Санкт-Петербургский государственный университет Прикладная математика и информатика

Производственная практика 1 (научно-исследовательская работа) (семестр 2) $\begin{tabular}{l} ИСПОЛЬЗОВАНИЕ МЕТОДА SSA В МАШИННОМ ОБУЧЕНИИ ДЛЯ \end{tabular}$

ПРОГНОЗА ВРЕМЕННЫХ РЯДОВ

Выполнил:

Ежов Федор Валерьевич группа 20.М03-мм

Научный руководитель: к.физ.-мат.н., доцент Голяндина Нина Эдуардовна Кафедра Статистического Моделирования

Оглавление

Глава	1. Sin	gular Spectrum Analysis
1.1.	Алгор	итм SSA
	1.1.1.	Этап 1. Построение траекторной матрицы (Вложение)
	1.1.2.	Этап 2. Singular Value Decomposition (SVD)
	1.1.3.	Этап 3. Группировка первых г собственных троек
	1.1.4.	Этап 4. Диагональное усреднение
Глава	2. Ис	пользование SSA в машинном обучении
2.1.	Задача	a
2.2.	Подго	товка данных
	2.2.1.	SSA-preprocessing
2.3.	Модел	Б
2.4.	Прогн	озирование
2.5.	Метри	ки
Глава	3. SS	A & ANN
3.1.	Синус	с шумом
	3.1.1.	Постановка задачи
	3.1.2.	Модели
	3.1.3.	Подготовка данных
	3.1.4.	Обучение и прогнозирование
	3.1.5.	Результаты
	Реалы	ный ряд
3.2.		
3.2.	3.2.1.	Постановка задачи
3.2.	3.2.1. 3.2.2.	Постановка задачи
3.2.		
3.2.	3.2.2.	Модели

~																						,
Список литературы		_	_	 	_	_	_	_		_	_	_	_	 _	_	_	_	_	 _	_	_	•

Введение

Метод Singular Spectrum Analysis (SSA) — хорошо развитая методология анализа и прогнозирования временных рядов, которая включает в себя множество различных, но взаимосвязанных методов. Область применения SSA очень широка — от непараметрической декомпозиции и фильтрации временных рядов до оценки параметров и прогнозирования.

Artificial neural network (ANN) — математическая модель, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т.п.

В прошлом отчете обозревалась статья «The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series» [2], в которой говорилось, что использование гибридных моделей SSA-ANN ведет к значительным улучшениям в точности предсказания из-за заглядывания в будущее. Из-за чего преимущество гибридных моделей пропадает при корректном тестировании методов. В этой работе поставлена следующая задача: проверить возможность прироста точности при использовании гибридных моделей SSA-ANN в сравнении с обычными моделями ANN.

Глава 1

Singular Spectrum Analysis

Метод SSA используется для разложение исходного ряда в сумму рядов, которые легко интерпретировать и понять их поведение. Обычно исходный ряд раскладывается в сумму трех рядов: тренд — медленно меняющаяся компонента, сезонность — циклическая компонента с фиксированным периодом и шум. Информацию про базовый алгоритм SSA и связанные с методом фундаментальные понятия можно найти в книге «Analysis of time series structure: SSA and related techniques» [1].

1.1. Алгоритм SSA

Алгоритм SSA состоит из четырех этапов:

- 1. Построение траекторной матрицы (Вложение).
- 2. SVD.
- 3. Группировка первых г собственных троек.
- 4. Диагональное усреднение.

Рассмотрим каждый этап подробнее.

Пусть $X_N = (x_1, \dots, x_N)$ — временной ряд, где N > 3. Также будем предполагать, что найдется хоть одно $x_i \neq 0$, то есть ряд не нулевой. Обычно считается, что $x_i = f(i\Delta)$ для некоторой функции f(t), где t — время, а Δ — некоторый временной интервал.

1.1.1. Этап 1. Построение траекторной матрицы (Вложение)

Выберем целое L — длина окна, такое что 1 < L < N. Тогда K = N - L - 1. Построим вектора $X_i = (x_i, \dots, x_{i+L-1})^T$, для $1 \le i \le K$. Составим из векторов X_i траекторную матрицу:

$$\mathbf{X} = [X_1 : \dots : X_K] = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}.$$

Получили матрицу ${\bf X}$ размерностью $L \times K$, составленную из пересекающихся частей исходного временного ряда. Можно заметить, что на побочных диагоналях стоят одинаковые числа, такая матрица называется ганкелевой. Существует взаимно-одно-значное соответствие между ганкелевыми матрицами $L \times K$ и рядами длиной N = L + K - 1.

