MAS (1) fopulation : characteristic of population Parameter sample Statistics characteristic of sample characteristic of elements value of variable Phirong phaps collect data netho spective study: cac data có trẻ qua khá observational study: date tu quansat, do dac experment study: data the three righier simulation study: using models -> data sample population CENSUS Type of data qualitative (dish tinh): gender, color, major, place, size (mung their da de phân loai) - discrete (dirioi rac) continuous (liên tuc) (dinh living) Sampling method representative: lay suo che du dien de population replacement / with out replacement: chon xg bo'sa (ho laig'nx) / chon xg bo'hi (co' the' lag' thep') non landom (not representative) random sampling + Simple Landom boc den di ac nhom (class), moi + shatified dass simple random

I. Basic probability formulas

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

• If A, B independent: $P(A \cap B) = P(A) \cdot P(B)$

II. Discrete random variables

•
$$\mathcal{M} = E(x) = \sum_{i} x_i \cdot P(x=x_i)$$

•
$$\sigma^2 = V(x) = \sum_i (x_i - \mathcal{M})^2 \cdot P(x = x_i)$$

$$=\sum x_i^2$$
 . $P(x=x_i)$ - \mathcal{M}^2

- E(ax + by) = a.E(x) + b.E(y)
- $V(ax + by) = a^2 \cdot V(x) + b^2 \cdot V(y)$
- Probability mass function: $f(x_i) = P(x=x_i)$
- Cumulative distribution function: $F(x_i) = P(x \le x_i)$
- Some special distribution:
 - 1. Discrete uniform distribution

$$\circ \mathcal{M} = \frac{a+b}{2}$$

$$\circ \quad \sigma^2 = \frac{(b-a+1)^2-1}{12}$$

2. Binomial distribution

$$\circ$$
 P(x=k) = nCk . p^k . (1-p)^{n-k}

$$\circ$$
 $\mathcal{M} = \text{n.p}$

$$\circ \quad \sigma^2 = \text{n.p.} (1-p)$$

3. Poisson distribution

$$\circ$$
 $\mathcal{M} = \lambda.T$

$$\circ$$
 $\sigma^2 = \lambda.T$

4. Hypergeometric distribution

$$O P(x=k) = \frac{KCk \cdot (N-K)C(n-k)}{NCn}$$

$$\circ$$
 $\mathcal{M} = n.p$

$$\circ \quad \sigma^2 = \text{n.p.}(1\text{-p}). \frac{N-n}{N-1}$$

5. Geometric distribution

$$\circ$$
 $P(x=k) = (1-p)^{k-1}$. p

$$\circ \quad \mathcal{M} = \frac{1}{p}$$

$$\circ \quad \sigma^2 = \frac{1-p}{p^2}$$

6. Negative binomial distribution

o
$$P(x=k) = (k-1)C(r-1) \cdot p^{r} \cdot (1-p)^{k-r}$$

o $\mathcal{M} = \frac{r}{p}$
o $\sigma^{2} = \frac{r \cdot (1-p)}{p^{2}}$

III. Continuous random variable

- Probability density function f(x): $P(a < x < b) = \int_{a}^{b} f(x) d_x$
- Cumulative distribution function F(x):

$$\circ \quad F(x_i) = P(x \le x_i)$$

$$\circ$$
 $F(x_i)' = f(x_i)$

•
$$\mathcal{M} = E(x) = \int_{-\infty}^{+\infty} x. f(x) d_x$$

•
$$E(x^n) = \int_{-\infty}^{+\infty} x^n \cdot f(x) d_x$$

•
$$\sigma^2 = V(x) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) d_x - \mathcal{M}^2$$

