, since it is their properties, especially their natural appearance and their permeability, that are the most prized. The properties of the porous material, however, are impaired by a pigmented coating.

EP 648 770 and EP 648 817 disclose carbamate-functional, soluble chromophors which can be converted to the corresponding pigments by heating them to relatively high temperatures, with the ensuing elimination of the carbamate radicals. These compounds are suitable for the mass colouring of polymers and, according to EP 654 711, for the colouring of resists and of polymer coats to which they are applied. Compounds of the same type but with improved properties are known from EP 742 556 and WO-EP98/00248.

US 5,243,052 discloses carbonates of quinophthalones, which are of limited solubility and can be used in heat-sensitive recording systems. The leuco dye is embedded within a polymer, preferably in polyethyloxazoline.

Soluble derivatives of triphenylmethane dyes are known from US 4,828,976. They are likewise used in heat-sensitive recording systems, together with a binder such as cellulose acetate-butyrate, polyvinylpyrrolidone or copolymerized ethylene/maleic anhydride.

EP 742 556, furthermore, describes textured pigmentary coatings which are prepared from

soluble or meltable precursors and which cover all or part of a substrate surface. The substrates mentioned include fibres and fabrics. It has been found, however, that these pigmentary coatings fail to meet high requirements in terms, in particular, of their rub fastness.

Also known, finally, are numerous heat-sensitive recording systems in which colourless precursors of colorants - as solids, in the form, for example, of aqueous suspensions, together with binders and with or without fillers - are incorporated as the recording layer. For example, JP 04/123,175 describes leucoindigoid derivatives. Colorants in solld form, however, like conventional pigments, for example, make hardly any entry into the pores but for the most part remain, undesirably, on the surface.

It has now surprisingly been found that porous materials can be coloured without impairing their properties, and especially without clogging the pores, if fragmentable pigment precursors in melted or dissolved form are introduced into the pores and then converted to their pigmentary form.

Depending on the solvent, pressure, temperature and treatment time it is possible, surprisingly, to influence the depth of penetration of the pigment precursor and so with great advantage to obtain - in a targeted manner, for example - colorations wherein the pigment is very close to the surface. Since in this case the entirety of the pigment contributes to colouring, it is possible with advantage to reduce its amount to the minimum necessary for coloration, and the colour of the material core remains unaltered.

It is, however, also possible to obtain very high colour saturations (chroma) by using high pigment concentrations. Thus, pigmented porous materials of fine particle size can be used as pigments for colouring high molecular mass organic material. The results are excellent with respect to hue and chroma as well as also to the transparency, when the porous material has a refraction index similar to that of the substrate into which it is incorporated. Very advantageously, these products are less dusting and more easily incorporated into substrates than usual transparent pigments, and rheology problems can be avoided.

Under appropriate conditions it is also possible, however, to provide porous materials with uniform colouring right through, hence allowing them with little or no change in colour to be processed, for example cut, milled, sanded, bent or joined - by gluing, for Instance.

Consequently, either finished articles or raw material, as desired, can be coloured prior to its processing or shaping.

A particularly advantageous result of this is an increase in production flexibility, and possibilities for making savings, when producing articles from coloured porous materials.

The resulting colorations are surprisingly strong in colour, fast to weathering, light and heat, rubbing, water and solvent, and are also highly uniform optically provided the material itself is uniform in its porosity. With particular advantage this permits the use of materials whose quality would not enable any satisfactory results to be obtained on conventional colouring, a feature which, especially in the case of naturally occurring organic porous materials of complex structure, such as wood, leather or hair, for example, paves the way for ecologically significant, improved utilization of natural resources. A further great advantage is that following the colouring of the porous material its nature is, surprisingly, still apparent to the eye.

The present invention accordingly provides a coloured porous material comprising in its pores an effectively colouring amount of an organic pigment which is obtainable by fragmenting a meltable or solvent-soluble pigment precursor.

Porous materials can be mineral or organic, natural, refined or synthetic. The material may, for example, be chalk, pumice, fired clay, unglazed porcelain, gypsum, concrete, kleselguhr, silica gel, zeolites, wood, paper, leather, imitation leather or hair, in whatever form, or products derived from these. It is preferably a material composed of refined or unrefined organic components of natural origin or, with particular preference, is a refined or unrefined natural organic material. In particular, it can be either hard wood or soft wood.

In another preferred embodiment, however, the material consists of fine particles, most preferably inorganic particles, such as chalk, pumice, fired clay, unglazed porcelain, gypsum, kieselguhr, silica gel or zeolite powders. The particle size is preferably from 0.1 to 10 μ m, most preferably from 1 to 3 μ m. The organic pigment's concentration may be low or high, depending of the desired colour saturation. A low concentration of the organic pigment in the powdered inorganic material leads to pastel tints, while a high concentration of the organic pigment in the powdered inorganic material leads to higher saturations.

Examples of high molecular mass organic materials which can be coloured or pigmented with the instant pigmented porous material powders are cellulose ethers, cellulose esters, such as ethylcellulose, nitrocellulose, cellulose acetate and cellulose butyrate, natural resins or synthetic resins, such as addition polymerization resins or condensation polymerization resins, such as amino resins, especially urea-formaldehyde and melamine-formaldehyde

resins, alkyd resins, phenolic resins, polycarbonates, polyolefins, polystyrene, polyvinyl chloride, polyamides, polyurethanes, polyesters, ABS, polyphenylene oxides, rubber, casein, silicone and silicone resins, individually or in mixtures.

The abovementioned high molecular mass organic compounds can be present, individually or in mixtures, as plastic masses, as melts or In the form of spinning solutions, varnishes, coating materials or printing inks. Organic high molecular mass materials coloured with the instant pigmented porous material powders possess outstanding colour properties. This invention therefore also provides a composition comprising a high molecular mass organic material and an effective pigmenting amount of an instant pigmented porous material powder.

The instant pigmented porous material powders are preferably employed in an amount of from 0.1 to 50% by weight, most preferably from 1 to 30% by weight, based on the high molecular mass organic material to be pigmented.

