CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1 1. A multiple digital subscriber line (DSL) communication system, 2 comprising:

a customer interface configured to supply an upstream data transmission and receive a downstream data transmission;

a plurality of DSL transceivers in communication with the customer interface via a first data transmission link, the plurality of DSL transceivers in communication with a respective DSL transceiver at a central office via respective transmission lines, wherein each of the plurality of DSL transceivers is configured to receive a downstream data stream and to transmit an upstream data stream, the upstream data transmission configured for distribution across the plurality of DSL transceivers, the plurality of DSL transceivers further configured to generate the downstream data transmission from the plurality of downstream data streams, the plurality of DSL transceivers in communication with each other via a plurality of DSL transceiver data transmission links.

- 2. The DSL communication system of claim 1, wherein each of the plurality of DSL transceivers is in communication with a first data interface and a second data interface, the first and second data interfaces interposed between an associated DSL transceiver and an associated set of DSL transceiver transmission links, the first data interface configured to receive an upstream data stream from the next closest DSL transceiver to the customer interface, the second data interface configured to receive a downstream data stream from the next furthest DSL transceiver from the customer interface.
- The DSL communication system of claim 2, wherein the plurality of DSL transceivers is configured to generate the upstream data transmission from the plurality of upstream data streams.

2

3

4

5

- 5. The DSL communications system of claim 2, wherein the first and second data interfaces associated with each of the plurality of DSL transceivers comprise bidirectional data interfaces.
- 1 6. The DSL communications system of claim 2, wherein the first and second 2 data interfaces associated with each of the plurality of DSL transceivers comprise 3 independent data interfaces.
 - 7. The DSL communications system of claim 6, wherein the first and second data interfaces between a first DSL transceiver closest to the customer interface and a second DSL transceiver next closest to the customer interface respectively operate at an upstream data rate set by the first DSL transceiver and wherein subsequent further removed DSL transceiver pairs from the customer interface operate at an upstream data rate set by the DSL transceiver closest to the customer interface respectively.
- 1 8. The DSL communication system of claim 6, wherein the first and second
 2 data interfaces between a last DSL transceiver furthest from the customer interface and a
 3 next closest DSL transceiver closer to the customer interface operate at a downstream
 4 data rate set by the last DSL transceiver and wherein subsequently closer DSL transceiver
 5 pairs to the customer interface operate at a downstream data rate set by the DSL
 6 transceiver furthest from the customer interface respectively.
- 9. The DSL communication system of claim 6, wherein upstream and downstream DSL transceiver to DSL transceiver data transmissions are performed via a pulse coded modulation (PCM) data transfer protocol.

6

9

- 12. The DSL communication system of claim 11, wherein the ATM cell synchronization signal is configured to identify an ATM cell header.
- 1 13. A multiple digital subscriber line (DSL) communication system, 2 comprising:
- means for communicating with customer premises equipment to receive an upstream data transmission;
 - means for distributing a portion of the received upstream data transmission to each of a plurality of DSL communication links for transmission;
- means for receiving a portion of a downstream data transmission distributed across each of the plurality of DSL communication links;
 - means for combining the portions of the downstream data transmission such that the downstream data transmission is reconstructed; and
- means for communicating the reconstructed downstream data transmission to the customer premises equipment.
- 1 14. The DSL communication system of claim 13, wherein the means for 2 receiving a portion of a downstream data transmission is accomplished via a plurality of 3 DSL transceivers dedicated to receive a portion of a downstream data transmission from a 4 predetermined remote DSL transceiver.

15.

1

2

3

1

2

- The DSL communication system of claim 13, wherein the means for
- plurality of DSL transceivers in communication with the next nearest DSL transceivers.

distributing a portion of the received upstream data transmission is accomplished via a

- 1 16. The DSL communication system of claim 13, wherein the means for combining the portions of the downstream data transmission is accomplished via a
- 1 17. The DSL communication system of claim 15, wherein the plurality of DSL transceivers are in further communication with a first data interface and second data interface interposed in a communication link between next nearest DSL transceivers.

plurality of DSL transceivers in communication with the next nearest DSL transceivers.

