descriptive statistics 1-1: more than one variable; relationships

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Thursday 10th September, 2020 08:26

outline

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

outline

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

howto describe data?

- numbers
- graphs (always better unless very few data, say <5)
 humans recognize patterns in graphs better and faster
- break it up into subsets/subsamples! dig deeper!
 - say see hist/tab for males and females separately
 - say corr or crosstab for low and hi val separately that's a quick way to see nonlinear relationship!
 eg it may first rise and then fall
- ♦ googSheet or whiteboard

few categories / categorical

- use contingency table / cross-tabs(bc you cross-tabulate data)
- use percents, not counts: then usually it's clear

What is your	Are you a student?			
age?	Yes - Full Time	Yes - Part Time	No	To
15 and under	88%	12%	-	8
16 - 18	95%	-	5%	42
19 - 23	68%	12%	20%	20
24 - 29	16%	10%	74%	35
30 - 35	5%	9%	86%	19
36 - 45	4%	8%	88%	16
over 45	1%	7%	92%	12

http://help.statwing.com/knowledge_base/topics/how-do-i-interpret-crosstabs

crosstabs: row percents v col percents

Sort: Cols ▼ Rows ▼	Count All	% Row %	Col %			
Number of Employees at Company						
Job Satisfaction	1-25	26-100	101-999	1,000-3,000	> 3000	T
Hate my job	24.4%	14.1%	26.9%	12.8%	21.8%	
I'm not happy in my job	31.6%	21.3%	19.2%	6.3%	21.5%	
It's a paycheck	₹ 27.6%	20.4%	22.6%	7.7%		
I enjoy going to work		^ 21.8%	21.3%	7.0%	17.6%	
Love my job		17.2%	¥ 17.0%	5.0%	× 13.0%	

:	Sort: Cols ▼ Rows ▼	Count All	% Row %	Col %					
	Number of Employees at Company								
	lob Satisfaction	1-25	26-100	101-999	1,000-3,000	> 300			
	Hate my job	0.8%	0.8%	1.5%	2.2%				
	I'm not happy in my job	6.6%	7.9%	7.1%	7.2%				
narizir	It's a paycheck g more than one variable: crossta	12.6% bs and correlation,	16.4% (Wheelan, 2013, ch	18.1% n3,4)	18.9%	^ 2 6/16			

percentage change v percentage point change

- say good school's dropout rate increases from 2% to 4%
 - percentage point increase is 4-2=2
 - percentage increase is $(\frac{4-2}{2})*100 = 100$

- say bad school's dropout rate increases from 50% to 75%
- percentage point increase is 75 50 = 25
- percentage increase is $\left(\frac{75-50}{50}\right)*100=50$
- · if you start from low base (eg 2), then small percentage point increase is huge percent increase!

7/16

many categories / continuous data

- use correlation and scatterplots
 - · just plot them in scatterplot; identify outliers!
 - blackboard: examples with outliers
 - · correlation ranges between -1 and 1
 - $\cdot < |4|$ low
 - $\cdot |.4 .6|$ moderate
 - $\cdot > |.7|$ strong
- again, keep in mind causation v correlation

TODO: just insert here one of these corr coef graphs showng strength of relationship based on look

scatterplot

· also see http://www.socialresearchmethods.net/kb/statcorr.php

o next slide: https://danley.camden.rutgers.edu/2017/04/13/

Suspension Data

do scatterplots

- it is useful to produce a scatterplot
 - · you'd see outliers-
 - · and whether the relationship is due to them
 - blackboard: relationships biased due to outliers
- · say marriage rate and divorce rate and Nevada

Wheelan in ch11 mentions Whitehall studies

- fascinating stuff!
- high status causes better health!
 - · great book 'Status Syndrome' http://a.co/jaUuwT7
- say nobel prize or oscar boosts one's health and longevity
 - · these successful folks live longer and in better health
 - than exact same people (income, lifestyle, etc) but without status

closer look at status syndrome

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566175/
- see Table 2A for correlations
 - especially 'Decision latitude'
 - conclusions? extra credit

correlations for different scenarios

wrap-up

- end every class discussing what we covered and quick look at next week
- end with a review Q&A,
- give some examples (essp in pub pol and pub adm) for concepts covered
- students will discuss concepts from the class
- \Diamond
- quick look at next class

bibliography I

 ${
m WHEELAN,\ C.\ (2013):\ Naked\ statistics:\ stripping\ the\ dread\ from\ the\ data,\ WW\ Norton\ \&\ Company.}$