Títulos Públicos Federais

Gestão de Títulos de Renda Fixa

André Borges Catalão

Versão: 08/03/2020

Primeira versão: 15/02/2020

1 Introdução

Apresentamos a forma de cálculo do Preço Unitário (PU), no mercado secundário dos seguintes títulos públicos fererais: LFT, LTN, NTN-F e NTN-B. O calendário usado no apreçamento é o de dias de linha do Banco Central do Brasil (BACEN).

Analisamos também como apurar o resultado de um investimento em cada título e os riscos envolvidos.

Iniciamos com a considerações sobre terminologias do mercado financeiro acerca da negociação de taxa e preço.

2 Terminologia do Mercado de Juros

No mercado de juros, a rigor, quando se diz estar "comprado" é necessário especificar se o objeto de negociação é taxa ou preço, dado que a relação entre eles (menos da LFT, como veremos) é inversa, pois o preço P consiste, de forma simples, no desconto de um fluxo F futuro por uma taxa de juros tx, a saber

$$P = \frac{F}{(1+tx)^T} \tag{1}$$

Intuitivamente, quando compramos (vendemos) algo, esperamos que seu valor suba (desça) ao longo de um prazo. Diante da natureza inversa entre taxa e preço, conforme a equação (1), se compramos (vendemos) taxa, esperando que a mesma suba (desça) ao longo do tempo, vendemos (compramos) preço.

Um segundo termo equivalente a vender (comprar) taxa é "dar taxa" ("tomar taxa"). Diz-se, portanto, que a instituição que o fez está "dada" ("tomada"). Esta terminologia vem do mercado de empréstimos: quando uma instituição (e.g. banco) concede ("dá"...) um empréstimo em t_0 a uma contraparte (e.g. um cliente), a primeira espera receber de volta o dinheiro corrigido pela taxa de juros pré-contratada ("taxa pré") na data de vencimento t_V . Ainda, diz-se que está "aplicada", pois, de fato, aplicou seu dinheiro em um empréstimo. Mais do que isso, para considerar que a operação tenha sido boa, a instituição concessora espera que o valor final recebido (isto é, o dinheiro inicial corrijido pelos juros pré-contratados) da contraparte seja maior que a correção

pela taxa de juros realizada a posteriori ("taxa pós") da data inicial do empréstimo, ou seja, durante o prazo em que ele esteve em vigor; obtida pela composição de taxas diárias (overnight rates) $tx_i^{over}(aa)$ praticadas na economia durante esse prazo (anualizado) $T = DU(t_0, t_V)/252$ da operação, conforme

$$(1 + tx_{pós}(aa))^T = \prod_{i=0}^{V} (1 + tx_i^{over}(aa))^{1/252}$$
(2)

Então, a operação foi boa para a concessora de empréstimo se $(1 + tx_{pré}(aa))^T > (1 + tx_{pós}(aa))^T$, ou, de forma mais simples, se $tx_{pré}(aa) > tx_{pós}(aa)$, dado que o período de comparação é o mesmo. Em resumo, quem "dá taxa" ("toma taxa"), espera que a mesma caia (suba). Por conseguinte, quem está "dado" ("tomado") está comprado (vendido) em preço. A tabela abaixo resume essa terminologia.

Visão Sobre o Valor Futuro do Objeto \downarrow \ Objeto \rightarrow	Taxa	Preço
elevação	compra, toma	compra
queda	vende, dá, doa, aplica	vende

Tabela 1: Resumo da terminologia de mercado para taxa e preço. Dada a relação inversa, a formatação igual (negrito ou itálico) indica a equivalência.

3 Metodologia Geral de Apuração de Resultado

Considere o preço $P(t_0)$ operado na data t_0 e queremos saber o resultado acumulado (P&L, profit and loss) da operação em $t > t_0$, dado o preço de mercado em t, P(t). De forma simples, o P&L é uma comparação entre o preço operado e o preço a mercado,

$$P\&L_t = Q \times (P(t) - P(t_0)), \qquad (3)$$

onde Q é a quantidade operada, com Q > 0 (Q < 0) para uma posição comprada (vendida) em preço. Mas, é costume usar um custo de oportunidade, representado pela taxa de juros da economia. Este custo representa o investimento alternativo em taxa livre-de-risco (risk-free rate) em que se poderia ter aplicado o dinheiro gasto na transação $Q \times P(t_0)$. Além do custo de oportunidade, também é usual uma tesouraria usar um custo de captação (que pode ser pré-contratado para

o período da operação) de dinheiro, dado que a mesma capta dinheiro para aplicar em outra operação. Fazendo a opção pelo custo de oportunidade,

$$P\&L(t_0,t) = Q \times (P(t) - P(t_0) \times f_{rf}(t_0,t)), \qquad (4)$$

onde $f_{rf}(t_0,t) = (1+tx_{rf}^{ef}(t_0,t))$ é o fator de juros obtido pela composição de taxas *risk-free* diárias, tx_i^{rf} ,

$$f_{rf}(t_0,t) = (1 + tx_{rf}^{ef}(t_0,t)) = \prod_{i=t_0}^{t} \left(1 + tx_i^{rf}(aa)\right)^{1/252}.$$
 (5)

e $tx_{rf}^{ef}(t_{0},t)$ é a taxa efetiva no período $(t_{0},t).$

No mercado interbancário, é comum usar o cdi como taxa livre-de-risco, mas no mercado de títulos públicos, pode-se usar a selic diária [Selic Diria]. Esta será a taxa que adotaremos daqui em diante neste documento.

