Дипломный проект по профессии Инженер данных

1.Цель проекта.

Разработка системы извлечения, трансформации и загрузки данных (ETL) в хранилище данных с последующим построением аналитической витрины и визуализации ключевых метрик.

2. Используемые технологии

Язык программирования: Python (pandas, sqlalchemy)

СУБД: PosgreSQL

Оркестрация ETL: Apache Airflow

ВІ-инструмент: Tableau

IDE (набор ПО для создания кода): Dbeaver, VSCode, Jupyter Notebook

3. Структура хранилища данных.

Основной источник данных — CSV-файл, содержащий информацию о продажах: транзакции, клиенты, товары, филиалы, даты и пр. Всего 1000 строк, структура таблицы включает такие поля, как invoice_id, branch, city, customer_type, gender, product_line, unit_price, quantity', tax_5_percent, total, date, time, payment_method, cogs, gross_margin_percentage, gross_income, rating.

3. Описание слоёв хранилища

3.1. Слой NDS (Normalized Data Store) нормализованное хранилище

Созданы следующие нормализованные таблицы:

nds_customers — информация о клиентах (тип и пол); customer_id-первичный ключ с автоинкриментом,

customer_type - тип клиента,

gender-пол клиента.

```
nds_products — товары и цены;
   product_id (PK) -первичный ключ с автоинкриментом,
   product_line - категории товаров,
   unit_price-стоимость товара за единицу.
nds_branches — филиалы и города;
   branch_id- первичный ключ с автоинкриментом,
   branch_code-номер филиала,
   city-город расположение филиала.
nds_dates — дата и календарные показатели;
     full_date-полная дата,
      day-день,
      month-месяц,
     year-год,
     weekday-день недели.
nds_sales — факты продаж со связями на остальные таблицы через внешние ключи;
   invoice_id- первичный ключ, номер счет-фактуры,
   customer_id-внешний ключ из таблицы nds_customers,
   products-внешний ключ из таблицы nds products,
   branch_id-внешний ключ из таблицы nds_branches,
   date_id-внешний ключ из таблицы nds_dates,
   quantity-количество товаров,
  tax_5_percent-налог 5%,
   total-сумма покупки,
   payment_method-метод оплаты,
   cogs-себестоимость,
   gross_margin_percentage-процент маржи,
```

```
gross_income-валовая прибыль, rating-Оценка.
```

3.2. Слой DDS (Dimensional Data Store) схема звезда

Слои построенные по звёздной схеме:

```
dim_customer — измерение по клиенту;

customer_id-первичный ключ с автоинкриментом,

customer_type – тип клиента,

gender-пол клиента.
```

```
dim_product — измерение по продукту;

product_id (PK) -первичный ключ с автоинкриментом,

product_line – категории товаров,

unit_price-стоимость товара за единицу.
```

```
dim_branch — измерение по филиалу;
branch_id- первичный ключ с автоинкриментом,
branch_code-номер филиала,
city-город расположение филиала.
```

```
dim_date — измерение по дате;
full_date-полная дата,
day-день,
month-месяц,
year-год,
weekday-день недели.
```

fact_sales — таблица фактов продаж с расчётными полями:

invoice_id- первичный ключ, номер счет-фактуры, customer_id-внешний ключ из таблицы dim_customers, products-внешний ключ из таблицы dim_products, branch_id-внешний ключ из таблицы dim_branch, date_id-внешний ключ из таблицы dim_date, quantity-количество товаров, tax_5_percent-налог 5%, total-сумма покупки, payment_method-метод оплаты, cogs-себестоимость, gross_income-валовая прибыль, rating-Оценка.

4. ER-диаграммы

В качестве ER-диаграмм использованы схемы, сгенерированные в DBeaver. Они показывают связи между таблицами NDS и DDS и визуально иллюстрируют структуру хранилища.

ER-диаграмма схемы NDS.

ER-диаграмма схемы DDS.

5. ETL-процессы

Реализованы с помощью Python (pandas + psycopg2) и SQL:

Загрузка и очистка данных из CSV;

Проверка и удаление дубликатов по invoice_id;

Заполнение нормализованных таблиц (NDS);

Формирование витрин данных (DDS) с использованием surrogate keys и агрегаций.

6. Оркестрация

Оркестрация процессов реализована с использованием Apache Airflow. Настроены DAG`и, выполняющие:

create_all_tables - создание схем и таблиц;

load_sales_data – трасформация и загрузка из CSV-файла в на ненормализованную таблицу sales_data;

etl_sales_to_nds - заполнение ND -таблиц с surrogate keys;

etl_nds_to_dds – построение DDS на основе NDS

master_dag – код для запуска dag`ов по очереди загрузку и трансформацию данных.

7. Качество данных

Проведены проверки на Python-скрипте и показаны выводы в отдельно созданной таблице по проверке качества данных:

Удаление дубликатов по invoice_id;

Обработка пропущенных значений;

Валидация типов и диапазонов значений.

8. Визуализация в Tableau

Созданы дашборды на основе данных из DDS в Tableau:

Анализ среднего чека по месяцам;

Анализ продаж категории продуктов по клиенту;

Анализ продаж по способу оплаты по городам и филиалам;

Средний чек по дням каждого месяца;

Средний рейтинг по категориям товаров;

Создан параметр для фильтрации по типу и полу клиента.

9.Особенности реализации

Все таблицы создаются программно через SQLAlchemy.

DAG полностью автоматизирует цепочку от загрузки до DDS.

Уникальные surrogate keys с автоинкрементом.

Структура данных документирована с помощью ER-диаграмм (DBeaver).

Возможность масштабирования DAG` ов при добавлении новых источников.

10. Выводы

Реализована полноценная ETL-система с оркестрацией.

Данные хранятся в PostgreSQL, витрина построена в DDS.

Построены ВІ-дашборды в Tableau на основе fact-таблицы.

Подготовлена финальная документация для защиты диплома.

Дженишбеков Нурбек

DEG-34

18.04.2025