Introduction to Hydrodynamic Analysis with Ansys Aqwa

Workshop 05.1: Aqwa Basics – Hydrodynamic Response

Release 2021 R2

Hydrodynamic Response (HR) Simulation

- The goal of this workshop is to create a mooring system for a ship and run a series of static and dynamic response analyses

Open the Ship project previously created in Workshop 04.1

Save As... to create a copy – you will need to re-use the completed project from Workshop 04.1 again in the next session

Adding the Static HR System

 Drag and drop the Hydrodynamic Response to the WB Project Schematic while sharing the solution from Hydrodynamic Diffraction. This will become the static stability solution to be undertaken before running dynamic simulations

Adding a Dynamic HR System

A second HR system is added that will be for the time history dynamic analysis

Drag and drop the new HR system on the Solution cell of the existing HR system, and double click on the Setup cell. Note that we can re-name the systems by RMB clicking on the system header and selecting Rename

Set up Static Stability Response System

- In the project tree, under analysis setting of Hydrodynamic Response (B4) check that the analysis type is set as Stability Analysis (this is the default when the upstream system is a Hydrodynamic Diffraction analysis)
- This will allow us to determine the starting position of the system to be used for the Time Domain analysis.
- Rename this Analysis system to Static
 Stability by selecting the Hydrodynamic
 Response item in the tree and changing the Name in the Details panel.

Set up Time Response System

- In the project tree, under analysis setting of Hydrodynamic response (C4), rename this Analysis system to Time Domain Response.
- Note that the Computation Type of Time Response Analysis is the default when the upstream system is a Static Stability Analysis.
- We will set the Analysis Type at a later stage

Add Fairlead Connection Points

- Add four fairlead locations for the mooring system
- Select Geometry > ShipHull > Add > Connection Point
- Enter X,Y,Z coordinates in details panel as below (in global system!)
- Add 3 other connection points (can use Duplicate as an alternative)
 - Point 2 20.0, -14.2, 8.0
 - Point 3 180.0, 16.0, 8.0
 - Point 4 180.0, -16.0, 8.0
- Rename Connection Points as Fairlead 1 through 4
- Note the Nodal Motions Output is set to Yes by default. This allows relevant results to be reported at these points

-_-- Catenary D 🖺 Copy

🔙 Hydrodynamic

Add Anchor Fixed Points

- Add four anchor locations for the mooring system
- Select Model > Fixed Point > Add > Fixed Point
- Enter X,Y,Z coordinates in details panel as below
- Repeat for other 3 fixed points
 - Point 2 -1000,-1000,-500
 - Point 3 1000,1000,-500
 - Point 4 1000,-1000,-500
- Rename Fixed Points as Anchor 1 through 4

Set Up Mooring Line Properties

- We are going to use composite catenary lines for the mooring system. These are lines made up of one or more segments (or sections) with varying properties e.g. chain/wire/chain
- Select Connections > Connection Data > Insert Connection Data > Catenary Section.
 Note we can also define intermediate buoys and/or clump weights for catenary lines.

Mooring Line Properties

- Provide data for Mass/Unit Length, Equivalent Cross Sectional Area, Stiffness, Maximum Tension and Equivalent Diameter as below.
 - Note we can also define bending stiffness, non-linear axial properties
- Repeat for two additional sections (use the Duplicate function to save time)

Mooring Line Connections

- To add a line select Connections > Insert Connection > Cable
- Ensure mooring line is named Cable 1
- Choose Non-Linear Catenary for Type and Fixed Point & Structure for Connectivity

Mooring Line Connections

- We need to define end connection points and the segments along the line, plus some
 data defining the possible dZ range of the fairlead (will be explained in a later lecture).
- Click on cell adjacent to Fixed Point and select Anchor 1 (Fixed) from drop down menu.
- Click on cell adjacent to End Connection Point and select Fairlead 1 (ShipHull) from drop down menu.

