

Data sheet acquired from Harris Semiconductor SCHS028C – Revised October 2003

CMOS Presettable **Divide-By-'N' Counter**

High-Voltage Types (20-Volt Rating)

■ CD4018B types consist of 5 Johnson-Counter stages, buffered Q outputs from each stage, and counter preset control gating. CLOCK, RESET, DATA, PRESET ENABLE, and 5 individual JAM inputs are provided. Divide by 10, 8, 6, 4, or 2 counter configurations can be implemented by feeding the $\overline{Q}5$, $\overline{Q}4$, $\overline{Q}3$, $\overline{Q}2$, $\overline{Q}1$ signals, respectively, back to the DATA input. Divide-by-9, 7, 5; or 3 counter configurations can be implemented by the use of a CD4011B to gate the feedback connection to the DATA input. Divide-by functions greater than 10 can be achieved by use of multiple CD4018B units. The counter is advanced one count at the positive clocksignal transition. Schmitt Trigger action on the clock line permits unlimited clock rise and fall times. A high RESET signal clears the counter to an all-zero condition. A high PRESET-ENABLE signal allows information on the JAM inputs to preset the counter. Anti-lock gating is provided to assure the proper counting sequence.

The CD4018B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

CD4018B Types

Features:

- Medium speed operation 10 MHz (typ.) at $V_{DD} - V_{SS} = 10 \text{ V}$
- Fully static operation
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V over full packagetemperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V range) =

■ Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices'

Applications:

- Fixed and programmable divide-by-10, 9, 8, 7, 6, 5, 4, 3, 2 counters
- Fixed and programmable counters greater than 10
- Programmable decade counters
- Divide-by-"N" counters/frequency synthesizers
- Frequency division
- Counter control/timers

TERMINAL DIAGRAM Top View

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)0.5V to +20 ¹	V
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5'	٧
DC INPUT CURRENT, ANY ONE INPUT	Α
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	N
For T _A = +100°C to +125°C	V
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	V
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C	С
STORAGE TEMPERATURE RANGE (T _{std})65°C to +150°C	C
LEAD TEMPERATURE (DURING SOLDĚRING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	С

CD4018B Types

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC		V _{DD}	Min.	Max.	UNITS
Supply Voltage Range (at T _A = F Temperature Range)		3	18	v	
Clock Input Frequency,	fCL	5 10 15	_ 	3 7 8.5	MHz
Clock Pulse Width,	t _W	5 10 15	160 70 50	- -	ns
Clock Rise & Fall Time,	t _r CL,t _f CL	5 10 15	Unlir	nited	μs
Data Input Set-Up Time,	t _S	5 10 15	40 12 16	<u>-</u> - -	ns
Data Input Hold Time,	t _H	5 10 15	140 80 60	- - -	ns
Preset or Reset Pulse Width,	tw	5 10 15	160 70 50	-	ns
Preset or Reset Removal Time		5 10 15	160 60 40	- - -	ns

Fig. 1 — Logic diagram.

Fig. 2 - Detail of a typical stage.

CD4018B Types

CTATIO CI	FOTOLOGI	0114040750107100
SIATILE	LECTRICAL	CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)													U N I T
	V _O	VIN	V _{DD}						+25		S						
	(V)	(V)	(V)		-40	+85	+125	Min.	Тур.	Max.	L_						
Quiescent		0,5	5	5	5	150	150	-	0.04	5							
Device		0,10	10	10	10	300	300		0.04	10	μΑ						
Current,		0,15	15	20	20	600	600		0.04	20							
		0,20	20	100	100	3000	3000	-	0.08	100							
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-							
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_							
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_							
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mΑ						
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	1						
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	1						
IOH Min.	13.5	0,15	15	-4.2	4	-2.8	-2.4	-3.4	-6.8	-							
Output Voltage:	_	0,5	5		0.	.05		0	0.05								
Low-Level,	_	0,10	10		0.05 _ 0												
V _{OL} Max.	_	0,15	15	0.05 – 0						0.05	v						
Output		0,5	5		4.	.95		4.95	5	-							
Voltage: High-Level,	_	0,10	10		9.	95		9.95	10	_							
VOH Min.	-	0,15	15		14.	95		14.95	15	-							
Input Low	0.5,4.5	_	5			1.5		-	_	1.5							
Voltage	1,9	_	10			3		_	_	3							
V _{IL} Max.	1.5,13.5	_	15	4 4							V						
Input High	0.5,4.5	-	5	3.5 3.5						`							
Voltage,	1,9	_	10	7 7						-							
V _{IH} Min.	1.5,13.5	_	15	11 11													
Input Current I _{IN} Max.	_	0,18	18	±0.1 ±0.1 ±1 ±1 -					±10-5	±0.1	μΑ						

