Содержание

Ι	Уравнения первого порядка, разрешённые относительно производной	2
1	Продолжимость решения на границу и за границу; теорема о продолжимости решения на границу	2
2	Продолжимость решения на границу и за границу; леммы о продолжимости решения за границу отрезка и интервала	4
3	Теорема о поведении интегральной кривой полного внутреннего решения	4
4	Ломаные Эйлера. Лемма о ломаных Эйлера в роли ε -решения	5
5	Лемма Асколи–Арцела	7
6	Ломаные Эйлера. Теорема Пеано о существовании внутреннего решения	8
7	Теорема о существовании решения для одного из случаев $U_1^+,O_1^+,B_{1<}^+,B_{1=}^+$	9
8	Теорема об отсутствии решения граничной задачи Коши	10
9	Лемма о продолжимости решений на отрезок Пеано; лемма о верхнем и нижнем решениях	10
10	Теорема о локальной единственности решения внутренней задачи Коши	11
11	Лемма Гронуола	11
12	Условия Липшица; теорема о множестве единственности	12
13	Теорема Осгуда	13
14	Область существования общего решения, лемма о поведении в ней решений, формула общего решения	14
15	Теорема о существовании общего решения	15
16	Формула общего решения, теорема о дифференцируемости общего решения	16
II	Уравнения первого порядка в симметричной форме	17
17	Определение интеграла, теорема о характеристическом свойстве интеграла	17
18	Определение гладкого интеграла, теорема о характеристическом свойстве гладкого интеграла	19
19	Теоремы о существовании непрерывного интеграла и о связи между интегралами	20
20	Теоремы о существовании гладкого интеграла и о связи между интегралами	2 1
21	Теорема об интеграле уравнения с разделяющимися переменными	22
22	Теорема об интеграле уравнения в полных дифференциалах; теорема об уравнении в полных дифференциалах, локальная	23
23	Теоремы о существовании и нахождении интегрирующего множителя, решение линейного уравнения при помощи интегрирующего множителя	24
II.	І Нормальные системы ОЛУ	26

24	Лемма о связи между локальным и глобальным условиями Липшица, достаточные условия для выполнения локального условия Липшица	26
25	Теорема Пикара	28
26	Теорема о существовании и единственности решений нормальной системы	30
27	Линейные системы, теоремы о существовании, единственности и продолжимости решений линейных систем	31
28	Малые возмущения начальных данных по параметру, рассуждение о сдвиге	32
29	Теорема о непрерывной зависимости решений от начальных данных и параметра	33
30	Теорема о дифференцируеости решений по начальным данным	33
31	Теорема о дифференцируемости решений по вектору параметров	33
32	Теорема о многократной дифференцируемости решения по начальным данным и параметру	33
33	Теорема Ляпунова–Пуанкаре о разложении решения в ряд по степеням начальных данных и параметра	33
34	Теорема о разложении решения в ряд по степеням малого параметра	33
35	Теорема Коши об аналитичности решения по независимой переменной	33
36	Теорема об аналитичности решения ЛНС по независимой переменной	33

Часть I

Уравнения первого порядка, разрешённые относительно производной

Ааа! Дифуры!

$$\frac{\mathrm{d} y(x)}{\mathrm{d} x} = f(x, y(x)) \quad \text{или} \quad y' = f(x, y) \tag{1}$$

1. Продолжимость решения на границу и за границу; теорема о продолжимости решения на границу

Определение 1. Пусть $y = \varphi(x)$ – решение уравнения (1) на $\langle a,b \rangle$. Если этот промежуток произвольным образом сузить, то на новом промежутке функция $y = \varphi(x)$ останется решением, которое называют *сужением* исходного решения.

Определение 2. Решение уравнения (1), заданное на промежутке (a,b) продолжимо вправо в точку b или на границу, если найдётся такое решение $y = \widetilde{\varphi}(x)$, определённое на промежутке (a,b], что сужение $\widetilde{\varphi}(x)$ на (a,b) совпадает с $\varphi(x)$.

Определение 3. Решение уравнения (1), заданное на промежутке $\langle a,b \rangle$ продолжимо вправо за точку b или за границу, если найдутся такие $\widetilde{b} > b$ и решение $y = \widetilde{\varphi}(x)$, определённое на промежутке $\left\langle a, \widetilde{b} \right\rangle$, что сужение $\widetilde{\varphi}(x)$ на $\langle a,b \rangle$ совпадает с $\varphi(x)$.

Теорема 1 (о продолжимости решения на границу). $\varphi(x)$ – решение уравнения (1) на промежутке $\langle a,b\rangle,\quad b<+\infty$

Для того чтобы это решение было продолжимо вправо в точку b необходимо и достаточно, чтобы существовали последовательность $\{x_k\}_{k=1}^{\infty}$ и число $\eta \in \mathbb{R}^1$ такие, что

$$\forall k \quad \begin{cases} x_k \in \langle a, b \rangle \\ \left(x_k, \varphi(x_k) \right) \xrightarrow[k \to \infty]{} (b, \eta) \in \widetilde{G} \end{cases}$$
 (2)

Доказательство.

• Достаточность Пусть выполняется условие (2)

> **Утверждение 1.** В силу того, что функция f(x,y) определена и непрерывна на множестве \widetilde{G} , найдутся такие c>0 и $M\geq 1$, что

$$\forall (x,y) \in \widetilde{G} \cap \overline{B_c}(b,\eta) \quad |f(x,y)| \le M$$

Доказательство.

 $-(b,\eta) \in G$, т. е. является внутренней Тогда существует $\overline{B_c}(b,\eta) \subset G$ – компакт, и на нём функция ограничена

 $(b,\eta)\subset \widetilde{G}$ и "вблизи" находятся точки "плохой" границы Приведём рассуждение от противного: Допустим, $|f(b,\eta)|=M-1$ и существует последовательность $c_m\xrightarrow[m\to\infty]{}0$ $(c_m>0)$ и последовательность точек $(x_m,y_m)\in \widetilde{G}\cap \overline{B_{c_m}}(b,\eta)$ такие, что $|f(x_m,y_m)|>M$ Тогда $(x_m,y_m)\xrightarrow[m\to\infty]{}(b,\eta)$, а это значит, что функция |f(x,y)| терпит разрыв в точке $(b,\eta),$ так как $|f(x_m,y_m)|-|f(b,\eta)|>1$ для любого m

Докажем, что существует $\lim_{x\to b-} \varphi(x)$ и он равен η :

Для этого покажем, что для любого сколь угодно малого $\varepsilon>0$ найдётся число $\delta\in\langle a,b\rangle$, что

$$\forall x \in [\delta, b) : |\varphi(x) - \eta| < \varepsilon \tag{3}$$

Зафиксируем произвольный $0 < \varepsilon \le c$

Тогда $|f(x,y)| \leq M$ для любой точки $(x,y) \in \widetilde{G} \cap \overline{B_{arepsilon}}(b,\eta)$ и по условию (2) найдётся такой номер m, что выполняются равентсва

$$b - x_m > \frac{\varepsilon}{2M}, \qquad |\varphi(x_m) - \eta| < \frac{\varepsilon}{2}$$
 (4)

По формуле Ньютона-Лейбница для всякого $x \in [x_m, b)$ имеем:

$$|\varphi(x) - \varphi(x_m)| = \left| \int_{x_m}^x \varphi'(s) \, ds \right| = \left| \int_{x_m}^x f(s, \varphi(s)) \, ds \right| \le \int_{x_m}^x |f(s, \varphi(s))| \, ds \le$$

$$\le M(x - x_m) < M(b - x_m) \le \frac{\varepsilon}{2} \qquad (x_m \le x < b)$$

Поэтому

$$|\varphi(x) - \eta| \le |\varphi(x) - \varphi(x_m)| + |\varphi(x_m) - \eta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Неравенство (3) верно при $\delta=x_m,$ а значит, $\varphi(x)\xrightarrow[x\to b^{-0}]{}\eta$

Доопределим функцию y=arphi(x) в точке b, положив $arphi(b)=\eta$

Согласно лемме о записи решения в интегральном виде

$$\varphi(x) = \varphi(x_0) + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall x_0, x \in \langle a, b \rangle$$

В этом тождестве можно перейти к пределу при $x \to b^{-0}$, получая равенство $\eta = \varphi(x_0) +$ $\int_{x_0}^x f(s,\varphi(s)) \, \mathrm{d} s$, так как по условию точка $(b,\eta) \in \widetilde{G}$, а занчит, функция f(x,y) определена и непрерывна в этой точке

В результате функция

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b \rangle \\ \eta & x = b \end{cases}$$

по определению является продолжением решения $y = \varphi(x)$ на $\langle a, b \rangle$

• Необходимость

Допустим, что на промежутке $\langle a,b \rangle$ существует решение $y=\widetilde{\varphi}(x)$ такое, что $\widetilde{\varphi}(x)\equiv \varphi(x)$ на $\langle a,b \rangle$ Поскольку $\widetilde{\varphi}(x)$ непрерывна, то $\widetilde{\varphi}(x)=\eta=\lim_{x\to b}\widetilde{\varphi}(x)$

Но тогда $\eta = \lim_{x \to b^-} \varphi(x)$ и требуемая послеовательность точек x_k существует, причём по поределению решения точка $(b,\eta) \in \widetilde{G}$

2. Продолжимость решения на границу и за границу; леммы о продолжимости решения за границу отрезка и интервала

Лемма 1 (о продолжимости решения за границу отрезка). Пусть решение $y=\varphi(x)$ уравнения (1) определено на промежутке $\langle a,b \rangle$ и точка $(b,\varphi(b)) \in G$

Тогда это решение продолжимо вправо за точку b на полуотрезок Пеано, построенный для точки $(b, \varphi(b))$.

Доказательство. По теореме Пеано на отрезке Пеано $\overline{P_h}(b,\varphi(b))$ существует внутреннее решение $y=\psi(x)$ 3K $(b,\varphi(b))$.

Тогда функция $y = \widetilde{\varphi}(x)$, где

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b | \\ \psi(x), & x \in [b, b+h] \end{cases}$$

по определению является решением уравнения (1) на (a, b + h]

В самом деле, в точке b производная функции $\widetilde{\varphi}(x)$ существует, так как

$$\widetilde{\varphi}_-'(b) = \varphi_-'(b) = f\big(b, \varphi(b)\big) = \psi_+'(b) = \widetilde{\psi}_+'(b)$$

А выполнение других условий из определения решения для $\widetilde{\varphi}(x)$ очевидно

Следствие. Если решение $y = \varphi(x)$ уравнения 1 определено на промежутке $\langle a, b \rangle$ и не продолжимо вправо за точку b, то $(b, \varphi(b)) \in \widehat{G}$

Доказательство. Предположение противного противоречит лемме

Из теоремы о продолжимости решения на границу и последней леммы вытекает следующее утверждение:

Лемма 2 (о продолжимости решения на границу интервала). Пусть решение $y = \varphi(x)$ уравнения (1) определено на промежутке $\langle a,b \rangle$, существует число $\eta = \lim_{x \to b^-} \varphi(x)$ и точка $(b,\eta) \in G$

Тогда это решение продолжимо вправо за точку b

3. Теорема о поведении интегральной кривой полного внутреннего решения

Теорема 2 (о поведении интегральной кривой полного внутреннего решения). Предположим, что внутреннее решение $y=\varphi(x)$ уравнения (1) определено на промежутке $\langle a,\beta\rangle$ и не продолжимо вправо. Тогда для любого компакта $\overline{H}\subset G$ найдётся такое число $\delta\in\langle a,\beta\rangle$, что для всякого $x\in(\delta,\beta)$ точка $(x,\varphi(x))\in G\setminus\overline{H}$

Другая формулировка. При стремлении аргумента полного внутреннего решения к границе максимального интервала существования дуга интегральной кривой покидает любой компакт, лежащий в области G, и никогда в него не возвращается

Доказательство. Переходя в условиях теоремы на язык последовательностей, докажем, что для любого компакта $\overline{H} \subset G$ и для любой последовательности $x_k \xrightarrow[k \to \infty]{} \beta, \ x_k \in \langle a, \beta \rangle$ существует K > 0 такое, что $(x_k, \varphi(x_k)) \in G \setminus \overline{H}$ при всех k > K

Рассуждая **от противного**, допустим, что существуют компакт $\overline{H}_* \subset G$ и последовательность $x_k \to \beta$, $x_k \in \langle a, \beta \rangle$ такие, что $(x_k, \varphi(x_k)) \in \overline{H}_*$ для k = 1, 2, ...

Отсюда сразу же вытекает, что $\beta < +\infty$, так как в противном случае найдётся такой индекс k^* , что точка $(x_{k^*}, \varphi(x_{k^*}))$ будет лежать вне компакта в силу его ограниченности

НУО считаем, что последовательность x_k – сходящаяся (иначе перейдём к сходящейся подпоследовательности)

Пусть $(\beta, \eta) = \lim_{k \to \infty} (x_k, \varphi(x_k))$

Тогда предельная точка (β, η) также принадлежит компакту \overline{H}_* , а значит, выполняются условия теоремы о продолжимости решения (теор. 1), согласно которой решение $y = \varphi(x)$ продолжимо на промежуток $\langle a, \beta \rangle - \frac{1}{2}$ с условием теоремы

4. Ломаные Эйлера. Лемма о ломаных Эйлера в роли ε -решения

Выберем в области G произвольную точку (x_0, y_0) и построим в ней отрезок поля направлений столь малой длины, что он целиком лежит в G, начинаясь в какой-то точке (x_{-1}, y_{-1}) и заканчиваясь в точке (x_1, y_1)

Проведём вправо через точку (x_1, y_1) и влево через точку (x_{-1}, y_{-1}) полуотрезки поля, лежащие в G и заканчивающиеся в точках (x_2, y_2) и (x_{-2}, y_{-2}) соответственно, и так далее

Этот процесс можно продолжать любое конечное число шагов N, поскольку область G – открытое множество

График полученной таким образом непрерывной кусочно-линейной функции $y=\psi(x)$ называется ломаной Эйлера

Итак, установлено, что ломаная Эйлера лежит в области G, проходит через точку (x_0, y_0) и абсциссы её угловых точек равны x_j $(j = \overline{-N, N})$

Определение 4. *Рангом дробления* ломаной Эйлера назовём число, равное $\max\{x_j - x_{j-1}\}$.

Формула, реккурентно задающая ломаную Эйлера $y=\psi(x)$, иммеет вид: $\psi(x_0)=y_0$ и далее при j=0,1,...,N-1 для любого $x\in(x_j,x_{j+1}]$ или при j=0,-1,...,1-N для любого $x\in[x_{j-1},x_j)$

$$\psi(x) = \psi(x_j) + f(x_j, \psi(x_j))(x - x_j) \tag{5}$$

В частности, при j=0 отрезок ломаной Эйлера определён для любого $x\in[x_{-1},x_1]$ и, делясь на два полуотрезка, проходит через точку (x_0,y_0) под углом, тангенс которого равен $f(x_0,y_0)$

Из формулы (5) вытекает, что для всякого j=0,N-1 производная $\psi'(x)=f\left(x_j,\psi(x_j)\right)$ при $x\in(x_j,x_{j+1}),$ а в точке x_{j+1} она не определна, как и в точках x_{j-1} при $j\leq0$

Доопределим $\psi'(x)$ в точках разрыва как левостороннюю производную при $x>x_0$ и как правостороннюю производную при $x< x_0$, положив

$$\psi'(x_j) = \psi'_{\mp}(x_j) \lim_{x \to x_j^{\mp 0}} \frac{\psi(x) - \psi(x_j)}{x - x_j} \qquad (j = \pm 1...., \pm N)$$

А при j=0 существует полная производная $\psi'(x_0)=f(x_0,y_0)$

Таким образом, для любого $x \in (x_j, x_{j+1}]$ (j = 0, 1, ..., N-1) или для любого $x \in [x_{j-1}, x_j)$ (j = 0, -1, ..., 1-N), дифференцируя равенство (5) по x, получаем

$$\psi'(x) = f(x_j, \psi(x_j)), \qquad j \in \{1 - N, ..., N - 1\}$$
(6)

Покажем, что на некотором промежутке всегда можно построить функцию, график которой проходит через заданную точку области G, такую, что при подстановке этой функции в уравнение (1) окажется, что разность между левой и правой частями уравнения по модулю не превосходит любого сколь угодно малого наперёд заданного положительного числа

Определение 5. Для всякого $\varepsilon > 0$ непрерывная и кусочно-гладкая на отрезке [a,b] функция $y = \psi(x)$ называется ε -решением уравнения (1) на [a,b], если для любого $x \in [a,b]$ точка $(x,\psi(x)) \in G$ и

$$\left|\psi'(x) - f(x, \psi(x))\right| \le \varepsilon \tag{7}$$

Лемма 3 (о ломаных Эйлера в роли ε -решения). Для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $\overline{P_h}(x_0, y_0)$ имеем:

- 1. Для любого $\delta>0$ на $\overline{P_h}$ можно построить ломаную Эйлера $y=\psi(x)$ с рангом дробления, не превосходящим δ , график которой лежит в прямоугольнике \overline{R} из определения отрезка Пеано
- 2. Для любого $\varepsilon > 0$ найдётся такое $\delta > 0$, что всякая ломаная Эйлера $y = \psi(x)$ с рангом дробления, не превосходящим δ , является ε -решением уравнения (1) на $\overline{P_h}(x_0, y_0)$

Доказательство.

1. Для произвольной точки (x_0, y_0) из G построим прямоугольник $\overline{R} \subset G$ с центром в (x_0, y_0) и два лежащих в нём равнобедренных треугольника $\overline{T}^-, \overline{T}^+$ с общей вершиной в точке (y_0, x_0) и основаниями, параллельными оси ординат, как это было сделано при построении отрезка Пеано При этом зафиксируются константы a, b, M, h

Выберем $\delta_* < \delta$ так, чтобы число $\frac{h}{\delta_*} =: N \in \mathbb{N}$

Положим $x_{j+1}\coloneqq x_j+\delta_*$ $(j=\overline{0,N-1}),$ тогда $x_N=x_0+h$

Для всякого $x>x_0$ будем последовательно строить отрезки ломаной Эйлера $y=\psi(x)$ с узлами в точках x_i

Для любого j=0,...,N это сделать возможно, так как модуль тангенса укла наклона каждого отрезка равен $|f(x_j,\psi(x_j))|$, а тангенсы углов наклона боковых сторон треугольника $\overline{T^+}$ по построению равны $\pm M$, где $M=\max|f(x,y)|$ на компакте \overline{R}

Поэтому любой отрезок ломаной Эйлера, начиная с первого, не может пересечь боковую стенку $\overline{T^+}$, а значит, содержится в нём

В результате для всех $x \in [x_0, x_0 + h]$ точка $(x, \psi(x)) \in \overline{T^+}$ и требуемая ломаная Эйлера построена на $[x_0, x_0 + h]$

Для левого полуотрезка Пеано всё аналогично

2. Зафиксируем теперь произвольное положительное число ε

Функция f(x,y) непрерывна на компакте \overline{R} , следовательно, по теореме Кантора f равномерно непрерывна на нём. По определнию это занчит, что существует такое $\delta_1 > 0$, что для любых двух точек (x'y') и (x'',y'') из прямоугольника \overline{R} таких, что $|x'-x''| \leq \delta_1$ и $|y'-y''| < \delta_1$, выполняется неравенство $|f(x',y')-f(x'',y'')| \leq \varepsilon$

Положим $\delta \coloneqq \min\left\{\delta_1, \frac{\delta_1}{M}\right\}$ и покажем, что для любой ломаной Эйлера $y=\psi(x)$ с рангом дробления меньшим, чем δ на отрезке Пеано $\overline{P_h}(x_0,y_0)=[x_0-h,x_0+h]$, справедливо неравенство (7):

Возьмём любую точку x из отрезка Пеано, например справа от x_0

Найдётся индекс $j \in \{0,...,N-1\}$ такой, что $x \in (x_j,x_{j+1}]$, т. е. x_j – ближайшая к x левая угловая точка ломаной Эйлера

Согласно (6)

$$\psi'(x) - f(x, \psi(x)) = f(x_j, \psi(x_j)) - f(x, \psi(x))$$

Оценим близость аргументов функции f:

По выбору δ и j имеем

$$|x - x_j| \le \delta \le \delta_1, \qquad |\psi(x) - \psi(x_j)| \xrightarrow[(5)]{} |f(x_j, \psi(x_j))| \cdot |x - x_j| \le M\delta \stackrel{\text{def } \delta}{\le} \delta_1$$

Поэтому из равномерной непрерывности функции f вытекает, что

$$|f(x_j, \psi(x_j)) - f(x, \psi(x))| \le \varepsilon$$

А значит, неравенство (7) из определения ε -решения выполняется на отрезке Пеано

5. Лемма Асколи-Арцела

Лемма 4 (Арцела-Асколи; о существовании равномерно сходящейся подпоследовательности). Из любой ограниченной и равностепенно непрерывной на [a,b] последовательности функций $\{h_n\}_{n=1}^{\infty}$ можно выделить равномерно сходящуюся на [a,b] подпоследовательность

Доказательство. Рациональные числа образуют счётное всюду плотное множество на любом промежутке вещественной прямой

Cчётность множества рациональных чисел, расположенных на отрезке [a,b] означает, что их можно перенумеровать: $r_1, r_2, ...$

В точке r_1 числовая последовательность $\{h_n\}_{n=1}^{\infty}$ по предположению сходится, поэтому из неё можно выбрать сходящуюся подпоследовательность, т. е. существует такая последовательность натуральных

 $n^{(1)} = \left\{ n_i^{(1)} \right\}_{i=1}^{\infty}, \qquad n_i^{(1)} < n_{i+1}^{(1)}$

что последовательность значений $\left\{h_{n_i^{(1)}}(r_1)\right\}_{i=1}^\infty$ сходится В точке r_2 последовательность $\left\{h_{n_i}^{(1)}(r_2)\right\}_{i=1}^\infty$ также ограничена, и из ней можно извлечь сходящуюся подпоследовательность, т. е. у последовательности индексов $n^{(1)}$ имеется такая подпоследовательность индексов $n^{(2)} = \left\{n_i^{(2)}\right\}_{i=1}^{\infty}$, что последовательность значений $\left\{h_{n_i^{(2)}}(r_2)\right\}_{i=1}^{\infty}$ тоже сходится. При этом она сходится и в точке r_1 как подпоследовательность сходящейся последовательности

Продолжаем этот процесс Введём последовательность индексов $\left\{n_i^{(i)}\right\}_{i=1}^{\infty} \quad (n_i^{(i)} < n_{i+1}^{(i)}),$ где $n_i^{(i)} - i$ -й член подпоследователь-

Функциональная подпоследовательность $\left\{h_{n_i}^{(i)}(x)\right\}_{i=1}^{\infty}$ сходится во всех рациональных точках [a,b],

поскольку в любой рациональной точке r_k последовательность $\left\{h_{n_i^{(k)}}(x)\right\}_{i=1}^\infty$ сходится по построению, а любая другая с меньшим верхним индексом является её подпоследовательностью

Покажем, что $\{h_{i_*}(x)\}_{i=1}^{\infty},$ где $i_*=n_i^{(i)}$ является искомой подпоследовательностью: Зафиксируем произвольное $\varepsilon > 0$

По условию леммы последовательность $\{h_{i_*}(x)\}_{i=1}^{\infty}$ равностепенно непрерывна, следовательно, по выбранному ε найдётся такое число $\delta > 0$, что

$$\forall i \in \mathbb{N} \quad \forall x', x'' \in [a, b]: \quad \left(|x' - x''| < \delta \implies |h_{i_*}(x') - h_{i_*}(x'')| \le \frac{\varepsilon}{3} \right)$$

По построению последовательность функций $\{h_{i_*}(x)\}_{i=1}^{\infty}$ сходится поточечно во всех рациональных точках r_k из [a,b]

Поэтому по выбранному ε для любого $k \in \mathbb{N}$ найдётся такой номер $N_{r_k} > 0$, что $|h_{i_*}(r_k) - h_{j_*}(r_k)| \le \varepsilon/3$ для любых $i_*, j_* > N_{r_k}$

Последовательность индексов $N_{r_1}, N_{r_2}, ...,$ – счётная, поэтому она может стремиться к бесконечности. Перейти к конечной подпоследовательности позволяет использование появившейся из определения равностепенной непрерывности универсальной константы δ и плотности множества рациональных чи-

Разобьём отрезок [a,b] на непересекающиеся промежутки, длина которых не превосходит δ . Пусть их окажется l штук

Множество рациональных чисел всюду плотно, поэтому в каждом промежутке можно выбрать по ра-

циональному числу: $r_1^*,...,r_l^*$ Пусть $N=\max\left\{N_{r_1^*},...,N_{r_l^*}\right\}$, где константы N_r взяты из определения поточечной сходимости последовательности $\left\{h_{i_*}(x)\right\}_{i=1}^\infty$

Возьмём произвольное число $x \in [a,b]$. Предположим, что оно попало в промежуток с номером p. Тогда для любых $i_*, j_* > N$ получаем:

$$|h_{i_*}(x) - h_{j_*}(x)| \stackrel{\triangle}{\leq} |h_{i_*}(x) - h_{i_*}(r_p^*)| + |h_{i_*}(r_p^*) - h_{j_*}(r_p^*)| + |h_{j_*}(r_p^*) - h_{j_*}(x)| \leq \varepsilon$$

так как $|x-r_p^*| \leq \delta$ и верна оценка из определения равномерной сходимости Итак, для любого $\varepsilon>0$ нашлось такое N, что для любых $i_*,j_*\geq N$ и $x\in [a,b]$ справедливо неравенство $|h_{i_*}(x) - h_{j_*}(x)| \le \varepsilon$

Замечание. При выполнении условий леммы Арцела-Асколи она позволяет "объявить о рождении" функции h(x), определённой на отрезке [a,b] и предельной для некоторой подпоследовательности функций $h_n(x)$

При этом, по теореме Стокса-Зайделя предельная функция непрерывна на [a,b]

6. Ломаные Эйлера. Теорема Пеано о существовании внутреннего решения

Теорема 3. Пеано; о существовании внутреннего решения Пусть правая часть уравнения (1) непрерывна в области G

Тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $\overline{P_h}(x_0, y_0)$ существует по крайней мере одно решение задачи Коши уравнения (1) с начальными данными x_0, y_0), определённое на $\overline{P_h}(x_0, y_0)$

Доказательство. Возьмём произвольную точку (x_0, y_0) из области G и построим какой-либо отрезок Пеано $\overline{P_h}(x_0, y_0)$

Выберем произвольную последовательность положительных чисел ε_n , стремящуюся к нулю при $n \to \infty$

Тогда по лемме об ε -решении для всякого n можно построить ломаную Эйлера $\psi_n(x)$, проходящую через точку (x_0, y_0) , определённую на $\overline{P_h}(x_0, y_0)$ и являющуюся ε_n -решением уравнения (1) на отрезке $\overline{P_j}(x_0, y_0)$

Поэтому для любых $n \in \mathbb{N}$ и $x \in \overline{P_h}(x_0, y_0)$ точка $\left(x, \psi_n(x)\right) \in \overline{R}$ и выполняется неравенство (7) $|\psi_n'(x) - f(x, \psi_n(x))| < \varepsilon_n$

Покажем, что последовательность ломаных Эйлера $\{\psi_n(x)\}_{n=1}^{\infty}$ на отрезке Пеано удовлетворяет лемме Арцела—Асколи

Последовательность $\{\psi_n(\underline{x})\}_{n=1}^\infty$ равномерно ограничена, так как график любой функции $y=\psi_n(x)$ лежит в прямоугольнике \overline{R} , а значит, $|\psi_n(x)| \leq |y_0| + b$ для любого $x \in [x_0-h,x_0+h]$

Для доказательства равностепенной непрерывности зафиксируем произвольное $\varepsilon>0$

Положим $\delta = \varepsilon/M$, где $M = \max_{(x,y) \in \overline{R}} |f(x,y)|$

Тогда для любых $n\in\mathbb{N}$ и $x',x''\in\overline{P_h}(x_0,y_0)$ таких, что $|x''-x'|\leq\delta,$ получаем:

$$|\psi_{n}(x'') - \psi_{n}(x')| = \left| \int_{x_{0}}^{x''} \psi'_{n}(s) \, ds - \int_{x_{0}}^{x'} \psi'_{n}(s) \, ds \right| = \left| \int_{x'}^{x''} \psi'_{n}(s) \, ds \le \frac{1}{6}$$

$$\leq \left| \int_{x'}^{x''} \max_{j=1-N,\dots,N-1} \left| f(x, \psi_{n}(x_{j})) \right| \, ds \right| \leq M|x'' - x'| \leq M\delta = \varepsilon$$

Действительно, интегрируя кусочно-постоянную функцию $\psi'(x)$ по s от x_0 до x, для любого $x \in [x_{-N}, x_N]$ имеем: $\psi(x) = \psi(x_0) + \int_{x_0}^x \psi'(s) \, \mathrm{d} \, s$, где

$$\int_{x_0}^x \psi(s) \, ds = \sum_{k=0}^{j-1} \int_{x_k}^{x_{k+1}} \psi'(s) \, ds + \int_{x_j}^x \psi'(s) \, ds, \qquad x \in (x_j, x_{j+1}], \quad j \in \{0, ..., N-1\}$$

$$\int_{x_0}^x \psi'(s) \, ds = \sum_{k=j+1}^{-1} \int_{x_{k+1}}^{x_k} \psi'(s) \, ds + \int_{x_{j+1}}^x \psi'(s) \, ds, \qquad x \in [x_j, x_{j+1}), \quad j \in \{-N, ..., -1\}$$

В результате последовательность ломаных Эйлера $\psi_n(x)$ удовлетворяет условиям леммы Арцела-Асколи, и из неё можно выделить равномерно сходящуюся подпоследовательность $\{\psi_{i_*}(x)\}_{i_*=1}^{\infty}$

Пусть
$$\psi_{i_*} \xrightarrow{x \in \overline{P_h}} \varphi(x)$$

Тогда, согласно замечанию после леммы Арцела-Асколи функция $y=\varphi(x)$ непрерывна на отрезке Пеано

Поскольку $\psi_{i_*}(x)$ по построению является ε_{i_*} -решением, из неравенства (7) вытекает, что

$$\forall x \in \overline{P_h}(x_0, y_0) \quad \forall i_* \in \mathbb{N}: \quad \psi'_{i_*}(x) = f(x, \psi_{i_*}(x)) + \Delta_{i_*}(x), \qquad |\Delta_{i_*}(x)| \le \varepsilon_{i_*}$$

Интегрируя это равенство по s от x_0 до x получаем:

$$\psi_{i_*}(x) - \psi_{i_*}(x_0) = \int_{x_0}^x f(s, \psi_{i_*}(s)) \, \mathrm{d}s + \int_{x_0}^x \Delta_{i_*}(s) \, \mathrm{d}s$$
 (8)

причём $\psi_{i_*}(x_0)=y_0$ и $\left|\int_{x_0}^x \Delta_{i_*}(s) \, \mathrm{d} s\right| \leq \varepsilon_{i_*}|x-x_0| \xrightarrow[i_*\to\infty]{} 0$, так как $|x-x_0|\leq h$

Кроме того, $f(s, \psi_{i_*}(s)) \xrightarrow[i_* \to \infty]{s \in P_h} f(s, \varphi(s))$, поскольку любая точка $(s, \psi_{i_*}(s)) \in \overline{R}$ и f(x, y) по теореме

Кантора равномерно непрерывна на \overline{R}

Поэтому можно осуществить предельный переход под знаком интеграла:

$$\int_{x_0}^x f(s, \psi_{i_*}(s)) ds \xrightarrow[i_* \to \infty]{} \int_{x_0}^x f(s, \varphi(s)) ds$$

Переходя в обеих частях равенств (8) к пределу при $i_* \to \infty$, получаем тождество

$$\varphi(x) \stackrel{[x_0-h,x_0+h]}{\equiv} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) ds$$

Поэтому, согласно лемме о записи решения в интегральном виде, предельная функция $y = \varphi(x)$ является решением ВЗК (x_0, y_0) уравнения (1) на отрезке Пеано $[x_0 - h, x_0 + h]$

7. Теорема о существовании решения для одного из случаев U_1^+ , O_1^+ , $B_{1<}^+$, $B_{1=}^+$

Для упрощения обозначений и формул, используемых в дальнейшем при решении граничной задачи Коши, НУО будем считать, что задача всегда ставится в начале координат и функция f там равна нулю, т. е. уравнение (1) имеет вид

$$y' = f_0(x, y) \tag{9}$$

где функция f_0 определена и непрерывна на множестве $\widetilde{G} = G \cup \widehat{G}$, точка $O = (0,0) \in \widetilde{G}$, $f_0(0,0) = 0$ и поставлена граничная задача Коши с начальными данными 0,0.

