Lógica

09 - Lógica de Predicados

Marcos Roberto Ribeiro

Introdução I

- A Lógica Proposicional tem limitações quando desejamos representar sentenças mais complexas
- Considere a seguinte sentença:
 "Todo estudante é mais jovem do que algum instrutor"
- Na Lógica Proposicional esta frase seria uma proposição p, mas isto não representa a estrutura lógica mais fina da sentença
- A sentença expressa alguns tipos de propriedades que gostaríamos de representar (Ex.: "ser estudante")
- Tais propriedades são representadas por predicados, como:

```
E(André) : André é estudante
I(Paulo) : Paulo é instrutor
J(André, Paulo) : André é mais jovem do que Paulo
```

Introdução II

- Além dos predicados temos que representar o significado de "todo" e "algum"
- Ademais, não queremos especificar todos os estudantes de uma instituição. Assim, usamos o conceito de "variável". Como:

```
E(x): x é estudante ("x" pode ser qualquer estudante) I(y): y é instrutor J(x,y): x é mais jovem do que y
```

- Quanto às palavras "todo" e "algum", precisamos dos chamados "quantificadores" para representá-las
- Os quantificadores são ∀ (para todo) e ∃ (existe). Eles sempre estão associados a variáveis. Ex.: ∀x, ∃y
- O predicados podem ter diferente números de variáveis. Por exemplo, os predicados E e I são unários e o predicado J é binário
- É possível usar predicados com qualquer número de variáveis na Lógica de Predicados

Introdução III

• Outro exemplo: "Nem todos as aves podem voar"

$$A(x): x$$
 é uma aves $V(x): x$ pode voar $\neg(\forall x(A(x) \rightarrow (v(x)))$ ou $\exists x(A(x) \land \neg V(x))$

Também podemos demonstrar argumentos com a Lógica de Predicados.
 Ex.:

"Nenhum livro é gasoso.

Dicionários são livros.

Logo, nenhum dicionário é gasoso."

Predicados:

L(x): x é um livro

G(x): x é gasoso

D(x): x é um dicionário

Dedução:

• Simbólica: $\neg \exists x (L(x) \land G(x)), \forall x (D(x) \rightarrow L(x)) \vdash \neg \exists x (D(x) \land G(x))$

• Semântica: $\neg \exists x (L(x) \land G(x)), \forall x (D(x) \rightarrow L(x)) \vDash \neg \exists x (D(x) \land G(x))$

Introdução IV

 A Lógica de Predicados estende a Lógica Proposicional não só com quantificadores, mas também com "símbolos funcionais". Considere a frase:

"Toda criança é mais jovem do que sua mãe"

- Usando predicados, tal frase pode ser expressa como: $\forall x \forall y ((C(x) \land M(y,x)) \rightarrow J(x,y))$
- Não é muito conveniente falar "todas as mães de x", já que cada indivíduo possui apenas uma mãe. Considere também a frase:
 "André e Paulo têm a mesma avó materna"
- A frase pode ser codificada como: $\forall x \forall y \forall u \forall v ((M(x,y) \land M(y, André) \land M(u,v) \land M(v, Paulo)) \rightarrow (x = y))$

Introdução V

- Na Lógica Proposicional podemos usar o símbolo funcional m(x) para denotar a mãe de x. Vamos agora reescrever a frase "Toda criança é mais jovem do que sua mãe" usando o símbolo funcional: ∀x(C(x) → J(x, m(x)))
- Agora a frase "André e Paulo tem a mesma avó materna": m(m(André)) = m(m(Paulo))
- Os símbolos funcionais devem ser usados apenas para denotar objetos únicos. Não podemos usar um símbolo funcional para representar o irmão de um indivíduo
- Considere Maria que possui diversos irmãos, a afirmação "Ana gosta do irmão de Maria" é ambígua. Podemos dizer apenas que Ana gosta de um dos irmãos de maria:

$$\exists x (I(x, Maria) \land G(Ana, x))$$

Introdução VI

 Os símbolos funcionais podem receber diversas variáveis, por exemplo, n(x, y) é uma função binária que representa a nota do estudante x na disciplina y. As funções sem nenhuma variável são chamadas de constantes.

