Théorie des Graphes: Formulaire

Arnaud Fombellida

19 janvier 201'

Handshaking formula

Softent entiant
$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v)$$

Nombre de sommets de $K_n = C_n^2$

Connexité 1

1.1 Point d'articulation \mathcal{L}_i on Inline \mathcal{L}_i connexe de \mathcal{L}_i \mathcal{L}_i

Si G connexe et n'a aucun point d'articulation, alors G est au moins 2-connexe.

Un graphe est k-connexe si quels que soient les k-1 sommets supprimés, G reste connexe et qu'il est possible de supprimer k sommets bien choisis pour disconnecter G.

On note $\kappa(G)$ la taille minimale d'un ensemble d'articulation de G. $\kappa(K_n) = n - 1$

Arête de coupure Idem aux une aret

e est une arête de coupure si #comp. connexe de G-e> #comp. connexe de G.

Une arête e est une arête de coupure du graphe H = (V, E) si et seulement si e n'appartient à aucune piste fermée de H.

Un ensemble de coupure, aussi dit une coupe, d'un graphe G = (V, E) est un ensemble d'arêtes $F = \{e_1, \dots, e_k\}$ tel que G - F n'est pas connexe.

Un graphe est k-connexe si quels que soient les k-1 arêtes supprimées, G reste connexe et qu'il est possible de supprimer k arêtes bien choisies pour disconnecter G.

On note $\lambda(G)$ la taille minimale d'une coupe.

Théorème de Robbins On peut orienter un graphe connexe pour le rendre fortement connexe si et seulement si ce graphe est au moins 2-connexe pour les arêtes.

Si deg(v)=k, alors supprimer les k arêtes incidentes à v isole v et $\lambda(G) \leq \min_{v \in V} deg(v)$.

1.3 Théorème de Menger

Deux chemins joingnant u et v sont indépendants si les seuls sommets qu'ils ont en commun sont u et v.

Deux sommets sont séparé par un ensemble $S \subseteq V$ s'il n'existe aucun chemin les joingnant dans

```
G = (V - S, E).
```

Théorème de Menger Soient u,v deux sommets non adjacents d'un graphe connexe.

La taille minimum d'un ensemble de sommets séparant u et v

=

Le nombre maximum de chemins 2 à 2 indépendants joignant u et v

Corollaire Soit $k \geq 2$. Un graphe G = (V, E) est au moins k-connexe si et seulement si toute paire de sommets distincts de G est connectée par au moins k chemins indépendants.

2 Arbre

Tout arbre non trivial contient un sommet de degré 1.

Si A = (V, E) est un arbre, alors #V = #E + 1. // P.A.

Un graphe est connexe si et seulement si il possède un sous-arbre couvrant.

Si G = (V, E) est un graphe connexe, alors $\#E \ge \#V - 1$.

3 Isomorphismes

Soient G, H deux graphes isomorphes de ϕ un isomorphisme de G dans H. Pour tous sommets u,v de G, on a

- $deg(u) = deg(\phi(u)),$
- $d(u, v) = d(\phi(u), \phi(v)).$

4 Graphes Hamiltoniens

Si G = (V, E) est un graphe hamiltonien, alors pour tout ensemble non vide $S \subseteq V$, le nombre de composante connexes de G - S est $\leq \#S$.

Théorème de Dirac Tout graphe G (simple et non orienté) ayant $n \leq 3$ sommets et tel que le degré de chaque sommet est au moins égal à $\frac{n}{2}$, possède un circuit hamiltonien.

Théorème d'Ore Soit un graphe G (simple et non orienté) ayant $n \leq 3$ sommets. Si il existe 2 sommets x et y tel que $deg(x) + deg(y) \geq n$. Le graphe G est hamiltonien si et seulement si $G + \{x, y\}$ l'est.

Corollaires du théorème d'Ore Soit un graphe G (simple et non orienté) ayant $n\leqslant 3$ sommets.

- Le graphe G est hamiltonien si et seulement si sa fermeture l'est.
- Si la fermeture de G est K_n , alors G est hamiltonien.
- Si pour tout couple de sommets non adjacents (x, y), on a $deg(x) + deg(y) \ge n$, alors G est hamiltonien.
- Si $\min_{v \in V} deg(v) \leq n/2$, alors G est hamiltonien.

Théorème de Chvatal Soit un graphe (simple et non orienté) ayant $n \ge 3$ sommets ordonnés par degré croissant, i.e.,

$$deg(v_1) \le deg(v_2) \le \dots \le deg(v_n)$$

Si pour tout $k \leq n/2$ le graphe satisfait

$$deg(v_k) \le k \Rightarrow deg(v_{n-k}) \ge n - k$$

Alors G possède un circuit hamiltonien.

Partition de K_n en circuits hamiltoniens Pour $n \geq 3$, K_n peut être partitionné en circuits hamiltoniens disjoints si et seulement si n impair. Le nombre de tels circuits partitionnant K_n vaut (n-1)/2.