НУО будем считать, что выполняются условия:

$$\begin{cases} b_{a,u}^{+}(a) \leq a & \text{при } \tau_{u} = 0 \\ \forall x \in [0, a] & b_{a,u}^{+}{}'(x) \geq \tau_{u} & \text{при } \tau_{u} > 0 \\ -b_{a,l}^{+}(a) \leq a & \text{при } \tau_{l} = 0 \\ \forall x \in [0, a] & -b_{a,l}^{+}{}'(x) \geq \tau_{l} & \text{при } \tau_{l} > 0 \end{cases}$$
(10)

Во всех точках кривых $\gamma_{a,u}^+$ и $\gamma_{a,l}^+$ введём ограничения на функцию f_0 в случаях $U_1^{+,=}, O_{1,=}^+, B_{1,=}^{+,=}, B_{1,=}^{+,=}$ и $B_{1,<}^{+,=}$:

$$\forall x \in (0, a] \quad \begin{cases} f_0(x, b_{a,u}^+(x)) \le b_{a,u}^+{}'(x), & \text{если } b_{a,u}^+{}'(0) = 0 \\ f_0(x, b_{a,l}^+(x)) \ge b_{a,l}^+{}'(x), & \text{если } b_{a,l}^+{}'(0) = 0, \end{cases}$$
(11)

означающие, что в любой точке $\gamma_{a,u}^+$ и $\gamma_{a,l}^+$ правый полуотрезок поля направлений уравнения (9) направлен внутрь или по границе области G.

Теорема 4 (о существовании решения граничной задачи Коши). Предположим, что в уравнении (9) функция f_0 определена и непрерывна на множестве \widetilde{G} .

Тогда в каждом из случаев $(N_1^+), (U_1^{+,>}), (O_{1,<}^+), (B_{1,<}^{+,>})$ и в каждом из случаев $(U_1^{+,=}), (O_{1,=}^+), (B_{1,=}^{+,=}), (B_{1,=}^{+,>}), (B_{1,<}^{+,=})$ при условиях (11) на любом правом граничном отрезке Пеано существует по крайней мере одно решение граничной задачи Коши с начальными данными (0,0)

Доказательство. Рассмотрим, например, случай $(B_{1,=}^{+,>})$

Согласно (10) (первые два неравенства) правая верхнеграничная функция $b_{a,u}^+(x)$, параметризующая кривую $\gamma_{a_u,u}^+{}'(x) \geq \tau_u$ для любого $x \in (0,a_u]$. А у правой нижнеграничной привой $\gamma_{a_l,l}^+$ константа $a_l = c_O$ в силу (10) (последние два нераенства)

Пусть $c_* := \min\{c_U, c_O\}$, тогда множество $B_{c_*}^+ \setminus (\gamma_{a_u, u}^+ \cup \gamma_{a_l, l}^+) \subset G$

Далее, для τ_u найдётся (по непрерывности f_0) такая δ_{τ_u} , что $|f_0(x,y)| \leq \tau_u$ в любой точке δ_{τ_u} окрестности начала координат, принадлежащей \widehat{G} Положим $\widetilde{c}\coloneqq\min\{\,c_*,\delta_{\tau_u}\,\}$, тогда на множестве $B_{\widetilde{c}}^+$ для функции $|f_0|$ справедлива та же оценка Построим теперь лежащий в $B_{\widetilde{c}}^+$ криволинейный треугольник $\overline{T_b^+}$, как это было сделано при описании случая $(B_{1,=}^{+,>})$. Его высота $h^+ = \widetilde{a}$ Поскольку отрезок оси абсцисс $[0,h^+]$ лежит в \hat{G} и является отрезком поля направлений в точке $O\in \hat{G}$, из точки O вправо можно начать строить ломаную Эйлера с проивольным рангом дробления Ломаная Эйлера не может покинуть T_b^+ через верхнюю боковую сторону, лежащую на прямой $y = \tau_u x$, так как в любой её точке $|f_0(x,y)| \le au_u$. Аналогично при попадании ломаной Эйлера при $x=x_*>0$ на нижнюю боковую сторону, являющуюся частью правой нижнеграничной кривой $\gamma_{\widetilde{a},l}^+,$ по условию (11) (второе неравенство) $f_0\big(x_*,b_{\widetilde{a},l}^+(x_*)\big) \geq b_{\widetilde{a}}^{+\prime}(x_*),$ а значит, при $x>x_*$ следующий отрезок ломаной будет либо лежать на $\gamma_{\widetilde{a},l}^+$, либо внутри треугольника в силу выпуклости $\gamma_{\widetilde{a},l}^+$. Поэтому ломаная Эйлера с произвольным выбранным рангом дробления может быть продолжена на весь правный граничный отрезок Пеано $[0, h^+]$ Дальше дословно повторяется доказательство теоремы Пеано. Аналогичные рассуждения проводятся и в остальных случаях.

8. Теорема об отсутствии решения граничной задачи Коши

Теорема 5 (об отсутствии решений граничной задачи Коши). В каждом из случаев $(U_2^{+,>})$, $(O_{2,<}^+)$, $(B_{2,<}^{+,>})$, (N_2^+) граничная задача Коши с начальными данными (0,0) не имеет решений в правой полуплоскости

Доказательство. Допустим, что в каждом случае из условия теоремы на некотором отрезке [0,a] существует решение $y=\varphi(x)$ задачи Коши уравнения (9) с начальными данными (0,0), т. е. $\varphi(0)=0$. Тогда $\varphi'(0)=f_0(0,\varphi(0))=0$. Но график любого решения должен лежать в \widetilde{G} , а значит, располагаться не ниже правой верхнеграничной кривой, у которой в точке O тангенс угла наклона согласно (10) равен $2\tau_u>0$, или не выше правой нижнеграничной кривой, имеющей в точке O тангенс угла наклона, равный $-2\tau_l<0$. Поэтому $\varphi'(0)\neq 0-\frac{1}{2}$

9. Лемма о продолжимости решений на отрезок Пеано; лемма о верхнем и нижнем решениях

Лемма 5 (о продолжимости решений на отрезок Пеано). Пусть $y = \varphi(x)$ – это решение внутренней задачи Коши с начальными данными x_0, y_0 , определённое на $\overline{P_h}(x_0, y_0)$. Тогда любое другое решение уравнения (1) $y = \psi(x)$ этой же задачи Коши, определённое на промежутке $\langle a,b \rangle \subsetneq [x_0-h,x_0+h]$, продолжимо на $\overline{P_h}(x_0,y_0)$

Докажем, например, продолжимость решения $y=\psi(x)$ с $\psi(x_0)=y_0$ на правый полуотрезок Пеано:

Если $\langle a,b \rangle = \langle a,b \rangle$ (т. е. $b \leq x_0 + h$), то график решения $y = \psi(x)$ при $x \in [x_0,b)$ лежит в треугольнике $\overline{T^+}$, построенном для решения $y = \varphi(x)$. Поэтому у любой последовательности $x_k \in [x_0,b)$ и $x_k \xrightarrow[k \to \infty]{} b$ точки $(x+k,\psi(x_k)) \in \overline{T^+} \subset \overline{R}$, а значит, найдётся сходящаяся последовательность $(x_{k_l},\psi(x_{k_l}))$. Её предел – точка $(b,\eta) \in \overline{T^+}$

Следовательно, по теореме о продолжимости решения (теор. 1) $y = \psi(x)$ продолжимо на $[x_0, b]$, хотя могло быть там сразу и задано

- Если теперь $b = x_0 + h$, то лемма доказана
- Пусть $b < x_0 + h$. Построим равнобедренный треугольник $\overline{T_1^+}$ с вершиной в точке (b, η) , боковыми сторонами, имеющими тангенсы углов наклона $\pm M$, и основанием, лежащим на основании треугольника $\overline{T^+}$ с абсциссой $x_0 + h$. Тогда $\overline{T_1^+} \subset \overline{T^+}$ и по теореме Пеано на $[b, x_0 + h]$ существует решение задачи Коши с начальными данными (b, η) , продолжающее $\psi(x)$ до точки $x_0 + h$ включительно.

10. Теорема о локальной единственности решения внутренней задачи Коши

Пусть $(x_0, y_0) \in G$, $\overline{P_h}(x_0, y_0)$ – некий отрезок Пеано и $\{\chi_k(x)\}_{k=1}^{\infty}$ – произвольная последовательность решений $3K(x_0, y_0)$ уравнения (1), определённых на $[x_0 - h, x_0 + h]$

Утверждение 2. Для любых $k \in \mathbb{N}, \quad x \in [x_0 - h, x_0 + h]$ функции

$$\chi_k^l(x) \coloneqq \min \left\{ \, \chi_1(x), ..., \chi_k(x) \, \right\}, \qquad \chi_k^u(x) \coloneqq \max \left\{ \, \chi_1(x), ..., \chi_k(x) \, \right\}$$

также являются решениями поставленной задачи на $\overline{P_h}(x_0,y_0)$

Доказательство. Действительно, эти функции удовлетворяют всем трём условиям из определения решения, поскольку для любого $x_* \in [x_0 - h, x_0 + h]$ найдётся такой индекс $1 \le \mathbf{j} \le k$, что, например, $\chi_k^l(x_*) = \chi_j(x_*)$, и если $\chi_j(x_*) = \chi_m(x_*)$, то $\chi_j'(x_*) = \chi_m'(x_*) = f\left(x_*, \chi_k^l(x_*)\right)$

Лемма 6 (о нижнем и верхнем решениях). Существуют решения $3K(x_0,y_0)$ $y=\chi^l(x)$ и $y=\chi^u(x)$ уравнения (1) такие, что

$$\forall k \in \mathbb{N} \quad \forall x \in [x_0 - h, x_0 + h] : \begin{cases} \chi^l(x) \le \chi^l_k(x) \\ \chi^u(x) \ge \chi^u_k(x) \end{cases}$$
 (12)

Доказательство. Рассмотрим, например, последовательность решений $\left\{x_k^l(x)\right\}_{k=1}^\infty$ на отрезке $[x_0,x_0+h]$. Поскольку все их графики лежат в треугольнике $\overline{T^+}$, полученном при построении отрезка Пеано, эта последовательность равномерно ограничена и равностепенно ограничена (см. док-во теоремы Пеано). Следовательно, по лемме Арцела-Асколи из неё можно выделить равномерно на $\overline{P_h}(x_0,y_0)$ сходящуюся подпоследовательность, предел которой тоже будет решением уравнения (1) на отрезке Пеано

Но последовательность $\chi_k^l(x)$ монотонно убывает, поэтому она сама будет сходиться к нижнему решению $y = \chi^l(x)$, для которого, очевидно, будет верно неравенство (12)

Рассуждения для отрезка аналогичны так же, как и доказательство сходиомости функции $\chi_k^u(x)$ к верхнему решению $y=\chi^u(x)$

11. Лемма Гронуола

Лемма 7 (Гронуолла; об интегральной оценке функции сверху). Пусть функция $h(x) \in \mathcal{C}(\langle a,b \rangle)$ и существуют такие $x_0 \in \langle a,b \rangle$, $\lambda \geq 0$, $\mu > 0$, что

$$\forall x \in \langle a, b \rangle \quad 0 \le h(x) \le \lambda + \mu \left| \int_{x_0}^x h(s) \, ds \right|$$
 (13)

Тогда для любого $x \in \langle a,b \rangle$ справедливо неравенство

$$h(x) \le \lambda e^{\mu|x-x_0|} \tag{14}$$

Доказательство.

• Предположим, что $x \ge x_0$ Введём в рассмотрение функцию $g(x) = \int_{x_0}^x h(s) \, \mathrm{d} \, s$

$$\implies$$
 $g(x_0) = 0$, $g(x) \ge 0$, $g(x) \in \mathcal{C}^1([x_0, b])$, $g'(x) = h(x) \ge 0$

Подставим g(x) в (13):

$$g'(x) \le \lambda + \mu g(x) \quad \Longrightarrow \quad g'(x) - \mu g(x) \le \lambda \quad \Longrightarrow \quad e^{-\mu(x-x_0)} \bigg(g'(x) - \mu g(x) \bigg) \le \lambda e^{-\mu(x-x_0)}$$

При этом,

$$\left(g(x)e^{-\mu(x-x_0)}\right)' = g'(x)e^{-\mu(x-x_0)} - \mu e^{-\mu(x-x_0)}g(x) = e^{-\mu(x-x_0)}\left(g'(x) - \mu g(x)\right)$$

Отсюда

$$\left(g(x)e^{-\mu(x-x_0)}\right)' \le \lambda$$

Проинтегрируем по s от x_0 до x:

$$g(x)e^{-\mu(x-x_0)} - \underbrace{g(x_0)}_0 \le \lambda \int_{x_0}^x e^{-\mu(s-x_0)} ds = -\frac{\lambda}{\mu} (e^{-\mu(x-x_0)} - 1)$$

Умножим на $e^{\mu(x-x_0)}$:

$$g(x) \le \frac{\lambda}{\mu} (e^{\mu(x-x_0)} - 1)$$

Подставим в (13):

$$h(x) \le \lambda + \mu g(x) \le \lambda e^{\mu(x-x_0)}$$

Таким образом, неравенство доказано для всех $x \in [x_0, b)$

• Если $x \le x_0$, то в (13)

$$h(x) \le \lambda - \mu \int_{x_0}^x h(s) ds, \qquad g(x) \le 0$$

Дальнейшее доказательство аналогично

Следствие. Если $\lambda = 0$, то есть

$$0 \le h(x) \le \mu \bigg| \int_{x_0}^x h(s) \, \, \mathrm{d} \, s \bigg|$$

TO $h(x) \stackrel{\langle a,b \rangle}{\equiv} 0$

12. Условия Липшица; теорема о множестве единственности

Определение 6. Функция f(x,y) удовлетворяет условию Липшица по y глобально на множестве $D \subset \mathbb{R}^2$, если

$$\exists L > 0: \quad \forall (x, y_1), (x, y_2) \in D \quad |f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2| \tag{15}$$

Обозначение. $f \in \operatorname{Lip}_y^{gl}(D)$

Определение 7. Функция f(x,y) удовлетворяет условию Липшица по y локально на множестве \widetilde{G} , если для любой точки $(x_0,y_0)\in \widetilde{G}$ найдётся замкнутая c-окрестность $\overline{B}_c(x_0,y_0)$ такая, что функция f удовлетворяет условию Липшица по y глобально на множестве $U_c=\widetilde{G}\cap \widetilde{B}_c(x_0,y_0)$

Обозначение. $y \in \operatorname{Lip}_y^{loc}(\widetilde{G})$

Теорема 6 (о множестве единственности). Пусть в уравнении (1) функция f(x,y) опредлена и непрерывна на множестве \widetilde{G} и удовлетворяет условию Липшица по y локально на множестве $\widetilde{G}^{\circ} = G^{\circ} \cup \widehat{G}^{\circ}$, где $G^{\circ} \subset G$ – область, а $\widehat{G}^{\circ} \subset \partial G^{\circ} \cap \widehat{G}$.

Тогда \widetilde{G}° – множество единственности для уравнения (1).

Доказательство. Возьмём любую точку (x_0, y_0) из множества \widetilde{G}° и покажем, что она является точкой единственности.

Поскольку $f\in \operatorname{Lip}_y^{loc}(\widetilde{G}^\circ)$, найдутся $\overline{B}_c(x_0,y_0)$ и L>0 такие, что $f\in \operatorname{Lip}_y^{gl}(U_c)$ с константой L, где

 $U_c = \widetilde{G}^{\circ} \cap \overline{B}_c(x_0, y_0)$

- Если $(x_0, y_0) \in G^\circ$, то найдётся c > 0 такое, что $U_c = \overline{B}_c(x_0, y_0)$, решение $3K(x_0, y_0)$ существует на некотором интервале $(a, b) \ni x_0$ и для любого решения этой задачи, уменьшая при необходимости (a, b), можно добиться, чтобы его график лежал в U_c
- Пусть $(x_0, y_0) \in \widehat{G}^{\circ}$
 - Если решение $3K(x_0, y_0)$ отсутсвует, то (x_0, y_0) это точка единственности по определению
 - Пусть решение существует на некотром промежутке $\langle a,b\rangle$ таком, что $x_0\in\langle a,b\rangle\subset[x_0-c,x_0+c]$

Утверждение 3. Тогда, уменьшая $\langle a,b \rangle$ при необходиости можно добиться, чтобы график решения лежал в U_c

Доказательство. Действительно, очевидно, что с уменьшением $\langle a,b \rangle$ график решения попадает в $\overline{B}_c(x_0,y_0)$. А ситуация, когда при $x < x_0$ и (или) $x > x_0$ график, оставаясь в \widetilde{G} , не принадлежит \widetilde{G}° , преодолевается за счёт выбора константы $c_1 > c$ такой, что в $\overline{B}_{c_1}(x_0,y_0)$ юудет выполняться глобальное условие Липпица с константой, скажем, $L_1 \coloneqq L+1$. В результате с учётом непрерывности функции f(x,y) бласть \widetilde{G}° увеличиться, включив в себя дугу интегральной кривой в малой окрестности точки (x_0,y_0)

Рассмотрим любые два решения $y = \varphi_1(x)$ и $y = \varphi_2(x)$ ЗК (x_0, y_0) , которые определены по крайней мере на некотором общем промежутке $\langle \alpha, \beta \rangle$ таком, что $x_0 \in \langle \alpha, \beta \rangle \subset [x_0 - c, x_0 + c]$ Как установлено выше, уменьшая при необходимости $\langle \alpha, \beta \rangle$, можно добиться, чтобы для всякого $x \in \langle \alpha, \beta \rangle$ точки $(x, \varphi_1(x)), (x, \varphi_2(x)) \in U_c$

По лемме о записи решения в интегральном виде для любого $x \in \langle \alpha, \beta \rangle$ справедливо

$$\varphi_j(x) = \varphi_j(x_0) + \int_{x_0}^x f(s, \varphi_j(s)) ds, \qquad j = 1, 2$$

Поэтому

$$\varphi_2(x) - \varphi_1(x) = \int_{x_0}^x \left(f(s, \varphi_2(s)) - (s, \varphi_1(s)) \right) ds$$

точки $(s, \varphi_j(s)) \in U_c$ и для них выполнено неравенство (15). Тогда

$$|\varphi_2(x) - \varphi_1(x)| \le \left| \int_{x_0}^x \left| f\left(s, \varphi_2(s)\right) - f\left(s, \varphi_1(s)\right) \right| \, \mathrm{d}s \right| \le \left| \int_{x_0}^x L \left| \varphi_2(s) - \varphi_1(s) \right| \, \mathrm{d}s \right|$$

К последнему неравенству можно применить следствие к лемме Гронуолла (лемма 7), где $h(x) = |\varphi_2(x) - \varphi_1(x)|, \quad \lambda = 0, \quad \mu = L$

Тогда $|\varphi_2(x)-\varphi_1(x)|\stackrel{\langle\alpha,\beta\rangle}{\equiv} 0$, т. е. решения $y=\varphi_1(x)$ и $\varphi_2(x)$ ЗК (x_0,y_0) совпадают в каждой точке $\langle\alpha,\beta\rangle\ni x_0$. Поэтому по определению (x_0,y_0) – это точка единственности

13. Теорема Осгуда

Теорема 7 (Осгуда; о единственности в области; сильная). Пусть в уравнении (1) функция f(x,y) непрерывна в области G и

$$\forall (x, y_1), (x, y_2) \in G \quad |f(x, y_2) - f(x, y_1)| \le h(|y_2 - y_1|) \tag{16}$$

где функция h(s) определена, непрерывна и положительна для всякого $s \in (0, +\infty)$ и

$$\int_{\varepsilon}^{a} h^{-1}(s) ds \xrightarrow{\varepsilon \to 0} \infty, \qquad a > \varepsilon > 0$$

Тогда G – это область единственности для уравнения (1).

Доказательство. Без доказательства

14. Область существования общего решения, лемма о поведении в ней решений, формула общего решения

Опишем множество A^* , в котором можно построить общее решение, поскольку гарантировать его существование во всей области единственности G° нельзя, какой бы малой она ни была В этом параграфе в роли A^* будет выступать вводимый ниже компакт \overline{A}

Алгоритм (построения \overline{A}). Пусть G° – область единственности для уравнения (1).

Возьмём любую точку $(x_0^*, y_0^*) \in G^{\circ}$

Поскольку G° является открытым множеством, существует такое $\delta > 0$, что $\overline{B}_{2\delta}(x_0^*, y_0^*) \subset G^{\circ}$

Пусть числа y_1, y_2 таковы, что

$$\begin{cases} 0 < y_0^* - y_1 < \delta \\ 0 < y_2 - y_0^* < \delta \end{cases}$$

и найдётся отрезок $[a,b]\ni x_0^*$ такой, что графики решений $3\mathrm{K}(x_0^*,y_1)\ y=\varphi_1(x)$ и $3\mathrm{K}(x_0^*,y_2)\ y=\varphi_2(x)$ лежат в \overline{B}_c при $x\in[a,b]$. Тогда в \overline{B}_δ содержится компакт

$$\overline{A} = \{ (x, y) \mid a \le x \le b, \quad \varphi_1(x) \le y \le \varphi_2(x) \}$$

$$\tag{17}$$

При этом A (то же самое, со строгими неравенствами) – это область, так как по построению $\varphi_1(x_0^*)=y_1< y_2=\varphi_2(x_0^*)$, а значит, $\varphi_1(x)<\varphi_2(x)$ для всякого $x\in [a,b]$, поскольку в области единственности G° дуги интегральных кривых не могут соприкасаться и разбивать A на несвязные подмножества

Лемма 8 (о поведении решений на компакте \overline{A}). Для любой точки $(x_0,y_0)\in \overline{A}$ решение $3\mathrm{K}_{(1)}(x_0,y_0)$ $y=\varphi(x)$ продолжимо на отрезок [a,b]

Доказательство. Для любой точки $(x_0^*,y_0^*)\in G^\circ$ построим компакт \overline{A} вида (17), тогда $\overline{A}\subset \overline{B}_\delta\subset \overline{B}_\delta$

Возьмём произвольную точку $(x_0,y_0)\in \overline{A}$. Тогда прямоугольник

$$\overline{R} := \{ (x,y) \mid |x - x_0| \le \delta, \quad |y - y_0| \le \delta \} \subset \overline{B}_{2\delta}$$

Пусть $M \coloneqq \max_{\overline{B}_{2\delta}} |f(x,y)| > 0$ (при M=0 лемма очевидна)

Положим $h := \min \left\{ \delta, \frac{\delta}{M} \right\}$. Тогда $P_h(x_0, y_0) = [x_0 - h, x_0 + h]$ – отрезок Пеано, построенный для произвольной точки $(x_0, y_0) \in \overline{A}$

Следовательно, по теореме Пеано решение $3{\rm K}(x_0,y_0)\ y=\varphi(x)$ определено на отрезке Пеано $[x_0-h,x_0+h]$, длина которого неизменна для всех точек $(x_0,y_0)\in\overline{A}$

- Рассмотрим функцию $\varphi(x)$ при $x > x_0$:
 - Если $x_0+h < b$, то $\varphi_1(x_0+h) \le \varphi(x_0+h) \le \varphi_2(x_0+h)$, а значит, точчка x_0+h , $(x_0+h,\varphi(x_0+h))$ Выбрав эту точку в качетстве начальной, решение $y-\varphi(x)$ можно продолжить вправо на полуотрезок Пеано $[x_0+h,x_0-h]$
 - * Если $x_0 + 2h \ge b$, то лемма доказана
 - * Иначе сделаем очередное продолжение решения вправо на длину h В результате за конечное число шагов будет продолжено вправо до точки b включительно
- Аналогично $y=\varphi(x)$ можно продолжить влево до точки a

Для любой точки $(x_0,y_0)\in \overline{A}$ обозначим через $y=y(x,x_0,y_0)$ решение $\mathrm{3K}_{(1)}(x_0,y_0)$

Тогда $y(x_0, x_0, y_0) = y_0$, и по лемме о поведении решений на компакте (лемма 8) решение $y = (x, x_0, y_0)$ определено для всякого $x \in [a, b]$

Для произвольной точки $\zeta \in [a,b]$ рассмотрим функцию

$$\varphi(xC) = y(x,\zeta,C), \qquad (\zeta,C) \in \overline{A}$$
 (18)

на прямоугольнике $\overline{Q} = \overline{Q}_{\overline{A}} \coloneqq \{ (x,C) \mid a \le x \le b, \quad \varphi_1(\zeta) \le C \le \varphi_2(\zeta) \}$, который является частным случаем множества Q_{A^*} из определения общего решения.

В самом деле, $\varphi_1(\zeta) \leq C \leq \varphi_2(\zeta)$ по построению \overline{A} . А по лемме решение $y=y(x,\zeta,C)$ определено для любого $x \in [a,b]$ и при $x=\zeta$ по определению решения ЗК $\varphi(\zeta,C)=y(\zeta,\zeta,C)=C$

15. Теорема о существовании общего решения

Теорема 8 (о существовании общего решения). Введённая в формуле (18) функция $y=\varphi(x,C)$ является общим решением уравнения (1) на компакте \overline{A} из (17), построенном в окрестности произвольной точки из области единственности G°

Доказательство. Покажем, что функция $y = \varphi(x, C)$ удовлетворяет определению общего решения уравнения (1):

1. Возьмём произвольную точку $(x_0,y_0)\in \overline{A}$ и рассмотрим уравнение $y_0=\varphi(x_0,C)$ или согласно (18) уравнение

$$y_0 = y(x_0, \zeta, C) \tag{19}$$

Наличие у него решения $C = C_0$ фактически означает, что "выпущенное" из точки $(\zeta, C_0) \in \overline{A}$ решение уравнения (1) в момент x_0 попадает в точку $(x_0, y_0) \in \overline{A}$

Покажем, что решение уравнения (19) сущетсувует и единственно:

"Выпустим" из точки (x_0, y_0) решение $y = y(x, x_0, y_0)$, которое по лемме 8 определено на всём отрезке [a, b] и, в частности, при $x = \zeta \in [a, b]$ по определению (18)

Пусть $C_0 = y(\zeta, x_0, y_0)$. Тогда (ζ, C) – это точка единственности, так как принадлежит графику решения $y = y(x, x_0, y_0)$

Поэтому решение $3\mathrm{K}(\zeta,C)$ $y=u(x,\zeta,C_0)$ с начальными данными ζ,C_0 по лемме о поведении решений на компакте \overline{A} (лемма 8) продолжимо на [a,b] и совпадает с решением $y=y(x,x_0,y_0)$ Следовательно, $y_0=y(x_0,\zeta,C)$, т. е. график функции $y=y(x,\zeta,C_0)$ проходит через точку (x_0,y_0) . Другими словами, дуга интегральной кривой, проходящая через точки (x_0,y_0) , (ζ,C_0) , имеет на отрезке [a,b] две параметризации $y=y(x,x_0,y_0)$ и $y=(x,\zeta,C_0)$

Итак, установлено, что уравнение (19) имеет единственное решение $C=C_0=y(\zeta,x_0,y_0)$, т. е. $y_0=y\big(x_0,\zeta,y(\zeta,x_0,y_0)\big)$

- 2. Функция $y=\varphi(x,C_0)$ является решением $3\mathbf{K}_{(1)}(x_0,y_0)$, поскольку согласно (18) и (19) $\varphi(x_0,C_0)=y(x_0,\zeta,C_0)=y_0$
- 3. Осталось доказать, что функция $y=\varphi(x,C)$ из (18) непрерывна на компакте \overline{Q} по совокупности переменных:
 - Поскольку для всякого $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ функция $y = \varphi(x, C)$ это решение уравнения (1), она непрерывна по x при $x \in [a, b]$
 - Покажем, что для всякого $x\in [a,b]$ функция $y=\varphi(x,C)$ непрерывна по C при $C\in [\varphi_1(\zeta),\varphi_2(\zeta)]$:

Допуская **противное**, предположим, что найдутся $\widetilde{\varepsilon} > 0$, $\widetilde{x} \in [a,b]$ и последовательность $C_k \xrightarrow[k \to \infty]{} \widetilde{C}$, $C_k \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ такие, что $|\varphi(\widetilde{x}, C_k) - \varphi(\widetilde{x}, \widetilde{C})| \ge \widetilde{\varepsilon}$ при всех $k \ge 1$. Это значит,

что при $x=\widetilde{x}$ функция $\varphi(\widetilde{x},C)$ терпит разрыв в точке $\widetilde{C}\in [\varphi_1(\zeta),\varphi_2(\zeta)]$, поскольку любой компакт, в частности отрезок $[\varphi_1(\zeta),\varphi_2(\zeta)]$, содержит все свои предельные точки. В этом случае, кстати, $\widetilde{x}\neq\zeta$, так как по определению $\varphi(\zeta,C_k)=C_k\xrightarrow[k\to\infty]{}C=\varphi(\zeta,C)$

Выпуская из точек $(\zeta,C_k)\in\overline{A}$ дуги интегральных кривых, получаем последовательность решений $y=y(x,\zeta,C_k)=\varphi(x,C_k)$. Поскольку из любой сходящейся последовательности можно выдулить монотонную подпоследовательность, НУО считаем, что последовательность C_k монотонно возрастает, т. е. $C_k < C_{k+1} < \widetilde{C}$ для любого $k \ge 1$

В области G° интегральные кривые не имеют общих точек, поэтому последовательность $\varphi(\widetilde{x},C_k)$ тоже монотонно возрастает и ограничена, так как $\varphi(\widetilde{x},C_k) \leq \varphi(\widetilde{x},\widetilde{C}) - \widetilde{\varepsilon}$ по предположению. Но любая ограниченная монотонная последовательность имеет предел

Пусть $\widetilde{y} = \lim_{k \to \infty} \varphi(\widetilde{x}, C_k)$, тогда $\widetilde{y} \le \varphi(\widetilde{x}, \widetilde{C}) - \widetilde{\varepsilon}$

Выберем произвольную точку y^* из интервала $\left(\widetilde{y}, \varphi(\widetilde{x}, \widetilde{C})\right)$

Рассмотрим определённое на [a,b] решение $3K(\widetilde{x},y^*)$, обозначаемое $y=y(x,\widetilde{x},y^*)$

Пусть $C^* = y(\zeta, \widetilde{x}, y^*)$. Тогда $C^* < \widetilde{C}$, так как $y^* < \varphi(\widetilde{x}, \widetilde{C}) = y(\widetilde{y}, \zeta, \widetilde{C})$

Дугу интегральной кривой решения $y=y(x,\widetilde{x},y^*)$ на [a,b], как было установлено, параметризует также решение с начальными данными ζ,C^* , имеющее согласно формуле (18) вид $y=\varphi(x,C^*)$, причём $\varphi(\widetilde{x},C^*)=y^*$

Однако существует индекс k^* такой, что член C^{k*} сходящейся к \widetilde{C} последовательности C_k будет больше, чем C^*

В результате получилось так, что дуги интегральных кривых решений $y = \varphi(x, C_{k*})$ и $y = \varphi(x, C^*)$ пересекаются в некоторой точке x^* , лежащей между ζ и \widetilde{x} , поскольку $\varphi(\zeta, C_{k*}) = C_{k*} > C^* = \varphi(\zeta, C^*)$, а $\varphi(\widetilde{x}, C_{k*}) < \widetilde{y} < y^* = y(\widetilde{x}, \zeta, C^*) = \varphi(\widetilde{x}, C^*)$ с тем, что G – область единственности

Итак, доказано, что функция $y = \varphi(x, C)$ непрерывна по каждой из переменных в прямоугольнике \overline{Q} . Но этого недостаточно для её непрерывности по совокупности переменных Воспользуемся ещё одним свойством функции φ :

Поскольку $y=\varphi(x,C)$ при любой константе $C\in [\varphi_1(\zeta),\varphi_2(\zeta)]$ есть решение уравнения (1), то $\frac{\partial \varphi(x,C)}{\partial x}\equiv f\left(x,\varphi(x,C)\right)$ на [a,b]

Но $(x,\varphi(x,C))\in\overline{A}$, когда точка $(x,C)\in\overline{Q}$, а на компакте \overline{A} выполняется неравенство $|f(x,y)|\leq M$. Следовательно, функция $\left|\frac{\partial\varphi(x,C)}{\partial x}\right|$ ограничена на [a,b] С учётом теоремы Лагранжа заключаем, что для любой константы $C\in[\varphi_1(\zeta),\varphi(\zeta)]$ и для любых

С учётом теоремы Лагранжа заключаем, что для любой константы $C \in [\varphi_1(\zeta), \varphi(\zeta)]$ и для любых $x_1, x_2 \in [a,b], \ x_1 < x_2$ найдётся такое $x_C \in (x_1,x_2),$ что $\varphi(x_2,C) - \varphi(x_1,C) = \frac{\partial \varphi(x_C,C)}{\partial x}(x_2-x_1)$ Этого достаточно, чтобы непрерывность функции $y = \varphi(x,C)$ по x на [a,b], равномерная относительно $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ в силу признака Вейрештрасса с $\delta = \varepsilon/M$, стала очевидной

Последнее свойство функции φ наряду с её поточечной непрерывностью по C гранатирует непрерывность $\varphi(x,C)$ по совокупности переменных в прямоугольнике \overline{Q}

Действительно, возьмём произвольную точку $(x_0, C_0) \in \overline{Q}$ и покажем, что функция $\varphi(x, C)$ непрерывна в этой точке:

Для этого зафиксируем любое число $\varepsilon>0$. Тогда в силу непрерывности функции φ по C найдётся такое $\delta_{x_0}>0$, что

$$\forall C \quad \left(|C - C_0| < \delta_{x_0} \implies |\varphi(x_0, C) - \varphi(x_0, C_0)| < \frac{\varepsilon}{2} \right)$$

А из равномерной непреывности $\varphi(x,C)$ по x относительно C вытекает, что

$$\exists \, \delta_0 > 0: \quad \forall C \in [x\varphi_1(\zeta), \varphi_2(\zeta)] \quad \forall x \quad \left(|x - x_0| < \delta_0 \implies |\varphi(x, C) - \varphi(x_0, C)| < \frac{\varepsilon}{2}\right)$$

Выберем число $\delta := \min \{ \delta_{x_0}, \delta_0 \}$, тогда для любой точки (x, C) получаем:

$$||(x,C) - (x_0,C_0)|| := \max\{|x-x_0|, |C-C_0|\} < \delta$$

Следовательно,

$$|\varphi(x,C) - \varphi(x_0,C_0)| \stackrel{\triangle}{\leq} |\varphi(x,C) - \varphi(x_0,C)| + |\varphi(x_0,C) - \varphi(x_0,C_0)| = \varepsilon$$

16. Формула общего решения, теорема о дифференцируемости общего решения

Определение 8. Общее решение $y = \varphi(x, C)$, определённое формулой (18), будем называть общим решением в форме Коши или классическим общим решением уравнения первого порядка (1).

Теорема 9 (о дифференцируемости общего решения). Пусть на компакте \overline{A} из (17) при некотором $\zeta \in [a,b]$ формула (18) задаёт общее решение $y=\varphi(x,C)$, и в уравнении (1) f(x,y) непрерывно дифференцируема по y в некоторой окрестности \overline{A}

$$\implies \forall (x,C) \in \overline{Q}: \quad \frac{\partial \varphi(x,C)}{\partial x} = \exp\left(\int_{\zeta}^{x} \frac{\partial f(t,\varphi(t,C))}{\partial y} \, \mathrm{d}t\right) \tag{20}$$

Доказательство. Зафиксируем произвольным образом константу $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$, после чего для всякого $x \in [a,b]$ положим $\Delta \varphi = \varphi(x,C+\Delta C) - \varphi(x,C)$, где ΔC – приращение аргумента C Поскольку при фиксированной C функция $y = \varphi(x,C)$ является решением уравнения (1), справедлива

цепочка равенств:

$$\begin{split} &\frac{\mathrm{d}(\Delta\varphi)}{\mathrm{d}\,x} = f\bigg(x, \varphi(x, C + \Delta C)\bigg) - f\bigg(x, \varphi(x, C)\bigg) = \int_0^1 \; \mathrm{d}\,\bigg(f\big(x, \varphi(x,) + \Delta\varphi \cdot s\big)\bigg) = \\ &= \int_0^1 \frac{\mathrm{d}\,f\bigg(x, \varphi(x, C) + \Delta\varphi \cdot s\bigg)}{\mathrm{d}\,s} \; \mathrm{d}\,s = p(x, \Delta C)\Delta\varphi, \qquad p(x, \Delta C) \coloneqq \int_0^1 \frac{\partial f\bigg(x, \varphi(x, C) + \Delta\varphi \cdot s\big)}{\partial y} \; \mathrm{d}\,s \end{split}$$

• Пусть $\Delta C \neq 0$, тогда, поделив первое и последнее выражение в цепочке на ΔC , убеждаемся, что функция $\psi(x,\Delta C) \coloneqq \frac{\Delta \varphi}{\Delta C}$ является решением $\Im K(\zeta,1)$ линейного однородного уравнения $\frac{\mathrm{d}\, u}{\mathrm{d}\, x} = p(x,\Delta C)u$, так как

$$\psi(\zeta, \Delta C) = \frac{\varphi(\zeta, C + \Delta C) - \varphi(\zeta, C)}{\Delta C} = \frac{C + \Delta C - C}{\Delta C} = 1$$

Следовательно, $\psi(x, \Delta C) = \exp\left(\int_{\zeta}^{x} p(t, \Delta C) dt\right)$

• Но $p(x, \Delta C)$ существует и при $\Delta C = 0$:

$$p(x,0) = \frac{\partial f\left(x,\varphi(x,C)\right)}{\partial y}$$

Поэтому

$$\frac{\partial \varphi(x,C)}{\partial C} = \lim_{\Delta C \to 0} \psi(x,\Delta C) = \exp\left(\lim_{\Delta C \to 0} \int_{\zeta}^{x} p(t,\Delta C) \; \mathrm{d}\, t\right)$$

В результате частная производная общего решения $y = \varphi(x, C)$ по C существует, непрерывна и вычисляется по формуле (20)

Часть II

Уравнения первого порядка в симметричной форме

Ааа! Симметричные дифуры!

$$M(x, y) dx + N(x, y) dy = 0$$
 (21)

17. Определение интеграла, теорема о характеристическом свойстве интеграла

Определение 9. Непрерывную в области $B \subset \mathbb{R}^2$ функцию U(x,y) будем называть допустимой, если для любой точки $(x_0,y_0) \in B$ найдётся такая непрерывная функция $y=\xi(x)$ или $x=\eta(y)$, определённая на интервале (α,β) , содержащем точку x_0 или y_0 , что:

- 1. $y_0 = \xi(x_0)$ или $x_0 = \eta(y_0)$
- 2. точка $(x, \xi(x)) \in B$ для любого $x \in (\alpha, \beta)$ или точка $(\eta(y), y) \in B$ для любого $y \in (\alpha, \beta)$
- 3. $y = \xi(x)$ или $x = \eta(y)$ единственное решение уравнения

$$U(x,y) = U(x_0, y_0) (22)$$

Замечание. Условие 3 означает, что выполняется по крайней мере одно из тождеств:

$$\begin{bmatrix} U(x,\xi(x)) & \stackrel{(\alpha,\beta)}{\equiv} U(x_0,y_0) \\ U(\eta(y),y) & \stackrel{(\alpha,\beta)}{\equiv} U(x_0,y_0) \end{bmatrix}$$

Теорема 10 (о характеристическом свойстве интеграла). Для того чтобы допустимая функция U(x,y) была интегралом уравнения в симметричной форме (21) в области единственности B° , необходимо и достаточно, чтобы U(x,y) обращалась в постоянную вдоль любого решения (21), т. е. чтобы:

- $U(x,\varphi(x))\stackrel{\langle a,b\rangle}{\equiv} C$ для любого решения $y=\varphi(x)$, определённого на $\langle a,b\rangle$
- $U(\psi(y),y)\stackrel{\langle a,b\rangle}{\equiv} C$ для любого решения $x=\varphi(y),$ определённого на $\langle a,b\rangle$

Доказательство.

• Необходимость:

Пусть U(x,y) – интеграл уравнения (21) в области единственности B° , и пусть, например, $y=\varphi(x)$ – какое-либо решение уравнения (21), определённое на промежутке $\langle a,b\rangle$ НУО 1 будем считать, что $\langle a,b\rangle=(a,b)$

Возьмём произвольную точку $x_0 \in (a,b)$ и положим $y_0 := \varphi(x_0)$

Точка $(x_0, y_0) \in B^{\circ}$, поэтому по определению допустимой функции уравнение (22) $U(x, y) = U(x_0, y_0)$ однозначно разрешимо или относительно x, или относительно y:

— Пусть (22) однозначно разрешимо относительно y, т. е. существует такая единственная функция $y=\xi(x)$, заданная на некотором $(\alpha,\beta)\ni x_0$, что $U\left(x,\xi(x)\right)\stackrel{(\alpha,\beta)}{\equiv}U(x_0,y_0)$ Эта функция по опреелению интеграла является решением $3\mathrm{K}_{(21)}(x_0,y_0)$

Поскольку B° – область единственности, $\varphi(x) \stackrel{(\widetilde{\alpha}, \widetilde{\beta})}{\equiv} \xi(x)$, где $(\widetilde{\alpha}, \widetilde{\beta}) = (a, b) \cap (\alpha, \beta)$. Следовательно,

$$U(x,\varphi(x)) \stackrel{(\tilde{\alpha},\tilde{\beta})}{\equiv} U(x_0,y_0) \tag{23}$$

— Пусть (22) однозначно разрешимо относительно x, т. е. на некотором интервале $(\alpha, \beta) \ni y_0$ существует единственная функция $x = \eta(y)$ такая, что $\eta(y_0) = x_0$ и $U(\eta(y), y) \equiv U(x_0, y_0)$ на (α, β)

Тогда по определению интеграла $x=\eta(y)$ на (α,β) является решением $3\mathrm{K}_{(21)}(y_0,x_0)$, а значит, единственное решение этой $3\mathrm{K}$ имеет два представления: $y=\varphi(x)$ и $x=\eta(y)$. Поэтому дуга интегральной кривой такого решения в некоторой окрестности точки (x_0,y_0) , не имея вертикальных и горизонтальных касательных, может быть параметризована как функцией $y=\varphi(x)$, так и функцией $x=\eta(x)$

Иными словами, сущетвуют такие интервалы $(\widetilde{a},\widetilde{b})$ и $(\widetilde{\alpha},\widetilde{\beta})$, что

$$x_0 \in (\widetilde{a}, \widetilde{b}) \subset (a, b), \quad y_0 \in (\widetilde{\alpha}, \widetilde{\beta}) \subset (\alpha, \beta), \qquad y \stackrel{(\widetilde{a}, \widetilde{\beta})}{\equiv} \varphi(\eta(y)), \quad x \stackrel{(\widetilde{a}, \widetilde{b})}{\equiv} \eta(\varphi(x))$$

Поэтому справедлива доказывающая (23) цепочка равенств:

$$U\!\left(x,\varphi(x)\right) \stackrel{)\tilde{\alpha},\tilde{b}}{\equiv} U\!\left(\eta\!\left(\varphi(x)\right)\!,\varphi(x)\right) \stackrel{(\tilde{\alpha},\tilde{\beta})}{\equiv} U\!\left(\eta(y),y\right) \stackrel{(\tilde{\alpha},\tilde{\beta})}{\equiv} U(x_0,y_0)$$

— Осталось показать, что (23) выполняется на всём интервале (a, b):

Допустим, что $\widetilde{\beta} < b$ и найдутся такие $x_1, x_2 \in [\widetilde{\beta}, b), (x_1 < x_2),$ что $U(x, \varphi(x)) \stackrel{(\widetilde{\alpha}, x_1]}{\equiv} U(x_0, y_0), \quad U(x, \varphi(x)) \neq U(x_0, y_0)$ для любого $x \in (x_1, x_2)$

При $y_1 = \varphi(x_1)$ в последнем тождестве $U(x_1, y_1) = U(x_0, y_0)$. По определению решения точка $(x_1, y_1) \in B^\circ$, поэтому для неё верны все рассуждения, касающщиеся точки (x_0, y_0)

Пусть $y = \xi_1(x)$ – единственное на (α_1, β_1) , $\left(x_! \in (\alpha_1, \beta_1) \subset (x_0, x_2)\right)$ решение уравнения $U(x,y) = U(x_1,y_1)$, т. е. $U\left(x,\xi_1(x)\right) \equiv U(x_1,y_1)$ на (α_1,β_1) , и оно же по определению интеграла является единственным решением $3K(x_1,y_1)$. Тогда $\xi_1(x) \equiv \varphi(x)$ на (α_1,β_1) , и

$$U(x,\varphi(x))\stackrel{[x_1,\beta_1)}{\equiv}U(x_1,y_1)=U(x_0,y_0)$$
 — $\not\downarrow$ Ситуация с точками $x_1,x_2\in(a,\widetilde{\alpha}]$ рассматривается аналогично

– Достаточность:

Пусть допустимая функция U(x,y) обращается в постоянную на любом решении уравнения (21). Покажем, что в таком случае U(x,y) – интеграл этого уравнения в области едиснтвенности B°

Возьмём произвольную точку $(x_0, y_0) \in B^{\circ}$. Тогда существует единственное решение $3K(x_0, y_0)$ вида $y = \varphi(x)$ на $(a, b) \ni x_0$, или $x = \psi(y)$ на $(a, b) \ni y_0$

Пусть, например, $x = \psi(y)$ является решением уравнения (21). Тогда по условию теоремы $U(\psi(y), y) \equiv U(x_0, y_0)$ на (a, b)

Если функция U(x,y), будучи допустимой, однозначно разрешима относительно x, т. е. на некотором $(\alpha,\beta)\ni y_0$ существует и единственна функция $x=\eta(y)$ такая, что $U(\eta(y),y)\equiv U(x_0,y_0)$ на (α,β) , то $\psi(y)\equiv \eta(y)$ на $(a,b)\cap(\alpha,\beta)$. А если уравнение (22) однозначно разрешимо относительно y, то можно показать, как и при доказательстве необходимости, что функция $y=\xi(x)$ – решение уравнения (21), поскольку является обратной к решению $x=\psi(y)$ В результате допустимая функция U(x,y) – это интеграл уравнения (21) в области единственности B°

Действительно, если $\langle a,b \rangle = [a,b]$, то по лемме о продолжимости решения, решение может быть продолжено на интервал $(a_1,b_1) \supset [a,b]$

18. Определение гладкого интеграла, теорема о характеристическом свойстве гладкого интеграла

Определение 10. Гладкую функцию U(x,y) будем называть галдкой допустимой в области B, если $U_x'^2 + U_y'^2 > 0$ для любой точки $(x,y) \in B$

Определение 11. Интеграл U(x,y) уравнения (21) будем называть гладким, если U – гладкая допустимая функция

Теорема 11 (о характеристическом свойстве гладкого интеграла). Для того чтобы гладкая допустимая функция U(x,y) была гладким интегралом уравнения (21) в области единственности B° , **необходимо** и достаточно, чтобы выполнялось тождество

$$N(x,y)U_x'(x,y) - M(x,y)U_y'(x,y) \stackrel{B^{\circ}}{\equiv} 0$$
(24)

Доказательство.

• Необходимость

Пусть U(x,y) – это гладкий интеграл уравнения (21). Возьём любую точку $(x_0,y_0) \in B^\circ$ Тогда $M^2(x_0,y_0)+N^2(x_0,y_0)\neq 0$. Пусть, например, $N(x_0,y_0)\neq 0$

Тогда $(x_0,y_0) \in B_N^{\circ}$, где B_N° – некая компонента связности открытого множества $B^{\circ} \setminus \overline{N}_0$, в которой $N(x,y) \neq 0$ и уравнение (21) равносильно уравнению $y' = -\frac{M(x,y)}{N(x,y)}$.

Пусть $y = \varphi(x)$ – решение $3K_{(21)}(x_0, y_0)$, определённое на некотором интервале $(a, b) \ni x_0$ Тогда по определению решениия

$$\varphi'(x) \equiv -\frac{M(x,\varphi(x))}{N(x,\varphi(x))}$$
 на (a,b)

По теореме о характеристическом свойстве интегала имеем:

$$U(x,\varphi(x)) \stackrel{(a,b)}{\equiv} U(x_0,y_0)$$

Продиффиренцируем по x:

$$U'_x(x,\varphi(x)) + U'_y(x,\varphi(x))\varphi'(x) \stackrel{(a,b)}{\equiv} 0$$

Подставляя $\varphi'(x)$ и домножая на N, получаем:

$$N(x,\varphi(x))U'_x(x,\varphi(x)) - M(x,\varphi(x))U'_y(x,\varphi(x)) \stackrel{(a,b)}{\equiv} 0$$

Положим $x=x_0$, тогда $\varphi(x_0)=y_0$, и для любой точки $(x_0,y_0)\in B^\circ$ получаем равенство (24)

• Достаточность

Пусть в B° выполняется тождество (24)

Возьмём любую точку $(x_0,y_0)\in B^\circ$, и пусть, например, $U_y'(x_0,y_0)\neq 0$

Тогда $U_y'(x,y) \neq 0$ в некоторой окрестности $V(x_0,y_0)$ и в ней уравнение (22) $U(x,y) = U(x_0,y_0)$ однозначно разрешимо относительно y, т. е. существует и единственна функция $y = \xi(x)$, определённая на нектором интервале $(\alpha,\beta) \ni x_0$ такая, что $\xi(x_0) = y_0, \quad \xi \in \mathcal{C}^1\big((\alpha,\beta)\big)$ и $U\big(x,\xi(x)\big) \equiv U(x_0,y_0)$ на (α,β)

Дифференцируя последнее тождество, получаем

$$U_x'(x,\xi(x)) + U_y'(x,\xi(x))\xi'(x) \stackrel{(\alpha,\beta)}{\equiv} 0, \qquad (x,\xi(x)) \in V$$

а значит,
$$\xi'(x) \equiv -\frac{U_x'(x,\xi(x))}{U_y'(x,\xi(x))}$$

Покажем, что $y = \xi(x)$ является решением уравнения (21), т. е. на интервале (a,b), например, удовлетоворяет тождеству 3_1 из определения решения. Подставляя $\xi(x)$ в левую часть этого тождества, получаем:

$$M(x,\xi(x)) + N(x,\xi(x))\xi'(x) \equiv \frac{M(x,\xi(x))U_y'(x,\xi(x)) - N(x,\xi(x))U_x'(x,\xi(x))}{U_y'(x,\xi(x))} \stackrel{(24)}{\equiv} 0$$

Следствие. Гладкая допустимая функция U(x,y) есть гладкий интеграл уравнения (1) y' = f(x,y) в области единственности G° тогда и только тогда, когда верно тождество

$$U'_x(x,y) + f(x,y)U'_y(x,y) \stackrel{G^{\circ}}{\equiv} 0$$

19. Теоремы о существовании непрерывного интеграла и о связи между интегралами

Теорема 12 (о существовании непрерывного интеграла). Для любой точки (x_0, y_0) из области единственности B° найдётся окрестность $S \subset B^{\circ}$, в которй уравнение (21) имеет интеграл U(x, y)

Доказательство. Пусть (x_0, y_0) "— это произвольная точка из области единственности B° и, например, $N(x_0, y_0) \neq 0$. Тогда найдётся окрестность B_N° , в которой $N(x, y) \neq 0$, а значит, в ней уравнение в симметричной форме (21) равносильно уравнению $y' = -\frac{M(x,y)}{N(x,y)}$. Согласно теореме о существовании общего решения в области

$$A = \{ (x, y) \mid a < x < b, \quad \varphi_1(x) < y < \varphi_2(x) \} \subset B_N^{\circ}$$

существует общее решение $y = \varphi(x, C)$.

По определению общего решения уравнение $y=\varphi(x,C)$ однозанчно разрешимо относительно C для любой точки $(x,y)\in A$, т. е. C=U(x,y), причём $U\left(x,\varphi(x,C)\right)\stackrel{(a,b)}{\equiv} C$

В результате уравнение U(x,y)=C однозначно разрешимо относительно y, а значит, функция U – допустимая и постоянна вдоль любого решения, график которого лежит в области A

По теореме о характеристическом свойстве интеграла функция U(x,y) является интегралом уравнения (21) в области A

 TODO : связь между интегралами

20. Теоремы о существовании гладкого интеграла и о связи между интегралами

Теорема 13 (о существовании гладкого интеграла).

В уравнении (21) функции $M(x,y), N(x,y) \in C^1(B)$

Тогда для любой точки (x_0, y_0) из области B существует её окрестность $A \subset B$, в которой уравнение (21) имеет гладкий интеграл U(x, y)

Доказательство. По слабой теореме о единственности в области множество B является областью единственности

Возьмём любую точку (x_0, y_0) из B. И пусть, например, $N(x_0, y_0) \neq 0$, B_N "— окрестность (x_0, y_0) , в которой $N(x,y) \neq 0$ и уравнение (21) равносильно уравнению $y' = f_*(x,y)$ с $f_* \coloneqq -\frac{M(x,y)}{N(x,y)}$. При этом по условию теоремы в области B_N определена и непрерывна частная производная $\frac{\partial f_*(x,y)}{\partial y}$

Пусть $A := \{ (x,y) \mid a < x < b, \quad \varphi_1(x) < y < \varphi_2(x) \}$ "— окрестность точки (x_0,y_0) , лежащая в B_N вместе со своим замыканием. По теореме о существовании общего решения в A существует общее решение $y = \varphi(x, C)$ уравнения $y' = f_*(x, y)$, задаваемое формулой (18) $\varphi(x, C) = y(x, \xi C)$, в которой $\xi \in (a,b)$ выбирается произвольным образом, $(\xi,C) \in \overline{A}$, т. е. $C \in [\varphi_1(\xi), \varphi_2(\xi)]$, а $y(x,\xi,C)$ "— решение

Положим $\xi = x_0$. Согласно (20)

$$\frac{\partial \varphi(x,C)}{\partial C} = \exp\left(\int_{x_0}^x \frac{\partial f_*(t,\varphi(t,C))}{\partial y} \, \mathrm{d}\, t\right), \qquad \frac{\partial \varphi(x_0,C)}{\partial C} = 1 \quad \forall C \in [\varphi_1(x_0), \varphi_2(x_0)]$$

Следовательно, по теореме о неявной функции уравнение $\varphi(x,C)-y=0$ однозначно разрешимо относительно C. Его решение C = U(x, y), как установлено в доказательстве теоремы о существовании непрерывного интеграла, является интегралом уравнения (21) и непрерывно дифференцируемо по yв области A.

Остаётся заметить, что функция U(x,y) является также гладкой по x, (т. к. обратная к ней $y=\varphi(x,C)$ гладкая по определнию общего решения).

Поэтому U(x,y) "— гладкая допустимая функция, а значит, и гладкий интеграл.

Случай, когда $N(x_0, y_0) = 0$, $M(x_0, y_0) \neq 0$ рассматривается аналогично.

Теорема 14 (о связи между интегралами). U(x,y) "— интеграл уравнения (21) в некоторой области A. Тогда:

1. если $U_1(x,y)$ "— ещё один интеграл в A, то существует функция $\Phi(x)$ такая, что $U_1(x,y) \stackrel{A}{\Longrightarrow}$

Доказательство. Пусть интеграл U(x,y) построен в области A при помощи общего решения $\varphi(x,C)$. Тогда $U(x,\varphi(x,C)) \stackrel{(a,b)}{=\!=\!=\!=} C$. Поскольку $U_1(x,y)$ "— тоже интеграл в A, то

$$\forall C \in \mathbb{R} \quad U_1(x, \varphi(x, C)) \stackrel{(a,b)}{=\!=\!=\!=} \Phi\Big(U(x, \varphi(x, C))\Big)$$

Но точки $(x, \varphi(x, C))$ заполняют всю область Am поэтому в A справедливо тождество $U_1(x,y) \equiv \Phi(U(x,y)).$

2. если функци $\Phi(U(x,y))$ допустима, то $U_1(x,y) \stackrel{A}{=} \Phi(U(x,y))$ "— это интеграл уравнения (21) в

Доказательство. Пусть Ф "— произвольная вещественная функция такая, что функция $\Phi(u(x,y))$ допустима.

Положим $U_1(x,y) := \Phi(U(x,y))$. Тогда функция U_1 допустима и обращается в постоянную вдоль любого решения (т. к. по предположению, U "— это интеграл). Поэтому U_1 является

Т())): связь между интегралами

21. Теорема об интеграле уравнения с разделяющимися переменными

ТОДО: Причесать уравнение с разделящимися переменными

Определение 12. Уравнением с разделяющимися переменными в симметрической форме будем называть уравнение (21) вида

$$g_1(x)h_2(y) dx + g_2(x)h_1(y) dy = 0$$
 (25)

в котором $g_1(x), g_2(x) \in \mathcal{C}(\langle a, b \rangle), h_1(y), h_2(y) \in \mathcal{C}(\langle c, d \rangle),$ причём

$$(a,b) \setminus (g_1^{\circ} \cup g_2^{\circ}) = \bigcup_{k=1}^{k_*} (a_k, b_k), \qquad (c,d) \setminus (h_1^{\circ} \cup h_2^{\circ}) = \bigcup_{l=1}^{l_*} (c_l, d_l)$$
 (26)

$$\forall x \in (a,b) \quad g_1^2(x) + g_2^2(x) \neq 0, \qquad \forall y \in (c,d) \quad h_1^2(y) + h_2^2(y) \neq 0 \tag{27}$$

где $g_i^\circ = \{ \ x \in \langle a,b \rangle \mid g_i(x) = 0 \ \}$, $h_i^\circ = \{ \ y \in \langle c,d \rangle \mid h_i(y) = 0 \ \}$ "— замкнутые множества нулей функций g и h

Таким образом,

$$M(x,y) = g_1(x)h_2(y) \in \mathcal{C}(\widetilde{R}), \qquad N(x,y) = g_2(x)h_2(y) \in \mathcal{C}(\widetilde{R})$$

где прямоугольник $\widetilde{R}=\{\;(x,y)\;|\;x\in\langle a,b\rangle\;,\quad y\in\langle c,d\rangle\;\}$

Условие (26) позволяет избежать "экзотических" ситуаций, типа канторовых множеств.

Условие (27) означает, что \widetilde{R} не пересекают ни горизонтальные, ни вертикальные прямые, состоящие из особых точек и "разрезающие" его на части. Только любой из четырёх отрезков, ограничивающих \widetilde{R} может целиком состоять из особых точек. Рассмотрим

$$H_i := \{ (x, y) \mid x \in g_i^{\circ}, \quad h_i^{\circ} \}, \qquad i = 1, 2$$

Тогда H_i может состоять из не более чем счётного объединения точек, отрезков и четырёхугольников. Кроме того, $H_1 \cap H_2$ может содержать только вершины \widetilde{R} .

В результате уравнение (25) рассматриваем на множестве $\widetilde{B} = B \cup \widehat{B} \cup \widecheck{B}$, в котором

$$B = R \setminus (H_1 \cup H_2), \qquad \check{B} = (H_1 \cup H_2) \cap \partial B, \qquad \widehat{B} = \partial B \setminus \check{B}, \qquad R = \{ (x, y) \mid x \in (a, b), y \in (c, d) \}$$

Для любых $x_2 \in g_2^\circ$ и $y_2 \in h_2^\circ$ функции $N(x_2,y) \equiv M(x,y_2) \equiv 0$. Поэтому функции $x(y) = x_2$ при $y \in (c,d)$ и $y(x) = y_2$ при $x \in (a,b)$ удовлетворяют уравнению, являясь полными внутренними решениями соответственно на всех интервалах $(c_l,d_l) \subset (c,d) \setminus g_2^\circ$ и $(a_k,b_k) \subset (a,b) \setminus g_2^\circ$. Остаётся решить уравнение в каждой из областей

$$B_{kl} := \{ (x, y) \mid x \in (a_k, b_k), \quad y \in (c_l, d_l) \} \setminus (H_1 \cup H_2), \qquad \bigcup_{k, l \ge 1} B_{kl} =: B$$

причём для любой точки $(x,y) \in B_{kl}$ справедливы условия

$$g_2(x) \neq 0, \qquad h_2(y) \neq 0, \qquad g_1^2(x) + h_1^2(y) \neq 0$$
 (28)

Покажем, что любая область B_{kl} "— это область единственности:

Возьмём произвольную точку $(x_k, y_l) \in B_{kl}$ и рассмотрим случай, когда $h_1(y_l) \neq 0$:

Существует интеграл $(\widetilde{c},\widetilde{d}) \subset c_l,d_l$ такой, что $h_1(y) \neq 0$ для всякого $y \in (\widetilde{c},\widetilde{d})$. Поэтому в области

$$G^{\circ} := \left\{ (x, y) \mid x \in (a_k, b_k), \quad y \in (\widetilde{c}, \widetilde{d}) \right\}$$

уравнение (25) равносильно уравнению (1) вида

$$y' = q(x)h(y) \tag{29}$$

в котором в данном случае $g=-g_1(x)g_2^{-1}(x), \quad h=h_2(y)h_1^{-1}(y)\neq 0,$ и f(x,y)=g(x)h(y) непрерывна в прямоугольной области G°

Определение 13. Уравнение (29), в котором $g \in \mathcal{C}((a_k,b_k))$, $h \in \mathcal{C}((\widetilde{c},\widetilde{d}))$, называют уравнением с разделяющимися переменными, разрешённым относительно производной

Покажем, что G° "— область единственности для уравнения (29). Этого достаточно, чтобы произвольным образом выбранная точка (x_k, y_l) из B_{kl} оказаласть точкой единственности для уравнения (25).

Пусть $H(y) \coloneqq \int h^{-1}(y) \, \mathrm{d}\, y$, и, для определённости, функция h(y) > 0 при $y \in (\widetilde{c}, \widetilde{d})$. Тогда H(y) "— гладкая, строго возрастающая функция.

Сделаем в уравнени (29) замену u := H(y). Для этого продифференцируем тождество u(x) = H(y(x)) по x в силу уравнения (29), получая

$$\frac{\mathrm{d} u(x)}{\mathrm{d} x} = \frac{|diH(y(x))|}{\mathrm{d} y} \cdot \frac{\mathrm{d} y(x)}{\mathrm{d} x} = h^{-1}(y(x)) \cdot g(x) \cdot h(y(x)) = g(x)$$
$$u' = g(x)$$

Это уравнение определно в области

$$G_u^{\circ} = \left\{ (x, y) \mid x \in (a, b), \quad u \in \left(H(\widetilde{c}), H(\widetilde{d}) \right) \right\}$$

Его общее решение:

$$u(x,C) = \int g(x) \, dx + C$$

Область G_u° является областью единственности для уравнения u' = g(x), так как интегральные кривые в ней не могут иметь общих точек. Они получены параллельными переносами одной и той же первообразной. А поскольку замена u = H(y) обратима, G° оказывается областью единственности для уравнения (29). В результате установлено, что B_{kl} "— область единственности для уравнения (25), и в ней (25) с учётом (28) равносильно уравнению с разделёнными переменными:

$$\frac{g_1(x)}{g_2(x)} dx + \frac{h_1(y)}{h_2(y)} dy = 0$$
(30)

Рассмотрим в любой области B_{kl} гладкую функцию

$$U(x,y) = \int_{x_0}^{x} \frac{g_1(s)}{g_2(s)} ds + \int_{y_0}^{y} \frac{h_1(s)}{h_2(s)} ds, \qquad x_0, y_0 \in B_{kl}$$
(31)

Тогда

$$U'_{x}(x,y) = \frac{g_{1}(x)}{g_{2}(x)}, \qquad U'_{y}(x,y) = \frac{h_{1}(y)}{h_{2}(y)}$$

$$\Longrightarrow U'^{2}_{x} + U'^{2}_{y} \neq 0$$

U "— гладкая допустимая функция и для неё, очевидно, выполняется тождество (24), а значит, по теореме о характеристическом свойстве гладкого интеграла функция U(x,y) является интегралом уравнения (30). В результате, доказана следующая теорема:

Теорема 15 (об интеграле уравнения с разделяющимися переменными). Любая область B_{kl} с учётом условий (28) является областью еджинственности уравнения (25), и в ней функция U(x,y) является гладким интегралом уравнения (25)

22. Теорема об интеграле уравнения в полных дифференциалах; теорема об уравнении в полных дифференциалах, локальная

Определение 14. Уравнение (21) называется уравнением в полных дифференциалах (УПД) в области B, если существует функция $U(x,y) \in \mathcal{C}^1(B)$ такая, что для всякой точки $(x,y) \in B$,

$$U'_x(x,y) = M(x,y), \qquad U'_y(x,y) = N(x,y)$$
 (32)

Теорема 16 (об интеграле УПД). U(x,y) — это гладкий интеграл УПД в B

Доказательство. Пусть существует гладкая функция U(x,y), для которой в B выполняются равенства (32). Тогда $U_x'^2 + U_y'^2 \neq 0$, а значит, по определению U "— гладкая допустимая функция.

При этом, в B очевидым образом выполняется тождество (24), следовательно, по теореме о характеристическом свойстве гладкого интеграла функция U(x,y) явлется глдаким интегралом в B.

Остаётся показать, что B "— это область единственности.

Возьмём произвольную точку $(x_0, y_0) \in B$ и произвольное решение $y = \varphi(x)$ $3K_{(21)}(x_0, y_0)$ на какомлибо интервале $(a, b) \ni x_0$. Тогда $\varphi(x_0) = y_0$, и по определению решения

$$M(x,\varphi(x)) + N(x,\varphi(x))\varphi'(x) = 0 \quad \forall x \in (a,b)$$

$$\implies d U(x,\varphi(x)) = U'_x(x,\varphi(x)) d x + U'_y(x,\varphi(x)) d \varphi(x) = 0$$

$$\implies U(x,\varphi(x)) \stackrel{(a,b)}{=\!=\!=\!=} U(x_0,\varphi(x_0))$$

В результате любое решение поставленной $3K_{\text{УПД}}$ удовлетворяет уравнению (22) в некоторой окрестности точки x_0 . А функция U, будучи допустимой, однозначно разершима, следоваетельно, в B не существует двух различных решений одной и той же 3K.

