

Network Infrastructures

A.A. 2017-18 Prof. Francesca Cuomo

Next Generation 5G Wireless Networks

Slides based on:

M. Agiwal, A. Roy and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey," in *IEEE Communications Surveys & Tutorials*, vol. 18, no. 3, pp. 1617-1655, third quarter 2016.

doi: 10.1109/COMST.2016.2532458

Introduction to Next Generation 5G Wireless NEtworks

- Global mobile traffic experienced around 70% growth
- Only 26% smartphones (of the total global mobile devices) are responsible for 88% oftotal mobile data traffic
- Exponential growth in mobile video (multimedia) traffic. Since 2012 video traffic is more than half of the global mobile traffic
- An average mobile user is expected to download around 1 terabyte of data annually by 2020

Up-coming new applications

- Internet of Things (IoT),
- Internet of vehicles (IoV),
- Device to Device (D2D) communications,
- · ehealthcare,
- Machine to Machine (M2M) communications
- Financial Technology (FinTech).

Motivations

- With a theoretical 150 Mbps maximum downlink data rate, traditional LTE systems, with 2 × 2 MIMO can support only up to (150/4) simultaneous full HD (@ 4 Mbps rate) video streaming
- M2M communications and IoT requires supporting of tens of thousands of connected devices in a single cell (not possible in the current LTE)
- It is needed to satisfy the exponential rise in user and traffic capacity in mobile broadband communications

New Horizons in Radio Spectrum

- Capacity for wireless communication depends on spectral efficiency and bandwidth
- Almost all wireless communications use spectrum in 300 MHz to 3 GHz band
- 5G wireless networks lies in exploring this unused, high mm-wave band, ranging from 3
- Even a small fraction of available mm-wave spectrum can support hundreds of times of more data rate and capacity over the current cellular spectrum~ 300 GHz

Major requirements

- 1. $1 \sim 10$ Gbps data rates in real networks: This is almost 10 times increase from traditional LTE network's theoretical peak data rate of 150 Mbps
- 2. 1 ms round trip latency: Almost 10 times reduction from 4G's 10 ms round trip time
- 3. High bandwidth in unit area: It is needed to enable large number of connected devices with higher bandwidths for longer durations in a specific area
- 4. Enormous number of connected devices: In order to realize the vision of IoT, emerging 5G networks need to provide connectivity to thousands of devices
- Perceived availability of 99.999%: 5G envisions that network should practically be always available.
- 6. Almost 100% coverage for 'anytime anywhere' connectivity: 5G wireless networks need to ensure complete coverage irrespective of users' locations
- 7. Reduction in energy usage by almost 90%: Development of green technology is already being considered by standard bodies.
- High battery life: Reduction in power consumption by devices is fundamentally important in emerging 5G networks

Comparison of generations

5G architecture

• User centric
networking: user is no
longer the final
resolution of the
wireless network but is
expected to participate
in storage, relaying,
content delivery and
computation within the
network

- The propagation and penetration of mm-wave signal in outdoor environment is quite limited → ultra dense deployment is necessary in areas requiring high data rates
- Small cell sizes (at the order of 100-200 m)

Conventional antennas vs Smart Beamforming

 Adaptive beamforming techniques, resulting in the introduction of Spatial Division Multiple Access (SDMA) guarantee enhanced performance

Cloud Radio Access Network (C-RAN) Architecture

 Cloud computing based radio access shared pool of configurable resources enabling minimal deployment, management and operational efforts

Heterogeneous Approach—HetNets

- HetNets are typically composed of small cells, having low transmission power, besides the legacy macrocells
- By deploying low power small BSs, network capacity is improved and the coverage is extended to coverage holes

Key points 5G Architecture

Work Area	Key Points
Radio Network Evolution	Dense deployment of multiple BS.
	 Limited mm-wave penetration.
	 LOS/ NLOS communication.
	 Standalone mm-wave/hybrid with legacy network.
Advanced Air Interface	 Electromagnetic waves controlled by antenna array.
	 Directional Radiation.
	 Beamforming hardware challenges.
	 Beamforming in analog and digital domain.
Next Generation Smart Antenna	 Narrow beam and SDMA capabilities.
	 Circular/planner/segmented subarray.
	 Application specific antenna type.
Splitting of Plane - SDN	Different data and control plane.
	 Software design networks and open flow.
	 SON for RAN optimization.
	• CoMP
Centralized Architecture with C-RAN	Centralized platform
	Baseband unit / Radio receiver head
	 RAN as a service.
	Backhaul and fronthaul.
Heterogeneous Approach - HetNets	Small cells with varying transmission power.
	 Coordinated operation.
	 Interference of diverse cells.

