Solution Section 2.3 – Composition Functions

Exercise

Given that f(x) = 2x - 5 and $g(x) = x^2 - 3x + 8$, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain then find $(f \circ g)(7)$

Solution

$$f(g(x)) = f(x^{2} - 3x + 8)$$

$$= 2(-----------) - 5$$

$$= 2(2x^{2} - 3x + 8) - 5$$

$$= 2x^{2} - 6x + 16 - 5$$

$$= 2x^{2} - 6x + 11$$
Domain: $(-\infty, \infty)$

Domain: R

$$g(f(x)) = g(2x-5)$$

$$= (---)^2 - 3(---) + 8$$

$$= (2x-5)^2 - 3(2x-5) + 8$$

$$= 4x^2 - 20x + 25 - 6x + 15 + 8$$

$$= 4x^2 - 26x + 48$$
Domain: $(-\infty, \infty)$

Domain: \mathbb{R}

$$f(g(7)) = 2(7)^2 - 6(7) + 11 = 67$$

Exercise

Given that $f(x) = \sqrt{x}$ and g(x) = x - 1, find

$$a) \quad (f\circ g)(x)=f(g(x))$$

$$b) \quad (g\circ f)(x)=g(f(x))$$

c)
$$(f \circ g)(2) = f(g(2))$$

a)
$$(f \circ g)(x) = f(g(x))$$

= $f(x-1)$
= $\sqrt{x-1}$

b)
$$(g \circ f)(x) = g(f(x))$$

$$=g\left(\sqrt{x}\right)$$

$$=\sqrt{x}-1$$

c)
$$(f \circ g)(2) = f(g(2))$$

$$=\sqrt{x-1}$$

$$=\sqrt{2-1}$$

Given that $f(x) = \frac{x}{x+5}$ and $g(x) = \frac{6}{x}$, find

a)
$$(f \circ g)(x) = f(g(x))$$

$$b) \quad (g \circ f)(x) = g(f(x))$$

c)
$$(f \circ g)(2) = f(g(2))$$

$$a) \quad (f \circ g)(x) = f(g(x))$$

$$= f\left(\frac{6}{x}\right)$$

$$=\frac{\frac{6}{x}}{6_{\perp 5}}$$

$$=\frac{\frac{6}{x}}{6+5x}$$

$$=\frac{6}{6+5x}$$

b)
$$(g \circ f)(x) = g(f(x))$$

$$= g\left(\frac{x}{x+5}\right)$$

$$=\frac{6}{\frac{x}{x+5}}$$

$$=\frac{6(x+5)}{x}$$

$$=\frac{6x+30}{x}$$

c)
$$(f \circ g)(2) = f(g(2))$$

$$= \frac{6}{6+5(2)}$$
$$= \frac{6}{16}$$
$$= \frac{3}{8}$$

Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): $f(x) = 2x^2 + 3x - 4$, g(x) = 2x - 1 **Solution**

$$f(g(x)) = f(2x-1)$$

$$= 2(2x-1)^{2} + 3(2x-1) - 4$$

$$= 2(4x^{2} - 4x + 1) + 6x - 3 - 4$$

$$= 8x^{2} - 8x + 2 + 6x - 7$$

$$= 8x^{2} - 2x - 5$$

$$g(f(x)) = g(2x^{2} + 3x - 4)$$

$$= 2(2x^{2} + 3x - 4) - 1$$

$$= 4x^{2} + 6x - 8 - 1$$

$$= 4x^{2} + 6x - 9$$

$$f(g(-2)) = 8(-2)^{2} - 2(-2) - 5$$

$$= 31$$

$$g(f(3)) = 4(3)^{2} + 6(3) - 9$$

$$= 45$$

Exercise

Find
$$(f \circ g)(x)$$
, $(g \circ f)(x)$, $f(g(-2))$ and $g(f(3))$: $f(x) = x^3 + 2x^2$, $g(x) = 3x$

$$f(g(x)) = f(3x)$$
$$= (3x)^3 + 2(3x)^2$$
$$= 27x^3 + 18x^2$$

$$g(f(x)) = g(x^{3} + 2x^{2})$$

$$= 3(x^{3} + 2x^{2})$$

$$= 3x^{3} + 6x^{2}$$

$$f(g(-2)) = 27(-2)^{3} + 18(-2)^{2}$$

$$= 288$$

$$g(f(3)) = 3(3)^{3} + 6(3)^{2}$$

$$= 135$$

Find
$$(f \circ g)(x)$$
, $(g \circ f)(x)$, $f(g(-2))$ and $g(f(3))$: $f(x) = |x|$, $g(x) = -7$

