ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.722.2 Annex C (12/2017)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – Coding of voice and audio signals

Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB)

Annex C: Fixed-point C-code

Recommendation ITU-T G.722.2 - Annex C

ITU-T G-SERIES RECOMMENDATIONS

${\bf TRANSMISSION~SYSTEMS~AND~MEDIA, DIGITAL~SYSTEMS~AND~NETWORKS}$

GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- G.2	100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- G.2	100-G.199
TRANSMISSION SYSTEMS	200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE G.S SYSTEMS ON METALLIC LINES	300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS G ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.4	450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS G.6	600–G.699
DIGITAL TERMINAL EQUIPMENTS G.7	700–G.799
General G.7	700–G.709
Coding of voice and audio signals G.	.710–G.729
Principal characteristics of primary multiplex equipment G.7	730–G.739
Principal characteristics of second order multiplex equipment G.7	740–G.749
Principal characteristics of higher order multiplex equipment G.7	750–G.759
Principal characteristics of transcoder and digital multiplication equipment G.7	760–G.769
Operations, administration and maintenance features of transmission equipment G.7	770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy G.7	780–G.789
Other terminal equipment G.7	790–G.799
DIGITAL NETWORKS G.8	800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.S	900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS G.6	6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS G.7	7000–G.7999
PACKET OVER TRANSPORT ASPECTS G.8	8000–G.8999
ACCESS NETWORKS G.S	9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.722.2

Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB)

Annex C

Fixed-point C-code

Summary

Annex C to Recommendation ITU-T G.722.2 specifies the bit-exact ANSI C-code implementation of the AMR-WB algorithm specified in Recommendation ITU-T G.722.2, its Annexes A and B, and its Appendix I (non-normative).

This annex includes an electronic attachment containing the C-code of the G.722.2 AMR-WB speech transcoder. The C-code has been updated to harmonize with the AMR-WB coder in 3GPP specification TS 26.173 V14.0.0 (2017-04).

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T G.722.2	2002-01-13	16	11.1002/1000/5650
1.1	ITU-T G.722.2 Annex C	2002-01-13	16	11.1002/1000/5662
1.3	ITU-T G.722.2 Annex C	2003-07-29	16	11.1002/1000/6865
1.4	ITU-T G.722.2 Annex D	2002-01-13	16	11.1002/1000/5663
1.4	ITU-T G.722.2 Annex C	2004-03-15	16	11.1002/1000/7206
2.0	ITU-T G.722.2	2003-07-29	16	11.1002/1000/6506
2.1	ITU-T G.722.2 Annex A	2002-01-13	16	11.1002/1000/5660
2.2	ITU-T G.722.2 Annex B	2002-01-13	16	11.1002/1000/5661
2.5	ITU-T G.722.2 Annex E	2002-01-13	16	11.1002/1000/5664
2.6	ITU-T G.722.2 Annex D	2003-07-29	16	11.1002/1000/6871
2.6	ITU-T G.722.2 Annex E (2002) Cor. 1	2003-07-29	16	11.1002/1000/6875
2.7	ITU-T G.722.2 Annex F	2002-11-29	16	11.1002/1000/6180
2.8	ITU-T G.722.2 App. I	2002-01-13	16	11.1002/1000/6096
2.9	ITU-T G.722.2 App. I (2002) Amd. 1	2003-07-29	16	11.1002/1000/6877
2.9	ITU-T G.722.2 (2003) Cor. 1	2005-09-13	16	11.1002/1000/8575
2.10	ITU-T G.722.2 (2003) Cor. 2	2007-01-13	16	11.1002/1000/9019
2.11	ITU-T G.722.2 Annex C	2008-11-13	16	11.1002/1000/9635
2.12	ITU-T G.722.2 Annex C	2017-12-14	16	11.1002/1000/13429
2.13	ITU-T G.722.2 Annex D	2017-12-14	16	11.1002/1000/13430

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2018

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

		Page
Annex C – Fix	ed-point C-code	1
C.1	C-code structure	1
C.2	Homing procedure	11
C.3	File formats	12

Electronic attachment: AMR-WB codec fixed-point C-code

Recommendation ITU-T G.722.2

Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB)

Annex C

Fixed-point C-code

(This annex forms an integral part of this Recommendation.)

C.1 C-code structure

This annex¹ gives an overview of the structure of the bit-exact C-code for the correct implementation of the ITU-T G.722.2 main body, its Annex A (comfort noise aspects), Annex B (source controlled rate operation) and Appendix I (error concealment of erroneous or lost frames). It provides an overview of the contents and organization of the C-code attached to this annex. In case of discrepancy between the description given in the several parts of ITU-T G.722.2 (including its Annexes A, B and Appendix I) and the ANSI C-source code, the algorithm description of the ANSI C-code shall prevail.

The C-code has been verified on a number of systems

- Sun Microsystems workstations and GNU gcc compiler
- HP workstations and cc compiler
- IBM PC compatible computers with Windows NT4 operating system and GNU gcc compiler.

