Project

Fatemeh Nosrat

5/10/2021

```
library(ISLR)
SA.Heart = read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data",
                       sep=",", head=T, row.names=1)
names(SA.Heart)
    [1] "sbp"
                     "tobacco"
                                  "ld1"
                                               "adiposity" "famhist"
                                                                         "typea"
    [7] "obesity"
                     "alcohol"
                                               "chd"
                                  "age"
dim(SA.Heart)
## [1] 462 10
pairs(~ sbp + tobacco + ldl + adiposity + typea + obesity + alcohol +
        age + chd , data = SA.Heart)
            0 15
                              10 30
                                               15
                                                   35
                                                                 20
                                                                     50
     sbp
             tobacco
                        ldl
                              adiposity
                                        typea
                                                 obesity
                                                          alcohol
                                                                   age
                                                                             chd
  100 180
                     2 8
                                       20 60
                                                        0
                                                           100
                                                                         0.0 0.6
summary(SA.Heart)
##
         sbp
                        tobacco
                                             ldl
                                                            adiposity
                            : 0.0000
                                               : 0.980
                                                          Min. : 6.74
##
    Min.
          :101.0
    1st Qu.:124.0
                                                          1st Qu.:19.77
##
                     1st Qu.: 0.0525
                                        1st Qu.: 3.283
```

Median : 4.340

Median :26.11

Median :134.0

Median : 2.0000

```
## Mean
          :138.3
                   Mean : 3.6356
                                     Mean : 4.740
                                                       Mean
                                                              :25.41
   3rd Qu.:148.0
                   3rd Qu.: 5.5000
                                     3rd Qu.: 5.790
                                                       3rd Qu.:31.23
                                     Max.
   Max.
          :218.0
                   {\tt Max.}
                          :31.2000
                                            :15.330
                                                       Max.
                                                             :42.49
##
     famhist
                                                        alcohol
                           typea
                                        obesity
##
   Length:462
                      Min.
                             :13.0
                                     Min.
                                            :14.70
                                                     Min. : 0.00
##
  Class : character
                                     1st Qu.:22.98
                                                     1st Qu.: 0.51
                       1st Qu.:47.0
  Mode :character
                      Median:53.0
                                     Median :25.80
                                                     Median: 7.51
                                                     Mean : 17.04
##
                       Mean
                              :53.1
                                     Mean :26.04
                       3rd Qu.:60.0
##
                                     3rd Qu.:28.50
                                                     3rd Qu.: 23.89
##
                              :78.0
                       Max.
                                     Max. :46.58
                                                     Max. :147.19
##
                        chd
        age
## Min.
          :15.00
                   Min. :0.0000
  1st Qu.:31.00
                   1st Qu.:0.0000
## Median :45.00
                   Median :0.0000
## Mean
         :42.82
                   Mean :0.3463
## 3rd Qu.:55.00
                   3rd Qu.:1.0000
          :64.00
                          :1.0000
## Max.
                   Max.
# As I explained in the note the possible range for typea is between 12 and 84,
# and the summary confirms this range, since the min of typea is f13 and max is 78.
# convert famhist to a qualitative variable
SA.Heart$famhist = as.factor(SA.Heart$famhist)
# correlation
cor(SA.Heart[,-5])
##
                                             ldl
                                                  adiposity
                     sbp
                            tobacco
              1.00000000 0.21224652 0.15829633
                                                 0.35650008 -0.05745431
## sbp
## tobacco
              0.21224652 1.00000000 0.15890546 0.28664037 -0.01460788
## ldl
             0.15829633  0.15890546  1.00000000  0.44043175  0.04404758
## adiposity 0.35650008 0.28664037 0.44043175
                                                 1.00000000 -0.04314364
## typea
            -0.05745431 -0.01460788 0.04404758 -0.04314364 1.00000000
             0.23806661 \quad 0.12452941 \quad 0.33050586 \quad 0.71655625 \quad 0.07400610
## obesity
## alcohol
             0.14009559 \quad 0.20081339 \ -0.03340340 \quad 0.10033013 \quad 0.03949794
             0.38877060 0.45033016 0.31179923 0.62595442 -0.10260632
## age
## chd
             0.19235411 \quad 0.29971754 \quad 0.26305268 \quad 0.25412139 \quad 0.10315583
                            alcohol
##
               obesity
                                          age
## sbp
            0.23806661 0.14009559 0.3887706 0.19235411
## tobacco
            ## ldl
            0.33050586 -0.03340340 0.3117992 0.26305268
## adiposity 0.71655625 0.10033013 0.6259544 0.25412139
            0.07400610 0.03949794 -0.1026063 0.10315583
## typea
## obesity
            1.00000000 0.05161957
                                    0.2917771 0.10009508
## alcohol
            0.05161957 1.00000000 0.1011246 0.06253068
            0.29177713 0.10112465
                                    1.0000000 0.37297334
## age
            0.10009508 \quad 0.06253068 \quad 0.3729733 \quad 1.00000000
## chd
# age has the highest correlation with chd and alcohol has the lowest correlation with chd
# obesity and typea has the highest correlation
attach(SA.Heart)
plot(obesity, typea)
```



```
0
        ത റ
                                           0
                                                   0
                               ത
   \infty
   o.
   9.0
chd
   0.4
   0
              \infty \infty
                                      0
                                                  ത
        0
                      50
                                     100
                                                    150
                            alcohol
```

```
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7781 -0.8213 -0.4387 0.8889 2.5435
##
## Coefficients:
```

```
##
                    Estimate Std. Error z value Pr(>|z|)
                  -6.1507209
                              1.3082600
                                        -4.701 2.58e-06 ***
## (Intercept)
## sbp
                   0.0065040
                              0.0057304
                                          1.135 0.256374
                              0.0266028
## tobacco
                   0.0793764
                                          2.984 0.002847 **
## ldl
                   0.1739239
                              0.0596617
                                          2.915 0.003555 **
                              0.0292894
                                          0.635 0.525700
## adiposity
                   0.0185866
## famhistPresent 0.9253704
                              0.2278940
                                          4.061 4.90e-05 ***
## typea
                              0.0123202
                                          3.214 0.001310 **
                   0.0395950
## obesity
                  -0.0629099
                              0.0442477
                                         -1.422 0.155095
                                          0.027 0.978350
## alcohol
                   0.0001217
                              0.0044832
                   0.0452253
                             0.0121298
                                          3.728 0.000193 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 472.14 on 452 degrees of freedom
## AIC: 492.14
## Number of Fisher Scoring iterations: 5
# variables with statistically significant p-values are tobacco, ldl, famhistPresent, typea,
# Also, famhistPresent has the smallest p-value.
coef(glm.fit)
##
      (Intercept)
                            sbp
                                       tobacco
                                                         ldl
                                                                   adiposity
  -6.1507208650
                   0.0065040171
                                  0.0793764457
                                                 0.1739238981
                                                                0.0185865682
## famhistPresent
                          typea
                                       obesity
                                                      alcohol
                                                                         age
   0.9253704194
                 0.0395950250 -0.0629098693
                                                 0.0001216624
                                                                0.0452253496
# the coefficient corresponding to famhistPresent is the biggest among other coefficients,
# which means that the present of family history of coronary heart disease have a high impact
# on having diagnosed with that disease.
# the coefficients corresponding to "sbp" and "alcohol" are positive but close to zero,
# which means they do not have a high effect on indicating whether an individual has the
# disease or not. The coefficient associated with obesity is negative, which means that
# if an individual put on more weight and got more obese, then t is less likely for that
# individual to diagnosed with coronary disease.
# consider the first 115 data as the training data and the rest as the test data
train = SA.Heart[1:347,]
dim(train)
## [1] 347 10
test = SA.Heart[348:462,]
dim(test)
## [1] 115 10
# know we fit the model with the training data
glm.fit = glm(chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity + alcohol +
               age, data = train, family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = chd ~ sbp + tobacco + ldl + adiposity + famhist +
      typea + obesity + alcohol + age, family = binomial, data = train)
##
## Deviance Residuals:
      Min
                1Q Median
                                  3Q
                                          Max
## -1.8575 -0.8476 -0.4446 0.9479
                                       2.4746
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                 -5.3828517 1.4899493 -3.613 0.000303 ***
## (Intercept)
## sbp
                 -0.0006045 0.0069083 -0.088 0.930271
## tobacco
                  ## ldl
                  0.1667246  0.0694720  2.400  0.016400 *
```

```
## adiposity
                  0.0178851 0.0340952
                                        0.525 0.599886
## famhistPresent 0.8554214 0.2607152 3.281 0.001034 **
## typea
                  0.0409574 0.0140507
                                        2.915 0.003557 **
                 ## obesity
## alcohol
                  0.0022175 0.0054141
                                        0.410 0.682107
                  0.0451540 0.0135781
                                        3.326 0.000883 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 454.70 on 346 degrees of freedom
## Residual deviance: 365.23 on 337 degrees of freedom
## AIC: 385.23
##
## Number of Fisher Scoring iterations: 4
# using the first 347 observations as the training data caused many changes in the values
# of p-values. The only variables with statistically significant p-values are tobacco and
# typea. Interestingly, famhistPresent, which used to be a variable with the smallest p-value
# in the main model, now does not even have a significant p-value.
prob = predict(glm.fit, test, type= "response")
pred = rep(0, 462-347)
pred[prob > 0.5] = 1
table(pred,test$chd)
##
## pred 0 1
##
     0 66 11
      1 15 23
##
mean(pred == test$chd)
## [1] 0.773913
# logistic regression correctly predicted the number of cases with coronary heart disease
# 77.39% of the time. That is surprisingly good and it shows that the predictors in the model
# are good indicators of having someone diagnosed with the disease or not.
mean(pred!=test$chd)
## [1] 0.226087
# the test error in this case is 28.24%
# Let refit the model with only those variable with significant p-values in the main model,
# that is a linear model with only tobacco, ldl, famhistPresent, typea, and age as the predictors.
glm.fit = glm(chd ~ tobacco + ldl + famhist + typea + age,
             data = train, family = binomial)
summary(glm.fit)
##
## glm(formula = chd ~ tobacco + ldl + famhist + typea + age, family = binomial,
##
       data = train)
##
```

```
## Deviance Residuals:
      Min 1Q Median
                             30
                                          Max
## -1.9314 -0.8449 -0.4502 0.9651
                                       2.5334
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -6.29310 1.03496 -6.081 1.20e-09 ***
                                     2.722 0.00649 **
## tobacco
                  0.08181
                             0.03005
                           0.06470
## ldl
                  0.15459
                                      2.389 0.01688 *
## famhistPresent 0.84041 0.25868
                                      3.249 0.00116 **
                  0.03990
                             0.01398
## typea
                                     2.853 0.00433 **
                  0.04711
                             0.01132 4.163 3.14e-05 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 454.7 on 346 degrees of freedom
## Residual deviance: 366.7 on 341 degrees of freedom
## AIC: 378.7
##
## Number of Fisher Scoring iterations: 4
prob = predict(glm.fit, test, type = "response")
pred = rep(0, 462-347)
pred[prob > 0.5] = 1
table(pred, test$chd)
##
## pred 0 1
     0 68 14
##
     1 13 20
mean(pred == test$chd)
## [1] 0.7652174
# logistic regression correctly predicted the number of cases with coronary heart disease 76.52\%
# of the time.
# If we refit the main model with the variables which were significant in the model with all
# variables and training data, then we have
glm.fit = glm(chd ~ tobacco + typea,
             data = train, family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = chd ~ tobacco + typea, family = binomial, data = train)
##
## Deviance Residuals:
      Min
           1Q
                    Median
                                  30
                                          Max
## -1.9745 -0.8868 -0.7122 1.2214
                                       1.9320
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
```

```
## (Intercept) -2.76181
                          0.70925 -3.894 9.86e-05 ***
               0.14735
                          0.02910 5.064 4.10e-07 ***
## tobacco
## typea
               0.03039
                          0.01260
                                   2.411 0.0159 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 454.70 on 346 degrees of freedom
## Residual deviance: 417.62 on 344 degrees of freedom
## AIC: 423.62
## Number of Fisher Scoring iterations: 4
prob = predict(glm.fit, test, type = "response")
pred = rep(0, 462-347)
pred[prob > 0.5] = 1
table(pred, test$chd)
##
## pred 0 1
      0 74 26
##
      1 7 8
mean(pred == test$chd)
## [1] 0.7130435
# logistic regression correctly predicted the number of cases with coronary heart disease
# 71.3% of the time, which is worse than the other two model. So, we can conclude that
# the model with tobacco , ldl , famhist , typea , and age as the predictors and with
# that training data predicts the result in this case better.
# now we perform LDA on our data. we fit the model using the training data we have already
# obtained. Since we could obtain the least test error when we had tobacco, ldl, famhistPresent,
# typea, and age as the predictors, we again use only these variables as the predictors
library(MASS)
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
lda.fit = lda(chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity + alcohol +
                age, data = train)
lda.fit
## Call:
## lda(chd ~ sbp + tobacco + ldl + adiposity + famhist + typea +
##
       obesity + alcohol + age, data = train)
## Prior probabilities of groups:
##
## 0.6368876 0.3631124
##
## Group means:
                           ldl adiposity famhistPresent
##
          sbp tobacco
                                                            typea obesity
## 0 134.9548 2.628959 4.378597 23.56597
                                            0.3031674 52.63801 25.70670
```

```
## 1 140.2381 5.424365 5.478413 27.62667
                                                0.5714286 55.37302 26.61968
##
      alcohol
                   age
## 0 14.21950 38.66968
## 1 18.31159 49.84127
## Coefficients of linear discriminants:
##
                  -0.0002365733
## sbp
## tobacco
                   0.0837262014
## ldl
                   0.1576033911
## adiposity
                   0.0076164496
## famhistPresent 0.8137435589
## typea
                   0.0323872936
                  -0.0417462089
## obesity
## alcohol
                   0.0010380326
## age
                   0.0369194340
```

