Thus Kato's equality holds and it follows from Corollary 5.8 that $(T(t))_{t\geq 0}$ is a lattice semigroup. The other implication follows directly from Corollary 5.8.

Example 5.10. Let $E = L^p(X,\mu)$ (where (X,μ) is a σ -finite measure space and $1 \le p < \infty$) and let A_o be the generator of a semigroup of lattice homomorphisms. Let $h \in L^\infty$ and $B = A_o + h$ (i.e., B is given by $Bf = A_o f + h \cdot f$ for $f \in D(B) = D(A_o)$). Let $A = A_o + Re$ h. Since A_o generates a semigroup of lattice homomorphisms, we have $|f| \in D(A_o)$ whenever $f \in D(A_o)$ and $Re((si\hat{g}n \ \bar{f})A_o f) = A_o |f|$. Hence $Re((si\hat{g}n \ \bar{f})Bf) = Re((si\hat{g}n \ \bar{f})A_o f) + (Re h) \cdot |f|) = A_o |f| + (Re h) \cdot |f| = A|f|$ for all $f \in D(B)$. Thus it follows from Theorem 5.5 that B generates a disjointness preserving semigroup whose modulus semigroup is generated by A.

Next we describe when a disjointness preserving semigroup is positive.

<u>Proposition</u> 5.11. Let E be a complex Banach lattice with order continuous norm and B be the generator of a disjointness preserving semigroup $(S(t))_{t\geq 0}$. The semigroup is positive if and only if B is real and span $D(B)_{\perp} = D(B)$.

<u>Proof.</u> The conditions are clearly necessary. In order to prove sufficiency, we can assume that E is real. Denote by A the generator of $(T(t))_{t\geq 0}$, where T(t)=|S(t)|. Let $f\in D(B)_+$. Since B is local we have Bf = P_f Bf = (sign f)Bf = A|f| = Af . By assumption, span $D(B)_+ = D(B)$. Thus it follows that $B \subset A$. This implies that B = A since $\rho(B) \cap \rho(A) \neq \emptyset$.

Remark 5.12. If B is the generator of a disjointness preserving semigroup $(S(t))_{t\geq 0}$ on a real Banach lattice E with order continuous norm then Kato's inequality holds in the reverse sense; i.e.,

 $<(\text{sign } f) B f, \phi> \ge <|f|, B' \phi> \text{ for all } f \in D(B) \ , \ \phi \in D(B')_+ \ .$ (cf. (3.9) for a concrete example). In fact, let T(t) = |S(t)| and denote by A the generator of $(T(t))_{t\ge 0}$. Let $f \in D(B), \ \phi \in D(B')_+ \ .$ Then $<(\text{sign } f) B f, \phi> = <A|f|, \phi> = \lim_{t\to 0} (1/t) < T(t)|f| -|f|, \phi> \ge \lim_{t\to 0} 1/t < S(t)|f| -|f|, \phi> = <|f|, B' \phi> .$