SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - Choi et. al. (i) APPLICANT:
- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Antigens and Vaccines ·
 - (iii) NUMBER OF SEQUENCES: 454
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: Dell Latitude C610
 - (C) OPERATING SYSTEM: Windows 2000
 - (D) SOFTWARE: ASCII Text
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/765,272
 - (B) FILING DATE: January 22, 2001
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/961,083
 - (B) FILING DATE: OCT-30-1997
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Lin J. Hymel(B) REGISTRATION NUMBER: 45,414
 - (C) REFERENCE/DOCKET NUMBER: PB340P2C2
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 610-5790
 - (B) TELEFAX: (301) 309-8439
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1999 base pairs(B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

					_	• •
60	GCCGCGTCAA	GGTTCTGAAC	TGCTGACTTG	ATCAACTCAT	GACAATAAAA	TAAAATCTAC
120	TCGAAGACCA	ATCGTTTCTA	GGTTAAGGCA	CCACAGATTT	AATGATATTC	TGCCCAAGCT
180	TCTTGCGCAA	CTGGGAGCTT	CATCCGTATC	GGATTGATAC	GACCACAGGG	TCGCTTCTTC
240	TTAAGTTGAC	CAACAGTTGA	AACTCTCACC	AAGGTGGATC	AATTCCCTCC	TCTGCAAAGC
300	AAGCTTGGTT	AAGGCTCAGG	TATTTCTCGT	CCGACCAGAC	ACTTCGACTT	TTACTTTTCA
360	ATATAAATAA	TTGACCTACT	GCAAGAAATC	AAGCAACCAA	TTAGAACAAA	AGCGATTCAG
420	ACTATGGTAA	GCTCAAAACT	GCAGACAGCA	ACTATGGAAT	TCTAATGGGA	GGTCTACATG
480	CTCAGGCACC	GCTGGAATGC	AGCCTTGCTG	TACCTCAGTT	AATTTAAGTT	AGACCTCAAT
540	ACTTGGTCTT	GACCGCCGAA	AGCAGCCCAA	CACATCCAGA	GACCCCTATT	AAACCAATAT
600	CAGTCAATAC	TATGAGAAAG	TGCTGAACAG	GCTACATCTC	AAAAATCAAG	ATCTGAAATG
660	CTTACATGGA	AATTACCCTG	ATCAGCAAGT	AAAGTCTCAA	GATGGACTAC	ACCAATTACT
720	ACCTACTCAC	ACAGGCTATA	TGAAGAAGAA	TCAATCAAGT	AAGGAAGTCA	TAATTACCTC
780	TGTGGGATAT	CAAAAACATC	CCAAGAAGCT	CAAATGTAGA	GATGTCTACA	AACTGGGATG
840	CTTCTACCAT	TTGCAAGTCG	AGACGATGAA	TTGCCTATCC	GACGAATACG	TTACAATACA
900	AGTCAAGTAA	GCACGCCATC	CCAGCTAGGA	AAGTCATTGC	TCTAACGGTA	TGTTGATGTT
960	CAACTATGAA	GACTGGGGAT	AACAAACCGC	AAGCAGTAGA	GGAATTAACC	TGTTTCCTTC
1020	CTGCTACTAT	TACGATTCAA	GTACGGTGTC	CTGCCTTGGA	GACTATGCTC	ACCGATCACA
1080	ACTGGGATAG	CCTGTTTATA	GACAAATACT	ACTACCCTGG	GAGCCCTATA	CGTTCACGAT
1140	ACGTCCCAGC	CAATCGCGAA	CGCCCTGCAA	CCTTGCAATA	GGCAACATCA	GGGCTACTTT
1200	ATGGTCTAGG	ACTTTCCTAA	CCGCGCCAAG	TCGGACTCAA	CTAAACAAGG	CGTGGAAACT
1260	CCGAATCAGA	AGTAACACAA	TGCCATTTCA	ACTACTCAAA	CCAAGTATTC	AATCGACTAC
1320	TTGCAAATGG	TACGCTGCCT	GGCTGCTGCT	GTGAAAAGAT	GGAGCAAGTA	СААААААТАТ
1380	GGAGTGAAAA	TTTAGTGATG	TAAAGTCGTC	TGTATATCCA	TATAAACCAA	TGGAACTTAC
1440	TGATGACCGA	ACAGCCTATA	GAAGGAAACG	CTCGTGCCAT	AATGTCGGAA	AGAGTTCTCT
1500	CTTGGCTCCC	GCCTATCTTG	TGGACGAAAT	CTTATGGAAC	ACAGTCTTGA	CATGATGAAA
1560	ACCACATCAA	GAAATTGAAA	TACAGACGAG	CCTCTAACTA	AAAACAGGAA	TCAGGCTGGT
1620	AATATTCAAT	TATACĢCGTA	ATTTGCTGGC	CTGATGAACT	TTTGTAGCAC	GACCTCTCAA
1680	GCCTTACGGT	GTAGGCAATG	GACACCACTT	CTAACCGTCT	ACAGGCTATT	GGCTGTATGG
1740	ATCCAGAAGA	GAAGGAAGCA	CTACCTGTCT	CTATGATGAC	GTTTACCGCT	CGCTGCCAAA
1800	ATGGTGCTCG	GTATTTAAAA	TGGAGAATTC	TCTACAGAAA	CCAGAGGGGC	TTGGAATATA

TTCTACGTGG AACTCACCTG CTCCACAACA ACCCCCATCA ACTGAAAGTT CAAGCTCATC 1860
ATCAGATAGT TCAACTTCAC AGTCTAGCTC AACCACTCCA AGCACAAATA ATAGTACGAC 1920
TACCAATCCT AACAATAATA CGCAACAATC AAATACAACC CCTGATCAAC AAAATCAGAA 1980
TCCTCAACCA GCACAACCA 1999

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 666 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Lys Ile Tyr Asp Asn Lys Asn Gln Leu Ile Ala Asp Leu Gly Ser Glu
 1 10 15
- Arg Arg Val Asn Ala Gln Ala Asn Asp Ile Pro Thr Asp Leu Val Lys 20 25 30
- Ala Ile Val Ser Ile Glu Asp His Arg Phe Phe Asp His Arg Gly Ile 35 40 45
- Asp Thr Ile Arg Ile Leu Gly Ala Phe Leu Arg Asn Leu Gln Ser Asn 50 55 60
- Ser Leu Gln Gly Gly Ser Thr Leu Thr Gln Gln Leu Ile Lys Leu Thr 65 70 75 80
- Tyr Phe Ser Thr Ser Thr Ser Asp Gln Thr Ile Ser Arg Lys Ala Gln 85 90 95
- Glu Ala Trp Leu Ala Ile Gln Leu Glu Gln Lys Ala Thr Lys Gln Glu 100 105 110
- Ile Leu Thr Tyr Tyr Ile Asn Lys Val Tyr Met Ser Asn Gly Asn Tyr 115 120 125
- Gly Met Gln Thr Ala Ala Gln Asn Tyr Tyr Gly Lys Asp Leu Asn Asn 130 135 140
- Leu Ser Leu Pro Gln Leu Ala Leu Leu Ala Gly Met Pro Gln Ala Pro 145 150 155 160
- Asn Gln Tyr Asp Pro Tyr Ser His Pro Glu Ala Ala Gln Asp Arg Arg 165 170 175
- Asn Leu Val Leu Ser Glu Met Lys Asn Gln Gly Tyr Ile Ser Ala Glu 180 185 190
- Gln Tyr Glu Lys Ala Val Asn Thr Pro Ile Thr Asp Gly Leu Gln Ser 195 200 205
- Leu Lys Ser Ala Ser Asn Tyr Pro Ala Tyr Met Asp Asn Tyr Leu Lys 210 220
- Glu Val Ile Asn Gln Val Glu Glu Glu Thr Gly Tyr Asn Leu Leu Thr

			-		•			4									
225					230					235					240		
	Gly	Met	Asp	Val 245	Tyr	Thr	Asn	Val	Asp 250	Gln	Glu	Ala	Gln	Lys 255	His		
Leu	Trp	Asp			Asn	Thr	Asp	Glu 265	Tyr	Val	Ala	Tyr	Pro 270	Asp	Asp		
Glu	Leu		260 Val	Ala	Ser	Thr	Ile	_	Asp	Val	Ser	Asn 285		Lys	Val		
Ile	Ala	275 Gln	Leu	Gly	Ala	Arg	280 His	Gln	Ser	Ser	Asn	Val	Ser	Phe	Gly		
Ile	290 Asn	Gln	Ala	Val	Glu	295 Thr	Asn	Arg	Asp	Trp	300 Gly	Ser	Thr	Met	Lys		
305					310					315		Val			320		,
				325					330			Pro		335			
			340					345					350				
		355					360					Asn 365					
	370					375					380	Val					
Asn 385	Lys	Val	Gly	Leu	Asn 390	Arg	Ala	Lys	Thr	Phe 395	Leu	Asn	Gly	Leu	Gly 400		
Ile	Asp	Tyr	Pro	Ser 405	Ile	His	Tyr	Ser	Asn 410	Ala	Ile	Ser	Ser	Asn 415	Thr		
Thr	Glu	Ser	Asp 420		Lys	Tyr	Gly	Ala 425	Ser	Ser	Glu	Lys	Met 430	Ala	Ala		
Ala	Tyr	Ala 435		Phe	Ala	Asn	Gly 440	Gly	Thr	Tyr	Tyr	Lys 445	Pro	Met	Tyr		
Ile	His 450		Val	Val	Phe	Ser 455	Asp	Gly	Ser	Glu	Lys 460	Glu	Phe	Ser	Asn		
Val 465	Gly		Arg	Ala	Met 470	Lys	Glu	Thr	Thr	Ala 475	Tyr	Met	Met	Thr	Asp 480		
		Lys	Thr	Val 485	Leu	Thr	Tyr	Gly	Thr 490	Gly	Arg	Asn	Ala	Tyr 495	Leu		•
Ala	Trp	Leu		Gln		Gly		Thr 505	Gly		Ser	Asn	Tyr 510	Thr	Asp		
Glu	Glu				His	Ile		Thr		Gln	Phe	· Val	Ala		Asp		
Glu	ı Leu	515 Phe		Gly	Tyr	Thr	520 Arg		. Tyr	Ser	Met	525 Ala		Trp	Thr		
	530)				535	•				540				Val		
545	5				550	1				555)				560 Ser		
Ala		r rys	, val	565) SEI	. Hec	. net	570)				575			

Asn Pro Glu Asp Trp Asn Ile Pro Glu Gly Leu Tyr Arg Asn Gly Glu Phe Val Phe Lys Asn Gly Ala Arg Ser Thr Trp Asn Ser Pro Ala Pro Gln Gln Pro Pro Ser Thr Glu Ser Ser Ser Ser Ser Asp Ser Ser 620 Thr Ser Gln Ser Ser Ser Thr Thr Pro Ser Thr Asn Asn Ser Thr Thr 635 Thr Asn Pro Asn Asn Asn Thr Gln Gln Ser Asn Thr Thr Pro Asp Gln 650 Gln Asn Gln Asn Pro Gln Pro Ala Gln Pro 660

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1714 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

			~			(312)
60	CTAAAGAGAT	TTACCTCTTC	TGGAGAAAAA	AATTGACCTC	ACGGACTATG	AAATTACAAT
120	AGTCTGAAGT	ACGACTTCTG	AGAGGGAAAA	GATATATCAA	ACTTATATTG	TTCAGGTTAC
180	ATTATAATGT	CAAAAGGTGG	TACAAAACAA	TTGCCACTCC	AAGAGTTCAG	AAGTAATCAA
240	AAACACCTGT	ATTCAGGAAC	AGTACAAGCT	ATCCATCAAC	TTTGTAGACC	TACACCGAAT
300	CTGAATTAAT	CCTTTCTCTA	AGTTGAAAAA	AAGTTCAAGT	AAGCCGACAG	TTCTTCAACT
360	CCGAACATAA	GAACAATTAG	AGATTCTCAA	AACAATCTTC	AAAGAAGAGA	CAATCCAAGA
420	GGGTAAATAC	GAAAAGACTG	TTCTCCAAAA	AGGAGAAGAT	ACGAAGAAAG	GAATCTAGAA
480	TCTTATATCG	AAACCTGAAC	TCAATTGAAC	TTTTATCAGG	CAGGATGAAG	ATTAAATCCA
540	ATCCTGATTT	ATTCAAGAAA	TCAAGAAGAA	AAATAGATTT	ATGGAGACAA	TGAGGAAACT
600	TTGAAATCGT	GGTAAGAAAG	AGGTAAATTA	TAAAACAAGA	ACTGTAAGAG	AGCTGAAGGA
660	CTTCAACGAC	ATTGTTTCAA	TTCGCGAGAA	AGGAAGAAGT	TCTGTAAACA	CAGAATATTC
720	TAAAGGAACA	ACTCAAGTTA	TACTAAAAA	TCGAAAAAGG	CCAAGAATAG	TGCGCCTAGT
780	AACCCGCAAT	GCTATTGTTG	ACAGTCTGGA	ATAAGGACGT	GGTGTAGAAC	ACCTGAGACT
840	TTCAACCTAC	GAACCAGAAG	TGACAAAGGC	CTGTAGTAAG	TTGCCCGAAG	TCAGCCTGAG
900	AGTCGCCAGA	GTTCAACCAG	TGAGACTGAG	CCGACAAAGG	GCAGTTGTGA	ATTACCCGAA
960	AATATAAGGG	CCGCTTCCAG	GCAGGTAGCA	GTGAACCAGA	AGTGATAAAG	TACTGTGGTA
1020	AAGGTCCAGA	ACCAAAGAAC	GGTTGAGAAG	CTGAAACTCC	CAAGTAAAAC	TAATATTGAG

AAAAACTGAA	GAAGTTCCAG	TAAAACCAAC	AGAAGAAACA	CCAGTAAATC	CAAATGAAGG	1080
TACTACAGAA	GGAACCTCAA	TTCAAGAAGC	AGAAAATCCA	GTTCAACCTG	CAGAAGAATC	1140
AACAACGAAT	TCAGAGAAAG	TATCACCAGA	TACATCTAGC	AAAAATACTG	GGGAAGTGTC	1200
CAGTAATCCT	AGTGATTCGA	CAACCTCAGT	TGGAGAATCA	AATAAACCAG	AACATAATGA	1260
CTCTAAAAAT	GAAAATTCAG	AAAAAACTGT	AGAAGAAGTT	CCAGTAAATC	CAAATGAAGG	1320
CACAGTAGAA	GGTACCTCAA	ATCAAGAAAC	AGAAAAACCA	GTTCAACCTG	CAGAAGAAAC	1380
ACAAACAAAC	TCTGGGAAAA	TAGCTAACGA	AAATACTGGA	GAAGTATCCA	ATAAACCTAG	1440
TGATTCAAAA	CCACCAGTTG	AAGAATCAAA	TCAACCAGAA	AAAAACGGAA	CTGCAACAAA	1500
ACCAGAAAAT	TCAGGTAATA	CAACATCAGA	GAATGGACAA	ACAGAACCAG	AACCATCAAA	1560
CGGAAATTCA	ACTGAGGATG	TTTCAACCGA	ATCAAACACA	TCCAATTCAA	ATGGAAACGA	1620
AGAAATTAAA	CAAGAAAATG	AACTAGACCC	TGATAAAAAG	GTAGAAGAAC	CAGAGAAAAC	1680
ACTTGAATTA	AGAAATGTTT	CCGACCTAGA	GTTA			1714

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 571 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Asn Tyr Asn Thr Asp Tyr Glu Leu Thr Ser Gly Glu Lys Leu Pro Leu
 1 10 15
- Pro Lys Glu Ile Ser Gly Tyr Thr Tyr Ile Gly Tyr Ile Lys Glu Gly 20 25 30
- Lys Thr Thr Ser Glu Ser Glu Val Ser Asn Gln Lys Ser Ser Val Ala 35
- Thr Pro Thr Lys Gln Gln Lys Val Asp Tyr Asn Val Thr Pro Asn Phe 50 60
- Val Asp His Pro Ser Thr Val Gln Ala Ile Gln Glu Gln Thr Pro Val 65 70 75 80
- Ser Ser Thr Lys Pro Thr Glu Val Gln Val Val Glu Lys Pro Phe Ser 85 90 95
- Thr Glu Leu Ile Asn Pro Arg Lys Glu Glu Lys Gln Ser Ser Asp Ser
- Gln Glu Gln Leu Ala Glu His Lys Asn Leu Glu Thr Lys Lys Glu Glu 115 120 125
- Lys Ile Ser Pro Lys Glu Lys Thr Gly Val Asn Thr Leu Asn Pro Gln 130 135

Asp Glu Val Leu Ser Gly Gln Leu Asn Lys Pro Glu Leu Leu Tyr Arg Glu Glu Thr Met Glu Thr Lys Ile Asp Phe Gln Glu Glu Ile Gln Glu Asn Pro Asp Leu Ala Glu Gly Thr Val Arg Val Lys Gln Glu Gly Lys Leu Gly Lys Lys Val Glu Ile Val Arg Ile Phe Ser Val Asn Lys Glu Glu Val Ser Arg Glu Ile Val Ser Thr Ser Thr Thr Ala Pro Ser Pro Arg Ile Val Glu Lys Gly Thr Lys Lys Thr Gln Val Ile Lys Glu Gln Pro Glu Thr Gly Val Glu His Lys Asp Val Gln Ser Gly Ala Ile Val 245 Glu Pro Ala Ile Gln Pro Glu Leu Pro Glu Ala Val Val Ser Asp Lys Gly Glu Pro Glu Val Gln Pro Thr Leu Pro Glu Ala Val Val Thr Asp Lys Gly Glu Thr Glu Val Gln Pro Glu Ser Pro Asp Thr Val Val Ser 295 Asp Lys Gly Glu Pro Glu Gln Val Ala Pro Leu Pro Glu Tyr Lys Gly 315 310 Asn Ile Glu Gln Val Lys Pro Glu Thr Pro Val Glu Lys Thr Lys Glu 330 Gln Gly Pro Glu Lys Thr Glu Glu Val Pro Val Lys Pro Thr Glu Glu 345 Thr Pro Val Asn Pro Asn Glu Gly Thr Thr Glu Gly Thr Ser Ile Gln Glu Ala Glu Asn Pro Val Gln Pro Ala Glu Glu Ser Thr Thr Asn Ser Glu Lys Val Ser Pro Asp Thr Ser Ser Lys Asn Thr Gly Glu Val Ser 395 390 Ser Asn Pro Ser Asp Ser Thr Thr Ser Val Gly Glu Ser Asn Lys Pro 405 Glu His Asn Asp Ser Lys Asn Glu Asn Ser Glu Lys Thr Val Glu Glu 425 Val Pro Val Asn Pro Asn Glu Gly Thr Val Glu Gly Thr Ser Asn Gln 440 Glu Thr Glu Lys Pro Val Gln Pro Ala Glu Glu Thr Gln Thr Asn Ser 455 Gly Lys Ile Ala Asn Glu Asn Thr Gly Glu Val Ser Asn Lys Pro Ser . 470

Asp Ser Lys Pro Pro Val Glu Glu Ser Asn Gln Pro Glu Lys Asn Gly 485 Thr Ala Thr Lys Pro Glu Asn Ser Gly Asn Thr Thr Ser Glu Asn Gly 505 Gln Thr Glu Pro Glu Pro Ser Asn Gly Asn Ser Thr Glu Asp Val Ser Thr Glu Ser Asn Thr Ser Asn Ser Asn Gly Asn Glu Glu Ile Lys Gln 535 Glu Asn Glu Leu Asp Pro Asp Lys Lys Val Glu Glu Pro Glu Lys Thr 560 Leu Glu Leu Arg Asn Val Ser Asp Leu Glu Leu

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 748 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

• •	-					
TGAGAATCAA	GCTACACCCA	AAGAGACTAG	CGCTCAAAAG	ACAATCGTCC	TTGCTACAGC	60
TGGCGACGTG	CCACCATTTG	ACTACGAAGA	CAAGGGCAAT	CTGACAGGCT	TTGATATCGA	120
AGTTTTAAAG	GCAGTAGATG	AAAAACTCAG	CGACTACGAG	ATTCAATTCC	AAAGAACCGC	180
CTGGGAGAGC	ATCTTCCCAG	GACTTGATTC	TGGTCACTAT	CAGGCTGCGG	CCAATAACTT	240
GAGTTACACA	AAAGAGCGTG	CTGAAAAATA	CCTTTACTCG	CTTCCAATTT	CCAACAATCC	300
CCTCGTCCTT	GTCAGCAACA	AGAAAAATCC	TTTGACTTCT	CTTGACCAGA	TCGCTGGTAA	360
AACAACACAA	GAGGATACCG	GAACTTCTAA	CGCTCAATTC	ATCAATAACT	GGAATCAGAA	420
ACACACTGAT	AATCCCGCTA	CAATTAATTT	TTCTGGTGAG	GATATTGGTA	AACGAATCCT	480
AGACCTTGCT	AACGGAGAGT	TTGATTTCCT	AGTTTTTGAC	AAGGTATCCG	TTCAAAAGAT	540
TATCAAGGAC	CGTGGTTTAG	ACCTCTCAGT	CGTTGATTTA	CCTTCTGCAG	ATAGCCCCAG	600
CAATTATATC	ATTTTCTCAA	GCGACCAAAA	AGAGTTTAAA	GAGCAATTTG	ATAAAGCGCT	660
CAAAGAACTC	TATCAAGACG	GAACCCTTGA	AAAACTCAGC	AATACCTATC	TAGGTGGTTC	720
TTACCTCCCA	GATCAATCTC	AGTTACAA				748

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 249 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Glu Asn Gln Ala Thr Pro Lys Glu Thr Ser Ala Gln Lys Thr Ile Val 1 5 10 15

Leu Ala Thr Ala Gly Asp Val Pro Pro Phe Asp Tyr Glu Asp Lys Gly 20 25 30

Asn Leu Thr Gly Phe Asp Ile Glu Val Leu Lys Ala Val Asp Glu Lys 35 40 45

Leu Ser Asp Tyr Glu Ile Gln Phe Gln Arg Thr Ala Trp Glu Ser Ile 50 55 60

Phe Pro Gly Leu Asp Ser Gly His Tyr Gln Ala Ala Ala Asn Asn Leu 65 70 75 80

Ser Tyr Thr Lys Glu Arg Ala Glu Lys Tyr Leu Tyr Ser Leu Pro Ile 85 90 95

Ser Asn Asn Pro Leu Val Leu Val Ser Asn Lys Lys Asn Pro Leu Thr 100 105 110

Ser Leu Asp Gln Ile Ala Gly Lys Thr Thr Gln Glu Asp Thr Gly Thr 115 120 125

Ser Asn Ala Gln Phe Ile Asn Asn Trp Asn Gln Lys His Thr Asp Asn 130 135 140

Pro Ala Thr Ile Asn Phe Ser Gly Glu Asp Ile Gly Lys Arg Ile Leu 145 150 155

Asp Leu Ala Asn Gly Glu Phe Asp Phe Leu Val Phe Asp Lys Val Ser

Val Gln Lys Ile Ile Lys Asp Arg Gly Leu Asp Leu Ser Val Val Asp 180 185 190

Leu Pro Ser Ala Asp Ser Pro Ser Asn Tyr Ile Ile Phe Ser Ser Asp 195 200 205

Gln Lys Glu Phe Lys Glu Gln Phe Asp Lys Ala Leu Lys Glu Leu Tyr 210 215 220

Gln Asp Gly Thr Leu Glu Lys Leu Ser Asn Thr Tyr Leu Gly Gly Ser 225 230 235

Tyr Leu Pro Asp Gln Ser Gln Leu Gln 245

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 985 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

rggtaaccgc '	TCTTCTCGTA	ACGCAGCTTC	ATCTTCTGAT	GTGAAGACAA	AAGCAGCAAT	60
CGTCACTGAT .	ACTGGTGGTG	TTGATGACAA	ATCATTCAAC	CAATCAGCTT	GGGAAGGTTT	120
GCAGGCTTGG	GGTAAAGAAC	ACAATCTTTC	AAAAGATAAC	GGTTTCACTT	ACTTCCAATC	180
AACAAGTGAA	GCTGACTACG	CTAACAACTT	GCAACAAGCG	GCTGGAAGTT	ACAACCTAAT	240
CTTCGGTGTT	GGTTTTGCCC	TTAATAATGC	AGTTAAAGAT	GCAGCAAAAG	AACACACTGA	300
CTTGAACTAT	GTCTTGATTG	ATGATGTGAT	TAAAGACCAA	AAGAATGTTG	CGAGCGTAAC	360
TTTCGCTGAT	AATGAGTCAG	GTTACCTTGC	AGGTGTGGCT	GCAGCAAAAA	CAACTAAGAC	420
AAAACAAGTT	GGTTTTGTAG	GTGGTATCGA	ATCTGAAGTT	ATCTCTCGTT	TTGAAGCAGG	480
ATTCAAGGCT	GGTGTTGCGT	CAGTAGACCC	ATCTATCAAA	GTCCAAGTTG	ACTACGCTGG	540
					CAGCCGGTGC	600
AGATATTGTT	TACCAAGTAG	CTGGTGGTAC	AGGTGCAGGT	GTCTTTGCAG	AGGCAAAATC	660
					ATCGTGACCA	720
AGAAGCAGAA	GGTAAATACA	CTTCTAAAGA	TGGCAAAGAA	TCAAACTTTG	TTCTTGTATC	780
TACTTTGAAA	CAAGTTGGTA	CAACTGTAAA	AGATATTTCT	AACAAGGCAG	AAAGAGGAGA	840
ATTCCCTGGC	GGTCAAGTGA	TCGTTTACTC	ATTGAAGGAT	AAAGGGGTTG	ACTTGGCAGT	900
					AAATCCTTGA	960
	AAAGTTCCTG					985

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 328 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
- Gly Asn Arg Ser Ser Arg Asn Ala Ala Ser Ser Ser Asp Val Lys Thr
- Lys Ala Ala Ile Val Thr Asp Thr Gly Gly Val Asp Asp Lys Ser Phe 20 25 30
- Asn Gln Ser Ala Trp Glu Gly Leu Gln Ala Trp Gly Lys Glu His Asn 35 40 45
- Leu Ser Lys Asp Asn Gly Phe Thr Tyr Phe Gln Ser Thr Ser Glu Ala 50 55 60
- Asp Tyr Ala Asn Asn Leu Gln Gln Ala Ala Gly Ser Tyr Asn Leu Ile 65 70 75 80
- Phe Gly Val Gly Phe Ala Leu Asn Asn Ala Val Lys Asp Ala Ala Lys 85 90 95

1	Glu	His	Thr	Asp 100	Leu	Asn	Tyr	Val	Leu 105	Ile	Asp	Asp	Val	Ile 110	Lys	Asp
,	Gln	Lys	Asn 115	Val	Ala	Ser	Val	Thr 120	Phe	Ala	Asp	Asn	Glu 125	Ser	Gly	Tyr
	Leu	Ala 130	Gly	Val	Ala	Ala	Ala 135	Lys	Thr	Thr	Lys	Thr 140	Lys	Gln	Val	Gly
	Phe 145	Val	Gly	Gly	Ile	Glu 150	Ser	Glu	Val	Ile	Ser 155	Arg	Phe	Glu	Ala	Gly 160
	Phe	Lys	Ala	Gly	Val 165	Ala	Ser	Val	Asp	Pro 170	Ser	Ile	Lys	Val	Gln 175	Val
	Asp	Tyr	Ala	Gly 180	Ser	Phe	Gly	Asp	Ala 185	Ala	Lys	Gly	Lys	Thr 190	Ile	Ala
	Ala	Ala	Gln 195	Tyr	Ala	Ala	Gly	Ala 200	Asp	Ile	Val	Tyr	Gln 205	Val	Ala	Gly
	Gly	Thr 210	Gly	Ala	Gly	Val	Phe 215	Ala	Glu	Ala	Lys	Ser 220	Leu	Asn	Glu	Ser
	Arg 225	Pro	Glu	Asn	Glu	Lys 230	Val.	Trp	Val	Ile	Gly 235	Val	Asp	Arg	Asp	Gln 240
	Glu	Ala	Glu	Gly	Lys 245	Tyr	Thr	Ser	Lys	Asp 250	Gly	Lys	Glu	Ser	Asn 255	Phe
	Val	Leu	Val	Ser 260	Thr	Leu	Lys	Gln	Val 265	Gly	Thr	Thr	Val	Lys 270	Asp	Ile
	Ser	Asn	Lys 275	Ala	Glu	Arg	Gly	Glu 280	Phe	Pro	Gly	Gly	Gln 285	Val	Ile	Val
	Tyr	Ser 290	Leu	Lys	Asp	Lys	Gly 295	Val	Asp	Leu	Ala	Val 300	Thr	Asn	Leu	Ser
	Glu 305	Glu	Gly	Lys	Lys	Ala 310	Val	Glu	Asp	Ala	Lys 315	Ala	Lys	Ile	Leu	Asp 320
	Gly	Ser	Val	Lys	Val 325	Pro	Glu	Lys								

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1404 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

60	ACCTGTTATC	CAGGTGACAA	GCTGCTGATT	CAGCAAAAA	TGACAGGTAA	TGTGGAAATT
120	AAATGCCAAC	AATTGTTAGC	AACTTGGATG	CAAACCAGAC	AAATCGGTGA	AAAATGTACC
180	CTGGGGTGAC	AATACCTTGG	TTGGATATCC	TGGTGCCAAA	AAGAAAAAGT	AAAATCATTG
240	TGCCTTTGCA	ACTATGATAT	TCTGGTGAAA	TATCACATCA	AAATGTCAGT	TATGGTAAGA

GATAACTATA	TTGTAAATGC	TCAAAAAGGT	GCTTACGCTG	ACTTGACAGA	ATTGTACAAA	300
AAAGAAGGTA	AAGACCTTTA	CAAAGCACTT	GACCCAGCTT	ACATCAAGGG	TAATACTGTA	360
AATGGTAAGA	TTTACGCTGT	TCCAGTTGCA	GCCAACGTTG	CATCATCTCA	AAACTTTGCC	420
TTCAACGGAA	CTCTCCTTGC	TAAATATGGT	ATCGATATTT	CAGGTGTTAC	TTCTTACGAA	480
ACTCTTGAGC	CAGTCTTGAA	ACAAATCAAA	GAAAAAGCTC	CAGACGTAGT	ACCATTTGCT	540
ATTGGTAAAG	TTTTCATCCC	ATCTGATAAT	TTTGACTACC	CAGTAGCAAA	CGGTCTTCCA	600
TTCGTTATCG	ACCTTGAAGG	CGATACTACT	AAAGTTGTAA	ACCGTTACGA	AGTGCCTCGT	660
TTCAAAGAAC	ACTTGAAGAC	TCTTCACAAA	TTCTATGAAG	CTGGCTACAT	TCCAAAAGAC	720
GTCGCAACAA	GCGATACTTC	CTTTGACCTT	CAACAAGATA	CTTGGTTCGT	TCGTGAAGAA	780
ACAGTAGGAC	CAGCTGACTA	CGGTAACAGC	TTGCTTTCAC	GTGTTGCCAA	CAAAGATATC	840
CAAATCAAAC	CAATTACTAA	CTTCATCAAG	NAAAACCAAA	CAACACAAGT	TGCTAACTTT	900
GTCATCTCAA	ACAACTCTAA	GAACAAAGAA	AAATCAATGG	AAATCTTGAA	CCTCTTGAAT	960
ACGAACCCAG	AACTCTTGAA	CGGTCTTGTT	TACGGTCCAG	AAGGCAAGAA	CTGGGAAAAA	1020
ATTGAAGGTA	AAGAAAACCG	TGTTCGCGTT	CTTGATGGCT	ACAAAGGAAA	CACTCACATG	1080
GGTGGATGGA	ACACTGGTAA	CAACTGGATC	CTTTACATCA	ACGAAAACGT	TACAGACCAA	1140
CAAATCGAAA	ATTCTAAGAA	AGAATTGGCA	GAAGCTAAAG	AATCTCCAGC	GCTTGGATTT	1200
ATCTTCAATA	CTGACAATGT	GAAATCTGAA	ATCTCAGCTA	TTGCTAACAC	AATGCAACAA	1260
TTTGATACAG	CTATCAACAC	TGGTACTGTA	GACCCAGATA	AAGCGATTCC	AGAATTGATG	1320
GAAAAATTGA	AATCTGAAGG	TGCCTACGAA	AAAGTATTGA	ACGAAATGCA	AAAACAATAC	1380
GATGAATTCT	TGAAAAACAA	AAAA			•	1404

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 468 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Cys Gly Asn Leu Thr Gly Asn Ser Lys Lys Ala Ala Asp Ser Gly Asp 1 5 10 15
- Lys Pro Val Ile Lys Met Tyr Gln Ile Gly Asp Lys Pro Asp Asn Leu 20 30
- Asp Glu Leu Leu Ala Asn Ala Asn Lys Ile Ile Glu Glu Lys Val Gly 35 40 45
- Ala Lys Leu Asp Ile Gln Tyr Leu Gly Trp Gly Asp Tyr Gly Lys Lys

60 55 50 Met Ser Val Ile Thr Ser Ser Gly Glu Asn Tyr Asp Ile Ala Phe Ala Asp Asn Tyr Ile Val Asn Ala Gln Lys Gly Ala Tyr Ala Asp Leu Thr Glu Leu Tyr Lys Lys Glu Gly Lys Asp Leu Tyr Lys Ala Leu Asp Pro Ala Tyr Ile Lys Gly Asn Thr Val Asn Gly Lys Ile Tyr Ala Val Pro Val Ala Ala Asn Val Ala Ser Ser Gln Asn Phe Ala Phe Asn Gly Thr Leu Leu Ala Lys Tyr Gly Ile Asp Ile Ser Gly Val Thr Ser Tyr Glu
145 150 155 160 Thr Leu Glu Pro Val Leu Lys Gln Ile Lys Glu Lys Ala Pro Asp Val Val Pro Phe Ala Ile Gly Lys Val Phe Ile Pro Ser Asp Asn Phe Asp 185 Tyr Pro Val Ala Asn Gly Leu Pro Phe Val Ile Asp Leu Glu Gly Asp Thr Thr Lys Val Val Asn Arg Tyr Glu Val Pro Arg Phe Lys Glu His Leu Lys Thr Leu His Lys Phe Tyr Glu Ala Gly Tyr Ile Pro Lys Asp 235 240 Val Ala Thr Ser Asp Thr Ser Phe Asp Leu Gln Gln Asp Thr Trp Phe Val Arg Glu Glu Thr Val Gly Pro Ala Asp Tyr Gly Asn Ser Leu Leu Ser Arg Val Ala Asn Lys Asp Ile Gln Ile Lys Pro Ile Thr Asn Phe 280 Ile Lys Xaa Asn Gln Thr Thr Gln Val Ala Asn Phe Val Ile Ser Asn 295 Asn Ser Lys Asn Lys Glu Lys Ser Met Glu Ile Leu Asn Leu Leu Asn 305 Thr Asn Pro Glu Leu Leu Asn Gly Leu Val Tyr Gly Pro Glu Gly Lys Asn Trp Glu Lys Ile Glu Gly Lys Glu Asn Arg Val Arg Val Leu Asp Gly Tyr Lys Gly Asn Thr His Met Gly Gly Trp Asn Thr Gly Asn Asn 355 360 Trp Ile Leu Tyr Ile Asn Glu Asn Val Thr Asp Gln Gln Ile Glu Asn Ser Lys Lys Glu Leu Ala Glu Ala Lys Glu Ser Pro Ala Leu Gly Phe

Ile Phe Asn Thr Asp Asn Val Lys Ser Glu Ile Ser Ala Ile Ala Asn 405 Thr Met Gln Gln Phe Asp Thr Ala Ile Asn Thr Gly Thr Val Asp Pro 425 Asp Lys Ala Ile Pro Glu Leu Met Glu Lys Leu Lys Ser Glu Gly Ala Tyr Glu Lys Val Leu Asn Glu Met Gln Lys Gln Tyr Asp Glu Phe Leu 460 455

Lys Asn Lys Lys 465

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 937 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

TGGTCAAGGA	ACTGCTTCTA	AAGACAACAA	AGAGGCAGAA	CTTAAGAAGG	TTGACTTTAT	60
CCTAGACTGG	ACACCAAATA	CCAACCACAC	AGGGCTTTAT	GTTGCCAAGG	AAAAAGGTTA	120
TTTCAAAGAA	GCTGGAGTGG	ATGTTGATTT	GAAATTGCCA	CCAGAAGAAA	GTTCTTCTGA	180
CTTGGTTATC	AACGGAAAGG	CACCATTTGC	AGTGTATTTC	CAAGACTACA	TGGCTAAGAA	240
ATTGGAAAAA	GGAGCAGGAA	TCACTGCCGT	TGCAGCTATT	GTTGAACACA	ATACATCAGG	300
AATCATCTCT	CGTAAATCTG	ATAATGTAAG	CAGTCCAAAA	GACTTGGTTG	GTAAGAAATA	360
TGGGACATGG	AATGACCCAA	CTGAACTTGC	TATGTTGAAA	ACCTTGGTAG	AATCTCAAGG	420
TGGAGACTTT	GAGAAGGTTG	AAAAAGTACC	AAATAACGAC	TCAAACTCAA	TCACACCGAT	480
TGCCAATGGC	GTCTTTGATA	CTGCTTGGAT	TTACTACGGT	TGGGATGGTA	TCCTTGCTAA	540
ATCTCAAGGT	GTAGATGCTA	ACTTCATGTA	CTTGAAAGAC	TATGTCAAGG	AGTTTGACTA	600
CTATTCACCA	GTTATCATCG	CAAACAACGA	CTATCTGAAA	GATAACAAAG	AAGAAGCTCG	660
CAAAGTCATC	CAAGCCATCA	AAAAAGGCTA	CCAATATGCC	ATGGAACATC	CAGAAGAAGC	720
TGCAGATATT	CTCATCAAGA	ATGCACCTGA	ACTCAAGGAA	AAACGTGACT	TTGTCATCGA	780
ATCTCAAAAA	TACTTGTCAA	AAGAATACGC	AAGCGACAAG	GAAAAATGGG	GTCAATTTGA	840
CGCAGCTCGC	TGGAATGCTT	TCTACAAATG	GGATAAAGAA	AATGGTATCC	TTAAAGAAGA	900
CTTGACAGAC	AAAGGCTTCA	CCAACGAATT	TGTGAAA			937

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 312 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- Gly Gln Gly Thr Ala Ser Lys Asp Asn Lys Glu Ala Glu Leu Lys Lys 1 5 10 15
- Val Asp Phe Ile Leu Asp Trp Thr Pro Asn Thr Asn His Thr Gly Leu 20 25 30
- Tyr Val Ala Lys Glu Lys Gly Tyr Phe Lys Glu Ala Gly Val Asp Val 35 40 45
- Asp Leu Lys Leu Pro Pro Glu Glu Ser Ser Ser Asp Leu Val Ile Asn 50 55 60
- Gly Lys Ala Pro Phe Ala Val Tyr Phe Gln Asp Tyr Met Ala Lys Lys 65 70 75 80
- Leu Glu Lys Gly Ala Gly Ile Thr Ala Val Ala Ala Ile Val Glu His 85 90 95
- Asn Thr Ser Gly Ile Ile Ser Arg Lys Ser Asp Asn Val Ser Ser Pro 100 105 110
- Lys Asp Leu Val Gly Lys Lys Tyr Gly Thr Trp Asn Asp Pro Thr Glu 115 120 125
- Leu Ala Met Leu Lys Thr Leu Val Glu Ser Gln Gly Gly Asp Phe Glu 130 140
- Lys Val Glu Lys Val Pro Asn Asn Asp Ser Asn Ser Ile Thr Pro Ile 145 150 155 160
- Ala Asn Gly Val Phe Asp Thr Ala Trp Ile Tyr Tyr Gly Trp Asp Gly 165 170 175
- Ile Leu Ala Lys Ser Gln Gly Val Asp Ala Asn Phe Met Tyr Leu Lys 180 185 190
- Asp Tyr Val Lys Glu Phe Asp Tyr Tyr Ser Pro Val Ile Ile Ala Asn 195 200 205
- Asn Asp Tyr Leu Lys Asp Asn Lys Glu Glu Ala Arg Lys Val Ile Gln 210 215 220
- Ala Ile Lys Lys Gly Tyr Gln Tyr Ala Met Glu His Pro Glu Glu Ala 225 230 235 240
- Ala Asp Ile Leu Ile Lys Asn Ala Pro Glu Leu Lys Glu Lys Arg Asp 245 250 255
- Phe Val Ile Glu Ser Gln Lys Tyr Leu Ser Lys Glu Tyr Ala Ser Asp 260 265 270
- Lys Glu Lys Trp Gly Gln Phe Asp Ala Ala Arg Trp Asn Ala Phe Tyr 275 285
- Lys Trp Asp Lys Glu Asn Gly Ile Leu Lys Glu Asp Leu Thr Asp Lys 290 295 300

Gly Phe Thr Asn Glu Phe Val Lys 305

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAGCTCAGGT	GGAAACGCTG	GTTCATCCTC	TGGAAAAACA	ACTGCCAAAG	CTCGCACTAT	60
CGATGAAATC	AAAAAAAGCG	GTGAACTGCG	AATCGCCGTG	TTTGGAGATA	AAAAACCGTT	120
TGGCTACGTT	GACAATGATG	GTTCTACCAA	GGTACGCTAC	GATATTGAAC	TAGGGAACCA	180
ACTAGCTCAA	GACCTTGGTG	TCAAGGTTAA	ATACATTTCA	GTCGATGCTG	CCAACCGTGC	240
GGAATACTTG	ATTTCAAACA	AGGTAGATAT	TACTCTTGCT	AACTTTACAG	TAACTGACGA	300
ACGTAAGAAA	CAAGTTGATT	TTGCCCTTCC	ATATATGAAA	GTTTCTCTGG	GTGTCGTATC	360
	GGTCTCATTA					420
	ACTGCTGAGA					480
	TACAGTGACT					540
	ACGGAAGTTC					600
	GGTGATCCCG					660
	ATCAATAAAG					720
_	ACACTTCACC					780
		0.1100111000				799
TGAAGGTGGA	AAAGTTGAT					

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 266 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Ser Ser Gly Gly Asn Ala Gly Ser Ser Ser Gly Lys Thr Thr Ala Lys
- Ala Arg Thr Ile Asp Glu Ile Lys Lys Ser Gly Glu Leu Arg Ile Ala 20 25 30
- Val Phe Gly Asp Lys Lys Pro Phe Gly Tyr Val Asp Asn Asp Gly Ser 35 40 45

Thr	Lys 50	Val	Arg	Tyr	Asp	Ile 55	Glu	Leu	Gly	Asn	Gln 60	Leu	Ala	Gln	Asp
Leu 65	Gly	Val	Lys ,	Val	Lys 70	Tyr	Ile	Ser	Val	Asp 75	Ala	Ala	Asn	Arg	Ala 80
Glu	Tyr	Leu	Ile	Ser 85	Asn	Lys	Val	Asp	Ile 90	Thr	Leu	Ala	Asn	Phe 95	Thr
Val	Thr	Asp	Glu 100	Arg	Lys	Lys	Gln	Val 105	Asp	Phe	Ala	Leu	Pro 110	Tyr	Met
Lys	Val	Ser 115	Leu	Gly	Val	Val	Ser 120	Pro	Lys	Thr	Gly	Leu 125	Ile	Thr	Asp
Val	Lys 130	Gln	Leu	Glu	Gly	Lys 135	Thr	Leu	Ile	Val	Thr 140	Lys	Gly	Thr	Thr
Ala 145	Glu	Thr	Tyr	Phe	Glu 150	Lys	Asn	His	Pro	Glu 155	Ile	Lys	Leu	Gln	Lys 160
Tyr	Asp	Gln	Tyr	Ser 165	Asp	Ser	Tyr	Gln	Ala 170	Leu	Leu	Asp	Gly	Arg 175	Gly
Asp	Ala	Phe	Ser 180	Thr	Asp	Asn	Thr	Glu 185	Val	Leu	Ala	Trp	Ala 190	Leu	Glu
Asn	Lys	Gly 195		Glu	Val	Gly	Ile 200	Thr	Ser	Leu	Gly	Asp 205	Pro	Asp	Thr
Ile	Ala 210		Ala	Val	Gln	Lys 215	Gly	Asn	Gln	Glu	Leu 220	Leu	Asp	Phe	Ile
Asn 225		Asp	Ile	Glu	Lys 230	Leu	Gly	Lys	Glu	Asn 235	Phe	Phe	His	Lys	Ala 240
Tyr	Glu	Lys	Thr	Leu 245	His	Pro	Thr	Tyr	Gly 250	Asp	Ala	Ala	Lys	Ala 255	Asp
Asp	Leu	ı Val	. Val 260	. Glu	. Gly	Gly	Lys	Val 265	Asp						

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1189 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CTCCAACTAT GGTAAATCTG CGGATGGCAC AGTGACCATC GAGTATTTCA ACCAGAAAAAAAAAA	
AGAATGACC AAAACCTTGG AAGAAATCAC TCGTGATTTT GAGAAGGAAA ACCCTAAGA	AAAA 60
MONETI GIOG ILLEGO I I I I I I I I I I I I I I I I I I I	AGAT 120
CAAGGTCAAA GTCGTCAATG TACCAAATGC TGGTGAAGTA TTGAAGACAC GCGTTCTC	TCGC 180
AGGAGATGTG CCTGATGTGG TCAATATTTA CCCACAGTCC ATCGAACTGC AAGAATGG	rGGGC 240
AAAAGCAGGT GTTTTTGAAG ATTTGAGCAA CAAAGACTAC CTGAAACGCG TGAAAAAT	ATGG 300

CTACGCTGAA	AAATATGCTG	TAAACGAAAA	AGTTTACAAC	GTTCCTTTTA	CAGCTAATGC	360
TTATGGAATT	TACTACAACA	AAGATAAATT	CGAAGAACTG	GGCTTGAAGG	TTCCTGAAAC	420
CTGGGATGAA	TTTGAACAGT	TAGTCAAAGA	TATCGTTGCT	AAAGGACAAA	CACCATTTGG	480
AATTGCAGGT	GCAGATGCTT	GGACACTCAA	TGGTTACAAT	CAATTAGCCT	TTGCGACAGC	540
AACAGGTGGA	GGAAAAGAAG	CAAATCAATA	CCTTCGTTAT	TCTCAACCAA	ATGCCATTAA	600
ATTGTCGGAT	CCGATTATGA	AAGATGATAT	CAAGGTCATG	GACATCCTTC	GCATCAATGG	660
ATCTAAGCAA	AAGAACTGGG	AAGGTGCTGG	CTATACCGAT	GTTATCGGAG	CCTTCGCACG	720
TGGGGATGTC	CTCATGACAC	CAAATGGGTC	TTGGGCGATC	ACAGCGATTA	ATGAACAAAA	780
ACCGAACTTT	AAGATTGGGA	CCTTCATGAT	TCCAGGAAAA	GAAAAAGGAC	AAAGCTTAAC	840
CGTTGGTGCG	GGAGACTTGG	CATGGTCTAT	CTCAGCCACC	ACCAAACATC	CAAAAGAAGC	900
CAATGCCTTT	GTGGAATATA	TGACCCGTCC	AGAAGTCATG	CAAAAATACT	ACGATGTGGA	960
CGGATCTCCA	ACAGCGATCG	AAGGGGTCAA	ACAAGCAGGA	GAAGATTCAC	CGCTTGCTGG	1020
TATGACCGAA	TATGCCTTTA	CGGATCGTCA	CTTGGTCTGG	TTGCAACAAT	ACTGGACCAG	1080
TGAAGCAGAC	TTCCATACCT	TGACCATGAA	CTATGTCTTG	ACCGGTGATA	AACAAGGCAT	1140
GGTCAATGAT	TTGAATGCCT	TCTTTAACCC	GATGAAAGCG	GATGTGGAT		1189

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Ser Asn Tyr Gly Lys Ser Ala Asp Gly Thr Val Thr Ile Glu Tyr Phe 1 10 15

Asn Gln Lys Lys Glu Met Thr Lys Thr Leu Glu Glu Ile Thr Arg Asp 20 25 30

Phe Glu Lys Glu Asn Pro Lys Ile Lys Val Lys Val Val Asn Val Pro 35 40 45

Asn Ala Gly Glu Val Leu Lys Thr Arg Val Leu Ala Gly Asp Val Pro 50 60

Asp Val Val Asn Ile Tyr Pro Gln Ser Ile Glu Leu Gln Glu Trp Ala 65 70 75 80

Lys Ala Gly Val Phe Glu Asp Leu Ser Asn Lys Asp Tyr Leu Lys Arg

Val Lys Asn Gly Tyr Ala Glu Lys Tyr Ala Val Asn Glu Lys Val Tyr 100 105 110

Asn Val Pro Phe Thr Ala Asn Ala Tyr Gly Ile Tyr Tyr Asn Lys Asp 120 Lys Phe Glu Glu Leu Gly Leu Lys Val Pro Glu Thr Trp Asp Glu Phe Glu Gln Leu Val Lys Asp Ile Val Ala Lys Gly Gln Thr Pro Phe Gly Ile Ala Gly Ala Asp Ala Trp Thr Leu Asn Gly Tyr Asn Gln Leu Ala Phe Ala Thr Ala Thr Gly Gly Gly Lys Glu Ala Asn Gln Tyr Leu Arg Ser Gln Pro Asn Ala Ile Lys Leu Ser Asp Pro Ile Met Lys Asp 195 200 205 Asp Ile Lys Val Met Asp Ile Leu Arg Ile Asn Gly Ser Lys Gln Lys Asn Trp Glu Gly Ala Gly Tyr Thr Asp Val Ile Gly Ala Phe Ala Arg Gly Asp Val Leu Met Thr Pro Asn Gly Ser Trp Ala Ile Thr Ala Ile Asn Glu Gln Lys Pro Asn Phe Lys Ile Gly Thr Phe Met Ile Pro Gly Lys Glu Lys Gly Gln Ser Leu Thr Val Gly Ala Gly Asp Leu Ala Trp 275 280 285 Ser Ile Ser Ala Thr Thr Lys His Pro Lys Glu Ala Asn Ala Phe Val Glu Tyr Met Thr Arg Pro Glu Val Met Gln Lys Tyr Tyr Asp Val Asp Gly Ser Pro Thr Ala Ile Glu Gly Val Lys Gln Ala Gly Glu Asp Ser Pro Leu Ala Gly Met Thr Glu Tyr Ala Phe Thr Asp Arg His Leu Val Trp Leu Gln Gln Tyr Trp Thr Ser Glu Ala Asp Phe His Thr Leu Thr Met Asn Tyr Val Leu Thr Gly Asp Lys Gln Gly Met Val Asn Asp Leu Asn Ala Phe Phe Asn Pro Met Lys Ala Asp Val Asp 385

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 775 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGGGAAAAAT	TCTAGCGAAA	CTAGTGGAGA	TAATTGGTCA	AAGTACCAGT	CTAACAAGTC		60
TATTACTATT	GGATTTGATA	GTACTTTTGT	TCCAATGGGA	TTTĠCTCAGA	AAGATGGTTC	-	120
TTATGCAGGA	TTTGATATTG	ATTTAGCTAC	AGCTGTTTTT	GAAAAATACG	GAATCACGGT	:	180
AAATTGGCAA	CCGATTGATT	GGGATTTGAA	AGAAGCTGAA	TTGAĆAAAAG	GAACGATTGA	:	240
TCTGATTTGG	AATGGCTATT	CCGCTACAGA	CGAACGCCGT	GAAAAGGTGG	CTTTCAGTAA	;	300
CTCATATATG	AAGAATGAGC	AGGTATTGGT	TACGAAGAAA	TCATCTGGTA	TCACGACTGC	•	360
AAAGGATATG	ACTGGAAAGA	CATTAGGAGC	TCAAGCTGGT	TCATCTGGTT	ATGCGGACTT		420
TGAAGCAAAT	CCAGAAATTT	TGAAGAATAT	TGTCGCTAAT	AAGGAAGCGA	ATCAATACCA		480
AACCTTTAAT	GAAGCCTTGA	TTGATTTGAA	AAACGATCGA	ATTGATGGTC	TATTGATTGA		540
CCGTGTCTAT	GCAAACTATT	ATTTAGAAGC	AGAAGGTGTT	TTAAACGATT	ATAATGTCTT		600
TACAGTTGGA	CTAGAAACAG	AAGCTTTTGC	GGTTGGAGCC	CGTAAGGAAG	ATACAAACTT		660
GGTTAAGAAG	ATAAATGAAG	CTTTTTCTAG	TCTTTACAAG	GACGGCAAGT	TCCAAGAAAT		720
CAGCCAAAAA	TGGTTTGGAG	AAGATGTAGC	AACCAAAGAA	GTAAAAGAAG	GACAG		775

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Gly Lys Asn Ser Ser Glu Thr Ser Gly Asp Asn Trp Ser Lys Tyr Gln
 1 10 15
- Ser Asn Lys Ser Ile Thr Ile Gly Phe Asp Ser Thr Phe Val Pro Met 20 25 30
- Gly Phe Ala Gln Lys Asp Gly Ser Tyr Ala Gly Phe Asp Ile Asp Leu 35 40 45
- Ala Thr Ala Val Phe Glu Lys Tyr Gly Ile Thr Val Asn Trp Gln Pro 50 60
- Ile Asp Trp Asp Leu Lys Glu Ala Glu Leu Thr Lys Gly Thr Ile Asp 65 70 75 80
- Leu Ile Trp Asn Gly Tyr Ser Ala Thr Asp Glu Arg Arg Glu Lys Val
- Ala Phe Ser Asn Ser Tyr Met Lys Asn Glu Gln Val Leu Val Thr Lys
- Lys Ser Ser Gly Ile Thr Thr Ala Lys Asp Met Thr Gly Lys Thr Leu 115 120 125

Gly Ala Gln Ala Gly Ser Ser Gly Tyr Ala Asp Phe Glu Ala Asn Pro 135 Glu Ile Leu Lys Asn Ile Val Ala Asn Lys Glu Ala Asn Gln Tyr Gln 150 Thr Phe Asn Glu Ala Leu Ile Asp Leu Lys Asn Asp Arg Ile Asp Gly Leu Leu Ile Asp Arg Val Tyr Ala Asn Tyr Tyr Leu Glu Ala Glu Gly Val Leu Asn Asp Tyr Asn Val Phe Thr Val Gly Leu Glu Thr Glu Ala Phe Ala Val Gly Ala Arg Lys Glu Asp Thr Asn Leu Val Lys Lys Ile Asn Glu Ala Phe Ser Ser Leu Tyr Lys Asp Gly Lys Phe Gln Glu Ile 235 Ser Gln Lys Trp Phe Gly Glu Asp Val Ala Thr Lys Glu Val Lys Glu Gly Gln

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 868 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

macama cacaca	AAAAAAGATA	ርል ልርጥጥርጥርር	тсаааааста	AAAGTTGTTG	CTACAAACTC	60
AATCATCGCT	GATATTACTA	AAAATATTGC	TGGTGACAAA	ATTGACCTTC	ATAGTATCGT	120
TCCGATTGGG	CAAGACCCAC	ACGAATACGA	ACCACTTCCT	GAAGACGTTA	AGAAAACTTC	180
TGAGGCTAAT	TTGATTTTCT	ATAACGGTAT	CAACCTTGAA	ACAGGTGGCA	ATGCTTGGTT	240
TACAAAATTO	GTAGAAAATG	CCAAGAAAAC	TGAAAACAAA	GACTACTTCG	CAGTCAGCGA	300
CGGCGTTGAT	GTTATCTACC	TTGAAGGTCA	AAATGAAAAA	GGAAAAGAAG	ACCCACACGC	360
TTGGCTTAAC	CTTGAAAACG	GTATTATTTT	TGCTAAAAAT	ATCGCCAAAC	AATTGAGCGC	420
CAAAGACCCT	AACAATAAAG	AATTCTATGA	AAAAAATCTC	AAAGAATATA	CTGATAAGTT	480
AGACAAACT	GATAAAGAAA	GTAAGGATAA	ATTTAATAAG	ATCCCTGCTG	AAAAGAAACT	540
CATTGTAACO	AGCGAAGGAG	CATTCAAATA	CTTCTCTAAA	GCCTATGGTG	TCCCAAGTGC	600
TTACATCTG	GAAATCAATA	CTGAAGAAGA	AGGAACTCCT	GAACAAATCA	AGACCTTGGT	660
TGAAAAACT	CGCCAAACAA	AAGTTCCATC	ACTCTTTGTA	GAATCAAGTG	TGGATGACCG	720
TCCAATGAA	A ACTGTTTCTC	AAGACACAAA	CATCCCAATC	TACGCTCAAA	TCTTTACTGA	780

840 868

CTCTATCGCA GAACAAGGTA AAGAAGGCGA CAGCTACTAC AGCATGATGA AATACAACCT TGACAAGATT GCTGAAGGAT TGGCAAAA (2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 289 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Ala Ser Gly Lys Lys Asp Thr Thr Ser Gly Gln Lys Leu Lys Val Val Ala Thr Asn Ser Ile Ile Ala Asp Ile Thr Lys Asn Ile Ala Gly Asp Ile Asp Leu His Ser Ile Val Pro Ile Gly Gln Asp Pro His Glu Tyr Glu Pro Leu Pro Glu Asp Val Lys Lys Thr Ser Glu Ala Asn Leu Ile Phe Tyr Asn Gly Ile Asn Leu Glu Thr Gly Gly Asn Ala Trp Phe 65 70 75 80 Thr Lys Leu Val Glu Asn Ala Lys Lys Thr Glu Asn Lys Asp Tyr Phe 85 90 95 Ala Val Ser Asp Gly Val Asp Val Ile Tyr Leu Glu Gly Gln Asn Glu Lys Gly Lys Glu Asp Pro His Ala Trp Leu Asn Leu Glu Asn Gly Ile 115 120 125 Ile Phe Ala Lys Asn Ile Ala Lys Gln Leu Ser Ala Lys Asp Pro Asn Asn Lys Glu Phe Tyr Glu Lys Asn Leu Lys Glu Tyr Thr Asp Lys Leu Asp Lys Leu Asp Lys Glu Ser Lys Asp Lys Phe Asn Lys Ile Pro Ala Glu Lys Lys Leu Ile Val Thr Ser Glu Gly Ala Phe Lys Tyr Phe Ser 185 Lys Ala Tyr Gly Val Pro Ser Ala Tyr Ile Trp Glu Ile Asn Thr Glu 195 200 205 Glu Glu Gly Thr Pro Glu Gln Ile Lys Thr Leu Val Glu Lys Leu Arg

Gln Thr Lys Val Pro Ser Leu Phe Val Glu Ser Ser Val Asp Asp Arg

Pro Met Lys Thr Val Ser Gln Asp Thr Asn Ile Pro Ile Tyr Ala Gln

255 250 245

Ile Phe Thr Asp Ser Ile Ala Glu Gln Gly Lys Glu Gly Asp Ser Tyr 265 260

Tyr Ser Met Met Lys Tyr Asn Leu Asp Lys Ile Ala Glu Gly Leu Ala 285 280

Lys

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1546 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

					~ ~	(/
60	CATTCCCGCT	GAAGGTGTAA	TTATAAGTTG	CAAGTCCAGA	AATACAGCTT	TGGCTCAAAA
120	CTAAAGACCC	CCGTTATCTC	AGCCAGTTCA	AGTTTATGAC.	AAAACATTGA	TCAAGAAAAG
180	TTGACTGGAC	GGCGTTCATA	GAAGGAAACT	AACGTTTGGA	TTAATTTTGC	AAATGAAAAG
240	GTGATTTACC	ATTTCTAGTG	TAACTTGGAT	CAGAAAAACG	TCCGACTTTG	CAACTACCAA
300	CTAAAAAAGG	ATGAACTGGG	TGTGGACTTG	GAGCTTCAGA	CACAACGACG	AGATGCTATC
360	AGAAAATTTT	CCAAATCTTA	TAAATACATG	ATTTGATTGA	CCAGTTGAAG	TGTTATTATT
420	TTTACTCATT	GATGGGCACA	GACAGCACCT	AGGCCTTGAT	CCAGAGTACA	GGATGAGAAA
480	ACGATATGGC	CACAGTGTCA	AGAGTCTATT	GAGATGGTAA	GAAGAGCTTG	TCCATGGATT
540	CTACTGATGA	ATGCCAAAAA	TGGTCTTGAA	TTAAGAAACT	AAAGATTGGC	TTGGATTAAC
600	GAGAGGCTGA	AATGGAAATG	CGGGGATCCA	CTTTCAAAAA	GTCCTAGAAG	TTTGATTAAA
660	TCCTATTTGC	GATTTTAAAT	CGGAAACGAA	TTAGTGGTAA	TTTTCATTTA	TGAAATTCCA
720	GCAAAGTTGA	GGAAATGATG	TTTAGTAGTA	ACGATGATCA	ATAGGGGATA	TGCATTTGGT
780	AATTGCAAGA	TTTATCCGTC	AGGTGTCAAA	ACTATAAAGA	GATAACGATA	CTTCACAGCA
840	TTGCTAAAGG	AATAGTTACA	ACATGATTGG	AAGCTTTCGA	ATTGATAAAG	AAAAGGCCTG
900	CTGGAAGTAA	AATAATGTTA	ATGGGATAAG	TTTACTTTAC	AAATTTGGTG	TCATGATCAG
960	ACGTAGCTCG	GGTCAAAAAC	TGGACCAAGT	CAGTACTTGC	GATGTTTTAC	CGAAAGTTAT
1020	ACAAAAACCT	ACCAGTGTAA	GATGGTTATT	CACGTGACAA	ATGGGATTTG	TACAAACGGT
1080	TGCAAAATAA	CTCCAATCTG	ATACGCTCCA	TTGATGCACA	GCTAAATGGA	AGAATTGACA
1140	AAGCGTCAAA	GAATTGGATC	AAACATCTTT	ACAAACAACA	' TACGGAGATG	CTGGGGAACT
1200	AAAAGACTGA	GAACTTCGTC	TGCACCAGCA	TAAACGGAAC	CACTTACCAC	TAGTCTAAAA
1260	CCATGCCTGA	AAAGTAACAA	: ATACTATGGT	TCCTAGATTC	CCACTAGCTA	AGTAGGAGGA

TGATGCCAAA	TGGCGTTTGG	ATCTTATCAA	AGAATATTAT	GTTCCTTACA	TGAGCAATGT	1320
CAATAACTAT	CCAAGAGTCT	TTATGACACA	GGAAGATTTG	GACAAGATTG	CCCATATCGA	1380
AGCAGATATG	AATGACTATA	TCTACCGTAA	ACGTGCTGAA	TGGATTGTAA	ATGGCAATAT	1440
TGATACTGAG	TGGGATGATT	ACAAGAAAGA	ACTTGAAAAA	TACGGACTTT	CTGATTACCT .	1500
CGCTATTAAA	CAAAAATACT	ACGACCAATA	CCAAGCAAAC	AAAAAC		1546

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 515 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
- Gly Ser Lys Asn Thr Ala Ser Ser Pro Asp Tyr Lys Leu Glu Gly Val
- Thr Phe Pro Leu Gln Glu Lys Lys Thr Leu Lys Phe Met Thr Ala Ser 20 25 30
- Ser Pro Leu Ser Pro Lys Asp Pro Asn Glu Lys Leu Ile Leu Gln Arg 35 40 45
- Leu Glu Lys Glu Thr Gly Val His Ile Asp Trp Thr Asn Tyr Gln Ser 50 60
- Asp Phe Ala Glu Lys Arg Asn Leu Asp Ile Ser Ser Gly Asp Leu Pro 65 70 75 80
- Asp Ala Ile His Asn Asp Gly Ala Ser Asp Val Asp Leu Met Asn Trp 85 90 95
- Ala Lys Lys Gly Val Ile Ile Pro Val Glu Asp Leu Ile Asp Lys Tyr 100 105 110
- Met Pro Asn Leu Lys Lys Ile Leu Asp Glu Lys Pro Glu Tyr Lys Ala 115 120 125
- Leu Met Thr Ala Pro Asp Gly His Ile Tyr Ser Phe Pro Trp Ile Glu 130 135 140
- Glu Leu Gly Asp Gly Lys Glu Ser Ile His Ser Val Asn Asp Met Ala 145 150 155 160
- Trp Ile Asn Lys Asp Trp Leu Lys Lys Leu Gly Leu Glu Met Pro Lys
 165 170 175
- Thr Thr Asp Asp Leu Ile Lys Val Leu Glu Ala Phe Lys Asn Gly Asp 180 185 190
- Pro Asn Gly Asn Gly Glu Ala Asp Glu Ile Pro Phe Ser Phe Ile Ser 195 200 205
- Gly Asn Gly Asn Glu Asp Phe Lys Phe Leu Phe Ala Ala Phe Gly Ile

	210					215					220				
Gly 225	Asp	Asn	Asp	Asp	His 230	Leu	Val	Val	Gly	Asn 235	Asp	Gly	Lys	Val	Asp 240
Phe	Thr	Ala	Asp	Asn 245	Asp	Asn	Tyr	Lys	Glu 250	Gly	Val	Lys	Phe	Ile 255	Arg
Gln	Leu	Gln	Glu 260	Lys	Gly	Leu	Ile	Asp 265	Lys	Glu	Ala	Phe	Glu 270	His	Asp
Trp	Asn	Ser 275	Tyr	Ile	Ala	Lys	Gly 280	His	Asp	Gln	Lys	Phe 285	Gly	Val	Tyr
Phe	Thr 290	Trp	Asp	Lys	Aşn	Asn 295	Val	Thr	Gly	Ser	Asn 300	Glu	Ser	Tyr	Asp
Val 305	Leu	Pro	Val	Leu	Ala 310	Gly	Pro	Ser	Gly	Gln 315	Lys	His	Val	Ala	Arg 320
Thr	Asn	Gly	Met	Gly 325	Phe	Ala	Arg	Asp	330	Met	Val	Ile	Thr	Ser 335	Val
Asn	Lys	Asn	Leu 340	Glu	Leu	Thr	Ala	Lys 345	Trp	Ile	Asp	Ala	Gln 350	Tyr	Ala
Pro	Leu	Gln 355	Ser	Val	Gln	Asn	Asn 360	Trp	Gly	Thr	Tyr	Gly 365	Asp	Asp	Lys
Gln	Gln 370	Asn	Ile	Phe	Glu	Leu 375	Asp	Gln	Ala	Ser	Asn 380	Ser	Leu	Lys	His
Leu 385	Pro	Leu	Asn	Gly	Thr 390	Ala	Pro	Ala	Glu	Leu 395	Arg	Gln	Lys	Thr	Glu 400
Val	Gly	Gly	Pro	Leu 405	Ala	Ile	Leu	Asp	Ser 410	Туr	Tyr	Gly	Lys	Val 415	Thr
Thr	Met	Pro	Asp 420		Ala	Lys	Trp	Arg 425	Leu	Asp	Leu	Ile	Lys 430	Glu	Туr
Tyr	Val	Pro 435	Tyr	Met	Ser	Asn	Val 440	Asn	Asn	Tyr	Pro	Arg 445	Val	Phe	Met
	450	•	Asp	•		455	•				460				
Asp 465	Tyr	Ile	Tyr	Arg	Lys 470	Arg	Ala	Glu	Trp	11e 475	Val	Asn	Gly	Asn	Ile 480
Asp	Thr	Glu	Trp	Asp 485		Туг	Lys	Lys	Glu 490	Leu	Glu	Lys	Tyr	Gly 495	Let
Ser	Asp	Tyr	Leu 500		Ile	Lys	Gln	Lys 505	Tyr	Tyr	Asp	Gln	Tyr 510	Gln	Ala
Asn	Lys	Asn 515													

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 895 base pairs
 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

TAGTACAAAC	TCAAGCACTA	GTCAGACAGA	GACCAGTAGC	TCTGCTCCAA	CAGAGGTAAC	60
CATTAAAAGT	TCACTGGACG	AGGTCAAACT	TTCCAAAGTT	CCTGAAAAGA	TTGTGACCTT	120
TGACCTCGGC	GCTGCGGATA	CTATTCGCGC	TTTAGGATTT	GAAAAAAATA	TCGTCGGAAT	180
GCCTACAAAA	ACTGTTCCGA	СТТАТСТААА	AGACCTAGTG	GGAACTGTCA	AAAATGTTGG	240
TTCTATGAAA	GAACCTGATT	TAGAAGCTAT	CGCCGCCCTT	GAGCCTGATT	TGATTATCGC	300
TTCGCCACGT	ACACAAAAAT	TCGTAGACAA	ATTCAAAGAA	ATCGCCCCAA	CCGTTCTCTT	360
CCAAGCAAGC	AAGGACGACT	ACTGGACTTC	TACCAAGGCT	AATATCGAAT	CCTTAGCAAG	420
TGCCTTCGGC	GAAACTGGTA	CACAGAAAGC	CAAGGAAGAA	TTGACCAAGC	TAGACAAGAG	480
CATCCAAGAA	GTCGCTACTA	AAAATGAAAG	CTCTGACAAA	AAAGCCCTTG	CGATCCTCCT	540
TAATGAAGGA	AAAATGGCAG	CCTTTGGTGC.	CAAATCTCGT	TTCTCTTTCT	TGTACCAAAC	600
CTTGAAATTC	AAACCAACTG	ATACAAAATT	TGAAGACTCA	CGCCACGGAC	AAGAAGTCAG	660
CTTTGAAAGT	GTCAAAGAAA	TCAACCCTGA	CATCCTCTTT	GTCATCAACC	GTACCCTTGC	720
CATCGGTGGG	GACAACTCTA	GCAACGACGG	TGTCCTAGAA	AATGCCCTTA	TCGCTGAAAC	780
ACCTGCTGCT	AAAAATGGTA	AGATTATCCA	ACTAACACCA	GACCTCTGGT	ATCTAAGCGG	840
AGGCGGACTT	GAATCAACAA	AACTCATGAT	TGAAGACATA	CAAAAAGCTT	TGAAA	895

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 298 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
- Ser Thr Asn Ser Ser Thr Ser Gln Thr Glu Thr Ser Ser Ser Ala Pro 1 10 15
- Thr Glu Val Thr Ile Lys Ser Ser Leu Asp Glu Val Lys Leu Ser Lys
- Val Pro Glu Lys Ile Val Thr Phe Asp Leu Gly Ala Ala Asp Thr Ile
- Arg Ala Leu Gly Phe Glu Lys Asn Ile Val Gly Met Pro Thr Lys Thr
- Val Pro Thr Tyr Leu Lys Asp Leu Val Gly Thr Val Lys Asn Val Gly 65 70 75 80

Ser	Met	Lys	Glu	Pro 85	Asp	Leu	Glu	Ala	Ile 90	Ala	Ala	Leu	Glu	Pro 95	Asp
Leu	Ile	Ile	Ala 100	Ser	Pro	Arg	Thr	Gln 105	Lys	Phe	Val	Asp	Lys 110	Phe	Lys
Glu	Ile	Ala 115	Pro	Thr	Val	Leu	Phe 120	Gln	Ala	Ser	Lys	Asp 125	Asp	Tyr	Trp
Thr	Ser 130	Thr	Lys	Ala	Asn	Ile 135	Glu	Ser	Leu	Ala	Ser 140	Ala	Phe	Gly	Glu
Thr 145	Gly	Thr	Gln	Lys	Ala 150	Lys	Glu	Glu	Leu	Thr 155	Lys	Leu	Asp	Lys	Ser 160
Ile	Gln	Glu	Val	Ala 165	Thr	Lys	Asn	Glu	Ser 170	Ser	Asp	Lys	Lys	Ala 175	Leu
Ala	Ile	Leu	Leu 180	Asn	Glu	Gly	Lys	Met 185	Ala	Ala	Phe	Gly	Ala 190	Lys	Ser
Arg	Phe	Ser 195	Phe	Leu	Tyr	Gln	Thr 200	Leu	Lys	Phe	Lys	Pro 205	Thr	Asp	Thr
Lys	Phe 210	Glu	Asp	Ser	Arg	His 215	Gly	Gln	Glu	Val	Ser 220	Phe	Glu	Ser	Val
Lys 225	Glu	Ile	Asn	Pro	Asp 230	Ile	Leu	Phe	Val	Ile 235	Asn	Arg	Thr	Leu	Ala 240
Ile	Gly	Gly	Asp	Asn 245	Ser	Ser	Asn	Asp	Gly 250	Val	Leu	Glu	Asn	Ala 255	Leu
Ile	Ala	Glu	Thr 260	Pro	Ala	Ala	Lys	Asn 265	Gly	Lys	Ile	Ile	Gln 270	Leu	Thr
Pro	Asp	Leu 275	Trp	Tyr	Leu	Ser	Gly 280	Gly	Gly	Leu	Glu	Ser 285	Thr	·Lys	Leu
Met	Ile 290		Asp	Ile	Gln	Lys 295	Ala	Leu	Lys						

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1261 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

• •						
TGGCAATTCT	GGCGGAAGTA	AAGATGCTGC	CAAATCAGGT	GGTGACGGTG	CCAAAACAGA	60
AATCACTTGG	TGGGCATTCC	CAGTATTTAC	CCAAGAAAAA	ACTGGTGACG	GTGTTGGAAC	120
TTATGAAAAA	TCAATCATCG	AAGCGTTTGA	AAAAGCAAAC	CCAGATATAA	AAGTGAAATT	180
GGAAACCATC	GACTTCAAGT	CAGGTCCTGA	AAAAATCACA	ACAGCCATCG	AAGCAGGAAC	240
AGCTCCAGAC	GTACTCTTTG	ATGCACCAGG	ACGTATCATC	CAATACGGTA	AAAACGGTAA	300

ATTGGCTGAG	TTGAATGACC	TCTTCACAGA	TGAATTTGTT	AAAGATGTCA	ACAATGAAAA	360
CATCGTACAA	GCAAGTAAAG	CTGGAGACAA	GGCTTATATG	TATCCGATTA	GTTCTGCCCC	420
ATTCTACATG	GCAATGAACA	AGAAAATGTT	AGAAGATGCT	GGAGTAGCAA	ACCTTGTAAA	480
					ACAAGGGTTA	540
					GTGCCTTTAT	600
					CAACTGATGA	660
		•			ATTTGATCAA	720
					GTCAAACATC	780
					TAGAAGCAAG	840
					CTCTTGAGTA	900
					CTGCATCTAA	960
					TAGTTCGTAC	1020
					GCATGGAAAC	1080
					GATTTGCTGA	1140
					AAAAACCAGC	1200
					CTATGAAACA	1260
A						1261

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 420 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- Gly Asn Ser Gly Gly Ser Lys Asp Ala Ala Lys Ser Gly Gly Asp Gly 1 5 10 15
- Ala Lys Thr Glu Ile Thr Trp Trp Ala Phe Pro Val Phe Thr Gln Glu 20 25 30
- Lys Thr Gly Asp Gly Val Gly Thr Tyr Glu Lys Ser Ile Ile Glu Ala
- Phe Glu Lys Ala Asn Pro Asp Ile Lys Val Lys Leu Glu Thr Ile Asp 50 55
- Phe Lys Ser Gly Pro Glu Lys Ile Thr Thr Ala Ile Glu Ala Gly Thr 65 70 75 80
- Ala Pro Asp Val Leu Phe Asp Ala Pro Gly Arg Ile Ile Gln Tyr Gly

90 95 85 Lys Asn Gly Lys Leu Ala Glu Leu Asn Asp Leu Phe Thr Asp Glu Phe 105 Val Lys Asp Val Asn Asn Glu Asn Ile Val Gln Ala Ser Lys Ala Gly 120 Asp Lys Ala Tyr Met Tyr Pro Ile Ser Ser Ala Pro Phe Tyr Met Ala Met Asn Lys Lys Met Leu Glu Asp Ala Gly Val Ala Asn Leu Val Lys Glu Gly Trp Thr Thr Asp Asp Phe Glu Lys Val Leu Lys Ala Leu Lys 165 170 175 Asp Lys Gly Tyr Thr Pro Gly Ser Leu Phe Ser Ser Gly Gln Gly Gly Asp Gln Gly Thr Arg Ala Phe Ile Ser Asn Leu Tyr Ser Gly Ser Val 195 200 205 Thr Asp Glu Lys Val Ser Lys Tyr Thr Thr Asp Asp Pro Lys Phe Val 210 215 Lys Gly Leu Glu Lys Ala Thr Ser Trp Ile Lys Asp Asn Leu Ile Asn 225 230 235 Asn Gly Ser Gln Phe Asp Gly Gly Ala Asp Ile Gln Asn Phe Ala Asn Gly Gln Thr Ser Tyr Thr Ile Leu Trp Ala Pro Ala Gln Asn Gly Ile 260 265 270 Gln Ala Lys Leu Leu Glu Ala Ser Lys Val Glu Val Glu Val Pro Phe Pro Ser Asp Glu Gly Lys Pro Ala Leu Glu Tyr Leu Val Asn Gly 290 295 300 Phe Ala Val Phe Asn Asn Lys Asp Asp Lys Lys Val Ala Ala Ser Lys Lys Phe Ile Gln Phe Ile Ala Asp Asp Lys Glu Trp Gly Pro Lys Asp 325 330 335 Val Val Arg Thr Gly Ala Phe Pro Val Arg Thr Ser Phe Gly Lys Leu Glu Asp Lys Arg Met Glu Thr Ile Ser Gly Trp Thr Gln Tyr Tyr 360 Ser Pro Tyr Tyr Asn Thr Ile Asp Gly Phe Ala Glu Met Arg Thr Leu Trp Phe Pro Met Leu Gln Ser Val Ser Asn Gly Asp Glu Lys Pro Ala 395 385 Asp Ala Leu Lys Ala Phe Thr Glu Lys Ala Asn Glu Thr Ile Lys Lys 410 Ala Met Lys Gln

420

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 658 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

		·				
TTCACAAGAA	AAAACAAAAA	ATGAAGATGG	AGAAACTAAG	ACAGAACAGA	CAGCCAAAGC	60
TGATGGAACA	GTCGGTAGTA	AGTCTCAAGG	AGCTGCCCAG	AAGAAAGCAG	AAGTGGTCAA	120
TAAAGGTGAT	TACTACAGCA	TTCAAGGGAA	ATACGATGAA	ATCATCGTAG	CCAACAAACA	180
CTATCCATTG	TCTAAAGACT	ATAATCCAGG	GGAAAATCCA	ACAGCCAAGG	CAGAGTTGGT	240
CAAACTCATC	AAAGCGATGC	AAGAGGCAGG	TTTCCCTATT	AGTGATCATT	ACAGTGGTTT	300
TAGAAGTTAT	GAAACTCAGA	CCAAGCTCTA	TCAAGATTAT	GTCAACCAAG	ATGGAAAGGC	360
AGCAGCTGAC	CGTTACTCTG	CCCGTCCTGG	CTATAGCGAA	CACCAGACAG	GCTTGGCCTT	420
TGATGTGATT	GGGACTGATG	GTGATTTGGT	GACAGAAGAA	AAAGCAGCCC	AATGGCTCTT	480
GGATCATGCA	GCTGATTATG	GCTTTGTTGT	CCGTTATCTC	AAAGGCAAGG	AAAAGGAAAC	540
AGGCTATATG	GCTGAAGAAT	GGCACCTGCG	TTATGTAGGA	AAAGAAGCTA	AAGAAATTGC	600
TGCAAGTGGT	CTCAGTTTGG	AAGAATACTA	TGGCTTTGAA	GGCGGAGACT	ACGTCGAT	658

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 219 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
- Ser Gln Glu Lys Thr Lys Asn Glu Asp Gly Glu Thr Lys Thr Glu Gln
- Thr Ala Lys Ala Asp Gly Thr Val Gly Ser Lys Ser Gln Gly Ala Ala 20 25 30
- Gln Lys Lys Ala Glu Val Val Asn Lys Gly Asp Tyr Tyr Ser Ile Gln
- Gly Lys Tyr Asp Glu Ile Ile Val Ala Asn Lys His Tyr Pro Leu Ser 50 60
- Lys Asp Tyr Asn Pro Gly Glu Asn Pro Thr Ala Lys Ala Glu Leu Val 65 70 75 80
- Lys Leu Ile Lys Ala Met Gln Glu Ala Gly Phe Pro Ile Ser Asp His

				85					90					95	
Tyr	Ser	Gly	Phe 100	Arg	Ser	Tyr	Glu	Thr 105	Gln	Thr	Lys	Leu	Tyr 110	Gln	Asp
Tyr	Val	Asn 115	Gln	Asp	Gly	Lys	Ala 120	Ala	Ala	Asp	Arg	Tyr 125	Ser,	Ala	Arg
Pro	Gly 130	Tyr	Ser	Glu	His	Gln 135	Thr	Gly	Leu	Ala	Phe 140	Asp	Val	Ile	Gly
Thr 145	Asp	Gly	Asp	Leu	Val 150	Thr	Glu	Glu	Lys	Ala 155	Ala	Gln	Trp	Leu	Leu 160
Asp	His	Ala	Ala	Asp 165	Tyr	Gly	Phe	Val	Val 170	Arg	Tyr	Leu	Lys	Gly 175	Lys
Glu	Lys	Glu	Thr 180	Gly	Tyr	Met	Ala	Glu 185	Glu	Trp	His	Leu	Arg 190	Tyr	Val
Gly	Lys	Glu 195	Ala	Lys	Glu	Ile	Ala 200	Ala	Ser	Gly	Leu	Ser 205	Leu	Glu	Glu
Tyr	Tyr 210	Gly	Phe	Ġlu	Gly	Gly 215	Asp	Tyr	Val	Asp					

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 790 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

	_					
GAAAGGTCTG	TGGTCAAATA	ATCTTACCTG	CGGTTATGAT	GAAAAAATAA	TCTTGGAAAA	60
TATAAATATA	AAAATACCTG	AAGAAAAAAT	ATCAGTTATT	ATTGGGTCAA	ATGGTTGTGG	120
GAAATCAACA	CTCATTAAAA	CCTTGTCTCG	ACTTATAAAG	CCATTAGAGG	GAGAAGTATT	180
GCTTGATAAT	AAATCAATTA	ATTCTTATAA	AGAAAAAGAT	TTAGCAAAAC	ACATAGCTAT	240
ATTACCTCAA	TCTCCAATAA	TCCCTGAATC	AATAACAGTA	GCTGATCTTG	TAAGCCGTGG	300
TCGTTTCCCC	TACAGAAAGC	CTTTTAAGAG	TCTTGGAAAA	GATGACCTTG	AAATAATAAA	360
CAGATCAATG	GTTAAGGCCA	ATGTTGAAGA	TCTAGCAAAT	AACCTAGTTG	AAGAACTTTC	420
TGGGGGTCAA	AGGCAAAGAG	TATGGATAGC	TCTAGCCCTA	GCCCAAGATA	CAAGTATCCT	480
ACTTTTAGAT	GAGCCAACTA	CTTACTTGGA	TATCTCATAT	CAAATAGAAC	TATTAGACCT	540
CTTGACTGAT	CTAAACCAAA	AATATAAGAC	AACCATTTGC	ATGATTTTGC	ACGATATAAA	600
TCTAACAGCA	AGATACGCTG	ATTACCTATT	TGCAATTAAA	GAAGGTAAAC	TTGTTGCAGA	660
GGGAAAGCCT	GAAGATATAC	TAAATGATAA	ACTAGTTAAA	GATATCTTTA	ATCTTGAAGC	720
AAAAATTATA	CGTGACCCTA	TTTCCAATTC	GCCTCTAATG	ATTCCTATTG	GCAAGCACCA	780

TGTTAACTCT 790

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 262 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Lys Gly Leu Trp Ser Asn Asn Leu Thr Cys Gly Tyr Asp Glu Lys Ile 1 5 10 15

Ile Leu Glu Asn Ile Asn Ile Lys Ile Pro Glu Glu Lys Ile Ser Val 20 25 30

Ile Ile Gly Ser Asn Gly Cys Gly Lys Ser Thr Leu Ile Lys Thr Leu 35 40 45

Ser Arg Leu Ile Lys Pro Leu Glu Gly Glu Val Leu Leu Asp Asn Lys 50 55.

