CEE 697M: Probabilistic Machine Learning M2 Linear Methods: Splines, GAMs and GLMs

Jimi Oke

UMassAmherst

College of Engineering

Wed, Mar 29, 2023

roduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

Outline

- Introduction
- Splines
- Smoothing splines
- **4** GAMs
- Summary
- 6 Appx: Piecewise functions
- Appx: GLMs

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 ◆O
 0000
 0000000
 000000
 000000
 000000
 000000

Flexible linear methods

Introduction

Flexible linear methods

Introduction

Flexible linear methods

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLM:

 ●O
 0000
 0000000
 0000000
 000000
 000000
 000000

Flexible linear methods

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 ●O
 0000
 0000000
 0000000
 000000
 000000
 000000

Flexible linear methods

In many cases, **flexibility** is required to obtain useful **linear** models:

achieved via nonlinear transformations of the inputs

- achieved via nonlinear transformations of the inputs
- models are still linear in the parameters w, e.g.

- achieved via nonlinear transformations of the inputs
- models are still linear in the parameters w, e.g.
 - polynomial regression

- achieved via nonlinear transformations of the inputs
- ullet models are still linear in the parameters $oldsymbol{w}$, e.g.
 - polynomial regression
 - step functions: fitting a piecewise constant function

- achieved via nonlinear transformations of the inputs
- ullet models are still linear in the parameters $oldsymbol{w}$, e.g.
 - polynomial regression
 - step functions: fitting a piecewise constant function
 - regression splines: piecewise polynomial fit

- achieved via nonlinear transformations of the inputs
- models are still linear in the parameters w, e.g.
 - polynomial regression
 - step functions: fitting a piecewise constant function
 - regression splines: piecewise polynomial fit
 - smoothing splines: regularization

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 ●O
 0000
 0000000
 0000000
 000000
 000000
 000000

Flexible linear methods

- achieved via nonlinear transformations of the inputs
- models are still linear in the parameters w, e.g.
 - polynomial regression
 - step functions: fitting a piecewise constant function
 - regression splines: piecewise polynomial fit
 - smoothing splines: regularization
 - generalized additive models (GAMs): deal with multiple predictors

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLM

 ●O
 0000
 0000000
 0000000
 000000
 000000
 000000

Flexible linear methods

In many cases, flexibility is required to obtain useful linear models:

- achieved via nonlinear transformations of the inputs
- ullet models are still linear in the parameters $oldsymbol{w}$, e.g.
 - polynomial regression
 - step functions: fitting a piecewise constant function
 - regression splines: piecewise polynomial fit
 - smoothing splines: regularization
 - generalized additive models (GAMs): deal with multiple predictors

local regression: allow overlap

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 0●
 0000
 0000000
 000000
 0000000
 0000000

Flexible linear methods: topics

Introduction 0

Flexible linear methods: topics

Topics covered in this module:

 Introduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLM:

 0 ●
 0000
 0000000
 0000000
 000000
 0000000
 0000000

Flexible linear methods: topics

Topics covered in this module:

- Polynomial regression and basis functions (handout)
- Splines, Generalized Additive Models and Generalized Linear Models (this lecture)
- Kernel Methods and Local Regression (Lecture 4a)

Flexible linear methods: topics

Topics covered in this module:

- Polynomial regression and basis functions (handout)
- Splines, Generalized Additive Models and Generalized Linear Models (this lecture)
- Kernel Methods and Local Regression (Lecture 4a)

Source: https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html

A spline is a piecewise polynomial function defined as a linear combination of basis functions in X:

$$f(X) = \sum_{\rho} w_{\rho} b_{\rho}(x) \tag{1}$$

Generally, the order M (regression) spline is given by the truncated power basis:

$$b_p(x) = x^m, \quad m = 0, \dots, M$$
 (2)

$$b_{M+k}(x) = (X - \xi_k)_+^M, k = 1, \dots, K$$
 (3)

A spline is a piecewise polynomial function defined as a linear combination of basis functions in X:

$$f(X) = \sum_{p} w_{p} b_{p}(x) \tag{1}$$

Generally, the **order** *M* (**regression**) **spline** is given by the **truncated power basis**:

$$b_p(x) = x^m, \quad m = 0, \dots, M$$
 (2)

$$b_{M+k}(x) = (X - \xi_k)_+^M, k = 1, \dots, K$$
 (3)

where

$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0 & \text{otherwise} \end{cases}$$
 (4)

A spline is a piecewise polynomial function defined as a linear combination of basis functions in X:

$$f(X) = \sum_{\rho} w_{\rho} b_{\rho}(x) \tag{1}$$

Generally, the order M (regression) spline is given by the truncated power basis:

$$b_p(x) = x^m, \quad m = 0, \dots, M$$
 (2)

$$b_{M+k}(x) = (X - \xi_k)_+^M, k = 1, \dots, K$$
 (3)

where

$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0 & \text{otherwise} \end{cases}$$
 (4)

and ξ_k are the knots.

A spline is a piecewise polynomial function defined as a linear combination of basis functions in X:

$$f(X) = \sum_{p} w_{p} b_{p}(x) \tag{1}$$

Generally, the **order** M (**regression**) **spline** is given by the **truncated power basis**:

$$b_p(x) = x^m, \quad m = 0, \dots, M$$
 (2)

$$b_{M+k}(x) = (X - \xi_k)_+^M, k = 1, \dots, K$$
 (3)

where

$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0 & \text{otherwise} \end{cases}$$
 (4)

and ξ_k are the knots.

In most cases, M is taken as 0 (piecewise-constant), 1 (piecewise-linear) or 3 (cubic spline).

Natural cubic splines

 Natural cubic splines presume linearity at the boundaries and thus have the same number of basis functions as knots.

- Natural cubic splines presume linearity at the boundaries and thus have the same number of basis functions as knots.
- Basis functions are constrained at **knots** (ξ_k) for continuity

- Natural cubic splines presume linearity at the boundaries and thus have the same number of basis functions as knots.
- Basis functions are constrained at **knots** (ξ_k) for continuity
- Their first derivatives are further constrained to be equal for smoothness

- Natural cubic splines presume linearity at the boundaries and thus have the same number of basis functions as knots.
- Basis functions are constrained at **knots** (ξ_k) for continuity
- Their first derivatives are further constrained to be equal for smoothness

Figure: Pointwise variance curves for 4 different models. $x \sim \mathcal{U}(0,1)$; error assumed constant

A more explicit way to write the M-th order **truncated power basis** expansion is:

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \cdots + w_{0,1}x^M$$

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M,

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let
$$b_{0,k}(x) = x^k$$
 for $k = 0, ..., M$, and $b_k(x) = (x - \xi_k)_+^M$ for $k = 1, ..., K$,

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$ or $N \times (M + K + 1)$ design matrix

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$ or $N \times (M + K + 1)$ design matrix

$$B_{np} = b_p(x_n),$$

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P}\mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$ or $N \times (M + K + 1)$ design matrix

$$B_{np} = b_p(x_n), \quad n = 1, \dots, N$$
 (7)

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$ or $N \times (M + K + 1)$ design matrix

$$B_{np} = b_p(x_n), \quad n = 1, \dots, N$$
 (7)

$$p = (0,0), \dots, (0,M), 1, \dots, K$$
 (8)

A more explicit way to write the M-th order **truncated power basis** expansion is:

$$f(x) = w_{0,0} + w_{0,1}x + \dots + w_{0,1}x^M + \sum_{k=1}^K w_k (X - \xi_k)_+^M$$
 (5)

If we let $b_{0,k}(x) = x^k$ for k = 0, ..., M, and $b_k(x) = (x - \xi_k)_+^M$ for k = 1, ..., K, then we can write in matrix form:

$$f(x)_{N\times 1} = \mathbf{B}_{N\times P} \mathbf{w}_{P\times 1} \tag{6}$$

where **B** is an $N \times P$ or $N \times (M + K + 1)$ design matrix

$$B_{np} = b_p(x_n), \quad n = 1, \dots, N$$
 (7)

$$p = (0,0), \dots, (0,M), 1, \dots, K$$
 (8)

In this form, it can be easily seen that $\hat{\boldsymbol{w}}$ can be found via least squares.

Splines 0000

Challenges in fitting a spline

8 / 42

Challenges in fitting a spline

Decisions

• How many knots do you need?

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

L2e: Splines and Generalized Additive Models

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

Challenge

• Risk of overfitting. Why?

