ÜBUNGSBLATT 10 DIENSTAG

Aufgabe 1 (AGS 14.1 \star)

Gegeben sei folgendes C_0 -Programm Max:

(a) Berechnen Sie schrittweise das baumstrukturierte Programm bMax₀ = trans(Max) mit Hilfe der in der Vorlesung angegebenen Übersetzungsfunktionen. Dokumentieren Sie dabei jeden rekursiven Funktionsaufruf.

```
= trans ( #include (stdio.h) int main() 1 ...; return 0; ) )
trans ( Max )
               = blocktrans ( { inta, b, max; ...; return 0; })
               = Streetrans ( scanf ("obi", &a); ...; printf ("obd", max),
                              update (inta, b, max; tabs),
                               1 Dasisadresse
                  stregtrans ( scanf ("%i", &a); ...; printf ("%d", max),
                        tab, := tab & [ a / (var, 1), b / (var, 2), max/(var, 3)],
                               1 Basisadresse
                  sttrans ( scanf ( ... , & a ) , tab, 1.1 )
                   sttrans (scan { (..., & b ), taby, 1.2)
                   sttrans ( if (a>b) max = a else max = b, tab, 1.3)
                  sttrans (printf ( ..., max), tabe, 1.4)
                 READ 1;
                   READ 2;
                   boolexptrans (a>b, tabi)
                        <u>1.3</u>.1 •
                   sttrans1 max = a, taby, 1.3.2)
                   JMP 43.3;
              13.1: sttrans ( max = b, tab, 1.3.4)
              1.3.3: WRITE 3;
                                                         1.3.1:
                    READ 1;
                                       JMC 1.3.1;
                                                                 LOAD 2;
                    READ 2;
                                                                 STORE 3;
                                       ; h CAOJ
                                                        1.3.3:
                    LOAD 1;
                                       STORE 3;
                                                                 WRITE3;
                                       JMP 1.33;
                    LOAD 2;
                    6T;
```

(b) Wandeln Sie $bMax_0$ in ein Programm Max_0 mit linearisierten Adressen um und berechnen Sie $\mathcal{P}[\![Max_0]\!](5:7)$. Dokumentieren Sie den Zustand der AM_0 nach jedem Ausgeführten Befehl.

```
1 READ 1; 6 JMC 10; 10: LOAD 2;

2 READ 2; 7 LOAD 1; 11 STORE 3;

3 LOAD 1; 8 STORE 3; 12: WRITE 3;

4 LOAD 2; 9 JMP 12;

5 GT;

B2 DK HS Inp
```

B Z	DK	Н2	Inp	Out		
(1,	ε,	[]	5:7,	3)	
(2,	ε,	[1/5],	- 7,	8)	
[3,	ε,	[1/5,217],	\mathcal{E}	3)	
(4,	5 ,	[1/5, 2/7],	٤, `	3)	
(5,	7:5,	[115, 217],	٤,	3)	
(6,	577? D,	[1/5, 217],	٤,	3)	
(10,	ε,	[1/5, 217],	ε,	3)	
(11,	7,	[115, 217],	ε,	3)	
(12,	8	[115, 217, 317]	ε,	3)	
(13,	٤,	[115, 217, 317],	٤,	_ 7)	

Aufgabe 2 (AGS 14.14)

20

WRITE 1;

(a) Gegeben sei folgendes C₀-Programm.

```
8
1 #include <stdio.h>
                                          x1 = x2 - x1;
2
                                   9
                                          if (x2 > x1)
3
  int main() {
                                   10
                                             x2 = x2 / 2;
    int x1, x2;
                                   11
    scanf("%i", &x1);
                                   12
                                        printf("%d", x1);
6
    scanf("%i", &x2);
                                   13
                                        return 0;
7
    while (x1 > 0){
                                   14 }
```

Übersetzen Sie das Programm mittels trans in AM_0 -Code mit linearen Adressen. Geben Sie nur das Endergebnis der Übersetzung (keine Zwischenschritte) an!

```
READ 1;
1
                                            WHILE - Schleisen:
     READ 2;
2
3
     LOAD 1;
                                                   false
     LIT D;
4
                                                                    JMP
     GT
5
                                                            true
     JHC 20;
6
                                                       Rumpf
                                            JMC
7
          LDAD 2;
          LOAD 1;
8
3
          ; auz
10
          STORE 1:
          LUAD 2;
11
          LOAD 1;
12
13
          GT;
          JMC 19 ;
14
                :S CAOL
15
                                x2 = x2/2;
                LIT 2;
16
                ; VIC
17
                STORE 2;
18
19
```

(b) Gegeben sei der folgende Ausschnitt aus einem $\mathrm{AM}_0\text{-}\mathrm{Programm}.$

```
3: LOAD 2; 6: JMC 14; 9: LIT 2; 12: STORE 2;
4: LIT 5; 7: LOAD 1; 10: MUL; 13: JMP 3;
5: LT; 8: LOAD 2; 11: ADD; 14: WRITE 1;
```

Erstellen Sie ein Ablaufsprotokoll für dieses Programmfragment, bis die AM_0 terminiert. Die Startkonfiguration ist $(7,\varepsilon,[1/3,2/1],\varepsilon,\varepsilon)$.

B ₹	DK	В	Inp	Out
(7 ,	٤,	[1/3, 211],	٤,	٤)
(8,	3,	[113, 211],	ε,	ε)
ίθ,	1:3,	[113, 211],	. 3	(3
(10,	<u>2:1</u> :3,	[1/3, 211],	ε,	C 3
(11,	1*2 $2:3$	[113, 211],	ε,	8)
(12,	3+2 5,	[113, 211],	, 3	٥)
((3,	٤,	[113, 215],	, 3	E)
(3,	, 3	[113, 215],	ε,	£)
(4	5,	[113, 215],	٤,	(3
(5	5:5,	[113, 215],	8,	ε)
(6,	5<5? D,	[1/3, 215],	ε,	ε)
(14,	٤,	[1/3, 215],	3	ε)
(15,	٤,	[1/3, 215],	٤,	£)