Chapitre 23: Propriétés des arcs paramétrés

 ε désigne ici un espace affine de dimension 2 ou 3 de direction E. On supposera parfois ε euclidien.

I Préliminaire : théorème de relèvement

Théorème (rappel):

Soit I un intervalle de \mathbb{R} . Pour toute application $f: I \to \mathbb{C}$ de classe C^1 à valeurs dans le cercle unité $(\forall t \in I, |f(t)| = 1, \text{ il existe } g: I \to \mathbb{R}$ de classe C^1 telle que $\forall x \in I, f(x) = \exp(ig(x))$. En outre, deux fonctions g solutions diffèrent de $2N\pi$ ($N \in \mathbb{Z}$) et si f est de classe C^k , g l'est aussi et on a $\forall x \in I, g'(x) = \frac{-if'(x)}{f(x)}$

Définition:

g s'appelle relèvement de f ou détermination de classe C^1 de l'argument de f.

Application:

Pour toute application $f: I \to \mathbb{C}$ de classe C^k $(k \ge 1)$ sur l'intervalle I ne s'annulant pas, il existe deux applications de classe C^k $r: I \to \mathbb{R}^*_+$ et $\theta: I \to \mathbb{R}$ telles que $\forall t \in I, f(t) = r(t) \exp(i\theta(t))$

II Arcs paramétrés de classe C^k $(k \in \mathbb{N}^* \cup \{+\infty\})$

A) Définitions

• On appelle arc paramétré de classe C^k de ε toute application $\psi: I \to \varepsilon$ de classe C^k définie sur I intervalle de \mathbb{R} . L'image $\Gamma = \psi(I)$ est le support de l'arc. ψ est une représentation paramétrique de Γ . On notera souvent M(t) au lieu de $\psi(t)$.

Pour $t \in I$, $\psi(t)$ s'appelle point de paramètre t. Un point M du support admettant un unique paramètre est dit simple ; il est dit multiple dans le cas contraire (on parlera en particulier de points doubles, triples...) L'arc est dit simple si tous les points sont simples, c'est-à-dire si ψ est injective.

• Régularité:

Le paramètre t_0 est dit régulier si $\vec{\psi}'(t_0) \neq \vec{0} \in E$, non régulier ou stationnaire si $\vec{\psi}'(t_0) = \vec{0}$

Un arc dont tout paramètre est régulier est dit lui-même régulier.

Lorsque $k \ge 2$, le paramètre t_0 est dit birégulier si les deux premiers vecteurs dérivés $\vec{\psi}'(t_0)$ et $\vec{\psi}''(t_0)$ sont indépendants dans E; il est dit non birégulier sinon.

• Branches infinies:

On dit que ψ présente une branche infinie lorsque t tend vers b (b étant une borne de I) lorsque pour $A \in \mathcal{E}$ et $\| \| \|$ norme quelconque de E, $\| \overrightarrow{A\psi}(t) \|$ tend vers $+\infty$ lorsque $t \to b$

B) Arcs équivalents, changement de paramètre, orientation

• Définition :

Deux arcs paramétrés de classe C^k $\psi_i: I_i \to \varepsilon$ (i=1,2) sont dits C^k -équivalents lorsqu'il existe un C^k -difféomorphisme $\theta: I_1 \to I_2$ tel que $\psi_1 = \psi_2 \circ \theta$

Un tel θ s'appelle changement de paramètre admissible. On dit aussi que ψ_1 et ψ_2 sont deux paramétrages admissibles du même arc.

Propriétés:

- (1) Deux arcs $\psi_i: I_i \to \varepsilon$ C^k -équivalents ont le même support Γ .
- (2) $t_1 \in I_1$ est un paramètre régulier (resp. birégulier) de ψ_1 si et seulement si $t_2 = \theta(t_1)$ l'est pour ψ_2 . $M \in \Gamma$ est simple pour ψ_1 si et seulement si il l'est pour ψ_2 .
- Propriétés et éléments géométriques attachés au support :

Soit Γ le support d'un arc paramétré. On a vu ci-dessus que, pour $M \in \Gamma$, le caractère simple (resp. régulier) du paramètre M est invariant par changement de paramètre admissible ; on dit alors que M est un point simple ou régulier de Γ .

