RUTUJA DOIPHODE

#PROJECT NAME: Stroke Prediction Visualization and Model Making Email: rutujadoiphode2000@gmail.com

(mailto:rutujadoiphode2000@gmail.com) Linkedin: https://www.linkedin.com/in/rutujadoiphode/ (https://www.linkedin.com/in/rutujadoiphode/)

```
In [1]: import pandas as pd
    import numpy as np
    import seaborn as sns
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings("ignore")

# Load the dataset
dataset = pd.read_csv("healthcare-dataset-stroke-data.csv")

dataset
```

Out[1]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	strok
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	202.21	NaN	never smoked	
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	174.12	24.0	never smoked	
5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban	125.20	40.0	never smoked	
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural	82.99	30.6	never smoked	
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	

5110 rows × 12 columns

4

```
In [2]: dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5110 entries, 0 to 5109
        Data columns (total 12 columns):
             Column
                               Non-Null Count Dtype
            _____
         0
             id
                                5110 non-null
                                               int64
                                               object
         1
             gender
                                5110 non-null
             age
                                5110 non-null float64
             hypertension
                                5110 non-null
                                               int64
                                5110 non-null
             heart disease
                                               int64
                                5110 non-null
             ever married
                                               object
             work type
                                5110 non-null
                                               obiect
             Residence type
                                               obiect
                                5110 non-null
             avg glucose level 5110 non-null float64
             bmi
                                4909 non-null float64
         10 smoking status
                                5110 non-null object
         11 stroke
                                5110 non-null
                                               int64
        dtypes: float64(3), int64(4), object(5)
        memory usage: 479.2+ KB
In [3]: dataset.isnull().sum()
Out[3]: id
                               0
        gender
        age
        hypertension
        heart disease
        ever married
        work type
        Residence type
        avg_glucose_level
                               0
        bmi
                             201
        smoking status
                               0
        stroke
        dtype: int64
```

```
In [4]: dataset.bmi.replace(to_replace=np.nan, value=dataset.bmi.mean(), inplace=True)
In [5]: dataset.isnull().sum()
Out[5]: id
                              0
        gender
                              0
        age
                              0
        hypertension
        heart_disease
        ever_married
        work_type
                              0
        Residence_type
        avg_glucose_level
        bmi
        smoking_status
                             0
        stroke
                              0
        dtype: int64
```

In [6]: dataset.describe()

Out[6]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	0.048728
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.698018	0.215320
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	0.000000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.800000	0.000000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.400000	0.000000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	32.800000	0.000000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	1.000000

In [7]: dataset.corr()

Out[7]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
id	1.000000	0.003538	0.003550	-0.001296	0.001092	0.002999	0.006388
age	0.003538	1.000000	0.276398	0.263796	0.238171	0.325942	0.245257
hypertension	0.003550	0.276398	1.000000	0.108306	0.174474	0.160189	0.127904
heart_disease	-0.001296	0.263796	0.108306	1.000000	0.161857	0.038899	0.134914
avg_glucose_level	0.001092	0.238171	0.174474	0.161857	1.000000	0.168751	0.131945
bmi	0.002999	0.325942	0.160189	0.038899	0.168751	1.000000	0.038947
stroke	0.006388	0.245257	0.127904	0.134914	0.131945	0.038947	1.000000

Data Visualization

hypert

heart_d

avg_glucose

```
In [9]: #GENDER

print(dataset.gender.value_counts())
sns.set_theme(style="darkgrid")
ax = sns.countplot(data=dataset, x="gender")
plt.show()
```

Female 2994 Male 2115 Other 1

Name: gender, dtype: int64


```
In [10]: #HypterTension

print(dataset.hypertension.value_counts())
sns.set_theme(style="darkgrid")
ax = sns.countplot(data=dataset, x="hypertension")
plt.show()
```

