

School of Engineering and Computer Science

COMP 307 — Lecture 12

Evolutionary Computing 3 (ML 9)

**GP** for Symbolic Regression and Classification

Dr Bing Xue (Prof. Mengjie Zhang)

Bing.xue@ecs.vuw.ac.nz

COMP307 GP2(ML9): 3

# Regression

|   | Year | Winner             | Incumbent | Probability Incumbent Wins |
|---|------|--------------------|-----------|----------------------------|
|   | 1936 | Franklin Roosevelt | Won       | 0.999888                   |
|   | 1864 | Abraham Lincoln    | Won       | 0.99967                    |
|   | 1956 | Dwight Eisenhower  | Won       | 0.998827                   |
|   | 1996 | William Clinton    | Won       | 0.996879                   |
|   | 1924 | Calvin Coolidge    | Won       | 0.975284                   |
|   | 1984 | Ronald Reagan      | Won       | 0.969                      |
| _ | 1916 | Woodrow Wilson     | Won       | 0.951723                   |
| П | 2012 | ?                  | Obama?    | 0.948372                   |
| ц | 1964 | Lyndon Johnson     | Won       | 0.877164                   |
|   | 1944 | Franklin Roosevelt | Won       | 0.868832                   |
|   | 1344 | Trankiii Nooseveit | WOII      | 0.000032                   |
|   | 1992 | William Clinton    | Lost      | 0.853392                   |

- y: probability of one win in the presidential election
- x: a stock market data (feature/attribute)
- Used previous years examples to find the relationship between x and y:  $y = x^2 + e^x 0.1234 * x$
- Given the x value for Obama, to calculate the y value the probability of Obama being the president in 2012.

COMP307 GP2(ML9): 2

#### Outline

- Statistical parameter regression
- Symbolic regression
- GP for symbolic regression
- GP for binary classification

COMP307 GP2(ML9): 4

## Regression

|   | Year | Winner             | Incumbent | Probability Incumbent Wins |
|---|------|--------------------|-----------|----------------------------|
|   | 1936 | Franklin Roosevelt | Won       | 0.999888                   |
|   | 1864 | Abraham Lincoln    | Won       | 0.99967                    |
|   | 1956 | Dwight Eisenhower  | Won       | 0.998827                   |
|   | 1996 | William Clinton    | Won       | 0.996879                   |
|   | 1924 | Calvin Coolidge    | Won       | 0.975284                   |
|   | 1984 | Ronald Reagan      | Won       | 0.969                      |
|   | 1916 | Woodrow Wilson     | Won       | 0.951723                   |
| П | 2012 | ?                  | Obama?    | 0.948372                   |
| ч | 1904 | Lyndon Johnson     | Won       | 0.877104                   |
| 1 | 1944 | Franklin Roosevelt | Won       | 0.868832                   |

#### If you are interested, check:

http://blog.minitab.com/blog/adventures-in-statistics/predicting-the-us-presidential-election-evaluating-two-models-part-one

|  | 1828 | Andrew Jackson     | Lost | 0.18699  |
|--|------|--------------------|------|----------|
|  | 1840 | William Harrison   | Lost | 0.094275 |
|  | 1932 | Franklin Roosevelt | Lost | 0.000443 |

### (Statistical) Regression Analysis

- In statistics, regression analysis examines the relation of a dependent variable (response variable) to specified independent variables (explanatory variables)
  - The *mathematical model* of their relationship is the *regression equation*
  - estimates of one or more hypothesized regression parameters ("constants")
- Allow predicting the value of the dependent variable for given value(s) of independent variable(s)
- e.g. curve fitting, prediction, modelling of causal relationships, and testing scientific hypotheses about relationships between variables

COMP307

GP2(ML9): 7

#### Symbolic Regression

- Problems of statistical (parameter) regression
- Need domain expertise to assume certain distribution of the given data, which is usually unknown in advance
- Need statistical expertise to find an "appropriate" model, which is usually very hard







- Symbolic regression: the object to be found is a symbolic description of a model, not just a set of coefficients/parameters in a pre-specified model.
- To find both:
  - the model structure, and
  - the corresponding coefficients/parameters

GP2(ML9): 6

## (Statistical) Regression Analysis

Process

COMP307

- Given data points
- Assume linear model
- Equation:

$$y = \alpha + \beta x + \epsilon$$

- lpha is the intercept
- $-\beta$  is the slop
- $\cdot \epsilon$  is the error term
- The error term is usually taken to be normally distributed
- Use some methods to estimate  $\alpha$  and  $\beta$

#### Simple Linear Regression



Assume model structure, estimate model parameters

COMP307

GP2(ML9): 8

#### **GP for Symbolic Regression**

- Objective: Find a program/model that produces the correct value of the dependent variable y when given the value of independent variable x
- Terminal Set: x and random number r
- Function Set: {+, -, \*, %}
- Fitness Cases: 50 cases of x and the corresponding y values (e.g. 50 instances/patterns/cases)
- Fitness Measure: Sum of the absolute errors for the 50 cases
- Parameters: Population = 100. Generations = 51, ProgSize = 6? reproduction rate: 5%, crossover rate: 90%, mutation rate: 5%
- Success: The fitness value is smaller than a pre-defined value, e.g. 0.55
- Termination criteria: satisfactory solutions found, or at generation 51.

