EXAMEN PROBABILITÉS - 1SN

Mardi 23 Octobre 2018 (14h-15h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (6 points)

On considère trois variables aléatoires (mutuellement) indépendantes X,Y et Z de lois de Bernoulli telles que

$$P[X = 1] = 1 - P[X = 0] = p$$

$$P[Y = 1] = 1 - P[Y = 0] = p$$

$$P[Z = 1] = 1 - P[Z = 0] = \alpha$$
(1)

avec $p \in]0,1[$ et $\alpha \in]0,1[$. On définit alors la variable aléatoire T comme suit

$$T = \begin{cases} X \text{ si } Z = 1\\ Y \text{ si } Z = 0 \end{cases}$$
 (2)

- 1. Montrer que T suit une loi de Bernoulli dont on déterminera le paramètre.
- 2. Quelle est la loi du couple (T, X) ? (on pourra exprimer les valeurs possibles du couple (T, X) en fonction de celles de X, Y et Z et utiliser l'indépendance entre ces variables aléatoires).
- 3. Déterminer la covariance et le coefficient de corrélation du couple (T, X).
- 4. Les variables aléatoires T et X sont-elles indépendantes ? En déduire l'intérêt pratique de cet exercice.

Exercice 2: Changement de variables (8 points)

On considère deux variables aléatoires indépendantes X et Y de lois uniformes sur l'intervalle]-1,+1[, c'est-à-dire de densités

$$p(x,.) = \left\{ \begin{array}{l} \frac{1}{2} \text{ si } x \in]-1,1[\\ 0 \text{ sinon} \end{array} \right. \quad \text{et} \quad p(.,y) = \left\{ \begin{array}{l} \frac{1}{2} \text{ si } y \in]-1,1[\\ 0 \text{ sinon} \end{array} \right.$$

- 1. Déterminer la loi du couple (X, Y).
- 2. On définit les deux variables aléatoires Z = X + Y et T = X Y. Quelle est la loi du couple (Z,T)? (on accordera une attention particulière au domaine de définition de ce couple que l'on représentera graphiquement).
- 3. Déduire de la question précédente la loi marginale de Z et représenter la graphiquement.
- 4. Afin de vérifier le résultat précédent, déterminer la fonction caractéristique de Z=X+Y et montrer qu'elle peut s'écrire

$$\phi_{a,b,c}(t) = -2\frac{(b-c)e^{iat} - (b-a)e^{ict} + (c-a)e^{ibt}}{(b-a)(c-a)(b-c)t^2}$$

avec a=-2,b=2 et c=0. La densité d'une loi de probabilité de fonction caractéristique $\phi_{a,b,c}(t)$ est représentée sur la figure 1. Montrer qu'on retrouve la densité de Z trouvée à la question précédente.

Rappel: on rappelle les deux formules trigonométriques suivantes

$$\sin^2(t) = \frac{1 - \cos(2t)}{2}$$
 et $\cos^2(t) = \frac{1 + \cos(2t)}{2}$

Triangulaire

Densité de probabilité / Fonction de masse

Figure 1: Densité de probabilité $\pi_{a,b,c}(x)$ associée à la fonction caractéristique $\phi_{a,b,c}(t)$.

Exercice 3: Vecteurs Gaussiens (6 points)

On considère un vecteur aléatoire $\boldsymbol{X}=(X_1,X_2,X_3,X_4)^T$ de loi normale à quatre dimensions de vecteur moyenne $\boldsymbol{m}=(0,0,0,0)^T$ et de matrice de covariance égale à la matrice identité. On considère les deux matrices \boldsymbol{A} et \boldsymbol{B} définies par

$$A = \begin{pmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & -1/2 \end{pmatrix}$.

On définit les vecteurs ${\bm Y} = (Y_1, Y_2)^T = {\bm A}(X_1, X_2)^T$ et ${\bm Z} = (Z_1, Z_2)^T = {\bm B}(X_3, X_4)^T$.

- 1. Quelle est la loi du vecteur $V = (\boldsymbol{Y}^T, \boldsymbol{Z}^T)^T = (Y_1, Y_2, Z_1, Z_2)^T$?
- 2. Déterminer les lois des vecteurs Y et Z. Ces vecteurs sont-ils indépendants ?
- 3. Quelle est la loi de $T = 2||{\bf Y}||^2 = 2(Y_1^2 + Y_2^2)$?

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.	
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$	
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$	
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0,1,,n\}$	np	npq	$(pe^{it}+q)^n$	
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$	
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$	
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$	
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\operatorname{IG}(heta, u)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu - 1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)