The plgmenting of the high molecular mass organic substances with the instant pigmented porous material powders is carried out, for example, by mixing such solid solutions, in the form of masterbatches if desired, into these substrates using roller assemblies, mixers or milling apparatus. The pigmented material is subsequently brought into the desired final form by methods known per se, such as calandering, compression moulding, extrusion, coating, casting or injection moulding. So as to produce non-rigid mouldings, or to reduce their brittleness, it is often desirable to incorporate plasticizers into the high molecular mass compounds prior to their forming. Examples of compounds which can be used as such plasticizers are esters of phosphoric acid, phthalic acid or sebacic acid. The plasticizers can be incorporated into the polymers before or after the incorporation of the instant pigmented porous material powders. In order to achieve different colour effects, it is also possible to add to the high molecular mass organic substances not only the instant pigmented porous material powders but also fillers, reflecting metallic or inorganic particles, for example aluminium flakes or mica, and/or other colour-imparting constituents, such as white, coloured or black pigments, in any desired quantities.

For the pigmentation of varnishes, coating materials and printing inks, the high molecular mass organic materials and the instant pigmented porous material powders, together if desired with additives such as fillers, other pigments, siccatives or plasticizers, are finely dispersed or dissolved in an organic solvent or solvent mixture for them both. In this context it is possible to follow a procedure in which the individual components are dispersed or

dissolved individually or else two or more of them are dispersed or dissolved together and only then to combine all of the components.

The instant pigmented porous material powders are particularly suitable for colouring plastics, especially polyvinyl chloride and polyolefins, and for colouring paints, preferably automotive or metallic finishes, for example those containing metal particles or mica particles.

A feature of porous materials is the presence of pores, by which are meant cavities within the physical shell of the material, which may be partly or totally filled with a gas, for example air, or with a liquid, for example water. Preferably, the pores extend at least in part to the surface of the material. The volume of the pores is preferably at least 5% relative to the volume of the geometric shell of the material. With particular preference the volume of the pores is from 20 to 90% relative to the volume of the geometric shell of the material. Preferably, the cross-section of the pores is so fine that by virtue of capillary force an aqueous liquid does not flow out under gravity. With particular preference the average cross-section of the pores is from $1 \cdot 10^{-16}$ to 10^{-6} m², determined at a transverse section through the material, by dividing the total pore area by the number of pores.

Introducing the pigment precursor into the pores of the porous material is effected by applying a solution or melt of the pigment precursor to the porous material using any desired, known method, for example by spraying or Impregnation in a bath. The methods of and conditions for treatment of certain materials are known in the technical literature, to which express reference is hereby made. For example, the methods of and conditions for treating wood and wood products with solutions are described in detail in Ulimann's Encyclopaedia of Industrial Chemistry, Vol. A28, 305-393 (5th Edition 1996) and Kirk-Othmer Encyclopaedia of Chemical Technology, Vol. 24, 579-611 (3rd Edition 1978). The application temperature can be an elevated temperature but is judiciously kept low enough for the dissolved or melted pigment precursor not to undergo any, or any significant, decomposition during the minimum time required for the application. If desired, the solution or melt of the pigment precursor may be augmented with further substances known for treating the material, examples being fungicides, antiblotics, flame retardants or moisture repellents.

Suitable solvents are water or, preferably, any desired protic or aprotic solvents, examples being hydrocarbons, alcohols, amides, nitriles, nitro compounds, N-heterocycles, ethers, ketones and esters which may also be either mono- or polyunsaturated or chlorinated: examples are methanol, ethanol, isopropanol, diethyl ether, acetone, methyl ethyl ketone,

1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methoxyethanol, ethyl acetate, tetrahydrofuran, dioxane, acetonitrile, benzonitrile, nitrobenzene, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, pyridine, picoline, quinoline, trichloroethane, benzene, toluene, xylene, anisole and chlorobenzene. Further examples of solvents are described in numerous tabular and reference works. Instead of a single solvent It is also possible to employ mixtures of two or more solvents.

Preference is given to those solvents which do not corrode the substrate that is to be coloured, or do so only very slowly, and which have a bolling point of between 40°C and 170°C, especially to aromatic hydrocarbons, alcohols, ethers, ketones and esters. Particular preference is given to toluene, methanol, ethanol, isopropanol, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran and dioxane, and mixtures thereof.

The concentration of the pigment precursor in water or a solvent Is usually from 0.01% by weight, based on the weight of the solution, to approximately 99% by weight of the saturation concentration, it also being possible in certain cases to employ supersaturated solutions without premature precipitation of the solvate. For many pigment precursors the optimum concentration is around ~0.1-50% by weight, often around 1-20% by weight, based on the weight of the solution.

Conversion of the pigment precursor into the pigmentary form takes place by fragmentation under known conditions, for example thermally in the presence or absence of a catalyst, such as an acid or a catlonic photoinitlator which can be introduced into the pores of the porous material before, at the same time as or after the pigment precursor.

Fragmentation can be carried out individually, or simultaneously with any further known, subsequent treatment; for example, in the course of curing an additional transparent coating film.

By an effectively colouring amount is meant that amount which is sufficient to bring about a colour difference ΔE^* (CIE-L*a*b*) of ≥ 2 when the coloured material is compared with the uncoloured material under the standard illuminant D₆₅ and at a viewing angle of 10°. This amount is preferably from 0.01 to 30% by weight, most preferably from 0.1 to 15% by weight, based on the weight of the coloured material.

Judicious fragmentable pigment precursors are those whose structure includes a complete

pigment fram work substituted on at least one heteroatom N, O or S. The substituent involved is preferably an oxycarbonyl radical. Where the heteroatom is part of the chromophor or bonded directly to the chromophor, In the course of fragmentation the oxycarbonyl radical is generally eliminated and replaced by a hydrogen atom, so that the structure of the resulting pigment corresponds to that of the unsubstituted pigment framework. Where, on the other hand, the heteroatom is bonded to a substituent of the chromophor, then the fragmentation process is sometimes more complex, and the precise structure of the resulting pigment cannot always be clearly ascertained.

