International Rectifier

IRFR/U5305

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- Surface Mount (IRFR5305)
- Straight Lead (IRFU5305)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated

$V_{DSS} = -55V$ $R_{DS(on)} = 0.065\Omega$ $I_{D} = -31A$

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V	-31	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V	-22	A
I _{DM}	Pulsed Drain Current ① ⑥	-110	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@6	280	mJ
I _{AR}	Avalanche Current ① ⑥	-16	А
E _{AR}	Repetitive Avalanche Energy①	11	mJ
dv/dt	Peak Diode Recovery dv/dt 3 6	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		∞
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)*		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient**		110	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_D = -250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		-0.034		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.065	Ω	V _{GS} = -10V, I _D = -16A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	8.0			S	V _{DS} = -25V, I _D = -16A©
	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -55V, V_{GS} = 0V$
I _{DSS}	Brain to Gource Leakage Guiterit			-250	μΑ	$V_{DS} = -44V$, $V_{GS} = 0V$, $T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			63		I _D = -16A
Q _{gs}	Gate-to-Source Charge			13	nC	$V_{DS} = -44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			29		V_{GS} = -10V, See Fig. 6 and 13 \oplus \odot
t _{d(on)}	Turn-On Delay Time		14	_		V _{DD} = -28V
t _r	Rise Time		66			$I_{D} = -16A$
t _{d(off)}	Turn-Off Delay Time		39	_	ns	$R_G = 6.8\Omega$
t _f	Fall Time		63			$R_D = 1.6\Omega$, See Fig. 10 4 6
	Internal Drain Inductance		4.5			Between lead,
L _D	InternalDrainInductance		4.5		nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5		nH	from package
						and center of die contact © s
C _{iss}	Input Capacitance		1200	_		$V_{GS} = 0V$
C _{oss}	Output Capacitance		520		рF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz, See Fig. 5 ®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-31		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-110	Α	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.3	V	$T_J = 25^{\circ}C$, $I_S = -16A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25^{\circ}C, I_F = -16A$
Q _{rr}	Reverse Recovery Charge		170	250	nC	di/dt = -100A/μs ④ ⑥

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- ② V_{DD} = -25V, starting T_J = 25°C, L = 2.1mH R_G = 25 Ω , I_{AS} = -16A. (See Figure 12)
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq \text{-16A, di/dt} \leq \text{-280A/}\mu\text{s, } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175 ^{\circ}\text{C} \end{array}$
- ⓐ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- \$ This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact.
- © Uses IRF5305 data and test conditions.

For recommended footprint and soldering techniques refer to application note #AN-994.

^{*} When mounted on 1" square PCB (FR-4 or G-10 Material).

^{**} Uses typical socket mount.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFR/U5305

 $\begin{array}{c|c} V_{DS} & & & \\ V_{GS} & & & \\ \hline V_{BS} & & & \\ \hline V_{DS} & & & \\ \hline V_{DD} & & & \\ V$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity for P-Channel

^{**} Use P-Channel Driver for P-Channel Measurements

^{***} V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

International

TOR Rectifier

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

I-Pak (TO-251AA) Part Marking Information

EXAMPLE: THIS IS AN IRFU120

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00