Covering Space

1.1 Basic Definitions

Definition 1.1.1 ▶ Covering Space

Let $p: \bar{X} \to X$ be a surjective map.

• We say an open subset V of \bar{X} is *evenly coverd* by p, if $p^{-1}(V)$ is a disjoint union of open subsets of \bar{X} :

$$p^{-1}(V) = \coprod_{i} U_{i}$$

where, each U_i is maped homeomorphically onto V by p.

• In this case, we shall refer to each U_i as a **sheet** for p over V.

• If the space X can be covered by open subsets which are evenly covered by p, then we say that p is a *covering projection*; the space \bar{X} is called a covering space of X.

Theorem 1.1.2

Let $p: \bar{X} \to X$ be a contininuous map, where X is locally path connected.

1. The map p is a covering space iff for each componet \bar{C} of \bar{X} , the restriction map $p: p^{-1}(C) \to C$ is a covering projection.

2. If p is a covering projection then for each component \bar{C} of \bar{X} , the map $p:\bar{C}\to p(\bar{C})$ is a covering projection and $p(\bar{C})$ is a component of X.

Remark.

Thus, we always assume that *a* covering space is locally path connected and connected. For the following content, unless otherwise specified, we will all adopt this assumption.

Proposition 1.1.3

Let $p: \bar{X} \to X$ be a covering projection. If X is Hausdorff then \bar{X} is Hausdorff. Further, if p is finite-to-one, then show that if \bar{X} is Hausdorff then X is Hausdorff.

Note.

I haven't finish the proof of the second part yet. Actually, if a covering projection is proper it is also closed. Once we have this conclusion we can then finish the proof easilly.

Proof. 1. Take two different points $\bar{x}, \bar{y} \in \bar{X}$. Denote $x := p(\bar{x}), y := p(\bar{y})$.

- (a) If $x \neq y$: Since X is Haussdorff, there exists two open sets U, V such that $x \in U, y \in V, U \cap V = \emptyset$. We have $p^{-1}(U), p^{-1}(V)$ are two open subsets of \bar{X} with $p^{-1}(U) \cap p^{-1}(V) = \emptyset$. Since $\bar{x} \in p^{-1}(U), \bar{y} \in p^{-1}(V)$, it shows that \bar{X} is Haussdorff.
- (b) If x = y: Let W be a open neighbourhood of x = y. We write $p^{-1}(W) = \coprod_i W_i$. Since $\bar{x}, \bar{y} \in \coprod_i W_i$ and any two W_i are disjoint, there are two different W_{i_1}, W_{i_2} such that $\bar{x} \in W_{i_1}, \bar{y} \in W_{i_2}$.

The above shows that \bar{X} is Hausdorff.

2. Take two different points $x, y \in X$. Then $p^{-1}(x)$, $p^{-1}(y)$ are two finite sets of \bar{X} with empty intersection. We write

$$p^{-1}(x) = \{\bar{x}_i\}_{i=1}^n, \quad p^{-1}(y) = \{\bar{y}_i\}_{i=1}^n$$

For each $i = 1, \dots, n$, let $U_i \ni \bar{x}_i, V_i \ni \bar{y}_i, U_i \cap V_i = \emptyset$. Then $p\left(\bigcup_i U_i\right) \cap p\left(\bigcup_i V_i\right) = \emptyset, x \in p\left(\bigcup_i U_i\right), y \in p\left(\bigcup_i V_i\right)$.