Deep Reinforcement Learning

Overview of main articles
Part 1. Value-based algorithms

Sergey Ivanov

December 1, 2018

MSU

Table of contents i

Reinforcement Learning [reminder]

Deep Q-learning (2014)

Stabilizing Q-learning

Target-network heuristic (2015)

Double DQN (2015)

Dueling DQN (2016)

Prioritized replay memory (2015)

Noisy networks for exploration (2017)

Categorical DQN (2017)

Rainbow DQN (2018)

Quantile Regression (2017)

Reinforcement Learning

Remoteement Learning

[reminder]

MDP

```
MDP is \{\mathbb{S}, \mathbb{A}, \mathbb{T}, r\}: \mathbb{S} \longrightarrow \text{set of states} \mathbb{A} \longrightarrow \text{set of actions} \mathbb{T} \longrightarrow \text{probability } p(s' \mid s, a), \text{ where } s, s' \in \mathbb{S}, a \in \mathbb{A} r \longrightarrow \text{function } \mathbb{S} \longrightarrow \mathbb{R}
```

RL Goal

We search for policy $\pi:\mathbb{S}\to\mathbb{A}$ which maximizes 1

$$\mathbb{E}\sum_t r(s_t)$$

 $^{^{1}}$ over what probability distributions is this expectation?

RL Goal

We search for policy $\pi:\mathbb{S}\to\mathbb{A}$ which maximizes¹

$$\mathbb{E}\sum_t r(s_t)$$

This goal does not suit infinite horizon case, so for generalization purposes goal is substituted with

$$\mathbb{E}\sum_t \gamma^t r(s_t)$$

for $\gamma \in (0,1)$ and is referred as discounted reward.

 $^{^{1}}$ over what probability distributions is this expectation?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

²What does this random variable depend on?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

For given policy π :

$$V^{\pi}(s) = \mathbb{E}R \mid s_0 = s$$

$$Q^{\pi}(s, a) = \mathbb{E}V(s') \mid s, a$$

²What does this random variable depend on?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

For given policy π :

$$V^{\pi}(s) = \mathbb{E}R \mid s_0 = s$$
 $Q^{\pi}(s, a) = \mathbb{E}V(s') \mid s, a$

Let π^* be optimal policy.

²What does this random variable depend on?

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It is also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It is also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It is also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It is also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

Insert (2) into (1):

Bellman Equation

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s', \underset{a}{argmax} \ Q^{\pi^*}(s', a))\right]$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It is also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
(1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

Insert (2) into (1):

Bellman Equation

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + \max_{a} Q^{\pi^*}(s',a)\right]$$

For finite-state case Q^{π^*} is finite vector of unknown values. Bellman equations can be solved using point iteration:

$$Q_{t+1}(s,a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s',a)\right]$$

For finite-state case Q^{π^*} is finite vector of unknown values. Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

For finite-state case Q^{π^*} is finite vector of unknown values.

Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

Temporal Difference Learning

$$Q_{t+1}(s,a) = \alpha Q_t(s,a) + (1-\alpha) \left[r(s') + \max_{a} Q_t(s',a) \right]$$

6

For finite-state case Q^{π^*} is finite vector of unknown values.

Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

Temporal Difference Learning

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right]$$

 \checkmark Is a contraction mapping ⇒ converges.

Deep Q-learning (2014)

Atari

- * No prepared features for each game.
- * Screen image as input.
- * Finite-state case... not quite finite.

Atari games

Atari

- * No prepared features for each game.
- * Screen image as input.
- * Finite-state case... not quite finite.

Atari games

We want to approximate Q(s, a) with neural net.

Q-network

Q-network

Option 2 Number of actions must be adequate

¹Is there a case when option 1 might be better?

Q-network

Atari: up to 18 discrete actions. Use option 2.

¹Is there a case when option 1 might be better?

$$Q_{t+1}(s,a) = \alpha Q_t(s,a) + (1-\alpha) \left[r(s') + \max_{a} Q_t(s',a) \right]$$

TD-learning is «similar» to gradient descent.

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right]$$

9

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

Let
$$y = r(s') + \max_a Q_t(s', a)$$
.

TD-learning is «similar» to gradient descent.

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

Let $y = r(s') + \max_a Q_t(s', a)$. If dependence of y from Q is ignored:

$$L = (Q_t(s,a) - y)^2$$

With $\mathit{Q}(\mathit{s},\mathit{a})$ as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

With Q(s,a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's "translate" gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's "translate" gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

 \times batch_size = 1. Wow.

With Q(s,a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's "translate" gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

- \times batch_size = 1. Wow.
- \times Target y changes after each step.

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's "translate" gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

- \times batch_size = 1. Wow.
- \times Target y changes after each step.
- × All theoretical guarantees are lost.

Experience Replay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

Experience Replay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

Pretend on each step that loss function is

$$\mathbb{E}_{(s,a,s',r,done)}(Q(s,a,\theta)-y(s',r,done))^2$$

Batch of transitions is sampled uniformly from memory.

