Mathematics of Cryptography: Algebraic Structure

Dr. B C Dhara

Department of Information Technology

Jadavpur University

Objectives

- □ Review the concept of algebraic structures
- Define and give some examples of groups
- Define and give some examples of rings
- Define and give some examples of fields
- Emphasize the finite fields of type $GF(2^n)$ that make it possible to perform operations such as addition, subtraction, multiplication, and division on n-bit words in modern block ciphers

ALGEBRAIC STRUCTURES

Groups

1. Closure

Properties

- 1. Closure
- 2. Associativity
- 3. Commutativity (See note)
- □ A group 4. Existence of identity
 - operatio 5. Existence of inverse
 - axioms)

{a, b, c, ...} Set

Note:

The third property needs

to be satisfied only for a

commutative group.

Closure:

Associativit,.

Group,

Existence of identity: for all $a \in G$, there is $e \in G$ such that $a \cdot e = e \cdot a = a$, e is the identity element

Existence of inverse: for all $a \in G$, there is $b \in G$ such that $a \cdot b = b \cdot a = e$, b is inverse of a and vice versa

Groups (contd...)

- A group (G, •) is called commutative or abelian group if the operator '•' satisfies the commutative property
 - Commutative property: for all $a, b \in G$, $a \cdot b = b \cdot a$

Although a group involves a single operation, the properties imposed on the operation allow the use of a pair of operations as long as they are inverses of each other.

Example: groups

The set of residue integers with the addition operator,

$$G = < Z_n, +>,$$

is a commutative group. We can perform addition and subtraction on the elements of this set without moving out of the set.

The set Z_n^* with the multiplication operator, $G = \langle Z_n^*, \times \rangle$, is also an abelian group.

Let us define a set $G = \langle \{a, b, c, d\}, \bullet \rangle$ and the operation as shown in

following table

•	а	b	c	d
а	а	b	С	d
b	b	С	d	а
c	С	d	а	b
d	d	а	b	С

This is an abelian group

Permutation group

0	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 2 3]	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 3 2]	[1 3 2]	[1 2 3]	[2 3 1]	[2 1 3]	[3 2 1]	[3 1 2]
[2 1 3]	[2 1 3]	[3 1 2]	[1 2 3]	[3 2 1]	[1 3 2]	[2 3 1]
[2 3 1]	[2 3 1]	[3 2 1]	[1 3 2]	[3 1 2]	[1 2 3]	[2 1 3]
[3 1 2]	[3 1 2]	[2 1 3]	[3 2 1]	[1 2 3]	[2 3 1]	[1 3 2]
[3 2 1]	[3 2 1]	[2 3 1]	[3 1 2]	[1 3 2]	[2 1 3]	[1 2 3]

Permutation group

- □ set of permutations with the composition operation is a group
 - This implies that using two permutations one after another cannot strengthen the security of a cipher
 - □ because we can always find a permutation that can do the same job because of the closure property

Groups (contd...)

☐ Finite Group: a group with finite elements; otherwise, infinite group

□ Order of a Group: |G|, number of elements if finite; otherwise, infinite

☐ Subgroups: A subset H of G is a subgroup of G if H is a group under the operation of G

subgroups

- □ If $a, b \in G, H \rightarrow c = a \cdot b \in G, H$
- \Box e \in G, H
- □ If $a \in G$, $H \rightarrow If a^{-1} \in G$, H
- \square ({e}, •) is subgroup of G, H
- □ G is a subgroup of itself

Example: subgroup

Is the group $H = \langle Z_{10}, + \rangle$ a subgroup of the group $G = \langle Z_{12}, + \rangle$?

The answer is no. Although H is a subset of G, the operations defined for these two groups are different. The operation in H is addition modulo 10; the operation in G is addition modulo 12.

Cyclic Subgroups

If a subgroup of a group can be generated using the power of an element, the subgroup is called the cyclic subgroup

$$a^n \to a \bullet a \bullet \dots \bullet a \quad (n \text{ times})$$

Example: cyclic subgroup

Four cyclic subgroups can be made from the group $G = \langle Z_6, + \rangle$. They are $H_1 = \langle \{0\}, + \rangle$, $H_2 = \langle \{0, 2, 4\}, + \rangle$, $H_3 = \langle \{0, 3\}, + \rangle$, and $H_4 = G$.

