CS2040C Data Structures and Algorithms

Graphs

Outline

- Types of graphs
- Applications
- Implementation
 - Adjacency Matrix, Adjaceny List, Edge List
- Breadth First Search
- Depth First Search
- BFS/DFS Applications
- Directed Acyclic Graph
- Topological Sort

So far....

Linked list (linear data structure)

Tree (non-linear)

Directed graphs

A graph consists of a set of vertices and a set of edges between the vertices. In a tree, there is a unique path between any two nodes. In a graph, there may be more than one path between two nodes.

In a directed graph, edges are directed from one vertex to another

Example: travel planning

Weighted directed graph

In a weighted graph, edges have a weight (or cost) associated with it. Not all weights are labeled in this slide for simplicity.

Undirected graph

edges are bidirectional

Complete graph

- A graph is complete if every pair of vertices has an edge between them.
- The number of edges in a complete graph is V(V-1)/2, where V is the number of vertices. Therefore, the number of edges is $O(V^2)$. A complete graph is also called a clique.

Path

- A path between two vertices is a sequence of edges that begins at one vertex and ends at another
- The length of a path p is the number of edges in p.
- A simple path
 never visits the
 same vertex more
 than once

Cycle

- A cycle is a path that begins and ends at the same vertex
- A simple cycle is a simple path that is a cycle
- Note that the definition of path and cycle applies to directed graph as well

Disconnected graph

- A graph does not have to be connected
- The graph below has two connected components

Bipartite Graph

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.

A bipartite graph is a special case of a k-partite graph

with k=2.

Applications

Travel Planning

Questions

What is the shortest way to travel between A and B?

"SHORTEST PATH PROBLEM"

How to minimize the cost of visiting n cities such that we visit each city exactly once, and finishing at the city where we start from?

"TRAVELING SALESMAN PROBLEM (TSP)"

Internet

What is the shortest route to send a packet from A to B? (Shortest Path Problem)

The Web

- Which web pages are important?
- Which set of web pages is likely to be of the same topic?

Module Selection

Find a sequence of modules to take that satisfy the prerequisite requirements (Topological sort)

Terrorist

Who are the important figures in a terrorist network?

(http://www.orgnet.com/ hijackers.html)

Epidemic Studies

Other applications

- Biology
- VLSI layout
- Vehicle routing
- Job scheduling
- Facility location
- etc

Implementation

Three implementations: Adjacency Matrix, Adjacency List and Edge List

Formally

- A graph G = (V, E, w), where
- V is the set of vertices
- E is the set of edges
- w is the weight function

Example

```
V = \{ a, b, c \}
E = \{ (a,b), (c,b), (a,c) \}
w = \{ ((a,b), 4), ((c,b), 1), ((a,c),-3) \}
```


Adjacent vertices

adj(v) = set of vertices adjacent to v

$$adj(a) = \{b, c\}$$
$$adj(b) = \{\}$$
$$adj(c) = \{b\}$$

- $\blacksquare \sum_{v} |adj(v)| = |E|$
- adj(v): Neighbours of v

The vertices adjacent to v are called neighbours or successors of v.

Adjacency Matrix

Use 2-dimensional square matrix (array) double AM[][];

	1	2	3
1	0	4	3
2	0	0	0
3	0	1	0

This requires $O(V^2)$ memory, and is not suitable for sparse graph. (Only 1/3 of the above matrix contains useful information).

| Adjacency List

Array of Vertices

VertexList AL[]; // AL[i] stores list of i's neighbours

Adjacency List

- In C++, can implement as vector of vector pairs vector<vector<pair<int,int>>> AL;
- use pairs as we need to store pairs of information for each edge: (neighbour vertex number, edge weight) where weight can be set to 0 or unused for unweighted graph.
- use Vector of Pairs due to Vector's auto-resize feature. If we have k neighbours of a vertex, we just add k times to an initially empty Vector of Pairs of this vertex (this Vector can be replaced with Linked List).
- We use Vector of Vectors of Pairs for Vector's indexing feature, e.g. if we want to enumerate neighbours of vertex u, we use AL[u] to access the correct Vector of Pairs.

