# Basic Data Structures: Dynamic Arrays and Amortized Analysis

**Data Structures Data Structures and Algorithms** 

#### **Outline**

- Openamic Arrays
- Amortized Analysis-Aggregate Method

#### Problem: static arrays are static!

int my array[100];

#### Problem: static arrays are static!

int my\_array[100];

Semi-solution: dynamically-allocated arrays:

int \*my\_array = new int[size];

## Problem: might not know max size when allocating an array

Problem: might not know max size when allocating an array

All problems in computer science can be solved by another level of

indirection.

Problem: might not know max size when allocating an array

All problems in computer science can be solved by another level of indirection.

Solution: dynamic arrays (also known as resizable arrays)
Idea: store a pointer to a dynamically allocated array, and replace it with a newly-allocated array as needed.

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

Get(i): returns element at location i\*

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i\*
- Set(i, val): Sets element i to val\*

\*must be constant time

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i\*
- Set(i, val): Sets element i to val\*
- PushBack(val): Adds val to the end

\*must be constant time

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i\*
- Set(i, val): Sets element i to val\*
- PushBack(val): Adds val to the end
- Remove(i): Removes element at location i

\*must be constant time

#### Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i\*
- Set(i, val): Sets element i to val\*
- PushBack(val): Adds val to the end
- Remove(i): Removes element at location i
- Size(): the number of elements

<sup>\*</sup>must be constant time

#### **Implementation**

#### Store:

- arr: dynamically-allocated array
- capacity: size of the dynamically-allocated array
- size: number of elements currently in the array





PushBack(a)



PushBack(a)





PushBack (b)



PushBack (b)





PushBack(c)



































PushBack (e)



PushBack (e)



PushBack (e)

#### Get(i)

```
if i < 0 or i \ge size:
ERROR: index out of range
```

return arr[i]

#### Set(i, val)

range

arr[i] = val

ERROR: index out of

if i < 0 or  $i \ge size$ :

## PushBack(val)

```
if size = capacity:
  allocate new am[2 × capacity]
  for i from 0 to size - 1:
    new am[i] \leftarrow am[i]
```

free arr

 $arr[size] \leftarrow val$ 

 $size \leftarrow size + 1$ 

 $arr \leftarrow new \ arr; \ capacity \leftarrow 2 \times capacity$ 

#### Remove(i)

```
if i < 0 or i \ge size:

ERROR: index out of range for j from i to size:

arr[j] \leftarrow arr[j + 1]
size \leftarrow size - 1
```



## Size()

return size

## Common Implementations

- **C++**: vector
- Java: ArrayList
- Python: list (the only kind of array)

Get(*i*) | O(1)

```
Get(i) \mid O(1)

Set(i, val) \mid O(1)
```

```
\operatorname{Get}(i) \mid O(1)

\operatorname{Set}(i, val) \mid O(1)

\operatorname{PushBack}(val) \mid O(n)
```

```
\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \\ \operatorname{PushBack}(\mathit{val}) & O(n) \\ \operatorname{Remove}(i) & O(n) \end{array}
```

```
\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \\ \operatorname{PushBack}(\mathit{val}) & O(n) \\ \operatorname{Remove}(i) & O(n) \\ \operatorname{Size}() & O(1) \end{array}
```

 Unlike static arrays, dynamic arrays can be resized.

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted-at most half.

#### **Outline**

- Dynamic Arrays
- 2 Amortized Analysis-Aggregate Method
- Amortized Analysis-Banker's Method
- Amortized Analysis-Physicist's Method

## Comotimos logicio

sequence of operations.

Sometimes, looking at the individual

to know the total worst-case cost for a

worst-case may be too severe. We may want

#### Dynamic Array

We only resize every so often.

Many O(1) operations are followed by an

O(n) operations.

What is the total cost of inserting many elements?

#### **Definition**

Amortized cost: Given a sequence of *n* operations, the amortized cost is:

 $\frac{\operatorname{Cost}(n \operatorname{operations})}{n}$ 

## Aggregate Method

Dynamic array: *n* calls to PushBack

## Aggregate Method

Dynamic array: n calls to PushBack Let  $c_i = \cos t$  of i'th insertion.

## Aggregate Method

Dynamic array: *n* calls to PushBack Let  $c_i = \cos t$  of i'th insertion.

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{O(n)}{n}$$

#### Question

Which of the following is the tightest correct upper bound on the value of the sum.  $\sum_{i=1}^{\lfloor \log_2(n-1)\rfloor} 2^j$ ? Recall that [x] is the floor function

of x - the largest integer that is not greater than x. Also recall that

$$2^{\log_2(x)} = x$$
.

. You may want to read about the geometric series.

$$O(\log n)$$

$$O(n^2)$$
.

#### **Outline**

Dynamic Arrays

Amortized Analysis-Aggregate Method

# Alternatives to Doubling the Array Size

We could use some different growth factor (1.5, 2.5, etc.).

Could we use a constant amount?

#### Cannot Use Constant Amount

If we expand by 10 each time, then: Let  $c_i = \cos t$  of i'th insertion.

#### Cannot Use Constant Amount

If we expand by 10 each time, then: Let  $c_i = \cos t$  of i'th insertion.

### Cannot Use Constant Amount

If we expand by 10 each time, then:

Let  $c_i = \cos t$  of *i*'th insertion.

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of } 10 \ 0 & ext{otherwise} \end{cases}$$

$$c_i=1+egin{cases} i-1 & ext{if } i-1 & ext{is a multiple of } 10 \ 0 & ext{otherwise} \end{cases}$$
 otherwise  $\sum_{j=1}^n c_j = n+\sum_{j=1}^{(n-1)/10} 10j = n+10 \sum_{j=1}^{(n-1)/10} j$ 

 $\frac{n+10O(n^2)}{O(n^2)} = \frac{O(n^2)}{O(n)} = O(n)$ 

Calculate amortized cost of an operation in the context of a sequence of operations.

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
  - Aggregate method (brute-force sum)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
  - Aggregate method (brute-force sum)
  - Banker's method (tokens)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
  - Aggregate method (brute-force sum)
  - Banker's method (tokens)
  - Physicist's method (potential function, Φ)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
  - Aggregate method (brute-force sum)
  - Banker's method (tokens)
  - Physicist's method (potential function, Φ)
- Nothing changes in the code: runtime analysis only.