

Tema-1-Ejercicios-OE-Resueltos.pdf

CarlosGarSil98

Fundamentos de análisis de algoritmos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingeniería Universidad de Huelva

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Continúa do

Ver mis op

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

2. EJERCICIOS RESUELTOS.

2.1. Calcular el número de operaciones elementales del siguiente fragmento de programa C++. (Es posible que un algoritmo realice las mismas operaciones en todos los casos (por la ausencia de ramas condicionales o por su equivalencia en operaciones)).

Vemos que no existen casos diferenciados, por lanto C.mejor= C.medio = C.peor

T(n) = inicialización + condición + \(\sigma \) ciclo + salto Triclo = cuerpo + incremento + salto + condición

$$T_{ciclo} = 4 + 2 + 4 + 4 = 8$$

 $T(n) = 4 + 4 + \sum_{i=0}^{n-4} (8) + 4$
 $T(n) = 8n + 3$

2.2. Calcular el número de operaciones elementales (OE) del procedimiento sumador utilizando como tamaño de la entrada el valor del argumento.

```
procedimiento sumador(n)
                                      funcion factorial(n)
      i=1:
                                            aux=1:
      s=0:
                                            i=n;
      mientras i ≤2*n hacer
                                            mientras i >0 hacer
             s=s*factorial(i);
                                                   aux=aux*i;
             i=i+1;
                                                   i=i-1;
      fmientras
                                             fmientras
fprocedimiento
                                             devolver aux
                                      ffunción
```

```
Tractorial = asignacion + asignación + N veces · (condición + (asignación + multiplicación + asignación + resta) + salto ) + salto + devolver

Tractorial = 2 + 6N + 2 = 6N + 4

Trumador = asignación + asignación + \sum_{i=1}^{2N} \left( \text{comparación + multiplicación} \right) + \text{asignación + multiplicación + Mamada + Tractorial + asignación + salto} + \text{asignación + multiplicación + salto}

Trumador = 2 + \sum_{i=1}^{2N} \left( 8 + 6i + 4 \right) + 3 = 5 + 2N \left( 8 + 4 \right) + \sum_{i=1}^{2N} \left( 6i \right) = 24N + 5 + \sum_{i=1}^{2N} 6i

Trumador = 24N + 5 + 6 \frac{(2N+4)(2N-4+4)}{2} = 24N + 5 + 3(2N+4) + 2N = 24N + 5 + 6N (2N+4)

Trumador = 24N + 5 + 42N<sup>2</sup> + 6N; Trumador = 42N<sup>2</sup> + 30N + 5
```


2.3. Calcular el número de operaciones elementales (OE) del procedimiento de ordenación por inserción. Realizar el análisis del caso peor.

1.	procedimiento inserción(T[1n]	Línea	Operación: nº de veces
2.	para i← 2 hasta n hacer	2 2	Asignación inicial:1 vez (y salto)
3.	$x \leftarrow T[i]$	2	Condición bucle: n veces Incremento de i: n-1 veces (y salto)
4.	j ← i-1	3,4,9	n-1 veces
5.	mientras j $>$ 0 AND x $<$ T[j] hacer	' '	
6.	T[j+1] ← T[j]	5	Condición del bucle: $\sum_{i=2}^{n} i$ veces
7.	j ← j-1	6,7	$\sum_{i=2}^{n}(i-1)$ veces
8.	fmientras		
9.	T[j+1] ← x		
10.	fpara		
11.	fprocedimiento		

Complejidad del algoritmo en el caso peor:

$$T(n) = \text{inicialización} + \text{condición} + \sum_{i=2}^{n} \left(\text{ as:gnación + acceso + asignación + resta + Tmientras + } \right. \\ + \text{ suma + acceso + asignación + incremento + salto + condición } + \text{ salto}$$

$$T_{\text{mientras}} = \text{condición} + \sum_{j=i-1}^{4} \left(\text{ suma + acceso + asignación + acceso + asignación + } \right. \\ + \text{ resta + salto + condición } + \text{ salto}$$

$$T_{\text{mientras}} = 4 + \sum_{j=i-4}^{4} \left(A_1 \right) + A = 5 + \sum_{j=i-4}^{4} A_1 \\ T(n) = 2 + \sum_{i=2}^{n} \left(4 + \left(5 + \sum_{j=i-4}^{4} A_1 \right) + 3 + 2 + 2 \right) + A$$

$$T(n) = 3 + \sum_{i=1}^{n} \left(A_1 + \sum_{j=i-4}^{4} A_1 \right) = 3 + \sum_{i=2}^{n} \left(A_1 + A_1 \left(A_1 - A_1 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_1 \left(A_1 - A_1 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_1 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_1 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_1 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_2 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_2 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_2 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 + A_2 \left(A_1 - A_2 \right) \right) = 3 + \sum_{i=1}^{n} \left(A_1 - A_2 \right) = 3 + A_2 \left(A_1 - A_2 \right) = 3 + A_3 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_2 \right) = 3 + A_4 \left(A_1 - A_4 \right) = 3$$

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

Rocio

pony

2.4. Obtener la complejidad del procedimiento de ordenación por inserción por el método de la instrucción característica. Realizar el análisis del caso peor.

```
procedimiento inserción(T[1..n]
1.
           para i← 2 hasta n hacer
2.
               x \leftarrow T[i]
3.
               j ← i-1
4.
5.
               mientras j>0 AND x < T[j] hacer
                   \mathsf{T[j+1]} \leftarrow \mathsf{T[j]}
6.
7.
                   j ← j-1
8.
               fmientras
               T[j+1] \leftarrow x
10.
           fpara
```

Utilizamos como instrucción característica la comparación del bucle mientras en la línea 5. Ésta instrucción se ejecuta i veces en cada iteración del bucle para

Complejidad del algoritmo en el caso peor:

fprocedimiento

El peor caso scria cuando el bucle mientras realita todas las iteraciones posibles, es decir, que se realizan todas las comparaciones de la condición, desde i=2 hasta n, como dicta el buele para.

$$T_{i,critica} = \sum_{i=1}^{n} i = \frac{(n+2)(n-2+4)}{2}$$

$$T_{i,critica} = \frac{n^2 - n + 2n - 2}{2} = \frac{n^2}{2} + \frac{n}{2} - 1$$

2.5. ALGORITMO DE BÚSQUEDA SECUENCIAL.

Para determinar el tiempo de ejecución, calculamos primero el número de operaciones elementales (OE) que se realizan:

líneas	<pre>int BusquedaSecuencial (int T[],int n,int valor)</pre>	nº OE	
1. 2. 3. 4.	<pre>{ int i=1; while (T[i] != valor && i<n) i="i+1;" pre="" {="" }<=""></n)></pre>	1 4 2	asignación Cond.Bucle(2comp.,1 acceso vector, 1 lógica) incremento y asignación
5. 6. 7.	<pre>if (T[i]==valor) return i; else return 0; }</pre>	2 1 1	1 condición y 1 acceso al vector si la condición se cumple cuando la condición es falsa.

como observamos, dependiendo de la ejecución del buele while, obtendremos un número de operaciones u otro, por tanto nos encontramos con una súlvación de varios casos:

caso peor: Cuando el bucle se ejecuta todas las veces posibles.

T(n) = asignación + Twhile + Tif

Twhile = condición + $\sum_{i=1}^{h}$ (asignación + suma + salto + condición) + salto

Tif = condición + devuelve

En este ejemplo da igual el if o el el se ya que ambos

son el mismo número de OE, si no usor el que magor OE tenga

Twhile =
$$4 + \sum_{i=4}^{n} (3+4)+4 = 5 + \sum_{i=4}^{n} 7 = 5 + (7n-4+4) = 7n+5$$

Tit = 2+4=3
T(n) = 4 + (7n+5) + 3 = 7n+9

caso medio: Cuando el bucle se ejecuta la mitad de las veces posible.

T(n) = asignación + Twhile + Tif

Twhile = condición + $\sum_{i=1}^{n/2}$ (asignación + suma + salto + condición) + salto

Tit = condición + devuelve = En este ejemplo da igual el if o el el se ya que ambos

son el mismo número de OE, si no vsor el que magor OE tenga.

$$T_{\text{while}} = 4 + \sum_{i=4}^{n/L} (3+4) + 4 = 5 + \sum_{i=4}^{n/L} 7 = 5 + (\frac{7}{2}n - 4 + 4) = \frac{7}{2}n + 5$$

$$T_{i+1} = 2 + 4 = 3$$

$$T_{(n)} = 4 + (\frac{7}{2}n + 5) + 3 = \frac{7}{2}n + 9$$

caso mejor: Donde el buele while solo ejecuta la condición y salta a la siguiente instrucción, ya que no se comple la condición.

T(n) = asignación + condición + salto + condición (if) + deuvelve<math>T(n) = 4 + 4 + 4 + 2 + 4 = 9

2.6. ALGORITMO DE ORDENACIÓN POR BURBUJA

Para obtener el tiempo de ejecución, calcularemos primero el número de operaciones elementales (OE) que se realizan:

líneas	<pre>void burbuja(int T[],int n)</pre>	nº OE			
	{				
	int i, j;				
	int aux;				
1)	for (i = 1; i < n - 1; i++) {	2,2,1	en cada iteración del bucle (ciclo i): (2condición+2incremento+1salto)		
2)	for (j = n; j > i ; j) {	1,2,1	en cada iteración del bucle (ciclo j): 1condición+ 2incremento+ 1salto		
3)	if (T[j] < T[j-1]) {	4	1 resta, 2 accesos a un vector, 1 comparación		
4)	aux = T[j] ;	2	a 6) sólo se ejecutan si se cumple la condición y realizan un total de 9 OE		
5)	T[j] = T[j-1];	4			
6)	T[j-1] = aux;	3			
	}				
	} // bucle j	1,1,1	por la salida del bucle(inicialización+condición+salto)		
	} // bucle i	1,2,1	por la salida del bucle(inicialización+condición+salto)		
	}				

