Analyse der Webanwendung "PetClinic"

Priorisierung von Umbauarbeiten nach Nutzungsgrad

Technische Vorbereitung: Laden der Analysewerkzeuge

```
In [10]: import pandas as pd
import py2neo
graph = py2neo.Graph(password="password")
```

Aggregation der Messwerte nach Subdomänen

```
In [11]:
         query = """
         MATCH
            (t:Type)-[:BELONGS TO]->(s:Subdomain),
            (t)-[:HAS_CHANGE]->(ch:Change),
            (t)-[:HAS MEASURE]->(co:Coverage)
          OPTIONAL MATCH
            (t)-[:HAS_BUG]->(b:BugInstance)
          RETURN
            s.name as ASubdomain,
            COUNT(DISTINCT t) as Types,
            COUNT(DISTINCT ch) as Changes,
            AVG(co.ratio) as Coverage,
            COUNT(DISTINCT b) as Bugs,
            SUM(DISTINCT t.lastMethodLineNumber) as Lines
          ORDER BY Coverage ASC, Bugs DESC
          11 11 11
```

Ergebnisse nach Subdomänen

```
In [12]: result = pd.DataFrame(graph.data(query))
    result
```

Out[12]:

	ASubdomain	Bugs	Changes	Coverage	Lines	Types
0	Vet	0	75	0.170000	313	5
1	Visit	0	90	0.368056	472	6
2	Pet	1	167	0.490069	746	11
3	Owner	3	94	0.506932	531	4
4	crossfunctional	2	53	0.589231 268		5
5	Clinic	0	26	0.888889	110	1
6	Person	0	5	1.000000	53	1
7	Specialty	0	4	1.000000	28	1

Umbenennung nach geläufigen Begriffen

Out[13]:

	ASubdomain	Bugs	Investment	Utilization	Size	Types
0	Vet	0	75	0.170000	313	5
1	Visit	0	90	0.368056	472	6
2	Pet	1	167	0.490069	746	11
3	Owner	3	94	0.506932	531	4
4	crossfunctional	2	53	0.589231	268	5
5	Clinic	0	26	0.888889	110	1
6	Person	0	5	1.000000	53	1
7	Specialty	0	4	1.000000	28	1

Vier-Felder-Matrix zur Priorisierung nach Subdomänen

In [15]: plot_portfolio_diagramm(plot_data, "Subdomains")

Aggregation der Messwerte nach technischen Aspekten

```
In [16]:
         query = """
         MATCH
            (t:Type)-[:IS A]->(ta:TechnicalAspect),
            (t)-[:HAS_CHANGE]->(ch:Change),
            (t)-[:HAS_MEASURE]->(co:Coverage)
         OPTIONAL MATCH
            (t)-[:HAS_BUG]->(b:BugInstance)
          RETURN
           ta.name as ATechnicalAspect,
           COUNT(DISTINCT t) as Types,
           COUNT(DISTINCT ch) as Investment,
           AVG(co.ratio) as Utilization,
           COUNT(DISTINCT b) as Bugs,
           SUM(DISTINCT t.lastMethodLineNumber) as Size
          ORDER BY Utilization ASC, Bugs DESC
```

Ergebnisse nach technischen Aspekten

```
In [17]: result = pd.DataFrame(graph.data(query))
    result
```

Out[17]:

	ATechnicalAspect	Bugs	Investment	Size	Types	Utilization
0	jdbc	1	152	644	8	0.000000
1	util	2	23	144	2	0.371429
2	web	2	156	576	7	0.618619
3	јра	0	54	188	4	0.702501
4	model	1	91	696	10	0.731240
5	service	0	26	110	1	0.888889
6	petclinic	0	5	110	1	1.000000

Vier-Felder-Matrix zur Priorisierung nach technischen Aspekten

In [18]: plot_portfolio_diagramm(result, "Technical Aspects")

Ende Demo