离散数学 (2023) 作业 01 - 命题逻辑

March 6, 2023

Problem 1

p	q	r	$\neg p$	$(p \rightarrow q)$	$(\neg p \to r)$	$(p \to q) \land (\neg p \to r)$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	0	1	1	1
1	1	1	0	1	1	1

Table 1: **Problem 1 真值表**

Problem 2

- 1. $r \wedge \neg p$
- 2. $\neg p \land q \land r$
- 3. $r \to (q \leftrightarrow \neg p)$
- 4. $\neg q \land \neg p \land r$
- 5. $(\neg r \land \neg p) \rightarrow q$
- 6. $(p \wedge r) \rightarrow \neg q$

Problem 3

- 1. Jennifer 和 Teja 不是朋友。
- 2. 面包师说的"一打"不是 13 个。
- 3. Abby 每天发送的短信数量少于 100 条。
- 4. 121 不是一个完全平方数。

Problem 4

- 1. 真。假 ↔ 假。
- 2. 假。真→假。
- 3. 真。假 → 假。
- 4. 真。假 → 真。

Problem 5

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg (p \lor q)$	$\neg p \land \neg q$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Table 2: Problem 5 真值表

由于 $\neg (p \lor q)$ 和 $\neg p \land \neg q$ 的真值一样, 所以 $\neg (p \lor q) \equiv \neg p \land \neg q$

Problem 6

令 p、q、r 为如下命题:

- p: TA 是理科学生
- q: TA 是文科学生
- r: TA 学好了数学

原题可形式化为: $\{p \rightarrow r, \neg q \rightarrow p, \neg r\} \vdash q$

证明.

1.
$$p \rightarrow r$$
premise2. $\neg r$ premise3. $\neg p$ MT 1,24. $\neg q \rightarrow p$ premise5. q MT 3,4

Problem 7

设:

- p: 矿样为铁;
- q: 矿样为铜;
- r: 矿样为锡;

那么,三人的判断分别可以形式化为命题逻辑公式 F_1, F_2, F_3 :

- $\mathbb{H}: F_1 \equiv \neg p \land \neg q.$
- $Z: F_2 \equiv \neg p \wedge r$.
- $\overline{\mathsf{M}}$: $F_3 \equiv p \land \neg r$.

显然,命题 p,q,r 至多只有一项成立,它们的真值指派记为"T"和"F"。另外,分别记每人判断正确率"错了"、"对一半"和"全对"为 0 , 0.5 , 1 。那么,可以构建由 $\{p,q,r\}$ 的真值到 $\{F_1,F_2,F_3\}$ 正确率的映射如表??,并得到:该矿样本为铁。甲对一半,乙全错,丙全对。

p	q	r	F_1	_	F_3
F	F	Τ	1	1	0
\mathbf{F}	\mathbf{T}	\mathbf{F}	$0.5 \\ 0.5$	0.5	0.5
\mathbf{T}	\mathbf{F}	\mathbf{F}	0.5	0	1

Table 3: Problem 7 的命题真值-判断正确率映射关系

Problem 8

记:

$$A \equiv (\alpha \leftrightarrow (\beta \leftrightarrow \gamma))$$

$$B \equiv ((\alpha \land (\beta \land \gamma)) \lor ((\neg \alpha) \land ((\neg \beta) \land (\neg \gamma))))$$

根据两公式的真值表??可知,两公式并不互为重言蕴含

α	β	γ	A	B	$A \rightarrow B$	$B \to A$
0	0	0	0	1	1	0
0	0	1	1	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	1	1
1	0	0	1	0	0	1
1	0	1	0	0	1	1
1	1	0	0	0	1	1
1	1	1	1	1	1	1

Table 4: Problem 8 的真值表

Problem 9

证明.

- $(1 \Rightarrow 2)$: 根据定义, $\alpha \models \beta$ 说明当 α 为真时 β 也为真。因此 $\alpha \to \beta \equiv \neg \alpha \lor \beta$ 恒真,因此 $\alpha \to \beta$ 为重言式,即 $\models (\alpha \to \beta)$.
- $(2 \Rightarrow 3)$:
 - $-(\models)$: 由于 $\alpha \to \beta$ 为重言式, 那么 α 为真时 β 必为真, 此时 $(\alpha \land \beta)$ 亦为真, 因此 $\alpha \models (\alpha \land \beta)$;
 - (=): 显然, $(\alpha \land \beta)$ 为真时有 α 为真, 故 $(\alpha \land \beta)$ |= α 。

所以, α 与 $(\alpha \land \beta)$ 重言等价。

- $(3 \Rightarrow 4)$:
 - $-(\models)$: 显然 β 为真时, $(\alpha \lor \beta)$ 必为真,因此有 $\beta \models (\alpha \lor \beta)$;
 - $-(\exists):(\alpha\vee\beta)$ 为真可分为下列两种情况讨论:
 - (a) α 为真, 由 α 与 ($\alpha \wedge \beta$) 重言等价可知, α 为真时, ($\alpha \wedge \beta$) 必为真, 因此 β 亦为真;
 - (b) α 为假,那么根据 ($\alpha \vee \beta$)可知 β 必须为真;

因此有 $(\alpha \lor \beta) \models \beta$ 。

故 β 与 $(\alpha \vee \beta)$ 重言等价。

• $(4 \Rightarrow 1)$: 由 $(\alpha \lor \beta) \models \beta$ 可知, α 为真时, β 必为真。根据定义可得 $\alpha \models \beta$ 。

Problem 10

- (1) 证明.
- 1. α 2. β 3. α 4. $(\beta \to \alpha)$
- →i 2, 3

1

5. $\alpha \to (\beta \to \alpha)$

→i 1-4

 ${\rm assumption}$

 ${\rm assumption}$

(2) 证明.

11. $(\alpha \to (\beta \to \gamma))) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$

- assumption assumption
- and amp trom
- assumption
- →e 3, 4
- 2
- \rightarrow e 3, 6 \rightarrow e 5, 7
- →i 3–8
- →i 2-9
- →i 1–10

(3) 证明.

11. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$

assumption

 ${\rm assumption}$

assumption

1

 \rightarrow e 3, 4

2

 \rightarrow e 3, 6

 $\neg e 5, 7$

 $\pm e, 3-7$

→i 2–8

→i 1-9