Experience Replay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

Pretend on each step that loss function is

$$\mathbb{E}_{(s,a,s',r,done)}(Q(s,a,\theta)-y(s',r,done))^2$$

Batch of transitions is sampled uniformly from memory.

- √ Decorellates samples.
- * Target y can be calculated only for sampled batch.
- * Only last N observed transitions may be stored

ε -greedy exploration

Problem: at the very beginning trajectories generated by $\pi(s) = \mathop{argmax}_{a} Q(s, a, \theta)$ are very similar.

ε -greedy exploration

Problem: at the very beginning trajectories generated by $\pi(s) = \underset{s}{\operatorname{argmax}} Q(s, a, \theta)$ are very similar.

Choose random actions sometimes.

For example, with probability ε . It should be big at the beginning and small at the end.

ε -greedy exploration

Problem: at the very beginning trajectories generated by $\pi(s) = \operatorname{argmax} Q(s, a, \theta)$ are very similar.

Choose random actions sometimes.

For example, with probability ε . It should be big at the beginning and small at the end.

Atari: $\varepsilon(i) = 0.01 + 0.99 \exp\{-\frac{i}{30000}\}$ where i is frames counter.

Details

- Gray-scale frames were downsampled and cropped to 84x84.
- Last 4 frames³ were considered as state to satisfy MDP Markov's property.
- Same NN architecture was used for all games: 3 convolutional⁴ and 2 feedforward layers.

³3 for Space Invaders cause of laser blinking period

⁴why no max pooling here?

More details

Playing Atari with Deep Reinforcement Learning (2014)

- Reward was restricted to $\{+1, 0, -1\}$. Allowed to use same learning rate for all games.
- :(50 hours per game / 10 000 000 frames per game.
- :} Bought by Google after 7 games.

Stabilizing Q-learning

Unstability

Recall our target on each step:

$$y(s',r) = r + \max_{a'} Q(s',a',\theta)$$

- Changes each frame
- Formally depends on θ
- "Correlates" with actions chosen during playing
- Tends to overestimate true V(s')
- \Rightarrow loss is completely unstable and can even diverge.

Target network (2015)

Change the target not every step, but each ${\it K}\mbox{-th}$ step.

Target network (2015)

Change the target not every step, but each K-th step.

For this purpose:

- Make a copy of Q-network, target network Q^{target}
- Use it on every step to calculate

$$y(s',r) = r + \max_{a'} Q^{\text{target}}(s',a')$$

 Each K-th step update Q^{target}'s parameters with current Q-network's weights.

Can be seen on loss

✓ Loss really stabilized!

Value overestimation

Recall our target is proxy of $V^{\pi^*}(s',a')$

$$y(s',r) = r + \max_{a'} Q(s',a')$$

Practice: this proxy overestimates true value of states.

Intuition: this max operator will prefer actions, for which Q(s',a') is overestimating true value due to approximation error or luck.

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a') = r + Q(s', \underset{a'}{argmax} Q(s',a'))$$

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a') = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s',a'))$$

- * $a' = \underset{a'}{\operatorname{argmax}} Q(s', a')$ is action selection
- * Q(s', a') is action evaluation

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a') = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s',a'))$$

- * $a' = \underset{a'}{\operatorname{argmax}} Q(s', a')$ is action selection
- * Q(s', a') is action evaluation

General idea:

Use different approximations of Q for evaluation and for selection to avoid max.

Two Q-learnings

Basic way to do this:

run two Q-learning algorithms with two approximations of Q^{π^*} : $Q_1(s,a)$ and $Q_2(s,a)$.

Two Q-learnings

Basic way to do this:

run two Q-learning algorithms with two approximations of Q^{π^*} : $Q_1(s,a)$ and $Q_2(s,a)$.

Targets for Q-learnings:

$$y_1 = r + Q_2\left(s', \mathop{argmax}_{a'} Q_1(s', a')
ight)$$
 $y_2 = r + Q_1\left(s', \mathop{argmax}_{a'} Q_2(s', a')
ight)$

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

⁵how many backwards?

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

$$y = r + Q^{target}(s', \underset{a'}{argmax} Q(s', a'))$$

⁵how many backwards?

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

$$y = r + Q^{target}(s', \underset{a'}{argmax} Q(s', a'))$$

- * Keep ignoring dependence of y from θ .
- * Requires three forward passes on each step⁵.

⁵how many backwards?

Comparing DQNs

Table 1: DQN targets

DQN	target y
Classic Deep Q-learning	r + Q(s', argmax Q(s', a'))
With target-network	$r + Q^{target}(s', \underset{a'}{argmax} Q^{target}(s', a'))$
Double Deep Q-learning	$r + Q^{\text{target}}(s', \underset{a'}{\operatorname{argmax}} Q(s', a'))$

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect the return.
- * After finding Q(s, a) Q-learning still gains no information about Q(s, a') for $a' \neq a$.

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect the return.
- * After finding Q(s, a) Q-learning still gains no information about Q(s, a') for $a' \neq a$.

 \Rightarrow after trying an action in a bad state, Q-learning wants to try all other actions in this state.

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect the return.
- * After finding Q(s,a) Q-learning still gains no information about Q(s,a') for $a' \neq a$.