LDA output indicates that pi_{1}^{bar} = 0.6368876 and pi_{1}^{bar} = 0.3631124; in other word,
38% of the training observations correspond to those having diagnosed with the disease.
and 62% of the training observations correspond to those not having diagnosed with the disease
Based on the group mean provided by LDA, they suggest that the consumption of tobacco is higher
when the observation is diagnosed with the disease and the mean of consumption of tobacco is
lower when the observation is not diagnosed with the disease.
this is true about all other predictors, that is, ldl, famhistPresent, typea, and age are all
higher when the observation is diagnosed with the disease and lower otherwise.
plot(lda.fit)

lda.fit\$coefs

NULL

Based on the coefficients of linear discriminants, we have the following linear combination of variab # 0.08774733 * tobacco + 0.10201265 * ldl + 0.30663925 * famhistPresent + 0.04760699 * typea + 0.0454 # If the value of this linear combination is high, then LDA classifier will predict that the individual

```
# that disease and if it is small, then the prediction is that the person is not diagnoised with the di
# prediction
lda.pred = predict(lda.fit, test)
lda.pred$class
    ## [38] 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0
## [112] 0 0 1 1
## Levels: 0 1
table( lda.pred$class, test$chd)
##
##
       0 1
    0 68 13
##
    1 13 21
##
mean(lda.pred$class == test$chd)
## [1] 0.773913
# the LDA and logistic regression predictions are almost identical.
# We now use Quadratic Discriminant Analysis for obtaining the prediction on the data.
# Again, we use the model containing only tobacco, ldl, famhistPresent, typea, and age.
qda.fit = qda(chd ~ tobacco + ldl + famhist + typea + age,
            data = train)
qda.fit
## Call:
## qda(chd ~ tobacco + ldl + famhist + typea + age, data = train)
## Prior probabilities of groups:
##
## 0.6368876 0.3631124
##
## Group means:
     tobacco
                 ldl famhistPresent
                                     typea
## 0 2.628959 4.378597
                        0.3031674 52.63801 38.66968
## 1 5.424365 5.478413
                         0.5714286 55.37302 49.84127
#prediction
qda.pred = predict(qda.fit, test)
table(qda.pred$class, test$chd)
##
##
      0 1
##
    0 69 18
    1 12 16
mean(qda.pred$class == test$chd)
## [1] 0.7391304
# QDA method has the almost same level of accuracy as the logistic regression and LDA methods.
```

```
# KNN method
library(class)
# we now use KNN method for prediction
# we need to standardize the data so that all variables are given a mean of zero and a standard deviati
# we remove the column corresponding to famhist, because it is a qualitative variable.
# standardized variable
\#stand.X = scale(SA.Heart[, -5])
# We fit a KNN model on the training data using K = 1
train.X = cbind(sbp, tobacco, ldl, adiposity, famhist, typea, obesity, alcohol, age)[1:347,-10]
test.X = cbind(sbp, tobacco, ldl, adiposity, famhist, typea, obesity, alcohol, age)[348:462,-10]
train.Y = SA.Heart$chd[1:347]
test.Y = SA.Heart\$chd[348:462]
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
knn.pred = knn(train.X, test.X, train.Y, k=1)
table(knn.pred, test.Y)
           test.Y
## knn.pred 0 1
##
          0 57 20
          1 24 14
##
mean(test.Y == knn.pred)
## [1] 0.6173913
mean(test.Y != knn.pred)
## [1] 0.3826087
mean(test.Y != "absent")
# KKN with K=1 could predict the result correctly 66.28% of time, which is not a weak prediction compar
# methods
# Let consider K = 3
knn.pred = knn(train.X, test.X, train.Y, k=3)
table(knn.pred,test.Y)
##
           test.Y
## knn.pred 0 1
          0 61 18
##
          1 20 16
mean(test.Y == knn.pred)
## [1] 0.6695652
mean(test.Y != knn.pred)
## [1] 0.3304348
# this time the mean test error is less than when K = 1, which mean we have a better prediction with K
# Let consider K = 10
```

```
knn.pred = knn(train.X, test.X, train.Y, k=10)
table(knn.pred,test.Y)
##
           test.Y
## knn.pred 0 1
          0 64 15
##
          1 17 19
mean(test.Y == knn.pred)
## [1] 0.7217391
mean(test.Y != knn.pred)
## [1] 0.2782609
# when \mathit{K} =10, we have a better prediction compared to \mathit{KKN} with lower \mathit{K}, but the test error for \mathit{KNN} with
# is still higher than those earlier method we use to fit our method.
# LOOCV
error = rep(0,462)
for (i in 1:462){
  1.fit = glm(chd \sim .,
              data = SA.Heart[-i,], family = "binomial")
  chd.pred = predict.glm(1.fit, SA.Heart[i,], type="response") > 0.5
  if(chd.pred != SA.Heart[i,]$chd)
    error[i] = 1
}
mean(error)
## [1] 0.2813853
# K-fold CV, K=10
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
library(boot)
cv.error.10 = rep(0,10)
for (i in 1:10){
  glm.fit = glm(chd ~ .,
              data = SA.Heart, family = "binomial")
  cv.error.10[i] = cv.glm(SA.Heart, glm.fit, K=10)$delta[1]
}
cv.error.10
## [1] 0.1795869 0.1802834 0.1783256 0.1800535 0.1804971 0.1809238 0.1809298
## [8] 0.1813956 0.1803258 0.1840430
# bootstrap
# we have already considered the logistic regression when we have tobacco, ldl, famhist, typea,
# and age as the predictors and chd as the response
#we now compute the standard error of the income and balance logistic regression coefficients in two di
```

```
# using bootstrap and using the standard formula for computing the standard error in the glm()
glm.fit = glm(chd ~ tobacco + ldl + famhist + typea + age,
              data = SA.Heart, family = "binomial")
summary(glm.fit)
##
## Call:
## glm(formula = chd ~ tobacco + ldl + famhist + typea + age, family = "binomial",
      data = SA.Heart)
## Deviance Residuals:
                    Median
                                   3Q
                                          Max
                1Q
## -1.9165 -0.8054 -0.4430
                             0.9329
                                        2.6139
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -6.44644
                             0.92087 -7.000 2.55e-12 ***
                  0.08038
                             0.02588
                                       3.106 0.00190 **
## tobacco
## ldl
                  0.16199
                             0.05497
                                       2.947 0.00321 **
## famhistPresent 0.90818
                             0.22576
                                       4.023 5.75e-05 ***
## typea
                  0.03712
                             0.01217
                                       3.051 0.00228 **
## age
                  0.05046
                             0.01021
                                      4.944 7.65e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 475.69 on 456 degrees of freedom
## AIC: 487.69
## Number of Fisher Scoring iterations: 5
data("SA.Heart")
## Warning in data("SA.Heart"): data set 'SA.Heart' not found
# boot.fn function which returns coefficients estimates for all considered predictors in the logistic r
boot.fn = function(data,index){
 1.fit = glm(chd \sim .,
             data = SA.Heart, family = "binomial", subset = index)
  return(coef(l.fit))
boot(SA.Heart, boot.fn,1000)
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## Call:
## boot(data = SA.Heart, statistic = boot.fn, R = 1000)
##
## Bootstrap Statistics :
```

```
##
            original
                            bias
                                    std. error
       -6.1507208650 -0.1707868160 1.401744462
## t1*
## t2*
        0.0065040171 0.0003754193 0.006272245
        ## t3*
## t4*
        0.1739238981 0.0071858451 0.064855486
## t5*
        ## t6*
        0.9253704194 0.0191337765 0.226487594
## t7*
        0.0395950250 0.0019499504 0.012470782
## t8*
       -0.0629098693 -0.0064039140 0.051579661
        0.0001216624 -0.0001893718 0.004912838
## +.9*
## t10* 0.0452253496 0.0009075547 0.012449730
# model selection: so far based on the methods we used, we figured that the logistic regression
# and LDA models with all variables as predictors provide us best predictions for the response
# compared to other linear methods. Having all 9 variables in the model is not necessary and
# makes the model very complicated. In the next chapter, we will find what subset of variables
# are best to use as predictors in the linear model Now we still consider a linear formulation
# of variables and try to obtain the best linear model (find a subset of predictors which gives
# us the best accuracy)
# best subset selection
library(leaps)
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
regfit.f = regsubsets(chd ~ ., SA.Heart)
summary(regfit.f)
## Subset selection object
## Call: regsubsets.formula(chd ~ ., SA.Heart)
## 9 Variables (and intercept)
                 Forced in Forced out
## sbp
                     FALSE
                                FALSE
## tobacco
                     FALSE
                                FALSE
## ldl
                     FALSE
                                FALSE
## adiposity
                     FALSE
                                FALSE
## famhistPresent
                     FALSE
                                FALSE
## typea
                     FALSE
                                FALSE
## obesity
                     FALSE
                                FALSE
## alcohol
                     FALSE
                                FALSE
                     FALSE
                                FALSE
## age
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
           sbp tobacco ldl adiposity famhistPresent typea obesity alcohol age
## 1 (1)""""
                       11 11 11 11
                                     11 11
                                                   11 11
                       ## 2 (1)""""
                                     "*"
                                                                         "*"
## 3 (1)""*"
                       .. ..
                                                                 .. ..
                                     "*"
                                                                         "*"
## 4 (1) " " *"
                       "*" " "
                                     "*"
                                                                         "*"
                       "*" " "
## 5 (1)""*"
                                     "*"
                                                         11 11
                                                                         "*"
## 6 (1) " " "*"
                       "*" " "
                                     "*"
                                                                         "*"
                                                   11 🕌 11
                                                         11 🕌 11
                       "*" " "
## 7 (1) "*" "*"
                                     "*"
                                                   "*"
                                                         "*"
                                                                 11 11
                                                                         "*"
                       "*" "*"
## 8 (1) "*" "*"
                                     11 🕌 11
                                                   11 🕌 11
                                                         11 🕌 11
                                                                         11 4 11
```

```
# based on the summary, the best subset selection method identifies:
# the best model with only 1 variable is the one with "age"
# the best model with only 2 variable is the one with "age" and "famhistPresent"
# the best model with only 3 variable is the one with "age", "famhistPresent", and "tobacco"
# the best model with only 4 variable is the one with "age", "famhistPresent", "tobacco", and "ldl"
# the best model with only 5 variable is the one with "age", "famhistPresent", "tobacco", "ldl", and "t
# the best model with only 6 variable is the one with "age", "famhistPresent", "tobacco", "ldl", "typea
# the best model with only 7 variable is the one with "age", "famhistPresent", "tobacco", "ldl", "typea
regfit.f = regsubsets(chd ~ ., SA.Heart, nvmax = 9)
regfit.f.sum = summary(regfit.f)
regfit.f.sum
## Subset selection object
## Call: regsubsets.formula(chd ~ ., SA.Heart, nvmax = 9)
## 9 Variables (and intercept)
##
                 Forced in Forced out
## sbp
                      FALSE
                                 FALSE
                      FALSE
## tobacco
                                 FALSE
## ldl
                     FALSE
                                FALSE
## adiposity
                     FALSE
                                FALSE
## famhistPresent FALSE
                                FALSE
## typea
                     FALSE
                                 FALSE
## obesity
                     FALSE
                                 FALSE
## alcohol
                      FALSE
                                 FALSE
                      FALSE
                                 FALSE
## age
## 1 subsets of each size up to 9
## Selection Algorithm: exhaustive
            sbp tobacco ldl adiposity famhistPresent typea obesity alcohol age
## 1 (1)""""
                                      11 11
## 2 (1)""""
                        .. ..
                                      "*"
                                                     11 11
                                                           11 11
                                                                            "*"
## 3 (1)""*"
                        "*"
                                                                            "*"
                        "*" " "
                                                     11 11
## 4 ( 1 ) " " *"
                                      "*"
                                                                            "*"
## 5 (1)""*"
                        "*" " "
                                      "*"
                                                     "*"
                                                                           "*"
## 6 (1) " " "*"
                        "*" " "
                                      "*"
                                                     "*"
                                                                           "*"
## 7 (1) "*" "*"
                        "*" " "
                                      "*"
                                                                            "*"
                                                     11 * 11
                                                           11 * 11
## 8 (1) "*" "*"
                        "*" "*"
                                      "*"
                                                     "*"
                                                           "*"
                                                                   11 11
                                                                            "*"
                        "*" "*"
## 9 (1) "*" "*"
                                      11 * 11
                                                           11 * 11
                                                                   11 * 11
                                                                           11 * 11
names(regfit.f.sum)
## [1] "which" "rsq"
                                  "adjr2" "cp"
                                                    "bic"
                                                             "outmat" "obj"
                         "rss"
regfit.f.sum$rsq
## [1] 0.1391091 0.1746324 0.1976777 0.2155700 0.2285384 0.2327238 0.2355085
## [8] 0.2358771 0.2360147
regfit.f.sum$rss
## [1] 90.03950 86.32416 83.91389 82.04255 80.68620 80.24846 79.95720 79.91866
## [9] 79.90426
regfit.f.sum$adjr2
```

[1] 0.1372376 0.1710361 0.1924223 0.2087041 0.2200794 0.2226058 0.2237212

```
## [8] 0.2223826 0.2208026
regfit.f.sum$cp
## [1] 51.332678 32.315862 20.681509 12.095770 6.423213 5.947026 6.299469
## [8] 8.081428 10.000000
regfit.f.sum$bic
## [1] -56.93070 -70.26332 -77.21085 -81.49484 -83.06102 -79.43872 -74.98299
## [8] -69.07020 -63.01786
par(mfrow = c(2,2))
plot(regfit.f.sum$cp, xlab = "Number of Variables", ylab = "CP", type ="1")
points(which.min(regfit.f.sum$cp), regfit.f.sum$cp[which.min(regfit.f.sum$cp)], col = "red", pch = 20)
plot(regfit.f.sum$adjr2, xlab = "Number of Variables", ylab = "Adjusted RSq", type ="1")
points(which.max(regfit.f.sum$adjr2), regfit.f.sum$adjr2[which.max(regfit.f.sum$adjr2)], col = "red", p
plot(regfit.f.sum$bic, xlab = "Number of Variables", ylab = "BIC", type ="1")
points(which.min(regfit.f.sum$bic), regfit.f.sum$bic[which.min(regfit.f.sum$bic)], col = "red", pch = 2
# the model with 6 variables has the lowest CP and it has the following coefficients
coef(regfit.f,6)
##
      (Intercept)
                                            ldl famhistPresent
                         tobacco
                                                                         typea
##
     -0.395225652
                     0.016663878
                                    0.034654688
                                                   0.171923918
                                                                   0.005876749
##
          obesity
                             age
     -0.007962060
                     0.007953219
# the model with 7 variables has the highest adjusted R^2
coef(regfit.f,7)
##
                                                            ldl famhistPresent
      (Intercept)
                             sbp
                                        tobacco
                                                                   0.172590484
##
     -0.535432209
                     0.001347086
                                    0.016371096
                                                    0.034559620
##
            typea
                         obesity
                                            age
                    -0.008873812
##
      0.005971345
                                    0.007341973
# the model with 5 variables has the lowest BIC
coef(regfit.f,5)
##
      (Intercept)
                         tobacco
                                            ldl famhistPresent
                                                                         typea
                     0.016791566
##
     -0.545452392
                                    0.030494337
                                                   0.170682179
                                                                   0.005587670
##
              age
      0.007439075
# Forward and Backward Stepwise Selection
regfit.fwd = regsubsets(chd ~ ., SA.Heart, nvmax = 9, method ="forward")
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(chd ~ ., SA.Heart, nvmax = 9, method = "forward")
## 9 Variables (and intercept)
##
                  Forced in Forced out
## sbp
                      FALSE
                                 FALSE
## tobacco
                      FALSE
                                 FALSE
## ldl
                      FALSE
                                 FALSE
## adiposity
                      FALSE
                                 FALSE
## famhistPresent
                      FALSE
                                 FALSE
## typea
                      FALSE
                                 FALSE
## obesity
                      FALSE
                                 FALSE
## alcohol
                      FALSE
                                 FALSE
```

```
FALSE
                                 FALSE
## age
## 1 subsets of each size up to 9
## Selection Algorithm: forward
            sbp tobacco ldl adiposity famhistPresent typea obesity alcohol age
     (1)""""
                        11 11 11 11
                                      11 11
                                                     11 11
                        11 11
                                                                            "*"
## 2 (1)""""
     (1)""*"
                        . . . . .
                                      "*"
                                                                            "*"
     (1)""*"
                                      "*"
                                                                            "*"
## 4
                        "*" " "
## 5
      (1)""*"
                                      11 * 11
                                                     11 * 11
                                                                            11 * 11
     (1)""*"
## 6
                                      "*"
                                                      11 🕌 11
                        "*" " "
                                      "*"
                                                                    11 11
                                                                            "*"
     (1) "*" "*"
## 8 (1) "*" "*"
                                      "*"
                                                      "*"
                                                            "*"
                                                                            "*"
                        "*" "*"
     (1) "*" "*"
                                      "*"
                                                            "*"
                                                                    "*"
                                                                            "*"
regfit.bwd = regsubsets(chd ~ ., SA.Heart, nvmax = 9, method = "backward")
summary(regfit.bwd)
## Subset selection object
## Call: regsubsets.formula(chd ~ ., SA.Heart, nvmax = 9, method = "backward")
## 9 Variables (and intercept)
##
                  Forced in Forced out
                      FALSE
## sbp
                                 FALSE
## tobacco
                      FALSE
                                 FALSE
## ldl
                      FALSE
                                 FALSE
## adiposity
                      FALSE
                                 FALSE
## famhistPresent
                      FALSE
                                 FALSE
                      FALSE
                                 FALSE
## typea
## obesity
                      FALSE
                                 FALSE
## alcohol
                      FALSE.
                                 FALSE.
                      FALSE
                                 FALSE
## age
## 1 subsets of each size up to 9
## Selection Algorithm: backward
            sbp tobacco ldl adiposity famhistPresent typea obesity alcohol age
     (1)""""
                        11 11
                                                                            "*"
## 2 (1)""""
                        11 11 11 11
                                      "*"
                                                                    11 11
                                                                            "*"
## 3 (1) " " *"
                        . . . . .
                                      اليواا
     (1)""*"
                                      "*"
                                                                            "*"
## 4
                        "*" " "
## 5
     (1)""*"
                                      "*"
                                                     "*"
                                                                            "*"
     (1)""*"
                                                            "*"
## 6
                                      "*"
                                                     "*"
                                                                            "*"
                        "*" " "
     (1)"*""*"
                                      "*"
                                                            "*"
                                                                            "*"
## 8 (1) "*" "*"
                        "*" "*"
                                      "*"
                                                      "*"
                                                            "*"
                                                                            "*"
     (1)"*""*"
                        "*" "*"
                                      "*"
                                                     "*"
                                                            "*"
                                                                    11 * 11
                                                                            "*"
# the best models with different # number o variables are the same in all three methods of best subset
# forward and backward stepwise selection
# Instead of using CP, BIC, or adjusted R^2 to choose the best model, we try to use the validation set
# and cross-validation to select the best one
# we need to divide the data into a training set and a test set
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
train = sample(c(TRUE,FALSE), nrow(SA.Heart), rep = TRUE)
test = (!train)
```

```
# best subset selection
regfit.b = regsubsets(chd ~ ., data = SA.Heart[train,], nvmax = 9)
# validation test error
# a model matrix from the test data
test.mat = model.matrix(chd ~ ., data = SA.Heart[test,])
val.error = rep(NA,9)
for(i in 1:9){
  coefi = coef(regfit.b,id = 9)
  pred = test.mat[, names(coefi)]%*%coefi
  val.error[i] = mean((SA.Heart$chd[test]-pred)^2)
val.error
## [1] 0.1886678 0.1886678 0.1886678 0.1886678 0.1886678 0.1886678 0.1886678
## [8] 0.1886678 0.1886678
which.min(val.error)
## [1] 1
# all of the models have the same validation test errors.
# Now let perform the cross-validation approach to obtain the best model
# we consider K=10
k = 10
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
folds = sample(1:k, nrow(SA.Heart), replace = TRUE)
cv.errors=matrix(NA,k,9, dimnames=list(NULL, paste(1:9)))
# prediction
for(j in 1:k){
  best.f = regsubsets(chd ~ ., data = SA.Heart[folds != j,],nvmax = 9)
  test.mat = model.matrix(chd ~ ., data = SA.Heart[folds == j,])
  for(i in 1:9){
   coefi = coef(best.f, id = i)
    pred = test.mat[,names(coefi)]%*%coefi
    cv.errors [j,i] = mean((SA.Heart$chd[folds == j] - pred)^2)
  }
}
mean.cv.errors = apply(cv.errors, 2, mean)
mean.cv.errors
                               3
## 0.1987293 0.1990457 0.1955844 0.1906058 0.1839181 0.1852709 0.1850963 0.1855882
## 0.1862998
par(mfrow = c(1,1))
```