ANSI-C was selected as the programming language because portability was desirable.

C.1.1 Contents of the C source code

The C-code distribution has all files in the root level.

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained mostly in files with suffix "tab".

The C code distribution also contains one speech coder installation verification data file, "spch_dos.inp". The reference encoder output file is named "spch_dos.cod", the reference decoder input file is named "spch_dos.dec" and the reference decoder output file is named "spch_dos.out". These four files are formatted such that they are correct for an IBM PC/AT compatible computer. The same files with reversed byte order of the 16 bit words are named "spch_unx.inp", "spch_unx.cod", "spch_unx.dec" and "spch_unx.out", respectively.

Final verification of bit-exactness is to be performed using the adaptive multi-rate wideband test sequences described in Annex D of ITU-T G.722.2.

Makefiles are provided for the platforms in which the C-code has been verified (see above). Once the software is installed, this directory will have a compiled version of *encoder* and *decoder* (the bit-exact C executables of the speech codec) and all the object files.

¹ This annex contains an electronic attachment with the AMR-WB codec fixed-point C-code.

C.1.2 Program execution

The adaptive multi-rate wideband codec is implemented in two programs:

- (encoder) speech encoder;
- (decoder) speech decoder.

The programs should be named as follows:

- encoder [encoder options] <speech input file> <parameter file>;
- decoder <parameter file> <speech output file>.

The speech files contain 16-bit linear encoded PCM speech samples and the parameter files contain encoded speech data and some additional flags.

The encoder and decoder options will be explained by running the applications without input arguments. See the readme.txt file for more information on how to run the *encoder* and *decoder* programs.

C.1.3 Code hierarchy

Tables C.1 to C.3 are call graphs that show the functions used in the speech codec, including the functions of VAD, DTX and comfort noise generation.

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards neighbouring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. All standard C functions: printf(), fwrite(), etc., have been omitted. Also, no basic operations (add(), L_add(), mac(), etc.) or double precision extended operations (e.g., L_Extract()) appear in the graphs. The initialization of the static RAM (i.e., calling the init functions) is also omitted.

The basic operations are not counted as extending the depth; therefore, the deepest level in this software is level 6.

The encoder call graph is broken down into two separate call graphs, Tables C.1 and C.2.

Table C.1 – Speech encoder call structure

coder	Conv			
1	Copy Decim_12k8	Down_samp	Interpol (function)	٦
	Decin_12ko		interpor (function)	_
	Sot zoro	Сору		
	Set_zero	—		
	HP50_12k8	 		
	Scale_sig	Pites hash	E34E	٦
	wb_vad	Filter_bank	Filter5	_
			Filter3	_
			Level_calculation	
		vad_decision	llog2	
			Noise_estimate_update	update_cntrl
			hangover_addition	
		Estimate_Speech		_ "
	tx dtx handler		<u> </u>	
	Parm_serial			
	Autocorr			
	Lag_window			
	Levinson			
	Az_isp	Chebps2		
	Int_isp	Isp_Az	Get_isp_pol	٦
	Isp_isf	13P_AZ	Get_isp_poi	」
		 		
	Gp_clip_test_isf	_		
	Weight_a			
	Residu	- 		
	Deemph2	_		
	LP_Decim2			
	Scale_mem_Hp_wsp		<u></u>	
	Pitch_med_ol	Hp_wsp		
		Isqrt_n		
	wb_vad_tone_detection		_	
	Med_olag	median5		
	dtx_buffer	Сору		
	dtx_enc	Find_frame_indices	\dashv	
	dix_enc	Aver_isf_history		
			C++ 1/O	٦
		Qisf_ns	Sub_VQ	D 1 16
			Disf_ns	Reorder_isf
		Parm_serial		
		Pow2		
		Random		
		Dot_product12		
		lsqrt_n		
	lsf_isp			
	Isp_Az	Get_isp_pol		
	Synthesis	Сору		
		Syn_filt_32		
		Deemph_32		
		HP50_12k8		
		Random		
		Scale_sig		
		Dot_product12		
		Isqrt_n		
		HP400_12k8		
	1			
		Weight_a		
		Syn_filt		
		Syn_filt Filt_6k_7k		
	Reset_encoder	Syn_filt Filt_6k_7k Set_zero		
	Reset_encoder	Syn_filt Filt_6k_7k Set_zero Init_gp_clip		_
	Reset_encoder	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion	Set_zero]
	Reset_encoder Qpisf_2s_36b	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1	Set_zero]
		Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1	Set_zero]
		Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ] 1
	Qpisf_2s_36b	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b	Set_zero Reorder_isf]]
		Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1]]
	Qpisf_2s_36b	Syn_filt	Reorder_isf]] 1
	Qpisf_2s_36b Qpisf_2s_46b	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1]]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt	Syn_filt	Reorder_isf]]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b	Reorder_isf Reorder_isf]]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt	Syn_filt	Reorder_isf Reorder_isf Convolve]]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr	Reorder_isf Reorder_isf	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b	Reorder_isf Reorder_isf Convolve]]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch U_pdt_tar Preemph	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve]]
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4 Dot_product12 Dot_product12	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4 Dot_product12 Dot_product12 Isqrt_n	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx ACELP_4t64_fx	Syn_filt	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4 Dot_product12 Isqrt_n See Table 2 Dot_product12	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx ACELP_4t64_fx Q_gain2	Syn_filt	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx ACELP_4t64_fx	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4 Dot_product12 Isqrt_n See Table 2 Dot_product12 Pow2	Reorder_isf Reorder_isf Convolve	
	Qpisf_2s_36b Qpisf_2s_46b Syn_filt Preemph2 Pitch_fr4 Gp_clip Pred_lt4 Convolve G_pitch Updt_tar Preemph Pit_shrp Cor_h_x ACELP_2t64_fx ACELP_4t64_fx Q_gain2	Syn_filt Filt_6k_7k Set_zero Init_gp_clip Init_Phase_dispersion VQ_stage1 Sub_VQ Dpisf_2s_36b VQ_stage1 Sub_VQ Dpisf_2s_46b Norm_Corr Interpol_4 Dot_product12 Isqrt_n See Table 2 Dot_product12	Reorder_isf Reorder_isf Convolve	

