EECS 203 Exam 2 Review

Day 1

Today's Review Topics

- Modular Arithmetic
- Induction
 - Weak Induction
 - Strong Induction

Divisibility and Modular Arithmetic

Divisibility Recap

- Divisibility: $a \mid b \text{ iff } \exists c (b = ac)$ 0|3? 3|0?
- Prime Number p>1: p is only divisible by 1 and itself

Two types of "mods"

- a ≡ b (mod m) is a predicate involving three numbers.
 Sometimes we leave out the parens; ≡ is the important part
- a mod m is the remainder after dividing a by m. This is always an integer between 0 and m-1. (a\%m in C++)

Modular

- We can write b = na + r (n is some int and 0<=r<a)
- a ≡ b (mod m) "a and b have same remainder upon division by m"?
- More about modular arithmetic:
- Suppose $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ and $\mathbf{c} \equiv \mathbf{d} \pmod{\mathbf{m}}$.
- Claim: $a+c \equiv b+d \pmod{m}$ (Addition works!)
- Claim: $\mathbf{a} \mathbf{c} \equiv \mathbf{b} \mathbf{d} \pmod{\mathbf{m}}$ (Subtraction works!)
- Claim: $ac \equiv bd \pmod{m}$ (Multiplication works!)
 - Simplify the bases of exponents and constant addition/multiplication terms
 - Split exponents using exponent rules

Mods Question 1

Let $x \equiv 3 \pmod{12}$, $y \equiv 11 \pmod{21}$, and $z \equiv 3 \pmod{4}$. Which of the following statements must be true?

- (a) $x + y \equiv 2 \pmod{3}$
- (b) $x + z \equiv 3 \pmod{4}$
- (c) $x y \equiv -8 \pmod{12}$
- (d) $x \cdot y \equiv 12 \pmod{21}$
- (e) $x \cdot z \equiv 1 \pmod{4}$

Mods Question 2

Find c with $0 \le c < 11$ such that $c \equiv 14^6 + 22^{203} \pmod{11}$

	Cheat Sheet	
// Define Predicate	Induction Let P(n) be the statement	Strong Induction Let P(n) be the statement
Basis Step	Form your base case $P(x)$ (it can be more than one)	Form your base case(s) $P(x), P(x + 1),$ (usually more than one)
Inductive Hypothesis	P(x) is true	$P(j)$ is true for all j such that smallest base case $\leq j \leq k$
Inductive Step	$P(x) \rightarrow P(x+1)$	$P(i) \land P(i+1) \land \cdots P(k) \rightarrow P(k+1)$ i = smallest base case $P(j) \rightarrow P(k+1), \text{ base} \leq j \leq k$

Induction Recap

- Two types of Induction
 - Weak Induction
 - Strong Induction
- Base Case(s), Inductive Hypothesis, Inductive Step
- "Mathematical ladder"

Weak Induction

Weak Induction

- Show that the expression/statement is true for the base case (often in the form of n = 0 or n = 1).
- 2. Assume that the expression is true for some arbitrary element k in the domain appropriate for the problem.*
- 3. Show that the statement is true for P(k+1) when P(k) is true. (i.e P(k) -> P(k+1))

^{*} The domain is often **Z**⁺, but it may be different.

Prove that the following equality holds for all positive integers n:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

"Inequality" Induction

- Hardest part is substituting using inequality
- Manipulate the expressions to reduce them to desired form
- Consider things like "is the product greater than the sum?"

Prove using induction that $1 + (3^0 + 3^1 + 3^2 + \dots + 3^{n-1}) < 3^n$ for all $n \ge 1$.

Prove using induction that $1 + (3^0 + 3^1 + 3^2 + \dots + 3^{n-1}) < 3^n$ for all $n \ge 1$.

Prove using induction that

$$n^2 + n < 2^n$$
, for all integers $n \ge 5$.

Every inequality in your proof should be justified by one of the following:

- The inductive hypothesis (IH)
- $k^i < k^j$ when i < j because k > 1 (e.g., $k^2 < k^4$)
- $c \le k$ when $c \le 5$ because $k \ge 5$ (e.g., $3 \le k$)

Prove that for all $n \geq 1$, the sum of the squares of the first 2n positive integers is given by the formula

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

- Similar to Weak Induction
- Major Differences
 - Possibly multiple base cases
 - Assumes all previous steps to be true
- Still has the same format as weak induction

Prove that every integer $n \ge 12$ can be written as n = 4a + 5b for some non-negative integer a, b using strong induction.

Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, and so on. [Hint: For the inductive step, separately consider the case where k + 1 is even and where it is odd. Note that when (k + 1) is even, (k + 1)/2 is an integer.]

Have a great rest of the weekend!