

© Copyright itute.com 2006 Free download & print from www.itute.com Do not reproduce by other means

Mathematical Methods 3,4 Summary sheets

Distance between two points

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Mid-point =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Parallel lines, $m_1 = m_2$ Perpendicular lines,

$$m_1 m_2 = -1$$
 or $m_2 = -\frac{1}{m_1}$

Graphs of polynomial functions in factorised form:

Quadratics e.g. y = (x+1)(x-3)

Cubics e.g.
$$y = 3(x+1)(x-1)(x-2)$$

e.g.
$$y = (x+1)^2(x-1)$$

Quartics e.g.
$$y = (x+3)(x+1)(x-1)(x-2)$$

e.g.
$$y = (x+3)^2(x-1)(x-2)$$

e.g.
$$y = (x+2)^3(x-1)$$

Examples of power functions:

Exponential functions:

$$y = a^x$$
 where $a = 2, e, 10$

Logarithmic functions:

$$y = \log_a x$$
 where $a = 2, e, 10$

Trigonometric functions:

Transformations of y = f(x)

- (1) Vertical dilation (dilation away from the x-axis, dilation parallel to the y-axis) by factor k. y = kf(x)
- (2) Horizontal dilation (dilation away from the y-axis, dilation parallel to the x-axis) by

factor
$$\frac{1}{n}$$
. $y = f(nx)$

- (3) Reflection in the x-axis. y = -f(x)
- (4) Reflection in the y-axis. y = f(-x)
- (5) Vertical translation (translation parallel to the y-axis) by c units.

$$y = f(x) \pm c$$
, + up, – down.

(6) Horizontal translation (translation parallel to the x-axis) by b units.

$$y = f(x \pm b)$$
, + left, – right.

*Always carry out translations last in sketching graphs.

Example 1 Sketch y = -|2(x-1)| + 2

Example 2 Sketch $y = 2\sqrt{1-x}$.

Rewrite as $y = 2\sqrt{-(x-1)}$

Relations and functions:

A relation is a set of ordered pairs (points). If no two ordered pairs have the same first element, then the relation is a function.

- *Use the vertical line test to determine whether a relation is a function.
- *Use the horizontal line test to determine whether a function is one-to-one or many-to-
- *The inverse of a relation is given by its reflection in the line y = x.
- *The inverse of a one-to-one function is a function and is denoted by f^{-1} . The inverse of a many-to-one function is **not** a function and therefore cannot be called inverse

function, and f^{-1} cannot be used to denote the inverse.

Factorisation of polynomials:

(1) Check for common factors first.

(2) Difference of two squares,

e.g.
$$x^4 - 9 = (x^2)^2 - 3^2 = (x^2 - 3)(x^2 + 3)$$

= $(x - \sqrt{3})(x + \sqrt{3})(x^2 + 3)$

(3) Trinomials, by trial and error,

e.g.
$$2x^2 - x - 1 = (2x + 1)(x - 1)$$

(4) Difference of two cubes, e.g.

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

(5) Sum of two cubes, e.g. $8 + a^3 =$

$$2^3 + a^3 = (2+a)(4-2a+a^2)$$

(6) Grouping two and two,

e.g.
$$x^3 + 3x^2 + 3x + 1 = (x^3 + 1) + (3x^2 + 3x)$$

= $(x+1)(x^2 - x + 1) + 3x(x+1)$
= $(x+1)(x^2 - x + 1 + 3x)$
= $(x+1)(x^2 + 2x + 1) = (x+1)^3$

e.g.
$$x^2 - 2x - y^2 + 1$$

= $(x^2 - 2x + 1) - y^2 = (x - 1)^2 - y^2$
= $(x - 1 - y)(x - 1 + y)$

(8) Completing the square, e.g.

$$x^{2} + x - 1 = x^{2} + x + \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} - 1$$

$$= \left(x^{2} + x + \frac{1}{4}\right) - \frac{5}{4} = \left(x + \frac{1}{2}\right)^{2} - \left(\frac{\sqrt{5}}{2}\right)^{2}$$

$$= \left(x + \frac{1}{2} - \frac{\sqrt{5}}{2}\right)\left(x + \frac{1}{2} + \frac{\sqrt{5}}{2}\right)$$

(9) Factor theorem.

e.g.
$$P(x) = x^3 - 3x^2 + 3x - 1$$

 $P(-1) = (-1)^3 - 3(-1)^2 + 3(-1) - 1 \neq 0$
 $P(1) = 1^3 - 3(1)^2 + 3(1) - 1 = 0$
 $\therefore (x - 1)$ is a factor.

Long division:

$$\frac{x^{2} - 2x + 1}{x - 1)x^{3} - 3x^{2} + 3x - 1} - (x^{3} - x^{2})$$

$$-2x^{2} + 3x$$

$$-(-2x^{2} + 2x)$$

$$x - 1$$

$$-(x - 1)$$

$$\therefore P(x) = (x - 1)(x^{2} - 2x + 1) = (x - 1)^{3}$$

Remainder theorem:

e.g. when $P(x) = x^3 - 3x^2 + 3x - 1$ is divided by x + 2, the remainder is $P(-2) = (-2)^3 - 3(-2)^2 + 3(-2) - 1 = -11$ When it is divided by 2x - 3, the remainder is $P\left(\frac{3}{2}\right) = \frac{1}{8}$.

Quadratic formula:

Solutions of
$$ax^2 + bx + c = 0$$
 are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ .$$

Graphs of transformed trig. functions

e.g.
$$y = -2\cos\left(3x - \frac{\pi}{2}\right) + 1$$
, rewrite

equation as
$$y = -2\cos 3\left(x - \frac{\pi}{6}\right) + 1$$
.

The graph is obtained by reflecting it in the x-axis, dilating it vertically so that its amplitude becomes 2, dilating it horizontally so that its period becomes $\frac{2\pi}{2}$, translating

upwards by 1 and right by $\frac{\pi}{6}$

Solving trig. equations

e.g. Solve
$$\sin 2x = \frac{\sqrt{3}}{2}$$
, $0 \le x \le 2\pi$.

$$\therefore 0 \le 2x \le 4\pi$$
,

$$2x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{3} + 2\pi, \frac{2\pi}{3} + 2\pi$$

$$\therefore x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{7\pi}{6}, \frac{4\pi}{3}$$

e.g.
$$\sin \frac{x}{2} = \sqrt{3} \cos \frac{x}{2}$$
, $0 \le x \le 2\pi$.

$$0 \le \frac{x}{2} \le \pi$$
, $\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \sqrt{3}$, $\tan \frac{x}{2} = \sqrt{3}$,

$$\therefore \frac{x}{2} = \frac{\pi}{3} \; , \; \therefore x = \frac{2\pi}{3} \; .$$

Exact values for trig. functions:

x^{o} x	sin x	cos x	tan x	
0 0	0	1	0	
30 π/6	1/2	$\sqrt{3/2}$	1/√3	
45 π/4	$1/\sqrt{2}$	$1/\sqrt{2}$	1	
60 π/3	$\sqrt{3/2}$	1/2	$\sqrt{3}$	
90 π/2	1	0	undef	
120 2π/3	$\sqrt{3/2}$	-1/2	$-\sqrt{3}$	
135 $3\pi/4$	$1/\sqrt{2}$	$-1/\sqrt{2}$	-1	
150 5π/6	1/2	$-\sqrt{3/2}$	$-1/\sqrt{3}$	
180 π	0	-1	0	
210 7π/6	-1/2	$-\sqrt{3/2}$	1/√3	
225 5π/4	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1	
$240 \ 4\pi/3$	$-\sqrt{3/2}$	-1/2	$\sqrt{3}$	
$270 \ 3\pi/2$	-1	0	undef	
$300 \ 5\pi/3$	$-\sqrt{3/2}$	1/2	$-\sqrt{3}$	
315 $7\pi/4$	$-1/\sqrt{2}$	$1/\sqrt{2}$	-1	
$330\ 11\pi/6$	-1/2	$\sqrt{3/2}$	$-1/\sqrt{3}$	
360 2π	0	1	0	

Index laws:

$$a^{m}a^{n} = a^{m+n}, \frac{a^{m}}{a^{n}} = a^{m-n}, \left(a^{m}\right)^{n} = a^{mn}$$
$$(ab)^{n} = a^{n}b^{n}, \frac{1}{a^{n}} = a^{-n}, a^{m} = \frac{1}{a^{-m}}$$
$$a^{0} = 1, a^{\frac{1}{2}} = \sqrt{a}, a^{\frac{1}{n}} = \sqrt[n]{a}$$

Logarithm laws:

$$\log a + \log b = \log ab, \log a - \log b = \log \frac{a}{b}$$
$$\log a^b = b \log a, \log \frac{1}{b} = -\log b, \log_a a = 1$$
$$\log 1 = 0, \log 0 = undef, \log(neg) = undef$$

Change of base:

$$\log_a x = \frac{\log_b x}{\log_b a}$$
,
e.g. $\log_2 7 = \frac{\log_e 7}{\log_a 2} = 2.8$.

Exponential equations:

e.g.
$$2e^{3x} = 5$$
, $e^{3x} = 2.5$, $3x = \log_e 2.5$,
 $x = \frac{1}{3}\log_e 2.5$
e.g. $2e^{2x} - 3e^x - 2 = 0$,
 $2(e^x)^2 - 3(e^x) - 2 = 0$,
 $(2e^x + 1)(e^x - 2) = 0$, since $2e^x + 1 \neq 0$,
 $\therefore e^x - 2 = 0$, $e^x = 2$, $x = \log_e 2$.

Equations involving log:

e.g.
$$\log_e(1-2x)+1=0$$
, $\log_e(1-2x)=-1$, $1-2x=e^{-1}$, $2x=1-e^{-1}$, $x=\frac{1}{2}\left(1-\frac{1}{e}\right)$.
e.g. $\log_{10}(x-1)=1-\log_{10}(2x-1)$ $\log_{10}(x-1)+\log_{10}(2x-1)=1$ $\log_{10}(x-1)(2x-1)=1$, $(x-1)(2x-1)=10$, $2x^2-3x-9=0$, $(2x+3)(x-3)=0$, $x=-\frac{3}{2}$, 3. 3 is the only solution because $x=-\frac{3}{2}$ makes the log equation undefined.

Equation of inverse:

Interchange x and y in the equation to obtain the equation of the inverse. If possible express y in terms of x.

e.g.
$$y = 2(x-1)^2 + 1$$
, $x = 2(y-1)^2 + 1$,
 $2(y-1)^2 = x-1$, $(y-1)^2 = \frac{x-1}{2}$,
 $y = \pm \sqrt{\frac{x-1}{2}} + 1$.
e.g. $y = -\frac{2}{x-1} + 4$, $x = -\frac{2}{y-1} + 4$,
 $x - 4 = -\frac{2}{y-1}$, $y - 1 = -\frac{2}{x-4}$,
 $y = -\frac{2}{x-4} + 1$.

e.g.
$$y = -2e^{x-1} + 1$$
, $x = -2e^{y-1} + 1$,
 $2e^{y-1} = 1 - x$, $e^{y-1} = \frac{1 - x}{2}$,
 $y - 1 = \log_e\left(\frac{1 - x}{2}\right)$, $y = \log_e\left(\frac{1 - x}{2}\right) + 1$.
e.g. $y = -\log_e(1 - 2x) - 1$,

e.g.
$$y = -\log_e(1 - 2x) - 1$$
,
 $x = -\log_e(1 - 2y) - 1$,
 $\log_e(1 - 2y) = -(x + 1)$, $1 - 2y = e^{-(x + 1)}$
 $2y = 1 - e^{-(x + 1)}$, $y = \frac{1}{2}(1 - e^{-(x + 1)})$.

The binomial theorem:

e.g. Expand
$$(2x-1)^4$$

= ${}^4C_0(2x)^4(-1)^0 + {}^4C_1(2x)^3(-1)^1$
+ ${}^4C_2(2x)^2(-1)^2 + {}^4C_3(2x)^1(-1)^3$
+ ${}^4C_4(2x)^0(-1)^4 =$
e.g. Find the coefficient of x^2 in the expansion of $(2x-3)^5$.
The required term is ${}^5C_3(2x)^2(-3)^3$

Differentiation rules:

= $10(4x^2)(-27) = -1080x^2$. ∴ the coefficient of x^2 is -1080.

$$y = f(x) \qquad \frac{dy}{dx} = f'(x)$$

$ax^{n} \qquad anx^{n-1}$ $a(x+c)^{n} \qquad an(x+c)^{n-1}$ $a(bx+c)^{n} \qquad abn(bx+c)^{n-1}$ $a\sin x \qquad a\cos x$	
$a(bx+c)^n \qquad abn(bx+c)^{n-1}$ $a\sin x \qquad a\cos x$	
$a\sin x$ $a\cos x$	
usina	
. ()	
$a\sin(x+c)$ $a\cos(x+c)$	
$a\sin(bx+c)$ $ab\cos(bx+c)$	
$a\cos x$ $-a\sin x$	
$a\cos(x+c)$ $-a\sin(x+c)$	
$a\cos(bx+c)$ $-ab\sin(bx+c)$	
$a \tan x$ $a \sec^2 x$	
$a \tan(x+c)$ $a \sec^2(x+c)$	
$a \tan(bx+c)$ $ab \sec^2(bx+c)$	
ae^x ae^x	
ae^{x+c} ae^{x+c}	
ae^{bx+c} abe^{bx+c}	
$a \log_e x$ a	
\overline{x}	
$a \log_e bx$	
x	
$a \log_e(x+c)$ <u>a</u>	
x+c	
$a \log_e b(x+c)$ <u>a</u>	
x + c	
$a \log_e(bx+c)$ <u>ab</u>	
bx + c	

Differentiation rules:

The product rule: For the multiplication of two functions, y = u(x)v(x), e.g.

$$y = x^{2} \sin 2x, \text{ let } u = x^{2}, v = \sin 2x,$$

$$\frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$$

$$= (\sin 2x)(2x) + (x^{2})(2\cos 2x)$$

$$= (\sin 2x)(2x) + (x^2)(2\cos 2x)$$
$$= 2x(\sin 2x + x\cos 2x)$$

The quotient rule: For the division of functions,
$$y = \frac{u(x)}{v(x)}$$
, e.g. $y = \frac{\log_e x}{x}$,

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$= \frac{(x(\frac{1}{x}) - (\log_e x)(1)}{x^2} = \frac{1 - \log_e x}{x^2}$$

The chain rule: For composite functions, y = f(u(x)), e.g. $y = e^{\cos x}$.

Let
$$u = \cos x$$
, $y = e^u$, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
= $\left(e^u\right)^{-} \sin x = -e^{\cos x} \sin x$.

Finding stationary points: Let $\frac{dy}{dx} = 0$ and

solve for x and then y, the coordinates of the stationary point.

Nature of stationary point at x = a:

	Local	Local	Inflection			
	max.	min.	point			
<i>x</i> < <i>a</i>	$\frac{dy}{dx} > 0$	$\frac{dy}{dx} < 0$	$\frac{dy}{dx} > 0, (<0)$			
x = a	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} = 0$			
<i>x</i> > <i>a</i>	$\frac{dy}{dx} < 0$	$\frac{dy}{dx} > 0$	$\frac{dy}{dx} > 0, (< 0)$			

Equation of tangent and normal at x = a:

- 1) Find the y coordinate if it is not given.
- 2) Gradient of tangent $m_T = \frac{dy}{dx}$ at x = a.
- 3) Use $y y_1 = m_T(x x_1)$ to find equation of tangent.
- 4) Find gradient of normal $m_N = -\frac{1}{m_T}$.
- 5) Use $y y_1 = m_N(x x_1)$ to find equation of the normal.