 $Table~C.2-ACELP_4t64_fx~call~structure$

ACELP_4t64_fx	Dot_product12			
	lsqrt_n			
	cor_h_vec			
	search_ixiy			
	quant_1p_N1	1		
	quant_2p_2N1			
	quant_3p_3N1	quant_2p_2N1	1	
		quant_1p_N1	1	
	quant_4p_4N	quant_4p_4N1	Quant_2p_2N1	7
		quant_1p_N1		_
		quant_3p_3N1	Quant_2p_2N1	7
			Quant_1p_N1	
		quant_2p_2N1		
	quant_5p_5N	quant_3p_3N1	Quant_2p_2N1	7
			Quant_1p_N1	
		quant_2p_2N1		
	quant_6p_6N_2	quant_5p_5N	Quant_3p_3N1	quant_2p_2N1
				Quant_1p_N1
			quant_2p_2N1	
		quant_1p_N1		
		quant_4p_4N	quant_4p_4N1	quant_2p_2N1
			quant_1p_N1	
			quant_3p_3N1	quant_2p_2N1
				quant_1p_N1
			quant_2p_2N1	
		quant_2p_2N1		_
		quant_3p_3N1	quant_2p_2N1	
			Quant_1p_N1	

 $Table \ C.3-Speech\ decoder\ call\ structure$

ecoder	Rx_dtx_handler		_		
	Dtx_dec	Сору			
		Disf_ns	Reorder_isf		
		Serial_parm			
		Pow2			
		Random			
		Dot_product12			
		Isqrt_n			
	Serial_parm	10-41-12-11			
	Isf_isp				
	Isp_Az	Get_isp_pol	\neg		
		Get_isp_poi			
	Copy	0	_		
	Synthesis	Copy	<u> </u>		
		Syn_filt_32			
		Deemph_32			
		HP50_12k8			
		Oversamp_16k	Сору		
			Up_samp	Interpol	
		Random			
		Scale_sig	\exists		
		Dot_product12	7		
		Isqrt_n	7		
		HP400 12k8	⊣		
		Isf_Extrapolation	Isf_isp		
			Get_isp_pol		
		Isp_Az	Get_isp_poi		
		Weight_a	_		
		Syn_filt			
		Filt_6k_7k	Сору		
		Filt_7k	Сору		
	Reset_decoder	Set_zero			
		Init_Phase_dispersion	Set_zero		
	Dpisf_2s_36b	Reorder_isf		<u> </u>	
	Dpisf_2s_46b	Reorder_isf			
	Int_isp	Isp_Az	Get_isp_pol		
	Lagconc	insertion_sort	Insert		
	Lagoone	Random	moert		
	Pred_lt4	Random			
	Random	_			
	DEC_ACELP_2t64_fx		_		
	DEC_ACELP_4t64_fx	_dec_1p_N1	⊣		
		add_pulses			
		dec_2p_2N1			
		dec_3p_3N1	Dec_2p_2N1		
			dec_1p_N1	7	
		dec_4p_4N	dec_4p_4N1	dec_2p_2N1	
			dec_1p_N1		
			Dec_3p_3N1	Dec_2p_2N1	
			Dec_op_5(4)	Dec_1p_N1	
			Dog 20 2N1	Dec_ip_ivi	
		de Se SNI	Dec_2p_2N1	D 0 - 0 14	
		dec_5p_5N	dec_3p_3N1	Dec_2p_2N1	
				Dec_1p_N1	
			Dec_2p_2N1		
		dec_6p_6N_2	Dec_5p_5N	dec_3p_3N1	Dec_2p_2N1
			1		Dec_1p_N1
			1	dec_2p_2N1	
			dec_1p_N1		
			dec_4p_4N	dec_4p_4N1	dec_2p_2N1
			000_TP_TI		060_2p_2N1
			1	dec_1p_N1	Dec 0: 0111
		i	ı	Dec_3p_3N1	Dec_2p_2N1

