

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
C_{e} =	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica analy hom are carract.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1478.66</u>	7144.22	k
Compressive Load =	<u>4515.45</u>	<u>5355.74</u>	k
Lateral Load =	<u>295.09</u>	3224.97	k
Moment (Weak Axis) =	<u>0.59</u>	0.30	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 172687.8 in-lbs Resisting Force Required = 2616.48 lbs A minimum 132in long x 38in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4360.80 lbs to resist overturning. Minimum Width = 38 in in Weight Provided = 7576.25 lbs Sliding Force = 744.05 lbs Use a 132in long x 38in wide x 18in tall Friction = 0.4 Weight Required = 1860.13 lbs ballast foundation to resist sliding. Resisting Weight = 7576.25 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 744.05 lbs Cohesion = 130 psf Use a 132in long x 38in wide x 18in tall 34.83 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3788.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

f'c =

Length =

2500 psi

8 in

 Bearing Pressure

 Ballast Width

 38 in
 39 in
 40 in
 41 in

 Pftg = (145 pcf)(11 ft)(1.5 ft)(3.17 ft) =
 7576 lbs
 7776 lbs
 7975 lbs
 8174 lbs

ASD LC		1.0D -	+ 1.0S		1.0D + 0.6W				1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in
FA	1320 lbs	1320 lbs	1320 lbs	1320 lbs	1816 lbs	1816 lbs	1816 lbs	1816 lbs	2242 lbs	2242 lbs	2242 lbs	2242 lbs	-674 lbs	-674 lbs	-674 lbs	-674 lbs
FB	1340 lbs	1340 lbs	1340 lbs	1340 lbs	2199 lbs	2199 lbs	2199 lbs	2199 lbs	2543 lbs	2543 lbs	2543 lbs	2543 lbs	-3290 lbs	-3290 lbs	-3290 lbs	-3290 lbs
F _V	143 lbs	143 lbs	143 lbs	143 lbs	1316 lbs	1316 lbs	1316 lbs	1316 lbs	1084 lbs	1084 lbs	1084 lbs	1084 lbs	-1488 lbs	-1488 lbs	-1488 lbs	-1488 lbs
P _{total}	10236 lbs	10436 lbs	10635 lbs	10834 lbs	11591 lbs	11790 lbs	11990 lbs	12189 lbs	12361 lbs	12560 lbs	12759 lbs	12959 lbs	582 lbs	702 lbs	822 lbs	941 lbs
M	3342 lbs-ft	3342 lbs-ft	3342 lbs-ft	3342 lbs-ft	5416 lbs-ft	5416 lbs-ft	5416 lbs-ft	5416 lbs-ft	6289 lbs-ft	6289 lbs-ft	6289 lbs-ft	6289 lbs-ft	2518 lbs-ft	2518 lbs-ft	2518 lbs-ft	2518 lbs-ft
е	0.33 ft	0.32 ft	0.31 ft	0.31 ft	0.47 ft	0.46 ft	0.45 ft	0.44 ft	0.51 ft	0.50 ft	0.49 ft	0.49 ft	4.32 ft	3.59 ft	3.06 ft	2.68 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	241.5 psf	240.9 psf	240.3 psf	239.8 psf	247.9 psf	247.2 psf	246.4 psf	245.7 psf	256.4 psf	255.4 psf	254.4 psf	253.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	346.2 psf	342.9 psf	339.8 psf	336.8 psf	417.6 psf	412.4 psf	407.6 psf	402.9 psf	453.3 psf	447.3 psf	441.5 psf	436.1 psf	104.3 psf	75.3 psf	67.5 psf	65.0 psf

Maximum Bearing Pressure = 453 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 38in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2915.5 \text{ ft-lbs}$

Resisting Force Required = 1841.37 lbs S.F. = 1.67

Weight Required = 3068.95 lbs Minimum Width = 38 in in Weight Provided = 7576.25 lbs A minimum 132in long x 38in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		38 in			38 in			38 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	239 lbs	550 lbs	188 lbs	770 lbs	2185 lbs	730 lbs	88 lbs	161 lbs	37 lbs		
F _V	184 lbs	181 lbs	186 lbs	137 lbs	133 lbs	144 lbs	185 lbs	182 lbs	185 lbs		
P _{total}	9618 lbs	9929 lbs	9567 lbs	9698 lbs	11114 lbs	9659 lbs	2830 lbs	2903 lbs	2780 lbs		
M	728 lbs-ft	720 lbs-ft	732 lbs-ft	547 lbs-ft	545 lbs-ft	569 lbs-ft	726 lbs-ft	718 lbs-ft	727 lbs-ft		
е	0.08 ft	0.07 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.26 ft	0.25 ft	0.26 ft		
L/6	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft		
f _{min}	236.5 psf	245.9 psf	234.8 psf	248.6 psf	289.4 psf	246.3 psf	41.8 psf	44.3 psf	40.3 psf		
f _{max}	315.7 psf	324.2 psf	314.5 psf	308.2 psf	348.7 psf	308.3 psf	120.7 psf	122.4 psf	119.3 psf		

Maximum Bearing Pressure = 349 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 38in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 38in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.473 k	Maximum Axial Load = 4.908 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>47%</u>	Utilization = 66%
Diagonal Strut		
Maximum Axial Load =	2.228 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>30%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 40.12 in

Allowable Story Drift for All Other
Structures, $\Delta = \{$ 0.020 h_{sx} 0.802 in

Max Drift, $\Delta_{MAX} =$ 0.442 in

0.442 \leq 0.802, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 102 \\ J &= 0.432 \\ 179.449 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}]} \\ \phi F_1 &= 29.0 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.9 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 40.985$$

 $Cc = 41.015$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ k &= & 897074 \text{ mm}^4 \\ & & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2*\sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi yFcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{cases} 1.6Dt \\ 1.1 \end{cases}$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.1 \text{ ksi}$$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \ ksi \\ lx = & 984962 \ mm^4 \\ & 2.366 \ in^4 \\ y = & 43.717 \ mm \\ Sx = & 1.375 \ in^3 \\ M_{max} St = & 3.363 \ k\text{-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 28.2$$

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 27.5 \\ C_0 = & 27.5 \\ C_0 = & 27.5 \\ S2 = & 27.5 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{WK} = & 28.2 \text{ ksi} \\ \text{Iy} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{X} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ST = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4

$$y = 0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

28.2 ksi

$$\begin{array}{rll} & \text{Iy} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} \text{Wk} = & 1.460 \text{ k-ft} \end{array}$$

Compression

 $\phi F_i St =$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{\text{max}} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6B}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

