

수소융합얼라이언스추진단(H2KOREA)

[연구 용역 개요]

과제명	- 수송용 수소 연료가격 설정 및 수급관리 방안 연구						
기간	- 2017년 10월 30일 ~ 2017년 12월 22일 (총 2개월)						
목적	- 수소차 보급 활성화를 위해 수소충전소 일괄 수소공급체계 및 수소가격 설정 방안 도출						
과제 내용	- 국내외 수소 생산 및 유통 현황 분석 - 수소가격 및 비용 분석 - 수소 가격체계 확립 방안 - 안정적 수소 수급관리 방안						
비용	- 47백만 원(부가가치세 포함)						

[요약]

(개요) 본 연구 용역은 지난 '15년 수소차보급 및 시장활성화 계획 중 적정 수소가격 설정과 수급관계 방안 마련을 위해 작성되었습니다.

(현황) 현재 수송용 수소연료의 시장 가격은 존재하지 않습니다. 공급자는 5만 원/kg 이상을, 소비자는 2천 원/kg 이하 (전기차 수준)를 요구하고 있기 때문입니다. 따라서 수송용 수소연료 가격을 설정하기 위해서는, 정부가 적정수준의 수소연료 가격 가이드라인을 제안하고 이를 달성·유지하기 위한 수급관리를 수행해야 할 것으로 보입니다.

(적정가격 설정 및 수급관리 방안) 수소연료의 적정가격은 디젤과 HEV 연료가격 사이인 6~8천원/kg 수준이며 이 중 7천원/kg이 공급자와 소비자(가솔린, 디젤)간 균형을 맞출 수 있는 가격으로 판단됩니다. 정부는 7천원/kg을 적정 가격 가이드라인으로 발표하고 수소충전소 사업자들이 7천원/kg을 중심으로 가격을 형성시키는 방식이 적절합니다. 이 가이드라인을 실현시키기 위해서는 수소충전소에 5천원/kg 이하로 수소를 공급할 필요가 있습니다. 비용 분석 결과 충분히 달성가능한 공급가격으로 판단됩니다. 다만, 시장의 질서와 인프라 확충이 우선되어야 하기 때문에 전문공공기관(가스공사)의 유통시장 진출이 필요합니다. 가스공사의 수소 유통센터 구축 및 운영이 요구되고 있습니다.

수소연료를 대량 소비처를 발굴하기 위해서는 택시, 버스의 활성화가 필요합니다. 하지만 택시, 버스의 수소연료 가격은 기존 연료보다 높기 때문에 정부 가이드라인인 7천원/kg을 기준으로 정부가 약 20% 수준을 보조해야 합니다.

(관련 정책) 우선 수소충전소의 상업화를 선언할 필요가 있습니다. 일본은 미라이 출시를 계기로 기존 실증 충전소를 상업충전소로 전환하는 선언('14년)을 한 사례가 있습니다. 현재 지자체가 운영하는 수소충전소는 상업화를 위한 제도를 정비해야 합니다. 수소충전소의 구축 및 운영 비용을 낮추기 위한 기술 개발 및 실증사업도 지속해야 합니다. 특히 수소 가격 및 수급 정책을 연착륙시키기 위해서는 지자체 및 민간 충전사업자와의 긴밀한 협조가 필요합니다.

[목 차]

I. 연구 배경 ···································	V. 수송용 수소연료의 시상 가격 확립 체계 ·······26
Ⅱ. 수송용 수소수요 전망4	VI. 적정가격의 설정 ······ 27
III. 국내 수소산업 현황8 - 개요	- 개요 - 충전소 공급가격 - 소비자 판매가격
- 생산 - 운송 - 판매	VII. 적정가격의 구축 ······ 30 - 개요 - 가격정책 추진 - 민관 손실분담
Ⅳ. 수송용 수소연료 가격의 구성 ··· 20 - 개요 - 소비자가격	VIII. 기대효과 ······· 41
- 공급자가격	결론 : 정책(안) 제안42

