Number Theory covers many of the most important topics in mathematics and they are all very deeply and intrinsically connected together.

Starting with divisibility, we say that a nonzero b divides a if a = mb for some m, where a, b and m are integers. A common notation for this is b|a, therefore we say b|a we say that b is divisor of a. a few properties of divisibility are a|1, then a += 1, if a|b and b|a then a+= b.

Euclidean algorithm is one of the basic techniques of number theory. It is a procedure for determining the greatest common divisor of two positive integers. Two integers are relatively prime if their only common positive integer factor is 1. The greatest common divisor of a and b is the largest integer that divides both a and b. We can use the notation gcd(a,b) to mean the greatest common divisor of a and b therefore we also define gcd(0,0)=0. Euclidian algorithm is for easily finding the greatest common divisor of two integers.

Modular arithematic, if an there is an integer a and n is another positive integer, we define a mod n t be the remainder when a is divided by n, then the integer is called the modulus.

$$A = qn + r$$
 $0 \le r \le n$; $q = [a/n]$

Two integers a and b are then said to be congruent modulo n if $(a \mod n) = (b \mod n)$.

This is written as $a = b \pmod{n}$, there are properties of congruence such as $a=n \pmod{n}$ if $n \mid (a-b)$, $a=b \pmod{n}$ implies $b=a \pmod{n}$, $a=b \pmod{n}$ and $b=c \pmod{n}$ imply $a=c \pmod{n}$.

Prime numbers only have divisors of 1 and itself, and they cannot be written as a product of other numbers, they are very central to number theory. Any integer a>1 can be factored ina unique way. This is knonw as the fundamental theorem of arithmetic.

Fermat's little theorem states the following, that is p is a prime and a is a positive integer not divisible by p then $a^p-1 = 1 \pmod{p}$,

An alternate form of this is $a^p = a \pmod{p}$. this is veery important in public-key cryptography.

2:

N = pq = 77, then p and q equal 7 and 11

$$\phi(n) = (p-1)(q-1)$$

$$\phi(n) = (6)(10)$$

$$\phi(n) = 60$$

 $d*13 = 1 \mod 60$ and d < 60

for d in range(60):

print(d)

d must be 37

 $M = C^d \mod n$

 $M = 20^37 \mod 77$

M = 48

3:

i	8	7	6	5	4	3	2	1	0
bi	1	1	1	0	1	1	0	0	0
С	1	3	7	14	29	59	118	236	472
f	6	216	3321	2006	166	1416	451	1916	3346

 $6^{472} \mod 3415 = 3346$

A)

								(a) S	S-box								
		72	y														
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
212	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
-	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
*	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
330	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
4 14 4	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	Cl	1D	9E
4-1	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

5C	6B	05	F4
7B	72	A2	6D
B4	34	31	12
9A	9B	7F	94

4A	7F	6B	BF
21	40	3A	3C
8D	18	C 7	C9
В8	14	D2	22

67	A7	78	97
35	99	A6	D9
61	68	68	OF
B1	21	82	FA

67	A7	78	97
99	A6	D9	35
68	OF	61	68
FA	B1	21	82