

Machine Learning

CHAPTER 9 Genetic Algorithms

9.1 动机

- —模拟生物进化
 - —不断变异、重组当前最好假设生成后续的假设

—GA 特点:

- -进化具有很好的鲁棒性
- 一假设空间中,假设的各个部分相互作用,每个假设对适 应度的影响难以建模
- —易于并行计算

9.2 Genetic Algorithms

- —假设适应度(Hypothesis fitness)
 - —Fitness
 - —Best hypothesis has the highest fitness

--算法结构:

- —迭代更新种群(population)
- —对种群的每个成员进行评估
- 一产生新的种群

Let's start from a problem

$$Max F(X) = -0.83X^3 + 52X^2 - 8.5X + 8$$

Subject to: $0 \le X \le 61$ $X \in Integer$

- □ □ ?

A dumb solution

A "blind generate and test" algorithm:

Repeat

Generate a random possible solution

Test the solution and see how good it is

Until solution is good enough

Can we use this dumb idea?

- Sometimes yes:
 - —if there are only a few possible solutions
 - —and you have enough time
- For most problems no:
 - -many possible solutions
 - —with no time to try them all

A "less-dumb" idea (GA)

产生一组随机解

Repeat

评估集合中的每一个解(rank them)

删除集合中的不良解

复制部分优良解

对部分解进行小的改变

Until best solution is good enough

$$Max F(X) = -0.83X^3 + 52X^2 - 8.5X + 8$$

Subject to: $0 \le X \le 61$

 $X \in Integer$

Step 1:Encoding (编码)

Step 2: Generate population (产生群体)

0	1	1	1	0	1
1	0	1	0	1	0
0	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	1
•	•	•	•	•	•
•	•	•	•	•	•
0	1	0	0	0	1
0	0	1	1	1	1

1	1	1	0	1	29
0	1	0	1	0	42
1	1	1	1	1	31
1	0	1	0	1	21
0	0	1	1	1	39
•	•	•	•	•	•
•	•	•	•	•	•
1	0	0	0	1	17
0	1	1	1	1	15

Step2 Selection (选择)

							X	F(X)	survival rate	
Pop 1	0	1	1	1	0	1	29	23250.63	5.77%	
Pop 2	1	0	1	0	1	0	42	29885.96	7.41%	
Pop 3	0	1	1	1	1	1	31	24989.97	6.20%	Campinal Date
Pop 4	0	1	0	1	0	1	21	15074.87	3.74%	Survival Rate
Pop 5	1	0	0	1	1	1	39	29533.73	7.33%	fitness/ sum(
Pop 6	1	0	1	1	1	1	47	28303.41	7.02%	miness, sum
Pop 7	0	1	0	1	0	1	21	15074.87	3.74%	
Pop 8	0	1	0	0	0	1	17	10813.71	2.68%	
Pop 9	0	0	1	1	1	1	15	8779.25	2.18%	
Pop 10	1	1	0	1	1	1	55	18749.25	4.65%	
Pop 11	0	1	1	1	0	1	29	23250.63	5.77%	
Pop 12	0	1	0	1	1	1	23	17221.89	4.27%	
Pop 13	1	0	1	0	1	1	43	29799.69	7.39%	
Pop 14	0	1	1	0	1	0	26	20350.92	5.05%	
Pop 15	1	0	0	0	1	1	35	27824.25	6.90%	
Pop 16	0	0	1	1	1	1	15	8779.25	2.18%	
Pop 17	0	1	0	1	1	1	23	17221.89	4.27%	
Pop 18	0	0	0	1	0	1	5	1161.75	0.29%	
Pop 19	1	0	1	0	1	1	43	29799.69	7.39%	
Pop 20	0	1	1	1	0	1	29	23250.63	5.77%	

(fitness)

Step 3: Crossover (交叉)

Step 4: Mutation (变异)

Step 5: Next round-back to Step2

$0.93 \times 3 + 52 \times 2 = 0.5$

When converged!

							X	F(X)
Pop 1	1	0	1	0	1	0	42	29885.96
Pop 2	1	0	1	0	1	0	42	29885.96
Pop 3	1	0	1	0	1	0	42	29885.96
Pop 4	1	0	1	0	1	0	42	29885.96
Pop 5	1	0	1	0	1	0	42	29885.96
Pop 6	1	0	1	0	1	0	42	29885.96
Pop 7	1	0	1	0	1	0	42	29885.96
Pop 8	1	0	1	0	1	0	42	29885.96
Pop 9	1	0	1	0	1	0	42	29885.96
Pop 10	1	0	1	0	1	0	42	29885.96
Pop 11	1	0	1	0	1	0	42	29885.96
Pop 12	1	0	1	0	1	0	42	29885.96
Pop 13	1	0	1	0	1	0	42	29885.96
Pop 14	1	0	1	0	1	0	42	29885.96
Pop 15	1	0	1	0	1	0	42	29885.96
Pop 16	1	0	1	0	1	0	42	29885.96
Pop 17	1	0	1	0	1	0	42	29885.96
Pop 18	1	0	1	0	1	0	42	29885.96
Pop 19	1	0	1	0	1	0	42	29885.96
Pop 20	1	0	1	0	1	0	42	29885.96

