

TITLE OF THE INVENTION

OMEGA-CONOPEPTIDES

CROSS-REFERENCE TO RELATED APPLICATIONS

5 [0001] The present application is a continuation of U.S. patent application Serial No. 09/910,082 filed on 23 July 2001. The present application claims benefit under 35 USC §119(e) to U.S. provisional patent applications Serial No. 60/219,616 filed on 21 July 2000 and Serial No. 60/265,888 filed on 5 February 2001. Each of these applications are incorporated herein by reference.

10

[0002] This invention was made with Government support under Grant No. P01 GM48677 awarded by the National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland. The United States Government has certain rights in the invention.

15 BACKGROUND OF THE INVENTION

20 [0003] The invention relates to ω -conopeptides, derivatives or pharmaceutically acceptable salts thereof, and uses thereof, including the treatment of neurologic and psychiatric disorders, such as anticonvulsant agents, as neuroprotective agents, as cardiovascular agents or for the management of pain. The invention further relates to nucleic acid sequences encoding the conopeptides and encoding propeptides, as well as the propeptides.

25 [0004] The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference, and for convenience are referenced in the following text by author and date and are listed alphabetically by author in the appended bibliography.

30 [0005] *Conus* is a genus of predatory marine gastropods (snails) which envenomate their prey. Venomous cone snails use a highly developed projectile apparatus to deliver their cocktail of toxic conotoxins into their prey. In fish-eating species such as *Conus magus* the cone detects the presence of the fish using chemosensors in its siphon and when close enough extends its proboscis and fires a hollow harpoon-like tooth containing venom into the fish. This immobilizes the fish and enables the cone snail to wind it into its mouth via an attached filament. For general information on *Conus* and their venom see the website address <http://grimwade.biochem.unimelb.edu.au/cone/referenc.html>. Prey capture is accomplished through a sophisticated arsenal of peptides which target specific ion channel and receptor

subtypes. Each *Conus* species venom appears to contain a unique set of 50-200 peptides. The composition of the venom differs greatly between species and between individual snails within each species, each optimally evolved to paralyse its prey. The active components of the venom are small peptides toxins, typically 12-30 amino acid residues in length and are typically highly constrained peptides due to their high density of disulphide bonds.

[0006] The venoms consist of a large number of different peptide components that when separated exhibit a range of biological activities: when injected into mice they elicit a range of physiological responses from shaking to depression. The paralytic components of the venom that have been the focus of recent investigation are the α -, ω - and μ -conotoxins. All of these conotoxins act by preventing neuronal communication, but each targets a different aspect of the process to achieve this. The α -conotoxins target nicotinic ligand gated channels, the μ -conotoxins target the voltage-gated sodium channels and the ω -conotoxins target the voltage-gated calcium channels (Olivera et al., 1985; Olivera et al., 1990). For example a linkage has been established between α -, αA - & ϕ -conotoxins and the nicotinic ligand-gated ion channel; ω -conotoxins and the voltage-gated calcium channel; μ -conotoxins and the voltage-gated sodium channel; δ -conotoxins and the voltage-gated sodium channel; κ -conotoxins and the voltage-gated potassium channel; conantokins and the ligand-gated glutamate (NMDA) channel.

[0007] However, the structure and function of only a small minority of these peptides have been determined to date. For peptides where function has been determined, three classes of targets have been elucidated: voltage-gated ion channels; ligand-gated ion channels, and G-protein-linked receptors.

[0008] *Conus* peptides which target voltage-gated ion channels include those that delay the inactivation of sodium channels, as well as blockers specific for sodium channels, calcium channels and potassium channels. Peptides that target ligand-gated ion channels include antagonists of NMDA and serotonin receptors, as well as competitive and noncompetitive nicotinic receptor antagonists. Peptides which act on G-protein receptors include neurotensin and vasopressin receptor agonists. The unprecedented pharmaceutical selectivity of conotoxins is at least in part defined by a specific disulfide bond frameworks combined with hypervariable amino acids within disulfide loops (for a review see McIntosh et al., 1998).

[0009] There are drugs used in the treatment of pain, which are known in the literature and to the skilled artisan. See, for example, Merck Manual, 16th Ed. (1992). However, there is a demand for more active analgesic agents with diminished side effects and toxicity and which are

non-addictive. The ideal analgesic would reduce the awareness of pain, produce analgesia over a wide range of pain types, act satisfactorily whether given orally or parenterally, produce minimal or no side effects, be free from tendency to produce tolerance and drug dependence.

[0010] Due to the high potency and exquisite selectivity of the conopeptides, several are in various stages of clinical development for treatment of human disorders. For example, two *Conus* peptides are being developed for the treatment of pain. The most advanced is ω -conotoxin MVIIA (ziconotide), an N-type calcium channel blocker (see Heading, C., 1999; U.S. Patent No. 5,859,186). ω -Conotoxin MVIIA, isolated from *Conus magus*, is approximately 1000 times more potent than morphine, yet does not produce the tolerance or addictive properties of opiates. ω -Conotoxin MVIIA has completed Phase III (final stages) of human clinical trials and has been approved as a therapeutic agent. ω -Conotoxin MVIIA is introduced into human patients by means of an implantable, programmable pump with a catheter threaded into the intrathecal space. Preclinical testing for use in post-surgical pain is being carried out on another *Conus* peptide, contulakin-G, isolated from *Conus geographus* (Craig et al. 1999). Contulakin-G is a 16 amino acid O-linked glycopeptide whose C-terminus resembles neuropeptides. It is an agonist of neuropeptides receptors, but appears significantly more potent than neuropeptides in inhibiting pain in *in vivo* assays.

[0011] Ischemic damage to the central nervous system (CNS) may result from either global or focal ischemic conditions. Global ischemia occurs under conditions in which blood flow to the entire brain ceases for a period of time, such as may result from cardiac arrest. Focal ischemia occurs under conditions in which a portion of the brain is deprived of its normal blood supply, such as may result from thromboembolic occlusion of a cerebral vessel, traumatic head or spinal cord injury, edema or brain or spinal cord tumors. Both global and focal ischemic conditions have the potential for widespread neuronal damage, even if the global ischemic condition is transient or the focal condition affects a very limited area.

[0012] Epilepsy is a recurrent paroxysmal disorder of cerebral function characterized by sudden brief attacks of altered consciousness, motor activity, sensory phenomena or inappropriate behavior caused by abnormal excessive discharge of cerebral neurons. Convulsive seizures, the most common form of attacks, begin with loss of consciousness and motor control, and tonic or clonic jerking of all extremities but any recurrent seizure pattern may be termed epilepsy. The term primary or idiopathic epilepsy denotes those cases where no cause for the seizures can be identified. Secondary or symptomatic epilepsy designates the disorder when it is

associated with such factors as trauma, neoplasm, infection, developmental abnormalities, cerebrovascular disease, or various metabolic conditions. Epileptic seizures are classified as partial seizures (focal, local seizures) or generalized seizures (convulsive or nonconvulsive). Classes of partial seizures include simple partial seizures, complex partial seizures and partial seizures secondarily generalized. Classes of generalized seizures include absence seizures, atypical absence seizures, myoclonic seizures, clonic seizures, tonic seizures, tonic-clonic seizures (*grand mal*) and atonic seizures. Therapeutics having anticonvulsant properties are used in the treatment of seizures. Most therapeutics used to abolish or attenuate seizures act at least through effects that reduce the spread of excitation from seizure foci and prevent detonation and disruption of function of normal aggregates of neurons. Traditional anticonvulsants that have been utilized include phenytoin, phenobarbital, primidone, carbamazepine, ethosuximide, clonazepam and valproate. Several novel and chemically diverse anticonvulsant medications recently have been approved for marketing, including lamotrigine, ferbamate, gabapentin and topiramate. For further details of seizures and their therapy, see Rall & Schleifer (1985) and *The Merck Manual* (1992).

[0013] In view of a large number of biologically active substances in *Conus* species it is desirable to further characterize them and to identify peptides capable of treating disorders involving voltage gated ion channels, such as stroke and pain. Surprisingly, and in accordance with this invention, Applicants have discovered novel conotoxins that can be useful for the treatment of disorders involving voltage gated ion channels and could address a long felt need for a safe and effective treatment.

SUMMARY OF THE INVENTION

[0014] The present invention is directed to ω -conopeptides, derivatives or pharmaceutically acceptable salts thereof, and uses thereof, including the treatment of neurologic and psychiatric disorders, such as anticonvulsant agents, as neuroprotective agents, as cardiovascular agents or for the management of pain. The invention is further directed to nucleic acid sequences encoding the ω -conopeptides and encoding propeptides, as well as the propeptides.

[0015] More specifically, the present invention is directed to ω -conopeptides, having the amino acid sequences set forth in Table 2 below.

[0016] The present invention is also directed to derivatives or pharmaceutically acceptable salts of the ω -conopeptides or the derivatives. Examples of derivatives include peptides in which the Arg residues may be substituted by Lys, ornithine, homoarginine, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any synthetic basic amino acid; the Lys residues may be substituted by Arg, ornithine, homoarginine, nor-Lys, or any synthetic basic amino acid; the Tyr residues may be substituted with meta-Tyr, ortho-Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any synthetic hydroxy containing amino acid; the Ser residues may be substituted with Thr or any synthetic hydroxylated amino acid; the Thr residues may be substituted with Ser or any synthetic hydroxylated amino acid; the Phe residues may be substituted with any synthetic aromatic amino acid; the Trp residues may be substituted with Trp (D), neo-Trp, halo-Trp (D or L) or any aromatic synthetic amino acid; and the Asn, Ser, Thr or Hyp residues may be glycosylated. The halogen may be iodo, chloro, fluoro or bromo; preferably iodo for halogen substituted-Tyr and bromo for halogen-substituted Trp. The Tyr residues may also be substituted with the 3-hydroxyl or 2-hydroxyl isomers (meta-Tyr or ortho-Tyr, respectively) and corresponding O-sulpho- and O-phospho-derivatives. The acidic amino acid residues may be substituted with any synthetic acidic amino acid, e.g., tetrazolyl derivatives of Gly and Ala. The aliphatic amino acids may be substituted by synthetic derivatives bearing non-natural aliphatic branched or linear side chains C_nH_{2n+2} up to and including n=8. The Cys residues may be in D or L configuration and may optionally be substituted with homocysteine (D or L).

[0017] Examples of synthetic aromatic amino acid include, but are not limited to, nitro-Phe, 4-substituted-Phe wherein the substituent is C_1-C_3 alkyl, carboxyl, hydroxymethyl, sulphomethyl, halo, phenyl, -CHO, -CN, -SO₃H and -NHAc. Examples of synthetic hydroxy containing amino acid, include, but are not limited to, such as 4-hydroxymethyl-Phe, 4-hydroxyphenyl-Gly, 2,6-dimethyl-Tyr and 5-amino-Tyr. Examples of synthetic basic amino acids include, but are not limited to, N-1-(2-pyrazolinyl)-Arg, 2-(4-piperinyl)-Gly, 2-(4-piperinyl)-Ala, 2-[3-(2S)pyrrolinyl]-Gly and 2-[3-(2S)pyrrolinyl]-Ala. These and other synthetic basic amino acids, synthetic hydroxy containing amino acids or synthetic aromatic amino acids are described in Building Block Index, Version 3.0 (1999 Catalog, pages 4-47 for hydroxy containing amino acids and aromatic amino acids and pages 66-87 for basic amino acids; see also <http://www.amino-acids.com>), incorporated herein by reference, by and available from RSP Amino Acid Analogues, Inc., Worcester, MA. Examples of synthetic acid amino

acids include those derivatives bearing acidic functionality, including carboxyl, phosphate, sulfonate and synthetic tetrazolyl derivatives such as described by Ornstein et al. (1993) and in U.S. Patent No. 5,331,001, each incorporated herein by reference.

[0018] Optionally, in the ω -conopeptides of the present invention, the Asn residues may 5 be modified to contain an N-glycan and the Ser, Thr and Hyp residues may be modified to contain an O-glycan (e.g., g-N, g-S, g-T and g-Hyp). In accordance with the present invention, a glycan shall mean any N-, S- or O-linked mono-, di-, tri-, poly- or oligosaccharide that can be attached to any hydroxy, amino or thiol group of natural or modified amino acids by synthetic or enzymatic methodologies known in the art. The monosaccharides making up the glycan can 10 include D-allose, D-altrose, D-glucose, D-mannose, D-gulose, D-idose, D-galactose, D-talose, D-galactosamine, D-glucosamine, D-N-acetyl-glucosamine (GlcNAc), D-N-acetyl-galactosamine (GalNAc), D-fucose or D-arabinose. These saccharides may be structurally modified, e.g., with one or more O-sulfate, O-phosphate, O-acetyl or acidic groups, such as sialic 15 acid, including combinations thereof. The glycan may also include similar polyhydroxy groups, such as D-penicillamine 2,5 and halogenated derivatives thereof or polypropylene glycol derivatives. The glycosidic linkage is beta and 1-4 or 1-3, preferably 1-3. The linkage between the glycan and the amino acid may be alpha or beta, preferably alpha and is 1-.

[0019] Core O-glycans have been described by Van de Steen et al. (1998), incorporated 20 herein by reference. Mucin type O-linked oligosaccharides are attached to Ser or Thr (or other hydroxylated residues of the present peptides) by a GalNAc residue. The monosaccharide building blocks and the linkage attached to this first GalNAc residue define the “core glycans,” of which eight have been identified. The type of glycosidic linkage (orientation and 25 connectivities) are defined for each core glycan. Suitable glycans and glycan analogs are described further in U.S. Serial No. 09/420,797 filed 19 October 1999 and in PCT Application No. PCT/US99/24380 filed 19 October 1999 (PCT Published Application No. WO 00/23092), each incorporated herein by reference. A preferred glycan is Gal(β 1 \rightarrow 3)GalNAc(α 1 \rightarrow).

[0020] Optionally, in the ω -conopeptides described above, pairs of Cys residues may be replaced pairwise with isoteric lactam or ester-thioether replacements, such as Ser/(Glu or Asp), Lys/(Glu or Asp) or Cys/Ala combinations. Sequential coupling by known methods (Barnay et 30 al., 2000; Hruby et al., 1994; Bitan et al., 1997) allows replacement of native Cys bridges with lactam bridges. Thioether analogs may be readily synthesized using halo-Ala residues commercially available from RSP Amino Acid Analogues.

[0021] The present invention is further directed to a method of treating disorders associated with voltage gated ion channel disorders in a subject comprising administering to the subject an effective amount of the pharmaceutical composition comprising a therapeutically effective amount of a ω -conopeptide described herein or a pharmaceutically acceptable salt or solvate thereof. The present invention is also directed to a pharmaceutical composition comprising a therapeutically effective amount of a ω -conopeptide described herein or a pharmaceutically acceptable salt or solvate thereof and a pharmaceutically acceptable carrier.

[0022] More specifically, the present invention is further directed to uses of these peptides or nucleic acids as described herein, including the treatment of neurologic disorders, such as anticonvulsant agents, as neuroprotective agents, such as for treating stroke, as cardiovascular agents or for the management of pain.

[0023] More specifically, the present invention is also directed to nucleic acids which encode conopeptides of the present invention or which encodes precursor peptides for these conopeptides, as well as the precursor peptide. The nucleic acid sequences encoding the precursor peptides of other conopeptides of the present invention are set forth in Table 1. Table 1 also sets forth the amino acid sequences of these precursor peptides.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0024] The present invention is to ω -conopeptides, derivatives or pharmaceutically acceptable salts thereof. The present invention is further directed to the use of this peptide, derivatives thereof and pharmaceutically acceptable salts thereof for the treatment of neurologic disorders, such as anticonvulsant agents, as neuroprotective agents, such as for treating stroke, as cardiovascular agents or for the management of pain, e.g. as analgesic agents. The invention is further directed to nucleic acid sequences encoding the ω -conopeptides and encoding propeptides, as well as the propeptides.

[0025] The present invention, in another aspect, relates to a pharmaceutical composition comprising an effective amount of an ω -conopeptides, a mutein thereof, an analog thereof, an active fragment thereof or pharmaceutically acceptable salts or solvates. Such a pharmaceutical composition has the capability of acting at voltage gated ion channels, and are thus useful for treating a disorder or disease of a living animal body, including a human, which disorder or disease is responsive to the partial or complete blockade of voltage gated ion channels of the central nervous system comprising the step of administering to such a living animal body,

including a human, in need thereof a therapeutically effective amount of a pharmaceutical composition of the present invention.

[0026] Voltage-gated calcium channels are present in neurons, and in cardiac, smooth, and skeletal muscle and other excitable cells, and are known to play a variety of roles in membrane excitability, muscle contraction, and cellular secretion, such as in synaptic transmission (McCleskey). In neuronal cells, voltage-gated calcium channels have been classified by their electrophysiological as well as by their biochemical (binding) properties. Six classes of physiologically distinct calcium channels have been identified to date, namely the T, L, N, P, Q, and R-type channels.

[0027] It is well known that an accumulation of calcium (calcium overload) in the brain is seen after anoxia, ischemia, migraine and other hyperactivity periods of the brain, such as after epileptic convulsions. An uncontrolled high concentration of calcium in the cells of the central nervous system (CNS) is known to cause most of the degenerative changes connected with the above diseases. Compounds which can block the calcium channels of brain cells are therefore useful in the treatment of stroke, anoxia, ischemia, migraine, psychosis, or epilepsy, any other convulsive disorder and in the prevention of the degenerative changes connected with the same.

[0028] Compounds blocking the so called L-type calcium channels in the CNS are useful for the treatment of the above disorders by directly blocking the calcium uptake in the CNS. Further, it is well known that the so called N- and P-types of calcium channels, as well as possibly other types of calcium channels, are involved in the regulation of neurotransmitter release. Compounds blocking the N- and/or P-types of calcium channels indirectly and very powerfully prevent calcium overload in the CNS after the hyperactivity periods of the brain as described above by inhibiting the enhanced neurotransmitter release seen after such hyperactivity periods of the CNS, and especially the neurotoxic, enhanced glutamate release after such hyperactivity periods of the CNS. Furthermore, blockers of the N- and/or P-types of calcium channels, as dependent upon the selectivity of the compound in question, inhibit the release of various other neurotransmitters such as aspartate, GABA, glycine, dopamine, serotonin and noradrenaline.

[0029] Thus, the pharmaceutical compositions of the present invention are useful as neuroprotectants, cardiovascular agents, anticonvulsants, analgesics or adjuvants to general anesthetics. A "neurological disorder or disease" is a disorder or disease of the nervous system including, but not limited to, global and focal ischemic and hemorrhagic stroke, head trauma,

spinal cord injury, hypoxia-induced nerve cell damage as in cardiac arrest or neonatal distress or epilepsy. In addition, a "neurological disorder or disease" is a disease state and condition in which a neuroprotectant, anticonvulsant, analgesic and/or as an adjunct in general anesthesia may be indicated, useful, recommended or prescribed.

5 [0030] More specifically, the present invention is directed to the use of these compounds for the treatment and alleviation of epilepsy and as a general anticonvulsant agent. The present invention is also directed to the use of these compounds for reducing neurotoxic injury associated with conditions of hypoxia, anoxia or ischemia which typically follows stroke, cerebrovascular accident, brain or spinal cord trauma, myocardial infarct, physical trauma, 10 drowning, suffocation, perinatal asphyxia, or hypoglycemic events. The present invention is further directed to the use of these compounds for treating pain, including acute and chronic pain, such migraine, nociceptive and neuropathic pain. Other uses of these compounds are described in U.S. Patent No. 5,859,186, incorporated herein by reference.

15 [0031] A "neuroprotectant" is a compound capable of preventing the neuronal death associated with a neurological disorder or disease. An "anticonvulsant" is a compound capable of reducing convulsions produced by conditions such as simple partial seizures, complex partial seizures, status epilepticus, and trauma-induced seizures such as occur following head injury, including head surgery. An "analgesic" is a compound capable of relieving pain by altering perception of nociceptive stimuli without producing anesthesia or loss of consciousness. A 20 "muscle relaxant" is a compound that reduces muscular tension. A "adjunct in general anesthesia" is a compound useful in conjunction with anesthetic agents in producing the loss of ability to perceive pain associated with the loss of consciousness.

25 [0032] The invention relates as well to methods useful for treatment of neurological disorders and diseases, including, but not limited to, global and focal ischemic and hemorrhagic stroke, head trauma, spinal cord injury, hypoxia-induced nerve cell damage such as in cardiac arrest or neonatal distress, epilepsy or other convulsive disorders without undesirable side effects.

30 [0033] Thus, in one embodiment, the invention provides a method of reducing/alleviating/ decreasing the perception of pain by a subject or for inducing analgesia in a subject comprising administering to the subject an effective amount of the pharmaceutical composition comprising a therapeutically effective amount of a ω -conopeptide described herein

or a pharmaceutically acceptable salt or solvate thereof. The pain may be acute, persistent, inflammatory or neuropathic pain.

[0034] In a second embodiment, the invention provides a method of treating stroke, head or spinal cord trauma or injury, anoxia, hypoxia-induced nerve cell damage, ischemia, migraine, 5 psychosis, anxiety, schizophrenia, inflammation, movement disorder, epilepsy, any other convulsive disorder or in the prevention of the degenerative changes connected with the same in a subject comprising administering to the subject an effective amount of the pharmaceutical composition comprising a therapeutically effective amount of a ω -conopeptide described herein or a pharmaceutically acceptable salt or solvate thereof.

10 [0035] The ω -conopeptides described herein are sufficiently small to be chemically synthesized. General chemical syntheses for preparing the foregoing ω -conotoxin peptides are described hereinafter. Various ones of the ω -conopeptides can also be obtained by isolation and purification from specific *Conus* species using the technique described in U.S. Patent Nos. 4,447,356 (Olivera et al., 1984); 5,514,774; 5,719,264; and 5,591,821, as well as in PCT 15 published application WO 98/03189, the disclosures of which are incorporated herein by reference.

[0036] Although the ω -conopeptides of the present invention can be obtained by purification from cone snails, because the amounts of ω -conopeptides obtainable from individual snails are very small, the desired substantially pure ω -conopeptides are best practically obtained 20 in commercially valuable amounts by chemical synthesis using solid-phase strategy. For example, the yield from a single cone snail may be about 10 micrograms or less of ω -conopeptides peptide. By "substantially pure" is meant that the peptide is present in the substantial absence of other biological molecules of the same type; it is preferably present in an amount of at least about 85% purity and preferably at least about 95% purity. Chemical 25 synthesis of biologically active ω -conopeptides peptides depends of course upon correct determination of the amino acid sequence.

[0037] The ω -conopeptides can also be produced by recombinant DNA techniques well known in the art. Such techniques are described by Sambrook et al. (1989). A gene of interest (i.e., a gene that encodes a suitable ω -conopeptides) can be inserted into a cloning site of a 30 suitable expression vector by using standard techniques. These techniques are well known to those skilled in the art. The expression vector containing the gene of interest may then be used to transfet the desired cell line. Standard transfection techniques such as calcium phosphate

co-precipitation, DEAE-dextran transfection or electroporation may be utilized. A wide variety of host/expression vector combinations may be used to express a gene encoding a conotoxin peptide of interest. Such combinations are well known to a skilled artisan. The peptides produced in this manner are isolated, reduced if necessary, and oxidized to form the correct disulfide bonds.

[0038] One method of forming disulfide bonds in the ω -conopeptides of the present invention is the air oxidation of the linear peptides for prolonged periods under cold room temperatures or at room temperature. This procedure results in the creation of a substantial amount of the bioactive, disulfide-linked peptides. The oxidized peptides are fractionated using reverse-phase high performance liquid chromatography (HPLC) or the like, to separate peptides having different linked configurations. Thereafter, either by comparing these fractions with the elution of the native material or by using a simple assay, the particular fraction having the correct linkage for maximum biological potency is easily determined. However, because of the dilution resulting from the presence of other fractions of less biopotency, a somewhat higher dosage may be required.

[0039] The peptides are synthesized by a suitable method, such as by exclusively solid-phase techniques, by partial solid-phase techniques, by fragment condensation or by classical solution couplings.

[0040] In conventional solution phase peptide synthesis, the peptide chain can be prepared by a series of coupling reactions in which constituent amino acids are added to the growing peptide chain in the desired sequence. Use of various coupling reagents, e.g., dicyclohexylcarbodiimide or diisopropylcarbonyldimidazole, various active esters, e.g., esters of N-hydroxyphthalimide or N-hydroxy-succinimide, and the various cleavage reagents, to carry out reaction in solution, with subsequent isolation and purification of intermediates, is well known classical peptide methodology. Classical solution synthesis is described in detail in the treatise, "Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden," (1974). Techniques of exclusively solid-phase synthesis are set forth in the textbook, "Solid-Phase Peptide Synthesis," (Stewart and Young, 1969), and are exemplified by the disclosure of U.S. Patent 4,105,603 (Vale et al., 1978). The fragment condensation method of synthesis is exemplified in U.S. Patent 3,972,859 (1976). Other available syntheses are exemplified by U.S. Patents No. 3,842,067 (1974) and 3,862,925 (1975). The synthesis of peptides containing γ -

carboxyglutamic acid residues is exemplified by Rivier et al. (1987), Nishiuchi et al. (1993) and Zhou et al. (1996).

