Topologia FME Resum de teoria i llista de problemes

Curs 2019/2020

31 de gener de 2020

1 Espais mètrics

Definició 1.1 (Distància. Espai mètric) Una distància o mètrica en un conjunt E és una aplicació $d: E \times E \to \mathbb{R}$ que compleix les condicions següents:

- 1. $d(x,y) \ge 0$ i $d(x,y) = 0 \Leftrightarrow x = y$ (positivitat);
- 2. d(x,y) = d(y,x) (simetria);
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (designaltat triangular).

Un espai mètric és un conjunt on hi ha definida una mètrica. Es denota (E, d), o simplement E si la distància d se sobreentén.

Tot subconjunt d'un espai mètric hereta una estructura d'espai mètric amb la restricció de la mètrica als punts del subconjunt.

Definició 1.2 (Boles) Sigui E un espai mètric. Per a cada punt $x \in E$ i cada nombre real positiu r es defineixen la bola oberta i la bola tancada de centre x i radi r com:

$$B_r(x) = \{ y \in E : d(y, x) < r \}, \qquad \overline{B}_r(x) = \{ y \in E : d(y, x) \le r \}.$$

Lema 1.3 (Propietats de les boles obertes) Les boles obertes d'un espai mètric satisfan les propietats següents:

- 1. $B_r(x) \neq \emptyset$; $\bigcup_{x \in E, r > 0} B_r(x) = E$;
- 2. per a tot punt $y \in B_r(x)$ existeix un s > 0 amb $B_s(y) \subseteq B_r(x)$;
- 3. per a tot parell de boles $B_r(x)$ i $B_s(y)$ i cada punt $z \in B_r(x) \cap B_s(y)$ de la seva intersecció existeix una bola $B_t(z) \subseteq B_r(x) \cap B_s(y)$.

Exemples 1.4 Mètrica euclidiana a \mathbb{R} i a \mathbb{R}^n ; espais vectorials normats; mètrica discreta o trivial; distància de Hamming; mètrica p-àdica.

Definició 1.5 (Oberts, topologia) Un subconjunt d'un espai mètric $\mathscr{U} \subseteq E$ és un obert si conté una bola oberta de centre cadascun dels seus punts: per a cada $x \in \mathscr{U}$ existeix un r > 0 amb $B_r(x) \subseteq \mathscr{U}$. Els complementaris d'oberts s'anomenen tancats.

El subconjunt $\mathscr{T} \subseteq \mathscr{P}(E)$ format per tots els oberts d'un espai mètric s'anomena la topologia mètrica de l'espai.

Lema 1.6 (Propietats dels oberts) Els conjunts oberts d'un espai mètric satisfan les propietats següents:

- 1. el buit i el total són conjunts oberts;
- 2. la reunió arbitraria d'oberts és un obert;
- 3. la intersecció finita d'oberts és un obert.

Definició 1.7 (Continuïtat) Sigui $f: (E, d_E) \to (F, d_F)$ una aplicació entre espais mètrics. Es diu que f és contínua en un punt $x \in E$ si

per a cada $\epsilon > 0$ existeix un $\delta > 0$ tal que $d_E(x,y) < \delta \Rightarrow d_F(f(x),f(y)) < \epsilon$.

L'aplicació es diu contínua si ho és en cada punt de l'espai E.

Un homeomorfisme és una aplicació bijectiva, contínua i amb inversa contínua.

Proposició 1.8 (Caracterització topològica de la continuïtat) L'aplicació $f: E \to F$ és contínua si, i només si, l'antiimatge de tot obert de F és un obert de E.

Definició 1.9 (Mètriques equivalents) Dues mètriques d_1 i d_2 en un mateix conjunt E es diuen equivalents si la identitat $\operatorname{Id}: (E, d_1) \to (E, d_2)$ és un homeomorfisme.

Es diuen fortament equivalents si existeixen constants positives m > 0 i M > 0 tals que $md_1(x,y) \leq d_2(x,y) \leq Md_1(x,y)$ per a tot parell de punts $x,y \in E$.

