A simple proof of Kirchoff's theorem, and some other combinatorial graph determinants

Jules Jacobs

December 9, 2020

Abstract

Kirchoff's matrix tree theorem states that the number of spanning trees in a graph is $\det L'$, where L' is the Laplacian matrix L of the graph, with any row and column deleted. We give a direct proof of the fact that $\det(xI+L)$ is the generating function of spanning forests with k roots. Our proof does not rely on the Cauchy-Binet formula, yet is arguably simpler than the standard proof, and applies to weighted & directed graphs as well.

The proof is based on a lemma that if A is the adjacency matrix of a graph where each vertex has at most one outgoing edge, then $\det(I - A) = 1$ if A is a forest and 0 otherwise. We also generalize this lemma to any graph, in which case $\det(I - xA)^{-1}$ is shown to be the generating function of *upward routes*.

Lastly, we generalize Kirchoff's theorem to a theorem about $\det(A+L)$ where A is the adjacency matrix of a second graph, which reduces to counting spanning forests when A=xI and to the fact that $\det(A)$ counts signed cycle covers when L=0. The all-minors matrix tree theorem also follows as a corollary. For instance, the fact that $\det(L')$ counts spanning forests, where L' is L with any column i and row j deleted, follows by picking A to be the matrix where $A_{ij}=1$ and zero elsewhere.

1 Introduction

Given finite sets of numbers $S_1, \ldots, S_n \subset \mathbb{R}$, we have the identity:

$$\left(\sum_{x_1 \in S_1} x_1\right) \cdots \left(\sum_{x_n \in S_n} x_n\right) = \sum_{x_1 \in S_1} \cdots \sum_{x_n \in S_n} x_1 \cdots x_n$$

On the right hand side, we get one term for every way of choosing $(x_1, ..., x_n) \in S_1 \times \cdots \times S_n$. Similarly, given finite sets of vectors $S_1, ..., S_n \subset \mathbb{R}^k$, we have the following identity, by multilinearity of the determinant:

$$\det\left(\sum_{\nu_1 \in S_1} \nu_1 \mid \cdots \mid \sum_{\nu_n \in S_n} \nu_n\right) = \sum_{\nu_1 \in S_1} \cdots \sum_{\nu_n \in S_n} \det(\nu_1 \mid \cdots \mid \nu_n)$$

Where $\det(v_1|\dots|v_n)$ is the determinant of a matrix with those columns. We shall see that Kirchoff's theorem can be obtained from this identity, but we first need some definitions and a lemma.

Definition 1.1. We define the concepts 1-graph, 01-graph, forest, root, and tree:

- A 1-graph is a directed graph where each vertex has 1 outgoing edge.
- A 01-graph is a directed graph where each vertex has 0 or 1 outgoing edges.
- A forest is a 01-graph with no cycles.
- The *roots* are vertices with 0 outgoing edges.

• A tree is a forest with one root.

If we start at a vertex v in a 01-graph and keep following the unique outgoing edge, then we either loop in a cycle, or we end up at a vertex with no outgoing edges. Therefore a general 01-graph consists of roots and cycles, plus trees converging onto the roots and cycles. A 1-graph is a 01-graph with no roots, so regardless of where we start, we always end up in a cycle.

2 The matrix-tree theorem

We need a lemma that give us an indicator function for forests.

Lemma 2.1. Let A_G be the adjacency matrix of a 1-graph G, then

$$\det(I - A_G) = \begin{cases} 1 & \text{if } G \text{ is empty} \\ 0 & \text{if } G \text{ is not empty} \end{cases}$$

Proof. If *G* is empty, we have a 0×0 matrix, which has determinant 1. If *G* is not empty, then each column of $I - A_G$ has one +1 diagonal entry and one -1 entry from A_G , so the sum of the rows is zero, so $\det(I - A_G) = 0$. This remains true in the presence of self loops.

Lemma 2.2. Let A_G be the adjacency matrix of a 01-graph G, then

$$\det(I - A_G) = \begin{cases} 1 & \text{if G is a forest} \\ 0 & \text{if G has a cycle} \end{cases}$$

Proof. We calculate the determinant by repeatedly performing Laplace expansion on a column i that corresponds to a root. The column of a root has a single +1 entry on the diagonal, so performing Laplace expansion along this column deletes column i and row i. Row i contains all the incoming edges of the root. Therefore, this operation corresponds to deleting root i and all its incoming edges from the graph. Deleting a root may create new roots. Repeating this process of deleting roots, the remaining 1-graph will be empty iff the original graph was a forest. Applying the previous lemma gives the desired result.

An alternative shorter proof using eigenvalues:

Proof. If *G* is a forest then A_G is nilpotent, so all its eigenvalues are 0, so all the eigenvalues of $I - A_G$ are 1, so $\det(I - A_G) = 1$. If *G* has a cycle, then A_G has 1 as an eigenvalue (take the eigenvector that is 1 on the cycle and 0 elsewhere), so $I - A_G$ has 0 as an eigenvalue, so $\det(I - A_G) = 0$.

We now fix $n \times n$ matrices A and D:

- An arbitrary matrix A of edge weights (with A_{ij} being the weight of edge $i \rightarrow j$)
- A diagonal matrix D of vertex weights (with D_{ii} being the weight of vertex i).

Definition 2.1. The Laplacian matrix *L* is defined as having columns

$$L_i = \sum_j A_{ij} (e_i - e_j)$$

Definition 2.2. The weight of a forest *G* is

$$w(G) = \prod_{i \in \mathsf{roots}(G)} D_{ii} \prod_{(i \to j) \in \mathsf{edges}(G)} A_{ij}$$

We're now ready to state Kirchoff's theorem for multiple-root forests in weighted directed graphs.

Theorem 2.3. (Kirchoff, Tutte) The determinant det(D+L) is the weight-sum of all forests on n-vertices:

$$\det(D+L) = \sum_{\text{forest } G} w(G)$$

Proof. The *i*-th column of the matrix is $(D+L)_i = D_{ii}e_i + \sum_j A_{ij}(e_i - e_j)$, so

$$\det(D+L) = \det\begin{pmatrix} D_{11}e_1 & D_{22}e_2 \\ + & + \\ A_{11}(e_1-e_1) & + \\ + & + \\ A_{12}(e_1-e_2) & + \\ \vdots & \vdots & \vdots \\ A_{1n}(e_1-e_n) & A_{2n}(e_2-e_n) & A_{2n}(e_2-e_n) \end{pmatrix} = \begin{pmatrix} D_{nn}e_n \\ + \\ A_{n1}(e_n-e_1) \\ + \\ A_{n2}(e_n-e_2) \\ \vdots \\ A_{nn}(e_n-e_n) \end{pmatrix} = \sum_{01\text{-graph } G} w(G) \det(I-A_G) = \sum_{\text{forest } G} w(G)$$

The first step is by the definition of L. In the middle step we expand the determinant by multilinearity: we sum over all possible ways to pick one term of each column. To choose a 01-graph on n vertices, is to choose for each vertex i (column i) whether to make i a root (term $D_{ii}e_i$) or to give i an outgoing edge $i \rightarrow j$ (term $A_{ij}(e_i - e_j)$). Then we take the weights D_{ii} and A_{ij} out of the determinant, and we're left with $w(G) \det(I - A_G)$, where A_G is the adjacency matrix of the chosen 01-graph. The final step is applying the lemma.

3 Upwards routes

We now know that when A is the adjacency matrix of a 01-graph, then $\det(I - A) = 1$ if G is a forest and $\det(I - A) = 0$ if G has a cycle. One naturally wonders about the value of $\det(I - A)$ when A is an arbitrary adjacency matrix.

Definition 3.1. Given a directed graph *G* with an order on the vertices, we define (*strict*) *upwards loops* and (*strict*) *upwards* routes:

- An *upwards loop* at vertex *i* is a path from *i* to *i* that does not visit vertices lower than *i*.
- A *strictly upwards loop* at vertex *i* is a path from *i* to *i* that only visits vertices higher than *i* (except at the start/endpoint of the path, where it does visit *i* itself).
- A (strictly) upwards route is a choice of (strictly) upwards loop at each vertex.

Let $f_i(x)$ be the generating function of strictly upwards loops of length k at vertex i. Then

$$\bar{f}_i(x) = (1 - f_i(x))^{-1}$$

is the generating function of upwards loops of length k at vertex i, because an upwards loop of length k splits up uniquely into a sequence of strictly upwards loops. Furthermore, the generating functions f(x) and $\bar{f}(x)$ of (strictly) upward routes of k edges are given by:

$$f(x) = \prod_{i=1}^{n} f_i(x)$$
 $\bar{f}(x) = \prod_{i=1}^{n} \bar{f}_i(x)$

Recall Cramer's rule:

Theorem 3.1. (Cramer's rule) Let A be a matrix and let $A_{[i,j]}$ be the same with column i and row j deleted, then:

$$A_{ij}^{-1} = \frac{\det(A_{[i,j]})}{\det(A)}$$

From this, we get the following lemma that allows us to calculate $det(A)^{-1}$ in terms of entries of inverses of submatrices of A:

Lemma 3.2. Given an invertible matrix A,

$$\det(A)^{-1} = \prod_{i=0}^{n-1} (A_{[1...i,1...i]})_{11}^{-1}$$

Where $A_{[1...i,1...i]}$ is the matrix A with the first i rows and columns deleted.

Proof. Cramer's rule implies:

$$\det(A)^{-1} = A_{1,1}^{-1} \cdot \det(A_{\lceil 1,1 \rceil})^{-1}$$

Continuing this by induction, we get:

$$\begin{split} \det(A)^{-1} &= A_{1,1}^{-1} \cdot \det(A_{[1,1]})^{-1} \\ &= A_{1,1}^{-1} \cdot (A_{[1,1]})_{11}^{-1} \cdot \det(A_{[1..2,1..2]})^{-1} \\ &= \cdots \\ &= A_{1,1}^{-1} \cdot (A_{[1,1]})_{11}^{-1} \cdot (A_{[1..2,1..2]})_{1,1}^{-1} \cdot \cdots (A_{[1..n-1,1..n-1]})_{1,1}^{-1} \cdot 1 \end{split}$$

We apply this lemma to the matrix I - xA, to obtain:

Lemma 3.3. The generating function of upwards routes with k edges is $\det(I - xA)^{-1}$.