- 1 18. The DSL communication system of claim 16, wherein the plurality of DSL transceivers are in further communication with a first data interface and second data interface interposed in a communication link between next nearest DSL transceivers.
 - 19. A method for transferring data between multiple DSL transceivers at a customer premise, comprising:
- recovering a mapped portion of a downstream data stream at each of N DSL
- 4 transceivers at a remote location; using a first data interface coupled to each respective
- 5 DSL transceiver to communicate the recovered portion of the downstream data stream to
- 6 the next closest DSL transceiver to a customer interface;
- 7 mapping an upstream data stream such that a portion of the upstream data stream
- 8 is designated for transmission by each of the NDSL transceivers; and
- 9 using a second data interface coupled to each respective DSL transceiver to
- 10 communicate mapped portions of the upstream data stream to the next furthest DSL
- transceiver from the customer interface.

- 2 DSL transceiver is configured to communicate portions of the downstream data stream to
- the second data interface of the next closest DSL transceiver to the customer interface.
- 1 21. The method of claim 19, wherein the second data interface coupled to each
- 2 DSL transceiver is configured to communicate with the first data interface of the next
- 3 furthest DSL transceiver from the customer interface.
- 1 22. The method of claim 19, wherein the first and second data interfaces 2 comprise serial data interfaces.
- The method of claim 19, wherein the first and second data interfaces comprise bi-directional data interfaces.
- 1 24. The method of claim 19, wherein the first and second data interfaces 2 comprise independent data interfaces.
- The method of claim 19, wherein DSL transceiver to DSL transceiver upstream and downstream communications are performed via a data transfer protocol.
- The method of claim 25, wherein the data transfer is accomplished with a pulse-code modulation (PCM) protocol.
- The method of claim 25, wherein the data transfer protocol is accomplished with an asynchronous transfer mode (ATM) protocol.
- 1 28. The method of claim 19, further comprising:
- 2 identifying mapped portions of the upstream data stream designated for
- 3 transmission at each of the NDSL transceivers; and
- 4 transmitting the mapped portion.

1	29. The method of claim 19, further comprising:
2	reconstructing the received portions of the downstream data stream at each of the
3	DSL transceivers; and
4	communicating the received and reconstructed downstream data stream to the
5	ustomer interface.

- 30. A multiple digital subscriber line (DSL) communication system, comprising:
- a central office interface configured to receive an upstream data transmission and supply a downstream data transmission;

a plurality of DSL transceivers in communication with the central office interface via a first data transmission link, the plurality of DSL transceivers in communication with a respective DSL transceiver at a customer premise via respective transmission lines, wherein each of the plurality of DSL transceivers is configured to receive an upstream data stream and to transmit a downstream data stream, the downstream data transmission configured for distribution across the plurality of DSL transceivers, the plurality of DSL transceivers further configured to generate the upstream data transmission from the plurality of upstream data streams, the plurality of DSL transceivers in communication with each other via a plurality of DSL transceiver data transmission links.

31. The DSL communication system of claim 30, wherein each of the plurality of DSL transceivers is in communication with a first data interface and a second data interface, the first and second data interfaces interposed between an associated DSL transceiver and an associated set of DSL transceiver transmission links, the first data interface configured to receive a downstream data stream from the next closest DSL transceiver to the central office interface, the second data interface configured to receive an upstream data stream from the next furthest DSL transceiver from the customer interface.

2

3

1

2

3

ì

2

3

4

5

6

- 1 32. The DSL communication system of claim 31, wherein the plurality of DSL 2 transceivers is configured to generate the downstream data transmission from the plurality of downstream data streams. 3
 - 33. The DSL communications system of claim 31, wherein the first and second data interfaces associated with each of the plurality of DSL transceivers comprise serial data interfaces.
- 34. The DSL communications system of claim 31, wherein the first and 1 second data interfaces associated with each of the plurality of DSL transceivers comprise 2 3 bi-directional data interfaces.
 - 35. The DSL communications system of claim 31, wherein the first and second data interfaces associated with each of the plurality of DSL transceivers comprise independent data interfaces.
 - 36. The DSL communications system of claim 35, wherein the first and second data interfaces between a first DSL transceiver closest to the central office interface and a second DSL transceiver next closest to the central office interface respectively operate at a downstream data rate set by the first DSL transceiver and wherein subsequent further removed DSL transceiver pairs from the central office interface operate at a downstream data rate set by the DSL transceiver closest to the central office interface respectively.
- 1 37. The DSL communication system of claim 35, wherein the first and second data interfaces between a last DSL transceiver furthest from the central office interface 2 3 and a next closest DSL transceiver closer to the central office interface operate at an 4 upstream data rate set by the last DSL transceiver and wherein subsequently closer DSL 5 transceiver pairs to the central office interface operate at an upstream data rate set by the DSL transceiver furthest from the central office interface respectively. 6

