I. Determine $p \in \mathbb{P}_3$ such that s(0) = 0.

We know p(0) = 0, p(1) = s(1) = 1, p'(1) = s'(1) = 3, p''(1) = s''(1) = 6, thus we have:

$$p(x) = x + 2x(x - 1) + x(x - 1)^{2} = x^{3}$$
.

Because $s(0) = 0^3 = 0$, $s(2) = (2-2)^3 = 0$, s(x) is a natural cubic spline

II. Consider interpolation f on [a,b] with a quadratic spline $s \in \mathbb{S}_2^1$.

II-a Why an additional condition is needed to determine s uniquely?.

s(x) is constructed by n-1 polynomials with degree of 2, we can assume them $\{p_i\}$, $s(x)=p_i(x)$ when $x\in[x_i,x_{i+1}]$. Suppose $p_i = a_{i_2}x^2 + a_{i_1}x + a_{i_0}$ so we have 3n - 3 variables.

By the property of s(x), we have $p_i(x_i) = f_i$, $p_i(x_{i+1}) = f_{i+1}$ and $p'_i(x_{i+1}) = p'_{i+1}(x_{i+1})$. In the formal two equations $i=1,2\ldots,n-1$, while in the last one $i=1,2\ldots,n-2$. They construct (n-1)+(n-1)+(n-2)=3n-4

The number of equations is less than that of variables, so we cannot determine s uniquely unless we introduce an additional condition.

II-b Determine p_i in terms of f_i , f_{i+1} , and m_i for $i = 1, 2 \dots, n-1$

For i = 1, 2, ..., n - 1, we have $p_i(x_i) = f_i$, $p_i(x_{i+1}) = f_{i+1}$, $p'_i(x_i) = m_i$. So

$$p_{i}(x) = f_{i} + m_{i}(x - x_{i}) + \frac{f_{i+1} - f_{i} - (x_{i+1} - x_{i}) m_{i}}{(x_{i+1} - x_{i})^{2}} (x - x_{i})^{2}.$$

II-c Suppose $m_1 = f'(a)$ is given. Show how m_2, \ldots, m_{n-1} can be compouted.

Because $p'_{i}(x_{i+1}) = p'_{i+1}(x_{i+1}) = m_{i+1}$ i = 1, 2, ..., n-2. Since we have got the form of p_{i} . So we can calculate the derivative of p_i on x_{i+1} ,

$$p'_{i}(x_{i+1}) = m_{i} + 2\frac{f_{i+1} - f_{i} - (x_{i+1} - x_{i}) m_{i}}{x_{i+1} - x_{i}}.$$

Put it into the formal equation we have

$$m_{i+1} = \frac{2(x_{i+1} - f_i)}{x_{i+1} - x_i} - m_i \quad i = 1, 2, \dots, n-1.$$

As we have known m_1 , we can get all m_i by iteration.

III Determine $s_2(x)$ on [0,1].

Since s is a natural cubic spline, we have s''(-1) = s''(1) = 0, $s_2(0) = s_1(0) = 1 + c$, $s_2'(0) = s_1'(0) = 3c$,

Now we suppose $x_1 = -1, x_2 = 0, x_3 = 1, M_i = s''(x_i)$ (i = 1, 2, 3). So $M_2 = 6c, M_1 = M_3 = 0$. Thus we have

$$s_2^{\prime\prime\prime}(0) = \frac{M_3 - M_2}{x_3 - x_2} = -6c.$$

By using the Taylor expansion of $s_2(x)$ on x_2 we have

$$s_2(x) = s(0) + s'(0)x + \frac{M_2}{2}x^2 + \frac{s'''(0)}{6}x^3 = -cx^3 + 3cx^2 + 3cx + c + 1.$$

If we want s(1) = -1, then we get $c = -\frac{1}{3}$.

IV Consider $f(x) = \cos(\frac{\pi}{2}x)$ with $x \in [-1, 1]$

IV-a Determine the natural cubic spline interpolant to f on knots -1,0,1.

We suppose that $x_1 = -1, x_2 = 0, x_3 = 1, M_i = s''(x_i)$. We have $s(x_1) = f(x_1) = 0, s(x_2) = f(x_2) = 1, s((x_3) = f(x_3) = 0.$

The divided differences of f are

So we can calculate M_2 by the equation $\mu_2 M_1 + 2 M_2 + \lambda_2 M_3 = f[x_1, x_2, x_3]$, where $\mu_2 = \frac{x_2 - x_1}{x_3 - x_1}$, $\lambda_2 = \frac{x_3 - x_2}{x_3 - x_1}$. We have $M_2 = -3$.

