Теория типов

Человек, который поспорил на 2 торта \heartsuit

1 λ -исчисление

Определение (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- (а) аппликация левоассоциативна
- (b) абстракция распространяется как можно дальше вправо
- (с) смысла в этом нет

Пример.
$$((\lambda z.(z(yz)))(zx)z) = (\lambda z.z(yz))(zx)z$$

Есть понятия связанного и свободного вхождения переменной (аналогично ИП). $\lambda x.A$ связывает все свободные вхождения x в A. Договоримся, что:

- (a) Переменные x, a, b, c.
- (b) Термы (части λ -выражения) X, A, B, C.
- (c) Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Определение (α -эквивалентность). A и B называются α -эквивалентными ($A=_{\alpha}B$), если выполнено одно из следующих условий:

- 1. $A \equiv x$ и $B \equiv x$.
- 2. $A \equiv \lambda x. P$ и $B \equiv \lambda x. Q$. Пусть t новая переменная, тогда $P_{[x:=t]} =_{\alpha} Q_{[y:=t]}$.
- 3. $A \equiv PQ$, $B \equiv RS$, $P =_{\alpha} R$, $Q =_{\alpha} S$.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

$$\lambda y.ty =_{\alpha} \lambda x.tx \implies \lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$$
$$tz =_{\alpha} tz \implies \lambda y.ty =_{\alpha} \lambda x.tx$$

 $tz =_{\alpha} tz$ верно по третьему условию.

Определение (β -редекс). Терм вида ($\lambda a.A$) B называется β -редексом.

$$\Pi$$
ример. В выражении $(\lambda f.\underline{(\lambda x.\overline{f(xx)})}\overline{(\lambda x.f(xx))})\underbrace{\frac{B_1}{(\lambda x.f(xx))}}\underbrace{g}_{B_2}$ два β -редекса.

Определение. Множество λ -термов Λ назовём множеством классов эквивалентности Λ по $(=_{\alpha})$.

Определение (β -редукция). $A \to_{\beta} B$ (состоят в отношении β -редукции), если выполняется одно из условий:

1. $A \equiv PQ$, $B \equiv RS$ и

либо
$$P \to_{\beta} R$$
 и $Q =_{\alpha} S$
либо $P =_{\alpha} R$ и $Q \to_{\beta} S$

- 2. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$ (x из какого-то класса из Λ).
- 3. $A \equiv (\lambda x.P)Q, B \equiv P_{[x:=Q]}, Q$ свободно для подстановки в P вместо x.

Итак, лулзы. Хотите знать, что такое истина?

$$T = \lambda x \lambda y.x$$
$$F = \lambda x \lambda y.y$$
$$Not = \lambda a.aFT$$

Похоже на тип boolean, не правда ли?

Пример.

Not
$$T = (\lambda a.aFT)T \rightarrow_{\beta} TFT = (\lambda x.\lambda y.x)FT \rightarrow_{\beta} (\lambda y.F)T \rightarrow_{\beta} F$$

Можно продолжить:

And =
$$\lambda a.\lambda b.ab$$
F
Or = $\lambda a.\lambda b.a$ T b

Попробуем определить числа:

Определение (Чёрчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) &, n > 0 \\ x &, n = 0 \end{cases}$

 Π ример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Пример.

$$(+1)\overline{1} = (\lambda n.\lambda f.\lambda x.f(nfx))(\lambda f.\lambda x.fx) \rightarrow_{\beta} \lambda f.\lambda x.f((\lambda f.\lambda x.fx)fx) \rightarrow_{\beta} \lambda f.\lambda x.f(fx) = \overline{2}$$

Определение (η -эквивалентность).

$$\lambda x.fx =_n f$$

Аналог из C++: если **int** $f(\mathbf{int} \ x)$, то результат её вычисления равен результату вычисления [] (**int** x) { **return** f(x); }.

Арифметические операции:

IsZero =
$$\lambda n.n(\lambda x.T)$$
F
IsEven = $\lambda n.n$ Not T
Add = $\lambda a.\lambda b.\lambda f.\lambda x.af(bfx)$
Mul = $\lambda a.\lambda b.a(Add\ b)\overline{0}$
Pow = $\lambda a.\lambda b.b(Mul\ a)\overline{1}$
Pow* = $\lambda a.\lambda b.ba$

Для того, чтобы определить (-1), сначала определим "пару":

$$\langle a, b \rangle = \lambda f. fab$$

First = $\lambda p. Tp$
Second = $\lambda p. Fp$

n раз применим функцию $f(\langle a,b\rangle) = \langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \text{First} \left(n \left(\lambda p. \left\langle (\text{Second } p), (+1) \left(\text{Second } p \right) \right\rangle \right) \left\langle \overline{0}, \overline{0} \right\rangle \right)$$

Сокращение записи:

$$\lambda xy.A = \lambda x.\lambda y.A$$

Определение (Нормальная форма).

Терм A — нормальная форма (н.ф.), если в нём нет β -редексов. Нормальной формой A называется такой B, что $A \twoheadrightarrow_{\beta} B$, B — н.ф. $\twoheadrightarrow_{\beta}$ — транзитивно-рефлексивное замыкание \rightarrow_{β} .

Утверждение 1. Существует λ -выражение, не имеющее н.ф.

$$\Omega = \omega \omega$$
$$\omega = \lambda x. xx$$

Определение (Комбинатор). Комбинатор — λ -выражение без свободных переменных.

Комбинатор неподвижной точки:

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Определение (β -эквивалентность). $A =_{\beta} B$, если $\exists C : C \twoheadrightarrow_{\beta} A, C \twoheadrightarrow_{\beta} B$

Утверждение 2.

$$Yf =_{\beta} f(Yf)$$

Доказательство. (на лекции не давалось)

$$Yf =_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Таким образом, с помощью Y-комбинатора можно определять рекурсивные функции. Пример.

$$\mathrm{Fact} = Y(\lambda f n. \mathrm{IsZero} \ n \ \overline{1} \ (\mathrm{Mul} \ n \ (f \ (-1) \ n)))$$