Math 523H-Homework 6

- 1. Use an $\epsilon \delta$ argument to show that the following functions are continuous:
 - (a) $f(x) = \sqrt{x}$ for any point $x_0 \ge 0$,
 - (b) $f(x) = x^3$ for any point x_0 . Hint: $(a^3 b^3) = (a b)(a^2 + ab + b^2)$.
 - (c) $f(x) = x^3 \sin(\frac{1}{x^2})$ for $x \neq 0$ and f(0) = 0 at the point x = 0.
- 2. Consider the function defined by

$$f(x) = \begin{cases} \sin(\frac{1}{x^2}) & x \neq 0\\ 0 & x = 0 \end{cases}.$$

Show by his function is not continuous at 0 with (a) a $\epsilon - \delta$ argument and (b) a sequence argument.

- 3. (a) Let f and g be continuous functions on [a, b] and assume that $f(a) \leq g(a)$ and $g(b) \leq f(b)$. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.
 - (b) Show that the equation $x = \cos(x)$ has at least one solution in $(0, \pi/2)$.
- 4. Prove that a polynomial of odd degree has at least one real root.
- 5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous which satisfies f(a)f(b) < 0 for some $a \neq b$. Show that there exists and x such that f(x) = 0.
- 6. (a) Consider the function $f(x) = \frac{x^3 3x^2 13x + 15}{x^2 1}$. At which point is this function continuous? Describe the discontinuities of the function.
 - (b) Consider the function $f(x) = \frac{\sqrt{1+3x^2+2x^4}-1}{x^2}$ for $x \neq 0$. Can you extend f to a continuous function on \mathbb{R} ?
- 7. (a) Suppose that f(x) = 1 if x is rational and f(x) = 0 if x is irrational. Show that f is discontinuous at every x.
 - (b) Suppose that f(x) = x if x is rational and f(x) = 0 if x is irrational. Show that f is continuous at 0 but discontinuous at every other point.
- 8. (a) If f is a continuous function such that f(x) = 0 for every rational x, show that f = 0.
 - (b) If f and g are two continuous functions such f(x) = g(x) for every rational x, show that f = g.
 - (c) Suppose that f is continuous function which satisfies f(x+y) = f(x) + f(y) for all x and y. Show that f(x) = ax for some constant a. Hint: Consider first x = n an integer, then $x = \frac{1}{n}$, then x rational.