Ser Ile Asn Ser Tyr Lys Glu Lys Asp Leu Ala Lys His Ile Ala Ile 65 70 75 80

Leu Pro Gln Ser Pro Ile Ile Pro Glu Ser Ile Thr Val Ala Asp Leu 85 90 95

Val Ser Arg Gly Arg Phe Pro Tyr Arg Lys Pro Phe Lys Ser Leu Gly 100 105 110

Lys Asp Asp Leu Glu Ile Ile Asn Arg Ser Met Val Lys Ala Asn Val 115 120 125

Glu Asp Leu Ala Asn Asn Leu Val Glu Glu Leu Ser Gly Gly Gln Arg 130 135 140

Gln Arg Val Trp Ile Ala Leu Ala Leu Ala Gln Asp Thr Ser Ile Leu 145 150 155 160

Leu Leu Asp Glu Pro Thr Thr Tyr Leu Asp Ile Ser Tyr Gln Ile Glu 165 170 175

Leu Leu Asp Leu Thr Asp Leu Asn Gln Lys Tyr Lys Thr Thr Ile 180 185 190

Cys Met Ile Leu His Asp Ile Asn Leu Thr Ala Arg Tyr Ala Asp Tyr 195 200 205

Leu Phe Ala Ile Lys Glu Gly Lys Leu Val Ala Glu Gly Lys Pro Glu 210 215 220

Asp Ile Leu Asn Asp Lys Leu Val Lys Asp Ile Phe Asn Leu Glu Ala 225 230 235 240

Lys Ile Ile Arg Asp Pro Ile Ser Asn Ser Pro Leu Met Ile Pro Ile 245 250 255

Gly Lys His His Val Ser

260

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 781 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

AAGAAAGCAG	ACAATGCAAC	AACTATCAAA	ATCGCAACTG	TTAACCGTAG	60
GAAAAACGTT	GGGACAAAAT	CCAAGAATTG	GTTAAAAAAG	ACGGAATTAC	120
ACAGAGTTCA	CAGACTACTC	ACAACCAAAC	AAAGCAACTG	CTGATGGCGA	180
AACGCTTTCC	AACACTATAA	CTTCTTGAAC	AACTGGAACA	AAGAAAACGG	240
GTAGCGATTG	CAGATACTTA	CATCTCTCCA	ATCCGCCTTT	ACTCAGGTTT	300
GCCAACAAGT	ACACTAAAGT	AGAAGACATC	CCAGCAAACG	GAGAAATCGC	360
GACGCTACAA	ACGAAAGCCG	TGCGCTTTAT	TTGCTTCAAT	CAGCTGGCTT	420
GATGTTTCTG	GAACTGCTCT	TGCAACAGTT	GCCAACATCA	AAGAAAATCC	480
AAAATCACTG	AATTGGACGC	TAGCCAAACA	GCTCGTTCAT	TGTCATCAGT	540
GTTGTAAACA	ATACCTTCGT	TACAGAAGCA	AAATTGGACT	ACAAGAAATC	600
GAACAAGCTG	ATGAAAACTC	AAAACAATGG	TACAACATCA	TTGTTGCAAA	660
GAAACATCAC	CTAAGGCTGA	TGCTATCAAG	AAAGTAATCG	CAGCTTACCA	720
GTGAAAAAAG	TTATCGAAGA	ATCATCAGAT	GGTTTGGATC	AACCAGTTTG	780
					781
	GAAAAACGTT ACAGAGTTCA AACGCTTTCC GTAGCGATTG GCCAACAAGT GACGCTACAA GATGTTTCTG AAAATCACTG GTTGTAAACA GAACAAGCTG GAAAACATCAC	GAAAAACGTT GGGACAAAAT ACAGAGTTCA CAGACTACTC AACGCTTTCC AACACTATAA GTAGCGATTG CAGATACTTA GCCAACAAGT ACACTAAAGT GACGCTACAA ACGAAAGCCG GATGTTTCTG GAACTGCTCT AAAATCACTG AATTGGACGC GTTGTAAACA ATACCTTCGT GAACAAGCTG ATGAAAACTC GAAAACATCAC CTAAGGCTGA	GAAAAACGTT GGGACAAAAT CCAAGAATTG ACAGAGTTCA CAGACTACTC ACAACCAAAC AACGCTTTCC AACACTATAA CTTCTTGAAC GTAGCGATTG CAGATACTTA CATCTCCA GCCAACAAGT ACACTAAAGT AGAAGACATC GACGCTACAA ACGAAAGCCG TGCGCTTTAT GATGTTCTG GAACTGCTCT TGCAACAGTT AAAATCACTG AATTGGACGC TAGCCAAACA GTTGTAAACA ATACCTTCGT TACAGAAGCA GAACAAGCTG ATGAAAACTC AAAACAATGG GAAACATCAC CTAAGGCTGA TGCTATCAAG	GAAAAACGTT GGGACAAAAT CCAAGAATTG GTTAAAAAAAGAACAGAAC	AAGAAAGCAG ACAATGCAAC AACTATCAAA ATCGCAACTG TTAACCGTAG GAAAAACGTT GGGACAAAAT CCAAGAATTG GTTAAAAAAAG ACGGAATTAC ACAGAGTTCA CAGACTACTC ACAACCAAAC AAAGCAACTG CTGATGGCGA AACGCTTTCC AACACTATAA CTTCTTGAAC AACTGGAACA AAGAAAACGG GTAGCGATTG CAGATACTTA CATCTCCCA ATCCGCCTTT ACTCAGGTTT GCCAACAAGT ACACTAAAGT AGAAGACATC CCAGCAAACC GAGCAACACA ACGAAAACCGG GATGTTTCTG GAACTGCTCT TGCAACAGTT TTGCTTCAAT CAGCTGGCTT AAAATCACTG AATTGGACG TAGCCAAACA GCTCGTTCAT TGTCATCAGT GTTGTAAACA ATACCTTCGT TACAGAAGCA AAATTGGACT ACAAGAAATC GAACAAGCTG ATGAAAACTC AAAACAATGG TACAACATCA TTGTTGCAAA GAAACATCAC CTAAGGCTGA TGCTATCAGT TACAACATCA TTGTTGCAAA GAAACATCAC CTAAGGCTGA TGCTATCAGT GGTTTGGATC AACCAGTTTG GTGAAAAAAA TTTATCGAAGA ATCATCAGAT GGTTTGGATC AACCAGTTTG

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 260 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
- Asn Ser Glu Lys Lys Ala Asp Asn Ala Thr Thr Ile Lys Ile Ala Thr
- Val Asn Arg Ser Gly Ser Glu Glu Lys Arg Trp Asp Lys Ile Gln Glu 20 25 30
- Leu Val Lys Lys Asp Gly Ile Thr Leu Glu Phe Thr Glu Phe Thr Asp

Tyr	Ser 50	Gln	Pro	Asn	Lys	Ala 55	Thr	Ala	Asp	Gly	Glu 60	Val	Asp	Leu	Asn
Ala 65	Phe	Gln	His	Tyr	Asn 70	Phe	Leu	Asn	Asn	Trp 75	Asn	Lys	Glu	Asn	Gly 80
Lys	Asp	Leu	Val	Ala 85	Ile	Ala	Asp	Thr	Tyr 90	Ile	Ser	Pro	Ile	Arg 95	Leu
Tyr	Ser	Gly	Leu 100	Asn	Gly	Ser	Ala	Asn 105	Lys	Tyr	Thr	Lys	Val 110	Glu	Asp
Ile	Pro	Ala 115	Asn	Gly	Glu	Ile	Ala 120	Val	Pro	Asn	Asp	Ala 125	Thr	Asn	Glu
Ser	Arg 130	Ala	Leu	Tyr	Leu	Leu 135	Gln	Ser	Ala	Gly	Leu 140	Ile	Lys	Leu	Asp
Val 145	Ser	Gly	Thr	Ala	Leu 150	Ala	Thr	Val	Ala	Asn 155	Ile	Lys	Glu	Asn	Pro 160
Lys	Asn	Leu	Lys	Ile 165	Thr	Glu	Leu	Asp	Ala 170	Ser	Gln	Thr	Ala	Arg 175	Ser
Let	. Ser	Ser	Val 180		Ala	Ala	Val	Val 185	Asn	Asn	Thr	Phe	Val 190	Thr	Glu
Ala	Lys	Leu 195		Tyr	Lys	Lys	Ser 200	Leu	Phe	Lys	Glu	Gln 205	Ala	Asp	Glu
Ası	ser 210		Gln	Trp	Tyr	Asn 215	Ile	Ile	Val	Ala	Lys 220	Lys	Asp	Trp	Glu
Th: 22!	s Ser	Pro	Lys	Ala	Asp 230	Ala	Ile	Lys	Lys	Val 235	Ile	Ala	. Ala	Tyr	His 240
Th	c Asp	Asp	Val	Lys 245	Lys	Val	Ile	Glu	Glu 250	Ser	Ser	Asp	Gly	Leu 255	Asp
Gl	n Pro	Val	Trp 260												

(2) INFORMATION FOR SEQ ID NO: 33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 640 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

60	TTACAGAACA	GGGGATGTCA	CAGCATGAAA	CAGACCTTAT	TCAGAAGGTG	TTCGAAAGGG
120	TAAATATGAC	CAAGTCTTGT	TTCAGCCCAA	AAAGCAACCC	GAGCAAGTGA	TCAATTTTAT
180	AGGTTGATGA	GATGATAAAG	CTCAGAGCTT	AACAATATGG	GTTTTTGAAA	CATCCAAAAA
240	TGTCACAAGC	CAACGTGTCT	CGAAAACTAC	AACAATATGG	GAAGAAAAA	TACTATTGCC
300	TTGAGTTGGC	AGTAAATTAG	AATTCGTACA	GTAAAGCTCA	CTTGAAACAC	AGGTATGACT

AGTTAAGAAG	GTAGCAGAAG	CTGAATTGAC	AGATGAAGCC	TATAAGAAAG	CCTTTGATGA	360
GTACACTCCA	GATGTAACGG	CTCAAATCAT	CCGTCTTAAT	AATGAAGATA	AGGCCAAAGA	420
AGTTCTCGAA	AAAGCCAAGG	CAGAAGGTGC	TGATTTTGCT	CAATTAGCCA	AAGATAATTC	480
AACTGATGAA	AAAACAAAAG	AAAATGGTGG	AGAAATTACC	TTTGATTCTG	CTTCAACAGA	540
AGTACCTGGA	GCAAGTCCAA	AAAAGCCGCT	TTTCGCTTTT	AGATGTGGGA	TGGTGTTTCT	600
GGATGTGGAT	TACAGCAACT	GGGGCACACC	AAGCCTACAG			640

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
- Ser Lys Gly Ser Glu Gly Ala Asp Leu Ile Ser Met Lys Gly Asp Val 1 5 10 15
- Ile Thr Glu His Gln Phe Tyr Glu Gln Val Lys Ser Asn Pro Ser Ala
- Gln Gln Val Leu Leu Asn Met Thr Ile Gln Lys Val Phe Glu Lys Gln
- Tyr Gly Ser Glu Leu Asp Asp Lys Glu Val Asp Asp Thr Ile Ala Glu
- Glu Lys Lys Gln Tyr Gly Glu Asn Tyr Gln Arg Val Leu Ser Gln Ala 65 70 75 80
- Gly Met Thr Leu Glu Thr Arg Lys Ala Gln Ile Arg Thr Ser Lys Leu
- Val Glu Leu Ala Val Lys Lys Val Ala Glu Ala Glu Leu Thr Asp Glu
- Ala Tyr Lys Lys Ala Phe Asp Glu Tyr Thr Pro Asp Val Thr Ala Gln
- Ile Ile Arg Leu Asn Asn Glu Asp Lys Ala Lys Glu Val Leu Glu Lys 130
- Ala Lys Ala Glu Gly Ala Asp Phe Ala Gln Leu Ala Lys Asp Asn Ser
- Thr Asp Glu Lys Thr Lys Glu Asn Gly Gly Glu Ile Thr Phe Asp Ser
- Ala Ser Thr Glu Val Pro Gly Ala Ser Pro Lys Lys Pro Leu Phe Ala
- Phe Arg Cys Gly Met Val Phe Leu Asp Val Asp Tyr Ser Asn Trp Gly 205 200

Thr Pro Ser Leu Gln 210

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 631 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

GGGGATGGCA	GCTTTTAAAA	ATCCTAACAA	TCAATACAAA	GCTATTACAA	TTGCTCAAAC	60
TCTAGGTGAT	GATGCTTCTT	CAGAGGAATT	GGCTGGTAGA	TATGGTTCTG	CTGTTCAGTG	120
TACAGAAGTG	ACTGCCTCAA	ACCTTTCAAC	AGTTAAAACT	AAAGCTACGG	TTGTAGAAAA	180
ACCACTGAAA	GATTTTAGAG	CGTCTACGTC	TGATCAGTCT	GGTTGGGTGG	AATCTAATGG	240
TAAATGGTAT	TTCTATGAGT	CTGGTGATGT	GAAGACAGGT	TGGGTGAAAA	CAGATGGTAA	300
ATGGTACTAT	TTGAATGACT	TAGGTGTCAT	GCAGACTGGA	TTTGTAAAAT	TTTCTGGTAG	360
CTGGTATTAC	TTGAGCAATT	CAGGTGCTAT	GTTTACAGGC	TGGGGAACAG	ATGGTAGCAG	420
ATGGTTCTAC	TTTGACGGCT	CAGGAGCTAT	GAAGACAGGC	TGGTACAAGG	AAAATGGCAC	480
TTGGTATTAC	CTTGACGAAG	CAGGTATCAT	GAAGACAGGT	TGGTTTAAAG	TCGGACCACA	540
CTGGTACTAT	GCCTACGGTT	CAGGAGCTTT	GGCTGTGAGC	ACAACAACAC	CAGATGGTTA	600
CCGTGTAAAT	GGTAATGGTG	AATGGGTAAA	С			631

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
- Gly Met Ala Ala Phe Lys Asn Pro Asn Asn Gln Tyr Lys Ala Ile Thr
- Ile Ala Gln Thr Leu Gly Asp Asp Ala Ser Ser Glu Glu Leu Ala Gly 20 25 30
- Arg Tyr Gly Ser Ala Val Gln Cys Thr Glu Val Thr Ala Ser Asn Leu 35 40 45
- Ser Thr Val Lys Thr Lys Ala Thr Val Val Glu Lys Pro Leu Lys Asp 50 55 60
- Phe Arg Ala Ser Thr Ser Asp Gln Ser Gly Trp Val Glu Ser Asn Gly 65 70 75 80

Lys Trp Tyr Phe Tyr Glu Ser Gly Asp Val Lys Thr Gly Trp Val Lys Thr Asp Gly Lys Trp Tyr Tyr Leu Asn Asp Leu Gly Val Met Gln Thr Gly Phe Val Lys Phe Ser Gly Ser Trp Tyr Tyr Leu Ser Asn Ser Gly Ala Met Phe Thr Gly Trp Gly Thr Asp Gly Ser Arg Trp Phe Tyr Phe 130 140 Asp Gly Ser Gly Ala Met Lys Thr Gly Trp Tyr Lys Glu Asn Gly Thr 145 150 155 Trp Tyr Tyr Leu Asp Glu Ala Gly Ile Met Lys Thr Gly Trp Phe Lys Val Gly Pro His Trp Tyr Tyr Ala Tyr Gly Ser Gly Ala Leu Ala Val 180 185 190 Ser Thr Thr Pro Asp Gly Tyr Arg Val Asn Gly Asn Gly Glu Trp Val Asn 210

(2) INFORMATION FOR SEQ ID NO: 37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1360 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

					~	,,
60	CTGAGGCTAC	AGTAAACAAG	GGAAGTTGAG	AAGCAGAAGC	AAAATTAAGC	AGACGAGCAA
120	AACGAAGAGC	GAAGAAGCTA	AGAAGCAGAA	CAGATCGTGA	AAAATCAAGA	AAGGTTAAAA
180	CTGGAGAGCT	CGAGGAGTTC	GCGGGCAAAA	AACCAAAGGG	GAGCAAGGTA	AGATGCTAAA
240	TAGGTGAAGA	GATTCTAGCG	GAAGTCTTCA	AAAATGATGC	GATAAAAAG	AGCAACACCT
300	AGAAGAAGGT	GCAGAAGCTG	AAAAAAGGTA	TGAAACCAGA	AGCCCATCCC	AACTCTTCCA
360	ACTACCCAAC	GATCGCCGTA	AAAAGAAGAA	CCGAGGATCA	AAGAAAAAG	TGAAGAAGCT
420	TTAAAAAAGC	GATGTGGAAG	TGCTGAGTCC	AACTTGAAAT	AAAACGCTTG	CAATACTTAC
480	AAGTTAAGCA	AACGAGGAAA	GGAACCTCGA	AGGAAGCTAA	CTAGTAAAAG	GGAGCTTGAA
540	AAATCAAGAC	AGGTTAGAAA	TGAGGCTACA	GTAAAAAAGC	GAAGTTGAGA	AGCAAAAGCG
600	ATAAAGTTAA	GCAGAAGAAG	ACGAAAAGCA	AAGAAGCTAA	AAAGCAGAAG	AGATCGTAAA
660	AACCAGCTCC	AAAGCAGAAA	GCCGGCTCCA	CACAACCAGC	GCTGAACAAC	AGAAAAACCA
720	CTGATCAACA	GAAAAACCAG	ACCAAAAGCA	CAGCTGAACA	CCAGAGAATC	AGCTCCAAAA

AGCTGAAGAA	GACTATGCTC	GTAGATCAGA	AGAAGAATAT	AATCGCTTGA	CTCAACAGCA	780
ACCGCCAAAA	ACTGAAAAAC	CAGCACAACC	ATCTACTCCA	AAAACAGGCT	GGAAACAAGA	840
AAACGGTATG	TGGTACTTCT	ACAATACTGA	TGGTTCAATG	GCGACAGGAT	GGCTCCAAAA	900
CAATGGCTCA	TGGTACTACC	TCAACAGCAA	TGGCGCTATG	GCGACAGGAT	GGCTCCAAAA	960
CAATGGTTCA	TGGTACTATC	TAAACGCTAA	TGGTTCAATG	GCAACAGGAT	GGCTCCAAAA	. 1020
CAATGGTTCA	TGGTACTACC	TAAACGCTAA	TGGTTCAATG	GCGACAGGAT	GGCTCCAATA	1080
CAATGGCTCA	TGGTACTACC	TAAACGCTAA	TGGTTCAATG	GCGACAGGAT	GGCTCCAATA	1140
CAATGGCTCA	TGGTACTACC	TAAACGCTAA	TGGTGATATG	GCGACAGGTT	GGGTGAAAGA	1200
TGGAGATACC	TGGTACTATC	TTGAAGCATC	AGGTGCTATG	AAAGCAAGCC	AATGGTTCAA	1260
AGTATCAGAT	AAATGGTACT	ATGTCAATGG	CTCAGGTGCC	CTTGCAGTCA	ACACAACTGT	1320
AGATGGCTAT	GGAGTCAATG	CCAATGGTGA	ATGGGTAAAC			1360

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
- Asp Glu Gln Lys Ile Lys Gln Ala Glu Ala Glu Val Glu Ser Lys Gln 1 5 10 15
- Ala Glu Ala Thr Arg Leu Lys Lys Ile Lys Thr Asp Arg Glu Glu Ala 20 25 30
- Glu Glu Glu Ala Lys Arg Arg Ala Asp Ala Lys Glu Gln Gly Lys Pro 35 40 45
- Lys Gly Arg Ala Lys Arg Gly Val Pro Gly Glu Leu Ala Thr Pro Asp 50 55
- Lys Lys Glu Asn Asp Ala Lys Ser Ser Asp Ser Ser Val Gly Glu Glu 65 70 75 80
- Thr Leu Pro Ser Pro Ser Leu Lys Pro Glu Lys Lys Val Ala Glu Ala 85 90 95
- Glu Lys Lys Val Glu Glu Ala Lys Lys Lys Ala Glu Asp Gln Lys Glu 100 105 110
- Glu Asp Arg Arg Asn Tyr Pro Thr Asn Thr Tyr Lys Thr Leu Glu Leu 115 120 125
- Glu Ile Ala Glu Ser Asp Val Glu Val Lys Lys Ala Glu Leu Glu Leu 130 140
- Val Lys Glu Glu Ala Lys Glu Pro Arg Asn Glu Glu Lys Val Lys Gln 145 150 155 160

Ala Lys Ala Glu Val Glu Ser Lys Lys Ala Glu Ala Thr Arg Leu Glu Lys Ile Lys Thr Asp Arg Lys Lys Ala Glu Glu Ala Lys Arg Lys Ala Ala Glu Glu Asp Lys Val Lys Glu Lys Pro Ala Glu Gln Pro Gln Pro Ala Pro Ala Pro Lys Ala Glu Lys Pro Ala Pro Ala Pro Lys Pro Glu Asn Pro Ala Glu Gln Pro Lys Ala Glu Lys Pro Ala Asp Gln Gln 235 Ala Glu Glu Asp Tyr Ala Arg Arg Ser Glu Glu Glu Tyr Asn Arg Leu 245 250 255 Thr Gln Gln Gln Pro Pro Lys Thr Glu Lys Pro Ala Gln Pro Ser Thr 265 Pro Lys Thr Gly Trp Lys Gln Glu Asn Gly Met Trp Tyr Phe Tyr Asn Thr Asp Gly Ser Met Ala Thr Gly Trp Leu Gln Asn Asn Gly Ser Trp 295 Tyr Tyr Leu Asn Ser Asn Gly Ala Met Ala Thr Gly Trp Leu Gln Asn 315 Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Ser Met Ala Thr Gly 325 330 335 Trp Leu Gln Asn Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Ser 340 345 350 Met Ala Thr Gly Trp Leu Gln Tyr Asn Gly Ser Trp Tyr Tyr Leu Asn 355 360 365 Ala Asn Gly Ser Met Ala Thr Gly Trp Leu Gln Tyr Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Asp Met Ala Thr Gly Trp Val Lys Asp 395 Gly Asp Thr Trp Tyr Tyr Leu Glu Ala Ser Gly Ala Met Lys Ala Ser Gln Trp Phe Lys Val Ser Asp Lys Trp Tyr Tyr Val Asn Gly Ser Gly 420 425 430 Ala Leu Ala Val Asn Thr Thr Val Asp Gly Tyr Gly Val Asn Ala Asn 440 Gly Glu Trp Val Asn 450

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 39: CTGTGGTGAG GAAGAAACTA AAAAGACTCA AGCAGCACAA CAGCCAAAAC AACAAACGAC 60 TGTACAACAA ATTGCTGTTG GAAAAGATGC TCCAGACTTC ACATTGCAAT CCATGGATGG 120 CAAAGAAGTT AAGTTATCTG ATTTTAAGGG TAAAAAAGGTT TACTTGAAGT TTTGGGCTTC 180 ATGGTGTGGT CCATGCAAGA AAAGTATGCC AGAGTTGATG GAACTAGCGG CGAAACCAGA 240 TCGTGATTTC GAAATTCTTA CTGTCATTGC ACCAGGAATT CAAGGTGAAA AAACTGTTGA 300

360

412

GCAATTCCCA CAATGGTTCC AGGAACAAGG ATATAAGGAT ATCCCAGTTC TTTATGATAC

CAAAGCAACC ACTTCCAAGC TTATCAAATT CGAAGCATTC CTACAGAATA TT

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
- Cys Gly Glu Glu Glu Thr Lys Lys Thr Gln Ala Ala Gln Gln Pro Lys
 1 10 15
- Gln Gln Thr Thr Val Gln Gln Ile Ala Val Gly Lys Asp Ala Pro Asp 20 25 30
- Phe Thr Leu Gln Ser Met Asp Gly Lys Glu Val Lys Leu Ser Asp Phe 35 40 45
- Lys Gly Lys Lys Val Tyr Leu Lys Phe Trp Ala Ser Trp Cys Gly Pro 50 55 60
- Cys Lys Lys Ser Met Pro Glu Leu Met Glu Leu Ala Ala Lys Pro Asp 65 70 75 80
- Arg Asp Phe Glu Ile Leu Thr Val Ile Ala Pro Gly Ile Gln Gly Glu 85 90 95
- Lys Thr Val Glu Gln Phe Pro Gln Trp Phe Gln Glu Gln Gly Tyr Lys 100 105 110
- Asp Ile Pro Val Leu Tyr Asp Thr Lys Ala Thr Thr Ser Lys Leu Ile 115 120 125

Lys Phe Glu Ala Phe Leu Gln Asn Ile 130 135

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1462 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

			~	0.1.2.2	DEQUERROE DEL	(X1)
60	AGGAAATTTC	CTTGTCTCTA	GCACAATCTC	TTGAAGAGTT	ААТААААСТА	GACTTTTAAC
120	AAGCCCTCAA	TCTCGTGAGG	AAATATCAAG	CAACACTTGA	TTGACCCAAG	TGCAACAGAA
180	TTGATGAAGC	GCTAAAGCCA	TCTTGTTCAA	AGGAGCAAGC	ACCATCGCTG	TTCATTTGTC
240	ATAACATCTC	GCTGTTAAGG	AATTCCACTT	TCCTTTCAGG	GCTGACAATG	tGGAATTGAT
300	AGCCAATCTT	TACAACTATG	AAAAATGCTC	CTGCTGCCTC	ATTCTCACAA	TACAGACGGT
360	GAAAGACCAA	ATTGTCGTTG	CAAGGGCATG	ATGCAAAAAC	gCTgTTGCCA	TGATGCGACa
420	CAACTAAAAA	CACTACGGAG	tGAAACTTCA	GTGGTTCAGG	TTTGCTATGG	CATGGACGAA
480	CAGCTGTAGC	GGTTCTGCCG	GTCATCAAGT	TTCCTGGTGG	CACAGCAAGG	CGCTTGGAAC
540	GCCAACCTGC	GGTTCCATCC	TGATACTGGT	CACTTGGTTC	GTTCGCTTGT	CTCAGGACAA
600	GTTTCGGTCT	ACAGTTTCAC	AACCTACGGA	GTCTCAAACC	GGAATCGTTG	TGCCTTCAAC
660	TTAAGGAAAA	GCTCCTACTG	TGGACCTTTT	TAGACCAGAT	GGTAGCTCAT	CATTGCCTTT
720	CTGCTCCTGT	GACTCTACTT	AGATGCTAAA	TTGCCAGCGA	CTCAACGCTA	TGCCCTCTTG
780	AAATCGCTTT	AAGGGTATGA	CCAAGACATC	CAAAAATCGG	GACTTTACTT	CCGCATCGCC
840	TCTTAAACGC	AAGGAAACAA	TCCAGAGGTT	AAGGAATTGA	TACCTAGGCG	GCCTAAGGAA
900	CTCACTCTAA	GTCAGCCTTC	CGTCGAAGAA	TGGGTGCTAT	TTTGAAAAAT	GGCCAAACAC
960	ACTTGCAACG	GCTTCATCAA	TTCATCAGAA	ACATCATCGC	GCCGTTTATT	ATACGGTGTT
1020	ATGAAATCTA	ACCAACCTTG	AGAAGATGCA	GCTATCGCGC	ATCCGTTACG	CTTCGACGGT
1080	TGCTGGGTAC	CGTCGTATCA	AGAGGTAAAA	GTTTTGGTGA	CGAAGCCAAG	TGTAAACAGC
1140	AAGTCCGTAC	AAGGCTGGTC	CTACTACAAA	ACTATGATGC	TCATCAGGTT	TTTCAGTCTT
1200	TGGGTCCAAC	GATTTGATTT	CGCGGATTAC	AAAAAGTCTT	CAAGATTTCG	CCTCATCATT
1260	CCATGTACTT	GACCCAGTTG	TCTCAACCAT	ACTTGGATTC	GTTGCCTATG	TGCTCCAAGT
1320	CGATTCCTGC	CCTGGAATTT	GGCAGGACTG	CTGTAAACTT	TTGACCATAC	AGCCGACCTA
1380	ACTCTGAGGA	GGTCCCAAGT	CCAATTGATT	CTGTCGGACT	CAAGGTCTAC	TGGATTCTCT
1440	AACAACAACC	GACTACCACA	AGCAACAACA	CTGCTTTTGA	CAAGCTGCTG	AACCATTTAC
1462				AC	GGAGGTGACA	CGTGATTTT

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 487 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Thr Phe Asn Asn Lys Thr Ile Glu Glu Leu His Asn Leu Leu Val Ser 1 10 15

Lys Glu Ile Ser Ala Thr Glu Leu Thr Gln Ala Thr Leu Glu Asn Ile 20 25 30

Lys Ser Arg Glu Glu Ala Leu Asn Ser Phe Val Thr Ile Ala Glu Glu 35 40 45

Gln Ala Leu Val Gln Ala Lys Ala Ile Asp Glu Ala Gly Ile Asp Ala 50 60

Asp Asn Val Leu Ser Gly Ile Pro Leu Ala Val Lys Asp Asn Ile Ser 65 70 75 80

Thr Asp Gly Ile Leu Thr Thr Ala Ala Ser Lys Met Leu Tyr Asn Tyr 85 90 95

Glu Pro Ile Phe Asp Ala Thr Ala Val Ala Asn Ala Lys Thr Lys Gly
100 105 110

Met Ile Val Val Gly Lys Thr Asn Met Asp Glu Phe Ala Met Gly Gly 115 120 125

Ser Gly Glu Thr Ser His Tyr Gly Ala Thr Lys Asn Ala Trp Asn His 130 135 140

Ser Lys Val Pro Gly Gly Ser Ser Ser Gly Ser Ala Ala Ala Val Ala 145 150 155 160

Ser Gly Gln Val Arg Leu Ser Leu Gly Ser Asp Thr Gly Gly Ser Ile 165 170 175

Arg Gln Pro Ala Ala Phe Asn Gly Ile Val Gly Leu Lys Pro Thr Tyr 180 185 190

Gly Thr Val Ser Arg Phe Gly Leu Ile Ala Phe Gly Ser Ser Leu Asp 195 200 205

Gln Ile Gly Pro Phe Ala Pro Thr Val Lys Glu Asn Ala Leu Leu Leu 210 220

Asn Ala Ile Ala Ser Glu Asp Ala Lys Asp Ser Thr Ser Ala Pro Val 225 230 235 240

Arg Ile Ala Asp Phe Thr Ser Lys Ile Gly Gln Asp Ile Lys Gly Met 245 250 255

Lys Ile Ala Leu Pro Lys Glu Tyr Leu Gly Glu Gly Ile Asp Pro Glu 260 265 270

Val Lys Glu Thr Ile Leu Asn Ala Ala Lys His Phe Glu Lys Leu Gly 275 280 285

Ala Ile Val Glu Glu Val Ser Leu Pro His Ser Lys Tyr Gly Val Ala 290 295 300 Val Tyr Tyr Ile Ile Ala Ser Ser Glu Ala Ser Ser Asn Leu Gln Arg 310 Phe Asp Gly Ile Arg Tyr Gly Tyr Arg Ala Glu Asp Ala Thr Asn Leu Asp Glu Ile Tyr Val Asn Ser Arg Ser Gln Gly Phe Gly Glu Glu Val Lys Arg Arg Ile Met Leu Gly Thr Phe Ser Leu Ser Ser Gly Tyr Tyr 360 Asp Ala Tyr Tyr Lys Lys Ala Gly Gln Val Arg Thr Leu Ile Ile Gln Asp Phe Glu Lys Val Phe Ala Asp Tyr Asp Leu Ile Leu Gly Pro Thr Ala Pro Ser Val Ala Tyr Asp Leu Asp Ser Leu Asn His Asp Pro Val 410 Ala Met Tyr Leu Ala Asp Leu Leu Thr Ile Pro Val Asn Leu Ala Gly 425 Leu Pro Gly Ile Ser Ile Pro Ala Gly Phe Ser Gln Gly Leu Pro Val Gly Leu Gln Leu Ile Gly Pro Lys Tyr Ser Glu Glu Thr Ile Tyr Gln 455 Ala Ala Ala Phe Glu Ala Thr Thr Asp Tyr His Lys Gln Gln Pro 475 Val Ile Phe Gly Gly Asp Asn 485

(2) INFORMATION FOR SEQ ID NO: 43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 433 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTTACAGGT	AAACAACTAC	AAGTCGGCGA	CAAGGCGCTT	GATTTTTCTC	TTACTACAAC	60
AGATCTTTCT	AAAAAATCTC	TGGCTGATTT	TGATGGCAAG	AAAAAAGTCT	TGAGTGTCGT	120
TCCTTCTATC	GATACAGGCA	TCTGCTCAAC	TCAAACACGT	CGTTTTAATG	AAGAATTGGC	180
TGGACTGGAC	AACACGGTCG	TATTGACTGT	TTCAATGGAC	CTACCTTTTG	CTCAAAAACG	240
TTGGTGCGGT	GCTGAAGGCC	TTGACAATGC	CATTATGCTT	TCAGACTACT	TTGACCATTC	300
TTTCGGGCGC	GATTATGCCC	TCTTGATCAA	CGAATGGCAC	CTATTAGCAC	GCGCAGTCTT	360
TGTCCTCGAT	ACTGACAATA	CGATTCGCTA	CGTTGAATAC	GTGGATAATA	TCAATTCTGA	420
GCCAAACTTC	GAA					433

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Phe Thr Gly Lys Gln Leu Gln Val Gly Asp Lys Ala Leu Asp Phe Ser 1 10 15

Leu Thr Thr Thr Asp Leu Ser Lys Lys Ser Leu Ala Asp Phe Asp Gly 20 25 30

Lys Lys Val Leu Ser Val Val Pro Ser Ile Asp Thr Gly Ile Cys 35 40 45

Ser Thr Gln Thr Arg Arg Phe Asn Glu Glu Leu Ala Gly Leu Asp Asn 50 60

Thr Val Val Leu Thr Val Ser Met Asp Leu Pro Phe Ala Gln Lys Arg 65 70 75 80

Trp Cys Gly Ala Glu Gly Leu Asp Asn Ala Ile Met Leu Ser Asp Tyr 85 90 95

Phe Asp His Ser Phe Gly Arg Asp Tyr Ala Leu Leu Ile Asn Glu Trp

His Leu Leu Ala Arg Ala Val Phe Val Leu Asp Thr Asp Asn Thr Ile 115 120 125

Arg Tyr Val Glu Tyr Val Asp Asn Ile Asn Ser Glu Pro Asn Phe Glu 130 140

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

CCAGGCTGAT	ACAAGTATCG	CAGACATTCA	AAAAAGAGGC	GAACTGGTTG	TCGGTGTCAA		60
ACAAGACGTT	CCCAATTTTG	GTTACAAnGA	TCCCAAGACC	GGTACTTATT	CTGGTATCGA	:	120
ÀaCCGACTTG	GCCAAGATGG	TAGCTGATGA	ACTCAAGGTC	AAGATTCGCT	ATGTGCCGGT	=	180
TACAGCACAA	ACCCGCGGCC	CCCTTCTAGA	CAATGAACAG	GTCGATATGG	ATATCGCGAC	2	240
CTTTACCATC	ACGGACGAAC	GCAAAAAACT	CTACAACTTT	ACCAGTCCCT	ACTACACAGA	:	300
CGCTTCTGGA	TTTTTGGTCA	ATAAATCTGC	CAAAATCAAA	AAGATTGAGG	ACCTAAACGG		360

CAAAACCATC	GGAGTCGCCC	AAGGTTCTAT	CACCCAACGC	CTGATTACTG	AACTGGGTAA	420
AAAGAAAGGT	CTGAAGTTTA	AATTCGTCGA	ACTTGGTTCC	TACCCAGAAT	TGATTACTTC	480
CCTGCACGCT	CATCGTATCG	ATACCTTTTC	CGTTGACCGC	TCTATTCTAT	CTGGCTACAC	540
TAGTAAACGG	ACAGCACTAC	TAGATGATAG	TTTCAAGCCA	TCTGACTACG	GTATTGTTAC	600
CAAGAAATCA.	AATACAGAGC	TCAACGACTA	TCTTGATAAC	TTGGTTACTA	AATGGAGCAA	660
GGATGGTAGT	TTGCAGAAAC	TTTATGACCG	TTACAAGCTC	AAACCATCTA	GCCATACTGC	720
AGAT						724

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Gln Ala Asp Thr Ser Ile Ala Asp Ile Gln Lys Arg Gly Glu Leu Val

Val Gly Val Lys Gln Asp Val Pro Asn Phe Gly Tyr Xaa Asp Pro Lys

30 Pro Lys

Thr Gly Thr Tyr Ser Gly Ile Glu Thr Asp Leu Ala Lys Met Val Ala

Asp Glu Leu Lys Val Lys Ile Arg Tyr Val Pro Val Thr Ala Gln Thr

Arg Gly Pro Leu Leu Asp Asn Glu Gln Val Asp Met Asp Ile Ala Thr

65 Phe Thr Ile Thr Asp Glu Arg Lys Lys Leu Tyr Asn Phe Thr Ser Pro

90 Tyr Tyr Thr Asp Ala Ser Gly Phe Leu Val Asn Lys Ser Ala Lys Ile

Lys Lys Ile Glu Asp Leu Asn Gly Lys Thr Ile Gly Val Ala Gln Gly

Ser Ile Thr Gln Arg Leu Ile Thr Glu Leu Gly Lys Lys Gly Leu 130 135 140

Lys Phe Lys Phe Val Glu Leu Gly Ser Tyr Pro Glu Leu Ile Thr Ser 145 150 155 160

Leu His Ala His Arg Ile Asp Thr Phe Ser Val Asp Arg Ser Ile Leu 165 170 175

Ser Gly Tyr Thr Ser Lys Arg Thr Ala Leu Leu Asp Asp Ser Phe Lys 180 185 190

Pro Ser Asp Tyr Gly Ile Val Thr Lys Lys Ser Asn Thr Glu Leu Asn

205 200 195

Asp Tyr Leu Asp Asn Leu Val Thr Lys Trp Ser Lys Asp Gly Ser Leu 210 Gln Lys Leu Tyr Asp Arg Tyr Lys Leu Lys Pro Ser Ser His Thr Ala 240 235

Asp

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

230

•	-					
GTCTGTATCA	TTTGAAAACA	AAGAAACAAA	CCGTGGTGTC	TTgACTTTCA	CTATCTCTCA	60
AGACCAAATC	AAACCAGAAT	TGGACCGTGT	CTTCAAGtCA	GTGAAGAAAT	CTCTTAATGT	120
TCCAGGTTTC	CGTAAAGGTC	ACCTTCCACG	CCCTATCTTC	GACCAAAAAT	TTGGTGAAGA	180
AGCTCTTTAT	CAAGATGCAA	TGAACGCACT	TTTGCCAAAC	GCTTATGAAG	CAGCTGTAAA	240
AGAAGCTGGT	CTTGAAGTGG	TTGCCCAACC	AAAAATTGAC	GTAACTTCAA	TGGAAAAAGG	300
TCAAGACTGG	GTTATCACTG	CTGAAGTCGT	TACAAAACCT	GAAGTAAAAT	TGGGTGACTA	360
CAAAAACCTT	GAAGTATCAG	TTGATGTAGA	AAAAGAAGTA	ACTGACGCTG	ATGTCGAAGA	420
GCGTATCGAA	CGCGAACGCA	ACAACCTGGC	TGAATTGGTT	ATCAAGGAAG	CTGCTGCTGA	480
AAACGGCGAC	ACTGTTGTGA	TCGACTTCGT	TGGTTCTATC	GACGGTGTTG	AATTTGACGG	540.
TGGAAAAGGT	GAAAACTTCT	CACTTGGACT	TGGTTCAGGT	CAATTCATCC	CTGGTTTCGA	600
AGACCAATTG	GTAGGTCACT	CAGCTGGCGA	AACCGTTGAT	GTTATCGTAA	CATTCCCAGA	660
AGACTACCAA	GCAGAAGACC	TTGCAGGTAA	AGAAGCTAAA	TTCGTGACAA	CTATCCACGA	720
AGTAAAAGCT	AAAGAAGTTC	CGGCTCTTGA	CGATGAACTT	GCAAAAGACA	TTGATGAAGA	780
AGTTGAAACA	CTTGCTGACT	TGAAAGAAAA	ATACAGCAAA	GAATTGGCTG	CTGCTAAAGA	840
AGAAGCTTAC	AAAGATGCAG	TTGAAGGTGC	AGCAATTGAT	ACAGCTGTAG	AAAATGCTGA	900
AATCGTAGAA	CTTCCAGAAG	AAATGATCCA	TGAAGAAGTT	CACCGTTCAG	TAAATGAATT	960
CCTTGGGAAT	TTGCAACGTC	AAGGGATCAA	CCCTGACATG	TACTTCCAAA	TCACTGGAAC	1020
TACTCAAGAA	GACCTTCACA	ACCAATACCA	AGCAGAAGCT	GAGTCACGTA	CTAAGACTAA	1080
CCTTGTTATC	GAAGCAGTTG	CCAAAGCTGA	AGGATTTGAT	GCTTCAGAAG	AAGAAATCCA	1140
AAAAGAAGTT	GAGCAATTGG	CAGCAGACTA	CAACATGGAA	GTTGCACAAG	TTCAAAACTT	1200
GCTTTCAGCT	GACATGTTGA	AACATĞATAT	CACTATCAAA	AAAGCTGTTG	AATTGATCAC	1260

1279 AAGCACAGCA ACAGTAAAA

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Ser Val Ser Phe Glu Asn Lys Glu Thr Asn Arg Gly Val Leu Thr Phe

Thr Ile Ser Gln Asp Gln Ile Lys Pro Glu Leu Asp Arg Val Phe Lys 20 25 30

Ser Val Lys Lys Ser Leu Asn Val Pro Gly Phe Arg Lys Gly His Leu 35 40 45

Pro Arg Pro Ile Phe Asp Gln Lys Phe Gly Glu Glu Ala Leu Tyr Gln 50 60

Asp Ala Met Asn Ala Leu Leu Pro Asn Ala Tyr Glu Ala Ala Val Lys

Glu Ala Gly Leu Glu Val Val Ala Gln Pro Lys Ile Asp Val Thr Ser

Met Glu Lys Gly Gln Asp Trp Val Ile Thr Ala Glu Val Val Thr Lys 100 105 110

Pro Glu Val Lys Leu Gly Asp Tyr Lys Asn Leu Glu Val Ser Val Asp

Val Glu Lys Glu Val Thr Asp Ala Asp Val Glu Glu Arg Ile Glu Arg 135

Glu Arg Asn Asn Leu Ala Glu Leu Val Ile Lys Glu Ala Ala Glu

Asn Gly Asp Thr Val Val Ile Asp Phe Val Gly Ser Ile Asp Gly Val 165 170 175

Glu Phe Asp Gly Gly Lys Gly Glu Asn Phe Ser Leu Gly Leu Gly Ser

Gly Gln Phe Ile Pro Gly Phe Glu Asp Gln Leu Val Gly His Ser Ala 200

Gly Glu Thr Val Asp Val Ile Val Thr Phe Pro Glu Asp Tyr Gln Ala

Glu Asp Leu Ala Gly Lys Glu Ala Lys Phe Val Thr Thr Ile His Glu 225 230 235 240

Val Lys Ala Lys Glu Val Pro Ala Leu Asp Asp Glu Leu Ala Lys Asp

Ile	Asp	Glu	Glu 260	Val	Glu	Thr	Leu	Ala 265	Asp	Leu	Lys	Glu	Lys 270	Tyr	Ser
Lys	Glu	Leu 275	Ala	Ala	Ala	Lys	Glu 280	Glu	Ala	Tyr	Lys	Asp 285	Ala	Val	Glu
Gly	Ala 290	Ala	Ile	Asp	Thr	Ala 295	Val	Glu	Asn	Ala	Glu 300	Ile	Val	Glu	Leu
Pro 305	Glu	Glu	Met	Ile	His 310	Glu	Glu	Val	His	Arg 315	Ser	Val	Asn	Glu	Phe 320
Leu	Gly	Asn	Leu	Gln 325	Arg	Gln	Gly	Ile	Asn 330	Pro	Asp	Met	Tyr	Phe 335	Gln
Ile	Thr	Gly	Thr 340	Thr	Gln	Glu	Asp	Leu 345	His	Asn	Gln	Tyr	Gln 350	Ala	Glu
Ala	Glu	Ser 355	Arg	Thr	Lys	Thr	Asn 360	Leu	Val	Ile	Glu	Ala 365	Val	Ala	Lys
Ala	Glu 370	Gly	Phe	Asp	Ala	Ser 375	Glu	Glu	Glu	Ile	Gln 380	Lys	Glu	Val	Glu
Gln 385	Leu	Ala	Ala	Asp	Tyr 390	Asn	Met	Glu	Val	Ala 395	Gln	Val	Gln	Asn	Leu 400
Leu	Ser	Ala	Asp	Met 405	Leu	Lys	His	Asp	Ile 410	Thr	Ile	Lys	Lys	Ala 415	Val
Glu	Leu	Ile	Thr 420	Ser	Thr	Ala	Thr	Val 425	Lys						

(2) INFORMATION FOR SEQ ID NO: 49:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 490 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

•						
TGGTCAAAA	g gaaagtcaga	CAGGAAAGGG	GATGAAAATT	GTGACCAGTT	TTTATCCTAT	60
CTACGCTAT	G GTTAAGGAAG	TATCTGGTGA	CTTGAATGAT	GTTCGGATGA	TTCAGTCAAG	. 120
TAGTGGTAT	T CACTCCTTTG	AACCTTCGGC	AAATGATATC	GCAGCCATCT	ATGATGCAGA	180
TGTCTTTGT	T TACCATTCTC	ATACACTCGA	ATCTTGGGCA	GGAAGTCTGG	ATCCAAATCT	240
AAAAAAATC	C AAAGTGAAGG	TCTTAGAGGC	TTCTGAGGGA	ATGACCTTGG	AACGTGTCCC	300
TGGACTAGA	G GATGTGGAAG	CAGGGGATGG	AGTTGATGAA	AAAACGCTCT	ATGACCCTCA	360
CACATGGCT	A GATCCTGAAA	AAGCTGGAGA	AGAAGCCCAA	ATTATCGCTG	ATAAACTTTC	420
AGAGGTGGA	T AGTGAGCATA	AAGAGACTTA	TCAAAAAAAT	GCGCAACCTT	TATCAAAAAA	480
GCTCAGGAA	т					490

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

(1)	(B) (C)	(A) LENGTH: 163 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
(ii)	MOLE	CULE	TYP	E: p	rote	ein										
(xi)	SEQU	JÉNCE	E DES	CRII	4OIT9	1: SE	EQ II	NO:	50:							
Gly 1	Gln	Lys	Glu	Ser 5	Gln	Thr	Gly	Lys	Gly 10	Met	Lys	Ile	Val	Thr 15	Ser	
Phe	Tyr	Pro	Ile 20	Tyr	Ala	Met	Val	Lys 25	Glu	Val	Ser	Gly	Asp 30	Leu	Asn	
Asp	Val	Arg 35	Met	Ile	Gln	Ser	Ser 40	Ser	Gly	Ile	His	Ser 45	Phe	Glu	Pro	
Ser	Ala 50	Asn	Asp	Ile	Ala	Ala 55	Ile	Tyr	Asp	Ala	Asp 60	Val	Phe	Val	Tyr	
His 65	Ser	His	Thr	Leu	Glu 70	Ser	Trp	Ala	Gly	Ser 75	Leu	Asp	Pro	Asn	Leu 80	
Lys	Lys	Ser	Lys	Val 85	Lys	Val	Leu	Glu	Ala 90	Ser	Glu	Gly	Met	Thr 95	Leu	
Glu	Arg	Val	Pro 100	Gly	Leu	Glu	Asp	Val 105	Glu	Ala	Gly	Asp	Gly 110	Val	Asp	
Glu	Lys	Thr 115	Leu	Tyr	Asp	Pro	His 120	Thr	Trp	Leu	Asp	Pro 125	Glu	Lys	Ala	
Gly	Glu 130	Glu	Ala	Gln	Ile	Ile 135	Ala	Asp	Lys	Leu	Ser 140	Glu	Val	Asp	Ser	
Glu 145	His	Lys	Glu	Thr	Tyr 150	Gln	Lys	Asn	Ala	Gln 155	Pro	Leu	Ser	Lys	Lys 160	
Leu	Arg	Asn														
INFO	RMAT	ION	FOR	SEQ	ID N	0: 5	1:									
(i)	(A	and the second of the second o														

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

GAAGGATAGA TATATTTAG CATTTGAGAC ATCCTGTGAT GAGACCAGTG TCGCCGTCTT 60

GAAAAAACGAC GATGAGCTCT TGTCCAATGT CATTGCTAGT CAAATTGAGA GTCACAAACG 120

TTTTGGTGGC GTAGTGCCCG AAGTAGCCAG TCGTCACCAT GTCGAGGTCA TTACAGCCTG 180

TATCGAGGAG GCATTGGCAG AAGCAGGGAT TACCGAAGAG GACGTGACAG CTGTTGCGGT 240

1

(2)

TACCTACGGA	CCAGGCTTGG	TCGGAGCCTT	GCTAGTTGGT	TTGTCAGCTG	CCAAGGCCTT	300
TGCTTGGGCT	CACGGACTTC	CACTGATTCC	TGTTAATCAC	ATGGCTGGGC	ACCTCATGGC	360
AGCTCAGAGT	GTGGAGCCTT	TGGAGTTTCC	CTTGCTAGCC	CTCTTGGTCA	GCGGCGGACA	420
CACAGAGTTG	GTTTATGTTT	CGGAGGCAGG	AGATTATAAG	ATTGTTGGGG	AAACCCGTGA	480
TGATGCGGTT	GGTGAGGCTT	ATGATAAGGT	CGGCCGTGTC	ATGGGCTTGA	CCTATCCTGC	540
AGGTCGTGAG	ATTGACGAGC	TGGCTCATCA	GGGGCAGGAT	ATTTATGATT	TCCCCCGTGC	600
CATGATTAAG	GAAGATAATC	TGGAGTTCTC	CTTCTCAGGT	TTGAAATCTG	CCTTTATCAA	660
TCTTCATCAC	AATGCCGAGC	AAAAGGGAGA	AAGCCTGTCT	ACAGAAGATT	TGTGTGCTTC	720
CTTCCAAGCA	GCAGTTATGG	ACATTCTCAT	GGCAAAAACC	AAGAAGGCTT	TGGAGAAATA	780
TCCTGTTAAA	ATCCTAGTTG	TGGCAGGTGG	TGTGGCAGCC	AATAAAGGTC	TCAGAGAACG	840
CCTAGCAGCC	GAAATCACAG	ATGTCAAGGT	TATCATCCCC	CCTCTGCGAC	TCTGCGGAGA	900
CAATGCAGGT	ATGATTGCCT	ATGCCAGCGT	CAGCNAGTGG	AACAAAGAAA	ACTTCGCAGG	960
CTGGGACCTC	AATGCCAAAC	CAAGTCTTGC	CTTTGATACC	ATGGAA		1006

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
- Lys Asp Arg Tyr Ile Leu Ala Phe Glu Thr Ser Cys Asp Glu Thr Ser
- Val Ala Val Leu Lys Asn Asp Asp Glu Leu Leu Ser Asn Val Ile Ala 20 25 30
- Ser Gln Ile Glu Ser His Lys Arg Phe Gly Gly Val Val Pro Glu Val 40 45
- Ala Ser Arg His His Val Glu Val Ile Thr Ala Cys Ile Glu Glu Ala 50 60
- Leu Ala Glu Ala Gly Ile Thr Glu Glu Asp Val Thr Ala Val Ala Val 65 70 75 80
- Thr Tyr Gly Pro Gly Leu Val Gly Ala Leu Leu Val Gly Leu Ser Ala 85 90 95
- Ala Lys Ala Phe Ala Trp Ala His Gly Leu Pro Leu Ile Pro Val Asn 100 105 110
- His Met Ala Gly His Leu Met Ala Ala Gln Ser Val Glu Pro Leu Glu 115 120 125

Phe	Pro 130	Leu	Leu	Ala	Leu	Leu 135	Val	Ser	Gly	Gly	His 140	Thr	Glu	Leu	Val
Tyr 145	Val	Ser	Glu	Ala	Gly 150	Asp	Tyr	Lys	Ile	Val 155	Gly	Glu	Thr	Arg	Asp 160
Asp	Ala	Val	Gly	Glu 165	Ala	Tyr	Asp	Lys	Val 170	Gly	Arg	Val	Met	Gly 175	Leu
Thr	Tyr	Pro	Ala 180	Gly	Arg	Glu	Ile	Asp 185	Glu	Leu	Ala	His	Gln 190	Gly	Gln
Asp	Ile	Tyr 195	Asp	Phe	Pro	Arg	Ala 200	Met	Ile	Lys	Glu	Asp 205	Asn	Leu	Glu
Phe	Ser 210	Phe	Ser	Gly	Leu	Lys 215	Ser	Ala	Phe	Ile	Asn 220	Leu	His	His	Asn
Ala 225	Glu	Gln	Lys	Gly	Glu 230	Ser	Leu	Ser	Thr	Glu 235	Asp	Leu	Cys	Ala	Ser 240
Phe	Gln	Ala	Ala	Val 245	Met	Asp	Ile	Leu	Met 250	Ala	Lys	Thr	Lys	Lys 255	Ala
Leu	Glu	Lys	Tyr 260	Pro	Val	Lys	Ile	Leu 265	Val	Val	Ala	Gly	Gly 270	Val	Ala
Ala	Asn	Lys 275	Gly	Leu	Arg	Glu	Arg 280	Leu	Ala	Ala	Glu	Ile 285	Thr	Asp	Val
Lys	Val 290	Ile	Ile	Pro	Pro	Leu 295	Arg	Leu	Cys	Gly	Asp 300	Asn	Ala	Gly	Met
Ile 305	Ala	Tyr	Ala	Ser	Val 310	Ser	Xaa	Trp	Asn	Lys 315	Glu	Asn	Phe	Ala	Gly 320
Trp	Asp	Leu	Asn	Ala 325	Lys	Pro	Ser	Leu	Ala 330	Phe	Asp	Thr	Met	Glu 335	

(2) INFORMATION FOR SEQ ID NO: 53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1000 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

GGTAGTTAAA	GTTGGTATTA	ACGGTTTCGG	ACGTATCGGT	CGTCTTGCTT	TCCGTCGTAT	60
CCAAAACGTA	GAAGGTGTTG	AAGTTACACG	CATCAACGAC	CTTACAGATC	CAGTTATGCT	120
TGCACACTTG	TTGAAATACG	ACACAACTCA	AGGTCGTTTC	GACGGTACTG	TTGAAGTTAA	180
AGAAGGTGGA	TTTGAAGTTA	ACGGTAAATT	CATCAAAGTT	TCTGCTGAAC	GTGATCCAGA	240
ACAAATCGAC	TGGGCTACTG	ACGGTGTAGA	AATCGTTCTT	GAAGCTACTG	GTTTCTTTGC	300
TAAGAAAGAA	GCAGCTGAAA	AACACCTTAA	AGGTGGAGCT	AAAAAAGTTG	TTATCACTGC	360
TCCTGGTGGA	AACGACGTTA	AAACAGTTGT	ATTCAACACT	AACCACGACG	TTCTTGACGG	420

TACTGAAACA	GTTATCTCAG	GTGCTTCATG	TACTACAAAC	TGCTTGGCTC	CAATGGCTAA	480
AGCTCTTCAA	GACAACTTTG	GTGTTGTTGA	AGGATTGATG	ACTACTATCC	ACGCTTACAC	540
TGGTGACCAA	ATGATCCTTG	ACGGACCACA	CCGTGGTGGT	GACCTTCGCC	GTGCTCGCGC	600
TGGTGCTGCA	AACATCGTTC	CTAACTCAAC	TGGTGCTGCA	AAAGCTATCG	GTCTTGTAAT	660
CCCAGAATTG	AATGGTAAAC	TTGACGGATC	TGCACAACGC	GTTCCAACTC	CAACTGGATC	720
AGTTACTGAA	TTGGTAGCAG	TTCTTGAAAA	GAACGTTACT	GTTGATGAAG	TGAACGCAGC	780
TATGAAAGCA	GCTTCAAACG	AATCATACGG	TTACACAGAA	GATCCAATCG	TATCTTCAGA	840
TATCGTAGGT	ATGTCTTACG	GTTCATTGTT	TGACGCAACT	CAAACTAAAG	TTCTTGACGT	900
TGACGGTAAA	CAATTGGTTA	AAGTTGTATC	ATGGTACGAC	AACGAAATGT	CATACACTGC	960
ACAACTTGTT	CGTACTCTTG	GAATACTTCG	CAAAAATTGC		•	1000

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- Val Val Lys Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Leu Ala 1 10 15
- Phe Arg Arg Ile Gln Asn Val Glu Gly Val Glu Val Thr Arg Ile Asn 20 25 30
- Asp Leu Thr Asp Pro Val Met Leu Ala His Leu Leu Lys Tyr Asp Thr 35 40 45
- Thr Gln Gly Arg Phe Asp Gly Thr Val Glu Val Lys Glu Gly Gly Phe 50 60
- Glu Val Asn Gly Lys Phe Ile Lys Val Ser Ala Glu Arg Asp Pro Glu 65 70 75 80
- Gln Ile Asp Trp Ala Thr Asp Gly Val Glu Ile Val Leu Glu Ala Thr 85 90 95
- Gly Phe Phe Ala Lys Lys Glu Ala Ala Glu Lys His Leu Lys Gly Gly 100 105 110
- Ala Lys Lys Val Val Ile Thr Ala Pro Gly Gly Asn Asp Val Lys Thr 115 120 125
- Val Val Phe Asn Thr Asn His Asp Val Leu Asp Gly Thr Glu Thr Val 130 135 140
- Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Met Ala Lys 145 150 155 160

Ala	Leu	Gln	Asp	Asn 165	Phe	Gly	Val	Val	Glu 170	Gly	Leu	Met	Thr	Thr 175	Ile
His	Ala	Tyr	Thr 180	Gly	Asp	Gln	Met	Ile 185	Leu	Asp	Gly	Pro	His 190	Arg	Gly
Gly	Asp	Leu 195	Arg	Arg	Ala	Arg	Ala 200	Gly	Ala	Ala	Asn	Ile 205	Val	Pro	Asn
Ser	Thr 210		Ala	Ala	Lys	Ala 215	Ile	Gly	Leu	Val	Ile 220	Pro	Glu	Leu	Asn
Gly 225	Lys	Leu	Asp	Gly	Ser 230	Ala	Gln	Arg	Val	Pro 235	Thr	Pro	Thr	Gly	Ser 240
Val	Thr	Glu	Leu	Val 245	Ala	Val	Leu	Glu	Lys 250	Asn	Val	Thr	Val	Asp 255	Glu
Val	Asn	Ala	Ala 260	Met	Lys	Ala	Ala	Ser 265	Asn	Glu	Ser	Tyr	Gly 270	Tyr	Thr
Glu	Asp	Pro 275	Ile	Val	Ser	Ser	Asp 280	Ile	Val	Gly	Met	Ser 285	Tyr	Gly	Ser
Leu	Phe 290	Asp	Ala	Thr	Gln	Thr 295	Lys	Val	Leu	Asp	Val 300	Asp	Gly	Lys	Gln
Leu 305	Val	Lys	Val	Val	Ser 310	Trp	Tyr	Asp	Asn	Glu 315	Met	Ser	Tyr	Thr	Ala 320
Gln	Leu	Val	Arg	Thr 325	Leu	Gly	Ile	Leu	Arg 330	Lys	Asn	Cys			

(2) INFORMATION FOR SEQ ID NO: 55:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2389 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

TTGGGACTGT	ATCAAGCTAG	AACGGTTAAG	GAAAATAATC	GTGTTTCCTA	60
AAACAAGCGA	CGCAAAAAAC	GGAGAATTTG	ACTCCTGATG	AGGTTAGCAA	120
ATCAATGCTG	AGCAAATCGT	CATCAAGATA	ACAGACCAAG	GCTATGTCAC	180
GACCACTATC	ATTATTACAA	TGGTAAGGTT	CCTTATGACG	CTATCATCAG	240
CTCATGAAAG	ATCCAAACTA	TAAGCTAAAA	GATGAGGATA	TTGTTAATGA	300
GGATATGTTA	TCAAGGTAGA	TGGAAAATAC	TATGTTTACC	TTAAGGATGC	360
GATAACGTCC	GTACAAAAGA	GGAAATCAAT	CGACAAAAAC	AAGAGCATAG	420
GAAGGTGGAA	CTCCAAGAAA	CGATGGTGCT	GTTGCCTTGG	CACGTTCGCA	480
ACTACAGATG	ATGGTTATAT	CTTTAATGCT	TCTGATATCA	TAGAGGATAC	540
TATATCGTTC	CTCATGGAGA	TCATTACCAT	TACATTCCTA	AGAATGAGTT	600
GAGTTGGCTG	CTGCAGAAGC	CTTCCTATCT	GGTCGAGGAA	ATCTGTCAAA	660
	AAACAAGCGA ATCAATGCTG GACCACTATC CTCATGAAAG GGATATGTTA GATAACGTCC GAAGGTGGAA ACTACAGATG TATATCGTTC	AAACAAGCGA CGCAAAAAAC ATCAATGCTG AGCAAATCGT GACCACTATC ATTATTACAA CTCATGAAAG ATCCAAACTA GGATATGTTA TCAAGGTAGA GATAACGTCC GTACAAAAGA GAAGGTGGAA CTCCAAGAAA ACTACAGATG ATGGTTATAT TATATCGTTC CTCATGGAGA	AAACAAGCGA CGCAAAAAAC GGAGAATTTG ATCAATGCTG AGCAAATCGT CATCAAGATA GACCACTATC ATTATTACAA TGGTAAGGTT CTCATGAAAG ATCCAAACTA TAAGCTAAAA GGATATGTTA TCAAGGTAGA TGGAAAATAC GATAACGTCC GTACAAAAGA GGAAAATCAAT GAAGGTGGAA CTCCAAGAAA CGATGGTGCT ACTACAGATG ATGGTTATAT CTTTAATGCT TATATCGTTC CTCATGGAGA TCATTACCAT	AAACAAGCGA CGCAAAAAAC GGAGAATTTG ACTCCTGATG ATCAATGCTG AGCAAAATCGT CATCAAGATA ACAGACCAAG GACCACTATC ATTATTACAA TGGTAAGGTT CCTTATGACG CTCATGAAAG ATCCAAACTA TAAGCTAAAA GATGAGGATA GGATATGTTA TCAAGGTAGA TGGAAAATAC TATGTTTACC GATAACGTCC GTACAAAAGA GGAAATCAAT CGACAAAAAAC GAAGGTGGAA CTCCAAGAAA CGATGGTGCT GTTGCCTTGG ACTACAGATG ATGGTTATAT CTTTAATGCT TCTGATATCA TATATCGTTC CTCATGGAGA TCATTACCAT TACATTCCTA	TTGGGACTGTATCAAGCTAGAACGGTTAAGGAAAATAATCGTGTTCCTAAAAACAAGCGACGCAAAAAACGGAGAATTGACTCCTGATGAGGTTAGCAAATCAATGCTGAGCAAATCGTCATCAAGATAACAGACCAAGGCTATCACAGGACCACTATCATTATTACAATGGTAAGGTTCCTTATGACGCTATCATCAGCTCATGAAAGATCCAAAACTATAAGCTAAAAGATGAGGATATTGTTAATGAGGATAACGTCCGTACAAAAGAGGAAAATACTATGTTTACCTTAAGGATGCGAAGGTGGAACTCCAAGAAACGATGGTGCTGTTGCCTTGGCACGTTCGCAACTACAGATGATGGTTATATCTTTAATGCTTCTGATATCAAGAATGAGTTTATATCGTTCCTCCAGGAAGCTTCCTATCTGGTCGAGGAATCTGCAAAA

TTCAAGAACC	TATCGCCGAC	AAAATAGCGA	TAACACTTCA	AGAACAAACT	GGGTACCTTC	720
TGTAAGCAAT	CCAGGAACTA	CAAATACTAA	CACAAGCAAC	AACAGCAACA	CTAACAGTCA	780
AGCAAGTCAA	AGTAATGACA	TTGATAGTCT	CTTGAAACAG	CTCTACAAAC	TGCCTTTGAG	840
TCAACGACAT	GTAGAATCTG	ATGGCCTTGT	CTTTGATCCA	GCACAAATCA	CAAGTCGAAC	900
AGCTAGAGGT	GTTGCAGTGC	CACACGGAGA	TCATTACCAC	TTCATCCCTT	ACTCTCAAAT	960
GTCTGAATTG	GAAGAACGAA	TCGCTCGTAT	TATTCCCCTT	CGTTATCGTT	CAAACCATTG	1020
GGTACCAGAT	TCAAGGCCAG	AACAACCAAG	TCCACAACCG	ACTCCGGAAC	CTAGTCCAGG	1080
CCCGCAACCT	GCACCAAATC	TTAAAATAGA	CTCAAATTCT	TCTTTGGTTA	GTCAGCTGGT	1140
ACGAAAAGTT	GGGGAAGGAT	ATGTATTCGA	AGAAAAGGGC	ATCTCTCGTT	ATGTCTTTGC	1200
GAAAGATTTA	CCATCTGAAA	CTGTTAAAAA	TCTTGAAAGC	AAGTTATCAA	AACAAGAGAG	1260
TGTTTCACAC	ACTTTAACTG	CTAAAAAAGA	AAATGTTGCT	CCTCGTGACC	AAGAATTTTA	1320
TGATAAAGCA	TATAATCTGT	TAACTGAGGC	TCATAAAGCC	TTGTTTGNAA	ATAAGGGTCG	1380
TAATTCTGAT	TTCCAAGCCT	TAGACAAATT	ATTAGAACGC	TTGAATGATG	AATCGACTAA	1440
TAAAGAAAAA	TTGGTAGATG	ATTTATTGGC	ATTCCTAGCA	CCAATTACCC	ATCCAGAGCG	1500
ACTTGGCAAA	CCAAATTCTC	AAATTGAGTA	TACTGAAGAC	GAAGTTCGTA	TTGCTCAATT	1560
AGCTGATAAG	TATACAACGT	CAGATGGTTA	CATTTTTGAT	GAACATGATA	TAATCAGTGA	1620
TGAAGGAGAT	GCATATGTAA	CGCCTCATAT	GGGCCATAGT	CACTGGATTG	GAAAAGATAG	1680
CCTTTCTGAT	AAGGAAAAAG	TTGCAGCTCA	AGCCTATACT	AAAGAAAAAG	GTATCCTACC	1740
TCCATCTCCA	GACGCAGATG	TTAAAGCAAA	TCCAACTGGA	GATAGTGCAG	CAGCTATTTA	1800
CAATCGTGTG	AAAGGGGAAA	AACGAATTCC	ACTCGTTCGA	CTTCCATATA	TGGTTGAGCA	1860
TACAGTTGAG	GTTAAAAACG	GTAATTTGAT	TATTCCTCAT	AAGGATCATT	ACCATAATAT	1920
TAAATTTGCT	TGGTTTGATG	ATCACACATA	CAAAGCTCCA	AATGGCTATA	CCTTGGAAGA	1980
TTTGTTTGCG	ACGATTAAGT	ACTACGTAGA	ACACCCTGAC	GAACGTCCAC	ATTCTAATGA	2040
TGGATGGGGC	AATGCCAGTG	AGCATGTGTT	AGGCAAGAAA	GACCACAGTG	AAGATCCAAA	2100
TAAGAACTTC	AAAGCGGATG	AAGAGCCAGT	AGAGGAAACA	CCTGCTGAGC	CAGAAGTCCC	2160
TCAAGTAGAG	ACTGAAAAAG	TAGAAGCCCA	ACTCAAAGAA	GCAGAAGTTT	TGCTTGCGAA	2220
AGTAACGGAT	TCTAGTCTGA	AAGCCAATGC	AACAGAAACT	CTAGCTGGTT	TACGAAATAA	2280
TTTGACTCTT	CAAATTATGG	ATAACAATAG	TATCATGGCA	GAAGCAGAAA	AATTACTTGC	2340
GTTGTTAAAA	GGAAGTAATC	CTTCATCTGT	AAGTAAGGAA	AAAATAAAC		2389

(2) INFORMATION FOR SEQ ID NO:56:

⁽i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 796 amino acids(B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
- Ser Tyr Glu Leu Gly Leu Tyr Gln Ala Arg Thr Val Lys Glu Asn Asn 1 10 15
- Arg Val Ser Tyr Ile Asp Gly Lys Gln Ala Thr Gln Lys Thr Glu Asn 20 25 30
- Leu Thr Pro Asp Glu Val Ser Lys Arg Glu Gly Ile Asn Ala Glu Gln 35 40 45
- Ile Val Ile Lys Ile Thr Asp Gln Gly Tyr Val Thr Ser His Gly Asp 50 60
- His Tyr His Tyr Tyr Asn Gly Lys Val Pro Tyr Asp Ala Ile Ile Ser 65 70 75 80
- Glu Glu Leu Leu Met Lys Asp Pro Asn Tyr Lys Leu Lys Asp Glu Asp 85 90 95
- Ile Val Asn Glu Val Lys Gly Gly Tyr Val Ile Lys Val Asp Gly Lys
- Tyr Tyr Val Tyr Leu Lys Asp Ala Ala His Ala Asp Asn Val Arg Thr 115 120 125
- Lys Glu Glu Ile Asn Arg Gln Lys Gln Glu His Ser Gln His Arg Glu
 130 135 140
- Gly Gly Thr Pro Arg Asn Asp Gly Ala Val Ala Leu Ala Arg Ser Gln
 145 150 155 160
- Gly Arg Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Asn Ala Ser Asp Ile 165 170 175
- Ile Glu Asp Thr Gly Asp Ala Tyr Ile Val Pro His Gly Asp His Tyr 180 185 190
- His Tyr Ile Pro Lys Asn Glu Leu Ser Ala Ser Glu Leu Ala Ala 195 200 205
- Glu Ala Phe Leu Ser Gly Arg Gly Asn Leu Ser Asn Ser Arg Thr Tyr 210 215 220
- Arg Arg Gln Asn Ser Asp Asn Thr Ser Arg Thr Asn Trp Val Pro Ser 225 230 235 240
- Val Ser Asn Pro Gly Thr Thr Asn Thr Asn Thr Ser Asn Asn Ser Asn 245 250 255
- Thr Asn Ser Gln Ala Ser Gln Ser Asn Asp Ile Asp Ser Leu Leu Lys 260 265 270
- Gln Leu Tyr Lys Leu Pro Leu Ser Gln Arg His Val Glu Ser Asp Gly 275 280 285
- Leu Val Phe Asp Pro Ala Gln Ile Thr Ser Arg Thr Ala Arg Gly Val

Ala Val Pro His Gly Asp His Tyr His Phe Ile Pro Tyr Ser Gln Met Ser Glu Leu Glu Glu Arg Ile Ala Arg Ile Ile Pro Leu Arg Tyr Arg 330 Ser Asn His Trp Val Pro Asp Ser Arg Pro Glu Gln Pro Ser Pro Gln Pro Thr Pro Glu Pro Ser Pro Gly Pro Gln Pro Ala Pro Asn Leu Lys Ile Asp Ser Asn Ser Ser Leu Val Ser Gln Leu Val Arg Lys Val Gly Glu Gly Tyr Val Phe Glu Glu Lys Gly Ile Ser Arg Tyr Val Phe Ala Lys Asp Leu Pro Ser Glu Thr Val Lys Asn Leu Glu Ser Lys Leu Ser 410 405 Lys Gln Glu Ser Val Ser His Thr Leu Thr Ala Lys Lys Glu Asn Val Ala Pro Arg Asp Gln Glu Phe Tyr Asp Lys Ala Tyr Asn Leu Leu Thr Glu Ala His Lys Ala Leu Phe Xaa Asn Lys Gly Arg Asn Ser Asp Phe 455 Gln Ala Leu Asp Lys Leu Leu Glu Arg Leu Asn Asp Glu Ser Thr Asn Lys Glu Lys Leu Val Asp Asp Leu Leu Ala Phe Leu Ala Pro Ile Thr His Pro Glu Arg Leu Gly Lys Pro Asn Ser Gln Ile Glu Tyr Thr Glu 505 Asp Glu Val Arg Ile Ala Gln Leu Ala Asp Lys Tyr Thr Thr Ser Asp Gly Tyr Ile Phe Asp Glu His Asp Ile Ile Ser Asp Glu Gly Asp Ala Tyr Val Thr Pro His Met Gly His Ser His Trp Ile Gly Lys Asp Ser Leu Ser Asp Lys Glu Lys Val Ala Ala Gln Ala Tyr Thr Lys Glu Lys Gly Ile Leu Pro Pro Ser Pro Asp Ala Asp Val Lys Ala Asn Pro Thr 585 Gly Asp Ser Ala Ala Ala Ile Tyr Asn Arg Val Lys Gly Glu Lys Arg 600 Ile Pro Leu Val Arg Leu Pro Tyr Met Val Glu His Thr Val Glu Val Lys Asn Gly Asn Leu Ile Ile Pro His Lys Asp His Tyr His Asn Ile 630

Lys	Phe	Ala	Trp	Phe 645	Asp	Asp	His	Thr	Tyr 650	Lys	Ala	Pro	Asn	Gly 655	Tyr
Thr	Leu	Glu	Asp 660	Leu	Phe	Ala	Thr	Ile 665	Lys	Tyr	Tyr	Val	Glu 670	His	Pro
Asp	Glu	Arg 675	Pro	His	Ser	Asn	Asp 680	Gly	Trp	Gly	Asn	Ala 685	Ser	Glu	His
Val	Leu 690	Gly	Lys	Lys	Asp	His 695	Ser	Glu	Asp	Pro	Asn 700	Lys	Asn	Phe	Lys
Ala 705	Asp	Glu	Ġĺu	Pro	Val 710	Glu	Glu	Thr	Pro	Ala 715	Glu	Pro	Glu	Val	Pro 720
Gln	Val	Glu	Thr	Glu 725	Lys	Val	Glu	Ala	Gln 730	Leu	Lys	Glu	Ala	Glu 735	Val
Leu	Leu	Ala	Lys 740	Val	Thr	Asp	Ser	Ser 745	Leu	Lys	Ala	Asn	Ala 750	Thr	Glu
Thr	Leu	Ala 755	Gly	Leu	Arg	Asn	Asn 760	Leu	Thr	Leu	Gln	Ile 765	Met	Asp	Asn
Asn	Ser 770	Ile	Met	Ala	Glu	Ala 775		Lys	Leu	Leu	Ala 780	Leu	Leu	Lys	Gly
Ser 785	Asn	Pro	Ser	Ser	Val 790	Ser	Lys	Glu	Lys	Ile 795	Asn				

(2) INFORMATION FOR SEQ ID NO: 57:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1180 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

TACTGAGATG	CATCATAATC	TAGGAGCTGA	AAAGCGTTCA	GCAGTGGCTA	CTACTATCGA	60
TAGTTTTAAG	GAGCGAAGTC	AAAAAGTCAG	AGCACTATCT	GATCCAAATG	TGCGTTTTGT	120
TCCCTTCTTT	GGCTCTAGTG	AATGGCTTCG	TTTTGACGGT	GCTCATTCTG	CGGTATTAGC	180
TGAGAAATAC	AATCGTTCCT	ACCGTCCTTA	TCTTTTAGGA	CAGGGGGGAG	CTGCATCGCT	240
TAACCAATAT	TTTGGAATGC	AACAGATGTT	ACCACAGCTG	GAGAATAAAC	AAGTTGTGTA	300
TGTTATCTCA	CCTCAGTGGT	TCAGTAAAAA	TGGCTATGAT	CCAGCAGCCT	TCCAGCAGTA	360
TTTTAATGGA	GACCAGTTGA	CTAGTTTTCT	GAAACATCAA	TCTGGGGATC	AGGCTAGTCA	420
ATATGCAGCG	ACTCGCTTAC	TGCAACAGTT	CCCAAACGTA	GCTATGAAGG	ACCTGGTTCA	480
GAAGTTGGCA	AGTAAAGAAG	AATTGTCGAC	AGCAGACAAT	GAAATGATTG	AATTATTGGC	540
TCGTTTTAAT	GAACGCCAAG	CTTCCTTTTT	TGGTCAGTTT	TCGGTTAGAG	GCTATGTTAA	600
CTACGATAAG	CATGTAGCTA	AGTATTTAAA	AATCTTGCCA	GACCAGTTTT	CTTATCAGGC	660

AATAGAAGAT	GTTGTCAAAG	CAGATGCTGA	AAAAAATACT	TCCAATAATG	AGATGGGAAT	720
GGAAAATTAT	TTCTATAATG	AGCAGATCAA	GAAGGATTTG	AAGAAATTAA	AGGATTCTCA	780
GAAAAGCTTT	ACCTATCTCA	AGTCGCCAGA	GTATAATGNN	TTGCAGTTGG	TTTTAACACA	840
GTTTTCTAAA	TCTAAGGTAA	ACCCGATTTT	TATCATTCCA	CCTGTTAATA	AAAAATGGAT	900
GNACTATGCT	GGTCTACGAG	AGGATATGTA	CCAACAAACG	GTGCAGAAGA	TTCGCTACCA	960
GTTAGAAAGT	CAAGGTTTTA	CCAATATAGC	AGATTTTTCT	AAGGACGGCG	GGGAGCCTTT	1020
CTTTATGAAG	GACACCATTC	ACCTTGGTTG	GTTGGGTTGG	TTGGCTTTTG	ACAAGGCAGT	1080
TGATCCTTTC	CTATCCAATC	CCACACCAGC	TCCGACTTAC	CATCTGAATG	AGCGCTTTTT	1140
CAGCAAAGAT	TGGGCGACTT	ATGATGGAGA	TGTCAAAGAA			1180

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 393 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Thr Glu Met His His Asn Leu Gly Ala Glu Lys Arg Ser Ala Val Ala 1 10 15

Thr Thr Ile Asp Ser Phe Lys Glu Arg Ser Gln Lys Val Arg Ala Leu 20 25 30

Ser Asp Pro Asn Val Arg Phe Val Pro Phe Phe Gly Ser Ser Glu Trp 35 40 45

Leu Arg Phe Asp Gly Ala His Ser Ala Val Leu Ala Glu Lys Tyr Asn 50 55 60

Arg Ser Tyr Arg Pro Tyr Leu Leu Gly Gln Gly Gly Ala Ala Ser Leu 65 70 75 80

Asn Gln Tyr Phe Gly Met Gln Gln Met Leu Pro Gln Leu Glu Asn Lys 85 90 95

Gln Val Val Tyr Val Ile Ser Pro Gln Trp Phe Ser Lys Asn Gly Tyr 100 105 110

Asp Pro Ala Ala Phe Gln Gln Tyr Phe Asn Gly Asp Gln Leu Thr Ser

Phe Leu Lys His Gln Ser Gly Asp Gln Ala Ser Gln Tyr Ala Ala Thr 130 135 140

Arg Leu Leu Gln Gln Phe Pro Asn Val Ala Met Lys Asp Leu Val Gln 145 150 150 160

Lys Leu Ala Ser Lys Glu Glu Leu Ser Thr Ala Asp Asn Glu Met Ile 165 170 175

Glu	Leu	Leu	Ala 180	Arg	Phe	Asn	Glu	Arg 185	Gln	Ala	Ser	Phe	Phe 190	Gly	Gln
Phe	Ser	Val 195	Arg	Gly	Tyr	Val	Asn 200	Tyr	Asp	Lys	His	Val 205	Ala	Lys	Tyr
Leu	Lys 210	Ile	Leu	Pro	Asp	Gln 215	Phe	Ser	Tyr	Gln	Ala 220	Ile	Glu	Asp	Val
Val 225	Lys	Ala	Asp	Ala	Glu 230	Lys	Asn	Thr	Ser	Asn 235	Asn	Glu	Met	Gly	Met 240
Glu	Asn	Tyr	Phe	Tyr 245	Asn	Glu	Gln	Ile	Lys 250	Lys	Asp	Leu	Lys	Lys 255	Leu
Lys	Asp	Ser	Gln 260	Lys	Ser	Phe	Thr	Tyr 265	Leu	Lys	Ser	Pro	Glu 270	Tyr	Asn
Xaa	Leu	Gln ⁻ 275	Leu	Val	Leu	Thr	Gln 280	Phe	Ser	Lys	Ser	Lys 285	Val	Asn	Pro
Ile	Phe 290	Ile	Ile	Pro	Pro	Val 295	Asn	Lys	Lys	Trp	Met 300	Xaa	Tyr	Ala	Gly
Leu 305	Arg	Glu	Asp	Met	Tyr 310	Gln	Gln	Thr	Vạl	Gln 315	Lys	Ile	Arg	Tyr	Gln 320
Leu	Glu	Ser	Gln	Gly 325	Phe	Thr	Asn	Ile	Ala 330	Asp	Phe	Ser	Lys	Asp 335	Gly
Gly	Glu	Pro	Phe 340	Phe	Met	Lys	Asp	Thr 345	Ile	His	Leu	Gly	Trp 350	Leu	Gly
Trp	Leu	Ala 355	Phe	Asp	Lys	Ala	Val 360	Asp	Pro	Phe	Leu	Ser 365	Asn	Pro	Thr
Pro	Ala 370		Thr	Tyr	His	Leu 375	Asn	Glu	Arg	Phe	Phe 380	Ser	Lys	Asp	Trp
Ala 385	Thr	Tyr	Asp	Gly	Asp 390	Val	Lys	Glu							

(2) INFORMATION FOR SEQ ID NO: 59:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

•	=					
GGTTTTGAGA	AAGTATTTGC	AGGGGCCCT	GATTGAGTCG	ATTGAGĆAAG	TGGAAAATGA	60
CCGTATTGTG	GAAATTACAG	TTTCCAATAA	AAACGAGATT	GGAGACCATA	TCCAGGCTAC	120
CTTGATTATC	GAAATTATGG	GGAAACACAG	TAATATTCTA	CTGGTCGATA	AAAGCAGTCA	180
TAAAATCCTC	GAAGTTATCA	AACACGTCGG	CTTTTCACAA	AATAGCTACC	GCACCTTACT	240
TCCAGGATCG	ACCTATATCG	CTCCGCCAAG	TACAAAATCT	CTCAATCCTT	TTACTATCAA	300

GGATGAAAAG	CTCTTTGAAA	TCCTGCAAAC	CCAAGAACTA	ACAGCAAAAA	ATCTTCAAAG	360
CCTCTTTCAA	GGTCTGGGAC	GCGATACGGC	AAATGAATTG	GAAAGGATAC	TGGTTAGTGA	420
AAAACTTTCC	GCTTTCCGAA	ATTTTTTCAA	TCAAGAAACC	AAGCCATGCT	TGACTGAGAC	480
TTCCTTCAGT	CCAGTTCCTT	TTGCAAATCA	GGTGGGAGAG	CCTTTTGCAA	ATCTTTCTGA	540
TTTGTTGGAC	ACCTACTATA	AGGATAAGGC	TGAGCGCGAC	CGCGTCAAAC	AGCAGGCCAG	600
TGAACTGATT	CGTCGTGTTG	AAAATGAACT	TCAGAAAAAC	CGACACAAAC	TCAAAAAACA	660
GGAAAAAGAG	TTACTGGCGA	CAGACAACGC	TGAAGAATTT	CGTCAAAAAG	GAGAATTGCT	720
GACAACCTTC	CTCCACCAAG	TGCCTAACGA	CCAAGACCAG	GTTATCCTAG	ACAACTACTA	780
TACCAACCAA	CCTATCATGA	TTGCGCTTGA	TAAGGCTCTG	ACTCCCAACC	AGAATGCCCA	840
ACGCTATTTT	AAACGGTATC	AGAAACTCAA	AGAAGCTGTC	AAATACTTGA	CTGATTTGAT	900
TGAAGAAACC	AAAGCCACTA	TTCTCTATCT	GGAAAGTGTA	GAAACCGTCC	TCAACCAAGC	960
TGGACTGGAA	GAAATCGCTG	AAATCCGTGA	AGAATTGATT	CAAACAGGTT	TTATCCGCAG	1020
AAGACAACGG	GAGAAAATCC	AGAAACGCAA	AAAACTAGAA	CAATATCTAG	CAAGCGATGG	1080
CAAAACCATC	ATCTATGTCG	GACGAAACAA	TCTTCAAAAT	GAGGAATTGA	CCTTTAAAAT	1140
GGCCCGCAAG	GAGGAACTTT	GGTTCCATGC	TAAGGACATT	CCTGGAAGCC	ATGTTGTCAT	1200
CTCAGGAAAT	CTTGACCCAT	CTGATGCAGT	CAAGACAGAC	GCAGCAGAGT	TAGCTGCCTA	1260
CTTCTCTCAA	GGGCGCCTGT	CGAATCTGGT	GCAGGTAGAT	ATGATTGAAG	TCAAAAAACT	1320
CAATAAACCA	ACTGGTGGAA	AACCCGGCTT	TGTCACTTAC	ACAGGACAAA	AGACCCTCCG	1380
CGTCACACCA	GACTCCAAAA	AAATTGCATC	CATGAAAAAA	TCC		1423

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 474 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:
- Val Leu Arg Lys Tyr Leu Gln Gly Ala Leu Ile Glu Ser Ile Glu Gln 1 5 10 15
- Val Glu Asn Asp Arg Ile Val Glu Ile Thr Val Ser Asn Lys Asn Glu
- Ile Gly Asp His Ile Gln Ala Thr Leu Ile Ile Glu Ile Met Gly Lys
- His Ser Asn Ile Leu Leu Val Asp Lys Ser Ser His Lys Ile Leu Glu
- Val Ile Lys His Val Gly Phe Ser Gln Asn Ser Tyr Arg Thr Leu Leu

