LIE ALGEBRAS

github.com/danimalabares/stack

Contents

1.	Basic definitions and examples	1
2.	Nilpotent and solvable Lie algebras	3
3.	Lie's theorem	3
4.	Generalized Eigenspaces and Generalized Weight spaces	3
5.	Zarisky Topology and Regular Elements	5
6.	Cartan subalgebra	5
7.	Semisimple Lie algebras	6
8.	$\mathfrak{g} ext{-modules}$	7
9.	Verma module	7
10.	Weyl character formula	8
References		9

1. Basic definitions and examples

Definition 1.1. An *algebra* is a vector space over a field \mathbb{F} endowed with a binary operation that is bilinear

$$a(\lambda b + \mu c) = \lambda ab + \mu ac$$
$$(\lambda b + \mu c)a = \lambda ba + \mu ca$$

Definition 1.2. A *Lie algebra* is an algebra \mathfrak{g} with a product $[\cdot, \cdot]$ we call *bracket* that satisfies

- $(1) [x, x] = 0 \qquad \forall x \in \mathfrak{g},$
- (2) (Jacobi identity.)

Definition 1.3. A *simple Lie algebra* is a Lie algebra that has no nontrivial proper ideals.

As a rule of thumb I keep in mind the following silly computation:

$$\log \det A = \log \prod_{i} \lambda_{i} = \sum \log \lambda_{i} = \text{"trlog}A"$$

And recall that exponent map goes from $T_eG = \mathfrak{g} \to G$, so that logarithm would go from $G \to \mathfrak{g}$. This is why I remember that the condition on a classical Lie group of having determinant 1 goes to having vanishing trace in the Lie algebra. (Because $\log 1 = 0$.)

Example 1.4. (1) The special linear Lie algebra

$$\mathfrak{sl}_n = \{ \operatorname{Mat}_n | Tr(A) = 0 \}$$

which is just obvious from the slogan above.

(2) The special orthogonal Lie algebra

$$\mathfrak{so}_n = \{ A \in \operatorname{Mat}_n | A + A^{\mathbf{T}} = 0 \}$$

which is obvious from: SO(n) =isometries, so $\langle v, v \rangle = \langle Av, Av \rangle = \langle v, A^T Av \rangle$, so $SO(n) = \{A \in Mat_n : A^{-1} = A^T\}$, and then $0 = \log 1 = \log(AA^T) = \log(AA^T)$ $\log A + \log A^{\mathbf{T}}$.

(3) The symplectic Lie algebra

$$\mathfrak{sp}_{2n} = \{ A \in \mathrm{Mat}_{2n} : \Omega A + A^{\mathbf{T}}\Omega = 0 \}$$

where
$$\Omega = \begin{pmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{pmatrix}$$
.

Pending. Why this makes sense?

Example 1.5. If A is an associative Lie algebra, then A with the bracket [a,b]ab-ba is a Lie algebra, denoted by A_{-} . (It is an exercise to verify Jacobi's identity.) This gives $\mathfrak{gl}_V := \operatorname{End}(V)_-$.

Definition 1.6. A Lie subalgebra is a vector subspace $\mathfrak{h} \subset \mathfrak{g}$ such that $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}$.

Definition 1.7. A subspace $\mathfrak{h} \subset \mathfrak{g}$ is called an *ideal* if $[\mathfrak{h}, \mathfrak{g}] \subset \mathfrak{h}$.

Recall that a bilinear form $(\cdot,\cdot): \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ is invariant if ([a,b],c])=(a,[b,c]) for all $a, b, c \in \mathfrak{g}$.

Definition 1.8. For any finite dimensional Lie algebra \mathfrak{g} and $x \in \mathfrak{g}$ we write

$$ad_a = [a, -]$$

Exercise 1.9. Show that the map ad: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$, $a \mapsto \operatorname{ad}_a$ is a representation, i.e. a morphism of Lie algebras.

Definition 1.10. The *Killing form* is

$$\kappa(x, y) = \operatorname{Tr}_{\mathfrak{a}} \operatorname{ad} x \operatorname{ad} y$$

Exercise 1.11. Prove that an invariant bilinear form on a simple Lie algebra must in fact be symmetric.

Proof. (David.) It's enough to show that \mathfrak{g} is perfect, i.e. that $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$. In this case, let $a, b \in \mathfrak{g}$ and suppose that b = [x, y]. Then

$$(a,b) = (a, [x,y]) = (a, -[y,x]) = (-[a,y], x) = ([y,a], x)$$
$$= (y, [a,x]) = (y, -[x,a]) = (-[y,x], a) = ([x,y], a) = (b,a)$$

To confirm that \mathfrak{g} is perfect just observe that $[\mathfrak{g},\mathfrak{g}]$ is a nontrivial ideal of \mathfrak{g} .

Definition 1.12. A semisimple Lie algebra is a direct sum of simple ones

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_s$$

Theorem 1.13 (Cartan). The finite dimensional Lie algebra g is semisimple if and only if its Killing form is nondegenerate.

2. NILPOTENT AND SOLVABLE LIE ALGEBRAS

Let \mathfrak{g} be a Lie algebra. Define

$$\mathfrak{g}^1 := [\mathfrak{g}, \mathfrak{g}], \quad \mathfrak{g}^2 := [\mathfrak{g}, \mathfrak{g}^1], \quad \dots, \mathfrak{g}^n := [\mathfrak{g}, \mathfrak{g}^{n-1}]$$

and

$$\mathfrak{g}^{(1)} := [\mathfrak{g}, \mathfrak{g}], \quad \mathfrak{g}^{(2)} := [\mathfrak{g}^{(1)}, \mathfrak{g}^{(1)}], \dots, \mathfrak{g}^{(n)} := [\mathfrak{g}^{(n-1)}, \mathfrak{g}^{(n-1)}].$$

Definition 2.1. A Lie algebra $\mathfrak g$ is

- *nilpotent* if there exists n such that $\mathfrak{g}^n = 0$,
- solvable is there exists n such that $\mathfrak{g}^{(n)} = 0$.

3. Lie's theorem

Lie's theorem says that solvable Lie algebras over closed fields of characteristic not zero have weights.

Definition 3.1. Let \mathfrak{h} be a Lie algebra, $\pi:\mathfrak{h}\to\mathfrak{gl}_V$ a representation of \mathfrak{h} and $\lambda\in\mathfrak{h}^*$. The weight space of \mathfrak{h} attached to λ is

$$V_{\lambda}^{\mathfrak{h}} := \{ v \in V | \pi(h)v = \lambda(h)v, \ \forall h \in \mathfrak{h} \}.$$

If $V_{\lambda}^{\mathfrak{h}} \neq 0$, we say that λ is a weight for π .

Theorem 3.2 (Lie's theorem). Let \mathfrak{g} be a solvable Lie algebra and π a representation of \mathfrak{g} on a finite dimensional vector space $V \neq 0$, over an algebraically closed field \mathbb{F} of characteristic 0. Then there exists a weight $\lambda \in \mathfrak{g}^*$ for π (that is, $V_{\lambda}^{\mathfrak{g}} \neq \{0\}$).

Exercise 3.3. Show the following two corollaries of Lie's theorem:

- for all representations π of a solvable Lie algebra \mathfrak{g} on a finite dimensional vector space \mathcal{V} over an algebraically closed field \mathbb{F} , char $\mathbb{F} = 0$, there exists a basis for V for which the matrices of $\pi(\mathfrak{g})$ are upper triangular;
- a solvable subalgebra $\mathfrak{g} \subset \mathfrak{gl}_V$, (where V is finite-dimensional over an algebraically closed field \mathbb{F} , char $\mathbb{F} = 0$), is contained in the subalgebra of upper triangular matrices over \mathbb{F} for some basis of V.
- 4. Generalized Eigenspaces and Generalized Weight spaces

Definition 4.1. A generalized eigenspace of $A \in End(V)$ with eigenvalue λ is

$$V_{\lambda} = \{ v \in V : (A - \lambda \operatorname{Id})^N = 0 \text{ for some positive integer } N \}.$$

It turns out that any linear operator on an algebraically closed field gives a decomposition into generalized eigenspaces via Jordan canonical form:

Proposition 4.2. Let A be a linear operator on a finite-dimensional vector space V over an algebraically closed field \mathbb{F} , and let $\lambda_1, \ldots, \lambda_s$ be all eigenvalues of A, and n_1, \ldots, n_s their multiplicities. Then one has the generalized eigenspace decomposition:

$$V = \bigoplus_{i=1}^{s} V_{\lambda_i}, \quad \dim V_{\lambda_i} = n_i.$$

In particular, for a Lie algebra \mathfrak{g} with a representation (i.e. Lie algebra morphism) $\pi: \mathfrak{g} \to \operatorname{End}(V)$ we have

$$V = \bigoplus_{\lambda \in \mathbb{R}} V_{\lambda}^{a}, \qquad V_{\lambda}^{a} = \{ v \in V : (\pi(a)v - \lambda \operatorname{Id})^{N}v = 0 \text{ for some } N \in \mathbb{N} \}$$

And even more particularly, for the adjoint representation we have

$$V = \bigoplus_{\lambda \in \mathbb{F}} \mathfrak{g}^a_\lambda, \qquad \mathfrak{g}^a_\alpha = \{b \in \mathfrak{g} : ([a,\cdot] - \alpha \mathrm{Id})^N b = 0, \text{ for some } N \in \mathbb{N}\}$$

And a little more generally we have

Definition 4.3. Let \mathfrak{h} be a Lie algebra with a representation π on a vector space V, and $\lambda \in \mathfrak{h}^*$. A generalized weight space of \mathfrak{h} in V attached to λ is

$$V_{\lambda}^{\mathfrak{h}} = \left\{ v \in V : (\pi(a) - \lambda(a)\mathrm{Id})^{N} v = 0, \text{ depending on } \substack{a \in \mathfrak{h} \\ \text{for all } a \in \mathfrak{h}} \right\}$$

Under the right conditions, a nilpotent subalgebra $\mathfrak{h} \subset \mathfrak{g}$ permits decomposing V as a direct sum of generalized weight spaces of \mathfrak{h} . Namely,

Theorem 4.4. Let \mathfrak{g} be a finite-dimensional Lie algebra and π its representation on a finite-dimensional vector space V, over an algebraically closed field \mathbb{F} of characteristic 0. Let \mathfrak{h} be a nilpotent subalgebra of \mathfrak{g} . Then the following equalities hold:

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}^{\mathfrak{h}}$$

(4.4.1)
$$\pi\left(\mathfrak{g}_{\alpha}^{\mathfrak{h}}\right)V_{\lambda}^{\mathfrak{h}}\subseteq V_{\lambda+\alpha}^{\mathfrak{h}}$$

Which in the case of the adjoint representation, looks like:

Definition 4.5. The generalized root space decomposition of a Lie algebra $\mathfrak g$ over an algebraically closed field $\mathbb F$ of characteristic zero with respect to a nilpotent subalgebra $\mathfrak h$ is the generalized weight space decomposition with respect to the adjoint representation. That is,

$$\mathfrak{g}=igoplus_{lpha\in\mathfrak{h}^*}\mathfrak{g}^\mathfrak{h}_lpha$$

and it has the property that

$$[\mathfrak{g}_{\alpha}^{\mathfrak{h}},\mathfrak{g}_{\beta}^{\mathfrak{h}}] \subseteq \mathfrak{g}_{\alpha+\beta}^{\mathfrak{h}}$$

It is important to make the distinction between the generalized weight space decomposition and the generalized root space decomposition; "we will see its convenience in later lectures, as we try to better understand the functionals α appearing in the decomposition".

