Newton's Method

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 8, 2020

Οι	utline
1	Nonlinear equations
2	Newton's Method in one variable
3	Newton's Method in multiple variables
4	Rates of convergence
5	Convergence of Newton's Method

Notes			
Notes			

Problem of interest

Given a function $F: \mathbb{R}^n \to \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n$ such that

$$F(x) = 0$$

- some methods only require evaluating *F*
 - ightharpoonup bisection method (n=1)
 - fixed-point iteration
 - secant method
- some methods require evaluating F and $\nabla F(x)$
 - ▶ inverse interpolation
 - Newton's Method
- examples

 - ▶ calculating \sqrt{z} by finding a zero of $F(x)=x^2-z$ ▶ most nonlinear optimization methods in some way reduce to or are based on applying Newton's Method to some function
- linear F(x) = Ax b always has either 0, 1, or infinitely many solutions
- nonlinear F may have any number of solutions
 - $F(x) = e^x + 1 = 0$ (no real solutions)
 - $F(x) = x^2 + a = 0$ (0, 1, or 2 solutions)
 - $F(x) = \cos(x)$ (infinitely many solutions)

What can we expect?

- Zeros usually cannot be computed analytically
- Solutions to even simple equations can be irrational, e.g., $F(x) = x^2 2 = 0$
- We cannot expect to solve a system of equations exactly even if it has rational zeros
- We seek algorithms that produce approximate numerical solutions quickly, accurately, and reliably

Notes		
lotes		
10100		

Motoo

Newton's Method in one variable

Given x_k consider the first-order Taylor expansion

$$l_k(x) \stackrel{\text{def}}{=} f(x_k) + f'(x_k)(x - x_k) \approx f(x)$$
 for x near x_k

Define x_{k+1} as the zero of l_k

$$0 = l_k(x_{k+1}) = f(x_k) + f'(x_k)(x_{k+1} - x_k)$$

which yields

$$x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}$$
 (this is the Newton iteration)

Newton's Method in one variable

Newton's Method for finding a zero of the function f(x) generates a sequence of iterates $\{x_k\}_{k\geq 0}$ from the formula

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- each iteration requires both a function and derivative evaluation
- does it work?
 - ▶ iterates can cycle, diverge, converge, or simply not converge
 - what if $f'(x_k) = 0$?
 - what if $f(x_k)$ is undefined or equal to an imaginary number?

<Matlab demo 1>

Notes			
Votes			
Notes			

Consider the zero-finding problem F(x) = 0 where

$$F(x) = \begin{pmatrix} F_1(x) \\ \vdots \\ F_n(x) \end{pmatrix} \in \mathbb{R}$$

and the Jacobian matrix is given by

$$\nabla F(x) = \begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n(x)}{\partial x_1} & \cdots & \frac{\partial F_n(x)}{\partial x_n} \end{pmatrix}$$

Newton's Method in higher dimensions

Iteratively compute zeros of

$$l_k(x) \stackrel{\text{def}}{=} F(x_k) + \nabla F(x_k)(x - x_k)$$

by

$$x_{k+1} = x_k + s_k$$
 where s_k solves $\nabla F(x_k)s = -F(x_k)$

- assumes that $\nabla F(x_k)$ is nonsingular
- computing $\nabla F(x_k)$ (and solving with it) can be very expensive!
- \bullet can be viewed as finding a zero of n individual affine models simultaneously

$$F_i(x_k) + \nabla F_i(x_k)^T s = 0 \iff \nabla F_i(x_k)^T s = -F_i(x_k) \text{ for all } i = 1, \dots, n$$
Matlab demo 2>