- 39. The DSL communication system of claim 35, wherein upstream and downstream DSL transceiver to DSL transceiver data transmissions are performed via an asynchronous transfer mode (ATM) data transfer protocol.
- 1 40. The DSL communication system of claim 39, further comprising: 2 an ATM cell synchronization signal operative in parallel and co-directional with 3 each of the plurality of DSL transceiver data transmission links.
- 1 41. The DSL communication system of claim 40, wherein the ATM cell synchronization signal is configured to identify an ATM cell header.
- 1 42. A multiple digital subscriber line (DSL) communication system, 2 comprising:
- means for communicating with central office equipment to receive a downstream data transmission;
- means for distributing a portion of the received downstream data transmission to each of a plurality of DSL communication links for transmission;
- means for receiving a portion of an upstream data transmission distributed across each of the plurality of DSL communication links;
- means for combining the portions of the upstream data transmission such that the downstream data transmission is reconstructed; and
- means for communicating the reconstructed upstream data transmission to the central office equipment.

2

- 1 44. The DSL communication system of claim 42, wherein the means for 2 distributing a portion of the received upstream data transmission is accomplished via a 3 plurality of DSL transceivers in communication with the next nearest DSL transceivers.
- 1 45. The DSL communication system of claim 42, wherein the means for 2 combining the portions of the upstream data transmission is accomplished via a plurality 3 of DSL transceivers in communication with the next nearest DSL transceivers.
 - 46. The DSL communication system of claim 44, wherein the plurality of DSL transceivers are in further communication with a first data interface and second data interface interposed in a communication link between next nearest DSL transceivers.
- 1 47. The DSL communication system of claim 45, wherein the plurality of DSL transceivers are in further communication with a first data interface and second data interface interposed in a communication link between next nearest DSL transceivers.

2

- using a first data interface coupled to each respective DSL transceiver to
 communicate the recovered portion of the upstream data stream to the next closest DSL
 transceiver to a central office interface;
- mapping a downstream data stream such that a portion of the downstream data
 stream is designated for transmission by each of the N DSL transceivers; and
 using a second data interface coupled to each respective DSL transceiver to
- using a second data interface coupled to each respective DSL transceiver to
 communicate mapped portions of the downstream data stream to the next furthest DSL
 transceiver from the central office interface.
 - 49. The method of claim 48, wherein the first data interface coupled to each DSL transceiver is configured to communicate portions of the upstream data stream to the second data interface of the next closest DSL transceiver to the central office interface.
- 1 50. The method of claim 48, wherein the second data interface coupled to each
 2 DSL transceiver is configured to communicate with the first data interface of the next
 3 furthest DSL transceiver from the central office interface.
- The method of claim 48, wherein the first and second data interfaces comprise serial data interfaces.
- The method of claim 48, wherein the first and second data interfaces comprise bi-directional data interfaces.
- The method of claim 48, wherein the first and second data interfaces comprise independent data interfaces.

- 1 54. The method of claim 48, wherein DSL transceiver to DSL transceiver
- 2 upstream and downstream communications are performed via a data transfer protocol.
- The method of claim 54, wherein the data transfer is accomplished with a pulse-code modulation (PCM) protocol.
- 1 56. The method of claim 54, wherein the data transfer protocol is
- 2 accomplished with an asynchronous transfer mode (ATM) protocol.
- 1 57. The method of claim 48, further comprising:
- 2 identifying mapped portions of the downstream data stream designated for
- 3 transmission at each of the NDSL transceivers; and
- 4 transmitting the mapped portion.
- 1 58. The method of claim 48, further comprising:
- reconstructing the received portions of the upstream data stream at each of the N
- 3 DSL transceivers; and
- 4 communicating the received and reconstructed upstream data stream to the central
- 5 office interface.