Example: cyclic subgroup

Three cyclic subgroups can be made from the group $G = \langle Z_{10}^*, \times \rangle$. G has only four elements: 1, 3, 7, and 9. The cyclic subgroups are $H_1 = \langle \{1\}, \times \rangle$, $H_2 = \langle \{1, 9\}, \times \rangle$, and $H_3 = G$.

$$1^0 \mod 10 = 1$$

$$3^0 \mod 10 = 1$$

 $3^1 \mod 10 = 3$

$$3^2 \mod 10 = 9$$

$$3^3 \mod 10 = 7$$

$$7^0 \mod 10 = 1$$

$$7^1 \mod 10 = 7$$

$$7^2 \mod 10 = 9$$

$$7^3 \mod 10 = 3$$

$$9^0 \mod 10 = 1$$

$$9^1 \mod 10 = 9$$

Cyclic Groups

A cyclic group is a group that is its own cyclic subgroup.

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where $g^n = e$

Cyclic Groups

Three cyclic subgroups can be made from the group $G = \langle Z_{10}^*, \times \rangle$. G has only four elements: 1, 3, 7, and 9. The cyclic subgroups are $H_1 = \langle \{1\}, \times \rangle$, $H_2 = \langle \{1, 9\}, \times \rangle$, and $H_3 = G$.

- a. The group $G = \langle Z_6, + \rangle$ is a cyclic group with two generators, g = 1 and g = 5.
- b. The group $G = \langle Z_{10}^*, \times \rangle$ is a cyclic group with two generators, g = 3 and g = 7.

Subgroup property

Assume that G is a group, and H is a subgroup of G. If the order of G and H are |G| and |H|, respectively, then, based on this theorem, |H| divides |G|.

Order of an Element

The order of an element a, ord(a), is the smallest number n such that $a^n = e$

In other words, ord(a) is the order of the cyclic group generated by a

Example: ord(a)

a. In the group $G = \langle Z_6, + \rangle$, the orders of the elements are:

ord(0) = 1, ord(1) = 6, ord(2) = 3, ord(3) = 2, ord(4) = 3,

ord(5) = 6.

b. In the group $G = \langle Z_{10}^*, \times \rangle$, the orders of the elements are:

$$ord(1) = 1$$
, $ord(3) = 4$, $ord(7) = 4$, $ord(9) = 2$.

The set Z with two operations, addition and multiplication, is a commutative ring. We show it by $R = \langle Z, +, \times \rangle$. Addition satisfies all of the five properties; multiplication satisfies only three properties.

If '*' is commutative, R is commutative ring

Field

- \square A field, denoted by $F = \langle \{...\}, +, *\rangle$ is

- C 1. Closure
 - 2. Associativity
 - 3. Commutativity
 - 4. Existence of identity
 - 5. Existence of inverse

1. Closure

Field

- 2. Associativity
- 3. Commutativity
- 4. Existence of identity
- 5. Existence of inverse

Note:

The identity element of the first operation has no inverse with respect to the second operation.

•

Operations

Finite field

- ☐ Finite field is important in cryptography
- A field with finite number is called finite field
- Galois showed that for a field to be finite, the number of elements should be p^n , where p is a prime and n is a positive integer

Galois field GF(p)

When n = 1, we have GF(p) field. This field can be the set Z_p , $\{0, 1, ..., p - 1\}$, with two arithmetic operations

A very common field in this category is GF(2) with the set {0, 1} and two operations, addition and multiplication, as shown in Figure 4.6.

Galois field GF(p) (contd...)

We can define GF(5) on the set Z_5 (5 is a prime) with addition and multiplication operators as shown below

GF(5) $\{0, 1, 2, 3, 4\} + \times$

+	0	1	2	3	4
0	0	1	2 3	3	4
2	2	- 4	4	0	0
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0 2 4 1 3	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Multiplication

Multiplicative inverse

Summary

Algebraic Structure	Supported Typical Operations	Supported Typical Sets of Integers
Group	$(+ -) \text{ or } (\times \div)$	\mathbf{Z}_n or \mathbf{Z}_n^*
Ring	(+ −) and (×)	Z
Field	$(+ -)$ and $(\times \div)$	\mathbf{Z}_{p}

$GF(2^n)$

- ☐ In cryptography, we often need to use four operations (addition, subtraction, multiplication, and division)
- □ In other words, we need to use fields
- □ We can work in GF(p) where p is the largest number less than 2^n
 - But, numbers between p and 2^n -1 cannot be handled
- \square In $GF(2^n)$, we have a set of 2^n elements
 - The elements in this set are n-bit words

GF(2ⁿ) (contd...)

