Dynamic Programming

Dynamic Programming

- Not a specific algorithm, but a technique (like divide and conquer).
- Developed back in the day when "programming" meant "tabular method". Doesn't really refer to computer programming.
 - Invented by American mathematician Richard Bellman in the 1950s
- Used for optimization problems:
 - Find a solution with the optimal value.
 - -Find the best of all possible solutions.
 - Minimization or maximization.

Dynamic Programming

- Like divide and conquer, solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
 - In the sense that subproblems share subsubproblems.
 - However, solution to one subproblem does not affect the solutions to other subproblems of the same problem. (More on this later.)
- Hence, if divide and conquer approach is used, the same subsubproblem will be solved multiple times.
- DP optimizes by
 - Solving subproblems in a bottom-up fashion.
 - Storing the solution (memoization) to a subproblem in a table the first time it is solved.
 - Performing a lookup for the solution in the table when the subproblem is encountered subsequently.

Principle of Optimality

- *Principle of optimality:* it says that an optimal solution to any instance of an optimization problem is composed of optimal solutions to its subinstances.
- This property is also called *optimal substructure property*.

Recall Mergesort. Why isn't it dynamic programming?

Principle of Optimality

❖ if node J is on the optimal path from node I to node K, then the optimal path from J to K also also falls along the same path

Steps in Dynamic Programming

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

We'll study these with the help of examples.

Example: Fibonacci Numbers

Recall definition of Fibonacci numbers:

$$- F(n) = F(n-1) + F(n-2)$$

- F(0) = 0
- F(1) = 1
- Computing the nth Fibonacci number recursively (top-down):

• • •

Example: Fibonacci Numbers (cont.)

- Computing the nth Fibonacci number in bottom-up manner and recording results:
- F(0) = 0
- F(1) = 1
- F(2) = 1+0 = 1
- •
- F(n-2) =
- F(n-1) =
- F(n) = F(n-1) + F(n-2)

Efficiency:

- - time
- space

Examples of DP Algorithms

- Matrix Chain Multiplication
- Floyd's algorithm for all-pairs shortest paths
- Longest Common Subsequence
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 - traveling salesman
 - knapsack

Longest Common Subsequence

- **Problem:** Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$.
 - Find a subsequence common to both whose length is longest.
 - A subsequence doesn't have to be consecutive, but it has to be in order.

Naïve Algorithm

- For every subsequence of *X*, check whether it's a subsequence of *Y*.
- Time: $\Theta(n2^m)$.
 - -2^m subsequences of X to check.
 - Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, from there scan for second, and so on.

Optimal Substructure

Notation:

```
i^{\text{th}} prefix of X: X_i = \text{prefix } \langle x_1, ..., x_i \rangle

i^{\text{th}} prefix of Y: Y_i = \text{prefix } \langle y_1, ..., y_i \rangle
```

Theorem

Let $Z = \langle z_1, \ldots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1} .

Proof: Straightforward

Recursive Solution

- Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$.
- We want c[m,n].

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.

1. If x_m = y_n, then z_k = x_m = y_n and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If x_m \neq y_n, then z_k \neq x_m \Rightarrow Z is an LCS of X_{m-1} and Y.

3. If x_m \neq y_n, then z_k \neq y_n \Rightarrow Z is an LCS of X and Y_{n-1}.
```

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Can write a recursive algorithm, but it will be inefficient (because subproblems overlap).

Computing the Length of an LCS

```
LCS-LENGTH (X, Y)
1. m \leftarrow length[X]
2. n \leftarrow length[Y]
3. for i \leftarrow 1 to m
    do c[i, 0] \leftarrow 0
    for j \leftarrow 0 to n
    \mathbf{do}\ c[0,j] \leftarrow 0
    for i \leftarrow 1 to m
          do for j \leftarrow 1 to n
8.
              do if x_i = y_i
9.
                      then c[i, j] \leftarrow c[i-1, j-1] + 1
10.
11.
                              b[i, j] \leftarrow "
                      else if c[i-1, j] \ge c[i, j-1]
12.
                             then c[i, j] \leftarrow c[i-1, j]
13.
                                    b[i, j] \leftarrow "\uparrow"
14.
15.
                              else c[i, j] \leftarrow c[i, j-1]
16.
                                    b[i, j] \leftarrow "\leftarrow"
17. return c and b
```

```
c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}
```

b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_i .

c[m,n] contains the length of an LCS of X and Y.

Time: O(mn)

Constructing an LCS

```
PRINT-LCS (b, X, i, j)

1. if i = 0 or j = 0

2. then return

3. if b[i, j] = \text{``}\text{``}

4. then PRINT-LCS(b, X, i-1, j-1)

5. print x_i

6. elseif b[i, j] = \text{``}\text{``}

7. then PRINT-LCS(b, X, i-1, j)

8. else PRINT-LCS(b, X, i, j-1)
```

- Initial call is PRINT-LCS (b, X,m, n).
- When $b[i, j] = \setminus$, we have extended LCS by one character. So LCS = entries with \setminus in them.
- Time: O(m+n)

LCS Example

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	\boldsymbol{A}	0	↑ 0	↑ 0	↑ 0	\ 1	←1	1
2	B	0	1	←1	← 1	↑ 1	\ 2	←2
3	C	0	1	1	2	←2.	1 2	1 2
4	B	0	<u>\</u>	1	↑ 2	↑ 2	3	<u>-</u> 3
5	D	0	1 1	^2	↑ 2	† 2	↑ 3	↑ 3
6	A	0		<u> </u>	<u>2</u> ↑	_2	↑ 3	
7	В	0	\\ \\ 1	↑ 2	<u>2</u> ↑ 2	↑ 3	<u>5</u>	1 4 1 4

Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i, j] and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand corner of the table—is the length of an LCS $\langle B, C, B, A \rangle$ of X and Y. For i, j > 0, entry c[i, j] depends only on whether $x_i = y_j$ and the values in entries c[i-1, j], c[i, j-1], and c[i-1, j-1], which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows from the lower right-hand corner; the sequence is shaded. Each " \setminus " on the shaded sequence corresponds to an entry (highlighted) for which $x_i = y_j$ is a member of an LCS.

Optimal Binary Search Trees

Problem

- Given sequence $K = k_1, k_2, ..., k_n$ of n distinct keys, sorted $(k_1 < k_2 < \cdots < k_n)$.
- Want to build a binary search tree from the keys.
- For k_i , have probability p_i that a search is for k_i .
- Want BST with minimum expected search cost.
- Search cost = # of items examined.
- For key k_i , cost = depth_T (k_i) +1, where depth_T (k_i) = depth of k_i in BST T.
- Note: The root of the tree is at depth 0.

Expected Search Cost

E[search cost in T]

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i}$$

$$= \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i}$$
Sum of probabilities is 1.

•
$$p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$$

$i d\epsilon$	$\operatorname{epth}_T(k_i)$	$\operatorname{depth}_T(k_i) \cdot p_i$		
1	1	0.25		
2	0	0		
3	2	0.1		
4	1	0.2		
5	2	0.6		
		1.15		

Therefore, E[search cost] = 2.15.

•
$$p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$$

i	$depth_T(k_i)$	$\operatorname{depth}_T(k_i) \cdot p_i$
1	1	0.25
2	0	0
3	3	0.15
4	2	0.4
5	1	0.3
		1.10

Therefore, E[search cost] = 2.10.

This tree turns out to be optimal for this set of keys.

Observations:

- Optimal BST might not have smallest height.
- Optimal BST might not have highest-probability key at root.
- Build by exhaustive checking?
 - Construct each *n*-node BST.
 - For each, put in keys.
 - Then compute expected search cost.
 - But there are $\Omega(4^n/n^{3/2})$ different BSTs with *n* nodes.

Optimal Substructure

• Any subtree of a BST contains keys in a contiguous range k_i , ..., k_j for some $1 \le i \le j \le n$.

• If T is an optimal BST and T contains subtree T' with keys k_i , ..., k_j , then T' must be an optimal BST for keys k_i , ..., k_j .

Proof: Cut and paste an alternative optimal subtree → contradicts

Optimal Substructure

- For keys k_i , ..., k_j , one of the keys in k_i , ..., k_j , k_r , where $i \le r \le j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains $k_i, ..., k_{r-1}$.
- Right subtree of k_r contains $k_{r+1}, ..., k_{j-1}$

- To find an optimal BST:
 - Examine all candidate roots k_r , for $i \le r \le j$.
 - Determine all optimal BSTs containing k_i , ..., k_{r-1} and containing k_{r+1} , ..., k_i .

Recursive Solution

- Find optimal BST for k_i , ..., k_j , where $i \ge 1, j \le n, j \ge i-1$.
- When j = i-1, the tree is empty.
- e[i, j] = expected search cost of optimal BST for $k_i, ..., k_j$.
- If j = i-1, then e[i, j] = 0.
- If $j \geq i$,
 - Select a root k_r , for some $i \le r \le j$.
 - Make an optimal BST with $k_i, ..., k_{r-1}$ as the left subtree.
 - Make an optimal BST with k_{r+1} , ..., k_j as the right subtree.

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
 - Depth of every node in OPT subtree goes up by 1.
 - Expected search cost increases by

$$w(i,j) = \sum_{l=i}^{j} p_l$$

• If k_r is the root of an optimal BST for k_i , ..., k_j :

$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$$

$$= e[i, r-1] + e[r+1, j] + w(i, j), \text{ since } w(i, j) = w(i, r-1) + p_r + w(r+1, j)$$

• But, we don't know k_r . Hence,

$$e[i,j] = \begin{cases} 0 & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

Computing an Optimal Solution

- Store values in a table:
 - -e[1...n+1, 0...n]
- Will use only entries e[i, j], where $j \ge i-1$.
- Will also compute
 - root[i, j] = root of subtree with keys k_i , ..., k_j , for $1 \le i \le j \le n$.
- One other table ... don't recompute w(i, j) from scratch every time we need it.
 - Table w[1...n+1, 0...n].
 - $w[i, i-1] = 0 \text{ for } 1 \le i \le n.$
 - $w[i, j] = w[i, j-1] + p_j$ for $1 \le i \le j \le n$.

$$k_1$$
 k_2 k_3 k_4 key A B C D probability 0.1 0.2 0.4 0.3

The initial tables look like this:

Let us compute e(1, 2):
$$e[i, j] = \begin{cases} 0 & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

$$e(1, 2) = \min \begin{cases} r = 1: & e(1, 0) + e(2, 2) + w(1, 2) = 0 + 0.2 + 0.3 = 0.5 \\ r = 2: & e(1, 1) + e(3, 2) + w(1, 2) = 0.1 + 0 + 0.3 = 0.4 \end{cases}$$

$$= 0.4.$$

Let us compute e(1, 2):

$$e(1, 2) = \min \begin{cases} r = 1: & e(1, 0) + e(2, 2) + w(1, 2) = 0 + 0.2 + 0.3 = 0.5 \\ r = 2: & e(1, 1) + e(3, 2) + w(1, 2) = 0.1 + 0 + 0.3 = 0.4 \end{cases}$$

$$= 0.4.$$

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a successful search in this tree is 0.4.

	main table					
	0	1	2	3	4	
1	0	0.1	0.4	1.1	1.7	
2		0	0.2	8.0	1.4	
3			0	0.4	1.0	
4				0	0.3	
5					0	

Pseudo-code

$$e[i,j] = \begin{cases} 0 & \text{if } j = i - 1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

```
OPTIMAL-BST(p, n)
      for i \leftarrow 1 to n+1
          do e[i, i-1] \leftarrow 0
2.
              w[i, i-1] \leftarrow 0
3.
      for l \leftarrow 1 to n \leftarrow
5.
          do for i \leftarrow 1 to n-l+1
              do j \leftarrow i + l - 1 \leftarrow
6.
                  e[i, j] \leftarrow \infty
8.
                  w[i, j] \leftarrow w[i, j-1] + p_i
                  for r \leftarrow i to j \leftarrow
9.
10.
                       do t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
11.
                           if t < e[i, j]
12.
                                then e[i, j] \leftarrow t
13.
                                        root[i, j] \leftarrow r
14.
        return e and root
```

Consider all trees with *l* keys.

Fix the first key.

Fix the last key.

For each possible root

Determine the root of the optimal (sub)tree.

Time: $O(n^3)$