DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Summary of Lectures (Set - III)

1 Determinant

Definition 1.1. Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- For an 1×1 matrix A = [a], we define the **determinant** of A as det(A) = a.
- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then we define det(A) = ad bc.
- In general, if A_{ij} is the submatrix of A obtained by deleting the i-th row and the j-th column of A, then det(A) is defined recursively as follows:

$$det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) + \ldots + (-1)^{1+n} a_{1n} det(A_{1n}) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(A_{1j}).$$

- Sometimes det(A) is also denoted by |A|.
- We define $det(A_{ij})$ to be the (i, j)-minor of A.
- The number $C_{ij} = (-1)^{i+j} \det(A_{ij})$ is called the (i,j)-cofactor of A.
- Thus we can write

$$det(A) = |A| = \sum_{j=1}^{n} a_{1j} C_{1j}.$$

★ Take a matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$. Put $\sigma_{ij} = (-1)^{i+j}$.

Then

$$|A| = \sigma_{11} a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + \sigma_{12} a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + \sigma_{13} a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + \sigma_{14} a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{44} \end{vmatrix}.$$

- * Expand each of them. Do you get 12 terms? Do you get a term $(...)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?
- * So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\sigma_{12}a_{12} \ \sigma_{12}a_{23} + \sigma_{13}a_{13} \ \sigma_{12}a_{22} = (-1)^{1+2+2+3} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$.

 * The coefficient of $|A_{1,2|1,3}| = \begin{vmatrix} a_{32} & a_{34} \\ a_{42} & a_{44} \end{vmatrix}$ is $(-1)^{1+2+1+3} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$.

 * In general, the coefficient of $|A_{1,2|i,j}|$ in the double expansion of |A| is $(-1)^{1+2+i+j} \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$.

- * Hence $|A| = \sum_{i < i} (-1)^{1+2+i+j} \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix} |A_{1,2|i,j}|.$

Result 1.1 (Properties of Determinants).

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).
- If A has a zero row then det(A) = 0.
- If A has two identical rows then det(A) = 0.
- If B is obtained by multiplying a row of A by k, then det(B) = k.det(A).
- If B is obtained by adding a multiple of one row of A to another row, then det(B) = det(A).

Result 1.2 (Determinants of Elementary Matrices). Let E be an $n \times n$ elementary matrix and A be any $n \times n$ matrix. Then

- 1. det(E) = -1, k or 1.
- 2. det(EA) = det(E) det(A).
- 3. E^t is also an elementary matrix and $det(E) = det(E^t)$.

Result 1.3.

- A square matrix A is invertible if and only if $det(A) \neq 0$.
- Let A be an $n \times n$ matrix. Then $det(kA) = k^n det(A)$.
- Let A and B be two $n \times n$ matrices. Then det(AB) = det(A)det(B).
- If the matrix A is invertible then $det(A^{-1}) = \frac{1}{det(A)}$.
- \bigstar A matrix A is said to be **singular** or **non-singular** according as $\det(A) = 0$ or $\det(A) \neq 0$.

Result 1.4.

- The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.
- If R is in row echelon form having a zero row, then $det(R) = 0 = det(R^t)$.
- For any square matrix A, $det(A^t) = det(A)$.
- ★ Thus a determinant can be expanded column-wise.
- ★ All the previous results based on row-wise expansion of determinant are also valid for column-wise expansion.

Result 1.5 (Laplace Expansion Theorem). The determinant of an $n \times n$ matrix $A = [a_{ij}]$, where $n \geq 2$, can be computed as

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in} = \sum_{j=1}^{n} a_{ij}C_{ij},$$

(this is the cofactor expansion along the i-th row), and also as

$$det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj} = \sum_{i=1}^{n} a_{ij}C_{ij},$$

(this is the cofactor expansion along the j-th column).

Result 1.6.

- If B is obtained by interchanging any two columns of A, then det(B) = -det(A).
- If A has a zero column then det(A) = 0.
- If A has two identical columns then det(A) = 0.
- If B is obtained by multiplying a column of A by k, then det(B) = k det(A).
- If B is obtained by adding a multiple of one column of A to another column, then det(B) = det(A).