El tiempo del algoritmo será el de ejecución de la única instrucción que tiene, el bucle para i:

observando el algoritmo, nos damos eventa que en función de las veces que se ejecuten las instrucciones del bloque if tendremos diferentes casos:

caso mejor: no se comple la condición del if

Twelez = inicialización 2 + condición 2 +
$$\sum_{j=n}^{i}$$
 (condicion 3 + decremento + salto + condición 2) + salto

Thucker = 1+1+
$$\sum_{j=n}^{i} (4+2+1+1)+1 = 3+\sum_{j=n}^{i} 8 = 3+8(i+1) = 8i+11$$

$$T(n) = 1 + 2 + \sum_{i=1}^{n-1} ((8i+44) + 2 + 4 + 2) + 4 = 4 + \sum_{i=4}^{n-4} (8i+43)$$

$$T(n) = 4 + 46(n-4) + \sum_{i=4}^{n-4} 8i = 46n - 42 + 8 \frac{(n-4+4)(n-4-4+4)}{2} = 46n - 42 + 4n(n-4)$$

$$T(n) = 46n - 4L + 4n^2 - 4n = 4n^2 - 42n - 42 = 2n^2 - 6n - 6$$

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

caso peor: Las instrucciones del blugue it se ejecutan siempre

$$T(n) = inicialización 1 + condición 1 + \sum_{i=1}^{n-1} \left(T_{incluz} + incremento + salto + condición \right) + salto$$

$$T_{incluz} = inicialización 2 + condición 2 + \sum_{j=n}^{i} \left(T_{ij} + decremento + salto + condición 2 \right) + salto$$

Tif= condición3 + asignación + acceso + acceso + asignación + acceso + resta + + acceso + resta + asignación

Threlet = 4+4+
$$\sum_{j=n}^{i} (43+2+4+4)+4 = 3+\sum_{j=n}^{i} 47 = 3+47(i+4) = 47i+20$$

$$T(n) = 1 + 2 + \sum_{i=1}^{n-1} ((47i + 20) + 2 + 1 + 2) + 1 = 4 + \sum_{i=1}^{n-4} (17i + 25)$$

$$T(n) = 4 + 25(n-4) + \sum_{i=4}^{n-4} 47i = 25n - 24 + 47 \frac{n(n-4)}{2} = \frac{47}{2}n^2 - \frac{47}{2}n + 25n - 24$$

$$T(n) = \frac{17}{2} n^{2} + \frac{33}{2} n - 24 = \frac{17}{6} n^{2} + \frac{14}{2} n - 7$$

caso medio: cuando el bloque if se ejecuta la mitad de veces

$$T(n) = inicialización 1 + condición 1 + \sum_{i=1}^{n-4} \left(Tircle 2 + incremento + salto + condición \right) + salto$$

$$Tircle 2 = inicialización 2 + condición 2 + \sum_{j=n}^{i} \left(Tir + decremento + salto + condición 2 \right) + salto$$

Tif= condición3 + asignacion + acceso + acceso + asignación + acceso + resta + + acceso + resta + asignación

$$T_{if} = 4 + (2 + 4 + 3)/2 = 4 + \frac{4}{2}$$

Touclet = 1+1+
$$\sum_{j=n}^{i} \left(\left(q + \frac{q}{2} \right) + 2 + 4 + 1 \right) + 4 = 3 + \sum_{j=n}^{i} 25 / 2 = \frac{25}{2} i + \frac{34}{2}$$

$$T(n) = 4 + 2 + \sum_{i=4}^{n-4} \left(\frac{25}{2} i + \frac{34}{2} + 2 + 4 + 2 \right)_{+4} = 4 + \sum_{i=4}^{n-4} \left(\frac{25}{2} i + \frac{44}{2} \right)$$

$$T(n) = 4 + \frac{44}{6}n - \frac{44}{6} + \sum_{i=4}^{n-4} \frac{25}{6}i = \frac{44}{5}n - \frac{33}{2} + \frac{25}{6} \cdot \frac{n(n-4)}{2}$$

$$T(n) = \frac{25}{4} n^{2} - \frac{25}{4} n + \frac{44}{2} n - \frac{33}{2} = \frac{25}{4} n^{2} + \frac{57}{4} n - \frac{33}{2}$$