Робочий лист	Робочий лист

ОНПУ Кафедра фізики

Груг	ıa			
Ст-	т(ка)			
Протокол №1				
Лабораторна робота №1-01 Вимірювання геометричних розмірів тіл і визначення їх об єму і площани				

поверхні

Зауваження викладача:

Вправа 1

Вимірювання за допомогою мікрометра діаметра кулі і обчислення його об єму

1. Вимірюють 5 разів діаметр кулі D і знаходять середнє арифметичне значення діаметру

$$\overline{D} = \frac{\sum_{i=1}^{5} D_i}{5}$$

2. Знаходять абсолютні похибки окремих вимірювань (5 похибок)

$$\Delta D_i = \overline{D} - D_i$$

3. Обчислюють квадрати похибок окремих вимірювань $(\Delta D_i)^2$ і по формулі

$$\sigma = \sqrt{\frac{\sum_{i=1}^{5} \Delta D_i^2}{N(N-1)}}$$

Знаходять сесредню квадратичну похибку визначення середнього арифметичного значення діаметру. Усі результати вимірювань і проміжні обчислення вносять до таблиці

№ п/п	D_i , mm	ΔD_i	, MM	ΔD_i^2
1				
2				
3				
4				
5				
	$\overline{D} =$		σ=	

4. По таблиці коеффіцієнтів Ст юдента для N=5 і надійності p = 0,95 визначають коеф. Ст юдента t_s =2,78. Обчислюють випадкову похибку прямих вимірювань діаметра

$$\Delta_D = t_s \cdot \boldsymbol{\sigma}$$

5. Обчислюють систематичну похибку $\text{микрометра по формулі} \qquad \Delta_{cucm} = p \cdot \Delta_{cucm}^{\max}$ Для микрометра $\Delta_{cucm}^{\max} = 0{,}01$ мм

6. Визначають повну похибку вимірювань діаметра кулі

$$\Delta_D^{\Sigma} = \sqrt{\Delta_D^2 + \Delta_{cucm}^2}$$

 Обчислюють найбільш імовірне значення об єму кулі

$$\overline{V} = \frac{1}{6}\pi \overline{D}^3$$

 Обчислюють похибку непрямих вимірювань об єму кулі

$$\Delta_V = \left| \frac{dV}{dD} \right| \Delta_D^{\Sigma} = \frac{1}{2} \pi \cdot \overline{D}^2 \cdot \Delta_D^{\Sigma}$$

9. Обчислюють відносну похибку

$$\varepsilon = \frac{\Delta_V}{\overline{V}} \cdot 100 \%$$

Записують кунцевий результат вимірювань об єму кулі

$$V = (\overline{V} \pm \Delta_V)$$
мм³ при p=0,95

Вправа 2

Вимірювання задопомогою штангенциркуля діаметра и висоти циліндра і визначення площі його бічній поверхні

1. Висмірюють 5 разів діаметр D і висоту H циліндра і знаходять їх середнє арифметичне значення

$$\overline{D} = \frac{\sum_{i=1}^{5} D_i}{5}; \qquad \overline{H} = \frac{\sum_{i=1}^{5} H_i}{5}.$$

2. Знаходять абсолютні похибки окремих вимірювань діаметра і висоти

$$\Delta D_i = \overline{D} - D_i; \quad \Delta H_i = \overline{H} - H_i$$

3. Обчислюють квадрати похибок окремих вимірювань $(\Delta D_i)^{2-\mathrm{i}} \ (\Delta H_i)^2$, потім по формулам

$$\sigma_{\overline{D}} = \sqrt{\frac{\sum\limits_{i=1}^{5} \Delta D_{i}^{2}}{N(N-1)}} \; ; \qquad \sigma_{\overline{H}} = \sqrt{\frac{\sum\limits_{i=1}^{5} \Delta H_{i}^{2}}{N(N-1)}}$$

знаходятьт середню квадратичну похибку визначення середнього арифметичного значення діаметра і висоти. Усі результати вимірювань і проміжні обчислення заносять до таблиці

№ 1/п	$D_{\scriptscriptstyle i}$, mm	ΔD_i , mm		ΔD_i^2
1				
2				
3				
4				
5				
	$\overline{D} =$		$\sigma_{\scriptscriptstyle D}$	
№ 1/п	H_i , ${\it mm}$	ΔH_i , mm		ΔH_i^2
1				
2				
3				
4				
5	·			
	$\overline{H} =$		$\sigma_{\scriptscriptstyle H}$ =	

4. По таблиці коеффіцієнтів Ст юдента для N=5 і надійності p=0,95 визначають коеф. Ст юдента

$$t_{s}$$
 =2,78. Обчислюють випадкову похибку

$$\Delta_D = t_s \cdot \sigma_D; \qquad \Delta_H = t_s \cdot \sigma_H$$

 Обчислюють систематичну похибку штангенциркуля по формулі

$$\Delta_{cucm} = p \cdot \Delta_{cucm}^{\max}$$

Для штангенциркуля $\Delta_{cucm}^{\max} = 0,1$ мм или 0,05мм в залежності від типа.

6. Визначають повну похибку вимірювань ліаметра і висоти

$$\Delta_D^{\Sigma} = \sqrt{\Delta_D^2 + \Delta_{cucm}^2} \qquad \Delta_H^{\Sigma} = \sqrt{\Delta_H^2 + \Delta_{cucm}^2}$$

 Обчислюють найбільш імовірне значення площі бічній поверхні

$$\overline{S} = \pi \cdot \overline{D} \cdot \overline{H}$$

 Обчислюють похибку непрямих вимірювань площі бічній поверхні

$$\Delta_{S} == \sqrt{(\pi \overline{H} \Delta_{D}^{\Sigma})^{2} + (\pi \overline{D} \Delta_{H}^{\Sigma})^{2}}$$

9. Обчислюють відносну похибку

$$\varepsilon = \frac{\Delta_s}{\overline{S}} \cdot 100 \%$$

10. Записують кінцевий результат вимірювань

$$S = (\overline{S} \pm \Delta_S) M M^2$$
 при p=0,95