ENGINEERING TEST REPORT

QDAC Wireless Sensor Tag Model: WT001 FCC ID: 2ABAW-QDWT001

Applicant:

QDAC Inc.

105 Lexington Rd. Unit #1 Waterloo, Ontario Canada N2J 4R7

In Accordance With
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.231
Low Power Transmitter & Momentarily Operation (433.92 MHz)

UltraTech's File No.: QDAC-004F15C231R01

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: March 3, 2014

Report Prepared by: Dan Huynh Tested by: Mr. Hung Trinh

Issued Date: March 3, 2014 Test Dates: December 13 & 16, 2013

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

91038 1

1309

46390-2049

NVLAP LAB CODE 200093-0 SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	'1. INT	FRODUCTION	1
1.1. 1.2. 1.3.	RELATED	SUBMITTAL(S)/GRANT(S)	1
EXHIBIT		RFORMANCE ASSESSMENT	
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT IN EQUIPMEI EUT'S TEC LIST OF E ANCILLAR	IFORMATION NT UNDER TEST (EUT) INFORMATION CHNICAL SPECIFICATIONS :UT'S PORTS. RY EQUIPMENT :UP BLOCK DIAGRAM	2
EXHIBIT	3. EU	T OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1. 3.2.	CLIMATE OPERATION	TEST CONDITIONSONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	5 5
EXHIBIT	4. SU	MMARY OF TEST RESULTS	6
4.1. 4.2. 4.3.	APPLICAB	N OF TESTSBILITY & SUMMARY OF EMC EMISSION TEST RESULTSATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6
EXHIBIT	5. TE	ST DATA	7
5.1. 5.2. 5.3.	TRANSMI	NS FOR PERIODIC TRANSMITTERS [47 CFR 15.231(a)]	8
EXHIBIT	6. TE	ST EQUIPMENT LIST	. 13
EXHIBIT	7. ME	ASUREMENT UNCERTAINTY	. 14
7.1. 7.2		DUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. **INTRODUCTION**

1.1. **SCOPE**

Reference:	FCC Part 15, Subpart C, Section 15.231	
Title:	Code of Federal Regulations (CFR), Title 47, Telecommunication - Part 15	
Purpose of Test:	To gain FCC Equipment Certification for section 15.231 - Momentarily Operation at 433.92 MHz.	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, industrial or business environment	

1.2. **RELATED SUBMITTAL(S)/GRANT(S)**

None.

1.3. **NORMATIVE REFERENCES**

Publication	Year	Title	
FCC 47 CFR 15	2013	Code of Federal Regulations, Title 47 – Telecommunication, Part 15 - Radio Frequency Devices	
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz	
CISPR 22 EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement	
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus	
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances	

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT INFORMATION**

APPLICANT		
Name:	QDAC Inc.	
Address:	105 Lexington Rd. Unit #1 Waterloo, Ontario Canada N2J 4R7	
Contact Person: Joe Kozar Phone #: 519-725-8365 Fax #: 519-725-8370 Email Address: Joe.Kozar@qdacsystems.com		

MANUFACTURER		
Name:	Surmotech Inc	
Address:	7676 Netlink Drive Victor, NY 14564 USA	
Contact Person:	Lisa Cash Phone #: 585-742-1220 Fax #: 585-742-1221 Email Address: LCash@surmotech.com	

2.2. **EQUIPMENT UNDER TEST (EUT) INFORMATION**

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	QDAC Inc.
Product Name:	QDAC Wireless Sensor Tag
Model Name or Number:	WT001
Serial Number:	Test sample
Type of Equipment:	Momentarily operated device
Input Power Supply Type:	Integral 3.6V Battery
Primary User Functions of EUT:	Periodically transmit status information and/or data from attached digital sensor.

EUT'S TECHNICAL SPECIFICATIONS 2.3.

TRANSMITTER		
Equipment Type:	Portable	
Intended Operating Environment:	Commercial, light industry & heavy industry	
Power Supply Requirement:	Internal Lithium 3.6V battery	
RF Output Power Rating:	80.06 dBμV/m at 3m distance	
Operating Frequency Range:	433.92 MHz	
Duty Cycle:	13.83 %.	
20 dB Bandwidth:	22.24 kHz	
Modulation Type:	2-FSK	
Oscillator Frequencies:	26.000 MHz	
Antenna Connector Type:	Integral	
Antenna Description:	Manufacturer: Pulse Electronics Corporation Type: ISM Helical Model: W3127 Frequency Range: 433-436 MHz Gain: -2.9 dBi	
	RECEIVER	
Equipment Type:	Portable	
Power Supply Requirement:	Internal Lithium 3.6 V battery	
Operating Frequency Range:	433.92 MHz	
RF Output Impedance:	50 Ohms	
Intermediate Frequency(ies):	N/A	
Oscillator Frequency(ies):	26.000 MHz	

2.4. **LIST OF EUT'S PORTS**

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Digital Temperature Sensor	1	5-Pin Jack	Shielded

2.5. **ANCILLARY EQUIPMENT**

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

No ancillary equipment.

TEST SETUP BLOCK DIAGRAM

2.6.

FCC ID: 2ABAW-QDWT001

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. **CLIMATE TEST CONDITIONS**

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	3.6V Lithium Ion battery

OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS 3.2.

