Lecture 8

Dynamic Programming

Part 1: Directed Acyclic Graphs

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

- 2 Optimal Paths: The Viterbi Algorithm
- **3** Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

Computations For Structures

Recall: Structured outputs are:

- discrete objects
- made of smaller parts
- which interact with each other and/or constrain each other,

and we must know how to compute:

- score(*y*)
- for prediction: $arg max_{y \in \mathcal{Y}} score(y)$
- for learning: $\log \sum_{y \in \mathcal{Y}} \exp(\operatorname{score}(y))$

For large problems, we can't enumerate ${\cal Y}$ (could be exponentially large).

So, we must actually make use of its structure.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- $E \subset V \times V$ is the set of arcs (edges) of G: $uv \in E$ means there is an arc from node $u \in V$ to node $v \in V$ $(u \neq v)$.

Arcs are ordered pairs, so $uv \neq vu$.

• $w: E \to \mathbb{R}$ is a weight function assigning a weight to each arc.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- $E \subset V \times V$ is the set of arcs (edges) of G: $uv \in E$ means there is an arc from node $u \in V$ to node $v \in V$ $(u \neq v)$.

Arcs are ordered pairs, so $uv \neq vu$.

• $w: E \to \mathbb{R}$ is a weight function assigning a weight to each arc.

Definition 2: Paths

A path A in G is a sequence of edges: $A = e_1 e_2 \dots e_k$, with each $e_i \in E$, two-by-two "linked", i.e., if $e_i = u_i v_i$ and $e_{i+1} = u_{i+1} v_{i+1}$ then we must have $v_i = u_{i+1}$.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- $E \subset V \times V$ is the set of arcs (edges) of G: $uv \in E$ means there is an arc from node $u \in V$ to node $v \in V$ $(u \neq v)$.

Arcs are ordered pairs, so $uv \neq vu$.

• $w: E \to \mathbb{R}$ is a weight function assigning a weight to each arc.

Definition 2: Paths

A path A in G is a sequence of edges: $A = e_1 e_2 \dots e_k$, with each $e_i \in E$, two-by-two "linked", i.e., if $e_i = u_i v_i$ and $e_{i+1} = u_{i+1} v_{i+1}$ then we must have $v_i = u_{i+1}$.

The weight of a path is the sum of arc weights: $w(A) = \sum_{e \in A} w(e)$.

We denote path concatenation by $A_1 A_2$ (when legal).

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1e_2 \dots e_k$ wherein the last arc e_k points to the node from which the first arc e_1 departs.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1e_2 \dots e_k$ wherein the last arc e_k points to the node from which the first arc e_1 departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1e_2 \dots e_k$ wherein the last arc e_k points to the node from which the first arc e_1 departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles.

Definition 4. Topological ordering

A topological ordering of a directed graph G = (V, E) is an ordering of its nodes v_1, v_2, \ldots, v_n such that if $v_i v_j \in E$ then i < j.

G is a DAG if and only if G admits a topological ordering.

Rough intuition: "backward" edges against the ordering \iff cycles.

TOs: s, a, b, c, t s, b, a, c, t

Lecture 8

Dynamic Programming

Part 2: Optimal Paths: The Viterbi Algorithm

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at i.

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at i.

Let's assume our space of structures is $\mathcal{Y} = \mathcal{Y}_n$.

Important things to compute:

- score(y) = w(y)
- $\operatorname{argmax}_{y \in \mathcal{Y}_n} w(y)$
- $\log \sum_{y \in \mathcal{Y}_n} \exp w(y)$

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at i.

Let's assume our space of structures is $\mathcal{Y} = \mathcal{Y}_n$.

Important things to compute:

- score(y) = w(y)
- $\operatorname{argmax}_{y \in \mathcal{Y}_n} w(y)$
- $\log \sum_{y \in \mathcal{Y}_n} \exp w(y)$

Later, I'll show you some structured problems that can be usefully reduced to paths in a DAG, and some that cannot.

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From Data Structures and Algorithms you might recall Dijkstra's algorithm.
 - Requires no "negative cycles" always true for DAGs.
 - Complexity: $\Theta(|V| \log |V| + |E|)$ with "Fibonacci heaps"; $\Theta(|V|^2)$ with a straightforward implementation. .

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From Data Structures and Algorithms you might recall Dijkstra's algorithm.
 - Requires no "negative cycles" always true for DAGs.
 - Complexity: $\Theta(|V| \log |V| + |E|)$ with "Fibonacci heaps"; $\Theta(|V|^2)$ with a straightforward implementation. .
- In the case of DAGs, we can do better.

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \hat{j}i$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof:
$$m_i := \max_{y \in \mathcal{Y}_i} w(y)$$

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \hat{j}i$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof:
$$m_i := \max_{y \in \mathcal{Y}_i} w(y)$$

= $\max_{j \in P_i} \max_{y' \in \mathcal{Y}_j} (w(y') + w(ji))$

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} (m_j + w(ji))$$

Proof:
$$m_i := \max_{y \in \mathcal{Y}_i} w(y)$$

 $= \max_{j \in P_i} \max_{y' \in \mathcal{Y}_j} (w(y') + w(ji))$
 $= \max_{j \in P_i} \left(\max_{y' \in \mathcal{Y}_j} (w(y')) + w(ji) \right)$

Goal: the max weight of a path from 1 to *i*:

$$m_i = \max_{y \in \mathcal{Y}_i} w(y).$$

Define predecessors of i as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path ending in i is an extension of some path to predecessor $j \in P_i$ by arc ji.

In other words: if $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} (m_j + w(ji))$$

Proof:
$$m_{i} := \max_{y \in \mathcal{Y}_{i}} w(y)$$

$$= \max_{j \in P_{i}} \max_{y' \in \mathcal{Y}_{j}} (w(y') + w(ji))$$

$$= \max_{j \in P_{i}} \left(\max_{y' \in \mathcal{Y}_{j}} (w(y')) + w(ji) \right)$$

$$= \max_{j \in P_{i}} \left(m_{j} + w(ji) \right).$$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ **output:** maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{i \in P_i} (m_j + w(ji))$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path achieving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ **output:** maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{j \in P_i} (m_j + w(ji))$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path achieving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, \dots, n\}$ **output:** maximum path weights m_1, \ldots, m_n . initialize $m_1 \leftarrow 0$ for i = 2, ..., n do $m_i \leftarrow \max_{i \in P_i} (m_j + w(ji))$ $\pi_i \leftarrow \arg\max_{i \in P_i} (m_j + w(ji))$ Reconstruct path: follow backpointers **output:** optimal path y from 1 to n (optional) $v = []: i \leftarrow n$ while i > 1 do $v \leftarrow \pi : i \cap v$ $i \leftarrow \pi_i$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes i < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path achieving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, \dots, n\}$ **output:** maximum path weights m_1, \ldots, m_n . initialize $m_1 \leftarrow 0$ for i = 2, ..., n do $m_i \leftarrow \max_{i \in P_i} (m_j + w(ji))$ $\pi_i \leftarrow \arg\max_{i \in P_i} (m_j + w(ji))$ Reconstruct path: follow backpointers **output:** optimal path y from 1 to n (optional) $v = []: i \leftarrow n$ while i > 1 do $v \leftarrow \pi : i \cap v$ $i \leftarrow \pi_i$

Complexity: $\Theta(|V| + |E|)$.

General Viterbi algorithm for DAGs

```
input: Topologically-ordered DAG
G = (V, E, w), V = \{1, \dots, n\}
output: maximum path weights m_1, \ldots, m_n.
initialize m_1 \leftarrow 0
for i = 2, ..., n do
   m_i \leftarrow \max_{j \in P_i} (m_j + w(ji))
   \pi_i \leftarrow \arg\max_{i \in P_i} (m_j + w(ji))
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i \leftarrow n
while i > 1 do
   v \leftarrow \pi : i^{\frown} v
   i \leftarrow \pi_i
```

Complexity: $\Theta(|V| + |E|)$.