Proof. Apply the preceding lemma:

$$\det(I - xA)^{-1} = \prod_{i=0}^{n-1} ((I - xA)_{[1...i,1...i]})_{11}^{-1}$$

Thus, for each i we first obtain a subgraph by deleting vertices with lower number than i, and then $((I-xA)_{[1...i,1...i]})_{11}^{-1}$ is the generating function of loops from vertex i to i in the resulting graph. Thus, in terms of the original graph, these are loops that do not visit vertices with lower number than i. Multiplying this over each vertex i in the original graph, we obtain the result.

Corollary 3.3.1. The number of (strictly) upwards routes of *k* edges does not depend on the order of the vertices.

Proof. If we permute the order of the vertices by a permutation P, the generating function

$$\det(I - xPAP^{-1}) = \det(P(I - xA)P^{-1}) = \det(I - xA)$$

stays the same. \Box

Lemma 3.4. For an arbitrary adjacency matrix A,

$$\det(I - xA) = \prod_{i=1}^{n} (1 - f_i(x))$$

Where $f_i(x)$ is the generating function of strictly upwards loops at vertex i.

Proof. We have the following relationship between the generating functions:

$$\det(I - xA) = \bar{f}(x)^{-1} = \prod_{i=1}^{n} \bar{f}_i(x)^{-1} = \prod_{i=1}^{n} (1 - f_i(x))$$

This is kind of interesting, because $\det(I - xA)$ is a polynomial, whereas $f_i(x)$ is a power series, so many terms cancel on the right hand side. The original lemma follows as a corollary, which gives us a third proof of the lemma:

Corollary 3.4.1. For a 01-graph, det(I - A) = 1 if G is a forest, and 0 if G has a cycle.

Proof. If *G* is a forest, then it has no strictly upward loops, so $f_i(x) = 0$, so $\det(I - xA) = 1$. If *G* has a cycle, let *i* be the lowerst vertex on the cycle. Then $f_i(x) = x^k$ where *k* is the length of the cycle. Now substitute x = 1 to obtain $\det(I - A) = 0$.

It goes without saying that weighted versions of the preceding lemmas hold too.

4 Kirchoff's theorem with cycles

Let G_A be a graph with adjacency matrix A and let G_L be a graph with Laplacian L. We shall generalize Kirchoff's theorem from $\det(I + L)$ to $\det(A + L)$. In order to do this we need to define 1-graphs.

Definition 4.1. A 1-graph is a directed graph where each vertex has exactly one outgoing edge.

Thus, at each vertex we can continue following a unique path indefinitely. In a finite graph that path must eventually cycle. So a general 1-graph looks like a bunch of disjoint cycles and a bunch of trees converging onto those cycles.

In our 1-graphs, some edges will be selected from G_A and some will be selected from G_L . We define the weight function:

$$w(F) = \begin{cases} \dots & \dots \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.1. *Kirchoff's theorem with cycles.*

$$\det(A+L) = \sum_{1\text{-graph } F \subseteq (G_A+G_L)} w(F)$$

Proof. ... Main idea: generalize the lemma to account for cycles. Each time we Laplace expand a column with one entry (from G_A), which is now not necessarily in diagonal position, we obtain a sign.

Bunch of corollaries:

Corollary 4.1.1. det(*A*) is the number of signed cycle covers.

Corollary 4.1.2. det(I + L) is the number of spanning forests.

Corollary 4.1.3. $det(L_{[i,i]})$ spanning trees, for all i, j.

Corollary 4.1.4. All-minor matrix tree theorem.

Corollary 4.1.5. Undirected matrix tree theorem.

5 Appendix

Alternative proofs of the lemma.

Lemma 5.1. Let A_G be the adjacency matrix of a 01-graph G, then

$$\det(I - A_G) = \begin{cases} 1 & \text{if } G \text{ is a forest} \\ 0 & \text{if } G \text{ has a cycle} \end{cases}$$

Proof. In a 01-graph, the vector $A_G^i e_k$ follows the path out of k for i = 0, 1, ... (note that this path is unique because each vertex has at most one outgoing edge).

- If *G* is forest then $A_G^n e_k = 0$ for all *k*, where *n* is the number of vertices of *G*. So $A^n = 0$, so all eigenvalues of A_G are zero, so all eigenvalues of I A are one, so $\det(I A_G) = 1$.
- If *G* has a cycle consisting of vertices *C*, take $v = \sum_{i \in C} e_i$. Then $A_G v = v$, so (I A)v = 0, so $\det(I A_G) = 0$.

Thus, for 01-graphs, $det(I - A_G)$ indicates whether the graph is a forest or not.