Solution

$$f(g(x)) = f(-7)$$

$$= |-7|$$

$$= 7$$

$$g(f(x)) = g(|x|)$$

$$= -7$$

$$f(g(-2)) = 7$$

$$g(f(3)) = -7$$

Exercise

Given f(x) = x - 3 and g(x) = x + 3

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(x+3)$$
 Domain: \mathbb{R}
= $(x-3)+3$
= \underline{x} Domain: \mathbb{R}

Domain: \mathbb{R}

b)
$$g(f(x)) = g(x-3)$$
 Domain: \mathbb{R}
= $(x+3)-3$
= \underline{x} **Domain**: \mathbb{R}

Domain: R

Exercise

Given $f(x) = \frac{2}{3}x$ and $g(x) = \frac{3}{2}x$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{3}{2}x)$$
 Domain: \mathbb{R}

$$= \frac{2}{3}(\frac{3}{2}x)$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(\frac{2}{3}x)$$
 Domain: \mathbb{R}

$$= \frac{3}{2}(\frac{2}{3}x)$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: R

Exercise

Given
$$f(x) = x - 1$$
 and $g(x) = 3x^2 - 2x - 1$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

a)
$$f(g(x)) = f(3x^2 - 2x - 1)$$
 Domain: \mathbb{R}
 $= 3(x-1)^2 - 2(x-1) - 1$
 $= 3(x^2 - 2x + 1) - 2x + 2 - 1$
 $= 3x^2 - 6x + 3 - 2x + 1$

$$=3x^2-8x+4$$

Domain: \mathbb{R}

Domain: \mathbb{R}

$$\boldsymbol{b}) \quad g\left(f\left(x\right)\right) = g\left(x-1\right)$$

Domain: \mathbb{R}

$$=3x^2-2x-1-1$$

$$=3x^2-2x-2$$

Domain: R

Domain: \mathbb{R}

Exercise

Given f(x) = 3x - 2 and $g(x) = x^2 - 5$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

$$a) \quad f\left(g\left(x\right)\right) = f\left(x^2 - 5\right)$$

Domain: R

$$=3\left(x^2-5\right)-2$$

$$=3x^{2}-15-2$$

 $=3x^{2}-17$

Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(3x-2)$$

Domain: R

$$= \left(3x - 2\right)^2 - 5$$

$$=9x^2 - 12x + 4 - 5$$

$$=9x^2-12x-1$$

Domain: \mathbb{R}

Domain: R

Exercise

Given $f(x) = x^2 - 2$ and g(x) = 4x - 3

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

a)
$$f(g(x)) = f(4x-3)$$
 Domain: \mathbb{R}
 $= (4x-3)^2 - 2$
 $= 16x^2 - 24x + 9 - 2$
 $= 16x^2 - 24x + 7$ Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(x^2 - 2)$$
 Domain: \mathbb{R}
 $= 4(x^2 - 2) - 3$
 $= 4x^2 - 8 - 3$
 $= 4x^2 - 11$ Domain: \mathbb{R}

Domain: **ℝ** _

Exercise

Given
$$f(x) = 4x^2 - x + 10$$
 and $g(x) = 2x - 7$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(2x-7)$$
 Domain: \mathbb{R}
 $= 4(2x-7)^2 - (2x-7) + 10$
 $= 4(4x^2 - 28x + 49) - 2x + 7 + 10$
 $= 16x^2 - 112x + 196 - 2x + 17$
 $= 16x^2 - 114x + 213$ Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(4x^2 - x + 10)$$
 Domain: \mathbb{R}
 $= 2(4x^2 - x + 10) - 7$
 $= 8x^2 - 2x + 20 - 7$
 $= 8x^2 - 2x + 13$ **Domain**: \mathbb{R}

