Gépelemek mechatronikai mérnököknek

Vári Gergő (MQHJ0H)

2025. október 7.

Karimás csőkötés tervezése

1. ábra: Összeállított modell

Gépelemek mechatronikai mérnököknek

BMEGEGIBMGE

4	TT/		• •	1 4
Ι.	Haz	ZI T	ela	dat

Név: Vari Gergo
Neptun kód: MQHJ0H
Gyakorlatvezető: Szabó Gyula

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1	Kor	strukció előterve	1					
2	Vak	karima vastagsága és karima szabványok	2					
	2.1	Igénybevétel	2					
	2.2	Szabvány -és anyagválasztás	:					
	2.3	Előtervek	•					
3	Tön	nítés kiválasztása	Ę					
	3.1	Minimális tömítőerő	Ę					
	3.2	Szabvány -és anyagválasztás	6					
	3.3	Előterv	6					
4	Csa	varra jutó terhelés	7					
5	Csa	Csavar előfeszítése és meghúzási nyomatéka						
	5.1	Csavar szabvány	7					
	5.2	Meghúzási nyomaték	8					
6	6 Csavar anyagválasztás		g					
	6.1	Redukált feszültség	Ć					
	6.2	Méretezés	Ć					
7	Öss	zeállítási rajz						

1 Konstrukció előterve

2. ábra: Konstrukció előtervének rajza

 ${\bf A}$ csavarok biztosítására rugós alátétet 1 alkalmaztam. A karima és a vakkarima egy tömítést fog közre.

 $^{^{1}\}mathrm{DIN}$ 127 - A
24 szabvány alapján.

2 Vakkarima vastagsága és karima szabványok

2.1 Igénybevétel²

Az igénybevétel egy d_t átmérőjű körön átadódó egyenletesen eloszló terhelés és feltehető hogy a törés egy egyenes vonal mentén lesz: a kiszámolt σ alapján lehet majd anyagot választani.

A vakkarimára ható erő a súlypontba lett felvéve (y_k, y_d) .

$$d_t = d_{3t} = 115 \,[\text{mm}] \tag{1}$$

$$y_k = \frac{k}{\pi} \tag{2}$$

$$y_d = \frac{2}{3} \frac{d_t}{\pi} \tag{3}$$

(4)

$$b_{\min} = \frac{d_t}{2} \sqrt{\frac{3p_{ii}}{\sigma_{\text{hajl}}} \left(1 - \frac{2}{3} \frac{d_t}{k}\right)} = 5.427 \,[\text{mm}]$$
 (5)

$$\sigma = \frac{d_t^2}{4} \frac{3p_{\ddot{\mathbf{u}}}}{b_{\min}^2} \left(1 - \frac{2}{3} \frac{d_t}{K} \right) = 8.341 \,[\text{MPa}] \tag{6}$$

(7)

 d_t : tőmítés középátmérője [mm]

 d_1 : cső csatlakozás külső mérete [mm]

s: falvastagság [mm]

 d_4 : tömítő felület külső átmérője [mm]

k: csavar lyukköre [mm]

 y_k, y_d : súlypont távolsága a vakkarima kör középpontjától [mm]

 b_{\min} : karima minimális vastagsága [mm]

 $p_{\ddot{\mathbf{u}}}$: belső üzemi nyomás [mm]

σ: hajlító feszültség minimális karima vastagsággal [MPa]

 $^{^2\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások. (5. oldal)

2.2 Szabvány -és anyagválasztás

A 15 [bar] üzemi nyomás miatt a EN 1092-1 Type 11 - WNRF PN100 szabványt használtam a karimához. A vakkarimához ugyanezen okból a DIN 2527/E PN100 szabványt választottam. Munkaléces³ felületek kellenek, hogy ne az egész sík felületet kelljen megmunkálni a tömítésnek. Anyagnak S235⁴ acél megfelel. ($\sigma_{\rm hajl} = 290 \, [{\rm MPa}]$)

2.3 Előtervek⁵

3. ábra: Vakkarima előtervének rajza

D = 230 [mm] $f = 3 [mm]$	D: vakkarima külső átmérője [mm] f: kiugrás [mm]
$d_4=138[\mathrm{mm}]$	d_4 : tömítő felület külső átmérője [mm]
$d_2 = 26 [\mathrm{mm}]$	d_2 : csavar lyukköre [mm]
$K = 180 [\mathrm{mm}]$	K: csavarok középátmérője [mm]
$b = 32 [\mathrm{mm}]$	b: vakkarima magassága [mm]

³A feladathoz mellékelt segédletből ötletet merítve. (6. oldal)

 $^{^4 \}mathrm{Mell\acute{e}kelt}$ Anyagok táblázatból választva.

