Semi-supervised Learning: Inference

Gyumin Lee

Yonsei University

August 29, 2023

Introduction

Brief summary

The purpose of the presentation is to introduce semi-supervised inference and related studies.

Papers

- 1. Doubly Robust Self-Training
 - Banghua Zhu, Mingyu Ding, Philip Jacobson, Ming Wu, Wei Zhan, Michael I. Jordan, and Jiantao Jiao(June 2023)
 - https://arxiv.org/abs/2306.00265
- 2. Prediction-Powered Inference
 - Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, and Tijana Zrnic. (February 2023)
 - https://arxiv.org/abs/2301.09633

Contents

- 1. Preliminaries: Semi-Supervised Inference
- 2. Related Works
- 3. Doubly Robust Self-Training
- 4. Prediction-Powered Inference

- Basic assumption:
 - labeled data are more difficult/expensive to acquire than unlabeled data.
 - \rightarrow utilize unlabeled data!

- Examples
 - Survey sampling
 - Electronic health record
 - homeless consensus

Basic Setting

- Labled data : $(X, Y) \in (\mathcal{X}, \mathcal{Y})^n$ where $X = (X_1, ..., X_n)$ and $Y = (Y_1, ..., Y_n)$.
- Unlabeled data : $(\tilde{X}, \tilde{Y}) \in (\mathcal{X}, \mathcal{Y})^m$ where \tilde{Y} is not observed.
- Assume that (X, Y) and (\tilde{X}, \tilde{Y}) are i.i.d. samples from a common distribution \mathbb{P} .
- Prediction rule : $f: \mathcal{X} \to \mathcal{Y}$, independent of the observed data.(e.g. pretrained model)

Goal

Our estimand of interest is denoted as θ^* which could be E[Y] (mean estimation), $\min\{\theta: P(Y \leq \theta) \geq q\}$ (quantile estimation), or $\underset{\theta \in \mathbb{R}^d}{\min} E[I_{\theta}(X, Y)]$ for some loss function I_{θ} .

Example

Let our goal of estimation be $\theta^* = E[Y]$.

We have several candidates of estimators as follows

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i)) + \frac{1}{n+m} \sum_{i=1}^{n+m} f(X_i)$$

Note that both are unbiased estimators. How about variance?

$$extbf{Var}(\bar{Y}) = Var(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}Var(Y)$$

■
$$Var(\hat{\theta}) = Var(\frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i)) + \frac{1}{n+m} \sum_{i=1}^{n+m} f(X_i))$$

= $\frac{1}{n} (Var(Y) + \frac{m-n}{m} (Var(f(X)) - 2Cov(Y, f(X))))$

 \rightarrow If Var(f(X)) < 2Cov(Y, f(X)), then $\hat{\theta}$ improves the original one!

Example(cont.)

Suppose we take an ideal prediction function f(X) = E(Y|X)Since

$$Cov(Y, E(Y|X)) = E[(Y - E[Y])(E[Y|X] - E[Y])]$$

$$= E[E[(Y - E[Y])(E[Y|X] - E[Y])|X]]$$

$$= E[(E[Y|X] - E[Y])^{2}]$$

$$= Var(E(Y|X))$$

, we obtain the result assuming n << m as

$$Var(\hat{\theta}) = \frac{1}{n}E(Var(Y|X)) + \frac{1}{m}Var(E(Y|X))$$

$$\leq \frac{1}{n}E(Var(Y|X)) + \frac{1}{n}Var(E(Y|X)) = \frac{1}{n}Var(Y) = Var(\bar{Y})$$

Hence, $\hat{\theta}$ has smaller variance than the sample mean \bar{Y} .

Semi-supervised inference: general theory and estimation of means(Anru Zhang, Lawrence D. Brown and T. Tony Cai)

For the ideal semi-supervised inference, where $m=\infty$, the proposed estimator is 'least square estimator', which is defined as

$$\hat{\theta}_{LS} = \mu' \hat{\beta} = \hat{\beta}_1 + \mu' \hat{\beta}_{(2)} = \bar{Y} - \hat{\beta}'_{(2)} (\bar{X} - \mu).$$

Here, $\mu=(1,\mu')'=\mathbb{E}X$ is known and $\hat{\beta}=[\hat{\beta}_1\hat{\beta}'_{(2)}]'=(X'X)^{-1}X'Y$, where X is $n\times(p+1)$ matrix including intercept column of ones.

On the other hand, for the ordinary semi-supervised inference, where $m<\infty$, the proposed estimator is 'semi-supervised least squared estimator', which is defined as

$$\hat{\theta}_{SSLS} = \hat{\mu}'\hat{\beta} = \bar{Y} - \hat{\beta}'_{(2)}(\bar{X} - \hat{\mu}).$$

Here, $\hat{\mu} = (1, \hat{\mu}')' = \frac{1}{n+m} \sum_{k=1}^{n+m} X_k$.