Plus généralement, l'étude et la description des arcs paramétrés consistent à déterminer les notions et sous-ensembles de ε inchangés (ou invariants) par changement de paramètre admissible : c'est le cas des caractères simple, régulier, birégulier ; c'est aussi celui de la tangente en un point simple, du plan osculateur, de la concavité (lorsque les quantités existent)...

Orientation :

Deux paramétrages ψ , ρ admissibles d'un arc Γ sont dit de même orientation si $\rho = \psi \circ \theta$ où θ est croissant.

Cela définit une relation d'équivalence sur l'ensemble des paramétrages admissibles de Γ . Cette relation admet exactement deux classes : si ψ est un paramétrage admissible de Γ , ces deux classes sont $C_1 = \{\psi \circ \theta, \theta \text{ croissant}\}$ et $C_2 = \{\psi \circ \theta, \theta \text{ décroissant}\}$.

Orienter Γ , c'est choisir l'une des deux classes. On appelle arc orienté un couple (Γ, C) où Γ est un arc et C l'une des deux classes.

On appelle paramétrage admissible direct de l'arc orienté (Γ, C) un paramétrage de Γ dont la classe est C. Un paramétrage de l'autre classe est dit indirect.

C) Interprétation géométrique : tangente, normale ou plan normal

Intuitivement:

La tangente au paramètre t_0 est la position limite, lorsqu'elle existe, de la droite $D(\psi(t_0), \psi(t))$ lorsque $t \to t_0$. On note alors cette droite $T_{\psi}(t_0)$. Plus précisément, dans un repère, c'est la droite passant par $\psi(t_0)$ de pente, lorsqu'elle existe, la limite pour $t \to t_0$ de la pente de $D(\psi(t_0), \psi(t))$. On notera que cette définition est indépendante du repère, et qu'en un paramètre t_0 il y a au plus une tangente et qu'on ne distingue pas les valeurs $\pm \infty$ des pentes.

Si $\psi(t_0)$ est un point simple du support, la tangente éventuelle en t_0 sera appelée tangente en $\psi(t_0)$. On notera qu'elle est invariante par changement de paramètre admissible. Autrement dit, la tangente ne dépend que du support et pas de la représentation paramétrique choisie.

Si ε est un plan euclidien (de dimension 2), la perpendiculaire en $\psi(t_0)$ à la tangente $T_{\psi}(t_0)$ s'appelle normale en t_0 (ou en $\psi(t_0)$ s'il est simple).

Si ε est un espace euclidien (de dimension 3), la perpendiculaire en $\psi(t_0)$ à la tangente $T_{\psi}(t_0)$ s'appelle plan normal en t_0 (ou en $\psi(t_0)$ s'il est simple)

Propriété:

Si t_0 est un paramètre régulier de l'arc paramétré de classe C^k $\psi: I \to \varepsilon$, $\psi(t_0)$ admet pour tangente en t_0 la droite passant par $\psi(t_0)$ dirigée par $\vec{\psi}'(t_0)$. Dans le cas d'une courbe plane, dans un repère quelconque (O,\mathfrak{B}) , l'équation de la tangente est $\det_{\mathfrak{B}}(\overrightarrow{\psi(t_0)M}, \overrightarrow{\psi}'(t_0)) = 0$

D) Interprétation cinématique

Lorsqu'on identifie le paramètre t au temps, un arc paramétré ψ de classe C^k $(k \ge 2)$ modélise le mouvement d'un point matériel. $\vec{\psi}'(t)$ est identifié au vecteur vitesse et $\vec{\psi}''(t)$ au vecteur accélération.

On a l'interprétation suivante du caractère stationnaire ou régulier :

Si à l'instant t_0 la vitesse est non nulle, le point continue son mouvement dans la direction du vecteur vitesse.