D	etails	4					
-	Details of Cable 1						
	Name	Cable 1					
	Visibility	Visible					
	Activity	Not Suppressed					
-	General Attributes						
	Туре	Nonlinear Catenary					
	Connectivity	Fixed Point to Structure					
	Start Fixed Point	Anchor 1 (Fixed)					
	End Connection Point	Fairlead 1 (ShipHull)					
	Initial Attachment Point Separation	1506.74007048329 m (Point to Point)					

- The composition of the line is now defined
 - Section allocation
 - Line length
- Sections are defined from the anchor location up to the fairlead
- Section 1 type should be set to Catenary
 Section 1, length 400 m
- Repeat for sections 2 and 3 as shown
- Finally set the dZ Ranges under Cable
 Properties to 10m

De	etails	4					
	Name	Cable 1					
	Visibility	Visible					
	Activity	Not Suppressed					
⊟	General Attributes						
	Туре	Nonlinear Catenary					
	Connectivity	Fixed Point to Structure					
	Start Fixed Point	Anchor 1 (Fixed)					
	End Connection Point	Fairlead 1 (ShipHull)					
	Initial Attachment Point Separation	1506.74007048329 m (Point to Point)					
	Cable Dynamics Properties						
	Use Dynamics	Defer to Analysis Settings "Use Cable Dynamic					
	Number of Elements	100					
	Catenary Section Selection						
	Section 1: Type	Catenary Section 1					
	Section 1: Length	400 m					
	Joint 1/2: Mass/Buoyancy	None					
	Section 2: Type	Catenary Section 2					
	Section 2: Length	500 m					
	Joint 2/3: Mass/Buoyancy	None					
	Section 3: Type	Catenary Section 3					
	Section 3: Length	700 m					
	Section 4: Type	None					
	Cable Properties						
	Negative dZ Range of Expect	10 m					
	Positive dZ Range of Expecte	10 m					
	Number of Vertical Partitions	15					
	Number of X Coordinates	40					
⊟	Initial Cable Data						
	☐ Initial Cable Tension at Start	1005838.438 N					
	Initial Cable Tension at End	1771235.25 N					

- Set up the remaining 3 mooring lines with identical properties but different connection points
- Use the Duplicate option to reduce data repetition

Outline

- Project

Model (A3, B3, C3)

> √ ♣ Anchor 3 √ ♣ Anchor 4

Ė---, √ Geometry

- Note that as you construct the line configuration the line properties are reported in a window called Catenary Cable Definition Data
- The Joint 1-2 etc refers to connection data such as clump weights or buoys

	Section 1	Joint 1-2	Section 2	Joint 2-3	Section 3
Type	Catenary Section 1	None	Catenary Section 2	None	Catenary Section 3
Section Length (m)	400	-	500	-	700
Mass / Unit Length (kg/m)	150	-	120	-	170
Equivalent CSA (m²)	0.01	-	0.01	-	0.01
Stiffness, EA (N)	600000000	-	900000000	-	600000000
Maximum Tension (N)	7500000	-	7500000	-	7500000
Bending Stiffness, El (N.m²)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k1 (N)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k2 (N)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k3 (N)	0.0	-	0.0	-	0.0
Added Mass Coefficient	1	-	1	-	1
Transverse Drag Coefficient	1	-	1	-	1
Equivalent Diameter (m)	0.1	-	0.1	-	0.1
Longitudinal Drag Coefficient	0.025	-	0.025	-	0.025
Structural Mass (kg)	-	-	-	-	-
Displaced Mass of Water (kg)	-	-	-	-	-
Added Mass (kg)	-	-	-	-	-
Coefficient of Drag * Area (m²)	-	-	-	-	-

Select Connections in the Outline to see the final mooring configuration

Stability Analysis Options

- Utilize all default settings.
- Note that the initial position utilizes the definition based upon the defined geometry. If required this can be overridden by inserting a Starting Position under the Static Stability entry in the Outline. For this exercise leave the Starting Position as Based on Geometry.