S14.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 38.2 \text{ ksi}$$

 $\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54.031	-54.031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-117.695	-117.695	0	0
2	M14	٧	-117.695	-117.695	0	0
3	M15	V	-184.95	-184.95	0	0
4	M16	٧	-184.95	-184.95	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
-	1	M13	V	269.018	269.018	0	0
	2	M14	V	206.247	206.247	0	0
	3	M15	V	112.091	112.091	0	0
4	4	M16	У	112.091	112.091	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	638.246	2	1290.407	2	.622	1	.003	1	0	1	0	1
2		min	-792.507	3	-1702.993	3	-51.713	5	229	4	0	1	0	1
3	N7	max	.026	9	1175.424	1	381	12	0	12	0	1	0	1
4		min	207	2	-332.29	3	-226.995	4	451	4	0	1	0	1
5	N15	max	.022	9	3473.421	2	0	2	0	2	0	1	0	1
6		min	-2.317	2	-1137.428	3	-218.694	4	44	4	0	1	0	1
7	N16	max	2245.602	2	4119.8	2	0	11	0	11	0	1	0	1
8		min	-2480.748	3	-5495.551	3	-51.676	5	231	4	0	1	0	1
9	N23	max	.029	14	1175.424	1_	6.675	1	.014	1	0	1	0	1
10		min	207	2	-332.29	3	-222.394	4	444	4	0	1	0	1
11	N24	max	638.246	2	1290.407	2	045	12	0	12	0	1	0	1
12		min	-792.507	3	-1702.993	3	-52.182	5	231	4	0	1	0	1
13	Totals:	max	3519.363	2	12452.587	2	0	2						
14		min	-4066.824	3	-10703.546	3	-820.025	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	69.537	1	482.587	2	-6.003	12	0	15	.165	1	0	4
2			min	4.289	12	-842.088	3	-136.133	1	016	2	.01	12	0	3
3		2	max	69.537	1	336.943	2	-4.849	12	0	15	.077	4	.678	3
4			min	4.289	12	-592.772	3	-104.382	1	016	2	.003	10	387	2
5		3	max	69.537	1	191.299	2	-3.695	12	0	15	.043	5	1.12	3
6			min	4.289	12	-343.455	3	-72.632	1	016	2	032	1	636	2
7		4	max	69.537	1	45.842	1	-2.541	12	0	15	.024	5	1.326	3
8			min	4.289	12	-94.138	3	-40.881	1	016	2	086	1	748	2
9		5	max	69.537	1	155.179	3	234	10	0	15	.005	5	1.297	3
10			min	4.289	12	-99.989	2	-20.628	4	016	2	109	1	723	2
11		6	max	69.537	1	404.495	3	22.621	1	0	15	004	12	1.033	3
12			min	2.622	15	-245.633	2	-16.502	5	016	2	103	1	559	2
13		7	max	69.537	1	653.812	3	54.371	1	0	15	004	12	.533	3
14			min	-5.624	5	-391.276	2	-14.717	5	016	2	066	1	26	1
15		8	max	69.537	1	903.129	3	86.122	1	0	15	.003	2	.18	2
16			min	-15.319	5	-536.92	2	-12.932	5	016	2	04	4	202	3
17		9	max	69.537	1	1152.446	3	117.873	1	0	15	.096	1	.755	2
18			min	-25.013	5	-682.564	2	-11.146	5	016	2	05	5	-1.172	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
19		10	max	69.537	1	1401.762	3	149.624	1	.016	2	.223	1	1.469	2
20			min	4.289	12	-828.208	2	-88.364	14	0	12	.003	12	-2.379	3
21		11	max	69.537	1	682.564	2	-3.229	12	.016	2	.096	1	.755	2
22			min	4.289	12	-1152.446	3	-117.873	1	0	15	0	3	-1.172	3
23		12	max	69.537	1	536.92	2	-2.075	12	.016	2	.039	4	.18	2
24			min	4.289	12	-903.129	3	-86.122	1	0	15	005	3	202	3
25		13	max	69.537	1	391.276	2	921	12	.016	2	.018	5	.533	3
26			min	4.289	12	-653.812	3	-54.371	1	0	15	066	1	26	1
27		14	max	69.537	1	245.633	2	.519	3	.016	2	0	15	1.033	3
28			min	2.48	15	-404.495	3	-23.867	4	0	15	103	1	559	2
29		15	max	69.537	1	99.989	2	9.13	1	.016	2	004	12	1.297	3
30			min	-5.895	5	-155.179	3	-17.191	5	0	15	109	1	723	2
31		16	max	69.537	1	94.138	3	40.881	1	.016	2	002	12	1.326	3
32			min	-15.59	5	-45.842	1	-15.405	5	0	15	086	1	748	2
33		17	max	69.537	1	343.455	3	72.632	1	.016	2	.002	3	1.12	3
34			min	-25.285	5	-191.299	2	-13.62	5	0	15	054	4	636	2
35		18	max	69.537	1	592.772	3	104.382	1	.016	2	.052	1	.678	3
36			min	-34.98	5	-336.943	2	-11.835	5	0	15	059	5	387	2
37		19	max	69.537	1	842.088	3	136.133	1	.016	2	.165	1	0	1
38			min	-44.675	5	-482.587	2	-10.049	5	0	15	069	5	0	3
39	M14	1	max	47.511	4	530.587	2	-6.181	12	.012	3	.192	1	0	1
40			min	1.894	12	-670.426	3	-140.945	1	014	2	.011	12	0	3
41		2	max	37.816	4	384.943	2	-5.027	12	.012	3	.114	4	.543	3
42			min	1.894	12	-480.393	3	-109.194	1	014	2	.005	10	432	2
43		3	max	35.785	1	239.299	2	-3.873	12	.012	3	.066	5	.907	3
44			min	1.894	12	-290.36	3	-77.444	1	014	2	014	1	727	2
45		4	max	35.785	1	93.656	2	-2.719	12	.012	3	.036	5	1.092	3
46			min	1.894	12	-100.327	3	-45.693	1	014	2	072	1	884	2
47		5	max	35.785	1	89.706	3	696	10	.012	3	.008	5	1.097	3
48			min	.773	15	-53.91	1	-32.005	4	014	2	1	1	904	2
49		6	max	35.785	1	279.739	3	17.809	1	.012	3	004	12	.922	3
50			min	-8.509	5	-197.632	2	-26.686	5	014	2	098	1	786	2
51		7	max	35.785	1	469.772	3	49.56	1	.012	3	004	12	.569	3
52			min	-18.204	5	-343.276	2	-24.901	5	014	2	067	1	531	2
53		8	max	35.785	1	659.805	3	81.31	1	.012	3	.001	10	.035	3
54			min	-27.898	5	-488.92	2	-23.116	5	014	2	067	4	138	2
55		9	max	35.785	1	849.838	3	113.061	1	.012	3	.087	1	.407	1
56			min	-37.593	5	-634.564	2	-21.33	5	014	2	086	5	678	3
57		10	max	58.688	4	1039.871	3	144.812	1	.014	2	.209	1	1.065	1
58		10	min	1.894	12	-780.208	2	-91.015	14	012	3	.003	12	-1.57	3
59		11	max		4	634.564	2	-3.051	12	.014	2	.114	4	.407	1
60			min	1.894	12	-849.838	3	-113.061	1	012	3	001	3	678	3
61		12	max	39.298	4	488.92	2	-1.897	12	.014	2	.064	5	.035	3
62			min	1.894	12	-659.805	3	-81.31	1	012	3	005	1	138	2
63		13		35.785	1	343.276	2	743	12	.014	2	.034	5	.569	3
64			min	1.894	12	-469.772	3	-49.56	1	012	3	067	1	531	2
65		14	max	35.785	1	197.632	2	.787	3	.014	2	.006	5	.922	3
66			min	1.894	12	-279.739	3	-32.689	4	012	3	098	1	786	2
67		15	max	35.785	1	53.91	1	13.942	1	.014	2	003	12	1.097	3
68		<u>`</u>	min	1.755	15	-89.706	3	-26.832	5	012	3	1	1	904	2
69		16	max	35.785	1	100.327	3	45.693	1	.014	2	001	12	1.092	3
70		· ·	min	-7.045	5	-93.656	2	-25.047	5	012	3	072	1	884	2
71		17	max	35.785	1	290.36	3	77.444	1	.014	2	.003	3	.907	3
72			min	-16.74	5	-239.299	2	-23.261	5	012	3	071	4	727	2
73		18		35.785	1	480.393	3	109.194	1	.014	2	.074	1	.543	3
74		10	min	-26.435	5	-384.943	2	-21.476	5	012	3	088	5	432	2
75		19	max		1	670.426	3	140.945	1	.014	2	.192	1	0	1
10		1 0	παλ	00.700		0.720	J	170.070	1 1	.017		.104			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-36.13	5	-530.587	2	-19.691	5	012	3	108	5	0	3
77	M15	1	max	71.202	5	745.057	2	-6.101	12	.014	2	.218	4	0	2
78			min	-37.27	1	-370.763	3	-140.947	1	01	3	.011	12	0	3
79		2	max	61.507	5	535.895	2	-4.947	12	.014	2	.15	4	.302	3
80			min	-37.27	1	-269.656	3	-109.196	1	01	3	.005	10	605	2
81		3	max	51.813	5	326.732	2	-3.793	12	.014	2	.091	5	.509	3
82			min	-37.27	1	-168.548	3	-77.445	1	01	3	014	1	-1.012	2
83		4	max	42.118	5	117.57	2	-2.639	12	.014	2	.052	5	.621	3
84			min	-37.27	1	-67.44	3	-50.881	4	01	3	072	1	-1.222	2
85		5	max	32.423	5	33.668	3	735	10	.014	2	.014	5	.637	3
86			min	-37.27	1	-91.593	2	-42.48	4	01	3	1	1	-1.234	2
87		6	max	22.728	5	134.776	3	17.807	1	.014	2	004	12	.557	3
88			min	-37.27	1	-300.755	2	-37.146	5	01	3	098	1	-1.049	2
89		7	max	13.033	5	235.884	3	49.558	1	.014	2	004	12	.382	3
90			min	-37.27	1	-509.918	2	-35.361	5	01	3	071	4	666	2
91		8	max	3.338	5	336.992	3	81.309	1	.014	2	.001	10	.112	3
92			min	-37.27	1	-719.08	2	-33.575	5	01	3	091	4	089	1
93		9	max	-2.384	12	438.1	3	113.059	1	.014	2	.087	1	.692	2
94			min	-37.27	1	-928.243	2	-31.79	5	01	3	119	5	254	3
95		10	max	-2.384	12	539.208	3	144.81	1	.01	3	.217	4	1.667	2
96			min	-37.27	1	-1137.405	2	-96.336	14	014	2	.003	12	716	3
97		11	max	1.846	5	928.243	2	-3.131	12	.01	3	.148	4	.692	2
98			min	-37.27	1	-438.1	3	-113.059	1	014	2	0	3	254	3
99		12	max	-2.384	12	719.08	2	-1.977	12	.01	3	.088	5	.112	3
100			min	-37.27	1	-336.992	3	-81.309	1	014	2	005	1	089	1
101		13	max	-2.384	12	509.918	2	823	12	.01	3	.048	5	.382	3
102		1.0	min	-37.27	1	-235.884	3	-51.581	4	014	2	067	1	666	2
103		14	max	-2.384	12	300.755	2	.654	3	.01	3	.011	5	.557	3
104			min	-37.27	1	-134.776	3	-43.18	4	014	2	098	1	-1.049	2
105		15	max	-2.384	12	91.593	2	13.944	1	.01	3	003	12	.637	3
106		10	min	-45.271	4	-33.668	3	-37.294	5	014	2	1	1	-1.234	2
107		16	max	-2.384	12	67.44	3	45.694	1	.01	3	001	12	.621	3
108		10	min	-54.966	4	-117.57	2	-35.508	5	014	2	075	4	-1.222	2
109		17	max	-2.384	12	168.548	3	77.445	1	.01	3	.003	3	.509	3
110		1 ' '	min	-64.661	4	-326.732	2	-33.723	5	014	2	096	4	-1.012	2
111		18	max	-2.384	12	269.656	3	109.196	1	.01	3	.074	1	.302	3
112		10	min	-74.356	4	-535.895	2	-31.937	5	014	2	124	5	605	2
113		19	max	-2.384	12	370.763	3	140.947	1	.01	3	.192	1	0	2
114		15	min	-84.051	4	-745.057	2	-30.152	5	014	2	153	5	0	5
115	M16	1	max	69.881	5	699.049	2	-5.733	12	.011	1	.167	1	0	2
116	IVITO			-74.105		-333 417	3	-136.416		013	3	.009	12	0	3
117		2	max		5	489.886	2	-4.579	12	.011	1	.109	4	.267	3
118			min		1	-232.309		-104.666		013	3	.004	10	561	2
119		3	max		5	280.724	2	-3.425	12	.011	1	.067	5	.439	3
120			min	-74.105	1	-131.201	3	-72.915	1	013	3	031	1	925	2
121		4	max		5	71.562	2	-2.271	12	.011	1	.038	5	.515	3
122		+	min	-74.105	1	-30.094	3	-41.164	1	013	3	085	1	-1.092	2
123		5	max		5	71.014	3	398	10	.013	1	.011	5	.496	3
124		- 5											1		2
125		G	min	<u>-74.105</u> 21.407	1 5	-137.601 172.122	2	-29.957 22.337	1	013 .011	1	109 004	12	<u>-1.061</u> .381	
126		6	max	-74.105	<u>5</u>	-346.763	3	-25.736	5	013	3	004 103	1	832	3
127		7	min		_		2						_		
		/	max		5	273.23	3	54.088	1	.011	1	004 067	12	.171	3
128		0	min	<u>-74.105</u>	1	-555.926		-23.95	5	013	3	067	1	406	2
129		8	max	2.017	5	374.338	3	85.839	1	.011	1	.002	2	.218	2
130		0	min	<u>-74.105</u>	12	-765.088	2	-22.165	5	013	3	06	4	135	3
131		9	max	-4.135	12	475.446	3	117.59	1	.011	1	.095	1	1.04	2
132			min	<u>-74.105</u>	1	-974.251	2	-20.38	5	013	3	079	5	537	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.135	12	576.554	3	149.34	1	.013	3	.222	1	2.059	2
134			min	-74.105	1	-1183.413	2	-93.006	14	011	1	.005	12	-1.033	3
135		11	max	347	15	974.251	2	-3.499	12	.013	3	.111	4	1.04	2
136			min	-74.105	1	-475.446	3	-117.59	1	011	1	0	3	537	3
137		12	max	-4.135	12	765.088	2	-2.345	12	.013	3	.059	4	.218	2
138			min	-74.105	1	-374.338	3	-85.839	1	011	1	003	3	135	3
139		13	max	-4.135	12	555.926	2	-1.191	12	.013	3	.03	5	.171	3
140			min	-74.105	1	-273.23	3	-54.088	1	011	1_	067	1	406	2
141		14	max	-4.135	12	346.763	2	.07	3	.013	3	.002	5	.381	3
142			min	-74.105	1	-172.122	3	-33.117	4	011	1_	103	1	832	2
143		15	max	-4.135	12	137.601	2	9.413	1	.013	3	004	12	.496	3
144			min	-74.105	1	-71.014	3	-26.412	5	011	1_	109	1	-1.061	2
145		16	max	-4.135	12	30.094	3	41.164	1	.013	3	002	12	.515	3
146			min	-74.105	1	-71.562	2	-24.626	5	011	1	085	1	-1.092	2
147		17	max	-4.135	12	131.201	3	72.915	1_	.013	3_	.001	3	.439	3
148			min	-75.172	4	-280.724	2	-22.841	5	011	1_	077	4	925	2
149		18	max	-4.135	12	232.309	3	104.666	1_	.013	3_	.053	1_	.267	3
150			min	-84.867	4	-489.886	2	-21.056	5	011	1_	091	5	561	2
151		19	max	-4.135	12	333.417	3	136.416	1_	.013	3_	.167	1_	0	2
152			min	-94.562	4	-699.049	2	-19.27	5	011	1_	11	5	0	5
153	<u>M2</u>	1_	max	1120.731	2	2.076	4	.651	1_	0	3	0	3	0	1
154			min	-1520.659	3	.509	15	-47.843	4	0	4	0	2	0	1
155		2		1121.111	2	2.043	4	.651	1_	0	3_	0	1_	0	15
156			min	-1520.375	3	.501	15	-48.173	4	0	4	012	4	0	4
157		3	max	1121.49	2	2.009	4	.651	1	0	3	0	1	0	15
158			min	-1520.09	3	.493	15	-48.502	4	0	4	025	4	001	4
159		4		1121.869	2	1.976	4	.651	1_	0	3_	0	1_	0	15
160			min	-1519.806	3	.486	15	-48.832	4	0	4	037	4	002	4
161		5		1122.248	2	1.943	4	.651	1	0	3	0	1	0	15
162			min	-1519.521	3	.476	12	-49.161	4	0	4_	05	4	002	4
163		6		1122.628	2	1.909	4	.651	1	0	3	0	1	0	15
164			min	-1519.237	3	.463	12	-49.49	4	0	4_	062	4	003	4
165		7		1123.007	2	1.876	4	.651	1	0	3	0	1	0	15
166			min	-1518.952	3	.45	12	-49.82	4	0	4	075	4	003	4
167		8		1123.386	2	1.842	4	.651	1	0	3	.001	1	0	15
168			min	-1518.668	3	.437	12	-50.149	4	0	4	088	4	004	4
169		9		1123.765	2	1.809	4	.651	1	0	3_	.001	1	0	12
170		10	min	-1518.384	3	.424	12	-50.479	4	0	4_	101	4	004	4
171		10	max		2	1.776	4	.651	1	0	3_	.001	1	001	12
172		4.4	min	-1518.099	3	.411	12	-50.808	4	0	4	114	4	004	4
173		11		1124.524		1.742	4	.651	1	0	3	.002	1	001	12
174		40	min		3	.398	12	-51.138	4	0	4	127	4	005	4
175		12		1124.903		1.709	4	.651	4	0	3	.002	1	001	12
176		12	min		3	.385	12	-51.467	1	0	3	14	1	005	4
177 178		13	min	1125.282 -1517.246	3	1.675 .372	12	.651 -51.797	4	0	<u>3</u>	.002 153	4	001	12
		1.1		1125.662	2			.651				.002		006 001	12
179		14	min			1.642	12		4	0	3_4	167	1	006	4
180		15			3	.359		-52.126		0	4		4		_
181 182		15		1126.041 -1516.677	3	1.609 .346	12	.651 -52.456	4	0	<u>3</u>	.002 18	4	002 007	12
183		16	min	1126.42		1.575	4	.651	1		3	.002	1		12
		10	min		3	.333	12			0	<u>3</u>	193		002 007	
184 185		17				1.542		<u>-52.785</u> .651	1	0	3	.003	1		12
186		17	min	1126.799 -1516.108	3	.32	12	-53.115	4	0	<u>3</u> 4	207	4	002 007	4
		10		1127.179					1	_			1		
187 188		18	min	-1515.824	3	1.509 .307	12	.651 -53.444	4	0	<u>3</u>	.003 221	4	002 008	12
189		19		1127.558	2		4				3	.003	1		12
109		19	шах	1121.338		1.475	4	.651	_ 1_	0	<u>ა</u>	.003		002	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC		LC	z-z Mome	LC_
190			min	-1515.539	3	.294	12	-53.773	4	0	4	234	4	008	4
191	M3	1	max	583.7	2	8.012	4	1.053	4	0	3	0	1_	.008	4
192			min	-714.858	3	1.896	15	.004	12	0	4	017	4	.002	12
193		2	max	583.53	2	7.242	4	1.593	4	0	3	0	1	.005	2
194			min	-714.985	3	1.715	15	.004	12	0	4	016	4	0	12
195		3	max	583.36	2	6.472	4	2.134	4	0	3	0	1	.003	2
196			min	-715.113	3	1.534	15	.004	12	0	4	015	4	0	3
197		4	max	583.189	2	5.702	4	2.674	4	0	3	0	1	0	2
198			min	-715.241	3	1.353	15	.004	12	0	4	014	4	002	3
199		5	max	583.019	2	4.932	4	3.215	4	0	3	0	1	0	15
200			min	-715.369	3	1.172	15	.004	12	0	4	013	4	003	3
201		6	max	582.849	2	4.162	4	3.755	4	0	3	0	1	001	15
202			min	-715.497	3	.991	15	.004	12	0	4	012	4	005	6
203		7	max	582.678	2	3.392	4	4.296	4	0	3	0	1	001	15
204			min	-715.624	3	.81	15	.004	12	0	4	01	5	006	6
205		8	max	582.508	2	2.622	4	4.836	4	0	3	0	1	002	15
206			min	-715.752	3	.629	15	.004	12	0	4	008	5	007	6
207		9	max	582.338	2	1.852	4	5.377	4	0	3	0	1	002	15
208			min	-715.88	3	.448	15	.004	12	0	4	006	5	008	6
209		10	max	582.167	2	1.082	4	5.918	4	0	3	0	1	002	15
210			min	-716.008	3	.251	12	.004	12	0	4	004	5	009	6
211		11	max	581.997	2	.417	2	6.458	4	0	3	0	1	002	15
212			min	-716.135	3	101	3	.004	12	0	4	001	5	009	6
213		12	max	581.827	2	095	15	6.999	4	0	3	.002	4	002	15
214		'-	min	-716.263	3	551	3	.004	12	0	4	0	12	009	6
215		13	max	581.656	2	276	15	7.539	4	0	3	.005	4	002	15
216		13	min	-716.391	3	-1.229	6	.004	12	0	4	0	12	009	6
217		14	max	581.486	2	457	15	8.08	4	0	3	.008	4	002	15
218		17	min	-716.519	3	-1.999	6	.004	12	0	4	0	12	002	6
219		15	max	581.316	2	638	15	8.62	4	0	3	.012	4	002	15
220		13	min	-716.646	3	-2.769	6	.004	12	0	4	0	12	002	6
221		16	max	581.145	2	819	15	9.161	4	0	3	.016	4	001	15
222		10	min	-716.774	3	-3.539	6	.004	12	0	4	.010	12	006	6
223		17	max	580.975	2	-3.55 9 -1	15	9.701	4	0	3	.019	4	0	15
224		17	1	-716.902	3	-4.309	6	.004	12	0	4	.019	12	004	6
225		18	min max	580.805	2	-1.181	15	10.242	4	0	3	.024	4	0	15
226		10			3	-5.079		.004	12	0	4	0	12	002	6
227		19	min	-717.03 580.634	2	-1.362	6 15	10.783	4	0	3	.028	4	0	1
		19	max						12		4	.026	12		1
228 229	N/A	1	min	-717.157	<u>3</u>	-5.849	<u>6</u>	.004		0	1	_	4	0	1
	<u>M4</u>			1172.358		0	1	378	12	0	1	.018	10	0	1
230		2		-334.59	3	0	1	-225.379		0	1	0	_	0	1
231 232		2		1172.528	1	0	1	378 -225.527	12	0	1	0	12	0	1
		2	min		3	<u> </u>	1					008	4		
233		3		1172.699	1	0	1	378	12	0	1	0	12	0	1
234		1	min		3	0		-225.675		0		034	4	0	1
235		4		1172.869		0	1	378	12	0	1	0	12	0	1
236		-		-334.206		0	1	-225.822	4	0	1	06	4	0	1
237		5		1173.039		0	1	378	12	0	1	0	12	0	1
238		_		-334.079		0	1	-225.97	4	0	1	086	4	0	1
239		6		1173.21	1	0	1	378	12	0	1	0	12	0	1
240				-333.951	3	0	1	-226.117		0	1	112	4	0	1
241		7		1173.38	1	0	1	378	12	0	1	0	12	0	1
242			min		3	0	1	-226.265		0	1	138	4	0	1
243		8	1	1173.55	1_	0	1	378	12	0	1	0	12	0	1
244			min		3	0	1	-226.413		0	1	164	4	0	1
245		9		1173.721	1_	0	1	378	12	0	1	0	12	0	1
246			min	-333.568	3	0	1	-226.56	4	0	1	19	4	0	1

