

EDA (Exploratory Data Analysis)

Week 11 - LISUM 04
José Vicente Solorzano
29/11/21

Agenda

Data understanding

Clients

Last contact

Campaign

Bivarial analysis of some features

Recommended models

Understanding

Features are divided into 4 groups:

- 1. Data related to clients (age, job, marital, education, default, housing and loan).
- 2. Data related with the last contact of the current campaign (contact, month, day of week and duration).
- 3. Data related with campaigns (campaign, pdays, previous and poutcome).
- 4. Data related with socio economic context attributes (emp.var.rate, cons.Price.idx, cons.conf.idx, euribor3m, nr.employed).
- 5. TARGET: "y".

```
Number of rows: 41188 - Number of columns: 21
```

```
['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
```


Customers job (%):

job	
admin.	25.303486
blue-collar	22.467709
technician	16.371273
services	9.636302
management	7.099155

Customer's demo:

60% are married.

64% are admin, blue-collar or technician.

65% are 31-50 yo.

65% are graduated from HS, University or professional course.

Customers and Default, Housing Loan and Personal Loan:

	contact					
month						
may	33.429640					
jul	17.417694					
aug	14.999514					
jun	12.911528					
nov	9.956784					

duration_ra	nge
0-200	55.258813
201-400	27.347771
401-600	8.983199
601-800	4.144411
801-1000	1.944741
over 1000	2.321064

63% of contacts to customers are done by celular.

78% of contacts to customers are done in 4 months (may, july, august and june).

82% of calls last less 400 seconds.

Campaign

86% of customers dont have previous relation with the bank.

3,3% succes of the 14% of customers who have previous contacts with the bank.

Bivarial for Some features Age and job

admin.

blue-collar

housemaid management

retired

services

technician

unemployed

student

unknown

entrepreneur

self-employed

87.027442

93.105684

91.483516

90.000000

88.782490

74.767442

89.514426

91.861930

68.571429

89.173958

85.798817

88.787879

12.972558

6.894316

8.516484

10.000000

11.217510

25.232558

10.485574

31.428571

10.826042

14.201183

11.212121

8.138070

Your Deep Learning Partner

People under 30 and over 60 yo are customers with higher acceptance rate. 15% and 45% respectively.

Accordinly, student and retired are top Jobs in acceptance rate.

Bivarial for

Some features

Data Glacier

Your Deep Learning Partner

Contact medium, month and call duration

0-300	28466	1518	29984	94.937300	5.062700	
301-600	6302	1438	7740	81.421189	18.578811	
601-900	1259	924	2183	57.672927	42.327073	
901-1200	329	439	768	42.838542	57.161458	
1201-1500	115	192	307	37.459283	62.540717	
1501-1800	36	69	105	34.285714	65.714286	
1801-2100	22	34	56	39.285714	60.714286	
2101-2400	6	8	14	42.857143	57.142857	
More than 2400	13	18	31	41.935484	58.064516	

15% of people contacted by celular accepted the term deposit, while just 5% of the ones contacted by telephone.

December, march, october and september have few customers, but with very high conversión rate (over 40%).

Longer call, higher conversión rate. Consider that a small quantity of people have calls for more tan 900 seconds.

Bivarial for Some features Default, Loan and Housing

Default and target: y no yes default no 87.121026 12.878974 unknown 94.847040 5.152960 yes 100.000000 0.000000 Conversion rate in Loan and Housing is similar for people with, without and unknown.

For Default is different. Conversion rate of "no default" people is 13%, and unknown is 5%.

Bivarial for

Some features

Your Deep Learning Partner

Data Glacier

Campaign and target

Less number of contacts during the campaign seems to be better for conversion... 12% for 0-3 contacts and 9% for 4-6.

Success in previous campaign is very important for conversión rate. 65% of customers with previous success, are accepting now the term deposit.

Recommended Model

We implemented pycaret library to know the model would perform better in our business problem.

The criterion was based mainly in AUC (area under the curve), the results were:

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.8960	0.8001	0.3245	0.5671	0.4126	0.3602	0.3772	0.6410
catboost	CatBoost Classifier	0.8976	0.7950	0.3104	0.5866	0.4057	0.3555	0.3772	6.8270
Ir	Logistic Regression	0.8239	0.7908	0.6367	0.3468	0.4489	0.3548	0.3781	0.6580

We are going to try with the 2 best models:

- 1) Light Gradient Boosting Machine
- 2) CatBoost Classifier

Next week we are going to implement some Grid Search and hyperparameters optimization to get the ideal model.

Thank You

