

ESTUDIO DE LA TERMODINÁMICA DE 3 PUNTOS CUÁNTICOS

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN EN FÍSICA

MAXIMILIANO BERNAL SANTIBAÑEZ

PROFESOR GUÍA: Felipe Barra de la Guarda

MIEMBROS DE LA COMISIÓN: PROFESOR 2 PROFESOR 3

Este trabajo ha sido parcialmente financiado por: NOMBRE INSTITUCIÓN

SANTIAGO DE CHILE 2025

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE MAGÍSTER EN CIENCIAS, MENCIÓN EN FÍSICA

POR: MAXIMILIANO BERNAL SANTIBAÑEZ

FECHA: 2025

PROF. GUÍA: FELIPE BARRA DE LA GUARDA

ESTUDIO DE LA TERMODINÁMICA DE 3 PUNTOS CUÁNTICOS

En esta tesis se estudiaron los flujos de información en un sistema de 3 puntos cuánticos, en donde cada uno de ellos se encuentra conectado a un reservorio distinto. Se realizo una descripción de Lindblad semilocal para la evolución del sistema de 3 puntos cuánticos, esto además permite incluir efectos no seculares en la ecuación maestra. Utilizando esta ecuación se simulo númericamente el sistema para distintas condiciones, en las cuáles se evaluaron cantidades termodinámicas tales como el flujo de calor, potencia, etc. Con el fin de encontrar comportamientos que se asemejarán a un Demonio de Maxwell autónomo. Junto a esto se estudio el rol de la información en este proceso de transporte, y como estos flujos de información pueden ser influenciados por el acoplamiento entre los sitios. Se encontró que dependiendo de las razones de transición el sistema se comporta como Demonio de Maxwell siendo el flujo de información fuente principal para poder extraer energía del sistema. Se calculo la concurrencia y coherencia en el estado estacionario para distintos parámetros, y se evaluó su relación con los flujos de información. Encontrando que cercanos al peak de coherencia y concurrencia, los flujos de información se vuelven casi idénticos.

Una frase de dedicatoria, pueden ser dos líneas.

Saludos

Agradecimientos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Tabla de Contenido

1.	Intr	roducción	1						
2.	Sistemas cuánticos abiertos								
	2.1.	Sistemas cuánticos cerrados	2						
		2.1.1. Cuadro de interacción	2						
	2.2.	Ecuación de Lindblad	3						
		2.2.1. Dinámica de un sistema abierto	3						
		2.2.2. Ecuación maestra	3						
3.	Estadística de conteo(FCS)								
	3.1.	Cantidades termodinámicas	8						
	3.2.	Leyes de la termodinámica	Ö						
		3.2.1. Ley cero	Ĉ						
		3.2.2. Primera Ley	Ć						
		3.2.3. Segunda Ley	Ć						
	3.3.	Estadística de medición en dos puntos	10						
	3.4.	Formalismo de Superoperadores y Espacio de Liouville	11						
	3.5.	Ecuación maestra generalizada	13						
		3.5.1. Resolución finita de energía	14						
		3.5.2. Agrupación de frecuencias	15						
	3.6.	Consistencia termodinámica	16						
		3.6.1. Ley cero	17						
		3.6.2. Segunda ley	17						
4.	Flui	jos de información	18						
	-	Demonio de Maxwell	18						
		Demonio de Maxwell autónomo	19						
		Descripción clásica	19						
	4.4.	Segunda Ley de la termodinámica y flujos de información	21						
	4.5.	Descripción cuántica	23						
	4.6.	•	24						
5	Din	ámica de un sistema de 3 puntos cuánticos conectado al ambiente	26						
٠.	5.1.	Modelo teórico	26						
	5.2.	Estudio del transporte	29						
	-	Demonio de Maxwell en 3 puntos cuánticos	$\frac{25}{32}$						
		Comparación con caso clásico	42						

6.	Con	clusio	nes	43				
Bi	bliog	rafía		44				
Anexos 4								
	A.	Cálcul	los realizados sección 3	46				
		A.1.	Matriz densidad en función del campo de conteo	46				
		A.2.	Matriz densidad generalizada	47				
		A.3.	Funciones correlación	50				
		A.4.	Ecuación de Lindblad generalizada	52				
		A.5.	Condición KMS y funciones correlación espectral	53				
		A.6.	Redefinición leyes de la termodinámica	54				
		A.7.	Segunda Ley	55				
	В.	Cálcul	los realizados sección 4	56				
		B.1.	Producción de entropía y información	56				
	С.	Cálcul	los realizados seccion 5	58				
		C.1.	Funciones de correlación para un baño de fermiones libres	58				
		C.2.	Operadores de salto de sistema de 3 puntos cuánticos	58				
		C.3.	Agrupación de frecuencias para 2 puntos cuánticos	61				
		C.4.	Aspecto Markoviano de las funciones correlación	64				
		C.5.	Cálculo numérico para τ_{Bf}	67				
		C.6.	Concurrencia	71				
		C.7.	Modelo clásico	72				
		C.8.	Inverso de Drazin	74				
		C.9.	Expresión para los flujos de información	75				

Índice de Ilustraciones

4.1.	Esquema que representa al Demonio de Maxwell. Primero, consiste en los dos compartimientos que poseen el gas ideal distribuido de manera homogénea. Por	
	último al trasladar las partículas de un lado a otro, queda el compartimiento A	
	con partículas frías mientras que el compartimiento B con partículas calientes.	
	Esta figura fue usada de [17]	19
5.1.	Esquema que representa los 3 puntos cuánticos como 3 niveles de energía, los	10
0.1.	cuáles sienten interacción repulsiva entre ellos, cada uno de estos puntos cuán-	
	ticos está acoplado a un baño distinto	26
5.2.	•	20
5.2.	Gráfico que representa la corriente de partículas en función de eV/T . Las tem-	
	peraturas del sistema son $T_L = T_R = 100$, $T_d = 2$, el parámetro de acoplamiento	
	es $g=5/1000$, las energías de sitio son $\epsilon=4,\ \epsilon_d=\mu_d-U/2,\ {\rm y}$ energías de	29
5 2	Coulomb $U_F = 500$, $U = 40$	
5.3. 5.4.		29
5.4. 5.5.	Gráfico de el flujo de energía entre los sistemas LR y D	30
5.6.	Gráfico del flujo de calor que entregan los reservorios en función de eV/T	30
5.0.	La línea azul corresponde a la coherencia mientras que la línea roja la concu-	ว 1
E 7	rrencia, todo esto en función de eV/T	31
5.7.	Esquema que representa el primer paso en la dinámica	$\frac{32}{22}$
5.8.	Esquema que representa el segundo paso en la dinámica	33
5.9.	Esquema que representa el tercer paso en la dinámica.	33
5.10.	Partes diagonales de la matriz densidad en función de eV/T	34
5.11.	(a) Flujos de corriente de calor que libera el reservorio α . (b) Flujo de corriente	
	de partículas correspondiente a cada reservorio. Para obtener estos resultados	
	se usaron las temperaturas $T=100, T_d=2$, razones de transición de $\gamma_L=$	
	$\gamma_R^U = 1/100, \ \gamma_R = \gamma_L^U = 1/600, \ \gamma_D = \gamma_D^U = 1/50, \ \text{potencial químico} \ \mu_d = 2$	
	, parámetro de acoplamiento $g = 5/1000$, interacciones de Coulomb $U = 40$,	25
F 10	$U_F = 500 \text{ y por último niveles de energía } \epsilon = 4 \text{ y } \epsilon_d = \mu_d - U/2. \dots$	35
5.12.	Gráfico de la razón de producción de entropía aparente del sistema LR dada por	20
۲ 10	$\dot{\sigma}_{LR}^o$ en función de eV/T	36
5.13.	Gráfico de la razón de producción de entropía aparente del sistema LR dada por	20
F 11	$\dot{\sigma}_{LR}$ en función de eV/T	36
5.14.	(a) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución	
	de información, potencia y flujo de calor del sistema LR. (b) Gráfico del flujo	
	de energía, la razón de cambio de energía libre, contribución de información,	0.5
	potencia y flujo de calor del Demonio.	37

5.15.	(a) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución	
	de información, potencia y flujo de calor del sistema LR. (b) Gráfico del flujo	
	de energía, la razón de cambio de energía libre, contribución de información,	
	potencia y flujo de calor del Demonio.	38
5.16.	En líneas azul la norma- l_1 de la coherencia \mathcal{C}_{l_1} y en líneas rojas la concurrencia	
	\mathcal{C}_{on}	36
5.17.	Cantidades termodinámicas para el sistema LR y el Demonio en función de	
	g/γ_L , considerando $eV/T=1$ y el resto de parámetros corresponden a los de la	
	Figura 5.11	40
5.18.	(a)Gráfico de los flujos de información de cada sitio. (b)Gráfico de la concurren-	
	cia y la coherencia en función de g/γ_L	41
C.1.	Descripción gráfica de las razones de transición en función de las frecuencias ω .	65
C.2.	Gráficos de la parte real e imaginaria de las funciones correlación en función del	
	tiempo para los baños L y R con una diferencia de potencial correspondiente a	
	$eV = 20 \text{ y } \sigma = +.$	68
C.3.	Gráficos de la parte real e imaginaria de las funciones correlación en función del	
	tiempo para los baños L y R con una diferencia de potencial correspondiente a	
	$eV = 20 \text{ y } \sigma =$	69
C.4.	Gráficos de las partes diagonales de la matriz densidad del sistema LRD en	
	función del tiempo.	70

Capítulo 1 Introducción

Capítulo 2

Sistemas cuánticos abiertos

En este capítulo se describen los conceptos básicos para poder describir la evolución de un sistema cuántico, en la sección 2.1.1 se describe la evolución unitaria para un sistema cerrado. Por otro lado en la sección 2.2.2 se describe una de las ecuaciones utilizadas para describir el comportamiento de un sistema cuántico acoplado a un reservorio con infinitos grados de libertad.

2.1. Sistemas cuánticos cerrados

Un sistema cuántico cerrado puede ser descrito por la matriz densidad $\hat{\rho}$, la evolución de la matriz densidad dependerá del Hamiltoniano del sistema $\hat{H}(t)$, la cuál en el cuadro de Schrodinger consiste en la ecuación de Liouville-Von Neumman($\hbar = 1$)[1]:

$$\frac{d}{dt}\hat{\rho}(t) = -i[\hat{H}(t), \hat{\rho}(t)]$$

Y la solución descrita por la evolución unitaria

$$\hat{U}(t,t_0) = \hat{T}_{\leftarrow} \exp\left[-i\int_{t_0}^t ds \hat{H}(s)\right] \implies \hat{\rho}(t) = \hat{U}(t,t_0)\hat{\rho}(t_0)\hat{U}^{\dagger}(t,t_0)$$

En donde \hat{T}_{\leftarrow} consiste en el operador ordenación temporal cronológico que ordena los productos de operadores dependientes del tiempo, de tal manera que el tiempo en el que son evaluados los operadores va creciendo de derecha a izquierda.

2.1.1. Cuadro de interacción

Supongamos que el Hamiltoniano del sistema se puede separar en dos partes

$$\hat{H}(t) = \hat{H}_0 + \hat{H}_I(t)$$

En teoría esto se puede hacer de varias formas, pero por lo general, si tenemos el caso de dos subsistemas, \hat{H}_0 contiene los Hamiltonianos de cada uno de ellos cuando no hay interacción, mientras que \hat{H}_I representa la interacción entre ellos. Si introducimos los operadores unitarios

$$\hat{U}_0(t, t_0) \equiv \exp\left[-i\hat{H}_0(t - t_0)\right]$$
 $\hat{U}_I(t, t_0) \equiv \hat{U}_0^{\dagger}(t, t_0)\hat{U}(t, t_0)$

Se puede describir la matriz densidad en el cuadro de interacción

$$\hat{\rho}_I(t) \equiv \hat{U}_I(t, t_0) \hat{\rho}(t_0) \hat{U}_I^{\dagger}(t, t_0)$$

Y la evolución en este cuadro de interacción

$$\frac{d}{dt}\hat{\rho}_I(t) = -i[\tilde{H}_I(t), \hat{\rho}_I(t)]$$
(2.1)

Con

$$\tilde{H}_I(t) = \hat{U}_0^{\dagger}(t, t_0) \hat{H}_I(t) \hat{U}_0(t, t_0)$$

2.2. Ecuación de Lindblad

2.2.1. Dinámica de un sistema abierto

Un sistema abierto consiste en un sistema cuántico S denominado el sistema reducido, el cuál está acoplado a un sistema B denominado el ambiente. Estos representan subsistemas del sistema total S+B. Sea \mathcal{H}_s el espacio de Hilbert del sistema y \mathcal{H}_B el espacio de Hilbert del ambiente, el espacio de Hilbert del sistema total S+B es $\mathcal{H}=\mathcal{H}_s\otimes\mathcal{H}_B$, el Hamiltoniano total se constituye por el Hamiltoniano del sistema \hat{H}_S , el Hamiltoniano \hat{H}_B y la interacción $\hat{H}_I(t)$

$$\hat{H}(t) = \hat{H}_S \otimes \mathbf{I}_B + \mathbf{I}_s \otimes \hat{H}_B + \hat{H}_I(t)$$

Junto a esto, los observables que se estudian en el sistema S son de la forma $A \otimes \mathbf{I}_B$ y su valor de expectación puede ser calculado mediante la ecuación

$$\langle A \rangle = \text{Tr}_S \{ A \hat{\rho}_S \}$$

Donde

$$\hat{\rho}_S = \mathrm{Tr}_B\{\hat{\rho}\}$$

Es la matriz densidad del sistema reducido. La expresión Tr_S hace referencia a la traza con respecto al espacio de Hilbert del sistema, mientras que Tr_B es la traza con respecto al espacio de Hilbert del ambiente. El objeto de estudio principalmente es ρ_S y la ecuación de Lindblad será utilizada para describir su evolución.

2.2.2. Ecuación maestra

Partiendo de un sistema S acoplado débilmente a un reservorio B, en donde el Hamiltoniano total es descrito por

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_I$$

La evolución en el cuadro de interacción del sistema total será

$$\frac{d}{dt}\hat{\rho}_I(t) = -i[\hat{H}_I(t), \hat{\rho}_I(t)] \tag{2.2}$$

Con solución de forma integral

$$\hat{\rho}_I(t) = \hat{\rho}(0) - i \int_0^t ds [\hat{H}_I(s), \hat{\rho}_I(s)]$$

Reinsertando la forma integral en la ecuación 2.2 y trazando los grados de libertad del reservorio, nos queda

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -i\text{Tr}_{B}\{[\hat{H}_{I}(t), \hat{\rho}(0)]\} - \int_{0}^{t} ds \text{Tr}_{B}\{[\hat{H}_{I}(t), [\hat{H}_{I}(s), \hat{\rho}_{I}(s)]]\}$$
(2.3)

Ahora se asumirán dos cosas, primero que $\operatorname{Tr}_B\{[\hat{H}_I(t), \rho(0)]\}=0$. Segundo, debido a que todavía la ecuación depende de $\hat{\rho}(t)$ correspondiente al sistema total, tendremos que realizar la aproximación de Born, que consiste en que si se tiene acoplamiento débil, la influencia del sistema en el reservorio será pequeña, por ende se puede asumir que el estado del reservorio $\hat{\rho}_B$ permanece constante, y sólo el que se ve alterado es la evolución del sistema, es decir

$$\hat{\rho}(t) = \hat{\rho}_S(t) \otimes \hat{\rho}_B$$

Con lo cuál la ecuación 2.2 se vuelve

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -\int_0^t ds \operatorname{Tr}_B\{[\hat{H}_I(t), [\hat{H}_I(s), \hat{\rho}_{IS}(s) \otimes \hat{\rho}_B]]\}$$
 (2.4)

Esta ecuación es lo que se denomina no Markoviana, ya que requiere conocer todo el pasado de $\rho_{IS}(s)$, para simplificar el problema, se aplicará la aproximación de Markov, con el objetivo de que la evolución de $\hat{\rho}_{IS}(t)$ dependa sólo del estado en que se encuentra en el instante de tiempo, es decir

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -\int_0^t ds \operatorname{Tr}_B\{[\hat{H}_I(t), [\hat{H}_I(s), \hat{\rho}_{IS}(t) \otimes \hat{\rho}_B]]\}$$

Esta ecuación es denominada la ecuación de Redfield. Se puede hacer el cambio de variable s=x=t-s con Jacobiano |J|=-1 y límites $s=0 \implies x=t$ y $s=t \implies x=0$, el integral queda

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -\int_0^t ds \operatorname{Tr}_B\{[\hat{H}_I(t), [\hat{H}_I(t-s), \hat{\rho}_{IS}(t) \otimes \hat{\rho}_B]]\}$$
 (2.5)

Por último, se podrá hacer otra aproximación, ya que en esta expresión aparecerán las funciones correlación del baño que decaen en el tiempo por el denominado tiempo de correlación τ_B , en el cuál las funciones correlación del baño se vuelven cero. Mientras que el sistema tendrá su tiempo de relajación τ_R que consiste en el tiempo que demora en llegar a su estado estacionario. La aproximación markoviana requiere que $\tau_R \gg \tau_B$, ya que él sistema no debe ser capaz de percibir la dinámica del baño, esto permite tomar el límite del integral en 2.5 a infinito, ya que para tiempos muy largos se anula el integral debido a las funciones correlación y finalmente quedará la evolución

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -\int_0^\infty ds \operatorname{Tr}_B\{[\hat{H}_I(t), [\hat{H}_I(t-s), \hat{\rho}_{IS}(t) \otimes \hat{\rho}_B]]\}$$
 (2.6)

La interacción en el cuadro de Schrodinger \hat{H}_I será de la forma general

$$\hat{H}_I = \sum_{\alpha} A_{\alpha} \otimes B_{\alpha}$$

En donde los operadores $A_{\alpha} = A_{\alpha}^{\dagger}$ actuan en el espacio de Hilbert del sistema, mientras que $B_{\alpha} = B_{\alpha}^{\dagger}$ actua en el espacio de Hilbert del reservorio. Es conveniente escribir la interacción en función de los autoestados de \hat{H}_{S} . Para ello, si tenemos los autovalores ϵ y sus respectivos operadores de proyección $\Pi(\epsilon) = |\epsilon\rangle\langle\epsilon|$, se podrán definir los operadores

$$A_{\alpha}(\omega) \equiv \sum_{\epsilon'-\epsilon} \Pi(\epsilon) A_{\alpha} \Pi(\epsilon')$$

En donde a estos operadores se le denominan operadores globales, ya que utilizan los autoestados del sistema. Debido a esta definición, se cumplen las relaciones

$$[\hat{H}_S, A_{\alpha}(\omega)] = -\omega A_{\alpha}(\omega)$$
$$[\hat{H}_S, A_{\alpha}^{\dagger}(\omega)] = \omega A_{\alpha}^{\dagger}(\omega)$$

Debido a que posteriormente se deberá pasar al cuadro de interacción, se debe calcular $U_s^{\dagger}(t)\hat{H}_IU_s(t)$ para ello, se utilizará la relación de Baker Campbell

$$e^{A}Be^{-A} = B + [A, B] + \frac{1}{2}[A, [A, B]] + \dots$$
 (2.7)

Y se puede derivar las relaciones

$$e^{i\hat{H}_S t} A_{\alpha}(\omega) e^{-i\hat{H}_S t} = e^{-i\omega t} A_{\alpha}(\omega)$$
$$e^{i\hat{H}_S t} A_{\alpha}^{\dagger}(\omega) e^{-i\hat{H}_S t} = e^{i\omega t} A_{\alpha}^{\dagger}(\omega)$$

De la relación de completitud $\sum_{\epsilon} \Pi(\epsilon) = \mathbf{I}$ podremos notar que

$$\sum_{\omega} A_{\alpha}(\omega) = \sum_{\omega, \epsilon' - \epsilon = \omega} \Pi(\epsilon) A_{\alpha} \Pi(\epsilon')$$
$$= \sum_{\omega, \epsilon} \Pi(\epsilon) A_{\alpha} \Pi(\epsilon + \omega)$$
$$= A_{\alpha} = \sum_{\omega} A_{\alpha}^{\dagger}(\omega)$$

Con esto el Hamiltoniano de interacción en el cuadro de Schrodinger

$$\hat{H}_I = \sum_{\alpha,\omega} A_{\alpha}(\omega) \otimes B_{\alpha} = \sum_{\alpha,\omega} A_{\alpha}^{\dagger}(\omega) \otimes B_{\alpha}^{\dagger}$$

Aplicando las relaciones en el cuadro de interacción

$$\hat{H}_I = \sum_{\alpha,\omega} e^{-i\omega t} A_{\alpha}(\omega) \otimes B_{\alpha}(t) = \sum_{\alpha,\omega} e^{i\omega t} A_{\alpha}^{\dagger}(\omega) \otimes B_{\alpha}^{\dagger}(t)$$
 (2.8)

Donde $B_{\alpha}(t) = e^{i\hat{H}_B t} B_{\alpha} e^{-i\hat{H}_B t}$. La ecuación 2.8 se puede introducir en la ecuación 2.6

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = \int_0^\infty ds \operatorname{Tr}_B \left[\hat{H}_I(t-s)\hat{\rho}_{IS}(t)\hat{\rho}_B \hat{H}_I(t) - \hat{\rho}_{IS}(t)\hat{\rho}_B \hat{H}_I(t-s)\hat{H}_I(t) + \hat{H}_I(t)\hat{\rho}_{IS}(t)\hat{\rho}_B \hat{H}_I(t-s) - \hat{H}_I(t)\hat{H}_I(t-s)\hat{\rho}_{IS}(t)\hat{\rho}_B \right]$$

Reemplazando la forma explícita de la interacción

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{i\omega s}B_{\beta}(t-s)\hat{\rho}_{B}B_{\alpha}^{\dagger}(t)]e^{i(\omega'-\omega)t} \left(A_{\beta}(\omega)\hat{\rho}_{IS}(t)A_{\alpha}^{\dagger}(\omega') - A_{\alpha}^{\dagger}(\omega')A_{\beta}(\omega)\hat{\rho}_{IS}(t)\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}^{\dagger}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}^{\dagger}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} \sum_{\alpha} \int_{0}^{\infty} ds \operatorname{Tr}_{B}[e^{-i\omega s}B_{\alpha}(t)\hat{\rho}_{B}B_{\beta}(t-s)]e^{-i(\omega'-\omega)t} \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t)A_{\beta}(\omega) - \hat{\rho}_{IS}(t)A_{\beta}(\omega)A_{\alpha}(\omega')\right) \\
+ \sum_{\alpha} \sum_$$

Además, se pueden definir las funciones correlación del baño

$$\Gamma_{\alpha\beta}(\omega) = \int_0^\infty ds e^{i\omega s} \mathrm{Tr}_B[B_\alpha^\dagger(t)B_\beta(t-s)\hat{\rho}_B]$$

Y aplicando estas funciones

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = \sum_{\omega,\omega'} \sum_{\alpha,\beta} e^{i(\omega'-\omega)t} \Gamma_{\alpha\beta}(\omega) \left(A_{\beta}(\omega)\hat{\rho}_{IS}(t) A_{\alpha}^{\dagger}(\omega') - A_{\alpha}^{\dagger}(\omega') A_{\beta}(\omega)\hat{\rho}_{IS}(t) \right)
+ \sum_{\omega,\omega'} \sum_{\alpha,\beta} e^{-i(\omega'-\omega)t} \Gamma_{\beta\alpha}^{*}(\omega) \left(A_{\alpha}(\omega')\hat{\rho}_{IS}(t) A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t) A_{\beta}^{\dagger}(\omega) A_{\alpha}(\omega') \right)$$

Si consideramos el tiempo de evolución del sistema S como $\tau_S = |\omega - \omega'|^{-1}$, y se cumple que el tiempo de relajación del sistema $\tau_R \gg \tau_S$ para los términos no seculares con $\omega \neq \omega'$, estos podrán ser despreciados, debido a que estos los términos $e^{i(\omega - \omega')t}$ oscilan muy rápido durante el tiempo τ_R . Al tomar esta aproximación, la evolución queda

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = \sum_{\omega} \sum_{\alpha,\beta} \Gamma_{\alpha\beta}(\omega) \left(A_{\beta}(\omega)\hat{\rho}_{IS}(t) A_{\alpha}^{\dagger}(\omega) - A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega)\hat{\rho}_{IS}(t) \right)
+ \sum_{\omega} \sum_{\alpha,\beta} \Gamma_{\beta\alpha}^{*}(\omega) \left(A_{\alpha}(\omega)\hat{\rho}_{IS}(t) A_{\beta}^{\dagger}(\omega) - \hat{\rho}_{IS}(t) A_{\beta}^{\dagger}(\omega) A_{\alpha}(\omega) \right)$$

Finalmente, separando la función correlación en una parte real y otra parte imaginaria $\Gamma_{\alpha\beta}(\omega) = \gamma_{\alpha\beta}(\omega)/2 + iS_{\alpha\beta}(\omega)$ queda la ecuación de Lindblad

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -i[\hat{H}_{LS}, \hat{\rho}_{IS}(t)] + \mathcal{D}(\hat{\rho}_{IS}(t))$$
(2.9)

Con \hat{H}_{LS} el Hamiltoniano Lamb~Shift

$$\hat{H}_{LS} = \sum_{\omega} \sum_{\alpha,\beta} S_{\alpha,\beta}(\omega) A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega)$$

Y el Disipador

$$\mathcal{D}(\hat{\rho}_{IS}(t)) = \sum_{\omega} \sum_{\alpha,\beta} \gamma_{\alpha\beta}(\omega) \left[A_{\beta}(\omega) \hat{\rho}_{IS}(t) A_{\alpha}^{\dagger}(\omega) - \frac{1}{2} \{ A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega), \hat{\rho}_{IS}(t) \} \right]$$

El poder escribir el disipador de esta manera es importante, ya que permite preservar la traza, la hermiticidad y que la matriz resultante de la evolución sea semidefinida positiva lo que se denmonia la Forma GKLS [2].

Capítulo 3

Estadística de conteo(FCS)

En este capítulo se presenta el formalismo de FCS. En la sección 3.1 se describen las cantidades termodinámicas a estudiar. Mientras que en la sección 3.2 se establecen las leyes de la termodinámica. En la sección 3.3 se desarrolla la estadística de medición en 2 puntos. En la sección 3.4 se describe brevemente el formalismo de superoperadores. En la sección 3.5 se desarrolla el cálculo de la ecuación maestra generalizada.

3.1. Cantidades termodinámicas

Se considera el sistema descrito por el Hamiltoniano

$$\hat{H}_{tot}(t) = \hat{H}_S(t) + \sum_{\alpha} (\hat{H}_{\alpha} + \hat{V}_{\alpha}) = \hat{H}_S(t) + \hat{H}_B + \hat{V}$$

Donde el primer término describe el Hamiltoniano del sistema el cuál puede ser tiempo dependiente, la segunda parte describe los reservorios térmicos y por último la tercera parte constituye el acoplamiento entre sistema-baño.