Exercise 4.6. Take $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{h} = \{\text{diagonal matrices}\}$. Find the generalized weight space decomposition in both the tautological and the adjoint representations, and check the inclusions 4.4.1 and 4.5.1.

5

5. Zarisky Topology and Regular Elements

Let \mathfrak{g} be a finite-dimensional Lie algebra of dimension d. For every element $a \in \mathfrak{g}$ the characeristic polynomial of ad_a must be of the form

$$\det_{\mathfrak{g}}(\mathrm{ad}_{a}-\lambda\mathrm{Id})=(-\lambda)^{d}+c_{d-1}(-\lambda)^{d-1}+\ldots+\det(\mathrm{ad}_{a}).$$

[to be honest I don't see why the constant term must be de determinant of ad_a , but OK...] since [a, a] = 0, $det(ad_a) = 0$, i.e., the constant term vanishes.

Exercise 5.1. Show that c_j is a homogeneous polynomial on \mathfrak{g} of degree d-j.

Proof. The term "polynomial on \mathfrak{g} " is not clear. But we follow [Kac10] to interpret this is only as being a polynomial on the a^i where $a=a^iX_i$ for some basis X_i of \mathfrak{g} . Then we just notice that denoting $[X_i,X_j]:=L_{ij}$ we have

$$[a, X_i] = [a^i X_i, X_j] = a^i [X_i, X_j] = a^i L_{ij}$$

which is a linear combination of the a^i . Then the matrix representation of ad_a in terms of the basis X_i is

$$[ad_a] = \begin{pmatrix} a^i L_{i1}^1 & \cdots & a^i L_{in}^1 \\ \vdots & & \vdots \\ a^i L_{i1}^n & \cdots & a^i L_{in}^n \end{pmatrix}$$

substracting λ Id and taking determinant we obtain that a term with λ^k would have for coefficient a product of k of the linear combinations $a^i L^j_{i\ell}$ for varying j and ℓ . Such a product is understood to be a homogeneous polynomial of degree k in \mathfrak{g} . \square

Definition 5.2. I think this goes for any Lie algebra \mathfrak{g} :

- The rank of \mathfrak{g} is the smallest integer r such that $c_r(a)$ is not the zero polynomial on \mathfrak{g} .
- An element $a \in \mathfrak{g}$ is called regular if $c_r(a) \neq 0$.
- The discriminant of \mathfrak{g} is the nonzero polynomial $c_r(a)$ of degree d-r, what?

Explanation: we compute the polynomial characteristic w.r.t. ad_a for every $a \in \mathfrak{g}$. Express this polynomial as a polynomial with coefficients in $\mathfrak{g}[t]$, (here's the question: this polynomial seems to me to be a polynomial in \mathbb{F} .) This polynomial does not have a constant term. But what is the next smallest-degree monomial? 1? 2? That's the rank of the Lie algebra.

6. Cartan subalgebra

Recall that $\mathfrak{h} \subset \mathfrak{g}$ is an ideal if $[a,\mathfrak{h}] \subset \mathfrak{h}$ for all $a \in \mathfrak{g}$. Maybe \mathfrak{h} is not an ideal, but we can consider the largest subalgebra of \mathfrak{g} where \mathfrak{h} is an ideal. This is called the normalizer.

Definition 6.1. Let \mathfrak{h} be a subalgebra of a Lie algebra \mathfrak{g} . The *normalizer* of \mathfrak{h} is $N_{\mathfrak{g}}(\mathfrak{h}) := \{a \in \mathfrak{g} | [a, \mathfrak{h}] \subset \mathfrak{h}\}$

I think behind the Cartan subalgebra is that, roughly, taking product with anything not in $\mathfrak h$ leaves $\mathfrak h.$

Definition 6.2. A *Cartan subalgebra* of a Lie algebra \mathfrak{g} is a subalgebra \mathfrak{h} , satisfying the following two conditions:

(1) h is a nilpotent Lie algebra,

(2)
$$N_{\mathfrak{a}}(\mathfrak{h}) = \mathfrak{h}$$
.

