Geometry/ Topology August 2020 Calum Shearer

- 1. Let $f: X \to Y$ be a function between topological spaces.
 - (a) Prove that if f is continuous, then whenever a sequence (x_n) converges to x in X, then $(f(x_n))$ converges to f(x) in Y.
 - (b) Prove that the converse of (a) holds if X is first countable.

Solution:

- (a) Let $f: X \to Y$ continuous and suppose x_n converges to x. Take a neigbourhood V of f(x). Then $f^{-1}(V)$ is a neighbourhood of x by continuity, so there is some $N \in \mathbb{N}$ s.t. $x_n \in f^{-1}(V)$ for all $n \geq N$. Then for $n \geq N$, $f(x_n) \in f(f^{-1}(V)) \in V$. Hence $f(x_n)$ converges to f(x).
- (b) First we claim that in a first countable space, $x \in \overline{A}$ iff there is a sequence $(x_n) \subset A$ converging to x. For the forward implication, note that if $x \in A$, then just take the constant sequence $x_n = x$. So suppose not: then we have to show that x is a limit point of A. Take a nested neighborhood basis (B_n) of x, and choose $x_n \in B_n \cap A \neq \emptyset$ (as x is a limit point of A). Then any neighborhood U of x contains every B_n for $n \geq \text{some } N$. Thus the x_n are a sequence in A converging to x. For the backwards implication, we note that convergence of x_n to x means that every nbhd of x contains all but finitely many x_n i.e. every nbhd of x intersects with x. Hence either $x \in A$ or x is a limit point of x (for if $x \notin A$, then each punctured neighbourhood of x intersects x), so $x \in \overline{A}$ (note that we don't need first countability for this implication).

Now, we recall that an equivalent definition of continuity of f is that $f(\overline{A}) \subset \overline{f(A)}$ for every $A \subset X$. Take $y \in f(\overline{A})$. Then y = f(x), where $x \in \overline{A}$. Then by first countability, there is a sequence x_n in A converging to x. Then by hypothesis, $f(x_n) \subset f(A)$ converges to $f(x)inf(\overline{A})$. So by the backwards implication in the above paragraph, $f(x) \in \overline{f(A)}$. This show that $f(\overline{A}) \subset \overline{f(A)}$. As $A \subset X$ was arbitrary, we have that f is continuous.

Figure 1: $O \subseteq \mathbb{R}^2$ with gluing data for Σ

2. Consider the closed octagonal disk O as in the figure, topologized as a subspace of \mathbb{R}^2 . Let Σ be the quotient space obtained by identifying the directed edge a_1 with $\overline{a_1}$, a_2 with $\overline{a_2}$, b_1 with $\overline{b_1}$ and b_2 with $\overline{b_2}$. Use the Seifert Van-Kampen Theorem to determine the fundamental group of $\pi_1(\Sigma, y)$ in terms of generators and relations for any base point $y \in \Sigma$.

Solution: First note that Σ is path connected, so $\pi_1(\Sigma, y)$ is independent of the choice of basepoint y. We decompose Σ as $U \cup V$, where U is an open disc contained inside the octagon O, and V is an open set which deformation retracts to the outside of the octogon (see figure below).

Pick the basepoint y to be contained in $U \cap V$. Then U is path connected and open, and is homeomorphic to an open disc and thus contractible. Thus $\pi_1(U,y)=1$. V retracts onto the boundary of O which after identifications is just a bouquet of 4 circles a_1, a_2, b_1 and b_2 , which is path connected. Thus $\pi_1(V,y) \cong \mathbb{Z} * \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$, the free group on 4 generators, and thus has presentation $\langle a_1, a_2, b_1, b_2 \rangle$. $U \cap V$ is an annulus, which is path connected, and so SVK can be applied. $U \cap V$ is homotopic to a circle, and hence has fundamental groups $\langle c \rangle \cong \mathbb{Z}$, where c is a single anticlockwise loop inside $U \cap V$. Then SVK says that:

$$\pi_1(\Sigma, y) \cong \pi_1(V, y) *_{\pi_1(U \cap V, y)} \pi_1(U, y)$$

Where the amalgamation comes from the inclusions of $U \cap V$ into U and V. U is simply connected, so the map induced by inclusion into U, i_U^* is just the zero map, so $i_U^*(c) = 1$. However, our loop c, when included into V as $i_V^*(c)$ can be enlarged via homotopy to be the boundary of O, which is $a_1b_1^{-1}a_1^{-1}b_2a_2b_2^{-1}a_2^{-1}b_1$ in $\pi_1(V)$. Hence $i_V^*(c) = a_1b_1^{-1}a_1^{-1}b_2a_2b_2^{-1}a_2^{-1}b_1$. The amalgamated free product means that in $\pi_1(\Sigma, y)$, $i_V^*(c) = i_U^*(c)$. Thus $\pi_1(\Sigma, y)$ has presentation:

$$\pi_1(\Sigma,y) = \langle a_1,b_1,a_2,b_2 \mid a_1b_1^{-1}a_1^{-1}b_2a_2b_2^{-1}a_2^{-1}b_1 = 1 \rangle$$

