(19)日本国特許庁 (JP)

e 1 ....

# (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-187904 (P2002-187904A)

(43)公開日 平成14年7月5日(2002.7.5)

| (51) Int.Cl.7 | 識別記号 | F I       | テーマコード( <b>参考)</b> |
|---------------|------|-----------|--------------------|
| C08F 2/18     |      | C08F 2/18 | 4 J O 1 1          |
| 212/34        |      | 212/34    | 4 J 1 0 0          |
| 220/20        |      | 220/20    |                    |

# 審査請求 未請求 請求項の数3 OL (全 5 頁)

| (21)出願番号 | 特顧2000-388912(P2000-388912) | (71)出願人 | 000004455            |
|----------|-----------------------------|---------|----------------------|
|          |                             |         | 日立化成工業株式会社           |
| (22)出願日  | 平成12年12月21日(2000.12.21)     |         | 東京都新宿区西新宿2丁目1番1号     |
|          |                             | (72)発明者 | 青山 哲也                |
|          |                             |         | 茨城県日立市東町四丁目13番1号 日立化 |
|          |                             |         | 成工業株式会社山崎事業所内        |
|          |                             | (72)発明者 | 佛顧 道男                |
|          |                             |         | 茨城県日立市東町四丁目13番1号 日立化 |
|          |                             |         | 成工業株式会社山崎事業所内        |
|          |                             | (72)発明者 | 熊谷 雄五                |
|          |                             |         | 茨城県日立市東町四丁目13番1号 日立化 |
|          |                             | 1       | 成工業株式会社山崎事業所内        |
|          |                             |         |                      |
|          |                             |         | 最終頁に続く               |

# (54)【発明の名称】 架橋共重合体粒子及びその製造法

(57)【要約】

【課題】 回収率に優れ作業性の良い固相抽出用吸着剤に有用な架橋共重合体粒子及びその製造法を提供する。

【解決手段】 (a)一般式(I)

【化1】



(式中、 $R^1 \sim R^8$ は各々独立した水素原子、炭素数 $1 \sim 20$  のアルキル基、水酸基又はハロゲン原子を表わす)で示される単量体 $20 \sim 70$ 重量部と(b)多価アルコールポリ (メタ) アクリル酸エステル $30 \sim 80$ 重量部を水性懸濁重合した架橋共乗合体粒子の製造法。

English abstract attached to back

#### 【特許請求の範囲】

【請求項1】 (a) 一般式 (I) 【化1】

(式中、R<sup>1</sup>~R<sup>8</sup>は各々独立した水素原子、炭素数1~20のアルキル基、水酸基又はハロゲン原子を表わす)で示される単量体20~70重量部と(b)多価アルコールポリ(メタ)アクリル酸エステル30~80重量部を水性懸濁重合した架橋共重合体粒子の製造法。

【請求項2】 一般式(I) がジビニルジフェニルである請求項1の製造法で得られる架橋共重合体粒子。

【請求項3】 請求項1又は2記載の製造法によって得られる架橋共重合体粒子。

## 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、固相抽出用吸着剤のための架橋共重合体粒子及びその製造法に関する。

#### [0002]

【従来の技術】従来、液体中からの試料の抽出には、液 -液抽出法が多く用いられてきたが、作業の煩雑さ、溶 媒を多量に使用する等の問題があった。

【0003】現在では、シリカ系及びポリマー系多孔性 粒子の合成法の発達に伴い作業が簡単で溶媒の使用量も 少なく多量の試料を処理することができる固相抽出法が 用いられるようになってきた。固相抽出に用いられる粒 子は以下のようなものが知られている。

- (1) シリカゲル又はシリカゲルの表面を化学修飾した 化学結合型シリカゲル
- (2) スチレンージビニルベンゼン共重合体
- (3) (メタ)アクリル酸エステル共重合体

#### [0004]

【発明が解決しようとする課題】しかしながら、上記 (1)の化学結合型シリカゲルを農薬や食肉中の残留合成 抗菌剤などを分析する環境分析に用いた場合、シリカ内 に含まれる不純物の影響で一部の試料が分解を起こすという問題点がある。

【0005】上記(2)のスチレンージビニルベンゼン共 重合体は、疎水性が強いため水溶液を処理する際の作業 性が悪くなるという問題点がある。

【0006】上記(3)の(メタ)アクリル酸エステル共 重合体は、親水性が強いため試料の回収率が低下すると いう問題点がある。また、共重合体が充てんされた抽出 管のコンディショニング及び濃縮後の抽出に用いられる 有機溶媒により共重合体が膨潤し作業性が悪くなるとい う問題点がある。 【0007】本発明は、このような問題点を解決し、回収率に優れ作業性の良い固相抽出用吸着剤に有用な架橋 共重合体粒子及びその製造法を提供するものである。

#### [0008]

【課題を解決するための手段】 (1) (a) 一般式(I)

[0009]

【化2】

$$\begin{array}{c|c} CH_2=CH & \begin{array}{c} R^5 \\ \hline \\ R^7 \end{array} & \begin{array}{c} R^8 \\ \hline \\ R^8 \end{array} & \begin{array}{c} R^1 \\ \hline \\ R^2 \end{array} & \begin{array}{c} CH=CH_2 \\ \hline \\ R^2 \end{array} & \begin{array}{c} (I) \end{array}$$

