

II s'agit d'une enquête concernant les facteurs de risque associes au faible poids de naissance de nourrissons (données collectées au centre médical de Baystate dans le Massachusetts pendant l'année 1986). Le faible poids de naissance est un événement qui intéresse les médecins depuis plusieurs années en raison du taux de mortalité infantile et du taux d'anomalies infantiles très élevés chez les nourrissons de faible poids. Le comportement d'une femme pendant la grossesse (régime alimentaire, habitudes tabagiques ...) peut altérer de facon import ante les chances de mener la grossesse a terme, et, par conséquent, de donner naissance a un enfant de poids normal. Le fichier de données contient les informations sur 189 femmes (numéro d'identification : ID) venant consulter dans le centre médical. On considère qu'un enfant a un faible poids de naissance si celui-ci est inférieur a 2 500 g.

Variables et codage :

Description	Unité ou Codage	Variable
Âge de la mère	Années	AGE
Poids de la mère lors du dernier cycle menstruel	Livres	LWT
Race de la mère	1=Blanche; 2=Noire; 3=Autre	RACE
Tabagisme durant la grossesse	Oui=1; Non=0	SMOKE
Nombre d'antécédents de prématurité	0=Non; 1=Un; 2=Deux; etc.	PTL
Antécédents d'hypertension	Oui=1; Non=0	HT
Présence d'irritabilité utérine	Oui=1; Non=0	UI
Nombre de visites à un médecin durant le premier trimestre de la grossesse	0=Aucune; 1=Une; etc.	FVT
Poids de naissance	Grammes	BWT
Poids de naissance inférieur ou égal à 2 500 g	Oui=1; Non=0	LOW

QCM TEST DE BMCV Nom et prénom: Test Examen du XX/XX/XXXX Durée: 45 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Si r(X,Y) = 0 alors Parmi les propositions suivantes, choisir celle(s) qui est (sont) Question 1 ♣ exactes. Il existe une relation entre X et Y. X et Y sont indépendantes au sens lineiare. Il existe une relation linéaire entre X et Y. On ne peut pas construire une droite de de régression linéaire. Question 2 ♣ Pour explorer les artères du coeur (les artères coronaires), on réalise des coronographies. Dans un groupe de patients ayant subi une coronographie, on observe que de 1 à 5 vaisseaux coronaires peuvent êtres lésés (rétrécis ou occlus). La distribution des lésions se fait selon le tableau suivant. nombre de vaisseaux lésés 2 3 nombre d'observations 11 19 26 79 5 n = 140Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes. La variable nombre de vaisseaux lésés est continue. La variable nombre de vaisseaux lésés est discrète. Si X représente le nombre de vaisseaux lésés, alors m(X) = 6. La variable nombre de vaisseaux lésés est qualitative. La variable nombre de vaisseaux lésés est quantitative. Question 3 \clubsuit On considère deux variables aléatoires indépendantes X e Y de moyennes respectives 10 et 15 et de variances respectives 6 et 3. Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes. X+Y a pour variance 9 X + Y a pour variance 10 X-Y a la même variance que X+YX + Y a pour moyenne 18 X+Y a pour moyenne 25 Question 4 \(\blacktriangle \) Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes. La variable AGE est quantitative continue. La variable AGE est quantitative discrète. La variable BWT est quantitative continue.

La variable BWT est quantitative discrète.

Soit S l'événement "présenter des séquelles" et NS l'événement contraire, alors Pr(NS|A) = 0.90
Si un patient opéré présente des séquelles, il y a plus de chance d'avoir être opéré par C que par B.
La probabilité d'un individu de présenter des séquelles est 0.13.
Si un patient opéré présente des séquelles, il y la même chance d'avoir être opéré par A que par B.

Question 6 \clubsuit Soit $\{3,4,5,6,7\}$ un échantillon de taille n=5 de la variable d durées de séjour dans un hôpital. Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.

 \Box La médiane de la variable d et 4.

Le quantile quantile (d, 0.5) = 5.

La moyenne est égal à (3 + 4 + 5 + 6 + 7)/5.

