MATEMÁTICA 3 – 1° CUATRIMESTRE 2022 2° PARCIAL – 2° FECHA – TURNO MAÑANA

N° d	le alumno	:				Carrer	a:					
Apc	llido y no	mbre:	•••••									
1) a) Sea X ₁ , dada po		una mue:	stra aleato	oria de un	a v.a. X c	on dens	idad		(1 (-x/2))		
		I EMV de	θ.						$f(x) = \langle$	$\frac{1}{\theta}e^{(1/\theta)}$	si $x>0$	
b) El estimador hallado en a) es insesgado?, es consistente?										0 caso	$e^{\left(-\frac{x}{\theta}\right)}$ si $x>0$	
•	e) Se mide teniédo		ón en mes uientes da		rto tipo de	motor e	léctrico o	ob-				
		THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME	11.244		13.342	3.424	1.879	2.001	0.677	13.254	4.556	
	1.941	3.3143	12.074	12.817								
	Si la di	uración er	meses es	una v.a.	con densi	dad come	en el in	ciso a), c	btener el	EMV de F	$P(X \leq 9)$,	
									0			

- y hallar la estimación de $P(X \le 9)$. (Sugerencia: $P(X \le 9) = 1 e^{-\frac{9}{\theta}}$).
- 2) Se comparan dos procesos para fabricar cierto microchip. Se seleccionó una muestra de 400 chips de un proceso menos costoso, donde 62 estaban defectuosos. Se seleccionó una muestra de 100 chips de un proceso más costoso, pero 12 tenían defecto.
 Determine un intervalo de confianza de 95% para la diferencia entre las proporciones de los chips defectuosos producidos por los dos procesos.
 - 3) Los estudiantes pueden elegir entre un curso de física de tres meses sin laboratorio y un curso de cuatro meses con laboratorio. El examen final escrito es el mismo para cada curso. Si 12 estudiantes del curso con laboratorio tienen una calificación promedio en el examen de 84 con una desviación estándar de 4, y 18 estudiantes del curso sin laboratorio tienen una calificación promedio de 77 con una desviación estándar de 6:
 - a) Encuentre un intervalo de confianza de 99% para la diferencia entre las calificaciones medias para ambos cursos. Suponga que las poblaciones se distribuyen de forma normal con varianzas iguales.
 - b) Utilice el intervalo del inciso anterior para probar la hipótesis de que hay diferencia entre las calificaciones medias de ambos cursos. ¿Cuál es el nivel de la prueba?. Explique.
- 4) a) Decir si la siguiente afirmación es verdadera o falsa justificando la respuesta: La distribución Student se puede utilizar para construir un test de hipótesis para la media de cualquier población, en tanto que el tamaño muestral sea pequeño.
 - b) Pruebe la hipótesis de que el contenido medio de los envases de un lubricante específico es de 10 litros, si los contenidos de una muestra aleatoria de 10 envases son 10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3 y 9.8 litros. Utilice un nivel de significancia de 0.01 y suponga que la distribución del contenido es normal.
- 5) Un fabricante de estaciones de trabajo de computadora está probando un nuevo proceso de ensamble automatizado. El proceso actual tiene una tasa de defectos de 5%. En una muestra de 400 estaciones de trabajo ensambladas con el nuevo proceso, 15 tenían defectos. ¿Se puede concluir que el nuevo proceso tiene una tasa menor de defectos?. Decida con el p-valor.

d=0,01 Ho: M= 10 H1: M7 10 Test bilateral · Est. de prueba: T = X -10 ~ t n-1 bajo Ho Rech Ho si |T1 > tay (n-1) 0,77 × to,005(9)= 3,249 Conclusión: No tengo evidencia suficiente para rechazar Ho con x=0,01 difiere de 10l con 2=0,02 el contenido medio 5) X="n" de estaciones de trabajo ensambladas con el nuevo proceso con defectos e/m" XNB(m, p) m=400 p=x=15 Ho- p= 0,05 H1: p<0,05 Est de prueba: $Z = \hat{p} - 0.05 \quad \text{N} (011) \text{ bajotho}$ $\sqrt{0.05.0.93} \quad \text{N} (011) \text{ bajotho}$ · p-valor= P(Z <-1,15) = P(Z>1,15) & 0,125 simetria No tengo evidencia suficiente para rechazar Ho porque el p-valor yajos concl: No puedo afirmar que el nuevo pro-cesol tiene una tasa menor de defectos