Элементы статистики и визуализации данных.

Выборка

Случайная выборка ростов из n = 6 людей

Генеральная совокупность

Рост всех N людей на Земле

Выборочное среднее

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Выборочное стандартное отклонение

Смещённая оценка (показывает разброс

выборочных данных от выборочного среднего)

$$\sigma_{biased} = \sqrt{rac{1}{n}\sum_{i=1}^n (x_i - ar{x})^2}$$

Несмещённая оценка (оценивает разброс выборочных данных от генерального среднего).

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} \approx \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x_{general}})^2}$$

Генеральное среднее

$$\overline{x_{general}} = \frac{x_1 + x_2 + ... + x_N}{N}$$

Генеральное стандартное отклонение

$$\sigma_{general} = \sqrt{rac{1}{N}\sum_{i=1}^{N}(x_i - \overline{x_{general}})^2}$$

Стандартная ошибка среднего

$$S=rac{\sigma_{general}}{\sqrt{n}}pproxrac{\sigma}{\sqrt{n}}$$
 Допущение, необходимое для расчёта доверительного интервала. $\sigma_{general}$ мы почти никогда не зноем

Распределение — это расположение данных на числовой прямой.

Функция плотности распределения

(синяя прямая) показывает кривую, площадь под любым участком которой равна верояности того, что случайно выбранный элемент выборки будет из этого промежутка. Медиана — число, которое делит упорядоченную последовательность чисел пополам.

Мода — число, соответствующее пику распределения.

На картинке показано соотношение между средним, медианой и модой, характерное для скошенного влево распределения

Центральная предельная теорема

Если сделать много выборок размером $\,n$, то распределение выборочных средних будет нормальным со средним $\,\overline{x_{general}}\,\,$ и стандартным отклонением S .

Доверительный интервала по нормальному распределению:

Среднее значение признака x в генеральной совокупности с $(1-\alpha)$ вероятностью входит в интервал:

$$\overline{x_{general}} = \overline{x} \pm z(\alpha) \cdot \frac{\sigma}{\sqrt{n}}$$
 $z(0.05) = 1.96$
 $z(0.01) = 2.58$

Доверительного интервал по распределению Стьюдента:

Среднее значение признака в генеральной совокупности с (1-lpha) вероятностью входит в интервал: t(0.05.5)=2.77

$$\overline{x_{general}} = \overline{x} \pm t(\alpha, n) \cdot \frac{\sigma}{\sqrt{n}}$$
 $t(0.05, 10) = 2.23$
 $t(0.05, 30) = 2.04$
 $t(0.05, \infty) = 1.96$

Занятие 1

Элементы статистики и визуализации данных.

Стандартизация численных данных

1) StandartScaler()

(Трансформирует данные так, чтобы среднее стало 0, а а стандартное оклонение 1)

x u σ **Физический смысл:** значение z_i представляет собой отклонение x_i от \overline{x} , выраженное в стандартных отклонениях величины x.

Зачем проводить стандартизацию?

- Чтобы значения переменной приобрели физический смысл и позволили сравнивать отдельные наблюдения между собой по удалению от среднего.
- Чтобы коэффициенты линейных моделей (см. занятия 2 и 3) приобрели физический смысл и позволили сравнивать признаки по силе влияния на целевую переменную.
- Линейные модели и нейронные сети быстрее обучаются и равномернее сходятся, если фичи стандартизованы. Более того, есть подтверждения факта, что стандартизация признаков увеличивает качество популярного метода понижения размерности РСА (см. QR-код), следовательно, и качество классификации и регрессии, использующих этот метод.

Джойны

Inner Join — совокупность поставленных рядом строк левой и правой таблицы, в которых совпадает некоторый идентификатор.

Left Join — то же самое, что и Inner Join + те записи из левой таблицы, для которой в правой по указанному идентификатору ничего не нашлось.

	id	Name	Age	_	r ioin 72				
	_				T1 inner join T2	id	Name	Age	medical test results
T1	5236	John	25		· /	2362	William	19	positive
	2362	William	19		/ '				
	7425	Jack	38		l <i>1</i>				
- 1					\succ	id	Name	Age	medical test results
	id	medical test results		ı		_		_	
т.	5236	positive		1	. 🗸	5236	John	25	NaN
T2	6436	positive		1	T1 left join T2	2362	William	19	positive
	5125		gative	١,	1011/12	7425	Jack	38	NaN

Кодировка номинативных признаков

One-Hot-Encoding позволяет привести номинативную переменную с множеством значений в совокупность бинарных признаков.

