

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Subsidiary/Advanced Level In Pure Mathematics P4 (WMA14/01)

Question Number	Scheme	Marks
1 (a)	$(1+kx)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right) \times (kx) + \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right)}{2!} \times (kx)^{2} + \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)}{3!} \times (kx)^{3} \dots$	
(i)	$\frac{1}{2}k = \frac{1}{8} \Rightarrow k = \frac{1}{4}$ $\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right)$ $\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)$	M1A1
(ii)	$A = \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right)}{2!} \times "k"^2 = -\frac{1}{128} \qquad B = \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)}{3!} \times "k"^3 = \frac{1}{1024}$	M1 A1 A1
		(5)
(b)	Substitutes $x = 0.6 \Rightarrow \sqrt{1.15} = 1 + \frac{1}{8} \times 0.6 - \frac{1}{128} \times 0.6^2 + \frac{1}{1024} \times 0.6^3 = 1.072398$	M1 A1
		(2)
		(7 marks)
1(b) alt	$(1+kx)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right) \times (kx) - \left(\frac{1}{8}\right) \times (kx)^2 + \left(\frac{1}{16}\right) \times (kx)^3$ Substitutes " kx " = 0.15	
	Substitutes " kx " = 0.15	
	$\Rightarrow \sqrt{1.15} = 1 + \frac{1}{2} \times 0.15 - \frac{1}{8} \times 0.15^{2} + \frac{1}{16} \times 0.15^{3} = 1.072398$	M1A1
		(2)

 $(a)\overline{(i)}$

M1: Sets $\frac{1}{2}k = \frac{1}{8}$ or $\frac{1}{2}kx = \frac{1}{8}x$ and proceeds to find k. Implied by a correct value for k

A1: $k = \frac{1}{4}$ oe such as $\frac{2}{8}$ or 0.25

(a)(ii)

M1: Correct attempt at 3rd **or** 4th term. Eg. $Ax^2 = \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right)}{2!} \times (kx)^2$ or $Bx^3 = \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)}{3!} \times (kx)^3$ with an attempt at substituting in their value for k to find a value for k or a value for k. Condone a missing bracket around the kx terms so allow with k instead of k^2 or k^3 respectively. These may be simplified so award for $A = -\frac{1}{8} \times ("k")^2$ or $B = \frac{1}{16} \times ("k")^3$ again, condoning k instead of k^2 or k^3 respectively.

A1: $A = -\frac{1}{128}$ o.e. There is no requirement to simplify the fraction

A1: $B = \frac{1}{1024}$ o.e You may occasionally see $B = \frac{3}{3072}$ which is fine.

(b)

M1: For an attempt to substitute

- either kx = 0.15 into an expansion of the form $1 \pm p \times (kx) \pm q \times (kx)^2 \pm r \times (kx)^3$
- or $x = \frac{0.15}{"k"}$ into their $1 + \frac{1}{8}x + "A"x^2 + "B"x^3$

A1: 1.072398 Must be to 6 decimal places.

Question Number	Scheme	Marks
2	Achieves a lower limit of 2	B1
	Attempts $\alpha \int y^2 dx = \alpha \int \frac{81}{(2x-3)^{2.5}} dx = \alpha \times \frac{-27}{(2x-3)^{1.5}}$	M1, A1
	Correct attempt at volume of solid generated under curve =	
	$= \pi \int_{-2^{-n}}^{6} y^{2} dx = \left[\frac{k}{(2x-3)^{1.5}} \right]_{-2^{-n}}^{6} = \left(\left(-\frac{27}{27} \right) - \left(-\frac{27}{1} \right) \right)$	dM1
	Volume = 26π	A1
	Correct attempt at volume of solid = $\pi \times 9^2 \times (6 - 2) - 26\pi$	ddM1
	$=298\pi$	A1
		(7 marks)

B1: Finds the lower limit. This may be awarded anywhere. Accept on the diagram or in the limits of an integral