Exemple 1.10 (Mètriques equivalents a l'euclidiana) $A \mathbb{R}^n$ les mètriques induïdes per les normes $\|\cdot\|_1$, $\|\cdot\|_2$ i $\|\cdot\|_\infty$ són equivalents. Ull, en espais de funcions no ho són.

Successions. En un espai mètric els conceptes de *límit d'una successió*, *successió convergent* i *successió de Cauchy* es defineixen exactament igual que en l'espai euclidià. L'espai es diu *complet* si tota successió de Cauchy és convergent.

Exercicis de repàs i/o discutits a classe de teoria

- **1.1.** Espais normats i euclidians. Sigui E un \mathbb{R} -espai vectorial. Una norma en E és una aplicació $\mathbf{v} \mapsto ||\mathbf{v}|| \colon E \to \mathbb{R}$ que compleix les propietats següents:
 - $-\|\boldsymbol{v}\| \geqslant 0$ i $\|\boldsymbol{v}\| = 0 \Leftrightarrow \boldsymbol{v} = \boldsymbol{0};$
 - $\|x\boldsymbol{v}\| = |x| \cdot \|\boldsymbol{v}\| \text{ si } x \in \mathbb{R};$
 - $\|u + v\| \leq \|u\| + \|v\|.$

Un producte escalar en E és una aplicació $\langle , \rangle \colon E \times E \to \mathbb{R}$ que compleix:

- $-\langle , \rangle$ és una aplicació bilineal;
- $-\langle \boldsymbol{v}, \boldsymbol{u} \rangle = \langle \boldsymbol{u}, \boldsymbol{v} \rangle \quad (sim\`{e}trica);$
- $-\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geqslant 0$ i $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0 \Leftrightarrow \boldsymbol{v} = \boldsymbol{0}$ (definida positiva).

Demostreu que

- 1. per a tota norma, $d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} \boldsymbol{v}\|$ és una distància en E;
- 2. per a tot producte escalar, $\|v\| = \sqrt{\langle v, v \rangle}$ és una norma en E. INDICACIÓ: Usar la designaltat de Cauchy-Schwarz: $|\langle u, v \rangle| \leq \sqrt{\langle u, u \rangle \cdot \langle v, v \rangle}$.
- **1.2.** Comproveu que les definicions següents donen normes a l'espai \mathbb{R}^n :

$$\|\boldsymbol{x}\|_1 = |x_1| + \dots + |x_n|, \quad \|\boldsymbol{x}\|_2 = \sqrt{x_1^2 + \dots + x_n^2}, \quad \|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, \dots, |x_n|\},$$

on $\boldsymbol{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n,$ i que $\|\ \|_2$ és la norma determinada pel producte escalar

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \dots + x_n y_n.$$

1.3. Comproveu que les definicions següents donen normes en l'espai $\mathscr{C}^0([a,b])$ de les funcions contínues $f:[a,b]\to\mathbb{R}$:

$$||f||_1 = \int_a^b |f(x)| dx$$
, $||f||_2 = \sqrt{\int_a^b |f(x)|^2 dx}$, $||f||_\infty = \sup_{x \in [a,b]} |f(x)|$,

i que $\| \ \|_2$ és la norma determinada pel producte escalar

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$

1.4. Mètrica discreta o trivial. Comproveu que, en un conjunt qualsevol, l'aplicació definida posant $d_{\mathsf{dis}}(x,y) = 0$ si x = y i $d_{\mathsf{dis}}(x,y) = 1$ si $x \neq y$ és una mètrica.

3

1.5. Distància de Hamming. Sigui \mathcal{A} un conjunt qualsevol (alfabet). El conjunt \mathcal{A}^n es pensa com el conjunt de les paraules de n lletres de \mathcal{A} . Comproveu que l'aplicació

$$d(\boldsymbol{a}, \boldsymbol{b}) = |\{i : a_i \neq b_i\}|, \quad \boldsymbol{a} = (a_1, \dots, a_n), \quad \boldsymbol{b} = (b_1, \dots, b_n) \in \mathcal{A}^n$$

que a cada parell de paraules li fa correspondre el nombre de lletres en què totes dues difereixen és una mètrica en \mathcal{A}^n . Es fan servir en la teoria dels codis correctors d'errors.

