

클라우드 스토리지(GCS)란?

- 구글 대표적인 객체 리포지토리
- 빅데이터 분석에서 빈번이 사용함
- 데이터량에 관계없이 언제, 어디서나 데이터를 저장하고 가져 올 수 있음(불러 올 수 있음)
- 용도: 컨텐츠를 제공하거나 백업 테이프를 저장하거나 사용자에게 대량의 데이터 객체를 배포
- AWS S3와 유사한 서비스

GCS 주요 개념 (1)

개념	설명
프로젝트	GCP의 프로젝트와 동일한 개념으로 GCS의 모든 데이터는 프로젝트에 속함
버킷	 버킷은 GCS에서 저장하는 모든 데이터들은 버킷에 포함. 중복 버킷 생성 불가(버킷 안에 또 다른 버킷 만들 수 없음) 버킷명은 전역, 고유하기 때문에 GCS 전체 버킷명을 고려 프로젝트마다 2초당 작업 1개라는 제한이 버킷 생성 및 삭제에 적용 버킷 수는 적고 객체가 많도록 설계 추천 버킷과 컨텐츠가 저장되는 지리적 위치 및 리포지토리 등급을 지정 레이블을 달 수 있으면 라벨의 최대 갯수는 버킷당 64개 키값(Key-Value) 형식으로 GCP의 다른 리소스와 그룹화 할 수 있음.
리포지토리 등급	 버킷을 생성할 때 지정할 데이터의 특징에 따라 리포지토리 등급이 나눔. 멀티 리전, 리전, 니어라인(Nearline), 콜드라인(Coldline)

GCS 주요 개념 (2)

개념	설명
객체	 객체는 버킷에 저장하는 파일을 말함. 객체는 객체 데이터와 객체 메타데이터로 나눔. 객체 데이터는 일반적으로 GCS에 저장되는 파일을 말함. 객체 메타 데이터는 키-값 형태로 구성이 되며 다양한 객체의 퀄리티 설명 담당. 버킷에서 만들 수 있는 객체 수에는 제한이 없음. 객체 이름은 유니코드 문자 조합(UTF-8 인코딩)을 포함함. 길이는 1,024 바이트를 초과할 수 없음. 객체 이름에 포함되는 일반 문자는 슬래시(/)를 사용하면 디렉토리 구조가 없는 GCS에서 디렉토리
지리적 중복	 지리적 중복 데이터는 최소 100마일 이상 떨어진 두 곳 이상의 중복 저장 됨. 자연 재해와 같은 대규모 장애 발생시에도 최대한의 데이터 가용성을 보장함. 다중 지역 위치에 저장된 객체는 리포지토리 등급에 관계없이 지리적으로 중복 가능됨. 지리적 중복성은 비동기적으로 발생하지만, 모든 GCS는 사용자가 업로드하는 즉시 최소 한 곳 이상 지리적 장소 내에 중복됨
객체 불변성	 버킷을 생성할 때 지정할 데이터의 특징에 따라 리포지토리 등급이 나눔. 멀티 리전, 리전, 니어라인(Nearline), 콜드라인(Coldline)

리포지토리 등급 차이 비교 (1)

리포지토리 등급	특성	사용 사례	비용(1GB당 월별 과금)
멀티리저널 스토리지	>99.99% 월간 평균 가용성99.95% 가용성 SLA지리적 중복	웹 사이트 콘텐츠, 비디오 스트리밍 또는 게임 및 모바일 앱 등 전세계적으로 자주 데이터 접근함.	\$0.026
리저널 스토리지	 99.99% 월간 평균 가용성 99.95% 가용성 SLA 저장된 GB 대비 낮은 비용 좁은 지역에 데이터 저장 가용성 영역 내에서 중복 	 데이터 분석과 같이 자주 사용하는 구글 클라우드 DataProc 구글 컴퓨트 엔진 인스턴스와 동일한 지역에 접근해서 저장해 데이터 집약적인 컴퓨트 수행 시 높은 성능의 장점을 가질 수 있음 	\$0.02

리포지토리 등급 차이 비교 (2)

리포지토리 등급	특성	사용 사례	비용(1GB당 월별 과금)
니어라인 스토리지	 99.9% 월간 평균 가용성 99.0% 가용성 SLA 저장된 GB 대비 낮은 비용 데이터 검색 비용 높은 운영 비용 30일 최소 저장 기간 	 자주 액세스하지 않을 데이터, 예) 한 달에 한번. 백업 및 지연 시간이 긴 멀티미디어 콘텐츠에 적합 	\$0.026
리전 스토리지	 99.9% 월간 평균 가용성 99.0% 가용성 SLA 저장된 GB 대비 낮은 비용 데이터 검색 비용 높은 운영 비용 90일 최소 저장 기간 	 데이터 분석과 같이 자주 사용하는 구글 클라우드 DataProc 구글 컴퓨트 엔진 인스턴스와 동일한 지역에 접근해서 저장해 데이터 집약적인 컴퓨트 수행 시 높은 성능의 장점을 가질 수 있음 	\$0.02

스토리지 클래스

- Standard: 정기적 액세스, 최소 보관 기간 없음, '핫' 데이터
- Nearline: 한 달에 한 번 미만 액세스, 한 달 이상 보관
- Coldline: 한 분기에 한 번 미만 액세스, 한 분기 이상 보관
- Archive: 일 년에 한 번 미만 액세스, 일 년 이상 보관

gsutil에 대하여

gs://[버킷 이름]/[객체 이름]

