Math 625 Professor Erhan Bayraktar

Linfeng Li llinfeng@umich.edu

September 4, 2014

No responding to emails!

1 Week 1

1.1 Tue: 2014-09-02

1.1.1 Basics

Exam (in class, 90 minutes): Tue, Oct 7; Tue, Nov 11; Tue, Dec 9. —— 25%, 30 % and 40 %. 5% attendance. **Textbook:** Probability and Statistics (took the class from the writer, available through library). Probability with **Martingale**, the latter is the emphasis.

Exercises: Book has exercises, but not graded homework.

1.1.2 Beginning: measure theory

Sigma-algebra Given a set E (a universal set), \mathcal{E} , a nonempty collection of subsets of E, is called a σ -algebra if closed under complements & countable unions.

• The most trivial sigma-algebra $\{\emptyset, E\}$ is called the trivial σ -algebra.

Definition 1.1.1 (σ algebra generated by \mathcal{C}). Given a collection \mathcal{C} of subsets (of E), $\sigma(\mathcal{C})$ will denote the smaller σ -algebra containing \mathcal{C} .

Definition 1.1.2. σ -algebra generated by open sets is called **Borel** σ -algebra.

p-system A collection of C which is closed under (finite) intersection. "p" for product, could also use π -system. The latter in Greek.

d-system A collection \mathcal{D} is called a d-system if

- (i) $E \in \mathcal{D}$,
- (ii) $A, B \in \mathcal{D}, A \supset B \implies A \setminus B \in \mathcal{D}$
- (iii) $(A_n) \subset \mathcal{D}$ and $A_n \uparrow A \implies A \subset \mathcal{D}$.

("d" for Dynkin)

Note: curly characters are for collection of sets.

Proposition 1.1.3. \mathcal{E} is a σ -algebra if and only if it is a p-system and a d-system.

Proof. \Rightarrow is trivial.

 \Leftarrow : Let \mathcal{E} be a collection which is a *p*-system and a *d*-system.

- 1. Closed under complements (to be a sigma algebra). Let $A \in \mathcal{E} \implies E \setminus A \in \mathcal{E}$ by (ii) for property of d-system.
- 2. Closed under finite unions: $A, B \in \mathcal{E} \implies A \bigcup B = (A^c \cap B^c)^c$ by 1 above and property of p-system.
- 3. Closed under countable unions: for $(A_n) \subset \mathcal{E}$, $\bigcup_n A_n \in \mathcal{E}$? We construct an increasing sequence of (B_n) :

Let $B_1 = A_1$, $B_2 = A_1 \bigcup A_2 \in \mathcal{E} ... \bigcup_n A_n = \bigcup_n B_n$. Then by (iii) for property of d-system, the conclusion follows.

Lemma 1.1.4. For \mathcal{D} , a d-system, fix $D \in \mathcal{D}$. Define $\hat{\mathcal{D}} := \{A \in \mathcal{D} : A \cap D \in \mathcal{D}\}$. Then, $\hat{\mathcal{D}}$ is also a d-system.

Monotone Class Theorem [Very useful tool in showing an arbitrary collection of sets is a σ -algebra]

Theorem 1.1.5. If a d-system contains a p-system, then it also contains the σ -algebra generated by the p-system.

Proof. Symbolic expression: $\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}$.

Step 1:

Let \mathcal{C} be a p-system. \mathcal{D} is the smallest d-system that contains \mathcal{C} . ¹

Enough to show $\mathcal{D} \supset \sigma(\mathcal{C})$.

If fact, we will show \mathcal{D} is a σ -algebra. By proposition, it is enough to show it is a p-system.

Step 2:

Fix $B \in \mathcal{C}$ and let $\mathcal{D}_1 := \{A \in \mathcal{D} : A \cap B \in \mathcal{D}\}$. 1) By the lemma 1.1.4, \mathcal{D}_1 is a d-system. 2) $\mathcal{C} \subset \mathcal{D}_1$.

1) and 2) $\Longrightarrow \mathcal{D}_1 = \mathcal{D}$.

Setp 3:

Fix $A \in \mathcal{D}$, let $\mathcal{D}_2 := \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \}$.

- 1) by the lemma, \mathcal{D}_2 is a d-system. 2) by step 2, $\mathcal{C} \subset D_2$.
- 1) and 2) $\Longrightarrow \mathcal{D}_2 = \mathcal{D}$.

Step 1-3 gives that \mathcal{D} is a p-system.

In here, $\mathcal{D} = \sigma(\mathcal{C})$. [But in the theorem, this is not a necessary conclusion.]

Measurable space (E, \mathcal{E}) is a measurable space. $[\mathcal{E} \text{ is a } \sigma\text{-algebra on } E.]$

Products of measure spaces (E, \mathcal{E}) , (F, \mathcal{F}) . Then $(E \times F, \mathcal{E}light - product \mathcal{F})$ where \times is regular set product; and the light-product is σ (generated by measurable rectangles)

Measurable functions (random variables)

Lemma 1.1.6. A mapping $f: E \to F$ and (inverse mapping) $f^{-1}(A) := \{x \in E : f(x) \in A\}$. Then, $f^{-1}\emptyset = \emptyset$. $f^{-1}(F) = E$. $f^{-1}(B \setminus C) = f^{-1}(B) \setminus f^{-1}(C)$. $f^{-1}(\bigcup_i B_i) = \bigcup_i f^{-1}(B_i)$ and $f^{-1}(\bigcap B_i) = \bigcap_i f^{-1}(B_i)$. (set operation passes through the inverse function operation.)

 $^{^{1}}$ (***: little result – the intersections of d-systems is a d-system [to obtain the "smallest"]. Also, the "smallest" matters.)

Definition 1.1.7. $(E, \mathcal{E}), (F, \mathcal{F}).$ $f: E \to F$ is "measurable" relative to $\mathcal{E}\&\mathcal{F}$ if $f^{-1}(B) \in \mathcal{E}, \forall B \in \mathcal{F}.$

1.1.3 Thu: 2014-09-04

measurable functions (To "measure" a measurable function: just to integrate it).

Proposition 1.1.8. A function $f: E \to F$ is means that if and only if for some collection \mathcal{F}_0 with $\mathcal{F} = \sigma(\mathcal{F}_0)$, $f^{-1}(B) \in \mathcal{E}$.

Proof. Necessicty is trivial; (by definition)

First collect all the sets s.t. $\mathcal{F}_1 = \{B \in \mathcal{F} : f^{-1}(B) \in \mathcal{E}\} \supset \mathcal{F}$. We show this by showing that this is a sigma algebra. [through checking the properties of inverse functions.]

Lemma 1.1.9 (Composition of measurable functions are measurbal). [2.5 Proposition]

Let $m(\mathcal{E})$ note the collection of measurable functions. Abuse of notation: let \mathcal{E} also note $m(\mathcal{E})$ since the context would be clear.

Theorem 1.1.10. *Proof.* **Step 1** the sup would exist:

. . .

Approximation of measurbale functions

Lemma 1.1.11. For $r \in \mathbb{R}_+$, $d_n(r) = \sum_{k=1}^{n^{2^n}} \frac{k-1}{2^n} 1_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]}(r) + n 1_{[n,\infty)}(r)$. Then $d_n(r) \to r$ as $n \to \infty$.

Theorem 1.1.12. A positive function is measurable if and only if it is a limit of positive simple functions $(\sum_{i=1}^{n} a_i 1_{A_i} \text{ for } a_i \in \mathbb{R} \text{ and } A_i \in \mathcal{E}).$

Proof. Sufficiency is given by the previous theorem.

Necessity: Let $f_n = d_n \circ f$ where $f_n \uparrow f$. (By construction of $d_n(r)$, f_n is simple measurable function.)

i

Lemma 1.1.13. *If* $h_1, h_2, h_3 \in \mathcal{E}$, $h_1 + h_2, h_1\dot{h}_2, \lambda h \in \mathcal{E}$ *for* $\lambda \in \mathbb{R}$.

Decomposition of positive part and negative part of function f Let $f = f^+ - f^-$ where $f^+ = f \dots$

Monotone Class Theorem for Functions

Definition 1.1.14. For \mathcal{M} , a collection of functions is a monotone class if

- 1. $1 \in \mathcal{M}$ (1 is the function assigning all elements in E to 1)
- 2. $f, g \in \mathcal{M}_b \implies af + bg \in \mathcal{M}_b$. where \mathcal{M}_b denote bounded functions in the set of functions denoted by \mathcal{M} .
- 3. $(f_n) \subset \mathcal{M}_+$, and $f_n \uparrow f \implies f \in \mathcal{M}_+$. where \mathcal{M}_+ denote non-negative functions in \mathcal{M} .

Theorem 1.1.15 (Monotone Convergence Theorem). Let \mathcal{M} be a monotone class. Suppose that for some p-system \mathcal{C} , $\mathcal{E} = \sigma(\mathcal{C})$.

