Exercise

Solve the following LPP using simplex method:

1- Max
$$Z = 3X_1 + 4X_2$$

Subject to

$$15X_1 + 10X_2 \le 300$$

$$2.5X_1 + 5X_2 \le 110$$

$$X_1 \ge 0, X_2 \ge 0$$

Solution: (we have canonical form)

The standard form of LPP

$$\text{Max } Z - 3X_1 - 4X_2 = 0$$

Subject to

 S_2

$$15X_1 + 10X_2 + S_1 = 300$$

$$2.5X_1 + 5X_2 + S_2 = 110$$

$$X_1 \ge 0, X_2 \ge 0, S_1 \ge 0, S_2 \ge 0$$

2.5

We have m = 2 and n = 4, thus n-m=2 (Non-basic variable which equal zero)

Iteration 1

Entering Variable (pivot Colum)

5

Basic Variables	x_1	x_2	S_1	S_2	Solution	Ratio
Z	-3	-4	0	0	0	
S_1	15	10	1	0	300	300/10=30

0

110

110/5=22

Leaving Variable

Basic x_2 S_1 S_2 **Solution** Ratio x_1 Variables -3 0 0 0 -4 ${\bf Z}$ 10 0 300 300/10=30 S_1 15 1 0.5 1 0 0.2 22 110/5=22 x_2

Iteration 2

Basic Variables	x_1	x_2	<i>S</i> ₁	S_2	Solution	Ratio
Z	-1	0	0	4/5	88	
S_1	10	0	1	-2	80	80/10=8
γ,	0.5	1	0	0.2	22	22/0 5-44

Basic Variables	<i>x</i> ₁	<i>x</i> ₂	S_1	S_2	Solution
${f Z}$	0	0	0.1	0.6	96
x_1	1	0	0.1	-0.2	8
x_2	0	1	-0.05	0.3	18

 $\frac{Row\ 3}{pivot\ element}$

Row 2 -(10) Row 3 = new Row2

Row 1 -(-4) Row 3 = new Row1

-(-1) (Row2 /10) + Row 1 = new Row1

-(0.5) (Row2/10) + Row 3 = new Row3 The optimal solution: $x_1 = 8$, $x_2 = 18$, Z = 96

2- Min
$$Z = -3X_1 + X_2$$

Subject to

$$X_1 + X_2 \le 5$$

$$2X_1 + X_2 \le 8$$

$$X_1 \ge 0, X_2 \ge 0$$

Solution:

The standard form of LPP

$$Min Z + 3X_1 - X_2 = 0$$

Subject to

$$X_1 + X_2 + S_1 = 5$$

$$2X_1 + X_2 + S_2 = 8$$

$$X_1 \ge 0, X_2 \ge 0, S_1 \ge 0, S_2 \ge 0$$

We have m=2 and n=4, thus n-m=2 (Non-basic variable which equal zero)

Basic Variables	x_1	x_2	S_1	S_2	Solution	Ratio
Z	3	-1	0	0	0	
S_1	1	1	1	0	5	5/1=5
S_2	2	1	0	1	8	8/2=4

Basic Variables	x_1	x_2	S_1	S_2	Solution
Z	0	-5/2	0	-3/2	-12
S_1	0	1/2	1	-1/2	1
x_1	1	1/2	0	1/2	4

We note all coefficient of objective function are non-positive values. Thus, the optimal solution is $x_1=4$, $S_1=1$, $x_2=0$, $S_2=0$, Z=-12

$$3- \operatorname{Max} Z = 200X_1 + 140X_2$$

Subject to

$$3X_1 \le 6000$$

$$2.9X_2 \le 8000$$

$$2.5X_1 + 2X_2 \le 7500$$

$$1.3X_1 + 1.5X_2 \le 5000$$

$$X_1 \ge 0, X_2 \ge 0$$

Solution: (we have canonical form)

The standard form of LPP

$$\text{Max } Z - 200X_1 - 140X_2 = 0$$

Subject to

$$3X_1 + S_1 = 6000$$

$$2.9X_2 + S_2 = 8000$$

$$2.5X_1 + 2X_2 + S_3 = 7500$$

$$1.3X_1 + 1.5X_2 + S_4 = 5000$$

$$X_1 \ge 0, X_2 \ge 0, S_1 \ge 0, S_2 \ge 0, S_3 \ge 0, S_4 \ge 0$$

We have m = 4 and n = 6, thus n-m=2 (Non-basic variable which equal zero)

Iteration 1								
Basic	x_1	x_2	S_1	S_2	S_3	S_4	Solution	Ratio
Variables								
Z	-200	-140	0	0	0	0	0	
S_1	3	0	1	0	0	0	6000	6000/3=2000
S_2	0	2.9	0	1	0	0	8000	
S_3	2.5	2	0	0	1	0	7500	7500/2.5=3000
S_4	1.3	1.5	0	0	0	1	5000	5000/1.3=3846

New pivot row= current pivot row / pivot element

All other rows

New row= (current row) - (pivot column coefficient) (New pivot row)

