Third-year ISAE-SUPAERO engineering students Research Area: Neuro & AI December, 2020

Neuro & AI: Methods and Tools for Neuroergonomics

Introduction to Machine Learning

Nicolas Drougard¹

¹ISAE-SUPAERO DCAS, Toulouse, FRANCE

nicolas.drougard@isae-supaero.fr

Outline

1 Classical Supervised Learning Algorithms

2 Remarks and tools for BCIs

References

- ▶ [BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe, *Convex optimization*, Cambridge university press, 2004, download link **here**.
- ► [HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, *The elements of statistical learning: data mining, inference, and prediction*, Springer Science & Business Media, 2009, download link **here**.

Outline

- 1 Classical Supervised Learning Algorithms
- 2 Remarks and tools for BCIs

Decision Tree

Splits using impurity criteria.

Decision Tree

$$i_1 = 2$$

Splits using impurity criteria.

Decision Tree

$$i_1 = 2$$

Splits using impurity criteria.

Decision Tree

$$i_1 = 2$$

$$i_2 = 1$$

$$i_3 = 1$$

Splits using impurity criteria.

Decision Tree

Splits using impurity criteria.

Decision Tree

Splits using impurity criteria.

Let's use the following notations:

- $Pos = \sum_{i=1}^{n} \mathbb{1}_{\{y_i = y_+\}}$
- $Neg = \sum_{i=1}^{n} \mathbb{1}_{\{y_i = y_-\}}$

Gini Impurity index

$$G = 2\left(\frac{Pos}{n}\right)\left(\frac{Neg}{n}\right)$$

Shannon Entropy

$$S = -\frac{Pos}{n} \ln \left(\frac{Pos}{n} \right) - \frac{Neg}{n} \ln \left(\frac{Neg}{n} \right)$$

Note that if Pos = 0 (or Neg = 0), G = S = 0.

These impurity criteria are maximal when Pos = Neg: $G = \frac{2}{4} = \frac{1}{2}$, and $S = -\ln(\frac{1}{2}) = \ln(2)$.

Random Forest

ND (ISAE-SUPAERO DCAS)

Linear Discriminant Analysis (LDA)

- Assumptions: $X \in \mathbb{R}^d$, $X \sim \mathcal{N}(\mu_y, \Sigma)$, $\forall y \in \mathcal{Y}$.
- Then, given $y \in \mathcal{Y}$, the density of X is:

$$f_y(x) = \frac{1}{(2\pi)^{\frac{d}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma^{-1}(x - \mu_y)\right).$$

■ Using the Bayes rule, assuming a prior probability $\mathbb{P}(Y = y)$, the posterior probability is:

$$\mathbb{P}(Y = y \mid X = x) = \frac{f_y(x)\mathbb{P}(Y = y)}{\sum_{y \in \mathcal{Y}} f_y(x)\mathbb{P}(Y = y)}.$$

- Decision $y_+ \Leftrightarrow \frac{\mathbb{P}(Y=y_+ \mid X=x)}{\mathbb{P}(Y=y_- \mid X=x)} \geqslant 1$, decision $y_- \Leftrightarrow \frac{\mathbb{P}(Y=y_+ \mid X=x)}{\mathbb{P}(Y=y_- \mid X=x)} < 1$.
- Decision function $\nu(x) = \ln\left(\frac{\mathbb{P}(Y=y_+ \mid X=x)}{\mathbb{P}(Y=y_- \mid X=x)}\right)$ [Reminder: $c(x) = y_+ \Leftrightarrow \nu(x) \geqslant 0$].

Decision function of LDA

Reminder:

- densities: $f_y(x) = \frac{1}{(2\pi)^{\frac{d}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x \mu_y)^T \Sigma^{-1}(x \mu_y)\right)$,
- posterior probabilities: $\mathbb{P}(Y = y \mid X = x) = \frac{f_y(x)\mathbb{P}(Y = y)}{\sum_{y \in \mathcal{Y}} f_y(x)\mathbb{P}(Y = y)}$.

