Optimal Control and Estimation

MAE 546, Princeton University Robert Stengel, 2018

Preliminaries

Tuesday and Thursday, 3-4:20 pm Room 306, Friend Center

- Reference
 - R. Stengel, Optimal Control and Estimation, Dover, 1994
 - Various journal papers and book chapters
- Resources
 - Blackboard
 - https://blackboard.princeton.edu/webapps/login
 - Course Home Page, Syllabus, and Links
 - <u>www.princeton.edu/~stengel/MAE546.html</u>
 - Engineering Library, including Databases and e-Journals
 - http://library.princeton.edu/catalogs/articles.php
- Assignments will be submitted using the notation and symbols of this course

GRADING

- Class participation: 15%
- 5-min quizzes: 10%
- Homework assignments: 35%
- Final Paper: 40%

Syllabus - 1

We	eek Tuesday	Thursday			
==:	== ======	======			
1	Overview and Prelimi Functions	inaries Minimization of Static Cost			
2	Principles for Optimal Control Principles for Optimal Control of Dynamic Systems Part 2				
3	Path Constraints and Numerical Optimization	Minimum-Time and -Fuel Optimization			
4	Linear-Quadratic (LQ)	Control Dynamic System Stability			
5	Linear-Quadratic Regu	ulators Cost Functions and Controller Structures			
6	LQ Control System De	sign Modal Properties of LQ Systems			
		MID-TERM BREAK			

2

Syllabus - 2

Wed	ek Tuesday = ======	Thursday =======
7	Spectral Properties of LQ Systems	Singular-Value Analysis
8	Probability and Statistics	Least-Squares Estimation for Static Systems
9	Propagation of Uncertainty in Dynamic Systems	Kalman Filter
10	Kalman-Bucy Filter	Nonlinear State Estimation
11	Nonlinear State Estimation	Adaptive State Estimation
12	Stochastic Optimal Control Control	Linear-Quadratic-Gaussian
	READING PERIOD	Final Paper due on "Dean's Date"

Typical Optimization Problems

- Minimize the probable error in an estimate of the dynamic state of a system
- Maximize the probability of making a correct decision
- Minimize the time or energy required to achieve an objective
- Minimize the regulation error in a controlled system
 - Estimation
 - Control

5

Dynamic Systems

Dynamic Process: Current state depends on prior state

x = dynamic state u = input

w = exogenous disturbance p = parameter

t or k = time or event index

Observation Process: Measurement may contain error or be incomplete

y = output (error-free)
z = measurement
n = measurement error

All of these quantities are vectors

Mathematical Models of Dynamic Systems

Dynamic Process: Current state depends on prior state

x = dynamic state u = input

w = exogenous disturbance

p = parameter t = time index

Observation Process: Measurement may contain error or be incomplete

y = output (error-free) z = measurement

n = measurement error

Continuous-time dynamic process: Vector Ordinary Differential Equation

$$\dot{\mathbf{x}}(t) = \frac{d\mathbf{x}(t)}{dt} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

$$t = time, s$$

Output Transformation

$$\mathbf{y}(t) = \mathbf{h}[\mathbf{x}(t), \mathbf{u}(t)]$$

Measurement with Error

$$\mathbf{z}(t) = \mathbf{y}(t) + \mathbf{n}(t)$$

7

Example: Lateral Automobile Dynamics

Constant forward (axial) velocity, *u*No rigid-body rolling motion

State Vector

Parameter Vector

Control and Disturbance Vectors

11 = 1//		Stee	ring angle, rad	_
$\mathbf{w} = \begin{bmatrix} \mathbf{w} & \mathbf{w} \end{bmatrix}$	v_{wind} f_{road}		Crosswind, m/s Side force on front wheel, N	

Output and Measurement Vectors

Lateral Automobile Dynamics Example

Dynamic Process

$\dot{\mathbf{x}}(t) = \begin{bmatrix} \dot{v}(t) \\ \dot{r}(t) \\ \dot{y}(t) \\ \dot{\psi}(t) \end{bmatrix} = \begin{bmatrix} \frac{Y(\mathbf{x}, \mathbf{u}, \mathbf{w})}{m} \\ \frac{N(\mathbf{x}, \mathbf{u}, \mathbf{w})}{I_{yy}} \\ u \sin \psi + v \cos \psi \\ r \end{bmatrix}$

Observation Process

$$\mathbf{y} = \begin{bmatrix} y \\ \psi \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 + n_1 \\ y_2 + n_2 \end{bmatrix}$$

