March 4, 2021

Quantum Harmonic Oscillator

Hooke's law F = -kx can be integrated to find the potential energy, $V(x) = kx^2/2 = m\omega^2 x^2/2$, stored in a spring. Substituting this potential into the 1D TISE gives the differential equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + \frac{1}{2}\,m\,\omega^2 x^2\psi(x) = E\,\psi(x). \tag{1}$$

To solve, the first step is to make the substitution x = y a, where $a = \sqrt{\frac{\hbar}{m\omega}}$. This creates a dimensionless differential equation

$$\frac{d^2\psi(y)}{dy^2} + (\varepsilon - y^2)\psi(y) = 0,$$
(2)

with "dimensionless energy" $\varepsilon = E/(\hbar\omega/2)$.

The boundary conditions are: when $y \to \pm \infty$ then $\psi(y) \to 0$.

It is found that solutions of the form $\psi(y) = y^n e^{-y^2/2}$ are solutions in the limit of large y, where $e^{-y^2/2}$ is a Gaussian.

Equation 2 is solved properly in PH2130; the eigenfunctions and energies are

$$\psi_n(y) = H_n(y) e^{-\frac{y^2}{2}}$$
 and $\varepsilon = (2n+1)$ (3)

where $H_n(y)$ are the Hermite polynomials. $H_n(y)$ are even (odd) functions of y if n is an even (odd) integer.

Converting back to the variable x we have normalised wavefunctions and energies:

$$\psi_n(x) = \frac{H_n(x/a)}{\sqrt{2^n n! \sqrt{\pi a^2}}} e^{-\frac{x^2}{2a^2}} \quad \text{and} \quad E_n = \left(n + \frac{1}{2}\right) \hbar \omega, \tag{4}$$

which for n = 0, 1, 2, 3 and 4 are given in the following table:

n	$H_n(y)$	$\psi_n(x)$
0	1	$\psi_0(x) = \frac{1}{\sqrt[4]{\pi a^2}} e^{-\frac{x^2}{2a^2}}$
1	2y	$\psi_1(x) = \frac{\sqrt{2}(x/a)}{\sqrt[4]{\pi a^2}} e^{-\frac{x^2}{2a^2}}$
2	$4y^2 - 2$	$\psi_2(x) = \frac{[4(x/a)^2 - 2]}{2\sqrt{2}} e^{-\frac{x^2}{2a^2}}$
3	$8y^3 - 12y$	$\psi_3(x) = \frac{[8(x/a)^3 - 12(x/a)]}{4\sqrt{3} \sqrt[4]{\pi a^2}} e^{-\frac{x^2}{2a^2}}$
4	$16y^4 - 48y^2 + 12$	$\psi_4(x) = \frac{[16(x/a)^4 - 48(x/a)^2 + 12]}{8\sqrt{6}\sqrt[4]{\pi a^2}} e^{-\frac{x^2}{2a^2}}$

• The wavefunctions are orthogonal and normalised:

$$\int_{-\infty}^{\infty} \psi_m^*(x) \, \psi_n(x) \, dx = \langle \psi_m | \psi_n \rangle = \delta_{nm}. \tag{5}$$

- Figure 1 shows plots of $\psi_n(y)$.
- The lowest energy state, the ground state, is given by n = 0. The zero-point energy is $\hbar\omega/2$.
- The normalised ground state wavefunction is $\psi_0(x) = \frac{1}{(\pi a^2)^{1/4}} e^{-\frac{x^2}{2a^2}}$, from which we can calculate $\Delta x = \frac{a}{\sqrt{2}}$ and $\Delta p = \frac{\hbar}{\sqrt{2}a}$; we find that $\Delta p \, \Delta x = \frac{\hbar}{2}$. Note the uncertainty principle is usually written as

$$\Delta p \, \Delta x \ge \frac{\hbar}{2},\tag{6}$$

the minimum value is obtained with a Gaussian wavefunction of the ground state. This comes from the fact that Gaussians minimise uncertainties, something you should know from PH2130.