Операцию получения из ряда X_N траекторную матрицу X обозначим:

$$\mathbf{X} = \mathcal{T}_L(\mathsf{X}_N),$$

соответственно обратная операция будет обозначаться: \mathcal{T}^{-1} .

1.1.2. Этап 2. Singular Value Decomposition (SVD)

На данном этапе применяется метод SVD к траекторной матрице **X**. Пусть **S** = $\mathbf{X}\mathbf{X}^T$ и $\lambda_1 > \ldots > \lambda_L$ — собственные числа матрицы **S**, U_1, \ldots, U_L — ортонормированная система базисных векторов, соответствующих собственным числам. Обозначим $V_i = \frac{X^T U_i}{\sqrt{\lambda_i}}$ и $d = max\{i: \lambda_i > 0\}$. Тогда сингулярное разложение матрицы **X** запишется следующим образом:

$$\mathbf{X} = \mathbf{X}_1 + \ldots + \mathbf{X}_d$$
, где $\mathbf{X}_i = \sqrt{\lambda_i} U V^T$,

Набор $(\sqrt{\lambda}_i, U_i, V_i^T)$ будем называть і-й собственной тройкой.

1.1.3. Этап 3. Группировка первых г собственных троек

На этапе группировки из всех значений $\{1\dots d\}$ берутся первые r. Пусть, $I=\{1,\dots,r\}$, тогда результирующая матрица соответствующая группе I имеет вид: $\mathbf{X}_I=\mathbf{X}_1+\dots+\mathbf{X}_r$.

1.1.4. Этап 4. Диагональное усреднение

Пусть \mathbf{Y} — матрица $L \times K$, L < K. y_{ij} - элементы матрицы, где $1 \leqslant i \leqslant L$, $1 \leqslant j \leqslant K$. Также пусть N = L + K - 1. Диагональное усреднение преобразует матрицу \mathbf{Y} в ряд g_0, \ldots, g_{N-1} по формуле:

$$g_k = \begin{cases} \frac{1}{k+1} \sum_{m=1}^{k+1} y_{m,k-m+2} &, \text{ для } 0 \leqslant k < L-1 \\ \frac{1}{L} \sum_{m=1}^{L} y_{m,k-m+2} &, \text{ для } L-1 \leqslant k < K \\ \frac{1}{N-k} \sum_{m=k-K+2}^{N-K+1} y_{m,k-m+2} &, \text{ для } K \leqslant k < N \end{cases}$$

Применяя диагональное усреднение к результирующей матрице группы I, получаем ряд $\hat{\mathsf{F}} = (f_1 \cdots f_{N-1})$. Полученный ряд $\hat{\mathsf{F}}$ назовем оценкой сигнала, полученной с помощью SSA. Процедуру выделения сигнала с помощью SSA обозначим как:

$$\hat{\mathsf{F}} = SSA_{L,r}(\mathsf{F}),$$

где L- длина окна в SSA, r- количество первых собственных троек, участвующие в построении $\hat{\mathsf{F}}.$

Глава 2

Использование SSA в машинном обучении

2.1. Задача

Рассмотрим Z_N — временной ряд длины N и задачу: с помощью Artificial Neural Network (ANN) модели на основе T последовательных точек ряда Z_N , предсказать следующие R точек ряда. Решение данной задачи, можно разбить на несколько частей: подготовка данных, обучение модели, прогнозирование.