Domain: R

Given $f(x) = \sqrt{x}$ and g(x) = x + 3

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

- a) f(g(x)) = f(x+3) Domain: \mathbb{R} = $\sqrt{x+3}$ Domain: $x \ge -3$
 - ______
 - *Domain*: $\underline{x \ge -3}$
- **b)** $g(f(x)) = g(\sqrt{x})$ **Domain**: $x \ge 0$ = $\sqrt{x} + 3$ **Domain**: $x \ge 0$
 - *Domain*: $x \ge 0$

Exercise

Given $f(x) = \sqrt{x}$ and g(x) = 2 - 3x

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

- a) f(g(x)) = f(2-3x) Domain: \mathbb{R}
 - $= \sqrt{2-3x}$ Domain: $x \le \frac{2}{3}$
 - **Domain:** $x \le \frac{2}{3}$
- **b)** $g(f(x)) = g(\sqrt{x})$ **Domain**: $x \ge 0$ = $2 - 3\sqrt{x}$ | **Domain**: $x \ge 0$
 - *Domain*: $x \ge 0$

Given f(x) = 3x + 2 and $g(x) = \sqrt{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a) $f(g(x)) = f(\sqrt{x})$ Domain: $x \ge 0$ = $3\sqrt{x} + 2$ Domain: $x \ge 0$

Domain: $x \ge 0$

b) g(f(x)) = g(3x+2) **Domain**: \mathbb{R} $= \sqrt{3x+2}$ **Domain**: $x \ge -\frac{2}{3}$

Domain: $x \ge -\frac{2}{3}$

Exercise

Given $f(x) = x^4$ and $g(x) = \sqrt[4]{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a) $f(g(x)) = f(\sqrt[4]{x})$ Domain: $x \ge 0$ $= (\sqrt[4]{x})^4$ = x Domain: \mathbb{R}

Domain: $\underline{x \ge 0}$

b) $g(f(x)) = g(x^4)$ **Domain**: \mathbb{R} $= \sqrt[4]{x^4}$ $= x \quad Domain$: \mathbb{R}

Domain: \mathbb{R}

Given $f(x) = x^n$ and $g(x) = \sqrt[n]{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt[n]{x})$$

$$= (\sqrt[n]{x})^n$$
Domain:
$$\begin{cases} If & n \text{ is even} & x \ge 0 \\ If & n \text{ is odd} & \boxed{\mathbb{R}} \end{cases}$$

Domain: \mathbb{R}

$$=\left(\sqrt[n]{x}\right)^n$$

=x

Domain: $\begin{cases} If \ n \ is \ even & \underline{x \ge 0} \\ If \ n \ is \ odd & \underline{\mathbb{R}} \end{cases}$

b)
$$g(f(x)) = g(x^n)$$
 Domain: \mathbb{R}

$$= \sqrt[n]{x^n}$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: ℝ |

Exercise

Given $f(x) = x^2 - 3x$ and $g(x) = \sqrt{x+2}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt{x+2})$$
 $x+2 \ge 0 \Rightarrow x \ge -2$
 $= (\sqrt{x+2})^2 - 3\sqrt{x+2}$
 $= x+2-3\sqrt{x+2}$ $x+2 \ge 0 \Rightarrow x \ge -2$

Domain: $\{x \mid x \ge -2\}$

b)
$$g(f(x)) = g(x^2 - 3x)$$
 \mathbb{R}

$$= \sqrt{x^2 - 3x + 2}$$

$$x^2 - 3x + 2 \ge 0 \Rightarrow (x = 1, 2) \leftrightarrow x \le 1, x \ge 2$$

Domain: $\{x \mid x \le 1, x \ge 2\}$

Given $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{x+5}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt{x+5})$$
 $x+5 \ge 0 \Rightarrow x \ge -5$
 $= \sqrt{\sqrt{x+5}-2}$ $\sqrt{x+5} - 2 \ge 0 \Rightarrow \sqrt{x+5} \ge 2$
 $x+5 \ge 4$
 $x \ge -1$

Domain: $\{x \mid x \ge -1\}$

b)
$$g(f(x)) = g(\sqrt{x-2})$$
 $x-2 \ge 0 \Rightarrow x \ge 2$
$$= \sqrt{x-2+5}$$
 $\sqrt{x-2}+5 \ge 0 \Rightarrow \sqrt{x-2} \ge -5$ Always true when $x \ge 2$