[0041] Common to such chemical syntheses is the protection of the labile side chain groups of the various amino acid moieties with suitable protecting groups which will prevent a chemical reaction from occurring at that site until the group is ultimately removed. Usually also common is the protection of an α -amino group on an amino acid or a fragment while that entity reacts at the carboxyl group, followed by the selective removal of the α -amino protecting group to allow subsequent reaction to take place at that location. Accordingly, it is common that, as a step in such a synthesis, an intermediate compound is produced which includes each of the amino acid residues located in its desired sequence in the peptide chain with appropriate side-chain protecting groups linked to various ones of the residues having labile side chains.

[0042] As far as the selection of a side chain amino protecting group is concerned, generally one is chosen which is not removed during deprotection of the α -amino groups during the synthesis. However, for some amino acids, e.g., His, protection is not generally necessary. In selecting a particular side chain protecting group to be used in the synthesis of the peptides, the following general rules are followed: (a) the protecting group preferably retains its protecting properties and is not split off under coupling conditions, (b) the protecting group should be stable under the reaction conditions selected for removing the α -amino protecting group at each step of the synthesis, and (c) the side chain protecting group must be removable, upon the completion of the synthesis containing the desired amino acid sequence, under reaction conditions that will not undesirably alter the peptide chain.

[0043] It should be possible to prepare many, or even all, of these peptides using recombinant DNA technology. However, when peptides are not so prepared, they are preferably prepared using the Merrifield solid-phase synthesis, although other equivalent chemical syntheses known in the art can also be used as previously mentioned. Solid-phase synthesis is commenced from the C-terminus of the peptide by coupling a protected α -amino acid to a suitable resin. Such a starting material can be prepared by attaching an α -amino-protected amino acid by an ester linkage to a chloromethylated resin or a hydroxymethyl resin, or by an amide bond to a benzhydrylamine (BHA) resin or paramethylbenzhydrylamine (MBHA) resin. Preparation of the hydroxymethyl resin is described by Bodansky et al. (1966). Chloromethylated resins are commercially available from Bio Rad Laboratories (Richmond, CA) and from Lab. Systems, Inc. The preparation of such a resin is described by Stewart and Young

(1969). BHA and MBHA resin supports are commercially available, and are generally used when the desired polypeptide being synthesized has an unsubstituted amide at the C-terminus. Thus, solid resin supports may be any of those known in the art, such as one having the formulae -O-CH₂-resin support, -NH BHA resin support, or -NH-MBHA resin support. When the 5 unsubstituted amide is desired, use of a BHA or MBHA resin is preferred, because cleavage directly gives the amide. In case the N-methyl amide is desired, it can be generated from an N-methyl BHA resin. Should other substituted amides be desired, the teaching of U.S. Patent No. 4,569,967 (Kornreich et al., 1986) can be used, or should still other groups than the free acid be desired at the C-terminus, it may be preferable to synthesize the peptide using classical methods 10 as set forth in the Houben-Weyl text (1974).

[0044] The C-terminal amino acid, protected by Boc or Fmoc and by a side-chain protecting group, if appropriate, can be first coupled to a chloromethylated resin according to the procedure set forth in K. Horiki et al. (1978), using KF in DMF at about 60°C for 24 hours with stirring, when a peptide having free acid at the C-terminus is to be synthesized. Following the 15 coupling of the BOC-protected amino acid to the resin support, the α-amino protecting group is removed, as by using trifluoroacetic acid (TFA) in methylene chloride or TFA alone. The deprotection is carried out at a temperature between about 0°C and room temperature. Other standard cleaving reagents, such as HCl in dioxane, and conditions for removal of specific α-amino protecting groups may be used as described in Schroder & Lubke (1965).

20 [0045] After removal of the α-amino-protecting group, the remaining α-amino- and side chain-protected amino acids are coupled step-wise in the desired order to obtain the intermediate compound defined hereinbefore, or as an alternative to adding each amino acid separately in the synthesis, some of them may be coupled to one another prior to addition to the solid phase reactor. Selection of an appropriate coupling reagent is within the skill of the art. Particularly 25 suitable as a coupling reagent is N,N'-dicyclohexylcarbodiimide (DCC, DIC, HBTU, HATU, TBTU in the presence of HoBt or HoAt).

[0046] The activating reagents used in the solid phase synthesis of the peptides are well known in the peptide art. Examples of suitable activating reagents are carbodiimides, such as N,N'-diisopropylcarbodiimide and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide. Other 30 activating reagents and their use in peptide coupling are described by Schroder & Lubke (1965) and Kapoor (1970).

[0047] Each protected amino acid or amino acid sequence is introduced into the solid-phase reactor in about a twofold or more excess, and the coupling may be carried out in a medium of dimethylformamide (DMF):CH₂Cl₂ (1:1) or in DMF or CH₂Cl₂ alone. In cases where intermediate coupling occurs, the coupling procedure is repeated before removal of the α -amino protecting group prior to the coupling of the next amino acid. The success of the coupling reaction at each stage of the synthesis, if performed manually, is preferably monitored by the ninhydrin reaction, as described by Kaiser et al. (1970). Coupling reactions can be performed automatically, as on a Beckman 990 automatic synthesizer, using a program such as that reported in Rivier et al. (1978).

[0048] After the desired amino acid sequence has been completed, the intermediate peptide can be removed from the resin support by treatment with a reagent, such as liquid hydrogen fluoride or TFA (if using Fmoc chemistry), which not only cleaves the peptide from the resin but also cleaves all remaining side chain protecting groups and also the α -amino protecting group at the N-terminus if it was not previously removed to obtain the peptide in the form of the free acid. If Met is present in the sequence, the Boc protecting group is preferably first removed using trifluoroacetic acid (TFA)/ethanedithiol prior to cleaving the peptide from the resin with HF to eliminate potential S-alkylation. When using hydrogen fluoride or TFA for cleaving, one or more scavengers such as anisole, cresol, dimethyl sulfide and methylethyl sulfide are included in the reaction vessel.

[0049] Cyclization of the linear peptide is preferably affected, as opposed to cyclizing the peptide while a part of the peptido-resin, to create bonds between Cys residues. To effect such a disulfide cyclizing linkage, fully protected peptide can be cleaved from a hydroxymethylated resin or a chloromethylated resin support by ammonolysis, as is well known in the art, to yield the fully protected amide intermediate, which is thereafter suitably cyclized and deprotected. Alternatively, deprotection, as well as cleavage of the peptide from the above resins or a benzhydrylamine (BHA) resin or a methylbenzhydrylamine (MBHA), can take place at 0°C with hydrofluoric acid (HF) or TFA, followed by oxidation as described above.

[0050] The peptides are also synthesized using an automatic synthesizer. Amino acids are sequentially coupled to an MBHA Rink resin (typically 100 mg of resin) beginning at the C-terminus using an Advanced Chemtech 357 Automatic Peptide Synthesizer. Couplings are carried out using 1,3-diisopropylcarbodiimide in N-methylpyrrolidinone (NMP) or by 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and diethylisopro-

pylethylamine (DIEA). The FMOC protecting group is removed by treatment with a 20% solution of piperidine in dimethylformamide(DMF). Resins are subsequently washed with DMF (twice), followed by methanol and NMP.

[0051] Muteins, analogs or active fragments, of the foregoing conotoxin peptides are
5 also contemplated here. See, e.g., Hammerland et al. (1992). Derivative muteins, analogs or active fragments of the conotoxin peptides may be synthesized according to known techniques, including conservative amino acid substitutions, such as outlined in U.S. Patent Nos. 5,545,723 (see particularly col. 2, line 50--col. 3, line 8); 5,534,615 (see particularly col. 19, line 45--col. 22, line 33); and 5,364,769 (see particularly col. 4, line 55--col. 7, line 26), each herein
10 incorporated by reference.

[0052] The ω -conopeptides of the present invention are also useful to reduce neurotoxic injury associated with conditions of hypoxia, anoxia or ischemia which typically follows stroke, cerebrovascular accident, brain or spinal chord trauma, myocardial infarct, physical trauma, drownings, suffocation, perinatal asphyxia, or hypoglycemic events. To reduce neurotoxic
15 injury, an ω -conopeptide should be administered in a therapeutically effective amount to the patient within 24 hours of the onset of the hypoxic, anoxic or ischemic condition in order for the ω -conopeptide to effectively minimize the CNS damage which the patient will experience.

[0053] The ω -conopeptides of the present invention are further useful in controlling pain, e.g., as analgesic agents, and the treatment of migraine, acute pain or persistent pain. They can
20 be used prophylactically or to relieve the symptoms associated with a migraine episode, or to treat acute or persistent pain. For these uses, an ω -conopeptide is administered in a therapeutically effective amount to overcome or to ease the pain.

[0054] Pharmaceutical compositions containing a compound of the present invention as the active ingredient can be prepared according to conventional pharmaceutical compounding techniques.
25 See, for example, *Remington's Pharmaceutical Sciences*, 18th Ed. (1990, Mack Publishing Co., Easton, PA). Typically, an antagonistic amount of active ingredient will be admixed with a pharmaceutically acceptable carrier. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravenous, oral, parenteral or intrathecally. For examples of delivery methods see U.S. Patent No. 5,844,077, incorporated herein by
30 reference.

[0055] "Pharmaceutical composition" means physically discrete coherent portions suitable for medical administration. "Pharmaceutical composition in dosage unit form" means

physically discrete coherent units suitable for medical administration, each containing a daily dose or a multiple (up to four times) or a sub-multiple (down to a fortieth) of a daily dose of the active compound in association with a carrier and/or enclosed within an envelope. Whether the composition contains a daily dose, or for example, a half, a third or a quarter of a daily dose, will 5 depend on whether the pharmaceutical composition is to be administered once or, for example, twice, three times or four times a day, respectively.

[0056] The term "salt", as used herein, denotes acidic and/or basic salts, formed with inorganic or organic acids and/or bases, preferably basic salts. While pharmaceutically acceptable salts are preferred, particularly when employing the compounds of the invention as 10 medicaments, other salts find utility, for example, in processing these compounds, or where non-medicament-type uses are contemplated. Salts of these compounds may be prepared by art-recognized techniques.

[0057] Examples of such pharmaceutically acceptable salts include, but are not limited to, inorganic and organic addition salts, such as hydrochloride, sulphates, nitrates or phosphates 15 and acetates, trifluoroacetates, propionates, succinates, benzoates, citrates, tartrates, fumarates, maleates, methane-sulfonates, isothionates, theophylline acetates, salicylates, respectively, or the like. Lower alkyl quaternary ammonium salts and the like are suitable, as well.

[0058] As used herein, the term "pharmaceutically acceptable" carrier means a non-toxic, inert solid, semi-solid liquid filler, diluent, encapsulating material, formulation auxiliary of any 20 type, or simply a sterile aqueous medium, such as saline. Some examples of the materials that can serve as pharmaceutically acceptable carriers are sugars, such as lactose, glucose and sucrose, starches such as corn starch and potato starch, cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt, gelatin, talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, 25 cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol, polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate, agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline, Ringer's solution; ethyl alcohol and phosphate buffer solutions, as well as other non-toxic compatible substances used in 30 pharmaceutical formulations.

[0059] Wetting agents, emulsifiers and lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening,

flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. Examples of pharmaceutically acceptable antioxidants include, but are not limited to, water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfite, sodium metabisulfite, sodium sulfite, and the like; oil soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, aloha-tocopherol and the like; and the metal chelating agents such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid and the like.

[0060] For oral administration, the compounds can be formulated into solid or liquid preparations such as capsules, pills, tablets, lozenges, melts, powders, suspensions or emulsions.

In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, suspending agents, and the like in the case of oral liquid preparations (such as, for example, suspensions, elixirs and solutions); or carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (such as, for example, powders, capsules and tablets). Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar-coated or enteric-coated by standard techniques. The active agent can be encapsulated to make it stable to passage through the gastrointestinal tract while at the same time allowing for passage across the blood brain barrier. See for example, WO 96/11698.

[0061] For parenteral administration, the compound may be dissolved in a pharmaceutical carrier and administered as either a solution or a suspension. Illustrative of suitable carriers are water, saline, dextrose solutions, fructose solutions, ethanol, or oils of animal, vegetative or synthetic origin. The carrier may also contain other ingredients, for example, preservatives, suspending agents, solubilizing agents, buffers and the like. When the compounds are being administered intrathecally, they may also be dissolved in cerebrospinal fluid.

[0062] A variety of administration routes are available. The particular mode selected will depend of course, upon the particular drug selected, the severity of the disease state being treated and the dosage required for therapeutic efficacy. The methods of this invention, generally speaking, may be practiced using any mode of administration that is medically acceptable,

meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects. Such modes of administration include oral, rectal, sublingual, topical, nasal, transdermal or parenteral routes. The term "parenteral" includes subcutaneous, intravenous, epidural, irrigation, intramuscular, release pumps, or infusion.

5 [0063] For example, administration of the active agent according to this invention may be achieved using any suitable delivery means, including:

- (a) pump (see, e.g., Luer & Hatton (1993), Zimm et al. (1984) and Ettinger et al. (1978));
- (b), microencapsulation (see, e.g., U.S. Patent Nos. 4,352,883; 4,353,888; and 5,084,350);
- 10 (c) continuous release polymer implants (see, e.g., U.S. Patent No. 4,883,666);
- (d) macroencapsulation (see, e.g., U.S. Patent Nos. 5,284,761, 5,158,881, 4,976,859 and 4,968,733 and published PCT patent applications WO92/19195, WO 95/05452);
- (e) naked or unencapsulated cell grafts to the CNS (see, e.g., U.S. Patent Nos. 5,082,670 and 5,618,531);
- 15 (f) injection, either subcutaneously, intravenously, intra-arterially, intramuscularly, or to other suitable site; or
- (g) oral administration, in capsule, liquid, tablet, pill, or prolonged release formulation.

[0064] In one embodiment of this invention, an active agent is delivered directly into the CNS, preferably to the brain ventricles, brain parenchyma, the intrathecal space or other suitable 20 CNS location, most preferably intrathecally.

[0065] Alternatively, targeting therapies may be used to deliver the active agent more specifically to certain types of cell, by the use of targeting systems such as antibodies or cell specific ligands. Targeting may be desirable for a variety of reasons, e.g. if the agent is unacceptably toxic, or if it would otherwise require too high a dosage, or if it would not 25 otherwise be able to enter the target cells.

[0066] The active agents, which are peptides, can also be administered in a cell based delivery system in which a DNA sequence encoding an active agent is introduced into cells designed for implantation in the body of the patient, especially in the spinal cord region. Suitable delivery systems are described in U.S. Patent No. 5,550,050 and published PCT 30 Application Nos. WO 92/19195, WO 94/25503, WO 95/01203, WO 95/05452, WO 96/02286, WO 96/02646, WO 96/40871, WO 96/40959 and WO 97/12635. Suitable DNA sequences can

be prepared synthetically for each active agent on the basis of the developed sequences and the known genetic code.

[0067] The active agent is preferably administered in an therapeutically effective amount. By a "therapeutically effective amount" or simply "effective amount" of an active compound is meant a sufficient amount of the compound to treat the desired condition at a reasonable benefit/risk ratio applicable to any medical treatment. The actual amount administered, and the rate and time-course of administration, will depend on the nature and severity of the condition being treated. Prescription of treatment, e.g. decisions on dosage, timing, etc., is within the responsibility of general practitioners or specialists, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of techniques and protocols can be found in *Remington's Pharmaceutical Sciences*.

[0068] Dosage may be adjusted appropriately to achieve desired drug levels, locally or systemically. Typically the active agents of the present invention exhibit their effect at a dosage range from about 0.001 mg/kg to about 250 mg/kg, preferably from about 0.01 mg/kg to about 100 mg/kg of the active ingredient, more preferably from about 0.05 mg/kg to about 75 mg/kg. A suitable dose can be administered in multiple sub-doses per day. Typically, a dose or sub-dose may contain from about 0.1 mg to about 500 mg of the active ingredient per unit dosage form. A more preferred dosage will contain from about 0.5 mg to about 100 mg of active ingredient per unit dosage form. Dosages are generally initiated at lower levels and increased until desired effects are achieved. In the event that the response in a subject is insufficient at such doses, even higher doses (or effective higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Continuous dosing over, for example 24 hours or multiple doses per day are contemplated to achieve appropriate systemic levels of compounds.

[0069] For the treatment of pain, if the route of administration is directly to the CNS, the dosage contemplated is from about 1 ng to about 100 mg per day, preferably from about 100 ng to about 10 mg per day, more preferably from about 1 µg to about 100 µg per day. If administered peripherally, the dosage contemplated is somewhat higher, from about 100 ng to about 1000 mg per day, preferably from about 10 µg to about 100 mg per day, more preferably from about 100 µg to about 10 mg per day. If the conopeptide is delivered by continuous

infusion (e.g., by pump delivery, biodegradable polymer delivery or cell-based delivery), then a lower dosage is contemplated than for bolus delivery.

[0070] Advantageously, the compositions are formulated as dosage units, each unit being adapted to supply a fixed dose of active ingredients. Tablets, coated tablets, capsules, ampoules and suppositories are examples of dosage forms according to the invention.

[0071] It is only necessary that the active ingredient constitute an effective amount, i.e., such that a suitable effective dosage will be consistent with the dosage form employed in single or multiple unit doses. The exact individual dosages, as well as daily dosages, are determined according to standard medical principles under the direction of a physician or veterinarian for use humans or animals.

[0072] The pharmaceutical compositions will generally contain from about 0.0001 to 99 wt. %, preferably about 0.001 to 50 wt. %, more preferably about 0.01 to 10 wt.% of the active ingredient by weight of the total composition. In addition to the active agent, the pharmaceutical compositions and medicaments can also contain other pharmaceutically active compounds.

15 Examples of other pharmaceutically active compounds include, but are not limited to, analgesic agents, cytokines and therapeutic agents in all of the major areas of clinical medicine. When used with other pharmaceutically active compounds, the conopeptides of the present invention may be delivered in the form of drug cocktails. A cocktail is a mixture of any one of the compounds useful with this invention with another drug or agent. In this embodiment, a common administration vehicle (e.g., pill, tablet, implant, pump, injectable solution, etc.) would contain both the instant composition in combination supplementary potentiating agent. The individual drugs of the cocktail are each administered in therapeutically effective amounts. A therapeutically effective amount will be determined by the parameters described above; but, in any event, is that amount which establishes a level of the drugs in the area of body where the 20 drugs are required for a period of time which is effective in attaining the desired effects.

25 [0073] The practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA, genetics, immunology, cell biology, cell culture and transgenic biology, which are within the skill of the art. See, e.g., Maniatis *et al.*, 1982; Sambrook *et al.*, 1989; Ausubel *et al.*, 1992; Glover, 1985; Anand, 1992; Guthrie and Fink, 1991; Harlow and Lane, 1988; Jakoby and Pastan, 1979; *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984);

Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); *Culture Of Animal Cells* (R. I. Freshney, Alan R. Liss, Inc., 1987); *Immobilized Cells And Enzymes* (IRL Press, 1986); B. Perbal, *A Practical Guide To Molecular Cloning* (1984); the treatise, *Methods In Enzymology* (Academic Press, Inc., N.Y.); *Gene Transfer Vectors For Mammalian Cells* (J. H. 5 Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); *Methods In Enzymology*, Vols. 154 and 155 (Wu et al. eds.), *Immunochemical Methods In Cell And Molecular Biology* (Mayer and Walker, eds., Academic Press, London, 1987); *Handbook Of Experimental Immunology*, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Riott, *Essential Immunology*, 6th Edition, Blackwell Scientific Publications, Oxford, 1988; Hogan et al., 10 Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

EXAMPLES

[0074] The present invention is described by reference to the following Examples, which 15 are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described below were utilized.

EXAMPLE 1

Isolation of ω -Conotoxins

[0075] Crude venom was extracted from venom ducts (Cruz et al., 1976), and the components were purified as previously described (Cartier et al., 1996). The crude extract from venom ducts was purified by reverse phase liquid chromatography (RPLC) using a Vydac C₁₈ semi-preparative column (10 x 250 mm). Further purification of bioactive peaks was done on a 25 Vydac C₁₈ analytical column (4.6 x 220 mm). The effluents were monitored at 220 nm. Peaks were collected, and aliquots were assayed for activity. Throughout purification, HPLC fractions were assayed by means of intracerebral ventricular (i.c.v.) injection into mice (Clark et al., 1981).

[0076] The amino acid sequence of the purified peptides were determined by standard 30 methods. The purified peptides were reduced and alkylated prior to sequencing by automated Edman degradation on an Applied Biosystems 477A Protein Sequencer with a 120A Analyzer (DNA/Peptide Facility, University of Utah) (Martinez et al., 1995; Shon et al., 1994).

[0077] In accordance with this method, the ω -conopeptides described as “isolated” in Table 1 were obtained. These ω -conopeptides, as well as the other ω -conopeptides and the ω -conopeptide precursors set forth in Table 1 are synthesized as described in U.S. Patent No. 5,591,821.

5

EXAMPLE 2

Isolation of DNA Encoding ω -Conopeptides

[0078] DNA coding for ω -conopeptides was isolated and cloned in accordance with conventional techniques using general procedures well known in the art, such as described in 10 Olivera et al. (1996). Alternatively, cDNA libraries was prepared from *Conus* venom duct using conventional techniques. DNA from single clones was amplified by conventional techniques using primers which correspond approximately to the M13 universal priming site and the M13 reverse universal priming site. Clones having a size of approximately 300-500 nucleotides were sequenced and screened for similarity in sequence to known ω -conotoxins. 15 The DNA sequences and encoded propeptide sequences are set forth in Table 1. DNA sequences coding for the mature toxin can also be prepared on the basis of the DNA sequences set forth in Table1. An alignment of the ω -conopeptides of the present invention is set forth in Table 2.

