

More Non-linear Problems

There are many categories of non-linear problems

- root finding problems were the first such category we studied: solve for ${\bf x}$ in $f({\bf x})={\bf y}$ or equivalently in $f({\bf x})=0$
- recall linear system solves are a special case with $\mathbf{A}\mathbf{x} \mathbf{b} = 0$

Two more very important non-linear problems are

- unconstrained optimization, and
- constrained optimization

Unconstrained Optimization

We express the <u>unconstrained optimization</u> problem as: solve for x that minimizes f(x)

(or equivalently, solve for \mathbf{x} that maximizes $-f(\mathbf{x})$)

- while similar to root finding, optimization is generally more challenging as we don't know what the minimum value is
- this form of optimization does not impose any additional constraints on \mathbf{x} , which is why we call is *unconstrained*

Unconstrained Optimization

solve for x that minimizes f(x)

- we don't know what the minimum value is!

Constrained Optimization

Constrained optimization problems allow for further restrictions on the solution x, and are expressed as: solve for x that minimizes f(x)

(or equivalently, solve for \mathbf{x} that maximizes $-f(\mathbf{x})$)

subject to the (optional) equality constraints $\mathbf{g}(\mathbf{x}) = 0$ and (also optional) inequality constraints $\mathbf{h}(\mathbf{x}) \leq 0$

- an important special-case of unconstrained optimization is when f, \mathbf{g} , and \mathbf{h} are all linear maps – **linear programming**

We will focus exclusively on unconstrained optimization

Starting simple, again...

Let's again start by considering functions that map from 1D to 1D

$$f: \mathbb{R} \to \mathbb{R}$$

and only seek solutions to the *unconstrained optimization* problem (simply referred to as "optimization", here on out)

$$x_* = \underset{x}{\operatorname{argmin}} f(x)$$

While distinct, root finding and unconstrained optimization problems can be related to each other

- in fact, every unconstrained optimization problem can be expressed as a root finding problem, and
- every root finding problem can be expressed as a dual unconstrained optimization problem

While distinct, root finding and unconstrained optimization problems can be related to each other

- in fact, every unconstrained optimization problem can be expressed as a root finding problem
 - we've already seen this in the context of linear systems: every least-squares minimization problem $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ can be expressed as a root finding problem $\mathbf{A}^T \mathbf{A}\mathbf{x} \mathbf{A}^T \mathbf{b} = 0$

(and vice-versa)

While distinct, root finding and unconstrained optimization problems can be related to each other

- in fact, every unconstrained optimization problem can be expressed as a root finding problem
 - and, for non-linear systems, an optimization $x_* = \operatorname{argmin} f(x)$ is equivalent to a root finding problem $f'(x_*) = 0$
 - we've seen this (albeit, for vector-valued input) in linear least squares:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \iff \frac{\partial}{\partial \mathbf{x}} \left[\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{b}^T \mathbf{A} \mathbf{x} + \|\mathbf{b}\|_2^2 \right] = 0$$

While distinct, root finding and unconstrained optimization problems can be related to each other

- every root finding problem can be expressed as a dual unconstrained optimization problem
 - finding the root x^* s.t. $f(x^*) = 0$ is equivalent to minimizing $f^2(x^*)$

These present necessary, but not sufficient, conditions for mapping between optimization and root finding:

- not every root of f^{\prime} corresponds to a minimum/maximum of f

These present necessary, but not sufficient, conditions for mapping between optimization and root-finding:

- not every minimum of f^2 corresponds to a root of f

1D Optimization – Unimodal Functions

Extending Bisection to Optimization

Recall the (slow) bisection method for root finding

- makes minimal assumptions on the function (continuity)
- requires no gradient information

It's almost always useful to have at least one such simple albeit inefficient – strategy in our toolbox

- can we extend the approach of bisection to minimization?

Extending Bisection to Optimization

The IVT does not apply naturally to extrema of a function

- need a setting where a concept equivalent to the IVT can apply

Unimodal Functions

- $f: \mathbb{R} \to \mathbb{R}$ is *unimodal* if there is an $x^* \in [a, b]$ an such that f(x) is non-increasing for $x \in [a, x^*]$ and non-decreasing for $x \in [x^*, b]$
 - convex/concave functions are unimodal
 - don't need to be differentiable (e.g., f(x) = |x|)

Extending Bisection to Optimization

Unimodular functions are an appealing place to start, as they have a single extrema – once you've found a local extrema, you've also found the global extremum

- can bisection find the extremum of unimodal functions?

