University Ontology

Reference:

https://www.youtube.com/watch?v=R9ERIUgvgwM&list=PLea0WJq13cnAfCC0azrCyquCN tPelJN1

Graph Diagram of University Ontology

https://www.youtube.com/watch?v=R9ERlUgvgwM&list=PLea0WJq13cnAfCC0azrCyquCN tPelJN1&index=1

Class Hierarchy

https://www.youtube.com/watch?v=g5IGHpCSIow&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=2

- Create two base-classes and two sub-classes under each
 - Module
 - CSModule
 - MathModule
 - Person
 - Student
 - Lecturer
- Make each subclass as 'Disjoint' with the other subclass
 - To avoid overlapping between classes or to avoid multiple inheritance
 - Subclass, instance, or an individual can only be instance of one class

Object Properties

https://www.youtube.com/watch?v=wCsP36wFxdA&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=3

- Describes relationship between two instances (individuals) of classes (objects/instances)
- Create two object properties
 - Studies
 - Teaches
- Each property has a domain and range
 - Teaches
 - Domain: Lecturer
 - Range: Module
 - Studies
 - Domain: Student
 - Range: Module

Data Properties

https://www.youtube.com/watch?v=BaepddOkv4g&list=PLea0WJq13cnAfCC0azrCyquCN tPelJN1&index=4

- Describes relationship between instances (individuals) and data values
 - Give CSModule a name, number etc.
 - Give Lecturer a staff id, first name, last name, phone num, email etc.
 - Give Student a student id, first name, last name, email etc.
- Each data property has a domain and range

first name

Domain: Person

Range: String

last_name

Domain: Person

Range: String

• staff id

• Domain: Lecturer

Range: Integer

student_id

Domain: Student

Range: Integer

Run Reasoner

• To check if everything make sense

Creating Individuals

https://www.youtube.com/watch?v=2UDX2Ho8ZEg&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=5

Click on 'individual' tab and create a new individual (instance)

• CS101

Type: CSModule

• CS103

• Type: CSModule

M201

Type: MathModule

• M204

Type: MathModule

• Lecturer1

• Type: Lecturer

• Lecturer2

Type: Lecturer

Student1

• Type: Student

• Student2

• Type: Student

Data property assertions

Lecturer1

• first name

• Type: String

Value: Smith

last_name

• Type: String

Value: Chess

• staff_id:

• Type: Integer

• Value: 417686

Student1

• first name

• Type: String

• Value: Joseph

last_name

Type: String

Value: Malcom

• staff_id:

• Type: Integer

Value: 200202

Object property assertions

• Lecturer1

teaches

Value: CS103

Value: M201

• Student1

• Studies

Value: M204

Value: CS103

Upload University Ontology

https://www.youtube.com/watch?v=QY9M j2Ta14&list=PLea0WJq13cnAfCC0azrCyquCN tPelJN1&index=6

- User 'scp' to copy or upload the ontology file to a server
- One can actually commit to their local git repository

Running SPARQL Queries

https://www.youtube.com/watch?v=JZp70uFsZS0&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=7 https://www.youtube.com/watch?v=0zUos1zWB5k&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=8

- Download Apache Jena Fuseki distribution and run the server
 - Start 'fuseki-server' (./fuseki-server --update --mem /ds)
 - Fuseki server is now running on port 3030
- Open a browser and load Fuseki server page (http://localhost:3030)
 - Go to 'control panel'
 - Select the '/ds' dataset
 - Upload the ontology file we created (upon success, it would show 68 triples)
 - Go back to the 'control panel' and select the '/ds' dataset
 - Run the SPARQL queries
 - Select * {?x ?y ?z}
 - Prefix uni: <url_of_univ_ontology> select * { ?student uni:studies uni:M204}
 - Prefix uni: <url_of_univ_ontology> Prefix rdfs: <url_of_rdfs_ontology> select ?class where { ?class rdfs:subclassof uni:Person}

Create Sports Ontology

https://www.youtube.com/watch?v=Pn7oiDrtHmc&list=PLea0WJq13cnAfCC0azrCyquCN tPelJN1&index=9

- Two main classes
 - FavoriteSport
 - IndoorSports
 - OutdoorSports
 - Person
 - Lecturer
 - Student
- Add object property
 - hasFavoriteSports
 - Domain: Person
 - Range: FavoriteSport

- Individuals
 - IndoorSport
 - TableTenis
 - OutdoorSport
 - Rugby
 - Person
 - Lecturer1
 - Student1

- Object Property Assertion
 - Lecturer1
 - FavoriteSport
 - TableTenis
 - Student1
 - FavoriteSport
 - Rugby

Upload Sport Ontology

 Upload the 'sport' ontology alongside the university ontology so that we can query both together

Running SPARQL Queries Together

https://www.youtube.com/watch?v=U_Sf-RJAXfs&list=PLea0WJq13cnAfCC0azrCyquCN_tPelJN1&index=10_

- Download Apache Jena Fuseki distribution and run the server
 - Start 'fuseki-server' (./fuseki-server --update --mem /ds)
 - Fuseki server is now running on port 3030
- Open a browser and load Fuseki server page (http://localhost:3030)
 - Go to 'control panel'
 - Select the '/ds' dataset
 - Upload the sport ontology file we created (upon success, it would show 34 triples)
 - Go back to the 'control panel' and select the '/ds' dataset
 - Run the SPARQL queries
 - Select * {?x ?y ?z}
 - Prefix sp: <url_of_sport_ontology>
 Prefix uni: <url_of_univ_ontology>
 Prefix rdfs: <url_of_rdfs_ontology>
 - select ?class where { {?class rdfs:subclassof sp:FevoriteSport} UNION {?class rdfs:subclassof uni:Person}}
 - Output is as shown in the figure on top right

Thank you!