Analysis Part 6

www.mathtuition88.com

Book: Measure and Integral by Wheeden and Zygmund

8 Chapter 8

8.1 Q2

For $||g||_{p'} \le 1$,

$$||f||_p \ge ||f||_p ||g||_{p'} \ge \int_E |fg| \ge \int_E fg$$

using Hölder's inequality. Therefore $||f||_p \ge \sup \int_E fg$. So we only need to prove the opposite inequality.

(Case:
$$p = 1$$
). Let $g(x) = \operatorname{sgn}(f(x))$, where $\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$

Then $||g||_{\infty} \le 1$ and $\int_{E} fg = \int_{E} |f|$ exists¹.

Hence $\sup \int_E fg \ge \int_E |f| = ||f||_1$.

¹By Theorem 5.1: Let f be a nonnegative function defined on a measurable set E. Then $\int_E f$ exists iff f is measurable.

(Case: $p = \infty$).

(Subcase: $||f||_{\infty} = 0$). If $||f||_{\infty} = 0$, then f = 0 a.e. in E, so $||f||_{\infty} = \sup \int_{E} fg = 0$.

(Subcase: $0 < ||f||_{\infty} < \infty$). If $0 < ||f||_{\infty} < \infty$, we may assume without loss of generality that $||f||_{\infty} = 1$.

Define $E_k = \{x \in E : |f(x)| > 1 - \frac{1}{k}\}$ for each $k \in \mathbb{N}$. Note that since $||f||_{\infty} = 1, |E_k| > 0$ for each k.

Define

$$g_k = \frac{1}{|A_k|} \chi_{A_k} \operatorname{sgn}(f),$$

where A_k is a measurable subset of E_k such that $0 < |A_k| < \infty$. Such an A_k exists by considering the intersection of E_k with a ball of large enough radius, i.e. $A_k = E_k \cap B_N(0)$ for some N. Then,

$$||g_k||_1 = \int_E |g_k| = \int_{A_k} \frac{1}{|A_k|} |\operatorname{sgn}(f)| \le \int_{A_k} \frac{1}{|A_k|} = 1$$

and $\int_E f g_k = \int_{A_k} \frac{|f|}{|A_k|}$ exists.

Note that

$$\int_{E} fg_k = \frac{1}{|A_k|} \int_{A_k} |f| \ge \frac{1}{|A_k|} \int_{A_k} (1 - \frac{1}{k}) = 1 - \frac{1}{k}$$

for all k. Thus $\sup \int_E fg \ge \int_E fg_k \ge 1 - \frac{1}{k}$ for all $k \in \mathbb{N}$ which implies $\sup \int_E fg \ge 1 = \|f|_{\infty}$.

(Subcase: $||f||_{\infty} = \infty$). Define $E_k = \{x \in E : |f(x)| > k\}$ for $k \in \mathbb{N}$. Since $||f||_{\infty} = \infty$, $|E_k| > 0$ for all k. Similarly, define $g_k = \frac{1}{|A_k|} \chi_{A_k} \operatorname{sgn}(f)$, where $A_k \subseteq E_k$ and $0 < |A_k| < \infty$. Then, $||g_k||_1 \le 1$ as before and $\int_E fg_k$ exists. Note that

$$\int_{E} f g_{k} = \frac{1}{|A_{k}|} \int_{A_{k}} |f| \ge \frac{1}{|A_{k}|} \int_{A_{k}} k = k$$

for all k. Thus $\sup \int_E fg \ge \int_E fg_k \ge k$ for all $k \in \mathbb{N}$ which implies

$$\sup \int_E fg = \infty = ||f||_{\infty}.$$

Part 2: Show also that for $1 \le p \le \infty$, a real-valued measurable f belongs to $L^p(E)$ if $fg \in L^1(E)$ for every $g \in L^{p'}(E)$, $\frac{1}{p} + \frac{1}{p'} = 1$.

Lemma 8.1.1. There exists M > 0 such that $||fg||_1 \leq M$, for all $g \in L^{p'}(E)$, $||g||_{p'} \leq 1$.

