

Raw Data - Daily Mean Water Level (black): Reconstructed (red)

Raw Data – Daily mean water level

Taylor Slough

Shark River Slough

NW Everglades

National Park Service

Jed Redwine, Joseph Park & Kevin Kotun Jan 19, 2018

U.S. Department of the Interior

EMD: Accumulated Intrinsic Mode Functions (IMFs): LPF

MOI

Weighted sum of Ocean and Marsh IMF's to replicate observed intermmediate hydrodynamics.

$$W(t) = \sum_{i=L}^{i=H} \omega_i \ IMF_{\Omega_i} + \mu_i \ IMF_{M_i}$$

$$MOI = \frac{M - \Omega}{N}$$

$$\Omega = \sum \omega_i,$$

$$M = \sum \mu_i$$

MOI

Taylor Slough

Shark River Slough

NW Everglades

Taylor Slough

Shark River Slough

NW Everglades

 $\frac{d}{dt}MOI(t)$

Taylor Slough

Shark River Slough

NW Everglades

National Park Service

U.S. Department of the Interior

Objective:

Quantify & Correlate MOI temporal dynamics with ecotone dynamics evidenced in remote sensing

National Park Service U.S. Department of the Interior

Natural Resource Stewardship and Science

²Florida International University

11200 SW 8th Street Miami, Florida 33199

Vegetation Code Schema 7 Tables 201 Elements (Columns)

Level 1 : n = 8	A	\	I	=	Ε		С		S	M		1	W	0	
201011111	Aqua	atic	Fo	rest	Exoti	С	Scrul	S	Shrub	Mars	sh	Wo	odland	Oth	er
Level 2 : n = 15	AF	AM	FU	FW	Es	CW	CU	SU	sw	MF	MS	wu	WW	ОА	ON
Lovel 2 va OC	FH	WM	V	/S	WUH	SM		SS	SUC	SUH	CN	1	CS	CUW	MS

Level 3 : n = 26

MSS MFB MFG MFGP MFH MFO ONM ONS ONT ONW OAT

WMa WMc WMX WSt SMa SMc SMl SMr SMX SSB SSBT SSy FMa FMc FMl FMr FMX FSw FSB FSBT FSt

Level 4 : n = 45

Level 5 : n = 55

SMXac SMXal SMXar SMXcl SMXcr SMXlr SMXry SMXX CMaG CMaO CMaS CMaD CMcG CMcS CMlS CMrD CMrG CMrO CMxac CMxal CMxar CMxcl CMxcr CMxX CSBG CShG CStG CStGP MFGcT MFGcS FMXac FMXal FMXar FMXcl FMXrr FMXlr FMXX FStD FStS FHCc FHCg FHCt FHCD WMaG WMaO WMaS WMcG WMcS WMXac WMXal WMXar WStG CSBTO CSBTG CUWGPc

Level 6 : n = 45

CMXcrO CMXXD MFGcSS CMXcrG CMXXS CMXXO CMXXG CSBGe CSBGc CSBTGe CSBTGc CShGc CStGPc CStGe CStGc MFGcSD MFGcTD CMXclS CMXcrD CMcGf CMcGc CMrGc CMrGe CMrGj CMrGt CMXacD WStGc WMXarS WMXarO WMXarG WMXalS WMXacS WMXacO WMXacG CMaGc CMXacS CMXacO CMXacG CMXalD CMXalS CMXalO CMXarG CMXarO CMXarS CMXarD CMXcrS

Level 7: n = 7

CMXXGe CStGcS CMXarGj CMXarGe CMXcrGj CMXcrGe CMXcrGc

NATIONAL PARK SERVICE

NetLogo

Home
Download
Help
Resources
Extensions

NetLogo is a multi-agent programmable modeling environment. It is used by many tens of thousands of students, teachers and researchers worldwide. It also powers <u>HubNet</u> participatory simulations. It is authored by <u>Uri Wilensky</u> and developed at the <u>CCL</u>. You can download it free of charge. You can also try it online through <u>NetLogo</u>

Web.