55					70					15					80
Pro	Gly	Ser	Thr	Tyr 85	Ile	Ala	Pro	Pro	Ser 90	Thr	Lys	Ser	Leu	Asn 95	Pro
Phe	Thr	Ile	Lys 100	Asp	Glu	Lys	Leu	Phe 105	Glu	Ile	Leu	Gln	Thr 110	Gln	Glu
Leu	Thr	Ala 115	Lys	Asn	Leu	Gln	Ser 120	Leu	Phe	Gln	Gly	Leu 125	Gly	Arg	Asp
Thr	Ala 130	Asn	Glu	Leu	Glu	Arg 135	Ile	Leu	Val	Ser	Glu 140	Lys	Leu	Ser	Ala
Phe 145	Arg	Asn	Phe	Phe	Asn 150	Gln	Glu	Thr	Lys	Pro 155	Cys	Leu	Thr	Glu	Thr 160
Ser	Phe	Ser	Pro	Val 165	Pro	Phe	Ala	Asn	Gln 170	Val	Gly	Glu	Pro	Phe 175	Ala
Asn	Leu	Ser	Asp 180	Leu	Leu	Asp	Thr	Tyr 185	Tyr	Lys	Asp	Lys	Ala 190	Glu	Arg
Asp	Arg	Val 195	Lys	Gln	Gln	Ala	Ser 200	Glu	Leu	Ile	Arg	Arg 205	Val	Glu	Asn
Glu	Leú 210	Gln	Lys	Asn	Arg	His 215	Lys	Leu	Lys	Lys	Gln 220	Glu	Lys	Glu	Leu
225			•		Ala 230					235					240
Thr	Thr	Phe	Leu	His 245	Gln	Val	Pro	Asn	Asp 250	Gln	Asp	Gln	Val	Ile 255	Leu
Asp	Asn	Tyr	Tyr 260	Thr	Asn	Gln	Pro	Ile 265	Met	Ile	Ala	Leu	Asp 270	Ľys	Ala
		275			Asn		280			•		285			
	290				Lys	295					300				
305					Leu 310					315					320
				325		•			330					333	
			340		Gln			345					350		
		355			Ser		360					365			
	370				Glu	375					380				
385					Ala 390			-		395	1				400
Ser	Gly	Asn	Leu	Asp	Pro	Ser	Asp	Ala	Val	. Lys	Thr	Asp	Ala	Ala 415	Glı

Leu Ala Ala Tyr Phe Ser Gln Gly Arg Leu Ser Asn Leu Val Gln Val 420 425 430

Gly Phe Val Thr Tyr Thr Gly Gln Lys Thr Leu Arg Val Thr Pro Asp 450 460

Ser Lys Lys Ile Ala Ser Met Lys Lys Ser 465

(2) INFORMATION FOR SEQ ID NO: 61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 544 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

GACAACATTT	ACTATCCATA	CAGTAGAGTC.	AGCACCAGCA	GAAGTGAAAG	AAATTCTTGA	60
AACAGTAGAA	AAAGACAACA	ATGGCTATAT	TCCCAACCTA	ATCGGTCTCT	TGGCCAATGC	120
CCCGACTGTT	TTAGAAGCCT	ACCAAATTGT	CTCATCTATC	CACCGTCGCA	ACAGCCTGAC	180
ACCCGTTGAG	CGTGAAGTGG	TGCAAATCAC	GGCAGCCGTG	ACCAATGGTT	GTGCCTTCTG	240
TGTCGCAGGT	CACACAGCCT	TTTCCATCAA	ACAAATCCAG	ATGAATGATG	ACTTGATTCA	300
AGCTCTTCGC	AATCGTACTC	CAATTGAAAC	AGATCCTAAA	TTGGATACCC	TAGCTAAGTT	360
TACCTTGGCA	GTTATCAATA	CCAAGGGTCG	TGTAGGAGAT	GAAGCCTTGT	CTGAGTTTTT	420
AGAAGCTGGC	TACACTCAAC	AAAATGCCTT	GGATGTGGTT	TTTGGTGTCA	GCCTAGCAAT	480
CCTCTGTAAC	TATGCCAACA	ACTTAGCTAA	TACACCAATT	AATCCAGAAT	TGCAACCTTA	540
TGCC			* **		•	544

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 181 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Thr Thr Phe Thr Ile His Thr Val Glu Ser Ala Pro Ala Glu Val Lys 1 10 15

Glu Ile Leu Glu Thr Val Glu Lys Asp Asn Asn Gly Tyr Ile Pro Asn

 Leu
 Ile
 Gly 35
 Leu
 Leu
 Ala
 Asn Ala 40
 Pro
 Thr Val
 Leu Glu 45
 Ala
 Tyr Gln Arg

 Ile
 Val
 Ser
 Ser
 Ile
 His
 Arg
 Arg
 Asn Ser
 Leu
 Thr Pro
 Val
 Glu Arg

 Glu
 Val
 Val
 Gln
 Ile
 Thr Ala
 Ala
 Val
 Thr Pro
 Gly Cys
 Ala
 Phe Cys

 Val
 Ala
 Gly
 His
 Thr Ala
 Ala
 Val
 Thr Pro
 Gly
 Cys
 Ala
 Phe Pro
 Ser

 Asp
 Leu
 Ala
 Leu
 Arg
 Asn Arg
 Thr Pro
 Ile
 Glu
 Thr Asp
 Pro

 Lys
 Leu
 Asp
 Thr Leu
 Ala
 Lys
 Phe Tra
 Leu
 Ala
 Val
 Ile
 Asn Thr Lys

 Hys
 Asp
 Thr Leu
 Ala
 Lys
 Asp
 Glu
 Phe Gly
 Ile
 Glu
 Ala
 Ile
 Ile
 <t

(2) INFORMATION FOR SEQ ID NO: 63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

GGCTAAGGAA	AGAGTGGATG	TACTAGCTTA	TAAACAGGGG	TTGTTTGAAA	CGAGAGAGCA	60
GGCCAAGCGA	GGTGTGATGG	CTGGCCTAGT	CGTAGCAGTC	ÇTTAATGGAG	AACGGTTTGA	120
CAAGCCAGGA	GAGAAAATTC	CAGATGACAC	CGAATTAAAA	CTCAAGGGGG	AGAAACTCAA	180
GTATGTCAGC	CGTGGTGGTT	TGAAACTGGA	AAAGGCCTTG	CAGGTCTTTG	ATTTGTCGGT	240
GGATGGCGCG	ACTACGATTG	ATATCGGGGC	CTCTACTGGA	GGTTTTACCG	ATGTCATGCT	300
ACAGAATAGT	GCCAAGTTGG	TCTTTGCAGT	CGATGTTGGT	ACCAATCAGT	TGGCTTGGAA	360
ATTACGCCAA	GACCCACGAG	TTGTCAGCAT	GGAGCAGTTC	AATTTCCGCT	ATGCTGAAAA	420
GACTGATTTC	GAGCAGGAGC	CGAGCTTTGC	CAGTATTGAT	GTGAGTTTCA	TTTCCCTTAG	480
TCTGATTTTG	CCAGCCTTGC	ACCGTGTCTT	GGCTGATCAA	GGTCAGGTGG	TAGCACTTGT	540
CAAACCTCAG	TTTGAGGCAG	GACGTGAGCA	GATTGGGAAA	AATGGAATTA	TTCGAGATGC	600
TAAGGTTCAT	CAGAATGTCC	TTGAATCTGT	AACAGCTATG	GCAGTAGAGG	TAGGTTTTTC	660

AGTC	CTTGG	C TI	'GGAC	TTTT	CTC	CCAT	'CCA	AGGT	'GGAC	AT G	GAAA	TTAT	'G AA	LTTTL	'TAGC	
GTAT	TTGAA	A AA	AGAA	AAGI	' CAG	CAAG	CAA	TCAG	ATTC	TT G	CTGA	GATT.	'A AA	GAAG	CAGT	1
AGAG.	AGAGAGGCC CATAGTCAAT TTAAAAATGA A															
(2)	(2) INFORMATION FOR SEQ ID NO:64:															
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 270 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear															
	(ii) MOLECULE TYPE: protein															
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:															
	Ala 1	Lys	Glu	Arg	Val 5	Asp	Val	Leu	Ala	Tyr 10	Lys	Gln	Gly	Leu	Phe 15	Glu
	Thr	Arg	Glu	Gln 20	Ala	Lys	Arg	Gly	Val 25	Met	Ala	Gly	Leu	Val 30	Val	Ala
	Val	Leu	Asn 35	Gly	Glu	Arg	Phe.	Asp 40	Lys	Pro	Gly	Glu	Lys 45	Ile	Pro	Asp
	Asp	Thr 50	Glu	Leu	Lys	Leu	Lys 55	Gly	Glu	Lys	Leu	Lys 60	Tyr	Val	Ser	Arg
	Gly 65	Gly	Leu	Lys	Leu	Glu 70	Lys	Ala	Leu	Gln	Val 75	Phe	Asp	Leu	Ser	Val 80
	Asp	Gly	Ala	Thr	Thr 85	Ile	Asp	Ile	Gly	Ala 90	Ser	Thr	Gly	Gly	Phe 95	Thr
	Asp	Val	Met	Leu 100	Gln	Asn	Ser	Ala	Lys 105	Leu	Val	Phe	Ala	Val 110	Asp	Val
	Gly	Thr	Asn 115	Gln	Leu	Ala	Trp	Lys 120	Leu	Arg	Gln	Asp	Pro 125	Arg	Val	Val
	Ser	Met 130	Glu	Gln	Phe	Asn	Phe 135	Arg	Tyr	Ala	Glu	Lys 140	Thr	Asp	Phe	Glu
	Gln 145	Glu	Pro	Ser		Ala 150		Ile	Asp	Val	Ser 155	Phe	Ile	Ser	Leu	Ser 160
	Leu	Ile	Leu	Pro	Ala 165	Leu	His	Arg	Val	Leu 170	Ala	Asp	Gln	Gly	Gln 175	Val
	Val	Ala	Leu	Val 180	Lys	Pro	Gln	Phe	Glu 185	Ala	Gly	Arg	Glu	Gln 190	Ile	Gly
	Lys	Asn	Gly 195	Ile	Ile	Arg	Asp	Ala 200	Lys	Val	His	Gln	Asn 205	Val	Leu	Glu
	Ser	Val 210	Thr	Ala	Met	Ala	Val 215	Glu	Val	Gly	Phe	Ser 220	Val	Leu	Gly	Leu
	Asp 225	Phe	Ser	Pro	Ile	Gln 230	Gly	Gly	His	Gly	Asn 235	Ile	Glu	Phe	Leu	Ala 240

Tyr Leu Lys Lys Glu Lys Ser Ala Ser Asn Gln Ile Leu Ala Glu Ile 245

Lys Glu Ala Val Glu Arg Ala His Ser Gln Phe Lys Asn Glu 265

(2) INFORMATION FOR SEQ ID NO: 65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2290 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

				,01122120111	DECOUNCE DE	(AI)
60	CTAATCGAGT	AAGAAAGAGT	TGGTCAGGTT	GTCACCAAGC	GAACTTGGTC	TTGTTCCTAT
120	CAGATGAAGT	AACTTGACAC	AAAGGCAGAA	AGGCTGGTCA	GATGGTGATC	TTCTTATATA
180	ATCAAGGTTA	AAGATTACGG	AATNGTNATC	ACGCCGAACA	GAGGGGATCA	CAGTAAGAGG
240	ATGATGCCAT	AAGGTTCCTT	CTATAATGGC	ATTATCATTA	CATGGAGACC	TGTGACCTCT
300	CAGACATTGT	TTGAAGGATT	GAATTATCAG	TGAAAGATCC	GAGCTCCTCA	CATCAGTGAA
360	TNTACCTTAA	AAATACTATG	GGTAAACGGT	ATGTCATTAA	AAGGGTGGTT	CAATGAAATC
420	AGAAGCAGGA	ATTAAACGTC	AAAAGAAGAG	ATATTCGGAC	CATGCGGATA	GGATGCAGCT
480	GAGCCCAAGG	GCTGCAGCCA	TAATGCTGTT	CAAGAGCAGA	AATCATAACT	ACGCAGTCAT
540	AGGACACGGG	GATATCATTG	CAATGCATCT	GGTATATCTT	ACGGATGATG	ACGTTATACA
600	ATGAGTTATC	ATTCCTAAGA	TTACCATTAC	ACGGCGACCA	ATCGTTCCTC	TGATGCTTAT
660	CTCGTCCTTC	AAGCAGGGAT	TTGGAATGGG	CAGAAGCCTA	TTAGCTGCTG	AGCTAGCGAG
720	ACCACAATCT	TTGTCAGAGA	TCAACCAAGA	CAAATCCAGC	AGTTATAATG	TTCAAGTTCT
780	TTTTACGTGA	ATTTCAAGCC	AGGGGAAAAC	ATCAAAATCA	CCAACTTATC	GACTGTCACT
840	TTTTCGACCC	GATGGCCTTA	TGTGGAATCT	CAGAACGCCA	AAACCCTTAT	ATTGTATGCT
900	ACCATTACCA	CCTCATGGTA	TGTAGCTGTC	CCGCCAGAGG	ACAAGTCGAA	AGCGCAAATC
960	TTATTCCCCT	ATTGCTCGTA	GGAAAAACGA	TGTCTGAATT	TATGAACAAA	CTTTATCCCT
1020	GTCCACAATC	GAACAACCAA	TTCAAGACCA	GGGTACCAGA	TCAAACCATT	TCGTTATCGT
1080	CTCCAAGCAA	CCTCAACCAG	TGCACCAAAT	GTCCGCAACC	CCTAGTCCAA	GACTCCGGAA
. 1140	GTTATGTCTT	GTAGGCGATG	TGTTCGAAAA	TCAAAGAAGC	GAGAAATTGG	TCCAATTGAT
1200	AAACAGCAGC	CTTTCAGCAG	AGCCAAGGAT	GTTATATCCC	GGAGTTTCTC	TGAGGAGAAT
1260	GAGCTAAGAA	CATAAGCTAG	AAGTTTATCT	CCAAGCAGGA	AGCAAACTGG	AGGCATTGAT
1320	TACTAGCAAG	GCTTATGACT	TTACAATAAG	ATCGAGAATT	CCATCTAGTG	AACTGACCTC
1380	CTTTGGATAA	GATTTTGAGG	TCGACAAGTT	ATAATAAAGG	GATTTACTTG	AATTCACCAA

CCTGTTGGAA	CGACTCAAGG	ATGTCNCAAG	TGATAAAGTC	AAGTTAGTGG	ANGATATTCT	1440
TGCCTTCTTA	GCTCCGATTC	GTCATCCAGA	ACGTTTAGGA	AAACCAAATG	CGCAAATTAC	1500
CTACACTGAT	GATGAGATTC	AAGTAGCCAA	GTTGGCAGGC	AAGTACACAA	CAGAAGACGG	1560
TTATATCTTT	GATCCTCGTG	ATATAACCAG	TGATGAGGGG	GATGCCTATG	TAACTCCACA	1620
TATGACCCAT	AGCCACTGGA	TTAAAAAAAGA	TAGTTTGTCT	GAAGCTGAGA	GAGCGGCAGC	1680
CCAGGCTTAT	GCTAAAGAGA	AAGGTTTGAC	CCCTCCTTCG	ACAGACCATC	AGGATTCAGG	1740
AAATACTGAG	GCAAAAGGAG	CAGAAGCTAT	CTACAACCGC	GTGAAAGCAG	CTAAGAAGGT	1800
GCCACTTGAT	CGTATGCCTT	ACAATCTTCA	ATATACTGTA	GAAGTCAAAA	ACGGTAGTTT	1860
AATCATACCT	CATTATGACC	ATTACCATAA	CATCAAATTT	GAGTGGTTTG	ACGAAGGCCT	1920
TTATGAGGCA	CCTAAGGGGT	ATACTCTTGA	GGATCTTTTG	GCGACTGTCA	AGTACTATGT	1980
CGAACATCCA	AACGAACGTC	CGCATTCAGA	TAATGGTTTT	GGTAACGCTA	GCGACCATGT	2040
TCAAAGAAAC	AAAAATGGTC	AAGCTGATAC	CAATCAAACG	GAAAAACCAA	GCGAGGAGAA	2100
ACCTCAGACA	GAAAAACCTG	AGGAAGAAAC	CCCTCGAGAA	GAGAAACCGC	AAAGCGAGAA	2160
ACCAGAGTCT	CCAAAACCAA	CAGAGGAACC	AGAAGAATCA	CCAGAGGAAT	CAGAAGAACC	2220
TCAGGTCGAG	ACTGAAAAGG	TTGAAGAAAA	ACTGAGAGAG	GCTGAAGATT	TACTTGGAAA	2280
AATCCAGGAT						2290

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 763 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- · (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:
 - Cys Ser Tyr Glu Leu Gly Arg His Gln Ala Gly Gln Val Lys Lys Glu 1 10 15
 - Ser Asn Arg Val Ser Tyr Ile Asp Gly Asp Gln Ala Gly Gln Lys Ala 20 25 30
 - Glu Asn Leu Thr Pro Asp Glu Val Ser Lys Arg Glu Gly Ile Asn Ala 35 40 45
 - Glu Gln Xaa Val Ile Lys Ile Thr Asp Gln Gly Tyr Val Thr Ser His 50 60
 - Gly Asp His Tyr His Tyr Tyr Asn Gly Lys Val Pro Tyr Asp Ala Ile 65 70 75 80
 - Ile Ser Glu Glu Leu Leu Met Lys Asp Pro Asn Tyr Gln Leu Lys Asp 85 90 95
 - Ser Asp Ile Val Asn Glu Ile Lys Gly Gly Tyr Val Ile Lys Val Asn

			100					105					110		
Gly	Lys	Tyr 115	Tyr	Val	Tyŗ	Leu	Lys 120	Asp	Ala	Ala	His	Ala 125	Asp	Asn	Ile
Arg	Thr 130	Lys	Glu	Glu	Ile	Lys 135	Arg	Gln	Lys	Gln	Glu 140	Arg	Ser	His	Asn
His 145	Asn	Ser	Arg	Ala	Asp 150	Asn	Ala	Val	Ala	Ala 155	Ala	Arg	Ala	Gln	Gly 160
Arg	Tyr	Thr	Thr	Asp 165	Asp	Gly	Tyr	Ile	Phe 170	Asn	Ala	Ser	Asp	Ile 175	Ile
Glu	Asp	Thr	Gly 180	Asp	Ala	Tyr	Ile	Val 185	Pro	His	Gly	Asp	His 190	Tyr	His
Tyr	Ile	Pro 195	Lys	Asn	Glu	Leu	Ser 200	Ala	Ser	Glu	Leu	Ala 205	Ala	Ala	Glu
Ala	Tyr 210	Trp	Asn	Gly	Lys	Gln 215	Gly	Ser	Arg	Pro	Ser 220	Ser	Ser	Ser	Ser
Tyr 225	Asn	Ala	Asn	Pro	Ala 230	Gln	Pro	Arg	Leu	Ser 235	Glu	Asn	His	Asn	Leu 240
Thr	Val	Thr	Pro	Thr 245	Tyr	His	Gln	Asn	Gln 250	Gly	Glu	Asn	Ile	Ser 255	Ser
Leu	Leu	Arg	Glu 260		Tyr	Ala	Lys	Pro 265	Leu	Ser	Glu	Arg	His 270	Val	Glu
Ser	Asp	Gly 275		Ile	Phe	Asp	Pro 280	Ala	Gln	Ile	Thr	Ser 285	Arg	Thr	Ala
	290				Pro	295					300				
305	,				Leu 310					313					220
				325					330	, .				ردر	
			340)	Pro			345)	-			3,00		
		355	5		a Pro		360)				505			
	370)			s Val	3/5)				300	,			
385	5				9 Pro)				39.)				40 ,
				405					411	U				4 4-	,
			42	0	r Asp			42:	>			,	±3(,	
Ly	s Ala	a Ty:		p Le	u Lev	ı Ala	a Arg	g Ile O	e Hi	s Gli	n Ası	Let 445	ı Lev	ı Ası	As:

Lys Gly Arg Gln Val Asp Phe Glu Ala Leu Asp Asn Leu Leu Glu Arg 455 Leu Lys Asp Val Xaa Ser Asp Lys Val Lys Leu Val Xaa Asp Ile Leu 465 Ala Phe Leu Ala Pro Ile Arg His Pro Glu Arg Leu Gly Lys Pro Asn Ala Gln Ile Thr Tyr Thr Asp Asp Glu Ile Gln Val Ala Lys Leu Ala 505 Gly Lys Tyr Thr Thr Glu Asp Gly Tyr Ile Phe Asp Pro Arg Asp Ile Thr Ser Asp Glu Gly Asp Ala Tyr Val Thr Pro His Met Thr His Ser His Trp Ile Lys Lys Asp Ser Leu Ser Glu Ala Glu Arg Ala Ala Ala 555 Gln Ala Tyr Ala Lys Glu Lys Gly Leu Thr Pro Pro Ser Thr Asp His Gln Asp Ser Gly Asn Thr Glu Ala Lys Gly Ala Glu Ala Ile Tyr Asn Arg Val Lys Ala Ala Lys Lys Val Pro Leu Asp Arg Met Pro Tyr Asn Leu Gln Tyr Thr Val Glu Val Lys Asn Gly Ser Leu Ile Ile Pro His 615 Tyr Asp His Tyr His Asm Ile Lys Phe Glu Trp Phe Asp Glu Gly Leu 630 Tyr Glu Ala Pro Lys Gly Tyr Thr Leu Glu Asp Leu Leu Ala Thr Val 650 Lys Tyr Tyr Val Glu His Pro Asn Glu Arg Pro His Ser Asp Asn Gly 665 Phe Gly Asn Ala Ser Asp His Val Gln Arg Asn Lys Asn Gly Gln Ala 680 Asp Thr Asn Gln Thr Glu Lys Pro Ser Glu Glu Lys Pro Gln Thr Glu Lys Pro Glu Glu Glu Thr Pro Arg Glu Glu Lys Pro Gln Ser Glu Lys 705 710 715 720 705 Pro Glu Ser Pro Lys Pro Thr Glu Glu Pro Glu Glu Ser Pro Glu Glu Ser Glu Glu Pro Gln Val Glu Thr Glu Lys Val Glu Glu Lys Leu Arg 745 Glu Ala Glu Asp Leu Leu Gly Lys Ile Gln Asp 760

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

	LENGTH: 352 base pair
(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

TTATAAGGGT	GAATTAGAAA	AAGGATACCA	ATTTGATGGT	TGGGAAATTT	CTGGTTTCGA	. 60
AGGTAAAAA	GACGCTGGCT	ATGTTATTAA	TCTATCAAAA	GATACCTTTA	TAAAACCTGT	120
ATTCAAGAAA	ATAGAGGAGA	AAAAGGAGGA	AGAAAATAAA	CCTACTTTTG	ATGTATCGAA	180
AAAGAAAGAT	AACCCACAAG	TAAACCATAG	TCAATTAAAT	GAAAGTCACA	GAAAAGAGGA	240
TTTACAAAGA	GAAGAGCATT	CACAAAAATC	TGATTCAACT	AAGGATGTTA	CAGCTACAGT	300
TCTTGATAAA	AACAATATCA	GTAGTAAATC	AACTACTAAC	AATCCTAATA	AG	352

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Tyr Lys Gly Glu Leu Glu Lys Gly Tyr Gln Phe Asp Gly Trp Glu Ile

Ser Gly Phe Glu Gly Lys Lys Asp Ala Gly Tyr Val Ile Asn Leu Ser 20 25 30

Lys Asp Thr Phe Ile Lys Pro Val Phe Lys Lys Ile Glu Glu Lys Lys 35 40 45

Glu Glu Glu Asn Lys Pro Thr Phe Asp Val Ser Lys Lys Lys Asp Asn 50 55 60

Pro Gln Val Asn His Ser Gln Leu Asn Glu Ser His Arg Lys Glu Asp 65 70 75 80

Leu Gln Arg Glu Glu His Ser Gln Lys Ser Asp Ser Thr Lys Asp Val

Thr Ala Thr Val Leu Asp Lys Asn Asn Ile Ser Ser Lys Ser Thr Thr 100 105 110

Asn Asn Pro Asn Lys 115

(2) INFORMATION FOR SEQ ID NO: 69:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 1312 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
GAATGTTCAG GCTCAAGAAA GTTCAGGAAA TAAAATCCAC TTTATCAATG TTCAAGAAGG	60
TGGCAGTGAT GCGATTATTC TTGAAAGCAA TGGACATTTT GCCATGGTGG ATACAGGAGA	120
AGATTATGAT TTCCCAGATG GAAGTGATTC TCGCTATCCA TGGAGAGAAG GAATTGAAAC	180
GTCTTATAAG CATGTTCTAA CAGACCGTGT CTTTCGTCGT TTGAAGGAAT TGGGTGTCCA	240
AAAACTTGAT TTTATTTTGG TGACCCATAC CCACAGTGAT CATATTGGAA ATGTTGATGA	300
ATTACTGTCT ACCTATCCAG TTGACCGAGT CTATCTTAAG AAATATAGTG ATAGTCGTAT	360
TACTAATTCT GAACGTCTAT GGGATAATCT GTATGGCTAT GATAAGGTTT TACAGACTGC	420
TGCAGAAAAA GGTGTTTCAG TTATTCAAAA TATCACACAA GGGGATGCTC ATTTTCAGTT	480
TGGGGACATG GATATTCAGC TCTATAATTA TGAAAATGAA ACTGATTCAT CGGGTGAATT	540
AAAGAAAATT TGGGATGACA ATTCCAATTC CTTGATTAGC GTGGTGAAAG TCAATGGCAA	600
GAAAATTTAC CTTGGGGGCG ATTTAGATAA TGTTCATGGA GCAGAAGACA AGTATGGTCC	660
TCTCATTGGA AAAGTTGATT TGATGAAGTT TAATCATCAC CATGATACCA ACAAATCAAA	720
TACCAAGGAT TTCATTAAAA ATTTGAGTCC GAGTTTGATT GTTCAAACTT CGGATAGTCT	780
ACCTTGGAAA AATGGTGTTG ATAGTGAGTA TGTTAATTGG CTCAAAGAAC GAGGAATTGA	840
GAGAATCAAC GCAGCCAGCA AAGACTATGA TGCAACAGTT TTTGATATTC GAAAAGACGG	900
TTTTGTCAAT ATTTCAACAT CCTACAAGCC GATTCCAAGT TTTCAAGCTG GTTGGCATAA	960
GAGTGCATAT GGGAACTGGT GGTATCAAGC GCCTGATTCT ACAGGAGAGT ATGCTGTCGG	1020
TTGGAATGAA ATCGAAGGTG AATGGTATTA CTTTAACCAA ACGGGTATCT TGTTACAGAA	1080
TCAATGGAAA AAATGGAACA ATCATTGGTT CTATTTGACA GACTCTGGTG CTTCTGCTAA	1140
AAATTGGAAG AAAATCGCTG GAATCTGGTA TTATTTTAAC AAAGAAAACC AGATGGAAAT	1200
TGGTTGGATT CAAGATAAAG AGCAGTGGTA TTATTTGGAT GTTGATGGTT CTATGAAGAC	1260
AGGATGGCTT CAATATATGG GGCAATGGTA TTACTTTGCT CCATCAGGGG AA	1312

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 437 amino acids

 - (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Asn Val Gln Ala Gln Glu Ser Ser Gly Asn Lys Ile His Phe Ile Asn

1				5					10					15	
Val	Gln	Glu	Gly 20	Gly	Ser	Asp	Ala	Ile 25	Ile	Leu	Glu	Ser	Asn 30	Gly	His
Phe	Ala	Met 35	Val	Asp	Thr	Gly	Glu 40	Asp	Tyr	Asp	Phe	Pro 45	Asp	Gly	Ser
Asp	Ser 50	Arg	Tyr	Pro	Trp	Arg 55	Glu	Gly	Ile	Glu	Thr 60	Ser	Tyr	Lys	His
Val 65	Leu	Thr	Asp	Arg	Val 70	Phe	Arg	Arg	Leu	Lys 75	Glu	Leu	Gly	Val	Gln 80
Lys	Leu	Asp	Phe	Ile 85	Leu	Val	Thr	His	Thr 90	His	Ser	Asp	His	Ile 95	Gly
			100		Leu			105					110		,
		115			Ser		120					125			
	130				Asp	135					140				
Val 145	Ser	Val	Ile	Gln	Asn 150	Ile	Thr	Gln	Gly	Asp 155	Ala	His	Phe	Gln	Phe 160
Gly	Asp	Met	Asp	Ile 165	Gln	Leu	Tyr	Asn	Tyr 170	Glu	Asn	Glu	Thr	Asp 175	Ser
Ser	Gly	Glu	Leu 180		Lys	Ile	Trp	Asp 185	Asp	Asn	Ser	Asn	Ser 190	Leu	Ile
Ser	Val	Val 195		Val	Asn	Gly	Lys 200	Lys	Ile	Tyr	Leu	Gly 205	Gly	Asp	Leu
Asp	Asn 210		His	Gly	Ala	Glu 215	Asp	Lys	Tyr	Gly	Pro 220	Leu	lle	Gly	Lys
Val 225		Leu	Met	. Lys	Phe 230	Asn	His	His	His	235	Thr	Asn	Lys	Ser	Asr 240
			•	245					250)				255	
	-		200	,	Trp										
Trp	Leu	Lys 275	Glu S	ı Arg	, Gly	· Ile	280	Arg	Ile	e Asn	Ala	Ala 285	Ser	Lys	Ası
Tyr	290		Thr	Va]	Phe	295	o Ile	e Arg	l Ļys	s Asp	300	Phe	val	Asn	Ile
305	; ·				310)				315)				32
Ser	: Ala	а Туг	Gly	7 Asr 325	n Trp	Trp	у Туг	Glr	330	a Pro	Asp	Ser	Thr	Gly 335	Gl:
Туг	Ala	a Val	l Gly	y Tri) Asr	ı Glu	ı Ile	e Glu 345	ı Gly	y Glu	ı Trp	туг	Tyr 350	Phe	As:

-

Gln Thr Gly Ile Leu Leu Gln Asn Gln Trp Lys Lys Trp Asn Asn His 365

Trp Phe Tyr Leu Thr Asp Ser Gly Ala Ser Ala Lys Asn Trp Lys Lys 380

Ala Gly Ile Trp Tyr Tyr Phe Asn Lys Glu Asn Gln Met Glu Ile 400

Gly Trp Ile Gln Asp Lys Glu Gln Trp Tyr Tyr Tyr Leu Asp Val Asp Gly Ala Pro Ser Gly Glu Gln Trp Tyr Met Gly Gln Trp Tyr Tyr Phe Ala Pro Ser Gly Glu Glu Gln Tyr Met Gly Gln Trp Tyr Tyr Phe Ala Pro Ser Gly Glu Glu Gln Tyr Met Gly Gln Trp Tyr Tyr Phe

(2) INFORMATION FOR SEQ ID NO: 71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1855 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

CTTGGGTGTA ACCCATATCC AGCTCCTTCC AGTCTTGTCT TACTACTTTG TCAATGAATT 60 GAAAAACCAT GAACGCTTGT CTGACTACGC TTCAAGCAAC AGCAACTACA ACTGGGGATA 120 TGACCCTCAA AACTACTTCT CCTTGACTGG TATGTACTCA AGCGATCCTA AGAATCCAGA 180 AAAACGAATC GCAGAATTTA AAAACCTCAT CAACGAAATC CACAAACGTG GTATGGGAGC 240 TATCCTAGAT GTCGTTTATA ACCACACAGC CAAAGTCGAT CTCTTTGAAG ATTTGGAACC 300 AAACTACTAC CACTTTATGG ATGCCGATGG CACACCTCGA ACTAGCTTTG GTGGTGGACG 360 CTTGGGGACA ACCCACCATA TGACCAAACG GCTCCTAATT GACTCTATCA AATACCTAGT 420 TGATACCTAC AAAGTGGATG GCTTCCGTTT CGATATGATG GGAGACCATG ACGCCGCTTC 480 TATCGAAGAA GCTTACAAGG CTGCACGCGC CCTCAATCCA AACCTCATCA TGCTTGGTGA 540 AGGTTGGAGA ACCTATGCCG GTGATGAAAA CATGCCTACT AAAGCTGCTG ACCAAGATTG 600 GATGAAACAT ACCGATACTG TCGCTGTCTT TTCAGATGAC ATCCGTAACA ACCTCAAATC 660 TGGTTATCCA AACGAAGGTC AACCTGCCTT TATCACAGGT GGCAAGCGTG ATGTCAACAC 720 CATCTTTAAA AATCTCATTG CTCAACCAAC TAACTTTGAA GCTGACAGCC CTGGAGATGT 780 CATCCAATAC ATCGCAGCCC ATGATAACTT GACCCTCTTT GACATCATTG CCCAGTCTAT 840 CAAAAAAGAC CCAAGCAAGG CTGAGAACTA TGCTGAAATC CACCGTCGTT TACGACTTGG 900 AAATCTCATG GTCTTGACAG CTCAAGGAAC TCCATTTATC CACTCCGGTC AGGAATATGG 960 ACGTACTAAA CAATTCCGTG ACCCAGCCTA CAAGACTCCA GTAGCAGAGG ATAAGGTTCC 1020

AAACAAATCT	CACTTGTTGC	GTGATAAGGA	CGGCAACCCA	TTTGACTATC	CTTACTTCAT	1080
CCATGACTCT	TACGATTCTA	GTGATGCAGT	CAACAAGTTT	GACTGGACTA	AGGCTACAGA	1140
TGGTAAAGCT	TATCCTGAAA	ATGTCAAGAG	CCGTGACTAT	ATGAAAGGTT	TGATTGCCCT	1200
TCGTCAATCT	ACAGATGCCT	TCCGACTTAA	GAGTCTTCAA	GATATCAAAG	ACCGTGTCCA	1260
CCTCATCACT	GTCCCAGGCC	AAAATGGTGT	GGAAAAAGAG	GATGTAGTGA	TTGGCTACCA	1320
AATCACTGCT	CCAAACGGCG	ATATCTACGC	AGTCTTTGTC	AATGCGGATG	AAAAAGCTCG	1380
CGAATTTAAT	TTGGGAACTG	CCTTTGCACA	TCTAAGAAAT	GCGGAAGTTT	TGGCAGATGA	1440
AAACCAAGCA	GGACCAGTCG	GAATTGCCAA	CCCGAAAGGA	CTTGAATGGA	CTGAAAAAGG	1500
CTTGAAATTG	AATGCCCTTA	CAGCTACTGT	TCTTCGAGTC	TCTCAAAATG	GAACTAGCCA	1560
TGAGTCAACT	GCAGAAGAGA	AACCAGACTC	AACCCCTTCC	AAGCCTGAAC	ATCAAAATGA	1620
AGCTTCTCAC	CCTGCACATC	AAGACCCAGC	TCCAGAAGCT	AGACCTGATT	CTACTAAACC	1680
AGATGCCAAA	GTAGCTGATG	CGGAAAATAA	ACCTAGCCAA	GCTACAGCTG	ATTCACAAGC	1740
TGAACAACCA	GCACAAGAAG	CACAAGCATC	ATCTGTAAAA	GAAGCGGTTC	GAAACGAATC	1800
GGTAGAAAAC	TCTAGCAAGG	AAAATATACC	TGCAACCCCA	GATAAACAAG	CTGAA	1855

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 618 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
- Leu Gly Val Thr His Ile Gln Leu Leu Pro Val Leu Ser Tyr Tyr Phe 10 15
- Val Asn Glu Leu Lys Asn His Glu Arg Leu Ser Asp Tyr Ala Ser Ser 20 25 30
- Asn Ser Asn Tyr Asn Trp Gly Tyr Asp Pro Gln Asn Tyr Phe Ser Leu 35 40 45
- Thr Gly Met Tyr Ser Ser Asp Pro Lys Asn Pro Glu Lys Arg Ile Ala 50 55
- Glu Phe Lys Asn Leu Ile Asn Glu Ile His Lys Arg Gly Met Gly Ala 65 70 75 80
- Ile Leu Asp Val Val Tyr Asn His Thr Ala Lys Val Asp Leu Phe Glu 85 90 95
- Asp Leu Glu Pro Asn Tyr Tyr His Phe Met Asp Ala Asp Gly Thr Pro
- Arg Thr Ser Phe Gly Gly Gly Arg Leu Gly Thr Thr His His Met Thr

		115					120					125			
Lys	Arg 130	Leu	Leu	Ile	Asp	Ser 135	Ile	Lys	Tyr	Leu	Val 140	Asp	Thr	Tyr	Lys
Val 145	Asp	Gly	Phe	Arg	Phe 150	Asp	Met	Met	Gly	Asp 155	His	Asp	Ala	Ala	Ser 160
Ile	Glu	Glu	Ala	Tyr 165	Lys	Ala	Ala	Arg	Ala 170	Leu	Asn	Pro	Asn	Leu 175	Ile
Met	Leu	Gly	Glu 180	Gly	Trp	Arg	Thr	Tyr 185	Ala	Gly	Asp	Glu	Asn 190	Met	Pro
Thr	Lys	Ala 195	Ala	Asp	Gln	Asp	Trp 200	Met	Lys	His	Thr	Asp 205	Thr	Val	Ala
Val	Phe 210	Ser	Asp	Asp	Ile	Arg 215	Asn	Asn	Leu	Lys	Ser 220	Gly	Tyr	Pro	Asn
225					230					235			Val		240
Ile	Phe	Lys	Asn	Leu 245	Ile	Ala	Gln	Pro	Thr 250	Asn	Phe	Glu	Ala	Asp 255	Ser
Pro	Gly	Asp	Val 260		Gln	Tyr	Ile	Ala 265	Ala	His	Asp	Asn	Leu 270	Thr	Leu
Phe	Asp	Ile 275		Ala	Gln	Ser	Ile 280	Lys	Lys	Asp	Pro	Ser 285	Lys	Ala	Glu
Asn	Tyr 290		Glu	Ile	His	Arg 295	Arg	Leu	Arg	Leu	Gly 300	Asn	Leu	Met	Val
305					310			*		313			Glu		320
Arg	Thr	Lys	Gln	Phe 325	Arg	Asp	Pro	Ala	Tyr 330	Lys	Thr	Pro	Val	Ala 335	Glu
			340					345		`			350	•	
		355	5				360)				303			
	370)				375)				300	,	, Lys		
385	•				390)	•			393	,	•	ı Ile		400
Arg	g Glr	n Ser	Thr	Asp 405		Phe	e Arg	, Leu	1 Lys 410	s Sei	r Lei	ı Glr	n Asp	11e 415	E Lys
Asp	Arq	y Val	l His 420		ı Ile	Thi	val	425	Gly	/ Gli	n Ası	ı Gly	7 Val 430	. Glu	ı Lys
Glu	ı Ası	va. 43		l Ile	e Gly	/ Туз	Glr 440	n Ile	∍ Thi	r Ala	a Pro	445	n Gly	y Ast) Ile
Туз	Ala 45		l Phe	e Val	l Asr	n Ala 45	a Ası 5	o Gli	ı Ly:	s Ala	a Arg	g Gli O	ı Phe	e Ası	ı Lei

Gly 465	Thr	Ala	Phe	Ala	His 470	Leu	Arg	Asn	Ala	Glu 475	Val	Leu	Ala	Asp	Glu 480
Asn	Gln	Ala	Gly	Pro 485	Val	Gly	Ile	Ala	Asn 490	Pro	Lys	Gly	Leu	Glu 495	Trp
Thr	Glu	Lys	Gly 500	Leu	Lys	Leu	Asn	Ala 505	Leu	Thr	Ala	Thr	Val 510	Leu	Arg
Val	Ser	Gln 515	Asn	Gly	Thr	Ser	His 520	Glu	Ser	Thr	Ala	Glu 525	Glu	Lys	Pro
Asp	Ser 530	Thr	Pro	Ser	Lys	Pro 535	Glu	His	Gln	Asn	Glu 540	Ala	Ser	His	Pro
Ala 545	His	Gln	Asp	Pro	Ala 550	Pro	Glu	Ala	Arg	Pro 555	Asp	Ser	Thr	Lys	Pro 560
Asp	Ala	Lys	Val	Ala 565	Asp	Ala	Glu	Asn	Lys 570	Pro	Ser	Gln	Ala	Thr 575	Ala
Asp	Ser	Gln	Ala 580	Glu	Gln	Pro	Ala	Gln 585	Glu	Ala	Gln	Ala	Ser 590	Ser	Val
Lys	Glu	Ala 595	Val	Arg	Asn	Glu.	Ser 600	Val	Glu	Asn	Ser	Ser 605	Lys	Glu	Asn
Ile	Pro 610	Ala	Thr	Pro	Asp	Lys 615	Gln	Ala	Glu			•			

(2) INFORMATION FOR SEQ ID NO: 73:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1774 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

TAGTGATGGT	ACTTGGCAAG	GAAAACAGTA	TCTGAAAGAA	GATGGCAGTC	AAGCAGCAAA	. 60
TGAGTGGGTT	TTNGATACTC	ATTATCAATC	TTGGTTCTAT	ATAAAAGCAG	ATGCTAACTA	120
TGCTGAAAAT	GAATGGCTAA	ÄGCAAGGTGA	CGACTATTTT	TACCTCAAAT	CTGGTGGCTA	180
TATGGCCAAA	TCAGAATGGG	TAGAAGACAA	GGGAGCCTTT	TATTATCTTG	ACCAAGATGG	240
AAAGATGAAA	AGAAATGCTT	GGGTAGGAAC	TTCCTATGTT	GGTGCAACAG	GTGCCAAAGT	300
AATAGAAGAC	TGGGTCTATG	ATTCTCAATA	CGATGCTTGG	TTTTATATCA	AAGCAGATGG	360
ACAGCACGCA	GAGAAAGAAT	GGCTCCAAAT	TAAAGGGAAG	GACTATTATT	TCAAATCCGG	420
TGGTTATCTA	CTGACAAGTC	AGTGGATTAA	TCAAGCTTAT	GTGAATGCTA	GTGGTGCCAA	480
AGTACAGCAA	GGTTGGCTTT	TTGACAAACA	ATACCAATCT	TGGTTTTACA	TCAAAGAAAA	540
TGGAAACTAT	GCTGATAAAG	AATGGATTTT	CGAGAATGGT	CACTATTATT	ATCTAAAATC	600
CGGTGGCTAC	ATGGCAGCCA	ATGAATGGAT	TTGGGATAAG	GAATCTTGGT	TTTATCTCAA	660

አ ጥጥጥር እ ጥርርር	AAATGGCTG	AAAAAGAATG	GGTCTACGAT	TCTCATAGTC	AAGCTTGGTA	720
				ATTTGGGATA		780
						0.40
				TGGGTCTACG		840
TCAAGCTTGG	TACTACTTCA	AATCTGGTGG	CTACATGGCG	AAAAATGAGA	CAGTAGATGG	900
TTATCAGCTT	GGAAGCGATG	GTAAATGGCT	TGGAGGAAAA	ACTACAAATG	AAAATGCTGC	960
TTACTATCAA	GTAGTGCCTG	TTACAGCCAA	TGTTTATGAT	TCAGATGGTG	AAAAGCTTTC	1020
CTATATATCG	CAAGGTAGTG.	TCGTATGGCT	AGATAAGGAT	AGAAAAAGTG	ATGACAAGCG	1080
CTTGGCTATT	ACTATTTCTG	GTTTGTCAGG	CTATATGAAA	ACAGAAGATT	TACAAGCGCT	1140
AGATGCTAGT	AAGGACTTTA	TCCCTTATTA	TGAGAGTGAT	GGCCACCGTT	TTTATCACTA	1200
TGTGGCTCAG	AATGCTAGTA	TCCCAGTAGC	TTCTCATCTT	TCTGATATGG	AAGTAGGCAA	1260
GAAATATTAT	TCGGCAGATG	GCCTGCATTT	TGATGGTTTT	AAGCTTGAGA	ATCCCTTCCT	1320
TTTCAAAGAT	TTAACAGAGG	СТАСАААСТА	CAGTGCTGAA	GAATTGGATA	AGGTATTTAG	1380
TTTGCTAAAC	ATTAACAATA	GCCTTTTGGA	GAACAAGGGC	GCTACTTTTA	AGGAAGCCGA	1440
AGAACATTAC	CATATCAATG	CTCTTTATCT	CCTTGCCCAT	AGTGCCCTAG	AAAGTAACTG	1500
GGGAAGAAGT	AAAATTGCCA	AAGATAAGAA	TAATTTCTTT	GGCATTACAG	CCTATGATAC	1560
GACCCCTTAC	CTTTCTGCTA	AGACATTTGA	TGATGTGGAT	AAGGGAATTT	TAGGTGCAAC	1620
CAAGTGGATT	AAGGAAAATT	ATATCGATAG	GGGAAGAACT	TTCCTTGGAA	ACAAGGCTTC	1680
TGGTATGAAT	GTGGAATATG	CTTCAGACCC	TTATTGGGGC	GAAAAAATTG	CTAGTGTGAT	1740
GATGAAAATC	AATGAGAAGC	TAGGTGGCAA	AGAT			1774

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 591 amino acids

 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
- Ser Asp Gly Thr Trp Gln Gly Lys Gln Tyr Leu Lys Glu Asp Gly Ser
- Gln Ala Ala Asn Glu Trp Val Xaa Asp Thr His Tyr Gln Ser Trp Phe
- Tyr Ile Lys Ala Asp Ala Asn Tyr Ala Glu Asn Glu Trp Leu Lys Gln 35 40 45
- Gly Asp Asp Tyr Phe Tyr Leu Lys Ser Gly Gly Tyr Met Ala Lys Ser 50 60

Glu Trp Val Glu Asp Lys Gly Ala Phe Tyr Tyr Leu Asp Gln Asp Gly 65 70 75 80 Lys Met Lys Arg Asn Ala Trp Val Gly Thr Ser Tyr Val Gly Ala Thr Gly Ala Lys Val Ile Glu Asp Trp Val Tyr Asp Ser Gln Tyr Asp Ala 100 105 110 Phe Tyr Ile Lys Ala Asp Gly Gln His Ala Glu Lys Glu Trp Leu Gln Ile Lys Gly Lys Asp Tyr Tyr Phe Lys Ser Gly Gly Tyr Leu Leu 130 135 140 Thr Ser Gln Trp Ile Asn Gln Ala Tyr Val Asn Ala Ser Gly Ala Lys Val Gln Gln Gly Trp Leu Phe Asp Lys Gln Tyr Gln Ser Trp Phe Tyr Ile Lys Glu Asn Gly Asn Tyr Ala Asp Lys Glu Trp Ile Phe Glu Asn 180 185 190 Gly His Tyr Tyr Tyr Leu Lys Ser Gly Gly Tyr Met Ala Ala Asn Glu 195 200 205 Trp Ile Trp Asp Lys Glu Ser Trp Phe Tyr Leu Lys Phe Asp Gly Lys 215 Met Ala Glu Lys Glu Trp Val Tyr Asp Ser His Ser Gln Ala Trp Tyr Tyr Phe Lys Ser Gly Gly Tyr Met Thr Ala Asn Glu Trp Ile Trp Asp 245 250 255 Lys Glu Ser Trp Phe Tyr Leu Lys Ser Asp Gly Lys Ile Ala Glu Lys 265 Glu Trp Val Tyr Asp Ser His Ser Gln Ala Trp Tyr Tyr Phe Lys Ser 275 280 285 Gly Gly Tyr Met Ala Lys Asn Glu Thr Val Asp Gly Tyr Gln Leu Gly Ser Asp Gly Lys Trp Leu Gly Gly Lys Thr Thr Asn Glu Asn Ala Ala 315 Tyr Tyr Gln Val Val Pro Val Thr Ala Asn Val Tyr Asp Ser Asp Gly Glu Lys Leu Ser Tyr Ile Ser Gln Gly Ser Val Val Trp Leu Asp Lys 340 345 350 Asp Arg Lys Ser Asp Asp Lys Arg Leu Ala Ile Thr Ile Ser Gly Leu 355 360 365 Ser Gly Tyr Met Lys Thr Glu Asp Leu Gln Ala Leu Asp Ala Ser Lys 370 375 380 Asp Phe Ile Pro Tyr Tyr Glu Ser Asp Gly His Arg Phe Tyr His Tyr 385 390 395 Val Ala Gln Asn Ala Ser Ile Pro Val Ala Ser His Leu Ser Asp Met

				405					410					415	
Glu	Val	Gly	Lys 420	Lys	Tyr	Tyr	Ser	Ala 425	Asp	Gly	Leu	His	Phe 430	Asp	Gly
Phe	Lys	Leu 435	Glu	Asn	Pro	Phe	Leu 440	Phe	Lys	Asp	Leu	Thr 445	Glu	Ala	Thr
Asn	Tyr 450	Ser	Ala	Glu	Glu	Leu 455	Asp	Lys	Val	Phe	Ser 460	Leu	Leu	Asn	Ile
Asn 465	Asn	Ser	Leu	Leu	Glu 470	Asn	Lys	Gly	Ala	Thr 475	Phe	Lys	Glu	Ala	Glu 480
Glu	His	Tyr	His	Ile 485	Asn	Ala	Leu	Tyr	Leu 490	Leu	Ala	His	Ser	Ala 495	Leu
Glu	Ser	Asn	Trp 500	Gly	Arg	Ser	Lys	Ile 505	Ala	Lys	Asp	Lys	Asn 510	Asn	Phe
Phe	Gly	Ile 515	Thr	Ala	Tyr	Asp	Thr 520	Thr	Pro	Tyr	Leu	Ser 525	Ala	Lys	Thr
Phe	Asp 530	Asp	Val	Asp	Lys	Gly 535	Ile	Leu	Gly	Ala	Thr 540	Lys	Trp	Ile	Lys
Glu 545	Asn	Tyr	Ile	Asp	Arg 550	Gly	Arg	Thr	Phe	Leu 555	Gly	Asn	Lys	Ala	Ser 560
Gly	Met	Asn	Val	Glu 565	Tyr	Ala	Ser	Asp	Pro 570	Tyr	Trp	Gly	Glu	Lys 575	Ile
Ala	Ser	Val	Met 580	Met	Lys	Ile	Asn	Glu 585	Lys	Leu	Gly	Gly	Lys 590	Asp	

(2) INFORMATION FOR SEQ ID NO: 75:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1105 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

TGGGATTCAA	TATGTCAGAG	ATGATACTAG	AGATAAAGAA	GAGGGAATAG	AGTATGATGA	60
CGCTGACAAT	GGGGATATTA	TTGTAAAAGT	AGCGACTAAA	CCTAAGGTAG	TAACCAAGAA	120
AATTTCAAGT	ACGCGAATTC	GTTATGAAAA	AGATGAAACA	AAAGACCGTA	GTGAAAATCC	180
TGTTACAATT	GATGGAGAGG	ATGGCTATGT	AACTACGACA	AGGACCTACG	ATGTTAATCC	240
AGAGACTGGT	TATGTTACCG	AACAGGTTAC	TGTTGATAGA	AAAGAAGCCA	CGGATACAGT	300
TATCAAAGTT	CCAGCTAAAA	GCAAGGTTGA	AGAAGTTCTT	GTTCCATTTG	CTACTAAATA	360
TGAAGCAGAC	AATGACCTTT	CTGCAGGACA	GGAGCAAGAG	ATTACTCTAG	GAAAGAATGG	420
GAAAACAGTT	ACAACGATAA	CTTATAATGT	AGATGGAAAG	AGTGGACAAG	TAACTGAGAG	480
TACTTTAAGT	CAAAAAAAAG	ACTCtCAAAC	AAGAGTTGTT	AAAAAAAGaA	CCArkCCCCA	540

_		a	አ ር አ አ መ አ ጥርጥር	$C \Lambda T C C C C C C = \Lambda$	CTCTTCATAA	600
AGTTCTTGTC	CAAGAAATTC	CAATCGAAAC	AGAATATCTC	GAIGGCCCAA	CICIIONINI	
AaGTCAAGAA	GTAGAAGAAG	TAGGAGAAAT	TGGTAAATTA	CTCTTACTAC	AATCTATACT	660
GGTAGATGAA	CGTGATGGAA	CAATTGAAGA	AACTACTTCT	CGTCAAATTA	CTAAAGAGAT	720
GGTAAAAAGA	CGTATAAGGA	GAGGGACGAG	AGAACCTGAA	AAAGTTGTTG	TTCCTGAGCA	780
ATCATCTATT	CCTTCGTATC	CTGTATCTGT	TACATCTAAC	CAAGGAACAG	ATGTAGCAGT	840
AGAACCAGCT	AAAGCAGTTG	CTCCAACAAC	AGACTGGAAA	CAAGAAAATG	GTATGTGGTA	900
TTTTTATAAT	ACTGATGGTT	CCATGGCAAC	AGGTTGGGTA	CAAGTTAATA	GTTCATGGTA	960
CTACCTCAAC	AGCAACGGTT	CTATGAAAGT	CAATCAATGG	TTCCAAGTTG	GTGGTAAATG	1020
GTATTATGTA	AATACATCGG	GTGAGTTAGC	GGTCAATACA	AGTATAGATG	GCTATAGAGT	1080
CAATGATAAT	GGTGAATGGG	TGCGT			.*	1105

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:
- Gly Ile Gln Tyr Val Arg Asp Asp Thr Arg Asp Lys Glu Glu Gly Ile 5 10 15
- Glu Tyr Asp Asp Ala Asp Asn Gly Asp Ile Ile Val·Lys Val Ala Thr 20 25 30
- Lys Pro Lys Val Val Thr Lys Lys Ile Ser Ser Thr Arg Ile Arg Tyr 35 40 45
- Glu Lys Asp Glu Thr Lys Asp Arg Ser Glu Asn Pro Val Thr Ile Asp 50 60
- Gly Glu Asp Gly Tyr Val Thr Thr Thr Arg Thr Tyr Asp Val Asn Pro 65 70 75 80
- Glu Thr Gly Tyr Val Thr Glu Gln Val Thr Val Asp Arg Lys Glu Ala 85 90 95
- Thr Asp Thr Val Ile Lys Val Pro Ala Lys Ser Lys Val Glu Glu Val
- Leu Val Pro Phe Ala Thr Lys Tyr Glu Ala Asp Asn Asp Leu Ser Ala
- Gly Gln Glu Gln Glu Ile Thr Leu Gly Lys Asn Gly Lys Thr Val Thr
- Thr Ile Thr Tyr Asn Val Asp Gly Lys Ser Gly Gln Val Thr Glu Ser

Thr	Leu	Ser	Gln	Lys 165	Lys	Asp	Ser	Gln	Thr 170	Arg	Val	Val	Lys	Lys 175	Arg
Thr	Xaa	Pro	Gln 180	Val	Leu	Val	Gln	Glu 185	Ile	Pro	Ile	Glu	Thr 190	Glu	Tyr
Leu	Asp	Gly 195	Pro	Thr	Leu	Asp	Lys 200	Ser	Gln	Glu	Val	Glu 205	Glu	Val	Gly
Glu	Ile 210	Gly	Lys	Leu	Leu	Leu 215	Leu	Gln	Ser	Ile	Leu 220	Val	Asp	Glu	Arg
Asp 225	Gly	Thr	Ile	Glu	Glu 230	Thr	Thr	Ser	Arg	Gln 235	Ile	Thr	Lys	Glu	Met 240
Val	Lys	Arg	Arg	Ile 245	Arg	Arg	Gly	Thr	Arg 250	Glu	Pro	Glu	Lys	Val 255	Val
Val	Pro	Glu	Gln 260	Ser	Ser	Ile	Pro	Ser 265	Tyr	Pro	Val	Ser	Val 270	Thr	Ser
Asn	Gln	Gly 275	Thr	Asp	Val	Ala	Val 280	Glu	Pro	Ala	Lys	Ala 285	Val	Ala	Pro
Thr	Thr 290	Asp	Trp	Lys	Gln	Glu 295	Asn	Gly	Met	Trp	Туr 300	Phe	Tyr	Asn	Thr
Asp 305	Gly	Ser	Met	Ala	Thr 310	Gly	Trp	Val	Gln	Val 315	Asn	Ser	Ser	Trp	Туг 320
Tyr	Leu	Asn	Ser	Asn 325	Gly	Ser	Met	Lys	Val 330	Asn	Gln	Trp	Phe	Gln 335	Val
Gly	Gly	Lys	Trp	Tyr	Tyr	Val	Asn	Thr 345	Ser	Gly	Glu	Leu	350	Val	Asr
Thr	Ser	1le 355		Gly	Tyr	Arg	Val 360	. Asņ	Asp	Asr	Gly	Glu 365	Trp	Val	Arg

(2) INFORMATION FOR SEQ ID NO: 77:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

60	TCCAACATTA	AATTTTTATC	GACGGGTGAA	AAACCTTTAT	GAAGCATTAA	GGATAATAGA
120	GTGTTTGGGC	TATACCTTCC	AGAGCATGGC	AACTAAATGG	CATAGGGAAG	TCTAGGAGCA
180	AAAATCAGAT	AACTGGATTG	TGATTTTACC	ACTTGGTTGG	CAGGCTGTTC	ACCTAATGCT
240				TTGGGGTCTG		
300				TCACACGTCA		
360				CTCGTCCAGG		
420	TTGAAGAGCG					

С .			•			661
TATGGGTTAC	TTCGCTTTAG	AGCATGCTTA	TGGCCGACCA	GAGGAGTTTC	AAGATTTTGT	660
TCATATTGAG	TTTATGCCCT	TGATGTCCCA	TCCTTTGGGC	TTGAGTTGGG	GGTATCAGCT	600
TTATAGTTTT	GCCCAGCTCA	AGGATGAACT	CATTCCTTAT	CTCGTTGAAA	TGAACTATAC	540
TCCTGTCAAT	ATTTATGAAG	TTCACGCTGG	ATCATGGAAA	AGAAATTCTG	ATGGCAGTCC	480

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 220 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- Asp Asn Arg Glu Ala Leu Lys Thr Phe Met Thr Gly Glu Asn Phe Tyr
- Leu Gln His Tyr Leu Gly Ala His Arg Glu Glu Leu Asn Gly Glu His 20 25 30
- Gly Tyr Thr Phe Arg Val Trp Ala Pro Asn Ala Gln Ala Val His Leu 35 40 45
- Val Gly Asp Phe Thr Asn Trp Ile Glu Asn Gln Ile Pro Met Val Arg 50 60
- Asn Asp Phe Gly Val Trp Glu Val Phe Thr Asn Met Ala Gln Glu Gly 65 70 75 80
- His Ile Tyr Lys Tyr His Val Thr Arg Gln Asn Gly His Gln Leu Met 85 . 90 95
- Lys Ile Asp Pro Phe Ala Val Arg Tyr Glu Ala Arg Pro Gly Thr Gly 100 105 110
- Ala Ile Val Thr Glu Leu Pro Glu Lys Lys Trp Lys Asp Gly Leu Trp 115 120 125
- Leu Ala Arg Arg Lys Arg Trp Gly Phe Glu Glu Arg Pro Val Asn Ile 130 135 140
- Tyr Glu Val His Ala Gly Ser Trp Lys Arg Asn Ser Asp Gly Ser Pro 145 150 155 160
- Tyr Ser Phe Ala Gln Leu Lys Asp Glu Leu Ile Pro Tyr Leu Val Glu 165 170 175
- Met Asn Tyr Thr His Ile Glu Phe Met Pro Leu Met Ser His Pro Leu 180 185 190
- Gly Leu Ser Trp Gly Tyr Gln Leu Met Gly Tyr Phe Ala Leu Glu His 195 200 205
- Ala Tyr Gly Arg Pro Glu Glu Phe Gln Asp Phe Val

215 220 210

(2) INFORMATION FOR SEQ ID NO: 79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 976 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

AGATTTTGTC	GAGGAGTGTC	ATACCCATAA	TATTGGGGTT	ATTGTGGACT	GGGTACCAGN	60
TCACTTTACC	ATCAACGATG	ATGCCTTAGC	CTATTATGAT	GGGACACCGA	CTTTTGAATA	120
CCAAGACCAT	AATAAGGCTC	ATAACCATGG	TTGGGGTGCC	CTTAATTTTG	ACCTTGGAAA	180
AAATGAAGTC	CAGTCCTTCT	TAATTTCTTG	CATTAAGCAT	TGGATTGATG	TCTATCATTT	240
GGATGGTATT	CGTGTGGATG	CTGTTAGCAA	CATGCTCTAT	TTGGACTATG	ATGATGCTCC	300
ATGGACACCT	AATAAAGATG	GCGGAAATCT	CAACTATGAA	GGTTATTATT	TCCTTCAGCG	360
CTTGAATGAG	GTTATTAAGT	TAGAATATCC	AGATGTGATG	ATGATTGCAG	AAGAAAGTTC	420
GTCTGCGATC	AAGATTACGG	GAATGAAAGA	GATTGGTGGT	CTAGGATTTG	ACTACAAATG	480
GAACATGGGC	TGGATGAATG	ATATCCTCCG	TTTCTACGAA	GAAGATCCGA	TCTATCGTAA	540
ATATGACTTT	AACCTGGTGA	CTTTCAGCTT	TATGTATGTT	TNCAAGGAGA	ATTATCTCTT	600
GCCATTCTCG	CACGATGAAG	TGGTTCATGG	CAAGAAGAGT	ATGATGCATA	AGATGTGGGG	660
AGATCGTTAC	AATCAATTCG	CAGGCTTGCG	CAATCTCTAT	ACGTACCAAA	TTTGTCACCC	720
TGGTAAGAAA	TTGCTCTTCA	TGGGTAGCGA	ATACGGTCAA	TTCCTAGAAT	GGAAATCTGA	780
AGAACAGTTG	GAATGGTCTA	ACCTAGAAGA	CCCAATGAAT	GCTAAGATGA	AGTATTTCGC	840
TTCTCAGCTA	AACCAGTTTT	ACAAAGATCA	TCGCTGTCTG	TGGGAAATTG	ATACCAGCTA	900
TGATGGTATT	GAAATCATTG	ATGCGGATAA	TCGAGACCAG	AGTGTTCTTT	CCTTTATTCG	960
TAAGGGTAAA	AAGGGA					976

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:
- Asp Phe Val Glu Glu Cys His Thr His Asn Ile Gly Val Ile Val Asp 10

Trp Val Pro Xaa His Phe Thr Ile Asn Asp Asp Ala Leu Ala Tyr Tyr Asp Gly Thr Pro Thr Phe Glu Tyr Gln Asp His Asn Lys Ala His Asn 35 40 45 His Gly Trp Gly Ala Leu Asn Phe Asp Leu Gly Lys Asn Glu Val Gln 50 60 Ser Phe Leu Ile Ser Cys Ile Lys His Trp Ile Asp Val Tyr His Leu 65 70 75 80 Asp Gly Ile Arg Val Asp Ala Val Ser Asn Met Leu Tyr Leu Asp Tyr 85 90 95 Asp Asp Ala Pro Trp Thr Pro Asn Lys Asp Gly Gly Asn Leu Asn Tyr 100 105 110 Glu Gly Tyr Tyr Phe Leu Gln Arg Leu Asn Glu Val Ile Lys Leu Glu 115 120 Tyr Pro Asp Val Met Met Ile Ala Glu Glu Ser Ser Ala Ile Lys 135 Ile Thr Gly Met Lys Glu Ile Gly Gly Leu Gly Phe Asp Tyr Lys Trp 145 150 150 Asn Met Gly Trp Met Asn Asp Ile Leu Arg Phe Tyr Glu Glu Asp Pro Ile Tyr Arg Lys Tyr Asp Phe Asn Leu Val Thr Phe Ser Phe Met Tyr 185 Val Xaa Lys Glu Asn Tyr Leu Leu Pro Phe Ser His Asp Glu Val Val His Gly Lys Lys Ser Met Met His Lys Met Trp Gly Asp Arg Tyr Asn 210 220 Gln Phe Ala Gly Leu Arg Asn Leu Tyr Thr Tyr Gln Ile Cys His Pro 225 230 235 240 Gly Lys Lys Leu Leu Phe Met Gly Ser Glu Tyr Gly Gln Phe Leu Glu Trp Lys Ser Glu Glu Gln Leu Glu Trp Ser Asn Leu Glu Asp Pro Met Asn Ala Lys Met Lys Tyr Phe Ala Ser Gln Leu Asn Gln Phe Tyr Lys 275 280 285 Asp His Arg Cys Leu Trp Glu Ile Asp Thr Ser Tyr Asp Gly Ile Glu 290 295 300 Ile Ile Asp Ala Asp Asn Arg Asp Gln Ser Val Leu Ser Phe Ile Arg Lys Gly Lys Lys Gly

(2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2134 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

(XI) BEQUERO					
ATCTGTAGTT TATGCG	GGATG AAACACTTAI	TACTCATACT	GCTGAGAAAC	CTAAAGAGGA	60
AAAAATGATA GTAGAA	AGAAA AGGCTGATAA	AGCTTTGGAA	ACTAAAAATA	TAGTTGAAAG	120
GACAGAACAA AGTGAA	ACCTA GTTCAACTGA	GGCTATTGCA	TCTGAGNAGA	AAGAAGATGA	180
AGCCGTAACT CCAAAA	AGAGG AAAAAGTGTC	TGCTAAACCG	GAAGAAAAAG	CTCCAAGGAT	240
AGAATCACAA GCTTCA	AAATC AAGAAAAACC	GCTCAAGGAA	GATGCTAAAG	CTGTAACAAA	300
TGAAGAAGTG AATCAA	AATGA TTGAAGACAC	GAAAGTGGAT	TTTAATCAAA	ATTGGTACTT	360
TAAACTCAAT GCAAAT	TTCTA AGGAAGCCA	TAAACCTGAT	GCAGACGTAT	CTACGTGGAA	420
AAAATTAGAT TTACCO	GTATG ACTGGAGTA	r CTTTAACGAT	TTCGATCATG	AATCTCCTGC	480
ACAAAATGAA GGTGGA	ACAGC TCAACGGTG	GGAAGCTTGG	TATCGCAAGA	CTTTCAAACT	540
AGATGAAAAA GACCT	CAAGA AAAATGTTC	G CCTTACTTTT	GATGGCGTCT	ACATGGATTC	600
TCAAGTTTAT GTCAA	TGGTC AGTTAGTGG	G GCATTATCCA	AATGGTTATA	ACCAGTTCTC	660
ATATGATATC ACCAA	ATACC TTCAAAAAG.	A TGGTCGTGAG	AATGTGATTG	CTGTCCATGC	720
AGTCAACAAA CAGCC	AAGTA GCCGTTGGT.	A TTCAGGAAGT	GGTATCTATC	GTGATGTGAC	780
TTTACAAGTG ACAGA	TAAGG TGCATGTTG	A GAAAAATGGG	ACAACTATTT	TAACACCAAA	840.
ACTTGAAGAA CAACA	ACATG GCAAGGTTG	A AACTCATGTG	ACCAGCAAAA	TCGTCAATAC	900
GGACGACAAA GACCA	TGAAC TTGTAGCCG	A ATATCAAATC	GTTGAACGAG	GTGGTCATGC	960
TGTAACAGGC TTAGT	TTCGTA CAGCGAGTC	G TACCTTAAAA	GCACATGAAT	CAACAAGCCT	1020
AGATGCGATT TTAGA	AAGTTG AAAGACCAA	A ACTCTGGACT	GTTTTAAATG	ACAAACCTGC	1080
CTTGTACGAA TTGAT	TTACGC GTGTTTACC	G TGACGGTCAA	TTGGTTGATG	CTAAGAAGGA	1140
TTTGTTTGGT TACCG	STTACT ATCACTGGA	C TCCAAATGAA	GGTTTCTCTT	TGAATGGTGA	1200
ACGTATTAAA TTCCA	ATGGAG TATCCTTGC	A CCACGACCAT	GGGGCGCTTG	GAGCAGAAGA	1260
AAACTATAAA GCAGA	AATATC GCCGTCTCA	A ACAAATGAAC	GAGATGGGAG	TTAACTCCAT	1320
CCGTACAACC CACAA	ACCCTG CTAGTGAGC	A AACCTTGCA	A ATCGCAGCAG	AACTAGGTTT	1380
ACTCGTTCAG GAAGA	AGGCCT TTGATACGT	G GTATGGTGG	AAGAAACCTI	ATGACTATGG	1440
ACGTTTCTTT GAAAA	AAGATG CCACTCACC	C AGAAGCTCG	AAAGGTGAAA	A AATGGTCTGA	1500
TTTTGACCTA CGTAC	CCATGG TCGAAAGAC	G CAAAAACAA	C CCTGCTATCT	TCATGTGGTC	1560
AATTGGTAAT GAAAT	•				
TTTGGTTAAG GTTA	TCAAGG ATGTTGATA	AA GACTCGCTA	r GTTACCATGO	GAGCAGATAA	1680

					MOON MOOMOT	1740
ATTCCGTTTC	GGTAATGGTA	GCGGAGGGCA	TGAGAAAATT	GCTGATGAAC	TCGATGCTGT	T / 40
TGGATTTAAC	TATTCTGAAG	ATAATTACAA	AGCCCTTAGA	GCTAAGCATC	CAAAATGGTT	1800
				GGAAGTTACT		1860
				GAACAGTCAG		1920
				ACTTTTGACC		1980
TGATCGIGIG	GG11GGGGG1	TCTCCACAGG	TACGGACTAT	ATTGGTGAAC	CTACACCATG	2040
						2100
GCACAACCAA	AATCAAACTC	CTGTTAAGAG	CTCTTACTT	GGTATCGTAG	ATACAGCCGG	
CATTCCAAAA	CATGACTTCT	ATCTCTACCA	AAGC			2134

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 711 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
- Ser Val Val Tyr Ala Asp Glu Thr Leu Ile Thr His Thr Ala Glu Lys
- Pro Lys Glu Glu Lys Met Ile Val Glu Glu Lys Ala Asp Lys Ala Leu 20 25 30
- Glu Thr Lys Asn Ile Val Glu Arg Thr Glu Gln Ser Glu Pro Ser Ser 35 40 45
- Thr Glu Ala Ile Ala Ser Glu Xaa Lys Glu Asp Glu Ala Val Thr Pro 50 60
- Lys Glu Glu Lys Val Ser Ala Lys Pro Glu Glu Lys Ala Pro Arg Ile 65 70 75 80
- Glu Ser Gln Ala Ser Asn Gln Glu Lys Pro Leu Lys Glu Asp Ala Lys 85 90 95
- Ala Val Thr Asn Glu Glu Val Asn Gln Met Ile Glu Asp Arg Lys Val
- Asp Phe Asn Gln Asn Trp Tyr Phe Lys Leu Asn Ala Asn Ser Lys Glu 115 120 125
- Ala Ile Lys Pro Asp Ala Asp Val Ser Thr Trp Lys Lys Leu Asp Leu 130 135 140
- Pro Tyr Asp Trp Ser Ile Phe Asn Asp Phe Asp His Glu Ser Pro Ala 145 150 150 160
- Gln Asn Glu Gly Gly Gln Leu Asn Gly Gly Glu Ala Trp Tyr Arg Lys 165 170 175
- Thr Phe Lys Leu Asp Glu Lys Asp Leu Lys Lys Asn Val Arg Leu Thr 180 185 190

Phe Asp Gly Val Tyr Met Asp Ser Gln Val Tyr Val Asn Gly Gln Leu Val Gly His Tyr Pro Asn Gly Tyr Asn Gln Phe Ser Tyr Asp Ile Thr Lys Tyr Leu Gln Lys Asp Gly Arg Glu Asn Val Ile Ala Val His Ala Val Asn Lys Gln Pro Ser Ser Arg Trp Tyr Ser Gly Ser Gly Ile Tyr Arg Asp Val Thr Leu Gln Val Thr Asp Lys Val His Val Glu Lys Asn 260 Gly Thr Thr Ile Leu Thr Pro Lys Leu Glu Glu Gln Gln His Gly Lys Val Glu Thr His Val Thr Ser Lys Ile Val Asn Thr Asp Asp Lys Asp His Glu Leu Val Ala Glu Tyr Gln Ile Val Glu Arg Gly Gly His Ala 310 Val Thr Gly Leu Val Arg Thr Ala Ser Arg Thr Leu Lys Ala His Glu Ser Thr Ser Leu Asp Ala Ile Leu Glu Val Glu Arg Pro Lys Leu Trp 345 Thr Val Leu Asn Asp Lys Pro Ala Leu Tyr Glu Leu Ile Thr Arg Val Tyr Arg Asp Gly Gln Leu Val Asp Ala Lys Lys Asp Leu Phe Gly Tyr Arg Tyr Tyr His Trp Thr Pro Asn Glu Gly Phe Ser Leu Asn Gly Glu Arg Ile Lys Phe His Gly Val Ser Leu His His Asp His Gly Ala Leu 405 Gly Ala Glu Glu Asn Tyr Lys Ala Glu Tyr Arg Arg Leu Lys Gln Met 425 Lys Glu Met Gly Val Asn Ser Ile Arg Thr Thr His Asn Pro Ala Ser Glu Gln Thr Leu Gln Ile Ala Ala Glu Leu Gly Leu Leu Val Gln Glu Glu Ala Phe Asp Thr Trp Tyr Gly Gly Lys Lys Pro Tyr Asp Tyr Gly Arg Phe Phe Glu Lys Asp Ala Thr His Pro Glu Ala Arg Lys Gly Glu 490 Lys Trp Ser Asp Phe Asp Leu Arg Thr Met Val Glu Arg Gly Lys Asn 500 Asn Pro Ala Ile Phe Met Trp Ser Ile Gly Asn Glu Ile Gly Glu Ala 520

Asn	Gly 530	Asp	Ala	His	Ser	Leu 535	Ala	Thr	Val	Lys	Arg 540	Leu	Val	Lys	Val
Ile 545	Lys	Asp	Val	Asp	Lys 550	Thr	Arg	Tyr	Val	Thr 555	Met	Gly	Ala	Asp	Lys 560
Phe	Arg	Phe	Gly	Asn 565	Gly	Ser	Gly	Gly	His 570	Glu	Lys	Ile	Ala	Asp 575	Glu
Leu	Asp	Ala	Val 580	Gly	Phe	Asn	Tyr	Ser 585	Glu	Asp	Asn	Tyr	Lys 590	Ala	Leu
Arg	Ala	Lys 595	His	Pro	Lys	Trp	Leu 600	Ile	Tyr	Gly	Ser	Glu 605	Thr	Ser	Ser
Ala	Thr 610	Arg	Thr	Arg	Gly	Ser 615	Tyr	Tyr	Arg	Pro	Glu 620	Arg	Glu	Leu	Lys
His 625	Ser	Asn	Gly	Pro	Glu 630	Arg	Asn	Tyr	Glu	Gln 635	Ser	Asp	Tyr	Gly	Asn 640
Asp	Arg	Val	Gly	Trp 645	Gly	Lys	Thr	Ala	Thr 650	Ala	Ser	Trp	Thr	Phe 655	Asp
Arg	Asp	Asn	Ala 660	Gly	Tyr	Ala	Gly	Gln 665	Phe	Ile	Trp	Thr	Gly 670	Thr	Asp
Tyr	Ile	Gly 675	Glu	Pro	Thr	Pro	Trp 680	His	Asn	Gln	Asn	Gln 685	Thr	Pro	Val
Lys	Ser 690	Ser	Tyr	Phe	Gly	Ile 695	Val	Asp	Thr	Ala	Gly 700	Ile	Pro	Lys	His
Asp 705		Tyr	Leu	Tyr	Gln 710	Ser									

(2) INFORMATION FOR SEQ ID NO: 83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2167 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

TTACTTTGGT	ATCGTAGATA	CAGCCGGCAT	TCCAAAACAT	GACTTCTATC	TCTACCAAAG	60
CCAATGGGTT	TCTGTTAAGA	AGAAACCGAT	GGTACACCTT	CTTCCTCACT	GGAACTGGGA	120
AAACAAAGAA	TTAGCATCCA	AAGTAGCTGA	CTCAGAAGGT	AAGATTCCAG	TTCGTGCTTA	180
TTCGAATGCT	TCTAGTGTAG	AATTGTTCTT	GAATGGAAAA	TCTCTTGGTC	TTAAGACTTT	240
СААТААААА	CAAACCAGCG	ATGGGCGGAC	TTACCAAGAA	GGTGCAAATG	CTAATGAACT	300
TTATCTTGAA	TGGAAAGTTG	CCTATCAACC	AGGTACCTTG	GAAGCAATTG	CTCGTGATGA	360
ATCTGGCAAG	GAAATTGCTC	GAGATAAGAT	TACGACTGCT	GGTAAGCCAG	CGGCAGTTCG	420
TCTTATTAAG	GAAGACCATG	CGATTGCAGC	AGATGGAAAA	GACTTGACTT	ACATCTACTA	480

TGAAATTGTT	GACAGCCAGG	GGAATGTGGT	TCCAACTGCT	AATAATCTGG	TTCGCTTCCA	540
ATTGCATGGC	CAAGGTCAAC	TGGTCGGTGT	AGATAACGGA	GAACAAGCCA	GCCGTGAACG	600
CTATAAGGCG	CAAGCAGATG	GTTCTTGGAT	TCGTAAAGCA	TTTAATGGTA	AAGGTGTTGC	660
CATTGTCAAA	TCAACTGAAC	AAGCAGGGAA	ATTCACCCTG	ACTGCCCACT	CTGATCTCTT	720
GAAATCGAAC	CAAGTCACTG	TCTTTACTGG	TAAGAAAGAA	GGACAAGAGA	AGACTGTTTT	780
GGGGACAGAA	GTGCCAAAAG	TACAGACCAT	TATTGGAGAG	GCACCTGAAA	TGCCTACCAC	840
TGTTCCGTTT	GTATACAGTG	ATGGTAGCCG	TGCAGAACGT	CCTGTAACCT	GGTCTTCAGT	900
AGATGTGAGC	AAGCCTGGTA	TTGTAACGGT	GAAAGGTATG	GCTGACGGAC	GAGAAGTAGA	960
AGCTCGTGTA	GAAGTGATTG	CTCTTAAATC	AGAGCTACCA	GTTGTGAAAC	GTATTGCTCC	1020
AAATACTGAC	TTGAATTCTG	TAGACAAATC	TGTTTCCTAT	GTTTTGATTG	ATGGAAGTGT	1080
TGAAGAGTAT	GAAGTGGACA	AGTGGGAGAT	TGCCGAAGAA	GATAAAGCTA	AGTTAGCAAT	1140
TCCAGGTTCT	CGTATTCAAG	CGACCGGTTA	TTTAGAAGGT	CAACCAATTC	ATGCAACCCT	1200
TGTGGTAGAA	GAAGGCAATC	CTGCGGCACC	TGCAGTACCA	ACTGTAACGG	TTGGTGGTGA	1260
GGCAGTAACA	GGTCTTACTA	GTCAAAAACC	AATGCAATAC	CGCACTCTTG	CTTATGGAGC	1320
TAAGTTGCCA	GAAGTCACAG	CAAGTGCTAA	AAATGCAGCT	GTTACAGTTC	TTCAAGCAAG	1380
CGCAGCAAAC	GGCATGCGTG	CGAGCATCTT	TATTCAGCCT	AAAGATGGTG	GCCCTCTTCA	1440
AACCTATGCA	ATTCAATTCC	TTGAAGAAGC	GCCAAAAATT	GCTCACTTGA	GCTTGCAAGT	1500
GGAAAAAGCT	GACAGTCTCA	AAGAAGACCA	AACTGTCAAA	TTGTCGGTTC	GAGCTCACTA	1560
TCAAGATGGA	ACGCAAGCTG	TATTACCAGC	TGATAAAGTA	ACCTTCTCTA	CAAGTGGTGA	1620
AGGGGAAGTC	GCAATTCGTA	AAGGAATGCT	TGAGTTGCAT	AAGCCAGGAG	CAGTCACTCT	1680
GAACGCTGAA	TATGAGGGAG	CTAAAGACCA	AGTTGAACTC	ACTATCCAAG	CCAATACTGA	1740
GAAGAAGATT	GCGCAATCCA	TCCGTCCTGT	AAATGTAGTG	ACAGATTTGC	ATCAGGAACC	1800
AAGTCTTCCA	GCAACAGTAA	CAGTTGAGTA	TGACAAAGGT	TTCCCTAAAA	CTCATAAAGT	1860
CACTTGGCAA	GCTATTCCGA	AAGAAAAACT	AGACTCCTAT	CAAACATTTG	AAGTACTAGG	1920
TAAAGTTGAA	. GGAATTGACC	TTGAAGCGCG	TGCAAAAGTC	TCTGTAGAAG	GTATCGTTTC	1980
AGTTGAAGAA	. GTCAGTGTGA	CAACTCCAAT	CGCAGAAGCA	CCACAATTAC	CAGAAAGTGT	2040
TCGGACATAT	GATTCAAATG	GTCACGTTTC	ATCAGCTAAG	GTTGCATGGG	ATGCGATTCG	2100
TCCAGAGCAA	TACGCTAAGG	AAGGTGTCTT	TACAGTTAAT	GGTCGCTTAG	AAGGTACGCA	2160
ATTAACA						2167

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 722 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
- Tyr Phe Gly Ile Val Asp Thr Ala Gly Ile Pro Lys His Asp Phe Tyr 1 10 15
- Leu Tyr Gln Ser Gln Trp Val Ser Val Lys Lys Lys Pro Met Val His 20 25 30
- Leu Leu Pro His Trp Asn Trp Glu Asn Lys Glu Leu Ala Ser Lys Val
- Ala Asp Ser Glu Gly Lys Ile Pro Val Arg Ala Tyr Ser Asn Ala Ser 50 55
- Ser Val Glu Leu Phe Leu Asn Gly Lys Ser Leu Gly Leu Lys Thr Phe 65 70 75 80
- Asn Lys Lys Gln Thr Ser Asp Gly Arg Thr Tyr Gln Glu Gly Ala Asn 85 90 95
- Ala Asn Glu Leu Tyr Leu Glu Trp Lys Val Ala Tyr Gln Pro Gly Thr
- Leu Glu Ala Ile Ala Arg Asp Glu Ser Gly Lys Glu Ile Ala Arg Asp 115 120 125
- Lys Ile Thr Thr Ala Gly Lys Pro Ala Ala Val Arg Leu Ile Lys Glu 130 135 140
- Asp His Ala Ile Ala Ala Asp Gly Lys Asp Leu Thr Tyr Ile Tyr Tyr 145 150 155 160
- Glu Ile Val Asp Ser Gln Gly Asn Val Val Pro Thr Ala Asn Asn Leu 165 170 175
- Val Arg Phe Gln Leu His Gly Gln Gly Gln Leu Val Gly Val Asp Asn 180 185 190
- Gly Glu Gln Ala Ser Arg Glu Arg Tyr Lys Ala Gln Ala Asp Gly Ser 195 200 205
- Trp Ile Arg Lys Ala Phe Asn Gly Lys Gly Val Ala Ile Val Lys Ser
- Thr Glu Gln Ala Gly Lys Phe Thr Leu Thr Ala His Ser Asp Leu Leu 225 230 235
- Lys Ser Asn Gln Val Thr Val Phe Thr Gly Lys Lys Glu Gly Gln Glu 245 250 255
- Lys Thr Val Leu Gly Thr Glu Val Pro Lys Val Gln Thr Ile Ile Gly 260 265 270
- Glu Ala Pro Glu Met Pro Thr Thr Val Pro Phe Val Tyr Ser Asp Gly 275 280 285
- Ser Arg Ala Glu Arg Pro Val Thr Trp Ser Ser Val Asp Val Ser Lys 290 295 300

