743- Regression and Time Series

Mamikon S. Ginovyan

Estimation in Stationary ARMA(p,q) Models

The Sample Autocorrelation Function

- Although we know how to compute the autocorrelation function for some time series models,
- <u>in practical problems we do not start with a model</u>, but with observed data $\{x_1, x_2, \dots, x_n\}$.
- To assess the degree of dependence in the data set, and to select an appropriate model, one of the important tools we use is the sample autocorrelation function
 (sample ACF) of the data.
- If we believe that the data are realized values of a stationary time series $\{X_t, t = 0, \pm 1, \ldots\}$, then the sample ACF will provide an estimate of the ACF of X_t .

The Sample Autocorrelation Function

- This estimate may suggest which of the many possible stationary time series models is a **suitable candidate** for representing the dependence in the data.
- <u>For example</u>, a sample ACF that is <u>close to zero for all nonzero lags</u> suggests that an appropriate model for the data might be white noise.
- The following definitions are natural sample analogues of those for the ACVF and ACF functions given earlier for stationary time series models.

The Sample Autocorrelation Function

Definition 1.

Let $\{x_1, x_2, \dots, x_n\}$ be an observation of a time series.

1. The <u>sample mean</u> of $\{x_1, x_2, \dots, x_n\}$ is

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_{t}.$$

2. The **sample autocovariance function** is

$$\hat{g}(h) := \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x})(x_t - \overline{x}), \quad -n < h < n.$$

3. The **sample autocorrelation function** is

$$\hat{r}(h) = \frac{\hat{g}(h)}{\hat{g}(0)}, \quad -n < h < n.$$

Properties of Sample Mean, ACVF and ACF

• A second-order stationary process $\{X_t, t = 0, \pm 1, \ldots\}$ is characterized by its **mean** $\mu = E[X_t]$ and **ACVF**

$$g(h) = Cov(X_h, X_0) = E[(X_h - m)(X_0 - m)].$$

- The estimators of μ , $\gamma(h)$ and ACF $\rho(h) = \gamma(h) / \gamma(0)$ computed from the sample $\{X_1, X_2, \ldots, X_T\}$ therefore plays a crucial role in problems of inference and construction an appropriate model for the data.
- We examine some of the properties of the estimators \bar{X}_{τ} , $\hat{g}_{\tau}(h)$ and $\hat{r}_{\tau}(h)$.

As an estimator of μ we consider the sample mean:

$$\overline{X}_T = \frac{1}{T} \sum_{t=1}^T X_t.$$

- 1. \overline{X}_T is an unbiased estimator of $m: E[\overline{X}_T] = m$.
- 2. The mean squared error (MSE) of \overline{X}_T is

$$MSE[\overline{X}_{T}] = E[\overline{X}_{T} - m]^{2}$$

$$= Var(\overline{X}_{T}) = \frac{1}{T} \sum_{h=-T}^{T} \left(1 - \frac{|h|}{T}\right) g(h). \qquad (1)$$

Observe that:

1.If $\gamma(h) \to 0$ as $h \to \infty$, then the right hand side of (1) tends to 0, so that we have

$$MSE[\overline{X}_T] \to 0$$
 as $T \to \infty$.

2.If
$$\sum_{h=-\infty}^{\infty} |g(h)| < \infty$$
, then (1) gives

$$\lim_{T\to\infty}T\cdot Var(\overline{X}_T)=\sum_{|h|<\infty}g(h).$$

•Thus, we have the following result.

Theorem 1.

If $\{X_t, t = 0, \pm 1, \ldots\}$ is a second-order stationary process with mean μ and covariance function $\gamma(h)$. Then as $T \to \infty$

- (a) $MSE[\overline{X}_T] = Var(\overline{X}_T) \to 0$ if $g(T) \to 0$;
- (b) $T \cdot MSE[\overline{X}_T] = T \cdot Var(\overline{X}_T) \rightarrow \sum_{|h| < \infty} g(h)$ if $\sum_{h = -\infty}^{\infty} |g(h)| < \infty$.
- (c) If $\{X_t, t = 0, \pm 1, ...\}$ is Gaussian, then

$$T^{1/2}(\overline{X}_T - \boldsymbol{m}) : AN\left(0, \sum_{h=-T}^T \left(1 - \frac{|h|}{T}\right) \boldsymbol{g}(h)\right).$$

Remark

• For many time-series, in particular for Linear and ARMA models, for large *n*,

$$\overline{X}_T : AN\left(m, \frac{1}{T} \sum_{|h| < \infty} g(h)\right).$$

• An approximate 95% CI for μ is then

$$\overline{X}_T \pm 1.96\sqrt{v/T}$$
, where $v = \sum_{|h| < \infty} g(h)$.

