Lecture 27.

Phase. Displacement, velocity and acceleration in SHM.

Last Time

Simple Harmonic Motion

$$x(t) = A\cos(\omega t + \phi)$$

- \rightarrow A = amplitude
- $\succ \omega$ = angular frequency
- $\rightarrow \phi$ = phase = ?

Bicycle wheel and harmonic motion https://www.youtube.com/watch?v=nZYbHygjyTc

 Assume the ball is illuminated from behind, and we are looking at the projection of its motion onto a screen perpendicular to the plane of its rotation.

$$x(t) = ??$$

• x coordinate: $x(t) = A \cos \theta(t)$

• Uniform circular motion: $\theta(t) = \omega t$ is the angle swept out in a time t

• We get:
$$x(t) = A\cos(\omega t)$$

Q: But what is the physical meaning of the phase, ϕ , in $x(t) = A\cos(\omega t + \phi)$?

Phase ϕ

$$x(t) = A\cos(\omega t + \phi)$$

• At t = 0:

$$x_0 = x(t = 0) = A\cos(\phi)$$

• Hence, phase determines the position of the mass at t=0. In other words, phase is the initial condition.

• How to find:

$$\phi = \cos^{-1}\left(\frac{x_0}{A}\right)$$

- D. π

E. Not enough information

Q: What is the phase, if the position of the mass at t = 0 is as shown?

 \boldsymbol{A}

Not enough information

Phase as an offset

$$x(t) = A\cos(\omega t)$$

- This graph shows oscillations of a particle starting from x = A at t = 0.
- It reaches x=A for the first time when $t=T=2\pi/\omega$, and is at -A when $t=T/2=\pi/\omega$.
- Shift of 2π is the whole period.

$$x(t) = A\cos(\omega t + \phi)$$

- Including an offset, ϕ :
- Now x=A is reached for the first time at $\omega t + \phi = 0$ => i.e. at $t=-\phi/\omega$ => the graph shifts to the left.

Q: For this displacement graph, what is the phase ϕ ? Assume $x(t) = A \cos(\omega t + \phi)$.

A. 0

B. $\pi/2$

C. π

D. $-\pi/2$

Q: For this displacement graph, what is the phase ϕ ? Assume $x(t) = A \cos(\omega t + \phi)$.

- Way 1: positive / negative shifts:
 - > Shifts to the right by ¼ period,

- Way 2: looking at the wheel:
 - \triangleright At t=0 the particle is at x=0=>two potential locations, (1) and (2)
 - \triangleright Graph shows: at t=0 the particle moves towards +x => only (2) would work $=> \phi = -\frac{\pi}{2}$

NOTE:
$$\phi = -\frac{\pi}{2} \pm n \times 2\pi$$
 would also be correct, since adding or subtracting an integer multiple of 2π gives the same displacement vs time

- B. $\pi/2$

Q: For this displacement graph shown, what is the phase ϕ ?

A.
$$-\pi/8$$

B.
$$-\pi/4$$

C.
$$-\pi/2$$

D.
$$+\pi/4$$

E.
$$+\pi/8$$

Q: For this displacement graph shown, what is the phase ϕ ?

A.
$$-\pi/8$$
 B. $-\pi/4$

B.
$$-\pi/4$$

C.
$$-\pi/2$$

D.
$$+\pi/4$$

E.
$$+\pi/8$$

shift to the right, so ϕ is —smth

$$x(t) = A\cos(\omega t + \phi)$$
 $\phi(rad) = \pm 2\pi \cdot \frac{\text{shift (sec)}}{\text{period (sec)}}$

Period is
$$T = 2 \cdot \left(\frac{9\pi}{2} - \frac{\pi}{2}\right) = 8\pi$$
 sec and shift is $\frac{\pi}{2}$ sec

So phase is
$$\phi = -2\pi \cdot \frac{\text{shift}}{\text{period}} = -2\pi \cdot \frac{\pi/2}{8\pi} = -\frac{\pi}{8} \text{ rad}$$

$$\frac{\Phi}{2\pi} = \frac{shiff(s)}{period(s)}$$

How to find ϕ ?

Way 1: positive /negative shifts

$$\phi(\text{rad}) = \pm 2\pi \cdot \frac{\text{shift (sec)}}{\text{period (sec)}}$$

+ to the left — to the right

• Way 2: from initial condition:

 $\cos \phi =$

How to find x(t), v(t), a(t)

• Position

Velocity

Acceleration

$$x(t) = A\cos(\omega t + \phi)$$

$$\frac{d}{dt}$$
 (slope)

$$v(t) = -A \omega \sin(\omega t + \phi) \qquad \text{cha}$$

$$\frac{d}{dt}$$
 (slope)

$$a(t) = -A \omega^2 \cos(\omega t + \phi)$$

chair prule

Note that acceleration depends on time!

Position, velocity, acceleration

• Position:

$$x(t) = A\cos(\omega t + \phi)$$

• Velocity (time derivative of position):

$$v(t) = -\omega A \sin(\omega t + \phi)$$

$$V_{\text{max}}$$

Acceleration (time derivative of velocity)

$$a(t) = -\omega^2 A \cos(\omega t + \phi)$$

- \triangleright Note that $a(t) = -\omega^2 x(t)$.
- > This is an alternative definition of SHM.

PHET Simulation: Weight on a spring

https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs_en.html

Q: A plot of displacement as a function of time is shown to the left below. Which of the diagrams to the right describes the velocity as a function of time for the same motion?

Q: A plot of displacement as a function of time is shown to the left below. Which of the diagrams to the right describes the velocity as a function of time for the same motion?

$$v = \frac{dx}{dt}$$
 = slope of graph

Q: A plot of upward **velocity** (in cm/s) as a function of time (in s) is shown below for a mass hanging from a spring. Which of the pictures best represents the situation at t = 1.6 s?

Q: What does x(t) look like?

Prior to t=1.6, v was positive, so object moving up; After t=1.6, v will be negative, so object will be moving down

Q: What does x(t) look like?