# DroughtED

A dataset and methodology for drought forecasting spanning multiple climate zones



Christoph Minixhofer Calum McMeekin Mark Swan
Dr. Pavlos Andreadis

#### **PROBLEM**

- The frequency and duration of droughts are being exacerbated by climate change
- Due to this, drought forecasting is increasingly important

#### PRIOR WORK

- shows deep learning is promising
  - covers single climate region
  - uses distinct models for regions



Image: example drought forecasting study area in Australia (Diskhit et al., 2021)



# DROUGHT FORECASTING ACROSS CLIMATE REGIONS

- Prior work focuses on forecasting drought for solitary regions
- A more diverse dataset could lead to generalisation across regions



## TARGET VALUE: UNITED STATES DROUGHT MONITOR (USDM)

- Expert labels (5 drought categories)
- Measures agricultural + meteorological drought
- As categories are ordinal we convert to numerical values
- Evaluation: Macro F1 and MAE/RMSE

# **DroughtED**

- Globally available input features
- Time-invariant features
- Seasonal reference data
- Currently covers continental US
- Can be expanded to other regions

# NASA POWER PROJECT

- Globally available
- Wind speed, surface pressure, temperature, humidity, precipitation (21 values) + previous drought values
- 180 days of data leading up to prediction

current:  $\vec{x_1}, ..., \vec{x_{180}}$ 

#### SEASONAL REFERENCE DATA

- Include past values offset by 1 year
- Previous meteorological data + drought values in the same season can help indicate if current values are normal or abnormal

current:  $\vec{x_{c,1}}, ..., \vec{x_{c,180}}$ 

past:  $\vec{x_{p,1}}, ..., \vec{x_{p,180}}$ 

#### HARMONIZED WORLD SOIL DATABASE

- time-invariant (indirectly identifies location)
- Elevation, Slope, Aspect, Land Type, Soil Quality (29 Values)
- Enables model to generalise across large areas

$$Location = H\vec{WSD} \oplus Lat\vec{L}on$$



Latitude

#### THE UNIVERSITY of EDINBURGH

### Input Variables

current:  $\vec{x_{c,1}}, ..., \vec{x_{c,180}}$ 

&  $Location = H\vec{W}SD \oplus Lat\vec{L}on$ 

past:  $\vec{x_{p,1}}, ..., \vec{x_{p,180}}$ 



 $\Delta t$ 1 to 6 weeks



Longitude

**Target Variables** 

#### **MODELS**

 Use DroughtED to predict 6 future values (weekly)



### **EXPERIMENT RESULTS**

Comparing Model Performance on Local vs National Training Data

| Training Data               | Evaluation Data             | Week 1 (%)           |
|-----------------------------|-----------------------------|----------------------|
| Iowa<br>Montana<br>Oklahoma | Iowa<br>Montana<br>Oklahoma | 88.4<br>53.1<br>70.9 |
| All                         | Iowa<br>Montana<br>Oklahoma | 90.1<br>55.8<br>75.8 |

#### **CONCLUSION**

- Baseline models performed better on multi-regional data
- Baseline models performed favourably to SOTA

#### **FUTURE WORK**

- Expand to regions beyond the US, test further models
- kaggle.com/cdminix/us-drought-meteorological-data
- github.com/minixc/droughted scripts