Inhalt Axiomatische Beschreibung von ℝ, Ungleichungen, Supremum und Infimum

Bezeichnungen

 $\mathbb{N} = \{1, 2, 3, \ldots\} = \text{Menge der } nat \ddot{u}r lichen \text{ Zahlen}, \ \mathbb{N}^0 = \{0, 1, 2, 3, \ldots\},\ \mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\} = \text{Menge der } ganzen \text{ Zahlen},\ \mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0\} = \text{Menge der } rationalen \text{ Zahlen} \text{ (Brüche ganzer Zahlen)}.$

Es gibt Probleme, die über den Bereich $\mathbb Q$ der rationalen Zahlen hinausführen: In einem Quadrat der Seitenlänge 1 gilt für die Diagonale x (nach Pythagoras): $x^2 = 1^2 + 1^2 = 2$.

Behauptung Es gibt kein $x \in \mathbb{Q}$ mit $x^2 = 2$.

Beweis (indirekt): Annahme: Es gibt ein $x \in \mathbb{Q}$ mit $x^2 = 2$. Wir schreiben $x = \frac{a}{b}$ mit $a, b \in \mathbb{Z}, b \neq 0$. Wir können annehmen, daß a, b teilerfremd sind (sonst kürzen wir den größten gemeinsamen Teiler heraus). Es ist $a^2 = (bx)^2 = b^2x^2 = 2b^2$ gerade. Dann ist aber auch a gerade (denn für ungerades a = 2m + 1 wäre auch $a^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$ ungerade). Also ist a = 2m mit einem $m \in \mathbb{Z}$. Es folgt $4m^2 = a^2 = 2b^2$, also $2m^2 = b^2$, damit ist auch b^2 und somit b gerade. Also sind a und b beide durch a = 2m teilbar. Das widerspricht der Teilerfremdheit von a, b. Unsere Annahme war also falsch.

Um auch Gleichungen der Form $x^2=a$ für $a\geq 0$ lösen zu können, erweitert man $\mathbb Q$ zum Bereich $\mathbb R$ der reellen Zahlen. Wir führen diese Konstruktion nicht durch, sondern beschreiben $\mathbb R$ durch seine Eigenschaften.

Anschaulich: Reelle Zahlen entsprechen Punkten auf der Zahlengeraden.

1 Axiomatische Beschreibung von $\mathbb R$

Auf $\mathbb R$ gibt es eine Addition + und eine Multiplikation ·, die folgenden Bedingungen genügen:

Kommutativgesetz für +: a+b=b+a für alle $a,b\in\mathbb{R}$,

Assoziativgesetz für +: (a+b)+c=a+(b+c) für alle $a,b,c\in\mathbb{R}$,

Existenz der Null: es gibt eine reelle Zahl 0 mit a+0=a für alle $a\in\mathbb{R}$, und

zu jedem $a \in \mathbb{R}$ gibt es ein $-a \in \mathbb{R}$ mit a + (-a) = 0,

Kommutativgesetz für \cdot : ab = ba für alle $a, b \in \mathbb{R}$,

Assoziativgesetz für \cdot : (ab)c = a(bc) für alle $a, b, c \in \mathbb{R}$,

Existenz der Eins: es gibt eine reelle Zahl $1 \neq 0$ mit $a \cdot 1 = a$ für alle $a \in \mathbb{R}$, und

zu jedem $a \in \mathbb{R}$, $a \neq 0$ gibt es ein $a^{-1} \in \mathbb{R}$ mit $a \cdot a^{-1} = 1$,

Distributivgesetz: (a+b)c = (ac) + (bc) für alle $a, b, c \in \mathbb{R}$.

(Es kommen später noch weitere Axiome.)

Bemerkungen

0 und 1 sind durch die obigen Bedingungen eindeutig bestimmt, für jedes $a \in \mathbb{R}$ ist -a eindeutig bestimmt, und für jedes $a \in \mathbb{R}$, $a \neq 0$ ist a^{-1} eindeutig bestimmt.

Wir beweisen z. B. die Eindeutigkeit der 0: Gibt es 0,0' mit a+0=a=a+0' für alle $a \in \mathbb{R}$, so folgt 0'=0'+0=0+0'=0.

