Analyse de Fourier et géométrie : Exercices sur le cours 2 – Correction

EXERCICE 1 — D'ALEMBERT.

Citer le critère de d'Alembert et étudier la convergence de la série $\sum_{n\geqslant 1}\frac{2^n}{n}$.

SOLUTION.

Je vous renvoie à la Proposition 2.6 du cours pour l'énoncé du critère de d'Alembert qui je le rappelle ne vaut que pour les séries à termes positifs!

Ici, pour tout n > 0, $\frac{2^n}{n} \ge 0$ si bien qu'on peut appliquer le critère de d'Alembert. Pour n > 0, on calcule donc

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \frac{n}{n+1} \times \frac{2^{n+1}}{2^n} = 2 \times \frac{n}{n+1}.$$

Or, on sait que $\lim_{n\to+\infty} \frac{n}{n+1} = 1$ donc

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=2>1$$

et le critère de d'Alembert garantit que la série $\sum_{n>1} \frac{2^n}{n}$ diverge.

Noter qu'il est toujours bon d'appliquer le cours car on aurait pu s'en apercevoir sans d'Alembert en appliquant l'algorithme du cours! En effet, on a pour tout n > 0

$$u_n = \frac{e^{n \ln(2)}}{n}$$

et comme ln(2) > 0, $\lim_{n \to +\infty} n ln(2) = +\infty$ et par croissances comparées

$$\lim_{n\to+\infty}u_n=+\infty\neq0$$

de sorte que la série $\sum_{n\geq 1} \frac{2^n}{n}$ diverge.

EXERCICE 2 — CONVERGENCE PAR MAJORATION.

- **1.** Soient $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites telles que pour tout $n\in\mathbb{N}$, $u_n\leqslant v_n$. On suppose que $\sum_{n\geqslant 0}v_n$ converge. Peut-on en déduire que $\sum_{n\geqslant 0}u_n$ converge? Si oui citer le résultat du cours que vous utilisez et si non, corriger l'énoncé.
- **2.** Montrer que la série $\sum_{n\geqslant 0} \frac{1}{n^2+2}$ converge.

Indication : On pourra la comparer à une série de Riemann.

3. On suppose dorénavant que pour tout $n \in \mathbb{N}$, $0 \le u_n \le v_n$ et que $\sum_{n \ge 0} v_n$ diverge. Peut-on en déduire que $\sum_{n \ge 0} u_n$ diverge?

SOLUTION.

1. Attention que le résultat est **FAUX**, il faut rajouter l'hypothèse que $u_n \ge 0$ pour que le résultat soit valable. Je vous renvoie à la Proposition 2.5 du polycopié! Sinon par exemple

$$\forall n > 0, \quad -\frac{1}{n} \leqslant \frac{1}{n^2}$$

avec $\sum_{n\geqslant 1}\frac{1}{n^2}$ qui converge (en tant que série de Riemann avec $\alpha=2>1$) mais pourtant $\sum_{n\geqslant 1}\left(-\frac{1}{n}\right)$ diverge car sinon $\sum_{n\geqslant 1}\frac{1}{n}$ convergerait par la Proposition 2.2 du polycopié mais on sait que ce n'est pas le cas en tant que série de Riemann avec $\alpha=1$.

2. Attention ici qu'on n'a **PAS** une série de Riemann à proprement parler! La série $\sum_{n\geqslant 1}\frac{1}{n^2+2}$ n'est pas de la forme $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$. En revanche, on sent bien en effet que pour $n\to +\infty$,

$$\frac{1}{n^2+2}\approx\frac{1}{n^2}$$

et que la convergence de la série $\sum_{n\geqslant 1}\frac{1}{n^2+2}$ devrait découler de celle de la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^2}$. Pour ce faire, on utilise alors le critère corrigé de **1**. On a clairement que pour tout $n\in\mathbb{N}$, $\frac{1}{n^2+2}\geqslant 0$, on est donc en mesure de l'appliquer. On cherche alors à majorer $\frac{1}{n^2+2}$ et pour cela on constate que pour tout $n\in\mathbb{N}^*$, on a $n^2+2\geqslant n^2>0$ de sorte que, par décroissance de la fonction inverse sur \mathbb{R}^* , il vient

$$0 \leqslant \frac{1}{n^2 + 2} \leqslant \frac{1}{n^2}.$$

Or, la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge car $\alpha=2>1$ donc par le critère de **1.** et parce qu'on a affaire à des séries **à termes positifs**, on en déduit que la série $\sum_{n\geqslant 1}\frac{1}{n^2+2}$ converge.