When root finding with bisection, two points are sufficient to bracket a single root

Bracketing an extremum is more complicated

- consider an initial bracket for an extremum [l, u], with l < u
- let's add the midpoint *m* and try to reason about which sub-bracket contains the extremum...

Given an initial bracket [l, u]

- we sample f at **two** points x_1 and x_2 , such that $l < x_1 < x_2 < u$

How to update the bracket?

- if $f(x_1) \ge f(x_2)$, then $f(x) \ge f(x_1)$ for all $x \in [l, x_1]$ and we can update our new bracket as $[x_1, u]$

Given an initial bracket [l, u]

- we sample f at **two** points x_1 and x_2 , such that $l < x_1 < x_2 < u$

How to update the bracket?

- similarly, if $f(x_2) \ge f(x_1)$, we update the bracket as $[l, x_2]$

One remaining questions is: how do we *choose* points x_1 and x_2 ?

Strategy #1

- equally-spaced between l and u
 - divides the bracket into thirds
 - after update, only 2/3 remain
- requires **two new** function evaluations, per iteration

One remaining questions is: how do we *choose* points x_1 and x_2 ?

- what if evaluating f is expensive?
 - can we place x_1 and x_2 so that, at each iteration, we can reuse one of these (previous) points

Strategy #2

- without any knowledge of f, we can choose x_1 and x_2 :
 - symmetrically, and
 - in a manner that allows us to reuse $f(x_1)$ or $f(x_2)$ in the next iteration

Strategy #2

- without any knowledge of f, we can choose x_1 and x_2 :
 - symmetrically, and
 - place x_1 as far from l, as x_2 is from u
 - in a manner that allows us to reuse $f(x_1)$ or $f(x_2)$ in the next iteration

$$\alpha \in [0, \frac{1}{2}]$$

Strategy #2

- without any knowledge of f, we can choose x_1 and x_2 :
 - symmetrically, and
 - place x_1 as far from l, as x_2 is from u
 - in a manner that allows us to reuse $f(x_1)$ or $f(x_2)$ in the next iteration

WLOG, we can assume l=0 and u=1, and extend our results to arbitrary [l,u] by translating and scaling relative ratios

Strategy #2

- without any knowledge of f, we can choose x_1 and x_2 :
 - symmetrically, and
 - place x_1 as far from l, as x_2 is from u
 - in a manner that allows us to reuse $f(x_1)$ or $f(x_2)$ in the next iteration

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$
- <u>case 2</u>: the right subinterval $[1-\alpha, 1]$ is discarded, leaving $[0, 1-\alpha]$

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$
- case 2: the right subinterval [1- α , 1] is discarded, leaving [0, 1- α]

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$

- case 2: the right subinterval [1- α , 1] is discarded, leaving [0, 1- α]

To reuse $f(1-\alpha)$ we can set $1-\alpha=(1-\alpha)\alpha+\alpha$ and solve for $\alpha=(3-\sqrt{5})/2$ and $1-\alpha=(\sqrt{5}-1)/2$

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$
- case 2: the right subinterval [1-lpha, 1] is discarded, leaving [0, 1-lpha]

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$
- case 2: the right subinterval $[1-\alpha, 1]$ is discarded, leaving $[0, 1-\alpha]$

To reuse $f(1-\alpha)$ we can set $1-\alpha=(1-\alpha)\alpha+\alpha$ and solve for $\alpha=(3-\sqrt{5})/2$ and $1-\alpha=(\sqrt{5}-1)/2$

 α

How to pick α so that $f(\alpha)$ or $f(1-\alpha)$ can be reused in the next iteration?

