APPLICATION OF PATTERN RECOGNITION TO EARLY DETECTION OF SYMPTOMS OF SICKLE CELL PATIENT CRISIS

 \mathbf{BY}

ADEGOKE TOLUWANI B.

(151789)

BEING A PROJECT REPORT SUBMITTED

TO

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING AND TECHNOLOGY
LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY
OGBOMOSO, NIGERIA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF BACHELOR OF TECHNOLOGY (B.TECH)

DEGREE IN COMPUTER SCIENCE

FEBRUARY 2022

CERTIFICATION

This project report with the title "Applica	ation of Pattern Recognition to Early Detection	n o
Symptoms of Sickle Cell Crisis" submitte	ted by ADEGOKE Toluwani B. was carried out in	n the
Department of Computer Science and Eng	gineering, Ladoke Akintola University of Technol	logy
Ogbomoso.		
Prof. A.O. Afolabi	Date	
(Project Supervisor)		
Prof. J.B. Oladosu	Date	
(Head of Department)		

DEDICATION

This Project is dedicated to Almighty God, the creator of all and the knower of all things. If not for His help, this work would not have been successful. All glory, honor and adoration be unto His name.

ACKNOWLEDGEMENTS

I would like to acknowledge God, my Creator for bringing me this far in this journey because without Him, I am nothing.

My supervisor, Professor Afolabi has been really amazing and supportive, so much thanks to him for his love, support and fatherly care. To my H.O.D, Prof. J.B. Oladosu, I am grateful for the privilege and opportunity you've granted me, thank you sir. I am also grateful to every lecturer in the department, without their knowledge and wealth of experience, I wouldn't have come this far. Professor Justice has been a father, he stretched me and made me realize how much I could achieve no matter the time limit, thank you so much sir.

Abdullah, Taiwo and Gabriel have been really awesome, they made working on the project nice, it was such an honor to lead a group of talented individuals in the course of the project.

I would also like to acknowledge Mr. and Mrs. Adegoke, together with my siblings (Oluwatosin, Miracle, Samuel, Esther) who believed in me more than I did in myself. I am also grateful to the Zion family. Clement, for how they were able to contribute one way or the other to the success of my journey in LAUTECH.

TABLE OF CONTENTS

CERTIFICATION	2
DEDICATION	3
ACKNOWLEDGEMENTS	4
TABLE OF CONTENTS	
LIST OF FIGURES	
ABSTRACT	7
CHAPTER ONE	8
INTRODUCTION	8
1.1 Statement of the problem	8
1.2 Background of the Study	9
1.3 Significance of the Study	10
1.4 Aims and Objectives	10
1.5 Methodology	11
1.6 Limitations of Study	12
1.7 Definition of Terms	12
CHAPTER TWO	7
LITERATURE REVIEW	7
2.1 Pattern Recognition	7
2.2 Pattern Recognition Techniques used in Medical Diagnosis	8
2.3 Application of Early Detection of Sickle Cell Crisis System	14
2.4 Overview of Sickle Cell Crisis	22
2.4.1 Types of Sickle Cell Crisis	22
2.4.2 Symptoms of Crisis in Sickle Cell Patients	23
2.5 Early Detection	25
2.6 Related Works	25
CHAPTER THREE	31
METHODOLOGY	31
3.1 Process and Methods	31

3.2 Dataset	41
3.3 Dataset Visualization	42
3.4 Feature Selection	46
3.5 Classification	48
3.6 Model Evaluation	50
3.7 Design	51
3.7.1 State Diagram	51
3.7.2 Communication Diagram	52
3.7.3 UML Sequence Diagram	53
3.7.4 UML Activity Diagram	54
3.7.5 UML Use Case Diagram	55
3.7.6 UML Data Flow Diagram	56
3.7.7 UML Class Diagram	56
3.7.8 HIPO Diagram	57
3.7.9 Flowchart Diagram	62
3.8 Backend and Frontend Development	63
3.8.1 Backend Development	63
3.8.2 Frontend Development	64
3.9 Specification and Configuration	65
CHAPTER FOUR	66
RESULTS AND DISCUSSION	66
4.1 Performance Metrics for Classification Tasks	66
4.2 Performance of Each Model	68
4.3 Web Interface	76
CHAPTER FIVE	81
CONCLUSION AND RECOMMENDATION	81
5.1 Conclusion	81
5.2 Recommendation	81
REFERENCES	83

