

Update on Force Implementation in QMCPACK

Raymond Clay¹

¹Sandia National Laboratories, Albuquerque, NM 87106 USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

Summary

Current Status

- Forces in nonlocal pseudopotential calculations work* in both open and periodic boundary conditions with VMC.
- We support reasonable wave functions: Slater-Jastrow with one & two-body Jastrows. Einspline and LCAO type single particle orbitals.
- Scales like $O(N^4)$.

Under Development

- DMC forces.
- $O(N^3)$ evaluation for force components.
- User friendliness.
- More supported wave functions: 3-body Jastrow and multi-determinant wave functions.

^{*}Code exists and is implemented in QMCPACK. However, it's a research code which is currently being validated and requires source tweaks to enable.

Zero-Variance Zero-Bias Estimator** (VMC)

$$\mathbf{F}_{ZVZB} = \left(-\nabla_{I}\hat{H}\right) + \frac{\left(\hat{H} - E_{L}\right)\left(-\nabla_{I}\Psi_{T}\right)}{\Psi_{T}} + 2\left(E_{L} - \langle E_{L}\rangle\right)\frac{\left(-\nabla_{I}\Psi_{T}\right)}{\Psi_{T}} \qquad (1)$$

$$= -\nabla_{I}E_{L} + 2\left(E_{L} - \langle E_{L}\rangle\right)\frac{\left(-\nabla_{I}\Psi_{T}\right)}{\Psi_{T}} \qquad (2)$$

Why?

- Above expression is derived from $-\nabla_I \langle E_L \rangle$, instead of Hellman-Feynman theorem.
- In the limit that $\Psi_T \to \Phi_0$ and $\nabla_I \Psi_T \to \nabla_I \Phi_0$, we achieve exact answer with zero variance!
- In practice, variance reduction and reduction of error.

^{**}Assaraf & Caffarel, JCP, 119(20), 10536-10552, (2003)

Status of Hellman-Feynman Term: $\nabla_I \hat{H}$

Hamiltonian with Non-Local Pseudopotentials

$$\hat{H} = \hat{T} + \hat{V}_{e-e} + \hat{V}_{e-I}^{L} + \hat{V}_{e-I}^{NL}$$
(3)

Only explicit ion dependence is in the "local" electron-ion term \hat{V}_{e-1}^L and the nonlocal term \hat{V}_{e-1}^{NL}

- $\nabla_I \hat{V}_{e-I}^L$ is done for open and periodic boundary conditions. Ewald or optimized breakup used for PBC's.
- Nonlocal term \hat{V}_{e-I}^{NL} done for VMC and DMC within the locality approximation. No T-moves.

Badinsky & Needs, PRE, 76(3), 036707, (2007)

Validation of Hellman-Feynman Term

	QMC	HF	Δ	Z
$F'_{0,x}$	0.02472(3)	0.02464	0.00009	2.882
$F_{0,y}^{I}$	0.01943(3)	0.01936	0.00007	2.384
$F_{0,z}^{I}$	0.00773(3)	0.00779	-0.00006	-2.069
$F_{0,x}^{nl}$	-0.01382(5)	-0.01384	0.00003	0.471
$F_{0,y}^{nl}$	-0.00927(5)	-0.00935	0.00008	1.552
$F_{0,z}^{nl}$	-0.00028(5)	-0.00030	-0.00002	0.373

Table: Perturbed BCC unit cell in PBC. 8 Na atoms, BFD 1 electron pseudopotential with s, p, and d channels.

Validated against Quantum Espresso (PBC) and GAMESS (open BC).

Status of Zero-Variance and Zero-Bias Terms

ZVZB Force Estimator

$$\mathbf{F}_{ZVZB} = \underbrace{\left(-\nabla_{I}\hat{H}\right) + \frac{\left(\hat{H} - E_{L}\right)\left(-\nabla_{I}\Psi_{T}\right)}{\Psi_{T}}}_{-\nabla_{I}E_{L}} + 2\left(E_{L} - \langle E_{L}\rangle\right)\frac{\left(-\nabla_{I}\Psi_{T}\right)}{\Psi_{T}} \tag{4}$$

We need the following terms

$$\frac{\nabla_{i}^{2}(\nabla_{I}\Psi_{T})}{\Psi_{T}}, \frac{\hat{V}_{NL}(\nabla_{I}\Psi_{T})}{\Psi_{T}}, \frac{\nabla_{I}\Psi_{T}}{\Psi_{T}}$$

- Above terms implemented Slater-Jastrow wave functions.
- Support einspline and LCAO orbitals, one and two body Jastrows.
- Forces from determinants are slow $O(N^4)$. No 3-body Jastrow.

Testing ZV and ZB Terms: Nodeless Case

- Consider a sodium dimer in periodic boundary conditions.
- BFD pseudopotential with 1 electron valence.
- Cubic box with $L = 20a_0$.
- Considered Jastrow only (1-bdy & 2-bdy) wave function, optimized at $r=6.05a_0$ and frozen.

Local Energy "Reference" For Jastrow Wave Function

Force Comparison For Jastrow Wave Function

Conclusions for Jastrow Wave Function

- The full ZVZB estimator matches differentiation of the local energy to within error bars.
- Large bias which the ZB term corrects.
- Error bar on HF+ZV term is 2-3x lower than the bare HF term.

Guiding Functions for VMC

VMC with Guiding Function

$$\langle \hat{O}_{L} \rangle = \frac{\int d\mathbf{r} |\Psi_{T}|^{2} O_{L}(\mathbf{r})}{\int d\mathbf{r} |\Psi_{T}|^{2}} = \frac{\int d\mathbf{r} |\Psi_{G}|^{2} \left(w^{VMC}(\mathbf{r}) O_{L}(\mathbf{r}) \right)}{\int d\mathbf{r} |\Psi_{G}|^{2} w^{VMC}(\mathbf{r})} = \frac{\langle w^{vmc} \hat{O}_{L} \rangle}{\langle w^{vmc} \rangle}$$
(5)
$$w^{VMC}(\mathbf{r}) = \left| \frac{\Psi_{T}(\mathbf{r})}{\Psi_{G}(\mathbf{r})} \right|^{2}$$
(6)

Why?

- ZVZB estimators diverge like $1/d^2$ with distance to node d.
- We can cancel this divergence in the estimator $w\hat{O}_L$ by use of a guiding function.
- Finite variance estimate of $w\hat{O}_L$!

C₂ Dimer Test Case

Guiding Function

$$G(\mathbf{R}) = \frac{1}{\parallel M^{-1} \parallel_F} \tag{7}$$

$$\Psi_{G}(\mathbf{R}) = \begin{cases} |\Psi_{\mathcal{T}}(\mathbf{R})| & G \ge \epsilon \\ |\Psi_{\mathcal{T}}(\mathbf{R})| \left[\frac{G(\mathbf{R})}{\epsilon}\right]^{\frac{G(\mathbf{R})}{\epsilon} - 1} & G \le \epsilon \end{cases}$$
(8)

- Above guiding function from Attaccalite & Sorella, PRL, 100(11), 114501, (2008).
- Carbon dimer with BFD pseudopotential (4e valence). Open BC's.
- Slater-Jastrow with optimized 1 and 2 body terms. LCAO orbitals from Hartree-Fock (ccVTZ).
- $\epsilon = 1 \times 10^{-4}$

ZV Force using Guiding Function

C₂ Force Comparison for Slater-Jastrow Wave Function

C₂ Force Comparison for Slater-Jastrow Wave Function

- Reference is a 6th order polynomial fit to energy.
- ZVZB forces agree very well with total energy differentiation.
- Consistently show 2-3x reduction in error bar from HF term alone.