	İ			Dec_1p_N1
			Dec_2p_2N1	
		dec_2p_2N1		
		dec_3p_3N1	Dec_2p_2N1	
			Dec_1p_N1	
Preemph		·		
Pit_shrp		_		
D_gain2	Dot_product12			
	Isqrt_n			
	Median5			
	Pow2			
Scale_sig		-		
voice_factor	Dot_product12			
Phase_dispersion	Set_zero		_	
Agc2	Isqrt	lsqrt_n]	
Set_zero		Ī		
Dtx_dec_activity_update	Сору			

C.1.4 Variables, constants and tables

The data types of variables and tables used in the fixed point implementation are signed integers in 2's complement representation, defined by:

Word16 16-bit variable;

Word32 32-bit variable.

C.1.4.1 Description of constants used in the C-code

This clause contains a listing of all global constants defined in cnst.h. See Table C.4.

Table C.4 – Global constants

Constant	Value	Description	
L_TOTAL	384	Total size of speech buffer	
L_WINDOW	384	Window size in LP analysis	
L_NEXT	64	Look-ahead size	
L_FRAME	256	Frame size in 12.8 kHz	
L_FRAME16k	320	Frame size in 16 kHz	
L_SUBFR	64	Subframe size in 12.8 kHz	
L_SUBFR16k	80	Subframe size in 16 kHz	
NB_SUBFR	4	Number of subframes	
M16k	20	Order of LP filter in high-band synthesis in 6.60 mode	
M	16	Order of LP filter	
L_FILT16k	15	Delay of down-sampling filter in 16 kHz	
L_FILT	12	Delay of down-sampling filter in 12.8 kHz	
GP_CLIP	15565	Pitch gain clipping	
PIT_SHARP	27853	Pitch sharpening factor	
PIT_MIN	34	Minimum pitch lag (all modes)	
PIT_FR2	128	Minimum pitch lag with resolution ½	
PIT_FR1_9b	160	Minimum pitch lag with resolution for 9-bit quantization	
PIT_FR1_8b	92	Minimum pitch lag with resolution for 8-bit quantization	
PIT_MAX	231	Maximum pitch lag	
L_INTERPOL	(16+1)	Length of filter for interpolation	
OPL_DECIM	2	Decimation in open-loop pitch analysis	
PREEMPH_FAC	22282	Pre-emphasis factor	
GAMMA1	30147	Weighting factor (numerator)	

Table C.4 – Global constants

Constant	Value	Description	
TILT_FAC	22282	Tilt factor (denominator)	
Q_MAX	8	Scaling max. for signal	
RANDOM_INITSEED	21845	Random init value	
L_MEANBUF	3	Size of ISF buffer	
ONE_PER_MEANBUF	10923	Inverse of L_MEANBUF	

C.1.4.2 Description of fixed tables used in the C-code

This clause contains a listing of all fixed tables sorted by source file name and table name. All table data are declared as **Word16**. See Table C.5.

Table C.5 – Fixed tables

File	Table name	Length	Description
C4t64fx.c	Tipos	36	Starting points of iterations
Cod_main.c	HP_gain	16	High band gain table for 23.85 kbit/s mode
Cod_main.c	Interpol_frac	4	LPC interpolation coefficients
Cod_main.c	Isp_init	16	Isp tables for initialization
Cod_main.c	Isf_init	16	Isf tables for initialization
D_gain2.c	cdown_unusable	7	Attenuation factors for codebook gain in lost frames
D_gain2.c	cdown_usable	7	Attenuation factors for codebook gain in bad frames
D_gain2.c	pdown_unusable	7	Attenuation factors for adaptive codebook gain in lost frames
D_gain2.c	pdown_usable	7	Attenuation factors for adaptive codebook gain in bad frames
D_gain2.c	Pred	4	Algebraic code book gain MA predictor coefficients
Dec_main.c	HP_gain	16	High band gain table for 23.85 kbit/s mode
Dec_main.c	Interpol_frac	4	LPC interpolation coefficients
Dec_main.c	Isp_init	16	Isp tables for initialization
Dec_main.c	Isf_init	16	Isf tables for initialization
Decim54.c	fir_down	120	Downsample FIR filter coefficients
Decim54.c	fir_up	120	Upsample FIR filter coefficients
Dtx.c	en_adjust	9	Energy scaling factor for each mode during comfort noise
Grid100.tab	grid	101	This table points to specific Chebyshev polynomials
Ham_wind.tab	Window	384	LP analysis window
Hp400.c	A	3	HP filter coefficients (denominator) in higher band energy estimation
Hp400.c	В	3	HP filter coefficients (numerator) in higher band energy estimation
Hp50.c	A	3	HP filter coefficients (denominator) in pre-filtering
Нр50.с	В	3	HP filter coefficients (numerator) in pre-filtering

