Design and Analysis of Algorithms, MTech-I (1st semester) Chapter 6: NP Theory - II

October 7, 2022

Devesh C Jinwala,

Professor in CSE, SVNIT, Surat and Adjunct Professor, IITJammu & Dean (R&C), SVNIT Department of Computer Science and Engineering, SVNIT, Surat

Broad Contents of the talks

• Talk1: Understanding How to Analyze an Algorithm. Efficient and Inefficient Algorithms. Complexity Classes of Problems.

Broad Contents of the talks

- Talk1: Understanding How to Analyze an Algorithm. Efficient and Inefficient Algorithms. Complexity Classes of Problems.
- Talk2: Understanding and Working with Problem Reductions.

Broad Contents of the talks

- Talk1: Understanding How to Analyze an Algorithm. Efficient and Inefficient Algorithms. Complexity Classes of Problems.
- Talk2: Understanding and Working with Problem Reductions.
- Talk3: Non-determinism, Working with NPHard, NPComplete.

- Talk1: Algorithm Analysis, Problem Complexity Classes.
 - What does solving problems algorithmically, mean?
 - Analyzing an algorithm
 - Mow to relate time complexity to input size?
 - Classifying problems
 - A Motivating Example to illustrate hardness
 - Some Hard Problems

- Talk2: Relating Problem Hardness & Polynomial Reductions
 - Reductions
 - 4 How can we relate hardness of two problems ?
 - Mow can we relate solvability of two problems?
 - Polynomial Reduction of one problem to the other
 - Opening a property of the other states of t
 - Three methods of reductions: illustrations

- Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism

- **⑤** Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism
 - ② Designing Non-deterministic algorithms

- **1** Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism
 - ② Designing Non-deterministic algorithms
 - 3 The Class P, NP, EXP of problems

- **1** Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism
 - Oesigning Non-deterministic algorithms
 - 3 The Class P, NP, EXP of problems
 - The NP-Hard, NP-Complete problems

- **1** Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism
 - Oesigning Non-deterministic algorithms
 - 3 The Class P, NP, EXP of problems
 - The NP-Hard, NP-Complete problems
 - Proofs associated

- **⑤** Talk3: Non-determinism, Working with NPHard, NPComplete.
 - The concept of non-determinism
 - Oesigning Non-deterministic algorithms
 - 3 The Class P, NP, EXP of problems
 - The NP-Hard, NP-Complete problems
 - Proofs associated
 - Summarizing

To understand

- To understand
 - that many of the problems that have polynomial time algorithms are computationally related.

- To understand
 - that many of the problems that have polynomial time algorithms are computationally related.
 - a few of the real world problems defy classification. . . .

- To understand
 - that many of the problems that have polynomial time algorithms are computationally related.
 - a few of the real world problems defy classification. . . .
 - how nondeterminism property can be exploited to understand the classes of problems.

- To understand
 - that many of the problems that have polynomial time algorithms are computationally related.
 - a few of the real world problems defy classification. . . .
 - how nondeterminism property can be exploited to understand the classes of problems.
 - the classification of the problems viz. NP-Hard and NP-Complete

- To understand
 - that many of the problems that have polynomial time algorithms are computationally related.
 - a few of the real world problems defy classification. . . .
 - how nondeterminism property can be exploited to understand the classes of problems.
 - the classification of the problems viz. NP-Hard and NP-Complete
 - how one problem can be reduced to another..... rendering them to be similar in nature to one another......

Consider two problems P and Q such that suppose we wish to solve P but, we have an algorithm to solve Q.

• Then, if we can devise a function T

Consider two problems P and Q such that suppose we wish to solve P but, we have an algorithm to solve Q.

- Then, if we can devise a function T
- that takes as input x that P is supposed to take,

Consider two problems P and Q such that suppose we wish to solve P but, we have an algorithm to solve Q.

- Then, if we can devise a function T
- that takes as input x that P is supposed to take,
- produces T(x) that Q accepts as input and

Consider two problems P and Q such that suppose we wish to solve P but, we have an algorithm to solve Q.