The pigment precursors can be employed Individually or else In mixtures with other pigment precursors or with colorants - for example, dyes customary for the corresponding application. Where the pigment precursors are employed in mixtures, the components of the mixture are preferably those whose colour in the pigmentary form is red, yellow, blue, brown or black. From these it is possible to produce brown shades having a particularly natural occurrence. Any dyes added are likewise preferably red, yellow, blue, brown or black.

Preferred pigment precursors are, for example, compounds of the formula (I)

 $A(B)_x$ (I),

in which x is an integer from 1 to 8,

A is the radical of a chromophor of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series which is attached to x groups B via one or more heteroatoms selected from the group consisting of N, O and S and forming part of the radical A,

B is hydrogen or a group of the formula O-L, where at least one group B Is not hydrogen and, if x is from 2 to 8, the groups B can be identical or different, and

L is any suitable solubilizing group, for example tert.-butyl or tert.-amyl. Many other groups suitable for solubilizing pigments are known, for example, from the publications referred to above.

Except in the case of phthalocyanines, A preferably contains at least one directly adjacent or conjugated carbonyl group at each heteroatom attached to x groups B.

A is the radical of known chromophores having the basic structure

A(H)_x ,

examples being

and all known derivatives thereof.

Preferred compounds of the formula I are:

a) perylenecarboximides of the formula

in which D is hydrogen, C_1 - C_6 alkyl, unsubstituted or halo- or C_1 - C_6 alkyl-substituted phenyl, benzyl or phenethyl or B,

b) quinacridones of the formula

R₁
$$\stackrel{O}{\underset{R_2}{\bigvee}}$$
 $\stackrel{E}{\underset{E}{\bigvee}}$ $\stackrel{R_2}{\underset{O}{\bigvee}}$ $\stackrel{(III)}{\underset{R_1}{\bigvee}}$

in which R_1 and R_2 independently of one another are hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_8 alkoxy or phenyl,

c) dioxazines of the formula

$$E-N \longrightarrow O \longrightarrow N$$

$$R_3 \longrightarrow N$$

$$N-E$$

$$(IV),$$

in which R₃ is hydrogen, halogen or C₁-C₂₄alkyl,

or of the formula

$$\begin{array}{c|c} R_4 & & \\ R_5 & & \\ O & & \\ R_6 & & \\ \end{array}$$

in which R_4 , R_5 and R_6 independently of one another are hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, NECOC₁- C_4 alkyl, NECOphenyl or N(E)₂ where at least one of the radicals R_4 , R_5 and R_6 is NECOC₁- C_4 alkyl, NECOphenyl or N(E)₂,

d) isoindolines of the formulae

R₉ is hydrogen, E or R₇,

 R_{10} , R_{11} , R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_2 -alkyl, C_1 - C_6 alkoxy, halogen or trifluoromethyl,

e) isoindolinones of the formula

In which R₁₄ and R₁₅ Independently of one another are hydrogen, halogen or C₁-C₄alkyl,

f) anthraquinonoid compounds of the formula

$$(XI)$$
,

in which R₁₆ is hydrogen or halogen,

g) phthalocyanines of the formula

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which

M is H_2 , a divalent metal selected from the group consisting of Cu(II), Zn(II), Fe(II), Ni(II), Ru(II), Rh(II), Pd(II), Pt(II), Mn(II), Mg(II), Be(II), Ca(II), Ba(II), Cd(II), Hg(II), Sn(II), Co(II) and Pb(II), preferably Cu(II), Zn(II), Fe(II), Ni(II) or Pd(II), or a divalent oxo metal selected from the group consisting of V(O), Mn(O) and TiO,

$$T_1$$
 is -CHR₁₈-, -CO- or -SO₂-,

 R_{18} is hydrogen or C_1 - C_8 alkyl, R_{19} is C_1 - C_6 alkyl and R_{20} is hydrogen, halogen, C_1 - C_8 alkyl or C_1 - C_6 alkoxy,

z is zero or 1 and y is a number from 1 to 8,

h) pyrrolo[3,4-c]pyrroles of the formula

$$E-N = (XIIIa) \text{ or } N = (XIIIb),$$

in which G1 and G2 independently of one another are a group of the formula

$$R_{21}$$
 R_{21}
 R_{22}
 R_{22}
 R_{22}
 R_{22}
 R_{23}
 R_{24}

in which

 R_{21} and R_{22} independently of one another are hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_6 alkoxy, C_1 - C_{16} alkylthio, C_1 - C_{18} alkylamino, -CN, -NO₂, -phenyl, trifluoromethyl, C_5 - C_6 cycloalkyl,

pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidlnyl,

 R_{23} and R_{24} independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or -CN, R_{25} and R_{26} independently of one another are hydrogen, halogen or C_1 - C_6 alkyl and R_{27} is hydrogen or C_1 - C_6 -alkyl,

i) quinophthalones of the formula

$$R_{27}$$
 (XIVa) or R_{28} (XIVb), R_{28} R_{29} R_{31} R_{30}

in which R_{27} is H or O-E,

 R_{28} to R_{31} independently of one another are hydrogen, halogen, -COO-C₁-C₈alkyl or -CONE-C₁-C₆alkyl,

j) azo compounds of the formula

in which R_{32} to R_{36} Independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, nitro, acetyl or SO_2NEC_1 - C_6 alkyl, and R_{37} is hydrogen, halogen, C_1 - C_6 alkyl or C_1 - C_6 alkoxy,

k) anthraquinones of the formula

in which R_{38} and R_{38} independently of one another are hydrogen, C_1 - C_{12} alkyl, or C_6 - C_{12} aryl which is unsubstituted or substituted by halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, nitro, acetyl, SO_2NEC_1 - C_6 alkyl or SO_2NE_2 ,

 R_{40} and R_{41} independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, nitro, cyano, CONE₂, SO₂NEC₁- C_6 alkyl, SO₂NE₂, SO₃E, SO₃Na or C_6 - C_{12} aryl which is unsubstituted or substituted by halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, nitro, acetyl, SO₂NEC₁- C_6 alkyl or SO₂NE₂, and

R₄₂ is hydrogen, halogen, nitro, cyano, hydroxyl or C₁-C₈alkoxy, and

I) Indigo derivatives of the formula

In which R₄₃ is hydrogen, CN, C₁-C₆alkyl, C₁-C₆alkoxy or halogen,

where in each case in the abovementioned formulae each E independently of the others is hydrogen or B, with the proviso that in each formula E Is B on at least one occasion, and B is as defined above.

