

Regresja kwantylowa D-vine a stress testing. Krótkie case study.

PIOTR MIKLER, AGH

O czym dzisiaj?

Kopułowa regresja kwantylowa to:

- Uogólnienie regresji
- Realistyczne założenia
- Elastyczne narzędzie

Przypomnienie (z wczoraj):

Tw. Sklara:

$$F_{X,Y}(x,y) = C(F_X(x), F_Y(y))$$

- Wielowymiarowe rozkłady jednostajne
- Modele zależności w wektorach losowych
- ❖ Fajny temat na pracę magisterską ☺

Przypomnienie (z wczoraj):

Tw. Sklara:

$$F_{X,Y}(x,y) = C(F_X(x), F_Y(y))$$

- Wielowymiarowe rozkłady jednostajne
- Modele zależności w wektorach losowych
- ❖ Fajny temat na pracę magisterską ☺

Źródło: https://bochang.me/blog/posts/copula/

Przypomnienie (z wczoraj):

Tw. Sklara:

$$F_{X,Y}(x,y) = C(F_X(x), F_Y(y))$$

- Wielowymiarowe rozkłady jednostajne
- Modele zależności w wektorach losowych
- ❖ Fajny temat na pracę magisterską ☺

PIT (Probability integral transform)

- \bullet Jeśli X_j jest zmienną losową o dystrybuancie $F_{X_j}(x_j)$
- * To $U_j := F_{X_j}(X_j)$ ma rozkład jednostajny.

Przypomnienie (z wczoraj):

Tw. Sklara:

$$F_{X,Y}(x,y) = C(F_X(x), F_Y(y))$$

- Wielowymiarowe rozkłady jednostajne
- Modele zależności w wektorach losowych
- ❖ Fajny temat na pracę magisterską ☺

Kopułowa Regresja Kwantylowa

Cel

Estymacja kwantyla α rozkładu Y

$$q_{\alpha}|x_{t} = F_{Y}^{-1}(C_{V|U}^{-1}(\alpha|u_{t}))$$

Metoda

Estymacja:

Rozkładów brzegowych: F_Y , F_X , $(u_t = F_X(x_t), v_t = F_Y(y_t))$

Kopuły: $C_{V|U}(v|u)$

Zalety

Nieliniowa zależność w kwantylach

Brak quantile crossing

Kopulowa regresja kwantylowa

n wymiarowy rozkład

<u>n wymiarowa</u> <u>kopuła</u>

<u>n wymiarowy</u> rozkład

<u>n wymiarowa</u> <u>kopuła</u>

Ok! Ale można też bardziej elastycznie:

R-vine

 Ogólny sposób dekompozycji n-wymiarowego rozkładu na rozkłady brzegowe i kopuły

Dekompozycja R-vine:

$$f(x_1, \dots, x_d) = \prod_{k=1}^d f_k(x_k) \prod_{i=1}^{d-1} \prod_{j=i+1}^d c_{ij;i+1,\dots,j-1} \left(F_{i|i+1,\dots,j-1} \left(x_i | x_{i+1}, \dots, x_{j-1} \right), F_{i|i+1,\dots,j-1} \left(x_j | x_{i+1}, \dots, x_{j-1} \right); x_{i+1}, \dots, x_{j-1} \right).$$

5-wymiarowy przykład:

$$f(x_1, x_2, x_3, x_4, x_5) = f_1(x_1) f_2(x_2) f_3(x_3) f_4(x_4) f_5(x_5)$$

$$\cdot c_{12} \cdot c_{23} \cdot c_{34} \cdot c_{45} \qquad (T_1)$$

$$\cdot c_{13;2} \cdot c_{24;3} \cdot c_{35;4} \qquad (T_2)$$

$$\cdot c_{14;23} \cdot c_{25;34} \qquad (T_3)$$

$$\cdot c_{15:234}, \qquad (T_4)$$

R-vine

 Ogólny sposób dekompozycji n-wymiarowego rozkładu na rozkłady brzegowe i kopuły

Dekompozycja R-vine:

$$f(x_1, \dots, x_d) = \prod_{k=1}^d \underbrace{f_k(x_k)}_{i=1} \prod_{j=i+1}^d \underbrace{c_{ij;i+1,\dots,j-1}}_{j=i+1} \left(F_{i|i+1,\dots,j-1} \left(x_i | x_{i+1}, \dots, x_{j-1} \right), F_{j|i+1,\dots,j-1} \left(x_j | x_{i+1}, \dots, x_{j-1} \right); x_{i+1}, \dots, x_{j-1} \right).$$

5-wymiarowy przykład:

R-vine

 Ogólny sposób dekompozycji n-wymiarowego rozkładu na rozkłady brzegowe i kopuły

D-vine

- Podklasa R-vine
- Każdy węzeł ma co najwyżej dwie krawędzie

Dekompozycja **D**-vine:

$$f(x_1, \dots, x_d) = \prod_{k=1}^d f_k(x_k) \prod_{i=1}^{d-1} \prod_{j=i+1}^d c_{ij;i+1,\dots,j-1} \left(F_{i|i+1,\dots,j-1} \left(x_i | x_{i+1}, \dots, x_{j-1} \right), F_{j|i+1,\dots,j-1} \left(x_j | x_{i+1}, \dots, x_{j-1} \right); x_{i+1}, \dots, x_{j-1} \right).$$

