# Data Mining Classification: Alternative Techniques

#### Imbalanced Class Problem

Introduction to Data Mining, 2<sup>nd</sup> Edition by

Tan, Steinbach, Karpatne, Kumar

### **Class Imbalance Problem**

- Lots of classification problems where the classes are skewed (more records from one class than another)
  - Credit card fraud
  - Intrusion detection
  - Defective products in manufacturing assembly line

# **Challenges**

- ②Evaluation measures such as accuracy is not well-suited for imbalanced class
- Detecting the rare class is like finding needle in a haystack

### **Confusion Matrix**

#### Confusion Matrix:

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
|                 |                 | Class=Yes | Class=No |
| ACTUAL<br>CLASS | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

### **Accuracy**

|                 | PREDICTED CLASS |           |           |  |
|-----------------|-----------------|-----------|-----------|--|
|                 |                 | Class=Yes | Class=No  |  |
| ACTUAL<br>CLASS | Class=Yes       | a<br>(TP) | b<br>(FN) |  |
|                 | Class=No        | c<br>(FP) | d<br>(TN) |  |

Most widely-used metric:

### **Problem with Accuracy**

Consider a 2-class problem (total number of test samples 10.000)

- Number of Class 0 examples = 9990
- Number of Class 1 examples = 10

### **Problem with Accuracy**

- Consider a 2-class problem
  - Number of Class NO examples = 990
  - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
  - This is misleading because the model does not detect any class YES example
  - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

| PREDICTED CLASS |           |                     |  |
|-----------------|-----------|---------------------|--|
|                 | Class=Yes | Class=No            |  |
| Class=Yes       | а         | b                   |  |
| Class=No        | С         | d                   |  |
|                 | Class=Yes | Class=Yes Class=Yes |  |

| PREDICTED CLASS |           |          |
|-----------------|-----------|----------|
|                 | Class=Yes | Class=No |
| Class=Yes       | 10        | 0        |
| Class=No        | 10        | 980      |
|                 |           |          |

| PREDICTED CLASS |           |                        |
|-----------------|-----------|------------------------|
|                 | Class=Yes | Class=No               |
| Class=Yes       | 10        | 0                      |
| Class=No        | 10        | 980                    |
|                 | Class=Yes | Class=Yes Class=Yes 10 |

|        | PREDICTED CLASS |               |                         |  |
|--------|-----------------|---------------|-------------------------|--|
|        |                 | Class=Yes     | Class=No                |  |
| ACTUAL | Class=Yes       | 1             | 9                       |  |
| SS     | Class=No        | 0             | 990                     |  |
|        | _               | JAL Class=Yes | Class=Yes  Class=Yes  1 |  |

|                                        | PREDICTED CLASS |           |          |
|----------------------------------------|-----------------|-----------|----------|
| C 18 at 12 12 200 30, 30 at 10 11 546. |                 | Class=Yes | Class=No |
| ACTUAL<br>CLASS                        | Class=Yes       | 40        | 10       |
|                                        | Class=No        | 10        | 40       |

| PREDICTED CLASS |           |              |
|-----------------|-----------|--------------|
|                 | Class=Yes | Class=No     |
| Class=Yes       | 40        | 10           |
| Class=No        | 10        | 40           |
|                 | Class=Yes | Class=Yes 40 |

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | 40        | 10       |  |
| CLASS  | Class=No        | 1000      | 4000     |  |
| CLASS  | Class=No        | 1000      | 4000     |  |

### **Measures of Classification Performance**

|                 | PREDICTED CLASS |     |    |
|-----------------|-----------------|-----|----|
| ACTUAL<br>CLASS |                 | Yes | No |
|                 | Yes             | TP  | FN |
|                 | No              | FP  | TN |

 $\alpha$  is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 $\beta$  is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

Power = sensitivity = 
$$1 - \beta$$

| PREDICTED CLASS |           |              |
|-----------------|-----------|--------------|
|                 | Class=Yes | Class=No     |
| Class=Yes       | 40        | 10           |
| Class=No        | 10        | 40           |
|                 | Class=Yes | Class=Yes 40 |

|        | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | 40        | 10       |
| CLASS  | Class=No        | 1000      | 4000     |
| S.     |                 |           |          |

|        | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | 10        | 40       |
| CLASS  | Class=No        | 10        | 40       |

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
|                 |                 | Class=Yes | Class=No |
| ACTUAL<br>CLASS | Class=Yes       | 25        | 25       |
|                 | Class=No        | 25        | 25       |

|                 | PREDICTED CLASS |    |    |
|-----------------|-----------------|----|----|
|                 | Class=No        |    |    |
| ACTUAL<br>CLASS | Class=Yes       | 40 | 10 |
|                 | Class=No        | 40 | 10 |