Preferred quinacridones are those in which in formula III R₁ and R₂ independently of one another are hydrogen, chlorine or methyl.

Preferred pyrrolo[3,4-c]pyrroles are those in which In formula XIII G₁ and G₂ are the same and are a group of the formula

$$\begin{array}{c|c} & & & \\ & & &$$

where R_{21} and R_{22} independently of one another are hydrogen, chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylamino, CN or phenyl,

 T_2 is -O-, -NR₂₇-, -N=N- or -SO₂-, and

R₂₇ is hydrogen, methyl or ethyl.

Preferred azo compounds are those in which in the formulae XV₂ to XV_f R₃₂ to R₃₆ Independently of one another are hydrogen, halogen, methyl, methoxy, nitro, acetyl or SO₂NECH₃, and R₃₇ is halogen or methoxy.

Particularly preferred are quinacridones of the formula

in which E is hydrogen or B, with the proviso that in each formula E is B on at least one occasion, and B is as defined above,

dioxazines of the formula

In which R_{44} and R_{45} independently of one another are C_1 - C_4 alkyl, and E is hydrogen or B, with the proviso that E is B on at least one occasion, and B is as defined above,

pyrrolopyrroles of the formula

in which R_{48} and R_{47} independently of one another are hydrogen, methyl, tert-butyl, chlorine, bromine, CN or phenyl, and E is hydrogen or B, with the proviso that E is B on at least one occasion, and B is as defined above,

phthalocyanines of the formula (XII) in which M Is Cu(II) and R_{16} is hydrogen or E, and z is 1 and y is a number from 1 to 4, with the proviso that E is B on at least one occasion, and B is as defined above,

isoindolinones of the formula

in which R₄₈ is hydrogen or C₁-C₄alkyl, and E Is hydrogen or B, with the proviso that E Is B on at least one occasion, and B is as defined above,

indanthrones of the formula

in which E is hydrogen or B, with the proviso that E is B on at least one occasion, and B is as defined above, and

azo compounds of the formula XVa, XVb, XVe or XVf, in which

 R_{32} to R_{36} independently of one another are hydrogen, chlorine, methoxy, nitro, acetyl or SO_2NECH_3 , and R_{37} is halogen or methoxy, with the proviso that in each formula E is B on at least one occasion, and B is as defined above.

Particularly noteworthy soluble chromophores are those which can be prepared from Colour Index Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 83, Pigment Yellow 109, Pigment Yellow 139, Pigment Orange 71, Pigment Orange 73, Pigment Red 122, Pigment Red 185, Pigment Red 202, Pigment Red 254, Pigment Red 255, Pigment Red 264, Pigment Blue 25, Pigment Blue 26, Pigment Blue 60, Pigment Blue 64, Pigment Violet 19, Pigment Violet 29 and Pigment Violet 37.

The compounds of the formulae I to XXI are known or can be prepared in analogy to methods known per se, as described, for example, in EP 648 770, EP 648 817 and EP 742 556.

Preferably -L is a group of the formula

 $(\frac{L_1}{l_1})_m$ —Q-X-L₂ , in which R₄₉, R₅₀ and R₅₁ independently of one another are C₁-C₈alkyl,

 R_{52} and R_{53} independently of one another are C_1 - C_6 alkyl, O, S or $N(R_{60})_2$ -interrupted C_1 - C_6 alkyl, unsubstituted or C_1 - C_6 alkyl-, C_1 - C_6 alkoxy-, halo-, cyano- or nitro-substituted phenyl or biphenylyl,

R₅₄, R₅₅ and R₅₆ independently of one another are hydrogen or C₁-C₆alkyl,

R₅₇ is hydrogen, C₁-C₈alkyl or a group of the formula

 R_{58} and R_{59} independently of one another are hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, cyano, nitro, $N(R_{60})_2$, unsubstituted or halo-, cyano-, nitro-, C_1 - C_6 alkyl- or C_1 - C_6 alkoxy-substituted phenyl,

 R_{60} and R_{61} are C_1 - C_6 alkyl, R_{62} is hydrogen or C_1 - C_6 alkyl and R_{63} is hydrogen, C_1 - C_6 alkyl, unsubstituted or C_1 - C_6 alkyl-substituted phenyl,

Q is p,q- C_2 - C_8 alkylene which is unsubstituted or substituted one or more times by C_1 - C_8 alkoxy, C_1 - C_8 alkylthio or C_2 - C_{12} dialkylamino, p and q being different numeric locants,

X is a heteroatom selected from the group consisting of N, O and S, where m is 0 if X is O or S and is 1 if X is N, and

 L_1 and L_2 independently of one another are unsubstituted or mono- or poly- C_1 - C_{12} alkoxy-, - C_1 - C_{12} alkylthio-, - C_2 - C_2 -dialkylamino-, - C_6 - C_{12} aryloxy-, - C_6 - C_{12} arylthio-, - C_7 - C_2 -alkylarylamino- or - C_{12} - C_2 -diarylamino-substituted C_1 - C_6 alkyl or [-(p',q'- C_2 - C_6 alkylene)-Z-]_n- C_1 - C_6 alkyl, where n is a number from 1 to 1000, p' and q' are different numeric locants, each Z independently of the others is a heteroatom O, S or C_1 - C_{12} alkyl-substituted N, and C_2 - C_6 alkylene In the repeating units [- C_2 - C_6 alkylene-Z-] can be identical or different,

and L_1 and L_2 can be saturated or mono- to deca-unsaturated, uninterrupted or interrupted in any desired points by from 1 to 10 groups selected from the group consisting of -(C=O)— and $-C_6H_4$ —, and may carry no or 1 to 10 further substituents selected from the group consisting of halogen, cyano and nitro.