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

Challenge

- Risk of overfitting. Why?
- How do we mitigate for this?

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

Challenge

- Risk of overfitting. Why?
- How do we mitigate for this?

Challenges in fitting a spline

Decisions

- How many knots do you need?
- Where should you put the knots?

Challenge

- Risk of overfitting. Why?
- How do we mitigate for this? Regularization!

Smoothing splines

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

We define a penalized loss function:

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

We define a penalized loss function:

$$RSS(f,\lambda) = \sum_{n=1}^{N} \{y_n - f(x_n)\} + \lambda \int \{f''(t)\}^2 dt$$
 (9)

Then the **smoothing spline** is given by the function that minimizes this:

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

We define a penalized loss function:

$$RSS(f,\lambda) = \sum_{n=1}^{N} \{y_n - f(x_n)\} + \lambda \int \{f''(t)\}^2 dt$$
 (9)

Then the **smoothing spline** is given by the function that minimizes this:

$$\hat{f}(x) = \arg\min_{f} RSS(f, \lambda) \tag{10}$$

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

We define a penalized loss function:

$$RSS(f,\lambda) = \sum_{n=1}^{N} \{y_n - f(x_n)\} + \lambda \int \{f''(t)\}^2 dt$$
 (9)

Then the **smoothing spline** is given by the function that minimizes this:

$$\hat{f}(x) = \arg\min_{f} RSS(f, \lambda) \tag{10}$$

where λ is a nonnegative tuning parameter (or hyperparameter)

These avoid the problem of knot selection

- Smoothing splines use the maximal set of knots
- Obtained via regularization

We define a penalized loss function:

$$RSS(f,\lambda) = \sum_{n=1}^{N} \{y_n - f(x_n)\} + \lambda \int \{f''(t)\}^2 dt$$
 (9)

Then the **smoothing spline** is given by the function that minimizes this:

$$\hat{f}(x) = \arg\min_{f} RSS(f, \lambda) \tag{10}$$

where λ is a nonnegative tuning parameter (or hyperparameter)—roughness penalty.

• Unique minimizer to $RSS(f, \lambda)$

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

$$S_1(x) = 1$$

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

$$S_1(x) = 1$$

$$S_2(x) = x$$

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

$$S_1(x) = 1$$

$$S_2(x) = x$$

$$S_{k+2}(x) = d_k(x) - d_{K-1}(x);$$

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x)\hat{w}_k \tag{11}$$

$$S_{1}(x) = 1$$

$$S_{2}(x) = x$$

$$S_{k+2}(x) = d_{k}(x) - d_{K-1}(x); \quad d_{k}(x) = \frac{(x - \xi_{k})_{+}^{3} - (x - \xi_{K})_{+}^{3}}{\xi_{K} - \xi_{k}}$$
(12)

- Unique minimizer to $RSS(f, \lambda)$
- Formulated as **natural cubic spline** with knots ξ_k at unique values of x_n

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (11)

where the $S_k(x)$ are the basis functions for the natural cubic splines:

$$S_{1}(x) = 1$$

$$S_{2}(x) = x$$

$$S_{k+2}(x) = d_{k}(x) - d_{K-1}(x); \quad d_{k}(x) = \frac{(x - \xi_{k})_{+}^{3} - (x - \xi_{K})_{+}^{3}}{\xi_{K} - \xi_{k}}$$
(12)

• If N unique values in dataset, then K = N

Smoothing spline estimation

Smoothing spline estimation

We can then write the penalized loss function as:

Smoothing spline estimation

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

where

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
(13)

where

$$S_{nk} = S_k(x_n) (14)$$

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

where

$$S_{nk} = S_k(x_n) (14)$$

$$\Omega_{k',k} = \int S_{k'}''(t)S_k''(t)dt \qquad (15)$$

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

where

$$S_{nk} = S_k(x_n) (14)$$

$$\Omega_{k',k} = \int S_{k'}''(t)S_k''(t)dt \qquad (15)$$

As ${\bf S}$ and ${\bf \Omega}$ are constant in ${\bf w}$, we take the derivative and set to zero to obtain the smoothing spline estimate:

Smoothing spline estimation

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

where

$$S_{nk} = S_k(x_n) (14)$$

$$\Omega_{k',k} = \int S_{k'}''(t)S_k''(t)dt \qquad (15)$$

As S and Ω are constant in w, we take the derivative and set to zero to obtain the smoothing spline estimate:

$$|\hat{\boldsymbol{w}} = (\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S} + \lambda\Omega)^{-1}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{y}|$$
(16)

Smoothing spline estimation

We can then write the penalized loss function as:

$$RSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (13)

where

$$S_{nk} = S_k(x_n) (14)$$

$$\Omega_{k',k} = \int S_{k'}''(t)S_k''(t)dt \qquad (15)$$

As \boldsymbol{S} and $\boldsymbol{\Omega}$ are constant in \boldsymbol{w} , we take the derivative and set to zero to obtain the smoothing spline estimate:

$$|\hat{\boldsymbol{w}} = (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{S}^{\mathsf{T}} \boldsymbol{y}|$$
(16)

This is simply a generalized ridge regression!

Smoothing splines 00000000

Smoother matrix

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

$$\hat{\boldsymbol{w}} = \boldsymbol{S}(\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{S}_{\lambda}\boldsymbol{y}$$
 (17)

ntroduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

$$\hat{\boldsymbol{w}} = \boldsymbol{S}(\boldsymbol{S}^{T}\boldsymbol{S} + \lambda\Omega)^{-1}\boldsymbol{S}^{T}\boldsymbol{y} = \boldsymbol{S}_{\lambda}\boldsymbol{y}$$
 (17)

where S_{λ} is known as the **smoother matrix**.

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

$$\hat{\boldsymbol{w}} = \boldsymbol{S}(\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{S}_{\lambda}\boldsymbol{y}$$
 (17)

where S_{λ} is known as the smoother matrix.

The number of effective degrees of freedom of a smoothing spline is given by:

ntroduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

$$\hat{\boldsymbol{w}} = \boldsymbol{S}(\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{S}_{\lambda}\boldsymbol{y}$$
 (17)

where S_{λ} is known as the **smoother matrix**.

The number of effective degrees of freedom of a smoothing spline is given by:

$$df_{\lambda} = \operatorname{trace}(\mathbf{S}_{\lambda}) \tag{18}$$

Smoother matrix

We can compactly write the *fitted smoothing spline* as:

$$\hat{\boldsymbol{w}} = \boldsymbol{S}(\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{S}_{\lambda}\boldsymbol{y}$$
 (17)

where S_{λ} is known as the smoother matrix.

The number of effective degrees of freedom of a smoothing spline is given by:

$$df_{\lambda} = \operatorname{trace}(\mathbf{S}_{\lambda}) \tag{18}$$

Figure: Visualization of a smoother matrix. Reddish hues indicate higher values.

Eigendecomposition of smoother matrix

Smoothing splines 00000000

Eigendecomposition of smoother matrix

 S_{λ} is symmetric and positive semidefinite, and can be factored as:

Eigendecomposition of smoother matrix

 ${m S}_{\lambda}$ is symmetric and positive semidefinite, and can be factored as:

$$\boldsymbol{S}_{\lambda} = \sum_{k=1}^{K} \frac{1}{1 + \lambda d_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T} = \sum_{k=1}^{K} \rho_{k}(\lambda) \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}$$
(19)

Eigendecomposition of smoother matrix

 ${m S}_{\lambda}$ is symmetric and positive semidefinite, and can be factored as:

$$\boldsymbol{S}_{\lambda} = \sum_{k=1}^{K} \frac{1}{1 + \lambda d_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T} = \sum_{k=1}^{K} \rho_{k}(\lambda) \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}$$
(19)

where d_k are the eigenvalues of the penalty matrix K, such that:

Eigendecomposition of smoother matrix

 ${m S}_{\lambda}$ is symmetric and positive semidefinite, and can be factored as:

$$\boldsymbol{S}_{\lambda} = \sum_{k=1}^{K} \frac{1}{1 + \lambda d_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T} = \sum_{k=1}^{K} \rho_{k}(\lambda) \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}$$
(19)

where d_k are the eigenvalues of the penalty matrix K, such that:

$$\mathbf{S}_{\lambda} = (\mathbf{I} + \lambda \mathbf{K})^{-1} \tag{20}$$

Eigendecomposition of smoother matrix

 ${m S}_{\lambda}$ is symmetric and positive semidefinite, and can be factored as:

$$\boldsymbol{S}_{\lambda} = \sum_{k=1}^{K} \frac{1}{1 + \lambda d_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T} = \sum_{k=1}^{K} \rho_{k}(\lambda) \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}$$
(19)

where d_k are the eigenvalues of the penalty matrix K, such that:

$$\mathbf{S}_{\lambda} = (\mathbf{I} + \lambda \mathbf{K})^{-1} \tag{20}$$

and ρ_k are the eigenvalues of S_{λ} .