- Then, if we can devise a function T
- that takes as input x that P is supposed to take,
- produces T(x) that Q accepts as input and
- Q produces the output that actually is the output of P

Consider two problems P and Q such that suppose we wish to solve P but, we have an algorithm to solve Q.

- Then, if we can devise a function T
- that takes as input x that P is supposed to take,
- produces T(x) that Q accepts as input and
- Q produces the output that actually is the output of P
- then, we say that P reduces to Q

Reductions, pictorially

• P reduces to Q means Problem P is solved using Q and a function T and so

Reductions, pictorially

- P reduces to Q means Problem P is solved using Q and a function T and so
- P reduces to $Q \implies Q$ is at least as hard as P

Figure: Problem P is solved using an algorithm for Q and a converter

Reductions, pictorially

- P reduces to Q means Problem P is solved using Q and a function T and so
- P reduces to $Q \implies Q$ is at least as hard as P

Figure: Problem P is solved using an algorithm for Q and a converter

• Note that, here T is nothing but a converter......

Reductions, formally defining

- def: Let P_1 and P_2 be two problems. Then problem P_1 reduces to P_2 (i.e. $P_1 \ \alpha \ P_2$)if and only if there is a way to solve P_1 by a deterministic polynomial time algorithm P_2 i.e. using a deterministic algorithm that also solves P_2 in polynomial time.
- P reduces to Q is denoted as either P α_P Q OR P \leq_P Q

• Informally, given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it implies that if P_2 is solvable then P_1 also is solvable.

- Informally, given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it implies that if P_2 is solvable then P_1 also is solvable.
- How would you relate then, the problems SELECTION¹ and SORTING?

- Informally, given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it implies that if P_2 is solvable then P_1 also is solvable.
- How would you relate then, the problems SELECTION¹ and SORTING?
- Does SELECTION \leq_P SORTING i.e. if SORTING is solvable then SELECTION also is solvable. Is this true? OR

- Informally, given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it implies that if P_2 is solvable then P_1 also is solvable.
- How would you relate then, the problems SELECTION¹ and SORTING ?
- Does SELECTION \leq_P SORTING i.e. if SORTING is solvable then SELECTION also is solvable. Is this true ? OR
- Does SORTING \leq_P SELECTION i.e. if SELECTION is solvable then SORTING also is solvable. Is this true ?

• Very very importantly, note that given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it also implies that P_2 is at least as difficult as P_1

- Very very importantly, note that given that a problem P_1 is reducible to P_2 (i.e. $P_1 \leq_P P_2$), it also implies that P_2 is at least as difficult as P_1
- This means that

SELECTION a SORTING

implies that

SORTING is as difficult as SELECTION

Intuitively, how can we use reduction to prove a new problem to be hard?

Figure: ???

 How would you define the converter functions for reducing the SELECTION to the SORTING, in the previous example?

- How would you define the converter functions for reducing the SELECTION to the SORTING, in the previous example?
- Now, Input for T(x) we simply input N different numbers viz. $(x_1, x_2, x_3, \ldots, x_n)$ to T_1 hiding the i^{th} largest value that is to be selected from these N different numbers.

- How would you define the converter functions for reducing the SELECTION to the SORTING, in the previous example?
- Now, Input for T(x) we simply input N different numbers viz. $(x_1, x_2, x_3, \ldots, x_n)$ to T_1 hiding the i^{th} largest value that is to be selected from these N different numbers.
- i.e. let T be defined as $T(x_1, x_2, x_3, \ldots, x_n) = (y_1, y_2, y_3, \ldots, y_n)$, such that $y_i = x_i$

Understanding Reductions, further...

- How would you define the converter functions for reducing the SELECTION to the SORTING, in the previous example?
- Now, Input for T(x) we simply input N different numbers viz. $(x_1, x_2, x_3, \ldots, x_n)$ to T_1 hiding the i^{th} largest value that is to be selected from these N different numbers.
- i.e. let T be defined as $T(x_1, x_2, x_3, \ldots, x_n) = (y_1, y_2, y_3, \ldots, y_n)$, such that $y_i = x_i$
- Thus, Q would sort these N different numbers

Understanding Reductions, further...

