Azione di un gruppo su un insieme

di Gabriel Antonio Videtta

Nota. Nel corso del documento per (G, \cdot) si intenderà un qualsiasi gruppo. Si scriverà gh per indicare $g \cdot h$, omettendo il punto. Analogamente con X si indicherà un insieme generico qualsiasi.

Definizione (azione di un gruppo su un insieme). Sia X un insieme. Allora un'applicazione $\varphi: G \to S(X)$ tale che $g \stackrel{\varphi}{\mapsto} [x \mapsto g \cdot x]$ si dice **azione di** G **su** X se è un omomorfismo di gruppi.

Se G agisce tramite φ su X, si dice allora che X è un G-insieme. Si dice inoltre che l'azione φ è **fedele** se φ è iniettiva, ossia se e solo se $\varphi(q) = \operatorname{Id} \implies q = e$.

Definizione (stabilizzatore). Sia $x \in X$. Allora si definisce lo **stabilizzatore di** x, denotato come Stab(x), come il sottogruppo di G tale per cui:

$$Stab(x) = \{ g \in G \mid g \cdot x = x \}.$$

Si può allora constatare che φ è fedele se e solo se:

$$\operatorname{Ker} \varphi = \bigcap_{x \in X} \operatorname{Stab}(x) = \{e\}.$$

Si costruisce adesso una relazione di equivalenza \sim su X, data dalla seguente definizione:

$$x \sim y \iff \exists g \in G \mid g \cdot x = y.$$

Le classi di equivalenza di \sim vengono dette **orbite** e si pone $Orb(x) := [x]_{\sim}$.

Definizione (azione libera). Si dice che φ è un'azione libera (o che G agisce liberamente su X) se $Stab(x) = \{e\}$ per ogni scelta di $x \in X$.

Definizione (azione transitiva). Si dice che φ è un'azione transitiva (o che G agisce transitivamente su X) se esiste un'unica classe di equivalenza di \sim (ossia se $\forall x, y \in X$, $\exists g \in G \mid g \cdot x = y$). In tal caso si dice che X è un G-insieme omogeneo.

Definizione (azione semplicemente transitiva). Si dice che φ è un'azione semplicemente transitiva (o che G agisce in maniera semplicemente transitiva su X) se φ è un'azione libera e transitiva. In tal caso si dice che X è un G-insieme omogeneo principale.

In generale, un'azione può essere solamente libera o solamente transitiva. Chiaramente però la libertà di un'azione ne implica la fedeltà, e non il contrario. Tuttavia nel caso particolare dei gruppi abeliani, la fedeltà e la transitività di un'azione ne implicano anche la libertà, come enunciato dalla:

Proposizione. Sia G abeliano. Allora, se φ è fedele e transitiva, φ è semplicemente transitiva.

Dimostrazione. È sufficiente dimostrare che φ è anche libera, ossia che $\mathrm{Stab}(x) = \{e\}$ per ogni scelta di $x \in X$. Sia allora $g \in \mathrm{Stab}(x)$. Si mostra che $g \in \mathrm{Ker}\,\varphi$, da cui si dedurrà che g = e.

Sia $y \in X$. Poiché φ è transitiva, $x \sim y$, e quindi esiste $h \in G$ tale per cui $h \cdot x = y$. Pertanto, sfruttando la commutatività di G, $g \cdot y = g \cdot (h \cdot x) = h \cdot (g \cdot x) = h \cdot x = y$, da cui si deduce che $\varphi(g) = \mathrm{Id}$, concludendo la dimostrazione.

Si dimostra adesso il teorema più importante sulle azioni di gruppi sugli insiemi: il Teorema orbita-stabilizzatore, un "analogo" del Primo teorema di isomorfismo per le azioni¹.

Teorema (orbita-stabilizzatore). Sia $x \in X$. Allora la mappa $\alpha : G/\operatorname{Stab}(x) \to \operatorname{Orb}(x)$ tale che $g\operatorname{Stab}(x) \stackrel{\alpha}{\mapsto} g \cdot x$ è una bigezione.

Dimostrazione. Si mostra che la mappa α è ben definita. Se $g \in G$ e $s \in \text{Stab}(x)$, allora $\alpha(gs \operatorname{Stab}(x)) = (gs) \cdot x = g \cdot x = \alpha(g \operatorname{Stab}(x))$.

