CSE310 Written Homework #1

Kuba Gasiorowski ID: 109776237

1a) Time spent to get to first router: $t = \frac{8 Mb}{2 Mb/s} = \boxed{4s}$ Time spent in total: $4s \cdot 3 \ links = \boxed{12s}$

1b)
$$\frac{1.10^4 \ bits}{2.10^6 \ bits/s} = \frac{1}{2.10^2} s = \boxed{0.005s}$$

The second packet will be fully received at the first switch at time t = 0.01s

1c)

$$t = \frac{(n+p+1)L}{R}$$

$$t = \frac{(3+800+1) \cdot 10^4 \ bits}{2 \cdot 10^6 \ bits/s}$$

$$t = \frac{8.04 \cdot 10^6 \ bits}{2 \cdot 10^6 \ bits/s}$$

$$t = \boxed{4.02s}$$

By utilizing message segmentation, the time taken to transmit the message is lowered by a factor of 3. This is because we are fully utilizing all links in the network as much as possible, instead of using one link at a time.

2a)
$$R = 2 \cdot 10^6 \ bits/s$$

 $d_{prop} = \frac{link \ length}{propagation \ speed} = \frac{2 \cdot 10^7 \ m}{2.5 \cdot 10^8 \ m/s} = \frac{2}{25} \ s = \boxed{0.08 \ s}$
 $R \cdot d_{prop} = 0.08 \cdot 2 \cdot 10^6 = 0.16 \cdot 10^6 = \boxed{1.6 \cdot 10^5}$

- 2b) When the first packet is sent through the link, it spends 0.08 seconds in the link. During this 0.08 seconds, the link continues to accept bits at a rate equal to the bandwidth (2Mbps). So the total number of bits in the link is $0.08s \cdot 2 \cdot 10^6 b/s = 1.6 \cdot 10^5 \ bits$.
- 2c) The bandwidth-delay product is the maximum number of bits that can be in the link at any given time.

$$(2d)w_{bit} = \frac{m}{R \cdot d_{prop}} = \frac{2 \cdot 10^7 m}{1.6 \cdot 10^5 m/b} = \frac{200}{1.6} = \boxed{125 m}$$

 $2d)w_{bit} = \frac{m}{R \cdot d_{prop}} = \frac{2 \cdot 10^7 \ m}{1.6 \cdot 10^5 \ m/b} = \frac{200}{1.6} = \boxed{125 \ m}$ If a bit is 125m wide, then a bit is a little more than twice as wide as a football field.

2e)
$$w_{bit} = \frac{m}{R \cdot d_{prop}} = \boxed{\frac{m}{R \cdot \frac{m}{s}}}$$

3)

$$F = 1.5 \cdot 10^{10} bits$$

$$u_s = 3.0 \cdot 10^7 bits/s$$

$$d_i = 2.0 \cdot 10^6 bits/s$$

For client-server scenario:
$$D_{cs} = max\left(\frac{N \cdot F}{u_s}, \frac{F}{d_i}\right)$$

N, the number of users, is represented on the left hand side, has values of 10, 100, and 1000. u, the upload speed, has values of $3 \cdot 10^5$, $7 \cdot 10^5$, and $2 \cdot 10^6$ and is represented on the bottom. All units in the table are seconds.

10	7500	7500	7500
100	50000	50000	50000
1000	500000	500000	500000
	$3 \cdot 10^{5}$	$7 \cdot 10^5$	$2 \cdot 10^{6}$

For peer-to-peer scenario: $D_{p2p} = max\left(\frac{F}{u_s}, \frac{F}{d_i}, \frac{N \cdot F}{\sum u_i}\right)$ Again, N is represented on the left and u at the bottom.

10	500000	214285.71	75000
100	5000000	2142857.14	750000
1000	50000000	21428571.43	7500000
	$3 \cdot 10^{5}$	$7 \cdot 10^5$	$2 \cdot 10^6$