

2.4 節末問題 2.4 の解答

問題 2.4.1

答えは以下の通りです。なお、0 記法で表した値は、「最も重要な項を消した後、定数倍($7N^2$ の 7 の部分)を消す」という操作で求められます($\rightarrow 2.4.8$ 項)。

- 1. $T_1(N) = O(N^3)$
- 2. $T_2(N) = O(N)$
- 3. $T_3(N) = O(2^N)$
- 4. $T_4(N) = O(N!)$

問題 2.4.2

このプログラムは二重ループを行っており、各変数は以下のような値をとります。

- 変数 **i**:1,2,3,...,NのN通り
- 変数 j:1,2,3,...,100N の 100N 通り

したがって、合計ループ回数は $N \times 100N = 100N^2$ 回であり、すなわち計算量は $O(N^2)$ となります。なお、ループ回数が掛け算で表される理由は、変数 \mathbf{i} 、 \mathbf{j} の取り 方を長方形状に並べると理解しやすいです($\rightarrow 2.4.5$ 項)。

	j=1	j=2	j=3	j=4	j = 5	j=6	j=7	j = 8	•••	j = 100N	
i = 1	i = 1 $j = 1$	i = 1 $j = 2$	i = 1 $j = 3$	i = 1 $j = 4$	i = 1 $j = 5$	i = 1 $j = 6$	i = 1 $j = 7$	i = 1 $j = 8$		i = 1 $j = 100N$	
i=2	i = 2 $j = 1$	i = 2 $j = 2$	i = 2 $j = 3$	i = 2 $j = 4$	i = 2 $j = 5$	i = 2 j = 6	i = 2 $j = 7$	i = 2 $j = 8$		i = 2 $j = 100N$	A 通
•	:	ŧ	ŧ	:	i	ŧ	i:	i		÷	6
i = N	i = N $j = 1$	i = N $j = 2$	i = N $j = 3$	i = N $j = 4$	$i = N \\ j = 5$	i = N j = 6	i = N $j = 7$	i = N $j = 8$		i = N $j = 100N$	
	-									—	•

問題 2.4.3

 $\log_2 N$ と $\log_{10} N$ が定数倍の差しかないことを確認するため、 $\log_2 N$ を $\log_{10} N$ で割ってみましょう。底の変換公式(\rightarrow **2.3.10項**)より、次式が成り立ちます。

$$\frac{\log_2 N}{\log_{10} N} = \frac{\log_2 N}{\log_2 N \div \log_2 10} = \log_2 10 = 3.32$$

したがって、 $\log_2 N$ は $\log_{10} N$ の約 3.32 倍であることが分かります。このようなことが、対数を O 記法で表すときに $O(\log N)$ と底を省略した表記を使う理由の一つになっています。

問題 2.4.4

答えは以下のようになります。なお、 $N \log N$ は $N \times \log N$ と同じ意味です。

計算回数	N log N	N ²	2 ^N
106 回以内	<i>N</i> ≤ 60000	<i>N</i> ≤ 1000	<i>N</i> ≤ 20
10 ⁷ 回以内	<i>N</i> ≤ 500000	<i>N</i> ≤ 3000	<i>N</i> ≤ 23
108 回以内	$N \le 4000000$	<i>N</i> ≤ 10000	<i>M</i> ≤ 26
109 回以内	$N \le 40000000$	N ≤ 30000	N ≤ 30

問題 2.4.5

N が 2 増えると実行時間がおよそ 9 倍になっているため、計算量は $O(3^N)$ だと考えるのが自然です。なお、 $O(N\times 3^N)$ や $O(10^{N/2})$ なども不自然ではないため、別解として扱います。

N	14	16	18	20
実行時間	0.049 秒	0.447 秒	4.025 秒	36.189 秒
		1	1	1
	9.13	2 倍 9.00	倍 8.99	倍

問題 2.4.6

直観的な方法として、"a" \rightarrow "aardvark" \rightarrow "aback" \rightarrow "abalone" \rightarrow "abandon" \rightarrow … といった感じで、前に載っている単語から 1 つずつ調べていくことが考えられます。しかし、単語数を N とするときのステップ数は最悪 N 回です。N=100000 もあれば、人間にはとても無理があります。そこで、たとえば以下の方法を使えば効率的です(\rightarrow 2.4.7項)。

「現時点で考えられる範囲の中央の単語を見て、それより前にあるか後ろにあるかを調べる」ことを繰り返す。下図は単語数が 100000 個の場合の手順のイメージを示している。

これは二分探索法と非常に似た手法であり、わずか $\lceil \log_2 N \rceil$ ステップで目的の単語を見つけることができます。

なお、実用上は「50000 個目の単語がどこにあるか」といったことを調べるのも面倒なので、たとえば最初の質問では、だいたい中央のページにある単語と比べれば良いです。皆さんも辞書で単語を調べるとき、ぜひ一度二分探索を使ってみましょう。

