Studium solárního článku

Tomáš Maršálek (A10B0632P)

měřeno 31. října 2011

1 Měřící potřeby a přístroje

solární baterie, termoelektrická baterie, univerzální měřící zesilovač, reostat 330 Ω 1 A, žárovka 220 V / 120 W s reflektorem, digitální multimetr

2 Naměřené hodnoty

a [cm]	U [mV]	U_0 [V]	I_f [mA]	$E [Wm^{-2}]$
50	38.8	2.10	90.0	801.6
55	35.2	2.08	80.8	727.2
60	31.8	2.06	73.5	657.0
65	26.1	2.05	67.0	539.2
70	23.5	2.02	56.5	485.5
80	21.5	2.01	52.0	444.2
85	18.7	2.00	48.0	386.3
90	18.0	1.999	44.7	371.9
95	16.7	1.998	41.3	345.0
100	15.2	1.979	38.6	314.0

$E = 801 W m^{-2}$		$E = 539 W m^{-2}$		$E = 444 \ Wm^{-2}$	
U_1 $[V]$	I_1 [mA]	U_2 [V]	I_2 [mA]	U_3 [V]	I ₃ [mA]
0.23	90.1	0.25	67.1	0.23	52.0
0.38	90.3	0.44	67.3	0.32	52.1
0.66	90.0	0.67	67.2	0.65	52.0
0.94	89.7	0.84	67.1	1.12	52.0
1.22	89.9	1.00	67.0	1.49	51.1
1.53	89.2	1.35	60.8	1.72	41.5
1.72	80.3	1.58	64.6	1.68	34.7
1.75	76.2	1.69	58.5	1.82	26.8
1.80	65.2	1.75	53.0	1.87	17.4
1.80	35.1	1.85	32.9	1.91	5.9
1.90	35.1	1.85	32.9	-	-
1.92	23.8	1.90	17.7	-	-
1.93	20.2	1.91	10.7	-	-
1.94	14.9	1.92	7.2	-	-

3 Výpočty

3.1 Intenzity

Závislost napětí a proudu nakrátko na intenzitě ozáření

Maximální hodnota napětí naprázdno je $U_{0max}=2.10$ [V]. Konstanta C ze vztahu $I_f=CE$ je určena pomocí lineární regrese a vychází C=0.1156.

3.2 Voltampérmetrové charakteristiky

3.3 Účinnost

Účinnost solární baterie zjistíme jako poměr maximálního výstupního výkonu a dopadajícího výkonu na čtyři články, každý s rozměry $2.5~{\rm cm}\times 5~{\rm cm}$.

Celková plocha baterie je $S=0.005~m^2$. Dopadající výkon pro $E=801~Wm^{-2}$ pak bude P=ES, tedy P=4.005~W. Maximální výstupní výkon pro stejnou intenzitu je P=138.116~mW. Účinnost je tedy $\eta=0.035$, tzn. 3.5~%.

4 Závěr