Model Name

Schletter, Inc.HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1173.891	1	0	1	378	12	0	1	0	12	0	1
248			min	-333.44	3	0	1	-226.708	4	0	1	216	4	0	1
249		11	max	1174.061	1	0	1	378	12	0	1	0	12	0	1
250			min	-333.312	3	0	1	-226.856	4	0	1	242	4	0	1
251		12	max	1174.232	1	0	1	378	12	0	1	0	12	0	1
252			min	-333.184	3	0	1	-227.003	4	0	1	268	4	0	1
253		13	max	1174.402	1	0	1	378	12	0	1	0	12	0	1
254			min	-333.057	3	0	1	-227.151	4	0	1	294	4	0	1
255		14	max	1174.573	1	0	1	378	12	0	1	0	12	0	1
256			min	-332.929	3	0	1	-227.299	4	0	1	32	4	0	1
257		15	max	1174.743	1	0	1	378	12	0	1	0	12	0	1
258			min	-332.801	3	0	1	-227.446	4	0	1	346	4	0	1
259		16	max	1174.913	1	0	1	378	12	0	1	0	12	0	1
260			min	-332.673	3	0	1	-227.594	4	0	1	373	4	0	1
261		17	max	1175.084	1	0	1	378	12	0	1	0	12	0	1
262			min	-332.546	3	0	1	-227.741	4	0	1	399	4	0	1
263		18	max	1175.254	1	0	1	378	12	0	1	0	12	0	1
264			min	-332.418	3	0	1	-227.889	4	0	1	425	4	0	1
265		19	max	1175.424	1	0	1	378	12	0	1	0	12	0	1
266			min	-332.29	3	0	1	-228.037	4	0	1	451	4	0	1
267	M6	1	max	3545.989	2	2.692	2	0	1	0	1	0	4	0	1
268			min	-4908.388	3	199	3	-48.283	4	0	4	0	1	0	1
269		2	max	3546.368	2	2.666	2	0	1	0	1	0	1	0	3
270			min	-4908.104	3	218	3	-48.612	4	0	4	012	4	0	2
271		3	max	3546.747	2	2.64	2	0	1	0	1	0	1	0	3
272			min	-4907.819	3	238	3	-48.942	4	0	4	025	4	001	2
273		4	max	3547.127	2	2.614	2	0	1	0	1	0	1	0	3
274			min	-4907.535	3	257	3	-49.271	4	0	4	037	4	002	2
275		5	max	3547.506	2	2.588	2	0	1	0	1	0	1	0	3
276			min	-4907.251	3	277	3	-49.601	4	0	4	05	4	003	2
277		6		3547.885	2	2.562	2	0	1	0	1	0	1	0	3
278			min	-4906.966	3	296	3	-49.93	4	0	4	063	4	003	2
279		7	max	3548.264	2	2.536	2	0	1	0	1	0	1	0	3
280			min	-4906.682	3	316	3	-50.26	4	0	4	076	4	004	2
281		8	max	3548.644	2	2.51	2	0	1	0	1	0	1	0	3
282			min	-4906.397	3	335	3	-50.589	4	0	4	089	4	005	2
283		9	max	3549.023	2	2.484	2	0	1	0	1	0	1	0	3
284			min	-4906.113	3	355	3	-50.919	4	0	4	102	4	005	2
285		10	max	3549.402	2	2.458	2	0	1	0	1	0	1	0	3
286			min	-4905.828	3	374	3	-51.248	4	0	4	115	4	006	2
287		11	max	3549.781	2	2.432	2	0	1	0	1	0	1	0	3
288			min		3	394	3	-51.577	4	0	4	128	4	007	2
289		12	max	3550.161	2	2.406	2	0	1	0	1	0	1	0	3
290			min	-4905.259	3	413	3	-51.907	4	0	4	141	4	007	2
291		13	max	3550.54	2	2.38	2	0	1	0	1	0	1	0	3
292			min		3	433	3	-52.236	4	0	4	155	4	008	2
293		14	max	3550.919	2	2.354	2	0	1	0	1	0	1	.001	3
294			min		3	452	3	-52.566	4	0	4	168	4	008	2
295		15	max	3551.299	2	2.328	2	0	1	0	1	0	1	.001	3
296			min	-4904.406	3	472	3	-52.895	4	0	4	181	4	009	2
297		16		3551.678	2	2.302	2	0	1	0	1	0	1	.001	3
298			min		3	491	3	-53.225	4	0	4	195	4	01	2
299		17		3552.057	2	2.276	2	0	1	0	1	0	1	.001	3
300			min		3	511	3	-53.554	4	0	4	209	4	01	2
301		18		3552.436	2	2.25	2	0	1	0	1	0	1	.002	3
302			min	-4903.553	3	53	3	-53.884	4	0	4	223	4	011	2
303		19		3552.816		2.224	2	0	1	0	1	0	1	.002	3
			παλ	5552.010		∠.∠∠ ⊤								.002	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	<u>LC</u>
304			min	-4903.268	3	55	3	-54.213	4	0	4	236	4	011	2
305	M7	1	max	2082.665	2	8.014	6	.924	4	0	1_	0	1_	.011	2
306			min	-2225.257	3	1.881	15	0	1	0	4	017	4	002	3
307		2		2082.495	2	7.244	6	1.464	4	0	1	0	1	.009	2
308			min	-2225.385	3	1.7	15	0	1	0	4	016	4	003	3
309		3		2082.325	2	6.474	6	2.005	4	0	1_	0	1_	.006	2
310			min	-2225.512	3	1.519	15	0	1	0	4	016	4	005	3
311		4	max	2082.154	2	5.704	6	2.545	4	0	1	0	1	.004	2
312			min	-2225.64	3	1.338	15	0	1	0	4	015	4	006	3
313		5		2081.984	2	4.934	6	3.086	4	0	1_	0	1_	.002	2
314			min	-2225.768	3	1.157	15	0	1	0	4	013	4	007	3
315		6	max	2081.814	2	4.164	6	3.626	4	0	_1_	0	1	0	2
316			min	-2225.896	3	.976	15	0	1	0	4	012	4	007	3
317		7	max	2081.643	2	3.394	6	4.167	4	0	1	0	1	001	15
318			min	-2226.023	3	.795	15	0	1	0	4	01	4	008	3
319		8	max	2081.473	2	2.698	2	4.708	4	0	1_	0	1_	002	15
320			min	-2226.151	3	.504	12	0	1	0	4	009	4	008	3
321		9	max	2081.303	2	2.098	2	5.248	4	0	1	0	1	002	15
322			min	-2226.279	3	.204	12	0	1	0	4	006	4	009	3
323		10	max	2081.132	2	1.498	2	5.789	4	0	1	0	1	002	15
324			min	-2226.407	3	228	3	0	1	0	4	004	5	009	4
325		11	max	2080.962	2	.898	2	6.329	4	0	1	0	1	002	15
326			min	-2226.534	3	678	3	0	1	0	4	002	5	009	4
327		12	max	2080.791	2	.298	2	6.87	4	0	1	.001	4	002	15
328			min	-2226.662	3	-1.128	3	0	1	0	4	0	1	009	4
329		13	max	2080.621	2	291	15	7.41	4	0	1	.004	4	002	15
330			min	-2226.79	3	-1.578	3	0	1	0	4	0	1	009	4
331		14	max	2080.451	2	472	15	7.951	4	0	1	.007	4	002	15
332			min	-2226.918	3	-2.028	3	0	1	0	4	0	1	008	4
333		15	max	2080.28	2	653	15	8.491	4	0	1	.011	4	002	15
334			min	-2227.045	3	-2.765	4	0	1	0	4	0	1	007	4
335		16	max	2080.11	2	834	15	9.032	4	0	1	.015	4	001	15
336			min	-2227.173	3	-3.535	4	0	1	0	4	0	1	006	4
337		17	max	2079.94	2	-1.015	15	9.573	4	0	1	.018	4	001	15
338			min	-2227.301	3	-4.305	4	0	1	0	4	0	1	004	4
339		18	max	2079.769	2	-1.196	15	10.113	4	0	1	.023	4	0	15
340			min	-2227.429	3	-5.075	4	0	1	0	4	0	1	002	4
341		19	max	2079.599	2	-1.377	15	10.654	4	0	1	.027	4	0	1
342			min	-2227.556	3	-5.845	4	0	1	0	4	0	1	0	1
343	M8	1	max	3470.355	2	0	1	0	1	0	1	.017	4	0	1
344				-1139.728	3	0	1	-219.692	4	0	1	0	1	0	1
345		2		3470.525	2	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-219.84	4	0	1	008	4	0	1
347		3	max	3470.696	2	0	1	0	1	0	1	0	1	0	1
348				-1139.472	3	0	1	-219.987	4	0	1	034	4	0	1
349		4		3470.866	2	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-220.135	4	0	1	059	4	0	1
351		5	max	3471.036		0	1	0	1	0	1	0	1	0	1
352				-1139.217	3	0	1	-220.283	4	0	1	084	4	0	1
353		6		3471.207	2	0	1	0	1	0	1	0	1	0	1
354		Ĭ		-1139.089	3	0	1	-220.43	4	0	1	11	4	0	1
355		7		3471.377	2	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-220.578	_	0	1	135	4	0	1
357		8		3471.547	2	0	1	0	1	0	1	0	1	0	1
358				-1138.833	3	0	1	-220.726		0	1	16	4	0	1
359		9		3471.718	_	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	-220.873		0	1	186	4	0	1
000			111111					220.010	т			. 100	т.		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
361		10		3471.888	2	0	1	0	1	0	1	0	1	0	1
362			min	-1138.578	3	0	1	-221.021	4	0	1	211	4	0	1
363		11	max	3472.058	2	0	1	0	1	0	1	0	1	0	1
364			min	-1138.45	3	0	1	-221.168	4	0	1	236	4	0	1
365		12	max	3472.229	2	0	1	0	1	0	1	0	1	0	1
366			min	-1138.322	3	0	1	-221.316	4	0	1	262	4	0	1
367		13	max	3472.399	2	0	1	0	1	0	1	0	1	0	1
368			min	-1138.195	3	0	1	-221.464	4	0	1	287	4	0	1
369		14	max	3472.569	2	0	1	0	1	0	1	0	1	0	1
370			min	-1138.067	3	0	1	-221.611	4	0	1	313	4	0	1
371		15	max	3472.74	2	0	1	0	1	0	1	0	1	0	1
372			min	-1137.939	3	0	1	-221.759	4	0	1	338	4	0	1
373		16	max	3472.91	2	0	1	0	1	0	1	0	1	0	1
374			min	-1137.811	3	0	1	-221.907	4	0	1	363	4	0	1
375		17	max	3473.08	2	0	1	0	1	0	1	0	1	0	1
376			min	-1137.683	3	0	1	-222.054	4	0	1	389	4	0	1
377		18	max	3473.251	2	0	1	0	1	0	1	0	1	0	1
378			min	-1137.556	3	0	1	-222.202	4	0	1	414	4	0	1
379		19	max	3473.421	2	0	1	0	1	0	1	0	1	0	1
380			min	-1137.428	3	0	1	-222.35	4	0	1	44	4	0	1
381	M10	1	max	1120.731	2	1.983	6	037	12	0	1	0	2	0	1
382			min	-1520.659	3	.446	15	-48.192	4	0	5	0	3	0	1
383		2	max	1121.111	2	1.949	6	037	12	0	1	0	10	0	15
384			min	-1520.375	3	.438	15	-48.522	4	0	5	012	4	0	6
385		3	max	1121.49	2	1.916	6	037	12	0	1	0	10	0	15
386			min	-1520.09	3	.43	15	-48.851	4	0	5	025	4	0	6
387		4	max	1121.869	2	1.883	6	037	12	0	1	0	10	0	15
388			min	-1519.806	3	.423	15	-49.181	4	0	5	037	4	001	6
389		5	max	1122.248	2	1.849	6	037	12	0	1	0	12	0	15
390			min	-1519.521	3	.415	15	-49.51	4	0	5	05	4	002	6
391		6	max	1122.628	2	1.816	6	037	12	0	1	0	12	0	15
392			min	-1519.237	3	.407	15	-49.84	4	0	5	063	4	002	6
393		7	max	1123.007	2	1.782	6	037	12	0	1	0	12	0	15
394			min	-1518.952	3	.399	15	-50.169	4	0	5	076	4	003	6
395		8	max	1123.386	2	1.749	6	037	12	0	1	0	12	0	15
396			min	-1518.668	3	.391	15	-50.498	4	0	5	089	4	003	6
397		9	max	1123.765	2	1.716	6	037	12	0	1	0	12	0	15
398			min	-1518.384	3	.383	15	-50.828	4	0	5	101	4	004	6
399		10	max	1124.145	2	1.682	6	037	12	0	1	0	12	0	15
400				-1518.099	3	.376	15	-51.157	4	0	5	115	4	004	6
401		11	max	1124.524	2	1.649	6	037	12	0	1	0	12	001	15
402			min	-1517.815	3	.368	15	-51.487	4	0	5	128	4	005	6
403		12	max	1124.903	2	1.617	2	037	12	0	1	0	12	001	15
404				-1517.53	3	.36	15	-51.816	4	0	5	141	4	005	6
405		13	max	1125.282	2	1.591	2	037	12	0	1	0	12	001	15
406			min	-1517.246	3	.352	15	-52.146	4	0	5	154	4	005	6
407		14	max	1125.662	2	1.565	2	037	12	0	1	0	12	001	15
408			min	-1516.961	3	.344	15	-52.475	4	0	5	168	4	006	6
409		15	max	1126.041	2	1.539	2	037	12	0	1	0	12	001	15
410				-1516.677	3	.336	15	-52.805	4	0	5	181	4	006	6
411		16		1126.42	2	1.513	2	037	12	0	1	0	12	001	15
412				-1516.392	3	.328	15	-53.134	4	0	5	195	4	007	6
413		17		1126.799	2	1.487	2	037	12	0	1	0	12	002	15
414				-1516.108	3	.32	12	-53.464	4	0	5	208	4	007	6
415		18	_	1127.179	2	1.461	2	037	12	0	1	0	12	002	15
416				-1515.824	3	.307	12	-53.793	4	0	5	222	4	007	6
417		19		1127.558	2	1.435	2	037	12	0	1	0	12	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
418			min	-1515.539	3	.294	12	-54.123	4	0	5	236	4	008	6
419	M11	1	max	583.7	2	7.955	6	1.017	4	0	1	0	12	.008	6
420			min	-714.858	3	1.858	15	066	1	0	4	017	4	.002	15
421		2	max	583.53	2	7.185	6	1.558	4	0	1	0	12	.005	2
422			min	-714.985	3	1.677	15	066	1	0	4	016	4	0	12