0 46121 498

Name: hypertension, dtype: int64


```
In [11]: #Marraige Status
         print(dataset.ever_married.value_counts())
         sns.set theme(style="darkgrid")
         ax = sns.countplot(data=dataset, x="ever married")
         plt.show()
         Yes
                3353
                1757
         No
         Name: ever_married, dtype: int64
             3500
             3000
             2500
              2000
          ∞unt
              1500
             1000
               500
                 0
                                  Yes
                                                                   No
                                              ever_married
```

```
In [12]: #Work Type

print(dataset.work_type.value_counts())
sns.set_theme(style="darkgrid")
ax = sns.countplot(data=dataset, x="work_type")
plt.show()

Private 2925
```

Self-employed 819
children 687
Govt_job 657
Never_worked 22

Name: work_type, dtype: int64

In [13]: #Residence Type print(dataset.Residence_type.value_counts()) sns.set_theme(style="darkgrid") ax = sns.countplot(data=dataset, x="Residence_type") plt.show()

Urban 2596 Rural 2514

Name: Residence_type, dtype: int64


```
In [14]: #Smoking Status

print(dataset.smoking_status.value_counts())
sns.set_theme(style="darkgrid")
ax = sns.countplot(data=dataset, x="smoking_status")
ax.set_xticklabels(ax.get_xticklabels(), fontsize=10)
plt.tight_layout()
plt.show()
```

never smoked 1892 Unknown 1544 formerly smoked 885 smokes 789

Name: smoking_status, dtype: int64


```
In [15]: #Stroke
         print(dataset.stroke.value_counts())
         sns.set theme(style="darkgrid")
         ax = sns.countplot(data=dataset, x="stroke")
         plt.show()
               4861
                249
         1
         Name: stroke, dtype: int64
              5000
              4000
              3000
           count
              2000
              1000
                 0
                                    0
                                                                     1
                                                  stroke
```

Data Visualization - Distribution Plot


```
In [18]: # Stroke vs No Stroke by BMI

plt.figure(figsize=(12,10))

sns.distplot(dataset[dataset['stroke'] == 0]["bmi"], color='green') # No Stroke - green
sns.distplot(dataset[dataset['stroke'] == 1]["bmi"], color='red') # Stroke - Red

plt.title('No Stroke vs Stroke by BMI', fontsize=15)
plt.xlim([10,100])
plt.show()
```

No Stroke vs Stroke by BMI

20

10

40

50

. .

60

/U

90

δU

100

bmi

The graph reveals that the density of overweight people who suffered a stroke is more.

30

```
In [19]: # Stroke vs No Stroke by AVG Glucose Level

plt.figure(figsize=(12,10))

sns.distplot(dataset[dataset['stroke'] == 0]["avg_glucose_level"], color='green') # No Stroke - green
sns.distplot(dataset[dataset['stroke'] == 1]["avg_glucose_level"], color='red') # Stroke - Red

plt.title('No Stroke vs Stroke by Avg. Glucose Level', fontsize=15)
plt.xlim([30,330])
plt.show()
```


avg_glucose_level

Z0U

JUU

The graph reveals there is a higher occurrence of strokes among individuals with glucose levels below 100.

JU

```
In [20]: #Stroke vs No Stroke by Age

plt.figure(figsize=(12,10))

sns.distplot(dataset[dataset['stroke'] == 0]["age"], color='green') # No Stroke - green
sns.distplot(dataset[dataset['stroke'] == 1]["age"], color='red') # Stroke - Red

plt.title('No Stroke vs Stroke by Age', fontsize=15)
plt.xlim([18,100])
plt.show()
```

No Stroke vs Stroke by Age

30

20

50

ьи age

δU

90

100

The graph reveals that individuals over the age of 50 experienced a higher incidence of strokes

40

Scatter Plot

```
In [21]: #BMI vs Age

fig = plt.figure(figsize=(7,7))
graph = sns.scatterplot(data=dataset, x="age", y="bmi", hue='gender')
graph.axhline(y= 25, linewidth=4, color='r', linestyle= '--')
plt.show()
```


The graph reveals that a significant number of individuals with a BMI exceeding 25 fall into the categories of overweight and obese.

```
In [22]: # Avg Glucose vs Age

fig = plt.figure(figsize=(7,7))
graph = sns.scatterplot(data=dataset, x="age", y="avg_glucose_level", hue='gender')
graph.axhline(y= 150, linewidth=4, color='r', linestyle= '--')
plt.show()
```


