I Project Report

Title: Predicting Desired Savings Using Socioeconomic Factors

Objective

To build predictive models that estimate individuals' **desired savings** using a minimal set of socioeconomic indicators, enabling insights into saving behavior for financial planning and personalized services.

Dataset Summary

- **Size**: 20.000 individuals
- Target Variable: Desired Savings
- Input Features Used:
 - 1. Income
 - 2. Age
 - 3. Dependents
 - 4. **Occupation** (OneHotEncoded)
 - 5. **City_Tier** (*OrdinalEncoded: Tier_3 < Tier_2 < Tier_1*)
 - 6. Expenses
- Preprocessing Pipeline:
 - o Missing column (Unnamed: 16) dropped
 - o Categorical variables encoded with OrdinalEncoder and OneHotEncoder
 - o Standardization applied using StandardScaler
 - o Dataset split 80/20 for training and testing

Modeling Pipeline

1. Multiple Linear Regression (MLR)

- **R² Score**: 0.9142
- Trained using the six listed features
- Diagnostics:
 - o Residuals vs Predicted plots
 - \circ Q-Q Plot and **Shapiro-Wilk Test** \rightarrow residuals not normally distributed
 - o **Breusch-Pagan Test** → heteroscedasticity present
 - o **Durbin-Watson** $\approx 2.003 \rightarrow$ no autocorrelation
 - VIF Analysis: Some multicollinearity found, particularly in encoded categorical variables

2. Regularized Linear Models

- LassoCV:
 - \circ Best $\alpha = 0.01$
 - o **R² Score**: 0.9142
- RidgeCV:
 - \circ Best $\alpha = 1.0$
 - o **R² Score**: 0.9142
- **GridSearchCV** was used to fine-tune the regularization parameter alpha in both Lasso and Ridge.

3. XGBoost Regressor

- R² Score: 0.9148
- Parameters: n estimators=100, learning rate=0.1, max depth=3
- Effectively handled:
 - o Non-linear patterns
 - Feature interactions
 - Multicollinearity
- Slightly outperformed MLR while being more robust

4. Random Forest Regressor

- R² Score: 0.96
- Best performing model
- Trained with 100 trees (n estimators=100)
- Provided highest predictive accuracy and generalization capability
- Robust to outliers, feature interactions, and assumptions

Summary Highlights

- Developed a **Multiple Linear Regression model** (**R**² = **0.9142**) using features like **income**, **age**, **dependents**, **occupation**, **city tier**, **and expenses** to estimate individuals' desired savings.
- Conducted assumption diagnostics including residual plots, Q-Q plot, and VIF analysis, revealing violations of linearity, normality, and multicollinearity.
- Applied LassoCV and RidgeCV regularization techniques; leveraged GridSearchCV for optimal hyperparameter tuning and feature selection.
- Implemented an **XGBoost Regressor** ($\mathbb{R}^2 = 0.9148$) which matched MLR performance but handled nonlinearities and feature interactions more effectively.
- Trained a **Random Forest Regressor** ($\mathbb{R}^2 = 0.96$) that delivered the best overall accuracy and stability, making it suitable for real-world deployment.

Conclusion

This project demonstrates how a small but meaningful set of socioeconomic features can accurately predict individuals' desired savings. While linear models provide interpretability, ensemble methods like **Random Forest** and **XGBoost** offer superior performance, especially under assumption violations. The Random Forest model stands out as the most reliable choice for production-level deployment.