Table C.5 – Fixed tables

File	Table name	Length	Description
Нр6к.с	Fir_6k_7k	31	Bandpass FIR filter coefficients for higher band generation
Hp7k.c	Fir_7k	31	Bandpass FIR filter coefficients for higher band in 23.85 kbit/s mode
Hp_wsp.c	A	3	HP filter coefficients (denominator) in open-loop lag gain computation
Hp_wsp.c	В	3	HP filter coefficients (numerator) in open-loop lag gain computation
Isp_isf.tab	slope	128	Table to compute cos(x) in Isf_isp()
Isp_isf.tab	Table	129	Table to compute acos(x) in Isp_isf()
Lag_wind.tab	lag_h	16	High part of the lag window table
Lag_wind.tab	lag_l	16	Low part of the lag window table
Lp_dec2.c	h_fir	5	HP FIR filter coefficients in open-loop lag search
Math_op.c	table_isqrt	49	Table used in inverse square root computation
Math_op.c	table_pow2	33	Table used in power of two computation
P_med_ol.tab	Corrweight	199	Weighting of the correlation function in open loop LTP search
Ph_disp.c	ph_imp_low	64	Phase dispersion impulse response
Ph_disp.c	ph_imp_mid	64	Phase dispersion impulse response
Pitch_fr4.c	inter4_1	32	Interpolation filter coefficients
Pred_lt4.c	inter4_2	128	Interpolation filter coefficients
Q_gain2.c	pred	4	Algebraic code book gain MA predictor coefficients
Q_gain2.tab	t_qua_gain6b	2*64	Gain quantization table for 6-bit gain quantization
Q_gain2.tab	t_qua_gain7b	2*128	Gain quantization table for 7-bit gain quantization
Qisf_ns.tab	dico1_isf_noise	2*64	1st ISF quantizer for comfort noise
Qisf_ns.tab	dico2_isf_noise	3*64	2nd ISF quantizer for comfort noise
Qisf_ns.tab	dico3_isf_noise	3*64	3rd ISF quantizer for comfort noise
Qisf_ns.tab	dico4_isf_noise	4*32	4th ISF quantizer for comfort noise
Qisf_ns.tab	dico5_isf_noise	4*32	5th ISF quantizer for comfort noise
Qisf_ns.tab	mean_isf_noise	16	ISF mean for comfort noise
Qpisf_2s.tab	dico1_isf	9*256	1st ISF quantizer of the 1st stage
Qpisf_2s.tab	dico2_isf	7*256	2nd ISF quantizer of the 1st stage
Qpisf_2s.tab	dico21_isf	3*64	1st ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)
Qpisf_2s.tab	dico21_isf_36b	5*128	1st ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)
Qpisf_2s.tab	dico22_isf	3*128	2nd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)
Qpisf_2s.tab	dico22_isf_36b	4*128	2nd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

Table C.5 – Fixed tables

File	Table name	Length	Description
Qpisf_2s.tab	dico23_isf	3*128	3rd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)
Qpisf_2s.tab	dico23_isf_36b	7*64	3rd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)
Qpisf_2s.tab	dico24_isf	3*32	4th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)
Qpisf_2s.tab	dico25_isf	4*32	5th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)
Qpisf_2s.tab	Mean_isf	16	ISF mean

C.1.4.3 Static variables used in the C-code

In this clause, two tables that specify the static variables for the speech encoder and decoder, respectively, are shown. All static variables are declared within a C **struct**. See Tables C.6 and C.7.

Table C.6 – Speech encoder static variables

Struct name	Variable	Type[length]	Description
Coder_State	mem_decim	Word16[30]	Decimation filter memory
	mem_sig_in	Word16[6]	Pre-filter memory
	mem_preemph	Word16	Pre-emphasis filter memory
	old_speech	Word16[128]	Speech buffer
	old_wsp	Word16[115]	Buffer holding spectral weighted speech
	old_exc	Word16[248]	Excitation vector
	mem_levinson	Word16[18]	Levinson memories
	Ispold	Word16[16]	Old ISP vector
	ispold_q	Word16[16]	Old quantized ISP vector
	past_isfq	Word16[16]	Past quantized ISF prediction error
	mem_wsp	Word16	Open-loop LTP deemphasis filter memory
	mem_decim2	Word16[3]	Open-loop LTP decimation filter memory
	mem_w0	Word16	Weighting filter memory (applied to error signal)
	mem_syn	Word16[16]	Synthesis filter memory
	tilt_code	Word16	Pre-emphasis filter memory
	old_wsp_max	Word16	Open-loop scaling factor
	old_wsp_shift	Word16	Maximum open loop scaling factor
	Q_old	Word16	Old scaling factor
	Q_max	Word16[2]	Maximum scaling factor
	gp_clip	Word16[2]	Memory of pitch clipping
	qua_gain	Word16[4]	Gain quantization memory
	old_T0_med	Word16	Weighted open-loop pitch lag
	ol_gain	Word16	Open-loop gain

