

Применение свёрточных нейронных сетей в задачах по определению типов лиц

Выполнила Пчелкина Ю.Ж. Научный консультант Литвинов В.Г.

Цель и задачи

Цель работы: автоматизировать процесс распознавания типов лиц по фотоснимкам при помощи интеллектуального анализа изображений с применением свёрточных нейронных сетей.

Задачи:

- сбор и предварительная обработка данных;
- разработка программного модуля для анализа и классификации имеющихся данных;
- подготовка данных для обучения;
- применения свёрточных нейронных сетей для определения типа лица на изображении.

Исходные данные: Изображения с различными характеристиками (размер, разрешение, качество, цветовая модель).

Антропометрический метод исследования лица

Антропометрический метод (anthropos – человек; metron – мера) – метод исследования, основанный на измерении морфологических и функциональных признаков человека.

В ортодонтии антропометрический метод включает в себя исследование эстетики лица (формы, размеров, угловых и линейных параметров лица, их соотношение)

Условные	Медиальные	Условные	Латеральные	Условные	Медиальные	Условные	Латеральные
обозначения	точки	обозначения	точки	обозначения	точки	обозначения	точки
•	Опистокранион – наиболее выступающая кзади точка затылочной кости.		Эурион – латерально выступающая точка на голове	n	Назион – наиболее выраженное углубление между лбом и носом	t	Трагус – точка на верхнем крае наружного слухового прохода
tr	Трихион — точка передней границы волосистой части лба		Фронто-темпорале – наиболее выступающая точка лобно- височного соединения	prn	Проназале – наиболее выступающая точка кончика носа при ориентировании головы во франкфуртской	aom	Ангулюс окули медиалис - точка внутреннего угла галаза
oph	Глабелла – наиболее кпереди расположенная точка лобной кости. Офрион – точка пересечения срединно-сагиттальной плоскости с линией, соединяющей надбровные дуги	гла пер опу ни зра гла zy Зиі вы ску	Орбитале — точка нижнего края глазницы (находится на пересечении перпендикуляра, опущенного на касательную к нижнему краю глазницы из зрачка при смотрящих вперед глазах) Зигион — наиболее выступающая кнаружи точка скуловой дуги	sn	Субназале – точка соединения кожной перегородки носа с верхней губой	aol	Ангулюс окули латералис - точка наружного угла глаза
				sto	Стомион – точка пересечения линии смыкания губ с спелинно-сагиттальной	ch	Хейлион – точка угла рта
				Pg	Погонион – наиболее выступающая точка подбородка	go	Гонион – наиболее выступающая кнаружи и кзади точка угла нижней челюсти
				gn	Гнатион – наиболее нижняя точка подбородка		

Цефалометрические измерительные точки головы и лица. Морфологический фациальный индекс Izard

- 1. Прямоугольная форма когда морфологическая высота лица превосходит его скуловую ширину, а касательные к боковому контору головы (eu-go) параллельны между собой или конвергируют незначительно до 30 %.
- 2. Квадратная форма при равном или меньшем значении морфологической высоты по отношению к скуловой ширине, при параллельных касательных к боковому контуру головы.
- **3. Треугольная форма** при которой касательнаые к боковым конторам головы резко конвергируют книзу (угол наклона больше 30%).

Исходные данные

В работе использовались фотоснимки с различными характеристиками (размер, разрешение, качество, цветовой режим).

Предобработка данных. Обработка изображений.

исходное изображение Размер 800x800

выделение контура лица каскадным классификатором Хаара

Преобразование в оттенки серого, обрезка по контуру Размер 145х145

масштабирование изображения Размер 128x128 нахождение ключевых точек лица

Предобработка данных. Определение признаков.

Определяем ключевые точки:

$$N(x_n; y_n)$$
, $Gn(x_{gn}; y_{gn})$, $Zy_1(x_{z1}; y_{z1})$, $Zy_2(x_{z2}; y_{z2})$, $Go_1(x_{go1}; y_{go1})$, $Go_2(x_{go2}; y_{go2})$

Расстояния:
$$NG = \sqrt{(x_n - x_{gn})^2 + (y_n - y_{gn})^2}$$
 $ZZ = \sqrt{(x_{z1} - x_{z2})^2 + (y_{z1} - y_{z2})^2}$

Прямые задаются каноническими уравнениями:

$$Zy_2Go_2$$
: $\frac{x-x_{z2}}{x_{go2}-x_{z2}} = \frac{y-y_{z2}}{y_{go2}-y_{z2}}$ или $\frac{x-x_{z2}}{m_1} = \frac{y-y_{z2}}{n_1}$

$$Go_1Go_2$$
: $\frac{x-x_{go1}}{x_{go2}-x_{go1}} = \frac{y-y_{go1}}{y_{go2}-y_{go1}}$ или $\frac{x-x_{go1}}{m_2} = \frac{y-y_{go1}}{n_2}$

Тогда угол наклона прямой Zy_2Go_2 :

$$\varphi_2 = arcos\left(\frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \cdot \sqrt{m_2^2 + n_2^2}}\right)$$

Определяем тип лица:

- **1. Прямоугольная форма**: NG>ZZ и прямые Zy_1Go_1 и Zy_2Go_2 параллельны или угол наклона меньше 30^0
- **2. Квадратная форма**: $NG \leq ZZ$ и прямые Zy_1Go_1 и Zy_2Go_2 параллельны или угол наклона меньше 30^0
- **3. Треугольная форма**: угол наклона касательных Zy_1Go_1 и Zy_2Go_2 больше 30^0

Предобработка данных. Определение признаков

1 тип. Прямоугольная форма

угол между наклона боковых линий < 30°

длина серединного вертикального отрезка больше горизонтального

2 тип. Квадратная форма

угол между наклона боковых линий $< 30^{\circ}$

длина серединного вертикального отрезка меньше горизонтального

3 тип. Треугольная форма

угол между наклона боковых линий > 30^{0}

Предобработка данных. Создание DataFrame.

foto	kind
r1.jpg	3
r10.jpg	2
r100.jpg	2
r1000.jpg	2
r1004.jpg	2
r1006.jpg	2
r1008.jpg	2
r1009.jpg	2
r1011.jpg	3
r1013.jpg	3
r1015.jpg	1
r1017.jpg	2

размер 1703 × 2 статистика: 3 тип – 421 2 тип – 668 1 тип – 614

Свёрточная нейронная сеть. Архитектура.

Dropout = 0,2

\$

Свёрточная нейронная сеть. Обучение.

- Размер обучающей выборки 75 %
- Функция потерь перекрестная энтропия
- Оптимизатор алгоритм Adam
- Количество партий (bath) = 32

Для оценки точности обучения нейронной сети использовалась метрика:

$$Accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$

- tp (true positive, истинно положительные) объект верно отнесён к данному классу;
- tn (true negative, истинно отрицательные) верно определено, что объект не принадлежит к данному классу;
- fp (false positive, ложно положительные) объект неверно отнесён к данному классу;
- fn (false negative, ложно отрицательные) неверно определено, что объект не принадлежит к данному классу.

Свёрточная нейронная сеть. Результаты обучения.

Объем выборки	Разделение по классам	Количество эпох обучения	Точность обучения
1 703	1 тип — 614 2 тип — 668 3 тип — 421	250	64,87 %
3 318	1 тип — 1584 2 тип — 1278 3 тип — 456	250	76,03%
4 110	1 тип — 1584 2 тип — 1278 3 тип — 1248	250	94,55%

Свёрточная нейронная сеть. Результаты обучения.

количество эпох обучения	3	10	50	250	300
точность	11 %	65,6 %	87,3 %	92,71 %	95,43 %

Обучение свёрточной нейронной сети. Ошибки обучения

Тип лица «3» - треугольный Опознан как тип «2» - квадратный

Тип лица «1» - прямоугольный Опознан как тип «2» - квадратный

Тип лица «2» - квадратный Опознан как тип «3» - треугольный

Тип лица «2» - квадратный Опознан как тип «3» - треугольный

\$

Основные результаты и выводы

В ходе выполнения работы были решены следующие задачи:

- Описан метода определения типов и признаков лица в ортодонтии
- Проведена предобработка данных, создан набора данных
- Разработана программная реализация метода определения типов лиц
- Реализована модель нейронной сети
- Проведены обучение модели по исходным данным, оценка точности модели:
 - на 300 эпохах обучения точность выше 95%.
 - На величину ошибки обучения влияют:
 - ✓ объем исходных данных;
 - ✓ сбалансированность классов;
 - ✓ качество исходных данных;
 - ✓ количество эпох обучения.

Полученные алгоритмы применимы при автоматизации процесса заполнения части обязательной медицинской документации при первичном осмотре пациента врачом ортодонтом.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!