Recall: An $n \times n$ matrix A defines a linear transformation

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^n$$

given by $T_A(\mathbf{v}) = A\mathbf{v}$.

Next goal: Understand this linear transformation better.

Example.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \qquad \begin{array}{c} T_{A} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\ v \longmapsto Av \end{array}$$

$$\alpha_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad A\alpha_{1} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \cdot \alpha_{1}$$

$$\alpha_{2} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \qquad A\alpha_{2} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} = 3 \cdot \alpha_{2}$$

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad T_{A} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$V \longmapsto AV$$

$$Ae_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad Ae_{2} : \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$Take \qquad V_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad V_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$AV_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \cdot V_{1}$$

$$AV_{2} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3V_{2}$$

Definition

Let A be an $n \times n$ matrix. If $\mathbf{v} \in \mathbb{R}^n$ is a non-zero vector and λ is a scalar such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

then we say that

- ullet λ is an eigenvalue of A
- ullet v is an *eigenvector* of A corresponding to λ .

Example.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
We had:
$$A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
So: $\lambda_1 = 2$, $\lambda_2 = 3$ are eigenvalues of A
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is an eigenvector corresponding to $\lambda_1 = 2$.
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 is an eigenvector corresponding to $\lambda_2 = 3$.

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{We had:} \\ A \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} = 1 \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} , \quad A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\text{So:} \quad \lambda_1 = 1, \quad \lambda_2 = 3 \text{ are eigenvalues of A}$$

$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \text{ is an eigenvector corresponding to } \lambda_1 = 1.$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ is an eigenvector corresponding to } \lambda_2 = 3.$$

Computation of eigenvalues

Recall: $I_n = n \times n$ identity matrix:

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Note:

$$\lambda I_n = \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix}$$

For any $v \in \mathbb{R}^n$ we have: $(\lambda I_n)_v = \lambda (I_n v) = \lambda v$

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if the matrix equation

$$(A - \lambda I_n)\mathbf{x} = \mathbf{0}$$

has a non-trivial solution.

Proof:
$$\lambda$$
 is an eigenvalue of A

there is a vector $v \neq 0$ such that $\Delta v = \lambda v = (\lambda I_n)v$

there is a vector $v \neq 0$ such that $(\Delta - \lambda I_n)v = 0$

Propostiton

If B is an $n \times n$ matrix then equation

$$Bx = 0$$

has a non-trivial solution if and only of the matrix B is not invertible.

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if

$$\det(A - \lambda I_n) = 0$$

Proof:

$$\beta \text{ is an eigenvalue of A}$$

$$(A - βI_n) $x = 0 \text{ has a non-trivial solution}$

$$(A - βI_n) is not invertible$$

$$det (A - βI_n) = 0$$$$

Example. Find all eigenvalues of the following matrix:

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Solution: We need to find $\lambda \in \mathbb{R}$ such that det $(A - \lambda I) = 0$

$$\det (A - \lambda I) = \det \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$= \det \begin{bmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 2 \\ 1 & 3 - \lambda & 2 \\ 1 & 2 & 2 - \lambda \end{bmatrix}$$

$$= (2 - \lambda) \cdot (3 - \lambda) \cdot (2 - \lambda) + 2 \cdot 1 \cdot 2 + 1 \cdot 1 \cdot 2$$

$$- 1 \cdot (3 - \lambda) \cdot 1 - (2 - \lambda) \cdot 1 \cdot 2 - 2 \cdot 1 \cdot (2 - \lambda)$$

$$= -\lambda^3 + 7\lambda^2 - 11\lambda + 5$$

Ne obtain: λ is an eigenvalue of A if and only if $-\lambda^3 + 7\lambda^2 - 11\lambda + 5 = 0$

Check: The only solutions of this equation are $\lambda_1 = 1$, $\lambda_2 = 5$. We obtain: The matrix A has two eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 5$.

Definition

If A is an $n \times n$ matrix then

$$P(\lambda) = \det(A - \lambda I_n)$$

is a polynomial of degree n. $P(\lambda)$ is called the *characteristic polynomial* of the matrix A.

Upshot

If A is a square matrix then

eigenvalues of
$$A = \text{roots of } P(\lambda)$$

Example.

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

We had:
$$P(\lambda) = \det(A - \lambda I) = -\lambda^3 + 7\lambda^2 - 11 \cdot \lambda + 5$$

the characteristic polynomial of the matrix A

Corollary

An $n \times n$ matrix can have at most n distinct eigenvalues.

Proof: The characteristic polynomial P(2) of A is a polynomial of degree n, so it can have at most n distinct mots.

Computation of eigenvectors

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\begin{cases} \text{eigenvectors of } A \\ \text{corresponding to } \lambda \end{cases} = \begin{cases} \text{vectors in} \\ \text{Nul}(A - \lambda I_n) \end{cases}$$

Proof:

$$V \in NU(A-\lambda I)$$
 $(A-\lambda I)_{V} = 0$
 $A_{V} = (\lambda I)_{V}$
 $A_{V} = \lambda V$

Recall: If B is an man matrix then Nul (B) is a subspace of Rⁿ.

Corollary/Definition

If A is an $n \times n$ matrix and λ is an eigenvalue of A then the set of all eigenvectors corresponding to λ is a subspace of \mathbb{R}^n .

This subspace is called the *eigenspace* of A corresponding to λ .

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\begin{cases} \text{eigenspace of } A \\ \text{corresponding to } \lambda \end{cases} = \text{Nul}(A - \lambda I_n)$$

Example. Consider the following matrix:

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Recall that eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 5$. Compute bases of eigenspaces of A corresponding to these eigenvalues.

Solution.

$$\lambda_1 = 1$$

We need to solve:

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

aug. matrix :

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{\text{row}} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \cdot \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

We obtain:

$$\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\} = \left(\begin{array}{c} a \text{ basis of } \\ Nul\left(A-1\cdot I\right) \end{array} \right) = \left(\begin{array}{c} a \text{ basis of the eigenspace} \\ of A \text{ for the eigenvalue } \lambda_1^{-1} \end{bmatrix} \right)$$

$$\lambda_2 = 5$$

$$\left(\begin{array}{c} \text{eigenspace} \\ \text{of } \lambda_1 = 5 \end{array} \right) = \text{Nul} \left(A - 5 \cdot I \right)$$

$$= \text{Nul} \left(\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \right) = \text{Nul} \left(\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \right)$$

We need to solve:

$$\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

aug. matrix:

$$\begin{bmatrix} -3 & 2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 2 & -3 & 0 \end{bmatrix} \xrightarrow{\text{row raduction}} \begin{bmatrix} x_1 & x_2 & x_3 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

We obtain:

$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} = \left(\begin{array}{c} a \text{ basis of} \\ Nul(A-5\cdot I) \end{array} \right) = \left(\begin{array}{c} a \text{ basis of the eigenspace} \\ of A \text{ for the eigenvalue } \lambda_2 = 5 \end{array} \right)$$