Examenul național de bacalaureat 2025

Proba E. c)

Matematică M mate-info

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați termenul b_1 al progresiei geometrice $(b_n)_{n>1}$, în care $b_3 = 40$ și $b_4 = 80$.
- **5p** 2. Determinați mulțimea numerelor reale m pentru care graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m$ intersectează axa Ox în două puncte distincte.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^x + 2 \cdot 3^{x+1} = 63$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de două cifre, n^2 să fie număr natural de trei cifre.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2), B(7,4) și C, astfel încât $\overrightarrow{AB} = 2\overrightarrow{AC}$. Determinați coordonatele punctului D pentru care $\overrightarrow{OD} = \overrightarrow{CB}$.
- **5p 6.** Se consideră triunghiul ascuțitunghic ABC, cu AB = 10, înălțimea AD = 8 și distanța de la punctul D la dreapta AC egală cu $4\sqrt{2}$. Arătați că aria triunghiului ABC este egală cu 56.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & -a \\ 3 & 1 & -2 \\ 1 & -3 & a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax + y - az = 1 \\ 3x + y - 2z = 1 \end{cases}$, unde a este x - 3y + az = -3

număr real.

- **5p** a) Arătați că $\det(A(0)) = -2$.
- **5p b)** Determinați mulțimea numerelor reale a pentru care sistemul are soluție unică.
- **5p c)** Pentru a = 1, determinați soluțiile (x_1, y_1, z_1) și (x_2, y_2, z_2) ale sistemului de ecuații pentru care $y_1 = x_2$ și $z_1 = y_2$.
 - **2.** Pe mulțimea $M = (0, +\infty)$ se definește legea de compoziție $x * y = \sqrt{xy} + \frac{1}{\sqrt{xy}} + \frac{x+y}{2} 2$.
- **5p a)** Arătați că 1*4=3.
- **5p b)** Determinați $x \in M$ pentru care x * x = 1.
- **5p** c) Demonstrați că mulțimea $[1,+\infty)$ este parte stabilă a mulțimii M în raport cu legea de compoziție "*".

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x-2}{x+2} + \ln \frac{x+2}{x}$.
- **5p** a) Arătați că $f'(x) = \frac{4(x-1)}{x(x+2)^2}, x \in (0,+\infty).$
- **5p b)** Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** | **c**) Determinați numerele naturale n pentru care ecuația f(x) = n **nu** are soluții.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2}{2x^2 + 1}$.
- **5p** a) Arătați că $\int_{-1}^{2} (2x^2 + 1) f(x) dx = 3$.
- **5p b)** Arătați că $\int_{0}^{2} \sqrt{f(x)} dx = 1.$
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 \frac{x^n}{f(\sqrt{e^x})} dx$. Arătați că
 - $(n+1)I_n I_{n+1} = \frac{2(n+1)}{n+2} + \frac{1}{e}$, pentru orice număr natural nenul n.