(式中、 $R^1 \sim R^8$ は各々独立した水素原子、炭素数 $1\sim 20$  のアルキル基、水酸基又はハロゲン原子を表わす)で示される単量体 $20\sim 70$ 重量部と(b)多価アルコールポリ (メタ)アクリル酸エステル $30\sim 80$ 重量部を水性懸濁重合した架橋共重合体粒子の製造法。

- (2) 一般式(I) がジビニルジフェニルである
- (1) の製造法で得られる架橋共重合体粒子。
- (3) (1) 又は(2) 記載の製造法によって得られる架橋共重合体粒子に関する。

#### [0010]

【発明の実施の形態】本発明に用いられる(a)一般式(I)で示される化合物において、式中の $R^1 \sim R^3$ は、各々独立に水素原子、炭素数 $1 \sim 20$ のアルキル基、水酸基又はハロゲン原子が挙げられる。炭素数 $1 \sim 20$ のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖状アルキル基であっても、イソプロピル基、イソブチル基、tertーブチル基、イソペンチル基等の枝分かれ状のアルキル基であってもよい。また、ハロゲン原子としては、C1,Br,F,I等が挙げられる。具体的には、一般式(I)の式中 $R^1 \sim R^3$ が水素原子である単量体としては、ジビニルビフェニル等が挙げられる。特に純度は限定されないが、純度50%以上のものを使用することが望ましい。

【0011】本発明に用いられる(b)多価アルコールポリ(メタ)アクリル酸エステルとしては、例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート等のようなアルキレングリコールジビニルエステル、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリアルキレングリコールのジビニルエステル、グリセリンのジ又はトリアクリレート、クリセリンのジ又はトリメタクリレート、トリメチロールプロパンのジ又はト

リアクリレート、トリメチロールプロパンのジ又はトリ メタクリレート、テトラメチロールメタンのジ、トリ又 はテトラアクリレート、テトラメチロールメタンのジ、 トリ又はテトラメタクリレート、エチレングリコールジ アリルエーテル、プロピレングリコールジアリルエーテ ル、ポリエチレングリコールジアリルエーテル、ポリプ ロピレングリコールジアリルエーテル、グリセリンのジ 又はトリアリルエーテル、トリメチロールプロパンのジ 又はトリアリルエーテル、テトラメチロールメタンの ジ、トリ又はテトラアリルエーテル、メタクリル酸フエ ノキシエチル、メタクリル酸フエノキシジエチレングリ コール、メタクリル酸フエノキシテトラエチレングリコ ール、メタクリル酸ベンジル、メタクリル酸シクロヘキ シル、メタクリル酸テトラヒドロフルフリル、メタクリ ル酸ジシクロペンテニル、メタクリル酸ジシクロペンテ ニルオキシエチル、メタクリル酸N-ビニルー2-ピロ リドン、メタクリロニトリル、メタクリルアミド、Nー メチロールメタクリルアミド、メタクリル酸2-ヒドロ キシエチル、メタクリル酸ヒドロキシプロピル、メタク リル酸ヒドロキシブチル、メタクリル酸2-ヒドロキシ -3-フエニルオキシプロピル等のビニル系単量体が挙 げられる。これらの化合物は、単独又は2種以上を組み 合わせて使用することができる。

【0012】水性懸濁重合は、水性媒体中で懸濁重合を 行うものであるが、この水性媒体としては、水は必須で あり、また、懸濁系の安定性を阻害しない範囲で、水溶 性有機溶媒を溶解した水を使用してもよい。

【0013】水性懸濁重合は、重合開始剤の存在下で行 う。重合開始剤としては、過酸化物系ラジカル開始剤、 アゾ系ラジカル開始剤が好ましく、例えば、過酸化ベン ゾイル、過安息香酸2-エチルヘキシル、過酸化アセチ ル、過酸化イソプチリル、過酸化オクタノイル、過酸化 ラウロイル、過酸化ジtert-ブチル、クメンヒドロ ペルオキシド、メチルエチルケトンペルオキシド、4, 4, 6-トリメチルシクロヘキサノンジtert-プチ ルペルオキシケタール、シクロヘキサノンペルオキシ ド、メチルシクロヘキサノンペルオキシド、アセチルア セトンペルオキシド、シクロヘキサノンジーtert-ブチルペルオキシケタール、アセトンジーtertープ チルペルオキシケタール、ジイソプロピルヒドロペルオ キシド等の過酸化物系ラジカル重合開始剤、2、2'-アゾビスイソブチロニトリル、2、2'-アゾビス (2、4-ジメチルバレロニトリル)、(1-フェニル エチル) アゾジフェニルメタン、2、2'-アゾビス (4-メトキシー2、4-ジメチルバレロニトリル)、 ジメチル2、2'-アゾビスイソブチレート、2、2' ーアソビス (2-メチルブチロニトリル)、1、1'-アゾビス (1-シクロヘキサンカーボニトリル)、2-(カーバモイルアゾ) イソプチロニトリル、2、2'-アゾビス(2、4、4ートリメチルペンタン)、2ーフ ェニルアゾー2、4-ジメチルー4-メトキシバレロニトリル、2、2'-アゾビス(2-メチルプロパン)等のアゾ系重合開始剤が挙げられる。これら重合開始剤を1種又は2種以上使用することができる。

