Entrepreneurial Selection with Frictions

Stefano Pietrosanti Research Fellow, Bank of Italy

Bank of Italy / CEPR / EIEF conference on "Ownership, Governance, Management and Firm Performance"

December 22, 2020

Introduction

•000

Introduction

Motivation and Preview

Plenty of evidence that managers characteristics are important for real outcomes.

What determines managers characteristics? When is control allocation inefficient?

What I do:

Introduction

- ▶ Use Eurostat data to compare managers characteristics across Europe.
- ▶ Use Bruegel's firm level data to suggest a mechanism.
- ▶ Investigate efficiency implications in a static general equilibrium model.

Motivation and Preview

Plenty of evidence that managers characteristics are important for real outcomes.

What determines managers characteristics? When is control allocation inefficient?

What I find

Introduction

- 1. Prevalence of over-65 managers in Italy fixed granular firm characteristics. Link this prevalence to access to credit.
- 2. Funding frictional \rightarrow pecuniary externality washes out \rightarrow constrained optimal allocation
- 3. Funding and control frictional \rightarrow pecuniary externality does not wash out \rightarrow constrained sub-optimal allocation possible

Relation to the Literature

Italy: 2.3 times the EU average of over-60 managers

Source: Eurostat, data on Managers (ISCO - ILO definition)

Introduction

Firm-level data to show robustness and suggest a mechanism

Is this supported by finer data?

Dataset: Bruegel's European Firms in a Global Economy.

- Survey of 15,000 European manufacturer across core-EU economies;
- Includes representative weighting;
- Collects information on:

Introduction

- 1. firm organization;
- 2. firm export activity;
- 3. credit access.
- Matched with firm financials from Amadeus.

Old CEOs 13% more likely in Italy

CEO Older than $65_{fc} = \beta_c \text{Country Dummies}_c + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable:			
	CEO Older than 65			
Italy	0.126*** (13.21)	0.129*** (12.45)	0.135*** (13.00)	0.139*** (7.98)
France	-0.047*** (-6.75)	-0.048*** (-6.27)	-0.029*** (-3.73)	-0.016 (-1.03)
United Kingdom	0.031*** (3.32)	0.027** (2.57)	0.048*** (4.59)	0.038* (1.95)
Spain	-0.023*** (-3.05)	-0.024*** (-3.15)	-0.007 (-0.84)	-0.007 (-0.45)
Germany	0.0910*** (16.20)	0.0909*** (15.22)	0.0183** (2.01)	0.00970 (0.51)
Industry FE		✓	✓	✓
Region FE		✓	✓	✓
Size Class FE		✓	✓	✓
Survey Controls			✓	✓
Balance Sheet Controls				✓
R^2	0.040	0.044	0.059	0.072
Observations	13,771	13,771	13,771	7,996

Survey Controls: Old Firm; CEO related to Owners; Active Abroad; Owned by Foreigners

Balance Sheet Controls: Employees; Total Assets; EBITDA; Liquidity

Introduction

Financial - Managerial inputs trade-off?

CEO Older than $65_{fc} = \alpha + \beta \text{Managerial Constraint}_{fc} + \omega \text{Financial Constraint}_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: CEO Older than 65 Others	ltaly	Others	Italy	Others	Italy	Others	Italy
Managerial Constraint	-0.002	0.041*	0.019*	0.044*	0.015	0.046**	0.010	0.048**
	(-0.17)	(1.78)	(1.73)	(1.89)	(1.40)	(2.01)	(0.74)	(1.98)
Financial Constraint	-0.022***	-0.044***	-0.015**	-0.041**	-0.017**	-0.044***	-0.016	-0.049***
	(-3.26)	(-2.69)	(-2.20)	(-2.50)	(-2.43)	(-2.71)	(-1.56)	(-2.84)
Region FE Size Class FE State-Industry FE			√ √ √	√	√ √ √	√	√ √	√ ✓
Industry FE Survey Controls Balance Sheet Controls				✓	✓	√	√	√ √ √
R ²	0.001	0.003	0.016	0.018	0.031	0.044	0.054	0.055
Observations	8,436	3,020	8,435	3,020	8,435	3,020	3,223	2,685

Survey Controls: Old Firm; CEO related to Owners; Active Abroad; Owned by Foreigners Balance Sheet Controls: Employees; Total Assets; EBITDA; Liquidity

Introduction

Zoom-in on credit (Real implications of this tradeoff?) (Not all about sample selection)

Merit control

A simple model to think about efficiency

Theory

•0000000000

Agents, goods, and preferences

Agents:

- ▶ Old gen (O) owner/manager.
- ▶ Young gen (Y) (potential) successor.
- A bank.

