In [1]: import pandas as pd
In [133]: data=pd.read_csv("/home/placement/Desktop/reddy/fiat500.csv")
In [134]: data.describe()

Out[134]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [135]: data.tail(10)

Out[135]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
1528	1529	lounge	51	2861	126000	1	43.841980	10.51531	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.36112	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.99450	10800
1531	1532	sport	73	4505	127000	1	45.528511	9.59323	4750
1532	1533	pop	51	1917	52008	1	45.548000	11.54947	9900
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.56827	7900

In [5]: data1=data.drop(['ID','lat','lon'],axis=1)

In [6]: data1

Out[6]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [7]: data1['model']=data1['model'].map({'lounge':1,'pop':2,'sport':3})

In [8]: data1

Out[8]:

	model	engine_power	age_in_days	km	previous_owners	price
() 1	51	882	25000	1	8900
1	1 2	51	1186	32500	1	8800
2	2 3	74	4658	142228	1	4200
3	3 1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1 1	74	3835	112000	1	4600
1535	5 2	51	2223	60457	1	7500
1536	5 1	51	2557	80750	1	5990
1537	7 2	51	1766	54276	1	7900

1538 rows × 6 columns

In [23]: data2=data1.loc[(data.previous_owners==1)]

In [24]: data2

Out[24]:

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1389 rows × 6 columns

```
In [32]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [33]: y
Out[33]: 0
                  8900
                  8800
                  4200
         3
                  6000
                  5700
                  . . .
         1533
                  5200
         1534
                  4600
         1535
                  7500
         1536
                  5990
         1537
                  7900
         Name: price, Length: 1389, dtype: int64
In [34]: x
```

Out[34]:

	model	engine_power	age_in_days	km	previous_owners
0	1	51	882	25000	1
1	2	51	1186	32500	1
2	3	74	4658	142228	1
3	1	51	2739	160000	1
4	2	73	3074	106880	1
1533	3	51	3712	115280	1
1534	1	74	3835	112000	1
1535	2	51	2223	60457	1
1536	1	51	2557	80750	1
1537	2	51	1766	54276	1

1389 rows × 5 columns

```
In [116]: from sklearn.model selection import train test split
           x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [117]: x test.head(5)
Out[117]:
                model engine_power age_in_days
                                                 km previous owners
                                        3347 148000
                               51
            625
                                        4322 117000
            187
                               51
            279
                    2
                               51
                                        4322 120000
                                                                 1
            734
                               51
                                         974
                                              12500
            315
                               51
                                        1096
                                              37000
                                                                 1
In [118]: x train.shape
Out[118]: (930, 5)
In [119]: y train.shape
Out[119]: (930,)
In [120]: x train.head()
Out[120]:
                model engine_power age_in_days
                                                km previous_owners
            915
                                         397 17081
                               51
                                                                1
             12
                                         456 18450
                               51
            638
                               51
                                         397 21276
                                                                1
            190
                               51
                                         821 19000
                                                                1
            701
                               51
                                         701 27100
                                                                1
```

```
In [121]: y train.head()
Out[121]: 915
                  10900
                   9700
           12
                  10850
           638
                   9990
           190
           701
                  10300
           Name: price, dtype: int64
In [122]: x_test.head()
Out[122]:
                model engine_power age_in_days
                                               km previous_owners
           625
                              51
                                       3347 148000
                   1
                                                               1
            187
                                       4322 117000
                              51
            279
                              51
                                       4322 120000
            734
                              51
                                        974
                                             12500
                   2
            315
                              51
                                       1096
                                             37000
In [123]: y test.head()
Out[123]: 625
                    5400
           187
                   5399
           279
                   4900
           734
                  10500
                   9300
           315
           Name: price, dtype: int64
```

```
In [124]: from sklearn.linear model import ElasticNet
          from sklearn.model selection import GridSearchCV
          elastic = ElasticNet()
          parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
          elastic regressor = GridSearchCV(elastic, parameters)
          elastic regressor.fit(x train, y train)
Out[124]: GridSearchCV(estimator=ElasticNet(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20]})
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [125]: elastic regressor.best params
Out[125]: {'alpha': 1e-15}
In [126]: elastic=ElasticNet(alpha=1e-15)
          elastic.fit(x train,y train)
          y pred elastic=elastic.predict(x test)
In [127]: from sklearn.metrics import r2 score
           r2 score(y test,y pred elastic)
Out[127]: 0.8582526737355334
In [128]: from sklearn.metrics import mean squared error
          Elasticnet Error=mean squared error(y pred elastic,y test)
          Elasticnet Error
Out[128]: 522589.16921946756
```

```
In [129]: Results=pd.DataFrame(columns=['Actual', 'predicted'])
            Results['Actual']=y_test
            Results['predicted']=y_pred_elastic
Results=Results.reset_index()
            Results['ID']=Results.index
            Results.head(10)
```

Out[129]:	ut[129]:		Actual	predicted	ID
	0	625	5400	5478.082470	0
	1	187	5399	5128.749813	1
	2	279	4900	4939.964669	2
	3	734	10500	9770.938056	3
	4	315	9300	9383.407921	4
	5	652	10850	10319.804281	5
	6	1472	9500	9912.760894	6
	7	619	7999	8526.411840	7
	8	992	6300	5910.610353	8
	9	1154	10000	10119.997990	9

```
In [132]: import seaborn as sns#plot
import matplotlib.pyplot as plt
sns.lineplot(x='ID', y='Actual', data=Results.head(50))
sns.lineplot(x='ID', y='predicted', data=Results.head(50))
plt.plot()
```

Out[132]: []


```
In [ ]:

In [ ]:
```