El sistema intercambia energía y partículas con el reservorio, por ende el cambio de energía puede ser dividido por una contribución correspondiente al calor y otra correspondiente al trabajo. Así se define el calor que libera el baño α durante el intervalo de tiempo [0,t] es dado por

$$\langle Q_{\alpha} \rangle = -\text{Tr}\{(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})\hat{\rho}_{tot}(t)\} + \text{Tr}\{(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})\hat{\rho}_{tot}(0)\}$$

En donde \hat{N}_{α} corresponde al operador de número que describe el número de partículas en el baño α y μ_{α} es su potencial químico. El trabajo promedio que entrega el reservorio α es

$$\langle W_{\alpha} \rangle = -\mu_{\alpha} (\text{Tr} \{ \hat{N}_{\alpha} \hat{\rho}_{tot}(t) \} - \text{Tr} \{ \hat{N}_{\alpha} \hat{\rho}_{tot}(0) \})$$

3.2. Leyes de la termodinámica

3.2.1. Ley cero

Si se tiene un sistema total descrito por un sistema reducido y un baño, los cuáles están en equilibrio a temperatura inversa β y potencial químico μ . De tal manera que el estado del sistema en equilibrio es él equilibrio gran canónico

$$\hat{\rho}_{tot}^{eq} = \frac{e^{-\beta(\hat{H}_{tot} - \mu\hat{N}_{tot})}}{Z} \qquad Z = \text{Tr}\{e^{-\beta(\hat{H}_{tot} - \mu\hat{N}_{tot})}\}$$

Por lo tanto el estado de equilibrio del sistema reducido es

$$\hat{\rho}_S = \frac{1}{Z} \text{Tr}_B \{ e^{-\beta(\hat{H}_{tot} - \mu \hat{N}_{tot})} \}$$

En el límite de acoplamiento débil entre el sistema y el baño, este equilibrio se convierte en [3]

$$\hat{\rho}_S = \frac{e^{-\beta(\hat{H}_S - \mu \hat{N}_S)}}{\operatorname{Tr}_S \left\{ e^{-\beta(\hat{H}_S - \mu \hat{N}_S)} \right\}}$$

3.2.2. Primera Ley

Para escribir la primera ley en un estado fuera de equilibrio, primero se debe escribir la corriente de calor y la potencia entregadas por el baño α

$$J_{\alpha}(t) = \partial_t \langle Q_{\alpha} \rangle \qquad P_{\alpha}(t) = \partial_t \langle W_{\alpha} \rangle$$

Para el caso en que el Hamiltoniano del sistema no depende del tiempo y considerando que se cumple el acoplamiento débil, la primera ley consiste en

$$\partial_t E(t) = \sum_{\alpha} [J_{\alpha}(t) + P_{\alpha}(t)]$$
 $E = \text{Tr}\{\hat{H}_S \hat{\rho}_{tot}(t)\}$

En el límite de acoplamiento débil E(t) consiste en la energía interna del sistema, mientras que la corriente de calor y la potencia entregada por el baño α en función de la matriz densidad del sistema será

$$J_{\alpha}(t) = \text{Tr}\{(\hat{H}_S - \mu_{\alpha}\hat{N}_S)\mathcal{L}_{\alpha}\hat{\rho}_S(t)\} \qquad P_{\alpha} = \mu_{\alpha}\text{Tr}\{\hat{N}_S\mathcal{L}_{\alpha}\hat{\rho}_S(t)\}$$

3.2.3. Segunda Ley

Para introducir la segunda Ley se parte de la condición inicial en el que el sistema y el reservorio son sistemas no correlacionados, es decir

$$\hat{\rho}_{tot}(0) = \hat{\rho}_S(0) \otimes_{\alpha} \hat{\tau}_{\alpha} \qquad \hat{\tau}_{\alpha} = \frac{e^{-\beta_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})}}{\operatorname{Tr}\{e^{-\beta_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})}\}}$$

En donde cada reservorio se encuentra en equilibrio gran canónico con respecto a su inverso de la temperatura β_{α} y su potencial químico μ_{α} . Con esta condición inicial, la segunda ley puede ser escrita en función de la producción de entropía $\sigma(t)$ como [4]

$$\sigma(t) \equiv \Delta S(t) - \sum_{\alpha} \beta_{\alpha} \langle Q_{\alpha} \rangle \ge 0$$

En donde ΔS denota el cambio en la entropía de Von Neumann del sistema

$$\Delta S(t) = -\text{Tr}\{\hat{\rho}_S(t)\ln\hat{\rho}_S(t)\} + \text{Tr}\{\hat{\rho}_S(0)\ln\hat{\rho}_S(0)\}$$

Es decir, la producción de entropía se separa en una parte que corresponde al cambio de entropía del sistema, mientras que la segunda parte corresponde a la contribución debido al calor que entrega el ambiente.

Como en este trabajo se hará análisis de flujos continuos tanto de energía como de partículas, es importante estudiar la razón de producción de entropía. Si bien, la producción de entropía siempre es positiva, la razón de producción de entropía no siempre lo es, aún así para sistemas markovianos se cumple que [5]

$$\dot{\sigma}(t) \equiv \partial_t \Delta S(t) - \sum_{\alpha} \beta_{\alpha} J_{\alpha} \ge 0$$

En donde la igualdad se cumple para procesos reversibles. Con esto se han definido las leyes de la termodinámica en función de flujos continuos, que se podrán escribir a través de la matriz densidad reducida. En esta tesis estas cantidades serán estudiadas principalmente en el estado estacionario.

3.3. Estadística de medición en dos puntos

Considere un sistema total descrito por la condición inicial $\hat{\rho}_{tot}(0) = \hat{\rho}_s(0) \otimes_{\alpha} \hat{\tau}_{\alpha}$. En donde $\hat{\tau}_{\alpha}$ representa el equilibrio gran canónico del reservorio α . A lo largo de este trabajo nos interesa calcular cantidades termodinámicas. Es importante calcular cantidades como el calor y trabajo. Al ser cantidades que dependen del incremento de variables aleatorias como la energía y número de partículas en el reservorio, estas cantidades se podrán describir en función de una distribución de probabilidad

$$P(\mathbf{Q}, \mathbf{W}) = \sum_{\mathbf{E}, \mathbf{E}', \mathbf{N}, \mathbf{N}'} P_t(\mathbf{E}', \mathbf{N}' | \mathbf{E}, \mathbf{N}) P_0(\mathbf{E}, \mathbf{N})$$
$$\times \prod_{\alpha} \delta(W_{\alpha} - \mu_{\alpha}(N_{\alpha}' - N_{\alpha})) \delta(Q_{\alpha} + W_{\alpha} - (E_{\alpha}' - E_{\alpha}))$$

La probabilidad conjunta de que cada baño α tenga energía E_{α} y número de partículas N_{α} a tiempo t=0 es

$$P_0(\mathbf{E}, \mathbf{N}) = \Pi_{\alpha} \frac{e^{-\beta_{\alpha}(E_{\alpha} - \mu_{\alpha} N_{\alpha})}}{\text{Tr}\{e^{-\beta_{\alpha}(E_{\alpha} - \mu_{\alpha} N_{\alpha})}\}}$$

Ahora si se quiere medir la probabilidad condicional de que el reservorio tenga energía E'_{α} y número de partículas N'_{α} a tiempo t, dado que inicialmente se midio E_{α} y N_{α} , primero se debe partir del estado medido a t=0

$$\hat{\rho}'(0) = \frac{\hat{P}_{\mathbf{E},\mathbf{N}}\hat{\rho}(0)\hat{P}_{\mathbf{E},\mathbf{N}}}{\operatorname{Tr}\{\hat{P}_{\mathbf{E},\mathbf{N}}\hat{\rho}(0)\hat{P}_{\mathbf{E},\mathbf{N}}\}}$$

En donde $\hat{P}_{\mathbf{E},\mathbf{N}} = I_S \otimes \hat{P}_{\mathbf{E},\mathbf{N}}^B$ es el proyector de haber medido la energía y el número de partículas en el reservorio, ahora se deja evolucionar el sistema a tiempo t, es decir

$$\hat{\rho}'(t) = \hat{U}(t)\hat{\rho}'(0)\hat{U}^{\dagger}(t)$$

Y finalmente al medir en t las energías E'_{α} , N'_{α} , la probabilidad condicional queda como

$$P_t(\mathbf{E}', \mathbf{N}' | \mathbf{E}, \mathbf{N}) = \text{Tr}\{\hat{P}_{\mathbf{E}', \mathbf{N}'} \hat{\rho}'(t) \hat{P}_{\mathbf{E}', \mathbf{N}'}\}$$

Escribiendo los proyectores de manera explícita $\hat{P}_{\mathbf{E},\mathbf{N}}^B = |\mathbf{E},\mathbf{N}\rangle\langle\mathbf{E},\mathbf{N}|$, con esto

$$P_{t}(\mathbf{E}', \mathbf{N}'|\mathbf{E}, \mathbf{N}) = \operatorname{Tr}\{\hat{U}(t)(\rho_{s}(0) \otimes |\mathbf{E}, \mathbf{N}\rangle\langle\mathbf{E}, \mathbf{N}|)\hat{U}^{\dagger}(t)|\mathbf{E}', \mathbf{N}'\rangle\langle\mathbf{E}', \mathbf{N}'|\}$$

$$= \operatorname{Tr}\{|\mathbf{E}, \mathbf{N}\rangle\langle\mathbf{E}', \mathbf{N}'|\hat{U}(t)\rho_{s}(0)\langle\mathbf{E}, \mathbf{N}|\hat{U}^{\dagger}(t)|\mathbf{E}', \mathbf{N}'\rangle\}$$

$$= \operatorname{Tr}_{S}\{\operatorname{Tr}_{B}\{|\mathbf{E}, \mathbf{N}\rangle\langle\mathbf{E}', \mathbf{N}'|\hat{U}(t)\}\rho_{s}(0)\langle\mathbf{E}, \mathbf{N}|\hat{U}^{\dagger}(t)|\mathbf{E}', \mathbf{N}'\rangle\}$$

$$= \operatorname{Tr}_{s}\{\operatorname{Tr}_{B}\{|\mathbf{E}, \mathbf{N}\rangle\langle\mathbf{E}', \mathbf{N}'|\hat{U}(t)\}\rho_{s}(0)\operatorname{Tr}_{B}\{\hat{U}^{\dagger}(t)|\mathbf{E}', \mathbf{N}'\rangle\langle\mathbf{E}, \mathbf{N}|\}\}$$

Por ende, la probabilidad condicional de que los reservorios tengan energía E'_{α} y número de partículas N'_{α} a tiempo t dado que a tiempo cero sus energías y número de partículas son E_{α} y N_{α} se puede escribir como

$$P_t(\mathbf{E}', \mathbf{N}'|\mathbf{E}, \mathbf{N}) = \text{Tr}_S\{M\hat{\rho}_s(0)M^{\dagger}\}$$
 $M = \text{Tr}_B\{|\mathbf{E}, \mathbf{N}\rangle\langle\mathbf{E}', \mathbf{N}'|\hat{U}(t)\}$

Al tener una distribución de probabilidad se puede acceder a la función generadora de momentos para obtener cantidades como el promedio o la varianza, esta función es

$$\Lambda(\vec{\lambda}, \vec{\chi}) \equiv \int d\mathbf{Q} d\mathbf{W} P(\mathbf{Q}, \mathbf{W}) e^{-i\vec{\lambda} \cdot \mathbf{Q} - i\vec{\chi} \cdot \mathbf{W}}$$
(3.1)

Que se puede escribir en función de la evolución de una matriz densidad auxiliar A.1

$$\Lambda(\vec{\lambda}, \vec{\chi}) = \text{Tr}\{\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}; t)\} \qquad \hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}; t) = \hat{U}(\vec{\lambda}, \vec{\chi}; t)\hat{\rho}_{tot}(0)\hat{U}^{\dagger}(\vec{\lambda}, \vec{\chi}; t) \qquad (3.2)$$

Y

$$\hat{U}(\vec{\lambda}, \vec{\chi}; t) = e^{\frac{i}{2} \sum_{\alpha} [\lambda_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha}) + \chi_{\alpha} \mu_{\alpha} \hat{N}_{\alpha}]} \hat{U}(t) e^{-\frac{i}{2} \sum_{\alpha} [\lambda_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha}) + \chi_{\alpha} \mu_{\alpha} \hat{N}_{\alpha}]}$$

 $\vec{\lambda}$ y $\vec{\chi}$ se denominan los parámetros de conteo o Counting Fields, y $\rho(\vec{\lambda}, \vec{\chi}; t)$ se denomina la matriz densidad generalizada. El conocer la evolución de esta matriz permite acceder a los momentos del calor y el trabajo y de manera general del observable que se quiera estudiar. Sin embargo esta es descrita en función de la matriz densidad total, por lo que el siguiente paso es encontrar una ecuación maestra para los grados de libertad del sistema reducido.

3.4. Formalismo de Superoperadores y Espacio de Liouville

Un operador en el espacio de Hilbert dado por $\hat{\rho}$ el cuál tiene dimension $N \times N$, es mapeado al espacio de Liouville por un vector de dimension $N^2 \times 1$ dado por $|\rho\rangle\rangle$ también un superoperador \check{L} que actua en el vector $|\rho\rangle\rangle$ se convierte en una matriz $N^2 \times N^2$. Este

espacio tiene las siguientes definiciones

$$\langle \langle A|B\rangle \rangle \equiv \text{Tr}\{\hat{A}^{\dagger}\hat{B}\}$$

$$\check{1} \equiv \sum_{n,n'} |nn'\rangle \rangle \langle \langle nn'|$$

$$|nn'\rangle \rangle \to |n\rangle \langle n'| \qquad \langle \langle nn'| \to |n'\rangle \langle n|$$

Además, se cumple que

$$\langle \langle nn'|mm' \rangle \rangle = \delta_{nm}\delta_{n'm'}$$
$$\langle \langle nn'|A \rangle \rangle = \langle n|\hat{A}|n' \rangle$$
$$\langle \langle 1|A \rangle \rangle = \text{Tr}\{\hat{A}\}$$

En este formalismo si la evolución de la matriz densidad esta descrita por el operador $\check{\mathcal{L}}$

$$\frac{d|\rho(t)\rangle\rangle}{dt} = \check{\mathcal{L}}|\rho(t)\rangle\rangle$$

La solución formal de esta ecuación

$$|\rho(t)\rangle\rangle = e^{\check{\mathcal{L}}t}|\rho(0)\rangle\rangle$$
 (3.3)

Además existen los superoperadores de proyección Nakajima-Zwanzig[6]. Estos actuan en la matriz densidad total, en donde existe el operador $\check{\mathcal{P}}$ que es el superoperador proyección que proyecta la parte relevante de la dinámica, mientras que $\check{\mathcal{Q}}$ proyecta la parte no relevante. Que cumplen con las propiedades

$$\begin{split} \check{\mathcal{P}} + \check{\mathcal{Q}} &= \check{\mathbf{1}} \\ \check{\mathcal{P}}^2 &= \check{\mathcal{P}} \\ \check{\mathcal{Q}}^2 &= \check{\mathcal{Q}} \\ \check{\mathcal{P}} \check{\mathcal{Q}} &= \check{\mathcal{Q}} \check{\mathcal{P}} &= 0 \end{split}$$

La evolución temporal de la matriz densidad a través de estos proyectores

$$\begin{split} \frac{d}{dt}\check{\mathcal{P}}|\hat{\rho}(t)\rangle\rangle &= \check{\mathcal{P}}\check{\mathcal{L}}\check{\mathcal{P}}|\hat{\rho}(t)\rangle\rangle + \check{\mathcal{P}}\check{\mathcal{L}}\check{\mathcal{Q}}|\hat{\rho}(t)\rangle\rangle \\ \frac{d}{dt}\check{\mathcal{Q}}|\hat{\rho}(t)\rangle\rangle &= \check{\mathcal{Q}}\check{\mathcal{L}}\check{\mathcal{Q}}|\hat{\rho}(t)\rangle\rangle + \check{\mathcal{Q}}\check{\mathcal{L}}\check{\mathcal{P}}|\hat{\rho}(t)\rangle\rangle \end{split}$$

3.5. Ecuación maestra generalizada

De la evolución descrita por 3.2, se deduce la ecuación diferencial

$$\frac{d}{dt}\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t) = -i[\hat{H}_0, \hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)] - i\epsilon[\hat{V}_{\lambda}\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t) - \hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)\hat{V}_{-\lambda}]$$

Con el Hamiltoniano total $\hat{H} = \hat{H}_S + \hat{H}_B + \epsilon \hat{H}_I = \hat{H}_0 + \epsilon \hat{H}_I$, en donde ϵ consiste en un parámetro adimensional para posteriormente aplicar acoplamiento débil. Además se tiene

$$\hat{V}_{\lambda} = e^{-\frac{i}{2}\hat{A}(\lambda,\chi)}\hat{H}_{I}e^{\frac{i}{2}\hat{A}(\lambda,\chi)}$$

Con $\hat{A}(\lambda,\chi) = -\sum_{\alpha} [\lambda_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha}) + \chi_{\alpha}\mu_{\alpha}\hat{N}_{\alpha}]$. Que en formalismo de superoperadores se puede escribir

$$\frac{d}{dt}|\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = \check{\mathcal{L}}_{\lambda}|\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle
= (\check{\mathcal{L}}_{0} + \epsilon \check{\mathcal{L}}'_{\lambda})|\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle$$

En el cuadro de interacción

$$\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t) = e^{-\check{\mathcal{L}}_0 t} \hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)$$
$$= e^{i\hat{H}_0 t} \hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t) e^{-i\hat{H}_0 t}$$

El operador de Liouville que contiene el parámetro de conte
o en el cuadro de interaccion se vuelve $\check{\mathcal{L}}_{\lambda}(t) = e^{-\check{\mathcal{L}}_0 t} \check{\mathcal{L}}_{\lambda} e^{\check{\mathcal{L}}_0 t}$ y la evolución temporal

$$\frac{d}{dt}\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t) = \epsilon \check{\mathcal{L}}_{\lambda}(t)\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)$$
(3.4)

La evolución de los grados de libertad del sistema reducido queda

$$\dot{\hat{\rho}}_{IS}(\vec{\lambda}, \vec{\chi}, t) = \epsilon^2 \int_0^t ds \left[-\text{Tr}_B \{ \hat{V}_{\lambda}(t) \hat{V}_{\lambda}(t-s) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \hat{\rho}_R^{eq} \} - \text{Tr}_B \{ \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \hat{\rho}_R^{eq} \hat{V}_{-\lambda}(t-s) \hat{V}_{-\lambda}(t) \} \right]
+ \text{Tr}_B \{ \hat{V}_{\lambda}(t) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \hat{\rho}_R^{eq} \hat{V}_{-\lambda}(t-s) \} + \text{Tr}_B \{ \hat{V}_{\lambda}(t-s) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \hat{\rho}_R^{eq} \hat{V}_{-\lambda}(t) \} \right] (3.5)$$

La demostración de esta ecuación se encuentra en el apéndice A.2. Escribiendo una interacción de la forma

$$\begin{split} \hat{V} &= \sum_{\alpha,k} \hat{S}_{\alpha,k} \hat{B}_{\alpha,k} \\ \hat{V}_{\lambda} &= \sum_{\alpha,k} \hat{S}_{\alpha,k} \hat{B}_{\alpha,k,\lambda} \\ \hat{B}_{\alpha,k,\lambda} &\equiv e^{(i/2)[\lambda_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha}) + \chi_{\alpha}\mu_{\alpha}\hat{N}_{\alpha}]} \hat{B}_{\alpha,k} e^{-(i/2)[\lambda_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha}) + \chi_{\alpha}\mu_{\alpha}\hat{N}_{\alpha}]} \end{split}$$

Y utilizando también que en el cuadro de interacción

$$\hat{U}_{S}^{\dagger}(t)\hat{S}_{\alpha,k}\hat{U}_{S}(t) = \sum_{i} e^{-i\omega_{j}t}\hat{S}_{\alpha,k;j}$$

En donde $\hat{S}_{\alpha,k;j}$ son operadores de salto y ω_j las frecuencias de Bohr del Hamiltoniano del sistema. Finalmente, definiendo las funciones correlación $C^{\alpha}_{k,k'}(s) = \text{Tr}\{e^{is\hat{H}_{\alpha}}\hat{B}^{\dagger}_{\alpha,k}e^{-is\hat{H}_{\alpha}}\hat{B}_{\alpha,t}\hat{\tau}_{\alpha}\}$ nos queda la ecuación maestra generalizada deducida en A.3

$$\frac{d}{dt}\hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) = -\sum_{\alpha, k, k'; j, j'} e^{i(\omega_j - \omega_{j'})t} \int_0^t ds \mathcal{I}(s, t)$$
(3.6)

En donde

$$\mathcal{I}(s,t) = e^{i\omega_{j'}s} C^{\alpha}_{k,k'}(s) \hat{S}^{\dagger}_{\alpha,k;j} \hat{S}_{\alpha,k',j'} \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) + e^{-i\omega_{j}s} C^{\alpha}_{k,k'}(-s) \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) \hat{S}^{\dagger}_{\alpha,k;j} \hat{S}_{\alpha,k';j'} \\ - e^{-i\mu_{\alpha}n_{\alpha,k}(\lambda_{\alpha}-\chi_{\alpha})} \left[e^{i\omega_{j'}s} C^{\alpha}_{k,k'}(s-\lambda_{\alpha}) + e^{-i\omega_{j}s} C^{\alpha}_{k,k'}(-s-\lambda_{\alpha}) \right] \hat{S}_{\alpha,k';j'} \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) \hat{S}^{\dagger}_{\alpha,k;j}$$

3.5.1. Resolución finita de energía

Similar a lo hecho en la sección de Ecuación de Lindblad, uno de los requisitos que se busca en la evolución de la ecuación maestra es que sea Markoviana, para ello se necesita tomar el límite superior del integral en el tiempo de la ecuación 3.6 a infinito. Para poder hacer esto se requiere nuevamente que el tiempo de correlación del baño τ_B sea mucho menor al tiempo de relajación del sistema τ_R . Sin embargo, hay que notar que ahora en el argumento de las funciones correlación aparece el parámetro de conteo λ_{α} , por ende la aproximación Markoviana también requiere que $C_{k,k'}^{\alpha}(\pm \tau + \lambda_{\alpha}) \approx 0$ para $\tau > \tau_R$, esto implica un nuevo régimen de validez

$$\tau_B \ll \tau_R \qquad |\lambda_\alpha| \ll \tau_R$$

Esto tiene repercusiones importantes, ya que genera que la resolución de diferencias de energía en el calor sea finita. Esto es debido a que el parámetro λ_{α} y el calor medido en el baño Q_{α} son variables conjugadas en la distribución de probabilidad de calor y trabajo, lo que implica que estas variables cumplen con el principio de incertidumbre [7]. Y conlleva que las diferencias de energía del orden de $1/\tau_R$ dejan de ser fiables, ya que en este rango de energías el valor promedio del calor es del orden de su varianza, es decir

$$\langle \Delta \lambda_{\alpha}^{2} \rangle \langle (\Delta Q_{\alpha})^{2} \rangle \ge \gamma \implies \langle (\Delta Q_{\alpha})^{2} \rangle \ge \frac{\gamma}{\tau_{R}^{2}}$$

Con γ alguna constante positiva. La profundidad de este resultado es el hecho de que él realizar una aproximación Markoviana a la evolución esta naturalmente sufre de una resolución limitada con respecto al calor intercambiado con los reservorios, lo que puede crear inconsistencias termodinámicas. Por ende para tener una evolución termodinámicamente consistente, se debe redefinir las leyes termodinámicas teniendo en cuenta la resolución finita del calor.

3.5.2. Agrupación de frecuencias

La ecuación de Redfield no siempre preserva positividad, lo que puede generar la aparición de probabilidades negativas en la matriz densidad del sistema reducido. La forma más común de asegurar la positividad es usar la aproximación secular vista en la sección 2.2.2 para obtener la forma GKLS, el problema de aplicar esta aproximación es que requiere que las frecuencias de Bohr estén bien separadas con respecto a $1/\tau_R$, por lo tanto el aplicar esta aproximación necesita que no hayan frecuencias de Bohr casi degeneradas, eliminando una parte de los efectos cuánticos, ya que se pierden las coherencias entre niveles de energías cercanos[8]. Se puede considerar un esquema diferente que asegure positividad, partiendo del punto que la aproximación de Markov asegura que para dos frecuencias de transición distintas, se cumple que $|\omega_j - \omega_{j'}| \ll 1/\tau_B$ o $|\omega_j - \omega_{j'}| \gg 1/\tau_R$. Incluso, se pueden cumplir las dos opciones. Dependiendo de cuál se cumpla, podemos agrupar las frecuencias de transición en conjuntos x_q , tal que si se cumple la primera o la segunda inecuación, estan en el mismo o en diferentes grupos, matemáticamente se traduce en

$$|\omega_j - \omega_{j'}| \ll 1/\tau_B$$
 $\omega_j \in x_q, \omega_{j'} \in x_q$
 $|\omega_j - \omega_{j'}| \gg 1/\tau_R$ $\omega_j \in x_q, \omega_{j'} \in x_{q'}$

Notemos que para frecuencias ω_j , $\omega_{j'}$ que están en distintos grupos, se cumple la aproximación secular, es decir los términos $e^{i(\omega_j-\omega_{j'})t}$ oscilan rápidamente de tal manera que en promedio se anulan. Para frecuencias de transición en el mismo set x_q , primero deberemos notar que los términos $e^{i\omega_j s}$, $e^{i\omega_{j'} s}$ posteriormente actuan en las funciones correlación espectral del baño, y por ende influyen en las energías de transición que se intercambian con el reservorio. Sin embargo, se comentó anteriormente que existe una resolución finita en el calor intercambiado con el baño, lo que conlleva a que para frecuencias del mismo conjunto no siempre podremos determinar la diferencia entre ω_j y $\omega_{j'}$, esto produce que tendremos que sustituir estas frecuencias por una frecuencia auxiliar ω_q tal que

$$e^{i\omega_j s}, e^{i\omega_{j'} s} \to e^{i\omega_q s} \qquad |\omega_q - \omega_j| \ll 1/\tau_B \qquad \forall \omega_j \in x_q$$

Usando este esquema en la ecuación 3.6, se obtiene la ecuación en la forma de Lindblad con el objetivo de asegura la positividad[9], descrita por

$$\frac{d}{dt}\hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) = -i[\hat{H}_{LS}, \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t)] + \sum_{\alpha} \tilde{\mathcal{L}}_{\alpha}^{\chi_{\alpha}, \lambda_{\alpha}} \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t)$$

Con

$$\tilde{\mathcal{L}}_{\alpha}^{\chi_{\alpha},\lambda_{\alpha}}\hat{\rho} = \sum_{k,q} \Gamma_{k}^{\alpha}(\omega_{q}) \left[e^{i\lambda_{\alpha}\omega_{q} + i(\chi_{\alpha} - \lambda_{\alpha})\mu_{\alpha}n_{\alpha,k}} \hat{S}_{\alpha,k;q}(t) \hat{\rho} \hat{S}_{\alpha,k;q}^{\dagger}(t) - \frac{1}{2} \{ \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t), \hat{\rho} \} \right]$$

Los operadores de salto consisten en

$$\hat{S}_{\alpha,k;q}(t) = \sum_{\{j|\omega_j \in x_q\}} e^{-i\omega_j t} \hat{S}_{\alpha,k;j}$$

Y el Hamiltoniano de Lamb Shift

$$\hat{H}_{LS} = \sum_{\alpha,k;q} \Delta_k^{\alpha}(\omega_q) \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t)$$

Con las cantidades

$$\Gamma_k^{\alpha}(\omega) = \int_{-\infty}^{\infty} ds e^{i\omega s} C_{k,k}^{\alpha}(s) \qquad \Delta_k^{\alpha}(\omega) = -\frac{i}{2} \int_{-\infty}^{\infty} ds e^{i\omega s} \operatorname{sign}(s) C_{k,k}^{\alpha}(s)$$

En donde se asume por simplicidad $C_{k,k'}^{\alpha} \propto \delta_{k,k'}$. La demostración de esta ecuación está incluida en el apéndice A.4. Después se puede usar la condición KMS A.5 junto con el límite en que los parámetros de conteo tienden a cero, para obtener

$$\frac{d}{dt}\hat{\rho}_{IS}(t) = -i[\hat{H}_{LS}(t), \hat{\rho}_{IS}(t)] + \sum_{\alpha} \tilde{\mathcal{L}}_{\alpha}\hat{\rho}_{IS}(t)$$

Con

$$\tilde{\mathcal{L}}_{\alpha} = \sum_{\{q|\omega_q > 0\}} \sum_{k} \Gamma_{k,k}^{\alpha}(\omega_q) \left[\mathcal{D}[\hat{S}_{\alpha,k,q}(t)] + e^{-\beta_{\alpha}(\omega_q - \mu_{\alpha}n_{\alpha,k})} \mathcal{D}[\hat{S}_{\alpha,k,q}^{\dagger}(t)] \right]$$

Para un Hamiltoniano tiempo independiente, la ecuación maestra en el cuadro de Schrodinger finalmente es

$$\frac{d}{dt}\hat{\rho}_S = -i[\hat{H}_S + \hat{H}_{LS}, \hat{\rho}_S(t)] + \sum_{\alpha} \mathcal{L}_{\alpha}(\hat{\rho}_S(t))$$
(3.7)

Con

$$\mathcal{L}_{\alpha} = \sum_{\{q \mid \omega_q > 0\}} \sum_{k} \Gamma_{k,k}^{\alpha}(\omega_q) \left[\mathcal{D}[\hat{S}_{\alpha,k,q}] + e^{-\beta_{\alpha}(\omega_q - \mu_{\alpha}n_{\alpha,k})} \mathcal{D}[\hat{S}_{\alpha,k,q}^{\dagger}] \right]$$
(3.8)

Hay dos límites importantes, uno de ellos es si se cumple el caso en que todas las frecuencias cumplen $|\omega_j - \omega_{j'}| \gg 1/\tau_S$, en ese caso se recupera la ecuación de Lindblad correspondiente a la aproximación secular, ya que $\mathcal{D}[\hat{S}_{\alpha,k,q}] = \mathcal{D}[\hat{S}_{\alpha,k,j}]$. En el caso de que se cumpla que $|\omega_j - \omega_{j'}| \ll 1/\tau_B$, todas las frecuencias se agrupan en un sólo grupo, $\hat{S}_{\alpha,k;q} = \hat{S}_{\alpha,k}$ esto permite describir la ecuación maestra en función de operadores locales, y por ende no es necesario diagonalizar el Hamiltoniano $\hat{H}_S[10]$. Por otro lado, la resolución finita de energía se hace presente, ya que para un mismo grupo x_q , las funciones correlación espectral son evaluadas en la misma frecuencia ω_q , que intuitivamente describe la energía con que las partículas se intercambian al reservorio.