Pro Gly Ile Val Thr Val Lys Gly Met Ala Asp Gly Arg Glu Val Glu 310 Ala Arg Val Glu Val Ile Ala Leu Lys Ser Glu Leu Pro Val Val Lys Arg Ile Ala Pro Asn Thr Asp Leu Asn Ser Val Asp Lys Ser Val Ser Tyr Val Leu Ile Asp Gly Ser Val Glu Glu Tyr Glu Val Asp Lys Trp Glu Ile Ala Glu Glu Asp Lys Ala Lys Leu Ala Ile Pro Gly Ser Arg Ile Gln Ala Thr Gly Tyr Leu Glu Gly Gln Pro Ile His Ala Thr Leu 385 390 395 400 Val Val Glu Glu Gly Asn Pro Ala Ala Pro Ala Val Pro Thr Val Thr Val Gly Gly Glu Ala Val Thr Gly Leu Thr Ser Gln Lys Pro Met Gln 425 Tyr Arg Thr Leu Ala Tyr Gly Ala Lys Leu Pro Glu Val Thr Ala Ser 440 Ala Lys Asn Ala Ala Val Thr Val Leu Gln Ala Ser Ala Ala Asn Gly Met Arg Ala Ser Ile Phe Ile Gln Pro Lys Asp Gly Gly Pro Leu Gln Thr Tyr Ala Ile Gln Phe Leu Glu Glu Ala Pro Lys Ile Ala His Leu 490 485 Ser Leu Gln Val Glu Lys Ala Asp Ser Leu Lys Glu Asp Gln Thr Val 505 510 Lys Leu Ser Val Arg Ala His Tyr Gln Asp Gly Thr Gln Ala Val Leu Pro Ala Asp Lys Val Thr Phe Ser Thr Ser Gly Glu Gly Glu Val Ala 535 Ile Arg Lys Gly Met Leu Glu Leu His Lys Pro Gly Ala Val Thr Leu 560 555 Asn Ala Glu Tyr Glu Gly Ala Lys Asp Gln Val Glu Leu Thr Ile Gln 570 Ala Asn Thr Glu Lys Lys Ile Ala Gln Ser Ile Arg Pro Val Asn Val 585 Val Thr Asp Leu His Gln Glu Pro Ser Leu Pro Ala Thr Val Thr Val Glu Tyr Asp Lys Gly Phe Pro Lys Thr His Lys Val Thr Trp Gln Ala Ile Pro Lys Glu Lys Leu Asp Ser Tyr Gln Thr Phe Glu Val Leu Gly 635 630 Lys Val Glu Gly Ile Asp Leu Glu Ala Arg Ala Lys Val Ser Val Glu

				645					650					655	
Gly	Ile	Val	Ser 660	Val	Glu	Glu	Val	Ser 665	Val	Thr	Thr	Pro	Ile 670	Ala	Glu
Ala	Pro	Gln 675	Leu	Pro	Glu	Ser	Val 680	Arg	Thr	Tyr	Asp	Ser 685	Asn	Gly	His
Val	Ser 690	Ser	Ala	Lys	Val	Ala 695	Trp	Asp	Ala	Ile	Arg 700	Pro	Glu	Gln	Tyr
Ala 705	Lys	Glu	Gly	Val	Phe 710	Thr	Val	Asn	Gly	Arg 715	Leu	Glu	Gly	Thr	Gln 720
Leu	Thr														

(2) INFORMATION FOR SEQ ID NO: 85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2329 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

AGCTAAGGTT	GCATGGGATG	CGATTCGTCC	AGAGCAATAC	GCTAAGGAAG	GTGTCTTTAC	60
AGTTAATGGT	CGCTTAGAAG	GTACGCAATT	AACAACTAAA	CTTCATGTTC	GCGTATCTGC	120
TCAAACTGAG	CAAGGTGCAA	ACATTTCTGA	CCAATGGACC	GGTTCAGAAT	TGCCACTTGC	180
CTTTGCTTCA	GACTCAAATC	CAAGCGACCC	AGTTTCAAAT	GTTAATGACA	AGCTCATTTC	240
CTACAATAAC	CAACCAGCCA	ATCGTTGGAC	AAACTGGAAT	CGTACTAATC	CAGAAGCTTC	300
AGTCGGTGTT	CTGTTTGGAG	ATTCAGGTAT	CTTGAGCAAA	CGCTCCGTTG	ATAATCTAAG	360
TGTCGGATTC	CATGAAGACC	ATGGAGTTGG	TGTACCGAAG	TCTTATGTGA	TTGAGTATTA	420
TGTTGGTAAG	ACTGTCCCAA	CAGCTCCTAA	AAACCCTAGT	TTTGTTGGTA	ATGAGGACCA	480
TGTCTTTAAT	GATTCTGCCA	ACTGGAAACC	AGTTACTAAT	CTAAAAGCCC	CTGCTCAACT	540
CAAGGCTGGA	GAAATGAACC	ACTTTAGCTT	TGATAAAGTT	GAAACCTATG	CTGTTCGTAT	600
TCGCATGGTT	AAAGCAGATA	ACAAGCGTGG	AACGTCTATC	ACAGAGGTAC	AAATCTTTGC	. 660
GAAACAAGTT	GCGGCAGCCA	AGCAAGGACA	AACAAGAATC	CAAGTTGACG	GCAAAGACTT	720
AGCAAACTTC	AACCCTGATT	TGACAGACTA	CTACCTTGAG	TCTGTAGATG	GAAAAGTTCC	780
GGCAGTCACA	GCAAGTGTTA	GCAACAATGG	TCTCGCTACC	GTCGTTCCAA	GCGTTCGTGA	840
AGGTGAGCCA	GTTCGTGTCA	TCGCGAAAGC	TGAAAATGGC	GACATCTTAG	GAGAATACCG	900
TCTGCACTTC	ACTAAGGATA	AGAGCTTACT	TTCTCATAAA	CCAGTTGCTG	CGGTTAAACA	960
AGCTCGCTTG	CTACAAGTAG	GTCAAGCACT	TGAATTGCCG	ACTAAGGTTC	CAGTTTACTT	1020
CACAGGTAAA	GACGGCTACG	AAACAAAAGA	CCTGACAGTT	GAATGGGAAG	AAGTTCCAGC	1080

GGAAAATCTG	ACAAAAGCAG	GTCAATTTAC	TGTTCGAGGC	CGTGTCCTTG	GTAGTAACCT	1140
TGTTGCTGAG	ATCACTGTAC	GAGTGACAGA	CAAACTTGGT	GAGACTCTTT	CAGATAACCC	1200
TAACTATGAT	GAAAACAGTA	ACCAGGCCTT	TGCTTCAGCA	ACCAATGATA	TTGACAAAA	1260
CTCTCATGAC	CGCGTTGACT	ATCTCAATGA	CGGAGATCAT	TCAGAAAATC	GTCGTTGGAC	1320
AAACTGGTCA	CCAACACCAT	CTTCTAATCC	AGAAGTATCA	GCGGGTGTGA	TTTTCCGTGA	1380
AAATGGTAAG	ATTGTAGAAC	GGACTGTTAC	ACAAGGAAAA	GTTCAGTTCT	TTGCAGATAG	1440
TGGTACGGAT	GCACCATCTA	AACTCGTTTT	AGAACGCTAT	GTCGGTCCAG	AGTTTGAAGT	1500
GCCAACCTAC	TATTCAAACT	ACCAAGCCTA	CGACGCAGAC	CATCCATTCA	ACAATCCAGA	1560
AAATTGGGAA	GCTGTTCCTT	ATCGTGCGGA	TAAAGACATT	GCAGCTGGTG	ATGAAATCAA	1620
CGTAACATTT	AAAGCTATCA	AAGCCAAAGC	TATGAGATGG	CGTATGGAGC	GTAAAGCAGA	1680
TAAGAGCGGT	GTTGCGATGA	TTGAGATGAC	CTTCCTTGCA	CCAAGTGAAT	TGCCTCAAGA	1740
AAGCACTCAA	TCAAAGATTC	TTGTAGATGG	AAAAGAACTT	GCTGATTTCG	CTGAAAATCG	1800
TCAAGACTAT	CAAATTACCT	ATAAAGGTCA	ACGGCCAAAA	GTCTCAGTTG	AAGAAAACAA	1860
TCAAGTAGCT	TCAACTGTGG	TAGATAGTGG	AGAAGATAGC	TTTCCAGTAC	TTGTTCGCCT	1920
CGTTTCAGAA	AGTGGAAAAC	AAGTCAAGGA	ATACCGTATC	CACTTGACTA	AGGAAAAACC	1980
) AGTTTCTGAG	AAGACAGTTG	CTGCTGTACA	AGAAGATCTT	CCAAAAATCG	AATTTGTTGA	2040
AAAAGATTTG	GCATACAAGA	CAGTTGAGAA	AAAAGATTCA	ACACTGTATC	TAGGTGAAAC	2100
TCGTGTAGAA	CAAGAAGGAA	AAGTTGGAAA	AGAACGTATC	TTTACAGCGA	TTAATCCTGA	2160
TGGAAGTAAG	GAAGAAAAAC	TCCGTGAAGT	GGTAGAAGTT	CCGACAGACC	GCATCGTCTT	2220
GGTTGGAACO	AAACCAGTAG	CTCAAGAAGC	таааааасса	CAAGTGTCAG	AAAAAGCAGA	2280
		-	TCAAACTAAT			2329

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 776 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:
- Ala Lys Val Ala Trp Asp Ala Ile Arg Pro Glu Gln Tyr Ala Lys Glu
- Gly Val Phe Thr Val Asn Gly Arg Leu Glu Gly Thr Gln Leu Thr Thr
- Lys Leu His Val Arg Val Ser Ala Gln Thr Glu Gln Gly Ala Asn Ile

Ser Asp Gln Trp Thr Gly Ser Glu Leu Pro Leu Ala Phe Ala Ser Asp Ser Asn Pro Ser Asp Pro Val Ser Asn Val Asn Asp Lys Leu Ile Ser Tyr Asn Asn Gln Pro Ala Asn Arg Trp Thr Asn Trp Asn Arg Thr Asn Pro Glu Ala Ser Val Gly Val Leu Phe Gly Asp Ser Gly Ile Leu Ser 105 Lys Arg Ser Val Asp Asn Leu Ser Val Gly Phe His Glu Asp His Gly Val Gly Val Pro Lys Ser Tyr Val Ile Glu Tyr Tyr Val Gly Lys Thr 130 135 140 Val Pro Thr Ala Pro Lys Asn Pro Ser Phe Val Gly Asn Glu Asp His 155 Val Phe Asn Asp Ser Ala Asn Trp Lys Pro Val Thr Asn Leu Lys Ala Pro Ala Gln Leu Lys Ala Gly Glu Met Asn His Phe Ser Phe Asp Lys Val Glu Thr Tyr Ala Val Arg Ile Arg Met Val Lys Ala Asp Asn Lys Arg Gly Thr Ser Ile Thr Glu Val Gln Ile Phe Ala Lys Gln Val Ala 215 Ala Ala Lys Gln Gly Gln Thr Arg Ile Gln Val Asp Gly Lys Asp Leu Ala Asn Phe Asn Pro Asp Leu Thr Asp Tyr Tyr Leu Glu Ser Val Asp 245 250 255 Gly Lys Val Pro Ala Val Thr Ala Ser Val Ser Asn Asn Gly Leu Ala 265 Thr Val Val Pro Ser Val Arg Glu Gly Glu Pro Val Arg Val Ile Ala Lys Ala Glu Asn Gly Asp Ile Leu Gly Glu Tyr Arg Leu His Phe Thr 295 Lys Asp Lys Ser Leu Leu Ser His Lys Pro Val Ala Ala Val Lys Gln Ala Arg Leu Leu Gln Val Gly Gln Ala Leu Glu Leu Pro Thr Lys Val 325 Pro Val Tyr Phe Thr Gly Lys Asp Gly Tyr Glu Thr Lys Asp Leu Thr 340 345 350 Val Glu Trp Glu Glu Val Pro Ala Glu Asn Leu Thr Lys Ala Gly Gln Phe Thr Val Arg Gly Arg Val Leu Gly Ser Asn Leu Val Ala Glu Ile 375

Thr Val Arg Val Thr Asp Lys Leu Gly Glu Thr Leu Ser Asp Asn Pro 390 Asn Tyr Asp Glu Asn Ser Asn Gln Ala Phe Ala Ser Ala Thr Asn Asp Ile Asp Lys Asn Ser His Asp Arg Val Asp Tyr Leu Asn Asp Gly Asp His Ser Glu Asn Arg Arg Trp Thr Asn Trp Ser Pro Thr Pro Ser Ser Asn Pro Glu Val Ser Ala Gly Val Ile Phe Arg Glu Asn Gly Lys Ile Val Glu Arg Thr Val Thr Gln Gly Lys Val Gln Phe Phe Ala Asp Ser Gly Thr Asp Ala Pro Ser Lys Leu Val Leu Glu Arg Tyr Val Gly Pro Glu Phe Glu Val Pro Thr Tyr Tyr Ser Asn Tyr Gln Ala Tyr Asp Ala 505 Asp His Pro Phe Asn Asn Pro Glu Asn Trp Glu Ala Val Pro Tyr Arg Ala Asp Lys Asp Ile Ala Ala Gly Asp Glu Ile Asn Val Thr Phe Lys Ala Ile Lys Ala Lys Ala Met Arg Trp Arg Met Glu Arg Lys Ala Asp 555 Lys Ser Gly Val Ala Met Ile Glu Met Thr Phe Leu Ala Pro Ser Glu Leu Pro Gln Glu Ser Thr Gln Ser Lys Ile Leu Val Asp Gly Lys Glu 585 Leu Ala Asp Phe Ala Glu Asn Arg Gln Asp Tyr Gln Ile Thr Tyr Lys 600 Gly Gln Arg Pro Lys Val Ser Val Glu Glu Asn Asn Gln Val Ala Ser 615 Thr Val Val Asp Ser Gly Glu Asp Ser Phe Pro Val Leu Val Arg Leu 635 Val Ser Glu Ser Gly Lys Gln Val Lys Glu Tyr Arg Ile His Leu Thr 650 Lys Glu Lys Pro Val Ser Glu Lys Thr Val Ala Ala Val Gln Glu Asp Leu Pro Lys Ile Glu Phe Val Glu Lys Asp Leu Ala Tyr Lys Thr Val Glu Lys Lys Asp Ser Thr Leu Tyr Leu Gly Glu Thr Arg Val Glu Gln Glu Gly Lys Val Gly Lys Glu Arg Ile Phe Thr Ala Ile Asn Pro Asp 705 710 715 720 Gly Ser Lys Glu Glu Lys Leu Arg Glu Val Val Glu Val Pro Thr Asp

					725					730					735		
	Arg	Ile		Leu 740	Val	Gly	Thr	Lys	Pro 745	Val	Ala	Gln	Glu	Ala 750	Lys	Lys	
	Pro		Val 755	Ser	Glu	Lys	Ala	Asp 760	Thr	Lys	Pro	Ile	Asp 765	Ser	Ser	Glu	
	Ala	Ser 770	Gln	Thr	Asn	Lys	Ala 775	Gln									
(2)	INFOR	ITAM	ON F	OR S	SEQ :	ID NO	D: 8'	7:									
	(i)	(B) (C)	LEN TYP STF	IGTH : PE : r RANDI	: 133 nucle EDNE:	3 ba:	se pa acid doub	airs									
	(xi)	SEÇ	UENC	E DI	ESCR	IPTI	ON:	SEQ	ID N	0: 8	7:						
CTAT	CACT	AT GT	'AAA'	AAA1	G AG	ATTA	TTTC	ACA	AGAA	GCT	AAAG	ATTT	AA T	TCAG.	ACAG	G	60
AAAG	CCTG	AC AG	GAA:	rgaa	G TT	GTAT	ATGG	TTT	GGTG	TAT	CAAA	AAGA	TC A	GTTG	CCTC.	A	120
AACA	GGGA	CA GA	LΆ		•												133
(2)	INFO	RMATI	ON	FOR	SEQ	ID N	0:88	:	-								
	(i)	(B)	LEI TY:	NGTH PE: RAND	: 44 amin EDNE	ami o ac	no a id sing	.cids									
	(ii)	MOL	ECUL	E TY	PE:	prot	ein										
	(xi)	SEQ	JENC	E DE	SCRI	PTIC	N: 5	SEQ I	D NO	88:0	:						
	Tyr 1	His	Tyr	Val	Asn 5	Lys	s Glu	ı Ile	e Il€	Ser 10	Glr.	ı Glu	a Ala	Lys	Asp 15	Leu	
	Ile	Gln	Thr	Gly 20	. Lys	Pro	Asp	Arç	y Asr 25	ı Glu	ı Val	. Val	. Туг	Gly 30	. Leu	Val	
	Tyr	Gln	Lys 35	Asp	Glr	Let	ı Pro	Glr 40	1 Thi	r Gly	/ Thr	Glu	1				
(2)	INFO	RMAT	ION	FOR	SEQ	ID 1	10: 8	39:									
	(i)	(B (C) LE) TY) SI	NGTH PE: RANI	nuc. DEDNI	75 ba leic	ase p acio doul	pairs d	5			·					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

TGAGACTCCT CAATCAATAA CAAATCAGGA GCAAGCTAGG ACAGAAAACC AAGTAGTAGA

GACAGAGGAA	GCTCCAAAAG	AAGAAGCACC	TAAAACAGAA	GAAAGTCCAA	AGGAAGAACC	120
AAAATCGGAG	GTAAAACCTA	CTGACGACAC	CCTTCCTAAA	GTAGAAGAGG	GGAAAGAAGA	180
TTCAGCAGAA	CCAGCTCCAG	TTGAAGAAGT	AGGTGGAGAA	GTTGAGTCAA	AACCAGAGGA	240
AAAAGTAGCA	GTTAAGCCAG	AAAGTCAACC	ATCAGACAAA	CCAGCTGAGG	AATCAAAAGT	300
TGAACAAGCA	GGTGAACCAG	TCGCGCCAAG	AGAAGACGAA	AAGGCACCAG	TCGAGCCAGA	360
AAAGCAACCA	GAAGCTCCTG	AAGAAGAGAA	GGCTGTAGAG	GAAACACCGA	AACAAGAAGA	420
GTCAACTCCA	GATACCAAGG	CTGAAGAAAC	TGTAGAACCA	AAAGAGGAGA	CTGTTAATCA	480
ATCTATTGAA	CAACCAAAAG	TTGAAACGCC	TGCTGTAGAA	AAACAAACAG	AACCAACAGA	540
GGAACCAAAA	GTTGAACAAG	CAGGTGAACC	AGTCGCGCCA	AGAGAAGACG	AACAGGCACC	600
AACGGCACCA	GTTGAGCCAG	AAAAGCAACC	AGAAGTTCCT	GAAGAAGAGA	AGGCTGTAGA	660
GGAAACACCG	AAACCAGAAG	ATAAAATAAA	GGGTATTGGT	ACTAAAGAAC	CAGTTGATAA	720
AAGTGAGTTA	AATAATCAAA	TTGATAAAGC	TAGTTCAGTT	TCTCCTACTG	ATTAT	775

(2) INFORMATION FOR SEQ ID NO:90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
- Glu Thr Pro Gln Ser Ile Thr Asn Gln Glu Gln Ala Arg Thr Glu Asn 1 5 10 15
- Gln Val Val Glu Thr Glu Glu Ala Pro Lys Glu Glu Ala Pro Lys Thr 20 25 30
- Glu Glu Ser Pro Lys Glu Glu Pro Lys Ser Glu Val Lys Pro Thr Asp 35 40 45
- Asp Thr Leu Pro Lys Val Glu Glu Gly Lys Glu Asp Ser Ala Glu Pro 50 55
- Ala Pro Val Glu Glu Val Gly Gly Glu Val Glu Ser Lys Pro Glu Glu 65 70 75 80
- Lys Val Ala Val Lys Pro Glu Ser Gln Pro Ser Asp Lys Pro Ala Glu 85 90 95
- Glu Ser Lys Val Glu Gln Ala Gly Glu Pro Val Ala Pro Arg Glu Asp
- Glu Lys Ala Pro Val Glu Pro Glu Lys Gln Pro Glu Ala Pro Glu Glu
 115 120 125
- Glu Lys Ala Val Glu Glu Thr Pro Lys Gln Glu Glu Ser Thr Pro Asp

	Thr 145	Lys	Ala	Glu	Glu	Thr 150	Val	Glu	Pro	Lys	Glu 155	Glu	Thr	Val	Asn	Gln 160	
	Ser	Ile	Glu	Gln	Pro 165	Lys	Val	Glu	Thr	Pro 170	Ala	Val	Glu	Lys	Gln 175	Thr	
	Glu	Pro	Thr	Glu 180	Glu	Pro	Lys	Val	Glu 185	Gln	Ala	Gly	Glu	Pro 190	Val	Ala	
	Pro	Arg	Glu 195		Glu	Gln	Ala	Pro 200	Thr	Ala	Pro	Val	Glu 205	Pro	Glu	Lys	,
	Gln	Pro 210	Glu	Val	Pro	Glu	Glu 215	Glu	Lys	Ala	Val	Glu 220	Glu	Thr	Pro	Lys	
	Pro 225	Glu	Asp	Lys	Ile	Lys 230	Gly	Ile	Gly	Thr	Lys 235	Glu	Pro	Val	Asp	Lys 240	
		Glu	Leu	Asn	Asn 245	Gln	Ile	Asp	Lys	Ala 250	Ser	Ser	Val	Ser	Pro 255	Thr	
	Asp	Tyr															
(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0: 9	1:									
(-,															`		
	(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	: 19 nucl EDNE	TERI 9 ba eic SS: line	se p acid doub	airs									
	(xi) SE	OUEN	CE D	ESCR	.IPTI	ON:	SEQ	ID N	0: 9	1:						
GGAT												ATTC	AG A	GCTA	TCAT	C	60
AGAA																	120
TTAT																	180
AAGC									,								199
						ID N	10:92	2:									
ν-,		SEÇ (<i>I</i> (1	QUENCA) LI 3) T'	CE CH ENGTH (PE: CRANI	ARAC I: 66 amir DEDNI	TERI ami no ac ESS:	STIC no a id sing	CS: acids	3								
						line											
	(ii)	MOI	LECUI	LE T	PE:	prot	ein										
	(xi)	SE	QUEN	CE D	ESCR:	IPTI(ON: S	SEQ :	ID NO	92	:						
	Ası 1	, Ala	a Gl	n Gl	1 Th: 5	r Ala	a Gly	y Vai	l His	ту: 10	c Ly:	з Туз	r Vai	l Ala	a Asp 15) Ser	
	Glı	ı Le	ı Se	r Se:	r Gl	ı Glı	ı Ly:	s Ly:	s Glr 25	ı Lei	ı Va	l Ty	r Ası	9 Ile 30	e Pro	o Thr	

Tyr Val Glu Asn Asp Asp Glu Thr Tyr Tyr Leu Val Tyr Lys Leu Asn

Ser Gln Asn Gln Leu Ala Glu Leu Pro Asn Thr Gly Ser Lys Asn Glu

Arg Gln 65

(2) INFORMATION FOR SEQ ID NO: 93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 835 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

CGACAAAGGT	GAGACTGAGG	TTCAACCAGA	GTCGCCAGAT	ACTGTGGTAA	GTGATAAAGG	60
TGAACCAGAG	CAGGTAGCAC	CGCTTCCAGA	ATATAAGGGT	AATATTGAGC	AAGTAAAACC	120
TGAAACTCCG	GTTGAGAAGA	CCAAAGAACA	AGGTCCAGAA	AAAACTGAAG	AAGTTCCAGT	180
AAAACCAACA	GAAGAAACAC	CAGTAAATCC	AAATGAAGGT	ACTACAGAAG	GAACCTCAAT	240
TCAAGAAGCA	GAAAATCCAG	TTCAACCTGC	AGAAGAATCA	ACAACGAATT	CAGAGAAAGT	300
ATCACCAGAT	ACATCTAGCA	AAAATACTGG	GGAAGTGTCC	AGTAATCCTA	GTGATTCGAC	360
	GGAGAATCAA					420
	GAAGAAGTTC					480
	GAAAAACCAG					540
					CACCAGTTGA	600
	CAACCAGAAA					660
	AATGGACAAA					720
	TCAAACACAT					780
	GATAAAAAGG					835
ACTAGACCCT	GATAAAAAGG	INGANGANCC		· •		

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 278 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
- Asp Lys Gly Glu Thr Glu Val Gln Pro Glu Ser Pro Asp Thr Val Val 5

Ser Asp Lys Gly Glu Pro Glu Gln Val Ala Pro Leu Pro Glu Tyr Lys Gly Asn Ile Glu Gln Val Lys Pro Glu Thr Pro Val Glu Lys Thr Lys Glu Gln Gly Pro Glu Lys Thr Glu Glu Val Pro Val Lys Pro Thr Glu Glu Thr Pro Val Asn Pro Asn Glu Gly Thr Thr Glu Gly Thr Ser Ile Gln Glu Ala Glu Asn Pro Val Gln Pro Ala Glu Glu Ser Thr Thr Asn Ser Glu Lys Val Ser Pro Asp Thr Ser Ser Lys Asn Thr Gly Glu Val Ser Ser Asn Pro Ser Asp Ser Thr Thr Ser Val Gly Glu Ser Asn Lys Pro Glu His Asn Asp Ser Lys Asn Glu Asn Ser Glu Lys Thr Val Glu · 135 Glu Val Pro Val Asn Pro Asn Glu Gly Thr Val Glu Gly Thr Ser Asn Gln Glu Thr Glu Lys Pro Val Gln Pro Ala Glu Glu Thr Gln Thr Asn Ser Gly Lys Ile Ala Asn Glu Asn Thr Gly Glu Val Ser Asn Lys Pro 185 Ser Asp Ser Lys Pro Pro Val Glu Glu Ser Asn Gln Pro Glu Lys Asn 200 Gly Thr Ala Thr Lys Pro Glu Asn Ser Gly Asn Thr Thr Ser Glu Asn 215 Gly Gln Thr Glu Pro Glu Pro Ser Asn Gly Asn Ser Thr Glu Asp Val 235 225 Ser Thr Glu Ser Asn Thr Ser Asn Ser Asn Gly Asn Glu Glu Ile Lys Gln Glu Asn Glu Leu Asp Pro Asp Lys Lys Val Glu Glu Pro Glu Lys 265 Thr Leu Glu Leu Arg Asn

275 (2) INFORMATION FOR SEQ ID NO: 95:

- - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 709 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

GTAGCACAAG	ATCCAAAAGC	ACAAGATAGC	ACTAAACTGA	CTGCTGAAAA	60
AAAGCACCTG	CTCAAAGAGT	AGATGTAAAA	GATATAACTC	ATTTAACAGA	120
GTTAAGGTTG	CTATTTTACA	AGCAAATGGT	TCAGCATTAG	ACGGAGCGAC	180
GCTGGAGATG	GTACAGCAAC	AATCACATTC	CCAGATGGTT	CAGTAGTGAC	240
AAAGATACAG	TTCAACAATC	TGCGAAAGGT	GAATCTGTAA	CTCAAGAAGC	300
TATAAGCTAG	AAAATACACC	AGGTGGAGAT	AAGGGAGGCA	ATACTGGAAG	360
AATGCGAATG	AAGGCGGTGG	TAGCCAGGCG	GGTGGATCAG	CTCACACAGG	420
TCAGCTCAAT	CACAAGCTTC	TAAGCAATTA	GCTACTGAAA	AAGAATCAGC	480
ATTGAAAAAG	CAGCCAAGGA	CAAGCAGGAT	GAAATCAAAG	GCGCACCGCT	540
GAAAAAGCAG	AACTTTTAGC	AAGAGTGGAA	GCAGAAAAAC	AAGCAGCTCT	600
GAAAATGCGA	AAACTATGGA	AGATGTGAAG	GAAGCAGAAA	CGATTGGAGT	660
GCCATGGTTA	CAGTTCCTAA	GAGACCAGTG	GCTCCTAAT		709
	AAAGCACCTG GTTAAGGTTG GCTGGAGATG AAAGATACAG TATAAGCTAG AATGCGAATG TCAGCTCAAT ATTGAAAAAG GAAAAAGCAG GAAAAAGCAG	AAAGCACCTG CTCAAAGAGT GTTAAGGTTG CTATTTTACA GCTGGAGATG GTACAGCAAC AAAGATACAG TTCAACAATC TATAAGCTAG AAAATACACC AATGCGAATG AAGGCGGTGG TCAGCTCAAT CACAAGCTTC ATTGAAAAAG CAG CAAGGA GAAAAAGCAG AACTTTTAGC GAAAAATGCGA AAACTATGGA	AAAGCACCTG CTCAAAGAGT AGATGTAAAA GTTAAGGTTG CTATTTTACA AGCAAATGGT GCTGGAGATG GTACAGCAAC AATCACATTC AAAGATACAG TTCAACAATC TGCGAAAGGT TATAAGCTAG AAAATACACC AGGTGGAGAT AATGCGAATG AAGGCGGTGG TAGCCAGGCG TCAGCTCAAT CACAAGCTTC TAAGCAATTA ATTGAAAAAG CAG CAGCCAAGGA CAAGCAGGAT GAAAAAGCAG AACTTTTAGC AAGAGTGGAA GAAAATGCGA AAACTATGGA AGATGTGAAG	AAAGCACCTG CTCAAAGAGT AGATGTAAAA GATATAACTC GTTAAGGTTG CTATTTTACA AGCAAATGGT TCAGCATTAG GCTGGAGATG GTACAGCAAC AATCACATTC CCAGATGGTT AAAGATACAG TTCAACAATC TGCGAAAGGT GAATCTGTAA TATAAGCTAG AAAATACACC AGGTGGAGAT AAGGGAGGCA AATGCGAATG AAGGCGGTGG TAGCCAGGCG GGTGGATCAG TCAGCTCAAT CACAAGCTTC TAAAGCAATTA GCTACTAAA ATTGAAAAAG CAGCCAAGGA CAAGCAGGAT GAAATCAAAG GAAAAAGCAG AACTTTTAGC AAGAGTGGAA GCAGAAAAAC	GTAGCACAAG ATCCAAAAGC ACAAGATAGC ACTAAACTGA CTGCTGAAAA AAAGCACCTG CTCAAAGAGT AGATGTAAAA GATATAACTC ATTTAACAGA GTTAAGGTTG CTATTTTACA AGCAAATGGT TCAGCATTAG ACGGAGCGAC GCTGGAGATG GTACAGCAAC AATCACATTC CCAGATGGTT CAGTAGTGAC AAAGATACAG TTCAACAATC TGCGAAAGGT GAATCTGTAA CTCAAGAAGC TATAAAGCTAG AAAATACACC AGGTGGAGAT AAGGGAGGCA ATACTGGAAG AATGCGAATG AAGGCGGTGG TAGCCAGGCG GGTGGATCAG CTCACACAGG TCAGCTCAAT CACAAGCTTC TAAGCAATTA GCTACTGAAA AAGAATCAGC ATTGAAAAAG CAGCCAAGGA CAAGCAGAT GAAATCAAAG GCGCACCGCT GAAAAAGCAG AACTTTAGC AAGAGTGGAA GCAGAAAAAC AAGCAGCTCT GAAAATGCGA AAACTATGGA AGATGTGAAG GAAGCAGAAA CGATTGGAGT GCCATGGTTA CAGTTCCTAA GAGACCAGTG GCTCCTAAT

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 236 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:
- Asn Gln Leu Val Ala Gln Asp Pro Lys Ala Gln Asp Ser Thr Lys Leu 1 5 10 15
- Thr Ala Glu Lys Ser Thr Val Lys Ala Pro Ala Gln Arg Val Asp Val 20 25 30
- Lys Asp Ile Thr His Leu Thr Asp Glu Glu Lys Val Lys Val Ala Ile 35 40
 - Leu Gln Ala Asn Gly Ser Ala Leu Asp Gly Ala Thr Ile Asn Val Ala 50 55 60
 - Gly Asp Gly Thr Ala Thr Ile Thr Phe Pro Asp Gly Ser Val Val Thr
 - Ile Leu Gly Lys Asp Thr Val Gln Gln Ser Ala Lys Gly Glu Ser Val
 - Thr Gln Glu Ala Thr Pro Glu Tyr Lys Leu Glu Asn Thr Pro Gly Gly 100 105 110
 - Asp Lys Gly Gly Asn Thr Gly Ser Ser Asp Ala Asn Ala Asn Glu Gly
 - Gly Gly Ser Gln Ala Gly Gly Ser Ala His Thr Gly Ser Gln Asn Ser

Ala Gln Ser Gln Ala Ser Lys Gln Leu Ala Thr Glu Lys Glu Ser Ala 150 Lys Asn Ala Ile Glu Lys Ala Ala Lys Asp Lys Gln Asp Glu Ile Lys Gly Ala Pro Leu Ser Asp Lys Glu Lys Ala Glu Leu Leu Ala Arg Val Glu Ala Glu Lys Gln Ala Ala Leu Lys Glu Ile Glu Asn Ala Lys Thr Met Glu Asp Val Lys Glu Ala Glu Thr Ile Gly Val Gln Ala Ile Ala Met Val Thr Val Pro Lys Arg Pro Val Ala Pro Asn 225 230 235

(2) INFORMATION FOR SEQ ID NO: 97:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

CAAACAGTCA GCTTCAGGAA	CGATTGAGGT	GATTTCACGA	GAAAATGGCT	CTGGGACACG	60
GGGTGCCTTC ACAGAAATCA	CAGGGATTCT	CAAAAAAGAC	GGTGATAAAA	AAATTGACAA	120
CACTGCCAAA ACAGCTGTGA	TTCAAAATAG	TACAGAAGGT	GTTCTCTCAG	CAGTTCAAGG	180
GAATGCTAAT GCTATCGGCT	ACATCTCCTT	GGGATCTTTA	ACGAAATCTG	TCAAGGCTTT	240
AGAGATTGAT GGTGTCAAGG	CTAGTCGAGA	CACAGTTTTA	GATGGTGAAT	ACCCTCTTCA	300
ACGTCCCTTC AACATTGTTT	GGTCTTCTAA	TCTTTCCAAG	CTAGGTCAAG	ATTTTATCAG	360
CTTTATCCAC TCCAAACAAG	GTCAACAAGT	GGTCACAGAT	AATAAATTTA	TTGAAGCTAA	. 420
AACCGAAACC ACGGAATATA	CAAGCCAACA	CTTATCAGGC	AAGTTGTCTG	TTGTAGGTTC	480
CACTTCAGTA TCTTCTTTAA	TGGAAAAATT	AGCAGAAGCT	TATAAAAAAG	AAAATCCAGA	540
AGTTACGATT GATATTACCT	CTAATGGGTC	TTCAGCAGGT	ATTACCGCTG	TTAAGGAGAA	600
AACCGCTGAT ATTGGTATGG	TTTCTAGGGA	ATTAACTCCT	GAAGAAGGTA	AGAGTCTCAC	660
CCATGATGCT ATTGCTTTAG	ACGGTATTGC	TGTTGTGGTC	AATAATGACA	ATAAGGCAAG	720
CCAAGTCAGT ATGGCTGAAC	TTGCAGACGT	TTTTAGTGGC	AAATTAACCA	CCTGGGACAA	780
GATTAAA					787

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 262 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Lys Gln Ser Ala Ser Gly Thr Ile Glu Val Ile Ser Arg Glu Asn Gly
1 10 15

Ser Gly Thr Arg Gly Ala Phe Thr Glu Ile Thr Gly Ile Leu Lys Lys 20 25 30

Asp Gly Asp Lys Lys Ile Asp Asn Thr Ala Lys Thr Ala Val Ile Gln 35 40 45

Asn Ser Thr Glu Gly Val Leu Ser Ala Val Gln Gly Asn Ala Asn Ala 50 55 60

Ile Gly Tyr Ile Ser Leu Gly Ser Leu Thr Lys Ser Val Lys Ala Leu 65 70 75 80

Glu Ile Asp Gly Val Lys Ala Ser Arg Asp Thr Val Leu Asp Gly Glu 85 90 95

Tyr Pro Leu Gln Arg Pro Phe Asn Ile Val Trp Ser Ser Asn Leu Ser 100 105 110

Lys Leu Gly Gln Asp Phe Ile Ser Phe Ile His Ser Lys Gln Gly Gln 115 120 125

Gln Val Val Thr Asp Asn Lys Phe Ile Glu Ala Lys Thr Glu Thr Thr 130 135 140

Glu Tyr Thr Ser Gln His Leu Ser Gly Lys Leu Ser Val Val Gly Ser 145 150 155 160

Thr Ser Val Ser Ser Leu Met Glu Lys Leu Ala Glu Ala Tyr Lys Lys 165 170 175

Glu Asn Pro Glu Val Thr Ile Asp Ile Thr Ser Asn Gly Ser Ser Ala 180 185 190

Gly Ile Thr Ala Val Lys Glu Lys Thr Ala Asp Ile Gly Met Val Ser

Arg Glu Leu Thr Pro Glu Glu Gly Lys Ser Leu Thr His Asp Ala Ile 210 220

Ala Leu Asp Gly Ile Ala Val Val Val Asn Asn Asp Asn Lys Ala Ser 225 230 235 240

Gln Val Ser Met Ala Glu Leu Ala Asp Val Phe Ser Gly Lys Leu Thr 245 250 255

Thr Trp Asp Lys Ile Lys 260

(2) INFORMATION FOR SEQ ID NO: 99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 421 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) S	SEQUENCE DES	CRIPTION: S	SEQ ID NO: 9	99:		
ATTCGATGAT	GCGGATGAAA	AGATGACCCG	TGATGAAATT	GCCTATATGC	TGACAAATAG	60
TGAAGAAACA	TTGGATGCTG	ATGAGATTGA	GATGCTACAA	GGTGTCTTTT	CGCTCGATGA	120
ACTGATGGCA	CGAGAGGTTA	TGGTTCCTCG	AACGGATGCC	TTTATGGTGG	ATATTCAGGA	180
TGATAGTCAA	GCCATTATCC	AAAGTATTTT	AAAACAAAAT	TATTCTCGTA	TCCCGGTTTA	240
TGATGGGGAT	AAGGACAATG	TAATTGGAAT	CATTCACACC	AAGAGTCTCC	TTAAGGCAGG	300
CTTTGTGGAC	GGTTTTGACA	ATATTGTTTG	GAAGAGAATT	TTACAAGATC	CACTTTTTGT	360
ACCTGAAACT	ATTTTTGTGG	ATGACTTGCT	AAAAGAACTG	CGAAATACCC	AAAGACAAAT	420
G				-		421

(2) INFORMATION FOR SEQ ID NO:100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 140 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

Phe Asp Asp Ala Asp Glu Lys Met Thr Arg Asp Glu Ile Ala Tyr Met 1 5 10 15

Leu Thr Asn Ser Glu Glu Thr Leu Asp Ala Asp Glu Ile Glu Met Leu 20 25 30

Gln Gly Val Phe Ser Leu Asp Glu Leu Met Ala Arg Glu Val Met Val 35 40 45

Pro Arg Thr Asp Ala Phe Met Val Asp Ile Gln Asp Asp Ser Gln Ala 50 55 60

Ile Ile Gln Ser Ile Leu Lys Gln Asn Tyr Ser Arg Ile Pro Val Tyr 65 70 75 80

Asp Gly Asp Lys Asp Asn Val Ile Gly Ile Ile His Thr Lys Ser Leu 85 90 95

Leu Lys Ala Gly Phe Val Asp Gly Phe Asp Asn Ile Val Trp Lys Arg 100 105 110

Ile Leu Gln Asp Pro Leu Phe Val Pro Glu Thr Ile Phe Val Asp Asp 115 120 125

Leu Leu Lys Glu Leu Arg Asn Thr Gln Arg Gln Met 130 135

(2) INFORMATION FOR SEQ ID NO: 101:

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 358 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

	(B) (C)	LENG TYP: STR. TOP	E: ni ANDE	ucle. DNES:	ic a S: d	cid oubl										
(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	р ио	: 10	1:						
GGAGAGTC	A TC	AAAA	GTAG	ATG.	AAGC'	TGT	GTCT	AAGT	TT G	AAAA	GGAC	T CA	TCTT	CTTC		60
GTCAAGTT	A GA	.CTCT	TCCA	CTA	AACC	GGA	AGCT	TCAG	AT A	CAGC	GAAG	C CA	AACA	AGCC		120
GACAGAAC	CA GG	AGAA	AAGG	TAG	CAGA	AGC	TAAG	AAGA	AG G	TTGA	AGAA	G CT	GAGA	AAAA		180
AGCCAAGG	AT CA	AAAA	GAAG	AAG	ATCG	TCG	TAAC	TACC	CA A	.CCAT	TACT	T AC	AAAA	.CGCT	•	240
TGAACTTG	ra az	TGCT	GAGT	CCG	ATGT	GGA	AGTT	'AAAA	AA G	CGGA	GCTT.	G AA	.CTAG	TAAA		300
AGTGAAAG	T AA	CGAA	CCTC	GAG	ACGA	.GCA	A									331
(2) INFO	RMATI	ON F	OR S	EQ I	D NO	:102	::									
(i)	(B) (C)	JENCE LEN TYP STR TOP	IGTH: PE: a LANDE	110 minc DNES	ami aci S: s	no a d ingl	cids	•								
(ii)	MOLE	ECÜLE	TYF	E: p	rote	ein										
	SEQU										,					
Glu 1	Ser	Arg	Ser	Lys 5	Val	Asp	Glu	Ala	Val 10	Ser	Lys	Phe	Glu	Lys 15	Asp	
Ser	Ser	Ser	Ser 20	Ser	Ser	Ser	Asp	Ser 25	Ser	Thr	Lys	Pro	Glu 30	Ala	Ser	
Asp	Thr	Ala 35	Lys	Pro	Asn	Lys	Pro 40	Thr	Glu	Pro	Gly	Glu 45	Lys	Val	Ala	
Glu	Ala 50	Lys	Lys	Lys	Val	Glu 55	Glu	Ala	Glu	Lys	Lys 60	Ala	Lys	Asp	Gln	
Lys 65	Glu	Glu	Asp	Arg	Arg 70	Asn	Tyr	Pro	Thr	Ile 75	Thr	Tyr	Lys	Thr	Leu 80	
Glu	Leu	Glu	Ile	Ala 85	Glu	Ser	Asp	Val	Glu 90	Val	Lys	Lys	Ala	Glu 95	Leu	
Glu	Leu	Val	Lys 100	Val	Lys	Ala	Asn	Glu 105	Pro	Arg	Asp	Glu	Gln 110			

(xi) S	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 1	L03:		
ATGGACAACA	GGAAACTGGG	ACGAGGTTAT	ATCTGGTAAG	ATTGACAAGT	ACAAAGATCC	60
AGATATTCCA	ACAGTTGAAT	CACAAGAAGT	TACGTCAGAC	TCTAGTGATA	AAGAAATAAC	120
GGTAAGGTAT	GACCGTTTAT	CAACACCAGA	AAAACCAATC	CCACAACCAA	ATCCAGAGCA	180
TCCAAGTGTT	CCGACACCAA	ACCCAGAACT	ACCAAATCAA	GAGACTCCAA	CACCAGATAA	240
ACCAACTCCA	GAACCAGGTA	CTCCAAAAAC	TGAAACTCCA	GTGAATCCAG	ACCCAGAAGT	300
TCCGACTTAT	GAGACAGGTA	AGAGAGAGGA	ATTGCCAAAC	ACAGGTACAG	AAGCTAAT	358

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

Trp Thr Thr Gly Asn Trp Asp Glu Val Ile Ser Gly Lys Ile Asp Lys
1 10 15

Tyr Lys Asp Pro Asp Ile Pro Thr Val Glu Ser Gln Glu Val Thr Ser 20 25 30

Asp Ser Ser Asp Lys Glu Ile Thr Val Arg Tyr Asp Arg Leu Ser Thr 35 40 45

Pro Glu Lys Pro Ile Pro Gln Pro Asn Pro Glu His Pro Ser Val Pro 50 55 60

Thr Pro Asn Pro Glu Leu Pro Asn Gln Glu Thr Pro Thr Pro Asp Lys 65 70 75 80

Pro Thr Pro Glu Pro Gly Thr Pro Lys Thr Glu Thr Pro Val Asn Pro 85 90 95

Asp Pro Glu Val Pro Thr Tyr Glu Thr Gly Lys Arg Glu Glu Leu Pro 100 105 110

Asn Thr Gly Thr Glu Ala Asn 115

(2) INFORMATION FOR SEQ ID NO: 105:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

		CAGGTCAAGT				60
GGGTGACTTA	TCAGAAAAAC	CAGGAGACAC	CGTTCTCACT	CAAGCGAAAC	CTGAGGGCGT	120
TACTGGAAAT	ACGAATTCAC	TTCCGACACC	TACAGAAAGA	ACTGAAGTGA	GCGAGGAAAC	180
AAGCCCTTCT	AGTCTGGATA	CACTTTTTGA	AAAAGATGAA	GAAGCTCAAA	AAAATCCAGA	240
GCTAACAGAT	GTCTTAAAAG	AAACTGTAGA	TACAGCTGAT	GTGGATGGGA	CACAAGCAAG	300
TCCAGCAGAA	ACTACTCCTG	AACAAGTAAA	AGGTGGAGTG	AAAGAAAATA	CAAAAGACAG	360
CATCGATGTT	CCTGCTGCTT	ATCTTGAAAA	AGCTGAAGGG	AAAGGTCCTT	TCACTGCCGG	420
TGTAAACCAA	GTAATTCCTT	ATGAACTATT	CGCTGGTGAT	GGTATGTTAA	CTCGTCTATT	480
ACTAAAAGCT	TCGGATAATG	CTCCTTGGTC	TGACAATGGT	ACTGCTAAAA	ATCCTGCTTT	540
ACCTCCTCTT	GAAGGATTAA	CAAAAGGGAA	ATACTTCTAT	GAAGTAGACT	TAAATGGCAA	600
TACTGTTGGT	AAACAAGGTC	AAGCTTTAAT	TGATCAACTT	CGCGCTAATG	GTACTCAAAC	660
TTATAAAGCT	ACTGTTAAAG	TTTACGGAAA	TAAAGACGGT	AAAGCTGACT	TGACTAATCT	720
ÄGTTGCTACT	AAAAATGTAG	ACATCAACAT	CAATGGATTA	GTTGCTAAAG	AAACAGTTCA	780
AAAAGCCGTT	GCAGACAACG	TTAAAGACAG	TATCGATGTT	CCAGCAGCCT	ACCTAGAAAA	840
AGCCAAGGGT	GAAGGTCCAT	TCACAGCAGG	TGTCAACCAT	GTGATTCCAT	ACGAACTCTT	900
CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	CACCATGGTC	960
AGATAACGGC	GACGCTAAAA	ACCCAGCCCT	ATCTCCACTA	GGCGAAAAĆG	TGAAGACCAA	1020
AGGTCAATAC	TTCTATCAAN	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	AAAAACAAGC	1080
GCTCATTGAC	CAGTTCCGAG	CAAANGGTAC	TCAAACTTAC	AGCGCTACAG	TCAATGTCTA	1140
TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	AAGTCACTAT	1200
TAACATAAAC	GGTTTAATTT	CTAAAGAAAC	AGTTCAAAAA	GCCGTTGCAG	ACAACGTTAA	1260
NGACAGTATC	GATGTTCCAG	CAGCCTACCT	AGAAAAAGCC	AAGGGTGAAG	GTCCATTCAC	1320
AGCAGGTGTC	AACCATGTGA	TTCCATACGA	ACTCTTCGCA	GGTGATGGTA	TGTTGACTCG	1380
TCTCTTGCTC	AAGGCATCTG	ACAAGGCACC	ATGGTCAGAT	AACGGNGACG	CTAAAAACCC	1440
AGCNCTATCT	CCACTAGGTG	AAAACGTGAA	. GACCAAAGGT	CAATACTTCT	ATCAANTAGC	1500
CTTGGACGGA	AATGTAGCTG	GCAAAGAAAA	ACAAGCGCTC	ATTGACCAGT	TCCGAGCAAA	1560
CGGTACTCAA	ACTTACAGCG	CTACAGTCAA	TGTCTATGGT	AACAAAGACG	GTAAACCAGA	1620
CTTGGACAAC	ATCGTAGCAA	CTAAAAAAGT	CACTATTAAG	ATAAATGTTA	AAGAAACATC	1680
AGACACAGCA	AATGGTTCAT	TATCACCTTC	TAACTCTGGT	TCTGGCGTGA	. CTCCGATGAA	1740
TCACAATCAT	GCTACAGGTA	CTACAGATAG	CATGCCTGCT	GACACCATGA	CAAGTTCTAC	1800
CAACACGATG	GCAGGTGAAA	ACATGGCTGC	TTCTGCTAAC	AAGATGTCTG	ATACGATGAT	1860
GTCAGAGGAT	AAAGCTATG					1879
	•					

(2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 626 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
- Asp Gly Leu Asn Pro Thr Pro Gly Gln Val Leu Pro Glu Glu Thr Ser
- Gly Thr Lys Glu Gly Asp Leu Ser Glu Lys Pro Gly Asp Thr Val Leu 20 25 30
- Thr Gln Ala Lys Pro Glu Gly Val Thr Gly Asn Thr Asn Ser Leu Pro 35 40 45
- Thr Pro Thr Glu Arg Thr Glu Val Ser Glu Glu Thr Ser Pro Ser Ser 50 55 60
- Leu Asp Thr Leu Phe Glu Lys Asp Glu Glu Ala Gln Lys Asn Pro Glu 65 70 75 80
- Leu Thr Asp Val Leu Lys Glu Thr Val Asp Thr Ala Asp Val Asp Gly 85 90 95
- Thr Gln Ala Ser Pro Ala Glu Thr Thr Pro Glu Gln Val Lys Gly Gly 100 105 110
- Val Lys Glu Asn Thr Lys Asp Ser Ile Asp Val Pro Ala Ala Tyr Leu 115 120 125
- Glu Lys Ala Glu Gly Lys Gly Pro Phe Thr Ala Gly Val Asn Gln Val 130 135 140
- Ile Pro Tyr Glu Leu Phe Ala Gly Asp Gly Met Leu Thr Arg Leu Leu 145 150 155 160
- Leu Lys Ala Ser Asp Asn Ala Pro Trp Ser Asp Asn Gly Thr Ala Lys 165 170 175
- Asn Pro Ala Leu Pro Pro Leu Glu Gly Leu Thr Lys Gly Lys Tyr Phe 180 185 190
- Tyr Glu Val Asp Leu Asn Gly Asn Thr Val Gly Lys Gln Gly Gln Ala 195 200 205
- Leu Ile Asp Gln Leu Arg Ala Asn Gly Thr Gln Thr Tyr Lys Ala Thr 210 220
- Val Lys Val Tyr Gly Asn Lys Asp Gly Lys Ala Asp Leu Thr Asn Leu 225 230 235 240
- Val Ala Thr Lys Asn Val Asp Ile Asn Ile Asn Gly Leu Val Ala Lys
- Glu Thr Val Gln Lys Ala Val Ala Asp Asn Val Lys Asp Ser Ile Asp 260 270

Val Pro Ala Ala Tyr Leu Glu Lys Ala Lys Gly Glu Gly Pro Phe Thr 280 Ala Gly Val Asn His Val Ile Pro Tyr Glu Leu Phe Ala Gly Asp Gly Met Leu Thr Arg Leu Leu Leu Lys Ala Ser Asp Lys Ala Pro Trp Ser Asp Asn Gly Asp Ala Lys Asn Pro Ala Leu Ser Pro Leu Gly Glu Asn Val Lys Thr Lys Gly Gln Tyr Phe Tyr Gln Xaa Ala Leu Asp Gly Asn Val Ala Gly Lys Glu Lys Gln Ala Leu Ile Asp Gln Phe Arg Ala Xaa 355 360 365 Gly Thr Gln Thr Tyr Ser Ala Thr Val Asn Val Tyr Gly Asn Lys Asp Gly Lys Pro Asp Leu Asp Asn Ile Val Ala Thr Lys Lys Val Thr Ile Asn Ile Asn Gly Leu Ile Ser Lys Glu Thr Val Gln Lys Ala Val Ala Asp Asn Val Xaa Asp Ser Ile Asp Val Pro Ala Ala Tyr Leu Glu Lys 425 Ala Lys Gly Glu Gly Pro Phe Thr Ala Gly Val Asn His Val Ile Pro Tyr Glu Leu Phe Ala Gly Asp Gly Met Leu Thr Arg Leu Leu Lys Ala Ser Asp Lys Ala Pro Trp Ser Asp Asn Gly Asp Ala Lys Asn Pro Ala Leu Ser Pro Leu Gly Glu Asn Val Lys Thr Lys Gly Gln Tyr Phe Tyr Gln Xaa Ala Leu Asp Gly Asn Val Ala Gly Lys Glu Lys Gln Ala Leu Ile Asp Gln Phe Arg Ala Asn Gly Thr Gln Thr Tyr Ser Ala Thr 515 520 525 Val Asn Val Tyr Gly Asn Lys Asp Gly Lys Pro Asp Leu Asp Asn Ile Val Ala Thr Lys Lys Val Thr Ile Lys Ile Asn Val Lys Glu Thr Ser Asp Thr Ala Asn Gly Ser Leu Ser Pro Ser Asn Ser Gly Ser Gly Val 570 Thr Pro Met Asn His Asn His Ala Thr Gly Thr Thr Asp Ser Met Pro Ala Asp Thr Met Thr Ser Ser Thr Asn Thr Met Ala Gly Glu Asn Met 595

Ala Ala Ser Ala Asn Lys Met Ser Asp Thr Met Met Ser Glu Asp Lys 610 615 620

Ala Met 625

- (2) INFORMATION FOR SEQ ID NO: 107:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 593 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

TTCCAATCAA	AAACAGGCAG	ATGGTAAACT	CAATATCGTG	ACAACCTTTT	ACCCTGTCTA	60
TGArTTTACC	AAGCAAGTCG	CAGGAGATAC	GGCTAATGTA	GAACTCCTAA	TCGGTGCTGG	120
GACAGAACCT	CATGAATACG	AACCATCTGC	CAAGGCAGTT	GCCAAAATCC	AAGATGCAGA	180
TACCTTCGTT	TATGAAAATG	AAAACATGGA	AACATGGGTA	CCTAAATTGC	TAGATACCTT	240
GGATAAGAAA	AAAGTGAAAA	CCATCAAGGC	GACAGGCGAT	ATGTTGCTCT	TGCCAGGTGG	300
CGAGGAAGAA	GAGGGAGACC	ATGACCATGG	AGAAGAAGGT	CATCACCATG	AGTTTGACCC	360
CCATGTTTGG	TTATCACCAG	TTCGTGCCAT	tAAACTAGTA	GAGCACCATC	CGCGACACTT	420
GTCAGCAGAT	TATCCTGATA	AAAAAGAGAC	CTTTGAGAAG	AATGCAGCTG	CCTATATCGA	480
AAAATTGCAA	GCCTTGGATA	AGGCTTACGC	AGAAGGTTTG	TCTCAAGCAA	AACAAAAGAG	540
CTTTGTGACT	CAACACGCAg	CCTTTAACTa	TCTTGCCTTG	GACTATGGGA	CTC	593

- (2) INFORMATION FOR SEQ ID NO:108:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 197 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
 - Ser Asn Gln Lys Gln Ala Asp Gly Lys Leu Asn Ile Val Thr Thr Phe 1 5 10 15
 - Tyr Pro Val Tyr Glu Phe Thr Lys Gln Val Ala Gly Asp Thr Ala Asn 20 25 30
 - Val Glu Leu Leu Ile Gly Ala Gly Thr Glu Pro His Glu Tyr Glu Pro 35 40 45
 - Ser Ala Lys Ala Val Ala Lys Ile Gln Asp Ala Asp Thr Phe Val Tyr 50 60
 - Glu Asn Glu Asn Met Glu Thr Trp Val Pro Lys Leu Leu Asp Thr Leu

65					70					75					80
Asp	Lys	Lys	Lys	Val 85	Lys	Thr	Ile	Lys	Ala 90	Thr	Gly	Asp	Met	Leu 95	Leu
Leu	Pro	Gly	Gly 100	Glu	Glu	Glu	Glu	Gly 105	Asp	His	qzA	His	Gly 110	Glu	Glu
Gly	His	His 115	His	Glu	Phe	Asp	Pro 120	His	Val	Trp	Leu	Ser 125	Pro	Val	Arg
Ala	Ile 130	Lys	Leu	Val	Glu	His 135	His	Pro	Arg	His	Leu 140	Ser	Ala	Asp	Tyr
Pro 145	Asp	Lys	Lys	Glu	Thr 150	Phe	Glu	Lys	Asn	Ala 155	Ala	Ala	Tyr	Ile	Glu 160
Lys	Leu	Gln	Ala	Leu 165	Asp	Lys	Ala	Tyr	Ala 170	Glu	Gly	Leu	Ser	Gln 175	Ala
Lys	Gln	Lys	Ser 180	Phe	Val	Thr	Gln	His 185	Ala	Ala	Phe	Asn	Tyr 190	Leu	Ala
Leu	Asp	Туг 195	Gly	Thr											

(2) INFORMATION FOR SEQ ID NO: 109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1003 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

TATCACAGGA	TCGAACGGTA	AGACAACCAC	AACGACTATG	ATTGGGGAAG	TTTTGACTGC	60
TGCTGGCCAA	CATGGTCTTT	TATCAGGGAA	TATCGGCTAT	CCAGCTAGTC	AGGTTGCTCA	120
AATAGCATCA	GATAAGGACA	CGCTTGTTAT	GGAACTTTCT	TCTTTCCAAC	TCATGGGTGT	180
TCAAGAATTC	CATCCAGAGA	TTGCGGTTAT	TACCAACCTC	ATGCCAACTC	ATATCGACTA	240
CCATGGGTCA	TTTTCGGAAT	ATGTAGCAGC	CAAGTGGAAT	ATCCAGAACA	AGATGACAGC	300
AGCTGATTTC	CTTGTCTTGA	ACTTTAATCA	AGACTTGGCA	AAAGACTTGA	CTTCCAAGAC	360
AGAAGCCACT	GTTGTACCAT	TTTCAACACT	TGAAAAGGTT	GATGGAGCTT	ATCTGGAAGA	420
TGGTCAACTC	TACTTCCGTG	GTGAAGTAGT	CATGGCAGCG	AATGAAATCG	GTGTTCCAGG	480
TAGCCACAAT	GTGGAAAATG	CCCTTGCGAC	TATTGCTGTA	GCCAAGCTTC	GTGATGTGGA	540
CAATCAAACC	ATCAAGGAAA	CTCTTTCAGC	CTTCGGTGGT	GTCAAACACC	GTCTCCAGTT	600
TGTGGATGAC	ATCAAGGGTG	ттаааттста	TAACGACAGT	AAATCAACTA	ATATCTTGGC	660
TACTCAAAAA	GCCTTGTCAG	GATTTGACAA	CAGCAAGGTC	GTCTTGATTG	CAGGTGGTTT	720
GGACCGTGGC	AATGAGTTTG	ACGAATTGGT	GCCAGACATT	ACTGGACTCA	AGAAGATGGT	780

CATCCTGGGT	CAATCTGCAG	AACGTGTCAA	ACGGGCAGCA	GACAAGGCTG	GTGTCGCTTA	840
TGTGGAGGCG	ACAGATATTG	CAGATGCGAC	CCGCAAGGCC	TATGAGCTTG	CGACTCAAGG	900
AGATGTGGTT	CTTCTTAGTC	CTGCCAATGC	TAGCTGGGAT	ATGTATGCTA	ACTTTGAAGT	960
ACGTGGCGAC	CTCTTTATCG	ACACAGTAGC	GGAGTTAAAA	GAA		1003

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:
- Gly Ile Thr Gly Ser Asn Gly Lys Thr Thr Thr Thr Thr Met Ile Gly 10 15
- Glu Val Leu Thr Ala Ala Gly Gln His Gly Leu Leu Ser Gly Asn Ile 20 25 30
- Gly Tyr Pro Ala Ser Gln Val Ala Gln Ile Ala Ser Asp Lys Asp Thr 35 40 45
- Leu Val Met Glu Leu Ser Ser Phe Gln Leu Met Gly Val Gln Glu Phe 50 55 60
- His Pro Glu Ile Ala Val Ile Thr Asn Leu Met Pro Thr His Ile Asp 65 70 75 80
- Tyr His Gly Ser Phe Ser Glu Tyr Val Ala Ala Lys Trp Asn Ile Gln 85 90 95
- Asn Lys Met Thr Ala Ala Asp Phe Leu Val Leu Asn Phe Asn Gln Asp 100 105 110
- Leu Ala Lys Asp Leu Thr Ser Lys Thr Glu Ala Thr Val Val Pro Phe 115 120 125
- Ser Thr Leu Glu Lys Val Asp Gly Ala Tyr Leu Glu Asp Gly Gln Leu 130 140
- Tyr Phe Arg Gly Glu Val Val Met Ala Ala Asn Glu Ile Gly Val Pro 145 150 155 160
- Gly Ser His Asn Val Glu Asn Ala Leu Ala Thr Ile Ala Val Ala Lys 165 170 175
- Leu Arg Asp Val Asp Asn Gln Thr Ile Lys Glu Thr Leu Ser Ala Phe 180 180
- Gly Gly Val Lys His Arg Leu Gln Phe Val Asp Asp Ile Lys Gly Val
- Lys Phe Tyr Asn Asp Ser Lys Ser Thr Asn Ile Leu Ala Thr Gln Lys 210 215 220
- Ala Leu Ser Gly Phe Asp Asn Ser Lys Val Val Leu Ile Ala Gly Gly

	225					230					235					240	
	Leu	Asp	Arg	Gly	Asn 245	Glu	Phe	Asp	Glu	Leu 250	Val	Pro	Asp	Ile	Thr 255	Gly	
	Leu	Lys	Lys	Met 260	Val	Ile	Leu	Gļy	Gln 265	Ser	Ala	Glu	Arg	Val 270	Lys	Arg	
	Ala	Ala	Asp 275	Lys	Ala	Gly	Val	Ala 280	Tyr	Val	Glu	Ala	Thr 285	Asp	Ile	Ala	
	Asp	Ala 290	Thr	Arg	Lys	Ala	Tyr 295	Glu	Leu	Ala	Thr	Gln 300	Gly	Asp	Val	Val	
	Leu 305	Leu	Ser	Pro	Ala	Asn 310	Ala	Ser	Trp	Asp	Met 315	Tyr	Ala	Asn	Phe	Glu 320	
	Val	Arg	Gly	Asp	Leu 325	Phe	Ile	Asp	Thr	Val 330	Ala	Glu	Leu	Lys	Glu 335		
(2)	INFO	RMAT	ION	FOR	SEQ :	ID N	0: 1	11:									
		(A (B (C (D) LE) TY) ST) TO	NGTH PE: : RAND POLO	: 41: nucle EDNE: GY:	2 ba: eic a SS: a line		airs le		0 1	1.1						
								SEQ								_	
	TCAT			-													60
	AAAT																120
	GCTA																180
	CGCT									-							240
GTCT	CAGT	AC C	GCCT	GTTA	T CG	CTGC	GCGT	GTG	TCAG	GAG	TGCC	TGTC	TT T	ATTC	ACGA	A	300
TCTG	ACCT	GT C	TATG	GGCT	T GG	CCAA	TAAA	ATC	GCCT	ATA	AATT	TGCG	AC T	AAGA	TGTA	T	360
TCAA	CCTT	TG A	ACAA	GCTT.	C GA	GTTT	GGCT	AAG	GTTG	AGC	ATGT	GGGA	GC G	G			412
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0:11	2:									
	(i)	(A (E (C) LE 3) TY 3) SI	NGTH	: 13 amin EDNE	7 am o ac SS:	id sing	acid	is								
	(ii)	MOL	ECUL	E TY	PE:	prot	ein										
	(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	:112	:		•				
	Ser 1	Ser	Ser	Lys	Met 5	Val	. Gly	Lys	s Ser	Thr 10	Ile	Ser	Gly	Thr	Ser 15	· Val	
	Val	Ser	Asr	Thr	Lys	Lys	s Ser	Leu	Ser 25	Glm	. Val	Trp	Met	Ser 30	Pro	Ser	

Ile	Leu	Leu 35	Arg	Leu	Glu	Asn	Cys 40	Val	Ala	Ile	Ser	Leu 45	Gly	Lys	Ile
Суѕ	Trp 50	Thr	Ser	Ser	Lys	Leu 55	Val	Gly	Glu	Leu	Ser 60	Asn	Arg	Ser	Leu
Ser 65	Cys	Cys	Asp	Cys	Val 70	His	Arg	Pro	Phe	Phe 75	Gln	Arg	Gly	Ala	Leu 80
Ser	Gln	Tyr	Arg	Leu 85	Leu	Ser	Leu	Arg	Val 90	Cys	Gln	Glu	Cys	Leu 95	Ser
Leu	Phe	Thr	Asn 100	Leu	Thr	Cys	Leu	Trp 105	Ala	Trp	Pro	Ile	Lys 110	Ser	Pro
Ile	Asn	Leu 115	Arg	Leu	Arg	Cys	Ile 120	Gln	Pro	Leu	Asn	Lys 125	Leu	Arg	Val
Trp	Leu 130	Arg	Leu	Ser	Met	Trp 135	Glu	Arg							

(2) INFORMATION FOR SEQ ID NO: 113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 544 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

ATCGCTAGCT	AGTGAAATGC	AAGAAAGTAC	ACGTAAATTC	AAGGTTACTG	CTGACCTAAC	60
AGATGCCGGT	GTTGGAACGA	TTGAAGTTCC	TTTGAGCATT	GAÁGATTTAC	CCAATGGGCT	120
GACCGCTGTG	GCGACTCCGC	AAAAAATTAC	AGTCAAGATT	GGTAAGAAGG	CTCAGAAGGA	180
TAAGGTAAAG	ATTGTACCAG	AGATTGACCC	TAGTCAAATT	GATAGTCGGG	TACAAATTGA	240
AAATGTCATG	GTGTCAGATA	AAGAAGTGTC	TATTACGAGT	GACCAAGAGA	CATTGGATAG	300
AATTGATAAG	ATTATCGCTG	TTTTGCCAAC	TAGCGAACGT	ATAACAGGTA	ATTACAGTGG	360
TTCAGTACCT	TTGCAGGCAA	TCGACCGCAA	TGGTGTTGTC	TTACCGGCAG	TTATCACTCC	420
GTTTGATACA	ATAATGAAGG	TGACTACAAA	ACCAGTAGCA	CCAAGTTCAA	GCACATCAAA	480
TTCAAGTACA	AGCAGTTCAT	CGGAGACATC	TTCGTCAACG	AAAGCAACTA	GTTCAAAAAC	540
GAAT						544

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 181 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi)	SEQU	JENCE	E DES	CRIE	MOITS	I: SE	EQ II	NO:	114:	:					
Ser 1	Leu	Ala	Ser	Glu 5	Met	Gln	Glu	Ser	Thr 10	Arg	Lys	Phe	Lys ·	Val 15	Thr
Ala	Asp	Leu	Thr 20	Asp	Ala	Gly	Val	Gly 25	Thr	Ile	Glu	Val	Pro 30	Leu	Ser
Ile	Glu	Asp 35	Leu	Pro	Asn	Gly	Leu 40	Thr	Ala	Val	Ala	Thr 45	Pro	Gln	Lys
Ile	Thr 50	Val	Lys	Ile	Gly	Lys 55	Lys	Ala	Gln	Lys	Asp 60	Lys	Val	Lys	Ile
Val 65	Pro	Glu	Ile	Asp	Pro 70	Ser	Gln	Ile	Asp	Ser 75	Arg	Val	Gln	Ile	Glu 80
Asn	Val	Met		Ser 85	Asp	Lys	Glu	Val	Ser 90	Ile	Thr	Ser	Asp	Gln 95	Glu
Thr	Leu	Asp	Arg 100	Ile	Asp	Lys	Ile	Ile 105	Ala	Val	Leu	Pro	Thr 110	Ser	Glu
Arg	Ile	Thr 115	Gly	Asn	Tyr	Ser	Gly 120	Ser	Val	Pro	Leu	Gln 125	Ala	Ile	Asp
Arg	Asn 130	Gly	Val	Val	Leu	Pro 135	Ala	Val	Ile	Thr	Pro 140	Phe	Asp	Thr	Il∈
Met 145	Lys	Val	Thr	Thr	Lys 150	Pro	Val	Ala	Pro	Ser 155	Ser	Ser	Thr	Ser	Asr 160
Ser	Ser	Thr	Ser	Ser 165	Ser	Ser	Glu	Thr	Ser 170	Ser	Ser	Thr	Lys	Ala 175	Thr
Ser	Ser	Lys	Thr 180	Asn	•						•,				

(2) INFORMATION FOR SEQ ID NO: 115:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1267 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

60	TTACCCAACG	AAGTACTACT	AGATGTTGAA	TTCAGGGATC	GGGCACAAGG	GCACCAGATG
120	TAGACGGTGA	GAAAAAAATC	TCCTTTTGAT	TTACCATTCT	CAGGCAGGAA	CGGTCTTGAG
. 180	TTGCCTATGC	AACGTCGAAA	TCCAGATAAC	ATGCCTTTCG	ATCGCTGGAA	TATGGAAATT
240	TTATGCGTGA	CTAGGTAGCT	CCATGAGTTT	ACAAACGTTA	GGTATCAGCT	GGACCAAAAT
300	GTATGTTGTC	TCAACGACAG	TGGAAAAACT	CAGGAGCACA	ATGGGAGTAG	CTTTGTTAGC
360	CAGGTCGTGG	GGAGATGGGA	CTTCTTGATT	CAGATACCAG	TCTCACATTA	TCATGTCTTG
420	ACTTCATGCC	TATGAGCGTC	ATCTGACGAA	TTGTCTTTGA	CCCAAATATT	TTCGGCCAAT

TTACCACCCA	GAATACTCTA	TTATCACCAA	CATTGACTTT	GACCATCCAG	ATTATTTCAC	480
AAGTCTCGAG	GATGTTTTTA	ATGCCTTTAA	CGACTATGCC	AAACAAATCA	CCAAGGGTCT	540
TTTTGTCTAT	GGTGAAGATG	CTGAATTGCG	TAAGATTACG	TCTGATGCAC	CAATTTATTA	600
TTATGGTTTT	GAAGCTGAAG	GCAATGACTT	TGTAGCTAGT	GATCTTCTTC	GTTCAATAAC	660
TGGTTCAACC	TTCACCGTTC	ATTTCCGTGG	ACAAAACTTG	GGGCAATTCC	ACATTCCAAC	720
CTTTGGTCGT	CACAATATCA	TGAATGCGAC	AGCCGTTATT	GGTCTTCTTT	ACACAGCAGG	780
ATTTGATTTG	AACTTGGTGC	GTGAGCACTT	GAAAACATTT	GCCGGTGTTA	AACGTCGTTT	840
CACTGAGAAA	ATTGTCAATG	ATACAGTGAT	TATCGATGAC	TTTGCCCACC	ATCCAACAGA	900
AATTATTGCG	ACCTTGGATG	CGGCTCGTCA	GAAATACCCA	AGCAAGGAAA	TTGTAGCAGT	960
CTTTCAACCG	CATACCTTTA	CAAGAACCAT	TGCCTTGTTG	GACGACTTTG	CCCATGCTTT	. 1020
AAACCAAGCA	GATGCTGTTT	ATCTAGCGCA	AATTTATGGC	TCGGCTCGTG	AAGTAGATCA	1080
TGGTGACGTT	AAGGTAGAAG	ACCTAGCCAA	CAAAATCAAC	AAAAAACACC	AAGTGATTAC	1140
TGTTGAAAAT	GTTTCTCCAC	TCCTAGACCA	TGACAATGCT	GTTTACGTCT	TTATGGGAGC	1200
AGGAGACATC	CAAACCTATG	AATACTCATT	TGAGCGTCTC	TTGTCTAACT	TGACAAGCAA	1260
TGTTCAA						1267

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 422 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:
- His Gln Met Gly His Lys Val Gln Gly Ser Asp Val Glu Lys Tyr Tyr 1 5 10 15
- Phe Thr Gln Arg Gly Leu Glu Gln Ala Gly Ile Thr Ile Leu Pro Phe 20 25 30
- Asp Glu Lys Asn Leu Asp Gly Asp Met Glu Ile Ile Ala Gly Asn Ala 35 40 45
- Phe Arg Pro Asp Asn Asn Val Glu Ile Ala Tyr Ala Asp Gln Asn Gly 50 55
- Ile Ser Tyr Lys Arg Tyr His Glu Phe Leu Gly Ser Phe Met Arg Asp 65 70 75 80
- Phe Val Ser Met Gly Val Ala Gly Ala His Gly Lys Thr Ser Thr Thr 85 90 95
- Gly Met Leu Ser His Val Leu Ser His Ile Thr Asp Thr Ser Phe Leu 100 105 110

Ile Gly Asp Gly Thr Gly Arg Gly Ser Ala Asn Ala Lys Tyr Phe Val 120 Phe Glu Ser Asp Glu Tyr Glu Arg His Phe Met Pro Tyr His Pro Glu 135 Tyr Ser Ile Ile Thr Asn Ile Asp Phe Asp His Pro Asp Tyr Phe Thr Ser Leu Glu Asp Val Phe Asn Ala Phe Asn Asp Tyr Ala Lys Gln Ile 170 Thr Lys Gly Leu Phe Val Tyr Gly Glu Asp Ala Glu Leu Arg Lys Ile Thr Ser Asp Ala Pro Ile Tyr Tyr Tyr Gly Phe Glu Ala Glu Gly Asn 195 200 205 Asp Phe Val Ala Ser Asp Leu Leu Arg Ser Ile Thr Gly Ser Thr Phe Thr Val His Phe Arg Gly Gln Asn Leu Gly Gln Phe His Ile Pro Thr Phe Gly Arg His Asn Ile Met Asn Ala Thr Ala Val Ile Gly Leu Leu Tyr Thr Ala Gly Phe Asp Leu Asn Leu Val Arg Glu His Leu Lys Thr Phe Ala Gly Val Lys Arg Arg Phe Thr Glu Lys Ile Val Asn Asp Thr Val Ile Ile Asp Asp Phe Ala His His Pro Thr Glu Ile Ile Ala Thr 295 Leu Asp Ala Ala Arg Gln Lys Tyr Pro Ser Lys Glu Ile Val Ala Val 315 Phe Gln Pro His Thr Phe Thr Arg Thr Ile Ala Leu Leu Asp Asp Phe 330 Ala His Ala Leu Asn Gln Ala Asp Ala Val Tyr Leu Ala Gln Ile Tyr Gly Ser Ala Arg Glu Val Asp His Gly Asp Val Lys Val Glu Asp Leu Ala Asn Lys Ile Asn Lys Lys His Gln Val Ile Thr Val Glu Asn Val Ser Pro Leu Leu Asp His Asp Asn Ala Val Tyr Val Phe Met Gly Ala 385 390 395 400 Gly Asp Ile Gln Thr Tyr Glu Tyr Ser Phe Glu Arg Leu Leu Ser Asn Leu Thr Ser Asn Val Gln

(2) INFORMATION FOR SEQ ID NO: 117:

420

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3121 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

SECOFICE DES	CRIFITON.) HQ 110: 1			
ACTGTTGGTA	CTTTCCTTTT	TACTGCAGGA	TTGAGCTTGT	TAGTTTTATT	60
AGGGAAAATG	GAAAGAAACG	ACTTGTTCAT	TTTCTGCTGT	TGACTAGCAT	120
TTGTTGCCGG	CCAGTGCTTT	TGGGTTGACC	AGCCAGATTT	TATCTGCCTA	180
CTTTCTATCG	GAGTCGGGGA	ACATTTACCA	GAGCCTCTGA	AAATCGAAGG	240
ATTGGTTATA	TCAAAACTAA	GAAACAGGAT	AATACAGAGC	TTTCAAGGAC	300
AAATACTCTG	CTCAAAGAGA	TAGTCAACCA	AACTCTAÇAA	AAACATCAGA	360
TCAGCTGATT	TAGAATGGAA	CCAAGGACAG	GGGAAGGTTA	GTTTACAAGG	420
GGGGATGATG	GACTTTCAGA	AAAATCTTCT	ATAGCAGCAG	ACAATCTATC	480
TCATTCGCAA	GTCAAGTTGA	GCAGAATCCG	GATCACAAAG	GAGAATCTGT	540
ACAGTGCCAG	AACAAGGAAA	TCCTGTGTCT	GCTACAACGG	TGCAGAGTGC	600
GTATTGGCGA	CGACAAATGA	TCGACCAGAG	TATAAACTTC	CATTGGAAAC	660
CAAGAACCCG	GTCATGAGGG	TGAAGCCGCA	GTCCGTGAAG	ACTTACCAGT	720
CCACTAGAAA	CCAAAGGTAC	ACAAGGACCC	GGACATGAAG	GTGAAGCTGC	780
GAAGAACCAG	CTTACACAGA	ACCGTTAGCA	ACGAAAGGCA	CGCAAGAGCC	840
GGCAAAGCTA	CAGTCCGCGA	AGAGACTCTA	GAGTACACGG	AACCGGTAGC	900
CACACAAGAAC	CCGAACATGA	GGGCGAaCGG	sCAGTAGAAG	AAGAACTTCC	960
GTCACTACAC	GAAATAGAAC	GGAAATCCAG	AATATTCCTT	ATACAACAGA	1020
GATCCAACAC	TTCTGAAAAA	TCGTCGTAAG	ATTGAACGAC	AAGGGCAAGC	1080
r ACAATTCAAT	ATGAAGACTA	CATCGTAAAT	GGTAATGTCG	TAGAAACTAA	1140
A CGAACTGAAG	TAGCTCCGGT	CAACGAAGTC	GTTAAAGTAG	GAACACTTGT	1200
A CCTACAGTAG	AAATTACAAA	CTTAACAAAA	GTTGAGAACA	AAAAATCTAT	1260
r tataactta <i>a</i>	TAGACACTAC	CTCAGCATAT	GTTTCTGCAA	AAACGCAAGT	1320
A GACAAGCTAG	TTAAAGAGGT	GGATATAGAA	AATCCTGCCA	AAGAGCAAGT	1380
r TTAGATTACI	ACACACCGTA	TACAGTTAAA	ACACACCTAA	CTTATAATTT	1440
r aatgaggaa	A ATACTGAAAC	ATCAACTCAA	GATTTCCAAT	' TAGAGTATAA	1500
G ATTAAAGAT	A TTGATTCAGI	AGAATTATAC	GGTAAAGAAA	ATGATCGTTA	1560
T TTAAGTCTAA	A GTGAAGCGCC	GACTGATACG	GCTAAATACT	TTGTAAAAGT	1620
T CGCTTCAAA	G AAATGTACCT	ACCTGTAAAA	TCTATTACAG	; AAAATACGGA	1680
	ACTGTTGGTA AGGGAAAATG TTGTTGCCGG CTTTCTATCG ATTGGTTATA AAATACTCTG TCAGCTGATT GGGGATGATG ACAGTGCCAG CTATTGGCGA CAAGAACCCG GCAAAGACCAG GCAAAGACCAG GATCCAACAC GATCCAACAC GATCCAACAC GATCCAACAC GATCCAACAC GATCCAACAC TACAATTCAAT ACGAACTGAAG TTATAACTTAA AGACAAGCTAC AATTAAACTTAA AATGAGGAAA TTAAAGATA TTAAGTCTAA	ACTGTTGGTA CTTTCCTTTT AGGGAAAATG GAAAGAAACG TTGTTGCCGG CCAGTGCTTT CTTTCTATCG GAGTCGGGGA ATTGGTTATA TCAAAACTAA AAATACTCTG CTCAAAGAGA TCAGCTGATT TAGAATGGAA GGGGATGATG GACTTTCAGA ACAGTGCCAG GTCAAGTAGA GTATTGGCGA CGACAAATGA GTATTGGCGA CGACAAATGA GCACTAGAAA CCAAAGGTAC GAAGAACCCG GTCATGAGAG GCAAAGACCAG CTTACACAGA GACACAAGAAC CCGAACATGA GACACAAGAAC CCGAACATGA GACACAAGAAC TTCTGAAAAA ACAGTTCAAT ATGAAGACTA ACAATTCAAT ATGAAGACTA ACGAACTGAAG TAGCTCCGGT ACACAAGTAG TAGACACACA TATAACTTAA TAGACACTAC AGACAAGCTAG TAAAAGAGGT TTAGATTACT ACACACCGTA ATTAGATTACT ACACACCGTA ATTAGAGGAAA ATACTGAAAC ATTAAAGATA TTGATTCAGT TTAAGTCTAA GTGAAGCCCC TTTAAGTCTAA GTGAAGCCCC TTTAAGTCTAA GTGAAGCCCCC TTTAAGTCTAA GTGAAGCCCCC	TTGTTGCCGG CCAGTGCTTT TGGGTTGACC CTTTCTATCG GAGTCGGGGA ACATTTACCA ATTGGTTATA TCAAAACTAA GAAACAGGAT AAATACTCTG CTCAAAGAGA TAGTCAACCA TCAGCTGATT TAGAATGGAA CCAAGGACAG GGGGATGATG GACTTCAGA AAAATCTTCT TCATTCGCAA GTCAAGTTGA GCAGAATCCG ACAGTGCCAG AACAAGGAAA TCCTGTGTCT GTATTGGCGA CGACAAATGA TCGACCAGAG CCACTAGAAA CCAAAGGTAC ACAAGGACCC GAAGAACCCG GTCATGAGGG TGAAGCCGCA GGGCAAAGCTA CAGTCCGCGA AGAGACTCTA GACACAAGAC CCGAACATGA GGGCGAACCG GGCAAAGCTA CAGTCCGCGA AGAGACTCTA CACACAAGAC CCGAACATGA GGGCGAACCG GGTCACTACAC GAAATGAA TCGTCGTAAG GATCCAACAC TTCTGAAAAA TCGTCGTAAG CCAACTGAAG TAGCCCGT CAACGAAGTC ACCAACAC TTCTGAAAAA TCGTCGTAAAT ACGAACTGAAG TAGCCCCGT CAACGAAGTC ACCAAGAAC CTCAGCATAT ACCAACACAC TTAAACAAA CTTAACAAAA TTATAACTTAA TAGACACTAC CTCAGCATAT AGACAAGCTA TAGACACTAC CTCAGCATAT AGACAAGCTA TAAAGAGGT GGATATAGAA TTTAGATTACT ACACACCGTA TACAGTTAAA TTAAAGTTAC TACACACCGTA TACAGTTAAA TATAACTTAA TTGATTCAGT AGAATTATAC TATAAACTTAA TTGATTCAGT AGAATTATAC	ACTGTTGGTA CTTTCCTTTT TACTGCAGGA TTGAGCTTGT AGGGAAAATG GAAAGAAACG ACTTGTTCAT TTTCTGCTGT TTGTTGCCGG CCAGTGCTTT TGGGTTGACC AGCCAGATTT CTTTCTATCG GAGTCGGGGA ACATTTACCA GAGCCTCTGA AAATACTCTG CTCAAAGAGA TAGTCAACCA AACTCTACAA CTCAGCTGATT TAGAATGGAA CCAAGGACAG GGGAAGGTTA CGGGGATGATG GACTTTCAGA AAAATCTTCT ATAGCAGCA CTCATTCGCAA GTCAAGTTGA GCAGAATCCG GATCACAAAG CAAGTGCCAG AACAAGGAAA TCCTGTGTCT GCTACAAAGG CAAGAACCCG GTCATGAGGG TGAAGCCGCA GTCCGTGAAG CCAACAAGAACCCG GTCATGAGGG TGAAGCCGCA GTCCGTGAAG CCACTAGAAA CCAAAGGTAC ACAAGGACC GGACATGAAG CGAAAACCCG GTCATGAGGG TGAAGCCGCA GTCCGTGAAG CGACAAAGCAC CTTACACAGA ACCGTTAGCA ACGAAAGGCA CGACAAGAAC CCGAACATGA GGGCGAACGG SCAGTAGAAG CGACAAGAAC CCGAACATGA GGGCGAACGG SCAGTAGAAG CGACAAGAAC CCGAACATGA GGGCGAACGG SCAGTAGAAG CGACAAGAAC CTCTGAAAAA TCGTCGTAAG ATTGAACCGC CACAACACAC TTCTGAAAAA TCGTCGTAAG ATTGAACGAC CACAATCAAT ATGAAGACTA CATCGTAAAT GGTAAAGTAG CCTACCAGAG TAGCTCCGGT CAACGAAGTC GTTAAAGTAG CACAATCAAT ATGAAGACTA CATCGTAAAA GTTGAGAACA CTTACACTTAA TAGACACTAC CTCAGCATAT GTTTCTGCAA CAGACACGTAG TAAAAGAGGT GGATATAGAA AATCCTGCCAA CACAAGGAAA AAATTACAAA CTTAACAAAA GTTGAGAACA CTTACACGTAG AAATTACAAA CTTAACAAAA GTTGAGAACA CTTACACGTAG TAAAAGAGGT GGATATAGAA AATCCTGCCAA CAATTCAAT ATGAACACTAC CTCAGCATAT GTTTCTGCAA CAATTCAAT ATGAAGAGGT GGATATAGAA AATCCTGCCAA CAAATTACAT ACAACCTAC CTCAGCATAT GTTTCTGCAA CAAATTACAT ACAACACCGTA TACAGTTAAA ACACCCTAA CAATGAGGAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT CAATGAGGAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT CAATGAGGAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT CAATTAAAGATA TTGATTCAGT AGAATTACC GGTAAAAGAAA CTTAAAGGAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAT CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAT CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAT CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAC CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAC CTTAAGGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACAAC CTTAAAGTCTAA GTGAAGCGCC GACTGATACC GCTAAAATACCTAACTAACTAACTAAC GTTAAAGAACAC TTAAAGTATAC GGTAAAGCACC CTTAAAGGTCTAA GGGACGCC GACTGATACC GCTAAAATACCTAACTA	ACTOTTEGTA CTTTCCTTTT TACTGCAGGA TTGAGCTTGT TAGTTTATT AGGGAAAATG GAAAGAAACG ACTTGTTCAT TTTCTGCTGT TGACTAGCAT TTGTTGCCGG CCAGTGCTTT TGGGTTGACC AGCCAGATTT TATCTGCCTA CTTTCTATCG GAGTCGGGGA ACATTTACCA GAGCCTCTGA AAATCGAAGG ATTGGTTATA TCAAAACTAA GAAACAGGAT AATACAGAGC TTTCAAGGAC AAATACTCTG CTCAAAGAGA TAGTCAACCA AACTCTACAA AAACATCAGA CTCAGCTGATT TAGAATGGAA CCAAGGACAG GGGAAGGTTA GTTTACAAGG GGGATGATG GACTTTCAGA AAAATCTTCT ATAGCAGCAG ACAATCTATC ACAGTGCCAG ACAAGGAAA TCCTGTGTCT GCTACAAAG GAGAATCTGT ACAGTGCCAG ACAAGGAAA TCCTGTGTCT GCTACAAAG GAGAATCTGT CCAAGAACCCG GTCATGAGGG TGAAGCCCA GTCCGTGAAG ACCTTACCAGT CCAACAGAACCCG GTCATGAGGG TGAAGCCCC GGACATGAAG GTGAAGCTGC GCAACAGAAC CCAAAGGTAC ACAAGGACCC GGACATGAAG GTGAAGCTGC GAAGAACCCA CTTACACAGA ACCGTTAGCA ACGAAAGGA CCGCAAGAGCC GAACAAGAAC CCAAAGGTAC ACAAGGACCC GACAATGAAG GTGAAGCTGC GACAAAGAAC CCGAACATGA GGGCGAACGG AACCGGTAGC ACACAAGAAC CCGAACATGA GGGCGAACGG GACATGAAG ACCGGTAGC CACACAAGAAC CCGAACATGA GGGCGAACGG GACAAGGAC ACCGAAGGCC GACACAAGAAC CCGAACATGA GGGCGAACGG AACCGGTAGC CACAAAGAAC CCGAACATGA GGGCGAACGG AACCGGTAGC CACACAAGAAC CCGAACATGA GGGCGAACGG AACAGAGCC CACACAAGAAC CCGAACATGA GGGCGAACGG AACAGAGAC CACACAAGAAC CCGAACATGA GGGCGAACGG AACAGAACTAC CACACAAGAAC CCGAACATGA GGGCGAACGG AACAGAACTAC CACACAAGAAC TCTCTGAAAAA TCGTCGTAAG ATTGAACACA AAGAACTTAC CACACTACAC TTCTGAAAAA TCGTCGTAAG ATTGAACGAC AAGGGCAAGC CACACACAC TTCTGAAAAA TCGTCGTAAG ATTGAACGAC AAGAACTTAT CACAACTGAA AAATTACAAA CTTAACAAAA GTTGAACACA AAAAATCTAT TATAACTTAA TAGACACTAC CTCAGCATAT GTTTAGAGAACA AAAAATCTAT TATAACTTAA TAGACACTAC CTCAGCATAT GTTTCGCAA AAACCCAAGT TATAAACTTAA TAGACACTAC CTCAGCATAT GTTTCGCAA AAACCCAAGT TATAAACTTAA TAGACACTAC CTCAGCATAT GTTTCGCAA AAACCCAAGT TATAAACTTAA TAGACACTAC CTCAGCATAT GTTTCACAA AAACCCAAGT TATAAACTTAA TAGACACCTAA CTCAACTCAA GATTTCCAAT TAGAGTATAA ACCACCTAA CTCAACTCAA GATTTCCAAT TAGAGTATAA TTATAAGTTAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT TAGAGTATAA TTATAAGTTAAA ATACTGAAAC ATCAACTCAA GATTTCCAAT TAGAGTATAA TTATAAGGGAAA ATACTGAAAC ATCAACTCAA GCTTAAAAAC TTTATAAAGTTA TTATAAGTCTAA GAGAGCCC GACTGATACC

