MATE 5150: Determinants

Alejandro Ouslan

Academic Year 2024-2025

Contents

4	Summary - Important Facts about Determinants	2
	Properties of Determinants 3.1 Facts about elementary Matrices	1
2	Determinants of Order n	1
1	Determinants of Order 2	1

- 1 Determinants of Order 2
- 2 Determinants of Order n
- 3 Properties of Determinants
- 3.1 Facts about elementary Matrices
 - 1. If E is an elementary matrix obtained by interchanging any two rows of I_n , then $\det(E) = -1$.
 - 2. If E is an elementary matrix obtained by multiplying some row of I_n by the nonzero scalar K, then det(E) = K.
 - 3. If E is an elementary matrix obtained by adding a multiple of some row of I_n to another row, the det(E) = 1.

Theorem 1. For any $A, B \in M_{n \times n}(\mathbb{R})$, $\det(AB) = \det(A) \cdot \det(B)$.

Proof.

$$\det(AB) = \det(E_m \cdots E_2 E_1 B)$$

$$= \det(E_m) \cdot \det(E_{m-1} \cdots E_2 E_1 B)$$

$$= \det(E_m \cdots E_2 E_1) \cdot \det(B)$$

$$= \det(A) \cdot \det(B)$$

Therefore, det(AB) = det(A) det(B).

Corollary 1. A Matrix $A \in M_{n \times n}(F)$ is invertible if and only if $\det(A) \neq 0$. Furthermore, if A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

Proof.

If A is invertible, then rank(A) < n

So by the Correlation 4.6, det(A) = 0

If A is not invertible, then

$$\det(A) \cdot \det(A^{-1}) = \det(AA^{-1}) = \det(I_n) = 1$$

Therefore, $det(A^{-1}) = \frac{1}{det(A)}$ if A is invertible and $det(A) \neq 0$.

Theorem 2. For any $A \in M_{n \times n}(F)$, $\det(A^T) = \det(A)$.

Proof.

$$\det(A^T) = \det(E_1^T \cdot E_2^T \cdots E_m^T)$$

$$= \det(E_1^T) \cdot \det(E_2^T) \cdots \det(E_m^T)$$

$$= \det(E_1) \cdot \det(E_2) \cdots \det(E_m)$$

$$= \det(E_m \cdots E_2 E_1)$$

$$= \det(A)$$

Therefore, $det(A^T) = det(A)$.

Theorem 3 (Cramer's Rule). Let Ax = b be the matrix form of a system of n linear equations in n unknowns. Where $x = (x_1, x_2, ..., x_n)^T$. If $\det(A) \neq 0$, then this system has a unique solution, and for each k (k = 1, 2, ..., n),

$$x_k = \frac{\det(M_k)}{\det(A)}$$

where M_k is the $n \times n$ matrix obtained from A by replacing column k of A by b.

Proof. Let X_k be the matrix obtained from A by replacing the k-th column of A with the vector \mathbf{b} . Then we can write the system as:

$$AX_k = M_k$$

where M_k is the vector formed by the coefficients of the system in the new configuration. To evaluate $det(X_k)$ using cofactor expansion along the k-th column, we have:

$$\det(X_k) = x_k \det(I_{n-1})$$

Since $det(I_{n-1}) = 1$, it follows that:

$$\det(X_k) = x_k$$

By applying the property of determinants, we obtain:

$$\det(M_k) = \det(AX_k) = \det(A) \cdot \det(X_k)$$

Substituting $det(X_k)$ into this equation gives:

$$\det(M_k) = \det(A) \cdot x_k$$

Therefore, we can rearrange this to find x_k :

$$x_k = \frac{\det(M_k)}{\det(A)}$$

This proves Cramer's Rule for the variable x_k .

4 Summary - Important Facts about Determinants