Generative Pre-Trained Transformers

GPT-3 (2020) & X-shot learning

Learning goals

- Recap GPT and the ideas behind standard language modeling
- Understand the difference between fine-tuning and X-shot learning

GPT RECAP

- Like BERT, GPTs are called "language models".
- Like BERT, GPTs are trained on huge corpora, actually on even huger (closed-source) corpora.
- Like BERT, GPTs are based on the transformer architecture.
- Unlike GPTs, BERT is not a language model in the conventional sense, i.e. not an ARLM
- BERT instead relies on the cloze taks, i.e. it is an MLM
- GPTs are conventional ARLMs: they are just trained on predicting the next word (or subword).

GPT RECAP

- Difference 1: GPTs rely on the transformer decoder
 - → They are called "generative" Large Language Models (LLM)
 - \rightarrow BERT relies on the encoder, hence not perfectly suited for generation
- Difference 2: GPT is a single model that aims to solve all tasks.
 - It can also switch back and forth between tasks and solve tasks within tasks, another human capability that is important in practice. "fluidity"
- Difference 3: GPT leverages task descriptions.
- Difference 4: GPT is effective at few-shot learning.

IN-CONTEXT LEARNING

IN-CONTEXT LEARNING

• Pre-training (Outer loop):

- Model develops broad set of skills and abilities
- Trained via gradient descent

• Inference (Inner loop):

- It uses these abilities to rapidly adapt to a desired task
 (= in-context learning)
- Just a single forward pass w/o any gradient updates

LEARNING IN BERT & CO.

Traditional fine-tuning (not used for GPT-3) Fine-tuning The model is trained via repeated gradient updates using a large corpus of example tasks. sea otter => loutre de mer example #1 \downarrow example #2 peppermint => menthe poivrée \forall Ψ plush giraffe => girafe peluche example #N cheese => prompt

ZERO-SHOT LEARNING

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

- No gradient updates
- Learning happens "on the fly"
- Model has to "understand" the task description

ONE-SHOT LEARNING

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt

Source: Brown et al., 2020
```

- No gradient updates
- Model has to "understand" the task description
- Understanding supported by one demonstration

FEW-SHOT LEARNING

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

▶ Source: Brown et al., 2020

- No gradient updates
- Model has to "understand" the task description
- Understanding supported by few demonstrations

EFFECTIVE IN-CONTEXT LEARNING*

- Number/Selection of demonstrations = Hyperparameter
- $\bullet \ \, \text{Larger model} \to \text{Better in-context learning capabilities}$

*on an artificial, simple word scrambling/manipulation task

ARCHITECTURE

- Various sizes released; GPT-3 usually refers to largest one
- Both width (d_{model}) and depth (n_{layers}) are scaled
- Number of heads adjusted to d_{model}

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Source: Brown et al., 2020

TRAINING CORPUS

- BERT: 3.3B words (rougly 4B 6B tokens)
- GPT-3: 499B tokens
- Increased by two orders of magnitude within < 2yrs
- Content: Mostly the internet (incl. test sets of popular benchmarks)

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

► Source: Brown et al., 2020

X-SHOT COMPARISON

- 42 accuracy-denominated benchmarks
- Few-shot performance increases faster than zero-shot

LOSS AS A FUNCTION OF COMPUTE

Power-law trend