Edge List

- Collection of edges with both connecting vertices and their weights
- In C++, can use vector of triplesVector<tuple<int, int, int>> EdgeList;
- Usually sorted by weight
- Example below shows sorted by 1st vertex, followed by 2nd vertex

vertex	vertex	weight
1	2	4
1	3	-3
3	2	1

Simple Applications

- Counting no. of vertices (V)
- Counting no. of edges (E)
- Enumerating neighbours of a vertex u
- Checking the existence of edge (u,v)
- etc

Counting V

- In an AM or AL, V is just the no. of rows in the array/vector
- Can be obtained in O(V)
- If graph is more or less static, use a variable to store this count, then O(1)
- Question: what if it was stored as EL?

Counting E

- In an EL, count no. of rows, O(E)
- AL: sum up the length of all V lists and divide final answer by 2 (for undirected graph), O(V+E)
- Again, can be stored as separate variable if graph is not dynamic
- Question: what if it was stored in AM?

Enumerating Neighbours of a Vertex u

- In AM, need to loop through all columns of AM[u][j] for every j and report pair of (j, AM[u][j]) if AM[u][j] is not zero, O(V)
- In AL, need to scan AL[u]. If there are only k neighbours of u, then just need O(k) to enumerate them
- Question: what if it was stored in EL?

Checking Existence of Edge (u,v)

- AM: simply check if AM[u][v] is non-zero, O(1)
- AL: have to check whether AL[u] contains vertex v or not, O(k)
- Question: what if it was stored as EL?

Summary of diff implementations

	Adjacency Matrix	Adjacency List	Edge List
Implementation	2-D array	Vector of Vector pairs	Vector of triples
Space Complexity	O(V ²)	O(V+E)	O(E)
Counting V	O(V)	O(V)	O(E)
Counting E	$O(V^2)$	O(V+E)	O(E)
Enumerating neighbours of u	O(V)	O(k) (k neighbours)	O(E)
Checking existence of edge (u,v)	O(1)	O(k)	O(E)

Breadth-First Search (BFS)

Traversing a Graph

 Given a source vertex, we would like to start searching from that source

 The order of search is not unique and depends on the order of neighbours visited

- After BFS, we get a tree rooted at the source node.
- Edges in the tree are edges that we followed during searching. We call this a BFS tree.
- Vertices in the figure are labelled with their distance from the source (or *level*).

Recall: Level-Order on Tree

```
if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty
  curr = Q.deq()
  print curr.element
  if T.left is not empty
       Q.enq(curr.left)
  if curr.right is not empty
       Q.eng(curr.right)
```


BFS(v)

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
             Q.enq(w)
             mark w as visited
```


The pseudocode for BFS is very similar to level-order traversal of trees. The major difference is that now we may visit a vertex twice (since unlike a tree, there may be more than one path between two vertices). Therefore, we need to remember which vertex we have visited before (how?)

Building the BFS Tree

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
             Q.enq(w)
             w.parent = curr
             mark w as visited
```


Calculating Level

```
Q = new Queue
Q.enq (v)
mark v as visited
v.level = 0
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
       if w is not visited
              Q.enq(w)
              w.level = curr.level + 1
              mark w as visited
```


Similarly, we can maintain the distance of a vertex from the source.

Search all vertices

```
Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v
if v is not visited

BFS(v)
```

BFS guarantees that if there is a path to a vertex v from the source, we can always visit v. But since some vertices may be unreachable from the source, we can call BFS multiple times from multiple source.

Running time

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
       if w is not visited
         Q.enq(w)
         mark was visited
```

Main Loop

$$O(\sum_{curr \in V} adj(curr)) = O(E)$$

Initialization

Total Running Time

$$O(V+E)$$

Depth-First Search

Traversing a Graph

Idea for DFS is to go as deep as possible. Whenever there is an outgoing edge, we follow it.

DFS(v)

```
S = new Stack
S.push (v)
mark v as visited
while S is not empty
                                                     B
   curr = S.top()
   if every vertex in adj(curr) is visited
        S.pop()
   else
        let w be an unvisited vertex in adj(curr)
        S.push(w)
        print and mark w as visited
```

In DFS, we use a stack to "remember" where to backtrack to.

Recursive version: DFS(v)

print v
marked v as visited
foreach w in adj(v)
if w is not visited
DFS(w)

Search all vertices

