

Datasheet

Description

The HSDL-4260 High Power Infrared emitter was designed for applications that require high power, low forward voltage and high speed. It utilizes Aluminum Galium Arsenide (AlGaAs) LED technology and is optimized for speed and efficiency at emission wavelengths of 875nm. The material used produces high radiant efficiency over a wide range of currents. The emitter is packaged in clear T-1¾ (5mm) package.

Features

- High Power AlGaAs LED Technology
- 875nm Wavelength
- T-1¾ Package
- Low Cost
- Low Forward Voltage: 1.4V at 20mA
- High Speed: 15ns Rise Times

Applications

- Industrial Infrared Equipments and applications
- Portable Infrared Instruments
- Consumer Electronics (Optical mouse, Infrared Remote Controllers etc)
- High Speed Infrared Communications (IR LANs, IR Modems, IR Dongles etc)

Part Number	Lead Form	Shipping Option		
HSDL-4260	Straight	Bulk		

Absolute Maximum Ratings at 25°C

Parameter	Symbol	Minimum	Maximum	Unit	Reference Figure 3 Duty cycle = 20% Pulse Width = 100us	
Peak Forward Current	I _{FPK}	-	500	mA		
Forward Current	I _{FDC}	-	100	mA	[1]	
Power Dissipation	P _{DISS}	-	230	mW		
Reverse Voltage	V_R	4	-	V	I _R =100uA	
Storage Temperature	Ts	-40	100	°C		
LED Junction Temperature	T _J		110	°C		
Lead Soldering Temperature			260 for 5 sec	°C		

Notes: Derate as shown in Figure 6.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	Reference
Operating Temperature	T_0	-40	85	°C	

Electrical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Reference
Forward Voltage	V_{F}	-	1.4 1.7	1.9 2.3	V	I _{FDC} =20mA I _{FDC} =100mA	Figure 2
Forward Voltage Temperature Coefficient	ΔV/ΔΤ	-	-1.3	-	mV/°C	I _{FDC} =100mA	Figure 4
Series Resistance	R _s	-	4	-	Ohms	I _{FDC} =100mA	
Diode Capacitance	Co	-	70	-	pF	V _{bias} =0V, f=1MHz	
Thermal Resistance, Junction to Ambient	$R\theta_{ja}$	-	300	-	°C/W		

Optical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Reference
Radiant On-Axis Intensity	I _E	150	200	-	mW/Sr	I _{FDC} =100mA	Figure 5
Radiant On-Axis Intensity Temperature Coefficient	$\Delta I_{E}/\Delta T$	-	-0.36	-	%/°C	I _{FDC} =100mA	
Viewing Angle	2 θ _{1/2}	-	15	-	0		Figure 7
Peak Wavelength	λ_{pk}	-	875	-	nm		Figure 1
Peak wavelength Temperature Coefficient	Δλ/ΔΤ	-	0.2	-	nm/°C	I _{FDC} =100mA	
Spectral Width	Δλ		45	-	nm	I _{FDC} =20mA	Figure 1
Optical Rise and Fall Time	t,/t _f		15	-	ns	I _{FDC} =500mA Duty Ratio = 20% Pulse Width=100ns	

Figure 1. Relative Radiant Intensity vs. Wavelength

Figure 3. Peak Forward Current vs. Forward Voltage

Figure 5. Relative Radiant Intensity vs. DC Forward Curren

Figure 2. DC Forward Current vs. Forward Voltage

Figure 4. Forward Voltage vs. Ambient Temperature

Figure 6. DC Forward Current vs. Ambient Temperature Derated Based on TJMAX=110°C

Figure 7. Radiant Intensity vs. Angular Displacement for HSDL-4260