Proof. Suppose not. Then we have a sequence of $L^{p'}$ functions $\{g_k\}$ with $\|g_k\|_{p'} \leq 1$ where $\int_E |fg_k| > 3^k$. Let $g = \sum_{k=1}^{\infty} 2^{-k} |g_k|$. Then

$$||g||_{p'} \le \sum_{k=1}^{\infty} 2^{-k} = 1$$

but

$$\int_{E} |fg| = \sum_{k=1}^{\infty} 2^{-k} \int_{E} |fg_{k}| > \sum_{k=1}^{\infty} (\frac{3}{2})^{k} = \infty$$

so $fg \notin L^1(E)$. This is a contradiction.

So

$$||f||_p = \sup_{||g||_{p'} \le 1} \int_E fg \le \sup_{||g||_{p'} \le 1} ||fg||_1 \le M < \infty.$$

Thus $f \in L^p(E)$.

Part 3: Show if $f \notin L^p(E)$, then there exists $g \in L^{p'}(E)$ such that $fg \notin L^1(E)$.

The contrapositive of the above is: If for all $g \in L^{p'}(E)$, $fg \in L^1(E)$, then $f \in L^p(E)$. This is exactly what we proved in Part 2.

8.2 Q8

(Case: p = 1).

$$\iint |f(x,y)| \, dx \, dy = \iint |f(x,y)| \, dy \, dx$$

by Tonelli's Theorem.

(Case:
$$1).$$

$$\int \left[\int |f(x,y)| \, dx \right]^p \, dy$$

$$= \iint \left[\int |f(z,y)| \, dz \right]^{p-1} |f(x,y)| \, dx \, dy$$

$$= \iint \left[\int |f(z,y)| \, dz \right]^{p-1} |f(x,y)| \, dy \, dx \quad \text{(Tonelli's Theorem)}$$

$$= \iint |FG| \, dy \, dx \quad \text{(where } F = \left[\int |f(z,y)| \, dz \right]^{p-1}, \, G = |f(x,y)| \right)$$

$$\leq \int \left(\int |F|^{\frac{p}{p-1}} \, dy \right)^{\frac{p-1}{p}} \left(\int |G|^p \, dy \right)^{\frac{1}{p}} dx$$

(by Hölder's inequality where $p'=\frac{p}{p-1})$

$$\begin{split} &= \int \left(\int \left[\int |f(z,y)| \, dz \right]^p \, dy \right)^{\frac{p-1}{p}} \left(\int |f(x,y)|^p \, dy \right)^{\frac{1}{p}} \, dx \\ &= \left(\int \left[\int |f(z,y)| \, dz \right]^p \, dy \right)^{\frac{p-1}{p}} \cdot \left(\int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx \right) \\ &= \left(\int \left[\int |f(x,y)| \, dx \right]^p \, dy \right)^{\frac{p-1}{p}} \cdot \left(\int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx \right). \end{split}$$

Denote LHS = $\left[\int \left[\int |f(x,y)| dx \right]^p dy \right]^{\frac{1}{p}}$.

(Subcase: LHS=0). Then f(x,y) = 0 a.e. and the inequality is trivial.

(Subcase: $0 < \text{LHS} < \infty$). Divide both sides (in the inequality we proved above) by $0 < \left(\int \left[\int |f(x,y)| dx\right]^p dy\right)^{\frac{p-1}{p}} < \infty$ to get

$$\left[\int \left[\int |f(x,y)| \, dx \right]^p \, dy \right]^{\frac{1}{p}} \le \int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx$$

since $1 - \frac{p-1}{p} = \frac{1}{p}$.

(Subcase: LHS = ∞). We may assume $|\{f(x,y) = \infty\}| = 0$, otherwise both sides of the inequality will be infinite. Let

$$g_k(x,y) := |f(x,y)| \cdot \chi_{\{|f(x,y)| < k\}}(x,y) \cdot \chi_{\{x^2 + y^2 < k\}}(x,y).$$

Note that $0 \leq g_k(x,y) \nearrow |f(x,y)|$ a.e. Then by the previous subcase we have

$$\left[\int \left[\int |g_k(x,y)| \, dx \right]^p \, dy \right]^{\frac{1}{p}} \le \int \left[\int |g_k(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx$$

for each k. Then taking limits as $k \to \infty$ and using Monotone Convergence Theorem gives

$$\infty = \left[\int \left[\int |f(x,y)| \, dx \right]^p \, dy \right]^{\frac{1}{p}} \le \int \left[\int |f(x,y)|^p \, dy \right]^{\frac{1}{p}} \, dx.$$

8.3 Q12

Assume $||f - f_k||_p \to 0$.

