Al 신경망의 기초: MLP 완전정복

Session 4. Multilayer Perceptron

Presented by **Yunseon Byun** (yun-seon@kimm.re.kr)

Contents

MLP in the Al scope

Fundamental principles of MLP

Model training of MLP

Contents

MLP in the AI scope

Fundamental principles of MLP

Model training of MLP

인공지능(Artificial Intelligence, AI)

¹LLM is an intersection of DL and NLP

²Conversational AI is a combination of ML and NLP. It may include DL and LLM, but that isn't always the case.

인공지능(Artificial Intelligence, AI)

인간의 시냅스 VS AI의 파라미터

인간의 시냅스

- 뇌에는 시냅스가 있는데 정보를 학습하고 기억함
- 시냅스가 많으면 많을수록 처리할 수 있는 정보량이 많아짐

AI의 파라미터

- 인공신경망과 파라미터는 인간의 뇌와 시냅스를 본뜬 것
- 파라미터가 많을수록 정교한 학습이 가능함

입력이 주어지면

출력을 내보낸다.

입력

Structured and unstructured data

- ✓ Tables (excel, csv)
- ✓ Text
- ✓ Images, audio and video
- Time series and geospatial data

술덕

from big-data to smart data

- Regression/Predictions
- Classifications and clustering
- ✓ Recommendations
- ✓ Automation

AI 모델 구분

지도학습 Supervised Learning

- 입력과 출력에 매핑(mapping) 되는 일반적인 규칙을 학습
- 입력과 출력 레이블을 모델 학습에 직접적으로 사용하는 방식

비지도학습 Supervised Learning

- 사전 정의된 출력 없이 입력 데이터 사용하는 방식
- 입력 데이터의 구조나 패턴을 찾는 것을 목적으로 함

준(반)지도학습 Semi-supervised Learning

- 출력 레이블이 있는 데이터와 없는 데이터가 혼합된 경우에 사용
- 일부 데이터의 출력 레이블을 모델 학습에 직접적으로 사용하는 방식

AI 모델 구분

사례 기반 학습 Instance-based Learning

- 샘플을 기억하는 방식으로 학습
- 예측을 위해 샘플 사이의 유사도를 측정한 후, 유사한 샘플과 동일하게 출력하는 방식

모델 기반 학습 Model-based Learning

- 샘플을 사용해 설계된 모델을 학습
- Train data로 학습한 모델을 사용해 Test data에 대한 출력을 예측(Regression) 및 분류(Classification)하는 방식

AI 모델링 목적

예측/회귀(Regression)

MLP 🔆

- 학습 데이터에 부합되는 출력 값이 실수인 함수를 찾는 문제
- 오차(예측 값과 실제 값 간의 차이)를 줄일 수 있는 함수를 찾는 것
- 모델의 종류(함수의 종류)에 영향을 받음

분류(Classification)

- 데이터들을 사전에 정해진 몇 개의 부류(class, category)로 대응시키는 문제
- 학습 데이터를 잘 분류할 수 있는 함수를 찾는 것
- 함수의 형태는 수학적 함수일 수도 있고, 규칙일 수도 있음
- 이상적인 분류 모델: 학습에 사용되지 않은 데이터에 대해서 분류 성능이 높으며, 일반화(generalization) 능력이 좋은 것

AI 모델링 목적 및 평가

"좋은" 모델 ⇒ 일반화된 모델

모델의 일반화(generalization) 능력을 높이기 위해,

예측 값과 실제 값 간의 오차 줄이기

AI 모델링 목적: 분류(Classification)

지나치게 단순한 모델(함수) 사용

- 분류의과적합(overfitting) 대응방법
 - 학습과정에서 별도의 검증 데이터(validation data)에 대한 성능 평가
 - 검증 데이터에 대한 오류가 감소하다가 증가하는 시점에 학습 중단

AI 모델링 목적: 분류(Classification)

적절한 함수(모델) 찾기

AI 모델링 목적: 분류(Classification)

적절한 함수(모델) 찾기

 \hat{y} 예측 값과 \hat{y} 실제 값 간의 오차 줄이기

지나치게 단순한모델(함수) 사용

지나치게 복잡한모델(함수) 사용

- 회귀의과적합(overfitting) 대응방법
 - 모델의복잡도(model complexity)를성능평가에반영
 - 목적함수 변형(e.g. 오차의합+ (가중치)*(모델복잡도))

적절한 함수(모델) 찾기

^ŷ예측 값과 실제 값 간의 오차 줄이기

학습 데이터(Train data)

검증 데이터(Test data)

Contents

MLP in the Al scope

Fundamental principles of MLP

Model training of MLP

Perceptron

Perceptron

Perceptron 예제

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Perceptron 예제

Perceptron 한계점

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

Multilayer Perceptron 필요성

 $x_1 XOR x_2 = (x_1 AND \sim x_2) OR (\sim x_1 AND x_2)$

Multilayer Perceptron 구조

Training MLP means learning the weights

활성화함수를 통한 비선형 변환

$$S_i = \sum_j w_{ji} x_j$$

활성화 함수(Activation function)의 변형

활성화함수를 통한 비선형 변환

e.g. 시그모이드(Sigmoid) 함수

- 비선형 mapping function
- 큰 입력 값으로부터 작은 출력 값(0에서 1사이) 도출

MLP 계층 구조

Single layer network Multilayer network Hidden Layer Input layer **Output layer** Input layer **Output layer** (≥1)

MLP 계층 구조

Contents

MLP in the Al scope

Fundamental principles of MLP

Model training of MLP

MLP 학습 요소

손실함수 (Loss/Cost function)

역전파 (Back propagation)

AI 학습의 목적

AI 학습의 목적

"좋은" 모델 ⇒ 일반화된 모델

모델의 일반화(generalization) 능력을 높이기 위해,

예측 값과 실제 값 간의 오차 줄이기

AI 학습의 목적

[Error function]

손실함수 정의

Error function
Loss function
Cost function
Objective function

[회귀/예측 문제]

목적: 예측 값과 실제 값 간의 오차 줄이기

수치 값의 차이가 중요!

Mean Absolute Error (MAE)	$\mathcal{L}_{MAE} = \frac{1}{N} \sum_{i=1}^{N} y_i - f(x_i) $
Mean Squared Error (MSE)	$\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$

손실함수 정의

Error function Loss function Cost function Objective function

[분류 문제]

목적: 예측 값과 실제 값 간의 오차 줄이기

명목형 값의 차이(count)가 중요!

Binary Cross Entropy (BCE)	$\mathcal{L}_{BCE} = \frac{1}{N} \sum_{i=1}^{N} y_i log(p(x_i)) + (1 - y_i) log(1 - p(x_i))$
Cross Entropy (CE)	Samples # N M Classes # $\mathcal{L}_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} log(f(x_{ij}))$

손실 및 가중치 Update

Model parameter (가중치, 편향) 최적화란, 함수의 최솟값 혹은 최댓값을 찾는 것

Error surface $E(w_1, w_2)$ for a two-parameter model

손실 및 가중치 Update

순전파와 역전파

순전파 예제

g: sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$

$$s_1 = w_1 x_1 + w_2 x_2 = 0.3 \times 0.1 + 0.25 \times 0.2 = 0.08$$

 $s_2 = w_3 x_1 + w_4 x_2 = 0.4 \times 0.1 + 0.35 \times 0.2 = 0.11$

$$h_1 = sigmoid(s_1) = 0.520$$
 $h_2 = sigmoid(s_2) = 0.527$

순전파 예제

g: sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$s_3 = w_5 h_1 + w_6 h_2 = 0.45 \times 0.520 + 0.4 \times 0.527 = 0.445$$

 $s_4 = w_7 h_1 + w_8 h_2 = 0.7 \times 0.520 + 0.6 \times 0.527 = 0.680$

$$o_1 = sigmoid(s_3) = 0.609$$

$$o_2 = sigmoid(s_4) = 0.664$$

순전파 예제

$$Error_{o_1} = \frac{1}{2} (target_{o_1} - output_{o_1})^2 = \frac{1}{2} (0.4 - 0.609)^2 = 0.022$$

$$Error_{o_2} = \frac{1}{2} (target_{o_2} - output_{o_2})^2 = \frac{1}{2} (0.6 - 0.664)^2 = 0.002$$

$$Error_{total} = Error_{o_1} + Error_{o_2} = 0.024$$

$$target_{o_1} = 0.4$$

$$target_{o_2} = 0.6$$

$$\frac{\partial Error_{total}}{\partial w_5} = \frac{\partial Error_{total}}{\partial o_1} \times \frac{\partial o_1}{\partial s_3} \times \frac{\partial s_3}{\partial w_5}$$

$$target_{o_1} = 0.4$$

$$target_{o_2} = 0.6$$

$$Error_{total} = \frac{1}{2} \left(target_{o_1} - output_{o_1} \right)^2 + \frac{1}{2} \left(target_{o_2} - output_{o_2} \right)^2$$

$$\frac{\partial Error_{total}}{\partial o_1} = 2 \times \frac{1}{2} \left(target_{o_1} - output_{o_1} \right)^1 \times (-1) + 0$$
$$= -(0.4 - 0.609) = 0.209$$

$$\frac{\partial o_1}{\partial s_3} = \{Sigmoid의 미분\}$$
 $f(x) = \frac{1}{1 + e^{-x}}$ $f'(x) = f(x) \cdot (1 - f(x))$

$$\frac{\partial o_1}{\partial s_3} = o_1 \times (1 - o_1) = 0.609 \times (1 - 0.609) = 0.238$$

$$s_3 = w_5 \times h_1 + b_3$$

$$\frac{\partial s_3}{\partial w_5} = h_1 = 0.520$$

 $y_1 = 0.4$

 $y_2 = 0.6$

$$\frac{\partial Error_{total}}{\partial w_5} = \frac{\partial Error_{total}}{\partial o_1} \times \frac{\partial o_1}{\partial s_3} \times \frac{\partial s_3}{\partial w_5}$$

$$= 0.209 \times 0.238 \times 0.520 = 0.026$$

Updated weight

$$w_5^+ = w_5 - \alpha \times \frac{\partial Error_{total}}{\partial w_5} = 0.45 - 0.5 \times 0.026 = 0.437$$

Learning rate

(hyperparameter)

AI 모델 학습 프로세스

출처:CS 179: Lecture 13 - Intro to machine learning, 2017.

Thank you

Yunseon Byun 변윤선, Ph.D

나노융합본부, 이차전지장비연구실

yun-seon@kimm.re.kr

