Cheatsheet Mathematics 9

Nguyễn Quản Bá Hồng*

Ngày 4 tháng 1 năm 2024

Mục lục

1	Square, Cube, & nth Roots – Căn Bậc 2, 3, n	1
2	1st-Order Function – Hàm Số Bậc Nhất $y = ax + b$	1
3	System of 1st-Order Equations – Hệ Phương Trình Bậc Nhất 2 Ẩn	1 1 2 2
4	2nd-Order Function. Quadratic Equation – Hàm Số $y=ax^2, a\neq 0$. Phương Trình Bậc 2 1 Ẩn $ax^2+bx+c=0, a\neq 0$	2 2 2 2 2
5	Trigonometry in Right Triangles – Hệ Thức Lượng Trong Tam Giác Vuông	2
6	Circle — Đường Tròn 6.1 Góc ở tâm. Số đo cung . 6.2 Liên hệ giữa cung & dây . 6.3 Góc nội tiếp . 6.4 Góc tạo bởi tia tiếp tuyến & dây cung . 6.5 Góc có đỉnh ở bên trong/ngoài đường tròn . 6.6 Cung chứa góc . 6.7 Tứ giác nội tiếp . 6.8 Đường tròn ngoại tiếp. Đường tròn nội tiếp . 6.9 Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt tròn .	2 2 2 2 3 3 3 3 3 3 3
7	Cylinder. Cone. Sphere – Hình Trụ. Hình Nón. Hình Cầu 7.1 Cylinder – Hình trụ 7.2 Cone. Chopped Cone – Hình nón. Hình nón cụt 7.3 Sphere – Hình cầu	3 3 4
1	Square, Cube, & n th Roots – Căn Bậc 2, 3, n	
2	1st-Order Function – Hàm Số Bậc Nhất $y = ax + b$	
3	System of 1st-Order Equations – Hệ Phương Trình Bậc Nhất 2 $\mathring{\hat{\mathbf{A}}}$ n	
3.	1 1st-order equations of 2 unknowns – Phương trình bậc nhất 2 ẩn $ax + by = c$	
$\frac{1}{S}$	Phương trình bậc nhất 2 ẩn: $ax + by = c$ (1), $a, b, c \in \mathbb{R}$, $(a, b) \neq (0, 0)$. 2 $(x_0, y_0) \in \mathbb{R}^2$ là nghiệm của (1) $\Leftrightarrow (x_0, y_0) \Leftrightarrow ax_0 + by_0 = c$. 3 Tập nghiệm S biểu diễn bởi đường thẳng $(d): ax + by = c$, i.e., $S = \{(x, y) \in \mathbb{R}^2 ax + by = c\} = (d)$ thì $(d): ax + by = c \Leftrightarrow y = -\frac{a}{b}x + \frac{c}{b}$ (hàm số bậc nhất) là đường thẳng cắt cả 2 trục tọa độ Ox , Oy lần lượt $ax + by = c \Leftrightarrow ax_0 + by = c \Leftrightarrow by = -\frac{a}{b}x + \frac{c}{b}$ (hàm số bậc nhất) là đường thẳng cắt cả 2 trục tọa độ Ox , Oy lần lượt $ax_0 + by = c \Leftrightarrow ax_0 + by = c \Leftrightarrow by = -\frac{a}{b}x + \frac{c}{b}$ (hàm số bậc nhất) là đường thẳng cắt cả 2 trục tọa độ Ox , Oy lần lượt $ax_0 + by = c \Leftrightarrow by = -\frac{a}{b}x + \frac{c}{b}$). 4

^{*}Ben Tre City, Vietnam. e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

điểm $\left(\frac{c}{a},0\right),\left(0,\frac{c}{b}\right)$. 5 Nếu $a\neq 0,b=0$ thì $(d):ax+0y=c\Leftrightarrow x=\frac{c}{a}$ là đường thẳng song song hoặc trùng với trục tung Oy. 6 Nếu $a=0,b\neq 0$ thì $(d):0x+by=c\Leftrightarrow y=\frac{c}{b}$ là đường thẳng song song hoặc trùng với trục hoành Ox.