The graph reveals apparently that there are fewer individuals with glucose levels above 150 compared to those below it. Consequently, it could be inferred that individuals above 150 might be more likely to have diabetes.

```
In [23]: #Violin Plot
         import matplotlib.pyplot as plt
         import seaborn as sns
         plt.figure(figsize=(13,13))
         sns.set theme(style="darkgrid")
         plt.subplot(2, 2, 1)
         sns.violinplot(x='gender', y='stroke', data=dataset)
         plt.subplot(2, 2, 2)
         sns.violinplot(x='hypertension', y='stroke', data=dataset)
         plt.subplot(2, 2, 3)
         sns.violinplot(x='heart disease', y='stroke', data=dataset)
         plt.subplot(2, 2, 4)
         sns.violinplot(x='ever married', y='stroke', data=dataset)
         plt.xticks(fontsize=9, rotation=45)
         plt.show()
         plt.figure(figsize=(13,13))
         sns.set theme(style="darkgrid")
         plt.subplot(2, 2, 1)
         sns.violinplot(x='work_type', y='stroke', data=dataset)
         plt.subplot(2, 2, 2)
         sns.violinplot(x='Residence_type', y='stroke', data=dataset)
         plt.show()
```


Data Processing

```
In [24]: #Extraction & Sepereation
         x = dataset.iloc[:, 1:-1].values
         v = dataset.iloc[:, -1].values
In [25]: x
Out[25]: array([['Male', 67.0, 0, ..., 228.69, 36.6, 'formerly smoked'],
                ['Female', 61.0, 0, ..., 202.21, 28.893236911794666,
                 'never smoked'],
                ['Male', 80.0, 0, ..., 105.92, 32.5, 'never smoked'],
                ['Female', 35.0, 0, ..., 82.99, 30.6, 'never smoked'],
                ['Male', 51.0, 0, ..., 166.29, 25.6, 'formerly smoked'],
                ['Female', 44.0, 0, ..., 85.28, 26.2, 'Unknown']], dtype=object)
In [26]: y
Out[26]: array([1, 1, 1, ..., 0, 0, 0], dtype=int64)
In [27]: #Encoding - OnehotEncoder
         from sklearn.compose import ColumnTransformer
         from sklearn.preprocessing import OneHotEncoder
         ct = ColumnTransformer(transformers= [('encoder', OneHotEncoder(), [0,5,9])], remainder= 'passthrough')
         x = np.array(ct.fit transform(x))
In [28]: x
Out[28]: array([[0.0, 1.0, 0.0, ..., 'Urban', 228.69, 36.6],
                [1.0, 0.0, 0.0, ..., 'Rural', 202.21, 28.893236911794666],
                [0.0, 1.0, 0.0, ..., 'Rural', 105.92, 32.5],
                [1.0, 0.0, 0.0, ..., 'Rural', 82.99, 30.6],
                [0.0, 1.0, 0.0, ..., 'Rural', 166.29, 25.6],
                [1.0, 0.0, 0.0, ..., 'Urban', 85.28, 26.2]], dtype=object)
```

Label Encoding

LabelEncoder(): 'ever married' and 'residence type'

Splitting Dataset

```
In [32]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.2, random_state= 0)
```

Feature Scaling

StandardScaler is a method used for standardizing features within a dataset. It achieves this by subtracting the mean from each feature and then dividing by the standard deviation, effectively scaling the features to have a mean of 0 and a standard deviation of 1. This process ensures that the features have a uniform scale, which can be beneficial for certain machine learning algorithms, particularly those sensitive to the scale of features

```
In [34]: from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    x_train = sc.fit_transform(x_train)
    x_test = sc.transform(x_test)
```

