МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.2.2

Резонанс напряжений в последовательном контуре

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

1 Введение

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазово-частотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

2 Теоретические сведения и методика измерений

2.1 Описание установки, вывод основных соотношений

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рисунке 1. Синусоидальный сигнал от генератора GFG-8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рисунке в виде эквивалентной схемы.

Рис. 1: Схема экспериментального стенда

Катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_r \geq 1,3$ МГц. В общем случае каждая катушка, помимо индуктивности L, характеризуется также собственной ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. Принимается, что эти величины сосредоточены в отдельных элементах схемы, образующих с индуктивностью L замкнутую колебательную цепь с собственной резонансной частотой

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

Вследствие влияния ёмкости C_L при измерении на частоте f эффективное определяется значение индуктивности $L_{eff} = L/(1-f^2/f_r^2)$, которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего контура выполняется неравенство $f \ll f_r$, так что в эквивалентной схеме контура на рис. 1 индуктивность представлена истинным значением L и активным сопротивлением R_L .

Оценим возможные активные потери в конденсаторах, воспользовавшись представлением конденсатора с ёмкостью C последовательной эквивалентной схемой с эквивалентным последовательным сопротивлением

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} \operatorname{tg} \delta. \tag{2}$$

В колебательный контур нашей установки входит резистор R, снижающий его добротность. Это сделано для упрощения получения и обработки резонансных кривых. Таким образом, суммарное активное сопротивление контура принимается равным

$$R_{\Sigma} = R + R_L + R_S. \tag{3}$$

Далее будем пользоваться методом комплексных амплитуд. Для импедансов индуктивности Z_L , ёмкости Z_C и последовательного контура $Z = Z_L + R + Z_C$:

$$Z_L = R_L + i\omega L, \quad Z_C = R_S - i\frac{1}{\omega C}, \quad Z = R_\Sigma + i\left(\omega L - \frac{1}{\omega C}\right).$$
 (4)

Комплексные амплитуды тока в контуре $\boldsymbol{I} = \boldsymbol{\mathcal{E}}/Z$ и напряжений индуктивности $\boldsymbol{U}_L = Z_L \boldsymbol{I}$ и ёмеости $\boldsymbol{U}_C = Z_C \boldsymbol{I}$ при нулевой начальной фазе φ_0 напряжения на контуре $\boldsymbol{\mathcal{E}} = \mathcal{E}e^{i\varphi_0}$ удобно представить в виде

$$\boldsymbol{I} = \frac{\mathcal{E}}{R_{\Sigma}} \frac{1}{1 + iQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}, \quad \boldsymbol{U}_L = i\mathcal{E}Q\frac{\omega}{\omega_0} \frac{1 - iR_L/\rho}{1 + iQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}, \quad \boldsymbol{U}_C = -i\mathcal{E}Q\frac{\omega_0}{\omega} \frac{1 + i\operatorname{tg}\delta}{1 + iQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}, \quad (5)$$

где $\omega_0=1/\sqrt{LC}$ — резонансная частота, определяемая из условия ${\rm Im}\,Z=0$, то есть из условия действительности контура, $\rho=\sqrt{L/C}$ — реактивное, или волновое, сопротивление контура, Q — добротность колебательного контура.

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \gg 1. \tag{6}$$

Рассмотрим случай, когда $|\Delta\omega|\ll\omega_0$, тогда мы можем упростить соотношения 5 и представить их в виде

$$I = \frac{\mathcal{E}}{R_{\Sigma}} \frac{e^{i\varphi_I}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \varphi_I = -\arctan(\tau \Delta \omega), \tag{7}$$

$$U_C = \mathcal{E}Q \frac{\omega_0}{\omega} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \varphi_C = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega), \tag{8}$$

$$U_L = \mathcal{E}Q \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \varphi_L = \frac{\pi}{2} - \frac{R_L}{\rho} - \arctan(\tau \Delta \omega), \tag{9}$$

где $\tau = 2L/R_{\Sigma} = 2Q/\omega_0$ – время релаксации, $\gamma = 1/\tau$ – коэффициент затухания. В выражениях (8) и (9) мы пренебрегли относительными поправками порядка Q^{-2} , а величину δ сохранили для общности, положив её константой. Из формул (7), (8) и (9) видно, что зависимости модулей тока I в контуре и напряжений U_L на индуктивности и U_C на ёмкости от частоты ω внешней ЭДС имеют вблизи резонанса практически одинаковый характер.