 $^{^5{\}rm Előtervek}$ a EN 1092-1 Type 11 - WNRF PN100 és a DIN 2527/E PN100 szabványok alapján.

4. ábra: Karima előtervének rajza

$D = 230 [\mathrm{mm}]$	D: karima külső átmérője [mm]
f = 3 [mm]	f: kiugrás [mm]
	d_4 : tömítő felület külső átmérője [mm]
$d_4 = 138 [\mathrm{mm}]$	d_2 : csavar lyukköre [mm]
$d_2 = 26 [\mathrm{mm}]$	s: falvastagság [mm]
$s = 4.45 [\mathrm{mm}]$	N: csavarok [db]
N = 8 [db]	K: csavarok középátmérője [mm]
	b: csavarok alap
$K = 180 [\mathrm{mm}]$	és tömítési sík távolsága [mm]
$b = 32 [\mathrm{mm}]$	d_3 : kúp alsó átmérője [mm]
$d_3 = 120 [\mathrm{mm}]$	d_1 : cső csatlakozás külső mérete [mm]
$d_1 = 88.9 [\text{mm}]$	M: csavarmenet
	szabványos mérete [mm]
M = M24	h: karima magassága [mm]
$h = 78 [\mathrm{mm}]$	

3 Tömítés kiválasztása

3.1 Minimális tömítőerő⁶

A belső nyomás miatti csőerő hat ellen az üzemi nyomásnak. A gyűrűfelületi csőerő nyom ellen a gyűrű alsó felülete alá benyomódó folyadéknak. A minimális tömítő erő szükséges ahhoz hogy a tömítetség kialakuljon. Ezek összege adja a csavarra ható üzemi erőt.

$$z = \frac{d_{2t} - d_{1t}}{2} = 10 \,[\text{db}] \tag{9}$$

$$b_t^* = 9 + 0.2z = 11 \,[\text{mm}] \tag{10}$$

$$F_{\rm cső} = \frac{{\rm DN}^2 \pi}{4} p_{\ddot{\rm u}} = 7539.822 \,[{\rm N}]$$
 (11)

$$F_{\rm p} = \frac{\left(d_t^2 - {\rm DN}^2\right)\pi}{4}p_{\rm ti} = 8040.514\,[{\rm N}]$$
 (12)

$$F_{\text{t\"{o}m}} = n_t p_{\ddot{u}} \pi d_t b_t^* = 7749.524 \,[\text{N}]$$
 (13)

$$F_{\text{csavar üzemi}} = F_{\text{cső}} + F_{\text{p}} + F_{\text{t\"{o}m}} = 23329.85974 [N]$$
 (14)

$$n_{\text{bizt}t} = 1.4 \left[-\right] \tag{15}$$

$$F_{\text{csavar szerelési}} = n_{\text{bizt}} F_{\text{csavar üzemi}} = 32661.80364 [N]$$
 (16)

z: fogak száma [db]

 b_t^* : tömítés hatásos szélessége⁷ [mm]

 $F_{cső}$: belső nyomásból származó csőerő [N]

 $F_{\rm p}$: belső nyomásból származó gyűrűfelületi erő $\,$ [N]

 $F_{\text{töm}}$: minimális tömítő erő [N]

 $F_{\text{csavar üzemi}}$: csavarokra ható üzemi erő [N]

 $n_{\text{bizt}t}$: csavarokra ható szerelési erőhöz választott biztonsági tényező [-]

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő [N]

 $^{^6}$ A feladathoz mellékelt segédletből származó számítások. (7. oldal)

 $^{^7{\}rm K\acute{e}plete}$ a feladathoz mellékelt segédletből. (8. oldal, 3. táblázat)

3.2 Szabvány -és anyagválasztás

A DIN EN 1514-6 B29A PN100 szabványt választottam és ez a tömítés nagy nyomásokat is kibír. 1.4541 fémből és egy PTFE borításból készül ahol a fém fésük deformálják a műanyagot az előfeszítés hatására ezzel előidézve a tömítőerőt.

