Applied Time Series Econometrics

Oxana Malakhovskaya, NRU HSE

September 17, 2019

Working with time series

The algorighm of working with times series models.

- Importing data that we will do with readr or readxl packages.
- 2 Data visualisation that we will do with ggplot2 package (if necessary).
- Oata manipulation that we will do with dplyr package treating series as data frames.
- Transformation data frames into special time series (ts) format if necessary (some packages work only with ts data).
- Stimation and evaluation of models with special packages developed specially for a certain class of models.

Times Series Formats

 Data frame is a principal object in R to hold data. However, to use special packages for times series models we have to transform our dataset to a ts format.

Three times series formats (among others) are best-known:

- ts: a data format that allows the user to work with regular times series.
- 2 zoo: a data format that allows the user to work also with irregular times series, and a package that introduces this data format.
- xts: a data format that that allows the user to work also with irregular times series with numerous observations for a time point, also a package that introduces this data format.

zoo extends ts. xts extends zoo.

TS class

 To create a time series object of the ts class we use the ts() function. The arguments of the ts() function include:

data: a vector or a matrix of the observed time serries.

start: the time of the first observation

end: the time of the last observation (may be dropped if start and freq are indicated)

frequency: the number of observation per unit of time

Converting data frames into a ts object

• If we need to convert a data frame into a ts object we have to estract the data matrix first.

```
# read_csv function is from readr package (tidyverse set)
rus_data <- read_csv("rus_data.csv")
class(rus_data)
rus_data <- select(rus_data, -time)
rus_data_ts <- ts(rus_data, start = c(1995, 1), freq = 12)
class(rus_data_ts)</pre>
```

Stationary univariate processes

Stationarity:

A stochastic process y_t is called (weakly) *stationary* if it has time-invariant first and second moments:

$$\mathbb{E}(y_t) = \mu_y orall t \in \mathcal{T}$$
 $cov(y_t, y_{t-h}) = \gamma_h$ $orall t \in \mathcal{T}$ and $orall h$ such as $t-h \in \mathcal{T}$

The simplest stationary process is white noise (WN):

Stochastic process y_t is a WN process if:

- **3** $cov(y_t, y_{t-h}) = 0$ ∀ $t \in T$ and ∀h such as $t h \in T$

WN graph

Wold's Representation Theorem

First of all, we are going to work with ARMA models. Why?

Wold's Representation Theorem

If y_t is a weakly stationary process, then it can be represented as:

$$y_t = \mu_t + \sum_{j=0}^{\infty} \psi_j \nu_{t-j}$$

where μ_t is deterministic time series (possibly a constant), ν_t is white noise and $\sum_{j=0}^{\infty} \psi_j^2 < \infty$ The infinite sum is understood as the mean square limit of $\sum_{j=0}^{n} \psi_j \nu_{t-j}$ as $n \to \infty$.

We need a model with a finite number of parameters that can be equivalent to the weighted infinite sum of WN process.

ARMA models

Let y_t be a time series variable. Consider a model so that y_t is fully determined by its own dynamics:

$$y_t = \mu + \sum_{i=1}^{p} \phi_i y_{t-i} + \nu_t + \sum_{i=1}^{q} \psi_i \nu_{t-i}$$

This model represents the univariate class of linear autoregressive moving average models with p AR lags and q MA lags, ARMA(p,q).

Some special cases of ARMA(p,q) model are:

$$\begin{array}{ll} \textit{ARMA}(0,0) = \text{WN with a constant:} & \textit{y}_t = \mu + \nu_t \\ \textit{ARMA}(1,0) = \textit{AR}(1) : & \textit{y}_t = \mu + \phi_1 \textit{y}_{t-1} + \nu_t \\ \textit{ARMA}(2,0) = \textit{AR}(2) : & \textit{y}_t = \mu + \phi_1 \textit{y}_{t-1} + \phi_2 \textit{y}_{t-2} + \nu_t \\ \textit{ARMA}(0,1) = \textit{MA}(1) : & \textit{y}_t = \mu + \nu_t + \psi_1 \nu_{t-1} \\ \textit{ARMA}(0,2) = \textit{MA}(2) : & \textit{y}_t = \mu + \nu_t + \psi_1 \nu_{t-1} + \psi_2 \nu_{t-2} \\ \textit{ARMA}(1,1) & \textit{y}_t = \mu + \phi_1 \textit{y}_{t-1} + \nu_t + \psi_1 \nu_{t-1}, \end{array}$$

where ν_t is an iid process.

