The Life Cycle of Firms and the Productivity Advantages of Large Cities

Tomás Budí-Ors

CEMFI, visting Yale

Yale Macro Breakfast
April 2023

Motivation

Firms are, on average, more productive in larger cities

(a) Relationship between Urban Area population and firm TFPQ in Spain

(b) Distribution of \log TFPQ across Spanish Urban Areas

Motivation

Firms are, on average, more productive in larger cities

- Different mechanisms
 - 1. Agglomeration (Rosenthal and Strange 2004, Combes et al 2012, Behrens et al 2014, Gaubert 2018)
 - 2. Sorting (Behrens et al 2014, Gaubert 2018)
 - 3. Selection (Melitz and Ottaviano 2008, Combes et al 2012, Behrens et al 2014)
- So far, the importance of 1.–3. for the urban productivity premium disciplined with static models
 - ightarrow This paper: a dynamic perspective
 - Goals:
 - (a) Quantify 1.–3. using theory and data on firm growth and firm dynamics across the city-size distribution
 - (b) Revisit the implications of place-based policies for aggregate productivity

What I am doing

- Facts on firms' life-cycle growth, firm entry and firm exit across the city-size distribution in Spain
 - Firm growth over the life-cycle is higher in larger cities
 - No relevant differences in entry and exit rates across cities of different size
 - Firm reallocation is negligible (\sim 0.01% of firms per year reallocate)
- Canonical model of firm dynamics (Hopenhayn 1992) augmented with
 - + Agglomeration externality
 - + Ex-ante (productivity type) and ex-post (productivity shocks) firm heterogeneity
 - → captures the mechanisms that generate the urban productivity premium
- Model-based identification strategy to quantify the extent of sorting vs agglom vs selection in the UPP
 - → Today: comparative statics exercise to discuss the identification of some key parameters

Related Literature

- Productivity advantages of large cities and firm sorting, selection, and agglomeration Rosenthal and Strange (2004), Combes, Duranton, Gobillon, Puga, and Roux (2012) Behrens, Duranton, and Robert-Nicoud (2014), Gaubert (2018), Ziv (2019)
 - → A new identification strategy based on data and theory of firm dynamics
- Firm dynamics across regions
 Brinkman, Coen-Pirani, and Siegel (2016), Walsh (2019), Brandt, Kambourov, and Storesletten (2019), Klenow and Li (2022)
 - → A different question: revising why firms located in large cities are more productive
- 3 Firm growth over the life cycle Haltiwanger, Jarmin, and Miranda (2013), Hsieh and Klenow (2014), Arkolakis (2016), Sterk, Sedláçek, Pugsley (2021)
 - → A look at its geographical dimension

Facts

Facts

Data

- Balance sheet information of non-financial Spanish firms, collected by the Bank of Spain
 - Annual frequency 2004-2018
 - Around 1.2 million firms, each one observed an average of 5 years
 - Information on firm sector, employment, capital, wage bill and location of headquarters
 - Drawbacks:
 - Data at the firm level rather than at the establishment-level
 - Imperfect to study firm exit, as firms stop showing up in the sample but continue operating
- Geography: 83 Urban Areas (UA) defined by Ministry of Transports and Mobility

- Notion of local labor market (68% of population, 73% of firms in full sample)
 - Final sample with 5 million firm-year observations, 915 thousand firms
- Compute UA size as the number of people within 10km of the average person in UA (De La Roca, Puga 2017)

1. Firm growth over the life cycle is higher in large cities

- Firms grow much more as they age in large cities
 - Holds within sector SEE
 - Also in terms of VA per worker

1. Firm growth over the life cycle is higher in large cities

- Firms grow much more as they age in large cities
 - Holds within sector SEE
 - Also in terms of VA per worker
- Not explained by survival bias
 - No relevant differences in exit rates by age across cities

1. Firm growth over the life cycle is higher in large cities

- Firms grow much more as they age in large cities
 - Holds within sector SEE
 - Also in terms of VA per worker
- Not explained by survival bias
 - No relevant differences in exit rates by age across cities
- Mainly driven by a small group of high-growth firms
- Not associated to some of the common drivers of misallocation
 - (e.g. different labor regulation, tax regime or contract law)