D	etails	-			
Ξ	Details of Analysis Settings				
	Name	Analysis Settings			
	Computation Type	Stability Analysis			
	External Operation before Solving	None			
	External Operation after Solving	None			
	Parallel Processing	Program Controlled			
	Use Cable Dynamics	Yes			
	Equilibrium Specific Options				
	Output Global Stiffness Matrix	Yes			
	Require Convergence for Subse	Yes			
	Starting Position	Based on Geometry			
	☐ Iteration and Convergence Limits				
	Maximum Number of Iterations	500			
	Movement Limitations per Iteratio	Program Controlled			
	Maximum Error in Equilibrium Posi	Program Controlled			
	Common Analysis Options				
	Use Linear Stiffness Matrix to C	No			
	Apply Drift Force with Multi-Dire	No			
-	Output File Options				
	Axis System for Joint Reactions	Fixed Reference Axes			
	Data List	Yes			
	Element Properties	No			
	Dynamic Cable/Tether Drag	No			

Time Response Simulation Options

- Go to Time Response > Analysis Settings
- Set Analysis Type to Regular Wave Response
- Set Use Cable Dynamics to Yes
- Set Convolution to Yes
- Set Duration to 180 seconds

External Operation Parallel Process Use Cable Dyna	pe tion before Solving tion after Solving sing						
Computation Ty External Operal External Operal Parallel Process Use Cable Dyna	tion before Solving tion after Solving sing amics	Time Response Analysis None None Program Controlled Yes					
External Operat External Operat Parallel Process Use Cable Dyna	tion before Solving tion after Solving sing amics	None None Program Controlled Yes					
External Operation Parallel Process Use Cable Dyna	tion after Solving sing amics	None Program Controlled Yes					
Parallel Process Use Cable Dyna	sing amics	Program Controlled Yes					
Use Cable Dyna	amics	Yes ns					
		18					
☐ Time Respon	se Specific Option						
		Deculer Ways December					
Analysis Type		Regular Wave Response					
Start Time		0.0 s					
Time Step		0.1 s					
Output Step		0.1 s					
Duration		180 s					
Number of Step	S	1801					
Finish Time		180 s					
Starting Position	1	Determined by Upstream System					
X-Position for V	Vave Surface Ele	0.0 m					
Y-Position for V	Vave Surface Ele	0.0 m					
□ Common Ana	Common Analysis Options						
Convolution		Yes					
Call Routine "us	er_force"	No					
Connect to Ser	ver for External "	No					
Use Linear Star	ting Conditions	No					
Use Linear Stiff	fness Matrix to C	No					
Account for Cu	rrent Phase Shift	Yes					
Use Wheeler St	tretching	Yes					
☐ Output File Op	Output File Options						
Axis System fo	r Joint Reactions	Fixed Reference Axes					
Data List		Yes					
Element Propert	ties	No					
Dynamic Cable/	Tether Drag	No					

Define the Environment

- RMB on Time Domain Response > Insert
 > Regular Wave
- Set Wave Type to Airy Wave Theory
- Set Direction to 90 degrees
- Set Amplitude to 1 m
- Set Period to 10 s
- Run the analysis by RMB clicking on Solution and

NOTE: Solving the Time Response analysis will automatically solve the upstream stability analysis to compute the correct starting condition.

Check the Solution

- Go to Static Stability, RMB click on Solution then Insert Result >Structure Position >Actual Response.
- Scope the result to Global X, Y, Z motions.
- Following the same process insert Whole Cable Forces, Tension.

Evaluate all results

Check the Stability Solution

 As you can see, the equilibrium position can be quite far away from the geometry position.

•IMPORTANT:

•The Stability Analysis in an important step of any dynamic analysis, and is <u>essential</u> when a Frequency Statistical Analysis is undertaken!

