# Descriptive Statistics — Visualization

**PSYC 203** 

## Outline

- Making sense of data
  - From qualitative to quantitative
- Visualizing Data
  - Frequency distributions and histograms
- Language for describing distributions
  - modality, skew, kurtosis
- Why are distributions insufficient?

# Summarizing Information/Data

- Imagine we are interested in assessing 'mathematics knowledge' of an incoming class of 100 students
- 90 questions on the test and scores are as follows

| 50 | 42 | 43 | 56 | 36 | 48 | 50 | 63 | 58 | 38 |
|----|----|----|----|----|----|----|----|----|----|
| 30 | 49 | 41 | 43 | 61 | 73 | 38 | 39 | 40 | 53 |
| 51 | 26 | 58 | 52 | 50 | 34 | 80 | 51 | 60 | 63 |
| 45 | 66 | 58 | 42 | 52 | 67 | 54 | 52 | 47 | 62 |
| 31 | 50 | 39 | 51 | 36 | 67 | 62 | 45 | 43 | 62 |
| 49 | 36 | 59 | 39 | 55 | 49 | 50 | 52 | 45 | 50 |
| 41 | 60 | 49 | 56 | 51 | 32 | 66 | 72 | 63 | 62 |
| 40 | 39 | 54 | 52 | 42 | 41 | 45 | 62 | 65 | 41 |
| 41 | 44 | 53 | 60 | 53 | 52 | 88 | 51 | 62 | 67 |
| 54 | 40 | 51 | 41 | 41 | 42 | 42 | 38 | 51 | 59 |

# Summarizing Information/Data

- Our goal is to understand (and ultimately communicate)
  how students performed on this test
- Tough to make sense of data when presented in this 'random' order.
- One way to summarize and make sense is through a frequency table/distribution

# Summarizing Information/Data: Ungrouped Frequency Distributions

- Lists all possible values and the number of times each occurs
- Steps
  - Identify largest and smallest observed values
  - List all values between the largest and smallest
  - Tally the number of times each score was observed
  - Report the full table
- Only one possible solution in a given set of data

# Summarizing Information/Data: Ungrouped Frequency Distributions

### · R code

 What do you see as positive and negative aspects of this approach?

```
exam Frea
  31
  32
  34
  36
  38
  39
  41
  42
  50
  51
  52
  54
  55
  56
  61
  62
  63
  73
  80
```

# Summarizing Information/Data: Grouped Frequency Distributions

- Rather than reporting individual scores, we cluster the original scores into class intervals.
- How do we construct the intervals?
  - Intervals should be mutually exclusive and exhaustive
  - Number of intervals
  - Rule of thumb is 10 to 20 (might be less with small sample size)
- Width of intervals
  - Should be the same
  - Logical (2, 5, 10, etc.)

# Summarizing Information/Data: Grouped Frequency Distributions

### · R code

 What do you see as positive and negative aspects of this approach?

|             | freq | cumulativefreq |
|-------------|------|----------------|
| [25.5,35.5) | 5    | 5              |
| [35.5,45.5) | 33   | 38             |
| [45.5,55.5) | 32   | 70             |
| [55.5,65.5) | 21   | 91             |
| [65.5,75.5) | 7    | 98             |
| [75.5,85.5) | 1    | 99             |
| [85.5,95.5) | 1    | 100            |

|   | scores       | Freq |
|---|--------------|------|
| 1 | (25.5, 35.5] | 5    |
| 2 | (35.5,45.5]  | 33   |
| 3 | (45.5,55.5]  | 32   |
| 4 | (55.5,65.5]  | 21   |
| 5 | (65.5,75.5]  | 7    |
| 6 | (75.5,85.5]  | 1    |
| 7 | (85.5,95.5]  | 1    |
|   |              |      |

# Summarizing Information/Data: Histograms

- Graphic representation of the information presented in a frequency table.
- Can be either ungrouped or grouped
  - Different statistical programs use different defaults so pay attention

# Summarizing Information/Data: Histograms

### R code



Ungrouped

Grouped

# Summarizing Information/Data: Histograms Tips

- Values on the horizontal axis are often not in their 'true' position relative to zero.
  - Can influence how data are interpreted

# Same Data, Different Impression

### · R code



# Summarizing Information/Data: Histograms Tips

- Values on the horizontal axis are often not in their 'true' position relative to zero.
  - Can influence how data are interpreted
- Height of histogram relative to width is important

# Who's Telling the Story?

## · R code





# Comparing Histograms

## · R code



## Outline

- Making sense of data
  - From qualitative to quantitative
- Visualizing Data
  - Frequency distributions and histograms
- Language for describing distributions
  - modality, skew, kurtosis
- Why are distributions insufficient?

# Interpreting Distributions

- How many peaks are present?
  - modality (unimodal, bimodal)
- Is the distribution symmetric?
  - skewness (positive, negative)
- How are scores concentrated?
  - kurtosis (mesokurtosis, platykurtosis, leptokurtosis)

## Distribution #1

#### Histogram of rbeta(10000, 5, 5)



## Distribution #2

#### Histogram of rbeta(10000, 2, 5)



## Distribution #3

#### Histogram of rbeta(10000, 5, 2)



## Outline

- Making sense of data
  - From qualitative to quantitative
- Visualizing Data
  - Frequency distributions and histograms
- Language for describing distributions
  - modality, skew, kurtosis
- Why are distributions insufficient?

# Why Are Distributions Insufficient?

- We typically want to talk about central tendency and dispersion
- Subjective v. Objective summary