M1: Integrates an expression of the form $\int \frac{...}{(2x-3)^{2.5}} dx$ and achieves $\frac{...}{(2x-3)^{1.5}}$ oe

A1: Correct integration of $\alpha \int y^2 dx = \alpha \int \frac{81}{(2x-3)^{2.5}} dx$ giving a solution $\alpha \times \frac{-27}{(2x-3)^{1.5}}$ o.e.

following through on their α . Typical values of α will be 1, π or 2π . No need to simplify here

dM1: Attempts to find the volume of the solid generated by rotating the area under the curve.

Look for $\left[\frac{\dots}{(2x-3)^{1.5}}\right]_{12}^{6} = \dots$ It is dependent upon the previous M1.

The top limit must be 6 and the bottom limit must be their solution to $\frac{9}{(2x-3)^{1.25}} = 9$

A1: Correct exact volume for the solid generated by rotating the area under the curve. Volume = 26π This may be the second part of a larger/complete expression. E.g. – 26π

ddM1: Correct method for the volume of the solid formed by rotating the area above the curve.

Accept
$$\pi \times 9^2 \times (6 - 2) - 26\pi$$

It is dependent both previous M's

A1: 298π

Question Number	Scheme	Marks	
3 (a)	Attempts to find $\frac{\frac{1}{3} \times 20^2 \times 24}{160} = 20$ seconds	M1 A1	
			(2)
(b)	Attempts $\frac{dV}{dh} = h^2 + \frac{8}{3}h$	M1	
	Attempts to use $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt} \Rightarrow 160 = \left(h^2 + \frac{8}{3}h\right) \times \frac{dh}{dt}$	M1 A1	
	Substitutes $h = 5 \Rightarrow 160 = \left(5^2 + \frac{40}{3}\right) \times \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{96}{23} (4.2) \text{ cm s}^{-1}$	dM1 A1	
			(5)
		(7 marks)	

(a)

M1: Attempts to find the volume, using the given formula, at h = 20 and dividing by 160. Implied by 20 Condone slips. For example they may have incorrectly multiplied out/calculated the expression for V

A1: 20 seconds. This requires the correct units as well

(b)

M1: For an attempt to differentiate *V*

Scored for an attempt to multiply out and then differentiate term by term to achieve $\frac{dV}{dh} = \alpha h^2 + \beta h$

or via the product rule to achieve $V = \frac{1}{3}h^2(h+4) \Rightarrow \frac{dV}{dh} = (h+4) \times ph + qh^2$

M1: Attempts to use $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ (or equivalent) with $\frac{dV}{dt} = 160$ and their $\frac{dV}{dh}$.

A1: Correct expression involving $\frac{dh}{dt}$ and h E.g. $160 = \left(h^2 + \frac{8}{3}h\right) \times \frac{dh}{dt}$

dM1: Dependent upon the previous M only. It is for substituting h = 5 and proceeding to a value for $\frac{dh}{dt} = ...$

A1: Either $\frac{96}{23}$ or awrt 4.2 cm s⁻¹ There is no requirement for the units here

Question	Scheme	Marks
4.	$\int_{1}^{4} \frac{10}{5x + 2x\sqrt{x}} \mathrm{d}x$	
	$u = \sqrt{x} \Rightarrow x = u^2 \Rightarrow \frac{dx}{du} = 2u$	B1
	$\int \frac{10}{5x + 2x\sqrt{x}} \mathrm{d}x = \int \frac{10}{5u^2 + 2u^3} 2u \mathrm{d}u$	M1 A1
	$= \int \frac{20}{5u + 2u^2} du = \int \frac{4}{u} - \frac{8}{5 + 2u} du$	dM1 A1
	$=4\ln u-4\ln(5+2u)$	ddM1
	Limits = $[4 \ln u - 4 \ln (5 + 2u)]_1^2 = 4 \ln 2 - 4 \ln 9 + 4 \ln 7 =$	M1
	$=4\ln\left(\frac{14}{9}\right)$	A1 (8 marks)

B1: For
$$\frac{dx}{du} = 2u$$
 or $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or equivalent

M1: Attempts to write all terms in the integral in terms of u (inc the dx)

Condone slips for this mark BUT the dx CANNOT just be replaced by du.

Look for either $x \to u^2$ or $x\sqrt{x} \to u^3$ with either $dx \to f(u)du$ or $dx \to k \times du$, $k \ne 1$

A1: Correct integrand in terms of just u which may be unsimplified. E.g $\int \frac{10}{5u^2 + 2u^3} 2u du$

dM1: Attempts to use PF and writes their integrand in terms of its component fractions.

Look for an integral of the form
$$\int \frac{P}{Ou + Ru^2} du \rightarrow \int \frac{p}{u} + \frac{q}{Q + Ru} du$$

A1: Correct PF
$$\int \frac{4}{u} - \frac{8}{5+2u} (du)$$

ddM1: For ... $\ln u \pm ... \ln (5 + 2u)$ but follow through on their PF's which must be of a similar form

M1: Uses the limits 1 and 2 within their attempted integral. The integration may be incorrect.

Alternatively substitutes $u = \sqrt{x}$ and uses the limits 1 and 4 within their attempted integral

A1:
$$4\ln\left(\frac{14}{9}\right)$$

Question Number	Scheme	Marks
5 (a)	$2y\frac{dy}{dx} = e^{-2x}\frac{dy}{dx} - 2ye^{-2x} - 3$	B1M1 A1
	$\left(e^{-2x} - 2y\right)\frac{dy}{dx} = 2ye^{-2x} + 3 \Rightarrow \frac{dy}{dx} = \frac{2ye^{-2x} + 3}{e^{-2x} - 2y} *$	A1*
		(4)
(b)	Puts $x = 0$ into the equation of the curve $\Rightarrow y = y^2 \Rightarrow y = 1$	B1
	Attempts tangent at $(0,0)$ or $(0,1)$ $y = 3x$ or $y = -5x + 1$	M1 A1
	Solves $y = 3x$ with $y = -5x + 1 \Rightarrow R = \left(\frac{1}{8}, \frac{3}{8}\right)$	dM1 A1
		(5)
		(9 marks)

(a) Originally scored M1 B1 A1 A1, now B1 M1 A1 A1

B1: Correct differentiation using the chain rule $y^2 \rightarrow 2y \frac{dy}{dx}$.

M1: Attempts to apply the product rule of differentiation on ye^{-2x} to give $e^{-2x} \frac{dy}{dx} \pm ... ye^{-2x}$

A1: Correct differentiation $2y \frac{dy}{dx} = e^{-2x} \frac{dy}{dx} - 2ye^{-2x} - 3$

Allow
$$2y \, dy = e^{-2x} dy - 2y e^{-2x} dx - 3dx$$

A1*: Proceeds to the given answer via an intermediate line equivalent to $\left(e^{-2x} - 2y\right) \frac{dy}{dx} = 2ye^{-2x} + 3$ with correct bracketing.

(b)

B1: Deduces or implies that x = 0, y = 1 at P. May state or use coordinates of P(0,1)

M1: Scored for an attempt to find the equation of the tangent at O or the equation of the tangent at P

E.g. Substitutes (0,0) into
$$\frac{dy}{dx} = \frac{2ye^{-2x} + 3}{e^{-2x} - 2y} = \beta$$
 and states $y = \beta x$

Alternatively substitutes (0,"1") into $\frac{dy}{dx} = \frac{2ye^{-2x} + 3}{e^{-2x} - 2y} \rightarrow "k"$ and attempts y - 1 = "k"x or equivalent

A1: Achieves a correct equation for either tangent. Look for either y = 3x or y = -5x + 1 o.e.

dM1: Correct attempt at both tangents with an attempt to solve simultaneously.