3.6. Consistencia termodinámica

Debido a la resolución finita de energía para asegurar consistencia termodinámica, se deben redefinir las leyes termodinámicas. Primero se define el Hamiltoniano termodinámico \hat{H}_{TD} que cumpla la siguiente relación de conmutación

$$[\hat{S}_{\alpha,k,j}, \hat{H}_{TD}] = \omega_q \hat{S}_{\alpha,k,j}$$

Para todas las frecuencias $\omega_j \in x_q$. Este Hamiltoniano se puede obtener mediante el Hamiltoniano \hat{H}_S , cambiando sus autovalores tal que las frecuencias $\omega_j \to \omega_q$ para $\omega_j \in x_q$. Para las leyes de la termodinámica, se redefine la energía interna

$$E(t) = \text{Tr}\{\hat{H}_{TD}\hat{\rho}(t)\}\$$

Finalmente la corriente de calor y el trabajo entregado por el baño α se redefine por

$$J_{\alpha}(t) = \text{Tr}\{(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})\mathcal{L}_{\alpha}\hat{\rho}_{S}(t)\} \qquad P_{\alpha} = \mu_{\alpha}\text{Tr}\{\hat{N}_{S}\mathcal{L}_{\alpha}\hat{\rho}_{S}(t)\}$$

Note que está definición automáticamente cumple con la primera ley de la termodinámica, ya que al derivar la energía interna $\partial_t E(t) = \text{Tr}\{\hat{H}_{TD}\partial_t\hat{\rho}_S(t)\}$ y utilizar que el Hamiltoniano termodinámico cumple con la relación $[\hat{H}_{TD}, \hat{H}_s + \hat{H}_{LS}] = 0$, se obtiene la primera ley

$$\partial_t E(t) = \sum_{\alpha} [J_{\alpha} + P_{\alpha}]$$

3.6.1. Ley cero

Usando la ecuación maestra con los superoperadores 3.8 se cumple que

$$\mathcal{L}_{\alpha}e^{-\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})} = 0 \tag{3.9}$$

Además, si se tiene que todos los reservorios tienen la misma temperatura inversa β y el mismo potencial químico μ , el estado de Gibbs corresponde a

$$\hat{\rho}_G = \frac{e^{-\beta(\hat{H}_{TD} - \mu \hat{N}_S)}}{\text{Tr}\{e^{-\beta(\hat{H}_{TD} - \mu \hat{N}_S)}\}}$$

3.6.2. Segunda ley

La razón de producción de entropía en este caso es

$$\dot{\sigma} = -\frac{d}{dt} \operatorname{Tr}\{\hat{\rho}_S(t) \ln \hat{\rho}_S(t)\} - \sum_{\alpha} \beta_{\alpha} J_{\alpha}(t) = -\sum_{\alpha} \operatorname{Tr}\{(\mathcal{L}_{\alpha} \hat{\rho}_S(t)) [\ln \hat{\rho}_S(t) - \ln \hat{\rho}_G(\beta_{\alpha}, \mu_{\alpha})]\} \ge 0$$
(3.10)

En donde en la última parte se considera el hecho de que $\rho_G(\beta_\alpha, \mu_\alpha)$ es estado estacionario de \mathcal{L}_α , para utilizar la desigualdad de Spohn[11]. La demostración de 3.9 y de 3.10 se encuentra en el apéndice A.7. Con esto finalmente logramos obtener una descripción termodinámicamente consistente a él uso de la ecuación maestra 3.7.

Capítulo 4

Flujos de información

En este capítulo se introduce el concepto de información termodinámica, partiendo en la sección 4.1 con la explicación del Demonio de Maxwell y finalizando en las secciones 4.3 y 4.6 en donde se utiliza la termodinámica estocástica y la matriz densidad para definir los flujos de información en contexto clásico y cuántico respectivamente.

4.1. Demonio de Maxwell

El demonio de Maxwell consiste en un experimento mental esbozado por Maxwell en su libro [12], el cuál consiste en una caja dividida en dos partes A y B, en donde cada compartimiento se encuentra lleno de un gas ideal a temperatura T y presión P como sale en la Figura 4.1. Entre la división existe una puerta sin masa la cuál permite el intercambio de partículas entre compartimientos. La puerta es controlada por un Demonio, el cuál tiene la capacidad de abrir y cerrar la puerta sin ningún costo de energía. La cualidad principal de él, es que conoce las velocidades de cada partícula de los dos compartimientos. Debido a que la temperatura incide en la velocidad promedio de cada partícula. El demonio toma la decisión de dejar pasar las partículas con mayor velocidad que la correspondiente a la velocidad promedio, desde el compartimiento A a el B. Mientras que a las partículas con baja velocidad de él compartimiento B a él A. Asumiendo que queda el mismo número de partículas en cada compartimiento, él Demonio logra aumentar la temperatura del compartimiento A, por otro lado la temperatura del compartimiento B decrese una cantidad ΔT . Si analizamos la entropía total del sistema

$$\Delta S = \Delta S_A + \Delta S_B = C_V \left(\log \frac{T - \Delta T}{T} + \log \frac{T + \Delta T}{T} \right)$$
$$= C_V \log \left(1 - \frac{\Delta T^2}{T^2} \right) < 0$$

En donde C_V es la capacidad calorífica a volumen constante. Del cálculo de la entropía total, se obtiene que sin realizar trabajo se logró una disminución de la entropía, lo que rompe aparentemente con la segunda ley de la termódinamica. Posteriormente, Landauer exorcisaría este demonio, percatandosé que para que el demonio conozca la velocidad de las partículas, este necesita medir, y el hecho de medir requiere de disipación, volviendo a respetar la segunda ley [13].

Para sistemas no autónomos, es decir sistemas manipulados por un agente externo a través del cambio de cantidades macroscópicas, como por ejemplo el motor de Szilard[14]. La descripción y exorcización del Demonio de Maxwell se ha descrito, mediante la cuantificación de la energía que cuesta hacer una medición como también por el máximo trabajo que se puede extraer de un motor de feedback[15, 16]. Sin embargo el caso de sistemas autónomos merece ser visto con detención.

Figura 4.1: Esquema que representa al Demonio de Maxwell. Primero, consiste en los dos compartimientos que poseen el gas ideal distribuido de manera homogénea. Por último al trasladar las partículas de un lado a otro, queda el compartimiento A con partículas frías mientras que el compartimiento B con partículas calientes. Esta figura fue usada de [17].

4.2. Demonio de Maxwell autónomo

Muchos procesos físicos requieren la interacción entre un conjunto de subsistemas que componen un sistema global. Esta interacción entre los subsistemas no sólo incluye un intercambio de energía o partículas, sino que también incluye un intercambio de información a medida que se correlacionan estos subsistemas entre sí de manera autónoma, es decir, sin un factor externo el cuál realize un feedback en él. Entender como son utilizados estos flujos de información para hacer tareas útiles es de gran importancia. Un ejemplo de ello es en sistemas biólogicos, los cuáles realizan adaptación sensorial, en donde un organismo continuamente monitorea su ambiente mientras simultáneamente cambia su respuesta a él[18]. Para poder caracterizar esto se partirá considerando un Demonio de Maxwell autónomo como un sistema bipartito en donde una parte consiste en el sistema controlado y la parte restante en el sistema que actua como detector, el cuál ejerce control mediante una interacción física con el sistema controlado. Este sistema debe ser autónomo, en el sentido de que el Hamiltoniano de todo el sistema es tiempo independiente e intervenciones externas tales como mediciones y feedback no son considerados.

4.3. Descripción clásica

Para poder describir un demonio de Maxwell autónomo, se debe ser capaz de calcular la evolución de un sistema conectado a uno o más reservorios, y por ende sujeto a las leyes de la termodinámica. Para ello, supongamos el caso de 2 sistemas independientes X e Y, cada

uno de ellos tiene distintos estados discretos representados por x e y. Estos sistemas tienen su propia dinámica, la cuál corresponde a saltos aleatorios entre los estados del sistema, que obedecen distintas razones de transición las cuáles serán determinadas por los reservorios a los cuáles esta conectado localmente cada subsistema, que refiere a la condición de balance detallado local[19]. Esta evolución entre estados, se modela como un proceso de Markov[20]. Para poder describir el sistema en conjunto se supondrá primero que el sistema se acopla de manera bipartita, que en este contexto consiste en que si se tiene un estado conjunto de los dos sistemas (x,y) sólo pueden haber transiciones del tipo $(x,y) \to (x,y')$ o $(x,y) \to (x',y)$ y no $(x,y) \to (x',y')$. Esto permite que el sistema total XY siga siendo markoviano, y por ende la probabilidad de estar en el estado (x,y), es decir p(x,y) podrá ser descrita por una ecuación maestra

$$d_t p(x,y) = \sum_{x',y'} \left[W_{x,x'}^{y,y'} p(x',y') - W_{x',x}^{y',y} p(x,y) \right]$$

En donde $W^{y,y'}_{x,x'}$ es la razón de transición en la cuál el sistema salta de $(x',y') \to (x,y)$. La cuál obedece la condición de balance detallado local $\ln \left(W^{y,y'}_{x,x'}/W^{y',y}_{x',x}\right) = -(\epsilon_{x,y} - \epsilon_{x',y'})/T$, que corresponde al cambio de energía durante un salto, el cuál es suministrado por el reservorio a través del calor. Debido a que el sistema es bipartito, la forma de las razones de transición corresponden a

$$W_{x,x'}^{y,y'} = \begin{cases} w_{x,x'}^y & si \quad x \neq x'; y = y' \\ w_x^{y,y'} & si \quad x = x'; y \neq y' \\ \\ 0 & si \quad x \neq x'; y \neq y' \end{cases}$$

En función de la corriente de probabilidad $J_{x,x'}^{y,y'} = W_{x,x'}^{y,y'} p(x',y') - W_{x',x}^{y',y} p(x,y)$, la ecuación maestra queda como

$$d_t p(x,y) = \sum_{x',y'} J_{x,x'}^{y,y'} = \sum_{x'} J_{x,x'}^y + \sum_{y'} J_x^{y,y'}$$

En donde $J_x^{y,y'} = w_x^{y,y'} p(x,y') - w_x^{y',y} p(x,y)$ la corriente desde y' e y a lo largo de x. Esto es importante, ya que la estructura bipartita permite separar las corrientes de probabilidad, una parte que va en la dirección X y otra en la dirección Y. Este hecho puede ser explotado, ya que cualquier funcional de la corriente, es decir una cantidad $\mathcal{A}(J) = \sum J_{x,x'}^{y,y'} A_{x,x'}^{y,y'}$, se puede dividir en dos contribuciones[21]

$$\mathcal{A}(J) = \sum_{x \ge x'; y \ge y'} J_{x,x'}^{y} A_{x,x'}^{y,y'} + \sum_{x \ge x'; y \ge y'} J_{x}^{y,y'} A_{x,x'}^{y,y'}$$

$$\tag{4.1}$$

Con esto, se puede separar la variación de \mathcal{A} uno en la dirección X y en la dirección Y.

4.4. Segunda Ley de la termodinámica y flujos de información

El sistema conjunto XY, debido a que está en contacto con un baño es un sistema abierto el cuál satisface la segunda ley de la termodinámica, lo cuál exige que la razón de producción de entropía sea siempre positiva

$$\dot{\sigma} = \partial_t S^{XY} + \dot{S}_r > 0$$

En donde el cambio de entropía del sistema corresponde a

$$\partial_t S^{XY} = \sum_{x > x': y > y'} J^{y,y'}_{x,x'} \ln \frac{p(x', y')}{p(x, y)}$$

Y el cambio de entropía debido al ambiente es

$$\dot{S}_r = \sum_{x > x'; y > y'} J_{x,x'}^{y,y'} \ln \frac{W_{x,x'}^{y,y'}}{W_{x',x}^{y',y}}$$

Debido a esto

$$\dot{\sigma} = \sum_{x \ge x'; y \ge y'} J_{x,x'}^{y,y'} \ln \frac{W_{x,x'}^{y,y'} p(x', y')}{W_{x',x}^{y',y} p(x, y)} \ge 0$$

Estos resultados se demuestran en el apendice B.1.

Ya definida la razón de producción de entropía, se necesita cuantificar la información entre los dos sistemas. La cantidad que permite medir las correlaciones entre los dos sistemas es la información mutua

$$I_{xy} = \sum_{x,y} p(x,y) \ln \frac{p(x,y)}{p(x)p(y)} \ge 0$$

Tal que, cuando I_{xy} es grande los dos sistemas son altamente correlacionados, mientras que $I_{xy}=0$ significa que los sistemas son estadísticamente independientes. Para definir los flujos de información, se necesita calcular la variación temporal de la información mutua y separarla en dos contribuciones $\partial_t I_{xy} = \dot{I}^X + \dot{I}^Y$ con

$$\dot{I}^X = \sum_{x \ge x'; y} J^y_{x,x'} \ln \frac{p(y|x)}{p(y|x')}$$

$$\dot{I}^Y = \sum_{x;y \ge y'} J_x^{y,y'} \ln \frac{p(x|y)}{p(x|y')}$$

La demostración de este resultado también está en el apendice B.1. \dot{I}^X e \dot{I}^Y cuantifican como la información fluye entre los dos subsistemas, si $\dot{I}^X > 0$ un salto en la dirección X en promedio, aumenta la información I_{xy} , es decir X esta aprendiendo o midiendo Y. De manera contraria, $\dot{I}^X < 0$ significa que los saltos en la dirección X decrecen las correlaciones, lo que puede ser interpretado como consumo de información con el objetivo de extraer energía.

Debido a que la razón de producción de entropía es un funcional de la corriente, podemos usar la ecuación 4.1 y escribir

$$\dot{\sigma} = \dot{\sigma}^X + \dot{\sigma}^Y$$

Así

$$\dot{\sigma}^X = \sum_{x \ge x'; y} J_{x,x'}^y \ln \frac{w_{x,x'}^y p(x', y)}{w_{x',x}^y p(x, y)} \ge 0$$
$$\dot{\sigma}^Y = \sum_{x; y \ge y'} J_x^{y,y'} \ln \frac{w_x^{y,y'} p(x, y')}{w_x^{y',y} p(x, y)} \ge 0$$

En donde podemos identificar

$$\dot{\sigma}^{X} = \sum_{x \ge x'; y} J_{x, x'}^{y} \left[\ln \frac{p(x')}{p(x)} + \ln \frac{w_{x, x'}^{y}}{w_{x', x}^{y}} + \ln \frac{p(y|x')}{p(y|x)} \right]$$

$$\dot{\sigma}^{Y} = \sum_{x; y \ge y'} J_{x}^{y, y'} \left[\ln \frac{p(y')}{p(y)} + \ln \frac{w_{x}^{y, y'}}{w_{x}^{y', y}} + \ln \frac{p(x|y')}{p(x|y)} \right]$$

Con lo que finalmente para las razones de produccion locales

$$\dot{\sigma}^X = \partial_t S^X + \dot{S}_r^X - \dot{I}^X \ge 0$$
$$\dot{\sigma}^Y = \partial_t S^Y + \dot{S}_r^Y - \dot{I}^Y \ge 0$$

Estas dos ecuaciones permiten visualizar como la contribución de la información actua en la producción de entropía local de cada subsistema. Supongamos que no se sabe que el subsistema Y esta interactuando con X, y que sólo somos capaces de monitorear X, en ese caso asignaremos a este sistema la razón de producción de entropía $\dot{\sigma}_0^X = \partial_t S^X + \dot{S}_r^X$. Si el subsistema X estuviera aislado, efectivamente se tendría $\dot{\sigma}_0^X \geq 0$, sin embargo por la interacción con el subsistema Y pueden suceder casos en que $\dot{\sigma}_0^X < 0$. Esta violación aparente de la Segunda Ley se puede interpretar como el efecto de un Demonio de Maxwell. En la evolución de sistemas autónomos los cuáles relajan a un estado estacionario fuera del equilibrio, se cumple que al llegar al estado estacionario $d_t I_{xy} = 0$. Por lo tanto, el flujo de información queda $\dot{\mathcal{I}} = \dot{I}^X = -\dot{I}^Y$ y la razón de producción de entropía local de cada subsistema se vuelve

$$\dot{\sigma}^X = \dot{S}_r^X - \dot{\mathcal{I}} \ge 0$$
$$\dot{\sigma}^Y = \dot{S}_r^Y + \dot{\mathcal{I}} \ge 0$$

Supongamos el caso en que $\dot{\mathcal{I}} > 0$, en este caso se puede interpretar que X está actuando como sensor a medida que monitorea el subsistema Y. Para poder realizar esta actividad, el subsistema X necesita entregar una energía mínima $\dot{S}_r^X \geq \dot{\mathcal{I}}$. Por el otro lado el subsistema Y está entregando información, la cuál puede ser utilizada para extraer energía $-\dot{S}_r^Y \leq \dot{\mathcal{I}}$, esto

es importante, ya que se puede utilizar para realizar trabajo en sistemas fuera del equilibrio, o enfriar un reservorio caliente. Un ejemplo típico de ello, es en sistemas fuera del equilibrio sujetos a un gradiente de potencial, en este caso el Demonio de Maxwell se puede visualizar mediante la aparición de una corriente de partículas en contra del gradiente de potencial. Efecto que se analizará en detalle en secciones posteriores.

4.5. Descripción cuántica

Para poder describir los flujos de información en un contexto cuántico, se necesita conocer la dinámica de un sistema cuántico abierto acoplado a uno o varios reservorios, para ello se útilizara la matriz densidad. La cuál describirá la evolución del sistema reducido. El sistema total estará descrito po el Hamiltoniano $\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_I$, como se vio en la sección 2.2.2, la evolución markoviana de este sistema resulta en la ecuación maestra

$$\partial_t \hat{\rho}_S(t) = -i[\hat{H}_S + \hat{H}_{LS}, \hat{\rho}_S] + \mathcal{L}(\hat{\rho}_S)$$

En donde el acoplamiento con distintos reservorios α consiste en $\mathcal{L} = \sum_{\alpha} \mathcal{L}_{\alpha}$. Si el estado de equilibrio local consiste en un estado de Gibbs $\hat{\rho}_{eq}^{\alpha} = Z_{\beta_{\alpha},\mu_{\alpha}}^{-1} e^{-\beta_{\alpha}(\hat{H}_{s}-\mu_{\alpha}\hat{N})}$, se puede usar la desigualdad de Spohn [22] para obtener una inecuación de Clausius para la razón de producción de entropía local correspondiente al baño α . Se partirá primero de (Los resultados son equivalentes si en él estado estacionario está el Hamiltoniano termodinámico \hat{H}_{TD})

$$-\text{Tr}[(\mathcal{L}_{\alpha}\hat{\rho}_S)(\ln \hat{\rho}_S - \ln \hat{\rho}_{eq}^{\alpha})] \ge 0$$
(4.2)

Definiendo primero, la cantidad $\dot{S}^{\alpha} = -\text{Tr}[(\mathcal{L}_{\alpha}\hat{\rho}_S)\ln\hat{\rho}_S]$ como la razón de cambio de la entropía de Von Neumann $S = -\text{Tr}[\hat{\rho}_S\ln\hat{\rho}_S]$ debido a la acción del disipador \mathcal{L}_{α} , y identificando el flujo de calor en el segundo término de 4.2, se obtiene la razón de producción de entropía local

$$\dot{\sigma}^{\alpha} = \dot{S}^{\alpha} - \beta_{\alpha} J_{\alpha} \ge 0 \tag{4.3}$$

Que actúa como una inecuación de Clausius parcial. Esto es importante, ya que localmente se puede separar la producción de entropía en cantidades mayor a cero, similar a como se hizo en la descripción clásica. De hecho si se suman todas las razones de cambio de entropía, se obtiene la derivada total $\partial_t S = \sum_{\alpha} \dot{S}^{\alpha}$, por lo tanto al sumar todas las producciones de entropía locales

$$\sum_{\alpha} \dot{\sigma}^{\alpha} = \partial_t S - \sum_{\alpha} \beta_{\alpha} J_{\alpha} = \dot{\sigma} \ge 0$$

Que corresponde a la inecuación de Clausius estándar.

Se puede notar que para el caso estacionario $\partial_t S = 0$, no necesariamente \dot{S}^{α} es cero. Sino que depende del flujo de calor que entra localmente por el disipador α . También se puede tratar la inecuación para la energía libre, primero definiendo la corriente de energía y calor correspondientes al baño α

$$\dot{E}_{\alpha} = \text{Tr}[(\mathcal{L}_{\alpha}\hat{\rho}_{S})\hat{H}_{S}]$$
$$\dot{W}_{\alpha} = \mu_{\alpha}\text{Tr}[(\mathcal{L}_{\alpha}\hat{\rho}_{S})\hat{N}]$$

En este caso usamos el Hamiltoniano \hat{H}_S , sin embargo si el estado estacionario contiene \hat{H}_{TD} , entonces para definir el flujo de energía se usa \hat{H}_{TD} de manera consistente. Se cumplirá que la suma de las corrientes de energía es la derivada total de la energía interna $\sum_{\alpha} \dot{E}_{\alpha} = \partial_t E$. Para un Hamiltoniano tiempo independiente sólo se considera trabajo químico, por ende $\dot{E}_{\alpha} = \dot{Q}_{\alpha} + \dot{W}_{\alpha}$, si multiplicamos la ecuación 4.3 por T_{α} y reemplazamos \dot{Q}_{α} , se obtendrá

$$T_{\alpha}\dot{\sigma}^{\alpha} = \dot{W}_{\alpha} - \dot{\mathcal{F}}_{\alpha} \ge 0 \tag{4.4}$$

En donde la razón de cambio de energía libre debido al reservorio α consiste en $\dot{\mathcal{F}}_{\alpha} = \dot{E}_{\alpha} - T_{\alpha}\dot{S}^{\alpha}$. Por otro lado, la inecuación 4.4 consiste en una inecuación local de energía libre. Si sumamos todas estas inecuaciones se tendrá que

$$\sum_{\alpha} T_{\alpha} \dot{\sigma}^{\alpha} = \dot{W} - \dot{\mathcal{F}} \ge 0 \tag{4.5}$$

En donde $\dot{W} = \sum_{\alpha} \dot{W}_{\alpha}$ y la razón de cambio de energía libre total

$$\dot{\mathcal{F}} = \partial_t E - \sum_{\alpha} T_{\alpha} \dot{S}^{\alpha}$$

Para el caso particular en qué todas las temperaturas son iguales $T_{\alpha} = T$, la razón $\dot{\mathcal{F}}$ se vuelve equivalente a la derivada temporal de la energía libre $\partial_t F = \partial_t (E - TS)$. Sólo en este caso 4.3 y 4.5 son equivalentes. En el caso $T_{\alpha} = T$ si se analiza 4.5 al considerar el estado estacionario, se tendrá $\dot{\mathcal{F}} = \partial_t F = 0$, lo que implica que $\dot{W} > 0$. Por ende el sistema es incapaz de hacer un trabajo, si sólo se va a absorber calor de reservorios isotérmicos. La única forma de realizar trabajo en el estado estacionario, o sea $\dot{W} < 0$ es que hayan reservorios con distinta temperatura, ya que para ese caso $\dot{\mathcal{F}} = -\sum_{\alpha} T_{\alpha} \dot{S}^{\alpha} \neq 0$.

4.6. Flujos de información en contexto cuántico

Supongamos la existencia de un sistema hecho por dos subsistemas acoplados

$$\hat{H}_S = \hat{H}_X + \hat{H}_Y + \hat{H}_{XY}$$

Donde \hat{H}_i corresponde al Hamiltoniano del subsistema i=X,Y, mientras que \hat{H}_{XY} corresponde al Hamiltoniano de interacción entre los dos subsistemas. Además, se asumirá que cada subsistema se encuentra acoplado a reservorios separados, de tal manera que los reservorios conectados al subsistema i serán denotados por α_i . Esto permite describir la razón de producción de entropía local de cada subsistema como

$$\dot{\sigma}^i \equiv \sum_{\alpha_i} \dot{\sigma}^{\alpha_i} = \sum_{\alpha_i} \dot{S}^{\alpha_i} - \sum_{\alpha_i} \beta_{\alpha_i} J_{\alpha_i} \ge 0$$

Por lo tanto la razón de producción de entropía del sistema corresponde a $\dot{\sigma} = \dot{\sigma}^X +$

 $\dot{\sigma}^Y$. Similar a como se hizo en la descripción clásica, se buscará relacionar las producciones locales de entropía con la información, para ello se usará la información mutua entre los dos subsistemas $I_{xy} = S_X + S_Y - S_{XY}$. En donde $S_i = -\text{Tr}[\hat{\rho}_i \ln \hat{\rho}_i]$ es la entropía de Von Neumann del subsistema i ($\hat{\rho}_i$ consiste en la matriz densidad del subsistema i). Se puede separar la derivada temporal del flujo de información

$$\begin{split} \partial_t I_{xy} &= \partial_t S_X + \partial_t S_Y - \partial_t S_{XY} \\ &= \partial_t S_X + \partial_t S_Y - \sum_{i=X,Y;\alpha_i} \dot{S}^{\alpha_i} \\ &= \partial_t S_X - \sum_{\alpha_X} \dot{S}^{\alpha_X} + \partial_t S_Y - \sum_{\alpha_Y} \dot{S}^{\alpha_Y} \\ &= \dot{I}^X + \dot{I}^Y \end{split}$$

Definiendo la cantidad $\dot{I}^i = \partial_t S^i - \sum_{\alpha_i} \dot{S}^{\alpha_i}$, se puede separar la derivada total de la información mutua en dos contribuciones. Luego, en las razones de producción locales si se reemplaza $\sum_{\alpha_i} \dot{S}^{\alpha_i} \to \partial_t S_i - \dot{I}^i$ nos queda

$$\dot{\sigma}^X = \partial_t S^X - \sum_{\alpha_X} \beta_{\alpha_X} J_{\alpha_X} - \dot{I}^X \ge 0$$
$$\dot{\sigma}^Y = \partial_t S^Y - \sum_{\alpha_Y} \beta_{\alpha_Y} J_{\alpha_Y} - \dot{I}^Y \ge 0$$

Que coincide con el resultado en la descripción clásica. Aun así, este resultado permite incluir efectos cuánticos del sistema en el flujo de la información.

Para la razón de cambio de la energía libre, si consideramos que el subsistema i está conectado a un reservorio isotérmico de temperatura T_i podremos considerar

$$\dot{\mathcal{F}}_i = \dot{E}_i - T_i \sum_{\alpha_i} \dot{S}^{\alpha_i}$$

En el estado estacionario se puede reemplazar $\dot{I}^i = -\sum_{\alpha_i} \dot{S}^{\alpha_i}$ y así la razón de cambio de la energía libre

$$\dot{\mathcal{F}}_i = \dot{E}_i + T_i \dot{I}^i$$

En este caso la razón de cambio de energía libre tiene una contribución correspondiente a la energía y una nueva contribución correspondiente a la información. Si consideramos el caso del estado estacionario $\partial_t E = \dot{E}^X + \dot{E}^Y = 0$, se pueden considerar \dot{E}^i como el flujo de energía entre los dos subsistemas, por ende en el estado estacionario la razón de energía libre se divide en un flujo de energía entre los subsistemas y otro correspondiente al flujo de información entre estos mismos. Esto permite que el sistema sea capaz de realizar trabajo por una contribución predominate de la información, lo que consiste en una máquina de la información. La equivalencia de este formalismo con el descrito en la sección anterior se encuentra en el apéndice B.1.

