6/10/23, 7:07 PM

```
In [1]:
          from keras.utils import np utils
          from keras.models import Sequential
          from keras.layers import Convolution2D,Dense,MaxPool2D,Activation,Dropout,Flatten
          from keras.layers import GlobalAveragePooling2D
          from keras.optimizers import Adam
          from sklearn.model selection import train test split
          from keras.layers import BatchNormalization
          import os
          import pandas as pd
          import plotly.graph_objs as go
          import matplotlib.ticker as ticker
          import matplotlib.pyplot as plt
          import seaborn as sns
          import plotly.express as px
          import cv2
          import numpy as np
          from sklearn.model_selection import train_test_split
          import shutil
          import natsort
          from PIL import Image
          from tqdm import tqdm
          from re import search
In [27]:
          DIR=r'C:\Users\Abhishek\Downloads\plant-pathology-2020-fgvc7 (2)\images'
In [28]:
          train=pd.read_csv(r"C:\Users\Abhishek\Downloads\plant-pathology-2020-fgvc7 (2)\train
          test=pd.read_csv(r"C:\Users\Abhishek\Downloads\plant-pathology-2020-fgvc7 (2)\test.c
In [29]:
          train.head()
            image_id healthy multiple_diseases rust scab
Out[29]:
          0
              Train 0
                                           0
                                                0
                                                      1
                           0
          1
              Train 1
                           0
                                           1
                                                0
                                                      0
          2
              Train 2
                           1
                                           0
                                                0
                                                      0
          3
              Train_3
                           0
                                           0
                                                      0
          4
              Train_4
                           1
                                           0
                                                0
                                                      0
In [30]:
          test.head()
Out[30]:
            image_id
          0
               Test_0
          1
               Test_1
          2
               Test_2
          3
               Test 3
          4
               Test_4
```

In [31]:

```
image1=Image.open(r'C:\Users\Abhishek\Downloads\plant-pathology-2020-fgvc7 (2)\image
           plt.imshow(image1)
           plt.show()
             0
           200
           400
           600
           800
          1000
          1200
                    250
                          500
                                750
                                     1000
                                           1250
                                                 1500
                                                       1750
                                                             2000
               0
In [32]:
           #preparing the model
In [33]:
           class_names=train.loc[:,'healthy':].columns
           print(class_names)
          Index(['healthy', 'multiple_diseases', 'rust', 'scab'], dtype='object')
In [34]:
           number=0
           train['label']=0
           for i in class_names:
               train['label']=train['label'] + train[i] * number
               number=number+1
               #if hat type of disease available show 1
               # otherwise 0
               #healthy=0;multiple disease=1,rust=2,scab=3
In [35]:
           train.head()
Out[35]:
             image_id healthy multiple_diseases rust scab label
          0
               Train_0
                           0
                                            0
                                                 0