Linear approximation:

To find the approx. value of a function, use $f(a+h) \approx f(a) + hf'(a)$, e.g. find the approx. value of $\sqrt{25.1}$. Let $f(x) = \sqrt{x}$, then $f'(x) = \frac{1}{2\sqrt{x}}$. Let a = 25 and h = 0.1, then $f(a+h) = \sqrt{25.1}$, $f(a) = \sqrt{25} = 5$, $f'(a) = \frac{1}{2\sqrt{25}} = 0.1$. $\therefore \sqrt{25.1} \approx 5 + 0.1 \times 0.1 = 5.01$

The approx. change in a function is = f(a+h) - f(a) = hf'(a), e.g. find the approx. change in $\cos x$ when x changes from $\frac{\pi}{2}$ to 1.6. Let $f(x) = \cos x$,

then
$$f'(x) = -\sin x$$
. Let $a = \frac{\pi}{2}$, then

$$f'(a) = -\sin\frac{\pi}{2} = -1$$
 and $h = 1.6 - \frac{\pi}{2} = 0.03$

Change in $\cos x = hf'(a) = 0.03 \times^{-} 1 = -0.03$

Rate of change: $\frac{dy}{dx}$ is the rate of change of

y with respect to x. $v = \frac{dx}{dt}$, velocity is the rate of change of position x with respect to time t. $a = \frac{dv}{dt}$, acceleration a is the rate of change of velocity v with respect to t.

Average rate of change: Given y = f(x), when x = a, y = f(a), when x = b, y = f(b), the average rate of change of y with respect to $x = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$.

Deducing the graph of gradient function from the graph of a function

Deducing the graph of function from the graph of anti-derivative function

Anti-differentiation (indefinite integrals):

f(x)

 $\int f(x)dx$

f(x)	$\int \int (x) dx$
ax^n for $n \neq -1$	$\frac{a}{n+1}x^{n+1}$
$a(x+c)^n, n \neq -1$	$\frac{a}{n+1}(x+c)^{n+1}$
$a(bx+c)^n$, $n \neq -1$	$\frac{a}{(n+1)b}(bx+c)^{n+1}$
a	$a\log_e x$, $x > 0$
\overline{x}	$a\log_e(-x), x < 0$
а	$a\log_e(x+c)$
$\overline{x+c}$	
$\frac{a}{bx+c}$	$\frac{a}{b}\log_e(bx+c)$
ae^x	ae ^x
ae^{x+c}	ae^{x+c}
ae^{bx+c}	$\frac{a}{b}e^{bx+c}$
$a \sin x$	$-a\cos x$
$a\sin(x+c)$	$-a\cos(x+c)$
$a\sin(bx+c)$	$-\frac{a}{b}\cos(bx+c)$
$a\cos x$	$a\sin x$
$a\cos(x+c)$	$a\sin(x+c)$
$a\cos(bx+c)$	$\frac{a}{b}\sin(bx+c)$

Definite integrals:

e.g.
$$\int_0^{\frac{\pi}{2}} \cos\left(x - \frac{\pi}{3}\right) dx = \left[\sin\left(x - \frac{\pi}{3}\right)\right]_0^{\frac{\pi}{2}}$$
$$= \sin\left(\frac{\pi}{2} - \frac{\pi}{3}\right) - \sin\left(0 - \frac{\pi}{3}\right)$$
$$= \sin\frac{\pi}{6} - \sin\left(-\frac{\pi}{3}\right) = \frac{1 + \sqrt{3}}{2}.$$

Properties of definite integrals:

1)
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

3)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
,

where a < c < b. 4) $\int_a^b f(x) dx = -\int_b^a f(x) dx$

4)
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
, 5) $\int_{a}^{a} f(x)dx = 0$.

