unit testing diagram

class	method	stage	Input	output
MAGraph <t></t>	DFS()	a graph that does not have the time of the vertices, then the method is executed and it is checked if I arrange the times in the correct way	vertices with their connections	added the times well
MAGraph <t></t>	BFS(t)	To a graph with 6 vertices, the bfs is asked to calculate the distance from the origin vertex to the other vertices	vertices with their connections	correctly calculated the distances
MAGraph <t></t>	floydWarshallTest()	a graph is entered and then the method is executed. To verify that the method did it correctly, the solution matrix is compared with the matrix that returned the method	graph	the matrices are the same, so the method worked correctly
MAGraph <t></t>	dijkstraTest()	You enter a matrix and	graph	I calculate the path with the

_	T	1	,	,
		the origin node to find the shortest path with each pair of vertices. to know if the method worked, you are asked the minimum distance of a node that we know		lowest cost between each pair of vertices that connects the origin with the rest
MAGraph <t></t>	kruskalTest()	You enter a graph, you are asked to calculate the edges with less weight that connect the vertices. To find out if it was done correctly, the edges are added and it is evaluated if they are equal to the sum of the minor edges that we know	graph	since the sum of the edges are equal, the method worked correctly
ALGraph <t></t>	DFS()	a graph that does not have the time of the vertices, then the method is executed and it is checked if I arrange the times in the	vertices with their connections	added the times well

		correct way		
ALGraph <t></t>	BFS(t)	To a graph with 6 vertices, the bfs is asked to calculate the distance from the origin vertex to the other vertices	vertices with their connections	correctly calculated the distances
ALGraph <t></t>	floydWarshallTest()	a graph is entered and then the method is executed. To verify that the method did it correctly, the solution matrix is compared with the matrix that returned the method	graph	the matrices are the same, so the method worked correctly
ALGraph <t></t>	dijkstraTest()	You enter a matrix and the origin node to find the shortest path with each pair of vertices. to know if the method worked, you are asked the minimum distance of a node that we know	graph	I calculate the path with the lowest cost between each pair of vertices that connects the origin with the rest

ALGraph <t></t>	kruskalTest()	You enter a graph, you are asked to calculate the edges with less weight that connect the vertices. To	graph	since the sum of the edges are equal, the method worked correctly
		vertices. To find out if it was done correctly, the edges are added and it is evaluated if they are equal to the sum of the minor		
		edges that we know		