Introdução à Arquitetura de Computadores

DS011

Sistemas Numéricos

Prof. Clausius Duque Reis clausius.reis@ufpr.br

Roteiro

- O Sistema Decimal
- O Sistema Binário
- Conversão entre Binário e Decimal
 - Inteiros
 - Frações
- Notação Octal
- Notação Hexadecimal
- Exercícios

O Sistema Decimal

Sistema Baseado nos Dígitos Decimais

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

O que o número 83 significa?

- Significa 8 vezes 10 mais 3.
- $-83 = (8 \times 10) + 3$

O número 4728 significa

- 4 milhares, 7 centenas, 2 dezenas mais 8
- $-4728 = (4 \times 1000) + (7 \times 100) + (2 \times 10) + 8$

O Sistema Decimal

O sistema decimal é dito possuir base 10

- Cada número é multiplicado por 10 elevado a uma potencia correspondente a posição do digito.
- $-83 = (8 \times 101) + (3 \times 100)$
- $-4728 = (4 \times 103) + (7 \times 102) + (2 \times 101) + (8 \times 100)$

O mesmo principio vale para números decimais fracionários

- São utilizados potências negativas de 10
- 0,256 = (2 x 10-1) + (5 x 10-2) + (6 x 10-3)

Um número composto por parte inteira e parte fracionária

$$-472,256 = (4 \times 102) + (7 \times 101) + (2 \times 100) + (2 \times 10-1) + (5 \times 10-2) + (6 \times 10-3)$$

O Sistema Decimal

- Para a representação decimal do número
 - $X = \{ d_2d_1d_0, d_{-1}d_{-2}d_{-3} \}$
- O valor de X é
 - $X = \sum_{i} (d_i \times 10^i)$

O Sistema Binário

- Sistema Decimal
 - 10 dígitos diferentes usados para representar números com uma base 10
- Sistema Binário
 - Apenas 2 dígitos: 1 e 0
 - Representados com a base 2
- É comum incluir a base do número em subscrito para evitar confusão
 - 83₁₀ e 4728₁₀ números decimais
- Os dígitos 1 e 0 em notação binária possuem o mesmo significado como quando em notação decimal
 - $0_2 = 0_{10}$
 - $-1_2 = 1_{10}$

O Sistema Binário

Assim como na notação decimal,

- cada digito de um número binário possui um valor dependendo de sua posição.
- $-10_2 = (1 \times 2^1) + (0 \times 2^0) = 2_{10}$
- $-11_2 = (1 \times 2^1) + (1 \times 2^0) = 3_{10}$
- $-100_2 = (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4_{10}$

Convertendo entre Binário e Decimal

Binário para Decimal

- MUITO SIMPLES!!!
- Multiplique cada digito pela potência de 2 apropriada e some os resultados.
- Lembre dos exemplos anteriores!!!

Decimal para Binário

- SIMPLES!!!
- Inteiros e frações são manipulados separadamente.

Parte INTEIRA

- Em notação binária um inteiro é representado por
 - $b_{m-1}b_{m-2}...b_2b_1b_0$ $b_i = 0$ ou 1
- Possui o valor
 - $(b_{m-1} \times 2_{m-1}) + (b_{m-2} \times 2_{m-2}) + ... + (b_1 \times 2_1) + b_0$

- Converter o inteiro decimal N para a forma binária
 - Se dividirmos N por 2, na forma decimal, obtemos um quociente N₁ e resto R₀
 - $N = 2 \times N_1 + R_0$ $R_0 = 0 \text{ ou } 1$
 - Agora dividimos o quociente N_1 por 2, obtemos um quociente N_2 e um resto R_1
 - $N_1 = 2 \times N_2 + R_1 R_1 = 0$ ou 1
 - Então
 - $N = 2(2N_2 + R_1) + R_0 = (N_2 \times 2^2) + (R_1 \times 2^1) + R_0$
 - Se continuarmos...
 - $N_2 = 2N_3 + R_2$
 - Temos:
 - $N = (N_3 \times 2^3) + (R_2 \times 2^2) + (R_1 \times 2^1) + R_0$
 - Como N > N₁ > N₂ ..., eventualmente será produzido :
 - Um quociente $N_{m-1} = 1$ e um resto $R_{m-2} = 0$ ou 1. Então:
 - N = $(1 \times 2^{m-1}) + (R_{m-2} \times 2^{m-2}) + ... + (R_2 \times 2^2) + (R_1 \times 2^1) + R_0$

Entenderam?