• If v is **unknown**, as an estimator of v we consider the statistic:

$$\hat{v} = \sum_{h=-\sqrt{T}}^{\sqrt{T}} \left(1 - |h|/T\right) \hat{g}(h).$$

Remark-Example .

Let X_t be an AR(1) process with mean μ , defined by

$$X_t - \mu = \Phi (X_t - \mu) + Z_t,$$

where |f| < 1 and $Z_t \sim WN(0, \mathbf{S}^2)$.

We have
$$g(h) = \frac{f^{|h|}s^2}{1-f^2}$$
, and hence

$$v = \sum_{|h| < \infty} g(h) = \frac{s^{\frac{1}{2}}}{1 - f^{2}} (1 + 2 \sum_{h=1}^{\infty} f^{h}) = \frac{s^{\frac{2}{2}}}{(1 - f)^{2}}.$$

Hence an approximate 95% CI for μ is

$$\overline{X}_T \pm 1.96 s T^{-1/2} / (1-f),$$

provided that σ and ϕ are known.

Estimation of $\gamma(h)$ and $\rho(h)$

As estimators for unknown $\gamma(h)$ and $\rho(h)$ we consider the sample autocovariance function:

$$\hat{g}(h) := \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x})(x_t - \overline{x}), -n < h < n.$$

and the sample autocorrelation function:

$$\hat{r}(h) = \frac{\hat{g}(h)}{\hat{g}(0)}, -n < h < n.$$

Example 1.

Suppose that in a sample of size 100 from an AR(1) process with mean μ , $\phi = 0.6$ and $\sigma^2 = 2$ we obtain $\overline{x}_{100} = 0.271$.

- a) Construct an approximate 95% confidence interval for μ .
- b) Are the data compatible with the hypothesis that $\mu = 0$?

Solution:

(a) We have X_t is an AR(1) with mean μ , so X_t satisfies

$$X_{t} - m = f(X_{t-1} - m) + Z_{t}, \{Z_{t} : t \in Z\} \sim WN(0, s^{2}),$$

with $\phi = 0.6$ and $\sigma^2 = 2$. For AR(1) process we have

$$g_X(h) = \frac{f^{|h|}S^2}{1-f^2}.$$

We estimate μ by $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$.

For large sample sizes \overline{X}_n is approximately normally distributed with mean μ and variance $\frac{1}{n} \sum_{|h| < \infty} g(h)$ (see Section 2.4 in Brockwell and Davis).

In our case, the variance is

$$\frac{1}{n} \left(1 + 2 \sum_{h=1}^{\infty} f^{h} \right) \frac{s^{2}}{1 - f^{2}} = \frac{1}{n} \left(1 + 2 \left(\frac{1}{1 - f} - 1 \right) \right) \frac{s^{2}}{1 - f^{2}}$$

$$= \frac{1}{n} \left(\frac{2}{1 - f} - 1 \right) \frac{s^{2}}{1 - f^{2}} = \frac{1}{n} \left(\frac{1 + f}{1 - f} \right) \frac{s^{2}}{1 - f^{2}} = \frac{s^{2}}{n(1 - f)^{2}}.$$

Hence,
$$\overline{X}_n$$
 is approximately $N\left(m, \frac{S^2}{n(1-f)^2}\right)$.

Thus, a 95% confidence interval is given by

$$I = \left(\overline{x}_{n} - I_{0.025} \frac{S}{\sqrt{n}(1-f)}, \overline{x}_{n} + I_{0.025} \frac{S}{\sqrt{n}(1-f)}\right).$$

Putting in the numeric values gives $I = 0.271 \pm 0.69$.

(b) Since $0 \in I$, so the hypothesis $H_0: \mu = 0$ cannot be rejected.

Estimation of Parameters of ARMA(p,q) Models

- We briefly discuss <u>estimation of the parameters</u> in ARMA(p,q) models.
- The method of estimation used is the <u>least square technique</u>, with some minor modifications.
- Recall that Least squares was previously employed in Regression Analysis.
- The <u>only significant difference</u> here is that the observations are assumed to be <u>dependent</u> as opposed to the Regression Analysis, where they were always assumed to be <u>independent</u>.
- We consider some special cases of ARMA(p,q) model.