Smoothing splines 00000000

• The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} =$$

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

The linear basis functions are thus not penalized.

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

The linear basis functions are thus not penalized.

• For the corresponding smoother matrices of regression splines, all the eigenvalues are 1, i.e. no shrinking.

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

The linear basis functions are thus not penalized.

• For the corresponding smoother matrices of regression splines, all the eigenvalues are 1, i.e. no shrinking.

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

The linear basis functions are thus not penalized.

 For the corresponding smoother matrices of regression splines, all the eigenvalues are 1, i.e. no shrinking.

Figure: (Left) Eigenvalues of the smoother matrix for a smoothing spline fit. (Right) Eigenvectors u_k are plotted versus x for k = 3, 4, 5, 6.

- The first two eigenvalues of penalty matrix K are $0 = d_1 = d_2$.
- This implies that the first two eigenvalues of S_{λ} (corresponding to the 2-D eigenspace of functions linear in x) are always 1:

$$\rho_1(\lambda) = \rho_2(\lambda) = \frac{1}{1 + \lambda(0)} = 1$$
(21)

The linear basis functions are thus not penalized.

 For the corresponding smoother matrices of regression splines, all the eigenvalues are 1, i.e. no shrinking.

Figure: (Left) Eigenvalues of the smoother matrix for a smoothing spline fit. (Right) Eigenvectors u_k are plotted versus x for k = 3, 4, 5, 6.

Smoothing splines 00000000

Example: Estimating a response across different groups

oduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

OOO OOOOO●O OOOOOOO OOOOOO OOOOOO

Example: Estimating a response across different groups

Figure: Estimating a smoothing spline for bone mineral density for male and female adolescents. $df_{\lambda} \approx 12$. The fitted splines shows that changes in BMD occur earlier in females than males.

roduction Splines **Smoothing splines** GAMs Summary Appx: Piecewise functions Appx: GLMs
0 0000 **0000000** 0000000 000000 000000

Example: Estimating blood pressure (two predictors)

Smoothing splines 0000000

Example: Estimating blood pressure (two predictors)

Figure: Estimating systolic blood pressure (response) as a function of obesity and age. Knots used are shown in red.

L2e: Splines and Generalized Additive Models

16 / 42

troduction Splines Smoothing splines **GAMs** Summary Appx: Piecewise functions Appx: GLMs
0 0000 00000000 0000000 000000 000000

Generalized additive models

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1,x_2,\ldots,x_d) = \alpha + f_1(x_1) + f_2(x_2) + \cdots + f_D(x_D)$$
 (22)

$$x_1, x_2, \cdots, x_D$$

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

$$x_1, x_2, \cdots, x_D$$
 — predictors

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

$$x_1, x_2, \cdots, x_D$$
 — predictors y

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

$$x_1, x_2, \cdots, x_D$$
 — predictors y — outcome

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

$$x_1, x_2, \cdots, x_D$$
 — predictors y — outcome f_d — unspecified smooth/nonparametric functions

Generalized additive models

The **generalized additive model** has the form:

$$\mathbb{E}(y|x_1, x_2, \dots, x_d) = \alpha + f_1(x_1) + f_2(x_2) + \dots + f_D(x_D)$$
 (22)

where:

$$x_1, x_2, \cdots, x_D$$
 — predictors
 y — outcome
 f_d — unspecified smooth/nonparametric functions
e.g. basis functions

GAMs 0000000

GAMs: regression setting

GAMs: regression setting

GAMs: regression setting

$$y =$$

GAMs: regression setting

$$y = w_0$$

GAMs: regression setting

$$y = w_0 + w_1 x_1$$

GAMs: regression setting

$$y = w_0 + w_1 x_1 + \cdots +$$

GAMs: regression setting

$$y = w_0 + w_1 x_1 + \cdots + w_D x_D$$

GAMs: regression setting

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

 troduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 IO
 0000
 0000000
 0●00000
 000000
 0000000
 0000000

GAMs: regression setting

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y =$$

GAMs: regression setting

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha +$$

GAMs: regression setting

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha + f_1(x_1)$$

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha + f_1(x_1) + \cdots +$$

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha + f_1(x_1) + \cdots + f_D(x_D) + \epsilon$$

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha + f_1(x_1) + \dots + f_D(x_D) + \epsilon$$

The multiple linear regression model is given by:

$$y = w_0 + w_1 x_1 + \dots + w_D x_D + \epsilon \tag{23}$$

$$y = \alpha + f_1(x_1) + \dots + f_D(x_D) + \epsilon$$
$$= \alpha + \sum_{d=1}^{D} f_d(x_d) + \epsilon$$
(24)

Fitting additive models

Fitting additive models

Additive models can be estimated in a similar fashion as smoothing splines.

ntroduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

Fitting additive models

Additive models can be estimated in a similar fashion as smoothing splines.

Fitting additive models

Additive models can be estimated in a similar fashion as smoothing splines.

$$PRSS(\alpha, f_1, f_2, \ldots, f_D) =$$

Fitting additive models

Additive models can be estimated in a similar fashion as smoothing splines.

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2$$

Fitting additive models

Additive models can be estimated in a similar fashion as smoothing splines.

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

where $\lambda_j \geq 0$ are tuning parameters.

• The minimizing functions for *PRSS* form an **additive cubic spline**:

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

where $\lambda_j \geq 0$ are tuning parameters.

• The minimizing functions for *PRSS* form an **additive cubic spline**:

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

- The minimizing functions for *PRSS* form an additive cubic spline: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective.

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

- The minimizing functions for *PRSS* form an additive cubic spline: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective.

Additive models can be estimated in a similar fashion as smoothing splines.

The **penalized loss function** (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

- The minimizing functions for *PRSS* form an additive cubic spline: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective. One possibility:

Additive models can be estimated in a similar fashion as smoothing splines.

The penalized loss function (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

- The minimizing functions for *PRSS* form an **additive cubic spline**: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective. One possibility:

$$\sum_{n=1}^{N} f_d(x_{nd}) = 0 \quad \forall d \in \{1, \dots, D\}$$
 (26)

Additive models can be estimated in a similar fashion as smoothing splines.

The **penalized loss function** (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

where $\lambda_j \geq 0$ are tuning parameters.

- The minimizing functions for *PRSS* form an additive cubic spline: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective. One possibility:

$$\sum_{n=1}^{N} f_d(x_{nd}) = 0 \quad \forall d \in \{1, \dots, D\}$$
 (26)

In this case, then the intercept estimate is the mean response:

Additive models can be estimated in a similar fashion as smoothing splines.

The **penalized loss function** (PRSS) is given by:

$$PRSS(\alpha, f_1, f_2, \dots, f_D) = \sum_{n=1}^{n} \left(y_n - \alpha - \sum_{d=1}^{D} f_d(x_{nd}) \right)^2 + \sum_{d=1}^{D} \lambda_d \int f_d''(t_d)^2 dt_d$$
(25)

where $\lambda_j \geq 0$ are tuning parameters.