• A sequence of iterates $\{x_k\}$ is said to converge to x^* if

$$\lim_{k\to\infty}\|x_k-x^*\|=0$$

• It would be great if Newton's Method for solving

$$F(x) = 0$$

was guaranteed to satisfy $\lim_{k\to\infty} x_k = x^*$ and $F(x^*) = 0$

- If iterates $\{x_k\}$ generated by an algorithm converge from any initial point x_0 , then we say the algorithm is globally convergent
- Newton's Method is not globally convergent
- If a sequence of iterates $\{x_k\}$ generated by an algorithm converges once x_k is "close enough" to a zero x^* , then we say it is locally convergent
- When the iterates do converge, we are also interested in how fast they do so, i.e., the rate of convergence

Notes			
Notes			

Notes

Definition (q-linearly convergent)

We say that the sequence $\{x_k\}$ is q-linearly convergent to x^* if there exists a constant $c \in [0, 1)$ such that

$$||x_{k+1}-x^*|| \le c||x_k-x^*||$$

• $\{1+2^{-k}\}$ converges linearly to $x^*=1$

Definition (q-superlinearly convergent)

We say that the sequence $\{x_k\}$ is q-superlinearly convergent to x^* if $\{x_k\}$ converges to x^* and there exists a sequence $\{c_k\}$ satisfying

$$\lim_{k\to\infty}c_k=0$$

and

$$||x_{k+1}-x^*|| \le c_k||x_k-x^*||$$

Definition (q-quadratically convergent)

We say that the sequence $\{x_k\}$ is q-quadratically convergent to x^* if $\{x_k\}$ converges to x^* and there exists a constant c > 0 such that

$$||x_{k+1} - x^*|| \le c||x_k - x^*||^2$$

• $\{1+2^{-2^k}\}$ converges quadratically to $x^*=1$

Theorem (Local convergence of Newton's method)

Let $F \colon \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable function on an open convex set D, and assume that $F(x^*) = 0$ for some $x^* \in \mathcal{D}$ and that $\nabla F(x^*)$ is nonsingular. Then there exists an open neighborhood \mathcal{S} containing x^* such that, for any x_0 in \mathcal{S} , the Newton iterates are well defined, remain in \mathcal{S} and converge to x^* .

- if any Newton iterate gets "close enough" to x^* , then the Newton iterates will converge to x^*
- this does not say anything about how fast they will converge!

1-4		
Notes		
Notes		
Notes		
lotes		
lotes		
Notes		
lotes		
Notes		
lotes		
lotes		
lotes		
Notes		

Notes

With stronger assumptions, we show that Newton's Method is quadratically convergent

Theorem (Quadratic-convergence of Newton's Method)

Let $x^* \in \mathbb{R}^n$ satisfy $F(x^*) = 0$ and assume that the following hold:

- F is continuously differentiable in an open convex set $\mathcal{X} \subseteq \mathbb{R}^n$ containing x^*
- $\nabla F(x^*)$ is nonsingular
- there exists r > 0 such that $\mathcal{B}(x^*, r) \subset \mathcal{X}$ and the Jacobian ∇F is Lipschitz continuous with constant L in $\mathcal{B}(x^*, r)$

It follows that there exists an $\varepsilon > 0$ such that for all $x_0 \in \mathcal{B}(x^*, \varepsilon)$ the sequence of iterates generated by Newton's Method is well-defined, converges to x^* , and satisfies

$$||x_{k+1} - x^*|| \le c ||x_k - x^*||^2$$
 for some $c > 0$ (quadratic convergence)

Proof:

Since $\nabla F(x^*)$ is nonsingular by assumption, we may define

$$M \stackrel{\mathrm{def}}{=} \| [\nabla F(x^*)]^{-1} \| < \infty$$

For radius of differentiability r, Lipschitz constant L for the Jacobian ∇F , and constant M, we may define

$$\varepsilon \stackrel{\text{def}}{=} \min\left(r, \frac{1}{2ML}\right)$$

We first show that if $||x_0 - x^*|| < \varepsilon$ then $\nabla F(x_0)$ is nonsingular and bounded by using