The number of people suffering stroke is 19:1, so it is very less. But, this also means that our dataset is imbalanced. So we use Synthetic Minority Oversampling Technique(SMOTE)

```
In [35]: from imblearn.over_sampling import SMOTE
```

```
In [36]: print("Before OverSampling, counts of label '1': {}".format(sum(y_train==1)))
    print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train==0)))

sm = SMOTE(random_state=2)
    x_train_res, y_train_res = sm.fit_resample(x_train, y_train.ravel())

print('After OverSampling, the shape of train_X: {}'.format(x_train_res.shape))
    print("After OverSampling, counts of label '1': {}".format(sum(y_train_res.shape))

print("After OverSampling, counts of label '0': {}".format(sum(y_train_res==1)))
    print("After OverSampling, counts of label '1': 195
    Before OverSampling, counts of label '1': 3893

After OverSampling, the shape of train_X: (7786, 19)
    After OverSampling, counts of label '1': 3893
    After OverSampling, counts of label '1': 3893
    After OverSampling, counts of label '0': 3893
```

Model Selection

```
In [37]: from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import BernoulliNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier
```

In [38]: from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, ConfusionMatrixDisplay, precision_score, from sklearn.model_selection import cross_val_score

```
In [39]: models = []
        models.append(['Logistic Regression', LogisticRegression(random state=0)])
        models.append(['SVM', SVC(random state=0)])
        models.append(['KNeighbors', KNeighborsClassifier()])
        models.append(['GaussianNB', GaussianNB()])
        models.append(['BernoulliNB', BernoulliNB()])
        models.append(['Decision Tree', DecisionTreeClassifier(random state=0)])
        models.append(['Random Forest', RandomForestClassifier(random state=0)])
        models.append(['XGBoost', XGBClassifier(eval metric= 'error')])
        lst 1= []
         for m in range(len(models)):
            lst 2= []
            model = models[m][1]
            model.fit(x train res, y train res)
            y pred = model.predict(x test)
            cm = confusion matrix(y test, y pred) #Confusion Matrix
             accuracies = cross val score(estimator = model, X = x train res, y = y train res, cv = 10) #K-Fold Validation
            roc = roc auc score(y test, y pred) #ROC AUC Score
             precision = precision_score(y_test, y_pred) #Precision Score
            recall = recall score(y test, y pred) #Recall Score
            f1 = f1 score(y test, y pred) #F1 Score
            print(models[m][0],':')
             print(cm)
             print('Accuracy Score: ',accuracy score(y test, y pred))
             print('')
             print("K-Fold Validation Mean Accuracy: {:.2f} %".format(accuracies.mean()*100))
             print('')
            print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
             print('')
            print('ROC AUC Score: {:.2f}'.format(roc))
             print('')
            print('Precision: {:.2f}'.format(precision))
             print('')
             print('Recall: {:.2f}'.format(recall))
             print('')
            print('F1: {:.2f}'.format(f1))
             print('----')
             print('')
            lst 2.append(models[m][0])
```

```
lst 2.append((accuracy score(y test, y pred))*100)
             lst 2.append(accuracies.mean()*100)
             lst 2.append(accuracies.std()*100)
             lst 2.append(roc)
             lst 2.append(precision)
             lst 2.append(recall)
             lst 2.append(f1)
             lst 1.append(lst 2)
         Logistic Regreesion :
         [[750 218]
          [ 15 39]]
         Accuracy Score: 0.7720156555772995
         K-Fold Validation Mean Accuracy: 79.46 %
         Standard Deviation: 1.39 %
         ROC AUC Score: 0.75
         Precision: 0.15
         Recall: 0.72
         F1: 0.25
         SVM:
         [[704 474]
In [40]: df = pd.DataFrame(lst 1, columns= ['Model', 'Accuracy', 'K-Fold Mean Accuracy', 'Std. Deviation', 'ROC AUC', 'Precision'
In [41]: | df.sort_values(by= ['Accuracy', 'K-Fold Mean Accuracy'], inplace= True, ascending= False)
```

In [42]: df

Out[42]:

	Model	Accuracy	K-Fold Mean Accuracy	Std. Deviation	ROC AUC	Precision	Recall	F1
7	XGBoost	91.976517	95.107316	3.770300	0.537994	0.150000	0.111111	0.127660
6	Random Forest	90.606654	95.967343	1.377559	0.522019	0.096154	0.092593	0.094340
5	Decision Tree	86.007828	90.393013	2.936513	0.515228	0.067961	0.129630	0.089172
2	KNeighbors	83.659491	90.765631	0.866181	0.599001	0.120805	0.333333	0.177340
1	SVM	79.843444	88.363831	1.536875	0.613828	0.112245	0.407407	0.176000
0	Logistic Regreesion	77.201566	79.462926	1.391926	0.748508	0.151751	0.722222	0.250804
4	BernoulliNB	60.567515	72.938676	1.593421	0.713154	0.102506	0.833333	0.182556
3	GaussianNB	19.275930	57.333590	0.861249	0.556378	0.059429	0.962963	0.111948

The output presents performance metrics for multiple machine learning models. Notably, Random Forest and XGBoost exhibit strong accuracy scores around 90.61% and 91.98%, respectively. K-Fold Validation Mean Accuracy further confirms their robustness, averaging approximately 95.97% and 95.11%, respectively. Standard deviation indicates consistent performance, particularly for GaussianNB and KNeighbors. Logistic Regression achieves a moderate ROC AUC score of about 0.75, reflecting its ability to distinguish between classes. However, models like Random Forest show lower precision, recall, and F1-score, suggesting limitations in correctly identifying positive instances. Overall, Random Forest and XGBoost emerge as top-performing models, demonstrating reliability across various evaluation metrics.

Model Tuning

In [43]: from sklearn.model_selection import GridSearchCV

The GridSearchCV function is a utility provided by the scikit-learn library's model_selection module. It facilitates an automated search through a predefined set of hyperparameters, allowing for the fitting of your estimator (model) on a training set with different parameter combinations. Ultimately, GridSearchCV aids in identifying the optimal parameters from the specified hyperparameter grid.

```
In [45]: for i,j in grid_models:
    grid = GridSearchCV(estimator=i,param_grid = j, scoring = 'accuracy',cv = 10)
    grid.fit(x_train_res, y_train_res)
    best_accuracy = grid.best_score_
    best_param = grid.best_params_
    print('{}:\nBest Accuracy : {:.2f}%'.format(i,best_accuracy*100))
    print('Best Parameters : ',best_param)
    print('')
    print(''-----')
    print('')
```

```
LogisticRegression():
Best Accuracy: 79.46%
Best Parameters : {'C': 1, 'random state': 0}
-----
KNeighborsClassifier():
Best Accuracy : 91.92%
Best Parameters : {'metric': 'manhattan', 'n neighbors': 5}
-----
SVC():
Best Accuracy: 88.36%
Best Parameters : {'C': 1, 'kernel': 'rbf', 'random state': 0}
GaussianNB():
Best Accuracy : 57.33%
Best Parameters : {'var_smoothing': 1e-09}
-----
BernoulliNB():
Best Accuracy : 72.94%
Best Parameters : {'alpha': 0.25}
-----
DecisionTreeClassifier():
Best Accuracy : 91.10%
Best Parameters : {'criterion': 'entropy', 'random state': 0}
-----
RandomForestClassifier():
Best Accuracy: 95.97%
Best Parameters : {'criterion': 'gini', 'n_estimators': 100, 'random_state': 0}
-----
```

```
XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...):

Best Accuracy : 92.98%

Best Parameters : {'eval_metric': 'error', 'learning_rate': 0.1}
```

After examining the results of the GridSearch, it's clear that RandomForest and XGBoost are the most suitable models for our dataset.