Of particular interest are compounds of the formula (I) in which L is C₁-C₈alkyl or $\binom{L_1}{l_1}_m$ —Q-X-L₂, in which Q is C₂-C₄alkylene and L₁ and L₂ are [-C₂-C₁₂alkylene-Z-]_n-C₁-C₁₂alkyl or are C₁-C₁₂alkyl which is substituted one or more times by C₁-C₁₂alkoxy, C₁-C₁₂alkylthio or C₂-C₂₄dialkylamino, and m and n are as defined above.

Of very particular interest are compounds of the formula (I) in which L is C_4 - C_5 alkyl (especially tert.-butyl or tert.-amyl) or $\begin{array}{c} (L_1)_m \\ -Q-X-L_2 \end{array}$, in which Q is C_2 - C_4 alkylene, X is O and m is zero, and L_2 is $[-C_2$ - C_{12} alkylene-O- $]_n$ - C_1 - C_{12} alkyl or is C_1 - C_{12} alkyl which is substituted one or more times by C_1 - C_{12} alkoxy, especially those in which -Q-X- is a group of the formula $-C(CH_3)_2$ - CH_2 -O-.

Alkyl or alkylene can be straight-chain, branched, monocyclic or polycyclic.

Thus C₁-C₁₂alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclobutyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, cyclopentyl, cyclohexyl, n-hexyl, n-octyl, 1,1,3,3-tetramethylbutyl, 2-ethylhexyl, nonyl, trimethylcyclohexyl, decyl, menthyl, thujyl, bornyl, 1-adamantyl, 2-adamantyl or dodecyl.

If C_2 - C_{12} alkyl is mono- or polyunsaturated it is C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_2 - C_{12} alkapolyenyl or C_2 - C_{12} alkapolyynyl in which two or more double bonds may if appropriate be isolated or conjugated, examples being vinyl, allyl, 2-propen-2-yl, 2-buten-1-yl, 3-buten-1-yl, 1,3-butadien-2-yl, 2-cyclobuten-1-yl, 2-penten-1-yl, 3-penten-2-yl, 2-methyl-1-buten-3-yl, 2-methyl-3-buten-2-yl, 3-methyl-2-buten-1-yl, 1,4-pentadien-3-yl, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl, 3-cyclohexen-1-yl, 2,4-cyclohexadien-1-yl, 1-p-menthen-8-yl, 4(10)-thujen-10-yl, 2-norbornen-1-yl, 2,5-norbornadien-1-yl, 7,7-dimethyl-2,4-norcaradien-3-yl or the various isomers of hexenyl, octenyl, nonenyl, decenyl or dodecenyl.

C₂-C₄alkylene is, for example, 1,2-ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 2,3-butylene, 1,4-butylene or 2-methyl-1,2-propylene. C₅-C₁₂alkylene is, for example, an isomer of pentylene, hexylene, octylene, decylene or dodecylene.

C₁-C₁₂alkoxy is O-C₁-C₁₂alkyl, preferably O-C₁-C₄alkyl.

 C_8 - C_{12} aryloxy is O- C_8 - C_{12} aryl, for example phenoxy or naphthoxy, preferably phenoxy.

C₁-C₁₂alkylthio is S-C₁-C₁₂alkyl, preferably S-C₁-C₄alkyl.

C₆-C₁₂arylthio is S-C₆-C₁₂aryl, for example phenylthio or naphthylthio, preferably phenylthio.

 C_2 - C_2 4diaikyiamino is N(alkyl₁)(alkyl₂), where the sum of the carbon atoms in the two groups aikyi₁ and aikyi₂ is from 2 to 24, preferably N(C₁-C₄aikyl)–C₁-C₄aikyl.

C₇-C₂₄alkylarylamino is N(alkyl₁)(aryl₂), where the sum of the carbon atoms in the two groups alkyl₁ and aryl₂ is from 7 to 24, for example methylphenylamino, ethylnaphthylamino or butylphenanthrylamino, preferably methylphenylamino or ethylphenylamino.

C₁₂-C₂₄diarylamino is N(aryl₁)(aryl₂), where the sum of the carbon atoms in the two groups aryl₁ and aryl₂ is from 12 to 24, for example diphenylamino or phenylnaphthylamino, preferably diphenylamino.

Halogen is chionne, bromine, fluorine or iodine, preferably fluorine or chiorine.

n is preferably a number from 1 to 100, with particular preference a number from 2 to 12.

In addition to the pigment, the porous material may also contain other compounds in its pores, for example binders or surfactants known in the art to improve the pigment's dispersibility. It has however surprisingly been found, that improved results are obtained when the porous material is treated with a siliane or siloxane compound, particularly when the porous material is inorganic, for example silica gel. The amount of silane or siloxane compound is preferably from 1 to 100% by weight, most preferably from 5 to 20% by weight, based on the weight of the organic pigment.

The silane or siloxane compound is preferably of structure R_{64} = R_{65} = R_{66} , wherein R_{64} to R_{67} R_{67}

are independently OH, OCH₂CH $\stackrel{\circ}{\subset}$ H₂, -O, or phenyl or OC₁-C₁₆alkyl which

are unsubstituted or substituted by OH, OC₁-C₁₆alkyi, OCH₂CHC_{CH₂} or -O-

Most preferred silane or siloxane compounds are diphenylsiianedioi, diphenylmethoxysilane, giycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyi)ethyltrimethoxysilane.

The invention also provides a process for preparing a coloured porous material of the invention whose pores comprise an effectively colouring amount of an organic pigment,

comprising

- (a) the treatment of the porous material with a solution or melt of a pigment precursor such that at least part of the pigment precursor enters the pores of the material, and
- (b) the fragmentation of the pigment precursor that has entered the pores of the material in accordance with treatment (a), to form a pigment, by means of heating or irradiation.

