# Aplikace neuronových sítí

Lineární klasifikace, Softmax, SVM

# Lineární klasifikace

## Problém klasifikace









# Vzorové obrázky neboli trénovací data















## Predikce na neznámém obrázku











## Metoda nejbližšího souseda



### Lineární klasifikace



# Příznakový prostor



## Na jaké straně bod je? Skalární součin vektorů

• Definice:

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \boldsymbol{v}^{\top} \boldsymbol{w} = \sum_{i} v_{i} w_{i}$$

- Jinak také dot product či inner product 

  pro naše potřeby ekvivalentní pojmy
- Souvisí s identitou:

$$\cos \alpha = \frac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\|\boldsymbol{v}\| \cdot \|\boldsymbol{w}\|}$$



```
# Python  # numpy
s = 0.  import numpy as np
for d in range(D):  s = np.dot(v, w)
  s += v[d] * w[d]
```

## Projekce bodu na přímku

• Pro libovolný bod  $\mathbf{x} = [x_1, x_2]^T$ 

$$d = \frac{w_1 x_1 + w_2 x_2 + b}{\sqrt{w_1^2 + w_2^2}}$$

je *orientovaná* vzdálenost od přímky:

- $d > 0 \rightarrow x$  leží "nad" přímkou
- $d = 0 \rightarrow x$  leží na přímce
- $d < 0 \rightarrow x$  leží "pod" přímkou
- Zdali "nad" či "pod" určuje směr normály

$$\mathbf{w} = [w_1, w_2]^T$$



## Vícerozměrný prostor

Ve více rozměrech přímku nahrazuje rovina



### No jo, jenže kde vezmu tu správnou přímku?

- Na jakou přímku/nadrovinu vektory promítat tak, abychom dosáhli max. úspěšnosti klasifikace?
- Zavedeme kritérium  $L(\theta)$ , které bude kvantifikovat, jak moc špatné aktuální parametry  $\theta = (w, b)$  jsou  $\rightarrow$  bude popisovat chybu modelu
- Úkolem potom bude nalézt optimální parametry  $\theta^*$ , které tuto chybu na vzorových datech X minimalizují, neboli



$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$



## Kritérium: binární logistická regrese

Logistická regrese definuje kritérium, tzv. křížovou entropii (zde binární varianta)

$$L_n = -y_n \log \{\sigma(s_n)\} - (1 - y_n) \log \{1 - \sigma(s_n)\}\$$

Sigmoid

$$\sigma(s_n) = \frac{1}{1 + e^{-s_n}}$$

... normalizuje do intervalu (0, 1)

Lineární skóre

$$s_n = \boldsymbol{w}^{\top} \boldsymbol{x}_n + b$$

... projekce bodu  $oldsymbol{x}_n$  na dělící nadrovinu

## Schématické znázornění logistické regrese



### Logistická regrese jako neurosíť

- Na logistickou regresi možné nahlížet jako na jednovrstvou neuronovou síť, tzv. single layer perceptron
- Pozor: neplést s perceptronem jako učícím algoritmem
  - https://en.wikipedia.org/wiki/Perceptron
- Výstupem je pravděpodobnost, že vstup náleží třídě "+1"

### Formulace logistické regrese

• Jelikož  $x_n$  považujeme za nezávislé, pro celou trénovací sadu je loss

$$L(\mathbf{w}, b) = \sum_{n=1}^{N} L_n = \sum_{n=1}^{N} (-y_n \log{\{\sigma(s_n)\}} - \ldots)$$

Celkově pak úloha je

$$oldsymbol{w}^*, b^* = \operatorname*{arg\,min}_{oldsymbol{w}, b} L(oldsymbol{w}, b) + \lambda \left\| oldsymbol{w} 
ight\|^2$$

- $\lambda \left\| oldsymbol{w} 
  ight\|^2$  je regularizační člen
  - $\lambda$  je hyperparametr, často označovaný jako weight decay