Domain: $\{x \mid x \ge 2\}$

Exercise

Given $f(x) = x^2 + 2$ and $g(x) = \sqrt{3-x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt{3-x})$$
 Domain: $x \le 3$

$$= (\sqrt{3-x})^2 + 2$$

$$= 3 - x + 2$$

$$= 5 - x$$
 Domain: \mathbb{R}

Domain: $\underline{x \leq 3}$

b)
$$g(f(x)) = g(x^2 + 2)$$
 Domain: \mathbb{R}

$$= \sqrt{3 - x^2 - 2}$$

$$= \sqrt{1 - x^2}$$
Domain: $-1 \le x \le 1$

Domain: $\underline{-1 \le x \le 1}$

Given $f(x) = x^5 - 2$ and $g(x) = \sqrt[5]{x+2}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt[5]{x+2})$$
 Domain: \mathbb{R}

$$= (\sqrt[5]{x+2})^5 - 2$$

$$= x + 2 - 2$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(x^5 - 2)$$
 Domain: \mathbb{R}

$$= \sqrt[5]{x^5 - 2 + 2}$$

$$= \sqrt[5]{x^5}$$

$$= x$$
 Domain: \mathbb{R}

Domain: ℝ |

Exercise

Given $f(x) = 1 - x^2$ and $g(x) = \sqrt{x^2 - 25}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\sqrt{x^2 - 25})$$
 Domain: $x \le -5$ $x \ge 5$
 $= 1 - (\sqrt{x^2 - 25})^2$
 $= 1 - (x^2 - 25)$
 $= 1 - x^2 + 25$
 $= 26 - x^2$ Domain: \mathbb{R}

Domain: $x \le -5$ $x \ge 5$

b)
$$g(f(x)) = g(1-x^2)$$
 Domain: \mathbb{R}

$$= \sqrt{(1-x^2)^2 - 25}$$

$$= \sqrt{1-2x^2 + x^4 - 25}$$

$$= \sqrt{x^4 - 2x^2 - 24}$$

$$x^2 = \frac{2 \pm \sqrt{4+96}}{2}$$

$$= \begin{cases} \frac{2-10}{2} = -4 \\ \frac{2+10}{2} = 6 \end{cases}$$

$$x^2 = 6 \rightarrow x = \pm \sqrt{6}$$

Domain: $\underline{x \le -\sqrt{6}}$ $\underline{x \ge \sqrt{6}}$

Exercise

Given f(x) = 2x + 3 and $g(x) = \frac{x - 3}{2}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{x-3}{2})$$
 Domain: \mathbb{R}
 $= 2(\frac{x-3}{2}) + 3$
 $= x - 3 + 3$
 $= x \mid$ Domain: \mathbb{R}

Domain: R

b)
$$g(f(x)) = g(2x+3)$$
 Domain: \mathbb{R}

$$= \frac{1}{2}(2x+3-3)$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: R

Domain: $x \le -\sqrt{6}$ $x \ge \sqrt{6}$

Given f(x) = 4x - 5 and $g(x) = \frac{x + 5}{4}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{x+5}{4})$$
 Domain: \mathbb{R}
 $= 4(\frac{x+5}{4}) - 5$
 $= x+5-5$
 $= x \mid$ Domain: \mathbb{R}

Domain: ℝ |

b)
$$g(f(x)) = g(4x-5)$$
 Domain: \mathbb{R}

$$= \frac{1}{4}(4x-5+5)$$

$$= x$$
 Domain: \mathbb{R}

Domain: ℝ |

Exercise

Given $f(x) = \frac{4}{1-5x}$ and $g(x) = \frac{1}{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{1}{x})$$
 Domain: $x \neq 0$

$$= \frac{4}{1 - 5\frac{1}{x}}$$

$$= \frac{4x}{x - 5}$$
 Domain: $x \neq 5$

Domain: $x \neq 0$, 5

b)
$$g(f(x)) = g(\frac{4}{1-5x})$$
 Domain: $x \neq \frac{1}{5}$ **Domain**: \mathbb{R}