【0014】ラジカル重合開始剤は、ビニル基を1個有する単量体100重量部に対して0.05~10重量部使用される。使用量が0.05重量部未満では重合時間が長くなり、また未反応の単量体が重合体微粒子中に残存して好ましくない。一方、使用量が10重量部を越える場合は重合開始剤が無駄であるばかりでなく、重合中の発熱制御が難しく、分子鎖長が不十分等の問題が発生する。この使用量は単量体の種類などにより適宜決められるものであるが、好ましくは単量体の総量対して0.1~4.0重量%使用される。

【0015】水性懸濁重合は、分散剤の存在下で行う。 分散剤としては、例えば、ポリビニルアルコール、アルキルセルロース、ヒドロキシアルキルセルロース、カルボキシアルキルセルロース等の水溶性セルロース誘導体、ポリアクリル酸ナトリウムなどの高分子保護コロイド、リン酸三カルシウム、ヒドロキシアパタイト等の難溶性りん酸塩が挙げられる。分散剤は、水に対して0.001~50重量%の範囲で使用されるのが好ましい。

【0016】粒径調節のために必要に応じて分散助剤として陰イオン系界面活性剤を重合系に添加したり、単量体や水と難溶性の有機溶媒の水への溶解性を防ぐために水溶性無機塩を重合系に添加することができる。

【0017】(a),(b)成分の化合物、分散剤、重合開始剤及び必要に応じて用いられる分散助剤、有機溶媒は、これらを予め混合して復は各々に水性媒体に添加して分散させる。この場合、よく分散させるためにホモミキサー等により高速攪拌(3000~8000rpm)するのが好ましく、この高速攪拌は、重合初期まで行うことができる。

【0018】これ以降の重合は、プロペラ攪拌機等を用いて通常の攪拌下(10~1000rpm)で行う。なお、水性媒体は、(a),(b)成分及び有機溶媒の総量に対して1~50重量倍使用するのが好ましい。この場合、水性媒体としては、水が使用されるが、懸濁系の安定性を阻害しない範囲で水溶性有機溶媒を溶解して含む水を使用してもよい。重合時に水に不溶性又は難溶性の有機溶媒を添加することにより、生成する架橋共重合体粒子を多孔性にすることができる。

【0019】本発明で用いられる水に不溶性又は難溶性の有機溶媒は、25℃で水100gに対して溶解量が15g以下のものであり、例えば、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ヘプタノール、イソアミルアルコール、酢酸エチル、酢酸ブチル、フタル酸ジメチル、フタル酸ジエチル等の脂肪族又は芳香族エステル、酢酸エチレングリコールモノエチルエーテル、ヘキサン、オクタン、デカン等、公知のものが使用でき

る。これらの有機溶媒は、得られる重合体の元となる単 量体の種類によって適宜使い分けられ、単独で用いても よいし、2種以上を混合して用いてもよい。

【0020】これらの有機溶媒の配合割合は、多孔性の点からピニル単量体総量に対して5~300重量%、好ましくは20~200重量%、より好ましくは50~100重量%にされる。この配合割合が5重量%未満であったり、300重量%を超えると所望の多孔性が得られにくくなる。重合反応は、通常、60~90℃の温度範囲で、5~10時間進行させる。

【0021】以上のようにして得られた粒径 $1\sim200$   $\mu$  m、好ましくは $20\sim150$   $\mu$  mの球状粒子は、必要に応じて分級し、固相抽出用吸着剤として使用できる。 【0022】

【実施例】次に、実施例により本発明を説明する。

#### 【0023】実施例1

本発明における一般式(I)の化合物として52%ジビニルビフェニル(異性体混合物)100g、エチレングリコールジメタクリレート100g水に不溶性又は難溶性の有機溶媒として酢酸ブチル200g、イソアミルアルコール50g及び重合開始剤としてアゾビスイソブチロニトリル1.0gの混合物を0.1%メチルセルロース水溶液1.0リットル中に懸濁させ、ホモミキサーを使用して高速攪拌下(1500rpm)、70℃で約1時間攪拌し、油滴の粒径を30~100μmに調整した。その後、普通のプロペラ攪拌装置に移して攪拌しながら

(200rpm) 80℃で6時間反応させて架橋共重合 体粒子を得た。

【0024】この粒子をろ過してイオン交換水5リットル次いでアセトン2リットルで洗浄後、真空乾燥した。 得られた粒子を40~90μmに分級し、固相抽出用吸 着剤とした。

【0025】図1に示すように、この吸着剤2を樹脂製のフィルター1がセットされた樹脂製のリザーバー3に0.5g充てんし、さらに上から樹脂製のフィルター1で栓をして固相抽出用カートリッジカラム4を作製した。

【0026】この固相抽出用カートリッジカラム4を用いて以下の手順で農薬の濃縮、回収率の測定を行った。

- (1) 固相抽出カートリッジカラム 4 を図2のように吸引マニホールド 6 にセットする。
- (2) 吸引マニホールド6内に受器のメスフラスコ7を セットする。
- (3) 吸引を開始して減圧し、吸引マニホールド6内を 11~13mmHgに調節する。
- (4) 5mlのアセトニトリルを試料注入用リザーバー5 に入れ二方コック8を開き吸引する。
- (5) 続けて、30mlの純水を通液させる。
- (6) 10ppmに調整された6種類の標準農薬試料5m1を20 0m1のメスフラスコで40倍に希釈することにより得られ

た各0.25ppmに調整された6種類の農薬試料200mlを試料 注入用リザーバー5に投入して固相抽出用カートリッジ カラム4を通液させ各農薬成分をカートリッジカラム4 内の吸着剤に濃縮させる。

- (7) 液がカートリッジカラム4を抜け切った後、二方コック10を閉じ、試料注入用リザーバーを取付けたまま 固相抽出用カートリッジカラム4を隣に移し、二方コック10に取付ける。
- (8) 試料注入用リザーバー5に5mlアセトニトリルを加え、二方コック10を開き濃縮された農薬成分を溶出させメスフラスコ9導く。
- (9) 濃縮された農薬成分をよく振とうし、 $20 \mu 1$  を高速液体クロマトグラフィーで分離しその面積値を求める。
- (10)各10ppmに調整された7種類の農薬標準試料20μ 1を高速液体クロマトグラフィーで分離しその面積値を 求める。
- (11) 濃縮成分の面積値/標準試料の面積値で回収率 を求める。

【0027】吸着剤の濃縮能力が弱いと試料中の農薬が 吸着剤に吸着されず又は吸着されたものがスムーズに脱 着されず回収率が低下する。

【0028】回収率測定結果を表1に示した。すべての回収率が85%以上であることから試料の濃縮能力に優れていることが分かった。

#### 【0029】実施例2

本発明における一般式 (I) の化合物として52%ジビニルビフェニル (異性体混合物) 150g、エチレングリコールジメタクリレート50gを用いた以外は、実施例1と同様の方法で合成、回収率の測定を行い、結果を表1に示した。回収率は、実施例1と同様に優れていた。

#### 【0030】比較例1

純度60重量%のジビニルベンゼン200gを用いた以外は、 実施例1と同様の方法で合成、回収率の測定を行い、結 果を表1に示した。一部の回収率が低く、再現性にも乏 しいことが分かった。

#### 【0031】比較例2

エチレングリコールジメタクリレート160g、ステアリルメタクリレート40gを用いた以外は、実施例1と同様の方法で合成、回収率の測定を行い、結果を表1に示した。一部の回収率が低く、再現性にも乏しいことが分かった。

#### [0032]

#### 【表1】

|         | 回収率(%) |      |       |       |  |
|---------|--------|------|-------|-------|--|
|         | 実施例1   | 実施例2 | 比較例1  | 比較例2  |  |
| アシュラム   | 99.8   | 97.8 | 81.2  | 78.9  |  |
| オキシンーCu | 99.5   | 95.6 | 85.1  | 30.3  |  |
| メコブロップ  | 99.8   | 96.3 | 95.8  | 100.6 |  |
| チウラム    | 100.1  | 98.7 | 85.7  | 100.9 |  |
| イプロジオン  | 89.6   | 98.1 | 100.2 | 108.3 |  |
| ベンスリド   | 100,4  | 99.2 | 100.4 | 103.7 |  |

#### [0033]

【発明の効果】本発明の架橋共重合体粒子は、吸着性及び脱着性がよく回収率に優れているので、農薬、ハロゲン系溶剤等の環境関連化合物の希薄溶液試料を作業性よく容易に濃縮でき、濃縮された試料は各種の分析に利用でき、各種の分析を容易に行うことができる。

#### 【図面の簡単な説明】

【図1】固相抽出用カートリッジカラムの模式図 【図2】農薬の濃縮、回収率の測定法の模式図

【符号の説明】

【図1】



- 1. フィルター
- 2. 吸着剤
- 3. リザーバー
- 4. 固相抽出用カートリッジカラム
- 5. 試料注入用リザーバー
- 6. 吸引マニホールド
- 7. メスフラスコ
- 8. 二方コック
- 9. メスフラスコ
- 10. 二方コック

## 【図2】



#### フロントページの続き

Fターム(参考) 4J011 JA04 JA06 JA07 JA08 JA13 JB14 JB26

4J100 AB15Q AE70P AE71P AE76P
AE77P AL08P AL09P AL62P
AL63P AL66P AM02P AM15P
AM21P AQ07P BA03P BA03Q
BA04P BA08P BB01Q BB03Q
BB05Q BB07Q BC04P BC07P
BC43P CA04 FA21 JA15









✓ Include in patent order

MicroPatent® Worldwide PatSearch: Record 1 of 1

Reference: 49991/60505 D. Kim

$$CH_{2}=CH$$

$$R^{7}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

Family Lookup

# JP2002187904

# CROSSLINKED COPOLYMER PARTICLE AND PROCESS FOR ITS PREPARATION HITACHI CHEM CO LTD

Inventor(s): ;AOYAMA TETSUYA ;BUTSUGAN MICHIO ;KUMAGAI YUGO Application No. 2000388912 , Filed 20001221 , Published 20020705

## Abstract:

PROBLEM TO BE SOLVED: To prepare a crosslinked copolymer particle which is useful for a solidphase extracting adsorbent excellent in recovery and good in workability, and to provide a process for preparing the same. SOLUTION: The process for preparing the crosslinked copolymer particle comprises an aqueous suspension polymerization of 20-70 pts.wt. of (a) a monomer expressed by formula (I) (wherein, R1 through R8 are each independently hydrogen atom, a 1- 20C alkyl group, hydroxyl group, or a halogen atom) and 30-80 pts.wt. of (b) a polyhydric alcohol poly(meth) acrylate.