Si la vitesse s'annule en t_0 , le point peut s'arrêter ou repartir dans une direction quelconque.

E) Position d'un arc par rapport à une droite (dimension 2) ou un plan (dimension 3)

Les propriétés suivantes sont invariantes par changement de paramètre admissible :

- Rappel: un hyperplan affine H de ε sépare ε en deux demi-espaces convexes. Si $\alpha : \varepsilon \to \mathbb{R}$ est une forme affine non constante telle que $\alpha(M) = 0$ est une équation de H, les demi-espaces sont $\{M \in \varepsilon, \alpha(M) > 0\}$ et $\{M \in \varepsilon, \alpha(M) < 0\}$.
- Cas d'un point à distance finie :

Propriété:

Soit $\psi: I \to \varepsilon$ un arc paramétré de classe C^k ($k \ge 1$) et H un hyperplan de ε d'équation $\alpha(M) = 0$ contenant $M_0 = \psi(t_0)$.

- (1) Si $\alpha(\psi(t))$ change de signe lorsque t passe par la valeur t_0 , alors H traverse le support Γ de ψ en $\psi(t_0)$.
- (2) Si $\alpha(\psi(t))$ ne change pas de signe lorsque t passe par la valeur t_0 , alors H ne traverse pas le support Γ de ψ en $\psi(t_0)$. De plus, si t_0 est régulier, H contient $T_{\psi}(t_0)$ (égal si on est en dimension 2)
- Cas d'une branche infinie d'un arc plan :

Propriété, définition :

Ici, ε est un plan, H une droite et ψ, α comme ci-dessus. On suppose de plus que ψ présente une branche infinie lorsque $t \to b$ et que $\alpha(\psi(t))$ tend vers 0 lorsque $t \to b$. Alors H est asymptote à ψ (ou au support Γ) lorsque $t \to b$.

F) Etude au voisinage d'un point birégulier

On vérifiera que les notions et propriétés suivantes sont invariantes par changement de paramètre admissible de classe au moins \mathbb{C}^2 .

On suppose ici que ψ est un arc paramétré de classe C^k où $k \ge 2$ et que t_0 est un paramètre birégulier.

• Cas d'un arc plan : concavité.

On appelle concavité en $\psi(t_0)$ le demi-plan limité par la tangente et contenant la demi-droite issue de $\psi(t_0)$ dirigée par $\vec{\psi}''(t_0)$

Si $\mathfrak B$ est une base de E, un point $P \in \mathcal E$ est dans la concavité en $\psi(t_0)$ si et seulement si $\det_{\mathfrak B}(\overrightarrow{\psi(t_0)P},\overrightarrow{\psi}'(t_0)) \times \det_{\mathfrak B}(\overrightarrow{\psi}''(t_0),\overrightarrow{\psi}'(t_0)) \ge 0$

Si, dans le repère (O, \vec{t}, \vec{j}) , $\psi(t)$ est le point de coordonnées (x(t), y(t)), la demidroite issue de $\psi(t_0)$ dirigée par \vec{j} est dans la concavité si et seulement si $x'(t_0)(x'(t_0)y''(t_0)-x''(t_0)y'(t_0)) \ge 0$

• Cas d'un arc gauche (en dimension 3) : plan osculateur.

On appelle plan osculateur en $\psi(t_0)$ le plan contenant $\psi(t_0)$ et dirigé par les deux vecteurs indépendants $\vec{\psi}'(t_0)$ et $\vec{\psi}''(t_0)$ (t_0 est birégulier)

G) Etude au voisinage d'un point non birégulier

Propriété:

On suppose que, au voisinage de t_0 , on a le développement

$$\overline{\psi(t_0)\psi(t)} = \sum_{k=r}^{s} (t - t_0)^k V_k + o((t - t_0)^s) \text{ avec } 1 \le r < s , \ V_r \ne 0 , \ V_k \text{ colinéaire à } V_r$$
pour $k < s$ et V_s non colinéaire à V_r .

