# Naive Bayes Spam Filtering Using Word-Position-Based Attributes

Johan Hovold

Dejun Qian

#### Outline

1 Introduction

2 Naive Bayes Using Word-Position-Based Attributes

3 Experimental Results

4 Conclusions

#### Introduction

- The problem of spam gets worse every year
  - Waste resources on the Internet
  - Waste time for user
  - May expose children to unsuitable contents (e.g. pronography)

#### Introduction

- The problem of spam gets worse every year
  - Waste resources on the Internet
  - Waste time for user
  - May expose children to unsuitable contents (e.g. pronography)

- The solution to the spam problem
  - Automatic spam filter

#### Techniques for Spam Filters

- Instances of knowledge engineering
  - Hand-crafted rules (e.g. presence of string "buy now" indicates spam)

#### Techniques for Spam Filters

- Instances of knowledge engineering
  - Hand-crafted rules (e.g. presence of string "buy now" indicates spam)

- Machine learning
  - Supervised learning algorithm is presented with a mailbox and outputs a filter

#### Techniques for Spam Filters

- Instances of knowledge engineering
  - Hand-crafted rules (e.g. presence of string "buy now" indicates spam)

- Machine learning
  - Supervised learning algorithm is presented with a mailbox and outputs a filter

Naive Bayes classifier in this paper

■ NB:  $C_{NB} = \arg\max_{c \in C} P(c) \prod_i P(a_i|c)$ 

- NB:  $C_{NB} = \operatorname{arg\,max}_{c \in C} P(c) \prod_{i} P(a_i | c)$
- One attribute for each word position in a document

- NB:  $C_{NB} = \operatorname{arg\,max}_{c \in C} P(c) \prod_{i} P(a_i | c)$
- One attribute for each word position in a document
- Probability of certain word  $w_k$  at position i, given target  $c_j$ :  $P(a_i = w_k | c_j)$

- NB:  $C_{NB} = \operatorname{arg\,max}_{c \in C} P(c) \prod_{i} P(a_i | c)$
- One attribute for each word position in a document
- Probability of certain word  $w_k$  at position i, given target  $c_i$ :  $P(a_i = w_k | c_i)$
- Sparseness:  $P(a_i = w_k | c_j) = P(a_m = w_k | c_j)$

- NB:  $C_{NB} = \operatorname{arg\,max}_{c \in C} P(c) \prod_{i} P(a_i | c)$
- One attribute for each word position in a document
- Probability of certain word  $w_k$  at position i, given target  $c_i$ :  $P(a_i = w_k | c_i)$
- Sparseness:  $P(a_i = w_k | c_j) = P(a_m = w_k | c_j)$
- Estimate  $P(a_i = w_k | c_j)$  with  $P(w_k | c_j)$

- NB:  $C_{NB} = \operatorname{arg\,max}_{c \in C} P(c) \prod_{i} P(a_i | c)$
- One attribute for each word position in a document
- Probability of certain word  $w_k$  at position i, given target  $c_i$ :  $P(a_i = w_k | c_i)$
- Sparseness:  $P(a_i = w_k | c_j) = P(a_m = w_k | c_j)$
- Estimate  $P(a_i = w_k | c_j)$  with  $P(w_k | c_j)$
- $P(w_k|c_j) = \frac{C_j(w_k)+1}{n_j+|Vocabulary|}$

#### Benchmark Corpora

| corpus | messages | spam ratio |
|--------|----------|------------|
| PU1    | 1099     | 44%        |
| PU2    | 721      | 20%        |
| PU3    | 4139     | 44%        |
| PUA    | 1142     | 50%        |
| SA     | 6047     | 31%        |

- PU corpora<sup>1</sup>
- SpamAssassin corpus<sup>2</sup>

http://www.iit.demokritos.gr/skel/i-config/

<sup>2</sup>http://spamassassin.org/publiccorpus/

#### Attribute Selection - Infrequent



Figure 1: Impact on vocabulary size when removing infrequent words (from nine tenths of each corpora).

 Slightly increased precision at the expense of slightly reduced recall as n grew

## Attribute Selection - Frequent



Figure 2: Impact on spam precision and recall when removing the most frequent words.

#### n-grams

Table 2: Comparison of classification results when using only unigram attributes and uni-, bi- and trigram attributes, respectively. In the experiment n-grams occurring less than three times and the 200 most frequent n-grams were removed. The second n-gram row for the SA corpus shows the result when the 5000 most frequent n-grams were removed.

| n-grams     | R     | P     | Acc   |  |
|-------------|-------|-------|-------|--|
| PU1         |       |       |       |  |
| n = 1       | 98.12 | 95.35 | 97.06 |  |
| n = 1, 2, 3 | 99.17 | 96.19 | 97.89 |  |
| PU2         |       |       |       |  |
| n = 1       | 97.14 | 87.00 | 96.20 |  |
| n = 1, 2, 3 | 95.00 | 93.12 | 96.90 |  |
| PU3         |       |       |       |  |
| n = 1       | 96.92 | 96.02 | 96.83 |  |
| n = 1, 2, 3 | 96.59 | 97.83 | 97.53 |  |
| PUA         |       |       |       |  |
| n = 1       | 93.68 | 97.91 | 95.79 |  |
| n = 1, 2, 3 | 94.74 | 97.75 | 96.23 |  |
| SA          |       |       |       |  |
| n = 1       | 97.12 | 99.25 | 98.95 |  |
| n = 1, 2, 3 | 92.26 | 98.70 | 97.42 |  |
| n = 1, 2, 3 | 98.46 | 99.66 | 99.46 |  |

#### Cost-Sensitive Classification

$$\begin{split} \frac{P(spam|d)}{P(legit|d)} &> \lambda, \\ \frac{P(spam|d)}{P(legit|d)} &> w^{|d|}. \end{split}$$



**Figure 4:** Example recall/precision curves of the two weighting schemes from cost-sensitive classification on the PU1 corpus.

#### Conclusion

- Possible to achieve very good classification performance using a word-position-based variant of naive Bayes
- Attribute selection has been stressed: memory requirements may be lowered and classification performance increased
- By extending the attribute set with bi- and trigrams, better classification performance may be achieved
- Simple weighting scheme boost precision further

## Question?