1.6. Mètrica p-àdica \mathbb{Z} . Sigui p un primer. En el conjunt \mathbb{Z} dels nombres enters es considera la mètrica p-àdica definida com

$$d_p(a,b) = \begin{cases} 0, & \text{si } a = b, \\ p^{-k}, & \text{si } p^k \mid (a-b) \text{ i } p^{k+1} \nmid (a-b). \end{cases}$$

O sigui, la distància entre dos enters depèn de la màxima potència de p que divideix la seva diferència: la màxima potència p^k tal que tots dos són congruents mòdul p^k .

1. Comproveu que d_p és una distància a \mathbb{Z} que satisfà la designaltat següent

$$d_p(a,c) \leqslant \max \{d_p(a,b), d_p(b,c)\},\$$

més forta que la desigualtat triangular ordinària, anomenada desigualtat triangular ultramètrica.

- 2. Calculeu $d_5(1,26)$, $d_5(1,476)$, $d_5(1,477)$ i $d_p(1,p^n!)$ i $d_p(0,p^n)$.
- 3. Calculeu les boles de radis 1/2 i 1/4 centrades en 1 respecte de la distància d_3 .
- 4. Comproveu que tot punt d'una bola és centre seu i que dues boles es tallen si, i només si, una està continguda en l'altra.
- 5. Vegeu que totes les boles són alhora obertes i tancades.
- 6. Comproveu que les boles de centre $a \in \mathbb{Z}$ són les classes de congruència de a mòdul potències de p:

$$[a]_{p^n} = a + p^n \mathbb{Z} \in \mathbb{Z}/p^n \mathbb{Z}.$$

- 7. Esteneu la mètrica al conjunt Q dels nombres racionals.
- 1.7. Determineu quins dels subconjunts següents de \mathbb{R}^2 són oberts amb la mètrica ordinària:
 - 1. $\{(x,y): x^2+y^2<1\} \cup \{(1,0)\}.$
 - 2. $\{(x,y): |x|<1\}.$
 - 3. $\{(x,y): x+y \ge 0\}.$
 - 4. $\{(x,y): x+y=0\}.$
 - 5. $\{(x,y): 1 \le x^2 + y^2 < 2\}.$
 - 6. $\mathbb{R}^2 \setminus \{(x, \sin \frac{1}{x}) : x > 0\}.$
 - 7. $\mathbb{R}^2 \setminus \mathbb{O}^2$
 - 8. $\mathbb{Q} \times \mathbb{Z}$.
- **1.8.** Continuïtat per successions. Demostreu que una aplicació $f:(E,d_E) \to (F,d_F)$ entre espais mètrics és contínua en $x \in E$ si, i només si, per a tota successió convergent $(x_n)_{n\geqslant 1}$ amb límit x a E la successió imatge $(f(x_n))_{n\geqslant 1}$ és convergent amb límit f(x).

Problemes

- 1.9. Digueu quines de les funcions següents defineixen mètriques:
 - 1. $d(x,y) = |e^x e^y|, x, y \in \mathbb{R};$
 - 2. $d(x,y) = |\sin x \sin y|, x, y \in [0,\pi];$
 - 3. $d(x,y) = |\cos x \cos y|, x, y \in [0,\pi];$
 - 4. $d(x,y) = |\cos x \cos y|, x, y \in \mathbb{R};$
 - 5. $d(x,y) = |\arctan x \arctan y|, x, y \in \mathbb{R}$.

Per fer-ho discutiu en general quines condicions ha de satisfer una funció $f: E \subseteq \mathbb{R} \to \mathbb{R}$ per tal que d(x,y) = |f(x) - f(y)| sigui una distància en el conjunt E.

- 1.10. Digueu quina de les funcions següents defineix una distància a \mathbb{R}^n
 - 1. $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$;
 - 2. $d(x,y) = \sum_{i=1}^{n} (x_i y_i)^2$;
 - 3. $d(x,y) = \sum_{i=1}^{n} |x_i y_i|;$
 - 4. $d(x,y) = |x_1 y_1|$;
 - 5. $d(x,y) = \max_{1 \le i \le n} |x_i y_i|$;
 - 6. $d(x, y) = \min_{1 \le i \le n} |x_i y_i|;$
 - 7. d' = |d| (part entera) per a una distància d;
 - 8. $d(x,y) = \sqrt{(x-y)A(x-y)^t}$ on $A \in M_n(\mathbb{R})$ és una matriu qualsevol.
 - 9. El mateix agafant \boldsymbol{A} una matriu simètrica amb tots els valors propis > 0.

En els casos en que sigui distància dibuixeu la bola unitat centrada a l'origen.

1.11. Es consideren els conjunts següents:

$$E = \mathscr{C}^0([a,b]), \qquad F = \{f \colon [a,b] \to \mathbb{R} \text{ acotada integrable}\}$$

i les dues funcions següents, definides en tots dos conjunts:

$$d_{\infty}(f,g) = \sup \{|f(x) - g(x)| : x \in [a,b]\}, \qquad d_{1}(f,g) = \int_{a}^{b} |f(x) - g(x)| dx.$$

Per a cadascuna de les funcions d_{∞} , d_1 digueu si és o no una distància en cadascun dels conjunts E, F. Quan ho sigui, descriviu les boles de centre la funció $f(x) = \sin x$.

1.12. Mètrica ferroviària o postal o centralista. Donat un espai mètric (E,d) i un punt $c \in E$ es defineix $d_{\mathsf{cent}}(x,y) = d(x,c) + d(c,y)$ si $y \neq x$ i zero si y = x. Demostreu que d_{cent} és una mètrica en E. Com són les boles quan l'espai és el pla euclidià i el punt c és l'origen de coordenades?

5

- **1.13.** Sigui (E, d) un espai mètric. Demostreu que les funcions següents defineixen mètriques en el conjunt E:
 - 1. $\delta(x,y) = \min\{1, d(x,y)\};$
 - 2. $\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)};$
 - 3. $\delta(x,y) = \alpha d(x,y)$, amb $\alpha > 0$ un nombre real positiu;
 - 4. $\delta(x,y) = d(x,y)^c$, amb $c \in [0,1]$ un nombre real. INDICACIÓ: compareu la funció $t \mapsto t^c$ amb la funció identitat.
- 1.14. Es considera \mathbb{R} amb la mètrica usual d i amb la mètrica discreta d_{dis} . Demostreu que
 - 1. tota aplicació $f: (\mathbb{R}, d_{\mathsf{dis}}) \to (\mathbb{R}, d)$ és contínua;
 - 2. una aplicació injectiva $f: (\mathbb{R}, d) \to (\mathbb{R}, d_{\mathsf{dis}})$ no és contínua en cap punt.
- **1.15.** Producte d'espais mètrics. Siguin (E_1, d_1) i (E_2, d_2) espais mètrics. En el producte cartesià $E = E_1 \times E_2$ es defineix:

$$D((x_1, x_2), (y_1, y_2)) = \max \{d_1(x_1, y_1), d_2(x_2, y_2)\}.$$

Comproveu que D és una distància en E i digueu com són les boles.

