7710 28 FEB 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

REC'D 2 4 NOV 2003

PCT

Aktenzeichen:

102 40 404.6

Anmeldetag:

02. September 2002 <

Anmelder/Inhaber:

austriamicrosystems AG, Unterpremstätten/AT

Bezeichnung:

Hall-Sensor und Verfahren zu dessen Betrieb

IPC:

H 01 L, G 01 R

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. September 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Brosig

COMPLIANCE WITH RULE 17.1(a) OR (b)

Beschreibung

10

15

20

30

35

Hall-Sensor und Verfahren zu dessen Betrieb

5 Die Erfindung betrifft einen Hall-Sensor auf einem Halbleitersubstrat sowie ein Betriebsverfahren für den Hall-Sensor.

Aus der Druckschrift US 4929993 sind Hall-Sensoren auf Siliziumsubstrat bekannt, bei denen eine n-dotierte Zone in eine
p-dotierte Wanne eingebracht ist. Die n-dotierte Zone bildet
dabei die aktive Zone des Hall-Sensors, also das HallPlättchen. Das Hall-Plättchen weist vier äußere Anschlüsse
auf, wobei jeweils gegenüberliegende Anschlüsse für das Einspeisen des Steuerstromes bzw. das Auslesen der Hall-Spannung
vorgesehen sind.

Die bekannten Hall-Sensoren haben den Nachteil, daß sie zur Messung sehr kleiner statischer Magnetfelder weniger geeignet sind, da sie auch bei Magnetfeld = 0 aufgrund von Materialin-homogenitäten eine Hall-Spannung in Form einer Fehlspannung erzeugen.

Um Fehlspannungen (diese sind auch bekannt unter dem Namen Offset) zu reduzieren, ist es aus der Druckschrift P.J.A. Munter, A low Offset spinning-current hall plate, Sensors & Actuators A, A22 (1990) 743-746 bekannt, Hall-Sensoren mit einem speziellen Betriebsverfahren zu betreiben. Dazu wird an das Hall-Plättchen ein sich im Laufe der Zeit um die Achse des Magnetfelds drehender Steuerstrom angelegt. Da während der Drehung der Stromrichtung um jeweils 90 Grad die Fehlspannung ihr Vorzeichen wechselt, kann durch Addieren von um 90 Grad verdreht gemessenen Fehlspannungspaaren die Gesamtfehlspannung bis auf eine Restfehlspannung kompensiert werden.

Bei einem Hall-Plättchen bestehend aus einer n- oder pdotierten Zone, eingebettet in einem Halbleitersubstrat des

jeweils anderen Leitungstyps wird die Größe der Restfehlspannung durch einen im Folgenden beschriebenen Effekt beeinflußt. Es entsteht eine Raumladungszone zwischen dem Hall-Plättchen und seiner Umgebung. Bei Einprägen eines Steuerstroms in das Hall-Plättchen entsteht über eine Richtung des Hall-Plättchens ein Spannungsabfall, der die Breite der Raumladungszone und mithin die Breite des Hall-Plättchens, also die letztlich aktive Zone im Halbleitermaterial, in der der Hall-Effekt stattfindet, variiert.

10

Es ist daher Aufgabe der vorliegenden Erfindung, einen Hall-Sensor anzugeben, der so betrieben werden kann, daß die Restfehlspannung reduziert ist.

Diese Aufgabe wird gelöst durch einen Hall-Sensor nach Patentanspruch 1 sowie ein Verfahren zu dessen Betrieb nach Patentanspruch 4. Vorteilhafte Ausgestaltungen der Erfindung sind den weiteren abhängigen Patentansprüchen zu entnehmen.

20

Es wird ein Hall-Sensor angegeben, der auf einem Halbleitersubstrat angeordnet ist. Es ist ein Hall-Plättchen gebildet
aus einer Zone eines Leitungstyps in dem Substrat. An das
Hall-Plättchen grenzt eine Zone des anderen Leitungstyps an.
Die Zone des anderen Leitungstyps und das Hall-Plättchen sind
lediglich durch eine Raumladungszone voneinander getrennt.
Das Hall-Plättchen ist mit Kontakten versehen, die zur Einspeisung eines Steuerstroms geeignet sind. Ferner ist die Zone des anderen Leitungstyps mit Kontakten zur Einspeisung eines Kompensationsstroms versehen.

30

Das Hall-Element hat den Vorteil, daß durch die Bereitstellung der Möglichkeit, einen Kompensationsstrom in einen an die Raumladungszone angrenzenden Bereich zu speisen, die Dikke der Raumladungszone und mithin die Dicke des Hall-

35 Plättchens positiv beeinflußt werden kann.

Dementsprechend wird ein Verfahren zum Betrieb des Hall-Sensors angegeben, wobei ein Kompensationsstrom parallel zum Steuerstrom fließt, dessen Größe so bemessen ist, daß das Hall-Plättchen eine im wesentlichen konstante Dicke aufweist.

5

10

15

In einer ersten Ausführungsform des Hall-Elements ist das Hall-Plättchen zwischen zwei Zonen des anderen Leitungstyps angeordnet. Diese Ausführungsform hat den Vorteil, daß es möglich ist, die Dicke des Hall-Plättchens von beiden Seiten her mittels Kompensationsstrom zu beeinflussen.

In einer anderen Ausführungsform ist das Hall-Plättchen an der Oberfläche des Substrats angeordnet. Ferner ist die Zone des anderen Leitungstyps in ein Substrat eingebettet, welches vom Leitungstyp des Hall-Plättchens ist. Auch in dieser speziellen Designvariante gelingt die Kompensation der Deformierung des Hall-Plättchens aufgrund des Spannungsabfalls durch Einspeisung eines Steuerstroms.

20 Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert:

Figur 1 zeigt einen Hall-Sensor einer ersten und einer zweiten Ausführungsform in einer Draufsicht.

Figur 2 zeigt einen Hall-Sensor für eine erste und zweite Ausführungsform als Querschnitt entlang der Linie II-II in Figur 2.

30 Figur 3 zeigt einen Querschnitt entsprechend Figur 2.

Figur 4 zeigt eine erste Ausführungsform eines Hall-Sensors in einem schematischen Querschnitt.

Figur 5 zeigt eine weitere Ausführungsform eines Hall-Sensors in einem schematischen Querschnitt.

15

20

30

35

4

Figur 1 zeigt die Draufsicht auf ein Substrat 1. Das Substrat 1 kann beispielsweise aus Silizium bestehen. Das Substrat 1 bildet eine äußere p-dotierte Zone 51. In einem mittleren Bereich des Substrats 1 ist durch Dotieren eine n-dotierte Zone 52 gebildet. Die Zone 52 hat die Form eines Kreuzes mit vier Kontakten 321, 322, 323, 324 jeweils an den äußeren Enden des Kreuzes. Die Zone 52 kann aber auch die Form eines Quadrates, Rechtecks oder Kreises aufweisen. Im Inneren der Zone 52 ist durch p-Dotierung eine p-dotierte Zone 53 gebildet. Die Zone 53 ist ähnlich zur Zone 52 und die Außenkanten der Zone 53 sind jeweils zu entsprechenden Außenkanten der Zone 52 parallel. An den der Zone 52 entsprechenden Seitenkanten der Zone 53 sind Kontakte 311, 312, 313, 314 angeordnet. Die Kontakte 311, 312, 313, 314, 321, 322, 323, 324 dienen der Einspeisung von Strömen in die einzelnen Zonen 51, 52, 53 bzw. zur Erfassung einer Hall-Spannung.

Figur 2 zeigt einen Querschnitt von Figur 1 entlang der Linie II-II. Es sind insbesondere die Tiefenstrukturen der Zonen 51, 52, 53 dargestellt. Die Zone 51 ist eine p-dotierte Zone, die durch das Substrat 1 gebildet wird. In das Substrat 1 durch n-Dotierung eingebettet ist die n-dotierte Zone 52. In die Zone 52 durch p-Dotierung eingebettet ist die p-dotierte Zone 53.

An den Stellen ohne Raumladungszone bleiben gemäß Figur 3 die sich aus den dotierten Zonen 51, 52, 53 gemäß Figur 2 ausbildenden leitenden Zonen 31, 32, 33. Zwischen zwei jeweils entgegengesetzt dotierten Zonen 51, 52; 52, 53 bildet sich jeweils eine Raumladungszone 41, 42 aus. Die Raumladungszonen 41, 42 sind in Figur 3 durch schraffurlose Flächen gekennzeichnet. An den Stellen, an denen die Kompensation von pund n-leitenden Ladungsträgern gestoppt ist, bleiben elektrisch leitende Zonen 31, 32, 33 übrig. Dies sind im speziellen entsprechend der p-dotierten Zone 51 die p-leitende Zone 31 bzw. entsprechend der p-dotierten Zone 53 die p-leitende Zone 33 in der Mitte von Figur 3. Die p-leitenden Zonen sind

jeweils durch gleichartige Schraffierung gekennzeichnet. Entsprechend der n-dotierten Zone 52 bildet sich die n-leitende Zone 32 aus, welche durch eine zu den p-leitenden Zonen 31, 33 gegenläufige Schraffur gekennzeichnet ist.

5

10.

15

20

Figur 4 zeigt einen Hall-Sensor gemäß Figur 3, wobei die nleitende Zone 32 als Hall-Plättchen 2 verwendet wird. Dem entsprechend wird durch die Kontakte 322, 324 ein Steuerstrom IS in die Zone 32 eingespeist, wobei hier nur eine Steuerstromrichtung betrachtet wird. Der Steuerstrom IS bewirkt über die Länge der Zone 32 einen Spannungsabfall, welcher zu einer entsprechenden Variation der Dicke d2 der Raumladungszone 42 führt. Die in Figur 4 gezeigte Stromrichtung führt dazu, daß die Raumladungszone zum rechten Ende hin dicker ist als zum linken Ende hin. Dem entsprechend wird auch die Form der Zone 32 beeinflußt. Diese Beeinflussung der Zone 32 kann nun kompensiert werden, indem in der p-leitenden Zone 33 ein Kompensationsstrom IK fließt. Der Kompensationsstrom IK wird durch die Kontakte 312, 314 in die Zone 33, welche p-leitend ist, eingespeist. Der Kompensationsstrom IK verläuft parallel zum Steuerstrom IS. Durch den Kompensationsstrom IK wird wiederum die Dicke der Raumladungszone 41 zwischen der Zone 33 und dem Hall-Plättchen 2 beeinflußt. Der Kompensationsstrom IK führt dazu, daß die Dicke der Raumladungszone 41 zum linken Ende hin größer ist als zum rechten Ende hin. Der Dickenverlauf der Raumladungszonen 41, 42 ist also genau entgegengesetzt. Daraus resultiert bei geeigneter Wahl des Stromes IK, daß die Dicke D der Zone 32, also die Dicke D des Hall-Plättchens 2, über ihre gesamte Länge im wesentlichen konstant gehalten werden kann, weswegen hier in besonders vorteilhafter Weise die Restfehlspannung reduziert werden kann.

In Figur 4 ist noch schematisch die Richtung des zu messenden Magnetfeldes B gezeigt.

35

30

Figur 5 zeigt eine Darstellung eines Hall-Sensors entsprechend Figur 4, mit dem Unterschied, daß als Hall-Plättchen 2

10

15

20

30

5

nicht die Zone 32, sondern die Zone 33, welche p-dotiert ist, verwendet wird. Entsprechend wird durch die Kontakte 312, 314 ein Steuerstrom IS in die Zone 33 gespeist. Die unterhalb der Zone 33 liegende, n-leitende Zone 32 wird nun mit einem Kompensationsstrom IK mittels der Kontakte 322, 324 beaufschlagt. Der Kompensationsstrom IK verläuft, wie schon in Figur 4 gezeigt, parallel zum Steuerstrom IS. Die Spannung zwischen Zone 32 und Zone 33 ist an jedem Ort nahezu gleich, weswegen die Raumladungszone 41 nahezu eine konstante Dicke d1 hat. Die Dicke d1 ist proportional zur Wurzel aus der Spannung zwischen der Zone 32 und der Zone 33.

Daraus resultiert, daß auch die Dicke der Zone 33, welche das Hall-Plättchen 2 darstellt, über ihre Länge im wesentlichen konstant ist, so daß auch hier eine positive Beeinflussung der Fehlspannung resultiert. In Figur 5 ist noch gezeigt, wie durch den Einfluß des Kompensationsstroms IK die Dicke d2 der Raumladungszone 42 zwischen der Zone 32 und der Zone 31 über ihre Länge beeinflußt wird. Die Variation der Dicke d2 der Raumladungszone 42 hat jedoch keinen nennenswerten Einfluß auf das Hall-Plättchen 2.

Die in den beschriebenen Beispielen verwendeten Dotierungen können beispielsweise zwischen 1 x 10^{14} cm⁻³ und 1 x 10^{18} cm⁻³ liegen und betragen typischerweise 5 x 10^{16} cm⁻³. Die verwendeten Ströme können beispielsweise zwischen 0,1 und 10 mA liegen und betragen typischerweise 1 mA.

Die folgende Erfindung beschränkt sich nicht auf Hall-Sensoren in Siliziumsubstraten, sondern läßt sich auf alle geeigneten Halbleitermaterialien übertragen.

1
2
5 31, 33
32
51, 53
52
41, 42
10 311, 312, 313, 314, 321,
322, 323, 324
D
d1, d2
B
15 IS

. IK

Bezugszeichenliste

Substrat

Hall-Plättchen
p-leitende Zone
n-leitende Zone
p-dotierte Zone
n-dotierte Zone

Raumladungszone

Kontakte

Dicke des Hall-Plättchens
Dicke der Raumladungszonen
Magnetfeld
Steuerstrom

Kompensationsstrom

10

8

Patentansprüche

- 1. Hall-Sensor auf einem Halbleitersubstrat (1),
- bei dem ein Hall-Plättchen (2) gebildet wird aus einer Zone (33, 32) eines Leitungstyps,
- bei dem eine an das Hall-Plättchen (2) angrenzende, durch eine Raumladungszone (41) davon getrennte Zone (33, 32) des anderen Leitungstyps vorgesehen ist,
- und bei dem das Hall-Plättchen mit Kontakten (311, 312, 313, 314, 321, 322, 323, 324) zur Einspeisung eines Steuerstroms (IS) und die Zone (32, 33) des anderen Leistungstyps mit Kontakten (311, 312, 313, 314, 321, 322, 323, 324) zur Einspeisung eines Kompensationsstroms (IK) versehen ist.
- 2. Hall-Sensor nach Anspruch 1, bei dem das Hall-Plättchen (2) zwischen zwei Zonen (31, 33) des anderen Leitungstyps angeordnet ist.
 - 3. Hall-Sensor nach Anspruch 1,
- 20 bei dem das Hall-Plättchen (2) an der Oberfläche des Substrats (1) angeordnet ist, und
 - bei dem die Zone (32) des anderen Leitungstyps in einem Substrat (1) vom Leitungstyp des Hall-Plättchens (2) eingebettet ist.
 - 4. Verfahren zum Betrieb eines Hall-Sensors nach einem der Ansprüche 1 bis 3,

wobei ein Kompensationsstrom (IK) parallel zum Steuerstrom (IS) fließt, dessen Größe so bemessen ist, daß das Hall-

30 Plättchen (2) eine im wesentlichen konstante Dicke (D) aufweist.

Zusammenfassung

Hall-Sensor und Verfahren zu dessen Betrieb

Die Erfindung betrifft einen Hall-Sensor auf einem Halbleitersubstrat (1), bei dem ein Hall-Plättchen (2) gebildet wird aus einer Zone (33, 32) eines Leitungstyps, bei dem eine an das Hall-Plättchen (2) angrenzende, durch eine Raumladungszone (41) davon getrennte Zone (33, 32) des anderen Leitungstyps vorgesehen ist, und bei dem das Hall-Plättchen mit Kontakten (311, 312, 313, 314, 321, 322, 323, 324) zur Einspeisung eines Steuerstroms (IS) und die Zone des zweiten Leistungstyps mit Kontakten (311, 312, 313, 314, 321, 322, 323, 324) zur Einspeisung eines Kompensationsstroms (IK) versehen ist. Der Hall-Sensor hat den Vorteil, daß der Offset reduziert ist.

Figur 1

(W/. UTC S /1/ Fij. 1 51 321 311 314 -312 313 323

pri s.

•

. .

P8002, 07.73

Fy. 4

72007,0723

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.