Yengkong Sayaovong Student ID: 1217194316

EEE 120: Extra Credit Design Problem

Design a synchronous counter that counts up 0, 1, 2, 3, 0, 1, 2, 3, ... when an input x = 1, and down when x = 0 using

(a) D flip-flops.

(b) J-K flip-flops.

You need to show the state definition table, the state transition diagram, the state transition table, the K-maps for the respective logic functions and the schematic of the implementation using flip-flops and logic gates in (a) as well as the K-maps for the logic functions and the schematic in (b). (5 points each, 35 points total)

Note:

- 1) You can either create an electronic document and submit your answer in a **word** or **pdf** format.
- 2) Or you can work on a scratch paper and scan your answer with a scanner. If you don't have a scanner you may use a camera such as on a computer or a phone to take a picture. Transfer your picture to your computer and upload your picture in .pdf or .jpg format.
- 3) You are welcome to simulate your design using Logisim to verify its functionality but it is NOT required.

State Definition Table

State	Definition	Binary
50	Reset, O	00
51	.	01
S2	. 1	,
53	4	1 1
	3	10

State Transition Diagram

State Transition Table

\times	Da	\mathcal{D}_{b}	Da	+ D, +
0	0	0		1
0	0		0	0
0	1	0	0	1
O				0
}	Ŏ	0	0	ľ
1	Ô	1.	1	0
1	1	0	ĺ	
1	t ·	1	ට	0

$$\overline{\times} \overline{D_a} \overline{D_b} + \times \overline{D_a} \overline{D_b} + \overline{\times} D_a \overline{D_b} + \times D_a \overline{D_b}$$

$$\overline{\times} \overline{D_a} \overline{D_b} + \overline{\times} D_a D_b + \times \overline{D_a} D_b + \times D_a \overline{D_b}$$

$$\overline{\times} (D_a + D_b)' + \times (D_a + D_b)$$

$$\times (D_a + D_b)$$

$$\times (D_a + D_b)$$

