26 Aula 26: 12/11/2019

26.1 Hoje

Aula de exercícios.

O exercício 1 é uma versão dos problemas vistos na aula 20 $\,$

O exercício 2 está relacionado com o Método de Monte Carlo. Esse foi o tópico das aula 24 e aula 25

26.2 Arquivos

As soluções estão no diretório py:

• 2sum: exercício 1

• $monte_carlo$: exercício 2

26.3 Execícios 1

Considere o seguinte problema

2SUM: dada uma lista de números inteiros determinar o número de pares que somam zero.

- (a) Escreva uma função que resolve o problema e consome tempo $\mathbb{O}(n^2)$.
- (b) Escreva uma função que resolve o problema e consome tempo $O(n \lg n)$.
- (c) Escreva uma função que resolve o problema e consome tempo **esperado** O(n).

Objetivos

Este exercício é sobre análise de algoritmos. Usamos esse problema em um laboratório de ideias.

A primeira solução testa todas as possibiliades e consome tempo $O(n^2)$.

A segunda solução combina ordenação e busca binária e consome tempo O(n lg n).

Por fim, a terceira e última solução consome tempo esperado O(n).

Com isso deveriamos notar que ordenação, busca binária e set e dict são ferramentas valiosas.

Solução (a)

Solução (b)

Em uma das versões usamos a busca binária da biblioteca e na outra implementamos a busca binária.

Nota: No dia a dia, sempre que possível, devemos usar funções de bibliotecas.

```
def soma zero nlgn(v):
    '''(list) -> int
    Recebe uma lista `v` de números inteiros e retorna o número
    de pares que somam zero.
    Consumo de tempo da função é O(n \log n).
   A função altera a lista v. Para não alterarmos bastava
    fazermos\ v\ sorted = sorted(v)
    1 1 1
   cont = 0
   v.sort()
   n = len(v)
   for i in range(n):
        j = index busca binaria(v, -v[i], i+1, n) # consumo de tempo <math>O(lq n)
        # j = index(v, -v[i], i+1, n) # alternativamente
        if j != None: cont += 1
   return cont
def index busca binaria(a, x, lo, hi):
    '''(list, item, int, int) -> int ou None
    Recebe uma lista ordenada a com n itens, um item x e dois inteiros lo e hi.
    Retorna um índice i em range(lo,hi) tal que a[i] \le x < a[i+1].
   Para essa afirmação fazer sentido suponha aqui que
        * a[lo-1] é menos infinito e
        * a[hi ] é mais infinito.
    Pré-condição: suponha que os itens em a são distintos.
    while lo < hi:
       mid = (lo + hi) // 2 #
           a[mid] < x: lo = mid + 1
        elif a[mid] > x: hi = mid
        else: return mid
   return None
# Mais especificamente, usaremos uma adaptação de `index` da página de `bisect`
def index(a, x, lo, hi):
    '''(list, item, int, int) -> int ou None
    >>> from bisect import bisect left
    >>> lista = [1,3,5,7,9,11]
    >>> help(bisect_left)
```

```
>>> bisect_left(lista,2,0,len(lista))
    >>> bisect left(lista,13,0,len(lista))
    6
    >>> bisect_left(lista,3,0,len(lista))
    >>> bisect_left(lista,4,0,len(lista))
    >>> bisect_left(lista,5,0,len(lista))
    2
    >>> bisect left(lista,0,0,len(lista))
    >>>
    111
    i = bisect_left(a, x, lo, hi)
    if i != len(a) and a[i] == x:
        return i
    return None # raise ValueError
Solução (c)
def soma zero n(v):
    '''(list) -> int
    Recebe uma lista `v` de números inteiros e retorna o número
    de pares que somam zero.
    Consumo de tempo esperado da função é O(n).
    111
    cont = 0
    numeros = set() # conjunto de valores
    n = len(v)
    for i in range(n):
        if -v[i] in numeros: # consumo de tempo esperado O(1)
            cont += 1
        numeros.add(v[i]) # consumo de tempo esperado O(1)
    return cont
Experimentos
% python doublingTest.py -q 16Kints.txt
main(): lendo lista de inteiros...
main(): lista com 16000 ints lida
      n
             tempo pares
      8
            0.000s
                       0
     16
            0.000s
                       1
     32
            0.000s
                       1
     64
            0.000s
                       1
```

```
128
       0.001s
                 1
 256
     0.003s
                 1
 512
      0.012s
                1
1024
      0.046s
                1
      0.040s
0.176s
2048
                 2
4096
       0.693s
       2.777s
8192
               19
16000 10.541s
                 66
```

% python doublingTest.py -o 16Kints.txt
main(): lendo lista de inteiros...
main(): lista com 16000 ints lida

n	tempo	pares
8	0.000s	0
16	0.000s	1
32	0.000s	1
64	0.000s	1
128	0.000s	1
256	0.000s	1
512	0.001s	1
1024	0.002s	1
2048	0.004s	2
4096	0.009s	4
8192	0.018s	19
16000	0.037s	66

% python doublingTest.py -l 16Kints.txt
main(): lendo lista de inteiros...
main(): lista com 16000 ints lida

n	tempo	pares
8	0.000s	0
16	0.000s	1
32	0.000s	1
64	0.000s	1
128	0.000s	1
256	0.000s	1
512	0.000s	1
1024	0.000s	1
2048	0.000s	2
4096	0.001s	4
8192	0.002s	19
16000	0.004s	66