So, we can compute the decision function:

$$\blacksquare \frac{\mathbb{P}(Y=y_+ \mid X=x)}{\mathbb{P}(Y=y_- \mid X=x)} = \frac{f_{y_+}(x)\mathbb{P}(Y=y_+)}{f_{y_-}(x)\mathbb{P}(Y=y_-)}.$$

Decision function:

$$\begin{split} \nu(x) &= & \ln\left(\frac{\mathbb{P}\left(\left.Y=y_{+} \mid X=x\right)}{\mathbb{P}\left(\left.Y=y_{-} \mid X=x\right)}\right) = \ln\left(\frac{f_{y_{+}}(x)}{f_{y_{-}}(x)}\right) + \ln\left(\frac{\mathbb{P}\left(\left.Y=y_{+}\right)}{\mathbb{P}\left(\left.Y=y_{-}\right)}\right)\right) \\ &= & \ln\left(\frac{\exp\left(-\frac{1}{2}(x-\mu_{y_{+}})^{T}\Sigma^{-1}(x-\mu_{y_{+}})\right)}{\exp\left(-\frac{1}{2}(x-\mu_{y_{-}})^{T}\Sigma^{-1}(x-\mu_{y_{-}})\right)}\right) + \ln\left(\frac{\mathbb{P}\left(\left.Y=y_{+}\right)}{\mathbb{P}\left(\left.Y=y_{+}\right)}\right)\right) \end{split}$$

Decision function of LDA

$$\nu(x) = \ln \left(\frac{\exp\left(-\frac{1}{2}(x - \mu_{y_{+}})^{T} \Sigma^{-1}(x - \mu_{y_{+}})\right)}{\exp\left(-\frac{1}{2}(x - \mu_{y_{-}})^{T} \Sigma^{-1}(x - \mu_{y_{-}})\right)} \right) + \ln \left(\frac{\mathbb{P}(Y = y_{+})}{\mathbb{P}(Y = y_{-})} \right)$$

$$= -\frac{1}{2}(x - \mu_{y_{+}})^{T} \Sigma^{-1}(x - \mu_{y_{+}}) + \frac{1}{2}(x - \mu_{y_{-}})^{T} \Sigma^{-1}(x - \mu_{y_{-}}) + \ln \left(\frac{\mathbb{P}(Y = y_{+})}{\mathbb{P}(Y = y_{-})} \right)$$

$$= \frac{1}{2} \left(-x^{T} \Sigma^{-1} x + \mu_{y_{+}}^{T} \Sigma^{-1} x + x^{T} \Sigma^{-1} \mu_{y_{+}} - \mu_{y_{+}}^{T} \Sigma^{-1} \mu_{y_{+}} \right)$$

$$+ x^{T} \Sigma^{-1} x - \mu_{y_{-}}^{T} \Sigma^{-1} x - x^{T} \Sigma^{-1} \mu_{y_{-}} + \mu_{y_{-}}^{T} \Sigma^{-1} \mu_{y_{-}} \right) + \ln \left(\frac{\mathbb{P}(Y = y_{+})}{\mathbb{P}(Y = y_{-})} \right)$$

$$= \frac{1}{2} \left((\mu_{y_{+}} - \mu_{y_{-}})^{T} \Sigma^{-1} x + x^{T} \Sigma^{-1} (\mu_{y_{+}} - \mu_{y_{-}}) + (\mu_{y_{-}} - \mu_{y_{+}})^{T} \Sigma^{-1} (\mu_{y_{-}} + \mu_{y_{+}}) \right) + \ln \left(\frac{\mathbb{P}(Y = y_{+})}{\mathbb{P}(Y = y_{-})} \right).$$

Linear Discriminant Analysis (LDA)

The decision function is linear in x.

Prior & Gaussian parameter estimations:

$$\blacksquare \frac{\mathbb{P}(Y=y_+)}{\mathbb{P}(Y=y_-)} = \frac{Pos}{Neg}.$$

$$\widehat{\mu}_{y_{+}} = \frac{1}{Pos} \sum_{i=1}^{n} \mathbb{1}_{\{y_{i} = y_{+}\}} x_{i},$$

$$\widehat{\mu}_{y_{-}} = \frac{1}{Neg} \sum_{i=1}^{n} \mathbb{1}_{\{y_{i} = y_{+}\}} x_{i}.$$

$$\widehat{\Sigma} = \frac{1}{n-2} \left(\widehat{\Sigma_{+}} + \widehat{\Sigma_{-}} \right),$$

$$\widehat{\Sigma_{+}} = \sum_{i=1}^{n} (x_{i} - \mu_{y_{+}})^{T} (x_{i} - \mu_{y_{+}}) \mathbb{1}_{\{y_{i} = y_{+}\}},$$

$$\widehat{\Sigma_{-}} = \sum_{i=1}^{n} (x_{i} - \mu_{y_{-}})^{T} (x_{i} - \mu_{y_{-}}) \mathbb{1}_{\{y_{i} = y_{-}\}}.$$

$$\Rightarrow \nu(x) = (\widehat{\mu_{y_+}} - \widehat{\mu_{y_-}})^T \Sigma^{-1} x + \frac{1}{2} (\widehat{\mu_{y_-}} - \widehat{\mu_{y_+}})^T \Sigma^{-1} (\widehat{\mu_{y_-}} + \widehat{\mu_{y_+}}) + \ln\left(\frac{\textit{Pos}}{\textit{Neg}}\right).$$

▶ sklearn: discriminant analysis.LinearDiscriminantAnalysis

Quadratic Discriminant Analysis

- Now the covariance matrix depends on the class: Σ_{ν} .
- Other assumptions hold.
- In this case, the decision function is quadratic in x.

▶ sklearn: discriminant_analysis.LinearDiscriminantAnalysis

Support Vector Machine

- Decision function $\nu(x) = x^{\beta} + \beta_0$, with $\beta \in \mathbb{R}^d$, $\|\beta\| = 1$ and $\beta_0 \in \mathbb{R}$.
- $x^T \beta + \beta_0 = 0 \Leftrightarrow \text{hyperplane orthogonal to } \beta.$
- $|x^T \beta + \beta_0| = \text{distance } x \leftrightarrow \text{hyperplane}$
- Encoding $y_+ = 1$, $y_- = -1$.
- By choosing $\beta \in \mathbb{R}^d$, $\beta_0 \in \mathbb{R}$, maximize the margin M subject to $y_i(x_i^T \frac{\beta}{\|\beta\|} + \frac{\beta_0}{\|\beta\|}) \geqslant M$, $\forall 1 \leqslant i \leqslant n$, i.e. subject to $y_i(x_i^T \beta + \beta_0) \geqslant M \|\beta\|$, $\forall i$. \emptyset with $M \|\beta\| = 1$

minimize $\|\beta\|$ subject to $y_i(x_i^T\beta + \beta_0) \geqslant 1$, $\forall 1 \leqslant i \leqslant n$.

▶ sklearn: svm.SVC

▶ sklearn: svm.SVR

Support Vector Machine

If classes overlap, introduce ξ_i .

 \blacksquare Minimize $\|\beta\|$ subject to

$$\begin{cases} y_i(x_i T\beta + \beta_0) \geqslant 1 - \xi_i, \ \forall 1 \leqslant i \leqslant n \\ \xi_i \geqslant 0, \ \text{and} \ \sum_i \xi \leqslant constant \end{cases}$$

$$\updownarrow \text{ convex optimization [BBV04]}$$

minimize
$$\frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$
 subject to $\xi \geqslant 0$, $y_i(x_i^T \beta + \beta_0) \geqslant 1$, $\forall i$.

■ High (resp. low) C > 0 prioritizes a good classification (resp. a large margin).

▶ sklearn: svm.SVC

▶ sklearn: svm.SVR

Support Vector Machine and kernels

Using a kernel $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, the resulting decision function has the non linear form

$$\nu(x) = \sum_{i=1}^{n} \alpha_i y_i K(x, xi) + \beta_0.$$

Some popular kernels

- **polynomial**: $K(x, x') = (1 + \langle x, x' \rangle)^d$,
- radial basis: $K(x, x') = \exp(-\gamma ||x x'||^2)$,
- sigmoid: $\frac{1}{1+e^{-\langle x,x'\rangle}}$.
 - ▶ sklearn: svm.SVC

▶ sklearn: svm.SVR

More details in [HTF09].

Outline

- 1 Classical Supervised Learning Algorithms
- 2 Remarks and tools for BCIs

Remarks and tools for BCIs

Brain Computer Interfaces

- Difficulties with physiological data (e.g. EEG):
 - signal-to-noise ratio very low,
 - few small datasets (time/money consuming experiments),
 - high dimensionality,
 - non-stationary,
 - variability over humans (participants),
 - variability over time (sessions),
 - variability over experiments (settings).
- Different problems, increasing difficulty in prediction:
 - within-recording-session prediction (intra-session),
 - across-session within-subject prediction (intra-subject),
 - across-subject prediction (inter-subject).

Remarks and tools for BCIs

EEG tools and BCI evaluation

- mne.tools
- moabb.neurotechx.com

Institut Supérieur de l'Aéronautique et de l'Espace 10 avenue Édouard Belin - BP 54032 31055 Toulouse Cedex 4 - France Phone: +33 5 61 33 80 80 www.isae-supaero.fr