Domain: $x \neq \frac{1}{5}$

Given $f(x) = \frac{1}{x-2}$ and $g(x) = \frac{x+2}{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f\left(\frac{x+2}{x}\right)$$
 Domain: $x \neq 0$

$$= \frac{1}{\frac{x+2}{x} - 2}$$

$$= \frac{1}{\frac{x+2-2x}{x}}$$

$$= \frac{x}{2-x}$$
 Domain: $x \neq 2$

Domain: $x \neq 0, 2$ \quad $(-\infty, 0) \cup (0, 2) \cup (2, \infty)$

b)
$$g(f(x)) = g\left(\frac{1}{x-2}\right)$$
 Domain: $x \neq 2$

$$= \frac{\frac{1}{x-2} + 2}{\frac{1}{x-2}}$$

$$= \frac{\frac{1+2x-4}{x-2}}{\frac{1}{x-2}}$$

$$= \frac{2x-3}{x-2}$$
Domain: $x \neq 2$

Domain: $\underline{x \neq 2} \ (-\infty, 2) \cup (2, \infty)$

Exercise

Given $f(x) = \frac{3x+5}{2}$ and $g(x) = \frac{2x-5}{3}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

a)
$$f(g(x)) = f(\frac{2x-5}{3})$$
 Domain: \mathbb{R}

$$= \frac{3\frac{2x-5}{3}+5}{2}$$

$$= \frac{2x - 5 + 5}{2}$$

$$= \frac{2x}{2}$$

$$= x$$

Domain: \mathbb{R}

$$b) \quad g(f(x)) = g\left(\frac{3x+5}{2}\right)$$

$$= \frac{2\frac{3x+5}{2} - 5}{3}$$

$$= \frac{3x+5-5}{3}$$

$$= \frac{3x}{3}$$

$$= x \mid$$

Domain: R

Exercise

Given $f(x) = \frac{1}{1+x}$ and $g(x) = \frac{1-x}{x}$

a) Find $(f \circ g)(x)$ and the domain of $f \circ g$

b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f\left(\frac{1-x}{x}\right)$$
 Domain: $x \neq 0$

$$= \frac{1}{1+\frac{1-x}{x}}$$

$$= \frac{x}{x+1-x}$$

$$= x$$
 Domain: \mathbb{R}

Domain: $x \neq 0$

b)
$$g(f(x)) = g\left(\frac{1}{x+1}\right)$$
 Domain: $x \neq -1$

$$= \frac{1 - \frac{1}{x+1}}{\frac{1}{x+1}}$$

$$= x + 1 - 1$$

$$= x$$
Domain: \mathbb{R}

Domain: R

Domain: \mathbb{R}

Given $f(x) = \frac{x-1}{x-2}$ and $g(x) = \frac{x-3}{x-4}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{x-3}{x-4})$$
 Domain: $x \neq 4$

$$= \frac{\frac{x-3}{x-4} - 1}{\frac{x-3}{x-4} - 2}$$

$$= \frac{\frac{x-3-(x-4)}{x-4}}{\frac{x-3-2(x-4)}{x-4}}$$

$$= \frac{x-3+x+4}{x-3-2x+8}$$

$$= \frac{2x+1}{-x+5}$$
 Domain: $x \neq 5$

Domain: $\{x \mid x \neq 4, 5\}$

b)
$$g(f(x)) = g(\frac{x-1}{x-2})$$
 Domain: $x \neq 2$

$$= \frac{\frac{x-1}{x-2} - 3}{\frac{x-1}{x-2} - 4}$$

$$= \frac{x-1-3(x-2)}{x-1-4(x-2)}$$

$$= \frac{x-1-3x+6}{x-1-4x+8}$$

$$= \frac{-2x+5}{-3x+7}$$
 Domain: $x \neq \frac{7}{3}$

Domain: $\left\{x \mid x \neq 2, \frac{7}{3}\right\}$

Given $f(x) = \frac{6}{x-3}$ and $g(x) = \frac{1}{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$(f \circ g)(x)$$

$$f(g(x)) = f\left(\frac{1}{x}\right)$$

$$= \frac{6}{\frac{1}{x} - 3}$$

$$= \frac{6}{\frac{1 - 3x}{x}}$$

$$= \frac{6x}{1 - 3x}$$
Domain: $x \neq 0$

Domain:
$$x \neq 0, \frac{1}{3}$$
 $\left(-\infty, 0\right) \cup \left(0, \frac{1}{3}\right) \cup \left(\frac{1}{3}, \infty\right)$