- case 1: the left subinterval $[0, \alpha]$ is discarded, leaving a new interval $[\alpha, 1]$
- case 2: the right subinterval $[1-\alpha, 1]$ is discarded, leaving $[0, 1-\alpha]$

To reuse $f(1-\alpha)$ we can set $1-\alpha=(1-\alpha)\alpha+\alpha$ and solve for $\alpha = (3 - \sqrt{5})/2$ and $1-\alpha = (\sqrt{5} - 1)/2$

To reuse $f(\alpha)$ we can set $\alpha = (1-\alpha)^2$ and solve for $\alpha = (3 - \sqrt{5})/2$ and $1-\alpha = (\sqrt{5} - 1)/2$

 α

Golden Section Search

Golden section search is a subdivision algorithm for minimizing unimodular functions, using one new evaluation per iteration

- any idea why it's called that?


```
gr = (math.sqrt(5) + 1) / 2
def gss(f, L, U, tol = 1e-5):
  while True:
    x1 = U - (U - L) / gr
    x2 = L + (U - L) / gr
    if abs(U - L) < tol:</pre>
      break
      if f(x1) < f(x2):
        U = x2
      else:
        L = x1
  return (L + U) / 2
```

Golden Section Search – Summary

Golden section search is

- + a simple approach for minimization/maximization
- + does not require gradient information
- +/- only applies to unimodular functions
- linear convergence rate
- hard to scale to higher-dimensional problems

1D Optimization – Higher-order Methods

Optimization with Gradient Information

Recall

- Newton's root finding method leverages explicit gradient information to accelerate root-finding
- the secant method approximates the gradient numerically
- extrema x^* of f must satisfy $\nabla f(x^*) = 0$ (a root-finding problem)

As such, we can imagine extending these two higherorder methods to finding an extremum of a function

$$f: \mathbb{R} \to \mathbb{R}$$

Newton's Method for Optimization

Starting from a 2^{nd} -order Taylor approximation of a (twice differentiable) function f

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2 / 2 = \overline{f}(x)$$

one iterative strategy seeks stationary points* of f as the extremum of the *quadratic* approximation \overline{f} , a parabola that is:

- tangent to f at $x = x_0$ and,
- with vertex $x_{\bigstar} = x_0 f'(x_0)/f''(x_0)$

Why do we need 2^{nd} -order accuracy, here?

Newton's Method for Optimization

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2 / 2 = \overline{f}(x)$$

Each iteration estimates x_{k+1} of a stationary point of f as the vertex of the quadratic approximation \overline{f} centered at the previous stationary point estimate x_k

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

which we can obtain by solving for x in $d\overline{f}/dx = 0$

- recall: extrema satisfy the root finding problem $\nabla f(x^*) = 0$

From Newton to Secant for Optimization

If evaluating the 1^{st} - and 2^{nd} -derivatives is not possible (or too expensive), we can approximate them numerically

- the Newton optimization method finds stationary points of the second-order approximation $\overline{f}(x)$ of f(x)
- we can apply the secant method to numerically approximate the 2^{nd} -derivative in the Newton update $x_{k+1} = x_k f'(x_k)/f''(x_k)$
 - still requires evaluating f'(x)
 - rare to have access to f', but not f'', in a 1D setting
 - can we compute everything numerically?

From Newton to Secant for Optimization

Newton root finding uses a line **tangent** to f at the current iterate x_k , using exact 1^{st} -derivatives f' at x_k

Secant root finding fits a line through the current and previous iterates' function evaluations, $f(x_k)$ and $f(x_{k-1})$

- both methods approximate a <u>root</u> estimate as the <u>root</u> x_r of the line

From Newton to Secant for Optimization

Newton *optimization* uses a parabola **tangent** to f at the current iterate x_k , using exact 1^{st} - and 2^{nd} -derivatives at x_k

Secant optimization fits a parabola through the previous iterates

- how many points do we need?

- both approximate a <u>stationary point</u> as the <u>vertex</u> x_{\bigstar} of the parabola

1D Optimization – Convergence

The $f'(x_r) = 0$ condition is *necessary*, but not *sufficient*, to determine whether we have converged to an extremum

In the 1D setting, you need to additionally evaluate the 2^{nd} -derivative at your stationary point estimate x_r

- if it's strictly greater than zero: minimum
- if it's strictly less than zero: maximum
- if it's equal to zero: inflection point

1D Optimization – Summary

- Golden section search is a bisection-like algorithm for finding the (global) optimum of a unimodular function
- Newton's method can be extended to optimization, leveraging the fact that extrema satisfy a dual root-finding problem
 - evaluates 1^{st} and 2^{nd} -derivatives to form a 2^{nd} -order expansion that is then used to estimate a stationary point, as $x_{k+1} = x_k f'(x_k)/f''(x_k)$
 - can also numerically estimate the 2^{nd} -derivative evaluation, here
- Can also extend the secant method to fit a parabola to previous iterates and solve for its vertex as an estimate of the stationary point
 - also known as successive parabolic interpolation