Semi-supervised inference: general theory and estimation of means(Anru Zhang, Lawrence D. Brown and T. Tony Cai)

Results about I₂ risks

$$nE(\bar{Y} - \theta)^2 = \tau^2 + \beta_{(2)}^{\top} \Sigma_n \beta_{(2)}$$

$$nE(\hat{\theta}_{LS}^1 - \theta)^2 = \tau^2 + O(\frac{p^2}{n})$$

$$nE(\hat{\theta}_{SSLS}^1 - \theta)^2 = \tau_n^2 + \frac{n}{n+m} \beta_{(2)}^{\top} \Sigma_n \beta_{(2)} + O(\frac{p^2}{n})$$

$$\approx \frac{n}{n+m} E(\bar{Y} - \theta)^2 + \frac{m}{n+m} E(\hat{\theta}_{LS}^1 - \theta)^2$$

Semi-supervised inference: general theory and estimation of means(Anru Zhang, Lawrence D. Brown and T. Tony Cai)

Let $(Y_1, X_1), \dots, (Y_n, X_n)$ be i.i.d. copies from P, and assume that [Y, X] has finite second moments, $\vec{\Xi}$ is non-singular and $\tau^2 > 0$. Then, under the setting that P is fixed and $n \to \infty$

$$rac{\hat{ heta}_{\mathrm{LS}} - heta}{ au/\sqrt{n}} \stackrel{d}{ o} N(0,1),$$

and

$$MSE/ au^2 \stackrel{d}{ o} 1$$
, where $MSE := rac{\sum_{i=1}^n \left(Y_i - X_i^{ op} \hat{eta}
ight)^2}{n-p-1}, au^2 = E(Y_i - \vec{X}_i^{ op} eta)^2$

4 D > 4 D > 4 E > 4 E > E 9 Q P

Semi-supervised inference: general theory and estimation of means(Anru Zhang, Lawrence D. Brown and T. Tony Cai)

On the other hand, Let (Y_1, X_1) , \cdots , (Y_n, X_n) be i.i.d. labeled samples from P, and let X_{n+1}, \cdots, X_{n+m} be m additional unlabeled independent samples from P_X . Suppose $\vec{\Xi}$ is nonsingular and $\tau^2 > 0$. If P is fixed and $n \to \infty$, then

$$\frac{\sqrt{n}\left(\hat{\theta}_{\mathrm{SSLS}} - \theta\right)}{\nu} \stackrel{d}{\to} \textit{N}(0,1),$$

and

$$\frac{\hat{\nu}^2}{\nu^2} \stackrel{d}{ o} 1$$

where
$$\hat{\nu}^2 = \frac{m}{m+n} MSE + \frac{n}{m+n} \hat{\sigma}_Y^2$$
 with $MSE = \frac{1}{n-p-1} \sum_{k=1}^n \left(Y_i - \vec{X}_k^{\top} \hat{\beta} \right)^2$, $\nu^2 = \tau^2 + \frac{n}{n+m} \beta_{(2)}^{\top} \Sigma_n \beta_{(2)}$ and $\hat{\sigma}_Y^2 = \frac{1}{n-1} \sum_{k=1}^n \left(Y_i - \overline{\mathbf{Y}} \right)^2$.

- Semi-supervised inference: general theory and estimation of means(Anru Zhang, Lawrence D. Brown and T. Tony Cai, The Annals of Statistics) mean estimation on regression setting
- "Semisupervised inference for explained variance in high dimensional linear regression and its applications(T. Tony Cai and Zijian Guo, JRSS)" - Variance estimation
- "High-dimensional Semi-supervised Learning: in Search for Optimal Inference of the Mean(Yuqian Zhang and Jelena Bradic, Biometrika)" high-dimensional setting
- "The correlation-assisted missing data estimator(Timothy I. Cannings and Yingying Fan, JMLR)" - missing data approach, extension to U-statistics
- "Methods for correcting inference based on outcomes predicted by machine learning(Siruo Wang, Tyler H. McCormick, and Jeffrey T. Leek, Proceedings of the National Academy of Sciences, 2020)" - different approach using bootstrap
- "Valid inference after prediction(Keshav Motwani and Daniela Witten)" showing the above method is a bad approach

Motivation

Given a teacher model, a large unlabeled dataset and a small labeled dataset, how can we design a principled learning process that ensures consistent and sample-efficient learning of the true model?

Self-Training

- involves using a teacher model to generate pseudo-labels for all unlabeled data, and then training a new model on a mixture of both pseudo-labeled and labeled data.
- can lead to overreliance on the teacher model and can miss important information provided by the labeled data.
- ightarrow highly sensitive to the accuracy of the teacher model

Problem setting

- Given
 - Unlabeled samples $\mathcal{D}_1 = \{X_1,...,X_m\}$ drawn from \mathbb{P}_X , Labeled samples $\mathcal{D}_2 = \{(X_{m+1},Y_{m+1}),...,(X_{m+n},Y_{m+n})\}$ drawn from $\mathbb{P}_X \times \mathbb{P}_{Y|X}$
 - Pre-trained model $\hat{f}:\mathcal{X} o\mathcal{Y}$
- Goal: find θ^* such that $\theta^* = argminE[I_{\theta}(X,Y)]$ for some loss function I_{θ}

Main result

$$\mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{DR} = \frac{1}{m+n} \sum_{i=1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) - \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) + \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, Y_{i})$$

is doubly robust!

Main result

Traditional:

$$\begin{split} \mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{\mathrm{SL}}(\theta) &= \frac{1}{m+n} \left(\sum_{i=1}^{m} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i} \right) \right) + \sum_{i=m+1}^{m+n} \ell_{\theta} \left(X_{i}, Y_{i} \right) \right) \\ &= \frac{1}{m+n} \sum_{i=1}^{m+n} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i} \right) \right) - \frac{1}{m+n} \sum_{i=m+1}^{m+n} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i} \right) \right) + \frac{1}{m+n} \sum_{i=m+1}^{m+n} \ell_{\theta} \left(X_{i}, Y_{i} \right) \end{split}$$

Doubly Robust:

$$\mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{DR} = \frac{1}{m+n} \sum_{i=1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) - \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) + \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, Y_{i})$$

Mean estimation

- Goal: find θ^* such that $\theta^* = argminE[(\theta Y)^2]$
- Loss only from labeled data

$$\begin{array}{l} : \mathcal{L}_{\mathcal{D}_1,\mathcal{D}_2}^{TL} = \frac{1}{n} \sum_{i=m+1}^{n+n} (\theta - Y_i)^2 \\ \rightarrow \hat{\theta}_{TL} = \frac{1}{n} \sum_{i=m+1}^{m+n} Y_i \end{array}$$

Loss from self-training

:
$$\mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{SL} = \frac{1}{m+n} \left(\sum_{i=1}^{m} (\theta - \hat{f}(X_{i}))^{2} + \sum_{i=m+1}^{m+n} (\theta - Y_{i})^{2} \right)$$

 $\rightarrow \hat{\theta}_{SL} = \frac{1}{m+n} \left(\sum_{i=1}^{m} \hat{f}(X_{i}) + \sum_{i=m+1}^{m+n} Y_{i} \right)$

■ Doubly robust loss: $\mathcal{L}_{\mathcal{D}_1,\mathcal{D}_2}^{DR} =$

$$\frac{1}{m+n} \sum_{i=1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) - \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, \hat{f}(X_{i})) + \frac{1}{n} \sum_{i=m+1}^{m+n} l_{\theta}(X_{i}, Y_{i}) + \hat{\theta}_{DR} = \frac{1}{m+n} \sum_{i=1}^{m+n} \hat{f}(X_{i}) - \frac{1}{n} \sum_{i=m+1}^{m+n} \hat{f}(X_{i}) - Y_{i}$$

Mean estimation(cont.)

- $\mathbf{E}[(\theta^* \hat{\theta}_{TL})^2] = \frac{1}{n} Var(Y)$
- $E[(\theta^* \hat{\theta}_{SL})^2] \le \frac{2m^2}{(m+n)^2} E[(\hat{f}(X) Y)^2] + \frac{2m}{(m+n)^2} Var(\hat{f}(X) Y) + \frac{2n}{(m+n)^2} Var(Y)$
- $E[(\theta^* \hat{\theta}_{DR})^2] \le 2\min\left(\frac{1}{n}Var(Y) + \frac{m+2n}{(m+n)n}Var(\hat{f}(X)), \frac{m+2n}{(m+n)n}Var(\hat{f}(X) Y) + \frac{1}{m+n}Var(Y)\right)$
- $\to E[(\theta^* \hat{\theta}_{DR})^2] \le \frac{4}{n}(Var[Y] + Var[\hat{f}(X)])$ no matter how poor the estimator $\hat{f}(X)$ is.
- \to when $\operatorname{Var}[\hat{f}(X) Y]$ is small, $E[(\theta^* \hat{\theta}_{DR})^2] \leq \frac{2}{m+n}\operatorname{Var}[Y]$.
- $\to E[(\theta^* \hat{\theta}_{SL})^2]$ always has a non-vanishing term, $\frac{2m^2}{(m+n)^2}\mathbb{E}[(\hat{f}(X) Y)]^2$ unless the predictor is accurate.

General loss

With probability at least $1 - \delta$,

$$\begin{split} \left\| \nabla_{\theta} \mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{\mathrm{DR}} \left(\theta^{\star} \right) \right\|_{2} &\leq C \min \left(\left\| \Sigma_{\theta^{\star}}^{\hat{f}} \right\|_{2} \sqrt{\frac{d}{(m+n)\delta}} + \left\| \Sigma_{\theta^{\star}}^{Y-\hat{f}} \right\|_{2} \sqrt{\frac{d}{n\delta}}, \\ \left\| \Sigma_{\theta^{\star}}^{\hat{f}} \right\|_{2} \left(\sqrt{\frac{d}{(m+n)\delta}} + \sqrt{\frac{d}{n\delta}} \right) + \left\| \Sigma_{\theta^{\star}}^{Y} \right\|_{2} \sqrt{\frac{d}{n\delta}} \right), \end{split}$$

where C is a universal constant, and we denote

$$\begin{split} \Sigma_{\theta}^{Y-\hat{f}} &= \mathsf{Cov}\left[\nabla_{\theta}\ell_{\theta}(X,\hat{f}(X)) - \nabla_{\theta}\ell_{\theta}(X,Y)\right] \text{ and let } \Sigma_{\theta}^{\hat{f}} &= \mathsf{Cov}\left[\nabla_{\theta}\ell_{\theta}(X,\hat{f}(X))\right], \\ \Sigma_{\theta}^{Y} &= \mathsf{Cov}\left[\nabla_{\theta}\ell_{\theta}(X,Y)\right]. \end{split}$$

- $\|\nabla_{\theta} \mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{\mathrm{SL}}(\theta^{\star})\|_{2} \geq C$ for some positive constant C
- When \hat{f} is a perfect predictor, one has $\mathcal{L}_{\mathcal{D}_1,\mathcal{D}_2}^{DR}(\theta^*) = \frac{1}{m+n} \sum_{i=1}^{m+n} \ell_{\theta}(X_i, Y_i)$.

The case of Distribution mismatch

$$\mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{\mathrm{DR2}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i}\right) \right) - \frac{1}{n} \sum_{i=m+1}^{m+n} \frac{1}{\pi\left(X_{i}\right)} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i}\right) \right) + \frac{1}{n} \sum_{i=m+1}^{m+n} \frac{1}{\pi\left(X_{i}\right)} \ell_{\theta} \left(X_{i}, Y_{i} \right)$$

 $\mathbb{E}\left[\mathcal{L}_{\mathcal{D}_1,\mathcal{D}_2}^{\mathrm{DR2}}(\theta)\right] = \mathbb{E}_{\mathbb{P}_{X,Y}}\left[\ell_{\theta}(X,Y)\right]$ as long as one of the two assumptions hold:

- For any $x, \pi(x) = \frac{\mathbb{P}_X(x)}{\mathbb{Q}_X(x)}$.
- For any $x, \ell_{\theta}(x, \hat{f}(x)) = \mathbb{E}_{Y \sim \mathbb{P}_{Y|X=x}} [\ell_{\theta}(x, Y)].$

Experiment: ImageNet

Minimize the curriculum-based loss in epoch

$$\mathcal{L}_{\mathcal{D}_{1},\mathcal{D}_{2}}^{\mathrm{DR},t}(\theta) = \frac{1}{m+n} \sum_{i=1}^{m+n} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i}\right) \right)$$
$$-\alpha_{t} \cdot \left(\frac{1}{n} \sum_{i=m+1}^{m+n} \ell_{\theta} \left(X_{i}, \hat{f}\left(X_{i}\right) \right) - \frac{1}{n} \sum_{i=m+1}^{m+n} \ell_{\theta} \left(X_{i}, Y_{i} \right) \right).$$

Table 1: Comparisons on mini-ImageNet100, all models trained for 100 epochs.

Labeled Data Percent	Labeled Only		Pseudo Only		Labeled + Pseudo		Doubly robust Loss	
Labeled Data Fercent	top1	top5	top1	top5	top1	top5	top1	top5
1	2.72	9.18	2.81	9.57	2.73	9.55	2.75	9.73
5	3.92	13.34	4.27	13.66	4.27	14.4	4.89	16.38
10	6.76	20.84	7.27	21.64	7.65	22.48	8.01	21.90
20	12.3	31.3	13.46	30.79	13.94	32.63	13.50	32.17
50	20.69	46.86	20.92	45.2	24.9	50.77	25.31	51.61
80	27.37	55.57	25.57	50.85	30.63	58.85	30.75	59.41
100	31.07	60.62	28.95	55.35	34.33	62.78	34.01	63.04

Experiment: ImageNet

Figure 1: Comparisons on ImageNet100 using two different network architectures. Both Top-1 and Top-5 accuracies are reported. All models are trained for 20 epochs.