- **1.16.** Sigui (E, d) un espai mètric. Comproveu que la funció $d: E \times E \to \mathbb{R}$ és contínua, on a $E \times E$ es considera la mètrica producte i a \mathbb{R} la mètrica usual.
- **1.17.** Es considera l'espai (\mathbb{Z}, d_p) amb la mètrica p-àdica (problema **1.6**). Demostreu que les aplicacions de sumar i de multiplicar són contínues com a aplicacions $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, on a $\mathbb{Z} \times \mathbb{Z}$ es considera la mètrica producte.
- **1.18.** Mètriques equivalents. Siguin d_1, d_2 dues mètriques en un conjunt E. Demostreu que les condicions següents són equivalents:
 - 1. L'aplicació Id: $(E, d_1) \rightarrow (E, d_2)$ és un homeomorfisme.
 - 2. Els oberts de (E, d_1) són els mateixos que els oberts de (E, d_2) .
 - 3. Per a tot punt $x \in E$, tota bola oberta de centre x per a una de les mètriques conté una bola oberta de centre x per a l'altra mètrica.
- **1.19.** Siguin d_1, d_2 mètriques equivalents en un conjunt X i sigui (Y, d) un espai mètric. Demostreu que una aplicació $X \to Y$ (resp. una aplicació $Y \to X$) és contínua quan es considera el conjunt X com a espai mètric amb la mètrica d_1 si, i només si, ho és en considerar-lo amb la mètrica d_2 .
- **1.20.** Equivalència forta. Dues mètriques d_1, d_2 en un conjunt E es diuen fortament equivalents si existeixen nombres reals positius m, M > 0 tals que $md_1(x, y) \leq d_2(x, y) \leq Md_1(x, y)$ per a tot $x, y \in E$.

Demostreu que dues mètriques fortament equivalents són equivalents i doneu exemples de mètriques equivalents que no siguin fortament equivalents.

- 1.21. Discutiu l'equivalència i l'equivalència forta de les mètriques següents:
 - 1. les mètriques d_1 , d_2 i d_{∞} sobre l'espai \mathbb{R}^n (problema 1.2);
 - 2. les mètriques δ i d del problema **1.13**;
 - 3. dues mètriques p-àdiques sobre \mathbb{Z} per a primers diferents (problema 1.6).
- **1.22.** Altres mètriques en el producte. Siguin (E_1, d_1) i (E_2, d_2) espais mètrics. En el conjunt producte cartesià $E = E_1 \times E_2$ es defineixen:
 - 1. $D_1((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2),$
 - 2. $D_2((x_1, x_2), (y_1, y_2)) = \sqrt{d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2}$
 - 3. $D_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}.$

Comproveu que totes tres són mètriques en E, que són equivalents entre elles, i que també són fortament equivalents.

Generalitzeu-ho a un producte d'un nombre finit qualsevol d'espais mètrics.

Problemes complementaris i/o d'ampliació

- **1.23.** Rang de matrius. Demostreu que $d(\mathbf{A}, \mathbf{B}) = \operatorname{rang}(\mathbf{A} \mathbf{B})$ defineix una mètrica en el conjunt $\operatorname{Mat}_{n \times m}(\mathbb{R})$ de les matrius de n files i m columnes amb entrades reals.
- **1.24.** Espai de successions. Sigui $A^{\mathscr{N}}$ el conjunt de les successions $\boldsymbol{a}=(a_n)_{n\geqslant 0}$ d'elements d'un conjunt A. Demostreu que l'aplicació següent defineix una distància a $A^{\mathscr{N}}$:

$$d(\boldsymbol{a}, \boldsymbol{b}) = \begin{cases} 0, & \text{si } \boldsymbol{a} = \boldsymbol{b}, \\ e^{-r} & \text{si } a_n = b_n \text{ per a } n < r \text{ i } a_r \neq b_r. \end{cases}$$

- **1.25.** Es consideren els espais $\mathscr{C}^0([a,b])$ i $\mathscr{C}^1([a,b])$ de les funcions contínues i de les funcions derivables amb derivada contínua a l'interval [0,1], amb la mètrica del suprem.
 - 1. Demostreu que l'aplicació derivació $f \mapsto f' \colon \mathscr{C}^1([a,b]) \to \mathscr{C}^0([a,b])$ no és contínua.
 - 2. Es considera ara a $\mathscr{C}^1([a,b])$ la mètrica següent:

$$\delta(f,g) = \max \left\{ \sup_{x \in [a,b]} |f(x) - g(x)|, \sup_{x \in [a,b]} |f'(x) - g'(x)| \right\}.$$

Demostreu que aquesta expressió defineix efectivament una mètrica i que l'aplicació derivació és contínua si es considera l'espai $\mathscr{C}^1([a,b])$ amb aquesta mètrica.