Alors ψ admet pour tangente en t_0 la droite dirigée par V_r et le support a, au voisinage de t_0 , l'une des allures suivantes (invariantes par changement de variable admissible de classe au moins s):

En effet:

Posons $M_0 = \psi(t_0)$. L'équation de la tangente est $\alpha(M) = 0$ et celle de la normale $\beta(M) = 0$ où $\alpha(M) = \det(\overrightarrow{M_0M}, V_r)$ et $\beta(M) = < \overrightarrow{M_0M}, V_r >$

Au voisinage de t_0 , on a :

$$\alpha(\psi(t)) = (t - t_0)^s \det(V_r, V_s) + o((t - t_0)^s) \text{ et } \beta(\psi(t)) = (t - t_0)^r \|v_r\|^2 + o((t - t_0)^r)$$

Le signe de ces quantités, et donc la position de l'arc par rapport à chacune des droites, est donné par la parité de r et s.

H) Vecteur unitaire tangent et relèvement de l'angle polaire de la tangente

Théorème:

Soit ε un plan euclidien orienté rapporté au repère orthonormé direct (O, \vec{i}, \vec{j}) . Pour $\psi: I \to E$, arc paramétré régulier de classe C^k avec $k \ge 2$, il existe deux fonctions de classes C^{k-1} $v, \alpha: I \to \mathbb{R}$ telles que

$$\forall t \in I, \vec{\psi}'(t) = v(t)(\cos(\alpha(t))\vec{i} + \sin(\alpha(t))\vec{j})$$

On a
$$v(t) = \|\vec{\psi}'(t)\| = \sqrt{x'^2(t) + y'^2(t)}$$
, $x'(t) = v(t)\cos\alpha(t)$, $y'(t) = v(t)\sin\alpha(t)$ et $m(t) = \frac{y'(t)}{x'(t)} = \tan\alpha(t)$

Démonstration :

On pose
$$\psi(t) = (x(t), y(t))$$
 (c'est-à-dire $\overrightarrow{O\psi(t)} = x(t)\overrightarrow{i} + y(t)\overrightarrow{j}$)

Et z(t) = x'(t) + iy'(t) alors $z: I \to \mathbb{C}$ est de classe C^{k-1} , ne s'annulant pas. En posant v(t) = |z(t)|, il existe $\alpha: I \to \mathbb{R}$ de classe C^{k-1} tel que $\forall t \in I, z(t) = |z(t)|e^{i\alpha(t)}$

On a alors
$$\vec{\psi}'(t) = v(t)(\cos\alpha(t)\vec{i} + \sin\alpha(t)\vec{j})$$

I) Plan et méthode d'étude d'un arc paramétré plan

On suppose que le plan ε est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) et on étudie l'arc paramétré $\psi: t \in I \mapsto M(t)$ où M(t) a pour coordonnées (x(t), y(t))

• Plan:

On étudie :

- Le domaine de définition, le domaine d'étude et les symétries éventuelles.

S'il existe une transformation simple F telle que $\forall t, M(t+T) = F(M(t))$, on prendra pour T la plus petite valeur possible et on restreindra l'étude à [A, A+T] où A est déterminé ultérieurement en fonction d'autres réductions éventuelles.

S'il existe une transformation simple G telle que $\forall t, M(a-t) = G(M(t))$, on restreindra l'intervalle d'étude à $D \cap \left[\frac{a}{2}, +\infty\right] \left(\frac{a}{2} \text{ est le point fixe de } a \mapsto t-a\right)$

- Les variations de x et y, les branches infinies
- Les points non biréguliers (penser à utiliser la pente m(t)) et les points multiples, éventuellement la concavité.
- Ne pas oublier de tracer la courbe.
- Passage à l'affixe

Lorsque x et y font intervenir des expressions trigonométriques, on a parfois intérêt à poser z(t) = x(t) + iy(t)

On a alors aisément les rotations et similitudes de centre O fixant l'arc, les coordonnées polaires r(t) = |z(t)|, $\theta(t) = \text{Arg}(z(t)) [\pi]$...

