

Description

The VST15N083 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =150V,I_D =110A

 $R_{DS(ON)}$ <9.2m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <11m Ω @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-220C

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST15N083-TC	VST15N083	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit V	
Drain-Source Voltage	V _{DS}	150		
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	110	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	93	А	
Pulsed Drain Current	I _{DM}	440	А	
Maximum Power Dissipation	P _D	300	W	
Derating factor		2	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	900	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.5	°C/W
	. 1000	0.0	0,

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.4	1.9	2.3	V
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =55A	-	8.3	9.2	- mΩ
Diam-Source On-State Resistance		V_{GS} =4.5V, I_D =55A		9.6	11	
Forward Transconductance	g FS	V _{DS} =10V,I _D =55A	-	70	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss})/ 75\/\/ 0\/	-	7900	-	PF
Output Capacitance	Coss	V _{DS} =75V,V _{GS} =0V, F=1.0MHz	-	528	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIHZ	-	25.1	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V _{DD} =75V,I _D =55A	-	29	-	nS
Turn-on Rise Time	t _r		-	42	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	55	-	nS
Turn-Off Fall Time	t _f		-	18	-	nS
Total Gate Charge	Q_g	75// 554	-	100		nC
Gate-Source Charge	Q_{gs}	V _{DS} =75V,I _D =55A, V _{GS} =10V	-	28.4		nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	10.4		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _F = I _S	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	110	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	140		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	480		nC

Notes:

- ${\it 1. Repetitive Rating: Pulse width limited by maximum junction temperature.}\\$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

280
240
200
200
200
160
200
200
200
200
TJ-Junction Temperature(°C)

320

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance