Data Mining:: Unit-3

(Classification – Nearest Neighbor Classifier)

Er. Dinesh Baniya Kshatri (Lecturer)

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

Example: 1-Nearest Neighbor Classifier [1]

- Suppose we have a problem where:
 - We have three classes (red, green, yellow).
 - Each pattern is a two-dimensional vector.
- Suppose that the training data is given below:
- Suppose we have a test pattern v, shown in black.
- How is v classified by the nearest neighbor classifier?

Prepared by: Er. Dinesh Baniya Rshatri 2

Example: 1-Nearest Neighbor Classifier [2]

- Suppose we have a problem where:
 - We have three classes (red, green, yellow).
 - Each pattern is a two-dimensional vector.
- Suppose that the training data is given below:
- Suppose we have a test pattern v, shown in black.
- How is v classified by the nearest neighbor classifier?
- C(v): -
- Class of C(v): red.
- Therefore, v is classified as red.

Example: 1-Nearest Neighbor Classifier [3] • Suppose we have a problem where: - We have three classes (red, green, yellow). - Each pattern is a two-dimensional vector. • Suppose that the training data is given below: • Suppose we have another test pattern v, shown in black. • How is v classified by the nearest neighbor classifier? • C(v): • Class of C(v): yellow. • Therefore, v is classified as yellow. • Prepared by: Er. Dinesh Baniya Kshātri 6 7 8 8

The kNN Algorithm (Pseudo-code)

- Determine parameter K
- Calculate the distance between the test instance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.

Prepared by: Er. Dinesh Baniya Kshatri

7

The kNN Algorithm (Mathematical Formalism)

- Let F be a distance function defined in X.
 - $\it F$ assigns a distance to every pair $\it v_1, \it v_2$ of objects in $\mathbb X.$
- Let $x_1, x_2, ..., x_N$ be training examples.
- The nearest neighbor classifier classifies any pattern v as follows:
 - Find the training example C(v) that is the nearest neighbor of x (has the shortest distance to v among all training data).

$$C(v) = \operatorname{argmin}_{x \in \{x_1, \dots, x_N\}} (F(v, x))$$

- Return the class label of C(v).
- In short, each test pattern v is assigned the class of its nearest neighbor in the training the draftigesh Baniya Kshatri

Let, be the space of all possible patterns for some classification problem

Properties of the kNN Algorithm

- This algorithm belongs to the class of "lazy" algorithms. There is no process of learning or training. The examples are simply stored as the data is collected.
- The difficulty comes at classification stage. We need to calculate n distances and find best K data points.
- How to choose K
 - too small: the method might be inaccurate and sensitive to noise
 - too large: the method is more robust but may lose sensitivity to changes in the feature space
 - solution? Try a few K's and find optimum based on the estimated accuracy of the predictor. There exist formal algorithms to select K.

Prepared by: Er. Dinesh Baniya <mark>Kshatri</mark>

9

kNN: How to Choose k? - [1]

- Rule of thumb is k = sqrt(n), n is number of examples
- In practice, k = 1 is often used for efficiency, but can be sensitive to "noise"
- larger k may improve performance, but too large k destroys locality, i.e. end up looking at samples that are not neighbors
- cross-validation (study later) may be used to choose k

Prepared by: Er. Dinesh Baniya Kshatri

10

Prepared by: Er. Dinesh Baniya Kshatri

Nearest Neighbor Classifiers (Classification Process)

To classify unknown sample:

- 1. Compute distance to other training records
- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking

13

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints that have the k smallestadistances to Kshatri

Concept of Voronoi Diagrams - [2]

- Property 1:
 - A Voronoi diagram divides a space into disjoint polygons where the nearest neighbor of any point inside a polygon is the generator of the polygon.
- Property 2:
 - Each Voronoi edge is a segment of the perpendicular bisector of a pair of generators.
- Property 3:
 - Each Voronoi edge is shared by two Voronoi polygons and average number of Voronoi edges per Voronoi polygon is at most 6. This means that each generator has 6 adjacent generators at most.

