Отчёт по заданию практикума по курсу БММО «Байесовская смесь распределений Бернулли»

Mypam Anuwee

great-mel@yandex.ru, MelLain@github.com МГУ имени М. В. Ломоносова, Москва 15 ноября 2014 г.

Содержание

1	Пос	становка задачи	1
	1.1	Описание вероятностной модели	1
	1.2	Формулировка задания	2
2	Вы	вод формул для ЕМ-алгоритма	3
	2.1	Формулы Е-шага	3
	2.2	Формула М-шага	4
	2.3	Вид оптимизируемого функционала	5
3	Tec	тирование и эксперименты	5
	3.1	Тестирование ЕМ-алгоритма на модельных данных	5
	3.2	Тестирование ЕМ-алгоритма на коллекции MNIST	7
	3.3	Исследование зависимости логарифма правдоподобия от кластеризации	9
	3.4	Обучение классификатора на основе результатов кластеризации	10
4	Зак	слючение и выводы	11
\mathbf{C}_{1}	писо	к литературы	12

1 Постановка задачи

1.1 Описание вероятностной модели

Пусть дана выборка X объёма N, $x \in X$, где $x = (x_1, \dots, x_D)^T$ —набор из D случайных величин x_i , каждая из которых имеет распределение Бернулли с параметром μ_i . Рассмотрим смесь из K таких распределений с весами π_k :

$$p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{k=1}^{K} \boldsymbol{\pi}_{k} p(\boldsymbol{x} \mid \boldsymbol{\mu}_{k})$$
 (1)

где $\pmb{\mu} = \{\pmb{\mu}_1, \; \dots, \; \pmb{\mu}_K)\}, \; \pmb{\pi} = \{\pmb{\pi}_1, \; \dots, \; \pmb{\pi}_K\}$

Для каждого объекта \boldsymbol{x} введём скрытую переменную $\boldsymbol{z}=(\boldsymbol{z}_1,\dots,\boldsymbol{z}_K)^T$ — бинарный вектор, у которого только одна компонента равна 1, а все остальные нулевые. Тогда можно записать следующее условное распределение:

$$p(\mathbf{x} \mid \mathbf{Z}, \, \boldsymbol{\mu}) = \prod_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\mu}_{k})^{z_{k}}, \quad p(\mathbf{x} \mid \boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_{i}^{x_{i}} (1 - \mu_{i})^{1 - x_{i}}$$
(2)

Введём распределение на z:

$$p(\boldsymbol{Z} \mid \boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k} \tag{3}$$

Дополнительно введём априорные распределения $\pmb{\mu}$ и $\pmb{\pi}$:

$$p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) = \operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \boldsymbol{\pi}_k^{\alpha_k - 1}$$
(4)

$$p(\boldsymbol{\mu}_k \mid a, b) = \prod_{i=1}^{D} \text{Beta}(\boldsymbol{\mu}_{ki} \mid a, b) = \frac{\boldsymbol{\mu}_{ki}^{a-1} (1 - \boldsymbol{\mu}_{ki})^{b-1}}{B(a, b)}$$
(5)

Будем рассматривать симметричное распределение Дирихле, т.е. $\boldsymbol{\alpha} = (\alpha, \ldots, \alpha)^{\mathrm{T}}$. При таких условиях получаем следующее совместное распределение модели:

$$p(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{\mu}, \boldsymbol{\pi} \mid \boldsymbol{\alpha}, a, b) = p(\boldsymbol{X} \mid \boldsymbol{Z}, \boldsymbol{\mu}) p(\boldsymbol{Z} \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^{K} p(\boldsymbol{\mu}_k \mid a, b)$$
(6)

1.2 Формулировка задания

Требовалось решить следующую задачу

$$p(X, \pi \mid \alpha, a, b) \to \max$$
 (7)

Для этого предлагалось воспользоваться вариационным ЕМ-алгоритмом, на Е-шаге которого считается вариационное приближение:

$$p(Z, \mu \mid X, \pi, \alpha, a, b) \approx q(Z)q(\mu),$$
 (8)

