Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel

ISA: Ing. Studienkompetenzen

Blatt 4

WT 2022

Aufgabe 4.1: Schwerpunkt und Trägheitsmoment einer Kreisscheibe

Gegeben sei die Kreisscheibe

$$K = \{ x \in \mathbb{R}^2 | \|x\|_2 \le 2 \}$$

mit der Massendichte $\rho(x,y) = x^2 + 4$.

- a) Berechnen Sie die Masse $M=\int\limits_K \rho(\boldsymbol{x})\mathrm{d}\boldsymbol{x}$ der Kreisscheibe. Führen Sie die Rechnung in kartesischen Koordinaten durch.
- b) Berechnen Sie ebenso den Schwerpunkt

$$s = \frac{1}{M} \int_{K} \rho(x) x dx.$$

Führen Sie die Rechnung in Polarkoordinaten $\boldsymbol{x}(r,\varphi) = (r\cos\varphi, r\sin\varphi)^{\top}$ aus.

 $\mathbf{c})$ Berechnen Sie das Trägheitsmoment bezüglich der $x\text{-}\mathrm{Achse}$

$$\Theta_y = \int_K \rho(x, y) y^2 d(x, y).$$

Hinweise:

• Für $\alpha \in \mathbb{R}$ gelten die folgenden Zusammenhänge:

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1$$
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
$$\sin^2(\alpha) + \cos^2(\alpha) = 1.$$

• Für Aufgabenteil a) kann die Substitution $x = 2\sin(u)$ hilfreich sein.