I. 연구 배경

- ❖ 지난 2015년 정부가 발표한 '수소차 보급 및 시장 활성화 계획'에 언급한 적정 수소가격 설정 등에 근거
- ❖ 적정 수소가격을 설정하고 이를 실현하기 위한 수급 관리 방안 마련 필요

수소차 보급 및 시장 활성화 계획('15년) : 관계부처 합동

┗┗ 핵심 기술 개발

2 수소충전소 확충

<mark>3</mark> 제도 정비

4 민간 보급 활성화

인센티브

충전소 부품 국산화율 제고

- 국산화율 80% 제고
- 모듈화 기술 제고

충전소 설치 및 증설 보조

- 설치 보조금 지급
- 증설 보조금 지금

보호시설 이격거리 완화

- 방호벽-보호시설 이격 거리 재설정 수소차 구매 지원

- 보조금 지원
- 가격 인하 유도

중점보급 도시 운영

- 대상 선정 기준 마련
- 수소 공급 여건, 지자체 의지 고려

수소차 개발 및 성능 제고

- 연비 10% 향상
- 수소버스 개발

수소 충전방식 다원화

- 부생수소 설비 200km 이내 설치 집중
- CNG 개질용 충전소 설치
- 풍력발전기 전기 이용

융복합 수소충전소 규정 신설

- 설치 기준 마련
- 융복합 충전소 특례 제정

수소차 세금 감경

- 관계부처와 협의

공공기관 수소 구매 · 관리

- 수소 대량 구입
- 안정 공급 및 적정가격 유지

튜브 트레일러 용기개발

- 500기압용 개발
- Type 3, 4 개발

고압가스 복합 용기기준 신설

- Type 3, 4 기준 신설
- 해외 부품 사용 특례 제정

적정 수소 가격 설정

- 내연기관차 수준의 운영비 확보
- 적정 수소가격 설정

수소차 구매 지자체 지원

- 구매보조금 추가
- 주차요금, 통행료 등 감면 마련

I. 연구 배경

- ❖ '15년 수소전기차와 수소충전소 보급 로드맵을 발표 후, 미세먼지 대책 발표 시 로드맵을 수정
- ❖ 수소충전소는 로드맵 대비 확대하는, 반면 수소전기차는 보급 대수를 축소하는 등 정책의 일관성 부족 현상 발생
- ❖ 이는 수소전기차와 수소충전소를 연결하는 '수소연료'에 대한 정책 부재가 낳은 현상으로 이해

I. 연구 배경

- ❖ 소비자는 전기차와 비슷한 수준 가격을 요구하고 있는 반면, 공급자는 막대한 투자와 높은 비용을 이유로 높은 가격을 요구 中
- ❖ 양자 간의 시장 가격이 현재 존재하지 않기 때문에 그 갭(GAP)을 메울 수 있는 정책 및 정책적인 가격 가이드라인 제시 필요
- ❖ 본 연구에서는 소비자-공급자 가격간 차이(GAP)를 분석하고 해소방안을 제시하고자 함

- ❖ 수소전기차 보급 로드맵을 기반으로 승용과 택시, 버스 등 용도별로 수요가 다원화되는 것을 가정시 '30년 16.8만 톤 수요 전망
- ❖ 보급 대수 증가는 승용이 주도하지만 수소 수요 증가를 견인하는 것은 택시와 버스로, 37.5% 비중을 차지할 전망

가정 : 1. 수소전기차 보급계획('15) 기준, 2. '25년 10만 대, '30년 64만 대 달성, 3. '30년 택시, 버스 신차의 50%를 수소차로 대체, 4. 택시, 버스 운행일/연간은 330일 기준

Ⅱ. 수송용 수소수요 전망

- ❖ 택시와 버스가 수소 수요 증가를 견인하는 이유는 긴 주행거리로 인한 많은 연료 소비량에 기인
- ❖ 법인 택시는 일반 승용의 10.4배, 버스는 53.7배, 수소를 더 많이 소비
- ❖ 택시와 버스는 수소충전소의 가동률을 제고하는 수단으로 유용

