Convolution models for M/EEG

Bernhard Spitzer

Event-related EEG / MEG / LFP

Photographic Studio, Wheeler (1893)

subject behavior

example from O'Connell et al., 2012

dynamic environments

convolution models for M/EEG

Impulse response modeling

Impulse response modeling of event-related fMRI

Impulse response modeling of M/EEG

convolve with

[hands-on: el convolutor]

A solution to the X

recommended reading (original method paper)

Litvak et al., 2013, Neurolmage

A solution to the X

Discrete Fourier Transform (DFT)

IR modeling (time-domain data)

IR modeling: backprojection

~,as if each event had occurred in isolation

example: stimulus-evoked IRs during sequential processing

Spitzer, Blankenburg, Summerfield (2016)

Tutorial data: intermodal numerosity comparison

- 3 pairwise combinations of modalities (blocks of 20 trials each, 540 trials in total)
- N pulses varied between 2-7 (random & independent)
- random & irregular pulse timing

EEG recording: 64-channel Biosemi Active II + EOG channels

hands-on: deconvolution of pulseevoked IRs (~ERPs)

goodie: artefact suppression

Deconvolution of pulse-evoked IRs (~ERPs)

tutorial data set (preliminary group-level results)

Spitzer, Blankenburg, Summerfield (2016)

Convolution analysis in SPM12

- preprocess continuous data
- specify "1st level" (GUI/batch/script)

[low-level function: spm_eeg_firstlevel.m]

- run creates SPM.m and EEG results file (β-coefficients)
- contrasts

general recommendation: lots of RAM, 64-bit system

multiple regressors

continuous GLM regressors

choice-predictive δ -band signals

tutorial data-set (preliminary group-level results)

Spitzer, Blankenburg, Summerfield (2016)

Optimizing basis functions

further reading

Litvak et al., 2013, Neurolmage

custom basis functions

Spitzer, Blankenburg, Summerfield (2016)

Convolution models for induced (TF) responses

hands-on: convolution models for TF-responses

applied to time-frequencytransformation of *continuous* recording

hands-on: convolution models for TF-responses

preliminary group-level results

Pedal-press related beta/alpha lateralization

Extensions

Analysis in Fourier-space

Spitzer, Blankenburg, Summerfield (2016)

Model residuals

Phase-amplitude / amplitude- amplitude coupling

Convolution models: Summary

- overlapping and temporally variable responses
- artefacts
- slow drifts
- continuous modulators
- phase-amplitude and amplitude-amplitude relationships (within and between sites/areas/signals)

gain of flexibility in experimental design & analysis

Thank you

London
Vladimir Litvak & Guillaume Flandin

Berlin

Felix Blankenburg & NNU Berlin Sebastian Fleck, Jan Herding, Simon Ludwig

Oxford

Chris Summerfield, Ryszard Auksztulewicz

disentangling overlapping induced responses

conventional analyses (fixed epochs)

convolution analysis

