

Disrupting the CXCL12-CD26/CXCR4,7 Axis Through Supraphysiological Levels of R1881

Prostate Cancer Overview

Demographic

Prostate Cancer Progression

- In the US:
- 80% of men diagnosed with PC have localized PC
 - Survival rate as high as 99%
 - 20-30% of men advance to mPC within 5-10 yrs
- 15% of men diagnosed with PC have locoregional metastasis
- 5% of men diagnosed with PC have distant metastasis

AR as Tumor Suppressor in Normal Prostate Cells

Androgen: Male sex hormone

- Testosterone (T)
- Dihydrotestosterone (DHT)
- Androgen Receptor (AR):
 Transcription Factor
 - Regulates proliferation and apoptosis through gene transcription

Cytoplasm Androgen **Growth suppression** Differentiation ARE+ genes

Nucleus

Normal Prostate Cell

Normal Prostate Tissue

AR in Castration-Resistant Prostate Cells

Cancer tissue

Supraphysiological Androgen Suppresses Tumor Growth

> J Clin Invest. 2019 Jul 16;129(10):4245-4260. doi: 10.1172/JCI127613.

Free PMC article

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage

```
Payel Chatterjee <sup>1</sup>, Michael T Schweizer <sup>2</sup> <sup>3</sup>, Jared M Lucas <sup>1</sup>, Ilsa Coleman <sup>1</sup>, Michael D Nyquist <sup>1</sup>, Sander B Frank <sup>1</sup>, Robin Tharakan <sup>1</sup>, Elahe Mostaghel <sup>2</sup> <sup>3</sup>, Jun Luo <sup>4</sup>, Colin C Pritchard <sup>5</sup>, Hung-Ming Lam <sup>6</sup>, Eva Corey <sup>6</sup>, Emmanuel S Antonarakis <sup>7</sup>, Samuel R Denmeade <sup>7</sup>, Peter S Nelson <sup>1</sup> <sup>2</sup> <sup>3</sup>

Affiliations + expand

PMID: 31310591 PMCID: PMC6763228 DOI: 10.1172/JCI127613
```

> Cancer Res. 2021 Dec 1;81(23):5948-5962. doi: 10.1158/0008-5472.CAN-20-3607. Epub 2021 Oct 13.

Supraphysiologic Testosterone Induces Ferroptosis and Activates Immune Pathways through Nucleophagy in Prostate Cancer

```
Rajendra Kumar * 1, Janet Mendonca * 1, Olutosin Owoyemi 1, Kavya Boyapati 1, Naiju Thomas 1, Suthicha Kanacharoen 1, Max Coffey 1, Deven Topiwala 1, Carolina Gomes 1, Busra Ozbek 1, Tracy Jones 1, Marc Rosen 1, Liang Dong 1, Sadie Wiens 2, W Nathaniel Brennen 1, John T Isaacs 1, Angelo M De Marzo 1, Mark C Markowski 1, Emmanuel S Antonarakis 1, David Z Qian 2, Kenneth J Pienta 1, Drew M Pardoll 1, Michael A Carducci 1, Samuel R Denmeade 1, Sushant K Kachhap 3

Affiliations + expand

PMID: 34645612 PMCID: PMC8639619 DOI: 10.1158/0008-5472.CAN-20-3607

Free PMC article
```

Supraphysiologic androgens can modulate the impact of the tumor microenvironment by restoring *DPP4*/CD26 expression.

Russo JW... Nelson, PS et al., 2018

Hypothesis:

Restoring CD26 expression through SPA treatment can alter the oncogenic activity of the CXCL12-CXCR4,7 axis in prostate cancer

Experiment Model Cell Lines

Progression Following PC

Metastasis Model

- **LNCaP** Castration sensitive
- LNCaP 16D Castration resistant Enzalutamide sensitive
 - LNCaP_49F Castration resistant Enzalutamide resistant

LNCaP_C42B Castration resistant High levels of CXCL12

Experimental Design

Cell Seeding Density:

Day 1: 4x10⁶ cells/10mL dish

Day 6: 3x10⁶ cells/10mL dish

Experimental Plan

- WB: AR, NKX3.1, PSA, cMYC CD26,, CXCR7
- ICC: AR, NKX3.1, PSA, CD26, CXCR4

cMYC, CD26, CXCR4, CXCR7,

LNCaP Cell Confluency Before and After Treatment

*SPA = 100nM R1881

Western Blot Analysis of Treated LNCaP Samples

qRT-PCR Analysis of LNCaP

C42B Cell Confluency Before and After Treatment

Western Blot Analysis of Treated C42B Samples

qRT-PCR Analysis of C42B

■ VEHICLE ■ SPA - 100 nM

16D Cell Confluency Before and After Treatment

16D (10x)

Western Blot Analysis of Treated 16D Samples

qRT-PCR Analysis of 16D

49F Cell Confluency Before and After Treatment

qRT-PCR Analysis of 49F

Immunocytochemistry of CD26 Expression in LnCap

Immunocytochemistry of CD26 Expression in C42B

Fred Hutchinson Cancer Center

24

Immunocytochemistry of CD26 Expression in 16D

Immunocytochemistry of CD26 Expression in 49F

Future Direction

1. Finish the ICC analyses.

2. Repeat Western blot analysis for CD26 and CXCR4 using different antibodies.

3. Investigate the influence of CXCL12 on the growth of prostate cancer models treated with SPA.

Thank you

Dr. Peter Nelson

Our Mentors

Emery Boehnke

Reza Ghodsi

Ruthy Dumpit

Nelson Lab

Helen Akushie Wanting Han

Tarana Arman Brian Hanratty

Arnab Bose

Dapei Li

Tony Chu

Jared Lucas

Ilsa Coleman

Galina Semenova

Canan Dirican

Saurabh Verma

Sander Frank

Ryuta Watanabe

Haffner Lab

Lee Lab

Gerardo Javier

Tina Wu

UW Medicine