No caso de pagamentos intermediários - de cupons, por exemplo- podemos incorporar ao resultado um reinvestimento à taxa livre-de-risco, à medida que os mesmos são recebidos. Então,

$$P\&L(t_0, t) = Q \times \left(P(t) + \left(\sum_{i=t_j}^{t} F_j \times f_{rf}(t_j, t)\right) - P(t_0) \times f_{rf}(t_0, t)\right)$$
(6)

em que F_j é o j-ésimo fluxo recebido em $t_0 < t_j < t$.

4 Regras de Truncagem e Arredondamento

Variáveis Títulos	Prefi	xados	Índices	Taxa SELIC	
	LTN	NTN-F	NTN-B	NTN-C	LFT
Taxa de Retorno (% a.a.) 1	T-4/I-4	T-4/I-4	T-4/I-4	T-4/I-4	T-4/I-4
Juros Semestrais (%)		A - 5	A - 6	A - 6	
Fluxo de Pagamentos Descontados		A - 9	A - 10	A - 10	
Cotação			T - 4	T - 4	T - 4
Valor Nominal Atualizado (VNA) ²			T-6/I-6	T-6/I-6	T-6/I-6
Valor Nominal Atualizado (VNA) Projeções		-	T - 6	T - 6	T - 6
Fator Acumulado da Taxa SELIC ³		-			A - 16
Projeções			A - 2	A - 2	
Fator Pro Rata (Projeções)			T - 14	T - 14	
Variação Mês Oficial			T - 16	T - 16	
Exponencial de Dias	T - 14	T - 14	T - 14	T - 14	T - 14
Preço Unitário (PU) 4	T-6/I-6	T-6/I-6	T - 6	T - 6	T - 6
Valor Financeiro (R\$)	T - 2	T - 2	T - 2	T - 2	T - 2

Obs.:T = Truncado;A = Arredondado; I = Informado

Figura 1: Regras de manuseio de casas decimais para títulos públicos federais. Fonte: Anbima [Clculo - Anbima].

$5 \quad LTN$

A Letra do Tesouro Nacional (LTN) paga o Valor Nominal (VN) de resgate de R\$1.000,00 no vencimento t_V . Trata-se, então, de uma obrigação pré-fixada, de forma que o PU que se paga na data da compra representa um desconto do valor de resgate, e a rentabilidade, expressa na taxa anualizada tx, corresponde à diferença entre o PU pago e o valor de resgate.

$$PU = \frac{1000}{\left(1 + \frac{tx}{100}\right)^{DU(t_0, t_V)/252}} \tag{7}$$

onde $DU(t_0, t_V)$ é a quantidade de dias úteis entre a data de liquidação da compra e a de vencimento.

A taxa, em formato percentual, é truncada na $4^{\rm a}$ casa e o PU, truncado na $6^{\rm a}$.

O fator de risco da LTN é a taxa pré, tx. Poderíamos também dizer que a passagem do tempo, mantida a taxa, é um fator determinante da vaiação do PU, mas, dado que o efeito é previsto, não iremos listá-lo como tal. Cabe ao leitor tê-lo em mente.

5.1 Resultado de um investimento em LTN

Usamos (5) para obter

$$P\&L(t_0,t) = Q \times (PU(t) - PU(t_0) \times f_{selic}(t_0,t))$$
(8)

$$f_{selic}(t_0, t) = (1 + tx_{selic}^{ef}(t_0, t)) = \prod_{i=t_0}^{t} (1 + tx_i^{selic}(aa))^{1/252}$$

5.2 Exemplo

Em 07/02/2020, a LTN de 01/07/2020 tem taxa de 4,1400%aa. Calcule seu PU (truncagem na 6^a casa).

Taxa aa, truncada com 4 casas decimais: 4,1400%aa

Número de dias úteis entre 07/02/2020 a 01/07/2020, seguindo o calendário do BCB: 97

$$PU = \frac{1000}{\left(1 + \frac{4,1400}{100}\right)^{\frac{97}{252}}} = \frac{1000}{1,01573722180926} = 984,506601 \tag{9}$$

Títulos Públicos Federais 07/Fev/2020

Papel PR	EFIXADO			300	LTN	- Taxa (% a.a.)/252			
Código	Data	Data de	Tx.		Tx.			Intervalo	Indicativo	
SELIC	Base/Emis	Venciment	Compra	Tx. Venda	Indicativas	PU	Mínimo	Máximo	Mínimo	Máximo
SELIC	são	0	Compra		Inuicativas		(D0)	(D0)	(D+1)	(D+1)
100000	05/01/2018	01/04/2020	4,1592	4,1461	4,1524	994,204711	4,0647	4,2559	4,0577	4,2490
100000	08/07/2016	01/07/2020	4,1448	4,1335	4,1400	984,506601	4,0452	4,2882	4,0224	4,2634
100000	06/07/2018	01/10/2020	4,1875	4,1753	4,1818	974,007672	4,0527	4,4371	4,0080	4,3903
100000	04/01/2019	01/04/2021	4,4270	4,4144	4,4200	952,098769	4,2334	4,7890	4,1628	4,7175
100000	07/07/2017	01/07/2021	4,5968	4,5838	4,5900	939,907279	4,3726	4,9826	4,3019	4,9111
100000	05/07/2019	01/10/2021	4,8057	4,7935	4,8000	926,040797	4,5471	5,1979	4,4872	5,1375
100000	05/01/2018	01/01/2022	4,9957	4,9835	4,9900	912,124033	4,7087	5,3876	4,6592	5,3378
100000	03/01/2020	01/04/2022	5,1768	5,1652	5,1710	897,953340	4,8574	5,5558	4,8271	5,5253
100000	21/06/2018	01/07/2022	5,3217	5,3090	5,3150	883,999111	4,9817	5,6894	4,9616	5,6693
100000	05/04/2019	01/07/2023	5,8209	5,8091	5,8150	826,236492	5,4056	6,1072	5,4466	6,1483
100000	03/01/2020	01/01/2024	6,0047	5,9933	5,9992	797,999605	5,5813	6,2946	5,6314	6,3446

Quando uma taxa for interpolada será apresentada em negrito.

Figura 2: Cotações de mercado de LTN em 07/02/2020. Fonte: Anbima [MercSec-Anbima].

6 NTN-F

A Nota do Tesouro Nacional - Série F (NTN-F), paga o Valor Nominal (VN), de R\$1000, no vencimento (t_V) e n fluxos semestrais de cupons (C_i) pré-fixados, sobre o Valor Nominal, compreendidos entre a data de emissão (t_E) e a data de vencimento. O primeiro fluxo paga os juros semestral, mesmo que o fluxo esteja a menos de 6 meses da data de emissão. Ou seja, os fluxos são montados de 6 em 6 meses a partir da data de vencimento, retroagindo. Se uma data cair em dia não-útil, ela é passada para o primeiro dia útil subsequente. A fórmula para o cupom semestral, truncado na 5^a casa, é

$$C_i = \left[\left(\frac{i}{100} + 1 \right)^{\frac{6}{12}} - 1 \right] \times VN \tag{10}$$

O Preço Unitário (PU), na data de Liquidação (t_0) da compra do título, é obtido descontandose os fluxos futuros com relação à data de liquidação pela taxa interna de retorno y (TIR), truncada na 4^a casa, em formato percentual. O valor presente de cada fluxo é arredondado na 9^a casa.

$$PU = \left[\sum_{i=1}^{n} \frac{C_i}{\left(1 + \frac{y}{100}\right)^{\frac{DU(t_0, t_i)}{252}}} \right] + \frac{VN}{\left(1 + \frac{y}{100}\right)^{\frac{DU(t_0, t_n)}{252}}}$$
(11)

O PU é truncado na $6^{\rm a}$ casa decimal.

O fator de risco de uma NTN-F é a taxa TIR que a desconta. Contudo, na metodologia de risco de mercado, a prática é calcular o preço do título não o descontando pela TIR, mas por uma curva de juros, o que nos leva a escrever (11) como função das taxas $tx(t,t_i)$, em que cada uma desconta o seu respectivo fluxo futuro, pago em t_i , segundo

$$PU(t) = \left[\sum_{i=1}^{n} \frac{C_i}{\left(1 + \frac{tx(t, t_i)}{100}\right)^{\frac{DU(L, t_i)}{252}}} \right] + \frac{VN}{\left(1 + \frac{tx(t, t_n)}{100}\right)^{\frac{DU(L, t_n)}{252}}}.$$
 (12)

de forma que os fatores de risco são as taxas da curva usada para descontar os fluxos¹.

6.1 Resultado de um investimento em NTN-F

 $^{^1}$ A rigor, os fluxos são mapeados em vértices-padrão para tornar o cálculo de risco viável, mas este fator não é importante aqui.