Capítulo 5

Dinámica de un sistema de 3 puntos cuánticos conectado al ambiente

En este capítulo se realiza una descripción del sistema a estudiar junto con la dinámica disipativa del sistema a través de la ecuación de Lindblad desarrollada en la sección 3.8. En la sección 5.1 se describe el Hamiltoniano del sistema reducido. En la sección 5.2 se describe como actua este sistema en un caso típico de transporte y finalmente en la sección 5.4 se describe el comportamiento tipo Demonio de Maxwell del sistema.

5.1. Modelo teórico

El sistema reducido consiste en 3 puntos cuánticos, uno de ellos constituye el nivel de energía ϵ_d , mientras que los otros dos restantes poseen una energía ϵ los cualés están acoplados por la cantidad g. Entre estos dos puntos cuánticos se genera una interacción Coulombiana respectiva de U_f , mientras que el punto cuántico ϵ_d interactua con los dos restantes, a través de interacción coulombiana U, como se indica en la Figura 5.1.

Figura 5.1: Esquema que representa los 3 puntos cuánticos como 3 niveles de energía, los cuáles sienten interacción repulsiva entre ellos, cada uno de estos puntos cuánticos está acoplado a un baño distinto.

El Hamiltoniano del sistema corresponde a

$$\hat{H}_S = \epsilon_D \hat{d}_D^{\dagger} \hat{d}_D + \epsilon \hat{d}_L^{\dagger} \hat{d}_L + \epsilon \hat{d}_R^{\dagger} \hat{d}_R + g(\hat{d}_L^{\dagger} \hat{d}_R + \hat{d}_R^{\dagger} \hat{d}_L) + U(\hat{n}_D \hat{n}_L + \hat{n}_D \hat{n}_R) + U_f \hat{n}_R \hat{n}_L$$

En donde $\hat{n}_i = \hat{d}_i^{\dagger} \hat{d}_i$ y los operadores \hat{d}_i cumplen con las relaciones de anticonmutación

$$\{\hat{d}_{\alpha}, \hat{d}_{\beta}\} = 0$$
 $\{\hat{d}_{\alpha}^{\dagger}, \hat{d}_{\beta}\} = \delta_{\alpha\beta}$

Usando la base de Fock $|n_L,n_R,n_D\rangle=(\hat{d}_L^\dagger)^{n_L}(\hat{d}_R^\dagger)^{n_R}(\hat{d}_D^\dagger)^{n_D}|0,0,0\rangle$ y escribiendo el Hamiltoniano en el orden $\{|0,0,0\rangle,|1,0,0\rangle,|0,1,0\rangle,|0,0,1\rangle,|1,1,0\rangle,|1,0,1\rangle,|0,1,1\rangle,|1,1,1\rangle\}$

Por otro lado, el Hamiltoniano del baño $\hat{H}_B=\hat{H}_L+\hat{H}_R+\hat{H}_D$ e interacción $\hat{V}=\hat{V}_L+\hat{V}_R+\hat{V}_D$ consisten en

$$\hat{H}_{\alpha} = \sum_{l} \epsilon_{\alpha l} \hat{c}_{\alpha l}^{\dagger} \hat{c}_{\alpha l} \qquad \hat{V}_{\alpha} = \sum_{l} t_{\alpha l} (\hat{d}_{\alpha}^{\dagger} \hat{c}_{\alpha l} + \hat{c}_{\alpha l}^{\dagger} \hat{d}_{\alpha})$$

Teniendo esto en consideración, para poder describir la dinámica disipativa del sistema se debe ser capaces de obtener los operadores de salto, para ello estarán los operadores que describen la interacción

$$\hat{S}_{\alpha,1} = \hat{d}_{\alpha}^{\dagger} \qquad \hat{S}_{\alpha,-1} = \hat{d}_{\alpha}$$

$$\hat{B}_{\alpha,1} = \sum_{l} t_{\alpha l} \hat{c}_{\alpha l}$$
 $\hat{B}_{\alpha,-1} = \sum_{l} t_{\alpha l} \hat{c}_{\alpha l}^{\dagger}$

La evolución disipativa del sistema de 3 puntos cuánticos estará descrita por el Lindbladiano

$$\mathcal{L} = \mathcal{L}_R + \mathcal{L}_L + \mathcal{L}_D \tag{5.1}$$

En donde explícitamenre cada operador de Lindblad consiste en

$$\mathcal{L}_{R} = \gamma_{R}(\epsilon)(f_{R}(\epsilon)\mathcal{D}_{0}[\hat{d}_{R}^{\dagger}(\mathbf{1} - \hat{n}_{D})(\mathbf{1} - \hat{n}_{L})] + [1 - f_{R}(\epsilon)]\mathcal{D}_{0}[\hat{d}_{R}(\mathbf{1} - \hat{n}_{D})(\mathbf{1} - \hat{n}_{L})])$$

$$+ \gamma_{R}(\epsilon + U)(f_{R}(\epsilon + U)\mathcal{D}_{0}[\hat{d}_{R}^{\dagger}\hat{n}_{D}(\mathbf{1} - \hat{n}_{L})] + [1 - f_{R}(\epsilon + U)]\mathcal{D}_{0}[\hat{d}_{R}\hat{n}_{D}(\mathbf{1} - \hat{n}_{L})])$$

$$+ \gamma_{R}(\epsilon + U_{f})(f_{R}(\epsilon + U_{f})\mathcal{D}_{0}[\hat{d}_{R}^{\dagger}(\mathbf{1} - \hat{n}_{D})\hat{n}_{L}] + [1 - f_{R}(\epsilon + U_{f})]\mathcal{D}_{0}[\hat{d}_{R}(\mathbf{1} - \hat{n}_{D})\hat{n}_{L}])$$

$$+ \gamma_{R}(\epsilon + U + U_{f})(f_{R}(\epsilon + U + U_{f})\mathcal{D}_{0}[\hat{d}_{R}^{\dagger}\hat{n}_{D}\hat{n}_{L}] + [1 - f_{R}(\epsilon + U + U_{f})]\mathcal{D}_{0}[\hat{d}_{R}\hat{n}_{D}\hat{n}_{L}])$$

$$\mathcal{L}_{L} = \gamma_{L}(\epsilon)(f_{L}(\epsilon)\mathcal{D}_{0}[\hat{d}_{L}^{\dagger}(\mathbf{1} - \hat{n}_{D})(\mathbf{1} - \hat{n}_{R})] + [1 - f_{L}(\epsilon)]\mathcal{D}_{0}[\hat{d}_{L}(\mathbf{1} - \hat{n}_{D})(\mathbf{1} - \hat{n}_{R})])$$

$$+ \gamma_{L}(\epsilon + U)(f_{L}(\epsilon + U)\mathcal{D}_{0}[\hat{d}_{L}^{\dagger}\hat{n}_{D}(\mathbf{1} - \hat{n}_{R})] + [1 - f_{L}(\epsilon + U)]\mathcal{D}_{0}[\hat{d}_{L}\hat{n}_{D}(\mathbf{1} - \hat{n}_{R})])$$

$$+ \gamma_{L}(\epsilon + U_{f})(f_{L}(\epsilon + U_{f})\mathcal{D}_{0}[\hat{d}_{L}^{\dagger}(\mathbf{1} - \hat{n}_{D})\hat{n}_{R}] + [1 - f_{L}(\epsilon + U_{f})]\mathcal{D}_{0}[\hat{d}_{L}(\mathbf{1} - \hat{n}_{D})\hat{n}_{R}])$$

$$+ \gamma_{L}(\epsilon + U + U_{f})(f_{L}(\epsilon + U + U_{f})\mathcal{D}_{0}[\hat{d}_{L}^{\dagger}\hat{n}_{D}\hat{n}_{R}] + [1 - f_{L}(\epsilon + U + U_{f})]\mathcal{D}_{0}[\hat{d}_{L}\hat{n}_{D}\hat{n}_{R}])$$

$$\mathcal{L}_{D} = \gamma_{D}(\epsilon_{D})(f_{D}(\epsilon_{D})\mathcal{D}_{0}[\hat{d}_{D}^{\dagger}(\mathbf{1} - \hat{n}_{R})(\mathbf{1} - \hat{n}_{L})] + [1 - f_{R}(\epsilon)]\mathcal{D}_{0}[\hat{d}_{R}(\mathbf{1} - \hat{n}_{D})(\mathbf{1} - \hat{n}_{L})])$$

$$+ \gamma_{D}(\epsilon + U)f_{D}(\epsilon_{D} + U)\mathcal{D}_{0}[\hat{d}_{D}^{\dagger}(\hat{n}_{R}(\mathbf{1} - \hat{n}_{L}) + \hat{n}_{L}(\mathbf{1} - \hat{n}_{R}))]$$

$$+ \gamma_{D}(\epsilon + U)[1 - f_{D}(\epsilon + U)]\mathcal{D}_{0}[\hat{d}_{D}(\hat{n}_{R}(\mathbf{1} - \hat{n}_{L}) + \hat{n}_{L}(\mathbf{1} - \hat{n}_{R}))]$$

$$+ \gamma_{D}(\epsilon + 2U)(f_{D}(\epsilon_{D} + 2U)\mathcal{D}_{0}[\hat{d}_{D}^{\dagger}\hat{n}_{R}\hat{n}_{L}] + [1 - f_{R}(\epsilon_{D} + 2U)]\mathcal{D}_{0}[\hat{d}_{D}\hat{n}_{R}\hat{n}_{L}])$$

En donde el superoperador

$$\mathcal{D}_0[\hat{A}]\hat{\rho} = \hat{A}\hat{\rho}\hat{A}^{\dagger} - \frac{1}{2}\{\hat{A}^{\dagger}\hat{A},\hat{\rho}\}$$

La demostración de la ecuación 5.1 se encuentra en el apendice C.2 y C.3.

Despreciando el \hat{H}_{LS} [23] la evolución de los 3 puntos cuánticos es

$$\frac{d}{dt}\hat{\rho}_S(t) = -i[\hat{H}_S, \hat{\rho}_S(t)] + \mathcal{L}(\hat{\rho}_S(t))$$

Usando esta ecuación se podrá calcular la evolución del sistema númericamente y calcular las cantidades termodinámicas.

5.2. Estudio del transporte

Inicialmente consideramos el caso en que las razones de transición no dependen de la frecuencia, es decir $\gamma_i(\omega) = \gamma_i$. Se estudiará el flujo de corriente ante una diferencia de potencial $\mu_L - \mu_R = eV$, considerando las razones de transición $\gamma_L = \gamma_R = 1/100$, $\gamma_d = 1/50$. Se obtiene la Figura 5.2

Figura 5.2: Gráfico que representa la corriente de partículas en función de eV/T. Las temperaturas del sistema son $T_L = T_R = 100$, $T_d = 2$, el parámetro de acoplamiento es g = 5/1000, las energías de sitio son $\epsilon = 4$, $\epsilon_d = \mu_d - U/2$, y energías de Coulomb $U_F = 500$, U = 40.

Esta figura permite determinar que a medida que aumenta eV la corriente de partículas $\dot{N}_L = -\dot{N}_R$ que va del baño L al baño R crece. Lo que es esperable, ya que la diferencia de potencial induce el transporte de partículas de un mayor potencial hacia un menor potencial. También se puede graficar la potencia que es entregada a este sistema

Figura 5.3: Gráfico de la potencia que entregan los reservorios en función de eV/T.

La Figura 5.3 nos dice que el reservorio LR entrega trabajo al sistema para poder realizar la corriente, lo que también es esperable, dado que al pasar de un potencial mayor a uno menor, esa energía que tenía el electrón pasa a el sistema LR. Por otro lado debido a que el reservorio D no intercambia partículas en promedio, la potencia que entrega el reservorio D es cero.

También se pueden revisar los flujos de energía del sistema LR y el reservorio D

Figura 5.4: Gráfico de el flujo de energía entre los sistemas LR y D.

De la Figura 5.4 se puede notar que $\dot{E}_{LR} = -\dot{E}_d$ lo que es consistente, ya que en estado estacionario $d_t E = \dot{E}_{LR} + \dot{E}_d = 0$. Además esto permite notar que el sistema D libera energía, la cuál es entregada al reservorio con temperatura T_d como se ve en la línea roja de la Figura 5.5 en donde $J_d < 0$

Figura 5.5: Gráfico del flujo de calor que entregan los reservorios en función de eV/T.

En el sistema LR se puede notar que para cantidades eV/T pequeñas, el sistema recibe calor del reservorio, mientras que a medida que se aumenta eV/T el reservorio recibe calor. En el sistema LR el flujo de energía positivo consiste en que se debe entregar energía al sistema para poblar los sitios, aun así a medida que se aumenta eV/T esa contribución de energía termina siendo derrotada por el flujo de electrones, y por eso el flujo de calor se vuelve negativo.

También resulta importante calcular si existen efectos cuánticos en este estado estacionario del sistema, para ello se calcularan dos cantidades, primero la norma- l_1 C_{l_1} que permite calcular las coherencias en el sistema LR y consiste en

$$\mathcal{C}_{l_1} = \sum_{i>j} |\hat{
ho}_{s;i,j}|$$

Otro efecto cuántico que es interesante medir es el entrelazamiento, la cantidad que permite medir esto es la concurrencia C_{on} [24, 25] que consiste en

$$C_{on} = \max\{2|\alpha + \beta| - 2\sqrt{p_0 p_D}, 0\}$$

En donde p_0 y p_D consisten en la probabilidad de que el sistema LR este vacío o doblemente ocupado respectivamente. Mientras que α consiste en la coherencia entre los estados $\{|1,0,0\rangle,|0,1,0\rangle\}$ y β la coherencia entre los estados $\{|1,0,1\rangle,|0,1,1\rangle\}$. Esta fórmula esta deducida en el ápendice C.6.

Figura 5.6: La línea azul corresponde a la coherencia mientras que la línea roja la concurrencia, todo esto en función de eV/T.

Para este caso la coherencia parte en cero y a medida que aumenta la diferencia de potencial está aumenta. El entrelazamiento por otro lado parte en cero, que coincide con el cero de la coherencia, se mantiene nulo hasta llegar a un punto en el que al aumentar el eV/T la concurrencia crece, y por ende se hace presente entrelazamiento en el sistema LR, esto es importante ya que permite intuir que debe existir una corriente fluyendo en el sistema para que exista coherencia y entrelazamiento.

5.3. Demonio de Maxwell en 3 puntos cuánticos

Para que el sistema de 3 puntos cuánticos se comporte como un Demonio de Maxwell autónomo, será importante separar el sistema total en un subsistema LR de 2 niveles de energía ϵ y un nivel de energía ϵ_D el cuál cumplirá la función de Demonio D. Para poder realizar esto, el sistema que actua como Demonio tiene que ser capaz de detectar los cambios realizados en el subsitema LR ejecutando así una acción similar a medir. El uso de la energía de Coulomb le permitirá al Demonio determinar si el subsistema esta desocupado, ocupado, o doblemente ocupado. Mientras que por otro lado el subsistema LR va a modificar su respuesta dependiendo de si el Demonio esta desocupado o ocupado. Matemáticamente esta condición se impone modificando las razones de transición $\gamma_i(\epsilon + U) \neq \gamma_i(\epsilon)$ con i = L, R. Por otro lado, para que el Demonio sea capaz de detectar correctamente, primero necesita una buena resolución al medir los niveles de energía en el subsistema LR, esto requiere que el subsistema D sea capaz de diferenciar la energía Coulombiana ejercida por el subsistema LR en relación a las fluctuaciones térmicas debido al baño, es decir $\beta_D U \gg 1$. Segundo, se requiere que su dinámica disipativa sea más rápida que la dinámica del sistema LR, esto implica que $\gamma_D > \max\{\gamma_i, \gamma_i^U\}$ con i = L, R. Falta describir la dinámica con la que va a actuar este demonio, para ello se hará uso de la Figura 5.7

Figura 5.7: Esquema que representa el primer paso en la dinámica.

El hecho de elegir que $\epsilon_D = \mu_D - U/2$, permite que se llene el nivel de energía del Demonio. Con el objetivo de que se induzca una corriente en la dirección contraria al gradiente de potencial, es conveniente elegir $\gamma_R^U > \gamma_L^U$, esto permite que las razones de transición sean mayor para el baño R y así aumente la probabilidad de poblarse su nivel. Luego de esto, se pasa a una segunda etapa descrita por la Figura 5.8, debido al acoplamiento g, se comparte el electrón entre los dos niveles L y R, siendo este el efecto cuántico que actua en esta dinámica.

Figura 5.8: Esquema que representa el segundo paso en la dinámica.

Por último, se produce una tercera etapa descrita por la Figura 5.9. En este caso, para poder generar el flujo contra gradiente de potencial, es conveniente tomar que $\gamma_L > \gamma_R$, ya que esto establece que al estar vacío el demonio, haya más probabilidad de que ocurra una transición en el sistema L en vez de él R, lo que finalmente causa que se traslade el electrón desde una zona de menor potencial R a una zona de mayor potencial L.

Figura 5.9: Esquema que representa el tercer paso en la dinámica.

Teniendo esta dinámica del sistema, podremos elegir distintos candidatos para las razones de transición sabiamente con el objetivo de lograr el comportamiento tipo Demonio. Para ello se estudiará el comportamiento de la matriz densidad, los flujos de corriente de partículas, calor, información y potencia, en función de la diferencia de potencial $\mu_L - \mu_R = eV$. Se partirá primero con las probabilidades de ocupación en la matriz densidad, se puede notar de 5.10 que la probabilidad de ocupar simultáneamente los 3 puntos cuánticos es practicamente nula, por otro lado las 3 probabilidades más altas consisten en las probabilidades $\rho_{001}, \rho_{100}, \rho_{010}$, lo que también es esperable debido a la interacción coulombiana. Bajo este mismo argumento se podría pensar que ρ_{000} también debería ser de un rango similar a las tres anteriores, sin embargo las diferencias de potencial inducen constantemente que los sitios se poblen. En $eV/T \approx 2.4$ se cruzan los gráficos correspondientes a ρ_{101} y ρ_{011} , es decir que para eV/T < 2.4 es más probable que haya interacción coulombiana entre los puntos R y D, mientras que para eV/T > 3.6 se cumple que $\rho_{101} > \rho_{011}$ por ende hay mayor interacción entre L y D.

Figura 5.10: Partes diagonales de la matriz densidad en función de eV/T.

En la Figura 5.11 se muestra en (a) el resultado los flujos de calor respectivos a cada reservorio, mientras que para la parte (b) se grafica las corrientes de partículas correspondientes a cada reservorio. Es importante mencionar que debido a que no hay hopping entre el sistema y el demonio la corriente $\dot{N}_d = 0$, mientras que, debido a la conservación de partículas $\dot{N}_L = -\dot{N}_R$. Esto es importante, ya que nos permite aseverar que el Demonio sólo puede actuar a través del sistema mediante flujos de energía o información. Debido a que se tiene que $\mu_L - \mu_R = eV$, lo esperable es que en todo el parámetro de valores de eV la corriente $\dot{N}_L > 0$, sin embargo en el rango de parámetros eV/T < 2.4 la corriente de partículas es $\dot{N}_L < 0$ y por ende existe un flujo de corriente en contra del gradiente de potencial. Este cambio de signo de la corriente a su vez coincide con el cambio de signo de $\rho_{101} - \rho_{011}$, lo que tiene sentido físico, ya que si se recuerda la Figura 5.7, el comportamiento tipo Maxwell requiere que esten simultaneamente interactuando el punto R con el D, sin embargo al pasar a ser mayor ρ_{101} esto termina suprimiendo esta dinámica.

Si es que se analiza de manera aislada el sistema LR, el efecto de que fluya una corriente contragradiente de potencial constituye una violación aparente a la segunda ley. Ya que si consideramos la razón de producción de entropía aparente descrita por la ecuación $\dot{\sigma}_{LR}^o = d_t S_{LR} - \sum_{i=L,R} J_i/T$. La que se puede visualizar en la Figura 5.12.

Figura 5.11: (a) Flujos de corriente de calor que libera el reservorio $\alpha.$ (b) Flujo de corriente de partículas correspondiente a cada reservorio. Para obtener estos resultados se usaron las temperaturas $T=100,\,T_d=2,$ razones de transición de $\gamma_L=\gamma_R^U=1/100,\,\gamma_R=\gamma_L^U=1/600,\,\gamma_D=\gamma_D^U=1/50,$ potencial químico $\mu_d=2$, parámetro de acoplamiento g=5/1000, interacciones de Coulomb $U=40,\,U_F=500$ y por último niveles de energía $\epsilon=4$ y $\epsilon_d=\mu_d-U/2.$

Figura 5.12: Gráfico de la razón de producción de entropía aparente del sistema LR dada por $\dot{\sigma}^o_{LR}$ en función de eV/T.

En la Figura 5.12 se gráfica la razón de producción de entropía aparente en dónde se confirma que para el caso eV/T < 2.4 hay un rompimiento aparente de la segunda Ley, sin embargo si se calcula la razón de producción de entropía que considerá la contribución de la información se obtiene la Figura 5.13 en donde la razón de producción de entropía del sistema LR es siempre positiva.

Figura 5.13: Gráfico de la razón de producción de entropía aparente del sistema LR dada por $\dot{\sigma}_{LR}$ en función de eV/T.

En el rango de parámetros en que eV/T < 2.4, el sistema LR realiza un trabajo. Y para poder determinar si es que es un efecto principalmente de la información, partiremos usando que en él estado estacionario se tiene que $\dot{E}_L + \dot{E}_R + \dot{E}_d = d_t E = \dot{E}_{LR} + \dot{E}_d = 0$. Para considerar que este sistema se comporta como Demonio, el trabajo realizado por el sistema LR debe ser predominantemente efecto del flujo de información, es decir

$$\dot{\mathcal{F}}_{LR} = \dot{E}_{LR} + T\dot{I}_{LR} = -\dot{E}_d + T\dot{I}_{LR} \approx T\dot{I}_{LR} \qquad \dot{W}_{LR} \ge \dot{\mathcal{F}}_{LR}$$

Por ende para hacer el análisis, se grafican estas cantidades termodinámicas para el sistema y el demonio

Figura 5.14: (a) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución de información, potencia y flujo de calor del sistema LR. (b) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución de información, potencia y flujo de calor del Demonio.

El gráfico de la Figura 5.14 nos muestra primero que el flujo de energía en comparación a la contribución de la información es pequeña. Es así que en la zona en que el sistema LR realiza trabajo ($\dot{W}_{LR} < 0$ y $\dot{\mathcal{F}}_{LR} < 0$) se cumple que $\dot{\mathcal{F}}_{LR} \approx T\dot{I}_{LR}$ y que $\dot{E}_{LR} \approx 0$, lo que promueve la interpretación de este dispositivo como Demonio. La potencia descrita por \dot{W}_{LR} cumple que es menor a cero porque la corriente va en contra del gradiente del potencial, justamente esto es debido a que para producir esta corriente el sistema necesita realizar trabajo. Para poder realizar este trabajo, el sistema absorbe calor del baño $J_{LR} > 0$. Por otro lado, debido a que no hay flujo de corriente en el Demonio, se tiene que $\dot{N}_d = 0$ por lo tanto $\dot{E}_d = J_d$. Y en el gráfico se visualiza que el flujo de energía del demonio es menor a cero, por ende el Demonio libera calor al baño descrito por la temperatura $T_d < T$. Este efecto también se puede ver como el de una máquina térmica, ya que si consideramos el sistema completo, este sistema recibe un flujo de calor J_{LR} de un reservorio de mayor temperatura, el cuál una parte la transforma en potencia \dot{W}_{LR} y otra la libera al baño de menor temperatura como calor J_d de tal manera que $J_d + J_{LR} = -\dot{W}_{LR}$.

Debido a que cada punto cuántico se conecta a un reservorio independiente, se pueden separar los flujos de información en contribuciónes individuales $\dot{I}_{LR} = \dot{I}_L + \dot{I}_R$ para hacer la interpretación de que punto cuántico entrega más información. El resultado es la Figura 5.15

Figura 5.15: (a) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución de información, potencia y flujo de calor del sistema LR. (b) Gráfico del flujo de energía, la razón de cambio de energía libre, contribución de información, potencia y flujo de calor del Demonio.

Es interesante percatarse que cuando eV/T > 3.6 se tiene que el punto cuántico que entrega más información es R, mientras que para eV/T < 3.6 el punto cuántico L entrega más información. Si se analiza la Figura 5.10 a medida que se aumenta eV/T > 3.6 sucede que $\rho_{110} > \rho_{011}$ lo que es natural, ya que si aumentamos la diferencia de potencial, es más probable que se llene el punto cuántico L, por otro lado la asimetría en las razones de transición busca que se llene R, esto dificulta que se cumpla la dinámica descrita en las Figuras 5.7,5.8,5.9. La parte principal en este asunto es que el sistema D necesita monitorear R, y luego al pasar al

punto L y estar vacío D, este fluye hacia el baño L, sin embargo al aumentar la probabilidad de que este ocupado L ya no fluye correctamente la información de L, por eso decrece en eV/T y se vuelve menor a la del punto R.

Otro factor importante que se puede considerar es si en está dinámica hay efectos cuánticos presentes. Para ello, se gráfica la norma- l_1 C_{l_1} de la coherencia y además se gráfica la concurrencia

Figura 5.16: En líneas azul la norma- l_1 de la coherencia C_{l_1} y en líneas rojas la concurrencia C_{on} .

Se pueden notar dos comportamientos interesantes, el primero es que para $eV/T \leq 1$ la concurrencia $C_{on} > 0$, por lo tanto hay entrelazamiento entre los sitios L y R. Segundo si se analiza la coherencia, para aproximadamente eV/T < 2.4 esta disminuye hasta llegar a cero y luego empieza a crecer a medida que aumenta eV/T. Lo que es interesante, ya que el efecto de la coherencia se anula en un punto cercano al punto en donde la corriente de partículas cambia de dirección. Teniendo en consideración el comportamiento tipo Demonio, es interesante ver como estas cantidades son influenciadas por el acoplamiento g, se partirá por las cantidades termodinámicas

Figura 5.17: Cantidades termodinámicas para el sistema LR y el Demonio en función de g/γ_L , considerando eV/T=1 y el resto de parámetros corresponden a los de la Figura 5.11.

Se puede ver que a medida que $g \sim \gamma_L$, la potencia y la contribución de la información en el sistema LR aumenta, lo cuál es interesante ya que permite ver como el acoplamiento favorece este hecho. También se puede ver que a medida que $g \sim \gamma_L$ el flujo de energía del demonio aumenta.

Por otro lado, se pueden ver las contribuciones individuales en los flujos de información y como estas son influenciadas debido al acoplamiento, es decir lo que se ve en la Figura 5.18

Figura 5.18: (a) Gráfico de los flujos de información de cada sitio. (b) Gráfico de la concurrencia y la coherencia en función de g/γ_L .

Aquí sucede algo interesante, ya que cuando $g \sim \gamma_L$ las concurrencias y coherencias están cerca de un peak, y a la vez los flujos de información del sitio L y R se vuelven $\dot{I}_L \approx \dot{I}_R$. De alguna manera a medida que el entrelazamiento y la coherencia se hace presente entre los dos sitios, los dos sitios entregan casi la misma información.