Int'l Class: C08F00218 C08F21234 C08F22020

MicroPatent Reference Number: 002334992

COPYRIGHT: (C) 2002 JPO

PatentWeb







atentWeb Edit Home Search

Return to th Patent List

For further information, please contact:

<u>Technical Support | Billing | Sales | General Information</u>

# (19) Japanese Patent Office (JP) (12) Official Gazette of Unexamined Patent Applications (A)

(11) Patent Application Publication No: 2002-187904 (P2002-187904A)

(43) Patent Application Publication Date: July 5, 2002 (2002.7.5)

(51) Int. Cl.<sup>7</sup> **Identification Code** FI Theme Code (Reference)

C 08 F 2/18

C 08 F 2/18

4J011

212/34

212/34

4J100

220/20

220/20

Request for Examination: Not yet received

Number of Claims: 3

OL

(Total of 5 Pages)

(21) Patent Application No:

2000-388912 (P2000-388912)

(22) Patent Application Date: December 21, 2000 (2000.12.21)

(71) Applicant:

000004455

Hitachi Chemical Co., Ltd.

2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo

(72) Inventor:

Tetsuya AOYAMA

Hitachi Chemical Co., Ltd., Yamazaki Facility 4-13-1, Higashi-cho, Hitachi-shi, Ibaraki-ken

(72) Inventor:

Michio BUTSUGAN

Hitachi Chemical Co., Ltd., Yamazaki Facility 4-13-1, Higashi-cho, Hitachi-shi, Ibaraki-ken

(72) Inventor:

Yugo KUMAGAI

Hitachi Chemical Co., Ltd., Yamazaki Facility 4-13-1, Higashi-cho, Hitachi-shi, Ibaraki-ken

Continued on Last Page

1

CERTIFIED: A TRUE TRANSLATION

Shawn R. Lindholm, Assistant Director Translation Center University of Massachusetts Amherst (54) [Title of the Invention] Crosslinked Copolymer Particles and Manufacturing Method
Therefor

# (57) [Abstract]

[Problem] To provide crosslinked copolymer particles for use in an easy-to-use adsorbent for solid-phase extraction with a superior recovery rate, and a method for manufacturing these crosslinked copolymer particles.

[Solution] A method for manufacturing crosslinked copolymer particles, wherein aqueous suspension polymerization is performed on 20 to 70 ppw monomer (a) expressed by general formula (I) and 30 to 80 ppw polyhydric alcohol poly(meth)acrylic acid ester (b)

(Here, R1 through R8 denote different hydrogen atoms, alkyl groups with 1 to 20 carbon atoms, hydroxyl groups and/or halogen atoms).

# [Claims]

[Claim 1] A method for manufacturing crosslinked copolymer particles, wherein aqueous suspension polymerization is performed on 20 to 70 ppw monomer (a) expressed by general formula (I) and 30 to 80 ppw polyhydric alcohol poly(meth)acrylic acid ester (b)

(Here, R1 through R8 denote different hydrogen atoms, alkyl groups with 1 to 20 carbon atoms, hydroxyl groups and/or halogen atoms).

CERTIFIED: A TRUE TRANSLATION

Shawn R. Lindholm, Assistant Director Translation Center University of Massachusetts Amherst [Claim 2] Crosslinked copolymer particles obtained using the manufacturing method in

claim 1, wherein general formula (I) is a divinyldiphenyl.

[Claim 3] Crosslinked copolymer particles obtained using the manufacturing method in

claim 1 or claim 2.

[Detailed Description of the Invention]

[0001]

[Industrial Field of Application] The present invention relates to crosslinked copolymer

particles for use in an adsorbent for solid-phase extraction, and a method for

manufacturing these crosslinked copolymer particles.

[0002]

[Prior Art] The liquid-phase extraction method is most commonly used for extracting

target substances from liquids. However, this method is difficult to use and requires a

large amount of solvent.

[0003] Soon, the solid-phase extraction method will be used to process large amounts of

target substances in connection with a method of synthesizing silica-based and polymer-

based porous particles. This extraction method is easy to use and does not require a

large amount of solvent. The following particles are known to be used in solid-phase

extraction.

(1) Silica gels and chemically bonded silica gels in which the surface of the silica gel has

been altered chemically

3

CERTIFIED: A TRUE TRANSLATION

SUNCHUM 9gan 2003

Translation Center

(2) Styrene-divinylbenzene copolymers

(3) (Meth)acrylic acid ester copolymers

[0004]

[Problem Solved by the Invention] Unfortunately, these particles experience the

following problems. (1) Some of the target substance breaks down due to the impurities

in the silica when a chemically bonded silica gel is used to perform an environmental

analysis of synthetic antibacterial residues in meat.

[0005] (2) Styrene-divinyl benzene copolymers are not easy to use when processing

aqueous solutions because of they are strongly hydrophobic.

[0006] (3) The target substance recovery rate is low in the case of (meth)acrylic acid

ester copolymers because they are strongly hydrophilic. After coating an extraction tube

filled with the copolymer and concentrating the substance, the organic solvent used in

the extraction process causes the copolymer to expand. As a result, it is also difficult to

use.

[0007] The purpose of the present invention is to solve these problems by providing

crosslinked copolymer particles for use in an easy-to-use adsorbent for solid-phase

extraction with a superior recovery rate, and a method for manufacturing these

crosslinked copolymer particles.