Gyumin Lee (Yonsei University) Semi-supervised Learning: Inference August 29, 2023

Experiment: nuScenes

$$\begin{split} \mathcal{L}_{obj}^{\mathrm{DR}}(\theta) &= \frac{1}{M+N_{ps}} \sum_{i=1}^{M+N_{ps}} \ell_{\theta}\left(X_{i}, f\left(X_{i}\right)\right) \\ &- \frac{1}{N_{ps}} \sum_{i=M+1}^{M+N_{ps}} \ell_{\theta}\left(X_{i}^{\prime}, f\left(X_{i}^{\prime}\right)\right) + \frac{1}{N} \sum_{i=M+1}^{M+N} \ell_{\theta}\left(X_{i}, Y_{i}\right), \end{split}$$

Table 2: Performance comparison on nuScenes val set.

Labeled Data Fraction	Labeled Only		Labeled -	+ Pseudo	Doubly robust Loss	
	mAP↑	NDS [†]	mAP↑	NDS↑	mAP↑	NDS†
1/24	7.56	18.01	7.60	17.32	8.18	18.33
1/16	11.15	20.55	11.60	21.03	12.30	22.10
1/4	25.66	41.41	28.36	43.88	27.48	43.18

Table 3: Per-class mAP (%) comparison on nuScenes val set using 1/16 of total labels in training.

						_	
	Car	Ped	Truck	Bus	Trailer	Barrier	Traffic Cone
Labeled Only	48.6	30.6	8.5	6.2	4.0	6.8	4.4
Labeled + Pseudo	48.8	30.9	8.8	7.5	5.7	6.7	4.0
Improvement	+0.2	+0.3	+0.3	+1.3	+1.7	-0.1	-0.4
Doubly robust Loss	51.5	32.9	9.6	8.2	5.2	7.2	4.5
Improvement	+2.9	+2.3	+1.1	+2.0	+1.2	+0.4	+0.1

Motivation

How can we assess the role of prediction in terms of basic principles of statistical inference? Is it possible to exploit predictions from a machine-learning system while still providing guarantees of statistical validity?

- ightarrow suggest a framework for performing valid statistical inference when an experimental data set is supplemented with predictions.
- ightarrow use predictions from the model to perform inference, leverage the immense number of predictions to improve their confidence in a scientific conclusion.

General Framework

Mean estimation

Our estimtes

$$\hat{\theta}^{class} = \frac{1}{n} \sum_{i=1}^{n} Y_i \text{ vs } \hat{\theta}^{\text{PP}} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \tilde{f}_i}_{\tilde{\theta}^f} - \underbrace{\frac{1}{n} \sum_{i=1}^{n} (f_i - Y_i)}_{\hat{\Delta}^f}.$$

and their corresponding confidence intervals

$$\underbrace{\hat{\theta}^{\text{class}} \pm 1.96 \sqrt{\frac{\hat{\sigma}_{Y}^{2}}{n}}}_{\text{classical interval}} \quad \text{or} \quad \underbrace{\hat{\theta}^{\text{PP}} \pm 1.96 \sqrt{\frac{\hat{\sigma}_{f-Y}^{2}}{n} + \frac{\hat{\sigma}_{\tilde{f}}^{2}}{N}}}_{\text{prediction-powered interval}}$$

Convex estimation

Consider estimands of the form

$$heta^{*} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^{p}} \mathbb{E}\left[\ell_{\theta}\left(\mathit{X}_{1}, \mathit{Y}_{1}
ight)
ight],$$

where a loss function l_{θ} is convex.

From convexity, it holds that

$$\mathbb{E}\left[g_{\theta^*}\left(X_1,Y_1\right)\right]=0$$

where $g_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^p$ is a subgradient of ℓ_{θ} with respect to θ .

Define the rectifier

$$\mathbf{\Delta}^{f}(\theta) = \mathbb{E}\left[g_{\theta}\left(X_{1}, Y_{1}\right) - g_{\theta}\left(X_{1}, f_{1}\right)\right].$$

Convex estimation

Create the confidence set for the rectifier, $\mathcal{R}_{\delta}(\theta)$,

$$P\left(\mathbf{\Delta}^f(\theta) \in \mathcal{R}_{\delta}(\theta)\right) \geq 1 - \delta.$$

Also, for every θ , we want a confidence set $\mathcal{T}_{\alpha-\delta}(\theta)$ for $\mathbb{E}\left[g_{\theta}\left(X_{1},f_{1}\right)\right]$, satisfying

$$P\left(\mathbb{E}\left[g_{\theta}\left(X_{1},f_{1}\right)\right]\in\mathcal{T}_{\alpha-\delta}(\theta)\right)\geq1-(\alpha-\delta).$$

Using the results, finally form the confidence set for θ^* as follows

$$P\left(\theta^* \in \mathcal{C}_{\alpha}^{\mathrm{PP}}\right) \geq 1 - \alpha$$

where $\mathcal{C}_{\alpha}^{\mathrm{PP}} = \{\theta : 0 \in \mathcal{R}_{\delta}(\theta) + \mathcal{T}_{\alpha-\delta}(\theta)\}$ where + denotes the Minkowski sum.