TGGAACGTAT	AAAGTGACGG	TAGCCGTTGA	TCAACTTGTC	GAAGAAGGTA	CAGACGGTTA	1740
CAAAGATGAT	TACACATTTA	CTGTAGCTAA	ATCTAAAGCA	GAGCAACCAG	GAGTTTACAC	1800
ATCCTTTAAA	CAGCTGGTAA	CAGCCATGCA	AAGCAATCTG	TCTGGTGTCT	ATACATTGGC	1860
TTCAGATATG	ACCGCAGATG	AGGTGAGCTT	AGGCGATAAG	CAGACAAGTT	ATCTCACAGG	1920
TGCATTTACA	GGGAGCTTGA	TCGGTTCTGA	TGGAACAAAA	TCGTATGCCA	TTTATGATTT	1980
GAAGAAACCA	TTATTTGATA	CATTAAATGG	TGCTACAGTT	AGAGATTTGG	ATATTAAAAC	2040
TGTTTCTGCT	GATAGTAAAG	AAAATGTCGC	AGCGCTGGCG	AAGGCAGCGA	ATAGCGCGAA	2100
TATTAATAAT	GTTGCAGTAG	AAGGAAAAAT	CTCAGGTGCG	AAATCTGTTG	CGGGATTAGT	2160
AGCGAGCGCA	ACAAATACAG	TGATAGAAAA	CAGCTCGTTT	ACAGGGAAAC	TTATCGCAAA	2220
TCACCAGGAC	AGTAATAAAA	ATGATACTGG	AGGAATAGTA	GGTAATATAA	CAGGAAATAG	2280
TTCGAGAGTT	AATAAAGTTA	GGGTAGATGC	CTTAATCTCT	ACTAATGCAC	GCAATAATAA	2340
CCAAACAGCT	GGAGGGATAG	TAGGTAGATT	AGAAAATGGT	GCATTGATAT	CTAATTCGGT	2400
TGCTACTGGA	GAAATACGAA	ATGGTCAAGG	ATATTCTAGA	GTCGGAGGAA	TAGTAGGATC	2460
TACGTGGCAA	AACGGTCGAG	TAAATAATGT	TGTGAGTAAC	GTAGATGTTG	GAGATGGTTA	2520
TGTTATCACC	GGTGATCAAT	ACGCAGCAGC	AGATGTGAAA	AATGCAAGTA	CATCAGTTGA	2580
TAATAGAAAA	GCAGACAGAT	TCGCTACAAA	ATTATCAAAA	GACCAAATAG	ACGCGAAAGT	2640
TGCTGATTAT	GGAATCACAG	TAACTCTTGA	TGATACTGGG	CAAGATTTAA	AACGTAATCT	2700
AAGAGAAGTT	GATTATACAA	GACTAAATAA	AGCAGAAGCT	GAAAGAAAAG	TAGCTTATAG	2760
CAACATAGAA	AAACTGATGC	CATTCTACAA	TAAAGACCTA	GTAGTTCACT	ATGGTAACAA	2820
AGTAGCGACA	ACAGATAAAC	TTTACACTAC	AGAATTGTTA	GATGTTGTGC	CGATGAAAGA	2880
TGATGAAGTA	GTAACGGATA	ттаатаатаа	GAAAAATTCA	ATAAATAAAG	TTATGTTACA	2940
TTTCAAAGAT	· AATACAGTAG	AATACCTAGA	TGTAACATTC	AAAGAAAACT	TCATAAACAG	3000
TCAAGTAATC	GAATACAATG	TTACAGGAAA	AGAATATATA	TTCACACCAG	AAGCATTTGT	3060
TTCAGACTAT	ACAGCGATAA	CGAATAACGT	ACTAAGCGAC	TTGCAAAATG	TAACACTTAA	3120
С						3121

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1040 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Phe Asn Pro Thr Val Gly Thr Phe Leu Phe Thr Ala Gly Leu Ser Leu 10 Leu Val Leu Leu Val Ser Lys Arg Glu Asn Gly Lys Lys Arg Leu Val His Phe Leu Leu Leu Thr Ser Met Gly Val Gln Leu Leu Pro Ala Ser 40 Ala Phe Gly Leu Thr Ser Gln Ile Leu Ser Ala Tyr Asn Ser Gln Leu Ser Ile Gly Val Gly Glu His Leu Pro Glu Pro Leu Lys Ile Glu Gly 65 70 75 80 Tyr Gln Tyr Ile Gly Tyr Ile Lys Thr Lys Lys Gln Asp Asn Thr Glu 85 90 95 Leu Ser Arg Thr Val Asp Gly Lys Tyr Ser Ala Gln Arg Asp Ser Gln 100 105 110Pro Asn Ser Thr Lys Thr Ser Asp Val Val His Ser Ala Asp Leu Glu Trp Asn Gln Gly Gln Gly Lys Val Ser Leu Gln Gly Glu Ala Ser Gly 130 140 Asp Asp Gly Leu Ser Glu Lys Ser Ser Ile Ala Ala Asp Asn Leu Ser Ser Asn Asp Ser Phe Ala Ser Gln Val Glu Gln Asn Pro Asp His Lys Gly Glu Ser Val Val Arg Pro Thr Val Pro Glu Gln Gly Asn Pro Val 185 Ser Ala Thr Thr Val Gln Ser Ala Glu Glu Glu Val Leu Ala Thr Thr Asn Asp Arg Pro Glu Tyr Lys Leu Pro Leu Glu Thr Lys Gly Thr Gln Glu Pro Gly His Glu Gly Glu Ala Ala Val Arg Glu Asp Leu Pro Val 225 230 235 240 225 Tyr Thr Lys Pro Leu Glu Thr Lys Gly Thr Gln Gly Pro Gly His Glu Gly Glu Ala Ala Val Arg Glu Glu Glu Pro Ala Tyr Thr Glu Pro Leu 265 Thr Lys Gly Thr Gln Glu Pro Gly His Glu Gly Lys Ala Thr Val 275 280 285 Arg Glu Glu Thr Leu Glu Tyr Thr Glu Pro Val Ala Thr Lys Gly Thr 290 295 300 Gln Glu Pro Glu His Glu Gly Glu Arg Xaa Val Glu Glu Glu Leu Pro 315 Ala Leu Glu Val Thr Thr Arg Asn Arg Thr Glu Ile Gln Asn Ile Pro 330 Tyr Thr Thr Glu Glu Ile Gln Asp Pro Thr Leu Leu Lys Asn Arg Arg

350 340 345 Lys Ile Glu Arg Gln Gly Gln Ala Gly Thr Arg Thr Ile Gln Tyr Glu 360 Asp Tyr Ile Val Asn Gly Asn Val Val Glu Thr Lys Glu Val Ser Arg Thr Glu Val Ala Pro Val Asn Glu Val Val Lys Val Gly Thr Leu Val Lys Val Lys Pro Thr Val Glu Ile Thr Asn Leu Thr Lys Val Glu Asn Lys Lys Ser Ile Thr Val Ser Tyr Asn Leu Ile Asp Thr Thr Ser Ala Tyr Val Ser Ala Lys Thr Gln Val Phe His Gly Asp Lys Leu Val Lys Glu Val Asp Ile Glu Asn Pro Ala Lys Glu Gln Val Ile Ser Gly Leu Asp Tyr Tyr Thr Pro Tyr Thr Val Lys Thr His Leu Thr Tyr Asn Leu 475 Gly Glu Asn Asn Glu Glu Asn Thr Glu Thr Ser Thr Gln Asp Phe Gln 490 485 Leu Glu Tyr Lys Lys Ile Glu Ile Lys Asp Ile Asp Ser Val Glu Leu Tyr Gly Lys Glu Asn Asp Arg Tyr Arg Arg Tyr Leu Ser Leu Ser Glu 515 520 525 Ala Pro Thr Asp Thr Ala Lys Tyr Phe Val Lys Val Lys Ser Asp Arg 535 Phe Lys Glu Met Tyr Leu Pro Val Lys Ser Ile Thr Glu Asn Thr Asp Gly Thr Tyr Lys Val Thr Val Ala Val Asp Gln Leu Val Glu Gly Thr Asp Gly Tyr Lys Asp Asp Tyr Thr Phe Thr Val Ala Lys Ser Lys 580 585 Ala Glu Gln Pro Gly Val Tyr Thr Ser Phe Lys Gln Leu Val Thr Ala Met Gln Ser Asn Leu Ser Gly Val Tyr Thr Leu Ala Ser Asp Met Thr Ala Asp Glu Val Ser Leu Gly Asp Lys Gln Thr Ser Tyr Leu Thr Gly 635 630 Ala Phe Thr Gly Ser Leu Ile Gly Ser Asp Gly Thr Lys Ser Tyr Ala Ile Tyr Asp Leu Lys Lys Pro Leu Phe Asp Thr Leu Asn Gly Ala Thr Val Arg Asp Leu Asp Ile Lys Thr Val Ser Ala Asp Ser Lys Glu Asn 685 680

Val Ala Ala Leu Ala Lys Ala Ala Asn Ser Ala Asn Ile Asn Asn Val 695 Ala Val Glu Gly Lys Ile Ser Gly Ala Lys Ser Val Ala Gly Leu Val Ala Ser Ala Thr Asn Thr Val Ile Glu Asn Ser Ser Phe Thr Gly Lys Leu Ile Ala Asn His Gln Asp Ser Asn Lys Asn Asp Thr Gly Gly Ile 745 Val Gly Asn Ile Thr Gly Asn Ser Ser Arg Val Asn Lys Val Arg Val Asp Ala Leu Ile Ser Thr Asn Ala Arg Asn Asn Asn Gln Thr Ala Gly Gly Ile Val Gly Arg Leu Glu Asn Gly Ala Leu Ile Ser Asn Ser Val 795 Ala Thr Gly Glu Ile Arg Asn Gly Gln Gly Tyr Ser Arg Val Gly Gly Ile Val Gly Ser Thr Trp Gln Asn Gly Arg Val Asn Asn Val Val Ser Asn Val Asp Val Gly Asp Gly Tyr Val Ile Thr Gly Asp Gln Tyr Ala Ala Ala Asp Val Lys Asn Ala Ser Thr Ser Val Asp Asn Arg Lys Ala Asp Arg Phe Ala Thr Lys Leu Ser Lys Asp Gln Ile Asp Ala Lys Val Ala Asp Tyr Gly Ile Thr Val Thr Leu Asp Asp Thr Gly Gln Asp Leu 890 Lys Arg Asn Leu Arg Glu Val Asp Tyr Thr Arg Leu Asn Lys Ala Glu 905 Ala Glu Arg Lys Val Ala Tyr Ser Asn Ile Glu Lys Leu Met Pro Phe 920 Tyr Asn Lys Asp Leu Val Val His Tyr Gly Asn Lys Val Ala Thr Thr Asp Lys Leu Tyr Thr Thr Glu Leu Leu Asp Val Val Pro Met Lys Asp 945 Asp Glu Val Val Thr Asp Ile Asn Asn Lys Lys Asn Ser Ile Asn Lys Val Met Leu His Phe Lys Asp Asn Thr Val Glu Tyr Leu Asp Val Thr 985 Phe Lys Glu Asn Phe Ile Asn Ser Gln Val Ile Glu Tyr Asn Val Thr 1000 995 Gly Lys Glu Tyr Ile Phe Thr Pro Glu Ala Phe Val Ser Asp Tyr Thr 1015

1010

Ala Ile Thr Asn Asn Val Leu Ser Asp Leu Gln Asn Val Thr Leu Asn 1025 1030 1035 1040 1040 1025 1030

(2) INFORMATION FOR SEQ ID NO: 119:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1567 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

(X1) S	PEOUFINCE DES	CRIPTION. D	.mg			
TTTTAACCCA	ACTGTTGGTA	CTTTCCTTTT	TACTGCAGGA	TTGAGCTTGT	TAGTTTTATT	60
GGTTTCTAAA	AGGGAAAATG	GAAAGAAACG	ACTTGTTCAT	TTTCTGCTGT	TGACTAGCAT	120
GGGAGTTCAA	TTGTTGCCGG	CCAGTGCTTT	TGGGTTGACC	AGCCAGATTT	TATCTGCCTA	180
TAATAGTCAG	CTTTCTATCG	GAGTCGGGGA	ACATTTACCA	GAGCCTCTGA	AAATCGAAGG	240
TTATCAATAT	ATTGGTTATA	TCAAAACTAA	GAAACAGGAT	AATACAGAGC	TTTCAAGGAC	300
AGTTGATGGG	AAATACTCTG	CTCAAAGAGA	TAGTCAACCA	AACTCTACAA	AAACATCAGA	360
TGTAGTTCAT	TCAGCTGATT	TAGAATGGAA	CCAAGGACAG	GGGAAGGTTA	GTTTACAAGG	420
TGAAGCATCA	GGGGATGATG	GACTTTCAGA	AAAATCTTCT	ATAGCAGCAG	ACAATCTATC	480
	TCATTCGCAA					540
	ACAGTGCCAG					600
	GTATTGGCGA					660
	CAAGAACCCG					720
	CCACTAGAAA			•		780
	GAAGAACCAG					840
	GGCAAAGCTA					900
	ACACAAGAAC					960
	GTCACTACAC					1020
	GATCCAACAC					1080
					TAGAAACTAA	1140
	CGAACTGAAG					1200
					AAAAATCTAT	1260
					AAACGCAAGT	1320
					AAGAGCAAGT	1380
					CTTATAATTT	1440
					TAGAGTATAA	1500
GGG LGWWW.	r www.gwggww	, 1,11,010,1111				

GAAAATAGAG ATTAAAGATA TTGATTCAGT AGAATTATAC GGTAAAGAAA ATGATCGTTA 1560
TCGTAGA 1567

- (2) INFORMATION FOR SEQ ID NO:120:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 522 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Phe Asn Pro Thr Val Gly Thr Phe Leu Phe Thr Ala Gly Leu Ser Leu
1 10 15

Leu Val Leu Leu Val Ser Lys Arg Glu Asn Gly Lys Lys Arg Leu Val 20 25 30

His Phe Leu Leu Thr Ser Met Gly Val Gln Leu Leu Pro Ala Ser 35 40 45

Ala Phe Gly Leu Thr Ser Gln Ile Leu Ser Ala Tyr Asn Ser Gln Leu 50 55 60

Ser Ile Gly Val Gly Glu His Leu Pro Glu Pro Leu Lys Ile Glu Gly 65 70 75 80

Tyr Gln Tyr Ile Gly Tyr Ile Lys Thr Lys Lys Gln Asp Asn Thr Glu 85 90 95

Leu Ser Arg Thr Val Asp Gly Lys Tyr Ser Ala Gln Arg Asp Ser Gln 100 105 110

Pro Asn Ser Thr Lys Thr Ser Asp Val Val His Ser Ala Asp Leu Glu 115 120 125

Trp Asn Gln Gly Gln Gly Lys Val Ser Leu Gln Gly Glu Ala Ser Gly 130 135 140

Asp Asp Gly Leu Ser Glu Lys Ser Ser Ile Ala Ala Asp Asn Leu Ser 145 150 155 160

Ser Asn Asp Ser Phe Ala Ser Gln Val Glu Gln Asn Pro Asp His Lys 165 170 175

Gly Glu Ser Val Val Arg Pro Thr Val Pro Glu Gln Gly Asn Pro Val 180 185 190

Ser Ala Thr Thr Val Gln Ser Ala Glu Glu Glu Val Leu Ala Thr Thr 195 200 205

Asn Asp Arg Pro Glu Tyr Lys Leu Pro Leu Glu Thr Lys Gly Thr Gln 210 220

Glu Pro Gly His Glu Gly Glu Ala Ala Val Arg Glu Asp Leu Pro Val 225 230 235 240

Tyr Thr Lys Pro Leu Glu Thr Lys Gly Thr Gln Gly Pro Gly His Glu

255 245 250 Gly Glu Ala Ala Val Arg Glu Glu Glu Pro Ala Tyr Thr Glu Pro Leu Ala Thr Lys Gly Thr Gln Glu Pro Gly His Glu Gly Lys Ala Thr Val Arg Glu Glu Thr Leu Glu Tyr Thr Glu Pro Val Ala Thr Lys Gly Thr Gln Glu Pro Glu His Glu Gly Glu Arg Xaa Val Glu Glu Glu Leu Pro Ala Leu Glu Val Thr Thr Arg Asn Arg Thr Glu Ile Gln Asn Ile Pro Tyr Thr Thr Glu Glu Ile Gln Asp Pro Thr Leu Leu Lys Asn Arg Arg 340 345 350 Lys Ile Glu Arg Gln Gly Gln Ala Gly Thr Arg Thr Ile Gln Tyr Glu Asp Tyr Ile Val Asn Gly Asn Val Val Glu Thr Lys Glu Val Ser Arg Thr Glu Val Ala Pro Val Asn Glu Val Val Lys Val Gly Thr Leu Val 385 390 395 Lys Val Lys Pro Thr Val Glu Ile Thr Asn Leu Thr Lys Val Glu Asn Lys Lys Ser Ile Thr Val Ser Tyr Asn Leu Ile Asp Thr Thr Ser Ala Tyr Val Ser Ala Lys Thr Gln Val Phe His Gly Asp Lys Leu Val Lys 440 Glu Val Asp Ile Glu Asn Pro Ala Lys Glu Gln Val Ile Ser Gly Leu Asp Tyr Tyr Thr Pro Tyr Thr Val Lys Thr His Leu Thr Tyr Asn Leu 465 470 475 480 Gly Glu Asn Asn Glu Glu Asn Thr Glu Thr Ser Thr Gln Asp Phe Gln 490 Leu Glu Tyr Lys Lys Ile Glu Ile Lys Asp Ile Asp Ser Val Glu Leu 505 Tyr Gly Lys Glu Asn Asp Arg Tyr Arg Arg 515 520

(2) INFORMATION FOR SEQ ID NO: 121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1561 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

TCGTAGATAT 7	TTAAGTCTAA	GTGAAGCGCC	GACTGATACG	GCTAAATACT	TTGTAAAAGT	60
GAAATCAGAT (CGCTTCAAAG	AAATGTACCT	ACCTGTAAAA	TCTATTACAG	AAAATACGGA	120
TGGAACGTAT 2	AAAGTGACGG	TAGCCGTTGA	TCAACTTGTC	GAAGAAGGTA	CAGACGGTTA	180
CAAAGATGAT '	TACACATTTA	CTGTAGCTAA	ATCTAAAGCA	GAGCAACCAG	GAGTTTACAC	240
ATCCTTTAAA	CAGCTGGTAA	CAGCCATGCA	AAGCAATCTG	TCTGGTGTCT	ATACATTGGC	300
TTCAGATATG .	ACCGCAGATG	AGGTGAGCTT	AGGCGATAAG	CAGACAAGTT	ATCTCACAGG	360
TGCATTTACA	GGGAGCTTGA	TCGGTTCTGA	TGGAACAAAA	TCGTATGCCA	TTTATGATTT	420
GAAGAAACCA	TTATTTGĄTA	CATTAAATGG	TGCTACAGTT	AGAGATTTGG	ATATTAAAAC	480
TGTTTCTGCT	GATAGTAAAG	AAAATGTCGC	AGCGCTGGCG	AAGGCAGCGA	ATAGCGCGAA	540
TATTAATAAT	GTTGCAGTAG	AAGGAAAAT	CTCAGGTGCG	AAATCTGTTG	CGGGATTAGT	600
AGCGAGCGCA	ACAAATACAG	TGATAGAAAA	CAGCTCGTTT	ACAGGGAAAC	TTATCGCAAA	660
TCACCAGGAC	AGTAATAAAA	ATGATACTGG	AGGAATAGTA	GGTAATATAA	CAGGAAATAG	720
TTCGAGAGTT	AATAAAGTTA	GGGTAGATGC	CTTAATCTCT	ACTAATGCAC	GCAATAATAA	780
CCAAACAGCT	GGAGGGATAG	TAGGTAGATT	AGAAAATGGT	GCATTGATAT	CTAATTCGGT	840
TGCTACTGGA	GAAATACGAA	ATGGTCAAGG	ATATTCTAGA	GTCGGAGGAA	TAGTAGGATC	900
TACGTGGCAA	AACGGTCGAG	TAAATAATGT	TGTGAGTAAC	GTAGATGTTG	GAGATGGTTA	960
TGTTATCACC	GGTGATCAAT	ACGCAGCAGC	AGATGTGAAA	AATGCAAGTA	CATCAGTTGA	1020
TAATAGAAAA	GCAGACAGAT	TCGCTACAAA	. АТТАТСАААА	GACCAAATAG	ACGCGAAAGT	1080
TGCTGATTAT	GGAATCACAG	TAACTCTTGA	TGATACTGGG	CAAGATTTAA	AACGTAATCT	1140
AAGAGAAGTT	GATTATACAA	GACTAAATAA	AGCAGAAGCT	GAAAGAAAAG	TAGCTTATAG	1200
CAACATAGAA	AAACTGATGC	CATTCTACAA	TAAAGACCTA	GTAGTTCACT	' ATGGTAACAA	1260
AGTAGCGACA	ACAGATAAAC	TTTACACTAC	: AGAATTGTTA	GATGTTGTGC	CGATGAAAGA	1320
TGATGAAGTA	GTAACGGATA	AATAATAATT .	A GAAAAATTCA	ATAAATAAAC	TTATGTTACA	1380
TTTCAAAGAT	AATACAGTAG	AATACCTAGA	A TGTAACATTO	AAAGAAAACT	TCATAAACAG	1440
TCAAGTAATC	GAATACAATG	TTACAGGAA	A AGAATATATA	TTCACACCAC	AAGCATTTGT	1500
TTCAGACTAT	ACAGCGATAA	CGAATAACG	r actaagcgac	TTGCAAAAT	TAACACTTAA	1560
C .					,	1561

(2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 520 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122: 10

Arg Arg Tyr Leu Ser Leu Ser Glu Ala Pro Thr Asp Thr Ala Lys Tyr

Phe Val Lys Val Lys Ser Asp Arg Phe Lys Glu Met Tyr Leu Pro Val

Lys Ser Ile Thr Glu Asn Thr Asp Gly Thr Tyr Lys Val Thr Val Ala

Val Asp Gln Leu Val Glu Glu Gly Thr Asp Gly Tyr Lys Asp Asp Tyr

Thr Phe Thr Val Ala Lys Ser Lys Ala Glu Gln Pro Gly Val Tyr Thr 65 70 75 80

Ser Phe Lys Gln Leu Val Thr Ala Met Gln Ser Asn Leu Ser Gly Val

Thr Leu Ala Ser Asp Met Thr Ala Asp Glu Val Ser Leu Gly Asp 105

Gln Thr Ser Tyr Leu Thr Gly Ala Phe Thr Gly Ser Leu Ile Gly

Ser Asp Gly Thr Lys Ser Tyr Ala Ile Tyr Asp Leu Lys Lys Pro Leu 130 135 140

Phe Asp Thr Leu Asn Gly Ala Thr Val Arg Asp Leu Asp Ile Lys Thr 145 150 155 160

Val Ser Ala Asp Ser Lys Glu Asn Val Ala Ala Leu Ala Lys Ala Ala

Asn Ser Ala Asn Ile Asn Asn Val Ala Val Glu Gly Lys Ile Ser Gly 185

Ala Lys Ser Val Ala Gly Leu Val Ala Ser Ala Thr Asn Thr Val Ile 200

Glu Asn Ser Ser Phe Thr Gly Lys Leu Ile Ala Asn His Gln Asp Ser

Asn Lys Asn Asp Thr Gly Gly Ile Val Gly Asn Ile Thr Gly Asn Ser 230 235

Ser Arg Val Asn Lys Val Arg Val Asp Ala Leu Ile Ser Thr Asn Ala

Arg Asn Asn Asn Gln Thr Ala Gly Gly Ile Val Gly Arg Leu Glu Asn

Gly Ala Leu Ile Ser Asn Ser Val Ala Thr Gly Glu Ile Arg Asn Gly 280

Gln Gly Tyr Ser Arg Val Gly Gly Ile Val Gly Ser Thr Trp Gln Asn

Gly Arg Val Asn Asn Val Val Ser Asn Val Asp Val Gly Asp Gly Tyr 315

Val	Ile	Thr	Gly	Asp 325	Gln	Tyr	Ala	Ala	Ala 330	Asp	Val	Lys	Asn	Ala 335	Ser
Thr	Ser	Val	Asp 340	Asn	Arg	Lys	Ala	Asp 345	Arg	Phe	Ala	Thr	Lys 350	Leu	Ser
Lys	Asp	Gln 355	Ile	Asp	Ala	Lys	Val 360	Ala	Asp	Tyr	Gly	Ile 365	Thr	Val	Thr
Leu	Asp 370	Asp	Thr	Gly	Gln	Asp 375	Leu	Lys	Arg	Asn	Leu 380	Arg	Glu	Val	Asp
Tyr 385	Thr	Arg	Leu	Asn	Lys 390	Ala	Glu	Ala	Glu	Arg 395	Lys	Val (Ala	Tyr	Ser 400
Asn	Ile	Glu	Lys	Leu 405	Met	Pro	Phe	Tyr	Asn 410	Lys	Asp	Leu	Val	Val 415	His
Tyr	Gly	Asn	Lys 420	Val	Ala	Thr	Thr	Asp 425	Lys	Leu	Tyr	Thr	Thr 430	Glu	Leu
Leu	Asp	Val 435	Val	Pro	Met	ГÀè	Asp 440	Asp	Glu	Val	Val	Thr 445	Asp	Ile	Asn
Asn	Lys 450	Lys	Asn	Ser	Ile	Asn 455	Lys	Val	Met	Leu	His 460	Phe	Lys	Asp	Asn
Thr 465	Val	Glu	Tyr	Leu	Asp 470	Val	Thr	Phe	Lys	Glu 475	Asn	Phe	Ile	Asn	Ser 480
Gln	Val	Ile	Glu	Tyr 485	Asn	Val	Thr	Gly	Lys 490	Glu	Tyr	Ile	Phe	Thr 495	Pro
Glu	Ala	Phe	Val 500	Ser	Asp	Tyr	Thr	Ala 505	Ile	Thr	Asn	Asn	Val 510	Leu	Ser
Asp	Leu	Gln 515	Asn	Val	Thr	Leu	Asn 520								

(2) INFORMATION FOR SEQ ID NO: 123:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 850 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

CTTTGGTTTT	GAAGGAAGTA	AGCGTGGACA	ATTTGCTGTA	GAAGGAATCA	ATCAACTTCG	60
TGAGCATGTA	GACACTCTAT	TGATTATCTC	AAACAACAAT	TTGCTTGAAA	TTGTTGATAA	120
GAAAACACCG	CTTTTGGAGG	CTCTTAGCGA	AGCGGATAAC	GTTCTTCGTC	AAGGTGTTCA	180
AGGGATTACC	GATTTGATTA	CCAATCCAGG	ATTGATTAAC	CTTGACTTTG	CCGATGTGAA	240
AACGGTAATG	GCAAACAAAG	GGAATGCTCT	TATGGGTATT	GGTATCGGTA	GTGGAGAAGA	300
ACGTGTGGTA	GAAGCGGCAC	GTAAGGCAAT	CTATTCACCA	CTTCTTGAAA	CAACTATTGA	360
CGGTGCTGAG	GATGTTATCG	TCAACGTTAC	TGGTGGTCTT	GACTTAACCT	TGATTGAGGC	420

AGAAGAGGCT	TCACAAATTG	TGAACCAGGC	AGCAGGTCAA	GGAGTGAACA	TCTGGCTCGG	480
TACTTCAATT	GATGAAAGTA	TGCGTGATGA	AATTCGTGTA	ACAGTTGTTG	CAACGGGTGT	540
TCGTCAAGAC	CGCGTAGAAA	AGGTTGTGGC	TCCACAAGCT	AGATCTGCTA	CTAACTACCG	600
TGAGACAGTG	AAACCAGCTC	ATTCACATGG	CTTTGATCGT	CATTTTGATA	TGGCAGAAAC	660
AGTTGAATTG	CCAAAACAAA	ATCCACGTCG	TTTGGAACCA	ACTCAGGCAT	CTGCTTTTGG	720
TGATTGGGAT	CTTCGCCGTG	AATCGATTGT	TCGTACAACA	GATTCAGTCG	TTTCTCCAGT	780
CGAGCGCTTT	GAAGCCCCAA	TTTCACAAGA	TGAAGATGAA	TTGGATACAC	CTCCATTTTT	840
CAAAAATCGT						850
CAMMATCGI						

(2) INFORMATION FOR SEQ ID NO:124:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 283 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:
- Phe Gly Phe Glu Gly Ser Lys Arg Gly Gln Phe Ala Val Glu Gly Ile 1 5 10 15
- Asn Gln Leu Arg Glu His Val Asp Thr Leu Leu Ile Ile Ser Asn Asn 20 25 30
- Asn Leu Leu Glu Ile Val Asp Lys Lys Thr Pro Leu Leu Glu Ala Leu
- Ser Glu Ala Asp Asn Val Leu Arg Gln Gly Val Gln Gly Ile Thr Asp
- Leu Ile Thr Asn Pro Gly Leu Ile Asn Leu Asp Phe Ala Asp Val Lys 65 70 75 80
- Thr Val Met Ala Asn Lys Gly Asn Ala Leu Met Gly Ile Gly 11e Gly 85 90 95
- Ser Gly Glu Glu Arg Val Val Glu Ala Ala Arg Lys Ala Ile Tyr Ser 100 105 110
- Pro Leu Leu Glu Thr Thr Ile Asp Gly Ala Glu Asp Val Ile Val Asn 115 120 125
- Val Thr Gly Gly Leu Asp Leu Thr Leu Ile Glu Ala Glu Glu Ala Ser 130 135
- Gln Ile Val Asn Gln Ala Ala Gly Gln Gly Val Asn Ile Trp Leu Gly 145 150 150
- Thr Ser Ile Asp Glu Ser Met Arg Asp Glu Ile Arg Val Thr Val Val 165 170 175
- Ala Thr Gly Val Arg Gln Asp Arg Val Glu Lys Val Val Ala Pro Gln

			180					185					190		
Ala	Arg	Ser 195	Ala	Thr	Asn	Tyr	Arg 200	Glu	Thr	Val	Lys	Pro 205	Ala	His	Ser
His	Gly 210	Phe	Asp	Arg	His	Phe 215	Asp	Met	Ala	Glu	Thr 220	Val	Glu	Leu	Pro
	Gln	Asn	Pro	Arg	Arg 230	Leu	Glu	Pro	Thr	Gln 235	Ala	Ser	Ala	Phe	Gly 240
Asp	Trp	Asp	Leu	Arg 245	Arg	Glu	Ser	Ile	Val 250	Arg	Thr	Thr	Asp	Ser 255	Val
Val	Ser	Pro	Val 260	Glu	Arg	Phe	Glu	Ala 265	Pro	Ile	Ser	Gln	Asp 270	Glu	Asp
Glu	Leu	Asp 275	Thr	Pro	Pro	Phe	Phe 280	Lys	Asn	Arg					

(2) INFORMATION FOR SEQ ID NO: 125:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1051 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

		=					
С	TACTACCTC	TCGAGAGAAA	GTGACCTAGA	GGTGACCGTT	TTTGACCATG	AGCAAGGTCA	60
Α	GCCACCAAG	GCCGCAGCAG	GAATTATCAG	TCCTTGGTTT	TCCAAACGCC	GTAATAAAGC	120
С	TGGTAÇAAG	ATGGCGCGCT	TGGGGGCTGA	TTTTTATGTG	GATTTATTAG	CTGATTTAGA	180
G	AAATCAGGA	CAAGAAATCG	ACTTTTACCA	GCGTTCGGGA	GTCTTTCTCT	TGAAAAAGGA	240
T	GAATCCAAT	TTGGAAGAAC	TTTATCAACT	GGCCCTCCAG	CGCAGAGAAG	AATCTCCCTT	300
G	ATAGGGCAA	TTAGCCATTC	TGAACCAAGC	CTCAGCTAAT	GAATTATTCC	CTGGTTTGCA	360
G	GGATTTGAC	CGCCTGCTCT	ATGCTTCTGG	TGGAGCGAGA	GTAGATGGCC	AACTTTTAGT	420
G	ACTCGTTTG	CTGGAAGTCA	GTCATGTCAA	GCTGGTCAAA	GAAAAAGTGA	CTCTGACACC	480
G	TTAGCATCA	GGCTACCAGA	TTGGTGAAGA	GGAGTTTGAG	CAGGTTATTT	TGGCGACGGG	540
A	GCTTGGTTG.	GGGGACATGT	TAGAGCCTTT	AGGTTATGAA	GTGGATGTCC	GTCCTCAAAA	600
A	.GGACAACTA	CGAGATTATC	AGCTTGCCCA	AGACATGGAA	GATTACCCTG	TTGTCATGCC	660
A	GAAGGGGAG	TGGGATTTGA	TTCCCTTTGC	AGGTGGGAAA	TTATCCTTAG	GCGCTACCCA	720
C	GAAAATGAC	ATGGGATTTG	ATTTGACGGT	AGATGAAACC	TTGCTCCAAC	AAATGGAGGA	780
G	GCCACCTTG	ACTCACTATC	TGATTTTGGC	TGAAGCTACT	TCAAAATCTG	AGCGTGTTGG	840
Z	ATCCGTGCC	TACACCAGTG	ATTTCTCTCC	TTTCTTTGGG	CAGGTGCCTG	ACTTAACTGG	900
7	GTCTATGCA	GCCAGTGGAC	TAGGTTCATC	AGGCCTCACA	ACTGGTCCTA	TCATTGGTTA	960

CCATCTAGCC CAACTGATCC AAGACAAGGA GTTGACCTTG GACCCTCTAA ATTACCCAAT

TGAAAACTAT GTCAAACGAG TAAAAAGCGA A

1020

- (2) INFORMATION FOR SEQ ID NO:126:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:
 - Tyr Tyr Leu Ser Arg Glu Ser Asp Leu Glu Val Thr Val Phe Asp His
 - Glu Gln Gly Gln Ala Thr Lys Ala Ala Ala Gly Ile Ile Ser Pro Trp 20 25 30
 - Phe Ser Lys Arg Arg Asn Lys Ala Trp Tyr Lys Met Ala Arg Leu Gly 35 40 45
 - Ala Asp Phe Tyr Val Asp Leu Leu Ala Asp Leu Glu Lys Ser Gly Gln 50 55
 - Glu Ile Asp Phe Tyr Gln Arg Ser Gly Val Phe Leu Leu Lys Lys Asp 65 70 75 80
 - Glu Ser Asn Leu Glu Glu Leu Tyr Gln Leu Ala Leu Gln Arg Arg Glu 85 90 95
 - Glu Ser Pro Leu Ile Gly Gln Leu Ala Ile Leu Asn Gln Ala Ser Ala 100 105 110
 - Asn Glu Leu Phe Pro Gly Leu Gln Gly Phe Asp Arg Leu Leu Tyr Ala 115 120 125
 - Ser Gly Gly Ala Arg Val Asp Gly Gln Leu Leu Val Thr Arg Leu Leu 130 135 140
 - Glu Val Ser His Val Lys Leu Val Lys Glu Lys Val Thr Leu Thr Pro 145 150 155 160
 - Leu Ala Ser Gly Tyr Gln Ile Gly Glu Glu Glu Phe Glu Gln Val Ile 165 170 175
 - Leu Ala Thr Gly Ala Trp Leu Gly Asp Met Leu Glu Pro Leu Gly Tyr 180 185 190
 - Glu Val Asp Val Arg Pro Gln Lys Gly Gln Leu Arg Asp Tyr Gln Leu 195 200 205
 - Ala Gln Asp Met Glu Asp Tyr Pro Val Val Met Pro Glu Gly Glu Trp 210 220
 - Asp Leu Ile Pro Phe Ala Gly Gly Lys Leu Ser Leu Gly Ala Thr His 225 230 235 240
 - Glu Asn Asp Met Gly Phe Asp Leu Thr Val Asp Glu Thr Leu Leu Gln 245 250 255

Gln	Met	Glu	Glu 260	Ala	Thr	Leu	Thr	His 265	Tyr	Leu	Ile	Leu	Ala 270	Glu	Ala
Thr	Ser	Lys 275	Ser	Glu	Arg	Val	Gly 280	Ile	Arg	Ala	Tyr	Thr 285	Ser	Asp	Phe
Ser	Pro 290	Phe	Phe	Gly	Gln	Val 295	Pro	Asp	Leu	Thr	Gly 300	Val	Tyr	Ala	Ala
Ser 305	Gly	Leu	Gly	Ser	Ser 310	Gly	Leu	Thr	Thr	Gly 315	Pro	Ile	Ile	Gly	Tyr 320
His	Leu	Ala	Gln	Leu 325	Ile	Gln	Asp	Lys	Glu 330	Leu	Thr	Leu	Asp	Pro 335	Leu
Asn	Tyr	Pro	Ile	Glu	Asn	Tyr	Val	Lys 345	Arg	Val	Lys	Ser	Glu 350		

(2) INFORMATION FOR SEQ ID NO: 127:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 352 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

TAAGGTCAAA	AGTCAGACCG	CTAAGAAAGT	GCTAGAAAAG	ATTGGAGCTG	ACTCGGTTAT	60
CTCGCCAGAG	TATGAAATGG	GGCAGTCTCT	AGCACAGACC	ATTCTTTTCC	ATAATAGTGT	120
TGATGTCTTT	CAGTTGGATA	AAAATGTGTC	TATCGTGGAG	ATGAAAATTC	CTCAGTCTTG	180
GGCAGGTCAA	AGTCTGAGTA	AATTAGACCT	CCGTGGCAAA	TACAATCTGA	ATATTTTGGG	240
TTTCCGAGAG	CAGGAAAATT	CCCCATTGGA	TGTTGAATTT	GGACCAGATG	ACCTCTTGAA	300
AGCAGATACC	TATATTTTGG	CAGTCATCAA	CAACCAGTAT	TTGGATACCC	TA	352

(2) INFORMATION FOR SEQ ID NO:128:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:
- Lys Val Lys Ser Gln Thr Ala Lys Lys Val Leu Glu Lys Ile Gly Ala
- Asp Ser Val Ile Ser Pro Glu Tyr Glu Met Gly Gln Ser Leu Ala Gln
- Thr Ile Leu Phe His Asn Ser Val Asp Val Phe Gln Leu Asp Lys Asn

		-															
	Val	Ser 50	Ile	Val	Glu	Met	Lys 55	Ile	Pro	Gln	Ser	Trp 60	Ala	Gly	Gln	Ser	
	Leu 65	Ser	Lys	Leu	Asp	Leu 70	Arg	Gly	Lys	Tyr	Asn 75	Leu	Asn	Ile	Leu	Gly 80	
	Phe	Arg	Glu	Gln	Glu 85	Asn	Ser	Pro	Leu	Asp 90	Val	Glu	Phe	Gly	Pro 95	Asp	
	Asp	Leu	Leu	Lys 100	Ala	Asp	Thr	Tyr	Ile 105	Leu	Ala	Val	Ile	Asn 110	Asn	Gln	
	Tyr	Leu	Asp 115	Thr	Leu												
(2) 1	NFO	RMAT:	ION I	FOR :	SEQ :	ID N	o: 1	29:									
		(A (B (C (D) LEI) TY:) ST:) TO	NGTH PE: 1 RAND: POLO	: 24' nucle EDNE: GY:	TERIS 7 baseic a SS: 6	se pa acid doub ar	airs le	TD N	0. 1	20.						
						IPTI						C	~ ~ ~ .	~~ ~ ~	CCM»		60
TGAC																	
TATC																	120
GGTA																	180
TGCC'	TACT	TG A	TAAA	TCTT	G AA	ACTT	GCAG	GAA	.CTTG	AGA	GCAA	AGGT	CA A	GAGG'	TGGA'	Г	240
GTCT'	TTG																247
(2)	INFO	RMAT	ION	FOR	SEQ	ID N	o:13	0:									
	(i)	(A (E (C	.) LE 3) TY 1) SI	NGTH PE: RAND	: 82 amin EDNE	TERI ami o ac SS: line	no a id sing	.cids	;								
	(ii)	MOL	ECUL	E TY	PE:	prot	ein								,		
	(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	:130	:						
	Asr 1	Gly	/ Ser	Glr	Asp 5	Glr	1 Thr	Glr	ı Glu	ı Ile 10	Ala	Glu	Cys	Leu	Ala 15	Ser	
	Lys	туг	Pro	Asr 20	ıle	e Val	Arg	, Ala	a Il∈ 25	Yyr	Glr	Glu	Asn	. Lys	Cys	His	
	Gl	/ Gly	7 Ala 35	a Val	Asr	n Arg	g Gly	Let 40	ı Val	l Glu	a Ala	. Ser	Gly 45	Arg	Tyr	Phe	
	Lys	5 Val	l Vai	l Asp	Sei	. Asp	Asp 55	Tr	y Val	l Asp	Pro	Arg 60	g Ala	Tyr	Leu	Lys	

Ile Leu Glu Thr Cys Arg Asn Leu Arg Ala Lys Val Lys Arg Trp Met

80 70 75 65

Ser Leu

(2) INFORMATION FOR SEQ ID NO: 131:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1744 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

(,	~					
TAGAGGCTTT	GCCAAATGGT	GGGAAGGGCA	CGAGCGTCGA	ÁAAGAGGAAC	GCTTTGTCAA	60
ACAAGAAGAA	AAAGCTCGCC	AAAAGGCTGA	GAAAGAGGCT	AGATTAGAAC	AAGAAGAGAC .	120
TGAAAAAGCC	TTACTCGATT	TGCCTCCTGT	TGATATGGAA	ACGGGTGAAA	TTCTGACAGA	180
GGAAGCTGTT	CAAAATCTTC	CACCTATTCC	AGAAGAAAAG	TGGGTGGAAC	CAGAAATCAT	240
CCTGCCTCAA	GCTGAACTTA	AATTCCCTGA	ACAGGAAGAT	GACTCAGATG	ACGAAGATGT	300
TCAGGTCGAT	TTTTCAGCCA	AAGAAGCCCT	TGAATACAAA	CTTCCAAGCT	TACAACTCTT	360
TGCACCAGAT	AAACCAAAAG	ATCAGTCTAA	AGAGAAGAAA	ATTGTCAGAG	AAAATATCAA	420
AATCTTAGAA	GCAACCTTTG	CTAGCTTTGG	TATTAAGGTA	ACAGTTGAAC	GGGCCGAAAT	480
TGGGCCATCA	GTGACCAAGT	ATGAAGTCAA	GCCGGCTGTT	GGTGTAAGGG	TCAACCGCAT	540
TTCCAATCTA	TCAGATGACC	TCGCTCTAGC	CTTGGCTGCC	AAAGATGTCC	GGATTGAAGC	600
ACCAATCCCT	GGGAAATCCC	TAATCGGAAT	TGAAGTGCCC	AACTCCGATA	TTGCCACTGT	660
ATCTTTCCGA	GAACTATGGG	AACAATCGCA	AACGAAAGCA	GAAAATTTCT	TGGAAATTCC	720
TTTAGGGAAG	GCTGTTAATG	GAACCGCAAG	AGCTTTTGAC	CTTTCTAAAA	TGCCCCACTT	780
GCTAGTTGCA	GGTTCAACGG	GTTCAGGGAA	GTCAGTAGCA	GTTAACGGCA	TTATTGCTAG	840
CATTCTCATG	AAGGCGAGAC	CAGATCAAGT	TAAATTTATG	ATGGTCGATC	CCAAGATGGT	900
TGAGTTATCT	GTTTACAATG	ATATTCCCCA	CCTCTTGATT	CCAGTCGTGA	CCAATCCACG	960
CAAAGCCAGC	AAGGCTCTGC	AAAAGGTTGT	GGATGAAATG	GAAAACCGTT	ATGAACTCTT	1020
TGCCAAGGTG	GGAGTTCGGA	ATATTGCAGG	TTTTAATGCC	AAGGTAGAAG	AGTTCAATTC	1080
CCAGTCTGAG	TACAAGCAAA	TTCCGCTACC	ATTCATTGTC	GTGATTGTGG	ATGAGTTGGC	1140
TGACCTCATG	ATGGTGGCCA	GCAAGGAAGT	GGAAGATGCT	ATCATCCGTC	TTGGGCAGAA	1200
GGCGCGTGCT	GCAGGTATCC	ACATGATTCT	TGCAACTCAG	GTCCATCTG	TTGATGTCAT	1260
CTCTGGTTTG	ATTAAGGCCA	ATGTTCCATC	TCGTGTAGCA	TTTGCGGTTI	CATCAGGAAC	1320
AGACTCCCGT	ACGATTTTGG	ATGAAAATGG	AGCAGAAAA	CTTCTTGGTC	GAGGAGACAT	1380
GCTCTTTAAA	CCGATTGAT	AAAATCATCC	AGTTCGTCTC	CAAGGCTCCT	TTATCTCGGA	1440

TGACGATGTT	GAGCGCATTG	TGAACTTCAT	CAAGACTCAG	GCAGATGCAG	ACTACGATGA	1500
GAGTTTTGAT	CCAGGTGAGG	TTTCTGAAAA	TGAAGGAGAA	TTTTCGGATG	GAGATGCTGG	1560
TGGTGATCCG	CTTTTTGAAG	AAGCTAAGTC	TTTGGTTATC	GAAACACAGA	AAGCCAGTGC	1620
GTCTATGATT	CAGCGTCGTT	TATCAGTTGG	ATTTAACCGT	GCGACCCGTC	TCATGGAAGA	1680
ACTGGAGATA	GCAGGTGTCA	TCGGTCCAGC	TGAAGGTACC	AAACCTCGAA	AAGTGTTACA	1740
ACAA						1744

(2) INFORMATION FOR SEQ ID NO:132:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 581 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:
- Arg Gly Phe Ala Lys Trp Trp Glu Gly His Glu Arg Arg Lys Glu Glu
 1 10 15
- Arg Phe Val Lys Gln Glu Glu Lys Ala Arg Gln Lys Ala Glu Lys Glu 25 30
- Ala Arg Leu Glu Glu Glu Glu Thr Glu Lys Ala Leu Leu Asp Leu Pro 35 40 45
- Pro Val Asp Met Glu Thr Gly Glu Ile Leu Thr Glu Glu Ala Val Gln 50 60
- Asn Leu Pro Pro Ile Pro Glu Glu Lys Trp Val Glu Pro Glu Ile Ile 65 70 75 80
- Leu Pro Gln Ala Glu Leu Lys Phe Pro Glu Gln Glu Asp Asp Ser Asp 85 90 95
- Asp Glu Asp Val Gln Val Asp Phe Ser Ala Lys Glu Ala Leu Glu Tyr 100 105 110
- Lys Leu Pro Ser Leu Gln Leu Phe Ala Pro Asp Lys Pro Lys Asp Gln 115 120 125
- Ser Lys Glu Lys Lys Ile Val Arg Glu Asn Ile Lys Ile Leu Glu Ala 130 135 140
- Thr Phe Ala Ser Phe Gly Ile Lys Val Thr Val Glu Arg Ala Glu Ile 145 150 155 160
- Gly Pro Ser Val Thr Lys Tyr Glu Val Lys Pro Ala Val Gly Val Arg 165 170 175
- Val Asn Arg Ile Ser Asn Leu Ser Asp Asp Leu Ala Leu Ala 180 185 190
- Ala Lys Asp Val Arg Ile Glu Ala Pro Ile Pro Gly Lys Ser Leu Ile 195 200 205

Gly	Ile 210	Glu	Val	Pro	Asn	Ser 215	Asp	Ile	Ala	Thr	Val 220	Ser	Phe	Arg	Glu
Leu 225	Trp	Glu	Gln	Ser	Gln 230	Thr	Lys	Ala	Glu	Asn 235	Phe	Leu	Glu	Ile	Pro 240
Leu	Gly	Lys	Ala	Val 245	Asn	Gly	Thr	Ala	Arg 250	Ala	Phe	Asp	Leu	Ser 255	Lys
Met	Pro	His	Leu 260	Leu	Val	Ala	Gly	Ser 265	Thr	Gly	Ser	Gly	Lys 270	Ser	Val
Ala	Val	Asn 275	Gly	Ile	Ile	Ala	Ser 280	Ile	Leu	Met	Lys	Ala 285	Arg	Pro	Asp
Gln	Val 290	Lys	Phe	Met	Met	Val 295	Asp	Pro	Lys	Met	Val 300	Glu	Leu	Ser	Val
Tyr 305	Asn	Asp	Ile	Pro	His 310	Leu	Leu	Ile	Pro	Val 315	Val	Thr	Asn	Pro	Arg 320
Lys	Ala	Ser	Lys	Ala 325	Leu	Gln	Lys	Val	Val 330	Asp	Glu	Met	Glu	Asn 335	Arg
Tyr	Glu	Leu	Phe 340	Ala	Lys	Val	Gly	Val 345	Arg	Asn	Ile	Ala	Gly 350	Phe	Asn
Ala	Lys	Val 355	Glu	Glu	Phe	Asn	Ser 360	Gln	Ser	Glu	Tyr	Lys 365	Gln	Ile	Pro
Leu	Pro 370	Phe	Ile	Val	Val	Ile 375	Val	Asp	Glu	Leu	Ala 380	Asp	Leu	Met	Met
Val 385	Ala	Ser	Lys	Glu	Val 390	Glu	Asp	Ala	Ile	Ile 395	Arg	Leu	Gly	Gln	Lys 400
Ala	Arg	Ala	Ala	Gly 405	Ile	His	Met	Ile	Leu 410	Ala	Thr	Gln	Arg	Pro 415	Ser
Val	Asp	Val	Ile 420	Ser	Gly	Leu	Ile	Lys 425	Ala	Asn	Val	Pro	Ser 430	Arg	Val
Ala	Phe	Ala 435	Val	Ser	Ser	Gly	Thr 440	Asp	Ser	Arg	Thr	11e 445	Leu	Asp	Glu
	Gly 450		Glu	Lys	Leu	Leu 455		Arg	Gly	Asp	Met 460	Leu	Phe	Lys	Pro
Ile 465		Glu	. Asn	His	Pro 470		Arg	Leu	Gln	Gly 475	Ser	Phe	Ile	Ser	Asp 480
Asp	Asp	Val	Glu	Arg 485	Ile	Val	Asn	Phe	Ile 490	Lys	Thr	Gln	Ala	Asp 495	Ala
Asp	Tyr	Asp	Glu 500		Phe	Asp	Pro	Gly 505	Glu	Val	Ser	Glu	Asn 510	Glu	Gly
Glu	Phe	Ser 515		Gly	Asp	Ala	Gly 520	Gly	Asp	Pro	Ĺeu	Phe 525	Glu	Glu	Ala
Lys	Ser 530		. Val	Ile	e Glu	Thr 535		Lys	Ala	Ser	Ala 540	Ser	Met	Ile	Gln

Arg Arg Leu Ser Val Gly Phe Asn Arg Ala Thr Arg Leu Met Glu Glu 550 545

Leu Glu Ile Ala Gly Val Ile Gly Pro Ala Glu Gly Thr Lys Pro Arg 565 570 575

Lys Val Leu Gln Gln

(2) INFORMATION FOR SEQ ID NO: 133:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

TCAAAAAGAG	AAGGAAAACT	TGGTTATTGC	TGGGAAAATA	GGTCCAGAAC	CAGAAATTTT	60
GGCCAATATG	TATAAGTTGC	TGATTGAAGA	AAATACCAGC	ATGACTGCGA	CTGTTAAACC	120
GAATTTTGGG	AAGACAAGCT	TCCTTTATGA	AGCTCTGAAA	AAAGGCGATA	TTGACATCTA	180
TCCTGAATTT	ACTGGTACGG	TGACTGAAAG	TTTGCTTCAA	CCATCACCCA	AGGTGAGTCA	240
TGAACCAGAA	CAGGTTTATC	AGGTGGCGCG	TGATGGCATT	GCTAAGCAGG	ATCATCTAGC	300
CTATCTCAAA	CCCATGTCTT	ATCAAAACAC	CTATGCTGTA	GCTGTTCCGA	AAAAGATTGC	360
TCAAGAATAT	GGCTTGAAGA	CCATTTCAGA	CTTGAAAAAA	GTGGAAGGGC	AGTTGAAGGC	420
AGGTTTTACA	CTCGAGTTTA	ACGACCGTGA	AGATGGAAAT	AAGGGCTTGC	AATCAATGTA	480
TGGTCTCAAT	CTCAATGTAG	CGACCATTGA	GCCAGCCCTT	CGCTATCAGG	CTATTCAGTC	540
AGGGGATATT	CAAATCACGG	ATGCCTATTC	GACTGATGCG	GAATTGGAGC	GTTATGATTT	600
ACAGGTCTTG	GAAGATGACA	AGCAACTCTT	CCCACCTTAT	CAAGGGGCTC	CACTCATGAA	660
AGAAGCTCTT	CTCAAGAAAC	ACCCAGAGTT	GGAAAGAGTT	CTTAATACAT	TGGCTGGTAA	720
GATTACAGAA	AGCCAGATGA	GCCAGCTCAA	CTACCAAGTC	GGTGTTGAAG	GCAAGTCAGC	780
AAAGCAAGTA	GCCAAGGAGT	TTCTCCAAGA	ACAAGGTTTG	TTGAAGAAA		829

(2) INFORMATION FOR SEQ ID NO:134:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:
- Gln Lys Glu Lys Glu Asn Leu Val Ile Ala Gly Lys Ile Gly Pro Glu

Pro Glu Ile Leu Ala Asn Met Tyr Lys Leu Leu Ile Glu Glu Asn Thr Ser Met Thr Ala Thr Val Lys Pro Asn Phe Gly Lys Thr Ser Phe Leu Tyr Glu Ala Leu Lys Lys Gly Asp Ile Asp Ile Tyr Pro Glu Phe Thr Gly Thr Val Thr Glu Ser Leu Leu Gln Pro Ser Pro Lys Val Ser His Glu Pro Glu Gln Val Tyr Gln Val Ala Arg Asp Gly Ile Ala Lys Gln Asp His Leu Ala Tyr Leu Lys Pro Met Ser Tyr Gln Asn Thr Tyr Ala 105 Val Ala Val Pro Lys Lys Ile Ala Gln Glu Tyr Gly Leu Lys Thr Ile Ser Asp Leu Lys Lys Val Glu Gly Gln Leu Lys Ala Gly Phe Thr Leu Glu Phe Asn Asp Arg Glu Asp Gly Asn Lys Gly Leu Gln Ser Met Tyr 155 Gly Leu Asn Leu Asn Val Ala Thr Ile Glu Pro Ala Leu Arg Tyr Gln
165 170 175 170 Ala Ile Gln Ser Gly Asp Ile Gln Ile Thr Asp Ala Tyr Ser Thr Asp 185 Ala Glu Leu Glu Arg Tyr Asp Leu Gln Val Leu Glu Asp Asp Lys Gln Leu Phe Pro Pro Tyr Gln Gly Ala Pro Leu Met Lys Glu Ala Leu Leu Lys Lys His Pro Glu Leu Glu Arg Val Leu Asn Thr Leu Ala Gly Lys 230 Ile Thr Glu Ser Gln Met Ser Gln Leu Asn Tyr Gln Val Gly Val Glu Gly Lys Ser Ala Lys Gln Val Ala Lys Glu Phe Leu Gln Glu Gln Gly 265 Leu Leu Lys Lys 275

(2) INFORMATION FOR SEQ ID NO: 135:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 712 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

ACGTTCTATT	GAGGACCACT	TTGATTCAAA	CTTCGAATTG	GAATATAACC	TCAAAGAAAA	60
AGGGAAAACA	GATCTTTTGA	AGCTAGTTGA	TAAAACAACT	GACATGCGTC	TGCATTTTAT	120
CCGCCAAACT	CATCCACGCG	GTCTCGGAGA	TGCTGTTTTG	CAAGCCAAGG	CTTTCGTCGG	180
AAATGAACCT	TTTGTCGTTA	TGCTTGGTGA	TGACTTGATG	GATATCACAG	ACGAAAAGGC	240
TGTTCCACTT	ACCAAACAAC	TCATGGATGA	CTACGAGCGT	ACCCACGCGT	CTACTATCGC	300
TGTCATGCCA	GTCCCTCATG	ACGAAGTATC	TGCTTACGGG	GTTATTGCTC	CGCAAGGCGA	360
AGGAAAAGAT	GGTCTTTACA	GTGTTGAAAC	CTTTGTTGAA	AAACCAGCTC	CAGAGGACGC	420
TCCTAGCGAC	CTTGCTATTA	TCGGACGCTA	CCTCCTCACG	CCTGAAATTT	TTGAGATTCT	480
CGAAAAGCAA	GCTCCAGGTG	CAGGAAATGA	AATTCAGCTG	ACAGATGCAA	TCGACACCCT	540
СААТААААСА	CAACGTGTAT	TTGCTCGTGA	GTTCAAAGGG	GCTCGTTACG	ATGTCGGAGA	600
CAAGTTTGGC	TTCATGAAAA	CATCCATCGA	CTACGCCCTC	AAACACCCAC	AAGTCAAAGA	660
TGATTTGAAG	AATTACCTCA	TCCAACTTGG	AAAAGAATTG	ACTGAGAAGG	AA	712

(2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 237 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Arg 1 le Glu Asp His Phe Asp Ser Asn Phe Glu Leu Glu Tyr Asn Leu Lys Glu Lys Gly Lys Thr Asp Leu Leu Lys Leu Lys Leu Val Asp Lys Thr Asp Asp Met Asp Arg Leu His Phe Ile Arg Gln Thr His Pro Arg Gly Leu Asp Son Ala Val Leu Gln Ala Lys Ala Phe Val Gly Asp Glu Pro Phe Son Val Pro Leu Thr Lys Gln Asp Asp Glu Leu Met Asp Asp Tyr Glu Arg Thr His Ala Ser Thr Ile Ala Val Met Pro Val Pro His Asp Glu Val Ser Ala Tyr

100 105 110

Gly Val Ile Ala Pro Gln Gly Glu Gly Lys Asp Gly Leu Tyr Ser Val

Glu Thr Phe Val Glu Lys Pro Ala Pro Glu Asp Ala Pro Ser Asp Leu 130 135 140

Ala 145	Ile	Ile	Gly	Arg	Tyr 150	Leu	Leu	Thr	Pro	Glu 155	Ile	Phe	Glu	Ile	Leu 160
Glu	Lys	Gln	Ala	Pro 165	Gly	Ala	Gly	Asn	Glu 170	Ile	Gln	Leu	Thr	Asp 175	Ala
Ile	Asp	Thr	Leu 180	Asn	Lys	Thr	Gln	Arg 185	Val	Phe	Ala	Arg	Glu 190	Phe	Lys
Gly	Ala	Arg 195	Tyr	Asp	Val	Gly	Asp 200	Lys	Phe	Gly	Phe	Met 205	Lys	Thr	Ser
Ile	Asp 210	Tyr	Ala	Leu	Lys	His 215	Pro	Gln	Val	Lys	Asp 220	Asp	Leu	Lys	Asn
Tyr 225		Ile	Gln	Leu	Gly 230	Lys	Glu	Leu	Thr	Glu 235	Lys	Glu			

(2) INFORMATION FOR SEQ ID NO: 137:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 502 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

CGCTCAAAAT	ACCAGAGGTG	TTCAGCTAAT	CGAGCACGTT	TCTCCTCAAA	TGTTGAAAGC	60
CCAATTGGAG	AGTGTCTTTT	CTGATATTCC	ACCTCAGGCT	GTAAAAACTG	GAATGTTGGC	120
TACTACTGAA	ATCATGGAAA	TCATCCAACC	CTATCTTAAA	AAACTGGATT	GTCCCTATGT	180
CCTTGATCCT	GTTATGGTTG	CTACAAGTGG	AGATGCCTTG	ATTGACTCAA	ATGCTAGAGA	240
СТАТСТСААА	ACAAACTTAC	TACCTCTAGC	AACTATTATT	ACGCCAAATC	TTCCTGAAGC	300
AGAAGAGATT	GTTGGTTTTT	CAATCCATGA	CCCCGAAGAC	ATGCAGCGTG	CTGGTCGCCT	360
GATTTTAAAA	GAATTTGGTC	CTCAGTCTGT	GGTTATCAAA	GGCGGACATC	TCAAAGGTGG	420
TGCTAAAGAT	TTCCTCTTTA	CCAAGAATGA	ACAATTTGTC	TGGGAAAGCC	CACGAATTCA	480
AACCTGTCAC	ACCCATGGTA	CT				502

(2) INFORMATION FOR SEQ ID NO:138:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 167 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:
- Ala Gln Asn Thr Arg Gly Val Gln Leu Ile Glu His Val Ser Pro Gln 15 10

Met	Leu	Lys	Ala 20	Gln	Leu	Glu	Ser	Val 25	Phe	Ser	Asp	Ile	Pro 30	Pro	Gln
Ala	Val	Lys 35	Thr	Gly	Met	Leu	Ala 40	Thr	Thr	Glu	Ile	Met 45	Glu	Ile	Ile
Gln	Pro 50	Tyr	Leu	Lys	Lys	Leu 55	Asp	Cys	Pro	Tyr	Val 60	Leu	Asp	Pro	Val
Met 65	Val	Ala	Thr	Ser	Gly 70	Asp	Ala	Leu	Ile	Asp 75	Ser	Asn	Ala	Arg	Asp 80
Tyr	Leu	Lys	Thr	Asn 85	Leu	Leu	Pro	Leu	Ala 90	Thr	Ile	Ile	Thr	Pro 95	Asn
Leu	Pro	Glu	Ala 100	Glu	Glu	Ile	Val	Gly 105	Phe	Ser	Ile	His	Asp 110	Pro	Glu
Asp	Met	Gln 115	Arg	Ala	Gly	Arg	Leu 120	Ile	Leu	Lys	Glu	Phe 125	Gly	Pro	Gln
Ser	Val 130	Val	Ile	Lys	Gly	Gly 135	His	Leu	Lys	Gly	Gly 140	Ala	Lys	Asp	Phe
Leu 145	Phe	Thr	Lys	Asn	Glu 150	Gln	Phe	Val	Trp	Glu 155	Ser	Pro	Arg	Ile	Gln 160
Thr	Cys	His	Thr	His 165	Gly	Thr									

(2) INFORMATION FOR SEQ ID NO: 139:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 805 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

AATTGTACAA	TTAGAAAAAG	ATAGCAAATC	AGACAAAGAA	CAAGTTGATA	AACTATTTGA	60
ATCATTTGAT	GCATCTTCAG	ATGAATCTAT	TTCTAAATTA	AAAGAACTAT	CTGAAACTTC	120
ACTTAAAACC	GATGCAGGTA	AAGACTATCT	TAATAACAAA	GTCAAAGAAT	CATCTAAAGC	180
AATTGTAGAT	TTTCATTTGC	AAAAAGGTTT	GGCTTATGAT	GTTAAAGATT	CAGATGACAA	240
ATTTAAAGAT	AAAGCAACTC	TTGAAACAAA	TGTAAAAGAA	ATTACAAAAC	AAATTGATTT	300
татсаааааа	GTTGATGAAA	CTTTTAAACA	AGAGAATTTG	GAAGAAACTC	TTAAATCTCT	360
AAATGATCTT	GTTGATAAAT	ATCAAAAACA	AATCGAACTT	TTGAAGAAAG	AAGAAGAAAA	420
AGCTGCTGAA	AAAGCTGCTG	AAAAAGCAAA	GGAATCTTCT	AGTCAAAGTA	ATTCTTCTGG	480
TAGTGCTTCT	AATGAGTCTT	ATAATGGATC	TTCCAATTCA	AATGTAGATT	ATAGTTCATC	540
TGAACAAACT	AATGGATATT	CAAATAATTA	TGGCGGTCAA	GATTATTCTG	GTTCAGGAGA	600
тасттсааса	AATGGTGGAT	CATCAGAACA	ATATTCATCT	AGCAATTCAA	ACAGCGGAGC	660

AAATAAT	GTO	TA	CAGA	TATA	AAG	GCAC	TGG	TGCT	GACG	GC T	ATCA	AAGA	T AC	TACT	ACAA	
AGATCATAAT AATGGAGATG TGTATGATGA CGATGGAAAT TACCTTGGGA ACTTTGGTGG																
CGGCATI	CGGCATTGCA GAACCTAGTC AACGC															
(2) INF	FORI	ITAN	ON F	OR S	EQ I	D NO	:140	:								
(i	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 268 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear															
(ii	(ii) MOLECULE TYPE: protein															
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140: Ile Val Gln Leu Glu Lys Asp Ser Lys Ser Asp Lys Glu Gln Val Asp																
1	le '	Val	Gln	Leu	Glu 5	Lys	Asp	Ser	Lys	Ser 10	Asp	Lys	Glu	Gln	Val 15	Asp
L	ys :	Leu	Phe	Glu 20	Ser	Phe	Asp	Ala	Ser 25	Ser	Asp	Glu	Ser	Ile 30	Ser	Lys
Le	eu i	Lys	Glu 35	Leu	Ser	Glu	Thr	Ser 40	Leu	Lys	Thr	Asp	Ala 45	Gly	Lys	Asp
T		Leu 50	Asn	Asn	Lys	Val	Lys 55	Glu	Ser	Ser	Lys	Ala 60	Ile	Val	Asp	Phe
H: 6!		Leu	Gln	Lys	Gly	Leu 70	Ala	Tyr	Asp	Val	Lys 75	Asp	Ser	Asp	Asp	Lys 80
P)	he	Lys	Asp	Lys	Ala 85	Thr	Leu	Glu	Thr	Asn 90	Val	Lys	Glu	Ile	Thr 95	Lys
G	ln	Ile	Asp	Phe 100	Ile	Lys	Lys	Val	Asp 105	Glu	Thr	Phe	Lys	Gln 110	Glu	Asn
L	eu	Glu	Glu 115	Thr	Leu	Lys	Ser	Leu 120	Asn	Asp	Leu	Val	Asp 125	Lys	Tyr	Gln
L	ys	Gln 130	Ile	Glu	Leu	Leu	Lys 135	Lys	Glu	Glu,	Glu	Lys 140	Ala	Ala	Glu	Lys
_	1a 45	Ala	Glu	Lys		Lys 150		Ser	Ser	Ser	Gln 155	Ser	Asn	Ser	Ser	Gly 160
S	er	Ala	Ser	Asn	Glu 165	Ser	Tyr	Asn	Gly	Ser 170	Ser	Asn	Ser	Asn	Val 175	Asp
т	yr	Ser	Ser	Ser 180	Glu	Gln	Thr	Asn	Gly 185	Tyr	Ser	Asn	Asn	Tyr 190	Gly	Gly
G	ln	Asp	Tyr 195	Ser	Gly	Ser	Gly	Asp 200	Ser	Ser	Thr	Asn	Gly 205	Gly	Ser	Ser
G	lu	Gln 210	Tyr	Ser	Ser	Ser	Asn 215	Ser	Asn	Ser	Gly	Ala 220	Asn	Asn	Val	Tyr
	rg 25	Tyr	Lys	Gly	Thr	Gly 230	Ala	Asp	Gly	Tyr	Gln 235	Arg	Tyr	Tyr	Tyr	Lys 240

Asp His Asn Asn Gly Asp Val Tyr Asp Asp Asp Gly Asn Tyr Let 245 250 250	ı Gly S													
Asn Phe Gly Gly Ile Ala Glu Pro Ser Gln Arg 260 265														
(2) INFORMATION FOR SEQ ID NO: 141:														
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 211 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear														
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:														
TCTGACCAAG CAAAAAGAAG CAGTCAATGA CAAAGGAAAA GCAGCTGTTG TTAAGGTG	GT 60													
GGAAAGCCAG GCAGAACTTT ATAGCTTAGA AAAGAATGAA GATGCTAGCC TAAGAAAG	TT 120													
ACAAGCAGAT GGACGCATCA CGGAAGAACA GGCTAAAGCT TATAAAGAAT ACAATGAT.	AA 180													
AAATGGAGGA GCAAATCGTA AAGTCAATGA T	211													
(2) INFORMATION FOR SEQ ID NO:142:														
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
(ii) MOLECULE TYPE: protein														
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:														
Leu Thr Lys Gln Lys Glu Ala Val Asn Asp Lys Gly Lys Ala Al 1 5 10 15	a Val													
Val Lys Val Val Glu Ser Gln Ala Glu Leu Tyr Ser Leu Glu Ly 20 25 30	s Asn													
Glu Asp Ala Ser Leu Arg Lys Leu Gln Ala Asp Gly Arg Ile Th 35 40 45	r Glu													
Glu Gln Ala Lys Ala Tyr Lys Glu Tyr Asn Asp Lys Asn Gly Gl 50 55 60	y Ala													

(2) INFORMATION FOR SEQ ID NO: 143:

Asn Arg Lys Val Asn Asp 65 70

(2)

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 331 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

	(xi)	SEQ	UENC:	E DES	SCRI	PTIO	N: S	EQ I	D NO	: 14	3:					
GTCCG	GCTC	r GT	CCAG'	TCCA	CTT'	TTTC	AGC (GGTA	GAGG	AA C	AGAT'	rttc'	r TT	ATGG	AGTT	
TGAAG	AACT	C TA	TCGG	GAAA	CCC	AAAA	ACG (CAGT	GTAG	CC A	GTCA(GCAA	A AG	ACTA	GTCT	
GAACT	TAGA'	r GG	GCAG.	ACGC	TTA	GCAA'	TGG	CAGT	CAAA	AG T	TGCC.	AGTC	C CT.	AAAG(GAAT	
TCAGG	cccc.	A TC	AGGC	CAAA	GTA	TTAC.	ATT	TGAC	CGAG	CT G	GGGG	CAAT	T CG	TCCC'	TGGC	
TAAGG	TTGA	а тт	TCAG	ACCA	GTA	AAGG.	AGC	GATT	CGCT	AT C	AATT.	TATA	C TA	GGAA	ATGG	
AAAAA	AATTA	A CG	CATT	AAGG	AAA	CAAA	AAA	Т								
(2) I	NFOR	ITAM	ON F	OR S	EQ I	D NO	:144	:								
	(i)	(A) (B) (C)	LEN TYP STR	GTH: E: a ANDE	110 mino DNES	ERIS ami aci S: s inea	no a d ingl	.c1ds								
•	(ii)	MOLE	CULE	TYP	E: p	rote	in									
1	(xi)	SEQU	JENCE	E DES	CRIF	MOIT	ı: SE	EQ II	NO:	144:						
	Ser 1	Gly	Ser	Val	Gln 5	Ser	Thr	Phe	Ser	Ala 10	Val	Glu	Glu	Gln	Ile 15	Phe
	Phe	Met	Glu	Phe 20	Glu	Glu	Leu	Tyr	Arg 25	Glu	Thr	Gln	Lys	Arg 30	Ser	Val
	Ala	Ser	Gln 35	Gln	Lys	Thr	Ser	Leu 40	Asn	Leu	Asp	Gly	Gln 45	Thr	Leu	Ser
	Asn	Gly 50	Ser	Gln	Lys	Leu	Pro 55	Val	Pro	Lys	Gly	Ile 60	Gln	Ala	Pro	Ser
	Gly 65	Gln	Ser	Ile	Thr	Phe 70	Asp	Arg	Ala	Gly	Gly 75	Asn	Ser	Ser	Leu	Ala 80
	Lys	Val	Glu	Phe	Gln 85	Thr	Ser	Lys	Gly	Ala 90	Ile	Arg	Tyr	Gln	Leu 95	Tyr
	Leu	Gly	Asn	Gly 100	Lys	Ile	Lys	Arg	Ile 105	Lys	Glu	Thr	Lys	Asn 110		
(2)	INFO	RMAT	ION	FOR	SEQ	ID N): 1	45:								
	(i)	(A (B) LE) TY) ST	NGTH PE: RAND	: 19 nucl EDNE	TERI 6 ba eic SS: line	se p acid doub	airs								

(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

GGGACAAATT CAAAAAAATA GGCAAGAGGA AGCAAAAATC TTGCAAAAGG AAGAAGTCTT 60

GAGGGTAGCT AAGATGGCCC TGCAGACGGG GCAAAATCAG GTAAGCATCA ACGGAGTTGA 120

GATTCAGGTA TTTTCTAGTG AAAAAGGATT GGAGGTCTAC CATGGTTCAG AACAGTTGTT	180
GGCAATCAAA GAGCCA	196
(2) INFORMATION FOR SEQ ID NO:146:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
Gly Gln Ile Gln Lys Asn Arg Gln Glu Glu Ala Lys Ile Leu Gln Lys 1 5 10 15	
Glu Glu Val Leu Arg Val Ala Lys Met Ala Leu Gln Thr Gly Gln Asn 20 25 30	
Gln Val Ser Ile Asn Gly Val Glu Ile Gln Val Phe Ser Ser Glu Lys 35 40 45	
Gly Leu Glu Val Tyr His Gly Ser Glu Gln Leu Leu Ala Ile Lys Glu 50 55 60	
Pro 65	
(2) INFORMATION FOR SEQ ID NO: 147:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 319 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:	
TCGCTACCAG CAACAAAGCG AGCAAAAGGA GTGGCTCTTG TTTGTGGACC AACTTGAGGT	60
AGAATTAGAC CGTTCGCAGT TCGAAAAAGT AGAAGGCAAT CGCCTATACA TGAAGCAAGA	120
TGGCAAGGAC ATCGCCATCG GTAAGTCAAA GTCAGATGAT TTCCGTAAAA CGAATGCTCG	180
TGGTCGAGGT TATCAGCCTA TGGTTTATGG ACTCAAATCT GTACGGATTA CAGAGGACAA	240
TCAACTGGTT CGCTTTCATT TCCAGTTCCA AAAAGGCTTA GAAAGGGAGT TCATCTATCG	300
TGTGGAAAA GAAAAAGT	319
(2) INFORMATION FOR SEQ ID NO:148:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 amino acids	
(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii)	MOLECULE	TYPE:	protein
------	----------	-------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Arg Tyr Gln Gln Gln Ser Glu Gln Lys Glu Trp Leu Leu Phe Val Asp 1 5 10;

Gln Leu Glu Val Glu Leu Asp Arg Ser Gln Phe Glu Lys Val Glu Gly 20 25 30

Asn Arg Leu Tyr Met Lys Gln Asp Gly Lys Asp Ile Ala Ile Gly Lys 35 40 45

Ser Lys Ser Asp Asp Phe Arg Lys Thr Asn Ala Arg Gly Arg Gly Tyr 50 55 60

Gln Pro Met Val Tyr Gly Leu Lys Ser Val Arg Ile Thr Glu Asp Asn 65 70 75 80

Gln Leu Val Arg Phe His Phe Gln Phe Gln Lys Gly Leu Glu Arg Glu 85 90 95

Phe Ile Tyr Arg Val Glu Lys Glu Lys Ser 100 105

(2) INFORMATION FOR SEQ ID NO: 149:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 322 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

GAACCGACAA	GTCGCCCACT	ATCAAGACTA	TGCTTTGAAT	AAAGAAAAAT	TGGTTGCTTT	60
TGCTATGGCT	AAACGAACCA	AAGATAAGGT	TGAGCAAGAA	AGTGGGGAAC	AGTTTTTTAA	120
TCTAGGTCAG	GTAAGCTATC	AAAACAAGAA	AACTGGCTTA	GTGACGAGGG	TTCGTACGGA	180
TAAGAGCCAA	TATGAGTTTC	TGTTTCCTTC	AGTCAAAATC	AAAGAAGAGA	AAAGAGATAA	240
AAAGGAAGAG	GTAGCGACCG	ATTCAAGCGA	AAAGTGGAG	AAGAAAAAT	CAGAAGAGAA	300
GCCTGAAAAG	AAAGAGAATT	CA				322

(2) INFORMATION FOR SEQ ID NO:150:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Asn Arg Gln Val Ala His Tyr Gln Asp Tyr Ala Leu Asn Lys Glu Lys

1				5					10					15	
Leu	Val	Ala	Phe 20	Ala	Met	Ala	Lys	Arg 25	Thr	Lys	Asp	Lys	Val 30	Glu	Gln
Glu	Ser	Gly 35	Glu	Gln	Phe	Phe	Asn 40	Leu	Gly	Gln	Val	Ser 45	Tyr	Gln	Asn
Lys	Lys 50	Thr	Gly	Leu	Val	Thr 55	Arg	Val	Arg	Thr	Asp 60	Lys	Ser	Gln	Tyr
Glu 65	Phe	Leu	Phe	Pro	Ser 70	Val	Lys	Ile	Lys	Glu 75	Glu	Lys	Arg	Asp	Lys 80
Lys	Glu	Glu	Val	Ala 85	Thr	Asp	Ser	Ser	Glu 90	Lys	Val	Glu	Lys	Lys 95	Lys
Ser	Glu	Glu	Lys 100	Pro	Glu	Lys	Lys	Glu 105	Asn	Ser					

(2) INFORMATION FOR SEQ ID NO: 151:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 784 base pairs

 - (A) DENGIR: 704 base part (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

GGTTGTCGGC	TGGCAATATA	TCCCGTTTCC	ATCTAAAGGT	AGTACAATTG	GTCCTTACCC	60
AAATGGTATC	AGATTAGAAG	GTTTTCCAAA	GTCAGAGTGG	TACTACTTCG	ATAAAAATGG	120
AGTGCTACAA	GAGTTTGTTG	GTTGGAAAAC	ATTAGAGATT	AAAACTAAAG	ACAGTGTTGG	180
AAGAAAGTAC	GGGGAAAAAC	GTGAAGATTC	AGAAGATAAA	GAAGAGAAGC	GTTATTATAC	240
GAACTATTAC	TTTAATCAAA	ATCATTCTTT	AGAGACAGGT	TGGCTTTATG	ATCAGTCTAA	300
CTGGTATTAT	CTAGCTAAGA	CGGAAATTAA	TGGAGAAAAC	TACCTTGGTG	GTGAAAGACG	360
TGCGGGGTGG	ATAAACGATG	ATTCGACTTG	GTACTACCTA	GATCCAACAA	CTGGTATTAT	420
GCAAACAGGT	TGGCAATATC	TAGGTAATAA	GTGGTACTAC	CTCCGTTCCT	CAGGAGCAAT	480
GGCCACTGGC	TGGTATCAGG	AAGGTACCAC	TTGGTATTAT	TTAGACCACC	CAAATGGCGA	540
TATGAAAACA	GGTTGGCAAA	ACCTTGGGAA	CAAATGGTAC	TATCTCCGTT	CATCAGGAGC	600
TATGGCAACT	GGTTGGTATC	AAGATGGTTC	AACTTGGTAC	TACCTAAATG	CAGGTAATGG	660
AGACATGAAG	ACAGGTTGGT	TCCAGGTCAA	TGGCAACTGG	TACTATGCTT	ATAGCTCAGG	720
TGCTTTGGCA	GTGAATACGA	CCGTAGATGG	CTATTCTGTC	AACTATAATG	GCGAATGGGT	780
TCGG						784

(2) INFORMATION FOR SEQ ID NO:152:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 261 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:
- Val Val Gly Trp Gln Tyr Ile Pro Phe Pro Ser Lys Gly Ser Thr Ile
- Gly Pro Tyr Pro Asn Gly Ile Arg Leu Glu Gly Phe Pro Lys Ser Glu 20 25 30
- Trp Tyr Tyr Phe Asp Lys Asn Gly Val Leu Gln Glu Phe Val Gly Trp 35 40 45
- Lys Thr Leu Glu Ile Lys Thr Lys Asp Ser Val Gly Arg Lys Tyr Gly 50 60
- Glu Lys Arg Glu Asp Ser Glu Asp Lys Glu Glu Lys Arg Tyr Tyr Thr 65 70 75 80
- Asn Tyr Tyr Phe Asn Gln Asn His Ser Leu Glu Thr Gly Trp Leu Tyr 85 90 95
- Asp Gln Ser Asn Trp Tyr Tyr Leu Ala Lys Thr Glu Ile Asn Gly Glu 100 105 110
- Asn Tyr Leu Gly Gly Glu Arg Arg Ala Gly Trp Ile Asn Asp Asp Ser 115 120 125
- Thr Trp Tyr Tyr Leu Asp Pro Thr Thr Gly Ile Met Gln Thr Gly Trp 130 140
- Gln Tyr Leu Gly Asn Lys Trp Tyr Tyr Leu Arg Ser Ser Gly Ala Met 145 150 150 160
- Ala Thr Gly Trp Tyr Gln Glu Gly Thr Thr Trp Tyr Tyr Leu Asp His 165 170 175
- Pro Asn Gly Asp Met Lys Thr Gly Trp Gln Asn Leu Gly Asn Lys Trp 180 185 190
 - Tyr Tyr Leu Arg Ser Ser Gly Ala Met Ala Thr Gly Trp Tyr Gln Asp 195 200 205
 - Gly Ser Thr Trp Tyr Tyr Leu Asn Ala Gly Asn Gly Asp Met Lys Thr 210 220
 - Gly Trp Phe Gln Val Asn Gly Asn Trp Tyr Tyr Ala Tyr Ser Ser Gly 225 230 235
 - Ala Leu Ala Val Asn Thr Thr Val Asp Gly Tyr Ser Val Asn Tyr Asn 245 250 255