                                                             3
          1
               Train_1
                           0
                                            1
                                                 0
                                                             1
          2
               Train_2
                            1
                                            0
                                                 0
                                                       0
                                                             0
          3
               Train_3
                           0
                                            0
                                                             2
                                                 1
                                                       0
               Train_4
                            1
                                            0
                                                 0
                                                       0
                                                             0
In [36]:
           DIR
          'C:\\Users\\Abhishek\\Downloads\\plant-pathology-2020-fgvc7 (2)\\images'
Out[36]:
In [37]:
           natsort.natsorted(os.listdir(DIR))#sorting the images
```

```
['Test_0.jpg',
Out[37]:
           'Test_1.jpg
           'Test_2.jpg
           'Test_3.jpg
           'Test_4.jpg
           'Test_5.jpg'
           'Test_6.jpg'
           'Test_7.jpg',
           'Test_8.jpg
           'Test_9.jpg',
           'Test_10.jpg',
           'Test_11.jpg',
           'Test_12.jpg',
           'Test_13.jpg',
           'Test_14.jpg',
           'Test_15.jpg',
           'Test_16.jpg',
           'Test_17.jpg',
           'Test_18.jpg',
           'Test_19.jpg',
           'Test_20.jpg',
           'Test_21.jpg',
           'Test_22.jpg',
           'Test_23.jpg',
           'Test_24.jpg',
           'Test_25.jpg',
           'Test_26.jpg',
           'Test_27.jpg',
           'Test_28.jpg',
           'Test_29.jpg',
           'Test_30.jpg',
           'Test_31.jpg',
           'Test_32.jpg',
           'Test_33.jpg',
           'Test_34.jpg',
           'Test_35.jpg',
           'Test_36.jpg',
           'Test_37.jpg',
           'Test_38.jpg',
           'Test_39.jpg',
           'Test_40.jpg',
           'Test_41.jpg',
           'Test_42.jpg',
           'Test_43.jpg',
           'Test_44.jpg',
           'Test_45.jpg',
           'Test_46.jpg',
           'Test_47.jpg',
           'Test_48.jpg',
           'Test_49.jpg',
           'Test_50.jpg',
           'Test_51.jpg',
           'Test_52.jpg',
           'Test_53.jpg',
           'Test_54.jpg',
           'Test_55.jpg',
           'Test_56.jpg',
           'Test_57.jpg',
           'Test_58.jpg',
           'Test_59.jpg',
           'Test_60.jpg',
           'Test_61.jpg',
           'Test_62.jpg',
           'Test_63.jpg',
           'Test_64.jpg',
           'Test_65.jpg',
           'Test_66.jpg',
           'Test_67.jpg',
           'Test_68.jpg',
```

'Test_69.jpg', 'Test_70.jpg', 'Test_71.jpg', 'Test_72.jpg', 'Test_73.jpg', 'Test_74.jpg', 'Test_75.jpg', 'Test_76.jpg', 'Test_77.jpg', 'Test_78.jpg', 'Test_79.jpg', 'Test_80.jpg', 'Test_81.jpg', 'Test_82.jpg', 'Test_83.jpg', 'Test_84.jpg', 'Test_85.jpg', 'Test_86.jpg', 'Test_87.jpg', 'Test_88.jpg', 'Test_89.jpg', 'Test_90.jpg', 'Test_91.jpg', 'Test_92.jpg', 'Test_93.jpg', 'Test_94.jpg', 'Test_95.jpg', 'Test_96.jpg', 'Test_97.jpg', 'Test_98.jpg', 'Test_99.jpg', 'Test_100.jpg', 'Test_101.jpg', 'Test_102.jpg' 'Test_103.jpg' 'Test_104.jpg' 'Test_105.jpg' 'Test_106.jpg' 'Test_107.jpg' 'Test_108.jpg' 'Test_109.jpg', 'Test_110.jpg', 'Test_111.jpg', 'Test_112.jpg', 'Test 113.jpg', 'Test_114.jpg', 'Test 115.jpg' 'Test_116.jpg' 'Test_117.jpg' 'Test_118.jpg' 'Test_119.jpg' 'Test_120.jpg' 'Test_121.jpg' 'Test_122.jpg' 'Test_123.jpg' 'Test_124.jpg' 'Test_125.jpg' 'Test_126.jpg' 'Test_127.jpg 'Test_128.jpg 