CSE340: Computer Architecture

Assignment 3 Chapters 3 & 4

Note: For the questions below, if necessary, Consider 5 digits while performing the decimal to binary conversion of the floating portion.

Question 01

Multiplicand = 13 (Decimal) and multiplier = 17 (Decimal) Complete the multiplication following the optimized multiplication algorithm.

Question 02

Convert the following IEEE-754 number into a decimal number where 6 bits are allocated for the exponent field in the representation.

0x ABB9609

Ouestion 03

Perform the arithmetic operations using the Floating point format

a. 50.7869 + 79.83 - 29.58b. 64.2486 * 49.1832

Question 04

Subtract -4.0210 from 28.4810 using IEEE-754 single-precision floating-point representation. Check if the result has overflow or underflow or none.

Note: Consider 5 digits while performing the decimal to binary conversion of the floating portion.

Question 05

- a. Why is a bias added to the actual exponent in the IEEE 754 floating-point representation, and how does this affect the encoding of both positive and negative exponents?
- b. How does optimized multiplication improve efficiency and performance compared to traditional long multiplication, especially in terms of speed and computational complexity?

Question 06

	Instruction name
1	fadd.s
2	fsub.s
3	fmul.s
4	fdiv.s
5	fsqrt.s
6	feq.d
7	fle.d
8	flt.s

You **must** answer the following questions for the explanation of each of the instructions mentioned above:

- (i) What do they do?
- (ii) Explain their syntax.
- (iii) How do they work?
- (iv) Write an example for each of the instructions.

Question 07

Write the necessary RISC-V code to compare two floating point registers f1 and f2. If f1 and f2 are equal jump to a label called "**jumpEqual**" else jump to another label called "**jumpNotEqual**"

Note: both the numbers stored in f1 and f2 registers are double-precision floating point numbers.

Question 08

Draw a diagram of the ALU Control, clearly indicating all input and output pins. a. Does the ALU control utilize Instruction bits 30 and 14-12 to generate the output for the LD instruction? Justify your answer.

b. **Identify** the cases in which the ALU control utilizes Instruction bits 30 and 14-12 to generate the output. **Additionally**, explain why only these four bits (Instruction bits 30 and 14-12) are used in such cases.

Question 09

Draw a simplified datapath with control unit that can process ADD X21, X22, X23.

Note: You must mention all the control signal values.