Discrete-Time Models of Dynamic Systems

Dynamic Process: Current state depends on prior state

x = dynamic state u = input

w = exogenous disturbance

p = parameter

t = time index

Observation Process: Measurement may

contain error or be incomplete y = output (error-free)

z = measurement

n = measurement error

<u>Discrete-time</u> dynamic process: Vector Ordinary Difference Equation

$$\mathbf{x}_{k+1} = \mathbf{f}_k[\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k, \mathbf{p}_k, k]$$

$$k = \text{time index, -}$$

 $(t_{k+1} - t_k) = \text{time interval, s}$

Output Transformation

Measurement with Error

$$\mathbf{y}_k = \mathbf{h}_k[\mathbf{x}_k, \mathbf{u}_k]$$

$$\mathbf{z}_k = \mathbf{y}_k + \mathbf{n}_k$$

Approximate Discrete-Time Lateral Automobile Dynamics Example

Observation Process

$$\mathbf{y}_{k} = \begin{bmatrix} y_{k} \\ \boldsymbol{\psi}_{k} \end{bmatrix} = \begin{bmatrix} y_{1_{k}} \\ y_{2_{k}} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1_{k}} \\ x_{2_{k}} \\ x_{3_{k}} \\ x_{4_{k}} \end{bmatrix}$$

$$\mathbf{z}_{k} = \begin{bmatrix} z_{1_{k}} \\ z_{2_{k}} \end{bmatrix}$$

$$= \begin{bmatrix} y_{1_{k}} + n_{1_{k}} \\ y_{2_{k}} + n_{2_{k}} \end{bmatrix}$$

11

Dynamic System Model Types

- $\frac{d\mathbf{x}(t)}{dt} = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \right]$

- LTV
- $\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{L}(t)\mathbf{w}(t)$
- · LTI
- $\frac{d\mathbf{x}(t)}{d\mathbf{x}(t)} = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$

Controllability and Observability

- Controllability: State can be brought from an arbitrary initial condition to zero in finite time by the use of control
- Observability: Initial state can be derived from measurements over a finite time interval
- Subsets of the system may be either, both, or neither
- Effects of Stability
 - Stabilizability
 - Detectability
- Blocks subject to feedback control?

13

Introduction to Optimization

Optimization Implies Choice

- **Choice of best strategy**
- **Choice of best design parameters**
- Choice of best control history
- · Choice of best estimate
- Optimization is provided by selection of best control variable(s)

15

Tradeoff Between Two Cost Factors

Minimum-Cost Cruising Speed

- Fuel cost proportional to velocity-squared
- Cost of time inversely

Desirable Characteristics of a Cost Function, *J*

- Scalar
- Clearly defined (preferably unique) maximum or minimum
 - Local
 - Global
- Preferably positive-definite (i.e., always a positive number)

17

Criteria for Optimization

- · Names for criteria
 - Figure of merit
 - Performance index
 - Utility function
 - Value function
 - Cost function, J
 - Optimal cost function = J*
 - Optimal control = u*
- Different criteria lead to different optimal solutions
- Types of Optimality Criteria
 - Absolute
 - Regulatory
 - Feasible

Cost Functions with Two Control Parameters

 3-D plot of equal-cost contours (iso-contours)

 2-D plot of equal-cost contours (iso-contours)

19

Real-World Topography

Local vs. global maxima/minima

Cost Functions with Equality Constraints

· Must stay on the trail

 Equality constraint may allow control dimension to be reduced

Example: Minimize Concentrations of Bacteria, Infected Cells, and Drug Usage

- x₁ = Concentration of a pathogen, which displays antigen
- x₂ = Concentration of plasma cells, which are carriers and producers of antibodies
- x₃ = Concentration of antibodies, which recognize antigen and kill pathogen
- x₄ = Relative characteristic of a damaged organ [0 = healthy, 1 = dead]

What is a reasonable cost function to minimize?

Optimal Estimate of the State, x, Given Uncertainty

Optimal State Estimation

- Goals
 - Minimize effects of measurement error on knowledge of the state
 - Reconstruct full state from reduced measurement set $(r \le n)$
 - Average redundant measurements $(r \ge n)$ to estimate the full state
- Method
 - Provide <u>optimal balance</u> between <u>measurements</u> and estimates based on the <u>dynamic model</u> alone

24

Typical Problems in Optimal Control and Estimation

25

Minimize an Absolute Criterion

- Achieve a specific objective
 - Minimum time
 - Minimum fuel
 - Minimum financial cost
- · to achieve a goal

What is the control variable?

Optimal System Regulation

Find feedback control gains that minimize tracking error in presence of random disturbances

27

Feasible Control Logic

Find feedback control structure that guarantees stability (i.e., that keeps Δx from diverging)

http://www.youtube.com/watch?v=8HDDzKxNMEY

Cost Functions with Inequality Constraints

 Must stay to the left of the trail

Must stay to the right of the trail

29

Static vs. Dynamic Optimization

- Static
 - Optimal state, x*, and control, u*, are fixed, i.e., they do not change over time
 - $J^* = J(x^*, u^*)$
 - Functional minimization (or maximization)
 - Parameter optimization
- Dynamic
 - Optimal state and control vary over time
 - $J^* = J[x^*(t), u^*(t)]$
 - Optimal trajectory
 - Optimal feedback strategy
- Optimized cost function, J*, is a scalar, real number in both cases

Deterministic vs. Stochastic Optimization

- Deterministic
 - System model, parameters, initial conditions, and disturbances are known without error
 - Optimal control operates on the system with certainty
 - $J^* = J(x^*, u^*)$
- Stochastic
 - Uncertainty in
 - · system model
 - parameters
 - · initial conditions
 - disturbances
 - resulting cost function
 - Optimal control minimizes the expected value of the cost:
 - Optimal cost = $E{J[x^*, u^*]}$
- Cost function is a scalar, real number in both cases

31

Example: Pursuit-Evasion: Competitive Optimization Problem

- Pursuer's goal: minimize final miss distance
- Evader's goal: maximize final miss distance
- "Minimax" (saddle-point) cost function
- Optimal control laws for pursuer and evader

$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{u}_{P}(t) \\ \mathbf{u}_{E}(t) \end{bmatrix} = - \begin{bmatrix} \mathbf{C}_{P}(t) & \mathbf{C}_{PE}(t) \\ \mathbf{C}_{EP}(t) & \mathbf{C}_{E}(t) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{P}(t) \\ \hat{\mathbf{x}}_{E}(t) \end{bmatrix}$$

Example of a *differential game*, Isaacs (1965), Bryson & Ho (1969)

Example: Simultaneous Location and Mapping (SLAM)

- Build or update a local map within an unknown environment
 - Stochastic map, defined by mean and covariance
 - SLAM Algorithm = State estimation with extended Kalman filter
 - Landmark and terrain tracking

33

Next Time: Minimization of Static Cost Functions

Reading:
Optimal Control and Estimation
(OCE): Chapter 1, Section 2.1

Supplemental Material

35

Math Review

- Scalars and Vectors
- Matrices, Transpose, and Trace
- Sums and Multiplication
- Vector Products
- Matrix Products
- Derivatives, Integrals, and Identity Matrix
- Matrix Inverse

Scalars and Vectors

- Scalar: usually lower case: a, b, c, ...,
 x, y, z
- Vector: usually bold or with underbar: x or x
 - Ordered set
 - · Column of scalars
 - Dimension = $n \times 1$
- Transpose: interchange rows and columns

$$\mathbf{x}^T = \left[\begin{array}{ccc} x_1 & x_2 & x_3 \end{array} \right]$$

3 x 1 4 x 1

Matrices and Transpose

- Matrix
 - Usually bold capital or capital: F or F
 - Dimension = $(m \times n)$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix}$$

- Transpose:
 - Interchange rows and columns

$$\mathbf{A}^{T} = \begin{bmatrix} a & d & g & l \\ b & e & h & m \\ c & f & k & n \end{bmatrix}$$

Trace of a Square Matrix

Trace of
$$\mathbf{A} = \sum_{i=1}^{n} a_{ii}$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}; \quad Tr(\mathbf{A}) = a + e + i$$

39

Sums and Multiplication by a Scalar

- Operands must be conformable
- Conformable vectors and matrices are added term by term

$$\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix} \; ; \quad \mathbf{z} = \begin{bmatrix} c \\ d \end{bmatrix} \; ; \quad \mathbf{x} + \mathbf{z} = \begin{bmatrix} (a+c) \\ (b+d) \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \; ; \quad \mathbf{B} = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \; ; \quad \mathbf{A} + \mathbf{B} = \begin{bmatrix} (a_1 + b_1) & (a_2 + b_2) \\ (a_3 + b_3) & (a_4 + b_4) \end{bmatrix}$$

