1

DC Amplifier

Buereddy Varuni*

A DC amplifier has an open loop gain of 1000 and two poles, a dominant one at 1kHz and a high frequency one whose location can be controlled. It is required to connect this amplifier in a negative feedback loop that provides a DC closed loop gain of 10 and a maximally flat response.

1. Find the required value of *H*.

Solution: Table 1 summarises the given information. The open loop gain can be expressed as

$$G(s) = \frac{G_0}{\left(1 + \frac{s}{p_1}\right)\left(1 + \frac{s}{p_2}\right)} \tag{1.1}$$

$$\implies G(0) = G_0 \tag{1.2}$$

The closed loop gain

$$T(s) = \frac{G(s)}{1 + G(s)H}$$
 (1.3)

$$\implies T(0) = \frac{G_0}{1 + G_0 H} \tag{1.4}$$

Substituting from Table 1,

$$\frac{1000}{1 + 1000H} = 10\tag{1.5}$$

$$\implies H = 0.099 \tag{1.6}$$

Parameter	Value
dc open loop gain	1000
dominant pole	-1000Hz
insignificant pole	-p ₂
dc closed loop gain	10

TABLE 1: 1

$$G_0 = 1000 (1.7)$$

Therefore.,
$$G(s) = \frac{1000}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})}$$
 (1.8)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

2. Find p_2 .

Solution: From (1.3) and (1.1),

$$T(s) = \frac{p_1 p_2 G_0}{s^2 + (p_1 + p_2)s + (HG_0 + 1)p_1 p_2}$$
(2.1)

$$=\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{2.2}$$

using the standard formulation for a second order system. Also, for maximally flat response, the quality factor

$$Q = \frac{1}{2\zeta} = \frac{1}{\sqrt{2}} \tag{2.4}$$

$$\implies \zeta = \frac{1}{\sqrt{2}} \tag{2.5}$$

$$\implies \frac{p_1 + p_2}{2\sqrt{(HG_0 + 1)p_1p_2}} = \frac{1}{\sqrt{2}}$$
 (2.6)

$$\implies \sqrt{\frac{p_1}{p_2}} + \sqrt{\frac{p_2}{p_1}} = \sqrt{2(HG_0 + 1)}$$
(2.7)

The above equation is of the form

$$x + \frac{1}{x} = a \tag{2.8}$$

$$\implies x = \frac{a \pm \sqrt{a^2 - 4}}{2} \tag{2.9}$$

where

$$x = \sqrt{\frac{p_2}{p_1}} (2.10)$$

$$a = \sqrt{2(HG_0 + 1)},\tag{2.11}$$

Thus, from (2.10), (2.11) and (2.9),

$$p_2 = p_1 \left[\frac{\sqrt{2(HG_0 + 1)} \pm \sqrt{2(HG_0 + 1) - 4}}{2} \right]^2$$
(2.12)

From the following code,

codes/ee18btech11005/ee18btech11005_1.py

$$p_2 = 1244038.9567529503$$

and 31.734068607786863 (2.13)

3. Draw the equivalent circuit system diagram. **Solution:** The equivalent circuit system is shown in the figure.3

Fig. 3: 1

4. Obtain G(s) and T(s)**Solution:** Substituting the value of p_2 in (1.1) and (2.1),

$$G(s) = \frac{1000}{(1 + \frac{s}{2\pi 10^3})(1 + \frac{s}{1.244 \times 10^6})}$$

$$T(s) = \frac{10}{0.128 \times 10^{-11} s^2 + 1.599 \times 10^{-6} s + 1}$$
(4.2)

5. Verify from the Bode plot of above closed loop transfer function that it has maximally flat response.

Solution: The following code generates the bode plot of the transfer function in Fig. 5.

$$codes/ee18btech11005/ee18btech11005_2.py$$

6. Find the step response of *T*(*s*) **Solution:** The following code generates the desired response of in Fig. 6.

codes/ee18btech11005/ee18btech11005_3.py

Fig. 5

Fig. 6

7. Design a circuit that represents the above transfer function.

Solution: The circuit can be designed using an operational amplifiers having negative feedback. Consider the circuit shown in figure.7:1. Assume the gain of all the amplifiers are large. And assume no zero state response. Take the parameters in s-domain.

For the first amplifier..., Applying KCL at

Fig. 7: 1

node A., Since, the opamp has large gain, potential at node A is assumed to be zero due to virtual short at node A.

$$\frac{0 - V_{in}(s)}{R_1} + \frac{0 - V_1(s)}{R_2} = 0 \tag{7.1}$$

$$\frac{V_{in}(s)}{R_1} = \frac{V_1(s)}{R_2} \tag{7.2}$$

$$\implies V_{in} = -\frac{V_1(s)R_1}{R_2} \qquad (7.3)$$

For the second amplifier.., Applying KCL at node B.., Similarly potential at node B is zero.

$$\frac{-V_1(s)}{R} + \frac{-V_2(s)}{R} - sCV_2(s) + \frac{-V_{out}(s)}{R} = 0$$
(7.4)

$$\frac{-V_1(s)}{R} + \frac{-V_2(s)}{R} - sCV_2(s) = \frac{V_{out}(s)}{R}$$
 (7.5)

$$\frac{-V_1(s)}{R} = V_2(s) \left[sC + \frac{1}{R} \right] + \frac{Vout(s)}{R}$$
 (7.6)

