Week 1

10 March 2021 13:30

· Matrices -> Multiply them.

a, b, + ... + a, b,

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{mi} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{i} \\ \vdots \\ b_{n} \end{bmatrix} = \begin{bmatrix} b_{n} \\ \vdots \\ b_{n} \end{bmatrix}$$

$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}$$

$$A_1, \dots, A_m \in \mathbb{R}^{1 \times n}$$

$$Ab = \begin{bmatrix} A_1b \\ \vdots \\ A_mb \end{bmatrix}$$

 $A \in \mathbb{R}^{m \times n}$ $B \in \mathbb{R}^{n \times p}$ $B = \begin{bmatrix} b_1 & \dots & b_p \end{bmatrix}$ $b_1, \dots, b_p \in \mathbb{R}^{n \times 1}$

$$AB = \begin{bmatrix} Ab_1 & \cdots & Ab_p \end{bmatrix} \in \mathbb{R}^{m \times p}$$

$$\in \mathbb{R}^{m \times 1}$$

AERTM, BERTM We say that B is an inverse of A if AB = I = BA. Fact. (Will see later) AB = I => BA = I this was not clear, a priori.) Functions $f, g: \times \longrightarrow \times$. $(x^{\sharp \phi} \text{ is some set.})$ If $(f \circ g)(n) = x \quad \forall x \in X$, is it necessary that (gof) (a) = x & x Ex ? No. Find example. Ax = b. (*) $A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^{n \times l}, \ b \in \mathbb{R}^{n \times l}$ If A is up per triangular, it is easy by back - substitution. (Whether consistent or not is also clear. Idea: Do operations on both A and b to get something as above. \rightarrow If $Az_0 = b$, i.e., z_0 is a porticular sol, and $S = \{z \in \mathbb{R}^{n\times 1} | Az = 0\}$. Then, all solutions of (+) are precisely of the form 20 +5 for some EES. Idea: Row echelon form (REF)

(1) All zero rows at bottom. (Possibly none.)

(No zero row can be above a nonzero row.) first to element from left

(2) Pirote should be strictly from left to right as you go from top to bottom.

Week 2 17 March 2021 09:42 Outline: 1. Recall REF. n variables, r pivots \Rightarrow (n - r) free variables 2. Ax = 0 has only the zero solution ⇔ n = r ← every column has a port 3. EROs 4. GEM 5. Ax = 0 has only the zero solution \Leftrightarrow any REF of A has n non-zero rows 6. Inverse 7. Ax = 0 has *only* the zero solution \Leftrightarrow A is invertible 8. Let A, $B \in \mathbb{R}^{n}$ $AB = I \Leftrightarrow BA = I$ 9. RCF. REF + pivots are 1 + the entries above the pivots are 0s 10. A can be transformed to I via EROs ⇔ A is invertible 11. GJM 12. Linear (in)dependence 13. Row rank 14. Given n column vectors, make a matrix with those as columns and find its row rank r. We know $r \le n$. The vectors are linearly independent $\Leftrightarrow r = n$. 15. EROs don't change row rank. Thus, **A** and REF(**A**) have the same row rank. 16. If A' is in REF, then row-rank(A') = number-of-non-zero-rows(A'). 3. EROS -> Elementary Row operations Type 1: Interchange two rows Type 11: Add a scalar multiple of Ri Type III: Multiplying a row with a non-zero scalar GEM - Gauss Elimination Method Algo to convert a matrix into an REF hoing EROS. # non-zero rows of A' = # pirots of A' (A' is in REF) 5 follows from 2. 6. If $A \in \mathbb{R}^{n \times n}$, then $B \in \mathbb{R}^{n \times n}$ is an the

inverse of A if AB = I = BA.

9. RCF if (1) it is REF (ii) it has all pivots as I (iii) everything above pivot are also 0 RCF is unique. (REF need not be.) A is invertible (RCF of A is I @ A can be transformed to I via EROS Take A E R^x^ Make the augmented matrix [AII] performs EROS to make A into
its RCF (so some operations on
I as well) [A' (B] If A is in, then A' = I and B = A'. If A is not inv., then $A' \neq I$. Linear de pendence \cdot S C $\mathbb{R}^{n\times l}$ (or $\mathbb{R}^{l\times n}$) (possibly infinite)

· S is linearly dependent if there exist (distinct) V,, ..., Vs ES and V, ..., de EIR, not all zero such that $\alpha_1 V_1 + \cdots + \alpha_s V_s = 0$ $\Rightarrow_{k} \mathbb{R}^{n \times l} \left(\text{or } \mathbb{R}^{l \times n} \right)$ · For example, if d, +0 and n>2, then $V_1 = - \frac{1}{2} (\alpha_2 V_2 + \cdots + \alpha_5 V_5).$ · if OES, then S is lin. dep. Take n=1, $v_1 = 0$, $d_1 = 1 \neq 0$. Then, 1.0 = 0. • If $S = \{ v^3 \text{ and } v \neq 0 \text{. Then, } S$ s not lin. dep. • if $S = \emptyset$, then S is not line dep. · S is linearly independent if S is not livearly dependent. · b is lin. in dep. {v} is lin indep iff v = 0. 13. How-rank (A) = maximum no. of lin. indep rows of A. if A = O, then row - rank(A) = 0. γοω-ronk [1 1] = 1 this is lin indep {[1], [2] 2]} is lin. dep.