 \Rightarrow after trying an action in a bad state, Q-learning wants to try all other actions in this state.

Learning Q(s, a) should lead to learning V(s)

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Note:

$$\mathbb{E}_{a \sim \pi} A^{\pi}(s, a) = \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \frac{V^{\pi}(s)}{s} =$$

$$= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) = 0$$

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Note:

$$\begin{split} \mathbb{E}_{a \sim \pi} A^{\pi}(s, a) &= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - V^{\pi}(s) = \\ &= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) = 0 \end{split}$$

Rewrite Q-function in terms of value of state:

$$Q^{\pi}(s,a) = V^{\pi}(s) + A^{\pi}(s,a)$$

Dueling DQN (2016)

Dueling Network Architectures for Deep Reinforcement Learning (2016)

Dueling Q-network architecture

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \mathop{argmax}\limits_{a} Q(s,a)$ this property is equivalent to

$$\max_{a} A(s,a) = 0$$

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \mathop{argmax}\limits_{a} Q(s,a)$ this property is equivalent to

$$\max_{a} A(s,a) = 0$$

Proposition:

$$Q(s, a) = V(s) + A(s, a) - \max_{a} A(s, a)$$

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$ this property is equivalent to

$$\max_a A(s,a) = 0$$

Proposition:

$$Q(s,a) = V(s) + A(s,a) - \max_{a} A(s,a)$$

$$Q(s, a) = V(s) + A(s, a) - \underset{a}{mean} A(s, a)$$

suddenly worked better.

Dueling DQN: Results

- ✓ Learning Q(s, a) leads to correcting V(s).
 - * Only network architecture is changed.
- * Double DQN still works for dueling architecture.

Prioritized replay memory (2015)

In standard DQN we sample batch of transitions from replay memory uniformly.

- \times Some transitions are more important than others
- × Replay memory is full of almost useless transitions

In standard DQN we sample batch of transitions from replay memory uniformly.

- \times Some transitions are more important than others
- imes Replay memory is full of almost useless transitions

 $\delta = |y(s', r, done) - Q(s, a)|$ is a good proxy of transition importance

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Problems:

× On each step this probability changes for all the replay memory ⁶

⁶which capacity is on the order of 1M transitions

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Problems:

× On each step this probability changes for all the replay memory ⁶ \approx on each step update δ only for the currently sampled batch

⁶which capacity is on the order of 1M transitions

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found lpha pprox 0.6 is a good universal value.

Problems:

- × On each step this probability changes for all the replay memory ⁶ \approx on each step update δ only for the currently sampled batch
- × Introduces bias (transitions are now sampled from hell knows what distribution).

⁶which capacity is on the order of 1M transitions

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

That's exactly what we want: to substitute expectation of loss over uniform sampling from experience replay to expectation over our own prioritized distribution!

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

That's exactly what we want: to substitute expectation of loss (f(x)) over uniform sampling from experience replay (p(x)) to expectation over our own prioritized distribution (q(x))!

Applying Importance Sampling

If N is replay memory capacity:

$$L = \mathbb{E}_{\mathcal{T} \sim uniform}(y - Q(s, a))^2 = \mathbb{E}_{\mathcal{T} \sim prioritized} \frac{1}{Np(\mathcal{T})} (y - Q(s, a))^2$$

IS just adds weights to our batch:

$$w_i = \frac{1}{Np(\mathcal{T}_i)}$$

Annealing weights

Problem: at the beginning these weights might not be that relevant, yet slowing down learning.

Annealing weights

Problem: at the beginning these weights might not be that relevant, yet slowing down learning.

Let's smooth them at the beginning of learning:

$$L = \mathbb{E}_{\mathcal{T} \sim prioritized} \left(\frac{1}{\mathit{Np}(\mathcal{T})} \right)^{eta} (y - \mathit{Q}(s, a))^2,$$

where β changes from 0.4 to 1 linearly during first 100 000 frames.

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^7$ normalize weights by dividing on max w_i .

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^7$ normalize weights by dividing on $\max_i w_i$.

* $min(1, |\delta|)$ is used instead of $|\delta|$ for stabilization purposes.

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^7$ normalize weights by dividing on $\max_i w_i$.

- * $\min(1, |\delta|)$ is used instead of $|\delta|$ for stabilization purposes.
- * new transitions are stored with maximum priority.

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Noisy networks for exploration (2017)

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Add parametric noise to the weights of Q-network

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Add parametric noise to the weights of Q-network

Noisy Nets for Exploration (2017):

$$w_i = \mu_i + \sigma_i \varepsilon_i, \quad \varepsilon \sim \mathcal{N}(0, 1)$$

- * μ_i, σ_i are both learnable parameters.
- * all weights are independent random variables
- * use policy $\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a, \mu, \sigma, \varepsilon)$

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

 $^{^8\}mbox{Noisy}$ Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

Problem: *y* also depends on stochastic *Q*-function.

 $^{^8\}mbox{Noisy}$ Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

Problem: y also depends on stochastic Q-function.