Heating or irradiation step be carried out by any desired means; for example, by treatment in a thermal oven or by electromagnetic radiation, for example visible light, UV or IR radiation, or microwaves, In the presence or absence of a catalyst. The conditions required for fragmentation are known per se for each class of pigment precursors.

Of course, it is judicial to choose pigment precursors the fragmentation temperature of which is lower than the decomposition point of the porous material to be pigmented, so that fragmentation can be accomplished without altering the material's properties. Thus, step (b) is usually accomplished by heating to a temperature of from 100 to 250°C, preferably from 150 to 200°C, particularly preferably from 160 to 200°C, or by irradiating with an amount of energy sufficient for said pigment precursor to be heated to said temperature. It is known that the fragmentation temperature may be lowered by using a catalyst, for example an acid.

The heating time is not critical, as long as care is taken that it is sufficiently long for the fragmentation to be completed. Typically, it ranges from several seconds to several hours, preferably from about 1 to about 30 minutes. The required heating time can be decreased by elevating the temperature.

In addition to the steps (a) and (b), the process may of course comprise additional steps which are known per se, for example a prior bleaching and/or a subsequent overcoating with, for example, a colourless nitrocellulose lacquer.

When the porous material also contains other compounds in its pores, it is preferred to add the latter at the latest before step (b), most preferred before step (a).

The examples which follow illustrate the invention:

Example 1: A 100×252×1 mm piece of obeche wood stored at 40% residual moisture content is treated with a solution of 3 g of pigment precursor of the formula

in 100 ml of ethyl acetate for 18 hours at 25°C.

It is then left to dry in the air for 24 hours, and is subsequently heated at 200°C for 10 minutes.

A wooden sheet coloured red with good fastness properties is obtained whose structure corresponds completely, both optically and to the touch, to that of natural wood.

Example 2: A 100×252×1 mm plece of ash wood stored at 40% residual moisture content is treated with a solution of 3 g of pigment precursor of the formula

In 100 ml of 1-methoxy-2-propanol for 18 hours at 25°C.

It is then left to dry in the air for 24 hours, and is subsequently heated at 160°C for 30 minutes.

A wooden sheet coloured red with good fastness properties is obtained whose structure corresponds completely, both optically and to the touch, to that of natural wood.

Example 3: 63 g of the pigment precursor of the formula

are dissolved in 881 g of tetrahydrofuran. 75 g of porous silica powder having a particle size of 1.4 μ m, a porosity of 21 nm, a pore volume of 1.6 ml/g and a BET surface of 300 m²/g (silica grade 310P / Fuji Silysia) are then added to the solution and the whole is stirred at room temperature for 24 hours. The slurry is then filtrated; the residue is dried at 40°C / 100 mbar and then heated at 180°C to regenerate the pigment. A red powder containing 10.6% by weight of C.I. Pigment Red 254 is obtained.

<u>Example 4</u>: The procedure of Example 3 Is used, with the difference that 4.4 g of glycldoxy-propyltrimethoxysilane is added to the solution before the silica powder. A red powder containing 12.5% by weight of C.I. Pigment Red 254 is obtained.

Example 5: The procedure of Example 3 is used, with the difference that porous silica powder having a particle size of <2.7 μm, a porosity of 24 nm, a pore volume of 1.8 ml/g and a BET surface of 300 m²/g (silica grade 250 / Fuji Silysia) is used. A red powder containing 16.7% by weight of C.I. Pigment Red 254 is obtained.

<u>Example 6</u>: The procedure of Example 5 is used, with the difference that 4.4 g of diphenylsilanedioi are added to the solution before the silica powder. A red powder containing 4.73% by weight of C.i. Pigment Red 254 is obtained.

Example 7: The procedure of Example 6 is used, with the difference that 2-(3,4-epoxy-cyclohexyl)ethyltrimethoxysilane is used instead of diphenylsilanedlol. A red powder containing 4.54% by weight of C.I. Pigment Red 254 is obtained.

Example 8: The procedure of Example 6 is used, with the difference that diphenylmethoxy-silane is used instead of diphenylsilandiol. A red powder containing 5.04% by weight of

C.I. Pigment Red 254 is obtained.

Example 9: The procedure of Example 8 is used, with the difference that porous silica powder having a particle size of 1.8 μm, a porosity of 7 nm, a pore volume of 0.8 ml/g and a BET surface of 500 m²/g (silica grade 530 / Fujl Silysla) is used. A red powder containing 3.12% by weight of C.i. Pigment Red 254 is obtained.

Example 10: The procedure of Example 7 is used, with the difference that the porous silica powder of Example 9 is used. A red powder containing 2.03% by weight of C.I. Pigment Red 254 is obtained.

Example 11: The procedure of Example 6 is used, with the difference that the porous silica powder of Example 9 is used. A red powder containing 1.54% by weight of C.I. Pigment Red 254 is obtained.

Example 12: The procedure of Example 11 is used, with the difference that porous silica powder having a particle size of 2.5 μm, a porosity of 17 nm, a pore volume of 1.25 ml/g and a BET surface of 300 m²/g (silica grade 430 / Fujl Silysia) is used.

Example 13: 17 g of the product from Example 3 are mixed with 67 g of polyvinyl chloride, 33 g of dioctyl phthalate, 2 g of dibutyltin dllaurate and 2 g of titanium dioxide and processed on a roller bed at 160°C for 15 minutes to form a thin film. The red PVC film thus produced has a high chroma and a high transparency.

Example 14: 7.5 g of the product of Example 3, 98.9g of CAB solution consisting of

- 41.0 g of cellulose acetobutyrate *CAB 531.1, 20% in butanol/xylene 2:1 (Eastman Chem.),
 - 1.5 g of zirconium octoate,
- 18.5 g of SOLVESSO 150 (ESSO),
- 21.5 g of butyl acetate and
- 17.5 g of xylene,

36.5 g of polyester resin *DYNAPOL H700 (Dynamit Nobel), 4.6 g of melamine resin *MAPRENAL MF650 (Hoechst) and 2.5 g of dispersant *DISPERBYK160 (Byk Chemie) are dispersed together in a shaker machine for 90 minutes (total coating material 150 g; 5 % pigment).