- Multiplication of vector by scalar is
 - associative
 - commutative
 - distributive

$$\begin{bmatrix} a\mathbf{x} = \mathbf{x}a = \begin{bmatrix} ax_1 \\ ax_2 \\ ax_3 \end{bmatrix} \end{bmatrix}$$
$$\begin{bmatrix} a\mathbf{x}^T = \begin{bmatrix} ax_1 & ax_2 & ax_3 \end{bmatrix} \end{bmatrix}$$

$$a\mathbf{x}^T = \begin{bmatrix} ax_1 & ax_2 & ax_3 \end{bmatrix}$$

Vector Products

Inner (dot) product of vectors produces a scalar

$$\mathbf{x}^{T}\mathbf{x} = \mathbf{x} \bullet \mathbf{x} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = (x_{1}^{2} + x_{2}^{2} + x_{3}^{2})$$

Outer product of vectors produces a matrix

$$\mathbf{x}\mathbf{x}^{T} = \mathbf{x} \otimes \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} \\ x_{2}x_{1} & x_{2}^{2} & x_{2}x_{3} \\ x_{3}x_{1} & x_{3}x_{2} & x_{3}^{2} \end{bmatrix}$$

$$(m \times 1)(1 \times m) = (m \times m)$$

Matrix Products

Matrix-vector product transforms one vector into another

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 + cx_3 \\ dx_1 + ex_2 + fx_3 \\ gx_1 + hx_2 + kx_3 \\ lx_1 + mx_2 + nx_3 \end{bmatrix}$$

 $(n \times 1) = (n \times m)(m \times 1)$

Matrix-matrix product produces a new matrix

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \; ; \quad \mathbf{B} = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \; ; \quad \mathbf{AB} = \begin{bmatrix} (a_1b_1 + a_2b_3) & (a_1b_2 + a_2b_4) \\ (a_3b_1 + a_4b_3) & (a_3b_2 + a_4b_4) \end{bmatrix}$$

 $(n \times m) = (n \times l)(l \times m)$

Examples

Inner product
$$\mathbf{x}^{T}\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = (1+4+9) = 14 = (length)^{2}$$

Rotation of expression for velocity vector through pitch angle

$$\mathbf{y} = \begin{bmatrix} \mathbf{v}_{x} \\ \mathbf{v}_{y} \\ \mathbf{v}_{z} \end{bmatrix}_{2} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \mathbf{v}_{x} \\ \mathbf{v}_{y} \\ \mathbf{v}_{z} \end{bmatrix}_{1} = \begin{bmatrix} v_{x_{1}}\cos\theta + v_{z_{1}}\sin\theta \\ v_{y_{1}} \\ -v_{x_{1}}\cos\theta + v_{z_{1}}\sin\theta \end{bmatrix}$$

Matrix product

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{bmatrix}$$

43

Vector Transformation Example

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & -5 & 7 \\ 4 & 1 & 8 \\ -9 & -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (2x_1 + 4x_2 + 6x_3) \\ (3x_1 - 5x_2 + 7x_3) \\ (4x_1 + x_2 + 8x_3) \\ (-9x_1 - 6x_2 - 3x_3) \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

 $(n \times 1) = (n \times m)(m \times 1)$

$$\begin{bmatrix} (2x_1 + 4x_2 + 6x_3) \\ (3x_1 - 5x_2 + 7x_3) \\ (4x_1 + x_2 + 8x_3) \\ (-9x_1 - 6x_2 - 3x_3) \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Derivatives and Integrals of Vectors

 Derivatives and integrals of vectors are vectors of derivatives and integrals

45

Matrix Identity and Inverse

 Identity matrix: no change when it multiplies a conformable vector or matrix

$$\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{y} = \mathbf{I}\mathbf{y}$$

 A non-singular square matrix multiplied by its inverse forms an identity matrix

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Inverse

 A non-singular square matrix multiplied by its inverse forms an identity matrix

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

The inverse allows a reverse transformation of vectors of equal dimension

$$\mathbf{y} = \mathbf{A}\mathbf{x}; \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{y}; \quad \dim(\mathbf{x}) = \dim(\mathbf{y}) = (n \times 1); \quad \dim(\mathbf{A}) = (n \times n)$$

$$[\mathbf{A}]^{-1} = \frac{\operatorname{Adj}(\mathbf{A})}{|\mathbf{A}|} = \frac{\operatorname{Adj}(\mathbf{A})}{\det \mathbf{A}} \quad \frac{(n \times n)}{(1 \times 1)}$$
$$= \frac{\mathbf{C}^{T}}{\det \mathbf{A}}; \quad \mathbf{C} = matrix \ of \ cofactors$$

Cofactors are signed minors of **A**

ijth minor of **A** is the determinant of **A** with the ith row and jth column removed

47

Matrix Inverse Example

Transformation

$$\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Inverse Transformation

$$\mathbf{x}_1 = \mathbf{A}^{-1} \mathbf{x}_2$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2}$$