Let us define a $GF(2^2)$ field in which the set has four 2-bit words: $\{00, 01, 10, 11\}$. We can redefine addition and multiplication for this field in such a way that all properties of these operations are satisfied

Addition						Mu	ltip	lica	tion
\bigoplus	00	01	10	11	\otimes	00	01	10	11
00	00	01	10	11	00	00	00	00	00
01	01	00	11	10	01	00	01	10	11
10	10	11	00	01	10	00	10	11	01
11	11	10	01	00	11	00	11	01	10
	Ida	enti	1 v·	00	'	Id	enti	tv•	01

00, 01,..., 11 cannot be considered as integer from 0 to 3

Addition and multiplication are defined in terms of polynomial

Polynomials

 \square A polynomial of degree n-1 is an expression like

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0$$

where a_i is called coefficient of the i^{th} term.

8-bit word 10011001 represents as

First simplification
$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification

$$x^7 + x^4 + x^3 + 1$$

Polynomials (contd...)

 \square To find the 8-bit word related to the polynomial x^5

$$+ x^2 + x$$

- we first supply the omitted terms
 - Since n = 8, it means the polynomial is of degree 7
 - The expanded polynomial is

$$0x^7 + 0x^6 + 1x^5 + 0x^4 + 0x^3 + 1x^2 + 1x^1 + 0x^0$$

Related 8-bit word is 00100110

Operations on polynomials

- Any operation on polynomial involves two operations:
 - operation on coefficients and
 - operations on two polynomials
- □ Operations on coefficients (0/1) use GF(2)
- □ For operations on polynomials need GF(2ⁿ)

Modulus respect to polynomial

8	Degree	Irreducible Polynomials	
1	1	(x+1),(x)	
Contract of the	2	$(x^2 + x + 1)$	
9	3	$(x^3 + x^2 + 1), (x^3 + x + 1)$	
1	4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$	
	5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$ $(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$	

- We need a polynomial of degree n, respect to which we have to take remainder
- The modulus polynomial takes as prime polynomial
- Prime polynomial is irreducible, i.e., no polynomial can divides it

Addition operation

- □ Addition (or subtraction) over GF(2)
- \Box $(x^5 + x^2 + x) \oplus (x^3 + x^2 + 1)$ in GF(28), the symbol
 - to show that we mean polynomial addition

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

 $0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \rightarrow x^{5} + x^{3} + x + 1$

Additive identity: zero polynomial

Additive inverse: polynomial itself

Multiplication

- 1. The coefficient multiplication is done in GF(2).
- 2. The multiplying x^i by x^j results in x^{i+j} .
- 3. The multiplication may create terms with degree more than n-1, which means the result needs to be reduced using a modulus polynomial.

Multiplication: $e^{x^8 + x^4 + x^3 + x + 1}$

 $x^4 + 1$

$$x^{12} + x^7 + x^2$$
$$x^{12} + x^8 + x^7 + x^5 + x^4$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$
$$x^{8} + x^{4} + x^{3} + x + 1$$

Find the result of $(x^5 + x^2 + x^3)$ irreducible polynomial (x^8 represent multiplication of tv

Remainder
$$x^5 + x^3 + x^2 + x + 1$$

Solution

$$P_{1} \otimes P_{2} = x^{5}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x^{2}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x(x^{7} + x^{4} + x^{3} + x^{2} + x)$$

$$P_{1} \otimes P_{2} = x^{12} + x^{9} + x^{8} + x^{7} + x^{6} + x^{9} + x^{6} + x^{5} + x^{4} + x^{3} + x^{8} + x^{5} + x^{4} + x^{3} + x^{2}$$

$$P_{1} \otimes P_{2} = (x^{12} + x^{7} + x^{2}) \mod (x^{8} + x^{4} + x^{3} + x + 1) = x^{5} + x^{3} + x^{2} + x + 1$$

To find the final result, divide the polynomial of degree 12 by the polynomial of degree 8 (the modulus) and keep only the remainder