For the attempt to solve accept y = 3x, $y = -5x + 1 \Rightarrow x = ..., y = ...$

A1: Correct coordinates for $R = \left(\frac{1}{8}, \frac{3}{8}\right)$ oe

Question Number	Scheme	Marks
6 (a)(i)	Area $R = \int y \frac{dx}{dt} dt = \int 4\sin t \times -4\sin 2t dt$	M1 A1
	$= -\int 32\sin^2 t \cos t dt$	dM1
	$x = 0 \Rightarrow t = \frac{\pi}{4}$ and $y = 0 \Rightarrow t = 0 \Rightarrow$ Area $= -\int_{\frac{\pi}{4}}^{0} 32 \sin^2 t \cos t dt = \int_{0}^{\frac{\pi}{4}} 32 \sin^2 t \cos t dt = 1$	A1*
		(4)
(ii)	Area = $\left[\frac{32}{3}\sin^3 t\right]_0^{\frac{\pi}{4}} = \frac{32}{3} \times \frac{2\sqrt{2}}{8} = \frac{8\sqrt{2}}{3}$	M1 A1
		(2)
(b)	Attempts to use $\cos 2t = 1 - 2\sin^2 t \Rightarrow \frac{x}{2} = 1 - 2\left(\frac{y}{4}\right)^2$	M1A1
	$y = \sqrt{8 - 4x}$	A1
		(3)
(c)	Range is $0 \leqslant f \leqslant 4$	B1
		(1)
		(10 marks)

(a)(i)

M1: Attempts to multiply y by $\frac{dx}{dt}$ to achieve an integrand of the form $\pm k \sin t \sin 2t$

Look for area $R = \int y \frac{dx}{dt} (dt) = \int (4) \sin t \times \pm k \sin 2t (dt)$ but condone a missing 4 or dt

A1: Correct integrand. Achieves area
$$R = \int y \frac{dx}{dt} (dt) = \int 4 \sin t \times -4 \sin 2t (dt)$$

Condone a missing dt and do not be concerned by the limits. Allow unsimplified.

dM1: Substitutes
$$\sin 2t = 2\sin t \cos t \rightarrow \text{seen or implied} = \pm \int A \sin^2 t \cos t \, dt$$

Dependent upon previous M. Condone a missing dt and do not be concerned by the limits.

A1*: Achieves area
$$\left(= \int_0^2 y \, dx \right) = -\int_{\frac{\pi}{4}}^0 32 \sin^2 t \cos t \, dt \rightarrow \int_0^{\frac{\pi}{4}} 32 \sin^2 t \cos t \, dt$$

This is a given answer so you must see

- evidence of the dt in at least one line other than the given answer
- correct application of the limits as seen above with as a minimum $-\int_{\frac{\pi}{4}}^{0} \dots dt \rightarrow \int_{0}^{\frac{\pi}{4}} \dots dt$

(a)(ii)

M1: Integrates to a form $\left[A\sin^3 t\right]$ with some attempt to apply the limit(s)

You may see a substitution $u = \sin t$ which is fine. Just look for Au^3 with some attempt to apply the adapted limits

A1: Correct answer $\frac{8\sqrt{2}}{3}$ o.e. following correct **algebraic** integration.

Cannot be scored without the M mark.

(b)

M1: Attempts to use a double angle formula of the form $\cos 2t = \pm 1 \pm 2 \sin^2 t$ with the parametric equations to get a Cartesian equation.