Loaded glmnet 4.1-1

Number of Variables

```
plot(mean.cv.errors, type = 'b')
points(which.min(mean.cv.errors), mean.cv.errors[which.min(mean.cv.errors)], col = "red", pch = 20)
# the best model is the one with 5 variables
# we now perform the best subset selection method with whole data and obtain the coefficients
# correspond to the model with 5 variables
reg.best = regsubsets(chd ~ ., data = SA.Heart, nvmax = 9)
coef(reg.best,5)
##
      (Intercept)
                         tobacco
                                             ldl famhistPresent
                                                                         typea
##
     -0.545452392
                     0.016791566
                                    0.030494337
                                                    0.170682179
                                                                   0.005587670
##
              age
      0.007439075
##
# the variables in this model are "tobacco", "ldl", "famhistPresent", "typea", and "age"
# we now perform ridge regression and the lasso in order to predict chd on the SA. Heart
x = model.matrix(chd ~ ., data = SA.Heart)[,-1]
y = SA.Heart$chd
library(glmnet)
## Loading required package: Matrix
```



```
grid = 10^seq(10,-2,length =100)
# split the data into two groups: training data, test data
set.seed(1, sample.kind = "Rounding")
```

Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
used

```
train = sample(462, 231)
test = (-train)
y.test = y[test]
ridge.mob = glmnet(x[train,], y[train], alpha= 0, lambda = grid, thresh = 1e-12)
# Let consider that lambda = 5
ridge.pred = predict(ridge.mob, s = 5, newx=x[test,])
prob = rep(0,length(y.test))
prob[ridge.pred > 0.5] = 1
mean(prob==y.test)
```

```
## [1] 0.6926407
```

```
cv.out = cv.glmnet(x[train,],y[train], alpha = 0)
plot(cv.out)
```

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9


```
bestlam = cv.out$lambda.min
bestlam
```

[1] 0.1428105

```
# cross-validation tells us that the best lambda to use in the ridge regression is lambda = 0.1428105;
# by using it, we will get the lowest cross-validation error
ridge.pred = predict(ridge.mob, s = bestlam,newx=x[test,])
prob = rep(0,length(y.test))
prob[ridge.pred > 0.5] = 1
mean(prob==y.test)
```

[1] 0.7359307

```
# the performance when using lambda = 0.1428105 is lower than when we use lambda = 5
out=glmnet(x,y,alpha=0,lambda=grid)
ridge.coef=predict(out,type="coefficients",s=bestlam)
ridge.coef
```

```
## 10 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                  -4.403512e-01
## sbp
                   1.260818e-03
## tobacco
                   1.416250e-02
## ldl
                   2.690249e-02
## adiposity
                   2.671563e-03
## famhistPresent 1.420947e-01
## typea
                   4.474348e-03
## obesity
                  -6.300249e-03
## alcohol
                  -3.794395e-05
## age
                   5.452350e-03
```

```
# the Lasso
lasso.mob = glmnet(x[train,], y[train], alpha = 1, lambda = grid)
plot(lasso.mob)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
                                                                        6
                                          4
                                                         5
Coefficients
     0.05
     0.00
           0.00
                          0.05
                                        0.10
                                                       0.15
                                                                      0.20
                                           L1 Norm
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
cv.out = cv.glmnet(x[train,], y[train], alpha = 1)
plot(cv.out)
```



```
-0.4629296467
## (Intercept)
## sbp
                   0.0007576448
## tobacco
                   0.0148204649
## ldl
                   0.0281474098
## adiposity
## famhistPresent 0.1540212427
## typea
                   0.0044657783
## obesity
                  -0.0029968018
## alcohol
## age
                   0.0068672314
```

based on the coefficients provided by the ridge regression and the lasso,
it is clear that none of coefficients in the ridge regression are not zero, but
there are several variables with coefficients equal zero in the Lasso.

```
# Principal Components regression
library(pls)
##
## Attaching package: 'pls'
## The following object is masked from 'package:stats':
##
##
       loadings
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
pcr.fit = pcr(chd ~ ., data = SA.Heart, scale = TRUE, validation = "CV")
summary(pcr.fit)
## Data:
           X dimension: 462 9
## Y dimension: 462 1
## Fit method: svdpc
## Number of components considered: 9
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
                                                                   6 comps
## CV
              0.4768
                      0.4419
                                0.4412 0.4394
                                                 0.4323
                                                                    0.4256
                                                          0.4261
## adjCV
              0.4768
                       0.4418
                                0.4412
                                         0.4394
                                                  0.4320
                                                           0.4255
                                                                    0.4251
         7 comps 8 comps 9 comps
## CV
          0.4261
                   0.4282 0.4290
## adjCV
         0.4256
                   0.4276 0.4283
##
## TRAINING: % variance explained
        1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
                  45.35
## X
         32.05
                           57.31
                                    67.80
                                             77.09
                                                      85.54
                                                               92.94
                                                                        98.06
## chd
          14.31
                  14.81
                           16.45
                                    20.02
                                             22.67
                                                      23.16
                                                               23.38
                                                                        23.60
##
       9 comps
## X
          100.0
## chd
          23.6
validationplot(pcr.fit, val.type="MSEP")
```

chd


```
# the lowest cross-validation error obtain with 6 components, and with this number of components we are
# when we use all 9 components, we can capture 100% of the information about the predictors and the res
# we now compute the test MSE
pcr.pred = predict(pcr.fit, x[test,], ncomp = 6)
prob = rep(0,length(y.test))
prob[pcr.pred > 0.5] = 1
mean(prob == y.test)
## [1] 0.7705628
# the test MSE when we used PCR is lower than that the ridge regression and the Lasso
\# fit the PCR on the full data set, using 6 components
pcr.fit = pcr(y~x, data = SA.Heart, scale = TRUE, ncomp = 6)
summary(pcr.fit)
## Data:
            X dimension: 462 9
## Y dimension: 462 1
## Fit method: svdpc
## Number of components considered: 6
## TRAINING: % variance explained
      1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
                 45.35
                                            77.09
## X
        32.05
                          57.31
                                   67.80
                                                      85.54
        14.31
                 14.81
                          16.45
                                   20.02
                                            22.67
                                                      23.16
# Partial Least Square
library(pls)
set.seed(1, sample.kind = "Rounding")
```

Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler

```
## used
pls.fit = plsr(chd ~ ., data = SA.Heart, subset = train, scale = TRUE, validation = "CV")
summary(pls.fit)
## Data:
            X dimension: 231 9
## Y dimension: 231 1
## Fit method: kernelpls
## Number of components considered: 9
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept)
                       1 comps 2 comps 3 comps 4 comps
                                                            5 comps
## CV
               0.4888
                        0.4426
                                  0.4362
                                           0.4360
                                                    0.4371
                                                                       0.4374
                                                              0.4372
               0.4888
                        0.4423
                                  0.4353
                                           0.4352
                                                    0.4362
                                                              0.4363
                                                                       0.4364
## adjCV
##
                   8 comps
                            9 comps
          7 comps
## CV
           0.4372
                    0.4372
                              0.4372
##
  adjCV
           0.4363
                    0.4363
                              0.4363
## TRAINING: % variance explained
        1 comps 2 comps 3 comps
##
                                    4 comps
                                             5 comps 6 comps
                                                               7 comps
                                                                         8 comps
                   41.25
          30.00
                             50.55
                                                         74.71
                                                                           89.89
## X
                                      59.97
                                               67.00
                                                                  81.76
## chd
          19.97
                   25.46
                             25.64
                                      25.66
                                               25.67
                                                         25.67
                                                                  25.68
                                                                           25.68
##
        9 comps
## X
         100.00
          25.68
## chd
validationplot(pls.fit, val.type= "MSEP")
```

chd

the lowest MSE obtain with 3 components, and with this number of components we can explain 52.77% of # we now compute the test MSE

```
pls.pred = predict(pls.fit, x[test,], ncomp = 3)
prob = rep(0,length(y.test))
prob[pls.pred > 0.5] = 1
mean(prob == y.test)
## [1] 0.7186147
# fit the PCR on the full data set, using 3 components
pcl.fit = plsr(y~x, data = SA.Heart, scale = TRUE, ncomp = 3)
summary(pcl.fit)
## Data:
           X dimension: 462 9
## Y dimension: 462 1
## Fit method: kernelpls
## Number of components considered: 3
## TRAINING: % variance explained
      1 comps 2 comps 3 comps
## X
        30.69
                 42.54
                          52.77
                          23.59
## y
        19.54
                 23.50
# so far we were trying to fit a linear model to the data by using many different methods and different
# data, now we try nonlinear models
# recall that when we fit a linear model, only variables tobacco, ldl, famhist, typea, and age were
# statistically significant, so we only use these variables as the predictors and try to add more
# interactions and nonlinearlity to the model and then check which model is more accurate using
# anova() function
fit = glm(chd ~ ., data = SA.Heart, family = "binomial")
summary(fit)
##
## Call:
## glm(formula = chd ~ ., family = "binomial", data = SA.Heart)
## Deviance Residuals:
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.7781 -0.8213 -0.4387
                               0.8889
                                        2.5435
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -6.1507209 1.3082600 -4.701 2.58e-06 ***
                  0.0065040 0.0057304
                                         1.135 0.256374
## sbp
## tobacco
                  0.0793764 0.0266028
                                          2.984 0.002847 **
## ldl
                   0.1739239 0.0596617
                                          2.915 0.003555 **
## adiposity
                  0.0185866 0.0292894
                                         0.635 0.525700
## famhistPresent 0.9253704 0.2278940
                                         4.061 4.90e-05 ***
## typea
                  0.0395950 0.0123202
                                         3.214 0.001310 **
                 -0.0629099 0.0442477 -1.422 0.155095
## obesity
## alcohol
                  0.0001217 0.0044832
                                        0.027 0.978350
                  0.0452253 0.0121298
                                         3.728 0.000193 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 472.14 on 452 degrees of freedom
## AIC: 492.14
##
## Number of Fisher Scoring iterations: 5
# since age has the lowest p-value, we add higher exponents of this variable up to 5.
fit1 = glm(chd ~ . + I(age^2), data = SA.Heart, family = "binomial")
summary(fit1)
##
## Call:
## glm(formula = chd ~ . + I(age^2), family = "binomial", data = SA.Heart)
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                         Max
## -1.7801 -0.8313 -0.4275
                                       2.6566
                             0.9113
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -7.2125042 1.7738731 -4.066 4.78e-05 ***
## (Intercept)
                  0.0069995 0.0057301
                                       1.222 0.22188
## sbp
## tobacco
                  0.0775896 0.0264180
                                        2.937 0.00331 **
## ldl
                  0.1709623 0.0598065
                                        2.859 0.00426 **
## adiposity
                  0.0160774 0.0295141
                                        0.545 0.58594
## famhistPresent 0.9127061 0.2281096
                                        4.001 6.30e-05 ***
## typea
                  0.0387307
                            0.0123419
                                        3.138 0.00170 **
## obesity
                 ## alcohol
                 -0.0004484 0.0045299 -0.099 0.92115
                  0.1055191
                            0.0666886
                                       1.582 0.11359
## age
                 -0.0006874 0.0007420 -0.926 0.35424
## I(age^2)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 471.26 on 451 degrees of freedom
## AIC: 493.26
##
## Number of Fisher Scoring iterations: 5
fit2 = glm(chd ~ . + I(age^2) + I(age^3), data = SA.Heart, family = "binomial")
summary(fit2)
##
## glm(formula = chd ~ . + I(age^2) + I(age^3), family = "binomial",
##
      data = SA.Heart)
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                 ЗQ
                                         Max
## -1.7773 -0.8439 -0.4176
                             0.8944
                                      2.7924
##
## Coefficients:
```

```
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -1.062e+01 3.956e+00 -2.684 0.00727 **
## sbp
                  7.113e-03 5.749e-03
                                        1.237 0.21599
## tobacco
                  7.981e-02 2.668e-02
                                        2.992 0.00277 **
## ldl
                  1.713e-01 5.975e-02
                                        2.867 0.00415 **
## adiposity
                 1.882e-02 2.967e-02
                                       0.634 0.52600
## famhistPresent 9.237e-01 2.285e-01
                                        4.042 5.3e-05 ***
## typea
                 3.799e-02 1.234e-02
                                       3.078 0.00208 **
## obesity
                 -6.883e-02 4.488e-02 -1.534 0.12509
## alcohol
                 -6.729e-04 4.513e-03 -0.149 0.88147
## age
                 3.960e-01 3.002e-01
                                        1.319 0.18712
## I(age^2)
                 -8.132e-03 7.451e-03 -1.091 0.27507
## I(age^3)
                 5.930e-05 5.869e-05
                                       1.010 0.31234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 470.20 on 450 degrees of freedom
## AIC: 494.2
##
## Number of Fisher Scoring iterations: 6
fit3 = glm(chd ~ . + I(age^2) + I(age^3) + I(age^4), data = SA.Heart, family = "binomial")
summary(fit3)
##
## Call:
## glm(formula = chd \sim . + I(age^2) + I(age^3) + I(age^4), family = "binomial",
##
      data = SA.Heart)
##
## Deviance Residuals:
                    Median
                                 30
      Min
                1Q
                                         Max
## -1.8021 -0.8205 -0.4442
                             0.8833
                                      2.9841
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                 -2.589e+01 1.177e+01 -2.199 0.02786 *
## (Intercept)
## sbp
                 6.951e-03 5.776e-03
                                       1.203 0.22885
## tobacco
                  7.955e-02 2.665e-02
                                        2.985 0.00283 **
## ldl
                  1.685e-01 5.987e-02
                                        2.815 0.00488 **
## adiposity
                  2.401e-02 2.998e-02 0.801 0.42313
## famhistPresent 9.321e-01 2.290e-01
                                        4.071 4.68e-05 ***
## typea
                  3.883e-02 1.237e-02
                                       3.140 0.00169 **
## obesity
                 -7.526e-02 4.526e-02 -1.663 0.09634 .
## alcohol
                 -1.059e-03 4.508e-03 -0.235 0.81431
                  2.156e+00 1.274e+00
                                        1.693 0.09042 .
## age
## I(age^2)
                 -7.879e-02 4.941e-02
                                       -1.595
                                              0.11076
## I(age^3)
                 1.248e-03 8.157e-04
                                       1.530 0.12594
## I(age^4)
                 -7.151e-06 4.862e-06 -1.471 0.14134
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 467.93 on 449 degrees of freedom
## AIC: 493.93
## Number of Fisher Scoring iterations: 6
fit4 = glm(chd ~ . + I(age^2) + I(age^3) + I(age^4) + I(age^5), data = SA.Heart, family = "binomial")
summary(fit4)
##
## Call:
## glm(formula = chd ~ . + I(age^2) + I(age^3) + I(age^4) + I(age^5),
      family = "binomial", data = SA.Heart)
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -1.8283 -0.8168 -0.4285
                              0.8809
                                       2.9239
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -2.187e+00 3.297e+01 -0.066 0.94712
## sbp
                  7.095e-03 5.804e-03
                                         1.222 0.22153
## tobacco
                  7.967e-02 2.675e-02
                                         2.978 0.00290 **
## ldl
                  1.683e-01 5.983e-02
                                         2.813 0.00491 **
## adiposity
                  2.588e-02 3.015e-02
                                         0.858 0.39075
## famhistPresent 9.383e-01 2.295e-01
                                         4.089 4.34e-05 ***
## typea
                  3.907e-02 1.242e-02 3.146 0.00165 **
## obesity
                 -7.597e-02 4.534e-02 -1.676 0.09382 .
## alcohol
                 -1.043e-03 4.516e-03 -0.231
                                                0.81731
                 -1.331e+00 4.750e+00 -0.280 0.77938
## age
## I(age^2)
                  1.139e-01
                             2.590e-01
                                         0.440
                                                0.66010
## I(age^3)
                 -3.808e-03 6.743e-03 -0.565
                                               0.57226
## I(age^4)
                  5.627e-05 8.427e-05
                                         0.668
                                                0.50431
## I(age^5)
                 -3.062e-07 4.068e-07 -0.753 0.45158
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 467.37 on 448 degrees of freedom
## AIC: 495.37
## Number of Fisher Scoring iterations: 6
anova(fit,fit1,fit2,fit3,fit4)
## Analysis of Deviance Table
## Model 1: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
      alcohol + age
## Model 2: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
      alcohol + age + I(age^2)
```

Model 3: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +

```
alcohol + age + I(age^2) + I(age^3)
## Model 4: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
      alcohol + age + I(age^2) + I(age^3) + I(age^4)
## Model 5: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
##
      alcohol + age + I(age^2) + I(age^3) + I(age^4) + I(age^5)
    Resid. Df Resid. Dev Df Deviance
##
                  472.14
## 1
## 2
                  471.26 1 0.88352
          451
## 3
          450
                  470.20 1 1.05769
## 4
          449
                  467.93 1 2.26401
## 5
          448
                  467.37 1 0.56305
# interactions
fitt1 = glm(chd ~ . + age * tobacco,
             data = SA.Heart, family = "binomial")
summary(fitt1)
##
## Call:
## glm(formula = chd ~ . + age * tobacco, family = "binomial", data = SA.Heart)
## Deviance Residuals:
##
      Min
                10
                     Median
                                  30
                                          Max
## -1.7734 -0.8193 -0.4360 0.8907
                                       2.5488
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -6.169e+00 1.325e+00 -4.656 3.23e-06 ***
## (Intercept)
## sbp
                  6.525e-03 5.732e-03
                                       1.138 0.254943
## tobacco
                  9.264e-02 1.509e-01
                                         0.614 0.539336
## ldl
                  1.738e-01 5.968e-02
                                         2.912 0.003589 **
## adiposity
                 1.855e-02 2.929e-02 0.633 0.526465
## famhistPresent 9.237e-01 2.286e-01
                                         4.040 5.34e-05 ***
## typea
                  3.950e-02 1.237e-02
                                         3.194 0.001401 **
## obesity
                 -6.297e-02 4.426e-02 -1.423 0.154792
## alcohol
                 6.395e-05 4.531e-03 0.014 0.988738
## age
                  4.573e-02 1.338e-02 3.418 0.000631 ***
## tobacco:age -2.482e-04 2.779e-03 -0.089 0.928827
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 472.13 on 451 degrees of freedom
## AIC: 494.13
##
## Number of Fisher Scoring iterations: 5
fitt2 = glm(chd ~ . + age * tobacco + age * ldl,
             data = SA.Heart, family = "binomial")
summary(fitt2)
##
```

