Notas de aula - Elementos de Matemática

Vitaliano S. Amaral - UFPI

Sumário

Sumário		3
1	Números Reais	5

SUM'ARIO

Capítulo 1

Números Reais

Ao longo da história, os números surgiram para atender a diferentes necessidades humanas. Os números naturais apareceram inicialmente como uma forma de contar objetos e registrar quantidades. Com o tempo, a necessidade de representar dívidas, perdas e posições relativas levou à introdução dos números inteiros, que incluem tanto os naturais quanto seus opostos negativos.

O conjunto dos números naturais é dado por:

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

Cada número natural pode ser representado sobre a reta real. Uma vez fixados os pontos correspondentes aos números 0 e 1, adotamos a distância entre eles como unidade de medida. A partir daí, todos os números naturais são representados como pontos igualmente espaçados, posicionados da esquerda para a direita a partir do zero.

Veja a seguir a ilustração do conjunto N sobre a reta real:

O conjunto dos números inteiros é representado da seguinte forma:

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

De maneira análoga, os números inteiros também podem ser representados sobre a reta real. Uma vez fixados os pontos 0 e 1, adotamos a distância entre eles como unidade de medida. A partir disso, os inteiros são posicionados igualmente espaçados, estendendo-se para a direita (inteiros positivos) e para a esquerda (inteiros negativos) a partir do zero.

Veja a seguir a ilustração do conjunto $\mathbb Z$ sobre a reta real:

Observamos que os números inteiros consecutivos delimitam intervalos unitários (de comprimento 1).

O conjunto dos números racionais surge da necessidade de representar partes de um inteiro, aparecendo como subdivisões desses intervalos unitários. Por exemplo, $\frac{1}{2}$ corresponde ao ponto situado exatamente no meio entre 0 e 1, $\frac{3}{4}$ está localizado a três quartos da distância entre 0 e 1, e assim por diante. Os racionais negativos seguem a mesma lógica, mas posicionados à esquerda de 0.

Assim, o conjunto dos números racionais é representado por:

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, \, q \neq 0 \right\}$$

Essa construção nos permite associar um ponto da reta real a cada número racional. No entanto, como entre quaisquer dois números reais distintos existem infinitos racionais, não podemos representá-los todos graficamente. Em vez disso, destacamos apenas alguns exemplos para ilustrar a densidade dos números racionais sobre a reta real.

Admitiremos as seguintes operações (adição e multiplicação) no conjunto dos números racionais.

Definição 1.0.1. (Adição) Sejam $a = \frac{m}{n}$ e $b = \frac{r}{s}$ elementos de \mathbb{Q} . A soma de a com b é o elemento de \mathbb{Q}

$$a+b = \frac{ms+nr}{ns}.$$

Exemplo 1.0.1. Sejam $a = \frac{2}{3}$ e $b = \frac{5}{4}$. Então, a soma de a com b é:

$$a+b = \frac{2 \cdot 4 + 3 \cdot 5}{3 \cdot 4} = \frac{8+15}{12} = \frac{23}{12}.$$

Definição 1.0.2. (Multiplicação) Sejam $a = \frac{m}{n}$ e $b = \frac{r}{s}$ elementos de \mathbb{Q} . A multiplicação (produto) de a com b é o elemento de \mathbb{Q}

$$ab = \frac{mr}{ns}.$$

Exemplo 1.0.2. Sejam $a = \frac{2}{3}$ e $b = \frac{5}{4}$. Então, o produto de a com b é:

$$ab = \frac{2 \cdot 5}{3 \cdot 4} = \frac{10}{12} = \frac{5}{6}.$$

É fácil perceber que entre dois números racionais sempre existe outro número racional. De fato, dados dois números racionais $a = \frac{m}{n}$ e $b = \frac{r}{s}$ com $a < b, m, n, r, s \in \mathbb{Z}$. Considere o número racional da forma

$$c = a + \frac{b - a}{2}.$$

Podemos observar que c está entre a e b, pois c é obtido somando a a a metade da distância entre a e b. Veja a ilustração geométrica na Figura 1.1.

Figura 1.1: Ilustração do ponto médio $c=a+\frac{b-a}{2}$ na reta real.

Agora, além da afirmação acima vamos mosttrar que c é um número racional e está enrte os racionasi a e b. Veja que

$$c = a + \frac{1}{2}(b - a) = \frac{2a + b - a}{2} = \frac{a + b}{2}$$
$$= \frac{1}{2}\left(\frac{r}{s} + \frac{m}{n}\right) = \left(\frac{rn + ms}{2ns}\right),$$

como rn + ms e 2ns são números inteiros, podemos garantir que c é um número racional, pois é a razão entre dois inteiros com denominador diferente de zero.

Além da explicação anterior, outra forma de garantir que c está entre a e b é observar que

$$a = \frac{a+a}{2} < \frac{a+b}{2} = c$$
 e $c = \frac{a+b}{2} < \frac{b+b}{2} = b$,

portanto, temos a < c < b.

Diante do exposto anteriormente, surge uma dúvida: como sempre existe um número racional entre dois números racionais, então seria possível preencher toda a reta numérica apenas com números racionais?

A seguir veremos que a resposta para a pergunta anterior é: não é possível.

Diz-se que Hipaso de Metaponto, um seguidor de Pitágoras, foi o primeiro a descobrir que existem números que não podem ser representados pela divisão de dois números inteiros. Ele teria demonstrado que $\sqrt{2}$ não é racional, provavelmente por meio de uma prova geométrica.

Considere um triângulo retângulo desenhado sobre a reta numérica (veja Figura 1.2), com catetos medindo 1 unidade cada e hipotenusa sobre a reta numérica, indo do ponto 0 até o ponto marcado por x, ou seja, a hipotenusa tem comprimento medindo x unidades.

Figura 1.2:

Pelo **Teorema de Pitágoras**, temos: $x^2 = 1^2 + 1^2 = 2$.

Suponha, por contradição, que x seja um número racional. Então podemos escrevêlo como $\frac{p}{q}$, com p e q inteiros primos entre si. Substituindo em $x^2 = 2$:

$$\left(\frac{p}{q}\right)^2 = 2 \quad \Rightarrow \quad \frac{p^2}{q^2} = 2$$

$$p^2 = 2q^2$$

Isso implica que p^2 é par, logo p é par. Seja p=2k, assim temos

$$(2k)^2 = 2q^2 \quad \Rightarrow \quad 4k^2 = 2q^2 \quad \Rightarrow \quad q^2 = 2k^2$$

Portanto, q^2 também é par, o que implica que q é par.

Chegamos a uma contradição, pois p e q seriam ambos pares, contrariando a hipótese de que são primos entre si. Logo, x **não é um número racional**.

Como x é um ponto da reta numérica que não pertence ao conjunto dos racionais, concluímos que a reta real não pode ser preenchida completamente apenas por números racionais.

O conjunto dos números que não podem ser representados como a divisão de dois inteiros, ou seja, que não são números racionais, é denotado pela letra $\mathbb I$ e chamado de conjunto dos números irracionais.

Da própria definição, temos que os conjuntos \mathbb{Q} e \mathbb{I} não possuem elementos em comum, isto é,

$$\mathbb{O} \cap \mathbb{I} = \emptyset$$
.

Os elementos dos conjuntos \mathbb{Q} e \mathbb{I} , juntos, formam o conjunto dos números reais, denotado por \mathbb{R} , ou seja,

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$
.

Exercício 1.0.1. Mostre que a soma de dois números racionais é também um número racional.

Exercício 1.0.2. A soma de uma número racional com um número irracional é um número racional? Justifique sua resposta.

Exercício 1.0.3. A soma de dois números irracionais é um número irracional? Justifique sua resposta.