

Clase 3. Independencia lineal y bases

- 1 Motivación
- Combinaciónes lineales y espacios generados
- 3 Independencia lineal
- 4 Bases y dimensión de un espacio
- 5 Bases ortonormales

Los vectores nos permiten representar datos.

Las operaciones de suma y multiplicación por escalar nos permiten **combinar vectores** para generar **nuevos vectores**.

Serie BRL 2022

Serie JPY 2022

0.02BRL - JPY

Los vectores nos permiten representar datos.

Las operaciones de suma y multiplicación por escalar nos permiten **combinar vectores** para generar **nuevos vectores**.

¿Podemos interpretar nuevos vectores como nuevos datos?

¿Cuándo podemos representar un dato en función de otros?

Serie EUR 2022

Los vectores nos permiten representar datos.

Las operaciones de suma y multiplicación por escalar nos permiten **combinar vectores** para generar **nuevos vectores**.

¿Podemos interpretar nuevos vectores como nuevos datos?

¿Cuándo podemos representar un dato en función de otros?

Esto nos lleva a estudiar la noción de **combinación lineal**, de **independencia** y **dependencia lineal** y de **base**.

Combinaciónes lineales y espacios generados

Si $x,y\in\mathbb{R}^d$ y $\alpha,\beta\in\mathbb{R}$ su **combinación lineal** es una expresión de la forma

$$\alpha x + \beta y$$

Una combinación lineal define un nuevo vector

Si

$$x = \begin{bmatrix} 1 \\ 10 \end{bmatrix}, \quad y = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

entonces para $\alpha=2,\,\beta=3$ su combinación lineal es

$$\alpha x + \beta y = 2 \begin{bmatrix} 1 \\ 10 \end{bmatrix} + 3 \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 20 \end{bmatrix} + \begin{bmatrix} 15 \\ 0 \end{bmatrix} = \begin{bmatrix} 17 \\ 20 \end{bmatrix}$$

Las combinaciones lineales se pueden definir para múltiples vectores.

Si $x_1, \ldots, x_n \in \mathbb{R}^d$ y $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$ su combinación lineal es la expresión

$$\alpha_1 x_1 + \ldots + \alpha_n x_n$$

Si $x_1, \ldots, x_n \in \mathbb{R}^d$ podemos estudiar el conjunto de **todas sus combinaciones** lineales

El **espacio generado** por los vectores x_1, \ldots, x_n es

$$\mathbf{gen}\{x_1,\ldots,x_n\} = \{\alpha_1x_1 + \ldots + \alpha_nx_n : \alpha_1,\ldots,\alpha_n \in \mathbb{R}\}\$$

En otras palabras, es el conjunto de **todas las combinaciones lineales posibles** de los vectores x_1, \ldots, x_n

En este contexto, decimos que x_1, \ldots, x_n son los **generadores del espacio**

El espacio generado es un subespacio vectorial

Axioma de subespacio vectorial	Representación matemática
Cerradura con respecto a la suma vectorial	$x, y \in \mathbf{gen}\{x_1, \dots, x_n\} \Rightarrow x + y \in \mathbf{gen}\{x_1, \dots, x_n\}$
Cerradura con respecto a la multiplicación por escalar	$\alpha \in \mathbb{R}, \in \mathbf{gen}\{x_1, \dots, x_n\} \Rightarrow \alpha x \in \mathbf{gen}\{x_1, \dots, x_n\}$

En otras palabras, cualquier combinación lineal de vectores en el espacio generado pertenece al espacio generado

¿Cuándo es un vector una combinación lineal de otros?

Por ejemplo, ¿alguno de los vectores

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -1 \\ -4 \\ -15 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}$$

es combinación lineal del resto?

$$x_1 - 2x_3 = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \\ -20 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \\ -15 \end{bmatrix} = x_2$$

Por lo tanto, x_2 es redundante en relación a x_1 y x_3

Decimos que $x_1, \ldots, x_n \in \mathbb{R}^d$ son linealmente independientes si

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = 0 \Rightarrow \alpha_1 = \ldots = \alpha_n = 0.$$

En otras palabras, si la \acute{u} nica forma de representar el vector 0 es multiplicando cada vector por el escalar 0

$$x_1 = \begin{bmatrix} 10 \\ 5 \\ 3 \end{bmatrix} \quad \text{y} \quad x_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Si $\alpha_1 x_1 + \alpha_2 x_2$ entonces

$$\alpha_1 \begin{bmatrix} 10 \\ 5 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10\alpha_1 \\ 5\alpha_1 \\ 3\alpha_1 \end{bmatrix} + \begin{bmatrix} \alpha_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10\alpha_1 + \alpha_2 \\ 5\alpha_1 \\ 3\alpha_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$y \alpha_1 = \alpha_2 = 0$$

Los vectores son linealmente independientes

¿Qué ocurre cuando los vectores no son linealmente independientes?

