Package 'CACIMAR'

October 12, 2022

Title Cross-Species Analysis of Cell Identities, Markers and Regulations
Version 1.0.0
Maintainer Junyao Jiang <jiangjunyao789@163.com></jiangjunyao789@163.com>
Author Junyao Jiang <jiangjunyao789@163.com></jiangjunyao789@163.com>
Description A toolkit to perform cross-species analysis based on scRNA-seq data. This package contains 5 main features. (1) identify Markers in each cluster. (2) Cell type annotation (3) identify conserved markers. (4) identify conserved cell types. (5) identify conserved modules of regulatory networks.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports pheatmap, pbapply, psych, ROCR, reshape2, dplyr, grDevices, stats, methods, viridisLite
Depends R (>= 4.0), Seurat
Suggests knitr, testthat (>= 3.0.0)
Config/testthat/edition 3
<pre>URL https://github.com/jiang-junyao/CACIMAR</pre>
<pre>BugReports https://github.com/jiang-junyao/CACIMAR/issues</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-18 08:20:02 UTC
R topics documented:
CACIMAR_cols

2	CACIMAR_cols
---	--------------

	Identify_CellType	4
	Identify_ConservedCellTypes	5
	Identify_ConservedMarkers	6
	Identify_ConservedNetworks	7
	Identify_Markers	8
	OrthG_Hs_Ch	9
	OrthG_Hs_Mm	9
	OrthG_Hs_Zf	9
	OrthG_Mm_Ch	10
	OrthG_Mm_Zf	10
	OrthG_Zf_Ch	10
	Plot_MarkersHeatmap	11
Index		13
		20

CACIMAR_cols

CACIMAR colors palette

Description

CACIMAR colors palette

Usage

CACIMAR_cols(color_number)

Arguments

color_number

numeric, indicating used colors number

Value

vector of colors

Examples

CACIMAR_cols(10)
CACIMAR_cols(20)

Format_Markers_Frac

Format_Markers_Frac Format marker genes for plotting

Description

Order the gene expression in each cluster to make the heatmap look better

Usage

```
Format_Markers_Frac(Marker_genes)
```

Arguments

```
Marker_genes data.frame, generated by Identify_Markers
```

Value

Markers corresponding to certain cluster

Examples

```
data("pbmc_small")
all.markers <- Identify_Markers(pbmc_small)
all.markers2 <- Format_Markers_Frac(all.markers)</pre>
```

Heatmap_Cor

plot the heatmap of marker genes across different species

Description

plot the heatmap of marker genes across different species

Usage

```
Heatmap_Cor(
   RNA1,
   RowType1 = "",
   ColType1 = "",
   cluster_cols = TRUE,
   cluster_rows = FALSE,
   Color1 = NULL,
   ...
)
```

4 Identify_CellType

Arguments

RNA1 correlation of expression in each cell type RowType1 character, indicating the cell types that you want to show on the row in heatmap. RowType1=" means show all cell types ColType1 character, indicating the cell types that you want to show on the column in heatmap. RowType1=" means show all cell types cluster_cols boolean values determining if columns should be clustered or helust object cluster_rows boolean values determining if rows should be clustered or hclust object Color1

vector of colors used in heatmap

parameter in pheatmap . . .

Value

pheatmap object

Examples

```
load(system.file("extdata", "network_example.rda", package = "CACIMAR"))
n1 <- Identify_ConservedNetworks(OrthG_Mm_Zf,mmNetwork,zfNetwork,'mm','zf')</pre>
Heatmap_Cor(n1[[2]],cluster_cols=TRUE, cluster_rows=FALSE)
```

Identify_CellType

Identify cell type of each cluster

Description

This function has three steps to identify cell type of each cluster. (1) Calculate the power of each known marker based on AUC (area under the receiver operating characteristic curve of gene expression) which indicates the capability of marker i from cell type m to distinguish cluster j and the other clusters. (2) Calculate the united power (UP) for cell type m across each cluster j. (3) For each cluster j we determine the cell type according to UP. Generally, the cluster beongs to the cell type which have the highest united power or higher than the threshold of the united power (for example > 0.9 power).

