Homework 8 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

February 19, 2024

- 1. (a) Suppose $\prod_{n=1}^{\infty} a_n = a \in \mathbb{R}^+$, $\exp(\sum_{n=1}^{\infty} \ln(a_n)) = \prod_{n=1}^{\infty} a_n = a$. Thus, $\sum_{n=1}^{\infty} \ln(a_n) = \ln(a) \in (-\infty, \infty)$ Therefore, $\prod_{n=1}^{\infty} a_n$ converges iff $\sum_{n=1}^{\infty} \ln(a_n)$ converges.
 - (b) Since $u_n \ge 0$ and converges, $\sum_{n=1}^{\infty} u_n$ converges if u_n converges to 0. By limit comparison test $\lim_{n \to \infty} \frac{\ln(1+u_n)}{u_n} = \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$, u_n converges $\iff \prod_{n=1}^{\infty} (1+u_n)$ converges.
 - (c) Since $\sum_{n=1}^{\infty} u_n$ is absolutely convergent, by (b), $\prod_{n=1}^{\infty} (1+|u_n|)$ is converges. For any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, for all a,b>N s.t. $|\sum_{n=1}^{a} \ln(1+|u_n|) \sum_{n=1}^{b} \ln(1+|u_n|)| < \varepsilon$. Then, $|\sum_{n=1}^{a} \ln(1+u_n) \sum_{n=1}^{b} \ln(1+u_n)| < \varepsilon$. Which implies $\sum_{n=1}^{\infty} \ln(1+u_n)$ converges. Thus, $\prod_{n=1}^{\infty} (1+u_n)$ converges.
- 2. $\frac{\sqrt{a_n}}{n^p} = \sqrt{\frac{a_n}{n^{2p}}} \le \frac{a_n + n^{-2p}}{2}$ by AM-GM Inequality. Then, if $p \le \frac{1}{2}$, then $\frac{1}{n^{2p}} \ge \frac{1}{n}$ diverges. Therefore, if $p > \frac{1}{2}$, $\sum_{n=1}^{\infty} \sqrt{a_n} \cdot n^{-p} \le \sum_{n=1}^{\infty} (\frac{a_n + n^{-2p}}{2})$ converges by p-test.
 - Counter example: $a_n = \frac{1}{n(\ln(n))^2}$, then $\sum_{n=1}^{\infty} \sqrt{\frac{a_n}{n}} = \sum_{n=1}^{\infty} \frac{1}{n(\ln(n))}$ diverges by integral-test.