4.2.1 稀溶液的蒸气压下降

天津大学 李珅

相平衡:物质处于两相之间的平衡

- 相平衡是物理平衡;
- 相平衡是一种动态平衡;
- 相平衡状态为饱和状态,此状态下的蒸气称为饱和蒸气,饱和蒸气所具有的压力称为该液体的饱和蒸气压, 简称蒸气压。

蒸气压是液体的重要性质

温度/K	273	313	373
水的蒸气压/kPa	0.613	7.333	101.325

蒸气压是液体的重要性质

化合物	水	乙醇	乙醚
蒸气压/kPa	3.155	7.233	73.483

拉乌尔定律

1887年,法国物理学家拉乌尔根据大量实验结果提出:在一定温度下,稀溶液的蒸气压(p液)与溶剂的摩尔分数成正比(x、)、比例系数为纯溶剂的蒸气压(p、*)

 $p_{\overline{R}} = x_A p_A^*$

拉乌尔定律仅适用于难挥发非电解质的稀溶液

拉乌尔定律

对于二组分溶液,溶质的摩尔分数 $x_B = 1 - x_A$

$$x_{B} p_{A}^{*} = p_{A}^{*} (1 - x_{A})$$

$$= p_{A}^{*} - x_{A} p_{A}^{*}$$

$$= p_{A}^{*} - p_{\overline{R}}$$

$$= \Delta p$$

拉乌尔定律的第二种表述:溶液的蒸气压下降值(Δp)等于纯溶剂的饱和蒸气压(p_A *)与溶液中溶质的摩尔分数(x_B)的乘积