- The minimizing functions for *PRSS* form an additive cubic spline: each \hat{f}_d is a cubic spline in x_d with knots at each unique $x_{nd} = 1, ..., N$
- To ensure uniqueness we must constrain the objective. One possibility:

$$\sum_{n=1}^{N} f_d(x_{nd}) = 0 \quad \forall d \in \{1, \dots, D\}$$
 (26)

In this case, then the intercept estimate is the mean response:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n \tag{27}$$

Backfitting algorithm for additive model estimation

GAMs 00000000

Backfitting algorithm for additive model estimation

• Initialize:

GAMs 00000000

Backfitting algorithm for additive model estimation

• Initialize:

roduction Splines Smoothing splines **GAMs** Summary Appx: Piecewise functions Appx: GLMs

0 0000 0000000 **0000000** 000000 000000 000000

Backfitting algorithm for additive model estimation

Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \ldots, p$:

Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \ldots, p$:

Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \dots, p$:

$$\hat{f}_d \leftarrow \mathbf{S}_d \left[\left\{ y_n - \hat{\alpha} - \sum_{d' \neq j} \hat{f}_{d'}(x_{id'}) \right\}_1^N \right]$$

• Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \dots, p$:

$$\hat{f}_{d} \leftarrow \mathbf{S}_{d} \left[\left\{ y_{n} - \hat{\alpha} - \sum_{d' \neq j} \hat{f}_{d'}(x_{id'}) \right\}_{1}^{N} \right]$$

$$\hat{f}_{d} \leftarrow \hat{f}_{d} - \frac{1}{N} \sum_{i=1}^{N} \hat{f}_{d}(x_{ij})$$

1 Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \dots, p$:

$$\hat{f}_{d} \leftarrow \mathbf{S}_{d} \left[\left\{ y_{n} - \hat{\alpha} - \sum_{d' \neq j} \hat{f}_{d'}(x_{id'}) \right\}_{1}^{N} \right]$$

$$\hat{f}_{d} \leftarrow \hat{f}_{d} - \frac{1}{N} \sum_{n=1}^{N} \hat{f}_{d}(x_{ij})$$

until $|\hat{f}_d^{(q)} - \hat{f}_d^{(q-1)}| \leq \text{tol (tolerance/stopping threshold)}.$

Initialize:

$$\hat{\alpha} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$\hat{f}_d = 0, \quad \forall i, j$$

2 Iterate q times for $j = 1, 2, \dots, p$:

$$\hat{f}_{d} \leftarrow \mathbf{S}_{d} \left[\left\{ y_{n} - \hat{\alpha} - \sum_{d' \neq j} \hat{f}_{d'}(x_{id'}) \right\}_{1}^{N} \right]$$

$$\hat{f}_{d} \leftarrow \hat{f}_{d} - \frac{1}{N} \sum_{n=1}^{N} \hat{f}_{d}(x_{ij})$$

until $|\hat{f}_d^{(q)} - \hat{f}_d^{(q-1)}| \leq$ tol (tolerance/stopping threshold).

Note: S_d is the natural cubic spline smoother matrix

GAMs 00000000

Notes on backfitting algorithm

Analogous to multiple regression for linear models

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - · local polynomial regression

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- ullet The smoothing operator $oldsymbol{S}_d$ can have several specifications, e.g.
 - local polynomial regression
 - kernel

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- ullet The smoothing operator $oldsymbol{\mathcal{S}}_d$ can have several specifications, e.g.
 - local polynomial regression
 - kernel
 - periodic

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - local polynomial regression
 - kernel
 - periodic
 - D-order basis function projection

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - · local polynomial regression
 - kernel
 - periodic
 - D-order basis function projection
- S_d is specified as the natural cubic spline smoother matrix, and is given by:

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - local polynomial regression
 - kernel
 - periodic
 - D-order basis function projection
- S_d is specified as the natural cubic spline smoother matrix, and is given by:

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - local polynomial regression
 - kernel
 - periodic
 - D-order basis function projection
- S_d is specified as the natural cubic spline smoother matrix, and is given by:

$$\mathbf{S}_d = \mathbf{N}_d (\mathbf{N}_d^{\top} \mathbf{N}_d - \lambda \Omega_d)^{-1} \mathbf{N}_d^{\top}$$
 (28)

- Analogous to multiple regression for linear models
- The idea is to estimate a nonlinear function for each feature x_d while keeping the other features constant
- The initial value of $\hat{\alpha} = \overline{\mathbf{y}}$ remains unchanged during iterations
- The update $\hat{f}_d \leftarrow \hat{f}_d \frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd})$ is only required due to computational rounding, as otherwise, $\frac{1}{N} \sum_{n=1}^N \hat{f}_d(x_{nd}) \sim 0$
- The smoothing operator S_d can have several specifications, e.g.
 - local polynomial regression
 - kernel
 - periodic
 - D-order basis function projection
- S_d is specified as the natural cubic spline smoother matrix, and is given by:

$$\mathbf{S}_d = \mathbf{N}_d (\mathbf{N}_d^{\top} \mathbf{N}_d - \lambda \Omega_d)^{-1} \mathbf{N}_d^{\top}$$
 (28)

where N_d is the matrix of the natural cubic spline basis functions for feature j

Example: fitting a GAM to predict wages

Example: fitting a GAM to predict wages

Three predictors: 2 continuous, 1 factor

Figure: GAM estimate for Wage on year, age and education.

Example: fitting a GAM to predict wages

Three predictors: 2 continuous, 1 factor

Figure: GAM estimate for Wage on year, age and education.

GAMs 00000000

GAMs: classification setting

 roduction
 Splines
 Smoothing splines
 GAMs
 Summary
 Appx: Piecewise functions
 Appx: GLMs

 0
 0000
 0000000
 000000
 000000
 0000000
 0000000

GAMs: classification setting

In logistic regression, we address classification by estimating the probability p, where:

troduction Splines Smoothing splines **GAMs** Summary Appx: Piecewise functions Appx: GLM:
0 0000 00000000 **0000000** 000000 0000000 000000

GAMs: classification setting

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|x), \quad \text{(in the 0/1 binary case)}$$

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|\mathbf{x}), \quad \text{(in the } 0/1 \text{ binary case)}$$
 (29)

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|\mathbf{x}), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|\mathbf{x}), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$p =$$

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|\mathbf{x}), \quad \text{(in the } 0/1 \text{ binary case)}$$
 (29)

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$p = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_p x_p)}} \tag{31}$$

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|x), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$\rho = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_p x_p)}} \tag{31}$$

p represents the **mean of response** y_n , and thus can be expressed as μ_n . The logit function is used as the *link* between input x and p:

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|x), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$\rho = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_p x_p)}} \tag{31}$$

p represents the **mean of response** y_n , and thus can be expressed as μ_n The logit function is used as the *link* between input x and p:

$$logit(p) = log\left(\frac{p}{1-p}\right) =$$

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|x), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$p = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_p x_p)}} \tag{31}$$

p represents the **mean of response** y_n , and thus can be expressed as μ_n . The logit function is used as the *link* between input x and p:

$$logit(p) = log\left(\frac{p}{1-p}\right) = w_0 + w_1 x_1 + \dots + w_p x_p$$
(32)

In logistic regression, we address classification by estimating the probability p, where:

$$p = p(y = 1|x), \quad \text{(in the 0/1 binary case)}$$

Recall that:

$$1 - p = p(y = 0|\mathbf{x}) \tag{30}$$

and:

$$p = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_p x_p)}} \tag{31}$$

p represents the **mean of response** y_n , and thus can be expressed as μ_n . The logit function is used as the *link* between input x and p:

$$logit(p) = log\left(\frac{p}{1-p}\right) = w_0 + w_1 x_1 + \dots + w_p x_p$$
(32)

roduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

O 0000 00000000 0000000 0000000 0000000

Additive logistic regression model

GAMs 0000000

Additive logistic regression model

In the additive case, we replace each linear term by a general functional form to obtain the logistic regression GAM:

Additive logistic regression model

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

 $\mathsf{logit}(\mu)$

roduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

O 0000 00000000 0000000 0000000 0000000

Additive logistic regression model

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$\mathsf{logit}(\mu) = \mathsf{logit}(\mathsf{p})$$

Additive logistic regression model

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
(34)

Interaction effects:

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
 (34)

Interaction effects:

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g.:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
(34)

Interaction effects:

$$logit(\mu) = f(\mathbf{x}) + g_k(\mathbf{z}) \tag{35}$$

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g.:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
(34)

Interaction effects:

$$logit(\mu) = f(\mathbf{x}) + g_k(\mathbf{z}) \tag{35}$$

k levels of input x against z

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
 (34)

Interaction effects:

$$logit(\mu) = f(\mathbf{x}) + g_k(\mathbf{z}) \tag{35}$$

k levels of input x against z

Model estimation

Additive logistic regression model

In the additive case, we replace each linear term by a general functional form to obtain the **logistic regression GAM**:

$$logit(\mu) = logit(p) = \alpha + f_1(x_1) + \dots + f_p(x_p)$$
(33)

The additive model can be specified in a variety of ways, e.g:

Semiparametric:

$$logit(\mu) = \alpha + \mathbf{w}^{\top} \mathbf{x} + f(\mathbf{z})$$
(34)

Interaction effects:

$$logit(\mu) = f(\mathbf{x}) + g_k(\mathbf{z}) \tag{35}$$

k levels of input x against z

Model estimation

The additive logistic regression model can also be solved via backfitting using iteratively reweighted least squares for the model estimation in the second step (Newton-Raphson for maximum likelihood)^a

^aSee ESL page 300 for a description of this algorithm.

