Powers of Two with Digits from $\{1, 2, 8\}$: A Combinatorial Proof of Finiteness

S. V. Goryushkin

October 25, 2025

Abstract

We give a completely elementary proof that the only powers of two whose decimal expansion uses only the digits $\{1,2,8\}$ are 2,8,128. The key ideas are: (i) the phase condition $2^n \equiv 2 \pmod{6}$ for odd n; (ii) a digit-composition invariant $a \equiv b \pmod{3}$ (the numbers of digits equal to 1 and to $\{2,8\}$ in higher positions are congruent mod 3); (iii) an explicit derivation of admissible two- and three-digit endings; (iv) exclusion of length 4 via digit sum modulo 3 and divisibility by 16; (v) exclusion of lengths ≥ 5 via the invariant.

1 Setup

Call a number valid if its decimal expansion uses only digits from $\{1, 2, 8\}$. We are interested in valid powers of two $N = 2^n$. Clearly, 2 and 8 are valid, and $128 = 2^7$ is valid as well. We show that there are no others.

2 Phase modulo 6 and the structure of decimal places

Two elementary observations:

- For odd n we have $2^n \equiv 2 \pmod{6}$ (phase 2); for even n the residue is 4, and the last digit is 4 or 6, which is invalid. Thus, n must be odd and $N \equiv 2 \pmod{6}$.
- In $\mathbb{Z}/6\mathbb{Z}$ one has $10 \equiv 4$, hence $10^j \equiv 4$ for all $j \geq 1$.

Lemma 1 (Composition invariant modulo 6). Let a valid N have last digit $u \in \{2, 8\}$, and above the units place let there be a digits equal to 1 and b digits from $\{2, 8\}$. Then

$$2a + b \equiv 0 \pmod{3}$$
, $a + 2b \equiv 0 \pmod{3}$, in particular $a \equiv b \pmod{3}$. (1)

Proof. Work in $\mathbb{Z}/6\mathbb{Z}$. The units digit contributes $u \equiv 2$. Each higher 1 contributes $4 \cdot 1 \equiv 4$, and each higher 2 or 8 contributes $4 \cdot 2 \equiv 8 \equiv 2$. Thus

$$N \equiv 2 + 4a + 2b \pmod{6}.$$

Since $N \equiv 2 \pmod{6}$, we get $4a + 2b \equiv 0 \pmod{6}$, i.e. $2a + b \equiv 0 \pmod{3}$.

On the other hand, modulo 3 the digit sum equals $N \pmod 3$. For odd n, $2^n \equiv 2 \pmod 3$. With $1 \equiv 1$, $2 \equiv 2$, $8 \equiv 2$, we have

$$(2) + a \cdot 1 + b \cdot 2 \equiv 2 \pmod{3} \Rightarrow a + 2b \equiv 0 \pmod{3}.$$

Subtracting gives $a \equiv b \pmod{3}$.

Corollary 1. If N is valid, adding a single leftmost digit from $\{1, 2, 8\}$ breaks $a \equiv b \pmod{3}$. Hence any possible valid extension on the left must occur in blocks of three digits.

Example. For N = 128 we have a = 1, b = 1 and $a \equiv b \pmod{3}$. Adding one digit to the left (1128, 2128, 8128) breaks the invariant or other necessary properties of powers of two.

3 Admissible endings: mod10, mod100, mod1000

We now *explicitly* derive all admissible endings.

One digit

The last digit of 2^n cycles: $2, 4, 8, 6, \ldots$ For odd n only 2 and 8 remain — both valid.

Two digits: CRT derivation

The period of $2^n \mod 100$ is $\operatorname{lcm}(\operatorname{ord}_{25}(2), \operatorname{ord}_4(2)) = \operatorname{lcm}(20, 2) = 20$. Consider only odd n (last digit 2 or 8). The explicit table of $2^n \mod 100$ for odd n yields exactly three endings whose both digits lie in $\{1, 2, 8\}$:

From this row we see *only* 12, 28, 88 as admissible pairs.

Three digits: divisibility by 8 + period modulo 125

For $n \ge 3$, $2^n \equiv 0 \pmod 8$, so the last three digits are multiples of 8. Among three-digit numbers over $\{1, 2, 8\}$ ending in 2 or 8, divisibility by 8 leaves the *candidates*

Next, using $ord_{125}(2) = 100$, the period modulo 1000 is 100. Scanning the cycle yields exactly three actual endings:

$$[112, 128, 288,]$$
 (3)

while 888 never occurs.

Remark (Manual check of (2)–(3)). For two digits: compute $2^n \mod 25$ for $n = 1, 3, \ldots, 19$ and align with mod4 (the last digit fixes mod4). For three digits: the 8-divisibility condition drastically shortens the list; then align with mod125 (cycle length 100).

4 Mini table of carries (local dynamics)

When passing from 2^n to 2^{n+1} right-to-left, if d is a digit and $c \in \{0,1\}$ is the incoming carry, then

$$e = (2d + c) \mod 10,$$
 $c' = \left| \frac{2d + c}{10} \right|.$

Requiring $e \in \{1, 2, 8\}$ leaves only one locally admissible transition from $\{1, 2, 8\}$:

\overline{d}	c	2d + c	$e = (2d + c) \bmod 10$	c'	is e valid?
1	0	2	2	0	yes
1	1	3	3	0	no
2	0	4	4	0	no
2	1	5	5	0	no
8	0	16	6	1	no
8	1	17	7	1	no

Thus the only stable right-hand pattern is $11 \mapsto 22$ with no carry, consistent with the observed ending $112 \rightarrow 128$.

5 Excluding length 4

Lemma 2. No four-digit valid number is a power of two.

Proof. By (3), the possible three-digit endings are 112, 128, 288. Consider dXYZ with $XYZ \in \{112, 128, 288\}$ and $d \in \{1, 2, 8\}$.

(i) Digit sum modulo 3. For odd n, $2^n \equiv 2 \pmod{3}$, i.e. the digit sum must be $\equiv 2 \pmod{3}$. Compute:

$$sum(d112) = d + 1 + 1 + 2 \equiv d + 1 \pmod{3},$$

$$sum(d128) = d + 1 + 2 + 8 \equiv d + 1 \pmod{3},$$

$$sum(d288) = d + 2 + 8 + 8 \equiv d + 2 \pmod{3}.$$

Hence $d \in \{2, 8\}$ for d112 and d128 gives 0 mod 3 instead of 2, and all d288 are impossible (since $d \equiv 1, 2, 2 \pmod{3}$ never produce 2). Only d = 1 remains for 1112 and 1128.

(ii) Divisibility by 16. For $n \ge 4$, 2^n is divisible by 16. Check:

$$1112 \equiv 8 \pmod{16},$$

 $1128 \equiv 8 \pmod{16}.$

Neither is divisible by 16. Thus no four-digit valid power of two exists.

Example. 1128 looks plausible (all digits allowed) but is not divisible by 16; 2128, 8128 violate the digit-sum mod 3 condition.

6 Excluding all lengths ≥ 5

Lemma 3. There are no valid powers of two of length ≥ 5 .

Proof. Assume N is valid. By Lemma 1, $a \equiv b \pmod{3}$ must hold. By Corollary 1, any valid extension/truncation occurs in blocks of three digits. Removing three digits at a time from the left, we must arrive at a number of length 1, 2, 3, or 4. Lengths 1, 2, 3 yield exactly 2, 8, 128; length 4 is impossible by Lemma 2. Contradiction.

7 Main theorem and testable examples

Theorem 1. The only valid powers of two (alphabet $\{1, 2, 8\}$) are

$$2^1 = 2$$
, $2^3 = 8$, $2^7 = 128$.

Proof. Oddness of the exponent is necessary (phase mod6). From the endings section, the only realizable valid three-digit ending is 128 (at n = 7). By Lemmas 2 and 3, no lengths ≥ 4 exist. Lengths 1, 2, 3 give $2^1 = 2$, $2^3 = 8$, $2^7 = 128$.

Example. Checks:

- $2^1 = 2$ valid.
- $2^3 = 8$ valid.
- $2^5 = 32$ invalid (digit 3).
- $2^7 = 128$ valid.
- $2^{19} = 524288$ invalid (ending 288 is admissible, but digit 5 appears to the left).
- Any d128 with $d \in \{1, 2, 8\}$ is not a power of two (see Lemma 2).

8 Extension: adding the digit 4

Consider the alphabet $\{1, 2, 4, 8\}$. Modulo 3, the digit 4 is equivalent to 1, and modulo 6 its contribution is 4 (same as 1), so the invariant of Lemma 1 remains valid provided 1 and 4 are treated as one class. The phase modulo 6 now also allows even n with last digit 4, but among actual powers this yields only $2^2 = 4$.

Theorem 2 (Alphabet $\{1, 2, 4, 8\}$). The only valid powers of two are

$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 8$, $2^7 = 128$.

Proof. The invariant and the local carry table still apply. The only new case is $2^2 = 4$ (last digit 4 is allowed). The exclusions of length 4 and of lengths > 5 transfer verbatim. \Box

Appendix A: getting endings even faster

Two digits. See the table for $2^n \mod 100 \pmod{n}$ above; only 12, 28, 88 are admissible.

Three digits. Multiples of 8 reduce the candidate list to 112, 128, 288, 888, of which only 112, 128, 288 occur along the modulo-1000 cycle.

Appendix B: compact carry table

The summary table of local rightmost-digit transitions under doubling is given in the "Mini table of carries" section. It shows that only $1 \to 2$ without carry is admissible, consistent with the stable fragment $11 \mapsto 22$ and the ending $112 \to 128$.