3.3 Előterv⁸

5. ábra: Tömítés előtervének rajza

$$\begin{split} d_{1t} &= 95 \, [\text{mm}] \\ d_{2t} &= 115 \, [\text{mm}] \\ d_{3t} &= 154 \, [\text{mm}] \\ b_{t} &= 3 \, [\text{mm}] \\ b_{m} &= 5 \, [\text{mm}] \\ h_{\min} &= \frac{0.3 \, [\text{mm}]}{0.5 \, [\text{mm}]} \end{split}$$

 d_{1t} : tőmítés belső átmérője [mm]

 d_{2t} : tőmítés felfekvő felület külső átmérője [mm]

 d_{3t} : távtartó gyűrű külső átmérője $\mbox{[mm]}$

 b_t : távtartó gyűrű vastagsága [mm]

 b_m : fém mag magassága [mm]

 $h_{\min}\colon$ szerelés utáni/előtti távolsága

PTFE lemezeknek a vasmag tetejétől [mm]

 $^{^8{\}rm E}$ lőterv a DIN EN 1514-6 B29A PN100 szabvány alapján.

4 Csavarra jutó terhelés⁹

A csavar terhelésének kiszámításához a legnagyobb fellépő erő szükséges.

$$F_v = \frac{F_{\text{csavar szerelési}}}{n} = 4082.725455 [N]$$
 (17)

 F_v : csavar terhelése [N]

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő [N]

n: csavarok száma [db]

5 Csavar előfeszítése és meghúzási nyomatéka

5.1 Csavar szabvány 10

$$p = 3 \, [\mathrm{mm}]$$

$$d_{3cs} = 20.319 \, [\text{mm}]$$

$$d_{2cs} = 22.051 \, [\text{mm}]$$

$$d_w = 33.6 \, [\mathrm{mm}]$$

$$b=54\,[\mathrm{mm}]$$

$$l=100\,[\mathrm{mm}]$$

$$\beta = 60 \, [^{\circ}]$$

$$\mu_{\min}_{\max} = {}^{0.1\,[-]}_{0.14\,[-]}$$

p: menet emelkedése [mm]

 d_{3cs} : orsó magátmérője [mm]

 d_{2cs} : csavar középátmérője [mm]

 β : menetprofil szöge [°]

 μ_{\min} : súrlódási tényező¹¹ [–]

max

⁹A feladathoz mellékelt segédletből származó számítások. (9. oldal)

 $^{^{10} \}mathrm{ISO}~4014$ szabvány alapján kapott értékek.

 $^{^{11}\}mathrm{MSZ}$ EN 24014 szabvány alapján kapott értékek.

Meghúzási nyomaték¹² 5.2

 α menetemelkedési szög számítható eddigi adatainkból. A látszólagos súrlódási félkúpszög (ρ') pedig az ismert súrlódási tényezőkből. A csavar meghúzásához szükséges nyomaték $(M_{\rm meghúzási})$ a csavar mentén $(M_{\rm csavar})$ -és az anya homlokfelületén (M_{anya}) ébredő súrlódás összege.

$$\alpha = \arctan \frac{p}{d_{2\rm cs}\pi} = 2.48 \, [^{\circ}] \tag{18}$$

$$\mu_{\min}' = \frac{\mu_{\min}}{\cos \frac{\beta}{2}} \tag{19}$$

$$\rho'_{\min} = \arctan \mu'_{\min} = {}^{6.587}_{9.183} [^{\circ}]$$
(20)

$$d_a = \frac{d_w + M}{2} = 28.8 \,[\text{mm}]$$
 (21)

$$M_{\rm csavar\, min}_{\rm max} = F_v \frac{d_{2\,{\rm cs}}}{2} \tan\left(\alpha + \rho'_{\rm min}_{\rm max}\right) = {}^{6571.065\,{\rm [Nmm]}}_{8499.683\,{\rm [Nmm]}}$$
 (22)

$$M_{\text{anya}\min}_{\text{max}} = F_v \frac{d_a}{2} \mu'_{\min}_{\text{max}} = {}^{5378.228\,[\text{Nmm}]}_{7529.52\,[\text{Nmm}]} \tag{23}$$