- Entenderam?
- Fácil né?

- Entenderam?
- Fácil né?
- Converta o número
 11₁₀ para binário

- Entenderam?
- Fácil né?
- Converta o número
 21₁₀ para binário

(b) 21₁₀

- Entenderam?
- Fácil né?
- Converta o número
 21₁₀ para binário
- Agora converta um que você não ainda não treinou

(b) 21₁₀

- Sistema Octal
 - 8 dígitos diferentes usados para representar números com uma base 8.
 - 0, 1, 2, 3, 4, 5, 6, e 7

- Antigamente utilizado como uma alternativa mais compacta ao binário.
 - Programação em linguagem de máquina.
- Atualmente, o sistema hexadecimal é mais utilizado para esse fim.
- A aritmética é semelhante a dos sistemas decimal e binário.

- EXEMPLO:
 - 4701₈ em base 10?

- EXEMPLO:
 - 4701₈ em base 10?
 - $4 \times 8^3 + 7 \times 8^2 + 0 \times 8^1 + 1 \times 8^\circ =$

- EXEMPLO:
 - 4701₈ em base 10?
 - $4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 =$

- EXEMPLO:
 - 4701₈ em base 10?
 - $4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{(10)}$

- EXEMPLO:
 - 4701₈ em base 10?

•
$$4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{(10)}$$

- 1234₈ em base 10?

- EXEMPLO:
 - 4701₈ em base 10?

•
$$4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{(10)}$$

- 1234₈ em base 10?
 - $1 \times 8^3 + 2 \times 8^2 + 3 \times 8^1 + 4 \times 8^\circ =$

- EXEMPLO:
 - 4701₈ em base 10?

•
$$4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{(10)}$$

- 1234₈ em base 10?
 - $1 \times 8^3 + 2 \times 8^2 + 3 \times 8^1 + 4 \times 8^\circ = 512 + 128 + 24 + 4 =$

- EXEMPLO:
 - 4701₈ em base 10?

•
$$4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{(10)}$$

- 1234₈ em base 10?
 - $1 \times 8^{3} + 2 \times 8^{2} + 3 \times 8^{1} + 4 \times 8^{\circ} = 512 + 128 + 24 + 4 = 668_{10}$

- EXEMPLO:
 - 2781₈ em base 10?

- EXEMPLO:
 - 2781₈ em base 10?

NÃO EXISTE ALGARISMO 8 EM BASE 8!!!

- EXEMPLO:
 - 2781₈ em base 10?

NÃO EXISTE ALGARISMO 8 EM BASE 8!!!

0,1,2,3,4,5,6,7

- Decimal Octal
 - Parte inteira
 - Sucessivas divisões por 8

Octal – Decimal

$$-4701_8 = 4 \times 8^3 + 7 \times 8^2 + 0 \times 8^1 + 1 \times 8^\circ = 2497_{10}$$

Binário – Octal

- Dividir os bits em grupos de 3 (partindo do ponto decimal).
- Substituir cada grupo pelo digito octal correspondente.

Octal – Binário

Substituir cada digito octal pelo grupo de 3 bits correspondente.