2.2. Подготовка данных

 Z_N — изначальный временной ряд длиной N. Мы можем представить ряд в виде траекторной матрицы для длины окна T+R, тогда получим:

$$\mathbf{Z} = \mathcal{T}_{T+R}(\mathsf{Z}_N) = egin{pmatrix} z_1 & z_2 & \cdots & z_T & z_{T+1} & \cdots & z_{T+R-1} & z_{T+R} \ z_2 & z_3 & \cdots & z_{T+1} & z_{T+2} & \cdots & z_{T+R} & z_{T+R+1} \ dots & dots & \ddots & dots & dots & \ddots & dots \ z_{N-T-R+1} & z_{N-T-R+2} & \cdots & z_{N-R} & z_{N-R+1} & \cdots & z_{N-1} & z_N \end{pmatrix}.$$

Матрица **Z** будет размерности $(N-T-R+1) \times (T+R)$. Левую часть матрицы **Z** назовем \mathbf{Z}^x , а правую часть \mathbf{Z}^y . Также разобъем матрицу по строчкам на 3 части: train, val, test. Пусть τ , v и t номера последних строчек в каждой соответствующей части. Обозначим с помощью $\mathbf{Z}_{a,b}^{(c,d)}$ часть матрицы **Z** с a по b строчку и с c по d столбец. Тогда train, val, test части записываются как: $\mathbf{Z}_{train} = \mathbf{Z}_{1,\tau}^{(1,T+R)}, \mathbf{Z}_{val} = \mathbf{Z}_{\tau+T+R,v}^{(1,T+R)}, \mathbf{Z}_{test} = \mathbf{Z}_{v+T+R,t}^{(1,T+R)}$. В этих же обозначениях $\mathbf{Z}^x = \mathbf{Z}_{1,t}^{(1,T)}, \mathbf{Z}^y = \mathbf{Z}_{1,t}^{(T+1,T+R)}$.

2.2.1. SSA-preprocessing

Предобработка SSA для тренировочной выборки описывается следующим алгоритмом. L, r — гипер-параметры, описанные в разделе «1.1. Алгоритм SSA»:

- 1. Преобразуем train часть матрицы ${f Z}$ во временной ряд $\widetilde{{\sf Z}}={\cal T}^{-1}({f Z}_{train}).$
- 2. Получим ряд $\hat{\mathsf{Z}} = SSA_{L,r}(\widetilde{\mathsf{Z}}).$

- 3. Получаем траекторную матрицу $\hat{\mathbf{Z}} = \mathcal{T}_{T+R}(\hat{\mathbf{Z}})$.
- 4. Полученная траекторная матрица $\hat{\mathbf{Z}}$ будет результатом работы предобработки SSA для тренировочной выборки.

Предобработка SSA для валидационной или тестовой выборки отличается от предыдущей, ввиду разных предназначений выборок. В отличии от тренировочной выборки о которой мы знаем все, считается, что о валидационной и тестовой выборках ничего не известно. В этих случаях SSA-обработку следует применять так, чтобы предыдущие значения ряда не получали информации от будущих («заглядывание в будущее»).

Пусть $\mathsf{Z}_{b,e} = [z_b, z_{b+1}, \cdots, z_e]$ подряд ряда Z , где b — начальный индекс, e — конечный индекс. Пусть p — тоже индекс ряда, такой что $b . Следующий алгоритм описывает процедуру получения ряда <math>\mathsf{Z}_{p+1,e}$, обработанного с помощью SSA без «заглядывание в будущее»:

- 1. Пусть есть ряд $\mathsf{Z}_{b,e}$ и задано p. Тогда Q=e-p размер ряда $\mathsf{Z}_{p+1,e}$. Пусть $\hat{\mathsf{Z}}_Q=(\hat{z}_1,\cdots,\hat{z}_Q)$ ряд размера Q.
- 2. Для каждого $i=[1,\cdots,Q]$ получим $\hat{\mathsf{Z}}'_{b+i-1,p+i}=SSA_{L,r}(\mathsf{Z}_{b+i-1,p+i})$, присвоим значение последнего элемента полученного ряда \hat{z}'_{p+i} значению ряда $\hat{\mathsf{Z}}_Q$ с соответствующим индексом, то есть $\hat{z}_i=\hat{z}'_{p+i}$.
- 3. Получили ряд $\hat{\mathsf{Z}}_Q$ размера Q, значения которого являются значениям ряда $\mathsf{Z}_{p+1,e}$, обработанные с помощью SSA без «заглядывания в будущее».