Operating Modes:	The EUT was configured for continuous transmission for the duration of testing.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals	
Frequency Band(s):	433.92 MHz
Test Frequency(ies):	433.92 MHz
RF Power Output:	80.06 dBμV/m at 3m distance
Normal Test Modulation:	2-FSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna Requirement	Yes*
15.231(a)	Provisions of FCC 15.231	Yes
15.231(b) 15.209	Transmitter Radiated Emissions - Fundamental, Harmonic and Spurious Emissions	Yes
15.231(c)	20 dB Bandwidth	Yes
15.231(d)	Frequency Tolerance for Devices Operating within the Frequency Band 40.66-40.70 MHz	Not applicable
15.207(a)	AC Powerline Conducted Emissions	Not applicable for battery operated device.

^{*} The EUT complies with the requirement; it employs an integral antenna.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

File #: QDAC-004F15C231R01 March 3, 2014

EXHIBIT 5. **TEST DATA**

5.1. PROVISIONS FOR PERIODIC TRANSMITTERS [47 CFR 15.231(a)]

FCC Rules	FCC Provisions	Analysis on Compliance
15.231(a)	The intentional radiator restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal.	Not a continuous transmission. A random 13ms signal to a receiving Hub.
15.231(a)(1)	A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.	N/A
15.231(a)(2)	A transmitter activated automatically shall cease transmission within 5 seconds after activation.	The transmission ceases to transmit 13ms after the transmission is activated
15.231(a)(3)	Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.	The transmissions occur at random intervals. The theoretical maximum transmission time is less than 2s per hour. The minimal theoretical interval between transmissions is 30s and the transmission time is 13ms.
15.231(a)(4)	Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.	N/A
15.231(a)(5)	Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.	N/A

5.2. TRANSMITTER RADIATED EMISSIONS [47 CFR §§ 15.231(b), 15.209 & 15.205]

5.2.1. Limit(s)

47 CFR 15.231(b) Field Strength Limits

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70.	2,250	225
70–130	1,250	125
130–174	1,250 to 3,750 ¹	125 to 375 ¹
174–260	3,750	375
260–470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

¹ Linear interpolations with frequency F in MHz:

For 130-174 MHz: FS (microvolts/m) = (56.82 x F) - 6136 For 260-470 MHz: FS (microvolts/m) = (41.67 x F) - 7083.

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

47 CFR 15.205(a) Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25-13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260-3267	23.6-24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322–335.4	3600-4400	(²)
13.36–13.41.			

Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: QDAC-004F15C231R01 March 3, 2014

² Above 38.6

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

47 CFR 15.209(a) General Field Strength Limits

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
. , ,	• ,	` '
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

5.2.2. Method of Measurements

Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods.

5.2.3. Test Data

Remarks:

- The measuring receiver shall be tuned over the frequency range of 30 MHz to the 10th harmonic of the highest fundamental frequency.
- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- For portable transmitter, EUT shall be placed in three different orthogonal positions for searching maximum field strength level.
- In the restricted band per FCC 15.205: § 15.209 (a) limits applied
- Outside the restricted band per FCC 15.205: § 15.231 (b) limits or § 15.209 (a) applied, whichever allows higher field strength emission.
- Section 15.231(b) field strength limit of the fundamental at 433.92 MHz = 20 log [(41.67 x 433.92) 7083] = 80.8 dBuV/m
- Spurious emissions limit is 20 dB below fundamental limit.
- Duty Cycle: measured maximum duty cycle is 13.83 %.
- The peak-average correction factor was obtained from the duty cycle calculation (see plots 5.2.3.1 and 5.2.3.2 for detail).

Duty cycle correction factor = $20 \log (T_{ON}/100 \text{ ms}) = 20 \log (13.83 \text{ ms}/100 \text{ ms}) = -17.18 \text{ dB}$

Frequency (MHz)	Peak E-Field @ 3m (dBµV/m)	Average E-Field @ 3m (dBµV/m)	Antenna Plane (H/V)	§ 15.231 (b) Limits @ 3m (dΒμV/m)	§ 15.209 (a) Limits @ 3m (dΒμV/m)	Margin (dB)	Pass/Fail
433.92	97.24	80.06	V	80.8		-0.7	Pass
433.92	94.17	76.99	Н	80.8		-3.8	Pass
1301.76	51.69	34.51	Н	60.8	54.0	-19.5	Pass*

^{*} Emissions within the restricted bands.

Plot 5.2.3.2. Duty Cycle (pulse length is 13.83 ms)

5.3. 20 dB BANDWIDTH [47 CFR 15.231(c)]

5.3.1. Limit(s)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3.2. Method of Measurements

The measurements were performed in accordance with Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4.

5.3.3. Test Data

Channel Frequency (MHz)	20 dB Bandwidth (kHz)	Maximum Bandwidth Limit (kHz)
433.92	22.24	1084.8

See the following plot for details.

Plot 5.3.3.1. 20 dB Bandwidth

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	07 Mar 2014
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	25 Mar 2014
Log Periodic Antenna	ETS Lindgren	93148	1101	200-2000 MHz	02 May 2014
Attenuator	Pasternack	PE7024-10	4	DC -26.5 GHz	Cal on use
Biconi-Log Antenna	ETS Lindgren	3142C	34792	26 – 3000 MHz	26 Jun 2014
Horn Antenna	ETS Lindgren	3115	6570	1 -18 GHz	07 Jun 2014
High Pass Filter	Mini-Circuits	SHP-800	10425	Cut off 400 MHz	Cal. on use

MEASUREMENT UNCERTAINTY EXHIBIT 7.

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) - Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[m]{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration