1 Úkol

- 1. Pomocí ionizační komory (IK) zjistěte, který z přiložených vzorků radioaktivních zářičů má větší aktivitu.
- 2. Změřte V-A charakteristiky IK v rozsahu 0-500 V při různých vzdálenostech elektrod 1-6 cm. Použijte intenzivnější zářič.
- 3. Identifikujte charakteristické oblasti V-A závislosti. Určete optimální napětí a optimální vzdálenost IK.
- 4. Změřte poměr aktivit přiložených zářičů, odhadněte jejich absolutní aktivity (střední energie vytvoření iontového páru ve vzduchu je 35 eV). Stanovte dosah α -částic.
- 5. Pomocí osciloskopu změřte závislost amplitudy elektrického impulzu Geiger-Müllerova (GM) detektoru na napětí v rozsahu 0-1500 V. Nepřekračujte napětí 1500 V.
- 6. Identifikujte charakteristickou oblasti V-A závislosti GM detektoru.

2 Teorie

Při průchodu α -částice vzuchem dochází k jeho ionizaci. Tím α -částice ztrácí kinetickou energii dokud nezastaví. Díky tomu vzniká elektrická nerovnováha v oblasti, kterou prošla a tím roste vodivost tohoto prostředí. Při přivedení elektrického pole tak mlžeme detekovat prostřednictív tekoucího proudu procházející α -částice. Nejedonuší použití tohoto jevu je IK. O něco složitější konstrukci potom reprezentuje GM.

3 Měření

3.1 Aktivita zářičů

Vzdálenost elektrod v IIK jsem nastavil na 6 cm. Následně jsem změřil oba vzodky při napětí 500 V. Naměřené proudy byly

$$I_1 = (0.8 \pm 0.3) \text{fA} I_2 = (10 \pm 5) \text{fA}$$
 (1)

což jasně vypovídá o značně vyšší aktivitě druhého vzorku.

3.2 V-A charakteristika

Následně jsem s intenzivnějším zářičem proměřil V-A charakteristiku při vzdálenosti elektrod 1 a 6 cm. Výsledky jsou v tabulce 1 a výsledná závislost je na obrázku 1.

Na obou křivkách je jasně vidět oblast , která se přibližně chocá dle ohmova zákonu a oblast nasycení. Pto překonání téno oblasti by bylo potřeba vyšší napětí.

U/V	6cm	1cm
500	0.0100	0.0052
400	0.0100	0.0052
300	0.0100	0.0054
200	0.0100	0.0052
100	0.0094	0.0051
90	0.0093	0.0049
80	0.0092	0.0049
70	0.0092	0.0050
60	0.0090	0.0054
50	0.0084	0.0052
40	0.0078	0.0050
30	0.0073	0.0048
20	0.0055	0.0045
10	0.0031	0.0039
9	0.0026	0.0038
8	0.0020	0.0037
7	0.0013	0.0036
6	0.0007	0.0034
5	0.0002	0.0030
4	-0.0001	0.0026
3	-0.0010	0.0014
2	-0.0024	-0.0005
1	-0.0055	-0.0021
0	-0.0046	-0.0035

Tabulka 1: V-A charakteristika pro silnější vzorek

Obrázek 1: V-A charakteristika IK

3.3 Svodový proud

Při napětí 500 V je svodový proud při vzdálenisti elektrod dva centimetry přibližně 50 pA. V případě 6 cm je jeho hodnota ještě o řád nižší, díky čenuž na měření nemá vliv.

3.4 Střední dolet

Proměřil jsem podrobněji závislost proudu na vzdálenosti elektrod při napští 500 V. Hodnoty jsou v tabulce 2. Z hodnot je patrné. že při přiblížení o více než 4 cm začne proud klesat. To znamená, že se α -částicím nepodaří využít celou svou energii k ionizaci. Z toho vyplývá. že jejich dolet je mezi 3 a 4 cm.

3.5 GM

Zapojit jsem GM dle návodu v [1] a za pomoci osciloskopu proměřil jeho V-A charakteristiku. Měřená veličina sice není proud, ale napětí. Přepočet je možný za pomoci Ohmova zákona při znalosti odporu osciloskopu, který byl 1 $M\Omega$. Nás však zajímá pouze průběh této závislosti, proto přepočet není nutný. Hodnoty jsou v tabulce 3 a na obrázku 2. V grafu je jasně zřetelná oblast začátku lavinovité ionizace.

d/cm	I/nA
6	0.010
5	0.010
4	0.010
3	0.008
2	0.0052
1	0.0027

Tabulka 2: Závislost proudu na vzdálenosti elektrod při napětí 500 V

U_z/kV	U_s/V
6	0.0
7	0.4
8	0.6
9	1.0
10	2.6
11	6
12	15
13	36
14	76
14.1	80
14.2	80
14.3	96
14.4	108
14.5	130
14.6	150
14.7	180
14.8	210
14.9	250
15.0	290

Tabulka 3: V-A charakteristika GM

Obrázek 2: V-A charakteristika GM

4 Diskuze

Určení aktivnějšího vzorku bylo bez problému díky řádovému rozdílu v proudu. Kdyby však byly jejich o něco bližší, vzhledem k fluktuaci proudu by bylo značně obtížné určit rozdíl jejich aktivit.

Při měření V-A charakteristiky IK se ukázalo, že získáme výrazně lepší (více se shodující s teoriíú výsledky, pokud postupujeme od nižšího napětí k vyššímu. V opačném případě totiž příležitostně došlo ke skoku v proudu.

Dolet α -částic jsme nemohli určit přesněji, protože elektrody umožňovali pohyb pouze o celé centimetry.

U V-A charakteristiky GM jsem hodnoty do 5 kV neuváděl, protože velikost signálu byla neměřitelná osciloskopem.

5 Závěr

Určil jsem silnější z přiložených vzorků.

Změřil jsem V-A charakteristiku IK. Výsledky jsou v tabulce 1 a na obrázku 1.

Idetifikoval jsem charakteristivké oblasti v V-A charakteristice IK.

Změřil jsem závislost svodového proudu. Výsleky jsou uvedeny výše.

Aktivnější vzorek byl zhruba desetkrát aktivnější než slabší. Odhad absolutní aktivity

vzorků je

$$A_1 = 10^6 \mathrm{Bq} \tag{2}$$

$$A_2 = 10^5 \mathrm{Bq} \tag{3}$$

Stanovil jsem dolet α -částic na 3 až 4 cm. Změřil jsem V-A charakteristiku GM. Výsledky jsou v tabulce 3 na obrázku 2.

Reference

- [1] Studijní text na praktikum IV http://physics.mff.cuni.cz/vyuka/zfp/txt_402.pdf (23. 10. 2012)
- $[2]\ \textit{J. Englich} \colon \mathbf{Zpracov\acute{a}n\acute{i}\ v\acute{y}sldk\mathring{u}\ fyzik\acute{a}ln\acute{i}ch\ m\check{e}\check{r}en\acute{i}}$ LS 1999/2000