### Proč regularizace?

- Např.  $x = [1, 1, 1, 1]^T$  a dvoje různé parametry:
  - $\mathbf{w}_1 = [1, 0, 0, 0]^T$
  - $\mathbf{w}_2 = [0.25, 0.25, 0.25, 0.25]^T$
- Přestože  $\boldsymbol{w}_1^T\boldsymbol{x} = \boldsymbol{w}_2^T\boldsymbol{x} = 1$ , preferujeme  $\boldsymbol{w}_2$
- Brání přeučení
  - $w_2$  má menší normu
  - $w_1$  sází všechno na jeden příznak, zatímco  $w_2$  důležitost rozkládá
  - normu  $||w||_2$  Ize interpretovat jako apriorní pravděpodobnost
  - regularizace brání změnám -> trénování méně reaguje na změny

# Vliv regularizace



http://cs231n.github.io/neural-networks-1/

### Formy regularizace

$$J(\mathbf{W}) = L(\mathbf{W}) + \lambda R(\mathbf{W})$$

| Nejčastěji L2     | $R(\boldsymbol{W}) = \left\  \boldsymbol{W} \right\ _2^2 = \sum_{i,j} w_{ij}^2$ |
|-------------------|---------------------------------------------------------------------------------|
| Méně často L1     | $R(\boldsymbol{W}) = \ \boldsymbol{W}\ _1 = \sum_{i,j}  w_{ij} $                |
| Kombinace L1 + L2 | $R(\mathbf{W}) = \lambda_1 \sum_{i,j} w_{ij}^2 + \lambda_2 \sum_{i,j}  w_{ij} $ |
| dropout a další   | více v třetí přednášce                                                          |

#### Začínáme:

známe výchozí pozici

#### **Opakujeme:**

$$oldsymbol{x}^{(t+1)} \longleftarrow oldsymbol{x}^{(t)} - \gamma 
abla f\left(oldsymbol{x}^{(t)}
ight)$$

- po vykonaném počtu kroků
- poloha už se nemění (konvergence)



#### Začínáme:

známe výchozí pozici

#### **Opakujeme:**

$$oldsymbol{x}^{(t+1)} \longleftarrow oldsymbol{x}^{(t)} - \gamma 
abla f\left(oldsymbol{x}^{(t)}
ight)$$

- po vykonaném počtu kroků
- poloha už se nemění (konvergence)



#### Začínáme:

známe výchozí pozici

#### **Opakujeme:**

$$oldsymbol{x}^{(t+1)} \longleftarrow oldsymbol{x}^{(t)} - \gamma \nabla f\left(oldsymbol{x}^{(t)}\right)$$

- po vykonaném počtu kroků
- poloha už se nemění (konvergence)



#### Začínáme:

známe výchozí pozici

#### **Opakujeme:**

$$oldsymbol{x}^{(t+1)} \longleftarrow oldsymbol{x}^{(t)} - \gamma \nabla f\left(oldsymbol{x}^{(t)}\right)$$

- po vykonaném počtu kroků
- poloha už se nemění (konvergence)



#### Začínáme:

známe výchozí pozici

#### **Opakujeme:**

$$oldsymbol{x}^{(t+1)} \longleftarrow oldsymbol{x}^{(t)} - \gamma \nabla f\left(oldsymbol{x}^{(t)}\right)$$

- po vykonaném počtu kroků
- poloha už se nemění (konvergence)



#### Velikost kroku

- Hyperparametr
- V kontextu sítí obvykle tzv. learning rate
- Výrazný vliv na výsledný model
- Typické hodnoty  $\gamma \approx 10^{-3}$





animace: <a href="http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r">http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r</a>

### Kde jsme?

Zadefinováno kritérium

$$L(\mathbf{w}, b) = \sum_{n=1}^{N} L_n = \sum_{n=1}^{N} (-y_n \log\{\sigma(s_n)\} - \ldots)$$