LIST OF FIGURES

Fig 2.1: A BN for Pneumonia	10
Fig 2.2: Support Vector Machine	12
Fig 2.3: Decision Tree Classifier	13
Fig 2.4: (a) Normal Blood Cell Image (b) Anemic Blood Cell Image	30
Fig.2.5: Objects in cluster after K-Means Clustering based segmentation	31
Fig.2.6: Objects in cluster after Fuzzy C-Means Clustering based segmentation	31
Fig 2.7: Sickle cell admit patient diagnosis pathway and EMR classification process	33
Fig 2.8: Receiver Operating Characteristic (ROC) curve for the ACS class.	34
Fig 3.1: Multinomial Logistic Regression Classification	37
Fig 3.2: Support Vector Machine	38
Fig 3.3: Decision Tree Classifier	39
Fig 3.4: Naive Bayes Classifier	40
Fig 3.5: Random Forest Classifier	42
Fig 3.6: Multilayer Perceptron Classifier	43
Fig 3.7: K Nearest Neighbour Classifier	44
Fig 3.8: A View of the Dataset	46
Fig 3.9: Profile of Sickle Cell Crisis Dataset	47
Fig 3.10: Profile of Sickle Cell Crisis Dataset 2	48

Fig 3.11: Bar Chart Showing the number of records missing from each column	49
Fig 3.12: Heat Map showing the correlation between features in the data.	50
Fig 3.13: Feature Selection Process	52
Fig 3.14:10-Fold cross validation of the blended and tuned model for Model 1	53
Fig 3.15:10-Fold cross validation of the blended and tuned model for Model 2	54
Fig 3.16: State Diagram	55
Fig 3.17: Communication Diagram	56
Fig 3.18: Sequence Diagram	57
Fig 3.19: Activity Diagram	58
Fig 3.20: Use Case Diagram	59
Fig 3.21: Data Flow Diagram	60
Fig 3.22: Class Diagram	61
Fig 3.23: Hierarchical Chart	63
Fig 3.24: Authentication IPO	64
Fig 3.25: Symptom/Diagnosis IPO	65
Fig 3.26: Predict Crisis IPO	66
Fig 3.27: Flow Chart Diagram for the system	67
Fig 3.28: the code script behind the whole experiment process	68
Fig 3.29: Testing Interface for the first model	69
Fig 3.30: Testing Interface for the second model	70

Fig 4.1: Performance of first Logistic Regression Model	73
Fig 4.2: Performance of first MLP Model	74
Fig 4.3: Performance of the blended First Model	75
Fig 4.4: Performance of The first tuned model	76
Fig 4.5: Performance of The second Catboost model	77
Fig 4.6: Performance of The second GBC model	78
Fig 4.7: Performance of The second MLP model	79
Fig 4.8: Performance of The second blended model	79
Fig 4.9: Performance of The second tuned model	80
Fig 4.10: Prediction Interface for Medical Practitioners	81
Fig 4.11: About Crisis Page	82
Fig 4.12: Prediction Interface for Patients and General Public	83
Fig 4.13: About Crisis Page for Patients and General Public	84

ABSTRACT

Pattern recognition is not a new field of research, actually, theories and techniques. It has been developing for a long time. While with the fast advancement of computer architecture, machine learning, and computer vision, computational complexity is possible to be dealt with and more and more new ways of thinking are brought into the research of pattern recognition. In this report, we'd like to introduce the concept and methods of pattern recognition as well as apply it to the early detection of symptoms of sickle cell crisis.

