Benjamin R. Bray

benrbray.com
github.com/benrbray

Education

Georgia Institute of Technology, M.S. Computer Science

(Atlanta, GA) 2017 - 2019

» Focus on high performance computing and machine learning theory. Advised by Dr. Jacob Abernethy.

University of Michigan, B.S. Honors Applied Mathematics

(Ann Arbor, MI) 2013 - 2017

Work Experience

Machine Learning & Graphics Engineer, EmbodyMe

(Tokyo, Japan) May 2020-Present

- » Improved visual quality of our face reenactment app by training a new GAN inpainting architecture.
- » Introduced good software engineering & documentation practices to accommodate a growing team.
- » Refactored training and visualization code to improve modularity and leverage **Python**'s static typing features.
- » Led a biweekly deep learning & graphics reading group to distribute knowledge and follow new developments.

Research Intern, RIKEN AIP, advised by Dr. Emtiyaz Khan

(Tokyo, Japan) Summer 2019

» Studied training dynamics of variational autoencoders (VAEs) and the amortization gap.

Research Assistant, University of Michigan, advised by Dr. Peter McIsaac (Ann Arbor, MI) 2013 – 2015

- » Built a flask app for humanities researchers to visualize topic models on 19th-century German periodicals.
- » Corrected noisy digital scans using a Hidden Markov Model over word fragments. Trained on a synthetic dataset of eroded digital scans with known text. Segmented words based on letter-successor-variety.
- » Implemented online variational inference for LDA/HDP from scratch in Python.
- » Trained a logistic regression classifier to detect toponyms using word2vec features on a Dutch dataset.

Software Engineering Intern, Microsoft

(Seattle, WA) Summer 2016

» Built a multiplatform mobile app (C# / Xamarin) to display Windows telemetry statistics to developers.

Data Science Intern, Are You a Human (acquired by Distil Networks)

(Detroit, MI) Summer 2015

» Improved webcrawler detection accuracy with feature engineering and random forest models for device fingerprinting.

Projects & Open Source

Noteworthy, an open-source Markdown editor with bidirectional links and excellent math support

2020

- » Markdown parsing, processing, and serialization via abstract syntax tree transformations.
- » My prosemirror-math package adds interactive WYSIWYG math editing support to ProseMirror.
- » My remark-cite package adds pandoc-style citation syntax to the remark markdown parser.
- » Built with Electron, **TypeScript**, ProseMirror, KaTeX, and SolidJS.

Open Source Contributions

- » pandoc (Haskell) Added support for hyperlinked citation titles. Improved syntax for fenced blocks.
- » byline (Haskell) Added support for vivid ANSI terminal colors. Resolved unlawful semigroup instance.

Incompressible Fluid Simulation

2019

- ${\tt * Interactive \ C++/CUDA \ simulation \ of incompressible \ flow \ using \ parallel \ Jacobi \ solver \ with \ vorticity \ confinement.}$
- » Compared against CPU implementation with incomplete Cholesky preconditioned conjugate gradient.

Borscht, a command line tool for music library tagging, written in Haskell

2021

- » Queries the Discogs API to assign metadata to local music files, storing the result in a SQLite database.
- » Implemented a custom Datalog inference engine (semi-naive evaluation with stratified negation) allowing playlist creation from first-order logical formulas (parsed with monadic parser combinators).
- » Built with Haskell, cabal, req, aeson, persistent, mtl, stm.

Technical Skills	Advanced	Proficient	Familiar
Languages	TypeScript, Python	Haskell, C#, Java	Scala, C++, Coq
\mathbf{ML}	$\mathtt{numpy},\mathtt{gensim}$	pytorch, scikit-learn	tensorflow
Graphics		CUDA	OpenGL, OpenCV
Tools		ĿTEX, Git, LLVM, flask	Node, Docker

Teaching

Teaching Assistant, CSE 7640, Computational Data Analysis (GT) S20Teaching Assistant, CS 4540, Advanced Algorithms for Machine Learning (GT) F18. F19 Teaching Assistant, EECS 545/445, Machine Learning (UM) S16, F17, S17 » Gave lectures on numerical methods, convex geometry, linear programming, statistical inference. » Authored lecture notes and designed projects. Taught a weekly discussion section of around twenty students. Relevant Coursework (*audited) Cs 6290, Advanced Computer Architecture (Prof. Tom Conte, GT) S19» Pipelining; instruction-level parallelism; superscalar processors; VLIW; Tomasulo/ROB/RAT » Memory hierarchies; multiprocessors; shared memory vs. message passing; cache coherency/consistency Cs 6241, Advanced Compiler Optimizations (Prof. Santosh Pande, GT) S19» For projects, wrote LLVM transform passes to perform optimizations discussed in class. » Reaching definitions; available expressions; partial redundancy elimination; infeasible paths » Data/loop/control dependencies; loop parallelism, reordering, unrolling, and vectorization Cse 6220, High-Performance Parallel Computing (Profs. Aluru & Catalyurek, GT) S19» Parallel runtime analysis: efficiency: interconnection networks & embeddings: MPI programming » Prefix sum; bitonic sort; sample sort; Cannon's algorithm; parallel FFT Math 7244, Stochastic Calculus (Prof. Michael Damron, GT) F18 » Brownian motion; mean-square calculus; continuous-time martingales; stochastic integration ISYE 7687, Discrete Optimization for Machine Learning (Prof. Sebastian Pokutta, GT) S18» Boosting and online learning; bandits and reinforcement learning; away-step conditional gradient » Completed a final report surveying algorithms for online submodular maximization. Stats 700, Bayesian Nonparametrics Seminar (Prof. Long Nguyen, UM) F14, S16 » Existence and construction of Dirichlet processes; stick-breaking and Chinese restaurant processes » Indian Buffet Processes; Hierarchical Dirichlet Processes; online variational inference and natural gradients » Likelihood and sufficiency principles; Bayesian vs. frequentist statistics » Exponential families and conjugacy; Gibbs sampling; variational inference Cs 7545, Statistical Learning Theory (Prof. Jacob Abernethy, GT) F17» PAC-learning and VC-dimension; margin learning and kernel methods; boosting » Online convex optimization; convex-concave games; exponential weights; mirror descent (Prof. Jamie Morgenstern, GT) S18Cs 6550, Design & Analysis of Algorithms » Matroids and greedy algorithms; graph connectivity and shortest paths; matchings; linear programming Gradient and mirror descent; ellipsoid method; Johnson-Lindenstrauss and random projections » Completed a final report on random matrix theory and algorithms for sampling random matrices. Math 6455, Differential Geometry* (Prof. Mohammad Ghomi, GT) S18» Smooth manifolds; vector fields; geodesics; Riemannian metrics; Levi-Civita connection » Submanifolds; differential forms; Lie groups; integral curves and flows Math 571, Numerical Linear Algebra (UM) F15Math 671, Fast Numerical Methods S17(UM) CSE 8803, Advanced Scientific Computing (Prof. Edmond Chow, GT) S18» Stationary iterative methods; conjugate gradient and Krylov subspaces; Chebychev polynomials » Nonuniform FFT and butterfly algorithms; Ewald summation; multigrid; fast multipole methods » Finite element analysis; molecular simulation with hydrodynamic interactions Math 597, Measure Theory & Real Analysis S16 (UM) F16 Math 525, Probability Theory (UM)Math 420, Advanced Linear Algebra (UM) F15Other Involvement

President, Michigan Student Artificial Intelligence Lab

2015-2017

» Organized a weekly machine learning reading group for undergraduate & graduate students