

What is AI?

Series of techniques to extract information from data

Amount of information

The more data we have, the more we trade insight for predictive power

Example application: BioBest

Case studies

Computer vision

Glass

Materials discovery

Manufacturing

Sensor data

Steel plate defects

Part of the pipeline needs to run in production

Detector

Original

Grayscale

Threshold

Source: https://doi.org/10.1016/j.aej.2019.10.001

Simple and effective, but can be fickle

Featurizer

Size and shape

Brightness and contrast

Materials properties

Processing information

Features are numerical representation of the data created using our knowledge

This session

- 1. Analyze the features
- 2. (optional) Add more
- 3. Choose a model
- 4. Optimize the model
- 5. Evaluate the results
- 6. Interpret with explainable AI

Part of the pipeline needs to run in production

Jupyter Lab This app will launch a Jupyter Lab server on one or more nodes. Cluster dodrio cpu_rome Time (hours) 12 Number of nodes Number of cores per node 32 (quarter) Mode JupyterLab version 3.1.6 GCCcore 11.2.0

Log in at https://tier1.hpc.ugent.be

- What is the dataset?
- Where did it come from?
- Who made it?
- What are the inputs?
- What are the outputs?

Tabular data

	Feature	
Datapoint	Value	

ill pandas

pip install pandas

Exploratory Data Analysis

- What kind of features are in the dataset?
- What is the range of the values?
- What do the features represent?
- Are they independent?
- Is there missing data?
- Are certain outputs rare or abundant?

Example: feature independence

Strongly correlated features are opportunities for optimization

Machine learning ingredients

We must find the function that connects the inputs to the target

Machine learning ingredients

Example: tensile curve

Type of representation can greatly affect the performance

- Materials
- Etchings
- Machines
- People

Collecting a good dataset takes time

Be very careful for data leakage

Choose a model of the right complexity and regularize where needed

Generalization

Regularization techniques can prevent overfitting

Robust, flexible in amount of data, controllable speed (CPU)

Bump decision tree

A single tree greatly risks overfitting

Random forests

By taking many simple trees, we average out the error and prevent overfitting

Out-of-bag score

N samples are chosen for each tree with repetition (bagging)

36,2% of the data is unseen by each tree which can be used for OOB validation

Hyperparameters

- Number of trees
- Depth of the trees
- Amount of data per tree
- Number of features per tree
- Samples per split
- Samples per leaf

n estimators

max depth

max samples

max features

min samples split

min samples split

Perfect for high-throughput screening

Example: tree depth

Deeper trees are better, but slower and risk overfitting

Accuracy

- Decision trees can split the dataset down to individual samples
- 100% accuracy on training is easy, almost trivial
- This doesn't mean good performance "in the wild", the model might have just learned to recognize distinct noise patterns that don't generalize
- This is why we need a validation and test set: a fair assessment

Metrics

- Accuracy: How often did we get it right? Gives no information about what type of mistakes are being made
- Confusion matrix : Very useful tool to understand what's going on, showing true positive (TP), false positive (FP), false negative (FN) and true negative (TN)

		Real data				
		+	-			
Predicted data	+	TP	FP			
	-	FN	TN			

Metrics

- Accuracy: How often did we get it right? (TP and TN)
- Precision: Quality, how many of the positive samples are real? (FP)
- Recall: Quantity, How many of the positive samples did we find? (FN)

Choosing the right metric for your goal is important

Metrics

- The confusion matrix is more general than just true/false, can give insight in whether certain classes get confused for each other
- Other metrics exist beyond accuracy, precision, recall. Confusion matrix
- F1-score: geometric mean between precision and recall, good middle ground
- Matthews Correlation Coefficient (MCC):
 Cross-correlation between the real data and predicted data, ranges from
 -1 (anticorrelated) to +1 (correlated)

Results

Optimized	Pastry	Z Scratch	K Scratch	Stains	Dirtiness	Bumps	Other Faults
Accuracy	94%	98%	99%	100%	99%	88%	80%

Choosing the right metric for an application is important

Explainable AI

- The model uses features to make predictions
- How important is a feature? Remove it and find out!
- Drop column feature importance:
 - 1. Remove feature
 - 2. Retrain model
 - 3. Compare
- Permutation feature importance:
 - 1. Shuffle feature
 - 2. Make prediction with same model
 - 3. Compare

Explainable AI

Explainable AI

Practical SHAP for bumps

https://github.com/slundberg/shap

SHAP helps us understand how a decision is reached

INVESTEERT IN JOUW TOEKOMST

View more online

https://ai4mi.epotentia.com

