Lines and planes in $\ensuremath{\mathbb{R}}^3$

Lines in \mathbb{R}^2 or \mathbb{R}^3

lines in
$$\mathbb{R}^2$$

Point-parallel form
$$\vec{x}(t)=(p_1,p_2)+t(v_1,v_2)$$

Parametric form $x=p_1+tv_2$ and $y=p_2+tv_2$
Two-point form $\vec{x}(t)=(1-t)(p_1,p_2)+t(q_1,q_2)$
Point-normal form $(n_1,n_2)\cdot(\vec{x}-(p_1,p_2))=0$
Standard form $ax+by=c$

- $P(p_1, p_2)$ and $Q(q_1, q_2)$ are two different points on the line.
- $\vec{v} = (v_1, v_2)$ is the *direction vector* of the line.
- $\vec{n} = (n_1, n_2)$ is the *normal vector* of the line.
- t is a parameter.

Lines in \mathbb{R}^2 or \mathbb{R}^3

	lines in \mathbb{R}^2	lines in \mathbb{R}^3
Point-parallel form	$\vec{x}(t) = (p_1, p_2) + t(v_1, v_2)$	$\vec{x}(t) = (p_1, p_2, p_3) + t(v_1, v_2, v_3)$
Parametric form	$x p_1 + tv_2$ and $y = p_2 + tv_2$	$x = p_1 + tv_2, y = p_2 + tv_2$ and $z = p_3 + tv_3$
Two-point form	$\vec{x}(t) = (1 t)(p_1, p_2) + t(q_1, q_2)$	$\vec{x}(t) = (1-t)(p_1, p_2, p_3) + t(q_1, q_2, q_3)$
Point-normal form	$(n_1, n_2) \cdot (\vec{x} - (p_1, p_2)) = 0$	and $z = p_3 + tv_3$ $\vec{x}(t) = (1-t)(p_1, p_2, p_3) + t(q_1, q_2, q_3)$?
Standard form	ax + by = c	?

- $P(p_1, p_2, p_3)$ and $Q(q_1, q_2, q_3)$ are two different points on the line.
- $\vec{v} = (v_1, v_2, v_3)$ is the *direction vector* of the line.
- t is a parameter.

Definition If $\vec{v} \in \mathbb{R}^3$ is parallel to some line L in \mathbb{R}^3 , we say that \vec{v} is a *direction vector* for L.

Examples

- 1. Give a point-parallel form for the line through the point P(2,2,0) and parallel to the vector $\vec{v}=(3,-1,2)$
- 2. What are the parametric form on two point form of it?
- 3. L_1 is the line $\vec{x}(t) = (1-t)(2,1,1) + t(0,1,2)$. L_2 is the line with parametric equations x = 2t-2, y = 1, z = 5-3t. Are L_1 and L_2 the same line?

Planes in \mathbb{R}^3

Recall in \mathbb{R}^2 , we have the point-normal form of a line L

$$\vec{n}\cdot(\vec{x}-(p_1,p_2))=0$$

where \vec{n} is the normal vector to L and (p_1, p_2) is on the line.

What about $\vec{n} \cdot (\vec{x} - (p_1, p_2, p_3)) = 0$ in \mathbb{R}^3 ?

Planes in \mathbb{R}^3

Recall in \mathbb{R}^2 , we have the point-normal form of a line L

$$\vec{n}\cdot(\vec{x}-(p_1,p_2))=0$$

where \vec{n} is the normal vector to L and (p_1, p_2) is on the line.

What about $\vec{n} \cdot (\vec{x} - (p_1, p_2, p_3)) = 0$ in \mathbb{R}^3 ?

Definition A vector which is perpendicular to a particular plane in \mathbb{R}^3 is said to be *normal* to the plane, and is called a normal for that plane, or a *normal* vector for the plane.

Planes in \mathbb{R}^3

Recall in \mathbb{R}^2 , we have the point-normal form of a line L

$$\vec{n}\cdot(\vec{x}-(p_1,p_2))=0$$

where \vec{n} is the normal vector to L and (p_1, p_2) is on the line.

What about $\vec{n} \cdot (\vec{x} - (p_1, p_2, p_3)) = 0$ in \mathbb{R}^3 ?

Definition A vector which is perpendicular to a particular plane in \mathbb{R}^3 is said to be *normal* to the plane, and is called a normal for that plane, or a *normal* vector for the plane.

Definition The *point-normal form* of an equation of a plane Π in \mathbb{R}^3 , where $\vec{n}=(n_1,n_2,n_3)$ is any normal vector to the plane and $P(p_1,p_2,p_3)$ is any point on the plane, is given by

$$\vec{n} \cdot (\vec{x} - \vec{p}) = 0$$
, i.e., $(n_1, n_2, n_3) \cdot (\vec{x} - (p_1, p_2, p_3)) = 0$.

Standard form for the plane

Definition The equation ax + by + cz = d is a *standard form* equation of a plane and the vector (a, b, c) is a normal vector to this plane.

Standard form for the plane

Definition The equation ax + by + cz = d is a *standard form* equation of a plane and the vector (a, b, c) is a normal vector to this plane.

Examples Write an equation in a point-normal form and a standard form for a plane with a normal vector $\vec{n} = (1, 0, 3)$ which contains the point P(-1, 2, 3).

Given three points in $\ensuremath{\mathbb{R}}^3$, find the plane they determine?

Given three points in \mathbb{R}^3 , find the plane they determine?

Idea: find the normal vector of the plane?

Given three points in \mathbb{R}^3 , find the plane they determine?

Idea: find the normal vector of the plane?

Theorem If \vec{u} is a direction vector for a line in some plane Π , and \vec{v} is a direction vector for another line in plane Π , where \vec{u} and \vec{v} are not collinear, then $\vec{n} = \vec{u} \times \vec{v}$ is a normal vector Π .

Given three points in \mathbb{R}^3 , find the plane they determine?

Idea: find the normal vector of the plane?

Theorem If \vec{u} is a direction vector for a line in some plane Π , and \vec{v} is a direction vector for another line in plane Π , where \vec{u} and \vec{v} are not collinear, then $\vec{n} = \vec{u} \times \vec{v}$ is a normal vector Π .

Examples 1. Find both a point-normal form equation and a standard form equation of the plane determined by the points P(1,0,1), Q(1,2,3) and R(2,1,5).

2. What is the point-normal form of the plane 2x - y + 3z = 1?

Examples

- 1. Give a normal vector of the line (x, y) = (3, 2) + t(7, 1).
- 2. Find a standard form equation of the plane containing the points P(-2,0,1), Q(0,1,3) and R(-1,1,-3).
- 3. What is a standard form equation for the plane through point P(3,4,-1) with normal vector $\vec{n} = (-2,3,4)$?
- 4. Convert the standard form equation x-2y+z=6 to point-normal form for the plane in \mathbb{R}^3 .
- 5. Convert the line $\vec{x}(t) = (2,3) + t(1,-3)$ into point-parallel form and the point-normal form.