Today 6:00-7:30pm: SNAP.PY recitation, Nvidia Auditorium 9/26 4:15-5:45pm: Review of Probability, Gates B01

Measuring Networks and the Random Graph Model

CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

How the Class Fits Together

Properties

Models

Algorithms

Small diameter, Edge clustering

Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Scale-Free

Densification power law, Shrinking diameters

Strength of weak ties, Core-periphery Erdös-Renyi model, Small-world model

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Preferential attachment, Copying model

Microscopic model of evolving networks

Kronecker Graphs

Decentralized search

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

PageRank, Hubs and authorities

Link prediction, Supervised random walks

Community detection: Girvan-Newman, Modularity

Structure of Networks

- For example, last time we talked about Observations and Models for the Web graph:
 - 1) We took a real system: the Web
 - 2) We represented it as a directed graph
 - 3) We used the language of graph theory
 - Strongly Connected Components
 - 4) We designed a computational experiment:
 - Find In- and Out-components of a given node v
 - 5) We learned something about the structure of the Web: BOWTIE!

Undirected vs. Directed Networks

Undirected graphs

 Links: undirected (symmetrical, reciprocal relations)

- Undirected links:
 - Collaborations
 - Friendship on Facebook

Directed graphs

Links: directed (asymmetrical relations)

- Directed links:
 - Phone calls
 - Following on Twitter

Adjacency Matrix

 $A_{ii} = I$ if there is a link from node i to node j $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Node Degrees

Jndirected

Directed

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$

Node degree, k_i : the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree:
$$\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an in-degree and out-degree.

The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

$$\overline{k} = \frac{E}{N}$$
 $\overline{k^{in}} = \overline{k^{out}}$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = {N \choose 2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a complete graph, and its average degree is N-1

Networks are Sparse Graphs

Most real-world networks are sparse

$$E \ll E_{max} (or \overline{k} \ll N-1)$$

WWW (Stanford-Berkeley):	N=319,717	$\langle k \rangle = 9.65$
Social networks (LinkedIn):	N=6,946,668	$\langle k \rangle = 8.87$
Communication (MSN IM):	N=242,720,596	$\langle k \rangle = 11.1$
Coauthorships (DBLP):	N=317,080	$\langle k \rangle = 6.62$
Internet (AS-Skitter):	N=1,719,037	⟨k⟩=14.91
Roads (California):	N=1,957,027	$\langle k \rangle = 2.82$
Proteins (S. Cerevisiae):	N=1,870	$\langle k \rangle = 2.39$

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (E/N^2): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

More Types of Graphs:

Unweighted

$$E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \quad \overline{k} = \frac{2E}{N}$$

Examples: Friendship, Hyperlink

Weighted

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \quad \overline{k} = \frac{2E}{N}$$

Examples: Collaboration, Internet, Roads

More Types of Graphs:

Self-edges (self-loops)

$$A_{ii} \neq 0$$
 $A_{ij} = A_{ji}$

$$E = \frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}$$

Examples: Proteins, Hyperlinks

Multigraph

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$
 $E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij})$ $\overline{k} = \frac{2E}{N}$

Examples: Communication, Collaboration

Network Representations

WWW >> directed multigraph with self-edges

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted, directed, acyclic

Collaboration networks >> undirected multigraph or weighted graph

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- "Folded" networks:
 - Author collaboration networks
 - Movie co-rating networks

Network Properties: How to Characterize/Measure a Network?

Degree Distribution

• Degree distribution P(k): Probability that a randomly chosen node has degree k

 N_k = # nodes with degree k

Normalized histogram:

$$P(k) = N_k / N \rightarrow plot$$

Paths in a Graph

 A path is a sequence of nodes in which each node is linked to the next one

$$P_n = \{i_0, i_1, i_2, ..., i_n\}$$
 $P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the "arrow"

Distance in a Graph

$$h_{B,D} = 2$$

$$h_{B,C} = 1, h_{C,B} = 2$$

- Distance (shortest path, geodesic)
 between a pair of nodes is defined
 as the number of edges along the
 shortest path connecting the nodes
 - *If the two nodes are disconnected, the distance is usually defined as infinite
- In directed graphs paths need to follow the direction of the arrows
 - Consequence: Distance is not symmetric: $h_{A,C} \neq h_{C,A}$

