Deep Learning Homework 2

安捷 1601210097 2017 年 3 月 30 日

1 算法实现简介

在这次作业中,为了能够更好的实验不同优化算法的性能及对参数的敏感性,我放弃了上次作业中使用的 MLP 网络,重新实现了一个有两个卷积层和一个全连接层的 CNN,并针对 mnist 数据集测试了不同优化算法的性能,性能测试主要分为两部分:

- 1. 对每个算法使用相同的学习率及其他超参数,分别测试算法达到 99% 测试准确率的迭代次数,以此来显示算法的性能;
- 2. 对每一个算法,分别使用默认学习率或超参数、比默认参数高一个数量级、低一个数量级三组参数分别测试其达到 99% 准确率的迭代次数,以此作为衡量算法对学习率或超参数敏感性的指标;

2 算法性能测试

算法名称	学习率/超参数	迭代次数	备注
SGD	0.001	4000	
SGD with Momentum	0.001	5700	momentum = 0.0005
SGD with Nesterov Momentum	0.001	5400	momentum = 0.0005
AdaGrad	0.001	9900	未达到 99%
RMSProp	0.001	2500	
Adam	0.001	2500	

表 1: 优化算法达到 99% 准确率所需迭代次数

从上表中可以看出,在同样的参数设置下,在 mnist 数据集下使用 cnn 进行分类, RM-SProp 和 Adam 明显具有更好的性能,其余算法的性能较差(性能差的原因有可能因为参数设置不恰当)

3 算法超参数稳定性测试

算法名称	学习率/超参数	迭代次数	备注
SGD	0.01	9900	未收敛
SGD	0.0001	9900	达到 98%
SGD with Momentum	0.01	未收敛	momentum = 0.0005
SGD with Momentum	0.0001	达到 98%	momentum = 0.0005
SGD with Momentum	0.001	6100	momentum = 0.005
SGD with Momentum	0.001	未收敛	momentum = 0.00005
SGD with Nesterov Momentum	0.01	未收敛	momentum = 0.0005
SGD with Nesterov Momentum	0.0001	达到 98%	momentum = 0.0005
SGD with Nesterov Momentum	0.001	4300	momentum = 0.005
SGD with Nesterov Momentum	0.001	未收敛	momentum = 0.00005
AdaGrad	0.01	不收敛	未达到 99%
AdaGrad	0.0001	9900	达到 91%
RMSProp	0.01	未收敛	
RMSProp	0.0001	8300	
Adam	0.01	不收敛	
Adam	0.0001	7200	

表 2: 算法不同超参数下固定迭代次数达到的准确率

从上表可以看出,不同的算法对于参数都有很大的敏感性,无论是学习率还是动量参数,都会影响最终的结果,比较显著的但是又不言自明的特点是,过小的参数会导致算法的 收敛速度变慢,过大的参数会使得算法不收敛。

4 代码运行环境及测试平台信息

Python Version: 3.6.0

 $Tensorflow\ Version:\ tensorflow-gpu-1.0.1$

CUDA Version: 8.0 OS: Arch Linux

Kernel: x86_64 Linux 4.10.4-1-ARCH CPU: Intel Core i7-6700K @ 8x 4.2GHz

GPU: GeForce GTX 1060 6GB

RAM: 16003MiB

表 3: 代码运行环境及测试环境表

在没有 NVIDIA GPU 及 CUDA 支持的环境下代码依然可以运行,只是速度较慢

5 总结

通过这次作业,我学习了 tensorflow 实现 cnn 的基本方法,同时尝试使用了不同的优化算法来学习参数,发现了参数对算法结果的巨大影响,明白了调参的重要性。