Assignment 8

Chayapon Thunsetkul 6280742

December 4, 2022

1. The forward implication is trivial; If θ is injective then there would only be one element that maps to the identity in H. Since θ is a homomorphism, it follows that this element must be the identity in G. Next, assume that $\ker \theta = \{1\}$. Then for any $x, y \in G$ such that $\theta(x) = \theta(y)$, we have

$$f(x) - f(y) = e_H$$

$$f(x - y) = e_H$$

$$x - y = e_G$$

$$x = e_G + y$$

$$x = y$$

Thus, θ is a homomorphism.

2.

3. From the first isomorphism theorem, if $\theta: G \to H$ is a homomorphism, then the mapping from $G/\ker\theta$ to $\theta(G)$ given $g \ker \theta \mapsto \theta(g)$ is an isomorphism.

Now, I follow the pattern and define a map $\sigma: G/N \to \phi(G)$ where ϕ is the trivial map and $\sigma(gN) = g$. It follows that $N \in \ker \sigma$. Next, consider $\sigma^{-1}(g) = gN$, then $\ker(\sigma^{-1}) = \{g \in G, \sigma^{-1}(g) = 1_{G/N}\}$. From a lemma, gN = g only if $g \in N$, then, $\ker(\sigma^{-1}) = \{g \in N\} = N$

- 4. 1) We have f(0) = 0 and f(6) = 6 so $f(0) \neq f(6)$ but 0 = 6.
 - 2) Since $1 \in \mathbb{Z}_6$ is the generator, we have $f(g) = f(1 \times g) = f(1) \times f(g)$ for all $g \in \mathbb{Z}_6$ and let us denote f(1) = a. Then, f(g) = ga. We also need f(0) = 0, hence, f(0) = f(6) = 6a. We can say that $6a = 0 \mod 9$ then

$$6a = 0 \mod 9$$

 $6a = 9 \mod 9$
 $2a = 3 \mod 3$
 $2a = 0 \mod 3$
 $a = 0 \mod 3$

Thus, $a \in \{0, 3, 6\}$ and there are 3 homomorphisms.

5. For all $k \in K$ and $k_1 \in K_1$ we have $ak = ka, \forall g \in G$ and $g_1k_1 = k_1g_1, \forall g_1 \in G_1$. Then

$$(a, a_1)(k, k_1) = (ak, a_1k_1)$$
$$= (ka, k_1a_1)$$
$$= (k, k_1)(a, a_1)$$

Thus, $K \times K_1$ is normal in $G \times G_1$. Now, define a map $\theta(g, g_1) \mapsto (g, g_1)(K, K_1)$, then $K \times K_1$ is a ker θ . By the first isomorphism theorem, it follows that $(G \times G_1)/(K \times K_1) \cong \theta(G \times G_1)$. Since, $\theta(G \times G_1) = (G/K \times G_1/K_1)$, thus $(G \times G_1)/(K \times K_1) \cong G/K \times G_1/K_1$

6.