Definition 1.2. Let A be an $n \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^n$. Then $A_i(\mathbf{b})$ denotes the matrix obtained by replacing the i-th column of A by \mathbf{b} . That is, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$, then $A_i(\mathbf{b}) = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_{i-1} \ \mathbf{b} \ \mathbf{a}_{i+1} \ \dots \ \mathbf{a}_n]$.

Result 1.7 (Cramer's Rule). Let A be an $n \times n$ invertible matrix and let $\mathbf{b} \in \mathbb{R}^n$. Then the unique solution $\mathbf{x} = [x_1, x_2, \dots, x_n]^t$ of the system $A\mathbf{x} = \mathbf{b}$ is given by

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}$$
 for $i = 1, 2, \dots, n$.

2

The Adjoint of a Matrix: Let $A = [a_{ij}]$ be an $n \times n$ matrix and let C_{ij} be the (i, j)-cofactor of A. Then the adjoint of A, denoted adj(A), is defined as

$$\operatorname{adj}(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix} = [C_{ij}]^{t}.$$

Result 1.8. Let A be an $n \times n$ invertible matrix. Then $A^{-1} = \frac{1}{\det(A)} \cdot adj(A)$.

Example 1.1. Use the adjoint method to find the inverse of the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{array} \right].$$

2 Subspaces Associated with Matrices

Definition 2.1. Let A be an $m \times n$ matrix.

- 1. The **null space** of A, denoted **null**(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, $null(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$
- 2. The **column space** of A, denoted **col**(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}.$
- 3. The **row space** of A, denoted **row**(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) = \{\mathbf{x}^T A \mid \mathbf{x} \in \mathbb{R}^m\}$.

[Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n ? In strict sense, row(A) := $\operatorname{col}(A^T)$.]

Result 2.1. Let B be a matrix that is row equivalent to the matrix A. Then row(B) = row(A).

Corollary 2.1. For any A, row(A) = row(RREF(A)).

Corollary 2.2. For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension? Yes. We will see soon.

Method of Finding Bases of the Row Space, the Null Space and the Column Space of a Matrix:

Let A be a given matrix and let R be the reduced row echelon form of A.

- 1. Use the non-zero rows of R to form a basis for row(A).
- 2. Solve the leading variables of $R\mathbf{x} = \mathbf{0}$ in terms of the free variables, set the free variables equal to parameters, substitute back into \mathbf{x} , write the result as a linear combination of k vectors (where k is the number of free variables). These k vectors form a basis for null(A).
- 3. A basis for $row(A^t)$ will also be a basis for col(A). **Or**, Use the columns of A that correspond to the columns of R containing the leading 1's to form a basis for col(A).

Example 2.1. Find bases for the row space, column space and the null space of the following matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 4 & 6 & 2 \end{array} \right].$$

Result 2.2. Let $R = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$ be the reduced row echelen form of a matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ of rank r. Let $\mathbf{b}_{j_1}, \mathbf{b}_{j_2}, \dots, \mathbf{b}_{j_r}$ be the columns of R such that $\mathbf{b}_{j_k} = \mathbf{e}_k$ for $k = 1, \dots, r$. Then $\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_r}\}$ is a basis for col(A).

Result 2.3. The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

Result 2.4. For any matrix A, we have $rank(A^t) = rank(A)$.

Nullity: The **nullity** of a matrix A is the dimension of its null space, and is denoted by **nullity**(A).

Result 2.5 (Rank Nullity Theorem). Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Result 2.6 (The Fundamental Theorem of Invertible Matrices: Version II). Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. A^t is invertible.
- 3. $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^n .
- 4. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 5. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 6. The reduced row echelon form of A is I_n .
- 7. The rows of A are linearly independent.
- 8. The columns of A are linearly independent.
- 9. rank(A) = n.
- 10. A is a product of elementary matrices.
- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .
- 13. The column vectors of A form a basis for \mathbb{R}^n .
- 14. The row vectors of A span \mathbb{R}^n .
- 15. The row vectors of A form a basis for \mathbb{R}^n .

Example 2.2. Show that the vectors $[1, 2, 3]^t$, $[-1, 0, 1]^t$ and $[4, 9, 7]^t$ form a basis for \mathbb{R}^3 .

Result 2.7. Let A be an $m \times n$ matrix. Then

- 1. $rank(A^tA) = rank(A)$.
- 2. The $n \times n$ matrix A^tA is invertible if and only if rank(A) = n.