Summary •00000

Piecewise-linear fit

roduction Splines Smoothing splines GAMs **Summary** Appx: Piecewise functions Appx: GLMs

0 000 0000000 0000000 **●00000** 0000000 000000

Piecewise-linear fit

Piecewise-linear basis functions (2 knots); no continuity:

$$\begin{pmatrix} h_{0,0}(x) = 1_{|x \le \xi_1|} & h_{1,0}(x) = 1_{|\xi_1 \le x \le \xi_2|} & h_{2,0}(x) = 1_{|x \ge \xi_2|} \\ h_{0,1}(x) = 1_{|x \le \xi_1|} x & h_{1,1}(x) = 1_{|\xi_1 \le x \le \xi_2|} x & h_{2,1}(x) = 1_{|x \ge \xi_2|} x \end{pmatrix}$$
(36)

Piecewise-linear basis functions (2 knots); no continuity:

$$\begin{pmatrix} h_{0,0}(x) = 1_{|x \le \xi_1|} & h_{1,0}(x) = 1_{|\xi_1 \le x \le \xi_2|} & h_{2,0}(x) = 1_{|x \ge \xi_2|} \\ h_{0,1}(x) = 1_{|x \le \xi_1|} x & h_{1,1}(x) = 1_{|\xi_1 \le x \le \xi_2|} x & h_{2,1}(x) = 1_{|x \ge \xi_2|} x \end{pmatrix}$$
(36)

Generalizing to D-order polynomial with K knots, this gives $(K+1) \times (D+1)$ parameters

Achieve continuity by imposing equality at the knots:

Piecewise-linear basis functions (2 knots); no continuity:

$$\begin{pmatrix} h_{0,0}(x) = 1_{|x \le \xi_1|} & h_{1,0}(x) = 1_{|\xi_1 \le x \le \xi_2|} & h_{2,0}(x) = 1_{|x \ge \xi_2|} \\ h_{0,1}(x) = 1_{|x \le \xi_1|} x & h_{1,1}(x) = 1_{|\xi_1 \le x \le \xi_2|} x & h_{2,1}(x) = 1_{|x \ge \xi_2|} x \end{pmatrix}$$
(36)

Generalizing to D-order polynomial with K knots, this gives $(K+1) \times (D+1)$ parameters

Achieve continuity by imposing equality at the knots:

Piecewise-linear basis functions (2 knots); no continuity:

$$\begin{pmatrix} h_{0,0}(x) = 1_{|x \le \xi_1|} & h_{1,0}(x) = 1_{|\xi_1 \le x \le \xi_2|} & h_{2,0}(x) = 1_{|x \ge \xi_2|} \\ h_{0,1}(x) = 1_{|x \le \xi_1|} x & h_{1,1}(x) = 1_{|\xi_1 \le x \le \xi_2|} x & h_{2,1}(x) = 1_{|x \ge \xi_2|} x \end{pmatrix}$$
(36)

Generalizing to *D*-order polynomial with *K* knots, this gives $(K + 1) \times (D + 1)$ parameters

Achieve continuity by imposing equality at the knots:

$$\xi_1: w_{0,0} + \xi_1 w_{0,1} = w_{1,0} + \xi_1 w_{1,1}$$
 (37)

$$\xi_2: w_{1,0} + \xi_1 w_{1,1} = w_{1,2} + \xi_2 w_{1,1}$$
 (38)

This frees up 2 degrees of freedom

Piecewise-linear basis functions (2 knots); no continuity:

$$\begin{pmatrix} h_{0,0}(x) = 1_{|x \le \xi_1|} & h_{1,0}(x) = 1_{|\xi_1 \le x \le \xi_2|} & h_{2,0}(x) = 1_{|x \ge \xi_2|} \\ h_{0,1}(x) = 1_{|x \le \xi_1|} x & h_{1,1}(x) = 1_{|\xi_1 \le x \le \xi_2|} x & h_{2,1}(x) = 1_{|x \ge \xi_2|} x \end{pmatrix}$$
(36)

Generalizing to D-order polynomial with K knots, this gives $(K+1) \times (D+1)$ parameters

Achieve continuity by imposing equality at the knots:

$$\xi_1: w_{0,0} + \xi_1 w_{0,1} = w_{1,0} + \xi_1 w_{1,1}$$
 (37)

$$\xi_2: w_{1,0} + \xi_1 w_{1,1} = w_{1,2} + \xi_2 w_{1,1}$$
 (38)

- This frees up 2 degrees of freedom
- Only 4 basis functions are then needed

Summary 000000

Truncated-power basis

Truncated-power basis

• For a piecewise-linear fit with 2 knots, continuity can be specified using the truncated-power basis:

Truncated-power basis

• For a piecewise-linear fit with 2 knots, continuity can be specified using the truncated-power basis:

Truncated-power basis

 For a piecewise-linear fit wtih 2 knots, continuity can be specified using the truncated-power basis:

$$\begin{pmatrix} h_0(x) = 1 & h_1(x) = x \\ h_2(x) = (x - \xi_1)_+ & h_3(x) = (x - \xi_2)_+ \end{pmatrix}$$
(39)

Truncated-power basis

 For a piecewise-linear fit wtih 2 knots, continuity can be specified using the truncated-power basis:

$$\begin{pmatrix} h_0(x) = 1 & h_1(x) = x \\ h_2(x) = (x - \xi_1)_+ & h_3(x) = (x - \xi_2)_+ \end{pmatrix}$$
(39)

where
$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0, & \text{otherwise} \end{cases}$$

ullet For an order M polynomial, the number of basis functions required is thus:

Truncated-power basis

 For a piecewise-linear fit wtih 2 knots, continuity can be specified using the truncated-power basis:

$$\begin{pmatrix} h_0(x) = 1 & h_1(x) = x \\ h_2(x) = (x - \xi_1)_+ & h_3(x) = (x - \xi_2)_+ \end{pmatrix}$$
(39)

where
$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0, & \text{otherwise} \end{cases}$$

ullet For an order M polynomial, the number of basis functions required is thus:

Truncated-power basis

 For a piecewise-linear fit wtih 2 knots, continuity can be specified using the truncated-power basis:

$$\begin{pmatrix} h_0(x) = 1 & h_1(x) = x \\ h_2(x) = (x - \xi_1)_+ & h_3(x) = (x - \xi_2)_+ \end{pmatrix}$$
 (39)

where
$$(x - \xi_k)_+ = \begin{cases} x - \xi_k, & x \ge \xi_k \\ 0, & \text{otherwise} \end{cases}$$

• For an order *M* polynomial, the number of basis functions required is thus:

$$(K+1) \times (M+1) - K \times M = K + M + 1$$
 (40)

ntroduction Splines Smoothing splines GAMs **Summary** Appx: Piecewise functions Appx: GLMs

Regression spline (truncated-power basis)

Regression spline (truncated-power basis)

General form of truncated-power basis:

Regression spline (truncated-power basis)

General form of truncated-power basis:

• General form of truncated-power basis:

$$h_m(x) = x^m, \quad m = 0, \dots, M$$
 (41)

$$h_{D+k}(x) = (x - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (42)

• General form of truncated-power basis:

$$h_m(x) = x^m, \quad m = 0, \dots, M$$
 (41)

$$k = 1, \dots, K \tag{42}$$

• General form of truncated-power basis:

$$h_m(x) = x^m, \quad m = 0, \dots, M \tag{41}$$

$$h_{D+k}(x) = (x - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (42)

Achieves both continuity and smoothness

General form of truncated-power basis:

$$h_m(x) = x^m, \quad m = 0, \dots, M \tag{41}$$

$$h_{D+k}(x) = (x - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (42)

- Achieves both continuity and smoothness
- Degrees of freedom (number of parameters):

$$(K+1) \times (M+1) - K \times M = K + M + 1$$
 (43)

Summary 000000

Natural cubic spline

28 / 42

Reduces variance by ensuring linearity at the boundary knots

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

• Recall: regression spline has K + M + 1 basis functions

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

- Recall: regression spline has K + M + 1 basis functions
- Here, M = 3, and since 4 are freed up, then df = K + 3 + 1 4 = K.

