1984 FG7.2

在ΔABC 中, $\angle B = \angle C = 75^{\circ}$ 。若 $q = \sin A$,求 q 的值。 In $\triangle ABC$, $\angle B = \angle C = 75^{\circ}$. If $q = \sin A$, find the value of q.

1984 FG9.4

一面積為 12π 之圓,內接於一周界為P之等邊三角形,求P的值。

The area of a circle inscribed in an equilateral triangle is 12π .

If P is the perimeter of this triangle, find the value of P.

1988 FG10.3-4

在圖中, $AD \perp BC$, $BA \perp CA$,AB = 7,BC = 25,AD = h 及 $\angle CAD = \theta$ 。 若 $100 \sin \theta = t$,求 t 及 h 的值。 In the figure, $AD \perp BC$, $BA \perp CA$, AB = 7 , BC = 25 , AD = h and $\angle CAD = \theta$. If $100 \sin \theta = t$, find the value of t and h .

1989 HI18

如圖二,ABCDEF 為一正六邊形內接於圓形上,O 為圓心。若 O 至 AB 的距離為 $2\sqrt{3}$,且 p 為該正六邊形的周界,求 p 的值。 In figure 2, a regular hexagon ABCDEF is inscribed in a circle centred at O. If the distance of

O from AB is $2\sqrt{3}$ and p is the perimeter of the hexagon, find the value of p.

1989 FG8.2

如圖所示, $100\cos\alpha = k \circ 求 k$ 的值。

In the figure, $100 \cos \alpha = k$.

Find the value of k.

1990 FI2.3

一圓內接於一周界長 36 cm 的正三角形。若圓的面積是 $k\pi$ cm²,求 k 的值。 A circle is inscribed in an equilateral triangle of perimeter 36 cm. If the area of the circle is $k\pi$ cm², find the value of k.

1992 HI12

在圖中,AB = AC = 2BC 及 BC = 20 cm。若 BF 垂 直於 AC,且 AF = x cm,求 x 的值。 In the figure, AB = AC = 2BC and BC = 20 cm.

If BF is perpendicular to AC and AF = x cm,

find the value of x.

1992 FSI.4

如圖所示, 求D的值。

Find the value of D in the figure .

1993 FG10

ABCD 乃一邊長為 $20\sqrt{5}x$ 的正方形。 $P \cdot Q$ 分別為 DC D 及 BC 的中點。

ABCD is a square of side length $20\sqrt{5}x$.

P, Q are midpoints of DC and BC respectively.

G10.1 若 AP = ax, 求 a 的值。

If AP = ax, find the value of a.

G10.2 若 $PQ = b\sqrt{10}x$, 求 b 的值。

If $PQ = b\sqrt{10}x$, find the value of b.

G10.3 若由 $A \subseteq PQ$ 的距離為 $c\sqrt{10}x$, 求 c 的值。

If the distance from A to PQ is $c\sqrt{10}x$, find the value of c.

G10.4 若 $\sin \theta = \frac{d}{100}$, 求 d 的值。If $\sin \theta = \frac{d}{100}$, find the value of d.

1994 HG4

已知一圓內接等邊三角形的周界為 12,試求此圓的面積 (以 π 表示)。 Given that the perimeter of an equilateral triangle inscribed in a circle is 12. Find the area of the circle in terms of π .

1998 FG5.4

在圖中,ABCD 為一正方形,BF//AC,且 AEFC 為一菱形。

 $若\angle EAC = d^{\circ}$, 求 d 的值。

In the figure, ABCD is a square, $BF /\!\!/ AC$, and AEFC is a rhombus. If $\angle EAC = d^{\circ}$, find the value of d.

2000 FG2.2

在左圖中,ABCD 是一長方形。DE:EC=1:5,且 $DE=12^{\frac{1}{4}}$ 。 ΔBCE 沿 BE 摺去另一方。設b 為右圖中陰影部份的面積,求b 的值。

In the left figure, ABCD is a rectangle. DE:EC = 1:5, and $DE = 12^{\frac{1}{4}}$. $\triangle BCE$ is folded along the side BE. If b is the area of the shaded part as shown in the right figure, find the value of b.