Since $s_i'(xi) = f[x_i, x_{i+1}] - \frac{1}{6}(M_{i+1} + 2M_i)(x_{i+1} - x_i)$, we get s(x) by using the Taylor expansion of s(x) at x_i .

$$s_1(x) = \left(1 - \frac{1}{6}(-3)\right)(x+1) + \frac{-3}{6}(x+1)^3 = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 1.$$

$$s_2(x) = 1 + \left(-1 - \frac{1}{6}(-6)\right)x - \frac{3}{2}x^2 + \frac{3}{6}x^3 = \frac{1}{2}x^3 - \frac{3}{2}x^2 + 1.$$

IV-b Verify the minimal total bending energy by taking g(x)

The divided differences of f are

So by Newton's formula we have

$$g(x) = (x - x_1) - (x - x_1)(x - x_2) = -x^2 + 1.$$

So g''(x) = -2

$$\int_{-1}^{1} [s''(x)]^2 dx = \int_{-1}^{0} (-3x - 3)^2 dx + \int_{0}^{1} (3x - 3)^2 dx = 6.$$
$$\int_{-1}^{1} [g''(x)]^2 dx = \int_{-1}^{1} 4dx = 8 > 6.$$

Because $f''(x) = -\frac{\pi^2}{4}\cos\left(\frac{\pi}{2}x\right)$, we have

$$\int_{-1}^{1} [f''(x)]^2 dx = \frac{\pi^4}{16} \int_{-1}^{1} \frac{\cos(\pi x) - 1}{2} dx = \frac{\pi^4}{16} > 6.$$

So we have $\int_{-1}^{1} [s''(x)]^2 dx > \int_{-1}^{1} [g''(x)]^2 dx$ and $\int_{-1}^{1} [s''(x)]^2 dx > \int_{-1}^{1} [f''(x)]^2 dx$.

 \mathbf{V} The quadratic B-splines $B_{i}^{2}\left(x
ight) .$

V-a Derive the same explicit expression of $B_i^2(x)$

We already have

$$B_{i}^{0}\left(x\right) = \begin{cases} 1 & x \in (t_{i-1}, t_{i}] \\ 0 & otherwise \end{cases}$$

So by

$$B_{x}^{1} = \frac{x - t_{i-1}}{t_{i} - t_{i-1}} B_{i}^{0}(x) + \frac{t_{i+1} - x}{t_{i+1} - t_{i}} B_{i+1}^{0}(x).$$

We have

$$B_{i}^{1}(x) = \begin{cases} \frac{x - t_{i-1}}{t_{i} - t_{i-1}} & x \in (t_{i-1}, t_{i}] \\ \frac{t_{i+1} - x}{t_{i+1} - t_{i}} & x \in (t_{i}, t_{i+1}] \\ 0 & otherwise \end{cases}$$

Since $B_i^2(x) = \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} B_i^1(x) + \frac{t_{i+2} - x}{t_{i+2} - t_i} B_{i+1}^1(x)$ When $x \in (t_{i-1}, t_i], B_{i+1}^1 = 0$, we have

$$B_i^2(x) = \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} \frac{x - t_{i-1}}{t_i - t_{i-1}}.$$

When $x \in (t_{i+1}, t_{i+2}], B_i^1 = 0$, we have

$$B_i^2(x) = \frac{t_{i+2} - x}{t_{i+2} - t_i} \frac{t_{i+2} - x}{t_{i+2} - t_{i+1}}.$$

When $x \in (t_i, t_{i+1}]$, we have

$$B_{i}^{2}\left(x\right) = \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} \frac{t_{i+1} - x}{t_{i+1} - t_{i}} + \frac{t_{i+2} - x}{t_{i+2} - t_{i}} \frac{x - t_{i}}{t_{i+1} - t_{i}}.$$

So

$$B_{i}^{2}\left(x\right) = \begin{cases} \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} \frac{x - t_{i-1}}{t_{i} - t_{i-1}} & x \in (t_{i-1}, t_{i}] \\ \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} \frac{t_{i+1} - x}{t_{i+1} - t_{i}} + \frac{t_{i+2} - x}{t_{i+2} - t_{i}} \frac{x - t_{i}}{t_{i+1} - t_{i}} & x \in (t_{i}, t_{i+1}] \\ \frac{t_{i+2} - x}{t_{i+2} - t_{i}} \frac{t_{i+2} - x}{t_{i+2} - t_{i+1}} & x \in (t_{i+1}, t_{i+2}] \end{cases}$$

V-b Verify that $\frac{d}{dx}B_i^2(x)$ is continuous at t_i and t_{i+1} .