'Test_129.jpg 'Test_130.jpg 'Test_131.jpg' 'Test_132.jpg' 'Test_133.jpg' 'Test_134.jpg' 'Test_135.jpg 'Test_136.jpg 'Test_137.jpg', 'Test_138.jpg', 'Test_139.jpg', 'Test_140.jpg 'Test_141.jpg 'Test_142.jpg 'Test_143.jpg 'Test_144.jpg 'Test_145.jpg 'Test_146.jpg 'Test_147.jpg 'Test_148.jpg 'Test_149.jpg 'Test_150.jpg 'Test_151.jpg 'Test_152.jpg 'Test_153.jpg 'Test_154.jpg 'Test_155.jpg 'Test_156.jpg 'Test_157.jpg 'Test_158.jpg 'Test_159.jpg 'Test_160.jpg 'Test_161.jpg 'Test_162.jpg 'Test_163.jpg 'Test_164.jpg 'Test_165.jpg 'Test_166.jpg 'Test_167.jpg 'Test_168.jpg 'Test_169.jpg 'Test_170.jpg 'Test_171.jpg 'Test_172.jpg 'Test_173.jpg 'Test_174.jpg' 'Test_175.jpg' 'Test_176.jpg' 'Test_177.jpg' 'Test_178.jpg' 'Test_179.jpg', 'Test_180.jpg', 'Test_181.jpg', 'Test_182.jpg' 'Test_183.jpg' 'Test_184.jpg' 'Test_185.jpg' 'Test_186.jpg' 'Test_187.jpg' 'Test_188.jpg 'Test_189.jpg 'Test_190.jpg 'Test_191.jpg' 'Test_192.jpg' 'Test_193.jpg 'Test_194.jpg 'Test_195.jpg 'Test_196.jpg 'Test_197.jpg 'Test_198.jpg 'Test_199.jpg 'Test_200.jpg 'Test_201.jpg 'Test_202.jpg 'Test_203.jpg 'Test_204.jpg 'Test_205.jpg 'Test_206.jpg',

apple inceptionv3

'Test_207.jpg', 'Test_208.jpg' 'Test_209.jpg 'Test_210.jpg 'Test_211.jpg 'Test_212.jpg 'Test_213.jpg 'Test_214.jpg 'Test_215.jpg 'Test_216.jpg 'Test_217.jpg 'Test_218.jpg 'Test_219.jpg 'Test_220.jpg 'Test_221.jpg 'Test_222.jpg 'Test_223.jpg 'Test_224.jpg 'Test_225.jpg 'Test_226.jpg 'Test_227.jpg 'Test_228.jpg 'Test_229.jpg 'Test_230.jpg 'Test_231.jpg 'Test_232.jpg 'Test_233.jpg 'Test_234.jpg 'Test_235.jpg 'Test_236.jpg 'Test_237.jpg 'Test_238.jpg 'Test_239.jpg 'Test_240.jpg 'Test_241.jpg 'Test_242.jpg 'Test_243.jpg 'Test_244.jpg 'Test_245.jpg 'Test_246.jpg 'Test_247.jpg' 'Test_248.jpg' 'Test_249.jpg' 'Test_250.jpg', 'Test_251.jpg' 'Test_252.jpg' 'Test_253.jpg' 'Test_254.jpg 'Test_255.jpg 'Test_256.jpg 'Test_257.jpg 'Test_258.jpg 'Test_259.jpg 'Test_260.jpg 'Test_261.jpg 'Test_262.jpg 'Test_263.jpg 'Test_264.jpg 'Test_265.jpg 'Test_266.jpg 'Test_267.jpg 'Test_268.jpg 'Test_269.jpg 'Test_270.jpg 'Test_271.jpg 'Test_272.jpg 'Test_273.jpg 'Test_274.jpg 'Test_275.jpg', 'Test_276.jpg', 'Test_277.jpg' 'Test_278.jpg 'Test_279.jpg 'Test_280.jpg 'Test_281.jpg 'Test_282.jpg 'Test_283.jpg 'Test_284.jpg 'Test_285.jpg 'Test_286.jpg 'Test_287.jpg 'Test_288.jpg 'Test_289.jpg 'Test_290.jpg 'Test_291.jpg 'Test_292.jpg 'Test_293.jpg 'Test_294.jpg 'Test_295.jpg 'Test_296.jpg 'Test_297.jpg 'Test_298.jpg 'Test_299.jpg 'Test_300.jpg 'Test_301.jpg 'Test_302.jpg 'Test_303.jpg 'Test_304.jpg 'Test_305.jpg 'Test_306.jpg 'Test_307.jpg 'Test_308.jpg 'Test_309.jpg 'Test_310.jpg 'Test_311.jpg 'Test_312.jpg 'Test_313.jpg 'Test_314.jpg' 'Test_315.jpg' 'Test_316.jpg' 'Test_317.jpg' 'Test_318.jpg' 'Test_319.jpg', 'Test_320.jpg' 'Test_321.jpg' 'Test_322.jpg' 'Test_323.jpg' 'Test_324.jpg' 'Test_325.jpg' 'Test_326.jpg' 'Test_327.jpg' 'Test_328.jpg' 'Test_329.jpg 'Test_330.jpg' 'Test_331.jpg' 'Test_332.jpg 'Test_333.jpg 'Test_334.jpg 'Test_335.jpg 'Test_336.jpg 'Test_337.jpg 'Test_338.jpg 'Test_339.jpg 'Test_340.jpg' 'Test_341.jpg' 'Test_342.jpg 'Test_343.jpg 'Test_344.jpg', 'Test_345.jpg', 'Test_346.jpg' 'Test_347.jpg 'Test_348.jpg 'Test_349.jpg 'Test_350.jpg 'Test_351.jpg 'Test_352.jpg 'Test_353.jpg 'Test_354.jpg 'Test_355.jpg 'Test_356.jpg 'Test_357.jpg 'Test_358.jpg 'Test_359.jpg 'Test_360.jpg 'Test_361.jpg 'Test_362.jpg 'Test_363.jpg 'Test_364.jpg 'Test_365.jpg 'Test_366.jpg 'Test_367.jpg 'Test_368.jpg 'Test_369.jpg 'Test_370.jpg 'Test_371.jpg 'Test_372.jpg 'Test_373.jpg 'Test_374.jpg 'Test_375.jpg 'Test_376.jpg 'Test_377.jpg 'Test_378.jpg 'Test_379.jpg 'Test_380.jpg 'Test_381.jpg 'Test_382.jpg 'Test_383.jpg 'Test_384.jpg 'Test_385.jpg 'Test_386.jpg' 'Test_387.jpg' 'Test_388.jpg' 'Test_389.jpg' 'Test_390.jpg 'Test_391.jpg 'Test_392.jpg 'Test_393.jpg 'Test_394.jpg 'Test_395.jpg 'Test_396.jpg 'Test_397.jpg 'Test_398.jpg 'Test_399.jpg 'Test_400.jpg 'Test_401.jpg 'Test_402.jpg 'Test_403.jpg 'Test_404.jpg 'Test_405.jpg 'Test_406.jpg 'Test_407.jpg 'Test_408.jpg 'Test_409.jpg 'Test_410.jpg 'Test_411.jpg 'Test_412.jpg 'Test_413.jpg', 'Test_414.jpg', 'Test_415.jpg' 'Test_416.jpg 'Test_417.jpg 'Test_418.jpg 'Test_419.jpg 'Test_420.jpg 'Test_421.jpg 'Test_422.jpg 'Test_423.jpg 'Test_424.jpg 'Test_425.jpg 'Test_426.jpg 'Test_427.jpg 'Test_428.jpg 'Test_429.jpg 'Test_430.jpg 'Test_431.jpg 'Test_432.jpg 'Test_433.jpg 'Test_434.jpg 'Test_435.jpg 'Test_436.jpg 'Test_437.jpg 'Test_438.jpg 'Test_439.jpg 'Test_440.jpg 'Test_441.jpg 'Test_442.jpg 'Test_443.jpg 'Test_444.jpg 'Test_445.jpg 'Test_446.jpg 'Test_447.jpg 'Test_448.jpg 'Test_449.jpg 'Test_450.jpg 'Test_451.jpg 'Test_452.jpg 'Test_453.jpg' 'Test_454.jpg' 'Test_455.jpg' 'Test_456.jpg' 'Test_457.jpg', 'Test_458.jpg' 'Test_459.jpg 'Test_460.jpg 'Test_461.jpg 'Test_462.jpg 'Test_463.jpg 'Test_464.jpg 'Test_465.jpg 'Test_466.jpg 'Test_467.jpg 'Test_468.jpg 'Test_469.jpg 'Test_470.jpg 'Test_471.jpg 'Test_472.jpg 'Test_473.jpg 'Test_474.jpg 'Test_475.jpg 'Test_476.jpg 'Test_477.jpg 'Test_478.jpg 'Test_479.jpg 'Test_480.jpg 'Test_481.jpg 'Test_482.jpg', 'Test_483.jpg', 'Test_484.jpg' 'Test_485.jpg 'Test_486.jpg 'Test_487.jpg 'Test_488.jpg 'Test_489.jpg 'Test_490.jpg 'Test_491.jpg 'Test_492.jpg 'Test_493.jpg 'Test_494.jpg 'Test_495.jpg 'Test_496.jpg 'Test_497.jpg 'Test_498.jpg 'Test_499.jpg 'Test_500.jpg 'Test_501.jpg 'Test_502.jpg 'Test_503.jpg 'Test_504.jpg 'Test_505.jpg 'Test_506.jpg 'Test_507.jpg 'Test_508.jpg 'Test_509.jpg 'Test_510.jpg 'Test_511.jpg 'Test_512.jpg 'Test_513.jpg 'Test_514.jpg 'Test_515.jpg 'Test_516.jpg 'Test_517.jpg 'Test_518.jpg 'Test_519.jpg 'Test_520.jpg 'Test_521.jpg' 'Test_522.jpg' 'Test_523.jpg' 'Test_524.jpg' 'Test_525.jpg' 'Test_526.jpg', 'Test_527.jpg' 'Test_528.jpg' 'Test_529.jpg' 'Test_530.jpg 'Test_531.jpg 'Test_532.jpg 'Test_533.jpg 'Test_534.jpg 'Test_535.jpg 'Test_536.jpg 'Test_537.jpg 'Test_538.jpg 'Test_539.jpg 'Test_540.jpg 'Test_541.jpg 'Test_542.jpg 'Test_543.jpg 'Test_544.jpg 'Test_545.jpg 'Test_546.jpg 'Test_547.jpg 'Test_548.jpg 'Test_549.jpg 'Test_550.jpg 'Test_551.jpg', 'Test_552.jpg', 'Test_553.jpg' 'Test_554.jpg 'Test_555.jpg 'Test_556.jpg 'Test_557.jpg 'Test_558.jpg 'Test_559.jpg 'Test_560.jpg 'Test_561.jpg 'Test_562.jpg 'Test_563.jpg 'Test_564.jpg 'Test_565.jpg 'Test_566.jpg 'Test_567.jpg 'Test_568.jpg 'Test_569.jpg 'Test_570.jpg 'Test_571.jpg 'Test_572.jpg 'Test_573.jpg 'Test_574.jpg 'Test_575.jpg 'Test_576.jpg 'Test_577.jpg 'Test_578.jpg 'Test_579.jpg 'Test_580.jpg 'Test_581.jpg 'Test_582.jpg 'Test_583.jpg 'Test_584.jpg 'Test_585.jpg 'Test_586.jpg 'Test_587.jpg 'Test_588.jpg 'Test_589.jpg 'Test_590.jpg' 'Test_591.jpg' 'Test_592.jpg' 'Test_593.jpg' 'Test_594.jpg' 'Test_595.jpg', 'Test_596.jpg' 'Test_597.jpg 'Test_598.jpg 'Test_599.jpg 'Test_600.jpg 'Test_601.jpg 'Test_602.jpg 'Test_603.jpg 'Test_604.jpg 'Test_605.jpg 'Test_606.jpg 'Test_607.jpg 'Test_608.jpg 'Test_609.jpg 'Test_610.jpg 'Test_611.jpg 'Test_612.jpg 'Test_613.jpg 'Test_614.jpg 'Test_615.jpg 'Test_616.jpg 'Test_617.jpg 'Test_618.jpg 'Test_619.jpg 'Test_620.jpg', 'Test_621.jpg', 'Test_622.jpg', 'Test_623.jpg 'Test_624.jpg 'Test_625.jpg 'Test_626.jpg 'Test_627.jpg 'Test_628.jpg 'Test_629.jpg 'Test_630.jpg 'Test_631.jpg 'Test_632.jpg 'Test_633.jpg 'Test_634.jpg 'Test_635.jpg 'Test_636.jpg 'Test_637.jpg 'Test_638.jpg 'Test_639.jpg 'Test_640.jpg 'Test_641.jpg 'Test_642.jpg 'Test_643.jpg 'Test_644.jpg 'Test_645.jpg 'Test_646.jpg 'Test_647.jpg 'Test_648.jpg 'Test_649.jpg 'Test_650.jpg 'Test_651.jpg 'Test_652.jpg 'Test_653.jpg 'Test_654.jpg 'Test_655.jpg 'Test_656.jpg 'Test_657.jpg 'Test_658.jpg' 'Test_659.jpg' 'Test_660.jpg' 'Test_661.jpg' 'Test_662.jpg' 'Test_663.jpg' 'Test_664.jpg', 'Test_665.jpg' 'Test_666.jpg 'Test_667.jpg 'Test_668.jpg 'Test_669.jpg 'Test_670.jpg 'Test_671.jpg 'Test_672.jpg 'Test_673.jpg 'Test_674.jpg 'Test_675.jpg 'Test_676.jpg 'Test_677.jpg 'Test_678.jpg 'Test_679.jpg 'Test_680.jpg 'Test_681.jpg 'Test_682.jpg 'Test_683.jpg 'Test_684.jpg 'Test_685.jpg 'Test_686.jpg 'Test_687.jpg 'Test_688.jpg 'Test_689.jpg', 'Test_690.jpg', 'Test_691.jpg' 'Test_692.jpg 'Test_693.jpg 'Test_694.jpg 'Test_695.jpg 'Test_696.jpg 'Test_697.jpg 'Test_698.jpg 'Test_699.jpg 'Test_700.jpg 'Test_701.jpg 'Test_702.jpg 'Test_703.jpg 'Test_704.jpg 'Test_705.jpg 'Test_706.jpg 'Test_707.jpg 'Test_708.jpg 'Test_709.jpg 'Test_710.jpg 'Test_711.jpg 'Test_712.jpg 'Test_713.jpg 'Test_714.jpg 'Test_715.jpg 'Test_716.jpg 'Test_717.jpg 'Test_718.jpg 'Test_719.jpg 'Test_720.jpg 'Test_721.jpg 'Test_722.jpg 'Test_723.jpg 'Test_724.jpg 'Test_725.jpg 'Test_726.jpg 'Test_727.jpg 'Test_728.jpg 'Test_729.jpg' 'Test_730.jpg' 'Test_731.jpg' 'Test_732.jpg' 'Test_733.jpg', 'Test_734.jpg' 'Test_735.jpg' 'Test_736.jpg' 'Test_737.jpg 'Test_738.jpg 'Test_739.jpg 'Test 740.jpg 'Test_741.jpg 'Test_742.jpg 'Test_743.jpg 'Test_744.jpg 'Test_745.jpg 'Test_746.jpg 'Test_747.jpg 'Test_748.jpg 'Test_749.jpg 'Test_750.jpg 'Test_751.jpg 'Test_752.jpg 'Test_753.jpg 'Test_754.jpg 'Test_755.jpg 'Test_756.jpg 'Test_757.jpg 'Test_758.jpg', 'Test_759.jpg', 'Test_760.jpg' 'Test_761.jpg 'Test_762.jpg 'Test_763.jpg 'Test_764.jpg 'Test_765.jpg 'Test_766.jpg 'Test_767.jpg 'Test_768.jpg 'Test_769.jpg 'Test_770.jpg 'Test_771.jpg 'Test_772.jpg 'Test_773.jpg 'Test_774.jpg 'Test_775.jpg 'Test_776.jpg 'Test_777.jpg 'Test_778.jpg 'Test_779.jpg 'Test_780.jpg 'Test_781.jpg 'Test_782.jpg 'Test_783.jpg 'Test_784.jpg 'Test_785.jpg 'Test_786.jpg 'Test_787.jpg 'Test_788.jpg 'Test_789.jpg 'Test_790.jpg 'Test_791.jpg 'Test_792.jpg 'Test_793.jpg 'Test_794.jpg 'Test_795.jpg 'Test_796.jpg 'Test_797.jpg 'Test_798.jpg 'Test_799.jpg' 'Test_800.jpg' 'Test_801.jpg' 'Test_802.jpg' 'Test_803.jpg' 'Test_804.jpg 'Test_805.jpg 'Test_806.jpg 'Test_807.jpg 'Test_808.jpg 'Test_809.jpg 'Test_810.jpg 'Test_811.jpg 'Test_812.jpg 'Test_813.jpg 'Test_814.jpg 'Test_815.jpg 'Test_816.jpg 'Test_817.jpg 'Test_818.jpg 'Test_819.jpg 'Test_820.jpg 'Test_821.jpg 'Test_822.jpg 'Test_823.jpg 'Test_824.jpg 'Test_825.jpg 'Test_826.jpg 'Test_827.jpg', 'Test_828.jpg', 'Test_829.jpg', 'Test_830.jpg 'Test_831.jpg 'Test_832.jpg 'Test_833.jpg 'Test_834.jpg 'Test_835.jpg 'Test_836.jpg 'Test_837.jpg 'Test_838.jpg 'Test_839.jpg 'Test_840.jpg 'Test_841.jpg 'Test_842.jpg 'Test_843.jpg 'Test_844.jpg 'Test_845.jpg 'Test_846.jpg 'Test_847.jpg 'Test_848.jpg 'Test_849.jpg 'Test_850.jpg 'Test_851.jpg 'Test_852.jpg 'Test_853.jpg 'Test_854.jpg 'Test_855.jpg 'Test_856.jpg 'Test_857.jpg 'Test_858.jpg 'Test_859.jpg 'Test_860.jpg 'Test_861.jpg 'Test_862.jpg 'Test_863.jpg 'Test_864.jpg 'Test_865.jpg 'Test_866.jpg 'Test_867.jpg 'Test_868.jpg' 'Test_869.jpg' 'Test_870.jpg' 'Test_871.jpg' 'Test_872.jpg' 'Test_873.jpg 'Test_874.jpg 'Test_875.jpg 'Test_876.jpg 'Test_877.jpg 'Test_878.jpg 'Test_879.jpg 'Test_880.jpg 'Test_881.jpg 'Test_882.jpg 'Test_883.jpg 'Test_884.jpg 'Test_885.jpg 'Test_886.jpg 'Test_887.jpg 'Test_888.jpg 'Test_889.jpg 'Test_890.jpg 'Test_891.jpg 'Test_892.jpg 'Test_893.jpg 'Test_894.jpg 'Test_895.jpg 'Test_896.jpg', 'Test_897.jpg', 'Test_898.jpg' 'Test_899.jpg 'Test_900.jpg 'Test_901.jpg 'Test_902.jpg 'Test_903.jpg 'Test_904.jpg 'Test_905.jpg 'Test_906.jpg 'Test_907.jpg 'Test_908.jpg 'Test_909.jpg 'Test_910.jpg 'Test_911.jpg 'Test_912.jpg 'Test_913.jpg 'Test_914.jpg 'Test_915.jpg 'Test_916.jpg 'Test_917.jpg 'Test_918.jpg 'Test_919.jpg 'Test_920.jpg 'Test_921.jpg 'Test_922.jpg 'Test_923.jpg 'Test_924.jpg 'Test_925.jpg 'Test_926.jpg 'Test_927.jpg 'Test_928.jpg 'Test_929.jpg 'Test_930.jpg 'Test_931.jpg 'Test_932.jpg 'Test_933.jpg 'Test_934.jpg' 'Test_935.jpg' 'Test_936.jpg' 'Test_937.jpg' 'Test_938.jpg' 'Test_939.jpg' 'Test_940.jpg', 'Test_941.jpg' 'Test_942.jpg' 'Test_943.jpg' 'Test_944.jpg 'Test_945.jpg 'Test_946.jpg 'Test_947.jpg 'Test_948.jpg 'Test_949.jpg 'Test_950.jpg 'Test_951.jpg 'Test_952.jpg 'Test_953.jpg 'Test_954.jpg 'Test_955.jpg 'Test_956.jpg 'Test_957.jpg 'Test_958.jpg 'Test_959.jpg 'Test_960.jpg 'Test_961.jpg 'Test_962.jpg 'Test_963.jpg 'Test_964.jpg

'Test_965.jpg',

```
'Test_966.jpg',
           'Test_967.jpg',
           'Test_968.jpg
           'Test_969.jpg
           'Test_970.jpg
