Паскалова теорема

Алекса Вучковић

Математичка гимназија

Март 2019.

Садржај

- 🕕 Паскалова теорема
- 2 Доказ
- ③ Посебни случајеви
- Примена
 - Задатак 1.
 - Задатак 2.
 - Задатак 3.

Паскалова теорема

Теорема

Нека су A, \mathcal{G} , \mathcal{G} , \mathcal{G} , \mathcal{G} , \mathcal{G} тачке на кругу. Праве $\mathcal{G}\mathcal{G}$ и $\mathcal{G}\mathcal{G}$ секу се у \mathcal{G} , праве $\mathcal{G}\mathcal{G}$ и $\mathcal{G}\mathcal{G}$ у \mathcal{G} , а $\mathcal{G}\mathcal{G}$ и $\mathcal{G}\mathcal{G}$ у $\mathcal{G}\mathcal{G}$. Тада су тачке $\mathcal{G}\mathcal{G}$, $\mathcal{G}\mathcal{G}$, $\mathcal{G}\mathcal{G}$ колинеарне.

Паскалова теорема

Теорема

Нека су $A, \mathcal{B}, \mathcal{U}, \mathcal{A}, \mathcal{E}, \Phi$ тачке на кругу. Праве $A\mathcal{B}$ и $\mathcal{A}\mathcal{E}$ секу се у \mathcal{I} , праве $\mathcal{B}\mathcal{U}$ и $\mathcal{E}\Phi$ у M, а $\mathcal{U}\mathcal{A}$ и ΦA у H. Тада су тачке \mathcal{I}, M, H колинеарне.

У пројективној геометрији, Паскалова теорема каже да ако се изабере шест произвољних тацака на кругу и да се споје линијским сегментима у било ком редоследу да формира шестоугао, онда се три пара супротних страна шестоугла састају у три тачке које леже на правој линији.

Доказ

Посебни случајеви

Паскалова теорема очигледно не захтева да $A\mathcal{L}U\mathcal{L}\mathcal{E}\Phi$ буде конвексан шестоугао, тако да су сви распореди тачака дозвољени. Можемо да посматрамо и дегенерисане случајеве, када су неке две праве паралелне или се неке две тачке поклапају. На пример, ако је $A=\mathcal{L}$, за праву $A\mathcal{L}$ узимамо тангенту на круг у A.

Задатак 1.

Нека је Π тачка у унутрашњости троугла $A \mathcal{B} \mathcal{U}$. Означимо са Π_1 и Π_2 редом подножја нормала из Π на $A \mathcal{U}$ и $\mathcal{B} \mathcal{U}$, и са \mathcal{U}_1 и \mathcal{U}_2 редом подножја нормала из \mathcal{U} на $A \Pi$ и $\mathcal{B} \Pi$. Доказати да се праве $\mathcal{U}_1 \Pi_2$, $\mathcal{U}_2 \Pi_1$ и $\mathcal{A} \mathcal{B}$ секу у једној тачки.

Задатак 1.

Нека је Π тачка у унутрашњости троугла $A \mathcal{B} \mathcal{U}$. Означимо са Π_1 и Π_2 редом подножја нормала из Π на $A \mathcal{U}$ и $\mathcal{B} \mathcal{U}$, и са \mathcal{U}_1 и \mathcal{U}_2 редом подножја нормала из \mathcal{U} на $A \Pi$ и $\mathcal{B} \Pi$. Доказати да се праве $\mathcal{U}_1 \Pi_2$, $\mathcal{U}_2 \Pi_1$ и $\mathcal{A} \mathcal{B}$ секу у једној тачки.

Задатак 2.

Троугао $A \mathcal{B} \mathcal{U}$ је уписан у круг Г. Одабрана је тачка M на симетрали угла A, унутар троугла. Праве A M, $\mathcal{B} M$ и $\mathcal{U} M$ поново секу у A_1 , B_1 и \mathcal{U}_1 редом. Нека права $A_1 \mathcal{U}_1$ сече $A \mathcal{B}$ у \mathcal{U}_1 , \mathcal{U}_2 сече \mathcal{U}_3 \mathcal{U}_4 Соказати да је \mathcal{U}_3 \mathcal{U}_4 \mathcal{U}_4 \mathcal{U}_5 \mathcal{U}_6 \mathcal{U}_7 \mathcal{U}_8 \mathcal

Задатак 2.

Троугао $A \mathcal{B} \mathcal{U}$ је уписан у круг Г. Одабрана је тачка M на симетрали угла A, унутар троугла. Праве A M, $\mathcal{B} M$ и $\mathcal{U} M$ поново секу у A_1 , B_1 и \mathcal{U}_1 редом. Нека права $A_1 \mathcal{U}_1$ сече $A \mathcal{B}$ у \mathcal{U}_1 , \mathcal{U}_2 сече \mathcal{U}_3 \mathcal{U}_4 Соказати да је \mathcal{U}_3 \mathcal{U}_4 \mathcal{U}_4 \mathcal{U}_5 \mathcal{U}_6 \mathcal{U}_7 \mathcal{U}_8 \mathcal

Задатак 3.

У троуглу $A \mathcal{B} \mathcal{U}$, тачке \mathcal{J} и E на правој $A \mathcal{B}$ су такве да је $\mathcal{J} - A - \mathcal{B} - E$ и $A \mathcal{J} = A \mathcal{U}$, $\mathcal{B} E = \mathcal{B} \mathcal{U}$. Означимо са M и H редом средишта лукова $A \mathcal{U}$ и $\mathcal{B} \mathcal{U}$ описаног круга $\Delta A \mathcal{B} \mathcal{U}$ који не садрже треће теме. Праве $\mathcal{J} M$ и $\mathcal{U} A$ се секу у \mathcal{I} , а праве $E \mathcal{H}$ и $\mathcal{U} \mathcal{B}$ се секу у \mathcal{I} . Доказати да центар уписаног круга $\mathcal{I} \mathcal{I}$ троугла $A \mathcal{B} \mathcal{U}$ лежи на правој $\mathcal{I} \mathcal{I} \mathcal{I}$.

Задатак 3.

У троуглу $A \mathcal{B} \mathcal{U}$, тачке \mathcal{J} и E на правој $A \mathcal{B}$ су такве да је $\mathcal{J} - A - \mathcal{B} - E$ и $A \mathcal{J} = A \mathcal{U}$, $\mathcal{B} E = \mathcal{B} \mathcal{U}$. Означимо са M и H редом средишта лукова $A \mathcal{U}$ и $\mathcal{B} \mathcal{U}$ описаног круга $\Delta A \mathcal{B} \mathcal{U}$ који не садрже треће теме. Праве $\mathcal{J} M$ и $\mathcal{U} A$ се секу у \mathcal{I} , а праве $E \mathcal{H}$ и $\mathcal{U} \mathcal{B}$ се секу у \mathcal{I} . Доказати да центар уписаног круга $\mathcal{I} \mathcal{I}$ троугла $\mathcal{A} \mathcal{B} \mathcal{U}$ лежи на правој $\mathcal{I} \mathcal{I} \mathcal{I}$.

Паскалова теорема Доказ Посебни случајеви Примена

Хвала на пажњи!