- Proměnné jsou parametry w a b
- Optimální w a b jsou takové, které L minimalizují  $\rightarrow$  hledáme minimum L
- Použijeme metodu největšího spádu -> musíme počítat gradient

#### Gradient

• Gradient je vektor parciálních derivací

$$\nabla f(\boldsymbol{x}') = \left[\frac{\partial f}{\partial x_1}(x_1'), \dots, \frac{\partial f}{\partial x_D}(x_D')\right]^{\top}$$

 Pro minimalizaci kritéria musíme derivovat





### Gradient křížové entropie

$$L(\boldsymbol{w}, b) = \sum_{n=1}^{N} L_n = \sum_{n=1}^{N} \left( -y_n \log \{ \sigma(\boldsymbol{w}^{\top} \boldsymbol{x}_n + b) \} - (1 - y_n) \log \{ 1 - \sigma(\boldsymbol{w}^{\top} \boldsymbol{x}_n + b) \} \right)$$







$$\frac{\partial L}{\partial \boldsymbol{w}} = \sum_{n=1}^{N} (q_n - y_n) \boldsymbol{x}_n + 2\lambda \boldsymbol{w}$$

$$\frac{\partial L}{\partial b} = \sum_{n=1}^{N} (q_n - y_n)$$

### Gradient descent pro logistickou regresi

#### **Incializujeme:**

• w, b na náhodné hodnoty

#### **Opakujeme:**

- 1. předpočítáme výstupní pravděpodobnosti  $q_n$  pro všechny vzorky v trénovací sadě
- 2. posčítáme gradient (suma přes n=1,...,N)
- 3. updatujeme s krokem  $\gamma$

#### **Zastavíme:**

- po fixním počtu iterací
- parametry w, b se ustálí
- hodnota kritéria L(w, b) již delší dobu neklesá

### Gradient descent pro logistickou regresi: poznámky

- Uvedený postup je velmi neefektivní
- Update vždy až po kompletním nasčítání gradientů přes celou trénovací sadu
- Např. ImageNet však cca 14 milionů obrázků
- Vstupní vektory (obrázky) sice předpokládáme nezávislé, jsou si ale podobné v tom smyslu, že pocházejí ze stejného rozdělení pravděpodobnosti
- Možná stačí malý vzorek (minibatch), není nutné vidět všechny obrázky
- Takto vznikne tzv. Minibatch Gradient Descent
- Pokud pouze jeden vzorek → <u>Stochastic Gradient Descent (SGD)</u>
  - https://en.wikipedia.org/wiki/Stochastic\_gradient\_descent

### Varianty GD a názvosloví dle velikosti batche

| velikost batche B | různé názvy pro totéž                                                                  |
|-------------------|----------------------------------------------------------------------------------------|
| B = N             | Gradient descent<br>Batch gradient descent<br>Steepest descent                         |
| $1 < B \ll N$     | Minibatch gradient descent                                                             |
| B = 1             | Stochastic gradient descent (SGD) Online gradient descent Incremental gradient descent |

- Aby to nebylo jednoduché, obvykle minibatch = batch
- Minibatch gradient descent najdeme v knihovnách pod jménem Stochastic gradient descent (SGD) s volitelným batch size parametrem (B)
- "Pořádek je pro blbce, inteligent zvládá chaos."

### SGD pro logistickou regresi

#### **Incializujeme:**

• w, b na náhodné hodnoty

#### **Opakujeme:**

- 1. navzorkujeme dávku (batch)
- 2. předpočítáme výstupní pravděpodobnosti  $q_n$  pro všechny vzorky **v aktuální batchi**
- 3. posčítáme gradient (suma přes n = 1, ..., B)
- 4. updatujeme s krokem  $\gamma$

#### **Zastavíme:**

- po fixním počtu iterací
- parametry w, b se ustálí
- hodnota kritéria L(w, b) již delší dobu neklesá