Good

▶ Final consumption good *c*.

Preferences:

Everybody is risk neutral.

Endowments and technology

Endowments:

Introduction

- Human capital.
 - ▶ Old: Human capital h^o
 - ▶ Young: Human capital h^Y such that $\frac{h^Y}{h^Q} = x > 1$
- One unit of labor.
- Old agents own firm licenses.

Technology:

- Manager's human capital: h^M
- ▶ Production Function: $\mathcal{O} = (n)^{\alpha} h^{M}$, where $\alpha < 0.5$

Timing and resources

1. Period Start:

Introduction

- ► Agents trade firm licenses.
- ▶ Managers *anticipate* the wage (working capital constraint).

2. Period End:

- ▶ Bank requires r = 0 from Old, and $r = \gamma > 0$ from Young.
- ▶ Production, payment of the interest and of the firm's *q*.

Production:
$$\max_{n} h^{M} n^{\alpha} - (1+r)wn$$

Resources:

Consumption:
$$c^{M} + c^{W} + r_{\text{interest rate}}^{n} nc^{W} = (n)^{\alpha} h^{M}$$

Labor: n = 1

Trade and production decision \rightarrow payoffs

Theory

00000000000

Payoff No Trade:

$$V_{\text{Young}} \left(\text{Not Buying} \right) = w$$

$$V_{\mathsf{Old}}\left(\mathsf{Keeping}\right) = \pi(\mathsf{No}\;\mathsf{Trade},w)$$

Payoff Trade:

$$V_{\mathsf{Young}}\left(\mathsf{Buying}\right) = \pi(\mathsf{Trade}, w) - q$$

$$V_{\text{Old}}\left(\text{Selling}\right) = w + q$$

Trade and production decision \rightarrow payoffs

Payoff No Trade:

$$V_{\text{Young}}$$
 (Not Buying) = w

$$V_{\mathsf{Old}}\left(\mathsf{Keeping}\right) = \left(rac{lpha}{\mathbf{w}}
ight)^{rac{lpha}{1-lpha}}\left(1-lpha
ight)$$

Payoff Trade:

$$V_{\mathsf{Young}}\left(\mathsf{Buying}\right) = x \left(\frac{\alpha x}{(1+\gamma)w}\right)^{\frac{\alpha}{1-\alpha}} (1-\alpha) - q$$

$$V_{\text{Old}}\left(\text{Selling}\right) = w + q$$

Equilibrium in the market for control

w must clear the labor market:

$$w(\text{Trade Eqm}) = \frac{\alpha x}{1+\gamma}$$

$$w(No Trade Eqm) = \alpha$$

q must respect Participation constraints:

(No Trade) The most the young would pay $ar{q}$ < The least the old would accept q

(Trade) The most the young would pay $ar{q}\geqslant$ The least the old would accept q

Pecuniary externality and efficiency

Result 1

There exists a unique equilibrium, mandating Trade if $x \ge (1 + \gamma)^{\alpha}$ and No Trade vice-versa. Such equilibrium is not first best. At the same time such equilibrium is constrained efficient.

Pecuniary externality: If managers are not first best, wages are depressed and participation constraints tighter. The only good job is the top job.

Is there space for policy? Unless we can violate participation constraints, no.

Intuition: Complete market for control \rightarrow All individually rational trades are accomplished \rightarrow Pecuniary externalities cancel out (Greenwald and Stiglitz, 1986).

Redistribution can't help, address the friction

(Constrained planner problem)

When may redistribution help?

Example: friction affects the market for control.

Resource constraint =
$$c^{\mathsf{M}} + c^{\mathsf{W}} + r_{\mathsf{interest rate}} n c^{\mathsf{W}} + \phi(q, \mathsf{Trade Decision}) = (n)^{\alpha} h^{\mathsf{M}}$$

 $V_{\mathsf{Old}}(\mathsf{Selling}) = w + q(1 - \phi)$

Theory

Result 2

Intuition: The increase in wages under Trade decreases q and thus ϕq , but a single manager stepping down under No Trade cannot count on saving on ϕq through w.