- Utilisation de $m(t) = \frac{y'(t)}{x'(t)}$
- En un paramètre régulier t_0 :

 $m(t_0) \in \mathbb{R}$ est la pente de la tangente.

De plus, t_0 est non birégulier si et seulement si $m'(t_0) = 0$. Alors le point est soit d'allure ordinaire, soit d'inflexion (puisqu'on a ici r = 1)

- Pour un paramètre t_0 régulier, un point A est dans la concavité si et seulement

si
$$\det \begin{pmatrix} x_A - x(t_0) & x'(t_0) \\ y_A - y(t_0) & y'(t_0) \end{pmatrix} \times \det \begin{pmatrix} x''(t_0) & x'(t_0) \\ y''(t_0) & y'(t_0) \end{pmatrix} \ge 0$$
.

La concavité est tournée vers les y positifs si et seulement si $x'(t_0)m'(t_0) \ge 0$

- Si t_0 est stationnaire et si $\lim_{t \to t_0} m(t) = m_0 \in \mathbb{R}$, alors l'arc a pour tangente en t_0 la droite de pente m_0 .
- Utilisation de développements :
- On a vu en <u>G</u>) comment un développement peut donner la tangente et l'allure locale.

- Si ψ présente une branche infinie pour $t \to t_0$ et si, pour $(a,b) \neq (0,0)$, $ax(t) + by(t) = c + d(t - t_0)^n + o((t - t_0)^n)$, alors ax + by = c est asymptote et la position de l'arc par rapport à l'asymptote est donnée par le signe de $d \neq 0$.

III Courbes en polaires

A) Coordonnées polaires d'un point, représentation d'un arc

 ε désigne ici un plan affine euclidien rapporté à un repère orthonormé direct (O, \vec{i}, \vec{j}) que l'on pourra identifier au plan complexe en associant à M de coordonnées (x, y) son affixe z = x + iy.

• Définition et principales propriétés :

Soit M de coordonnées (x, y). On appelle couple de coordonnées polaires de M tout couple (r, θ) tel que $x = r \cos \theta$, $y = r \sin \theta$

Propriétés:

(1) Soient M, M' de coordonnées polaires respectives (r, θ) , (r', θ') . On a M = O si et seulement si r = 0 et pour M, M' distincts de O,

$$M = M' \Leftrightarrow ((r = r' \text{ et } \theta = \theta' [2\pi]) \text{ ou } (r = -r' \text{ et } \theta = \theta' + \pi [2\pi]))$$

(2) Soit F la transformation qui à M de coordonnées polaires (r, θ) associe M' de coordonnées polaires (r', θ') .

Si r'=r (resp. r'=-r) et $\theta'=\theta+a_0$, F est la rotation de centre O d'angle α_0 (resp. $\alpha_0+\pi$)

Si r'=r (resp. r'=-r et $\theta'=-\theta+a_0$, F est la réflexion par rapport à l'ensemble des invariants, qui est la droite d'angle polaire $a_0/2$ (resp. $a_0/2+\pi/2$)

• Courbes en coordonnées polaires :

Soit ε un plan euclidien rapporté à un repère orthonormal. Tout arc paramétré de classe C^k ($k \ge 1$) de ε ne passant pas par l'origine a une représentation de la forme $t \mapsto M(t)$ de coordonnées $x(t) = r(t)\cos(\theta(t))$, $y(t) = r(t)\sin(\theta(t))$ où r et θ sont des applications de classe C^k .

• Repère mobile :

On considère le repère orthonormal direct mobile :

$$R_{\theta} = (O, \vec{u}_{\theta}, \vec{v}_{\theta})$$
 où $\vec{u}_{\theta} = \cos\theta \cdot \vec{i} + \sin\theta \cdot \vec{j}$ et $\vec{v}_{\theta} = \frac{d\vec{u}_{\theta}}{dt} = -\sin\theta \cdot \vec{i} + \cos\theta \cdot \vec{j}$

Si les coordonnées de M dans (O, \vec{i}, \vec{j}) sont (x, y) et si ses coordonnées polaires sont (r, θ) , alors ses coordonnées dans R_{θ_0} sont (X, Y) où

$$X = r\cos(\theta - \theta_0) = \langle \overrightarrow{OM}, \overrightarrow{u}_{\theta_0} \rangle = \cos\theta_0 x + \sin\theta_0 y$$

$$Y = r \sin(\theta - \theta_0) = \langle \overrightarrow{OM}, \overrightarrow{v}_{\theta_0} \rangle = -\sin\theta_0 x + \cos\theta_0 y$$

B) Etude d'un arc donné en coordonnées polaires

• Vecteur dérivé et dérivé seconde dans le repère mobile.