Lag operators

The ARMA(p,q) model can be rewritten in terms of lag polynomials.

$$y_{t-1} = Ly_t$$

$$y_{t-2} = L(Ly_t) = L^2y_t$$

$$\dots$$

$$y_{t-k} = L(L^{k-1}y_t) = L^ky_t$$
Then: $y_t = \mu + \sum_{i=1}^p \phi_i y_{t-i} + \nu_t + \sum_{i=1}^q \psi_i v_{t-i} \Leftrightarrow$

Lag operators

The ARMA(p,q) model can be rewritten in terms of lag polynomials.

$$y_{t-1} = Ly_{t}$$

$$y_{t-2} = L(Ly_{t}) = L^{2}y_{t}$$

$$\dots$$

$$y_{t-k} = L(L^{k-1}y_{t}) = L^{k}y_{t}$$
Then: $y_{t} = \mu + \sum_{i=1}^{p} \phi_{i}y_{t-i} + \nu_{t} + \sum_{i=1}^{q} \psi_{i}v_{t-i} \Leftrightarrow$

$$y_{t} = \mu + \phi_{1}Ly_{t} + \dots + \phi_{p}L^{p}y_{t} + \nu_{t} + \psi_{1}L\nu_{t} + \dots + \psi_{q}L^{q}\nu_{t}$$

$$(1 - \phi_{1}L - \dots - \phi_{p}L^{p})y_{t} = (1 + \psi_{1}L + \dots + \psi_{q}L^{q})\nu_{t}$$

Lag operators

The ARMA(p,q) model can be rewritten in terms of lag polynomials.

$$y_{t-1} = Ly_{t}$$

$$y_{t-2} = L(Ly_{t}) = L^{2}y_{t}$$
.....
$$y_{t-k} = L(L^{k-1}y_{t}) = L^{k}y_{t}$$
Then: $y_{t} = \mu + \sum_{i=1}^{p} \phi_{i}y_{t-i} + \nu_{t} + \sum_{i=1}^{q} \psi_{i}v_{t-i} \Leftrightarrow$

$$y_{t} = \mu + \phi_{1}Ly_{t} + \dots + \phi_{p}L^{p}y_{t} + \nu_{t} + \psi_{1}L^{p}\nu_{t} + \dots + \psi_{q}L^{q}\nu_{t}$$

$$(1 - \phi_{1}L - \dots - \phi_{p}L^{p})y_{t} = (1 + \psi_{1}L + \dots + \psi_{q}L^{q})\nu_{t}$$

$$\phi_{p}(L)y_{t} = \mu + \psi_{q}(L)\nu_{t}, \qquad \nu_{t} \sim iidN(0, \sigma_{\nu}^{2}),$$
where: $\phi_{p}(L) = 1 - \phi_{1}L - \dots - \phi_{p}L^{p}$

$$\psi_{q}(L) = 1 + \psi_{1}L + \dots + \psi_{q}L^{q}$$

Stability

The process given by the equation

$$y_t = \mu + \sum_{i=1}^{p} \phi_i y_{t-i} + \nu_t + \sum_{i=1}^{q} \psi_i \nu_{t-i}$$

is stable provided that the roots of the polynomial $\phi_p(z) = 0$ lie outside the unit circle, i.e.if :

$$\phi(z) \neq 0$$
 for $|z| \leq 1$

If the process is stable, it has a pure (possibly infinite order) MA representation.

Example for AR(1)

$$y_{t} = \mu + \phi_{1}y_{t-1} + \nu_{t}$$

$$y_{t} - \phi_{1}y_{t-1} = \mu + \nu_{t}$$

$$y_{t} - \phi_{1}Ly_{t} = \mu + \nu_{t}$$

$$(1 - \phi_{1}L)y_{t} = \mu + \nu_{t}$$

The relevant polynomial $\phi_p(L) = 1 - \phi_1 L$ is

$$1 - \phi_1 z = 0$$

The only root is given by $z_1 = \phi_1^{-1}$. So if $|\phi_1| < 1$ than y_t is *stable*. We will take the condition into account while simulating models.