Mit den Axiomen folgt:

Für alle $a, b \in \mathbb{R}$ hat die Gleichung a+x=b genau eine Lösung (nämlich x=b+(-a)). Für alle $a, b \in \mathbb{R}$ mit $a \neq 0$ hat die Gleichung ax=b genau eine Lösung (nämlich $x=a^{-1}b$).

Wir verwenden für $a, b \in \mathbb{R}$ die Schreibweisen: a - b := a + (-b) und $\frac{a}{b} := ab^{-1}$ für $b \neq 0$.

Anordnungsaxiome

Auf $\mathbb R$ ist eine Relation "> 0" mit folgenden Bedingungen gegeben:

Trichotomie:

Für jedes $a \in \mathbb{R}$ gilt *genau* einer der folgenden Fälle:

$$a > 0$$
, $a = 0$, $-a > 0$.

Verträglichkeit mit $+, \cdot$: Für alle $a, b \in \mathbb{R}$ mit a > 0, b > 0 gilt a + b > 0 und ab > 0.

Die reellen Zahlen a mit a > 0 heißen positiv.

Anschaulich bedeutet a > 0: Auf dem Zahlenstrahl liegt a rechts von 0.

Diese Axiome gelten alle auch für \mathbb{Q} . Durch diese Axiome wird \mathbb{R} also nicht charakterisiert. Es fehlt noch ein weiteres Axiom für \mathbb{R} .

2 Ungleichungen

Für $a, b \in \mathbb{R}$ wird definiert: $a > b : \iff a - b > 0$, $a \ge b : \iff a > b$ oder a = b.

Es gilt also: $a > b \iff a - b > 0$ oder $a - b = 0 \iff a - b > 0$.

Außerdem setzt man: $b < a : \iff a > b$, $b \le a : \iff a \ge b$.

Aus den Axiomen folgt: a > b, $b > c \Rightarrow a > c$.

Beweis: a > b, $b > c \Rightarrow a - b > 0$, $b - c > 0 \Rightarrow a - c = (a - b) + (b - c) > 0 \Rightarrow a > c$.

Bemerkungen

- a) Es gilt auch: (i) $a \ge 0$, $b \ge 0 \Rightarrow a + b \ge 0$, $ab \ge 0$, (ii) $a \ge b$, $b \ge c \Rightarrow a \ge c$.
- b) Für alle $a \neq 0$ ist $a^2 > 0$; insbesondere ist $1 = 1^2 > 0$.

Beweis zu b): Für $a \neq 0$ ist (wegen der Trichotomie) a > 0 oder -a > 0. Für a > 0 ist $a^2 = a \cdot a > 0$ (nach dem Verträglichkeitsaxiom). Für -a > 0 ist $a^2 = (-a) \cdot (-a) > 0$.

Rechenregeln für $,\ge$ ": Für alle $a,b,c,d,p\in\mathbb{R}$ gilt:

(i) a > b, $p > 0 \Rightarrow ap > bp$.

Beweis: $a \ge b \Rightarrow a - b \ge 0$. Mit $p \ge 0$ folgt $(a - b)p = ap - bp \ge 0$ nach Bemerkung a), also $ap \ge bp$.

(ii) $a \ge b$, $p \le 0 \Rightarrow ap \le bp$.

Beweis: $a - b \ge 0$, $-p \ge 0 \Rightarrow (a - b)(-p) = bp - ap \ge 0$ nach (i), also $bp \ge ap$.

(iii) $a > b \Rightarrow a + c > b + c$.

Beweis: $a - b > 0 \Rightarrow (a + c) - (b + c) = a - b > 0$.

(iv) $a \ge b$, $c \ge d \Rightarrow a + c \ge b + d$.

Beweis: a - b > 0, $c - d > 0 \Rightarrow a + c - (b + d) = (a - b) + (c - d) > 0$.

(v) a > b, c > d, alle vier Zahlen $a, b, c, d > 0 \Rightarrow ac > bd$.

Beweis: $a \ge b$, $c \ge 0 \Rightarrow ac \ge bc$. $c \ge d$, $b \ge 0 \Rightarrow bc \ge bd$. Daraus folgt $ac \ge bd$.

Bernoullische Ungleichung

Für alle $n \in \mathbb{N}^0$ und alle $x \ge -1$ gilt $(1+x)^n \ge 1 + nx$.