#### GD vs SGD

| Gradient descent                           | Stochastic gradient descent       |
|--------------------------------------------|-----------------------------------|
| skutečný gradient                          | pouze aproximuje gradient         |
| stabilnější konvergence                    | rychlejší konvergence             |
| konverguje do minima                       | osciluje kolem minima             |
| náchylnější k upadnutí do lokálního minima | robustnější vůči lokálním minimum |
| velké nároky na paměť                      | paměťově neefektivní              |

Především vzhledem k výpočetním nárokům plného GD se pro učení neuronových sítí se prakticky výhradně používá Stochastic/Minibatch GD

### GD vs SGD



# Více tříd

### Binární vs multiclass vs multi-label klasifikace

- Doposud výstupem jediné číslo, např. pravd. P(kočka|x), že na obrázku x je kočka
- Opačná pravděpodobnost, že je tam pes P(pes|x) = 1 P(kočka|x)
- Binární klasifikace  $\rightarrow$  počet tříd C=2
  - https://en.wikipedia.org/wiki/Binary classification
- Pro  $C > 2 \rightarrow$  multiclass klasifikace
  - https://en.wikipedia.org/wiki/Multiclass classification
  - např. MNIST číslovky 0, ..., 9
  - CIFAR-10: airplane, aoutomobile, bird, cat, deer, dog, frog, horse, ship, truck
- Pozn.: neplést s multi-label klasifikací
  - https://en.wikipedia.org/wiki/Multi-label\_classification
  - více tříd najednou, ale nezávisle na sobě např. je na obr. kočka? pes také? a žába rovněž? ...
  - tagging

#### Rozšíření z binární na multiclass klasifikaci

#### 1. One-vs-rest (one-vs-all)

- C samostatných klasifikátorů, z nichž každý diskriminuje jednu ze tříd vůči ostatním
- např. kočka ("1") vs ostatní ("0"), pes ("1") vs ostatní ("0"), ...
- Pro  $C = 10 \rightarrow 10$  klasifikátorů
- Vyhrává třída s nejvyšším skóre/praavděpodobností

#### 2. One-vs-one (all-vs-all)

- C(C-1)/2 samostatných klasifikátorů pro každou dvojici tříd
- Např. kočka vs pes, kočka vs žába, pes vs žába, ...
- Pro  $C = 10 \rightarrow 45$  klasifikátorů
- Pro C = 1000 (ImageNet)  $\rightarrow 499500 \approx 0.5 \cdot 10^6$  klasifikátorů!
- Vyhrává třída s nejvyšším počtem "výher z duelů"

#### 3. Reformulace úlohy

- jeden klasifikátor, ale výstupem bude C pravděpodobností pro každou třídu současně (paralelně)
- vyhrává třída s nejvyšším skóre/pravděpodobností
- → tudy vede cesta!

#### Binární logistická regrese



$$P(\text{pes}|\mathbf{x}) = 1 - P(\text{kočka}|\mathbf{x})$$

$$P(\text{kočka}|\boldsymbol{x}) = \frac{1}{1+e^{-s_1}} = \frac{e^{s_1}}{1+e^{s_1}} = \frac{e^{s_1}}{e^0 + e^{s_1}}$$
$$P(\text{pes}|\boldsymbol{x}) = 1 - P(\text{kočka}|\boldsymbol{x}) = 1 - \frac{e^{s_1}}{e^0 + e^{s_1}} = \frac{e^0}{e^0 + e^{s_1}}$$

#### Binární logistická regrese ... stejné



$$P(\text{kočka}|\boldsymbol{x}) = \frac{1}{1+e^{-s_1}} = \frac{e^{s_1}}{1+e^{s_1}} = \frac{e^{s_1}}{e^0 + e^{s_1}}$$
$$P(\text{pes}|\boldsymbol{x}) = 1 - P(\text{kočka}|\boldsymbol{x}) = 1 - \frac{e^{s_1}}{e^0 + e^{s_1}} = \frac{e^0}{e^0 + e^{s_1}}$$