423		3	max	583.36	2	6.415	6	2.099	4	0	1	0	12	.003	2
424			min	-715.113	3	1.496	15	066	1	0	4	015	4	0	3
425		4	max	583.189	2	5.645	6	2.639	4	0	1	0	12	0	2
426			min	-715.241	3	1.315	15	066	1	0	4	014	4	002	3
427		5	max	583.019	2	4.875	6	3.18	4	0	1	0	12	0	15
428			min	-715.369	3	1.134	15	066	1	0	4	013	4	003	3
429		6	max	582.849	2	4.105	6	3.72	4	0	1	0	12	001	15
430			min	-715.497	3	.953	15	066	1	0	4	012	4	005	4
431		7	max	582.678	2	3.335	6	4.261	4	0	1	0	12	002	15
432			min	-715.624	3	.772	15	066	1	0	4	01	4	006	4
433		8	max	582.508	2	2.565	6	4.801	4	0	1	0	12	002	15
434		Ĭ	min	-715.752	3	.591	15	066	1	0	4	008	4	008	4
435		9	max	582.338	2	1.795	6	5.342	4	0	1	0	12	002	15
436		 	min	-715.88	3	.41	15	066	1	0	4	006	4	009	4
437		10	max	582.167	2	1.025	6	5.882	4	0	1	0	12	003	15
438		10	min	-716.008	3	.229	15	066	1	0	4	004	4	002	4
439		11	max		2	.417	2	6.423	4	0	1	0	12	002	15
440			min	-716.135	3	101	3	066	1	0	4	001	4	00 <u>2</u> 01	4
		12						6.963	4		1				
441		12	max	581.827	2	133	15		1	0		.002	5	002	15
442		40	min	-716.263	3_	551	3	066	_	0	4	0	1	009 002	4
443		13	max	581.656	2	314	15	7.504	4	0	1	.005	4		15
444		4.4	min	-716.391	3	-1.286	4	066	1	0	4	0	1	009	4
445		14	max		2	495	15	8.045	4	0	1	.008	4	002	15
446		4.5	min	-716.519	3	-2.056	4	066	1	0	4	0	1	008	4
447		15	max	581.316	2	676	15	8.585	4	0	1	.011	4	002	15
448		40	min	-716.646	3	-2.826	4	066	1	0	4	0	1	007	4
449		16	max		2	857	15	9.126	4	0	1	.015	4	001	15
450			min	-716.774	3_	-3.596	4	066	1	0	4	0	1	006	4
451		17	max	580.975	2_	-1.038	15	9.666	4	0	1	.019	4	<u>001</u>	15
452			min	-716.902	3_	-4.366	4	066	1	0	4	0	1	004	4
453		18	max	580.805	2	-1.219	15	10.207	4	0	1	.023	4	0	15
454			min	-717.03	3	-5.136	4	066	1	0	4	0	1	002	4
455		19	max		2	-1.4	15	10.747	4	0	1	.028	4	0	1
456			min	-717.157	3	-5.906	4	066	1	0	4	0	1	0	1
457	M12	1_			_1_	0	1	6.92	1_	0	1	.017	4	0	1
458				-334.59	3	0	1	-221.664	4	0	1	0	1	0	1
459		2		1172.528	<u>1</u>	0	1	6.92	1	0	1	0	1	0	1
460			min	-334.462	3	0	1	-221.812	4	0	1	008	4	0	1
461		3	max	1172.699	1	0	1	6.92	1	0	1	.001	1	0	1
462			min	-334.334	3	0	1	-221.959	4	0	1	034	4	0	1
463		4	max	1172.869	1	0	1	6.92	1	0	1	.002	1	0	1
464			min	-334.206	3	0	1	-222.107	4	0	1	059	4	0	1
465		5		1173.039	1	0	1	6.92	1	0	1	.003	1	0	1
466				-334.079	3	0	1	-222.255	4	0	1	085	4	0	1
467		6		1173.21	1	0	1	6.92	1	0	1	.004	1	0	1
468				-333.951	3	0	1	-222.402	4	0	1	11	4	0	1
469		7		1173.38	1	0	1	6.92	1	0	1	.004	1	0	1
470				-333.823	3	0	1	-222.55	4	0	1	136	4	0	1
471		8		1173.55	1	0	1	6.92	1	0	1	.005	1	0	1
472			min	-333.695	3	0	1	-222.697	4	0	1	161	4	0	1
473		9		1173.721	1	0	1	6.92	1	0	1	.006	1	0	1
474				-333.568	3	0	1	-222.845	_	0	1	187	4	0	1
7/4			1111111	000.000	J	U		222.043	-	U		10 <i>1</i>	7	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1173.891	1	0	1	6.92	1	0	1	.007	1	0	1
476			min	-333.44	3	0	1	-222.993	4	0	1	212	4	0	1
477		11	max	1174.061	1	0	1	6.92	1	0	1	.008	1	0	1
478			min	-333.312	3	0	1	-223.14	4	0	1	238	4	0	1
479		12	max	1174.232	1	0	1	6.92	1	0	1	.008	1	0	1
480			min	-333.184	3	0	1	-223.288	4	0	1	264	4	0	1
481		13	max	1174.402	1	0	1	6.92	1	0	1	.009	1	0	1
482			min	-333.057	3	0	1	-223.436	4	0	1	289	4	0	1
483		14	max	1174.573	1	0	1	6.92	1	0	1	.01	1	0	1
484			min	-332.929	3	0	1	-223.583	4	0	1	315	4	0	1
485		15		1174.743	1	0	1	6.92	1	0	1	.011	1	0	1
486			min	-332.801	3	0	1	-223.731	4	0	1	341	4	0	1
487		16	max	1174.913	1	0	1	6.92	1	0	1	.011	1	0	1
488				-332.673	3	0	1	-223.879	4	0	1	366	4	0	1
489		17		1175.084	1	0	1	6.92	1	0	1	.012	1	0	1
490			min	-332.546	3	0	1	-224.026	4	0	1	392	4	0	1
491		18	max	1175.254	1	0	1	6.92	1	0	1	.013	1	0	1
492			min	-332.418	3	0	1	-224.174	4	0	1	418	4	0	1
493		19	max	1175.424	1	0	1	6.92	1	0	1	.014	1	0	1
494			min	-332.29	3	0	1	-224.321	4	0	1	444	4	0	1
495	M1	1	max	136.138	1	842.057	3	44.657	5	0	1	.165	1	0	15
496			min	-10.049	5	-482.032	2	-69.472	1	0	3	069	5	016	2
497		2	max	136.628	1	841.048	3	45.898	5	0	1	.129	1	.239	2
498		_	min	-9.821	5	-483.378	2	-69.472	1	0	3	045	5	445	3
499		3	max	431.42	3	589.134	2	.19	5	0	3	.092	1	.481	2
500			min	-254.814	2	-624.315	3	-68.965	1	0	2	021	5	87	3
501		4	max		3	587.788	2	1.432	5	0	3	.056	1	.184	1
502			min	-254.324	2	-625.325	3	-68.965	1	0	2	021	5	541	3
503		5	max		3	586.442	2	2.673	5	0	3	.019	1	004	15
504			min	-253.834	2	-626.334	3	-68.965	1	0	2	02	5	21	3
505		6	max		3	585.096	2	3.915	5	0	3	0	12	.12	3
506			min	-253.344	2	-627.344	3	-68.965	1	0	2	022	4	448	2
507		7	max		3	583.75	2	5.156	5	0	3	003	12	.452	3
508			min	-252.854	2	-628.354	3	-68.965	1	0	2	054	1	757	2
509		8	max	433.257	3	582.404	2	6.397	5	0	3	005	12	.783	3
510			min	-252.364	2	-629.363	3	-68.965	1	0	2	09	1	-1.064	2
511		9	max		3	53.513	2	43.703	5	0	9	.055	1	.914	3
512			min	-197.182	2	.406	15		1	0	3	105	5	-1.217	2
513		10	max		3	52.167	2	44.944	5	0	9	0	10	.891	3
514			min	-196.692	2	001	5	-104.775	1	0	3	082	4	-1.245	2
515		11		443.801		50.821	2		5	0	9	003	12	.869	3
516				-196.202	2	-1.692	4	-104.775		0	3	069	4	-1.273	2
517		12		453.478	3	414.767	3	122.984		0	2	.089	1	.759	3
518				-140.964	2	-694.034	2	-67.525	1	0	3	17	5	-1.128	2
519		13			3	413.757	3	124.226	5	0	2	.053	1	.54	3
520				-140.474	2	-695.38	2	-67.525	1	0	3	105	5	762	2
521		14		454.213	3	412.748	3	125.467	5	0	2	.018	1	.322	3
522			min			-696.727	2	-67.525	1	0	3	039	5	395	2
523		15		454.58	3	411.738	3	126.709	5	0	2	.028	5	.105	3
524			min	-139.494	2	-698.073	2	-67.525	1	0	3	018	1	049	1
525		16		454.947	3	410.729	3	127.95	5	0	2	.095	5	.342	2
526				-139.004	2	-699.419		-67.525	1	0	3	054	1	112	3
527		17		455.315	3	409.719	3	129.192	5	0	2	.163	5	.712	2
528				-138.514		-700.765		-67.525	1	0	3	089	1	329	3
529		18	max	19.041	5	700.703	2	-4.135	12	0	5	.151	5	.358	2
530		10	min		1	-332.47	3	-95.832	4	0	2	127	1	162	3
531		10	max		5	699.531	2	- 4.135	12	0	5	.11	5	.013	3
JJI		נון	IIIax	13.41	J	1 000.001		-4 .130	14	U	J		J	.013	_ ວ_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-136.413	1	-333.48	3	-94.591	4	0	2	167	1	011	1
533	<u>M5</u>	1	max	299.238	1	2803.463	3	77.316	5	0	1	0	1	.032	2
534			min	8.767	12	-1653.396	2	0	1	0	4	147	4	0	15
535		2	max	299.728	1	2802.453	3	78.557	5	0	1	0	1	.905	2
536			min	9.012	12	-1654.742	2	0	1	0	4	106	4	-1.478	3
537		3	max	1369.719	3	1723.31	2	35.044	4	0	4	0	1	1.738	2
538			min	-859.383	2	-1944.066	3	0	1	0	1	065	4	-2.9	3
539		4	max	1370.087	3	1721.964	2	36.285	4	0	4	0	1	.84	1
540			min	-858.893	2	-1945.076	3	0	1	0	1	046	4	-1.873	3
541		5	max	1370.454	3	1720.618	2	37.526	4	0	4	0	1	.02	9
542			min	-858.403	2	-1946.085	3	0	1	0	1	027	4	847	3
543		6	max	1370.822	3	1719.272	2	38.768	4	0	4	0	1	.18	3
544			min	-857.913	2	-1947.095	3	0	1	0	1	007	5	987	2
545		7	max	1371.189	3	1717.926	2	40.009	4	0	4	.014	4	1.208	3
546			min	-857.423	2	-1948.104	3	0	1	0	1	0	1	-1.894	2
547		8	max	1371.557	3	1716.58	2	41.251	4	0	4	.036	4	2.236	3
548			min	-856.933	2	-1949.114	3	0	1	0	1	0	1	-2.8	2
549		9	max	1384.198	3	180.022	2	141.11	4	0	1	0	1	2.573	3
550			min	-739.885	2	.405	15	0	1	0	1	148	4	-3.192	2
551		10	max	1384.566	3	178.676	2	142.351	4	0	1	0	1	2.491	3
552			min	-739.395	2	0	15	0	1	0	1	073	5	-3.286	2
553		11	max	1384.933	3	177.33	2	143.592	4	0	1	.002	4	2.409	3
554			min	-738.905	2	-1.59	6	0	1	0	1	0	1	-3.38	2
555		12		1397.839	3	1263.736	3	171.905	4	0	1	0	1	2.114	3
556			min	-621.968	2	-2080.155	2	0	1	0	4	241	4	-3.026	2
557		13		1398.206	3	1262.726	3	173.147	4	0	1	0	1	1.447	3
558		1.0	min	-621.478	2	-2081.501	2	0	1	0	4	15	4	-1.928	2
559		14		1398.574	3	1261.717	3	174.388	4	0	1	0	1	.781	3
560			min		2	-2082.847	2	0	1	0	4	058	4	83	2
561		15		1398.941	3	1260.707	3	175.629	4	0	1	.034	4	.27	2
562		10	min	-620.498	2	-2084.193	2	0	1	0	4	0	1	002	13
563		16		1399.309	3	1259.698	3	176.871	4	0	1	.127	4	1.37	2
564		10	min	-620.008	2	-2085.539	2	0	1	0	4	0	1	549	3
565		17		1399.676	3	1258.688	3	178.112	4	0	1	.221	4	2.471	2
566		1 ' '	min	-619.518	2	-2086.885	2	0	1	0	4	0	1	-1.214	3
567		18	max	-9.549	12	2370.599	2	0	1	0	4	.237	4	1.273	2
568		10	min	-299.178	1	-1152.377	3	-27.621	5	0	1	0	1	635	3
569		19	max	-9.304		2369.253	2	0	1	0	4	.223	4	.023	1
570		15	min	-298.688	1	-1153.387	3	-26.379	5	0	1	0	1	027	3
571	M9	1	max	136.138	1	842.057	3	69.472	1	0	3	01	12	0	15
572	IVIO					-482.032		4.289	12		4	165	1	016	2
573		2		136.628	1	841.048	3	69.472	1	0	3	008	12	.239	2
574			min	6.247	12			4.289	12	0	4	129	1	445	3
575		3		431.42	3	589.134	2	68.965	1	0	2	006	12	.481	2
576			min	-254.814	2	-624.315	3	4.25	12	0	3	092	1	87	3
577		4		431.787	3	587.788	2	68.965	1	0	2	004	12	.184	1
578			min		2	-625.325	3	4.25	12	0	3	056	1	541	3
579		5		432.154	3	586.442	2	68.965	1	0	2	001	12	004	15
580		<u> </u>		-253.834	2	-626.334	3	4.25	12	0	3	026	4	004 21	3
581		6	max		3	585.096	2	68.965	1	0	2	.017	1	.12	3
582			min		2	-627.344	3	4.25	12	0	3	016	5	448	2
583		7		432.889	3	583.75	2	68.965	1	0	2	.054	1	440 .452	3
584				-252.854	2	-628.354	3	4.25	12	0	3	009	5	.45 <u>2</u> 757	2
585		8		433.257		582.404		68.965	1		2	.009	1	/5/ .783	3
		0		-252.364	2		2	4.25	12	0	3	002	5	-1.064	2
586 587		9	min	443.066		<u>-629.363</u> 53.513	2	104.775	1	0	3	002	12	<u>-1.064</u> .914	3
588		+ 3			3				12						2
308			IIIII	-197.182	2	.412	15	6.141	ΙZ	0	9	124	4	-1.217	Z