- ❖ 지역별로 수소수요 변화를 보면, 크게 수요 선도지역과 대량수요 지역, 수요 확산 지역으로 구분 가능
- ❖ 수요 선도지역은 초기 수소 수요를 견인하고 대량수요 지역은 본격적인 성장기를 주도할 전망

- 1. 구분 기준 : 수소공급 용이성, 지자체 적극성, 수요 잠재성
- 2. 지역 구분: (선도) 울산, 경남(창원), 광주, 충남, 부산 / (대량 수요) 서울, 인천, 경기, 대전, 세종, 대구 / (확산) 강원, 충북, 경북, 전북, 전남, 제주

II. 수송용 수소수요 전망

- ❖ 보급 초기는 수요선도지역의 수요 비중이 91%에 육박하지만 성장기에 들면 대량수요지역이 59.7%에 이를 전망
- ❖ 성숙기에는 수요 확산 지역에서 수요가 증가해 수요 선도지역의 수요를 앞설 것으로 예상

- 1. (보급 초기) 수소공급이 용이하고 지자체의 수소충전소 보급의지가 높은 지역을 중심으로 초기 수요 확대 선도
- 2. (성장기) 초기 수요 선도 지역을 모델로, 대도시를 중심으로 한 수요 잠재성이 높은 지역이 수소 수요 성장 주도, 수소의 대량 수요 시대 개막
- 3. (성숙기) 수소충전소가 전국 단위로 확산되면서 수소차 일반 보급 시대 도래

- ❖ 총 생산되는 수소생산량은 190만 톤이지만 외부 공급양은 26만 톤 수준이며 대부분 파이프라인을 통해 운송
- 정유공정에서 생산된 부생수소는 대부분 자체 공정에 재투입되고 있으며 납사, 천연가스를 통해 생산된 수소가 외부에 공급

- 1) 정유공정 : 납사를 방향족 화합물로 전환하는 납사개질 공정에서 수소 생산, 하지만 탈황공정 공정에서 그 이상의 수소를 필요로 해 외부 공급여력 부족
- 2) 납사분해 : 납사에서 에틸렌과 프로필렌을 생산, 3) 수소정제기업(덕양, 에어리퀴드 등)에서 천연가스 개질을 통해 수소를 제조
- 4) 클로르-알카리 공정 : 염소와 가성소다 생산(염소 생산을 위한 바닷물 분해시 수소가 부산물로 발생)

❖ 덕양, SPG 등 수소 정제 및 운송업체들이 석유화학업체로부터 수소 원료를 공급받아 정유, 전자소재, 석유화학업체에 판매

- ❖ 울산, 여수, 대산 등 3개 석유화학단지를 중심으로 수소가 생산되며, 약 40만 톤(수소차 2백만 대)의 추가 생산이 가능
- ❖ 부생 설비보다 천연가스 개질 설비의 생산 여력이 크기 때문에 추가적인 생산은 천연가스 개질을 통해 이루어질 전망
- ❖ 생산설비가 특정지역에 집중되어 있어 수송용 연료로 사용되기 위해서는 생산, 운송, 저장 등 추가적인 투자 필요

- ❖ 현재 천연가스, LPG 등의 개질과 부생가스에서 추출하는 생산방식이 경제적이며 향후 물-전기분해 방식의 비용이 개선될 전망
- ❖ 생산용량이 증가할수록 설비 비용 및 운영비가 절감되면서 생산비용이 크게 하락

생산 방식에 따른 비용

생산 용량(천연가스 개질)에 따른 비용

- ❖ 수소 파이프라인은 약 200km 정도 구축되어 있는데, 석유화학단지를 중심으로 집중적으로 형성
- ❖ 업체별로는 덕양, SPG, SDG, 에어리퀴드 4개사가 대부분 보유

	합계	울산	여수	대산·서산	안산	군산
연장거리 (km)	192.6 (100%)	99.0 (51.4%)	63.3 (32.8%)	13.6 (7.1%)	12.9 (6.6%)	3.8 (2.0%)
덕양	83.3	42.4	33.1	4.0		3.8
SPG	59.3	26.6	10.2	9.6	12.9	
SDG	30.0	30.0				
에어리퀴드	20.0		20.0			