#### Binární logistická regrese ... stále stejné



$$P(\text{kočka}|\boldsymbol{x}) = \frac{1}{1+e^{-s_1}} = \frac{e^{s_1}}{1+e^{s_1}} = \frac{e^{s_1}}{e^0 + e^{s_1}}$$

$$P(\text{pes}|\boldsymbol{x}) = 1 - P(\text{kočka}|\boldsymbol{x}) = 1 - \frac{e^{s_1}}{e^0 + e^{s_1}} = \frac{e^0}{e^0 + e^{s_1}}$$

### Multiclass logistická regrese



$$P(\text{kočka}|\boldsymbol{x}) = \frac{e^{s_1}}{e^{s_0} + e^{s_1}}$$
$$P(\text{pes}|\boldsymbol{x}) = \frac{e^{s_0}}{e^{s_0} + e^{s_1}}$$

podmínka na součet pravděpodobností zachována:

$$P(\text{kočka}|\mathbf{x}) + P(\text{pes}|\mathbf{x}) = \frac{e^{s_1} + e^{s_0}}{e^{s_0} + e^{s_1}} = 1$$

#### Softmax

- Myšlenku lze <u>rozšířit</u> na libovlný počet tříd  $C \ge 2$
- Blok exp / sumexp se označuje jako softmax

$$q_i = P( ext{třída\_i}|oldsymbol{x}) = rac{e^{s_i}}{\sum_{c=1}^C e^{s_c}}$$

Výstupem C-dimezionální vector pravděpodobností jednotlivých tříd

$$\boldsymbol{q} = [q_1, q_2, \dots, q_C]^{\top}$$

 Chová se jako maximum: exponenciováním se zvýrazní rozdíly (nejvyšší hodnota vynikne), až teprve pak se normalizuje (ostatní jsou staženy k nule)

# Softmax příklad



### Multiclass cross entropy

Na trénování se oproti binární variantě téměř nic nemění

$$L_n = -\sum_{c=1}^{C} p_{nc} \log q_{nc}$$

kde

$$m{p}_n = \left[p_{n1}, \dots, p_{nC}
ight]^ op$$
 ... požadované rozdělení (ground truth) $m{q}_n = \left[q_{n1}, \dots, q_{nC}
ight]^ op$  ... výstup klasifikátoru

$$oldsymbol{q}_n = \left[q_{n1}, \dots, q_{nC}
ight]^{ op} \qquad ... \ \mathsf{v} \mathsf{\acute{y}}\mathsf{stup} \ \mathsf{klasifik} \mathsf{\acute{a}}\mathsf{toru}$$

jsou vektory, na které nahlížíme jako na diskrétní rozdělení

• > cross entropy = minimalizace rozdílu mezi dvěma rozděleními

# Binární vs multiclass entropy pro C=2

#### binární CE

#### multiclass CE

$$L_n = -y_n \log q_{n1} - (1 - y_n) \log(1 - q_{n1}) \qquad L_n = -p_{n1} \log q_{n1} - p_{n2} \log q_{n2}$$

• U obou platí, že nenulový je vždy pouze jeden ze dvou členů v součtu jelikož

$$\sum_{c} p_{nc} = 1 \qquad \Rightarrow \qquad p_{n2} = 1 - p_{n1}$$

 Jediný rozdíl: u binární explicitně dopočítáváme druhý člen jako doplněk do jedničky, zatímco u multiclass mezi členy nerozlišujeme

### One hot encoding

- Pro více tříd je  $y_n$  celé číslo, tj.  $y_n \in \{1, ..., C\}$
- Pokud  $C = 5 \rightarrow$  požadované rozdělení pak je

$$y_n = 2 \implies \boldsymbol{p}_n = [0, 1, 0, 0, 0]^{\top}$$

$$y_n = 5 \implies \boldsymbol{p}_n = [0, 0, 0, 0, 1]^{\top}$$

### Softmax + cross entropy

• V cross entropy *pro klasifikaci* tedy bude aktivní vždy pouze jeden člen:

$$-L_n = \sum_{c=1}^{C} p_{nc} \log q_{nc} = \log (q_{ny_n}) = \log \left( \frac{e^{s_{ny_n}}}{\sum_{c=1}^{C} e^{s_{nc}}} \right)$$

což je zápis, jenž najdeme např. v poznámkách cs231

• Pokud rozepíšeme logaritmus zlomku, dostaneme druhou variantu

$$L_n = -\log\left(\frac{e^{s_{ny_n}}}{\sum_{c=1}^{C} e^{ns_c}}\right) = -s_{ny_n} + \log\sum_{c=1}^{C} e^{s_{nc}}$$

 Softmax + CE tedy maximalizuje poměr pravděpodobnosti požadované třídy vůči součtu všech ostatních a to pro každý vzorek

#### Minimalizace softmax cross entropy

Celkově tedy kritérium je

$$L(\boldsymbol{W}, \boldsymbol{b}) = \lambda \|\boldsymbol{W}^2\| - \sum_{n=1}^{N} \sum_{c=1}^{C} p_{nc} \log q_{nc}$$

kde

$$oldsymbol{q}_n = \left[q_{n1}, \dots, q_{nC}
ight]^{ op} = \mathsf{Softmax}(oldsymbol{W}oldsymbol{x}_n + b)$$

Parametry jsou matice a vektor

$$oldsymbol{W} = egin{bmatrix} oldsymbol{w}_1^{ op} \ dots \ oldsymbol{w}_C^{ op} \end{bmatrix} = egin{bmatrix} w_{11} & w_{12} & \dots & w_{1D} \ dots & dots & \ddots & dots \ w_{C1} & w_{C2} & \dots & w_{CD} \end{bmatrix} \qquad oldsymbol{b} = egin{bmatrix} b_1 \ dots \ b_C \end{bmatrix}$$

Gradienty:

$$\frac{\partial L}{\partial \boldsymbol{w}_c} = \sum_{n=1}^{N} 2\lambda \boldsymbol{w}_c + (q_{nc} - p_{nc}) \boldsymbol{x}_n \qquad \qquad \frac{\partial L}{\partial b_c} = \sum_{n=1}^{N} (q_{nc} - p_{nc})$$

# Support Vector Machine

# Support Vector Machine (SVM)

- Nepravděpodobnostní model
- Max-margin klasifikátor: hledá takovou dělící nadplochu, která je co nejdále od obou tříd
- Pokud třídy nejsou lineárně separovatelné, zavádí se tzv. slack variables  $\xi_n \geq 0$
- Pro některé body tedy podmínka nemusí být splněná



obrázek: <a href="https://en.wikipedia.org/wiki/Support\_vector\_machine">https://en.wikipedia.org/wiki/Support\_vector\_machine</a>

#### Hinge loss

Soft margin SVM loss se slack variables

minimize 
$$\|\boldsymbol{w}\|^2 + \lambda' \sum_{i=1}^N \xi_n$$
 subject to  $y_n s_n \ge 1 - \xi_n$   $\xi_n > 0$ 

Podmínky lze sloučit do jednoho výrazu

$$\xi_n = \max(0, 1 - y_n s_n)$$

a dosadit kritéria  $\rightarrow$  vznikne hinge loss

• Člen  $\|\mathbf{w}\|^2$  funguje jako regularizace

#### SVM jako hinge loss

• U SVM tedy minimalizujeme

$$L(\mathbf{w}, b) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \max(0, 1 - y_n s_n)$$

 $kde \lambda \propto 1/\lambda'$ 

• Rozdíl oproti logistické regresi je tedy ve zvoleném kritériu:

logistická regrese = cross entropy

SVM = hinge loss

a v tom, že  $y_n \in \{-1, +1\}$  (u binární logistické regrese je  $y_n \in \{0, 1\}$ )

# SVM pro více tříd

- 1. Strategie nezávislé na klasifikátoru
  - one-vs-rest (one-vs-all)
  - one-vs-one (all-vs-all)
- 2. Reformulace úlohy
  - Cramer-Singer
  - Weston-Watkins



- Structured SVM
- DAGSVM
- ...

#### Weston-Watkins multiclass SVM

Upravuje hinge loss na



- Při více třídách je skóre vektor
- Aby  $\xi_n \to 0$ , musí:
  - skóre požadované třídy  $s_{ny_n}$  být co nejvyšší
  - skóre všech  $c=1,\ldots,C$  ostatních tříd  $s_{nc}$  co nejnižší



### Weston-Watkins multiclass SVM příklad



### Subgradient

- Funkce max(0, x) není diferencovatelná
- Problém "bod zlomu" v nule:



- Řeší tzv. subgradient 
   prostě vybereme jednu z možných variant
- Např. v nule bude gradient nula
- (Sub)gradient tedy může být:

$$\frac{\partial}{\partial x} \max(x) = \begin{cases} 0 & \text{pokud} & x \le 0 \\ 1 & \text{pokud} & x > 0 \end{cases}$$

# (Sub)gradient hinge kritéria

$$\xi_n = \sum_{c \neq y_n} \max(0, 1 + s_{nc} - s_{ny_n})$$

- Všimněme si, že obě skóre  $s_i$  závisí pouze na i-tém řádku  $oldsymbol{W}$  a  $oldsymbol{b}$
- Gradient na i-tý řádek W:

$$\frac{\partial L_n}{\partial \boldsymbol{w}_i} = \begin{cases} -\sum_{c \neq y_n} \mathbb{1}(\zeta_{nc} > 0)\boldsymbol{x}_n & \text{pokud} & i = y_n \\ \mathbb{1}(\zeta_{ni} > 0)\boldsymbol{x}_n & \text{pokud} & i \neq y_n \end{cases}$$

kde 1(podmínka) = 1, pokud je podmínka splněna, jinak 0

• Pro biasy podobně, pouze bez  $oldsymbol{x}_n$ 

#### Cross entropy a hinge loss



### Citlivost cross entropy na změnu skóre



# Citlivost cross entropy na změnu skóre



# Citlivost hinge lossu na změnu skóre



# Citlivost hinge lossu na změnu skóre



#### Cross entropy vs hinge loss

- SVM zahrnuje vnitřní "regularizaci": pokud je hinge podmínka u bodu nějakého splněna, kritérium zde má nulovou hodnotu a tedy i přírůstek gradientu od tohoto bodu je nulový
- Logistická regrese naopak bez explicitní regularizace nikdy nekonverguje, skóre se donekonečna snaží zlepšit
- Pro účely klasifikace obě kritéria přibližně stejně dobrá
- Díky robustnosti vůči outlierům na menších datasetech výkonnější spíše SVM
- Overhead způsobený funkcí softmax je především u hlubokých sítí zanedbatelný

#### Shrnutí

- Diskriminativní klasifikace je vlastně jen minimalizace funkce
- Funkce kvantifikuje, jak moc špatný náš klasifikátor je -> tzv. loss či kritérium
- Proměnná, vůči které minimalizujeme, jsou tedy parametry klasifikátoru
- Funkce může být libovolně složitá, avšak mělo by být snadné spočítat její gradient
- Díky tomu můžeme minimalizovat pomocí metody největšího spádu (GD)
- Gradient není nutné počítat úplně, efektivnější je aproximace a častější update (SGD)
- Logistická regrese a SVM jsou obojí lineární klasifikátory
- Liší se pouze kritériem

### Shrnutí: trénování pomocí SGD

#### **Incializujeme:**

• w, b na náhodné hodnoty

#### **Opakujeme:**

- navzorkování dávky (batch)
- 2. forward + cache
- 3. backward (gradient)
- 4. update s krokem  $\gamma$

různé pro LR a SVM

#### **Zastavíme:**

- po fixním počtu iterací
- parametry w, b se ustálí
- hodnota kritéria L(w, b) již delší dobu neklesá