Dependency Analysis in Detail

The SPSS dataset 'employee_survey.sav' is based on an employee survey conducted in firms in Berlin 2010. Respondents were randomly selected. Based on this dataset several dependency measures should be calculated discussed. It cannot be assumed that motivation is measured based on an interval scale.

The dataset and the idea of the exercise is based on Eckstein (2015), p. 73.

- 1. Find the file on your hard disc. Copy the folder name in the clipboard.
- 2. Set the working directory to the folder. So the script can easily be used on another computer. Just by modifying this command!
- 3. R Studio offers a broad range of options and generates the code at the same time. In R Studio ...
 - a. go to 'Files \ Import Dataset \ From SPSS'
 - b. Using browse select the file 'employee_survey.sav' and click open
 - c. In the preview you can see the result.
 - d. Do not click import. Instead copy the script commands (!) and paste them in a script file!

```
library(haven)
X005b_employee_survey <- read_sav("C:/Folder name/005b_employee_survey.sav")
View(X005b_employee_survey)
```

- e. Modify the commands!
 Remove the folder name! That's because the file is in the working directory.
 Modify the variable name, e.g., to 'employee.survey'.
- 4. Convert 'employee.survey' to a data frame.
- 5. Show the first couple of rows and determine the sample size.
- 6. Measuring dependencies depend on the scale of measurement of the variables assessed. Therefore, determine the scale of measurement of all variables in the dataset. Add your note here ...

gender	motivation	age	salary

- 7. Before we bin variables we want to analyse dependencies using graphs. Add the correct axes annotations!
 - a. Create a graph to assess the dependency between gender and salary.
 - b. Create another graph to assess age vs. gender.
- 8. To get a better overview of the variables we bin the age as follows variable 'age.category'

N.B. The upper boundaries belong to the category!

young up to 27 middle between 28 - 40 older between 41 - 65

To bin age use the following commands. Explain the commands in detail!

age.thresholds<-c(0,27,40,65) age.labels<-c('young','middle','older')

determine categories

employee.survey\$age.categories<-cut(age,breaks=age.thresholds,labels=age.labels,right=T)

show data

View(employee.survey)

assess result class(age.categories) unclass(age.categories)

show original variables and category side by side cbind(age,age.categories)

9. Now bin the variable 'salary' as follows. Calculate a new factor 'salary.category'.

The variable must be a new column in the data frame employee.survey. N.B. the upper boundaries belong not to the category!

low below 1500

middle 1500 to below 2500 high 2500 to below 4000

10. The dependencies between variables should be examined. The following table provides an overview of the different measures. For more details see, e.g., IBM Knowledge Center (2017) and Michigan State University (2017)

	Nominal	Ordinal	Metrical
Nominal	Phi and Cramer's V		
Ordinal	Phi and Cramer's V	Spearmen's Rho	
	Mann-Whitney test or	Gamma	
	Wilcoxon test (only two groups or "levels" of X); Kruskal Wallis test (X can have more than two	Kendall's tau-b take ties into account Kendall's tau-c	
	groups)	ignores ties	
	Eta		
Metrical	T-test (only two grou	Pearson correlation coefficient	
	ONEWAY-ANOVA		
	(variable can have more than two groups)		

11. Determine the dependencies between

dependency of interest	statistical meas- ure of depend- ency	significance	conclusion
age.category and gender			
salary.category and gender			

12. Now we want to use the original variables instead of the binned. Found out if there is a significant difference in the means of the salary depending on gender.

dependency of interest	statistical meas- ure of depend- ency	significance	conclusion
gender vs. age			
gender vs. sal- ary			
gender vs. mo- tivation			
Why we cannot apply the t-test for age vs. motivation?			

REMARKS: Using a t-test we have to distinguish

Independent 2-group t-test / Two sample assuming equal variances

Example: Comparing the performance of students of intake this year with the students of the previous intake. The number of students is not equal but we need to compare the means. Is there any significant difference in the means of the performance? Command:

t.test(y^x ,paired=FALSE,var.equal=TRUE) # where y is numeric and x is a binary factor t.test(y^1 , y^2 ,paired=FALSE,var.equal=TRUE) # where y1 and y2 are numeric

Independent 2-group t-test / Two sample <u>assuming unequal variances</u>

Example: On area B plant fertiliser is being used. Now we compare harvest on area A in comparison with harvest on area B. Same plants – same volatility but on a different level? Command:

t.test(y^x ,paired=FALSE,var.equal=FALSE) # where y is numeric and x is a binary factor t.test(y^1 , y^2 ,paired=FALSE,var.equal=FALSE) # where y1 and y2 are numeric

Paired t-test

Example: Assess the performance of students before and after power napping. It is the same group, so there are paired means of performance!

Command: t.test(y1,y2,paired=TRUE) # where y1 & y2 are numeric