

PROCESOS INDUSTRIALES

SISTEMAS SCADA

SISTEMAS SCADA: SUPERVISIÓN Y CONTROL EN TIEMPO REAL

Los sistemas SCADA (Supervisory Control and Data Acquisition), son plataformas que permiten la supervisión y el control remoto de procesos industriales, mediante la recopilación de datos, en tiempo real.

Características

- Monitoreo y control en tiempo real, desde una interfaz gráfica.
- ✓ Integración con sensores y dispositivos IoT.
- Capacidad de automatización y análisis de datos históricos.

Aplicación

- ✓ Supervisión de redes eléctricas en la industria energética.
- ✓ Control de procesos de manufactura y ensamblaje.
- ✓ Monitoreo de oleoductos y plantas de tratamiento de agua.

Paso a paso para implementar un SCADA

- ✓ Instalar sensores en los puntos claves del proceso.
- Conectar los sensores a una red SCADA para transmisión de datos.
- ✓ Configurar la interfaz de usuario para visualizar información en tiempo real.
- ✓ Establecer reglas de alerta para detectar problemas automáticamente.
- Analizar datos históricos para optimizar la operación.

IA aplicable a SCADA

- Visión por computadora para detectar anomalías visuales en procesos industriales.
- Análisis de Big Data para mejorar la toma de decisiones basadas en tendencias.
- Optimización con algoritmos de IA, para predecir fallos antes de que ocurran.

Ejemplo. Control de una red de distribución eléctrica.

Una empresa de energía debe garantizar un suministro eléctrico estable en una ciudad. Un sistema SCADA permite monitorear y controlar la red de distribución en tiempo real.

Aplicación paso a paso

Instalar sensores. Se colocan sensores de voltaje y corriente en subestaciones eléctricas.

- Conectar sensores a SCADA. Los datos se envían a un servidor central.
- Configurar interfaz de usuario. Se crea un panel donde los operadores ven el estado de la red.
- Establecer reglas de alerta. Si hay una caída de voltaje, el sistema envía una alerta.
- Analizar datos históricos: Se detecta un patrón de sobrecarga en horas pico y se redistribuye la carga.

Beneficio

- ✓ Evita apagones al detectar fallos antes de que ocurran.
- ✓ Ahorra costos en mantenimiento de la red.
- Optimiza el consumo de energía.

IA Aplicable

Modelos de aprendizaje automático pueden predecir fallos y sugerir acciones antes de una sobrecarga.

Ejemplo de uso en la industria. En una planta de generación eléctrica, SCADA permite monitorear la producción de energía, el estado de las turbinas y los niveles de presión en los sistemas, alertando en caso de desviaciones que puedan afectar la eficiencia o seguridad de la operación.

¿Quién utiliza los sistemas SCADA?

SCADA es ampliamente utilizado en diversos sectores industriales, entre ellos:

- Industria petrolera y gas. Supervisión de oleoductos y refinerías para garantizar operaciones seguras.
- ✓ Energía y distribución eléctrica. Monitoreo de redes eléctricas para evitar sobrecargas y fallas.
- Manufactura y producción en línea. Control de maquinaria en fábricas para mejorar la eficiencia.
- **Tratamiento de agua y saneamiento.** Control de estaciones de bombeo y plantas de tratamiento.