Regulatory sequence analysis

Genome-scale pattern discovery

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Genome-scale pattern discovery

Genome-scale pattern discovery

- Goal : extraction of functional signals involved in general mechanisms :
 - 5'-end signals (initiation of transcription)
 - 3'-end signals (termination of transcription, RNA cleavage and maturation)
- 3' end signal analysis
 - 6217 downstream sequences
 - 200 bp from the stop codon
- Problem: how to estimate expected word frequencies?
 - The family now includes all yeast genes

Expected frequencies: external reference

- Downstream sequences vs whole genome frequencies
 - problem of interpretation
 - may reflect merely differences between non-coding and coding sequences, which represent 73% of the genome
- Downstream versus upstream sequences
 - problem of interpretation:a word may be significant because
 - over-represented in downstream sequences
 - under-represented in upstream sequences

Downstream vs upstream sequences

Expected frequencies: internal reference

- Estimation of expected word frequencies
 - on basis of the downstream sequences themselves
- Markov chain models
 - The expected frequency of each k-letter word is estimated on basis of sub-word frequencies

Oligo-analysis with Markov chain models

 $\lambda m \lambda m \lambda m$

- Analysis of a set of 6217 downstream sequences, 200bp each
- Detection of overrepresented words, and grouping by sequence similarity

ATATAT.	27.0
ATACAT.	15.5
ATGTAT.	11.9
ATAAAT.	9.9
ATAGAT.	9.9
ATTTAT.	9.8
GTATAT.	8.2
ATATGT.	7.8
ACATAT.	7.7
ATATAC.	7.4
. TATATA	34.9
. TACATA	27.7
. TATGTA	25.0
. TAAATA	22.0
.TATTTA	17.7
. TAGATA	11.9
. TGTATA	8.6

. TATACA

. CATATA

7.3

3.5

AAAAA	18.28
AAATAA	16.65
AATAAA	14.09
AAGAAA	9.27
AACAAA	9.02
AAAGAA	8.17
AAACAA	7.69
	•

16.87
16.74
13.25
9.42
8.72
8.46

ACATAC.	12.21
ACACAC.	11.15
. CACACA	13.00
. CATACA	8.81

Comparison with experimental values

- Irniger and Braus (1994) performed a saturation mutagenesis and measured the the efficiency of all singlebase mutants of TATGTA.
- High Z-score values from Markov 4 model correlate pretty well with experimental efficiency

Position analysis

- Measure the positional distribution of each word
- Perform a test of homogeneity and select all words with a significant bias
- Significance of the non-homogeneity is estimated with a χ^2 test
- Note: in our case, homogeneous is not flat, because sequences are clipped when there is a downstream ORF closer than 200 bp

Word position distribution

Positions relative to the stop codon

Position analysis: profiles of word distribution

Positions relative to the cleavage site

Word clustering according to position profiles

Signal distribution and representation

Genome-scale pattern discovery - references

- van Helden, J., del Olmo, M. & Perez-Ortin, J.E. Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. *Nucleic Acids Res* **28**, 1000-10 (2000).
- Bussemaker, H.J., Li, H. & Siggia, E.D. Regulatory element detection using a probabilistic segmentation model. *Ismb* 8, 67-74 (2000).
- Bussemaker, H.J., Li, H. & Siggia, E.D. From the cover: building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. *Proc Natl Acad Sci U S A* 97, 10096-100 (2000).
- Brazma, A., Vilo, J., Ukkonen, E. & Valtonen, K. Data mining for regulatory elements in yeast genome. *Ismb* 5, 65-74 (1997).
- Brazma, A., Jonassen, I., Vilo, J. & Ukkonen, E. Predicting gene regulatory elements in silico on a genomic scale. *Genome Res* 8, 1202-15 (1998).