Packet Switching (basics)

A) PALEOZOIC: BUS, SHARED CPU

C) NEOLITHIC: BUS, PER LINE CARD CPUs

Line Card N

B) PALEOLITHIC: BUS, SHARED CPUs

D) MODERN: CROSSBAR, PER LINE CARD FORWARDING ENGINES

Crossbar scheduling: "Take-a-ticket"

Round 1

Round 2

Round 3

HOL

Probability that none of the N input ports chooses a given output port is $(1-1/N)^N \approx 37\%$ So, max throughput of this switch is: 63%

Head-of-Line Blocking

Avoid HOL-blocking with multiple input queues (one per output port)

PIM: Parallel Iterative Matching

Round 1

Round2

Round 3

iSLIP (avoids randomization of PIM)

Round 1, Iteration 1

Round 1, Iteration 2

Round2. Iteration 1

iSLIP (cont')

Round 2, Iteration 2

Round 3, Iteration 1

Round 3, Iteration 2

Multistage switching

2 layer switch

- only uses 6*9 = 54 crosspoints rather than 9*9 = 81
- penalty is loss of connectivity

Blocking vs non-blocking switching networks

Blocking vs non-blocking switching networks

Blocked 3 layer switch

Clos network (N, n, k): Non-blocking if $k \ge 2n-1$ (Prove this!)

k N/n x N/n crossbars

Clos network (N,n,k=2n-1):

Prove that min number of crosspoints = $5.6N\sqrt{N}$ (for n= $\sqrt{(N/2)}$

Clos Network vs Simple Switch

Banyan networks and and the self-routing property

control bit

Benes network

Recursive Construction of 16x16 Benes Network out of 2x2 Switches

Benes Network

- · Rearrangably non-blocking
- e.g. 2 to 1, 1 to 5, 3 to 3, 4 to 2

Benes Network

- · Now use different connections
- e.g. 2 to 1, 1 to 5, 3 to 3, 4 to 2