PS02 - Bayesian Statistics

Due date: 01/30/2025

Note: All problems not here should be done when doing PS01

Sources: Gelman et al. (2021); Ross (2007); DeGroot and Shervish (2012)

Question 01

Posterior inference: suppose you have a Beta(4,4) prior distribution on the probability θ that a coin will yield a 'head' when spun in a specified manner. The coin is independently spun ten times, and 'heads' appear fewer than 3 times. You are not told how many heads were seen, only that the number is less than 3. Calculate the exact posterior density (up to a proportionality constant) for θ and sketch it using R.

Question 02

Suppose that X_1 and X_2 are independent random variables, and X_i has the exponential distribution with parameter β_i (i = 1, 2). Show that for each constant k > 0:

$$P(X_1 > kX_2) = \frac{\beta_2}{\beta_2 + k\beta_1}$$

How much is $P(X_1 \le kX_2)$?

Question 03

Suppose that X_1, \dots, X_n form a random sample from an exponential distribution for which the value of the parameter β is unknown ($\beta > 0$). Find the Maximum Likelihood Estimator of β .

Question 04

Let X_1, \dots, X_n a random sample of size n from the distribution specified in each question below. Show that the statistic T specified is a sufficient statistic for the parameter.

Α

Bernoulli distribution with parameter p, which is unknown $(0 and <math>T = \sum_{i=1}^{n} X_i$.

В

Geometric distribution with parameter p unknown $(0 and <math>T = \sum_{i=1}^{n} X_i$.

C

Negative binomial distribution with parameters r and p, where r is known and p is unknown (0 .

D

Normal distribution for which the mean μ is known but the variance $\sigma^2>0$ is unknown; $T=\sum_{i=1}^n(X_i-\mu)^2.$

Ε

The gamma distribution with parameters α and β , where the value of β is known and the value of α is unknown ($\alpha > 0$); $T = \prod_{i=1}^{n} X_i$.

F

The beta distribution with parameters α and β , where the value of β is known and the value of α is unknown ($\alpha > 0$); $T = \prod_{i=1}^{n} X_i$.