- How would you define the converter functions for reducing the SELECTION to the SORTING, in the previous example?
- Now, Input for T(x) we simply input N different numbers viz. $(x_1, x_2, x_3, \ldots, x_n)$ to T_1 hiding the i^{th} largest value that is to be selected from these N different numbers.
- i.e. let T be defined as $T(x_1, x_2, x_3, \ldots, x_n) = (y_1, y_2, y_3, \ldots, y_n)$, such that $y_i = x_i$
- Thus, Q would sort these N different numbers
- Let T_2 select only the i^{th} value from these and return as the answer.

Understanding Reductions, further...

Figure: Solving SELECTION using SORTING and T1 and T2

Reductions, another example

- Consider Two problems
 - SumPair Compute the sum of two numbers
 - SumList Compute the sum of n numbers in a vector
- Is it possible to use SumList to find the sum of n numbers in a vector i.e. the answer to SumPair?
- Hence, we would say $Sum_{Pair} \leq_P Sum_{List}$
- However, in this case we can also say that $Sum_{List} \leq_P Sum_{Pair}$
- Therefore, we can say that $Sum_{Pair} \equiv_P Sum_{List}$

Polynomial Time Reduction

- It is essential to ensure that the functions T_1 , T_2 and the algorithm for Q are all polynomial time to ensure Polynomial Time Reducibility.
- That is, reducibility is useful only if it is polynomial time reducibility.
- def: We say that a problem P_1 polynomially reduces to another problem P_2 only if the time for CONVERTER 1 plus the time for CONVERTER 2 is DETERMINISTIC POLYNOMIAL TIME.

• Desiderata : Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

- Desiderata : Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
- Reduction

- Desiderata : Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
- Reduction
 - Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using

- Desiderata: Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
- Reduction
 - Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using
 - Polynomial number of standard computational steps, plus

- Desiderata: Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
- Reduction
 - Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.

Reduction By Simple Equivalence

Minimal Vertex Cover of a graph is a minimum subset of the vertices of G
which contains at least one of the two endpoints of each edge in G

Figure: What is the Vertex Cover?

Figure: Vertex Cover?

Figure: Independent Set?

Figure: Independent Set? Vertex Cover?

• What is an independent set of a graph?

- What is an independent set of a graph?
- Problem : Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \leq_P V$ such that $|S| \leq_P k$, and for each edge at the most only one of its endpoints is in S?

- What is an independent set of a graph?
- Problem : Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \leq_P V$ such that $|S| \leq_P k$, and for each edge at the most only one of its endpoints is in S?
- e.g. Is there an independent set of size \leq 6? Yes. ...of size \leq 7? No.

- What is an independent set of a graph?
- Problem : Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \leq_P V$ such that $|S| \leq_P k$, and for each edge at the most only one of its endpoints is in S?
- e.g. Is there an independent set of size \leq 6? Yes. ...of size \leq 7? No.

- What is an independent set of a graph?
- Problem : Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \leq_P V$ such that $|S| \leq_P k$, and for each edge at the most only one of its endpoints is in S?
- e.g. Is there an independent set of size \leq 6? Yes. ...of size \leq 7? No.

Figure: Independent Set? Vertex Cover?

- Minimum VERTEX COVER: informally a set of vertices that include all the edges.....
- Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \le V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?
- Is there a vertex cover of size \leq 4? Yes. size \leq 3? No.

Figure: Independent Set? Vertex Cover?

- Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET.
- We show S is an independent set iff V S is a vertex cover.

Figure: Independent Set? Vertex Cover?

Part I: We prove that if S is an independent set, then V-S is a vertex cover

 $\label{eq:second-seco$

- Part I: We prove that if S is an independent set, then V-S is a vertex cover
- Claim. VERTEX-COVER < INDEPENDENT-SET

 $\label{eq:second-seco$

- Part I: We prove that if S is an independent set, then V-S is a vertex cover
- Claim. VERTEX-COVER < INDEPENDENT-SET
- Proof:

 $\label{eq:subset} \begin{tabular}{ll} independent...\\ a subset of vertices\\ S \subseteq V such that\\ |S| \geq k, and for\\ each edge\\ at the most\\ only one of\\ its endpoints is in S\\ \end{tabular}$

- Part I: We prove that if S is an independent set, then V-S is a vertex cover
- Claim. VERTEX-COVER < INDEPENDENT-SET
- Proof:
 - Note that we are given that S be any independent set.