20

TABLE 1

DNA and Amino Acid Sequences of ω -Conopeptides and Precursors

Name: J410

Species:

Cloned: Yes

25

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATCATGCCCTGAGGTC
 GACCACCAATTCTCCACGTTGACTCGTCGCTGCCTTCTCCGGATCACGATGTCA
 30 TAAGACAATGCGTAACTGCTGCACTTCATGCTCTTCATAACAAAGGGAAATGTCGGCC
 TCGAAAATGAACCACTCATCACCTACTCCTCTGGAGGGCTCAGAGGAATTACATTGA
 AATAAAAGCCGCATTACAAAAAAAAAAAAA (SEQ ID NO:1)

30

Translation:

35 MKLTCMVIVAVLLLTAQLITADD SRGTQKHH ALRSTTNFSTLRRCLSPGSRCHK TMR
 NCCTSCSSYKGKCRPRK (SEQ ID NO:2)

Toxin Sequence:

Cys-Leu-Ser-Xaa3-Gly-Ser-Arg-Cys-His-Lys-Thr-Met-Arg-Asn-Cys-Cys-Thr-Ser-Cys-Ser-Ser-Xaa5-Lys-Gly-Lys-Cys-Arg-Xaa3-Arg-Lys-^ (SEQ ID NO:3)

5

Name: J411

Species:

Cloned: Yes

10 **DNA Sequence:**

GGATCCATGAAACTGACGTGCGTGGTGATCGTCGCCGTGCTGCTCCTGACGGTCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAAGCATGCCCTGAGGTC
 GACCACCAATTCTCCACGTCGACTCGTCGCTGCAAACCTCCCGAAGAAAATGTCT
 GAATAGAAAGAACATGAATGCTGCAGCAAGTTTCAATGAACACCTACATATGTGTG
 15 GATAAAATGGCTAAAAACTGAATAAAAGCCGCATTGCAAAAAAAAAAAAAAA
 AA (SEQ ID NO:4)

Translation:

MKLTCVIVAVLLLVCQLITADDSGTQKHHALRSTTNFSTSTRCKPPGRKCLNRKN
 20 ECCSKFCNEHLHMCG (SEQ ID NO:5)

Toxin Sequence:

Cys-Lys-Xaa3-Xaa3-Gly-Arg-Lys-Cys-Leu-Asn-Arg-Lys-Asn-Xaa1-Cys-Cys-Ser-Lys-Phe-Cys-Asn-Xaa1-His-Leu-His-Met-Cys-# (SEQ ID NO:6)

25

Name: J413

Species:

Cloned: Yes

30

DNA Sequence:

GGATCCATGAAACTGACGTGCGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCGTCACAGCTGATGGCTCCAGAGGTATGCAGAAGCATTATGCCCTGAGGTC
 GACCACCAATCTCTCCATATCGTCTCGCTGCAAACCTCCCGAAGAAAATGTCTGAA
 35 GATTAAGGATAAAATGCTGCAACTTTGCAATACACACCTAAATATGTGTGGATAAAAT
 GGCTAAAAACTGAATAAAAGCCGCATTGCAAAAAAAAAAAAAAA (SEQ ID NO:7)

Translation:

MKLTCVIVAVLLLACQLVTADGSRGMQKHYALRSTTNLSISSRCKPPRRKCLKIKDK
 40 CCNFCNTHLMCG (SEQ ID NO:8)

Toxin Sequence:

Cys-Lys-Xaa3-Xaa3-Arg-Arg-Lys-Cys-Leu-Lys-Ile-Lys-Asp-Lys-Cys-Cys-Asn-Phe-Cys-Asn-45 Thr-His-Leu-Asn-Met-Cys-# (SEQ ID NO:9)

Name: J414
Species:
Cloned: Yes

5 DNA Sequence:

GGATCCATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCTCCTGATGGCCTGT
 CAACTCGTCACAGCTGATGGCTCCAGAGGTATGCACAAGCATTATGCCCTGAGGTC
 GACCACCAAACCTCTCATGTCGACTCGCTGCGCAGGTCCAGGAACAAATTGTCCTAA
 TAGGGTATGCTGCGTTATTGCAGTAAAAGAACACATCTATGTCATTGCGAAGCTGG
 CTGATCTCCCCCTCTGCGCTCCATCCTTCTGCCTGAGTCCTCCATACCTGAGAA
 TGGTCATGAACCACTCAACACACTCCTCTGGAGGGCCTCAGAAGAGCTACATTG
 AAATAAAAGCCGCATTACAAAAAAAAAAAAA (SEQ ID NO:10)

Translation:

MKLTCVIVAVLLLACQLVTADGSRGMHKYALRSTTKLSMSTRCAGPGTICPNRVC
 CGYCSKRTHLCHSRTG (SEQ ID NO:11)

Toxin Sequence:

Cys-Ala-Gly-Xaa3-Gly-Thr-Ile-Cys-Xaa3-Asn-Arg-Val-Cys-Cys-Gly-Xaa5-Cys-Ser-Lys-Arg-
 20 Thr-His-Leu-Cys-His-Ser-Arg-Thr-# (SEQ ID NO:12)

25 Name: Ar6.10
Species: arenatus
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTGATCATGCCGTGCTGTTCTGACGGCCTGT
 CAACTCATTACAGGTGAGCAGAAGGACCATGCTCTGAGGTCAACTGACAAAAACTC
 30 CAAGTTGACTAGGCAGTGCTCGGCTAACGGTGGATCTTGTACTCGTCATTTCACTG
 CTGCAGCCTCTATTGCAATAAAGATTCCAGTGTATGTGGCACACCTCATACCGTG
 AGTGGCCATGAACCCCTCAATACCCTCTCCTGGAGGCTTCAGAGGAAC TGATTG
 AAATAAAACCGCATTGCAATAAAAAAAAAAAAAA (SEQ ID NO:13)

35 Translation:

MKLTCMVIIAVLFLTACQLITGEQKDHALRSTDKNKLTRQCSANGGSCTRHFHCCSLY
 CNKDSSVCVATSY (SEQ ID NO:14)

Toxin Sequence:

Xaa2-Cys-Ser-Ala-Asn-Gly-Gly-Ser-Cys-Thr-Arg-His-Phe-His-Cys-Cys-Ser-Leu-Xaa5-Cys-
 40 Asn-Lys-Asp-Ser-Ser-Val-Cys-Val-Ala-Thr-Ser-Xaa5-Xaa3-^ (SEQ ID NO:15)

45 Name: Ar6.2
Species: arenatus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATAAAATGAAACTGACGTGCGTGGATTATGCCGTGCTGTT
 CTGACGGCCTGTCACACTCATTACAGCTGAGACTTACTCCAGAGGTGAGCAGAACGA
 CCATGCTCTGAGGTCAACTGACAGAAACTCCAAGTTGACCAGGACATGCAACACTC
 CCACTGAATATTGTACTTGCATCGACACTGCTGCAGCGGCTACTGCCATAAAACAA
 5 TCCAGGCATGTTCATATAACCGGTGAGTGGTCATGAACCCTCAATACCCTCTCCTC
 TGGAGGCTTCAGAGGAAC TG CATTGAAATAAAAGCCGCATTGC (SEQ ID NO:16)

Translation:

MKLTCVLIIAVLFLTACQLITAETYSRGEQKHHALRSTDNSKLTRTCNTPTEYCTLHRH
 10 CCSGYCHKTIQACS (SEQ ID NO:17)

Toxin Sequence:

Thr-Cys-Asn-Thr-Xaa3-Thr-Xaa1-Xaa5-Cys-Thr-Leu-His-Arg-His-Cys-Cys-Ser-Gly-Xaa5-Cys-
 15 His-Lys-Thr-Ile-Gln-Ala-Cys-Ser-^ (SEQ ID NO:18)

Name: Ar6.3

Species: arenatus

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATAAAATGAAACTGACGTGCGTGGATTATGCCGTGCTGTT
 CTGACGGCCTGTCACACTCATTACAGCTGAGACTTACTCCAGAGGTGAGCAGATGCA
 CCGTGCTCTGAGGTCAACTGACAAAAACTCCAAGTTGACTAGGCAGTGCACGCCA
 25 ACGGTGGATCTTGTCTCGTCATTTCACTGCTGCAGCCTCTATTGCAATAAAAGTA
 CTGGCGTATGTATTGCAACCTCATACCCGTGAGTGGTCATGAACCCTCAATACCCT
 CTCCTCTGGAGGCTTCAGAGGAAC TG CATTGAAATAAAAGCCGCATTGC (SEQ ID
 NO:19)

Translation:

MKLTCVLIIAVLFLTACQLITAETYSRGEQMHRALRSTDNSKLTRQCTPNGGCSRHFH
 30 CCSLYCNKSTGVCIATSYP (SEQ ID NO:20)

Toxin Sequence:

Xaa2-Cys-Thr-Xaa3-Asn-Gly-Gly-Ser-Cys-Ser-Arg-His-Phe-His-Cys-Ser-Leu-Xaa5-Cys-
 35 Asn-Lys-Ser-Thr-Gly-Val-Cys-Ile-Ala-Thr-Ser-Xaa5-Xaa3-^ (SEQ ID NO:21)

Name: Ar6.4

Species: arenatus

Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTGATTATGCCGTGCTGTTCTGACGGCCTGT
 45 CAACTCATTACAGCTGAGACTTACTCCAGAGGTGAGCAGAACGCACCATGCTCTGAG
 GTCAACTGACAAAAACTCCAAGTTGACCAGGACATGCAACACTCCCACCGAATATT
 GTACTTGCATCAACACTGCTGCAGCGGCTACTGCCATAAAACAATCCAGGCATGTT
 CATAATACCGGTGAGTGGTCATGAACCCTCAATACCCTCTGGAGGCTTCAG

AGGAAC TG CATT GAA ATA AAA ACC GC ATT AC AAAAAA AAAAAA AAAAAA (SEQ ID NO:22)

Translation:

5 MKLTCMVIIAVLFLTACQLITAETYSRGEQKHHALRSTDKN SKLRTCNPTEYCTLHQH
CCSGYCHKTIQACS (SEQ ID NO:23)

Toxin Sequence:

10 Thr-Cys-Asn-Thr-Xaa3-Thr-Xaa1-Xaa5-Cys-Thr-Leu-His-Gln-His-Cys-Cys-Ser-Gly-Xaa5-Cys-
His-Lys-Thr-Ile-Gln-Ala-Cys-Ser-^ (SEQ ID NO:24)

Name: Ar6.6

Species: arenatus

15 Cloned: Yes

DNA Sequence:

20 GGATCCATGAAACTGACGTGTATGGTGATCATGCCGTACTGTTCTGACGGCCTGT
CAACTCATTACAGCTGAGACTTA CTCCAGAGGTAA GCAGATGCACCGCGCTCTGAG
GTCAACTGACAAAAACTCCCAGTTGACCAGGGAATGCACACCTCCCGTGGAGCTT
GTGGTTACCTACACACTGCTGCGGTTTGCGATACTGCAAACAACAGATGTCTGT
AAAGCTGGTCTGGCGTCTGATATTCCCTCTGTGCTCTATCCTCTTGGCCTGAGTC
ATCCGTACCTGTGAGTGGTCATGA ACTACTCAATACCCTCTCCTCTGGAGGCTTCAG
AGGAAC TACAATGAAATAAAACCGCATTGCAGAGAAAAA AAAAAA (SEQ ID NO:25)

Translation:

MKLTCMVIIAVLFLTACQLITAETYSRGKQMHRALRSTDKN SQLTRECTPPGGACGLPT
HCCGFCDTANNRCL (SEQ ID NO:26)

Toxin Sequence:

Xaa1-Cys-Thr-Xaa3-Xaa3-Gly-Gly-Ala-Cys-Gly-Leu-Xaa3-Thr-His-Cys-Cys-Gly-Phe-Cys-
Asp-Thr-Ala-Asn-Asn-Arg-Cys-Leu-^ (SEQ ID NO:27)

35 Name: Ar6.7

Species: arenatus

Cloned: Yes

DNA Sequence:

40 GGATCCATGAAACTGACGTGCGTGGTATTATGCCGTGCTGTTCTGACGGCCTGT
CAACTCATTACAGCTGAGACTTA CTCCAGAGGTGAGCAGAACATCACCATGTTCTGAG
GTCAACTGACAAAAACTCCAAGTTGACCAGGACATGCAACACTCCC ACTGAATATT
GTACTTGCATCAACACTGCTGCAGCGGCCACTGCCATAAAACAATCCAGGCATGT
45 GCATAATACC CGTGGGTGGTCATGAACCACTCAATACCCTCCCTCTGGAGGCTTCAG
GAGGAAC TG CATT GAA ATA AAA ACC GC ATT GC AT GAA AN AAAAAA AAAAAA (SEQ ID NO:28)

Translation:

MKLTCVIIIAVLFLTACQLITAETYSRGEQNHHLRSTDKNKLTRTCNTPTEYCTLHQH
CCSGHCHKTIQACA (SEQ ID NO:29)

5 **Toxin Sequence:**

Thr-Cys-Asn-Thr-Xaa3-Thr-Xaa1-Xaa5-Cys-Thr-Leu-His-Gln-His-Cys-Cys-Ser-Gly-His-Cys-
His-Lys-Thr-Ile-Gln-Ala-Cys-Ala-^ (SEQ ID NO:30)

10 **Name:** Ar6.8
Species: arenatus
Cloned: Yes

DNA Sequence:

15 GGATCCATGAAACTGACGTGTGGTGATCATGCCGTGCTGTTCCCTGACGGCCTGT
CAACTCACTACAGGTGAGCAGAAGGACCATGCTCTGAGGTCAACTGACAAAAACTC
CAAGTTGACTAGGCAGTGCTCGCCTATCGGTGGATATTGTACTCTTCATATTCACTG
CTGCAGCAACCATTGCATTAAACCTATCGGCCATGTGTGGCACACCTGATAACCGTG
CGTGGTCATGAACCCCTCAATACCCCTCTCCTCTGGAGGGCTTCAGAGGAACACTGCATTG
20 AAATAAAAACCGCATTGCAATAAAAAAAAAAAAAAAA (SEQ ID NO:31)

Translation:

MKLTCVIIIAVLFLTACQLTTGEQKDHALRSTDKNKLTRQCSPIGGYCTLHIHCCSNHC
IKPIGRCVAT (SEQ ID NO:32)

25 **Toxin Sequence:**

Xaa2-Cys-Ser-Xaa3-Ile-Gly-Gly-Xaa5-Cys-Thr-Leu-His-Ile-His-Cys-Cys-Ser-Asn-His-Cys-Ile-
30 Lys-Xaa3-Ile-Gly-Arg-Cys-Val-Ala-Thr-^ (SEQ ID NO:33)

35 **Name:** Ar6.9
Species: arenatus
Cloned: Yes

DNA Sequence:

40 GGATCCATGAAACTGACGTGCGTGGTGATCATGCCGTGCTGTTCCCTGACGGCCTGT
CAACTCACTACAGGTGAGCAGAAGGACCATGCTCTGAGGTCAACTGACAAAAACTC
CAAGTTGACTAGGCAGTGCTGCCTAACGGTGGATATTGTACTCTTCATATTCACTG
CTGCAGCGACCATTGCATTAAACCTATCGACCGATGTGTGGCACACCTGATAACCGGG
GCGTGGTCATGAACCCCTCAATACCCCTCTCCTCTGGAGGGCTTCAGAGGAACACTGCATT
GAAATAAAAACCGCATTACAAAAAAA (SEQ ID NO:34)

Translation:

45 MKLTCVIIIAVLFLTACQLTTGEQKDHALRSTDKNKLTRQCLPNGGYCTLHIHCCSDH
CIKPIDRCVAT (SEQ ID NO:35)

Toxin Sequence:

Xaa2-Cys-Leu-Xaa3-Asn-Gly-Gly-Xaa5-Cys-Thr-Leu-His-Ile-His-Cys-Cys-Ser-Asp-His-Cys-Ile-Lys-Xaa3-Ile-Asp-Arg-Cys-Val-Ala-Thr-^ (SEQ ID NO:36)

5

Name: Ay6.1
Species: aurisiacus
Cloned: Yes

10

DNA Sequence:

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 ATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTCCCTGAGCTCGGCCAC
 CAAACTCTCCATGTCGACTCGCTGCAAGGGTAAAGGAAAACCATGCAGTAGGATT
 15 CGTATAACTGCTGCACCGGTTCTGCAGATCAGGTAATGTGGCTGATCCAGCGCCT
 GATCTTCCCCCTCTGTGCTCTATCCTTTCTGCCTGAGTCCTCCTAACCTGAGAGTG
 GTCATGAACCACTCATCACCTGCTCCTGGAGGCCAGAGGAGCTACATTGAAAT
 AAAAGTCGCATTGCAAAAAAAAAAAAAA (SEQ ID NO:37)

20

Translation:

MKLTCVVIVAVLLTACQLITADDRGQTQKHRSLSSATKLSMSTRCKGKGKPCSRISYN
 CCTGSCRSGKCG (SEQ ID NO:38)

Toxin Sequence:

Cys-Lys-Gly-Lys-Gly-Lys-Xaa3-Cys-Ser-Arg-Ile-Ser-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-Ser-Gly-Lys-Cys-# (SEQ ID NO:39)

30

Name: Ay6.2
Species: aurisiacus
Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 ATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTCCCTGAGGTCGAAGAC
 CAAACTCTCCATGTCGACTGGCTGCATGGAAGCCGGATCTTATTGCGGCTCTACTAC
 GAGAATCTGCTCGGGTTTTGCGCTTATTCGGCAAAAAATGTATTGACTATCCCAG
 CAACTGATCTTCCCCCTACTGTGCTCTATCCTTTCTGCCTGAGTCCTCCTAACCTGA
 GAGTGGTCATGAACCACTCATCACCTGCTCCTGGAGGCCAGAGGAGCTACATT
 40 GAAATAAAATCGCATTGCTAAAAAAAAAAAAA (SEQ ID NO:40)

40

Translation:

MKLTCVVIVAVLLTACQLITADDRGQTQKHRSLRSKTKLSMSTGCMEAGSYCGSTTRI
 CCGFCAYFGKKCIDYPSN (SEQ ID NO:41)

45

Toxin Sequence:

Cys-Met-Xaa1-Ala-Gly-Ser-Xaa5-Cys-Gly-Ser-Thr-Thr-Arg-Ile-Cys-Cys-Gly-Phe-Cys-Ala-Xaa5-Phe-Gly-Lys-Lys-Cys-Ile-Asp-Xaa5-Xaa3-Ser-Asn-^ (SEQ ID NO:42)

5 **Name:** Ay6.3
Species: aurisiacus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
10 GTTCCCTGAGCTCGGCCACCAAACACTCTCCATGTCGACTCGCTGCAAGGCTAAAGGA
AAACCATGCAGTAGGATTGCGTATAACTGCTGCACCGGTTCTGCAGATCAGGTA
ATGTGGCTGATCCAGTGCCTGATCTTCCCCCTTCTGTGCTCTATCCTTTCTGCCTGA
GTCCTCCTTACCTGAGAGTGGTCATGAACCACATCACCTGCTCCTCTGGAGGCC
CAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:43)

15 **Translation:**

MKLTCVVIVAVLLLACQLITADD SRGTQK HRSLSATKLSMSTRCKAKGKPC SRIAYN
CCTGSCRSGKCG (SEQ ID NO:44)

20 **Toxin Sequence:**

Cys-Lys-Ala-Lys-Gly-Lys-Xaa3-Cys-Ser-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
Ser-Gly-Lys-Cys-# (SEQ ID NO:45)

25 **Name:** Ay6.4
Species: aurisiacus
Cloned: Yes

DNA Sequence:

30 ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATC
GTGCCCTGAGGTCGAAGACAAAACACTCTCCATGTTAACTT GCGCTGCGCATCTTACG
GAAAACCTTGTGGTATTGACAACGACTGCTGCAATGCATGCGATCCAGGAAGAAAT
ATATGTACGTAGCTGATCCAGCGCCTGATCTTCCCCCTTCTGTGCTCTATCCTTTCT
35 GCCCGAGTCCTCCTTACCTGAGAGTGGTCATGAACCACATCACCTGCTCCCTGGA
GGCCTCAGAGGAGCTACAATGAAATAAAAGCCGCATTGC (SEQ ID NO:46)

Translation:

MKLTCVVIVAVLLLTCQLITADD SRGTQE HRALRSKTKLSMLTLRCASYG KPCGIDND
40 CCNACDPGRNICT (SEQ ID NO:47)

Toxin Sequence:

Cys-Ala-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Asp-Asn-Asp-Cys-Cys-Asn-Ala-Cys-Asp-Xaa3-
Gly-Arg-Asn-Ile-Cys-Thr-^ (SEQ ID NO:48)

45

Name: Bu6.1
Species: bullatus

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGCGATCGTCGCCGTGCTGCT
 5 CCTGACGGCCTGTCAGCTCATTACAGCTGAAGACTCCAGAGGTACGCATGAGCATC
 TTGCCCTGAAGTCGACCTCCAAAGTCTCCAAGTCGACTAGCTGCATGGAAGCCGGA
 TCTTATTGCGGACCTGCTACTACGAAAATCTGCTGCGATTTGCAGTCCATTAGC
 GATAGATGTATGAACAATCCCAACAAATTGATCTTCCCCCTGTGCTCCATCCTTT
 10 CTGCCTGAGTCCTCCTACCTGAGAGTGGTCATGAACCACATCACCTACTCCTCT
 GGAGGCTTCAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:49)

Translation:

MKLTCVAIVAVLLLACQLITAEDSRGTHEHLALKSTSKVSKSTSCMEAGSYCGPATT
 15 KI CCDFCSPFSDRCMNNPNN (SEQ ID NO:50)

Toxin Sequence:

Ser-Thr-Ser-Cys-Met-Xaa1-Ala-Gly-Ser-Xaa5-Cys-Gly-Xaa3-Ala-Thr-Thr-Lys-Ile-Cys-Cys-
 Asp-Phe-Cys-Ser-Xaa3-Phe-Ser-Asp-Arg-Cys-Met-Asn-Asn-Xaa3-Asn-Asn-^ (SEQ ID NO:51)

20 **Name:** Bu6.2

Species: bullatus

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAGCTCATTACAGCTGAAGACTCCAGAGGTACGCAGTTGCATC
 GTGCCCTGAGGAAGGCCACCAAACACCCCTGTGTCGACTCGCTGCATTACTCCAGGA
 ACACGATGTAAGGTTCCGAGCCAATGCTGCAGAGGTCTTGCAGAACCGGTCGTTG
 30 TACTCCATCCCCCTCTGAATGGTAAATGTGGTTGATCCAGCGCCTGATCTTCCCCCTT
 CGTCGTGCTCCATCCTTTCTGCCTGAGTCCTCCTTACCTGAGAGTGGTCATGAACC
 ACTCATCACCTACTCCCCCTGGAGGCTCAGAGGAGCTACATTGAAATAAAAGCCGC
 ATTGC (SEQ ID NO:52)

Translation:

MKLTCVVIVAVLLLACQLITAEDSRGTQLHRALRKATKHPVSTRCITPGTRCKVPSQCC
 RGPKNGRCTPSPSEW (SEQ ID NO:53)

Toxin Sequence:

Cys-Ile-Thr-Xaa3-Gly-Thr-Arg-Cys-Lys-Val-Xaa3-Ser-Gln-Cys-Cys-Arg-Gly-Xaa3-Cys-Lys-
 Asn-Gly-Arg-Cys-Thr-Xaa3-Ser-Xaa3-Ser-Xaa1-Xaa4-^ (SEQ ID NO:54)

45 **Name:** Bu6.3

Species: bullatus

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATAAAATGAAACTGACGTGTGGCGATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAGCTCATTACAGCTGAGGACTCCAGAGATACGCAGAACATC
 GTGCCCTGAGGTGGACACCAAACCTCTCCATGTTGACTTGCCTGCGCAACTTACG
 GAAAAACCTTGTGGTATTCAAACGACTGCTGCAATACATGCGATCCAGCCAGAAGG
 5 ACATGTACGTAGCTGATCCGGCTTGATCCTCCGCTTGTGCTCCATCTTTCTG
 CCTGAGTCCTCCTACCTGAGAGTGGTCATGAACCACCATCACCTACTCCTCTGGA
 GGCTTAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:55)

Translation:

10 MKLTCVAIVAVLLLACQLITAEDSRDTQKHRALRSDTKLSMLTLRCATYGKPCGIQND
 CCNTCDPARRTCT (SEQ ID NO:56)

Toxin Sequence:

15 Cys-Ala-Thr-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Gln-Asn-Asp-Cys-Cys-Asn-Thr-Cys-Asp-Xaa3-
 Ala-Arg-Arg-Thr-Cys-Thr-^ (SEQ ID NO:57)

20 **Name:** Bu6.4
Species: bullatus
Cloned: Yes

DNA Sequence:

25 ACCAAAAACCATCATAAAATGAAACTGACGTGTGGCGATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAGCTCATTACAGCTGAAGACTCCAGAGGTACGCAGTTGCATC
 GTGCCCTGAGGAAGACCACCAAACCTCTCCTGTCACTCGCTGCAAGGGTCCAGGA
 GCATCATGTATAAGGATTGCGTATAACTGCTGCAAGTATTCTGCAGAAATGGTAAA
 TGTGGCTGATCCAGCGCCTGATCTCCCCCTGTGCTCCATCCTTCTGCCTGAG
 TCCTCCTTACCTGAGAGTGGTCATGAACCACCATCACCTACTCCTCTGGAGGCTTC
 AGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:58)

Translation:

30 MKLTCVAIVAVLLLACQLITAEDSRGTQLHRALRKTTKLSLSTRCKPGPGASCIRIAYNC
 CKYSCRNGKCG (SEQ ID NO:59)

Toxin Sequence:

35 Cys-Lys-Gly-Xaa3-Gly-Ala-Ser-Cys-Ile-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Lys-Xaa5-Ser-Cys-
 Arg-Asn-Gly-Lys-Cys-# (SEQ ID NO:60)

40 **Name:** Bu6.5
Species: bullatus
Cloned: Yes

DNA Sequence:

45 ATCAAAACCATCATAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTC
 CTGACGGCCTGTCAGCTCATTACAGCTGAAGACTCCAGAGGTACGCATGAGCATCTT
 GCCCTGAAGTCGACCTCCAAAGTCTCCAAGTCGACTAGCTGCATGGCAGCCGGATC
 TTATTGCGGACCTGCTACTACGAATATCTGCTGCGATTTCAGTCCATTAGCGA

TAGATGTATGAAAAAGCCCAACAATTGATCTTCCCCCTGTGCTCTATCCTTTCT
 GCCTGAGTCCTCCTACCTGAGAGTGGTCATGAACCACTCACCTACTCCTCTGG
 AGGCTTCAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:61)

5 **Translation:**

MKLTCVVIVAVLLLACQLITAEDSRGTHEHLALKSTSKVSKSTSCMAAGSYCGPATTNI
 CCDFCSPFSDRCMKKPNN (SEQ ID NO:62)

10 **Toxin Sequence:**

Ser-Thr-Ser-Cys-Met-Ala-Ala-Gly-Ser-Xaa5-Cys-Gly-Xaa3-Ala-Thr-Thr-Asn-Ile-Cys-Cys-Asp-
 Phe-Cys-Ser-Xaa3-Phe-Ser-Asp-Arg-Cys-Met-Lys-Lys-Xaa3-Asn-Asn-^ (SEQ ID NO:63)

15 **Name:** Bu6.6

Species: bullatus

Cloned: Yes

20 **DNA Sequence:**

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
 25 CCTGACGGCCTGTCAGCTCATTATAGCTGAGGACTCCAGAGGTACGCAGTTGCATCG
 TGCCCTGAGGAAGGCCACCAAACCTCTCCGTGTCGACTCGCTGCAAGAGTAAAGGAT
 CATCATGTCATAGGACTTCGTATGACTGCTGCACGGTTCTGCAGAAAATGGTAGAT
 GTGGCTGATCCAGCGCCTGATCTTCCCCCTCTGTGCTCCATCCTTCTGCCTGAGT
 30 CCTCCTTACCTGAGAGTGGTCATGAACCACTCATCACCTACTCCTCTGGAGGCTTCA
 GAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:64)

35 **Translation:**

MKLTCVVIVAVLLLACQLIIAEDSRGTQLHRALRKATKLSVSTRCKSKGSSCHRTSYDC
 CTGSCRNGRCG (SEQ ID NO:65)

40 **Toxin Sequence:**

Cys-Lys-Ser-Lys-Gly-Ser-Ser-Cys-His-Arg-Thr-Ser-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
 Asn-Gly-Arg-Cys-# (SEQ ID NO:66)

