Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

6 Graph Theory Basics

- Homework assignment published on Monday, 2018-04-02.
- Submit first solutions and questions by Sunday, 2018-04-08, 12:00, by email to dominik.scheder@gmail.com and to the TAs.
- You will receive feedback by Wednesday, 2018-04-11.
- Submit final solution by Sunday, 2018-04-15 to me and the TAs.

Let G = (V, E) and H = (V', E') be two graphs. A graph isomorphism from G to H is a bijective function $f: V \to V'$ such that for all $u, v \in V$ it holds that $\{u, v\} \in E$ if and only if $\{f(u), f(v)\} \in E'$. If such a function exists, we write $G \cong H$ and say that G and H are isomorphic. In other words, G and H being isomorphic means that they are identical up to the names of its vertices.

Obviously, every graph G is isomorphic to itself, because the identity function f(u) = u is an isomorphism. However, there might be several isomorphisms f from G to G itself. We call such an isomorphism from G to itself an automorphism of G.

Exercise 6.1. For each of the graphs below, compute the number of automorphisms it has.

Justify your answer!

Solution.

- 1. The number of automorphisms is 2. We denote the vertices v_1, v_2, v_3, v_4 from the left side to the right side, which itself is an automorphisms. The other automorphism is to denote the vertices from the right to the left.
- 2. The number of automorphisms is $2 \times 6 = 12$. For each vertex, we denote it v_1 and number the remaining vertex clockwise or anticlockwise in order, all of which are automorphisms.
- 3. The number of automorphisms is $8 \times 6 = 48$. For each vertex, we denote it v_0 , and its adjacent three vertices v_1, v_2, v_3 , which has 3! = 6 choices. Each selection can form an automorphism, thus the total number is 48.

Consider the *n*-dimensional Hamming cube H_n . This is the graph with vertex set $\{0,1\}^n$, and two vertices $x,y \in \{0,1\}^n$ are connected by an edge if they differ in exactly one edge. For example, the right-most graph in the figure above is H_3 .

Exercise 6.2. Show that H_n has exactly $2^n \cdot n!$ automorphisms. Be careful: it is easy to construct $2^n \cdot n!$ different automorphisms. It is more difficult to show that there are no automorphisms other than those.

Proof.

• There are at least $2^n \cdot n!$ automorphisms. For each vertex we denote it v_0 , and denote its adjacent vertices v_1, v_2, \ldots, v_n , which has n! choice. All $2^n \cdot n!$ will at least form one automorphism.

• There are no more than $2^n \cdot n!$ automorphisms. If there are more than $2^n \cdot n!$ automorphisms, then after we choose $v_0, v_1, v_2, \ldots, v_n$, we can still find more than one automorphism when numbering $v_{n+1}, v_{n+2}, \ldots, v_{2^n-1}$.

Consider the n-dimensional Hamming cube as a n-dimensional Euclidean space, each vertex equals to a point in the Euclidean space with the coordinates (x_1, x_2, \ldots, x_n) $(x_i = 1 \text{ or } 0)$.

First we choose v_0 , we denote it the point $(0, 0, 0, \dots, 0)$, namely, the origin of the Euclidean space.

After choosing the adjacent vertices v_1, \ldots, v_n , we have chosen the vertices corresponding to $(1, 0, 0, \ldots, 0)$, $(0, 1, 0, \ldots, 0) \cdots (0, 0, 0, \ldots, 1)$, each of that form a unit vector with v_0 : (v_0, v_1) , $(v_0, v_2) \cdots (v_0, v_n)$. All the n vectors form a basis of the Euclidean space.

Once we choose a origin and a basis of the Euclidean space, all 2^n points' coordinates are fixed, which means that the way to number all the vertices is also fixed. Hence there exists no more automorphisms.

A graph G is called *asymmetric* if the identity function f(u) = u is the only automorphism of G. That is, if G has exactly one automorphism.

Exercise 6.3. Give an example of an asymmetric graph on six vertices.

Solution.

Exercise 6.4. Find an asymmetric tree.

Solution.

For a graph G=(V,E), let $\bar{G}:=\left(V,\binom{V}{2}\setminus E\right)$ denote its *complement graph*.

A graph H on six vertices

Its complement \bar{H} .

We call a graph self-complementary if $G \cong \bar{G}$. The above graph is not self-complementary. Here is an example of a self-complementary graph:

Exercise 6.5. Show that there is no self-complementary graph on 999 vertices.

Proof. A complete graph on 999 vertices has $999 \times 998/2 = 498501$ edges, which cannot be divide by 2, that is, the edges cannot be divide into two parts with the same number of edges.

Exercise 6.6. Characterize the natural numbers n for which there is a self-complementary graph G on n vertices. That is, state and prove a theorem of the form "There is a self-complementary graph on n vertices if and only if n <put some simple criterion here>."

Theorem. There is a self-complementary graph on n vertices if and only if $n \mod 4 = 0$ or $n \mod 4 = 1$.

Proof.

• If $n \mod 4 \neq 0$ and $n \mod 4 \neq 1$, the number of edges of the complete graph n(n-1)/2/2 is not an integer, namely the edges of the complete graph cannot be divide into two parts with the same number of edges. Hence there isn't any self-complementary graph on n vertices.

• If $n \mod 4 = 0$, that is n = 4k, where k is a positive integer. we denote an graph G_k containing k vertices whose complement is G_k^C . Now we form the following graph G on n vertices

The graph G contains four induced subgraphs G_k , G_k , G_k^C , G_k^C . Between some subgraphs there are edges between each vertex of two subgraphs, whose total number is k^2 .

The complementary graph ${\cal G}^C$ is as follows. Obviously, ${\cal G}^C$ and ${\cal G}$ are isomorphic.

• If $n \mod 4 = 1$, that is n = 4k + 1, where k is a positive integer. Based on the graph we formed when $n \mod 4 = 1$, we add one vertex to form a new graph G' on 4k + 1 vertices and its complement $G^{C'}$. Similarly, G' and $G^{C'}$ are isomorphic.