A Sintaxe da Lógica de Predicados - Termos

- Os termos dizem respeito a objetos e podem ser variáveis, constantes ou funções:
 - Qualquer variável é um termos
 - Se $c \in \mathcal{F}$ (conjunto de funções), então c é um termo
 - Se $t_1,...,t_n$ são termos e $f\in\mathcal{F}$ é uma função, então $f(t_1,...,t_n)$ é um termo

A Sintaxe da Lógica de Predicados - Fórmulas

- As fórmulas representam afirmações lógicas e são definidas considerando o conjunto de funções $\mathcal F$ e o conjunto de predicados $\mathcal P$ da seguinte maneira:
 - Se $P \in \mathcal{P}$ é um predicado n-ário e $t_1, ..., t_n$ são termos, então $P(t_1, ..., t_n)$ é uma fórmula
 - Se ϕ e ψ são fórmulas, então $\neg \phi$, $\neg \psi$, $\phi \land \psi$, $\phi \lor \psi$ e $\phi \to \psi$ são fórmulas
 - Se ϕ é uma fórmula e x é uma variável, então $\forall x \phi$ e $\exists x \phi$ são fórmulas
- Ordem de prioridade:
 - 1. ¬, ∀ e ∃
 - 2. ∨ e ∧
 - $3. \rightarrow$

Árvores

- As fórmulas da Lógica de Predicados também podem ser representadas por árvores
- Exemplo: $\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$

Exemplo

- Considere a simbolização da frase "Todo filho de meu pai é meu irmão"
 - Constantes: eu
 - Predicados:

```
F(x, y): x é filho de y

P(x, y): x é pai de y

I(x, y): x é irmão de y
```

- Fórmula: $\forall x \forall y ((P(x, eu) \land F(y, x)) \rightarrow I(y, eu))$
- Agora usando a função p(x) que retorna o pai de x: $\forall x(F(x, p(eu)) \rightarrow I(x, eu))$

Variáveis Livres e Presas I

• Considere a fórmula $\forall x ((P(x) \rightarrow Q(x)) \land S(x,y))$ e sua árvore

- A variável x está "presa" ao quantificador $\forall x$ pois são folhas do ramo que inicia em $\forall x$
- Por outro lado, a variável y está "livre" pois não está associada a nenhum quantificador

Variáveis Livres e Presas II

- Seja ϕ uma fórmula da Lógica de Predicados, x é livre em ϕ se não há quantificadores $\forall x$ ou $\exists x$ associados a x. Caso contrário, x está presa em ϕ .
- Também podemos dizer que x está presa se x está no escopo de um quantificador $\forall x$ ou $\exists x$

Exemplo

Substituição

- As variáveis podem ser substituídas por informações mais concretas
- Dadas uma variável x, um termo t e uma fórmula ϕ , a notação $\phi[x/t]$ representa a substituição de todas as ocorrências livres de x em ϕ por t
- Exemplo:

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))[x/f(x,y)]$$
$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(f(x,y)) \lor Q(y))$$

- o problema da substituição ocorre quando o termo substituído introduz uma variável presa. Quando isto acontece, dizemos que o quantificador "capturou" a variável
- Desta maneira, um termo t é livre para x em ϕ , se a substituição $\phi[x/t]$ não causa captura de variáveis

Dedução Natural com a Lógica de Predicados

- Além das regras já estudadas na dedução natural com a Lógica Proposicional, agora teremos novas regras para lidar com os quantificadores e igualdades da Lógica de Predicados
- Introdução da igualdade (todo termo é igual a ele mesmo):

$$\frac{1}{t=t}=i$$

Exclusão da igualdade:

$$\frac{t_1 = t_2 \quad [x/t_1]}{\phi[x/t_1]} =_e$$

• Na regra $=_e$, t_1 e t_2 devem ser livres para x em ϕ

Exemplos I

$$x+1=1+x, (x+1>1) \to (x+1>0) \vdash (1+x>1) \to (1+x>0)$$

- 1. (x+1) = (1+x) premissa
- 2. $(x+1>1) \rightarrow (x+1>0)$ premissa
- 3. $(1+x>1) \rightarrow (1+x>0) =_{e}, 1, 2$

Exemplos II

$$t_1=t_2\vdash t_2=t_1$$

1.
$$t_1 = t_2$$
 premissa

2.
$$t_1 = t_1 =_i, 1$$

3.
$$t_2 = t_1 =_e, 1, 2$$

$$t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$$

1.
$$t_1 = t_2$$
 premissa

2.
$$t_2 = t_3$$
 premissa

3.
$$t_1 = t_3 =_{e}, 1, 2$$

Regras para o Quantificador Universal

Eliminação:

$$\frac{\forall x \phi}{\phi [x/t]} \forall x_e$$

- Se $\forall x \phi$ é verdade, então podemos substitui x em ϕ por qualquer termo t (desde que t seja livre para x em ϕ)
- Inclusão:

- Se conseguirmos provar ϕ usando x_0 , podemos trocar x_0 por x e incluir $\forall x$
- O importante é que x₀ só apareça dentro da caixa

Exemplos I

$$\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$$
1. $\forall x (P(x) \rightarrow Q(x))$ premissa
2. $\forall x P(x)$ premissa
3. $x_0 P(x_0) \rightarrow Q(x_0) \quad \forall x_e, 1$
4. $P(x_0) \quad \forall x_e, 2$
5. $Q(x_0) \quad \rightarrow_e, 3, 4$
6. $\forall x Q(x) \quad \forall x_i, 3-5$

Exemplos II

$$P(t), \forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$$

- 1. P(t) premissa
- 2. $\forall x (P(x) \rightarrow \neg Q(x))$ premissa
- 3. $P(t) \rightarrow \neg Q(t)$ $\forall x_e, 2$
- 4. $\neg Q(t)$ \rightarrow_e , 3, 1

Regras para o Quantificador Existencial

Regra para introdução:

$$\frac{\phi[t/x]}{\exists x \phi} \exists x_i$$

- Podemos deduzir $\exists x \phi$ sempre que tivermos $\phi[x/t]$ para algum termo t (que seja livre para x em ϕ)
- Regra da exclusão:

• A regra $\exists x_e$ trata x_0 como um valor genérico. Se conseguirmos demonstrar χ sem x_0 , então podemos excluir o \exists

Exemplos I

$\forall x \phi \vdash \exists x \phi$			
	1	W. A	
	1.	$\vee x \varphi$	premissa
	2.	$\phi[x/x_0]$	$\forall x_e, 1$
	3.	$\exists x \phi$	$\exists x_i, 2$

Exemplos II

$$\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

Ι.	$\forall x (P(x) \rightarrow Q(x))$	premissa
2.	$\exists x P(x)$	premissa
3.	$x_0 P(x_0)$	hipótese
4.	$P(x_0) \rightarrow Q(x_0)$	$\forall x_e$, 1
5.	$Q(x_0)$	\rightarrow_e , 3, 4
6.	$\exists x Q(x)$	$\exists x_i$, 5
7.	$\exists x Q(x)$	$\exists x_e, 2, 3-5$

\/ (D() . O())

A caixa é o escopo da variável x_0 . A fórmula $\exists x Q(x)$ (linha 6) pode sair da caixa porque não há nenhuma referência a x_0 .

Exemplos III

$$\forall x (Q(x) \to R(x)), \exists x (P(x) \land Q(x)) \vdash \exists x (P(x) \land R(x))$$

1.
$$\forall x(Q(x) \to R(x))$$
 premissa
2. $\exists x(P(x) \land Q(x))$ premissa
3. $x_0 P(x_0) \land Q(x_0)$ hipótese
4. $Q(x_0) \to R(x_0)$ $\forall x_e, 1$
5. $Q(x_0)$ $\land_e, 3$
6. $R(x_0)$ $\rightarrow_e, 4, 5$
7. $P(x_0)$ $\land_e, 3$
8. $P(x_0) \land R(x_0)$ $\land_i, 7, 6$
9. $\exists xP(x) \land R(x)$ $\exists x_i, 8$
10. $\exists xP(x) \land R(x)$ $\exists x_e, 2, 3-9$

Exemplos IV

$$\exists x P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$$

1.
$$\exists x P(x)$$
 premissa
2. $\forall x \forall y (P(x) \rightarrow Q(y))$ premissa
3. y_0
4. $x_0 P(x_0)$ hipótese
5. $\forall y (P(x_0) \rightarrow Q(y))$ $\forall x_e, 2$
6. $P(x_0) \rightarrow Q(y_0)$ $\forall y_e, 5$
7. $Q(y_0)$ $\Rightarrow_e, 6, 4$
8. $Q(y_0)$ $\Rightarrow_{e}, 1, 4-7$
9. $\forall y Q(y)$ $\forall y_i, 3-8$

Referências I

de Souza, J. N. (2008).

Lógica para ciência da computação: uma introdução concisa. Elsevier. Rio de Janeiro. 2 edition.

Huth, M. and Ryan, M. (2008).

Lógica em ciência da computação: modelagem e argumentação sobre sistemas.

LTC, Rio de Janeiro, 2 edition.

Silva, F. S. C., Finger, M., and Melo, A. C. V. (2010). Lógica para computação.

Cengage Learning, São Paulo, 2 edition.