

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2554

ข้อสอบวิชา ENE 334 Microprocessors นักศึกษาขั้นปีที่ 3 ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม สอบ วันศุกร์ที่ 22 กรกฎาคม 2554

เวลา 9:00 - 12:00 น.

คำสั่ง

- 1. อนุญาต ให้นำเอกสารใดๆ เข้าห้องสอบ
- 2. อนุญาต ให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัยได้
- 3. ให้ทำในข้อสอบทั้งหมด
- 4. ให้เขียนชื่อ นามสกุล และรหัสประตัวนักศึกษา ลงในกระดาษที่ต้องการให้ตรวจทุกแผ่น
- 5. ถ้าข้อสอบมีการตกหลุ่น ให้พิจารณาเอง และเขียนในตลงด้วย
- 6. ข้อสอบทั้งหมด 3 ข้อ รวม 111 คะแนนเต็ม

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ออกข้อสอบโดย อ.เดชวุฒิ ขาวปริสุทธิ์ โทร. 0-2470-9065

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	49	
2	38	
3	24	
คะแนนรวม	111	

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

- 1.] จงตอบคำถาม ให้กระชับ แต่ชัดเจน
 - 1.1.) จากหลักการออกแบบที่ว่า "Good design demands good compromises" ใน MIPS ได้ทำ อย่างไร (4 คะแนน)

1.2.) ทำไม MIPS ไม่มีชุดคำสั่ง subtract immediate ให้ตอบมา 2 เหตุผล (4 คะแนน)

1.3.) Register \$31 เอาไว้ทำอะไร

(3 คะแนน)

- 1.4.) แปลง Pseudoinstructions ให้เป็น actual MIPS instructions with minimum sequence
 - 1.4.1. sgt rdest, rsrc1, rsrc2

(4 คะแนน)

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise

1.4.2. b label

(4 คะแนน)

Unconditionally branch to the instruction at the label (I-format)

- 1.5.) ให้เขียนโปรแกรมสั้นที่สุด โดยใช้ ชุดคำสั่งของ MIPS
 - 1.5.1. ให้ทำการบวก double precision integer (two's complement) โดยให้ ตัวตั้งขนาด 64-bits เก็บไว้ที่ \$s4 และ \$s5 ในขณะที่ตัวบวก เก็บไว้ที่ \$s6 และ \$s7 แล้วให้ทำการเก็บ ผลลัพธ์ที่ได้เอาไว้ที่ \$s2 และ \$s3 โดยที่ the most significant word จะอยู่ที่ register ที่ เป็นเลขคู่ (6 คะแนน)

1.5.2. ให้ทำการคูณค่าคงที่ขนาด = 7 กับค่าที่อยู่ใน \$t0 แล้วเก็บผลลัพธ์ที่ได้เอาไว้ที่ \$t1 โดย ไม่ต้องสนใจว่าจะเกิด overflow โดยให้ใช้ได้เฉพาะคำสั่ง shift, add หรือ sub ห้ามใช้ คำสั่ง multiply (6 คะแนน)

- 1.6.) จากตัวเลข Binary code: 0000 0000 1110 0101 0010 0000 0000 มี ความหมายอย่างไรเมื่อเป็น (แสดงวิธีทำด้วย)
 - 1.6.1. ชุดคำสั่งของ MIPS และชุดคำสั่งนี้ทำอะไร (5 คะแนน)

1.6.2. a single precision floating-point number (ตอบเป็นเลขฐานสิบเท่านั้น) (5 คะแนน)

•	v	
5100 d 0 4 1	44910	A / O
ขอสอบ	ทนเ	4/0

ชื่อ-สกล	รหัส	เลขที่นั่งสอบ
4		

- 1.7.) เราต้องการเปรียบเทียบ ประสิทธิภาพ ของคอมพิวเตอร์สองเครื่อง M1 และ M2 โดยที่ เครื่อง M1 ใช้เวลา 2 วินาที และ 5 วินาที ในการทำงาน โปรแกรม 1 และ 2 ตามลำดับ ในขณะที่ เครื่อง M2 ใช้เวลา 1.5 วินาที และ 10 วินาที ในการทำงาน โปรแกรม 1 และ 2 ตามลำดับ โดย โปรแกรม 1 จะมีชุดคำสั่งที่มีการ executed ที่ M1 มีจำนวน = $\mathbf{5} \times \mathbf{10^9}$ คำสั่ง ส่วนที่ M2 มี จำนวน = $\mathbf{6} \times \mathbf{10^9}$ คำสั่ง
 - 1.7.1. ถ้า เครื่อง M1 และ M2 มี clock rate = 4 GHz และ 6 GHz ตามลำดับ ให้หาค่า CPI สำหรับ โปรแกรม 1 ของเครื่องคอมพิวเตอร์ทั้งสอง (4 คะแนน)