Si n pair, K_n peut être partitionné en n/2 chemins hamiltoniens disjoints.

5 Théorie Algébrique

Deux graphes G_1 et G_2 sont isomorphes si et seulement si ils ont, à une permutation près, la même matrice d'adjacence.

5.1 Matrice irréductibles et primitives

Une matrice carrée $A = (a_{ij})_{i \leq i, j \leq n}$ à coefficients (réels) ≥ 0 est irréductible, si pour tous $i, j \in \{1, \ldots, n\}$, il existe N(i, j) > 0 tel que

$$[A^{N_{i,j}}]_{i,j} > 0$$

Une matrice carrée $A=(a_{ij})_{i\leq i,j\leq n}$ à coefficients (réels) ≥ 0 est primitive, s'il existe N>0 tel que pour tous $i,j\in\{1,\ldots,n\}$

$$[A^N]_{i,j} > 0$$

qu'on note $A^N > 0$

Une matrice primitive est irréductible.

Un multi-graphe orienté G est fortement connexe si et seulement si sa matrice d'adjacence A(G) est irréductible.

Théorème de Perron Soit $A \ge 0$ une matrice carrée primitive de dimension n.

• La matrice A possède un vecteur propre $v_A \in \mathbb{R}^n$ dont les composantes sont toutes strictement positives et correspondant à une valeur propre $\lambda_A > 0$,

$$Av_A = \lambda_A v_A$$

- Cette valeur propre λ_A possède une multiplicité algébrique (et géométrique) simple.
- Tout vecteur propre de A dont les composantes sont strictement positives est un multiple de v_A
- Toute autre valeur propre $\mu \in \mathbb{C}$ de A est telle que $|\mu| < \lambda_A$

Corollaire du théorème de Perron Si A est une matrice primitive alors

$$A^k = \lambda_A^k v_A \widetilde{w_A} + o(\lambda_A^k)$$

où v_A et $\tilde{w_A}$ sont des vecteurs propres choisis tel que $\tilde{w_A}v_A=1.$

Théorème de Perron-Frobenius Soit $A \ge 0$ une matrice carrée irréductible de dimension n.

• La matrice A possède un vecteur propre $v_A \in \mathbb{R}^n$ dont les composantes sont toutes strictement positives et correspondant à une valeur propre $\lambda_A > 0$,

$$Av_A = \lambda_A v_A$$

- Cette valeur propre λ_A possède une multiplicité algébrique (et géométrique) simple.
- Tout vecteur propre de A dont les composantes sont strictement positives est un multiple de v_A
- Toute autre valeur propre $\mu \in \mathbb{C}$ de A est telle que $|\mu| \leq \lambda_A$
- $d \le 1$ tel que si μ est une valeur propre de A telle que $|\mu| = \lambda_A$, alors $\mu = \lambda_A e^{2ik\pi/d}$ et pour tout $k \in \{0, \ldots, d-1\}$, $\lambda_A e^{2ik\pi/d}$ est une valeur propre de A.

Comportement asymptotyque du nombre de chemins de longueur n

- Détecter la plus grande valeur propre de Perron λ des différentes composantes connexes par lesquelles passent les chemins d'intérêt
- Compter le nombre k de composantes ayant cette valeur propre comme valeur dominante.
- Le nombre de chemins de longueur n se comporte alors asymptotiquement comme $n^{k-1}\lambda^n$.

6 Planarité

Théorème de Steinitz Un graphe est le squelette d'un polyèdre convexe (borné) de \mathbb{R}^3 si et seulement si c'est un graphe planaire au moins 3-connexe.

Théorème d'Euler Dans un multi-graphe planaire connexe (fini) possédant s sommets, a arêtes et f faces, on a

$$s - a + f = 2$$

Un multi-graphe (non-orienté) est planaire si et seulement si il ne contient pas de sous-graphe homéomorphe à K_5 ou à $K_{3,3}$.

Cinq couleurs suffisent pour colorier les faces d'un multi-graphe planaire de manière telle que deux faces adjacentes rçoivent des couleurs distinctes. (*Remarque* : En fait 4 suffisent mais non démontré.)

Formule d'Heawood Si un graphe peut être représenté de manière planaire sur une surface de genre g, alors ses faces peuvent être colorées avec c_q couleurs où

$$c_g = \lfloor \frac{1}{2} (7 + \sqrt{1 + 48g}) \rfloor$$

Théorème de Ramsay Il existe un plus petit entier R(s,t) tel que pour tout $n \geq R(s,t)$ tout coloriage de K_n contienne une copie de K_s ou une copie de K_t .

Théorème d'Erdös-Szekeres Pour tous $s,t \geq 2$, le nombre R(s,t) existe. De plus, on a

$$R(s,t) \le C_{s+t-2}^{s-1}$$

et si $s, t \geq 3$, alors

$$R(s,t) \le R(s-1,t) + R(s,t-1)$$