35 **Name:** Ca6.4

Species: characteristicus

Cloned: Yes

40 **DNA Sequence:**

GGATCCATGAAACTGACGTGCGTGGTGATCATGCCGTGCTGTTCTGACGGCCTGT
 CAACTCATTACAGGTGAGCAGAAGGACCATGCTCTGAGGTCAACTGACAAAAACTC
 CAAGTTGACTAGGCAGTGCTCGGCTAACGGTGGATCTGTACTCGTCATTTCACTG
 CTGCAGCCTCTATTGCAATAAAGATTCCAGTGTATGTGGCAACCTCATAACCGTG
 45 AGTGGCCATGAACCCCTCAATACCCTCTCCTGGAGGCTTCAGAGGAACCGATTG
 AAATAAAACCGCATTACAAAAAAAAAAAAAA (SEQ ID NO:67)

Translation:

MKLTCVVIIAVLFLTACQLITGEQKDHALRSTDKN SKL TRQCSANGGSCTRHFHCCSLYC
NKDSSVCVATSY (SEQ ID NO:68)

Toxin Sequence:

5 Xaa2-Cys-Ser-Ala-Asn-Gly-Gly-Ser-Cys-Thr-Arg-His-Phe-His-Cys-Cys-Ser-Leu-Xaa5-Cys-
Asn-Lys-Asp-Ser-Ser-Val-Cys-Val-Ala-Thr-Ser-Xaa5-Xaa3-^ (SEQ ID NO:69)

10 **Name:** C6.1

Species: catus

Cloned: Yes

DNA Sequence:

15 **Translation:**

CKSTGASCRRRTSYDCCTGSCRSGRCG (SEQ ID NO:70)

Toxin Sequence:

20 Cys-Lys-Ser-Thr-Gly-Ala-Ser-Cys-Arg-Arg-Thr-Ser-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
Ser-Gly-Arg-Cys-# (SEQ ID NO:71)

25 **Name:** C6.4

Species: catus

Cloned: Yes

DNA Sequence:

30 TCGACTCGCTGCCAGGGTAGAGGGAGCATCATGTCGTAAGACTATGTATAACTGCTG
CAGCGGTTCTTGC AACAGAGGTAGTTGTGGCTGATCCGGCGCCTGATCTTCCCCCTT
CCGTGCTCTATCCTTTCTGCCTGATT CCTCCTTACCTGAGAGCGGTCATGAACC ACT
CATCACCTGCT CCTCTGGAGGCCTCAGAGGAGCTACATTGAAATAAAGCCGCATT
GC (SEQ ID NO:72)

35 **Translation:**

STRCQGRGASCRKTMYNCCSGSCNRGSCG (SEQ ID NO:73)

Toxin Sequence:

40 Cys-Gln-Gly-Arg-Gly-Ala-Ser-Cys-Arg-Lys-Thr-Met-Xaa5-Asn-Cys-Cys-Ser-Gly-Ser-Cys-Asn-
Arg-Gly-Ser-Cys-# (SEQ ID NO:74)

45 **Name:** C6.5

Species: catus

Cloned: Yes

DNA Sequence:

TCGACACGCTGCTGCCTGCCGGAGAGTCTGCCTTTAGTAGGATTAGATGCTGC
GGTACTGCAGTTCA GTCTAAAGTCATGTGTGAGCTGATCCAGCTGCTGATCTTCC

TCCTCCTGTGCTCCATCCTTTCTGCCTGAGTCCTCCTATCTGAGAGTGGTCATGAA
 CCACTCACCAACCTACTCTCTGGAGGCTCAGAGGAGCTACAGTGAAATAAAAGCC
 GCATTGC (SEQ ID NO:75)

5 **Translation:**

STRCLPAGESCLFSRIRCCGTSSVLKSCVS (SEQ ID NO:76)

Toxin Sequence:

Cys-Leu-Xaa3-Ala-Gly-Xaa1-Ser-Cys-Leu-Phe-Ser-Arg-Ile-Arg-Cys-Cys-Gly-Thr-Cys-Ser-Ser-
 Val-Leu-Lys-Ser-Cys-Val-Ser-^ (SEQ ID NO:77)

10 **Name:** C6.6

Species: catus

15 **Cloned:** Yes

DNA Sequence:

TCGACACGCTGCCAGGGTAGAGGGAGGACCATGTAAGGCTGTGTTAACTGCTG
 CAGCGGTTCTTGCACACAGAGGTAGATGTGGCTGATCCAGCGCCTGATCTCCCCCT
 20 CTGTGCTCTATCCTTTCTGCCTGAGTCCTCCTACTGAGAGTAGTCATGAACCAC
 ATCACCTACTCCTCTGGAGGCCTCAGAGAGCTACATTGAAATAAAAGCCGCATTGC
 (SEQ ID NO:78)

25 **Translation:**

STRCQGRGGPCTKAVFNCCSGSCNRGRG (SEQ ID NO:79)

Toxin Sequence:

Cys-Gln-Gly-Arg-Gly-Gly-Xaa3-Cys-Thr-Lys-Ala-Val-Phe-Asn-Cys-Cys-Ser-Gly-Ser-Cys-Asn-
 Arg-Gly-Arg-Cys-# (SEQ ID NO:80)

30

Name: C6.7

Species: catus

35 **Cloned:** Yes

DNA Sequence:

TTAACTTGCCTGCGCAACTTACGGAAAACCTTGTGGTATTCAAACGACTGCTGC
 AATAACATGCGATCCAGGCCAGAAAGACATGTACGTAGCTGATCCGGCGTCTGATCTC
 40 CCCCCTCTGTGCTCTATCCTTTCTGCCTGAGTCCTCCTTACCTGAGAGTAGGTCATG
 AACCACTCATCACCTGCTCCTCTGGAGGCCTGGGGGGAGCTACATTGAAATAAAAG
 CCGCATTGC (SEQ ID NO:81)

Translation:

LTLRCATYGKPCGIQNDCNTCDPARKTCT (SEQ ID NO:82)

45

Toxin Sequence:

Cys-Ala-Thr-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Gln-Asn-Asp-Cys-Cys-Asn-Thr-Cys-Asp-Xaa3-
 Ala-Arg-Lys-Thr-Cys-Thr-^ (SEQ ID NO:83)

5 **Name:** C6.8
Species: catus
Cloned: Yes

DNA Sequence:
TCGACTCGCTGCCGGGGTAGAGGGAGGACATGTACTAAGGCTATGTTAACTGCTG
CAGCGGTTCTTGCAACAGAGGTAGATGTGGCTGATCCAGCGCCTGATCTCCCCCTT
10 CTGTGCTCTATCCTTTCTGCCTGAGTCCTCCTTAAGTGAGAGTAGTCATGAACCCT
CATCACCTACTCCTCTGGAGGCCTCAGAGAACATCATTGAAATAAAAGCCGCATT
GC (SEQ ID NO:84)

15 **Translation:**
STRCRGRGGPCTKAMFNCCSGSCNRGRCG (SEQ ID NO:85)

Toxin Sequence:
Cys-Arg-Gly-Arg-Gly-Gly-Xaa3-Cys-Thr-Lys-Ala-Met-Phe-Asn-Cys-Cys-Ser-Gly-Ser-Cys-
Asn-Arg-Gly-Arg-Cys-# (SEQ ID NO:86)

20

25 **Name:** Cr6.1
Species: circumcisus
Cloned: Yes

DNA Sequence:
ACCAAAACCATCATAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATC
30 GTGCCCTGAGGTCGGACACCAAACCCCCATGTCGACTCGCTGCAAGGGTAAAGGA
GCATCATGTCGTAAGACTATGTATAACTGCTGCAGCGGTTCTGCAGCAACGGTAGA
TGTGGCTGATCCAGCGCCTGATCTCCCCCTCTGCTGCTCTATCCTTTCTGCCTGA
GTCCTCCTACCTGAGAGCTGGTCATGAACCCTCATCACCTGCTCCTCTGGAGGCC
CAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:87)

35 **Translation:**
MKLTCVVIVAVLLLTCQLITADDRGTEHRALRSDTKLPMSTRCKKGKGASCRKTMY
NCCSGSCSNGRCG (SEQ ID NO:88)

Toxin Sequence:
40 Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-Arg-Lys-Thr-Met-Xaa5-Asn-Cys-Cys-Ser-Gly-Ser-Cys-Ser-
Asn-Gly-Arg-Cys-# (SEQ ID NO:89)

45 **Name:** Cr6.2
Species: circumcisus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTGGCCACCAAAGTCTCCAAGTCGACTAGCTGCATGGAAGCCGGA
 TCTTATTGCCGCTCTACTACGAGAACCTGCTGCGTTATTGCTCTATTTCAGCAAAA
 5 AATGTATTGACTTCCCAGCAACTGATCTTCCCCACTGTGCTCTATCCTTTCTGC
 CTGAGTCCTCCTTACCTGAGAGTGGTCATGAACCACATCACCCACTCCTCTGGA
 GGCCCAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:90)

Translation:

10 MKLTCVVIVAVLLLTCQLITADDSGTQKHLRSATKVS KSTSCMEAGSYCRSTTRT
 CCGYCSYFSKKCIDFPSN (SEQ ID NO:91)

Toxin Sequence:

15 Ser-Thr-Ser-Cys-Met-Xaa1-Ala-Gly-Ser-Xaa5-Cys-Arg-Ser-Thr-Thr-Arg-Thr-Cys-Cys-Gly-
 Xaa5-Cys-Ser-Xaa5-Phe-Ser-Lys-Lys-Cys-Ile-Asp-Phe-Xaa3-Ser-Asn-^ (SEQ ID NO:92)

20 **Name:** Cr6.3

Species: circumcisus

20 **Cloned:** Yes

DNA Sequence:

25 ACCAAAACCATCATAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATC
 GTGCCCTGAGGTGGACACCAAACCTCCCATGTCGACTCGCTGCAAGAGTAAAGGA
 GCAAAATGTTCAAGGCTTATGTATGACTGCTGCAGCGGTTCTGCAGCAGGTACTCA
 GGTAGATGTGGCTGATCCAGCGCCTGATCTTCCCCCTTGCTGCTCTATCCTTTCT
 GCCTGAGTCCTCCTTACCTGAGAGTGGTCATGAACCACATCACCTACTCCTCTGG
 AGGCCAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:93)

30

Translation:

MKLTCVVIVAVLLLTCQLITADDSGTQEHRALRSDTKLPMSTRCKSKGAKCSRLMY
 DCCSGSCSRYSGRCG (SEQ ID NO:94)

Toxin Sequence:

35 Cys-Lys-Ser-Lys-Gly-Ala-Lys-Cys-Ser-Arg-Leu-Met-Xaa5-Asp-Cys-Cys-Ser-Gly-Ser-Cys-Ser-
 Arg-Xaa5-Ser-Gly-Arg-Cys-# (SEQ ID NO:95)

40 **Name:** Cr6.4

Species: circumcisus

40 **Cloned:** Yes

DNA Sequence:

45 ACCAAAACCATCATAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTTCCCTGACGTGGCCACCAAAGTCTCCAAGTCGACTGGCTGCATGAAAGCCGGA
 TCTTATTGCCGCTCTACTACGAGAACCTGCTGCGTTATTGCGCTATTTCGGCAAA

AAATGTATTGACTATCCCAGCAACTGATCTTCCCCCTACTGTGCTCTATCCTTTCTG
 CCTAAGTCCTCCTTACCTGAGAGTGGTCATGAACCACCATCACCCCTACTCCTCTGG
 AGGCCAGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:96)

5 **Translation:**

MKLTCVVIVAVLLLTCQLITADDSGRTQKHRSLTSATKVS KSTGCMKAGSYCRSTTRT
 CCGYCAYFGKKCIDYPSN (SEQ ID NO:97)

10 **Toxin Sequence:**

Ser-Thr-Gly-Cys-Met-Lys-Ala-Gly-Ser-Xaa5-Cys-Arg-Ser-Thr-Thr-Arg-Thr-Cys-Cys-Gly-
 Xaa5-Cys-Ala-Xaa5-Phe-Gly-Lys-Lys-Cys-Ile-Asp-Xaa5-Xaa3-Ser-Asn-^ (SEQ ID NO:98)

15 **Name:** Cn6.1

Species: consors

Cloned: Yes

20 **DNA Sequence:**

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 25 CTCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGAAGTCTTACAC
 CAAACTCTCCATGTTAACTTGCCTGCATCTTACGGAAAACCTGTGGTATTGA
 CAACGACTGCTGCAATACATGCGATCCAGCCAGAAAGACATGTACGTAGCTGATCC
 GGCCTCTGATCTCCCCCTCTGTGCTCTATCCTTCTGCCTGAGTCCTCCTACCT
 25 GAGAGTGGTCATGAACCACTCATCACCTAGCTCCTCTGGAGGCTTCAGAGGAGCTA
 CAATGAAATAAAAGCGCATTGC (SEQ ID NO:99)

30 **Translation:**

MKLTCVVIVAVLLTACQLLTADDSGRTQKHRAKSYTKLSMLTLRCASYGKPCGIDN
 DCCNTCDPARKTCT (SEQ ID NO:100)

35 **Toxin Sequence:**

Cys-Ala-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Asp-Asn-Asp-Cys-Cys-Asn-Thr-Cys-Asp-Xaa3-
 Ala-Arg-Lys-Thr-Cys-Thr-^ (SEQ ID NO:101)

40 **Name:** Cn6.2

Species: consors

Cloned: Yes

45 **DNA Sequence:**

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 CTCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGAAGGTCGGACAC
 CAAACTCTCCATGTCGACTCGCTGCAAGGGTACAGGAAAACATGCAGTAGGATTG
 CGTATAACTGCTGCACCGTTCTGCAGATCAGGTAAATGTGGCTGATCCAGCGCCT
 45 GATCTCCCCC (SEQ ID NO:102)

50 **Translation:**

MKLTCVVIVAVLLTACQLLTADDSGRTQKHRAKRSDTKLSMSTRCKGTGKPCSRIAYN

CCTGSCRSGKCG (SEQ ID NO:103)

Toxin Sequence:

5 Cys-Lys-Gly-Thr-Gly-Lys-Xaa3-Cys-Ser-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
Ser-Gly-Lys-Cys-# (SEQ ID NO:104)

10 **Name:** Cn6.3

Species: consors

Cloned: Yes

DNA Sequence:

15 ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
ATCACAGCTGATGACTCCAAAGGTACGCAGAACATCGTCCCTGAGGTCGACCAC
CAAAGTCTCCAAGGCAGTGCATTGAAGCCGAAATTATTGCGGACCTACTG
TTATGAAAATCTGCTGCGGCTTTGCAGTCATACAGCAAAATATGTATGAACATAC
CCCAAAATTGATCTCCCCCTCTGTGCTCTACCTTTCTGCCTGAGTCCTCCTTAC
CTGAGAGTGGTCATGAACCACTCATCACCTCGTCCC (SEQ ID NO:105)

20 **Translation:**

MKLTCVVIVAVLLLACQLITADDKGQTQKHRSRSTKVSKATDCIEAGNYCGPTVMK
ICCGFCSPYSKICMNPQN (SEQ ID NO:106)

Toxin Sequence:

25 Ala-Thr-Asp-Cys-Ile-Xaa1-Ala-Gly-Asn-Xaa5-Cys-Gly-Xaa3-Thr-Val-Met-Lys-Ile-Cys-Cys-
Gly-Phe-Cys-Ser-Xaa3-Xaa5-Ser-Lys-Ile-Cys-Met-Asn-Xaa5-Xaa3-Gln-Asn-^ (SEQ ID
NO:107)

30 **Name:** Cn6.4

Species: consors

Cloned: Yes

DNA Sequence:

35 ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
CTCACAGCTGATGACTCCAGAGGTACGCAGAACATCGTCCCTGAGGTCGGACAC
CAAACCTCCATGTCGACTCGCTGCAAAGGTAAAGGAGCATCATGTACAAGGCTTA
TGTATGACTGCTGCCACGGTTCTTGCAAGCAGCAAGGGTAGATGTGGCTGATCC
GGCGCCTGATCTCCCCCTCTGTGCTCTACCTTTCTGCCTGAGTCCTCCTTACCT
40 GAGAGGTGGTCATGAACCACTCATCACCTGCTCCCTG (SEQ ID NO:108)

Translation:

MKLTCVVIVAVLLLACQLLTADDRGQTQKHRALRSRDKLSMSTRCKKGASCTRLMY
DCCCHGSCSSSKGRCG (SEQ ID NO:19)

45

Toxin Sequence:

Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-Thr-Arg-Leu-Met-Xaa5-Asp-Cys-Cys-His-Gly-Ser-Cys-Ser-
Ser-Ser-Lys-Gly-Arg-Cys-# (SEQ ID NO:110)

5 **Name:** Cn6.5
Species: consors
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAAGCATCGTGCCCTGAGGTC
10 GGACACCAAACCTCTCCATGTCAACTCGCTGCAAGGGTAAAGGAGCATCATGTCATA
GGACTTCGTATGACTGCTGCACCGTTCTGCAACAGAGGTAAATGTGGCTGATCCG
GCGCCTGATCTCCCCCTGTGCTCTATCCTTCTGCCTGAGTCATCCATACCTG
TGCTCGAG (SEQ ID NO:111)

15 **Translation:**

MKLTCMVIVAVLLTACQLITADDSGRTQKHRALRSDTKLSMSTRCKKGKGASCHRTSY
DCCTGSCNRGKCG (SEQ ID NO:112)

Toxin Sequence:

20 Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-His-Arg-Thr-Ser-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Asn-
Arg-Gly-Lys-Cys-# (SEQ ID NO:113)

25 **Name:** Cn6.6
Species: consors
Cloned: Yes

DNA Sequence:

30 GGATCCATGAAACTGACGTGCGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAAGCATCGTGCCCTGAAGTC
GGACACCAAACCTCTCCATGTTAACCTTGCCTGCATCTTACGGAAAACCTTGTGG
TATTACAAACGACTGCTGCAATACATGCGATCCAGCCAGAAAGACATGTACGTAGC
TGATCCGGCGTCTGATCTCCCCCTGTGCTCTATCCTTCTGCCTGAGTCATCC
ATACCTGTGCTCGAG (SEQ ID NO:114)

35 **Translation:**

MKLTCVVIVAVLLTACQLITADDSGRTQKHALKSDTKLSMLTRCASYGKPCGIYND
CCNTCDPARKTCT (SEQ ID NO:115)

40 **Toxin Sequence:**

Cys-Ala-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Xaa5-Asn-Asp-Cys-Cys-Asn-Thr-Cys-Asp-Xaa3-
Ala-Arg-Lys-Thr-Cys-Thr-^ (SEQ ID NO:116)

45 **Name:** Cn6.7
Species: consors
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGAGGTC
 GGACACCAAACACTCCATGTCGACTCGCTGCAAGGGTACAGGAAAACCATGCAGTA
 5 GGGTTGCGTATAACTGCTGCACCGGTTCTGAGATCAGGTAATGTGGCTGATCCA
 GTGCCTGATCTCCCCCTGTGCTCTACCTTCTGCCTGAGTCCTCCTTACCTG
 AGAGTGGTCATGAACCACATCACCTGCTCCTGGAGGCTCAGAGGAGCTACAT
 TGAAATAAAAGCCGCATTGCANTGNANAAAANNNNNNNNNNNNNNNNNNNNNN
 NNNNNNNNNNNNNNNNGAAAAA (SEQ ID NO:117)

10

Translation:

MKLTCVVIVAVLLTACQLITADDSGRTQKHRLRSRDKLSMSTRCKGTGKPCSRVAY
 NCCTGSCRSGKCG (SEQ ID NO:118)

15

Toxin Sequence:

Cys-Lys-Gly-Thr-Gly-Lys-Xaa3-Cys-Ser-Arg-Val-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-
 Arg-Ser-Gly-Lys-Cys-# (SEQ ID NO:119)

20

Name: Cn6.8
Species: consors
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGAGGTC
 GACCACCAAAGTCTCCAAGTCAACTAGCTGCATGAAAGCCGGGTCTTATTGCCGCTC
 TACTACGAGAACCTGCTGCAGTTATTGCGCTTATTCCGGCAAATTGTATTGACTTT
 CCCAGCAACTGATCTCCCCCTACTGTGCTCTACCTTCTGCCTGAGTC
 30 TCCTTACCTGAGAGTGTCATGAACCACTCATCACCTGCTCCTGGAGGCCTCAGA
 GGAGCTACAATGAAATAAAAGCCGCATTGCAAAAAAAAAAAAA (SEQ
 ID NO:120)

30

Translation:

MKLTCMVIVAVLLTACQLITADDSGRTQKHRSRSTTKVSKSTSCMKAGSYCRSTTRT
 CCGYCAYFGKFCIDPSN (SEQ ID NO:121)

35

Toxin Sequence:

Ser-Thr-Ser-Cys-Met-Lys-Ala-Gly-Ser-Xaa5-Cys-Arg-Ser-Thr-Thr-Arg-Thr-Cys-Cys-Gly-
 40 Xaa5-Cys-Ala-Xaa5-Phe-Gly-Lys-Phe-Cys-Ile-Asp-Phe-Xaa3-Ser-Asn-^ (SEQ ID NO:122)

45

Name: Da6.8
Species: dalli
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGTT

CTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAAGTACGCAGAACATCG
 TGCTCTGAGGTCGACCATCAAACACTCCATGTTGACTAGGAGCTGCACGCCCTCCGG
 AGGACCTTGTGGTTATTATAATGACTGCTGCAGTCATCAATGCAATATAAGCAGAA
 ATAAATGCGAGTAGCTGATCCGGCATCTGATCTTCCCTCTGTGCTCGTCCTAACCC
 5 TGAGAGTGGTCATGAACCATCATCACCTACTCCTCTGGAGGCTCAGAGGAGCTAC
 ATGGAAATAAAAGCCGCATTGC (SEQ ID NO:123)

Translation:

MKLTCVIVAVLFLTACQLITADDSRSTQKHRALRSTIKHSMLTRSCTPPGGPCGYYND
 10 CCSHQCNI SRNKCE (SEQ ID NO:124)

Toxin Sequence:

Ser-Cys-Thr-Xaa3-Xaa3-Gly-Gly-Xaa3-Cys-Gly-Xaa5-Xaa5-Asn-Asp-Cys-Cys-Ser-His-Gln-
 15 Cys-Asn-Ile-Ser-Arg-Asn-Lys-Cys-Xaa1-^ (SEQ ID NO:125)

Name: Di6.1
 Species: distans
 Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGCGTGGATCATGCCGTGCTGTT
 CTGACGGCCTGTCAACTCACTAGAGGAAAGCTGGAGCGCTCTGAGGTCGAG
 CGACCAAAACCTCCGGGTCAACGAAGAGATGCGAAGATCCTGGTAACCTTGC
 25 GTGATCATTCTGCTGCCGGTAGTTGCAACCACAACGTCTGCCTGAAGCTGGT
 CTGGCATCTGACCATTCCCCTCTGTACTCTATCTATTGCCTGAGTCATCTTACC
 TGTGAGTGGTCATGAATCTCTAACACCTCTCCCTGGAGGCTCAGAAGAACTAG
 ATTGAAATA (SEQ ID NO:126)

Translation:

MKLTCVIIIAVLFLTACQLTRGKLERPVLRSSDQTSGSTKRCEDPGEPCGSDHSCCGGSC
 NHNVC (SEQ ID NO:127)

Toxin Sequence:

Cys-Xaa1-Asp-Xaa3-Gly-Xaa1-Xaa3-Cys-Gly-Ser-Asp-His-Ser-Cys-Cys-Gly-Gly-Ser-Cys-Asn-
 His-Asn-Val-Cys-Ala-^ (SEQ ID NO:128)

Name: E6.2
 Species: ermineus
 Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 45 ATCACAGCTGACGACTCCAGACGTACGCAGAACATCGTGCCTGAGGTCGACCAAC
 CAAACCGGCCACGTCGAATCGCCCCCTGCAAGCCGAAAGGACGAAAATGTTTCCGC
 ATCAGAAGGACTGCTGCAATAAAACGTGCACCAGATCAAAATGTCCCTGATCTTCC
 CCCTCTGTGCTGTATCCTTCTGCCTGAGTCCTCCTACCTGAGAGTGGTCAGTAA

CCACTCATCACCATCTCCTCTGGAGG (SEQ ID NO:129)

Translation:

MKLTCVIVAVLLLACQLITADDRLRSTTKRATSNRPCPKGRKCFPHQK
5 DCCNKTRSKCP (SEQ ID NO:130)

Toxin Sequence:

Xaa3-Cys-Lys-Xaa3-Lys-Gly-Arg-Lys-Cys-Phe-Xaa3-His-Gln-Lys-Asp-Cys-Cys-Asn-Lys-Thr-
Cys-Thr-Arg-Ser-Lys-Cys-Xaa3-^ (SEQ ID NO:131)

10

Name: E6.3
Species: ermineus
Cloned: Yes

15

DNA Sequence:

AACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGAGGTCG
 ACCACCAAAACTCTCCATGCTGACTCGGGCCTGCTGGCTTCCGGAACACCTGTGGT
 ACTGATAAGTTATGCTGCGGTGGATGCAATGTATCCAAAAGTAAATGTAAGTAGCTG
 20 ATTCGGCGTCTGAACCTCCCCCTCTGTGCTCTACCTTTCTGCCCGAGTCCTCCAT
 ACCTGAGAATGGTCATGAACCACACTCACCTACTCCTCTGGAGACCTCAGAAGAG
 CTACACTGAAATAAAAGCGCTTGC (SEQ ID NO:132)