3. À nouveau, le résultat est **FAUX** et je vous renvoie à la Proposition 2.5. On a seulement que si $\sum_{n\geqslant 0}u_n$ diverge, alors $\sum_{n\geqslant 0}v_n$ diverge. En effet, pour une série à termes positifs, diverger revient à dire que les sommes partielles s'envolent vers l'infini mais de l'inégalité $u_k\leqslant v_k$ il vient que

$$\sum_{k=0}^{n} u_k \leqslant \sum_{k=0}^{n} v_k$$

et comme $\sum_{n\geqslant 0}u_n$ diverge et est à termes positifs, $\lim_{n\to +\infty}\sum_{k=0}^nu_k=+\infty$ ce qui force $\lim_{n\to +\infty}\sum_{k=0}^nv_k$ à valoir $+\infty$ et la série $\sum_{n\geqslant 0}v_n$ à diverger.

Dans l'autre sens, si la série $\sum_{n>0} v_n$ diverge et est à termes positifs, alors $\lim_{n\to+\infty} \sum_{k=0}^n v_k = +\infty$ mais l'inégalité

$$\sum_{k=0}^n u_k \leqslant \sum_{k=0}^n v_k$$

ne force rien sur $\sum_{k=0}^{n} u_k$. Par exemple pour tout n > 0, on a

$$0 \leqslant \frac{1}{n^2} \leqslant \frac{1}{n}$$

et la série $\sum_{n\geqslant 1}\frac{1}{n}$ diverge tandis que $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge en tant que séries de Riemann avec respectivement $\alpha=1$ et $\alpha=2$.

$$\frac{\frac{1}{n^2+2}}{\frac{1}{n^2}} = \frac{n^2}{n^2+2} \xrightarrow[n \to +\infty]{} 1.$$

^{1.} En effet, le quotient

EXERCICE 3 — CONVERGENCE VS CONVERGENCE ABSOLUE.

- 1. Rappeler ce qu'est la convergence d'une série et la convergence absolue d'une série. Rappeler le lien entre les deux.
- **2.** Étudier la convergence de la série $\sum_{n>1} \frac{\cos(n)-1}{n^5}$.

SOLUTION.

1. Soit $(u_n)_{n\geqslant 0}$ une suite. On dit que la série $\sum_{n\geqslant 0}u_n$ converge si la suite des sommes partielles $(S_n)_{n\geqslant 0}$ avec pour tout $n\in\mathbb{N}$

$$S_n = \sum_{k=0}^n u_k$$

converge. On dit que la série $\sum_{n\geqslant 0}u_n$ converge absolument si la série la série $\sum_{n\geqslant 0}|u_n|$ converge.

On sait alors que si la série converge absolument, alors la série converge. La réciproque est fausse comme on peut le voir avec la série de Riemann alternée $\sum_{n\geqslant 1}\frac{(-1)^n}{n}$. Cette série converge en tant que série de Riemann alternée avec $\alpha=1>0$ mais pour savoir si elle converge absolument, il faut étudier la convergence de la série

$$\sum_{n>1} \left| \frac{(-1)^n}{n} \right| = \sum_{n>1} \frac{1}{n}$$

qui diverge en tant que série de Riemann avec $\alpha = 1$. On a ainsi une série qui converge mais qui ne converge pas absolument.

2. On applique l'algorithme. On a que pour tout $n \in \mathbb{N}^*$, $-1 \le \cos(n) \le 1$ soit $-2 \le \cos(n) - 1 \le 0$ et $n^5 \ge 0$ de sorte que

$$-\frac{2}{n^5} \leqslant \frac{\cos(n) - 1}{n^5} \leqslant 0$$

et comme $\lim_{n \to +\infty} \frac{2}{n^5} = 0$, le lemme d'encadrement fournit que $\lim_{n \to +\infty} \frac{\cos(n) - 1}{n^5} = 0$. Il faut donc passer à l'étape suivante de l'algorithme.

On ne reconnaît pas de série classique et on a vu que $\frac{\cos(n)-1}{n^5} \le 0$. Il faut donc étudier la convergence absolue de la série, à savoir la convergence de la série

$$\sum_{n\geqslant 1} \left| \frac{\cos(n)-1}{n^5} \right| = \sum_{n\geqslant 1} \frac{|\cos(n)-1|}{n^5}.$$

On a alors que²

$$0 \le |\cos(n) - 1| \le 2$$
 de sorte que $0 \le \frac{|\cos(n) - 1|}{n^5} \le \frac{2}{n^5}$.