Multiplication

- □ Multiplicative identity: 1 i.e., 00000...0001
- Multiplicative inverse: extended Euclidean algorithm on the given polynomial and modulus polynomial

In GF (2⁴), find the inverse of $(x^2 + 1)$ modulo $(x^4 + x + 1)$.

q	r_{I}	r_2	r	t_I	t_2	t
$(x^2 + 1)$	$(x^4 + x + 1)$	$(x^2 + 1)$	(x)	(0)	(1)	$(x^2 + 1)$
(x)	$(x^2 + 1)$	(x)	(1)	(1)	$(x^2 + 1)$	$(x^3 + x + 1)$
(x)	(x)	(1)	(0)	$(x^2 + 1)$	$(x^3 + x + 1)$	(0)
	(1)	(0)		$(x^3 + x + 1)$	(0)	

Multiplicative inverse

In GF(28), find the inverse of (x5) modulo $(x^8 + x^4 + x^3 + x + 1)$.

q	r_I	r_2	r	t_1	t_2	t
(x^3)	$(x^8 + x^4 + x^3 + x^3)$	$(x+1) \qquad (x^5)$	$(x^4 + x^3 + x + 1)$	(0)	(1)	(x^3)
(x+1)	(x^5) (x^4)	$+x^3+x+1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$
(x)	$(x^4 + x^3 + x + 1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$
$(x^3 + x^2 + 1)$	$(x^3 + x^2 + 1)$	(1)	(0)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$	(0)
	(1)	(0)		$(x^5 + x^4 + x^3)$	(0)	

Algorithm for multiplication

Find the result of multiplying $P_1 = (x^5 + x^2 + x)$ by $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$ $x^5P_2 + x^2P_2 + xP_2 \mod IRP$

Multiply P_2 by $x, x^2, x^3, ...$

Powers	Operation	New Result	Reduction		
$x^0 \otimes P_2$		$x^7 + x^4 + x^3 + x^2 + x$	No		
$x^1 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	Yes		
$x^2 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	No		
$x^3 \otimes P_2$	$\boldsymbol{x} \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	No		
$x^4 \otimes P_2$	$\boldsymbol{x} \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	Yes		
$x^5 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	No		
$\mathbf{P_1} \times \mathbf{P_2} = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$					

- □ Multiplication by x can be achieved by one bit left shift of P_2
- □ Need to be reduced after multiplication if degree greater than n-1
 - i.e., previously degree was n-1 (leading bit was 1)
 - Reduction, after multiplication result is XOR-ed with IRP

Algorithm

- ☐ if leading bit of previous result '0'
 - One left shift
 - if leading bit of previous result '1'
 - One left shift

- P1 = 00100110,
- P2 = 100111110,
- modulus = 100011011
- XOR the result with least n-1 bits of IRP
 - □ (note: IRP is with degree n

Powers	Shift-Left Operation	Exclusive-Or			
$x^0 \otimes P_2$		10011110			
$x^1 \otimes P_2$	00111100	$(00111100) \oplus 00011011 = 00100111$			
$x^2 \otimes P_2$	01001110	01001110			
$x^3 \otimes P_2$	10011100	10011100			
$x^4 \otimes P_2$	00111000	$(00111000) \oplus 00011011 = 00100011$			
$x^5 \otimes P_2$	01000110	<u>01000110</u>			
$P_1 \otimes P_2 = (00100111) \oplus (01001110) \oplus (01000110) = 00101111$					

Note

- □ A filed GF(2ⁿ) may have more than one irreducible polynomials
- ☐ In addition no role of irreducible polynomial where as the result of multiplication highly depends on irreducible polynomial (like mod p)

Using generator

- \square It is easier to define the elements of $GF(2^n)$ using a generator
- □ Generator is 'g' where f(g)=0 for an irreducible polynomial of $GF(2^n)$
- \square Using the generator, the elements of $GF(2^n)$ are

$$\{0, g, g, g^2, ..., g^N\}$$
, where $N = 2^n - 2$

Elements of GF(2⁴): $x^4 + x + 1$

Inverse

□ Additive inverse: the element itself

□ Multiplicative inverse: for g^i , it is g^{-i} where $-i \equiv k \mod 2^n - 1$

Operations

Operations (contd...)