           'Test_971.jpg',
           'Test_972.jpg'
           'Test_973.jpg'
           'Test_974.jpg'
           'Test_975.jpg'
           'Test_976.jpg'
           'Test_977.jpg'
           'Test_978.jpg'
           'Test_979.jpg'
           'Test_980.jpg'
           'Test_981.jpg'
           'Test_982.jpg'
           'Test_983.jpg'
           'Test_984.jpg'
           'Test_985.jpg
           'Test_986.jpg
           'Test_987.jpg
           'Test_988.jpg
           'Test_989.jpg
           'Test_990.jpg
           'Test_991.jpg
           'Test_992.jpg
           'Test_993.jpg'
           'Test_994.jpg'
           'Test_995.jpg',
           'Test_996.jpg',
           'Test_997.jpg',
           'Test_998.jpg',
           'Test_999.jpg',
           . . . ]
In [38]:
          def get_label_img(img):
              if search("Train",img):
                   img=img.split('.')[0]
                   label=train.loc[train['image_id']==img]['label']
                   return label
In [39]:
          def create_train_data():
              images=natsort.natsorted(os.listdir(DIR))
              for img in tqdm(images):
                   label=get_label_img(img)
                   path=os.path.join(DIR,img)
                   if search("Train",img):
                       if (img.split("_")[1].split(".")[0]) and label.item()==0:
                           shutil.copy(path,r'C:\Users\Abhishek\Downloads\plant-pathology-2020-
                       elif(img.split("_")[1].split(".")[0]) and label.item()==1:
                           shutil.copy(path,r'C:\Users\Abhishek\Downloads\plant-pathology-2020-
                       elif(img.split("_")[1].split(".")[0]) and label.item()==2:
                           shutil.copy(path,r'C:\Users\Abhishek\Downloads\plant-pathology-2020-
                       elif(img.split("_")[1].split(".")[0]) and label.item()==3:
                           shutil.copy(path,r'C:\Users\Abhishek\Downloads\plant-pathology-2020-
                   elif search("Test",img):
                       shutil.copy(path,r'C:\Users\Abhishek\Downloads\plant-pathology-2020-fgvd
```



```
In [42]:
    IMG_SIZE=224
    new_image=cv2.resize(old_image,(IMG_SIZE,IMG_SIZE))
    plt.imshow(new_image)
    plt.show()
```



```
In [18]: train_labels = np.float32(train.loc[:, 'healthy':'scab'].values)
In [19]: train_labels
```

```
Out[19]: array([[0., 0., 0., 1.],
                 [0., 1., 0., 0.],
                 [1., 0., 0., 0.],
                 [1., 0., 0., 0.],
                 [0., 0., 1., 0.],
                 [0., 0., 0., 1.]], dtype=float32)
In [20]:
          train, val = train_test_split(train, test_size = 0.15)
In [21]:
          from keras.preprocessing.image import ImageDataGenerator
          train_datagen = ImageDataGenerator( horizontal_flip=True,
           vertical_flip=True,
           rotation_range=10,
           width_shift_range=0.1,
           height shift range=0.1,
           zoom range=.1,
           fill mode='nearest',
           shear_range=0.1,
           rescale=1/255,
           brightness_range=[0.5, 1.5])
In [22]:
          datagen=ImageDataGenerator(rescale=1./255,
                                     shear_range=0.2,
                                      zoom_range=0.2,
                                horizontal_flip=True,
                                  vertical_flip=True,
                                 validation_split=0.2)
          train datagen=datagen.flow from directory(r'C:\Users\Abhishek\Downloads\plant-pathol
          target_size=(IMG_SIZE,IMG_SIZE),
                            batch_size=16,
                 class_mode='categorical',
                         subset='training')
          val_datagen=datagen.flow_from_directory(r'C:\Users\Abhishek\Downloads\plant-patholog
           target_size=(IMG_SIZE,IMG_SIZE),
                              batch_size=16,
                   class mode='categorical',
                         subset='validation')
          Found 1458 images belonging to 4 classes.