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	443.433	3	52.167	2	104.775	1	0	3	0	1	.891	3
590			min	-196.692	2	.006	15	6.141	12	0	9	082	4	-1.245	2
591		11	max	443.801	3	50.821	2	104.775	1	0	3	.056	1	.869	3
592			min	-196.202	2	-1.645	6	6.141	12	0	9	051	5	-1.273	2
593		12	max	453.478	3	414.767	3	146.375	4	0	3	005	12	.759	3
594			min	-140.964	2	-694.034	2	3.759	12	0	2	2	4	-1.128	2
595		13	max	453.845	3	413.757	3	147.617	4	0	3	003	12	.54	3
596			min	-140.474	2	-695.38	2	3.759	12	0	2	123	4	762	2
597		14	max	454.213	3	412.748	3	148.858	4	0	3	001	12	.322	3
598			min	-139.984	2	-696.727	2	3.759	12	0	2	045	4	395	2
599		15	max	454.58	3	411.738	3	150.1	4	0	3	.034	4	.105	3
600			min	-139.494	2	-698.073	2	3.759	12	0	2	0	12	049	1
601		16	max	454.947	3	410.729	3	151.341	4	0	3	.114	4	.342	2
602			min	-139.004	2	-699.419	2	3.759	12	0	2	.003	12	112	3
603		17	max	455.315	3	409.719	3	152.583	4	0	3	.194	4	.712	2
604			min	-138.514	2	-700.765	2	3.759	12	0	2	.005	12	329	3
605		18	max	-5.979	12	700.877	2	74.168	1	0	2	.195	4	.358	2
606			min	-136.903	1	-332.47	3	-71.223	5	0	3	.007	12	162	3
607		19	max	-5.734	12	699.531	2	74.168	1	0	2	.167	1	.013	3
608			min	-136.413	1	-333.48	3	-69.982	5	0	3	.009	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.132	2	.008	3	1.071e-2	2	NC	1	NC	1
2			min	459	4	03	3	004	2	-2.427e-3	3	NC	1	NC	1
3		2	max	0	1	.216	3	.02	1	1.204e-2	2	NC	4	NC	1
4			min	459	4	007	9	01	5	-2.391e-3	3	830.929	3	NC	1
5		3	max	0	1	.415	3	.047	1	1.338e-2	2	NC	5	NC	2
6			min	459	4	095	1	013	5	-2.354e-3	3	458.998	3	4327.056	1
7		4	max	0	1	.536	3	.071	1	1.471e-2	2	NC	5	NC	3
8			min	459	4	144	1	01	5	-2.317e-3	3	360.73	3	2898.16	1
9		5	max	0	1	.564	3	.082	1	1.605e-2	2	NC	5	NC	3
10			min	459	4	142	1	003	5	-2.281e-3	3	343.375	3	2493.026	1
11		6	max	0	1	.503	3	.078	1	1.739e-2	2	NC	5	NC	3
12			min	459	4	09	1	.001	10	-2.244e-3	3	383.289	3	2611.944	1
13		7	max	0	1	.369	3	.06	1	1.872e-2	2	NC	5	NC	2
14			min	459	4	011	9	002	10	-2.208e-3	3	511.759	3	3393.274	1
15		8	max	0	1	.199	3	.033	1	2.006e-2	2	NC	1	NC	2
16			min	459	4	.002	15	005	10	-2.171e-3	3	892.209	3	6172.888	1
17		9	max	0	1	.237	2	.024	3	2.139e-2	2	NC	4	NC	1
18			min	459	4	.005	15	011	2	-2.134e-3	3	1929.409	2	NC	1
19		10	max	0	1	.281	2	.024	3	2.273e-2	2	NC	3	NC	1
20			min	459	4	025	3	016	2	-2.098e-3	3	1366.293	2	NC	1
21		11	max	0	12	.237	2	.024	3	2.139e-2	2	NC	4	NC	1
22			min	459	4	.004	15	011	2	-2.134e-3	3	1929.409	2	NC	1
23		12	max	0	12	.199	3	.033	1	2.006e-2	2	NC	1	NC	2
24			min	459	4	.002	15	009	5	-2.171e-3	3	892.209	3	6172.888	1
25		13	max	0	12	.369	3	.06	1	1.872e-2	2	NC	5	NC	2
26			min	459	4	011	9	003	5	-2.208e-3	3	511.759	3	3393.274	1
27		14	max	0	12	.503	3	.078	1	1.739e-2	2	NC	5	NC	3
28			min	459	4	09	1	.001	10	-2.244e-3	3	383.289	3	2611.944	1
29		15	max	0	12	.564	3	.082	1	1.605e-2	2	NC	5	NC	3
30			min	459	4	142	1	.002	10	-2.281e-3	3	343.375	3	2493.026	1
31		16	max	0	12	.536	3	.071	1	1.471e-2	2	NC	5	NC	3
32			min	459	4	144	1	.002	10	-2.317e-3	3	360.73	3	2898.16	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

33	Member	Sec 17	may	x [in]	LC 12	y [in] .415	LC 3	z [in] .047	LC 1	x Rotate [r 1.338e-2	LC 2	(n) L/y Ratio		(n) L/z Ratio	LC 2
34		17	max	459	4	095	1	0	10	-2.354e-3	3	458.998	<u>5</u> 3	4327.056	
35		18	max	439 0	12	.216	3	.02	1	1.204e-2	2	NC	4	NC	1
36		10	min	459	4	007	9	001	10	-2.391e-3	3	830.929	3	NC	1
37		19	max	433	12	.132	2	.008	3	1.071e-2	2	NC	1	NC	1
38		13	min	459	4	03	3	004	2	-2.427e-3	3	NC	1	NC	1
39	M14	1	max	<u>.</u> 0	1	.274	3	.007	3	6.175e-3	2	NC	1	NC	1
40	IVIT		min	36	4	407	2	004	2	-4.865e-3	3	NC	1	NC	1
41		2	max	<u>.50</u>	1	.538	3	.014	1	7.299e-3	2	NC	5	NC	1
42			min	36	4	655	2	016	5	-5.835e-3	3	772.021	3	NC	1
43		3	max	<u>.50</u>	1	.765	3	.037	1	8.422e-3	2	NC	5	NC	2
44		T -	min	36	4	873	2	019	5	-6.805e-3	3	415.414	3	5532.861	1
45		4	max	0	1	.928	3	.06	1	9.545e-3	2	NC	5	NC	3
46		+-	min	36	4	-1.04	2	014	5	-7.775e-3	3	311.574	3	3448.599	
47		5	max	<u>.50</u>	1	1.016	3	.072	1	1.067e-2	2	NC	15	NC	3
48		+ -	min	36	4	-1.146	2	003	5	-8.745e-3	3	274.867	3	2850.929	1
49		6	max	0	1	1.027	3	.071	1	1.179e-2	2	NC	15	NC	3
50		T .	min	36	4	-1.188	2	0		-9.716e-3	3	261.228	2	2911.418	
51		7	max	0	1	.973	3	.055	1	1.291e-2	2	NC	15	NC	2
52		-	min	36	4	-1.176	2	002		-1.069e-2	3	265.47	2	3712.188	
53		8	max	0	1	.881	3	.032	4	1.404e-2	2	NC	15	NC	2
54		-	min	36	4	-1.127	2	005	10	-1.166e-2	3	283.644	2	6394.942	
55		9	max	0	1	.787	3	.021	3	1.516e-2	2	NC	5	NC	1
56			min	36	4	-1.068	2	01	2	-1.263e-2	3	308.604	2	9515.603	
57		10	max	<u>.00</u>	1	.742	3	.021	3	1.628e-2	2	NC	5	NC	1
58		10	min	36	4	-1.039	2	015	2	-1.36e-2	3	323.049	2	NC	1
59		11	max	0	12	.787	3	.021	3	1.516e-2	2	NC	5	NC	1
60			min	36	4	-1.068	2	016	5	-1.263e-2	3	308.604	2	NC	1
61		12	max	0	12	.881	3	.031	1	1.404e-2	2	NC	15	NC	2
62		T -	min	36	4	-1.127	2	019	5	-1.166e-2	3	283.644	2	6637.229	
63		13	max	0	12	.973	3	.055	1	1.291e-2	2	NC	15	NC	2
64			min	36	4	-1.176	2	012	5	-1.069e-2	3	265.47	2	3712.188	
65		14	max	0	12	1.027	3	.071	1	1.179e-2	2	NC	15	NC	3
66			min	36	4	-1.188	2	0	5	-9.716e-3	3	261.228	2	2911.418	
67		15	max	0	12	1.016	3	.072	1	1.067e-2	2	NC	15	NC	3
68			min	36	4	-1.146	2	.002	10	-8.745e-3	3	274.867	3	2850.929	1
69		16	max	0	12	.928	3	.06	1	9.545e-3	2	NC	5	NC	3
70			min	36	4	-1.04	2	.002	10	-7.775e-3	3	311.574	3	3448.599	
71		17	max	0	12	.765	3	.037	1	8.422e-3	2	NC	5	NC	2
72			min	36	4	873	2	0	10	-6.805e-3	3	415.414	3	5532.861	1
73		18	max	0	12	.538	3	.022	4	7.299e-3	2	NC	5	NC	1
74			min	36	4	655	2	002	10	-5.835e-3	3	772.021	3	9328.813	4
75		19	max	0	12	.274	3	.007	3	6.175e-3	2	NC	1	NC	1
76			min	36	4	407	2	004	2	-4.865e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.28	Ω	.006	3	4.14e-3	3	NC	1	NC	1
78			min	302	4	407	2	004	2	-6.4e-3	2	NC	1	NC	1
79		2	max	0	12	.458	3	.014	1	4.965e-3	3	NC	5	NC	1
80			min	302	4	717	2	023	5	-7.568e-3	2	657.811	2	8432.226	5
81		3	max	0	12	.616	3	.038	1	5.79e-3	3	NC	5	NC	2
82			min	302	4	985	2	028	5	-8.735e-3	2	352.582	2	5512.484	1
83		4	max	0	12	.738	3	.06	1	6.615e-3	3	NC	5	NC	3
84			min	302	4	-1.183	2	021	5	-9.902e-3	2	262.692	2	3437.402	
85		5	max	0	12	.817	3	.072	1	7.44e-3	3	NC	15	NC	3
86			min	302	4	-1.296	2	006	5	-1.107e-2	2	229.413	2	2841.361	1
87		6	max	0	12	.851	3	.071	1	8.265e-3	3	NC	15	NC	3
88			min	302	4	-1.322	2	.001	10	-1.224e-2	2	222.786	2	2899.792	1
89		7	max	0	12	.847	3	.056	1	9.09e-3	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
92	90			min	302	4	-1.276	2	001	10 -1.34e-2	2	234.743	2	3691.205	
94			8												2
94															
95			9		-										1
96			10												1
98			10							3 1.1376-2					1
98			11												1
99															5
100			12												2
101			12												
102			13												2
103			10												
104			14												3
105					-										1
106			15												3
107						4									1
108			16			1									3
109						4					2				1
110			17			1		3			3	NC	5	NC	2
112				min	302	4					2		2		4
113 19 max 0 1 .28 3 .006 3 4.14e-3 3 NC 1 NC 114 min 302 4 407 2 004 2 -6.4e-3 2 NC 1 NC 115 M16 1 max 0 12 .116 2 .006 3 7.503e-3 3 NC 1 NC 116 min 129 4 094 3 003 2 -8.963e-3 2 NC 1 NC 117 2 max 0 12 .002 13 .02 1 8.61e-3 3 NC 4 NC 118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 118 min 129 4 217 2 022 5 -1.083e-2 2 <	111		18	max	0	1	.458	3	.029	4 4.965e-3	3	NC	5	NC	1
114 min 302 4 407 2 004 2 -6.4e-3 2 NC 1 NC 115 M16 1 max 0 12 .116 2 .006 3 7.503e-3 3 NC 1 NC 116 min 129 4 094 3 003 2 -8.963e-3 2 NC 1 NC 117 2 max 0 12 .002 13 .02 1 8.61e-3 3 NC 4 NC 118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min 129 4 217 2 022 5 -1.083e-2 2	112			min	302	4	717	2	001	10 -7.568e-3	2	657.811	2	7053.59	4
115 M16 1 max 0 12 .116 2 .006 3 7.503e-3 3 NC 1 NC 116 min 129 4 094 3 003 2 -8.963e-3 2 NC 1 NC 117 2 max 0 12 .002 13 .02 1 8.61e-3 3 NC 4 NC 118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min 129 4 217 2 022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2	113		19	max	0	1	.28	3	.006	3 4.14e-3	3	NC	1	NC	1
116 min 129 4 094 3 003 2 -8.963e-3 2 NC 1 NC 117 2 max 0 12 .002 13 .02 1 8.61e-3 3 NC 4 NC 118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min 129 4 217 2 022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min 129 4 3 2 017 5 -1.176e-2 2 489.				min	302	-							1		1
117 2 max 0 12 .002 13 .02 1 8.61e-3 3 NC 4 NC 118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min 129 4 217 2 022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min 129 4 3 2 017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5		M16	1	max		12	.116				3		_1_		1
118 min 129 4 07 2 017 5 -9.897e-3 2 1097.027 2 NC 119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min 129 4 217 2 022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min 129 4 3 2 017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 124 min 129 4 307 2 007 5 -1.27e-2 2				min	129										1
119 3 max 0 12 .043 3 .048 1 9.717e-3 3 NC 5 NC 120 min129 4217 2022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min129 43 2017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 12 124 min129 4307 2007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 12 126 min129 424 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min129 4116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min129 4124 3003 10 -1.55e-2			2												1
120 min 129 4 217 2 022 5 -1.083e-2 2 611.988 2 4327.942 121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min 129 4 3 2 017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 124 min 129 4 307 2 007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 126 min 129 4 24 2 .003 10 -1.363e-2 2															1
121 4 max 0 12 .072 3 .071 1 1.082e-2 3 NC 5 NC 122 min 129 4 3 2 017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 124 min 129 4 307 2 007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min 129 4 1			3												2
122 min 129 4 3 2 017 5 -1.176e-2 2 489.924 2 2890.954 123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 124 min 129 4 307 2 007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min 129 4 116 2 0 10 -1.457e-2 2															1
123 5 max 0 12 .065 3 .083 1 1.193e-2 3 NC 5 NC 124 min 129 4 307 2 007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 12			4												3
124 min 129 4 307 2 007 5 -1.27e-2 2 481.889 2 2479.797 125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2															1
125 6 max 0 12 .023 3 .079 1 1.304e-2 3 NC 5 NC 12 126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 1 128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC			5		_										3
126 min 129 4 24 2 .003 10 -1.363e-2 2 572.426 2 2587.577 127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 1 128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC						-									1
127 7 max 0 12 .001 13 .062 1 1.415e-2 3 NC 4 NC 128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC			ь												3
128 min 129 4 116 2 0 10 -1.457e-2 2 880.405 2 3335.878 129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC			7												2
129 8 max 0 12 .061 1 .035 1 1.525e-2 3 NC 4 NC 130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC															
130 min 129 4 124 3 003 10 -1.55e-2 2 2565.796 2 5940.096 131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC			0												2
131 9 max 0 12 .176 1 .019 4 1.636e-2 3 NC 4 NC			0							10 -1 550-2					
			a												1
	132		3	min	129	4	193	3	007	2 -1.643e-2	2	2061.174	3	NC	1
			10		_								_		1
			10		-										1
			11			_									1
															1
			12												2
138 min129 4124 3014 5 -1.55e-2 2 2565.796 2 5940.096															
			13												2
140 min129 4116 2007 5 -1.457e-2 2 880.405 2 3335.878						-									
			14												3
															1
			15		_										3
144 min129 4307 2 .004 10 -1.27e-2 2 481.889 2 2479.797					-	4									1
			16												3
					129	4									

