

1. A peptide comprising a radiometal-binding moiety, wherein said binding moiety comprises the structure:

wherein R^1 , R^2 , and R^3 independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R^1 , R^2 , or R^3 is H,

 R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R^4 and R^6 together optionally form a direct bond, and R^8 and R^9 together or R^7 and R^9 together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR¹⁰ is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide.

- 2. A peptide $acc\phi rding$ to claim 1, wherein R^1 is H.
- 3. A peptide according to claim 1, wherein R^3 is H.
- 4. A peptide according to claim 1, wherein R4 is H.
- 5. A peptide according to claim 1, wherein R^4 and R^6 together form a direct bond.

- 6. A peptide according to claim 5, wherein R⁵ is H.
- 7. A peptide according to claim 1, wherein NR¹⁰ is located at the N-terminus of said peptide.
- 8. A peptide according to claim 1, wherein NR¹⁰ is located on an amino acid side chain of said peptide.
- 9. A peptide according to claim 2, wherein R^2 is lower alkyl or substituted or unsubstituted phenyl.
 - 10. A peptide according to claim 9, wherein R² is H.
- 11. A peptide according to claim 10, wherein R³ is
- 12. A peptide according to claim 11, wherein \mathbb{R}^4 and \mathbb{R}^6 together form a direct bond.
- 13. A peptide according to claim 12, wherein R⁵ is H.
- 14. A peptide according to claim 13, wherein \mathbb{R}^7 , \mathbb{R}^8 , and \mathbb{R}^9 each are H.
- 15. A peptide according to claim 14, wherein R² is phenyl.
- 16. A peptide according to claim 14, wherein \mathbb{R}^2 is methyl.
- 17. A peptide according to claim 1, wherein \mathbb{R}^8 and \mathbb{R}^9 are methyl.
- 18. A peptide according to claim 1, further comprising a bound metal atom.

- 19. A peptide according to claim 18, wherein said metal atom is selected from the group consisting of 99mTc, 186Re, and 188Re.
- 20. A method of preparing a metal-chelating composition, comprising contacting a solution of a peptide comprising a radiometal-binding moiety with stannous ions, wherein said binding moiety comprises the structure:

wherein R¹, R², and R³ independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R¹, R², or R³ is H,

 R^4 , R^5 , R^6 , R^7 , R^8 and R^{10} independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R^4 and R^6 together optionally form a direct bond, and R^8 and R^9 together or R^7 and R^9 together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR¹⁰/is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide,

and then contacting said solution with a radionuclide and recovering the radiolabeled peptide.

22. A method of imaging a tumor, an infectious lesion, a myocardial infarction, a clot, atherosclerotic plaque, or a normal organ or tissue, comprising administering to a human patient a radiolabeled peptide, together with a pharmaceutically acceptable carrier, and, after a sufficient time for said radiolabeled peptide to localize and for non-target background to clear, the site or sites of accretion of said radiolabeled peptide are detected by an external imaging camera,

wherein said radiolabeled peptide is prepared by contacting a solution of a peptide with stannous ions, wherein said peptide comprises a radiometal-binding moiety comprising the structure:

wherein R¹, R², and R³ independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R¹, R², or R³ is H,

 R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R^4 and R^6 together optionally form a direct bond, and R^8 and R^9 together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR¹⁰ is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide,

and then contacting said solution with a radionuclide and recovering the radiolabeled peptide.

A peptide according to claim 1, wherein said peptide is selected from the group consisting of: (Chel) γ AbuNleDHF_dRWK-NH₂, (Chel) γAbuHSDAVFTDNYTRLRKQMAVKKYLNSILN-NH, KPRRPYTDNYTRLRK (Chel) QMAVKKYLNSILN-NH2, (Chel) γAbuVFTDNYTRLRKQMAVKKYLNSILN-NH2, (Chel) γ AbuYTRLRKQMAVKKYLN\$ILN-NH₂. HSDAVFTDNYTRLRK (Chel) QMAVKKYLNSILN-NH2, <GHWSYK(Chel)LRPG-NH2, <GHYSLK(Chel)WKPG-NH2, AcNaldCpadWdSRKd(Chel)LRPAJ-NH2, (Chel) γ AbuSYSNleDHF_dRWK- γ H₂, (Chel) γ AbuNleDHF_dRWK- γ H₂, (Chel) NleDHF,RWK-NH2 , Ac-HSDAVFTENYTKLRK (Chell) QNleAAK<u>KYLND</u>LKKGGT-NH,, (Chel) γAbuHSDAVFTDNYTRIRKQMAVKKYLNSILN-NH₂, (Chel) γAbuVFTDNYTRĽRKQMAVKKYLNSILN-NH₂, (Chel) γ AbuNleDHF_dRWK-NH₂°, <GHWSYK (Chel) LRPG-NH₃, $\verb|-chel| \verb||| \mathsf{Chel}| \verb||| \mathsf{WKPG-NH}_2, \\ | \mathsf{-chel}| \mathsf{-chel}| \mathsf{WKPG-NH}_2, \\ | \mathsf{-chel}| \mathsf{-c$ $Nal_dCpa_dW_dSRK_d(Chel)WKPG-NH_2$, < GHWSYK, (Chel) LRPG-NH₂, AcNaldCpadWdSRKd (Chel/LRPAd-NH2, AcNaldCpadWdSRKd (Chell)LRPAd-NH, AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂, <GHWSYK (Chel) LRPG-NH₂, Ack(Chel)FdCFWdKTCT-OH, Ack(Chel)DFdCFWdKTCT-OH, Ack(Chel)FdCFWdKTCTfol, Ack(Chel)DFdCFWdKTCT-ol, (Chel) DF_dCFW_dKTCT-OH, K(Chel) DF_dCFW_dKTCT-ol, K(Chel)KKFdCFWdKTCT-O1, K(Chel)KDFdCFWdKTCT-OH, K(Chel)DSFdCFWdKTCT-OH, K(Chel)DFdCFWdKTCT-OH, K(Chel)DF_dCFW_dKTCD-NH₂, K(Chel)DF_dCFW_dKTCT-NH₂, K(Chel) KDF_dCFW_dKTCT-NHNH₂, Ack(Chel) F_dCFW_dKTCT-NHNH₂, K(Chel)FdCFWdKTCT-ol, and FdCFWdKTCTK(Chel)-NH2, wherein (Chel) is said radiometal-binding moiety.

MALL