Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4 1/4 2	1	-3/4	-2	15
x_1	1	0	1/4	0	1/4	0	15
x_2	0	1	2	0	0	1	30
	0	0	65	0	15	40	2100

Objective				
Variables	from	till	from	till
			value	value
objective	2100	2100	2100	2100
x1	0	+∞	$-\infty$	0
x2	7,50000	+∞	$-\infty$	0
x 3	-∞	95	15	0

Duals			
Variables	value	from	till
objective	2100	2100	2100
R1	0	$-\infty$	+∞
R2	15	0	80
R3	40	0	37.5
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
х3	-65	-3.15789	15

recurso escasso tem preço sombra =0

Estaria disposto a pagar, no máximo, Zero. para aumentar a quantidade do recurso disponível relativo à primeira restrição do problema.
 S1 é básico e com valor =15, pelo que não sendo um

Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

max
$$60x_1 + 40x_2 + 30x_3$$

suj. $3x_1 + 2x_2 \le 120$
 $4x_1 + x_3 \le 60$
 $x_2 + 2x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4	1	-3/4	-2	15
x_1	1	0	1/4	0	1/4	0	15
x_2	0	1	-19/4 1/4 2	0	0	1	30
	0	0	65	0	(15)	40	2100

Objective				
Variables	from	till	from	till
			value	value
objective	2100	2100	2100	2100
x1	0	+∞	$-\infty$	0
x2	7,50000	+∞	$-\infty$	0
x 3	-∞	95	15	0

Duals			
Variables	value	from	till
objective	2100	2100	2100
R1	0	$-\infty$	+∞
R2	15	0	80
R3	40	0	37.5
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
х3	-65	-3.15789	15

2. Estaria disposto a pagar, no máximo, .15.... para aumentar a quantidade do recurso disponível relativo à segunda restrição do problema.

Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4 1/4 2	1	-3/4	-2	15
x_1	1	0	1/4	0	1/4	0	15
x_2	0	1	2	0	0	1	30
	0	0	65	0	15	40	2100

Objective				
Variables	from	till	from	till
			value	value
objective	2100	2100	2100	2100
x1	0	+∞	$-\infty$	0
x2	7,50000	+∞	$-\infty$	0
х3	-∞	95	15	0

Duals			
Variables	value	from	till
objective	2100	2100	2100
R1	0	$-\infty$	±∞
R2	15	0	80
R3	40	Ü	37.5
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
х3	-65	-3.15789	15

3. A quantidade do recurso disponível relativo à segunda restrição pode variar entre $\frac{zero}{...80}$... sem haver alteração das variáveis da solução básica óptima, s_1, x_1 e x_2 . (60-60) (60+20)

Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

max
$$60x_1 + 40x_2 + 30x_3$$

suj. $3x_1 + 2x_2 \le 120$
 $4x_1 + x_3 \le 60$
 $x_2 + 2x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4	1	-3/4	-2	15
x_1	1	0	1/4	0	1/4	0	15
x_2	0	1	-19/4 1/4 2	0	0	1	30
	0	0	65	0	15	40	2100

Objective				
Variables	from	till	from	till
			value	value
objective	2100	2100	2100	2100
x1	0	+∞	$-\infty$	0
x2	7,50000	+∞	$-\infty$	0
х3	-∞	95	15	0

Duals				
Variables	value	from	till	
objective	2100	2100	2100	
R1	0	$-\infty$	±∞	
R2	15	(60-60)	(80)(60	+20)
R3	40	U	37.5	
x1	0	$-\infty$	+∞	
x2	0	$-\infty$	+∞	
хЗ	-65	-3.15789	15	

4. Quando a quantidade do recurso disponível relativa à **segunda** restrição varia entre .zer.o. e .80...., o valor da função objectivo varia entre .1200 e 2400. (2100-60x15)

Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

max
$$60x_1 + 40x_2$$
 $40x_3$
suj. $3x_1 + 2x_2$ ≤ 120
 $4x_1$ $+ x_3$ ≤ 60
 $x_2 + 2x_3$ ≤ 30
 $x_1, x_2, x_3 \geq 0$

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4	1	-3/4	-2	15
x_1	1	0	1/4	0	1/4	0	15
x_2	0	1	-19/4 1/4 2	0	0	1	30
	0	0	65	0	15	40	2100

Objective					
Variables	from	till	from	till	
			value	value	
objective	2100	2100	2100	2100	
x1	0	+∞	$-\infty$	0	
x2	7,50000	+∞	$-\infty$	0	
хЗ	$-\infty$	95	15	0	
(30+65)					

Duals			
Variables	value	from	till
objective	2100	2100	2100
R1	0	$-\infty$	+∞
R2	15	0	80
R3	40	0	37.5
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
х3	-65	-3.15789	15

5. A actividade a que corresponde a variável não-básica x_3 tornar-se-ia atractiva se o respectivo coeficiente da função objectivo, c_3 , tivesse um valor superior a .95.....

Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

max
$$60x_1 + 40x_2 + 30x_3$$

suj. $3x_1 + 2x_2 \le 120$
 $4x_1 + x_3 \le 60$
 $x_2 + 2x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

	x_1	x_2	x_3	s_1	s_2	s_3	
s_1	0	0	-19/4	1	-3/4	-2	15
x_1	1	0	-19/4 1/4 2	0	1/4	0	15
x_2	0	1	2	0	0	1	30
	0	0	65	0	15	40	2100

Objective						
Variables	from	till	from	till		
			value	value		
objective	2100	2100	2100	2100		
x1	0	+∞	$-\infty$	0		
x2	7,50000	+∞	$-\infty$	0		
х3	-∞	95	15	0		

Duals					
Variables	value	from	till		
objective	2100	2100	2100		
R1	0	$-\infty$	+∞		
R2	15	0	80		
R3	40	0	37.5		
x1	0	$-\infty$	+∞		
x2	0	$-\infty$	+∞		
х3	-65	-3.15789	15		

6. A actividade a que corresponde a variável básica x_1 deixaria de ser atractiva se o respectivo coeficiente da função objectivo, c_1 , tivesse um valor inferior a ...zero.

(60-60)