          Found 363 images belonging to 4 classes.
In [23]:
          from tensorflow.keras.applications.inception v3 import InceptionV3
          from keras.models import Model
          import keras
          from keras import optimizers
          import tensorflow as tf
In [24]:
          pretrained model =InceptionV3 (include top=False, weights='imagenet', input shape=(1
In [43]:
          model = tf.keras.Sequential([
           pretrained model,
           tf.keras.layers.GlobalAveragePooling2D(),
           tf.keras.layers.Dropout(0.3),
```

```
tf.keras.layers.Dense(4, activation='softmax')
             ])
In [44]:
         model.compile(
          optimizer=tf.keras.optimizers.Adam(),
          loss= tf.keras.losses.CategoricalCrossentropy(from logits=True),
             metrics=['acc']
In [45]:
         model.summary()
        Model: "sequential"
         Layer (type)
                                    Output Shape
                                                            Param #
                              _____
         inception_v3 (Functional)
                                    (None, 2, 2, 2048)
                                                            21802784
         global_average_pooling2d (G (None, 2048)
         lobalAveragePooling2D)
         dropout (Dropout)
                                    (None, 2048)
         dense (Dense)
                                    (None, 4)
                                                            8196
         ______
         Total params: 21,810,980
         Trainable params: 21,776,548
        Non-trainable params: 34,432
In [46]:
         from keras.callbacks import ReduceLROnPlateau
In [47]:
         history_1 = model.fit(train_datagen, steps_per_epoch=20,
                                        epochs=50, validation_data=val_datagen,
                                        validation_steps=100,
                                       verbose = 1, callbacks=[ReduceLROnPlateau(monitor=
                                        use_multiprocessing=False,
                                        shuffle=True
         Epoch 1/50
        C:\Users\Abhishek\anaconda3\lib\site-packages\keras\backend.py:5534: UserWarning: "`
         categorical_crossentropy` received `from_logits=True`, but the `output` argument was
        produced by a Softmax activation and thus does not represent logits. Was this intend
        ed?
          output, from_logits = _get_logits(
         20/20 [============== ] - ETA: 0s - loss: 1.0290 - acc: 0.6250WARNIN
        G:tensorflow:Your input ran out of data; interrupting training. Make sure that your
        dataset or generator can generate at least `steps_per_epoch * epochs` batches (in th
         is case, 100 batches). You may need to use the repeat() function when building your
        dataset.
         20/20 [=============== ] - 366s 14s/step - loss: 1.0290 - acc: 0.6250
         - val loss: 177.3072 - val acc: 0.3140 - lr: 0.0010
         Epoch 2/50
         20/20 [=============== ] - 138s 7s/step - loss: 0.5742 - acc: 0.8137 -
         lr: 0.0010
         Epoch 3/50
         20/20 [============== ] - 140s 7s/step - loss: 0.7335 - acc: 0.7531 -
         lr: 0.0010
         Epoch 4/50
         20/20 [=============== ] - 141s 7s/step - loss: 0.5150 - acc: 0.8438 -
        lr: 0.0010
```

```
Epoch 5/50
20/20 [================== ] - 145s 7s/step - loss: 0.4909 - acc: 0.8531 -
lr: 0.0010
Epoch 6/50
20/20 [================== ] - 143s 7s/step - loss: 0.4326 - acc: 0.8813 -
lr: 0.0010
Epoch 7/50
- lr: 0.0010
Epoch 8/50
20/20 [================ ] - 199s 10s/step - loss: 0.3772 - acc: 0.8750
- lr: 0.0010
Epoch 9/50
lr: 0.0010
Epoch 10/50
20/20 [============= - 196s 10s/step - loss: 0.3488 - acc: 0.8813
- lr: 0.0010
Epoch 11/50
20/20 [============= - 203s 10s/step - loss: 0.3996 - acc: 0.8719