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.043	3	.048	1	9.717e-3	3	NC	_5_	NC	2
148			min	129	4	217	2	.002	10	-1.083e-2	2	611.988	2	4327.942	1
149		18	max	0	1	.001	13	.025	4	8.61e-3	3	NC	4_	NC	1
150			min	129	4	07	2	0	10	-9.897e-3	2	1097.027	2	8106.353	
151		19	max	0	1	.116	2	.006	3	7.503e-3	3_	NC	_1_	NC	1
152			min	129	4	094	3	003	2	-8.963e-3	2	NC	1_	NC	1
153	<u>M2</u>	1	max	.006	2	.006	2	.005	1	1.236e-3	<u>5</u>	NC	_1_	NC	1
154			min	008	3	01	3	434	4	-1.384e-4	1_	9024.487	2	127.467	4
155		2	max	.006	2	.005	2	.005	1	1.306e-3	5	NC	1_	NC	1
156			min	008	3	01	3	399	4	-1.292e-4	1_	NC	1_	138.828	4
157		3	max	.005	2	.005	2	.004	1	1.376e-3	5_	NC	_1_	NC	1
158			min	007	3	009	3	363	4	-1.2e-4	1_	NC	1_	152.325	4
159		4	max	.005	2	.004	2	.004	1	1.446e-3	5_	NC	<u>1</u>	NC	1
160			min	007	3	009	3	328	4	-1.108e-4	1	NC	1	168.517	4
161		5	max	.005	2	.003	2	.004	1	1.516e-3	5	NC	1	NC	1
162			min	006	3	009	3	294	4	-1.015e-4	1	NC	1	188.16	4
163		6	max	.004	2	.003	2	.003	1	1.586e-3	5	NC	1_	NC	1
164			min	006	3	008	3	261	4	-9.229e-5	1	NC	1	212.307	4
165		7	max	.004	2	.002	2	.003	1	1.656e-3	5	NC	1	NC	1
166			min	005	3	008	3	228	4	-8.306e-5	1	NC	1	242.448	4
167		8	max	.004	2	.001	2	.002	1	1.726e-3	5	NC	1	NC	1
168			min	005	3	007	3	197	4	-7.383e-5	1	NC	1	280.759	4
169		9	max	.003	2	0	2	.002	1	1.799e-3	4	NC	1	NC	1
170			min	004	3	007	3	167	4	-6.46e-5	1	NC	1	330.515	4
171		10	max	.003	2	0	2	.002	1	1.873e-3	4	NC	1	NC	1
172		10	min	004	3	006	3	139	4	-5.536e-5	1	NC	1	396.838	4
173		11	max	.003	2	0	2	.001	1	1.946e-3	4	NC	1	NC	1
174			min	004	3	006	3	113	4	-4.613e-5	1	NC	1	488.11	4
175		12	max	.002	2	<u>.000</u>	2	.001	1	2.019e-3	4	NC	1	NC	1
176		12	min	003	3	005	3	089	4	-3.69e-5	1	NC	1	618.836	4
177		13	max	.002	2	<u>005</u>	15	<u>009</u>	1	2.092e-3	4	NC	1	NC	1
178		13	min	003	3	004	3	068	4	-2.767e-5	1	NC	1	815.955	4
179		14	max	.002	2	0	15	0	1	2.165e-3	4	NC	1	NC	1
180		14	min	002	3	004	3	049	4	-1.844e-5	1	NC	1	1134.313	
181		15		.002	2	- <u>004</u> 0	15	049 0	1	2.239e-3	4	NC	1	NC	1
182		15	max	002	3	003	3	033	4	-9.208e-6	1	NC NC	1	1700.481	4
		16	min		2		15				•	NC NC	1	NC	1
183		16	max	0		0		0	1	2.312e-3 -7.796e-7	4	NC NC			
184		47	min	001	3	002	3	<u>019</u>	4		3		1_	2864.913	
185		17	max	0	2	0	15	0	1	2.385e-3	4	NC	1_	NC	1
186		10	min	0	3	002	3	009	4	1.141e-7	12	NC NC	1_	5930.426	4
187		18		0	2	0	15	0	1	2.458e-3	4	NC	1	NC NC	1
188		40	min	0	3	0	3	003	4	6.975e-7	12	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	2.531e-3	4	NC		NC NC	1
190			min	0	1	0	1	0	1	1.281e-6	12	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-4.261e-7	12	NC	_1_	NC	1
192			min	0	1	0	1	0	1	-5.961e-4	4	NC	1_	NC	1
193		2	max	0	3	0	15	.012	4	7.504e-6	1_	NC	1_	NC	1
194			min	0	2	002	6	0	12	-4.209e-5	5	NC	1_	NC	1
195		3	max	0	3	0	15	.023	4	5.164e-4	4	NC	1_	NC	1
196			min	0	2	003	6	0	12	1.304e-6	12	NC	1	NC	1
197		4	max	.001	3	001	15	.034	4	1.073e-3	4	NC	1_	NC	1
198			min	0	2	005	6	0	12	2.17e-6	12	NC	1	NC	1
199		5	max	.001	3	001	15	.044	4	1.629e-3	4	NC	1	NC	1
200			min	001	2	007	6	0	12	3.035e-6	12	NC	1	NC	1
201		6	max	.002	3	002	15	.054	4	2.185e-3	4	NC	1	NC	1
202			min	001	2	009	6	0	12	3.9e-6	12	NC	1	NC	1
203		7	max	.002	3	002	15	.063	4	2.741e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

204	Member	Sec	l marita	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204		8	min	002	3	01 002	6	<u> </u>	12	4.765e-6 3.298e-3	12	9105.278 NC	6	NC NC	1
206		-	max	.002 002	2	002 011	15 6	0	12	5.631e-6	4	8134.444	<u>1</u>	NC NC	1
207		9	min	.002	3	003	15	.079	4	3.854e-3	4	NC	1	NC NC	1
		9	max		2	003 012				6.496e-6	12	7555.994			1
208 209		10	min	002 .003	3	012	15	<u>0</u> .087	1 <u>2</u>	4.41e-3	4	NC	<u>6</u> 2	NC NC	1
210		10	max	003	2	003 013	6	<u>.067</u>	12	7.361e-6	12	7267.823	6	NC NC	1
211		11	min	.003	3	013 003	15	.095	4	4.966e-3	4	NC	2	NC NC	1
212			max	003	2	003 013	6	<u>.095</u>	12	8.226e-6	12	7226.989	6	NC NC	1
213		12		.003	3	013	15	.102	4	5.523e-3	4	NC	2	NC NC	1
214		12	max min	003	2	003 012	6	102 0	12	9.092e-6	12	7433.173	6	NC NC	1
215		13		.003	3	012	15	<u> </u>	4	6.079e-3	4	NC	1	NC NC	1
216		13	max	003	2	002 012	6	0	12	9.957e-6	12	7930.607	6	NC NC	1
217		14	min	005 .005	3	012 002	15	.118	4		4	NC	1	NC NC	1
		14	max		2				12	6.635e-3		8831.453			1
218 219		15	min	004 .005	3	01 002	15	0 .127	4	1.082e-5	<u>12</u> 4	NC	<u>6</u> 1	NC NC	1
220		10	max		2				12	7.191e-3 1.169e-5		NC NC	1	NC NC	1
221		16	min	004 .005	3	009 001	15	<u> </u>		7.748e-3	12	NC NC	1	NC NC	1
222		10	max	005 004	2				12		<u>4</u> 12	NC NC	1		1
		17	min			007	1	0		1.255e-5			_	NC NC	
223		17	max	.006	3	0 006	15	<u>.145</u>	4	8.304e-3 1.342e-5	<u>4</u> 12	NC NC	1	NC NC	1
224		18	min	005	_	<u>006</u> 0			12			NC NC	_	NC NC	
225		10	max	.006	3	004	15	.156	12	8.86e-3	4	NC NC	<u>1</u> 1	NC NC	1
226		40	min	005			1	0		1.428e-5	12				
227		19	max	.006	3	0	5	.167	4	9.416e-3	4	NC NC	1_	NC NC	1
228	N 4 4	4	min	005	2	003	1	0	12	1.515e-5	12	NC NC	1_4	NC NC	1
229	<u>M4</u>	1	max	.003	1	.005	2	0	12	1.924e-5	1	NC NC	1_	NC	2
230		2	min	0	3	006	3	167	4	-2.589e-4	5	NC NC	1_	148.484	4
231		2	max	.003	3	.004	2	0	12	1.924e-5	1	NC NC	1_	NC 4C4 F04	2
232		2	min	0		006	3	154	4	-2.589e-4	5	NC NC	1_1	161.521	4
233		3	max	.002	3	.004	2	0 14	12	1.924e-5	1	NC NC	1	NC	2
234		1	min	0		006	3		4	-2.589e-4	5		•	177.034	4
235		4	max	.002	3	.004	2	0	12	1.924e-5	1	NC NC	1_1	NC 405 CC4	2
236		-	min	0		005	3	127	4	-2.589e-4	5	NC NC	1_	195.664	4
237		5	max	.002	1	.004	2	0	12	1.924e-5	1_	NC NC	1	NC 240,200	2
238		6	min	0	3	005	3	<u>114</u>	4	-2.589e-4	5_1	NC NC	1	218.286 NC	4
239		6	max	.002	3	.003	3	0	12	1.924e-5	1	NC NC	1		2
240		7	min	.002	1	005 .003	2	<u>101</u>	12	-2.589e-4	5	NC NC	1	246.112 NC	2
242			max	<u>.002</u>	3		3	0	4	1.924e-5	<u>1</u> 5	NC NC	1		4
		0	min			004		088		-2.589e-4			1	280.865	1
243 244		8	max min	.002	3	.003 004	3	0 076	12	1.924e-5 -2.589e-4	<u>1</u>	NC NC	1	NC 325.053	4
244		9	max	.002	1	.003	2	<u>076</u> 0	12	1.924e-5	<u>ວ</u> 1	NC NC	1	NC	1
245		9	min	<u>.002</u>	3	003	3	065	4	-2.589e-4	5	NC NC	1	382.456	4
247		10	max	.001	1	.002	2	065	12	1.924e-5	<u>၁</u> 1	NC NC	1	NC	1
247		10	min	<u>.001</u>	3	003	3	054	4	-2.589e-4	5	NC NC	1	458.981	4
249		11	max	.001	1	.002	2	054 0	12	1.924e-5	<u>၁</u> 1	NC NC	1	NC	1
250			min	0	3	002	3	044	4	-2.589e-4	5	NC NC	1	564.292	4
251		12	max	.001	1	.002	2	044 0	12	1.924e-5	<u> </u>	NC NC	1	NC	1
252		14	min	0	3	002	3	035	4	-2.589e-4	5	NC NC	1	715.105	4
253		13	max	0	1	.002	2	035 0	12	1.924e-5	<u> </u>	NC NC	1	NC	1
254		13	min	0	3	002	3	026	4	-2.589e-4	5	NC NC	1	942,449	4
255		14		0	1	002 .001	2	026 0	12	1.924e-5	<u> </u>	NC NC	1	NC	1
256		14	max min	0	3	001 002	3	019	4	-2.589e-4	5	NC NC	1	1309.448	
257		15		0	1	002 .001	2	<u>019</u> 0	12	1.924e-5	<u>၁</u> 1	NC NC	1	NC	1
258		10	max min	0	3	001	3	013	-	-2.589e-4		NC NC	1	1961.615	
259		16		0	1	<u>001</u> 0	2	013 0	12	1.924e-5	<u>5</u>	NC NC	1	NC	1
		16	max		3		3	008	-			NC NC	1		
260			min	0	J	001	3	006	4	-2.589e-4	5	INC		3301.202	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	00	2	00	12	1.924e-5	_1_	NC	_1_	NC	1
262			min	0	3	0	3	004	4	-2.589e-4	5	NC	1_	6819.662	4
263		18	max	0	1	0	2	00	12	1.924e-5	_1_	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-2.589e-4	5_	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.924e-5	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-2.589e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.019	2	.022	2	0	1	1.29e-3	4	NC	4_	NC	1
268			min	026	3	032	3	438	4	0	1_	1712.415	3	126.392	4
269		2	max	.018	2	.02	2	0	1	1.359e-3	4	NC	_4_	NC	1
270			min	025	3	03	3	402	4	0	1_	1817.093	3	137.658	4
271		3	max	.017	2	.019	2	0	1	1.427e-3	4	NC	4_	NC	1
272		-	min	023	3	029	3	366	4	0	1	1935.341	3	151.043	4
273		4	max	.016	2	.017	2	0	1	1.496e-3	4_	NC	4_	NC	1
274		_	min	022	3	027	3	331	4	0	1_	2069.904	3	167.101	4
275		5_	max	.015	2	.015	2	0	1	1.564e-3	4_	NC	4_	NC 100 500	1
276			min	02	3	025	3	297	4	0	1_	2224.314	3	186.583	4
277		6	max	.014	2	.013	2	0	1	1.633e-3	4	NC 0400 404	4	NC 040 504	1
278		-	min	019	3	023	3	263	4	0	1_	2403.191	3	210.531	4
279		7	max	.013	2	.012	2	0	1	1.701e-3	4_	NC	1_	NC 0.40-400	1
280		_	min	017	3	021	3	23	4	0	1_	2612.699	3	240.426	4
281		8	max	.012	2	.01	2	0	1	1.77e-3	4	NC	1_	NC	1
282			min	016	3	019	3	199	4	0	1_	2861.242	3	278.424	4
283		9	max	.011	2	.009	2	0	1	1.838e-3	4_	NC	1_	NC	1
284		10	min	015	3	018	3	169	4	0	1_1	3160.594	3	327.777	4
285		10	max	.009	2	.007	2	0	1	1.907e-3	4	NC	1	NC 202 FCF	1
286		4.4	min	013	3	016	3	141	4	0	1_1	3527.761	3	393.565	4
287		11	max	.008	2	.006	2	0	1	1.976e-3	4	NC	1	NC 404 405	1
288		40	min	012	3	014	3	<u>114</u>	4	0	1_1	3988.26	3	484.105	4
289		12	max	.007	2	.005	2	0	1	2.044e-3	4	NC	1	NC C42 702	1
290 291		13	min	01 .006	2	012 .003	2	<u>09</u> 0	1	2.113e-3	<u>1</u> 4	4582.198 NC	<u>3</u>	613.792 NC	1
292		13	max	009	3	01	3	068	4	0	1	5376.423	3	809.361	4
293		14	min	.005	2	.003	2	066 0	1	2.181e-3	4	NC	<u> </u>	NC	1
294		14	max	007	3	009	3	049	4	0	1	6491.277	3	1125.252	4
295		15		.004	2	.002	2	049 0	1	2.25e-3	4	NC	<u> </u>	NC	1
296		15	max	00 4	3	007	3	033	4	0	1	8167.458	3	1687.124	4
297		16	max	.003	2	.001	2	033	1	2.318e-3	4	NC	1	NC	1
298		10	min	004	3	005	3	019	4	0	1	NC	1	2842.997	4
299		17	max	.002	2	003	2	<u>019</u> 0	1	2.387e-3	4	NC	1	NC	1
300		17	min	003	3	003	3	009	4	0	1	NC	1	5887.243	4
301		18	max	.003	2	<u>003</u> 0	2	<u>009</u> 0	1	2.455e-3		NC	1	NC	1
302		10	min	001	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.524e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717	<u>'</u>	min	0	1	0	1	0	1	-5.933e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.012	4	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	-4.932e-5	5	NC	1	NC	1
309		3	max	.002	3	0	2	.023	4	4.955e-4	4	NC	1	NC	1
310		Ĭ	min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	.034	4	1.04e-3	4	NC	1	NC	1
312			min	003	2	007	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	002	15	.044	4	1.584e-3	4	NC	1	NC	1
314			min	004	2	009	3	0	1	0	1	NC	1	NC	1
315		6	max	.005	3	002	15	.053	4	2.129e-3	4	NC	1	NC	1
316			min	005	2	011	3	0	1	0	1	8689.371	3	NC	1
317		7	max	.006	3	002	15	.062	4	2.673e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
318			min	006	2	013	3	0	1	0	1	7759.186	3	NC	1
319		8	max	.008	3	003	15	.071	4	3.217e-3	4	NC	_1_	NC	1
320			min	007	2	014	3	0	1	0	1	7208.44	3	NC	1
321		9	max	.009	3	003	15	.079	4	3.762e-3	4	NC	1_	NC	1
322		40	min	008	2	<u>014</u>	3	0	1	0	1_	6923.482	3	NC	1
323		10	max	.01	3	003	15	.086	4	4.306e-3	4	NC	1_	NC NC	1
324		4.4	min	009	2	01 <u>5</u>	3	0	1	0	1	6853.291	3	NC NC	1
325		11	max	.011	3	003	15	.094	4	4.85e-3	4	NC COOA OF C	1_	NC NC	1
326		40	min	01	2	015	3	0	1	0	1	6984.956	3	NC NC	1
327		12	max	.012	3	003	15	101 0	1	5.395e-3	4	NC 7337.874	1_2	NC NC	1
328 329		13	min	011	3	014 003		.109	4	0 5.939e-3	<u>1</u> 4	NC	<u>3</u>	NC NC	1
330		13	max	.013 012	2	003 013	15	<u>.109</u>	1	0.9396-3	1	7943.31	4	NC NC	1
331		14	min	.014	3	013	15	.116	4	6.483e-3	4	NC	1	NC NC	1
332		14	max min	013	2	003 012	3	0	1	0.465e-5	1	8845.08	4	NC	1
333		15	max	.015	3	002	15	.124	4	7.028e-3	4	NC	1	NC	1
334		13	min	014	2	011	3	0	1	0	1	NC	1	NC	1
335		16	max	.016	3	002	15	.133	4	7.572e-3	4	NC	1	NC	1
336		10	min	015	2	009	3	0	1	0	1	NC	1	NC	1
337		17	max	.017	3	001	15	.142	4	8.117e-3	4	NC	1	NC	1
338			min	016	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.018	3	0	15	.152	4	8.661e-3	4	NC	1	NC	1
340			min	017	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.019	3	0	15	.163	4	9.205e-3	4	NC	1	NC	1
342			min	018	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	2	.017	2	0	1	0	1	NC	1	NC	1
344			min	003	3	019	3	163	4	-3.02e-4	4	NC	1	152.177	4
345		2	max	.008	2	.016	2	0	1	0	1	NC	1	NC	1
346			min	003	3	018	3	15	4	-3.02e-4	4	NC	1	165.543	4
347		3	max	.007	2	.015	2	0	1	0	1	NC	1_	NC	1
348			min	002	3	017	3	137	4	-3.02e-4	4	NC	1_	181.445	4
349		4	max	.007	2	.014	2	0	1	0	1	NC	1_	NC	1
350			min	002	3	016	3	124	4	-3.02e-4	4	NC	1_	200.544	4
351		5	max	.006	2	.013	2	0	1	0	1	NC	_1_	NC	1
352			min	002	3	015	3	111	4	-3.02e-4	4	NC	1_	223.734	4
353		6	max	.006	2	.012	2	0	1	0	1	NC	_1_	NC	1
354		_	min	002	3	<u>014</u>	3	098	4	-3.02e-4	4	NC	1_	252.26	4
355		7	max	.006	2	.011	2	0	1	0	1	NC	1_	NC	1
356			min	002	3	013	3	086	4	-3.02e-4	4	NC	1_	287.886	4
357		8	max	.005	2	.01	2	0	1	0	11	NC NC	1_	NC 200 404	1
358			min		3	012	3	074	4	-3.02e-4	4	NC NC	1	333.184	4
359		9	max	.005	2	.009	2	<u> </u>	1	0	1_1	NC NC	1	NC	1
360		10	min	002	3	011	2	063	1	-3.02e-4	<u>4</u> 1	NC NC	<u>1</u> 1	392.029	1
361		10	max	.004	3	.008	3	0.53				NC NC	1	NC 470.477	
362 363		11	min max	001 .004	2	01 .007	2	<u>053</u> 0	1	-3.02e-4 0	<u>4</u> 1	NC NC	1	NC	1
364		11	min	001	3	009	3	043	4	-3.02e-4	4	NC	1	578.433	4
365		12	max	.003	2	.006	2	- <u>043</u> 0	1	0	1	NC	1	NC	1
366		12	min	001	3	008	3	034	4	-3.02e-4	4	NC	1	733.036	4
367		13	max	.003	2	.006	2	034 0	1	0	1	NC NC	1	NC	1
368		13	min	.003	3	006	3	026	4	-3.02e-4	4	NC NC	1	966.093	4
369		14	max	.002	2	.005	2	<u>020</u> 0	1	0	1	NC	1	NC	1
370		17	min	0	3	005	3	018	4	-3.02e-4	4	NC	1	1342.316	_
371		15	max	.002	2	.004	2	0	1	0	1	NC	1	NC	1
372		10	min	0	3	004	3	012	4	-3.02e-4	4	NC	1	2010.879	4
373		16	max	.001	2	.003	2	0	1	0	1	NC	1	NC	1
374		1.0	min	0	3	003	3	007	4	-3.02e-4	4	NC	1	3384.157	4
U1 T			1111111			.000		.001		0.020 7		110		300 F. 107	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