* use different noise samples for it:

$$y = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s', a', \varepsilon''), \varepsilon')$$

 $^{^8}$ Noisy Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias ⁹

 $^{^{9}}$ authors also scale them with f

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias ⁹
- \checkmark just M + 2N noise samples are needed.

 $^{^{9}}$ authors also scale them with f

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias 9
- \checkmark just M + 2N noise samples are needed.
 - * for whole batch!10

 $^{^{9}}$ authors also scale them with f

¹⁰is this theoretically coherent?

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.

 $^{^{11}}$ why?

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process

¹¹why?

 $^{^{12}}$ on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes

 $^{^{11}}$ why?

¹²on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes
- \checkmark almost random behavior at the beginning

¹¹why?

 $^{^{12}}$ on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes
- √ almost random behavior at the beginning
 - * yet $\varepsilon\text{-greedy}$ strategy may also be used

¹¹why?

¹²on practice, behaves very differently from game to game

Categorical DQN (2017)

Consider a state where you get 1000 or -1000 with probabilities 0.5.

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0.

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0. But you never really get 0.

Motivation

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0. But you never really get 0.

Learn a distribution over future reward instead of it's expectation.

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_{t}) \mid s,a$$

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_{t}) \mid s,a$$

A Distributional Perspective on Reinforcement Learning (2017):

For fixed policy π let's define *value distribution*:

Value distribution

Let's define value distribution as distribution of

$$Z^{\pi}(s,a) = \sum_{t} r(s_{t}) \mid s,a$$

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_{t}) \mid s,a$$

A Distributional Perspective on Reinforcement Learning (2017):

For fixed policy π let's define value distribution:

Value distribution

Let's define value distribution as distribution of

$$Z^{\pi}(s,a) = \sum_{t} r(s_t) \mid s,a$$

! It's a random variable!

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s, a) \stackrel{\mathrm{D}}{=} r(s, a) + \gamma Z^{\pi}(s', \pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

$$\checkmark$$
 yes, for $d(Z_1, Z_2) = \sup_{s,a} \mathcal{W}(Z_1(s, a), Z_2(s, a))$, where \mathcal{W} is

Wasserstein distance between two random variables.

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Analogically:
$$\pi^*(s) = \max_{a} \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s',\pi^*(s'))$$

Analogically:
$$\pi^*(s) = \max_{a} \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s',a'))$$

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E}Z^{\pi^*}(s',a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

¹³and why are we asking this again?

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s, a) \stackrel{\text{D}}{=} r(s, a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s', a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

 \times no, it will not.

¹³and why are we asking this again?

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s, a) \stackrel{\text{D}}{=} r(s, a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s', a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

- \times no, it will not.
- imes there may be no fixed point at all

¹³and why are we asking this again?

Analogically: $\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E}Z^{\pi^*}(s',a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

- \times no, it will not.
- imes there may be no fixed point at all
- × and existence of one doesn't guarantee convergence to it

¹³and why are we asking this again?

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

Problems:

? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

Problems:

? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it? \checkmark use some distribution family as approximation: $p(Z_t(s,a)) \approx Z_\theta$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it? \checkmark use some distribution family as approximation: $p(Z_t(s,a)) \approx Z_\theta$
- ? we have only samples of s' and r(s, a)

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it? \checkmark use some distribution family as approximation: $p(Z_t(s,a)) \approx Z_\theta$
 - v use some distribution raining as approximation. $p(Z_t(s,a)) \approx 2$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L=\mathbb{E}_{\mathcal{T}}(y-Q_{ heta})^2$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?
 - \checkmark use some distribution family as approximation: $p(Z_t(s,a)) \approx Z_{\theta}$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L = \mathbb{E}_{\mathcal{T}}(y-Q_{ heta})^2$
 - ✓ let's optimize $L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta})$, where \mathcal{D} is some divergence

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z_t(s', a')\right)\right)$$

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?
 - \checkmark use some distribution family as approximation: $p(Z_t(s,a)) \approx Z_{\theta}$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L = \mathbb{E}_{\mathcal{T}}(y-Q_{ heta})^2$
 - ✓ let's optimize $L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta})$, where \mathcal{D} is some divergence

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a)).$

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a))$.

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a)).$

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a))$.

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

Problem: and what?

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a) = \mathbb{E}_{\mathcal{T}} p(y \mid s')$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a)).$

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

Problem: and what?

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

* we are free to choose $\mathcal{D}!$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

√ this can be evaluated through Monte-Carlo!

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

- √ this can be evaluated through Monte-Carlo!
- × trick doesn't work for other divergences!

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

- √ this can be evaluated through Monte-Carlo!
- × trick doesn't work for other divergences!
- * KL requires Z_{t+1} and Z_{θ} share domain.

Distribution family

Options:

- Gaussian mixture
- Discrete

Distribution family

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Distribution family

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Let's $\mathcal P$ be a family of categorical distribution on the grid from V_{\min} to V_{\max} with N atoms (outcomes).

Distribution family

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Let's $\mathcal P$ be a family of categorical distribution on the grid from V_{\min} to V_{\max} with N atoms (outcomes).

