

A. Course Handout (For Students & Faculty)

Institute/School/College Name	Chitkara University Insti	Chitkara University Institute of Engineering & Technology			
Department/Centre Name	Department of Comput	Department of Computer Science & Engineering			
Programme Name	Bachelor of Engineering- Computer Science & Engineering (Artificial Intelligence)				
Course Name	Data Analytics	Session	2022-23		
Course Code	AI105	Semester/Batch	3 rd /2022		
Lecture/Tutorial (Per Week)	2-0-4	Course Credits	4		
Course Coordinator Name	Dr. Sushil Kumar Narang	g			

1. Scope & Objective of the Course:

With great amounts of data comes a great need for data analysts. Organizations generate and collect an exponentially growing amount of data: wringing actionable answers and insights out of the chaos is a valuable and in-demand skill set to have. Organizations across industries need these answers and insights to improve the decisions they make. B2B and B2C commerce, health care, manufacturing, and marketing all use data analytics to improve processes and enhance profits.

This course prepares the students for a new career in the high-growth field of data analytics and about the process for planning data analysis solutions and the various data analytic processes that are involved. This course takes you through five key factors that indicate the need for specific AWS services in collecting, processing, analyzing, and presenting your data. This includes learning basic architectures, value propositions, and potential use cases

The core objectives of this course are:

- To gain an immersive understanding of the practices and processes used by a data analyst in their day-to-day job operations
- To teach how to clean and organize data for analysis, and complete analysis and calculations using spreadsheets, SQL and Python programming
- To inculcate key analytical skills (data cleaning, analysis, & visualization) and tools (Python programming, Tableau, Power BI)
- To know how to visualize and present data findings in dashboards, presentations and commonly used visualization platforms.

2. Course Learning Outcomes:

At the end of the course, students will be able to:

CLO01: Develop the ability to build proficiency with statistical analysis of data

CLO02: Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

CLO03: Carry out standard data visualization and formal inference procedures

CLO04: Perform data cleaning, and transform variables to facilitate analysis by integrating data from disparate sources

CLO05: Build and enhance business intelligence capabilities by adapting the appropriate technology and software solutions

CLO-PO Mapping grid | Program outcomes (POs) are available as a part of Academic Program Guide

Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CLO1	L	L	L	L	L					L	L	М
CLO2	Н	М	Н	Н	М					L	L	М

CLO3	Н	М	Н	Н	М			L	L	М
CLO4	Н	М	Н	Н	М			L	L	М
CLO5	М	М	М	Н	М			L	L	М

3. Recommended Books (Reference Books/Textbooks):

B01: Jojo Moolayil, "Smarter Decisions: The Intersection of IoT and Data Science", PACKT, 2016.

B02: Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.

B03: David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013

B04: Raj, Pethuru, "Handbook of Research on Cloud Infrastructures for Big Data Analytics", IGI Global

4. Other readings & relevant websites:

S.N.	Link of Journals, Magazines, Websites, and Research Papers
1.	https://www.tutorialspoint.com/statistics/index.html
2.	https://iridl.ldeo.columbia.edu/dochelp/StatTutorial/index.html
3.	https://www.khanacademy.org/math/statistics-probability
4.	https://www.analyticsvidhya.com/blog/2021/02/an-intuitive-guide-to-visualization-in-python/
5.	https://www.educba.com/data-science/data-science-tutorials/tableau-tutorial/
6.	https://matplotlib.org/stable/tutorials/index.html
7.	https://seaborn.pydata.org/tutorial.html

5. Recommended Tools and Platforms

Python, Jupyter Notebook, Visual Studio Code, Anaconda, Tableau, Microsoft Power BI

