Hallucination Mitigation in Natural Language Generation from Large-Scale Open-Domain Knowledge Graphs

Department of Computer Science and Engineering The University of Texas at Arlington

Xiao Shi, Zhengyuan Zhu, Zeyu Zhang, Chengkai Li

https://idir.uta.edu/

Need for Graph-to-Text

- Operations on knowledge graph (e.g., query, question-answering, data mining) lead to graph fragments which can be challenging for end users to comprehend.
- Natural language narration can help tackle this usability challenge.
- Fine-tuning PLMs produced STOA results on WebNLG (Ribeiro et al., 2021; Wang et al., 2021; Clive et al., 2021) and DART (Aghajanyan et al., 2021)

GraphNarrator: Large-Scale Graph-to-Text

GraphNarrative Dataset

GraphNarrative Existing Graph-to-Text Datasets

Among the largest

Large linguistic variation

Diverse graph shapes

Open-domain

Hard to scale human-written training graph-text pairs
Hand-crafted text may follow monotonous templates
Largely limited to star graphs
Some focus on specific domains

Dataset	Text source	Domain	Instances	Entities	Triples	Relation	Star Graphs
WebNLG	human	15 DBpedia categories	25K	2K	3K	354	57%
DART	human	N/A	38K	27K	32K	3,834	83%
AGENDA	automatic	scientific research	40K	159K	177K	7	2%
EventNarrative	automatic	events	224K	305K	649K	672	94%
TEKGEN	automatic	open domain	7,895K	4,856K	11,373K	663	96%
GraphNarrative	automatic	open domain	8,769K	1,853K	15,472K	1,724	22%

10 most frequent graph shapes among 7,920 distinct shapes

Hallucination Mitigation: Sentence Trimming

- Cause of hallucination: Inconsistency between graph and text in training pairs
- Idea for mitigating hallucination: Eliminating portions of the sentence not present in the graph while preserving the sentence's main idea

Sentence FlyBack[1] is[2] an[3] open[4]-[5]source[6] backup software[7] for[8] Linux[9] based[10] on[11] Git[12] and[13] modeled[14] loosely[15] after[16] Apple[17]'s[18] Time Machine[19].[20]

Dependency parsing tree of the original sentence

Hallucination in Graph-to-Text

• Output texts may contain fabricated facts not present in input graphs.

Goldie Gets Along is a 1951 American comedy film directed by Malcolm St. Clair (filmmaker) and starring Lili Damita and Charles Morton (actor)

Output
Graph-to-Text Model (Finetuned T5/BART)
Input

[S] Goldie Gets Along [P] film directed by [O] Malcolm St. Clair (filmmaker) [S] Goldie Gets Along [P] film actor [O] Lili Damita [S] Goldie Gets Along [P] film actor [O] Charles Morton (actor)

Experiments and Results

Model	Sentence Trimming	GraphNarrative			TEKGEN			
		BLEU	METEOR	chrF++	BLEU	METEOR	chrF++	
BART-large	w/o	32.35	17.45	37.12	41.51	23.62	47.13	
BART-large	$_{ m W}/$	46.04	24.35	49.69	48.32	29.90	57.50	
T5-large	w/o	22.22	17.16	36.78	43.03	24.21	48.05	
T5-large	$_{ m W}/$	45.12	24.77	50.44	49.83	30.52	58.25	

Model performance on GraphNarrative and TEKGEN

- Fine-tuning T5-large model attained the best performance across most metrics.
- Models consistently perform better with sentence trimming than without.

Sentence	Hallucinated	Missed	Hallucinated	Missed	Chamman				
Trimming	Entities	Entities	Relations	Relations	Grammar				
w/o	1.163	0.003	1.340	0.040	4.793				
$_{ m W}/$	0.306	0.003	0.453	0.083	4.613				
Human evaluation of GraphNarrative quality									
Sentence	Hallucinated	Missed	Hallucinated	Missed					
Trimming	Entities	Entities	Relations	Relations	Grammar				
w/o	1.643	0.063	1.363	0.240	4.613				
$_{ m W}/$	0.260	0.056	0.300	0.370	4.356				
Human evaluation of generated sentences									

- Sentence trimming effectively reduced hallucinated entities and relations.
- Only a slight decline in the grammar score.

Model	BLEU		METEOR			chrF++			
	all	seen	unseen	all	seen	unseen	all	seen	unseen
(Ribeiro et al., 2021)	59.70	64.71	53.67	44.18	45.85	42.26	75.40	78.29	72.25
(Wang et al., 2021)	60.56	66.07	53.87	44.00	46.00	42.00	-	-	-
GNST-T5 (ours)	61.46	66.49	55.35	44.30	46.23	42.08	76.20	79.35	72.76

Further fine-tuning results on WebNLG

• Fine-tuned T5-large model using GraphNarrative with sentence trimming achieved state-of-the-art results when further fine-tuned on WebNLG

Model	WebNLG			DART			
	BLEU	METEOR	chrF++	BLEU	METEOR	chrF++	
T5-large	4.01	9.54	24.64	3.44	7.93	23.17	
GN-T5	21.38	31.82	56.83	19.35	27.35	50.41	
GNST-T5	27.6	32.27	56.81	19.42	28.07	50.96	

Zero-shot learning results on WebNLG and DART

• GraphNarrative dataset can improve PLM's generalization ability

Contributions

- GraphNarrative: new dataset to fill the gap between existing datasets and large-scale real-world settings
- The first to quantify hallucinations in graph-to-text models
- Sentence trimming: novel approach for mitigating hallucination
- Comprehensive experiments and evaluations on GraphNarrative's quality and sentence trimming's effectiveness

https://github.com/idirlab/graphnarrator