구축 사례 (울산)

[수소배관 매설 모습]

- 깊이 1.2m, 구경 15cm

구축 비용

10억 원 / km (울산기준)

- ❖ 현재 200bar, Type1의 튜브 트레일러가 일반적으로 사용되고 있으며 450bar 튜브 개발 시 운영비 대폭 절감 가능
- ❖ 운송비는 유류비, 운영비, 인건비로 구성되며 충전설비 구축비, 카트리지 임대비 등 '튜브 운영비용'이 추가로 발생

- ❖ 액화 방식은 대기압에서 대용량 저장이 가능 → 탱크롤리를 사용한 순환공급이 가능해 고압운송 대비 운송비 대폭 절감
- ❖ 대량 수요 대응 및 고압관련 규제 회피가 가능해 대도시 內 수소 공급에 적합

액화 방식 개요

수소생산 액화 플랜트

액화 유통 · 저장

공급

(충전소)

액화 vs 고압가스

압력: 2bar

저장용량:

4.7톤

압력: 300bar

저장용량:

4.4톤

압축 방식

펌프 방식

기화 → 압축 → 공급 (고압가스)

Crvo pump

가압 → 기화 / 공급 (액체)

주요 장점

도심 내 설치 용이 • 충전소 내 액체펌프 방식 적용시 고압설비가 불필요

[독일(린데)]

III. 국내 수소산업 현황 ② 운송 : 비용

- ❖ 회당 운송 용량이 증가하면 운송비용도 빠르게 감소하기 때문에 대용량 운송방식의 개발 및 상용화 필요
- ❖ 초기에는 고압가스 운송이 대부분을 차지, 성장기에는 고압과 액화 방식의 결합, 성숙기에는 파이프라인 운송도 추가

운송 용량에 따른 비용

복합용기 강철 복합용기 초저온탱크 운송 타입 (CRYO) (Type1) (Type4) (Type4) 압력 165 250 700 12 (bar) 2,856 (kg) 1,560 운송량 /회 414 108 4.62 (천 유로/kg) 운송 비용 1.66 1.10 0.35

운송 용량 및 거리에 따른 최적운송 방식

- ❖ 국내 수소충전소는 '05년부터 구축되기 시작해 올해까지 총 12기가 구축되었으며 총 공급 용량은 2,790kg/일 수준
- ❖ 내년 총 16기가 구축될 예정으로 총 공급 용량은 6,050kg으로, 지금까지 구축된 충전소의 총량보다 많을 예정

국내 수소충전소 구축 과정

- ❖ 수소충전소는 부지, 건설, 설비로 구분되며 설비는 다시 압축기, 저장용기, 칠러, 디스펜서, 운영제어시스템으로 구성
- ❖ 현재 구축되어 있는 수소충전소 기준으로 총 구축비용은 26~31억원 소요, 국산화율도 매우 낮은 수준

	구성	내용	구축 비용	국산화율	충남 내포충전소
	부지	• 이격거리, 부지용도 등 충족	- 3억 ~		
건설		• 지반공사, 사무실, 방호벽, 전기 및 수도공사 등	- 5~8억		
	설비		- 18~20억		
	압축기	다이어프램, 피스톤 등 수소압축고장 우려 2개 설치	• 7억	• 0% (피스톤타입)	
	저장용기	400bar(승압식), 820bar 이상(차압식)25kg/개, type1, 총 6개 구축	• 3~4억	• 25%	
	칠러	• 고압충전시 발생하는 열을 냉각 • -60도 유지	• 2억	• 20%	
	디스펜서	• 고압피팅, 유량계, 열교환기 등	• 4~5억	• 40%	
	시스템	• 제어장치, 밸브류, 모니터링 등	• 2억	• 50%	Pontarum Coop III
	총비용		- 26~31억		

- ❖ 수소충전소의 구축 방식이 조립형 → 팩키지형 → 복합형으로 개선되면서 수소충전소 구축 비용이 크게 하락할 전망
- ❖ 수소충전소 용량이 160kg/일에서 450kg/일 증가시 급격히 비용이 하락한 후 점진적으로 감소

