Salmon live in vast, diverse, and dynamic environments. They are difficult to detect. The solution to the "forecasting problem" may not be better forecast math, but better means of coping with uncertainty.

Decision-making

Table 1. Marginal probabilities of three levels of abundance and uncertainty in the forecast of abundance.

		Marginal	Forecast		
		Marginal Probability	Low	Medium	High
Abundance	Low	0.3	0.6	0.3	0.1
	Medium	0.4	0.2	0.6	0.2
	High	0.3	0.1	0.3	0.6

This year's forecast is *High*. What is the probability that the abundance is actually *Low?*

$$P(Abundance = L|Forecast = H) = \frac{P(Forecast = H|Abundance = L)P(Abundnace = L)}{P(Forecast = H)}$$

$$= \frac{0.1*0.3}{0.1*0.3+0.2*0.4+0.6*0.3} = 0.103$$

Table 1. Marginal probabilities of three levels of abundance and uncertainty in the forecast of abundance.

		Marginal	Forecast		
		Marginal Probability	Low	Medium	High
Abundance	Low	0.3	0.6	0.3	0.1
	Medium	0.4	0.2	0.6	0.2
	High	0.3	0.1	0.3	0.6

This year's forecast is High. What harvest rate should be implemented?

Table 2. Utilities reaped by a decision maker under all possible combinations of abundance and harvest

aea	cisions.	Abditatice				
		Low	Medium	High		
st	Low	80	40	10		
Harvest	Medium	30	80	80		
I	High	0	30	100		

Expected utility low harvest= p(low)*80 + p(med)*40 + high(10)Expected utility med harvest= p(low)*30 + p(med)*80 + high(80)Expected utility high harvest= p(low)*0 + p(med)*30 + high(100)

Choose max