Proposition 6.3. Let $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{F})$ be a subalgebra containing a diagonal matrix $a = diag(a_1, \ldots, a_n)$ with distinct a_i , and let \mathfrak{h} be the subspace of all diagonal matrices in \mathfrak{g} . Then \mathfrak{h} is a Cartan subalgebra (of \mathfrak{g} I guess).

Idea of proof. Consider the following illustrative example:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} - \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$= \begin{pmatrix} a\lambda_1 & b\lambda_2 \\ c\lambda_3 & d\lambda_2 \end{pmatrix} - \begin{pmatrix} \lambda_1 a & \lambda_1 b \\ \lambda_2 c & \lambda_2 d \end{pmatrix}$$
$$= \begin{pmatrix} 0 & b\lambda_2 - \lambda_1 b \\ \lambda_3 a - \lambda_2 c & 0 \end{pmatrix}$$

which says that any non-diagonal matrix would escape \mathfrak{h} .

Theorem 6.4 (Cartan). Let \mathfrak{g} be a finite-dimensional Lie algebra over an algebraically closed field \mathbb{F} . Let $a \in \mathfrak{g}$ be a regular element (which exists since \mathbb{F} is infinite), and let $\mathfrak{g} = \bigoplus_{\lambda \in \mathbb{F}} \mathfrak{g}^a_\lambda$ be the generalized eigenspace decomposition of \mathfrak{g} with respect to ad_a . Then \mathfrak{g}^a_0 is a Cartan subalgebra.

Idea of proof. First recall what is $\mathfrak{h} = \mathfrak{g}_0^a$, the set of elements $b \in \mathfrak{g}$ such that $\operatorname{ad}_a^N(b) = 0$.

Remark 6.5. The rank of a Lie algebra is the dimension of $\mathfrak{g}_0^a = \mathfrak{h}$.

Proposition 6.6. Let \mathfrak{g} be a finite-dimensional Lie algebra over an algebraically closed field \mathbb{F} of characteristic zero and let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra. Then $\mathfrak{g}_0 = \mathfrak{h}$ in the generalized weight space decomposition.

Idea of proof. Engel's theorem... \Box

7. Semisimple Lie algebras

Definition 7.1. A radical $R(\mathfrak{g})$ of a finite-dimensional Lie algebra \mathfrak{g} is a solvable ideal of \mathfrak{g} of maximal possible dimension.

Proposition 7.2. The radical ideal of \mathfrak{g} contains any solvable ideal of \mathfrak{g} and is unique.

If \mathfrak{g} is a finite dimensional solvable Lie algebra, then $R(\mathfrak{g}) = \mathfrak{g}$. The opposite case if when $R(\mathfrak{g}) = 0$.

Definition 7.3. A finite-dimensional Lie algebra \mathfrak{g} is called *semisimple* if $R(\mathfrak{g}) = 0$.

In [Kac10, Lecture 11] we have the tools needed for a characterization of semisimple Lie algebras in terms of the Killing form:

Theorem 7.4 (Cartan). Let \mathfrak{g} be a finite-dimensional Lie algebra over a field of characteristic 0. Then the Killing form on \mathfrak{g} is non-degenerate is and only if \mathfrak{g} is semisimple. Moreover, if \mathfrak{g} is semisimple and $\mathfrak{a} \subset \mathfrak{g}$ is an ideal, then the restriction of the Killing form to \mathfrak{a} , $K|_{\mathfrak{a} \times \mathfrak{a}}$, is also nondegenerate and coincides with the Killing form of \mathfrak{a} .