5.4. Comparación con caso clásico

Una de las ventajas de usar el formalismo descrito en [23] es que se pueden considerar términos no seculares los que finalmente permiten que aparezcan coherencias y entrelazamiento no nulos en el régimen de $g \sim \gamma_L$. La pregunta ahora por hacerse es si estos efectos cuánticos resultan ser una ventaja para que el demonio opere como debe ser. Para hacer la comparación uno puede calcular una evolución clásica para las partes diagonales del sistema descrita por

$$\frac{d}{dt}\check{\mathcal{P}}|\hat{\rho}_s(t)\rangle\rangle = (\check{\mathcal{L}}_0 - \check{\mathcal{P}}\check{\mathcal{V}}\check{\mathcal{Q}}\check{\mathcal{L}}_0^{-1}\check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}})\check{\mathcal{P}}|\hat{\rho}_s(t)\rangle\rangle, \tag{5.2}$$

En donde en este caso $\check{\mathcal{P}}$ y $\check{\mathcal{Q}}$ son operadores de Nakajima-Zwanzig que corresponden a la parte diagonal y no diagonal de la matriz densidad del sistema respectivamente. Además se cumple que $\check{\mathcal{L}}_f = \check{\mathcal{L}}_0 + \check{\mathcal{V}}$ en donde $\check{\mathcal{V}}\hat{\rho}$ actua como $-ig[\hat{d}_L^{\dagger}\hat{d}_R + \hat{d}_R^{\dagger}\hat{d}_L, \hat{\rho}]$ y $\check{\mathcal{L}}_0^{-1} = -\int_0^{\infty} d\tau e^{\check{\mathcal{L}}_0 \tau} \check{\mathcal{Q}}$ consiste en el inverso de Drazin de $\check{\mathcal{L}}_0$ [26] y $\check{\mathcal{L}}_f\hat{\rho} = -i[\hat{H}_S, \hat{\rho}] + \mathcal{L}(\hat{\rho})$. La demostración de esta ecuación se encuentra en el ápendice C.7.

El hecho de tener una ecuación maestra sólo para las partes diagonales permite modelar el sistema de manera estócastica, a través de un vector para las probabilidades de ocupación $\mathbf{P} = [\rho_{000}, \rho_{100}, \rho_{010}, \rho_{001}, \rho_{110}, \rho_{101}, \rho_{011}, \rho_{111}]^T$ y la ecuación maestra

$$\frac{d}{dt}\mathbf{P} = \mathbf{WP},$$

En donde la matriz de transición \mathbf{W} se puede obtener de 5.2. Finalmente flujos de corriente e información podrán ser calculadas usando la ecuación 4.1. Principalmente

Capítulo 6

Conclusiones

Bibliografía

- [1] Breuer, H.-P. y Petruccione, F., The theory of open quantum systems. Oxford University Press, USA, 2002.
- [2] Manzano, D., "A short introduction to the lindblad master equation", Aip advances, vol. 10, no. 2, 2020.
- [3] Geva, E., Rosenman, E., y Tannor, D., "On the second-order corrections to the quantum canonical equilibrium density matrix", The Journal of Chemical Physics, vol. 113, no. 4, pp. 1380–1390, 2000.
- [4] Esposito, M., Lindenberg, K., y Van den Broeck, C., "Entropy production as correlation between system and reservoir", New Journal of Physics, vol. 12, no. 1, p. 013013, 2010.
- [5] Strasberg, P. y Esposito, M., "Non-markovianity and negative entropy production rates", Physical Review E, vol. 99, no. 1, p. 012120, 2019.
- [6] Zwanzig, R. W., "Statistical mechanics of irreversibility", Quantum Statistical Mechanics, p. 139, 1966.
- [7] Folland, G. B. y Sitaram, A., "The uncertainty principle: a mathematical survey", Journal of Fourier analysis and applications, vol. 3, pp. 207–238, 1997.
- [8] Trushechkin, A., "Unified gorini-kossakowski-lindblad-sudarshan quantum master equation beyond the secular approximation", Physical Review A, vol. 103, no. 6, p. 062226, 2021.
- [9] Chruściński, D. y Pascazio, S., "A brief history of the gkls equation", Open Systems & Information Dynamics, vol. 24, no. 03, p. 1740001, 2017.
- [10] Wichterich, H., Henrich, M. J., Breuer, H.-P., Gemmer, J., y Michel, M., "Modeling heat transport through completely positive maps", Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, vol. 76, no. 3, p. 031115, 2007.
- [11] Spohn, H. y Lebowitz, J. L., "Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs", Adv. Chem. Phys, vol. 38, pp. 109–142, 2007.
- [12] Maxwell, J. C., Theory of Heat. 1871.
- [13] Landauer, R., "Irreversibility and heat generation in the computing process", IBM Journal of Research and Development, vol. 5, p. 183–191, Jul 1961, doi:10.1147/rd.53.0183.
- [14] Szilard, L., "On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings", Behavioral Science, vol. 9, no. 4, pp. 301–310, 1964.
- [15] Maruyama, K., Nori, F., y Vedral, V., "Colloquium: The physics of maxwell's demon and information", Reviews of Modern Physics, vol. 81, no. 1, pp. 1–23, 2009.
- [16] Sagawa, T. y Ueda, M., "Second law of thermodynamics with discrete quantum feedback

- control", Physical review letters, vol. 100, no. 8, p. 080403, 2008.
- [17] Htkym, "Maxwell's demon", 2007, http://creativecommons.org/licenses/by-sa/3.0/.
- [18] Lan, G., Sartori, P., Neumann, S., Sourjik, V., y Tu, Y., "The energy–speed–accuracy trade-off in sensory adaptation", Nature physics, vol. 8, no. 5, pp. 422–428, 2012.
- [19] Van den Broeck, C. y Esposito, M., "Ensemble and trajectory thermodynamics: A brief introduction", Physica A: Statistical Mechanics and its Applications, vol. 418, pp. 6–16, 2015.
- [20] Van Kampen, N., Stochastic Processes in Physics and Chemistry. North-Holland Publishing Co, 1992.
- [21] Horowitz, J. M. y Esposito, M., "Thermodynamics with continuous information flow", Physical Review X, vol. 4, no. 3, p. 031015, 2014.
- [22] Spohn, H., "Entropy production for quantum dynamical semigroups", Journal of Mathematical Physics, vol. 19, no. 5, pp. 1227–1230, 1978.
- [23] Prech, K., Johansson, P., Nyholm, E., Landi, G. T., Verdozzi, C., Samuelsson, P., y Potts, P. P., "Entanglement and thermokinetic uncertainty relations in coherent mesoscopic transport", Physical Review Research, vol. 5, no. 2, p. 023155, 2023.
- [24] Hill, S. A. y Wootters, W. K., "Entanglement of a pair of quantum bits", Physical review letters, vol. 78, no. 26, p. 5022, 1997.
- [25] Wootters, W. K., "Entanglement of formation of an arbitrary state of two qubits", Physical Review Letters, vol. 80, no. 10, p. 2245, 1998.
- [26] Landi, G. T., Kewming, M. J., Mitchison, M. T., y Potts, P. P., "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics", PRX Quantum, vol. 5, no. 2, p. 020201, 2024.
- [27] Esposito, M., Harbola, U., y Mukamel, S., "Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems", Reviews of modern physics, vol. 81, no. 4, pp. 1665–1702, 2009.
- [28] Hu, J., Luo, M., Jiang, F., Xu, R.-X., y Yan, Y., "Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems", The Journal of chemical physics, vol. 134, no. 24, 2011.
- [29] Schinabeck, C., "Hierarchical quantum master equation approaches to nonequilibrium charge transport through single-molecule junctions", 2019.
- [30] Riley, K. F., Hobson, M. P., y Bence, S. J., Mathematical methods for physics and engineering: a comprehensive guide. Cambridge university press, 2006.
- [31] Bartlett, S. D., Rudolph, T., y Spekkens, R. W., "Reference frames, superselection rules, and quantum information", Reviews of Modern Physics, vol. 79, no. 2, pp. 555–609, 2007.
- [32] Wick, G. C., Wightman, A. S., y Wigner, E. P., "The intrinsic parity of elementary particles", Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, pp. 102–106, 1997.

Anexos

Anexo A. Cálculos realizados sección 3

A.1. Matriz densidad en función del campo de conteo

Reemplazando la distribución de probabilidad en la función generadora 3.1

$$\Lambda(\vec{\lambda}, \vec{\chi}) = \sum_{\mathbf{E}, \mathbf{E}', \mathbf{N}, \mathbf{N}'} \int d\mathbf{Q} d\mathbf{W} P_t(\mathbf{E}', \mathbf{N}' | \mathbf{E}, \mathbf{N}) P_0(\mathbf{E}, \mathbf{N})
\times \Pi_{\alpha} \delta(W_{\alpha} - \mu_{\alpha}(N_{\alpha} - N'_{\alpha})) \delta(Q_{\alpha} + W_{\alpha} - (E_{\alpha} - E'_{\alpha})) e^{-i\vec{\lambda} \cdot \mathbf{Q}} e^{-i\vec{\chi} \cdot \mathbf{W}}
= \sum_{\mathbf{E}, \mathbf{E}', \mathbf{N}, \mathbf{N}'} P_t(\mathbf{E}', \mathbf{N}' | \mathbf{E}, \mathbf{N}) P_0(\mathbf{E}, \mathbf{N}) \Pi_{\alpha} e^{-i\chi_{\alpha}\mu_{\alpha}(N_{\alpha} - N'_{\alpha})} e^{-i\lambda_{\alpha}((E_{\alpha} - \mu_{\alpha}N_{\alpha}) - (E'_{\alpha} - \mu_{\alpha}N'_{\alpha}))}
= \sum_{\mathbf{E}, \mathbf{E}', \mathbf{N}, \mathbf{N}'} \operatorname{Tr} \{ \hat{P}_{\mathbf{E}', \mathbf{N}'} \hat{U}(t) \hat{P}_{\mathbf{E}, \mathbf{N}} (\hat{\rho}_s(0) \otimes \Pi_{\alpha} \hat{\tau}_{\alpha}) \hat{P}_{\mathbf{E}, \mathbf{N}} \hat{U}^{\dagger}(t) \hat{P}_{\mathbf{E}', \mathbf{N}'} \}
\times \Pi_{\alpha} e^{-i\chi_{\alpha}\mu_{\alpha}(N_{\alpha} - N'_{\alpha})} e^{-i\lambda_{\alpha}((E_{\alpha} - \mu_{\alpha}N_{\alpha}) - (E'_{\alpha} - \mu_{\alpha}N'_{\alpha}))}$$

Considerando un observable $\hat{A}(0)$ y proyectores \hat{P}_{a_0} para un estado diagonal $\hat{\rho}_{diag}[27]$, se cumple que

$$\sum_{a_0} e^{-i\lambda a_0} \hat{P}_{a_0} \hat{\rho}_{diag} \hat{P}_{a_0} = e^{-i(\lambda/2)\hat{A}(0)} \hat{\rho}_{diag} e^{-i(\lambda/2)\hat{A}(0)}$$
(A.1)

Usando la relación A.1 en la función generadora

$$\begin{split} &\Lambda(\vec{\lambda}, \vec{\chi}) = \sum_{\mathbf{E}', \mathbf{N}'} \mathrm{Tr} \{ \hat{P}_{\mathbf{E}', \mathbf{N}'} \hat{U}(t) e^{-\frac{i}{2} \sum_{\alpha} [\lambda_{\alpha} (\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha}) + \chi_{\alpha} \mu_{\alpha} \hat{N}_{\alpha}]} \} \hat{\rho}_{tot}(0) e^{-\frac{i}{2} \sum_{\alpha} [\lambda_{\alpha} (\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha}) + \chi_{\alpha} \mu_{\alpha} \hat{N}_{\alpha}]} \hat{U}^{\dagger}(t) \hat{P}_{\mathbf{E}', \mathbf{N}'} \} \\ &\times \Pi_{\alpha} e^{i \chi_{\alpha} \mu_{\alpha} \hat{N}_{\alpha}} e^{i \lambda_{\alpha} (\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \\ &= \mathrm{Tr} \{ \hat{U}(\vec{\lambda}, \vec{\chi}; t) \hat{\rho}_{tot}(0) \hat{U}^{\dagger}(-\vec{\lambda}, -\vec{\chi}; t) \} \end{split}$$

A.2. Matriz densidad generalizada

Se puede realizar una expansión a segundo orden de la ecuación 3.4 y tener la evolución

$$|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = \left(\mathbf{1} + \epsilon \int_0^t \check{\mathcal{L}}_{\lambda}'(t_1)dt_1 + \epsilon^2 \int_0^t dt_1 \int_0^{t_1} \check{\mathcal{L}}_{\lambda}'(t_1) \check{\mathcal{L}}_{\lambda}'(t_2)dt_2\right) |\hat{\rho}_{tot}(0)\rangle\rangle$$

Al hacer el cambio de variable $t_1 = T$ y $t_2 = T - s$

$$|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = \left(\mathbf{1} + \epsilon \int_{0}^{t} \check{\mathcal{L}}'_{\lambda}(T)dT + \epsilon^{2} \int_{0}^{t} dT \int_{0}^{T} ds \check{\mathcal{L}}'_{\lambda}(T) \check{\mathcal{L}}'_{\lambda}(T - s)\right) |\hat{\rho}_{tot}(0)\rangle\rangle$$

$$= \check{\mathcal{W}}(\vec{\lambda}, \vec{\chi}, t) |\hat{\rho}_{tot}(0)\rangle\rangle$$

$$= [\check{\mathcal{W}}_{0}(\vec{\lambda}, \vec{\chi}, t) + \epsilon \check{\mathcal{W}}_{1}(\vec{\lambda}, \vec{\chi}, t) + \epsilon^{2} \check{\mathcal{W}}_{2}(\vec{\lambda}, \vec{\chi}, t)] |\hat{\rho}_{tot}(0)\rangle\rangle$$

Definiendo los superoperadores

$$\dot{\mathcal{W}}_{0}(\vec{\lambda}, \vec{\chi}, t) = \mathbf{1}$$

$$\dot{\mathcal{W}}_{1}(\vec{\lambda}, \vec{\chi}, t) = \int_{0}^{t} dT \dot{\mathcal{L}}'_{\lambda}(T)$$

$$\dot{\mathcal{W}}_{2}(\vec{\lambda}, \vec{\chi}, t) = \int_{0}^{t} dT \int_{0}^{T} ds \dot{\mathcal{L}}'_{\lambda}(T) \dot{\mathcal{L}}'_{\lambda}(T - s)$$

Tomando hasta segundo orden la inversa del superoperador $\check{\mathcal{W}}$

$$\check{\mathcal{W}}^{-1}(\vec{\lambda}, \vec{\chi}, t) = \check{\mathcal{W}}_0(\vec{\lambda}, \vec{\chi}, t) - \epsilon \check{\mathcal{W}}_1(\vec{\lambda}, \vec{\chi}, t) + \epsilon^2 [\check{\mathcal{W}}_1^2(\vec{\lambda}, \vec{\chi}, t) - \check{\mathcal{W}}_2(\vec{\lambda}, \vec{\chi}, t)]$$
(A.2)

Se cumple la propiedad

$$\dot{\mathcal{W}}(\vec{\lambda}, \vec{\chi}, t) \check{A} \check{\mathcal{W}}^{-1}(\vec{\lambda}, \vec{\chi}, t) = \epsilon \dot{\mathcal{W}}_1(\vec{\lambda}, \vec{\chi}, t) \check{A} + \epsilon^2 [\dot{\mathcal{W}}_2(\vec{\lambda}, \vec{\chi}, t) \check{A} - \dot{\mathcal{W}}_1(\vec{\lambda}, \vec{\chi}, t) \check{A} \dot{\mathcal{W}}_1(\vec{\lambda}, \vec{\chi}, t)]$$
(A.3)

Para encontrar la matriz densidad generalizada, se quiere rescatar la parte relevante de la matriz densidad total, es decir, trazar los grados de libertad del reservorio, por ende el proyector que se usará es

$$\check{\mathcal{P}} = \sum_{r} |\rho_R^{eq}\rangle\rangle\langle\langle rr|$$

En donde $\otimes_{\alpha} \hat{\tau}_{\alpha} \to |\hat{\rho}_{R}^{eq}\rangle\rangle$ es el superoperador que representa el equilibrio del reservorio. Al aplicar esto a la matriz densidad total

$$\check{\mathcal{P}}|\hat{
ho}(\vec{\lambda},\vec{\chi},t)\rangle\rangle = |\hat{
ho}_s(\vec{\lambda},\vec{\chi},t)\rangle\rangle\otimes|\hat{
ho}_R^{eq}\rangle\rangle$$

La evolución de la matriz densidad generalizada usando los operadores Nakajima-Zwanzig

$$\check{\mathcal{P}}|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = \check{\mathcal{P}}\check{\mathcal{W}}(t)(\check{\mathcal{P}} + \check{\mathcal{Q}})|\hat{\rho}_{tot}(0)\rangle\rangle \tag{A.4}$$

$$\check{\mathcal{Q}}|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = \check{\mathcal{Q}}\check{\mathcal{W}}(t)(\check{\mathcal{P}} + \check{\mathcal{Q}})|\hat{\rho}_{tot}(0)\rangle\rangle$$
(A.5)

Dos indicaciones son importantes para seguir. Primero, debido a que se asume que la condición inicial del reservorio es diagonal, se tendrá que $\check{Q}|\hat{\rho}_{tot}(0)\rangle\rangle = 0$. Segundo que $|\hat{\rho}_{tot}(0)\rangle\rangle = \check{W}^{-1}(\vec{\lambda}, \vec{\chi}, t)|\hat{\rho}_{tot}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle$

$$|\hat{\rho}_{totI}(0)\rangle\rangle = (\check{\mathcal{P}} + \check{\mathcal{Q}})\check{\mathcal{W}}^{-1}(\vec{\lambda}, \vec{\chi}, t)(\check{\mathcal{P}} + \check{\mathcal{Q}})|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle$$
$$= \check{\mathcal{P}}\check{\mathcal{W}}^{-1}(\vec{\lambda}, \vec{\chi}, t)(\check{\mathcal{P}} + \check{\mathcal{Q}})|\hat{\rho}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle$$

Al derivar temporalmente las ecuaciones A.4 y A.5

$$\check{\mathcal{P}}|\hat{\hat{\rho}}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle = \check{\mathcal{P}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\mathcal{W}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}|\hat{\rho}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle
= \check{\mathcal{P}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{Q}}|\hat{\rho}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle$$

$$\begin{split}
\check{\mathcal{Q}}|\hat{\hat{\rho}}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle &= \check{\mathcal{Q}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}|\hat{\rho}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle \\
&= \check{\mathcal{Q}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{Q}}|\hat{\rho}_{totI}(\vec{\lambda},\vec{\chi},t)\rangle\rangle
\end{split}$$

Estas ecuaciones son exactas. Para utilizar la suposición de acoplamiento débil, se partirá usando la relación A.3, así

$$\begin{split} \check{\mathcal{P}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\mathcal{W}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{Q}} &= \epsilon \check{\mathcal{P}}\dot{\dot{\mathcal{W}}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\check{\mathcal{Q}} \\ &+ \epsilon^{2}\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}_{2}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\check{\mathcal{Q}} \\ &- \epsilon^{2}\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\mathcal{W}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{Q}} \end{split}$$

El primer y segundo término se hacen cero debido a que $\check{\mathcal{P}}\check{\mathcal{Q}}=0$, por otro lado

$$\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} = \sum_{r,r'} |\hat{\rho}_{R}^{eq}\rangle\rangle\langle\langle rr|\dot{\mathcal{L}}_{\lambda}'(t)|\hat{\rho}_{R}^{eq}\rangle\rangle\langle\langle r'r'|$$

En donde el término $\langle \langle rr | \check{\mathcal{L}}'_{\lambda}(t) | \hat{\rho}_{R}^{eq} \rangle \rangle$ será

$$\langle \langle rr | \check{\mathcal{L}}'_{\lambda}(t) | \hat{\rho}_{R}^{eq} \rangle \rangle = \operatorname{Tr}_{B} \{ \hat{\rho}_{R}^{eq} \hat{V}_{\lambda}(t) \}$$
$$- \operatorname{Tr}_{B} \{ \hat{V}_{-\lambda}(t) \hat{\rho}_{R}^{eq} \}$$

Debido a que $\hat{\rho}_R^{eq}$ conmuta con \hat{H}_R tendremos que el estado de equilibrio conmuta con $\hat{A}(\lambda,\chi)$, por lo tanto se anula este término. Y el término restante queda como

$$\begin{split} \check{\mathcal{P}}\dot{\check{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\check{\mathcal{W}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} &= \epsilon \check{\mathcal{P}}\dot{\check{\mathcal{W}}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} \\ &+ \epsilon^{2}\check{\mathcal{P}}\dot{\check{\mathcal{W}}}_{2}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} \\ &- \epsilon^{2}\check{\mathcal{P}}\dot{\check{\mathcal{W}}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\check{\mathcal{W}}_{1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} \end{split}$$

De manera explícita

$$\check{\mathcal{P}}\dot{\dot{\mathcal{W}}}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}}\dot{\mathcal{W}}^{-1}(\vec{\lambda},\vec{\chi},t)\check{\mathcal{P}} = \epsilon^2 \check{\mathcal{P}} \int_0^t ds \check{\mathcal{L}}_{\lambda}'(t) \check{\mathcal{L}}_{\lambda}'(t-s)\check{\mathcal{P}}$$

Aplicando $\check{\mathcal{P}}|\hat{\hat{\rho}}_{totI}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle = |\hat{\hat{\rho}}_{Is}(\vec{\lambda}, \vec{\chi}, t)\rangle\rangle \otimes |\hat{\rho}_R^{eq}\rangle\rangle$ y multiplicando a la izquierda por $\sum_r \langle\langle rr|$ para eliminar los grados de libertad del reservorio

$$\dot{\hat{\rho}}_{Is}(\vec{\lambda}, \vec{\chi}, t) = \epsilon^2 \sum_{r} \langle \langle rr | \int_0^t ds \check{\mathcal{L}}'_{\lambda}(t) \check{\mathcal{L}}'_{\lambda}(t-s) | \hat{\rho}_R^{eq} \rangle \rangle \hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t)$$

De aquí se podrán obtener las funciones correlación calculando el producto

$$\sum_{r} \langle \langle rr | \check{\mathcal{L}}_{\lambda}'(t) \check{\mathcal{L}}_{\lambda}'(t-s) | \hat{\rho}_{R}^{eq} \rangle \rangle \hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t) = \text{Tr}_{B} \{ \check{\mathcal{L}}_{\lambda}'(t) \check{\mathcal{L}}_{\lambda}'(t-s) \hat{\rho}_{R}^{eq} \hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t) \}$$

Por un lado se tendrá

$$\check{\mathcal{L}}_{\lambda}'(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq} = -i[\hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq} - \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s)]$$

De manera explícita

$$\check{\mathcal{L}}_{\lambda}'(t)\check{\mathcal{L}}_{\lambda}'(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq} = -\hat{V}_{\lambda}(t)\hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq} + \hat{V}_{\lambda}(t)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s) \\
+ \hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t) - \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s)\hat{V}_{-\lambda}(t)$$

Finalmente, aplicando la traza en el reservorio a esta ecuación se obtiene 3.5.

A.3. Funciones correlación

Para escribir la ecuación maestra generalizada a través de las funciones correlación, se tendrá

$$\operatorname{Tr}_{B}\{\hat{V}_{\lambda}(t)\hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\} = -\sum_{\alpha,k,k';j,j'} e^{i(\omega_{j}-\omega_{j'})t} e^{i\omega_{j'}s} \hat{S}_{\alpha k;j}^{\dagger} \hat{S}_{\alpha k';j'} \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t) \operatorname{Tr}_{B}\{e^{-(i/2)\hat{A}(\lambda,\chi)} \hat{V}_{\lambda}(t)\hat{V}_{\lambda}(t-s)e^{(i/2)\hat{A}(\lambda,\chi)} \hat{\rho}_{R}^{eq}\}$$

Suponiendo que las funciones de correlación son homogéneas, tendremos que

$$\operatorname{Tr}_{B}\{\hat{V}_{\lambda}(t)\hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\} = \\ -\sum_{\alpha,k,k';j,j'} e^{i(\omega_{j}-\omega_{j'})t} e^{i\omega_{j'}s} \hat{S}_{\alpha k;j}^{\dagger} \hat{S}_{\alpha,k';j'} \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t) \operatorname{Tr}_{B}\{\hat{B}_{\alpha,k}^{\dagger}(s)\hat{B}_{\alpha,k}\hat{\tau}_{\alpha}\}$$

$$\operatorname{Tr}_{B}\{\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s)\hat{V}_{-\lambda}(t)\} = \\ -\sum_{\alpha,k,k';j,j'} e^{i(\omega_{j}-\omega_{j'})t} e^{-i\omega_{j}s} \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{S}_{\alpha k;j}^{\dagger} \hat{S}_{\alpha,k';j'} \operatorname{Tr}_{B}\{\hat{B}_{\alpha,k}^{\dagger}(s)\hat{B}_{\alpha,k}\hat{\tau}_{\alpha}\}$$

Analizaremos el término $\operatorname{Tr}_B\{\hat{V}_\lambda(t)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_R^{eq}\hat{V}_{-\lambda}(t-s)\}$ para ello se utilizará la relación de conmutación $[\hat{B}_{\alpha,k},\hat{N}_\alpha]=n_{\alpha,k}\hat{B}_{\alpha,k}$, esto conlleva a que

$$e^{C\hat{N}_{\alpha}}\hat{B}_{\alpha,k}e^{-C\hat{N}_{\alpha}} = e^{-Cn_{\alpha,k}}\hat{B}_{\alpha,k}$$

Con C una constante, podremos utilizar esto para obtener

$$\operatorname{Tr}_{B}\{\hat{V}_{\lambda}(t)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s)\} = \sum_{\alpha,k,k';j,j'} e^{i(\omega_{j}-\omega_{j'})t} e^{-i\omega_{j}s}\hat{S}_{\alpha,k';j'}\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{S}_{\alpha,k;j}^{\dagger}\operatorname{Tr}_{B}\{e^{-i(\hat{A}(\lambda,\chi))}\hat{B}_{\alpha,k}(t)e^{i\hat{A}(\lambda,\chi)}\hat{\rho}_{R}^{eq}\hat{B}_{\alpha,k}^{\dagger}(t-s)\}$$

Por último, analizando el término

$$e^{-i(\hat{A}(\lambda,\chi))}\hat{B}_{\alpha,k}(t)e^{i\hat{A}(\lambda,\chi)} = e^{-i\mu_{\alpha}n_{\alpha,k}(\lambda_{\alpha}-\chi_{\alpha})}\hat{B}_{\alpha,k}(t+\lambda_{\alpha})$$

Con esto se tiene

$$\operatorname{Tr}_{B}\{\hat{V}_{\lambda}(t)\hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t-s)\} = \sum_{\alpha, k, k'; j'} e^{i(\omega_{j} - \omega_{j'})t} e^{-i\omega_{j}s} \hat{S}_{\alpha, k'; j'} \hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t) \hat{S}_{\alpha, k; j}^{\dagger} C_{k, k'}^{\alpha}(-s - \lambda_{\alpha}) e^{-i\mu_{\alpha}n_{\alpha, k}(\lambda_{\alpha} - \chi_{\alpha})}$$

$$\operatorname{Tr}_{B}\{\hat{V}_{\lambda}(t-s)\hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t)\hat{\rho}_{R}^{eq}\hat{V}_{-\lambda}(t)\} = \sum_{\alpha,k,k';j,j'} e^{i(\omega_{j}-\omega_{j'})t} e^{i\omega_{j'}s} \hat{S}_{\alpha,k';j'} \hat{\rho}_{Is}(\vec{\lambda},\vec{\chi},t) \hat{S}_{\alpha,k;j}^{\dagger} C_{k,k'}^{\alpha}(s-\lambda_{\alpha}) e^{-i\mu_{\alpha}n_{\alpha,k}(\lambda_{\alpha}-\chi_{\alpha})}$$

Reemplazando estos términos en 3.5 se obtiene la ecuación maestra generalizada.