Parametrization:

For each action our neural network Z(s,a) outputs ${\it N}$ numbers, summing into 1

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s, a) \in \mathcal{P}$. Then:

$$y(s') = r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a'))$$

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s, a) \in \mathcal{P}$. Then:

$$y(s') = r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a')) \in \mathcal{P}$$
?

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s, a) \in \mathcal{P}$. Then:

$$y(s') = Pr\left[r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a'))\right] \in \mathcal{P}$$

How it looks like

Failed to insert video into beamer ;o)

Rainbow DQN (2018)

Blend them all!

Multistep DQN: Motivation

Recall our target in classic DQN:

$$y = r + \gamma \max_{a'} Q(s', a')$$

If we have nonzero reward at the end of M-step game, we need at least M iterations of Q-learning to «propagate» this reward to all visited states.

Multistep DQN: Motivation

Recall our target in classic DQN:

$$y = r + \gamma \max_{a'} Q(s', a')$$

If we have nonzero reward at the end of M-step game, we need at least M iterations of Q-learning to «propagate» this reward to all visited states.

Look more than one step ahead!

• work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$
- use new target:

$$y = R + \gamma^{M} \max_{a^{(M)}} Q(s^{(M)}, a^{(M)})$$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$
- use new target:

$$y = R + \gamma^{M} \max_{a^{(M)}} Q(s^{(M)}, a^{(M)})$$

imes formally can be used only with on-policy algorithms 14

¹⁴ why?

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$
- use new target:

$$y = R + \gamma^{M} \max_{a^{(M)}} Q(s^{(M)}, a^{(M)})$$

- imes formally can be used only with on-policy algorithms 14
- imes the further we look the worser y approximates $Q^{\pi^*}(s,a)$
 - $\Rightarrow\,$ number of steps should be chosen carefully.

¹⁴ why?

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

It can also be made multi-step:

$$y = \Pr\left[R + \gamma^{M}Z(s^{(M)}, \underset{a^{(M)}}{\operatorname{argmax}} \mathbb{E}Z(s^{(M)}, a^{(M)}))\right]$$

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

It can also be made multi-step:

$$y = \text{Pr}\left[R + \gamma^{M}Z(s^{(M)}, \underset{a^{(M)}}{\operatorname{argmax}} \mathbb{E}Z(s^{(M)}, a^{(M)}))\right]$$

Loss stays the same:

$$L = \mathsf{KL}(p(y) \parallel p(Z))$$

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s,a) = V(s) + A(s,a) - \mathop{\mathit{mean}}_a A(s,a)$$

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s,a) = V(s) + A(s,a) - \mathop{mean}_{a} A(s,a)$$

Let's make our Z(s, a) (modeling categorical distribution with N atoms) in dueling way:

$$Z(s,a) = V_N(s) + A_N(s,a) - \mathop{mean}_a A_N(s,a)$$

where $V_N(s)$ and $A_N(s,a)$ are categorical N-atomed distributions.

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s, a) = V(s) + A(s, a) - \underset{a}{mean} A(s, a)$$

Let's make our Z(s, a) (modeling categorical distribution with N atoms) in dueling way:

$$Z(s,a) = softmax(V_N(s) + A_N(s,a) - mean_a A_N(s,a))$$

where $V_N(s)$ and $A_N(s,a)$ are arbitrary N numbers¹⁵

¹⁵why couldn't we only add softmax?

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

• Noisy: add noise to all fully connected layers

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

- Noisy: add noise to all fully connected layers
- Prioritized Replay: just use it 16

¹⁶guess proxy of transition priority

Do we really need all this?

Rainbow: resume

* all improvements are important as they address different problems

Rainbow: resume

* all improvements are important as they address different problems \times a lot of hyperparameters

Rainbow: resume

- * all improvements are important as they address different problems
- \times a lot of hyperparameters
- ? Allegedly 10 hours for 7M frames on single GPU
 - :(I can't reproduce 17

¹⁷10 hours for 3M. Noise generation seems to be a problem!

Quantile Regression (2017)

Motivation

Categorical DQN was an obviously reconnaissance step into the field of distributional RL.

- × Proposed optimization step ignores Wasserstein's metric, for which some theoretical guarantees of converges persist.
- × KL-divergence can't be used for distributions with disjoint support, which limits $Z_{\theta}(s, a)$ to artificial boundaries.

Let $F_Y(w), F_U(w)$ be cumulative distribution functions (CDF), i.e.

$$F_Y(x) = P(Y < x)$$

$$F_U(x) = P(U < x)$$

Let $F_Y(w)$, $F_U(w)$ be cumulative distribution functions (CDF), i.e.

$$F_Y(x) = P(Y < x)$$

$$F_U(x) = P(U < x)$$

Following from the properties of CDF, there exist inverse CDF:

$$F_Y^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_Y(x)\}\$$

$$F_U^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_U(x)\}\$$

Let $F_Y(w)$, $F_U(w)$ be cumulative distribution functions (CDF), i.e.

$$F_Y(x) = P(Y < x)$$
$$F_U(x) = P(U < x)$$

Following from the properties of CDF, there exist inverse CDF:

$$F_Y^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_Y(x)\}\$$

$$F_U^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_U(x)\}\$$

 $F_Y^{-1}(\tau)$ is called τ -th quantile of random variable Y.