- Some special distribution:
 - 1. Continuous uniform distribution

$$\circ \quad f(x) = \frac{1}{b-a} \ , \ a \le x \le b$$

$$= 0$$
, elsewhere

$$\circ \quad \mathcal{M} = \frac{a+b}{2}$$

$$\circ \quad \sigma^2 = \frac{(b-a)^2}{12}$$

2. Normal distribution $N(\mathcal{M}, \sigma^2)$

$$\circ \quad z = \frac{x - \mathcal{M}}{\sigma}$$

$$\circ f(z) = \frac{1}{\sqrt{2\Pi}} \cdot e^{\frac{x^2}{2}}$$

$$\circ \quad \phi(x) = p(z < x_i)$$

$$\circ \quad \varphi(-x) = 1 - \varphi(x)$$

3. Normal distribution approximate binomial and poisson distribution

a. Binomial (np > 5 and n(1-p) > 5)

$$z = \frac{x - n.p}{\sqrt{n.p.(1-p)}}$$

$$P(X_{BINORM} \le a) = P(X_{NORMAL} \le a+0.5)$$

$$P(X_{BINORM} \ge a) = P(X_{NORMAL} \ge a-0.5)$$

b. Poisson

$$z = \frac{x - \lambda}{\sqrt{\lambda}}$$

$$P(X_{POISSON} \le a) = P(X_{NORMAL} \le a+0.5)$$

$$P(X_{POISSON} \ge a) = P(X_{NORMAL} \ge a-0.5)$$

4. Exponential distribution

$$\circ \quad f(x) = \lambda \cdot e^{-\lambda \cdot T}, \ x > 0$$

$$\circ$$
 = 0, elsewhere

$$\circ \quad P(x \ge a) = e^{-\lambda a}, (a > 0)$$

$$\circ \quad \mathcal{M} = \frac{1}{\lambda}$$

$$\circ \quad \sigma^2 = \frac{1}{\lambda^2}$$

IV. Descriptive statistic (Take a sample of size n from population N)

• Sample mean:
$$\overline{x} = \frac{\sum x_i}{n}$$

• Sample median:
$$L = \frac{n+1}{2}$$
 so Median $= \frac{x_{ceil(L)} + x_{floor(L)}}{2}$

• Sample variance:
$$s^2 = \frac{\sum (\overline{x} - x_i)^2}{n - 1}$$

$$\circ \quad L_{1} = \frac{n+1}{4} \text{ so } Q_{1} = \frac{x_{ceil(L_{1})} + x_{floor(L_{1})}}{2}$$

$$O L_2 = \frac{n+1}{2} \text{ so } Q_2 = \frac{x_{ceil(L_2)} + x_{floor(L_2)}}{2}$$

$$\circ L_3 = \frac{3.(n+1)}{4} \text{ so } Q_3 = \frac{x_{ceil(L_3)} + x_{floor(L_3)}}{2}$$

V. Sampling distribution

- Population mean \mathcal{M} , variance σ^2 . Sample size n. (Normal distribution or n > 30):
 - \circ Phân phối của \overline{X} có dạng: $N(\mathcal{M}, \frac{\sigma^2}{n})$

• Phân phối của
$$\overline{X_1}$$
 - $\overline{X_2}$ có dạng: $N(\mathcal{M}_1 - \mathcal{M}_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$

• For proportion of population p, sample size n. $(np \ge 5 \text{ or } n.(1-p) \ge 5)$:

$$\circ$$
 Phân phối của \widehat{P} có dạng: $N(P, \frac{P.(1-P)}{n})$

$$\circ \quad \text{Phân phối của } \widehat{P_1} - \widehat{P_2} \text{ có dạng: } \mathcal{N}(P_1 - P_2), \frac{P_1 \cdot (1 - P_1)}{n_1} + \frac{P_2 \cdot (1 - P_2)}{n_2})$$

VI. Statistical intervals - Test claims for one sample

•
$$(1, u) = (\overline{X} - E, \overline{X} + E)$$

• width =
$$2E$$

• P-value = 2 .
$$P(Z > |Z_0|)$$

1. Population variance known

$$\circ \quad E = Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\circ \quad z_0 = \frac{\overline{X} - \mathcal{M}}{\sigma / \sqrt{n}}$$

2. Population variance unknown

$$\circ$$
 n > 30:

$$\blacksquare \quad E = Z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

$$z_0 = \frac{\overline{X} - \mathcal{M}}{S / \sqrt{n}}$$

 \circ n \leq 30:

$$\blacksquare \quad \mathbf{E} = t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}$$

• For propotion:

$$\circ \quad (l, u) = (\widehat{P} - E, \widehat{P} + E)$$

$$\circ \quad E = Z_{\alpha/2} \cdot \sqrt{\frac{P.(1-P)}{n}}$$

- 0 Nếu đề không cho \widehat{P} , mặc định $\widehat{P} = 0.5$
- Nếu là one-side thì tương tự nhưng thay $\alpha/2$ thành α

VII. Test claims for 2 samples (2 population independent, normal distribution or both n_1 , $n_2 > 30$)

•
$$(l, u) = (\overline{X_1} - \overline{X_2} - E, \overline{X_1} - \overline{X_2} + E)$$

1. Population variance known

o
$$E = z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

2. Population variance unknown

$$\circ \quad \text{Assume } \sigma_1^2 = \sigma_2^2$$

■ Degree of freedom: $df = n_1 + n_1 + 2$

$$S_p^2 = \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{n_1 + n_2 - 2}$$

$$\blacksquare \quad E = t_{\alpha/2, df} \cdot \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}$$

$$\circ \quad \text{Not assume } \sigma_1^2 = \sigma_2^2$$

Degree of freedom: df =
$$\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{S_2^4}{n_2^2 \cdot (n_2 - 1)}}$$

$$\blacksquare \quad E = t_{\alpha/2, df} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

• For propotion:

$$\circ \quad (l, u) = (\widehat{P}_1 - \widehat{P}_2 - E, \widehat{P}_1 - \widehat{P}_2 + E)$$

$$\circ \quad E = Z_{\alpha/2} \cdot \sqrt{\frac{\widehat{P_1} \cdot (1 - \widehat{P_1})}{n_1} + \frac{\widehat{P_2} \cdot (1 - \widehat{P_2})}{n_2}}$$

$$o \quad \widehat{P} = \frac{x_1 + x_2}{n_1 + n_2} \text{ (trong d\'o } x_i = n . \widehat{P}_i)$$

$$constant = \frac{\widehat{P}_{1} - \widehat{P}_{2} - \Delta_{0}}{\sqrt{\widehat{P} \cdot (1 - \widehat{P}) \cdot \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

VIII. Linear Regression

•
$$S_{XY} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - n \cdot \overline{x} \cdot \overline{y}$$

•
$$S_{XX} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - n \cdot \bar{x}^2$$

•
$$S_{YY} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - n.\overline{y}^2$$

• Slope:
$$\widehat{\beta_1} = \frac{S_{XY}}{S_{XX}} = \frac{\sum x_i y_i - n \cdot \overline{x} \cdot \overline{y}}{\sum x_i^2 - n \cdot \overline{x}^2}$$

• Intercept:
$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \cdot \overline{x}$$

• Error sum of square:
$$SS_E = \sum (y_i - \hat{y}_i)^2$$

• Regression sum of square:
$$SS_R = \sum_{i} \left(\widehat{y}_i - \overline{y}\right)^2$$

• Total sum of square:
$$SS_T = \sum (y_i - \overline{y})^2$$

$$\bullet \quad SS_E + SS_R = SS_T$$

• Standard error:
$$\hat{\sigma} = \sqrt{\frac{SS_E}{n-2}}$$

• Coefficient of correlation:
$$R = \sqrt{\frac{SS_R}{SS_T}} = \frac{S_{XY}}{\sqrt{S_{XX} \cdot S_{YY}}}$$

• Test claims about the slope
$$(df = n-2)$$
:

$$\circ \operatorname{se}(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma}^2}{S_{XX}}}$$

$$\circ t_0 = \frac{\widehat{\beta_1} - \beta_{1,0}}{se(\widehat{\beta_1})}$$

• Test claims about the intercept
$$(df = n-2)$$
:

$$\circ \operatorname{se}(\widehat{\beta_0}) = \sqrt{\widehat{\sigma}^2 \cdot \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{XX}}\right)}$$

$$\circ t_0 = \frac{\widehat{\beta_0} - \beta_{0,0}}{se(\widehat{\beta_0})}$$

• Test claims about the coefficient of correlation (
$$df = n-2$$
): $t_0 = \frac{R-0}{\sqrt{\frac{1-R^2}{n-2}}}$