Usage

```
Identify_CellType(seurat_object, Marker_gene_table)
```

Arguments

```
seurat_object
                seurat object
Marker_gene_table
```

data.frame, indicating marker gene and its corresponding cell type. Marker_gene_table should contain two columns: 'CellType' represent correseponding cell types of each marker and 'Marker' represent Markers

Value

Cell type with the highest power in each cluster

Examples

```
\label{lem:constraint} KnownMarker=data.frame(c('AIF1','BID','CCL5','CD79A','CD79B','MS4A6A'),c('a','a','a','b','b','b')) $$ data("pbmc_small") $$ colnames(KnownMarker)=c('Marker','CellType') $$ CT <- Identify_CellType(pbmc_small,KnownMarker) $$
```

Identify_ConservedCellTypes

Identify conserved cell types based on power of genes and orthologs database

Description

Identify conserved cell types based on power of genes and orthologs database

Usage

```
Identify_ConservedCellTypes(
   OrthG,
   Species1_Marker_table,
   Species2_Marker_table,
   Species_name1,
   Species_name2
)
```

Arguments

Value

list contains two elements: first one is details of conserved cell types, second one is matrix of cell types conserved score

Examples

```
load(system.file("extdata", "CellTypeAllMarkers.rda", package = "CACIMAR"))
expression <- Identify_ConservedCellTypes(OrthG_Mm_Zf,mm_Marker[1:30,],zf_Marker[1:30,],'mm','zf')</pre>
```

Identify_ConservedMarkers

Identify orthologs marker genes for two species

Description

Identify orthologs marker genes for two species based on orthologs database

Usage

```
Identify_ConservedMarkers(
   OrthG,
   Species1_Marker_table,
   Species2_Marker_table,
   Species_name1,
   Species_name2,
   match_cell_name = NULL
)
```

Arguments

Value

Data frame of conserved markers

```
load(system.file("extdata", "CellMarkers.rda", package = "CACIMAR"))
o1 <- Identify_ConservedMarkers(OrthG_Mm_Zf,Mm_marker_cell_type,
Zf_marker_cell_type,Species_name1 = 'mm',Species_name2 = 'zf')
o2 <- Identify_ConservedMarkers(OrthG_Zf_Ch,Ch_marker_cell_type,
Zf_marker_cell_type,Species_name1 = 'ch',Species_name2 = 'zf')</pre>
```

Identify_ConservedNetworks

Identify conserved regulatory networks

Description

Use Score of Conserved network to identify conserved regulatory network modules based on homologous genes databased and topology of networks

Usage

```
Identify_ConservedNetworks(
   OrthG,
   Species1_GRN,
   Species2_GRN,
   Species_name1,
   Species_name2
)
```

Arguments

```
OrthG ortholog genes database

Species1_GRN gene regulatory network of species 1

Species2_GRN gene regulatory network of species 2

Species_name1 character, indicating the species names of Species1_GRN

Species_name2 character, indicating the species names of Species2_GRN
```

Value

list contains two df. First df contains details of conserved regulatory network, second df contains NCS between module pairs

```
load(system.file("extdata", "gene_network.rda", package = "CACIMAR"))
n1 <- Identify_ConservedNetworks(OrthG_Mm_Zf,mm_gene_network,zf_gene_network,'mm','zf')</pre>
```

8 Identify_Markers

Identify_Markers

Identify markers of each cluster

Description

This function first identify marker genes in each cluster with Roc threshold > RocThr. Then, based on marker genes identified above, this function calculates the difference and power of marker genes in each cluster, and marker genes with Difference threshold > DiffThr will be retained. Next, gene with the largest power in which cluster will be the marker gene in this cluster. Eventually, make fisher test for power of each cluster, cluster with p.value < 0.05 will be retained as the final cluster for marker gene

Usage

```
Identify_Markers(
   Seurat_object,
   PowerCutoff = 0.4,
   DifferenceCutoff = 0,
   PvalueCutoff = 0.05
)
```

Arguments

Seurat_object Seurat object, should contain cluster information

PowerCutoff numeric, indicating the cutoff of gene power to refine marker genes

DifferenceCutoff

numeric, indicating the cutoff of difference in marker genes between clusters to

refine marker genes

PvalueCutoff numeric, indicating the p.value cutoff of chi-square test to refine marker genes

Value

Data frame of conserved markers

```
data("pbmc_small")
all.markers <- Identify_Markers(pbmc_small)</pre>
```

OrthG_Hs_Ch

OrthG_Hs_Ch

Orthologs genes database for homo sapiens and zebrafish

Description

Orthologs genes database for homo sapiens and zebrafish

Usage

OrthG_Hs_Ch

Format

An object of class data. frame with 12219 rows and 5 columns.