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Octal	7	2	3	0
Valor de Posição	8³	8²	8 ¹	80
Calculo	7 x 8 ³ = 3584	2 x 8 ² = 128	3 x 8¹ = 24	0 x 8º = 0
Valor Final	3584 + 128 + 24 + 0 = 3736 (Decimal)			

Hexadecimal

Hexadecimal
Hexa + Decimal

Hexadecimal
Hexa + Decimal
6 + 10

Hexadecimal
Hexa + Decimal
6 + 10

Base 16

- Toda forma de dados nos computadores são representados por códigos binários
 - Natureza binária inerente dos computadores digitais
- Difícil manipulação para humanos.

- Notação mais compacta para profissionais da computação trabalharem com dados brutos
 - Notação decimal
 - Inerente para o ser humano
 - Processo de conversão para binário (e vice-versa) ... TEDIOSO

- Notação hexadecimal
 - 16 símbolos são usados (dígitos hexadecimais).
 - Cada possível combinação de quatro dígitos binários corresponde a um dígito hexadecimal.

0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

- Uma sequência de dígitos hexadecimais pode representar um inteiro na base 16:
 - $2C_{16} = (2_{16} \times 16^1) + (C_{16} \times 16^0) = (2_{10} \times 16^1) + (12_{10} \times 16^0) = 44$

- Notação hexadecimal
 - Usada não apenas para representar inteiros

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Notação hexadecimal
 - Usada não apenas para representar inteiros
 - Notação concisa para representar qualquer sequência de dígitos binários

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Notação hexadecimal
 - Usada não apenas para representar inteiros
 - Notação concisa para representar qualquer sequência de dígitos binários
 - Textos, números ou qualquer outro tipo de dado

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

 Razões para utilizar a notação hexadecimal

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Razões para utilizar a notação hexadecimal
 - Mais compacta do que a notação binária

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Razões para utilizar a notação hexadecimal
 - Mais compacta do que a notação binária
 - Na maioria dos computadores, dados binários são organizados em grupos de 4 (1 digito hexadecimal)

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Razões para utilizar a notação hexadecimal
 - Mais compacta do que a notação binária
 - Na maioria dos computadores, dados binários são organizados em grupos de 4 (1 digito hexadecimal)
 - Conversão entre binário e hexadecimal é extremamente fácil

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

1101 1110 0001

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

1101 1110 0001

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

1101 1110 0001 D E 1

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

Considere a string binária

110111100001

1101 1110 0001 =
$$DE1_{16}$$

D E 1

• 110111100001₂ = DE1₁₆

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	11111111	FF
256	0001 0000 0000	100

- Hexadecimal Decimal
 - $= 2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0}) = (2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44_{10}$
- Decimal Hexadecimal
 - Divisões sucessivas por 16 (parte inteira).
 - Multiplicações sucessivas por 16 (parte fracionária)
- Hexadecimal Binário (Extremamente fácil)
 - Substituir cada digito hexadecimal pelo grupo de 4 bits correspondente
- Binário Hexadecimal (Extremamente fácil)
 - Dividir os bits em grupos de 4 (partindo do ponto decimal).
 - Substituir cada grupo pelo digito hexadecimal correspondente.

Exercícios

- Converta os números binários para decimal
 - A) 001100

B) 11100

- C) 101

D) 001100100010

- Converta os números decimais para binário
 - -A)64

B) 34

- B) 679

C) 1063

E para nosso próximo truque...

ARITMÉTICA BINÁRIA

Soma decimal

A	В	+
0	0	0
0	1	1
1	0	1
1	1	2

Soma decimal

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	2

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	10

Soma decimal

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	2

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	10

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	0

Soma decimal

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	2

Α	В	+
0	0	0
0	1	1
1	0	1
1	1	10

Α	В	+	
0	0	0	
0	1	1	
1	0	1	
1	1	0	Vai 1

- $-5_{10} + 3_{10} = 8_{10}$
- $0101_2 + 0011_2 = 1000_2$
- $-5_{10} + 2_{10} = 7_{10}$
- $0101_2 + 0010_2 = 0111_2$
- $-11_{10} + 5_{10} = 16_{10}$
- $-1011_2 + 0101_2 = 10000_2$ (Necessário mais um bit)

