Sales Forecasting for Grocery Store, Favorita

Marketing Analytics - Fall'22

Group M

Anudeep Akkana (aa92799)

Muskan Agarwal (ma64547)

Tanvi Dalal (TRD878)

Sreekar Lanka (SL54387)

Prathmesh Savale (ps33296)

AGENDA

- Project Background
- Data & Metrics
- Exploratory Data Analysis
- Time Series Forecasting
- Conclusion

Project Background and Objectives

Project Background

- Lack of popular items
- Lost revenue
- Extra product waste

 Brick and mortar stores for sales to determine how much inventory to buy

 More accurate forecasting can decrease food waste and increase customer satisfaction

Objectives

Given the daily sales across stores and product families, forecast the future daily sales at store-product level

Perform exploratory data analysis and time series analysis of Favorita stores data

Identify the factors that impact sales

Develop time series model to forecast sales

Data and Metrics

Description

Time series product sales data for Favorita stores

Datasets and Variables:

- Holiday Events: Date, type, locale, location, description, transferred
- Oil: Date, price
- Stores: store_nbr, city, state, type, cluster,
- Promotions

Model Evaluation Metric (MAPE)

Mean absolute percentage error MAPE

$$M = rac{1}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

M = mean absolute percentage error

 $n = \frac{\text{number of times the summation iteration}}{\text{happens}}$

 A_t = actual value

 F_t = forecast value

EDA — Overall Sales are increasing every year for Favorita

Top 4 Stores by Sales

Store No.	Sales(K)	City	State
44	63.3	Quito	Pichincha
45	55.6	Quito	Pichincha
47	52.0	Quito	Pichincha
3	51.5	Quito	Pichincha

Last 5 Stores by Sales

Store No.	Sales(K)	City	State
35	7.8	Playas	Guayas
30	7.5	Guayaquil	Guayas
32	6.1	Guayaquil	Guayas
22	4.2	Puyo	Pastaza
52	2.7	Manta	Manabi

EDA - Time Series for Stores

All stores have similar time series shapes

Different Product Types

EDA - Time Series for product families

Different product families show variety of time series shapes

Impact of external factors on sales - Holidays

Holidays have a positive impact on sales

The sales go up by 668K at an overall level if it is a holiday given all else constant

Impact of external factors on sales - Promotions

Promotions have a positive impact on sales

The sales go up by 647K at an overall level if it is a promotion day given all else constant

Impact of external factors on sales -

OLS Re	gression Resu	ılts					
De	p. Variable: y R-squared:		squared:	0.310			
	Model:		OLS	Adj. R-squared:		0.309	
	Method:	Least S	quares	F-statistic:		754.9	
	Date:	Tue, 08 No	v 2022	Prob (F-statistic):		1.36e-137	
	Time:	1	1:22:22	Log-Li	kelihood:	-23177.	
No. Ob	servations:		1684		AIC:	4.636e+04	
Df	Residuals:		1682		BIC:	4.637e+04	
	Df Model:		1				
Covariance Type:		noi	nrobust				
	coef	std err	t	P> t	[0.025	0.975]	
const	1.057e+06	1.58e+04	66.894	0.000	1.03e+06	1.09e+06	
x1	-5984.1028	217.801	-27.475	0.000	-6411.291	-5556.914	

There is a strong negative correlation between sales and oil prices

Time Series Decomposition

Original Time series

General Trend

Results for different iterations

Method	MAPE
Simple Exp smoothing	37%
Rolling exponential smoothing	37%
Holts (double exp smoothing)	46.14%
Holts (double exp smoothing) - rolling	35.17%
Holts Winter (triple exp smoothing)	48.45%
Holts Winter (triple exp smoothing) - rolling	45.99%
Propagate trend and seasonality	35.09%
Propagate trend and seasonality and adjust residue	35.08%

- Rolling point forecasts have better accuracy compared to longer forecasts
- Trend and seasonality propagation with adjusted residue have the best results
- Double exponential smoothing results are comparable to propagating trend and seasonality

Forecast visuals - (Simple Exponential Smoothing and Holts)

Forecast visuals

Recommendations

- Using this forecast data, Favorita stores can plan inventory for the coming months
- It is also important to track the oil prices as they influence sales
- The surge in sales during holidays and promotions can also be planned since we included the adjustment for these external regressors in the model
- At a store level Favorita should focus on store 3, 44, 45, 47 and 49

Next Steps

• Going forward... use store and product level forecasts at a daily level with adjustment for external regressors to determine inventory planning at a store level

Thank You

Appendix

Time series shape clustering –