Soit l'arc paramétré $t \mapsto M(t)$ de coordonnées polaires $(r(t), \theta(t))$ (assez souvent, on aura $\theta = t$).

Propriété:

Pour un arc paramétré de classe au moins C^2 , on a $\overrightarrow{OM}(t) = r(t)\vec{u}_{\theta(t)}$,

$$\vec{M}'(t) = r'(t)\vec{u}_{\theta(t)} + r(t)\theta'(t)\vec{v}_{\theta(t)}$$

et
$$\vec{M}''(t) = (r''(t) - r(t)\theta'(t)^2)\vec{u}_{\theta(t)} + (2r'(t)\theta'(t) + r(t)\theta''(t))\vec{v}_{\theta(t)}$$

En particulier, t_0 est stationnaire si et seulement si $r'(t_0) = r(t_0)\theta'(t_0) = 0$.

Si $\theta = t$, l'origine est le seul point éventuellement stationnaire.

Si $M(t_0)$ est l'origine et si t_0 est régulier, la tangente en t_0 (ou en O) est la droite d'angle polaire $\vec{u}_{\theta(t)}$.

• L'angle V, c'est l'angle entre M'(t) et l'axe (O, \vec{u}_{θ}) . Lorsque l'arc est régulier de classe C^k , on peut choisir une détermination de classe C^{k-1} de V et on a (avec les notations usuelles):

$$\alpha(t) = \theta(t) + V(t), \ v(t) = \sqrt{x'^2(t) + y'^2(t)} = \sqrt{r^2(t)\theta'^2(t) + r'^2(t)},$$

$$\cos V(t) = \frac{r'(t)}{v(t)}, \ \sin V(t) = \frac{r(t)\theta'(t)}{v(t)}, \ \tan V(t) = \frac{r(t)\theta'(t)}{r'(t)}$$

• Points biréguliers, concavité : on suppose ici $\theta = t$.

D'après $\underline{\mathbf{II}}$ - $\underline{\mathbf{F}}$), le point O est dans la concavité du point de paramètre birégulier θ si et seulement si $\det(\overrightarrow{OM}(\theta), \overrightarrow{M}'(\theta)) \det(\overrightarrow{M}'(t), \overrightarrow{M}''(\theta)) \ge 0$

Le calcul des déterminants dans le repère mobile R_{θ} donne que O est dans la concavité si et seulement si $r^2 + 2r'^2 - rr' \ge 0$ ou, en posant c = 1/r, si et seulement si $c(c''+c) \ge 0$

• Plan d'étude :

L'étude doit contenir les points suivants :

- Domaine de définition, d'étude et symétries éventuelles
- Le signe de r(t) et la/les tangente(s) éventuelles en O.
- L'étude des branches infinies :

Si r tend vers $r_0 \in \mathbb{R}$ et θ tend vers $\pm \infty$, la branche infinie admet le cercle de centre O et de rayon $|r_0|$ comme asymptote.

Si r et θ tendent vers $\pm \infty$, la branche infinie est une branche spirale.

Si r tend vers $\pm \infty$ et θ tend vers $\theta_0 \in \mathbb{R}$, la branche infinie admet comme direction asymptotique la direction d'angle polaire θ_0 ; si de plus $r\sin(\theta-\theta_0)$ tend vers $p \in \mathbb{R}$, la droite d'équation Y = p dans le repère mobile R_{θ} est asymptote.

- Recherche des points multiples autres que O.