For the third amplifier.., Potential at node C is zero(Due to high gain of amplifier). Applying KCL at node C.

$$\frac{-V_2(s)}{R} + \frac{-V_3(s)}{R} = 0 ag{7.7}$$

$$\implies V_2(s) = -V_3(s) \tag{7.8}$$

For the Fourth amplifier., Potential at node D is zero. Applying KCL at node D.

$$\frac{-V_3(s)}{R} + sC_1(-V_{out}(s)) = 0 (7.9)$$

$$V_3(s) = -sC_1RV_{out}(s) (7.10)$$

From equation. 7.10 and equation. 7.8..,

$$V_2(s) = sC_1RV_{out}(s)$$
 (7.11)

Substituting the equation.7.6 and equation.7.11,

$$\frac{-V_1(s)}{R} = (s^2 C_1 CR + sC_1) V_{out}(s) + \frac{V_{out}(s)}{R}$$
(7.12)

$$V_1(s) = -(s^2 C_1 C R^2 + s C_1 R + 1) V_{out}(s)$$
(7.13)

from equation.7.3 and equation.7.13.

$$V_1(s) = \frac{R_1}{R_2} (s^2 C_1 C R^2 + s C_1 R + 1) V_{out}(s)$$
(7.14)

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{R_2}{R_1(s^2C_1CR^2 + sC_1R + 1)}$$
 (7.15)

Comparing equation.4.2 and equation.7.15

$$\frac{R_2}{R_1} = 10\tag{7.16}$$

$$C_1 C R^2 = 0.128 x 10^{-11} (7.17)$$

$$C_1 R = 1.599 x 10^{-6} F (7.18)$$

Let.,
$$R = 1000\Omega$$
 (7.19)

$$\implies C_1 = 1.599x10^{-9} \tag{7.20}$$

and.,
$$C_1CR^2 = 0.128x10^{-11}$$
 (7.21)

$$\implies C = 0.8005x10^{-9}F \tag{7.22}$$

Let..,
$$R_1 = 100\Omega$$
 (7.23)

$$\implies R_2 = 1000\Omega \tag{7.24}$$

From Table.7:1. The Final circuit is shown in

Parameter	Value
R_1	100 Ω
R_2	1000 Ω
R	1000 Ω
С	0.8005 nF
C_1	1.599 nF

TABLE 7: 1

figure.7

Fig. 7: 2

8. Draw the equivalent block diagram of the above circuit.

Solution: For a circuit shown in figure.8:1 The equivalent G is found to be

$$\frac{V_1}{V_2} = \frac{-Z_2}{Z_1} \tag{8.1}$$

Fig. 8: 1

The control system block is shown in the Fig:8:2. Consider the first opamp from the

Fig.7:1 For the first opamp having negative feedback.

$$G_1 = \frac{-R_2}{R_1} \tag{8.2}$$

For the second, third and fourth opamp each having individual open loop gain G2,G3,G4.

$$G_2 = \frac{-R}{R(sRC + 1)} \tag{8.3}$$

$$G_3 = \frac{-R}{R} = -1 \tag{8.4}$$

$$G_4 = \frac{-1}{sC_1R} \tag{8.5}$$

$$G(s) = G_2 \times G_3 \times G_4 \tag{8.6}$$

Now, H can be computed as follows from

Fig. 8: 3

Fig:8:4.,

$$H = \frac{V_1}{V_o} = \frac{R}{R} \tag{8.7}$$

$$H = 1 \tag{8.8}$$

This feedback is given across G2,G3,G4.

Fig. 8: 4

The equivalent block diagram is shown in the Fig.8:5.

Fig. 8: 5

Draw the block diagram for G(s).
 Solution: The block diagram is shown in the Fig.9.

Fig. 9

10. Find R_{11} and R_{22} in the Fig.9. **Solution:** For R_{11} , short Vo and find the equivalent resistance in Fig.8:5.

$$R_{11} = R + R = 2R \tag{10.1}$$

(10.2)

For R_{22} , short V1 and find the equivalent resistance in Fig.8:5.

$$R_{22} = R + R = 2R \tag{10.3}$$

(10.4)

The TABLE:10 shows obtained vales of the block diagram.

11. Verify the closed loop DC gain using NGSPICE simulator.

Parameter	Value
G_1	$\frac{-R_2}{R_1}$
G_2	$\frac{-1}{1+sCR}$
G_3	-1
G_4	$\frac{-1}{sC_1R}$
Н	1

TABLE 10: 1

Solution: The following README file gives the procedure to be followed.

codes/ee18btech11005/spice/README

From equation.4.2. The DC closed loop gain is 10.

The following netlist file, gives the DC gain of the closed loop function.

codes/ee18btech11005/spice/gvv ngspice.net

We can observe from simulation that the value of DC closed loop gain is 9.997.

Error analysis:-

ERROR in DC GAIN = 10-9.993 = 0.007 Thus, the predicted value in ngspice is almost accurate. Therefore, the value is verified using ngspice.

12. Verify the step response of the output from ngspice simulation.

Solution: The following netlist file does the transient analysis and store the Vout values with respect to time in a dat file.

codes/ee18btech11005/spice/gvv_ngspice2.

Following python code is to plot the step response.

codes/ee18btech11005/spice/ ee18btech11005_spice.py

The step response obtained is shown in the figure.12. The graph has steady state value equal to 10.

Fig. 12