Lemma

Let $\|\cdot\|$ be a matrix norm that satisfies $\|AB\| \le \|A\| \|B\|$ and $\|I\| = 1$. If A is nonsingular and $\|A^{-1}(B-A)\| < 1$, then B is nonsingular and

$$||B^{-1}|| \le \frac{||A^{-1}||}{1 - ||A^{-1}(B - A)||}$$

Norm inequalities, definition of M, Lipschitz continuity of ∇F , and definition of ε yield

$$\begin{aligned} \| [\nabla F(x^*)^{-1} (\nabla F(x_0) - \nabla F(x^*)) \| &\leq \| [\nabla F(x^*)^{-1} \| \| \nabla F(x_0) - \nabla F(x^*) \| \\ &\leq ML \|x_0 - x^*\| \leq ML\varepsilon \leq \frac{1}{2} \end{aligned}$$

so that the previous lemma ensures that $\nabla F(x_0)$ is nonsingular and

$$\|[\nabla F(x_0)]^{-1}\| \leq \frac{\|[\nabla F(x^*)]^{-1}\|}{1 - \|[\nabla F(x^*)]^{-1}(\nabla F(x_0) - \nabla F(x^*))\|} \leq 2\|[\nabla F(x^*)]^{-1}\| = 2M$$

as desired.

				_
Notes				

Notes

Using simple algebra and the fact that $F(x^*) = 0$, we have

$$x_{1} - x^{*} = x_{0} - x^{*} - [\nabla F(x_{0})]^{-1} F(x_{0})$$

$$= x_{0} - x^{*} - [\nabla F(x_{0})]^{-1} (F(x_{0}) - F(x^{*}))$$

$$= [\nabla F(x_{0})]^{-1} \Big[F(x^{*}) - \underbrace{(F(x_{0}) + \nabla F(x_{0})(x^{*} - x_{0}))}_{\text{affine model of } F \text{ at } x_{0}} \Big]$$

and then using the bound on the previous slide and Taylor expansion we have

$$||x_{1} - x^{*}|| \leq ||[\nabla F(x_{0})]^{-1}|| ||F(x^{*}) - (F(x_{0}) + \nabla F(x_{0})(x^{*} - x_{0}))||$$

$$\leq (2M) \left(\frac{1}{2}L||x_{0} - x^{*}||^{2}\right)$$

$$= ML||x_{0} - x^{*}||^{2}$$
(1)

$$= c||x_0 - x^*||^2 \quad \text{for } c \stackrel{\text{def}}{=} ML \tag{2}$$

which is the condition required to prove quadratic convergence if $\{x_k\}$ converges to x^* . However, we have from (1) and the definition of ε that

$$||x_1 - x^*|| \le ML||x_0 - x^*||^2 = ML||x_0 - x^*|| ||x_0 - x^*|| \le \frac{1}{2}||x_0 - x^*||.$$

Since $||x_1 - x^*|| < \varepsilon$, we can repeat the argument and thus $\{x_k\}$ does in fact converge to x^* . It now follows from (2) that the iterates $\{x_k\}$ converge quadratically to x^* .

Summary

- We need x_k to be close enough to x^* so that $\nabla F(x_k)$ is nonsingular
- The region of guaranteed convergence is the ball centered at x^* with radius

$$\varepsilon = \min\left(r, \frac{1}{2ML}\right)$$

- Large *M* and/or *L* implies a small ball of guaranteed convergence
- Newton's Method may converge even outside of this ball
- Large L means the gradient changes rapidly near x^*
- Large M means Newton step may send us far away

Notes			
Notes			

Relevance for optimization

$$\operatorname{minimize}_{x \in \mathbb{R}^n} f(x)$$

First order necessary condition:

$$\nabla f(x^*) = 0$$

So we are searching for zeros of the gradient map $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$. Ready for applying Newton's method!

Initialize x^0 to some starting point. Compute iterates

$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

Called the Newton step and $-(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$ is called the Newton direction.

Notes	
Notes	
Notes	