Prospects for DMC

$$\frac{d}{dc}E_{FN} = \left\langle \frac{\langle \mathbf{R} | \frac{d}{dc} \hat{H} | \Psi_{T} \rangle}{\Psi_{T}(\mathbf{R})} + \frac{\langle \mathbf{R} | \hat{H} - E_{L} | \frac{d}{dc} \Psi_{T} \rangle}{\Psi_{T}(\mathbf{R})} + \underbrace{\left(\underbrace{\frac{d}{dc} \Phi_{0}(\mathbf{R})}{\Phi_{0}(\mathbf{R})} + \frac{\frac{d}{dc} \Psi_{T}(\mathbf{R})}{\Psi_{T}(\mathbf{R})}\right)}_{\approx \partial \Psi_{T}/\Psi_{T}} | E_{L} - \langle E_{L} \rangle \right] \right\rangle_{FN}$$
(9)

- Depending how good derivative approximation is, the estimator should be usable.
- There are ways to reduce/eliminate this approximation based on extrapolation and forward-walking. We are looking into these.*
- Guiding function/post-processing required. In progress.

^{*}Moroni, Saccani, Filippi, JCTC, 10(11), 4823-4829 (2014).

Na₂ in PBC's: DMC Forces

- ZV term reduces variance within DMC. Doesn't average out to zero any more!
- ZB term corrects most of the discrepancy between the HF force and differentiation of DMC total energy.
- However, the error introduced by the approximation $\nabla \Phi_{FN} \approx \nabla \Psi_T$ is measurable.

email: rclay@sandia.gov 16

Guiding Functions for DMC

VMC with Guiding Function

$$\langle \hat{O}_{L} \rangle = \frac{\int d\mathbf{r} \Phi_{FN} |\Psi_{T}| O_{L}(\mathbf{r})}{\int d\mathbf{r} \Phi_{FN} |\Psi_{T}|} = \frac{\int d\mathbf{r} \Phi_{FN} |\Psi_{G}| \left(w^{DMC}(\mathbf{r}) O_{L}(\mathbf{r}) \right)}{\int d\mathbf{r} \Phi_{FN} |\Psi_{G}| w^{DMC}(\mathbf{r})} = \frac{\langle w^{DMC} \hat{O}_{L} \rangle}{\langle w^{DMC} \rangle} (10)$$

$$w^{DMC}(\mathbf{r}) = \left| \frac{\Psi_{T}(\mathbf{r})}{\Psi_{G}(\mathbf{r})} \right| \qquad (11)$$

Advantages

- Still fixes infinite-variance problem of ZVZB estimators.
- Branching must be done with $E_L = |\Psi_G|^{-1} \hat{H} |\Psi_G|$.

Using QMCPACK Forces

Hamiltonian Block

```
<hamiltonian ...>
. . .
 <estimator name="ac" type="Force" mode="acforce" source="ion0"</pre>
target="e"/>
 </hamiltonian>
QMC Block
 <qmc ...>
. . .
 <parameter name="useGuide"> yes </parameter>
 </qmc>
```

Summary

19

Current Status

- Forces in nonlocal pseudopotential calculations work* in both open and periodic boundary conditions with VMC.
- We support reasonable wave functions: Slater-Jastrow with one & two-body Jastrows. Einspline and LCAO type SPO's.
- Scales like $O(N^4)$.

Under Development

- DMC forces.
- $O(N^3)$ evaluation for force components*.
- User friendliness.
- More supported wave functions: 3-body Jastrow and multi-determinant wave functions.

^{*}Assaraf, Moroni, Filippi, JCP, 144, 194105 (2016)

References

Generic QMC, ZVZB estimators, and Guiding Functions

- 1. Assaraf & Caffarel, JCP, 119(20), 10536-10552, (2003)
- 2. Attaccalite & Sorella, PRL, 100(11), 114501, (2008)
- 3. Moroni, Saccani, Filippi, JCTC, 10(11), 4823-4829 (2014)
- 4. Assaraf, Moroni, Filippi, JCP, 144, 194105 (2016)

Nonlocal Pseudopotentials in QMC

1. Badinsky & Needs, PRE, 76(3), 036707, (2007)