Math 55 - Section Homework 9 Tuesday, November 22, 2016

1, 2, 3, 4, 5

1

- (a) Show that if $a \ge 2$ and $b \ge 2$, then $R(a,b) \le R(a-1,b) + R(a,b-1)$.
- (b) Show that

$$R(a,b) \le {a+b-2 \choose a-1}$$

for $a \ge 1$ and $b \ge 1$.

(c) Show that $R(a,a) \le 2^{2(a-1)}$ for $a \ge 1$.

1

2 Show that $R(4,4) \le 18$. (You may use facts stated in the preceding problem, even if you have not proved them.)

3

- (a) For how many graphs on vertices $\{1, ..., n\}$ is the graph induced by vertices $\{1, ..., a\}$ complete (that is, isomorphic to K_a)?
- (b) Show that the number of graphs on vertices $\{1, ..., n\}$ that contain an induced K_a or an induced $\overline{K_a}$ is at most

$$2\binom{n}{a}2^{\binom{n}{2}-\binom{a}{2}}.$$

- (c) Show that if $n < 2^{(a-1)/2}$, then the number of graphs on vertices $\{1, \ldots, n\}$ that contain an induced K_a or an induced $\overline{K_a}$ is strictly less than $2^{\binom{n}{2}}$.
- (d) Conclude that $R(a,a) \ge 2^{(a-1)/2}$.

- **4** Suppose p is a prime, and that r is relatively prime to p. Say that r is a *residue* mod p if there exists x such that $x^2 \equiv r \pmod{p}$, and say that r is a *non-residue* otherwise.
 - (a) Show that the product of two residues is a residue.
 - (b) Show that the product of a residue and a non-residue is a non-residue.
 - (c) Show that the product of two non-residues is a residue.

- 5 The goal of this problem is to show that R(4,4) > 17 (so by the result of Problem 2 we have R(4,4) = 18). (You may use facts stated in the preceding problem, even if you have not proved them.) Let G = (V, E) be the graph with $V = \{0, 1, \ldots, 16\}$ and edges $\{v, w\}$ whenever $v \neq w$ and v w is a residue mod 17. We'll show that this graph contains no K_4 or $\overline{K_4}$.
 - (a) Show that this actually defines a graph; that is, that adjacency is indeed a symmetric relation.
 - (b) Show that the function $f(v) = v + c \mod 17$ is an automorphism of G. Thus if G contains a K_4 or $\overline{K_4}$, it contains one that includes the vertex 0.
 - (c) Show that if a is a residue, then $f(v) = va^{-1} \mod 17$ is an automorphism of G. Thus if G contains a K_4 that includes vertices 0 and a, it contains one that includes vertices 0 and 1.
 - (d) Show that if a is a non-residue, then $f(v) = va^{-1} \mod 17$ is an isomorphism from G to its complement. Thus if G contains a $\overline{K_4}$ that includes vertices 0 and a, it contains a K_4 that includes vertices 0 and 1.
 - (e) Complete the proof by showing that contains no K_4 that includes the vertices 0 and 1. (What would the other two vertices have to be?)

5