Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^\omega$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^\omega$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

dove

- l vince se $(a_n)_{n<\omega}\in X$;
- ▶ II vince se $(a_n)_{n<\omega} \notin X$.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ e $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiunta che $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ e $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiunta che $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Remark

Se $T=A^{<\omega}$ otteniamo i giochi di Gale-Stewart su A.

Fissiamo un gioco G(X,T).

Definizione

Una **strategia** per I è un albero $\sigma \subseteq T$ tale che

- 1. σ è potato e non vuoto;
- 2. se $(a_0,\dots,a_{2j})\in\sigma$ allora ogni $(a_0,\dots,a_{2j},a_{2j+1})\in T$ è in $\sigma;$
- 3. se $(a_0,\ldots,a_{2j-1})\in\sigma$ allora esiste un unico $a_{2j}\in A$ tale che $(a_0,\ldots,a_{2j-1},a_{2j})\in\sigma$.

Se
$$A=\{0,1,2\}$$
 e $T=A^{<\omega}$ allora

è una strategia per I.

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Remark

Siccome G(X,T) non può finire in un pareggio non è possibile che sia I che II abbiano una strategia vincente.

Determinatezza

Definizione

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice **determinato** se uno dei due giocatori ha una strategia vincente.

Determinatezza

Definizione

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice **determinato** se uno dei due giocatori ha una strategia vincente.

Domande

- I chiusi e gli aperti sono determinati?
- ► I Boreliani sono determinati?
- ► Gli analitici sono determinati?