网络技术与应用课程报告

实验六: NAT的配置

姓名: 孙悦

学号: 2110052

专业: 物联网工程

一、实验内容

1.仿真环境下的NAT服务器配置

在仿真环境下完成NAT服务器的配置实验,要求如下:

- (1) 学习路由器的NAT配置过程。
- (2) 组建由NAT连接的内网和外网。
- (3) 测试网络的连通性, 观察网络地址映射表。
- (4) 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析。

2.在仿真环境下完成如下实验

将内部网络中放置一台Web服务器,请设置NAT服务器,使外部主机能够顺利使用该Web服务。

二、实验准备

1.NAT

NAT (Network Address Translation) 又称为网络地址转换,用于实现私有网络和公有网络之间的互访。

2.NAT 的工作原理

NAT 用来将内网地址和端口号转换成合法的公网地址和端口号,建立一个会话,与公网

主机进行通信。NAT 外部的主机无法主动跟位于 NAT 内部的主机通信,NAT 内部主机想要通信,必须主动和公网的一个 IP 通信,路由器负责建立一个映射关系,从而实现数据的转发。

3.路由器的作用

表	作用
路由表	数据包通过目的 IP 查路由表转发
ACL 访问控制列表	过滤数据包, 拒绝, 放行
NAT 转换表	内网到外网转换源 IP 地址,外网到内网转换目的 IP 地址

三、实验过程

1.实验一: 仿真环境下的NAT服务器配置

1.1 IP 地址和默认网关配置

本次实验所需配置的网络拓扑图如下图所示。该网络组建由 NAT 连接的内网和外网,具

体配置如下:

主机 PC0 --- IP 地址为: 10.0.0.2; 子网掩码: 255.0.0.0; 默认路由: 10.0.0.1

主机 PC1 --- IP 地址为: 10.0.0.3; 子网掩码: 255.0.0.0; 默认路由: 10.0.0.1

主机 PC2 --- IP 地址为: 202.113.25.101; 子网掩码: 255.255.255.0

外网 Web 服务器 --- 202.113.25.100; 子网掩码: 255.255.255.0

路由器 R0 --- IP 地址为: 10.0.0.1/202.113.25.1; 子网掩码: 255.255.255.0

1.2 路由器 IP 地址及 NAT 配置

1.2.1 IP 地址配置

配置路由器 IP 地址,可以在配置界面中选择 CLI,首先使用 enable 命令进入路由器的特权执行模式,而后通过 config terminal 进入全局配置模式。需要注意,路由器通常具有两个或多个网络接口,地址属于某个特定接口。在为接口配置 IP 地址之前,首先使用 interface 接口名 进入接口的配置模式,并使用 no shutdown 命令激活接口。

具体指令如下:

Router#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router (config) #interface gig0/0

Router (config-if) #ip address 10.0.0.1 255.0.0.0

Router (config-if) #no shutdown

Router (config-if)#

%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed

state to up

Router (config-if) #exit

Router (config) #interface gig0/1

Router (config-if) #ip address 202.113.25.1 255.255.255.0

Router (config-if) #no shutdown

1.2.2 NAT 配置

对路由器进行 NAT 配置首先应定义 NAT 池,命名为 myNATPool,并定义允许哪些主机使用地址池,使用一个 ACL 进行匹配,并配置作为外部和内部的正确接口。为了方便展示 NAT转换表,可以采用 show ip nat translations 进行查看。

具体指令如下:

```
Router(config) #ip nat pool myNATPool 202.113.25.1 202.113.25.100 netmask 255.255.255.0 Router(config) #
Router(config) #access-list 6 permit 10.0.0.0 0.255.255.255
Router(config) #ip nat inside source list 6 pool myNATPool overload
Router(config) #
Router(config) #interface gig0/0
Router(config-if) #ip nat inside
Router(config-if) #exit
Router(config-if) #ip nat outside
Router(config-if) #ip nat outside
Router(config-if) #exit
```

PC0访问外网服务器:

NAT 转换表如下:

```
Router>show ip nat translations
Pro Inside global
                       Inside local
                                          Outside local
                                                             Outside global
tcp 202.113.25.1:1025
                       10.0.0.2:1025
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1026 10.0.0.2:1026
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1027
                      10.0.0.2:1027
                                          202.113.25.100:80
                                                             202.113.25.100:80
                                          202.113.25.100:80
tcp 202.113.25.1:1028
                      10.0.0.2:1028
                                                             202.113.25.100:80
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1029
                      10.0.0.2:1029
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1030
                      10.0.0.2:1030
tcp 202.113.25.1:1031
                      10.0.0.2:1031
                                          202.113.25.100:80
                                                             202.113.25.100:80
                      10.0.0.2:1032
tcp 202.113.25.1:1032
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1033
                      10.0.0.2:1033
                                          202.113.25.100:80
                                                             202.113.25.100:80
tcp 202.113.25.1:1034
                                          202.113.25.100:80 202.113.25.100:80
                      10.0.0.2:1034
```

1.3实验结果验证

PCO访问外网服务器:

查看网络连通性:

内网PC1 ping 外网PC2

通过"模拟"方式分析

• 其发送过程如下:

• 其接收过程如下:

主要分析数据包到达路由器时的信息,具体如下:

当数据包从内部网络转到外部网络时,设备查找其 NAT 表以进行必要的转换。当该数据包与内部源列表匹配,则对源本地 IP 地址进行转换,从而实现内外主机的连接。

OSI Model

Inbound PDU Details

Outbound PDU Details

At Device: Router0

Source: PC1

Destination: 202.113.25.101

In Layers

Layer7
Layer6
Layer5
Layer4

Layer 3: IP Header Src. IP: 10.0.0.3, Dest. IP:

202.113.25.101 ICMP Message

Type: 8

Layer 2: Ethernet II Header

0009.7CC6.883E >>

00E0.8F02.6801

Layer 1: Port GigabitEthernet0/0

Out Layers

Layer7 Layer6

Laver5

Layer4

Layer 3: IP Header Src. IP: 202.113.25.1, Dest. IP:

202.113.25.101 ICMP Message

Type: 8

Layer 2: Ethernet II Header 00E0.8F02.6802 >> 00E0.F7EA. 336A

Layer 1: Port(s): GigabitEthernet0/1

1. GigabitEthernet0/0 receives the frame.

2.实验二

2.1相关配置

本次实验所需配置的网络拓扑图如下图所示。该网络组建由 NAT 连接的内网和外网,具

体配置如下:

主机 PC0 (同实验一) --- IP 地址为: 10.0.0.2; 子网掩码: 255.0.0.0; 默认路由: 10.0.0.1

主机 PC1 (同实验一) --- IP 地址为: 10.0.0.3; 子网掩码: 255.0.0.0; 默认路由: 10.0.0.1

主机 PC2(同实验一) --- IP 地址为: 202.113.25.101; 子网掩码: 255.255.255.0

内网 Web 服务器 --- 10.0.0.4; 子网掩码: 255.0.0.0; 默认路由: 10.0.0.1; 对应外网地址: 202.113.25.2;

外网 Web 服务器 (同实验一) --- 202.113.25.100; 子网掩码: 255.255.255.0

路由器 R0 --- IP 地址为: 10.0.0.1/202.113.25.1; 子网掩码: 255.255.255.0

采用在路由器中添加静态 NAT 的方法 (其他步骤同上面实验一)。命令为:

Router#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config) #interface gig0/0

Router(config-if) #ip nat inside source static tcp 10.0.0.4 80 202.113.25.2 80 Router(config) #exit

在路由器 Router0 中配置完静态 NAT 表项之后,使用主机浏览器检测是否配置成功。(检测方法:在浏览器地址栏输入主机网关(即路由器 Router0 在网络 202.113.0.0 中的 IP 地址)。

2.2 实验结果验证

2.2.1 访问内网服务器

外网主机PC2 ping 内网主机PC0:

使用外网主机 PC2 来访问内网 web 服务器 Server1。实验结果如下图所示,说明正确配置成功。

NAT转换表:

MOGOCE?
Router>sho

TOUCCE			
Router>show ip nat tra	anslations		
Pro Inside global	Inside local	Outside local	Outside global
tcp 202.113.25.2:80	10.0.0.4:80		
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	025202.113.25.101:1025
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	026202.113.25.101:1026
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	027202.113.25.101:1027
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	028202.113.25.101:1028
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	029202.113.25.101:1029
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	030202.113.25.101:1030
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	031202.113.25.101:1031
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	032202.113.25.101:1032
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	033202.113.25.101:1033
tcp 202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	034202.113.25.101:1034

2.2.2 "模拟"方式分析

下面简单分析整个通话过程,并忽略网络中的初始化问题,例如通过 ARP 获取 MAC 地 址的过程,交换机 STP 服务的过程等;

- 主机和服务器之间经过三次握手后成功建立连接;
- 主机和服务器之间通过 HTTP 协议进行通信;
- 主机和服务器之间经过四次挥手结束连接。

ent List					
is.	Time(sec)	Last Device	At Device	Тур	oe e
	0.000		PC2		TCP
	0.001	PC2	Switch1		TCP
	0.002	Switch1	Router0		TCP
	0.003	Router0	Switch0		TCP
	0.004	Switch0	Server1		TCP
	0.004	Switch0	PC0		TCP
	0.004	Switch0	PC1		TCP
	0.005	Server1	Switch0		TCP
	0.006	Switch0	Router0		TCP
	0.007	Router0	Switch1		TCP
	0.008	Switch1	PC2		TCP
	0.008		PC2		HTTP
	0.009	PC2	Switch1		TCP
	0.009		PC2		HTTP
	0.010	PC2	Switch1		HTTP
	0.010	Switch1	Router0		TCP
	0.011	Switch1	Router0		HTTP
	0.011	Router0	Switch0		TCP
	0.012	Router0	Switch0		HTTP
	0.012	Switch0	Server1		TCP
	0.013	Switch0	Server1		HTTP
	0.014	Server1	Switch0		HTTP
	0.015	Switch0	Router0		HTTP
	0.016	Router0	Switch1		HTTP
	0.017	Switch1	PC2		HTTP
	0.017	_	PC2		TCP
	0.018	PC2	Switch1		TCP
	0.019	Switch1	Router0		TCP
	0.020	Router0	Switch0		TCP
	0.021	Switch0	Server1		TCP
	0.022	Server1	Switch0		TCP
	0.023	Switch0	Router0		TCP
	0.024	Router0	Switch1		TCP
Visible	0. 025	Switch1	PC2		TCP
	0.026	PC2	Switch1		TCP
	0.027	Switch1	Router0		TCP
	0.028	Router0	Switch0		TCP