### Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Jasiek Marcinkowski

Liceum Ogólnokształcące nr XIV we Wrocławiu

5 maja 2009





- Gry o sumie zerowej
  - O co chodzi?
  - Strategie dominujące
  - Punkt siodłowy i Strategie mieszane
  - Bolączki gier o sumie zerowej
  - Gry o sumie stałej
- Gry osobowe o sumie niezerowej
  - Podobieństwa i różnice do gier o sumie zerowej
  - Równowaga Nasha
  - I co teraz zrobimy?
- 3 Sprawiedliwa ordynacja wyborcza
  - Idee





### Gry o sumie zerowej

- Grać będą dwie osoby. U nas nazywają się: pan Wiersz i pani Kolumna. Podejmują decyzje niezależnie i nie znają przed zagraniem decyzji przeciwnika.
- @ Gra się bardzo dużo razy, więc nie ma zbędnych elementów losowości.
- ullet Suma zerowa oznacza, że jeśli Wiersz wygra u, to Kolumna dostanie u. Dlatego wypłatą będziemy nazywać wynik pana Wiersza pani Kolumna dąży więc do jak najmniejszych wypłat.
- Nasz przeciwnik jest mega inteligentny i potrafi sobie wymodelować logiczną z naszego punktu widzenia strategię, tak samo jak my jesteśmy w stanie to zrobić (w końcu też nam nic nie brakuje).

|            |   | Pani | Kolu |   |  |
|------------|---|------|------|---|--|
|            |   | А    |      |   |  |
|            | А | 12   | -1   | 1 |  |
| Pan Wiersz |   |      | 1    | 7 |  |
|            |   |      | 2    | 4 |  |
|            |   |      |      |   |  |

A, B, C i D to możliwe strategie - sposoby gry. Jeśli pan Wiersz zdecyduje się na B, zaś Kolumna na A, to wynikiem gry będzie 5.





### Gry o sumie zerowej

- Grać będą dwie osoby. U nas nazywają się: pan Wiersz i pani Kolumna. Podejmują decyzje niezależnie i nie znają przed zagraniem decyzji przeciwnika.
- 2 Gra się bardzo dużo razy, więc nie ma zbędnych elementów losowości.
- ullet Suma zerowa oznacza, że jeśli Wiersz wygra u, to Kolumna dostanie u. Dlatego wypłatą będziemy nazywać wynik pana Wiersza pani Kolumna dąży więc do jak najmniejszych wypłat.
- Nasz przeciwnik jest mega inteligentny i potrafi sobie wymodelować logiczną z naszego punktu widzenia strategię, tak samo jak my jesteśmy w stanie to zrobić (w końcu też nam nic nie brakuje).

#### Tak będzie wyglądać nasza gra

|            | Pani Kolumna |     |    |   |     |  |
|------------|--------------|-----|----|---|-----|--|
|            |              | Α   | В  | C | D   |  |
| -          | Α            | 12  | -1 | 1 | 0   |  |
| Pan Wiersz | В            | 5   | 1  | 7 | -20 |  |
|            | C            | 3   | 2  | 4 | 3   |  |
|            | D            | -16 | 0  | 0 | 16  |  |

A, B, C i D to możliwe strategie - sposoby gry. Jeśli pan Wiersz zdecyduje się na B, zaś Kolumna na A, to wynikiem gry będzie 5.





### Strategie dominujące

#### Pani Kolumna

|            |   | Α   | В  | C | D   |
|------------|---|-----|----|---|-----|
| •          | Α | 12  | -1 | 1 | 0   |
| Pan Wiersz | В | 5   | 1  | 7 | -20 |
|            | C | 3   | 2  | 4 | 3   |
|            | D | -16 | 0  | 0 | 16  |





### Strategie dominujące

#### Pani Kolumna

|            |   | Α   | В  | C | D   |
|------------|---|-----|----|---|-----|
| •          | Α | 12  | -1 | 1 | 0   |
| Pan Wiersz | В | 5   | 1  | 7 | -20 |
|            | C | 3   | 2  | 4 | 3   |
|            | D | -16 | 0  | 0 | 16  |

#### Strategia C

Mądra kolumna nigdy nie zagra strategi C, gdyż dla każdego zagrania Wiersza jest ona mniej opłacalna, niż odpowiadająca jej ze strategii B.

#### Definicja

Strategia S dominuje strategię T, jeśli każdy wynik dawany przez S jest co najmniej równie korzystny, co odpowiedni wynik dawany przez T, a przynajmniej jeden wynik dawany przez S jest bardziej korzystny niż odpowiedni wynik dawany przez T.





Strategie dominuiace

### Strategie dominujące

#### Pani Kolumna

|            |   | Α   | В  | C | D   |
|------------|---|-----|----|---|-----|
| •          | Α | 12  | -1 | 1 | 0   |
| Pan Wiersz | В | 5   | 1  | 7 | -20 |
|            | C | 3   | 2  | 4 | 3   |
|            | D | -16 | 0  | 0 | 16  |

#### Strategia C

Mądra kolumna nigdy nie zagra strategi C, gdyż dla każdego zagrania Wiersza jest ona mniej opłacalna, niż odpowiadająca jej ze strategii B.

#### Definicia

Strategia *S* dominuje strategię T, jeśli każdy wynik dawany przez S jest co najmniej równie korzystny, co odpowiedni wynik dawany przez T, a przynajmniej jeden wynik dawany przez S jest bardziej korzystny niż odpowiedni wynik dawany przez T.





### Wynik gry macierzowej

#### Twierdzenie o Minimaksie

Każda gra macierzowa  $m \times n$  ma rozwiązanie, tzn. istnieje dokładnie jedna liczba  $\nu$  nazywana "wartością gry", oraz optymalne strategie (czyste lub mieszane) obu graczy, takie że:

- ullet jeżeli Wiersz gra swoją optymalną strategię, to jego oczekiwana wypłata będzie większa lub równa u, niezależnie od tego, jaką strategię będzie grała Kolumna;
- ullet jeżeli Kolumna gra swoją optymalną strategię, to oczekiwana wypłata Wiersza będzie mniejsza lub równa u, niezależnie od tego, jaką strategię będzie on grał.
- Gracz stosuje strategię czystą, gdy za każdym razem wybiera tę samą możliwość;
- Strategia mieszana polega na wybieraniu różnych możliwości gry z określonymi prawdopodobieństwami. Mianem strategii określa się właśnie ten rozkład prawdopodobieństw;
- Oczekiwana wypłata dla wyników a<sub>1</sub>, a<sub>2</sub>,..., a<sub>n</sub> uzyskiwanych z prawdopodobieństwami odpowiednio p<sub>1</sub>, p<sub>2</sub>,..., p<sub>n</sub> jest liczba a<sub>1</sub> \* p<sub>1</sub> + a<sub>2</sub> \* p<sub>2</sub> + ··· + a<sub>n</sub> \* p<sub>n</sub>.





### Powracamy do naszego przykładu gry macierzowej

#### Pani Kolumna

|            |   | Α   | В  | D   |
|------------|---|-----|----|-----|
| •          | Α | 12  | -1 | 0   |
| Pan Wiersz | В | 5   | 1  | -20 |
|            | C | 3   | 2  | 3   |
|            | D | -16 | 0  | 16  |

#### <sup>2</sup>unkt Siodłowy

Grając możliwość C pan Wiersz jest w stanie zapewnić sobie wynik nie gorszy niż 2, niezależnie od poczynań Kolumny (chyba że Kolumna kopnie w stół i powie, że się tak nie bawi).





### Powracamy do naszego przykładu gry macierzowej

#### Pani Kolumna

|            |   | Α   | В  | D   |
|------------|---|-----|----|-----|
|            | Α | 12  | -1 | 0   |
| Pan Wiersz | В | 5   | 1  | -20 |
|            | C | 3   | 2  | 3   |
|            | D | -16 | 0  | 16  |

#### Punkt Siodłowy

Grając możliwość C pan Wiersz jest w stanie zapewnić sobie wynik nie gorszy niż 2, niezależnie od poczynań Kolumny (chyba że Kolumna kopnie w stół i powie, że się tak nie bawi).





## Powracamy do naszego przykładu gry macierzowej

#### Pani Kolumna

|            |   | Α   | В  | D   |
|------------|---|-----|----|-----|
| •          | Α | 12  | -1 | 0   |
| Pan Wiersz | В | 5   | 1  | -20 |
|            | C | 3   | 2  | 3   |
|            | D | -16 | 0  | 16  |

#### Punkt Siodłowy

Grając możliwość C pan Wiersz jest w stanie zapewnić sobie wynik nie gorszy niż 2, niezależnie od poczynań Kolumny. Także Kolumna może grając swoją strategię B zapewnić wynik o wartości najwyżej B.





## Powracamy do naszego przykładu gry macierzowej

#### Pani Kolumna

|            |   | Α   | В  | D   |
|------------|---|-----|----|-----|
|            | Α | 12  | -1 | 0   |
| Pan Wiersz | В | 5   | 1  | -20 |
|            | C | 3   | 2  | 3   |
|            | D | -16 | 0  | 16  |

### Definicja

Wynik gry macierzowej nazywamy punktem siodłowym, jeżeli jego wartość jest mniejsza lub równa każdaj wartości w jego wierszu, a większa lub równa każdej wartości w jego kolumnie.





## Powracamy do naszego przykładu gry macierzowej

#### Pani Kolumna

|            |   | Α   | В  | D   |
|------------|---|-----|----|-----|
| •          | Α | 12  | -1 | 0   |
| Pan Wiersz | В | 5   | 1  | -20 |
|            | C | 3   | 2  | 3   |
|            | D | -16 | 0  | 16  |

#### Definicja

Wynik gry macierzowej nazywamy punktem siodłowym, jeżeli jego wartość jest mniejsza lub równa każdaj wartości w jego wierszu, a większa lub równa każdej wartości w jego kolumnie.

# Kryterium Punktu Siodłowego

Jeśli gra ma punkt siodłowy, to należy grać strategię go zawierającą.





### Strategie mieszane w grach macierzowych 2 × 2

Fajna jest dla nas taka strategia, której przeciwnik nie może wykorzystać przeciwko nam, nawet jeśli ją pozna.

Zróbmy sobie strategię niezniszczalną. Będzie dawała takie same wyniki niezależnie od ruchów przeciwnika





## Strategie mieszane w grach macierzowych 2 × 2

Fajna jest dla nas taka strategia, której przeciwnik nie może wykorzystać przeciwko nam, nawet jeśli ją pozna.

Zróbmy sobie strategię niezniszczalną. Będzie dawała takie same wyniki niezależnie od ruchów przeciwnika





### Fajna metoda dla gier $2 \times n$

### z macierzy

Pani Kolumna

zróbmy Wykresik





### Co pozwala nam rozszerzyć twierdzenie o minimaksie

#### Twierdzenie o Minimaksie

Każda gra macierzowa  $m \times n$  ma rozwiązanie, tzn. istnieje dokładnie jedna liczba  $\nu$  nazywana "wartością gry", oraz optymalne strategie (czyste lub mieszane) obu graczy, takie że:

- jeżeli Wiersz gra swoją optymalną strategię, to jego oczekiwana wypłata będzie większa lub równa  $\nu$ , niezależnie od tego, jaką strategię będzie grała Kolumna;
- ullet jeżeli Kolumna gra swoją optymalną strategię, to oczekiwana wypłata Wiersza będzie mniejsza lub równa u, niezależnie od tego, jaką strategię będzie on grał.
- Gracz stosuje strategię czystą, gdy za każdym razem wybiera tę samą możliwość;
- Strategia mieszana polega na wybieraniu różnych możliwości gry z określonymi prawdopodobieństwami. Mianem strategii określa się właśnie ten rozkład prawdopodobieństw;
- Oczekiwana wypłata dla wyników a<sub>1</sub>, a<sub>2</sub>,..., a<sub>n</sub> uzyskiwanych z prawdopodobieństwami odpowiednio p<sub>1</sub>, p<sub>2</sub>,..., p<sub>n</sub> jest liczba a<sub>1</sub> \* p<sub>1</sub> + a<sub>2</sub> \* p<sub>2</sub> + ··· + a<sub>n</sub> \* p<sub>n</sub>.





O co chodzi? Strategie dominujące Punkt siodłowy i Strategie mieszane Bolączki gier o sumie zerowej Gry o sumie stałej

### Co pozwala nam rozszerzyć twierdzenie o minimaksie

#### Twierdzenie o Minimaksie

Każda gra macierzowa  $m \times n$  ma rozwiązanie, tzn. istnieje dokładnie jedna liczba  $\nu$  nazywana "wartością gry", oraz optymalne strategie (czyste lub mieszane) obu graczy, takie że:

- jeżeli Wiersz gra swoją optymalną strategię, to jego oczekiwana wypłata będzie większa lub równa ν, niezależnie od tego, jaką strategię będzie grała Kolumna;
- ullet jeżeli Kolumna gra swoją optymalną strategię, to oczekiwana wypłata Wiersza będzie mniejsza lub równa u, niezależnie od tego, jaką strategię będzie on grał.

#### Ponadto

Rozwiązanie gry macierzowej  $m \times n$  jest zawsze rozwiązaniem jakiejś podgry  $k \times k$ .





O co chodzi?
Strategie dominujące
Punkt siodolowy i Strategie mieszane
Bolączki gier o sumie zerowej
Gry o sumie stałei

### Bolączki gier o sumie zerowej

- Ciężko gra się z bogiem.
- 2 Przeciwnik na wojnie niekoniecznie ma zupełnie odmienne niż my cele.
- Natura (cholera jedna) nie chce grać optymalnie.





### Gry o sumie stałej

#### Pani Kolumna





### Podobieństwa i różnice do gier o sumie zerowej

### Podobieństwa

- + Istnieje dominacja jednych strategii nad innymi
- + Istnieją strategie wyrównujące i punkty równowagi

#### Różnice

- Punkty równowagi nie są wymienne i ekwiwalentne
- To że istnieją jest jedną z niewielu zalet tych punktów równowagi. Nie są efektywne w sensie Pareto (o tym za chwilę)





### Równowaga Nasha

#### Strategie wyrównujące

Strategia wyrównująca, to strategia, która czyni wypłatę przeciwnika niezależną od jego poczynań. Jeśli zarówno pan Wiersz, jak i pani Kolumna zadecydują się na zastosowanie strategii Wyrównującej, to jest to stan równowagi - żadnemu nie opłaca się zmiana strategii. Równowaga ta nazywa się **Równowagą Nasha**, gdyż to John Nash udowodnił, że każda gra o sumie niezerowej ma przynajmniej jedną taką równowagę.

#### Optymalność w sensie Pareto

Wynik gry jest nieefektywny Pareto, gdy gra ma inny wynik, dający obu graczom wyższe wypłaty (ewentualnie jednemu taką samą).





### Równowaga Nasha

#### Strategie wyrównujące

Strategia wyrównująca, to strategia, która czyni wypłatę przeciwnika niezależną od jego poczynań. Jeśli zarówno pan Wiersz, jak i pani Kolumna zadecydują się na zastosowanie strategii Wyrównującej, to jest to stan równowagi - żadnemu nie opłaca się zmiana strategii. Równowaga ta nazywa się **Równowagą Nasha**, gdyż to John Nash udowodnił, że każda gra o sumie niezerowej ma przynajmniej jedną taką równowagę.

#### Optymalność w sensie Pareto

Wynik gry jest **nieefektywny Pareto**, gdy gra ma inny wynik, dający obu graczom wyższe wypłaty (ewentualnie jednemu taką samą).





### Równowaga Nasha

#### Strategie wyrównujące

Strategia wyrównująca, to strategia, która czyni wypłatę przeciwnika niezależną od jego poczynań. Jeśli zarówno pan Wiersz, jak i pani Kolumna zadecydują się na zastosowanie strategii Wyrównującej, to jest to stan równowagi - żadnemu nie opłaca się zmiana strategii. Równowaga ta nazywa się Równowagą Nasha, gdyż to John Nash udowodnił, że każda gra o sumie niezerowej ma przynajmniej jedną taką równowagę.

#### Optymalność w sensie Pareto

Wynik gry jest **nieefektywny Pareto**, gdy gra ma inny wynik, dający obu graczom wyższe wypłaty (ewentualnie jednemu taką samą).

#### Przykład

| Pani I | Kolumna |
|--------|---------|
|--------|---------|

|            |   | Α       | В       |
|------------|---|---------|---------|
| Pan Wiersz | Α | (3, 3)  | (-1, 5) |
|            | В | (5, -1) | (0, 0)  |





### I co teraz zrobimy?

#### Postulat

Niech Wiersz zajmie się swoimi wypłatami, a nie zagląda do portfela kolumny. No i Kolumna też nos w sos!

#### Definicja

Nazwijmy strategią bezpieczną Wiersza, strategię optymalną (minimaksową) w jego grze. Wartość gry Wiersza niech się zowie poziomem bezpieczeństwa.





### I co teraz zrobimy?

#### Postulat

Niech Wiersz zajmie się swoimi wypłatami, a nie zagląda do portfela kolumny. No i Kolumna też nos w sos!

#### Definicja

Nazwijmy strategią bezpieczną Wiersza, strategię optymalną (minimaksową) w jego grze. Wartość gry Wiersza niech się zowie poziomem bezpieczeństwa.





### I co teraz zrobimy?

#### Postulat

Niech Wiersz zajmie się swoimi wypłatami, a nie zagląda do portfela kolumny. No i Kolumna też nos w sos!

#### Definicja

Nazwijmy strategią bezpieczną Wiersza, strategię optymalną (minimaksową) w jego grze. Wartość gry Wiersza niech się zowie poziomem bezpieczeństwa. Ale zaraz za nią podąży następna...

#### Definicja

Nazwijmy strategią kontrabezpieczną strategię będącą najlepszą odpowiedzią na strategię bezpieczną.





### Wnioski są smutne

Niestety nie da się przenieść teorii gier o sumie zerowej na tę, o sumie niezerowej.





### Wnioski są smutne

Niestety nie da się przenieść teorii gier o sumie zerowej na tę, o sumie niezerowej. W sensowny sposób...





### Wnioski są smutne

Niestety nie da się przenieść teorii gier o sumie zerowej na tę, o sumie niezerowej.

 Możemy się jeszcze spróbować pocieszyć faktem, iż gry z równowagą optymalną w sensie Pareto są rozwiązywalne.





Idee

### Pomysły na obliczanie siły

#### Pomysły - kiedy ordynacja jest sprawiedliwa?

- Głos każdej partii liczy się tak samo.
- Gdy siła partii zależy od liczby jej reprezentantów (proporcjonalna).
- Doklejamy po kolei partie do koalicji. Gdy partia X uczyni koalicję wygrywającą dajemy jej punkt (Indeks siły Shapleya-Shubika).
- Gdy partia ma głos krytyczny (przesądzający) dajemy jej punkt (Indeks siły Banzhafa).





Koniec i bomba, a kto słuchał, ten trąba.