- Reduces variance by ensuring linearity at the boundary knots
- Two constraints at each boundary knot: f''(x) = f'''(x) = 0
- Frees up 4 degrees of freedom
- General representation:

$$S_0(x) = 1 \tag{44}$$

$$S_1(x) = x \tag{45}$$

$$S_{1+k}(x) = d_k(x) - d_{K-1}(x)$$
(46)

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}$$
(47)

- Recall: regression spline has K + M + 1 basis functions
- Here, M=3, and since 4 are freed up, then df=K+3+1-4=K.
- So, same number of basis functions as there are knots.

Summary 000000

Smoothing spline

Smoothing spline

• Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Smoothing spline

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

Smoothing spline

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

We can also write:

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

We can also write:

• Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

We can also write:

$$PRSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (50)

• Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

We can also write:

$$PRSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (50)

where $S_{nk} = S_k(x_n)$ and $\Omega_{k,k'} = \int S_k''(t) S_{k'}''(t) dt$

• $\hat{\boldsymbol{w}} = (\boldsymbol{S}^T \boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{N}^T \boldsymbol{y}$

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

• We can also write:

$$PRSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (50)

where $S_{nk}=S_k(x_n)$ and $\Omega_{k,k'}=\int S_k''(t)S_{k'}''(t)dt$

- $\hat{\boldsymbol{w}} = (\boldsymbol{S}^T \boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{N}^T \boldsymbol{y}$
- The smoothing spline is thus:

$$\hat{\mathbf{f}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \Omega)^{-1} \mathbf{N}^{\mathsf{T}} \mathbf{y} = \mathbf{S}_{\lambda} \mathbf{y}$$
 (51)

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

• We can also write:

$$PRSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (50)

where $S_{nk}=S_k(x_n)$ and $\Omega_{k,k'}=\int S_k''(t)S_{k'}''(t)dt$

- $\hat{\boldsymbol{w}} = (\boldsymbol{S}^T \boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{N}^T \boldsymbol{y}$
- The smoothing spline is thus:

$$\hat{\mathbf{f}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^{\mathsf{T}} \mathbf{y} = \mathbf{S}_{\lambda} \mathbf{y}$$
 (51)

Introduce roughness penalty:

$$PRSS(\boldsymbol{w},\lambda) = \sum_{i=1}^{n} [y_n - f(x)]^2 + \lambda \int [f''(t)]^2 dt$$
 (48)

Solution is a shrunken (damped) natural cubic spline:

$$\hat{f}(x) = \sum_{k=1}^{K} S_k(x) \hat{w}_k$$
 (49)

• We can also write:

$$PRSS(\boldsymbol{w}, \lambda) = (\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{S}\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \Omega \boldsymbol{w}$$
 (50)

where $S_{nk} = S_k(x_n)$ and $\Omega_{k,k'} = \int S_k''(t)S_{k'}''(t)dt$

- $\hat{\boldsymbol{w}} = (\boldsymbol{S}^T \boldsymbol{S} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{N}^T \boldsymbol{y}$
- The smoothing spline is thus:

$$\hat{\mathbf{f}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^{\mathsf{T}} \mathbf{y} = \mathbf{S}_{\lambda} \mathbf{y}$$
 (51)

where S_{λ} is the shrinking smoother.

Reading

- **PMLI** 11.5
- ESL 5.2-5

troduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs 0 0000 0000000 0000000 000000 **●000000** 000000

Piecewise functions: constant and linear formulations

Appx: Piecewise functions •000000

L2e: Splines and Generalized Additive Models

Piecewise functions: constant and linear formulations

One constant per region:

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 0000 00000000 00000000 000000 **●000000** 000000

Piecewise functions: constant and linear formulations

• One constant per region:

$$f(X) =$$

oduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions Appx: GLMs

Piecewise functions: constant and linear formulations

One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X)$$

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 0000 00000000 00000000 000000 **●000000** 000000

Piecewise functions: constant and linear formulations

• One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

This is piecewise constant

One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

This is **piecewise constant**

• One linear model per region:

One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

This is **piecewise constant**

One linear model per region:

$$f(X) =$$

• One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

This is piecewise constant

• One linear model per region:

$$f(X) = \sum_{m=0}^{M-1} \left[w_{0,m} + w_{1,m} X \right] \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (53)

One constant per region:

$$f(X) = \sum_{m=0}^{M-1} w_m h_m(X) = \sum_{m=0}^{M-1} w_m \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (52)

This is piecewise constant

• One linear model per region:

$$f(X) = \sum_{m=0}^{M-1} \left[w_{0,m} + w_{1,m} X \right] \mathbb{I}(\xi_m \le X < \xi_{m+1})$$
 (53)

This is piecewise linear

troduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs
0 0000 00000000 0000000 000000 **0 00000** 00000

Piecewise functions (cont.)

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 0000 00000000 0000000 000000 **000000** 000000

Piecewise functions (cont.)

Individual models follow same principles of linear regression

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 0000 00000000 0000000 000000 **000000** 000000

Piecewise functions (cont.)

Individual models follow same principles of linear regression

• Individual models follow same principles of linear regression

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

• Individual models follow same principles of linear regression

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 \le X)$$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

(Right) Piecewise linear function (green) fit-

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

 $h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$

$$h_2(X) = \mathbb{I}(\xi_2 \leq X)$$

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 \le X)$$

(Right) Piecewise linear function (green) fitted to simulated dataset whose true function is shown in blue: Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

 $h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 < X)$$

(Right) Piecewise linear function (green) fitted to simulated dataset whose true function is shown in blue: Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 \le X)$$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

 $h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$
 $h_2(X) = \mathbb{I}(\xi_2 < X)$

(Right) Piecewise linear function (green) fitted to simulated dataset whose true function is shown in blue: Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 \le X)$$

$$h_3(X) = X\mathbb{I}(X < \xi_1)$$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 < X)$$

(Right) Piecewise linear function (green) fitted to simulated dataset whose true function is shown in blue: Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$
 $h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$
 $h_2(X) = \mathbb{I}(\xi_2 \le X)$
 $h_3(X) = X\mathbb{I}(X < \xi_1)$
 $h_4(X) = X\mathbb{I}(\xi_1 \le X \le \xi_2)$

• Individual models follow same principles of *linear regression*

(Left) Piecewise constant function (green) fitted to a simulated dataset whose true function is shown in blue. Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$

$$h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$$

$$h_2(X) = \mathbb{I}(\xi_2 \le X)$$

(Right) Piecewise linear function (green) fitted to simulated dataset whose true function is shown in blue: Basis functions:

$$h_0(X) = \mathbb{I}(X < \xi_1)$$
 $h_1(X) = \mathbb{I}(\xi_1 \le X \le \xi_2)$
 $h_2(X) = \mathbb{I}(\xi_2 \le X)$
 $h_3(X) = X\mathbb{I}(X < \xi_1)$
 $h_4(X) = X\mathbb{I}(\xi_1 \le X \le \xi_2)$
 $h_5(X) = X\mathbb{I}(\xi_2 \le X)$

troduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs
O 0000 00000000 0000000 000**000** 00**0000**

Piecewise-linear basis functions

troduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs
0 0000 00000000 0000000 000000 **00●0000** 00000

Piecewise-linear basis functions

• To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .

Piecewise-linear basis functions

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

Piecewise-linear basis functions

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

Piecewise-linear basis functions

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

Piecewise-linear basis functions

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

$$h_0(X) = 1 (54)$$

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+ \tag{56}$$

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

The basis functions for a continuous piecewise-linear fit with two knots are thus:

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

where,

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

The basis functions for a continuous piecewise-linear fit with two knots are thus:

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

where,

$$(X - \xi_1)_+ = \begin{cases} X - \xi_1, & X \ge \xi_1 \end{cases}$$

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

The basis functions for a continuous piecewise-linear fit with two knots are thus:

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

where,

$$(X - \xi_1)_+ = \begin{cases} X - \xi_1, & X \ge \xi_1 \\ 0, & \text{otherwise} \end{cases}$$
 (58)

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

The basis functions for a continuous piecewise-linear fit with two knots are thus:

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

where,

$$(X - \xi_1)_+ = \begin{cases} X - \xi_1, & X \ge \xi_1 \\ 0, & \text{otherwise} \end{cases}$$
 (58)

The model can then be written as:

troduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs
0 0000 00000000 0000000 000000 **000000** 00000

Piecewise-linear basis functions

- To ensure continuity at the knots, we need to constrain the basis functions to be equal at both ξ_1 and ξ_2 .
- This means we lose 2 degrees of freedom and only need to fit 6-2=4 basis functions.