Теорема 17 (об УПД; локальная). Предположим, что для уравнения (21) выолняются условия:

- 1. прямоугольник $R = \{ (x, y) \mid x \in (a, b), y \in (c, d) \} \subset B;$
- 2. в B существуют и непрерывны частные производные $M_u', N_u';$
- 3. верно тождество

$$M'_{y}(x,y) - N'_{x}(x,y) \equiv 0$$
 (33)

Тогда (21) "— УПД в R, и для любых $x_0, x \in (a,b), y_0, y \in (c,d)$ его интегралами являются функции

$$U_1(x,y) = \int_{x_0}^x M(s,y_0) \, ds + \int_{y_0}^y N(x,s) \, ds$$
 (34)

$$U_2(x,y) = \int_{x_0}^x M(s,y) \, ds + \int_{y_0}^y N(x_0,s) \, ds$$

Доказательство. Возьмём, например, гладкую функцию $U_1(x,y)$ и покажем, что она удовлетворяет равенствам (32) для любой точки $(x,y) \in R$. Этого достаточно, чтобы (21) было УПД в R. Дифференцируя (34) сначала по y, а затем по x, получаем:

$$\frac{\partial U_1(x,y)}{\partial y} = N(x,y), \qquad \frac{\partial U_1(x,y)}{\partial x} = M(x,y_0) + \int_{y_0}^y \frac{\partial N(x,s)}{\partial x} \, \mathrm{d}\, s$$

Теперь во втором равенстве испольуем тождество (33):

$$\frac{\partial U_1(x,y)}{\partial x} = M(x,y_0) + \int_{y_0}^y \frac{\partial M(x,s)}{\partial y} \, \mathrm{d}s = M(x,y)$$

23. Теоремы о существовании и нахождении интегрирующего множителя, решение линейного уравнения при помощи интегрирующего множителя

Определение 15. Функция $\mu(x,y)$, определённая, непрерывная и не обращающаяся в ноль в области B, называется интегрирующим множителем дифференциального уравнения (21), если уравнение

$$\mu(x, y)M(x, y) d x + \mu(x, y)N(x, y) d y = 0$$
(35)

является УПД в B.

24

Теорема 18 (о существовании интегрирующего множителя). Если в области единственности $B^{\circ} \subset B$ уравнение (21) имеет гладкий интеграл, тогда в B° существует интегрирующий множитель.

Доказательство. Пусть U(x,y) "— гладкий интеграл уравнения (21) в области B° . Тогда из тождества (24) вытекает, что в B°

$$\frac{U_x'(x,y)}{M(x,y)} = \frac{U_y'(x,y)}{N(x,y)}$$

причём числитель и значенатель в одной из частей равенства могут одновременно обращаться в ноль. Поэтому функция

$$\mu(x,y) \coloneqq \frac{U_x'(x,y)}{M(x,y)} = \frac{U_y'(x,y)}{N(x,y)}$$

удовлетворяет определнию интегриующего множителя.

Если (35) "— УПД, то сголасно тождеству (33) $(\mu M)'_y - (\mu N)'_x = 0$. Перегруппируем:

$$\mu_x' N - \mu_y' M - (M_y' - N_x') \mu \tag{36}$$

Теорема 19 (о нахождении интегрирующего множителя).

Пусть нашлась такая функция $\omega(x,y) \in C^1(B)$, что

$$\frac{M'_{y}(x,y) - N'_{x}(x,y)}{\omega'_{x}(x,y)N(x,y) - \omega'_{y}(x,y)M(x,y)} = \psi(\omega)$$
(37)

Тогда уравнение (21) имеет интегрирующий множитель $\mu(\omega) = \exp\left(\int \psi(\omega) \ \mathrm{d}\,\omega\right)$

Доказательство. Будем искать μ как функцию ω .

В этом случае уравнение (36) примет вид

$$\frac{\mathrm{d}\,\mu}{\mathrm{d}\,\omega}\omega_x'N - \frac{\mathrm{d}\,\mu}{\mathrm{d}\,\omega}\omega_y'M = (M_y' - N_x')\mu$$

или с учётом предположения (37):

$$\frac{\mathrm{d}\,\mu(\omega)}{\mathrm{d}\,\omega} = \psi(\omega)\mu(\omega)$$

Функция $\mu(\omega)=C\exp\left(\int \psi(\omega)\;\mathrm{d}\,\omega\right)$ является общим решением этого линейного однородного уравнения. Можно выбрать C=1.

ТОДО: Надо причесать линейные уравнения

Определение 16. Уравнение, разрешённое относительно производной, вида

$$y' + p(x)y = q(x), p(x), q(x) \in \mathcal{C}((a,b))$$
(38)

называется линейным диффренциальным уравнением первого порядка.

Найдём общее решение уравнения (38) и решение $3K(x_0, y_0)$, используя интегрирующий множитель, для чего перепишем уравнение (38) в симметричной форме:

$$\left(p(x)y - q(x)\right) dx + dy = 0 \tag{39}$$

Очевидно, что в G существуют и непрерывны M'_{u}, N'_{x} .

Будем искать μ как функцию x, т. е. $\omega(x,y)=x$.

Тогда в формуле (37) $\psi(x) = p(x)$ и по теореме о нахождении интегрирующего множителя для любого $x_0 \in (a,b)$ имеем:

$$\mu(x) = e^{P(x)} \neq 0, \qquad P(x) \coloneqq \int_{x_0}^x p(t) dt$$

Умножая (39) на μ , получаем УПД:

$$e^{P(x)} \left(p(x)y - q(x) \right) dx + e^{P(x)} dy = 0$$

При $y_0 = 0$ из (34) находим

$$U = -\int_{x_0}^{x} e^{P(s)} q(s) \, ds + \int_{0}^{y} e^{P(x)} \, ds$$

Это "— интеграл уравнения (38).

Тогда равенство

$$e^{P(x)}y - \int_{x_0}^x e^{P(s)}q(s) ds = C$$

является общим интегралом уравнения (39). Отсюда

$$y = \varphi(x, C) = e^{-P(x)} \left(C + \int_{x_0}^x e^{P(s)} q(s) \, ds \right)$$

является классическим общим решением линейного уравнения (38), а формула

$$y = y(x, x_0, y_0) = \exp\left(-\int_{x_0}^x p(t) dt\right) \left(y_0 + \int_{x_0}^x \exp\left(\int_{x_0}^s p(t) dt\right) ds\right)$$

задаёт решение $3K(x_0, y_0)$, определённое на (a, b) и называется формулой Коши.

Часть III

Нормальные системы ОДУ

Ааа! Нормальные системы!

$$\begin{cases} y_1' = f_1(x, y_1, \dots, y_n) \\ \dots \\ y_n' = f_n(x, y_1, \dots, y_n) \end{cases}, \qquad f_1, \dots, f_n \in \mathcal{C}(G), \qquad G \subset \mathbb{R}^{n+1}$$

$$(40)$$

24. Лемма о связи между локальным и глобальным условиями Липшица, достаточные условия для выполнения локального условия Липшица

Определение 17. Функция f(x,y) удовлетворяет условиб Липшица глобально по y на множестве $B \subset G$, если найдётся такая константа $L = L_B > 0$, что

$$\forall (x, \widetilde{y}), (x, \widehat{y}) \in B \quad \|f(x, \widehat{y}) - f(x, \widetilde{y})\| \le L \|\widehat{y} - \widetilde{y}\| \tag{41}$$

Обозначение. $f \in \operatorname{Lip}_y^{gl}(B)$

Определение 18. Функция f(x,y) удовлетворяет условию Липшица локально по y в области G, если для любой точки $(x_{\circ},y^{\circ}) \in G$ существуют окрестность $V(x_{\circ},y^{\circ}) \subset G$ и константа Липшица $L = L_V > 0$ такие, что для любых двух точек $(x,\widetilde{y}),(x,\widehat{y}) \in V(x_{\circ},y^{\circ})$ выолняется неравенство (41).

Обозначение. $f \in \operatorname{Lip}_y^{loc}(G)$

Лемма 9 (о связи между локальным и глобальным условиями Липшица). Если $f(x,y) \in \operatorname{Lip}_y^{loc}(G)$, то для любого компакта $\overline{H} \subset G$ выполнено $f(x,y) \in \operatorname{Lip}_y^{gl}(\overline{H})$

Доказательство. Рассуждая **от противного**, допустим, что существует компакт $\overline{H} \in G$, в котором $f(x,y) \notin \operatorname{Lip}_{y}^{gl}(\overline{H})$.

Это значит, что найдутся такие последовательности точек $(x_k, \widetilde{y}^{(k)}), (x_k, \widehat{y}^{(k)}) \in \overline{H}$ и костант $L_k \xrightarrow[k \to \infty]{} \infty$, что

$$\forall k \ge 1 \quad \left\| f(x_k, \widehat{y}^{(k)}) - f(x_k, \widetilde{y}^{(k)}) \right\| \ge L_k \left\| \widehat{y}^{(k)} - \widetilde{y}^{(k)} \right\|$$

$$\tag{42}$$

Надо показать, что при каком-то k это неравенство нарушается.

Разряжая при необходимости два раза подряд последовательность инексов k и пользуясь принципом выбора Больцано"— Вейерштрасса, выберем такую подпоследовательность индексов $k_l \xrightarrow[l \to \infty]{} \infty$, что $(x_k, \widetilde{y}^{(k_l)}) \to (x_\circ, \widetilde{y}^{(\circ)}), \quad (x_{k_l}, \widehat{y}^{(k_l)}) \to (x_\circ, \widehat{y}^{(\circ)})$. При этом обе точки $(x_\circ, \widetilde{y}^{(\circ)}), (x_\circ, \widehat{y}^{(\circ)}) \in \overline{H}$, поскольку замкнутое множество содержит все свои предельные точки. В результате векторы $\widetilde{y}^{(0)}$ и $\widehat{y}^{(0)}$ либо совпадают, либо нет.

• $\widetilde{y}^{(0)} \neq \widehat{y}^{(0)}$ Тогда можно ввести в рассмотрение функцию

$$h(x, \widetilde{y}, \widehat{y}) := \frac{\|f(x, \widehat{y}) - f(x, \widetilde{y})\|}{\|\widehat{y} - \widetilde{y}\|}$$

определённую в некоторой окрестности точки $(x_{\circ}, \widetilde{y}^{(0)}, \widehat{y}^{(0)})$.

Положим $h(x_{\circ}, \widetilde{y}^{(0)}, \widehat{y}^{(0)}) =: L_{\circ}$. Тогда существует окрестность $V(x_0, \widetilde{y}^{(0)}, \widehat{y}^{(0)})$, в которой h непрерывна и $h(x, \widetilde{y}, \widehat{y}) < L_{\circ} + 1$.

$$\implies \exists K > 0: \quad \forall k_l > K \quad (x_{k_l}, \widetilde{y}^{(k_l)}, \widetilde{y}^{(k_l)}) \in V(x_{\circ}, \widetilde{y}^{(0)}, \widetilde{y}^{(0)})$$

а значит, $h(x_{k_l}, \widetilde{y}^{(k_l)}, \widehat{y}^{(k_l)}) < L_{\circ} + 1$, или

$$\|f(x_{k_l}, \widehat{y}^{(k_l)}) - f(x_{k_l}, \widetilde{y}^{(k_l)})\| < (L_{\circ} + 1) \|\widehat{y}^{(k_l)} - \widetilde{y}^{(k_l)}\|$$

Однако это неравенство при $l=l^*$ противоречит неравенству (42), поскольку всегда найдётся индекс l^* такой, что $L_{k_{l^*}} > L_{\circ} + 1$, т. к. $L_{k_{l}} \xrightarrow[l \to \infty]{} + \infty$.

• $y^{(0)} := \widetilde{y}^{(0)} = \widehat{y}^{(0)}$

Тогда точка $(x_0, y^{(0)}) \in \overline{H} \subset G$. В этом случае используем предположение о том, что функция f удовлетворяет локальному условию Липшица.

По определению для точки $(x_{\circ}, y^{(0)})$ существуют лежащая в G окрестность $V(x_{\circ}, y^{(0)})$ и константа Липшица L>0 такие, что для любых двух точек $(x, \widetilde{y}), (x, \widehat{y}) \in V(x_{\circ}, y^{(0)})$ верно неравенство (41). При этом обе подпоследовательности $-(x_{k_l}, \widetilde{y}^{(k_l)})$ и $(x_{k_l}, \widehat{y}^{(k_l)})$ — имеют общий предел — точку $(x_{\circ}, y^{(0)})$.

Поэтому найдётся такое число K>0, что для всякого $k_l>K$ точки $(x_{k_l},\widetilde{y}^{(k_l)})$ и $(x_{k_l},\widehat{y}^{(k_L)})\in V(x_\circ,y^{(0)})$, а значит, выполняется неарвенство (41). Но существует такой индекс l^* , что $L_{k_{l^*}}>L$. Следовтельно, неравенства (41) и (42) несовместны при $l=l^*$.

Лемма 10 (о достаточном условии локальной липшицевости). Если вектор-функция f(x,y) непрерывна всесте со своими частными производными по y_1, \ldots, y_n в области G, то она удовлетворяет условию Липшица по y локально в G.

Доказательство. Пусть V — окрестнгость произвольной точки из области G. Очевидно, что её можно выбрать выпуклой по y и такой, что $\overline{V} \subset G$. Для этого достаточно в качестве V взять куб с центром в выбранной точке и достаточно маленьким ребром.

Покажем, что $f(x,y) \in \operatorname{Lip}_{u}^{gl}(V)$:

По формуле конечных приращений имеем:

$$\forall (x, \widetilde{y}), (x, \widehat{y}) \in V \quad f(x, \widehat{y}) - f(x, \widetilde{y}) = \sum_{j=1}^{n} h^{(j)}(x, \widetilde{y}, \widehat{y}) \cdot (\widehat{y}_j - \widetilde{y}_j)$$

27

где

$$h^{(j)} := \int_0^1 \frac{\partial f(x, u(s))}{\partial y_j} \, \mathrm{d} s, \qquad u(s) := \widetilde{y} + s(\widehat{y} - \widetilde{y}) \quad \forall s \in [0, 1]$$

При этом $(x, u(s)) \in V$ в силу выпуклостти окрестности по y.

Поскольку чатсные производные f по y непрерывны в g и их конечное число, а компакт $\overline{V}\subset G$ по построению, то

$$\exists M > 0: \quad \forall s \in [0,1] \quad \forall j = \overline{1,n} \quad \left\| \frac{\partial f(x,u(s))}{\partial y_j} \right\| \leq M$$

Поэтому

$$||f(x,\widehat{y}) - f(x,\widehat{y})|| \leq \sum_{j=1}^{n} \left\| \int_{0}^{1} \frac{\partial f(x,u(s))}{\partial y_{j}} ds \cdot (\widehat{y}_{j} - \widetilde{y}_{j}) \right\| \leq \sum_{j=1}^{n} \int_{0}^{1} \left\| \frac{\partial f(x,u(s))}{\partial y_{j}} \right\| ds \cdot |\widehat{y}_{j} - \widetilde{y}_{j}| \leq Mn \cdot \max j = \overline{1,n} |\widehat{y}_{j} - \widetilde{y}_{j}| = nM ||\widehat{y} - \widetilde{y}||$$

и верно неравенство (41) с глобальной константой Липшица L=nM, обслуживающей окрестность V произвольной точки из области G.

25. Теорема Пикара

Введём (k+1)-е приближение по Пикару:

$$y^{(k+1)}(x) = y^{\circ} + \int_{x_0}^{x} f(s, y^{(k)}(s)) \, ds.$$
(43)

Теорема 20 (Пикара). $f(x,y) \in \mathcal{C}(G), \quad f(x,y) \in \operatorname{Lip}_{u}^{loc}(G)$

Для любой точки $(x_{\circ}, y^{\circ}) \in G$ последовательные приближения Пикара $y^{(k)}(x)$ (k = 0, 1, ...) с начальными данными x_{\circ}, y° определены на некотором отрезке $[\alpha, \beta]$, причём существует такой компакт $\overline{H} \subset G$, что для любых $k \geq 0$ и $x \in [\alpha, \beta]$ точка $(x, y^{(k)}(x)) \in \overline{H}$.

Тогда функции $y^{(k)}(x)$ равномерно относительно $[\alpha, \beta]$ стремятся при $k \to \infty$ к предельной функции y(x), являющейся решением $3K_{(40)}(x_{\circ}, y^{\circ})$ на отрезке $[\alpha, \beta]$.