A.4. Ecuación de Lindblad generalizada

Desarrollando la ecuación 3.6 podremos escribir

$$\frac{d}{dt}\hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) = -\sum_{\alpha, k, k'; q} \int_{0}^{\infty} ds \left[e^{i\omega_{q}s} C_{k,k'}^{\alpha}(s) \left(\sum_{j} e^{i\omega_{j}t} \hat{S}_{\alpha,k;j}^{\dagger} \right) \left(\sum_{j'} e^{-i\omega_{j'}t} \hat{S}_{\alpha,k';j'} \right) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \right. \\ \left. + e^{-i\omega_{q}s} C_{k,k'}^{\alpha}(-s) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \left(\sum_{j} e^{i\omega_{j}t} \hat{S}_{\alpha,k;j}^{\dagger} \right) \left(\sum_{j'} e^{-i\omega_{j'}t} \hat{S}_{\alpha,k';j'} \right) - e^{-i\mu_{\alpha}n_{\alpha,k}(\lambda_{\alpha}-\chi_{\alpha})} (e^{i\omega_{q}s} C_{k,k'}^{\alpha}(s-\lambda_{\alpha}) + e^{-i\omega_{q}s} C_{k,k'}^{\alpha}(-s-\lambda_{\alpha})) \\ \times \left(\sum_{j'} e^{-i\omega_{j'}t} \hat{S}_{\alpha,k';j'} \right) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \left(\sum_{j} e^{i\omega_{j}t} \hat{S}_{\alpha,k;j}^{\dagger} \right) \right]$$

Tomando la condición que $C_{k,k'}^{\alpha} \propto \delta_{k,k'}$

$$\begin{split} \frac{d}{dt}\hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) &= \\ -\sum_{\alpha, k; q} \int_{0}^{\infty} ds \left[e^{i\omega_{q}s} C_{k,k}^{\alpha}(s) \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) + e^{-i\omega_{q}s} C_{k,k}^{\alpha}(-s) \hat{\rho}_{Is}(\vec{\lambda}, \vec{\chi}, t) \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t) - e^{-i\mu_{\alpha}n_{\alpha,k}(\lambda_{\alpha} - \chi_{\alpha})} (e^{i\omega_{q}s} C_{k,k}^{\alpha}(s - \lambda_{\alpha}) + e^{-i\omega_{q}s} C_{k,k}^{\alpha}(-s - \lambda_{\alpha})) \hat{S}_{\alpha,k;q}(t) \hat{\rho}_{IS}(\vec{\lambda}, \vec{\chi}, t) \hat{S}_{\alpha,k;q}^{\dagger}(t) \right] \end{split}$$

Usando la identidad

$$\int_0^\infty ds e^{i\omega_q s} C_{k,k}^\alpha(s) = \int_{-\infty}^\infty ds e^{i\omega_q s} (1 + \operatorname{sgn}(s)) C_{k,k}^\alpha(s) / 2$$

$$= \int_{-\infty}^\infty ds e^{i\omega_q s} C_{k,k}^\alpha(s) / 2 + i \left(-\frac{i}{2} \right) \int_{-\infty}^\infty ds e^{i\omega_q s} \operatorname{sgn}(s) C_{k,k}^\alpha(s)$$

$$= \frac{1}{2} \Gamma_{k,k}^\alpha(\omega_q) + i \Delta_k^\alpha(\omega_q)$$

Y usando que $\int_0^\infty ds e^{i\omega_q s} C_{k,k}^\alpha(s-\lambda_\alpha) = e^{i\lambda_\alpha\omega_q} \int_0^\infty e^{i(s-\lambda_\alpha)\omega_q} C_{k,k}^\alpha(s-\lambda_\alpha)$, nos queda finalmente

$$\begin{split} &\frac{d}{dt}\hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) = -i\sum_{\alpha,k;q} \Delta_{k,k}^{\alpha}(\omega_q) \left[\hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t) \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) - \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t) \right] \\ &+ \sum_{\alpha,k;q} \Gamma_{k,k}^{\alpha}(\omega_q) \left[e^{i\lambda_{\alpha}\omega_q + i(\chi_{\alpha} - \lambda_{\alpha})\mu_{\alpha}n_{\alpha,k}} \hat{S}_{\alpha,k;q}(t) \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) \hat{S}_{\alpha,k;q}^{\dagger}(t) - \frac{1}{2} \{ \hat{S}_{\alpha,k;q}^{\dagger}(t) \hat{S}_{\alpha,k;q}(t), \hat{\rho}_{IS}(\vec{\lambda},\vec{\chi},t) \} \right] \end{split}$$

Que es la ecuación que se quiere demostrar.

A.5. Condición KMS y funciones correlación espectral

Definiremos una función correlación auxiliar

$$\begin{split} C_{kk}^{\alpha N}(s) &= \langle \hat{B}_{\alpha,k}^{\dagger}(s) \hat{B}_{\alpha,k} \rangle_{N} \\ &= \operatorname{Tr} \{ e^{is(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \hat{B}_{\alpha,k}^{\dagger} e^{-is(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \hat{B}_{\alpha,k} \hat{\tau}_{\alpha} \} \\ &= \frac{1}{Z} \operatorname{Tr} \{ \hat{B}_{\alpha,k} e^{-\beta_{\alpha} (\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} e^{is(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \hat{B}_{\alpha,k}^{\dagger} e^{-is(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \} \\ &= \operatorname{Tr} \{ \hat{B}_{\alpha,k} e^{i(s+i\beta_{\alpha})(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \hat{B}_{\alpha,k}^{\dagger} e^{-i(s+i\beta_{\alpha})(\hat{H}_{\alpha} - \mu_{\alpha} \hat{N}_{\alpha})} \hat{\tau}_{\alpha} \} \\ &= \langle \hat{B}_{\alpha,k} \hat{B}_{\alpha,k}^{\dagger} (s+i\beta_{\alpha}) \rangle_{N} \end{split}$$

Se debe relacionar esta función correlación auxiliar con las funciones correlación, es decir

$$C_{kk}^{\alpha N}(s) = \operatorname{Tr} \{ e^{-is\mu_{\alpha}\hat{N}_{\alpha}} \hat{B}_{\alpha,k}^{\dagger}(s) e^{is\mu_{\alpha}\hat{N}_{\alpha}} \hat{B}_{\alpha,k} e^{-is\mu_{\alpha}\hat{N}_{\alpha}} \hat{\tau}_{\alpha} \}$$

$$= \operatorname{Tr} \{ \hat{B}_{\alpha,k}^{\dagger}(s) e^{is\mu_{\alpha}\hat{N}_{\alpha}} \hat{B}_{\alpha,k} e^{-is\mu_{\alpha}\hat{N}_{\alpha}} \hat{\tau}_{\alpha} \}$$

$$= e^{-i\mu_{\alpha}n_{\alpha,k}s} C_{kk}^{\alpha}(s)$$

Ahora podremos estudiar como se comportan las funciones correlación espectral

$$\begin{split} \Gamma^{\alpha}_{k,k}(\omega) &= \int_{-\infty}^{\infty} ds e^{i\mu_{\alpha}n_{\alpha,k}s} e^{i\omega s} C^{\alpha N}_{k,k}(s) \\ &= \int_{-\infty}^{\infty} ds e^{i\mu_{\alpha}n_{\alpha,k}s} e^{i\omega s} \langle \hat{B}_{\alpha,k} \hat{B}^{\dagger}_{\alpha,k}(s+i\beta_{\alpha}) \rangle_{N} \\ &= \int_{-\infty}^{\infty} ds e^{-i(i\beta\mu_{\alpha}n_{\alpha,k})} e^{i\omega s} \langle \hat{B}_{\alpha,k} \hat{B}^{\dagger}_{\alpha,k}(s+i\beta_{\alpha}) \rangle \\ &= e^{\beta_{\alpha}\mu_{\alpha}n_{\alpha,k}} e^{\beta\omega} \int_{-\infty}^{\infty} ds e^{i\omega(s+i\beta_{\alpha})} \langle \hat{B}_{\alpha,k} \hat{B}^{\dagger}_{\alpha,k}(s+i\beta_{\alpha}) \rangle \\ &= e^{\beta_{\alpha}(\omega-\mu_{\alpha}n_{\alpha,k})} \Gamma^{\alpha}_{k,k}(-\omega) \end{split}$$

Esta condición es importante, ya que permite que se cumpla la condición de balance detallado local.

A.6. Redefinición leyes de la termodinámica

Para obtener la ley cero calcularemos $\mathcal{D}[\hat{S}_{\alpha,k;q}]e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})}$ y $\mathcal{D}[\hat{S}_{\alpha,k;q}^{\dagger}]e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})}$, considerando la relación de conmutación

$$[\hat{S}_{\alpha,k;q},(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})] = (\omega_{q} - \mu_{\alpha}n_{\alpha,k})\hat{S}_{\alpha,k;q}$$
$$[\hat{S}_{\alpha,k;q}^{\dagger},(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})] = -(\omega_{q} - \mu_{\alpha}n_{\alpha,k})\hat{S}_{\alpha,k;q}^{\dagger}$$

Por ende se tendrá

$$e^{\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})} \hat{S}_{\alpha,k;q} e^{-\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})} = \hat{S}_{\alpha,k;q} e^{-\beta_{\alpha}(\omega_{q} - \mu_{\alpha}n_{\alpha,k})}$$

$$e^{\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})} \hat{S}^{\dagger}_{\alpha,k;q} e^{-\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})} = \hat{S}^{\dagger}_{\alpha,k;q} e^{\beta_{\alpha}(\omega_{q} - \mu_{\alpha}n_{\alpha,k})}$$

Podremos aplicar esto en el disipador

$$\mathcal{D}[\hat{S}_{\alpha,k;q}]e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})} = e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})}\hat{S}_{\alpha,k;q}\hat{S}_{\alpha,k;q}^{\dagger}\hat{S}_{\alpha,k;q}^{\dagger}e^{-\beta_{\alpha(\omega_{q}-\mu_{\alpha}n_{\alpha,k})}} - e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})}\hat{S}_{\alpha,k;q}^{\dagger}\hat$$

Finalmente al sumar los dos disipadores en el superoperador \mathcal{L}_{α} se demuestra que

$$\mathcal{L}_{\alpha}e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})} \propto \mathcal{D}[\hat{S}_{\alpha,k;q}]e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})} + e^{-\beta_{\alpha}(\omega_{q}-\mu_{\alpha}n_{\alpha,k})}\mathcal{D}[\hat{S}_{\alpha,k;q}^{\dagger}]e^{-\beta_{\alpha}(\hat{H}_{TD}-\mu_{\alpha}\hat{N}_{S})} = 0$$

Con lo que se prueba la ley cero.

A.7. Segunda Ley

Para desarrollar el cálculo de la segunda Ley, se partirá de

$$-\frac{d}{dt}\operatorname{Tr}\{\hat{\rho}_{S}(t)\ln\hat{\rho}_{S}(t)\} = -\operatorname{Tr}\left\{\frac{d}{dt}\hat{\rho}_{S}(t)\ln\hat{\rho}_{S}(t)\right\} - \frac{d}{dt}\operatorname{Tr}\{\hat{\rho}_{S}(t)\}$$

$$= -i\operatorname{Tr}\left\{\left[\hat{H}_{S} + \hat{H}_{LS}, \hat{\rho}_{S}(t)\right]\ln\hat{\rho}_{S}(t)\right\} - \sum_{\alpha}\operatorname{Tr}\left\{\left(\mathcal{L}_{\alpha}\hat{\rho}_{S}(t)\right)\ln\hat{\rho}_{S}(t)\right\}$$

$$= -\operatorname{Tr}\left\{\left(\mathcal{L}_{\alpha}\hat{\rho}_{S}(t)\right)\ln\hat{\rho}_{S}(t)\right\}$$

Por otro lado

$$J_{\alpha} = \operatorname{Tr}\{(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{s})\mathcal{L}_{\alpha}(\hat{\rho}_{S}(t))\}$$

$$= -\frac{1}{\beta_{\alpha}}\operatorname{Tr}\{(\mathcal{L}_{\alpha}\hat{\rho}_{S}(t))\ln\hat{\rho}_{G}(\beta_{\alpha},\mu_{\alpha})\} - -\frac{\operatorname{Tr}\{e^{-\beta_{\alpha}(\hat{H}_{TD} - \mu_{\alpha}\hat{N}_{S})}\}}{\beta_{\alpha}}\operatorname{Tr}\{(\mathcal{L}_{\alpha}\hat{\rho}_{S}(t))\}$$

$$= -\frac{1}{\beta_{\alpha}}\operatorname{Tr}\{(\mathcal{L}_{\alpha}\hat{\rho}_{S}(t))\ln\hat{\rho}_{G}(\beta_{\alpha},\mu_{\alpha})\}$$

Con lo que finalmente, redefinimos la segunda ley de la termodinámica como

$$\dot{\sigma} = -\sum_{\alpha} \operatorname{Tr} \{ (\mathcal{L}_{\alpha} \hat{\rho}_{S}(t)) [\ln \hat{\rho}_{S}(t) - \ln \hat{\rho}_{G}(\beta_{\alpha}, \mu_{\alpha})] \} \ge 0$$

Y se obtiene que la razón de producción de entropía es mayor igual a cero.

Anexo B. Cálculos realizados sección 4

B.1. Producción de entropía y información

Partiendo de la definición de la entropía conjunta

$$S^{XY} = -\sum_{x,y} p(x,y) \ln p(x,y)$$

Al derivar y utilizar $J_{x,x'}^{y,y'} = -J_{x',x}^{y',y}$

$$\begin{split} \partial_t S^{XY} &= -\sum_{x,y} \dot{p}(x,y) \ln p(x,y) - \sum_{x,y} \dot{p}(x,y) \\ &= -\sum_{x,x';y,y'} J^{y,y'}_{x,x'} \ln p(x,y) \\ &= \sum_{x \geq x';y \geq y'} J^{y,y'}_{x,x'} \ln \frac{p(x',y')}{p(x,y)} \\ &= \sum_{x \geq x';y \geq y'} J^{y,y'}_{x,x'} \ln \frac{W^{y,y'}_{x,x'} p(x',y')}{W^{y',y}_{x',x} p(x,y)} + \sum_{x \geq x';y \geq y'} J^{y,y'}_{x,x'} \ln \frac{W^{y',y}_{x',x}}{W^{y,y'}_{x,x'}} \\ &= \dot{\sigma} - \dot{S}_r \end{split}$$

Para notar que la producción de entropía es mayor a cero, notemos que si $J_{x,x'}^{y,y'}>0$, entonces $W_{x,x'}^{y,y'}p(x',y')>W_{x',x}^{y',y}p(x,y)$ y por ende

$$J_{x,x'}^{y,y'} \ln \frac{W_{x,x'}^{y,y'} p(x',y')}{W_{x',y}^{y',y} p(x,y)} > 0$$

Sucede de manera similar si $J_{x,x'}^{y,y'} < 0$. Para la derivada temporal de la información mutua

$$\partial_t I_{xy} = \sum_{x,y} \dot{p}(x,y) \ln \frac{p(x,y)}{p(x)p(y)} + \sum_{x,y} p(x)p(y) \frac{\partial}{\partial t} \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Calculando la derivada

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{p(x,y)}{p(x)p(y)} \right) &= \frac{\dot{p}(x,y)p(x)p(y) - (p(x)\dot{p}(y) + p(y)\dot{p}(x))p(x,y)}{(p(x)p(y))^2} \\ &= \frac{\dot{p}(x,y)}{p(x)p(y)} - \frac{\dot{p}(y)p(x,y)}{p(x)p(y)^2} - \frac{\dot{p}(x)p(x,y)}{p(x)^2p(y)} \end{split}$$

Con esto tendremos que

$$\partial_t I_{xy} = \sum_{x,y} \dot{p}(x,y) \ln \frac{p(x,y)}{p(x)p(y)} + \sum_{x,y} \dot{p}(x,y) - \sum_{x,y} \dot{p}(y) \frac{p(x,y)}{p(y)} - \sum_{x,y} \dot{p}(x) \frac{p(x,y)}{p(x)}$$

Utilizando de las probabilidades conjuntas $\sum_y p(x,y) = p(x)$, $\sum_x p(x,y) = p(y)$ y la conservación de la probabilidad

$$\partial_t I_{xy} = \sum_{x,y} \dot{p}(x,y) \ln \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,x';y,y'} J_{x,x'}^{y,y'} \ln \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,x';y} J_{x,x'}^y \ln \frac{p(x,y)}{p(x)p(y)} + \sum_{x;y,y'} J_x^{y,y'} \ln \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x \ge x';y} J_{x,x'}^y \left[\ln \frac{p(x,y)}{p(x)p(y)} - \ln \frac{p(x',y)}{p(x')p(y)} \right]$$

$$+ \sum_{x;y \ge y'} J_x^{y,y'} \left[\ln \frac{p(x,y)}{p(x)p(y)} - \ln \frac{p(x,y')}{p(x)p(y')} \right]$$

Del teorema de bayes p(x,y) = p(x)p(y|x), p(x,y) = p(y)p(x|y) se tendrá

$$\partial_t I_{xy} = \sum_{x \ge x'; y} J_{x,x'}^y \ln \frac{p(y|x)}{p(y|x')} + \sum_{x; y \ge y'} J_x^{y,y'} \ln \frac{p(x|y)}{p(x|y')}$$
$$= \dot{I}^X + \dot{I}^Y$$

Anexo C. Cálculos realizados seccion 5

C.1. Funciones de correlación para un baño de fermiones libres

Para partir obteniendo las funciones correlación espectral, se partirá calculando

$$C_1^{\alpha}(s) = \text{Tr}[e^{is\hat{H}_{\alpha}}\hat{B}_{\alpha,1}^{\dagger}e^{-is\hat{H}_{\alpha}}\hat{B}_{\alpha,1}\hat{\tau}_{\alpha}] \qquad C_{-1}^{\alpha}(s) = \text{Tr}[e^{is\hat{H}_{\alpha}}\hat{B}_{\alpha,-1}^{\dagger}e^{-is\hat{H}_{\alpha}}\hat{B}_{\alpha,-1}\hat{\tau}_{\alpha}]$$

Tendremos que

$$C_1^{\alpha}(s) = \sum_{l,l'} t_{\alpha,l} t_{\alpha,l'} e^{i\epsilon_{\alpha,l}s} \langle \hat{c}_{\alpha,l}^{\dagger} \hat{c}_{\alpha,l} \rangle \qquad C_{-1}^{\alpha}(s) = \sum_{l,l'} t_{\alpha,l} t_{\alpha,l'} e^{-i\epsilon_{\alpha,l}s} \langle \hat{c}_{\alpha,l} \hat{c}_{\alpha,l'}^{\dagger} \rangle$$

Debido a que el reservorio está en equilibrio gran canónico, tendremos que el valor de expectación $\langle \hat{c}_{\alpha,l}^{\dagger} \hat{c}_{\alpha,l} \rangle$ es la distribución de Fermi $f_{\alpha}(\epsilon_{\alpha,l})$ y por ende

$$C_1^{\alpha}(s) = \sum_{l} t_{\alpha,l}^2 e^{i\epsilon_{\alpha,l}s} f_{\alpha}(\epsilon_{\alpha,l}) \qquad C_{-1}^{\alpha}(s) = \sum_{l} t_{\alpha,l}^2 e^{-i\epsilon_{\alpha,l}s} [1 - f_{\alpha}(\epsilon_{\alpha,l})]$$

Definiendo las razones de transición

$$\gamma_{\alpha}(\omega) = 2\pi \sum_{l} t_{\alpha,l}^{2} \delta(\omega - \epsilon_{\alpha,l})$$

Podremos escribir de manera integral las funciones correlación usando las razones de transición

$$C_1^{\alpha}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\omega s} \gamma_{\alpha}(\omega) f_{\alpha}(\omega) \qquad C_{-1}^{\alpha}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega s} \gamma_{\alpha}(\omega) [1 - f_{\alpha}(\omega)]$$

Así podemos encontrar las funciones correlación espectral usando la transformada de Fourier

$$\Gamma_1^{\alpha}(\omega) = \gamma_{\alpha}(-\omega)f_{\alpha}(-\omega)$$
 $\Gamma_{-1}^{\alpha}(\omega) = \gamma_{\alpha}(\omega)[1 - f_{\alpha}(\omega)]$

Más adelante en el apéndice se profundizará en el aspecto Markoviano de la función correlación correspondiente a las funciones correlación espectral.

C.2. Operadores de salto de sistema de 3 puntos cuánticos

Para poder obtener los operadores de salto, prmiero se buscará eliminar el término de acoplamiento en el Hamiltoniano del sistema, para ello se hará la transformación

$$\hat{d}_{-} = \cos(\theta/2)\hat{d}_{R} - \sin(\theta/2)\hat{d}_{L}$$
$$\hat{d}_{+} = \sin(\theta/2)\hat{d}_{R} + \cos(\theta/2)\hat{d}_{L}$$

Con
$$\cos \theta = \Delta / \sqrt{\Delta^2 + g^2}$$
 y $\Delta = (\epsilon_L - \epsilon_R)/2$, además

$$\hat{d}_{R} = \cos(\theta/2)\hat{d}_{-} + \sin(\theta/2)\hat{d}_{+}$$

$$\hat{d}_{L} = -\sin(\theta/2)\hat{d}_{-} + \cos(\theta/2)\hat{d}_{+}$$

Bajo estas definiciones, notemos que se cumplen las relaciones de anticonmutación entre los operadores \hat{d}_+ y \hat{d}_- por otro lado

$$\hat{d}_{R}^{\dagger}\hat{d}_{R} = \cos^{2}(\theta/2)\hat{d}_{-}^{\dagger}\hat{d}_{-} + \sin^{2}(\theta/2)\hat{d}_{+}^{\dagger}\hat{d}_{+} + \cos(\theta/2)\sin(\theta/2)[\hat{d}_{+}^{\dagger}\hat{d}_{-} + \hat{d}_{-}^{\dagger}\hat{d}_{+}]$$

$$\hat{d}_{L}^{\dagger}\hat{d}_{L} = \sin^{2}(\theta/2)\hat{d}_{-}^{\dagger}\hat{d}_{-} + \cos^{2}(\theta/2)\hat{d}_{+}^{\dagger}\hat{d}_{+} - \cos(\theta/2)\sin(\theta/2)[\hat{d}_{+}^{\dagger}\hat{d}_{-} + \hat{d}_{-}^{\dagger}\hat{d}_{+}]$$

Así se tendrá $\hat{n}_L + \hat{n}_R = \hat{n}_+ + \hat{n}_-$ usando esta relación y la cantidad definida por $\bar{\epsilon} = (\epsilon_R + \epsilon_L)/2$

$$\epsilon_R \hat{n}_R + \epsilon_L \hat{n}_L = \bar{\epsilon}(\hat{n}_+ + \hat{n}_-) - \Delta \sin(\theta) [\hat{d}_+^{\dagger} \hat{d}_- + \hat{d}_-^{\dagger} \hat{d}_+] - \Delta \cos(\theta) [\hat{d}_-^{\dagger} \hat{d}_- - \hat{d}_+^{\dagger} \hat{d}_+]$$
 (C.1)

Por otro lado

$$\hat{d}_{R}^{\dagger}\hat{d}_{L} = \cos^{2}(\theta/2)\hat{d}_{+}^{\dagger}\hat{d}_{-} - \sin^{2}(\theta/2)\hat{d}_{-}^{\dagger}\hat{d}_{+} + \sin(\theta/2)\cos(\theta/2)[\hat{d}_{+}^{\dagger}\hat{d}_{+} - \hat{d}_{-}^{\dagger}\hat{d}_{-}] \tag{C.2}$$

$$\hat{d}_{L}^{\dagger}\hat{d}_{R} = \cos^{2}(\theta/2)\hat{d}_{-}^{\dagger}\hat{d}_{+} - \sin^{2}(\theta/2)\hat{d}_{+}^{\dagger}\hat{d}_{-} + \sin(\theta/2)\cos(\theta/2)[\hat{d}_{+}^{\dagger}\hat{d}_{+} - \hat{d}_{-}^{\dagger}\hat{d}_{-}]$$
 (C.3)

De la combinación de C.1, C.2 y C.3 obtenemos

$$\epsilon_R \hat{n}_R + \epsilon_L \hat{n}_L = (\bar{\epsilon} + \sqrt{\Delta^2 + g^2})\hat{n}_+ + (\bar{\epsilon} - \sqrt{\Delta^2 + g^2})\hat{n}_-$$

Por otro lado de $\hat{n}_i^2 = \hat{n}_i$

$$2\hat{n}_R\hat{n}_L = (\hat{n}_R + \hat{n}_L)(\hat{n}_R + \hat{n}_L) - (\hat{n}_R + \hat{n}_L)$$
$$= (\hat{n}_+ + \hat{n}_-)(\hat{n}_+ + \hat{n}_-) - (\hat{n}_+ + \hat{n}_-) = 2\hat{n}_+\hat{n}_-$$

Definiendo $\epsilon_{\pm} = \bar{\epsilon} \pm \sqrt{\Delta^2 + g^2}$, se obtendrá para el Hamiltoniano

$$H_S = \epsilon_D \hat{n}_D + \epsilon_+ \hat{n}_+ + \epsilon_- \hat{n}_- + U \hat{n}_D (\hat{n}_+ + \hat{n}_-) + U_f \hat{n}_+ \hat{n}_-$$
 (C.4)

Con el Hamiltoniano escrito en función de los operadores \hat{d}_+ y \hat{d}_- podremos calcular los operadores de salto, es decir

$$e^{iH_St}\hat{d}_De^{-iH_St} = \hat{d}_D + it[H_S, \hat{d}_D] + \frac{(it)^2}{2}[H_S, [H_S, \hat{d}_D]] + \dots$$

$$e^{iH_St}\hat{d}_+e^{-iH_St} = \hat{d}_+ + it[H_S, \hat{d}_+] + \frac{(it)^2}{2}[H_S, [H_S, \hat{d}_+]] + \dots$$

$$e^{iH_St}\hat{d}_-e^{-iH_St} = \hat{d}_- + it[H_S, \hat{d}_-] + \frac{(it)^2}{2}[H_S, [H_S, \hat{d}_-]] + \dots$$

Partiremos primero por \hat{d}_D para ello se usará la identidad

$$\mathbf{1} = (\mathbf{1} - \hat{n}_{+})(\mathbf{1} - \hat{n}_{-}) + (\mathbf{1} - \hat{n}_{+})\hat{n}_{-} + (\mathbf{1} - \hat{n}_{-})\hat{n}_{+} + \hat{n}_{+}\hat{n}_{-}$$

Utilizando que $(1 - \hat{n}_i)\hat{n}_i = 0$ se tendrá que

$$[H_S, \hat{d}_D(\mathbf{1} - \hat{n}_+)(\mathbf{1} - \hat{n}_-)] = -\epsilon_D \hat{d}_D(\mathbf{1} - \hat{n}_+)(\mathbf{1} - \hat{n}_-)$$

$$[H_S, \hat{d}_D(\mathbf{1} - \hat{n}_+)\hat{n}_-] = -(\epsilon_D + U)\hat{d}_D(\mathbf{1} - \hat{n}_+)\hat{n}_-$$

$$[H_S, \hat{d}_D(\mathbf{1} - \hat{n}_-)\hat{n}_+] = -(\epsilon_D + U)\hat{d}_D(\mathbf{1} - \hat{n}_-)\hat{n}_+$$

$$[H_S, \hat{d}_D\hat{n}_+\hat{n}_-] = -(\epsilon_D + 2U)\hat{d}_D\hat{n}_+\hat{n}_-$$

Lo que permite notar que

$$[H_S, [H_S, \hat{d}_D]] = (\epsilon_D)^2 \hat{d}_D (\mathbf{1} - \hat{n}_+) (\mathbf{1} - \hat{n}_-) + (\epsilon_D + U)^2 \hat{d}_D (\mathbf{1} - \hat{n}_+) \hat{n}_- + (\epsilon_D + U)^2 \hat{d}_D (\mathbf{1} - \hat{n}_-) \hat{n}_+ + (\epsilon_D + 2U)^2 \hat{d}_D \hat{n}_+ \hat{n}_-$$

Y así obtener de manera recursiva

$$e^{iH_S t} \hat{d}_D e^{-iH_S t} = e^{-i\epsilon_D t} \hat{d}_D (\mathbf{1} - \hat{n}_+) (\mathbf{1} - \hat{n}_-) + e^{-i(\epsilon_D + U)t} \hat{d}_D [(\mathbf{1} - \hat{n}_+) \hat{n}_- + (\mathbf{1} - \hat{n}_-) \hat{n}_+] + e^{-i(\epsilon_D + 2U)t} \hat{d}_D \hat{n}_+ \hat{n}_-$$

Para poder describir los operadores de salto de \hat{d}_+ se usará el 1 conveniente

$$\mathbf{1} = (\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_-) + (\mathbf{1} - \hat{n}_-)\hat{n}_D + (\mathbf{1} - \hat{n}_D)\hat{n}_- + \hat{n}_D\hat{n}_-$$