수소충전소 구축 방식에 따른 비용

팩키지형 복합형/ 조립형 모델 대량발주 모델 28 (억 원) 부지 3 55.3% 건설 5 19.5 1.5 12.5 20 설비 15 10 • 부품별 구매 후 • 부품 통합구매 • 기존 부지, 건물, 인력 부지 내 설치 단가 인하 • 메용발주로 설비 • 넓은 부지, 높은 • 소형화로 부지 인건비 축소 단가 인하

수소충전소 용량에 따른 수소가격

자료) NREL(2013), "Hydrogen station cost estimates"

- ❖ 수송용 수소연료 가격은 소비자 (구입)가격, 공급자 (판매)가격, 시장가격으로 구성
- ❖ 시장가격은 정부가 개입하지 않아도 수요와 공급이 만나는 경쟁가격을 의미

- ❖ 수송용 연료시장에서 수소연료가 경쟁력을 갖추기 위해서는 최소한 디젤에서 HEV연료가격 수준의 범위 내에 가격 설정 필요
- ❖ 국내 소비자들은 친환경차 구매 시 경제성을 가장 중요시하기 때문에 가격 수준이 수요에 가장 큰 영향

친환경차(HEV) 구매의향 연료비 절감 69.8% 높은 연비 효율 65.1% 49.2% 3 정부혜택 친환경성 43.2% 이용 편의성 5 16.4% 6 정숙성 16.4% 13.5% 새로운 이용 경험 친환경차 구매자의 대부분이 '경제성'을 가장 중시

조건 : 1) 수소차는 신모델 FE 적용, 2) 연료가격 기준 시점(2017. 8)

자료 : 트렌드 모니터 주 : 표본 731명, 중복 응답

- ❖ 수소차 시장 초기에 정부 지원을 배제할 경우 수소연료의 소비자 가격은 5만원/kg 이상으로 사실상 판매 불가
- ❖ 공급자 가격은 제조가격과 공급가격, 판매가격으로 구성되며 수소충전소의 판매 비용이 높은 것이 높은 판매가격의 주요 원인

- ❖ 제조가격은 원료비, 운송비는 운영비, 판매비는 자본비가 가장 큰 비중을 차지
- ❖ 수소 수요 확대에 따른 가동률 개선 시 가격하락 효과가 가장 크며 정부보조금과 원료가격 인하 등의 순서로 영향
- ❖ 운송거리는 당초 예상과 달리 운송비용에 큰 영향을 미치지 못하는 것으로 분석

- ❖ 가격변화 요인 감안 시 가격은 5만 5,019원에서 8,184원까지 하락
- ❖ 수소충전소 및 튜브 용량 증가, 정부지원 확대, 수소연료의 대량 · 일괄 구매 방식 도입 등으로 가격은 추가적인 하락 가능

- ❖ 기본 모델에 충전소 및 튜브트레일러 용량 확대, 운영비 지원 포함 시 수소공급가격은 5,520원/kg까지 추가 하락
- ❖ 향후 충전소 용량이 1,000kg/d까지 확대되고, 액화 및 파이프라인 운송이 도입되며 대량·일괄 구매 및 운송 시 더욱 하락 예상

- ❖ 현재(AS-IS)와 향후(TO-BE) 공급자 가격의 차이는 가동률 제고, 보조금 지원, 용량 확대, 수급관리 등의 방식으로 극복 가능
- ❖ 보조금은 규모에서는 축소되지만 일정 수준의 가동률 확보까지 지속되고 수급관리 등 지원 방식의 다원화 필요

V. 수송용 수소연료의 시장 가격 확립 체계

- ❖ 수송용 수소연료의 시장 가격 확립은 우선 현재 공급자 가격을 적정가격 수준으로 낮춰 초기 수요를 촉진하고, 공급업체들의 가동률 개선, 용량증가, 수익성 개선 및 투자 유발 등을 통해 점진적으로 접근하는 것이 필요
- ❖ 이 과정에서 공급업체들은 '죽음의 계곡(The Death of Valley)'을 넘어야 하는 과제가 발생