Network Diameter

- Diameter: the maximum (shortest path)
 distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i,j \neq i} h_{ij}$$
 where h_{ij} is the distance from node i to node j

 Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Clustering Coefficient

Clustering coefficient:

- What portion of i's neighbors are connected?
- Node i with degree k_i
- $C_i \in [0,1]$

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

- Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

$$C = \frac{1}{N} \sum_{i}^{N} C$$

Clustering Coefficient

Clustering coefficient:

- What portion of i's neighbors are connected?
- Node i with degree k_i

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$

$$k_D=4$$
, $e_D=2$, $C_D=4/12=1/3$

Key Network Properties

Degree distribution: P(k)

Path length: h

Clustering coefficient: C

Let's measure P(k), h and C on a real-world network!

The MSN Messenger

- MSN Messenger activity in June 2006:
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Communication: Geography

Communication network

Network: 180M people, 1.3B edges

Messaging as a Multigraph

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

MSN: Diameter

Avg. path length **6.6** 90% of the nodes can be reached in < 8 hops

Steps		#Nodes
1 2 3 4 5 6 7 8 9 10 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0	1
	1	10
	2	78
	3	3,96
	4	8,648
	5	3,299,252
	6	28,395,849
	7	79,059,497
	8	52,995,778
	9	10,321,008
	10	1,955,007
	11	518,410
	12	149,945
	13	44,616
	14	13,740
	15	4,476
	16	1,542
	17	536
	18	167
	19	71
	20	29
	21	16
	22	10
	23	3
	24	2
	25	3

MSN: Key Network Properties

Degree distribution:

Heavily skewed avg. degree= 14.4

Path length:

6.6

Clustering coefficient:

0.11

Are these values "expected"?

Are they "surprising"?

To answer this we need a null-model!

Is MSN Network like a "chain"?

- $P(k) = \delta(k-4)$ $k_i = 4$ for all nodes $C = \frac{1}{N} (\frac{1}{2} (N-4) + 2 + 2\frac{2}{3}) = \frac{1}{2}$ as $N \to \infty$
- Path length: $h_{max} = \frac{N-1}{2} = O(N)$
 - Avg. shortest path-length: $\overline{h} < \frac{2}{N(N-1)} \frac{N-1}{2} \frac{N(N-1)}{2} = O(N)$
- So, we have: Constant degree, Constant avg. clustering coeff. Linear avg. path-length

Note about calculations:

We are interested in quantities as graphs get large $(N \rightarrow \infty)$

We will use big-O: f(x) = O(g(x)) as $x \rightarrow \infty$ if f(x) < g(x)*c for all $x > x_0$ and some constant c.

Is MSN Network like a "grid"?

- $P(k) = \delta(k-6)$
 - k = 6 for each inside node
- C = 6/15 for inside nodes
- Path length:

$$h_{\text{max}} = O(\sqrt{N})$$

- In general, for lattices:
 - Average path-length is $\overline{h} \approx N^{1/D}$ (D... lattice dimensionality)
 - Constant degree, constant clustering coefficient

What did we learn so far?

MSN Network is neither a chain nor a grid

Erdös-Renyi Random Graph Model

Simplest Model of Graphs

- Erdös-Renyi Random Graphs [Erdös-Renyi, '60]
- Two variants:
 - $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
 - $G_{n,m}$: undirected graph with n nodes, and m uniformly at random picked edges

What kinds of networks does such model produce?

Random Graph Model

- n and p do not uniquely determine the graph!
 - The graph is a result of a random process
- We can have many different realizations given the same n and p

n = 10 p= 1/6

Random Graph Model: Edges

- How likely is a graph on E edges?
- P(E): the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \begin{pmatrix} E_{\text{max}} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\text{max}}-E}$$

where E_{max} =n(n-1)/2 is the maximum possible number of edges in an undirected graph of n nodes

P(E) is exactly the

Binomial distribution >>>

Number of successes in a sequence of \mathbf{E}_{max} independent yes/no experiments

Node Degrees in a Random Graph

What is expected degree of a node?