1.26. Sigui $\mathscr{P}(\mathscr{N})$ el conjunt de les parts de $\mathscr{N} = \{1, 2, 3, \dots\}$. Donats $A, B \in \mathscr{P}(\mathscr{N})$ es defineix la seva distància d(A, B) de la forma següent:

$$d(A,B) = \begin{cases} 0, & \text{si } A = B, \\ 1/m, & \text{si } A \neq B, \text{ on } m = \min\{A \cup B \setminus A \cap B\}. \end{cases}$$

- 1. Calculeu la distància entre el conjunt E dels nombres parells i el conjunt P dels nombres primers.
- 2. Descriviu tots els subconjunts $X \subseteq \mathcal{N}$ amb $d(E, X) = \frac{1}{3}$.
- 3. Proveu que d(A, B) < 1/m si, i només si, $A \cap [1, m] = B \cap [1, m]$.
- 4. Comproveu que d és, efectivament, una distància a $\mathscr{P}(\mathscr{N})$.
- 5. Sigui $A = \{1\}$. Descriviu les boles $B_{\frac{1}{m}}(A)$.
- 6. Hi ha boles tancades i obertes alhora?
- 7. Proveu que $d(A, B) = d(A^c, B^c)$, on $A^c = \mathcal{N} \setminus A$ denota el complementari de A.
- 8. Sigui $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ una successió creixent de subconjunts de \mathscr{N} . Proveu que la successió $(X_n)_{n\geqslant 1}$ tendeix a $X=\bigcup_{n\geqslant 1}X_n$ a l'espai mètric $\mathscr{P}(\mathscr{N})$.

Intenteu definir, i estudieu, una mètrica anàloga al conjunt de les parts de $(0, \infty) \subseteq \mathbb{R}$ i al conjunt de les parts de $(1, \infty) \subseteq \mathbb{R}$.

1.27. Donades dues mètriques d_1 i d_2 en un mateix conjunt es consideren les funcions

$$d_{\max}(x,y) = \max\{d_1(x,y), d_2(x,y)\}, \quad d_{\min}(x,y) = \min\{d_1(x,y), d_2(x,y)\}.$$

Alguna d'elles és una mètrica?

- **1.28.** Funcions còncaves de mètriques. Recordeu que una funció $f: I \to \mathbb{R}$ definida en un interval $I \subseteq \mathbb{R}$ és còncava en aquest interval si per a tot parell de punts $x, y \in I$ amb x < y la gràfica de f està per sobre del segment que uneix el punt (x, f(x)) amb el punt (y, f(y)).
 - 1. Sigui $f: [0, \infty) \to \mathbb{R}$ una funció còncava amb $f(0) \ge 0$. Demostreu que per a cada $x, y \in [0, \infty)$ es compleix $f(x + y) \le f(x) + f(y)$.
 - 2. Sigui $f: [0, \infty) \to [0, \infty)$ una funció còncava, creixent, i amb $f(x) = 0 \Leftrightarrow x = 0$. Demostreu que per a tota distància $d: X \times X \to \mathbb{R}$ l'aplicació $f \circ d$ també és una distància.
 - 3. Vegeu que les mètriques δ del problema **1.13** són casos particulars d'aquesta construcció.
- **1.29.** Distància entre subconjunts. En un espai mètric E es defineix la distància entre subconjunts $A, B \subseteq E$ com

$$d(A,B) = \inf_{x \in A, y \in B} d(x,y).$$

- 1. Proveu que per a tot subconjunt $A \subseteq E$ la funció $x \mapsto d(x,A) \colon E \to \mathbb{R}$ és contínua, on a \mathbb{R} es considera la topologia ordinària.
- 2. Caracteritzeu els punts $x \in X$ tals que d(x, A) = 0.
- 3. Vegeu que $A \cap B \neq \emptyset \Rightarrow d(A,B) = 0$ però que el recíproc no sempre és cert.
- **1.30.** Diàmetre d'un conjunt. Es defineix el diàmetre d'un subconjunt $A \subseteq E$ posant

$$\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y) \in \mathbb{R} \cup \{\infty\}.$$

El conjunt es diu fitat si diam $(A) < \infty$.