Prepared by: Er. Dinesh Baniya Kshatri

Distance between Neighbors

Each example is represented with a set of numerical attributes

John: Age=35 Income=95 No. of credit cards=3

Rachel: Age=41 Income=215 No. of credit cards=2

- "<u>Closeness</u>" is defined in terms of the <u>Euclidean</u> distance between two examples.
 - The <u>Euclidean distance</u> between X=(x₁, x₂, x₃,...x_n) and Y =(y₁,y₂, y₃,...y_n) is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- Distance (John, Racfree)arest pt: [f(3Dinesth) និង(ម៉ែង Ks lidtli) 2 +(3-2)2]

kNN, wit	Age	Income	No. credit	Response	respon T
Customer	Age	Income	cards	Kesponse	0,7
John 🐔	35	35	3	No	- 4
Rachel	22	50	2	Yes	2
Hannah	63	200	1	No	
Tom	59	170	1	No	70
Nellie	25	40	4	Yes	- E

Distance between Instances (Numeric Features)

Euclidean distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_2 = \sqrt{\sum_{i=1}^n \left(\mathbf{x}_{1,i} - \mathbf{x}_{2,i}
ight)^2}$$

Manhattan distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_1 = \sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|$$

L_p-norm

Euclidean = L₂

• Manhattan = L₁

$$||\mathbf{x}_1-\mathbf{x}_2||_p=\left(\sum_{i=1}^n|\mathbf{x}_{1,i}-\mathbf{x}_{2,i}|^p
ight)^{rac{1}{p}}$$
Prepared by: Er. Dinesh Baniya Kshatri

21

Distance between Instances (Symbolic / Categorical Features)

Most common distance is the Hamming distance

- Number of bits that are different
- Or: Number of features that have a different value
- Also called the overlap
- Example:

X₁: {Shape=Triangle, Color=Red, Location=Left, Orientation=Up}

X₂: {Shape=Triangle, Color=Blue, Location=Left, Orientation=Down}

Hamming distance = 2

Prepared by: Er. Dinesh Baniya <mark>Kshatri</mark>

kNN: Feature Weighting - [1]

- So far we assumed we use Euclidian Distance to find the nearest neighbor
- Euclidean distance treats each feature as equally important
- However some features (dimensions) may be much more discriminative than other features

Prepared by: Er. Dinesh Baniya Kshatri

23

kNN: Feature Weighting – [2]

• Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_{k} (a_{k} - b_{k})^{2}}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights w_k using cross-validation (to be covered later)

Prepared by: Er. Dinesh Baniya Kshatri

Need for Normalization of Variables

John:
Age=35
Income=95K
No. of credit cards=3

Rachel:
Age=41
Income=215K
No. of credit cards=2

Distance (John, Rachel) = $sqrt [(35-45)^2 + (95,000-215,000)^2 + (3-2)^2]$

• Distance between neighbors could be <u>dominated</u> by some attributes with relatively large numbers (e.g., income in our example). Important to normalize some features (e.g., map numbers to numbers between 0-1)

Example: Income

Highest income = 500K

Davis's income is normalized to 95/500, Rachel income is normalized to 215/500, etc.)

Prepared by: Er. Dinesh Baniya Kshatri

25

kNN: Feature Normalization – [1]

- First feature takes values between 1 to 2
- Second feature takes values between 100 to 200
- Idea: normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range [0,1]

$$f_{new} = \frac{f_{old} - f_{old}^{min}}{f_{old} - f_{old}^{min}}$$
Prepared by: Er. Ohlech Baniva Kerlatérld

kNN: Feature Normalization – [2]

- Linearly scale to 0 mean variance 1:
- If Z is a random variable of mean m and variance 5, then (Z m)/6 has mean 0 and variance 1
- For each feature f let the new rescaled feature be

$$f_{new} = \frac{f_{old} - \mu}{\sigma}$$

Prepared by: Er. Dinesh Baniya Kshatri

Example: Normalizing Variables – [1]

- Suppose that your test patterns are 2-dimensional vectors, representing stars.
 - The first dimension is surface temperature, measured in Fahrenheit.
 - Your second dimension is mass, measured in pounds.
- The surface temperature can vary from 6,000 degrees to 100,000 degrees.
- The mass can vary from 10^{29} to 10^{32} .
- Does it make sense to use the Euclidean distance or the Manhattan distance here?