Physical layer

LOS would require massive antenna deployment without any predefined pattern

Outdoor mm-wave signals are mostly confined to outdoor. Very little signal penetrate indoor through glass doors, open doors and windows

Massive MIMO and beanforming

Design of smart antenna is vital for effective mm-wave communications.

- Directional beams are integral to emerging 5G networks
- Massive MIMO provides BS with a huge number of antennas.
- · A massive MIMO enabled BS.
- The grid of antennas is capable of directing horizontal and vertical beams.

Key points PHY

Work Area	Key Points
Understanding mm-wave Channels	Propagation loss and penetration
	• LoS, NLOS
	Doppler
	Multipath/Power Delay Profile
_	Adaptive beamforming
Adaptive Beamforming	Angle of arrival
	Antenna training
	Sectorized antenna model
Switched Beam	Overlapping sectors
	Cost effective
Massive MIMO Systems	High number of antennas per BS
	 Coherent superposition of waveforms
	 Inexpensive low power components
	MIMO / small cell combination
Full Duplex Radio Technology	Offers to double the spectral efficiency
	 Limited by crosstalk b/w Tx & Rx, pathloss
	 Limited by Self Interference (SI)
	Active & passive SI cancellation
	Improves feedback and latency

Quality of Experience

Work Area	Key Points	
	Guarantee for high QoS/QoE Colored conflict graphs	
Reinforcing Quality of Service (QoS)	Spare resources for QoS improvement	
	Dynamic bandwidth allocation	
Refining Quality of Experience (QoE)	•UHD/3D video content	
	User satisfaction	
	•Interactiveness, product feel, ability to serve purposes	
	Predictive model of user QoE	
	•SDN/cloud	
	Topology management	
Self Organizing Networks	Self configuration	
	Self optimization	
	Self healing	
	•Big Data empowered SON (BSON)	
	Centralized SON	
	SON function performance model	
	Online/offline SON	
	•eDNA/eCells	

Comparison with Legacy Cellular Networks

Feature	Legacy Cellular Network	Proposed 5G Network
Carrier Frequency	Range (700MHz ~ 3 GHz)	Mm-wave spectrum ranging from 3-300GHz
Radio Network	BS centric	User centric and site specific
Density/Diversity	Limited	Enormous
BS Density	High density deployment	Ultra high deployment micro/pico/femto cells
Site Specific	Not necessarily	Key enabling feature
Air Interface	Omnidirectional	Highly directional
Antenna Size	Large	Small antennas
Antenna Array	Not applicable	Array of small antennas - planner/circular/segmented
Beamforming	Not essential	Key enabling technology
Antenna Training	Not applicable	TX-RX beams should point towards each other
Channel Model	Available	Under study
Penetration	No complications	mm-wave don't penetrate common materials/ humans
LOS Communication	Not essential	Key enabling technology
Multipath	No complications	Assist in NLOS communication
MIMO	Limited MIMO capabilities	Massive MIMO
Control and user plane	Single entity	Split plane (SDN)
Cloud RAN	Improves performance	Simplifies BS for ultra dense deployment
Multiple Access	TDMA/FDMA/CDMA/OFDM	SDMA/SCMA/IDMA/GFDM/FBMC/UFMC
MAC Directivity	Not applicable	DMAC/ Multihop MAC/ DNAV/ Directive RTS/CTS
Random Access	Synchronized	synchronous and asynchronous signalling
STR	Not feasible	Proposed
Data Rate	Mbps	Gbps

Conclusions

- 5G technological revolution is expected to have a profound impact on the future wireless communications.
- Comparing to the existing 3G/4G cellular systems, next generation 5G wireless have significant different features There are a wide variety of opportunities for future research works in wireless cellular systems.
- A plethora of new applications, like IoT, smart grids and IoV are expected to be supported under the umbrella of 5G systems.