375	Member	Sec 17	max	x [in]	LC 2	y [in] .002	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		17	min	0	3	002	3	004	4	-3.02e-4	4	NC	1	6991.144	4
377		18	max	0	2	0	2	<u>.00+</u>	1	0	1	NC	1	NC	1
378		1.0	min	0	3	001	3	001	4	-3.02e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		15	min	0	1	0	1	0	1	-3.02e-4	4	NC	1	NC	1
381	M10	1	max	.006	2	.006	2	0	12	1.288e-3	4	NC	1	NC	1
382	IVITO		min	008	3	01	3	437	4	9.221e-6		9024.487	2	126.624	4
383		2	max	.006	2	.005	2	0	12	1.356e-3	4	NC	1	NC	1
384			min	008	3	01	3	401	4	8.637e-6	12	NC	1	137.911	4
385		3	max	.005	2	.005	2	0	12	1.425e-3	4	NC	1	NC	1
386		T -	min	007	3	009	3	366	4	8.054e-6	12	NC	1	151.32	4
387		4	max	.005	2	.004	2	<u>.500</u>	12	1.493e-3	4	NC	1	NC	1
388		+-	min	007	3	009	3	331	4	7.47e-6	12	NC	1	167.407	4
389		5	max	.005	2	.003	2	0	12	1.561e-3	4	NC	1	NC	1
390		+	min	006	3	009	3	296	4	6.887e-6	12	NC	1	186.925	4
391		6	max	.004	2	.003	2	0	12	1.629e-3	4	NC	1	NC	1
392			min	006	3	008	3	262	4	6.303e-6	12	NC	1	210.917	4
393		7	max	.004	2	.002	2	0	12	1.698e-3	4	NC	1	NC	1
394		+ '	min	005	3	008	3	23	4	5.72e-6	12	NC	1	240.866	4
395		8	max	.004	2	.001	2	<u>23</u> 0	12	1.766e-3	4	NC	1	NC	1
396		10	min	005	3	007	3	198	4	5.137e-6	12	NC	1	278.935	4
397		9	max	.003	2	<u>007</u> 0	2	<u>196</u> 0	12	1.834e-3	4	NC	1	NC	1
398		9	min	004	3	007	3	169	4	4.553e-6	12	NC	1	328.378	4
399		10		.003	2	<u>007</u> 0	2	<u>169</u> 0	12	1.902e-3		NC	1	NC	1
400		10	max min	004	3	006	3	14	4	3.97e-6	<u>4</u> 12	NC NC	1	394.287	4
401		11		.003	2	_ 000 _	2	0	12	1.971e-3	4	NC	1	NC	1
402		+ ' '	max	004	3	006	3	114	4	3.386e-6	12	NC	1	484.995	4
		12	min	004 .002	2	<u>006</u> 0	2	114 0	12	2.039e-3		NC NC	1	NC	1
403		12	max		3		3				4		1		
404 405		13	min	003 .002	2	<u>005</u> 0	2	<u>09</u> 0	12	2.803e-6 2.107e-3	<u>12</u> 4	NC NC	1	614.922 NC	1
406		13	max	002	3	004	3	068	4	2.107e-3 2.079e-6	10	NC NC	1	810.855	4
407		14	min	.002	2	004 0	2	066 0	12	2.079e-8 2.175e-3	4	NC NC	1	NC	1
407		14	max min	002	3	004	3	049	4	1.314e-6	10	NC NC	1	1127.337	4
		15								2.243e-3	-		1		1
409 410		15	max min	.001 002	3	003	15	033	12	5.49e-7	<u>4</u> 10	NC NC	1	NC 1690.268	4
411		16		<u>002</u> 0	2	003 0	15	033 0	12	2.312e-3	4	NC NC	1	NC	1
412		10	max	001	3	002	3	019	4	-3.362e-7	2	NC	1	2848.349	4
		17	min		2	<u>002</u> 0	15	<u>019</u> 0	12		4	NC NC		NC	1
413 414		17	max	<u> </u>	3	002	3	009		2.38e-3 -9.255e-6	1	NC NC	1	5898.533	
415		10	min max	0	2	•	15	•	4	2.448e-3		NC NC	1	NC	4
416		10	min	0	3	0	4	003	4	-1.849e-5	1	NC	1	NC	1
417		19		0	1	0	1	<u>003</u> 0	1	2.516e-3	4	NC	1	NC	1
417		19	max min	0	1	0	1	0	1		1	NC NC	1	NC NC	1
419	M11	1		0	1		1		1	-2.772e-5		NC NC	1	NC NC	1
420	IVI I I	+ '	max min	0	1	0	1	<u> </u>	1	8.824e-6 -5.914e-4	<u>1</u> 4	NC	1	NC	1
421		2		0	3	0	15	.012	4	-4.391e-7		NC NC	1	NC NC	1
422		+-	max min	0	2	002	4	0	1	-4.391e-7	<u>12</u> 4	NC	1	NC NC	1
423		3		0	3	<u>002</u> 0	15	.023	4	5.036e-4	4	NC	1	NC NC	1
		3	max		2				1	-2.383e-5	4		1		1
424 425		4	min	.001	3	004 001	15	<u> </u>	4	1.051e-3	4	NC NC	1	NC NC	1
426		4	max min	0	2	001 005	4	034 0	1	-4.016e-5	1	NC NC	1	NC NC	1
427		5	max	.001	3	005 002	15	.044	4	1.599e-3	4	NC NC	1	NC NC	1
427		J	min	001	2	002 007	4	044 0	1	-5.649e-5	1	NC NC	1	NC NC	1
428		6		.002	3	007 002	15	.053	-	2.146e-3		NC NC	1	NC NC	1
430		6	max min	002 001	2	002 009	4	<u>.053</u>	1	-7.282e-5	<u>4</u> 1	NC NC	1	NC NC	1
431		7		.002	3	009 003	15	.062	4	2.694e-3	4	NC NC	1	NC NC	1
401		/	max	.002	_⊥ ວ	003	lί	.002	4	Z.034E-3	4	INC	<u> </u>	INC	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
432			min	002	2	011	4	001	1	-8.914e-5	1_	8763.482	4	NC	1
433		8	max	.002	3	003	15	.07	4	3.241e-3	4_	NC	<u>1</u>	NC	1
434			min	002	2	012	4	001	1	-1.055e-4	1	7851.618	4	NC	1
435		9	max	.003	3	003	15	.078	4	3.789e-3	4	NC	1	NC	1
436			min	002	2	013	4	001	1	-1.218e-4	1	7310.615	4	NC	1
437		10	max	.003	3	003	15	.086	4	4.336e-3	4	NC	2	NC	1
438			min	003	2	013	4	002	1	-1.381e-4	1	7045.736	4	NC	1
439		11	max	.003	3	003	15	.094	4	4.884e-3	4	NC	2	NC	1
440			min	003	2	014	4	002	1	-1.545e-4	1	7017.788	4	NC	1
441		12	max	.004	3	003	15	.101	4	5.431e-3	4	NC	2	NC	1_
442			min	003	2	013	4	002	1	-1.708e-4	1	7228.07	4	NC	1
443		13	max	.004	3	003	15	.109	4	5.978e-3	4	NC	1_	NC	1
444			min	003	2	012	4	003	1	-1.871e-4	1	7720.783	4	NC	1
445		14	max	.005	3	003	15	.117	4	6.526e-3	4	NC	1	NC	1
446			min	004	2	011	4	003	1	-2.034e-4	1	8606.12	4	NC	1
447		15	max	.005	3	002	15	.125	4	7.073e-3	4	NC	1	NC	1
448			min	004	2	01	4	003	1	-2.198e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	.133	4	7.621e-3	4	NC	1	NC	1
450			min	004	2	008	4	004	1	-2.361e-4	1	NC	1	NC	1
451		17	max	.006	3	002	15	.143	4	8.168e-3	4	NC	1	NC	1
452			min	005	2	006	4	004	1	-2.524e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	.153	4	8.716e-3	4	NC	1	NC	1
454			min	005	2	004	1	005	1	-2.688e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	.164	4	9.263e-3	4	NC	1	NC	1
456			min	005	2	003	1	005	1	-2.851e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.005	1	-1.361e-6	12	NC	1	NC	2
458			min	0	3	006	3	164	4	-2.654e-4	4	NC	1	150.989	4
459		2	max	.003	1	.004	2	.005	1	-1.361e-6	12	NC	1	NC	2
460		_	min	0	3	006	3	151	4	-2.654e-4	4	NC	1	164.245	4
461		3	max	.002	1	.004	2	.004	1	-1.361e-6	12	NC	1	NC	2
462			min	0	3	006	3	138	4	-2.654e-4	4	NC	1	180.018	4
463		4	max	.002	1	.004	2	.004	1	-1.361e-6	12	NC	1	NC	2
464			min	0	3	005	3	125	4	-2.654e-4	4	NC	1	198.961	4
465		5	max	.002	1	.004	2	.004	1	-1.361e-6	12	NC	1	NC	2
466			min	0	3	005	3	112	4	-2.654e-4	4	NC	1	221.963	4
467		6	max	.002	1	.003	2	.003	1	-1.361e-6	12	NC	1	NC	2
468			min	0	3	005	3	099	4	-2.654e-4	4	NC	1	250.257	4
469		7	max	.002	1	.003	2	.003	1	-1.361e-6	12	NC	1	NC	2
470			min	0	3	004	3	087	4	-2.654e-4	4	NC	1	285.594	4
471		8	max	.002	1	.003	2	.002	1	-1.361e-6	12	NC	1	NC	1
472			min	0	3	004	3	075	4	-2.654e-4		NC	1	330.524	4
473		9	max	.002	1	.003	2	.002	1	-1.361e-6		NC	1	NC	1
474			min	0	3	003	3	064	4	-2.654e-4		NC	1	388.891	4
475		10	max	.001	1	.002	2	.002	1	-1.361e-6	12	NC	1	NC	1
476		1.0	min	0	3	003	3	053	4	-2.654e-4	4	NC	1	466.701	4
477		11	max	.001	1	.002	2	.001	1	-1.361e-6		NC	1	NC	1
478			min	0	3	003	3	043	4	-2.654e-4	4	NC	1	573.781	4
479		12	max	.001	1	.002	2	.001	1	-1.361e-6		NC	1	NC	1
480		12	min	0	3	002	3	034	4	-2.654e-4	4	NC	1	727.126	4
481		13	max	0	1	.002	2	034 0	1			NC	1	NC	1
482		13	min	0	3	002	3	026	4	-2.654e-4	4	NC	1	958.288	4
483		14	max	0	1	.002	2	<u>020</u> 0	1	-1.361e-6	12	NC	1	NC	1
484		14	min	0	3	002	3	019	4	-1.361e-6 -2.654e-4	4	NC NC	1	1331.448	_
485		15	max	0	1	.002	2	<u>019</u> 0	1	-2.654e-4 -1.361e-6		NC NC	1	NC	1
486		10	min	0	3	001	3	012	4	-1.361e-6 -2.654e-4	4	NC NC	1	1994.562	4
487		16	max	0	1	<u>001</u> 0	2	<u>012</u> 0	1	-2.654e-4 -1.361e-6		NC NC	1	NC	1
488		10		0	3	001	3	007	4			NC NC	1	3356.632	_
400			min	U	3	001	3	007	4	-2.654e-4	4	INC		JJJU.0JZ	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-1.361e-6	12	NC	_1_	NC	1
490			min	0	3	0	3	004	4	-2.654e-4	4	NC	1_	6934.13	4
491		18	max	0	1	0	2	0	1	-1.361e-6	12	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-2.654e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-1.361e-6	12	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-2.654e-4	4	NC	1_	NC	1
495	M1	1	max	.008	3	.132	2	.459	4	1.095e-2	_1_	NC	_1_	NC	1
496			min	004	2	03	3	0	12	-2.249e-2	3	NC	1_	NC	1
497		2	max	.008	3	.064	2	.447	4	6.68e-3	4	NC	4	NC	1
498			min	004	2	014	3	004	1	-1.112e-2	3	1696.353	2	NC	1
499		3	max	.008	3	.011	3	.434	4	1.14e-2	4_	NC	5	NC	1
500			min	004	2	009	2	005	1	-1.191e-4	3	818.966	2	9012.412	5
501		4	max	.008	3	.053	3	.421	4	9.905e-3	4_	NC	5_	NC	1
502			min	004	2	091	2	005	1	-4.536e-3	3	518.254	2	6337.459	5
503		5	max	.007	3	.105	3	.408	4	8.405e-3	4	NC	5	NC	1
504			min	004	2	176	2	003	1	-8.953e-3	3	374.814	2	4982.297	5
505		6	max	.007	3	.161	3	.394	4	1.244e-2	2	NC	15	NC	1
506			min	004	2	258	2	001	1	-1.337e-2	3	295.678	2	4167.997	5
507		7	max	.007	3	.215	3	.38	4	1.658e-2	2	NC	15	NC	1
508			min	004	2	331	2	0	3	-1.779e-2	3	248.907	2	3615.398	4
509		8	max	.007	3	.26	3	.366	4	2.072e-2	2	9712.576	15	NC	1
510			min	004	2	39	2	0	12	-2.22e-2	3	221.216	2	3220.193	4
511		9	max	.007	3	.289	3	.351	4	2.345e-2	2	9085.535	15	NC	1
512			min	004	2	426	2	0	1	-2.249e-2	3	206.791	2	2973.433	4
513		10	max	.007	3	.299	3	.333	4	2.523e-2	2	8894.249	15	NC	1
514			min	004	2	439	2	0	12	-2.004e-2	3	202.56	2	2896.099	4
515		11	max	.007	3	.292	3	.314	4	2.701e-2	2	9085.222	15	NC	1
516			min	004	2	426	2	0	12	-1.759e-2	3	207.489	2	2951.548	4
517		12	max	.006	3	.268	3	.293	4	2.603e-2	2	9711.853	15	NC	1
518			min	004	2	388	2	0	1	-1.492e-2	3	223.323	2	3151.146	4
519		13	max	.006	3	.228	3	.27	4	2.087e-2	2	NC	15	NC	1
520			min	004	2	328	2	0	1	-1.195e-2	3	253.999	2	3691.071	4
521		14	max	.006	3	.177	3	.244	4	1.571e-2	2	NC	15	NC	1
522			min	003	2	252	2	0	12	-8.971e-3	3	306.495	2	4836.746	4
523		15	max	.006	3	.12	3	.218	4	1.055e-2	2	NC	5	NC	1
524			min	003	2	168	2	0	12	-5.996e-3	3	396.946	2	7355.205	4
525		16	max	.006	3	.061	3	.192	4	7.961e-3	4	NC	5	NC	1
526			min	003	2	083	2	0	12	-3.02e-3	3	564.618	2	NC	1
527		17	max	.006	3	.004	3	.168	4	9.019e-3	4	NC	5	NC	1
528			min	003	2	006	2	0	12	-4.359e-5	3	923.363	2	NC	1
529		18	max	.006	3	.059	2	.147	4	8.504e-3	2	NC	4	NC	1
530			min	003	2	047	3	0	12	-3.541e-3	3	1960.948	2	NC	1
531		19	max	.006	3	.116	2	.129	4	1.709e-2	2	NC	1_	NC	1
532			min	003	2	094	3	0	1	-7.189e-3	3	NC	1	NC	1
533	M5	1	max	.024	3	.281	2	.459	4	0	1	NC	1	NC	1
534			min	016	2	025	3	0	1	-4.168e-6	4	NC	1	NC	1
535		2	max	.024	3	.135	2	.449	4	5.842e-3	4	NC	5	NC	1
536			min	016	2	01	3	0	1	0	1	797.105	2	NC	1
537		3	max	.024	3	.036	3	.438	4	1.151e-2	4	NC	5	NC	1
538			min	016	2	028	2	0	1	0	1	374.759	2	7468.305	4
539		4	max	.023	3	.135	3	.424	4	9.375e-3	4	NC	15	NC	1
540			min	016	2	224	2	0	1	0	1	229.168	2	5609.644	4
541		5	max	.023	3	.272	3	.41	4	7.243e-3	4	8075.219	15	NC	1
542			min	016	2	437	2	0	1	0	1	161.181	2	4674.421	4
543		6	max	.022	3	.426	3	.395	4	5.112e-3	4	6209.253	15	NC	1
544			min	015	2	648	2	0	1	0	1	124.52	2	4088.723	4
545		7	max	.022	3	.577	3	.38	4	2.98e-3	4	5133.239	15	NC	1
		•							•				_		

