

Description

The VSM40N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =150V, I_D =40A $R_{DS(ON)} < 45 m\Omega$ @ V_{GS} =10V (Typ:35m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40N15-T2	VSM40N15	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	150	V
Gate-Source Voltage	Vgs	±12	V
Drain Current-Continuous	I _D	40	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	29	Α
Pulsed Drain Current	I _{DM}	160	Α
Maximum Power Dissipation	P _D	140	W
Derating factor		0.93	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	350	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.07	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.7	1.05	1.4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =18A	-	35	45	mΩ
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =18A	38	-	-	S
Dynamic Characteristics (Note4)	- 1					
Input Capacitance	C _{lss}	.,,,,	-	4300	-	PF
Output Capacitance	Coss	V_{DS} =75V, V_{GS} =0V, F=1.0MHz	-	130	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	111	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	14	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_D =2 A , R_L =15 Ω	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =2.5 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	11	-	nS
Total Gate Charge	Qg	\/ -75\/ -404		63.8	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =75 V , I_{D} =18 A , V_{GS} =4.5 V		9.8	-	nC
Gate-Drain Charge	Q_gd	V _{GS} -4.5V		26.9	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =18A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	40	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 18A	-	42	-	nS
Reverse Recovery Charge	Recovery Charge Qrr di/dt = 100A/µs ^(Note3)		-	75	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition:Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance