Seminar 8

Введение в классическую механику

Victor Ivanov Yu.*

Аннотация

Physics and Mathematics

Содержание

	Колебания		1
	1.1	Простое гармоническое движение	1
2	Упр	ажнения	2

1 Колебания

1.1 Простое гармоническое движение

Рассмотрим простое гармоническое движение – это движение, которое совершает частица под действием силы F(x)=-kx. Классическая система, совершающая простое гармоническое движение, представляет собой массу, прикрепленную к безмассовой пружине, на столе без трения. Обычная пружина имеет силу вида F(x)=-kx, где x есть смещение от состояния равновесия. Это закон Гука, и он действует до тех пор, пока пружина не растягивается и не сжимается слишком сильно. В конце концов это выражение перестает быть справедливым к любой настоящей пружине. Но если мы предположим, что сила -kx, то F=ma дает $-kx=m\ddot{x}$, или

$$\ddot{x} + \omega^2 x = 0,\tag{1}$$

где $\omega \equiv \sqrt{\frac{k}{m}}$. Это обычное линейное дифференциальное уравнение с очевидным решением

$$x(t) = A\cos(\omega t + \phi) \tag{2}$$

Это тригонометрическое решение показывает, что система вечно колеблется вперед и назад во времени. ω – угловая частота. Если t увеличивается на $2\pi/\omega$, тогда аргумент косинуса увеличивается на 2π , таким образом, положение и скорость возвращаются к тем значениям, какие они были раньше. Период (время для одного полного цикла), следовательно, есть $T=2\pi/\omega=2\pi\sqrt{m/k}$. Частота в циклах за секунду (герцы) есть $\nu=1/T=\omega/2\pi$. Постоянная A (или лучше сказать абсолютное

^{*}VI

значение A, если A отрицательно) есть амплитуда, то есть, это максимальное расстояние, на которое масса может сдвинуться от начала (от равновесия). На всякий случай отмечу, что скорость, как функция времени есть

$$v(t) \equiv \dot{x}(t) = -A\omega \sin(\omega t + \phi) \tag{3}$$

Постоянные A и ϕ определяются начальными условиями.

2 Упражнения

Задача 2.1. Некоторая точка движется вдоль оси x по закону $x = A \sin^2(\omega t - \pi/4)$. Найти амплитуду и период колебаний, а также проекцию скорости $v_x(x)$.

Peшение. Elementary

Задача 2.2. Частица массы т находится в одномерном силовом поле, где ее потенциальная энергия зависит от координаты x, как $U(x) = U_0(1-\cos(ax))$, U_0 и а – постоянные. Найдите период малых колебаний частицы около положения равновесия.

Peшeнue. Elementary

Задача 2.3. Определить период малых колебаний шарика, подвешенного на нерастяжимой нити длины l=20 см, если он находится в идеальной жидкости, плотность которой в $\eta=3$ раза меньше плотности шарика.

Pewerue. Elementary

Задача 2.4. Точка совершает гармонические колебания вдоль некоторой прямой с периодом T=0.6 с и с амплитудой A=10 см. Найти среднюю скорость точки за время, в течение которого она проходит путь A/2: 1) из крайнего положения; 2) из положения равновесия.

Peweнue. Elementary

Задача 2.5. Шарик подвесили на нити длины l к точке O стенки, составляющей небольшой угол α с вертикалью. Затем нить с шариков отклонили на небольшой угол $\beta > \alpha$ и отпустили. Считая удар шарика о стенку упругим, найти период колебаний такого маятника.

Peшeние. Elementary

Задача 2.6. Рассмотрим простое (приблизительно) гармоническое движение – простой маятник, то есть объект некоторой массы, который висит на безмассовой струне и качается в вертикальной плоскости. Пусть длина маятника равна l, а $\theta(t)$ – угол, который струна образует с вертикалью. Найти $\theta(t)$, в предположении, что амплитуды осцилляций малы. Чему равен период колебаний?

Peweнue. Elementary

Задача 2.7. Среднее (в течение времени) натяжение струны маятника больше или меньше mg? На сколько? Как обычно, предполагаем, что угловая амплитуда A мала.

Решение. Elementary

Задача 2.8. Человек идет с постоянной скоростью v на восток относительно вращающегося стола, который вращается против часовой стрелки с постоянной частотой ω . Человек идет по этому столу. Найдите общее выражение для координат человека относительно земли (при этом направление x возьмите на восток).

Peweнue. Elementary

«Understanding is, after all, what science is all about – and science is a great deal more than mindless computation» – $\mathbf{Roger\ Penrose}$