On sait alors que la série $\sum_{n\geqslant 1}\frac{1}{n^5}$ converge comme série de Riemann avec $\alpha=5>1$ et donc par la Proposition 2.2, la

série $\sum_{n\geq 1} \frac{2}{n^5}$ converge aussi. On en déduit alors (Proposition 2.5), puisque les séries sont à termes positifs que la série

$$\sum_{n \ge 1} \left| \frac{\cos(n) - 1}{n^5} \right|$$
 converge. Ainsi, la série
$$\sum_{n \ge 1} \frac{\cos(n) - 1}{n^5}$$
 converge absolument donc elle converge!

EXERCICE 4 — QUELQUES EXEMPLES. Étudier la convergence et la convergence absolue des séries suivantes

$$\sum_{n \ge 1} \frac{1}{n\sqrt{n}}, \quad \sum_{n \ge 1} \frac{(-1)^n}{n}, \quad \sum_{n \ge 1} \frac{\cos(n)}{5^n}, \quad \sum_{n \ge 1} \frac{1}{5^n}.$$

Comparer les sommes des deux dernières séries.

^{2.} Car $-1 \leqslant \cos(n) \leqslant 1$.

SOLUTION.

1. On constate que

$$\sum_{n \ge 1} \frac{(-1)^n}{n\sqrt{n}} = \sum_{n \ge 1} \frac{1}{n^{\frac{3}{2}}}$$

est une série de Riemann avec $\alpha=\frac{3}{2}>1$ donc la série converge. Comme elle est positive,

$$\sum_{n\geqslant 1} \left| \frac{1}{n\sqrt{n}} \right| = \sum_{n\geqslant 1} \frac{1}{n\sqrt{n}}$$

et la série converge absolument également.

2. On constate que $\sum_{n\geqslant 1} \frac{(-1)^n}{n}$ est une série de Riemann alternée avec $\alpha=1>0$ donc la série converge. Pour la convergence absolue, on doit étudier la convergence de la série

$$\sum_{n\geq 1} \left| \frac{1}{n} \right| = \sum_{n\geq 1} \frac{1}{n}$$

et cette série diverge en tant que série de Riemann avec $\alpha=1$ donc la $\sum_{n\geqslant 1}\frac{(-1)^n}{n}$ série converge mais ne converge pas absolument.

3. On démontre comme dans l'exercice 3 que $\lim_{n \to +\infty} \frac{\cos(n)}{5^n} = 0$ car

$$-\frac{1}{5^n} \leqslant \frac{\cos(n)}{5^n} \leqslant \frac{1}{5^n}$$

et $\lim_{n \to +\infty} \frac{1}{5^n} = \lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ car $0 < \frac{1}{5} < 1$. Par ailleurs, $\frac{\cos(n)}{5^n}$ n'est pas positif donc on étudie la convergence absolue de la série, à savoir la convergence de

$$\sum_{n\geqslant 1}\left|\frac{\cos(n)}{5^n}\right|=\sum_{n\geqslant 1}\frac{|\cos(n)|}{5^n}.$$

On a alors pour tout $n \in \mathbb{N}$ que

$$0 \leqslant \frac{|\cos(n)|}{5^n} \leqslant \frac{1}{5^n}$$

où on reconnaît une série géométrique $\sum_{n \ge 1} \frac{1}{5^n}$ convergente avec $0 < q = \frac{1}{5} < 1$. On conclut alors de la Proposition 2.5 que la série $\sum_{n \ge 1} \left| \frac{\cos(n)}{5^n} \right|$ converge, soit que la série $\sum_{n \ge 1} \frac{\cos(n)}{5^n}$ converge absolument et par conséquent converge.

4. On l'a vu dans le point précédent, la série $\sum_{n\geqslant 1}\frac{1}{5^n}$ converge et comme elle est à termes positifs, elle converge aussi absolument. On a également vu que pour tout $n\in\mathbb{N}$, $\frac{\cos(n)}{n^5}\leqslant\frac{1}{n^5}$ et que les deux séries $\sum_{n\geqslant 1}\frac{\cos(n)}{5^n}$ et $\sum_{n\geqslant 1}\frac{1}{5^n}$ convergent si bien qu'on a l'inégalité suivante entre leurs sommes

$$\sum_{n=0}^{+\infty} \frac{\cos(n)}{5^n} \leqslant \sum_{n=0}^{+\infty} \frac{1}{5^n} = \frac{1}{1 - \frac{1}{5}} = \frac{5}{4}.$$

EXERCICE 5 — POUR PRÉPARER LE COURS SUIVANT.

- 1. Mettre le nombre complexe i sous forme trigonométrique et préciser son module et son argument.
- **2.** Reconnaître le nombre complexe $2e^{i\pi}$.