Table C.6 – Speech encoder static variables

Struct name	Variable	Type[length]	Description
	ada_w	Word16	Weighting level depending on open-loop pitch gain
	ol_wght_flg	Word16	Switches lag weighting on and off
	old_ol_lag	Word16[5]	Open-loop lag history
	hp_wsp_mem	Word16[9]	Open-loop lag gain filter memory
	old_hp_wsp	Word16[243]	Open-loop lag
	vadSt	VadVars*	See below in this table
	dtx_encSt	dtx_encState*	See below in this table
	first_frame	Word16	First frame indicator
	Isfold	Word16[16]	Old ISF vector
	L_gc_thres	Word16	Noise enhancer threshold
	mem_syn_hi	Word16[16]	Synthesis filter memory (most significant word)
	mem_syn_lo	Word16[16]	Synthesis filter memory (least significant word)
	mem_deemph	Word16	De-emphasis filter memory
	mem_sig_out	Word16[6]	HP filter memory in the synthesis
	mem_hp400	Word16[6]	HP filter memory
	mem_oversamp	Word16[2*12]	Oversampling filter memory
	mem_syn_hf	Word16[16]	Higher band synthesis filter memory
	mem_hf	Word16[30]	Estimated BP filter memory (23.85 kbit/s mode)
	mem_hf2	Word16[30]	Input BP filter memory (23.85 kbit/s mode)
	mem_hf3	Word16[30]	Input LP filter memory (23.85 kbit/s mode)
	seed2	Word16	Random generation seed
	disp_mem	Word16[8]	Phase dispersion memory
	vad_hist	Word16	VAD history
	Gain_alpha	Word16	Higher band gain weighting factor (23.85 kbit/s mode)
dtx_encState	Isf_hist	Word16[128]	ISP history (8 frames)
	Log_en_hist	Word16[8]	Logarithmic frame energy history (8 frames)
	Hist_ptr	Word16	Pointer to the cyclic history vectors
	Log_en_index	Word16	Index for logarithmic energy
	Cng_seed	Word16	Comfort noise excitation seed
	D	Word16[28]	ISF history distance matrix
	sumD	Word16[8]	Sum of ISF history distances
	dtxHangoverCount	Word16	Is decreased in DTX hangover period
	decAnaElapsedCount	Word16	Counter for elapsed speech frames in DTX
vadState1	bckr_est	Word16[12]	Background noise estimate
	ave_level	Word16[12]	Averaged input components for stationary estimation

Table C.6 – Speech encoder static variables

Struct name	Variable	Type[length]	Description
	old_level	Word16[12]	Input levels of the previous frame
	sub_level	Word16[12]	Input levels calculated at the end of a frame (lookahead)
	a_data5	Word16[5][2]	Memory for the filter bank
	a_data3	Word16[6]	Memory for the filter bank
	burst_count	Word16	Counts length of a speech burst
	Hang_count	Word16	Hangover counter
	Stat_count	Word16	Stationary counter
	Vadreg	Word16	15 flags for intermediate VAD decisions
	Tone_flag	Word16	15 flags for tone detection
	sp_est_cnt	Word16	Speech level estimation counter
	Sp_max	Word16	Maximum signal level
	sp_max_cnt	Word16	Maximum level estimation counter
	Speech_level	Word16	Speech level
	prev_pow_sum	Word16	Power of previous frame

 $Table \ C.7-Speech\ decoder\ static\ variables$

Struct name	Variable	Type[length]	Description
Decoder_State	old_exc	Word16[248]	Excitation vector
	ispold	Word16[16]	Old ISP vector
	isfold	Word16[16]	Old ISF vector
	isf_buf	Word16[48]	ISF vector history
	past_isfq	Word16[16]	Past quantized ISF prediction error
	tilt_code	Word16	Pre-emphasis filter memory
	Q_old	Word16	Old scaling factor
	Qsubfr	Word16	Scaling factor history
	L_gc_thres	Word16	Noise enhancer threshold
	mem_syn_hi	Word16[16]	Synthesis filter memory (most significant word)
	mem_syn_lo	Word16[16]	Synthesis filter memory (least significant word)
	mem_deemph	Word16	De-emphasis filter memory
	mem_sig_out	Word16[6]	HP filter memory in the synthesis
	mem_oversamp	Word16[24]	Oversampling filter memory
	mem_syn_hf	Word16[20]	Higher band synthesis filter memory
	mem_hf	Word16[30]	Estimated BP filter memory (23.85 kbit/s mode)
	mem_hf2	Word16[30]	Input BP filter memory (23.85 kbit/s mode)