3.2 System of 1st-order equations of 2 unknowns – Hệ phương trình bậc nhất 2 ẩn

1 Hệ phương trình bậc nhất 2 ẩn:

$$\begin{cases} ax + by = c, & (d), (a, b) \neq (0, 0), \\ a'x + b'y = c', & (d'), (a', b') \neq (0, 0), \end{cases}$$
(1)

có 1 nghiệm \Leftrightarrow (d) cắt $(d') \Leftrightarrow \frac{a}{a'} \neq \frac{b}{b'}$, vô nghiệm \Leftrightarrow $(d) \parallel (d') \Leftrightarrow \frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$, vô số nghiệm \Leftrightarrow $(d) \equiv (d') \Leftrightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$. 2 Phương pháp thế: Biểu diễn 1 ẩn theo ẩn kia. Biến hệ phương trình thành hệ mới có 1 phương trình 1 ẩn. Giải phương trình 1 ẩn rồi suy ra nghiệm của hệ. 3 Phương pháp cộng đại số: Nhân 2 vế của 2 phương trình với 1 số thích hợp để các hệ số của 1 ẩn nào đó trong 2 phương trình bằng nhau hoặc đối nhau. Dùng quy tắc cộng được hệ mới có 1 phương trình 1 ẩn. Giải phương trình 1 ẩn rồi suy ra nghiệm của hệ. 4 Giải hệ phương trình bằng phương pháp định thức/Cramer: Đặt $D = ab' - a'b, D_x = b'c - bc', D_y = c'a - ca'$. Nếu $D \neq 0$, hệ (1) có 1 nghiệm duy nhất $(x,y) = \left(\frac{D_x}{D}, \frac{D_y}{D}\right) = \left(\frac{b'c - bc'}{ab' - a'b}, \frac{c'a - ca'}{ab' - a'b}\right)$. Nếu D = 0, $(D_x, D_y) \neq (0,0)$, hệ (1) vô nghiệm. Nếu $D = D_x = D_y = 0$, hệ (1) có vô số nghiệm. Biểu thức pq' - p'q gọi là 1 định thức cấp 2. Phương pháp định thức rất có lợi trong việc giải & biện luận hệ phương trình bậc nhất nhiều ẩn.

3.3 Giải bài toán bằng cách lập hệ phương trình

 $\fill Giải bài toán bằng cách lập hệ phương trình: <math>Buớc\ 1$: Lập hệ phương trình: Chọn 2 đại lượng chưa biết làm ẩn, đặt đơn vị & điều kiện thích hợp của ẩn. Biểu diễn các đại lượng chưa biết khác trong bài toán theo ẩn. Lập hệ 2 phương trình biểu thị sự tương quan giữa các đại lượng trong bài toán. $\fill Buớc\ 2$: Giải hệ phương trình. $\fill Buớc\ 3$: Chọn kết quả phù hợp & kết luận. $\fill 2$ Các dạng toán: Toán chuyển động đều/không đều, toán năng suất lao động, toán về quan hệ giữa các số, $\fill 1$.

4 2nd-Order Function. Quadratic Equation – Hàm Số $y=ax^2, a\neq 0$. Phương Trình Bậc 2 1 Ẩn $ax^2+bx+c=0, a\neq 0$

- **4.1** Hàm số $y = ax^2, a \neq 0$
- **4.2** Đồ thị của hàm số $y = ax^2, a \neq 0$
- 4.3 Quadratic equation Phương trình bậc 2 1 ẩn $ax^2 + bx + c = 0, a \neq 0$
- 4.4 Viète theorem Định lý Viète
- 5 Trigonometry in Right Triangles Hệ Thức Lượng Trong Tam Giác Vuông
- 6 Circle Đường Tròn
- 6.1 Góc ở tâm. Số đo cung

The dường tròn (O;R), $\widehat{AOB} = \alpha \in [0^\circ, 180^\circ]$: góc ở tâm. Nếu $0^\circ < \alpha < 180^\circ$, cung nhỏ \widehat{AmB} có số đo cung sđ $\widehat{AmB} = \alpha$, cung lớn \widehat{AnB} có số đo cung sđ $\widehat{AmB} = 360^\circ - \alpha$. Nếu $\alpha = 0^\circ$, cung không có số đo 0° & cung cả đường tròn có số đo 360° . Nếu $\alpha = 180^\circ$, 2 cung \widehat{AmB} , \widehat{AnB} là 2 nửa đường tròn với sđ $\widehat{AmB} = \operatorname{sd}\widehat{AnB} = 180^\circ$. $\boxed{2}$ Trên cùng 1 đường tròn (O;R) hoặc trên 2 đường tròn bằng nhau (O;R), (O';R), $O \neq O'$, sđ $\widehat{AB} = \operatorname{sd}\widehat{CD} \Leftrightarrow \widehat{AB} = \widehat{CD} \Leftrightarrow AB = \widehat{CD}$, sđ $\widehat{AB} < \operatorname{sd}\widehat{CD} \Leftrightarrow \widehat{AB} < \widehat{CD} \Leftrightarrow AB < \widehat{CD}$. Tính chất này không còn đúng khi xét trên 2 đường tròn không bằng nhau (O;R), (O',R') với $R \neq R'$. $\boxed{3}$ $B \in \widehat{AC} \Rightarrow \operatorname{sd}\widehat{AB} + \operatorname{sd}\widehat{BC} = \operatorname{sd}\widehat{AC}$.