(Case: 0).

Lemma 8.3.1. If $0 , <math>|a + b|^p \le |a|^p + |b|^p$ for all $a, b \in \mathbb{R}$.

Proof.

$$1 = \frac{|a|}{|a| + |b|} + \frac{|b|}{|a| + |b|} \le \left(\frac{|a|}{|a| + |b|}\right)^p + \left(\frac{|b|}{|a| + |b|}\right)^p = \frac{|a|^p + |b|^p}{(|a| + |b|)^p}.$$
Hence $|a + b|^p \le (|a| + |b|)^p \le |a|^p + |b|^p$.

Hence, using $|a|^p \le |a-b|^p + |b|^p$ and $|b|^p \le |a-b|^p + |a|^p$ we see that

$$||a|^p - |b|^p| \le |a - b|^p. \tag{\dagger}$$

Thus

$$\left| \|f_k\|_p^p - \|f\|_p^p \right| = \left| \int (|f_k|^p - |f|^p) \right|$$

$$\leq \int ||f_k|^p - |f|^p$$

$$\leq \int |f_k - f|^p$$

$$= \|f - f_k\|_p^p \to 0 \quad \text{as } k \to \infty.$$
(using †)

Hence $||f_k||_p \to ||f||_p$.

(Case: $1 \le p \le \infty$.) By Minkowski's inequality, $||f||_p \le ||f - f_k||_p + ||f_k||_p$ and $||f_k||_p \le ||f - f_k||_p + ||f||_p$ so that

$$|||f_k||_p - ||f||_p| \le ||f - f_k||_p \to 0$$

as $k \to \infty$. Done.

(Converse). Assume $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$, 0 .

Lemma 8.3.2. For $a, b \in \mathbb{R}$, $|a+b|^p \le 2^{p-1}(|a|^p + |b|^p)$ for $1 \le p < \infty$.

Proof. By convexity of $|x|^p$ for $1 \le p < \infty$,

$$\left|\frac{1}{2}a + \frac{1}{2}b\right|^p \le \frac{1}{2}|a|^p + \frac{1}{2}|b|^p.$$

Multiplying throughout by 2^p gives

$$|a+b|^p \le 2^{p-1}(|a|^p + |b|^p).$$

Thus together with Lemma 8.3.1, for $0 we have <math>|f - f_k|^p \le c(|f|^p + |f_k|^p)$ with $c = \max\{2^{p-1}, 1\}$.

Note that $|f - f_k|^p \to 0$ a.e. and $\phi_k := c(|f|^p + |f_k|^p) \to \phi := 2c|f|^p$ a.e. which is integrable. Also, $\int \phi_k \to \int \phi$ since $||f_k||_p^p \to ||f||_p^p$. By Generalized Lebesgue's DCT, we have $\int |f - f_k|^p \to 0$ thus

$$||f - f_k||_p \to 0.$$

For completeness we state and prove Generalized Lebesgue's DCT:

Theorem 8.3.3 (Generalized Lebesgue Dominated Convergence Theorem). Let $\{f_k\}$ and $\{\phi_k\}$ be sequences of measurable functions on E satisfying $f_k \to f$ a.e. in E, $\phi_k \to \phi$ a.e. in E, and $|f_k| \le \phi_k$ a.e. in E. If $\phi \in L(E)$ and $\int_E \phi_k \to \int_E \phi$, then $\int_E |f_k - f| \to 0$. *Proof.* We have $|f_k - f| \le |f_k| + |f| \le \phi_k + \phi$. Applying Fatou's lemma to the non-negative sequence

$$h_k = \phi_k + \phi - |f_k - f|,$$

we get

$$2\int_{E} \phi \le \liminf_{k \to \infty} \int_{E} (\phi_k + \phi - |f_k - f|).$$

That is,

$$2\int_{E} \phi \le 2\int_{E} \phi - \limsup_{k \to \infty} \int_{E} |f_k - f|.$$

Since $\int_E \phi < \infty$, we get $\limsup_{k \to \infty} \int_E |f_k - f| \le 0$. Since $\liminf_{k \to \infty} \int_E |f_k - f| \le 0$, this implies $\lim_{k \to \infty} \int_E |f_k - f| = 0$.