Check the Time Response Solution

- Under the Time Response Analysis Solution add a graph item Insert Result > Structure Position > Actual Response
- Select Global Z
- Evaluate All Results

Check the Time Response Solution

- Under the Time Response Analysis Solution add another graph item Insert Result > Cable Forces > Whole Cable Forces
- Select Tension for Cables 1 and 4
- Evaluate All Results

Irregular Wave Simulation

RMB Regular Wave and Suppress

 Under Time Domain Response in the Analysis Settings panel change the analysis type to Irregular Wave Response

Set Irregular Wave Characteristics

 When simulating an irregular wave the stability analysis takes account of the mean drift forces to calculate the starting position to be used in time and frequency domain analysis.

RMB on Static Stability and insert a Pierson-Moskowitz Wave Spectra

Set Irregular Wave Characteristics

- Set Direction to 90 degrees
- Set Seed Definition to Manual Definition and Seed to 10001 (this is used to generate the random phase relationships of the wave components)
- Leave Start and Finish Frequency
 Definition as Program Controlled (they
 will depend upon the Significant Wave
 Height and Zero Crossing Period defined
 below)
- Set Significant Wave Height to 2.5 m
- Set Zero Crossing Period to 10 s
- Add Global X and Global Y to the existing Structure Position > Actual Response graph:
 right-click > Duplicate on the existing input and set the Component as necessary

Propagate Ocean Environment

- Right-click on the Irregular Wave 1 and then Propagate.
- This command will automatically propagate the selected environmental condition to a downstream analysis.
- NOTE: this command creates a link between each of the generated environments, adjustments to the first definition will be propagated to any linked system.
- If needed the user can break the link with a simple click.

Set Analysis Settings and Solve

- Set Duration to 1200 s
- Run the analysis by clicking on Solution and
- After solving review the results

Details	Ţ.				
■ Details of Analysis Settings					
Name	Analysis Settings				
Computation Type	Time Response Analysis				
External Operation before Solving	None				
External Operation after Solving	None				
Parallel Processing	Program Controlled				
Use Cable Dynamics	Yes				
Time Response Specific Option	ns				
Analysis Type	Irregular Wave Response				
Start Time	0.0 s				
☐ Time Step	0.1 s				
Output Step	0.1 s				
☐ Duration	1200 s				
Number of Steps	12001				
Finish Time	1200 s				
Starting Position	Determined by Upstream System				
X-Position for Wave Surface Ele	0.0 m				
Y-Position for Wave Surface Ele	0.0 m				
Common Analysis Options	Common Analysis Options				
Convolution	Yes				
Call Routine "user_force"	No				
Connect to Server for External "	No				
Use Linear Starting Conditions	No				
Use Linear Stiffness Matrix to C	No				
Account for Current Phase Shift	Yes				
Use Wheeler Stretching	With Linear Wave Theory				
Output File Options					
Axis System for Joint Reactions	Fixed Reference Axes				
Data List	Yes				
Element Properties	No				
Dynamic Cable/Tether Drag	No				

Nodal Results

- The reference point for nodal results, such as position, velocity and acceleration, defaults to the centre of gravity for the structure.
- It is possible to also report results at other points defined as a connection point. Note that the connection point does not have to be associated with Connections data, it can be defined just to allow nodal results information.
- Insert a new Structure Position > Actual Response in the Time Response Analysis Solution, set the results selection as shown. Evaluate All Results.

Modal Analysis

- We can also check the natural modes for the floating system, including the effects of any external connections
- Under the Static Stability Solution Insert Result > Natural Modes, then select Evaluate
 All Results

/ Natural Modes

- As Natural Modes depend on frequencydependent Added Mass and Damping, a direct calculation of the eigenvalues and the eigenmodes of a single matrix is not possible.
 Aqwa scans a range of input frequencies and solves the eigenvalue problem based on Added Mass and Damping values for the current scanning frequency until the input frequency equals the response frequency.
- The Mode Match Indicator graphically shows the difference between the scanning frequency and the response frequency. The local minimums correspond to the natural frequencies of the system.

