<матан, 4 сем>

Лектор: А. А. Лодкин Записал :ta_xus

26 марта 2017 г.

Оглавление

L	Теория	меры и интегралы по мере
	§ 1	Системы множеств
	$\S2$	Mepa
	§ 3	Объём в \mathbb{R}^n

Глава 1: Теория меры и интегралы по мере

§1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

Е.д. $X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n$ (это количество элементов, если что)

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- $2. X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- 1. \mathcal{A} алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E} \}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

Определение 5. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 6 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{Cell}_n = \{A \mid A = \bigcup_{k=1}^p \Delta_k \}$

Лемма 1. Пусть $\mathcal{E}_1, \mathcal{E}_2 \subset \mathcal{P}(X), \ \sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{Cell}_n)$.

Пример 1. Все множества нижё — борелевские.

 $\langle 1 \rangle \mathcal{O}.$

$$\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1\\A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

§2 Mepa

Определение 1. Пусть задано $X, \mathcal{A} \subset \mathcal{P}(X), A_k \in \mathcal{A}$. Тогда $\mu \colon \mathcal{A} \to [0; +\infty]$ мера, если

1.
$$\mu(\varnothing) = 0$$

2.
$$\mu(\underbrace{\bigsqcup_{k=1}^{\infty}A_{k}}_{\in\mathcal{A}})=\sum_{k=1}^{\infty}\mu(A_{k})$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Пример 1.
$$a \in X, \ \mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \not\in A \end{cases} - \delta$$
-мера Дирака.

Пример 2. $a_k \in x, \ m_k \geqslant 0, \ \mu(a) := \sum_{k \colon a_k \in a} m_k$ — «молекулярная» мера.

Пример 3. $\mu(A) = \#A$ — считающая мера. ¹

Свойства меты: Здесь всюду будем рассматривать тройку $(X, \mathcal{A} \subset \mathcal{P}(X), \mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leq \mu(B)$.

Утверждение 2. Пусть $A, B \in \mathcal{A}, \ A \subset B, \ \mu(B) < +\infty.$ Тогда $\mu(B \setminus A) = \mu(B) - \mu(A).$

 $^{^{1}}$ она считает, не считывает $\stackrel{\cdot \cdot}{\smile}$

Утверждение 3 (Усиленная монотонность). Пусть $A_{1..n}$, $B \in \mathcal{A}$, $A_{1..n} \subset B$ и дизъюнктны.

Тогда
$$\sum_{k=1}^{\infty} \mu(A_k) \leqslant \mu B$$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}, A \in \mathcal{A}, A \subset \bigcup_{k=1}^{n} B_k$.

Тогда
$$\mu A \leqslant \sum_{k=1}^{n} \mu(B_k)$$
.

▼

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A \cap C_k$$

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_k \leqslant \sum_{k} \mu C_k \leqslant \sum_{k} \mu B_k$$

Утверждение 5 (Непрерывность меры снизу). Пусть $A_1\subset A_2\subset\cdots$, $A_k\in\mathcal{A}$, $A=\bigcup_{k=1}^\infty A_k\in\mathcal{A}$. $A=\bigcup_{n\to\infty}^\infty A_n\in\mathcal{A}$

Утверждение 6 (Непрерывность меры сверху). Пусть $A_1 \supset A_2 \supset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$, $\mu A_1 < +\infty$. Тогда $\mu A = \lim_{n \to \infty} \mu A_n$

<+Тут будет картинка про метод исчерпывания Евдокса+>

 $\S 3$ Объём в \mathbb{R}^n

 $^{^{1}}$ Опять-таки никто не сказал, что $\mathcal{A}-\sigma$ -алгебра.

Глава А: Обозначения

Обозначения с лекции

```
a:=b — определение a. \bigsqcup_k A_k — дизъюнктное объединение множеств.
```

Нестандартные обозначения

🛠 — ещё правится. Впрочем, относится почти ко всему.

 $\square \cdots \blacksquare$ — начало и конец доказательства теоремы

▼ · · · ▲ — начало и конец доказательства более мелкого утверждения

∴ — кривоватая формулировка

:set aflame — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

 $a \dots b \quad -$ для $a,b \in \mathbb{Z}$ это просто $[a;b] \cap \mathbb{Z}$

 $\equiv -$ штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.