

Let G be a finite group, and call a sequence $\{g_i \in G\}_{i=1}^{|G|-1}$ a $Hamiltonian\ walk$ if for each $g \in G$ there exists some $i \geq 0$ such that the n-th partial product $p_n = g$ where $p_n = g_1 \cdot g_2 \cdots g_n$.

Figure 1: An example showing that the sequence ((123), (123), (12), (123), (123)) is a palindromic Hamiltonian walk for S_3 , where $p_0 = e$, $p_1 = (123)$, $p_2 = (132)$, $p_3 = (23)$, $p_4 = (13)$, and $p_5 = (12)$.

Question. Does every finite group have a Hamiltonian walk that is a palindrome?

Related.

- 1. If not, does every finite group have a Hamiltonian walk whose reversal is also a Hamiltonian walk?
- 2. Is there an efficient way to compute how many essentially different Hamiltonian walks G has?
- 3. For a group G, what proportion of Hamiltonian walks are reversible?
- 4. Does every finite semigroup have a reversible Hamiltonian walk?

References.

Problem 79.

https://math.stackexchange.com/q/3706654/121988