- 1. Comproveu que
 - (a) $A \subseteq B \Rightarrow \operatorname{diam}(A) \leqslant \operatorname{diam}(B)$;
 - (b) $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B) + d(A, B)$;
 - (c) $A \cap B = \emptyset \Rightarrow \operatorname{diam}(A \cup B) \leqslant \operatorname{diam}(A) + \operatorname{diam}(B)$.
- 2. Doneu un exemple a \mathbb{R} de dos subconjunts amb diam $(A) = \text{diam}(B) = \text{diam}(A \cup B) = 1$.
- 3. Demostreu que diam $(B_r(x)) \leq 2r$;
- 4. Demostreu que si diam(A) < r i $A \cap B_r(x) \neq \emptyset$ aleshores $A \subseteq B_{2r}(x)$.
- 5. Sigui $A\subseteq E.$ Vegeu que les condicions següents són equivalents:

- (a) A està contingut en alguna bola: $A \subseteq B_r(A)$;
- (b) A té diàmetre finit: $diam(A) < \infty$.

Quan es compleixen es diu que el conjunt està fitat.

1.31. Producte infinit. Sigui $((E_i, d_i))_{i \in I}$ una família d'espais mètrics indexada en un conjunt I qualsevol: finit o infinit, numerable o no. Sigui $E = \prod_{i \in I} E_i$ el conjunt producte cartesià. Per a elements $\boldsymbol{x} = (x_i)_{i \in I}$ i $\boldsymbol{y} = (y_i)_{i \in I}$ es defineix:

$$D(\boldsymbol{x}, \boldsymbol{y}) = \sup \{ \min (d_i(x_i, y_i), 1) : i \in I \}.$$

Si la família és numerable amb conjunt d'índexs $I = \mathcal{N} = \{1, 2, \dots\}$ es defineix:

$$D_{\mathsf{num}}(\boldsymbol{x}, \boldsymbol{y}) = \sup \left\{ \frac{1}{n} \min \left(d_n(x_n, y_n), 1 \right) : n \geqslant 1 \right\}.$$

- 1. Demostreu que D i D_{num} són distàncies en E.
- 2. Digueu com són les boles per a cadascuna de les dues distàncies.
- 3. Demostreu que en el cas numerable les distancies D_{num} definides reordenant els espais són totes equivalents entre elles.
- 4. Sigui $I = \mathcal{N}$. Siguin $U_n \subseteq E_n$ subconjunts oberts. Sigui $S \subseteq \mathcal{N}$ un subconjunt dels naturals. Digueu si els conjunts $U_S = \prod_{n \in S} U_n \times \prod_{n \notin S} E_n \subseteq E$ són oberts o no per a cadascuna de les dues mètriques D i D_{num} . INDICACIÓ: Depèn de si S és finit o infinit.
- 5. Sigui $E = \mathbb{R}^{\mathscr{N}}$ el producte numerable de còpies de la recta euclidiana. Discutiu la continuïtat de les aplicacions $\mathbb{R} \to E$ següents:

$$f(x) = (x, x, x, ...),$$
 $g(x) = (x, 2x, 3x, ...)$

en cadascuna de les dues mètriques D i D_{num} .

1.32. Espais ultramètrics. Una mètrica s'anomena ultramètrica si satisfà la condició següent, més forta que no pas la designaltat triangular:

$$d(x,y) \leq \max \{d(x,z), d(z,y)\}$$
 per a tot x, y, z .

L'espai mètric corresponent s'anomena espai ultramètric. Demostreu que, en un espai ultramètric,

- 1. la designaltat triangular és una igualtat si $d(x, z) \neq d(y, z)$;
- 2. tot punt d'una bola (oberta o tancada) és centre de la bola;
- 3. dues boles es tallen si, i només si, una està continguda en l'altra;
- 4. tot triangle és isòsceles i els costats iguals són els més llargs.