3. Let $\mathbb{R}P^n$ be the quotient of the unit sphere $S^n \subset \mathbb{R}^{n+1}$ by the antipodal map $a \colon S^n \to S^n$, a(x) = -x. You may assume that $\mathbb{R}P^n$ is path connected, locally path connected and semilocally simply-connected. You may assume that the product of path connected spaces is path connected and that the product of semilocally simply-connected spaces is semi-locally simply connected.

- (a) Prove that the product $X_1 \times X_2$ of locally path connected spaces X_1 and X_2 is locally path connected.
- (b) Determine the number of equivalence classes of path connected covering spaces over $\mathbb{R}P^n \times \mathbb{R}P^n$. Give a representative of each equivalence class. Prove any claim you make about the fundamental groups of $\mathbb{R}P^n$ and $\mathbb{R}P^n \times \mathbb{R}P^n$.

Solution:

- (a) Recall that X is locally path connected, if given any x ∈ X and a neighbourhood U of x, there exists a path connected open neighbourhood V of x s.t. V ⊂ U. Suppose X₁ and X₂ are path connected. Pick any point (x₁, x₂) ∈ X₁ × X₂, and a neighbourhood N of (x₁, x₂. As the product topology on X₁ × X₂ has basis {U₁ × U₂: U₁ ∈ τ_{X₁}, U₂ ∈ τ_{X₂}}, there exists U₁ open in X₁, U₂ open in X₂ s.t. U₁ × U₂ ⊂ N. Then by local path connectedness of X₁, there contains an open path connected neighborhood V₁ of x₁ s.t. V₁ ⊂ U₁, and by local path connectedness of X₂, there contains an open path connected neighborhood V₂ of x₂ s.t. V₂ ⊂ U₂. Then V₁ × V₂ is an open path connected neighbourhood of (x₁, x₂) s.t. V₁ × V₂ ⊂ U₁ × U₂ ⊂ N. Hence X₁ × X₂ is locally path connected.
- (b) Assume $n \geq 2$. Then S^n is simply connected, by SVK on $S^n = S^n \setminus N \cup S^n \setminus S$, where $N = \{1, 0, \dots, 0\}, S = \{-1, 0, \dots, 0\}$. $S^n \setminus N$ is homeomorphic to \mathbb{R}^n by sterographic projection, and hence has trivial fundamental group, and similarly for $S^n \setminus S$. Both are path connected as \mathbb{R}^n is. Their intersection can be retracted onto the equator S^{n-1} , which is path connected for $n \geq 2$. So by SVK, $\pi_1(S^n) = 1$, (where we pick some basepoint on the equator). It is also path connected, which can be seen by using stereographic projection to pullback a path in \mathbb{R}^n .

The antipodal map a satisfies $a^2 = id$, so we have a \mathbb{Z}_2 action, ρ on S^n given by $\rho(1) = id$, $\rho(-1) = a$. Then this action acts freely: $ax = x \iff x = -x$, which cannot happen in S^n , as the only vector x which satisfies x = -x is the zero vector, which has norm 0 so cannot be in S^n . It also acts properly discontinuously: given $x \in S^n$, take an open disc U around x that does not cover more than half of S^n . Then U and -U are disjoint. Hence by a theorem in lectures, we have that $\pi_1(\mathbb{R}P^n) = \pi_1(S^n/\rho) = \mathbb{Z}_2$, where we've assumed that $\mathbb{R}P^n$ is path connected so don't need to specify basepoint. Given our assumptions about $X := \mathbb{R}P^n$, we know that covering spaces of X correspond to conjugacy classes of subgroups of X: as $\pi_1(X) = \mathbb{Z}_2$ is abelian, conjugacy classes of subgroups are just subgroups. \mathbb{Z}_2 has two subgroups 0 and \mathbb{Z}_2 . So X has two distinct covering spaces up to isomorphism. These are the identity covering $X \to X$, and the covering given by the quotient map $p: S^n \to X$ (this is a covering space, as it's surjective due to being a quotient map, and [x] has a neighborhood evenly covered by p by considering the neigborhoods U of x and y and y are is a two-sheeted cover, while the identity is 1-sheeted.