Lecture 8

Dynamic Programming

Part 3: Probabilities Over Paths: The Forward Algorithm

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

У	w(y)	$\exp(w(y))$	Pr(y)
$1 \rightarrow 2 \rightarrow 5$			
$1 \rightarrow 2 \rightarrow 4$	→ 5		
$1 \rightarrow 3 \rightarrow 4$	→ 5		

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

У	w(y)	$\exp(w(y))$	Pr(y)
	10 + 20 = 30 10 - 5 + 10 = 15 15 + 0 + 10 = 25		

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

У	w(y)	$\exp(w(y))$	Pr(y)
$ \begin{array}{c} 1 \rightarrow 2 \rightarrow 5 \\ 1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \\ 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \end{array} $	10 + 20 = 30 10 - 5 + 10 = 15 15 + 0 + 10 = 25	$1.1 \cdot 10^{13}$ $3.3 \cdot 10^{6}$ $7.2 \cdot 10^{10}$	

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

У	w(y)	$\exp(w(y))$	Pr(y)
$ \begin{array}{c} 1 \rightarrow 2 \rightarrow 5 \\ 1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \\ 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \end{array} $	10 + 20 = 30 10 - 5 + 10 = 15 15 + 0 + 10 = 25	$1.1 \cdot 10^{13}$ $3.3 \cdot 10^{6}$ $7.2 \cdot 10^{10}$.9930 .0001 .0069

To assess Pr(y) even for a single path, the denominator sums over all paths.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp(q_j + w(ji))$$

Compare with the DP recurrence for max:

$$m_i = \max_{j \in P_i} (m_j + w(ji)).$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp(q_j + w(ji))$$

Compare with the DP recurrence for max:

$$m_i = \max_{j \in P_i} (m_j + w(ji)).$$

Proof:
$$q_i = \log \sum_{j \in P_i} \sum_{y' \in \mathcal{Y}_j} \exp (w(y') + w(ji))$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp(q_j + w(ji))$$

Compare with the DP recurrence for max:

$$m_i = \max_{j \in P_i} (m_j + w(ji)).$$

Proof:
$$q_i = \log \sum_{j \in P_i} \sum_{y' \in \mathcal{Y}_j} \exp (w(y') + w(ji))$$

$$= \log \sum_{j \in P_i} \exp \left(\log \sum_{y' \in \mathcal{Y}_j} \exp(w(y')) + w(ji) \right)$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_i$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp(q_j + w(ji))$$

Compare with the DP recurrence for max:

$$m_i = \max_{j \in P_i} (m_j + w(ji)).$$

Proof: $q_i = \log \sum_{i=0}^{\infty} \sum_{y \in Y} \exp(w(y') + w(ji))$

$$= \log \sum_{j \in P_i} \exp \left(\log \sum_{y' \in \mathcal{Y}_j} \exp(w(y')) + w(ji) \right)$$
$$= \log \sum_{i \in P_i} \exp(q_i + w(ji)).$$

The Forward Algorithm

General forward algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ output: $q_n := \log \sum_{y \in \mathcal{Y}_n} \exp w(y)$.

initialize
$$q_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $q_i \leftarrow \log \sum_{j \in P_i} \exp(q_j + w(ji))$

Complexity: $\Theta(|V| + |E|)$.

Lets us calculate the log-probability of any given sequence $\log Pr(y)$.

Can use autodiff to get $\nabla_w \log \Pr(y)$.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

The pattern:

- $x \oplus y = \max(x, y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.
- $x \oplus y = \log(e^x + e^y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

The pattern:

- $x \oplus y = \max(x, y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.
- $x \oplus y = \log(e^x + e^y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.

This is a very productive generalization that leads to other algorithms too:

- the boolean semiring $x \oplus y = x \lor y$, $x \otimes y = x \land y$ over $\{0, 1\}$ yields an algorithm for path existence;
- there is a semiring that leads to top-k paths.

Lecture 8

Dynamic Programming

Part 4: Sampling Paths

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

- 3 Probabilities Over Paths: The Forward Algorithm
- **4** Sampling Paths

Bonus goal: draw samples from the distribution over paths: $y_1, \ldots, y_k \sim \Pr(Y = y)$. Motivation:

- analyze not just the most likely path, but a set of "typical" paths
- perform inferences

$$\mathbb{E}_{\mathsf{Pr}(Y)}[F(Y)]$$

for arbitrary functions *F*,

• train structured latent variable models

Probability that the last arc of a path ending in *i* is *ji*:

Pr(ji|y ends in i) =

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y':ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji)) \sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$

$$Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y',ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji)) \sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

$$Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji)) \sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y',ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji)) \sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

All paths end in n, so draw the final arc in first.

Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace n with j and repeat until we hit 1.