Subtração decimal

Α	В	-
0	0	0
0	1	-1
1	0	1
1	1	0

Subtração decimal

Α	В	-
0	0	0
0	1	-1
1	0	1
1	1	0

Α	В	-
0	0	0
0	1	1
1	0	1
1	1	0

Subtração decimal

Α	В	-
0	0	0
0	1	-1
1	0	1
1	1	0

Α	В	-
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	-
0	0	0
0	1	1
1	0	1
1	1	0

Subtração decimal

Α	В	-
0	0	0
0	1	-1
1	0	1
1	1	0

Α	В	-
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	-
0	0	0
0	1	1
1	0	1
1	1	0

$$-13_{10} - 4_{10} = 9_{10}$$

Subtração binária

$$-13_{10} - 4_{10} = 9_{10}$$

1101

0100 1001

Processo simples

$$-1101_2 - 0100_2 = 1001_2$$

$$-5_{10} - 2_{10} = 3_{10}$$

Subtração binária

$$-5_{10} - 2_{10} = 3_{10}$$

$$-0101$$

$$-0010$$

1001

Processo com 1 empréstimo

$$-0101_2 - 0010_2 = 0011_2$$

$$-9_{10} - 3_{10} = 6_{10}$$

Subtração binária

$$-9_{10} - 3_{10} = 6_{10}$$

$$-\frac{1001}{0011}$$

0110

Processo com 2 empréstimos

$$-1001_2 - 0011_2 = 0110_2$$

Multiplicação binária

$$-11_{10} * 3_{10} = 33_{10}$$

1011

0011

Multiplicação binária

$$-11_{10} * 3_{10} = 33_{10}$$

Multiplicação binária

$$-11_{10} * 3_{10} = 33_{10}$$

Multiplicação binária

$$-11_{10} * 3_{10} = 33_{10}$$

$$\begin{array}{r}
 1011 \\
 0011 \\
 \hline
 1011 \\
 1011 + \\
 0000 + \\
 \hline
 0000 + \\
 0100001_2 = 33_{10}
 \end{array}$$

$$-10_{10} / 2_{10} = 5_{10}$$
 Dividendo Divisor Resto Quociente

Divisão binária

$$-10_{10}/2_{10}=5_{10}$$

1010 0010

$$-10_{10}/2_{10}=5_{10}$$

$$-10_{10} / 2_{10} = 5_{10}$$

Divisão binária

$$-10_{10}/2_{10}=5_{10}$$

Efetuo uma subtração binária

$$-10_{10} / 2_{10} = 5_{10}$$
 Dividendo Divisor Resto Quociente

$$-10_{10} / 2_{10} = 5_{10}$$
 Dividendo Divisor Resto Quociente

Divisão binária

$$-10_{10}/2_{10}=5_{10}$$

Dividendo Divisor

Resto Quociente

Efetuo uma subtração binária

- Representado por:
 - << (SLL) e >> (SRL)

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ <<
- Deslocamento à esquerda (SLL) multiplica por 2 (base)
- Deslocamento à direita (SRL) divide por 2 (base)

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ <<

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ << 22 vira 44
 - 00000110₂ >>

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ << 22 vira 44
 - 00000110₂ >> 6 vira 3
 - 00001101₂ >>

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ << 22 vira 44
 - 00000110₂ >> 6 vira 3
 - 00001101₂ >> 13 vira 6

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ << 22 vira 44
 - 00000110₂ >> 6 vira 3
 - 00001101₂ >> 13 vira 6
- Deslocamento à esquerda (SLL) multiplica por 2 (base)

- Representado por:
 - << (SLL) e >> (SRL)
- Exemplos no quadro:
 - 00001010₂ << 10 vira 20
 - 00010110₂ << 22 vira 44
 - 00000110₂ >> 6 vira 3
 - 00001101₂ >> 13 vira 6
- Deslocamento à esquerda (SLL) multiplica por 2 (base)
- Deslocamento à direita (SRL) divide por 2 (base)