CHEM 102 PS-2 Chapter-13 Chemical Kinetics

- 1. Write the reaction rate expressions for the following reactions in terms of the disappearance of the reactants and the appearance of products.
- (a) $H_2(g)+O_2(g)\to 2H_2O(g)$
- (b) $4 \text{ NH}_3 (g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$
- 2. Consider the reaction $N_2 + 3 H_2 \rightarrow 2 NH_3$

Suppose that at a particular moment during the reaction molecular hydrogen is reacting at the rate of 0.074 M/s.

- (a) At what rate is ammonia being formed?
- (b) At what rate is molecular nitrogen reacting?
- 3. Use the data in Table 13.2 to calculate the rate of the reaction at the time when $[F_2] = 0.010$ M and $[C1O_2] = 0.020$ M

Table 13.2	Rate Data for the Reaction Between F ₂ and CiO ₂		
[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)	
1. 0.10	0.010	1.2×10^{-3}	
2. 0.10	0.040	4.8×10^{-3}	
3. 0.20	0.010	2.4×10^{-3}	

4. Consider the reaction X+Y→Z

The following data were obtained at 360 K. (a) determine the rate law and overall order of the reaction. (b) determine the initial rate of disappearance of X when the concentration of X is 0.30 M and that of Y is 0.40 M

Initial Rate of Disappearance of X (M/s)	[X] (M)	[Y] (M)
0.053	0.10	0.50
0.127	0.20	0.30
1.02	0.40	0.60
0.254	0.20	0.60
0.509	0.40	0.30

5. Consider the reaction $A \to B$. The rate of the reaction is 1.6 x10⁻² M/s when the concentration of A is 0.35 M. Calculate the rate constant if the reaction is: (a) first-order in A, and (b) second-order in A.

6. The thermal decomposition of phosphine (PH₃) into phosphorus and molecular hydrogen is a first-order

reaction: $4 \text{ PH}_3 \rightarrow \text{P}_4 + 6\text{H}_2$

The half-life of the reaction is 35.0 s at 680°C. Calculate

- (a) the first-order rate constant for the reaction
- (b) the time required for 95 percent of the phosphine to decompose.
- 7. The rate constant for the second-order reaction

```
2 \ NO_{2 \, (g)} \rightarrow 2NO_{\, (g)} \ + O_{2 \, (g)}
```

is 0.54 / M·s at 300°C. How long (in seconds) would it take for the concentration of NO₂ to decrease from 0.62 M to 0.28 M?

- 8. The rate constant of a first-order reaction is $4.60 \times 10^{24} \, \text{s}^{-1}$ at $350 \, ^{\circ}\text{C}$. If the activation energy is 104 kJ/mol, calculate the temperature at which its rate constant is $8.80 \times 10^{24} \, \text{s}^{-1}$.
- 9. Consider the first-order reaction

 $CH_3NC(g) \rightarrow CH_3CN(g)$

Given that the frequency factor and activation energy for the reaction are 3.98×10¹³ s⁻¹ and 161 kJ/mol, respectively, calculate the rate constant at 600 °C.

- 10. The reaction A + 2B \rightarrow products has the rate law, rate = k[A][B]³. If the concentration of B is doubled while that of A is unchanged, by what factor will the rate of reaction increase?
- A. 2
- B. 4
- C. 6
- D. 8 E. 9
- 11. A reaction was experimentally determined to follow the rate law, Rate = k[A] where k = 0.15 s⁻¹. Starting with [A]o = 0.225M, how many seconds will it take for [A]t = 0.0350M?

A. 3.4 x 10-2 s

B. 5.3 x 10-3 s

C. 12 s

D. 160 s

E. 1.3 s

12. When the concentrations of reactant molecules are increased, the rate of reaction increases.

The best explanation for this phenomenon is that as the reactant concentration increases,

- A. the average kinetic energy of molecules increases.
- B. the frequency of molecular collisions increases.
- C. the rate constant increases.
- D. the activation energy increases.
- E. the order of reaction increases.

- 13. The activation energy for the following first-order reaction is 102 kJ/mol.
- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
- The value of the rate constant (k) is 1.35×10^{-4} s⁻¹ at 35° C. What is the value of k at 0° C?
- A. $8.2 \times 10^{-7} \text{ s}^{-1}$
- B. $1.9 \times 10^{-5} \text{ s}^{-1}$
- $C.~4.2\times10^{-5}~s^{-1}$
- $D.~2.2 \times 10^{-2}~s^{-1}$
- E. none of these
- 14. A certain first-order reaction A \rightarrow B is 25% complete in 42 min at 25°C. What is the half-life of the reaction?
- A. 21 min
- B. 42 min
- C. 84 min
- D. 20 min
- E. 101 min
- 15. The following initial rate data apply to the reaction below.
- $F_2(g) + 2Cl_2O(g) \rightarrow 2FClO_2(g) + Cl_2(g)$
- Which of the following is the rate law (rate equation) for this reaction?
- A. rate = $k[F_2]^2[Cl_2O]^4$
- B. rate = $k[F_2]^2[Cl_2O]$
- C. rate = $k[F_2][Cl_2O]$
- D. rate = $k[F_2][Cl_2O]^2$
- E. rate = $k[F_2]^2[Cl_2O]^2$