Now, for path connected spaces, we know that $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$ via the map $[\gamma_1], [\gamma_2] \to [\gamma_1, \gamma_2] \in \pi_1(X \times Y)$. Hence $\pi_1(\mathbb{R}P^n \times \mathbb{R}P^n) \cong \pi_1(\mathbb{R}P^n) \times \pi_1(\mathbb{R}P^n) = \pi_1(\mathbb{R}P^n)$

 $\mathbb{Z}_2 \times \mathbb{Z}_2$. This group has the following subgroups: 0, $\mathbb{Z}_2 \times \mathbb{Z}_2$, $0 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times 0$ and $\langle (1,1) \rangle \cong \mathbb{Z}_2$. Hence we are looking for 5 covering spaces. We know that if (\tilde{X},p) covers X and (\tilde{Y},q) covers Y, then $(\tilde{X} \times \tilde{Y},p \times q)$ is a covering space for $X \times Y$. Hence we have covers $id \times id \colon \mathbb{R}P^n \times \mathbb{R}P^n \to \mathbb{R}P^n \times \mathbb{R}P^n$, $id \times p \colon \mathbb{R}P^n \times S^n \to \mathbb{R}P^n \times \mathbb{R}P^n$, $p \times id \colon S^n \times \mathbb{R}P^n \to \mathbb{R}P^n \times \mathbb{R}P^n$ and $p \times p \colon S^n \times S^n \to \mathbb{R}P^n \times \mathbb{R}P^n$. The final covering space is given by the covering $S^n \times S^n \to \mathbb{R}P^n \times \mathbb{R}P^n$ given by the quotient map induced by the action $a \times a \colon (x,y) \mapsto (-x,-y)$. This can be shown to be covering map in a similar way to how we showed it for p.

n=1: $\mathbb{R}P^1\cong S^1$, so this has countably many covers from $S^1\to S^1$ given by $z\mapsto z^n$, $n\in\mathbb{N}$, and the map $\epsilon\colon\mathbb{R}\to S^1$, $\epsilon(t)=e^{2\pi it}$, corresponding to the subgroups $n\mathbb{Z}\subset\mathbb{Z}$ and $0\subset\mathbb{Z}$ respectively.

- 4. (a) Give a careful definition of the tangent bundle of a manifold M. Define the manifold structure on TM.
 - (b) Show that the tangent bundle of the sphere S^2 is not bundle isomorphic to $S^2 \times \mathbb{R}^2$

Solution:

(a) (see Lee pg65 for all of the details). Let M be an n-manifold. The tangent bundle TM of $(M, U_{\alpha}, \varphi_{\alpha})$ is defined as $\bigsqcup_{p \in M} T_p M$, where $T_p M$ is the tangent space at the point $p \in M$. Charts on TM are given by the following: for each smooth chart (U, ϕ_{α}) on M, a smooth chart on $\bigsqcup_{p \in U} T_p M$ is given by $\tilde{\varphi}_{\alpha} : \bigsqcup_{p \in U} T_p M \to \mathbb{R}^n \times \mathbb{R}^n$ by:

$$\tilde{\varphi}_{\alpha}\left(p, v_1 \frac{\partial}{\partial x_1}\Big|_p, \dots, v_n \frac{\partial}{\partial x_n}\Big|_p\right) = (\varphi(p), v_1, \dots v_n)$$

- (b) If TS^2 were bundle isomorphic to $S^2 \times \mathbb{R}^2$ then this would be the same as S^2 being parallelizable, i.e. that there exists a non-vanishing vector field on S^2 . But the hairy ball theorem says that this is not the case. Thus TS^2 is *not* bundle isomorphic to $S^2 \times \mathbb{R}^2$.
- 5. Consider the following two vector fields on \mathbb{R}^3 :

$$X = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$
 and $Y = \frac{\partial}{\partial x} - \frac{\partial}{\partial z}$

Show that there is no nonempty smooth surface $S \subset \mathbb{R}^3$ that is tangent to both vector fields at each of its points.

Solution: Suppose such a surface S exists. Then if $X, Y \in \mathfrak{X}(S)$, then so is [X, Y]. We use the formula:

$$[X,Y] = (XY^j - YX^j)\frac{\partial}{\partial x_j}$$

so that

$$\begin{split} [X,Y] &= \left((x \frac{\partial}{\partial x} + \frac{\partial}{\partial y})(1) - (\frac{\partial}{\partial x} - \frac{\partial}{\partial z})(x) \right) \frac{\partial}{\partial x} + \left((x \frac{\partial}{\partial x} + \frac{\partial}{\partial y})(0) - (\frac{\partial}{\partial x} - \frac{\partial}{\partial z})(1) \right) \frac{\partial}{\partial y} \\ &+ \left((x \frac{\partial}{\partial x} + \frac{\partial}{\partial y})(-1) - (\frac{\partial}{\partial x} - \frac{\partial}{\partial z})(0) \right) \frac{\partial}{\partial z} \\ &= -\frac{\partial}{\partial x} \end{split}$$