AR(1) Model:

$$y_t - m - f_1(y_{t-1} - m) = e_t.$$

- The parameters to be estimated are μ and ϕ_1 .
- We minimize the sum of squares of errors denoted by S:

$$S = \sum_{t=1}^{T} e_{t}^{2} = \sum_{t=1}^{T} [y_{t} - m - f_{1}(y_{t-1} - m)]^{2}, \qquad (1)$$

provided y_0 is available.

• Obtain $\partial S / \partial \mu$ and $\partial S / \partial \phi_1$, and write the normal equations by setting them equal to 0.

Remark.

Note that, in the sum S, we assume that y_0 is available. If we assume that only the time series data $y_1, y_2, ..., y_T$ are available, then we should minimize the sum S_1 :

$$S_1 = \sum_{t=2}^{T} e_t^2 = \sum_{t=2}^{T} [y_y - \mathbf{m} - f_1(y_{t-1} - \mathbf{m})]^2, e_1 = 0.$$
 (2)

This is referred to as : condition $\varepsilon_1 = 0$. Conditional Least Squares Estimation

• In this case we have the following **normal equations** to estimate μ and ϕ_1 :

$$\frac{\partial S_1}{\partial \mathbf{m}} = 2\sum_{t=2}^{T} [(y_t - \mathbf{m} - f_1(y_{t-1} - \mathbf{m})] = 0,$$

$$\frac{\partial S_1}{\partial f_1} = 2\sum_{t=2}^{T} [(y_t - \mathbf{m} - f_1(y_{t-1} - \mathbf{m}))] [-(y_{t-1} - \mathbf{m})] = 0.$$

• The solution of these equations gives the **least squares** estimates of μ and ϕ_1 as

$$\hat{\mathbf{m}} = \frac{\sum_{t=2}^{T} (y_t - \hat{\mathbf{f}}_1 y_{t-1})}{(T-1)(1-\hat{\mathbf{f}}_1)}, \quad \hat{\mathbf{f}}_1 = \frac{\sum_{t=2}^{T} (y_t - \hat{\mathbf{m}})(y_{t-1} - \hat{\mathbf{m}})}{\sum_{t=2}^{T} (y_{t-1} - \hat{\mathbf{m}})^2}.$$

Remark. When the sample size, *T* is **sufficiently large** we can use the following approximations:

$$\hat{\mathbf{m}} = \overline{\mathbf{y}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y}_t , \qquad (3)$$

$$\hat{f}_{1} = \frac{\sum_{t=2}^{T} (y_{t} - \overline{y})(y_{t-1} - \overline{y})}{\sum_{t=2}^{T} (y_{t-1} - \overline{y})^{2}} \approx \hat{r}_{1}, \qquad (4)$$

where \hat{r}_1 is the sample autocorrelation coefficient at lag 1.

• Using these estimates for μ and ϕ_1 , we obtain the **fitted** values \hat{y}_t for t = 2, 3, ..., T:

$$\hat{y}_{t} = \hat{m} + \hat{f}_{1}(y_{t-1} - \hat{m}).$$

Consequently, the residuals are

$$\hat{e}_t = y_t - \hat{y}_t$$
 for $t = 2, 3, ..., T$,

and the Residual Sum of Squares is

$$\hat{S}_1 = \sum_{t=2}^T \hat{e}_t^2 = \sum_{t=2}^T [y_t - \hat{m} - \hat{f}_1(y_{t-1} - \hat{m})]^2.$$

We can use \hat{S}_1 to obtain an **unbiased** estimator of σ_{ϵ}^2 .

Thus, in the AR(1) model an unbiased estimator of σ_{ϵ}^{2} is

$$\hat{S}_{e}^{2} = \hat{S}_{1}/(T-3).$$

Example 1. Use the model

$$y_t - m = f_1(y_{t-1} - m) + e_t$$

to represent a time series, for which the first 10 values are

t	1	2	3	4	5	6	7	8	9	10
y_t	8	10	7	6	9	8	6	5	7	4

Conditional on the initial value $y_1 = 8$ and assuming $\hat{m} = \overline{y}$, calculate the least squares estimate of ϕ_1 .

- a) .29

- b) .19 c) .17 d) .05
- e) .03

Solution.