If the parametric equations are substituted into the given form of the answer $y = \sqrt{ax + b}$, marks are only scored when the double angle formula is used

A1: Any correct un-simplified equation
$$\frac{x}{2} = 1 - 2\left(\frac{y}{4}\right)^2$$

On the alternative method, this A mark is scored when the candidate writes down

$$a + 2b = 0. - 4b = 16 \Rightarrow a = ..., b = ...$$

A1:
$$y = \sqrt{8-4x}$$
 or $y = \sqrt{-4x+8}$ ONLY

(c)

B1: Range is
$$0 \le f \le 4$$

Allow other acceptable forms such as $0 \le y \le 4$, $0 \le f(x) \le 4$ and [0,4]

Examples of unacceptable forms are $0 \le x \le 4$, [0,4)

Question Number	Scheme	Marks
7 (a)	Finds $\begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} = \sqrt{4^2 + 4^2 + 2^2} = 6$ and attempts $\frac{1}{6}$ $\begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$	M1
	$\overrightarrow{OA} = \begin{pmatrix} 2/3 \\ 2/3 \\ 2/3 \\ 1/3 \end{pmatrix} \text{ oe}$	A1 (2)
(b)	Co-ordinates or position vector of point $X = \begin{pmatrix} 1+4\lambda \\ -10+4\lambda \\ -9+2\lambda \end{pmatrix}$	M1
	$\overrightarrow{OX}.\begin{pmatrix} 4\\4\\2 \end{pmatrix} = 0 \Rightarrow 4(1+4\lambda)+4(-10+4\lambda)+2(-9+2\lambda)=0$	dM1
	$36\lambda = 54 \Rightarrow \lambda = 1.5$ $X = (7, -4, -6)$	ddM1 A1
		(5)
(c)	Finds $OX = \sqrt{7^2 + (-4)^2 + (-6)^2} = \sqrt{101}$ and $OA = 1$	M1
	Area $OXA = \frac{1}{2} \times 1 \times \sqrt{101} = \frac{\sqrt{101}}{2}$	dM1 A1
		(3)
		(10 marks)

Handy diagram

(a)

M1: Correct attempt at the unit vector. Look for an attempt at $\sqrt{4^2 + 4^2 + 2^2}$ and use of $\frac{\mathbf{r}}{|\mathbf{r}|}$ where $\mathbf{r} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$

or equivalent vector form such as $\mathbf{r} = (4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$. Condone an attempt to find the coordinates of A

A1:
$$\overrightarrow{OA} = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$$
 or equivalent such as $\overrightarrow{OA} = \frac{1}{6} \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$ or $\overrightarrow{OA} = \frac{1}{6} (4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$ but **must be in vector form and**

not in coordinate form.

(b)

M1: For an attempt at the co-ordinates or position vector of point $X = \frac{1+4\lambda}{(1+4\lambda,-10+4\lambda,-9+2\lambda)}$ or $\begin{pmatrix} 1+4\lambda\\-10+4\lambda\\-9+2\lambda \end{pmatrix}$

dM1: For using \overrightarrow{OX} . $\begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} = 0$ to set up an equation in λ

Alternatively finds $OX^2 = (1+4\lambda)^2 + (-10+4\lambda)^2 + (-9+2\lambda)^2$ and attempts to differentiate and set = 0

May use $OX^2 + OA^2 = AX^2$ to set up an equation in λ

ddM1: Solves for λ This is dependent upon having scored both previous M's

A1: Correct value for $\lambda = 1.5$

A1: Correct coordinates for X = (7, -4, -6). Condone position vector form $7\mathbf{i} - 4\mathbf{j} - 6\mathbf{k}$ o.e.

(c)

M1: Finds all elements required to calculate the area.

