Assignment 1

Topology (KSM1C03)

Submission Deadline: 19th August, 2024

- 1) Recall the equivalence relation which identifies a subset $A \subset X$ to a singleton.
 - a) Identify the equivalence classes X/A, when X=[0,1] (the closed interval), and $A=\{0,1\}$ (the endpoints).
 - b) Identify the equivalence classes X/A when $X = \mathbb{R}$ (the real line), and $A = \mathbb{Z}$ (the integers).
 - c) Can you see a natural bijection between $[0,1]/\{0,1\}$ and \mathbb{R}/\mathbb{Z} ?

$$3 + 3 + 4 = 10$$

- 2) On any set X, consider the following collections of subsets.
 - a) $\mathcal{T}_1 := \{A \subset X \mid X \setminus A \text{ is finite}\} \bigcup \{\emptyset\}$.
 - b) $\mathcal{T}_2 \coloneqq \{A \subset X \mid X \setminus A \text{ is countable}\} \bigcup \{\emptyset\}$.

Show that \mathcal{T}_1 and \mathcal{T}_2 are topologies on X, respectively called the *cofinite* and the *cocountable* topologies.

Now, suppose X is uncountable (say, $X=\mathbb{R}$), and consider the collection

$$\mathcal{T}_3 \coloneqq \left\{ A \subset X \mid X \setminus A \text{ is uncountable} \right\}.$$

Is \mathcal{T}_3 a topology on X?

$$4+4+2=10$$

3) On the real line \mathbb{R} , consider the collection of all half-open intervals

$$\mathcal{B}_l := \{[a,b) \mid a,b \in \mathbb{R}\}.$$

Show that \mathcal{B}_l is a basis for a topology on \mathbb{R} (called the *lower limit topology*). The real line equipped with the lower limit topology is also known as the *long line* or the *Sorgenfrey line*.

5

- 4) Suppose (X, \mathcal{T}) is a topological space, and $S \subset \mathcal{T}$ is a sub-collection. Prove that the following are equivalent.
 - a) S is a subbasis of T.
 - b) \mathcal{T} is the intersection of all possible topologies on X, that contains \mathcal{S} .
 - c) The collection $\mathcal B$ of all possible finite intersections of elements of $\mathcal S$ is a basis for $\mathcal T$.

$$5 + 5 + 5 = 15$$

5) Denote, $K = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R}$. Consider the collection,

$$\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}\} \left\{ \left. \left. \right\} \{(a,b) \setminus K \mid a,b \in \mathbb{R} \right\} \right\}.$$

Show that \mathcal{B} is a basis for a topology on \mathbb{R} (called the K-topology). Prove that the K-topology is strictly finer than the usual topology on \mathbb{R} , but is not comparable to the lower limit topology.

$$5 + 3 + 2 = 10$$

- 6) Let X be a space.
 - a) For $A, B \subset X$, if $A \subset B$ then $\bar{A} \subset \bar{B}$. Give an example where $A \subseteq B$ but $\bar{A} = \bar{B}$.
 - b) Given a finite collection $A_1, \ldots, A_n \subset X$, show that

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}.$$

c) Given any infinite collection of subsets $A_{\alpha} \subset X$ (for $\alpha \in \mathcal{I}$, some indexing set), show that

$$\overline{\bigcup_{\alpha \in \mathcal{I}} A_{\alpha}} \supset \bigcup_{\alpha \in \mathcal{I}} \overline{A_{\alpha}}.$$

Give an example of a countably infinite collection, where equality doesn't hold.

d) Given any collection of subsets $A_{\alpha} \subset X$ (for $\alpha \in \mathcal{I}$, some indexing set), show that

$$\overline{\bigcap_{\alpha\in\mathcal{I}}A_{\alpha}}\subset\bigcap_{\alpha\in\mathcal{I}}\overline{A_{\alpha}}.$$

Give an example of $A,B\subset X$ such that $\overline{A\cap B}\subsetneq \bar{A}\cap \bar{B}.$

$$(4+1)+5+(4+1)+5=20$$

- 7) Compute the boundary of the following subsets $A \subset X$.
 - a) X is any space, and A = X.
 - b) X is any space, and $A = \emptyset$.
 - c) X is a discrete space, and $\emptyset \neq A \subsetneq X$.
 - d) X is an indiscrete space, and $\emptyset \neq A \subsetneq X$.
 - e) $X = \mathbb{R}$ and $A = \mathbb{Z}$.
 - f) $X = \mathbb{R}$ and $A = \mathbb{Q}$.
 - g) $X = \mathbb{R}$ and $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$.

$$1 \times 4 + 2 \times 3 = 10$$

- 8) Suppose (X, \mathcal{T}) is a topological space. Show that the following are equivalent.
 - a) X has the discrete topology, i.e., $\mathcal{T} = \mathcal{P}(X)$.
 - b) Given any space Y, any function $f: X \to Y$ is continuous.
 - c) The map $\mathrm{Id}:(X,\mathcal{T})\to (X,\mathcal{P}(X))$ is continuous.

$$5 + 5 + 5 = 15$$

9) Suppose (X, \mathcal{T}) is a space, and some $A \subset X$ is equipped with the subspace topology \mathcal{T}_A .

- a) Show that the inclusion map $\iota:A\hookrightarrow X$ is continuous.
- b) Suppose $\mathcal S$ is some topology on A such that the inclusion map $\iota:(A,\mathcal S)\hookrightarrow (X,\mathcal T)$ is continuous. Show that $\mathcal S$ is finer than $\mathcal T_A$.

$$5 + 5 = 10$$

10) Let X be a set and $\mathcal{F}=\{f_\alpha:X\to Y_\alpha\}_{\alpha\in\mathcal{I}}$ be a collection of functions, where $(Y_\alpha,\mathcal{T}_\alpha)$ is a topological space. Consider the collection

$$\mathcal{S} := \left\{ f^{-1}(U) \mid f = f_{\alpha} \in \mathcal{F}, \ U \in \mathcal{T}_{\alpha} \right\}.$$

Show that the topology on X generated by \mathcal{S} (as a subbasis) is the smallest (i.e., coarsest) possible topology on X such that each $f_{\alpha}:(X,\mathcal{T})\to (Y_{\alpha},\mathcal{T}_{\alpha})$ is continuous.

10