Observe that T = 10, and we are asked to use

$$\hat{\mathbf{m}} = \overline{y} = \frac{1}{10} \sum_{t=1}^{10} y_t = \frac{70}{10} = 7.0.$$

Hence the least squares estimate of ϕ_1 is given by $(t-1 \rightarrow t)$

$$\hat{f}_{1} = \frac{\sum_{t=2}^{10} (y_{t} - \overline{y})(y_{t-1} - \overline{y})}{\sum_{t=2}^{10} (y_{t-1} - \overline{y})^{2}} = \frac{\sum_{t=1}^{9} (y_{t+1} - \overline{y})(y_{t} - \overline{y})}{\sum_{t=1}^{9} (y_{t} - \overline{y})^{2}} = \frac{4}{21} \approx .19,$$

where the numerator and the denominator are calculated from the following table:

t	1	2	3	4	5	6	7	8	9	10
${\cal Y}_t$	8	10	7	6	9	8	6	5	7	4
$y_t - \overline{y}$	1	3	0	-1	2	1	-1	-2	0	-3
$y_{t+1} - \overline{y}$	3	0	-1	2	1	-1	-2	0	-3	

We have:

the numerator
$$= 3-2+2-1+2=4$$
,
the denominator $= 1+9+1+4+1+1+4=21$.

• Thus the correct choice is b).

Example 2.

Given the ten observation as in **Example 1** and the model assumed to be

$$Y_t = \mathbf{f}_1 Y_{t-1} + e_t ,$$

obtain the least squares estimate of ϕ_1 .

- a) .90 b) .91 c) .92 d) .93 e) .94.

Solution.

Observe that minimizing the sum of the squares of the errors in this model leads to the following estimate of ϕ_1 .

$$\hat{f}_1 = \frac{\sum_{t=2}^{10} y_t y_{t-1}}{\sum_{t=2}^{10} y_{t-1}^2} = \frac{459}{504} \approx .91,$$

where

$$\sum_{t=2}^{10} y_t y_{t-1} = 8(10) + 10(7) + 7(6) + \dots + 7(4) = 459,$$

$$\sum_{t=2}^{10} y_{t-1}^2 = 8^2 + 10^2 + \dots + 7^2 = 504.$$

Thus the correct choice is b).

For the **MA(1)** model:

$$y_t - m = e_t + q_1 e_{t-1},$$

the sum of squares of the error terms can be written as:

$$S = \sum_{t=1}^{T} e_{t}^{2} = \sum_{t=1}^{T} [y_{t} - m - q_{1}e_{t-1}]^{2},$$

where at time t = 1, the value of ε_0 is involved in S.

• If ε_0 is **known**, then by taking some initial values of μ and θ_1 we can calculate:

$$e_1 = y_1 - m - q_1 e_0$$
 $e_2 = y_2 - m - q_1 e_1$
....
 $e_T = y_T - m - q_1 e_{T-1}$.

- Squaring and adding the resulting expressions we obtain S.
- If the value of ε_0 is **not known** then it might be reasonable to assume that $\varepsilon_0 = 0$.
- An initial value of μ is usually taken as \overline{y} , whereas
- the initial value of θ_1 based on sample ACF.

Remark.

It is not straightforward to minimize S by setting $\partial S / \partial \mu$ and $\partial S / \partial \theta_1$ equal to 0 because the **resulting normal** equations are nonlinear in the parameters μ and θ_1 .

Description of the Procedure.

Having specified a tentative model, we consider procedure for checking if the model indeed fits given time series data.

• This procedure is based on the **residuals** obtained by fitting the tentative model to the given data.

Remark.

For simplicity we discuss the case where the tentative model selected is **AR(1)**. The described procedure applies equally well to **any ARMA(p,q)** model with appropriate modifications.

So our model is **AR(1)**:

$$(Y_t - m) - f_1(Y_{t-1} - m) = e_t.$$

Having estimated the parameters μ and ϕ_1 , we obtain the fitted values \hat{y}_t as

$$\hat{y}_t = \hat{m} + \hat{f}_1(y_{t-1} - \hat{m}) \quad \text{for } t = 2, 3, 4, ..., T, \tag{1}$$

and residuals \hat{e}_t defined as

$$\hat{e}_t = y_t - \hat{y}_t$$
 for $t = 2, 3, 4, ..., T$.

Note that there are only T-1 residuals available.

An Approach.

Since ε_t 's are assumed to be $WN(0, \sigma_{\varepsilon}^2) = \text{uncorrelated RV's}$ with mean 0 and a constant variance σ_{ε}^2 ,

if the assumed AR(1) model is indeed the underlying model for the given time series, then it is reasonable to expect that

i)
$$\overline{e} = \frac{1}{T-1} \sum_{t=2}^{T} \hat{e}_t \approx 0.$$

- ii) The sample ACF \hat{r}_k , at various lags, calculated using \hat{e}_t 's, should also be **close to 0**.
- In fact it can be shown that if the underlying model is **AR(1)**, then $E[\hat{r}_k] \approx 0$ for all k > 0.