2. Entry and exit rates are similar for cities of different size

• Compute the entry and exit rates in Urban Area (UA) u in year t as

- Entrants are more productive in large cities, yet not larger in terms of employment or capital
- Exiters are more productive and larger in big cities

From the Facts to the Model

- In larger cities
 - 1. Firms grow more over the life-cycle, both in terms of employment and value added
 - 2. The entry and the exit rates are not different than in smaller cities
 - 3. Firms are larger and more productive

- A model relating the facts to the mechanisms of the urban productivity premium
 - Firm dynamics as in Hopenhayn (1992) \rightarrow endogenous exit (selection)
 - Agglomeration externality: city size (population) increases firm TFP, more so for high productivity firms
 - → Induces sorting of ex-ante more productive firms into large cities

Model

Environment

- A city economy: agents operate in a single-city world of exogenous size L or a world of isolated city-islands
- Representative household: continuum of identical members (of size L)
 - Static problem, no savings
- Production
 - Heterogeneous firms in both ex-ante profiles and ex-post shocks that determine efficiency z
 - Production requires only labor ℓ , hired every period, and shows decreasing returns

$$y=\varphi(z,L)\ell^{\gamma}\quad\text{with}\quad\gamma<1$$

- ightarrow firm TFP $arphi(z, \underline{L})$ affected by city size \underline{L}
- Firm dynamics: endogenous entry and exit
 - Endogenous exit due to fixed cost of operation c_f
 - Free entry condition as entry is costly c_e

Incumbent firms

Production and exit

ullet Static production problem o solve for labor demand, ouput and profits (final good is the numeraire)

$$\ell(z, \underline{L}, w) = \frac{\gamma}{w} \frac{\varphi(z, \underline{L})^{\frac{1}{1-\gamma}}}{c(w)}, \qquad y(z, \underline{L}, w) = \frac{\varphi(z, \underline{L})^{\frac{1}{1-\gamma}}}{c(w)}, \qquad \pi(z, \underline{L}, w) = (1-\gamma) \frac{\varphi(z, \underline{L})^{\frac{1}{1-\gamma}}}{c(w)}$$

where
$$c\left(w\right) = \left(\frac{w}{\gamma}\right)^{\frac{\gamma}{1-\gamma}}$$

- Realized firm efficiency z is a function of an exogenous Markovian state vector \mathbf{s} (to be discussed later)
- ullet Before $z(\mathbf{s})$ is realized, a firm may exit and avoid paying the fixed cost of operation c_f
- \rightarrow The value of a firm with state vector s in a city of size L at time t

$$V\left(\mathbf{s}, L, w_{t}\right) = \max \left\{ \mathbb{E}\left[\pi(\mathbf{s}', L, w_{t}) - c_{f} + \beta V\left(\mathbf{s}', L, w_{t+1}\right) \mid \mathbf{s}\right], 0 \right\}$$

where s' is the value of the state realized after the continuation decision

Entry, Aggregation, and Market clearing

Firm entry

- ullet After paying entry cost c_e , entrants observe their initial level of ${f s}$
 - ightarrow Depending on $V(\mathbf{s},L,w_t)$ decide to operate and pay c_f or exit immediately and never produce
- Free entry condition (all potential entrants are indifferent between entry or not)

$$\int_{\mathbf{s}} V\left(\mathbf{s}, L, w_{t}\right) d\hat{G}\left(\mathbf{s}\right) \leq c_{e} \quad \text{ with equality if the mass of entrants } m_{t} > 0$$

Aggregation

• The distribution of incumbent firms μ_t follows the law of motion

$$\mu_{t+1}(\mathbf{s}') = \int_{\mathbf{s}} \underbrace{(1 - x(\mathbf{s}))}_{\text{exit policy}} G(\mathbf{s}' \mid \mathbf{s}) d\mu_t + m_{t+1} \int_{\mathbf{s}} (1 - x(\mathbf{s})) d\hat{G}(\mathbf{s})$$

Market clearing: labor

$$L = (1 - x(\mathbf{s})) \left[\int_{\mathbf{s}} \ell(\mathbf{s}, L, w) d\mu_t + m_{t+1} \int_{\mathbf{s}} \ell(\mathbf{s}, L, w_t) d\hat{G}(\mathbf{s}) \right]$$

Entry, Aggregation, and Market clearing

Firm entry

- After paying entry cost c_e , entrants observe their initial level of ${f s}$
 - ightarrow Depending on $V(\mathbf{s},L,w_t)$ decide to operate and pay c_f or exit immediately and never produce
- Free entry condition (all potential entrants are indiferent between entry or not)

$$\int_{\mathbf{s}} V\left(\mathbf{s}, L, w_{t}\right) d\hat{G}\left(\mathbf{s}\right) \leq c_{e} \quad \text{ with equality if the mass of entrants } m_{t} > 0$$

Aggregation

• The distribution of incumbent firms μ_t follows the law of motion

$$\mu_{t+1}(\mathbf{s}') = \int_{\mathbf{s}} \underbrace{(1 - x(\mathbf{s}))}_{\text{exit policy}} G(\mathbf{s}' \mid \mathbf{s}) d\mu_t + m_{t+1} \int_{\mathbf{s}} (1 - x(\mathbf{s})) d\hat{G}(\mathbf{s})$$

Market clearing: goods

$$C = (1 - x(\mathbf{s})) \left[\int_{\mathbf{s}} (y(\mathbf{s}, L, w) - c_f) d\mu_t + m_{t+1} \int_{\mathbf{s}} (y(\mathbf{s}, L, w) - c_f) d\hat{G}(\mathbf{s}) \right] - c_e m_{t+1}$$

Productivity externality: agglomeration economies

• So far, no stance on how city size affects firm TFP (model in general form with $\varphi(z,L)$)

- Evidence that more productive firms are disproportionately more productive in larger cities
 Combes et al 2012
 - \rightarrow Complementarity between L and z
 - Follow Gaubert (2018) and assume $\varphi(z,L) = \exp\left(\alpha \log L + \log z \left(1 + \log L\right)^{\eta}\right)^{1-\gamma}$
 - ightarrow log-supermodularity of profits i.e. $\frac{\partial^2 \log \pi(z,L,w)}{\partial \log L \partial \log z} > 0$, most productive firms are better-off in large cities
 - ightarrow lpha is the traditional agglomeration elasticity, while η controls the extent of complementarity between z and L

Productivity process

- Urban productivity premium may reflect the sorting of ex-ante more productive firms (Gaubert, 2018)
- ightarrow Allow for productivity process in which firms are ex-ante heterogeneous (Sterk, Sedláçek, Pugsley, 2021)
 - try to identify mean of ex-ante component across cities

ex-ante het ex-post het
$$u_{i,a}=\rho_u u_{i,a-1}+\theta_i, \qquad \qquad u_{i,-1}\sim iid(0,\sigma_u^2), \qquad \theta_i\sim iid(\mu_\theta,\sigma_\theta^2), \quad \mid \rho_u\mid \leq 1$$

$$v_{i,a} = \rho_v v_{i,a-1} + \zeta_{i,a},$$

$$\varepsilon_{i,a} \sim iid(0, \sigma_z^2)$$

 $\log z_{i,a} = \underbrace{u_{i,a}} + \underbrace{v_{i,a} + \varepsilon_{i,a}}_{}$

$$v_{i,-1} = 0,$$
 $\zeta_{i,a} \sim iid(0, \sigma_{\varepsilon}^2), \quad |\rho_v| \leq 1$

(where $z_{i,a}$ is the efficiency of firm i at age a)

Productivity process

- Urban productivity premium may reflect the sorting of ex-ante more productive firms (Gaubert, 2018)
- Allow for productivity process in which firms are ex-ante heterogeneous (Sterk, Sedlácek, Pugsley, 2021)
 - try to identify mean of ex-ante component across cities

$$\log z_{i,a} = \underbrace{u_{i,a}}_{\text{ex-ante het}} + \underbrace{v_{i,a} + \varepsilon_{i,a}}_{\text{ex-post het}} \qquad \text{(where $z_{i,a}$ is the efficiency of firm i at age a)}$$

$$u_{i,a} = \rho_u u_{i,a-1} + \underbrace{\theta_i}_{\text{productivity}} \qquad \underbrace{u_{i,-1}}_{\text{initial}} \sim iid(0,\sigma_u^2), \qquad \theta_i \sim iid(\mu_\theta,\sigma_\theta^2), \mid \rho_u \mid \leq 1$$

condition

(where $z_{i,a}$ is the efficiency of firm i at age a)