При резонансе, когда $\omega = \omega_0$, $\Delta \omega = 0$, выражения для модулей комплексных амплитуд и их фаз:

$$I(\omega_0) = \frac{\mathcal{E}}{R_{\Sigma}}, \quad \varphi_I(\omega_0) = 0, \tag{10}$$

$$U_L(\omega_0) = Q\mathcal{E}, \quad \varphi_L(\omega_0) = \frac{\pi}{2} - \frac{R_L}{\rho},$$
 (11)

$$U_C(\omega_0) = Q\mathcal{E}, \quad \varphi_C(\omega_0) = -\frac{\pi}{2} + \delta.$$
 (12)

2.2 Расчётные формулы

Зная резонансную частоту ((1)) можно найти индуктивность катушки

$$L = \frac{1}{4\pi^2 C f^2}. (13)$$

Из формулы (6), или из формулы $\rho = \sqrt{L/C}$ можно найти реактивное сопротивление контура. Зная суммарное активное сопротивление R_{Σ} и $R_S = 10^{-3} \rho$, можно найти R_L – активное сопротивление катушки.

Для определения добротности контура Q применяется формула (12).

Сопротивление R_{Σ} найдём из формулы (6).

При исследовании АЧХ, будем использовать формулу

$$Q = \frac{\omega_0}{\delta\omega},\tag{14}$$

где $\delta\omega$ — ширина резонансной кривой на уровне $U_C(\omega_0)/\sqrt{2}$.

При исследовании ФЧХ применим формулу (8), согласно которой расстояние по оси ω между точками, в которых фаза φ_C меняется от $-\pi/4$ до $-3\pi/4$, равно $2/\tau$, где τ – время релаксации.

3 Результаты измерений и обработка данных

3.1 Резонансные параметры контуров

В результате измерения резонансных частот и соответствующих им напряжений были получены данные, которые представлены в таблице 1.

Рис. 2: Векторная диаграмма для контура $C_n=102,8$ нФ при $\mathcal{E}=0,2$ В

 Φ РКТ М Φ ТИ, 2023 3

C_n , н Φ	f_{0n} , к Γ ц	U_C , B	\mathcal{E} , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_S , Om	R_L , Om	I, мА
24,8	32,447	5,059	0,2009	970	25,2	197,79	7,85	0,198	4,2	25,6
33,2	28,031	4,529	0,2007	971	22,6	171,02	7,58	0,171	3,9	26,5
47,6	23,384	3,936	0,2006	973	19,6	142,99	7,29	0,143	3,6	27,5
57,5	21,337	3,571	0,2006	968	17,8	129,72	7,29	0,130	3,7	27,5
68,0	19,584	3,423	0,2005	971	17,1	119,51	7,00	0,120	3,4	28,6
102,8	15,989	2,879	0,2005	964	14,4	96,83	6,74	0,097	3,1	29,7
	Среднее значение			970					3,6	
СКП			1,4					0,1		
Коэффициент Стьюдента			2,6					2,6		
Слу	/чайная по	грешно	ть	3,5					0,4	

C_n , н Φ	f_{0n} , к Γ ц	U_C , B	\mathcal{E} , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_S , Om	R_L , Om	<i>I</i> , мА
24,8	32,305	3,762	0,1496	979	25,1	198,65	7,90	0,199	4,2	18,9
33,2	27,820	3,355	0,1495	986	22,4	172,32	7,68	0,172	4,0	19,5
47,6	23,275	2,884	0,1495	982	19,3	143,66	7,45	0,144	3,8	20,1
57,5	21,234	2,650	0,1494	977	17,7	130,35	7,35	0,130	3,7	20,3
68,0	19,548	2,451	0,1493	975	16,4	119,73	7,29	0,120	3,7	20,5
102,8	15,915	2,050	0,1493	973	13,7	97,28	7,08	0,097	3,5	21,1
	Среднее значение			979					3,8	
СКП			2,0					0,1		
Коэффициент Стьюдента			2,6					2,6		
Слу	учайная по	грешно	сть	5,1					0,3	