- Let X_v be a rnd. var. measuring the degree of node v
- We want to know: $E[X_v] = \sum_{j=0}^{n-1} j P(X_v = j)$
 - For the calculation we will need: Linearity of expectation
 - For any random variables $Y_1, Y_2, ..., Y_k$
 - If $Y = Y_1 + Y_2 + ... Y_k$, then $E[Y] = \sum_i E[Y_i]$

An easier way:

- Decompose X_v to $X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1}$
 - where $X_{v,u}$ is a $\{0,1\}$ -random variable which tells if edge (v,u) exists or not

$$E[X_{v}] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1)p$$

How to think about this?

- Prob. of node *u* linking to node *v* is *p*
- *u* can link (flips a coin) to all other (*n*-1) nodes
- Thus, the expected degree of node *u* is: *p*(*n*-1)

Properties of G_{np}

Degree distribution: P(k)

Path length: h

Clustering coefficient: C

What are values of these properties for G_{np} ?

Degree Distribution

- Fact: Degree distribution of G_{np} is <u>Binomial</u>.
- Let P(k) denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Select k nodes out of n -1

Select k nodes out of n -1

Probability of missing the rest of the n -1- k edges

Mean, variance of a binomial distribution

$$k = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

$$\frac{\sigma}{\bar{k}} = \left[\frac{1-p}{p} \frac{1}{(n-1)}\right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$

By the law of large numbers, as the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of *k*.

Clustering Coefficient of G_{np}

• Remember:
$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Where e_i is the number of edges between i's neighbors

• Edges in G_{np} appear i.i.d. with prob. p

So:
$$e_i = p \frac{k_i(k_i - 1)}{2}$$

Each pair is connected with prob. p

Number of distinct pairs of neighbors of node i of degree k_i

• Then:
$$C = \frac{p \cdot k_i (k_i - 1)}{k_i (k_i - 1)} = p = \frac{k}{n - 1} \approx \frac{k}{n}$$

Clustering coefficient of a random graph is small.

For a fixed avg. degree (that is p=1/n), C decreases with the graph size n.

Network Properties of G_{np}

Degree distribution:

$$P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

Clustering coefficient:

$$C=p=\bar{k}/n$$

Path length:

next!

Def: Random k-Regular Graphs

- To prove the diameter of a G_{np} we define few concepts
- Define: Random k-Regular graph
 - Assume each node has k spokes (half-edges)

Graph is a set of pairs

Graph is a set of cycles

Arbitrarily complicated graphs

Randomly pair them up!

Def: Expansion

- Graph G(V, E) has expansion α : if $\forall S \subseteq V$:
 # of edges leaving $S \ge \alpha \cdot \min(\langle S/, /V \backslash S/)$
- Or equivalently:

$$\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

Expansion: Intuition

$$\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

(A big) graph with "good" expansion

Expansion: Measures Robustness

$$\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

- Expansion is measure of robustness:
 - To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

High expansion:

- Social networks:
 - "Communities"

Expansion: k-Regular Graphs

$$\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

- k-regular graph (every node has degree k):
 - Expansion is at most k (when S is a single node)
- Is there a graph on n nodes $(n \rightarrow \infty)$, of fixed max deg. k, so that expansion α remains const?

Examples:

• **n**×**n grid**: k=4: $\alpha = 2n/(n^2/4) \rightarrow 0$ (S=n/2 × n/2 square in the center)

• Complete binary tree: $\alpha \rightarrow 0$ for S = (n/2)-1

Fact: For a random **3-regular graph** on n nodes, there is some const α ($\alpha > 0$, independent. of n) such that w.h.p. the expansion of the graph is $\geq \alpha$

Diameter of 3-Regular Rnd. Graph

• Fact: In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path of $O((\log n)/\alpha)$ edges connecting them.

Proof:

- Proof strategy:
 - We want to show that from any node s there is a path of length $O((\log n)/\alpha)$ to any other node t
- Let S_j be a set of all nodes found within j steps of BFS from s.
- How does S_j increase as a function of j?