Prepared by: Er. Dinesh Baniya Kshatri

Example: Normalizing Variables – [2]

- Does it make sense to use the Euclidean distance or the Manhattan distance in example of previous slide?
- No. These distances treat both dimensions equally, and assume that they are both measured in the same units.
- Applied to these data, the distances would be dominated by differences in mass, and would mostly ignore information from surface temperatures.

Prepared by: Er. Dinesh Baniya Kshatri

29

Example: Normalizing Variables – [3]

- It would make sense to use the Euclidean or Manhattan distance, if we first normalized dimensions, so that they contribute equally to the distance.
- How can we do such normalizations?
- There are various approaches. Two common approaches are:
 - Translate and scale each dimension so that its minimum value is 0 and its maximum value is 1.
 - Translate and scale each dimension so that its mean value is 0 and its standard បានមានដល់បាន ប៉ុន្តាខ្មែរ Baniya Kshatri

Example: Normalizing Variables – [4]

Original Data			Normaliz Min = 0,		Normalized Data: Mean = 0, std = 1	
Object ID	Temp. (F)	Mass (lb.)	Temp.	Mass	Temp.	Mass
1	4700	1.5*10 ³⁰	0.0000	0.0108	-0.9802	-0.6029
2	11000	3.5*10 ³⁰	0.1525	0.0377	-0.5375	-0.5322
3	46000	7.5*10 ³¹	1.0000	1.0000	1.9218	1.9931
4	12000	5.0*10 ³¹	0.1768	0.6635	- 0.4 6 73	1.1101
5	20000	7.0*10 ²⁹	0.3705	0.0000	0.0949	-0.6311
6	13000	2.0*10 ³⁰	0.2010	0.0175	-0.3970	-0.5852
7	8500	8.5*10 ²⁹	0.0920	0.0020	-0.7132	-0.6258
8	34000	1.5*1Q ³¹	0.7094 ared by: Er. Diries	0 1925 sh Baniya Kshatri	1.0786	-0.1260

31

Nearest Neighbor Search

- The problem of finding the nearest neighbors of a pattern is called "nearest neighbor search".
- Suppose that we have N training examples.
- Suppose that each example is a *D*-dimensional vector.
- What is the time complexity of finding the nearest neighbors of a test pattern?
- O(ND).
 - We need to consider each dimension of each training example.

Prepared by: Er. Dinesh Baniya Kshatri

kNN: Computational Complexity

- Basic kNN algorithm stores all examples
- Suppose we have n examples each of dimension d
- O(d) to compute distance to one example
- O(nd) to find one nearest neighbor
- O(knd) to find k closest examples
- Thus total complexity is O(knd)
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!

Prepared by: Er. Dinesh Baniya Kshatri

33

Nearest Neighbor Search (Indexing Methods)

- As we just mentioned, measuring the distance between the test pattern and each training example takes O(ND) time.
- This method of finding nearest neighbors is called "brute-force search", because we go through all the training data.
- There are methods for finding nearest neighbors that are sublinear to N (even logarithmic, at times), but exponential to D.
- Can you think of an example?
 - Binary search (applicable when D=1) takes $O(\log N)$ time.

 Prepared by: Er. Dinesh Baniya Kshatri

Nearest Neighbor Search (Indexing Methods)

- In some cases, faster algorithms exist, however, are approximate.
 - They do not guarantee finding the true nearest neighbor all the time.
 - They guarantee that they find the true nearest neighbor with a certain probability.

Prepared by: Er. Dinesh Baniya <mark>Kshatri</mark>

NEPAL

35

kNN: How Well does it Work?

- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate E*
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E*
- But even for k = 1, as $n \to \infty$, it can be shown that kNN error rate is smaller than $2E^*$
- As we increase k, the upper bound on the error gets better, that is the error rate (as $n \to \infty$) for the kNN rule is smaller than cE^* , with smaller c for larger c
- If we have lots of samples Fr. kild Newworks well