C_n , н Φ	f_{0n} , к Γ ц	U_C , B	\mathcal{E} , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_S , Om	R_L , Om	I, мА
24,8	32,071	7,468	0,3028	993	24,7	200,10	8,11	0,200	4,4	37,3
33,2	27,621	6,611	0,3028	1000	21,8	173,56	7,95	0,174	4,3	38,1
47,6	23,162	5,763	0,3028	992	19,0	144,36	7,58	0,144	3,9	39,9
57,5	21,018	5,300	0,3027	997	17,5	131,69	7,52	0,132	3,9	40,2
68,0	19,544	4,697	0,3026	975	15,5	119,76	7,72	0,120	4,1	39,2
102,8	15,767	4,114	0,3026	991	13,6	98,19	7,22	0,098	3,6	41,9
	Среднее значение			991					4,0	
СКП			3,5					0,1		
Коэффициент Стьюдента			2,6					2,6		
Слу	Случайная погрешность			9,2					0,3	

Таблица 1: Результаты измерений

Построим векторную диаграмму на рис. 2, отложив \mathcal{E} по оси абсцисс с масштабом в 2 раза больше, чем по оси ординат. Заметим, что согласно закону Кирхгофа

$$\mathcal{E} = U_R + U_C + U_L, \tag{15}$$

на диаграмме должно быть представлено равенство вектора \mathcal{E} и суммы остальных трёх векторов. С помощью таблицы 1 был построен график $R_L(f_0)$ на рис. 3. Видно, что сопротивление меняется практически линейно. Можно предположить, что изменения связаны с потерями на перемагничивание сердечника катушки.

 Φ РКТ М Φ ТИ, 2023 4

Рис. 3: График изменения активного сопротивления индуктивности

3.2 Исследование АЧХ

Для контуров с двумя разными ёмкостями были сняты амплитудно-частотные характеристики $U_C(f)$. Результаты исследования данной зависимости приведены в таблице 2.

C_n , н Φ	f, Гц	U_C , B	f/f_0	U/U_0
	22459	2,291	0,9662	0,5825
	22471	2,314	0,9667	0,5884
	22520	2,404	0,9688	0,6112
	22658	2,729	0,9748	0,6939
	22846	3,236	0,9828	0,8228
	22949	3,505	0,9873	0,8912
	23050	3,731	0,9916	0,9486
47,6	23245	3,933	1,0000	1,0000
41,0	23300	3,865	1,0024	0,9827
	23468	3,631	1,0096	0,9232
	23616	3,326	1,0160	0,8457
	23719	3,101	1,0204	0,7885
	23818	2,885	1,0247	0,7335
	24000	2,503	1,0325	0,6364
	24080	2,365	1,0359	0,6013
	24182	2,185	1,0403	0,5556

C_n , н Φ	f, Гц	U_C , B	f/f_0	U/U_0
	18774	2,010	0,9615	0,5929
	18844	2,152	0,9651	0,6348
	18937	2,343	0,9698	0,6912
	19025	2,542	0,9743	0,7499
	19113	2,754	0,9789	0,8124
	19239	3,042	0,9853	0,8974
	19369	3,268	0,9920	0,9640
68,0	19526	3,390	1,0000	1,0000
00,0	19666	3,239	1,0072	0,9555
	19734	3,138	1,0107	0,9257
	19851	2,922	1,0166	0,8620
	19981	2,664	1,0233	0,7858
	20086	2,455	1,0287	0,7242
	20193	2,258	1,0342	0,6661
	20280	2,108	1,0386	0,6218
	20332	2,024	1,0413	0,5971

Таблица 2: Результаты измерения зависимости амплитудно-частотных характеристик

По таблице 2 на одном графике были построены амплитудно-частотные характеристики в координатах $f, U_C(f)$ для выбранных контуров (рис. 4).

Рис. 4: Амплитудно-частотная характеристика $U_C(f)$

Из графика (рис. 4) видно, что резонансная частота и добротность в контуре при C=68,0 н Φ меньше.

По таблице 2 также на одном графике были построены амплитудно-частотные характеристики в безразмерных координатах $x=f/f_0,\,y=U_C/U_0$ (рис. 5).