- lr: 0.0010
Epoch 12/50
20/20 [============== ] - 183s 9s/step - loss: 0.3134 - acc: 0.9052 -
lr: 0.0010
Epoch 13/50
20/20 [============ - - 205s 10s/step - loss: 0.3294 - acc: 0.9000
- lr: 0.0010
Epoch 14/50
20/20 [============] - 197s 9s/step - loss: 0.4224 - acc: 0.8687 -
lr: 0.0010
Epoch 15/50
- lr: 0.0010
Epoch 16/50
20/20 [================== ] - 168s 8s/step - loss: 0.2342 - acc: 0.9438 -
lr: 3.0000e-04
Epoch 17/50
20/20 [================= ] - 184s 9s/step - loss: 0.3264 - acc: 0.9020 -
lr: 3.0000e-04
Epoch 18/50
20/20 [================ ] - 162s 8s/step - loss: 0.2052 - acc: 0.9312 -
lr: 3.0000e-04
Epoch 19/50
20/20 [=============== ] - 180s 9s/step - loss: 0.1614 - acc: 0.9531 -
lr: 3.0000e-04
Epoch 20/50
20/20 [============== ] - 171s 8s/step - loss: 0.1905 - acc: 0.9156 -
lr: 3.0000e-04
Epoch 21/50
20/20 [============== ] - 152s 7s/step - loss: 0.2068 - acc: 0.9219 -
lr: 3.0000e-04
Epoch 22/50
20/20 [============== ] - 192s 9s/step - loss: 0.1848 - acc: 0.9312 -
lr: 3.0000e-04
Epoch 23/50
20/20 [============= ] - 190s 9s/step - loss: 0.1582 - acc: 0.9531 -
lr: 9.0000e-05
Epoch 24/50
20/20 [============== ] - 179s 9s/step - loss: 0.1770 - acc: 0.9375 -
1r: 9.0000e-05
Epoch 25/50
20/20 [============== ] - 192s 9s/step - loss: 0.1932 - acc: 0.9406 -
lr: 9.0000e-05
Epoch 26/50
20/20 [=============== ] - 195s 10s/step - loss: 0.1343 - acc: 0.9594
- lr: 9.0000e-05
Epoch 27/50
20/20 [================== ] - 210s 10s/step - loss: 0.1310 - acc: 0.9625
- lr: 9.0000e-05
```

```
Epoch 28/50
20/20 [================== ] - 176s 8s/step - loss: 0.1462 - acc: 0.9510 -
lr: 9.0000e-05
Epoch 29/50
20/20 [================== ] - 159s 8s/step - loss: 0.1325 - acc: 0.9673 -
lr: 9.0000e-05
Epoch 30/50
20/20 [=============== ] - 161s 8s/step - loss: 0.0837 - acc: 0.9688 -
lr: 9.0000e-05
Epoch 31/50
20/20 [=============== ] - 172s 8s/step - loss: 0.1072 - acc: 0.9656 -
lr: 9.0000e-05
Epoch 32/50
20/20 [============= ] - 174s 8s/step - loss: 0.1247 - acc: 0.9563 -
lr: 9.0000e-05
Epoch 33/50
20/20 [============= ] - 165s 8s/step - loss: 0.1016 - acc: 0.9706 -
lr: 9.0000e-05
Epoch 34/50
20/20 [============== ] - 184s 9s/step - loss: 0.1001 - acc: 0.9688 -
lr: 2.7000e-05
Epoch 35/50
20/20 [=============== ] - 173s 8s/step - loss: 0.1464 - acc: 0.9688 -
lr: 2.7000e-05
Epoch 36/50
20/20 [===========] - 182s 9s/step - loss: 0.1154 - acc: 0.9656 -
lr: 2.7000e-05
Epoch 37/50
20/20 [================= ] - 153s 7s/step - loss: 0.1515 - acc: 0.9563 -
lr: 8.1000e-06
Epoch 38/50
20/20 [================= ] - 177s 9s/step - loss: 0.0963 - acc: 0.9688 -
lr: 8.1000e-06
Epoch 39/50
20/20 [================== ] - 171s 8s/step - loss: 0.1111 - acc: 0.9641 -
lr: 8.1000e-06
Epoch 40/50
20/20 [================= ] - 171s 8s/step - loss: 0.1294 - acc: 0.9531 -
lr: 2.4300e-06
Epoch 41/50
20/20 [=============== ] - 170s 8s/step - loss: 0.1050 - acc: 0.9656 -
lr: 2.4300e-06
Epoch 42/50
20/20 [=============== ] - 171s 8s/step - loss: 0.2195 - acc: 0.9438 -
lr: 2.4300e-06
Epoch 43/50
20/20 [============== ] - 168s 8s/step - loss: 0.1513 - acc: 0.9531 -
lr: 1.0000e-06
Epoch 44/50
20/20 [============== ] - 174s 8s/step - loss: 0.1368 - acc: 0.9500 -
lr: 1.0000e-06
Epoch 45/50
20/20 [============== ] - 141s 7s/step - loss: 0.1215 - acc: 0.9625 -
lr: 1.0000e-06
Epoch 46/50
20/20 [============== ] - 174s 8s/step - loss: 0.1103 - acc: 0.9531 -
lr: 1.0000e-06
Epoch 47/50
20/20 [============= ] - 173s 8s/step - loss: 0.1124 - acc: 0.9656 -
lr: 1.0000e-06
Epoch 48/50
20/20 [============= ] - 119s 6s/step - loss: 0.1313 - acc: 0.9594 -
lr: 1.0000e-06
Epoch 49/50
20/20 [================== - 97s 5s/step - loss: 0.0844 - acc: 0.9812 -
lr: 1.0000e-06
Epoch 50/50
20/20 [=============== ] - 72s 4s/step - loss: 0.1405 - acc: 0.9625 -
lr: 1.0000e-06
```

6/10/23, 7:07 PM apple inceptionv3

In []:		