

Chemical stoichiometry

41. (b)
$$AgNO_3 \equiv 2Ag^+ + S^{2-}_{(H_2S)} \rightarrow Ag_2S$$

:2 mole →1 mole

 $[100 \times 1 = 100 \text{ millimole}]$

∴100 miliimole \rightarrow 50 millimole H_2S required

$$CuSO_4 \equiv Cu^{+2} + \mathop{S^{2-}}_{(H_2S)} \rightarrow CuS$$

:1 mole →1 mole

[100×1=100 millimole]

 \therefore 100 millimole \rightarrow 100 millimole H_2S required

Ratio
$$\frac{50}{100} = \frac{1}{2}$$
.

42. (c) At room temperature
$$2H_{2(g)} + O_{2(g)}$$

t =0 50*ml*

50*ml* 0

t=t 50-2x

50-x 2x

=0

25gases (50)liquid

 $2H_2O_{(l)}$

In this case H_2 is limiting reagent

$$x = 25mI$$

At 110°C
$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} V_{gas} = 75ml$$

t = t = 0

25ml 50ml ESTD: 2005

43. (c)
$$CuSO_4 + 2KI \rightarrow K_2SO_4 + CuI_2$$
; $2CuI_2 \rightarrow CuI_2 + I_2$

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

Eq. wt. Of
$$CuSO_4$$
. $5H_2O = Mol. wt. = 250$

100 *ml* of 0.1 *N* hypo = 100 *ml* of 0.1 *N CuSO*₄. $5H_2O$

$$=\frac{250\times0.1\times100}{100}=2.5gm$$

44. (d)
$$HNO_3 + KOH \rightarrow KNO_3 + H_2O$$

$$\frac{12.6}{63} = 0.2 \text{ mole}; HNO_3 \equiv KOH$$

$$0.2 \times 56 = 11.2 gm$$
.

45. (a) Isobutane and *n*-butane $[C_4H_{10}]$ have same molecular formula;

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

For 58gm of C_4H_{10} 208 gm O_2 is required then for 5 kg of C_4H_{10} $O_2 = \frac{5\times208}{58}$ = 17.9kg

46. (b)
$$n = \frac{16.8}{22.4} = 0.75$$
 mole of H_2 and O_2

$$2H_2O \rightarrow 2H_2 + O_2 \stackrel{\frown}{0}.75 \stackrel{\frown}{0}.25 \qquad 0_2 \\ 2:1 \qquad 0.25 \qquad H_2$$

2 mole
$$H_2$$
 – 2 mole H_2 O

2 mole
$$H_2 - 2$$
 mole $H_2 O$
0.5 mole $H_2 - 0.5$ mole $H_2 O = 9gm$.

47. (a) :
$$3ml(O) \rightarrow 1mlO_3$$

 $30ml(O) \rightarrow 10mlO_3$

$$x = \frac{150 \times 10}{100} = 15ml$$

$$V \text{ of } O_2 + V \text{ of } O_3 = 135 + 10 = 145ml$$

Turpentine oil absorb ozone.

48. (a) 50% HCl itself means 50gm HCl react with 100gm sample

% Purity =
$$\frac{50}{100} \times 100 = 50\%$$
.

49. (a)
$$AgNO_3 + HCl \rightarrow AgCl + HNO_3$$

$$\frac{30}{170}$$
 $\frac{500 \times 0.2}{1000}$

t = 0 0.176 mole 0.1 mole limiting = 14.345 gm

 $t = t \ 0.076 \text{ mole } 0$

0.1mole

50. (d)
$$KMnO_4$$
 $FeSO_4$

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}; M_1V_1 = \frac{n_1}{n_2}M_2V_2$$

$$= \frac{2}{10} \times 10 \times \frac{1}{10} = \frac{1}{5} = 0.2$$

For (d),
$$M_1V_1 = 0.02 \times 10 = \frac{1}{5}$$

51. (c)
$$ROH + CH_3MgI \rightarrow CH_4 + Mg \stackrel{OR}{\underset{1 \text{ mol}=22400cc}{}} OR$$

1.12 mL is obtained from 4.12 mg

∴ 22400 mL will be obtained from

$$\frac{4.12}{1.12} \times 22400mg = 84.2g$$

Element	%(a)	At.wt.(b)	a/b	Ratio
Χ	50	10	_5	2_
Υ	50	20 = 5	2.5	บบูอ

Simplest formula = X_2Y

53. (a)
$$A_3(BC_4)_2 = 3 \times 2 + [5 + (-2 \times 4)]_2 = 0$$
.

54. (b)
$$CaCO_3 \rightarrow CaO + CO_2$$

90% pure
$$9gm = \frac{9}{100}$$
 mole

$$\it CaCO_3 \equiv \it CO_2 = 0.09 \rm mole$$
 At NTP Vol. $\it CO_2 = 0.09 \times 22.4 = 2.016 \it L.$

55. (b)
$$Cd^{+2} + S^{2-} \rightarrow CdS$$

 $20 \times 1 = 20$
 $Cu^{+2} + S^{2-} \rightarrow CuS$
 $20 \times 0.5 = 10$
Ratio =2: 1

56. (b)
$$Mg^{+2} \equiv H_2$$

$$n = \frac{12gm}{24gm} = \frac{1}{2} \text{mole of } H_2$$

57. (a)
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$
 1 1 2 1 2 0.5 mole

0.5 mole of oxygen react with 1 mole of Mg

1.5 mole of oxygen react with $\frac{1.5}{0.5} = 3$ mole

$$24 \times 3 = 72gm.$$

58. (c)
$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

100 $g \, CaCO_3$ with 2 N HCl gives 44 $g \, CO_2$

100 $g CaCO_3$ with 1 N HCI gives 22 $g CO_2$

