随机变量及其分布

Didnelpsun

目录

1	一维	一维随机变量														
	1.1	随机变量概念	1													
	1.2	分布函数	1													
		1.2.1 概念	1													
		1.2.2 性质	1													
		1.2.3 应用	1													
2	一维	离散随机变量	2													
	2.1	分布律	2													
	2.2	性质	2													
	2.3	应用	2													
	2.4	分布	3													
		2.4.1 0-1 分布	3													
		2.4.2 二项分布	3													
		2.4.3 泊松分布	3													
		2.4.4 几何分布	3													
		2.4.5 超几何分布	4													
3	一维	-维连续随机变量														
	3.1	概率密度	4													
	3.2	性质	4													
	3.3	应用	4													
	3.4	分布	5													
		3.4.1 均匀分布	5													

		3.4.2	指	数	分才	1																			•	5
	3.4.3 正态分布																			5						
4	一维	一维随机变量函数分布															5									
	4.1	离散型	! .																							5
	4.2	连续性																								5

1 一维随机变量

1.1 随机变量概念

定义: 随机变量就是其值会随机而定的变量。设随机试验 E 的样本空间 $\Omega = \omega$,如果对每一个 ω 都有唯一的实数 $X(\omega)$ 与之对应,并且对任意实数 x, $\{\omega|X(\omega) \leq x, \omega \in \Omega\}$ 是随机事件,则称定义在 Ω 上的实值单值函数 $X(\omega)$ 为随机变量,记为随机变量 X。

1.2 分布函数

1.2.1 概念

定义:设 X 为随机变量,x 为任意实数,称函数 $F(x) = P\{X \le x\}$ ($x \in R$ 且取遍所有实数)为随机变量 X 的分布函数,或称 X 服从分布 F(x),记为 $X \sim F(x)$ 。(随着 x 从 $-\infty$ 到 $+\infty$, $X(\omega)$ 到 \varnothing 到 Ω)

1.2.2 性质

同样是分布函数的充要条件:

- F(x) 是 x 的单调不减函数,即对任意实数 $x_1 < x_2$,有 $F(x_1) \leq F(x_2)$ 。
- F(x) 是 x 的右连续函数,即对任意 $x_0 \in R$,有 $\lim_{x \to x_0^+} F(x) = F(x_0 + 0) = F(x_0)$ 。(左空心右实心)
- $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$.

1.2.3 应用

- $P\{X \leqslant a\} = F(a)$.
- $P\{X < a\} = F(a 0)$ 。是指分布函数下该点左极限的概率值。
- $P(X = a) = F(a) F(a 0)_{\circ} :: P\{X \le a\} = P\{X < a \cup X = a\} = P\{X < a\} + P\{X = a\}, :: P\{X = a\} = P\{X \le a\} P\{X < a\} = F(a) F(a 0)_{\circ}$

2 一维离散随机变量

定义: 若随机变量 X 只可能取有限个或可列各值 x_1, x_2, \cdots ,则称 X 为离散型随机变量。

2.1 分布律

定义: $P\{X=x_i\}=p_i,\ i=1,2,\cdots$ 为 X 的分布列、分布律或概率分布,记为 $X\sim p_i$ 。

概率分布常用表格或矩阵表示:

2.2 性质

数列 $\{p_i\}$ 是离散型随机变量的概率分布的充要条件是 $p_i\geqslant 0$ $(i=1,2,\cdots)$ 且 $\sum_{i=1}^n p_i=1$ 。

设离散型随机变量 X 的概率分布为 $P\{X=x_i\}=p_i$,则 X 的分布函数 $F(x)=P\{X\leqslant x\}=\sum_{x_i\leqslant x}P\{X=x_i\}$,即离散型随机变量的分布律函数是一个左实右空的阶梯形函数。

 $P\{X = x_i\} = P\{X \le x_i\} - P\{X < x_i\} = F(x_i) - F(x_i - 0)$,即某点的概率值为该点分布律值减去该点左极限的分布律值。

对实数轴上的任一集合 B 有 $P\{X \in B\} = \sum_{x_i \in B} P\{X = x_i\}$,特别地 $P\{a < X \leqslant b\} = P\{X \leqslant b\} - P\{X \leqslant a\} = F(b) - F(a)$ 。

2.3 应用

例题: 已知随机变量 X 的概率分布为:

$$X$$
 1 2 3 $P\{X = k\}$ θ^2 $2\theta(1 - \theta)$ $(1 - \theta)^2$

且 $P\{X \ge 2\} = \frac{3}{4}$,求未知参数 θ 与 X 的分布函数 F(x)。

解:
$$P\{X \ge 2\} = \frac{3}{4}$$
, $2\theta(1-\theta) + (1-\theta)^2 = \frac{3}{4}$, 解得 $\theta = \frac{1}{2}$, $-\frac{1}{2}$ 舍。

2.4 分布

2.4.1 0-1 分布

定义: 若 X 的概率分布为 $X \sim \begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix}$,即 $P\{X=1\}=p$, $P\{X=0\}=1-p$,则称 X 服从参数为 p 的 0-1 分布,记为 $X \sim B(1,p)$ (0 < p < 1)。 0-1 分布基于一次伯努利试验,X 也称为伯努利计数变量。

2.4.2 二项分布

定义: 如果 X 的概率分布为 $P\{X=k\}=C_n^kp^k(1-p)^{n-k}$ $(k=0,1,\cdots,n,0)$ 0< p<1),则称 X 服从参数为 (n,p) 的二项分布,记为 $X\sim B(n,p)$ 。

- 二项分布基于 n 重伯努利试验。
- 二项分布的分布律计算,总共进行试验 n 次,已知成功的概率为 p,若成功了 k 次,则 k 次成功概率为 p^k ,则失败次数为 n-k,从而 n-k 失败概率为 $(1-p)^{n-k}$,因为 n 次试验都是相互独立的,所以将成功的概率与失败的概率乘在一起。又在 n 次中成功 k 次就可以了,进行排列,所以还乘上 C_n^k 。

2.4.3 泊松分布

定义: 如果 X 的概率分布为 $P\{X=k\}=rac{\lambda^k}{k!}e^{-\lambda}$ $(k=0,1,\cdots,n,\ \lambda>0)$,则称 X 服从参数为 λ 的**泊松分布**,记为 $X\sim P(\lambda)$ 。

泊松分布基于某场合某单位时间内源源不断的质点来流的个数 X = k, λ 代表质点流动到来的强度。也可以代表稀有事件发生的概率。

2.4.4 几何分布

定义: 如果 X 的概率分布为 $P\{X=k\}=(1-p)^{k-1}p$ $(k=0,1,\cdots,n,0)$ 0< p<1),则称 X 服从参数为 p 的几何分布,记为 $X\sim G(p)$ 。

几何分布与几何无关,代表的是 n 重伯努利试验首次成功就停止试验,试验次数可以为无穷。设 X 表示伯努利试验中事件 A 首次放生所需要的试验次数,则 $X \sim G(p)$,其中 p = P(A)。

从而根据意义,几何分布要求前 k-1 次都失败,从而概率为 $(1-p)^{k-1}$,最后一次成功,所以再乘上 p。

2.4.5 超几何分布

定义: 如果 X 的概率分布为 $P\{X=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}$ $(\max\{0,n-N+M\}\leqslant k\leqslant \min\{MM,n\},\ M,N,n$ 为正整数且 $M\leqslant N,\ n\leqslant N,\ k$ 为整数),则称 X 服从参数为 (n,N,M) 的**超几何分布**,记为 $X\sim H(n,N,M)$ 。

超几何分布考的可能性很小,事件数就是古典概型的一个特例。

如有 N 件产品,其中 M 件正品,从而 N-M 件次品,任取 n 个,则取出 k 件正品的概率就是超几何分布。

3 一维连续随机变量

定义: 若随机变量 X 的分布函数可以表示为 $F(x) = \int_{-\infty}^{x} f(t) dt \ (x \in R \perp R)$ 取遍所有实数),其中 f(x) 是非负可积函数,则 X 为连续型随机变量。

3.1 概率密度

定义: f(x) 称为 X 的概率密度函数, 简称概率密度, 记为 $X \sim f(x)$ 。

3.2 性质

改变 f(x) 有限各点的值 f(x) 仍是概率密度,f(x) 为某一随机变量 X 的概率密度的充分必要条件: $f(x) \geqslant 0$,且 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$ 。

若 X 为连续型随机变量, $X \sim f(x)$,则对任意实数 c 有 $P\{X=c\}=0$ 。 对实数轴上的任一集合 B 有 $P\{X\in B\}=\int_B f(x)\,\mathrm{d}x$,特别地 $P\{a< X< b\}=P\{a\leqslant X< b\}=P\{a\leqslant X\leqslant b\}=P\{a\leqslant X\leqslant b\}=\int_a^b f(x)\,\mathrm{d}x=F(b)-F(a)$ 。

3.3 应用

例题: 已知随机变量 X 的概率密度为 $\begin{cases} Ax, & 1 < x < 2 \\ B, & 2 \leqslant x < 3 \end{cases}$,且 $P\{1 < X < 0,$ 其他 $2\} = P\{2 < X < 3\}$,求常数 AB,分布函数 F(x) 以及概率 $P\{2 < X < 4\}$ 。解:由于归一性 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$,∴ $\int_{1}^{2} Ax \, \mathrm{d}x + \int_{2}^{2} B \, \mathrm{d}x = 1$ 。 ∴ $\frac{3}{2}A + B = 1$ 。 又 $P\{1 < X < 2\} = P\{2 < X < 3\}$ 。

$$\therefore \int_{1}^{2} Ax \, dx = \int_{2}^{3} B \, dx, \quad \mathbb{P} \therefore \int_{1}^{2} Ax \, dx = \int_{2}^{2} B \, dx = \frac{1}{2}, \quad A = \frac{1}{3}, \quad B = \frac{1}{2}.$$

$$f(x) = \begin{cases} \frac{1}{3}x, & 1 < x < 2 \\ \frac{1}{2}, & 2 \le x < 3 \end{cases}, \quad \therefore F(x) = \int_{-\infty}^{x} f(t) \, dt.$$

$$0, \quad \text{Id}$$

$$\therefore F(x) = \begin{cases} 0, & x < 1 \\ \int_{1}^{x} \frac{1}{3}t \, dt = \frac{x^{2}}{6} - \frac{1}{6}, & 1 \le x < 2 \\ \int_{1}^{2} \frac{1}{3}x \, dx + \int_{2}^{x} \frac{1}{2} \, dx = \frac{1}{2}x - \frac{1}{2}, \quad 2 \le x < 3 \\ 1, & x \geqslant 3 \end{cases}$$

3.4分布

3.4.1 均匀分布

定义: 如果 X 的概率密度或分布函数分别为 $f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{其他} \end{cases}$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leqslant x < b \end{cases}$$
,则称 X 在区间 (a,b) 上服从均匀分布,记为 $1, \quad x \geqslant b$

3.4.2指数分布

3.4.3 正态分布

4 一维随机变量函数分布

离散型 4.1

连续性 4.2