Доказательство. Возьмём произвольную точку $(x_{\circ}, y^{\circ}) \in G$

По условию теоремы для этой точки надётся отрезок $[\alpha, \beta] \ni x_{\circ}$ и компакт $\overline{H} \subset G$ такие, что можно построить последовательные пикаровские приближения

$$y^{(k)}(x) = y^{\circ} + \int_{x_{\circ}}^{x} f(s, y^{(k-1)}(s)) ds, \qquad k = 1, 2, \dots,$$

определённые для всякого $x \in [\alpha, \beta]$ такие, что их графики, т. е. точки $(x, y^{(k)}(x))$, при всех x и k принадлежат \overline{H} .

Наличие компакта позволяет ввести на нём две глобальные константы:

- Обозначим через L>0 константу Липшица, обслуживающую \overline{H} . Она существует по лемме о связи между условиями Липшица (лемма 9), согласно которой $f(x,y) \in \operatorname{Lip}_{y}^{gl}(\overline{H})$.
- Положим $M \coloneqq \max_{\overline{H}} \|f(x,y)\|$.

Нужно установить равномерную сходимость последовательности пикаровских отображений. Сделаем это при помощи функциональных рядов:

Введём последовательность функций $\varphi^{(k)}(x)$, определённых на отрезке $[\alpha, \beta]$:

$$\varphi^{(0)}(x) \coloneqq y^{(0)}(x), \quad \varphi^{(1)}(x) \coloneqq y^{(1)}(x) - y^{(0)}(x), \quad \dots, \quad \varphi^{(k)}(x) \coloneqq y^{(k)}(x) - y^{(k-1)}(x), \quad \dots$$

Рассмотрим функциональный ряд

$$\varphi(x) = \sum_{k=0}^{\infty} \varphi^{(k)}(x)$$

По определению $\varphi^{(k)}$.

$$S_n(x) = \sum_{k=0}^n \varphi^{(k)}(x) = y^{(n)}(x)$$

Поэтому сходимость ряда $\varphi(x)$ равносильна сходимости последовательности пикаровских приближений $y^{(k)}(x)$.

Построим для ряда $\varphi(x)$ мажорантный ряд, оценив сверху по норме методом **индукции** члены $\varphi^{(k)}(x)$:

• База.

Для всякого $x \in [\alpha, \beta]$ имеем:

$$\left\| \varphi^{(0)}(x) \right\| = \left\| y^{(0)}(x) \right\|,$$

$$\left\| \varphi^{(1)}(x) \right\| = \left\| y^{(1)}(x) - y^{(0)}(x) \right\| = \left\| \int_{x_0}^x f(s, y^{(0)}(s)) \, \mathrm{d}s \right\| \le \left\| \int_{x_0}^x \left\| f(s, y^{(0)}(s)) \right\| \, \mathrm{d}s \right\|$$

Но по условию теоремы любая точка $(s, y^{(0)}(s))$ лежит в \overline{H} , т. к. $[x \circ (x)] \subset [\alpha, \beta]$. Следовательно,

$$||y^{(1)}(x)|| \le M|x - x_{\circ}|.$$

Далее,

$$\left\| \varphi^{(2)}(\boldsymbol{x}) \right\| \le \left| \int_{x_{\circ}}^{x} L \left\| y^{(1)}(s) - y^{(0)}(s) \right\| \, \mathrm{d} \, s \right| = L \left| \int_{x_{\circ}}^{x} \left\| \varphi^{(1)}(s) \right\| \, \mathrm{d} \, s \right| \le L \left| \int_{x_{\circ}}^{x} M |s - x_{\circ}| \, \mathrm{d} \, s \right| \le L M \frac{|x - x_{\circ}|^{2}}{2} = \frac{\boldsymbol{M}}{\boldsymbol{L}} \cdot \frac{(\boldsymbol{L}|\boldsymbol{x} - \boldsymbol{x}_{\circ}|)^{2}}{2!}$$

• Предположим, что для любых $k \geq 2$ и $x \in [\alpha, \beta]$

$$\left\|\varphi^{(k)}(x)\right\| \le \frac{M}{L} \cdot \frac{(L|x - x_{\circ}|)^2}{2!}.\tag{44}$$

• **Переход.** Оценим $\varphi^{(k+1)}(x)$:

$$\|\varphi^{(k+1)}(x)\| = \|y^{(k+1)}(x) - y^{(k)}(x)\| = \|\int_{x_0}^x f(s, y^{(k)}(s)) \, ds - \int_{x_0}^x f(s, y^{(k-1)}(s)) \, ds \| \le \left| \int_{x_0}^x f(s, y^{(k)}(s)) - f(s, y^{(k-1)}(s)) \, ds \right|.$$

Поскольку аргументы $f \in \overline{H}$, используем для оценок глобальное условие Липшица:

$$\begin{split} \left\| \varphi^{(k+1)}(x) \right\| & \leq \left| \int_{x_{\circ}}^{x} L \left\| y^{(k)}(s) - y^{(k-1)}(s) \right\| \, \mathrm{d} \, s \right| = L \left| \int_{x_{\circ}}^{x} \left\| \varphi^{(k)}(s) \right\| \, \mathrm{d} \, s \right| \leq \sup_{\mathbf{npedh}} \\ & \leq L \left| \int_{x_{\circ}}^{x} \frac{M}{N} \cdot \frac{(L|s - x_{\circ}|)^{k}}{k!} \, \, \mathrm{d} \, s \right| \leq \frac{M}{N} \cdot \frac{(L|x - x_{\circ}|^{k+1})}{(k+1)!} \end{split}$$

Таким образом, индукцонное предположение доказано.

Поскольку $|x-x_0| \le \beta - \alpha$, справедлива равномерная оценка членов ряда $\varphi(x)$:

$$\left\| \varphi^{(k)}(x) \right\| \le \frac{M}{N} \cdot \frac{\left(L(\beta - \alpha) \right)^k}{k!} \quad \forall x \in [\alpha, \beta]$$

Мажорантный для $\varphi(x)$ числовой ряд

$$\|y^{\circ}\| + \frac{M}{L} \cdot \sum_{k=1}^{\infty} \frac{\left(L(\beta - \alpha)\right)^k}{k!}$$

сходится при любых конечных α, β .

По признаку Вейерштрасса функциональный ряд $\sum \varphi^{(k)}(x)$ сходится равномерно на $[\alpha,\beta]$, а значит, последовательноть $y^{(k)} \xrightarrow[k \to \infty]{[\alpha,\beta]} y(x)$.

Для всякого $x \in [\alpha, \beta]$ предельная функция y(x) непрерывна по теореме Стокса"— Зайделя и точка (x, y(x)), являясь предельной, содержится в \overline{H} . Следовательно, $\int_{x_0}^x f(s, y(s)) \, \mathrm{d} s$ существует.

Рассмотрим равенство (43), устремив в нём k к бесконечности. Тогда слева получим y(x), а справа

$$\int_{x_0}^x f(s, y^{(k)}(s)) ds \to \int_{x_0}^x f(s, y(s)) ds,$$

т. е. возможен переход к пределу под знаком интеграла.

Таким образом, в правой части (43) тоже можно перейти к пределу, получая формулу

$$y(x) = y^{\circ} + \int_{x_{\circ}}^{x} f(s, y(s)) ds \quad \forall x \in [\alpha, \beta],$$

т. е. y(x) удовлетворяет интегральному уравнению, что равносильно тому, что $y(x) \in ($ является решением) $3K_{(40)}(x_{\circ},y^{\circ})$ на отрезке $[\alpha,\beta]$.

26. Теорема о существовании и единственности решений нормальной системы

Теорема 21 (о существовании и единственности решения). Пусть в системе (40) f(x,y) непрерывна и $f \in \operatorname{Lip}_{u}^{loc}(G)$.

Тогда для любой точки $(x_0, y^0) \in G$ и для любого отрезка Пеано $P_h(x_0, y^0)$ на этом отрезке существует и единственно решение $3K(x_0, y^0)$.

Доказательство.

• Существование.

Возьмём любую точку $(x_0,y^0)\in G$ и найдём для неё отрезок $[\alpha,\beta]$ и компакт \overline{H} из теоремы Пикара.

Сначала построим отрезок Пеано с центром в т. x_0 . Для этого возьмём такие a,b>0, что компакт $\overline{R}=\left\{\;(x,y)\mid \big|\; x-x_0|< a,\; \big\|y-y^0\big\|\leq b\;\right\}\subset G.$

Положим

$$M = \max_{(x,y)\in\overline{R}} \|f(x,y)\|, \quad h = \min\left\{a, \frac{b}{M}\right\}, \alpha = x_0 - h, \quad \beta = x_0 + h$$

Тогда $[\alpha, \beta]$ — это искомый отрезок Пеано $P_h(x_0, y^0)$.

Выберем $\overline{H} = \{ (x,y) \mid \alpha \le x \le \beta, \|y - y^0\| \le b \}$. Тогда $\overline{H} \subset \overline{R}$.

Докажем **индукцией** по $k = 0, 1, \dots$, что

$$\forall x \in [\alpha, \beta] \quad \left\| y^{(k)}(x) - y^0 \right\| \le b \tag{45}$$

Тогда точка $(x, y^{(k)}(x))$ попадёт в компакт \overline{H} , что позволит определить пикаровское приближение $y^{(k+1)}$ на всём отрезке Пеано $[\alpha, \beta]$.

- По определению, $({}^{(0)}x)\equiv y^0$, поэтому **база** очевидна.
- Допустим, что неравенство (45) верно. Тогда для любого $x \in [\alpha, \beta]$

$$\left\| y^{(k+1)}(x) - y^0 \right\| = \left\| \int_{x_0}^x f(s, y^{(k)}(s)) \, ds \right\| \le \left| \int_{x_0}^x \left\| f(s, y^{(k)}(s)) \right\| \, ds \right|$$

Но согласно (45) точка $(s,y^{(k)}(s)) \in \overline{H} \subset \overline{R}$, поэтому под знаком интеграла $||f|| \leq M$ и $||y^{(k+1)}(x) - y^0|| \leq M|x - x_0| \leq Mh \leq b$.

• Единственность

Докажем от противного.

Предположим, что существует ещё одно решение $\widetilde{y}(x)$ с теми же начальными данными, т. е. $\widetilde{y}(x_0) = y^0$, определённое на некотором интервале $(\widetilde{\alpha}, \widetilde{\beta}) \ni x_0$.

Пусть [a,b] — отрезок, на котором определены оба решения. Достаточно показать, что на (a,b) решения y(x) и $\widetilde{y}(x)$ совпадают.

Используя интегральную формулу для любого $x \in (a,b)$ запишем разность этих решений:

$$y(x) - \widetilde{y}(x) = \int_{x_0}^x \left(f(s, y(s)) - f(s, \widetilde{y}(s)) \right) ds$$

При этом, существует такой компакт $\overline{H} \subset G$, что для всякого $s \in [a,b]$ точки $(s,y(s)), (s,\widetilde{y}(s)) \in \overline{H}$.

По условию теоремы в области G для функции f(x,y) выполняется локальное условие Липшица. А значит, по лемме о связи между локальным и глобальным условиями Липшица функция $f \in \operatorname{Lip}_y^{gl}(\overline{H})$ и L — глобальная константа Липшица. Поэтому

$$||y(x) - \widetilde{y}(x)|| \le \left| \int_{x_0}^x ||f(s, y(s)) - f(s, \widetilde{y}(s))|| \, \mathrm{d}s \right| \le L \left| \int_{x_0}^x ||y(s) - \widetilde{y}(s)|| \, \mathrm{d}s \right|$$

Применяя следствие из теоремы Гронуолла с $\mu = L$ заключаем, что $\|y(x) - \widetilde{y}(x)\| \stackrel{(a,b)}{=\!=\!=\!=} 0$. Тогда $y(x) - \widetilde{y}(x) \stackrel{(a,b)}{=\!=\!=\!=} 0$.

Следствие. G является областью единственности.

27. Линейные системы, теоремы о существовании, единственности и продолжимости решений линейных систем

Определение 19. Система (40) называется линейной, если она имеет вид

$$\begin{cases} y_1' = p_{11}(x)y_1 + \dots + p_{1n}(x)y_n + q_1(x) \\ \dots \\ y_n' = p_{n1}(x)y_1 + \dots + p_{nn}(x)y_n + q_n(x) \end{cases}$$
(46)

или в векторной записи

$$y' = P(x)y + q(x)$$

где функции $p_{ij}(x)$ и $q_i(x) \in \mathcal{C}((a,b))$.

Другая формулировка. Нормальная система является линейной, если f(x,y) = P(x)y + q(x), а $G = (a,b) \times \mathbb{R}^n$.

Теорема 22 (о существовании и единственности решений линейных систем). Для любой точки $x_0 \in (a,b)$, для любого вектора $y^0 \in \mathbb{R}^n$ и для любого отрезка Пеано $P_h(x_0,y^0)$ существует и единственно решение $3\mathrm{K}_{(46)}(x_0,y^0)$, определённое на $P_h(x_0,y^0)$.

Доказательство. Поскольку функция $f(x,y) \in \mathcal{C}(G)$ и $f_y'(x,y) = P(x) \in \mathcal{C}(G)$, а значит, $f \in \operatorname{Lip}_y^{loc}(G)$, к системе (46) применима предыдущая теорема.

Теорема 23 (о продолжимости решений почти линейных систем). Любое решение почти линейной системы продолжимо на интервал (a,b).

Доказательство. Рассмотрим произвольное решение почти линейной системы $y = \varphi(x)$, заданное на

максимальном интервале существования (α, β) . Для всякого $x_0 \in (\alpha, \beta)$ по интегральной формуле,

$$\varphi(x) \stackrel{(\alpha,\beta)}{=\!=\!=\!=} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) ds$$

$$\implies \|\varphi(x_0)\| + \left| \int_{x_0}^x \|f(s,\varphi(s))\| \, \mathrm{d}s \right| < \|\varphi(x_0)\| + \left| \int_{x_0}^x \left(L(s) + M(s) \|\varphi(s)\| \right) \, \mathrm{d}s \right|$$

Если $\beta < b$, то отрезок $[x_0, \beta] \subset (a, b)$, и в силу непрерывности функций L и M имеем:

$$L(x) \le L_0, \quad M(x) \le M_0 \qquad \forall x \in [x_0, \beta]$$

Поэтому

$$\|\varphi(x)\| \le \|\varphi(x_0)\| + L_0(\beta - x_0) + M_0 \left| \int_{x_0}^x \|\varphi(s)\| \, \mathrm{d}s \right|$$

По лемме Гронуолла

$$\|\varphi(x)\| \le \left(\|\varphi(x_0)\| + L_0(\beta - x_0)\right) e^{M_0(\beta - x_0)} \quad \forall x \in [x_0, \beta],$$

что противоречит теореме о поведении интегральной кривой полного решения.

Аналогично рассматривается случай, когда $\alpha > a$.

Теорема 24 (о продолжимости решений линейных систем). Любое решение линейной системы (46) продолжимо на интервал (a,b).

Доказательство. Покажем, что линейная система является почти линейной. Положим

$$p_0(x) := \max_{i,j=1,n} \{ |p_{ij}(x)| \}, \qquad q_0 := \max_{i=1,n} \{ |q_i(x)| \}$$

Тогда функции $p_0(x), q_0(x) \in \mathcal{C}(a, b)$.

Оценим сверху компоненты правой части системы (46):

$$|f_i(x,y)| = |p_{i1}(x)y_1 + \dots + p_{in}(x)y_n + q_i(x)| \le \sum_{j=1}^n |p_{ij}(x)| \cdot |y_j| + |q_i(x)| \le \sum_{j=1}^n p_0(x)|y_j| + q_0(x) \le np_0(x) \max_{j=\overline{1,n}} |y_j| + q_0(x)$$

По определению нормы $||f(x,y)|| \le np_0(x) ||y|| + q_0(x)$, т. е. система (46) почти линейна.

28. Малые возмущения начальных данных по параметру, рассуждение о сдвиге

TODO: Понять эти бредни о сдвиге TODO: Дальше нет...

- 29. Теорема о непрерывной зависимости решений от начальных данных и параметра
- 30. Теорема о дифференцируеости решений по начальным данным
- 31. Теорема о дифференцируемости решений по вектору параметров
- 32. Теорема о многократной дифференцируемости решения по начальным данным и параметру
- 33. Теорема Ляпунова–Пуанкаре о разложении решения в ряд по степеням начальных данных и параметра
- 34. Теорема о разложении решения в ряд по степеням малого параметра
- 35. Теорема Коши об аналитичности решения по независимой переменной
- 36. Теорема об аналитичности решения ЛНС по независимой переменной