R Generate and Combine Fixed and Random Matrix

Fan Wang

2020-05-13

Contents

r2 NA NA

1	Gen	Generate Matrixes					
	1.1	Create a N by 2 Matrix from 3 arrays	1				
	1.2	Name Matrix Columns and Rows	1				
	1.3	Generate NA Matrix	2				
	1.4	Generate Random Matrixes	2				
	1.5	Add Column to Matrix with Common Scalar Value	;				

1 Generate Matrixes

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

1.1 Create a N by 2 Matrix from 3 arrays

Names of each array become row names automatically.

```
ar_row_one <- c(-1,+1)
ar_row_two <- c(-3,-2)
ar_row_three <- c(0.35,0.75)

mt_n_by_2 <- rbind(ar_row_one, ar_row_two, ar_row_three)
kable(mt_n_by_2) %>%
kable_styling_fc()
```

ar_row_one	-1.00	1.00
ar_row_two	-3.00	-2.00
ar_row_three	0.35	0.75

1.2 Name Matrix Columns and Rows

```
# An empty matrix with Logical NA
mt_named <- matrix(data=NA, nrow=2, ncol=2)
colnames(mt_named) <- pasteO('c', seq(1,2))
rownames(mt_named) <- pasteO('r', seq(1,2))
mt_named

## c1 c2
## r1 NA NA</pre>
```

1.3 Generate NA Matrix

• Best way to allocate matrix in R, NULL vs NA?

Allocate with NA or NA_real_ or NA_int_. Clarity in type definition is preferred.

```
# An empty matrix with Logical NA
mt_na <- matrix(data=NA, nrow=2, ncol=2)
str(mt_na)

## logi [1:2, 1:2] NA NA NA NA
# An empty matrix with numerica NA
mt_fl_na <- matrix(data=NA_real_, nrow=2, ncol=2)
mt_it_na <- matrix(data=NA_integer_, nrow=2, ncol=2)

str(mt_fl_na)

## num [1:2, 1:2] NA NA NA NA
str(mt_fl_na)

## num [1:2, 1:2] NA NA NA NA</pre>
```

1.4 Generate Random Matrixes

Random draw from the normal distribution, random draw from the uniform distribution, and combine resulting matrixes.

```
# Generate 15 random normal, put in 5 rows, and 3 columns
mt_rnorm <- matrix(rnorm(15,mean=0,sd=1), nrow=5, ncol=3)

# Generate 15 random normal, put in 5 rows, and 3 columns
mt_runif <- matrix(runif(15,min=0,max=1), nrow=5, ncol=5)

# Combine
mt_rnorm_runif <- cbind(mt_rnorm, mt_runif)

# Display
kable(mt_rnorm_runif) %>% kable_styling_fc_wide()
```

1.1676236	-1.9386566	0.3579625	0.7103083	0.3903475	0.1619343	0.7103083	0.3903475
-0.6739924	-0.5615611	-0.6204664	0.7361028	0.5738153	0.3967366	0.7361028	0.5738153
-0.4028037	-0.0689906	0.8885335	0.9114172	0.4069060	0.7871675	0.9114172	0.4069060
-0.7199085	-1.9550838	-0.1538384	0.0678065	0.4755571	0.8240295	0.0678065	0.4755571
-0.8077243	-0.1360316	-2.3622675	0.2613640	0.5063549	0.4587020	0.2613640	0.5063549

1.5 Add Column to Matrix with Common Scalar Value

Given some matrix of information, add a column, where all rows of the column have the same numerical value. Use the matrix created prior. - R add column to matrix - R append column to matrix constant value

Display
kable(mt_with_more_columns) %>% kable_styling_fc_wide()

111	1.1676236	-1.9386566	0.3579625	0.7103083	0.3903475	0.1619343	0.7103083	0.3903475	999
111	-0.6739924	-0.5615611	-0.6204664	0.7361028	0.5738153	0.3967366	0.7361028	0.5738153	999
111	-0.4028037	-0.0689906	0.8885335	0.9114172	0.4069060	0.7871675	0.9114172	0.4069060	999
111	-0.7199085	-1.9550838	-0.1538384	0.0678065	0.4755571	0.8240295	0.0678065	0.4755571	999
111	-0.8077243	-0.1360316	-2.3622675	0.2613640	0.5063549	0.4587020	0.2613640	0.5063549	999