Gly Glu Trp Val Arg 260

(2) INFORMATION FOR SEQ ID NO: 153:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1708 base pairs

J

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:

• •	_					
GGCCAAATCA	GAATGGGTAG	AAGACAAGGG	AGCCTTTTAT	TATCTTGACC	AAGATGGAAA	60
GATGAAAAGA	AATGCTTGGG	TAGGAACTTC	CTATGTTGGT	GCAACAGGTG	CCAAAGTAAT	120
AGAAGACTGG	GTCTATGATT	CTCAATACGA	TGCTTGGTTT	TATATCAAAG	CAGATGGACA	180
GCACGCAGAG	AAAGAATGGC	TCCAAATTAA	AGGGAAGGAC	TATTATTTCA	AATCCGGTGG	240
TTATCTACTG	ACAAGTCAGT	GGATTAATCA	AGCTTATGTG	AATGCTAGTG	GTGCCAAAGT	300
ACAGCAAGGT	TGGCTTTTTG	ACAAACAATA	CCAATCTTGG	TTTTACATCA	AAGAAAATGG	360
AAACTATGCT	GATAAAGAAT	GGATTTTCGA	GAATGGTCAC	TATTATTATC	TAAAATCCGG	420
TGGCTACATG	GCAGCCAATG	AATGGATTTG	GGATAAGGAA	TCTTGGTTTT	ATCTCAAATT	480
TGATGGGAAA	ATGGCTGAAA	AAGAATGGGT	CTACGATTCT	CATAGTCAAG	CTTGGTACTA	540
CTTCAAATCC	GGTGGTTACA	TGACAGCCAA	TGAATGGATT	TGGGATAAGG	AATCTTGGTT	600
TTATCTCAAA	TCTGATGGGA	AAATAGCTGA	AAAAGAATGG	GTCTACGATT	CTCATAGTCA	660
AGCTTGGTAC	TACTTCAAAT	CCGGTGGTTA	CATGACAGCC	AATGAATGGA	TTTGGGATAA	720
GGAATCTTGG	TTTTACCTCA	AATCTGATGG	GAAAATAGCT	GAAAAAGAAT	GGGTCTACGA	780
TTCTCATAGT	CAAGCTTGGT	ACTACTTCAA	ATCTGGTGGC	TACATGGCGA	AAAATGAGAC	840
AGTAGATGGT	TATCAGCTTG	GAAGCGATGG	TAAATGGCTT	GGAGGAAAAA	CTACAAATGA	900
AAATGCTGCT	TACTATCAAG	TAGTGCCTGT	TACAGCCAAT	GTTTATGATT	CAGATGGTGA	960
AAAGCTTTCC	TATATATCGC	AAGGTAGTGT	CGTATGGCTA	GATAAGGATA	GAAAAAGTGA	1020
TGACAAGCGC	TTGGCTATTA	CTATTTCTGG	TTTGTCAGGC	TATATGAAAA	CAGAAGATTT	1080
ACAAGCGCTA	GATGCTAGTA	AGGACTTTAT	CCCTTATTAT	GAGAGTGATG	GCCACCGTTT	1140
TTATCACTAT	GTGGCTCAGA	ATGCTAGTAT	CCCAGTAGCT	TCTCATCTTT	CTGATATGGA	1200
AGTAGGCAAG	AAATATTATT	CGGCAGATGG	CCTGCATTTT	GATGGTTTTA	AGCTTGAGAA	1260
TCCCTTCCTT	TTCAAAGATT	TAACAGAGGC	TACAAACTAC	AGTGCTGAAG	AATTGGATAA	1320
GGTATTTAGT	TTGCTAAACA	TTAACAATAG	CCTTTTGGAG	AACAAGGGCG	CTACTTTTAA	1380
GGAAGCCGAA	GAACATTACC	ATATCAATGC	TCTTTATCTC	CTTGCCCATA	GTGCCCTAGA	1440
AAGTAACTGG	GGAAGAAGTA	AAATTGCCAA	AGATAAGAAT	AATTTCTTTG	GCATTACAGC	1500
CTATGATACG	ACCCCTTACC	TTTCTGCTAA	. GACATTTGAT	GATGTGGATA	AGGGAATTTT	1560
AGGTGCAACC	AAGTGGATTA	AGGAAAATTA	TATCGATAGG	GGAAGAACTT	TCCTTGGAAA	1620
CAAGGCTTCT	GGTATGAATG	TGGAATATGC	TTCAGACCCT	TATTGGGGCG	AAAAAATTGC	1680

TAGTGTGATG ATGAAAATCA ATGAGAAG

(2) INFORMATION FOR SEQ ID NO:154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 569 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:
- Ala Lys Ser Glu Trp Val Glu Asp Lys Gly Ala Phe Tyr Tyr Leu Asp 1 5 10 15
- Gln Asp Gly Lys Met Lys Arg Asn Ala Trp Val Gly Thr Ser Tyr Val 20 25 30
- Gly Ala Thr Gly Ala Lys Val Ile Glu Asp Trp Val Tyr Asp Ser Gln 35 40 45
- Tyr Asp Ala Trp Phe Tyr Ile Lys Ala Asp Gly Gln His Ala Glu Lys 50 60
- Glu Trp Leu Gln Ile Lys Gly Lys Asp Tyr Tyr Phe Lys Ser Gly Gly 65 70 75 80
- Tyr Leu Leu Thr Ser Gln Trp Ile Asn Gln Ala Tyr Val Asn Ala Ser 85 90 95
- Gly Ala Lys Val Gln Gln Gly Trp Leu Phe Asp Lys Gln Tyr Gln Ser 100 105 110
- Trp Phe Tyr Ile Lys Glu Asn Gly Asn Tyr Ala Asp Lys Glu Trp Ile 115 120 125
- Phe Glu Asn Gly His Tyr Tyr Tyr Leu Lys Ser Gly Gly Tyr Met Ala 130 135 140
- Ala Asn Glu Trp Ile Trp Asp Lys Glu Ser Trp Phe Tyr Leu Lys Phe 145 150 150 160
- Asp Gly Lys Met Ala Glu Lys Glu Trp Val Tyr Asp Ser His Ser Gln 165 170 175
- Ala Trp Tyr Tyr Phe Lys Ser Gly Gly Tyr Met Thr Ala Asn Glu Trp 180 185
- Ile Trp Asp Lys Glu Ser Trp Phe Tyr Leu Lys Ser Asp Gly Lys Ile 195 200 205
- Ala Glu Lys Glu Trp Val Tyr Asp Ser His Ser Gln Ala Trp Tyr Tyr 210 215 220
- Phe Lys Ser Gly Gly Tyr Met Thr Ala Asn Glu Trp Ile Trp Asp Lys 225 230 235
- Glu Ser Trp Phe Tyr Leu Lys Ser Asp Gly Lys Ile Ala Glu Lys Glu 245 250 255
- Trp Val Tyr Asp Ser His Ser Gln Ala Trp Tyr Tyr Phe Lys Ser Gly

260 265 270

Gly Tyr Met Ala Lys Asn Glu Thr Val Asp Gly Tyr Gln Leu Gly Ser Asp Gly Lys Trp Leu Gly Gly Lys Thr Thr Asn Glu Asn Ala Ala Tyr Tyr Gln Val Val Pro Val Thr Ala Asn Val Tyr Asp Ser Asp Gly Glu Lys Leu Ser Tyr Ile Ser Gln Gly Ser Val Val Trp Leu Asp Lys Asp Arg Lys Ser Asp Asp Lys Arg Leu Ala Ile Thr Ile Ser Gly Leu Ser Gly Tyr Met Lys Thr Glu Asp Leu Gln Ala Leu Asp Ala Ser Lys Asp 360 Phe Ile Pro Tyr Tyr Glu Ser Asp Gly His Arg Phe Tyr His Tyr Val Ala Gln Asn Ala Ser Ile Pro Val Ala Ser His Leu Ser Asp Met Glu Val Gly Lys Lys Tyr Tyr Ser Ala Asp Gly Leu His Phe Asp Gly Phe 405 410 415 Lys Leu Glu Asn Pro Phe Leu Phe Lys Asp Leu Thr Glu Ala Thr Asn Tyr Ser Ala Glu Glu Leu Asp Lys Val Phe Ser Leu Leu Asn Ile Asn Asn Ser Leu Leu Glu Asn Lys Gly Ala Thr Phe Lys Glu Ala Glu Glu His Tyr His Ile Asn Ala Leu Tyr Leu Leu Ala His Ser Ala Leu Glu 465 Ser Asn Trp Gly Arg Ser Lys Ile Ala Lys Asp Lys Asn Asn Phe Phe Gly Ile Thr Ala Tyr Asp Thr Thr Pro Tyr Leu Ser Ala Lys Thr Phe 505 Asp Asp Val Asp Lys Gly Ile Leu Gly Ala Thr Lys Trp Ile Lys Glu Asn Tyr Ile Asp Arg Gly Arg Thr Phe Leu Gly Asn Lys Ala Ser Gly 530 540 Met Asn Val Glu Tyr Ala Ser Asp Pro Tyr Trp Gly Glu Lys Ile Ala 545 550 555 560 Ser Val Met Met Lys Ile Asn Glu Lys 565

(2) INFORMATION FOR SEQ ID NO: 155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 946 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155: ATTTGCAGAT GATTCTGAAG GATGGCAGTT TGTCCAAGAA AATGGTAGAA CCTACTACAA 60. AAAGGGGGAT CTAAAAGAAA CCTACTGGAG AGTGATAGAT GGGAAGTACT ATTATTTTGA 120 TCCTTTATCC GGAGAGATGG TTGTCGGCTG GCAATATATA CCTGCTCCAC ACAAGGGGGT 180 240 TACGATTGGT CCTTCTCCAA GAATAGAGAT TGCTCTTAGA CCAGATTGGT TTTATTTTGG TCAAGATGGT GTATTACAAG AATTTGTTGG CAAGCAAGTT TTAGAAGCAA AAACTGCTAC 300 GAATACCAAC AAACATCATG GGGAAGAATA TGATAGCCAA GCAGAGAAAC GAGTCTATTA 360 TTTTGAAGAT CAGCGTAGTT ATCATACTTT AAAAACTGGT TGGATTTATG AAGAGGGTCA 420 TTGGTATTAT TTACAGAAGG ATGGTGGCTT TGATTCGCGC ATCAACAGAT TGACGGTTGG 480 AGAGCTAGCA CGTGGTTGGG TTAAGGATTA CCCTCTTACG TATGATGAAG AGAAGCTAAA 540 AGCAGCTCCA TGGTACTATC TAAATCCAGC AACTGGCATT ATGCAAACAG GTTGGCAATA 600 TCTAGGTAAT AGATGGTACT (ACCTCCATTC GTCAGGAGCT ATGGCAACTG GCTGGTATAA 660 GGAAGGCTCA ACTTGGTACT ATCTAGATGC TGAAAATGGT GATATGAGAA CTGGCTGGCA 720. AAACCTTGGG AACAAATGGT ACTATCTCCG TTCATCAGGA GCTATGGCAA CTGGTTGGTA 780 TCAGGAAAGT TCGACTTGGT ACTATCTAAA TGCAAGTAAT GGAGATATGA AAACAGGCTG 840

GTTCCAAGTC AATGGTAACT GGTACTATGC CTATGATTCA GGTGCTTTAG CTGTTAATAC

900

946

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 316 amino acids

CACAGTAGGT GGTTACTACT TAAACTATAA TGGTGAATGG GTTAAG

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:
- Val Phe Ala Asp Asp Ser Glu Gly Trp Gln Phe Val Gln Glu Asn Gly
- Arg Thr Tyr Tyr Lys Lys Gly Asp Leu Lys Glu Thr Tyr Trp Arg Val
- Ile Asp Gly Lys Tyr Tyr Tyr Phe Asp Pro Leu Ser Gly Glu Met Val
- Val Gly Trp Gln Tyr Ile Pro Ala Pro His Lys Gly Val Thr Ile Gly

Pro Ser Pro Arg Ile Glu Ile Ala Leu Arg Pro Asp Trp Phe Tyr Phe Gly Gln Asp Gly Val Leu Gln Glu Phe Val Gly Lys Gln Val Leu Glu 85 90 95 Ala Lys Thr Ala Thr Asn Thr Asn Lys His His Gly Glu Glu Tyr Asp 100 105 110 Ser Gln Ala Glu Lys Arg Val Tyr Tyr Phe Glu Asp Gln Arg Ser Tyr 115 120 125 His Thr Leu Lys Thr Gly Trp Ile Tyr Glu Glu Gly His Trp Tyr Tyr 130 140 Leu Gln Lys Asp Gly Gly Phe Asp Ser Arg Ile Asn Arg Leu Thr Val Gly Glu Leu Ala Arg Gly Trp Val Lys Asp Tyr Pro Leu Thr Tyr Asp 165 170 175 Glu Glu Lys Leu Lys Ala Ala Pro Trp Tyr Tyr Leu Asn Pro Ala Thr 180 185 190 Gly Ile Met Gln Thr Gly Trp Gln Tyr Leu Gly Asn Arg Trp Tyr Tyr Leu His Ser Ser Gly Ala Met Ala Thr Gly Trp Tyr Lys Glu Gly Ser Thr Trp Tyr Tyr Leu Asp Ala Glu Asn Gly Asp Met Arg Thr Gly Trp 225 230 235 240 Gln Asn Leu Gly Asn Lys Trp Tyr Tyr Leu Arg Ser Ser Gly Ala Met Ala Thr Gly Trp Tyr Gln Glu Ser Ser Thr Trp Tyr Tyr Leu Asn Ala 260 265 270 Ser Asn Gly Asp Met Lys Thr Gly Trp Phe Gln Val Asn Gly Asn Trp 275 280 285 Tyr Tyr Ala Tyr Asp Ser Gly Ala Leu Ala Val Asn Thr Thr Val Gly 290 295 300 Gly Tyr Tyr Leu Asn Tyr Asn Gly Glu Trp Val Lys 305 310

(2) INFORMATION FOR SEQ ID NO: 157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1415 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

TGTCGCTGCA AATGAAACTG AAGTAGCAAA AACTTCGCAG GATACAACGA CAGCTTCAAG
TAGTTCAGAG CAAAATCAGT CTTCTAATAA AACGCAAACG AGCGCAGAAG TACAGACTAA

TGCTGCTGCC	CACTGGGATG	GGGATTATTA	TGTAAAGGAT	GATGGTTCTA	AAGCTCAAAG	180
TGAATGGATT	TTTGACAACT	ACTATAAGGC	TTGGTTTTAT	ATTAATTCAG	ATGGTCGTTA	240
CTCGCAGAAT	GAATGGCATG	GAAATTACTA	CCTGAAATCA	GGTGGATATA	TGGCCCAAAA	300
CGAGTGGATC	TATGACAGTA	ATTACAAGAG	TTGGTTTTAT	CTCAAGTCAG	ATGGGGCTTA	360
TGCTCATCAA	GAATGGCAAT	TGATTGGAAA	TAAGTGGTAC	TACTTCAAGA	AGTGGGGTTA	420
CATGGCTAAA	AGCCAATGGC	AAGGAAGTTA	TTTCTTGAAT	GGTCAAGGAG	CTATGATGCA	480
AAATGAATGG	CTSCTATGAT	CCAGCCTATT	CTGCTTATTT	TTATCTAAAA	TCCGATGGAA	540
CTTATGCTAA	CCAAGAGTGG	CAAAAAGTGG	GCGGCAAATG	GTACTATTTC	AAGAAGTGGG	600
GCTATATGGC	TCGGAATGAG	TGGCAAGGCA	ACTACTATTT	GACTGGAAGT	GGTGCCATGG	660
CGACTGACGA	AGTGATTATG	GATGGTACTC	GCTATATCTT	TGCGGCCTCT	GGTGAGCTCA	720
AAGAAAAAA	AGATTTGAAT	GTCGGCTGGG	TTCACAGAGA	TGGTAAGCGC	TATTTCTTTA	780
ATAATAGAGA	AGAACAAGTG	GGAACCGAAC	ATGCTAAGAA	AGTCATTGAT	ATTAGTGAGC	840
ACAATGGTCG	TATCAATGAT	TGGAAAAAGG	TTATTGATGA	GAACGAAGTG	GATGGTGTCA	900
TTGTTCGTCT	AGGTTATAGC	GGTAAAGAAG	ACAAGGAATT	GGCGCATAAC	ATTAAGGAGT	960
TAAACCGTCT	GGGAATTCCT	TATGGTGTCT	ATCTCTATAC	CTATGCTGAA	AATGAGACCG	1020
ATGCTGAGAG	TGACGCTAAA	CAGACCATTG	AACTTATAAA	GAAATACAAT	ATGAACCTGT	1080
CTTACCCTAT	CTATTATGAT	GTTGAGAATT	GGGAATATGT	AAATAAGAGC	AAGAGAGCTC	1140
CAAGTGATAC	AGGCACTTGG	GTTAAAATCA	TCAACAAGTA	CATGGACACG	ATGAAGCAGG	1200
CGGGTTATCA	AAATGTGTAT	GTCTATAGCT	ATCGTAGTTT	ATTACAGACG	CGTTTAAAAC	1260
ACCCAGATAT	TTTAAAACAT	GTAAACTGGG	TAGCGGCCTA	TACGAATGCT	TTAGAATGGG	1320
AAAACCCTCA	TTATTCAGGA	AAAAAAGGTT	GGCAATATAC	CTCTTCTGAA	TACATGAAAG	1380
GAATCCAAGG	GCGCGTAGAT	GTCAGCGTTT	GGTAT			1415

(2) INFORMATION FOR SEQ ID NO:158:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:
- Val Ala Ala Asn Glu Thr Glu Val Ala Lys Thr Ser Gln Asp Thr Thr 1 10 15
- Thr Ala Ser Ser Ser Ser Glu Gln Asn Gln Ser Ser Asn Lys Thr Gln 20 25 30

Thr Ser Ala Glu Val Gln Thr Asn Ala Ala Ala His Trp Asp Gly Asp

		35					40					45			
Tyr	Tyr 50	Val	Lys	Asp	Asp	Gly 55	Ser	Lys	Ala	Gln	Ser 60	Glu	Trp	Ile	Phe
Asp 65	Asn	Tyr	Tyr	Lys	Ala 70	Trp	Phe	Tyr	Ile	Asn 75	Ser	Asp	Gly	Arg	Туr 80
Ser	Gln	Asn	Glu	Trp 85	His	Gly	Asn	Tyr	Туг 90	Leu	Lys	Ser	Gly	Gly 95	Tyr
Met	Ala	Gln	Asn 100	Glu	Trp	Ile	Tyr	Asp 105	Ser	Asn	Tyr	Lys	Ser 110	Trp	Phe
Tyr	Leu	Lys 115	Ser	Asp	Gly	Ala	Tyr 120	Ala	His	Gln	Glu	Trp 125	Gln	Leu	Ile
Gly	Asn 130	Lys	Trp	Tyr	Tyr	Phe 135	Lys	Lys	Trp	Gly	Tyr 140	Met	Ala	Lys	Ser
Gln 145	Trp	Gln	Gly	Ser	Tyr 150	Phe	Leu	Asn	Gly	Gln 155	Gly	Ala	Met	Met	Gln 160
Asn	Glu	Trp	Leu	Tyr 165	Asp	Pro	Ala	Туг	Ser 170	Ala	Tyr	Phe	Tyr	Leu 175	Lys
Ser	Asp	Gly	Thr 180	Tyr	Ala	Asn	Gln	Glu 185	Trp	Gln	Lys	Val	Gly 190	Gly	Lys
Trp	Tyr	Туг 195		Lys	Lys	Trp	Gly 200	Tyr	Met	Ala	Arg	Asn 205	Glu	Trp	Gln
Gly	Asn 210		Tyr	Leu	Thr	Gly 215	Ser	Gly	Ala	Met	Ala 220	Thr	Asp	Glu	Val
Ile 225		Asp	Gly	Thr	Arg 230	Tyr	Ile	Phe	Ala	Ala 235	Ser	Gly	Glu	Leu	Lys 240
Glu	Lys	Lys	Asp	Leu 245	Asn	Val	Gly	Trp	Val 250	His	Arg	Asp	Gly	Lys 255	Arg
Tyr	Phe	Phe	Asn 260		Arg	Glu	Glu	Gln 265	Val	Gly	Thr	Glu	His 270	Ala	Lys
Lys	val	11e		Ile	Ser	Glu	His 280	Asn	Gly	Arg	Ile	Asn 285	Asp	Trp	Lys
Lys	Val 290		e Asp	Glu	. Asn	Glu 295	. Val	Asp	Gly	Val	Ile 300	Val	Arg	Leu	Gly
Туг 305		Gly	/ Lys	s Glu	Asp 310	Lys	Glu	Leu	Ala	His 315	Asn	Ile	Lys	Glu	Leu 320
Asr	n Arg	J Le	ı Gly	7 Ile 325	e Pro	Tyr	Gly	v Val	. Tyr 330	Leu	Tyr	Thr	Tyr	Ala 335	Glu
Ası	ı Glu	ı Th:	r Asp 340		a Glu	Ser	Asp	345	Lys	Glr.	Thr	Ile	Glu 350	Lev	ılle
Lys	s Ly:	35		n Met	Asn	Lev	360	Tyr	Pro	Ile	туг	Туг 365	Asp	Val	Glu
Ası	1 Tr		u Tyi	r Val	l Asr	1 Lys 375	s Sei	. Lys	arg	j Ala	380	Ser	Asp	Thr	Gly

Thr Trp Val Lys Ile Ile Asn Lys Tyr Met Asp Thr Met Lys Gln Ala 390 Gly Tyr Gln Asn Val Tyr Val Tyr Ser Tyr Arg Ser Leu Leu Gln Thr Arg Leu Lys His Pro Asp Ile Leu Lys His Val Asn Trp Val Ala Ala 425 Tyr Thr Asn Ala Leu Glu Trp Glu Asn Pro His Tyr Ser Gly Lys Lys Gly Trp Gln Tyr Thr Ser Ser Glu Tyr Met Lys Gly Ile Gln Gly Arg 450 460Val Asp Val Ser Val Trp Tyr

(2) INFORMATION FOR SEQ ID NO: 159:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1924 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

(X1)	DECEMBER 225	01122	~			
TACGTCTCAG	CCTACTTTTG	TAAGAGCAGA	AGAATCTCCA	CAAGTTGTCG	AAAAATCTTC	60
ATTAGAGAAG	AAATATGAGG	AAGCAAAAGC	AAAAGCTGAT	ACTGCCAAGA	AAGATTACGA	120
AACGGCTAAA	AAGAAAGCAG	AAGACGCTCA	GAAAAAGTAT	GAAGATGATC	AGAAGAGAAC	180
TGAGGAGAAA	GCTCGAAAAG	AAGCAGAAGC	ATCTCAAAAA	TTGAATGATG	TGGCGCTTGT	. 240
TGTTCAAAAT	GCATATAAAG	AGTACCGAGA	AGTTCAAAAT	CAACGTAGTA	AATATAAATC	300
TGACGCTGAA	TATCAGAAAA	AATTAACAGA	GGTCGACTCT	AAAATAGAGA	AGGCTAGGAA	360
AGAGCAACAG	GACTTGCAAA	ATAAATTTAA	TGAAGTAAGA	GCAGTTGTAG	TTCCTGAACC	420
AAATGCGTTG	GCTGAGACTA	AGAAAAAAGC	AGAAGAAGCT	AAAGCAGAAG	AAAAAGTAGC	480
TAAGAGAAAA	TATGATTATG	CAACTCTAAA	GGTAGCACTA	GCGAAGAAAG	AAGTAGAGGC	540
TAAGGAACTT	GAAATTGAAA	AACTTCAATA	TGAAATTTCT	ACTTTGGAAC	AAGAAGTTGC	600
TACTGCTCAA	CATCAAGTAG	ATAATTTGAA	AAAACTTCTT	GCTGGTGCGG	ATCCTGATGA	660
TGGCACAGAA	GTTATAGAAG	СТАААТТААА	AAAAGGAGAA	GCTGAGCTAA	ACGCTAAACA	720
AGCTGAGTTA	GCAAAAAAAC	AAACAGAACT	TGAAAAACTT	CTTGACAGCC	TTGATCCTGA	780
AGGTAAGACT	CAGGATGAAT	TAGATAAAGA	AGCAGAAGAA	GCTGAGTTGG	ATAAAAAAGC	840
TGATGAACTT	' CAAAATAAAG	TTGCTGATTT	AGAAAAAGAA	ATTAGTAACC	TTGAAATATT	900
ACTTGGAGGG	GCTGATNCTG	AAGATGATAC	TGCTGCTCTT	СААААТАААТ	TAGCTACTAA	960
AAAAGCTGAA	TTGGAAAAA	CTCAAAAAGA	ATTAGATGCA	GCTCTTAATG	AGTTAGGCCC	1020

TGATGGAGAT	GAAGAAGAAA	CTCCAGCGCC	GGCTCCTCAA	CCAGAGCAAC	CAGCTCCTGC	1080
ACCAAAACCA	GAGCAACCAG	CTCCAGCTCC	AAAACCAGAG	CAACCAGCTC	CTGCACCAAA	1140
ACCAGAGCAA	CCAGCTCCAG	CTCCAAAACC	AGAGCAACCA	GCTCCAGCTC	CAAAACCAGA	1200
GCAACCAGCT	AAGCCGGAGA	AACCAGCTGA	AGAGCCTACT	CAACCAGAAA	AACCAGCCAC	1260
TCCAAAAACA	GGCTGGAAAC	AAGAAAACGG	TATGTGGTAT	TTCTACAATA	CTGATGGTTC	1320
AATGGCAATA	GGTTGGCTCC	AAAACAACGG	TTCATGGTAC	TACCTAAACG	CTAACGGCGC	1380
TATGGCAACA	GGTTGGGTGA	AAGATGGAGA	TACCTGGTAC	TATCTTGAAG	CATCAGGTGC	1440
TATGAAAGCA	AGCCAATGGT	TCAAAGTATC	AGATAAATGG	TACTATGTCA	ACAGCAATGG	1500
CGCTATGGCG	ACAGGCTGGC	TCCAATACAA	TGGCTCATGG	TACTACCTCA	ACGCTAATGG	1560
TGATATGGCG	ACAGGATGGC	TCCAATACAA	CGGTTCATGG	TATTACCTCA	ACGCTAATGG	1620
TGATATGGCG	ACAGGATGGG	CTAAAGTCAA	CGGTTCATGG	TACTACCTAA	ACGCTAACGG	1680
TGCTATGGCT	ACAGGTTGGG	CTAAAGTCAA	CGGTTCATGG	TACTACCTAA	ACGCTAACGG	1740
TTCAATGGCA	ACAGGTTGGG	TGAAAGATGG	AGATACCTGG	TACTATCTTG	AAGCATCAGG	1800
TGCTATGAAA	GCAAGCCAAT	GGTTCAAAGT	ATCAGATAAA	TGGTACTATG	TCAATGGCTT	1860
AGGTGCCCTT	GCAGTCAACA	CAACTGTAGA	TGGCTATAAA	GTCAATGCCA	ATGGTGAATG	1920
GGTT						1924

(2) INFORMATION FOR SEQ ID NO:160:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 641 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:
- Thr Ser Gln Pro Thr Phe Val Arg Ala Glu Glu Ser Pro Gln Val Val 1 5 10 15
- Glu Lys Ser Ser Leu Glu Lys Lys Tyr Glu Glu Ala Lys Ala Lys Ala 20 25 30
- Asp Thr Ala Lys Lys Asp Tyr Glu Thr Ala Lys Lys Lys Ala Glu Asp 35 40 45
- Ala Gln Lys Lys Tyr Glu Asp Asp Gln Lys Arg Thr Glu Glu Lys Ala 50 60
- Arg Lys Glu Ala Glu Ala Ser Gln Lys Leu Asn Asp Val Ala Leu Val 65 70 75 80
- Val Gln Asn Ala Tyr Lys Glu Tyr Arg Glu Val Gln Asn Gln Arg Ser 85 90 95

Lys Tyr Lys Ser Asp Ala Glu Tyr Gln Lys Lys Leu Thr Glu Val Asp 105 Ser Lys Ile Glu Lys Ala Arg Lys Glu Gln Gln Asp Leu Gln Asn Lys Phe Asn Glu Val Arg Ala Val Val Val Pro Glu Pro Asn Ala Leu Ala Glu Thr Lys Lys Lys Ala Glu Glu Ala Lys Ala Glu Glu Lys Val Ala Lys Arg Lys Tyr Asp Tyr Ala Thr Leu Lys Val Ala Leu Ala Lys Lys Glu Val Glu Ala Lys Glu Leu Glu Ile Glu Lys Leu Gln Tyr Glu Ile 185 Ser Thr Leu Glu Glu Val Ala Thr Ala Gln His Gln Val Asp Asn Leu Lys Lys Leu Leu Ala Gly Ala Asp Pro Asp Asp Gly Thr Glu Val 210 215 Ile Glu Ala Lys Leu Lys Lys Gly Glu Ala Glu Leu Asn Ala Lys Gln 225 230 235 240 Ala Glu Leu Ala Lys Lys Gln Thr Glu Leu Glu Lys Leu Leu Asp Ser Leu Asp Pro Glu Gly Lys Thr Gln Asp Glu Leu Asp Lys Glu Ala Glu Glu Ala Glu Leu Asp Lys Lys Ala Asp Glu Leu Gln Asn Lys Val Ala Asp Leu Glu Lys Glu Ile Ser Asn Leu Glu Ile Leu Leu Gly Gly Ala Asp Xaa Glu Asp Asp Thr Ala Ala Leu Gln Asn Lys Leu Ala Thr Lys 310 Lys Ala Glu Leu Glu Lys Thr Gln Lys Glu Leu Asp Ala Ala Leu Asn Glu Leu Gly Pro Asp Gly Asp Glu Glu Glu Thr Pro Ala Pro Ala Pro Gln Pro Glu Gln Pro Ala Pro Ala Pro Lys Pro Glu Gln Pro Ala Pro 360 Ala Pro Lys Pro Glu Gln Pro Ala Pro Ala Pro Lys Pro Glu Gln Pro Ala Pro Ala Pro Lys Pro Glu Gln Pro Ala Pro Ala Pro Lys Pro Glu Gln Pro Ala Lys Pro Glu Lys Pro Ala Glu Glu Pro Thr Gln Pro Glu Lys Pro Ala Thr Pro Lys Thr Gly Trp Lys Gln Glu Asn Gly Met Trp
420 425 430 Tyr Phe Tyr Asn Thr Asp Gly Ser Met Ala Ile Gly Trp Leu Gln Asn

Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Ala Met Ala Th 450 455 460	Gly
Trp Val Lys Asp Gly Asp Thr Trp Tyr Tyr Leu Glu Ala Ser Gly 465 470 475	7 Ala 480
Met Lys Ala Ser Gln Trp Phe Lys Val Ser Asp Lys Trp Tyr Ty: 485 490 499	r Val
Asn Ser Asn Gly Ala Met Ala Thr Gly Trp Leu Gln Tyr Asn Gly 500 505 510	y Ser
Trp Tyr Tyr Leu Asn Ala Asn Gly Asp Met Ala Thr Gly Trp Le 515 520 525	u Gln
Tyr Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Asp Met Al 530 540	a Thr
Gly Trp Ala Lys Val Asn Gly Ser Trp Tyr Tyr Leu Asn Ala As 545 550 555	n Gly 560
Ala Met Ala Thr Gly Trp Ala Lys Val Asn Gly Ser Trp Tyr Ty 565 570	r Leu 5
Asn Ala Asn Gly Ser Met Ala Thr Gly Trp Val Lys Asp Gly As 580 585 590	p Thr
Trp Tyr Tyr Leu Glu Ala Ser Gly Ala Met Lys Ala Ser Gln Tr 595 600 605	p Phe
Lys Val Ser Asp Lys Trp Tyr Tyr Val Asn Gly Leu Gly Ala Le 610 620	eu Ala
Val Asn Thr Thr Val Asp Gly Tyr Lys Val Asn Ala Asn Gly Gl 625 630 635	u Trp 640
Val	
INFORMATION FOR SEQ ID NO: 161:	
(i) SEQUENCE CHARACTERISTICS:	

(2)

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 670 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

(252/						
TGGACAGGTG	AAAGGTCATG	CTACATTTGT	GAAATCCATG	ACAACTGAAA	TGTACCAAGA	60
ACAACAGAAC	CATTCTCTCG	CCTACAATCA	ACGCTTGGNT	TCGCAAAATC	GCATTGTAGA	120
TCCTTTTTTG	GCGGAGGGAT	ATGAGGTCAA	TTACCAAGTG	TCTGACGACC	CTGATGCAGT	180
CTATGGTTAC	TTGTCTATTC	CAAGTTTGGA	AATCATGGAG	CCGGTTTATT	TGGGAGCAGA	240
TTATCATCAT	TTAGGGATGG	GCTTGGCTCA	TGTGGATGGT	ACACCGCTGC	CTCTGGATGG	300
TACAGGGATT	CGCTCAGTGA	TTGCTGGGCA	CCGTGCAGAG	CCAAGCCATG	TCTTTTTCCG	360

CCATTTGGAT	CAGCTAAAAG	TTGGAGATGC	TCTTTATTAT	GATAATGGCC	AGGAAATTGT	420
AGAATATCAG	ATGATGGACA	CAGAGATTAT	TTTACCGTCG	GAATGGGAAA	AATTAGAATC	480
GGTTAGCTCT	AAAAATATCA	TGACCTTGAT	AACCTGCGAT	CCGATTCCTA	CCTTTAATAA	540
ACGCTTATTA	GTGAATTTTG	AACGAGTCGC	TGTTTATCAA	AAATCAGATC	CACAAACAGC	600
TGCAGTTGCG	AGGGTTGCTT	TTACGAAAGA	AGGACAATCT	GTATCGCGTG	TTGCAACCTC	660
TCAATGGTTG						670

(2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 223 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:
- Gly Gln Val Lys Gly His Ala Thr Phe Val Lys Ser Met Thr Thr Glu 10 15
- Met Tyr Gln Glu Gln Gln Asn His Ser Leu Ala Tyr Asn Gln Arg Leu
- Xaa Ser Gln Asn Arg Ile Val Asp Pro Phe Leu Ala Glu Gly Tyr Glu
- Val Asn Tyr Gln Val Ser Asp Asp Pro Asp Ala Val Tyr Gly Tyr Leu 50 60
- Ser Ile Pro Ser Leu Glu Ile Met Glu Pro Val Tyr Leu Gly Ala Asp 65 70 75 80
- Tyr His His Leu Gly Met Gly Leu Ala His Val Asp Gly Thr Pro Leu
- Pro Leu Asp Gly Thr Gly Ile Arg Ser Val Ile Ala Gly His Arg Ala 100 105 110
- Glu Pro Ser His Val Phe Phe Arg His Leu Asp Gln Leu Lys Val Gly 120
- Asp Ala Leu Tyr Tyr Asp Asn Gly Gln Glu Ile Val Glu Tyr Gln Met 135
- Met Asp Thr Glu Ile Ile Leu Pro Ser Glu Trp Glu Lys Leu Glu Ser 145
- Val Ser Ser Lys Asn Ile Met Thr Leu Ile Thr Cys Asp Pro Ile Pro
- Thr Phe Asn Lys Arg Leu Leu Val Asn Phe Glu Arg Val Ala Val Tyr 185
- Gln Lys Ser Asp Pro Gln Thr Ala Ala Val Ala Arg Val Ala Phe Thr

Lys Glu Gly Gln Ser Val Ser Arg Val Ala Thr Ser Gln Trp Leu 215 210

(2) INFORMATION FOR SEQ ID NO: 163:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 784 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

GATTGCTCCT	TTGAAGGATT	TGAGAGAAAC	CATGTTGGAA	ATTGCTTCTG	GTGCTCAAAA	60
TCTTCGTGCC	AAGGAAGTTG	GTGCCTATGA	ACTGAGAGAA	GTAACTCGCC	AATTTAATGC	120
TATGTTGGAT	CAGATTGATC	AGTTGATGGT	AGCTATTCGT	AGCCAGGAAG	AAACGACCCG	180
TCAGTACCAA	CTTCAAGCCC	TTTCGAGCCA	GATTAATCCA	CATTTCCTCT	ATAACACTTT	240
GGACACCATC	ATCTGGATGG	CTGAATTTCA	TGATAGTCAG	CGAGTGGTGC	AGGTGACCAA	300
		GCTTGGCGCT				360
		GCCAGTATCT				420
		AAAATGTTGC				480
		ATGCTCTTTA				540
		AGAAACAGGA				600
						660
TGGCGTTGGC	TTCCAAGATG	CTGGTGATAG	TAGTCAAAGT	CAACTCAAAC	GTGGGGGAGT	-
TGGTCTTCAA	AATGTCGATC	AACGGCTCAA	ACTTCATTTT	GGAGCCAATT	ACCATATGAA	720
GATTGATTCT	AGACCCCAAA	AAGGGACGAA	AGTTGAAATA	TATATAAATA	GAATAGAAAC	780
TAGC	•					784

(2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 261 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:
- Ile Ala Pro Leu Lys Asp Leu Arg Glu Thr Met Leu Glu Ile Ala Ser
- Gly Ala Gln Asn Leu Arg Ala Lys Glu Val Gly Ala Tyr Glu Leu Arg
- Glu Val Thr Arg Gln Phe Asn Ala Met Leu Asp Gln Ile Asp Gln Leu

			35					40					45				
Me		Val 50	Ala	Ile	Arg	Ser	Gln 55	Glu	Glu	Thr	Thr	Arg 60	Gln	Tyr	Gln	Leu	
G:		Ala	Leu	Ser	Ser	Gln 70	Ile	Asn	Pro	His	Phe 75	Leu	Tyr	Asn	Thr	Leu 80	
A	sp	Thr	Ile	Ile	Trp 85	Met	Ala	Glu	Phe	His 90	Asp	Ser	Gl'n	Arg	Val 95	Val	
G	ln	Val	Thr	Lys 100	Ser	Leu	Ala	Thr	Tyr 105	Phe	Arg	Leu	Ala	Leu 110	Asn	Gln	
G	ly	Lys	Asp 115	Leu	Ile	Cys	Leu	Ser 120	Asp	Glu	Ile	Asn	His 125	Val	Arg	Gln	
Т	уr	Leu 130	Phe	Ile	Gln	Lys	Gln 135	Arg	Tyr	Gly	Asp	Lys 140	Leu	Glu	Tyr	Glu	
	1e 45	Asn	Glu	Asn	Val	Ala 150	Phe	Asp	Asn	Leu	Val 155	Leu	Pro	Lys	Leu	Val 160	
L	eu	Gln	Pro	Leu	Val 165	Glu	Asn	Ala	Leu	Tyr 170	His	Gly	Ile	Lys	Glu 175	Lys	
G	Slu	Gly	Gln	Gly 180	His	Ile	Lys	Leu	Ser 185	Val	Gln	Lys	Gln	Asp 190	Ser	Gly	
L	₋eu	Val	Ile 195	Arg	Ile	Glu	Asp	Asp 200	Gly	Val	Gly	Phe	Gln 205	Asp	Ala	Gly	
A	Asp	Ser 210		Gln	Ser	Gln	Leu 215	Lys	Arg	Gly	Gly	Val 220	Gly	Leu	Gln	Asn	
	/al 225	Asp	Gln	Arg	Leu	Lys 230	Leu	His	Phe	Gly	Ala 235	Asn	Tyr	His	Met	Lys 240	
3	Ile	Asp	Ser	Arg	Pro 245	Gln	Lys	Gly	Thr	Lys 250	Val	Glu	Ile	Tyr	Ile 255	Asn	
I	Arg	Ile	Glu	Thr 260	Ser												
(2) II	NFO:	RMAT	NOI	FOR	SEQ	ID N	io: 1	.65:									
		SEQ (A (E	UENC L) LE B) TY	E CH NGTH PE:	IARAC I: 32 nucl EDNE	TERI 5 ba eic SS:	STIC se p acid	S: airs									
	(xi) SE	EQUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10: 1	L65:						
TAGGT												ATA	CT A)AAT	GGA1	T	60
TACCC																	120
AATGA	raa.	TA A	AAAA	ATT <i>I</i>	AT TA	\AAG(SATG	A CAC	CAAA	AGTT	TTT	GAAA	AAT (CTAC	ATTC?	AA	180

ATTTGTAGAA GGATATAAAA TATACCTGAC AGAATCTAAA GAATCTGGAA TTAAACAAAT

GGACA	ATGT	C AT	AAAA	TATT	TTG	AGTT	TAT	TGAA	тста	AA A	GTAT	TGCT	т та	TTAT.	TTCA	•	300
AAAACO	GATT	A AA	TGAG	CTGA	TAG	ΑT											325
(2) INFORMATION FOR SEQ ID NO:166:																	
`	(i)	(A) (B) (C)	LEN TYP STR	GTH: E: a ANDE	RACT 108 minc DNES	ami aci S: s	no a d ingl	cids	1								
(ii)	MOLE	CULE	TYF	E: p	rote	in										
(xi)	SEQU	JENCE	DES	CRIE	MOIT	: SE	EQ II	NO:	166:	:						
	Arg 1	Ser	Tyr	Gly	Thr	Phe	Phe	Leu	Gln	Gln 10	Asn	Arg	Leu	His	Asn 15	Ile	
	Tyr	Lys	Gly	Phe 20	Thr	His	Tyr	Lys	Tyr 25	Tyr	Arg	Ala	Glu	Asn 30	Ser	His	
	Leu	Ile	Tyr 35	Ala	Asp	Tyr	Phe	Glu 40	Met	Lys	Leu	Lys	Lys 45	Leu	Leu	Lys	
	Asp	Asp 50	Thr	Lys	Val	Phe	Glu 55	Lys	Ser	Thr	Phe	Lys 60	Phe	Val	Glu	Gly	,
	Tyr 65	Lys	Ile	Tyr	Leu	Thr 70	Glu	Ser	Lys	Glu	Ser 75	Gly	Ile	Lys	Gln	Met 80	
	Asp	Asn	Val	Ile	Lys 85	Tyr	Phe	Glu	Phe	Ile 90	Glu	Ser	Lys	Ser	Ile 95	Ala	
	Leu	Tyr	Phe	Gln 100	Lys	Arg	Leu	Asn	Glu 105	Leu	Ile	Asp					
(2) I	NFO	RMAT	ION	FOR	SEQ	ID N	0: 1	67:									
	(i)	(A (B (C) LE) TY) ST	NGTH PE : RAND	ARAC' : 23 nucl EDNE GY:	8 ba eic SS:	se p acid doub	airs					,				
					ESCR											_	60
CAAC																	60
TTTT																	120
ATTT																	180
AGCT	CGTA	AC C	TAGG	TATT	G AA	TGTT.	CGGG	GGG	GGGC	GTA	CATT	ACTT	TT C	TAGA	CTC		238
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0:16	8:									

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 79 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

Asn Val Glu Asn Tyr Leu Arg Met Cys Leu Asp Ser Ile Gln Asn Gln 1 5 10 15

Thr Tyr Gln Asn Phe Glu Cys Leu Leu Ile Asn Asp Gly Ser Pro Asp 20 25 30

His Ser Ser Lys Ile Cys Glu Glu Phe Val Glu Lys Asp Ser Arg Phe 35 40 45

Lys Tyr Phe Glu Lys Ala Asn Gly Gly Leu Ser Ser Ala Arg Asn Leu 50 55

Gly Ile Glu Cys Ser Gly Gly Gly Val His Tyr Phe Cys Arg Leu 65 70 75

- (2) INFORMATION FOR SEQ ID NO: 169:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 742 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

CTACTATCAA	TCAAGTTCTT	CAGCCATTGA	GGCCACCÁTT	GAGGGCAACA	GCCAAACGAC	. 60
CATCAGCCAG	ACTAGCCACT	TTATTCAGTC	TTATATCAAA	AAACTAGAAA	CCACCTCGAC	120
TGGTTTGACC	CAGCAGACGG	ATGTTÇTGGC	CTATGCTGAG	AATCCCAGTC	AAGACAAGGT	180
		TTTTGACCAT				240
		GTCAGGTCAT				300
		AGGATTGGTA				360
		AATCAGATAG				420
		ATCTTGGTGT				480
		TCCAGTTGGG				540
		ATCCTCAACA				600
					AATCCTACGT	660
		GAACTGATTG			CATTGGAAAA	720
	GTTCGGAGTC					742
GIIAGACCAC	GIICGGAGIC					

- (2) INFORMATION FOR SEQ ID NO:170:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 247 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

Tyr Tyr Gln Ser Ser Ser Ser Ala Ile Glu Ala Thr Ile Glu Gly Asn

Ser Gln Thr Thr Ile Ser Gln Thr Ser His Phe Ile Gln Ser Tyr Ile 20 25 30

Lys Lys Leu Glu Thr Thr Ser Thr Gly Leu Thr Gln Gln Thr Asp Val

Leu Ala Tyr Ala Glu Asn Pro Ser Gln Asp Lys Val Glu Gly Ile Arg

Asp Leu Phe Leu Thr Ile Leu Lys Ser Asp Lys Asp Leu Lys Thr Val 65 70 75 80

Val Leu Val Thr Lys Ser Gly Gln Val Ile Ser Thr Asp Asp Ser Val 85 90 95

Gln Met Lys Thr Ser Ser Asp Met Met Ala Glu Asp Trp Tyr Gln Lys
100 105 110

Ala Ile His Gln Gly Ala Met Pro Val Leu Thr Pro Ala Arg Lys Ser

Asp Ser Gln Trp Val Ile Ser Val Thr Gln Glu Leu Val Asp Ala Lys 130 135

Gly Ala Asn Leu Gly Val Leu Arg Leu Asp Ile Ser Tyr Glu Thr Leu 145 150 150

Glu Ala Tyr Leu Asn Gln Leu Gln Leu Gly Gln Gln Gly Phe Ala Phe 165 170 175

Ile Ile Asn Glu Asn His Glu Phe Val Tyr His Pro Gln His Thr Val

Tyr Ser Ser Ser Ser Lys Met Glu Ala Met Lys Pro Tyr Ile Asp Thr 195 200 205

Gly Gln Gly Tyr Thr Pro Gly His Lys Ser Tyr Val Ser Gln Glu Lys 210 220

Ile Ala Gly Thr Asp Trp Thr Val Leu Gly Val Ser Ser Leu Glu Lys 235 240

Leu Asp Gln Val Arg Ser Gln 245

(2) INFORMATION FOR SEQ ID NO: 171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1282 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

(112)	20					
GACAAAAACA T	TAAAACGTC	CTGAGGTTTT	ATCACCTGCA	GGGACTTTAG	AGAAGCTAAA	60
GGTAGCTGTT C	AGTATGGAG	CAGATGCTGT	CTTTATCGGT	GGTCAGGCCT	ATGGTCTTCG	120
TAGCCGTGCG G	GAAACTTTA	CTTTCGAACA	GATGGAAGAA	GGCGTGCAGT	TTGCGGCCAA	180
GTATGGTGCC A	AGGTCTATG	TAGCGGCTAA	TATGGTTATG	CACGAAGGAA	ATGAAGCTGG	240
TGCTGGTGAG T	GGTTCCGTA	AACTGCGTGA	TATCGGGATT	GCAGCAGTTA	TCGTATCTGA	300
CCCAGCCTTG A	TTATGATTG	CAGTGACTGA	AGCACCAGGC	CTTGAAATCC	ACCTTTCTAC	3,60
CCAAGCCAGT G	CCACTAACT	ATGAAACCCT	TGAGTTCTGG	AAAGAGCTAG	GCTTGACTCG	420
TGTCGTTTTA G	CGCGTGAGG	TTTCAATGGA	AGAATTAGCT	GAGATCCGCA	AACGTACAGA	480
TGTTGAAATT G	SAAGCCTTTG	TCCATGGAGC	TATGTGTATT	TCATACTCTG	GACGTTGTAC	540
TCTTTCAAAC C	CACATGAGTA	TGCGTGATGC	CAACCGTGGT	GGATGTTCTC	AGTCATGCCG	600
TTGGAAATAC G	GACCTTTACG	ATATGCCATT	TGGGAAAGAA	CGTAAGAGTT	TGCAGGGTGA	660
GATTCCAGAA G	SAATTTTCAA	TGTCAGCCGT	TGACATGTCT	ATGATTGACC	ANATTCCAGA	720
TATGATTGAA A	ATGGTGTGG	ACAGTCTAAA	AATCGAAGGA	CGTATGNAGT	CTATTCACTA	780
NGTATCAACA	STAACCAACT	GCTACAAGGC	GGCTGTGGAT	GCCTATCTTG	AAAGTCCTGA	840
AAAGTTTGAA (CTATCAAAC	AAGACTTGGT	GGACGAGATG	TGGAAGGTTG	CCCAACGTGA	900
ACTGGCTACA (GGATTTTACT	ATGGTACACC	ATCTGAAAAT	GAGCAGTTGT	TTGGTGCTCG	960
TCGTAAAATC (CCTGAGTACA	AGTTTGTCGC	TGAAGTGGTT	TCTTATGATG	ATGCGGCACA	1020
AACAGCAACT A	ATTCGTCAAC	GAAACGTCAT	TAACGAAGGG	GACCAAGTTG	AGTTTTATGG	1080
TCCAGGTTTC (CGTCATTTTG	AAACCTATAT	TGAAGATTTG	CATGATGCTA	AAGGCAATAA	1140
AATCGACCGC (GCTCCAAATC	CAATGGAACT	ATTGACTATT	AAAGTCCCAC	AACCTGTTCA	1200
ATCAGGAGAC	ATGGTTCGAG	CTCTTAAAGA	GGGGCTTATC	AATCTTTATA	AGGAAGATGG	1260
AACCAGCGTC	ACAGTTCGTG	CT			•	1282

(2) INFORMATION FOR SEQ ID NO:172:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:
 - Thr Lys Thr Leu Lys Arg Pro Glu Val Leu Ser Pro Ala Gly Thr Leu 1 5 . 10 15

Glu Lys Leu Lys Val Ala Val Gln Tyr Gly Ala Asp Ala Val Phe Ile Gly Gly Gln Ala Tyr Gly Leu Arg Ser Arg Ala Gly Asn Phe Thr Phe Glu Gln Met Glu Glu Gly Val Gln Phe Ala Ala Lys Tyr Gly Ala Lys Val Tyr Val Ala Ala Asn Met Val Met His Glu Gly Asn Glu Ala Gly Ala Gly Glu Trp Phe Arg Lys Leu Arg Asp Ile Gly Ile Ala Ala Val Ile Val Ser Asp Pro Ala Leu Ile Met Ile Ala Val Thr Glu Ala Pro Gly Leu Glu Ile His Leu Ser Thr Gln Ala Ser Ala Thr Asn Tyr Glu Thr Leu Glu Phe Trp Lys Glu Leu Gly Leu Thr Arg Val Val Leu Ala Arg Glu Val Ser Met Glu Glu Leu Ala Glu Ile Arg Lys Arg Thr Asp Val Glu Ile Glu Ala Phe Val His Gly Ala Met Cys Ile Ser Tyr Ser Gly Arg Cys Thr Leu Ser Asn His Met Ser Met Arg Asp Ala Asn Arg 185 Gly Gly Cys Ser Gln Ser Cys Arg Trp Lys Tyr Asp Leu Tyr Asp Met Pro Phe Gly Lys Glu Arg Lys Ser Leu Gln Gly Glu Ile Pro Glu Glu Phe Ser Met Ser Ala Val Asp Met Ser Met Ile Asp Xaa Ile Pro Asp 235 Met Ile Glu Asn Gly Val Asp Ser Leu Lys Ile Glu Gly Arg Met Xaa Ser Ile His Xaa Val Ser Thr Val Thr Asn Cys Tyr Lys Ala Ala Val Asp Ala Tyr Leu Glu Ser Pro Glu Lys Phe Glu Ala Ile Lys Gln Asp 280 Leu Val Asp Glu Met Trp Lys Val Ala Gln Arg Glu Leu Ala Thr Gly 290 295 300 Phe Tyr Tyr Gly Thr Pro Ser Glu Asn Glu Gln Leu Phe Gly Ala Arg 310 Arg Lys Ile Pro Glu Tyr Lys Phe Val Ala Glu Val Val Ser Tyr Asp Asp Ala Ala Gln Thr Ala Thr Ile Arg Gln Arg Asn Val Ile Asn Glu

345

Gly Asp Gln Val Glu Phe Tyr Gly Pro Gly Phe Arg His Phe Glu Thr 355 360 365

Tyr Ile Glu Asp Leu His Asp Ala Lys Gly Asn Lys Ile Asp Arg Ala 370 380

Pro Asn Pro Met Glu Leu Leu Thr Ile Lys Val Pro Gln Pro Val Gln 385 390 395

Ser Gly Asp Met Val Arg Ala Leu Lys Glu Gly Leu Ile Asn Leu Tyr 405 410 415

Lys Glu Asp Gly Thr Ser Val Thr Val Arg Ala 420 425

(2) INFORMATION FOR SEQ ID NO: 173:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 778 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

TTCTCAGGAG	ACCTTTAAAA	ATATCACCAA	TAGCTTCTCC	ATGCAAATCA	ATCGTCGCGT	60
CAACCAAGGA	ACGCCTCGTG	GTGCTGGGAA	TATCAAGGGT	GAAGACATCA	AAAAAATCAC	120
CGAAAACAAG	GCCATTGAGT	CTTATGTCAA	ACGTATCAAC	GCTATCGGAG	ATTTGACTGG	180
ATATGACCTG	ATTGAAACGC	CAGAAACCAA	GAAGAATCTC	ACTGCTGATC	GTGCCAAGCG	240
TTTTGGAAGT	AGCTTGATGA	TTACAGGTGT	CAATGACTCC	TCTAAAGAAG	ACAAGTTTGT	300
		TCGAAGGAGA				360
		CAGCCAAACA				420
		CAGATAATGA				480
		GTCATAATAA			*	540
		ACATTCACAC				600
		CAACCTTCTT				660
						720
		TCAGTGGTAT				
CTCCTCTAAC	TACCCAGCTC	TTGAGCAATC	TATCTCTGGT	ATGTACAAGA	TGGCCAAC	778

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 259 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

Ser Gln Glu Thr Phe Lys Asn Ile Thr Asn Ser Phe Ser Met Gln Ile 1 10 15

Asn Arg Arg Val Asn Gln Gly Thr Pro Arg Gly Ala Gly Asn Ile Lys 20 25 30

Gly Glu Asp Ile Lys Lys Ile Thr Glu Asn Lys Ala Ile Glu Ser Tyr 35 40 45

Val Lys Arg Ile Asn Ala Ile Gly Asp Leu Thr Gly Tyr Asp Leu Ile 50 60

Glu Thr Pro Glu Thr Lys Lys Asn Leu Thr Ala Asp Arg Ala Lys Arg 65 70 75 80

Phe Gly Ser Ser Leu Met Ile Thr Gly Val Asn Asp Ser Ser Lys Glu 85 90 95

Asp Lys Phe Val Ser Gly Ser Tyr Lys Leu Val Glu Gly Glu His Leu 100 105 110

Thr Asn Asp Asp Lys Asp Lys Ile Leu Leu His Lys Asp Leu Ala Ala 115 120 125

Lys His Gly Trp Lys Val Gly Asp Lys Val Lys Leu Asp Ser Asn Ile 130 135

Tyr Asp Ala Asp Asn Glu Lys Gly Ala Lys Glu Thr Val Glu Val Thr 145 150 155 160

Ile Lys Gly Leu Phe Asp Gly His Asn Lys Ser Ala Val Thr Tyr Ser 165 . 170 . 175

Gln Glu Leu Tyr Glu Asn Thr Ala Ile Thr Asp Ile His Thr Ala Ala 180 185 190

Lys Leu Tyr Gly Tyr Thr Glu Asp Thr Ala Ile Tyr Gly Asp Ala Thr 195 200 205

Phe Phe Val Thr Ala Asp Lys Asn Leu Asp Asp Val Met Lys Glu Leu 210 220

Asn Gly Ile Ser Gly Ile Asn Trp Lys Ser Tyr Thr Leu Val Lys Ser 225 230 235 240

Ser Ser Asn Tyr Pro Ala Leu Glu Gln Ser Ile Ser Gly Met Tyr Lys 245 250 255

Met Ala Asn

(2) INFORMATION FOR SEQ ID NO: 175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 694 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

AGTAAATGCG	CAATCAAATT	CATTAATATT	AATAGATGAA	CCTGAAATCT	CACTTCATCC	60
GAGTGCAATC	TATAAATTTA	AAGAGTTTTT	ACTTCAAGAG	TGTTTAAATA	AAAAACATCA	120
		CTACACAACT		,		180
ACTTTTAGTG	AAAAACGGAG	AAAAGGTAGA	TGTTATTGAA	AATATTGATT	ATCAGGATGC	240
ATTTTTTGAA	TTAGGTGATG	TGTATCATTC	TAGGAAGATG	ATTTATGTTG	AAGATAGACT	300
AGCTAAATAT	ATTCTAGAGT	TTGTTATCAC	TCATTCAGGT	AGTGAGAATC	TTAAACAGAA	360
TTTAGTAGTG	AGATATATTC	CTGGTGGAGC	AAATCAAATA	ATTTGTAATA	ATATTTTAAA	420
					AAAACACTAA	480
					TATCAGATAA	540
					NGGGATGTCC	600
					TAATTGCGAA	660
		ATTGGGCTAA				694
ACAAAGAAGC	1 1 111110111 -					

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 231 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:
- Val Asn Ala Gln Ser Asn Ser Leu Ile Leu Ile Asp Glu Pro Glu Ile 1 5 10 15
- Ser Leu His Pro Ser Ala Ile Tyr Lys Phe Lys Glu Phe Leu Leu Gln 20 25 30
- Glu Cys Leu Asn Lys Lys His Gln Ile Ile Ile Thr Thr His Ser Thr 35 40 45
- Gln Leu Ile Lys Asp Phe Pro Arg Glu Ala Val Lys Leu Leu Val Lys 50 60
- Asn Gly Glu Lys Val Asp Val Ile Glu Asn Ile Asp Tyr Gln Asp Ala 65 70 75 80
- Phe Phe Glu Leu Gly Asp Val Tyr His Ser Arg Lys Met Ile Tyr Val 85 90 95
- Glu Asp Arg Leu Ala Lys Tyr Ile Leu Glu Phe Val Ile Thr His Ser 100 105 110
- Gly Ser Glu Asn Leu Lys Gln Asn Leu Val Val Arg Tyr Ile Pro Gly
 115 120 125
- Gly Ala Asn Gln Ile Ile Cys Asn Asn Ile Leu Asn Ser Ser Tyr Leu 130 140

Asp 145	Ser	Asp	Asn	His	Tyr 150	Phe	Trp	Leu	Asp	Gly 155	Asp	Gln	Asn	Thr	Asn 160
Val	Ser	Glu	Ser	Asn 165	Asn	Leu	Met	Asn	Tyr 170	Leu	Glu	Asn	Gly	Val 175	Val
Ile	Ser	Asp	Lys 180	Ile	Pro	Glu	Ser	Asp 185	Asn	Lys	Asn	Leu	Asp 190	Asp	Ile
Ile	Lys	Leu 195	Ile	Xaa	Gly	Cys	Pro 200	Ile	Lys	Phe	Asn	Val 205	Ser	Gly	Asn
Lys	Gly 210	Gln	Lys	Asn	Asn	Ile 215	Glu	Leu	Ile	Ala	Lys 220	Gln	Arg	Ser	Phe
Ile 225	Ąsp	Tyr	Trp	Ala	Lys 230	Tyr		•							

(2) INFORMATION FOR SEQ ID NO: 177:

- (i) SEQUENCE CHARACTERISTICS:
 - (\tilde{A}) LENGTH: 550 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

•						
TTACCGCGTT	CATCAAGATG	TCAAACAAGT	CATGACCTAT	CAACCCATGG	TGCGAGAAAT	60
ATTGAGTGAA	CAAGACACCC	CAGCAAACGA	AGAGCTTGTG	CTTGCTATGA	TTTATACTGA	120
		ATGTTATGCA				180
					CAGGCAATCT	240
		GGGTAGATAT				300
		TCGCCCAAAA				360
		TTGCCCCCTT				420
		•			GAGGAAACTA	480
					CTCTCTTTTC	540
		GACTITATOOT				550
AACATCTGGC						

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 183 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Tyr 1	Arg	Val	His	Gln 5	Asp	Val	Lys	Gln	Val 10	Met	Thr	Tyr	Gln	Pro 15	Met
Val	Arg	Glu	Ile 20	Leu	Ser	Glu	Gln	Asp 25	Thr	Pro	Ala	Asn	Glu 30	Glu	Leu
Val	Leu	Ala 35	Met	Ile	Tyr	Thr	Glu 40	Thr	Lys	Gly	Lys	Glu 45	Gly	Asp	Val
Met	Gln 50	Ser	Ser	Glu	Ser	Ala 55	Ser	Gly	Ser	Thr	Asn 60	Thr	Ile	Asn	Asp
Asn 65	Ala	Ser	Ser	Ile	Arg 70	Gln	Gly	Ile	Gln	Thr 75	Leu	Thr	Gly	Asn	Leu 80
Tyr	Leu	Ala	Gln	Lys 85	Lys	Gly	Val	Asp	Ile 90	Trp	Thr	Ala	Val	Gln 95	Ala
Tyr	Asn	Phe	Gly 100	Pro	Ala	Tyr	Ile	Asp 105	Phe	Ile	Ala	Gln	Asn 110	Gly	Lys
Glu	Asn	Thr 115	Leu	Ala	Leu	Ala	Lys 120	Gln	Tyr	Ser	Arg	Glu 125	Thr	Val	Ala
Pro	Leu 130	Leu	Gly	Asn	Arg	Thr 135	Gly	Lys	Thr	Tyr	Ser 140	Tyr	Ile	His	Pro
Ile 145	Ser	Ile	Phe	His	Gly 150	Ala	Glu	Leu	Tyr	Val 155	Asn	Gly	Gly	Asn	Tyr 160
Tyr	Tyr	Ser	Arg	Gln 165	Val	Arg	Leu	Asn	Leu 170	Tyr	Ile	Ile	Lys	Cys 175	Phe
Thr	Leu	Phe	Ser 180		Ser	Gly			·						

(2) INFORMATION FOR SEQ ID NO: 179:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 334 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:

•						
GTGGATGGGC	TTTAACTATC	TTCGTATTCG	CCGTGCGGCT	AAAATTGTGG	ACAATGAGGA	60
GTTTGAAGCC	TTGATTCGTA	CGGGTCAATT	GATTGATTTG	CGCGACCCAG	CAGAATTCCA	120
CAGAAAACAT	ATCCTTGGTG	CACGCAATAT	TCCTTCAAGT	CAGTTGAAAA	CTAGTCTTGC	180
AGCCCTTCGT	AAAGATAAAC	CTGTCCTTCT	CTACGAAAAC	CAACGTGCGC	AACGAGTTAC	240
AAATGCAGCT	CTTTACTTGA	AAAAACAAGG	TTTTTCTGAG	ATTTATATCC	TTTCTTATGG	300
CTTGGATTCT	TGGAAAGGGA	AAGTGAAGAC	TAGC			334

(2) INFORMATION FOR SEQ ID NO:180:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 111 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
- (2)

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Trp Met Gly Phe Asn Tyr Leu Arg Ile Arg Arg Ala Ala Lys Ile Val 1 5 10 15

Asp Asn Glu Glu Phe Glu Ala Leu Ile Arg Thr Gly Gln Leu Ile Asp 20 25 30

Leu Arg Asp Pro Ala Glu Phe His Arg Lys His Ile Leu Gly Ala Arg 35 40 45

Asn Ile Pro Ser Ser Gln Leu Lys Thr Ser Leu Ala Ala Leu Arg Lys 50 55 60

Asp Lys Pro Val Leu Leu Tyr Glu Asn Gln Arg Ala Gln Arg Val Thr 65 70 75 80

Asn Ala Ala Leu Tyr Leu Lys Lys Gln Gly Phe Ser Glu Ile Tyr Ile 85 90 95

Leu Ser Tyr Gly Leu Asp Ser Trp Lys Gly Lys Val Lys Thr Ser 100 105 110

(2) INFORMATION FOR SEQ ID NO: 181:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1342 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

ACTAAACCAG	CATCGTTCGC	AGGAAAATAA	GGACAATAAT	CGTGTCTCTT	ATGTGGATGG	60
CAGCCAGTCA	AGTCAGAAAA	GTGAAAACTT	GACACCAGAC	CAGGTTAGCC	AGAAAGAAGG	120
AATTCAGGCT	GAGCAAATTG	TAATCAAAAT	TACAGATCAG	GGCTATGTAA	CGTCACACGG	180
TGACCACTAT	CATTACTATA	ATGGGAAAGT	TCCTTATGAT	GCCCTCTTTA	GTGAAGAACT	240
CTTGATGAAG	GATCCAAACT	ATCAACTTAA	AGACGCTGAT	ATTGTCAATG	AAGTCAAGGG	300
		ATGGAAAATA				360
		ATGAAATCAA				420
		TTGCTGTAGC				480
		CTGATATTAT				540
					AATTAGCAGC	600
				CAGTTAAGCT		660
AGCTAAAGCA	CATCTGGCTG	GAAAAAATAT	GCAACCGAGI	CAGTIMOCI		

AGCTAGTGAC	AATAACACGC	AATCTGTAGC	AAAAGGATCA	ACTAGCAAGC	CAGCAAATAA	720
ATCTGAAAAT	CTCCAGAGTC	TTTTGAAGGA	ACTCTATGAT	TCACCTAGCG	CCCAACGTTA	780
CAGTGAATCA	GATGGCCTGG	TCTTTGACCC	TGCTAAGATT	ATCAGTCGTA	CACCAAATGG	840
AGTTGCGATT	CCGCATGGCG	ACCATTACCA	CTTTATTCCT	TACAGCAAGC	TTTCTGCCTT	900
AGAAGAAAAG	ATTGCCAGAA	TGGTGCCTAT	CAGTGGAACT	GGTTCTACAG	TTTCTACAAA	960
TGCAAAACCT	AATGAAGTAG	TGTCTAGTCT	AGGCAGTCTT	TCAAGCAATC	CTTCTTCTTT	1020
AACGACAAGT	AAGGAGCTCT	CTTCAGCATC	TGATGGTTAT	ATTTTTAATC	CAAAAGATAT	1080
CGTTGAAGAA	ACGGCTACAG	CTTATATTGT	AAGACATGGT	GATCATTTCC	ATTACATTCC	1140
AAAATCAAAT	CAAATTGGGC	AACCGACTCT	TCCAAACAAT	AGTCTAGCAA	CACCTTCTCC	1200
ATCTCTTCCA	ATCAATCCAG	GAACTTCACA	TGAGAAACAT	GAAGAAGATG	GATACGGATT	1260
TGATGCTAAT	CGTATTATCG	CTGAAGATGA	ATCAGGTTTT	GTCATGAGTC	ACGGAGACCA	1320
CAATCATTAT	TTCTTCAAGA	AG				1342

(2) INFORMATION FOR SEQ ID NO:182:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

Leu Asn Gln His Arg Ser Gln Glu Asn Lys Asp Asn Asn Arg Val Ser 1 10 15

Tyr Val Asp Gly Ser Gln Ser Ser Gln Lys Ser Glu Asn Leu Thr Pro 20 25 30

Asp Gln Val Ser Gln Lys Glu Gly Ile Gln Ala Glu Gln Ile Val Ile 35 40 45

Lys Ile Thr Asp Gln Gly Tyr Val Thr Ser His Gly Asp His Tyr His 50 55 60

Tyr Tyr Asn Gly Lys Val Pro Tyr Asp Ala Leu Phe Ser Glu Glu Leu 65 70 75 80

Leu Met Lys Asp Pro Asn Tyr Gln Leu Lys Asp Ala Asp Ile Val Asn 85 90 95

Glu Val Lys Gly Gly Tyr Ile Ile Lys Val Asp Gly Lys Tyr Tyr Val 100 105 110

Tyr Leu Lys Asp Ala Ala His Ala Asp Asn Val Arg Thr Lys Asp Glu 115 120 125

Ile Asn Arg Gln Lys Gln Glu His Val Lys Asp Asn Glu Lys Val Asn 130 135. 140

Ser Asn Val Ala Val Ala Arg Ser Gln Gly Arg Tyr Thr Thr Asn Asp 150 Gly Tyr Val Phe Asn Pro Ala Asp Ile Ile Glu Asp Thr Gly Asn Ala Tyr Ile Val Pro His Gly Gly His Tyr His Tyr Ile Pro Lys Ser Asp Leu Ser Ala Ser Glu Leu Ala Ala Ala Lys Ala His Leu Ala Gly Lys Asn Met Gln Pro Ser Gln Leu Ser Tyr Ser Ser Thr Ala Ser Asp Asn Asn Thr Gln Ser Val Ala Lys Gly Ser Thr Ser Lys Pro Ala Asn Lys Ser Glu Asn Leu Gln Ser Leu Leu Lys Glu Leu Tyr Asp Ser Pro Ser Ala Gln Arg Tyr Ser Glu Ser Asp Gly Leu Val Phe Asp Pro Ala Lys Ile Ile Ser Arg Thr Pro Asn Gly Val Ala Ile Pro His Gly Asp His 280 Tyr His Phe Ile Pro Tyr Ser Lys Leu Ser Ala Leu Glu Glu Lys Ile 295 Ala Arg Met Val Pro Ile Ser Gly Thr Gly Ser Thr Val Ser Thr Asn Ala Lys Pro Asn Glu Val Val Ser Ser Leu Gly Ser Leu Ser Ser Asn Pro Ser Ser Leu Thr Thr Ser Lys Glu Leu Ser Ser Ala Ser Asp Gly 345 Tyr Ile Phe Asn Pro Lys Asp Ile Val Glu Glu Thr Ala Thr Ala Tyr Ile Val Arg His Gly Asp His Phe His Tyr Ile Pro Lys Ser Asn Gln Ile Gly Gln Pro Thr Leu Pro Asn Asn Ser Leu Ala Thr Pro Ser Pro 395 390 Ser Leu Pro Ile Asn Pro Gly Thr Ser His Glu Lys His Glu Glu Asp 405 Gly Tyr Gly Phe Asp Ala Asn Arg Ile Ile Ala Glu Asp Glu Ser Gly 425 420 Phe Val Met Ser His Gly Asp His Asn His Tyr Phe Phe Lys Lys 440

(2) INFORMATION FOR SEQ ID NO: 183:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 934 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) S	EQUENCE DES	CRIPTION: S	SEQ ID NO: 1	.83:		
TGACTACCTT	GAAATCCCAC	TTTACAGCTA	TCTTGGTGGA	TTCAACACTA	AAGTTCTTCC	60
AACTCCAATG	ATGAACATCA	TCAACGGTGG	TTCTCACTCT	GACGCTCCAA	TCGCTTTCCA	120
AGAGTTCATG	ATCTTGCCAG	TTGGTGCGCC	AACATTTAAA	GAAGCCCTTC	GTTACGGTGC	180
TGAAATCTTC	CACGCTCTTA	AGAAAATCCT	TAAATCACGT	GGTTTGGAAA	CTGCCGTAGG	240
TGACGAAGGT	GGATTCGCTC	CTCGTTTCGA	AGGAACTGAA	GATGGTGTTG	AAACTATCCT	300
TGCTGCGATT	GAAGCTGCTG	GATATGTACC	AGGTAAAGAC	GTATTTATCG	GATTTGACTG	360
TGCTTCATCA	GAATTCTACG	ATAAAGAACG	TAAAGTTTAC	GACTACACTA	AATTTGAAGG	420
TGAAGGTGCT	GCTGTTCGTA	CATCTGCAGA	ACAAATCGAC	TACCTTGAAG	AATTGGTTAA	480
CAAATACCCA	ATCATCACTA	TTGAAGATGG	TATGGATGAA	AACGACTGGG	ATGGTTGGAA	540
AGCTCTTACT	GAACGTCTTG	GTAAGAAAGT	ACAACTTGTT	GGTGACGACT	TCTTCGTAAC	600
AAACACTGAC	TACCTTGCAC	GTGGTATCCA	AGAAGGTGCT	GCTAACTCAA	TCCTTATCAA	660
AGTTAACCAA	ATCGGTACTC	TTACTGAAAC	TTTTGAAGCT	ATCGAAATGG	CTAAAGAAGC	720
TGGTTACACT	GCTGTTGTAT	CACACCGTTC	AGGTGAAACT	GAAGATTCAA	CAATCGCTGA	780
TATTGCAGTT	GCAACTAACG	CAGGACAAAT	CAAGACTGGT	TCACTTTCAC	GTACAGACCG	840
CATCGCTAAA	TACAACCAAT	TGCTTCGTAT	CGAAGACCAA	CTTGGTGAAG	TAGCTGAATA	900
TCGTGGATTG	AAATCATTCT	ACAACCTTAA	AAAA			934

(2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:
- Asp Tyr Leu Glu Ile Pro Leu Tyr Ser Tyr Leu Gly Gly Phe Asn Thr 1 5 10 15
- Lys Val Leu Pro Thr Pro Met Met Asn Ile Ile Asn Gly Gly Ser His 20 25 30
- Ser Asp Ala Pro Ile Ala Phe Gln Glu Phe Met Ile Leu Pro Val Gly 35 40 45
- Ala Pro Thr Phe Lys Glu Ala Leu Arg Tyr Gly Ala Glu Ile Phe His 50 55
- Ala Leu Lys Lys Ile Leu Lys Ser Arg Gly Leu Glu Thr Ala Val Gly 65 70 75 80

Asp	Glu	Gly	Gly	Phe 85	Ala	Pro	Arg	Phe	Glu 90	Gly	Thr	Glu	Asp	Gly 95	Val
Glu	Thr	Ile	Leu 100	Ala	Ala	Ile	Glu	Ala 105	Ala	Gly	Tyr	Val	Pro 110	Gly	Lys
Asp	Val	Phe	Ile	Gly	Phe	Asp	Cys 120	Ala	Ser	Ser	Glu	Phe 125	Tyr	Asp	Lys
Glu	Arg 130	Lys	Val	Tyr	Asp	Tyr 135	Thr	īys	Phe	Glu	Gly 140	Glu	Gly	Ala	Ala
Val 145	Arg	Thr	Ser	Ala	Glu 150	Gln	Ile	Asp	Tyr	Leu 155	Ģlu	Glu	Leu	Val	Asn 160
Lys	Tyr	Pro	Ile	Ile 165	Thr	Ile	Glu	Asp	Gly 170	Met	Asp	Glu	Asn	Asp 175	Trp
Asp	Gly	Trp	Lys 180	Ala	Leu	Thr	Glu	Arg 185	Leu	Gly	Lys	Lys	Val 190	Gln	Leu
Val	Gly	Asp 195	Asp	Phe	Phe	Val	Thr 200	Asn	Thr	Asp	Tyr	Leu 205	Ala	Arg	Gly
Ile	Gln 210	Glu	Gly	· Ala	Ala	Asn 215	Ser	Ile	Leu	Ile	Lys 220	Val	Asn	Gln	Ile
Gly 225		Lev	Thr	Glu	Thr 230	Phe	Glu	Ala	Ile	Glu 235	Met	Ala	Lys	Glu	Ala 240
Gly	туг	Thi	: Ala	val 245	Val	Ser	His	Arg	Ser 250	Gly	Glu	Thr	Glu	255	Ser
Thi	r Ile	e Ala	a As <u>r</u> 260	o Ile	e Ala	. Val	L Ala	Thr 265	Asr	n Ala	a Gly	glr	11€ 270	e Lys	Thr
Gl	y Se:	r Lei 27!	ı Sei	r Arg	g Thr	. Ası	280	g Il€)	e Ala	a, Lys	з Туг	285	n Glr	ı Lev	ı Leü
Ar	g Il 29		u Asj	p Gli	n Leu	i Gly 29	y Glu 5	ı Val	l Alá	a Gli	тул 300	r Arg	g Gly	/ Let	ı Lys
Se 30		е Ту	r As	n Le	u Lys 310	E Ly	s	er!							
INF	ORMA	TION	FOR	SEQ	ID 1	: 01/	185:								
/ ;	(;) SEQUENCE CHARACTERISTICS:														

(2)

- - (A) LENGTH: 541 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

,	rcgtatcttt	TTTTGGAGCA	ATGTTCGCGT	AGAAGGACAT	TCCATGGATC	CGACCCTAGC	60
						ATATCGTGGT	120
						TGCCTGGCGA	180

CACCATTCGT	TACGAAAATG	ATAAACTCTA	CATCAATGAC	AAAGAAACGG	ACGAGCCTTA	240
TCTAGCAGAC	TATATCAAAC	GCTTCAAGGA	TGACAAACTC	CAAAGCACTT	ACTCAGGCAA	300
GGGCTTTGAA	GGAAATAAAG	GAACTTTCTT	TAGAAGTATC	GCTCAAAAAG	CTCAAGCCTT	360
CACAGTTGAT	GTCAACTACA	ACACCAACTT	TAGCTTTACT	GTTCCAGAAG	GAGAATACCT	420
TCTCCTCGGA	GATGACCGCT	TGGTTTCGAG	CGACAGCCGC	CACGTAGGTA	CCTTCAAAGC	480
AAAAGATATC	ACAGGGGAAG	CTAAATTCCG	CTTATGGCCA	ATCACCCGTA	TCGGAACATT	540
т						541

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:
- Arg Ile Phe Phe Trp Ser Asn Val Arg Val Glu Gly His Ser Met Asp 1 10 15
- Pro Thr Leu Ala Asp Gly Glu Ile Leu Phe Val Val Lys His Leu Pro 20 25 30
- Ile Asp Arg Phe Asp Ile Val Val Ala His Glu Glu Asp Gly Asn Lys 35 40 45
- Asp Ile Val Lys Arg Val Ile Gly Met Pro Gly Asp Thr Ile Arg Tyr 50 60
- Glu Asn Asp Lys Leu Tyr Ile Asn Asp Lys Glu Thr Asp Glu Pro Tyr 65 70 75 80
- Leu Ala Asp Tyr Ile Lys Arg Phe Lys Asp Asp Lys Leu Gln Ser Thr 85 90 95
- Tyr Ser Gly Lys Gly Phe Glu Gly Asn Lys Gly Thr Phe Phe Arg Ser 100 105 110
- Ile Ala Gln Lys Ala Gln Ala Phe Thr Val Asp Val Asn Tyr Asn Thr 115 120 125
- Asn Phe Ser Phe Thr Val Pro Glu Gly Glu Tyr Leu Leu Gly Asp 130 135 140
- Asp Arg Leu Val Ser Ser Asp Ser Arg His Val Gly Thr Phe Lys Ala 145 150 150
- Lys Asp Ile Thr Gly Glu Ala Lys Phe Arg Leu Trp Pro Ile Thr Arg 165 170 175

Ile Gly Thr Phe

(2) INFORMATION FOR SEQ ID NO: 187:

1:1	CECTENCE	CHARACTERISTICS
111	SECULIENCE.	I DAKACIENTOITCO

- (A) LENGTH: 400 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:

GGACTCTCTC	AAAGATGTGA	AAGCAAATGC	TAGCGACAGC	AAGCCTGCAC	AGGACAAGAA	60
GGATGCAAAA	CAAGGAACGG	AAGATAGTAA	GGATTCAGAT	AAGATGACTG	AAACAAACTC	120
AGTTCCGGCA	GGAGTGATTG	TGGTCAGTCT	ACTTGCCCTC	CTAGGCGTGA	TTGCCTTCTG	180
GCTGATTCGC	CGTAAGAAAG	AGTCAGAAAT	CCAGCAATTA	AGCACGGAAT	TGATCAAGGT	240
TCTAGGACAG	CTAGATGCAG	AAAAAGCGGA	TAAAAAAGTC	CTTGCCAAAG	CCCAAAACCT	300
TCTCCAAGAA	ACCCTTGATT	TCGTGAAAGA	AGAAAATGGC	TCAGCAGAGA	CAGAAACTAA	360
ACTAGTAGAG	GAGCTTAAAG	CAATCCTTGA	CAAACTCAAG			400

(2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:
- Asp Ser Leu Lys Asp Val Lys Ala Asn Ala Ser Asp Ser Lys Pro Ala
- Gln Asp Lys Lys Asp Ala Lys Gln Gly Thr Glu Asp Ser Lys Asp Ser 20 25 30
- Asp Lys Met Thr Glu Thr Asn Ser Val Pro Ala Gly Val Ile Val Val
- Ser Leu Leu Ala Leu Leu Gly Val Ile Ala Phe Trp Leu Ile Arg Arg
- Lys Lys Glu Ser Glu Ile Gln Gln Leu Ser Thr Glu Leu Ile Lys Val 65 70 75 80
- Leu Gly Gln Leu Asp Ala Glu Lys Ala Asp Lys Lys Val Leu Ala Lys
- Ala Gln Asn Leu Leu Gln Glu Thr Leu Asp Phe Val Lys Glu Glu Asn
- Gly Ser Ala Glu Thr Glu Thr Lys Leu Val Glu Glu Leu Lys Ala Ile

Leu Asp Lys Leu Lys

(2) INFORMATION FOR SEQ ID NO: 189:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1201 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

(RI) DIQUI						
CAAGAAATCC TATO	CATCTCT TC	CAGAAGCA	AACAGAGACG	AGGGGAATTC	AGACTCAGTT	60
GATTGAAGAA TCGC	TTAGTC AG	CAGACTAT	AATCCAGTCC	TŢCAATGCTC	AAACAGAATT	120
TATCCAAAGA TTGC	CGTGAGG CT	CATGACAA	CTACTCAGGC	TATTCTCAGT	CAGCCATCTT	180
TTATTCTTCA ACGO	TCAATC CT	TCGACTCG	CTTTGTAAAT	GCACTCATTT	ATGCCCTTTT	240
AGCTGGAGTA GGAG	GCTTATC GT	TATCATGAT	GGGTTCAGCC	TTGACCGTCG	GTCGTTTAGT	300
GACTTTTTTG AAC	TATGTTC AG	CAATACAC	CAAGCCCTTT	AACGATATTT	CTTCAGTGCT	360
AGCTGAGTTG CAA	AGTGCTC TO	GCTTGCGT	AGAGCGTATC	TATGGAGTCT	TAGATAGCCC	420
TGAAGTGGCT GAA	ACAGGTA AG	GAAGTCTT	GACGACCAGT	GACCAAGTTA	AGGGAGCTAT	480
TTCCTTTAAA CAT	GTCTCTT TT	rGGCTACCA	TCCTGAAAAA	ATTTTGATTA	AGGACTTGTC	540
TATCGATATT CCA	GCTGGTA GT	PAAGGTAGC	CATCGTTGGT	CCGACAGGTG	CTGGAAAATC	600
AACTCTTATC AAT	CTCCTTA TO	GCGTTTTTA	TCCCATTAGC	TCGGGAGATA	TCTTGCTGGA	660
TGGGCAATCC ATT	TATGATT AT	TACACGAGT	ATCATTGAGA	CAGCAGTTTG	GTATGGTGCT	720
TCAAGAAACC TGG	CTCACAC A	AGGGACCAT	TCATGATAAT	ATTGCCTTTG	GCAATCCTGA	780
AGCCAGTCGA GAG	CAAGTAA T	TGCTGCTGC	CAAAGCAGCT	AATGCAGACT	TTTTCATCCA	840
ACAGTTGCCA CAG	GGATACG, A	TACCAAGTT	GGAAAATGCT	GGAGAATCTC	TCTCTGTCGG	900
CCAAGCTCAG CTC	TTGACCA T	AGCCCGAGT	CTTTCTGGCT	ATTCCAAAGA	TTCTTATCTT	960
AGACGAGGCA ACT	TCTTCCA T	TGATACACG	GACAGAAGTG	CTGGTACAGG	ATGCCTTTGC	1020
AAAACTCATG AAG	GGCCGCA C	AAGTTTCAT	CATTGCTCAC	CGTTTGTCAA	CCATTCAGGA	1080
TGCGGATTTA ATT	CTTGTCT T	AGTAGATGG	TGATATTGTT	GAATATGGTA	ACCATCAAGA	1140
ACTCATGGAT AGA	AAGGGTA A	GTATTACCA	AATGCAAAAA	GCTGCGGCTT	TTAGTTCTGA	1200
A						1201

(2) INFORMATION FOR SEQ ID NO:190:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 400 amino acids

