VITMO

Современные архитектуры нейронных сетей

Эффективное внимание

Проблемы qkv-внимания

Scaled Dot-Product Attention

Проблемы qkv-внимания

- Квадратичная сложность
- Необходимо много памяти
- Много вычислений

Sparse Attention

Multi-Query Attention

LinFormer

FlashAttention

VITMO

Современные архитектуры нейронных сетей

Self-supervised learning

Self-supervised learning

Типы архитектур трансформеров

- Encoder-Decoder (Оригинальная архитектура трансформера)
- Encoder (ViT)
- **Decoder** (Пока не встречали таких)

BERT

Обучение BERT

VITMAE

VİTMO

GPT

VITMO

Современные архитектуры нейронных сетей

Большие языковые модели

Эволюция моделей **GPT**

RL по обратной связи от человека

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

This data is used to train our reward model.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

0 . 0 . 0 . B

0

A labeler ranks the outputs from best to worst.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Mixture of Experts (MoE)

Mixture of Experts (MoE)

LITMO

Половинная точность

VITMO

Квантизация

LoRA

RAG

VİTMO

