Vaja 47: Sila med ploščama kondenzatorja

Matevž Demšar

5. maj 2024

Uvod. Pri vaji opazujemo silo med ploščama kondenzatorja pri različnih napetostih med ploščama. Silo med ploščama kondenzatorja opisuje enačba

$$F = eE$$

Naboj na plošči lahko izrazimo kot e=CU, gostoto električnega polja pa kot E=U/2d. Silo med ploščama lahko torej izrazimo z napetostjo kot

$$F = \frac{\varepsilon_0 S}{2d^2} U^2$$

Z merjenjem sile v odvisnosti od napetosti moremo torej izračunati električno konstanto ε_0 .

Meritve. Poleg meritev sil in napetosti potrebujemo tudi površino plošč in razdaljo med njima.

$$\begin{split} S &= \pi r^2 \\ r &= 9,5 \ cm \pm 0,1 \ cm \\ d &= 0,5 \ cm \pm 0,1 \ cm \\ S &= 28,3 \times 10^{-3} \ m^2 \pm 0,6 \times 10^{-3} \ m^2 \end{split}$$

Silo med ploščama izmerimo kar s tehtnico, kar pomeni, da moramo izmerjene vrednosti pomnožiti s težnim pospeškom $g=9,81~m/s^2$. Električno konstanto izračunamo iz koeficienta premice, ki jo priredimo točkam na grafu $F(U^2)$. Če koeficient označimo s k, jo izrazimo z enačbo:

$$\varepsilon_0 = \frac{k \cdot 2d^2}{S}$$

$$k = 1,5 \times 10^{-8} (1 \pm 0,1)$$

 $\varepsilon_0 = 2,6 \times 10^{-9} F/m \pm 1,4 \times 10^{-9} F/m$

m [g]	U[V]
1,5	720
1,4	690
1,3	570
1,2	530
1,1	550
1,0	370
0,9	280
0,8	130
0,6	20

Slika 1: Podatkom priredimo premico. Za izračun ε_0 potrrebujemo njen smerni koeficient k, ki ga pythonova knjižnica scipy.optimize oceni na $1,5\times 10^{-8}$ z relativno napako 10%.

Primerjava z znano vrednostjo. Znano vrednost ε_0 lahko izračunamo po formuli

$$\varepsilon_0 = \frac{1}{c^2 \, \mu_0},$$

v kateric predstavlja svetlobno hitrost $c=2,998~m/s,~\mu_0$ pa indukcijsko konstanto z znano vrednostjo $\mu_0=4\pi\times 10^{-7}~Vs/Am$

Izmerjena vrednost: $\varepsilon_0 = 26 \times 10^{-12} \ F/m$ Izračunana vrednost: $\varepsilon_0 = 8,85 \times 10^{-12} \ F/m$

Izmerjena vrednost je približno trikrat večja od izračunane. Odstopanje ni v okviru ocenjene merske napake