% python doublingTest.py -l 1Mints.txt
main(): lendo lista de inteiros...
main(): lista com 1000000 ints lida

n tempo pares

```
0.000s
     8
                        0
     16
            0.000s
                        1
     32
            0.000s
                        1
     64
            0.000s
                        1
   128
            0.000s
                        1
   256
            0.000s
   512
            0.000s
                        1
   1024
            0.000s
                        1
  2048
                        2
            0.000s
                        4
  4096
            0.001s
            0.002s
                       19
  8192
  16384
            0.003s
                       71
 32768
            0.008s
                        290
            0.017s
 65536
                        1102
 131072
            0.038s
                        4350
            0.087s
 262144
                        17267
524288
            0.201s
                        68673
            0.431s
1000000
                        249838
```

% python doublingTest.py -o 1Mints.txt
main(): lendo lista de inteiros...
main(): lista com 1000000 ints lida

n	tempo	pares
8	0.000s	0
16	0.000s	1
32	0.000s	1
64	0.000s	1
128	0.000s	1
256	0.000s	1
512	0.001s	1
1024	0.002s	1
2048	0.003s	2
4096	0.008s	4
8192	0.018s	19
16384	0.039s	71
32768	0.079s	290
65536	0.168s	1102
131072	0.370s	4350
262144	0.802s	17267
524288	1.760s	68673
000000	3.657s	249838

% python doublingTest.py -q 1Mints.txt
main(): lendo lista de inteiros...
main(): lista com 1000000 ints lida

n tempo pares 8 0.000s 0 16 0.000s 1

```
32
          0.000s
                    1
  64
         0.000s
                     1
  128
         0.001s
                     1
 256
          0.003s
                    1
 512
         0.012s
                     1
                     1
 1024
         0.047s
                    2
2048
         0.188s
4096
         0.750s
                    4
         2.967s
8192
                    19
16384
         12.107s
                    71
        49.683s
                    290
32768
65536
        200.434s
                    1102
```

Abortei pois iria cansar de esperar...

26.4 Exercício 2

Prova 1 de MAE0212, 2019

Um professor(a) dá um teste rápido, constante de 36 questões do tipo certo-errado. Para testar a hípótese de um/uma estudante estar adivinhando a resposta, é adotada a seguinte regra de decisão:

"Se 22 ou mais questões estiverem corretas, o/a estudante não está adivinhando"

Qual é a probabilidade de rejeitarmos a hipótese, sendo que na verdade é verdadeira?

Ideias

Na últimas aulas vimos um certo arcabouço para esse tipo de problema. Aqui, mais uma vez, veremos esse arcabouço.

Modelagem

Utilizaremos uma simulação em que uma lista gabarito com 36 contedo True ou False é escolhida uniformemente ao acaso

```
self.gabarito = [random.choice([True, False]) for i in range(36)]
```

Poderíamos simplemente supor que todas as respostas eram True e prosseguir com a simulação, mas talvez alguns e algumas se sintam melhor desta forma.

Em cada experimento, modelamos uma pessoa chutando respostas uniformente ao acaso com o seguinte trecho de código:

```
chute = random.choice([True, False])
```

O experimento é considerado sucesso se os acertos forem menor que 22. Isso significa que a hipótese é boa.

Os experimentos abaixo mostraram que a probabilidade de chutando alguém acertar mais que 22 questões é menor 0.13.

Supomos que na prova de MAE0212 as alunas e alunos tiveram que estimar esse valor olhando para a gaussiana de media $\mu = 36 \times 0.5 = 18$ e variância $\sigma = \sqrt{36 \times 0.5 \times 0.5} = 3$.

Foi isso?

Cliente

```
def main():
    n_questoes = int(input("Digite o no de questões: "))
    limiar = int(input("Digite o limiar para chute: "))
    t = int(input("Digite o no de experimentos: "))
    adilson = Cientista(n_questoes, limiar, t) # nome do prof
    print("Probabilidade da/do estudante estar chutando", adilson.mean())
```

Cientista

import random

Essa classe teve nomes diferentes dependendo do problema, mas o esquema foi sempre o mesmo. Alguns nomes foram Aniversario, Colecionador, Area,... Achamos que simulação é uma ferramenta importante e que deveria ser valorizada.

```
class Cientista:
    def __init__(self, no_questoes, limiar, t):
        self.no questoes = no questoes
        self.limiar = limiar
        # o gabarito poderia ser toda resposta True...
        self.gabarito = [random.choice([True,False]) for i in range(no questoes)]
        # sucesso significa que chutando a/o estudante acertou
        # menos que limiar questoes
        sucesso = 0
        for i in range(t):
            sucesso += self.experimento()
        self.p = sucesso/t
   def mean(self):
        return self.p
   def experimento(self):
               = self.no_questoes
        limiar = self.limiar
        gabarito = self.gabarito
        acertos = 0
        for i in range(n):
            chute = random.choice([True,False])
            if chute == gabarito[i]:
                acertos += 1
        if acertos < limiar: return 1</pre>
        return 0
```

Experimentos

Os experimentos mostram que a probabilidade de alguém acertar mais que 22 questões chutando é menor que 0.13.

```
% python main.py
Digite o no de questões: 36
Digite o limiar para chute: 22
Digite o no de experimentos: 100
Probabilidade da/do estudante estar chutando 0.87
% python main.py
Digite o no de questões: 36
Digite o limiar para chute: 22
```

```
Digite o no de experimentos: 1000
Probabilidade da/do estudante estar chutando 0.871
% python main.py
Digite o no de questões: 36
Digite o limiar para chute: 22
Digite o no de experimentos: 10000
Probabilidade da/do estudante estar chutando 0.88
% python main.py
Digite o no de questões: 36
Digite o limiar para chute: 22
Digite o no de experimentos: 100000
Probabilidade da/do estudante estar chutando 0.88046
% python main.py
Digite o no de questões: 36
Digite o limiar para chute: 22
Digite o no de experimentos: 1000000
Probabilidade da/do estudante estar chutando 0.878952
```