6.2 Memory Organisation

- Each address contains 1 byte = 8 bit of content.
- Memory addresses are 32-bit long (2³⁰ memory words).
- 32 registers, each 4-byte long. Each word is also 4-byte long. (Note that words are usually

2^n bytes) 6.3 MIPS Instruction Classification

6.3.1 R-format

- op \$rd, \$rs, \$rt
- sll \$rd, \$rt, shamt (rs = 0)
- 6.3.2 I-format
- op \$rt, \$rs, Immediate
- Immediate is a 16 bit 2s complement constant
- Displacement address: offset from address in rs
- PC-relative address: no of instructions from next instruction $PC = PC + 4 + (Immediate \times 4)$

6.3.3 J-format (can jump up to 256MB range)

- op Immediate pseudo-direct address: remove last 2 bit (since word-aligned, by default the 2 least significant bits are 00) and 4 most significant bits (always the same as instruction address).
- eg xxxx0000111100001111000011110000, immediate is 00001111000011110000111100 7 Instruction Set Architecture

For modern processors: General-Purpose Register (GPR) is most common. RISC typi cally uses Register-Register (Load/Store) design, e.g. MIPS, ARM. CISC use a mixture of Register-Register and Register-Memory, e.g. IA32

7.1 Data Storage

- Stack architecture : Operands are implicitly on top of the stack. Accumulator architecture: One operand is implicitly in the accumulator (a special
- General-purpose register architecture : only explicit operands
- Register-memory architecture : one operand in memory.
- Register-register (or load store) architecture
- Memory-memory architecture : all operands in memory.

7.2 Memory Addressing Modes

- Endianness : Relative ordering of bytes in a multiple-byte word stored in memory
- **Big-endian**: **Most** significant byte stored in lowest address
- Little-endian : Least significant byte stored in lowest address ("reverse-order") • Addressing modes: in MIPS, only 3: Register add \$t1, \$t2, \$t3, Immediate
- addi \$t1, \$t2, 98, Displacement lw \$t1, 20(\$t2)

7.3 Operations in the instruction set

Amdahl's law: make common cases fast. Optimise frequently used instructions (Load: 22%, Conditional Branch: 20%, Compare 16%, Store: 12%)

7.4 Instruction Formats

- Instruction Length :
- Variable-length instructions : Require multi-step fetch and decode. Allow for a more flexible (but complex) and compact instruction set. • Fixed-length instructions : used in most RISC, e.g. MIPS instructions are 4-bytes long.
- Allow for easy fetch and decode, simplify pipelining and parallelism. Instruction bits are
- **Hybrid instructions**: a mix of variable- and fixed-length instructions.
- Instruction Fields: opcode (unique code to specify the desired operation) and operands

(zero or more additional information needed for the operation)

7.5 Encoding the Instruction Set

- Expanding Opcode scheme:
 - E.g. Type-A: 6-bit opcode, Type-B: 11-bits opcode. Max no of instructions = $1 + (2^{6} - 1) \times 2^{5} = 2017$
 - (1 Type-A instruction, Type-B "steals" $[2^6-1]$ opcodes from Type-A to prefix, each prefix having $[2^{11-6} = 2^5]$ opcodes)

8 Datapath

8.1 Instruction Execution Cycle

For MIPS: (1)Fetch (2)Decode & Operand Fetch (3)ALU (4)Memory Access (5)Result Write

- Fetch : Get instruction from memory, address is in Program Counter (PC) Register
- **Decode**: Find out the operation required
 - Operand Fetch : Get operand(s) needed for operation
 - Execute : Perform the required operation • Result Write (Store) : Store the result of the operation

8.2 Elements

- Adder Input: two 32-bit numbers, Output: sum of input numbers
- Register File Input: three 5-bit: Read register 1, Read register 2, Write register; 32-bit
 - Write data, Output: two 32-bit Read data 1, Read data 2; Control: 1-bit RegWrite (1 = write) • Multiplexer Input: n lines of same width, Control: m bits where $n = 2^m$, Output: Select

lar operation. Output: 32-bit ALU result. 1-bit isZero?

 i^{th} input line if control = i• Arithmetic Logic Unit: Input: two 32-bit numbers, Control: 4-bit to decide the particu-

ASCII Table

7.	AJCII IADIC														
Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	,
1	1	1		33	21	41	!	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	100	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56	0.50	78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	X
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135	1	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37	J.	63	3F	77	?	95	5F	137	-	127	7F	177	

Positive Power of 2

Ехр	Val	Ехр	Val	Ехр	Val	Ехр	Val
2 ⁰	1	28	256	2 ¹⁶	65,536	224	16,777,216
2 ¹	2	29	512	2 ¹⁷	131,072	2 ²⁵	33,554,432
2 ²	4	2 ¹⁰	1,024	2 ¹⁸	262,144	2 ²⁶	67,108,864
2 ³	8	211	2,048	2 ¹⁹	524,288	227	134,217,728
24	16	212	4,096	220	1,048,576	228	268,435,456
2 ⁵	32	2 ¹³	8,192	221	2,097,152	229	536,870,912
2 ⁶	64	214	16,384	2 ²²	4,194,304	2 ³⁰	1,073,741,824
2 ⁷	128	2 ¹⁵	32,768	2 ²³	8,388,608	231	2,147,483,648

Negative Power of 2

Exp	Val	Exp	Val
2^{-1}	0.5	2-9	0.001953125
2^{-2}	0.25	2-10	0.0009765625
2^{-3}	0.125	2-11	0.00048828125
2^{-4}	0.0625	2-12	0.000244140625
2^{-5}	0.03125	2-13	0.0001220703125
2^{-6}	0.015625	2-14	0.00006103515625
2^{-7}	0.0078125	2-15	0.000030517578125
2^{-8}	0.00390625	2-16	0.0000152587890625