Hyperparameter Tuning

```
In [46]: #RandomForest
         #Fitting
         classifier = RandomForestClassifier(criterion= 'gini', n estimators= 100, random state= 0)
         classifier.fit(x train res, y train res)
         y pred = classifier.predict(x test)
         y prob = classifier.predict proba(x test)[:,1]
         cm = confusion matrix(v test, v pred)
         print(classification report(y test, y pred))
         print(f'ROC AUC score: {roc auc score(v test, v prob)}')
         print('Accuracy Score: ',accuracy score(y test, y pred))
         # Visualizing Confusion Matrix
         plt.figure(figsize = (8, 5))
         sns.heatmap(cm, cmap = 'Blues', annot = True, fmt = 'd', linewidths = 5, cbar = False, annot kws = {'fontsize': 15},
                     vticklabels = ['No stroke', 'Stroke'], xticklabels = ['Predicted no stroke', 'Predicted stroke'])
         plt.vticks(rotation = 0)
         plt.show()
         # Roc AUC Curve
         false positive rate, true positive rate, thresholds = roc curve(y test, y prob)
         roc auc = auc(false positive rate, true positive rate)
         sns.set theme(style = 'white')
         plt.figure(figsize = (8, 8))
         plt.plot(false positive rate, true positive rate, color = '#b01717', label = 'AUC = %0.3f' % roc auc)
         plt.legend(loc = 'lower right')
         plt.plot([0, 1], [0, 1], linestyle = '--', color = '#174ab0')
         plt.axis('tight')
         plt.ylabel('True Positive Rate')
         plt.xlabel('False Positive Rate')
         plt.legend()
         plt.show()
```

	precision	recall	f1-score	support	
0	0.95	0.95	0.95	968	
1	0.10	0.09	0.09	54	
accuracy			0.91	1022	
macro avg	0.52	0.52	0.52	1022	
weighted avg	0.90	0.91	0.91	1022	

ROC AUC score: 0.7328397612488522 Accuracy Score: 0.9060665362035225


```
In [47]: #XGBoost
         #Fitting
         classifier = XGBClassifier(eval metric= 'error', learning rate= 0.1)
         classifier.fit(x train res, y train res)
         v pred = classifier.predict(x test)
         y prob = classifier.predict proba(x test)[:,1]
         cm = confusion matrix(y test, y pred)
         print(classification report(y test, y pred))
         print(f'ROC AUC score: {roc auc score(y test, y prob)}')
         print('Accuracy Score: ',accuracy score(y test, y pred))
         # Visualizing Confusion Matrix
         plt.figure(figsize = (8, 5))
         sns.heatmap(cm, cmap = 'Blues', annot = True, fmt = 'd', linewidths = 5, cbar = False, annot kws = {'fontsize': 15},
                     yticklabels = ['No stroke', 'Stroke'], xticklabels = ['Predicted no stroke', 'Predicted stroke'])
         plt.vticks(rotation = 0)
         plt.show()
         # Roc Curve
         false positive rate, true positive rate, thresholds = roc curve(y test, y prob)
         roc auc = auc(false positive rate, true positive rate)
         sns.set theme(style = 'white')
         plt.figure(figsize = (8, 8))
         plt.plot(false positive rate, true positive rate, color = '#b01717', label = 'AUC = %0.3f' % roc auc)
         plt.legend(loc = 'lower right')
         plt.plot([0, 1], [0, 1], linestyle = '--', color = '#174ab0')
         plt.axis('tight')
         plt.ylabel('True Positive Rate')
         plt.xlabel('False Positive Rate')
```

	precision	recall	f1-score	support
0	0.96	0.93	0.95	968
1	0.16	0.22	0.19	54
accuracy			0.90	1022
macro avg	0.56	0.58	0.57	1022
weighted avg	0.91	0.90	0.91	1022

ROC AUC score: 0.7513965411692685 Accuracy Score: 0.8972602739726028

Out[47]: Text(0.5, 0, 'False Positive Rate')

Based on our evaluation metrics, it seems like the XGBoost model may be slightly better for our classification task compared to the Random Forest model. Here's why:

Firstly, XGBoost shows a higher recall for class 1, which means it's better at identifying individuals who have had a stroke. This is crucial because we want our model to catch as many stroke cases as possible.

Secondly, the F1-score for class 1 is slightly higher in XGBoost, indicating a better balance between precision and recall. This suggests that XGBoost is more accurate in identifying stroke cases while minimizing false positives.

Lastly, XGBoost has a slightly higher ROC AUC score, which means it's better at distinguishing between positive and negative instances.

Overall, while both models perform similarly in terms of accuracy, XGBoost appears to have a slight edge in correctly identifying stroke cases. However, further analysis and model tuning may be needed to improve the performance of both models.

In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	