IMO 1975

Day 1

- 1 We consider two sequences of real numbers $x_1 \geq x_2 \geq \ldots \geq x_n$ and $y_1 \geq y_2 \geq \ldots \geq y_n$. Let z_1, z_2, \ldots, z_n be a permutation of the numbers y_1, y_2, \ldots, y_n . Prove that $\sum_{i=1}^n (x_i y_i)^2 \leq \sum_{i=1}^n (x_i z_i)^2$.
- 2 Let a_1, \ldots, a_n be an infinite sequence of strictly positive integers, so that $a_k < a_{k+1}$ for any k. Prove that there exists an infinity of terms m, which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with x, y strictly positive integers and $p \neq q$.
- 3 In the plane of a triangle ABC, in its exterior, we draw the triangles ABR, BCP, CAQ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$.

Prove that

- **a.**) $\angle QRP = 90^{\circ}$, and
- **b.**) QR = RP.

IMO 1975

Day 2

- 4 When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)
- 5 Can there be drawn on a circle of radius 1 a number of 1975 distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?
- 6 Determine the polynomials P of two variables so that:
 - **a.)** for any real numbers t, x, y we have $P(tx, ty) = t^n P(x, y)$ where n is a positive integer, the same for all t, x, y;
 - **b.**) for any real numbers a, b, c we have P(a + b, c) + P(b + c, a) + P(c + a, b) = 0;
 - **c.)** P(1,0) = 1.