20

Translation:

LITADDLSRGQTQNDRALRSTTKLSMLTRACWSSGTPCGTDSLCCGGCNVSKSKCN (SEQ
ID NO:133)

25

Toxin Sequence:

Ala-Cys-Xaa4-Ser-Ser-Gly-Thr-Xaa3-Cys-Gly-Thr-Asp-Ser-Leu-Cys-Cys-Gly-Gly-Cys-Asn-
30 Val-Ser-Lys-Ser-Lys-Cys-Asn-^ (SEQ ID NO:134)

35

Name: G6.1
Species: geographus
Cloned: Yes

35

DNA Sequence:

GGATCCATGAAACTGACGTGCGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACGATCGTGCCTGGGTC
 40 GACCACCGAACTCTCCTGTCGACTCGCTGCAAGTCACCCGGATCTTCATGTTCAAC
 GACTAGTTATAATTGCTGCAGGTCTGCAATCCATACGCCAAAAGATGTTACGGCTA
 ATCCAGCGCCTGATCTCCCCCTCTGTGCTCTATCCCTCCTGTCTGAGTCCTCCTT
 ACCTGAGAGTGGTCATGAACCACCTCACCTACTTCTCTGGAGGCTCGGAGGAGC
 TACATTGAAATAAAAGCCGCATTGTAAAAAAAAAAAAAA (SEQ ID NO:135)

45

Translation:

MKLTCVIVAVLLLACQLITADDLSRGQTQHRLGSTTELSLSTRCKSPGSSCSPTSYNC
 CRSCNPYAKRCYG (SEQ ID NO:136)

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Xaa3-Xaa5-Ala-Lys-Arg-Cys-Xaa5-# (SEQ ID NO:137)

5

Name: G6.2
Species: geographus
Cloned: Yes

10

DNA Sequence:

GGATCCATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATCGTGCCCTGAGGTC
 GTCCACCAAACTCACCTTGTGACTCGCTGCAAATCACCGGAACCTCCATGTTCAAG
 15 GGGTATGCGTATTGCTGCACGCCCTGCTTGTATAACAGCAACAAATGTAGGCGCTA
 CTAACCCAGCGCCTGATCTCCCCCTCTGTGCTCTTCCTTCTGCCTGAGTCCTC
 CTTACCTGAAAGTGGTCATGAACCACCATCACCTACTTCTGGAGGCTTCAGAAG
 AGCTACATTGAAATAAAAGCCGCATTGCAATGACAAAAAAAAAAAAAAA
 (SEQ ID NO:138)

20

Translation:

MKLTCVVIVAVLLLACQLITADDRGQTQKHRALRSSTKLTSTRCKSPGTPCSRGMRD
 CCTPCLLYSNKCRYY (SEQ ID NO:139)

25

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Thr-Xaa3-Cys-Ser-Arg-Gly-Met-Arg-Asp-Cys-Cys-Thr-Xaa3-Cys-Leu-Leu-Xaa5-Ser-Asn-Lys-Cys-Arg-Arg-Xaa5-^ (SEQ ID NO:140)

30

Name: w-GVIA
Species: geographus
Cloned: Yes

DNA Sequence:

GGAATTCGTTCTGCCTGCTTGGCATCACAAAACATCATCAAAATGAA
 ACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTCATCAC
 AGCTGATGACTCCAGAGGTACGCAGAACATCGTGCCCTGGGGTCGACCACCGAAC
 TCTCCTTGTGACTCGCTGCAAGTCACCCGGATCTTATGTTCACCGACTAGTTATA
 ATTGCTGCAGGTCTTGAATCCATACACAAAAGATGTTACGGCTAATCCAGCGCCT
 40 GATCTTCCCTGCTCTGAGTCCTACCTGAGAGTGGTCATGAACCACATCAC
 TACTTCTCTAGGCCGTTGGAGGAGCTACATTGAAATAAAAGCCGCATTGCAAAAAA
 AAAAAAAAAA (SEQ ID NO:141)

45

Translation:

MKLTCVVIVAVLLLACQLITADDRGQTQKHRALGSTTELSLSTRCKSPGSSCSPTSYNC
 CRSCNPYTKRCYG (SEQ ID NO:142)

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Xaa3-Xaa5-Thr-Lys-Arg-Cys-Xaa5-# (SEQ ID NO:143)

5 **Name:** w-GVIB
Species: geographus
Isolated: Yes

Toxin Sequence:

10 Cys-Lys-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Xaa3-Xaa5-Thr-Lys-Arg-Cys-Xaa5-Gly-# (SEQ ID NO:144)

15 **Name:** w-GVIC
Species: geographus
Isolated: Yes

Toxin Sequence:

20 Cys-Lys-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Xaa3-Xaa5-Thr-Lys-Arg-Cys-# (SEQ ID NO:145)

25 **Name:** w-GVIIA
Species: geographus
Isolated: Yes
Cloned: Yes

DNA Sequence:

30 CATCACAGCTGATGACTCCAGAGGTACGCAGAACGCATCGTGCCTGAGGTCGTCCA
CAAACTCACCTTGTGACTCGCTGCAAATCACCCGGAACCTCCATGTTCAAGGGGTA
TGCCTGATTGCTGCACGTCTTGCTTATAACAGCAACAAATGTAGGCGCTACTAAC
CCAGCGCCTGATCTCCCCCTCTGTGCTCTATTCTTCTGCCTGAGTCCTCCTTAC
CTGAAAGTGGTCATGAACCACTCATCACCTACTTCTCTGGAGGCTTCAGAAGAGCTA
CATTGAAATAAAAGCCGCATTGCAATGAC (SEQ ID NO:146)

35

Translation:

ITADDTSRGQTQKHRLRSSTKLTLSTRCKSPGTPCSRGMRDCTSCLLYSNKCRRY (SEQ ID NO:147)

40 **Toxin Sequence:**

Cys-Lys-Ser-Xaa3-Gly-Thr-Xaa3-Cys-Ser-Arg-Gly-Met-Arg-Asp-Cys-Cys-Thr-Ser-Cys-Leu-Leu-Xaa5-Ser-Asn-Lys-Cys-Arg-Arg-Xaa5-# (SEQ ID NO:148)

45 **Name:** w-GVIIIB
Species: geographus
Isolated: Yes

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Thr-Xaa3-Cys-Ser-Arg-Gly-Met-Arg-Asp-Cys-Cys-Thr-Ser-Cys-Leu-Ser-Xaa5-Ser-Asn-Lys-Cys-Arg-Arg-Xaa5-# (SEQ ID NO:149)

5

Name: La6.1
Species: laterculatus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACCGCTGATGACTCCAGAGGTACGCAGAACATC
GTGCCCTGAGGTCGACCAATCTCCATGCTGACTCGGAAGTGGCTGGCCTTCCG
GAAGCTATTGTCGTGCGAATAGTAAATGCTGCGAGTGGATGCGATCGGAACAGAAAT
AAATGTTACTAGCTGATTGGCGTCTGAACCTCCTCCTCTGTGCTCTATCCTTTCT
GCCCGAGTCCTCCATACCTGAGAGTGGTCATGAACCACTCAACTCCTACTCCTCTGG
AGGCCTCAGAAGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:150)

Translation:

MKLTCVVIVAVLLLACQLITADDSGTQKHLRSTTNLSMLTRKCWPSGSYCRANS
KCCSGCDRNRNKCY (SEQ ID NO:151)

Toxin Sequence:

Lys-Cys-Xaa4-Xaa3-Ser-Gly-Ser-Xaa5-Cys-Arg-Ala-Asn-Ser-Lys-Cys-Cys-Ser-Gly-Cys-Asp-
Arg-Asn-Arg-Asn-Lys-Cys-Xaa5-^ (SEQ ID NO:152)

30 **Name:** La6.2
Species: laterculatus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
GTGCCCTGAGGTCGACCAAAACTCTCCATATCGACTCGCTGCCTCCTCCGGAT
CATATTGTAAGGCGACAACGGAAGTCTGCTGCTCTTGCCTCAATTGCTCAGA
TATGTTGGGTTGATCTCCCTCTTGTGCTCTACCTTTCTGCCTGAGTCCTCCAT
ACCTGAGAATGGTCATGAACCACTAACATCTACTCCTCTGGAGGCCTCAGAAGAG
CTATATTGAAATAAAAGCCGCATTGC (SEQ ID NO:153)

40

Translation:

MKLTCVVIVAVLLLACQLITADDSGTQKHLRSTTKLSISTRCLPPGSYCKATTEVC
CSSCLQFAQICSG (SEQ ID NO:154)

45

Toxin Sequence:

Cys-Leu-Xaa3-Xaa3-Gly-Ser-Xaa5-Cys-Lys-Ala-Thr-Thr-Xaa1-Val-Cys-Cys-Ser-Ser-Cys-Leu-Gln-Phe-Ala-Gln-Ile-Cys-Ser-# (SEQ ID NO:155)

5 **Name:** La6.3
Species: laterculatus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
10 GTGCCCTGAGGTCGACCAACTCTCCATGTCGACTCGCTGCAAGTCTCCGGAT
CATCATGTAGCGTGTCTATGCGTAAGTGCTGCACTTCTGCAATTACGCACCAAGA
AATGTACGCGACGTGGCTGAACCTCCCCCTGTGCTCTACCTTTCTGCCGAGT
CCTCCATACCTGAGAGTGGTCATGAACCACTAACATCTACTCCTCTGGAGGCCTCA
GAAGAGCTATATTGAAATAAAAGCCGCATTGC (SEQ ID NO:156)

15 **Translation:**

MKLTCVVIVAVLLLACQLITADDSGTQKHRALRSTTNSMSTRCKSPGSSCSVSMRN
CCTSCNSRTKKCTRGG (SEQ ID NO:157)

20 **Toxin Sequence:**

Cys-Lys-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Val-Met-Arg-Asn-Cys-Cys-Thr-Ser-Cys-Asn-Ser-
Arg-Thr-Lys-Lys-Cys-Thr-Arg-Arg-# (SEQ ID NO:158)

25 **Name:** La6.4
Species: laterculatus
Cloned: Yes

DNA Sequence:

30 ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
GTGCCCTGAGGTCGACAACCAAACCTCTCCATGCTGACTCGGACCTGCTGGCCTCCG
GAACAGCTTGTGGTATTGATAGTAAGTGCTGCAGTGGATGCAATGTATCCAGAAGT
AAATGTAAGTAGCTGATTGGCGTCTAAACTCCTCCTCTGCCTGAGTCCTCCATA
35 CCTGAGAGTGGTCATGAACACATCATCACCTCATCTGGAGGCCTC (SEQ ID
NO:159)

Translation:

MKLTCVVIVAVLLLACQLITADDSGTQKHRALRSTTKLSMLTRTCWPSGTACGIDSN
40 CCSGCNVRSKCN (SEQ ID NO:160)

Toxin Sequence:

Thr-Cys-Xaa4-Xaa3-Ser-Gly-Thr-Ala-Cys-Gly-Ile-Asp-Ser-Asn-Cys-Cys-Ser-Gly-Cys-Asn-Val-
Ser-Arg-Ser-Lys-Cys-Asn-^ (SEQ ID NO:161)

45

Name: La6.5
Species: laterculatus

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 5 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTCGACCAATCTCTCATGCTGACTCGGAAGTGCTGGCCTCCG
 GAAGCTATTGTCGTGCGAATAGTAAATGCTGCAGTGGATGCGATCGGAACAGAAAGT
 AAATGTAACTAGCTGATTGGCGTCTAAACTCCTCCTGCCTGAGTCCTCCATA
 10 CCTGAGAGTGGTCATGAACCACTCATCACCTACTCCTCTGGAGGCCTCAAAGGAGCT
 ACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:162)

Translation:

MKLTCVVIVAVLLLACQLITADDRGTRKRALRSTTNLSMLTRKCWPSSYCRANS
 KCCSGCDRNRSKCN (SEQ ID NO:163)

Toxin Sequence:

Lys-Cys-Xaa₄-Xaa₃-Ser-Gly-Ser-Xaa₅-Cys-Arg-Ala-Asn-Ser-Lys-Cys-Cys-Ser-Gly-Cys-Asp-
 Arg-Asn-Arg-Ser-Lys-Cys-Asn-^ (SEQ ID NO:164)

20 **Name:** Lp6.1

Species: leopardus

Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTATCGTAGCTGTGCTGTTCTGACGGCCTGTCAACTC
 ACTACAGCTGACATCTCCAGAGGTACCGGAAGCGTCGTGCTCTGAGGTCGACAC
 CAAACTCTCCAGGTCGCTCTTGAGTGCAGCGCCTCCGGTGGACGTTGTGGTTTTA
 AAGTCCTGCTGCGAAGGATATTGCGATGGGGAAAGCACTTCATGTGTGAGTGGCCC
 30 ATACAGCATCTGATCTCCCGCCTTCAGTGCTCTATCCTTCTGCCTGAGTCCTCCA
 TACCTCTGAGCGGTATGAACCACTCAACACCTACTCCTCTGGAGGCTTCAGGAAAC
 TATATTAAAATAAGCCGCATTGCAACGAAANAAAAAAA (SEQ ID NO:165)

Translation:

MKLTCVVIVAVLFLTACQLTTADISRGTRKRRALRSTTKLSRSLFECAPSGGRCGFLKSC
 CEGYCDGESTSCVSGPYSI (SEQ ID NO:166)

Toxin Sequence:

40 Ser-Leu-Phe-Xaa₁-Cys-Ala-Xaa₃-Ser-Gly-Gly-Arg-Cys-Gly-Phe-Leu-Lys-Ser-Cys-Cys-Xaa₁-
 Gly-Xaa₅-Cys-Asp-Gly-Xaa₁-Ser-Thr-Ser-Cys-Val-Ser-Gly-Xaa₃-Xaa₅-Ser-Ile-^ (SEQ ID
 NO:167)

45 **Name:** Lp6.2

Species: leopardus

Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTATCGTCGCTGTGCTGTTCCCTGACGGCCTGTCAACTC
 ACTACAGCTGACATCTCCAGAGGTACGTGGAAGCATCGTGCTGTGGGGTCGACCAC
 CGGACTCTCCCCGTGGCCCTTGGACTGCACGGCTCCCAGTCAACCTGTGGTTATT
 5 TCCTAGGTGCTGTGGACATTGCGATGTACGCAGGGTATGTACGAGTGGCTGATCCG
 GCGTCTGATCTTCCGCCTCTGTGCTGTATCCTTCTGCCTGAGTCCTCCATACCC
 GTGAGTGGTCATGAACCCTAACACACTCCTCTGGAGGCTTCAGAGGAACATAT
 ATTAAAATAAAGCCGCATTGCAATG (SEQ ID NO:168)

Translation:

MKLTCVVIVAVLFLTACQLTTADISRGTWKHRGVGSTTGLSPWPLDCTAPSQPCGYFPR
 CCGHCDVRRVCTSG (SEQ ID NO:169)

Toxin Sequence:

Xaa4-Xaa3-Leu-Asp-Cys-Thr-Ala-Xaa3-Ser-Gln-Xaa3-Cys-Gly-Xaa5-Phe-Xaa3-Arg-Cys-Cys-
 15 Gly-His-Cys-Asp-Val-Arg-Arg-Val-Cys-Thr-Ser-# (SEQ ID NO:170)

Name: Lp6.3

Species: leopardus

Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTATCGTCGCTGTGCTGTTCCCTGACGGCCTGTCAACTC
 25 ACTACAGCTGACATCTCCAGAGGTACCGCGGAAGCATCGTGCTGTGGGGTCGACCAC
 CAAACTCTCCAGGTGCCCTCTAGGTGCATGTCTCCCGGTGGAATTGTGGTGATT
 TGGTGAATGCTGCGAAATTGCAATGTGTACGGTATATGTGTGAGTGACTTACCCGG
 CATCTGATCTTCCGCCTCTGTGCTCTATCCTTCTGCCTGAGTCCTCCATACCCCT
 GAGTGGTCATGGACCACTAACACCTACTCCTCTGGAGGCTTCAGAGGAACATACATT
 30 AAAATAAAGCCGCATTGCAAAAAAAAAAAAAAAA (SEQ ID NO:171)

Translation:

MKLTCVVIVAVLFLTACQLTTADISRGTWKRALRSTTKLSRSPSRCMSPGGICGDFGDC
 CEICNVYGICVSDLPGI (SEQ ID NO:172)

35

Toxin Sequence:

Cys-Met-Ser-Xaa3-Gly-Gly-Ile-Cys-Gly-Asp-Phe-Gly-Asp-Cys-Cys-Xaa1-Ile-Cys-Asn-Val-
 Xaa5-Gly-Ile-Cys-Val-Ser-Asp-Leu-Xaa3-Gly-Ile-^ (SEQ ID NO:173)

40

Name: Lp6.4

Species: leopardus

Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTATCGTCGCTGTGCTGTTCCCTGACGGCCTGTCAACTC
 ACTACAGCTGATGATTCCAGAGGTACACGGAAGCATCGTGCTGTGGAGGTCAACCAC
 CAAACTCTCCAGGTGCCCTCCGGTACTGCGCGCCTCCCGTGGAGCTGTGGGTTTTT

TGATCACTGCTCGGGATATTGCGAACGTTACAATACGTGAGATGAGTTGGCTG
 ATCCGGCGCTTGTATCTTCCGCCTCTGTTGCTCTATCTTTCTGCCTGAGTCCTCCC
 ATACCCCCGTTGAGTGGTCCATGAACCACCTCCAACACTCCCTCCTGGAAAGCTT
 CCAAAGGAAACGACATTAAAATTCCCCATTGCAATTGGAAAAA
 5 AAAA (SEQ ID NO:174)

Translation:

MKLTCVVIVAVLFLTACQLTTADDRGTRKHRALRSTKLSRWPRYCAPPGGACGFFD
 HCCGYCETFYNTCR (SEQ ID NO:175)

Toxin Sequence:

Xaa5-Cys-Ala-Xaa3-Xaa3-Gly-Gly-Ala-Cys-Gly-Phe-Phe-Asp-His-Cys-Cys-Gly-Xaa5-Cys-
 Xaa1-Thr-Phe-Xaa5-Asn-Thr-Cys-Arg-^ (SEQ ID NO:176)

DNA Sequence:

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 ATCACAGCTGATGACTCCAGACGTACACAGAACATCGTGCCTGAGGTCGACCAC
 CAATCTCTCCATGTCGACTCGCTGCAAGTCTCCGGATCACCATGTAGTGTGACATC
 GTATAACTGCTGCACTTTGCTCTTACACTAAGAAATGTCGGGCCTTTATGA
 25 ACCACTCATCACCTACTCCTCTGGAGGCCTCAGAAGAGCTACACTGAAATAAGC
 CGCATTGG (SEQ ID NO:177)

Translation:

MKLTCVVIVAVLLTACQLITADDSSRTQKHRALRSTNLSMSTRCKSPGSPCSVTSYN
 30 CCTFCSSYTKKCRASL (SEQ ID NO:178)

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Ser-Xaa3-Cys-Ser-Val-Thr-Ser-Xaa5-Asn-Cys-Cys-Thr-Phe-Cys-Ser-
 Ser-Xaa5-Thr-Lys-Lys-Cys-Arg-Ala-Ser-Leu-^ (SEQ ID NO:179)

DNA Sequence:

ATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGTCAACTC
 ATCACAGCTGATGACTCCAGAGGTACGCAGAACATCGTGCCTGAGGTCGACCAC
 CAAACTATCCATGTATACTCGCTGCGCAGGTCCAGGAGCAATTGCTTAATAGGGT
 45 ATGCTGCGGTTATTGCAGTAAAAGAACACATCTATGTCATTGCGAAGTGGCTGATC
 TTCCCCCTCTGTGCTCTATCCTTTCTGCCTGAGTCCTCCATACCTGAGAATGGTC
 ATGAACCACTCATCACCTACTCCTCTGGAGACCTCAGAGGAGCTACACTGAAATA
 AAAGCCGCATTGGC (SEQ ID NO:180)

Translation:

MKLTCVVIVAVLLLACQLITADD SRGTQKHRALRSTTKLSMYTRCAGPGAICPNRVCC
GYCSKRTHLCHSRTG (SEQ ID NO:181)

5

Toxin Sequence:

Cys-Ala-Gly-Xaa3-Gly-Ala-Ile-Cys-Xaa3-Asn-Arg-Val-Cys-Cys-Gly-Xaa5-Cys-Ser-Lys-Arg-
Thr-His-Leu-Cys-His-Ser-Arg-Thr-# (SEQ ID NO:182)

10

Name: L6.3
Species: lynceus
Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGT GATCGTCGCCGTGCTGCTAGCGGCCTGTCAACTA
CTACACGCTGATGACTCCAGAGGTACGCAGAAGACTGCTGCCCGAGGTCGACCACC
AAA ACTCTCCATGCTGACTCGGGCCTGCTGGTCTCCCGAACACCTTGTTGGTACTGA
TAGTTATGCTGCGGTGGATGCAATGTATCCAAAAGTAAATGTAAGCTAGCTGATTG
20 GCGTCTGAACTCCCCCTCTGTGCTCTACCTTTCTGCCCGAGTCCTCCATACCTG
AGAATGGTCATGAACC ACTCATCACCTACTCCTCTGGAGACCTCAGAAGAGCTACA
CTGAAATAAAAGCGCATTGC (SEQ ID NO:183)

15

Translation:

MKLTCVVIVAVLLAACQLLHADD SRGTQKTAARGRPPKLSMLTRACWSSGTPCGTDS
LCCGGCNVSKSKCN (SEQ ID NO:184)

25

Toxin Sequence:

Ala-Cys-Xaa4-Ser-Ser-Gly-Thr-Xaa3-Cys-Gly-Thr-Asp-Ser-Leu-Cys-Cys-Gly-Gly-Cys-Asn-
30 Val-Ser-Lys-Ser-Lys-Cys-Asn-^ (SEQ ID NO:185)

35

Name: L6.4
Species: lynceus
Cloned: Yes

40

DNA Sequence:

ATGAAACTGACGTGTGGT GATCGTCGCCGAGCTACTCCTAACGGCCTGTCAACTC
ATCACAGCTGATGACTCCAGAGGTACGCAGAAGCATCGTGCCCTGAGGTCGACCAC
CAATCTCTCCATGCTGACTCGGAAGTGCTGGTCTCCCGAACCTATTGTCGTGCGCA
TAGTAAATGCTGCCGTGGATGCGATCAGAACAGAAATAATGTTACTAGCTGATT
45 GCGTCTGAACTCCTCTGTGCTCTACCTTTCTGCCCTGAGTCCTCCATACCC
TGAGAATGGTCATGAACC ACTCATCACCTACTCCTCTGGAGGCCTCAGAGGAGCCT
ACACTGAAATAAAAGCCGCATTGG (SEQ ID NO:186)

45

Translation:

MKLTCVVIVAEPLLACQLITADD SRGTQKHRALRSTTNLSMLTRKCWSPGTYCRAHSK
CCRGCDQNRNKCY (SEQ ID NO:187)

Toxin Sequence:

Lys-Cys-Xaa4-Ser-Xaa3-Gly-Thr-Xaa5-Cys-Arg-Ala-His-Ser-Lys-Cys-Cys-Arg-Gly-Cys-Asp-Gln-Asn-Arg-Asn-Lys-Cys-Xaa5-^ (SEQ ID NO:188)

5

Name: M6.1
Species: magus
Cloned: Yes

10

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTGGACACCAAACCTCTCATGTCGACTCGCTGCAAGGGTACAGGA
 15 AAACCATGCAGTAGGATTGCGTATAACTGCTGCACCGGTTCTGCAGATCAGGTA
 ATGTGGCTGATCCAGTGCGTATCTCCCCCTCTGTGCTCTATCCTTTCTGCCTG
 AGTCCTCCTACCTGAGAGTGGTCATGAACCACTCA (SEQ ID NO:189)

15

Translation:

20 MKLTCVVIVAVLLLACQLITADD SRGTQKH RALKSDTKLSMSTRCKGTGKPC SRIAYN
 CCTGSCRSGKCG (SEQ ID NO:190)

20

Toxin Sequence:

Cys-Lys-Gly-Thr-Gly-Lys-Xaa3-Cys-Ser-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
 25 Ser-Gly-Lys-Cys-# (SEQ ID NO:191)

25

Name: M6.2
Species: magus
Cloned: Yes

30

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAAGTCGGACACCAAACCTCTCATGTTAACCTTGCGCTGCGCATCTTACG
 35 GAAAACCTTGTGGTATTACAACGACTGCTGCAATACATGCGATCCAGCCAGAAAG
 ACATGTACGTAGCTGATCCGGCGTCTGATCTTCC (SEQ ID NO:192)

35

Translation:

40 MKLTCVVIVAVLLLACQLITADD SRGTQKH RALKSDTKLSMLTRCASYGKPCGIYND
 CCNTCDPARKTCT (SEQ ID NO:193)

40

Toxin Sequence:

Cys-Ala-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Xaa5-Asn-Asp-Cys-Cys-Asn-Thr-Cys-Asp-Xaa3-
 45 Ala-Arg-Lys-Thr-Cys-Thr-^ (SEQ ID NO:194)

