Modeling of 3D woven composites

Igor Tsukrov

Professor, University of New Hampshire Igor.tsukrov@unh.edu

Andrew Drach

Post-Doc, University of Texas at Austin adrach@ices.utexas.edu

Borys Drach

Assistant Professor, New Mexico State University borys@nmsu.edu

Model preparation steps

- Simulations in DFMA
- Export from DFMA and surface meshing
- Yarn interpenetration correction
- Volumetric meshing of a unit cell
- Assignment of material properties and orientations
- Assignment of boundary conditions
- Creation of loadcases
- Running the jobs
- Post-processing

Processing of DFMA GEO file

Matlab

Processing of DFMA GEO file

Profile re-discretization (for mesh sensitivity studies)

Yarn duplication

Unit cell with additional yarns to ensure that opposite faces have the same geometry

Penetration identification and correction

Penetration identification and correction

Voxel representation of the "host" yarn

Penetrating vertices inside the "host" yarn

Yarn cutting to unit cell dimensions

Unit Cell Side Mesh

Meshing of yarn end caps and unit cell sides was done in MSC Mentat

Final Mesh

3D mesh based on surface meshes was created in MSC Patran. Yarn and matrix mesh were combined and assigned material properties in MSC Mentat

Tri surface mesh: **373,702** elms 3d tetra mesh: **1,034,283** elms

Tri surface mesh: **388,068** elms 3d tetra mesh: **843,040** elms

3d tetra mesh: 1.8

3d tetra mesh: **1,877,323** elms

Several Configurations Meshed and Ready

2x2 Orthogonal

3d tetra mesh: **1,877,323** elms

1x1 Orthogonal

3d tetra mesh: **629,156** elms

Ply to Ply

3d tetra mesh: 1,725,788 elms

Material orientations

FEA Simulations. Boundary conditions

⁻ van der Sluis et al. (2000), Mechanics of Materials

⁻ Trias et al. (2006), Computational Materials Science

Effective properties of different architectures

all three are shown without matrix

3d tetra mesh: 1,877,323 elms 3d tetra mesh: 1,701,378 elms3d tetra mesh: 1,725,788 elms

Model	E₁, GPa	E ₂ , GPa	E ₃ , GPa	V ₁₂	V ₁₃	v ₂₃
$2x2 (V_F = 0.62)$	54.0	69.2	7.5	0.047	0.526	0.468
$1x1 (V_F = 0.67)$	60.5	56.1	8.7	0.061	0.469	0.558
P2P (V _F = 0.64)	63.2	69.4	7.0	0.084	0.499	0.495

Mesh sensitivity study. 1x1 orthogonal

	Base	Quadratic	Refined	Reduced
Elements, x10 ⁶	2.39	2.39	19.1	2.31
Nodes, x10 ⁶	0.41	3.23	3.23	0.39
Mesh type	4-node linear tetrahedron	10-node quadratic tetrahedron	4-node linear tetrahedron	4-node linear tetrahedron
Domains	1+3	1+3	1+7	1+3
Memory, GB	12.0	40.4	85.5	11.6
CPU time, s	128	937	745	129
Actual time, s	208	1,242	2,220	199
% CPU	62	75	33	65

Elastic constant	Model					
	Base (0.66)	Quadratic	Refined	Reduced (0.58)		
E_{x}	58.3	56	55.7	52.0 (-10.8%)		
$E_{\mathcal{Y}}$	54	50.8	50.2	47.5 (-12.0%)		
E_z	8.42	7.96	8.5	7.74 (-8.1%)		
$ u_{yz}$	0.578	0.601	0.569	0.557 (-3.6%)		
$ u_{zx}$	0.070	0.072	0.075	0.071 (1.4%)		
ν_{xy}	0.062	0.060	0.063	0.065 (4.8%)		
G_{yz}	1.61	1.41	1.52	1.51 (-6.2%)		
G_{ZX}	1.95	1.72	1.87	1.83 (-6.2%)		
G_{xy}	4.01	3.85	3.79	3.50 (-12.7%)		

Deformed Mesh

X-,Y-,Z- strains of 0.001, def. factor 500, units MPa. Autoscale Von-Mises