A test of the hypothesis $H_0: \rho_k = 0$ for a given value of k against the alternative $H_1: \rho_k \neq 0$ is suggested as follows:

STEP-1: Calculate
$$\hat{r}_k = \frac{\sum_{t=2}^{T-k} \hat{e}_t \hat{e}_{t+k}}{\sum_{t=2}^{T} \hat{e}_t^2}, \quad k = 1, 2, ..., K.$$

(We are assuming that only T-1 residuals are available.)

STEP-2 (Decision Rule):

Do not reject H_0 if $|\hat{r}_k| \le 2\sqrt{\hat{V}[\hat{r}_k]}$, otherwise reject H_0 .

Another Test of Adequacy

• If T is large and K is small compared to T, then it can be shown that the statistic

$$Q^* = T \cdot \sum_{k=1}^{K} \hat{r}_k^2 : c_{K-m}^2$$

is distributed approximately as a chi-square RV with df = K - m, where m is the total number of parameters in a model to be estimated by the least squares technique.

• For example, in AR(1) model m = 2, since μ and ϕ_1 are the parameters to be estimated.

Similarly, for AR(2) model, m = 3.

- A large observed value of Q^* should be viewed as evidence that the tentative model selected is inadequate for describing the time series data at hand.
- For small values of T, Ljung & Box suggest using the statistic Q given by:

$$Q = T(T+2) \cdot \sum_{k=1}^{K} \frac{\hat{r}_{k}^{2}}{T-k},$$

because it provides a better approximation to the chi-square distribution.

Forecasting Stationary Time Series

The MSE – Best Linear Prediction.

Let $\{X_t, t = 0, \pm 1, ...\}$ be a stationary time series with

- mean μ ,
- autocovariance function (ACVF) $\gamma_X(h)$,
- variance $\sigma^2 = \gamma_X(0)$,
- autocorrelation (ACF) function $r_X(h) = \frac{g_X(h)}{g_X(0)}$.
- The ACVF and ACF provide a useful measure of the degree of dependence among the values of the time series X_t , and play an important role in **prediction** of the **future values of** the series in terms of the past and present values.

- The role of the ACVF in prediction is illustrated by the following observations.
- Essentially, now I am going to show that for $MSE Best Linear Prediction of <math>X_{n+h}$ by means of

$$X_n, X_{n-1}, X_{n-2}, ...,$$

we need to know only the mean and ACVF $\gamma_X(h)$ of the process X_t , but not the complete specification of X_t .

Observation 1.

Suppose that $\{X_t, t = 0, \pm 1, ...\}$ is a Gaussian stationary time series and that we have observed the value X_n .

We would like to find the function of X_n that gives

- the **best MSE predictor** of the value X_{n+h} for some h > 0, and
- the MSE prediction error.

We have solved this problem, and the solution is:

• Since the RV's $Y = X_{n+h}$ and $X = X_n$ have joint bivariate normal distribution:

$$N(\mathbf{m} = \mathbf{m}_2 = \mathbf{m}, \ \mathbf{s}_1^2 = \mathbf{s}_2^2 = \mathbf{s}^2, \ r = r(h)),$$

the **conditional distribution** of $Y = X_{n+h}$ given that $X = X_n = x_n$ is:

$$N(m+r(h)(x_n-m), s^2(1-r(h))^2).$$

Hence

a) The **best MSE** – **predictor** \hat{X}_{n+h} of the value X_{n+h} in terms of X_n is

$$\hat{X}_{n+h} = g(X_n) = E[X_{n+h} | X_n] = m + r(h)(X_n - m)$$
 (1)

b) The MSE – prediction error is

$$E(X_{n+h} - \hat{X}_{n+h})^2 = s^2(1 - r(h))^2$$
.

Observation 2. Observation 1 shows that

- at least for Gaussian process, the best MSE prediction of X_{n+h} in terms of X_n is **more accurate** as $|\rho(h)|$ becomes closer to 1, and
- in the limit as $\rho(h) \to \pm 1$, the best MSE predictor X_{n+h} approaches to $\mu \pm (X_n \mu)$, (for $\mu = 0$ we have X_n)
- the MSE prediction error $\sigma^2(1-\rho(h))^2$ approaches to 0.

Note that in Observation 1 the assumption that the RV's $Y = X_{n+h}$ and $X = X_n$ have joint normal distribution played a crucial role.

Observation 3.