# **ROC (Receiver Operating Characteristic)**

- ②A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
  - Performance of a model represented as a point in an ROC curve
  - Changing the threshold parameter of classifier changes the location of the point

#### **ROC Curve**

#### (TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

#### Diagonal line:

- Random guessing
- Below diagonal line:
  - prediction is opposite of the true class



# **ROC (Receiver Operating Characteristic)**

- To draw ROC curve, classifier must produce continuous-valued output
  - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
  - How to get continuous-valued outputs?
    - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

# **Example: Decision Trees**



# **ROC Curve Example**



| $\alpha = 0.3$ |         | Predicted Class |         |
|----------------|---------|-----------------|---------|
| _              |         | Class o         | Class + |
| Actual         | Class o | 645             | 209     |
| Class          | Class + | 298             | 948     |

| $\alpha = 0.7$ |         | Predicted Class |         |
|----------------|---------|-----------------|---------|
|                |         | Class o         | Class + |
| Actual         | Class o | 181             | 673     |
| Class          | Class + | 78              | 1168    |

### **ROC Curve Example**

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive



### **Using ROC for Model Comparison**



- No model consistently outperform the other
  - M<sub>1</sub> is better for small FPR
  - M<sub>2</sub> is better for large FPR
- Area Under the ROC curve
  - Ideal:
    - Area = 1
  - Random guess:
    - Area = 0.5

#### How to Construct an ROC curve

| SOCKETAL CAND STREET SCOT | The second secon |            |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Instance                  | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | True Class |
| 1                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +          |
| 2                         | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +          |
| 3                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =          |
| 4                         | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 5                         | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 6                         | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +          |
| 7                         | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          |
| 8                         | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +          |
| 9                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 10                        | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +          |

- Use a classifier that produces a continuous-valued score for each instance
  - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
  - TPR = TP/(TP+FN)
  - FPR = FP/(FP + TN)

### How to construct an ROC curve



### **Handling Class Imbalanced Problem**

- Class-based ordering (e.g. RIPPER)
  - Rules for rare class have higher priority
- Cost-sensitive classification
  - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class
- Sampling-based approaches

### **Cost Matrix**

|        | PREDICTED CLASS    |             |           |  |  |
|--------|--------------------|-------------|-----------|--|--|
| ACTUAL | Class=Yes Class=No |             |           |  |  |
| CLASS  | Class=Yes          | f(Yes, Yes) | f(Yes,No) |  |  |
| 6<br>8 | Class=No           | f(No, Yes)  | f(No, No) |  |  |

| Cost Matrix | PREDICTED CLASS |             |            |
|-------------|-----------------|-------------|------------|
|             | C(i, j)         | Class=Yes   | Class=No   |
| ACTUAL      | Class=Yes       | C(Yes, Yes) | C(Yes, No) |
| CLASS       | Class=No        | C(No, Yes)  | C(No, No)  |

C(i,j): Cost of misclassifying class i example as class j

### **Computing Cost of Classification**

| Cost<br>Matrix  | PREDICTED CLASS |    |     |
|-----------------|-----------------|----|-----|
| ACTUAL<br>CLASS | C(i,j)          | +  | -   |
|                 | +               | -1 | 100 |
| OLAGO           | -               | 1  | 0   |

| Model M <sub>1</sub> | PREDICTED CLASS |     |     |
|----------------------|-----------------|-----|-----|
|                      |                 | +   | -   |
| ACTUAL<br>CLASS      | +               | 150 | 40  |
|                      | -               | 60  | 250 |

| Model M <sub>2</sub> | PREDICTED CLASS |     |     |
|----------------------|-----------------|-----|-----|
|                      |                 | +   | -   |
| ACTUAL CLASS         | +               | 250 | 45  |
|                      | -               | 5   | 200 |

Accuracy = 80% Cost = 3910 Accuracy = 90% Cost = 4255

### **Cost Sensitive Classification**

- Example: Bayesian classifer
  - Given a test record x:
    - Compute p(i|x) for each class i
    - Decision rule: classify node as class k if

- For 2-class, classify x as + if p(+|x) > p(-|x)
  - This decision rule implicitly assumes that
     C(+|+) = C(-|-) = 0 and C(+|-) = C(-|+)

### **Cost Sensitive Classification**

- General decision rule:
  - Classify test record x as class k if

#### 2-class:

- Cost(+) = p(+|x) C(+,+) + p(-|x) C(-,+)
- Cost(-) = p(+|x) C(+,-) + p(-|x) C(-,-)
- Decision rule: classify x as + if Cost(+) < Cost(-)</li>
  - if C(+,+) = C(-,-) = 0:

### Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
  - Undersample the majority class
  - Oversample the rare class
- Advantages and disadvantages