MADS - Multi Agent Decision System Team 2

Demokan Coban, Xiao Fei, Lihong Ji, Shanshan Zhang, Yanbin Zhu

12 Jan 2022

1. User Agent

Interface between a user and other agents
Instance from user -> Predict action -> Show prediction back to user

2. Broker Agent

Receive constraints from user agent Take in charge of Classifier Agents

3. Information Agent

Receive target data distributes and extract them from Database Clean data and transmit data to Classifier Agents

4. Classifier Agent

Receive information from databases
Train -> Evaluate -> Predict

5. Reasoning Agent

Collect evaluation results from classifier agents
Using reasoning philosophy to give the final inference automatically

Architecture Design | Overall

Architecture Design | User Agent actions

Architecture Design | Broker Agent actions

Architecture Design | Information Agent actions

Architecture Design | Classifier Agent actions

Architecture Design | Reasoning Agent actions

1. Test

- ContractNet, CFP
- Classifier agent with proper attribute response to the request

2. Simple voting

- Uniform (plurality)
- o TPR
- o **FPR**
- Precision
- Recall
- FMeasure
- Accuracy

Result

Agent	Result				TPR	FPR	Precision	FMeasure	Accuracy
GT	[1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1]								
Uniform	[1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1]							=1	
	8	4	3	0	1	3/7	8/11	32/11	.80
TPR	[1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]								
	6	6	1	2	.75	1/7	6/7	24/9	.80
FPR	[1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1]								
	7	5	2	1	.875	2/7	7/9	28/10	.80
Dracician	[1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1]								
Precision	6	5	2	2	.75	2/7	.75	24/10	11/15
Recall	[1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]								
	6	6	1	2	.75	1/7	6/7	24/9	.80
FMeasure	[1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1]								
	6	5	2	2	.75	2/7	.75	24/10	11/15
Accuracy	[1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]								
	6	6	1	2	.75	1/7	6/7	24/9	.80
Metrics	TP	TN	FP	FN	TPR	FPR	Precision	FMeasure	Accuracy

Conclusion and discussion

- 1. Average accuracy is around 82%.
- 2. There is still a lot of room for improvement
 - Carefully selection of attributes.
 - Assign weights for each attribute, the most frequent attributes of top K classifiers will be assigned a higher weight.
 - handle 0 or few classifier proposals.
 - i. Adding new classifier agents.
 - ii. Use simple plurality voting for the final result.
 - Utilize more of the ContractNet protocols.
 - The message between agents can be more structured and uniformed.
 - Saving trained classifier mode and the train and the test results.

MADS - Multi Agent Decision System Team 2

Xiao Fei, Demokan Coban, Lihong Ji, Shanshan Zhang, Yanbing Zhu

12 Jan 2021