Figure 1: The four lowest energy wavefunctions $\psi_n(y) = H_n(y) e^{-\frac{y^2}{2}}$ in a harmonic well, plotted as a function of y = x/a.

The uncertainties in position and momentum, Δx and Δp , are given by

$$(\Delta x)^2 = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 \tag{7}$$

and

$$(\Delta p)^2 = \langle (p - \langle p \rangle)^2 \rangle = \langle p^2 \rangle - \langle p \rangle^2. \tag{8}$$

Exercises

- 1. The ground state wave function is $\psi_0(x) = \frac{1}{(\pi a^2)^{1/4}} e^{-\frac{x^2}{2a^2}}$. Plot $\psi_0(x)$ and the probability density $p(x) = |\psi_0(x)|^2$. Set a = 1 in the plots, and label the horizontal axis as x/a. Note the symmetry (is it odd or even) of the two plots.
- 2. Show that the ground state wavefunction is normalised, and is orthogonal to ψ_1, ψ_3, ψ_4 and ψ_7 . That is, show that it follows the general expression

$$\int_{-\infty}^{\infty} \psi_0^*(x) \, \psi_n(x) \, dx = \langle \psi_0 | \psi_n \rangle = \delta_{0n}. \tag{9}$$

This is a good check of the accuracy of your numerical integrations, which can be done using quad in the scipy.integrate module (see Week 8 of the PH2150 course).

3. Do a numerical integration to show that

$$\int_{-\infty}^{\infty} \psi_0^*(x) \, x \, \psi_0(x) \, dx = \langle \psi_0 | \, x \, | \psi_0 \rangle = 0. \tag{10}$$

Is this result consistent with the symmetry of $|\psi_0(x)|^2$.

Show that $\langle \psi_0 | p | \psi_0 \rangle = 0$, remembering that $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$. In one dimension, then $\hat{p} = \frac{\hbar}{i} \frac{d}{dx}$.

Numerical differentiations can be done using derivative in the scipy.misc.derivative module. Call the function using dx=0.0001, and the second order derivative can be obtained with a single call by specifying n=2 (not to be confused with the n in ψ_n).

4. Do a numerical integration to show that

$$\int_{-\infty}^{\infty} \psi_0^*(x) \, x^2 \, \psi_0(x) \, dx = \langle \psi_0 | \, x^2 \, | \psi_0 \rangle = a^2 / 2. \tag{11}$$

5. Do a numerical integration to show that

$$\int_{-\infty}^{\infty} \psi_0^*(x) \, p^2 \, \psi_0(x) \, dx = -\hbar^2 \langle \psi_0 | \, \frac{d^2}{dx^2} \, | \psi_0 \rangle = \frac{\hbar^2}{2a^2}. \tag{12}$$

6. Hence show that for the ground state, n=0, in a quantum harmonic oscillator

$$\Delta x = \frac{a}{\sqrt{2}}$$
 and $\Delta p = \frac{\hbar}{\sqrt{2}a}$,

and the uncertainty relation gives

$$\Delta x \, \Delta p = \frac{\hbar}{2}.\tag{13}$$

- 7. Calculate and tabulate Δx , Δp , and $\Delta x \Delta p$ for n = 0 10. By observation work out the general expression for these quantities as a function of n.
- 8. Use the previous results (and some simple algebra) to show that the expectation values for the kinetic energy and potential energy,

$$\left\langle \frac{p^2}{2m} \right\rangle$$
 and $\left\langle \frac{m\,\omega^2\,x^2}{2} \right\rangle$,

are both equal to $\frac{\hbar \omega}{4}(2n+1)$.

9. The probability density for the classical harmonic oscillator with amplitude a is given by

$$p(x) = \frac{1}{\pi\sqrt{a^2 - x^2}},\tag{14}$$

for |x| < a. In accordance with Bohr's correspondence principle, show that the quantum solutions $|\psi_n(x)|^2$ tend to this result as n becomes very large.

The link below maybe a useful starting point for your coding:

https://chem.libretexts.org/Ancillary_Materials/Interactive_Applications/Jupyter_Notebooks/Quantum_Harmonic_Oscillators_-_Plotting_Eigenstates_
(Python_Notebook)