In the main scheme this would be the distance OX or OX^2 AND distance OA or OA^2 (which is 1)

dM1: Correct method of finding the area of $OXA = \frac{1}{2} \times OX \times 1$

A1: Area =
$$\frac{\sqrt{101}}{2}$$
 o.e

There are various alternatives for part (c). Amongst others are;

Alt I via vector product.

$$\frac{1}{2} \times \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -4 & -6 \\ 2/3 & 2/3 & 1/3 \end{vmatrix} = \frac{1}{2} \times \left| \frac{8}{3} \mathbf{i} - \frac{19}{3} \mathbf{j} + \frac{22}{3} \mathbf{i} \right| = \frac{1}{2} \times \sqrt{\left(\frac{8}{3}\right)^2 + \left(-\frac{19}{3}\right)^2 + \left(\frac{22}{3}\right)^2} = \frac{\sqrt{101}}{2}$$

M1: For an attempt at
$$\frac{1}{2} \times \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -4 & -6 \\ 2/3 & 2/3 & 1/3 \end{vmatrix} = \frac{1}{2} \times \left| \frac{8}{3} \mathbf{i} - \frac{19}{3} \mathbf{j} + \frac{22}{3} \mathbf{i} \right|$$

dM1: Followed by an attempt at finding the modulus of the resulting vector multiplied by 1/2

Alt II via scalar products

M1: Attempts to find all three components required to find the area triangle OXA

E.g. Angle OXA with length of side OX and XA

Alternatively angle *OAX* with length of side *OA* and *XA*

For this to be scored

- appropriate gradient vectors need to be attempted by subtracting
- a correct attempt at using $\mathbf{a}.\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ to find $\cos \theta$ or θ

dM1: Full attempt at area of triangle using $\frac{1}{2}|OX||XA|\sin(OXA)$ or equivalent

Question Number	Scheme	Marks	
8 (a)	$\int y^{-\frac{1}{3}} \mathrm{d}y = \int 6x \mathrm{e}^{-2x} \mathrm{d}x$	B1	
	$\frac{3}{2}y^{\frac{2}{3}} = -3xe^{-2x} + \int 3e^{-2x} dx$	M1 M1	
	$\frac{3}{2}y^{\frac{2}{3}} = -3xe^{-2x} - \frac{3}{2}e^{-2x} + c$	dM1 A1	
	Substitutes $(0,1) \Rightarrow c = 3$	M1	
	$y^{2} = \left(-2xe^{-2x} - e^{-2x} + 2\right)^{3}$	A1	
			(7)
(b)	As $x \to \infty$, $e^{-2x} \to 0$ and $y^2 = (2)^3 \Rightarrow y = 2^{\frac{3}{2}}$	M1 A1	
			(2)
		(9 marks)	

(a)

B1: Separates the variables either
$$\int y^{-\frac{1}{3}} dy = \int 6xe^{-2x} dx \text{ or } \int \frac{1}{6}y^{-\frac{1}{3}} dy = \int xe^{-2x} dx$$

Condone with missing integral signs but the dx and dy must be present and in the correct positions

M1: For integrating the lhs $y^{-\frac{1}{3}} \rightarrow y^{\frac{2}{3}}$

M1: For integrating the rhs by parts the right way around. Look for $\int xe^{-2x} dx \rightarrow ...xe^{-2x} \pm \int ...e^{-2x} dx$

dM1: For fully integrating the rhs to obtain $..xe^{-2x} \pm ...e^{-2x}$. Depending upon the previous M A1: Correct integration with or without '+ c'.

Look for
$$\frac{3}{2}y^{\frac{2}{3}} = -3xe^{-2x} - \frac{3}{2}e^{-2x} + c$$
 or equivalent such as $3y^{\frac{2}{3}} = -6xe^{-2x} - 3e^{-2x} + a$

dM1: Must have a "+c" now. Substitutes $(0,1) \Rightarrow c = ...$

It is dependent upon having a correct attempt to integrate one side so M1 or M2 must have been awarded.

A1: CSO
$$y^2 = \left(-2xe^{-2x} - e^{-2x} + 2\right)^3$$

(b)

M1: For
$$e^{-2x} \to 0$$
 $y^2 = ("2")^3$

Follow through on their g(x) in $y^2 = g(x)$ but g(x) must be a function of e^{-kx} with $g(0) \ne 0$ Implied by a correct decimal answer for their $y^2 = g(x)$

A1: $y = 2^{\frac{3}{2}}$ o.e such as $y = \sqrt{8}$ cso. ISW after sight of this. Condone $y = \pm 2^{\frac{3}{2}}$ o.e.