27.69 g of the resulting masstone paint are mixed, for the base coat, with 17.31 g of

aluminium stock solution (8 %) consisting of

- 12.65 g of SILBERLINE SS 3334AR, 60 % (Silberline Ltd.)
- 56.33 g of CAB solution (composition as above),
- 20.81 g of polyester resin [®]DYNAPOL H700,
- 2.60 g of melamine resin MAPRENAL MF650 and
- 7.59 g of SOLVESSO 150,

and the mixture is applied by spraying to an aluminum panel (wet film about 20 μ m). After an evaporation time of 30 minutes at room temperature, a thermosetting acrylic varnish consisting of

- 29.60 g of acrylic resin *URACRON 2263 XB, 50 % in xylene/butanol (Chem. Fabrik Schweizerhalle),
- 2.75 g of butylglycol acetate,
- 5.80 g of melamine resin CYMEL 327, 90 % In Isobutanol,
- 5.70 g of xylene,
- 1.65 g of n-butanol,
- 0.50 g of silicone fluid, 1 % in xylene,
- 3.00 g of light stabilizer TINUVIN 900, 10 % in xylene (Clba) and
- 1.00 g of light stabilizer TINUVIN 292, 10 % in xylene (Ciba),

Is applied by spraying as topcoat (wet film about 50 μ m). After a further 30 minutes of evaporation at room temperature, the coating is baked at 130°C for 30 minutes.

What is claimed is:

- 1. A coloured porous material comprising in its pores an effectively colouring amount of an organic pigment which is obtainable by fragmenting a meltable or solvent-soluble pigment precursor.
- 2. A porous material according to clalm 1, wherein the material is chalk, pumice, fired clay, unglazed porcelain, gypsum, concrete, kieselguhr, silica gel, zeolites, wood, paper, leather or imitation leather.
- 3. A porous material according to claim 1, wherein the material consists of fine particles, preferably fine inorganic particles.
- 4. A porous material according to claim 3, wherein the particle size is 0.1 to 10 μ m, preferably from 1 to 3 μ m.
- 5. A porous material according to claim 1, wherein the amount of organic pigment in the pores of the coloured material is from 0.01 to 30% by weight, preferably from 0.1 to 15% by weight, based on the weight of said coloured material.
- 6. A porous material according to claim 1, wherein the pigment precursor possesses a structure which includes a complete pigment framework substituted on at least one heteroatom N, O or S.
- 7. A porous material according to claim 1, wherein the pigment precursor is a compound of the formula (I)

 $A(B)_x$ (I),

In which x is an integer from 1 to 8,

A is the radical of a chromophor of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoIndollnone, isoIndollne, dloxazine, azo, phthalocyanlne or diketopyrrolopyrrole series which is attached to x groups B via one or more heteroatoms selected from the group consisting of N, O and S and forming part of the radical A,

B is hydrogen or a group of the formula $\begin{array}{c} O \\ & \parallel O - L \end{array}$, where at least one group B is not

hydrogen and, if x Is from 2 to 8, the groups B can be Identical or different, and

L is any suitable solubilizing group.

8. A porous material according to claim 7, in which -L is a group of the formula

$$(L_1)_m$$
 —Q-X-L₂ , in which R₄₉, R₅₀ and R₅₁ independently of one another are C₁-C₆alkyl,

 R_{52} and R_{53} independently of one another are C_1 - C_6 alkyl, O, S or $N(R_{60})_2$ -Interrupted C_1 - C_6 alkyl, unsubstituted or C_1 - C_6 alkyl-, C_1 - C_6 alkoxy-, halo-, cyano- or nitro-substituted phenyl or biphenylyl,

R₅₄, R₅₅ and R₅₈ Independently of one another are hydrogen or C₁-C₈alkyl,

R₅₇ is hydrogen, C₁-C₆alkyl or a group of the formula

$$\begin{array}{c} O \\ \parallel \\ -C - R_{61} \end{array}, \begin{array}{c} O \\ \parallel \\ -C - CO - R_{63} \end{array}$$
 or
$$\begin{array}{c} O \\ \parallel \\ -C - CO - R_{63} \end{array}$$

 R_{58} and R_{59} independently of one another are hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, cyano, nitro, $N(R_{60})_2$, unsubstituted or halo-, cyano-, nitro-, C_1 - C_6 alkyl- or C_1 - C_6 alkoxy-substituted phenyl,

 R_{60} and R_{61} are C_1 - C_6 alkyl, R_{62} is hydrogen or C_1 - C_6 alkyl and R_{63} is hydrogen, C_1 - C_6 alkyl, unsubstituted or C_1 - C_6 alkyl-substituted phenyl,

Q is p,q-C₂-C₆alkylene which is unsubstituted or substituted one or more times by C₁-C₆alkoxy, C₁-C₆alkylthio or C₂-C₁₂dlalkylamino, p and q being different numeric locants,

X is a heteroatom selected from the group consisting of N, O and S, where m is 0 if X is O or S and is 1 if X is N, and

 L_1 and L_2 Independently of one another are unsubstituted or mono- or poly- C_1 - C_{12} alkoxy-, - C_1 - C_{12} alkylthio-, - C_2 - C_2 -dialkylamIno-, - C_6 - C_{12} aryloxy-, - C_6 - C_{12} arylthio-, - C_7 - C_2 -alkylarylamIno- or - C_{12} - C_2 -diarylamino-substituted C_1 - C_6 alkyl or [-(p',q'- C_2 - C_6 alkylene)-Z-]_n- C_1 - C_6 alkyl, where n is a number from 1 to 1000, p' and q' are different numeric locants, each Z independently of the others is a heteroatom O, S or C_1 - C_{12} alkyl-substituted N, and C_2 - C_6 alkylene in the repeating units [- C_2 - C_6 alkylene-Z-] can be identical or different.

and L_1 and L_2 can be saturated or mono- to deca-unsaturated, uninterrupted or interrupted in any desired points by from 1 to 10 groups selected from the group consisting of –(C=O)– and –C_eH₄–, and may carry no or 1 to 10 further substituents selected from the group consisting of halogen, cyano and nitro.

