Problem §1 Let $a \in \mathbb{F}$, and let $v \in V_{\mathbb{F}}$ be a non-zero vector. Prove that

$$av = \mathbf{0}$$
 only if $a = 0$.

Solution: Suppose $a \neq 0$, yet av = 0. Then

$$av = \mathbf{0}$$

$$= av + (-av)$$

$$= 0 + (-av)$$

$$= -av.$$

Hence $av = -av \implies av \cdot v^{-1} = -av \cdot v^{-1} \implies a = -a$. But a = -a only when a = 0, a contradiction. Thus av = 0 only when a = 0.

Problem §2 Let $v, w \in V$, and suppose $v \neq 0$. Prove that there exists at most one $a \in \mathbb{F}$ such that

$$av = w$$
.

Solution: Suppose there exists a $b \in \mathbb{F}$, $b \neq a$ such that bv = w. Then

$$av + bv = w + w = 2w = w + w = av + av.$$

Adding -av to both sides,

$$bv = av \implies a = b$$
,

a contradiction.

Hence if bv = w for some $b \in \mathbb{F}$, then b = a.

Problem §3

- (a) (1.C.12) Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.
- (b) (1.C.13, extra credit) Prove that the union of three subspaces of V is a subspace of V if and only if one of the subspaces contains the other two.

Solution:

(a) Let $U_1, U_2 \in V$ be two subspaces of V.

Suppose that one of the subspaces is contained in the other; that is, suppose without loss of generality that $U_1 \subseteq U_2$. Then $U_1 \cup U_2 = U_2 \subseteq V$ is a subspace of V (since U_2 is a subspace of V).

Now, suppose that $U_1 \cup U_2 \subseteq V$ is a subspace of V. Let $v_1, v_2 \in U_1 \cup U_2$. Then

$$v_1 \in U_1 \text{ or } v_1 \in U_2, \text{ and } v_2 \in U_1 \text{ or } v_2 \in U_2.$$

 $v_1, v_2 \in U_1$ or $v_1, v_2 \in U_2$ tell us nothing new about the relationship between U_1 and U_2 (we already know, by definition of a subspace, that 0, λv_1 , λv_2 , $v_1 + v_2 \in U_i$ for some $\lambda \in \mathbb{F}$, $i \in \{1, 2\}$), so suppose without loss of generality that $v_1 \in U_1, v_2 \in U_2$. We know (since $U_1 \cup U_2$ is a subspace of V) that $v_1 + v_2 \in U_1 \cup U_2$, so $v_1 + v_2 \in U_1$ or $v_1 + v_2 \in U_2$. If $v_1 + v_2 \in U_1$, by closure of addition in $U_1, v_2 \in U_1$ as well, and so since for any arbitrary $v_2 \in U_2$, $v_2 \in U_1$, we have $U_2 \subseteq U_1$. Similarly, if $v_1 + v_2 \in U_2$, by closure of addition, $v_1 \in U_2$ as well, and so $U_1 \subseteq U_2$.

Therefore, if $U_1 \cup U_2$ is a subspace of V, then one of the subspaces is contained in the other.

Thus, the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

(b) W.I.P.

Problem §4 Solved in Review Sheet 5.

Problem §5 Let V, W be vector spaces over \mathbb{F} , and let $T: V \to W$ be a linear map. Suppose V is finite-dimensional and T is surjective. Prove that W is finite-dimensional.

Solution: Since T is surjective, we know that every $w \in W$ is mapped to by some $v \in V$. By the definition of a function, every $v \in V$ is mapped to **one** element $T(v) \in W$. Hence T(V) (or the image of V under f) has a maximum cardinality of |V| (equivalently, $|T(V)| \leq |V|$, since not every T(v) is necessarily unique). But since T is surjective, we know that T(V) = W, and so |V| > |T(v)| = |W| and hence $|V| \geq |W|$; and since V is finite, W is finite as well.