The basis functions for a continuous piecewise-linear fit with two knots are thus:

$$h_0(X) = 1 (54)$$

$$h_1(X) = X (55)$$

$$h_2(X) = (X - \xi_1)_+$$
 (56)

$$h_3(X) = (X - \xi_2)_+$$
 (57)

where,

$$(X - \xi_1)_+ = \begin{cases} X - \xi_1, & X \ge \xi_1 \\ 0, & \text{otherwise} \end{cases}$$
 (58)

The model can then be written as:

$$y_i = w_0 + w_1 x_i + w_2 (x_i - \xi_1)_+ + w_3 (x_i - \xi_2)_+ + \epsilon_i$$
 (59)

Piecewise-linear basis functions (cont.)

Piecewise-linear basis functions (cont.)

When entering a new region, the added linear component alters the slope

Figure: (Left): Piecewise-linear fit with continuity (but not smoothness) at the knots. $f(X) = w_0 + w_1X + w_2(X - \xi_1)_+ + w_3(X - \xi_2)_+.$ (Right): Piecewise-linear fit with continuity at ξ_1 . $f(X) = w_2(X - \xi_1)_+$

Appx: Piecewise functions 0000000

Piecewise polynomials

roduction Splines Smoothing splines GAMs Summary **Appx**: **Piecewise functions** Appx: GLMs

O 0000 0000000 0000000 00000 **0000000** 00000

Piecewise polynomials

$$h(X,\xi) =$$

roduction Splines Smoothing splines GAMs Summary **Appx**: **Piecewise functions** Appx: GLMs

O 0000 0000000 0000000 00000 **0000000** 00000

Piecewise polynomials

$$h(X,\xi) = (X - \xi)_+^D =$$

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs
0 0000 0000000 0000000 0000**00** 00000

Piecewise polynomials

$$h(X,\xi) = (X-\xi)_+^D = \begin{cases} (X-\xi)^D, & X > \xi \end{cases}$$

Piecewise polynomials

$$h(X,\xi) = (X-\xi)_+^D = \begin{cases} (X-\xi)^D, & X > \xi \\ 0, & \text{otherwise} \end{cases}$$
 (60)

Piecewise polynomials

 To achieve smoothness, we increase the degree of the polynomial, adding one truncated power basis function per knot:

$$h(X,\xi) = (X-\xi)_+^D = \begin{cases} (X-\xi)^D, & X > \xi \\ 0, & \text{otherwise} \end{cases}$$
 (60)

where D is the degree of the piecewise polynomial

Piecewise polynomials

 To achieve smoothness, we increase the degree of the polynomial, adding one truncated power basis function per knot:

$$h(X,\xi) = (X-\xi)_+^D = \begin{cases} (X-\xi)^D, & X > \xi \\ 0, & \text{otherwise} \end{cases}$$
 (60)

where D is the degree of the piecewise polynomial

Figure: Piecewise-quadratic fit: $f(X) = w_0 + w_1 X + w_2 X^2 + w_3 (X - \xi_1)_+^2 + w_4 (X - \xi_2)_+^2$

Appx: Piecewise functions 0000000

Piecewise polynomials (cont.)

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) =$$

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) =$$

$$w_0 + w_1 X + w_2 X^2 + \dots$$

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

$$h_m(X) = X^m, \quad m = 0, \dots, D \tag{62}$$

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

$$h_m(X) = X^m, \quad m = 0, \dots, D \tag{62}$$

$$h_{D+k}(X) = (X - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (63)

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

$$h_m(X) = X^m, \quad m = 0, \dots, D \tag{62}$$

$$h_{D+k}(X) = (X - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (63)

• Degree D = 3 is a **cubic spline**

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

$$h_m(X) = X^m, \quad m = 0, \dots, D \tag{62}$$

$$h_{D+k}(X) = (X - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (63)

- Degree D = 3 is a **cubic spline**
 - Continuous first and second derivatives (smooth)

Piecewise polynomials (cont.)

Generally, we can write the basis functions for a degree D piecewise polynomial fit using the basis for a Dth order polynomial and then adding K truncated power basis functions for each knot.

Model for degree D:

$$f(X) = w_0 + w_1 X + w_2 X^2 + \dots = + w_D X^D + w_{D+1} (X - \xi_1)_+^D + \dots + w_{D+K} (X - \xi_K)_+^D$$
 (61)

For K knots and degree D polynomial:

$$h_m(X) = X^m, \quad m = 0, \dots, D$$
 (62)

$$h_{D+k}(X) = (X - \xi_k)_+^D, \quad k = 1, \dots, K$$
 (63)

- Degree D = 3 is a **cubic spline**
 - Continuous first and second derivatives (smooth)
 - The most common spline degree

Appx: Piecewise functions 0000000

B-spline basis representation

B-spline basis representation

• For larger orders, the truncated power basis can become unstable

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-D B-spline

① Define augmented knot sequence:

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-D B-spline

① Define augmented knot sequence:

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 000 0000000 0000000 000000 **000000** 000000

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

roduction Splines Smoothing splines GAMs Summary **Appx: Piecewise functions** Appx: GLMs

0 000 0000000 0000000 000000 **000000** 000000

B-spline basis representation

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \end{cases}$$

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
 (64)

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-*D* B-spline

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
 (64)

and by convention $B_{i,0}(x) = 0$ when $\xi_i = \xi_{i+1}$

3 The *i*th B-spline basis function of degree j, j = 1, ..., D is:

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-*D* B-spline

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
 (64)

and by convention $B_{i,0}(x) = 0$ when $\xi_i = \xi_{i+1}$

3 The *i*th B-spline basis function of degree j, j = 1, ..., D is:

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-*D* B-spline

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
 (64)

and by convention $B_{i,0}(x) = 0$ when $\xi_i = \xi_{i+1}$

3 The *i*th B-spline basis function of degree j, j = 1, ..., D is:

$$B_{i,j}(x) = \frac{x - \xi_i}{\xi_{i+j} - \xi_i} B_{i,j-1}(x) + \frac{\xi_{i+j+1} - x}{\xi_{i+j+1} - \xi_{i+1}} B_{i+1,j-1}(x)$$
 (65)

- For larger orders, the truncated power basis can become unstable
- B-splines are a computationally convenient alternative

Degree-*D* B-spline

- **1** Define augmented knot sequence: $\boldsymbol{\xi}^* = (\xi_{-D}, \dots, \xi_0, \boldsymbol{\xi}, \xi_{K+1}, \dots, \xi_{K+D+1})$
- **2** For i = -D, ..., K + D, let:

$$B_{i,0}(x) = \begin{cases} 1, & x \in [\xi_i, \xi_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
 (64)

and by convention $B_{i,0}(x) = 0$ when $\xi_i = \xi_{i+1}$

3 The *i*th B-spline basis function of degree j, j = 1, ..., D is:

$$B_{i,j}(x) = \frac{x - \xi_i}{\xi_{i+j} - \xi_i} B_{i,j-1}(x) + \frac{\xi_{i+j+1} - x}{\xi_{i+j+1} - \xi_{i+1}} B_{i+1,j-1}(x)$$
 (65)

for $i = -D, \ldots, K + D - i$

Wed. Mar 29, 2023

roduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 0000000 0000000 000000 000000 **00000**

The generalized linear model (GLM)

The generalized linear model (GLM)

• Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$$
 (66)

Appx: GLMs 00000

The generalized linear model (GLM)

Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$$
 (66)

where

38 / 42

troduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 0000000 0000000 000000 000000 **●0000**

The generalized linear model (GLM)

• Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2) \tag{66}$$

- y_i is a continuous response
- x_i is a vector of quantitative and/or qualitative explanatory variables

Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$$
 (66)

- y_i is a continuous response
- x_i is a vector of quantitative and/or qualitative explanatory variables
- Generalized linear models (GLMs) were introduced to extend this framework to allow y_i to be modeled by other exponential family distributions besides the normal/Gaussian, e.g.
 - exponential
 - binomial/multinomial (with fixed number of trials)
 - Poisson

Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$$
 (66)