- For time series with **non-normal joint distributions** the corresponding calculations are in general much more complicated.
- However, if instead of looking for the best MSE predictor for X_{n+h} , we look for the best linear MSE predictor, that is, the best MSE predictor of the form

$$L(X_n) = aX_n + b ,$$

then our problem becomes of finding constants a and b to minimize the MSE –error

$$E(X_{n+h} - aX_n - b)^2.$$

• Below in Observation 4 we will show that the best Linear MSE – predictor for X_{n+h} is given by

$$\hat{X}_{n+h,L} = L(X_n) = m + r(h)(X_n - m) = r(h)X_n + m(1 - r(h)), \quad (2)$$
that is, $a = \rho(h) X_n$ and $b = \mu (1 - \rho(h)).$

• The MSE – prediction error is given by

$$E(X_{n+h}-L(X_n))^2 = s^2(1-r(h))^2.$$

- Comparing (1) and (2) we find that for Gaussian processes $g(X_n)$ and $L(X_n)$ are the same.
- In general, of course, $g(X_n)$ will give smaller MSE-error than $L(X_n)$, since it is the best of the larger class of predictors.
- However, the fact that the best Linear MSE-predictor depends only on the mean and ACF of the process X_t means that it can be calculated without more detailed knowledge of the joint distributions, that is, we need not to have complete specification of the underlying process X_t .

- This fact is extremely important in practice because of the difficulty of complete specification of the underlying process X_t and because of the difficulty of computing the required conditional expectations even if the distributions are known.
- As we will see later, similar conclusions apply when we consider the more general problem of predicting X_{n+h} by means of $X_n, X_{n-1}, X_{n-2}, ...,$

Conclusion.

• For best Linear MSE – prediction of X_{n+h} by means of X_n , X_{n-1}, X_{n-2}, \ldots , we need to know only the mean and ACF of the underlying process X_t .

Observation 4.

Problem 2.1: Let $\{X_t, t = 0, \pm 1, ...\}$ be stationary time-series with mean μ and ACF $\rho(h)$.

Show that the best predictor \hat{X}_{n+h} of X_{n+h} of the form $\hat{X}_{n+h} = aX_n + b$ is obtained by choosing $a = \rho(h)$ and $b = \mu (1 - \rho(h))$, that is,

$$\hat{X}_{n+h} = r(h)X_n + m[1 - r(h)].$$

Solution.

We find the best linear predictor $\hat{X}_{n+h} = aX_n + b$ of X_{n+h} by finding constants a and b such that

$$E[X_{n+h} - \hat{X}_{n+h}] = 0$$
 and $E[(X_{n+h} - \hat{X}_{n+h})X_n] = 0$.

We have
$$E[X_{n+h} - \hat{X}_{n+h}] = E[X_{n+h} - aX_n - b]$$

 $= E[X_{n+h}] - aE[X_n] - b = \mathbf{m}(1-a) - b,$
and $E[(X_{n+h} - \hat{X}_{n+h})X_n] = E[(X_{n+h} - aX_n - b)X_n]$
 $= E[X_{n+h}X_n] - aE[X_n^2] - bE[X_n]$
 $= E[X_{n+h}X_n] - E[X_{n+h}]E[X_n] + E[X_{n+h}]E[X_n]$

$$-a\left(E\left[X_{n}^{2}\right]-E\left[X_{n}\right]^{2}+E\left[X_{n}\right]^{2}\right)-bE\left[X_{n}\right]$$

$$=Cov\left(X_{n+h},X_{n}\right)+\mathbf{m}^{2}-a\left(Cov\left(X_{n},X_{n}\right)+\mathbf{m}^{2}\right)-b\mathbf{m}$$

$$=g(h)+\mathbf{m}^{2}-a\left(g(0)+\mathbf{m}^{2}\right)-b\mathbf{m}.$$

Thus, we have

$$b = m(1-a), \ a = \frac{g(h) + m^2 - bm}{g(0) + m^2}.$$

Solving the obtained system of equations for a and b, we get

$$a = \gamma(h)/\gamma(0) = \rho(h)$$
 and $b = \mu (1 - \rho(h)),$

$$\hat{X}_{n+h} = r(h)X_n + m(1-r(h)).$$

Thus, we have shown that:

For best Linear MSE – prediction of X_{n+h} by means of RV's $X_n, X_{n-1}, X_{n-2}, \ldots$, we need to know only the mean and ACF of the underlying process X_t .