Neste caso, como há pagamento de fluxos intermediários, usa-se (6),

$$P\&L(t_0,t) = Q \times \left(PU(t) + \left(\sum_{i=t_j}^t C_j \times f_{selic}(t_j,t)\right) - PU(t_0) \times f_{selic}(t_0,t)\right)$$
(13)

6.2 Exemplo

Títulos Públicos Federais

Em 07/02/2020, a NTN-F de vencimento 01/01/2021 tem TIR y=4,2850%aa. Os fluxos futuros ocorrem em 01/07/2020 e 04/01/2021, e a taxa de cupom semestral é 10%aa. Assim, a partir de (10), C=48,80885. Temos

$$PU = \frac{48,80885}{\left(1 + \frac{4,2850}{100}\right)^{\frac{97}{252}}} + \frac{48,80885 + 1000}{\left(1 + \frac{4,2850}{100}\right)^{\frac{225}{252}}} = 48,026906175 + 1010,245299562 = 1058,272205$$

07/Fev/2020

Papel PREFIXADO NTN-F - Taxa (% a						EFIXADO NTN-F - Taxa (% a.a.)/252					
Dat:	Data	Data Data de		8	Tx.	2 40 0		Intervalo	Indicativo		
Código SELIC	Base/Emis	Venciment	Tx. Compra	Tx. Venda		licativas PU	Mínimo	Máximo	Mínimo	Máximo	
SELIC	são	0	Сощрга		Indicativas		(D0)	(D0)	(D+1)	(D+1)	
950199	05/02/2010	01/01/2021	4,2913	4,2788	4,2850	1.058,272205	4,1196	4,5978	4,0679	4,5448	
950199	09/03/2012	01/01/2023	5,5550	5,5417	5,5486	1.124,120143	5,1709	5,8716	5,1914	5,8920	
950199	10/01/2014	01/01/2025	6,1424	6,1288	6,1350	1.166,632639	5,7207	6,4356	5,7799	6,4945	
950199	15/01/2016	01/01/2027	6,4567	6,4430	6,4500	1.199,567096	6,0308	6,7328	6,1129	6,8145	
950199	05/01/2018	01/01/2029	6,6583	6,6417	6,6500	1.226,589789	6,2141	6,9234	6,3061	7,0148	
950199	10/01/2020	01/01/2031	6,7900	6,7700	6,7783	1.249,377374	6,3237	7,0421	6,4251	7,1428	

Figura 3: Cotações de mercado de NTN-F em 07/02/2020. Fonte: Anbima [MercSec-Anbima].

7 NTN-B

A Nota do Tesouro Nacional - Série B (NTN-B), segue a mesma estrutura de fluxos de cupons e valor nominal que a NTN-F. Contudo, o valor nominal é corrigido, a cada pagamento, pela variação do índice IPCA entre a data-base e o vigente na data de cálculo. O índice é divulgado pelo IBGE, entre o dia 10 e 15 subsequente ao mês de referência, mas passa a valer no dia 15. A

data-base padrão é 15/07/2000. Os juros semestrais são i=6%aa, em geral e vale (10). Temos, respectivamente, o cupom e a cotação

$$C_i = \left[\left(\frac{i}{100} + 1 \right)^{\frac{6}{12}} - 1 \right] \times 100 \tag{14}$$

$$P = \left[\sum_{i=1}^{n} \frac{C_i}{\left(1 + \frac{y}{100}\right)^{\frac{DU(t_0, t_i)}{252}}} \right] + \frac{100}{\left(1 + \frac{y}{100}\right)^{\frac{DU(t_0, t_n)}{252}}}$$
(15)

Para a apuração do PU em uma data de liquidação qualquer, precisamos calcular o Valor Nominal Ajustado (VNA). O Valor Nominal (VN) na emissão denotaremos VNA_E . Temos

Caso 1-Data de liquidação coincide com o 15° dia do mês

$$VNA = \frac{I_{t-1}}{I_E}VNA_E \tag{16}$$

onde

 I_{t-1} : índice do mês anterior ao de referência (mês de referência é aquele em que o preço está sendo calculado);

 I_E : índice do mês anterior à data-base. No caso de a data-base ser 15/07/2000, é o índice de junho, que é divulgado próximo a 15/07/2000, e passa a valer em 15/07/2000.

Caso 2-Data de liquidação entre o dia de divulgação do índice e o $15^{\rm o}$ dia do mês em que a mesma se encontra

$$VNA = \frac{I_{t-2}}{I_E} \left(\frac{I_{t-1}}{I_{t-2}}\right)^{\frac{DU_1}{DU_2}} VNA_E \tag{17}$$

onde

 I_{t-1} : índice do mês anterior ao de referência;

 I_{t-2} : índice de dois meses anteriores ao de referência;

 DU_1 : número de dias entre o 15° dia do mês anterior (inclusive) e a data de liquidação (exclusive);

 DU_2 : número de dias entre o 15° dia do mês anterior (inclusive) e o dia 15 do mês da data de liquidação (exclusive);

Caso 3-Data de liquidação após o dia 15, mas anterior à data de divulgação

$$VNA = VNA_E \frac{I_{t-1}}{I_E} \left(1 + p_t\right)^{\left(\frac{DU_3}{DU_4}\right)}$$
(18)

onde

 p_t : projeção do próximo índice de inflação. Divulgada pela ANBIMA;

 DU_3 : número de dias entre o 15° dia mais recente e a data de liquidação;

 DU_4 : número de dias entre o $15^{\rm o}$ dia mais recente e o próximo;

A: dia 15 do mês 1;

C: dia 15 do mês 2;

B: dia da divulgação do índice do mês 1.

Em [A,B]: caso 3;

Em C: caso 1;

Em [B,C]: caso 2.

Figura 4: Diagrama de divulgação e cálculo de VNA

Agora, a partir da cotação (15) e do VNA, o PU final é dado por

$$PU = VNA \times \frac{P}{100} \tag{19}$$

A taxa TIR que desconta o título é uma taxa real de juros.

7.1 Fatores de Risco e a Equivalência da Taxa Nominal com Taxa Real e Inflação na NTN-B

Para não complicarmos o raciocínio, vamos analisar o valor presente em t, VP_t , de um fluxo F, a ser pago em t_V , que é descontado por uma taxa real $tx_r(t,t_V)$, ao ano. Seu valor, considerando a multiplicação pela correção de inflação entre o período inicial t_0 , de emissão, e a data t é

$$VP_t = \frac{I_t}{I_{t_0}} \frac{F(t_V)}{(1 + tx_r(t, t_V))^T}$$
(20)

onde $T(t,t_V)=du(t,t_V)/252$. Agora, a taxa de retorno de índices de inflação representa a taxa de inflação π no período (t_1,t_2)

$$\frac{I_{t_2}}{I_{t_1}} - 1 = \pi(t_1, t_2)) \tag{21}$$

e a relação entre taxa real $tx_r(t_1, t_2)$, taxa nominal $tx(t_1, t_2)$ e a taxa de inflação (não elevamos ao prazo anualizado a taxa de inflação porque ela já está no período) é

$$(1 + \pi(t_1, t_2)) (1 + tx_r(t_1, t_2))^{T(t_1, t_2)} = (1 + tx(t_1, t_2))^{T(t_1, t_2)}$$

ou

$$\frac{I_{t_2}}{I_{t_1}} \left(1 + tx_r(t_1, t_2) \right)^{T(t_1, t_2)} = \left(1 + tx(t_1, t_2) \right)^{T(t_1, t_2)}. \tag{22}$$

Então, trocando o termo de taxa real em (20) segundo (22),

$$VP_t = \frac{I_t}{I_{t_0}} \frac{I_{t_V}}{I_t} \frac{F(t_V)}{(1 + tx(t, t_V))^T}$$

$$= \left(\frac{I_{t_V}}{I_t}\right) \frac{\frac{I_t}{I_{t_0}} F(t_V)}{(1 + tx(t, t_V))^T}.$$
 (23)

A relação I_t/I_E representa a inflação entre a emissão e a data de valoração; I_t incorpora um accrual de inflação que depende da projeção de inflação do próximo índice a ser divulgado, mas isto não é um risco, pois estamos falando de uma componente representada por uma parte passada,

aceita como a inflação da data t. A multiplicação por I_t/I_E corresponde à correção do VNA_E da NTN-B. Já o termo $I_{t'}/I_t$ é uma inflação futura (que incorpora também o restante da correção da inflação projetada para a próxima data) e, portanto, representa um risco. O outro risco para o valor de marcação é a taxa nominal $tx(t,t_V)$. Assim, o risco de um fluxo descontado pela taxa real tem como risco a mesma (com dependência inversa, que representamos por (-)), mas pode ser também visto como risco de taxa futura de inflação (+) e de taxa pré (-).

Para a NTN-B, poderíamos ter, no caso de desconto por uma curva selic (alternativamente, por uma TIR nominal, ao invés de uma TIR real)

$$P_{t} = \left[\sum_{i=1}^{n} \frac{C_{i}}{\left(1 + \frac{tx_{selic}(t, t_{i})}{100}\right)^{\frac{DU(L, t_{i})}{252}}} \right] + \frac{100}{\left(1 + \frac{tx_{selic}(t, t_{n})}{100}\right)^{\frac{DU(L, t_{n})}{252}}}$$
(24)

$$VNA_t = VNA_E \times \frac{I_t}{I_E}$$

$$PU_t = \left(\frac{I_V}{I_t}\right) \times VNA_t \times \frac{P_t}{100}$$

onde explicitamos que I_V é o índice (projetado) para o vencimento.

7.2 Resultado de uma NTN-B

A taxa de juros diária usada para corrigir um fluxo de uma NTN-B a fim de se apurar o resultado deve ser uma taxa real. Os VNAs de uma NTN-B de mercado e aquele de uma NTN-B da qual se quer apurar o resultado são os mesmos. Então,

$$P\&L(t_0, t) = Q \times VNA_t \times \left(P_t + \left(\sum_{i=t_j}^t C_j \times f_{real}(t_j, t)\right) - P_{t_0} \times f_{real}(t_0, t)\right)$$
(25)

$$VNA_t = VNA_E \times \frac{I_t}{I_E} \tag{26}$$

$$f_{real}(t_a, t_b) = \prod_{i=t_a}^{t_b} \left(1 + tx_i^{real}(aa)\right)^{1/252}$$
 (27)

$$(1 + tx_i^{real}(aa))^{1/252} = \frac{(1 + tx_i^{selic}(aa))^{1/252}}{\frac{I_i}{I_{i-1}}}$$
 (28)

onde $tx_i^{real}(aa)$ é a taxa real diária, anualizada. Desenvolvendo um pouco mais,

$$VNA_t = VNA_E \times \frac{I_0}{I_E} \times \frac{I_t}{I_0} = VNA_0 \times \frac{I_t}{I_0}$$
(29)

$$f_{real}(t_a, t_b) = \frac{1}{\frac{I_b}{I_a}} \prod_{i=t_a}^{t_b} \left(1 + t x_i^{selic}(aa) \right)^{1/252} = \frac{1}{\frac{I_b}{I_a}} \times f_{selic}(t_a, t_b)$$
 (30)

$$\therefore P\&L(t_0,t) = Q \times \left(VNA_t \times P_t + \left(\sum_{i=t_j}^t C_j \times f_{real}(t_j,t)\right) - P_{t_0} \times VNA_0 \times f_{selic}(t_0,t)\right)$$
(31)

7.3 Exemplo

Em 07/02/2020, a NTN-B de vencimento 15/05/2021 tem TIR y=1,0800%aa. Os fluxos futuros ocorrem em 17/05/2021 (360 du), 16/11/2020 (192 du) e 15/05/2020 (65 du). A taxa de cupom semestral é de 6%aa. A partir de (14), C=2,956301. Temos a cotação

$$P = \frac{2,956301}{\left(1 + \frac{1,0800}{100}\right)^{\frac{65}{252}}} + \frac{2,956301}{\left(1 + \frac{1,0800}{100}\right)^{\frac{192}{252}}} + \frac{2,956301 + 100}{\left(1 + \frac{1,0800}{100}\right)^{\frac{360}{252}}}$$

$$= 2,9481210813 + 2,9322040337 + 101,5787528759 = 107,4590$$
 (32)

Para obter a correção do VNA, notamos que 07/02/2020 é a data de divulgação do índice. Trata-se, então, do caso 2, dado por (17)

$$VNA = \frac{5320, 25}{1614, 62} \times \left(\frac{5331, 42}{5320, 25}\right)^{\frac{17}{23}}$$

$$= 3295,04775117365 \times 1,00155139852646 = 3300,159683 \tag{33}$$

Por (19),

$$PU = 3300, 159683 \times \frac{107, 4590}{100} = 3546, 318593$$

Datas de Divulgação IPCA 2020

Confira abaixo as datas previstas para divulgação do IPCA 2020

Período	Data da Divulgação
Dezembro/19	10/01/2020
Janeiro/ 20	07/02/2020
Fevereiro/20	13/03/2020
Março/20	09/04/2020
Abril/20	08/05/2020
Maio/20	10/06/2020
Junho/20	10/07/2020
Julho/20	07/08/2020
Agosto/20	09/09/2020
Setembro/20	09/10/2020
Outubro/20	06/11/2020
Novembro/20	08/12/2020
Dezembro/20	12/01/2021

Figura 5: Datas de divulgação do índice IPCA

IPCA		validade	data de divulgação
mês anterior à data-base (jun2000)	1614,62		
mês anterior à data de liquidação (dez2019)	5320,25	15/01/2020	
mês da data de liquidação (jan 2020)	5331,42	17/02/2020	07/02/2020

du última data de validade e data Liquidação	17,00
du última data de validade e a próxima	23,00
fator pro-rata pós-divulgação	1,00155139852646
VNA anterior	3295,047751000000000000
VNA	3300,159683000

Figura 6: Determinação e fator de correção de inflação em 07/02/2020.

07/Fev/2020

Papel	IPCA				N	TN-B - Taxa (9	% a.a.)/252				
Código	Data	Data de	Tx.		Tx.		Intervalo Indicativo				
SELIC	Base/Emis	Venciment	Compra	Tx. Venda	Indicativas	PU	Mínimo	Máximo	Mínimo	Máximo (D+1)	
	são	0	Compra		macauvas		(D0)	(D0)	(D+1)	Maximo (D+1)	
760199	15/07/2000	15/08/2020	1,4318	1,3743	1,4048	3.470,886843	1,1079	1,9443	1,1301	1,9214	
760199	15/07/2000	15/05/2021	1,0950	1,0697	1,0800	3.546,318593	0,9083	1,2864	0,8883	1,2664	
760199	15/07/2000	15/08/2022	1,7932	1,7680	1,7800	3.730,078085	1,5312	1,9969	1,5260	1,9917	
760100	15/07/2000	15/03/2023	1.77		1,9966	3.766,950769	1,7250	2,1910	1,7515	2,2174	
760199	15/07/2000	15/05/2023	2,0144	1,9809	1,9994	3.754,766579	1,7286	2,1975	1,7579	2,2267	
760199	15/07/2000	15/08/2024	2,3436	2,3151	2,3300	3.902,201213	2,0504	2,5318	2,0804	2,5618	
760199	15/07/2000	15/05/2025	2,5127	2,4838	2,5000	3.903,234163	2,2338	2,6973	2,2539	2,7173	
760199	15/07/2000	15/08/2026	2,6453	2,6179	2,6342	4.043,702160	2,3754	2,8015	2,3996	2,8258	
760199	15/07/2000	15/08/2028	2,8516	2,8225	2,8373	4.165,755266	2,5965	2,9754	2,6238	3,0027	
760199	15/07/2000	15/08/2030	3,0271	2,9985	3,0140	4.262,872365	2,7945	3,1554	2,8184	3,1794	
760199	15/07/2000	15/05/2035	3,2447	3,2125	3,2300	4.423,982860	3,0259	3,3733	3,0439	3,3913	
760199	15/07/2000	15/08/2040	3,4427	3,4056	3,4236	4.621,744929	3,2252	3,5540	3,2365	3,5655	
760199	15/07/2000	15/05/2045	3,5066	3,4758	3,4900	4.710,202409	3,2965	3,6147	3,3026	3,6210	
760199	15/07/2000	15/08/2050	3,5025	3,4729	3,4863	4.924,815094	3,3039	3,6139	3,2988	3,6090	
760199	15/07/2000	15/05/2055	3,5117	3,4770	3,4929	4.995,441811	3,3055	3,6099	3,3055	3,6102	

Quando uma taxa for interpolada será apresentada em negrito.

Os preços unitários são calculados a partir da projeção para o IPCA apurada pela Comitê de Acompanhamento Macroeconômico da ANBIMA para o mês, à exceção do período entre o dia de divulgação do IPCA final e o dia 15 do mês corrente, caso em que é utilizado o próprio índice do mês anterior, divulgado pelo IBGE.

IPCA final para Janeiro: 0,21%

Figura 7: Cotações de mercado de NTN-B em 07/02/2020. Fonte: Anbima [MercSec-Anbima]

8 LFT

O PU da Letra Financeira do Tesouro (LFT) de vencimento V paga a taxa selic diária (overnight) acumulada em um período, compreendido entre a data-base t_B (inclusive) e a data de
liquidação t_L (exclusive). A data-base é, por padrão, definida como 03/07/2000.

A LFT possibilita ao investidor obter o rendimento da taxa selic entre a data de aquisição e a data de venda, a menos de um fator de mercado de deságio ou ágio. Trata-se de um título pós-fixado, portanto.

O valor nominal atualizado (VNA) é dado por

$$VNA = 1000 \times f_{selic}(t_B, t_{L-1}) \tag{34}$$

$$f_{selic}(t_1, t_2) = \prod_{i=t_1}^{t_2} f_i$$
 (35)

$$f_{selic}\left(t_{i}, t_{i+1}\right) \equiv f_{i} \tag{36}$$

$$f_i = (1+s_i)^{1/252} (37)$$

onde s_i é a taxa selic diária, expressa ao ano. Esta é a forma de acumular sem arredondamento. Para aplicar o arredondamento no fator, cada etapa i deve ser arredondada:

$$f_{selic}(t_1, t_n) = round(f_{selic}(t_1, t_{n-1}) \times f_i; A_f)$$
(38)

 $n=2,....\ A_f$ é o número de casas a arredondar o fator $(A_f=8)$

O acumulado final, $f_{selic}\left(t_{B},t_{L-1}\right)$, é arredondado com $A_{a}=16$

$$f_{selic}\left(B, L-1\right) \rightarrow round\left(f_{selic}\left(t_{B}, t_{L-1}\right), A_{a}\right)$$
 (39)

Até aqui, a LFT ofereceria o rendimento acumulado da selic diária no período que o título permanecer com o investidor. No mercado, uma LFT é negociada com ágio (deságio), pagando-se a mais (menos) que o VNA, de acordo com a taxa de retornor - truncada na 4a casa ($T_R = 4$), considerando o formato percentual - que define a cotação C. Esta deve ser truncada na 4a casa ($T_C = 4$).