Model Name

: Schletter, Inc. : HCV

нсу

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	015	2	839	2	0	1	0	1_	103.257	2	3649.822	-
547		8	max	.022	3	.703	3	.366	4	8.482e-4	4	4508.279	<u>15</u>	NC	1
548			min	015	2	992	2	0	1	0	1_	90.857	2	3267.13	4
549		9	max	.021	3	.784	3	351	4	0	1_	4188.046	15	NC	1
550		40	min	014	2	<u>-1.089</u>	2	0	1	-2.682e-6	5	84.485	2	2970.136	
551		10	max	.021	3	.813	3	.333	4	0	1	4091.602	<u>15</u>	NC 2917.691	4
552		11	min	014 .02	3	<u>-1.123</u> .793	3	0 .314	4	-2.57e-6	<u>5</u> 1	82.621 4188.185	<u>2</u> 15	NC	1
553 554			max	014	2	-1.09	2	<u>314</u>	1	-2.459e-6	5	84.785	2	2985.276	
555		12	max	.02	3	.724	3	.294	4	6.464e-4	4	4508.602	15	NC	1
556		12	min	014	2	989	2	0	1	0.4046-4	1	91.844	2	3099.232	-
557		13	max	.019	3	.613	3	.27	4	2.271e-3	4	5133.882	15	NC	1
558		10	min	014	2	828	2	0	1	0	1	105.829	2	3622.788	
559		14	max	.019	3	.473	3	.244	4	3.896e-3	4	6210.487	15	NC	1
560			min	013	2	628	2	0	1	0	1	130.336	2	4969.911	4
561		15	max	.018	3	.317	3	.216	4	5.521e-3	4	8077.624	15	NC	1
562			min	013	2	412	2	0	1	0	1	173.904	2	8659.761	4
563		16	max	.018	3	.159	3	.188	4	7.146e-3	4	NC	15	NC	1
564			min	013	2	201	2	0	1	0	1	258.042	2	NC	1
565		17	max	.017	3	.012	3	.164	4	8.771e-3	4	NC	5	NC	1
566			min	013	2	017	2	0	1	0	1	446.307	2	NC	1
567		18	max	.017	3	.121	2	.144	4	4.454e-3	4	NC	5	NC	1
568			min	013	2	112	3	0	1	0	1	991.783	2	NC	1
569		19	max	.017	3	.233	2	.129	4	0	1	NC	1	NC	1
570			min	013	2	224	3	0	1	-2.07e-6	4	NC	1	NC	1
571	M9	1_	max	.008	3	.132	2	.459	4	2.249e-2	3	NC	<u>1</u>	NC	1
572			min	004	2	03	3	0	1	-1.095e-2	1_	NC	1_	NC	1
573		2	max	.008	3	.064	2	.449	4	1.112e-2	3_	NC	4_	NC	1
574			min	004	2	014	3	0	12	-5.357e-3	2	1696.353	2	NC	1
575		3	max	.008	3	.011	3	.437	4	1.147e-2	4	NC	5_	NC	1
576		_	min	004	2	009	2	0	12	-3.496e-5	<u>10</u>	818.966	2	7784.031	4
577		4	max	.008	3	.053	3	.424	4	9.062e-3	5_	NC 540.054	5_	NC	1
578		+-	min	004	2	091	2	0	12	-4.167e-3	2	518.254	2	5741.502	
579		5	max	.007	3	.105	3	.41	4	8.953e-3	3	NC 274 04 4	5_	NC 4707 FOF	1
580		6	min	004	2	176	2	0	12	-8.306e-3	2	374.814 NC	<u>2</u> 15	4707.505 NC	1
581 582		6	max	.007 004	3	.161 258	3	.395 0	12	1.337e-2 -1.244e-2	2	295.678	2	4069.114	
583		7	min	.004	3	<u>256</u> .215	3	.38	4	1.779e-2	3	NC	15	NC	1
584			max	004	2	331	2	<u></u> 0	1	-1.658e-2	2	248.907	2	3613.009	
585		8	max	.007	3	.26	3	.366	4	2.22e-2	3	9694.894	15	NC	1
586		-	min		2	39	2	0		-2.072e-2				3244.078	
587		9	max	.007	3	.289	3	.351	4	2.249e-2	3	9069.172	15	NC	1
588		Ť	min	004	2	426	2	0	12	-2.345e-2	2	206.791	2	2966.329	
589		10	max	.007	3	.299	3	.333	4	2.004e-2	3	8878.26	15	NC	1
590			min	004	2	439	2	0	1	-2.523e-2	2	202.56	2	2897.044	4
591		11	max	.007	3	.292	3	.314	4	1.759e-2	3	9068.832	15	NC	1
592			min	004	2	426	2	0	1	-2.701e-2	2	207.489	2	2960.04	4
593		12	max	.006	3	.268	3	.294	4	1.492e-2	3	9694.215	15	NC	1
594			min	004	2	388	2	0	12	-2.603e-2	2	223.323	2	3128.484	4
595		13	max	.006	3	.228	3	.27	4	1.195e-2	3	NC	15	NC	1
596			min	004	2	328	2	0	10	-2.087e-2	2	253.999	2	3689.568	4
597		14	max	.006	3	.177	3	.243	4	8.971e-3	3	NC	15	NC	1
598			min	003	2	252	2	001	1	-1.571e-2	2	306.495	2	4953.797	5
599		15	max	.006	3	.12	3	.216	4	5.996e-3	3	NC	5	NC	1
600			min	003	2	168	2	003	1	-1.055e-2	2	396.946	2	7943.442	5
601		16	max	.006	3	.061	3	.189	4	7.031e-3	5	NC	5	NC	1
602			min	003	2	083	2	005	1	-5.387e-3	2	564.618	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.006	3	.004	3	.165	4	8.836e-3	4	NC	5	NC	1
604			min	003	2	006	2	005	1	-3.902e-4	1	923.363	2	NC	1
605		18	max	.006	3	.059	2	.145	4	4.276e-3	5	NC	4	NC	1
606			min	003	2	047	3	004	1	-8.504e-3	2	1960.948	2	NC	1
607		19	max	.006	3	.116	2	.129	4	7.189e-3	3	NC	1	NC	1
608			min	003	2	094	3	0	12	-1.709e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

36C. D.7.3 0.72 0.40 120.3 /0 1.2 F	Sec. D.7.3	0.72	0.48	120.3 %	1.2	Pass
-------------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.