

MU Test Plan — Test 7 (\hbar -Variation at β =9 & β =10)

Goal

To test how the survival weights respond when the "quantum noise scale" (\hbar) is varied, both at the **critical** threshold (β =9) and the **post-threshold macroscopic region** (β =10).

Parameters

- gamma: 1.0
- betas tested: 9.0 (near threshold) and 10.0 (post-threshold)
- hbar values tested: 0.05, 0.1, 0.2
- **velocities tested:** v = 0.050 (slow), v = 0.500 (fast)
- selector form: $T(r) = \frac{1}{1 + |r r_c|}, r_c = 0.25$
- integration window: 1.0

Predictions

- At β=9.0:
 - $h=0.05 \rightarrow$ survival suppressed (~10⁻¹² or smaller).
 - $h=0.1 \rightarrow \text{survival} \sim 10^{-5}$ (as already seen).
 - \hbar =0.2 \rightarrow survival stronger (~10⁻² to 10⁻¹).
- At β=10.0:
 - \hbar =0.05 \rightarrow survival weight smaller than 0.3 but still macroscopic (~10⁻²).
 - $h=0.1 \rightarrow \text{survival} \sim 0.3 \text{ (from Test 4b)}.$
 - $h=0.2 \rightarrow$ survival larger, possibly close to ~0.8 or 1.0.
- Fast path: Should remain annihilated in all cases.

• Interpretation:

- If the *threshold* β is roughly unchanged across \hbar , then the MU law is **universal**.
- If the threshold shifts, then Truth's amplification and noise scale compete directly.