- ❖ 대량 수요가 창출되는 지역과 시점을 기준으로 한 7천원 제안이 적합한 것으로 판단되며 지역과 시점에 따라 범위 내 차별화
- ❖ 적정가격 구축을 위해서는 충전소 공급가격을 5천원/kg 이하로 유지
- ❖ 대규모 신규 투자가 요구되는 '초기'와 '본격성장기'에 공공기관이 민간을 지원하는 협력 모델 개발 필요

- ❖ 수요선도 지역에는 공급 비용이 4천원 이하이지만 타지역은 신규투자, 유통량 등의 차이로 비용이 상승
- ❖ 대량수요 지역을 기준으로 한 5천원이 전지역 공급가격으로 적합하다고 판단되며 유통센터를 통한 지역간 공급비용 조정 필요

		생산		유통	고그비오		
지역	생산설비	생산규모	신규투 자	TT	액화	파이프	공급비용
수요 선도 지역	기존 설비 + PSA(정제)	[대 용량] - 1만 m³/h 이상 - 수송용 연료는 '파생' 수요	\]\	340kg/호	5톤/일	100km (울산-부산- 창원)	4천원 이하
대량 수요 지역	선규 설비 + 천연가스 개질	[중·대 용량] - 1천 ~ 1만 m³/h - 수송용 연료가 '메인' 수요	*	950kg/호	20톤/일		5천원
주변 수요 지역	신규 설비 + 수전해 등	[소·중 용량] - ~1천 m³/h - 신재생에너지 활용 등	中	340kg/호			5천원 이상

- ❖ 소비자 가격이 6천원일 경우, 충전소의 초기 손실규모가 확대되기 때문에 초기에 민간 참여 위축, 공공기관 참여 필수
- ❖ 8천원일 경우, 초기 손실 축소로 민간의 참여 부담이 완화되지만 손실기간 장기화로 사업 지속 불투명
- ❖ 7천원은 공공과 민간의 협력모델 구축 가능(초기 공공기관 주도, 회복기 민간 주도) → 7천원 수준의 가이드라인 제시 필요

VII. 적정가격 구축 개요

- ❖ 우선 적정가격을 설정하고 이를 운용하는 가격정책을 수립해야 하며, 이에 따른 업계 손실을 분담하는 방안도 마련 필요
- ❖ 죽음의 계곡을 넘기 위해서는 민간업체간 손실 분담 만으로 부족하기 때문에 정부도 손실 분담에 참여 필요

- ❖ 정부의 가격정책은 크게 가격을 직접 규제하는 방식과 가격체계 형성을 지원하는 방식으로 구분
- 정부의 지원 방식은 직접지원, 간접지원, 가격유인 등의 방향으로 전개

- ❖ 천연가스 가격은 공공성, 독점 등의 사업 성격으로 정부가 법적 근거를 기반으로 직접 가격을 규제
- ❖ 수소연료는 천연가스와 달리 독점성이 높지 않아 非규제 서비스에 해당되기 때문에 가격규제 방식을 적용에 한계

- ❖ 적정가격 설정시 연료보조를 받는 택시. 버스연료보다 가격이 높아 경쟁력이 없음
- ❖ 택시, 버스는 대용량 연료소비 수송수단으로 기존 LPG, CNG 수준의 직접적인 연료 보조 필요
- ❖ 정책 목표 달성에 영향이 큰 특정 영역에 한정적으로 가격 직접 지원 적용 필요(시장 구조 왜곡 가능성 有)

- ❖ 일본 정부는 수소충전소에 대해 구축 방식, 규모, 투자비용 등 다양한 기준으로 지원 중이며 대용량 생산, 운송 설비도 지원
- ❖ 우리나라는 수소충전소에 대해서 단순한 방식으로 지원 중이며 생산, 운송 설비로 지원 분야 확대 필요
- ❖ 지원 대상도 일본은 민간 사업에 대해 지원을 하는 반면, 우리나라는 비영리단체인 지자체를 지원