а на М-шаге считается точечная оценка на **π**:

$$\mathbb{E}_{q(\mathbf{Z})}q(\boldsymbol{\mu})\ln p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\pi} \mid \boldsymbol{\alpha}, a, b) \to \max_{\boldsymbol{\pi}}$$
(9)

В рамках выполнения задания было необходимо решить следующие подзадачи:

- 1. Выписать все необходимые формулы ЕМ-алгоритма.
- 2. Вывести формулу для подсчёта функционала $\mathcal{L}(q)$ (вариационной нижней границы).
- 3. Реализовать вариационный EM-алгоритм на Matlab или Python ¹.
- 4. Реализовать в ЕМ-алгоритме поиск из нескольких случайных начальных приближений, с выбором лучшего по значению $\mathcal{L}(q)$.
- 5. Протестировать ЕМ-алгоритм на модельных данных (на сгенерированных данных с известными параметрами распределений).
- 6. Протестировать алгоритм на коллекции MNIST и сделать выводы.
- 7. Исследовать зависимость логарифма правдоподобия на обучающей и контрольной выборках от кластеризации. Правдоподобие вычислялось по формуле

$$p(\boldsymbol{X}) = \prod_{n=1}^{N} p(\boldsymbol{x}_n \mid \mathbb{E}_{q(\boldsymbol{\mu})}\boldsymbol{\mu}, \, \boldsymbol{\pi}_{ML}), \tag{10}$$

где $p(\pmb{x} \mid \pmb{\mu}, \pmb{\pi})$ задано формулой (1), $\pmb{\pi}_{ML}$ — точечная оценка на параметры $\pmb{\pi}$, полученная в результате работа ЕМ-алгоритма.

8. Рассмотреть величины $q(z_{nk}=1)$ в качестве признаков n-го объекта. Обучить любой классификатор на базе MNIST. Исследовать, как ведёт себя матрица точности на контрольной выборке в зависимости от кластеризации.

¹Был выбран первый вариант.

2 Вывод формул для ЕМ-алгоритма

Прежде, чем приступить непосредственно к выводу формул, распишем логарифм совместного распределения:

$$\begin{split} & \ln p(\boldsymbol{X},\,\boldsymbol{Z},\,\boldsymbol{\mu},\,\boldsymbol{\pi}\mid\boldsymbol{\alpha},\,a,\,b) = \ln p(\boldsymbol{X}\mid\boldsymbol{Z},\,\boldsymbol{\mu}) + \ln p(\boldsymbol{Z}\mid\boldsymbol{\pi}) + \ln p(\boldsymbol{\pi},\,\boldsymbol{\alpha}) + \sum_{k=1}^{K} \ln p(\boldsymbol{\mu}_{k}\mid a,b) = \\ & = \sum_{n=1}^{N} \sum_{k=1}^{K} \ln p(\boldsymbol{x}_{n}\mid\boldsymbol{\mu}_{k})^{z_{nk}} + \sum_{n=1}^{N} \sum_{k=1}^{K} \ln \pi_{k}^{z_{nk}} + \ln \operatorname{Dir}(\boldsymbol{\pi}\mid\boldsymbol{\alpha}) + \sum_{k=1}^{K} \sum_{i=1}^{D} \ln \operatorname{Beta}(\mu_{ki}\mid a,\,b) = \\ & = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[\ln(\mu_{ki}^{x_{ni}}) + \ln(1-\mu_{ki})^{1-x_{ni}} \right] \right) + \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \ln \pi_{k} + \\ & + \ln \left(\frac{\Gamma(\sum_{k=1}^{K} \alpha_{k})}{\prod_{k=1}^{K} \alpha_{k}} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \right) + \sum_{k=1}^{K} \sum_{i=1}^{D} \ln \left(\frac{\mu_{ki}^{a-1}(1-\mu_{ki})^{b-1}}{\operatorname{B}(a,\,b)} \right) = \left\{ \alpha_{k} = \alpha,\,\forall k = \overline{1,K} \right\} = \\ & = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln(1-\mu_{ki}) \right] \right) + \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \ln \pi_{k} + \ln \Gamma(K\alpha) - \\ & - K \ln \Gamma(\alpha) + \sum_{k=1}^{K} (\alpha-1) \ln \pi_{k} + \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a-1) \ln \mu_{ki} + (b-1) \ln(1-\mu_{ki}) - \ln \operatorname{B}(a,\,b) \right] = \\ & = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln(1-\mu_{ki}) \right] + \ln \pi_{k} \right) + \\ & + \ln \Gamma(K\alpha) - K \ln \Gamma(\alpha) + \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a-1) \ln \pi_{k} - \sum_{k=1}^{K} \sum_{i=1}^{D} \ln \operatorname{B}(a,\,b) + \\ & + \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a-1) \ln \mu_{ki} + (b-1) \ln(1-\mu_{ki}) \right] \right] \end{split}$$