Let $F_Y(w)$, $F_U(w)$ be cumulative distribution functions (CDF), i.e.

$$F_{Y}(x) = P(Y < x)$$

$$F_{U}(x) = P(U < x)$$

Following from the properties of CDF, there exist inverse CDF:

$$F_Y^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_Y(x)\}\$$

$$F_U^{-1}(\tau) = \inf\{x \in \mathbb{R} \mid \tau \le F_U(x)\}\$$

 $F_Y^{-1}(\tau)$ is called τ -th quantile of random variable Y.

p-Wasserstein Metric

$$W_p(Y,U) = \left(\int_0^1 |F_Y^{-1}(\tau) - F_U^{-1}(\tau)|^p d\tau\right)^{\frac{1}{p}}$$

Convergence properties

Recall distributional Bellman equation for given policy π :

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r + \gamma Z^{\pi}(s',a'), \quad a' \sim \pi(s')$$
 (3)

Convergence properties

Recall distributional Bellman equation for given policy π :

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r + \gamma Z^{\pi}(s',a'), \quad a' \sim \pi(s')$$
 (3)

Let introduce the following metric in the space $\mathbb{Z}: \mathbb{S} \times \mathbb{A} \to \mathcal{P}(\mathbb{R})$:

$$D_p(Z_1, Z_2) = \sup_{s,a} [W_p(Z_1(s, a), Z_2(s, a))]$$
 (4)

Convergence properties

Recall distributional Bellman equation for given policy π :

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r + \gamma Z^{\pi}(s',a'), \quad a' \sim \pi(s')$$
 (3)

Let introduce the following metric in the space $\mathbb{Z}: \mathbb{S} \times \mathbb{A} \to \mathcal{P}(\mathbb{R})$:

$$D_p(Z_1, Z_2) = \sup_{s, a} [W_p(Z_1(s, a), Z_2(s, a))]$$
 (4)

Theorem

Policy iteration update for 3 in $\ensuremath{\mathbb{Z}}$ is a contraction mapping for metric 4

QR-DQN Key Idea

Categorical DQN:

- * fixed support (i.e. -10, -9.5 ... 9.5, 10)
- * variable probabilities (output of neural net)
- * KL-divergence minimized

QR-DQN Key Idea

Categorical DQN:

- * fixed support (i.e. -10, -9.5 ... 9.5, 10)
- * variable probabilities (output of neural net)
- * KL-divergence minimized

Distributional Reinforcement Learning with Quantile Regression (2017):

- * variable support (output of neural net)
- * fixed probabilities (i.e. 0, 0.1 ... 0.9, 1)
- * Wasserstein minimized

Optimization step goal

Let Z_{θ} be a family of *uniform* categorical distributions on the support $\{\theta_1 \dots \theta_N\}$ for some fixed number of atoms N.

Optimization step goal

Let Z_{θ} be a family of *uniform* categorical distributions on the support $\{\theta_1 \dots \theta_N\}$ for some fixed number of atoms N.

For transition $\mathcal{T}=(s,a,r,s',\text{done})$ our goal is to update our approximation of distribution of Z(s,a) with

$$y(\mathcal{T}) = p\left(r + (1 - \mathsf{done})\gamma Z\left(s', \underset{\mathsf{a}'}{\mathsf{argmax}} \mathbb{E}Z(s', \mathsf{a}')\right)\right)$$

Optimization step goal

Let Z_{θ} be a family of *uniform* categorical distributions on the support $\{\theta_1 \dots \theta_N\}$ for some fixed number of atoms N.

For transition $\mathcal{T} = (s, a, r, s', \text{done})$ our goal is to update our approximation of distribution of Z(s, a) with

$$y(\mathcal{T}) = p\left(r + (1 - \mathsf{done})\gamma Z\left(s', \underset{\mathsf{a'}}{\mathsf{argmax}} \mathbb{E}Z(s', \mathsf{a'})\right)\right)$$

Note that if $\forall s, a \colon p\left(Z(s, a)\right) \in Z_{\theta}$, then $y \in Z_{\theta}!$

√ projection step is no longer required!

$$Loss(\mathcal{T}) = W_p(y(\mathcal{T}), Z(s, a))$$

The ambush!

Recall that $y(\mathcal{T})$ is also a random variable, sampled from environment dynamics...

Theorem

Let Y(s, a) denote y(s'), where $s' \sim p(s' \mid s, a)$ and not taken fixed from experience replay. Then in general:

$$\underset{Z}{\operatorname{argmin}} \mathbb{E} W_p(y(\mathcal{T}), Z(s, a)) \neq \underset{Z}{\operatorname{argmin}} W_p(Y(s, a), Z(s, a))$$

The ambush!

Recall that $y(\mathcal{T})$ is also a random variable, sampled from environment dynamics...