Los conmutadores quedarán

$$[H_S, \hat{d}_+(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_-)] = -\epsilon_+ \hat{d}_+(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_-)$$

$$[H_S, \hat{d}_+(\mathbf{1} - \hat{n}_D)\hat{n}_-] = -(\epsilon_+ + U)\hat{d}_+(\mathbf{1} - \hat{n}_-)\hat{n}_D$$

$$[H_S, \hat{d}_+(\mathbf{1} - \hat{n}_-)\hat{n}_D] = -(\epsilon_+ + U_f)\hat{d}_+(\mathbf{1} - \hat{n}_D)\hat{n}_-$$

$$[H_S, \hat{d}_+\hat{n}_D\hat{n}_-] = -(\epsilon_+ + U + U_f)\hat{d}_+\hat{n}_D\hat{n}_-$$

De manera recursiva se obtendrá que los operadores de salto

$$e^{iH_S t} \hat{d}_+ e^{-iH_S t} = e^{-i\epsilon_+ t} \hat{d}_+ (\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_-) + e^{-i(\epsilon_+ + U_f)t} \hat{d}_+ (\mathbf{1} - \hat{n}_D)\hat{n}_- + e^{-i(\epsilon_+ + U)t} \hat{d}_+ (\mathbf{1} - \hat{n}_-)\hat{n}_D + e^{-i(\epsilon_+ + U + U_f)t} \hat{d}_+ \hat{n}_- \hat{n}_D$$

Debido a la simetría, tendremos que

$$e^{iH_S t} \hat{d}_- e^{-iH_S t} = e^{-i\epsilon_- t} \hat{d}_- (\mathbf{1} - \hat{n}_D) (\mathbf{1} - \hat{n}_+) + e^{-i(\epsilon_- + U_f)t} \hat{d}_- (\mathbf{1} - \hat{n}_D) \hat{n}_+$$

$$+ e^{-i(\epsilon_- + U)t} \hat{d}_- (\mathbf{1} - \hat{n}_+) \hat{n}_D + e^{-i(\epsilon_- + U + U_f)t} \hat{d}_- \hat{n}_+ \hat{n}_D$$

Ahora se puede regresar a los operadores locales del sistema \hat{d}_L y \hat{d}_R

$$e^{iH_S t} \hat{d}_R e^{-iH_S t} = \cos(\theta/2) e^{iH_S t} \hat{d}_- e^{-iH_S t} + \sin(\theta/2) e^{iH_S t} \hat{d}_+ e^{-iH_S t}$$

$$e^{iH_S t} \hat{d}_L e^{-iH_S t} = -\sin(\theta/2) e^{iH_S t} \hat{d}_- e^{-iH_S t} + \cos(\theta/2) e^{iH_S t} \hat{d}_+ e^{-iH_S t}$$

Con lo que encontramos las frecuencias de Bohr correspondientes a

$$\hat{d}_D \to (\epsilon_D, \epsilon_D + U, \epsilon_D + 2U)$$

$$\hat{d}_L \to (\epsilon_+, \epsilon_-, \epsilon_+ + U, \epsilon_- + U, \epsilon_+ + U_f, \epsilon_- + U_f, \epsilon_+ + U + U_f, \epsilon_- + U + U_f)$$

$$\hat{d}_R \to (\epsilon_+, \epsilon_-, \epsilon_+ + U, \epsilon_- + U, \epsilon_+ + U_f, \epsilon_- + U_f, \epsilon_+ + U + U_f, \epsilon_- + U + U_f)$$

C.3. Agrupación de frecuencias para 2 puntos cuánticos

En el caso en que $\epsilon_L = \epsilon_R$ se cumple que $\epsilon_{\pm} = \epsilon \pm g$. Aquí es que se invoca la agrupación de frecuencias, ya que si el parámetro g es pequeño en relación al inverso del tiempo de correlación del baño, podremos agrupar las frecuencias tal que

$$\begin{split} &(\epsilon_{+},\epsilon_{-}) \rightarrow \epsilon \\ &(\epsilon_{+}+U,\epsilon_{-}+U) \rightarrow \epsilon + U \\ &(\epsilon_{+}+U_{f},\epsilon_{-}+U_{f}) \rightarrow \epsilon + U_{f} \\ &(\epsilon_{+}+U+U_{f},\epsilon_{-}+U+U_{f}) \rightarrow \epsilon + U + U_{f} \end{split}$$

Para encontrar los nuevos operadores de salto de \hat{d}_L , para el primer caso se deberá sumar los operadores de salto respectivos a las frecuencias ϵ_+, ϵ_-

$$\frac{\hat{d}_{+}(\mathbf{1}-\hat{n}_{D})(\mathbf{1}-\hat{n}_{-})}{\sqrt{2}} - \frac{\hat{d}_{-}(\mathbf{1}-\hat{n}_{D})(\mathbf{1}-\hat{n}_{+})}{\sqrt{2}} = \frac{(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}}[\hat{d}_{+}(\mathbf{1}-\hat{n}_{-})-\hat{d}_{-}(\mathbf{1}-\hat{n}_{+})]$$

Por otro lado

$$\hat{d}_{+}(\mathbf{1} - \hat{n}_{-}) - \hat{d}_{-}(\mathbf{1} - \hat{n}_{+}) = \frac{\hat{d}_{L} + \hat{d}_{R}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{-}) - \frac{\hat{d}_{R} - \hat{d}_{L}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{+})$$

$$= \frac{\hat{d}_{L}}{\sqrt{2}}(\mathbf{2} - \hat{n}_{+} - \hat{n}_{-}) + \frac{\hat{d}_{R}}{\sqrt{2}}(\hat{n}_{+} - \hat{n}_{-})$$

$$= \frac{\hat{d}_{L}}{\sqrt{2}}(\mathbf{2} - \hat{n}_{L} - \hat{n}_{R}) + \frac{\hat{d}_{R}}{\sqrt{2}}(\hat{d}_{R}^{\dagger}\hat{d}_{L} + \hat{d}_{L}^{\dagger}\hat{d}_{R})$$

De $\hat{d}_L(\mathbf{1}-\hat{n}_L)=\hat{d}_L\hat{d}_L\hat{d}_L^{\dagger}=0$ y de $\hat{d}_R(\hat{d}_R^{\dagger}\hat{d}_L+\hat{d}_L^{\dagger}\hat{d}_R)=\hat{d}_L(\mathbf{1}-\hat{n}_R)$ nos queda

$$\hat{d}_{+}(\mathbf{1} - \hat{n}_{-}) - \hat{d}_{-}(\mathbf{1} - \hat{n}_{+}) = \hat{d}_{L}(\mathbf{1} - \hat{n}_{R})$$

Con lo que podremos asignar a la frecuencia ϵ el operador $\hat{d}_L(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_R)$, siguiendo con las frecuencias $(\epsilon_- + U, \epsilon_+ + U) \to \epsilon + U$

$$\frac{\hat{d}_{+}\hat{n}_{D}(\mathbf{1}-\hat{n}_{-})}{\sqrt{2}}-\frac{\hat{d}_{-}\hat{n}_{D}(\mathbf{1}-\hat{n}_{+})}{\sqrt{2}}=\hat{d}_{L}\hat{n}_{D}(\mathbf{1}-\hat{n}_{R})$$

Para las frecuencias $(\epsilon_- + U_f, \epsilon_+ + U_f) \rightarrow \epsilon + U_f$ tendremos que sumar

$$\frac{\hat{d}_{+}\hat{n}_{-}(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}} - \frac{\hat{d}_{-}\hat{n}_{+}(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}} = \frac{(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}}[\hat{d}_{+}\hat{n}_{-} - \hat{d}_{-}\hat{n}_{+}]$$

Es así que

$$\begin{split} \hat{d}_{+}\hat{n}_{-} - \hat{d}_{-}\hat{n}_{+} &= \frac{\hat{d}_{R} + \hat{d}_{L}}{\sqrt{2}}\hat{n}_{-} - \frac{\hat{d}_{R} - \hat{d}_{L}}{\sqrt{2}}\hat{n}_{+} \\ &= -\frac{\hat{d}_{R}}{\sqrt{2}}(\hat{d}_{R}^{\dagger}\hat{d}_{L} + \hat{d}_{L}^{\dagger}\hat{d}_{R}) + \frac{\hat{d}_{L}}{\sqrt{2}}(\hat{n}_{L} + \hat{n}_{R}) \\ &= \frac{2\hat{d}_{L}}{\sqrt{2}}\hat{n}_{R} - \frac{\hat{d}_{L}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{L}) \\ &= \frac{2\hat{d}_{L}}{\sqrt{2}}\hat{n}_{R} \end{split}$$

Con lo que el operador de salto respectivo a la frecuencia $(\epsilon + U_f)$ es $\hat{d}_L \hat{n}_R (\mathbf{1} - \hat{n}_D)$, usando este mismo análisis se obtiene que el operador de salto de la frecuencia $\epsilon + U + U_f$ corresponde a $\hat{d}_L \hat{n}_D \hat{n}_R$. Finalmente recapitulando

$$\epsilon \to \hat{d}_L(\mathbf{1} - \hat{n}_R)(\mathbf{1} - \hat{n}_D)$$

$$\epsilon + U \to \hat{d}_L\hat{n}_D(\mathbf{1} - \hat{n}_R)$$

$$\epsilon + U_f \to \hat{d}_L\hat{n}_R(\mathbf{1} - \hat{n}_D)$$

$$\epsilon + U + U_f \to \hat{d}_L\hat{n}_D\hat{n}_R$$

De manera similar, para el operador local \hat{d}_R se puede partir agrupando las energías (ϵ_+, ϵ_-) en donde

$$\frac{\hat{d}_{+}(\mathbf{1}-\hat{n}_{D})(\mathbf{1}-\hat{n}_{-})}{\sqrt{2}} + \frac{\hat{d}_{-}(\mathbf{1}-\hat{n}_{D})(\mathbf{1}-\hat{n}_{+})}{\sqrt{2}} = \frac{(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}}[\hat{d}_{+}(\mathbf{1}-\hat{n}_{-})+\hat{d}_{-}(\mathbf{1}-\hat{n}_{+})]$$

Se deberá calcular

$$\hat{d}_{+}(\mathbf{1} - \hat{n}_{-}) + \hat{d}_{-}(\mathbf{1} - \hat{n}_{+}) = \frac{\hat{d}_{R} + \hat{d}_{L}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{-}) + \frac{\hat{d}_{R} - \hat{d}_{L}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{+})$$

$$= \frac{\hat{d}_{R}}{\sqrt{2}}(\mathbf{2} - (\hat{n}_{L} + \hat{n}_{R})) + \frac{\hat{d}_{L}}{\sqrt{2}}(\hat{n}_{+} - \hat{n}_{-})$$

$$= \frac{\hat{d}_{R}}{\sqrt{2}}(\mathbf{1} - \hat{n}_{R}) + \frac{\hat{d}_{L}}{\sqrt{2}}(\hat{d}_{R}^{\dagger}\hat{d}_{L} + \hat{d}_{L}^{\dagger}\hat{d}_{R})$$

$$= \sqrt{2}\hat{d}_{R}(\mathbf{1} - \hat{n}_{R})$$

Por lo tanto el operador de salto asociado a la agrupación $(\epsilon_+, \epsilon_-) \to \epsilon$ es $\hat{d}_R(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_L)$. Por el mismo motivo al calcular el operador que corresponde a agrupar las frecuencias $(\epsilon_+ + U, \epsilon_- + U)$

$$\frac{\hat{d}_{+}(\mathbf{1}-\hat{n}_{-})\hat{n}_{D}}{\sqrt{2}} + \frac{\hat{d}_{-}(\mathbf{1}-\hat{n}_{+})\hat{n}_{D}}{\sqrt{2}} = \hat{d}_{R}\hat{n}_{D}(\mathbf{1}-\hat{n}_{L})$$

Para las frecuencias $(\epsilon_+ + U_f, \epsilon_- + U_f) \rightarrow \epsilon + U_f$ tendremos que sumar los operadores

$$\frac{\hat{d}_{+}(\mathbf{1}-\hat{n}_{D})\hat{n}_{-}}{\sqrt{2}} + \frac{\hat{d}_{-}(\mathbf{1}-\hat{n}_{D})\hat{n}_{+}}{\sqrt{2}} = \frac{(\mathbf{1}-\hat{n}_{D})}{\sqrt{2}}[\hat{d}_{+}\hat{n}_{-} + \hat{d}_{-}\hat{n}_{+}]$$

Calculando la suma

$$\begin{split} \hat{d}_{+}\hat{n}_{-} + \hat{d}_{-}\hat{n}_{+} &= \frac{\hat{d}_{R} + \hat{d}_{L}}{\sqrt{2}}\hat{n}_{-} + \frac{\hat{d}_{R} - \hat{d}_{L}}{\sqrt{2}}\hat{n}_{+} \\ &= \frac{\hat{d}_{R}}{\sqrt{2}}(\hat{n}_{L} + \hat{n}_{R}) - \frac{\hat{d}_{L}}{\sqrt{2}}(\hat{d}_{L}^{\dagger}\hat{d}_{R} + \hat{d}_{R}^{\dagger}\hat{d}_{L}) \\ &= \sqrt{2}\hat{d}_{R}\hat{n}_{L} \end{split}$$

Por lo tanto el operador de salto de \hat{d}_R al agrupar las frecuencias $(\epsilon_+ + U_f, \epsilon_- + U_f)$ es $\hat{d}_R(\mathbf{1} - \hat{d}_D)\hat{n}_L$, realizando el mismo cálculo se encuentra que para las frecuencias $(\epsilon_+ + U + U_f, \epsilon_- + U + U_f)$ el operador de salto corresponde a $\hat{d}_R\hat{n}_D\hat{n}_L$. Por ende recapitulando, para el operador \hat{d}_R se tendrá

$$\epsilon \to \hat{d}_R(\mathbf{1} - \hat{n}_L)(\mathbf{1} - \hat{n}_D)$$

$$\epsilon + U \to \hat{d}_R \hat{n}_D(\mathbf{1} - \hat{n}_L)$$

$$\epsilon + U_f \to \hat{d}_R \hat{n}_L(\mathbf{1} - \hat{n}_D)$$

$$\epsilon + U + U_f \to \hat{d}_R \hat{n}_D \hat{n}_L$$

C.4. Aspecto Markoviano de las funciones correlación

Para que el sistema descrito en la sección 5.1 tenga un comportamiento cercano a un Demonio de Maxwell autónomo, se necesita que las razones de transición $\gamma_i(\omega)$ modifiquen su respuesta dependiendo de si el punto cuántico del nivel D este ocupado o desocupado. No todo comportamiento de las razones de transición aseguran que el comportamiento del sistema sea Markoviano, esto se puede determinar calculando la función correlación del reservorio y analizando el orden del tiempo de correlación τ_B que presenta este mismo. Para poder lograr hacer esto se deben calcular las funciónes correlación que para el caso de un ambiente fermiónico son de la forma

$$C^{\sigma}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} \gamma(\omega) f_F(\sigma\beta(\omega - \mu)),$$

En donde $f_F(x) = (\exp(x)+1)^{-1}$ y $\sigma = \pm$. La distribución de Fermi puede ser aproximada utilizando aproximantes de Padé [28, 29] que permite escribir la distribución como sumatoria

$$f_F(x) \approx \frac{1}{2} - \sum_{l=0}^{N} \frac{2\kappa_l x}{x^2 + \xi_l^2},$$
 (C.5)

Los coeficientes κ_l y ξ_l se pueden calcular numéricamente y se encuentran en [28]. Para poder calcular numéricamente la función correlación, se necesita una forma explícita para $\gamma(\omega)$ el cuál tiene que tener un máximo en alguna frecuencia ϵ_0 . Se puede elegir un comportamiento lorentziano de la forma

$$\gamma(\omega) = \gamma_0 + \frac{\gamma_f W^2}{(\omega - \epsilon_0)^2 + W^2},$$

Con W el ancho de la lorentziana y γ_0 , γ_f constantes. Para el estudio del Demonio de Maxwell hay dos casos importantes que hay que diferenciar, es decir cuándo el punto cuántico D esta desocupado o ocupado, lo que se traduce en evaluar las razones de transición en dos frecuencias ϵ_0 y $\epsilon_0 + U$ como aparece en la Figura C.1

Figura C.1: Descripción gráfica de las razones de transición en función de las frecuencias ω .

Para obtener razones de transición que cumplan estos valores, se puede realizar el sistema de ecuaciones

$$\gamma(\epsilon_0) = \gamma_0 + \gamma_f$$
$$\gamma(\epsilon_0 + U) = \gamma_0 + \frac{\gamma_f W^2}{U^2 + W^2}.$$

Con estas igualdades se pueden determinar los valores de γ_0 , γ_f y W. Reemplazando $\gamma(\omega)$ en la función correlación se tendrá

$$C^{\sigma}(t) = \frac{\gamma_0}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} f_F(\sigma\beta(\omega - \mu)) + \frac{\gamma_f}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} \left[\frac{W^2}{(\omega - \epsilon_0)^2 + W^2} \right] f_F(\sigma\beta(\omega - \mu)),$$

La función correlación se puede separar en dos partes

$$C_0^{\sigma}(t) = \frac{\gamma_0}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} f_F(\sigma\beta(\omega - \mu)) \qquad C_f^{\sigma}(t) = \frac{\gamma_f}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} \left[\frac{W^2}{(\omega - \epsilon_0)^2 + W^2} \right] f_F(\sigma\beta(\omega - \mu)),$$

Y podremos determinar el tiempo de correlación del baño como $\tau_B = \max\{\tau_{B0}, \tau_{Bf}\}$. Se partirá calculando una expresión analítica aproximada de la función correlación $C_f^{\sigma}(t)$, para realizar este integral se deberá localizar los polos en el plano complejo, para ello notemos que para C.5 los polos se ubican en $\omega = \pm i\xi_l/\beta + \mu$. Mientras que para la Lorentziana los polos se ubican en $\omega = \pm iW + \omega_0$. Para poder realizar este integral se usará el teorema del residuo [30], tomando como zona de integración un semicírculo en el hemisferio positivo o negativo dependiendo del signo de σ . Primero el residuo de la Lorentziana consiste en

$$\operatorname{Res}\left[\frac{e^{i\sigma\omega t}f_{F}[\sigma\beta(\omega-\mu)]}{(\omega-\omega_{0}+iW)(\omega-\omega_{0}-iW)}\right]_{\omega=\pm iW+\omega_{0}} = \frac{1}{\pm 2iW}(e^{\mp\sigma Wt}f_{F}[\sigma\beta(\pm iW+\omega_{0}-\mu)]e^{i\sigma\omega_{0}t}).$$

Si se cumple que $\sigma > 0$ se toma el hemisferio inferior para la integración, mientras que

para $\sigma < 0$ se toma el hemosferio superior, para así obtener

$$\operatorname{Res}\left[\frac{e^{i\sigma\omega t}f_{F}[\sigma\beta(\omega-\mu)]}{(\omega-\omega_{0}+iW)(\omega-\omega_{0}-iW)}\right]_{\omega=+iW+\omega_{0}} = \frac{1}{2iW}(e^{i\sigma\omega_{0}t}e^{-Wt}f_{F}[i\beta W+\sigma\beta(\omega_{0}-\mu)]),$$

Para encontrar el residuo de los polos restantes, deberemos calcular

$$\operatorname{Res}\left[\frac{-e^{i\sigma\omega t}}{(\omega-\omega_0)^2+W^2}\frac{2\kappa_l[\sigma\beta(\omega-\mu)]}{(\beta(\omega-\mu)+i\xi_l)(\beta(\omega-\mu)-i\xi_l)}\right]_{\omega=\pm i\xi_l/\beta+\mu} = \frac{-1}{\beta}\frac{e^{-\frac{\sigma\xi_l}{\beta}t}e^{i\sigma\mu t}(\pm\kappa_l\sigma)}{\left[\frac{\pm i\xi_l}{\beta}+(\mu-\omega_0)\right]^2+W^2},$$

Eligiendo la zona de integración dependiendo del signo de σ obtendremos que

$$\operatorname{Res}\left[\frac{-e^{i\sigma\omega t}}{(\omega-\omega_0)^2+W^2}\frac{2\kappa_l[\sigma\beta(\omega-\mu)]}{(\beta(\omega-\mu)+i\xi_l)(\beta(\omega-\mu)-i\xi_l)}\right]_{\omega=\pm i\xi_l/\beta+\mu} = \frac{-1}{\beta}\frac{e^{-\frac{\xi_l}{\beta}t}e^{i\sigma\mu t}\kappa_l}{\left[\frac{\sigma i\xi_l}{\beta}+(\mu-\omega_0)\right]^2+W^2}.$$

Encontrando los residuos explícitamente se podrá escribir la función correlación como

$$C_f^{\sigma}(t) \approx \sum_{l=0}^{N} \eta^{\sigma,l} e^{-\gamma_{\sigma,l}t}$$
 (C.6)

En donde

$$\eta^{\sigma,l} = \begin{cases} \frac{\gamma_f W}{2} f_F[i\beta W + \sigma\beta(\omega_0 - \mu)] & l = 0 \\ -\frac{i\kappa_l}{\beta} \left(\frac{\gamma_f W^2}{(\frac{i\sigma\xi_l}{\beta} + (\mu - \omega_0))^2 + W^2} \right) & l \neq 0 \end{cases}$$

$$\gamma_{\sigma,l} = \begin{cases} W - \sigma i\omega_0 & l = 0 \\ \frac{\xi_l}{\beta} - \sigma i\mu & l \neq 0 \end{cases}$$

Esto permite una expresión numérica para la función correlación $C_f^{\sigma}(t)$ y así evaluar su tiempo de correlación τ_{Bf} . Para la otra función correlación se podrá encontrar el integral de manera analítica, es decir calcular

$$C_0^{\sigma}(t) = \frac{\gamma_0}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} f_F(\sigma\beta(\omega - \mu)).$$

Se puede partir notando que esto consiste en calcular la Transformada de Fourier de $\mathcal{F}(f[\sigma(\omega-\mu)])(-\sigma t)$ de la función $f(\sigma(\omega-\mu)) = f_F(\sigma\beta(\omega-\mu))$, utilizando la propiedad

$$\mathcal{F}(f[\sigma(\omega - \mu)])(-\sigma t) = e^{-i\sigma\mu t}\mathcal{F}(f[\sigma\omega])(-\sigma t),$$

Es decir podemos centrarnos en calcular la transformación

$$\mathcal{F}(f[\sigma\omega])(-\sigma t) = \frac{\gamma_0}{2\pi} \int_{-\infty}^{\infty} d\omega \frac{e^{i\sigma\omega t}}{e^{\sigma\beta\omega} + 1}$$

$$= \frac{\gamma_0}{4\pi} \left[\int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} - \int_{-\infty}^{\infty} d\omega e^{i\sigma\omega t} \tanh\left(\frac{\sigma\beta\omega}{2}\right) \right]$$

$$= \frac{\gamma_0}{2} \left[\delta(t) - \frac{i}{\beta\sigma \sinh(\pi t/\beta\sigma)} \right],$$

Y así finalmente

$$C_0^{\sigma}(t) = \frac{\gamma_0}{2} e^{-i\sigma\mu t} \left[\delta(t) - \frac{i}{\beta\sigma \sinh(\pi t/\beta\sigma)} \right].$$

Gracias a que se tiene una expresión analítica para $C_0^{\sigma}(t)$ se puede determinar el τ_{B0} . Se debe concentrar principalmente en la parte con $\sinh(\pi t/\beta\sigma)$ debido a que $\sigma=\pm 1$ sólo nos interesa analizar la cantidad $\pi t/\beta$, ya que para tiempos $t>\beta$ se podrá considerar que $1/\sinh(\pi t/\beta\sigma)\propto \exp(-t/\beta)$, por lo tanto para está función correlación el tiempo de correlación del baño consiste en el inverso de la temperatura $\tau_{B0}=\beta$. Con esto finalmente se podrá obtener el tiempo de correlación asociado a un sólo reservorio como $\tau_B=\max\{\beta,\tau_{Bf}\}$.

C.5. Cálculo numérico para τ_{Bf}

Para poder calcular los tiempos de correlación τ_{Bf} correspondiente a los baños L y R se podrá usar la expresión C.6. Para poder determinar este τ_{Bf} se busca el punto en que la función correlación se anula, y luego para poder determinar si sigue un comportamiento markoviano se debe tener que $\tau_R \gg \tau_{Bf}$, con esto dicho se procede a calcular las partes imaginarias y reales de las funciones correlación correspondientes a los baños L y R

Figura C.2: Gráficos de la parte real e imaginaria de las funciones correlación en función del tiempo para los baños L y R con una diferencia de potencial correspondiente a eV=20 y $\sigma=+$.

Figura C.3: Gráficos de la parte real e imaginaria de las funciones correlación en función del tiempo para los baños L y R con una diferencia de potencial correspondiente a eV=20 y $\sigma=-$.

De la Figura C.2 y C.3 se puede notar que para t>0.4 las funciones correlación para ambos baños ya son practicamente cero. Ahora para poder analizar la Markovianeidad, se puede graficar la evolución del sistema y ver en que tiempo las componentes de la matriz densidad relajan al estado estacionario. Para ello se grafica

Figura C.4: Gráficos de las partes diagonales de la matriz densidad del sistema LRD en función del tiempo.

Con la Figura C.4 se puede visualizar que el tiempo de relajación del sistema es $\tau_R > 1000$ y por lo tanto permite corrobar que con respecto a los tiempos τ_{Bf} , se cumple que $\tau_{Bf}/\tau_R < 0.0004$. Este análisis se probo para distintos valores de eV los cuáles dieron valores similares para τ_{Bf} y el tiempo de relajación τ_R .