2.1 Формулы Е-шага

Выпишем формулу для $\ln q(\boldsymbol{Z})$:

$$\ln q(\mathbf{Z}) = \mathbb{E}_{q(\boldsymbol{\mu})} \ln p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\pi} \mid \boldsymbol{\alpha}, a, b) =$$

$$= \mathbb{E}_{q(\boldsymbol{\mu})} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right] + \ln \pi_{k} \right) + \text{const} =$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (1 - x_{ni}) \mathbb{E}_{q(\boldsymbol{\mu})} \ln(1 - \mu_{ki}) \right] + \ln \pi_{k} \right) + \text{const}$$

Отсюда получаем формулу для вычисления $q(\boldsymbol{Z})$:

$$q(\mathbf{Z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \rho_{nk}^{z_{nk}}, \ \rho_{nk} = \frac{\pi_k \exp\left\{\sum_{i=1}^{D} \left[x_{ni} \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (1 - x_{ni}) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] \right\}}{\sum_{k=1}^{K} \pi_k \exp\left\{\sum_{i=1}^{D} \left[x_{ni} \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (1 - x_{ni}) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] \right\}}$$
(11)

2

Выпишем формулу для $q(\boldsymbol{\mu})$:

$$\ln q(\boldsymbol{\mu}) = \mathbb{E}_{q(\boldsymbol{Z})} \ln p(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{\mu}, \boldsymbol{\pi} \mid \boldsymbol{\alpha}, a, b) =$$

$$= \mathbb{E}_{q(\boldsymbol{\mu})} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right] \right) +$$

$$+ \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a - 1) \ln \mu_{ki} + (b - 1) \ln(1 - \mu_{ki}) \right] + \text{const} =$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{D} \left(\sum_{n=1}^{N} p(z_{nk} = 1) x_{ni} \ln \mu_{ki} + \sum_{n=1}^{N} p(z_{nk} = 1) (1 - x_{ni}) \ln(1 - \mu_{ki}) +$$

$$+ (a - 1) \ln \mu_{ki} + (b - 1) \ln(1 - \mu_{ki}) \right) + \text{const} =$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{D} \left(\left[\sum_{n=1}^{N} p(z_{nk} = 1) x_{ni} + a - 1 \right] \ln \mu_{ki} + \left[\sum_{n=1}^{N} p(z_{nk} = 1) (1 - x_{ni}) + b - 1 \right] \ln(1 - \mu_{ki}) \right) +$$

$$+ \text{const}$$

Отсюда получаем формулу для вычисления $q(\mu)$:

$$q(\boldsymbol{\mu}) = \prod_{k=1}^{K} \prod_{i=1}^{D} \text{Beta}(\mu_{ki} \mid \hat{a}, \, \hat{b}), \, \hat{a} = a + \sum_{n=1}^{N} \rho_{nk} x_{ni}, \, \hat{b} = b + \sum_{n=1}^{N} \rho_{nk} (1 - x_{ni})$$
(12)

2.2 Формула М-шага

В общем виде формула М-шага имеет вид 9. Для решения задачи максимизации запишем лагранжиан, учтя ограничение на веса смеси $(\sum_{k=1}^K \pi_k = 1)$:

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{nk} = 1) \left(\sum_{i=1}^{D} \left[x_{ni} \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (1 - x_{ni}) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] + \ln \pi_{k} \right) + \\ + \ln \Gamma(K\alpha) - K \ln \Gamma(\alpha) + \sum_{k=1}^{K} (\alpha - 1) \ln \pi_{k} - \sum_{k=1}^{K} \sum_{i=1}^{D} \ln B(a, b) + \\ + \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a - 1) \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (b - 1) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] + \lambda (1 - \sum_{k=1}^{K} \pi_{k})$$

Продифференцируем его и приравняем производную нулю:

$$\frac{d\mathcal{L}}{d\pi_k} = \sum_{n=1}^{N} p(z_{nk} = 1) \frac{1}{\pi_k} + (\alpha - 1) \frac{1}{\pi_k} - \lambda = 0$$

Найдём λ :

$$\lambda = \sum_{k=1}^{K} \lambda \pi_k = \sum_{k=1}^{K} \left(\sum_{n=1}^{N} p(z_{nk} = 1) + (\alpha - 1) \right) = \sum_{k=1}^{K} \sum_{n=1}^{N} p(z_{nk} = 1) + \sum_{k=1}^{K} (\alpha - 1) = N + K(\alpha - 1)$$

$$\frac{\partial}{\partial z_{nk}} = p(z_{nk} = 1)$$

Получаем окончательную формулу для М-шага:

$$\pi_k = \frac{\sum_{n=1}^{N} \rho_{nk} + \alpha - 1}{N + K(\alpha - 1)}$$
(13)

2.3 Вид оптимизируемого функционала

Запишем общую формулу для функционала $\mathcal{L}(q)$ в вариационном выводе:

$$\mathcal{L}(q) = \int \ln \frac{p(X, T)}{\prod_{j=1}^{J} q_j(T_j)} \prod_{j=1}^{J} q_j(T_j) dT_j = \mathbb{E}_{q_1(T_1), \dots, q_J(T_J)} \ln \frac{p(X, T)}{\prod_{j=1}^{J} q_j(T_j)} \to \max_{q_1, \dots, q_J} q_j(T_j)$$

В случае нашей задачи функционал примет следующий вид:

$$\mathcal{L}(q) = \sum_{n=1}^{N} \sum_{k=1}^{K} \rho_{nk} \left(\sum_{i=1}^{D} \left[x_{ni} \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (1 - x_{ni}) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] + \ln \pi_{k} \right) + \\
+ \ln \Gamma(K\alpha) - K \ln \Gamma(\alpha) + \sum_{k=1}^{K} (\alpha - 1) \ln \pi_{k} - \sum_{k=1}^{K} \sum_{i=1}^{D} \ln B(a, b) + \\
+ \sum_{k=1}^{K} \sum_{i=1}^{D} \left[(a - 1) \mathbb{E}_{q(\boldsymbol{\mu})} \ln \mu_{ki} + (b - 1) \mathbb{E}_{q(\boldsymbol{\mu})} \ln (1 - \mu_{ki}) \right] - \\
- \sum_{n=1}^{N} \sum_{k=1}^{K} \rho_{nk} \ln \rho_{nk} - \sum_{k=1}^{K} \sum_{i=1}^{D} \underbrace{\int_{\ln B(\hat{a}, \hat{b}) - (\hat{a} - 1) \psi(\hat{a}) - (\hat{b} - 1) \psi(\hat{b}) + (\hat{a} + \hat{b} - 2) \psi(\hat{a} + \hat{b})}_{\ln B(\hat{a}, \hat{b}) - (\hat{a} - 1) \psi(\hat{a}) - (\hat{b} - 1) \psi(\hat{b}) + (\hat{a} + \hat{b} - 2) \psi(\hat{a} + \hat{b})}$$
(14)