- \rightarrow Heterogeneity in long-run productivity level determined by $\frac{\theta_i}{1-\alpha}$
- \rightarrow Heterogeneity in convergence to long-run level determined by $u_{i,-1}$

$$v_{i,a} = \rho_v v_{i,a-1} + \zeta_{i,a},$$
 $v_{i,-1} = 0,$ $\zeta_{i,a} \sim iid(0, \sigma_{\varepsilon}^2),$ $|\rho_v| \leq 1$
 $\varepsilon_{i,a} \sim iid(0, \sigma_{\varepsilon}^2)$

Productivity process

- Urban productivity premium may reflect the sorting of ex-ante more productive firms (Gaubert, 2018)
- ightarrow Allow for productivity process in which firms are ex-ante heterogeneous (Sterk, Sedláçek, Pugsley, 2021)
 - try to identify mean of ex-ante component across cities

$$\log z_{i,a} = \underbrace{v_{i,a}}_{\text{ex-ante het}} + \underbrace{v_{i,a} + \varepsilon_{i,a}}_{\text{ex-post het}} \qquad \qquad \text{(where $z_{i,a}$ is the efficiency of firm i at age a)}$$

$$\begin{aligned} u_{i,a} &= \rho_u u_{i,a-1} + \theta_i, & u_{i,-1} \sim iid(0,\sigma_u^2), & \theta_i \sim iid(\mu_\theta,\sigma_\theta^2), & |\rho_u| \leq 1 \\ v_{i,a} &= \underbrace{\rho_v v_{i,a-1} + \zeta_{i,a}}_{\text{standard AR(I) process}}, & v_{i,-1} &= 0, & \zeta_{i,a} \sim iid(0,\sigma_\varepsilon^2), & |\rho_v| \leq 1 \end{aligned}$$

$$\underbrace{\varepsilon_{i,a}}_{\text{noise shock}} \sim iid(0,\sigma_z^2)$$

Identification I

• Problem: higher ex-ante firm productivity μ_{θ} or city size L have the same implication for empl *levels*

$$\log \ell_{i,a} = \log \gamma - \log w - \log c(w) + \alpha \log L + (1 + \log L)^{\eta} \log z_{i,a}$$

Employment growth (in Steady State) can be informative

$$\log \ell_{i,a+1} - \log \ell_{i,a} = (1 + \log L)^{\eta} (\log z_{i,a+1} - \log z_{i,a})$$

- Differences in employment growth between
 - old firms in same city ightarrow only from ex-post shocks (as ex-ante type is differenced away and L is common)
 - young firms in same city \rightarrow from differences in ex-ante profiles and ex-post shocks
 - old firms in different cities \rightarrow from differences in L and ex-post shocks
 - young firms in different cities ightarrow from differences in L, ex-ante profiles and ex-post shocks
- → Comparing employment growth of old vs young firms in same vs different cities is informative about the importance of sorting vs agglomeration for the city productivity premium

Identification II

Identification argument holds conditional on exit rates being the same across space

$$\Delta \log \ell_{i,a} = (1 + \log L)^{\eta} \Delta \log z_{i,a}$$

- $\rightarrow \Delta \log \ell_{i,a}$ for old firms in the same city depends on ex-post shocks but *also* on endogenous exit (selection), which in turn depends on ex-ante heterogeneity
- One way of dealing with this is assuming that exit is exogenous, but unappealing to study possibly stronger selection in citites
- An alternative is to allow entry costs to vary by city size $c_e(L) = c_0 L^{\chi}$
 - With higher c_e , the free entry condition is satisfied at a lower w, affecting incumbents productivity and as a result exit rates
 - Empirically, it could be justified as a reduced-form counterpart of the higher price of land in large cities