6. Course Plan:

Lecture Number	Topics	Details
1	Understanding data	Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data
2	Classification of digital Data	Structured, Semi-Structured and Un- StructuredSources of Data
3	Case Studies on Different types of Data	Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data
4	Data Evolution	Understand issues relating to acquisition, cleaning and loading of data, Data Deluge, Data lake
5-7	Python Numpy	Arrays, Indexing, SlicingDifferent Array OperationsLinear Algebra Operations
8-12	Python Pandas	 Dataframes, Handling of data Series Data wrangling, Alignment and Indexing, Handling Missing Data, Data Cleaning Merging and Joining Dataframes, Grouping Concayenation and Aggregation Masking, Performing Mathematical Operations on Data

13-16	Access and combine data from CSV,	Using Pandas to access different sources
15-10	JSON, logs, APIs, and databases	of Data
		0.500
17-19	Using SQL with Databases	DDL, DML, Select and Joins
20-23	Advanced Operations using Pandas	Statistical Functions
		Descriptive Statistics
		Working with Text Data
		Time Delta
		 Basic Data Visualization using pandas
24-28	Matplotlib, Seaborn, Cufflinks	Different Plot types
		Scatter, bar, histogram, box, pie, violin
		Subplots, axis and figures
		Text, labels and annotations
		Colormaps
		Plotting with Seaborn
		Plotting Categorical and Continuous Data
		Visualizing Regression models
		Plotting interactive plots using Cufflinks
29-33	Using Power BI for Visualization	Connecting to different data sources
		Data types
		Working with Meta Data
		Calculations
		Purpose of Data Analysis Expresssions
		(DAX)
		DAX operators & Functions
		Power Query
		Different Charts & Reports
		 Exploring Data geographically
	 	Building dashboard to see insights
34-35	Time-Series Analysis	Understanding, Trend, Seasonality and
		residuals, Moving Averages, Expnential
		Weighted Moving Averages,
		Autocorrelation, Autoregression models, ARIMA, SARIMAX
	ST-1 (Syllabus covered from L	· ·
36-38	Statistical Learning	Important statistical concepts used in
30-38	Statistical Learning	data science
		Difference between population and
		sample, Types of variables, Measures of
		central tendency
		Measures of variability, Coefficient of
		variance, Skewness and Kurtosis
		Exploratory data analysis: Missing value
		analysis
		The correction matrix, Outlier detection
		analysis
	 	Inferential Statistics: Normal distribution
39-44	Test hypotheses, Parametric and Non-	Central limit theorem, Confidence
	parametric tests	interval
		T-test, Type I and II errors, Student's T
		distribution
		Non-Parametric Tests: Sign Test Wilcover's Signed Bank Test
		Wilcoxon's Signed Rank Test Mann Whitney test
		Mann-Whitney test

		Kolmorogov-Smirnov test				
45-47	Understanding Regression	Linear and Non-linear Regression				
48-50	ANOVA	 One-way and Two-way Analysis of Variance R square, Correlation and causation dependent and independent variables- Case Studies 				
51-53	Identification of regression problems	Case Studies				
54-57	Identifications of Classification problems	Case Studies				
58-60	Identification of Clustering Problems	Case Studies				
ST-2 (Syllabus covered from Lecture)						
	END TERM – FULL SYLLABUS					
END TERM – FULL SYLLABUS						

7. Delivery/Instructional Resources

Lecture	Topics	PPT	Industry	Web References	Audio-Video
No.		(Link of	Expert		
		ppts on	Session (If		
		the	yes: link of		
		central	ppts on the		
		server)	central		
			server)		
1	Understanding data			https://www.sqlsha	
				ck.com/introductio	
				<u>n-to-data-science-</u>	
				<u>data-</u>	
				understanding-and-	
				preparation/	
				https://ibm-cloud-	
				architecture.github.	
				io/refarch-data-ai-	
				analytics/preparati	
				on/data-	
				understanding/	1
2	Classification of digital Data			https://ibm-cloud-	https://www.yo
				architecture.github.	utube.com/watc
				io/refarch-data-ai-	h?v=mm2A5tKVI
				analytics/preparati	pg
				on/data-	
	Constitution Bifferentia			understanding/	
3	Case Studies on Different types of Data			https://data-	
	UI Data			flair.training/blogs/	
				big-data-case-	
				studies/	

	Τ	T	T	
4	Data Evolution		https://www.kdnug gets.com/2014/06/ data-lakes-vs-data- warehouses.html	https://www.yo utube.com/watc h?v=E49BFhThC 3U
5-7	Python Numpy		https://numpy.org/ doc/stable/user/ind ex.html#user	https://www.yo utube.com/watc h?v=j31ah5Qa4 QI
8-12	Python Pandas		https://pandas.pyd ata.org/docs/user_ guide/index.html	https://www.yo utube.com/watc h?v=UB3DE5Bgf x4
13-16	Access and combine data from CSV, JSON, logs, APIs, and databases		https://pandas.pyd ata.org/docs/user_ guide/io.html	https://www.yo utube.com/watc h?v=GFBxxxjAza U
17-19	Using SQL with Databases		https://www.sqltut orial.org/	https://www.yo utube.com/watc h?v=zbMHLJ0dY 4w
20-23	Advanced Operations using Pandas		https://www.kdnug gets.com/2019/10/ 5-advanced- features- pandas.html	https://www.yo utube.com/watc h?v=DUgd48QY mfl https://www.yo utube.com/watc h?v=RlliVeig3hc
24-28	Matplotlib, Seaborn, Cufflinks		https://matplotlib. org/stable/plot typ es/index.html https://seaborn.py data.org/tutorial.ht ml https://www.analyt icsvidhya.com/blog /2021/06/advanced -python-data- visualization- libraries-plotly/	https://www.yo utube.com/watc h?v=3Xc3CA655 Y4 https://www.yo utube.com/watc h?v=ooqXQ37X HMM https://www.yo utube.com/watc h?v=7n5GzKuvP sw
29-33	Using Power BI for Visualization		https://www.tutori alspoint.com/powe r_bi/index.htm	https://www.yo utube.com/watc h?v=NalazxBo- 90 https://www.yo utube.com/watc h?v=3u7MQz1E yPY

34-38	Ctatistical Lagraina	T	hattana //wa alia wale - :-	hatter as I I summer series
34-38	Statistical Learning		https://realpython.	https://www.yo
			com/python-	utube.com/watc
			statistics/	h?v=mQ-
				3KwrBIN0
39-44	Test hypotheses, Parametric		https://machinelea	https://www.yo
	and Non-parametric tests		rningmastery.com/	utube.com/watc
			nonparametric-	h?v=IcLSKko2tsg
			statistical-	_
			significance-tests-	
			in-python/	
45-47	Understanding Regression		https://statisticsbyj	https://www.yo
			im.com/regression/	utube.com/watc
			regression-tutorial-	h?v=nk2CQITm_
			analysis-examples/	eo
48-50	ANOVA		https://www.renes	https://www.yo
			hbedre.com/blog/a	utube.com/watc
			<u>nova.html</u>	h?v=ITf4vHhyGp
				<u>C</u>
				hatter as I I among a series
				https://www.yo
				utube.com/watc
				h?v=QOl0_Odvb
54.52			1	dE
51-53	Identification of regression		https://users.stat.u	https://www.yo
	problems		fl.edu/~winner/cas	utube.com/watc
			<u>es.html</u>	h?v=HgfHefwK7
F 4 5 7	Identifications of Classification		hater and the second	VQ&t=268s
54-57			https://www.techg	https://www.yo
	problems		uruspeaks.com/cas	utube.com/watc
			e-study-	h?v=T5zJHhTO1
			classification/	FA
58-60	Identification of Clustering		http://ucanalytics.c	https://www.yo
33 00	Problems		om/blogs/customer	utube.com/watc
			-segmentation-	h?v=lc7MLQpjqZ
			cluster-analysis-	11: v=1c71v1LQpjq2
			telecom-case-	
			study-example/	

8. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
 Multiple Remedial Extra Classes Encouragement for improvement using Peer Tutoring 	 Doubt-sessions Pre-coded algorithms to illustrate concepts and notions E-notes and E-exercises to read in addition to pedagogic material 	 More Practice assignments on real life problems Engaging students to hold hands of slow learners by creating a Peer Tutoring Group Participation in Hackathons, competitions.

