

这门课学什么

主要内容

- 基本部件的结构和组织方式
- 基本运算的操作原理
- 基本部件和单元的设计思想

本节内容

计算机 发展历程

王道考研/CSKAOYAN.COM

计算机硬件的发展 发展阶段 时间 逻辑元件 速度(次/秒) 内存 外存 第一代 1946-1957 电子管 几千-几万 汞延迟线、磁鼓 穿孔卡片、纸袋 第二代 晶体管 几万-几十万 磁芯存储器 磁带 1958-1964 第三代 1964-1971 中小规模集成 几十万-几百万 半导体存储器 磁带、磁盘 电路 大规模、超大 规模集成电路 第四代 磁盘、磁带、光盘、 1972-现在 上千万-万亿 半导体存储器 半导体存储器 王道考研/CSKAOYAN.COM

计算机硬件的发展

第一代计算机(1946-1957年)

电子管时代

第一台电子数字计算机: ENIAC

机器语言 占地面积约170平方米 耗电量150千瓦 包含了17,468根真空管

王道考研/CSKAOYAN.COM

计算机硬件的发展

第二代计算机(1958-1964年)

晶体管时代

面向过程的程序设计语言: FORTRAN 有了操作系统雏形

计算机硬件的发展

第三代计算机(1965-1971年)

中小规模集成电路时代

高级语言迅速发展 开始有了分时操作系统

王道考研/CSKAOYAN.COM

计算机硬件的发展

第四代计算机(1971年至今)

大规模、超大规模集成电路时代

产生了微处理器

新的概念:

并行、流水线、高速缓存、虚拟存储器...

计算机硬件的发展

微处理器的发展

微型计算机的发展以微处理器技术为标志

微处理器	机器字长	年份	晶体管数目
8080	8位	1974	
8086	16位	1979	2.9万
80286	16位	1982	13.4万
80386	32位	1985	27.5万
80486	32位	1989	120.0万
Pentium	64位(准)	1993	310.0万
Pentium pro	64位(准)	1995	550.0万
Pentium II	64位(准)	1997	750.0万
Pentium III	64位(准)	1999	950.0万
Pentium IV	64位	1000	3200.0万

机器字长: 计算机一次整数运算所能处理的二进制位数

计算机的分类与发展方向

电子模拟计算机

电子数字计算机

通用计算机 专用计算机

冯·诺依曼计算机

"存储程序":将指令以代码的形式事先输入到计算机主存储器中,然后按其在存储器中的首地址执行程序的第一条指令,以后就按照该程序的规定顺序执行其他指令,直至程序执行结束。

- 1. 计算机硬件系统由运算器、存储器、控制器、输入设备和输出设备5大部件组成。
- 2. 指令和数据以同等地位存于存储器内,并可按地址寻访。
- 3. 指令和数据均用二进制代码表示。
- 4. 指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数 在存储器中的位置。
- 5. 指令在存储器内按顺序存放。通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。
- 6. 早期的冯·诺依曼机以运算器为中心,输入/输出设备通过运算器与存储器传送数据。

速度

MIPS(Million Instructions Per Second),即每秒执行多少百万条指令。MIPS=指令条数/(执行时间×10⁶)=主频/CPI

MFLOPS(Mega Floating-point Operations Per Second),即每秒执行多少百万次浮点运算。MFLOPS=浮点操作次数/(执行时间×10⁶)。

GFLOPS(Giga Floating-point Operations Per Second),即每秒执行多少十亿次浮点运算。MFLOPS=浮点操作次数/(执行时间×10⁹)。

TFLOPS(Tera Floating-point Operations Per Second),即每秒执行多少万亿次浮点运算。MFLOPS=浮点操作次数/(执行时间×10¹²)。

速度

数据通路带宽:数据总线一次所能并行传送信息的位数

吞吐量: 指系统在单位时间内处理请求的数量。

它取决于信息能多快地输入内存,CPU能多快地取指令,数据能多快地从内存取出或存入,以及所得结果能多快地从内存送给一台外部设备。这些步骤中的每一步都关系到主存,因此,系统吞吐量主要取决于主存的存取周期。

响应时间:指从用户向计算机发送一个请求,到系统对该请求做出响应并获得它所需要的结果的等待时间。

通常包括CPU时间(运行一个程序所花费的时间)与等待时间(用于磁盘访问、存储器访问、I/O操作、操作系统开销等时间)。