5-wymiarowy przykład:

$$f(x_1, x_2, x_3, x_4, x_5) = f_1(x_1) f_2(x_2) f_3(x_3) f_4(x_4) f_5(x_5)$$

$$\cdot c_{12} \cdot c_{23} \cdot c_{34} \cdot c_{45} \qquad (T_1)$$

$$\cdot c_{13;2} \cdot c_{24;3} \cdot c_{35;4} \qquad (T_2)$$

$$\cdot c_{14;23} \cdot c_{25;34} \qquad (T_3)$$

$$\cdot c_{15:234}, \qquad (T_4)$$

R-vine

 Ogólny sposób dekompozycji n-wymiarowego rozkładu na rozkłady brzegowe i kopuły

D-vine

- Podklasa R-vine
- Każdy węzeł ma co najwyżej dwie krawędzie

R-vine (ogólna rodzina):

D-vine (chains):

C-vine (root node):

Źródło: [2]

Kopułowa regresja kwantylowa D-vine

Zamiast jednego U, wektor predyktorów U

$$q_{\alpha}|\boldsymbol{x_t} = F_Y^{-1}(C_{V|\boldsymbol{U}}^{-1}(\alpha|\boldsymbol{u_t}))$$

Standardowa kopułowa regresja kwantylowa

$$q_{\alpha}|x_t = F_Y^{-1}(C_{V|U}^{-1}(\alpha|u_t))$$

Kopułę $C_{V,U}$ wyrażamy poprzez D-vine

Jeśli V będzie na krańcach T1, to istnieje analityczny wzór na jego kwantyle. [3]

Zbalansowany portfel akcji różnych rynków.

Jak wartość portfela zależy od rynkowych indeksów?

Co gdy się mocno poruszą?

Struktura Portfela

Ticker	Nazwa	Rynek	Waga
VOD	Vodafone	UK	19.3%
UL	Unilever	UK	7.0%
BP	BP P.L.C.	UK	10.2%
MSFT	Microsoft	USA	3.4%
KO	Coca-Cola	USA	7.8%
SBUX	Starbucks	USA	5.6%
HMC	Honda	Jap.	12.8%
SSUMY	Sumitomo	Jap.	23.9%
ITOCY	Itochu	Jap.	10.0%

Ticker	Nazwa	Rynek	Waga	Benchmark	
VOD	Vodafone	UK	19.3%	DWGD 100	
UL	Unilever	UK	7.0%	FTSE 100 (FTSE)	
BP	BP P.L.C.	UK	10.2%		
MSFT	Microsoft	USA	3.4%	G0 D E00	
KO	Coca-Cola	USA	7.8%	S&P 500 (GSPC)	
SBUX	Starbucks	USA	5.6%	(452 6)	
HMC	Honda	Jap.	12.8%		
SSUMY	Sumitomo	Jap.	23.9%	Nikkei 225 (N225)	
ITOCY	Itochu	Jap.	10.0%	(1.220)	

Case study: D-vine regression stress testing: Rozkłady brzegowe

Case study: D-vine regression stress testing: Rozkłady brzegowe

ARMA-**GARCH**

- Autokorelacja
- Trend
- Heteroskedastyczność

Case study:

D-vine regression stress testing: Rozkłady brzegowe

ARMA-GARCH

- Autokorelacja
- Trend
- Heteroskedastyczność

Szeregi z autokorelacją, heteroskedastyczne. Dobrze działa tu model ARMA(0,1)-GARCH(1,1), z innowacjami t.

Rezidua przeszły testy:

- KS zgodności z rozkładem t
- Ljunga-Boxa na autokorelację
- Engle Arch na homoskedastyczność


```
box pvalues
Portfolio
               FTSE
                         GSPC
                                   N225
                                              VIX
0.6535509 0.3350844 0.3359882 0.3310874 0.6558776
 arch pvalues
Portfolio
               FTSE
                         GSPC
                                   N225
                                              VIX
0.347004 0.779790 0.845988 0.153714 0.940236
> ks pvalues
Portfolio
               FTSE
                         GSPC
                                   N225
                                              VIX
0.3490424 0.8711507 0.5899769 0.6814515 0.1676031
```

Case study: D-vine regression stress testing: Rozkłady brzegowe

- "Ujednostajnienie" danych
- Będzie można modelować kopuły
- Gaussian KDE zapewni zgodność estymatorów

Case study:
D-vine regression stress testing: Struktura D-vine

ARMA-PIT Kopuły **GARCH**

- Łączymy rozkłady brzegowe strukturą D-vine.
- Każda D-vine jest jednoznacznie wyznaczona przez kolejność w pierwszym drzewie.

Case study:
D-vine regression stress testing: Struktura D-vine


```
# Copula quantile regression
library(vinereg)
quant_cop_reg <- vinereg(Portfolio ~ .,</pre>
                          family = "par", #(tylko parametryczne)
                          selcrit ="aic", # kryterium wyboru struktury
                          data = udata)
```


Predykcje średnich, przy spadkach pojedynczego indeksu do poziomów:

- * kwantyla 0.05
- * kwantyla 0.1

Stress test results: mean

Krzywe kwantylowe portfela w odpowiedzi na kwantyle indeksu

Predykcje kwantyli ruchu portfela, przy spadkach pojedynczego indeksu do poziomów:

- * kwantyla 0.05
- * kwantyla 0.1

Stressed portfolio quantiles

- * kwantyla 0.05
- * kwantyla 0.1

Stressed portfolio quantiles

stressed
1 day $Var_{0.95}$ (scenariusz:
0.1 N225 stress)

Źródła

Pięknie dziękuję za uwagę!

[1] D. Kraus, C. Czado, **D-vine copula based quantile regression** (2016)

[2] M. Fischer, D. Kraus, M. Pfeuffer, C. Czado,

Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression (2017)

[3] M. Tepegjozova, J. Zhou, G. Claeskens, C. Czado, Nonparametric C- and D-vine based quantile regression (2021)

[4] T. Nagler, vinereg R library:

https://cran.r-project.org/web/packages/vinereg/

Piotr Mikler *mikler@student.agh.edu.pl*