Comparative statics

- Borrow productivity process calibrated by Sterk, Sedláçek, Pugsley (2021) for US firms
- Set structural parameters arbitrarily/to standard values
- ullet Solve model for different values of city size L and compare outcomes
 - 1) Same productivity process in all cities
 - 2) Ex-ante better firms in large cities
 - 3) Ex-ante better firms and higher entry costs in large cities
- Show identification strategy at work

Employment levels and Survival rates by age

1. Same productivity process in all city-sizes

- Firms are more productive in cities due to the agglomeration externality, and so larger
 - This is partly compensated by higher wages in large L, specially for young firms
- Firms grow following good productivity shocks, which are amplified by city size $\Delta \log \ell_{i,a} = (1 + \log L)^{\eta} \Delta \log z_{i,a}$
- ullet Survival rates similar across L sizes because higher productivity in large cities is compensated by higher w

Employment levels and Survival rates by age

2. Ex-ante better firms in large cities (higher μ_{θ})

- Firms in large cities are now exogenously more productive
 - For given c_e , equilibrium w increases to satisfy the free-entry condition (making operation more costly)
 - → Extra selection on entry in large cities (i.e. entrants must be ex-ante very productive)
 - → Highly-productive firms cope better with shocks and exit less

Employment levels and Survival rates by age

3. Ex-ante better firms in large cities (higher $\mu_{ heta}$) and higher entry costs c_e

- Entrants in large cities are also exogenously more productive, however
 - As c_e also increases, the w that satisfies the free-entry condition is not that high
 - \rightarrow Selection of ex-ante types on entry not that demanding
 - → Exit rates increase, as less *ex-ante* highly-productive incumbents

Employment growth: identification of sorting parameter

1. Same productivity process in all city-sizes

• Plot mean employment growth by age since age = 4

- Gap in employment growth in \log terms explained by city size and different exit profiles, not by differences in $\mu_{ heta}$
 - \rightarrow the elasticity of this gap to city-size identifies η

Employment growth: identification of sorting parameter

- 2. Ex-ante better firms in large cities (higher μ_{θ})
 - Plot mean employment growth by age since age =4

- ullet Gap in employment growth in \log terms explained by city size and different exit profiles, not by differences in $\mu_ heta$
 - \rightarrow the elasticity of this gap to city-size identifies η

Employment growth: identification of sorting parameter

1. Same productivity process in all city-sizes

• Plot mean employment growth by age since age =4

- ullet Gap in employment growth in \log terms explained by city size and different exit profiles, not by differences in $\mu_ heta$
 - \rightarrow the elasticity of this gap to city-size identifies η

Employment growth: identification of sorting parameter

- 2. Ex-ante better firms in large cities (higher μ_{θ})
 - Plot mean employment growth by age since age =4

- ullet Gap in employment growth in \log terms explained by city size and different exit profiles, not by differences in $\mu_ heta$
 - \rightarrow the elasticity of this gap to city-size identifies η

Final remarks and Next steps

- Firm growth over the life cycle is higher in large cities, allowing firms to become larger
 - → This can be the result of agglomeration economies or differences in firms productivity across cities
- Using the predictions for firm growth of a standard firm dynamics model with agglomeration externalities, I propose a way to disentangle productivity differences from city-size advantages
- Next steps
 - Empirical implementation
 GMM with moment conditions arising from the model
 - Model extension
 - Model at this point unsuited for interesting place-based policy counterfactuals
 Entry subsidy does not change fundamental productivity of firms entering in each location
 - Firms may know their ex-ante productivity and then choose where to operate

Appendix

Urban Areas in Spain

 Spain has 85 Urban Areas defined by the Ministry of Transports and Mobility Smallest is Teruel with 32,500 people in 2004; largest is Madrid with 5,472,387 people in 2004

1'. Firm growth across the city-size distribution

1'. Firm growth across the city-size distribution

1'. Firm growth across the city-size distribution

Allow local population to have a different effect along the firm life cycle

$$\log \text{firm growth}_{iust} = \alpha_{st} + \sum_{a}^{A} \gamma_a \mathbf{1}_{\{\mathsf{Age}_{iust} = a\}} + \sum_{a}^{A} \beta_a \log \text{population}_{ut} \times \mathbf{1}_{\{\mathsf{Age}_{iust} = a\}} + \epsilon_{iust}$$