6.2 Liên hệ giữa cung & dây

 $\boxed{1}$ 2 cung chắn giữa 2 dây song song thì bằng nhau.

6.3 Góc nội tiếp

1 Cho đường tròn (O; R), $\angle BAC$: góc nội tiếp chắn cung \widehat{BC} thì $\widehat{BAC} = \frac{1}{2} \widehat{sdBC} = \frac{1}{2} \widehat{BOC}$. 2 Các góc nội tiếp bằng nhau chắn các cung bằng nhau. 3 Các góc nội tiếp cùng chắn 1 cung hoặc các cung bằng nhau thì bằng nhau. 4 Góc nội tiếp $\leq 90^{\circ}$ có số đo bằng nữa số đo góc ở tâm cùng chắn 1 cung. 5 Góc nội tiếp chắn nửa đường tròn là góc vuông.

6.4 Góc tạo bởi tia tiếp tuyến & dây cung

Tho đường tròn (O; R), Ax: tia tiếp tuyến, AB: dây cung, $\widehat{BAx} = \frac{1}{2} \operatorname{sd} \widehat{AB}$. Trong 1 đường tròn, góc tạo bởi tia tiếp tuyến & dây cung & góc nôi tiếp cùng chắn 1 cung thì bằng nhau.

6.5 Góc có đỉnh ở bên trong/ngoài đường tròn

 $\boxed{1 \ \widehat{BEC}} : \text{góc có đỉnh ở bên trong đường tròn } (O;R) \text{ chắn } 2 \text{ cung } \widehat{DmA}, \widehat{BnC} : \widehat{BEC} = \frac{1}{2} (\text{sđ}\widehat{DmA} + \text{sđ}\widehat{BnC}). \boxed{2 \ \widehat{BEC}} : \text{góc có đỉnh ở bên ngoài đường tròn } (O;R) \text{ chắn } 2 \text{ cung nhỏ } \widehat{AB}, \widehat{CD} : \widehat{BEC} = \frac{1}{2} |\text{sđ}\widehat{AB} - \text{sđ}\widehat{CD}|.$

6.6 Cung chứa góc

 $\boxed{1} \ A, B \text{ cố định, } \widehat{AMB} = \alpha \in (0^\circ, 180^\circ) \Rightarrow \text{Quỹ tích điểm } M \text{ là 2 cung } \widehat{AmB}, \widehat{Am'B} \text{ chứa góc } \alpha \text{ dựng trên đoạn } AB. \text{ Nếu} \\ \alpha = 90^\circ, \text{quỹ tích điểm } M \text{ là đường tròn đường kính } AB. \boxed{2} \text{ Bài toán quỹ tích: } Phần thuận: Mọi điểm có tính chất \mathcal{T} đều thuộc hình \mathcal{H}. Phần đảo: Mọi điểm thuộc hình \mathcal{H} đều có tính chất \mathcal{T}. Kết luận: Quỹ tích các điểm M có tính chất \mathcal{T} là hình \mathcal{H}.}$

6.7 Tứ giác nội tiếp

 $\boxed{1} A, B, C, D \in (O) \text{ (theo thứ tự đó)} \Leftrightarrow ABCD: \text{ tứ giác nội tiếp} \Leftrightarrow \widehat{BAD} + \widehat{BCD} = 180^{\circ} \Leftrightarrow \widehat{BAC} = \widehat{BDC}. \boxed{2} \text{ Tứ giác nội tiếp có tổng 2 góc đối diện bằng } 180^{\circ}.$

6.8 Đường tròn ngoại tiếp. Đường tròn nội tiếp

 $\forall n \in \mathbb{N}, n \geq 3$: 1 Da giác $A_1A_2...A_n$ nội tiếp đường tròn $(O;R) \Leftrightarrow (O;R)$ ngoại tiếp đa giác $A_1A_2...A_n$. 2 Da giác $A_1A_2...A_n$ ngoại tiếp đường tròn $(O;R) \Leftrightarrow (O;R)$ nội tiếp đa giác $A_1A_2...A_n$. 3 Mọi đa giác đều đều có đường tròn ngoại tiếp & đường tròn nội tiếp. Tâm 2 đường tròn ngoại tiếp & nội tiếp là tâm đa giác đều. 4 Tam giác bất kỳ (không nhất thiết phải đều) luôn có đường tròn ngoại tiếp & đường tròn nội tiếp nhưng đa giác với $n \geq 4$ cạnh chưa chắc có đường tròn nội tiếp hoặc cả 2.