		일본의 수소인프라 지원								국내 수소인프라 지원			
		개질방식 충 전소 (On-Site)				튜브트레일러 방식 충전소 (Off-Site)			이동형				
	형태	패키	지형	非 패	키지형	패키	지형	非 패፣	기지형	316		튜브트레일러 방식 충전소 (Off-Site)	
판매 (충전소)		중형	소형	중형	소형	중형	소형	중형	소형	중형	소형		
	보조율	2/3 1/2		2/3		1/2		2/3		1/2			
	보조금 상한(억엔)	2.9	2.2	2.9	2.2	2.5	1.8	2.5	1.8	2.5	1.8	15억 원	
	형태	대용량 수소 생산 설비					액화 수소 설비			설비			
생산/ 운송	보조율 (%)			1/2			1/2					X	
	보조금 상한(억엔)	6					4						
보조금	민간						지자체						

- ❖ 정부가 직접 시장에 영향을 미치기 보다는 공공기관의 참여를 통해 가격 가이드라인을 제시하고 민간을 유인하는 방안
- ❖ 전기차 충전요금의 경우 전력 공급가격을 낮추고 환경공단을 통해 가격 가이드라인 제시, 민간업체들을 가이드라인으로 유인
- ❖ 수소연료도 수급관리를 통해 공급가격을 낮추고 공공기관을 통해 가격 가이드라인을 제시하는 방안 적용 필요

[참고] 수급 관리 (유통센터의 구축)

- ❖ 대량·일괄 구매 및 운송과 같은 수급관리를 위해 수송용 수소연료 유통센터 구축 필요
- ❖ 개별 공급(정제)업체와 개별 충전소간 계약하는 현행 방식으로는 전국적인 수소연료 가격체계 구축에 한계
- ❖ 유통센터가 개별 충전소의 구매 및 운송을 대행함으로써 전국적으로 유사한 수준의 공급가격 체계 구축 필요

- ❖ 수송용 수소연료의 가격은 소비자가격과 공급자가격간 차이가 커서, 시장 메커니즘에 의한 가격형성이 사실상 불가능
- ❖ 정부가 적정 수준의 가격 가이드라인을 '제안'하고 이를 '달성' 및 '유지', '보완'하기 위한 정책을 종합적으로 전개 필요

- 정부는 SPC를 통해 산업 전반 지원

- ❖ 해외에서는 대규모 민간업체간 협력을 통해 SPC(특수목적법인)를 형성하고 손실을 분담하는 방식 활용
- ❖ 국내에서는 전문 공공기관이 초기 투자를 주도하고 민간이 협력하는 방식이 활용
- ❖ 민간업체와 공공기관 간 SPC를 구성하여 민간의 참여를 촉진시키는 방식도 활용

- 정부는 공기업을 통해 산업 전반 지원

- 공공기관의 참여를 통해 지원

[참고] 국내외 SPC(특수목적법인) 구축 사례

- ❖ 독일의 H2Mobility는 민간업체간 손실을 분담하기 위해 결성된 법인으로, 수익창출 시 해체되는 것을 전제로 창설
- ❖ 국내 한국전기차충전서비스㈜도 전기차 충전인프라 구축을 위한 SPC로, 한전이 참여하여 충전인프라 사업을 공동 추진

		H2Mobility Germany	한국전기차충전서비스 ㈜					
설립 목적		두도의 수소충전소 구축 단전소의 비즈니스 모델(수소 구매·운송·판매) 확립(상업화)	- 전기차 충전소(공용&홈) 구축 대행 - 전기차 충전인프라 구축 가속화					
경과	- ('09)S	PC설립 방안 연구 → ('12) 6개사 참여 결정 → ('15) 설립	- ('14) 산자부, 에너지신사업 Biz M.창출TF → ('15) 설립					
참여 업체	- (주유업	공급업체) 에어리퀴드, 린데 업체) 쉘, 토탈, OMV 자 회사) 다임러	- 한전(28%), 현대기아차(24%), KT(24%), 비긴스(17%), SG협동 조합(7%) *()는 지분율					
역할	- 수소충	선택 및 충전소간 네트워크 ·전소 구축(발주 및 건설 관리) 및 소유 ·전소 운영(수소 구매, 설비 관리, 수소 판매)	- 충전기 구축(공공기관, 간선도로, 홈 등) - 부가 서비스(충전정보, 예약, 점검) 제공 - 전기차 구매 고객 대상충전기 설치/관리 서비스 제공					
	충전소 확충	- 3단계: ~'16년(테스트), ~'19년(무조건), '19년~(상업화) - CEP 충전소('16까지 구축된 40기) 인수 - 주유업체의 전국 주유소 부지 활용	- 충전서비스 - 충전기 설치 공공기관 - 충전 정보 - 유지 보수					
비즈 니스 모델	충전소 운영	- SPC 참여 수소공급업체, 수소 공급 및 설비 투자 - SPC內 협의를 거쳐 구매 및 판매 가격 설정(9.9유로/kg)	EV보유 (구매)고객 ○ 한국전기차충전서비스 ○ 주요 거점					
	SPC 해체	- 해체시기('23~'25) : 수소판매로 수익이 발생하는 시기 - 충전소는 참여사(주유업체)에 매각	- 요금 납부 - 설치 요청 고객 홈					

- ❖ 수소인프라는 생산, 운송, 판매에서 대규모 신규 투자 필요, 하지만 민간만으로 투자 실현 어려움
- ❖ 공공기관은 신규 투자가 필요한 지역과 단계에 적절히 대응함으로써 민간 지원이 가능하며 정부 정책 수행 주도

VIII. 기대효과

- ❖ 수소가격 가이드라인에 따를 경우, 수소충전소는 2027~2028년부터 수익을 창출하면서 자생적 성장이 가능해질 전망
- ❖ 정부는 1조 5천억원을 투자하지만 경제적 · 사회적 편익은 80조 원 이상을 기록하고 40만 명 이상의 신규고용을 창출할 전망

결론: 정책(안) 제안

- ❖ 수송용 수소연료의 수요를 확대하기 위해서는 경쟁연료 대비 경쟁력 있는 수소가격 설정 및 수급체계 구축이 선행될 필요
- ❖ 시장의 자생적 성장이 가능한 시점까지 정부의 지원이 필요하며 정부, 지자체, 공공기관, 민간의 상호 협력 유인이 성공의 관건

(목표) 경쟁력 있는 수소가격 설정 및 수급체계 구축

1 수소충전소 상업화

- 1. 수소 충전소 상업화 선언
- 차세대 수소차 출시 시점(2월 中)

- 2. 상업화에 필요한 서비스 시스템 구축
 - 정보, 결제 서비스 등

2 적정 수소가격 제안

- 3. 적정 판매가격 가이드라인 제안
 - 7천원/kg
 - 지자체 및 공공기관이 소유한 충전소 중심 우선 실행
- 4. 수소충전소 공급가격 제안
 - 5천원/kg 이하
 - 생산 및 운송비용의 합리화 방안 마련

3 수급관리 방안 마련

- 5. 수소연료 '유통센터' 구축
 - 대량구매, 일괄운송
 - 지역간 가격격차 해소
 - KOGAS 담당 추진
- 6. 충전소 생태계 육성
 - 전문서비스 업종 육성

(법률서비스, 부지개발, 인력양성 등)

- 7. 대용량 생산, 운송 설비 도입 및 기술개발
 - 대용량 튜브 개발
 - 액화수소 기술 개발
 - 파이프라인 실증

4 수소연료 수요촉진

- 8. 택시·버스 수소연료 가격보조
 - 가이드라인 기준, 20~25% 지원 필요

- 9. 대규모 택시·버스 실증사업
- 인프라 및 차량의 기술적, 운용적 보완점 도출 및 개선

5 적정가격 유지 및 관리

- 10. 지자체와 가격정책 공조
 - 지자체 참여 유인
- 11. 민간SPC와 협력
 - 민간SPC 설립 및 운영 지원
- 12. 한시적 수소충전소 운영비 지원
 - 가동률 개선 및 수급체계 구축 기간 중 운영비 보조 필요