(24)

$$M_{\rm megh\acute{u}z\acute{a}si\, min} = M_{\rm csavar\, min} + M_{\rm anya\, min} = {}^{11\,949.293\, [{\rm Nmm}]}_{16\,029.202\, [{\rm Nmm}]} \eqno(25)$$

 α : menetemelkedés szöge [°]

 μ_{\min} : súrlódási tényező [-]

 β : menetprofil szöge [°]

 d_a : anya felvekvő felület középátmérője [mm]

M: csavar szabványos mérete [mm]

 d_{2cs} : menet középátmérője [mm]

 $M_{\text{csavar}\min\atop{\max}}$: menet súrlódása [Nmm]

 F_v : csavar terhelése [N]

 $\rho_{\min}^{'}\colon$ látszólagos súrlódási félkúpszög $\;\left[^{\circ}\right]$

 $M_{\text{anya}\min}$: csavaranya felülete alatti súrlódás [Nmm]

 $M_{\rm meghúz\acute{a}si\; min}\colon$ meghúzási nyomaték [Nmm]

 $^{^{12}\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások. (9-10. oldal)

6 Csavar anyagválasztás¹³

6.1 Redukált feszültség

A legnagyobb igénybevételre ($\sigma_{\rm red}$) kell méretezni és ez a húzó (σ) illetve csavaró (τ) nyomaték összege.

$$A_e = \frac{\left(\frac{d_{2_{cs}} + d_{3_{cs}}}{2}\right)^2 \pi}{4} = 352.49 \,[\text{mm}^2]$$
 (26)

$$\sigma = \frac{F_v}{A_e} = 10.6 \,[\text{MPa}] \tag{27}$$

$$K_p = \frac{\left(\frac{d_{2_{\rm cs}} + d_{3_{\rm cs}}}{2}\right)^3 \pi}{16} = 1866.88 \,[\text{mm}^3]$$
 (28)

$$M_{\rm csavar} = M_{\rm anya_{\rm max}}$$
 (29)

$$\tau = \frac{M_{\rm csavar}}{K_p} = 4.033 \,[\text{MPa}] \tag{30}$$

$$\sigma_{\rm red} = \sqrt{\sigma^2 + 3\tau^2} = 12.691 \,[\text{MPa}]$$
 (31)

6.2 Méretezés¹⁴

A kiszámolt feszültséggel már lehet szilárdsági osztályt választani és a 3.6-os megfelel az igényeknek (hiszen $R_{\rm eH}$ nagyobb az elvártnál).

$$R_{\rm eH} = 180 \,[\mathrm{MPa}] \tag{32}$$

$$n_{\rm biztcs} = \frac{R_{\rm eh}}{\sigma_{\rm red}} = 14.183 [-]$$
 (33)

 A_e : csavarerőt vivő keresztmetszet terület [mm²]

 d_{2cs} : menet középátmérője [mm]

 d_{3cs} : orsó magátmérője [mm]

σ: húzó feszültség [MPa]

 F_v : csavar terhelése [N]

 K_p : csavar keresztmetszet poláris másodrendű nyomaték [mm³]

 $M_{\rm csavar}$: csavar mentén súrlódásból származó csavaró nyomaték [Nmm]

 $M_{\rm anya_{\rm max}}$: csavaranya felülete alatti maximum súrlódás [Nmm]

 τ : csavaró feszültség [MPa]

 $\sigma_{\rm red}$: redukált feszültség [MPa]

 $R_{\rm eH}$: folyáshatár [MPa]

 N_{biztcs} : csavar biztonsági tényező [-]

 $^{^{13}\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások. (10-11. oldal)

 $^{^{14}\}mathrm{ISO}$ 898-1 szabvány alapján kapott értékek.