(Show that the converse may fail for $p = \infty$). Consider $f_k = \chi_{[-k,k]} \in L^{\infty}(\mathbb{R})$. Then $f_k \to f$ a.e. where $f(x) \equiv 1$, and $||f_k||_{\infty} \to ||f||_{\infty} = 1$. However $||f - f_k||_{\infty} = 1 \not\to 0$.

8.4 Q13

(Case: $|E| < \infty$, where E is the domain of integration). We may assume |E| > 0, M > 0, $||g||_{p'} > 0$ otherwise the result is trivially true. Also, by Fatou's Lemma,

$$||f||_p \le \liminf_{k \to \infty} ||f_k||_p \le M.$$

Let $\epsilon > 0$. Since $g \in L^{p'}$, so $g^{p'} \in L^1$ and there exists $\delta > 0$ such that for any measurable subset $A \subseteq E$ with $|A| < \delta$, $\int_A |g^{p'}| < \epsilon^{p'}$.

Since $f_k \to f$ a.e. (f is finite a.e. since $f \in L^p$), by Egorov's Theorem there exists closed $F \subseteq E$ such that $|E \setminus F| < \delta$ and $\{f_k\}$ converge uniformly to f on F. That is, there exists $N(\epsilon)$ such that for $k \ge N$, $|f_k(x) - f(x)| < \epsilon$ for all $x \in F$.

Then for $k \geq N$,

$$\left| \int_{E} f_{k}g - fg \right| \leq \int_{E} |f_{k} - f||g|$$

$$= \int_{E \setminus F} |f_{k} - f||g| + \int_{F} |f_{k} - f||g|$$

$$\leq \left(\int_{E \setminus F} |f_{k} - f|^{p} \right)^{\frac{1}{p}} \left(\int_{E \setminus F} |g|^{p'} \right)^{\frac{1}{p'}} + \epsilon \int_{F} |g|$$
(by Hölder's inequality)
$$< \|f_{k} - f\|_{p}(\epsilon) + \epsilon \left(\int_{F} |g|^{p'} \right)^{\frac{1}{p'}} \left(\int_{F} |1|^{p} \right)^{\frac{1}{p}}$$
(by Hölder's inequality)
$$\leq 2M\epsilon + \epsilon \|g\|_{p'} |E|^{\frac{1}{p}}$$

$$= \epsilon (2M + \|g\|_{p'} |E|^{\frac{1}{p}}).$$

Since $\epsilon > 0$ is arbitrary, this means $\int_E f_g \to \int_E fg$.

(Case: $|E| = \infty$).

Define $E_N = E \cap B_N(0)$, where $B_N(0)$ is the ball with radius N centered at the origin. Then $|E_N| < \infty$, so there exists $N_1 > 0$ such that for $N \ge N_1$, $\int_{E_N} |f_k - f| |g| < \epsilon$.

Since $|g|^{p'}\chi_{E_N} \nearrow |g|^{p'}$ on E, by Monotone Convergence Theorem,

$$\lim_{N \to \infty} \int_{E_N} |g|^{p'} = \int_E |g|^{p'} < \infty.$$

Thus there exists $N_2 > 0$ such that for $N \ge N_2$, $\int_{E \setminus E_N} |g|^{p'} < \epsilon^{p'}$.

Then for $N \ge \max\{N_1, N_2\}$,

$$\int_{E} |f_{k}g - fg| = \int_{E_{N}} |f_{k} - f||g| + \int_{E \setminus E_{N}} |f_{k} - f||g|
< \epsilon + \left(\int_{E \setminus E_{N}} |f_{k} - f|^{p} \right)^{\frac{1}{p}} \left(\int_{E \setminus E_{N}} |g|^{p'} \right)^{\frac{1}{p'}}
\text{(by Hölder's inequality)}
< \epsilon + ||f_{k} - f||_{p}(\epsilon)
\le \epsilon + 2M\epsilon
= \epsilon(1 + 2M).$$

so that $\int_E f_k g \to \int_E f g$.

(Show that the result is false if p = 1).

