Sistema de Predição de Safra Baseado em TinyML

Um sistema de predição de safra baseado em TinyML, desenvolvido para microcontroladores de baixo custo e baixo consumo de energia.

Oferece previsão acessível para agricultores em regiões com infraestruturas limitadas

Luis E. C. Ramirez Brithany M. O. Chuquimia

RESUMO

Apresenta-se o desenvolvimento e avaliação de um sistema de previsão de rendimento de Safra baseado em TinyML, projetado para operar em microcontroladores de baixo custo e baixo consumo de energia, como ESP32. A metodologia inclui coleta de dados, pré-processamento, desenvolvimento de modelos, integração de hardware. Os resultados esperados incluem um modelo de precisão com baixa latência de inferência e eficiência energética, contribuindo para a democratização da agricultura de precisão. Este trabalho demonstra o potencial do TinyML como uma tecnologia acessível, escalável e sustentável para apoiar pequenos e médios agricultores em ambientes com baixa infraestrutura.

TinyML: Aprendizado de Máquina Embarcado

TinyML permite executar modelos de machine learning em dispositivos de baixa potência.

- Baixo Consumo

 Ideal para operações prolongadas no campo.
- Operação Autônoma

 Não exige conectividade com a internet.
- \$ Custo Reduzido

 Democratiza o acesso à tecnologia avançada.

TRABALHOS RELACIONADOS

O Paradigma Atual: IA na Nuvem

Modelos de ML como **Random Forest** e **LSTM** são eficazes para predição de rendimento, com precisões que superam 90% [1, 2].

Principal Limitação:

Dependem de servidores e da nuvem, exigindo conectividade constante e alto custo computacional.

Referências: [1] Surana, 2024; [2] Krithika, 2024; Manzoor, 2024.

A Nossa Proposta: IA na Borda

Utilizar **TinyML** para executar o modelo diretamente no microcontrolador **(ESP32)**.

Vantagens Chave:

- Operação autônoma, sem internet.
- Redução drástica de custos.
- Democratização do acesso à tecnologia.

Como Construímos o Sistema

- Se utilizo dados de Kaggle (temperatura, umidade, pH, tipo de cultivo).
- Futuramente, integração com sensores IoT.

- Codificação os tipos de cultivos
- Escalonamento de todas as variáveis
- Divisão do conjunto de dados
 80% / 20%
- Rede neural com uma arquitetura que inclui camadas densas adequadas para problemas de regressão.
- Otimização do modelo para execução em microcontroladores de baixa potência.

1. Introdução e Composição do Conjunto de Dados

Fonte: O estudo é baseado no conjunto de dados público "Crop Yield and Environmental Factors (2014-2023)" do Kaggle.

Conteúdo: Inclui dados históricos de rendimento de culturas e 3 variáveis ambientais principais: temperatura do solo, umidade e pH .

Composição: O conjunto de dados apresenta uma distribuição equilibrada entre quatro tipos de culturas, garantindo um treinamento justo e imparcial.

Análise Exploratória de Dados (AED)

Composição do Dataset

Distribuição balanceada entre 4 tipos de cultura, garantindo um modelo imparcial.

pH do solo

Distribuição das Variáveis

Temperatura: Distribuição Gaussiana.

Umidade: Distribuição Assimétrica (valores altos).

pH do Solo: Distribuição Discreta (níveis específicos).

Principal descoberta: qual variável é mais importante?

Método: Um modelo RandomForest e validação de permutação foram utilizados para quantificar a real influência de cada variável.

Resultado inequívoco: a temperatura **é o** fator dominante e mais influente na previsão do desempenho.

Hierarquia de Influência:

- 1. Temperatura (Impacto Muito Alto)
- 2. Umidade (impacto moderado)
- 3. pH do solo (baixo impacto)

Conclusão principal: O sucesso do modelo preditivo dependerá criticamente da precisão dos dados de temperatura.

As "Regras" de Desempenho Aprendidas pelo Modelo

O modelo aprendeu relações complexas e não lineares para cada variável:

Temperatura: Este é o **principal fator limitante** . Ele define uma curva triangular com desempenho de pico ideal (~22°C).

Umidade: Atua como um facilitador com um limite crítico . O desempenho só é possível acima de ~67% de umidade.

pH do solo: funciona como um ajuste fino, maximizando o rendimento em uma faixa ótima muito estreita (6,2-6,6).

Análisis de Influencia: Gráficos de Dependencia Parcial

Análisis de Influencia: Gráficos de Dependencia Parcial

Análise da Relação Temperatura-Rendimento

- Faixa Ótima de Rendimento: A tendência do modelo demonstra uma faixa de temperatura ideal, aproximadamente entre 18°C e 26°C.
- •Limiares Críticos: O modelo identificou os limites da cultura. O rendimento é praticamente nulo para temperaturas abaixo de 10°C e acima de 35°C.
- •Comportamento Realista: A forma de "sino" ou "triangular" da tendência é consistente com os princípios agronômicos, onde temperaturas muito baixas ou muito altas são prejudiciais.

