

ELE111 Digitale design

F11_000 Ekstern S-ram

Eivind Skjæveland esk@hvl.no

SRAM på DE2-115-kortet

Figure 2-1 The DE2-115 board (top view)

SRAM på DE2-115-kortet

- SRAM-krets på kortet
 - > IS61WV102416ALL
 - Statisk RAM
 - > 1024 16-bits ord
 - > 20-bits adresseport
 - > 16bits toveis dataport
 - > 5 bit kontrollerbuss

Figure 4-33 Connections between FPGA and SRAM

SRAM IS61WV102416ALL

> Pinner på kretsen

PIN DESCRIPTIONS

A0-A19	Address Inputs			
I/O0-I/O15	Data Inputs/Outputs			
CE	Chip Enable Input			
ŌĒ	Output Enable Input			
WE	Write Enable Input			
<u>ΓΒ</u>	Lower-byte Control (I/O0-I/O7)			
UB	Upper-byte Control (I/O8-I/O15)			
NC	No Connection			
VDD	Power			
GND	Ground			

Blokkindeling

Skrive-syklus

- 1. Velg adresse
- 2. CE = 0, chip select
- 3. WE = 0, Write enable
- 4. Setup-tid
 - Data må vera i ro i 5 ns, t_{SD}, før WE går høg
 - Adresse må vera i ro i 6,5 ns, t_{AW} før WE går høg
- 5. Hold –tid
 - Tida data og adresser må vera i ro etter at skrivesyklus er ferdig
 - > 0 ns for denne kretsen

Timing-parameter for skriving

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

				(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		-8	3	-	-10		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	8	_	10	_	ns	
tsce	CE to Write End	6.5	_	8	_	ns	
taw	Address Setup Time to Write End	6.5	_	8	_	ns	
tна	Address Hold from Write End	0	_	0	_	ns	
t sa	Address Setup Time	0	_	0	_	ns	
tрwв	LB, UB Valid to End of Write	6.5	_	8	_	ns	
tpwe1	WE Pulse Width	6.5	_	8	_	ns	
tpwe2	WE Pulse Width (OE = LOW)	8.0	_	10	_	ns	
tsp	Data Setup to Write End	5	_	6	_	ns	
tно	Data Hold from Write End	0	_	0	_	ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	3.5	_	5	ns	
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	2	_	2	_	ns	

Notes:

- Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of CE LOW and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write. Shaded area product in development

Lese-syklus

- > Kan lesa når WE = 1
 - \rightarrow OE =0, CE = 0
- Når adresse blir endra vil data vera klare på Dout etter 20 ns, t_{AA}

AC WAVEFORMS READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) $(\overline{CE} = \overline{OE} = V_{IL})$

timing-parameter for lesing

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		-20 1		
Symbol	Parameter	MIn.	Max.	Unit
tric	Read Cycle Time	20	_	ns
t AA	Address Access Time	_	20	ns
t oha	Output Hold Time	2.5	_	ns
tace	CE Access Time	_	20	ns
tDOE	OE Access Time	_	8	ns
thzoe(2)	OE to High-Z Output	0	8	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	ns
thzce(2	CE to High-Z Output	0	8	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	ns
t BA	LB, UB Access Time	_	8	ns
t HZB	LB, UB to High-Z Output	0	8	ns
t LZB	LB, UB to Low-Z Output	0	_	ns

Val av kontrollsignal

- Kan konfigurera RAM-en på mange ulike måtar ved hjelp av kontrollsignala.
- > I LAB 3 gjer vi det enkelt
 - > CE, OE, UB, LB = , kobla til jord
 - Aktiv låg signal
 - > Ramen alltid tilgjengeleg, kan lesast så lenge vi ikkje er i skrivesyklus
 - > WE = 0, Write enable

TRUTH TABLE

						I/O PIN			
Mode	WE	CE	ŌĒ	LB	UB	I/O0-I/O7	I/O8-I/O15	Vcc Current	
Not Selected	X	Н	Χ	Χ	Χ	High-Z	High-Z	ISB1, ISB2	
Output Disabled	H X	L L	H X	X H	X H	High-Z High-Z	High-Z High-Z	lcc	
Read	H H H	L L L	L L L	L H	H L L	Douт High-Z Douт	High-Z Douт Douт	lcc	
Write	L L L	L L L	X X X	L H L	H L L	Dเท High-Z Dเท	High-Z Dın Dın	lcc	

Entity for tilkoling til ekstern RAM

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity L3 SRAM is
   port(
   : in std logic vector(17 downto 0);
   KEY
               : in std_logic_vector(3 downto 0);
   LEDR : out std logic vector(17 downto 0);
   SRAM ADDR : out std logic vector(19 downto 0);
   SRAM_DQ : inout std_logic_vector(15 downto 0);
   SRAM WE N : buffer std logic;
   SRAM CE N, SRAM OE N, SRAM UB N, SRAM LB N : out
std_logic;
   HEX7, HEX6, HEX5, HEX4, HEX3,
   HEX2,HEX1,HEX0 : out std_logic_vector(6 downto 0)
end entity L3;
```

kontrollsignal

```
SRAM_CE_N <='0';
SRAM_OE_N <='0';
SRAM_UB_N <='0';
SRAM_LB_N <='0';
SRAM_WE_N <= SW(17);</pre>
```

Data og adresse

```
adr <= SW (15 downto 11);
      DataINN <= SW(7 downto 0);</pre>
--Databussen
   -- bruker berre 8 bit data, legg 8 MSB i databussen til '0'
   -- under lesing (WE N = '0') skal datautgangen vera tristate.
   SRAM_DQ <= "000000000" & DataInn when SRAM_WE_N = '0' -- data in til SRAM
               else (others => 'Z');
   DataUT <= SRAM DQ(7 downto 0); --data ut frå SRAM
   -- legg 0 til dei mest signifikante bita i addressa
   SRAM ADDR(19 downto 5) <= (others => '0');
   SRAM_ADDR(4 downto 0) <= adr;</pre>
```

Data til og frå SRAM

- Vi brukar same pinnane til å senda data inn og ut frå S-RAM
 - > SRAM_DQ er inout-port
 - > WE styrer om vi skal lesa eller skriva til SRAM:
 - Sett utgangen til tri-state ('Z') når vi ikkje skal skriva til SRAM.

```
-- Databussen
-- bruker berre 8 bit data, legg 8 MSB i databussen til '0'
-- under lesing (WE_N = '0') skal datautgangen vera tristate.

SRAM_DQ <= "000000000" & DataInn when SRAM_WE_N = '0' -- data in til SRAM
else (others => 'Z');

DataUT <= SRAM_DQ(7 downto 0); --data ut frå SRAM
```


Kopling til 7-segment-display

```
tall0 : ROM_7_seg PORT MAP(adresse => DataUT(3 downto 0),HEX=> HEX0);
tall1 : ROM_7_seg PORT MAP(adresse => DataUT(7 downto 4),HEX=> HEX1);
HEX2 <= "11111111";-- av
HEX3 <= "11111111";-- av
tall4 : ROM_7_seg PORT MAP(adresse => DataINN(3 downto 0),HEX=> HEX4);
tall5 : ROM_7_seg PORT MAP(adresse => DataINN(7 downto 4),HEX=> HEX5);
tall6 : ROM_7_seg PORT MAP(adresse => adr(3 downto 0),HEX=> HEX6);
tall7 : ROM_7_seg PORT MAP(adresse => "000" & adr(4), HEX=> HEX7);
```


S-RAM