- 9. A porous material according to claim 1, which additionally contains a binder or a surfactant.
- 10. A porous material according to claim 1, which has been treated with a silane or siloxane compound.
- 11. A porous material according to claim 10, wherein the amount of silane or siloxane compound is from 1 to 100% by weight, preferably from 5 to 20% by weight, based on the weight of the organic pigment.
- 12. A porous material according to claim 10, wherein the silane or siloxane compound is of

structure
$$R_{84}$$
 $\stackrel{R_{65}}{-}$ $\stackrel{Si-}{-}$ R_{86} , wherein R_{64} to R_{67} are independently OH, OCH₂CH $\stackrel{O}{\stackrel{I}{-}}$ $\stackrel{C}{\stackrel{C}{-}}$ $\stackrel{R_{67}}{\stackrel{R_{67}}{-}}$

$$OC_1$$
- C_{18} alkyl, OCH_2 CH $< OCH_2$ or $-O$

13. A porous material according to claim 12, wherein the silane or siloxane compound is diphenylsilanedlol, diphenylmethoxysilane, glycidoxypropyltrimethoxysilane or 2-(3,4-epoxycycl hexyl)ethyltrimethoxysilane.

WO 98/58027

- 14. A process for preparing a coloured porous material according to claim 1, comprising
- (a) the treatment of the porous material with a solution or melt of a pigment precursor such that at least part of the pigment precursor enters the pores of the material, and
- (b) the fragmentation of the pigment precursor that has entered the pores of the material in accordance with treatment (a), to form a pigment, by means of heating or irradiation.
- 15. A process according to claim 14, comprising the additional step of treating the porous material with a silane or siloxane compound at the latest before step (b), preferably before step (a).
- 16. A process according to claim 14, wherein step (b) is accomplished by heating to a temperature of from 100 to 250°C, preferably from 150 to 200°C, particularly preferably from 160 to 200°C, or by irradiating with an amount of energy sufficient for the pigment precursor to be heated to said temperature.
- 17. A process for colouring high molecular mass organic material, comprising incorporating an effective pigmenting amount of a porous material according to claim 3 into the high molecular mass organic material.
- 18. A composition comprising a high molecular mass organic material and an effective pigmenting amount of a pigmented porous material powder according to claim 3.

INTERNATIONAL SEARCH REPORT

ternational Application No PCT/EP 98/03557

			
A. CLASSIF IPC 6	C09C3/08 C04B33/14 C04B14 D06P1/44 B27K5/02 C08K9/	7/02 D21H17/67 D21H19 7/04 C09B63/00 C09B67	
According to	International Patent Classification (iPC) or to both national class	affication and IPC	
	SEARCHED		
Minimum do	cumentation searched (classification system followed by classific CO9C CO4B D21H D06P B27K CC	OPD CORK C99B CO9B	
	ion searched other than minimum documentation to the extent th		thed
Electronic de	ata base consulted during the international search (name of data	a base and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Ρ,Χ	DATABASE WPI Week 9832 Derwent Publications Ltd., Long AN 98-370632 XP002082021 & JP 10 147060 A (OJI PAPER), see abstract		1
X	DATABASE WPI Week 9003 Derwent Publications Ltd., Lon AN 90-020141 XP002082022 & JP 01 301366 A (FUJI PHOTO F , 5 December 1989 see abstract		1,2
[V] Eur	ther documents are listed in the continuation of box C.	Y Patent family members are listed in	I annex.
*Special consists "A" document consists "E" earlier filing "L" document which citatic "O" document there is the country other is the country of the country is the country in the country is the country in the country is the country in the country in the country in the country is the country in the country in the country in the country in the country is the country in the coun	ategories of cited documents: tent defining the general state of the art which is not disred to be of particular relevance document but published on or after the international date sent which may throw doubts on priority claim(s) or it is cited to establish the publicationdate of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means entry published prior to the international filing date but than the priority date claimed	"T" later document published after the Inten or priority date and not in conflict with a cited to understand the principle or the Invention "X" document of particular relevance; the cited cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cited cannot be considered to involve an inventive the comment of the relevance of the cannot be considered to involve an inventive and the document is combined with one or moments, such combination being obvious in the art. "&" document member of the eame patent if	national filing date the application but ory underlying the alimed invention be considered to current is taken alone almed invention rentive step when the re other such docu- is to a person skilled lemily
	actual completion of theinternational search 26 October 1998	12/11/1998	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Van Bellingen, I	

2

INTERNATIONAL SEARCH REPORT

ternational Application No
PCT/EP 98/03557

	ion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	EP 0 742 556 A (CIBA-GEIGY) 13 November 1996 cited in the application see page 19, line 18-49; claims 1,7	1,6,7,14
·	EP 0 648 817 A (CIBA-GEIGY) 19 April 1995 see claims 14,15	7,17,18
		·

2

INTERNATIONAL SEARCH 'REPORT

Information on patent family members

ernational Application No
PCT/EP 98/03557

Patent document cited in search repo	Patent document cited in search report		Patent family member(s)		Publication date
EP 742556	A	13-11-1996	CA CA CN CN EP JP JP	2176289 A 2176290 A 1144818 A 1150166 A 0742255 A 9031076 A 9003362 A	13-11-1996 13-11-1996 12-03-1997 21-05-1997 13-11-1996 04-02-1997 07-01-1997
EP 648817	Α	19-04-1995	CA JP US US US	2117860 A 7150068 A 5561232 A 5723626 A 5780627 A 5811543 A	14-04-1995 13-06-1995 01-10-1996 03-03-1998 14-07-1998 22-09-1998