## **GP for Symbolic Regression**

- One GP run gave:  $y = (x 0.9999) x^3$  which can be written as (-(x-0.9999) (\*(\*x x) x))
  - Successful ? if the "true" model is
  - $-y = (x-1) x^3$



· Sometimes:

(% (% (\* (\* X 0.571) (\* (- (\* (+ (% 0.634094 0.68469) (+ (+ X X) -0.5992))(\* (\* (+ (% 0.634094 0.68469) (+ X -0.5992))(\* (% 0.354904 - 0.7549) (\* X 0.571))) (- X 0.395493))) - 0.4665) ....another 15 lines)

- This example: one input variable (x), training set only
- Real-world applications: usually multiple variables, can have a separate test set, but use the same principle

COMP307

GP2(ML9): 11

## GP for Symbolic Regression Applications

- GP for symbolic regression has many real-world applications, including:
  - Economic prediction, e.g. stock market prediction, GDP prediction,
  - Industrial prediction, e.g. prediction of containers handling capacity at a particular sea port; short-term, medium-term and long-term prediction of power load at a region
  - Experiential formula modelling in Engineering, e.g. formulating the amount of Gas emitted from Coal surface
  - Time series projection, e.g. CPI projection for a country or a region
  - Selection/Choice of Equipments, e.g. equipment choice for work platform in mine industry
  - Fault diagnosis, e.g. find optimal strategy in fault isolation, fault analysis in combustion system for diesel engine
  - Robot self-adaptive behaviour
  - GIS systems, e.g. projection transformation

COMP307 GP2(ML9): :

#### GP for Symbolic Regression Problems: Properties

• Compared with statistical parameter regression methods, GP method has the following properties:

- Does NOT need to assume any distribution of data set,
- Does NOT need to assume the independence of the input variables
- Does NOT need to use any statistical background knowledge to assume any model
- Can automatically learn/**evolve** both the model structure and the model parameters at the same time!
- System input: just the data with a black box model/parameters
- System output: a white box *model structure* with appropriate *parameters*!

### **Binary Classification**

GP2(ML9): 12

- Binary classification is the task of classifying the instances of a given set into two categories on the basis of whether they have some property or not
- Two target classes, e.g.
- Disease vs non-disease
- normal vs abnormal
- grant loan or not
- fault vs non-fault/normal
- X vs O

COMP307

object vs non-object



COMP307 GP2(ML9): 13

### **GP for Binary Classification**

- Compared with GP for symbolic regression problems, the terminal set and function set can be the same or very similar, but the fitness function is normally very different
- In fitness function, we can simply use classification accuracy or error rate, which need to determine which class a training example belongs to
- This is called Classification Strategy or Program Class
  Translation Rule
- For binary classification problems, this is quite easy: we can
  use the value "zero" in the real number space for the
  program output to separate the two classes

COMP307

GP2(ML9): 15

#### **GP for Classification Example**

- Task: Object classification: objects vs non-objects
- Objective: Find a program which can successfully *split* the instances into *two* classes
- Terminal Set: Object attributes: pixels, pixel statistics, or specific features, and random numbers.
- Function Set: {+, -, \*, %, ABS, EXP, LOG, SIN, COS, RAND}
- Fitness Cases: Build a training set of *patterns* (*feature vectors*), some are objects, some not.
- Fitness Measure: classification accuracy/ error rate
- Classification strategy: ProgOut > 0 for objects, otherwise non-objects
- Parameters: Population = 200? Generations = 50? Crossover rate =? Mutation rate = ? Program size =?

COMP307 GP2(ML9): 14

#### GP for BC — Program Class Translation Rule



```
Genetic Program: (+ (* 0.23 F3)
(IF (- F1 F2) 0.46 (/ F3 0.82))
```

if ProgOut < 0 then Class1 else Class2;</pre>

COMP307

GP2(ML9): 16

#### Basic GP Algorithm

This GP algorithm is based on the proportional selection model

- 1. Initialise the population
- 2. Evaluate the fitness of each individual program in the current population.
- 3. Until the new population is fully created, repeat the following:
  - Select programs in the current generation.
  - Perform genetic operators on the selected programs.
  - Insert the result of the genetic operations into the new generation.
- 4. If the termination criterion is not fulfilled, repeat steps 2-4 with the new generation.
- 5. Present the best individual in the population as the output.

COMP307 GP2(ML9): 17

## Tackling a Problem with GP

- What is the set of terminals used in the program trees?
- What kind of functions can be used to form the function set to represent the program tree?
- What is the fitness measure?
- What values can be given for the parameters and variables for controlling the evolutionary process, for example, population size and number of generations?
- When to terminate a run?
- How do we know the result is good enough?
- What genetic operators, at what frequencies, are going to be applied?

COMP307 GP2(ML9): 18

## Summary

- GP for symbolic regression
- Properties of GP for symbolic regression
- GP for binary classification
- How do you use GP for multi-class classification? Can we get better translation rules? COMP422
- Next Lectures: Quantifying uncertainty and probabilistic reasoning