RELATIONAL DATA LANGUAGES

Part 1

Relational Querying

- Relational model helps in simple and powerful data retrieval
- Output of query modelled as a relation.
- Based on formal mathematical model.
 - First order predicate Logic
 - Eg : Book('B101')
- Allows for much optimization

Relational Data Languages

- Manipulation and Retrieval of data
- **■** Two Types of Query Languages
 - Relational Algebra
 - Procedural
 - Set of operators operating on relations
 - Relational Calculus
 - NonProcedural
 - Users describe what they want rather than how to compute

Formal Relational Query Languages

- Procedural (Relational Algebra)
 - User specifies what data is required and how to get those data
 - Operational
 - Execution plans can be represented
- Nonprocedural (Relational calculus)
 - User specifies what data is required without specifying how to get those data
 - Declarative
 - Query semantics can be represented
- SQL is the most widely used query language based on Relational Algebra

Relational Algebra

- Algebra ?
- Operands
 - Variables or values from which new values can be constructed.
- Operators
 - Symbols denoting procedures to construct new values from Operands.
- Relational Algebra has relations as operands and set operations as operators.
- Satisfies Closure property
 - Output of an operation on relations is a relation itself
 - Operations can be composed.

Types of Operations

- Unary Relational Operations
 - \triangleright Select (σ)
 - \triangleright Project (Π)
 - \triangleright Rename (ρ)
- Binary Relational Operations
 - > Join
 - ν natural,semi,Θ-join
 - \triangleright Division (\div)

- Set theory Operations
 - > Union (U)
 - \triangleright Intersection (\cap)
 - > Difference (-)
 - > Cartesian Product (X)
- Additional Relational Operations
 - > Outer Joins
 - Outer Union
 - > Aggregate Functions
 - **Eg.** Sum, Count, Avg...

Select (denoted by σ (sigma))

- Retrieval of subset of the tuples from a relation based on a selection condition
- Selection condition acts as filter

$$\sigma_{\text{selection_condition}}$$
 (R); R is a relation

Selection condition is a boolean formula.

Tuples satisfying the condition are retained.

Ex:
$$\sigma_{ISBN='B110'}$$
 (Book)

Properties of Selection operation

- $\sigma_{\text{selection_condition}}$ (R) = S; R and S have same schema
- Number of tuples in S <= Number of tuples in R
- Is commutative

$$\sigma_{}(\sigma_{}(R)) = \sigma_{}(\sigma_{}(R))$$

Cascade sequence of SELECT operations may be applied in any order:

$$\sigma_{}(\sigma_{}(\sigma_{}(R))) = \sigma_{}(\sigma_{}(R)))$$

Cascade equivalent to conjunction of all the conditions

$$\sigma_{}(\sigma_{}(\sigma_{}(R))) = \sigma_{ANDAND}(R)))$$

Project (denoted by Π (pi))

- Retrieval of the subset of columns from a relation based on a specified list of attributes
- Specified lists forms a projection of attributes

$$\Pi_{\text{attr list}}(R)$$
; R is a relation

All the tuples of R with only the specified attribute values are retrieved.

Ex:
$$\Pi_{ISBN. Title}(Book)$$

Is
$$\Pi_{ISBN}(\sigma_{Publ\ code='PO10'}(Book))$$
 valid?

Which property of relational algebra?

BS
$$<$$
- $\sigma_{\text{Publ_code='P010'}}$ (Book); BS2 $<$ - Π_{ISBN} (BS))

Properties of Projection operation

- \circ $\Pi_{\text{cattr_list}}(R) = S;$
- Removes duplicate tuples. True ?
- Number of tuples in S <= Number of tuples in R

ISBN	Title	Category	Publ_code
B111	FISH	ARTICLE	P010
B112	GLOW	ARTICLE	P212
B110	FERT	NEWS	P010

 $\Pi_{ISBN, Title}(Book)$

Attribute list contains Key.

 $\Pi_{Publ_code}(Book)$

Removes duplicate tuples.

Not commutative

 $\Pi_{ISBN, Title}(\Pi_{category, publ_code}(Book))$

 $\Pi_{ISBN, Title}(\Pi_{category, ISBN}(Book))$

Results

ISBN	Title	Category	Publ_code
B111	FISH	ARTICLE	P010
B112	GLOW	ARTICLE	P212
B110	FERT	NEWS	P010

 $\blacksquare \quad \Pi_{\text{category,ISBN}}(\text{Book}) \qquad \qquad \Pi_{\text{category}}(\text{Book})$

Category	ISBN
ARTICLE	B111
ARTICLE	B112
NEWS	B110

Category

ARTICLE

NEWS

 $\blacksquare \quad \Pi_{ISBN, category}(\sigma_{Publ_code='P010'}(Book))$

ISBN	Category	Publ_code
B111	ARTICLE	P010
B110	NEWS	P010

Rename (denoted by ρ (rho))

- The general RENAME operation ρ can be
 - $\rho_{S(B1,B2,...,Bn)}(R)$ changes the relation name to S, and the column (attribute) names to B1, B2,Bn
- $\rho_s(R)$ changes: the relation name only to S

$$O_{(B1,B2,...,Bn)}(R)$$
 changes:

the column (attribute) names only to B1, B2,Bn

THANK YOU

References

■ Silberschatz A Korth H F and SudharshanS, "Database System Concepts", 6th Edition, TMH publishing company limited, 2011.