Row 1	Row 3	Row 4	Row 5
[-200 -140 0 0 0 0 0]	[0 2.9 0 1 0 0 8000]	[2.5 2 0 0 1 0 7500]	[1.3 1.5 0 0 0 1 5000]
- (-200)*	-(0)*	- (2.5)*	- (1.3)*
[1 0 1/3 0 0 0 2000]	[1 0 1/3 0 0 0 2000]	[1 0 1/3 0 0 0 2000]	[1 0 1/3 0 0 0 2000]
= [0 -140 200/3 0 0 0 400000]	=[0 2.9 0 1 0 0 8000]	=[0 2 -5/6 0 1 0 2500]	=[0 1.5 -13/30 0 0 1 2400]

Iteration 2								
Basic Variables	x_1	x_2	S_1	S_2	S_3	S_4	Solution	Ratio
Z	0	-140	200/3	0	0	0	400000	
x_1	1	0	1/3	0	0	0	2000	
S_2	0	2.9	0	1	0	0	8000	8000/2.9=2758.62
S_3	0	2	-5/6	0	1	0	2500	2500/2=1250
S_4	0	1.5	-13/30	0	0	1	2400	2400/1.5=1600

[0 -140 200/3 0 0 0 400000]	[1 0 1/3 0 0 0 2000]	[0 2.9 0 1 0 0 8000]	[0 1.5 -1.3/3 0 0 1 2400]
-(-140)*	-(0)*	-(2.9)*	-(1.5)*
[0 1 -2.5/6 0 0.5 0]	[0 1 -2.5/6 0 0.5 0]	[0 1 -2.5/6 0 0.5 0]	[0 1 -2.5/6 0 0.5 0]
= [0 0 25/3 0 70 0 575000]	= [1 0 1/3 0 0 0 2000]	$= [0\ 0\ 7.25/6\ 0\ -2.9/2\ 0\ 4375]$	$= [0 \ 0 \ 1.15/6 \ 0 \ -1.5/2 \ 1]$

Iteration 3							
Basic Variables	x_1	x_2	S_1	S_2	S_3	S_4	Solution
Z	0	0	25/3	0	70	0	575000
x_1	1	0	1/3	0	0	0	2000
S_2	0	0	7.25/6	1	-2.9/2	0	4375
x_2	0	1	-2.5/6	0	1/2	0	1250
<i>S</i> ₄	0	0	1.15/6	0	-1.5/2	1	525

The optimal solution:

$$x_1 = 2000$$
, $S_2 = 4375$, $x_2 = 1250$, $S_4 = 525$, **Z**=575000

H.W 3- Max
$$Z = 30X_1 + 20X_2 + 5X_3$$

Subject to

$$\begin{aligned} 2X_1 + X_2 + X_3 &\leq 8 \\ X_1 + 3X_2 - 4X_3 &\leq 8 \\ X_1 \geq 0, X_2 \geq 0 \ , X_3 \geq 0 \end{aligned}$$

H.W 4- Max
$$Z = 2X_1 - X_2 + X_3$$

Subject to

$$2X_1 + X_2 \le 10$$

$$X_1 + 2X_2 - 2X_3 \le 20$$

$$X_2 + 2X_3 \le 5$$

$$X_1 \ge 0, X_2 \ge 0, X_3 \ge 0$$

Solution: (we have canonical form)

The standard form of LPP

Max z

$$Z - 2X_1 + X_2 - X_3 = 0$$

$$2X_1 + X_2 + s_1 = 10$$

$$X_1 + 2X_2 - 2X_3 + S_2 = 20$$

$$X_2 + 2X_3 + S_3 = 5$$

$$X_1 \geq \mathbf{0}, X_2 \geq \mathbf{0}$$
 , $X_3 \geq \mathbf{0}, s_1, s_2 s_3 \geq \mathbf{0}$

We have m = 3 and n = 6, thus n-m=3 (Non-basic variable which equal zero)

Iteration 1								
Basic	x_1	x_2	x_3	S_1	S_2	S_3	Solution	Ratio
Variables								
\mathbf{Z}	-2	1	-1	0	0	0	0	
S_1	<mark>2</mark>	1	0	1	0	0	10	10/2= 5
S_2	1	2	-2	0	1	0	20	20/1= 20
S_3	0	1	2	0	0	1	5	

Iteration 2								
Basic	x_1	x_2	x_3	S_1	S_2	S_3	Solution	Ratio
Variables	_	_		_	_			
Z	0	2	-1	1	0	0	10	
x_1	1	1/2	0	1/2	0	0	5	
S_2	0	3/2	-2	-1/2	1	0	15	
S_3	0	1	2	0	0	1	5	5/2 = 2.5

Iteration 3							
Basic	x_1	x_2	x_3	S_1	S_2	S_3	Solution
Variables							
Z	0	5/2	0	1	0	1/2	25/2
x_1	1	1/2	0	1/2	0	0	5
S_2	0	5/2	0	-1/2	1	1	20
x_3	0	1/2	1	0	0	1/2	5/2

The optimal solution:
$$Z = \frac{25}{2}$$
, $x_1 = 5$, $x_2 = 0$, $x_3 = \frac{5}{2}$, $x_2 = 20$, $x_1 = 0$, $x_3 = 0$