PROCÉDURE DE VÉRIFICATION DE CONFORMITÉ DES SYSTÈMES HYDRAULIQUES DE COMMANDE DE VOL

Référence: PROC-HYD-2025-183

Classification: TECHNIQUE / USAGE INTERNE

1. Référence: PROC-HYD-2025-183

2. # Classification: TECHNIQUE / USAGE INTERNE

Version: 4.2

Date d'application: 01 juin 2025

Remplace: Version 4.1 du 15 janvier 2025 Applicabilité: Airbus A320/A321 NEO

3. AUTORISATION

Cette procédure est approuvée pour utilisation dans le cadre des opérations de maintenance conformes aux réglementations EASA Part-145 et FAA 14 CFR Part 43. Toute déviation doit être documentée et approuvée par le responsable technique habilité.

4. 1. OBJET

La présente procédure définit les méthodes, critères et séquences d'opérations à respecter pour la vérification complète de la conformité des systèmes hydrauliques de commande de vol sur les aéronefs de la famille Airbus A320/A321 NEO. Elle s'applique dans le cadre des inspections programmées de type C-Check et lors des interventions correctives suite à des anomalies signalées sur les systèmes hydrauliques.

5. 2. DOCUMENTS DE RÉFÉRENCE

2.1 Réglementations

- EASA CS-25.1435 "Hydraulic Systems"
- EASA AMC 25.1435 "Hydraulic Systems Acceptable Means of Compliance"
- FAA 14 CFR Part 25.1435 "Hydraulic Systems"
- FAA AC 25.1435-1 "Hydraulic System Certification Requirements and Design"

2.2 Documentation constructeur

- Airbus A320 Family Aircraft Maintenance Manual (AMM), Chapitre 29
- Airbus A320 Family Illustrated Parts Catalog (IPC), Chapitre 29
- Airbus A320 Family Trouble Shooting Manual (TSM), Chapitre 29
- Airbus Service Bulletin A320-29-1175 Rev. B
- Airbus Service Information Letter (SIL) 29-116

2.3 Documentation interne

- Manuel des procédures de maintenance (MPM) Chapitre 4.7
- Instruction technique IT-HYD-2025-07 "Prélèvement et analyse des fluides hydrauliques"
- Fiche d'enregistrement FR-HYD-2025-183 "Relevé des paramètres hydrauliques"

6. 3. DÉFINITIONS ET ABRÉVIATIONS

- AMM: Aircraft Maintenance Manual
- CDCCL: Critical Design Configuration Control Limitations
- ECAM: Electronic Centralized Aircraft Monitoring
- EFCS: Electronic Flight Control System
- EMM: Engine Maintenance Manual
- FAL: Full Authority Limiter
- FCPC: Flight Control Primary Computer
- FCSC: Flight Control Secondary Computer
- FWC: Flight Warning Computer
- HUMS: Health and Usage Monitoring System
- LRU: Line Replaceable Unit
- MEL: Minimum Equipment List
- MMEL: Master Minimum Equipment List
- MPD: Maintenance Planning Document
- OIT: Operational Interruption Test
- PCU: Power Control Unit
- PRSOV: Pressure Regulating Shut-Off Valve
- PTU: Power Transfer Unit
- RAT: Ram Air Turbine

SB: Service BulletinSERV: Servo Control

- SIL: Service Information Letter

- TGB: Transfer Gearbox

- TSM: Trouble Shooting Manual

7. 4. ÉQUIPEMENTS ET OUTILLAGES REQUIS

4.1 Équipements de test

- Banc de test hydraulique Hydro-Test 3000 (réf. HT3000-A320) ou équivalent approuvé
- Manomètres étalonnés classe 0.5 (plage 0-5000 psi)
- Débitmètre ultrasonique portable FlowScan FS-750
- Analyseur de contamination particulaire PCM-500
- Thermomètre infrarouge calibré (-20°C à +150°C)

4.2 Outillages spécifiques

- Clé dynamométrique 10-210 Nm avec certificat d'étalonnage valide
- Jeu d'adaptateurs hydrauliques spécifiques A320 (réf. AHA320-KIT)
- Outil de dépose/repose des accumulateurs (réf. TOOL-29-A0001)
- Outil de purge des servovérins (réf. TOOL-29-A0015)
- Outil de contrôle des précharges d'accumulateurs (réf. TOOL-29-A0023)

4.3 Équipements de protection

- Lunettes de protection anti-projection
- Gants résistants aux fluides hydrauliques
- Combinaison de protection intégrale
- Absorbants et kit anti-pollution

4.4 Consommables

- Fluide hydraulique Skydrol LD-4 (ou équivalent approuvé selon AMM)
- Azote technique N2 (pureté 99,998%)
- Joints toriques de