1 белый 1 0 1 о этот признак не привности	ſ		Цвет	1		синий	белый	зелёный	Колонку с зелёным цветом
	ſ	0	синий	→	0	1	0	0	необходимо удалить , поскольку
2 зелёный 2 0 0 1 данные новую информация	ſ	1	белый		1	0	1	0	этот признак не привности в
- - - - - - - - - -	ſ	2	зелёный		2	0	0	1	данные новую информацию

Поскольку мы знаем, что цветов может быть всего 3, и кождый элемент обязательно либо синий, либо белый, либо зелёный, то, если элемент не синий и не белый, то он зелёный.

Занятие 1

Приложение

1. Почему в стандартном отклонении выборки принято делить на (n-1)?

Деление на (n-1) вместо n в формуле несмещённого стандартного отклонение происходит по той причине, что данная формула оценивает стандартное отклонение выборки относительно генерального среднего. Слово «смещение» означает смещение относительно генерального среднего.

То есть, среднее значение множества выборочных «несмещённых стандартных отклонений» будет равно генеральному стандартному отклонению.

Путём кропотливых математических преобразований (см. OR-код справа), можнно показать, что дисперсия выборочных значений относительно генерального среднего состоит из дисперсии выборочных значений относительно выборочного среднего (biased) + разброс выборочного среднего относительно генерального:

$$\sigma^2 = \sigma_{blased}^2 + \frac{\sigma^2}{n} \qquad \sigma_{blased} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2} \qquad \text{Вы можете ознакомиться с балее} \\ \sigma = \frac{n}{n-1} \cdot \sigma_{blased} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} \qquad \text{Вы можете ознакомиться с балее} \\ \sigma = \frac{n}{n-1} \cdot \sigma_{blased} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} \qquad \text{(необходимо подключение к VPN}$$

вопроса в треде на Ouora (необходимо подключение к VPN

2. Центральной пределельная теорема. Визуализция.

3. Как через доверительный интервал для выборочного среднего, вычисленный на основе центральнрой предельной теоремы, выразить доверительный для среднего генеральной совокупности?

Поскольку характеристики нормального распределения известны, то мы можем посчитать, что с $(1-\alpha)$ вероятностью выборочное среднее попадёт в интервал.

$$\overline{x_i} = \overline{x_{general}} \pm z(lpha) \cdot rac{\sigma_{general}}{\sqrt{n}}$$
 $z(lpha)$ — постоянная величина

Поменяем $\ \overline{x_{general}}$ и $\ \overline{x_i}$ местами, а также учтём, что $\ \sigma_{general}pprox\sigma_i$, получим, что с (1-lpha)вероятностью генеральное среднее попадёт в интервал:

$$\overline{x_{general}} = \overline{x_i} \pm z(\alpha) \cdot \frac{\sigma_i}{\sqrt{n}}$$

Занятие 1 Приложение

4. Расчёт z и t статистик через квантили распределения.

 $z(\alpha)$ — значение под графиком функции плотности вероятности стандартного нормального распределения, соответствующее уровню значимости α (см. рисунок)

Таким образом, мы можем посчитать статистику распределений для вычисления доверительного интервала через кавантили этих распределений, т.к. квантиль распределения по функции плотности вероятности распределения считается так

$$q(P)=$$
 такое число, что Площадь $($ от $-\infty$ до этого числа $)=P$

Получим:

$$oxed{z(lpha) = q_{normal}igg(1-rac{lpha}{2}igg)}$$
 $oxed{t(lpha,n) = q_{student}igg(1-rac{lpha}{2},nigg)}$

Вычисление квантилей забито во многие статистические пакеты. Для Python это пакет stats, внутри которого для распределений есть метод .ppf (percentile point function). scipystats.norm.ppf(0.95)

scipy.stats.t.ppf(0.95, n=30)