15. In general, row - rank(A) = row - rank(A')Where A' is an REF of A.

Week 4

31 March 2021 10:47

Outline:

- 1. Linear transformations
- 2. Model example
- 3. M^E_F(T)
- 4. Composite
- 5. Null space, image space (relate with A, T_A)
- 6. Eigen(value, vector, space)
- 7. Characteristic polynomial
- 8. Algebraic, geometric multiplicity
- 9. Similarity of square matrices
- 10. When is $B \sim A$?
- 11. Diagonalisable, how do we get P?

1.
$$V$$
, $W \rightarrow vector spaces ovon K $(K = \mathbb{R} \text{ or } C)$$

A linear transformation from V to W is a function $T: V \longrightarrow W$ with the following properties:

(i)
$$T(V_1 + V_2) = T(V_1) + T(V_2) \quad \forall V_1, V_2 \in V,$$

(ii) $T(\propto V) = \alpha \cdot T(V) \quad \forall \alpha \in K, \forall v \in V.$

(ii) For all
$$\alpha_1,...,\alpha_s \in K$$
 and $V_1,...,V_s \in V$:
$$T(\alpha_1 V_1 + \cdots + \alpha_s V_s) = T(\alpha_1 V_1) + \cdots + T(\alpha_s V_s)$$

$$= \alpha_1 T(V_1) + \cdots + \alpha_s T(V_s).$$

2. Let
$$A \in \mathbb{R}^{m \times n}$$
. This gives a linear transformation $T_A : \mathbb{R}^{n \times 1} \longrightarrow \mathbb{R}^{m \times 1}$

3. Me(T).

Let T: V -> W be a lin. transf.

Fix ordered bases E of V and F of W.

Say, $E = (V_1, ..., V_n)$ and $F = (\omega_1, \ldots, \omega_m)$

The matrix $M = M_F^E(\tau)$ is defined as:

(i) Compute T(Vi) and write it as a lin.

combination of F. ((on do this since F)

(This combination is is a basis of W.) vnique:

 $T(v_1) = a_{11} \omega_1 + a_{21} \omega_2 + \cdots + a_{m_1} \omega_m.$

The first column of M is

- (ii) Do the same for T(v2).
 - (n) Do it for T(vn).

4. V. Spaces V T W S

4. v.spaus V T W S U

(ordered) bases E F G T and S are lin. transf. Note S.T: V -> U is also linear. (Checkel) $M_{G}^{E}(S \circ T) = M_{G}^{F}(S) M_{F}^{E}(T).$ 5. T: V -> W lin. transf. $W(T) := \{ v \in V : T(v) = 0 \} \subseteq V$ vector subspaces of V and W T(T) := { WEW: BVEV SA. T(V) = W = W IX V= Rnx1, W= Rmx1, A & Rmxh, then $\mathcal{N}(T_A) = \mathcal{N}(A)$ and $I(T_A) = C(A)$ 6. Let $A \in \mathbb{K}^{m \times n}$.

Suppose $v \in \mathbb{K}^{n \times 1} \setminus \{0\}$ and $v \in \mathbb{K}$ is such that $Av = \lambda v$ Then, v is called an eigenvector of A and n eigenvalue.

The eigenspace of λ is defined as $\mathcal{N}(A-\lambda I) = \{ v \in \mathbb{R}^{n \times l} : Av = \lambda v \}.$ All eigenvectors along with 0. Let $P_A(t) := det (A - tI)$. This is the characteristic polynomial of A. Thm. The is an e-val of A (3) =0. 8. geometric multiplicity of $\lambda := dim(N(A-\lambda I))$ algebraic multiplicity of $\lambda := longest$ m s.t. $(t-\lambda)^n$ is a factor of $\beta_A(t)$. 9. Let A, B EKnin. $A \sim B \iff \exists P \in \mathbb{K}^{n \times n}$ invertible such that P-1 A P = B Check: ~ is an equivalence relation. 11. A C IK "x" is said to be diagonalisable if

A is similar to a diagonal matrix.

Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} . In fact,

$$\mathbf{P}^{-1}\mathbf{AP}=\mathbf{D}$$
, where $\mathbf{P},\mathbf{D}\in\mathbb{K}^{n imes n}$ are of the form

$$\mathbf{P} = egin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}$$
 and $\mathbf{D} = \mathsf{diag}(\lambda_1, \dots, \lambda_n)$

$$\iff \{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$$
 is a basis for $\mathbb{K}^{n\times 1}$ and

$$\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k$$
 for $k = 1, \dots, n$.