 $\label{eq:subset} \begin{tabular}{ll} independent...\\ a subset of vertices\\ S \subseteq V such that\\ |S| \geq k, and for\\ each edge\\ at the most\\ only one of\\ its endpoints is in S\\ \end{tabular}$

- Part I: We prove that if S is an independent set, then V-S is a vertex cover
- Claim. VERTEX-COVER < P INDEPENDENT-SET
- Proof:
 - Note that we are given that S be any independent set.
 - Consider an arbitrary edge (u, v).

independent...
a subset of vertices
S ⊆ V such that
|S| ≥ k, and for
each edge
at the most
only one of
its endpoints is in S

- Part I: We prove that if S is an independent set, then V-S is a vertex cover
- Claim. VERTEX-COVER < P INDEPENDENT-SET
- Proof:
 - Note that we are given that S be any independent set.
 - Consider an arbitrary edge (u, v).
 -

• Part II: We prove that if V-S is a vertex cover then S is an independent set

- Part II: We prove that if V-S is a vertex cover then S is an independent set
- Claim : INDEPENDENT-SET < VERTEX-COVER

- Part II: We prove that if V-S is a vertex cover then S is an independent set
- Claim : INDEPENDENT-SET < VERTEX-COVER
- Proof:

- Part II: We prove that if V-S is a vertex cover then S is an independent set
- Claim : INDEPENDENT-SET < VERTEX-COVER
- Proof:
 - Consider two vertices u and v belonging to V. Then, there are three cases for the edge (u,v).

- Part II: We prove that if V-S is a vertex cover then S is an independent set
- Claim : INDEPENDENT-SET < VERTEX-COVER
- Proof:
 - Consider two vertices u and v belonging to V. Then, there are three cases for the edge (u,v).
 - What can be said about the edge (u,v) and the set V-S?

- Part II: We prove that if V-S is a vertex cover then S is an independent set
- Claim : INDEPENDENT-SET < VERTEX-COVER
- Proof:
 - Consider two vertices u and v belonging to V. Then, there are three cases for the edge (u,v).
 - What can be said about the edge (u,v) and the set V-S?
 - Three cases:

Independent Set: An interesting observation

• An interval scheduling problem can be described by an intersection graph,

Independent Set: An interesting observation

- An interval scheduling problem can be described by an intersection graph,
- In an intersection graph, each vertex is an interval, and there is an edge between two vertices if and only if their intervals overlap.

- An interval scheduling problem can be described by an intersection graph,
- In an intersection graph, each vertex is an interval, and there is an edge between two vertices if and only if their intervals overlap.
- Remember we studied the interval scheduling problem first up in the Greedy design chapter.

- An interval scheduling problem can be described by an intersection graph,
- In an intersection graph, each vertex is an interval, and there is an edge between two vertices if and only if their intervals overlap.
- Remember we studied the interval scheduling problem first up in the Greedy design chapter.
- So, now in this representation, how could the interval scheduling problem be modelled?

- An interval scheduling problem can be described by an intersection graph,
- In an intersection graph, each vertex is an interval, and there is an edge between two vertices if and only if their intervals overlap.
- Remember we studied the interval scheduling problem first up in the Greedy design chapter.
- So, now in this representation, how could the interval scheduling problem be modelled?
- Well, the interval scheduling problem is equivalent to finding the maximum independent set in this intersection graph.

- An interval scheduling problem can be described by an intersection graph,
- In an intersection graph, each vertex is an interval, and there is an edge between two vertices if and only if their intervals overlap.
- Remember we studied the interval scheduling problem first up in the Greedy design chapter.
- So, now in this representation, how could the interval scheduling problem be modelled?
- Well, the interval scheduling problem is equivalent to finding the maximum independent set in this intersection graph.
- Finding a maximum independent set is NP-hard in general graphs, but it can be done in polynomial time in the special case of intersection graphs (ISMP).

