Class17: Cloud SRA data analysis

Yiyu

Downstream Analysis

1 2 3 4

```
folders <- list.files(pattern = "SRR")</pre>
files <- paste0(folders, "/abundance.h5")</pre>
files
[1] "SRR2156848_quant/abundance.h5" "SRR2156849_quant/abundance.h5"
[3] "SRR2156850_quant/abundance.h5" "SRR2156851_quant/abundance.h5"
file.exists(files)
[1] TRUE TRUE TRUE TRUE
names(files) <- sub(pattern = "_quant", "", folders)</pre>
files
                      SRR2156848
                                                        SRR2156849
"SRR2156848_quant/abundance.h5" "SRR2156849_quant/abundance.h5"
                      SRR2156850
                                                        SRR2156851
"SRR2156850_quant/abundance.h5" "SRR2156851_quant/abundance.h5"
Load up the tximport package and import data
library(tximport)
txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
```

Remove zero count genes

remove transcripts with no reads

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
```

remove transcripts with no change over samples

```
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

TRY a PCA

```
pca <- prcomp(t(x), scale=TRUE)</pre>
```

```
summary(pca)
```

Importance of components:

or use ggplot to plot pca results

```
library(ggrepel)

colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))

rownames(colData) <- colnames(txi.kallisto$counts)

y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
    aes(PC1, PC2, col = Condition) +
    geom_point() +
    geom_text_repel(label=rownames(y)) +
    labs(title = "PC1 vs PC2") +
    theme_bw()</pre>
```

PC1 vs PC2


```
ggplot(y) +
  aes(PC1, PC3, col = Condition) +
  geom_point() +
  geom_text_repel(label=rownames(y)) +
  labs(title = "PC1 vs PC3") +
  theme_bw()
```



```
ggplot(y) +
  aes(PC2, PC3, col = Condition) +
  geom_point() +
  geom_text_repel(label=rownames(y)) +
  labs(title = "PC2 vs PC3") +
  theme_bw()
```


DESeq

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

rowMedians

The following object is masked from 'package:MatrixGenerics':

The following objects are masked from 'package:matrixStats': anyMissing, rowMedians

```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre>
rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                 sampleTable,
                                 ~condition)
using counts and average transcript lengths from tximport
dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
res <- results(dds)</pre>
head(res)
```

log2 fold change (MLE): condition treatment vs control

Wald test p-value: condition treatment vs control

NA

DataFrame with 6 rows and 6 columns

ENST00000445946

Datarramo wrom o	TOWN GILL	O OOLUMIID			
	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENST00000539570	0.000000	NA	NA	NA	NA
ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				
ENST00000510508	NA				
ENST00000474471	NA				
ENST00000381700	NA				