WiSe 2022/23

Technische Universität München Institut für Informatik Prof. Dr. Hans-Joachim Bungartz Hendrik Möller

Numerisches Programmieren, Übungen

3. Trainingsblatt: Interpolation

1) Polynominterpolation

Befassen wir uns mit der regulären Polynominterpolation mithilfe von Basisfunktionen. Gegeben seien folgende Stützpunkte:

$$P_0(0|0); P_1(2|5); P_2(4|6)$$

- a) Wenn wir obige Punkte interpolieren, was für eine Art Funktion kommt dabei heraus?
- b) Berechnen Sie die Interpolationspolynomfunktion und geben Sie als Rechenweg die entsprechenden Lagrange-Basisfunktionen an.
- c) Schätzen Sie den »worst-case« Interpolationsfehler an der Stelle x=3 ab. Hierfür seien folgende Ableitungen gegeben:

$$f''(x) = \frac{3}{2}x - 4$$

$$f'''(x) = \frac{3}{2}$$

d) Welchen Wert muss ein neuer, vierter Stützpunkt an der Stelle x = -2 besitzen, damit sich die resultierende Interpolationspolynomfunktion aus b) nicht ändert?

Lösung:

- a) Da wir drei Stützpunkte haben und diese nicht auf einer Gerade liegen, erhalten wir eine Polynomfunktion zweiten Grades, also eine Parabelfunktion.
- b) Aus der Angabe lesen wir:

$$x_0 = 0$$
 $y_0 = 0$
 $x_1 = 2$ $y_1 = 5$
 $x_2 = 4$ $y_2 = 6$

Wir berechnen zuerst die Lagrange-Bassifunktionen.

$$L_{j} = \prod_{i=0; i \neq j}^{n-1} \frac{x - x_{i}}{x_{j} - x_{i}}$$

$$L_{0} = \prod_{i=0; i \neq 0}^{2} \frac{x - x_{i}}{0 - x_{i}}$$

$$= \frac{x - x_{1}}{0 - x_{1}} \cdot \frac{x - x_{2}}{0 - x_{2}}$$

$$= \frac{x - 2}{0 - 2} \cdot \frac{x - 4}{0 - 4}$$

$$= \frac{2 - x}{2} \cdot \frac{4 - x}{4}$$

$$= \frac{(2 - x) \cdot (4 - x)}{8}$$

$$= \frac{x - 3}{2} \cdot \frac{4 - x}{4}$$

$$= \frac{(2 - x) \cdot (4 - x)}{8}$$

Analog sind die anderen zwei Basisfunktionen:

$$L_{1} = \frac{x - x_{0}}{x_{1} - x_{0}} \cdot \frac{x - x_{2}}{x_{1} - x_{2}}$$

$$= \frac{x - 0}{2 - 0} \cdot \frac{x - 4}{2 - 4}$$

$$= \frac{x(x - 4)}{-4}$$

$$L_{2} = \frac{x - x_{0}}{x_{2} - x_{0}} \cdot \frac{x - x_{1}}{x_{2} - x_{1}}$$

$$= \frac{x - 0}{4 - 0} \cdot \frac{x - 2}{4 - 2}$$

$$= \frac{x(x - 2)}{8}$$

Jetzt noch die Interpolationsfunktion aufstellen:

$$p(x) = y_0 \cdot L_0 + y_1 \cdot L_1 + y_2 \cdot L_2$$

$$= 0 \cdot L_0 + 5 \cdot L_1 + 6 \cdot L_2$$

$$= 5 \cdot \frac{x(x-4)}{-4} + 6 \cdot \frac{x(x-2)}{8} = -\frac{5}{4} \times (x^2 - 2x)$$

$$= -\frac{5}{4} \cdot (x^2 - 4x) + \frac{6}{8} \cdot (x^2 - 2x)$$

$$= -\frac{5}{4}x^2 + 5x + \frac{3}{4}x^2 - \frac{3}{2}x$$

$$= \frac{7}{2}x - \frac{1}{2}x^2$$

$$\int_{0}^{2} \frac{x - x_{1}}{x_{0} - x_{1}} \cdot \frac{x - x_{2}}{x_{0} - x_{0}}$$

$$= \frac{x - 2}{-2} \cdot \frac{x - 4}{-4}$$

$$= (x - 2) \cdot (x - 4)$$

$$= \frac{x - 2}{8}$$

$$L_1 = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2}$$

$$= \frac{x - 0}{2} \cdot \frac{x - 4}{-2}$$

$$= \frac{x (x - 4)}{-2}$$

c) Wir setzen in unsere Fehlerabschätzungsformel ein:

$$|f(x) - p(x)| = \left| \frac{f^{(n)}(\xi)}{(n)!} \cdot \prod_{k=0}^{n-1} (x - x_k) \right|$$

Wir setzen ein: x = 3, n = 3:

3:
$$(X-0) (X-2) (X-4)$$

$$= \left| \frac{f'''(\xi)}{3!} (x - x_0)(x - x_1)(x - x_2) \right| = 3 \times 1 \times (-1) = -3$$

$$= \left| \frac{3}{2 \cdot 6} (x - 0)(x - 2)(x - 4) \right| = \left| \frac{1}{4} (3 - 0)(3 - 2)(3 - 4) \right|$$

$$= \left| \frac{1}{4} 3 \cdot 1 \cdot (-1) \right| = \left| \frac{-3}{4} \right|$$

$$= \frac{3}{4}$$

$$(X-0) (X-2) (X-4)$$

$$= 3 \times 1 \times (-1) = -3$$

$$= \frac{1}{4} (3) = \frac{3}{2} \times 3 - 4$$

$$= \frac{1}{4} \times (-3) = \frac{3}{4} \times (-3) = \frac$$

 $\int ||(\chi)| = \frac{3}{2}$

Der maximale Fehler der Interpolation aus b) beträgt also $\frac{3}{4}$.

d) Damit sich die Polynomfunktion nicht mehr ändert, muss ein neuer Stützpunkt schon auf der Parabel aus b) liegen. Wir setzen also p(-2) ein.

$$p(-2) = \frac{7}{2} \cdot -2 - \frac{1}{2} \cdot 4$$

$$= -7 - 2$$

$$= -9$$

$$p(-2) = -\frac{7}{2} \cdot 4 + \frac{9}{2} (-2)$$

$$= -\frac{7}{2} \cdot 4$$

$$= -\frac{7}{2} \cdot 4$$

Der neue Stützpunkt müsste einen y-Wert von -9 besitzen.

2) Dreiecksschema

Betrachten wir nun die Interpolation mit einem Dreiecksschema und gucken uns etwas Verständnis an.

a) Gegeben seien die Stützstellen einer uns unbekannten Funktion f(x):

$$f(0) = 3;$$
 $f(1) = 2;$ $f(8) = 2$

Berechnen Sie die Interpolation mithilfe des Newton-Verfahrens und stellen Sie das Dreiecksschema auf.

- b) Bei gleichbleibenden Stützstellen, wie unterscheidet sich (ganz allgemein) das Ergebnis einer Interpolation mit den Lagrange-Basisfunktionen gegenüber dem eines Newton-Verfahrens?
- c) Gilt bei Polynominterpolation immer »Je mehr Stützstellen, desto höher ist die Genauigkeit der Interpolation«?
- d) Welcher Vorteil bietet eine stückweise Interpolation gegenüber einer nicht-stückweisen? Auf der nächsten Seite folgt die Lösung...

Lösung:

a) Stellen wir zuerst das Dreiecksschema auf:

$$\chi_{i}$$
 i/k 0 1 2
0 1 3 (Co.) Co.x
1 2 2 (1.1)
8 3 2

$x_i i \setminus k \mid 0$	0 1 2	$0C_{0,1} = \frac{2-3}{1-0} = -1$
$0 0 \mid 3$	o Cort Cor	1-0-1
1 1 1	$c_{1,1}$	0.0 2 - 2 0
8 2 2	2	$\Theta(1,1) = \frac{2-2}{8-1} = \frac{0}{7}$
		8-1 1
	2-3	$3C_{0,2} = \frac{O-(1)}{8-0} = \frac{1}{8}$
$c_{0,1} =$	$\frac{2-3}{1-0} = -1$	8-0 = 8
<i>C</i> 1.1 =	$\frac{2-2}{8-1} = 0$	X0V X1V X2
	0 1	zo = 2 = 8
$c_{0,2} =$	$\frac{0+1}{8-0} = \frac{1}{8}$	=0 = 1 = 8
- /	8 - 0 8	p(x) = 3 + (-1) (x-x0)
		_
$x_i i \setminus k$	0 1 2	+ 18 (X-70)(X-71)
0 0	$\frac{3}{2} - \frac{1}{8}$	= 3+(1)x+8x(x-1)
$\begin{bmatrix} 1 & 1 \\ 8 & 2 \end{bmatrix}$	2 0	$= 3 - \chi + \frac{1}{8} \chi^{2} = \xi \chi$
0 4	<u></u>	_
		$=\frac{1}{8}\chi^{2}-\frac{8}{8}\chi+3$
sfunktion aufstellen:		

Jetzt noch die Interpolationsfunktion aufstellen:

$$p(x) = 3 + (-1) \cdot (x - x_0) + \frac{1}{8} \cdot (x - x_0)(x - x_1)$$

$$= 3 + (-1) \cdot (x - 0) + \frac{1}{8} \cdot (x - 0)(x - 1)$$

$$= 3 + (-x) + \frac{1}{8} \cdot (x^2 - x)$$

$$= \frac{1}{8}x^2 - \frac{9}{8}x + 3$$

- b) Es unterscheidet sich gar nicht, denn Interpolationspolynome sind stets eindeutig!
- c) Theoretisch erstmal schon, aber bei vielen Stützstellen kommt der Runge-Effekt zum Vorschein und macht Ergebnisse deutlich ungenauer.
- d) Stückweise Interpolation wirkt dem Runge-Effekt entgegen, da man seine Anzahl Stützstellen in Stücke unterteilt (und damit jedes Stück mit weniger Stützstellen arbeitet und somit der Runge-Effekt schlechter auftreten kann).