Various algorithms

Algorithm 1 Prediction-powered mean estimation

```
Input: labeled data (X, Y), unlabeled features \widetilde{X}, predictor f, error level \alpha \in (0, 1)
 1: \hat{\theta}^{\text{PP}} \leftarrow \tilde{\theta}^f - \hat{\Delta}^f := \frac{1}{N} \sum_{i=1}^{N} \tilde{f}_i - \frac{1}{n} \sum_{i=1}^{n} (f_i - Y_i)
2: \hat{\sigma}_{\tilde{f}}^2 \leftarrow \frac{1}{N} \sum_{i=1}^{N} (\tilde{f}_i - \tilde{\theta}^f)^2
                                                                                                                                                        ▷ prediction-powered estimator
                                                                                                                                     empirical variance of imputed estimate
 3: \hat{\sigma}_{f-Y}^2 \leftarrow \frac{1}{n} \sum_{i=1}^n (f_i - Y_i - \hat{\Delta}^f)^2
                                                                                                                                      empirical variance of empirical rectifier
 4: w_{\alpha} \leftarrow z_{1-\alpha/2} \sqrt{\frac{\hat{\sigma}_{f-Y}^2}{\hat{\sigma}_{f}} + \frac{\hat{\sigma}_{\bar{f}}^2}{N}}
                                                                                                                                                                      ▷ normal approximation
Output: prediction-powered confidence set C_{\alpha}^{PP} = (\hat{\theta}^{PP} \pm w_{\alpha})
```

Algorithm 2 Prediction-powered quantile estimation

Input: labeled data (X,Y), unlabeled features \widetilde{X} , predictor f, quantile $g \in (0,1)$, error level $\alpha \in (0,1)$

- Construct fine grid Θ_{grid} between min_{i∈[N]} f̃_i and max_{i∈[N]} f̃_i
- 2: for $\theta \in \Theta_{grid}$ do
 - $\hat{\Delta}^f(\theta) \leftarrow \frac{1}{n} \sum_{i=1}^n (\mathbb{1}\{Y_i < \theta\} \mathbb{1}\{f_i < \theta\})$

▷ empirical rectifier

 $\hat{F}(\theta) \leftarrow \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left\{ \tilde{f}_i \leq \theta \right\}$

▷ imputed CDF

5: $\hat{\sigma}^2_{\Delta}(\theta) \leftarrow \frac{1}{n} \sum_{i=1}^n \left(\mathbb{1} \left\{ Y_i \leq \theta \right\} - \mathbb{1} \left\{ f_i \leq \theta \right\} - \hat{\Delta}^f(\theta) \right)^2$

empirical variance of empirical rectifier 6: $\hat{\sigma}_{\tilde{f}}^{2}(\theta) \leftarrow \frac{1}{N} \sum_{i=1}^{N} \left(\mathbb{1} \left\{ \tilde{f}_{i} \leq \theta \right\} - \hat{F}(\theta) \right)^{2}$

▷ empirical variance of imputed CDF

 $w_{\alpha}(\theta) \leftarrow z_{1-\alpha/2} \sqrt{\frac{\hat{\sigma}_{\Delta}^{2}(\theta)}{\hat{\sigma}_{\alpha}^{2}} + \frac{\hat{\sigma}_{\tilde{f}}^{2}(\theta)}{\hat{\sigma}_{\alpha}^{2}}}$

▷ normal approximation

 $\textbf{Output:} \text{ prediction-powered confidence set } \mathcal{C}_{\alpha}^{\text{PP}} = \left\{\theta \in \Theta_{\text{grid}}: |\hat{F}(\theta) + \hat{\mathbf{\Delta}}^f(\theta) - q| \leq w_{\alpha}(\theta)\right\}$

4 0 3 4 4 5 3 4 5 3

Various algorithms(cont.)