Análise da Relação Umidade-Rendimento

- •Limiar de Ativação: A tendência (linha roxa) mostra que o rendimento é nulo até que a umidade atinja um limiar aproximadamente 67%. Abaixo deste nível, não há predição de colheita.
- •Faixa Ótima de Rendimento: faixa ideal para o rendimento máximo se encontra em níveis de umidade mais elevados, tipicamente entre 75% e 80%.

Análise da Relação pH-Rendimento

- •Faixa Ótima Estreita: O rendimento máximo é alcançado apenas numa faixa muito específica e estreita, aproximadamente entre pH 6.2 e 6.6.
- •Sensibilidade a Limiares: Fora desta banda ideal, tanto em condições mais ácidas quanto mais alcalinas, o modelo prevê uma queda abrupta no rendimento, que se estabiliza num nível consideravelmente mais baixo.

Arquitetura da Rede Neural

Modelo

Rede Neural Artificial Sequencial

Camada de Entrada

4 neurónios (Tipo de Cultura, Temperatura, Humidade, pH)

Primeira Camada Oculta

128 neurónios com função de ativação ReLU

Segunda Camada Oculta

64 neurónios com função de ativação ReLU

Camada de Saída

1 neurónio (linear) para regressão do rendimento

8961

Parâmetros Treináveis

Modelo completo e otimizado

Otimizador:

Adam

Função de perda Erro Quadrático Médio (MSE)

Métricas de avalição

MAE (Erro Absoluto Médio) MSE (Erro Quadrático Médio)

Treinamento do Modelo

Configuração:

MSE

history = model.fit(X_train, y_train, epochs=100, batch_size=16, callbacks=callbacks1, validation_split=0.2, verbose=1)

Resultados e Desempenho

Perda (MSE) durante o treinamento

Épocas

Epocas

Resultados e Desempenho

```
Primeras 10 predicciones vs valores reales:
Real: 2.33 | Predicción: 3.14
Real: 13.85 | Predicción: 11.19
Real: 70.71 | Predicción: 75.00
Real: 4.13 | Predicción: 5.32
Real: 38.46 | Predicción: 38.87
Real: 116.77 | Predicción: 95.97
Real: 43.64 | Predicción: 48.17
Real: 48.38 | Predicción: 46.16
Real: 24.09 | Predicción: 23.25
Real: 42.59 | Predicción: 46.52
```


ESP32

- Microcontrolador com Processador Dual-Core
- Memória RAM: Aproximadamente 327 520 KB
- Armazenamento Flash: Normalmente entre 4 MB o mais (varia por módulo)
- Conectividade: WiFi e Bluetooth integrados.

- o Baixo consumo de energía
- Ideal para aplicações em campo
- Suporte para modelos de IA compactos com
 TensorFlow Lite for Microcontrollers (TFLite Micro)

ESP32

Conclusões e Trabalho Futuro

Validação do TinyML

Demonstrou-se a viabilidade de aplicar TinyML em microcontroladores de baixo custo (ESP32) para a agricultura de precisão.

Teto de Desempenho Identificado

Após otimização exaustiva, o erro do modelo estabilizou-se, indicando que o limite de precisão reside nas limitações do dataset (variáveis ausentes).

Democratização da Tecnologia

A solução proposta oferece uma ferramenta poderosa, de baixo custo e autônoma, capacitando pequenos e médios agricultores.

Conclusões e Trabalho Futuro

1. Conjunto de Dataset

A análise concluiu que o teto de desempenho atual é limitado pelos dados, não pelo modelo. A via mais promissora para aumentar a precisão é a inclusão de novas variáveis.

Recursos Hídricos:Precipitação e umidade do solo.

Radiação Solar: Medição da luz incidente (PAR).

Nutrientes do Solo: Variáveis N-P-K.

2. Aprimoramento do Sistema

Para evoluir do protótipo atual para uma solução de produção, recomendam-se as seguintes melhorias técnicas:

Integração de Sensores: Conectar sensores ao ESP32 para automatizar a coleta de dados.

Autonomia Energética: Sistema de alimentação para o funcionamento contínuo e autônomo.

Separação de Lógica e UI: Armazenar arquivos (HTML/CSS) no sistema de arquivos SPIFFS.

Persistência de Dados: Usar memória não volátil (NVS/EEPROM) para salvar o histórico de predições.

Referências Bibliográficas

Manzoor, S. et al. (2024)

"A Review on Machine Learning Approaches in Agriculture."

Krithika, S. et al. (2024)

"Crop Yield Prediction Using LSTM."

Surana, K. et al. (2024)

"Random Forest Based Crop Yield Prediction."

Ramirez-Gomez, A. (2020)

"A Review of Machine Learning in Agriculture."

Recursos do Projeto

Dataset Utilizado

Kumar, M. (2023). "Crop Yield and Environmental Factors (2014-2023)". Kaggle. Ver no Kaggle

Código-Fonte e Recursos

O firmware, os scripts de análise e o modelo treinado estão disponíveis publicamente no seguinte repositório do GitHub:

https://github.com/luisenriqueCR/TP557/tree/main/Projeto_Final