Definitie. Fie DCR, acB si Y=(Y1,..., Yn):D>
> R^n o functie care admite toate durivatele partiale în punctul a. Matricea

$$\frac{\partial Y_1}{\partial x_1}(a) \frac{\partial Y_1}{\partial x_2}(a) - \frac{\partial Y_1}{\partial x_n}(a)$$

$$\frac{\partial Y_2}{\partial x_n}(a) \frac{\partial Y_2}{\partial x_2}(a) - \frac{\partial Y_2}{\partial x_n}(a)$$
As

$$\left| \frac{\partial Y_{1}}{\partial x_{1}}(a) \frac{\partial Y_{2}}{\partial x_{2}}(a) \dots \frac{\partial Y_{n}}{\partial x_{n}}(a) \right|$$

numente matricea jacobiana (non matricea Jacobi) a lui I m a ni se notiara en Japa. Determinantul acestei matrice se numente jacobianul lui I m a si se notiara en det Japa.

Jedemà (Jedema de schimbere de variabilà-Varianta 1) Fie D, G douà multimi deschise din Rⁿ, 4:D>G un

differnosfism de clasa C1 (i.e. 4 bijectiva si Ψ, Ψ⁻¹ surt de clasa C¹), A∈ J(Rⁿ) a.2. A = A C D si f: Y(A) -> R o funcție integrabilă Riemann. Htunci funcția (fo y) det Jy: A > R este integrabilă Riemann și $\int_{A} (f \circ Y)(x) \cdot | dut \int_{Y}(x) | dx = \int_{Y} f(y) dy.$ Definitie. O multime ACRM se numerte neglijabilà Lebergue dacà $\forall E>0$, $\exists (D_k)_{k>0}$ à familie de dreptunghiuri a.r. A C Ü De si Znolle) < E. Observatii. Drice submultime à unei multimi ne-glijabile Lebesque este, la rândul ei, neglijabilà

2) Dice multime el mult numarabilà este neglijabilà debesque. 3) Vice reuniume cel mult numărabilă

de multimi neglijabile Lebesque este neglijabilà Lebesque.

4. Daca Acy (RM) și µ(A)=0, atunci A este neglijabilà
Lebesque.

Testemà (Testema de schimbare de variabilà-Varianta 2). Fie D, G două mulțimi deschise din R'n en popietatea cà FrD este neglijabilà Sebesgue, $\psi:D \to G$ un difeomorfism de clasa C^1 , $A \in \mathcal{J}(\mathbb{R}^n)$ a.a. ACD i 3 M>0 a.a. + xeA, + ZER, ower ||dy(x)(z)|| < M||z|| si fie f: Y/A) -> R 0 functie integrabilà Riemann. Atunci funcția (fog). det Je: A → R este integlabilà Riemann si (fo y) (x) | det fo(x) | dx =) γ(x) f(y) dy.

Schimbari standard de variabilà pentru integrala

1. Trecerea de la coordonate carteziene la coordonate polare

Fie $A \in \mathcal{J}(\mathbb{R}^2)$ și $f: A \to \mathbb{R}$ o funcție integrabilă

Riemann.

Fie d, β∈R (Putern avea d=β=0).

S.V. $\begin{cases} x = x + h \cos \theta - y \\ y = \beta + h \sin \theta \end{cases}$, he [9 A), +€[0,2π].

(x, y) EA (=) (h, +) EBC [0, 10) x [0,27].

steven If f(x,y) dx dy = II & f(x+r.coso, B+r.sino) dado.

2. Theorea de la coordonate conteriene la coordonate polare generalizate

Fie A∈J(R²) și f:A → R » funcție integrabilă

Riemann.

Fie $\alpha, \beta \in \mathbb{R}$ (Duten over $\alpha = \beta = 0$).

Fie a, b∈(q∞).

S.V. $\begin{cases} x = \alpha + \alpha \wedge \cos \phi \\ y = \beta + b \wedge \sin \phi \end{cases}$, h∈[0, 10), +∈[0, 2π].

(X,y) EA (S) (N, +) EBC[0, M) x [0, 2x].

strem If f(x,y) dxdy = Is abr f(x+arcoso, p+ br sino). Exercitiu. Determinați Spydxdy, unde A= = $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, x \ge 0, y \ge 0\}.$ Solutie. $A = \{(x,y) \in \mathbb{R}^2 \mid x \in [92], 0 \leq y \leq \sqrt{4-x^2} \}.$ Fie α, β : $[0,2] \rightarrow \mathbb{R}, \alpha(x) = 0, \beta(x) = \sqrt{4-x^2}$. L, B continue. A compactă și AEJ(R2). Fie f: A>R, f(x,y)=y. f continuà (deci f integrabilà Riemann). S.V. X = L LOSO, $L_{y} = L LOSO$, $L_{y} = L LOSO$, $L_{z} = L LOSO$.

$$(x,y) \in A \Leftrightarrow \begin{cases} x^2 + y^2 \le 4 \\ x \ge 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \le 4 \\ \lambda \le 0 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \le 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0 \le 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \in [0,2] \\ \lambda \ge 0$$

1. Trevera de la coordonate conteriene la coordonate berice

Fie A∈J(R) și f:A → R o funcție integrabilă Giernam.

