EECS 376: Foundations of Computer Science

Lecture 06 - Dynamic Programming 3

Agenda

- Shortest paths: Dynamic Programming on Graphs
 - Single-source Shortest Paths (SSSP)
 - The Bellman-Ford Algorithm
 - The Path-Doubling Algorithm
 - All-Pairs Shortest Paths (APSP)
 - The Floyd-Warshall algorithm

Directed and undirected graphs

Directed graph

1 1 2 6 50 50 3 10

Undirected graph

Distance from s to t, denoted **dist**(s,t): minimum, over all paths P from s to t, of the sum of edge weights in P.

Notation: V = vertex set, E = edge set, n = |V|, m = |E|.

Why do we even care about negative weights?

The shortest-path problems we'll consider

Input: Weighted directed graph. Weights can be negative, but assume no negative-weight cycles (why?).

Single-Source Shortest Paths (SSSP): Given a "source" vertex s, find a shortest path from s to every vertex t.

All-Pairs Shortest Paths (APSP): For every pair s,t of vertices,

find a shortest path from s to t.

What about single-pair shortest path?

の表示无法到达

Shortest Paths

Input:

- a directed graph G = (V, E)
- Tength function $\ell: E \to \mathbb{R}$

Notations:

- For a path π , its length $\ell(\pi)$ is the sum of edge lengths along the path.
- Distance from s to t, $dist_G(s, t)$, is the shortest length of any path from s to t

$$0 + 4 = 5 + 1 + 3 = 9$$

$$0 + 4 = 5 + 1 + 3 = 9$$

$$0 + 15/24 = 6$$

Is dist(s, t) well-defined?

Two reasons there could be no shortest path...

 $dist(s,t) = \infty$

Two Key Observations 対果sh(s,t) 经过以 那似 sh(s,t)=sh(s,v) +sh(以りOptimality)

- 1. If a shortest path from s to t goes through vertex v, then it must be a shortest path from s to v, then a shortest path from v to t.
- 2. Since there is no negative-weight cycle in the graph, there is a shortest path from s to t with **no cycle** in it.

Consider the following proposed as a recurrence for SSSP

In the shortest $s \rightarrow v$ path, u is the last vertex before v (and u could be s)

- Recurrence: $dist(s,v) = min_{(u,v) \in E} \{ dist(s,u) + \ell(u,v) \}$
- Base case: dist(s,s) = 0

X not a recurrence Bb dist (s,u) bcu, wef

Where:

 $\ell(y,z)$ is the weight (or "length") of the edge $y\rightarrow z$

dist(y,z) is the distance from y to z

This equation is technically correct, but it's not really a recurrence and it doesn't work for DP.

The DP Recipe

you are here

- 1. Derive a recurrence for the 'value version' of the problem
- 2. Size of table: How many dimensions? Range of each dimension?
- 3. What are the base case(s)?
- 4. To fill in a cell, which other cells need to be filled already? In which order do I fill the table?
- 5. Which cell(s) contain the final answer?
- 6. Running time = (size of table) (time to fill each entry)
- 7. To reconstruct a solution (instead of just its value) follow "breadcrumbs" from final answer to base case

Bellman-Ford for single source shortest paths

Bellman-Ford algorithm

- The Bellman-Ford algorithm is an algorithm that computes the shortest paths from a single source vertex to each of the other vertices in a weighted digraph.
- It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it can handle graphs in which some of the edge weights are negative numbers.

Bellman-Ford algorithm

- Input graph G = (V, E) and source node s
 - n nodes, m edges
 - Assume: no negative-weight cycles (will remove this soon),
 - Algorithm will have O(mn) runtime
- Key Idea: Dynamic Programming

Definition

- $dist^{(i)}(s,t) = i$ -hop distance from s to t" shortest length of an $s \to t$ path using **exactly** i **edges**, or ∞ if there's no such path
- $dist^{(\leq i)}(s,t)$ = "at-most-*i*-hop distance from *s* to *t*" shortest length of an $s \to t$ path using **at most** *i* **edges**

Examples

What is...