Si dimostra allora l'iniettività di α . Siano g e $h \in G$ tali che $\alpha(g\operatorname{Stab}(x)) = \alpha(h\operatorname{Stab}(x))$. Allora $g \cdot x = h \cdot x \implies (h^{-1}g) \cdot x = x \implies h^{-1}g \in \operatorname{Stab}(x)$; pertanto $h \in g\operatorname{Stab}(x) \implies g\operatorname{Stab}(x) = h\operatorname{Stab}(x)$, da cui l'iniettività.

Infine si mostra la surgettività di α . Se $y \in \text{Orb}(x)$, allora esiste $g \in G$ tale per cui $g \cdot x = y$, e quindi $\alpha(g \operatorname{Stab}(x)) = g \cdot x = y$, da cui la surgettività.

Se G è finito, il Teorema orbita-stabilizzatore implica anche un'identità aritmetica riguardante le cardinalità di Stab(x) e Orb(x):

$$|G| = |\operatorname{Stab}(x)| |\operatorname{Orb}(x)|.$$

¹Si lascia al lettore la gioia di dimostrare il Primo teorema di isomorfismo proprio a partire dal Teorema orbita-stabilizzatore (indizio: se $f \in \text{Hom}(G, H)$, si può considerare l'azione $\varphi : G \to S(H)$ tale che $g \xrightarrow{\varphi} [h \mapsto g \cdot h = f(g)h]$). Si noterà infatti che la dimostrazione del Teorema orbita-stabilizzatore ricalca totalmente la stessa idea della dimostrazione del Primo teorema di isomorfismo.

Da questa identità si può estrarre un'ulteriore uguaglianza:

$$|X| = \sum_{x \in \mathcal{R}} |\operatorname{Orb}(x)| = \sum_{x \in \mathcal{R}} \frac{|G|}{|\operatorname{Stab}(x)|},$$

dove \mathcal{R} è un insieme dei rappresentanti delle orbite dell'azione. Questo fatto è un'immediata conseguenza del fatto che la relazione \sim è di equivalenza, e che, in quanto tale, induce una partizione dell'insieme X mediante i suoi rappresentanti:

$$X = \bigsqcup_{x \in \mathcal{R}} \operatorname{Orb}(x).$$

Si introduce adesso il concetto di *punti fissi* di un dato $g \in G$, a cui seguirà il *lemma di Burnside*, un risultato utile per contare il numero di orbite di un'azione.

Definizione (punti fissi di g). Si definisce l'insieme Fix(g) come il sottoinsieme di X dei punti lasciati fissi da g, ossia:

$$Fix(g) = \{ x \in X \mid g \cdot x = x \}.$$

Proposizione (lemma di Burnside). $|X/\sim| = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|$.

Dimostrazione. L'idea chiave risiede nell'osservare che $\sum_{g \in G} |\text{Fix}(g)|$ conta gli elementi dell'insieme S, dove:

$$S = \{(g, x) \in G \times X \mid g \cdot x = x\} \subseteq G \times X.$$

Infatti, gli stessi elementi sono contati da $\sum_{x \in X} |\operatorname{Stab}(x)|$. Applicando allora il Teorema orbita-stabilizzatore, ed indicando con \mathcal{R} un insieme dei rappresentanti delle orbite, la somma si riscrive come:

$$\sum_{g \in G} |\operatorname{Fix}(g)| = \sum_{x \in X} |\operatorname{Stab}(x)| = \sum_{r \in \mathcal{R}} \sum_{x \in \operatorname{Orb}(r)} |\operatorname{Stab}(x)| = (*),$$

a sua volta riscritta come:

$$(*) = \sum_{r \in \mathcal{R}} \sum_{x \in \operatorname{Orb}(r)} \frac{|G|}{|\operatorname{Orb}(x)|} = \sum_{r \in \mathcal{R}} \sum_{x \in \operatorname{Orb}(r)} \frac{|G|}{|\operatorname{Orb}(r)|} = |G| |X/\sim|,$$

dove è stato cruciale osservare che, per $x \in Orb(r)$, Orb(x) = Orb(r).