Lab. EC2를 이용해서 Linux Instance 서버 만들기

1. 목적

Amazon EC2(Elastic Compute Cloud)를 사용하여 Linux 인스턴스를 생성하고 접속하는 방법을 학습한다. 또한 생성된 Linux 서버의 시작, 중지 및 EC2 인스턴스에 대한 삭제 방법을 다뤄본다. 이 학습은 AWS Free-Tier를 활용하여 진행한다.

2. 사전 준비물

- AWS Free-Tier 계정
- Google Chrome or Mozilla Filrefox

3. Tasks

- Task1. AWS Login
- Task2. VPC Network 구성하기
- Task3. 보안 그룹 생성하기
- Task4. EC2 Instance 생성하기
- Task5. Ubuntu Linux 인스턴스 접속하기
- Task6. Linux 서버 시작, 중지하기
- Task7. Linux Server 인스턴스 영구 삭제하기

Task1. AWS Login

1. 웹 브라우저를 열고 https://aws.amazon.com/ko/ 에 접속한다. 우상단에 [콘솔에 로그인] 버튼이 보이면 클릭하고, 아래의 그림처럼 [AWS 계정 생성]이라는 버튼이 보여도 오렌지색 버튼을 클릭한다.

2. 이전에 생성한 AWS 계정 정보를 이용해서 로그인을 진행한다. [루트 사용자]를 선택하고, [루트 사용자 이메일 주소]를 넣고 [다음] 버튼을 클릭한다.

3. 기계를 이용한 자동 로그인을 방지하기 위해 AWS에서는 아래와 같이 보안검사를 시행하고 있다. 그림에 보이는 대로 입력하고 [제출] 버튼을 클릭하자.

4. 이전에 생성했던 계정의 비밀번호를 입력하고 [로그인] 버튼을 클릭한다. 한번 더 보안 검사를 요구할 수도 있다.

Task2. VPC Network 구성하기

1. AWS Console에서 [서비스] > [네트워킹 및 콘텐츠 전송] > [VPC]를 클릭하여 들어간다.

2. VPC 페이지로 들어왔다. 먼저 확인할 것은 화면 좌측 하단의 언어에서 **[한국어]**로 설정되어 있는지 확인 한다. 또한 화면 우측 상단의 Region이 서울인지 확인한다.

3. 만일 Region이 서울이 아니라면 다음 그림과 같이 설정하여 [아시아 태평양(서울)]로 맞춘다.

4. 페이지 위쪽의 [VPC 마법사 시작]을 클릭하여 VPC 설정을 시작하도록 한다.

5. [1단계:VPC 구성 선택]단계 4가지 종류에서 제일 위에 있는 [단일 퍼블릭 서브넷이 있는 VPC]를 선택하고 [선택] 버튼을 클릭한다.

6. [2단계:단일 퍼블릭 서브넷이 있는 VPC] 단계이다. 다음과 같이 설정하고 나머지 값은 기본값을 그대로 사용한다. 모든 설정이 마치면 [VPC 생성] 파란색 버튼을 클릭한다.

A. [IPv4 CIDR 블록]: 10.0.0.0/16

B. [VPC 이름]: lab-vpc-xx

C. [퍼블릭 서브넷의 IPv4 CIDR]: 10.0.10.0/24

D. [가용 영역]: ap-northeast-2a

E. [서브넷 이름] : lab-vpc-public-subnet-xx

7. VPC가 성공적으로 생성되었음을 확인한다. [확인] 버튼을 클릭한다.

8. 방금 생성한 VPC 페이지로 이동된다. 좌측 메뉴 중 [가상 프라이빗 클라우드] > [서브넷]을 클릭한다.

9. VPC를 생성할 때 같이 생성했던 서브넷을 확인할 수 있다. 이번에는 [서브넷] 메뉴 밑에 있는 [라우팅 테이블] 메뉴를 클릭한다.

10. 현재 라우팅 테이블의 이름을 지정하지 않아서 [Name]이 빠져있지만 [명시적 서브넷 연결]을 보면 방금 생성된 라우팅 테이블을 확인할 수 있다. 해당 라우팅 테이블을 선택하면 화면 하단에 보다 자세한 정보를 확인할 수 있다. [세부 정보] 오른쪽 탭인 [라우팅] 탭을 클릭해보자.

