Name: Kelvin J Anil Reg No: 21BCE0002

Email: kelvin.janil2021@vitstudent.ac.in

Assignment 4

Colab Link:

https://colab.research.google.com/drive/1HfkORhIzm5FbYZ52ircMKZkclFXTcAS-?usp=sharing

Project Title:

Grapes to Greatness: Machine Learning in Wine Quality Prediction

Description:

Predicting wine quality using machine learning is a common and valuable application in the field of data science and analytics. Wine quality prediction involves building a model that can assess and predict the quality of a wine based on various input features, such as chemical composition, sensory characteristics, and environmental factors.

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones).

Dataset: link

Task:

- Load the Dataset
- Data preprocessing including visualization
- · Machine Learning Model building
- Evaluate the model
- Test with random observation

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	quality	
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	il.
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0		
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0		
1599 r	rows × 12 columns												

Since there are no missing values, next step Data Analysis

statistical bescription
wine_ds.describe()

}	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	E
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983	5.636023	
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668	0.807569	
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000	3.000000	
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.000000	
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000	6.000000	
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000	6.000000	
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000	8.000000	


```
# find which feature is related to quality
# lets take the first one
# 1. quality vs volatile acidity
import matplotlib.pyplot as plt
plot = plt.figure(figsize = (5,5))
sns.barplot(x = 'quality', data = wine_ds , y='volatile acidity')

C> <Axes: xlabel='quality', ylabel='volatile acidity'>

1.0

0.8

1.0

0.4

0.2

0.4

0.2

0.4

0.4

0.5

6

7

8

quality
```



```
[48] # Train and Test Split
    # 0.2 means 20 percent of original data to be test data
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split (X,Y, test_size = 0.2 , random_state = 3)

[49] print(Y.shape,Y_train.shape,Y_test.shape)
    (1599,) (1279,) (320,)

[50] # Model Training
    # Random Forest Classifier
    from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier()
```



```
# 10th observation

# 10th observation

input = (7.8,0.58,0.02,2,0.073,9,18,0.9968,3.36,0.57,9.5)

# changing into numpy array

input_arr = np.asarray(input)

# reshape the data as we are predicting for only 1 value

input_arr_reshaped = input_arr.reshape(1,-1)

# prediction

prediction = model.predict(input_arr_reshaped)

if(prediction ==1):

print("Good Quality")

else:

print("Bad Quality")
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

warnings.warn(

```
# Testing with random observation
# 23rd observation
input = (7.6,0.39,0.31,2.3,0.082,23,71,0.9982,3.52,0.65,9.7)
# changing into numpy array
input_arr = np.asarray(input)
# reshape the data as we are predicting for only 1 value
input_arr_reshaped = input_arr.reshape(1,-1)
# prediction
prediction = model.predict(input_arr_reshaped)
if(prediction ==1):
    print("Good Quality")
else:
    print("Bad Quality")
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names