• Claim. K-Clique \equiv_P VERTEX-COVER

- Claim. K-Clique \equiv_P VERTEX-COVER
- That is, a graph G = (V, E) has a clique of size k, iff the compliment graph G_C has a vertex cover of size |V| k.

- Claim. K-Clique \equiv_P VERTEX-COVER
- That is, a graph G = (V, E) has a clique of size k, iff the compliment graph G_C has a vertex cover of size |V| k.

- Claim. K-Clique \equiv_P VERTEX-COVER
- That is, a graph G = (V, E) has a clique of size k, iff the compliment graph G_C has a vertex cover of size |V| k.

Figure: K-Clique? Vertex Cover?

• Part I : We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| - k.

Figure: K-Clique? Vertex Cover?

- Part I : We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| k.
- Claim : Vertex-Cover ≤_P K-Clique

Figure: K-Clique? Vertex Cover?

- Part I: We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| - k.
- Claim : Vertex-Cover ≤_P K-Clique
- Proof: Let S be the k-clique in G then we have to show that V-S is a vertex cover in G_C of size |V|-k

Figure: K-Clique? Vertex Cover?

- Part I : We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| k.
- Claim : Vertex-Cover ≤_P K-Clique
- Proof: Let S be the k-clique in G then we have to show that V-S is a vertex cover in G_C of size |V|-k
 - First, consider an edge (v, w) in G_C

Figure: K-Clique? Vertex Cover?

- Part I : We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| k.
- Claim : Vertex-Cover ≤_P K-Clique
- Proof: Let S be the k-clique in G then we have to show that V-S is a vertex cover in G_C of size |V|-k
 - First, consider an edge (v, w) in G_C
 - What about this edge in G?

Figure: K-Clique? Vertex Cover?

- Part I : We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| k.
- Claim : Vertex-Cover ≤_P K-Clique
- Proof: Let S be the k-clique in G then we have to show that V-S is a vertex cover in G_C of size |V|-k
 - First, consider an edge (v, w) in G_C
 - What about this edge in G?
 -

Figure: K-Clique? Vertex Cover?

- Part I: We prove that if the graph G has a clique of size k, the compliment graph G_C has a vertex cover of size |V| - k.
- Claim : Vertex-Cover ≤_P K-Clique
- Proof: Let S be the k-clique in G then we have to show that V-S is a vertex cover in G_C of size |V|-k
 - First, consider an edge (v, w) in G_C
 - What about this edge in G?
 -
 - Lastly, what about the sizes k and |V| k? Keep in mind that the vertex sets of both G and Gc are the same i.e. V

Figure: K-Clique? Vertex Cover?

• Part II: We prove that if the graph G_C has a a vertex cover of size |V| - k, then the compliment graph G has a clique of size k.

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique <
 P Vertex-Cover
 </p>

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique <
 P Vertex-Cover
 </p>
- Proof: Let V S be the vertex cover of size |V| k in G_C then we have to show that S is a clique of size k in G_C of size |V| k

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique <
 P Vertex-Cover
 </p>
- Proof: Let V S be the vertex cover of size |V| k in G_C then we have to show that S is a clique of size k in G_C of size |V| k
- We start with the following:

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique <
 P Vertex-Cover
 </p>
- Proof: Let V S be the vertex cover of size |V| k in G_C then we have to show that S is a clique of size k in G_C of size |V| k
- We start with the following:
 - Consider an (edge (v, w) belonging to G_C . Now since V - S is forming a vertex cover in G_C and since edge (v, w) belongs to G_C we have the following two cases:

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique ≤_P Vertex-Cover
- Proof: Let V S be the vertex cover of size |V| k in G_C then we have to show that S is a clique of size k in G_C of size |V| k
- We start with the following:
 - Consider an (edge (v, w) belonging to G_C . Now since V - S is forming a vertex cover in G_C and since edge (v, w) belongs to G_C we have the following two cases:
 -

Figure: K-Clique? Vertex Cover?