8. 5. MESURES DE SÉCURITÉ

5.1 Précautions générales

Avant de commencer toute intervention sur le système hydraulique:

- S'assurer que l'aéronef est correctement immobilisé et mis à la masse
- Vérifier que toutes les sources d'alimentation électrique sont déconnectées
- Placer des pancartes d'avertissement "TRAVAUX EN COURS NE PAS ACTIONNER" sur les commandes de vol et dans le poste de pilotage
- Dépressuriser complètement les circuits hydrauliques selon la procédure AMM 29-00-00-870-801
- Porter les équipements de protection individuelle requis

5.2 Avertissements spécifiques

ATTENTION: Le fluide hydraulique Skydrol est corrosif pour la peau et les yeux. En cas de contact, rincer immédiatement à grande eau pendant au moins 15 minutes et consulter un médecin.

ATTENTION: Les accumulateurs contiennent du gaz sous haute pression. Ne jamais démonter un accumulateur sans avoir vérifié sa dépressurisation complète.

ATTENTION: Certains composants peuvent atteindre des températures élevées pendant le fonctionnemen

9. 6. PROCÉDURE DE VÉRIFICATION

10. # 6.1 Opérations préliminaires

- 6.1.1 Vérifier la disponibilité de toute la documentation technique applicable et à jour
- 6.1.2 Confirmer que l'aéronef est configuré selon les exigences de l'AMM 29-00-00-400-801
- 6.1.3 Vérifier que tous les équipements de test sont correctement étalonnés et fonctionnels
- 6.1.4 Consulter le Technical Log et le rapport de vol pour identifier d'éventuelles anomalies signalées
- 6.1.5 Effectuer une inspection visuelle préliminaire du compartiment hydraulique pour détecter:
 - Traces de fuites
 - Dommages visibles sur les composants
 - Corrosion ou détérioration des conduites
 - État des supports et fixations
 - Présence de corps étrangers

11. # 6.2 Inspection des réservoirs hydrauliques

- 6.2.1 Accéder aux réservoirs hydrauliques selon AMM 29-11-00-000-801
- 6.2.2 Vérifier le niveau de fluide dans chaque réservoir (Système Vert, Jaune et Bleu)
- 6.2.3 Prélever un échantillon de fluide de chaque réservoir selon IT-HYD-2025-07
- 6.2.4 Analyser la contamination particulaire avec l'analyseur PCM-500
- 6.2.5 Vérifier la couleur et l'aspect du fluide (absence d'émulsion, de particules visibles)
- 6.2.6 Contrôler l'état des bouchons de remplissage et des évents
- 6.2.7 Vérifier le fonctionnement des indicateurs de niveau et des capteurs de température
- 6.2.8 Inspecter les fixations des réservoirs et l'état des supports anti-vibrations
- 6.2.9 Documenter les résultats sur la fiche FR-HYD-2025-183

12. # 6.3 Contrôle des pompes hydrauliques principales

- 6.3.1 Accéder aux pompes hydrauliques selon AMM 29-11-00-400-801
- 6.3.2 Inspecter visuellement chaque pompe pour détecter:
 - Traces de fuites au niveau des joints d'arbre
 - État des raccords hydrauliques
 - Corrosion ou dommages sur le corps de pompe
 - État des supports et fixations
- 6.3.3 Vérifier le couple de serrage des fixations selon les valeurs spécifiées dans l'AMM
- 6.3.4 Contrôler l'état des conduites flexibles connectées aux pompes
- 6.3.5 Vérifier l'absence de frottement entre les conduites et les structures adjacentes
- 6.3.6 Connecter le banc de test hydraulique selon AMM 29-00-00-790-801
- 6.3.7 Effectuer le test fonctionnel des pompes selon AMM 29-11-00-710-801
- 6.3.8 Mesurer et enregistrer:
 - Pression de refoulement à débit nul
 - Débit à pression nominale
 - Température de fonctionnement après 10 minutes
 - Niveau de vibration
- 6.3.9 Vérifier que les valeurs mesurées sont conformes aux spécifications de l'AMM
- 6.3.10 Documenter les résultats sur la fiche FR-HYD-

13. # 6.4 Contrôle des accumulateurs

- 6.4.1 Localiser tous les accumulateurs du système selon IPC 29-20-00
- 6.4.2 Vérifier visuellement l'état externe de chaque accumulateur
- 6.4.3 Contrôler la date de dernière révision générale ou remplacement
- 6.4.4 Vérifier que la durée de vie calendaire n'est pas dépassée
- 6.4.5 Dépressuriser complètement les accumulateurs selon AMM 29-20-00-870-801
- 6.4.6 Contrôler la précharge d'azote avec l'outil TOOL-29-A0023
- 6.4.7 Ajuster la précharge si nécessaire selon les valeurs spécifiées dans l'AMM
- 6.4.8 Vérifier l'étanchéité des valves de précharge
- 6.4.9 Contrôler le fonctionnement des indicateurs de pression si équipés
- 6.4.10 Documenter les résultats sur la fiche FR-HYD-2025-183