Table C.7 – Speech decoder static variables

Struct name	Variable	Type[length]	Description
	mem_hf3	Word16[30]	Input LP filter memory (23.85 kbit/s mode)
	seed	Word16	Random code generation seed for bad frames
	seed2	Word16	Random generation seed for higher band
	old_T0	Word16	Old LTP lag (integer part)
	old_T0_frac	Word16	Old LTP lag (fraction part)
	lag_hist	Word16[5]	LTP lag history
	dec_gain	Word16[23]	Gain decoding memory
	seed3	Word16	Random LTP lag generation seed for bad frames
	disp_mem	Word16[8]	Phase dispersion memory
	mem_hp400	Word16[6]	HP filter memory
	prev_bfi	Word16	Previous BFI
	state	Word16	BGH state machine memory
	first_frame	Word16	First frame indicator
	dtx_decSt	dtx_decState*	See below in this table
	Vad_hist	Word16	VAD history
dtx_decState	Since_last_sid	Word16	Number of frames since last SID frame
	true_sid_period_inv	Word16	Inverse of true SID update rate
	log_en	Word16	Logarithmic frame energy
	old_log_en	Word16	Previous value of log_en
	isf	Word16[16]	ISF vector
	Isf_old	Word16[16]	Previous ISF vector
	Cng_seed	Word16	Comfort noise excitation seed
	Isf_hist	Word16[128]	ISF vector history (8 frames)
	Log_en_hist	Word16[8]	Logarithmic frame energy history
	Hist_ptr	Word16	Index to beginning of ISF history
	dtxHangoverCount	Word16	Counts down in hangover period
	DecAnaElapsedCount	Word16	Counts elapsed speech frames after DTX
	sid_frame	Word16	Flags SID frames
	valid_data	Word16	Flags SID frames containing valid data
	log_en_adjust	Word16	Mode-dependent frame energy adjustment
	dtxHangoverAdded	Word16	Flags hangover period at end of speech
	dtxGlobalState	Word16	DTX state flags
	data_updated	Word16	Flags CNI updates

C.2 Homing procedure

The principles of the homing procedures are described in the main body of this Recommendation. This clause only includes a detailed description of the nine decoder homing frames. For each AMR-WB codec mode, the corresponding decoder homing frame has a fixed set of parameters. The parameters in serial format are packed into parameters in a 15-bit-long format where the first serial bit is inserted into most significant bit in the 15-bit-long format. These 15-bit-long parameters do not

represent real speech parameters, but they decrease memory consumption compared to the speech parameters. Table C.8 shows the homing frame in a 15-bit-long format for different modes. In the decoder, the received speech parameters in serial format are first converted into a 15-bit-long format. Then the obtained parameters are compared against the homing frame table values. See Table C.8.

Table C.8 – Table values for the decoder homing frame in 15-bit-long format for different modes

Mode	Value (MSB=b0)
0	3168, 29954, 29213, 16121, 64, 13440, 30624, 16430, 19008
1	3168, 31665, 9943, 9123, 15599, 4358, 20248, 2048, 17040, 27787, 16816, 13888
2	3168, 31665, 9943, 9128, 3647, 8129, 30930, 27926, 18880, 12319, 496, 1042, 4061, 20446, 25629, 28069, 13948
3	3168, 31665, 9943, 9131, 24815, 655, 26616, 26764, 7238, 19136, 6144, 88, 4158, 25733, 30567, 30494, 221, 20321, 17823
4	3168, 31665, 9943, 9131, 24815, 700, 3824, 7271, 26400, 9528, 6594, 26112, 108, 2068, 12867, 16317, 23035, 24632, 7528, 1752, 6759, 24576
5	3168, 31665, 9943, 9135, 14787, 14423, 30477, 24927, 25345, 30154, 916, 5728, 18978, 2048, 528, 16449, 2436, 3581, 23527, 29479, 8237, 16810, 27091, 19052, 0
6	3168, 31665, 9943, 9129, 8637, 31807, 24646, 736, 28643, 2977, 2566, 25564, 12930, 13960, 2048, 834, 3270, 4100, 26920, 16237, 31227, 17667, 15059, 20589, 30249, 29123, 0
7	3168, 31665, 9943, 9132, 16748, 3202, 28179, 16317, 30590, 15857, 19960, 8818, 21711, 21538, 4260, 16690, 20224, 3666, 4194, 9497, 16320, 15388, 5755, 31551, 14080, 3574, 15932, 50, 23392, 26053, 31216
8	3168, 31665, 9943, 9134, 24776, 5857, 18475, 28535, 29662, 14321, 16725, 4396, 29353, 10003, 17068, 20504, 720, 0, 8465, 12581, 28863, 24774, 9709, 26043, 7941, 27649, 13965, 15236, 18026, 22047, 16681, 3968

C.3 File formats

This clause describes the file formats used by the encoder and decoder programs. The test sequences also use the file formats described here.

C.3.1 Speech file (encoder input/decoder output)

Speech files read by the encoder and written by the decoder consist of 16-bit words where each word contains a 14-bit, left aligned speech sample. The byte order depends on the host architecture (e.g., MSByte first on SUN workstations, LSByte first on PCs, etc.). Both the encoder and the decoder program process complete frames (of 320 samples) only.

This means that the encoder will only process n frames if the length of the input file is n*320 + k words, while the files produced by the decoder will always have a length of n*320 words.