Fig. 3 — Typical output low (sink) current characteristics.

Fig. 4 – Minimum output low (sink) current characteristics.

Fig. 5 — Typical output high (source) current characteristics.

Fig. 6 - Minimum output high (source) current characteristics.

Fig. / — Typical transition time as a function of load capacitance.

Fig. 8 — Typical propagation delay time as a function of load capacitance (CLOCK to Q).

CD4018B Types

DYNAMIC ELECTRICAL CHARATERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIONS			UNITS		
		V _{DD} (V)	Min.	Тур.	Max.	1
CLOCKED OPERATION				•		
Proposation Delay Times		. 5	_	200	400	
Propagation Delay Time;		10		90	180	ns
tPLH, tPHL		15	_	65	130	1
Transition Time;		5	_	100	200	
·		10		50	100	ns
^t THL ^{,t} TLH		15	_	40	80	
Maximum Clock Input		5	3	6	_	
Frequency, f _{CL}		10	7	14	-	MHz
- reductioy, ICE		15	8.5	17	_]
Minimum Clock Pulse Width.		5	_	80	160	
		10	_	35	70	ns
t _W		15	-	25	50	1
Cleak Pice & Fall Times		5		μς		
Clock Rise & Fall Time;		10	1			
t _r CL,t _f CL	•	15	1			
Minimum Data Input Set-Up		5		20	40	ns
Time. t _S		10		6	12	
		15	-	3	6	
Minimum Data Input Hold		5	<u> </u>	70	140	ns
		10		40	80	
		15		30	60	
Average Input Capacitance, C	Any Input			5	7.5	pF
PRESET* OR RESET OPERAT	TION					
Propagation Delay Time;		5	_	275	550	
Preset or Reset to Q		10		125	250	ns
^t PLH ^{, t} PHL		15	_	90	180	
Minimum Preset or Reset		5	_	80	160	
Pulse Width,	1	10	_	35	70	ns
t _W		15	_	25	50	1
Minimum Preset or Reset		5	_	80	160	
Removal Time		10	<u> </u>	30	60	ns
· · · · · · · · · · · · · · · · · · ·		15	—	20	40	1

^{*} At PRESET ENABLE or JAM Inputs.

Fig. 12-Input voltage test circuit.

Fig. 13-Input current test circuit.

Fig. 9 — Typical propagation delay time as a function of load capacitance (RESET to Q).

Fig. 10 — Typical dynamic power dissipation as a function of clock input frequency.

Fig. 11 — Quiescent device current test circuit.

Fig. 14 - Dynamic power dissipation test circuit.

Fig. 15 — Timing diagram.

Chip dimensions and pad layout for CD4018B

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Fig. 16 — External connections for divide by 10, 9, 8, 7, 5, 4, 3, 2 operation.

Fig. 17 — Example of divide by 7.

i.com 28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4018BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4018BF	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
CD4018BF3A	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
CD4018BM	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4018BM96	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4018BMT	ACTIVE	SOIC	D	16	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4018BNSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4018BPW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
CD4018BPWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
JM38510/05652BEA	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated