A Taste of Curry's Paradox

I. Logical Consequence and Motivation

- Logical consequence in formal systems, one constituent: T-scheme
 - o **T-Scheme**: $\phi \leftrightarrow Tr[\phi]$
 - O Virtue: Captures intuitions about truth, i.e. what 'true' means

II. Ingredients of C-Curry

• T-Scheme coupled with **Diagonalization Sentence**: $\phi \leftrightarrow (Tr[\phi] \rightarrow \psi)...$

1.	φ	Assume for Conditional Proof
2.	$\phi \to \psi$	1, Substitution via Diagonalization Sentence
3.	Ψ	1,2 MP
4.	$\phi \to \psi$	1-3 Discharge Conditional Assumption
5.	φ	4, Substitution via Diagonalization Sentence
6.	Ψ	4,5, MP

- ...trivializes the formal system.
 - Options: Removing Conditional Proof or Removing Contraction
 - Conditional Proof: If A \vdash B then \vdash (A \rightarrow B)
 - Contraction: If A, A | B then A | B

III. Ingredients of V-Curry

- Logical consequence in formal systems, another constituent: V-Scheme
 - \circ V-Scheme: $\alpha \models \beta \leftrightarrow Val[\alpha, \beta]$
 - o Virtue: Captures intuitions about validity, i.e. what 'follows from' means
 - VI: If $\alpha \vdash \beta$ then $\vdash Val[\alpha, \beta]$

(Validity Introduction 'Rule')

• VE: α , Val[α , β] | β

(Validity Elimination 'Rule')

• VI, VE, coupled with the analogous Diagonalization Sentence: $\alpha \leftrightarrow Val[\alpha, \beta]...$

1.	α	Assume for VI
2.	$Val[\alpha , \beta]$	1, Substitution via Diagonalization Sentence
3.	β	1,2 VE
4.	$\stackrel{\cdot}{\alpha} \rightarrow \beta$	1-3 Discharge VI Assumption
5.	α	4, Substitution via Diagonalization Sentence
6.	β	4,5, VE

- ...trivializes the formal system.
 - o Options Considered (Beall/Murzi): Removing VI or Removing Contraction
 - But, VI is part of the V-Schema (it is validity), reject Contraction!

IV. The Error

- V-Scheme parallels T-Scheme, is intuitive, and captures aspect of Logical Consequence
- However, V-Scheme is not equivalent to VI and VE (pace Beall/Murzi), recall
 - o V-Scheme: $\alpha \vdash \beta \leftrightarrow Val[\alpha, \beta]$
 - o VI: If $\alpha \vdash \beta$ then $\vdash \text{Val}[\alpha, \beta]$
 - ο VE: α , Val[α , β] \vdash β
- However, for equivalence, we must change VI, VE, and V-Scheme, perhaps to...
 - o V-Scheme*: $\alpha \vdash \beta \leftrightarrow \alpha$, Val $[\alpha, \beta]$
 - o VI*: If $\alpha \vdash \beta$ then $\vdash \alpha$, Val $[\alpha, \beta]$
 - O VE*: If α, Val[α, β] then $\alpha \vdash \beta$
- ...or change VE to...
 - VE#: If Val[α , β] then $\alpha \vdash \beta$
 - However, either option precludes V-Curry (for the same reason, no way to discharge assumptions, only substitutions!)

V. Conclusion

- Beall/Murzi attempt to motivate rejecting Contraction by showing the high cost of rejecting the alternative (VI corresponding to Conditional Proof)
 - o Yet, they mischaracterize the V-Scheme
 - o Thus, the motivation is no motivation at all
- C-Curry is still on the menu, but V-Curry has been removed as logically unappetizing

***VI. Supplement

- Despite the above, there are good reasons to reject Contraction
 - o Avoids paradoxes other than C-Curry
 - o Formal systems with Contraction Conditions (C1-C4) are susceptible to paradox

C1 : A→B	- A \(\phi \) B
C2: A, A \(\phi \)	B - B

C3:
$$A \phi (A \phi B) \vdash A \phi B$$

C4: If $A \vdash B$ then $\vdash A \phi B$

- 1. A Assumption for C4
- 2. A ϕ B 1, Substitution with Diagonalization Sentence: A \leftrightarrow (A ϕ B)
- 3. B 1, C2
- 4. A φ B 1-3 Discharge C4
- 5. A 4, Substitution of Diagonalization Sentence: A \leftrightarrow (A ϕ B)
- 6. B 4,5 C2
 - Despite the above, there may be good reasons *not* to reject Contraction
 - We may also have to abandon **Cantor's Theorem**...