Beweis durch vollständige Induktion nach n: Für n = 0 ist $(1+x)^0 = 1 \ge 1 + 0x$. $n \to n+1$: Es gelte die *Induktionsvoraussetzung* $(1+x)^n \ge 1 + nx$. Zu zeigen ist die *Induktionsbehauptung* $(1+x)^{n+1} \ge 1 + (n+1)x$.

Wegen $(1+x)^n \ge 1 + nx$ und $1+x \ge 0$ gilt (nach Rechenregel (i))

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) \ge (1+nx) \cdot (1+x)$$
$$= 1 + (n+1)x + nx^2 \ge 1 + (n+1)x \qquad (da \ nx^2 \ge 0).$$

Absolutbetrag einer reellen Zahl

Definition: Für $a \in \mathbb{R}$ heißt $|a| := \begin{cases} a, & \text{falls } a \geq 0 \\ -a, & \text{falls } a < 0 \end{cases}$ Absolutbetrag von a.

Bemerkung: Für $a, b \in \mathbb{R}$ gibt |a-b| den Abstand der Punkte a, b auf der Zahlengeraden an, denn für $a \ge b$ ist der Abstand a-b=|a-b|, und für a < b ist der Abstand gleich b-a=-(a-b)=|a-b|.

Für $a, b \in \mathbb{R}$ sei $\max(a, b) := \begin{cases} a, & \text{falls } a \ge b \\ b, & \text{falls } a < b \end{cases}$

Hilfsatz (i) Für alle $a \in \mathbb{R}$ ist $|a| = \max(a, -a)$.

(ii) Für alle $a, M \in \mathbb{R}$ mit $M \ge 0$ gilt: $-M \le a \le M \iff |a| \le M$.

Beweis: (i) Für $a \ge 0$ ist $-a \le 0 \le a$, also $\max(a,-a) = a = |a|$, für a < 0 ist -a > 0 > a, also $\max(a,-a) = -a = |a|$.

(ii) " \Rightarrow ": Gilt $-M \le a \le M$, so ist $M \ge -a$ (durch Multiplikation von $-M \le a$ mit -1), also $-a \le M$ und $a \le M$, und mit (i) folgt $|a| = \max(a, -a) \le M$. " \Leftarrow ": Für $|a| \le M$ ist $a \le M$ und $-a \le M$, also $-M \le a \le M$.

Eigenschaften des Absolutbetrages

Für alle $a, b \in \mathbb{R}$ gilt

- (i) $|a| \ge 0$ und $(|a| = 0 \iff a = 0)$,
- (ii) |ab| = |a| |b|,
- (iii) $|a+b| \le |a| + |b|$ (Dreiecksungleichung).

Beweis: (i) ist klar.

- (ii) Die Vorzeichen $\varepsilon, \eta \in \{\pm 1\}$ seien so gewählt, daß $|a| = \varepsilon a \ge 0$ und $|b| = \eta b \ge 0$ gilt. Dann ist $\varepsilon \eta ab = |a| |b| \ge 0$, also $|ab| = \varepsilon \eta ab = |a| |b|$.
- (iii) Nach (ii) des Hilfssatzes (mit M = |a|) gilt $-|a| \le a \le |a|$ und $-|b| \le b \le |b|$. Durch Addition der Ungleichungen (nach Rechenregel (iv)) folgt

$$-(|a|+|b|) \le a+b \le |a|+|b|.$$

Aus (ii) des Hilfssatzes (mit M = |a| + |b|) folgt $|a + b| \le |a| + |b|$.

Folgerungen

- a) Ersetzt man in der Dreiecksungleichung b durch -b, so folgt $|a-b| \le |a| + |-b| = |a| + |b|$.
- **b)** Für alle $a, b \in \mathbb{R}$ gilt $|a b| \ge ||a| |b||$.

Beweis: Mit der Dreiecksungleichung folgt $|a| = |b + (a - b)| \le |b| + |a - b|$, also $|a| - |b| \le |a - b|$. Durch Vertauschen von a, b folgt $|b| - |a| \le |b - a| = |a - b|$, also $||a| - |b|| \le |a - b|$.

