Suppose you have two training examples $(x^{(1)}, y^{(1)})$ and $(x^{(2)}, y^{(2)})$. Which of the following is a correct sequence of operations for computing the gradient? (Below, FP = forward propagation, BP = back propagation).

- igcup FP using $x^{(1)}$ followed by FP using $x^{(2)}$. Then BP using $y^{(1)}$ followed by BP using $y^{(2)}$.
- igcup FP using $x^{(1)}$ followed by BP using $y^{(2)}$. Then FP using $x^{(2)}$ followed by BP using $y^{(1)}$.
- igcup BP using $y^{(1)}$ followed by FP using $x^{(1)}$. Then BP using $y^{(2)}$ followed by FP using $x^{(2)}$.
- ullet FP using $x^{(1)}$ followed by BP using $y^{(1)}$. Then FP using $x^{(2)}$ followed by BP using $y^{(2)}$.

Correct

Continue

Consider the following neural network:

Suppose both of the weights shown in red ($\Theta_{11}^{(2)}$ and $\Theta_{21}^{(2)}$) are equal to 0. After running backpropagation, what can we say about the value of $\delta_1^{(3)}$?

- \bigcirc $\delta_1^{(3)}>0$
- \bigcirc $\delta_1^{(3)}=0$ only if $\delta_1^{(2)}=\delta_2^{(2)}=0$, but not necessarily otherwise
- \bigcirc $\delta_1^{(3)} \leq 0$ regardless of the values of $\delta_1^{(2)}$ and $\delta_2^{(2)}$
- There is insufficient information to tell

Correct