# Logistic Regression

Jong Yih Kuo

jykuo@ntut.edu.tw
Department of Computer Science and
Information Engineering
National Taipei University of Technology

## 數量分析

- □透過數理模型描述觀察結果
  - ○觀察現象=模型+誤差;y = f(x) + error;觀察值 = 訊號 + 雜訊。
- □量化模型的關鍵
  - ○量化目標值y:定義問題
  - ○選取關鍵變數:X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>p</sub>
  - ○建立量化模型:統計學習、機器學習。
- □資料分析策略:「觀察」、「推論」、「驗證」三步驟
  - ○檢查資料品質,避免 Garbage in, garbage out。
  - ○進行探索性資料分析(Exploratory Data Analysis, EDA) 找出關鍵變數(或特性/特徵)。
  - ○驗證性資料分析 (Confirmatory Data Analysis, CDA)

## 資料分析類型

- □統計觀點
  - ○探索性資料分析 (Exploratory Data)
  - ○驗證性資料分析 (Confirmatory Data)
- □機器學習觀點
  - 敘述性分析(Descriptive): what's happen in my business?
  - ○診斷性分析(Diagnostic): why is it happening?
  - ○預測性分析(Predictive): what's likely to happen?
  - ○建議性分析(Prescriptive): what do I need to do?

## 資料分析方法

- □分類 (Classification) 與群聚分析(Cluster Analysis)
- □ 羅吉士迴歸 Logistic Regression
- □分類/回歸/決策樹 Classification and Regression Tree CART
- □ 類神經網絡 Neural Networks NN
- □ 支持向量機 Support Vector Machine SVM
- □無母數迴歸 Nonparametric Regression
- □時間序列 Times Series

### Regression Analysis

- □許多重要研究主題,依變數是「有限的」,數據資料不是 連續的或呈常態分佈。
  - ○投票意向,使用二元 Logistic Regression,
    - >是一種 Regression分析。
    - ▶依變數是虛擬變數:未投票(編碼 0)、或投票(編碼 1)。
  - ○發病率:未發病(編碼 0) 、發病(編碼 1)。
- □ 線性迴歸中:  $Y = \beta_0 + \beta_I X + \epsilon$ ; 其中 Y = (0, 1)
  - ○若存在問題
    - ▶ 殘差/誤差項,是異質變異數(Heteroscedasticity),亦即,不一致。
    - >e不服從常態分佈,因為Y只有兩個值(0或1)。
    - ▶預測機率可能出現大於1或小於0。

# 異質變異數(Heteroscedasticity)

- □ OLS (Ordinary Least Squares regression) 問題
  - ○迴歸分析中,最常用估計β(迴歸係數)的方法是普通最小平方法(Ordinary Least Squares, OLS),它基於誤差值計算。
  - ○用這種方法估計β,首先要計算殘差平方和(Residual Sum of Square, RSS), RSS是指將所有誤差值的平方加起來。
  - ○進行迴歸模型時,為進行有效統計推論,需對模型做若干假設。 其中一個: 誤差項具有同質 (homoskedasticity) 變異數。
    - ▶同質變異數表示給定不同解釋變數(自變數)之值,此時誤差項或被解釋變數(依變數)有相同變異程度。
      - 一例如,若被依變數為薪資,自變數為不同教育程度,則同質變異數表示在不同教育程度,薪資變異程度相同,這個假設明顯與實際不符。
      - 實際資料顯示,教育程度越高,薪資變異程度越高。合理解釋,不同學歷的最低薪資相同,但獲高薪機將隨學歷越高而增加。
    - >薪資—教育程度模型中,異質變異數問題幾乎必定存在且需解決。

# 異質變異數(Heteroscedasticity)

- □異質變異數對迴歸模型主要影響
  - ○1. OLS 估計式(方程式模型)失去有效性
    - ▶由於係數有效性影響較小,只要具有不偏性與一致性即可,因此 只要樣本數夠大通常不會考慮估計式的有效性問題。
  - O2. 迴歸係數的 t 檢定失效
    - 》此問題影響小樣本的假設檢定,可使用 Heteroskedasticity(HC)標準誤解決。只要誤差項的變異數隨解釋變數值增加而增加,則HC標準誤會比同質變異數下的標準誤還大,使得t檢定值較小,造成迴歸係數不顯著。
    - >2個可能解決顯著性方案
      - 用較大資料集合:顯著性會隨樣本數增加,只要樣本數夠大,雖 HC標準誤會使 t 檢定統計量變小,但檢定統計量通常可大於檢定臨界值。
      - 將依變數取自然對數:迴歸係數的標準誤會與殘差 (residual) 平方和成正比,而殘差表示被解釋變數偏離迴歸線的程度。若依變數為指數成長,則與迴歸線間的距離可能很大。對依變數取自然對數,指數成長將為線性,偏離迴歸線情況會改善。

