MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Exam 4

Problem 1. (15 points) Evaluate
$$\int \frac{dx}{x(x+1)^2}$$

Problem 2. (15 points) Evaluate
$$\int (\ln x)x^2 dx$$

Problem 3 (20 points) Use a trigonometric substitution to evaluate $\int_0^1 \frac{dx}{(4+x^3)^{3/3}}$ (Be careful evaluating the limits)

- **Problem 4. a.** (10 points) Find an integral formula for the arc length of the curve $y = 2\sqrt{x+1}$ for $0 \le x \le 1$. Do not evaluate.
 - **b.** (10 points) Find an integral formula for the surface area of the curve in part (a) rotated around the *x*-axis. Simplify the integrand and evaluate the integral.
 - **Problem 5.** a. (7 points) Sketch the spiral $r = \theta_1^2 0 \le \theta \le 3 \text{ T}$. Say how many times the curve meets the x-axis counting $\theta = 0$ as the first times, and mark those points with X-s. (Your sketch need not be accurate to scale.)
 - **b.** (8 points) On your picture, shade in the region $0 \le r \le \theta^2$, $0 \le \theta \le 2\Pi$, and find its area.
 - **Problem 6. a.** (10 points) Find the equation in polar coordinates for the line y = x 1 in the form $r = \int (\theta)$
 - **b.** (5 points) Find the range of θ for the portion of line y=x-1 in the range $0 \le x \le \infty$. (It helps to draw a picture.)