Since $B_i^2(x)$ are polynomials of degree 2, it is obvious that $\frac{d}{dx}B_i^2(x)$ is continuous on (t_{i-1},t_{i+2}) except t_i and t_{i+1} . When $x = t_i$, we have

$$\lim_{x \to t_i^+} \frac{d}{dx} B_i^2(x) = \lim_{x \to t_i^+} \frac{2(x - t_{i-1})}{(t_{i+1} - t_{i-1})(t_i - t_{i-1})} = \frac{2}{t_{i+1} - t_{i-1}}$$

$$\lim_{x \to t_i^-} \frac{d}{dx} B_i^2(x) = \lim_{x \to t_i^-} \frac{t_{i+1} + t_{i-1} - 2x}{(t_{i+1} - t_{i-1})(t_{i+1} - t_i)} + \frac{t_{i+2} + t_i - 2x}{(t_{i+2} - t_i)(t_{i+1} - t_i)}$$

$$= \frac{t_{i+1} + t_{i-1} - 2t_i}{(t_{i+1} - t_{i-1})(t_{i+1} - t_i)} + \frac{t_{i+2} + t_i - 2t_i}{(t_{i+2} - t_i)(t_{i+1} - t_i)} = \frac{2}{t_{i+1} - t_{i-1}}.$$

Because $\lim_{x \to t_i^+} \frac{d}{dx} B_i^2(x) = \lim_{x \to t_i^-} \frac{d}{dx} B_i^2(x)$, we have $\frac{d}{dx} B_i^2$ is continuous on t_i . Similarly we can prove that $\lim_{x \to t_{i+1}^+} \frac{d}{dx} B_i^2(x) = \lim_{x \to t_{i+1}^-} \frac{d}{dx} B_i^2(x) = \frac{-2}{t_{i+2} - t_i}$, which means $\frac{d}{dx} B_i^2$ is also continuous on t_{i+1} .

V-c Show that only one $x^* \in (t_{i-1}, t_{i+1})$ satisfies $\frac{d}{dx}B_i^2(x^*) = 0$.

When
$$x \in (t_{i-1}, t_i)$$
, $\frac{d}{dx}Bi_i^2(x) = \frac{2(x-t_{i-1})}{t_{i+1}-t_{i-1}} > 0$
When $x \in (t_{i+1}, t_{i+2})$, $\frac{d}{dx}B_i^2(x) = \frac{2(x-t_{i+2})}{t_{i+2}-t_{i+1}} < 0$

When
$$x \in (t_{i+1}, t_{i+2})$$
, $\frac{d}{dx}B_i^2(x) = \frac{2(x - t_{i+2})}{t_{i+2} - t_{i+1}} < 0$

Since $\frac{d}{dx}B_i^2(x)$ is continuous on (t_{i-1},t_{i+2}) and is a polynomial with degree 1, there exists only one $x^* \in (x_i,x_{i+1})$ satisfies that $\frac{d}{dx}B_i^2(x^*)=0$.

So we have

$$\frac{d}{dx}B_i^2(x^*) = \frac{t_{i+1} + t_{i-1} - 2x^*}{(t_{i+1} - t_{i-1})(t_{i+1} - t_i)} + \frac{t_{i+2} + t_i - 2x^*}{(t_{i+2} - t_i)(t_{i+2} - t_i)} = 0$$

$$\Longrightarrow (t_{i+1} + t_{i-1})(t_{i+2} - t_i) + (t_{i+2} + t_i)(t_{i+1} - t_{i-1}) - 2x^*(t_{i+2} - t_i + t_{i+1} - t_{i-1}) = 0$$

$$\Longrightarrow x^* = \frac{t_{i+1}t_{i+2} - t_{i-1}t_i}{t_{i+1} - t_{i-1} + t_{i+2} - t_i}.$$

V-d Consequently, show $B_i^2(x) \in [0,1)$.

Because $\lim_{x\to t_{i-1}}B_i^2\left(x\right)=B_i^2\left(t_{i+2}\right)=0$, $B_i^2\left(x\right)>0$ when $x\in\left(t_{i-1},x^*\right)$ and $B_i^2\left(x\right)<0$ when $x\in\left(x^*,t_{i+2}\right)$. We can easily get $B_i^2(x) \geq 0$.

