Computer Architecture Lec 5a

Dr. Esti Stein

(Partly taken from Dr. Alon Scholar slides)

Based on slides by:

Prof. Myung-Eui Lee

Korea University of Technology & Education Department of Information & Communication

Taken from: M.
Mano/Computer Design and
Architecture 3rd Ed.

Register Reference Instructions

- Executed with the clock transition associated with timing variable T_3 .
- Each control function needs the Boolean relation $D_7I'T_3$
 - for convenience let $r \equiv D_7 I' T_3$.
- The control function is distinguished by one of the bits in **IR(0-11)**.
- Assign the symbol B_i to bit i of IR,
 - all control functions can be simply denoted by rB_i .
- After completion
 - The sequence counter SC is cleared to 0
 - The control goes back to fetch the next instruction with timing signal T_{θ} .

Alon Schclar, Tel-Aviv College, 2009

Register Reference Instructions

TABLE 5-3 Execution of Register-Reference Instructions

```
D_7I'T_3 = r (common to all register-reference instructions)

IR(i) = B_i [bit in IR(0-11) that specifies the operation]
```

```
Clear SC
                       SC \leftarrow 0
               rB_{11}: AC \leftarrow 0
                                                                        Clear AC
       CLA
               rB_{10}: E \leftarrow 0
                                                                        Clear E
       CLE
       CMA rB_9: AC \leftarrow \overline{AC}
                                                                        Complement AC
       CME rB_8: E \leftarrow \overline{E}
                                                                        Complement E
                                                                        Circulate right
       CIR rB_7: AC \leftarrow \operatorname{shr} AC, AC(15) \leftarrow E, E \leftarrow AC(0)
       CIL rB_6: AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)
                                                                        Circulate left
       INC rB_5: AC \leftarrow AC + 1
                                                                        Increment AC
       SPA rB_4: If (AC(15) = 0) then (PC \leftarrow PC + 1)
                                                                        Skip if positive
if-else SNA rB_3: If (AC(15) = 1) then (PC \leftarrow PC + 1)
                                                                        Skip if negative
       SZA rB_2: If (AC = 0) then PC \leftarrow PC + 1
                                                                        Skip if AC zero
loops
               rB_1: If (E=0) then (PC \leftarrow PC+1)
       SZE
                                                                        Skip if E zero
                       S \leftarrow 0 (S is a start-stop flip-flop)
       HLT
                                                                        Halt computer
               rB_0:
```

Taken from: M. Mano/Computer Design and Architecture 3rd Ed.

Alon Schclar, Tel-Aviv College, 2009

Example: CLA

- Hexadecimal code $(7800)_{16} = (0111 \ 1000 \ 0000 \ 0000)_2$.
- The first bit is a zero and is equivalent to I'.
- Next three bits are the opcode and are recognized from decoder output D_7 .
- Bit 11 in IR is 1 and is recognized from B_{11} .
- The control function that initiates the microoperation for this instruction is

$$D_7 I' T_3 B_{11} = r B_{11}.$$

QUIZ6

The content of AC is A937, and E = 1.

Determine the content of the registers below after each instruction Assume the instruction resides in address 21.

```
SC \leftarrow 0
                  r:
7800 CLA rB_{11}: AC \leftarrow 0
7400 CLE
                 rB_{10}:
                       E \leftarrow 0
7200 CMA rB_9: AC \leftarrow \overline{AC}
7100 CME rB_8: E \leftarrow \overline{E}
7080 CIR
                rB_7: AC \leftarrow \operatorname{shr} AC, AC(15) \leftarrow E, E \leftarrow AC(0)
7040 CIL
                rB_6: AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)
7020 INC rB_5: AC \leftarrow AC + 1
7010 SPA rB_4: If (AC(15) = 0) then (PC \leftarrow PC + 1)
7008 SNA rB_3: If (AC(15) = 1) then (PC \leftarrow PC + 1)
7004 SZA rB_2: If (AC = 0) then PC \leftarrow PC + 1
7002 SZE rB_1: If (E=0) then (PC \leftarrow PC+1)
7001 HLT rB_0: S \leftarrow 0 (S is a start-stop flip-flop)
```

AC	E	PC	AR	IR	instruction
A937	1	21	-	-	initial
					CLA
					CMA
					CIL
					SNA
					SZE

Memory Reference Instructions (MRI)

Memory Reference Instructions (MRI)

At the end of the T₃ cycle, AR holds the effective Address

• 7

MRI - AND

At the end of the T_3 cycle, AR $D_{\overline{0}}$ holds the <u>effective Address</u> T_4

 $AND : AC \leftarrow AC \land M[AR]$

 $D_0T_4: DR \leftarrow M[ARD]$

 $D_0T_5: AC \leftarrow AC \land DR, SC \leftarrow 0$

MRI - AND >

At the end of the T_3 cycle, AR $D_{\overline{0}}$ holds the <u>effective Address</u> T_5

 $AND : AC \leftarrow AC \land M[AR]$

 $D_0T_4: DR \leftarrow M[AR]$

 $D_0T_5: AC \leftarrow AC \land DR, SC \leftarrow 0$

MRI - ADD

At the end of the T_3 cycle, AR holds the effective Address

ADD :
$$AC \leftarrow AC + M[AR]$$
,
 $E \leftarrow C_{out}$

 $D_1T_4: DR \leftarrow M[AR]$

 $D_1T_5: AC \leftarrow AC + DR,$ $E \leftarrow C_{out}, SC \leftarrow 0$

MRI - LDA

At the end of the T₃ cycle, AR holds the **effective Address**

 $LDA : AC \leftarrow M[AR]$

 $D_2T_4: DR \leftarrow M[AR]$

 D_2T_5 : AC \leftarrow DR, SC \leftarrow 0

Why not connecting the bus to the inputs of **AC**?

- a delay is encountered in the adder and logic circuit.
 - Time(Mem read) + Time(Bus transfer) + Time(A&L) > 1 cycle
- Not connecting the bus to the inputs of AC maintains one clock cycle per microoperation.

MRI - STA

At the end of the T₃ cycle, AR holds the **effective Address**

 $STA: M[AR] \leftarrow AC$

 $D_3T_4: M[AR] \leftarrow AC, SC \leftarrow 0$