Name: w-MVIIIB
Species: magus
Isolated: Yes
Cloned: Yes

5 **DNA Sequence:**
GAATTTCAAGCATCACAAAACCATCATCAAAATGAAACTGACGTGTGGTGATC
GTCGCCGTGCTGCTCTGACGGCCTGCAACTCATCACAGCTGATGACTCCAGAGGT
ACGCAGAAGCATCGTGCCCTGAGGTCGGACACCAAACACTCTCCATGTCAACTCGCTG
10 CAAGGGTAAAGGAGCATCATGTCATAGGACTTCGTATGACTGCTGCACCGGTTCTG
CAACAGAGGTAAATTGGCTGATCCGCC (SEQ ID NO:195)

15 **Translation:**
MKLTCVVIVAVLLTACQLITADDRGQTQKHRALRSDTKLSMSTRCKKGASCHRTSY
DCCTGSCNRGKFG (SEQ ID NO:196)

20 **Toxin Sequence:**
Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-His-Arg-Thr-Ser-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Asn-
Arg-Gly-Lys-Cys-# (SEQ ID NO:197)

25 **Name:** Mi6.1
Species: miles
Cloned: Yes

30 **DNA Sequence:**
GGATCCATGAAACTGACGTGCGTGGTGATCATGCCATGCTGTTCTGACAGCCTAT
CAACTCGCTACAGCTGCGAGCTACGCCAACAGGTAAACAGAACAGCATCGTCTGAG
GCCAGCTGACAAACACCTCAGGTTGACCAAGCGTTGCAATGATCGCGGTGGAGGTT
35 GCAGTCAACATCCTCACTGCTGCGGTGGAACCTGCAATAAGCTTATTGGCGTATGTC
TGTAAAGCTGGTCTGCCGTCTGATATTCCCTTCTGTGCTTCATCCTCTTGCCTGA
GTCATCCATACCTGTGAATGGTAAGAGCCACTCAATACCTATTCCCTCTGGGGGCTT
CAGAGGAACACTTTAC (SEQ ID NO:198)

40 **Translation:**
MKLTCVVIAMLFLTAYQLATAASYAKGKQKHRALRPADKHLRLTKRCNDRGGGCSQ
HPHCCGGTCNKLIGVCL (SEQ ID NO:199)

45 **Toxin Sequence:**
Cys-Asn-Asp-Arg-Gly-Gly-Cys-Ser-Gln-His-Xaa3-His-Cys-Cys-Gly-Gly-Thr-Cys-Asn-
Lys-Leu-Ile-Gly-Val-Cys-Leu-^ (SEQ ID NO:200)

50 **Name:** Mn6.1
Species: monachus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGAGTGTGGTGATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTGGACACCAAACCTCTCCATATCGACTCGCTGCAAGTCTACAGGA
 AAATCATGCAGTAGGATTGCGTATAACTGCTGCACCGGTTCTGCAAGATCAGGTAA
 5 ATGTGGCTGATCCAGCGCCTGATCTTCCCCCTGTGCTCTATCCTTCTGCCTGA
 GTCCTCCTTA (SEQ ID NO:201)

Translation:

MKLTSVVIVAVLLTACQLITADDRGQTQKHRALRSDTKLSISTRCKSTGKSCSRIAYNC
 10 CTGSCRSGKCG (SEQ ID NO:202)

Toxin Sequence:

Cys-Lys-Ser-Thr-Gly-Lys-Ser-Cys-Ser-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
 15 Ser-Gly-Lys-Cys-# (SEQ ID NO:203)

Name: Mn6.2
 Species: monachus
 Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGAGTGTGGTGATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTGGACACCAAACCTCTCCATGTCGACTCGCTGCAAGGGTAAAGGA
 25 TCTTCATGTAGTAGGACCATGTATAACTGCTGCACCGGTTCTGCAACAGAGGTAAA
 TGTGGCTGATCCAGCGCCTGATCTTCCCCCTTC (SEQ ID NO:204)

Translation:

MKLTSVVIVAVLLTACQLITADDRGQTQKHRALRSDTNLSMSTRCKKGKGSSCSRTMYN
 30 CCTGSCNRGKCG (SEQ ID NO:205)

Toxin Sequence:

Cys-Lys-Gly-Lys-Gly-Ser-Ser-Cys-Ser-Arg-Thr-Met-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Asn-
 35 Arg-Gly-Lys-Cys-# (SEQ ID NO:206)

Name: O6.1
 Species: obscurus
 Cloned: Yes

DNA Sequence:

ctctctctctctgtggacAGGTCGCCTCCCTGCATGAAAGGCGGATCGTCATGCCGCCGTACT
 ACGGGAGTCTGTTGGTTTGCACTGATTTGGCTATAAATGTAGGGACTATCCC
 CAAAACTGATCTTCCCCCTCTGTGCTCTATCCTTCTGTCCGAGTCCTCCTGACCT
 45 GAGAGTGGTCATGAACCACTCATCACCTACCCCTGGGGCTCACAGGATCTACAT
 TGAAATAAAAGCCGCATTGC (SEQ ID NO:207)

Translation:

LLDRSPPCMGGSSCRGTTGVCCGFCDFGYKCRDYPQN (SEQ ID NO:208)

Toxin Sequence:

Ser-Xaa3-Xaa3-Cys-Met-Lys-Gly-Gly-Ser-Ser-Cys-Arg-Gly-Thr-Thr-Gly-Val-Cys-Cys-Gly-
5 Phe-Cys-Ser-Asp-Phe-Gly-Xaa5-Lys-Cys-Arg-Asp-Xaa5-Xaa3-Gln-Asn-^ (SEQ ID NO:209)

Name: O6.2

Species: obscurus

10 **Cloned:** Yes

DNA Sequence:

ctctctctctctgtggacAGGTGACTCGCTGCTTGACGGAACGTCTGCCTTTAGT
15 AGGATCAGATGCTGCGGTACTGCAGTTCAATCTAAAGTCATGTGTGAGCTGATCC
AGCGGTTGATCTCCTCCCTCTGTGCTCCATCCTTCTGCCTGAGTTCTCCTTACCT
GAGAGTGGTCATGAACCACTCATCACCTACTCTTCTGGAGGCTCAGAGGAGCTAC
ATTGAAATAAAAGCCGCATTGC (SEQ ID NO:210)

Translation:

20 RSTRCLPDGTSLFSRIRCCGTCSILKSCVS (SEQ ID NO:211)

Toxin Sequence:

Cys-Leu-Xaa3-Asp-Gly-Thr-Ser-Cys-Leu-Phe-Ser-Arg-Ile-Arg-Cys-Cys-Gly-Thr-Cys-Ser-Ser-
25 Ile-Leu-Lys-Ser-Cys-Val-Ser-^ (SEQ ID NO:212)

Name: Pu6.2

Species: pulicarius

30 **Cloned:** Yes

DNA Sequence:

ATGAAACTGACGTGTGGT GATCATGCCGTGCTGTTCTGACGGCCTGTCAACTC
ATTACAGCTGAGACTTA CTCAGAGGTAAGCAGAACGACCGTGCTTGAGGTCAAC
35 TGACAAAAAACTCCAAGTTGACTAGGCAGTGCTCGCCTAACGGTGGATCTTGTCTCG
TCATTTCACTGCTGCAGCCTTATTGCAATAAAACTGGCGTATGTATTGCAAC
CTAATACCGTGTGGTCATGAACCACTCAAA TCCCTCTGGAGGCTTCAGA
GGA ACTGCATTGAAATAAAACTGCATTGCNTTGACCAAAAAAAA (SEQ ID
NO:213)

Translation:

MKLTCVIIIAVLFLTACQLITAETYSRGKQKHRLRSTDKN SKLTRQCSPNGGCSRHFH
CCSLYCNKNTGVCIAT (SEQ ID NO:214)

Toxin Sequence:

Xaa2-Cys-Ser-Xaa3-Asn-Gly-Gly-Ser-Cys-Ser-Arg-His-Phe-His-Cys-Cys-Ser-Leu-Xaa5-Cys-
45 Asn-Lys-Asn-Thr-Gly-Val-Cys-Ile-Ala-Thr-^ (SEQ ID NO:215)

Name: P6.1
Species: purpurascens
Cloned: Yes

5 **DNA Sequence:**

ATGAAACTGACGTGTGGTATCGTCGCCGTGCTGTTCCCTGACGGCCTGTCAACTC
ATCACAGCTGATGACTCCAGACGTACGCAGAACGATCGTGCCCTGAGGTCGACAC
CAAAGGCGCCACGTCGAATCGCCCCCTGCAAGACACCCGGACGAAAATGTTTCCGC
ATCAGAAGGACTGCTGCGGTCGAGCGTCATCATCACAATATGTCCCTGATCTTCCC
10 CCTTCTGTGCTGTATCCTTCTGCCTGAGTCTCCTTACCTGAGAGTGGTCATGAA
(SEQ ID NO:216)

15 **Translation:**

MKLTCVVIVAVLFLTACQLITADDSSRTQKHRALRSTTKGATSNRPCKTPGRKCFPHQK
DCCGRACIITICP (SEQ ID NO:217)

20 **Toxin Sequence:**

Xaa3-Cys-Lys-Thr-Xaa3-Gly-Arg-Lys-Cys-Phe-Xaa3-His-Gln-Lys-Asp-Cys-Cys-Gly-Arg-Ala-
Cys-Ile-Ile-Thr-Ile-Cys-Xaa3-^ (SEQ ID NO:218)

25 **Name:** P6.2

Species: purpurascens
Isolated: Yes
Cloned: Yes

30 **DNA Sequence:**

ACCAAAACCACATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACGATC
35 GTGCCCTGAGGTCGACCACCAAAACTCTCACGTCGAAAAGCTGCAAGCTTCCCGGA
GCATATTGTAATGCAGAAGATTATGACTGCTGCCTTAGATGCAAAGTTGGAGGTTAC
ATGTGGCTGATCCAGTGCCTGATCTCCCCCTCTGTGCTCTATCCTTTCTGCCTGA
GTCCTCCTTACCTAACAGAGTGGTCATGAACCACCATCACCTCTCCTGGAGGCTT
C (SEQ ID NO:219)

35 **Translation:**

MKLTCVVIVAVLLLACQLITADDSSRTQKHRALRSTTKLFTSKSCKLPGAYCNAEDYD
CCLRCKVGGTCG (SEQ ID NO:220)

40 **Toxin Sequence:**

Ser-Cys-Lys-Leu-Xaa3-Gly-Ala-Xaa5-Cys-Asn-Ala-Xaa1-Asp-Xaa5-Asp-Cys-Cys-Leu-Arg-
Cys-Lys-Val-Gly-Gly-Thr-Cys-# (SEQ ID NO:221)

45 **Name:** P6.3

Species: purpurascens
Cloned: Yes

DNA Sequence:

ATGAAACTGACGTGTGGTATCGTCGCCGTGCTGTTCCCTGACGGCCTGTCAACTC
 ATCACAGCTGATGACTCCAGACGTACGCAGAAGCATCGTGCCTGAGGTCGACCAC
 CAAACCGGCCACGTCGAATCGCCCCCTGCAAGAAAACCGGACGAAAATGTTCCGC
 5 ATCAGAAGGACTGCTGCGGTGAGCGTCATCATCACAATATGTCCTGATCTTCCC
 CCTTCTGTGCTGTATCCTTCTGCCTGAGTCCTCCTACCTGAGAGTGGTCATGAAC
 CACTCATCACCTCTCCTCTGGAGGCTTCAGAG (SEQ ID NO:222)

Translation:

10 MKLTCVVIVAVLFLTACQLITADDSSRRTQKHRLRSTTKRATSNRPCKKTGRKCFPHQK
 DCCGRACIITICP (SEQ ID NO:223)

Toxin Sequence:

15 Xaa3-Cys-Lys-Lys-Thr-Gly-Arg-Lys-Cys-Phe-Xaa3-His-Gln-Lys-Asp-Cys-Cys-Gly-Arg-Ala-
 Cys-Ile-Ile-Thr-Ile-Cys-Xaa3-^ (SEQ ID NO:224)

20 **Name:** R6.1
Species: radiatus
Cloned: Yes

DNA Sequence:

GCTGATGCCTGATCTTCATCGTTCTTCCCTGTCCTTGGCATCACCAAAACCATCA
 TCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGGTCCTGACGGCCTGTC
 25 AACTCATCACAGCTGATGACTCCAGAGGTATGCAGAAACATCATGCCCTGGGGTCG
 ATCAGCAGTCTCTTAAGTCGACCCGTATGGCTGCAAACCCCTCAAACGTCGTTGT
 TTCATGATAAAGAATGCTGCAGCAAATTGCAATTCAAGTCGAAAGCAGTGTGG
 ATAAATGGCTAAAAAACTGAATAAAAGCCGCATTGCAAAAAAAA (SEQ ID NO:225)

Translation:

30 MKLTCVVIVAVLVLTACQLITADDSSRGMQKHHALGSISSLFKSTRHGCKPLKRRCFNDK
 ECCSKFCNSVRKQCG (SEQ ID NO:226)

Toxin Sequence:

35 His-Gly-Cys-Lys-Xaa3-Leu-Lys-Arg-Arg-Cys-Phe-Asn-Asp-Lys-Xaa1-Cys-Cys-Ser-Lys-Phe-
 Cys-Asn-Ser-Val-Arg-Lys-Gln-Cys-# (SEQ ID NO:227)

40 **Name:** R6.2
Species: radiatus
Cloned: Yes

DNA Sequence:

GAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGGTCCTGACGGCCTGTCA
 45 ACTCATCACAGCTGATGACTCCAGAGGTATGCAGAAACATCATGCCCTGGGGTCG
 TCAGCAGTCTCTTAAGTCGACCCGTGTCGGCTGCAAACCCCTCAAACGTCGTTGT
 TCAATGATAAAGAATGCTGCAGCAAATTGCAATTCAAGTCGAAAGCAGTGTGG
 TAAATGGCTAAAAAACTGAATAAAAG (SEQ ID NO:228)

Translation:

MKLTCVVIVAVLVLACQLITADD SRGMQKHHALGSISSLFKSTRRGCKPLKRRCFNDK
ECCSKFCNSVRNQCG (SEQ ID NO:229)

5

Toxin Sequence:

Arg-Gly-Cys-Lys-Xaa3-Leu-Lys-Arg-Arg-Cys-Phe-Asn-Asp-Lys-Xaa1-Cys-Cys-Ser-Lys-Phe-Cys-Asn-Ser-Val-Arg-Asn-Gln-Cys-# (SEQ ID NO:230)

10

Name: w-RVIA
Species: radiatus
Cloned: Yes

DNA Sequence:

GGAATTCCGCTTGCACGGCGAACCTGACTTCATCTTCTTCCCTGCCCTCCTTGGCAT
CACCAAAACCACATCATAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGG
TCCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTATGCAGAACGAT
CATGCCCTGAGGTCGATCACCAAACCTCTCCCTGTCGACTCGCTGCAAACCTCCCGGA
20 TCACCATGTAGAGTTCTCGTATAACTGCTGCTCTTGCAAATCATACAACAAG
AAATGTGGCTGAACCTCCCCTCTGTGCTCTACCTTCTGCCCCGAGTCCTCCATA
CCTGAGAGTAGTCATGAACCACTGATTACCTACTCCTCTGGAGGGCCTCAGAGGAG
CTACTTGAAATAAAAGCCGCATTGCAAAAAAAA (SEQ ID NO:231)

25

Translation:

MKLTCVVIVAVLVLACQLITADD SRGMQKHHALRSITKLSLSTRCKPPGSPCRVSSYNC
CSSCKSYNKKCG (SEQ ID NO:232)

Toxin Sequence:

Cys-Lys-Xaa3-Xaa3-Gly-Ser-Xaa3-Cys-Arg-Val-Ser-Ser-Xaa5-Asn-Cys-Cys-Ser-Ser-Cys-Lys-Ser-Xaa5-Asn-Lys-Cys-Gly-# (SEQ ID NO:233)

30

Name: Ra6.1
Species: rattus
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCATGGTATCATGCCGTGCTGTTCTGACAGCCTGT
40 CAATTGATACAGCTGCGAGCTACGACAAAGGTAAAGCAGAACCTCCTACTCTGAG
GCCAGCTGACAAACACATCAGGTTGACCAAGCGTTGCAATGCTCGCAATGATGGTT
GCAGTCAACATTCTCAATGCTGCAGTGGATCTGCAATAAGACTGCAGGCGTATGTC
TGTAAAGCTGGTCTGCCGTCTGATATTCCCTTCTGTGCTTATCCTCTTGCCTGA
45 GTCATCCATACCTGTGAATGGTTAAGAGCCACTCAATACCTACTCCTCTGGGGGCTT
CAGAGGAACATTAATAAGCCACATTGCAAAAAAAA (SEQ ID NO:234)

Translation:

MKLTCMVIIAVLFLTACQFDTAASYDKGKQKPPTLRPADKHIRLTKRCNARNDGCSQHS
QCCSGSCNKTAGVCL (SEQ ID NO:235)

Toxin Sequence:

Cys-Asn-Ala-Arg-Asn-Asp-Gly-Cys-Ser-Gln-His-Ser-Gln-Cys-Cys-Ser-Gly-Ser-Cys-Asn-Lys-Thr-Ala-Gly-Val-Cys-Leu-^ (SEQ ID NO:236)

Name: Ra6.2

Species: rattus

Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCGTGGTGATCATGCCGTGCTGTTCTGACAGCCTGT
CAACTCGATGCAGCTGCGAGCTACGACAAAGGTAAGCAGAACCTCCTACTCTGAG
GCCAGCTGACAAACACTTCAGGTTGATCAAGCGTTGCAATGCTCGCAATAGTGGTT
GCAGTCAACATCCTCAATGCTGCAGTGGATCTGCAATAAGACTGCAGGCCTATGTC
TGTAAAGCTGGTCTGCCGTCTGATATTCCCTTCTGTGCTTATCCTCTTTGCCTGA
GTCATCCATACCTGTGAATGGTTAAGAGCCACTCAATACCTACTCCTCTGGGGGCTT
CAGAGGAACATACATTAAATAAGCCACATTGCAACGAAAAAAAAAAAAAAA
(SEQ ID NO:237)

Translation:

MKLTCVVIIAVLFLTACQLDAASAYDKGKQKPPTLRPADKFRLIKRCNARNSGCSQHP
QCCSGSCNKTAGVCL (SEQ ID NO:238)

Toxin Sequence:

Cys-Asn-Ala-Arg-Asn-Ser-Gly-Cys-Ser-Gln-His-Xaa3-Gln-Cys-Cys-Ser-Gly-Ser-Cys-Asn-Lys-Thr-Ala-Gly-Val-Cys-Leu-^ (SEQ ID NO:239)

Name: Ra6.3

Species: rattus

Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGTTGGTGATCATGCCGTGCTGTTCTGACAGCCTGT
CAATTGATACAGCTGCGAGCTACGACAAAGGTAAGCAGAACCTCCTACTCTGAG
GCCAGCTGACAAACACTTCAGGTTGATCAAGCGTTGCAATGCTCGCAATAGTGGTT
GCAGTCAACATCCTCAATGCTGCAGTGGATCTGCAATAAGACTTTGGCGTATGTC
TGTAAAGCTGGTCTGCCGTCTGATATTCCCTTCTGTGCTTATCCTCTTTGCCTGA
GTCATCCATACCTGTGAATGGTTAAGAGCCACTCAATACCTACTCCTCTGGGGGCTT
CAGAGGAACATACATTAAATAAGCCACATTGAAAAAAA
(SEQ ID NO:240)

Translation:

MKLTCVVIIAVLFLTACQFDTAASYDKGKQKPPTLRPADKFRLIKRCNARNSGCSQHP
QCCSGSCNKTGVL (SEQ ID NO:241)

Toxin Sequence:

Cys-Asn-Ala-Arg-Asn-Ser-Gly-Cys-Ser-Gln-His-Xaa3-Gln-Cys-Cys-Ser-Gly-Ser-Cys-Asn-Lys-Thr-Leu-Gly-Val-Cys-Leu-^ (SEQ ID NO:242)

5

Name: Sm6.1
Species: *stercusmuscarum*
Cloned: Yes

10

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTGCCCTGAGGTCGAAGACCAAACCTCTCCATGTCGACTCGCTGCAAGAGTAAAGGA
 15 GCAAAATGTTCAAGGCTTATGATGACTGCTGCAGCGGTTCTGCAGCGGCTACACA
 GGTAGATGTGGCTGATCCAGCGCCTGATCTTCCCCCTCTGTGCTTATCCTTTCTG
 CCTGGGTCTCCTTACCTGAGAGTGGTCATGAACCACTCATCACCTACTCCTCTGGA
 GGCCTCAGAGGAGTTACAATGAAATAAGCCGCATTGC (SEQ ID NO:243)

20

Translation:

MKLTCVVIVAVLLLACQLITADDRGQTQKHRLRSKTKLSMSTRCKSKGAKCSRLMY
 DCCSGSCSGYTGRCG (SEQ ID NO:244)

Toxin Sequence:

25 Cys-Lys-Ser-Lys-Gly-Ala-Lys-Cys-Ser-Arg-Leu-Met-Xaa5-Asp-Cys-Cys-Ser-Gly-Ser-Cys-Ser-Gly-Xaa5-Thr-Gly-Arg-Cys-# (SEQ ID NO:245)

30

Name: Sm6.2
Species: *stercusmuscarum*
Isolated: Yes

Toxin Sequence:

35 Thr-Thr-Ser-Cys-Met-Gln-Ala-Gly-Ser-Xaa5-Cys-Gly-Ser-Thr-Thr-Arg-Ile-Cys-Cys-Gly-Xaa5-Cys-Ala-Xaa5-Phe-Gly-Lys-Lys-Cys-Ile-Asp-Xaa5-Xaa3-Ser-Asn-^ (SEQ ID NO:246)

40

Name: Sm6.3
Species: *stercusmuscarum*
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGACCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATC
 GTGCCCTGAGGTCGAAGACCAAACCTCTCCATGTTAACCTTGCGCTGCGCATCTTACG
 GAAAACCTTGTGGTATTGACAACGACTGCTGCAATGCGATCCAGCCAGAAAT
 ATATGTACGTAGCTGATCCGGCGTCTGATCTTCCCCCTCTGTGCTTATCCTTTCT
 GCCTGAGTCCTCCTTACCTGAGAGTGGTCATGAACCACTCATCTACTCCTCTGG

AGGCCTCAGAGGAGCTACAATGAAATAAAGCCGCATTGC (SEQ ID NO:247)

Translation:

MKLTCVVIVAVLLLTCQLITADD SRGTQEHRALRSKTKLSMLTLRCAS YGKPCGIDND
5 CCNACDPARNICT (SEQ ID NO:248)

Toxin Sequence:

Cys-Ala-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Asp-Asn-Asp-Cys-Cys-Asn-Ala-Cys-Asp-Xaa3-
Ala-Arg-Asn-Ile-Cys-Thr-^ (SEQ ID NO:249)

10

Name: Sm6.4
Species: stercusmuscarum
Cloned: Yes

15

DNA Sequence:

GGATCCATGAAACTGACGTGTGGT GATTGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATCGTGCCCTGAGGTC
 GAAGACCAA ACTCTCCATGTTAAC TTGCGCTCGT ATCTTACGGAAA ACCTTGTGG
 20 TATTGACAACGACTGCTGCAATGCATGCGATCCAGCCAGAAATATATGTACGTAGC
 TGATCCGGCGTCTGATCTCCCCCTCTGTGCTCTATCCTTTCTGCCTGGGT CCTCC
 TTACCTGAGAGTGGTCATGAACC ACTCATCACCTACTCCTCTGGAGGCCTCAGAGGA
 GTTACAATGAAATAAAGCCGCATTGCAAAAAAAAAAAAAA (SEQ ID
NO:250)

25

Translation:

MKLTCVVIVAVLLLACQLITADD SRGTQEHRALRSKTKLSMLTLRCVS YGKPCGIDND
CCNACDPARNICT (SEQ ID NO:251)

30

Toxin Sequence:

Cys-Val-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Asp-Asn-Asp-Cys-Cys-Asn-Ala-Cys-Asp-Xaa3-
Ala-Arg-Asn-Ile-Cys-Thr-^ (SEQ ID NO:252)

35

Name: S6.1
Species: striatus
Cloned: Yes

DNA Sequence:

ACCAAAACC ATCATCAAAATGAAACTGACGTGTGGT GATCGTCGCCGTGCTGCT
 40 CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
 GTTCCCTGAGGTGCGACCACCAAGTCTCCAAGGCGACTGACTGCATTGAAGCCGGA
 AATTATTGCGGACCTACTGTTATGAAAATCTGCTGCGGCTTTGCAGTCCATACAGC
 AAAATATGTATGAACTATCCC AAAATTGATCTCCCC (SEQ ID NO:253)

45

Translation:

MKLTCVVIVAVLLLACQLITADD SRGTQKHRSRSTKVSKATDCIEAGNYCGPTVMK
ICCGFCSPYSKICMNPKN (SEQ ID NO:254)

Toxin Sequence:

Ala-Thr-Asp-Cys-Ile-Xaa1-Ala-Gly-Asn-Xaa5-Cys-Gly-Xaa3-Thr-Val-Met-Lys-Ile-Cys-Cys-Gly-Phe-Cys-Ser-Xaa3-Xaa5-Ser-Lys-Ile-Cys-Met-Asn-Xaa5-Xaa3-Lys-Asn-^ (SEQ ID NO:255)