- Let $\{X_t, t = 0, \pm 1, ...\}$ be a second-order stationary process with mean μ and ACVF $\gamma(h)$.
- We now consider the problem of linear MSE-predicting the values X_{n+h} , h > 0, of the process X_t in terms of the values $\{X_1, \ldots, X_n\}$.
- That is, our goal is to find the linear combination of $1, X_n, X_{n-1}, X_{n-2}, ..., X_1$, that forecasts X_{n+h} with minimum mean squared error.
- The best linear predictor in terms of 1, X_n , X_{n-2} , ..., X_1 , denoted by $\hat{X}_{n+h} = P_n X_{n+h}$, has the form

$$\hat{X}_{n+h} = P_n X_{n+h} = a_0 + a_1 X_n + \dots + a_n X_1. \tag{1}$$

• It remains only to determine the coefficients a_0 , a_1 , ..., a_n , by finding the values that minimize the MSE

$$S(a_0,...,a_n) = E(X_{n+h} - P_n X_{n+h})^2$$

$$= E(X_{n+h} - a_0 - a_1 X_n - \dots - a_n X_1)^2.$$
 (2)

• Since S is a quadratic function of a_0 , a_1 , ..., a_n , there is at least one value of $(a_0, ..., a_n)$ that minimizes S and that the minimum satisfies the equations

$$\frac{\partial S\left(a_0, \dots, a_n\right)}{\partial a_j} = 0, \quad j = 0, \dots, n.$$
 (3)

• Evaluation of the derivatives in equations (3) gives the equivalent equations:

$$E\left[X_{n+h} - a_0 - \sum_{i=1}^{n} a_i X_{n+1-i}\right] = 0 \tag{4}$$

$$E\left[\left(X_{n+h} - a_0 - \sum_{i=1}^{n} a_i X_{n+1-i}\right) X_{n+1-j}\right] = 0, j = 1, ..., n.$$
 (5)

These equations can be written more neatly in vector notation as

$$a_{0} = m \left(1 - \sum_{i=1}^{n} a_{i} \right)$$
and $\Gamma_{n} a_{n} = \mathbf{g}_{n}(h)$
where $\mathbf{a}_{n} = (a_{0}, ..., a_{n})', \quad \Gamma_{n} = [\mathbf{g}(i-j)]_{i,j=1}^{n},$
and $\mathbf{g}_{n}(h) = (\mathbf{g}(h), \mathbf{g}(h+1), ..., \mathbf{g}(h+n-1))'.$

Hence

• the best linear predictor is given by

$$\hat{X}_{n+h} = P_n X_{n+h} = \mathbf{m} + \sum_{i=1}^{n} a_i (X_{n+1-i} - \mathbf{m}), \qquad (8)$$

• the mean square prediction error given by

$$E(X_{n+h} - P_n X_{n+h})^2 = g(0) - 2\sum_{i=1}^n a_i g(h+i-1) + \sum_{i=1}^n \sum_{j=1}^n a_i g(i-j) a_j$$
$$= g(0) - a_n g(h), \qquad (9)$$

Summary: Properties of $\hat{X}_{n+h} = P_n X_{n+h}$:

1.
$$P_n X_{n+h} = \mathbf{m} + \sum_{i=1}^n a_i (X_{n+1-i} - \mathbf{m}),$$

where $\mathbf{a}_n = (a_0, ..., a_n)'$ satisfies (7)

2.
$$E(X_{n+h} - P_n X_{n+h})^2 = g(0) - a_n g_n(h),$$

where
$$\overset{\mathbf{r}}{g}_{n}(h) = (g(h),...,g(h+n-1))'$$
.

3.
$$E(X_{n+h} - P_n X_{n+h}) = 0$$
.

4.
$$E\left[\left(X_{n+h} - P_n X_{n+h}\right) X_j\right] = 0$$
 for all $j = 1, ..., n$.

Example 1 (One – step prediction of an AR(1) series).

Consider the **AR(1)** stationary time series:

$$X_{t} = fX_{t-1} + Z_{t}, |f| < 1 \text{ and } \{Z_{t}\} : WN(0, s^{2})$$

From (7) and (8), the best linear predictor of X_{n+1} in terms of $\{1, X_n, ..., X_1\}$ is $P_n X_{n+1} = a'_n X_n$, where $X_n = (X_n, ..., X_1)'$, and

$$\begin{bmatrix} 1 & f & f^2 & \mathbf{L} & f^{n-1} \\ f & 1 & f & \mathbf{L} & f^{n-2} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ f^{n-1} & f^{n-2} & f^{n-3} & \mathbf{L} & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \mathbf{M} \\ a_n \end{bmatrix} = \begin{bmatrix} f \\ f^2 \\ \mathbf{M} \\ f^n \end{bmatrix}$$

from which we find $\overset{\Gamma}{a}_n = (f, 0, ..., 0)'$.

