Undergrad Complexity: Lecture 2

Ben Chaplin

Contents

1	Background	1
	.1 Languages	1
	.2 Algorithms	1
2	Curing Machines	1
	.1 Model	1
	2 Formal definition	9

1 Background

1.1 Languages

Definition. A language L over an alphabet Σ is a subset of strings $L \subseteq \Sigma^*$.

Example. PRIMES = $\{\langle x \rangle : x \in \mathbb{N}, x \text{ is prime}\}\$, equivalent to the decision problem $\{0,1\}^* \to \{\text{no, yes}\}\$.

1.2 Algorithms

What is an algorithm? We can define the concept using programming languages, or better, models of computation. Turing machines are a good choice as they're easy to formalize. Furthermore:

Church-Turing Thesis. Any real-world algorithm can be simulated by Turing Machines.

However, this is a statement about computability. In terms of complexity theory, it's important to note that an algorithm running in time T in C-like pseudocode, it can compiled to a Turing machine running in time roughly T^4 .

2 Turing Machines

2.1 Model

Official model of a Turing Machine:

- one tape
- two-way infinite

Roughly, the tape holds symbols from an alphabet and reads/writes with a "head" pointer. The source code tells us how to move and write.

2.2 Formal definition

Definition. A Turing machine M is a 7-tuple $M = (\Gamma, b, \Sigma, Q, q_0, F, \delta)$, where

- Γ is a finite, non-empty set of tape symbols
- $b \in \Gamma$ is the blank symbol (allowed to occur infinitely on tape)
- $\Sigma \subseteq (\Gamma \{b\})$ is the input alphabet
- ullet Q is a finite, non-empty set of states
- \bullet q_0 is the initial state
- $F \subseteq Q$ is the set of accepting states
- $\delta: (Q F) \times \Gamma \to Q \times \Gamma \times \{\text{left, right}\}\$ is the transition function. If δ is not defined on the current tape symbol, the machine halts.