- y_i is a continuous response
- x_i is a vector of quantitative and/or qualitative explanatory variables
- Generalized linear models (GLMs) were introduced to extend this framework to allow y_i to be modeled by other exponential family distributions besides the normal/Gaussian, e.g.
 - exponential
 - binomial/multinomial (with fixed number of trials)
 - Poisson
- In the GLM framework:

Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2) \tag{66}$$

- y_i is a continuous response
- x_i is a vector of quantitative and/or qualitative explanatory variables
- Generalized linear models (GLMs) were introduced to extend this framework to allow y_i to be modeled by other exponential family distributions besides the normal/Gaussian, e.g.
 - exponential
 - binomial/multinomial (with fixed number of trials)
 - Poisson
- In the GLM framework:
 - The mean of y_i is given by μ_i
 - μ_i can be specified by a nonlinear function of $\mathbf{x}_i^{\top} \boldsymbol{\beta}$
 - Note that the simple linear regression is a special case of GLM in which $\mu_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}$ and y_i follows a Gaussian distribution

Conventional linear models have the form:

$$y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2) \tag{66}$$

- y_i is a continuous response
- x_i is a vector of quantitative and/or qualitative explanatory variables
- Generalized linear models (GLMs) were introduced to extend this framework to allow y_i to be modeled by other exponential family distributions besides the normal/Gaussian, e.g.
 - exponential
 - binomial/multinomial (with fixed number of trials)
 - Poisson
- In the GLM framework:
 - The mean of y_i is given by μ_i
 - μ_i can be specified by a nonlinear function of $\mathbf{x}_i^{\top} \boldsymbol{\beta}$
 - Note that the simple linear regression is a special case of GLM in which $\mu_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$ and y_i follows a Gaussian distribution

Appx: GLMs 00000

GLM components

Appx: GLMs 00000

GLM components

roduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 0000000 0000000 000000 000000 0**0000**

GLM components

A GLM consists of three parts:

 Random component: this is the probability distribution of the response variable troduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 00000000 0000000 0000000 0**00000**0 **000000**

GLM components

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)

troduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 00000000 0000000 0000000 0**00000**0 **000000**

GLM components

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:

troduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 00000000 0000000 0000000 0**00000**0 **000000**

GLM components

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\top} \mathbf{w}$$
 (67)

A GLM consists of three parts:

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\top} \mathbf{w}$$
 (67)

• Binary logistic regression (logit link function):

A GLM consists of three parts:

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\top} \mathbf{w}$$
 (67)

Binary logistic regression (logit link function):

$$g(\mu_i) = g(p(\mathbf{x}_i)) =$$

A GLM consists of three parts:

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\top} \mathbf{w}$$
 (67)

Binary logistic regression (logit link function):

$$g(\mu_i) = g(p(\mathbf{x}_i)) = \operatorname{logit}(p(\mathbf{x}_i)) =$$

A GLM consists of three parts:

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}$$
 (67)

Binary logistic regression (logit link function):

$$g(\mu_i) = g(p(\mathbf{x}_i)) = \operatorname{logit}(p(\mathbf{x}_i)) = \operatorname{ln}\left(\frac{p(\mathbf{x}_i)}{1 - p(\mathbf{x}_i)}\right) =$$

GLM components

A GLM consists of three parts:

- Random component: this is the probability distribution of the response variable
- Systematic component: specifies the explanatory variables within the linear combination of their coefficients (Xw)
- Link function $g(\mu)$: defines the relationship between the random and systematic components:
 - Simple linear regression (identity link function):

$$g(\mu_i) = g(E(y_i)) = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}$$
 (67)

Binary logistic regression (logit link function):

$$g(\mu_i) = g(p(\mathbf{x}_i)) = \operatorname{logit}(p(\mathbf{x}_i)) = \operatorname{ln}\left(\frac{p(\mathbf{x}_i)}{1 - p(\mathbf{x}_i)}\right) = \mathbf{x}_i^{\top} \mathbf{w}$$
 (68)

Appx: GLMs 00000

Assumptions of GLM

• The observations of the response variable y are i.i.d.

- The observations of the response variable y are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)

- The observations of the response variable y are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)
 - Implies that errors need not be normally distributed (but should be independent)
- Link function is linear with respect to the coefficients (w_j)

Appx: GLMs 00000

Assumptions of GLM

- The observations of the response variable y are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)
 - Implies that errors need not be normally distributed (but should be independent)
- Link function is linear with respect to the coefficients (w_i)
 - Relationship between response and explanatory variables does not have to be linear

40 / 42

- The observations of the response variable **y** are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)
 - Implies that errors need not be normally distributed (but should be independent)
- Link function is linear with respect to the coefficients (w_j)
 - Relationship between response and explanatory variables does not have to be linear
 - Explanatory variables can be nonlinear transformations of original values (as in simple linear regression)

- The observations of the response variable **y** are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)
 - Implies that errors need not be normally distributed (but should be independent)
- Link function is linear with respect to the coefficients (w_j)
 - Relationship between response and explanatory variables does not have to be linear
 - Explanatory variables can be nonlinear transformations of original values (as in simple linear regression)
- Variance may not homogeneous (i.e. homoscedasticity is not a requirement)

- The observations of the response variable **y** are i.i.d.
- Response variable y_i is typically exponentially distributed (not restricted to being normally distributed)
 - Implies that errors need not be normally distributed (but should be independent)
- Link function is linear with respect to the coefficients (w_j)
 - Relationship between response and explanatory variables does not have to be linear
 - Explanatory variables can be nonlinear transformations of original values (as in simple linear regression)
- Variance may not homogeneous (i.e. homoscedasticity is not a requirement)
- Parameters are estimated via MLE

troduction Splines Smoothing splines GAMs Summary Appx: Piecewise functions **Appx: GLMs**0 0000 0000000 0000000 000000 000000 **00000** 000000

Commonly used GLM models and their components

Commonly used GLM models and their components

Model	Random component	Link function
Linear regression	Gaussian	Identity: $g(\mu_i) = \mu_i = w^\top x_i$
Binary logistic regression	Bernoulli	Logit: $g(\mu_i) = \ln\left(\frac{\mu_i}{1-\mu_i}\right)$
Probit regression	Bernoulli	Probit: $g(\mu_i) = \Phi^{-1}(\mu_i)$
Multinomial logit/logistic	Categorical	Multinomial logit: $g(\mu_{ic}) = \ln\left(\frac{\mu_{ic}}{\mu_{iC}}\right)$
Poisson regression	Poisson	$Log:\ g(\mu_i) = In(\mu_i)$

Commonly used GLM models and their components

Model	Random component	Link function
Linear regression	Gaussian	Identity: $g(\mu_i) = \mu_i = w^ op x_i$
Binary logistic regression	Bernoulli	Logit: $g(\mu_i) = \ln\left(\frac{\mu_i}{1-\mu_i}\right)$
Probit regression	Bernoulli	Probit: $g(\mu_i) = \Phi^{-1}(\mu_i)$
Multinomial logit/logistic	Categorical	Multinomial logit: $g(\mu_{ic}) = \ln\left(rac{\mu_{ic}}{\mu_{iC}} ight)$
Poisson regression	Poisson	$Log \colon g(\mu_i) = In(\mu_i)$

Note that in all cases, the link function always results in:

$$g(\mu_i) = w^{\top} x_i \tag{69}$$

Commonly used GLM models and their components

Model	Random component	Link function
Linear regression	Gaussian	Identity: $g(\mu_i) = \mu_i = w^{\top} x_i$
Binary logistic regression	Bernoulli	Logit: $g(\mu_i) = \ln\left(\frac{\mu_i}{1-\mu_i}\right)$
Probit regression	Bernoulli	Probit: $g(\mu_i) = \Phi^{-1}(\mu_i)$
Multinomial logit/logistic	Categorical	Multinomial logit: $g(\mu_{ic}) = \ln\left(\frac{\mu_{ic}}{\mu_{iC}}\right)$
Poisson regression	Poisson	$Log \colon g(\mu_i) = In(\mu_i)$

Note that in all cases, the link function always results in:

$$g(\mu_i) = w^{\top} x_i \tag{69}$$

Its job is to "link" the response to the systematic component via a suitable transformation that results in a linear function of the w's.

Further reading on GLMs

Further reading on GLMs

- German Rodriguez's lecture notes on GLMs: https://data.princeton.edu/wws509/notes/
- Penn State: https://online.stat.psu.edu/stat504/lesson/6/6.1 (Including more on logistic and multinomial logistic)