Рис. 5: Амплитудно-частотная характеристика в безразмерных координатах $x=f/f_0,\,y=U_C/U_0$

Найдём добротность как обратное к разности частот на уровне 0,707:

$$\frac{1}{Q_{C=47.6 \text{ H}\Phi}} = (0,050 \pm 0,001) \Rightarrow Q_{C=47.6 \text{ H}\Phi} = (20,0 \pm 0,4)$$
(16)

$$\frac{1}{Q_{C=47,6 \text{ H}\Phi}} = (0,050 \pm 0,001) \Rightarrow Q_{C=47,6 \text{ H}\Phi} = (20,0 \pm 0,4)$$

$$\frac{1}{Q_{C=68,0 \text{ H}\Phi}} = (0,059 \pm 0,001) \Rightarrow Q_{C=68,0 \text{ H}\Phi} = (16,9 \pm 0,3)$$
(17)

3.3 Исследование ФЧХ

Для контуров с двумя разными ёмкостями были сняты фазово-частотные характеристики $\varphi_C(f)$. Результаты исследования данной зависимости приведены в таблице 3.

C_n , н Φ	f, Гц	f/f_0	$\Delta \varphi_C/\pi$
	21323	0,9173	0,0851
	21515	0,9256	0,1087
	21784	0,9372	0,1087
	21900	0,9421	0,1304
	22094	0,9505	0,1556
	22285	0,9587	0,1556
	22529	0,9692	0,2273
	22705	0,9768	0,2500
47,6	22930	0,9865	0,3182
41,0	23262	1,0007	0,5116
	23604	1,0154	0,6905
	23866	1,0267	0,7381
	24024	1,0335	0,7619
	24303	1,0455	0,8293
	24475	1,0529	0,8537
	24621	1,0592	0,8537
	24950	1,0734	0,9000
	25407	1,0930	0,9487

C_n , н Φ	f, Гц	f/f_0	$\Delta \varphi_C/\pi$
	17868	0,9151	0,0893
	17971	0,9204	0,1091
	18200	0,9321	0,1273
	18385	0,9416	0,1482
	18543	0,9497	0,1482
	18634	0,9543	0,1667
	18717	0,9586	0,1887
	19060	0,9761	0,2885
68,0	19170	0,9818	0,3077
00,0	19229	0,9848	0,3462
	19559	1,0017	0,5294
	19709	1,0094	0,5686
	19967	1,0226	0,7000
	20220	1,0355	0,7400
	20494	1,0496	0,8163
	20710	1,0606	0,8542
	20960	1,0734	0,8750
	21141	1,0827	0,9149

Таблица 3: Результаты измерения зависимости фазово-частотных характеристик

По таблице 3 на одном графике были построены фазово-частотные характеристики в безразмерных координатах $x = f/f_0$, $y = \varphi_C/\pi$ (рис. 6).

Из графика (рис. 6) видно, что резонансная частота и добротность в контуре при C=68,0 н Φ меньше.

 Φ РКТ М Φ ТИ, 2023

Рис. 6: Фазово-частотная характеристика в безразмерных координатах $x=f/f_0,\,y=\varphi_C/\pi$

Определим добротность из расстояния по оси x между пересечением графиками прямых y=0,25и y = 0,75:

$$\frac{1}{Q_{C=47.6 \text{ H}\Phi}} = (0,050 \pm 0,001) \Rightarrow Q_{C=47.6 \text{ H}\Phi} = (20,0 \pm 0,4)$$
(18)

$$\frac{1}{Q_{C=47,6 \text{ H}\Phi}} = (0,050 \pm 0,001) \Rightarrow Q_{C=47,6 \text{ H}\Phi} = (20,0 \pm 0,4)$$

$$\frac{1}{Q_{C=68,0 \text{ H}\Phi}} = (0,061 \pm 0,001) \Rightarrow Q_{C=68,0 \text{ H}\Phi} = (16,4 \pm 0,3)$$
(19)

Заключение 4

Проведено исследование колебаний напряжения в последовательном контуре. Несколькими методами была определена добротность контуров. Результаты согласуются друг с другом с учётом погрешностей.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Т. ІІІ. Электричество, 2007
- [2] Лабораторный практикум по общей физике. Т. ІІ. Электричество и магнетизм, 2019

 $\overline{\Phi}$ РКТ М Φ ТИ, 2023