2. Virtualization technology

- Offerings from many companies
 - ✓ e.g. VMware, Microsoft, Sun, ...
- Hardware support
 - ✓ Fits well with the move to 64 bit (very large memories) multi-core (concurrency) processors
 - ✓ Intel VT (Virtualization Technology) provides hardware to support the Virtual Machine Monitor layer
 - Virtualization is now a well-established technology

Objectives of Virtualization

Scope of Virtualization

Virtualization Components

Provisioning and Orchestration

Workload Virtualization (dynamic scheduling)

Information Virtualization (distributed data, caching, replication federation, transformation)

System Virtualization (workload management, partitioning)

Storage Virtualization (virtual volume management)

Network Virtualization (virtual device & connectivity)

Web service foundation and Information Model

Bare-Metal Hypervisor

- Hypervisor itself handles all resource management functions System zPR/SM™, z/VM
- ✓ POWER™ Hypervisor
- ✓ Vmware ESX Server
- ✓ Xen Hypervisor

- Hypervisor uses HOST OS Functions Vmware Workstation Microsoft Virtual Server
- ✓ HP Integrity VM
- ✓ User Mode Linux

- Hardware Virtualization
- Software Virtualization
 - **✓** Full Virtualization
 - ✓ Para-Virtualization

- Traditional VMMs provide full-virtualization:
 - ✓ The functionally provided is identical to the underlying physical hardware
 - ✓ The functionality is exposed to the VMs
 - ✓ They allow unmodified guest OSs to execute on the VMs
 - ✓ This might result in some performance degradation
- E.g., VMWare provides full virtualization

- Other types of VMMs provide para-virtualization:
 - ✓ They provide a virtual hardware abstraction that is *similar, but not identical* to the real hardware
 - ✓ They modify the guest OS to cooperate with the VMM
 - ✓ They result in lower overhead leading to better performance.
 - ✓ E.g., Xen provides both para-virtualization as well as full-virtualization

- The Hypervisor: HW Virtualization
 - ✓ A computing layer which allows multiple operating systems to run on a host computer at the same time
 - ✓ Originally developed in the 1970s as part of the IBM S/360
 - Many modern day variants from different developers

Conceptual diagram of typical server configuration without virtualization

The role of the Hypervisor in supportingGuest Operating Systems on a single machine

Software Virtualization (example)

VMware Server (GSX)

http://openlab-mu-internal.web.cern.ch/openlab-mu-internal/openlab-II_Projects/Platform_Competence_Centre/Virtualization/Virtualization.asp

2. Marketplace offerings

- Freely Available
 - ✓ OpenVZ (Open Source)
 - ✓ VMWare Server (GSX)
 - ✓ Xen 3.0 (Open Source)
- Commercial
 - ✓ Virtuozzo
 - ✓ VMWare ESX
 - ✓ Xen Enterprise
 - Microsoft Virtual Server
 - ✓ Virtual Iron

- Maintained by SWsoft, Inc (http://www.swsoft.com/)
 - ✓ Branch from their commercial Virtuozzo product
- Supports 64-Bit Guest Operating Systems
- Linux only, Open Source Product
- **\$** Free
- http://openvz.org/

- Maintained by VMWare (http://www.vmware.com/)
 - ✓ Est. 1999 More mature than many competitors
- Supports 64-Bit Guest Operating Systems
- Some limitations for clustering and HA imposed by vendor
- Windows and Linux Host/Guest OS Support
- \$ Free

http://www.vmware.com/products/gsx/

http://www.vmware.com/products/server_comp.html

- Available from Xen Source (http://www.xensource.com)
- In association with University of Cambridge (http://www.cl.cam.ac.uk/Research/SRG/netos/xen/)
- Support for 64-Bit and 32-way machines
- Supports IntelVT
- Linux support only, Windows expected later this year
- Open Source Product One of the most actively maintained projects in the open source community
- \$ Free

- Maintained by VMWare (http://www.vmware.com/)
- Supports 64-Bit Guest Operating Systems
- Advanced clustering and high availability features
- Windows and Linux Guest OS Support
- Advance management tools
- Low-overhead Hypervisor base installation
- Packages ranging from \$10-\$25k and beyond
- http://www.vmware.com/products/esx/

Virtual Server Enterprise Edition

- By Microsoft
- Support for 64-bit and 32-way machines
- Linux and Windows support for Guest OS's
- \$ Licensing varies. One listing found for \$594.29 - \$1,069.58, not including extra Windows licenses for Guest OS's

Complete testing and functionality assessments

Finalize architecture plans

Proceed with recommendations for implementation

- Installation and configuration
 - ✓ OpenVZ
 - ✓ VMWare
 - ✓ Xen
- To date, we have installations running OpenVZ and Xen for testing purposes

Ability to start/stop partitions

Ability to copy and replicate partitions

Assess functionality of required software installations (Apache, JBoss, PHP, etc)

Performance testing – hdparm, Apache JMeter, etc

Current Architecture

Virtualized Architecture

3. Issues and concerns

Supportability of Microsoft Server products running as Guest Operating Systems on a non-certified virtualization engine

Managing load on virtualized systems can be more art than science