- **16.** List the partitions of 9. Write a D next to each partition into distinct parts and an O next to each partition into odd parts.
- 17. Use generating functions to find the number of ways to partition 10 into odd parts.
- 20. Find the exponential generating function (in closed form, not as an infinite sum) for each infinite sequence $\{a_n: n \geq 0\}$ whose general term is given below.
- \mathscr{O} a. $a_n=5^n$

 $a_n = (-1)^n 2^n$

 \mathscr{O} C. $a_n=3^{n+2}$

 \mathscr{O} d. $a_n=n!$

 σ e. $a_n=n$

- σ f. $a_n = 1/(n+1)$
- 21. For each exponential generating function below, give a formula in closed form for the sequence $\{a_n: n \geq 0\}$ it represents.
 - e^{7x}

% b. x^2e^{3x} d. e^{x^4}

 \mathcal{O} c. $\frac{1}{1+x}$

- **22.** Find the coefficient on $x^{10}/10!$ in each of the exponential generating functions below.
 - e^{3x}

 $9b. \quad \frac{e^x - e^{-x}}{2}$

 $\mathscr{O} \mathsf{C.} \quad \frac{e^x + e^{-x}}{2}$

 $\text{od. } xe^{3x}-x^2$

e. $\frac{1}{1-2x}$

 \mathscr{O} f. e^{x^2}

- **23.** Find the exponential generating function for the number of strings of length n formed from the set $\{a,b,c,d\}$ if there must be at least one a and the number of c's must be even. Find a closed formula for the coefficients of this exponential generating function.
- **24.** Find the exponential generating function for the number of strings of length n formed from the set $\{a, b, c, d\}$ if there must be at least one a and the number of c's must be odd. Find a closed formula for the coefficients of this exponential generating function.
- **25.** Find the exponential generating function for the number of strings of length n formed from the set $\{a, b, c, d\}$ if there must be at least one a, the number of b's must be odd, and the number of d's is either 1 or 2. Find a closed formula for the coefficients of this exponential generating function.
- ${f 26.}$ Find the exponential generating function for the number of alphanumeric strings of length n formed from the ${f 26}$ uppercase letters of the English alphabet and ${f 10}$ decimal digits if
 - each vowel must appear at least one time;
 - the letter T must appear at least three times;
 - ullet the letter Z may appear at most three times;
 - each even digit must appear an even number of times; and
 - each odd digit must appear an odd number of times.
- 27. Consider the inequality

$$x_1+x_2+x_3+x_4 \leq n$$

- where $x_1,x_2,x_3,x_4,n\geq 0$ are all integers. Suppose also that $x_2\geq 2$, x_3 is a multiple of 4, and $1\leq x_4\leq 3$. Let c_n be the number of solutions of the inequality subject to these restrictions. Find the generating function for the sequence $\{c_n:n\geq 0\}$ and use it to find a closed formula for c_n .
- ► Hint.