Algorithm 3 Prediction-powered logistic regression

Input: labeled data (X, Y), unlabeled features \widetilde{X} , predictor f, error level $\alpha \in (0, 1)$

- 1: Construct fine grid $\Theta_{grid} \subset \mathbb{R}^d$ of possible coefficients
- 2: $\hat{\Delta}_i^f \leftarrow \frac{1}{n} \sum_{i=1}^n X_{i,j} (f_i Y_i), \quad j \in [d]$

▷ empirical rectifier

- 3: $\hat{\sigma}_{\Delta,j}^2 \leftarrow \frac{1}{n} \sum_{i=1}^n \left(X_{i,j}(f_i Y_i) \hat{\Delta}_j^f \right)^2, \quad j \in [d]$
- > empirical variance of empirical rectifier

- 4: for $\theta \in \Theta_{grid}$ do
- 5: $\hat{g}_{i}^{f}(\theta) \leftarrow \frac{1}{N} \sum_{i=1}^{N} \widetilde{X}_{i,j} \left(\mu_{\theta}(\widetilde{X}_{i}) \widetilde{f}_{i} \right), \quad j \in [d], \quad \text{where } \mu_{\theta}(x) = \frac{1}{1 + \exp(-x^{\top}\theta)} \quad \Rightarrow \text{ imputed gradient}$
- 6: $\hat{\sigma}_{g,j}^2(\theta) \leftarrow \frac{1}{N} \sum_{i=1}^N \left(\widetilde{X}_{i,j}(\mu_{\theta}(\widetilde{X}_i) \widetilde{f}_i) \hat{g}_j^f(\theta) \right)^2$, $j \in [d] \triangleright$ empirical variance of imputed gradient
- 7: $w_{\alpha,j}(\theta) \leftarrow z_{1-\alpha/(2d)} \sqrt{\frac{\hat{\sigma}_{\alpha,j}^2}{n} + \frac{\hat{\sigma}_{g,j}^2(\theta)}{N}}, j \in [d]$ ▷ normal approximation

 $\textbf{Output:} \text{ prediction-powered confidence set } \mathcal{C}^{\text{PP}}_{\alpha} = \left\{\theta \in \Theta_{\text{grid}}: |\hat{g}^f_j(\theta) + \hat{\boldsymbol{\Delta}}^f_j| \leq w_{\alpha,j}(\theta), \forall j \in [d]\right\}$

Algorithm 4 Prediction-powered linear regression

Input: labeled data (X, Y), unlabeled features \widetilde{X} , predictor f, coefficient $j^* \in [d]$, error level $\alpha \in (0, 1)$

- 1: $\hat{\theta}^{PP} \leftarrow \tilde{\theta}^f \hat{\Delta}^f := \tilde{X}^\dagger \tilde{f} X^\dagger (f Y)$ > prediction-powered estimator
- 2: $\tilde{\Sigma} \leftarrow \frac{1}{N} \tilde{X}^{\top} \tilde{X}$, $\tilde{M} \leftarrow \frac{1}{N} \sum_{i=1}^{N} (\tilde{\tilde{f}_i} \tilde{X}_i^{\top} \tilde{\theta}^f)^2 \tilde{X}_i \tilde{X}_i^{\top}$
- ▷ "sandwich" variance estimator for imputed estimate
- 4: $\Sigma \leftarrow \frac{1}{n}X^{\top}X$, $M \leftarrow \frac{1}{n}\sum_{i=1}^{n}(f_i Y_i X_i^{\top}\hat{\Delta}^f)^2X_iX_i^{\top}$ 5: $V \leftarrow \sum_{i=1}^{n}M\Sigma^{-1}$ ▷ "sandwich" variance estimator for empirical rectifier
- 6: $w_{\alpha} \leftarrow z_{1-\alpha/2} \sqrt{\frac{V_{j^*j^*}}{n} + \frac{\tilde{V}_{j^*j^*}}{N}}$

▷ normal approximation

Output: prediction-powered confidence set $C_{\alpha}^{PP} = (\hat{\theta}_{i^*}^{PP} \pm w_{\alpha})$

29 / 36

Various algorithms(cont.)

- $\begin{array}{l} \bullet \text{ quantile: } \theta^* = \mathop{\arg\min}_{\theta \in \mathbb{R}} \left[\ell_{\theta} \left(Y_1 \right) \right] = \\ \mathop{\arg\min}_{\theta \in \mathbb{R}} \left[q \left(Y_1 \theta \right) \mathbf{1} \{ Y_1 > \theta \} + \left(1 q \right) \left(\theta Y_1 \right) \mathbf{1} \{ Y_1 \leq \theta \} \right] \end{array}$
- logistic regression:

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \mathbb{E}\left[\ell_\theta\left(X_1, Y_1\right)\right] = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \mathbb{E}\left[-Y_1\theta^\top X + \log\left(1 + \exp\left(\theta^\top X_1\right)\right)\right]$$

Then powered confidence set in algorithms have valid coverage:

$$\liminf_{n,N\to\infty} P\left(\theta^* \in \mathcal{C}_{\alpha}^{\operatorname{PP}}\right) \geq 1 - \alpha$$