Deben existir $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ no todos iguales a cero para los cuales

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = 0$$

Si, p.ej., $\alpha_1 \neq 0$ podemos escribir

$$x_1 = -\frac{\alpha_2}{\alpha_1} x_1 - \ldots - \frac{\alpha_n}{\alpha_1} x_n$$

Decimos que x_1, \ldots, x_n son linealmente dependientes

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -1 \\ -4 \\ -15 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}$$

Estos vectores son linealmente dependientes ya que

$$x_1 - x_2 - 2x_3 = 0$$

y podemos escribir

$$x_1 = x_2 + 2x_3$$
, $x_2 = x_1 - 2x_3$ y $x_3 = \frac{1}{2}x_1 - \frac{1}{2}x_2$

Bases y dimensión de un espacio

Bases

¿Podemos generar \mathbb{R}^d usando una colección x_1, \ldots, x_n ?

La respuesta es sí

Por ejemplo, para la **base canónica** $e_1, \ldots, e_d \in \mathbb{R}^d$ con

$$e_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}, \qquad , e_d = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$

se tiene

$$\mathbb{R}^d = \mathbf{gen}\{e_1, \dots, e_d\}$$

Bases

En otras palabras, cualquier $x \in \mathbb{R}^d$ se puede expresar como una combinación lineal de e_1, \dots, e_d

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ 0 \end{bmatrix} + \ldots + \begin{bmatrix} 0 \\ \vdots \\ x_d \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix} + \ldots + x_d \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = x_1 e_1 + \ldots + x_d e_d$$

¿Qué otras colecciones de vectores tienen esta propiedad?

¿Cuántos vectores necesitamos?

Dimensión de un espacio

La dimensión de un espacio vectorial es el tamaño máximo de una colección de vectores linealmente independientes y el tamaño mínimo de una colección de vectores que genera todo el espacio

Esto quiere decir que **cualquier** colección de vectores linealmente independientes que generan todo el espacio **debe** tener exactamente d elementos

Dimensión de un espacio

La dimensión de \mathbb{R}^d es $\dim(\mathbb{R}^d) = d$

La dimensión del espacio $\{0\}$ es $\mathbf{dim}(\{0\}) = 0$

Cualquier subespacio de \mathbb{R}^d tiene dimensión a lo más d

Intuitivamente, la dimensión es el número de variables independientes, grados de libertad o número de parámetros libres necesarios para representar un vector en \mathbb{R}^d

Los problemas en altas dimensiones son aquellos para los cuales d es grande

Decimos que $v_1,\ldots,v_d\in\mathbb{R}^d$ es una base de \mathbb{R}^d si son linealmente independientes y si generan todo el espacio

Decimos que v_i es el i-ésimo elemento de la base

A cada $x \in \mathbb{R}$ le corresponde una **única** elección $c_1, \ldots, c_d \in \mathbb{R}$ para las cuales

$$x = c_1 v_1 + \ldots + c_d v_d$$

Los escalares c_1, \ldots, c_d son las **coordenadas** de x en la base v_1, \ldots, v_d

Decimos que c_i es la i-ésima coordenada de x en la base v_1, \ldots, v_d

La i-ésima coordenada representa la **contribución de** v_i **al vector** x

Motivación

Base del coseno discreto para $d=32\,$

¿Cómo calculamos las coordenadas de un vector x en una base v_1, \ldots, v_d ?

Existe un tipo de base para la cual es simple determinar las coordenadas de un vector cualquiera

Decimos que v_1, \ldots, v_d es una base ortonormal si

$$v_i \cdot v_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Si v_1, \ldots, v_d es una **base ortonormal** entonces

$$x = (v_1 \cdot x)v_1 + \ldots + (v_d \cdot x)v_d$$

У

$$||x||^2 = (v_1 \cdot x)^2 + \ldots + (v_d \cdot x)^2$$

Este último resultado se conoce como el teorema de Pitágoras

Bases ortogonales

Una base v_1, \ldots, v_d es **base ortogonal** si

$$v_i \cdot v_j = 0$$
 cuando $i \neq j$

En otras palabras, los vectores son **ortogonales** pero no necesariamente tienen **norma igual a uno**

En este caso, las coordenadas son

$$x = \frac{v_1 \cdot x}{v_1 \cdot v_1} v_1 + \ldots + \frac{v_d \cdot x}{v_d \cdot v_d} v_d$$

Bases ortogonales

La base del coseno discreto es **ortogonal** para cualquier d

