Introduction. Main problems and methods in Applied Statistics

Maxim Panov

Skoltech

November, 2021

Outline

Information about the course

Introduction: Probability Theory and Statistical Estimation

Statistical Inference

Hypothesis testing

Outline

Information about the course

Introduction: Probability Theory and Statistical Estimation

Statistical Inference

Hypothesis testing

Learning Outcomes

Knowledge

► How the ideas from mathematical statistics can be applied in modern methods of data analysis and processing.

Skill

Be able to

- formulate in mathematical terms a real-world problem,
- built a corresponding probabilistic model,
- select an appropriate statistical method.

Experience

▶ Obtain a sufficient experience during practical exercises and project activities to become a qualified user of statistical methods.

Course Structure

- Lec. 1 Introduction. Main problems and methods in Applied Statistics
- Lec. 2 Elements of probability theory. Statistical functionals and distances.
- Lec. 3 Parametric estimation
- Lec. 4 Confidence intervals and bootstrap
- Lec. 5 Hypothesis testing 1
- Lec. 6 Hypothesis testing 2
- Lec. 7 Regression and design of experiments
- Lec. 8 Nonparametric estimation
- Lec. 9 Bayesian estimation
- Lec.10 MCMC and sampling
- Bonus AB testing

Assignments, Exam, Project

► Assignments (4 * 12.5 % = 50%)

HW 1: Parametric estimation and confidence intervals // Deadline 10.11.2021

HW 2: Hypothesis testing // Deadline 24.11.2021

HW 3: Regression and nonparametric estimation // Deadline 04.12.2021

HW 4: Bayesian estimation // Deadline 11.12.2021

- Midterm exam (20%) // Date: 18.11.2021
- ► Final project (30%) // Implementation and investigation of recent methods on intersection of statistics and machine learning.

Course Logistics

- Lectures (Tuesday and Thursday at 4 pm)
 - Online via Zoom.

- Practical seminars (Tuesday and Thursday at 5:30-6:30 pm)
 - Online via Zoom.
- Contact us (TA office hours: Monday, Wednesday and Friday, 10am 6pm)
 - ▶ Piazza for discussions: http://piazza.com/skoltech.ru/fall2021/ma030416;
 - Canvas for main announcements;
 - ► Telegram channel for rapid information: https://t.me/sk_applied_statistics.

Course Instructor and Teaching Assistants

Course instructor:

- ► Maxim Panov, m.panov@skoltech.ru
- Assistant Professor at Skoltech
- PhD in Statistics
- Head of Statistical Machine Learning group

Teaching Assistants:

- Researchers at Skoltech;
- Perform research in intersection of Machine Learning and Statistics.

Maxim Panov

Daria Kotova Alexander Fishkov

Outline

Information about the course

Introduction: Probability Theory and Statistical Estimation

Statistical Inference

Hypothesis testing

Population and Sample

Population: the entire set of observations.

Sample: a sub-group of the population.

Parameter: the true value of a characteristic of the population

ightharpoonup usually denoted by Greek characters: μ and σ^2 .

Statistic: an estimate of the parameter calculated using the sample

ightharpoonup denoted by normal characters: \bar{x} and s^2 .

Probability vs Statistics

Probability

Probability underlies statistical inference – the drawing of conclusions from a sample of data.

▶ If samples are drawn at random, their characteristics (such as the sample mean) depend upon chance.

Hence to understand how to interpret sample evidence, we need to understand chance, or probability.

Probability Distributions

- With each outcome in the sample space we can associate a probability.
- Example: Toss a coin
 - $ightharpoonup \Pr(\mathsf{Head}) = \frac{1}{2}$,
- ► This is an example of a probability distribution (the particular case of Bernoulli distribution).

Definition of Probability

The probability of an event A may be defined in different ways:

- ► The frequentist view: the proportion of trials in which the event occurs, calculated as the number of trials approaches infinity.
- ► The subjective view: someone's degree of belief about the likelihood of an event occurring.

Axioms of Probability:

- ▶ $0 \le P(A) \le 1$;
- $ightharpoonup \sum_{i=1}^n P(A_i) = 1$, where i runs over all outcomes;
- ▶ $P(not \ A) = 1 P(A)$.

Statistical model

Let the data sample consists of independent identically distributed random variables: $X_1, \ldots, X_n \sim F$.

Our goal is to infer ${\cal F}$ or some feature of ${\cal F}$ given a sample.

Example (Parametric Estimation)

Suppose that X_1,\ldots,X_n are independent and distributed according to Normal distribution with unknown mean μ and known variance $\sigma^2=1$.

The goal is to estimate the parameter μ from the data.

Question: What can be used as an estimate of μ ?

Random Variables

One of the possible estimates:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

which is usually called sample mean.

- Most statistics (e.g. the sample mean) are random variables.
- ▶ Many random variables have well-known probability distributions associated with them.
- ▶ To understand random variables, we need to know about probability distributions

Normal Distribution

The Normal distribution is

- ► Bell-shaped;
- symmetric;
- unimodal;
- ightharpoonup defined for $x \in (-\infty; +\infty)$.

The density of the normal distribution:

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right).$$

Normal distribution is the case when many small independent factors influence a variable.

Men's and Women's Heights

Normal Distribution

▶ Two parameters of the Normal distribution are the mean μ and the variance σ^2 :

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

▶ Men's heights are Normally distributed with mean 174 cm and variance 92.16:

$$x \sim \mathcal{N}(174, 92.16).$$

▶ Women's heights are Normally distributed with mean 166 cm and variance 40.32:

$$x \sim \mathcal{N}(166, 40.32).$$

Men's and Women's Heights

- ▶ Men: $x \sim \mathcal{N}(174, 92.16)$.
- ▶ Women: $x \sim \mathcal{N}(166, 40.32)$.

Height in centimetres

Outline

Information about the course

Introduction: Probability Theory and Statistical Estimation

Statistical Inference

Hypothesis testing

Statistical Inference

We have just discussed how one can do <u>estimation</u> based on the sample from probability distribution.

Question: can we say something about the properties of the obtained estimates?

Statistical inference aims to draw the conclusions about the properties of the estimates.

Distribution of the Sample Mean

If samples of size n are randomly drawn from a Normally distributed population of μ and variance σ^2 the sample mean is distributed as

$$\bar{x} \sim \mathcal{N}(\mu, \sigma^2/n).$$

▶ E.g. if samples of 50 women are chosen, the sample mean is distributed

$$\bar{x} \sim \mathcal{N}(166, 40.32/50).$$

Note the very small standard error: $\sqrt{40.32/50} \simeq 0.897$.

Distribution of the Sample Mean

Note the distinction between

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
.

and

$$\bar{x} \sim \mathcal{N}(\mu, \sigma^2/n).$$

- ► The former refers to the distribution of a typical member of the population and the latter to the distribution of the sample mean.
- Question: what if individual x is not Normally distributed?

Distribution of the Sample Mean

Note the distinction between

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
.

and

$$\bar{x} \sim \mathcal{N}(\mu, \sigma^2/n).$$

- ► The former refers to the distribution of a typical member of the population and the latter to the distribution of the sample mean.
- Question: what if individual x is not Normally distributed?
- ▶ **Answer:** in the case of the sample mean *Central Limit Theorem* can help.

Maximum Likelihood Estimation

Let X_1, \ldots, X_n are i.i.d. with PDF $f(x; \theta)$.

Definition

The likelihood function is defined by

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i; \theta).$$

The log-likelihood function is defined by

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta).$$

We treat likelihood as a function of the parameter $\mathcal{L}_n \colon \Theta \to [0, \infty)$.

Definition

The maximum likelihood estimator (MLE) is defined by

$$\widehat{\theta}_n = \arg \max_{\theta} \mathcal{L}_n(\theta) = \arg \max_{\theta} \ell_n(\theta).$$

Properties of the MLE

- 1. The MLE is consistent: $\widehat{\theta}_n \stackrel{\mathbb{P}}{\to} \theta_*$;
- 2. The MLE is asymptotically Normal: $(\widehat{\theta} \theta_*)/\widehat{\sigma} \rightsquigarrow \mathcal{N}(0,1)$;
- 3. The MLE is asymptotically optimal or efficient: roughly, this means that among all well-behaved estimators, the MLE has the smallest variance, at least for large samples.

Remark

- ▶ Aforementioned properties of the MLE hold if function $f(x;\theta)$ is sufficiently regular.
- ► In sufficiently complicated problems, these properties will no longer hold and the MLE will no longer be a good estimator.

Beyond point estimates

- ► Point estimate a single value
 - ► E.g. the temperature tomorrow will be 23°.
- ▶ Interval estimate a range of values, expressing the degree of uncertainty
 - ► E.g. the temperature tomorrow will be between 21° and 25°.

Estimating a mean:

- Point estimate: use the sample mean.
- Interval estimate: sample mean \pm "something".
- What is something?
- ▶ Go back to the distribution of \bar{x} .

The 95% confidence interval

► Recall the distribution of the sample mean

$$\bar{x} \sim \mathcal{N}(\mu, \sigma^2/n).$$

Hence the 95% probability interval is

$$P\left(\mu - 1.96\sqrt{\sigma^2/n} \le \bar{x} \le \mu + 1.96\sqrt{\sigma^2/n}\right) = 0.95.$$

▶ Rearranging this gives the 95% confidence interval for our estimate of the true population mean:

$$\left[\bar{x} - 1.96\sqrt{\sigma^2/n} \le \mu \le \bar{x} + 1.96\sqrt{\sigma^2/n}\right].$$

Outline

Information about the course

Introduction: Probability Theory and Statistical Estimation

Statistical Inference

Hypothesis testing

Hypothesis Testing

Assume that $x \sim \mathcal{N}(\mu, \sigma^2)$ and $\sigma = 500$.

Principles of Hypothesis Testing

- ▶ The null hypothesis is initially presumed to be true.
- Evidence is gathered, to see if it is consistent with the hypothesis, and tested using a decision rule.
- ▶ If the evidence is consistent with the hypothesis, the null hypothesis continues to be considered "true".

If not, the null is rejected in favour of the alternative hypothesis.

Two Possible Types of Error

- Decision making is never perfect and mistakes can be made.
- ► Type I error. Rejecting the null when it is true:
 - shows a patient to have a disease when in fact the patient does not have the disease;
 - a fire alarm going on indicating a fire when in fact there is no fire.
- ► Type II error. Accepting the null when it is false:
 - ▶ a blood test failing to detect the disease it was designed to detect, in a patient who really has the disease;
 - > a fire breaking out and the fire alarm does not ring.

Outcomes of Hypothesis Testing

		True	hypothesis
		H_0	H_1
Hypothesis test	H_0	OK	Type II error
Result	H_1	Type I error	OK

- ▶ We wish to avoid both Type I and II errors by altering the decision rule.
- ▶ Unfortunately, reducing the chance of making a Type I error generally means increasing the chance of a Type II error → There is a trade off.

Example: Normal Distribution

Example

- ▶ Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$, where σ is known.
- ► Consider 2 hypotheses H_0 : $\mu \ge 5000$ H_1 : $\mu < 5000$.
- ▶ Let us introduce the test which rejects H_0 if $T = \bar{x} < c$.
- ► Thus,

$$P_{\mu}(\bar{x} < c) = P_{\mu} \left(\frac{\sqrt{n}(\bar{x} - \mu)}{\sigma} < \frac{\sqrt{n}(c - \mu)}{\sigma} \right)$$
$$= P\left(Z < \frac{\sqrt{n}(c - \mu)}{\sigma} \right) = \Phi\left(\frac{\sqrt{n}(c - \mu)}{\sigma} \right),$$

where Z has standard Normal distribution.

Example: How Long do Batteries Last?

- ➤ A well known battery manufacturer claims its product lasts at least 5000 hours, on average.
- A sample of 80 batteries is tested. The average time before failure is 4900 hours, with standard deviation 500 hours.
- Should the manufacturer's claim be accepted or rejected?

Should the Null Hypothesis be Rejected?

- ▶ Is 4900 far enough below 5000?
- ▶ 4900 is 1.79 standard errors below 5000 so falls into the rejection region (bottom 5% of the distribution).
- ▶ Hence, we can reject H_0 with 95% confidence.
- If the true mean were 5 000, here is less than a 5% chance of obtaining sample evidence such as $\bar{x} \le 4900$ from a sample of n = 80.

Multiple Testing

- Genomics = Lots of Data = Lots of Hypothesis Tests
- A typical microarray experiment might result in performing 10000 separate hypothesis tests. If we use a standard significance level of 0.05, we'd expect 500 genes to be deemed "significant" by chance.

In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?

$$P(Making\ an\ error) = \alpha,$$

$$P(Not\ making\ an\ error) = 1 - \alpha,$$

 $P(Not \ making \ an \ error \ in \ m \ tests) = (1 - \alpha)^m,$

$$P(Making\ at\ least\ 1\ error\ in\ m\ tests) = 1 - (1 - \alpha)^m.$$

The Dead Salmon Study

- Neuroscientist purchased a whole Atlantic salmon.
- ► He took it to a lab put it into an fMRI machine used to study the brain.
- ➤ So, as the fish sat in the scanner, they showed it "a series of photographs depicting human individuals in social situations".
- Salmon "was asked to determine what emotion the individual in the photo must have been experiencing".
- ▶ The salmon "was not alive at the time of scanning".

The Dead Salmon Study

Conclusions and Outlook

- This is <u>not</u> and advanced course.
 - ▶ If you had a decent undergrad course on Statistics, then you probably will know a significant share of the content.
- However, we have some topics that go beyond standard courses:
 - Bootstrap;
 - Robust statistics;
 - Design of experiments;
 - Bayesian estimation and MCMC.
 -
- ▶ We don't plan to go deep into theory, but we will provide detailed justifications behind (almost) all the methods used.
- ▶ We plan to focus on the hands-on experience of statistical modelling in Python.

Literature

Some useful books on statistics and statistical learning:

► Wasserman "All of the Statistics"

▶ James, Witten, Hastie, Tibshirani "Introduction to Statistical Learning"

Hastie, Tibshirani, Friedman "Elements of Statistical Learning"

▶ Ben-David, Shalev-Shwartz "Understanding Machine Learning"

Thank you for your attention!

¹And many thanks for wonderful lectures by Paula Surridge (School of Sociology, Politics and International Studies University of Bristol), which partially inspired these slides.