By the property of $\frac{d}{dx}B_i^2(x)$, we can know that $B_i^2(x)$ will reach its maximum at x^* . Then we have

$$\frac{d}{dx}B_{i}^{2}(x^{*}) = \frac{(t_{i+1} - t_{i-1})(t_{i+2} - t_{i-1})(t_{i+1} - t_{i})(t_{i+1} - t_{i-1})}{(t_{i+1} - t_{i-1} + t_{i+2} - t_{i})^{2}(t_{i+1} - t_{i})(t_{i+1} - t_{i-1})} + \frac{(t_{i+2} - t_{i-1})(t_{i+2} - t_{i})(t_{i+2} - t_{i})(t_{i+2} - t_{i})(t_{i+2} - t_{i})(t_{i+2} - t_{i})}{(t_{i+2} - t_{i-1} + t_{i+2} - t_{i})^{2}(t_{i+2} - t_{i})(t_{i+1} - t_{i})}$$

$$= \frac{t_{i+2} - t_{i-1}}{t_{i+2} - t_{i-1} + t_{i+1} - t_{i}}$$

Since $t_{i+2} - t_{i-1} > 0$ and $t_{i+1} - t_i > 0$, we have $B_i^2(x^*) < 1$. So $B_i^2(x) \in [0,1)$.

V-e Plot $B_i^2(x)$ for $t_i = i$.

 ${
m VI} \ \ {
m Verify} \ (t_{i+2}-t_{i-1}) \left[t_{i-1},t_{i},t_{i+1},t_{i+2}
ight] (t-x)_{+}^{2} \ \ {
m algebraically}.$

Because

$$B_{i}^{0}(x) = \begin{cases} 1 & x(t_{i-1}, t_{i}] \\ 0 & otherwise \end{cases}$$
$$(t_{i} - t_{i-1}) [t_{i-1}, t_{i}] (t - x)_{+}^{0} = (x - t_{i-1})_{+}^{0} - (x - t_{i})_{+}^{0}$$
$$= \begin{cases} 1 & x \in (t_{i-1}, t_{i}] \\ 0 & otherwise \end{cases}$$

We can easily have $B_i^0(x) = (t_i - t_{i-1}) [t_{i-1}, t_i] (t-x)_+^0$ Before proving the equation, we firstly calculate the ddivided difference of (t-x)

$$\begin{split} (t_{i+1} - t_{i-1}) \left[t_{i-1}, t_i, t_{i+1} \right] (t-x)_+^1 &= (t_{i+1} - t_{i-1}) \left[t_{i-1} \right] (t-x) \left[t_{i-1}, t_i, t_{i+1} \right] (t-x)_+^0 \\ &\quad + (t_{i+1} - t_{i-1}) \left[t_{i-1}, t_i \right] (t-x) \left[t_i, t_{i+1} \right] (t-x)_+^0 \\ &= (t_{i-1} - x) \left[t_i, t_{i+1} \right] (t-x)_+^0 - (t_{i-1} - x) \left[t_{i-1}, t_i \right] (t-x)_+^0 \\ &\quad + (t_{i+1} - t_{i-1}) \left[t_i, t_{i+1} \right] (t-x)_+^0 \\ &= \frac{x - t_{i-1}}{t_i - t_{i-1}} B_i^0 \left(x \right) + \frac{t_{i+1} - x}{t_{i+1} - t_i} B_i^0 \left(x \right) \\ &= B_i^1 \left(x \right). \\ (t_{i+2} - t_{i-1}) \left[t_{i-1}, t_i, t_{i+1}, t_{i+2} \right] (t-x)_+^1 \\ &\quad + (t_{i+2} - t_{i-1}) \left[t_{i-1}, t_i \right] (t-x) \left[t_{i-1}, t_i, t_{i+1}, t_{i+2} \right] (t-x)_+^1 \\ &= (t_{i-1} - x) \left(\left[t_i, t_{i+1}, t_{i+2} \right] (t-x)_+^1 - \left[t_{i-1}, t_i, t_{i+2} \right] (t-x)_+^1 \right) \\ &\quad + (t_{i+2} - t_{i-1}) \left[t_i, t_{i+1}, t_{i+2} \right] (t-x)_+^1 \\ &= \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} B_i^1 \left(x \right) + \frac{t_{i+2} - x}{t_{i+2} - t_i} B_i^1 \left(x \right) \\ &= B_i^2 \left(x \right) \end{split}$$

So we have proved that $B_i^2(x) = (t_{i+2} - t_{i-1})[t_{i-1}, t_i, t_{i+1}, t_{i+2}](t-x)_+^2$.