Then in the basis $(\frac{\partial}{\partial x}|_p, \frac{\partial}{\partial y}|_p, \frac{\partial}{\partial z}|_p)$, the value of these vector fields at $p \in S$ can be written as (x, 1, 0), (1, 0, -1), (-1, 0, 0). Then we have:

$$\begin{vmatrix} x & 1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 0 \end{vmatrix} = 1 \neq 0$$

Proving that for any $p \in \mathbb{R}^3$, X(p), Y(p) and [X, Y](p) are linearly independent elements of $T_p\mathbb{R}^3$. If a non-empty surface S that is tangent to both X and Y existed, it would also be tangent to [X,Y], and hence $dim(T_pS) \geq 3$ for all $p \in S$, as T_pS is a vector space so would have to contain the span of X(p), Y(p) and [X,Y](p), which are all linearly independent. But a surface is a 2-manifold, so has tangent spaces of dimension 2, which is a contradiction. Hence no non-empty surface S can exist.

- 6. (a) Let $a: S^n \to S^n$ be the antipodal map. Suppose that ω is a smooth form on S^n such that $a^*\omega = \omega$. Prove that if ω is exact, then there is a smooth form η with $\omega = d\eta$ and $a^*\eta = \eta$
 - (b) Use (6a) to deduce that on the projective space $\mathbb{R}P^n$ ever closed k-form with 0 < k < n is exact.

Hint: You may use that for 0 < k < n every closed k-form on S^n is exact.

Solution:

(a) Suppose that ω is an exact smooth k-form on S^n . Then by definition of exactness, $\omega = d\eta$ for some smooth (k-1)-form η . Then consider the form $\tilde{\eta} := \frac{1}{2}(\eta + a^*\eta)$. Then as d is linear and commutes with pullbacks, we have:

$$d\tilde{\eta} = \frac{1}{2}(d\eta + d(a^*\eta)) = \frac{1}{2}(d\eta + a^*(d\eta)) = \frac{1}{2}(\omega + a^*\omega) = \frac{1}{2}(\omega + \omega) = \omega.$$

Moreover, we also have that:

$$a^*\tilde{\eta} = \frac{1}{2}(a^*\eta + a^*a^*\eta) = \frac{1}{2}(a^*\eta + (a \circ a)^*\eta) = \frac{1}{2}(a^*\eta + id^*\eta) = \frac{1}{2}(a^*\eta + \eta) = \tilde{\eta}$$

where we used that a(a(x)) = a(-x) = (-(-x)) = x, and hence $a \circ a = id$. Hence $\tilde{\eta}$ is the desired form.

(b) (see Lemma 17.33 on page 456 of Lee for a practically identical argument). Take a closed k-form ω on $\mathbb{R}P^n$ where 0 < k < n. Then we have the quotient/ covering map $\pi \colon S^n \to \mathbb{R}P^n$, induced by the equivalence relation $x \sim a(x)$. Consider the form $\pi^*\omega$. Then $d(\pi^*\omega) = \pi^*(d\omega) = \pi^*(0) = 0$, so $\pi^*\omega$ is a closed k-form on S^n . Moreover,

 $\pi^*\omega = a^*(\pi^*\omega)$, as π identifies x with a(x) (so $\pi \circ a = \pi$). By the hint, $\pi^*\omega$ is exact, and hence by (6a), there exists a (k-1) from η on S^n s.t. $d\eta = \pi^*\omega$ and $a^*\eta = \eta$.

Let $U \subset \mathbb{R}P^n$ be an open subset evenly covered by π . Then there are two local sections $\sigma_1, \sigma_2 \colon U \to S^n$ (as π is a 2-sheeted covering), which are related by $\sigma_2 = a \circ \sigma_1$, as a is a covering transformation of $\pi \colon S^n \to \mathbb{R}P^n$ (and the only non-trivial one). Thus:

$$\sigma_2^* \eta = (a \circ \sigma_1)^* \eta = \sigma_1^* a^* \eta = \sigma_1^* \eta$$

So we can define a smooth global (k-1) form β on $\mathbb{R}P^n$ by setting $\beta|_U = \sigma^*\eta$ for any smooth local section $\sigma\colon U\to S^n$. By the above, this definition is independent of the smooth section chosen, so the definitions agree where they overlap. Finally, given $p\in\mathbb{R}P^n$, choose a local section $\sigma\colon U\to S^n$ where U is a neighbourhood of p. Then:

$$d\beta = d\sigma^* \eta = \sigma^* d\eta = \sigma^* \pi^* \omega = (\pi \circ \sigma)^* \omega = \omega$$

 $(\pi \circ \sigma = id_U)$, as this is the definition of σ being a loca section of π). Hence β a smooth form on $\mathbb{R}P^n$ s.t. $d\beta = \omega$, and so ω is exact.