Let $f_k := k\chi_{[0,\frac{1}{k}]}$. Then $f_k \to f$ a.e., where $f \equiv 0$. Note that $\int_{\mathbb{R}} |f_k| = 1$, $\int_{\mathbb{R}} |f| = 0$ so that $f_k, f \in L^1(\mathbb{R})$. Similarly, $||f_k||_1 \le M = 1$.

However if $g \equiv 1 \in L^{\infty}$, $\int_{\mathbb{R}} f_k g = 1$ for all k but $\int_{\mathbb{R}} f g = 0$.

8.5 Q15

Lemma 8.5.1 (Q14a). Verify that the system

$$\left\{\frac{1}{2}, \cos x, \sin x, \dots, \cos kx, \sin kx, \dots\right\}$$

is orthogonal on any interval of length 2π .

Proof. Since the functions are all periodic with period 2π , it suffices to verify orthogonality on $[0, 2\pi]$. Using trigonometric factor formulae, check that for

 $m, n \ge 1$,

$$\int_0^{2\pi} \frac{1}{2} \cos mx \, dx = \int_0^{2\pi} \frac{1}{2} \sin mx \, dx = 0$$

$$\int_0^{2\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \pi & \text{if } m = n \end{cases}$$

$$\int_0^{2\pi} \cos mx \sin nx \, dx = 0$$

$$\int_0^{2\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \pi & \text{if } m = n. \end{cases}$$

Normalize the previous orthogonal system to obtain the orthonormal system $\,$

$$\{\phi_k\} := \{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \dots, \frac{1}{\sqrt{\pi}}\cos mx, \frac{1}{\sqrt{\pi}}\sin mx, \dots\}$$

in $L^2(0,2\pi)$.

By Bessel's inequality,

$$\sum_{k=1}^{\infty} \left| \int_0^{2\pi} f(x) \phi_k(x) \, dx \right|^2 \le ||f||_2 < \infty.$$

Hence, $\int_0^{2\pi} f(x)\phi_k(x) dx \to 0$ as $k \to \infty$ so that

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0.$$

(Prove that the same is true if $f \in L^1(0, 2\pi)$).

Lemma 8.5.2. If $f \in L^1$ and $\epsilon > 0$, we can write f = g + h, where $g \in L^2$ and $\int_0^{2\pi} |h| < \epsilon$.

Proof. Since $f \in L^1$, there exists $\delta > 0$ such that for any subset $A \subseteq (0, 2\pi)$ with $|A| < \delta$, $\int_A |f| < \epsilon$. Take M > 0 sufficiently large such that

$$|\{|f| \ge M\}| < \delta.$$

Define

$$h(x) = \begin{cases} f(x) & \text{if } |f(x)| \ge M \\ 0 & \text{otherwise.} \end{cases}$$

Then $\int_0^{2\pi} |h| = \int_{\{|f| \ge M\}} |f| < \epsilon$. Clearly, $|g| \le M$ and so $g \in L^2(0, 2\pi)$.

Then $c_k(f) = c_k(g) + c_k(h)$, where $c_k(f) = \int_0^{2\pi} f \phi_k$. Note that $c_k(g) \to 0$ and

$$|c_k(h)| \le \int_0^{2\pi} |h| |\phi_k| \le \frac{1}{\sqrt{\pi}} \int_0^{2\pi} |h| < \frac{\epsilon}{\sqrt{\pi}}$$

for all k.

Since $\epsilon > 0$ is arbitrary, thus $c_k(f) \to 0$ follows, that is,

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0.$$

8.6 Q16

Assume $f_k \to f$ in L^p norm, that is, $||f_k - f||_p \to 0$ as $k \to \infty$. For $g \in L^{p'}$,

$$\left| \int f_k g - \int f g \right| \le \int |f_k - f| |g| \le ||f_k - f||_p ||g||_{p'}$$

by Hölder's inequality.

Since $||g||_{p'} < \infty$, thus $\int f_k g \to \int f g$.

Note by Exercise 15 that $\{\cos kx\}$ converges weakly in $L^2(0, 2\pi)$ to 0, since

$$\lim_{k \to \infty} \int_0^{2\pi} (\cos kx) g(x) \, dx = \int_0^{2\pi} (0) g(x) \, dx = 0$$

for $g \in L^2(0, 2\pi)$.