b)
$$(g \circ f)(x)$$

$$g(f(x)) = g\left(\frac{6}{x-3}\right)$$

$$= \frac{1}{\frac{6}{x-3}}$$

$$= \frac{x-3}{6}$$
Domain: $x \neq 3$

$$Domain: (-\infty, \infty)$$

Domain: $\underline{x \neq 3}$ $(-\infty, 3) \cup (3, \infty)$

Exercise

Given $f(x) = \frac{6}{x}$ and $g(x) = \frac{1}{2x+1}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

a)
$$f(g(x)) = f(\frac{1}{2x+1})$$
 Domain: $x \neq -\frac{1}{2}$

$$= \frac{6}{\frac{1}{2x+1}}$$

$$= 12x+6$$
 Domain: \mathbb{R}

Domain:
$$x \neq -\frac{1}{2}$$

$$b) \quad g(f(x)) = g\left(\frac{6}{x}\right)$$

$$= \frac{1}{2\frac{6}{x} + 1}$$

$$= \frac{x}{12 + x}$$

Domain: $x \neq -12$

Domain: $x \neq 0$

Domain: $x \neq -12, 0$

Exercise

Given f(x) = 3x - 7 and $g(x) = \frac{x + 7}{3}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{x+7}{3})$$
 Domain: \mathbb{R}

$$= 3\frac{x+7}{3} - 7$$

$$= x + 7 - 7$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: \mathbb{R}

b)
$$g(f(x)) = g(3x-7)$$
 Domain: \mathbb{R}

$$= \frac{3x-7+7}{3}$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: R

Exercise

Given
$$f(x) = \frac{2x+3}{x-4}$$
 and $g(x) = \frac{4x+3}{x-2}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

a)
$$f(g(x)) = f(\frac{4x+3}{x-2})$$
 Domain: $x \ne 2$

$$= \frac{2\frac{4x+3}{x-2}+3}{\frac{4x+3}{x-2}-4}$$

$$= \frac{8x+6+3x-6}{4x+3-4x+8}$$

$$= \frac{11x}{11}$$

$$= x \mid$$

Domain: R

Domain: $x \neq 2$

b)
$$g(f(x)) = g\left(\frac{2x+3}{x-4}\right)$$

$$= \frac{4\frac{2x+3}{x-4} + 3}{\frac{2x+3}{x-4} - 2}$$

$$= \frac{8x+12+3x-4}{2x+3-2x+8}$$

$$= \frac{11x}{11}$$

$$= x \mid$$

Domain: $x \neq 4$

Domain: \mathbb{R}

Domain: $x \neq 4$

Exercise

Given $f(x) = \frac{2x+3}{x+4}$ and $g(x) = \frac{-4x+3}{x-2}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(\frac{-4x+3}{x-2})$$
 Domain: $x \neq 2$

$$= \frac{2\frac{-4x+3}{x-2}+3}{\frac{4x+3}{x-2}+4}$$

$$= \frac{-8x+6+3x-6}{4x+3+4x-8}$$

$$= \frac{-5x}{-5}$$

$$= x \mid$$
 Domain: \mathbb{R}

Domain: $x \neq 2$

b)
$$g(f(x)) = g(\frac{2x+3}{x+4})$$
 Domain: $x \neq -4$

$$= \frac{-4\frac{2x+3}{x+4} + 3}{\frac{2x+3}{x+4} - 2}$$

$$= \frac{-8x - 12 + 3x + 12}{2x+3 - 2x - 8}$$

$$= \frac{-5x}{-5}$$

$$= x \quad Domain: \mathbb{R}$$

Domain: $x \neq -4$

Exercise

Given f(x) = x + 1 and $g(x) = x^3 - 5x^2 + 3x + 7$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(x^3 - 5x^2 + 3x + 7)$$
 Domain: \mathbb{R}
 $= x^3 - 5x^2 + 3x + 7 + 1$
 $= x^3 - 5x^2 + 3x + 8$ Domain: \mathbb{R}

Domain: \mathbb{R}

b)
$$g(f(x)) = g(x+1)$$
 Domain: \mathbb{R}
 $= (x+1)^3 - 5(x+1)^2 + 3(x+1) + 7$
 $= x^3 + 3x^2 + 3x + 1 - 5(x^2 + 2x + 1) + 3x + 3 + 7$
 $= x^3 + 3x^2 + 6x + 11 - 5x^2 - 10x - 5$
 $= x^3 - 2x^2 - 4x + 6$ Domain: \mathbb{R}