I think we need semisimplicity, i.e. nondegeneracy of the Killing form for the following definition:

Definition 7.5. Given a set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_\ell\}$, we define the *coroot*

(7.5.1)
$$\alpha_i^{\vee} = \frac{2}{(\alpha_i, \alpha_i)} \nu^{-1}(\alpha_i)$$

where $\nu: \mathfrak{h} \to \mathfrak{h}^*$ is the pairing induced by the Killing form.

8. g-modules

Definition 8.1. Let \mathfrak{g} be a Lie algebra. A \mathfrak{g} -module (also called a representation of \mathfrak{g} is a vector space V and a homomorphism

$$\rho: \mathfrak{g} \to \operatorname{End}(V)$$

of Lie algebras, i.e.,

$$\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x).$$

A vector space $W \subset V$ such that $vW \subset W$ for all $x \in \mathfrak{g}$ is called a \mathfrak{g} -submodule.

Definition 8.2. An *irreducible* \mathfrak{g} -module is one that has no \mathfrak{g} -submodules other than the trivial ones (namely, 0 and V itself).

It is possible to classify and describe the irreducible finite-dimensional \mathfrak{g} -modules. This is in contrast with all the modules of a Lie algebra \mathfrak{g} , which is "impossible in general".

9. Verma module

Let M be a \mathfrak{g} -module. Recall Definition 3.1: let \mathfrak{h} be a Lie algebra, $\pi:\mathfrak{h}\to\mathfrak{gl}_V$ a representation of \mathfrak{h} and $\lambda\in\mathfrak{h}^*$. The weight space of \mathfrak{h} attached to λ is

$$V_{\lambda}^{\mathfrak{h}} := \{ v \in V | \pi(h)v = \lambda(h)v, \ \forall h \in \mathfrak{h} \}.$$

We have that a weight space in M is a nonzero subspace $M_{\lambda} \subset M$ such that

$$hv = \lambda(h)v \quad \forall h \in \mathfrak{h} \subset \mathfrak{g} \text{ and } v \in M,$$

and in this case we call λ a weight. If M is a direct sum of weight spaces, we call it a weight module.

The support of a weight module M is

$$(9.0.1) supp(M) := \{ \lambda \in \mathfrak{h}^* : M_{\lambda} \neq 0 \}$$

We call elements of M_{λ} vectors of weight λ .

Definition 9.1. $\Lambda \in \mathfrak{h}^*$ is a *highest weight* of M if $\Lambda \in \operatorname{supp}(M)$ and for all positive roots $\alpha \in \Delta_+$ we have that $\Lambda + \alpha \notin \operatorname{supp}(M)$.

Exercise 9.2. The highest weight of an irreducible g-module is unique.

$$\square$$
 Proof.

Definition 9.3. Let $\Lambda \in \mathfrak{h}^*$ (a highest weight, I suppose). The Verma module $M(\Lambda)$ of highest weight Λ is

$$M(\Lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}_{+}} \mathbb{C}_{\Lambda},$$

where $\mathbb{C}_{\Lambda} = \mathbb{C}v_{\Lambda}$ is the 1-dimensional $(\mathfrak{h} \oplus \mathfrak{n}_{+})$ -module defined by $\mathfrak{n}_{+}v_{\Lambda} = 0$ and $hv_{\Lambda} = \langle \Lambda, h \rangle v_{\Lambda}$ for all $h \in \mathfrak{h}$.

Long story short, by the PBW Theorem we have an isomorphism $U(\mathfrak{n}_-) \to M(\Lambda)$ of $U(\mathfrak{n}_-)$ modules.

10. Weyl character formula

There are at least two Weyl character formulas. This one is [?, Theorem 10.14]:

Theorem 10.1 (Weyl Character Formula). If (π, V_{μ}) is an irreducible representation of \mathfrak{g} with highest weight μ , then

(10.1.1)
$$\chi_{\pi}(H) = \frac{\sum_{w \in W} \det(w) e^{\langle w \cdot (\mu + \delta), H \rangle}}{\sum_{w \in W} \det(w) e^{\langle w \cdot \delta, H \rangle}}$$

for all $H \in \mathfrak{h}$ for which the denominator is nonzero.