```
Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v
if v is not visited

DFS(v)
```

Just like BFS, we may want to call DFS() from multiple vertices to make sure that we visit every vertex in the graph.

Running time

- DFS: O(V + E)
- Each vertex is only visited once (DFS recursively explores vertices that are not visited (O(V))
- Every time a vertex is visited, all its k neighbours are explored. After all vertices are visited, we have examined all E edges (O(E), since total no. of neighbours of each vertex = E)

Exercise: trace the graph using BFS and DFS

BFS/DFS Applications

- Detecting if a graph is cyclic
- Printing the traversal path
- Reachability test
- Identifying/Counting connected components of undirected graphs
- Topological Sort (applicable to DAGs)
- Please refer to visualgo for examples

Detecting Cycles

- Augment DFS with additional data, include array status[u] with three enumerated values:
 - Unvisited (vertex u has not been reached before)
 - Explored (visited u before but at least one neighbour of u has not been visited yet)
 - Visited: (all neighbours of u visited, can backtrack)
- If DFS is traversing x -> y and status[y] is explored, then a cycle has been found, since we have visited y before (refer to vertices A, B, C in slide 55)

Printing Traversal Path

- Define array p[u] to remember parent/predecessor of vertex u along the BFS or DFS traversal path
- p[source] = -1 (source has no parent)

```
backtrack(u)
  if (u == -1) stop
  backtrack(p[u]);
  output vertex u
```

 To print path from source u to target t, call DFS or BFS and then call backtrack(t)

Reachability Test

To test if vertex s and vertex t are reachable (directly connected or indirectly via a simple, non-cyclic path) call DFS/BFS and check if status[t] = visited

Identifying a Connected Component

- Enumerate all vertices that are reachable from vertex s in an undirected graph
- Call DFS(s)/BFS(s) and enumerate all vertices v that have status[v] = visited
- These vertices form a Connected Component (CC)

Counting No. of CCs

Pseudocode:

```
CC = 0
for all u in V, set status[u] = unvisited
for all u in V
   if (status[u] == unvisited)
      CC++ // we can use CC count number as the CC label
     DFS(u) // or BFS(u), that will flag its members as visited
output CC // the answer is 2 for the example graph above,
           // CC 0 = \{A,B,C,D,E\}, CC 1 = \{F,G\}
```

Definition

- An acyclic graph is a graph without a cycle
- An undirected graph is a tree
- in-degree of a vertex is the number of incoming edges
- out-degree of a vertex is the number of outgoing edges

Definition

 Directed Acyclic Graph (DAG): A directed graph with no cycle.

Module selection

Topological Sort

- Goal: Give a DAG, order the vertices, such that if there is a path from u to v, u appears before v in the output.
- This is useful when vertices represents items with dependencies (such as course prerequisite) and we want to order the items without violating the dependencies.

Topological Sort

Topological sort is not unique. In the graph above, ACBEFD and ACBEDF are both valid topological sorted orders. ACDBEF is NOT topologically sorted because D appears before B and there is a path from B to D.

We perform topological sort by repeatedly en-queueing vertices with in-degree 0 into a queue, output the vertex de-queued from the queue and remove the edges from that vertex. Since the order where we en-queued vertices with 0 in-degree into the queue is not unique, the output is not unique.

Topological Sort

- ACBEFD yes
- ACBEDF yes
- ACDBEF no

Pseudocode for Toposort

```
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty
  v = q.deq()
  print v
  remove v from G
  enqueue neighbours of v with in-degree 0
```

Example

Output: D

Output: DB

Output: DBC

Output: DBCE

Output: DBCEA

Output: DBCEAF

Output: DBCEAFG

Output: DBCEAFGH

Summary

- terminology of graphs
- Many applications using graphs
- Implemented using Adjacency Matrix, Adjacency List, Edge List
- Applications using AM, AL, EL
- Traversing graphs using BFS/DFS
- Topological sort