Repasseu els espais mètrics que coneixeu i digueu quins són ultramètrics i quins no.

1.33. Discutiu la completesa dels espais mètrics següents:

- 1. \mathbb{R}^n amb cadascuna de les mètriques d_1 , d_2 i d_∞ ;
- 2. un espai discret;
- 3. \mathbb{Z} amb la mètrica p-àdica.
- 1.34. La condició de ser complet, es conserva per a mètriques equivalents?
- **1.35.** Compleció. Sigui (E, d) un espai mètric. Donades successions $\mathbf{x} = (x_n)_{n \ge 1}$ i $\mathbf{y} = (y_n)_{n \ge 1}$ es defineix la relació $\mathbf{x} \sim \mathbf{y}$ si $\lim_{n \to \infty} d(x_n, y_n) = 0$.
 - 1. Demostreu que aquesta és una relació d'equivalència en el conjunt de successions d'elements de E.

Sigui \widehat{E} el conjunt

$$\widehat{E} = \{ \boldsymbol{x} = (x_n)_{n \geqslant 1} : \boldsymbol{x} \text{ és de Cauchy} \} / \sim$$

de classes d'equivalència de successions de Cauchy respecte la relació anterior. En endavant els seus elements s'identifiquen amb representants.

- 2. Comproveu que la funció $\widehat{d}(\boldsymbol{x},\boldsymbol{y}) = \lim_{n\to\infty} d(x_n,y_n)$ està ben definida en el conjunt \widehat{E} ; és a dir, que:
 - (a) si $\boldsymbol{x}, \boldsymbol{y} \in \widehat{E}$ el límit $\lim_{n \to \infty} d(x_n, y_n)$ existeix i
 - (b) no depèn de les successions escollides com a representants.

i que defineix una mètrica en aquest conjunt.

- 3. Vegeu que identificant cada $x \in E$ amb la classe de la successió constant $x_n = x$ es té una inclusió d'espais mètrics $(E, d) \subseteq (\widehat{E}, \widehat{d})$
- 4. Demostreu que $(\widehat{E}, \widehat{d})$ és complet i que E és un subespai dens.
- 5. Discutiu la construcció de \mathbb{R} com a compleció mètrica de \mathbb{Q} .
- **1.36.** p-Normes. Donat un nombre real p>1, a l'espai \mathbb{R}^n es defineix la p-norma com

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Demostreu que aquesta fórmula defineix efectivament una norma. Per fer-ho demostreu primer els apartats següents, on q > 1 és el nombre tal que $\frac{1}{p} + \frac{1}{q} = 1$.

1. desigualtat de Young:

$$xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}$$
 per a tot $x, y \in \mathbb{R}_{>0}$.

Indicació: la funció logaritme és convexa.

2. desigualtat de Hölder:

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leqslant \|oldsymbol{x}\|_p \|oldsymbol{y}\|_q \qquad ext{per a tot } oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n.$$

Indicació: manipuleu el quocient del primer terme pel segon usant l'apartat anterior.

3. desigualtat de Minkowski:

$$\|\boldsymbol{x} + \boldsymbol{y}\|_p \leqslant \|\boldsymbol{x}\|_p + \|\boldsymbol{y}\|_p$$
 per a tot $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.

Aquestes normes es fan servir en anàlisi funcional per definir els espais L^p .

- **1.37.** Definiu la p-norma i enuncieu i demostreu fets anàlegs als de problema anterior en espais de funcions $\mathscr{C}^0([a,b])$, canviant sumes per integrals.
 - Discutiu l'equivalència i l'equivalència forta de les mètriques induïdes per les p-normes en espais \mathbb{R}^n i en espais de funcions.
- 1.38. Generalitzeu el problema 1.22, definint una mètrica en el producte cartesià a partir de la fórmula de les p-normes del problema 1.36, i vegeu que totes aquestes mètriques són fortament equivalents.