[8000]

4

CERTIFIED: A TRUE TRANSLATION

SU JUN 9901 2003

Shawn R. Lindholm, Assistant Director Translation Center University of Massachusetts Amherst [Means of Solving the Problem]

(1) A method for manufacturing crosslinked copolymer particles, wherein aqueous

suspension polymerization is performed on 20 to 70 ppw monomer (a) expressed by

general formula (I) and 30 to 80 ppw polyhydric alcohol poly(meth)acrylic acid ester

(b)

[0009]

[Formula 1]

**(l)** 

(Here, R1 through R8 denote different hydrogen atoms, alkyl groups with 1 to 20 carbon

atoms, hydroxyl groups and/or halogen atoms).

(2) Crosslinked copolymer particles obtained using the manufacturing method in (1),

wherein general formula (I) is a divinyldiphenyl.

(3) Crosslinked copolymer particles obtained using the manufacturing method in (1) or

**(2)**.

[0010]

[Embodiment of the Invention] In the compound (a) of the present invention expressed

by general formula (I), R1 through R8 denote different hydrogen atoms, alkyl groups

with 1 to 20 carbon atoms, hydroxyl groups and/or halogen atoms. The alkyl group with

1 to 20 carbon atoms can be a straight-chain alkyl group such as a methyl group, an

ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group, or a

branched-chain alkyl group such as an isopropyl group, an isobutyl group, a tert-butyl

5

CERTIFIED: A TRUE TRANSLATION

Shell Plan 203

Shawn R. Lindholm, Assistant Director Translation Center

group or an isopentyl group. The halogen atoms can be Cl, Br, F or I. A monomer in which R1 through R3 in general formula (I) are hydrogen atoms is a divinyldiphenyl. There are no restrictions on the purity, but it should be at least 50% pure.

[0011] Examples of polyhydric alcohol poly(meth)acrylic acid esters (b) used in the present invention include alkylene glycol divinyl esters such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate and propylene glycol dimethacrylate; polyalkylene glycol divinyl esters such as polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate and polypropylene glycol dimethacrylate; and other vinyl-based monomers such as glycerin diacrylate, glycerin triacrylate, glycerin dimethacrylate, glycerin trimethacrylate, trimethylol propane diacrylate, trimethylol propane triacrylate, trimethylol propane dimethacrylate, trimethylol propane trimethacrylate, tetramethylol methane diacrylate, tetramethylol methane triacrylate, tetramethylol methane dimethacrylate, tetramethylol methane trimethacrylate, ethylene glycol diaryl ether, propylene glycol diaryl ether, polyethylene glycol diaryl ether, polypropylene glycol diaryl ether, glycerin diaryl ether, glycerin triaryl ether, trimethylol propane diaryl ether, trimethylol propane triaryl ether, tetramethylol methane diaryl ether, tetramethylol methane triaryl ether, tetramethylol methane tetraaryl ether. phenoxyethyl methacrylate, methacrylic acid phenoxytetraethylene glycol, methacrylic acid phenoxytetraethylene glycol, benzyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, dicyclopentenyl methacrylate, dicyclopentenyl oxyethyl methacrylate, N-vinyl-2-pyrolidone methacrylate, methacrylonitrile. methacrylamide. N-methylol methacrylamide, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, and 2-hydroxy-3-

CERTIFIED: A TRUE TRANSLATION

Studden 9 gan 2003

phenyloxypropyl methacrylate. These compounds can be used alone or in combinations

of two or more.

[0012] Aqueous suspension polymerization is suspension polymerization performed in

an aqueous medium. The aqueous medium is essentially water, but an organic solvent

can be dissolved in the water so long as it does not endanger the stability of the

suspension system.

[0013] Aqueous suspension polymerization is performed in the presence of a

polymerization initiator. The polymerization initiator should be a peroxide-based radical

initiator or an azo-based radical initiator. Examples of peroxide-based radical

polymerization initiators include benzoyl peroxide, 2-ethylhexyl perbenzoate, acetyl

peroxide, isobutyryl peroxide, octanoyl peroxide, lauroyl peroxide, tert-butyl peroxide,

cumene hydroperoxide, methylethyl ketone peroxide, 4,4,6-trimethylcyclohexanone di-

tert-butylperoxyketal, acetone di-tert-butylperoxyketal, and diisopropyl hydroperoxide.

Examples of azo-based polymerization initiators include 2,2'-azobisisobutyronitrile, 2,2'-

azobis (2,4-dimethylvaleronitrile), (1-phenylethyl) azodiphenyl methane, 2,2'-asobis (4-

methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutylate, 2,2'-azobis (2-

methylbutyronitrile). 1,1'-azobis (1-cyclohexane carbonitrile), 2-(carbamoviazo)

isobutyronitrile, 2,2'-azobis (2,4,4-trimethylpentane), 2-phenylazo-2,4-dimethyl-4-

methoxyvaleronitrile, and 2,2'-azobis (2-methylpropane). These polymerization initiators

can be used alone or in combinations of two or more.

CERTIFIED: A TRUE TRANSLATION

Translation Center

[0014] Here, 0.05 to 10 ppw radical polymerization initiator is added to 100 ppw

monomer with a single vinyl group. If less than 0.05 ppw is added, some unreacted

monomer remains in the polymer microparticles. If more than 10 ppw is added, some of

the radical polymerization initiator is wasted, it is more difficult to control the heat during

polymerization, and the length of the molecule chains is unsatisfactory. The amount

added depends on the type of monomer used, but ideally it should range between 0.1

and 4.0 wt% versus the total weight of the monomer.