Процедуру получения $\hat{\mathsf{Z}}_Q$ обозначим: $\hat{\mathsf{Z}}_Q = \mathcal{SSA}^{(p)}(\mathsf{Z}_{b,e})$. Тогда алгоритм предобработки для валидационной выборки запишется следующим образом:

- 1. Запишем $\mathbf{Z}_{1,v}^{(1,T+R)}$ как $\mathsf{Z}_{1,v+T+R}.$
- 2. Выберем $p = \tau + T + R$.
- 3. Получим $\hat{\mathsf{Z}}_Q = \mathcal{SSA}^{(p)}(\mathsf{Z}_{1,v+T+R}).$
- 4. Перейдем обратно к траекторной матрице $\hat{\mathbf{Z}}_{val} = \mathcal{T}_{T+R}(\hat{\mathsf{Z}}_Q)$.

 $\hat{\mathbf{Z}}_{val}$ — будет результатом предобработки SSA для валидационной выборки. Размерность $\hat{\mathbf{Z}}_{val}$ будет совпадать с размерностью \mathbf{Z}_{val} .

Запишем аналогичный алгоритм для тестовой выборки:

- 1. Запишем $\mathbf{Z}_{1,t}^{(1,T+R)}$ как $\mathsf{Z}_{1,t+T+R} = \mathsf{Z}_N.$
- 2. Выберем p = v + T + R.
- 3. Получим $\hat{\mathsf{Z}}_Q = \mathcal{SSA}^{(p)}(\mathsf{Z}_N)$.
- 4. Перейдем обратно к траекторной матрице $\hat{\mathbf{Z}}_{test} = \mathcal{T}_{T+R}(\hat{\mathbf{Z}}_Q)$.

 $\hat{\mathbf{Z}}_{test}$ — будет результатом предобработки SSA для тестовой выборки.

2.3. Модель

ANN включает в себя входной слой, ряд скрытых слоев и выходной слой, каждый слой содержит несколько узлов. Считается, что ANN с одним скрытым слоем обеспечивает достаточную сложность для моделирования нелинейных взаимосвязей данных. ANN в этой работе формализуется следующим образом:

$$\hat{X}^T = [x_1, \cdots, \hat{x}_T]$$

- входные данные, на которых модели учиться делать предсказания.

$$\hat{Y}^T = [y_1, \cdots, \hat{y}_R]$$

– выходные данные, предсказания модели.

$$y_k = \phi_2 \left(\sum_{i=1}^h w_{jk}^{(2)} \phi_1 \left(\sum_{i=1}^T w_{ij}^{(1)} x_i + \theta_j^{(1)} \right) + \theta_k^{(2)} \right), k = [1, \dots, R],$$

где T — размер входного вектора на котором выполняется прогноз, h — размер скрытого слоя. w и θ — веса модели. ϕ — функция активации. R — размер выходного векторапрогноза.

Ниже представлен список некоторых функций активаций:

- 1. Линейная функция активации: $\phi(x) = x$.
- 2. Сигмоида: $\phi(x) = \frac{1}{1 + e^{-x}}$

3. ReLU:
$$\phi(x) = \begin{cases} 0, & x < 0 \\ x, & x \geqslant 0 \end{cases}$$

Обучение Оптимизация параметров модели ANN w, θ проводится с помощью процедуры обратного распространения ошибки на тренировочной выборке. Модель учится по \mathbf{Z}_{train}^x предсказывать \mathbf{Z}_{train}^y . Эпоха — цикл прохода всех строчек из тренировочной выборки в обучении. Количество эпох для обучения является гипер-параметром. На валидационной выборки оценивается оптимальное количество эпох, нужных для модели (дабы избежать переобучения).

Перед началом обучения нужно выбрать гипер-параметры модели ϕ_1, ϕ_2, h и количество эпох. Алгоритм обучения модели после выбора архитектуры:

- 1. Инициализация модели со случайными весами.
- 2. На тренировочной выборке \mathbf{Z}_{train} оптимизируются веса w, θ с заданным количеством эпох. Модель учится по данным строчкам \mathbf{Z}_{train}^x предсказывать соответствующие строчки \mathbf{Z}_{train}^y . Для каждой i-ой эпохи считается ϵ_i ошибка на валидационной выборке. Для валидационной выборки \mathbf{Z}_{val}^x строится прогноз $\hat{\mathbf{Z}}_{val}^y$. Ошибка ϵ_i получается сравнением $\hat{\mathbf{Z}}_{val}^y$ с \mathbf{Z}_{val}^y по какой-нибудь метрике (например MSE).
- 3. Находим $i : \min(\epsilon_i)$.
- 4. Веса модели сбрасываются (снова инициализация случайными весами).
- 5. Снова на тренировочной выборке оптимизируются веса w, θ с количеством эпох равных i.

2.4. Прогнозирование

После того как модель обучена, можно перейти к прогнозированию точек ряда.

- 1. Возьмем \mathbf{Z}_{test}^x и \mathbf{Z}_{test}^y .
- 2. Представим $\mathbf{Z}_{test}^x = [Z_{test}^{x,1}: \cdots: Z_{test}^{x,Q}]^T$, где Q количество строчек в тестовой матрицы \mathbf{Z}_{test} .
- 3. Для каждой строчки матрицы \mathbf{Z}^x_{test} получаем прогноз с помощью обученной модели. Запишем результат прогноза как матрицу $\hat{\mathbf{Z}}^y = [\hat{Z}^{y,1}: \cdots: \hat{Z}^{y,Q}]^T$.
- 4. Далее можно сравнить $\hat{\mathbf{Z}}^y$ с \mathbf{Z}_{test}^y по какой-нибудь метрике.

2.5. Метрики

 ${\bf C}$ помощью метрик MSE и RMSE можно мерить размер ошибки полученного прогноза.

$$MSE(\mathbf{Z}_{test}^{y}, \mathbf{\hat{Z}}^{y}) = \frac{1}{Q} diag((\mathbf{Z}_{test}^{y} - \mathbf{\hat{Z}}^{y})(\mathbf{Z}_{test}^{y} - \mathbf{\hat{Z}}^{y})^{T})$$
$$RMSE(\mathbf{Z}_{test}^{y}, \mathbf{\hat{Z}}^{y}) = \sqrt{MSE(\mathbf{Z}_{test}^{y}, \mathbf{\hat{Z}}^{y})}$$

Глава 3

SSA & ANN

В этой главе описано два эксперимента, в которых сравнивается простая модель ANN и гибридная модель SSA-ANN на примере синуса с шумом и реальных данных.

3.1. Синус с шумом

Так как реальные данные, рассмотренные во втором эксперименте в разделе «3.2 Реальный ряд» похожи на сумму синусов с разной амплитудой, мы хотим показать, что SSA дает прирост в точности в задаче прогнозирования синуса с шумом.

3.1.1. Постановка задачи

Рассмотрим следующий ряд Z_{1500} , состоящий из элементов $z_i = \sin(2\pi\omega i) + \epsilon_i$, где ω – частота, равная $\frac{1}{12}$, ϵ_i – шум из стандартного нормального распределения N(0,1).

Рис. 3.1. Часть ряда Z₁₅₀₀.

Поставим задачу предсказывать следующую точку синуса по двенадцати предыдущим, то есть возьмем T=12 и R=1. В рамках этой задачи хотим сравнить обычную модель ANN и гибридные модели SSA-ANN по метрике RMSE. Также мы будем сравнивать отклонение полученного прогноза от сигнала $\sin(2\pi\omega i)$ и самого ряда Z_{1500} .

Мы будем рассматривать две версии гибридных моделей SSA-ANN. В первой версии обработка методом SSA будет применяться для левой части \mathbf{Z}^x траекторной матрицы. Таким образом мы хотим проверить гипотезу о том, что точность ANN повысится, если прогноз будет строиться на данных, очищенных от шума. Такие модели будем называть SSA-X-ANN. Во второй версии только правая часть \mathbf{Z}^y обрабатывается с помощью метода SSA. В этом случае мы хотим проверить гипотезу, что точность модели ANN повысится, если модель будет обучаться прогнозировать данные без шума. Такие модели будем называть SSA-Y-ANN.

3.1.2. Модели

Для предсказаний воспользуемся нейронной сетью, описанной в разделе «2.3 Модель». Назовем ANN-1 — модель без скрытых слоев и обе функций активации являются линейными. Она соответствует обычной линейной регрессии. ANN-2 — назовем модель с одним скрытым слоем, размера 50. ϕ_1 — является функцией активации ReLU, а ϕ_2 — линейная функция активации. SSA-ANN-1 и SSA-ANN-2 назовем группы гибридных версии для каждой модели. Стоит отметить, что гибридные модели могут быть разными, мы будем рассматривать по две гибридные модели, которые были описаны в разделе «3.1.1. Постановка задачи», для каждой обычной (например, SSA-X-ANN-1 или SSA-Y-ANN-2).