Diameter of 3-Regular Rnd. Graph

Proof (continued):

- Let S_j be a set of all nodes found within j steps of BFS from s.
- We want to relate S_j and S_{j+1}

$$\left|S_{j+1}\right| \geq \left|S_{j}\right| + \frac{\alpha \left|S_{j}\right|}{k} = \frac{1}{k}$$
At most k edges "collide" at a node

$$|S_{j+1}| \ge |S_j| \left(1 + \frac{\alpha}{k}\right) = \left(1 + \frac{\alpha}{k}\right)^{j+1}$$

Diameter of 3-Regular Rnd. Graph

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

Proof (continued):

- In how many steps of BFS do we reach >n/2 nodes?
- Need j so that: $S_j = \left(1 + \frac{\alpha}{k}\right)^j \ge \frac{n}{2}$
- Let's set: $j = \frac{k \log_2 n}{\alpha}$
- Then:

$$\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \ge 2^{\log_2 n} = n > \frac{n}{2}$$

• In $2k/\alpha \cdot log \ n$ steps $|S_j|$ grows to $\Theta(n)$. So, the diameter of G is $O(\log(n)/\alpha)$

Claim:
$$\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \ge 2^{\log_2 n}$$

Remember n>0, $\alpha \le k$ then:

if
$$\alpha = k : (1+1)^{\frac{1}{1}\log_2 n} = 2^{\log_2 n}$$

if
$$\alpha \to 0$$
 then $\frac{k}{\alpha} = x \to \infty$:

and
$$\left(1 + \frac{1}{x}\right)^{x \log_2 n} = e^{\log_2 n} > 2^{\log_2 n}$$

Network Properties of G_{np}

Degree distribution:

$$P(k) = {n-1 \choose k} p^k (1-p)^{n-1-k}$$

Path length:

$$O(\log n)$$

Clustering coefficient: $C = p = \overline{k} / n$

MSN vs. G_{np}

Degree distribution:

Path length:

Clustering coefficient: 0.11

6.6

≈ 8·10⁻⁸

Real Networks vs. G_{np}

- Are real networks like random graphs?
 - Giant connected component: ©
 - Average path length: ©
 - Clustering Coefficient: 8
 - Degree Distribution: 8
- Problems with the random networks model:
 - Degreed distribution differs from that of real networks
 - Giant component in most real network does NOT emerge through a phase transition
 - No local structure clustering coefficient is too low
- Most important: Are real networks random?
 - The answer is simply: NO!

Real Networks vs. G_{np}

- If G_{np} is wrong, why did we spend time on it?
 - It is the reference model for the rest of the class.
 - It will help us calculate many quantities, that can then be compared to the real data
 - It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL!

EXTRA: "Evolution" of the G_{np}

What happens to G_{np} when we vary p?

Back to Node Degrees of Gnp

- Remember, expected degree $E[X_v] = (n-1)p$
- We want $E[X_v]$ be independent of nSo let: p=c/(n-1)
- Observation: If we build random graph G_{np} with p=c/(n-1) we have many isolated nodes
- Why?

$$P[v \text{ has degree 0}] = (1-p)^{n-1} = \left(1 - \frac{c}{n-1}\right)^{n-1} \xrightarrow[n \to \infty]{} e^{-c}$$

$$\lim_{n \to \infty} \left(1 - \frac{c}{n-1} \right)^{n-1} = \left(1 - \frac{1}{x} \right)^{-x \cdot c} = \left[\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{-x} \right]^{-c} = e^{-c}$$
Use substitution
$$\frac{1}{x} = \frac{c}{n-1}$$

By definition:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v \text{ has degree } 0] = e^{-c}$
- Event we are asking about is:
 - I = some node is isolated
 - $I = \bigcup_{v \in N} I_v$ where I_v is the event that v is isolated
- We have:

$$P(I) = P\left(\bigcup_{v \in N} I_v\right) \leq \sum_{v \in N} P(I_v) = ne^{-c}$$

No Isolated Nodes

- We just learned: $P(I) = n e^{-c}$
- Let's try:
 - $c = \ln n$ then: $n e^{-c} = n e^{-\ln n} = n \cdot 1/n = 1$
 - $c = 2 \ln n$ then: $n e^{-2 \ln n} = n \cdot 1/n^2 = 1/n$
- So if:
 - $p = \ln n$ then: P(I) = 1
 - $p = 2 \ln n$ then: $P(I) = 1/n \rightarrow 0$ as $n \rightarrow \infty$

"Evolution" of a Random Graph

• Graph structure of G_{np} as p changes:

- Emergence of a Giant Component:
 - avg. degree k=2E/n or p=k/(n-1)
 - $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
 - $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

G_{np} Simulation Experiment

Fraction of nodes in the largest component

G_{np},
$$n=100k$$
, $p(n-1)=0.5 \dots 3$