Beschränkte Mengen

Definitionen: Eine Teilmenge M von $\mathbb R$ heißt nach oben beschränkt, wenn es ein $b \in \mathbb R$ gibt mit $x \leq b$ für alle $x \in M$. Jedes solche b heißt dann eine obere Schranke von M.

M heißt nach unten beschränkt, wenn es ein $a \in \mathbb{R}$ gibt mit $a \leq x$ für alle $x \in M$. Jedes solche a heißt eine untere Schranke von M.

M heißt beschränkt, falls M nach oben und nach unten beschränkt ist.

3 Supremum und Infimum

Definitionen Sei M eine Teilmenge von \mathbb{R} .

Eine reelle Zahl s heißt kleinste obere Schranke (oder Supremum) von M, falls gilt:

- 1. s ist eine obere Schranke von M.
- 2. Für jede obere Schranke s' von M gilt $s \leq s'$.

Eine reelle Zahl t heißt größte untere Schranke (oder Infimum) von M, falls gilt:

- 1. t ist eine untere Schranke von M.
- 2. Für jede untere Schranke t' von M gilt $t' \leq t$.

Es gilt: Jede Teilmenge M von \mathbb{R} hat höchstens ein Supremum und höchstens ein Infimum.

Beweis: Seien s und s' beide Suprema von M. Da s' obere Schranke von M ist und s Supremum von M ist, folgt $s \leq s'$. Da s obere Schranke von M ist und s' Supremum von M ist, folgt $s' \leq s$. Also gilt s = s'. Für das Infimum schließt man analog.

Bezeichnung: Falls das Supremum von M existiert, bezeichnet man es mit sup M. Falls das Infimum von M existiert, bezeichnet man es mit inf M.

Vollständigkeitsaxiom für \mathbb{R}

Jede nichtleere, nach oben beschränkte Teilmenge M von \mathbb{R} besitzt ein Supremum.

Aus dem Vollständigkeitsaxiom folgt: Jede nichtleere, nach unten beschränkte Teilmenge M von \mathbb{R} besitzt ein Infimum. (Beweis als Übungsaufgabe.)

Bemerkung Das Vollständigkeitsaxiom gilt in $\mathbb Q$ nicht. Man kann zeigen: Hätte $\{x \in \mathbb Q \mid x^2 < 2\}$ in $\mathbb Q$ ein Supremum $s \in \mathbb Q$, so wäre $s^2 = 2$. Da es kein $s \in \mathbb Q$ mit $s^2 = 2$ gibt, hat $\{x \in \mathbb Q \mid x^2 < 2\}$ in $\mathbb Q$ kein Supremum.

Satz von Archimedes Zu jeder reellen Zahl a gibt es eine natürliche Zahl n mit n > a.

Beweis (indirekt): Annahme: Es gibt eine reelle Zahl a, so daß $n \leq a$ für alle $n \in \mathbb{N}$ gilt. Dann ist die Teilmenge \mathbb{N} von \mathbb{R} nach oben beschränkt. Nach dem Vollständigkeitsaxiom existiert also $s := \sup \mathbb{N}$. Da s die kleinste obere Schranke von \mathbb{N} ist, ist s-1 keine obere Schranke von \mathbb{N} , also existiert ein $n \in \mathbb{N}$ mit s-1 < n. Dann ist $s < n+1 \in \mathbb{N}$, also s keine obere Schranke von \mathbb{N} , Widerspruch!

Folgerungen

a) Zu jedem $a \in \mathbb{R}$ mit a > 0 und jedem $b \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit na > b.

Beweis: Nach dem Satz von Archimedes gibt es ein $n \in \mathbb{N}$ mit $n > \frac{b}{a}$, also ist na > b.

b) Zu jedem $a \in \mathbb{R}$ mit a > 0 gibt es ein $n \in \mathbb{N}$ mit $0 < \frac{1}{n} < a$.

Beweis: Nach dem Satz von Archimedes gibt es ein $n \in \mathbb{N}$ mit $n > \frac{1}{a}$, also ist $a > \frac{1}{n}$.

c) Gilt $0 \le a < \frac{1}{n}$ für alle $n \in \mathbb{N}$, so ist a = 0.

Beweis: Wäre a > 0, so gäbe es nach b) ein $n \in \mathbb{N}$ mit $\frac{1}{n} < a$, Widerspruch!