Question 7 \clubsuit Soit X et Y des grandeurs telles que

$$m(X) = 2, m(Y) = 5.$$

$$s(X) = 0.4, s(Y) = 0.8, r(X, Y) = -0.5$$

Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.

$$\widehat{\beta}_0 = 2.4 \text{ et } \widehat{\beta}_1 = -0.28$$

$$\widehat{\beta}_0 = 7 \text{ et } \widehat{\beta}_1 = -1$$

$$\widehat{\beta}_0 = 0.23 \text{ et } \widehat{\beta}_1 = 1.34$$

$$\widehat{\beta}_0 = -1 \text{ et } \widehat{\beta}_1 = 7$$

Question 8 & Regardez la Figure 1. Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.

$$r(X,Y) \neq 0.$$

$$r(X,Y) < 0.$$

Question 12 On considère deux variables aléatoires observables dans un population d'individus: le sexe et un indicateur appréciatif du sommeil ; cette variable a trois modalités : hyposomnie (petit dormeur), normosomnie (sommeil normal), hypersomnie (grand dormeur). Les probabilités des événements élémentaires sont données ci-dessous:

		Indicateur	
Sexe	hyposomnie	normosomnie	hypersomnie
homme	0.13	0.3	0.17
femme	0.07	0.2	0.13

Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.

$\hfill \Box$ La probabilité pour qu'une femme soit hypersomniaque est 0.383	
\square Il y a 50% de femmes dans cette population	
La probabilité pour qu'un individu soit hyposomiaque et de sexe masculi	n est 0.13.
La probabilité pour qu'une femme soit hypersomniaque est 0.325	
Les variables sexe et indicateur sont indépendantes.	

Question 13 🌲 Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.
Soit X une variable aléatoire normal de moyenne 3 et variance 2, alors $Pr(X > 3) = 0.8$.
\square Soit X une variable aléatoire normal de moyenne 3 et variance 2, alors $\Pr(X < 4) = 0.5$.
Soit X une variable aléatoire normal de moyenne 3 et variance 2, alors $\Pr(X > \sqrt{2}) = \Pr(X \ge \sqrt{2})$.
Soit X une variable aléatoire normal de moyenne 3 et variance 2, alors $\Pr(X>3)=0.5$
Soit X une variable aléatoire normal, alors $\Pr(X > \sqrt{2}) = 0.5$.
Question 14 🌲 Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.
La variable RACE est quantitative continue.
La variable RACE est qualitative ordinale.
La variable RACE est quantitative discrète.
La variable RACE est qualitative catégorielle.
Question 15 🌲 Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.
Si X est une variable aléatoire Bernouilli (binomial $B(n=1,p)$) alors X prend deux valeurs.
\square Si X est une variable aléatoire normal alors il est une variable aléatoire discrète.
\square Si X est une variable aléatoire Bernouilli (binomial $B(n=1,p)$) alors X prend plusieurs valeurs différentes.
\square Si X est une variable aléatoire Bernouilli (binomial $B(n=1,p)$) alors il est une variable aléatoire continue.
Si X est une variable aléatoire normal alors il est une variable aléatoire continue.
Question 16 \clubsuit On considère deux variables aléatoires X et Y et ρ_{XY} leur coefficient de corrélation. Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.
Si X et Y sont indépendantes, on sait que $\rho_{XY} = 0$.
\square Si $\rho_{XY} \neq 0$, on sait que X e Y sont indépendantes.
Si $\rho_{XY} \neq 0$, on sait que X e Y ne sont pas indépendantes.
Si $Y = \beta_1 X + \beta_0$ avec $\beta_1 \neq 0$, on sait que $\rho_{XY} \neq 0$.
Question 17 \clubsuit Le nombre d'enfants par femme peut être considéré comme une variable aléatoire discrète. Pour représenter cette variable aléatoire on utilisera: Parmi les propositions suivantes, choisir celle(s) qui est (sont) exactes.
Un histogramme.
Une courbe en pointillés.
Un diagramme en bâtons.
Une table.
Une courbe continue.