 - (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190: Lys Lys Ser Tyr His Leu Phe Gln Lys Gln Thr Glu Thr Arg Gly Ile Gln Thr Gln Leu Ile Glu Glu Ser Leu Ser Gln Gln Thr Ile Ile Gln Ser Phe Asn Ala Gln Thr Glu Phe Ile Gln Arg Leu Arg Glu Ala His Asp Asn Tyr Ser Gly Tyr Ser Gln Ser Ala Ile Phe Tyr Ser Ser Thr Val Asn Pro Ser Thr Arg Phe Val Asn Ala Leu Ile Tyr Ala Leu Leu Ala Gly Val Gly Ala Tyr Arg Ile Met Met Gly Ser Ala Leu Thr Val Gly Arg Leu Val Thr Phe Leu Asn Tyr Val Gln Gln Tyr Thr Lys Pro Phe Asn Asp Ile Ser Ser Val Leu Ala Glu Leu Gln Ser Ala Leu Ala Cys Val Glu Arg Ile Tyr Gly Val Leu Asp Ser Pro Glu Val Ala Glu 135 Thr Gly Lys Glu Val Leu Thr Thr Ser Asp Gln Val Lys Gly Ala Ile 145 Ser Phe Lys His Val Ser Phe Gly Tyr His Pro Glu Lys Ile Leu Ile Lys Asp Leu Ser Ile Asp Ile Pro Ala Gly Ser Lys Val Ala Ile Val 185 Gly Pro Thr Gly Ala Gly Lys Ser Thr Leu Ile Asn Leu Leu Met Arg Phe Tyr Pro Ile Ser Ser Gly Asp Ile Leu Leu Asp Gly Gln Ser Ile Tyr Asp Tyr Thr Arg Val Ser Leu Arg Gln Gln Phe Gly Met Val Leu 235 Gln Glu Thr Trp Leu Thr Gln Gly Thr Ile His Asp Asn Ile Ala Phe 245 Gly Asn Pro Glu Ala Ser Arg Glu Gln Val Ile Ala Ala Ala Lys Ala Ala Asn Ala Asp Phe Phe Ile Gln Gln Leu Pro Gln Gly Tyr Asp Thr 280 Lys Leu Glu Asn Ala Gly Glu Ser Leu Ser Val Gly Gln Ala Gln Leu 295 Leu Thr Ile Ala Arg Val Phe Leu Ala Ile Pro Lys Ile Leu Ile Leu 310

Asp Glu Ala Thr Ser Ser Ile Asp Thr Arg Thr Glu Val Leu Val 335 Gln Asp Ala Phe Ala Lys Leu Met Lys Gly Arg Thr Ser Phe Ile Ile Ala 350 His Arg Leu Ser Thr Ile Gln Asp Ala Asp Leu Ile Leu Val 365 Val Leu Val Asp Gly Arg Thr Ser Phe Ile Val Clu Val Asp Asp Gly Asp Ile Val Glu Tyr Gly Asn His Gln Glu Leu Met Asp Arg 385 Gly Lys Tyr Tyr Gln Met Gln Lys Ala Ala Ala Ala Phe Ser Ser Glu 400

(2) INFORMATION FOR SEQ ID NO: 191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1033 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

60	GCCAAGGAGG	GCGGCAGTTA	AATTGAAAAG	ATGCCTCGCA	GGGCAGACAG	ACGAAATGCA
120	TTTATCTAGC	TTGCACGAAA	AGACGCAGAC	AAATTAGTAA	AAAAAAACAG	AAAAGCAGTG
180	TGACGGATGC	GTTCCCGGGG	TTTCTCACGT	TGGAGGAATA	TTCTGGGGAG	TGGAGGTTGT
240	TTAACCAAAC	TACGAATTGA	AACAACCAAG	GTAGAGGAGA	TATGCAAATG	CGTTTCAGGC
300	TCAAGGAAAT	CAAATTTCTC	TGATGCCAAG	ATGTCACCTA	GAAACCGTCC	AGGTCATGCA
360	GAAATGATGT	AATAAACAAG	AACCAGCAAA	TTATCAATCC	TATTTCCGCA	CCTGCTTCAC
420	AAGTGATTAA	AAGGATTTGG	CACAGATGAC	GTGTTTATTA	TACCGTACTG	GGGGACCCAG
480	AAAAGGAAAA	CTAGCAGTTG	CGATCAACCT	CTAAGAAATA	GATGAGGTGG	CCAAGTCTTT
540	AAAATCCAAA	TATCTCAAGA	CCATCAAGAC	CTGAGGATTA	TTTGTGGTGG	CTTGAAGAAT
. 600	CCAGCAAATA	GTCATTGATG	GGCCTATCCT	TTAATCAGGC	CATATCAATG	TGGCTACTGC
660	ATGCAGTTAC	CCTGAGGAGT	GACCCTGTCA	AATTGAAAAA	AGTGATGAGG	TCCAAAACCA
720	TTGAATCCGG	TGGGATAAAT	AAACCGTTAC	GAGCTTTCTC	CAAACAGAAC	CCAGGAAAAT
780	AATTTGAGTC	TCAAAAGACA	TCTCTTTTCA	CTGGGGAACC	GATATAGCAA	TATCTATGTG
840	CCTACAAGGA	GATGTTGTCA	CATCAGTCCA	TTACCCAACC	TGGCCTAGTT	TGGTTGTGGC
900	ATTCTCACCT	CGAGTAGGAG	AGTGCGGAGC	CGCGTATGGA	TACAATATGA	AGATAAGTCC
960	GTATCAATAG	TTACGTTACT	CAAGGGCGGC	GTCCACAGGA	TTTACGGATG	TGGGCATGTC
1020	CTTATTTACT	AAAGGCTACG	AATGGAAGAA	CCAAAGACCA	CGCTTTATTC	CCTCTCTATC
1033			,		GAT	AGATTATGTT

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:
- Arg Asn Ala Gly Gln Thr Asp Ala Ser Gln Ile Glu Lys Ala Ala Val
- Ser Gln Gly Gly Lys Ala Val Lys Lys Thr Glu Ile Ser Lys Asp Ala 20 25 30
- Asp Leu His Glu Ile Tyr Leu Ala Gly Gly Cys Phe Trp Gly Val Glu 35 40 45
- Glu Tyr Phe Ser Arg Val Pro Gly Val Thr Asp Ala Val Ser Gly Tyr 50 60
- Ala Asn Gly Arg Gly Glu Thr Thr Lys Tyr Glu Leu Ile Asn Gln Thr 65 70 75 80
- Gly His Ala Glu Thr Val His Val Thr Tyr Asp Ala Lys Gln Ile Ser 85 90 95
- Leu Lys Glu Ile Leu Leu His Tyr Phe Arg Ile Ile Asn Pro Thr Ser 100 105 110
- Lys Asn Lys Gln Gly Asn Asp Val Gly Thr Gln Tyr Arg Thr Gly Val 115 120 125
- Tyr Tyr Thr Asp Asp Lys Asp Leu Glu Val Ile Asn Gln Val Phe Asp 130 135 140
- Glu Val Ala Lys Lys Tyr Asp Gln Pro Leu Ala Val Glu Lys Glu Asn 145 150 155 160
- Leu Lys Asn Phe Val Val Ala Glu Asp Tyr His Gln Asp Tyr Leu Lys 165 170 175
- Lys Asn Pro Asn Gly Tyr Cys His Ile Asn Val Asn Gln Ala Ala Tyr 180 185 190
- Pro Val Ile Asp Ala Ser Lys Tyr Pro Lys Pro Ser Asp Glu Glu Leu 195 200 205
- Lys Lys Thr Leu Ser Pro Glu Glu Tyr Ala Val Thr Gln Glu Asn Gln 210 220
- Thr Glu Arg Ala Phe Ser Asn Arg Tyr Trp Asp Lys Phe Glu Ser Gly 225 230 235 240
- Ile Tyr Val Asp Ile Ala Thr Gly Glu Pro Leu Phe Ser Ser Lys Asp 245 250 255
- Lys Phe Glu Ser Gly Cys Gly Trp Pro Ser Phe Thr Gln Pro Ile Ser 260 265 270
- Pro Asp Val Val Thr Tyr Lys Glu Asp Lys Ser Tyr Asn Met Thr Arg

280 285 275 Met Glu Val Arg Ser Arg Val Gly Asp Ser His Leu Gly His Val Phe 290 Thr Asp Gly Pro Gln Asp Lys Gly Gly Leu Arg Tyr Cys Ile Asn Ser Leu Ser Ile Arg Phe Ile Pro Lys Asp Gln Met Glu Glu Lys Gly Tyr 330 Ala Tyr Leu Leu Asp Tyr Val Asp 340 (2) INFORMATION FOR SEQ ID NO: 193: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 396 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193: TGTATAGTTT TTAGCGCTTG TTCTTCTAAT TCTGNTAAAA ATGAAGAAAA TACTTCTAAA 60 GAGCATGCGC CTGATAAAAT AGTTTTAGAT CATGCTTTCG GTCAAACTAT ATTAGATAAA 120 AAACCTGAAA GAGTTGCAAC TATTGCTTGG GGAAATCATG ATGTAGCATT AGCTTTAGGA 180 ATAGTTCCTG TTGGATTTTC AAAAGCAAAT TACGGTGTAA GTGCTGATAA AGGAGTTTTA 240 CCATGGACAG AAGAAAAAT CAAAGAACTA AATGGTAAAG CTAACCTATT TGACGATTTG 300 GATGGACTTA ACTTTGAAGC AATATCAAAT TCTAAACCAG ATGTTATCTT AGCAGGTTAT 360 396 TCTGGTATAA CTAAAGAAGA TTATGACACT CTATCA (2) INFORMATION FOR SEQ ID NO:194: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194: Cys Ile Val Phe Ser Ala Cys Ser Ser Asn Ser Xaa Lys Asn Glu Glu Asn Thr Ser Lys Glu His Ala Pro Asp Lys Ile Val Leu Asp His Ala Phe Gly Gln Thr Ile Leu Asp Lys Lys Pro Glu Arg Val Ala Thr Ile Ala Trp Gly Asn His Asp Val Ala Leu Ala Leu Gly Ile Val Pro Val

Gly Phe Ser Lys Ala Asn Tyr Gly Val Ser Ala Asp Lys Gly Val Leu 65 70 75 80

Pro Trp Thr Glu Glu Lys Ile Lys Glu Leu Asn Gly Lys Ala Asn Leu 85 90 95

Phe Asp Asp Leu Asp Gly Leu Asn Phe Glu Ala Ile Ser Asn Ser Lys 100 105 110

Pro Asp Val Ile Leu Ala Gly Tyr Ser Gly Ile Thr Lys Glu Asp Tyr 115 120 125

Asp Thr Leu Ser 130

(2) INFORMATION FOR SEQ ID NO: 195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 844 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:

GTGTGTCGAG C	ATATTCTGA	AGCAAACCTA	TCAAAATATA	GAAATTATTT	TAGTTGATGA	60
CGGTTCTACG G	ATAATTCTG	GGGAAATTTG	TGATGCTTTT	ATGATGCAAG	ATAATCGTGT	120
GCGAGTATTG C.	ATCAAGAAA	ATAAGGGGGG	GGCAGCACAA	GCTAAAAATA	TGGGGATTAG	180
TGTAGCTAAG G	GAGAGTACA	TCACGATTGT	TGATTCAGAT	GATATCGTAA	AAGAAAATAT	240
GATTGAAACT C	TTTATCAGC	AAGTCCAAGA	AAAGGATGCA	GATGTTGTTA	TAGGGAATTA	300
CTATAATTAT G	ACGAAAGTG	ACGGGAATTT	TTATTTTTAT	GTAACAGGGC	AAGATTTTTG	360
CGTCGAAGAA T	TAGCTATAC	AAGAAATTAT	GAACCGTCAA	GCAGGAGATT	GGAAATTCAA	420
TAGCTCGGCC T	TTATATTGC	CGACATTTAA	GTTGATTAAA	AAAGAATTAT	TCAATGAAGT	480
TCACTTTTCA A	ATGGTCGCC	GCTTTGATGA	TGAAGCAACT	ATGCATCGCT	TTTATCTTTT	540
AGCCTCTAAA A	TCGTCTTTA	TAAACGATAA	TCTCTATCTG	TATAGAAGAC	GTTCAGGAAG	600
CATCATGAGA A	CGGAATTTG	ATCTTTCCTG	GGCAAGAGAT	ATTGTTGAAG	TGTTTTCTAA	660
GAAAATATCG G	ATTGTGTCT	TGGCTGGTTT	GGATGTCTCC	GTTCTGCGTA	TTCGATTTGT	720
CAATCTTTTA A	AAGATTATA	AGCAAACTTT	AGAATACCAT	CAATTAACAG	ATACTGAGGA	780
ATATAAAGAT A	ATTTGTTTCA	GATTAAAGTT	GTTTTTTGAT	GCAGAACAAA	GAAATGGTAA	840
AAGT						844

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 281 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:
- Cys Val Glu His Ile Leu Lys Gln Thr Tyr Gln Asn Ile Glu Ile Ile 1 10 15
- Leu Val Asp Asp Gly Ser Thr Asp Asn Ser Gly Glu Ile Cys Asp Ala 20 25 30
- Phe Met Met Gln Asp Asn Arg Val Arg Val Leu His Gln Glu Asn Lys 35 40 45
- Gly Gly Ala Ala Gln Ala Lys Asn Met Gly Ile Ser Val Ala Lys Gly 50 55 60
- Glu Tyr Ile Thr Ile Val Asp Ser Asp Asp Ile Val Lys Glu Asn Met 65 70 75 80
- Ile Glu Thr Leu Tyr Gln Gln Val Gln Glu Lys Asp Ala Asp Val Val 85 90 95
- Ile Gly Asn Tyr Tyr Asn Tyr Asp Glu Ser Asp Gly Asn Phe Tyr Phe 100 105 110
- Tyr Val Thr Gly Gln Asp Phe Cys Val Glu Glu Leu Ala Ile Gln Glu 115 120 125
- Ile Met Asn Arg Gln Ala Gly Asp Trp Lys Phe Asn Ser Ser Ala Phe 130 135 140
- Ile Leu Pro Thr Phe Lys Leu Ile Lys Lys Glu Leu Phe Asn Glu Val 145 150 155 160
- His Phe Ser Asn Gly Arg Arg Phe Asp Asp Glu Ala Thr Met His Arg 165 170 175
- Phe Tyr Leu Leu Ala Ser Lys Ile Val Phe Ile Asn Asp Asn Leu Tyr 180 185 190
- Leu Tyr Arg Arg Arg Ser Gly Ser Ile Met Arg Thr Glu Phe Asp Leu 195 200 205
- Ser Trp Ala Arg Asp Ile Val Glu Val Phe Ser Lys Lys Ile Ser Asp 210 220
- Cys Val Leu Ala Gly Leu Asp Val Ser Val Leu Arg Ile Arg Phe Val 225 230 235 240
- Asn Leu Leu Lys Asp Tyr Lys Gln Thr Leu Glu Tyr His Gln Leu Thr 245 250 255
- Asp Thr Glu Glu Tyr Lys Asp Ile Cys Phe Arg Leu Lys Leu Phe Phe 260 265 270
- Asp Ala Glu Gln Arg Asn Gly Lys Ser 275 280
- (2) INFORMATION FOR SEQ ID NO: 197:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 811 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

GTGTTTGGAT	AGCATTCAGA	ATCAGACGTA	TCAAAATTTT	GAGTGTTTAT	TAATCAATGA	60
TGGCTCTCCA	GATCATTCAT	CCAAAATATG	TGAAGAATTT	GTAGAGAAAG	ATTCTCGTTT	120
CAAATATTTT	GAGAAAGCAA	ACGGCGGTCT	TTCATCAGCT	CGTAACCTAG	GTATTGAATG	180
TTCGGGGGGG	GCGTACATTA	CTTTTGTAGA	CTCTGATGAT	TGGTTGGAAC	ATGATGCTTT	240
AGACCGATTA	TATGGTGCTT	TGAAAAAGGA	AAACGCAGAT	ATTAGTATCG	GGCGTTATAA	300
TTCTTATGAT	GAAACACGCT	ATGTGTATAT	GACTTATGTT	ACGGATCCAG	ATGATTCTCT	360
AGAAGTGATA	GAAGGTAAAG	CAATTATGGA	TAGGGAAGGT	GTCGAAGAAG	TCAGAAATGG	420
GAACTGGACT	GTAGCTGTCT	TGAAGTTATT	CAAGAGAGAG	TTACTACAAG	ATTTACCATT	480
TCCTATAGGA	AAAATTGCAG	AGGATACTTA	CTGGACATGG	AAGGTACTTC	TAAGAGCTTC	540
GAGGATAGTC	TATTTGAATC	GTTGTGTTTA	CTGGTACCGT	GTTGGTTTAT	CTGATACTTT	600
ATCGAATACA	TGGAGTGAAA	AGCGTATGTA	TGATGAAATT	GGGGCTAGGG	AAGAAAAGAT	660
AGCTATTTTA	GCAAGTTCAG	ACTATGACTT	GACCAATCAT	ATTTTGATTT	ATAAAAATAG	720
ATTACAAAGA	GTGATAGCAA	AATTAGAAGA	ACAAAATATG	CAGTTCACAG	AGATTTACAG	780
AAGAATGATG	GAAAAATTGT	CTTTACTTCC	G		*	811

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:
- Cys Leu Asp Ser Ile Gln Asn Gln Thr Tyr Gln Asn Phe Glu Cys Leu 1 10 15
- Leu Ile Asn Asp Gly Ser Pro Asp His Ser Ser Lys Ile Cys Glu Glu 20 25 30
- Phe Val Glu Lys Asp Ser Arg Phe Lys Tyr Phe Glu Lys Ala Asn Gly 35 40 45
- Gly Leu Ser Ser Ala Arg Asn Leu Gly Ile Glu Cys Ser Gly Gly Ala 50 60
- Tyr Ile Thr Phe Val Asp Ser Asp Asp Trp Leu Glu His Asp Ala Leu 65 70 75 80

Asp	Arg	Leu	Tyr	Gly 85	Ala	Leu	Lys	Lys	Glu 90	Asn	Ala	Asp	Ile	Ser 95	Ile
Gly	Arg	Tyr	Asn 100	Ser	Tyr	Asp	Glu	Thr 105	Arg	Tyr	Val	Tyr	Met 110	Thr	Tyr
Val	Thr	Asp 115	Pro	Asp	Asp	Ser	Leu 120	Glu	Val	Ile	Glu	Gly 125	Lys	Ala	Ile
Met	Asp 130	Arg	Ğlu	Gly	Val	Glu 135	Glu	Val	Arg	Asn	Gly 140	Asn	Trp	Thr	Val
Ala 145	Val	Leu	Lys	Leu	Phe 150	Lys	Arg	Glu	Leu	Leu 155	Gln	Asp	Leu	Pro	Phe 160
Pro	Ile	Gly	Lys	Ile 165	Ala	Glu	Asp	Thr	Tyr 170	Trp	Thr	Trp	Lys	Val 175	Leu
Leu	Arg	Ala	Ser 180	Arg	Ile	Val	Tyr	Leu 185	Asn	Arg	Cys	Val	Tyr 190	Trp	Tyr
Arg	Val	Gly 195	Leu	Ser	Asp	Thr	Leu 200	Ser	Asn	Thr	Trp	Ser 205	Glu	Lys	Arg
Met	Tyr 210	Asp	Glu	Ile	Gly	Ala 215	Arg	Glu	Glu	Lys	Ile 220	Ala	Ile	Leu	Ala
Ser 225	Ser	Asp	Tyr	Asp	Leu 230	Thr	Asn	His	Ile	Leu 235	Ile	Tyr	Lys	Asn	Arg 240
Leu	Gln	Arg	Val	Ile 245	Ala	Lys	Leu	Glu	Glu 250	Gln	Asn	Met	Gln	Phe 255	Thr
Glu	Ile	Tyr	Arg 260	Arg	Met	Met	Glu	Lys 265	Leu	Ser	Leu	Leu	Pro 270		

(2) INFORMATION FOR SEQ ID NO: 199:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2023 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

GTGCCTAGAT	AGTATTATTA	CTCAAACATA	TAAAAATATT	GAGATTGTTG	TCGTTAATGA	60
TGGTTCTACG.	GATGCTTCAG	GTGAAATTTG	TAAAGAATTT	TCAGAAATGG	ATCACCGAAT	120
TCTCTATATA	GAACAAGAAA	ATGCTGGTCT	TTCTGCCGCA	CGAAACACCG	GTCTGAATAA	180
TATGTCCGGA	AATTATGTGA	CCTTTGTGGA	CTCGGATGAT	TGGATTGAGC	AAGATTATGT	240
AGAAACTCTA	TATAAAAAAA	TAGTAGAGTA	TCAGGCTGAT	ATTGCAGTTG	GTAATTATTA	300
TTCTTTCAAC	GAAAGTGAAG	GAATGTTCTA	CTTTCATATA	TTGGGAGACT	CCTATTATGA	360
GAAAGTATAT	GATAATGTTT	CTATCTTTGA	GAACTTGTAT	GAAACTCAAG	AAATGAAGAG	420
TTTTGCTTTG	ATATCTGCTT	GGGGTAAACT	CTATAAGGCA	AGATTGTTTG	AGCAGTTGCG	480

AGAGTTTGAA ATGAAACAAA GGCTTTTAAA TCAGCTATCG AGACAAGAGG AAAGTGAAAA 840 GAAAGCCATT GTCCTCGCAG CAAACTATGG CTATGTAGAC CAAGTTTTAA CGACAATCAA 900 GTCTATTTGT TATCATAATC GTTCGATTCG TTTTTATCTG ATTCATAGCG ATTTTCCAAA 960 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTTT 1080 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 1140 AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TCTCTTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTG ATAATCGTT 1380 TGAACATAAA TGGTTGGAAT AGGTGGATCA GGCAGATCAG AGCATCTTG ATAAACAGTT 1440 TGCTGATTAT CAATTGCCTG AGGTCAGGA TTATCATCT ATTGTCATC ATAAACAGTT 1440 TGCGGATACA TGGACAGAAT TGGCGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1500 TCGGCTTGAA TGGACAGAAT TGGGCGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTCCATTAC AAAAACACTCA 1620 ACAAATTGAA GACAAGGAAC CTTTCACTTG TCTAATCTAT ACTCCATTAC AAAAGATCTCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATTCACTAT TTGGTAGAAT TCGAATAGA ATTGCTAAAACAGTT TTTAAATCAA TATTTAACGG 1800 AAATTCACTAT TTGGTAGAAT TCGAATAGA ATTGCTAAAACAGTT TTTAAATCAA TATTTAACGG 1800 AAATTCACTAT TTGGTAGAAT TCGAATAGA ATTGCTAAAACAGTT TTTAAAACAGT TATTTAACGG 1800 AAATTCACTAT TTGGTAGAAT TCGAATAGA ATTGCTAAAACAGT TATTTAACGG 1800 AAATTCACTAT TTGGTAGAAT TCGAATAGA ATTGCTAAAACAGT TATTTAACGG 1800 AAATTCACTAT TTGGTAGAAT TCGAATAGA ATTGGTAGAA ACCAGTCAAG TACTTTTAAGA 1800 AATTCACTAT TTGGTAGAATA TCGAATAGA ATTGGTAGAAA TTTTTAACGG TACTTTTAAGA 1800 AATTCACTAT TTGGTAGAAAA CAAAAAAAA TCTCAATAGA TACTTTTAAAACCA TTTTTAAAACCA TTTTTAAAACAA TTTTTAAAACAAAAAAAA	CTTTGACATA	GGTAAATTAG	GAGAAGATGG	TTACCTCAAT	CAAAAGGTAT	ATTTATTATC	540
TACGCTACTA GCTAATATGG GTTATCCTCT AGAGAAACAC TTGGCAGTT ATCGTCAGAT 720 GTTGGAAGTC AGTCTGCCCA ACGGTCAAGC TAGTGGTTTA TCTGACACAG CAACGTATAA 780 AGAGTTTGAA ATGAAACAAA GCTTTTAAA TCAGCTATCG AGACAAGAGG AAAGTGAAAA 840 GAAAGCCATT GTCCTCGCAG CAAACTATGG CTATGTAGAC CAAGTTTTAA CGACAATCAA 900 GTCTATTTGT TATCATAATC GTTCGATTCG TTTTTATCTG ATTCATAAGC ATTTTCCAAA 960 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTT 1080 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 1140 AGTTGTAACG AAAAATCTGG ATGATTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TCTCTTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATAGCTGTT 1320 TGAACATAAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATAGCTGTT 1440 TGCTGATTAT CAATTGCCTG AGGTCAGGA TTACAACAATT ATTTTCACT ATAAACAGTT 1440 TCGCGAAACCG TGGAAAGAT TGGACTTTGA TTATAATCAT ATTTCACT ATCTTTCCA 1500 TCGGAAACCG TGGAAAGAT TGGCGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 TCGGCTTGAA TGGACAGAAT TGGGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 ACAAATTGAA TGGACAGAAT TGGGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 ACAAATTGAG ACATTGGTC CATCACTTG TCTAATCTAT ACTCCTTCA AAAGAGTT 1440 AATAGTTACA TAGAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 AAAAATTGAG ACATTGGTC CACAGATGAA ATTTTACCT ATTTTACACG 1680 AAAAATTGAG ACATTGGTC CACAGATGAA ATTTTACCT ATTTTAACGG 1880 AAATTCACTAT TTGGTAGATG CTCAGATGAA ATTTTACCA ACCGTCAAG TATTTAACGG 1880 AAATTCACTAT TTGGTAGATG CTCAGATAGA ATTTTACCA ACCGTCAAG TATTTAACGG 1880 AAATTCACTAT TTGGTAGATG CTCAGAAAAAT TCCTGCACAA ACCAGTCAAA TATTTAACCGG 1880 AAATTCACTAT TTGGTAGAAG CAGAAAAAAA ATTGGTAGAA TCTTTAACAG TTTTAACCGG 1880 AAATTCACTAT TTGGAAAAAA CAGAAAAAAA TTGCTGTCA TCTTTAACAG TTTTAACCGG 1880 AAATTCACTAT TTGGAAAAAA CAGAAAAAA TTGCTGACA TTTTTAACGG 1880 AAATTCACTAT TTGGAAAAAA CAGAAAAAA TTGCTGACA TTTTTAACGG 1880 AATTTAATCAC TTGGAAAAAA CAGAAAAAA TTGCTGACA TTTTTAACG TTTTAACGG 1880 AAATTTAACCTA TTGGAAAAAA CAGAAAAAA TTGCTGTAA TTTTTAACG TTTTTAAC	AGAAAAGGTA	ATTTATTTAA	ATAAAAGTCT	TTATGCTTAT	CGGATTAGAA	AAGGTAGTTT	600
GTTGGAAGTC AGTCTCGCCA ACGGTCAAGC TAGTGGTTTA TCTGACACAG CAACGTATAA 7800 AGAGTTTGAA ATGAAACAAA GCCTTTTAAA TCAGCTATCG AGACAAGAGG AAAGTGAAAA 8400 GAAAGCCATT GTCCTCGCAG CAAACTATGG CTATGTAGAC CAAGTTTAA CGACAATCAA 9000 GTCTATTTGT TATCATAATC GTTCGATTCG TTTTTATCTG ATTCATAGCG ATTTCCAAA 9600 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 10200 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTT 10800 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 11400 AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 12000 TCTCTTTGGTA AACAATCCTG TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 13200 AACCAATGAA TGGCTGATA AGGTGGATCA GGCAGACTAA ATTGTCATCA ATAGCTTTT 13800 TGAACAATGAA TGGCTGATA AGGTGGATCA GGCAGACTAA ATTGTCATCA ATAACCAGTT 14400 TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCATCAT ATTGTCATC ATAAACAGTT 14400 TGCGGAAACCG TGGAAAGAT TGGCGCCCA AACCTATCGT GAAGGTTTGGT GGTACTATCA 15500 TCGGGAAACCG TGGAAAGAT TGGCGGCCCA AACCTATCGT GAAGGTTTGGT GGTACTATCA 15500 TCGGCTTGAA TGGACTGGAT TGGCGGCCCA AACCTATCGT GAAGGTTTGGT GGTACTATCA 15500 TCGGCTTGAA TGGACTGGAT TGGCGGCCCA AACCTATCGT GAAGGTTTGGT GGTACTATCA 15600 ACAAAATTGAG ACATTGGTTC AATCCTTGC TCTAATCTAT CATCCATTAC AAAGAATCTCA 16600 ACAAAATTGAG ACATTGGTTC AATCCTTGC TGTATATCAG TTTAAGATAG CAGCTAAGAGT 17400 AATAGTTAGA GACTTGGTTC AATCCTTGC TGTATATCAG TTTAAGATAG CAGCTAAGAGT 17400 AATTCACTAT TTGGTAGATG TCGAATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 18600 AAATTCACTAT TTGGTAGATG TCGAAAAGAA TCTCAGATCAA TTTGCTAACC TATTTTAACCG 18000 AAATTCACTAT TTGGTAGAAG CAGAAAGAAA TCTCCAGATCAA TTTGCTAACC TTTTTAACCG 18000 AAATTCACTAT TTGGTAGAAG CAGAAAGAAA TCTCCAGAAAA ACCAGTCAAG TACTTTTAGA 18600 AATTCACTAT TTGGTAGAAG CAGAAAGAAA TCTCCAGACAA ATTTGCTAAC TTTGGCAAGCC 19200 TATTCTTATCC TTTGAAAAAAA CTAAAAACCTA TGAAGTAGGT CAGGAGGCA ATCCTTTAAC TTTGGCAAGCC 19200 TATTCTTATCC TTTGAAAAAAA CTAAAAACCTA TGAAGTAGGT CAGGAGGCA ATGCTTTTAAC TTTGGCAAGCC 19200 TATTCTTATCC TTTGAAAAAAA CTAAAAACCTA TGAAGTAGGT CAGGAGGCA ATGCTTTTAA	ATCAAGAGTT	TGGACAGAAA	AGTGGATGCA	CGCTTTAGTT	GATGCTATGT	CTGAACGTAT	660
AGAGTTTGAA ATGAAACAAA GGCTTTTAAA TCAGCTATCG AGACAAGAGG AAAGTGAAAA 900 GAAAGCCATT GTCCTCGCAG CAAACTATGG CTATGTAGAC CAAGTTTAAA CGACAATCAA 900 GTCTATTTGT TATCATAATC GTTCGATTCG TTTTATCTG ATTCATAGCG ATTTTCCAAA 960 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTAC CAGTCTTTTT 1080 ACGCTATTCC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 1140 AGTTGTAACG AAAAATCTGG ATGGCTGATT TTTTGGTCAAA AGACAAGATT ATCCTTTGGC 1200 TCCTCTTGGTA AACAATCGTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCTGTATA AGGTGGATCA GGCAGAACTCA ATCCTTTGA ATAGCTGTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 TCACAAGAAT TGGTTGGAAAAA AGGTGAATCA AGGTGGATCA ATCCTTTTT 1380 TCGAACATAAA TGGTTGGAAT TGGACATCA TTATAATCAT ATTGTCATC ATAAACAGTT 1440 TCGGAAACCG TGGAAAGAT TGGGCCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA ATCCTTTCCA ATAAACAGTT TGGGACAAAA CCATCATTCA ATCTTTCTCA 1560 TCGGCTTGAA TGGACAGAAA CCATCATTCA CAACCAATCA ACAATCCA TGGACAGAAA CCATCATTCA CAACCAATCA ACAATCCA AAAAATCTCA 1660 ACAAATTGAC TGGACAGAAA CCATCATTCA CAACCATTACA AAAAGATCTCA 1660 ACAAATTGAC AAAAATCAG TTTTCACTTG TCTAATCTAT ACTCCATTAC AAAAGATCTCA 1660 ACAAATTGAC AAAAATCAG TCCAATAGA ACCAAATTGAA ACCAATTGA ATCCTTCCC TGATATCAA ACCACTATACA AAAAGATCTCA 1660 ACAAAATTGAG ACCATATTGA ATCCTTTCCC TGATATCCAA AACGTTCAA ACCATATTGA AAAAATTGAC AAAAATTGAC AAAAATTGAC AAAAATTGAC AACAATTGAA ACCAAATTGAA ACCAATTGAC AACCATTATCA AACAATTGAA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGA AACCAATTGAA AACCAATTGAA AACCAATTGAA AACCAATTGAA AACCAATTGAA AACCAATTGAA AACCAATATGA AACCAATATAA AACCAATATAAACCAAAAAA AACCAATAAAA AACCAATAATAAAAAAAA	TACGCTACTA	GCTAATATGG	GTTATCCTCT	AGAGAAACAC	TTGGCAGTTT	ATCGTCAGAT	720
GAAAGCCATT GTCCTCGCAG CAAACTATGG CTATGTAGAC CAAGTTTAA CGACAATCAA 900 GTCTATTTGT TATCATAATC GTTCGATTCG TTTTATCTG ATTCATAGCG ATTTTCCAAA 960 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTAC CAGTCTTTTT 1080 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 1140 AGTTGTAACG AAAAATCTGG ATGACTTAT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TCTCTTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTA ATGCCGGTGT 1440 TGCTGATTAT CAATTGCCTG AGGGTCAGAA TTATAATCAT ATTGTCATT 1380 TCGGGAAACCG TGGAAAGAT TGGCCTCGAAAAA TTAATTCACT ATCTTTCTCA 1500 TCGGGAACCG TGGAAAGAT TGGCGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTCCATTAC AAAGATCTCA 1620 ACAAATTGAG ACATTGGTC AATCCTTGC TGATATTCAC ACCATATAGA 1630 ACAAATTGAG ACATTGGTC AATCCTTGCC TGATATTCAC TATTAAACAGT 1740 AATAGTTAGT GATCGATTG TCGAAAAAAA ATTGCTTAGA ACCATATTGA 1630 ACAAATTGAG ACATTGGTT TGGCGACAAAA CCATCATTTA ACTCCATTAC AAAGATCTCA 1620 AATACTTACCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1630 AAAACTTACCA TTGGTAGATT TCGGAAGAAAA ATTCATCAC AACGTCACA TATTTAAACGG 1800 AAATCCATCT TTGGTAGATG TCGAAAAAAAT AATTGCTAAACAGT TATTTAAACGG 1800 AATTCACTAT TTGGTAGATG TCGAAAAAAATTAACAAAAAAAAAA	GTTGGAAGTC	AGTCTCGCCA	ACGGTCAAGC	TAGTGGTTTA	TCTGACACAG	CAACGTATAA	780
GTCTATTTGT TATCATAATC GTTCGATTCG TTTTTATCTG ATTCATAGCG ATTTTCCAAA 9600 TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTTT 10800 ACGCTATTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 11400 AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 12000 TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTTA ATGCCGGTGT 12600 TCTCTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAAT TAATTGATGT 13200 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGCTTTT 13800 TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCATGC ATTATCACT ATCTTTCCA 15000 TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTTGGT GGTACTATCA 15000 TCGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTCA AAAGATCTCA 16200 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 16800 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAAGATAG CAGCTAGAGT 17400 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTTCATTAAACGG 18000 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAAACGG 18000 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 18000 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 18000 AATTCACTAT TTGGTAGATG CAGAAGAAT TCTCGATCAA TTTGCTAATC TTTGGCAAGCC 19200 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 18000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 18000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 18000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 192000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 192000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 192000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 1920000 TATCTTATCC TTTGAAAATAA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTAGA 192000000000000000000000000000000000000	AGAGTTTGAA	ATGAAACAAA	GGCTTTTAAA	TCAGCTATCG	AGACAAGAGG	AAAGTGAAAA	840
TGAATGGATT AAGCAATTAA ATAAGCGCTT AGAGAAGTTT GACTCAGAAA TTATTAATTG 1020 TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTTT 1080 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 1140 AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTTA ATGCCGGTGT 1260 TCTCTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATCCTTTT 1380 TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAACAGTT 1440 TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCCTGCT ATTATTCACT ATCTTTCTCA 1500 TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATCA 1680 ACAAATTGAG ACATTGGTC AATCCTTGCC TGATATCTAG TTTAAGATAG CAGCATATGA 1680 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTACCA AACGTCAAT TATTTAACGG 1800 AATTCACTAT TTGGTAGAAG CAGAAGAAT TCTCGATCAA TTGCTAAGCTA TATTTAACGG 1800 AATTCACTAT TTGGTAGAAG CAGAAGAAT TCTCGATCAA TTGCTAACC TACTTTAGA 1860 TATTTAATCAT GGCGAAAAGA CAGAAGAAT TCTCGATCAA TTTGCTAAGC TACTTTTAGA 1860 TATTTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAACC TTTGGCAAGCC 1920 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGATAGC CAGGAGCAT ATCTTTTAGA 1860 TATCTTATCC TTTGAAAAATA CTAAAAACCTA TGAAGATGGT CAGGAGCAT ATCTTTTAGA 1860 TATCTTATCC TTTGAAAAATA CTAAAAACCTA TGAAGATAGC CAGGAGCAT ATCTTTTAGA 1860 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAAACCTA TGAAGAGCAT ATCTTTTAGA 1860 TATCTTATCC TTTGAAAAATA CTAAAAACCTA TGAAAACCTA TTGAAACCTA TTGGCAAGCC TTGCTTTAGA 1860	GAAAGCCATT	GTCCTCGCAG	CAAACTATGG	CTATGTAGAC	CAAGTTTTAA	CGACAATCAA	900
TCGGGTAACT TCTGAGCAAA TTTCATGTTA TAAATCGGAT ATTAGTTACA CAGTCTTTT 10800 ACGCTATTTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT 11400 AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTTA ATGCCGGTGT 12600 TCTCTTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAAT TAATTGATGT 13200 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATAAACAGTT 14400 TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCATGAT ATTGTCATC ATAAACAGTT 14400 TCGGAAACCG TGGAAAGAT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 15600 TCGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA 16200 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 16800 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATCCAG TATCAAGATAG CAGCTAAGAT 17400 AATAGTTAGT GATCGATTAG CTCAAGATGA AACGTGACTA TATTTAACGG 18800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA TACTTTTAAGAG 18800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAAG TATTTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 19200 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTGA 19800 TATCTTATCC TTTGAAAAATA CTAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTGA 19800	GTCTATTTGT	TATCATAATC	GTTCGATTCG	TTTTTATCTG	ATTCATAGCG	ATTTTCCAAA	960
ACGCTATTC ATAGCTGATT TCGTGCAAGA AGACAAGGCC CTCTACTTGG ACTGTGATCT AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTTA ATGCCGGTGT 1260 TCTCTTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGCTTTT 1380 TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAAACAGTT 1440 TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1500 TCGGGCTTGAA TGGACAGAAT TGGGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1620 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTTGCTAATC TTTGGCAAGCC 1920 TATCTTATCC TTTGAAAAAGA CAGAAGAAAT TCTCGATCAA TTTTGCTAATC TTTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980							1020
AGTTGTAACG AAAAATCTGG ATGACTTGTT TGCTACAGAC TTACAAGATT ATCCTTTGGC 1200 TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTTA ATGCCGGTGT 1260 TCTCTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAAT TAATTGATGT 1320 AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTGA ATATGCTTTT 1380 TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAACAGTT 1440 TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCCTGCT ATTATTCACT ATCTTTCTCA 1500 TCGGAAACCG TGGAAAGAT TGGGACAAAA CCATCTTTA CATCCATTAC AAAGATCTCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTCAAG TACTTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTTTGA 1980	TCGGGTAACT	TCTGAGCAAA	TTTCATGTTA	TAAATCGGAT	ATTAGTTACA	CAGTCTTTTT	1080
TGCTGTTAGA GATTTTGGGG GCAGAGCTTA TTTTGGTCAA GAAATCTTA ATGCCGGTGT TCTCTTGGTA AACAATGCTT TTTGGAAAAA AGAGAATATG ACCCAAAAAT TAATTGATGT AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGCTTTT TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATCC ATAAACAGTT TCGGAAACCG TGGAAAGATT TGGCGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA TCGGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTCA AAAGATCTCA CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATGA ACAAATTGAG ACATTGGTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTCAAG TACTTTAAGA AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAAGA TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTTGCTAATC TTGGCAAGCC TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1986 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1986	ACGCTATTTC	ATAGCTGATT	TCGTGCAAGA	AGACAAGGCC	CTCTACTTGG	ACTGTGATCT	1140
AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGATGT 132 CTGAACATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGCTTTT 138 CTGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAACAGTT 144 CTGGGAAACCG TGGAAAGAT TGGCGGCCCA AACCTATCGT ATTATCACT ATCTTCCA 150 CTGGGAAACCG TGGAAAGAT TGGGGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 162 CTGACTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 168 CTGACAATTGAG ACATTGGT AATCCTTGCC TGATATCAG TTTAAGATAG CAGCTAGAGT 174 CTGACATTAG AATCCTTG CTCAGATGAC AATTTAACGG 180 CTAATCCATT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 186 CTAATCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 186 CTAATCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 186 CTAATAATCAT GGCGAAAGAA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 192 CTAATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAATA CTAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 198 CTAATCTTATCC TTTGAAAAAAAAAAAAAAAAAAAAAA	AGTTGTAACG	AAAAATCTGG	ATGACTTGTT	TGCTACAGAC	TTACAAGATT	ATCCTTTGGC	1200
AACCAATGAA TGGCATGATA AGGTGGATCA GGCAGATCAG AGCATCTTGA ATATGCTTTT TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAACAGTT TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCCTGCT ATTATCACT ATCTTCTCA TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA TGGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATCAG TTTAAGATAG CAGCTAGAGT AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1986	TGCTGTTAGA	GATTTTGGGG	GCAGAGCTTA	TTTTGGTCAA	GAAATCTTTA	ATGCCGGTGT	1260
TGAACATAAA TGGTTGGAAT TGGACTTTGA TTATAATCAT ATTGTCATTC ATAAACAGTT TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCCTGCT ATTATCACT ATCTTTCTCA 1500 TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 TGGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1800 TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	TCTCTTGGTA	AACAATGCTT	TTTGGAAAAA	AGAGAATATG	ACCCAAAAAT	TAATTGATGT	1320
TGCTGATTAT CAATTGCCTG AGGGTCAGGA TTATCCTGCT ATTATCACT ATCTTTCTCA 1500 CTCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 CTCGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA 1620 CTCTTTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 CTCAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1800 CTATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 CTATTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTTATCC TTTGAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTTATCC TTTGAAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980 CTATCTTTATCC TTTGAAAACCTA TGAAGAACATA TGAAGAGAAAT TCTCGATCAA TTTGCTAATC TTTGCTAATC TTTGCTAATC TTTGAAAACCTA TGAAGAACATA TGAAGATAGA ATGCTGTTGA 1980 CTATCTTTATCATATCTATCTATCTATCTATCTATCTAT	AACCAATGAA	TGGCATGATA	AGGTGGATCA	GGCAGATCAG	AGCATCTTGA	ATATGCTTTT	1380
TCGGAAACCG TGGAAAGATT TGGCGGCCCA AACCTATCGT GAAGTTTGGT GGTACTATCA 1560 TGGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA 1620 CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	TGAACATAAA	TGGTTGGAAT	TGGACTTTGA	TTATAATCAT	ATTGTCATTC	ATAAACAGTT	1440
TGGGCTTGAA TGGACAGAAT TGGGACAAAA CCATCATTTA CATCCATTAC AAAGATCTCA CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC TATCTTATCC TTTGAAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	TGCTGATTAT	CAATTGCCTG	AGGGTCAGGA	TTATCCTGCT	ATTATTCACT	ATCTTTCTCA	1500
CATCTATCCA ATAAAGGAAC CTTTCACTTG TCTAATCTAT ACTGCCTCAG ACCATATTGA 1680 ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	TCGGAAACCG	TGGAAAGATT	TGGCGGCCCA	AACCTATCGT	GAAGTTTGGT	GGTACTATCA	1560
ACAAATTGAG ACATTGGTTC AATCCTTGCC TGATATTCAG TTTAAGATAG CAGCTAGAGT 1740 AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	TGGGCTTGAA	TGGACAGAAT	TGGGACAAAA	CCATCATTTA	CATCCATTAC	AAAGATCTCA	1620
AATAGTTAGT GATCGATTGG CTCAGATGAC AATTTATCCA AACGTGACTA TATTTAACGG 1800 AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA 1860 TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	CATCTATCCA	ATAAAGGAAC	CTTTCACTTG	TCTAATCTAT	ACTGCCTCAG	ACCATATTGA	1680
AATTCACTAT TTGGTAGATG TCGATAATGA ATTGGTAGAA ACCAGTCAAG TACTTTTAGA TATTAATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	ACAAATTGAG	ACATTGGTTC	AATCCTTGCC	TGATATTCAG	TTTAAGATAG	CAGCTAGAGT	1740
TATTATCAT GGCGAAAAGA CAGAAGAAAT TCTCGATCAA TTTGCTAATC TTGGCAAGCC 1920 TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	AATAGTTAGT	GATCGATTGG	CTCAGATGAC	AATTTATCCA	AACGTGACTA	TAŢTTAACGG	1800
TATCTTATCC TTTGAAAATA CTAAAACCTA TGAAGTAGGT CAGGAGGCAT ATGCTGTTGA 1980	AATTCACTAT	TTGGTAGATG	TCGATAATGA	ATTGGTAGAA	ACCAGTCAAG	TACTTTTAGA	1860
	TATTAATCAT	' GGCGAAAAGA	CAGAAGAAAT	TCTCGATCAA	TTTGCTAATC	TTGGCAAGCC	1920
CCAAGTTCAA GCAATGATTG AAAAATTGAG AGAAATAAGC AAA 2023	TATCTTATCC	TTTGAAAATA	. СТААААССТА	TGAAGTAGGT	CAGGAGGCAT	ATGCTGTTGA	1980
	CCAAGTTCAA	GCAATGATTG	; AAAAATTGAG	G AGAAATAAGC	AAA		2023

(2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 674 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

Cys Leu Asp Ser Ile Ile Thr Gln Thr Tyr Lys Asn Ile Glu Ile Val

Val Val Asn Asp Gly Ser Thr Asp Ala Ser Gly Glu Ile Cys Lys Glu 20 25 30

Phe Ser Glu Met Asp His Arg Ile Leu Tyr Ile Glu Gln Glu Asn Ala 35 40 45

Gly Leu Ser Ala Ala Arg Asn Thr Gly Leu Asn Asn Met Ser Gly Asn 50 55 60

Tyr Val Thr Phe Val Asp Ser Asp Asp Trp Ile Glu Gln Asp Tyr Val 65 70 75 80

Glu Thr Leu Tyr Lys Lys Ile Val Glu Tyr Gln Ala Asp Ile Ala Val 85 90 95

Gly Asn Tyr Tyr Ser Phe Asn Glu Ser Glu Gly Met Phe Tyr Phe His 100 105 110

Ile Leu Gly Asp Ser Tyr Tyr Glu Lys Val Tyr Asp Asn Val Ser Ile 115 120 125

Phe Glu Asn Leu Tyr Glu Thr Gln Glu Met Lys Ser Phe Ala Leu Ile 130 135 140

Ser Ala Trp Gly Lys Leu Tyr Lys Ala Arg Leu Phe Glu Gln Leu Arg 145 150 155 160

Phe Asp Ile Gly Lys Leu Gly Glu Asp Gly Tyr Leu Asn Gln Lys Val 165 170 175

Tyr Leu Leu Ser Glu Lys Val Ile Tyr Leu Asn Lys Ser Leu Tyr Ala 180 185 190

Tyr Arg Ile Arg Lys Gly Ser Leu Ser Arg Val Trp Thr Glu Lys Trp 195 200 205

Met His Ala Leu Val Asp Ala Met Ser Glu Arg Ile Thr Leu Leu Ala 210 215 220

Asn Met Gly Tyr Pro Leu Glu Lys His Leu Ala Val Tyr Arg Gln Met 225 230 235 240

Leu Glu Val Ser Leu Ala Asn Gly Gln Ala Ser Gly Leu Ser Asp Thr 245 250 255

Ala Thr Tyr Lys Glu Phe Glu Met Lys Gln Arg Leu Leu Asn Gln Leu 260 265 270

Ser Arg Gln Glu Glu Ser Glu Lys Lys Ala Ile Val Leu Ala Ala Asn 275 280 285

Tyr Gly Tyr Val Asp Gln Val Leu Thr Thr IIe Lys Ser Ile Cys Tyr

His Asn Arg Ser Ile Arg Phe Tyr Leu Ile His Ser Asp Phe Pro Asn 305 310 315 320

Glu Trp Ile Lys Gln Leu Asn Lys Arg Leu Glu Lys Phe Asp Ser Glu 325 330 335

Ile Ile Asn Cys Arg Val Thr Ser Glu Gln Ile Ser Cys Tyr Lys Ser Asp Ile Ser Tyr Thr Val Phe Leu Arg Tyr Phe Ile Ala Asp Phe Val 360 Gln Glu Asp Lys Ala Leu Tyr Leu Asp Cys Asp Leu Val Val Thr Lys 375 Asn Leu Asp Asp Leu Phe Ala Thr Asp Leu Gln Asp Tyr Pro Leu Ala Ala Val Arg Asp Phe Gly Gly Arg Ala Tyr Phe Gly Gln Glu Ile Phe Asn Ala Gly Val Leu Leu Val Asn Asn Ala Phe Trp Lys Lys Glu Asn 425 Met Thr Gln Lys Leu Ile Asp Val Thr Asn Glu Trp His Asp Lys Val 440 Asp Gln Ala Asp Gln Ser Ile Leu Asn Met Leu Phe Glu His Lys Trp 455 Leu Glu Leu Asp Phe Asp Tyr Asn His Ile Val Ile His Lys Gln Phe 475 Ala Asp Tyr Gln Leu Pro Glu Gly Gln Asp Tyr Pro Ala Ile Ile His 490 Tyr Leu Ser His Arg Lys Pro Trp Lys Asp Leu Ala Ala Gln Thr Tyr Arg Glu Val Trp Trp Tyr Tyr His Gly Leu Glu Trp Thr Glu Leu Gly 525 Gln Asn His His Leu His Pro Leu Gln Arg Ser His Ile Tyr Pro Ile Lys Glu Pro Phe Thr Cys Leu Ile Tyr Thr Ala Ser Asp His Ile Glu 545 550 560 Gln Ile Glu Thr Leu Val Gln Ser Leu Pro Asp Ile Gln Phe Lys Ile Ala Ala Arg Val Ile Val Ser Asp Arg Leu Ala Gln Met Thr Ile Tyr 585 Pro Asn Val Thr Ile Phe Asn Gly Ile His Tyr Leu Val Asp Val Asp 600 Asn Glu Leu Val Glu Thr Ser Gln Val Leu Leu Asp Ile Asn His Gly 615 620 Glu Lys Thr Glu Glu Ile Leu Asp Gln Phe Ala Asn Leu Gly Lys Pro 635 630 Ile Leu Ser Phe Glu Asn Thr Lys Thr Tyr Glu Val Gly Gln Glu Ala 645 Tyr Ala Val Asp Gln Val Gln Ala Met Ile Glu Lys Leu Arg Glu Ile 665

Ser Lys

(2) INFORMATION FOR SEQ ID NO: 201:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 910 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:

CATTCAGAAG CAGACCTA	ATC AAAATCTGGA	AATTATTCTT	GTTGATGATG	GTGCAACAGA	60
TGAAAGTGGT CGCTTGTC	TG ATTCAATCGC	TGAACAAGAT	GACAGGGTGT	CAGTGCTTCA	120
TAAAAAGAAC GAAGGAT	rgt CGCAAGCACG	AAATGATGGG	ATGAAGCAGG	CTCACGGGGA	180
TTATCTGATT TTTATTG	ACT CAGATGATTA	TATCCATCCA	GAAATGATTC	AGAGCTTATA	240
TGAGCAATTA GTTCAAG	AAG ATGCGGATGT	TTCGAGCTGT	GGTGTCATGA	ATGTCTATGC	300
TAATGATGAA AGCCCAC	AGT CAGCCAATCA	GGATGACTAT	TTTGTCTGTG	ATTCTCAAAC	360
ATTTCTAAAG GAATACC					420
CAAGAGACAG ATTGCAA					480
TTACCATTTT GATTTAA					540
TTACTATTTC CATAGAG					600
CTATATTGAT ATCTACC					660
AGAGGTCGCT TTTTTCA					720
AGATGATCAG TATAAAC					780
TGCCTTTGCT ATTTCTA			•		840
CCTATTCATA AATATTT					900
		•			910
AAAATTACAT					

(2) INFORMATION FOR SEQ ID NO:202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:
- Ile Gln Lys Gln Thr Tyr Gln Asn Leu Glu Ile Ile Leu Val Asp Asp
- Gly Ala Thr Asp Glu Ser Gly Arg Leu Cys Asp Ser Ile Ala Glu Gln

20 25 30

Asp Asp Arg Val Ser Val Leu His Lys Lys Asn Glu Gly Leu Ser Gln Ala Arg Asn Asp Gly Met Lys Gln Ala His Gly Asp Tyr Leu Ile Phe 50 60 Ile Asp Ser Asp Asp Tyr Ile His Pro Glu Met Ile Gln Ser Leu Tyr 65 70 75 80 Glu Gln Leu Val Gln Glu Asp Ala Asp Val Ser Ser Cys Gly Val Met Asn Val Tyr Ala Asn Asp Glu Ser Pro Gln Ser Ala Asn Gln Asp Asp Tyr Phe Val Cys Asp Ser Gln Thr Phe Leu Lys Glu Tyr Leu Ile Gly Glu Lys Ile Pro Gly Thr Ile Cys Asn Lys Leu Ile Lys Arg Gln Ile Ala Thr Ala Leu Ser Phe Pro Lys Gly Leu Ile Tyr Glu Asp Ala Tyr Tyr His Phe Asp Leu Ile Lys Leu Ala Lys Lys Tyr Val Val Asn Thr 165 170 175 Lys Pro Tyr Tyr Tyr Phe His Arg Gly Asp Ser Ile Thr Thr Lys 180 185 Tyr Ala Glu Lys Asp Leu Ala Tyr Ile Asp Ile Tyr Gln Lys Phe 195 200 205 Tyr Asn Glu Val Val Lys Asn Tyr Pro Asp Leu Lys Glu Val Ala Phe 210 220 Phe Arg Leu Ala Tyr Ala His Phe Phe Ile Leu Asp Lys Met Leu Leu Asp Asp Gln Tyr Lys Gln Phe Glu Ala Tyr Ser Gln Ile His Arg Phe 245 250 255 Leu Lys Gly His Ala Phe Ala Ile Ser Arg Asn Pro Ile Phe Arg Lys 265 Gly Arg Arg Ile Ser Ala Leu Ala Leu Phe Ile Asn Ile Ser Leu Tyr Arg Phe Leu Leu Lys Asn Ile Glu Lys Ser Lys Lys Leu His

(2) INFORMATION FOR SEQ ID NO: 203:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1972 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

•						
	AATCGTGTTC					60
TTCTCCGTTG	TATGGCAATG	ATAATGGTAA	CGGATTATGG	TGGGGGAACA	CATTGAAGGG	120
AGCATGGGAA	GCTATTCCTG	AAGATGTAAA	GCCATATGCA	GCGATTGAAC	TTCATCCTGC	180
AAAAGTCTGT	AAACCAACAA	GTTGTATTCC	ACGAGATACG	AAAGAATTGA	GAGAATGGTA	240
TGTCAAGATG	TTGGAGGAAG	CTCAAAGTCT	AAACATTCCA	GTTTTCTTGG	TTATTATGTC	300
GGCTGGAGAG	CGTAATACAG	TTCCTCCAGA	GTGGTTAGAT	GAACAATTCC	AAAAGTATAG	360
TGTGTTAAAA	GGTGTTTTAA	ATATTGAGAA	TTATTGGATT	TACAATAACC	AGTTAGCTCC	420
GCATAGTGCT	AAATATTTGG	AAGTTTGTGC	CAAATATGGA	GCGCATTTTA	TCTGGCATGA	480
TCATGAAAAA	TGGTTCTGGG	AAACTATTAT	GAATGATCCG	ACATTCTTTG	AAGCGAGTCA	540
					ATGATGCGGG	600
TACAGATTCT	ATCGTTAGTG	GATTTTGGTT	GAGTGGCTTA	TGTGATAACT	GGGGCTCATC	660
					CTGGAAGAGC	720
					AAATGATGAA	780
					CATTTATGAC	840
					GACATGCTAT	900
					TATTTTGGAA	960
TGGAGAAGGT	AGGATTAGTT	CATTAAACGG	ATTTTATCAA	GGACTTTATI	CGAATGATGA	1020
AACAATGCCT	TTATATATT T	ATGGGAGATA	TCATATTCTT	CCTGTAATAC	ATGAGAAAAT	1080
					AAAATAGTGA	1140
					ATGAAGGAGA	1200
					G CTAATATCAA	1260
					TATCGTTAGA	1320
					C ATATTTTATT	1380
					r TTGATGCATC	1440
					A ATTATTCCAT	
					C ATACTGGTCA	
					G AAAATTGGGA	
					G AGATGTCTAT	
					A ATGATGGTAA	
					A ATGGAGACCC	
					G TAACACACAC	
TAGGGCAGA	T AATCCCTCT	T GGTGGGAAG	T CGATTTGAA	A AAAATGGAT	A AAGTTGGGCT	1920

TGTTAAAATT TATAATCGCA CAGATGCTGA GACTCAACGT CTATCTAATT TT

(2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 657 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:
- Lys Ala Asp Asn Arg Val Gln Met Arg Thr Thr Ile Asn Asn Glu Ser
- Pro Leu Leu Ser Pro Leu Tyr Gly Asn Asp Asn Gly Asn Gly Leu 20 25 30
- Trp Trp Gly Asn Thr Leu Lys Gly Ala Trp Glu Ala Ile Pro Glu Asp 35 40 45
- Val Lys Pro Tyr Ala Ala Ile Glu Leu His Pro Ala Lys Val Cys Lys 50 60
- Pro Thr Ser Cys Ile Pro Arg Asp Thr Lys Glu Leu Arg Glu Trp Tyr 65 70 75 80
- Val Lys Met Leu Glu Glu Ala Gln Ser Leu Asn Ile Pro Val Phe Leu 85 90 95
- Val Ile Met Ser Ala Gly Glu Arg Asn Thr Val Pro Pro Glu Trp Leu 100 105 110
- Asp Glu Gln Phe Gln Lys Tyr Ser Val Leu Lys Gly Val Leu Asn Ile 115 120 125
- Glu Asn Tyr Trp Ile Tyr Asn Asn Gln Leu Ala Pro His Ser Ala Lys 130 135
- Tyr Leu Glu Val Cys Ala Lys Tyr Gly Ala His Phe Ile Trp His Asp 145 150 155 160
- His Glu Lys Trp Phe Trp Glu Thr Ile Met Asn Asp Pro Thr Phe Phe 165
- Glu Ala Ser Gln Lys Tyr His Lys Asn Leu Val Leu Ala Thr Lys Asn 180 185 190
- Thr Pro Ile Arg Asp Asp Ala Gly Thr Asp Ser Ile Val Ser Gly Phe 195 200 205
- Trp Leu Ser Gly Leu Cys Asp Asn Trp Gly Ser Ser Thr Asp Thr Trp 210 215 220
- Lys Trp Trp Glu Lys His Tyr Thr Asn Thr Phe Glu Thr Gly Arg Ala 225 230 235
- Arg Asp Met Arg Ser Tyr Ala Ser Glu Pro Glu Ser Met Ile Ala Met 245 250 255

Glu Met Met Asn Val Tyr Thr Gly Gly Gly Thr Val Tyr Asn Phe Glu Cys Ala Ala Tyr Thr Phe Met Thr Asn Asp Val Pro Thr Pro Ala Phe 280 Thr Lys Gly Ile Ile Pro Phe Phe Arg His Ala Ile Gln Asn Pro Ala Pro Ser Lys Glu Glu Val Val Asn Arg Thr Lys Ala Val Phe Trp Asn 310 Gly Glu Gly Arg Ile Ser Ser Leu Asn Gly Phe Tyr Gln Gly Leu Tyr Ser Asn Asp Glu Thr Met Pro Leu Tyr Asn Asn Gly Arg Tyr His Ile Leu Pro Val Ile His Glu Lys Ile Asp Lys Glu Lys Ile Ser Ser Ile Phe Pro Asn Ala Lys Ile Leu Thr Lys Asn Ser Glu Glu Leu Ser Ser Lys Val Asn Tyr Leu Asn Ser Leu Tyr Pro Lys Leu Tyr Glu Gly Asp Gly Tyr Ala Gln Arg Val Gly Asn Ser Trp Tyr Ile Tyr Asn Ser Asn Ala Asn Ile Asn Lys Asn Gln Gln Val Met Leu Pro Met Tyr Thr Asn Asn Thr Lys Ser Leu Ser Leu Asp Leu Thr Pro His Thr Tyr Ala Val Val Lys Glu Asn Pro Asn Asn Leu His Ile Leu Leu Asn Asn Tyr Arg 455 Thr Asp Lys Thr Ala Met Trp Ala Leu Ser Gly Asn Phe Asp Ala Ser 465 470 475 Lys Ser Trp Lys Lys Glu Glu Leu Glu Leu Ala Asn Trp Ile Ser Lys Asn Tyr Ser Ile Asn Pro Val Asp Asn Asp Phe Arg Thr Thr Leu Thr Leu Lys Gly His Thr Gly His Lys Pro Gln Ile Asn Ile Ser Gly Asp Lys Asn His Tyr Thr Tyr Thr Glu Asn Trp Asp Glu Asn Thr His 530 540 Val Tyr Thr Ile Thr Val Asn His Asn Gly Met Val Glu Met Ser Ile 555 550 Asn Thr Glu Gly Thr Gly Pro Val Ser Phe Pro Thr Pro Asp Lys Phe Asn Asp Gly Asn Leu Asn Ile Ala Tyr Ala Lys Pro Thr Thr Gln Ser 580 585 Ser Val Asp Tyr Asn Gly Asp Pro Asn Arg Ala Val Asp Gly Asn Arg

605 600 595 Asn Gly Asn Phe Asn Ser Gly Ser Val Thr His Thr Arg Ala Asp Asn 615 610

Pro Ser Trp Trp Glu Val Asp Leu Lys Lys Met Asp Lys Val Gly Leu 635 630

Val Lys Ile Tyr Asn Arg Thr Asp Ala Glu Thr Gln Arg Leu Ser Asn

Phe

(2) INFORMATION FOR SEQ ID NO: 205:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

CTGTGGCAAT	CAGTCAGCTG	CTTCCAAACA	GTCAGCTTCA	GGAACGATTG	AGGTGATTTC	60
ACGAGAAAAT	GGCTCTGGGA	CACGGGGTGC	CTTCACAGAA	ATCACAGGGA	TTCTCAAAAA	120
AGACGGTGAT	AAAAAAATTG	ACAACACTGC	CAAAACAGCT	GTGATTCAAA	ATAGTACAGA	180
AGGTGTTCTC	TCAGCAGTTC	AAGGGAATGC	TAATGCTATC	GGCTACATCT	CCTTGGGATC	240
TTTAACGAAA	TCTGTCAAGG	CTTTAGAGAT	TGATGGTGTC	AAGGCTAGTC	GAGACACAGT	300
TTTAGATGGT	GAATACCCTC	TTCAACGTCC	CTTCAACATT	GTTTGGTCTT	CTAATCTTTC	360
CAAGCTAGGT	CAAGATTTTA	TCAGCTTTAT	CCACTCCAAA	CAAGGTCAAC	AAGTGGTCAC	420
AGATAATAAA	TTTATTGAAG	CTAAAACCGA	AACCACGGAA	TATACAAGCC	AACACTTATC	480
AGGCAAGTTG	TCTGTTGTAG	GTTCCACTTC	AGTATCTTCT	TTAATGGAAA	AATTAGCAGA	540
AGCTTATAAA	AAAGAAAATC	CAGAAGTTAC	GATTGATATT	ACCTCTAATG	GGTCTTCAGC	600
AGGTATTACC	GCTGTTAAGG	AGAAAACCGC	TGATATTGGT	ATGGTTTCTA	GGGAATTAAC	660
TCCTGAAGAA	GGTAAGAGTC	TCACCCATGA	TGCTATTGCT	TTAGACGGTA	TTGCTGTTGT	720
GGTCAATAAT	GACAATAAGG	CAAGCCAAGT	CAGTATGGCT	GAACTTGCAG	ACGTTTTTAG	780
TGGCAAATTA	ACCACCTGGG	ACAAGATTAA	A			811

(2) INFORMATION FOR SEQ ID NO:206:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

Cys Gly Asn Gln Ser Ala Ala Ser Lys Gln Ser Ala Ser Gly Thr Ile
1 10 15

Glu Val Ile Ser Arg Glu Asn Gly Ser Gly Thr Arg Gly Ala Phe Thr 20 25 30

Glu Ile Thr Gly Ile Leu Lys Lys Asp Gly Asp Lys Lys Ile Asp Asn 35 40 45

Thr Ala Lys Thr Ala Val Ile Gln Asn Ser Thr Glu Gly Val Leu Ser 50 55 60

Ala Val Gln Gly Asn Ala Asn Ala Ile Gly Tyr Ile Ser Leu Gly Ser 65 70 75 80

Leu Thr Lys Ser Val Lys Ala Leu Glu Ile Asp Gly Val Lys Ala Ser 85 90 95

Arg Asp Thr Val Leu Asp Gly Glu Tyr Pro Leu Gln Arg Pro Phe Asn 100 105 110

Ile Val Trp Ser Ser Asn Leu Ser Lys Leu Gly Gln Asp Phe Ile Ser 115 120 125

Phe Ile His Ser Lys Gln Gly Gln Gln Val Val Thr Asp Asn Lys Phe 130 135

Ile Glu Ala Lys Thr Glu Thr Thr Glu Tyr Thr Ser Gln His Leu Ser 145 150 155 160

Gly Lys Leu Ser Val Val Gly Ser Thr Ser Val Ser Ser Leu Met Glu 165 170 175

Lys Leu Ala Glu Ala Tyr Lys Lys Glu Asn Pro Glu Val Thr Ile Asp 180 185 190

Ile Thr Ser Asn Gly Ser Ser Ala Gly Ile Thr Ala Val Lys Glu Lys

Thr Ala Asp Ile Gly Met Val Ser Arg Glu Leu Thr Pro Glu Glu Gly

Lys Ser Leu Thr His Asp Ala Ile Ala Leu Asp Gly Ile Ala Val Val 225 230 235 240

Val Asn Asn Asp Asn Lys Ala Ser Gln Val Ser Met Ala Glu Leu Ala

Asp Val Phe Ser Gly Lys Leu Thr Thr Trp Asp Lys Ile Lys 260 265 270

(2) INFORMATION FOR SEQ ID NO: 207:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi)	SEQUENCE DES	CRIPTION: S	SEQ ID NO: 2	207:		
TTGTCAACAA	CAACATGCTA	CTTCTGAGGG	GACGAATCAA	AGGCAAAGCA	GTTCAGCGAA	60
AGTTCCATGG	AAAGCTTCAT	ACACCAACCT	AAACAACCAG	GTAAGTACAG	AAGAGGTCAA	120
ATCTCTCTTA	TCAGCTCACT	TGGATCCAAA	TAGTGTTGAT	GCATTTTTTA	ATCTCGTTAA	180
TGACTATAAT	ACCATTGTCG	GCTCAACTGG	CTTATCAGGA	GATTTCACTT	CCTTTACTCA	240
CACCGAATAC	GATGTTGAGA	AAATCAGTCA	TCTCTGGAAT	CAAAAGAAGG	GCGATTTTGT	300
TGGGACCAAC	TGCCGTATCA	ATAGTTATTG	TCTTTTGAAA	AATTCAGTCA	CCATTCCAAA	360
GCTTGAAAAG	AATGACCAGT	TGCTTTTCCT	AGATAATGAT	GCGATTGATA	AAGGAAAGGT	420
CTTTGATTCA	CAAGATAAGG	AAGAGTTTGA	TATTCTATTT	TCGAGAGTTC	CAACTGAGTC	480
AACTACAGAT	GTCAAGGTTC	ACGCTGAAAA	GATGGAAGCA	TTCTTCTCAC	AATTTCAATT	540
CAATGAAAAA	GCTCGAATGC	TGTCTGTAGT	CTTGCACGAC	AATTTGGATG	GCGAGTATCT	600
GTTTGTAGGC	CACGTTGGGG	TCTTAGTACC	TGCTGATGAC	GGTTTCTTAT	TTGTAGAGAA	660
ATTGACTTTC	GAAGAGCCCT	ACCAAGCGAT	TAAATTTGCT	AGTAAGGAAG	ATTGCTACAA	720
GTATTTGGGC	ACCAAGTATG	CGGATTATAC	AGGCGAGGGA	CTGGCTAAGC	CTTTTATCAT	780
GGATAATGAT	AAGTGGGTTA	AACTT				809

(2) INFORMATION FOR SEQ ID NO:208:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 268 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:
- Cys Gln Gln Gln His Ala Thr Ser Glu Gly Thr Asn Gln Arg Gln Ser
- Ser Ser Ala Lys Val Pro Trp Lys Ala Ser Tyr Thr Asn Leu Asn Asn 20 25 30
- Gln Val Ser Thr Glu Glu Val Lys Ser Leu Leu Ser Ala His Leu Asp
- Pro Asn Ser Val Asp Ala Phe Phe Asn Leu Val Asn Asp Tyr Asn Thr
- Ile Val Gly Ser Thr Gly Leu Ser Gly Asp Phe Thr Ser Phe Thr His 65 70 75 80
- Thr Glu Tyr Asp Val Glu Lys Ile Ser His Leu Trp Asn Gln Lys Lys
- Gly Asp Phe Val Gly Thr Asn Cys Arg Ile Asn Ser Tyr Cys Leu Leu 100

Lys	Asn	Ser 115	Val	Thr	Ile	Pro	Lys 120	Leu	Glu	Lys	Asn	Asp 125	Gln	Leu	Leu
Phe	Leu 130	Asp	Asn	Asp	Ala	Ile 135	Asp	Lys	Gly	Lys	Val 140	Phe	Asp	Ser	Gln
Asp 145	Lys	Glu	Glu	Phe	Asp 150	Ile	Leu	Phe	Ser	Arg 155	Val	Pro	Thr	Glu	Ser 160
Thr	Thr	Asp	Val	Lys 165	Val	His	Ala	Glu	Lys 170	Met	Glu	Ala	Phe	Phe 175	Ser
Gln	Phe	Gln	Phe 180	Asn	Glu	Lys	Ala	Arg 185	Met	Leu	Ser	Val	Val 190	Leu	His
Asp	Asn	Leu 195	Asp	Gly	Glu	Tyr	Leu 200	Phe	Val	Gly	His	Val 205	Gly	Val	Leu
Val	Pro 210	Ala	Asp	Asp	Gly	Phe 215	Leu	Phe	Val	Glu	Lys 220	Leu	Thr	Phe	Glu
Glu 225	Pro	Tyr	Gln	Ala	Ile 230	Lys	Phe	Ala	Ser	Lys 235	Glu	Asp	Суѕ	Tyr	Lys 240
Tyr	Leu	Gly	Thr	Lys 245	Tyr	Ala	Asp	Tyr	Thr 250	Gly	Glu	Gly	Leu	Ala 255	Lys
Pro	Phe	Ile	Met		Asn			Trp 265	Val	Lys	Leu				

(2) INFORMATION FOR SEQ ID NO: 209:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 508 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:

TTGTTCAGGC	AAGTCCGTGA	CTAGTGAACA	CCAAACGAAA	GATGAAATGA	AGACGGAGCA	60
GACAGCTAGT	AAAACAAGCG	CAGCTAAAGG	GAAAGAGGTG	GCTGATTTTG	AATTGATGGG	120
AGTAGATGGC	AAGACCTACC	GTTTATCTGA	TTACAAGGGC	AAGAAAGTCT	ATCTCAAATT	180
CTGGGCTTCT	TGGTGTTCCA	TCTGTCTGGC	TAGTCTTCCA	GATACGGATG	AGATTGCTAA	240
AGAAGCTGGT	GATGACTATG	TGGTCTTGAC	AGTAGTGTCA	CCAGGACATA	AGGGAGAGCA	300
ATCTGAAGCG	GACTTTAAGA	ATTGGTATAA	GGGATTGGAT	TATAAAAATC	TCCCAGTCCT	360
AGTTGACCCA	TCAGGCAAAC	TTTTGGAAAC	TTATGGTGTC	CGTTCTTACC	CAACCCAAGC	420
CTTTATAGAC	AAAGAAGGCA	AGCTGGTCAA	AACACATCCA	GGATTCATGG	AAAAAGATGC	480
AATTTTGCAA	ACTTTGAAGG	AATTAGCC				508

(2) INFORMATION FOR SEQ ID NO:210:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 169 amino acids

	(B) (C) (D)	TYP STR TOP	ANDE	DNES	aci S: s inea	ingl	е									
(ii)	MOLE	ECULE	TYF	E: p	rote	in										
(xi)	SEQU	JENCE	DES	CRIF	MOIT	: SE	Q II	NO:	210:							
Cys 1	Ser	Gly	Lys	Ser 5	Val	Thr	Ser	Glu	His 10	Gln	Thr	Lys	Asp	Glu 15	Met	
Lys	Thr	Glu	Gln 20	Thr	Ala	Ser	Lys	Thr 25	Ser	Ala	Ala	Lys	Gly 30	Lys	Glu	
Va:	Ala	Asp 35	Phe	.Glu	Leu	Met	Gly 40	Val	Asp	Gly	Lys	Thr 45	Tyr	Arg	Leu	
Sei	Asp 50	Tyr	Lys	Gly	Lys	Lys 55	Val	Tyr	Leu	Lys	Phe 60	Trp	Ala	Ser	Trp	
Су: 65	s Ser	Ile	Cys	Leu	Ala 70	Ser	Leu	Pro	Asp	Thr 75	Asp	Glu	Ile	Ala	Lys 80	
Glı	ı Ala	Gly	Asp	Asp 85	Tyr	Val	Val	Leu	Thr 90	Val	Val	Ser	Pro	Gly 95	His	
Ly	s Gly	Glu	Gln 100	Ser	Glu	Ala	Asp	Phe 105	Lys	Asn	Trp	Tyr	Lys 110	Gly	Leu	
As	o Tyr	Lys 115	Asn	Leu	Pro	Val	Leu 120	Val	Asp	Pro	Ser	Gly 125	Lys	Leu	Leu	
G1	u Thr 130		Gly	Val	Arg	Ser 135	Tyr	Pro	Thr	Gln	Ala 140	Phe	Ile	Asp	Lys	
G1 14	u Gly 5	Lys	Leu	Val	Lys 150	Thr	His	Pro	Gly	Phe 155	Met	Glu	Lys	Asp	Ala 160	
Il	e Leu	Gln	Thr	Leu 165		Glu	Leu	Ala								-
(2) INF	ORMAT	NOI	FOR	SEQ	ID N	0: 2	11:									
(i	(A (E (C	QUENC () LE (3) TY (5) ST (6) TC	NGTH PE: RAND	: 99 nucl EDNE	4 ba eic SS:	se p acid doub	airs				·					
(×	i) SE	EQUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	o: 2	11:						
CTCGCAA	ATT (SAAAA	'GGCG	G CA	GTTA	.GCCA	AGG	AGGA	AAA	GCAG	TGAA	AA A	AACA	GAAA	T	60
TAGTAAA	GAC (GCAGA	CTTG	C AC	GAAA	ATTT.	TCT	'AGC'I	'GGA	GGTT	GTTT	CT G	GGGA	GTGG	A	120
GGAATAT	TTC :	CAC	TGTT	rc cc	GGGG	TGAC	GGA	TGCC	GTT	TCAG	GCTA	TG C	raaa:	GGTA	.G	180

AGGAGAAACA ACCAAGTACG AATTGATTAA CCAAACAGGT CATGCAGAAA CCGTCCATGT

CACCTATGAT GCCAAGCAAA TTTCTCTCAA GGAAATCCTG CTTCACTATT TCCGCATTAT

240

300

			max mamaaaa	A C C C A C M A C C	CTACTCTT	360
CAATCCAACC	AGCAAAAATA	AACAAGGAAA	TGATGTGGGG	ACCCAGIACC	GINCIGGIGI	500
TTATTACACA	GATGACAAGG	ATTTGGAAGT	GATTAACCAA	GTCTTTGATG	AGGTGGCTAA	420
GAAATACGAT	CAACCTCTAG	CAGTTGAAAA	GGAAAACTTG	AAGAATTTTG	TGGTGGCTGA	480
GGATTACCAT	CAAGACTATC	TCAAGAAAAA	TCCAAATGGC	TACTGCCATA	TCAATGTTAA	540
TCAGGCGGCC	TATCCTGTCA	TTGATGCCAG	CAAATATCCA	AAACCAAGTG	ATGAGGAATT	600
GAAAAAGACC	CTGTCACCTG	AGGAGTATGC	AGTTACCCAG	GAAAATCAAA	CAGAACGAGC	660
TTTCTCAAAC	CGTTACTGGG	ATAAATTTGA	ATCCGGTATC	TATGTGGATA	TAGCAACTGG	720
GGAACCTCTC	TTTTCATCAA	AAGACAAATT	TGAGTCTGGT	TGTGGCTGGC	CTAGTTTTAC	780
CCAACCCATC	AGTCCAGATG	TTGTCACCTA	CAAGGAAGAT	AAGTCCTACA	ATATGACGCG	840
TATGGAAGTG	CGGAGCCGAG	TAGGAGATTC	TCACCTTGGG	CATGTCTTTA	CGGATGGTCC	900
ACAGGACAAG	GGCGGCTTAC	GTTACTGTAT	CAATAGCCTC	TCTATCCGCT	TTATTCCCAA	960
AGACCAAATG	GAAGAAAAAG	GTACGCTTAT	TTAC			994

(2) INFORMATION FOR SEQ ID NO:212:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 331 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:
- Ser Gln Ile Glu Lys Ala Ala Val Ser Gln Gly Gly Lys Ala Val Lys 1 5 10 15
- Lys Thr Glu Ile Ser Lys Asp Ala Asp Leu His Glu Ile Tyr Leu Ala 20 25 30
- Gly Gly Cys Phe Trp Gly Val Glu Glu Tyr Phe Ser Arg Val Pro Gly 35 40 45
- Val Thr Asp Ala Val Ser Gly Tyr Ala Asn Gly Arg Gly Glu Thr Thr 50 60
- Lys Tyr Glu Leu Ile Asn Gln Thr Gly His Ala Glu Thr Val His Val 65 70 75 80
- Thr Tyr Asp Ala Lys Gln Ile Ser Leu Lys Glu Ile Leu Leu His Tyr 85 90 95
- Phe Arg Ile Ile Asn Pro Thr Ser Lys Asn Lys Gln Gly Asn Asp Val
- Gly Thr Gln Tyr Arg Thr Gly Val Tyr Tyr Thr Asp Asp Lys Asp Leu 115 120 125
- Glu Val Ile Asn Gln Val Phe Asp Glu Val Ala Lys Lys Tyr Asp Gln 130 135

Pro 145	Leu	Ala	Val	Glu	Lys 150	Glu	Asn	Leu	Lys	Asn 155	Phe	Val	Val	Ala	Glu 160
Asp	Tyr	His	Gln	Asp 165	Tyr	Leu	Lys	Lys	Asn 170	Pro	Asn	Gly	Tyr	Cys 175	His
Ile	Asn	Val	Asn 180	Gln	Ala	Ala	Tyr	Pro 185	Val	Ile	Asp	Ala	Ser 190	Lys	Tyr
Pro	Lys	Pro 195	Ser	Asp	Glu	Glu	Leu 200	Lys	Lys	Thr	Leu	Ser 205	Pro	Glu	Glu
Tyr	Ala 210	Val	Thr	Gln	Glu	Asn 215	Gln	Thr	Glu	Arg	Ala 220	Phe	Ser	Asn	Arg
Tyr 225	Trp	Asp	Lys	Phe	Glu 230	Ser	Gly	Ile	Tyr	Val 235	Asp	Ile	Ala	Thr	Gly 240
Glu	Pro	Ļeu	Phe	Ser 245	Ser	Lys	Asp	Lys	Phe 250	Glu	Ser	Gly	Cys	Gly 255	Trp
Pro	Ser	Phe	Thr 260	Gln	Pro	Ile	Ser	Pro 265	Asp	Val	Val	Thr	Tyr 270	Lys	Glu
Asp	Lys	Ser 275	Tyr	Asn	Met	Thr	Arg 280	Met	Glu	Val	Arg	Ser 285	Arg	Val	Gly
Asp	Ser 290	His	Leu	Gly	His	Val 295	Phe	Thr	Asp	Gly	Pro 300	Gln	Asp	Lys	Gly
Gly 305	Leu	Arg	Tyr	Cys	Ile 310	Asn	Ser	Leu	Ser	Ile 315	Arg	Phe	Ile	Pro	Lys 320
Asp	Gln	Met	Glu	Glu 325	Lys	Gly	Thr	Leu	Ile 330	Tyr				١	

(2) INFORMATION FOR SEQ ID NO: 213:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 625 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

TTGTCAGTCA	GGTTCTAATG	GTTCTCAGTC	TGCTGTGGAT	GCTATCAAAC	AAAAAGGGAA	60
ATTAGTTGTG	GCAACCAGTC	CTGACTATGC	ACCCTTTGAA	TTTCAATCAT	TGGTTGATGG	120
AAAGAACCAG	GTAGTCGGTG	CAGACATCGA	CATGGCTCAG	GCTATCGCTG	ATGAACTTGG	180
GGTTAAGTTG	GAAATCTCAA	GCATGAGTTT	TGACAATGTT	TTGACCAGTC	TTCAAACTGG	240
TAAGGCTGAC	CTAGCAGTTG	CAGGAATTAG	TGCTACTGAC	GAGAGAAAAG	AAGTCTTTGA	300
TTTTTCAATC	CCATACTATG	AAAACAAGAT	TAGTTTCTTG	GTTCGTAAGG	CTGATGTGGA	360
AAAATACAAG	GATTTAACTA	GCCTAGAAAG	TGCTAATATT	GCAGCCCAAA	AAGGGACTGT	420
тссасаатса	ATGGTCAAGG	AACAATTGCC	AAAAGTTCAA	TTAACTTCCC	TAACTAATAT	480

GGGTGAAGC	A GT	CAAT	GAAT	TGC	AGGC	rgg :	AAAA	ATAG.	AT G	CTGT	rcat:	A TG	GATG	AGCC	
TGTTGCACT	T AG	TTAT	GCTG	CTA	AAAA	CGC '	rggC	TTAG	CT G	rcgc:	AACT	G TC.	AGCT'	rgaa	
GATGAAGGA	.c gg	CGAC	GCCA	ATG	cc			•							
(2) INFOR	ITAM	ON F	OR S	EQ I	D NO	:214	:								
(i)	(A) (B) (C)	ENCE LEN TYP STR TOP	GTH: E: a ANDE	208 mino DNES	ami aci S: s	no a d ingl	cids								
(ii)	MOLE	CULE	TYP	E: p	rote	in									
(xi)	SEQU	JENCE	DES	CRIP	TION	: SE	QID	NO:	214:						
Cys 1	Gln	Ser	Gly	Ser 5	Asn	Gly	Ser	Gln	Ser 10	Ala	Val	Asp	Ala	Ile 15	Lys
Gln	Lys	Gly	Lys 20	Leu	Val	Val	Ala	Thr 25	Ser	Pro	Asp	Tyr	Ala 30	Pro	Phe
Glu	Phe	Gln 35	Ser	Leu	Val	Asp	Gly 40	Lys	Asn ,	Gln	Val	Val 45	Gly	Ala	Asp
Ile	Asp 50	Met	Ala	Gln	Ala	Ile 55	Ala	Asp	Glu	Leu	Gly 60	Val	Lys	Leu	Glu
Ile 65	Ser	Ser	Met	Ser	Phe 70	Asp	Asn	Val	Leu	Thr 75	Ser	Leu	Gln	Thr	Gly 80
Lys	Ala	Asp	Leu	Ala 85	Val	Ala	Gly	Ile	Ser 90	Ala	Thr	Asp	Glu	Arg 95	Lys
Glu	Val	Phe	Asp 100	Phe	Ser	Ile	Pro	Tyr 105	Tyr	Glu	Asn	Lys	Ile 110	Ser	Phe
Leu	Val	Arg 115	Lys	Ala	Asp	Val	Glu 120	Lys	Tyr	Lys	Asp	Leu 125	Thr	Ser	Leu .
Glu	Ser 130	Ala	Asn	Ile	Ala	Ala 135	Gln	Lys	Gly	Thr	Val 140	Pro	Glu	Ser	Met
Val 145		Glu	Gln	Leu	Pro 150	Lys	Val	Gln	Leu	Thr 155	Ser	Leu	Thr	Asn	Met 160
Gly	Glu	Ala	Val	Asn 165		Leu	Gln	Ala	Gly 170	Lys	Ile	Asp	Ala	Val 175	His
Met	. Asp	Glu	Pro 180		Ala	Leu	Ser	Туг 185	Ala	Ala	Lys	Asn	Ala 190	Gly	Leu
Ala	. Val	Ala 195		Val	Ser	Leu	Lys 200	Met	Lys	Asp	Gly	Asp 205	Ala	Asn	Ala
(2) INFO	RMAT	ON	FOR	SEQ	ID N	0: 2	15:								

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3022 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEOUENCE DESCRIPTION: SEC) ID	NO:	215:
--------------------------------	------	-----	------

(71)	DOODINGS SEE		~			
GGAAACTTCA	CAGGATTTTA	AAGAGAAGAA	AACAGCAGTC	ATTAAGGAAA	AAGAAGTTGT	60
TAGTAAAAAT	CCTGTGATAG	ACAATAACAC	TAGCAATGAA	GAAGCAAAAA	TCAAAGAAGA	120
AAATTCCAAT	AAATCCCAAG	GAGATTATAC	GGACTCATTT	GTGAATAAAA	ACACAGAAAA	180
TCCCAAAAAA	GAAGATAAAG	TTGTCTATAT	TGCTGAATTT	AAAGATAAAG	AATCTGGAGA	240
AAAAGCAATC	AAGGAACTAT	CCAGTCTTAA	GAATACAAAA	GTTTTATATA	CTTATGATAG	300
AATTTTTAAC	GGTAGTGCCA	TAGAAACAAC	TCCAGATAAC	TTGGACAAAA	TTAAACAAAT	360
AGAAGGTATT	TCATCGGTTG	AAAGGGCACA	AAAAGTCCAA	CCCATGATGA	ATCATGCCAG	420
AAAGGAAATT	GGAGTTGAGG	AAGCTATTGA	TTACCTAAAG	TCTATCAATG	CTCCGTTTGG	480
GAAAAATTTT	GATGGTAGAG	GTATGGTCAT	TTCAAATATC	GATACTGGAA	CAGATTATAG	540
ACATAAGGCT	ATGAGAATCG	ATGATGATGC	CAAAGCCTCA	ATGAGATTTA	AAAAAGAAGA	600
CTTAAAAGGC	ACTGATAAAA	ATTATTGGTT	GAGTGATAAA	ATCCCTCATG	CGTTCAATTA	660
TTATAATGGT	GGCAAAATCA	CTGTAGAAAA	ATATGATGAT	GGAAGGGATT	ATTTTGACCC	720
ACATGGGATG	CATATTGCAG	GGATTCTTGC	TGGAAATGAT	ACTGAACAAG	ACATCAAAAA	780
CTTTAACGGC	ATAGATGGAA	TTGCACCTAA	TGCACAAATT	TTCTCTTACA	AAATGTATTC	840
TGACGCAGGA	TCTGGGTTTG	CGGGTGATGA	AACAATGTTT	CATGCTATTG	AAGATTCTAT	900
CAAACACAAC	GTTGATGTTG	TTTCGGTATC	ATCTGGTTTT	ACAGGAACAG	GTCTTGTAGG	960
TGAGAAATAT	TGGCAAGCTA	TTCGGGCATT	AAGAAAAGCA	GGCATTCCAA	TGGTTGTCGC	1020
TACGGGTAAC	TATGCGACTT	CTGCTTCAAG	TTCTTCATGG	GATTTAGTAG	CAAATAATCA	1080
TCTGAAAATG	ACCGACACTG	GAAATGTAAC	ACGAACTGCA	GCACATGAAG	ATGCGATAGC	1140
GGTCGCTTCT	GCTAAAAATC	AAACAGTTGA	GTTTGATAAA	GTTAACATAG	GTGGAGAAAG	1200
TTTTAAATAC	AGAAATATAG	GGGCCTTTTT	CGATAAGAGT	AAAATCACAA	. CAAATGAAGA	1260
TGGAACAAAA	GCTCCTAGTA	AATTAAAATT	TGTATATATA	GGCAAGGGGC	AAGACCAAGA	1320
TTTGATAGGT	TTGGATCTTA	GGGGCAAAAT	TGCAGTAATG	GATAGAATTT	' ATACAAAGGA	1380
TTTAAAAAAT	GCTTTTAAAA	AAGCTATGGA	TAAGGGTGCA	CGCGCCATTA	TGGTTGTAAA	1440
TACTGTAAAT	TACTACAATA	GAGATAATTO	GACAGAGCTT	CCAGCTATGO	GATATGAAGC	1500
GGATGAAGGT	ACTAAAAGTO	: AAGTGTTTTC	AATTTCAGGA	GATGATGGT	TAAAGCTATG	1560
GAACATGATT	AATCCTGATA	AAAAAACTGA	AGTCAAAAGA	AATAATAAA	AAGATTTTAA	1620
AGATAAATTO	GAGCAATACT	T ATCCAATTG	A TATGGAAAGT	TTTAATTCC	ACAAACCGAA	1680
TGTAGGTGAC	GAAAAAGAGA	TTGACTTTA	A GTTTGCACCI	GACACAGACA	AAGAACTCTA	1740

					ma ca mmma cm	1800
		CAGCAGGATC				
TTTAAAACCC	GATGTTTCAG	CACCTGGTAA	AAATATTAAA	TCCACGCTTA	ATGTTATTAA	1860
TGGCAAATCA	ACTTATGGCT	ATATGTCAGG	AACTAGTATG	GCGACTCCAA	TCGTGGCAGC	1920
TTCTACTGTT	TTGATTAGAC	CGAAATTAAA	GGAAATGCTT	GAAAGACCTG	TATTGAAAAA	1980
TCTTAAGGGA	GATGACAAAA	TAGATCTTAC	AAGTCTTACA	AAAATTGCCC	TACAAAATAC	2040
TGCGCGACCT	ATGATGGATG	CAACTTCTTG	GAAAGAAAAA	AGTCAATACT	TTGCATCACC	2100
TAGACAACAG	GGAGCAGGCC	TAATTAATGT	GGCCAATGCT	TTGAGAAATG	AAGTTGTAGC	2160
AACTTTCAAA	AACACTGATT	CTAAAGGTTT	GGTAAACTCA	TATGGTTCCA	TTTCTCTTAA	2220
AGAAATAAAA	GGTGATAAAA	AATACTTTAC	AATCAAGCTT	CACAATACAT	CAAACAGACC	2280
TTTGACTTTT	AAAGTTTCAG	CATCAGCGAT	AACTACAGAT	TCTCTAACTG	ACAGATTAAA	2340
ACTTGATGAA	ACATATAAAG	ATGAAAAATC	TCCAGATGGT	AAGCAAATTG	TTCCAGAAAT	2400
TCACCCAGAA	AAAGTCAAAG	GAGCAAATAT	CACATTTGAG	CATGATACTT	TCACTATAGG	2460
CGCAAATTCT	AGCTTTGATT	TGAATGCGGT	TATAAATGTT	GGAGAGGCCA	AAAACAAAAA	2520
TAAATTTGTA	GAATCATTTA	TTCATTTTGA	GTCAGTGGAA	GCGATGGAAG	CTCTAAACTC	2580
CAGCGGGAAG	: ААААТАААСТ	TCCAACCTTC	TTTGTCGATG	CCTCTAATGG	GATTTGCTGG	2640
GAATTGGAAC	CACGAACCAA	TCCTTGATAA	ATGGGCTTGG	GAAGAAGGGT	CAAGATCAAA	2700
AACACTGGGA	GGTTATGATG	ATGATGGTAA	ACCGAAAATT	CCAGGAACCT	TAAATAAGGG	2760
AATTGGTGGA	GAACATGGTA	TAGATAAATT	TAATCCAGCA	GGAGTTATAC	AAAATAGAAA	2820
AGATAAAAAT	C ACAACATCCC	TGGATCAAAA	TCCAGAATTA	TTTGCTTTCA	ATAACGAAGG	2880
GATCAACGCT	CCATCATCAA	GTGGTTCTAA	GATTGCTAAC	ATTTATCCTT	TAGATTCAAA	2940
TGGAAATCCT	CAAGATGCTC	AACTTGAAAG	AGGATTAACA	CCTTCTCCAC	TTGTATTAAG	3000
AAGTGCAGA	A GAAGGATTGA	TT				3022

(2) INFORMATION FOR SEQ ID NO:216:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1007 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:
- Glu Thr Ser Gln Asp Phe Lys Glu Lys Lys Thr Ala Val Ile Lys Glu
- Lys Glu Val Val Ser Lys Asn Pro Val Ile Asp Asn Asn Thr Ser Asn
- Glu Glu Ala Lys Ile Lys Glu Glu Asn Ser Asn Lys Ser Gln Gly Asp

		35					40					45			
Tyr	Thr 50	Asp	Ser	Phe	Val	Asn 55	Lys	Asn	Thr	Glu	Asn 60	Pro	Lys	Lys	Glu
Asp 65	Lys	Val	Val	Tyr	Ile 70	Ala	Glu	Phe	Lys	Asp 75	Lys	Glu	Ser	Gly	Glu 80
Lys	Ala	Ile	Lys	Glu 85	Leu	Ser	Ser	Leu	Lys 90	Asn	Thr	Lys	Val	Leu 95	Tyr
Thr	Tyr	Asp	Arg 100	Ile	Phe	Asn	Gly	Ser 105	Ala	Ile	Glu	Thr	Thr 110	Pro	Asp
Asn	Leu	Asp 115	Lys	Ile	Lys	Gln	Ile 120	Glu	Gly	Ile	Ser	Ser 125	Val	Glu	Arg
Ala	Gln 130	Lys	Val	Gln	Pro	Met 135	Met	Asn	His	Ala	Arg 140	Lys	Glu	Ile	Gly
Val 145	Glu	Glu	Ala	Ile	Asp 150	Tyr	Leu	Lys	Ser	Ile 155	Asn	Ala	Pro	Phe	Gly 160
Lys	Asn	Phe	Asp	Gly 165	Arg	Gly	Met	Val	Ile 170	Ser	Asn	Ile	Asp	Thr 175	Gly
Thr	Asp	Tyr	Arg 180	His	Lys	Ala	Met	Arg 185	Ile	Asp	Asp	Asp	Ala 190	Lys	Ala
Ser	Met	Arg 195	Phe	Lys	Lys	Glu	Asp 200	Leu	Lys	Gly	Thr	Asp 205	Lys	Asn	Tyr
Trp	Leu 210	Ser	Asp	Lys	Ile	Pro 215	His	Ala	Phe	Asn	Tyr 220	Tyr	Asn	Gly	Gly
Lys 225	Ile	Thr	Val	Glu	Lys 230	Tyr	Asp	Asp	Gly	Arg 235	Asp	Tyr	Phe	Asp	Pro 240
His	Gly	Met	His	Ile 245		Gly	Ile	Leu	Ala 250	Gly	Asn	Asp	Thr	G1u 255	Gln
Asp	Ile	Lys	Asn 260	Phe	Asn	Gly	Ile	Asp 265	Gly	Ile	Ala	Pro	Asn 270	Ala	Gln
Ile	Phe	Ser 275		Lys	Met	Tyr	Ser 280	Asp	Ala	Gly	Ser	Gly 285	Phe	Ala	Gly
Asp	Glu 290		Met	Phe	His	Ala 295	Ile	Glu	Asp	Ser	11e 300	Lys	His	Asn	Val
Asp 305		Val	Ser	Val	Ser 310		Gly	Phe	Thr	Gly 315	Thr	Gly	Leu	Val	Gly 320
Glu	Lys	Tyr	Trp	Gln 325		Ile	Arg	Ala	Leu 330	Arg	Lys	Ala	Gly	Ile 335	Pro
Met	Val	. Val	Ala 340		Gly	Asn	Tyr	Ala 345	Thr	Ser	Ala	Ser	Ser 350	Ser	Ser
Trp	Asp) Leu 355		Ala	. Asn	Asn	His 360	Leu	Lys	Met	Thr	Asp 365	Ţhr	Gly	Asn
Val	Thr 370		, Thr	Ala	Ala	His 375	Glu	Asp	Ala	Il∈	Ala 380	. Val	Ala	Ser	Ala

Lys 385	Asn	Gln	Thr	Val	Glu 390	Phe	Asp	Lys	Val	Asn 395	Ile	Gly	Gly	Glu	Ser 400
Phe	Lys	Tyr	Arg	Asn 405	Ile	Gly	Ala	Phe	Phe 410	Asp	Lys	Ser	Lys	Ile 415	Thr
Thr	Asn	Glu	Asp 420	Gly	Thr	Lys	Ala	Pro 425	Ser	Lys	Leu	Lys	Phe 430	Val	Tyr
Ile	Gly	Lys 435	Gly	Gln	Asp	Gln	Asp 440	Leu	Ile	Gly	Leu	Asp 445	Leu	Arg	Gly
Lys	Ile 450	Ala	Val	Met	Asp	Arg 455	Ile	Tyr	Thr	Lys	Asp 460	Leu	Lys	Asn	Ala
Phe 465	Lys	Lys	Ala	Met	Asp 470	Lys	Gly	Ala	Arg	Ala 475	Ile	Met	Val	Val	Asn 480
Thr	Val	Asn	Tyr	Tyr 485	Asn	Arg	Asp	Asn	Trp 490	Thr	Glu	Leu	Pro	Ala 495	Met
Gly	Tyr	Glu	Ala 500	Asp	Glu	Gly	Thr	Lys 505	Ser	Gln	Val	Phe	Ser 510	Ile	Ser
Gly	Asp	Asp 515	Gly	Val	Lys	Leu	Trp 520	Asn	Met	Ile	Asn	Pro 525	Asp	Lys	Lys
Thr	Glu 530	Val	Lys	Arg	Asn	Asn 535	Lys	Glu	Asp	Phe	Lys 540	Asp	Lys	Leu	Glu
Gln 545	Tyr	Туr	Pro	Ile	Asp 550	Met	Glu	Ser	Phe	Asn 555	Ser	Asn	Lys	Pro	Asn 560
Val	Gly	Asp	Glu	Lys 565	Glu	Ile	Asp	Phe	Lys 570	Phe	Ala	Pro	Asp	Thr 575	Asp
Lys	Glu	Leu	Tyr 580		Glu	Asp	Ile	Ile 585	Val	Pro	Ala	Gly	Ser 590	Thr	Ser
Trp	Gly	Pro 595		Ile	Asp	Leu	Leu 600	Leu	Lys	Pro	Asp	Val 605	Ser	Ala	Pro
Gly	Lys 610		Ile	Lys	Ser	Thr 615	Leu	Asn	Val	Ile	Asn 620	Gly	Lys	Ser	Thr
Tyr 625		Tyr	Met	Ser	Gly 630		Ser	Met	Ala	Thr 635	Pro	Ile	Val	Ala	Ala 640
Ser	Thr	· Val	. Leu	11e 645	Arg	Pro	Lys	Leu	Lys 650	Glu	Met	Leu	Glu	Arg 655	Pro
Val	. Leu	Lys	Asn 660		Lys	Gly	Asp	Asp 665	Lys	Ile	Asp	Leu	Thr 670	Ser	Leu
Thr	. Lys	11e 675		Lev	Gln	Asn	Thr 680	Ala	Arg	Pro	Met	Met 685	Asp	Ala	Thr
Ser	Trp 690		s Ģlu	Lys	s Ser	Glr 695	туг	Phe	e Ala	. Ser	700	Arg	Gln	Gln	Gly
Ala 705		, Lei	ı Ile	e Asr	val 710		Asn	Ala	Lev	Arg 715	Asn	Glu	ı Val	. Val	Ala 720

Thr Phe Lys Asn Thr Asp Ser Lys Gly Leu Val Asn Ser Tyr Gly Ser 725 730 735 Ile Ser Leu Lys Glu Ile Lys Gly Asp Lys Lys Tyr Phe Thr Ile Lys Leu His Asn Thr Ser Asn Arg Pro Leu Thr Phe Lys Val Ser Ala Ser Ala Ile Thr Thr Asp Ser Leu Thr Asp Arg Leu Lys Leu Asp Glu Thr Tyr Lys Asp Glu Lys Ser Pro Asp Gly Lys Gln Ile Val Pro Glu Ile His Pro Glu Lys Val Lys Gly Ala Asn Ile Thr Phe Glu His Asp Thr 810 Phe Thr Ile Gly Ala Asn Ser Ser Phe Asp Leu Asn Ala Val Ile Asn 825 Val Gly Glu Ala Lys Asn Lys Asn Lys Phe Val Glu Ser Phe Ile His Phe Glu Ser Val Glu Ala Met Glu Ala Leu Asn Ser Ser Gly Lys Lys 855 Ile Asn Phe Gln Pro Ser Leu Ser Met Pro Leu Met Gly Phe Ala Gly 875 Asn Trp Asn His Glu Pro Ile Leu Asp Lys Trp Ala Trp Glu Glu Gly Ser Arg Ser Lys Thr Leu Gly Gly Tyr Asp Asp Asp Gly Lys Pro Lys 900 905 Ile Pro Gly Thr Leu Asn Lys Gly Ile Gly Gly Glu His Gly Ile Asp 920 Lys Phe Asn Pro Ala Gly Val Ile Gln Asn Arg Lys Asp Lys Asn Thr Thr Ser Leu Asp Gln Asn Pro Glu Leu Phe Ala Phe Asn Asn Glu Gly 950 Ile Asn Ala Pro Ser Ser Ser Gly Ser Lys Ile Ala Asn Ile Tyr Pro 965 970 975 Leu Asp Ser Asn Gly Asn Pro Gln Asp Ala Gln Leu Glu Arg Gly Leu 985 Thr Pro Ser Pro Leu Val Leu Arg Ser Ala Glu Glu Gly Leu Ile 1000

(2) INFORMATION FOR SEQ ID NO: 217:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1696 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
TGTGGTCGAA GTTGAGACTC CTCAATCAAT AACAAATCAG GAGCAAGCTA GGACAGAAAA	60
CCAAGTAGTA GAGACAGAGG AAGCTCCAAA AGAAGAAGCA CCTAAAACAG AAGAAAGTCC	120
AAAGGAAGAA CCAAAATCGG AGGTAAAACC TACTGACGAC ACCCTTCCTA AAGTAGAAGA	180
GGGGAAAGAA GATTCAGCAG AACCAGCTCC AGTTGAAGAA GTAGGTGGAG AAGTTGAGTC	240
AAAACCAGAG GAAAAAGTAG CAGTTAAGCC AGAAAGTCAA CCATCAGACA AACCAGCTGA	300
GGAATCAAAA GTTGAACAAG CAGGTGAACC AGTCGCGCCA AGAGAAGACG AAAAGGCACC	360
AGTCGAGCCA GAAAAGCAAC CAGAAGCTCC TGAAGAAGAG AAGGCTGTAG AGGAAACACC	420
GAAACAAGAA GAGTCAACTC CAGATACCAA GGCTGAAGAA ACTGTAGAAC CAAAAGAGGA	480
GACTGTTAAT CAATCTATTG AACAACCAAA AGTTGAAACG CCTGCTGTAG AAAAACAAAC	540
AGAACCAACA GAGGAACCAA AAGTTGAACA AGCAGGTGAA CCAGTCGCGC CAAGAGAAGA	600
CGAACAGGCA CCAACGGCAC CAGTTGAGCC AGAAAAGCAA CCAGAAGTTC CTGAAGAAGA	660
GAAGGCTGTA GAGGAAACAC CGAAACCAGA AGATAAAATA AAGGGTATTG GTACTAAAGA	720
ACCAGTTGAT AAAAGTGAGT TAAATAATCA AATTGATAAA GCTAGTTCAG TTTCTCCTAC	780
TGATTATTCT ACAGCAAGTT ACAATGCTCT TGGACCTGTT TTAGAAACTG CAAAAGGTGT	840
CTATGCTTCA GAGCCTGTAA AACAGCCTGA GGTAAATAGC GAGACAAATA AACTTAAAAC	900
GGCTATTGAC GCTCTAAACG TTGATAAAAC TGAATTAAAC AATACGATTG CAGATGCAAA	960
AACAAAGGTA AAAGAACATT ACAGTGATAG AAGTTGGCAA AACCTCCAAA CTGAAGTTAC	1020
AAAGGCTGAA AAAGTTGCAG CTAATACAGA TGCTAAACAA AGTGAAGTTA ACGAAGCTGT	1080
TGAAAAATTA ACTGCAACTA TTGAAAAATT GGTTGAATTA TCTGAAAAGC CAATATTAAC	1140
ATTGACTAGT ACCGATAAGA AAATATTGGA ACGTGAAGCT GTTGCTAAGT ATACTCTAGA	1200
AAATCAAAAC AAAACAAAAA TCAAATCAAT CACAGCTGAA TTGAAAAAAG GAGAAGAAGT	1260
TATTAATACT GTAGTCCTTA CAGATGACAA GGTAACAACA GAAACTATAA GCGCTGCATT	1320
TAAGAACCTA GAGTACTACA AAGAATACAC CCTATCTACA ACTATGATTT ACGACAGAGG	1380
TAACGGTGAA GAAACTGAAA CTCTAGAAAA TCAAAATATT CAATTAGATC TTAAAAAAGT	1440
TGAGCTTAAA AATATTAAAC GTACAGATTT AATCAAATAC GAAAATGGAA AAGAAACTAA	1500
TGAATCACTG ATAACAACTA TTCCTGATGA TAAGAGCAAT TATTATTTAA AAATAACTTC	1560
AAATAATCAG AAAACTACAT TACTAGCTGT TAAAAATATA GAAGAAACTA CGGTTAACGG	1620
AACACCTGTA TATAAAGTTA CAGCAATCGC AGACAATTTA GTCTCTAGAA CTGCTGATAA	1680
TAAATTTGAA GAAGAA	1696

⁽²⁾ INFORMATION FOR SEQ ID NO:218:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 565 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:
- Val Val Glu Val Glu Thr Pro Gln Ser Ile Thr Asn Gln Glu Gln Ala
 1 10 15
- Arg Thr Glu Asn Gln Val Val Glu Thr Glu Glu Ala Pro Lys Glu Glu 20 25 30
- Lys Pro Thr Asp Asp Thr Leu Pro Lys Val Glu Glu Gly Lys Glu Asp 50 55 60
- Ser Ala Glu Pro Ala Pro Val Glu Glu Val Gly Gly Glu Val Glu Ser 65 70 75 80
- Lys Pro Glu Glu Lys Val Ala Val Lys Pro Glu Ser Gln Pro Ser Asp 85 90 95
- Lys Pro Ala Glu Glu Ser Lys Val Glu Gln Ala Gly Glu Pro Val Ala 100 105 110
- Pro Arg Glu Asp Glu Lys Ala Pro Val Glu Pro Glu Lys Gln Pro Glu 115 120 125
- Ala Pro Glu Glu Glu Lys Ala Val Glu Glu Thr Pro Lys Gln Glu Glu 130 135 140
- Ser Thr Pro Asp Thr Lys Ala Glu Glu Thr Val Glu Pro Lys Glu Glu 145 150 155 160
- Thr Val Asn Gln Ser Ile Glu Gln Pro Lys Val Glu Thr Pro Ala Val
- Glu Lys Gln Thr Glu Pro Thr Glu Glu Pro Lys Val Glu Gln Ala Gly 180 185 190
- Glu Pro Val Ala Pro Arg Glu Asp Glu Gln Ala Pro Thr Ala Pro Val 195 200 205
- Glu Pro Glu Lys Gln Pro Glu Val Pro Glu Glu Glu Lys Ala Val Glu 210 220
- Glu Thr Pro Lys Pro Glu Asp Lys Ile Lys Gly Ile Gly Thr Lys Glu 225 230 235 240
- Pro Val Asp Lys Ser Glu Leu Asn Asn Gln Ile Asp Lys Ala Ser Ser 245 250 255
- Val Ser Pro Thr Asp Tyr Ser Thr Ala Ser Tyr Asn Ala Leu Gly Pro
- Val Leu Glu Thr Ala Lys Gly Val Tyr Ala Ser Glu Pro Val Lys Gln 275 280 285
- Pro Glu Val Asn Ser Glu Thr Asn Lys Leu Lys Thr Ala Ile Asp Ala

300 295 290 Leu Asn Val Asp Lys Thr Glu Leu Asn Asn Thr Ile Ala Asp Ala Lys 315 310 Thr Lys Val Lys Glu His Tyr Ser Asp Arg Ser Trp Gln Asn Leu Gln Thr Glu Val Thr Lys Ala Glu Lys Val Ala Ala Asn Thr Asp Ala Lys Gln Ser Glu Val Asn Glu Ala Val Glu Lys Leu Thr Ala Thr Ile Glu Lys Leu Val Glu Leu Ser Glu Lys Pro Ile Leu Thr Leu Thr Ser Thr Asp Lys Lys Ile Leu Glu Arg Glu Ala Val Ala Lys Tyr Thr Leu Glu Asn Gln Asn Lys Thr Lys Ile Lys Ser Ile Thr Ala Glu Leu Lys Lys 405 Gly Glu Glu Val Ile Asn Thr Val Val Leu Thr Asp Asp Lys Val Thr Thr Glu Thr Ile Ser Ala Ala Phe Lys Asn Leu Glu Tyr Tyr Lys Glu Tyr Thr Leu Ser Thr Thr Met Ile Tyr Asp Arg Gly Asn Gly Glu Glu 455 Thr Glu Thr Leu Glu Asn Gln Asn Ile Gln Leu Asp Leu Lys Lys Val Glu Leu Lys Asn Ile Lys Arg Thr Asp Leu Ile Lys Tyr Glu Asn Gly Lys Glu Thr Asn Glu Ser Leu Ile Thr Thr Ile Pro Asp Asp Lys Ser 505 Asn Tyr Tyr Leu Lys Ile Thr Ser Asn Asn Gln Lys Thr Thr Leu Leu 520 Ala Val Lys Asn Ile Glu Glu Thr Thr Val Asn Gly Thr Pro Val Tyr Lys Val Thr Ala Ile Ala Asp Asn Leu Val Ser Arg Thr Ala Asp Asn 555 550 Lys Phe Glu Glu Glu 565

(2) INFORMATION FOR SEQ ID NO: 219:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

AACACCTGTA	TATAAAGTTA	CAGCAATCGC	AGACAATTTA	GTCTCTAGAA	CTGCTGATAA	60
TAAATTTGAA	GAAGAATACG	TTCACTATAT	TGAAAAACCT	AAAGTCCACG	AAGATAATGT	120
ATATTATAAT	TTCAAAGAAT	TAGTGGAAGC	TATTCAAAAC	GATCCTTCAA	AAGAATATCG	180
TCTGGGACAA	TCAATGAGCG	CTAGAAATGT	TGTTCCTAAT	GGAAAATCAT	ATATCACTAA	240
AGAATTCACA	GGAAAACTTT	TAAGTTCTGA	AGGAAAACAA	TTTGCTATTA	CTGAATTGGA	300
ACATCCATTA	TTTAATGTGA	TAACAAACGC	AACGATAAAT	AATGTGAATT	TTGAAAATGT	360
AGAGATAGAA	CGTTCTGGTC	AAGATAATAT	TGCATCATTA	GCCAATACTA	TGAAAGGTTC	420
TTCAGTTATT	ACAAATGTCA	AAATTACAGG	CACACTTTCA	GGTCGTAATA	ATGTTGCTGG	480
ATTTGTAAAT	AATATGAATG	ATGGAACTCG	TATTGAAAAT	GTTGCTTTCT	TTGGCAAACT	540
ACACTCTACA	AGTGGAAATG	GCTCTCATAC	AGGGGGAATT	GCAGGTACAA	ACTATAGAGG	600
AATTGTTAGA	AAAGCATATG	TTGATGCTAC	TATTACAGGA	AACAAAACAC	GCGCCAGCTT	660
GTTAGTTCCT	AAAGTAGATT	ATGGATTAAC	TCTAGACCAT	CTTATTGGTA	CAAAAGCTCT	720
CCTAACTGAG	TCGGTTGTAA	AAGGTAAAAT	AGATGTTTCA	AATCCAGTAG	AAGTTGGAGC	780
AATAGCAAGT	AAGACTTGGC	CTGTAGGTAC	GGTAAGTAAT	TCTGTCAGCT	ATGCTAAGAT	840
TATCCGTGGA	GAGGAGTTAT	TCGGCTCTAA	CGACGTTGAT	GATTCTGATT	ATGCTAGTGC	900
TCATATAAAA	GATTTATATG	CGGTAGAGGG	ATATTCGTCA	GGTAATAGAT	CATTTAGGAA	960
ATCTAAAACA	TTTACTAAAT	TAACTAAAGA	ACAAGCTGAT	GCTAAAGTTA	CTACTTTCAA	1020
TATTACTGCT	GATAAATTAG	AAAGTGATCT	ATCTCCTCTT	GCAAAACTTA	ATGAAGAAAA	1080
AGCCTATTCT	AGTATTCAAG	ATTATAACGC	TGAATATAAC	CAAGCCTATA	AAAATCTTGA	1140
AAAATTAATA	CCATTCTACA	ATAAAGATTA	TATTGTATAT	CAAGGTAATA	AATTAAATAA	1200
AGAACACCAT	СТАЛАТАСТА	AAGAAGTTCT	TTCTGTTACC	GĊGATGAACA	ACAATGAGTT	1260
TATCACAAA	CTAGATGAAG	CTAATAAAAT	TATTGTTCAC	TATGCGGACG	GTACAAAAGA	1320
TTACTTTAAC	TTGTCTTCTA	GCAGTGAAGG	TTTAAGTAAT	GTAAAAGAAT	ATACTATAAC	1380
	A ATTAAATATA					1440
			•		ATCAGCATCT	
					AAGAAAGCTT	
					ACGAAGAACA	
					AGAAAAACAA	
					AATTTGGTGA	
	•				AAGTTAGCGT	
ATTAGACAG.	A TTAATTGAAJ	A TCGGTTCTA	A AGAGAACAAC	ATTAAAGGTT	CACGTACATT	1860
CGACGCATT	C GGTCAAGTA					1879

(2) INFORMATION FOR SEQ ID NO:220:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 626 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:
- Thr Pro Val Tyr Lys Val Thr Ala Ile Ala Asp Asn Leu Val Ser Arg 1 10 15
- Thr Ala Asp Asn Lys Phe Glu Glu Glu Tyr Val His Tyr Ile Glu Lys
- Pro Lys Val His Glu Asp Asn Val Tyr Tyr Asn Phe Lys Glu Leu Val 35 40 45
- Glu Ala Ile Gln Asn Asp Pro Ser Lys Glu Tyr Arg Leu Gly Gln Ser 50 55 60
- Met Ser Ala Arg Asn Val Val Pro Asn Gly Lys Ser Tyr Ile Thr Lys 65 70 75 80
- Glu Phe Thr Gly Lys Leu Leu Ser Ser Glu Gly Lys Gln Phe Ala Ile 85 90 95
- Thr Glu Leu Glu His Pro Leu Phe Asn Val Ile Thr Asn Ala Thr Ile 100 105 110
- Asn Asn Val Asn Phe Glu Asn Val Glu Ile Glu Arg Ser Gly Gln Asp
- Asn Ile Ala Ser Leu Ala Asn Thr Met Lys Gly Ser Ser Val Ile Thr 130 140
- Asn Val Lys Ile Thr Gly Thr Leu Ser Gly Arg Asn Asn Val Ala Gly 145 150 150
- Phe Val Asn Asn Met Asn Asp Gly Thr Arg Ile Glu Asn Val Ala Phe 165 170 175
- Phe Gly Lys Leu His Ser Thr Ser Gly Asn Gly Ser His Thr Gly Gly 180 185 190
- Ile Ala Gly Thr Asn Tyr Arg Gly Ile Val Arg Lys Ala Tyr Val Asp 195 200 205
- Ala Thr Ile Thr Gly Asn Lys Thr Arg Ala Ser Leu Leu Val Pro Lys 210 220
- Val Asp Tyr Gly Leu Thr Leu Asp His Leu Ile Gly Thr Lys Ala Leu 225 230 235 240
- Leu Thr Glu Ser Val Val Lys Gly Lys Ile Asp Val Ser Asn Pro Val 245 250 255
- Glu Val Gly Ala Ile Ala Ser Lys Thr Trp Pro Val Gly Thr Val Ser 260 265 270

Asn Ser Val Ser Tyr Ala Lys Ile Ile Arg Gly Glu Glu Leu Phe Gly 280 Ser Asn Asp Val Asp Asp Ser Asp Tyr Ala Ser Ala His Ile Lys Asp 295 Leu Tyr Ala Val Glu Gly Tyr Ser Ser Gly Asn Arg Ser Phe Arg Lys Ser Lys Thr Phe Thr Lys Leu Thr Lys Glu Gln Ala Asp Ala Lys Val Thr Thr Phe Asn Ile Thr Ala Asp Lys Leu Glu Ser Asp Leu Ser Pro Leu Ala Lys Leu Asn Glu Glu Lys Ala Tyr Ser Ser Ile Gln Asp Tyr Asn Ala Glu Tyr Asn Gln Ala Tyr Lys Asn Leu Glu Lys Leu Ile Pro Phe Tyr Asn Lys Asp Tyr Ile Val Tyr Gln Gly Asn Lys Leu Asn Lys 385 390 395 Glu His His Leu Asn Thr Lys Glu Val Leu Ser Val Thr Ala Met Asn Asn Asn Glu Phe Ile Thr Asn Leu Asp Glu Ala Asn Lys Ile Ile Val His Tyr Ala Asp Gly Thr Lys Asp Tyr Phe Asn Leu Ser Ser Ser Ser Glu Gly Leu Ser Asn Val Lys Glu Tyr Thr Ile Thr Asp Leu Gly Ile Lys Tyr Thr Pro Asn Ile Val Gln Lys Asp Asn Thr Thr Leu Val Asn 470 Asp Ile Lys Ser Ile Leu Glu Ser Val Glu Leu Gln Ser Gln Thr Met 490 Tyr Gln His Leu Asn Arg Leu Gly Asp Tyr Arg Val Asn Ala Ile Lys 505 Asp Leu Tyr Leu Glu Glu Ser Phe Thr Asp Val Lys Glu Asn Leu Thr 520 Asn Leu Ile Thr Lys Leu Val Gln Asn Glu Glu His Gln Leu Asn Asp Ser Pro Ala Ala Arg Gln Met Ile Arg Asp Lys Val Glu Lys Asn Lys Ala Ala Leu Leu Gly Leu Thr Tyr Leu Asn Arg Tyr Tyr Gly Val 570 Lys Phe Gly Asp Val Asn Ile Lys Glu Leu Met Leu Phe Lys Pro Asp Phe Tyr Gly Glu Lys Val Ser Val Leu Asp Arg Leu Ile Glu Ile Gly Ser Lys Glu Asn Asn Ile Lys Gly Ser Arg Thr Phe Asp Ala Phe Gly 610 615

Gln Val 625

(2) INFORMATION FOR SEQ ID NO: 221:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1777 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

(X1) 5	LOCALICE PEC	01121	-			
ATTAGACAGA	TTAATTGAAA	TCGGTTCTAA	AGAGAACAAC	ATTAAAGGTT	CACGTACATT	60
CGACGCATTC (GGTCAAGTAT	TGGCTAAATA	TACTAAATCA	GGTAATTTAG	ATGCATTTTT	120
AAATTATAAT	AGACAATTGT	TCACAAATAT	AGACAATATG	AACGATTGGT	TTATTGATGC	180
TACAGAAGAC	CATGTCTACA	TCGCAGAACG	CGCTTCTGAG	GTCGAAGAAA	TTAAAAATTC	240
TAAACATCGT	GCATTCGATA	ATTTAAAACG	AAGTCACCTT	AGAAATACTA	TACTCCCACT	300
ACTGAATATT	GATAAAGCAC	ATCTTTATTT	AATTTCAAAT	TATAATGCAA	TTGCCTTTGG	360
TAGTGCAGAG	CGATTAGGTA	AAAAATCATT	AGAAGATATT	AAAGATATCG	TTAACAAAGC	420
TGCAGATGGT	TATAGAAACT	ATTATGATTT	CTGGTATCGT	CTAGCGTCTG	ATAACGTTAA	480
ACAACGACTA						540
				TATACTCCTC		600
					CTGCTATATA	660
					TGGTTGGTGA	720
					CGATTTACTT	780
					GTATGCTACA	840
					ATATGGTATT	900
	•				TAAAAACACG	960
					TTGATGAAAT	1020
					GGTTCAAAAA	1080
					TTCGAAATCT	1140
					TTGATCAACA	1200
					TTAGCTATAA	1260
					GTAATACTAG	1320
					GGGGTTACTA	1380
TAAAGGTGCT	CCTGGAGCTG	, litchtich				

CGGATACGAA	AATGGGTTCT	TAGGTTATGC	TTCAAATAAA	TATAAACAAC	AATCTAAAAC	1440
AGATGGTGAG	TCTGTTCTAA	GTGATGAATA	TATTATCAAG	AAAATATCTA	ACAATACATT	1500
TAATACTATT	GAAGAATTTA	AAAAAGCTTA	CTTCAAAGAA	GTTAAAGATA	AAGCAACGAA	1560
AGGATTAACA	ACATTCGAAG	TAAATGGTTC	TTCCGTTTCA	TCATACGATG	ATTTACTGAC	1620
ATTGTTTAAA	GAAGCTGTTA	AAAAAGATGC	CGAAACTCTT	AAACAAGAAG	CAAACGGTAA	1680
TAAAACAGTA	TCTATGAATA	ATACAGTTAA	ATTAAAAGAA	GCTGTTTATA	AGAAACTTCT	1740
TCAACAAACA	AATAGCTTTA	AAACTTCAAT	CTTTAAA			1777

(2) INFORMATION FOR SEQ ID NO:222:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 592 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:
- Leu Asp Arg Leu Ile Glu Ile Gly Ser Lys Glu Asn Asn Ile Lys Gly
 1 10 15
- Ser Arg Thr Phe Asp Ala Phe Gly Gln Val Leu Ala Lys Tyr Thr Lys 20 25 30
- Ser Gly Asn Leu Asp Ala Phe Leu Asn Tyr Asn Arg Gln Leu Phe Thr 35 40 45
- Asn Ile Asp Asn Met Asn Asp Trp Phe Ile Asp Ala Thr Glu Asp His 50 55 60
- Val Tyr Ile Ala Glu Arg Ala Ser Glu Val Glu Glu Ile Lys Asn Ser 65 70 75 80
- Lys His Arg Ala Phe Asp Asn Leu Lys Arg Ser His Leu Arg Asn Thr 85 90 95
- Ile Leu Pro Leu Leu Asn Ile Asp Lys Ala His Leu Tyr Leu Ile Ser 100 105 110
- Asn Tyr Asn Ala Ile Ala Phe Gly Ser Ala Glu Arg Leu Gly Lys Lys 115 120 125
- Ser Leu Glu Asp Ile Lys Asp Ile Val Asn Lys Ala Ala Asp Gly Tyr 130 135
- Arg Asn Tyr Tyr Asp Phe Trp Tyr Arg Leu Ala Ser Asp Asn Val Lys 145 150 150
- Gln Arg Leu Leu Arg Asp Ala Val Ile Pro Ile Trp Glu Gly Tyr Asn 165 170 175
- Ala Pro Gly Gly Trp Val Glu Lys Tyr Gly Arg Tyr Asn Thr Asp Lys 180 185 190
- Val Tyr Thr Pro Leu Arg Glu Phe Phe Gly Pro Met Asp Lys Tyr Tyr

205 195 200 Asn Tyr Asn Gly Thr Gly Ala Tyr Ala Ala Ile Tyr Pro Asn Ser Asp Asp Ile Arg Thr Asp Val Lys Tyr Val His Leu Glu Met Val Gly Glu Tyr Gly Ile Ser Val Tyr Thr His Glu Thr Thr His Val Asn Asp Arg 245 250 255 Ala Ile Tyr Leu Gly Gly Phe Gly His Arg Glu Gly Thr Asp Ala Glu 260 270 265 Ala Tyr Ala Gln Gly Met Leu Gln Thr Pro Val Thr Gly Ser Gly Phe 275 280 285 Asp Glu Phe Gly Ser Leu Gly Ile Asn Met Val Phe Lys Arg Lys Asn 290 295 300 Asp Gly Asn Gln Trp Tyr Ile Thr Asp Pro Lys Thr Leu Lys Thr Arg 305 310 315 320 Glu Asp Ile Asn Arg Tyr Met Lys Gly Tyr Asn Asp Thr Leu Thr Leu 325 330 335 Leu Asp Glu Ile Glu Ala Glu Ser Val Ile Ser Gln Gln Asn Lys Asp 340 345 350Leu Asn Ser Ala Trp Phe Lys Lys Ile Asp Arg Glu Tyr Arg Asp Asn 355 360 365 Asn Lys Leu Asn Gln Trp Asp Lys Ile Arg Asn Leu Ser Gln Glu Glu 370 380 Lys Asn Glu Leu Asn Ile Gln Ser Val Asn Asp Leu Val Asp Gln Gln 385 390 395 Leu Met Thr Asn Arg Asn Pro Gly Asn Gly Ile Tyr Lys Pro Glu Ala 405 410 415 Ile Ser Tyr Asn Asp Gln Ser Pro Tyr Val Gly Val Arg Met Met Thr 420 425 430Gly Ile Tyr Gly Gly Asn Thr Ser Lys Gly Ala Pro Gly Ala Val Ser 435 440 445Phe Lys His Asn Ala Phe Arg Leu Trp Gly Tyr Tyr Gly Tyr Glu Asn 450 460Gly Phe Leu Gly Tyr Ala Ser Asn Lys Tyr Lys Gln Gln Ser Lys Thr 465 470 475 480 Asp Gly Glu Ser Val Leu Ser Asp Glu Tyr Ile Ile Lys Lys Ile Ser 485 490 495 Asn Asn Thr Phe Asn Thr Ile Glu Glu Phe Lys Lys Ala Tyr Phe Lys Glu Val Lys Asp Lys Ala Thr Lys Gly Leu Thr Thr Phe Glu Val Asn 515 525 Gly Ser Ser Val Ser Ser Tyr Asp Asp Leu Leu Thr Leu Phe Lys Glu 530 540

Ala 545	Val	Lys	Lys	Asp	Ala 550	Glu	Thr	Leu	Lys	Gln 555	Glu	Ala	Asn	Gly	Asn 560
Lys	Thr	Val	Ser	Met 565	Asn	Asn	Thr	Val	Lys 570	Leu	Lys	Glu	Ala	Val 575	Tyr
Lys	Lys	Leu	Leu	Gln	Gln	Thr	Asn	Ser	Phe	Lys	Thr	Ser	Ile 590	Phe	Lys

(2) INFORMATION FOR SEQ ID NO: 223:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

TAAGACAGAT	GAACGGAGCA	AGGTGTTTGA	CTTTTCCATT	CCCTACTATA	CTGCAAAAA	60
TAAACTCATT	GTCAAAAAAT	CTGACTTGAC	TACTTATCAG	TCTGTAAACG	ACTTGGCGCA	120
GAAAAAGGTT	GGAGCGCAGA	AAGGTTCGAT	TCAAGAGACG	ATGGCGAAAG	ATTTGCTACA	180
AAATTCTTCC	CTCGTATCTC	TGCCTAAAAA	TGGGAATTTA	ATCACAGATT	TAAAATCAGG	240
ACAAGTGGAT	GCCGTTATCT	TTGAAGAACC	TGTTTCCAAG	GGATTTGTGG	AAAATAATCC	300
TGATTTAGCA	ATCGCAGACC	TCAATTTTGA	AAAAGAGCAA	GATGATTCCT	ACGCGGTAGC	360
CATGAAAAAA	GATAGCAAGA	AATTGAAGAG	GCAGTTCGAT	AAAACCATTC	AAAAGTTGAA	420
-	GAATTAGACA					460

(2) INFORMATION FOR SEQ ID NO:224:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:
- Lys Thr Asp Glu Arg Ser Lys Val Phe Asp Phe Ser Ile Pro Tyr Tyr 1 5 10 15
- Thr Ala Lys Asn Lys Leu Ile Val Lys Lys Ser Asp Leu Thr Thr Tyr 20 25 30
- Gln Ser Val Asn Asp Leu Ala Gln Lys Lys Val Gly Ala Gln Lys Gly 35 40 45
- Ser Ile Gln Glu Thr Met Ala Lys Asp Leu Leu Gln Asn Ser Ser Leu 50 55 60
- Val Ser Leu Pro Lys Asn Gly Asn Leu Ile Thr Asp Leu Lys Ser Gly

65					70					7,5					80
Gln	Val	Asp	Ala	Val 85	Ile	Phe	Glu	Glu	Pro 90	Val	Ser	Lys	Gly	Phe 95	Val
Glu	Asn	Asn	Pro 100	Asp	Leu	Ala	Ile	Ala 105	Asp	Leu	Asn	Phe	Glu 110	Lys	Glu
Gln	Asp	Asp 115	Ser	Tyr	Ala	Val	Ala 120	Met	Lys	Lys	Asp	Ser 125	Lys	Lys	Leu
Lys	Arg 130	Gln	Phe	Asp	Lys	Thr 135	Ile	Gln	Lys	Leu	Lys 140	Glu	Ser	Gly	Glu
Leu 145	Asp	Lys	Leu	Ile	Glu 150	Glu	Ala	Leu		·					
NFO	RMAT	ION I	FOR S	SEQ :	ID NO	D: 22	25 :								

(2) II

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

CTGTGAGAAT CAAGO	CTACAC CCAAAGAGAC	TAGCGCTCAA	AAGACAATCG	TCCTTGCTAC	60
AGCTGGCGAC GTGC	CACCAT TTGACTACGA	AGACAAGGGC	AATCTGACAG	GCTTTGATAT	120
CGAAGTTTTA AAGGG	CAGTAG ATGAAAAACT	CAGCGACTAC	GAGATTCAAT	TCCAAAGAAC	180
CGCCTGGGAG AGCA	TCTTCC CAGGACTTGA	TTCTGGTCAC	TATCAGGCTG	CGGCCAATAA	240
CTTGAGTTAC ACAA	AAGAGC GTGCTGAAAA	ATACCTTTAC	TCGCTTCCAA	TTTCCAACAA	300
TCCCCTCGTC CTTG	TCAGCA ACAAGAAAAA	TCCTTTGACT	TCTCTTGACC	AGATCGCTGG	360
TAAAACAACA CAAGA	AGGATA CCGGAACTTC	TAACGCTCAA	TTCATCAATA	ACTGGAATCA	420
GAAACACACT GATA	ATCCCG CTACAATTAA	. TTTTTCTGGT	GAGGATATTG	GTAAACGAAT	480
CCTAGACCTT GCTA	ACGGAG AGTTTGATTT	CCTAGTTTT	GACAAGGTAT	CCGTTCAAAA	540
GATTATCAAG GACC	GTGGTT TAGACCTCTC	AGTCGTTGAT	TTACCTTCTG	CAGATAGCCC	600
CAGCAATTAT ATCA	TTTTCT CAAGCGACCA	AAAAGAGTTT	AAAGAGCAAT	TTGATAAAGC	660
GCTCAAAGAA CTCT	ATCAAG ACGGAACCCT	TGAAAAACTC	AGCAATACCT	ATCTAGGTGG	720
TTCTTACCTC CCAG	ATCAAT CTCAGTTAC	A A			751

(2) INFORMATION FOR SEQ ID NO:226:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 250 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

Cys Glu Asn Gln Ala Thr Pro Lys Glu Thr Ser Ala Gln Lys Thr Ile 1 10 15

Val Leu Ala Thr Ala Gly Asp Val Pro Pro Phe Asp Tyr Glu Asp Lys 20 25 30

Gly Asn Leu Thr Gly Phe Asp Ile Glu Val Leu Lys Ala Val Asp Glu 35 40 45

Lys Leu Ser Asp Tyr Glu Ile Gln Phe Gln Arg Thr Ala Trp Glu Ser 50 60

Ile Phe Pro Gly Leu Asp Ser Gly His Tyr Gln Ala Ala Ala Asn Asn 65 70 75 80

Leu Ser Tyr Thr Lys Glu Arg Ala Glu Lys Tyr Leu Tyr Ser Leu Pro $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ile Ser Asn Asn Pro Leu Val Leu Val Ser Asn Lys Lys Asn Pro Leu 100 105 110

Thr Ser Leu Asp Gln Ile Ala Gly Lys Thr Thr Gln Glu Asp Thr Gly 115 120 125

Thr Ser Asn Ala Gln Phe Ile Asn Asn Trp Asn Gln Lys His Thr Asp 130 135 140

Asn Pro Ala Thr Ile Asn Phe Ser Gly Glu Asp Ile Gly Lys Arg Ile 145 150 155 160

Leu Asp Leu Ala Asn Gly Glu Phe Asp Phe Leu Val Phe Asp Lys Val 165 170 175

Ser Val Gln Lys Ile Ile Lys Asp Arg Gly Leu Asp Leu Ser Val Val 180 185 190

Asp Leu Pro Ser Ala Asp Ser Pro Ser Asn Tyr Ile Ile Phe Ser Ser 195 200 205

Asp Gln Lys Glu Phe Lys Glu Gln Phe Asp Lys Ala Leu Lys Glu Leu 210 215 220

Tyr Gln Asp Gly Thr Leu Glu Lys Leu Ser Asn Thr Tyr Leu Gly Gly 225 230 235 240

Ser Tyr Leu Pro Asp Gln Ser Gln Leu Gln 245 250

(2) INFORMATION FOR SEQ ID NO: 227:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

GACTGGATCC TAAAATCTAC GACAATAAAA ATC	33
(2) INFORMATION FOR SEQ ID NO: 228:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:	
CTGAGTCGAC TGGTTGTGCT GGTTGAG	27
(2) INFORMATION FOR SEQ ID NO: 229:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:	
GTCAGGATCC AAATTACAAT ACGGACTATG	30
(2) INFORMATION FOR SEQ ID NO: 230:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
CAGTGTCGAC TAACTCTAGG TCGGAAAC	28
(2) INFORMATION FOR SEQ ID NO: 231:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
GACTGGATCC TGAGAATCAA GCTACACCCA AAGAG	35
(2) INFORMATION FOR SEQ ID NO: 232:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

ACTGAAGCTT TTTTGTTTTT CAAGAATTCA TCG

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
AGTCAAGCTT TTGTAACTGA GATTGATCTG G	31
(2) INFORMATION FOR SEQ ID NO: 233:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
GACTGGATCC TGGTAACCGC TCTTCTCGTA ACGCAGC	37
(2) INFORMATION FOR SEQ ID NO: 234:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:	
AGTCAAGCTT TTTCAGGAAC TTTTACGCTT CC	32
(2) INFORMATION FOR SEQ ID NO: 235:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:	
AGTCAGATCT TGTGGAAATT TGACAGGTAA CAGCAAAAAA GCTGC	4.5
(2) INFORMATION FOR SEQ ID NO: 236:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:	

33

(2) INFORMATION FOR SEQ ID NO: 237:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:	
GACTGGATCC TGGTCAAGGA ACTGCTTCTA AAGAC	35
(2) INFORMATION FOR SEQ ID NO: 238:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:	
AGTCAAGCTT TCACAAATTC GTTGGTGAAG CC	32
(2) INFORMATION FOR SEQ ID NO: 239:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:	
GACTGGATCC TAGCTCAGGT GGAAACGCTG GTTCATCC	38
(2) INFORMATION FOR SEQ ID NO: 240:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:	
AGTCAAGCTT ATCAACTTTT CCACCTTCAA CAACC	35
(2) INFORMATION FOR SEQ ID NO: 241:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:	
GTCAAGATCT CTCCAACTAT GGTAAATCTG CGGATGG	37
(2) INFORMATION FOR SEQ ID NO: 242:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:	
AGTCCTGCAG ATCCACATCC GCTTTCATCG GGTTAAAGAA GG	42
(2) INFORMATION FOR SEQ ID NO: 243:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:	
GACTGGATCC TGGGAAAAT TCTAGCGAAA CTAGTGG	37
(2) INFORMATION FOR SEQ ID NO: 244:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:	
GTCACTGCAG CTGTCCTTCT TTTACTTCTT TGGTTGC	37
(2) INFORMATION FOR SEQ ID NO: 245:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:	
GACTGGATCC TGCTAGCGGA AAAAAAGATA CAACTTCTGG	40
(2) INFORMATION FOR SEO ID NO: 246:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246: CTGAAAGCTT TTTTGCCAAT CCTTCAGCAA TCTTGTC	37
	٠,
(2) INFORMATION FOR SEQ ID NO: 247:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:	
GACTAGATCT TGGCTCAAAA AATACAGCTT CAAGTCC	37
(2) INFORMATION FOR SEQ ID NO: 248:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
A LL CONTROL DEGOLDED OF CEO ID NO. 249.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:	
AGTCCTGCAG GTTTTTGTTT GCTTGGTATT GGTCG	35
(2) INFORMATION FOR SEQ ID NO: 249:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:	
GACTGGATCC TAGTACAAAC TCAAGCACTA GTCAGACAGA G	41
(2) INFORMATION FOR SEQ ID NO: 250:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	č.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:	
CAGTCTGCAG TTTCAAAGCT TTTTGTATGT CTTC	34
(2) INFORMATION FOR SEQ ID NO: 251:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:	
GACTGGATCC TGGCAATTCT GGCGGAAGTA AAGATGC	37
(2) INFORMATION FOR SEQ ID NO: 252:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:	
AGTCAAGCTT GTTTCATAGC TTTTTTGATT GTTTCG	36
(2) INFORMATION FOR SEQ ID NO: 253:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:	
GACTGGATCC TTCACAAGAA AAAACAAAAA ATGAAGATGG	40
(2) INFORMATION FOR SEQ ID NO: 254:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:	
AGTCAAGCTT ATCGACGTAG TCTCCGCCTT C	31
(2) INFORMATION FOR SEQ ID NO: 255:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 38 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:	
GACTGGATCC GAAAGGTCTG TGGTCAAATA ATCTTACC	38-
(2) INFORMATION FOR SEQ ID NO: 256:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:	
AGTCAAGCTT AGAGTTAACA TGGTGCTTGC CAATAGG	37
(2) INFORMATION FOR SEQ ID NO: 257:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:	
GACTGGATCC AAACTCAGAA AAGAAAGCAG ACAATGC	37
(2) INFORMATION FOR SEQ ID NO: 258:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:	
AGTCAAGCTT CCAAACTGGT TGATCCAAAC CATCTG	36
(2) INFORMATION FOR SEQ ID NO: 259:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:

GACTGGATCC TTCGAAAGGG TCAGAAGGTG CAGACC	36
(2) INFORMATION FOR SEQ ID NO: 260:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:	
AGTCAAGCTT CTGTAGGCTT GGTGTGCCCC AGTTGC	36
(2) INFORMATION FOR SEQ ID NO: 261:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:	
CTGAGGATCC GGGGATGGCA GCTTTTAAAA ATC	33
(2) INFORMATION FOR SEQ ID NO: 262:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	,
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:	
CAGTAAGCTT GTTTACCCAT TCACCATTAC C	31
(2) INFORMATION FOR SEQ ID NO: 263:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:	
CAGTGGATCC AGACGAGCAA AAAATTAAG	29
(2) INFORMATION FOR SEQ ID NO: 264:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:	
TCAGAAGCTT GTTTACCCAT TCACCATT	28
(2) INFORMATION FOR SEQ ID NO: 265:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:	
GACTGGATCC CTGTGGTGAG GAAGAAACTA AAAAG	35
(2) INFORMATION FOR SEQ ID NO: 266:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:	
CTGAGTCGAC AATATTCTGT AGGAATGCTT CGAATTTG	38
(2) INFORMATION FOR SEQ ID NO: 267:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:	
CTGAGGATCC GACTTTTAAC AATAAAACTA TTGAAGAG	38
(2) INFORMATION FOR SEQ ID NO: 268:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

GTCACTGCAG GTTGTCACCT CCAAAAATCA CGG

33

(2) INFORMATION FOR SEQ ID NO. 2001	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:	
GACTGGATCC CTTTACAGGT AAACAACTAC AAGTCGG	37
(2) INFORMATION FOR SEQ ID NO: 270:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:	
CAGTAAGCTT TTCGAAGTTT GGCTCAGAAT TG	32
(2) INFORMATION FOR SEQ ID NO: 271:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:	
GACTGGATCC CCAGGCTGAT ACAAGTATCG CA	32
(2) INFORMATION FOR SEQ ID NO: 272:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:	
CAGTAAGCTT ATCTGCAGTA TGGCTAGATG G	31
(2) INFORMATION FOR SEQ ID NO: 273:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:	
GACTGGATCC GTCTGTATCA TTTGAAAACA AAGAAAC	37
(2) INFORMATION FOR SEQ ID NO: 274:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:	
CAGTCTGCAG TTTTACTGTT GCTGTGCTTG TG	32
(2) INFORMATION FOR SEQ ID NO: 275:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:	
ACTGAGATCT TGGTCAAAAG GAAAGTCAGA CAGGAAAGG	39
(2) INFORMATION FOR SEQ ID NO: 276:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:	
CAGTAAGCTT ATTCCTGAGC TTTTTTGATA AAGGTTGCGC A	41
(2) INFORMATION FOR SEQ ID NO: 277:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:	
ACTGGGATCC GAAGGATAGA TATATTTTAG CATTTGAGAC	40
(2) INFORMATION FOR SEO ID NO: 278:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:	
AGTCAAGCTT CCATGGTATC AAAGGCAAGA CTTGG	35
(2) INFORMATION FOR SEQ ID NO: 279:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:	
GTCAGGATCC GGTAGTTAAA GTTGGTATTA ACGG	34
(2) INFORMATION FOR SEQ ID NO: 280:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
A CONTROL DECERTOR CEO ID NO. 280	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:	36
AGTCAAGCTT GCAATTTTTG CGAAGTATTC CAAGAG	50
(2) INFORMATION FOR SEQ ID NO: 281:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
AGTCGGATCC TTCTTACGAG TTGGGACTGT ATCAAGC	37
(2) INFORMATION FOR SEQ ID NO: 282:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:	
AGTCAAGCTT GTTTATTTTT TCCTTACTTA CAGATGAAGG	40
(2) INFORMATION FOR SEQ ID NO: 283:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:	
AGTCGGATCC TACTGAGATG CATCATAATC TAGGAGC	37
(2) INFORMATION FOR SEQ ID NO: 284:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:	
TCAGCTCGAG TTCTTTGACA TCTCCATCAT AAGTCGC	37
(2) INFORMATION FOR SEQ ID NO: 285:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:	
GACTGGATCC GGTTTTGAGA AAGTATTTGC AGGGG	35
(2) INFORMATION FOR SEQ ID NO: 286:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:	
CAGTAAGCTT GGATTTTTC ATGGATGCAA TTTTTTTGG	39
(2) INFORMATION FOR SEQ ID NO: 287:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:	
GACTGGATCC GACAACATTT ACTATCCATA CAGTAGAGTC AGC	43
(2) INFORMATION FOR SEQ ID NO: 288:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:	
GACTAAGCTT GGCATAAGGT TGCAATTCTG GATTAATTGG	40
(2) INFORMATION FOR SEQ ID NO: 289:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:	
GACTGGATCC GGCTAAGGAA AGAGTGGATG	30
(2) INFORMATION FOR SEQ ID NO: 290:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:	
GACTAAGCTT TTCATTTTTA AATTGACTAT GCGCCCG	37
(2) INFORMATION FOR SEQ ID NO: 291:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:

GACTGGATCC TTGTTCCTAT GAACTTGGTC GTCACC	36
(2) INFORMATION FOR SEQ ID NO: 292:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:	
CATGAAGCTT ATCCTGGATT TTTCCAAGTA AATCT	35
(2) INFORMATION FOR SEQ ID NO: 293:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:	
GACTGGATCC TTATAAGGGT GAATTAGAAA AAGG	34
(2) INFORMATION FOR SEQ ID NO: 294:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:	
GACTAAGCTT CTTATTAGGA TTGTTAGTAG TTG	33
(2) INFORMATION FOR SEQ ID NO: 295:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:	
GACTGGATCC GAATGTTCAG GCTCAAGAAA GTTCAGG	37
(2) INFORMATION FOR SEQ ID NO: 296:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:	
GACTAAGCTT TTCCCCTGAT GGAGCAAAGT AATACC	36
(2) INFORMATION FOR SEQ ID NO: 297:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:	
GACTGGATCC CTTGGGTGTA ACCCATATCC AGCTCCTTCC	40
(2) INFORMATION FOR SEQ ID NO: 298:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:	
GACTGTCGAC TTCAGCTTGT TTATCTGGGG TTGC	34
(2) INFORMATION FOR SEQ ID NO: 299:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:	
GACTGGATCC TAGTGATGGT ACTTGGCAAG GAAAACAG	38
(2) INFORMATION FOR SEQ ID NO: 300:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	·

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

ACTGCTGCAG ATCTTTGCCA CCTAGCTTCT CATTG

(2) INFORMATION FOR SEQ ID NO: 301:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:	
GTCAGGATCC TGGGATTCAA TATGTCAGAG ATGATACTAG	40
(2) INFORMATION FOR SEQ ID NO: 302:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:	
CTAGAAGCTT ACGCACCCAT TCACCATTAT CATTG	35
(2) INFORMATION FOR SEQ ID NO: 303:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:	
GTCAGGATCC GGATAATAGA GAAGCATTAA AAACC	35
(2) INFORMATION FOR SEQ ID NO: 304:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:	
AGTCAAGCTT GACAAAATCT TGAAACTCCT CTGGTC	36
(2) INFORMATION FOR SEQ ID NO: 305:	,
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:	
GTCAGGATCC AGATTTTGTC GAGGAGTGTC ATACC	35
(2) INFORMATION FOR SEQ ID NO: 306:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:	
AGTCAAGCTT TCCCTTTTTA CCCTTACGAA TCCAGG	36
(2) INFORMATION FOR SEQ ID NO: 307:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:	
GACTGGATCC ATCTGTAGTT TATGCGGATG AAACACTTAT TAC	43
(2) INFORMATION FOR SEQ ID NO: 308:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:	•
GACTGTCGAC GCTTTGGTAG AGATAGAAGT CATG	34
(2) INFORMATION FOR SEQ ID NO: 309:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:	
GACTGGATCC TTACTTTGGT ATCGTAGATA CAGCCGGC	38
(2) INFORMATION FOR SEO ID NO: 310:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:	37
(2) INFORMATION FOR SEQ ID NO: 311:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:	
GACTGGATCC AGCTAAGGTT GCATGGGATG CGATTCG	37
(2) INFORMATION FOR SEQ ID NO: 312:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:	
GACTGTCGAC CTGGGCTTTA TTAGTTTGAC TAGC	34
(2) INFORMATION FOR SEQ ID NO: 313:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
CAGTGGATCC CTATCACTAT GTAAATAAAG AGA	33
(2) INFORMATION FOR SEQ ID NO: 314:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
ACTGAAGCTT TTCTGTCCCT GTTTGAGGCA	30
(2) INFORMATION FOR SEQ ID NO: 315:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:	
CAGTGGATCC TGAGACTCCT CAATCAATAA CAAA	34
(2) INFORMATION FOR SEQ ID NO: 316:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:	
ACGTAAGCTT ATAATCAGTA GGAGAAACTG AACT	34
(2) INFORMATION FOR SEQ ID NO: 317:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:	
CAGTGGATCC GGATGCTCAA GAAACTGCGG	30
(2) INFORMATION FOR SEQ ID NO: 318:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:	
GACTAAGCTT TTGCCTCCA TTCTTGCTTC C	31
(2) INFORMATION FOR SEQ ID NO: 319:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:	
CAGTGGATCC CGACAAAGGT GAGACTGAG	29
(2) INFORMATION FOR SEQ ID NO: 320:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:	
ACGTAAGCTT ATTTCTTAAT TCAAGTGTTT TCTCTG	36
(2) INFORMATION FOR SEQ ID NO: 321:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321:	
GACTGGATCC AAATCAATTG GTAGCACAAG ATCC	34
(2) INFORMATION FOR SEQ ID NO: 322:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322:	
CAGTGTCGAC ATTAGGAGCC ACTGGTCTC	29
(2) INFORMATION FOR SEQ ID NO: 323:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323:	

CAGTGGATCC CAAACAGTCA GCTTCAGGAA C	31
(2) INFORMATION FOR SEQ ID NO: 324:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324:	
GACTCTGCAG TTTAATCTTG TCCCAGGTGG	30
(2) INFORMATION FOR SEQ ID NO: 325:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 325:	
GACTGGATCC ATTCGATGAT GCGGATGAAA AG	32
(2) INFORMATION FOR SEQ ID NO: 326:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326:	
GACTAAGCTT CATTTGTCTT TGGGTATTTC GCA	33
(2) INFORMATION FOR SEQ ID NO: 327:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327:	30
CAGTGGATCC GGAGAGTCGA TCAAAAGTAG	30
(2) INFORMATION FOR SEQ ID NO: 328:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328:	28
GTCACTGCAG TTGCTCGTCT CGAGGTTC	28
(2) INFORMATION FOR SEQ ID NO: 329:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329:	
CAGTGGATCC ATGGACAACA GGAAACTGGG AC	32
(2) INFORMATION FOR SEQ ID NO: 330:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330:	
CAGTAAGCTT ATTAGCTTCT GTACCTGTGT TTG	33
(2) INFORMATION FOR SEQ ID NO: 331:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:	
GACTGGATCC CGATGGGCTC AATCCAACCC CAGGTCAAGT C	4.1
(2) INFORMATION FOR SEQ ID NO: 332:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:

GACTCTGCAG CATAGCTTTA TCCTCTGACA TCATCGTATC

40

(2) INFORMATION FOR SEQ ID NO: 333:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:	
GACTGGATCC TTCCAATCAA AAACAGGCAG ATGG	34
(2) INFORMATION FOR SEQ ID NO: 334:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 334:	
GACTAAGCTT GAGTCCCATA GTCCAAGGCA	30
(2) INFORMATION FOR SEQ ID NO: 335:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335:	
AGTCGGATCC TATCACAGGA TCGAACGGTA AGACAACC	38
(2) INFORMATION FOR SEQ ID NO: 336:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:	·
ACTGGTCGAC TTCTTTTAAC TCCGCTACTG TGTC	34
(2) INFORMATION FOR SEQ ID NO: 337:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:	
CAGTGGATCC AAGTTCATCG AAGATGGTTG GGAAGTCC	38
(2) INFORMATION FOR SEQ ID NO: 338:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:	
GATCGTCGAC CCGCTCCCAC ATGCTCAACC TT	32
(2) INFORMATION FOR SEQ ID NO: 339:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:	
TGACGGATCC ATCGCTAGCT AGTGAAATGC AAGAAAG	37
(2) INFORMATION FOR SEQ ID NO: 340:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:	
TGACAAGCTT ATTCGTTTTT GAACTAGTTG CTTTCGT	37
(2) INFORMATION FOR SEQ ID NO: 341:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:	
GACTGGATCC GCACCAGATG GGGCACAAGG TTCAGGG	37
(2) INFORMATION FOR SEQ ID NO: 342:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:	
TGACAAGCTT AACTTGTAAC GAACAGTTCA ATCTG	35
(2) INFORMATION FOR SEQ ID NO: 343:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343:	•
GACTAGATCT TTTTAACCCA ACTGTTGGTA CTTTCC	36
(2) INFORMATION FOR SEQ ID NO: 344:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
TO THE NO. 344.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344:	34
TGACAAGCTT GTTAGGTGTT ACATTTTGAC CGTC	
(2) INFORMATION FOR SEQ ID NO: 345:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345:	
ACTGAGATCT TTTTAACCCA ACTGTTGGTA CTTTC	35
(2) INFORMATION FOR SEQ ID NO: 346:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346:	
GACTAAGCTT TCTACGATAA CGATCATTTT CTTTACC	37
(2) INFORMATION FOR SEQ ID NO: 347:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347:	
GACTGTCGAC TCGTAGATAT TTAAGTCTAA GTGAAGCG	38
(2) INFORMATION FOR SEQ ID NO: 348:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348:	
AGTCAAGCTT GTTAGGTGTT ACATTTTGCA AGTC	34
(2) INFORMATION FOR SEQ ID NO: 349:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349:	
GACTGGATCC CTTTGGTTTT GAAGGAAGTA AG	32
(2) INFORMATION FOR SEQ ID NO: 350:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350;	
TGACCTGCAG ACGATTTTTG AAAAATGGAG GTGTATC	37
(2) INFORMATION FOR SEQ ID NO: 351:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351:	
CAGTGGATCC CTACTACCTC TCGAGAGAAA G	31
(2) INFORMATION FOR SEQ ID NO: 352:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352:	
ACTGAAGCTT TTCGCTTTTT ACTCGTTTGA CA	32
(2) INFORMATION FOR SEQ ID NO: 353:	•
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:	
CAGTGGATCC TAAGGTCAAA AGTCAGACCG CTAAGAAAGT GC	42
(2) INFORMATION FOR SEQ ID NO: 354:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:	
CAGTAAGCTT TAGGGTATCC AAATACTGGT TGTTGATG	38
(2) INFORMATION FOR SEQ ID NO: 355:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:

TGACAGATCT TGACGGGTCT CAGGATCAGA CTCAGG	36
(2) INFORMATION FOR SEQ ID NO: 356:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356:	
TGACAAGCTT CAAAGACATC CACCTCTTGA CCTTTG	36
(2) INFORMATION FOR SEQ ID NO: 357:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357:	
GACTGGATCC TAGAGGCTTT GCCAAATGGT GGGAAGGG	38
(2) INFORMATION FOR SEQ ID NO: 358:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 358:	
GTCAGTCGAC TTGTTGTAAC ACTTTTCGAG GTTTGGTACC	40
(2) INFORMATION FOR SEQ ID NO: 359:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359:	
CAGTGGATCC TCAAAAAGAG AAGGAAAACT TGG	33
(2) INFORMATION FOR SEQ ID NO: 360:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	360:
CAGTCTGCAG TTTCTTCAAC AAACCTTGTT CTTG	34
(2) INFORMATION FOR SEQ ID NO: 361:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	361:
CAGTGGATCC ACGTTCTATT GAGGACCACT T	. 31
(2) INFORMATION FOR SEQ ID NO: 362:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	362:
CAGTAAGCTT TTCCTTCTCA GTCAATTCTT TTCC	34
(2) INFORMATION FOR SEQ ID NO: 363:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	363:
GACTGGATCC CGCTCAAAAT ACCAGAGGTG TTCAG	35
(2) INFORMATION FOR SEQ ID NO: 364:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	364:
CACHAACCHE ACTACCATCC CTCTCACACAGG TTTGAA	36

(2) INFORMATION TON BEG ID 100	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365:	
CTGAGGATCC AATTGTACAA TTAGAAAAAG ATAGC	35
(2) INFORMATION FOR SEQ ID NO: 366:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
THE THE PROPERTY OF THE PROPER	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366:	34
TGACAAGCTT GCGTTGACTA GGTTCTGCAA TGCC	34
(2) INFORMATION FOR SEQ ID NO: 367:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367:	
GACTGGATCC TCTGACCAAG CAAAAAGAAG CAGTCAATGA	40
(2) INFORMATION FOR SEQ ID NO: 368:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368:	
TCAGCAGCTG ATCATTGACT TTACGATTTG CTCC	34
(2) INFORMATION FOR SEQ ID NO: 369:	
(i) SEQUENCE CHARACTÉRISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369:	
GACTGGATCC GTCCGGCTCT GTCCAGTCCA CTTTTTCAGC G	41
(2) INFORMATION FOR SEQ ID NO: 370:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370:	
TCAGAAGCTT ATTTTTTGTT TCCTTAATGC GTT	33
(2) INFORMATION FOR SEQ ID NO: 371:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:	
GACTGGATCC GGGACAAATT CAAAAAAATA GGCAAGAGG	39
(2) INFORMATION FOR SEQ ID NO: 372:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:	
GTCAAAGCTT TGGCTCTTTG ATTGCCAACA ACTG	34
(2) INFORMATION FOR SEQ ID NO: 373:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373:	
GACTGGATCC TCGCTACCAG CAACAAAGCG AGCAAAAGG	39
(2) THEODINATION FOR CEO ID NO. 374.	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374:	32
GACTAAGCTT ACTTTTTCT TTTTCCACAC GA	22
(2) INFORMATION FOR SEQ ID NO: 375:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375:	
CAGTGGATCC GAACCGACAA GTCGCCCACT ATCAAGACT	39
(2) INFORMATION FOR SEQ ID NO: 376:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376:	
CTGAAAGCTT TGAATTCTCT TTCTTTTCAG GCT	33
(2) INFORMATION FOR SEQ ID NO: 377:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377:	
TCGAGGATCC GGTTGTCGGC TGGCAATATA TCCCGT	36
(2) INFORMATION FOR SEQ ID NO: 378:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378:	
CAGTAAGCTT CCGAACCCAT TCGCCATTAT AGTTGAC	. 37
(2) INFORMATION FOR SEQ ID NO: 379:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379:	
AGTCGGATCC GGCCAAATCA GAATGGGTAG AAGAC	35
(2) INFORMATION FOR SEQ ID NO: 380:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380:	
TGACCTGCAG CTTCTCATTG ATTTTCATCA TCAC	34
(2) INFORMATION FOR SEQ ID NO: 381:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381:	
GACTGGATCC ATTTGCAGAT GATTCTGAAG GATGG	35
(2) INFORMATION FOR SEQ ID NO: 382:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382:	
TCAGCTGCAG CTTAACCCAT TCACCATTCT AGTTTAAG	38
(2) INFORMATION FOR SEQ ID NO: 383:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	383:	
GACTGGATCC TGTCGCTGCA AATGAAACTG AAGTAGC	3	7
(2) INFORMATION FOR SEQ ID NO: 384:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear		
A CONTROL PROPERTY. GEO. ID. NO.	294.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:		4
GACTAAGCTT ATACCAAACG CTGACATCTA CGCG	3	4
(2) INFORMATION FOR SEQ ID NO: 385:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 37 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	385:	¥.
AGTCAGATCT TACGTCTCAG CCTACTTTTG TAAGAGC	3	37
(2) INFORMATION FOR SEQ ID NO: 386:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	386:	
GACTAAGCTT AACCCATTCA CCATTGGCAT TGAC	3	34
(2) INFORMATION FOR SEQ ID NO: 387:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387:

CAGTGGATCC TGGACAGGTG AAAGGTCATG CTACATTTGT G	41
(2) INFORMATION FOR SEQ ID NO: 388:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388:	
GACTAAGCTT CAACCATTGA GACCTTGCAA CAC	33
(2) INFORMATION FOR SEQ ID NO: 389:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 389:	
GTCAGGATCC GATTGCTCCT TTGAAGGATT TGAGAGAAAC C	41
(2) INFORMATION FOR SEQ ID NO: 390:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 390:	
GACTAAGCTT CGATCAAAGA TAAGATAAAT ATATATAAAG T	41
(2) INFORMATION FOR SEQ ID NO: 391:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391:	47
GACTGGATCC TAGGTCATAT GGGACTTTTT TTCTACAACA AAATAGG	4.7
(2) INFORMATION FOR SEQ ID NO: 392:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	·

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392:	
TGACAAGCTT ATCTATCAGC TCATTTAATC GTTTTTG	37
(2) INFORMATION FOR SEQ ID NO: 393:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393:	
CTGAGGATCC CAACGTTGAG AATTATTTGC GAATG	35
(2) INFORMATION FOR SEQ ID NO: 394:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 394:	
TGACAAGCTT GAGTCTACAA AAGTAATGTA C	31
(2) INFORMATION FOR SEQ ID NO: 395:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395:	
GTCAGGATCC CTACTATCAA TCAAGTTCTT CAGCC	35
(2) INFORMATION FOR SEQ ID NO: 396:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

37

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396:

TGACAAGCTT GACTGAGGCT TGGACCAGAT TGAAAAG

(2) INFORMATION FOR SEQ ID NO: 397:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397:	
GACTGGATCC GACAAAAACA TTAAAACGTC CTGAGG	36
(2) INFORMATION FOR SEQ ID NO: 398:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398:	34
GACTAAGCTT AGCACGAACT GTGACGCTGG TTCC	34
(2) INFORMATION FOR SEQ ID NO: 399:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399:	
GACTGGATCC TTCTCAGGAG ACCTTTAAAA ATATC	35
(2) INFORMATION FOR SEQ ID NO: 400:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 400:	
GACTAAGCTT GTTGGCCATC TTGTACATAC C	31
(2) INFORMATION FOR SEQ ID NO: 401:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO. 401.	
GACTGGATCC AGTAAATGCG CAATCAAATT C	31
(2) INFORMATION FOR SEQ ID NO: 402:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402:	•
AGTCCTGCAG GTATTTAGCC CAATAATCTA TAAAGCT	37
(2) INFORMATION FOR SEQ ID NO: 403:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403:	
CAGTGGATCC TTACCGCGTT CATCAAGATG TC	32
(2) INFORMATION FOR SEQ ID NO: 404:	•
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404:	
GACTAAGCTT GCCAGATGTT GAAAAGAGAG TG	32
(2) INFORMATION FOR SEQ ID NO: 405:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405:	
GACTGGATCC GTGGATGGGC TTTAACTATC TTCGTATTCG	40
(2) INFORMATION FOR SEO ID NO: 406:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406:	2.2
AGTCAAGCTT GCTAGTCTTC ACTTTCCCTT TCC	33
(2) INFORMATION FOR SEQ ID NO: 407:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 407:	
GACTGTCGAC ACTAAACCAG CATCGTTCGC AGGA	34
(2) INFORMATION FOR SEQ ID NO: 408:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408:	
CTGACTGCAG CTTCTTGAAG AAATAATGAT TGTGG	35
(2) INFORMATION FOR SEQ ID NO: 409:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 409:	
CAGTGGATCC TGACTACCTT GAAATCCCAC TT	32
(2) INFORMATION FOR SEQ ID NO: 410:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 410:	
CAGTAAGCTT TTTTTTAAGG TTGTAGAATG ATTTCAATC	39
(2) INFORMATION FOR SEQ ID NO: 411:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411:	
CAGTGTCGAC TCGTATCTTT TTTTGGAGCA ATGTT	35
(2) INFORMATION FOR SEQ ID NO: 412:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 412:	
GACTAAGCTT AAATGTTCCG ATACGGGTGA TTG	33
(2) INFORMATION FOR SEQ ID NO: 413:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 413:	
CAGTGGATCC GGACTCTCTC AAAGATGTGA AAG	33
(2) INFORMATION FOR SEQ ID NO: 414:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 414:	
GACTAAGCTT CTTGAGTTTG TCAAGGATTG CTTT	34
(2) INFORMATION FOR SEQ ID NO: 415:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415:	·
CAGTGGATCC CAAGAAATCC TATCATCTCT TCCAGAAG	38
(2) INFORMATION FOR SEQ ID NO: 416:	,
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 416:	
GACTAAGCTT TTCAGAACTA AAAGCCGCAG CTT	33
(2) INFORMATION FOR SEQ ID NO: 417:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417:	
GACTGGATCC ACGAAATGCA GGGCAGACAG	30
(2) INFORMATION FOR SEQ ID NO: 418:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:	
CAGTAAGCTT ATCAACATAA TCTAGTAAAT AAGCGT	36
(2) INFORMATION FOR SEQ ID NO: 419:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:	

CAGTGGATCC TGTATAGTTT TTAGCGCTTG TTCTTC	36
(2) INFORMATION FOR SEQ ID NO: 420:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:	
GTCAAAGCTT TGATAGAGTG TCATAATCTT CTTTAG	36
(2) INFORMATION FOR SEQ ID NO: 421:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 421:	
GACTGGATCC GTGTGTCGAG CATATTCTGA AG	32
(2) INFORMATION FOR SEQ ID NO: 422:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422:	
CAGTAAGCTT ACTTTTACCA TTTCTTTGTT CTGCATC	37
(2) INFORMATION FOR SEQ ID NO: 423:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423:	
GACTGTCGAC GTGTTTGGAT AGCATTCAGA ATCAGACG	38
(2) INFORMATION FOR SEQ ID NO: 424:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424:	
CAGTAAGCTT CGGAAGTAAA GACAATTTTT CC	32
(2) INFORMATION FOR SEQ ID NO: 425:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 425:	
CAGTGGATCC GTGCCTAGAT AGTATTATTA CTCAAAC	37
(2) INFORMATION FOR SEQ ID NO: 426:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426:	
GACTAAGCTT TTTGCTTATT TCTCTCAATT TTTC	34
(2) INFORMATION FOR SEQ ID NO: 427:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427:	
CAGTGGATCC CATTCAGAAG CAGACCTATC AAAATC	36
(2) INFORMATION FOR SEQ ID NO: 428:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 428:	

ACTGAAGCTT ATGTAATTTT TTAGATTTTT CAATATTTTT CAG

(2) INFORMATION FOR SEQ ID NO: 429:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429:	
AGTCGGATCC TAAGGCTGAT AATCGTGTTC AAATG	35
(2) INFORMATION FOR SEQ ID NO: 430:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430:	
GACTAAGCTT AAAATTAGAT AGACGTTGAG T	31
(2) INFORMATION FOR SEQ ID NO: 431:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 431:	
AGTCGGATCC CTGTGGCAAT CAGTCAGCTG CTTCC	35
(2) INFORMATION FOR SEQ ID NO: 432:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 432:	
GACTGTCGAC TTTAATCTTG TCCCAGGTGG TTAATTTGCC	40
(2) INFORMATION FOR SEQ ID NO: 433:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 433:	
ACTGGTCGAC TTGTCAACAA CAACATGCTA CTTCTGAG	38
(2) INFORMATION FOR SEQ ID NO: 434:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 434:	
GACTCTGCAG AAGTTTAACC CACTTATCAT TATCC	35
(2) INFORMATION FOR SEQ ID NO: 435:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435:	
ACTGGGATCC TTGTTCAGGC AAGTCCGTGA CTAGTGAAC	39
(2) INFORMATION FOR SEQ ID NO: 436:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436:	
GACTAAGCTT GGCTAATTCC TTCAAAGTTT GCA	33
(2) INFORMATION FOR SEQ ID NO: 437:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437:	
AGTCGGATCC CTCGCAAATT GAAAAGGCGG CAGTTAGCC	39
(2) INFORMATION FOR SEO ID NO: 438:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438:	2.5
GACTAAGCTT GTAAATAAGC GTACCTTTTT CTTCC	35
(2) INFORMATION FOR SEQ ID NO: 439:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:	
TCAGGGATCC TTGTCAGTCA GGTTCTAATG GTTCTCAG	38
(2) INFORMATION FOR SEQ ID NO: 440:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440:	
AGTCAAGCTT GGCATTGGCG TCGCCGTCCT TC	32
(2) INFORMATION FOR SEQ ID NO: 441:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 441:	
GACTGGATCC GGAAACTTCA CAGGATTTTA AAGAGAAG	38
(2) INFORMATION FOR SEQ ID NO: 442:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442:	-
GACTGTCGAC AATCAATCCT TCTTCTGCAC TTCT	34
(2) INFORMATION FOR SEQ ID NO: 443:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443:	
CAGTGGATCC TGTGGTCGAA GTTGAGACTC CTCAATC	37
(2) INFORMATION FOR SEQ ID NO: 444:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444:	
GACTAAGCTT TTCTTCAAAT TTATTATCAG C	31
(2) INFORMATION FOR SEQ ID NO: 445:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 445:	
AGTCGGATCC AACACCTGTA TATAAAGTTA CAGCAATCG	39
(2) INFORMATION FOR SEQ ID NO: 446:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446:	
GACTGTCGAC TACTTGACCG AATGCGTCGA ATGTACG	37
(2) INFORMATION FOR SEQ ID NO: 447:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID N	JO: 447:
CTGAGGATCC ATTAGACAGA TTAATTGAAA TCGG	34
(2) INFORMATION FOR SEQ ID NO: 448:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID N	NO: 448:
GACTGTCGAC TTTAAAGATT GAAGTTTTAA AGCT	34
(2) INFORMATION FOR SEQ ID NO: 449:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID N	
TGACGGATCC TAAGACAGAT GAACGGAGCA AGGTG	35
(2) INFORMATION FOR SEQ ID NO: 450:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 450:
CTGAAAGCTT TAAGGCTTCC TCAATGAGTT TGTCT	35
(2) INFORMATION FOR SEQ ID NO: 451:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 451:

GACTGGATCC CTGTGAGAAT CAAGCTACAC CCA	33
(2) INFORMATION FOR SEQ ID NO: 452:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452:	
CTGAAAGCTT TTGTAACTGA GATTGATCTG GGAG	34
(2) INFORMATION FOR SEQ ID NO:453:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:453:	
Leu Ala Ser Gly Ala Cys 1 5	
(2) INFORMATION FOR SEQ ID NO:454:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:454:	
Leu Pro Xaa Thr Gly Xaa	