Theorem

Let Y(s, a) denote y(s'), where $s' \sim p(s' \mid s, a)$ and not taken fixed from experience replay. Then in general:

$$\underset{Z}{\operatorname{argmin}} \mathbb{E} W_p(y(\mathcal{T}), Z(s, a)) \neq \underset{Z}{\operatorname{argmin}} W_p(Y(s, a), Z(s, a))$$

We want to minimize the following distance:

$$W_p(Y,Z(s,a)) \to \min_{p(Z(s,a)) \in Z_{\theta}}$$

We want to minimize the following distance:

$$W_p(Y,Z(s,a)) o \min_{p(Z(s,a)) \in Z_{\theta}}$$

$$W_1(Y, Z(s,a)) = \int_0^1 |F_Y^{-1}(\tau) - F_{Z(s,a)}^{-1}(\tau)| d\tau$$

We want to minimize the following distance:

$$W_p(Y,Z(s,a)) \to \min_{p(Z(s,a)) \in Z_\theta}$$

$$W_1(Y, Z(s, a)) = \int_0^1 |F_Y^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)| d\tau =$$

$$= \sum_{i=1}^N \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_Y^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)| d\tau$$

We want to minimize the following distance:

$$W_p(Y,Z(s,a)) \to \min_{p(Z(s,a)) \in Z_\theta}$$

$$W_{1}(Y, Z(s, a)) = \int_{0}^{1} |F_{Y}^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)|d\tau =$$

$$= \sum_{i=1}^{N} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_{Y}^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)|d\tau =$$

$$= \sum_{i=1}^{N} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_{Y}^{-1}(\tau) - \theta_{i}|d\tau$$

We want to minimize the following distance:

$$W_p(Y,Z(s,a)) \to \min_{p(Z(s,a)) \in Z_\theta}$$

$$W_{1}(Y, Z(s, a)) = \int_{0}^{1} |F_{Y}^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)|d\tau =$$

$$= \sum_{i=1}^{N} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_{Y}^{-1}(\tau) - F_{Z(s, a)}^{-1}(\tau)|d\tau =$$

$$= \sum_{i=1}^{N} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_{Y}^{-1}(\tau) - \theta_{i}|d\tau \to \min_{\theta}$$

Quantiles direct optimization

Proposition

$$\min_{\theta_i} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_Y^{-1}(\tau) - \theta_i| d\tau = \left\{ \theta \mid F_Y(\theta) = \frac{\frac{i-1}{N} + \frac{i}{N}}{2} \right\}$$

Quantiles direct optimization

Proposition

$$\min_{\theta_i} \int_{\frac{i-1}{N}}^{\frac{i}{N}} |F_Y^{-1}(\tau) - \theta_i| d\tau = \left\{ \theta \mid F_Y(\theta) = \frac{\frac{i-1}{N} + \frac{i}{N}}{2} \right\}$$

Let's denote $\hat{ au}_i = \frac{\frac{i-1}{N} + \frac{i}{N}}{2}$

Maybe we can directly optimize θ_i with unbiased estimation of $F_Y^{-1}(\hat{\tau}_i)$

Background: Quantile Regression

Quantile Regression

For any random variable Y and $\tau \in [0, 1]$:

$$F_Y^{-1}(\tau) = \underset{x}{\operatorname{argmin}} \mathbb{E}_Y(Y - x) (\tau - \mathbb{I}[Y < x])$$

Background: Quantile Regression

Quantile Regression

For any random variable Y and $\tau \in [0, 1]$:

$$F_Y^{-1}(\tau) = \underset{x}{\operatorname{argmin}} \mathbb{E}_Y(Y - x) (\tau - \mathbb{I}[Y < x])$$

Proof.

$$\nabla_{x} \mathbb{E}_{Y}(Y - x) (\tau - \mathbb{I}[Y < x]) = \mathbb{E}_{Y} (\mathbb{I}[Y < x] - \tau) = 0$$

$$\int_{-\infty}^{x} dF_{Y}(Y) = \tau$$

$$F_{Y}(x) = \tau$$

$$x = F_{Y}^{-1}(\tau)$$

For every quantile θ_i our loss is defined as:

$$\mathsf{Loss}_{\mathit{QR}}(\theta_i) = \mathbb{E}_{\mathit{Y}}(\mathit{Y} - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[\mathit{Y} < \theta_i]\right)$$

For every quantile θ_i our loss is defined as:

$$\mathsf{Loss}_{QR}(\theta_i) = \mathbb{E}_{Y}(Y - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[Y < \theta_i]\right)$$

Recall Y definition: $y(s') = r(s') + \gamma Z(s', a'), s' \sim p(s' \mid s, a)$

$$\nabla \operatorname{Loss}_{QR}(\theta_i) = \nabla \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')} (y(s') - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[y(s') < \theta_i] \right)$$

For every quantile θ_i our loss is defined as:

$$\mathsf{Loss}_{\mathit{QR}}(\theta_i) = \mathbb{E}_{\mathit{Y}}(\mathit{Y} - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[\mathit{Y} < \theta_i]\right)$$

Recall Y definition: $y(s') = r(s') + \gamma Z(s', a'), s' \sim p(s' \mid s, a)$

$$\nabla \operatorname{Loss}_{QR}(\theta_{i}) = \nabla \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')}(y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) =$$

$$= \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')} \nabla (y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}])$$