2002 HG10

已知三角形 ABC 中的 $\angle A$ 為一直角, $\sin^2 C - \cos^2 C = \frac{1}{4}$, $AB = \sqrt{40}$ 及 BC = x, 已知 AB = a 及 $\angle ACD = 30^\circ$,求 θ 的值。 求 x 的值。

Given that $\angle A$ is a right angle in triangle ABC, $\sin^2 C - \cos^2 C = \frac{1}{4}$, BC = 2AB. Given that AB = a $AB = \sqrt{40}$ and BC = x, find the value of x.

2005 FG3.2

如圖,C 在 AD 上且 AB = BD = 1 cm, $\angle ABC = 90^\circ$, $\angle CBD = 30^\circ$ 。若 CD = b cm,求 b 的值。

In the figure, C lies on AD, AB = BD = 1 cm, $\angle ABC = 90^{\circ}$ and $\angle CBD = 30^{\circ}$. If CD = b cm, find the value of b.

2006 FG4.1

如圖,平行四邊形 ABCD, $BE \perp CD$, $BF \perp AD$,CE = 2 cm,DF = 1 cm 及 $\angle EBF = 60^{\circ}$ 。若平行 四邊形 ABCD 的面積是 R cm²,求 R 的值。 In the figure, ABCD is a parallelogram, $BE \perp CD$, $BF \perp AD$, CE = 2 cm, DF = 1 cm and $\angle EBF = 60^{\circ}$. If the area of the parallelogram ABCD is R cm², find the value of R.

2007 FG3.3

如圖,一螞蟻由 A 點出發,往前直走 $5 \sec 15^{\circ}$ 厘米 至 B 點;接著右轉 30° ,往前直走 $5 \sec 15^{\circ}$ 厘米至 C 點。螞蟻再重覆右轉 30° 及往前直走 $5 \sec 15^{\circ}$ 厘米兩次,分別到達 D 點及 E 點。

In the figure, an ant runs ahead straightly for $5 \sec 15^{\circ}$ cm from point A to point B. It then turns 30° to the right and run $5 \sec 15^{\circ}$ cm to point C.

C ... 30° D ... 30° D

Again it repeatedly turns 30° to the right and run 5 sec 15° cm twice to reach the points D and E respectively. If the distance of AE is x cm, find the value of x.

2013 HI3

如圖所示為一直角三角形 ACD,其中 B 是 AC 上的點且 BC = 2AB。

已知 AB = a 及 $\angle ACD = 30^{\circ}$,求 θ 的值 \circ The figure shows a right-angled triangle ACD where B is a point on AC and BC = 2AB. Given that AB = a and $\angle ACD = 30^{\circ}$, find the value of θ .

2018 FI3.4

長方形 FGHI 被直幾 FH 分為兩個 直角三角形。三角形 ΔFGH 被直幾 EG 分為另外兩個直角三角形。若 FH:FG=2:1 及三角形 ΔEGH 與 三角形 ΔFEG 的面積比為 D:1,求 D 的值。

Suppose that a rectangle *FGHI* is divided into two right-angled triangles by line *FH*. The triangle ΔFGH is then divided into two right-angled triangles by line *EG*. If the ratio of lengths *FH*: *FG* is 2 : 1 and the ratio of the areas of ΔEGH to ΔFEG is D:1, determine the value of D.

Answers

THISWCIS				
1984 FG7.2 $\frac{1}{2}$	1984 FG9.4 36	1988 FG10.3-4 $t = 96, h = \frac{168}{25}$	1989 HI18 24	1989 FG8.2 -96
1990 FI2.3 12	1992 HI12 35	1992 FSI.4 $\frac{5}{2}$	1993 FG10.1 50	1993 FG10.2 10
1993 FG10.3 15	1993 FG10.4 60	$ \begin{array}{r} 1994 \text{ HG4} \\ \underline{16\pi} \\ \hline 3 \end{array} $	1998 FG5.4 30	2000 FG2.2 9
2002 HG10 8	$\frac{2005 \text{ FG3.2}}{\frac{1}{\sqrt{3}}}$	2006 FG4.1 $12\sqrt{3}$	2007 FG3.3 $10\sqrt{3}$	2013 HI3 30°
2018 FI3.4 3				