11. 라우팅 정보를 보면 10.0.0.0/16을 사용하는 IP는 VPC내(local)에서 처리하며, 그 외의 IP는 대상이 인터넷 게이트웨이로 되어 있음을 확인할 수 있다.

12. 이번에는 [라우팅] 탭 오른쪽의 [서브넷 연결] 탭을 클릭하여 이동한다. 퍼블릭 서브넷에서 생성된 라우팅은 이 라우팅 테이블에서 처리함을 확인할 수 있다.

Task3. 보안 그룹 생성하기

- 1. **네트워크 ACL**이 서브넷 단위의 방화벽 역할을 한다면, **보안 그룹**은 인스턴스에 대한 Inbound 및 Outbound 트래픽을 제어하는 가상 방화벽 역할을 한다.
- 2. 페이지 좌측 메뉴 중 [보안] > [보안 그룹]을 클릭한다.

3. 보안 그룹 페이지로 들어왔다. 새 보안 그룹을 생성하기 위해 [보안 그룹 생성] 버튼을 클릭한다.

- 4. 다음과 같이 설정한다.
 - A. [보안 그룹 이름] : docker-ubuntu-sg
 - B. [설명] : Security group for docker-ubuntu instance
 - C. [VPC] : lab-vpc-00

5. 동일한 페이지를 스크롤다운하여 [인바운드 규칙] 섹션으로 이동한다. 새 규칙을 추가하기 위해 [규칙 추가] 버튼을 클릭한다.

- 6. 다음 그림과 같이 2개의 규칙을 추가한다.
 - A. [유형] : 모든 ICMP IPv4, [프로토콜] : ICMP, [포트 범위] : 전체, [소스] : Anywhere-IPv4
 - B. [유형] : SSH, [프로토콜] : TCP, [포트 범위] : 22, [소스] : Anywhere-IPv4

7. **[아웃바운드 규칙]**은 기본값 그대로 사용한다. 모든 설정을 마치면 페이지를 계속 스크롤다운하여 페이지 제일 하단의 **[보안 그룹 생성]** 버튼을 클릭한다.

8. 방금 생성한 보안 그룹을 확인할 수 있다.

Task4. EC2 Instance 생성하기

1. 좌측 상단의 [서비스] > [컴퓨팅] > [EC2]를 클릭하여 해당 페이지로 이동한다.

2. 왼쪽 항목에서 [인스턴스]를 선택하여 해당 페이지로 이동한다.

3. 우측 상단의 [인스턴스 시작] 오렌지 색 버튼을 클릭한다.

4. [단계 1: Amazon Machine Image(AMI) 선택] 페이지에서 [Ubuntu Server 20.04 LTS(HVM), SSD Volume Type] 서버를 찾은 후 [64비트(x86)]이 선택되어 있는 것을 확인한 후 [선택] 버튼을 클릭한다.

5. **[단계 2:인스턴스 유형 선택]** 페이지에서, **[t2.medium]**를 선택 후, **[다음:인스턴스 세부 정보 구성]** 버튼을 클릭한다.

- 6. **[단계 3:인스턴스 세부 정보 구성]** 페이지에서 다음의 각 값을 입력하고 나머지 값은 기본값 그대로 사용한다. 그리고 **[다음:스토리지 추가]** 버튼을 클릭한다.
 - A. [인스턴스 개수]: 1
 - B. [네트워크]: lab-vpc-00
 - C. [서브넷]: lab-vpc-public-subnet-00
 - D. [퍼블릭 IP 자동 할당] : 활성화

7. [단계 4:스토리지 추가] 페이지에서, Linux Server는 스토리지 크기가 8GiB로 맞춰져 있는데, Free-Tier 자격으로 최대 사용할 수 있는 스토리지 크기는 30GB이지만 수업을 위해 Linux Server 인스턴스 스토리지 크기를 50GiB로 설정한다. [다음:태그 추가] 버튼을 클릭한다.

8. **[태그 추가]** 버튼을 누른다.

9. [키]에 "Name"를, [값]에 "Ubuntu Docker Server"을 입력한 다음, [다음:보안 그룹 구성] 버튼을 클릭한다. 태그는 해당 인스턴스를 표현하는 여러 이름으로 사용될 수 있다. EC2의 이름을 붙인다고 생각하고 넣으면 된다. 여러 인스턴스가 있을 경우 이를 태그별로 구분하면 검색이나 그룹 짓기 편하므로 여기서 본인 서비스의 인스턴스를 나타낼 수 있는 값으로 등록하면 된다.

1. AMI 선택	2. 인스턴스 유형 선택	3. 인스턴스 구성	4. 스토리지 추가	5. 태그 추가	6. 보안 그룹 구성	7. 검토				
태그는 대소문 태그 복사본은	태그 추가 자를 구별하는 키-값 페이 볼륨, 인스턴스 또는 둘 인스턴스 및 볼륨에 적용됩	다에 적용될 수 있습	니다.			를 정의할 수 있습니다	ŀ.			
키 (최대	128자)		값	(최대 256자)			인스턴스 (j	볼륨 (j)	네트워크 인터 페이스 (j)	
Name			Ubuni	tu Docker Serve	er		<u> </u>			8
	_									
다른 태그 추	·가 (최대 50개 태그	.)								

10. **[단계 6:보안 그룹 구성]** 페이지에서, [보안 그룹 할당]을 [기본 보안 그룹 선택]을 선택한다. 이미 앞 Task에서 설정한 보안 그룹 설정 정보 확인 후, **[검토 및 시작]** 버튼을 클릭한다.

11. **[단계 7:인스턴스 시작 검토]** 페이지에서, 지금까지 구성한 정보를 확인 한 다음, 수정 및 변경사항이 없다면 **[시작하기]** 버튼을 클릭한다.

12. [기존 키 페어 선택 또는 새 키 페어 생성] 페이지가 나타난다.

13. [기존 키 페어 선택] 드롭다운을 클릭하면 보이는 3개의 항목 중에 "새 키 페어 생성"을 선택하고, [키 페어 이름]에 "Docker-Ubuntu-RSAKey"를 입력 후 [키 페어 다운로드] 버튼을 클릭하여 "Docker-Ubuntu-RSAKey.pem" 파일을 로컬 컴퓨터에 보관한다. 이 파일이 없으면 EC2에 접근할 수 없기 때문에 잘 보관해야 한다.

14. 키 페어 다운로드 완료 후 **[인스턴스 시작]** 버튼을 클릭한다. 인스턴스는 보통 5 ~ 10분 정도 시간이 걸 린다

15. [시작 상태] 페이지가 나타난다. 현재 방금 생성한 인스턴스가 시작 중임을 알 수 있다. 페이지 하단의 [인스턴스 보기] 버튼을 클릭한다.

16. 인스턴스가 생성되면 시스템 상태 검사와 인스턴스 상태 검사 2가지를 수행한다. [상태 검사]가 [2/2개 검사 통과]라고 상태 검사가 모두 마칠 때까지 기다린다. 상태 검사가 모두 마치면 이제 인스턴스와 연결할 수 있다.

17. 해당 인스턴스를 선택하고 페이지 상단의 [연결]을 클릭한다.

18. [인스턴스에 연결] 페이지에서 [EC2 인스턴스 연결] 탭을 선택한다. 그리고 [연결] 버튼을 클릭한다.

19. 생성한 인스턴스에 잘 연결되는 것을 확인할 수 있다.

Task5. Ubuntu Linux 인스턴스 접속하기

1. Linux 인스턴스 접속을 위해서는 일반적으로 SSH 접속용 프로그램이 필요하다. 가장 일반적으로 사용하는 SSH 툴은 Putty이다. https://www.putty.org/ 에 접속한 후, [Download PuTTY] 섹션의 "You can download PuTTY here"의 here 링크를 클릭한다.

2. **[Download PuTTY:latest release(0.74)]**페이지에서 본인 PC 혹은 Notebook의 운영체제 버전(**Windows** or Unix)과 CPU Architecture(32-bit or **64-bit**)를 확인하여 다운로드 받을 수 있도록 링크를 클릭한다. 여기서는 일반적으로 Windows(MSI)의 64-bit를 다운로드받기 위해 해당 링크**(putty-64bit-0.74-install.msi)**를 클릭하도록 하겠다.