# Concept

- □對數機率模型(Logit model)
  - ○屬於多變量分析,是社會學、生物統計學、計量經濟學、等統 計實證分析常用方法。
  - ○透過事件的對數發生率(Log-odd),建構一個或多個自變數的線性組合,對事件發生的機率(依變數)進行建模。
    - ▶將對數發生率轉換為機率的函數,即Logistic Function。對數發生率單位稱為logit (logistic unit)。



 $logit (pi) = log (odds) = \alpha + \beta x$ 

logit(pi): logit transformation of the probability of the event

 $\alpha$ : intercept of the regression line  $\beta$ : slope of the regression line

### Concept

- □對數機率模型(Logit model)
  - ○變數
    - ▶自變數 X 可以是類別變數,或是連續變數。
    - ▶依變數 Y 主要為類別變數,特別是分兩類的變數,例如:是或否、 有或無、同意或不同意、成功或失敗等。
  - ○根據輸入對輸出機率進行建模,不進行統計分類變數與分佈。
    - > Logistic分佈中,自變數對依變數的影響以指數方式變動,不需常態分佈的假設。

### Concept

- □ 二元Logistic Regression
  - ○自變數每個都可以是二元值(兩個類),或連續值。
  - ○依變數是二元,編碼值標記為「0」和「1」。
    - ▶「1」的值的相應機率可以在0和1之間變化;
  - ○統計學中廣泛用於對某一類別或事件發生機率的建模,例如團 隊獲勝機率、患者健康機率等,
  - ○當存在兩個以上可能值(例如圖像是否貓、狗、獅子等)時,二 元變數擴充為多分類變數。
    - ▶二元Logistic Regression擴充為多項Logistic Regression。
    - ▶若多個類別是有序的,則可使用序數Logistic Regression。

## Logistic Regression Model

□ Logit 可解決上述問題

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta x + e$$

- Op 是事件 Y發生的機率,p(Y=1)
- ○p/(1-p) 是勝算比"odds ratio",每增加一個單位對整體Y增加/ 減少的機率
- Oln[p/(1-p)] 是log odds ratio, "logit"
- ○Logistic distribution限制評估機率在0~1之間。

〇評估機率 
$$p = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

- $\bigcirc$  若 $\alpha$  +  $\beta$  X = 0 , 估則p = .50
  - $\triangleright$  當 $\alpha$  +  $\beta$  X很大,p趨近1。
  - > 當 $\alpha + \beta X$ 很小,p趨近0。



## Logistic Regression Model

□ Logistic Curve (Sigmoid function)

$$f(x) = \frac{exp(x)}{1 + exp(x)} = \frac{1}{exp(-x) + 1} = \frac{1}{1 + e^{-x}}$$



0.5為分界門檻值(Threshold)

- □ Logistic function
  - ○10 場牌局贏 4 場, 贏的機率(4/6),
  - 〇若贏機率p,輸機率l-p,贏的**勝算比(勝率Odds** ratio) =  $\left(\frac{p}{1-p}\right)$
  - ○勝算比(勝率Odds ratio),取自然對數

$$Logit = \ln\left(\frac{p}{1-p}\right)$$

〇若 
$$p(x) = \frac{exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

Logit(
$$p(x)$$
) =  $\ln\left(\frac{p(x)}{1-p(x)}\right) = \alpha + \beta x$  or  $\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_k x_k$ 

### Maximum Likelihood Estimation

- □ 最大概似估計maximum likelihood estimation (MLE)
  - ○又稱「極大概似估計」,估計一個機率模型的母數(parameters)的方法。
- □ MLE找出coefficients ( $\alpha$ ,  $\beta$ )
  - ○使Likelihood function對數 (LL < 0) 盡可能大,
  - 〇或,找出Likelihood function對數的-2倍(-2LL)盡可能小。
  - ○解下列問題

$$> \{Y - p(Y=1)\}X_i = 0$$
,對所有觀測值加總, $i = 1,...,n$ 。

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = \alpha + \beta x \quad , \quad p(x) = \frac{1}{1+e^{-(\alpha+\beta x)}}$$

Odds ratio 
$$\Longrightarrow \frac{p(x)}{1-p(x)} = e^{(\alpha+\beta x)}$$

 $e^{(\beta)}$  is the effect of the independent variable on the "odds ratio"