1.7.2. ให้หาค่า instruction count สำหรับ โปรแกรม 2

(4 คะแนน)

2.] จงเติมค่าลงในตาราง

2.1.) แสดงผลที่ได้ตามลำดับ การทำงานของ division algorithm โดยใช้ hardware หน้า 187 Fig
3.13 ทำการหาร 1100011_{two} ด้วย 111_{two} (10 คะแนน)

4	0.	D: 1	D / 1
eration	Step	Divisor	Remainder
0	Initial Values	00111	00110 0011
-			

2.2.) แสดง MIPS machine code: (ให้เติมเฉพาะเลขฐาน 16) สมมติว่า โปรแกรม เริ่มต้นที่ address 0x40000024

(18 คะแนน)

					Rd	shamt	funct
Label	mnemonic	Opcode	rs	rt	immediate		
			Address				
start:	j nex						
	bgez \$s0,start						
	lbu \$s1,1000(\$t0)						
	sub \$v0,\$a1,\$at						
	andi \$s1,\$t1,127						2**************************************
nex:	sw \$s7,20(\$t9)	3					
	jr \$a3						
	jal start						
	slti \$sp,\$fp,128						

d .	•	طا ف	
ชื่อ-สกล	รหส	เลขที่นั่งสอบ	

2.3.) แสดงผลที่ได้ตามลำดับการทำงานของคำสั่ง โดยเติมค่า Register ที่เปลี่ยนแปลง (ให้เติม เฉพาะเลขฐาน 10, กำหนดค่าใน Register และ memory ดังนี้ : \$t0 = 201_{ten}, \$t1 = -102_{ten}, byte@1000 = 128_{ten}) (10 คะแนน)

Label	mnemonic	\$s0	\$s1	\$s2	\$s3	\$s4
start:	lbu \$s0, 1000(\$0)					
	add \$s0,\$s0,\$s0					
	sub \$s1,\$t0,\$t1					
	slti \$s2,\$t0,201					
	sltu \$s1,\$t0,\$t1					
	sll \$s3,\$s1,8					
	andi \$s1,\$t1,127					
	srl \$s2,\$t1,30					
	or \$s3,\$t0,\$s2					
	nor \$s0,\$t1,\$t0					

3.] จาก Datapath ในรูป 5.39 หน้า 344 และ finite state machine (ให้ตอบสั้นๆ เฉพาะที่ถามเท่านั้น)

ชื่อ-สกุล	รหัส	ขอสอบ หนา 8/8 เลขที่นั่งสอบ
		,
3.1.) ถ้าต้องการให้ ALU ทำ fun	nction "add" สัญญาณ output ของ	ALU control
ต้องเป็น		(2 คะแนน)
3.2.) ถ้าต้องการให้ ALU ทำ fur	nction "subtract" สัญญาณ input '	ของ ALU control
ต้องเป็น		(2 คะแนน)
3.3.) มีอะไรเกิดขึ้นบ้าง ที่ state	1	(3 คะแนน)
3.4.) มีอะไรเกิดขึ้นบ้าง ที่ state	11	(4 คะแนน)
3.5.) ถ้าต้องการให้เกิด ALUO u อะไรบ้าง	ut <= PC - (sign-extend(IR[15:0])) สัญญาณ control ต้องมี (3 คะแนน)
3.6.) คำสั่ง Iw ต้องใช้ clock กี่	cycles = cycles	(2 คะแนน)
3.7.) ถ้าสัญญาณ MemWrite เ ชุดคำสั่งใดบ้างเกิดปัญหา	ป็น 0 ตลอดเวลา (stuck-at-0 fault ให้อธิบาย	s) จะมีผลให้การทำงานของ (4 คะแนน)
3.8.) ถ้าสัญญาณ PCWriteCo	nd เป็น 0 ตลอดเวลา (stuck-at-0 f	aults) จะมีผลให้การทำงานของ
ชุดคำสั่งใดบ้างเกิดปัญหา	ให้อธิบาย	(4 คะแนน)