Vegetation Code Implementation

Each GIS Grid Cell has one of 201 Vegetation Codes Assigned.

Note: Redudancy Exists in Veg Code Classification

Cell_ID	Cell_ID	Cell_ID	Cell_ID
MFB	FMXar	CNXcrD	MFGPc

Proposed Species-centric Data Model

Proposed Species-centric Implementation

Each GIS Grid Cell has one or more of 27 **Species** data objects assigned.

Cell_ID	Cell_ID	Cell_ID
Mangrove	Sawgrass	Buttonwood
	Spikerush	Poisonwood

Jed Redwine, Joseph Park & Kevin Kotun Jan 19, 2018

U.S. Department of the Interior

National Park Service

27 Species: 214 Vegetation Codes

Species	N
Black Mangrove	58
Buttonwood	32
Red Mangrove	30
White Mangrove	20
Cypress	13
Sawgrass	11
Red Bay	7
Poisonwood	5
Gumbo Limbo	5
Sweet Bay	4
Pond Apple	4
Mahogany	3
Buttonbush	3
Fan Palm	2

Species	N
Swamp Bay	2
Black Rush	2
Monring Glory	2
Sea Grape	2
Oxeye	1
Paurotis Palm	1
Arrowhead	1
Spikerush	1
Saltwort	1
Muhly Grass	1
Beakrush	1
Cattail	1
Cocoplum	1

Relational Database Model Many-to-Many **Species GIS Cell** Binomen Row, Col Veg Code Lat, Long Landscape Type Elevation **Cell: Species** Binomen Row, Col Abundance Height . . .

Leverage Relational Database implementation into analytical capability

Species-centric Agents

```
to set-color-lists
 ; setup patch & turtle color mapping to species
 set green list [ "Black Mangrove" "Red Mangrove" "White Mangrove" ]
 set blue list [ "Fan Palm" "Swamp Bay" "Arrowhead" "Sawgrass"
                   "Spikerush" "Black Rush" "Muhly Grass" "Beakrush"
                   "Cattail" "Morning Glory" ]
 set yellow list [ "Buttonwood" "Buttonbush" "Seaside Oxeye" "Paurotis Palm"
                   "Saltwort" "Sea Grape" ]
 set red_list [ "Mahogany" "Hardwood Hammock" "Swamp Woodland"
                   "Hardwood Woodland" ]
 set brown_list [ "Cypress" "Cocoplum" "Gumbo Limbo" "Red Bay" "Sweet Bay"
                   "Pond Apple" "Poisonwood" ]
 set pink list [ "Mixed Shrub" "Broadleaf Marsh" "Swamp Shrubland" ]
 set magenta list[ "Open" ]
end
```

South Florida Natural Resouces Center Everglades National Park

Objective:

ask Sawgrass patches [

if count plants > 0 [

; Get patch water depth

; Get patch salinity

if depth > 90

if days_dry_ > 180

Define Species-centric agent behaviors

awgrass — Cladium jamaicense and Cypress - Taxodium distichum

set depth TaylorSlough.stage stage station - elevation

; Accumulate and reset the patch hydroperiod variables

; Guassian of days_dry to determine death ; The range is [0, 365] days, value is N(days_dry, 15) let days_dry_ min (list 365

; Get copy of turtle-context variable salinity_max_days let salinity_max_days_ 0

set salinity Salinity.psu salinity station

File Edit Tools Zoom Tabs Help

Interface Info Code

Objectives

I. MOI / Landsat synthesis & analysis.

J Park J Redwine

II. Develop & Define Species and Patch agent behaviors.
J Park J Redwine

III. Review Everglades Landscape Vegetation Succession (ELVeS) model for probabilistic agent behaviors.

J Park J Redwine

IV. Collaborate on extension and development of MOI/Landsat dynamics into temporal 'snapshot' vegetation maps for ABM 'calibration'.

J Park J Redwine

V. Advocate Vegetation Map ingestion into Relational DB (Data4EVER).

