Crosby Lab Code

by

Christelinda Laureijs

Contents

Ac	ction Potential (AP) Analysis	Ι
	AP Frequency t-test	Ι
	Shapiro test	Ι
	Wilcoxon Test	Ι
	Summary plot	Ι
	Individual plots	I

Action Potential (AP) Analysis

AP Frequency t-test

Shapiro test

Wilcoxon Test

Summary plot

Individual plots

Figure 1: Insulin decreases the excitability of DMH neurons. Data were recorded before and then after 25 minutes of insulin exposure. *A)* Insulin significantly decreases action potential frequency (mean \pm SE; n is the number of cells). *B)* Representative traces from a current injection of 40 pA (top: baseline, bottom: insulin). *C)* Insulin significantly decreases action potential amplitudes *C)* and thresholds *D)*, while significantly increasing half-widths *E)*. Insulin does not significantly affect latency to fire *F)*, after-hyperpolarization amplitude *G)* or after-hyperpolarization time *H)*. Overlay on Figures C-H: mean \pm SE. n = 15 for baseline and n = 11 for insulin because 4 cells did not fire any action potentials after insulin exposure. Wilcoxon signed-rank test, *=p < 0.05, **=p < 0.001.