However for $k \in \mathbb{N}$,

$$\|\cos kx - 0\|_2^2 = \int_0^{2\pi} |\cos kx|^2 dx = \pi \not\to 0.$$

Hence, $\cos kx \not\to 0$ in L^2 norm.

8.7 Q17

$$||f_k - f||_2^2 = \int |f_k - f|^2$$

$$= \int (f_k^2 - 2f_k f + f^2)$$

$$= \int f_k^2 - 2 \int f_k f + \int f^2$$

$$= ||f_k||_2^2 - 2 \int f_k f + ||f||_2^2.$$

Note that $\int f_k f \to \int f^2 = ||f||_2^2$ and $||f_k||_2^2 \to ||f||_2^2$.

Thus

$$||f_k - f||_2^2 \to ||f||_2^2 - 2||f||_2^2 + ||f||_2^2 = 0.$$

Hence $f_k \to f$ in L^2 norm.

8.8 Q21

Lemma 8.8.1. For $a, b \in \mathbb{R}$, $|a + b|^p \le 2^p (|a|^p + |b|^p)$, where 0 .

Proof.

$$|a+b|^{p} \le (|a|+|b|)^{p}$$

$$\le (2\max\{|a|,|b|\})^{p}$$

$$= 2^{p}(\max\{|a|,|b|\})^{p}$$

$$< 2^{p}(|a|^{p}+|b|^{p}).$$

Let $\{r_k\}$ be the rational numbers. First note that for any Q, x, and r_k ,

$$\frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} dy \leq 2^{p} \frac{1}{|Q|} \int_{Q} |f(y) - r_{k}|^{p} dy + 2^{p} \frac{1}{|Q|} \int_{Q} |r_{k} - f(x)|^{p} dy
= 2^{p} \frac{1}{|Q|} \int_{Q} |f(y) - r_{k}|^{p} dy + 2^{p} |r_{k} - f(x)|^{p}.$$

Let Z_k be the set in which the formula

$$\lim_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - r_k|^p \, dy = |f(x) - r_k|^p$$

is not valid. Since

$$|f(y) - r_k|^p \le 2^p (|f(y)|^p + |r_k|^p)$$

is locally integrable, by Lebesgue's Differentiation Theorem, $|Z_k| = 0$. Let $Z = \bigcup Z_k$, then |Z| = 0.

Thus, if $x \notin Z$,

$$\limsup_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} dy \le 2^{p+1} |f(x) - r_{k}|^{p}$$

for every r_k . For an x at which f(x) is finite (in particular, almost everywhere since $f \in L^p(\mathbb{R}^n)$), by the density of rationals in \mathbb{R}^n we can choose r_k such that $|f(x) - r_k|^p$ is arbitrarily small.

Thus

$$\limsup_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} dy = 0 \quad \text{a.e.}$$

and this completes the proof, since $0 \le \liminf_{Q \searrow x} \frac{1}{|Q|} \int_Q |f(y) - f(x)|^p dy$ is clear.

(Note by Exercise 5 that if this condition holds for a given p, then it also holds for all smaller p.)

In Exercise 5, it is proved that if $p_1 < p_2$, then $N_{p_1}[f] \leq N_{p_2}[f]$, where $N_p[f] = \left(\frac{1}{|E|} \int_E |f|^p\right)^{\frac{1}{p}}$. The proof is using Hölder's inequality to show

$$\int_{E} |f|^{p_{1}} \leq \left(\int_{E} 1^{\frac{p_{2}}{p_{2}-p_{1}}}\right)^{\frac{p_{2}-p_{1}}{p_{2}}} \left(\int_{E} |f|^{p_{1} \cdot \frac{p_{2}}{p_{1}}}\right)^{\frac{p_{1}}{p_{2}}} = |E|^{1-\frac{p_{1}}{p_{2}}} \left(\int_{E} |f|^{p_{2}}\right)^{\frac{p_{1}}{p_{2}}}.$$

Thus, if the condition holds for a given p, for smaller $p_1 < p$,

$$\begin{split} &\limsup_{Q\searrow x} \left(\frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p_1} \, dy\right)^{\frac{1}{p_1}} \\ &\leq \limsup_{Q\searrow x} \left(\frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} \, dy\right)^{\frac{1}{p}} = 0 \quad \text{a.e.} \end{split}$$