

Exame de qualificação de mestrado

Aprendizagem de representação através do uso de redes neurais convolucionais na recuperação de trecho de código-fonte

Marcelo de Rezende Martins sob orientação do Prof. Dr. Marco Aurélio Gerosa

Instituto de Pesquisas Tecnológicas do Estado de São Paulo - IPT

Intro

Definição

Recuperação de trecho de código-fonte consiste em recuperar um trecho de código a partir de um repositório de códigos-fontes, de modo a atender a intenção do desenvolvedor, expressa em linguagem natural ¹².

¹Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code search.

²Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search.

Definição (ERRATA)

Code Retrieval: Dada uma questão em linguagem natural $q \in \mathbb{Q}$, um modelo F_r será treinado a recuperar os trechos $\mathbb{C}^+ \subset \mathbb{C}_a$ com a maior pontuação:

$$\mathbb{C}^{+} = \underset{c \in \mathbb{C}_{a}}{\operatorname{argmax}} \, F_{r}(q, c) \tag{1}$$

Abordagem

Joint Embedding

Sejam $\mathbb Q$ e $\mathbb C$ conjuntos de dados heterogêneos. Joint embedding pode ser formulado como:

$$f: q \to t_q \to h_\theta(t_q, t_c) \leftarrow t_c \leftarrow c: g$$
 (2)

Joint Embedding

Como representar as pa-	Word2Vec
lavras e os tokens das	
questões e trechos de	
código-fonte?	
Como representar as sen-	CNN
tenças?	
Como aproximá-los?	Função de custo hinge

Arquitetura

Figura 1: Arquitetura CNN proposta para recuperação de trecho de código-fonte.

Figura 2: Primeiro passo da operação de convolução em um vetor de entrada **x** composto por vetores de representação distribuída de cada palavra da sentença.

Questões

Questões

- A aprendizagem de representação através do CNN auxilia na recuperação de trecho de código-fonte?
- O CNN é capaz de extrair as características mais relevantes de modo a facilitar o modelo a encontrar uma correlação entre as questões e os trechos de código-fonte?

Indiretamente:

 As interações locais auxiliam na aproximação das intenções aos trechos de código?

Avaliação

Dados de treinamento	Conjunto de pares de questões e trechos de código-fonte em Python coletados do Stack Overflow por Yao et al. (2018) ³
Dados para avaliação fi- nal	Conjunto de dados anotados manualmente e disponibilizados por Yao et al. (2018) ³
Métrica de desempenho	MRR

³Yao, Ziyu and Weld, Daniel S. and Chen, Wei-Peng and Sun, Huan. 2018. StaQC: A Systematically Mined Question-Code Dataset from Stack Overflow

Avaliação

Arquiteturas de referência para comparação

- Embedding
- Rede neural com mecanismo de atenção proposto por Cambronero et al. (2019)⁴

⁴Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code search.

Avaliação

Análise dos resultados

- · Inspeção manual
- Análise dos piores casos
- Patologia das redes neurais (Feng et al., 2018)⁵

⁵Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, Jordan Boyd-Graber. 2018. Pathologies of Neural Models Make Interpretations Difficult.

Experimento piloto

Resultados preliminares⁶

Modelos	Resultados (MRR)
Embedding	$0,52 \pm 0,01$
CNN	$\textbf{0,58} \pm \textbf{0,01}$
bi-LSTM-CNN	$\textbf{0,60} \pm \textbf{0,02}$

Tabela 1: Resultado preliminar do modelo CNN em comparação com outras duas arquiteturas (bi-LSTM com CNN e Embedding). Estes resultados foram obtidos a partir da amostra EVAL.

⁶Marcelo de Rezende Martins e Marco Aurélio Gerosa. 2019. Um estudo preliminar sobre o uso de uma arquitetura deep learning para seleção de respostas no problema de recuperação de trecho de código-fonte.

Histograma das posições dos trechos de código-fonte relevantes

Exemplos

Python and appending items to text and excel file?

```
BiLSTM-CNN

Yvalues = [1, 2, 3, 4, 5]
file_out = open ('file.csv','wb')
mywriter= csv . writer (file_out, delimiter = '\n')
mywriter. writerow (Yvalues)
file_out.close()
```

```
cnn
import csv
with open ("output.csv", "wb") as f:
    writer = cwv. writer (f)
    writer. writerows (a)
```

https://stackoverflow.com/questions/24593478/python-and-appending-items-to-text-and-excel-file

Próximos passos

Próximas tarefas

- Implementação da arquitetura proposta por Cambronero et al. (2019)⁸
- · Adição de regularização aos modelos
- · Coleta e análise dos resultados

⁸Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code search.

Perguntas?