Fie $x, p, y \in \mathbb{R}$ (Sitem avea x=p=y=0).

, λε[q po), + θε[q 2π], YE[0, 7].

(x,y,z) €A €) (h, +, y) € C C [0, 10) x [0,2π] x [0,π]. Aven SSA f(x, y, 2) dx dyd2 =

= SSI L'ainy f(x+1 coso siny, B+1 sino siny, x+1 cosy) drobo

2. Trecerea de la coordonate conteriene la coordonate

sprice generalizate

Fie $A \in \mathcal{J}(\mathbb{R}^3)$ $\hat{\mathcal{J}}$ $f: A \to \mathbb{R}$ $\hat{\mathcal{J}}$ funcție integrabilă Riemann

Fie & B, & ER (Jutem avea x=p=y=0)

The $a,b,c \in (0,\infty)$.

S.V.
$$\begin{cases} \chi = \alpha + \alpha \Lambda \cos \alpha \sin \gamma \\ y = \beta + \beta \Lambda \sin \alpha \sin \gamma \end{cases}, \text{ Le }[0, \infty), \text{ $\theta \in [0, 2\pi]$,} \\ \chi = \chi + \zeta \Lambda \cos \gamma \end{cases}$$

(x,y, 2) + A(=) (h, +, y) + CC [0, 20) x [0,21] x [0, 1].

Havem III f(x, y, Z) dx dy dz =

= III aber sinfflataressoring, Bthrimosing, 8+cresse) Ardodq.

Cexercitiu. Determinati III Vx2+y2+22 dxdydz,

unde $A = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}$.

Yolutie. $A^2 = A$

Fix B=1(x,y) ∈ R2 | x2+ y2 ≤ 1].

 $B = \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 1], -\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2} \}.$

Fie x, p: [-1,1] -> R, x(x) = - \(\sigma_1 - \cdot 2^2\), p(x) = \(\sigma_1 - \cdot 2^2\).

d, & continue

B compactà si BEJ (R2).

 $A = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in B, -\sqrt{1-x^2-y^2} \le z \le \sqrt{1-x^2-y^2} \}.$

Fie $Y, Y: B \to \mathbb{R}, Y(x,y) = -\sqrt{1-x^2-y^2}, Y(x,y) = \sqrt{1-x^2-y^2}.$ Y, Y = continue

A compactà și ACJ (R3).

Fie $f: A \rightarrow \mathbb{R}$, $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. f continua.

S. V.
$$\begin{cases} \mathcal{X} = \Lambda \cos \theta \sin \theta \\ y = \Lambda \sin \theta \sin \theta \end{cases}, \ \Lambda \in [0, \infty), \ \theta \in [0, 2\pi],$$

$$\mathcal{Z} = \Lambda \cos \theta \qquad \qquad \forall \in [0, \pi].$$

$$(x,y,z)\in A \iff x^2+y^2+z^2 \leq 1 \iff \lambda^2 \leq 1 \iff \lambda \in [0,1]$$

 $\forall \in [0,2\pi]$
 $\forall \in [0,\pi]$.

Deci
$$C = [0,1] \times [0,2\pi] \times [0,\pi]$$
.

=
$$\iint \Lambda^2 x in \Psi \sqrt{\Lambda^2} dr d\theta d\Psi = [0,1] \times [0,2\pi] \times [0,\pi]$$

$$=\int_0^1 \left(\int_0^{2\pi} \left(\int_0^{\pi} h^3 \sin \theta \, d\theta \right) d\theta \right) dh =$$

$$= \int_{0}^{1} \left(\int_{0}^{2\pi} - \lambda^{3} Los Y \Big|_{Y=0}^{Y=\pi} d\Phi \right) d\lambda = \int_{0}^{1} \left(\int_{0}^{2\pi} - \lambda^{3} (-1-1) d\Phi \right) d\lambda =$$

$$= \int_{0}^{1} 2\lambda^{3} \phi \Big|_{\phi=0}^{\phi=2\pi} d\lambda = 4\pi \int_{0}^{1} \lambda^{3} d\lambda = 4\pi \cdot \frac{1}{4} = \pi. \ \Box$$

Teremà (Criterial lui Lebesque de integrabilitate Riemann)
Fie A∈J(Rn), i f:A → R » functie marginita. Sunt
echivalente:
1) f integrabilà Riemann
2) De este neglijabilà Lebergue, unde Df={**EA f mu
2 continuà în x}.
Exercitive. Fix f: [0,1]x[2,3] -> R,
$f(x,y) = \begin{cases} 2x + 3y & 5 & (26, y) \in ([0, 1] \times [2,3]) \setminus \{(0,2)\} \\ 1 & 5 & (26, y) = (0,2) \end{cases}$
oratan ca f este entegrabila riemann.
Youtie. [0,1]×[2,3] € J(R²).
f(x,y) = 2x+3y =2x+3y < 2+9=11+(x,y) \(\begin{substitute} \begin{substite} \begin{substitute} sub
=> f marginita.
De C \(\frac{1}{(0,2)} \) neglijabila Lebesgue \(\) De neglijabila Lebesgue. Deai f este integrabila Riemann. \(\)
meglijabila severijie i
de feste intégrable : Kiemann. I

Fie $A \in \mathcal{J}(\mathbb{R}^n)$, $f: A \to \mathbb{R}$ o funcție mărginită și $\mathcal{A} = (A_i)_{i=1,m} \in \mathcal{J}(\mathbb{R}^n)$ o desconpunere Jordan a lui A. Chonsideram $M_i = \sup\{f(x) \mid x \in A_i\} + i = \overline{1,m}$ și $M_i = \inf\{f(x) \mid x \in A_i\} + i = \overline{1,m}$.