### Model

- □某班20名學生,各自花費0~6小時準備考試,不同學習時數 與通過考試的資料(1-pass/0-fail)。
  - ○將對數發生率轉換為機率的函數。

| 1. | 小時<br>(x <sub>k</sub> ) | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00 | 3.25 | 3.50 | 4.00 | 4.25 | 4.50 | 4.75 | 5.00 | 5.50 |
|----|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| ž  | 通過<br>(y <sub>k</sub> ) | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 1    | 1    | 1    | 1    | 1    |





### 檢定

#### □假設檢定

- ○模型的顯著性檢定(F test):探討模型中的β係數是否全部為0。 當係數不全為0時,迴歸模型才具有預測力。
  - ▶ 虛無假說(Null Hypothesis) → H0:  $\beta_1 = \beta_2 = ... = \beta_k = 0$
  - ▶對立假說(Alternative Hypothesis)→ H1:  $\beta_1$ ,  $\beta_2$ , ...,  $\beta_k$  不全為 0
- 統計值(Statistics) →  $F = \frac{MSR}{MSE}$

### Example 1

#### □實驗設計

|     | 事件成功 | 事件失敗 | 總和 |
|-----|------|------|----|
| 實驗組 | 4    | 16   | 20 |
| 對照組 | 1    | 19   | 20 |

- ○實驗組的勝算(Experimental event odds) = 4/16 = 0.25
- ○控制組的勝算(Control event odds) = 1/19=0.053
- ○勝算比(odds ratio) = (0.25) / (0.053) = 4.72
- $\square$  Logistic function Logit(p(x)) = Logit(odds)

$$Logit(p(x)) = \ln\left(\frac{p(x)}{1 - p(x)}\right) = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_k x_k$$

- $\bigcirc$ 係數值 $\beta$ ,計算當x的值增加一單位,勝算的改變量( $\Delta$  odds)。
  - $\Delta$  odds > 1,表示當 $x_i$  增加時,事件Y發生的勝算會提高
  - $\Delta$  odds < 1,表示當 $x_i$  增加時,事件Y發生的勝算會降低
  - $\rightarrow \Delta$  odds 又稱**OR值**,以 $exp(\beta)$ 表示

### Example 2-1

- □某公司根據過去「溫度」與「零件測試成功與否」的資料, 建立以溫度預測零件測試成功機率之迴歸模式。
  - ○以連續型自變數X(溫度),預測Y(零件測試成功與否)。
  - 〇二元迴歸,Y=1表示零件測試成功,0表示零件測試失敗。
  - ○模式係數Omnibus測試
    - 》相當於線性迴歸ANOVA-F檢定,探討模型的β係數是否全部為0。
    - ▶本例顯著性p值<0.001,拒絕虛無假說。模型顯著,具有預測能力。
  - ○模式摘要:呈現解釋力的值為參考
    - -2對數概似: 16.292 (參數估計值變化<0.01,工作疊代數約7停止)</p>
    - ➤ Cox-Snell R平方: .570
    - ▶ Nagelkerke R 平方: .760

### Example 2-2

○分類表:呈現預測值的準確度。

|     |          | 預測次數  |    |    |       |  |  |
|-----|----------|-------|----|----|-------|--|--|
|     |          | 零件測試成 | 8  |    |       |  |  |
|     | 觀察次數     |       | 0  | 1  | 百分比修正 |  |  |
| 步驟1 | 零件測試成功與否 | 0     | 13 | 2  | 86.7  |  |  |
|     |          | 1     | 0  | 15 | 100.0 |  |  |
|     | 概要百分比    |       |    | Ş. | 93.3  |  |  |

○方程式變數:△ odds(OR值)

| 34     |    | B之估計值   | S.E,   | Wals  | df | 顯著性  | Exp(B) |
|--------|----|---------|--------|-------|----|------|--------|
| 步驟 1 a | 溫度 | .468    | .161   | 8.432 | 1  | .004 | 1.597  |
|        | 常數 | -30.295 | 10.604 | 8.162 | 1  | .004 | .000   |

- ○根據上表得出迴歸式:
  - » exp(β)=1.597, 即Δ odds=1.597>1,表示温度每上升一度,零件測 試成功機率會比零件測試失敗機率多出1.597倍。

### Example 3-1

- □某醫療單位欲根據過去肺部疾病就診病患基本資料,建立 以有無「吸菸」、有無「家族病史」預測「罹患肺癌」機 率之迴歸模式。
  - 〇二元迴歸,y=1表示罹患肺癌,y=0表示沒有罹患肺癌。
  - 〇以兩個類別型的自變數(吸菸、家族病史)預測y(罹患肺癌與否)。
  - ○模式係數Omnibus測試
    - 》相當於線性迴歸ANOVA-F檢定,探討模型的β係數是否全部為0。
    - ▶本例顯著性p值<0.001,拒絕虛無假說。模型顯著,具有預測能力。

|     |    | 卡方     | df | 顯著性  |
|-----|----|--------|----|------|
| 步驟1 | 步驟 | 22.707 | 2  | .000 |
|     | 區塊 | 22.707 | 2  | .000 |
|     | 模式 | 22.707 | 2  | .000 |

## Example 3-2

- ○模式摘要:呈現解釋力的值為參考
  - ▶ 參數估計值變化<0.01,工作疊代數約6停止。

| 步驟 | -2 對數概似             | Cox & Snell R<br>平方 | Nagelkerke R<br>平方 |
|----|---------------------|---------------------|--------------------|
| 1  | 39.980 <sup>a</sup> | .365                | .511               |

○分類表:呈現預測值的準確度。

|     |       |   | 預測次數 |    |       |  |  |  |
|-----|-------|---|------|----|-------|--|--|--|
|     |       |   | 罹患肺  |    |       |  |  |  |
|     | 觀察次數  |   | 0    | 1  | 百分比修正 |  |  |  |
| 步驟1 | 罹患肺癌  | 0 | 24   | 10 | 70.6  |  |  |  |
|     |       | 1 | 1    | 15 | 93.8  |  |  |  |
|     | 概要百分比 | 5 |      |    | 78.0  |  |  |  |

a. 分割值為 .500

 $\circ$ 方程式中的變數:可 $\Delta$  odds(OR值)。

|      |         | B之估計值  |           | Wals  |    | 斯著性  | Exp(B) | EXP(B) 的 95% 信賴區間 |      |  |
|------|---------|--------|-----------|-------|----|------|--------|-------------------|------|--|
|      |         |        | 之估計值 S.E, |       | df |      |        | 下界                | 上界   |  |
| 步驟13 | 吸菸(1)   | -3.487 | 1.127     | 9.571 | 1  | .002 | .031   | .003              | .279 |  |
|      | 家族病史(1) | -3.538 | 1.250     | 8.012 | 1  | .005 | .029   | .003              | .337 |  |
|      | 常数      | 3.800  | 1.334     | 8.112 | 1  | .004 | 44.714 |                   |      |  |

### Example 3-3

#### ○根據上表得知

- »吸菸 $\exp(\beta) = 0.031$ ,即Δ odds=0.031,表示沒有吸菸的人(=0)罹患肺癌的機率是有吸菸的人(=1)罹患肺癌機率的0.031倍。
- >家族病史Exp(B)=0.029,即 $\Delta$  odds=0.029,表示沒有家族病史的人(=0)罹患肺癌的機率是有家族病史的人(=1)的0.029 倍。
- ▶由於上述兩個變數皆達顯著(p<.05),故可推論此筆病患資料「罹患肺癌與否」與「吸菸」及「有無家族病史」有直接相關。

### 比較

#### □線性迴歸

○透過一組制定自變數,預測連續的因變數。連續變數可具有一定範圍值,例如價格或年齡。可預測因變數的實際值,「10年後的米價多少?」等問題

#### □二進制邏輯迴歸

- ○適用於只有兩個可能結果的二進制分類問題。因變數只能有兩個值,例如 yes 和 no 或 0 和 1。
- ○若邏輯函數計算 0~1範圍,四捨五入至最接近值。小於 0.5為 0,大於 0.5為 1,以便邏輯函數傳回二進制結果。

#### □多項邏輯迴歸

- ○分析幾種可能結果的問題,例如根據人口數據,預測房價是否會增加25%、50%、75%或100%,但無法預測房屋確切價值。
- ○將結果值映射至 0~1的不同值,例如 0.1、0.11、0.12 等,因此,多項迴歸會將數組輸出至最接近的可能值。

### Example 4-1

| 成績好壞      | 聰明 (x = 1) | 笨 (x = 0) |
|-----------|------------|-----------|
| 好 (y = 1) | 5          | 1         |
| 壞 (y = 0) | 1          | 3         |
| 小計        | 6          | 4         |

- $\bigcirc$  「聰明的人成績好」對「聰明的人成績不好」 勝算為  $\frac{5/6}{1/6} = 5$
- $\circ$  「笨的人成績好」對「笨的人成績不好」勝算為  $\frac{1/4}{3/4} = 0.3333$
- - 「 笨的人成績好」對「 笨的人成績不好」勝算為(1/4)/(3/4)=0.333 log(0.3333)=a=-1.098712
- ○聰明(x=1)
  - $\triangleright$  「聰明的人成績好」 對「聰明的人成績不好」勝算為(5/6)/(1/6)=5  $log(5) = -1.0987 + \beta = 1.6094 + \beta = 1.6094 + 1.0987 = 2.7081$

$$Logit(p(x)) = -1.0987 + 2.7081x$$