5

Name: S6.2

Species: striatus

10 **Cloned:** Yes**DNA Sequence:**

GTCGACTCGCTGCAAGCTAAAGGACAATCATGTCGTAGGACTATGTATGACTGCTG
CAGCGGGTCTTGCAGGAGAGGTAATGTGGCTGATCCAGCGCCTGATCTCCCC
15 CCTTCTGTGCTCTATCCTTTCTGCCTGGGTCCCTACCTGAGAGTGGTCATGAAC
CACTCATCACCTACTCCTCTGGAGGCCTCAGAGGAGCTACAATGAAATAAAAGCCG
CATTGC (SEQ ID NO:256)

Translation:

20 STRCKLKGQSCRRMYDCCSGSCGRRGKCG (SEQ ID NO:257)

Toxin Sequence:

Cys-Lys-Leu-Lys-Gly-Gln-Ser-Cys-Arg-Arg-Thr-Met-Xaa5-Asp-Cys-Cys-Ser-Gly-Ser-Cys-Gly-Arg-Arg-Gly-Lys-Cys-# (SEQ ID NO:258)

25

Name: S6.3

Species: striatus

Cloned: Yes

30

DNA Sequence:

ACCAAAACCACATCATAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATC
35 GTGCCCTGAGGTGGACACCAAACTCTCCATGTCGACTCGCTGCAAGGCTGCAGGA
AAATCATGCAGTAGGATTGCGTATAACTGCTGCACCGGTTCTGCAGATCAGGTA
ATGCGGCTGATCCAGCGCCTGATCTCCCCCTCTGTGCTCTATCCTTCTGCCTGAG
TCCTCTACCTGAGAGTGGTCATGAACC (SEQ ID NO:259)

Translation:40 MKLTCVVIVAVLLLACQLITADDRGQTQKHRALRSDTKLSMSTRCKAAGKSCSRIAYN
CCTGSCRSGKCG (SEQ ID NO:260)**Toxin Sequence:**

Cys-Lys-Ala-Ala-Gly-Lys-Ser-Cys-Ser-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
45 Ser-Gly-Lys-Cys-# (SEQ ID NO:261)

Name: S6.6
Species: striatus
Cloned: Yes

5 **DNA Sequence:**
ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATC
GTGCCCTGAGGTCGGACACCAAACCTCTCATGTTAACCTTGCCTGCGAATCTTACG
GAAAACCTTGTGGTATTACAACGACTGCTGCAATGCATGCGATCCAGCCAAAAAG
10 ACATGTACGTAGCTGATCCGGCGTCTGATCT (SEQ ID NO:262)

Translation:
MKLTCVVIVAVLLLACQLITADDRGTEHRALRSDTKLSMLTLRCESYGKPCGIYND
CCNACDPAKKTCT (SEQ ID NO:263)

15 **Toxin Sequence:**
Cys-Xaa1-Ser-Xaa5-Gly-Lys-Xaa3-Cys-Gly-Ile-Xaa5-Asn-Asp-Cys-Cys-Asn-Ala-Cys-Asp-
Xaa3-Ala-Lys-Lys-Thr-Cys-Thr-^ (SEQ ID NO:264)

20 **Name:** w-SVIA
Species: striatus
Cloned: Yes

25 **DNA Sequence:**
ACTAGGT CCTCCGGCAGCCCCTGTGGTACTAGTATATGCTGTGGTAGATGCTAT
AGGGGTAAATGTACGTAGCTCATCGGGCGTCTGATCTCCCCCTCTGTGCTCCATC
CTTTCTGCCTGAGTCCTCCTTACCTGAGAGTGTCGTGAACCACTCATGCCTACTC
30 CTCTGGAGGCTTCAGAGGGCTACACTAAAATAAAAGCTATATTGCAATGAAAAAAA
A (SEQ ID NO:265)

Translation:
CRSSGSPCGVTSICCGRCYRGKCT (SEQ ID NO:266)

35 **Toxin Sequence:**
Cys-Arg-Ser-Ser-Gly-Ser-Xaa3-Cys-Gly-Val-Thr-Ser-Ile-Cys-Cys-Gly-Arg-Cys-Xaa5-Arg-Gly-
Lys-Cys-Thr-# (SEQ ID NO:267)

40 **Name:** w-SVIB
Species: striatus
Isolated: Yes

Toxin Sequence:
45 Cys-Lys-Leu-Lys-Gly-Gln-Ser-Cys-Arg-Lys-Thr-Ser-Xaa5-Asp-Cys-Cys-Ser-Gly-Ser-Cys-Gly-
Arg-Ser-Gly-Lys-Cys-# (SEQ ID NO:268)

Name: Sx6.1
Species: striolatus
Cloned: Yes

5 **DNA Sequence:**

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGTCTGCTGCTC
 CTGACGACCTGTCGTCTCATCACAGCTGATGACTCCAGAGGTACGCAGAACATCG
 TTCCCTGAGGTCGACTACTAAAGTCTCCATGTCGACTCGCTGCAAGGGTAAGGAG
 CATCATGTCTTAGGACTGCGTATGACTGCTGCACCGGTTCTGCAACAGAGGTAGAT
 10 GTGGCTGATCCAGCGTCTGATCTCCCCCTGTGCTCTATCCTTTCTGCTTGAGT
 CCTCCTTA (SEQ ID NO:269)

15 **Translation:**

MKLTCVVIVVLLLTTCRLITADDSRGTQKHRSRSTKVSMSRCKKGASCLRTAYD
 CCTGSCNRGRCG (SEQ ID NO:270)

20 **Toxin Sequence:**

Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-Leu-Arg-Thr-Ala-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Asn-
 Arg-Gly-Arg-Cys-# (SEQ ID NO:271)

25 **Name:** Sx6.2
Species: striolatus
Cloned: Yes

30 **DNA Sequence:**

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTTCTGCTG
 ACGGCCTGTCAACTCATCACAGCTGAGGACTCCAGAGGTACACAGAACATCGTAC
 CCTGAGGTCGACCGTCAGACGCTCCAAGTCCGAGTTGACTACGAGATGCAGGCCTT
 CAGGATCCAACGTGGTAATATTAGTATCTGCTGTGGTAGATGCGTTAACAGAAGAT
 GTACGTAGCTCATGGCGTCTGATCTTCCCC (SEQ ID NO:272)

35 **Translation:**

MKLTCVVIVAVLLTACQLITAEDSRGTQKHRTLRSRKSELTRCRPSGSNCGNISIC
 CGRCVNRRCT (SEQ ID NO:273)

40 **Toxin Sequence:**

Cys-Arg-Xaa3-Ser-Gly-Ser-Asn-Cys-Gly-Asn-Ile-Ser-Ile-Cys-Cys-Gly-Arg-Cys-Val-Asn-Arg-
 Arg-Cys-Thr-^ (SEQ ID NO:274)

45 **Name:** Sx6.3
Species: striolatus
Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTTCTGTTG
 CTGACGGCGTGTCAACTCATCACAGCTGAGGACTCCAGAGGTACACAGAACATCG

TTCCCTGAGGTCGACTACCAAAGTCTCCAAGTCGACTAGCTGCATGAAAGCCGGGT
 CTTATTGCGTCGCTACTACGAGAATCTGCTGCCGTTATTGCGCTTATTCGGCAAAA
 TATGTATTGACTATCCCCAAAAACTGATCTTCCCCACTGTGCTCTATCCTTT (SEQ
 ID NO:275)

5

Translation:

MKLTCVVIVAVLFLTACQLITAEDSRGTQKHRSLRSTTKVSKSTSCMKAGSYCVATTRIC
 CGYCAYFGKICIDYPKN (SEQ ID NO:276)

10

Toxin Sequence:

Ser-Thr-Ser-Cys-Met-Lys-Ala-Gly-Ser-Xaa5-Cys-Val-Ala-Thr-Thr-Arg-Ile-Cys-Cys-Gly-Xaa5-
 Cys-Ala-Xaa5-Phe-Gly-Lys-Ile-Cys-Ile-Asp-Xaa5-Xaa3-Lys-Asn-^ (SEQ ID NO:277)

15

Name: Tx6.15

Species: textile

Cloned: Yes

20

DNA Sequence:

GTTGACTCGGTACTGCACGCCCATGGAGGACATTGTGGTTATCATAATGACTGCTG
 CAGTCATCAATGCAATATAAACAGAAATAATGTGAGTAGCTGATCTGGCATCTGA
 TCTGTGCTCGTCCTTACCTGAGAGTGGTCATGAACCACTCACCTACTCCTCTGG
 AGGC (SEQ ID NO:278)

25

Translation:

LTRYCTPHGGHCGYHNDCCSHQCNINRNKCE (SEQ ID NO:279)

30

Toxin Sequence:

Xaa5-Cys-Thr-Xaa3-His-Gly-Gly-His-Cys-Gly-Xaa5-His-Asn-Asp-Cys-Cys-Ser-His-Gln-Cys-
 Asn-Ile-Asn-Arg-Asn-Lys-Cys-Xaa1-^ (SEQ ID NO:280)

35

Name: w-Tx

Species: textile

Isolated: Yes

40

Toxin Sequence:

Xaa5-Cys-Thr-Xaa3-Xaa5-Gly-Gly-His-Cys-Gly-Xaa5-His-Asn-Asp-Cys-Cys-Ser-His-Gln-Cys-
 Asn-Ile-Asn-Arg-Asn-Lys-Cys-Xaa1-^ (SEQ ID NO:281)

45

Name: C. tulipa w2

Species: tulipa

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCT
 CCTGACGGCCTGTCAGCTCATCACAGCTCTGCACTCCAGAGGTACGCAGAACATC

GTGCCCTGGGGCGGACCACAAACTCACCTGTCACTCGCTGCAAATCACCCGGA
 TCTCCATGTTACCGACTAGTTATAATTGCTGCTGGTCTTGCAAGTCACAGAAAA
 AAATGTAGGGGCTAATCCAGCGCCTGATTTCCCCCTCTGTGCTCTATTCTTCTG
 CCTGAGTCCTCCTTACCTGAAAGTGGTCATGAACCACCATCACCTACTCTCTGGA
 GGCTTCGGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:282)

Translation:

MKLTCVVIVAVLLLACQLITALHSRGTQKHRALGRTTKLTSTRCKSPGSPCSPTSYNC
 CWSCSPYRKCRG (SEQ ID NO:283)

Toxin Sequence:

Cys-Lys-Ser-Xaa3-Gly-Ser-Xaa3-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Xaa4-Ser-Cys-Ser-Xaa3-Xaa5-Arg-Lys-Lys-Cys-Arg-# (SEQ ID NO:284)

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAGCTCATCACAGCTCTGCACTCCAGAGGTACGCAGAACATC
 GTGCCCTGGGGTCGACCACCAAAACTCACCTGTCACTCGCTGCTTCGACCCGGAT
 CTTCATGTTACCGACTAGTTATAATTGCTGCAGGTCTTGCACATCCACAGCAGAA
 AATGTAGGGGCTAATCCAGCGCCTGATCTCCCCCTCTGTGCTCTATTCTTCTG
 CTGAGTCCTCCTTACCTGAAAGTGGTCATGAACCACCATCACCTACTCTCTGGAG
 GCTTCGGAGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:285)

Translation:

MKLTCVVIVAVLLLACQLITALHSRGTQKHRALGSTTKLTSTRCLSPGSSCSPTSYNC
 CRSCNPYSRKCRG (SEQ ID NO:286)

Toxin Sequence:

Cys-Leu-Ser-Xaa3-Gly-Ser-Ser-Cys-Ser-Xaa3-Thr-Ser-Xaa5-Asn-Cys-Cys-Arg-Ser-Cys-Asn-Xaa3-Xaa5-Ser-Arg-Lys-Cys-Arg-# (SEQ ID NO:287)

Name: Vi6.1

Species: viola

Cloned: Yes

DNA Sequence:

ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTATCGTCGCCGTGCTGCT
 CCTGACGGCCTGTCAGCTCATCACAGCTGATGACTCCAGAGGTACGCAGTTGCATCG
 TGCCCTGAGGAAGGCCACCAAACTCCCCGTGTCGACTCGCTGCATTACTTAGGAAC
 ACGATGTAAGGTTCCGAGTCAATGCTGCAGATCTTCTTGCAGAACGGTCGTTGTGC
 TCCATCCCCCTGAAGAATGGTAAATGTGGCTGATCCAGCGCCTGATCTCCCCCTCT
 GACTGTCTCCGACCTTTCTGCCTGAGTCCTCCTACCTGAGAGGTGTCATGAACCA

CTCATCACCTACTCCCCTGGAAGCTTCAGAGGAGCTACATTGAAATAAAAGCCGCA
TTGC (SEQ ID NO:288)

Translation:

5 MKLTCVVIVAVLLLACQLITADD SRGTQLH RALRKATKLPVSTRCITLGTRCKVPSQCC
RSSCKNGRCAPSPEEW (SEQ ID NO:289)

Toxin Sequence:

10 Cys-Ile-Thr-Leu-Gly-Thr-Arg-Cys-Lys-Val-Xaa3-Ser-Gln-Cys-Cys-Arg-Ser-Ser-Cys-Lys-Asn-
Gly-Arg-Cys-Ala-Xaa3-Ser-Xaa3-Xaa1-Xaa1-Xaa4-^ (SEQ ID NO:290)

Name: Vi6.2

Species: viola

15 Cloned: Yes

DNA Sequence:

20 ACCAAAACC ATCATCAA AATGAA ACTGAC GTGT GGTGAT CGTCGCCGTGCTGCT
CCTGACGGCCTGTCAGCTCATTATAGCTGGGACTCCAGAGGTACGCAGTTGCATCG
TGCCCTGAGGAAGGCCACCAA ACTCTCCGTGTCGACTCGCTGCAAGAGTAGAGGAT
CATCATGTCGTAGGACTTCGTATGACTGCTGCACGGGTTCTGCAGAAATGGTAAAT
GTGGCTGATCCAGCGCCTGATCTCCCCCTTGTGCTCCATCCTTTCTGCCTGAGT
CCTCCTTACCTGAGAGTGGCATGAACC ACTCATCACCTACTCCCTGGAAGCTTCAG
AGGAGCTACATTGAAATAAAAGCCGCATTGC (SEQ ID NO:291)

25

Translation:

MKLTCVVIVAVLLLACQLIAGDSRG TQLH RALRKATKLSVSTRCKSRGSSCRRTSYDC
CTGSCRNGKCG (SEQ ID NO:292)

30 **Toxin Sequence:**

Cys-Lys-Ser-Arg-Gly-Ser-Ser-Cys-Arg-Arg-Thr-Ser-Xaa5-Asp-Cys-Cys-Thr-Gly-Ser-Cys-Arg-
Asn-Gly-Lys-Cys-# (SEQ ID NO:293)

35 Name: Vi6.3

Species: viola

Cloned: Yes

DNA Sequence:

40 ACCAAAACC ATCATCAA AATGAA ACTGAC GTGT GGTGAT CGTCGCCGTGCTGCT
CCTGACGGCCTGTCAGCTCATTACAGCTGAAGACTCCAGAGGTACGCATGAGC ATC
TTGCCCTGAAGTCGACCTCCAAAGTCTCAAGTCGACTAGCTGCATGGAAGCCAGA
TCTTATTGCGGACCTGCTACTACGAAAATCTGCTGCATTTCAGCAGTCCATT CAGC
GATAGATGTATGAACAATCCCAACAATTGATCTCCCCCTTGTGCTCCATCTTT C
45 TGCCTGAGTCCTCCTTACCTGAGAGTGGTCA TGAA CC ACTCATCACCTACTCCTG
GAGGCTTCAGAGGAGTTACATTGAAATAAAAGCCGCATGC (SEQ ID NO:294)

Translation:

MKLTCVAIVAVLLLACQLITAEDSRGTHEHLALKSTSKVSKSTSCMEARSYCGPATTKI
CCDFCSPFSDRCMNNPNN (SEQ ID NO:295)

Toxin Sequence:

5 Ser-Thr-Ser-Cys-Met-Xaa1-Ala-Arg-Ser-Xaa5-Cys-Gly-Xaa3-Ala-Thr-Thr-Lys-Ile-Cys-Cys-
Asp-Phe-Cys-Ser-Xaa3-Phe-Ser-Asp-Arg-Cys-Met-Asn-Asn-Xaa3-Asn-Asn-^ (SEQ ID
NO:296)

10 **Name:** Vi6.4
Species: viola
Cloned: Yes

DNA Sequence:

15 ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGCT
CCTGACGGCCTGTCAGCTCATTACAGCTGAGGACTCCAGAGGTACGCAGTTGCATC
GTGCCCTGAGGAAGACCACCAAACCTCTCCTTGTGACTCGCTGCAAGGGTCCAGGA
GCCATATGTATAAGGATTGCGTATAACTGCTGCAAGTATTCTTGCAGGAAATGGTAAA
20 TGTGGCTGATCCAGCGCCTGATCTCCCCCTTGTGCTCCATCCTTTCTGCCTGA
GTCCTCCTTACCTGAGAGTGGTCATGAACCACCATCACCTACTCCTCTGGAGGCTT
CAGAGGAGCTACATTGAAATAAAAGCCGCATGC (SEQ ID NO:297)

Translation:

25 MKLTCVVIVAVLLLACQLITAEDSRGTLHRALRKTTKLSLSTRCKGPGAIIRIAYNCC
KYSCGNGKCG (SEQ ID NO:298)

Toxin Sequence:

Cys-Lys-Gly-Xaa3-Gly-Ala-Ile-Cys-Ile-Arg-Ile-Ala-Xaa5-Asn-Cys-Cys-Lys-Xaa5-Ser-Cys-Gly-
Asn-Gly-Lys-Cys-# (SEQ ID NO:299)

30
35 **Name:** Vi6.5
Species: viola
Cloned: Yes

DNA Sequence:

35 ACCAAAACCATCATCAAAATGAAACTGACGTGTGGTGATCGTCGCCGTGCTGTT
CTGACGGCCTGTCATTACATCACAGCTGATGACTCCAGAAGTACGCAGAACATCG
TGCCCTGAGGTCGACCACCAAACACTTATGTTGACTGGTACTGCACGCCTATGG
40 AGGACATTGTGGTTATTATAATGACTGCTGCAGTCATCAATGCAATATAAACAGAA
ATAAAATGTGAGTAGCTGATCCGGCATCTGATCTGTGCTGCCCTAACCTGAGAGTGG
TCATGAACCACTCATCATCTACTCCTCTGGAGGCTTCAGAGGAGCTACATGGAAATA
AAAGCCGCATTGC (SEQ ID NO:300)

45 **Translation:**

MKLTCVVIVAVLFLTACQFITADDSTQKHRALRSTTKHFMLTWYCTPYGGHCGYYN
DCCSHQCNINRNKCE (SEQ ID NO:301)

Toxin Sequence:

Xaa5-Cys-Thr-Xaa3-Xaa5-Gly-Gly-His-Cys-Gly-Xaa5-Xaa5-Asn-Asp-Cys-Cys-Ser-His-Gln-Cys-Asn-Ile-Asn-Arg-Asn-Lys-Cys-Xaa1-^ (SEQ ID NO:302)

5

Name: Pu6.4
Species: pulicarius
Cloned: Yes

DNA Sequence:

GGATCCATGAAACTGACGTGCGTGGTGATTATGCCGTGCTGTTCTGACGGCCTGT
 CAACTCATTACAGCTGAGACTTAATCCAGAGGTAAAGCAGATGCACCGTGCTCTGAG
 GTCAACTGACAAAAACTCCAAGTTGACCAGGGAATGCACACCTCCAGATGGAGCTT
 GTGGTTACCTACACACTGCTGCGGGTTTGCATATGGCAAACAACAGATGTCTGT
 AAAGCGTCTGATATTCCCCTCTGTGCTCTATCCTCTTGGCCTGAGTCATCCATACC
 TGTGCTCGAG (SEQ ID NO:303)

15

Translation:

MKLTCVIIIAVLFLTACQLITAETYSRGKQMHRALRSTDKNSQLTRECTPPDGACGLPTH
 CCGFCDMANNRCL (SEQ ID NO:304)

25

Name: Pu6.6
Species: pulicarius
Cloned: Yes

30

DNA Sequence:

GGATCCATGAAACTGACGTGCGTGGTGATTATGCCGTGCTGTTCTGACGGCCTGT
 CAACTCATTACAGCTGAGACTTAATCCAGAGGTAAAGCAGATGCACCGTGCTCTGAG
 GTCAACTGACAAAAACTCCCAGTTGACCAGGGAATGCACACCTCCAGGTGGAGCTT
 GTGGTTACCTACACACTGCTGCGGGTTTGCATATGGCAAACAACAGATGTCTGT
 AAAGCGTCTGATATTCCCCTCTGTGCTCTATCCTCTTGGCCTGAGTCATCCATACC
 TGTGCTCGAG (SEQ ID NO:306)

35

Translation:

MKLTCVIIIAVLFLTACQLITAETYSRGKQMHRALRSTDKNSQLTRECTPPGGACGLPTH
 CCGFCDMANNRCL (SEQ ID NO:307)

40

Toxin Sequence:

Xaa1-Cys-Thr-Xaa3-Xaa3-Asp-Gly-Ala-Cys-Gly-Leu-Xaa3-Thr-His-Cys-Cys-Gly-Phe-Cys-Asp-Met-Ala-Asn-Asn-Arg-Cys-Leu-^ (SEQ ID NO:308)

45

Name: Ra6.4
Species: *rattus*
Cloned: Yes

5 **DNA Sequence:**

GGATCCATGAAACTGACGTGTGGTGATCATGCCGTGCTGTTCTGGCAGCCTGT
 CAACCTGTTACAAC TGAGACTTCTCCAGAGGTAAGGAGAACGCGTCGTGCTCTGAG
 GTCAACTGACGGCAACTCCCAGGGT GACCAGGGCATGCACGCCGAAGGTGGAGCCT
 GTAGTAGTGGCGTCACTGCTGCGGCTTGCGATAACGTGCCCCACACGTGCTATG
 10 GTGAAACACCATCTCTCCACTGATGTTCCCTCTGTGCTCTATCTTCTTTGCCTG
 AGTCATCCATACCTGTGCTCGAG (SEQ ID NO:309)

Translation:

MKLTCVIIIAVLFLAACQPVTETFSRGKEKRRALRSTDGNSRLTRACTPEGGACSSGRH
 15 CCGFCDNVSHTCYGETPSLH (SEQ ID NO:310)

Toxin Sequence:

Ala-Cys-Thr-Xaa3-Xaa1-Gly-Gly-Ala-Cys-Ser-Ser-Gly-Arg-His-Cys-Cys-Gly-Phe-Cys-Asp-
 Asn-Val-Ser-His-Thr-Cys-Xaa5-Gly-Xaa1-Thr-Xaa3-Ser-Leu-His-^ (SEQ ID NO:311)

20

Name: Sm6.7
Species: *stercusmuscarum*
Cloned: Yes

25 **DNA Sequence:**

AGATCCATGAAACTGACGTGCGTGGTGATCGTCGCCGTGCTGCTCCTGACGGCCTGT
 CAACTCATCACAGCTGATGACTCCAGAGGTACGCAGGAGCATCGTGCCCTGAGGTC
 GGACACCAAACCTCCCATATCGACTCGCTGCAAGGGTAAAGGAGCATCATGTCATA
 30 AGACTATGTATGACTGCTGCAGCGGTTCTGCACCAGAGGTAGATGTGGCTGATCC
 AGCGCCTGATCTCCCCCTCTGTGCTCTATCCTTCTGCCTGAGTCATCATACCTG
 TGCTCGAGCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTGGCGTAATCATAAA
 ANC (SEQ ID NO:312)

35 **Translation:**

MKLTCVVIVAVLLLACQLITADD SRGTQEHR ALRS DTKLPI STRCKKGK GASCH KTMYD
 CCSGSCTRGR CG (SEQ ID NO:313)

Toxin Sequence:

40 Cys-Lys-Gly-Lys-Gly-Ala-Ser-Cys-His-Lys-Thr-Met-Xaa5-Asp-Cys-Cys-Ser-Gly-Ser-Cys-Thr-
 Arg-Gly-Arg-Cys-# (SEQ ID NO:314)

45 Xaa1 = Glu or γ -Carboxy Glu
 Xaa2 = Gln or pyroGlu
 Xaa3 = Pro or Hydroxy Pro
 Xaa4 = Trp or Bromo Trp

Xaa5 = Tyr, ¹²⁵I-Tyr, mono-iodo-Tyr or di-iodo-Tyr or O-sulpho-Tyr or O-Phospho-Tyr

[^] = Free-carboxyl C-term or Amidated C-term, preferably Free-carboxyl

= Free-carboxyl C-term or Amidated C-term, preferably Amidated

5

TABLE2

Alignment of ω -Conopeptides (SEQ ID NO:)