[0015] The aqueous suspension polymerization should be performed in the presence of

a dispersant. Examples of dispersants include aqueous cellulose derivatives such as

polyvinyl alcohol, alkyl cellulose, hydroxyalkyl cellulose and carboxyalkyl cellulose;

macromolecular protective colloids such as sodium polyacrylate; and non-aqueous

phosphoric acid salts such as tricalcium phosphate and hydroxyapatite. Here, 0.001 to

50 wt% dispersant should be added to the water.

[0016] If necessary, a dispersant aid such as an anionic surfactant can be added to the

polymerization system in order adjust the particle diameter, and an aqueous inorganic

salt can be added to the reaction system in order to prevent solubility in the monomer

and water containing a non-soluble organic solvent.

[0017] Compounds (a) and (b), the dispersant, the polymerization initiator and, if

necessary, the dispersant aid and organic solvent can be mixed together beforehand or

added to the aqueous medium individually and then dispersed. Here, a high-speed

8

**CERTIFIED: A TRUE TRANSLATION** 

SWICKOH 9 Jan 2003

Shawn R. Lindholm, Assistant Director Translation Center

stirrer such as a homo-mixer (3000 to 8000 rpm) is used. Ideally, the high-speed stirrer

should be used until the beginning of polymerization.

[0018] During polymerization itself, a normal stirrer (10 to 1000 rpm) such as a propeller

mixer is used. The amount of aqueous medium used should be 1 to 50 ppw versus the

entire weight of compounds (a) and (b) and the organic solvent. Here, the aqueous

medium is water, but an organic solvent can be dissolved in the water so long as it does

not endanger the stability of the suspension system. If an organic solvent that does not

dissolve or dissolves poorly in water is added during polymerization, the crosslinked

copolymer particles become porous.

[0019] The amount of organic solvent that dissolves should be less than 15 g per 100 g

of water at 25°C. Examples include a fatty ester or aromatic ester such as toluene,

xylene, ethyl benzene, diethyl benzene, heptanol, isoamyl alcohol, ethyl acetate, butyl

acetate, dimethyl phthalate and diethyl phthalate; or some other well-known organic

solvent such as monoethyl ether acetate ethylene glycol, hexane, octane or decane.

The organic solvent used depends on the type of monomers used to obtain the polymer.

One of these organic solvents or a combination of two or more can be used.

[0020] The ratio of organic solvent should range between 5 and 300 wt%, preferably

between 20 and 200 wt%, and ideally between 50 and 100 wt%, versus the total amount

of vinyl monomer. If the ratio is less than 5 wt% or greater than 300 wt%, then the

porosity of the particles is unsatisfactory. The polymerization reaction is performed for 5

to 10 hours at a temperature between 60 and 90°C.

CERTIFIED: A TRUE TRANSLATION

World Plan 2015

Shawn R. Lindholm, Assistant Director Translation Center

[0021] The spherical particles obtained in this manner should have a particle diameter

between 1 and 200  $\mu m$ , and ideally between 20 and 150  $\mu m$ . These can be classified if

necessary and used as an adsorbent for solid-phase extraction.

[0022]

[Working Examples] The following is an explanation of the present invention with

reference to the working examples.

[0023] Working Example 1

A mixture of 100 g of 52% divinyldiphenyl (isomeric mixture) serving as the compound

from general formula (I) in the present invention, 100 g of ethylene glycol

dimethacrylate, 200 g of butyl acetate serving as the organic solvent that does not

dissolve or dissolves poorly in water, 50 g of isoamyl alcohol and 1.0 g of azobis

isobutyronitrile was suspended in 1.0 liter of a 0.1% methylcellulose aqueous solution.

stirred at high speed (1500 rpm) using a homo-mixer for 1 hour at 70°C, and the particle

diameter of the oil droplets was adjusted to between 30 and 100 µm. Afterwards, a

reaction was performed for 6 hours at 80°C while stirring the mixture using an ordinary.

propeller mixer (200 rpm) in order to obtain crosslinked copolymer particles.

[0024] The particles were filtered, rinsed in 5 liters of ion-exchange water and 2 liters of

acetone, and dried in a vacuum. The particles were then classified to a diameter

between 40 and 90 μm, and used as an adsorbent for solid-phase extraction.

10

CERTIFIED: A TRUE TRANSLATION

Gan Jus

Shawn R. Lindholm, Assistant Director Translation Center

[0025] As shown in FIG 1, a plastic reservoir 3 containing plastic filters 1 was filled with

0.5 g of adsorbent 2 between the filters 1 to create a cartridge column 4 for solid-phase

extraction.

11

[0026] Pesticides were then concentrated and the recovery rate measured using the

cartridge column for solid-phase extraction 4 based on the following steps.

(1) The cartridge column for solid-phase extraction 4 is set in the aspiration manifold 6

as shown in FIG 2.

(2) A measuring flask 7 is set inside the aspiration manifold 6.

(3) Suction is started and the pressure inside the aspiration manifold 6 is reduced to

between 11 and 13 mmHg.

(4) 5 ml of acetonitrile is added to the reservoir for target substance introduction 5, the

two-way stopcock 8 is opened, and suction is created.

(5) 30 ml of pure water is introduced.