$$C = \frac{100}{\left(1 + \frac{r}{100}\right)^{T(t_L, t_V)}} \tag{40}$$

De forma que o PU com desconto PU_{disc} , sendo que o desconto pode resultar num ágio, quando r < 0; truncado na 6a casa $(T_{PU} = 6)$ é

$$PU_{disc} = \frac{VNA \times C}{100} \tag{41}$$

8.1 Resultado de LFT

O resultado de uma LFT deve levar em conta no preço de aquisição o fator de ágio ou deságio envolvido na aquisição, ou seja, $PU_{disc}(t_0)$. Já o PU de mercado também envolve o desconto de mercado r(t) na data de valoração t, $PU_{disc}(t)$

$$P\&L(t_0, t) = Q \times (PU_{disc}(t) - PU_{disc}(t_0) \times f_{selic}(t_0, t))$$

$$(42)$$

8.2 Exemplo

Calcule o PU da LFT de vencimento 01/03/2020, com taxa de retorno de r = 0.0031% (deságio), na data de liquidação 07/02/2020, obtendo o valor segundo a tabela abaixo.

Número de dias úteis entre a data de liquidação t_L e o vencimento t_V : 13.

Selic diária acumulada entre 03/07/2000 a 06/02/2020: $f_{selic}\left(t_{B},t_{L-1}\right)=10,5184183877665.$

VNA: $VNA = 1000 \times f_{selic}(t_B, t_{L-1}) = 1000 \times 10,5184183877665 = 10518,4183877665.$

Cotação, a partir do retorno:

$$C = \frac{100}{\left(1 + \frac{0.0031}{100}\right)^{13/252}} = 99,9998$$

PU:

$$PU = 10518, 4183877665 \times \frac{99,9998}{100} = 10518, 397350$$

Títulos Públicos Federais 07//										
Papel PC	OS-SELIC				LFT - Re	entabilidade (%	a.a.)/252			
Código Data					Tx.		, i		Indicativo	
SELIC	Base/Emis são	Venciment	Tx. Compra	Tx. Venda	Indicativas	PU	Mínimo (D0)	Máximo (D0)	Mínimo (D+1)	Máximo (D+1)
210100		01/03/2020			0.0031	10.518,397350	0.0011	0.0058	0.0011	0.0060
210100	01/07/2000	01/09/2020			0,0030	10.518,239573	0,0014	0,0047	0,0013	0,0048
210100	01/07/2000	01/03/2021			0,0054	10.517,818837	0,0013	0,0072	0,0013	0,0072
210100	01/07/2000	01/09/2021			0,0061	10.517,419137	0,0044	0,0084	0,0043	0,0084
210100	01/07/2000	01/03/2022			0,0081	10.516,672329	0,0064	0,0110	0,0065	0,0108
210100	01/07/2000	01/09/2022			0,0114	10.515,347008	0,0092	0,0131	0,0092	0,0131
210100	01/07/2000	01/03/2023			0,0126	10.514,379314	0,0107	0,0160	0,0108	0,0159
210100	01/07/2000	01/09/2023			0,0143	10.513,075030	0,0124	0,0180	0,0124	0,0180
210100	01/07/2000	01/03/2024			0,0176	10.510,950309	0,0136	0,0196	0,0137	0,0196
210100	01/07/2000	01/09/2024			0,0181	10.509,772247	0,0152	0,0202	0,0152	0,0203
210100	01/07/2000	01/03/2025			0,0184	10.508,646776	0,0159	0,0209	0,0160	0,0209
210100	01/07/2000	01/09/2025			0,0185	10.507,637008	0,0162	0,0214	0,0163	0,0214
210100	01/07/2000	01/03/2026			0,0179	10.507,047976	0,0151	0,0225	0,0155	0,0222

Quando uma taxa for interpolada será apresentada em negrito.

Figura 8: Cotações de mercado de LFT em 07/02/2020. Fonte: Anbima [MercSec-Anbima].

Referências

[Clculo - Anbima] Conselho de regulação e melhores práticas de mercado aberto - deliberação No

3. Anbima. Dispon $\{i\}$ vel neste endere $\{c\}$ o.

 $[\mathrm{IPCA\text{-}Histrico}] \qquad \mathrm{\acute{I}ndices} \ \ \mathrm{IPCA} \ - \ \mathrm{IBGE}. \ \ \mathrm{Dispon\{\acute{1}\}vel} \ \ \mathrm{neste} \ \ \mathrm{endere\{\acute{c}\}o}.$

 $[MercSec-Anbima] \ \ Mercado \ secundário \ de \ Títulos \ Públicos. \ Dispon\'\{i\} vel \ neste \ endere\{c\}o..$

[PU-LFT Anbima] Checagem de PU de LFT - Anbima. Dispon $\{i\}$ vel neste endere $\{c\}$ o.

[Selic Diria] Série Selic Diária. Dispon $\{i\}$ vel neste endere $\{c\}$ o.

[Tesouro - Clculo] Metodologia de cálculo de Títulos Públicos - Tesouro. Dispon $\{i\}$ vel neste endere $\{c\}$ o.