A prototypical genetic algorithm

—GA(Fitness, fitness_threshold, p,r,m)

Fitness: 适应度函数;

fitness threshold:终止判据的阈值

p:群体中包含的假设数量;

r:通过交叉替换成员的比例;

m:变异率


```
initialize population: P
Evaluate: For each h in P, compute Fitness(h)
while[max Fitness(h)] < Fitness threshold do
   create a new generation, P<sub>S</sub>:
   1. Select: select (1-r)p members of P to add to P_s.
                   Pr(h_i) = Fitness(h_i) / \sum Fitness(h_i)
   2. Crossover: select r^*p/2 pairs of hypotheses from P.
    applying the crossover operator. Add all offspring to P<sub>S</sub>
   3. Mutate: choose m percent of the members of P<sub>s</sub>.
     invert one randomly selected bit in its representation.
  4. update: P=P<sub>S</sub>
   5.Evaluate: for each h in P, compute Fitness(h)
Return the hypothesis from P that has the highest fitness
```

Parameters of GA

- —GA has following parameters:
 - —Crossover rate (交叉率)
 - —Mutation rate (变异率)
 - —Population size (群体大小)
 - —Encoding (编码)
 - —Crossover and mutation type(交叉、变异类型)
 - —Selection (选择)
- -参数如何确定,无确定方法.
 - 一根据具体问题,实验确定

9.2.1 Representing Hypotheses

- —假设表示为位串
 - —易于被遗传算子操作
- —Example: 编码 if-then 规则
 - —If wind=strong, then playTennis =yes
 - —Attribute coding(属性编码)
 - Wind: Strong, weak
 - _ 两位长位串: **10**
 - 规则中未被约束的属性编码
 - Outlook=111

9.2.1 Representing Hypotheses

- —rule coding
 - concatenating the corresponding bit strings
 - -111 10 10
- —Representation of sets of rules:
 - —concatenating bit strings of individual rules
- —语法正确的位串应能表示有意义的假设
 - **—**111 10 11?

9.2.2 Genetic operators

- —The most common operators: crossover and mutation
- —The crossover (交叉) operator:
 - —Produces two new offspring from two parents strings by copying selected bits from each parent
 - -crossover mask:
 - Single point crossover

```
A \square 1011011100 \longrightarrow A' \square 1011011111 
B \square 00011100111 \longrightarrow B' \square 00011100000
```

Two-point crossover

```
      A: 1011011100
      00011111100
      A' \square 00001011111

      B \square 00011110011
      B' \square 1011110000
```

Uniform crossover

```
      A: 1011001100
      0001101100
      A' \square 0001011111

      B \square 0001110011
      B' \square 1011100000
```


9.2.2 Genetic operators (2)

Mutation operator:

- —Produces offspring from a single parent and produces small changes to the bit string
- —Mutation is often performed after crossover has been applied

9.2.3 Fitness Function and Selection

- -适应度函数定义了候选假设的排序准则
- -选择假设的概率方法
 - —适应度比例选择(roulette wheel selection)
 - --锦标赛选择
 - Randomly select two h
 - $-p,(1-p) -> h_{high}, h_{low}$
 - A more diverse population
 - —排序选择
 - Sorted by fitness
 - Probability is proportional to its rank

TSP

- The decision version of this problem has been proven to be NP-Complete!
- **Existing solutions:**
 - heuristics,
 - **cutting-plane methods,**
 - branch-and-cut
- How to solve it by GA?

(1) Encoding

For example, we have 6 cities, and a tour is 3-1-2-4-5-6

3	1	2	4	5	6

(2) Fitness Evaluation

—Given a chromosome, simply calculate the total distance.

The shorter the distance, the higher the fitness of the chromosome

(3) Cross-over

—Do you find any problem?

How to solve this problem?

—Repair operator

(3) Mutation

Exchange mutation

Displacement mutation

Simple inversion mutation

9.4 Hypothesis Space Search

- -GAs 使用随机柱状搜索寻找最大适应度假设
 - The gradient descent search moves smoothly from one h to a new h
 - —GA搜索的移动可能非常突然
 - less likely to fall into the local minima
- —实际应用困难:拥挤问题 (crowding)
 - --高适应度值个体迅速繁殖,群体包含过多相似个体
 - --降低种群多样性,减慢进化过程

Hypothesis space search (2)

- —避免拥挤的策略
 - —修改选择函数
 - 使用锦标赛或排序选择
 - —适应度共享
 - 根据相似性个体的数量,降低个体的适应度
 - —限制可重组生成后代的个体种类
 - 只允许最相似的个体进行重组
 - 按空间分配个体,仅允许相邻个体重组

Summary

- -遗传算法优点:
 - 1. 无需先验知识或计算误差函数的梯度信息
 - 2. 可设计多目标函数
 - 3. 并行性
 - 4. 可很容易地用于对庞大、难以理解的假设空间进行搜索
 - 5. 可广泛应用于优化问题的求解

Summary

遗传算法的缺点:

- 1. 问题的表示
- 2. 适应度函数的定义
- 3. 过早收敛
- 4. 参数的选择问题: 如种群大小,变异率,交叉率,选择的策略等
- 5. 无法应用梯度信息
- 6. 终止条件难判断
- 7. 频繁计算适应度, 计算量较大