Package f	les		
	y want one of these. They include ver		
(Not sure wh	nether you want the 32-bit or the 64-t	oit version? Read t	ne ray entry.)
	nether you want the 32-bit or the 64-bows Installer')	oit version? Read t	ne <u>FAQ entry</u> .)
		(or by FTP)	(signature)
MSI ('Winda	ows Installer')		
MSI ('Windo	putty-0.74-installer.msi putty-64bit-0.74-installer.msi	(or by FTP)	(signature)

3. 해당 파일이 다운로드가 끝나면 바로 탐색기에서 더블클릭하여 프로그램을 설치한다. 설치할 때에는 해당 화면에서 기본값을 사용하도록 계속 [Next] 그리고 [Install] 버튼을 클릭한다.

4. 위에서 이미 다운로드 받은 "키 페어 파일"을 PuTTY 프로그램과 연결하기 위해 PuTTY 프로그램이 설치된 경로(C:\Program Files\Putty)로 이동한다. 그 폴더에 가면 "puttygen.exe"파일이 있는데, 더블클릭하여 실행한다.

5. [PuTTY Key Generator]창에서 [Conversions] > [Import Key] 메뉴를 선택한다.

6. 이미 다운로드 받은 키 페어 파일(Docker-Ubuntu-RSAKey.pem)을 선택하고 [열기]를 클릭한다.

7. PuTTY로 Import할 Private Key의 생성을 위해 [Save private key] 버튼을 클릭한다.

8. [PuTTYgen Warning] 창에서 [예]를 클릭한다.

9. 이전에 pem 파일을 다운로드 받았던 동일한 폴더에 "Docker-Ubuntu-RSAKey.ppk" 파일을 저장하기 위해 [저장] 버튼을 클릭한다. 저장한 후, [PuTTY Key Generator]창은 닫는다.

10. 이미 설치한 PuTTY 프로그램을 실행한 다음, [Connection] > [SSH] > [Auth] 메뉴의 "Private key file for authentication:"의 [Browse...] 버튼을 클릭한다.

11. 위에서 이미 저장한 Private Key의 저장위치에서 "**Dokcer-Ubuntu-RSAKey.ppk**" 파일을 선택하고 **[열기]** 버튼을 클릭한다.

12. 다시 AWS 인스턴스 페이지로 돌아가서 이미 여러분이 생성한 Linux 인스턴스의 [인스턴스 ID]를 클릭하여 해당 인스턴스 요약페이지로 이동한다. 접속할 Linux 인스턴스 요약페이지에서 [연결] 버튼을 클릭한다.

13. [SSH 클라이언트] 탭을 클릭한다. 순서의 4번에 보면 "퍼블릭 DNS을(를) 사용하여 인스턴스에 연결" 아래에 있는 주소를 복사한다.

14. 다시 PuTTY 프로그램으로 돌아와서, [Session] 메뉴의 "Host Name(or IP address)"의 텍스트박스에 방금 복사한 주소를 붙여넣기 한다. 그리고 "Port"는 22번, "Connection type"은 SSH가 선택되어 있음을 확인 한 다음, "Saved Sessions"의 항목에 "AWS Docker Ubuntu Server"라고 입력하고, [Save] 버튼을 클릭한다. 그리고 나서 마지막으로 [Open] 버튼을 클릭하여 Linux 인스턴스와 연결한다.

15. [PuTTY Security Alert]창에서 [예(Y)]를 선택한다.