(6) 5 ml of six different common pesticides adjusted to 10 ppm is diluted by a factor of

40 in a 20 ml measuring flask to obtain 200 ml of a substance containing the six

different pesticides adjusted to 0.25 ppm, which is added to the reservoir for target

substance introduction 5, passed through the cartridge column for solid-phase

extraction 4, and the pesticide component is concentrated in the adsorbent inside

the cartridge column for solid-phase extraction 4.

(7) After the liquid is shut off to the cartridge column 4 and the two-way stopcock 10 is

closed, the cartridge column for solid-phase extraction 4 is moved away with the

**CERTIFIED: A TRUE TRANSLATION** 

SMICHAEL & gan dos

Shawn R. Lindholm, Assistant Director Translation Center reservoir for target substance introduction still attached and connected to the two-

way stopcock 10.

(8) 5 ml of acetonitrile is added to the reservoir for target sample introduction 5, the two-

way stopcock 10 is opened, and the concentrated pesticide component is eluted into

the measuring flask 9.

(9) The concentrated pesticide component is shaken vigorously, 20 μl is separated

using high-performance liquid chromatography, and the area value is determined.

(10) 20  $\mu$ l of a reference substance containing seven different common pesticides

adjusted to 10 ppm each is separated using high-performance liquid

chromatography, and the area value is determined.

(11) The recovery rate is the area value of the concentrated component divided by the

area value of the reference substance.

[0027] If the adsorptive power of the adsorbent is poor, the pesticides in the target

substance are either not adsorbed by the adsorbent or adsorbed but not smoothly

desorbed. In both cases, the recovery rate is poor.

[0028] The results of the recovery rate measurements are shown in Table 1. Because

all of the recovery rates are higher than 85%, the substance concentrating power is

considered superior.

[0029] Working Example 2

The synthesis and recovery rate measurement were performed in the same manner as

the first working example except that 150 g of 52% divinyldiphenyl (isomeric mixture)

was used as the compound in general formula (I) and 50 g of ethylene glycol

**CERTIFIED: A TRUE TRANSLATION** 

Sul Shall agan 2003

Shawn R. Lindholm, Assistant Director Translation Center University of Massachusetts Amherst

12

dimethacrylate was used. The results are shown in Table 1. As in the case of the first working example, the recovery rate is superior.

# [0030] Comparative Example 1

The synthesis and recovery rate measurement were performed in the same manner as the first working example except that 200 g of 60% divinylbenzene was used. The results are shown in Table 1. Some of the recovery rates were lower, but were considered impossible to reproduce.

# [0031] Comparative Example 2

The synthesis and recovery rate measurement were performed in the same manner as the first working example except that 160 g of ethylene glycol dimethacrylate and 40 g of stearyl methacrylate were used. The results are shown in Table 1. Some of the recovery rates were lower, but were considered impossible to reproduce.

[0032]

[Table 1]

Table 1

|           | Recovery Rate (%) |        |        |        |  |
|-----------|-------------------|--------|--------|--------|--|
|           | W.E. 1            | W.E. 2 | C.E. 1 | C.E. 2 |  |
| Asulam    | 99.8              | 97.8   | 81.2   | 78.9   |  |
| Oxine-Cu  | 99.5              | 95.6   | 85.1   | 30.3   |  |
| Mecoprop  | 99.8              | 96.3   | 95.8   | 100.6  |  |
| Thiuram   | 100.1             | 98.7   | 85.7   | 100.9  |  |
| Iprodione | 99.6              | 98.1   | 100.2  | 106.3  |  |
| Bensulide | 100.4             | 99.2   | 100.4  | 103.7  |  |

[0033]

[Effect of the Invention] Because the crosslinked copolymer particles in the present invention have superior adsorptivity and desorptivity, and a high recovery rate, target CERTIFIED: A TRUE TRANSLATION

Shawn R. Lindholm, Assistant Director

Translation Center
University of Massachusetts Amherst

substances diluted in solutions such as pesticides, halogen-based solvents and other environmental hazards can be easily concentrated and the concentrated substances can be easily analyzed.

[Brief Explanation of the Drawings]

[FIG 1] A schematic of a cartridge column for solid-phase extraction.

[FIG 2] A schematic of the method used to measure the concentration and recovery rate for a pesticide.

# [Key to the Drawings]

- 1 ... filter
- 2 ... adsorbent
- 3 ... reservoir
- 4 ... cartridge column for solid-phase extraction
- 5 ... reservoir for target substance introduction
- 6 ... aspiration manifold
- 7 ... measuring flask
- 8 ... two-way stopcock
- 9 ... measuring flask
- 10 ... two-way stopcock

[FIG 1]

(units: mm)

14

**CERTIFIED: A TRUE TRANSLATION** 

Shawn R. Lindholm, Assistant Director Translation Center

↑ discharge ← aspirator

# **Continued From Front Page**

F Terms (Reference)

4J011 JA06 JA07 JA08 JA13 JB14 JB26 4J100 AB15Q AE70P AE71P AE76P AE77P AL08P AL09P AL62P AL63P AL66P AM02P AM15P AM21P AQ07P BA03P BA03Q BA04P BA08P BB01Q BB03Q BB05Q BB07Q BC04P BC07P BC43P CA04 FA21 JA15

CERTIFIED: A TRUE TRANSLATION

Sun Shaw & San 2003

Shawn R. Lindholm, Assistant Director Translation Center University of Massachusetts Amherst