C.6. Concurrencia

En está sección se incluye la demostración de la fórmula de concurrencia. Para ello, se requiere calcular la concurrencia en el subsistema $\hat{\rho}_{LR}$, por lo tanto se tiene que partir calculando

$$\hat{\rho}_{LR} = \text{Tr}_D\{\hat{\rho_S}\},\,$$

Usando la base $\{|0,0,0\rangle,|1,0,0\rangle,|0,1,0\rangle,|0,0,1\rangle,|1,1,0\rangle,|1,0,1\rangle,|0,1,1\rangle,|1,1,1\rangle\}$, la matriz densidad del sistema queda

$$\hat{\rho}_{S} = \begin{bmatrix} p_{000} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & p_{100} & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \alpha^{*} & p_{010} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & p_{001} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{110} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & p_{101} & \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta^{*} & p_{011} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{111} \end{bmatrix}.$$
(C.7)

En esta matriz no aparecen coherencias entre estados con distinto número de partículas por el principio de superselección de carga [31, 32]. Además debido a que el punto cuántico D sólo interactua mediante interacción de Coulomb con los puntos L y R, no aparecen coherencias del tipo L - D y R - D. Así se puede obtener la matriz densidad del sistema LR en la base $\{|00\rangle, |10\rangle, |01\rangle, |11\rangle\}$

$$\hat{\rho}_{LR} = \begin{bmatrix} p_{000} + p_{001} & 0 & 0 & 0\\ 0 & p_{100} + p_{101} & \alpha + \beta & 0\\ 0 & \alpha^* + \beta^* & p_{010} + p_{011} & 0\\ 0 & 0 & 0 & p_{110} + p_{111} \end{bmatrix},$$

Así se podrá calcular la concurrencia

$$C_{on} = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\},\$$

En donde λ_i son la raíz cuadrada de los autovalores ordenados en forma decreciente de la matriz

$$B = \hat{\rho}_{LR}\tilde{\rho}_{LR} \qquad \tilde{\rho}_{LR} = (\sigma_y \otimes \sigma_y)\hat{\rho}_{LR}(\sigma_y \otimes \sigma_y),$$

En donde σ_y pertenece a las matrices de Pauli, así se obtiene

$$ilde{
ho}_{LR} = egin{bmatrix} p_D & 0 & 0 & 0 \ 0 & p_R & lpha + eta & 0 \ 0 & lpha^* + eta^* & p_L & 0 \ 0 & 0 & 0 & p_0 \end{bmatrix}.$$

En donde $p_0 = p_{000} + p_{001}$, $p_L = p_{100} + p_{101}$, $p_R = p_{010} + p_{011}$, $p_D = p_{110} + p_{111}$ la matriz B quedará

$$B = \begin{bmatrix} p_0 p_D & 0 & 0 & 0\\ 0 & p_L p_R + |\alpha + \beta|^2 & 2(\alpha + \beta) p_L & 0\\ 0 & 2(\alpha^* + \beta^*) p_R & p_L p_R + |\alpha + \beta|^2 & 0\\ 0 & 0 & 0 & p_0 p_D \end{bmatrix}.$$

Suponiendo que p_D y p_0 son pequeños, el orden decreciente de los autovalores corresponderá a

$$\lambda_1 = p_L p_R + |\alpha + \beta|$$
 $\lambda_2 = p_L p_R - |\alpha + \beta|$ $\lambda_3 = \lambda_4 = \sqrt{p_0 p_D}$

Finalmente se obtiene

$$C_{on} = \max\{2|\alpha + \beta| - 2\sqrt{p_0 p_D}, 0\}.$$

C.7. Modelo clásico

Para partir derivando el modelo clásico para las partes diagonales de la matriz densidad ρ_{ijk} con $i, j, k \in \{0, 1\}$, primero se notará que la ecuación de operadores

$$\frac{d}{dt}\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{Q}}\hat{\rho}(t) + \check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(t) \to \frac{d}{dt}\check{\mathcal{Q}}\hat{\rho}(t) - \check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(t),$$

Es equivalente a una ecuación no homogenea lineal de la forma

$$\frac{dy}{dt} - A(t)y = B(t),$$

Por lo tanto se puede solucionar utilizando factor integrante

$$\check{\mu}(t) = \exp\left(-\int_0^t \check{\mathcal{Q}} \check{\mathcal{L}}_f ds\right),\,$$

Multiplicando por el factor integrante la ecuación diferencial para $\mu(t)$ se tendrá

$$\check{\mu}(t)\frac{d}{dt}\check{\mathcal{Q}}\hat{\rho}(t) - \check{\mu}(t)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mu}(t)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(t) \to \frac{d}{dt}(\check{\mu}(t)\check{\mathcal{Q}}\hat{\rho}(t)) = \check{\mu}(t)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(t),$$

Por lo tanto queda la solución

$$\check{\mu}(t)\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mu}(0)\check{\mathcal{Q}}\hat{\rho}(0) + \int_0^t \check{\mu}(\tau)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(\tau)d\tau,$$

Multiplicando por $\check{\mu}^{-1}(t)$

$$\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mu}^{-1}(t)\check{\mathcal{Q}}\hat{\rho}(0) + \int_0^t \check{\mu}^{-1}(t)\check{\mu}(\tau)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(\tau)d\tau,$$

Para asi definir el operador

$$\check{\mathcal{G}}(t,s) = \exp\left(\int_{s}^{t} \check{\mathcal{Q}} \check{\mathcal{L}}_{f} dt'\right),\,$$

Finalmente

$$\check{\mathcal{Q}}\hat{\rho}(t) = \check{\mathcal{G}}(t,0)\check{\mathcal{Q}}\hat{\rho}(0) + \int_0^t \check{\mathcal{G}}(t,\tau)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(\tau)d\tau,$$

Podremos reinsertar esto en la parte principal y quedará

$$\frac{d}{dt}\check{\mathcal{P}}\hat{\rho}(t) = \check{\mathcal{P}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(t) + \check{\mathcal{P}}\check{\mathcal{L}}_f\check{\mathcal{G}}(t,0)\check{\mathcal{Q}}\hat{\rho}(0) + \check{\mathcal{P}}\check{\mathcal{L}}_f\int_0^t \check{\mathcal{G}}(t,\tau)\check{\mathcal{Q}}\check{\mathcal{L}}_f\check{\mathcal{P}}\hat{\rho}(\tau)d\tau. \tag{C.8}$$

Estas ecuaciones son exactas, ya que hasta ahora no se ha hecho ninguna aproximación. La primera parte del lado derecho de la ecuación C.8 consiste en la evolución markoviana, mientras que la segunda y tercera parte corresponden a un corrimiento inicial y a los efectos de memoria respectivamente. Para seguir la deducción se utilizarán las relaciones

$$\check{\mathcal{P}}\check{\mathcal{V}}\check{\mathcal{P}} = [\check{\mathcal{L}}_0, \check{\mathcal{P}}] = [\check{\mathcal{L}}_0, \check{\mathcal{Q}}] = 0,$$

Estas relaciones se pueden explicar intuitivamente, ya que al ser $\check{\mathcal{V}}$ la perturbación que genera el tunneling entre los puntos L y R, está contribución es la que produce efectos de coherencias. Así se puede notar que $\check{\mathcal{V}}\check{\mathcal{P}}\hat{\rho}$ es no diagonal y por lo tanto al aplicar nuevamente el operador que proyecta en la diagonal este se anula.

Para seguir con C.8, primero supondremos que inicialmente no hay coherencias, es decir $\check{\mathcal{Q}}\hat{\rho}(0) = 0$. Segundo se sustituirá $\check{\mathcal{L}}_f$ en la ecuación C.8 y se usarán las propiedades de los operadores Nakajima-Zwanzig, partiendo por el integral

$$\check{\mathcal{G}}(t,\tau) = \exp\left(\int_{\tau}^{t} \check{\mathcal{Q}}(\check{\mathcal{L}}_{0} + \check{\mathcal{V}})dt'\right)
= \exp\left(\int_{\tau}^{t} \check{\mathcal{Q}}(\check{\mathcal{L}}_{0} + \check{\mathcal{V}})(\check{\mathcal{P}} + \check{\mathcal{Q}})dt'\right)
= \exp\left(\int_{\tau}^{t} \left[\check{\mathcal{Q}}\check{\mathcal{L}}_{0}\check{\mathcal{Q}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{Q}}\right]dt'\right),$$

En donde se uso que $\check{\mathcal{Q}}\check{\mathcal{L}}_0\check{\mathcal{P}}=\check{\mathcal{Q}}\check{\mathcal{P}}\check{\mathcal{L}}_0=0$. Continuando con la ecuación principal

$$\frac{d}{dt} \check{\mathcal{P}} \hat{\rho}(t) = \check{\mathcal{P}} \check{\mathcal{L}}_0 \check{\mathcal{P}} \hat{\rho}(t) + \check{\mathcal{P}} (\check{\mathcal{L}}_0 + \check{\mathcal{V}}) (\check{\mathcal{P}} + \check{\mathcal{Q}}) \int_0^t \check{\mathcal{G}}(t, \tau) \check{\mathcal{Q}} \check{\mathcal{L}}_f \check{\mathcal{P}} \hat{\rho}(\tau) d\tau.$$

Debido a la forma del exponencial en $\check{\mathcal{G}}$ al aplicar $\check{\mathcal{P}}\check{\mathcal{L}}_0\check{\mathcal{G}}(t,\tau)$ se obtiene $\check{\mathcal{P}}\check{\mathcal{L}}_0(t-\tau)$, ya que si extendemos el exponencial

$$\check{\mathcal{P}}\check{\mathcal{L}}_0 \exp\left[\int_{\tau}^t ds \check{\mathcal{Q}}\check{\mathcal{L}}_0 \check{\mathcal{Q}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{Q}}\right] = \check{\mathcal{L}}_0 \check{\mathcal{P}} \int_{\tau}^t \sum_{k=0}^{\infty} \left(\frac{1}{k!}\right) \left[\check{\mathcal{Q}}\check{\mathcal{L}}_0 \check{\mathcal{Q}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}} + \check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{Q}}\right]^k ds = \check{\mathcal{P}}\check{\mathcal{L}}_0(t-\tau),$$

Posteriormente esta contribución se anula y la ecuación principal se reduce a

$$\frac{d}{dt}\check{\mathcal{P}}\hat{\rho}(t) = \check{\mathcal{P}}\check{\mathcal{L}}_0\check{\mathcal{P}}\hat{\rho}(t) + \check{\mathcal{P}}\check{\mathcal{V}}\check{\mathcal{Q}}\int_0^t \check{\mathcal{G}}(t,\tau)\check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}}\hat{\rho}(\tau)d\tau,$$

De manera similar se puede notar que el término de la exponencial $\check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}}$ no actua en la ecuación por ende queda que

$$\frac{d}{dt} \check{\mathcal{P}} \hat{\rho}(t) = \check{\mathcal{P}} \check{\mathcal{L}}_0 \check{\mathcal{P}} \hat{\rho}(t) + \check{\mathcal{P}} \check{\mathcal{V}} \check{\mathcal{Q}} \int_0^t \exp \left[\left(\check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{Q}} + \check{\mathcal{Q}} \check{\mathcal{L}}_0 \check{\mathcal{Q}} \right) (t - \tau) \right] \check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{P}} \hat{\rho}(\tau) d\tau,$$

Haciendo el cambio de variable $\tau \to t - \tau$

$$\frac{d}{dt} \check{\mathcal{P}} \hat{\rho}(t) = \check{\mathcal{P}} \check{\mathcal{L}}_0 \check{\mathcal{P}} \hat{\rho}(t) + \check{\mathcal{P}} \check{\mathcal{V}} \check{\mathcal{Q}} \int_0^t \exp\left[\left(\check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{Q}} + \check{\mathcal{Q}} \check{\mathcal{L}}_0 \check{\mathcal{Q}}\right)(\tau)\right] \check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{P}} \hat{\rho}(t-\tau) d\tau,$$

En este momento es donde se hacen aproximaciones, ya que si consideramos el acoplamiento g pequeño, es decir $g \ll \gamma_i$. Sabiendo que los autovalores de los superoperadores $\check{\mathcal{V}}$ y $\check{\mathcal{L}}_0$ serán proporcionales a g y γ_i respectivamente, podremos despreciar la contribución de $\check{\mathcal{V}}$ en la exponencial, así queda

$$\frac{d}{dt} \check{\mathcal{P}} \hat{\rho}(t) = \check{\mathcal{P}} \check{\mathcal{L}}_0 \check{\mathcal{P}} \hat{\rho}(t) + \check{\mathcal{P}} \check{\mathcal{V}} \check{\mathcal{Q}} \int_0^t \exp\left[\left(\check{\mathcal{Q}} \check{\mathcal{L}}_0 \check{\mathcal{Q}}\right) \tau\right] \check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{P}} \hat{\rho}(t-\tau) d\tau,$$

Finalmente, para aplicar aproximación de Markov suponemos que $\check{\mathcal{P}}\hat{\rho}(t-\tau)$ no varia mucho en escalas de tiempo de $1/\gamma_i$, así poder considerar $\check{\mathcal{P}}\hat{\rho}(t-\tau) = \check{\mathcal{P}}\hat{\rho}(t)$ y el integral de 0 a el infinito con lo que se obtiene

$$\frac{d}{dt} \check{\mathcal{P}} \hat{\rho}(t) = \check{\mathcal{P}} \check{\mathcal{L}}_0 \check{\mathcal{P}} \hat{\rho}(t) + \check{\mathcal{P}} \check{\mathcal{V}} \check{\mathcal{Q}} \int_0^\infty \exp\left[\left(\check{\mathcal{Q}} \check{\mathcal{L}}_0 \check{\mathcal{Q}}\right) \tau\right] d\tau \check{\mathcal{Q}} \check{\mathcal{V}} \check{\mathcal{P}} \hat{\rho}(t),$$

Y finalmente se recupera la ecuación en formalismo de superoperadores

$$\frac{d}{dt}\check{\mathcal{P}}|\hat{\rho}_s(t)\rangle\rangle = (\check{\mathcal{L}}_0 - \check{\mathcal{P}}\check{\mathcal{V}}\check{\mathcal{Q}}\check{\mathcal{L}}_0^{-1}\check{\mathcal{Q}}\check{\mathcal{V}}\check{\mathcal{P}})\check{\mathcal{P}}|\hat{\rho}_s(t)\rangle\rangle.$$

C.8. Inverso de Drazin

El inverso de Drazin es un tipo de inverso generalizado y consiste en la única matriz que cumple que, dado la matriz $\check{\mathcal{L}}_0$

$$\begin{split} \check{\mathcal{L}}_0 \check{\mathcal{L}}_0^+ \check{\mathcal{L}}_0 &= \check{\mathcal{L}}_0 \\ \check{\mathcal{L}}_0^+ \check{\mathcal{L}}_0 \check{\mathcal{L}}_0^+ &= \check{\mathcal{L}}_0^+ \\ \check{\mathcal{L}}_0^+ \check{\mathcal{L}}_0 &= \check{\mathcal{L}}_0 \check{\mathcal{L}}_0^+ \end{split}$$

Considerando la ecuación 5.2 se puede probar que

$$\check{\mathcal{L}}_0 \check{\mathcal{L}}_0^+ = -\int_0^\infty d\tau \check{\mathcal{L}}_0 \exp\bigl[\check{\mathcal{L}}_0 \tau\bigr] \check{Q} = -\int_0^\infty d\tau \exp\bigl[\check{\mathcal{L}}_0 \tau\bigr] \check{\mathcal{L}}_0 \check{Q} = -\int_0^\infty d\tau \exp\bigl[\check{\mathcal{L}}_0 \tau\bigr] \check{Q} \check{\mathcal{L}}_0 = \check{\mathcal{L}}_0^+ \check{\mathcal{L}}_0$$

De manera similar se pueden probar las otras 2 ecuaciones.

Finalmente para poder ocupar el inverso de Drazin, este se puede calcular numéricamente mediante descomposición espectral usando los autovalores por la izquierda y derecha dados por

$$\check{\mathcal{L}}_0|x_i\rangle\rangle = \lambda_i|x_i\rangle\rangle$$
 $\langle\langle y_i|\check{\mathcal{L}}_0 = \langle\langle y_i|\lambda_i\rangle\rangle$

En donde $\langle\langle y_i|x_j\rangle\rangle=\delta_{ij}$. Si se toma λ_0 como el autovalor cero del operador de Lindblad,

se podrá escribir la descomposición espectral como

$$\check{\mathcal{L}}_0 = \sum_{j \neq 0} \lambda_j |x_j\rangle\rangle\langle\langle y_j|$$

Y así poder calcular el inverso de Drazin usando

$$\check{\mathcal{L}}_0^+ = \sum_{j \neq 0} \frac{1}{\lambda_j} |x_j\rangle\rangle\langle\langle y_j|$$

C.9. Expresión para los flujos de información

Para poder calcular los flujos de información, primero se debe ser capaces de calcular $\ln \hat{\rho}_s$. Se puede partir de la matriz densidad descrita en la ecuación C.7 la cuál ya viene diagonal excepto por los bloques

$$\begin{bmatrix} p_{100} & \alpha \\ \alpha^* & p_{010} \end{bmatrix} \qquad \begin{bmatrix} p_{101} & \beta \\ \beta^* & p_{011} \end{bmatrix}$$

En donde los autovalores estarán dados por

$$\lambda_{0\pm} = \frac{p_{100} + p_{010}}{2} \pm \frac{([p_{100} - p_{010}]^2 + 4|\alpha|^2)^{1/2}}{2} \qquad \lambda_{1\pm} = \frac{p_{101} + p_{011}}{2} \pm \frac{([p_{101} - p_{011}]^2 + 4|\beta|^2)^{1/2}}{2}$$

Considerando $\alpha=|\alpha|e^{i\phi_0}$ y $\beta=|\beta|e^{i\phi_1}$, los autovectores que diagonalizan los bloques serán

$$v_{0+} = [0, 0, \cos(\theta_0/2)e^{i\phi_0/2}, \sin(\theta_0/2)e^{-i\phi_0/2}, 0, 0, 0, 0]^T$$

$$v_{0-} = [0, 0, -\sin(\theta_0/2)e^{i\phi_0/2}, \cos(\theta_0/2)e^{-i\phi_0/2}, 0, 0, 0, 0]^T$$

$$v_{1+} = [0, 0, 0, 0, \cos(\theta_1/2)e^{i\phi_1/2}, \sin(\theta_1/2)e^{-i\phi_1/2}, 0, 0]^T$$

$$v_{1-} = [0, 0, 0, 0, -\sin(\theta_1/2)e^{i\phi_1/2}, \cos(\theta_1/2)e^{-i\phi_1/2}, 0, 0]^T$$

Con
$$\cos(\theta_0) = |\alpha|/\sqrt{\Delta_0^2 + |\alpha|^2}$$
 y $\cos(\theta_1) = |\beta|/\sqrt{\Delta_1^2 + |\beta|^2}$ y

$$\Delta_i = \frac{(p_{10i} - p_{01i})}{2}$$

Con esto se podrá obtener el logaritmo natural de la matriz mediante

$$\ln \hat{\rho}_S = \hat{V} \ln \hat{\rho}_D \hat{V}^{-1}$$

En donde $\ln \hat{\rho}_D$ es la matriz diagonal

$$\ln \hat{\rho}_D = \begin{bmatrix} \ln p_{000} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \ln \lambda_{0+} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \ln \lambda_{0-} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ln p_{001} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ln p_{110} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ln \lambda_{1+} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \ln \lambda_{1-} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ln p_{111} \end{bmatrix}$$

La matriz $\hat{V} = [e_1, v_{0+}, v_{0-}, e_4, e_5, v_{1+}, v_{1-}, e_8]$ y e_i corresponden a los vectores de la base canónica, es decir

Finalmente se obtiene

$$\ln \hat{\rho}_S = \begin{bmatrix} \ln p_{000} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_0 & c_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & c_0^* & b_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ln p_{001} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ln p_{110} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_1 & c_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & c_1^* & b_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ln p_{111} \end{bmatrix}$$

Con las cantidades

$$a_i = \cos^2(\theta_i/2) \ln \lambda_{i+} + \sin^2(\theta_i/2) \ln \lambda_{i-}$$

$$b_i = \sin^2(\theta_i/2) \ln \lambda_{i+} + \cos^2(\theta_i/2) \ln \lambda_{i-}$$

$$c_i = \frac{\sin(\theta_i)}{2} e^{i\phi_i} (\ln \lambda_{i+} - \ln \lambda_{i-})$$

Así el logaritmo de la matriz densidad

$$\ln \hat{\rho}_S = \ln p_{111} |111\rangle \langle 111| + \ln p_{110} |110\rangle \langle 110| + \ln p_{001} |001\rangle \langle 001| + \ln p_{000} |000\rangle \langle 000| + a_0 |100\rangle \langle 100| + b_0 |010\rangle \langle 010| + a_1 |101\rangle \langle 101| + b_1 |011\rangle \langle 011| + c_0 |100\rangle \langle 010| + c_0^* |010\rangle \langle 100| + c_1 |101\rangle \langle 011| + c_1^* |011\rangle \langle 101|.$$

Por otro lado, los disipadores que actuan en los operadores de Lindblad \mathcal{L}_L y \mathcal{L}_R se pueden expresar

$$\begin{split} \mathcal{D}[\hat{d}_L^{\dagger}(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{000}|100\rangle\langle100| - p_{000}|000\rangle\langle000| \\ \mathcal{D}[\hat{d}_R^{\dagger}(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{000}|010\rangle\langle010| - p_{000}|000\rangle\langle000| \\ \mathcal{D}[\hat{d}_L(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{100}|000\rangle\langle000| - p_{100}|100\rangle\langle100| \\ \mathcal{D}[\hat{d}_R(\mathbf{1} - \hat{n}_D)(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{100}|000\rangle\langle000| - p_{100}|010\rangle\langle010| \\ \mathcal{D}[\hat{d}_L^{\dagger}\hat{n}_D\hat{n}_R\hat{\rho}_S] &= p_{011}|111\rangle\langle111| - p_{011}|011\rangle\langle011| \\ \mathcal{D}[\hat{d}_R^{\dagger}\hat{n}_D\hat{n}_L\hat{\rho}_S] &= p_{101}|111\rangle\langle111| - p_{101}|101\rangle\langle101| \\ \mathcal{D}[\hat{d}_L\hat{n}_D\hat{n}_R\hat{\rho}_S] &= p_{111}|011\rangle\langle011| - p_{111}|111\rangle\langle111| \\ \mathcal{D}[\hat{d}_R\hat{n}_D\hat{n}_L\hat{\rho}_S] &= p_{111}|011\rangle\langle011| - p_{111}|111\rangle\langle111| \\ \mathcal{D}[\hat{d}_L^{\dagger}(\mathbf{1} - \hat{n}_D)\hat{n}_R\hat{\rho}_S] &= p_{111}|101\rangle\langle110| - p_{111}|111\rangle\langle111| \\ \mathcal{D}[\hat{d}_L^{\dagger}(\mathbf{1} - \hat{n}_D)\hat{n}_L\hat{\rho}_S] &= p_{101}|10\rangle\langle110| - p_{101}|010\rangle\langle010| - \frac{1}{2}(\alpha|100\rangle\langle010| + \alpha^*|010\rangle\langle100|) \\ \mathcal{D}[\hat{d}_R^{\dagger}(\mathbf{1} - \hat{n}_D)\hat{n}_L\hat{\rho}_S] &= p_{100}|110\rangle\langle110| - p_{100}|100\rangle\langle100| - \frac{1}{2}(\alpha|100\rangle\langle010| + \alpha^*|010\rangle\langle100|) \\ \mathcal{D}[\hat{d}_L(\mathbf{1} - \hat{n}_D)\hat{n}_L\hat{\rho}_S] &= p_{110}|010\rangle\langle010| - p_{110}|110\rangle\langle110| \\ \mathcal{D}[\hat{d}_L^{\dagger}\hat{n}_D(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{101}|101\rangle\langle101| - p_{001}|001\rangle\langle001| \\ \mathcal{D}[\hat{d}_L^{\dagger}\hat{n}_D(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{001}|101\rangle\langle101| - p_{001}|001\rangle\langle001| \\ \mathcal{D}[\hat{d}_L^{\dagger}\hat{n}_D(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{001}|011\rangle\langle011| - p_{001}|001\rangle\langle001| \\ \mathcal{D}[\hat{d}_L\hat{n}\hat{n}_D(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{101}|001\rangle\langle001| - p_{101}|101\rangle\langle101| - \frac{1}{2}(\beta|101\rangle\langle011| + \beta^*|011\rangle\langle101|) \\ \mathcal{D}[\hat{d}_R\hat{n}_D(\mathbf{1} - \hat{n}_R)\hat{\rho}_S] &= p_{101}|001\rangle\langle001| - p_{101}|101\rangle\langle101| - \frac{1}{2}(\beta|101\rangle\langle011| + \beta^*|011\rangle\langle101|) \\ \mathcal{D}[\hat{d}_R\hat{n}_D(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{101}|010\rangle\langle010| - p_{101}|011\rangle\langle011| - \frac{1}{2}(\beta^*|011\rangle\langle011| + \beta^*|011\rangle\langle011|), \\ \mathcal{D}[\hat{d}_R\hat{n}_D(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{101}|010\rangle\langle010| - p_{101}|011\rangle\langle011| - \frac{1}{2}(\beta^*|011\rangle\langle011| + \beta^*|011\rangle\langle011|), \\ \mathcal{D}[\hat{d}_R\hat{n}_D(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &= p_{101}|010\rangle\langle010| - p_{101}|011\rangle\langle011| - \frac{1}{2}(\beta^*|011\rangle\langle011| + \beta^*|011\rangle\langle011| + \beta^*|011\rangle\langle011|), \\ \mathcal{D}[\hat{d}_R\hat{n}_D(\mathbf{1} - \hat{n}_L)\hat{\rho}_S] &$$

Con estas cantidades se podrán obtener los flujos de información en el estado estacionario $\dot{I}_i = \text{Tr}[(\mathcal{L}_i \hat{\rho}_S \ln \hat{\rho_S})]$ dado por

$$\begin{split} \dot{I}_L &= \gamma_L(\epsilon) (f_L(\epsilon)[a_0 p_{000} - p_{000} \ln p_{000}] + (1 - f_L(\epsilon))[p_{100} \ln p_{000} - a_0 p_{100}]) \\ &+ \gamma_L(\epsilon + U) (f_L(\epsilon + U)[a_1 p_{001} - p_{001} \ln p_{001}] + (1 - f_L(\epsilon + U))[p_{101} \ln p_{001} - a_1 p_{101} - Re(b_1^*\beta)]) \\ &+ \gamma_L(\epsilon + U_f) (f_L(\epsilon + U_f)[p_{010} \ln p_{110} - b_0 p_{010} - Re(\alpha c_0^*)] + (1 - f_L(\epsilon + U_f))[b_0 p_{110} - p_{110} \ln p_{110}]) \\ &+ \gamma_L(\epsilon + U + U_f) (f_L(\epsilon + U + U_f)[p_{011} \ln p_{111} - b_1 p_{011}] + (1 - f_L(\epsilon + U + U_f))[b_1 p_{111} - p_{111} \ln p_{111}]), \end{split}$$

```
\begin{split} \dot{I}_R &= \gamma_R(\epsilon) (f_L(\epsilon)[b_0 p_{000} - p_{000} \ln p_{000}] + (1 - f_R(\epsilon))[p_{010} \ln p_{000} - b_0 p_{010}]) \\ &+ \gamma_R(\epsilon + U) (f_R(\epsilon + U)[b_1 p_{001} - p_{001} \ln p_{001}] + (1 - f_R(\epsilon + U))[p_{011} \ln p_{001} - a_1 p_{011} - Re(b_1^*\beta)]) \\ &+ \gamma_R(\epsilon + U_f) (f_R(\epsilon + U_f)[p_{100} \ln p_{110} - a_0 p_{100} - Re(\alpha c_0^*)] + (1 - f_R(\epsilon + U_f))[a_0 p_{110} - p_{110} \ln p_{110}]) \\ &+ \gamma_R(\epsilon + U + U_f) (f_R(\epsilon + U + U_f)[p_{101} \ln p_{111} - a_1 p_{101}] + (1 - f_R(\epsilon + U + U_f))[a_1 p_{111} - p_{111} \ln p_{111}]), \end{split}
```

Si bien el cálculo de los flujos de información se puede hacer númerico, escribir estas expresiones analíticas nos permite determinar que existe contribución de las coherencias en la información, tanto en los parámetros a_i, b_i como en los términos $Re(\alpha c_0^*), Re(b_1^*\beta)$. Es importante destacar que en el límite en que las coherencias se anulan se recupera el resultado para un sistema clásico

$$\lim_{\alpha,\beta\to 0} \dot{I}_L = \dot{I}_{Lclassic} = \gamma_L(\epsilon) (f_L(\epsilon)[p_{000} \ln p_{100} - p_{000} \ln p_{000}] + (1 - f_L(\epsilon))[p_{100} \ln p_{000} - p_{100} \ln p_{100}])$$

$$+ \gamma_L(\epsilon + U) (f_L(\epsilon + U)[p_{001} \ln p_{101} - p_{001} \ln p_{001}] + (1 - f_L(\epsilon + U))[p_{101} \ln p_{001} - p_{101} \ln p_{101}])$$

$$+ \gamma_L(\epsilon + U_f) (f_L(\epsilon + U_f)[p_{010} \ln p_{110} - p_{010} \ln p_{010}] + (1 - f_L(\epsilon + U_f))[p_{110} \ln p_{010} - p_{110} \ln p_{110}])$$

$$+ \gamma_L(\epsilon + U + U_f) (f_L(\epsilon + U + U_f)[p_{011} \ln p_{111} - p_{011} \ln p_{011}])$$

$$+ \gamma_L(\epsilon + U + U_f) ((1 - f_L(\epsilon + U + U_f))[p_{111} \ln p_{011} - p_{111} \ln p_{111}]),$$

$$\lim_{\alpha,\beta\to 0} \dot{I}_R = \dot{I}_{Rclassic} = \gamma_R(\epsilon) (f_R(\epsilon)[p_{000} \ln p_{010} - p_{000} \ln p_{000}] + (1 - f_R(\epsilon))[p_{010} \ln p_{000} - p_{010} \ln p_{010}])$$

$$+ \gamma_R(\epsilon + U) (f_R(\epsilon + U)[p_{001} \ln p_{011} - p_{001} \ln p_{001}] + (1 - f_R(\epsilon + U))[p_{011} \ln p_{001} - p_{011} \ln p_{011}])$$

$$+ \gamma_R(\epsilon + U_f) (f_R(\epsilon + U_f)[p_{100} \ln p_{110} - p_{100} \ln p_{100}] + (1 - f_R(\epsilon + U_f))[p_{110} \ln p_{100} - p_{110} \ln p_{110}])$$

$$+ \gamma_R(\epsilon + U + U_f) (f_R(\epsilon + U + U_f)[p_{101} \ln p_{111} - p_{101} \ln p_{101}])$$

$$+ \gamma_R(\epsilon + U + U_f) ((1 - f_R(\epsilon + U + U_f))[p_{111} \ln p_{101} - p_{111} \ln p_{111}]).$$