- **3.** Donner une formule pour $cos(n\pi)$ selon la parité de $n \in \mathbb{N}$.
- 4. Soit $x \in \mathbb{R}$. Quelle est la partie réelle de e^{2ix} ? En remarquant que $e^{2ix} = (e^{ix})^2$, en fournir une autre expression et en déduire la formule

$$\cos(2x) = \cos^2(x) - \sin^2(x).$$

5. Calculer en utilisant une intégration par parties bien choisie

$$\int_0^{\pi} t \sin(t) dt.$$

SOLUTION.

- **1.** On a $|i| = \sqrt{0^2 + 1^2} = 1$ et l'argument θ vérifie $\cos(\theta) = 0$ et $\sin(\theta) = 1$ donc $\theta = \frac{\pi}{2}$ et $i = 1 \times e^{i\frac{\pi}{2}} = e^{i\frac{\pi}{2}}$. Attention que $i = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$ est correcte mais n'est**pas** une forme trigonométrique mais une forme algébrique. Noter que le résultat se voit immédiatement en plaçant i dans le plan complexe et en interprétant géométriquement module et argument!
- 2. On a par définition ³

$$2e^{i\pi} = 2(\cos(\pi) + i\sin(\pi)) = 2(-1 + i \times 0) = -2.$$

3. On calcule les premiers termes (ou on trace un cercle trigonométrique)

$$cos(0 \times \pi) = cos(0) = 1$$
, $cos(1 \times \pi) = cos(\pi) = -1$, $cos(2 \times \pi) = cos(2\pi) = 1$, $cos(3 \times \pi) = cos(3\pi) = -1$,...

et on voit immédiatement que pour tout entier n, $\cos(n\pi) = (-1)^n$.

Pour celles et ceux qui aiment les preuves rigoureuses, on peut le démontrer par récurrence. On a bien $\cos(0) = 1 = (-1)^0$ et si on suppose que $\cos(n\pi) = (-1)^n$ pour $n \in \mathbb{N}$, alors ⁴

$$\cos((n+1)\pi) = \cos(n\pi + \pi) = -\cos(n\pi) = -(-1)^n = (-1)^{n+1}$$

où l'avant dernière inégalité provient de l'hypothèse de récurrence.

4. On a par définition que $e^{2ix} = \cos(2x) + i\sin(2x)$ si bien que $\operatorname{Re}(e^{2ix}) = \cos(2x)$. Par ailleurs,

$$e^{2ix} = (e^{ix})^2 = (\cos(x) + i\sin(x))^2 = \cos^2(x) + 2i\cos(x)\sin(x) + i^2\sin^2(x) = \cos^2(x) - \sin^2(x) + 2i\cos(x)\sin(x)$$

car $i^2 = -1$. O, en déduit donc que $\text{Re}(e^{2ix}) = \cos^2(x) - \sin^2(x)$ et ainsi que $\cos(2x) = \cos^2(x) - \sin^2(x)$. En identifiant les parties imaginaires, on obtient de même que $\sin(2x) = 2\cos(x)\sin(x)$.

5. On effectue une intégration par parties 5 avec

$$\begin{cases} v(t) = t \\ u'(t) = \sin(t) \end{cases} \iff \begin{cases} v'(t) = 1 \\ u(t) = -\cos(t). \end{cases}$$

Noter que $\cos' = -\sin et \sin' = \cos et$ qu'ici on dérive $t \mapsto t$ car quand on dérive un polynôme, il se simplifie dans le sens où le degré baisse tandis que dériver ou intégrer un cosinus ou un sinus ne change rien à la complexité. On obtient alors

$$\int_0^{\pi} t \sin(t) dt = [-t \cos(t)]_0^{\pi} - \int_0^{\pi} (-\cos(t)) dt.$$

- 3. Je rappelle que pour tout réel θ , $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.
- 4. On utilise ici que $cos(x + \pi) = -cos(x)$ ce qui se voit sur un dessin ou découle de la formule

$$\cos(x + \pi) = \cos(x)\cos(\pi) - \sin(x)\sin(\pi) = -\cos(x)$$

 $car cos(\pi) = -1 et sin(\pi) = 0.$

5. Je rappelle que

$$\int_a^b u'(t)v(t)\mathrm{d}t = [u(t)v(t)]_a^b - \int_a^b u(t)v'(t)\mathrm{d}t.$$

Par linéarité de l'intégrale, on obtient

$$\int_0^{\pi} t \sin(t) dt = [-t \cos(t)]_0^{\pi} + \int_0^{\pi} \cos(t) dt.$$

On a alors que $[-t\cos(t)]_0^\pi=-\pi\cos(\pi)=\pi\,\cos(\pi)=-1$ tandis que

$$\int_0^{\pi} \cos(t) dt = [\sin(t)]_0^{\pi} = \sin(\pi) - \sin(0) = 0.$$

Finalement, $\int_0^{\pi} t \sin(t) dt = \pi$.