ARMA models: simulation

Simulation of a model from the ARMA family is done with the arima.sim()function from preloaded package stats.

• i in arima.sim means the order of integration. The order of integration is zero for stationary series, this explains why the second element in all order vectors is equal to zero: c(0,0,2).

ARMA models: packages

 Though there exist default functions for manipulating time series in preloaded package stat, we will use a special package for forecasting time series.

```
install.packages("forecast")
library(forecast)
```

Time series visualisation

How the series we simulated look like? Use autoplot() function from the ggplot2package.

```
autoplot(cbind(ar1, arma11,ma2), facets = TRUE) + ylab('')
```


ACF and PACF: interpretation

- To understand the dynamic properties of the series we compute the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the variables.
- The ACF and PACF are the parameter estimates on the explanatory variable y_{t-k} in each of the following regressions:

ACF: Regress y_t on $\{const, y_{t-k}\}$

PACF: Regress y_t on $\{const, y_{t-1}, \cdots, y_{t-k}\}$

- ACF is also a sample $\widehat{corr}(y_t, y_{t-k})$. PACF is a sample $\widehat{corr}(u_{1,t}, u_{2,t})$, where $u_{1,t}$ are residuals in a regression of y_t on $y_{t-1}, \ldots, y_{t-k+1}$ and $u_{2,t}$ are residuals in a regression of y_{t-k} on $y_{t-1}, \ldots, y_{t-k+1}$
- To compute and plot ACF and PACF functions, we use the ggAcf() and ggPacf() functions.

ACF and PACF for AR(1) model

ggAcf(ar1)

ggPacf(ar1)

ACF exhibits damped oscillatory behavior, while PACF shows one spike for the first lag.

ACF and PACF for MA(2)

Lag

10

ggPacf(ma2)

-0.4

ACF shows two spikes for the first two lags and, while PACF exhibits damped oscillatory behavior.

ACF and PACF for ARMA(1,1)

ggPacf(arma11)

The graph shows both a damped ACF and PACF.

Confidence intervals

Sample autocorrelation is equal to $\hat{\rho_j} = \frac{\widehat{cov}(y_t, y_{t-j})}{\widehat{var}(y_t)}$.

If y_t is iid, $\sqrt{T}\hat{\rho}_j \to^{\mathsf{d}} N(0,1) \Rightarrow \left(-\frac{1.96}{\sqrt{T}}, \frac{1.96}{\sqrt{T}}\right)$ is a 95-% confidence interval.

- If all the ACF and PACF values are inside of the confidence interval, then the series can be considered as WN process.
- Particular case of white noise: $y_t = \mu + \nu_t$, where ν_t is $iid(0, \sigma^2)$

White noise

wn <- arima.sim(model = list(order = c(0,0,0)), n = 200) ggAcf(wn)

ggPacf(wn)

Ljung-Box test

To test if a series can be considered as WN, the Ljung-Box test is used. The test considers k first autocorrelation together.

$$H_0$$
: All $\rho_1 = \rho_2 = \cdots = \rho_k = 0$

 H_1 : otherwise

To do the Ljung-Box test we use the Box.test() function

US investment growth: importing and plotting data

US investment growth (quarterly **SA** data)

ACF and PACF for US investment growth

ggAcf(US_inv_ts) + ggtitle("US investment growth")

ggPacf(US_inv_ts) + ggtitle("US investment growth")

Ljung - Box test for US investment growth series

```
Box.test(US_inv_ts, lag = 24, fitdf = 0, type = "Lj")
##
## Box-Ljung test
##
## data: US_inv_ts
## X-squared = 49.776, df = 24, p-value = 0.001512
```

Estimaton(1)

- The parameters of the ARMA models are estimated by maximum likelihood methods
- In a special case when the moving average terms are absent, the maximum likelihood estimates are obtained by OLS.
- To estimate a certain ARMA model in R we use the Arima() function.

```
Arima(US_inv_ts, order = c(2,0,3),
    include.constant = TRUE)
```