Natural Modes

Mode Match Indicator (rad/s)

/ Natural Modes

 Information related to a given mode is reported, together with the level of critical damping associated with that mode. The associated modal amplitudes provide an indicator of the modal direction, and can be animated by clicking on the Animate button. The primary mode is in sway.

Found 6 modes

Mode 1 of 6 Modes found Stable Frequency: 0.01250 rad/s Scroll back to graph Period: 502.68639 seconds Animate Damping: 4.36647 % of Critical Damping Structure: ShipHull Amplitudes X: 0.43872 m 0.00196° 0.37353° Phases X: -12.49110 ° 0.0000° Z: -177.20189° RX: 2.29344° RY: 1.88642° 1.56282°

Frequency Domain Analysis

 Go back to the WB project page and add a new Hydrodynamic Response analysis system downstream of the Stability (Static Response) system.

Rename the new system as Spectral Response

Frequency Domain Analysis Setting

- In Aqwa rename the new Hydrodynamic Response to Spectral Response.
- Go to Analysis Settings Panel and set the following analysis options:
- Computation Type: Frequency Statistical Analysis
- Analysis Type: Wave and Drift Frequencies
- Note that the panel is showing an error (red highlight) for the Spectrum Sub-Direction of Output for RAOs. This is because at this point we do not have a wave spectrum defined.

De	etails	ф
⊟	Details of Analysis Settings	
	Name	Analysis Settings
	Computation Type	Frequency Statistical Analysis
	External Operation before Solving	None
	External Operation after Solving	None
	Parallel Processing	Program Controlled
	Use Cable Dynamics	Yes
	Frequency Response Specific	Options
	Analysis Type	Wave and Drift Frequencies
	Direction of Output for RAOs	Program Controlled
	Spectrum Sub-Direction of Outp	Not Available
	Axis System for Motion Statistic	Local Structure Axes
	Starting Position	Determined by Upstream System
⊟	Common Analysis Options	
	Calculate RAOs with Mooring Lin	No
	Apply Drift Force with Multi-Dire	No
	Linearized Morison Drag	No
⊟	QTF Options	
	Use Full QTF Matrix	No
⊟	Output File Options	
	Axis System for Joint Reactions	Fixed Reference Axes
	Data List	Yes
	Element Properties	No

Frequency Domain Environment definition

- From the Static Stability analysis propagate the Irregular Wave 1.
- RMB click on the Spectral Response and solve the model.

Frequency Domain Results

- RMB click on Solution (D5) and Insert Result > Frequency Domain Statistics
- Specify the required results:
- Motions
- Cable Forces for cables 1 and 4
- Results are automatically updated

Frequency Domain Results

Frequency Domain Statistic Results

Displaying Significant Value (Amplitude)

Part Name: ShipHull

Motions:	at Center of Gravity, in Local Structure Axes
VIOLIONS.	at Certier of Gravity, in Local diructure Axes

Position	X:	0.59641 m	Y:	16.94637 m Z:	1.30368 m RX:	0.58872°	RY:	0.08018 ° RZ:	0.71553°
Velocity	X:	0.01132 m/s	Y:	0.50281 m/s Z:	0.71169 m/s RX:	0.23651 °/s	RY:	0.06070 °/s RZ:	0.01430 °/s
Acceleration	X:	0.00596 m/s ²	Y:	0.26447 m/s ² Z:	0.43228 m/s ² RX:	0.17836 °/s²	RY:	0.04791 °/s2 RZ:	0.00418 °/s2

Cable Tensions:

Cable 1	Fairlead 1 (ShipHull):	80547.60156 N	Anchor 1 (Fixed):	63395.20313 N
Cable 4	Fairlead 4 (ShipHull):	96992.70313 N	Anchor 4 (Fixed):	80489.97656 N