3.1.3. Подготовка данных

Построим траекторную матрицу для ряда Z_{1500} с окном длиной 13.

$$\mathbf{Z} = \mathcal{T}_{13}(\mathsf{Z}_{1500}) = egin{pmatrix} z_1 & z_2 & \cdots & z_{12} & z_{13} \ z_2 & z_3 & \cdots & z_{13} & z_{14} \ dots & dots & \ddots & dots & dots \ z_{1488} & z_{1489} & \cdots & z_{1499} & z_{1500} \end{pmatrix}.$$

Разобъем данные на тренировочную, валидационную и тестовую выборку следующим образом: $\tau=988,\ v=1238$ и t=1488. Далее для моделей ANN-1 и ANN-2 будем использовать уже полученную матрицу ${\bf Z}$ без каких-то обработок методом SSA. Параметры оператора $SSA_{L,r}$ задаются следующим образом $L=\frac{\tau+12}{2},\ r=2$. Для гибридных моделей SSA-X-ANN-1 и SSA-X-ANN-2 обработаем только левую часть мат-

рицы **Z** методом SSA, как описано в разделе «2.2.1. SSA-preprocessing». Для гибридных моделей SSA-Y-ANN-1 и SSA-Y-ANN-2 обработаем только правую часть матрицы **Z** методом SSA. Таким образом получили для каждой модели свою матрицу **Z**.

3.1.4. Обучение и прогнозирование

Теперь когда для каждой модели есть своя матрица **Z**, их можно обучить как описано параграфе «обучение» раздела «2.3. Модель». После обучения модели тестируются на тестовой выборке по алгоритму, описанному в разделе «2.4. Прогнозирование».

3.1.5. Результаты

В ходе эксперимента полученные результаты для моделей ANN-1 и SSA-ANN-1 представлены в таблице 3.1. Результаты для моделей ANN-2 и SSA-ANN-2 представлены в таблице 3.2.

Таблица 3.1. RMSE для моделей ANN-1 и SSA-ANN-1.

	ANN-1	SSA-X-ANN-1	SSA-Y-ANN-1
Signal	0.414	0.086	0.409
Time series	1.043	0.998	1.037

Таблица 3.2. RMSE для моделей ANN-2 и SSA-ANN-2.

	ANN-2	SSA-X-ANN-2	SSA-Y-ANN-2
Signal	0.415	0.014	0.365
Time series	1.045	1.007	1.032

На результатах выше можно наблюдать, что гибридные модели показывают результаты лучше, чем обычная модель. Модели SSA-Y-ANN показывают результат сравнимый с обычной моделью, можно сказать, что в этом случае улучшение незначительное. В случае моделей SSA-X-ANN видно хорошее улучшение. Наблюдается снижение ошибки по RMSE на 0.4, если считать отклонение от сигнала. Это говорит о том, что гибридная модель SSA-X-ANN хорошо предсказывает сигнал ряда. Также посмотрим на ошибки для сигнала и ряда в случае SSA-X-ANN. Видно, что квадраты ошибок отличаются, примерно, на дисперсию шума σ^2 , что говорит о том, что метод SSA в модели

SSA-X-ANN удалил из ряда шумовые компоненты. В случае же моделей ANN таких результатов не наблюдается. Из этого следует, что модели SSA-X-ANN в отличии от ANN пытается прогнозировать чистый сигнал, что дает лучшие результаты.

Можно заключить, что для обоих архитектур моделей наблюдается одна тенденция: гибридные модели показывают результаты лучше, чем обычные. В частности, гибридные модели SSA-X-ANN показывает наилучшие результаты. Можно сказать, что правильное использование гибридных моделей SSA-ANN дает прирост в точности в задаче прогнозирование синуса с шумом.

3.2. Реальный ряд

Теперь, когда мы убедились, что гибридные модели работают лучше, чем обычные в задачи прогнозирования синуса с шумом, перейдем к прогнозированию реального ряда.

3.2.1. Постановка задачи

Рассмотрим следующий ряд Z₁₅₀₀ (рис. 3.2) взятый из статьи [2]. На ряде отображены среднемесячное количество осадков в Индии.

Рис. 3.2. Ряд Z₁₅₀₀.