Thus, the best linear predictor of X_{n+1} in terms of $\{X_1, ..., X_n\}$ is

$$P_n X_{n+1} = a'_n X_n = f X_n,$$

with mean squared error

$$E(X_{n+1}-P_nX_{n+1})^2=g(0)-a_n'g_n(1)=\frac{s^2}{1-f^2}-fg(1)=s^2.$$

Remark.

Thus, the best linear predictor of X_{n+1} in terms of $\{X_1, ..., X_n\}$ depends only on last observation X_n . This is not surprising because AR(1) process possess Markovian property:

$$P\{X_{n+1} \le x_{n+1} \mid X_n = x_n, ..., X_1 = x_1\} = P\{X_{n+1} \le x_{n+1} \mid X_n = x_n\}.$$

Example 2 (AR(1) model with nonzero mean).

The time series $\{Y_t\}$ is said to be an AR(1) process with mean μ if $X_t = Y_t - \mu$ is a zero-mean AR(1) process. Defining X_t as in Example 1: $X_t = \phi X_{t-1} + Z_t$, and letting $Y_t = X_t + \mu$, we see that Y_t satisfies the equation

$$Y_t - \mu = \Phi(Y_t - \mu) + Z_t \tag{1}$$

If $P_n Y_{n+h}$ is the best linear predictor of Y_{n+h} in terms of $\{1, Y_n, \dots, Y_l\}$, then application of P_n to (1) with $t = n+1, n+2, \dots$ gives the recursions

$$P_n Y_{n+h} - \mu = \phi (P_n Y_{n+h-1} - \mu), \quad h = 1, 2, ...$$

Noting that $P_n Y_n = Y_n$, we can solve these equations recursively for $P_n Y_{n+h}$, h = 1, 2, ..., to obtain

$$P_nY_{n+h} = \mu + \phi^h(Y_n - \mu).$$

For the corresponding mean squared error we have

$$E(Y_{n+h} - P_n Y_{n+h})^2 = \sigma^2 (1 - \phi^{2h})/(1 - \phi^2)$$
.

The Durbin-Levinson Algorithm

- Let $\{X_t\}$ be a zero-mean stationary series with ACVF $\gamma(\cdot)$, then we have obtained formulas for determining the best linear predictor P_nX_{n+h} of X_{n+h} in terms of $\{X_n, \ldots, X_l\}$.
- However, the direct approach requires the determination of solution of a system of *n* equations, which for large *n* may be difficult and time-consuming.
- An Idea: It would be helpful to use the one-step predictor P_nX_{n+1} to simplify the calculation of P_nX_{n+2} .
- Prediction algorithms that utilize this idea are said to be recursive.
- We discuss here the **Durbin-Levinson algorithm**.
- It is of interest also the innovations algorithm.

The Durbin-Levinson Algorithm

Assume that the covariance matrix $\Gamma_n = [g(i-j)]_{i,j=1}^n$ is nonsingular, then the best linear predictor is given by

$$\hat{X}_{n+1} = P_n X_{n+1} = f'_n X_n = f_{n1} X_n + ... + f_{nn} X_1,$$

where
$$f_n = \Gamma_n^{-1} \Upsilon_n$$
, $\Upsilon_n = (g(1), ..., g(n))'$,

and the corresponding mean squared error is

$$S_n^2 := E(X_{n+1} - P_n X_{n+1})^2 = g(0) - f'_n \Upsilon_n.$$

The Durbin-Levinson Algorithm

The Durbin-Levinson Algorithm: The coefficients ϕ_{n1} , ..., ϕ_{nn} can be computed recursively from the equations

$$f_{nn} = \begin{bmatrix} g(n) - \sum_{j=1}^{n-1} f_{n-1,j} g(n-j) \end{bmatrix} s_{n-1}^{-2},$$

$$\begin{bmatrix} f_{n1} \\ \mathbf{M} \\ f_{n,n-1} \end{bmatrix} = \begin{bmatrix} f_{n-1,1} \\ \mathbf{M} \\ f_{n-1,n-1} \end{bmatrix} - f_{nn} \begin{bmatrix} f_{n-1,n-1} \\ \mathbf{M} \\ f_{n-1,1} \end{bmatrix}$$
and
$$s_{n}^{2} = s_{n-1}^{2} \begin{bmatrix} 1 - f_{nn}^{2} \end{bmatrix},$$

where $\phi_{11} = \gamma(1)/\gamma(0)$ and $\sigma_0^2 = \gamma(0)$.

Remark.

The coefficients ϕ_{n1} , ..., ϕ_{nn} determine the <u>partial ACF</u> of $\{X_t\}$.