- Part II: We prove that if the graph G_C has a a vertex cover of size |V| k, then the compliment graph G has a clique of size k.
- Claim : K-Clique <
 P Vertex-Cover
 </p>
- Proof: Let V S be the vertex cover of size |V| k in G_C then we have to show that S is a clique of size k in G_C of size |V| k
- We start with the following:
 - Consider an (edge (v, w) belonging to G_C . Now since V - S is forming a vertex cover in G_C and since edge (v, w) belongs to G_C we have the following two cases:
 -
 -

Figure: K-Clique? Vertex Cover?

Reduction By Using Gadgets

The Set Cover problem

- An instance of Set Cover is given by a ground set $U = x_1, x_2, x_3, \dots, x_n$, subsets $S \subseteq U$ of that ground set, and an integer k.
- The question is, is it possible to select a collection C of at most k of these subsets such that taken together, they *cover* all of U?
- That is, is there a n set $C\subseteq 1,2,.....,m$ such that |C|=k and $\cup_{i\in C} S_i=\mathsf{U}$?

```
U = \{ 1, 2, 3, 4, 5, 6, 7 \}
k = 2
S_a = \{3, 7\} \qquad S_b = \{2, 4\}
S_c = \{3, 4, 5, 6\} S_d = \{5\}
S_e = \{1\} \qquad S_f = \{1, 2, 6, 7\}
```

Figure: What are S_c and S_f shown in red?

The Set Cover problem: Applications

- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The i_{th} piece of software provides the set $S_i \subset U$ of capabilities.
 - Goal achieve all n capabilities using fewest pieces of software.

```
U = \{ 1, 2, 3, 4, 5, 6, 7 \}
k = 2
S_a = \{3, 7\} \qquad S_b = \{2, 4\}
S_c = \{3, 4, 5, 6\} S_d = \{5\}
S_e = \{1\} \qquad S_f = \{1, 2, 6, 7\}
```

Figure: What are S_c and S_f shown in red?

Vertex Cover \equiv_P SetCover

SET COVER

$$U = \{1, 2, 3, 4, 5, 6, 7\}, k = 2$$

$$S_a = \{3, 7\},$$
 $S_b = \{2, 4\},$ $S_c = \{3, 4, 5, 6\},$ $S_d = \{5\},$ $S_e = \{1\},$

 $S_f = \{1, 2, 6, 7\}$

• Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes
 - the number of nodes in the graph will be equal to the number of literals in the CNF with vertices grouped in k classes.

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes
 - the number of nodes in the graph will be equal to the number of literals in the CNF with vertices grouped in k classes.
 - For edges

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes
 - the number of nodes in the graph will be equal to the number of literals in the CNF with vertices grouped in k classes.
 - For edges
 - do not connect any two vertices in the same class

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes
 - the number of nodes in the graph will be equal to the number of literals in the CNF with vertices grouped in k classes.
 - For edges
 - do not connect any two vertices in the same class
 - do not connect any two vertices if they are complement of each other, even if they are across different classes

- Given a graph G=(V,E) it has a clique of size k if and only if there is a SAT expression μ with k clauses that is satisfiable.
- As an illustration consider that we are given a SAT expression μ as follows: $\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$
- μ is satisfiable if and only if we have a graph G=(V,E) has a clique has size
 of k.
- Approach is to create an appropriate gadget that can be used as a tool to prove the equivalence of the two problems.
- Design rules:
 - For nodes
 - the number of nodes in the graph will be equal to the number of literals in the CNF with vertices grouped in k classes.
 - For edges
 - do not connect any two vertices in the same class
 - do not connect any two vertices if they are complement of each other, even if they are across different classes
 - otherwise connect all the other vertices across different classes.

35 / 38

Vertex Cover \equiv_P SetCover.

Gadget design for
$$\mu = (x_1 + \bar{x_2})(x_3 + x_4 + \bar{x_2})(\bar{x_1} + \bar{x_4})$$

Blank

Blank