6.9 Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt tròn

Chu vi/độ dài đường tròn (O;R): $C = 2\pi R = \pi d$ với d = 2R: đường kính. Độ dài cung tròn $n^{\circ} \in [0^{\circ}, 360^{\circ}]$: $l = \frac{\pi Rn}{180}$

 $\boxed{2} \text{ Diện tích hình tròn } \boxed{S = \pi R^2 = \frac{1}{4}\pi d^2} \text{. Diện tích hình quạt tròn } n^\circ \text{: } \boxed{S_{\mathrm{q}} = \frac{\pi R^2 n}{360} = \frac{lR}{2}} \text{. } \boxed{3} \text{ Diện tích hình vành khăn}$ $S = \pi (R^2 - r^2).$

7 Cylinder. Cone. Sphere – Hình Trụ. Hình Nón. Hình Cầu

7.1 Cylinder – Hình trụ

Quay hình chữ nhật ABCD 1 vòng quanh cạnh CD cố định (trục quay) được 1 hình trụ với 2 đáy: 2 hình tròn (C;R),(D;R) với R=AD=BC, mặt xung quanh, đường sinh AB, chiều cao AB=h. 2 Thiết diện: Mặt cắt song song với đáy: Thiết diện là 1 hình tròn bằng đáy. Mặt cắt song song với trực: Thiết diện là 1 hình chữ nhật. 3 Hình trụ có diện tích xung quanh $S_{xq}=2\pi Rh$, diện tích toàn phần $S_{tp}=2\pi Rh+2\pi R^2$, thể tích $V=S_{d}h=\pi R^2h$.

7.2 Cone. Chopped Cone – Hình nón. Hình nón cụt

Quy $\triangle AOB$ vuông tại O 1 vòng quành cạnh góc vuông OA cố định được 1 hình nón có đáy: hình tròn (O;R), đỉnh A, mặt xung quanh, đường sinh AB=l, chiều cao AO=h. 2 Hình nón có diện tích xung quanh $S_{xq}=\pi Rl$, diện tích toàn phần $S_{tp}=\pi Rl+\pi R^2$, thể tích $V=\frac{1}{3}S_{\rm d}h=\frac{1}{3}\pi R^2h$. 3 Hình nón cụt với 2 đáy (O';r),(O;R) có diện tích xung quanh $S_{xq}=\pi (R+r)l$, diện tích toàn phần $S_{tp}=\pi (R+r)l+\pi (R^2+r^2)$, thể tích $V=\frac{1}{3}\pi h(R^2+Rr+r^2)$.

7.3 Sphere – Hình cầu

Quay nửa hình tròn tâm O 1 vòng quanh đường kính AB cố định ta được 1 hình cầu. $\boxed{2}$ Thiết diện: Cắt hình cầu (mặt cầu) bán kính R bởi 1 mặt phẳng ta được 1 hình tròn (đường tròn) bán kính r: Bán kính đường tròn lớn r=R nếu mặt phẳng cắt đi qua tâm. Bán kính đường tròn r< R nếu mặt phẳng cắt không đi qua tâm. $\boxed{3}$ Hình cầu có diện tích $\boxed{S=4\pi R^2=\pi d^2}$, thể tích $\boxed{V=\frac{4}{3}\pi R^3}$. $\boxed{4}$ Hình cầu nội tiếp hình trụ thì bán kính hình cầu bằng bán kính đáy hình trụ, chiều cao hình trụ bằng đường kính hình cầu, $V_{\rm c}=\frac{2}{3}V_{\rm tr}$. $\boxed{5}$ Công thức tính thể tích các vật thể có 2 đáy song song: $\boxed{V=\frac{h}{6}(B_1+4B_2+B_3)}$ với h: chiều cao của vật thể, B_1 : diện tích đáy dưới, B_2 : diện tích thiết diện trung bình (thiết diện qua trung điểm của chiều cao), B_3 : diện tích đáy trên.