9. Evaluation Scheme & Components:

Evaluation	Type of Component	No. of	Weightage of	Mode of
Component		Assessments	Component	Assessment
Component 1	Subjective Test/Sessional Tests (STs)	02*	40%	Offline/Online
Component 2	End Term Examinations	01	60%	Offline/Online
	Total		100%	

^{*}Out of 02 STs, the ERP system automatically picks the average of 02 STs Marks for evaluation of the STs as final marks.

10. Details of Evaluation Components:

Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)	
Common ant 1	ST 01	Up to 36%	4 th April, 2022	40%	
Component 1	ST 02	37% - 100%	23 rd May, 2022		
Component 2	End Term Examination*	100%	At the End of the Semester	60%	
Total				100%	

^{*}As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination.

Evaluation Components

Type of Assessment	Timeline of Conduct	Total Marks	Question Paper Format			
			1 Mark MCQ	2 Mark MCQ	5 Mark Question	10 Mark Algorithm/Case Study
Sessional Test 1	4 th April, 2022	40	5	5	1	2
Sessional Test 2	23 rd May, 2022	40	5	5	1	2
End Term Exan	nination	60	10	5	4	2

B. Syllabus of the Course

S.N	Topic (s)	No. of Lectures	Weightage %
1	Understanding data: Introduction – Types of Data: Numeric –		
	Categorical – Graphical – High Dimensional Data – Classification	4	10%
	of digital Data: Structured, Semi-Structured and Un-Structured -	4	10%
	Example, Applications, Sources of Data: Time Series –		

2	Transactional Data — Biological Data — Spatial Data — Social Network Data — Data Evolution, Understand issues relating to acquisition, cleaning and loading of data, Data Deluge, Data lake Python Numpy, Python Pandas: Dataframes, Handling of data, Data wrangling, Alignment and Indexing, Handling Missing Data, Data Cleaning, Merging and Joining Dataframes, Grouping, Masking, Performing Mathematical Operations on Data, Access and combine data from CSV, JSON, logs, APIs, and databases	14	25%
3	Data Visualization using pandas, Matplotlib, Seaborn, Using Tableau for Visualization, Connecting to different data sources, Data types, Working with Meta Data, Calculations, Purpose of Data Analysis Expresssions (DAX), DAX operators & Functions, Power Query, Different Charts & Reports, Exploring Data geographically, Building dashboard to see insights	10	20%
4	Important statistical concepts used in data science, Difference between population and sample, Types of variables, Measures of central tendency, Measures of variability, Coefficient of variance, Skewness and Kurtosis Exploratory data analysis: Missing value analysis, The correction matrix, Outlier detection analysis	5	8%
5	Inferential Statistics: Normal distribution, Test hypotheses, Parametric and Non-parametric tests, Central limit theorem, Confidence interval, T-test, Type I and II errors, Student's T distribution, Non-Parametric Tests: Sign Test, Wilcoxon's Signed Rank Test, Mann-Whitney test, Kolmorogov-Smirnov test	6	10%
6	Regression, ANOVA(One-way and Two-way Analysis of Variance), R-square, Correlation and causation, Introduction to classification problems, Identification of a regression problem, dependent and independent variables, Clustering Problems Different Case Studies	16	27%

This document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Sushil Kumar Narang	
Program In-charge	Dr. Kamal Deep Garg	
Cluster Dean	Dr. Sushil Kumar Narang	
Date (DD/MM/YYYY)		