14. # 6.5 Inspection des servovérins de commande de vol

- 6.5.1 Accéder aux servovérins selon AMM 27-00-00-000-801
- 6.5.2 Inspecter visuellement chaque servocommande pour détecter:
 - Traces de fuites au niveau des joints
 - État des raccords hydrauliques
 - Corrosion ou dommages sur le corps et la tige
 - État des articulations et rotules
 - Jeu axial et radial excessif
- 6.5.3 Vérifier le couple de serrage des fixations selon les valeurs spécifiées dans l'AMM
- 6.5.4 Contrôler la course complète de chaque servocommande
- 6.5.5 Vérifier l'absence de points durs ou de bruits anormaux pendant le mouvement
- 6.5.6 Mesurer les temps de déplacement aller-retour à vide
- 6.5.7 Contrôler l'état des conduites flexibles connectées aux servovérins
- 6.5.8 Vérifier l'absence de frottement entre les conduites et les structures adjacentes
- 6.5.9 Effectuer un test de fuite statique selon AMM 27-00-00-790-801
- 6.5.10 Documenter les résultats sur la fiche FR-HYD-2025-183

15. # 6.6 Contrôle du PTU (Power Transfer Unit)

- 6.6.1 Accéder au PTU selon AMM 29-11-00-000-801
- 6.6.2 Inspecter visuellement le PTU pour détecter:
 - Traces de fuites au niveau des joints
 - État des raccords hydrauliques
 - Corrosion ou dommages sur le corps
 - État des supports et fixations
- 6.6.3 Vérifier le couple de serrage des fixations selon les valeurs spécifiées dans l'AMM
- 6.6.4 Contrôler l'état des conduites flexibles connectées au PTU
- 6.6.5 Vérifier l'absence de frottement entre les conduites et les structures adjacentes
- 6.6.6 Effectuer le test fonctionnel du PTU selon AMM 29-11-00-710-802
- 6.6.7 Mesurer et enregistrer:
 - Temps d'activation
 - Pression différentielle de déclenchement
 - Température de fonctionnement après 5 minutes
 - Niveau de vibration

6.6.8 Vérifier que les valeurs mesurées sont conformes aux spécifications de l'AMM

6.6.9 Documenter les résultats sur la fiche FR-HYD-2025-183

16. # 6.7 Contrôle des filtres hydrauliques

- 6.7.1 Localiser tous les filtres du système selon IPC 29-10-00
- 6.7.2 Vérifier l'état des indicateurs de colmatage (pop-out)
- 6.7.3 Déposer les éléments filtrants selon AMM 29-10-00-400-801
- 6.7.4 Inspecter visuellement les éléments filtrants pour détecter:
 - Présence de particules métalliques
 - Déformation ou dommage de la structure filtrante
 - Contamination excessive
- 6.7.5 Remplacer les éléments filtrants si nécessaire
- 6.7.6 Vérifier l'état des joints et des surfaces d'étanchéité
- 6.7.7 Remonter les filtres selon AMM 29-10-00-400-801
- 6.7.8 Vérifier l'absence de fuites après remontage
- 6.7.9 Documenter les résultats sur la fiche FR-HYD-2025-183

17. # 6.8 Test d'étanchéité global du système

- 6.8.1 Préparer l'aéronef pour le test d'étanchéité selon AMM 29-00-00-710-801
- 6.8.2 Connecter le banc de test hydraulique aux points de test appropriés
- 6.8.3 Pressuriser progressivement le système jusqu'à la pression nominale
- 6.8.4 Maintenir la pression pendant 30 minutes
- 6.8.5 Inspecter méthodiquement l'ensemble du circuit hydraulique pour détecter toute fuite
- 6.8.6 Porter une attention particulière aux raccords, joints, et zones précédemment réparées
- 6.8.7 Mesurer la chute de pression sur 30 minutes (doit être inférieure à 50 psi)
- 6.8.8 Dépressuriser le système selon AMM 29-00-00-870-801
- 6.8.9 Documenter les résultats sur la fiche FR-HYD-2025-183