For every quantile θ_i our loss is defined as:

$$\mathsf{Loss}_{QR}(\theta_i) = \mathbb{E}_Y(Y - \theta_i) (\hat{\tau}_i - \mathbb{I}[Y < \theta_i])$$

Recall Y definition: $y(s') = r(s') + \gamma Z(s', a'), s' \sim p(s' \mid s, a)$

$$\nabla \operatorname{Loss}_{QR}(\theta_{i}) = \nabla \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')}(y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) =$$

$$= \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')} \nabla (y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) \approx$$

$$\approx \mathbb{E}_{y(s')} \nabla (y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) \quad s' \sim p(s' \mid s, a)$$

For every quantile θ_i our loss is defined as:

$$\mathsf{Loss}_{QR}(\theta_i) = \mathbb{E}_Y(Y - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[Y < \theta_i]\right)$$

Recall Y definition: $y(s') = r(s') + \gamma Z(s', a'), s' \sim p(s' \mid s, a)$

$$\nabla \operatorname{Loss}_{QR}(\theta_{i}) = \nabla \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')}(y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) =$$

$$= \mathbb{E}_{s' \sim p(s'|s,a)} \mathbb{E}_{y(s')} \nabla (y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) \approx$$

$$\approx \mathbb{E}_{y(s')} \nabla (y(s') - \theta_{i}) (\hat{\tau}_{i} - \mathbb{I}[y(s') < \theta_{i}]) \quad s' \sim p(s' \mid s, a)$$

√ this is an unbiased estimation of true quantiles!

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

*
$$a' = \operatorname{argmax}_{a'} \mathbb{E}Z(s', a') =$$

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

*
$$a' = \operatorname{argmax}_{a'} \mathbb{E} Z(s', a') = \operatorname{argmax}_{a'} \frac{1}{N} \sum_{i} \theta_{i}(s', a')$$

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

- * $a' = \operatorname{argmax}_{a'} \mathbb{E} Z(s', a') = \operatorname{argmax}_{a'} \frac{1}{N} \sum_{i} \theta_{i}(s', a')$
- * $y = r + \gamma Z(s', a')$ target distribution, represented by N quantiles.

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

- * $a' = \operatorname{argmax}_{a'} \mathbb{E} Z(s', a') = \operatorname{argmax}_{a'} \frac{1}{N} \sum_i \theta_i(s', a')$
- * $y = r + \gamma Z(s', a')$ target distribution, represented by N quantiles.

* Loss_{QR} =
$$\sum_{i=0}^{N} \mathbb{E}_{y}(y - \theta_{i}(s, a)) (\hat{\tau}_{i} - \mathbb{I}[y < \theta_{i}(s, a)])$$

Our neural net outputs N arbitrary numbers $\theta_1, \theta_2 \dots \theta_N$, which are support of our approximation Z(s, a).

For transition $\mathcal{T} = (s, a, r, s', done)$:

- * $a' = \operatorname{argmax}_{a'} \mathbb{E} Z(s', a') = \operatorname{argmax}_{a'} \frac{1}{N} \sum_{i} \theta_{i}(s', a')$
- * $y = r + \gamma Z(s', a')$ target distribution, represented by N quantiles.
- * Loss_{QR} = $\sum_{i=0}^{N} \mathbb{E}_{y}(y \theta_{i}(s, a)) (\hat{\tau}_{i} \mathbb{I}[y < \theta_{i}(s, a)])$

√ this expectation can be calculated.

Theoretical guarantees

For table-case instead of gradient optimization of NN weights we perform the following table update step:

$$\theta(s, a)_i = \underset{\theta_i}{\operatorname{argmin}} \mathbb{E}_y(y - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[y < \theta_i]\right) \tag{5}$$

Theoretical guarantees

For table-case instead of gradient optimization of NN weights we perform the following table update step:

$$\theta(s, a)_i = \underset{\theta_i}{\operatorname{argmin}} \mathbb{E}_y(y - \theta_i) \left(\hat{\tau}_i - \mathbb{I}[y < \theta_i]\right) \tag{5}$$

Theorem

Point iteration method, applied for (5), converges for metric

$$D_p(Z_1, Z_2) = \sup_{s,a} [W_p(Z_1(s, a), Z_2(s, a))]$$

for $p \in [1, \infty]$. Moreover, for $p = +\infty$ update step is a contraction mapping, for $p < +\infty$ it may be not.

QR-DQN: Results

Convergence guarantees

	table-case	deep
DQN	✓	×
Categorical DQN	×	×
QR-DQN	✓ 🙎	×

QR-DQN: Results

Convergence guarantees

	table-case	deep
DQN	✓	×
Categorical DQN	×	×
QR-DQN	✓ 🙎	×

- \checkmark allows arbitrary support; we do not need to bound the range of Z(s,a) like we did in Categorical DQN.
- ✓ same computational cost as Categorical DQN.
 - ! Rainbow QR-DQN is yet in the making ;o)

NEXT: see pt.2 for Policy Gradient algorithms