OrthG_Hs_Mm

Orthologs genes database for homo sapiens and mus musculus

Description

Orthologs genes database for homo sapiens and mus musculus

Usage

OrthG_Hs_Mm

Format

An object of class data. frame with 16754 rows and 5 columns.

OrthG_Hs_Zf

Orthologs genes database for homo sapiens and zebrafish

Description

Orthologs genes database for homo sapiens and zebrafish

Usage

OrthG_Hs_Zf

Format

An object of class data. frame with 12017 rows and 5 columns.

10 OrthG_Zf_Ch

OrthG_Mm_Ch

Orthologs genes database for mus musculus and chicken

Description

Orthologs genes database for mus musculus and chicken

Usage

OrthG_Mm_Ch

Format

An object of class data. frame with 62661 rows and 5 columns.

OrthG_Mm_Zf

Orthologs genes database for mus musculus and zebrafish

Description

Orthologs genes database for mus musculus and zebrafish

Usage

OrthG_Mm_Zf

Format

An object of class data. frame with 65631 rows and 5 columns.

OrthG_Zf_Ch

Orthologs genes database for mus zebrafish and chicken

Description

Orthologs genes database for mus zebrafish and chicken

Usage

OrthG_Zf_Ch

Format

An object of class data. frame with 38394 rows and 5 columns.

Description

This function integrate R package pheatmap to plot markers in each cell type

Usage

```
Plot_MarkersHeatmap(
   ConservedMarker,
   start_col = 2,
   module_colors = NA,
   heatmap_colors = NA,
   cluster_rows = FALSE,
   cluster_cols = FALSE,
   show_rownames = FALSE,
   show_colnames = FALSE,
   cellwidth = NA,
   cellheight = NA,
   legend = FALSE,
   annotation_legend = FALSE,
   annotation_names_row = FALSE,
   ...
)
```

Arguments

ConservedMarker

Markers table

start_col numeric, indicating the start column of marker power in each cell type

module_colors vector, indicating colors of modules (annotation_colors)

heatmap_colors vector, indicating colors used in heatmap

cluster_rows boolean values determining if rows should be clustered or hclust object cluster_cols boolean values determining if columns should be clustered or hclust object

show_rownames boolean specifying if column names are be shown show_colnames boolean specifying if column names are be shown

cellwidth individual cell width in points. If left as NA, then the values depend on the size

of plotting window

cellheight individual cell height in points. If left as NA, then the values depend on the size

of plotting window

legend logical to determine if legend should be drawn or not

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn

```
annotation_names_row boolean value showing if the names for row annotation tracks should be drawn ... parameter in pheatmap
```

Value

pheatmap object

```
data("pbmc_small")
all.markers <- Identify_Markers(pbmc_small)
all.markers <- Format_Markers_Frac(all.markers)
Plot_MarkersHeatmap(all.markers[,c(2,6,7,8)])</pre>
```

Index

```
* datasets
    OrthG_Hs_Ch, 9
    OrthG_Hs_Mm, 9
    OrthG_Hs_Zf, 9
    OrthG_Mm_Ch, 10
    OrthG_Mm_Zf, 10
    OrthG_Zf_Ch, 10
CACIMAR_cols, 2
Format_Markers_Frac, 3
Heatmap_Cor, 3
Identify_CellType, 4
Identify_ConservedCellTypes, 5
Identify_ConservedMarkers, 6
Identify_ConservedNetworks, 7
Identify_Markers, 3, 8
OrthG_Hs_Ch, 9
OrthG_Hs_Mm, 9
OrthG_Hs_Zf, 9
OrthG_Mm_Ch, 10
OrthG\_Mm\_Zf, 10
\texttt{OrthG\_Zf\_Ch}, \textcolor{red}{10}
Plot_MarkersHeatmap, 11
```