3 Тестирование и эксперименты

3.1 Тестирование ЕМ-алгоритма на модельных данных

Корректность ЕМ-алгоритма можно проверить с помощью восстановления параметров смеси сгенерированных данных. Произведём генерацию данных со следующими параметрами:

- K = 20
- $\alpha = 0.01$
- a = b = 2
- D = 50
- N = 1000

А ЕМ-алгоритм запуститм с набором гиперпараметров следующего вида:

- K = 50
- $\alpha = 0.1$
- a = b = 1

В результате работы ЕМ-алгоритма параметры генерации π и μ были восстановлены достаточно точно. Сравним векторы весов компонент смеси (рассмотрим только ненулевые):

Как видно из таблицы выше, веса компонент, несмотря на неверные априорные гиперпараметры, восстановлены достаточно точно. Поскольку более 98% массы смеси сосредоточено в

3

π (при генерации)	π (после восстановления)
0.00000	0.00010
0.00000	0.00009
0.00067	0.00107
0.00948	0.00201
0.00118	0.00211
0.98865	0.99454
0.00000	0.00009

Таблица 1: Сравнение априорных и апостериорных весов компонент смеси.

μ_k (при генерации)	0.20	0.03	0.14	0.78	0.67	0.53	0.70	0.49
μ_k (после восстановления)	0.20	0.03	0.15	0.76	0.68	0.50	0.70	0.50

Таблица 2: Сравнение априорных и апостериорных центров превалирующего кластера.

одной компоненте, качество восстановления $\pmb{\mu}$ можно оценивать по строке, соответствующей этой компоненте смеси:

Хорошее качество восстановления очевидно. Для доказательства корректности созданного ЕМ-алгоритма осталось лишь убедиться в монотонном возрастании функционала качества 14. Это видно из следующего графика:

Рис. 1: График изменения значения функционала качества

3.2 Тестирование EM-алгоритма на коллекции MNIST

Рассмотрим работу реализованного вариационного EM-алгоритма на коллекции MNIST. Выборка представлена 60000 объектами 5 , каждый из которых является бинарным вектором длины 784. Основным предметом данного исследования является оценка качества кластеризации объектов коллекции при различных значениях параметров гиперпараметров α , a, b и K.

Рис. 2: Сравнение результатов кластеризации в зависимости от гиперпараметра α

Рис. 3: Сравнение результатов кластеризации в зависимости от гиперпараметров a и b

Для начала рассмотрим зависимость числа кластеров и распределений весов в зависимости от α при фиксации прочих величин.

 $^{^{5}}$ изображениями рукописных цифр размером 28 × 28 пикселей

Из графика 2 видно, что параметр α не оказывает никакого существенного влияния на распределение весов компонент смеси, обнуления значительной части весов добиться не удалось. Вероятно, это связано с большой размерностью признакового пространтсва выборки, поскольку в аналогичных экспериментах с синтетическими и немногомерными данными варьирование α немедленно сказывалось на кластеризации.

Рассмотрим теперь подробнее параметры a и b. Как показано на рис. 3, эти две величины напрямую влияют на результаты кластеризации. В случае, когда $a \in (0,1), b=1$, количество кластеров несколько уменьшается при увеличении a. При выборе $a=b\in (0,+\infty)$ ситуация аналогичная и ещё более выраженная — увеличение значений гиперпараметров приводит к всё более редким большим кластерам. Визуализация полученных центров кластеров приведена на рис. 4 и 5. Она полностью соответствует полученным выводам — кластеров либо много, и они описывают небольшое количество объектов (т.е. картинки достаточно чёткие), либо мало, и они очень разымыты (кластер пытается описать несколько начертаний одной цифры или даже несколько цифр).

Рис. 4: Визуализация центров кластеров при a=b=1

Рис. 5: Визуализация центров кластеров при a=b=100

С точки зрения специфики коллекции, изображённые на рис. $\frac{5}{6}$ кластеры логичны: цифра $\frac{6}{8}$ сливается с $\frac{6}{6}$, $\frac{4}{6}$ — с $\frac{9}{6}$, $\frac{3}{6}$ — с $\frac{8}{6}$. $\frac{6}{6}$ и $\frac{1}{6}$ мало на кого похожи, поэтому выделились каждый в отдельный кластер.