(显然. 图放元 nep-length 一 TAX 往回

Lemma:

In n-node graph without neg-length cycles,

$$dist^{(\leq n-1)}(s,t) = dist(s,t)$$

Proof Sketch:

A path with n hops hits n+1 nodes, so it repeats a node, so it contains a cycle.

This cycle has nonnegative length.

This cycle can be removed from the path without increasing its length.

So... we only need to compute $dist^{(\leq n-1)}(s,t)$. Can we do this recursively?

Recursive Formulation

- Pause and think:
- How do you compute $dist^{(i)}(s, v)$ from $dist^{(i-1)}(s, \cdot)$?

$$dist^{(i)}(s,v) = \min_{(u,v)\in E} dist^{(i-1)}(s,u) + \ell(u,v)$$

- Why?
 - i-hop shortest path = (i 1)-hop shortest path + the last edge"
 - Take the best one among all in-coming neighbors to v

• Bellman-Ford(G,s) assume no neg-weight cycles in G

- dists [n][m]
- Initialize array dist, indexed by (i, t) index entries by $dist^{(i)}(s, t)$
- All entries initially ∞

dist is like table in previous lectures

- $-\operatorname{dist}^{(0)}(s,s) \leftarrow 0 \quad \left(\operatorname{dist}^{(0)}(s,\gamma_s) = \infty\right)$ base case
- For i = 1, ..., n 1: O(n) loops
 - For each vertex v,

 $\sum_{v} \deg(v) = O(m)$ time/loop

- $-\operatorname{dist}^{(i)}(s,v) \leftarrow \min_{(u,v)\in E}\operatorname{dist}^{(i-1)}(s,u) + \ell(u,v)$
- Return $dist^{(\leq n-1)}(s,\cdot) = \min_{i\leq n-1} dist^{(i)}(s,\cdot)$ return subarray

Detecting Neg-Length Cycles

- Slightly harder problem:
 - Input graph G, source node s
 - If **G** has no negative-length cycles, output all distances dist(s,t)
 - If G has a negative-length cycle, output "oh no a negative length cycle"

Observe:

If v is in a negative-length cycle, then

$$dist^{(\leq n)}(s,v) < dist^{(\leq n-1)}(s,v)$$

– Bellman-ford correctly computes $dist^{(i)}(s,v)$ for any i

Challenge:

If neg cycle exists, then for some v, $dist^{(\leq n)}(s,v) < dist^{(\leq n-1)}(s,v)$

- Bellman-Ford(G,S)
 - Initialize array dist, indexed by i, t index entries by $dist^{(i)}(s, t)$
 - All entries initially ∞
 - $-dist^{(0)}(s,s) \leftarrow 0$ base case
 - $-\operatorname{For} i = 1, ..., n: O(n) \operatorname{loops}$
 - For each vertex v, O(m) time/loop

$$-\operatorname{dist}^{(i)}(s,v) \leftarrow \min_{(u,v) \in E} \operatorname{dist}^{(i-1)}(s,u) + \ell(u,v)$$

- $-\operatorname{lf} \operatorname{dist}^{(s)}(s,v) < \operatorname{dist}^{(s,v)}(s,v)$ for any v
 - Output "oh no a negative length cycle"

- Else return $dist^{(\leq n-1)}(s,\cdot)$

Easy fix!

我们已证明了: O shortest path - 2 to E 2) F regative cycles =) the shirtest can be be found inthin dentes vi cycles Now we claim: I repotive cycle iff min (disti) cs N) < min (disti) (s, N))

i <pre>spn-1
i i i n-1

(再循环一轮,一定能找出 negative cycle)

3,

Path-Doubling:

Bellman-Ford for all-pairs shortest paths

All-pairs shortest paths

- New game: compute all pairs distances.
- One option: run Bellman-Ford from every source node.

$$-O(mn) \times n = O(mn^2)$$

Can we do better?

Better Idea?

Bellman-Ford's recursive strategy:

compute $dist^{(i)}(s, v)$ using $dist^{(i-1)}(s, \cdot)$

New idea:

Can you compute $dist^{(\leq i)}(s, v)$ using array $dist^{(\leq i/2)}(\cdot, \cdot)$?

Path-doubling for APSP

Key idea:

"each path must have a middle node"

Think: write a recurrence for $dist^{(\leq i)}(s, v)$ in term of $dist^{(\leq i/2)}(\cdot, \cdot)$

$$dist^{(\leq i)}(s,t) = \min_{\mathbf{x}} dist^{(\leq i/2)}(s,\mathbf{x}) + dist^{(\leq i/2)}(\mathbf{x},t)$$

Question: why couldn't we use this idea for single-source shortest path?

因为只在APSP 核銀鐵鐵道

TOUR-1-1-12整计算(不透的me 6. 而加的me)

- All-Pairs Bellman-Ford(G) assume no neg-length cycs
 - Initialize array dist indexed by i, s, t index entries by $dist^{(\leq 2^i)}(s, t)$

$$-\operatorname{dist}^{(\leq 1)}(s,t) \leftarrow \begin{cases} 0 & \text{if } s = t \\ \ell(s,t) & \text{if } (s,t) \in E \text{ for all s,t} \\ \infty & \text{if } (s,t) \notin E \end{cases}$$

- For $i = 1, ..., \lceil \log n \rceil$:

Total time: $O(n^3 \log n)$ operations

• For all nodes s, t:

New part
$$-dist^{(\leq 2^i)}(s,t) = \min_{x} \left(dist^{(\leq 2^{i-1})}(s,x) + dist^{(\leq 2^{i-1})}(x,t) \right)$$

- Return $dist^{(\leq n)}$

5/15/24

职: 经过把整定额作为中点,看看 吗叶最短²⁷

Faster Algorithms for SSSP

■ Bernstein, Nanongkai, Wulff-Nilsen, 2022: O(m • log⁸n) ← integer weights

Wein's postdoc Saranurak's PhD advisor advisor

- Fineman, 2023 $O(mn^{7/8}) \leftarrow any weights$
- If no negative weights and Dijkstra's algorithm: O((m + n) log n) using binary heap and O(m + n log n) using Fibonacci heap

Initial idea for solving APSP: Run SSSP from every vertex!

That works, but the algorithm you're about to see is faster for dense graphs: $O(n^3)$ instead of $O(mn^2)$ (better when m >> n).

Floyd-Warshall for all-pairs shortest paths

APSP options

Bellman-Ford (naïve method):

$$-O(mn^2)$$
 time $|E||V|^2$

Bellman-Ford (with path-doubling):

$$\frac{-O(n^3\log n) \text{ time}}{\checkmark}$$

Floyd-Warshall (next):

$$-O(n^3)$$
 time

Floyd-Warshall algorithm

 The Floyd–Warshall algorithm, using dynamic programming, is an algorithm for finding all-pairs shortest paths in a directed weighted graph with positive or negative edge weights (but with no negative cycles).

5/15/24 33

Floyd-Warshall APSP

- **Ordered** vertex set $V = \{v_1, v_2, ..., v_n\}$.
- For a path $\pi=(s,u_1,u_2,\dots,u_{k-1},t)$ from s to t, say that $\{u_1,u_2,\dots,u_{k-1}\}$ are its *intermediate vertices*.

Definition

 $dist^{[i]}(s,t)$ is the "middle-restricted distance:" Shortest length of an $s \to t$ path that only uses $\{v_1, ..., v_i\}$ as intermediate vertices (but s, t can be anything)

Example:

$$- dist^{[0]}(s,t) = 100$$

$$- dist^{[1]}(s,t) = 20$$

$$- dist^{[5]}(s,t) = 15$$

Floyd-Warshall APSP

- **Ordered** vertex set $V = \{v_1, v_2, ..., v_n\}$.
- For a path $\pi = (s, u_1, u_2, ..., u_{k-1}, t)$ from s to t, say that $\{u_1, u_2, \dots, u_{k-1}\}$ are its *intermediate vertices*.

Definition

 $dist^{[i]}(s,t)$ is the "middle-restricted distance:" Shortest length of an $s \rightarrow t$ path that only uses $\{v_1, \dots, v_i\}$ as intermediate vertices (but s, t can be anything)

- Final Goal: for all s, t, $dist^{[n]}(s,t)$ (same as dist(s,t), why?)
- Strategy: compute $dist^{[k]}(s,t)$ from $dist^{[k-1]}(\cdot,\cdot)$. 5/15/24 36

Recursive Strategy

Key idea:

"Shortest k-middle-restricted path either go through v_k or not"

write a recurrence for $dist^{[k]}(s,t)$ in term of $dist^{[k-1]}(\cdot,\cdot)$

$$dist^{[k]}(s,t) = \min \begin{cases} dist^{[k-1]}(s,t) \\ dist^{[k-1]}(s,v_k) + dist^{[k-1]}(v_k,t) \end{cases}$$

Floyd-Warshall APSP

• (Base Case)
$$\operatorname{dist}^{[0]}(s,t) := \begin{cases} 0 & \text{if } s = t \\ \ell(s,t) & \text{if } (s,t) \in E \\ \infty & \text{otherwise} \end{cases}$$

No midpoints allowed
Only direct s-t path allowed
(if it exists)

- For all k = 1, ..., n:
 - For all vertices s, t:

$$-\operatorname{dist}^{[k]}(s,t) = \min \begin{cases} \operatorname{dist}^{[k-1]}(s,t) \\ \operatorname{dist}^{[k-1]}(s,v_k) + \operatorname{dist}^{[k-1]}(v_k,t) \end{cases}$$

• Return $dist^{[n]}$

Total time: $O(n^3)$ operations

Pseudocode for Floyd-Warshall

```
Algorithm APSP(G)
   table := 3D-array (1..n, 1..n, 0..n)
   // first two dimensions represent vertices v1,...,vn,
     third dimension represents restricting to the first i internal vertices
   for s = 1 to n:
       for t = 1 to n:
           table(s, t, 0) = w(s,t) // base case
   for s = 1 to n:
       for t = 1 to n:
           for i = 1 to n:
               table(s,t,i) = min\{table(s,t,i-1), table(s,i,i-1) + table(i,t,i-1)\}
   Return table(s, t, n) for all s,t
```

Progress on APSP since Floyd-Warshall

Author	Runtime	Year
Fredman	n ³ log log ^{1/3} n / log ^{1/3} n	1976
Takaoka	n ³ log log ^{1/2} n / log ^{1/2} n	1992
Dobosiewicz	n³ / log ^{1/2} n	1992
Han	n ³ log log ^{5/7} n / log ^{5/7} n	2004
Takaoka	n ³ log log ² n / log n	2004
Zwick	n ³ log log ^{1/2} n / log n	2004 -
Chan	n ³ / log n	2005
Han	n ³ log log ^{5/4} n / log ^{5/4} n	2006
Chan	n³ log log³ n / log² n	2007
Han, Takaoka	n³ log log n / log² n	2012
Williams	n³ / exp(√ log n)	2014

Get a load of all those logs!!

Conclusion: Maybe O(n^{2.999}) is impossible?

Maybe $O(n^{2.999})$ is impossible?

Either ALL of the following have O(n^{<3}) time algorithms or NONE of them do: (Virginia Vassilevska Williams, Ryan Williams, 2010)

- 1. APSP
- 2. Minimum Weight Triangle
- 3. Metricity
- 4. Minimum Cycle
- 5. Distance Product
- 6. Second Shortest Path
- 7. Replacement Paths
- 8. Negative Triangle Listing

• • •

State of the art

No $O(n^{2.99})$ algorithm for APSP is known.

• One of the three biggest open problems in algorithms!

- Plays a role like SAT/NP-Hardness: lots of problems are "APSP-Hard" under the conjecture that no $O(n^{2.99})$ algorithm exists.

Quick reflection

All shortest paths algorithms so far are just dynamic programming on graphs.

5/15/24 45