C.3.2 Mode control file (encoder input)

The encoder program can optionally read in a mode control file which specifies the encoding mode for each frame of speech processed. The file is a text file containing one number per speech frame. Each line contains one of the mode numbers 0-8.

C.3.3 Parameter bitstream file (encoder output/decoder input)

The files produced by the speech encoder/expected by the speech decoder contain an arbitrary number of frames in the following available formats.

NOTE ON DEFAULT 3GPP AND ITU BITSTREAM FORMATS – ITU stream format gives very limited possibilities to distinguish NO_DATA and SID_FIRST frame types at the beginning of a stream. In some very limited cases for which some instance between encoder and decoder cuts of the first hangover period frames (e.g., handovers, editing of the stream), the output of the decoder is different depending on the stream format, ITU or default 3GPP.

i) Default 3GPP format

This is the default format used in 3GPP. This format shall be used when the codec is tested against the test vectors.

TYPE_OF_FRAME_TYPE	FRAME_TYPE	MODE	В1	В2		Bnn
--------------------	------------	------	----	----	--	-----

Each box corresponds to one Word16 value in the bitstream file, for a total of 3+nn words or 6+2nn bytes per frame, where nn is the number of encoded bits in the frame. Each encoded bit is represented as follows: Bit 0 = 0xff81, Bit 1 = 0x007f. The fields have the following meaning:

```
TYPE OF FRAME TYPE
                                 transmit frame type, which is one of
                                             TX\_TYPE (0x6b21)
                                             RX TYPE
                                                                    (0x6b20)
If TYPE OF FRAME TYPE is TX TYPE,
FRAME TYPE
                                   transmit frame type, which is one of
                                             TX_SPEECH (0x0000)
TX_SID_FIRST (0x0001)
                                             TX_SID_FIRST (0x0001)
TX_SID_UPDATE (0x0002)
                                             TX NO DATA (0 \times 0003)
If TYPE OF FRAME TYPE is RX TYPE,
FRAME TYPE
                                   transmit frame type, which is one of
                                             RX SPEECH GOOD (0 \times 0000)
                                             RX SPEECH PROBABLY DEGRADED
                                                                                            (0 \times 0001)
                                             RX SPEECH LOST (0 \times 0002)
                                             RX_SPEECH_BAD (0x0003)
RX_SID_FIRST (0x0004)
RX_SID_UPDATE (0x0005)
                                             RX_SID_BAD (0x0006)
RX NO DATA (0x0007)
B0...B2nn
                                   speech encoder parameter bits (i.e., the bitstream
                                   itself). Each Bx either has the value 0x0081 (for bit 0)
                                   or 0x007F (for bit 1).
MODE INFO encoding mode information, which is one of
                                             de information, which is one of 6.60 kbit/s mode (0x0000) 8.85 kbit/s mode (0x0001) 12.65 kbit/s mode (0x0002) 14.25 kbit/s mode (0x0003) 15.85 kbit/s mode (0x0004) 18.25 kbit/s mode (0x0005) 19.85 kbit/s mode (0x0006) 23.05 kbit/s mode (0x0007) 23.85 kbit/s mode (0x0008)
```

As indicated in clause C.3.1 above, the byte order depends on the host architecture.

ii) ITU format (activated with command line parameter -itu)

Each box corresponds to one Word16 value in the bitstream file, for a total of 2+nn words or 4+2nn bytes per frame, where nn is the number of encoded bits in the frame. Each encoded bit is represented as follows: Bit 0 = 0x007f, Bit 1 = 0x0081. The fields have the following meaning:

SYNC_WORD Word to ensure correct frame synchronization between the

encoder and the decoder. It is also used to indicate the

occurrences of bad frames.

In the encoder output: (0x6b21)

In the decoder input: Good frames (0x6b21)Bad frames (0x6b20)

DATA LENGTH Length of the speech data. Codec mode and frame type is

extracted in the decoder using this parameter:

DATA _LENGTH	PREVIOUS FRAME	CODEC MODE	FRAMETYPE
0	RX_SPEECH_GOOD/ RX_SPEECH_LOST	DTX	RX_SID_FIRST
0	OTHER THAN RX_SPEECH_GOOD/ RX_SPEECH_LOST	DTX	RX_NO_DATA
35	-	DTX	RX_SID_UPDATE
132	-	6.60 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
177	-	8.85 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
253	-	12.65 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
285	_	14.25 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
317	-	15.85 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
365	-	18.25 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
397	-	19.85 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
461	-	23.05 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST
477	-	23.85 kbit/s	RX_SPEECH_GOOD/ RX_SPEECH_LOST

iii) MIME/file storage format (activated with command line parameter -mime)

Detailed description of the AMR-WB single channel MIME/file storage format can be found in clauses 5.1 and 5.3 of [IETF RFC 3267]. This format is used, e.g., by the Multimedia Messaging Service (MMS).

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	Tariff and accounting principles and international telecommunication/ICT economic and policy issues
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling, and associated measurements and tests
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
Series Z	Languages and general software aspects for telecommunication systems