Call:

```
## glm(formula = chd ~ . + age * tobacco + age * ldl, family = "binomial",
##
      data = SA.Heart)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.7734 -0.8191 -0.4360 0.8909
                                       2.5481
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -6.163e+00 1.623e+00 -3.796 0.000147 ***
## sbp
                  6.525e-03 5.732e-03
                                        1.138 0.254953
## tobacco
                  9.274e-02 1.516e-01
                                         0.612 0.540834
## ldl
                  1.722e-01 2.379e-01
                                        0.724 0.469079
## adiposity
                  1.856e-02 2.930e-02 0.633 0.526473
## famhistPresent 9.237e-01 2.286e-01
                                        4.040 5.34e-05 ***
## typea
                  3.951e-02
                            1.240e-02
                                         3.186 0.001440 **
                 -6.297e-02 4.426e-02 -1.423 0.154800
## obesity
## alcohol
                 6.734e-05 4.559e-03
                                        0.015 0.988215
                                         1.793 0.072971
                 4.558e-02 2.542e-02
## age
## tobacco:age
                 -2.501e-04 2.794e-03 -0.090 0.928658
## ldl:age
                  3.273e-05 4.901e-03 0.007 0.994672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 472.13 on 450 degrees of freedom
## AIC: 496.13
##
## Number of Fisher Scoring iterations: 5
fitt3 = glm(chd ~ . + age * tobacco + age * ldl + age * famhist,
             data = SA.Heart, family = "binomial")
summary(fitt3)
##
## Call:
## glm(formula = chd ~ . + age * tobacco + age * ldl + age * famhist,
      family = "binomial", data = SA.Heart)
##
## Deviance Residuals:
      Min 1Q Median
                                  3Q
                                          Max
## -1.8665 -0.7949 -0.4550 0.8506
                                       2.4604
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -5.9066620 1.6203200 -3.645 0.000267 ***
## sbp
                      0.0068874 0.0057789
                                            1.192 0.233335
## tobacco
                      0.1104493 0.1523472
                                            0.725 0.468462
## ldl
                      0.1919848 0.2364535
                                             0.812 0.416829
## adiposity
                      0.0174504 0.0292991
                                             0.596 0.551446
## famhistPresent
                     -0.2364191 0.9539538 -0.248 0.804265
## typea
                      0.0398622 0.0124394
                                             3.205 0.001353 **
## obesity
                    -0.0612694 0.0442433 -1.385 0.166105
```

```
## alcohol
                    0.0002919 0.0045920 0.064 0.949319
                    0.0375242 0.0259833 1.444 0.148692
## age
## tobacco:age
                   -0.0005244 0.0028029 -0.187 0.851588
                   ## ldl:age
## famhistPresent:age 0.0244457 0.0194745
                                        1.255 0.209382
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 470.52 on 449 degrees of freedom
## AIC: 496.52
##
## Number of Fisher Scoring iterations: 5
fitt4 = glm(chd ~ . + age * tobacco + age * ldl + age * famhist + age * typea,
            data = SA.Heart, family = "binomial")
summary(fitt4)
##
## Call:
## glm(formula = chd ~ . + age * tobacco + age * ldl + age * famhist +
      age * typea, family = "binomial", data = SA.Heart)
## Deviance Residuals:
          1Q Median
      Min
                               3Q
                                       Max
## -1.8257 -0.7977 -0.4557 0.8427
                                    2.5077
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -7.3021261 3.2050905 -2.278 0.0227 *
## sbp
                   0.0068085 0.0057749
                                        1.179
                                                 0.2384
## tobacco
                    0.1165124 0.1526645 0.763
                                                 0.4453
## ldl
                   0.1916063 0.2363824 0.811 0.4176
## adiposity
                   0.0177863 0.0293376 0.606 0.5443
                ## famhistPresent
                                                 0.8148
                                        1.294 0.1956
## typea
                    0.0645814 0.0498988
                   -0.0607326 0.0442748 -1.372 0.1702
## obesity
## alcohol
                   0.0003312 0.0045791 0.072 0.9423
## age
                    0.0660549 0.0618440
                                         1.068 0.2855
## tobacco:age
                   -0.0006444 0.0028069 -0.230 0.8184
## ldl:age
                   -0.0003618 0.0048786 -0.074 0.9409
## famhistPresent:age 0.0241538 0.0194575
                                         1.241
                                                 0.2145
## typea:age
                    -0.0005124 0.0009987 -0.513 0.6079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 470.25 on 448 degrees of freedom
## AIC: 498.25
##
## Number of Fisher Scoring iterations: 5
```

```
anova(fitt1,fitt2,fitt3,fitt4)
## Analysis of Deviance Table
##
## Model 1: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
      alcohol + age + age * tobacco
## Model 2: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
       alcohol + age + age * tobacco + age * ldl
## Model 3: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
      alcohol + age + age * tobacco + age * ldl + age * famhist
## Model 4: chd ~ sbp + tobacco + ldl + adiposity + famhist + typea + obesity +
##
      alcohol + age + age * tobacco + age * ldl + age * famhist +
##
       age * typea
    Resid. Df Resid. Dev Df Deviance
##
## 1
          451
                  472.13
## 2
          450
                   472.13 1 0.00004
## 3
          449
                   470.52 1 1.61421
## 4
          448
                   470.25 1 0.26469
# GAMs
# smothing splines
library(gam)
## Loading required package: splines
## Loading required package: foreach
## Loaded gam 1.20
gam = gam(chd ~ tobacco + ldl + famhist + typea + s(age, df = 5), family = "binomial", data = SA.Heart)
summary(gam)
## Call: gam(formula = chd ~ tobacco + ldl + famhist + typea + s(age,
      df = 5), family = "binomial", data = SA.Heart)
## Deviance Residuals:
      Min
               10 Median
                               3Q
                                       Max
## -1.8323 -0.8278 -0.4313 0.9469 2.8769
## (Dispersion Parameter for binomial family taken to be 1)
##
      Null Deviance: 596.1084 on 461 degrees of freedom
## Residual Deviance: 469.4874 on 451.9997 degrees of freedom
## AIC: 489.488
##
## Number of Local Scoring Iterations: NA
## Anova for Parametric Effects
                  Df Sum Sq Mean Sq F value
## tobacco
                   1 19.47 19.4682 18.6002 1.981e-05 ***
## ldl
                   1 13.18 13.1751 12.5877 0.0004289 ***
                   1 18.36 18.3627 17.5440 3.377e-05 ***
## famhist
                      3.62 3.6201 3.4587 0.0635696 .
                   1
## s(age, df = 5) 1 20.92 20.9174 19.9848 9.882e-06 ***
## Residuals
              452 473.09 1.0467
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
                    Npar Df Npar Chisq P(Chi)
##
## (Intercept)
## tobacco
## ldl
## famhist
## typea
                                   5.9634 0.2019
## s(age, df = 5)
par(mfrow = c(1,5))
plot(gam,se=TRUE, col ="blue")
                                                 Absent
                                              0.8
                                              9.0
    က
                         \alpha
                                              0.4
partial for tobacco
                                          partial for famhist
                                                                   0
                                                              partial for typea
    ^{\circ}
                                                                                   s(age, df = 5)
                    partial for Idl
                                              0.2
                                                                                        7
                                              0.0
                                                                                        7
                                              -0.2
                         0
                                                                                        9
                                              -0.4
    0
                                                                   7
                                                                                        4
                                              9.0-
                             2
                               8
                                                                           60
                                                                                               50
        0 15
                                                                       20
                                                                                            20
                                                 famhist
         tobacco
                                ldl
                                                                        typea
                                                                                              age
# tree
library(tree)
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
tree.SA.Heart = tree(chd ~ ., SA.Heart)
summary(tree.SA.Heart)
##
## Regression tree:
## tree(formula = chd ~ ., data = SA.Heart)
## Variables actually used in tree construction:
## [1] "age"
                      "tobacco"
                                    "alcohol"
                                                                "ldl"
                                                                              "obesity"
                                                  "typea"
## [7] "famhist"
                      "adiposity"
## Number of terminal nodes: 19
```

```
## Residual mean deviance: 0.1374 = 60.86 / 443
## Distribution of residuals:
                              Mean 3rd Qu.
      Min. 1st Qu. Median
## -0.8333 -0.1765 -0.0125 0.0000 0.1765 0.9875
plot(tree.SA.Heart)
text(tree.SA.Heart, pretty = 0)
                famhist: Absent
                              typea | 68.5 tobacco| < 7.605 | Idl < | 4.99
tobacco < 0.51
aloohol <u>₹</u> 11.105
                                                       adiposity < 27.985
 0.0125
                                              |adiposity|< 2ੴ<u>₽≨5</u>co <∩
     0.0000466dql < 5;37
              alcoholj< 8.365
                            0.00006087
train = sample(1:nrow(SA.Heart), 347)
SA.Heart.test = SA.Heart[-train,]
chd.test = chd[-train]
tree.SA.Heart = tree(chd ~ ., SA.Heart, subset = train)
summary(tree.SA.Heart)
##
## Regression tree:
## tree(formula = chd ~ ., data = SA.Heart, subset = train)
## Variables actually used in tree construction:
## [1] "age"
                               "ld1"
                   "tobacco"
                                           "obesity"
                                                        "alcohol"
                                                                    "famhist"
## [7] "typea"
                   "adiposity"
## Number of terminal nodes: 26
## Residual mean deviance: 0.1099 = 35.28 / 321
## Distribution of residuals:
##
       Min. 1st Qu.
                      Median
                                  Mean 3rd Qu.
                                                     Max.
## -0.93330 -0.05000 -0.04762 0.00000 0.15790 0.95240
tree.pred = predict(tree.SA.Heart, SA.Heart.test)
mean((tree.pred - chd.test)^2)
## [1] 0.2281715
cv.SA.Heart = cv.tree(tree.SA.Heart)
plot(cv.SA.Heart$size, cv.SA.Heart$dev, type ="b")
cv.SA.Heart$dev
## [1] 96.94509 94.89362 92.14153 91.70135 89.44603 88.00583 87.16295 87.41910
```

[9] 86.73491 86.73491 85.26208 77.05676 78.20120 79.83815 82.07954

cv.SA.Heart\$size

```
## [1] 26 24 22 20 16 14 12 11 10 9 6 5 4 2 1
```

```
min.tree = which.min(cv.SA.Heart$dev)
points(cv.SA.Heart$size[min.tree], cv.SA.Heart$dev[min.tree], col = "red")
```



```
prune.SA.Heart = prune.tree(tree.SA.Heart, best = min.tree)
plot(prune.SA.Heart)
text(prune.SA.Heart, pretty = 0)
```



```
# prediction and test MSE
pred = predict(prune.SA.Heart, newdata = SA.Heart.test)
prob = rep(0,length(chd.test))
prob[pred>0.5] = 1
mean(prob == chd.test)
```

```
## [1] 0.7391304
# bagging
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1, sample.kind = "Rounding")
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
# training data
SA.Heart.train = SA.Heart[train,]
#test data
SA.Heart.test = SA.Heart[-train,]
bag.SA.Heart = randomForest(chd ~ ., data = SA.Heart.train, mtry = 10, ntree= 500, importance = TRUE)
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
## Warning in randomForest.default(m, y, ...): invalid mtry: reset to within valid
## range
pred = predict(bag.SA.Heart, newdata = SA.Heart.test)
prod = rep(0, length(chd.test))
prod[pred>0.5] = 1
mean(prod == chd.test)
## [1] 0.7130435
importance(bag.SA.Heart)
               %IncMSE IncNodePurity
##
           -1.4032632 6.816259
## sbp
## tobacco 12.0651588
                          11.475977
            5.8686620
                         10.289469
## ldl
## adiposity 3.1491246
                          7.596888
## famhist 8.1885241
                          2.942255
                          7.639277
## typea -0.4583013
## obesity -2.3504579
                          7.902911
## alcohol -0.1419028
                          5.590586
            14.2793093
                          13.644138
## age
# tobacco and age the two important variables
# boosting
library(gbm)
## Loaded gbm 2.1.8
boost.SA.Heart = gbm(chd~., data = SA.Heart.train ,distribution="bernoulli",n.trees = 1000, interaction
summary(boost.SA.Heart)
```


Relative influence

```
##
                         rel.inf
                   var
## tobacco
               tobacco 15.488379
               obesity 14.738798
## obesity
## age
                   age 13.781525
## ldl
                   ldl 13.753748
               alcohol 10.910117
## alcohol
## adiposity adiposity 10.875480
## sbp
                   sbp 8.843083
## typea
                 typea 8.289749
## famhist
               famhist 3.319120
yhat.boost=predict(boost.SA.Heart, newdata=SA.Heart.test, n.trees=1000, type = "response")
prob = rep(0,length(chd.test))
prob[yhat.boost > 0.2] = 1
table(prob, chd.test)
##
       chd.test
## prob 0 1
##
      0 52 15
      1 25 23
mean(prob == chd.test)
```

[1] 0.6521739