АСИМЕТРИЧНІ КРИПТОСИСТЕМИ ТА ПРОТОКОЛИ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №3

Атака на протокол доведення знання без розголошення

1. Мета та основні завдання роботи

Ознайомлення з криптографічними протоколами взагалі та протоколами доведення знання без розголошення зокрема. Ознайомлення із перевагами, недоліками та особливостями реалізації різних криптографічних протоколів. Аналіз наведеного протоколу; реалізація атаки на цей протокол.

2. Основні теоретичні відомості

2.1. Протоколи доведення без розголошення

Основну задачу, яку повинні розв'язувати протоколи доведення без розголошення, проілюструємо на такому прикладі.

Нехай $n \in$ числом Блюма, тобто n = pq, де $p, q \equiv 3 \pmod{4}$, і Боб знає розклад n на прості множники. Він намагається довести це Алісі, але при цьому не хоче, щоб Аліса також дізналась про значення p та q. В той же час Аліса хоче бути впевненою, що Боб її не обдурює. Вони домовляються, що Боб надасть Алісі деяку іншу інформацію за її вибором, яку Боб може одержати тільки знаючи p та q. Таким чином, Аліса впевниться у правоті Боба, а Боб не розголосить важливу для нього інформацію.

Будь-який протокол доведення без розголошення повинен мати такі властивості:

- 1) Повнота: якщо твердження, яке доводиться, дійсно вірне, то Боб (той, що доводить) переконає в цьому Алісу (того, хто перевіряє).
- 2) Коректність: якщо твердження, яке доводиться, невірне, то Боб не може переконати Алісу в тому, що твердження вірне, навіть якщо він буде діяти нечесно.
- 3) Нульове розголошування: якщо твердження вірне, то Аліса не зможе дізнатись нічого, окрім самого факту, що твердження вірне, навіть якщо буде діяти нечесно.

2.2. Протокол доведення знання розкладу числа на прості множники

Нехай Боб знає розклад n = pq та хоче переконати в цьому Алісу, яка знає лише число n. Вони домовляються про такий порядок дій:

- 1. Аліса обирає випадкове число x та надсилає Бобові число $y = x^4 \mod n$.
- 2. Боб, знаючи p та q, обчислює квадратні корені $\sqrt{y} \bmod n$ та обирає в якості числа $z = \sqrt{y} \bmod n$ той корінь, який є квадратичним лишком за модулем n. Число z Боб надсилає Алісі.
- 3. Аліса перевіряє, чи дійсно $z = x^2 \mod n$. Якщо рівність вірна, то Аліса впевнюється, що Боб знає розклад n на прості множники.

Наведений протокол ϵ двораундовим: Аліса та Боб використовують усього два акти надсилання даних. Однак було доведено, що для виконання всіх властивостей протоколи доведення без розголошення повинні мати щонайменше три раунди, а тому даний протокол повинен бути нестійким. І дійсно, хоча цей протокол ϵ повним та коректним, він не забезпечу ϵ нульове розголошення.

2.3. Атака на наведений протокол

Нехай $n \in$ числом Блюма (тобто множники p та q мають вигляд 4k+3). Тоді злонамірна Аліса може викрити таємниці Боба, якщо буде діяти за такою схемою.

- 1) Аліса обирає випадкове t та надсилає Бобові число $y = t^2 \mod n$.
- 2) Чесний Боб надсилає Алісі z той квадратний корінь з y, який є квадратичним лишком.
- 3) З імовірністю приблизно 0.5 Аліса матиме $t \neq \pm z$, звідки вона знатиме, що найбільший спільний дільник $\gcd(t+z,n)$ дорівнюватиме p або q.

3. Порядок і рекомендації щодо виконання роботи

За адресою http://asymcryptwebservice.appspot.com/?section=znp проживає сервер, який генерує ключі RSA довжиною 2048 біт та користується наведеним протоколом, щоб довести будь-кому своє знання розкладу модуля на прості множники.

- 1. Згенеруйте на сервері ключі для аналізу. Сервер поверне вам значення модуля n (це значення буде існувати доти, доки ви не завершите сесію зв'язку).
 - 2. Реалізуйте допоміжне програмне забезпечення для проведення сценарію атаки.
- 3. Користуючись формою введення, надсилайте серверу випадкові t, поки атака не завершиться успіхом. Зафіксуйте, з якої спроби вам вдалось зламати ключ.
 - 4. Продемонструйте викладачеві вашу перемогу над бездушною машинерією.

4. Оформлення звіту

Звіт до комп'ютерного практикуму оформлюється згідно зі стандартними правилами оформлення наукових робіт, за такими винятками:

- дозволяється використовувати шрифт Times New Roman 12pt та одинарний інтервал між рядками;
- для оформлення фрагментів текстів програм дозволяється використовувати шрифт Courier New 10pt та друкувати тексти в дві колонки;
- дозволяється не починати нові розділи з окремої сторінки.

До звіту можна не включати анотацію, перелік термінів та позначень та перелік використаних джерел. Також не обов'язково оформлювати зміст.

Звіт має містити:

- мету лабораторної роботи;
- постановку задачі та варіант завдання;
- хід роботи, опис труднощів, що виникали, та шляхів їх розв'язання;
- ваш унікальний ідентифікатор та значення модуля *n*, згенероване сервером.
- покрокову реалізацію сценарію атаки на протокол, із зазначенням усіх проміжних значень;

- перевірку, що ви дійсно знайшли розклад n на прості множники;
- висновки.

Тексти всіх програм здаються викладачеві в електронному вигляді для перевірки на плагіат. До захисту комп'ютерного практикуму допускаються студенти, які оформили звіт та пройшли перевірку програмного коду.

5. Контрольні питання

- 1) Які задачі розв'язують протоколи доведення без розголошення?
- 2) Які властивості повинен мати протокол доведення без розголошення?
- 3) Доведіть, що наведений в даному практикумі протокол ϵ повним.
- 4) Доведіть, що наведений в даному практикумі протокол ϵ коректним.
- 5) Яким чином обчислюються квадратні корені за простим модулем?
- 6) Яким чином обчислюються квадратні корені за модулем виду n = pq?
- 7) Чому для коректної реалізації даного протоколу потрібно, щоб модуль n був числом Блюма?
 - 8) Чому в запропонованій атаці імовірність одержати $t \neq z$ дорівнює 0.5?
- 9) Скільки в середньому потрібно зробити запитів до сервера в описаному сценарії атаки для її успішної реалізації?
 - 10) Чому, якщо $t \neq z$, то $\gcd(t+z,n)$ дорівнює p або q?

6. Оцінювання комп'ютерного практикуму

За виконання лабораторної роботи студент може одержати до 9 рейтингових балів; зокрема, оцінюються такі позиції:

- реалізація програм до трьох балів (в залежності від правильності та швидкодії);
- теоретичний захист роботи до п'яти балів;
- своєчасне виконання роботи − 1 бал;
- несвоєчасне виконання роботи (-1) бал за кожен тиждень пропуску.

Програмний код, створений під час виконання комп'ютерного практикуму, перевіряється на наявність неправомірних запозичень (плагіату) за допомогою сервісу *Stanford MOSS Antiplagiarism*. У разі виявлення в програмному коді неправомірних запозичень реалізація програм оцінюється у 0 балів, а за виконання практикуму студент одержує штраф (–10) балів.

Студенти допускаються до теоретичного захисту тільки за умови оформленого звіту з виконання практикуму.