Notes on the Darboux Transformation

Andrew Osborne

April 30, 2019

Definitions

A **Q-form** is a second order differential operator of the form

$$\frac{d^2}{dx^2} + Q$$
 where $Q: \mathbb{R} \to \mathbb{R}$

We shall denote such an operator as \hat{H}_Q

Definitions

A Darboux Transformation is a differential operator of the form

$$\frac{d}{dx} + f$$
 where $f: \mathbb{R} \to \mathbb{R}$

When we are referring to some Darboux transformation, we shall refer to f as a **generating function** and we shall denote this operator as \hat{D}_f .

We shall consider the properties of Darboux Transformations as maps from the kernel of one Q-form to another.

Definitions

A Q-form \hat{H}_q is said to be **Darboux related** to another Q-form \hat{H}_Q if there exists some $f:\mathbb{R}\to\mathbb{R}$ so that

$$\frac{df}{dx} - f^2 - q = c \in \mathbb{R}$$
 and $Q = q - 2\frac{df}{dx}$

If this is the case, we also say that \hat{H}_q is Darboux related to \hat{H}_Q by \hat{D}_f This is exactly equivalent to the case that

$$\frac{df}{dx} = -\frac{1}{2}(Q-q)$$
 and $2(Q-q)f = \frac{d}{dx}(Q+q)$

Basic Theorems

Theorem: If \hat{H}_q is Darboux related to \hat{H}_Q by \hat{D}_f then \hat{H}_Q is Darboux related to \hat{H}_q by \hat{D}_{-f}

Theorem: if \hat{H}_q is Darboux related to \hat{H}_Q by \hat{D}_f , then $\hat{H}_Q\hat{D}_fy=0$ whenever $\hat{H}_qy=0$

$$\ker \hat{H}_q \xrightarrow{\hat{D}_{-f}} \ker \hat{H}_Q$$

(Big) Theorem: if \hat{H}_q is Darboux related to \hat{H}_Q by \hat{D}_f then $\hat{H}_q y = 0$ if and only if

$$\hat{D}_{-f}\hat{D}_{f}y=c\,y$$

where $c = \frac{df}{dx} - f^2 - q$ which is fixed by the Darboux relation

Clearly, if we could force c=0, then our problem is greatly simplified!

Let λ be some yet undetermined fixed real number, and

$$\hat{H}_{\lambda} = \frac{d^2}{dx^2} - \frac{1}{2}x^2 - \lambda$$

. Define \hat{H}_{μ} similarly. We seek a Darboux transformation which will relate \hat{H}_{λ} to \hat{H}_{μ} To this end, let us determine f.

$$Q=-rac{1}{2}x^2-\mu$$
 and $q=-rac{1}{2}x^2-\lambda$

Recall that f is determined by

$$rac{df}{dx} = -rac{1}{2}(Q-q)$$
 and $2(Q-q)f = rac{d}{dx}(Q+q)$

Beginning on the first equation, we have that

$$\frac{df}{dx} = \frac{1}{2}(\mu - \lambda) \implies f = \frac{1}{2}(\mu - \lambda)x$$

Then, taking our attention to the second equation, we have

$$2(\lambda - \mu) f = \frac{d}{dx}(-x^2 - \mu - \lambda) = -2x$$
$$f = \frac{2}{\mu - \lambda}x$$

Evidently, then, if we are to achieve Darboux Relation

$$f = \frac{1}{2}(\mu - \lambda)x = \frac{2}{\mu - \lambda}x \implies (\mu - \lambda)^2 = 4$$

Then f = x. Now we must calculate c from

$$\frac{df}{dx} - f^2 - q = c$$

$$\frac{df}{dx} - f^2 - q = 1 - x^2 + x^2 + \lambda = 1 + \lambda$$

Apparently $c=1+\lambda$. Then, if $\lambda=-1$, c=0 and we may find a solution of \hat{H}_{-1} by solving

$$\hat{D}_f y = \frac{dy}{dx} + f y = \frac{dy}{dx} + x y = 0$$

Which has the trivial solution

$$y=e^{-\frac{x^2}{2}}$$

Then, we have a solution of \hat{H}_{2n-1} which is \hat{D}_{-f}^n y.

Questions?

If you would like to read my paper or see my references, it can be found at

https://github.com/amo004/Math-Thesis