Taylorserier

Definition

$$T[f(x)] = \sum_{k=0}^{n} \frac{D^{k}[f(a)] \cdot (x-a)^{k}}{k!} = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^{2}}{2} + \frac{f^{(3)}(a)(x-a^{3})}{6} + \dots$$

Betekningar

Taylorserie: T[f(x)]

Maclaurinserier

Definition

$$M[f(x)] = \sum_{k=0}^{n} \frac{D^{k}[f(o)]x^{k}}{k!} = f(0) + f'(0)x + \frac{f''(0)x^{2}}{2} + \frac{f^{(3)}(0)x^{3}}{6} + \dots$$

Betekningar

MacLaurinserie: M[f(x)]

Funktion	Serie		
e^x	$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$	För alla x
$\sin(x)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{2k-1}}{(2k-1)!}$	$x - \frac{x^3}{6} + \frac{x^5}{120} - \dots$	För alla x
$\cos(x)$	$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$	$1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots$	För alla x
$\ln(x+1)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$	$-1 < x \leq 1$
$\frac{1}{1-x}$	$\sum_{k=0}^{\infty} x^k$	$1 + x + x^2 + x^3 + \dots$	-1 < x < 1
$\arctan(x)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{2k-1}}{2k-1}$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$	-1 < x < 1
$(x+1)^a$		$1 + ax + \frac{a(a-1)x^{2}}{2} + \frac{a(a-1)(a-2)x^{3}}{6} + \dots$	-1 < x < 1