Заданное значение K	100	200	500
Выявлено кластеров	45	49	43

Таблица 3: Априорное число кластеров и количество выявленных EM-алгоритмом (a = b = 10).

Рассмотрим теперь роль гиперпараметра K. Она, как оказалось, является достаточно незначительной — даже в случае слишком большого априорного числа компонент смеси ЕМ-алгоритм всё равно сходится примерно к одному и тому же числу кластеров. Единственным существенным ограничением на K является его ограниченность снизу — задаваемое значение должно быть не меньше разумного возможного реального числа кластеров в данных. Эти выводы подтверждаются таблицей 3. Из неё же видно, что при кластеризации MNIST параметр K должен быть равен хотя бы 50.

Исследование зависимости логарифма правдоподобия от класте-3.3 ризации

Поскольку ранее было показано, что кластеризация главным образом зависит от параметров a и b, для начала все исследования в этом разделе будем проводить именно с ними 6 .

Как было сказано ранее, правдоподобие считается по формуле 10. На рис. 6 и 7 приведены графики правдоподобия на обучающей и тестовой выборках, для случаев $a \in (0,1), b=1$ и $a = b \in (0, +\infty)$ соответственно. Объем обучающей выборки — 15000 объектов, объём теста — 5000^{-7} . Важно учесть, что правдоподобие было нормировано на объём выборки, по которой вычислялось, для сопоставимости результатов.

обучающей (синий) и тестовой (красный) выборках, $a \in (0,1), b = 1$

Рис. 6: Значения логарифма правдоподобия на Рис. 7: Значения логарифма правдоподобия на обучающей (синий) и тестовой (красный) выборках, $a = b \in (0, +\infty)$

⁶Все прочие величины имеют значения по-умолчанию.

⁷Объём выборки был уменьшен для ускорения вычислений по сетке значений.

Изображённое на этих графиках позволяет сделать вывод, что никакого существенного изменения различия между значением логарфима правдоподобия на обучающей и тестовой выборках в зависимости от кластеризации не возникает. Однако этот вывод верен только потому, что в ЕМ-алгоритме было взято максимальное количество кластеров k=50. В аналогичном эксперименте, в котором K=500, при очень близких к нулю значениях a=b наблюдается процесс переобучения, связанный с тем, что маленькие значения гиперпараметров провоцируют появление очень большого числа небольших кластеров.

3.4 Обучение классификатора на основе результатов кластеризации

В данном разделе описываются эксперименты с классификацией MNIST при помощи классификатора SVM из библиотеки LibSVM 8 , которому в качестве выборки предоставлялись значения ρ_{nk} , посчитанные на последней итерации работы EM-алгоритма. Обучающая выборка — 50000 объектов, тестовая — 10000. Требовалось оценить изменения, происходящие в матрице точности, в зависимости от кластеризации. Как и ранее, изменяемыми параметрами являются a и b. Важно, что K во всех экспериментах равен 50, что означает сильное уменьшение размерности признакового пространства и, соответственно, размера выборки. В таблицах 4, 5 и 6 приведены матрицы точности 9 для наборов параметров a=b=1, a=b=10 и a=b=100 10 соответственно.

	0	1	2	3	4	5	6	7	8	9
0	95	0	1	0	0	1	1	0	1	0
1	0	96	0	2	0	0	1	0	1	0
2	1	0	92	2	0	0	0	1	5	0
3	0	0	1	82	0	9	0	0	7	1
4	0	1	2	0	58	1	1	4	0	33
5	0	0	1	9	1	81	3	0	5	1
6	1	0	0	0	0	1	98	0	0	0
7	0	1	1	1	2	0	0	85	1	9
8	1	1	1	6	1	4	0	1	87	0
9	1	0	0	2	10	0	0	9	1	77

Таблица 4: Матрица точности для параметров (a = b = 1), общая точность $\approx 85\%$.

В матрице 4 хорошо заметно, что относительно «мягкая» кластеризация позволила создать

 $^{^{8}}$ Поскольку в данной работе не ставится задача максимизации качества классификации за счёт классификатора, все его параметры имеют значения по-умолчанию во всех экспериментах.

⁹Матрицы точности в данном случае представляют собой процент объектов каждого класса, отнесённых к каждому классу. Поскольку проценты были округлены до ближайших целых, незначительное количество данных было потеряно, однако это никак не сказалось на общей картине. В самих иллюстрациях матриц зелёным отмечены ячейки с процентом правильных ответов для объектов каждого класса, белым — проценты небольших ошибок, красным — больших.

 $^{^{10}}$ Эксперименты были проведены на сетке значений (1, 2, 4, 7, 10, 20, 40, 60, 100), представленные здесь наиболее хорошо характеризуют различные значения параметров. Лучший результат дали значения a=b=1, оптимизация параметров классификатора позволила бы улучшить его ещё сильнее.

признаки, с помощью которых SVM довольно неплохо справился с задачей классификации. Единственной серьёзной проблемой осталось плохое различение «4» и «9».

	0	1	2	3	4	5	6	7	8	9
0	95	0	0	1	0	1	1	0	2	0
1	0	96	0	0	0	1	0	0	2	0
2	1	0	89	2	1	1	0	1	5	0
3	0	0	1	83	0	1	0	0	14	1
4	0	1	1	0	67	2	1	1	1	27
5	1	0	0	21	2	66	3	0	5	1
6	1	0	0	0	0	1	97	0	0	0
7	0	1	1	0	3	0	0	82	1	10
8	1	1	0	15	1	3	0	1	77	1
9	1	1	0	2	38	0	0	8	2	50

Таблица 5: Матрица точности для параметров (a = b = 10), общая точность $\approx 80\%$.

Рассмотрим теперь матрицу 5. Увеличение параметров a и b привело к уменьшению числа кластеров. Это привело к усугублению проблемы с «4» и «9», а также к тому, что некоторые начертания объектов из «5» «8» были ошибочно отнесены к классу «3».

Матрица 6, построенная для случая a=b=100, очень наглядно подтверждает полученные ранее выводы. Количество кластеров явно меньше количества цифр, объекты классов «2», «5» и «9» почти полностью были классифицированы неверно. Объекты остальных классов довольно сильно смешались друг с другом (кроме «1», единица мало похожа на остальные цифры). Очевидно, что столь жёсткое «привязывание» объектов к небольшому числу «размытых» кластеров плохо сказывается на дальнейшей их классификации. Это означает, что используется пространство признков размерности ≤ 10 , что явно мало, ибо в исходных 784 признаках значимых было явно больше.

4 Заключение и выводы

В ходе выполнения данной работы был реализован, а затем протестирован, вариационный ЕМ-алгоритм, исследована зависимость кластеризации данных от значений гиперпараметров априорных распределений, а также качество классификации выборки в зависимости от кластеризации, порождающей признаковое описание.

Основные выводы:

- 1. ЕМ-алгоритм действительно достаточно точно восстанавливает параметры порождающей молели.
- 2. Гиперпараметры априорных распределений a и b оказались существенными для результатов кластеризации, а K и α напротив, малозначительными.
- 3. Зависимость разницы между логарифмами правдоподобия обучающей и тестовой выборок от кластеризации оказалась сильной в том случае, если количество кластеров получилось очень большим.

Таблица 6: Матрица точности для параметров (a=b=100), общая точность $\approx 49\%$.

4. Кластеризация в большой степени влияет на классификацию объектов, если признаковое описание этих объектов получается в результате этой кластеризации.

Список литературы

- [1] Ветров Д.П., Кропотов Д.А. Байесовские методы машинного обучения, учебное пособие по спецкурсу, 2007
- $[2] \ \ https://wikipedia.org$