Destruitie. 1) $S_{A}(f) = \sum_{i=1}^{m} M_{i} \mu(A_{i})$ re numește suma Destruit suprioară asociată funcției f și descompunerii f.

2) $f(f) = \sum_{i=1}^{\infty} m_i \mu(A_i)$ se numerte suma Darboux inferiorià associatà functiei f si descompunerii f.

3) $\int_A f(x_1,...,x_n) dx_1...dx_n =$

= inf \(\int_{\text{f}}(f) \) It descompunere Jordan a lui A) se mumeste integrala Darboux superioarà associatà functiei f.

4) Saf(x1, ..., xm) dx1 ... dxn =

= sup { st (f) | It descompunere Jordan a lui A} se numește integrala Darboux inferioară asociată funcției f.

Riemann). Urmatoarde afirmații sunt echivalente:

1) f e integrabilà Riemann.

2) $\int_{A} f(\chi_1,...,\chi_n) d\chi_1...d\chi_n = \int_{A} f(\chi_1,...,\chi_n) d\chi_1...d\chi_n$

(-caz în care avem] f(x1,..., xn) dx1...dxn =

 $=\int_{\mathbf{A}}f(\mathbf{x}_1,...,\mathbf{x}_n)d\mathbf{x}_1...d\mathbf{x}_n=\int_{\mathbf{A}}f(\mathbf{x}_1,...,\mathbf{x}_n)d\mathbf{x}_1...d\mathbf{x}_n).$

3) + E>0, F et & descompunere Jordan a lui A a.r. Ste (f) - 1 te (f) < E.

4) $+\epsilon>0$, $\mp s_{\epsilon}>0$ a.r. +st descompunere Jordan a lui +s, $||f|| < s_{\epsilon}$, aven $S_{A}(f) - S_{A}(f) < \epsilon$.

Exercitin. Fix $A \in \mathcal{J}(\mathbb{R}^2)$, $\mu(A) > 0$, if $A \to \mathbb{R}$, $f(x,y) = \{0; x, y \in \mathbb{Q} \mid 1; \text{ attful}.$

Determinatio II, f(x,y) dxdy, II, f(x,y) dx dy si precisatio dacă fe integra-Youtie. Fie A= (Ai) i= 1,m CJ (R2) or descompuncte
Josolan a lui A.

$$S_{H}(f) = \sum_{i=1}^{m} M_{i} \mu(A_{i}) = \sum_{i=1}^{m} M_{i} \mu(A_{i}).$$

$$M(A_{i}) > 0$$

$$M(A_{i}) = \sum_{i=1}^{m} M_{i} \mu(A_{i}) = \sum_{i=1}^{m} M_{i} \mu(A_{i}).$$

$$\mu(A_{i}) > 0$$

$$\mu(A_{i}) > 0$$

 $\mu(Ai)>0 \Rightarrow \mu_*(Ai)>0 \Rightarrow \exists D \in \mathfrak{D}(\mathbb{R}^n), vol(D)>0 \text{ a.c.}$ $D \subset Ai(1)$

Fix $B=\{(x,y)\in A\mid x,y\in Q\}$ is $C=\{(x,y)\in A\mid x\notin Q \text{ some}$ $y\notin Q\}$.

bonform relativi (1), + i \(\frac{1}{2}\),...,m} ar. \(\mu(\frac{1}{2}\))>0,

avem Ai NB \(\phi\) \(\frac{1}{2}\) Ai NC \(\phi\), \(\delta\) \(\delta\)...,m] \(\alpha\)...,m] \(\alpha\).

 $\mu(ti)>0$, arum $m_i=0$ si $M_i=1$. $tradar S_f(f)=\sum_{i=1}^{m}1:\mu(ti)=\sum_{i=1}^{m}\mu(ti)=\mu(ti)$ sie $\mu(ti)>0$ $\Delta_{t}(t) = \sum_{i=1}^{\infty} 0.\mu(Ai) = \sum_{i=1}^{\infty} 0.\mu(Ai) = 0.$ $\mu(Ai) > 0$

Dur summere $\overline{\int}_{A}^{A}f(x,y)dxdy = \inf\{S_{A}(f)\}dx dexemplessee$ Jordan a lui A = $\mu(A)$ λi $\int_{A}^{A}f(x,y)dxdy =$ = $\sup\{S_{A}(f)\}dxdy + \int_{A}^{A}f(x,y)dxdy \Rightarrow f$ mu e integralian.

La Riemann.