	Ar6.10 (F170)	---QCSANGGSC-TRHFH---CCSLYCNKDSSVCVATSYP [^] (315)
	Ar6.2 (F074)	---TCNTPTEYC-TLHRH---CCSGYCHKTIQACS [^] (316)
	Ar6.3	---QCTPNGGSC-SRHFH---CCSLYCNKSTGVCIATSYP [^] (317)
10	Ar6.4 (F009)	---TCNTPTEYC-TLHQH---CCSGYCHKTIQACS [^] (318)
	Ar6.6 (F069)	---ECTPPGGACGLPT-H---CC-GFCDTANNRCL [^] (319)
	Ar6.7 (F073)	---TCNTPTEYC-TLHQH---CCSGHCHKTIQACA [^] (320)
	Ar6.8 (F169)	---QCSPIGGYC-TLHIH---CCSNHCIIKPIGRCVAT [^] (321)
	Ar6.9 (F171)	---QCLPNGGYC-TLHIH---CCSDHCIIKPIDRCVAT [^] (322)
15	Ay6.1 (A653)	---CKGKGKPCSRISYN---CCTGSCRS--GKC# (323)
	Ay6.2 (A654)	---CMEAGSYCG-STTR--ICC-GFCAYFGKKCIDYPSN [^] (324)
	Ay6.3 (J419)	---CAKKGKPCSRAYN---CCTGSCRS--GKC# (325)
	Ay6.4	---CASYGKPCGIDN-D---CCNA-CDPGRNICT [^] (326)
	Bu6.1	-STSCMEEAGSYCGPATTK--ICC-DFCSPFSDRCMNNPNN [^] (327)
20	Bu6.2	---CITPGTRCKVPS-Q---CCRGPKNGR--CTPSPSEW [^] (328)
	Bu6.3	---CATYGKPCGIQN-D---CC-NTCDPARRTCT [^] (329)
	Bu6.4	---CKPGPGASCIRIAYN---CCKYSCRN--GKC# (330)
	Bu6.5	-STSCMAAGSYCGPATTN--ICC-DFCSPFSDRCMKKPNN [^] (331)
	Bu6.6	---CKSKGSSCHRTSYD---CCTGSCRN--GRC# (332)
25	C6.1	---CKSTGASCRRTSYD---CCTGSCRS--GRC# (333)
	C6.4	---CQGRGASCRKTMYN---CCSGSCN--RGSC# (334)
	C6.5	---CLPAGESCLFSRIR---CC-GTCSSVLKSCVS [^] (335)
	C6.6	---CQGRGGPCTKAVFN---CCSGSCN--RGRC# (336)
	C6.7	---CATYGKPCGIQN-D---CC-NTCDPARKTCT [^] (337)
30	C6.8	---CRGRGGPCTKAMFN---CCSGSCN--RGRC# (338)
	Ca6.4 (F168)	---QCSANGGSC-TRHFH---CCSLYCNKDSSVCVATSYP [^] (339)
	Cn6.1	---CASYGKPCGIDN-D---CC-NTCDPARKTCT [^] (340)
	Cn6.2 (I583)	---CKGTGKPCSRAYN---CCTGSCRS--GKC# (341)
	Cn6.3	-ATDCIEAGNYCGPTVMK--ICC-GFCSPYSKICMNPQN [^] (342)
35	Cn6.4	---CKGKGASCTRLMYD---CCHGSCSSSKGRC# (343)
	Cn6.5 (I590)	---CKGKGASCHRTSYD---CCTGSCN--RGKC# (344)
	Cn6.6 (I584)	---CASYGKPCGIYN-D---CC-NTCDPARKTCT [^] (345)
	Cn6.7 (J409)	---CKGTGKPCSRVAYN---CCTGSCRS--GKC# (346)
	Cn6.8 (J407)	-STSCMKAGSYCR-STTR--TCC-GYCAYFGKFCIDFPSN [^] (347)
40	Cr6.1	---CKGKGASCRKTMYN---CCSGSCSN--GRC# (348)
	Cr6.2	-STSCMEEAGSYCR-STTR--TCC-GYCSYFSKKCIDFPSN [^] (349)
	Cr6.3	---CKSKGAKCSRRLMYD---CCSGSCSRYSGRG# (350)
	Cr6.4	-STGCMKAGSYCR-STTR--TCC-GYCAYFGKKCIDYPSN [^] (351)
	Da6.8	---SCTPPGGPCGYYN-D---CCSHQCNISRNC [^] (352)
45	Di6.1	---CEDOGEOCGSDH-S---CCGGSCN--HNVCA [^] (353)
	E6.2	---PCKPKGRKCFPHQKD---CCNKTCT--RSKCP [^] (354)
	E6.3	---ACWSSGTPCGTDS-L---CCGG-CNVSKSKCN [^] (355)
	G6.1 (J420)	---CKSPGSSCSPTSYN---CCR-SCNPYAKRCY# (356)
	G6.2 (J423)	---CKSPGTPCSRGMRD---CCT-PCLLYSNKC-R--RY [^] (357)

J410 -----CLSPGSRCHKTMRN---CCT-SCSSYKGKCRP--RK^ (358)
 J411 -----CKPPGRKCLNRKNE---CCSKFCNEHLHMC# (359)
 J413 -----CKPPRRKCLKIKDK---CC-NFCNTHLNMC# (360)
 J414 -----CAGPGTIC--PNRV---CC-GYCSKRTHLCHS---RT# (361)
 5 La6.1 -----KCWPSGSYCRANS-K---CCSG-CDRNRNKCY^ (362)
 La6.2 -----CLPPGSYCK-ATTE--VCCS-SCLQFAQIC----S# (363)
 L6.1 -----CKSPGSPCSVTSYN---CCT-FCSSYTKKCRA--SL^ (364)
 L6.2 -----CAGPGAIC--PNRV---CC-GYCSKRTHLCHS---RT# (365)
 L6.3 -----ACWSSGTCPGTDs-L---CCGG-CNVSKS KCN^ (366)
 10 L6.4 -----KCWSPGTYCRAHS-K---CCRG-CDQNRNKCY^ (367)
 La6.3 -----CKSPGSSCSVSMRN---CCT-SCNSRTKKCTR--R# (368)
 La6.4 -----TCWPSGTACGIDS-N---CCSG-CNVSRS KCN^ (369)
 La6.5 -----KCWPSGSYCRANS-K---CCSG-CDRNRNKCN^ (370)
 Lp6.1 (JG4) SLFECAPSGGRCGFLK-S---CCEGYCDGESTSCVSGPYSI^ (371)
 15 Lp6.2 (JG5) WPLDCTAPSQPCGYFP-R---CCG-HCDV-RRVCTS# (372)
 Lp6.3 (JG7) -----CMSPGGICGDFG-D---CCE-ICNV-YGICVSDLPGI^ (373)
 Lp6.4 (JG15) -----YCAPPGGACGFFD-H---CC-GYCETFYNTC-R^ (374)
 M6.1 -----CKGTGKPCSRRIAYN---CCTGSCRS--GKC# (375)
 M6.2 -----CASYGKPCGIYN-D---CC-NTCDPARKTCT^ (376)
 20 Mi6.1 (F157) -----CNDRGGGC-SQHPh---CCGGTCNKLIGVCL^ (377)
 Mn6.1 -----CKSTGKCSRRIAYN---CCTGSCRS--GKC# (378)
 Mn6.2 -----CKKGKSSCSRRTMYN---CCTGSCN--RGKC# (379)
 O6.1 -----SPPCMKGGSSCR-GTTG--VCC-GFCSDFGYKCRDYPQN^ (380)
 O6.2 -----CLPDGTSLFSRIR---CC-GTCSSILKSCVS^ (381)
 25 P6.1 -----OCKTOGRKCFOHQKD---CCGRACI--ITICP^ (382)
 P6.2 -----SCKLOGAYCNAXDYD---CCLR-CKV-GGTC# (383)
 P6.3 -----PCKKTGRKCFPHQKD---CCGRACI--ITICP^ (384)
 Pu6.2 (JG28) -----QCSPNGGSC-SRHFH---CCSLYCNKNTGVCIAT^ (385)
 Pu6.4 (AA678) -----ECTPPDGACGLPT-H---CC-GFCDMANNRCL^ (386)
 30 Pu6.6 (AA681) -----ECTPPGGACGLPT-H---CC-GFCDMANNRCL^ (387)
 R6.1 -----HGCKPLKRRRCFNDKE---CCSKFCNSVRKQC# (388)
 R6.2 -----RGCKPLKRRRCFNDKE---CCSKFCNSVRNQC# (389)
 Ra6.1 (F206) -----CNARNDGC-SQHSQ---CCSGSCNKTAGVCL^ (390)
 Ra6.2 (F205) -----CNARNSGC-SQHPQ---CCSGSCNKTAGVCL^ (392)
 35 Ra6.3 (F207) -----CNARNSGC-SQHPQ---CCSGSCNKTAGVCL^ (393)
 Ra6.4 (AA688) -----ACTPEGGACSSGR-H---CC-GFCDNVSHTCYGETPSLH^ (394)
 S6.1 -----ATDCIEAGNYCGPTVMK--ICC-GFCSPYSKICMNPKN^ (395)
 S6.2 -----CKLGQSCRRTMYD---CCSGSCGR-RGKC# (396)
 S6.3 -----CKAAGKCSRRIAYN---CCTGSCRS--GKC# (397)
 40 S6.6 -----CESYGKPCGIYN-D---CC-NACDPAKKTCT^ (398)
 Sm6.1 (J428) -----CKSKGAKCSRRLMYD---CCSGSCSGYTGRG# (399)
 Sm6.2 -----TTSCMQAGSYCG-STTR--ICC-GYCAYFGKKCIDYPSN^ (400)
 Sm6.3 (J429) -----CASYGKPCGIDN-D---CC-NACDPARNICT^ (401)
 Sm6.4 (J431) -----CVSYGKPCGIDN-D---CC-NACDPARNICT^ (402)
 45 Sm6.7 (AA689) -----CKKGKGASCHKTMYD---CCSGSCTRG--RC# (403)
 Sx6.1 -----CKKGKGASCLRTAYD---CCTGSCN--RGRC# (404)
 Sx6.2 -----CRPSGSNCGNIS-I---CCGR-CVN--RRCT^ (405)
 Sx6.3 -----STSCMKAGSYCV-ATTR--ICC-GYCAYFGKICIDYPSN^ (406)
 Tx6.15 -----YCTPHGGHC-GYHND---CCSHQCNINRNKCE^ (407)
 50 Vi6.1 -----CITLGTRCKVPS-Q---CCRSSCKN--GRCAPSPEEW^ (408)
 Vi6.2 -----CKSRGSSCRRTSYD---CCTGSCRN--GKC# (409)
 Vi6.3 -----STSCMEARSYCGPATTK--ICC-DFCSPFSDRCMNNPNN^ (410)

Vi6.4 ~~- - - CKPGAI CIRIAYN - - - CCKYSCGN -- GKC#~~ (411)
 Vi6.5 ~~- - - YCTPYGGHCGYYN-D - - - CCSHQCNINRNKCE^~~ (412)
 ω -Tx ~~- - - CTPYGGHCGYNH-D - - - CCSHQCNINRNKCE^~~ (413)
 C. tulipa ω 2 ~~- - - CKSWGSOC SOTSTN - - - CCW- SCSPYRKKC-R#~~ (414)

5

EXAMPLE 3

*In vivo Activity of ω -Conopeptide
Frings Audiogenic Seizure Susceptible Mice*

[0079] *In vivo* anticonvulsant activity of ω -conopeptides is analyzed in Frings audiogenic seizure susceptible mice as described by White et al. (1992). The ω -conopeptides are found to have anticonvulsant activity in this assay.

10

EXAMPLE 4

In vivo Activity of ω -Conopeptides in CF No. 1 Mice

[0080] *In vivo* anticonvulsant activity of ω -conopeptides is analyzed in CF No. 1 mice as described by White et al. (1995), using the maximal electroshock, subcutaneous pentylenetetrazole (Metrazol) seizure threshold and threshold tonic extension test. ω -Conopeptides are found to have anticonvulsant activity.

15

20

EXAMPLE 5

*In Vivo Activity of ω -Conopeptides in
Pentylenetetrazole-Induced Threshold Seizure Model*

[0081] The *in vivo* activity of ω -conopeptides is analyzed using timed intravenous infusion of pentylenetetrazole (White et al., 1995). At time to peak effect, the convulsant solution (0.5% pentylenetetrazole in 0.9% saline containing 10 U.S.P. units/ml heparin sodium) is infused into the tail vein at a constant rate of 0.34 ml/min. The time in seconds from the start of the infusion to the appearance of the first twitch and the onset of clonus is recorded for each drug treated or control animal. The times to each endpoint are converted to mg/kg of pentylenetetrazole for each mouse, and mean and standard error of the mean are calculated. It is found that ω -conopeptides elevate the i.v. pentylenetetrazole seizure threshold.

25

30

EXAMPLE 6

In vivo Activity of ω -Conopeptides in Pain Models

[0082] The anti-pain activity of ω -conopeptides is shown in several animal models. These models include the nerve injury model (Chaplan, et al., 1997), the nociceptive response 5 to s.c. formalin injection in rats (Codene, 1993) and an NMDA-induced persistent pain model (Liu, et al., 1997). In each of these models it is seen that the ω -conopeptides and ω -conopeptides derivatives have analgesic properties.

[0083] More specifically, this study evaluates the effect of intrathecal administration of ω -conopeptides in mice models of nociceptive and neuropathic pain. For nociceptive pain, 10 the effect of the ω -conopeptides is studied in two different tests of inflammatory pain. The first is the formalin test, ideal because it produces a relatively short-lived, but reliable pain behavior that is readily quantified. There are two phases of pain behavior, the second of which is presumed to result largely from formalin-evoked inflammation of the hind paw. An ω -conopeptide is administered 10 minutes prior to injection of formalin. The number of flinches and/or the 15 duration of licking produced by the injection is monitored. Since the first phase is presumed to be due to direct activation of primary afferents, and thus less dependent on long term changes in the spinal cord, ω -conopeptides are presumed to have greatest effect on the magnitude of pain behavior in the second phase.

[0084] The mechanical and thermal thresholds in animals that received an injection of 20 complete Freund's adjuvant into the hind paw are also studied. This produces a localized inflammation including swelling of the hind paw and a profound decrease in mechanical and thermal thresholds, that are detected within 24 hours after injection. The changes in thresholds in rats that receive ω -conopeptides are compared with those of rats that receive vehicle intrathecal injections.

[0085] An important issue is whether the drugs are effective when administered after the 25 pain model has been established, or whether they are effective only if used as a pretreatment. Clearly, the clinical need is for drugs that are effective after the pain has developed. To address this issue, animals are studied in which ω -conopeptides are administered repeatedly, after the inflammation (CFA) or nerve injury has been established. In these experiments, an ω -conopeptide is injected daily by the intrathecal (i.t.) route. The mechanical and thermal thresholds 30 (measured, respectively, with von Frey hairs in freely moving animals and with the Hargreave's

test, also in freely moving animals) are repeated for a 2 to 4 week period after the injury is induced and the changes in pain measured monitored over time.

EXAMPLE 7

Effect of ω -Conotoxins in a Pain Model

[0086] Analgesic activity of ω -conotoxins is also tested in pain models as follows.

[0087] Persistent pain (formalin test). Intrathecal (i.t) drug injections are performed as described by Hylden and Wilcox (1980). An ω -conopeptide or vehicle is administered in a volume of 5 μ l. Fifteen minutes after the i.t. injection, the right hindpaw is injected with 20 μ l of 5% formalin. Animals are placed in clear plexiglass cylinders backed by mirrors to facilitate observation. Animals are closely observed for 2 minutes per 5 minute period, and the amount of time the animal spent licking the injected paw is recorded in this manner for a total of 45-50 minutes. Results are expressed as licking time in seconds per five minutes. At the end of the experiment, all animals are placed on an accelerating rotord and the latency to first fall was recorded. ω -Conopeptides are found to be active in this model which is predictive of efficacy for treating neuropathic pain.

[0088] Acute pain (tail-flick). An ω -conopeptide or saline is administered intrathecally (i.t.) according to the method of Hylden and Wilcox (1980) in a constant volume of 5 μ l. Mice are gently wrapped in a towel with the tail exposed. At various time-points following the i.t. injection, the tail is dipped in a water bath maintained at 54 °C. and the time to a vigorous tail withdrawal is recorded. If there is no withdrawal by 8 seconds, the tail is removed to avoid tissue damage.

[0089] Neuropathic pain. The partial sciatic nerve ligation model is used to assess the efficacy of Mar1 in neuropathic pain. Nerve injury is produced according to the methods of Malmberg and Basbaum (1998). Animals are anesthetized with a ketamine/xylazine solution, the sciatic nerve is exposed and tightly ligated with 8-0 silk suture around 1/3 to 1/2 of the nerve. In sham-operated mice the nerve is exposed, but not ligated. Animals are allowed to recover for at least 1 week before testing is performed. On the testing day, mice are placed in plexiglass cylinders on a wire mesh frame and allowed to habituate for at least 60 minutes. Mechanical allodynia is assessed with calibrated von Frey filaments using the up-down method as described by Chaplan et al. (1994), and the 50% withdrawal threshold is calculated. Animals that did not respond to any of the filaments in the series are assigned a maximal value of 3.6 grams, which is

the filament that typically lifted the hindlimb without bending, and corresponds to approximately 1/10 the animal's body weight.

[0090] The data obtained demonstrate that ω -conopeptides have potent analgesic properties in three commonly used models of pain: acute, persistent/inflammatory and 5 neuropathic pain models.

EXAMPLE 8

Calcium-Channel Antagonist Activity: Inhibition of Ionic Currents

[0091] Ionic currents through calcium channels are examined in cells that are 10 voltage-clamped by a single patch-clamp electrode. These whole-cell patch-clamp studies are performed mainly on N1E115 mouse neuroblastoma cells, although a variety of cell types, including human neuroblastoma cell line IMR-32, are also examined.

[0092] Most measurements are obtained using a bath saline that allowed examination of the calcium currents in the absence of other ionic currents. These solutions contained 80 mM 15 NMDG (as a sodium replacement), 30 mM TEACl (to block potassium currents), 10 mM BaCl₂ (as a charge-carrier through the calcium channels), and 10 mM HEPES at pH 7.3. Some solutions also contained 2 mM quinidine (to block potassium currents) and 3 μ M tetrodotoxin (to block sodium currents). Normal bath saline is (mM): 140 NaCl, 10 glucose, 3 KCl, 2 CaCl₂, 1 MgCl₂, 10 mM HEPES pH 7.3. Intracellular solutions contained (mM): 150 CsCl, 0.5 CaCl₂, 5 20 EGTA, 5 MgCl₂, 2 K₂ATP at pH 7.3-7.4. Bath saline and all internal solutions are filtered before use.

[0093] Pipets are made from Corning 7052 glass (Garner Glass Company, Claremont, Calif. 91711), coated with Sylgard (Dow Corning, Midland, Mich. 48640) and fire-polished before use. Bubble numbers are typically 5 to 6, with pipet resistances typically 2-5 M Ω ms. 25 Corning 8161, Kimble, and other glasses are also used without noticeable effect on the calcium currents observed.

[0094] Recordings are carried out at room temperature with an Axopatch 1-C amplifier (Axon Instruments, Foster City, Calif. 94404) and analyzed with pCLAMP software (Axon Instruments). Data are filtered at 1000 Hz for a typical sampling rate of 0.1 kHz; in all cases data 30 are filtered at a frequency at most 1/5 of the sampling rate to avoid biasing. Data are collected on-line by the software. Analysis is performed on-screen with print-out via a Hewlett-Packard LaserJet Printer (Hewlett-Packard, Palo Alto, Calif. 94306).

[0095] The typical experiment is conducted as follows: after seal formation followed by series resistance compensation and capacitative transient cancellation, a voltage clamp protocol is performed wherein the cell potential is stepped from the holding potential (typically -100 mV) to test potentials that ranged from -60 mV to +20 mV in 10 mV increments. The cell is held at the holding potential for 5 seconds between pulses. Protocols starting from other holding potentials usually covered the same range of test potentials. ω -Conopeptides are found to have calcium channel blocking activity in such cell lines.

[0096] It will be appreciated that the methods and compositions of the instant invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

15

BIBLIOGRAPHY

Abiko, H. et al. (1986). *Brain Res.* **38**:328-335.
Aldrete, J.A. et al. (1979). *Crit. Care Med.* **7**:466-470.
Barnay, G. et al. (2000). *J. Med. Chem.*
Bitan, G. et al. (1997). *J. Peptide Res.* **49**:421-426.
20 Bodansky et al. (1966). *Chem. Ind.* **38**:1597-98.
Cartier, G.E. et al. (1996). *J. Biol. Chem.* **271**:7522-7528.
Chandler, P. et al. (1993). *J. Biol. Chem.* **268**:17173-17178.
Chaplan S.R. (1997). *J Pharmacol. Exp. Ther.* **280**:829-838.
Clark, C. et al. (1981). *Toxicon* **19**:691-699.
25 Codere, T.J. (1993). *Eur. J. Neurosci.* **5**:390-393.
Cruz, L.J. et al. (1976). *Verliger* **18**:302-308.
Ettinger, L.J. et al. (1978). *Cancer* **41**:1270-1273.
Hammerland et al. (1992). *Eur. J. Pharmacol.* **226**:239-244.
Heading, C. (1999). *Curr. Opin. CPNS Invest. Drugs* **1**:153-166
30 Horiki, K. et al. (1978). *Chemistry Letters* 165-68.
Hubry, V. et al. (1994). *Reactive Polymers* **22**:231-241.
Hylden, J.L.K. and Wilcox, G. (1980). *Eur. J. Pharmacol.* **67**:313-316.

Kaiser et al. (1970). *Anal. Biochem.* **34**:595.

Kapoor (1970). *J. Pharm. Sci.* **59**:1-27.

Kornreich, W.D. et al. (1986). U.S. Patent No. 4,569,967.

Luer, M.S. & Hatton, J. (1993). *Annals Pharmcotherapy* **27**:912-921.

5 Liu, H. et al. (1997). *Nature* **386**:721-724.

Martinez, J.S. et al. (1995). *Biochem.* **34**:14519-14526.

McIntosh, J. M. et al. (1998). *Methods Enzymol.* **294**:605-624.

The Merck Manual of Diagnosis and Therapy, 16 Ed., Berkow, R. et al., eds., Merck Research Laboratories, Rahway, N.J., pp. 1436-1445 (1992).

10 10 *Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden*, E. Wunsch (Ed.), Georg Thieme Verlag, Stuttgart, Ger. (1974).

Nehlig, A. et al. (1990). Effects of phenobarbital in the developing rat brain. In *Neonatal Seizures*, Wasterlain, C.G. and Vertt, P. (eds.), Raven Press, New York, pp. 285-194.

Nishiuchi, Y. et al. (1993). *Int. J. Pept. Protein Res.* **42**:533-538.

15 Olivera, B.M. et al. (1984). U.S. Patent 4,447,356.

Olivera, B.M. et al. (1985). *Science* **230**:1338-1343.

Olivera, B.M. et al. (1990). *Science* **249**:257-263.

Olivera, B.M. et al. (1996). U.S. Patent 5,514,774.

Ornstein, et al. (1993). *Biorganic Medicinal Chemistry Letters* **3**:43-48.

20 20 Rall T.W. and Schleifer, L.S. in *Goodman and Gilman's The Pharmacological Basis of Therapeutics*, Seventh Ed., Gilman, A.G. et al., eds., Macmillan Publishing Co., New York, pp. 446-472 (1985).

Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA).

Rivier, J.R. et al. (1978). *Biopolymers* **17**:1927-38.

25 Rivier, J.R. et al. (1987). *Biochem.* **26**:8508-8512.

Sambrook, J. et al. (1989). *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Shon, K.-J. et al. (1994). *Biochemistry* **33**:11420-11425.

Stewart and Young, *Solid-Phase Peptide Synthesis*, Freeman & Co., San Francisco, CA (1969).

30 Vale et al. (1978). U.S. Patent 4,105,603.

Troupin, A.S. et al. (1986). MK-801. In *New Anticonvulsant Drugs, Current Problems in Epilepsy 4*, Meldrum, B.S. and Porter, R.J. (eds.), John Libbey, London, pp. 191-202.

Van de Steen, P. et al. (1998). *Critical Rev. in Biochem. and Mol. Biol.* **33**:151-208.

White, H.S., et al. (1992). *Epilepsy Res.* **12**:217-226.

White, H.S., et al. (1995). Experimental Selection, Quantification, and Evaluation of Antiepileptic Drugs. In *Antiepileptic Drugs*, 4th Ed., Levy, R.H., eds., Raven Press, N.Y., pp. 99-110.

Wong, E.H.P. et al. (1986). *Proc. Natl. Acad. Sci. USA* **83**:7104-7108.

5 Zhou L.M., et al. (1996). *J. Neurochem.* **66**:620-628.

Zimm, S. et al. (1984). *Cancer Res.* **44**:1698-1701.

U.S. Patent No. 3,842,067.

U.S. Patent No. 3,862,925.

U.S. Patent No. 3,972,859.

10 U.S. Patent No. 5,514,774.

U.S. Patent No. 5,550,050.

U.S. Patent No. 5,591,821.

U.S. Patent No. 5,719,264.

U.S. Patent No. 5,844,077 (1998).

15 Published PCT Application WO 92/19195.

Published PCT Application WO 94/25503.

Published PCT Application WO 95/01203.

Published PCT Application WO 95/05452.

Published PCT Application WO 96/02286.

20 Published PCT Application WO 96/02646.

Published PCT Application WO 96/40871.

Published PCT Application WO 96/40959.

Published PCT Application WO 97/12635.

Published PCT Application WO 98/03189.

25 Published PCT Application WO 00/23092.