Estimaton(2)

```
## Series: US_inv_ts
## ARIMA(2,0,3) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 ma3 mean
## 0.1533 -0.7661 0.3603 0.9236 0.5100 1.1460
## s.e. 0.1062 0.0733 0.1155 0.0606 0.1048 0.4123
##
## sigma^2 estimated as 6.253: log likelihood=-239.63
## AIC=493.27 AIC=494.45 BIC=511.71
```

Estimaton(3)

 All the parameter estimate appear to be significant. Do we need more lags?

```
Arima(US_inv_ts, order = c(4,0,4),
    include.constant = TRUE)
```

```
Arima(US_inv_ts, order = c(5,0,5),
    include.constant = TRUE)
```

Estimaton(4)

```
## Series: US inv ts
## ARIMA(4,0,4) with non-zero mean
##
## Coefficients:
##
          ar1 ar2 ar3 ar4 ma1 ma2
       0.7719 -0.7940 0.9219 -0.4783 -0.2579 0.6688
##
## s.e. 0.1857 0.1375 0.1455 0.1541 0.2115 0.1708
##
         mean
## 1.0837
## s.e. 0.2648
##
## sigma^2 estimated as 5.994: log likelihood=-236.45
## ATC=492.91 AICc=495.3 BIC=519.25
```

Estimaton(5)

```
## Series: US inv ts
## ARIMA(5,0,5) with non-zero mean
##
  Coefficients:
##
           ar1
              ar2 ar3 ar4 ar5 ma1
       -0.1497 -0.0537 0.1554 0.3808 -0.4799 0.6746
##
## s.e. 0.2060 0.1820 0.1720 0.1533 0.1439 0.2362
##
           ma4
                  ma5
                        mean
## -0.7427 -0.0405 1.0806
## s.e. 0.2422 0.2174 0.2628
##
## sigma^2 estimated as 5.994: log likelihood=-235.94
## AIC=495.88 AICc=499.35 BIC=527.5
```

Lag order choice

- We do not know a priori how many lags to choose.
- A common data-driven way to select lags is to use information criteria (IC).
- Arima() provides three IC: AIC (Akaike), AICc (corrected AIC), and BIC (Bayes).

```
model1 \leftarrow Arima(US_inv_ts, order = c(5,0,5),
      include.constant = TRUE)
model1$aic
## [1] 495.8797
model1$aicc
## [1] 499.3464
model1$bic
## [1] 527.4965
```

Lag order choice(2)

 If the disturbance term is assumed to be normally distributed, these IC are computed as follows:

$$AIC = -2\ln\ell + 2k \tag{1}$$

$$AICc = AIC + \frac{2k(k+1)}{T - s - k - 1}$$
 (2)

$$BIC = -2 \ln \ell + k \ln(T - s), \tag{3}$$

where k is a number of model parameters, $s = max\{p_{max}, q_{max}\}$, and $\ln \ell$ is log-likelihood.

Algorithm of choosing number of lags

- **1** Choose a maximum number of lags for the AR and MA parts of the model. The choice of p_{max} and q_{max} is governed by ACFs and PACFs, the data frequency and the sample size.
- ② To estimate the models with all possible combinations of $p=0,\ldots,p_{max}$ and $q=0,\ldots,q_{max}$.
- To choose a model that corresponds to the minimum values of IC. In case of disagreement between different IC, the final decision is matter of judgement.

Automatic ARIMA

Q: Can we speed up the lag order selection? A: Yes, we can make usage of the auto.arima() function auto.arima(US inv ts, d = 0, seasonal = FALSE) ## Series: US inv ts ## ARIMA(2,0,1) with non-zero mean ## ## Coefficients: ar2 ma1 ## ar1 mean ## 1.2991 -0.5034 -0.7913 1.0871 ## s.e. 0.1550 0.0954 0.1566 0.2630 ## ## sigma^2 estimated as 6.636: log likelihood=-241.79 ## ATC=493.59 ATCc=494.21 BTC=506.76