Podstawy Sztucznej Inteligencji

Projekt 2: Uczenie maszynowe Emilia Gosk, nr albumu 266557

1. Zadanie projektowe

Zadanie polega na implementacji algorytmu ID3 i wykorzystaniu go do przewidywania rozwodów na podstawie zbioru danych dot. małżeństw ze strony <u>Divorce+Predictors+data+set</u>.

2. Opis zbioru danych

- 170 próbek zbiór danych stanowią odpowiedzi 170 osób w wieku 20–63 na ankietę
 (DPS Divorce Prediction Scale) dotyczącą ich relacji z obecnym lub byłym małżonkiem
- 54 atrybuty ankieta zawierała 54 stwierdzenia
- Dozwolone wartości atrybutów: 0, 1, 2, 3, 4 uczestnicy badania oceniali jak bardzo każde stwierdzenie jest prawdziwe dla ich relacji w skali 0-4 (0 nieprawda, 4 prawda)
- Klasy: 0, 1 każda próbka zawierała informację o klasie do której należy (1, gdy uczestnik jest rozwiedziony, 0 małżeństwo trwa).
- Rozkład klas:
 - o 1 rozwiedziony 49% badanych, czyli 84 osoby
 - o 0 − w małżeństwie − 51% badanych, czyli 86 osób
- W zbiorze danych nie ma brakujących wartości

Informacje dodatkowe:

- O Dane zostały zebrane w Turcji, ponad połowa z badanych małżeństw była aranżowana (56,5%).
- O W grupie badawczej było 86 kobiet (51%), 84 mężczyzn (49%).
- o 74,7% uczestników ma dzieci.
- o 60,56% uczestników ma wykształcenie wyższe

3. Podział prac

Wykonanie implementacji oraz jej przebadanie – Emilia Gosk

4. Decyzje projektowe

- Ze względu na to, że zbiór danych testowych nie był wyróżniony, zastosowałam walidację krzyżową, aby oszacować skuteczność modeli i zapobiec problemom przetrenowania i niedopasowania. Wybrałam k-krotną walidację krzyżową, gdyż ten rodzaj został najdokładniej opisany podczas wykładów.
- Wczytane do programu dane przechowywałam w strukturze DataFrame (tzw. ramka danych) dostarczanej przez bibliotekę pandas. Obiekty tej klasy są 2 wymiarową tabelą danych o uporządkowanym zbiorze kolumn, podobną do tabeli w bazie danych, przez co praca z DataFrame jest dość intuicyjna i dobrze sprawdza się w tym projekcie.

5. Wykorzystane narzędzia i biblioteki

- IDE: PyCharm
- Biblioteki: Pandas, Numpy, Sklearn

6. Cele i tezy przeprowadzonych badań

- Ze względu na stosunek ilości klas do ilości atrybutów, nie wszystkie atrybuty zostaną uwzględnione w zbudowanym modelu (w węzłach drzewa znajdzie się tylko kilka atrybutów).
- O Z przeprowadzonych wcześniej badań na tych samych danych (artykuł) wynika, że atrybuty Atr2, Atr6, Atr11, Atr18, Atr26, Atr40 mają największy poziom istotności (value of significance), zatem powinny znaleźć się w węzłach zbudowanego modelu.
- Spodziewana precyzja modeli (success rate) z przedziału 95-100% (podobna do otrzymanej podczas wcześniejszych badań).

7. Wyniki eksperymentów + omówienie

1. Pierwszym z przeprowadzonych badań było zbudowanie modelu przy wykorzystaniu pełnego zestawu danych (bez podziału na zbiór treningowy i testowy). Poniżej wizualizacja takiego modelu.

2. Żeby zapobiec problemowi przetrenowania dzieliłam dane na zbiór treningowy i testowy. By wybrać sposób podziału (stosunek ilości próbek testowych do treningowych, czyli wartość k w walidacji krzyżowej k-krotnej) badałam wartość średniej straty modelu dla k∈<2, 19>. W tabeli i na wykresie poniżej przedstawiam wartości średniej straty modelu dla różnych wartości k.

k	2	3	4	5	6	7	8	9	10
q_mod	0.259	0.041	0.029	0.047	0.136	0.142	0.124	0.114	0.106
k	11	12	13	14	15	16	17	18	19
q_mod	0.077	0.094	0.088	0.089	0.101	0.094	0.1	0.088	0.076

3. Zdecydowałam się na k = 4, tak więc dzieliłam zbiór danych w stosunku 3:1 na dane treningowe i testowe. Poniżej 3 przykładowe modele zrealizowane w ten sposób.

Wartość straty modelu: 4,65%. Precyzja modelu: 95,35%.

Wartość straty modelu: 2,3%. Precyzja modelu: 97,7%.

Wartość straty modelu: 0% . Precyzja modelu: 100%.

Wśród modeli zbudowanych na części danych, znalazł się taki sam jak model zbudowany na całym zestawie danych. Dla takiego modelu wartość straty – jest równa 0.

4. Wyniki badania entropii atrybutów przedstawiam w poniższej tabeli – tabela zawiera wyniki 6 atrybutów o najmniejszej entropii. 50% z nich pokrywa się z atrybutami wymienionymi w artykule jako te o najwyższym stopniu istotności.

Atrybut	Atr18	Atr20	Atr40	Atr17	Atr19	Atr11
Entropia	0.061	0.071	0.076	0.083	0.089	0.091
atrybutu						

8. Wnioski

- W węzłach zbudowanych modeli najczęściej znajdowały się 2-3 atrybuty. Ze względu na to, że każdy z tych atrybutów mógł przyjąć aż 5 różnych wartości drzewa nie musiały byś rozbudowywane w wiele poziomów węzłów.
- \circ Wśród najczęściej polecanych w literaturze wartości k dla k-krotnej walidacji krzyżowej znalazłam k = 5 , k = 10. Z moich badań wynika (wykres q_mod(k)), że najskuteczniejsze były podziały dla k = 4 i k =11. Są to wartości zbliżone do ogólnie polecanych
- W modelach zbudowanych przy k = 4, najniższa precyzja modelu wynosiła 95,35%, a najwyższa 100%. Są to wartości zbliżone do otrzymanych przy wykorzystaniu sztucznych sieci neuronowych, RBF i lasu losowego, przedstawionych we wspomnianym wcześniej artykule (wartości z zakres 87,64% 98,82%). Z tego powodu oceniam jakość zaproponowanych przeze mnie modeli jako bardzo dobrą, a samą metodę ID3 za odpowiednią do tego typu zadań.

Instrukcja pozwalająca odtworzyć uzyskane wyniki:

Uruchom program main.py za pomocą komendy:

python main.py

Po uruchomieniu program wypisuje uzyskane wyniki do konsoli.

Konieczne do działania programu są zaimportowane biblioteki:

pip install pandas
pip install sklearn

pip install numpy

Dodatkowo plik z danymi (w tym przypadku divorce.csv) musi znajdować się w tym samym folderze co main.py.