 $1_A \in \mathcal{M}, \quad \forall A \in \mathcal{C} \implies \mathcal{M} \text{ includes all positive measurable functions } (\mathcal{E}_+) \text{ and all bounded measurable functions } (\mathcal{E}_+)$

 1_A here is an indicator function

Proof. Step 1: we want to show that, for all $1_A \in \mathcal{M}, \forall A \in \mathcal{E}$.

Define

use the defection of a monotone class to show that \mathcal{D} is a d-system.

 \mathcal{D} being a d-system implies that ...

Step 2 Simple functions are also in \mathcal{M} . [find a reason to this.]

Step 3 By the previous theorem on the simple function, we see that for arbitrary $f \in \mathcal{E}_+$, $\exists (f_n) \uparrow f$ where f_n is simple measurable functions.

Then, by (3) in definition of monotone class (of functions), $f \in \mathcal{M}_+$.

Step 4 For $f \in \mathcal{E}_b$, as $f = f^+ - f^-$ by (2) in definition of monotone class, we have $f \in \mathcal{M}_b$.

Definition 1.1.16. $X: \Omega \to (E,\mathcal{E}), \ \sigma(X) = X^{-1}\mathcal{E} := \{X^{-1}(A): A \in \mathcal{E}\}\$ is called the σ -algebra generated by X. Note that X here is a

Hereby we define a new σ -algebra on Ω .

Proposition 1.1.17. Let $X : \Omega \to (E, \mathcal{E})$ and another mapping $V : \Omega \to \overline{\mathbb{R}}$ belongs to $\sigma(X)$ if and only if $V = f \circ X$ for some function $f \in \mathcal{E}$.

Proof. Sufficiency part is trivial;

Necessity: let \mathcal{M} be the collection of all $Vf \circ X$ for some $f \in \mathcal{E}$. (This is enough to show if Y is bounded measurable w.r.t. $\sigma(X)$, \exists a bounded measurable function f s.t. Y = f(X))

Step 1 Show that \mathcal{M} is a monotone class:

Step 2 \mathcal{M} includes every indicator function in $\sigma(X)$. The set $H \in \sigma(X)$, $H = X^{-1}(A)$ for $A \in \mathcal{E}$. Then

$$1_H = 1_A \circ X$$

Step 3 Use MCT

Measures

Definition 1.1.18. In a measurable space (E, \mathcal{E}) , \mathcal{E} , for $\mu : \mathcal{E} \to \mathbb{R}_+$, if

- (a) $\mu(\emptyset) = 0$
- (b) $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ for A_n 's being disjoint.

 μ is called a measure. (Note that this measure is infinite as $\mu: \mathcal{E} \to \overline{\mathbb{R}}_+$, with a bar overhead of \mathbb{R} .)

Proposition 1.1.19. For A and B being measurable sets,

- (i) (Monotonicity) $A \subset B \implies \mu(A) \leq \mu(B)$; [Implied by finite additivity.]
- (ii) (Continuity under increasing limits) $A_n \uparrow A \rightarrow \mu(A_n) \uparrow \mu(A)$.

Proof. For $B_1 = A_1$, $B_2 = A_2 \setminus A_1$, ..., $\bigcup_{n=1}^n B_n = \bigcup_{n=1}^n A_n$ [This is finite additivity.] [Could finish the proof by taking limits at both sides.]

(iii) (Sub-additivity) $\mu(\bigcup_n A_n) \leq \sum (A_n)$.

Notation $\mu(E) \leq \infty \implies \mathcal{M}$ is a finite measure. $\mu(E) = 1$ implies that μ is a probability measure. σ -finite if \exists a partition² (E_n) of E s.t. $\sum (E_n) < \infty$. Σ -finite if $\exists \mu_n$ s.t. $\mu = \sum_n \mu_n$ for $\mu_n(E) < \infty$. σ -finite $\Longrightarrow \Sigma$ -finite.

Theorem 1.1.20. Let (E, \mathcal{E}) be a measurable space and measures μ and ν are $\mu(E) = \nu(E) < \infty$. Moreover, μ and ν agree on \mathcal{C} , which is a p-system satisfying $\mathcal{E} = \sigma(\mathcal{C})$, then

$$\mu = \nu$$

This is why we can specify the Lebesgue measure by only assigning measure to the intervals. The above theorem would generalize the measure.

i++i. Again is a consequence of monotone class theorem

²Only countable, not necessarily finite. Each element in the partition is disjoint.