Lecture 6

Missing Data and Imputation

Instructor: Hamed Hasheminia

Missing Data

Complete data	
Age	IQ score
25	133
26	121
29	91
30	105
30	110
31	98
44	118
46	93
48	141
51	104
51	116
54	97

Incomplete data	
Age	IQ score
25	
26	121
29	91
30	
30	110
31	
44	118
46	93
48	
51	
51	116
54	

Ignoring or inappropriately handling missing data may lead

to...

- Biased estimates
- Incorrect standard errors
- Incorrect inferences/results

Missing Data Mechanisms

- Missing Completely at Random (MCAR)
 - Dropping unobserved observations is fine!
- Missing at Random (MAR): Missingness depends on observed data
 - E.g., women more likely to respond to men
 - Can use weighting or *imputation* approaches to deal with the missingness
 - Usually people try to solve this type of missing data issue
- Not missing at random (NMAR): Missingness depends on unobserved values
 - Probability of reporting psychiatric treatment depends on whether or not they have received it
 - Probability of someone reporting their income depends on what their income is
 - No easy way to deal with that!

Improper ways of handing missing Data!

- Ignoring it
 - Ignore it; just run models without doing anything about missingness
 - You only rely on defaults of the software
- Complete Case (listwise deletion)
 - Restricts the analysis to only observed data
 - Assumes missingness is MCAR
 - Lowers the power of your models
 - Generally leads to biased results

Improper ways of handing missing Data!

- Single Imputation (Fill in ("impute") each missing value
 - Mean/Median/fill backward/fill forward
 - Regression Prediction ("Conditional Mean Imputation")
 - Impute mean within categories of observed covariates (gender, race, etc.)
 - Fit regression model among observed cases, use to predict response for individuals with missing values

Slightly better ways of handing missing Data!

- "Hot-deck"
 - for an individual with missing data, find individuals with the same observed values on other variables, randomly pick one of their values as the one to use for imputation
- Regression Prediction plus error ("Stochastic regression imputation")
 - Same as regression imputation you just add random error to it.

Summary of single imputation approaches

- among those discussed, the best are regression prediction plus error or hot-deck (based on categorical versions of all the variables observed)
- Can be reasonable if you have few missing data (< 5%)
- BUT .. Results in overly precise estimates
 - Simply treats all of the values as observed values
 - So does not take into account the uncertainty in the imputations.
- What should we do instead?

Appropriate ways of handling missing values

- Weighting
- Multiple Imputation
- Maximum Likelihood (FIML) * Above the scope of this class

 OUR GOAL IS NOT TO GET CORRECT PREDICTIONS OF MISSING VALUES; GOALS IS TO OBTAIN ACCURATE PARAMETER ESTIMATES FOR RELATIONSHIPS OF INTEREST

Nonresponse Weighting

- Often used to deal with Attrition
- Generate model predicting response given observed covariates
- Weight Respondent by their inverse probability of response
 - Weights the respondents up to represent the full sample
 - Same idea as survey sampling weight
- Use Analysis methods that allow for weights
- Works well for simple missing data patterns (e.g. Attrition)

Nonresponse Weighting

- A simple example ...
- Imagine 100 males and 100 females in sample
- But only 80 males and 75 females respond
- Male respondents will get weight of 100/80 = 1.25
- Female respondents will get weights of 100/75 = 1.33

Multiple Imputation

- Same idea as single imputation, but fills in each missing value multiple times
 - Like repeating the stochastic mean imputation multiple times
- Creates multiple (e.g., 100) "complete" data sets
- Analyses then run separately on each dataset and result combined across datasets

Summary

- We have three types of missing data MCAR, MAR, NMAR
- For MCAR we can simply drop missing data
- For MAR we can use single imputation or multiple imputation methods. It is highly recommended that you use multiple imputation methods – unfortunately, standard libraries in python do not handle this properly.
- For NMAR, there is no known way to handle missing data.

Acknowledgment

 Most of today's lecture is extracted from Lecture notes of Dr. Elizabeth A. Stuart