Resembles the backpointers from Viterbi: think "stochastic backpointers".

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y':ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji)) \sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_i - q_i)$$

All paths end in n, so draw the final arc jn first.

Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace n with j and repeat until we hit 1.

Resembles the backpointers from Viterbi: think "stochastic backpointers".

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG; **output:** y: a sample from Pr(y).

initialize
$$q_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $q_i \leftarrow \log \sum_{j \in P_i} \exp(q_j + w(ji))$

$$y = []; i \leftarrow n$$

while $i > 1$ do
sample $j \in P_i$ w.p. $p_j = \exp(w(ji) + q_j - q_i)$
 $y \leftarrow ji \cap y$
 $i \leftarrow j$

• The best modern reference for DP as taught in this course is Huang (2008), and for further reading about semirings see (Mohri, 2002).

- The best modern reference for DP as taught in this course is Huang (2008), and for further reading about semirings see (Mohri, 2002).
- DP overall is credited to Bellman (1954) in optimal policies and control.

- The best modern reference for DP as taught in this course is Huang (2008), and for further reading about semirings see (Mohri, 2002).
- DP overall is credited to Bellman (1954) in optimal policies and control.
- Popularity of DP in NLP came via hidden markov models (HMM) in the 70s and 80s in speech, especially at IBM Research and Bell Labs through a limited-circulation text (Ferguson, 1980): Rabiner gives a first-hand history (Rabiner, n.d.).

A] " [<

Symposium on the Application of Hidden Markov Models to Text and Speech

Authors: Symposium on the Application of Hidden Markov Models to Text and Speech, John D. Ferguson

Print Book, English, 1980

Publisher: Institute for Defense Analyses, Communications Research Division, Princeton, N.J., 1980

Show more information ~

- The best modern reference for DP as taught in this course is Huang (2008), and for further reading about semirings see (Mohri, 2002).
- DP overall is credited to Bellman (1954) in optimal policies and control.
- Popularity of DP in NLP came via hidden markov models (HMM) in the 70s and 80s in speech, especially at IBM Research and Bell Labs through a limited-circulation text (Ferguson, 1980): Rabiner gives a first-hand history (Rabiner, n.d.).
- Viterbi (1967) was working on information theory / codes. Forward comes from Markov process and is due to Baum (1972). FFBS (Frühwirth-Schnatter, 1994) originates from state space models. There is a lot of reinvention and misattribution around DP, and confusing naming. I tried to name things simply and logically but it can be ambiguous.

Conclusions

If we can cast our problem as finding paths in a DAG, then dynamic programming (DP) lets us calculate:

- $\operatorname{argmax}_{y \in \mathcal{Y}} \operatorname{score}(y)$
- $\log \sum_{y \in \mathcal{Y}} \exp \operatorname{score}(y)$ and therefore probabilities
- samples from the distribution over structures

in linear time $\Theta(|V| + |E|)$.

Next we see a bunch of structures that fit this pattern, and some that do not.

Some structures solvable by DP cannot be represented via DAGs.

References I

- Baum, Leonard E. (1972). "An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process". In.
- Bellman, Richard (1954). "The theory of dynamic programming". In: Bulletin of the American Mathematical Society 60.6, pp. 503–515.
- Ferguson, JD (1980). "Application of hidden Markov models to text and speech". In: *Princeton*, *NJ*), *IDA-CRD*.
- Frühwirth-Schnatter, Sylvia (1994). "Data augmentation and dynamic linear models". In: Journal of Time Series Analysis 15.2, pp. 183–202. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.1994.tb00184.x.
- Huang, Liang (Aug. 2008). "Advanced Dynamic Programming in Semiring and Hypergraph Frameworks". In: Coling 2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algorithms and Applications Tutorial notes. Ed. by Liang Huang. Manchester, UK: Coling 2008 Organizing Committee, pp. 1–18.

References II

- Mohri, Mehryar (2002). "Semiring frameworks and algorithms for shortest-distance problems". In: *J. Autom. Lang. Comb.* 7.3, pp. 321–350.
- Rabiner, Lawrence R (n.d.). First-hand: The Hidden Markov Model. https://ethw.org/First-Hand:The_Hidden_Markov_Model.
- Viterbi, A. (1967). "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". In: *IEEE Transactions on Information Theory* 13.2, pp. 260–269.