When may redistribution help?

Example: friction affects the market for control.

Resource constraint =
$$c^{M} + c^{W} + r_{\text{interest rate}} n c^{W} + \phi(q, \text{Trade Decision}) = (n)^{\alpha} h^{M}$$

 $V_{\text{Old}} \text{ (Selling)} = w + q(1 - \phi)$

Result 2

Incompleteness in the market allows for multiple equilibria. If multiple equilibria exist, they are Pareto-ranked, with Trade dominating No Trade. Planner could address coordination issues.

Intuition: The increase in wages under Trade decreases q and thus ϕq , but a single manager stepping down under No Trade cannot count on saving on ϕq through w.

Redistribution may help

Constrained planner problem

Introduction

Introduction

0000

Conclusions

Conclusion

Introduction

This Paper:

- Uses firm level data to show that firm characteristics cannot explain higher frequency of old managers in Italy.
- Establishes possibility of a managerial-financial resources trade-off. Possible role of institutions to be explored.
- Uses static GE model to think about efficiency.

Take away:

 Relative importance of control-market vs funding-market frictions in determining slow turnover may inform us on the use for subsidies and similar interventions.

Further work:

Deeper empirical investigation of the root reasons of slow turnover.

Introduction

0000

Thank you!

Back-up

Findings in context

- 1. The empirical literature on institutions, managers and their effects: La Porta et al. (1999), La Porta et al. (2000), Bertrand and Schoar (2003), Bandiera et al. (2008), Bloom et al. (2013).
 - ▶ Highlight potential role of access to resources in managerial selection.
- **2.** The literature on **allocation of control over firms**: Burkart et al. (2003), Caselli and Gennaioli (2005), Lippi and Schivardi (2014).
 - Study of managerial-financial inputs trade off and its efficiency implications. 1. Funding frictions cause waste due to a pecuniary externality, control market reaches constrained best; 2. Control and funding frictions together may break down constrained optimality.
- 3. The literature on Italy's productivity problems: Daveri and Parisi (2015), Pellegrino and Zingales (2017), Schivardi and Schmitz (2020).
 - Highlights indirect effects of managers characteristics. Effects on performance of individual firms just part of the story.

Italy: double expected time to sort a commercial dispute

Source: World Bank Doing Business Survey

Not only slow, also wasteful: 22 percent of assets involved in insolvency get lost (double Spain); 63 percent recovery rate on insolvent claim (15 % pts lower than France, second worst performer)

Caveat: Only suggestive, need more data. Intuition is coherent with empirical literature on access to credit (Jappelli et al. (2005), Stacchini and Strahan (2020)), and on value of relationships when enforcement is weak (Macchiavello and Marjaria (2015)). Implicit assumption: cost of new relationships is higher than increase in monitoring/default cost when life horizon shortens.

Population age distribution is not as skewed

Source: Eurostat, data on population

Workforce overall is not as old

Source: Calculations on OECD data

Old Worker (55-64) Share

Sources: OECD; European Commission; BLS; and IMF staff calculations.

Note: from Aiyar and Ebeke (2017)

At least another country has similar firm dynamics

Source: Eurostat, data on firm demographics

At least another country has similar firm dynamics

Source: Eurostat, data on firm demographics

Old CEOs 13% more likely in Italy - Sample Selection

CEO Older than $65_{\it fc}=eta_{\it c}{\sf Country\ Dummies}_{\it c}+\Gamma X_{\it fc}+\epsilon_{\it fc}$

	Dependent variable: CEO Older than 65			
Italy	0.119*** (7.43)	0.125*** (7.29)	0.125*** (7.28)	0.139*** (7.98)
France	-0.047*** (-3.12)	-0.043*** (-2.66)	-0.029* (-1.86)	-0.016 (-1.03)
United Kingdom	-0.002 (-0.09)	-0.003 (-0.16)	0.029 (1.45)	0.038* (1.95)
Spain	-0.029** (-1.98)	-0.031** (-1.97)	-0.019 (-1.22)	-0.007 (-0.45)
Germany	0.0975*** (7.05)	0.0945*** (6.37)	0.0396** (2.23)	0.00970 (0.51)
Industry FE		✓	✓	√
Region FE		✓	✓	✓
Size Class FE		✓	\checkmark	✓
Survey Controls			\checkmark	√
Balance Sheet Controls R ²	0.045	0.052	0.069	√ 0.072
Observations	7,996	7,996	7,996	7,996

Old CEOs 13% more likely in Italy - Merit

CEO Older than $65_{fc} = \beta_c \text{Country Dummies}_c + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: CEO Older than 65			
Italy	0.126*** (13.21)	0.129*** (12.45)	0.136*** (12.75)	0.130*** (7.21)
France	-0.047*** (-6.75)	-0.048*** (-6.27)	-0.029*** (-3.72)	-0.023 (-1.37)
United Kingdom	0.031*** (3.32)	0.027** (2.57)	0.050*** (4.66)	0.036* (1.75)
Spain	-0.023*** (-3.05)	-0.024*** (-3.15)	-0.006 (-0.79)	-0.014 (-0.82)
Germany	0.0910*** (16.20)	0.0909*** (15.22)	0.0140 (1.27)	0.0309 (1.45)
Industry FE		✓	✓	✓
Region FE		✓	\checkmark	\checkmark
Size Class FE		✓	\checkmark	✓
Survey Controls			\checkmark	✓
Balance Sheet Controls				✓
R^2	0.040	0.044	0.058	0.071
Observations	13,771	13,771	13,346	7,709

Survey Controls: ... + Merit (Pellegrino and Zingales (2017))

Balance Sheet Controls: Employees; Total Assets; EBITDA; Liquidity

Financial - Managerial inputs trade-off? - Sample Selection

CEO Older than $65_{fc} = \alpha + \beta \text{Managerial Constraint}_{fc} + \omega \text{Financial Constraint}_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: CEO Older than 65 Others	Italy	Others	Italy	Others	Italy	Others	Italy
Managerial Constraint	-0.002	0.041*	0.019*	0.044*	0.015	0.046**	0.010	0.048**
	(-0.17)	(1.78)	(1.73)	(1.89)	(1.40)	(2.01)	(0.74)	(1.98)
Financial Constraint	-0.022***	-0.044***	-0.015**	-0.041**	-0.017**	-0.044***	-0.016	-0.049***
	(-3.26)	(-2.69)	(-2.20)	(-2.50)	(-2.43)	(-2.71)	(-1.56)	(-2.84)
Region FE Size Class FE State-Industry FE			√ √ √	√ √	√ √ √	√	√ √ √	√ √
Industry FE Survey Controls Balance Sheet Controls				✓	✓	√	√ √	√ √ √
R ²	0.001	0.005	0.024	0.020	0.053	0.046	0.054	0.055
Observations	3,224	2,685	3,223	2,685	3,223	2,685	3,223	2,685

Financial - Managerial inputs trade-off? - Merit

CEO Older than 65 $_{fc}=\alpha+\beta$ Managerial Constraint $_{fc}+\omega$ Financial Constraint $_{fc}+\Gamma X_{fc}+\epsilon_{fc}$

	Dependent variable: CEO Older than 65 Others	Italy	Others	Italy	Others	Italy	Others	Italy
Managerial Constraint	-0.002	0.041*	0.019*	0.044*	0.013	0.050**	0.010	0.052**
	(-0.17)	(1.78)	(1.73)	(1.89)	(1.23)	(2.10)	(0.75)	(2.09)
Financial Constraint	-0.022***	-0.044***	-0.015**	-0.041**	-0.015**	-0.039**	-0.014	-0.043**
	(-3.26)	(-2.69)	(-2.20)	(-2.50)	(-2.10)	(-2.36)	(-1.32)	(-2.47)
Region FE Size Class FE State-Industry FE			√ √ √	√ ✓	√ √ √	√ ✓	√ √ √	√
Industry FE Survey Controls Balance Sheet Controls				✓	✓	√ √	√ √	√ √ √
R ² Observations	0.001	0.003	0.016	0.018	0.031	0.043	0.058	0.056
	8,436	3,020	8,435	3,020	8,170	2,921	3,079	2,597

Survey Controls: Old Firm; CEO related to Owners; Active Abroad; Owned by Foreigners; Merit (Pellegrino and Zingales (2017))

Balance Sheet Controls: Employees; Total Assets; EBITDA; Liquidity

Old CEOs and easier access to credit

Denied Credit_{fc} = $\alpha + \beta$ CEO Older than $65_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: Denied Credit Others	Italy	Others	Italy	Others	Italy	Others	ltaly
CEO Older than 65	0.006 (0.16)	-0.070* (-1.65)	0.058 (1.63)	-0.079* (-1.84)	0.056 (1.53)	-0.073* (-1.70)	0.053 (0.93)	-0.100** (-2.24)
Region FE Size Class FE State-Industry FE			√ √	√ ✓	√ √ √	√ ✓	√ √ √	√ √
Industry FE Survey Controls Balance Sheet Controls				✓	✓	√ ✓	√	√ √ √
R ² Observations	~0.000 1,842	0.003 743	0.115 1,841	0.032 742	0.117 1,841	0.040 742	0.121 1,060	0.060 650

Survey Controls: Old Firm; CEO related to Owners; Active Abroad; Owned by Foreigners Balance Sheet Controls: Employees; Total Assets; EBITDA; Liquidity

Older relationships Softer screening

Project types

Old CEOs and older bank relationships

Age Main Bank Rel. $_{fc} = \alpha + \beta \text{CEO}$ Older than $65_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: Age Main Bank Rel. Others	Italy	Others	Italy	Others	Italy	Others	Italy
CEO Older than 65	4.541*** (3.54)	4.487*** (5.49)	4.406*** (3.77)	4.311*** (5.32)	2.441** (2.27)	2.989*** (3.78)	1.754* (1.67)	2.683*** (3.19)
Region FE			✓	✓	✓	✓	✓	✓
Size Class FE			✓	✓	✓	✓	✓	✓
State-Industry FE			✓		✓		✓	
Industry FE				✓		✓		✓
Survey Controls					✓	✓	✓	✓
Balance Sheet Controls							✓	✓
R^2	0.006	0.021	0.101	0.045	0.235	0.141	0.175	0.154
Observations	4,483	1,860	4,482	1,860	4,482	1,860	2,680	1,657

Old CEOs and softer screening

Business Plan_{fc} =
$$\alpha + \beta$$
CEO Older than $65_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: Business Plan Others	Italy	Others	Italy	Others	Italy	Others	Italy
CEO Older than 65	-0.035* (-1.67)	-0.080*** (-3.06)	-0.025 (-1.29)	-0.084*** (-3.20)	-0.023 (-1.18)	-0.084*** (-3.19)	-0.081** (-2.31)	-0.096*** (-3.51)
Region FE			✓	√	√	✓	√	✓
Size Class FE			✓	✓	✓	✓	✓	✓
State-Industry FE			✓		✓		✓	
Industry FE				✓		✓		✓
Survey Controls					✓	✓	✓	✓
Balance Sheet Controls							✓	✓
R^2	~0.000	0.005	0.109	0.044	0.173	0.048	0.139	0.058
Observations	6,834	1,860	6,833	1,860	6,833	1,860	3,121	1,657

No systematic difference in project type

Funding Use_{fc} = $\alpha + \beta$ CEO Older than $65_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

Dependent variable: Increase Scale Others	Italy	Others	Italy	Others	Italy	Others	Italy
-0.072* (-1.90)	-0.011 (-0.30)	-0.047 (-1.28)	-0.024 (-0.62)	-0.049 (-1.32)	-0.029 (-0.73)	-0.029 (-0.53)	-0.031 (-0.74)
1,912	751	1,911	750	1,911	750	1,192	671
Working Capital							
0.063 (1.26)	0.026 (0.58)	0.105** (2.12)	0.029 (0.63)	0.112** (2.26)	0.036 (0.76)	0.100* (1.69)	0.041 (0.83)
1,912	751	1,911	750	1,911	750	1,192	671
Financing Mix							
-0.021 (-1.36)	-0.004 (-0.15)	-0.027 (-1.60)	0.000 (0.00)	-0.029* (-1.68)	0.001 (0.05)	-0.019 (-1.61)	0.010 (0.32)
1,912	751	1,911	750	1,911	750	1,192	671
		√ √ √	√ √	√ √ √	√ √ √	√ √ √	\ \ \
	Increase Scale Others -0.072* (-1.90) 1,912 Working Capital 0.063 (1.26) 1,912 Financing Mix -0.021 (-1.36)	Increase Scale Others	Increase Scale Others	Increase Scale Others	Increase Scale	Increase Scale Others	Increase Scale Others Italy Othe

Old CEOs and process, product, organization innovation

Innovation_{fc} = $\alpha + \beta$ CEO Older than $65_{fc} + \Gamma X_{fc} + \epsilon_{fc}$

	Dependent variable: Innovation Others	Italy	Others	ltaly	Others	Italy	Others	Italy
CEO Older than 65	0.024 (1.26)	-0.042* (-1.94)	0.019 (1.02)	-0.047** (-2.15)	0.010 (0.42)	-0.052** (-2.41)	-0.013 (-0.50)	-0.057** (-2.47)
Region FE			√	✓	✓	√	✓	✓
Size Class FE			✓	✓	✓	✓	✓	✓
State-Industry FE			✓		✓		✓	
Industry FE				✓		✓		✓
Survey Controls					✓	✓	✓	✓
Balance Sheet Controls							✓	✓
R^2	~0.000	0.001	0.057	0.029	0.085	0.064	0.070	0.064
Observations	10,750	3,021	10,750	3,021	10,750	3,021	5,310	2,686

Market for control

$$ar{q} = q : V_{\mathsf{Young}} \left(\mathsf{Buying} \ \mathsf{at} \ ar{q} \middle| \ \mathsf{Trade} \right) = w \left(\mathsf{Trade} \ \mathsf{Eqm} \right) = rac{\alpha x}{1 + \gamma}$$

$$\frac{\textbf{\textit{q}}}{-} = \textbf{\textit{q}} : V_{\mathsf{Old}}\left(\mathsf{Selling} \ \mathsf{at} \ \frac{\textbf{\textit{q}}}{-}| \ \mathsf{Trade}\right) = \pi(\mathsf{Keep}|\mathsf{Trade} \ \mathsf{Eqm}) = \left(\frac{1+\gamma}{x}\right)^{\frac{\alpha}{1-\alpha}}(1-\alpha)$$

Back

Constrained planner problem when only financing is frictional

$$\max_{c^Y, c^O, M \in \{Y, O\}} c^Y + c^O$$

(Labor Resource Constraint) n = 1

(Res. Constraint if
$$M = O$$
) $c^Y + c^O = n^\alpha$

(Participation Constraint
$$Y$$
) $c^Y \geqslant V_Y(Buying | M = O) = \alpha$

(Participation Constraint
$$O$$
) $c^O \geqslant V_O(\mathsf{Selling}|\ \mathsf{M} = O) = x n_{dev}^{\alpha}(Y)(1-\alpha)$

(Res. Constraint if
$$M = Y$$
) $c^Y + c^O = n^\alpha x - \gamma \frac{\alpha x}{1 + \gamma} n^{\alpha - 1} n$

(Participation Constraint Y)
$$c^Y \ge V_Y(\text{Not Buying} | M = Y) = \frac{\alpha x}{1 + \gamma} n^{\alpha - 1}$$

(Participation Constraint O)
$$c^O \ge V_O(\text{Keeping}|M=Y) = n_{dev}^{\alpha}(O)(1-\alpha)$$

Back

Constr. planner problem when also control market is frictional

$$\max_{c^Y, c^O, M \in \{Y, O\}} c^Y + c^O$$

(Labor Resource Constraint) n = 1

(RC if
$$M=O$$
) $c^Y+c^O=n^\alpha$
(PC Y) $c^Y\geqslant V_Y(\text{Buying}|\ \mathsf{M}=O)=\alpha$
(PC O) $c^O\geqslant V_O(\text{Selling}|\ \mathsf{M}=O)=\alpha\phi n^{\alpha-1}+(1-\phi)\times n^\alpha_{dev}(Y)(1-\alpha)$

(RC if
$$M = Y$$
) $c^{Y} + c^{O} = n^{\alpha}x - (\gamma - \phi)\frac{\alpha x}{1 + \gamma}n^{\alpha - 1}n - \phi x n^{\alpha}(1 - \alpha)$
(PCY) $c^{Y} \ge V_{Y}(\text{Not Buying}|M = Y) = \frac{\alpha x}{1 + \gamma}n^{\alpha - 1}$
(PCO) $c^{O} \ge V_{O}(\text{Keeping}|M = Y) = n_{dov}^{\alpha}(O)(1 - \alpha)$

Back