16. AWS에 생성한 Linux 인스턴스와 원격으로 연결하는 창이 나타난다. [login as:] 에 "ubuntu"라고 입력하고 Enter key를 누른다.

```
    ubuntu@ip-10-0-10-212: ~

                                                                             П
 Plogin as: ubuntu
login as: ubuntu
Authenticating with public key "imported-openssh-key"
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-1020-aws x86 64)
 * Documentation: https://help.ubuntu.com
 * Management:
                   https://landscape.canonical.com
 * Support:
                   https://ubuntu.com/advantage
  System information as of Wed Nov 17 03:27:31 UTC 2021
 System load: 0.0
                                  Processes:
                                                          108
 Usage of /: 2.9% of 48.41GB Users logged in:
 Memory usage: 5%
                                  IPv4 address for eth0: 10.0.10.212
 Swap usage:
                0%
1 update can be applied immediately.
To see these additional updates run: apt list --upgradable
The list of available updates is more than a week old.
To check for new updates run: sudo apt update
Last login: Wed Nov 17 03:14:05 2021 from 13.209.1.57
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.
ubuntu@ip-10-0-10-212:~$
```

- 17. Linux 인스턴스 접속을 완료했다.
- 18. 참고로, Xshell로 접속할 때는 다음과 같다.
 - A. 설치한 **Xshell** 프로그램을 실행하면 다음과 같이 새로운 세션 설정을 위한 **[세션]** 창이 나타난다. [새로 만들기] 버튼을 클릭한다.

B. 먼저 **[연결]**에서, **[일반]** > **[이름]**을 "AWS Ubuntu Docker Server"라고 입력하고, **[호스트]**는 방금 생성한 EC2 인스턴스의 **[퍼블릭 IPv4 DNS]** 값을 넣는다.

C. 다음은, [연결] > [사용자 인증]을 선택한다. [사용자 이름]은 ubuntu이고, [방법]에 [Public Key]을 선택하고 [설정] 버튼을 클릭한다.

D. [Public Key 설정] 창이 나타난다. [찾아보기]를 클릭한다.

E. [사용자 키]창에서 [가져오기]를 선택한다.

F. 이미 다운로드 받은 pem 파일을 선택하면 다음 그림과 같다. 키를 선택하고 [확인] 버튼을 클릭한다.

G. 다시 [Public Key 설정]창으로 돌아왔다. [암호]는 넣지 않아도 된다. [확인] 버튼을 클릭한다.

H. 다시 [새 세션 등록 정보] 창으로 돌아왔다. [연결] 버튼을 클릭한다.

I. [SSH 보안 경고] 창이 나타난다. [수락 및 저장] 버튼을 클릭한다.

J. 연결에 성공하였다.

Task6. Linux 서버 시작, 중지하기

1. 방금 생성한 Linux Server 인스턴스를 중지시키기 위해서 해당 인스턴스 요약창에서 [인스턴스 상태] > [인스턴스 중지]를 선택한다. 그리고 [중지 인스턴스]창에서 [중지]를 선택한다.

2. 또는 PuTTY 창에서 다음의 명령어를 수행함으로 서버를 중지시킬 수 있다.

\$ sudo shutdown now

3. Linux server 인스턴스와 연결이 종료되었다.

4. 잠시 후 [인스턴스] 페이지에서 해당 Linux Server 인스턴스가 "중지됨"을 확인할 수 있다.

5. 다시 해당 인스턴스를 시작하려면 [인스턴스 요약]페이지에서 [인스턴스 시작]을 선택하면 된다.

6. 다시 연결하려면 해당 인스턴스의 [인스턴스 요약] 페이지에서 [인스턴스 유형]이 "실행 중"임을 확인한후, 위의 과정을 다시 실행하면 된다. 다시 서버를 연결할 때에는 PuTTY 창의 [Session] 메뉴의 "Host Name(or IP address)"의 텍스트박스에 [퍼블릭 IPv4 DNS]의 값을 복사해서 붙여넣고 [Open] 버튼을 클릭하면 된다.

Task7. Linux Server 인스턴스 영구 삭제하기

1. 해당 인스턴스의 [인스턴스 요약] 페이지에서 [인스턴스 유형]이 "중지됨"을 확인 한 다음, [인스턴스 상태]에서 [인스턴스 종료]를 선택한다.

2. [인스턴스 종료]를 선택하면 아래의 그림과 같이 [종료 인스턴스]창이 나타나고 여기서 [종료]를 클릭한다.

3. 잠시 뒤, [인스턴스] 페이지에서 확인해 보면 해당 인스턴스가 "종료됨" 상태임을 알 수 있다.