Beyond convex estimation

1. estimate $\mathbb{E}\left[\ell_{\theta^*}\left(X_1,Y_1\right)\right]$ by approximating θ^* with an imputed estimate on the first N/2 unlabeled data points

$$\tilde{\theta}^f = \operatorname*{arg\,min}_{\theta \in \Theta} \frac{2}{N} \sum_{i=1}^{N/2} \ell_{\theta} \left(\tilde{X}_i, \tilde{f}_i \right), \quad \tilde{L}^f(\theta) := \frac{2}{N} \sum_{i=N/2+1}^{N} \ell_{\theta} \left(\tilde{X}_i, \tilde{f}_i \right).$$

2. construct $\left(\mathcal{R}_{\delta/2}^{I}(\theta), \mathcal{R}_{\delta/2}^{u}(\theta)\right)$ and $\mathcal{T}_{\alpha-\delta}(\theta)$ such that

$$\begin{split} &P\left(\Delta^f(\theta) \leq \mathcal{R}^u_{\delta/2}(\theta)\right) \geq 1 - \delta/2; \quad P\left(\Delta^f(\theta) \geq \mathcal{R}^I_{\delta/2}(\theta)\right) \geq 1 - \delta/2; \\ &P\left(\tilde{\mathcal{L}}^f(\theta) - \mathbb{E}\left[\ell_\theta\left(X_1, f_1\right)\right] \leq \mathcal{T}_{\alpha - \delta}(\theta)\right) \geq 1 - (\alpha - \delta). \end{split}$$

Beyond convex estimation

3. combining 1 2, obtain

$$\mathcal{C}_{\alpha}^{\mathrm{PP}} = \left\{ \boldsymbol{\theta} \in \boldsymbol{\Theta} : \tilde{\boldsymbol{L}}^{f}(\boldsymbol{\theta}) \leq \tilde{\boldsymbol{L}}^{f}\left(\tilde{\boldsymbol{\theta}}^{f}\right) - \mathcal{R}_{\delta/2}^{I}(\boldsymbol{\theta}) + \mathcal{R}_{\delta/2}^{u}\left(\tilde{\boldsymbol{\theta}}^{f}\right) + \mathcal{T}_{\alpha-\delta}(\boldsymbol{\theta}) \right\}$$

such that

$$P\left(\theta^* \in \mathcal{C}_{\alpha}^{\mathrm{PP}}\right) \geq 1 - \alpha.$$

Experiments

Figure 3: Examples of ballots correctly and incorrectly classified. The raw ballot is black and white, the voter's marking is automatically identified by a computer vision algorithm with a green annotation, and markings below the red line annotation will be considered votes for Matt Haney (and vice versa). The instructional portion of the ballots was cropped out.

Figure 4: **Election results** produced by prediction-powered inference and the classical and imputed baselines at level 95%. Left: width of intervals as a function of n. Right: confidence intervals with n = 1024.

Experiments

Figure 9: Confidence intervals for the logistic regression coefficient relating income and private health insurance coverage at the 95% level. Left: distribution of interval widths with n = 200. Middle: mean width as a function of n. Right: intervals with n = 200.

Figure 10: Predicting gene expression levels from a promoter sequence [34]. Left: each data point consists of a promoter sequence, X_i , and an expression level, Y_i . Middle: predictive performance of the transformer model on the native yeast promoters used in our experiments (RMSE 2.18, Pearson 0.963, Spearman 0.946). Right: confidence intervals for the median native yeast promoter expression level with

Further Studies

- High-dimension setting: what if $p \to \infty$?
- Using sample splitting?
- General framework for other estimators such as kernel mean embedding,
 MMD and other U-statistics
- Applying such for estimating mean difference or other test statistics
- Computing statistical validity for other semi-/self-supervised learning models

Reference

- Kim, I. (2023). Selective Topics in Mathematical Statistics. 33-35.
- Zhang, A., Brown, L. D., Cai, T. T. (2019). Semi-supervised inference: General theory and estimation of means.
- Zhang, Y., Bradic, J. (2022). High-dimensional semi-supervised learning: in search of optimal inference of the mean. Biometrika, 109(2), 387-403.
- Tony Cai, T., Guo, Z. (2020). Semisupervised inference for explained variance in high dimensional linear regression and its applications. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(2), 391-419.
- Angelopoulos, A. N., Bates, S., Fannjiang, C., Jordan, M. I., Zrnic, T. (2023). Prediction-powered inference. arXiv preprint arXiv:2301.09633.
- Zhu, B., Ding, M., Jacobson, P., Wu, M., Zhan, W., Jordan, M., Jiao, J. (2023). Doubly Robust Self-Training. arXiv preprint arXiv:2306.00265.