Поставим задачу предсказывать следующую точку ряда Z_{1500} по двенадцати предыдущим, то есть возьмем T=12 и R=1. В рамках этой задачи хотим сравнить обычную

модель ANN и гибридные модели SSA-ANN по метрике RMSE. Также как и в главе «3.1. Синус с шумом» рассмотрим две версии гибридных моделей SSA-ANN. В первой версии обработка методом SSA будет применяться для левой части \mathbf{Z}^x траекторной матрицы. Во второй версии только правая часть \mathbf{Z}^y обрабатывается с помощью метода SSA. Будем использовать такие же обозначения для этих моделей как и в разделе «3.1. Синус с шумом».

3.2.2. Модели

Для предсказаний воспользуемся теми же моделями, что и в задаче с синусом, описанными ранее в разделе «3.1.2 Модели».

3.2.3. Данные, обучение и прогнозирование

Построим траекторную матрицу для ряда Z_{1500} с окном длиной 13.

$$\mathbf{Z} = \mathcal{T}_{13}(\mathsf{Z}_{1500}),$$

Разобъем данные на тренировочную, валидационную и тестовую выборку следующим образом: $\tau = 988, v = 1238$ и t = 1488.

Далее для модели ANN-2 будем использовать уже полученную матрицу ${\bf Z}$ без каких-то обработок методом SSA. Параметры оператора $SSA_{L,r}$ задаются следующим образом $L=\frac{\tau+12}{2}, r=7$. Для гибридных моделей SSA-X-ANN обработаем только левую часть матрицы ${\bf Z}$ методом SSA, как описано в разделе «2.2.1. SSA-preprocessing». Для гибридных моделей SSA-Y-ANN обработаем только правую часть матрицы ${\bf Z}$ методом SSA. Таким образом получили для каждой модели свою матрицу ${\bf Z}$.

Теперь когда для каждой модели есть своя матрица **Z**, их можно обучить как описано параграфе «обучение» раздела «2.3. Модель». После обучения, модели тестируются на тестовой выборке по алгоритму, описанному в разделе «2.4. Прогнозирование».

3.2.4. Результаты

В ходе эксперимента получились для моделей ANN-1 и SSA-ANN-1 следующие результаты, представленные на таблице 3.3. А для моделей ANN-2 и SSA-ANN-2 на таблице 3.4.

Таблица 3.3. RMSE для моделей ANN-1 и SSA-ANN-1.

		ANN-1	SSA-X-ANN-1	SSA-Y-ANN-1
RM	ISE	267.21	224.35	269.23

Таблица 3.4. RMSE для моделей ANN-2 и SSA-ANN-2.

	ANN-2	SSA-X-ANN-2	SSA-Y-ANN-2
RMSE	239.84	218.57	242.72

На таблице видна такая же тенденция, как и в задаче с синусом с шумом. Модели ANN и SSA-Y-ANN показывают сравнительно похожие результаты. А вот модели SSA-X-ANN показывают наилучшие результаты. Также видно значительное увеличение ошибки для моделей ANN-1 и ANN-2, это ожидаемый результат, так как сложность модели ниже ANN-1, чем у модели ANN-2. Но для моделей SSA-X-ANN-1 и SSA-X-ANN-2 разница в ошибке небольшая, что подчеркивает работу хорошую работу SSA в выделении сигнала.

Можно заключить, что с помощью гибридных моделей удалось улучшить точность прогнозирования реального ряда.

3.3. Итоги

Исходя из результатов полученных в экспериментах, описанных ранее, можно заключить, что правильное использование гибридных моделей SSA-ANN приводит к весьма хорошим улучшениям в задаче прогнозирования рядов.

Заключение

В работе был рассмотрен алгоритм SSA, использующий в гибридный моделях SSA-ANN, как предобработка данных. Были описаны эксперименты в которых сравнивались обычные модели ANN и гибридные модели SSA-ANN в разных задачах. Для всех сравнений были приведены результаты в метрике RMSE. Также была описана математическая база, заложенная в основу всех экспериментов. В ходе всех экспериментов удалось достичь улучшения точности с помощью гибрыдных моделей SSA-ANN по сравнению с обычными моделями ANN.

Список литературы

- 1. Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC.
- 2. Kongchang Du, Ying Zhao, Jiaqiang Lei (2017). The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series.