

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 6: PULSIERENDER SPEICHER

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 28.11.2019

DIE ACKERMANN-FUNKTION

"Die Ackermannfunktion ist eine 1926 von Wilhelm Ackermann gefundene, extrem schnell wachsende mathematische Funktion, mit deren Hilfe in der theoretischen Informatik Grenzen von Computer- und Berechnungsmodellen aufgezeigt werden können."

Quelle: https://de.wikipedia.org/wiki/Ackermannfunktion

Definition von ack : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$\mathsf{ack}(0,y) = y + 1 \tag{} y \ge 0)$$

$$ack(x,0) = ack(x-1,1) \qquad (x>0)$$

$$ack(x,y) = ack(x-1,ack(x,y-1)) \qquad (x,y>0)$$

DIE ACKERMANN-FUNKTION

Definition von ack : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$\mathbf{ack}(0,y) = y + 1 \tag{} y \ge 0)$$

$$ack(x,0) = ack(x-1,1) \qquad (x>0)$$

$$ack(x,y) = ack(x-1,ack(x,y-1)) \qquad (x,y>0)$$

einige Werte

$n \setminus m$	0	1	2	3	4	 m
0	1	2	3	4	5	 m + 1
1	2	3	4	5	6	 m + 2
2	3	5	7	9	11	 2m + 3
3	5	13	29	61	125	 $8 * 2^m - 3$
4	13	65533	$2^{65536} - 3$			 $\underbrace{2^{2^{\cdots^2}}}_{m+3} - 3$

AUFGABE 1

```
1 #include <stdio.h>
2 int ack(int x, int y){
  int a;
3
4 if ((x == 0) && (y >= 0)) return y + 1;
else if ((x > 0) && (y == 0)) return ack(x-1, 1);
else if ((x > 0) \&\& (y > 0)) {
a = ack(x, y-1);
8    return ack(x-1, a); }
9 }
10 int main() {
11
   int x = 0, y = 0, a;
printf("\nAckermannfunktion\n");
printf("x = "); scanf("%d", &x);
14 printf("y = "); scanf("%d", &y);
  a = ack(x,y);
15
16 printf("ack(\%i,\%i)=\%i.\n", x, y, a);
return 0;
18 }
```

AUFGABE 2

```
9 int main() {
  #include <stdio.h>
                                           int x = 3, y = 6;
2
                                      10
3 void swoop(int a, int b) {
                                     11 /* label 3 */
4 /* label 1 */
                                      12 swoop(x, y); /*$1*/
5 \quad a = b;
                                     13 /* label 4 */
                                           printf("x = %d, y = %d", x, y);
6 \quad b = a:
                                      14
7 /* label 2 */
                                     15 return θ;
                                      16 }
```

AUFGABE 2 — TEIL (A)

Label	RM	1	2	3	4
label3	_	х 3	у 6		
label1	1			a 3	b 6
label2	1			а 6	b 6
label4	_	х 3	у 6		

AUFGABE 2 — TEIL (B)

```
1 #include <stdio.h>
2 void swap(int *x, int *y){
3 int tmp;
tmp = *x;
5 \qquad *x = *y;
*y = tmp;
7 }
8 int main() {
   int x = 4, y = 6;
9
10 printf("x = %d, y = %d \n", x, y);
11 swap(&x, &y);
printf("x = %d, y = %d \n", x, y);
13 return 0;
14 }
```

AUFGABE 3

```
#include <stdio.h>
                                               /* label4 */
                                         18
                                                if (x > *v)
 2
                                         19
   void g(int x, int *y);
                                                 f(&x, *y); /* $2 */
                                         20
4
                                         21
   void f(int *x, int y){
                                         22
                                               /* label5 */
6
   /* label1 */
                                         23
    while (*x < y){
                                         24
8
     *x = *x * 3;
                                         25
                                             int main(){
      /* label2 */
                                               int a. b:
                                         26
       q(*x, &v): /* $1 */
                                         27 \quad a = 3:
10
11
                                         28
                                              b = 6;
12
   }
                                         29 /* label6 */
                                         30 f(&a. b):
                                                             /* $3 */
13
   void g(int x, int *y){
                                         31 /* label7 */
14
15
   /* label3 */
                                         32
                                               printf("%d", a);
16 if (*v < x){
                                         33
                                               return 0:
17
    *y = *y * 2;
                                         34 }
```

AUFGABE 3 — TEIL (A)

Gültigkeitsbereiche

Objektname	Gültigkeitsbereich				
g	3 – 34				
f	5 - 34				
x,y in f	5 – 12				
x,y in g	14 – 23				
main	25 - 34				
a,b in main	26 – 34				

AUFGABE 3 — TEIL (B)

Label	RM	1	2	3	4	5	6	7	8
label6	_	a 3	b 6						
label1	3			х 1	у 6				
label2	3	9		x 1	у 6				
label3	1:3					х 9	у 4		
label4	1:3				12	х 9	у 4		
label5	1:3					х 9	у 4		
label2	1:3	27		x 1	y 12				
label3	1:3					x 27	у 4		
label4	1:3				24	x 27	у 4		
label1	2:1:3							x 5	у 24
label5	⊉ :1:3					x 27	у 4		
label7	1 : ≱	a 27	b 6						