18. # 6.9 Test fonctionnel des commandes de vol

- 6.9.1 Préparer l'aéronef pour le test fonctionnel selon AMM 27-00-00-710-801
- 6.9.2 Installer les dispositifs de sécurité sur les gouvernes
- 6.9.3 Pressuriser le système hydraulique à la pression nominale
- 6.9.4 Effectuer un cycle complet de chaque commande de vol:
 - Ailerons
 - Gouvernes de profondeur
 - Gouverne de direction
 - Spoilers
 - Becs et volets
- 6.9.5 Vérifier la synchronisation des mouvements pour les commandes redondantes
- 6.9.6 Mesurer les temps de déplacement aller-retour sous charge
- 6.9.7 Vérifier l'absence de fuites pendant les mouvements
- 6.9.8 Contrôler les indications ECAM pendant les tests
- 6.9.9 Vérifier le fonctionnement des systèmes de secours hydrauliques
- 6.9.10 Documenter les résultats sur la fiche FR-HYD-2025-183

19. 7. CRITÈRES D'ACCEPTATION

7.1 Paramètres hydrauliques

- Pression système Vert: 3000 psi ±75 psi
- Pression système Jaune: 3000 psi ±75 psi
- Pression système Bleu: 5000 psi ±100 psi (si applicable)
- Débit pompe principale: 45-50 l/min à pression nominale
- Température maximale en fonctionnement continu: 85°C
- Chute de pression maximale sur 30 minutes: 50 psi
- Niveau de contamination particulaire: Classe 6 selon NAS 1638

7.2 Précharge des accumulateurs

- Accumulateur principal système Vert: 1500 psi ±30 psi à 20°C
- Accumulateur principal système Jaune: 1500 psi ±30 psi à 20°C
- Accumulateur de freinage: 1200 psi ±30 psi à 20°C
- Accumulateurs d'amortissement: 950 psi ±30 psi à 20°C

7.3 Performances des servovérins

- Temps de course complète (extension): 2.5 ±0.3 secondes
- Temps de course complète (rétraction): 2.3 ±0.3 secondes
- Fuite statique maximale: 3 gouttes par minute
- Jeu axial maximal: 0.2 mmJeu radial maximal: 0.1 mm

7.4 Performances du PTU

- Temps d'activation: <2 secondes
- Pression diffé

20. 8. ACTIONS CORRECTIVES

- 8.1 En cas de non-conformité des paramètres hydrauliques
- Si la pression est hors tolérance: ajuster le régulateur de pression selon AMM 29-11-00-810-801
- Si le débit est insuffisant: vérifier l'état des pompes et filtres, remplacer si nécessaire
- Si la température est excessive: vérifier l'état des échangeurs thermiques selon AMM 29-15-00-710-801
- Si la contamination est excessive: purger et renouveler le fluide selon AMM 29-00-00-610-801

8.2 En cas de fuites

- Fuites mineures (suintement sans goutte): surveiller et réinspecter au prochain check
- Fuites modérées (formation de gouttes): remplacer les joints concernés
- Fuites importantes (écoulement continu): remplacer le composant défectueux

8.3 En cas de défaillance des servovérins

- Si temps de course hors tolérance: vérifier les restrictions hydrauliques et électriques
- Si fuite excessive: remplacer les joints ou le servocommande complet selon AMM 27-10-00-400-801
- Si jeu mécanique excessif: remplacer le servocommande comp

21. 9. DOCUMENTATION ET TRAÇABILITÉ

9.1 Enregistrements requis

- Fiche d'enregistrement FR-HYD-2025-183 complétée et signée
- Rapport d'analyse des échantillons de fluide hydraulique
- Liste des pièces remplacées avec références et numéros de série
- Certificats de conformité des pièces installées
- Relevé des paramètres mesurés pendant les tests

9.2 Mise à jour de la documentation aéronef

- Technical Log avec description des travaux effectués
- Aircraft Maintenance Log avec référence à cette procédure
- Carnet de route avec mention des essais en vol si requis
- Mise à jour des échéances de maintenance dans le système de suivi

9.3 Conservation des enregistrements

- Tous les documents doivent être conservés pendant une durée minimale de 3 ans
- Les enregistrements relatifs aux composants à vie limitée doivent être conservés pendant toute la durée de vie de l'aéronef

22. 10. QUALIFICATION DU PERSONNEL

Cette procédure doit être exécutée par du personnel détenteur des qualifications suivantes:

- Licence EASA Part-66 B1 avec qualification de type A320 Family
- Ou équivalent FAA A&P avec qualification A320 Family
- Formation spécifique sur les systèmes hydrauliques A320 Family
- Habilitation aux essais fonctionnels des systèmes hydrauliques

23. ANNEXES

- Annexe A: Schéma synoptique du système hydraulique A320/A321 NEO
- Annexe B: Fiche d'enregistrement FR-HYD-2025-183
- Annexe C: Tableau des couples de serrage spécifiques
- Annexe D: Liste des outillages spéciaux et équipements de test

Ce document est conforme aux exigences de documentation technique définies par l'EASA Part-145.A.45 et la FAA 14 CFR Part 43.13.

FIN DE PROCÉDURE