Question Number	Scheme	Marks
9 (i)	Attempts two of $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$, $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$ either way around	M1
	Attempts $\mathbf{c} - \mathbf{b} = 2 \times (\mathbf{b} - \mathbf{a})$ oe such as $\mathbf{c} - \mathbf{a} = 3 \times (\mathbf{b} - \mathbf{a})$	dM1
	\Rightarrow c = 3 b – 2 a *	A1 *
		(3)
(ii)	Assume that there exists a number n that isn't a multiple of 3 yet n^2 is a multiple of 3	B1
	If <i>n</i> is not a multiple of 3 then $m = 3p + 1$ or $m = 3p + 2$ ($p \in \mathbb{N}$) giving	
	$m^2 = (3p+1)^2 = 9p^2 + 6p + 1$	M1
	Or $m^2 = (3p+2)^2 = 9p^2 + 12p + 4 = 3(3p^2 + 4p + 1) + 1$	M1 A1
	$(3p+1)^2 = 9p^2 + 6p + 1 \left(= 3\left(3p^2 + 2p\right) + 1 \right)$ is one more than a multiple of 3	
	$(3p+2)^2 = 9p^2 + 12p + 4 \text{ is not a multiple of 3 as 3 does not divide into 4 (exactly)}$	
	Hence if n is a multiple of 3 then n^2 is a multiple of 3	A1
		(5)
		(8 marks)

(i)

M1: Attempts any two of \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} .

Condone the wrong way around but it must be subtraction.

Allow marked in the correct place on a diagram

dM1: Uses the given information.

Accept $\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AC}$, $\overrightarrow{BC} = 2 \times \overrightarrow{AB}$, $\overrightarrow{BC} = \frac{2}{3} \times \overrightarrow{AC}$ etc condoning slips as in previous M1.

A1*: Fully correct work inc bracketing leading to the given answer $\mathbf{c} = 3\mathbf{b} - 2\mathbf{a}$

Expect to see the brackets multiplied out. So $\mathbf{c} - \mathbf{b} = 2 \times (\mathbf{b} - \mathbf{a}) \Rightarrow \mathbf{c} - \mathbf{b} = 2\mathbf{b} - 2\mathbf{a} \Rightarrow \mathbf{c} = 3\mathbf{b} - 2\mathbf{a}$ is fine.

(ii)

B1: For setting up the contradiction.

Eg Assume that there exists a number n that isn't a multiple of 3, yet n^2 is a multiple of 3

As a minimum accept something like "define a number n such that n is not a multiple of 3 but n^2 is"

M1: States that m = 3p + 1 or m = 3p + 2 and attempts to square.

Alternatives exist such as m = 3p + 1 or m = 3p - 1

Using modulo 3 arithmetic it would be $1 \rightarrow 1$ and $2 \rightarrow 4 = 1$

M1: States that m = 3p + 1 AND m = 3p + 2 and attempts to square o.e.

A1: Achieves forms that can be argued as to why they are NOT a multiple of 3

E.g.
$$m^2 = (3p+1)^2 = 3(3p^2 + 2p) + 1$$
 or even $9p^2 + 6p + 1$

and
$$m^2 = (3p+2)^2 = 3(3p^2+4p+1)+1$$
 or even $9p^2+12p+4$

A1: Correct proof which requires

- Correct calculations
- Correct reasons. E.g. $9p^2 + 12p + 4$ is not a multiple of 3 as 4 is not a multiple of 3 There are many ways to argue these. E.g $m^2 = (3p+1)^2 = 3(3p^2 + 2p) + 1$ is sufficient as long as followed (or preceded by) "not a multiple of 3"
- Minimal conclusion such as ✓. Note that B0 M1 M1 M1 A1 is possible