Area 'under' curve:

Estimate area by left (or right) rectangles

Area between two curves:

Firstly find the x-coordinates of the intersecting points, a, b, then evaluate

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$
. Always the function

above minus the function below. For three intersecting points:

$$A = \int_{a}^{b} f(x) - g(x) dx + \int_{b}^{c} [g(x) - f(x)] dx$$

Discrete probability distributions:

In general, in the form of a table,

x	x_1	x_2	x_3	
$\Pr(X=x)$	p_1	p_2	p_3	

 $p_1, p_2, p_3,...$ have values from 0 to 1 and

$$p_1 + p_2 + p_3 + \dots = 1$$
.

$$\mu = E(X) = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots$$

$$Var(X) = x_1^2 p_1 + x_2^2 p_2 + x_3^2 p_3 + \dots - \mu^2$$

$$\sigma = sd(X) = \sqrt{Var(X)}$$

If random variable Y = aX + b,

$$E(Y) = aE(X) + b$$
, $Var(Y) = a^2 \times Var(X)$
and $sd(Y) = a \times sd(X)$.

95% probability interval : $(\mu - 2\delta, \mu + 2\delta)$

Conditional prob:
$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$
.

Binomial distributions are examples of discrete prob. distributions. Sampling with replacement has a binomial distribution. Number of trials = n. In a single trial, prob. of success = p, prob. of failure = q = 1 - p. The random variable X is the number of successes in the n trials. The binomial dist.

is
$$Pr(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$$
, $x = 0,1,2,...$ with

$$\mu = np$$
 and $\sigma = \sqrt{npq} = \sqrt{np(1-p)}$.

** Effects of increasing n on the graph of a binomial distribution. (1) more points

- (2) lower probability for each x value
- (3) becoming symmetrical, bell shape.
- ** Effects of changing p on the graph of a binomial distribution. (1) bell shape when p = 0.5 (2) positively skewed if p < 0.5

(3) negatively skewed if p > 0.5

Graphics calculator:

Pr(X = a) = binompdf(n, p, a)

$$\Pr(X \le a) = binomcdf(n, p, a)$$

$$Pr(X < a) = binomcdf(n, p, a - 1)$$

$$Pr(X \ge a) = 1 - binomcdf(n, p, a - 1)$$

$$Pr(X > a) = 1 - binomcdf(n, p, a)$$

$$Pr(a \le X \le b) = binomcdf(n, p, b)$$

$$-binomcdf(n, p, a-1)$$

Probability density functions f(x) for

For f(x) to be a probability density function, f(x) > 0 and

$$\Pr(a < X < b) = \int_{a}^{b} f(x) dx = 1.$$

$$\Pr(X < c) = \int_{c}^{c} f(x) dx$$
, $\Pr(X > c) = \int_{c}^{b} f(x) dx$

Normal distributions are continuous prob. distributions. The graph of a normal dist. has a bell shape and the area under the graph represents probability. Total area = 1. $N_1(\mu_1, \sigma^2)$, $N_2(\mu_2, \sigma^2)$.

$$\mu_1 < \mu_2$$

 $N_1(\mu, \sigma_1^2), N_2(\mu, \sigma_2^2).$

The standard normal distribution:

has $\mu = 0$ and $\sigma = 1$. N(0,1)

Graphics calculator: Finding probability, $Pr(X < a) = normalcdf(-E99, a, \mu, \sigma)$

$$Pr(X > a) = normalcdf(a, E99, \mu, \sigma)$$

$$Pr(a < X < b) = normalcdf(a, b, \mu, \sigma)$$

Finding quantile, e.g. given Pr(X < x) = 0.7

 $x = invNorn(0.7, \mu, \sigma)$.

Given Pr(X > x) = 0.7, then

$$Pr(X < x) = 1 - 0.7 = 0.3$$
 and

$$x = invNorm(0.3, \mu, \sigma).$$

To find μ and/or σ , use $Z = \frac{X - \mu}{\sigma}$ to

convert X to Z first, e.g. find μ given $\sigma = 2$

and
$$Pr(X < 4) = 0.8$$
. $Pr(Z < \frac{4 - \mu}{2}) = 0.8$,

$$\therefore \frac{4-\mu}{2} = invNorm(0.8) = 0.8416$$
,

$$\therefore \mu = 2.3168$$
.