	\log firm growth
Age=1 $ imes$ log population	0.0009
Age=2 \times \log population	0.0107***
Age=3 $ imes \log$ population	0.0083***
Age=4 $ imes \log$ population	0.0050***
Age=5 $ imes \log$ population	0.0057***
Age=6 $ imes \log$ population	0.0045***
Age=7 $ imes \log$ population	0.0046***
Age=8 $ imes \log$ population	0.0012
Age=9 $ imes \log$ population	0.0023***

0.0021***
0.0019**
0.0011
0.0004
0.0005
0.0004
232072
0.051

→ Firms grow more in large cities over their life-cycle (controlling by sector and age)

- → The share of local employment accounted for by old firms is larger in big cities
- → The firm age distribution is similar across the city-size distribution

- → The share of local employment accounted for by old firms is larger in big cities
- → The firm age distribution is similar across the city-size distribution

- → The share of local employment accounted for by old firms is larger in big cities
- → The firm age distribution is similar across the city-size distribution

- → The share of local employment accounted for by old firms is larger in big cities
- → The firm age distribution is similar across the city-size distribution

1'. Higher firm growth in large cities is driven by small group of high-growth firms

- The literature has emphasized that a small group of young firms (gazelles) account for a large share of employment growth (Haltiwanger et al. (2016), Sterk et al. (2021)) → define gazelles as firms that
 - (a) Grow at an annualized rate of 20% for their first 5 years of operation
 - (b) Reach at least 10 employees at some point during their life-cycle

- Only 4.1% of all startups in the economy
 - In smallest cities 3.9%, in largest 4.3%
 - Similar exit profiles across cities

1'. Large firms drive the higher average life cycle growth in cities

 Compute the 90th and 50th percentile of the employment distribution at each age, for each UA size-decile

1'. Dispersion of firm growth is higher in large cities

 Compute the 90th and 10th percentile of the employment growth distribution at each age, for each UA size-decile

2'. Entry and exit rates (at the sector level) are similar for cities of different size

- Some sectors may be characterized by higher entry and exit rates, and may be differenty present in large and small cities
 - → Define a market as UA 2-digit-sector combination and compute entry and exit rates as before
 - Keep sectors that are large enough (200 firms) and do not consider UA sectors with less than 10 firms
 - Still, several zeros, as in some markets no single firm enters or exits in some years → run Poisson regression at the sector level y_{ust} = exp{α_t + β log population_{ut} + ε_{ust}}

2'. Entrants in larger cities are more productive, yet not larger

• Regress firm K, L and TFPQ on city size, controlling by year or year-sector FE

	$\log TFPQ$	$\log TFPQ$	$\log K$	$\log K$	$\log L$	$\log L$
\log population	0.0649***	0.0529***	-0.0171***	0.0094***	-0.0211***	-0.0045***
	(0.0025)	(0.0024)	(0.0036)	(0.0035)	(0.0014)	(0.0013)
Year FE 2-dig sector–year FE Observations \mathbb{R}^2	Yes	–	Yes	–	Yes	–
	No	Yes	No	Yes	No	Yes
	215740	215726	250059	250047	329755	329746
	0.006	0.084	0.006	0.101	0.004	0.082

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

2'. Exiters in larger cities are larger and more productive

• Regress firm K, L and TFPQ on city size, controlling by year or year-sector FE

	$\log TFPQ$	$\log TFPQ$	$\log K$	$\log K$	$\log L$	$\log L$
\log population	0.0960*** (0.0017)	0.0870*** (0.0017)	0.0030 (0.0028)	0.0080*** (0.0027)	-0.0035*** (0.0012)	0.0120*** (0.0011)
Year FE	Yes	_	Yes	_	Yes	-
2-dig sector–year FE	No	Yes	No	Yes	No	Yes
Observations	510486	510475	603936	603926	723037	723030
R^2	0.028	0.111	0.007	0.108	0.027	0.117

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

