STAT131 Week 1 Notes

William Santosa

Winter 2022 Quarter

1 Introduction

This document covers essential information and example problems with answers in Chapter 1 in the "Introduction to Probability, 2nd Edition" written by Joseph K. Blitzstein and Jessica Hwang.

2 Important Definitions

Contains important definitions for understanding Chapter 1 in textbook.

- Sample Space S is the set of all possible outcomes from the experiment
- Event A is the subset of sample space S
 - **Note:** We say an event *occurred* if the actual outcome is in A.
- Complement of A are the elements not in A, denoted as

 A^{c}

• Union of A and B occurs if at least one of A or B occurs

 $A \cup B$

• Intersect of A and B occurs if only and if both of A and B occur

 $A \cap B$

• De Morgan's laws are a pair of transformation rules vital to set theory

$$(A \cup B)^c = A^c \cap B^c$$

and

$$(A \cap B)^c = A^c \cup B^c$$

3 Screenshots

English	Sets
Events and occurrences	
sample space	S
s is a possible outcome	$s \in S$
A is an event	$A\subseteq S$
A occurred	$s_{ ext{actual}} \in A$
something must happen	$s_{ ext{actual}} \in S$
New events from old events	
A or B (inclusive)	$A \cup B$
A and B	$A\cap B$
not A	A^c
A or B, but not both	$(A\cap B^c)\cup (A^c\cap B)$
at least one of A_1, \ldots, A_n	$A_1 \cup \cdots \cup A_n$
all of A_1, \ldots, A_n	$A_1\cap\cdots\cap A_n$
Relationships between events	
A implies B	$A \subseteq B$
\boldsymbol{A} and \boldsymbol{B} are mutually exclusive	$A \cap B = \emptyset$
A_1, \ldots, A_n are a partition of S	$A_1 \cup \cdots \cup A_n = S, A_i \cap A_j = \emptyset$ for $i \neq j$

1.