And this one is [Kac10, Theorem 25.3]:

Theorem 10.2 (Weyl Character Formula). Let $R = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})$. If $\Lambda \in P_+$, then

(10.2.1)
$$e^{\rho}RchL(\Lambda) = \sum_{w \in W} \det w e^{w(\Lambda + \rho)}$$

Exercise 10.3. Let $\mathfrak{g} = \mathfrak{sl}_3$. Compute $\operatorname{ch}_{L(\lambda)}$ for some λ ,

- (1) $\lambda = 0$,
- (2) $\lambda = \omega_1$,
- (3) $\lambda = \omega_1 + \omega_2$,

etc.

Proof. No matter what formula I use, I must compute the determinants of the Weyl reflections and the ρ (which I think is δ for Hall), which is just the sum of all the fundamental weights, which in turn are the dual of the coroot vectors. Finally applying the reflections to ρ and to $\lambda + \rho$ would yield the result.

(1) (Find roots of \mathfrak{sl}_3 .) We look for $\alpha \in \mathfrak{h}^* = \{\text{diagonal matrices}\}\$ such that

$$[H, E_{ij}] = \alpha(H)E_{ij} \quad \forall H \in \mathfrak{h}$$

where E_{ij} is the matrix that has zero in every entry but in the (i, j)-th where it has a 1. One obtains that $[H, E_{ij}] = (h_i - h_j)E_{ij}$, so that the roots are $\alpha_{ij}(h) = h_i - h_j$.

(2) (Compute the Killing form.) Recall that by definition $\kappa(H, H') = \text{Tr}(\text{ad}_H \text{ad}_{H'})$. But in this case, we have $\kappa(H, H') = \text{Tr}(HH')$ because $\text{ad}_H \text{ad}_{H'} = [H, [H', A]]$ The first thing Jethro did was to consider a basis

$$H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

and then compute the Killing form via

$$H_1H_1 = 2$$
, $H_1H_2 = -1$, $H_2H_1 = -1$, $H_2H_2 = 2$

(3) (Find the dual basis vectors.) Now we use the musical isomorphism $\nu : \mathfrak{h} \to \mathfrak{h}^*, H \mapsto (-, H)$ to find

$$\nu(H_1) =$$

- (4) (Find fundamental weights.) It looks like $\alpha_1 = 2\omega_1 \omega_2$ and $\alpha_2 = 2\omega_2 \omega_1$. This says $\omega_1 = 2\omega_2 \alpha_2 = 2(2\omega_1 \alpha_1) \alpha_2$ so $3\omega_1 = 2\alpha_1 + \alpha_2$. And then $\omega_2 = 2(\frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2) \alpha_1 = \frac{1}{3}(\alpha_1 + 2\alpha_2)$.
- (5) (Find ρ .) Then $\rho = \omega_1 + \omega_2 = \alpha_1 + \alpha_2$.

- (6) (Find Weyl reflections.) To find Weyl reflections I need to compute first the numbers (α_i, α_j) . I think this is still not very clear have to use Killing form? But OK, I know we must have $(\alpha_i, \alpha_i) = 2$, and the both of the crossed ones give -1. This should give by bilinearity the values on ω_i also.
- (7) (Find determinants of Weyl reflections.) I guess for this I have to evaluate the reflections in each of the ${\bf w}$
- (8) (Evaluate ρ and $\lambda + \rho$ on Weyl reflections.)
- (9) (Find the Weyl character.)

What's funny in this whole story is that in the end we can just find the Weyl character geometrically. For every $\lambda = m\omega_1 + n\omega_2$ I want to compute its orbit under the Weyl group W. This means

I would start by finding the determinant of the Weyl reflections... \Box

References

[Kac10] Victor Kac, Lecture notes of 18.745 - introduction to lie algebras (fall 2010), https://math.mit.edu/classes/18.745/classnotes.html, 2010, Lecture notes, MIT.