Domain: \mathbb{R}

Given f(x) = x - 1 and $g(x) = x^3 + 2x^2 - 3x - 9$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$f(g(x)) = f(x^3 + 2x^2 - 3x - 9)$$
 Domain: \mathbb{R}
 $= x^3 + 2x^2 - 3x - 9 - 1$
 $= x^3 + 2x^2 - 3x - 10$ Domain: \mathbb{R}

Domain: ℝ |

b)
$$g(f(x)) = g(x-1)$$
 Domain: \mathbb{R}
 $= (x-1)^3 + 2(x-1)^2 - (x-1) - 9$
 $= x^3 - 3x^2 + 3x - 1 + 2(x^2 - 2x + 1) - 3x + 3 - 9$
 $= x^3 - 3x^2 - 7 + 2x^2 - 4x + 2$
 $= x^3 - x^2 - 4x - 5$ Domain: \mathbb{R}

Domain: R

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ g)(4)$

Solution

$$(f \circ g)(4) = f(g(4))$$

= $f(16-20)$
= $f(-4)$
= $-8-3$
= -11

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ f)(4)$

$$(g \circ f)(4) = g(f(4))$$

$$= g(8-3)$$
$$= g(5)$$
$$= 25-25$$
$$= 0$$

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ g)(-2)$

Solution

$$(f \circ g)(-2) = f(g(-2))$$

$$= f(4+10)$$

$$= f(14)$$

$$= 28-3$$

$$= 25$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ f)(-2)$

Solution

$$(g \circ f)(-2) = g(f(-2))$$

$$= g(-4-3)$$

$$= g(-7)$$

$$= 49 + 35$$

$$= 84 \mid$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ f)(-3)$

$$(f \circ f)(-3) = f(f(-3))$$

$$= f(-6-3)$$

$$= f(-9)$$

$$= -18-3$$

$$= -21$$

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ g)(7)$

Solution

$$(g \circ g)(7) = g(g(7))$$

$$= g(49 - 35)$$

$$= g(14)$$

$$= 196 - 70$$

$$= 126$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ g)(\sqrt{2})$

Solution

$$(f \circ g)(\sqrt{2}) = f(g(\sqrt{2}))$$

$$= f(2 - 5\sqrt{2})$$

$$= 2(2 - 5\sqrt{2}) - 3$$

$$= 4 - 10\sqrt{2} - 3$$

$$= 1 - 10\sqrt{2}$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ f)(\sqrt{3})$

$$(g \circ f)(\sqrt{3}) = g(f(\sqrt{3}))$$

$$= g(2\sqrt{3} - 3)$$

$$= (2\sqrt{3} - 3)^2 - 5(2\sqrt{3} - 3)$$

$$= 12 - 12\sqrt{3} + 9 - 10\sqrt{3} + 15$$

$$= 36 - 22\sqrt{3}$$

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ g)(2a)$

Solution

$$(f \circ g)(2a) = f(g(2a))$$
$$= f(4a^2 - 10a)$$
$$= 2(4a^2 - 10a) - 3$$
$$= 8a^2 - 20a - 3$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ f)(3b)$

Solution

$$(g \circ f)(3b) = g(f(3b))$$

$$= g(6b-3)$$

$$= (6b-3)^2 - 5(6b-3)$$

$$= 36b^2 - 36b + 9 - 30b + 15$$

$$= 36b^2 - 66b + 24$$

Exercise

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(f \circ g)(k+1)$

$$(f \circ g)(k+1) = f(g(k+1))$$

$$= f((k+1)^2 - 5k - 5)$$

$$= 2((k+1)^2 - 5k - 5) - 3$$

$$= 2(k^2 + 2k + 1) - 10k - 10 - 3$$

$$= 2k^2 + 4k + 2 - 10k - 13$$

$$= 2k^2 - 6k - 11$$

Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$: $(g \circ f)(k-1)$

$$(g \circ f)(k-1) = g(f(k-1))$$

$$= g(2k-2-3)$$

$$= g(2k-5)$$

$$= (2k-5)^2 - 5(2k-5)$$

$$= 4k^2 - 20k + 25 - 10k + 25$$

$$= 4k^2 - 30k + 50$$