Regression Xiaolan 0418

Xiaolan

2023-04-20

Preparation

The **expected profit** of crop i in province j and year t is defined as

$$E\pi_{ijt} = \tilde{y}_{ijt}(\tilde{p}_{it} - c_{ijt}) + \tilde{d}_{ijt}$$

where:

- \tilde{p}_{it} : future price (yuan per kilogram) averaged in March for November delivery in year t
- c_{ijt} : the realized cost (yuan per kilogram) of crop i in province j and year t
- \tilde{y}_{ijt} : the yield (kilogram per mu) of crop *i* in province *j* averaged in the past three years, $\{t-3, t-2, t-1\}$.
- \tilde{d}_{ijt} : the expected subsidy (yuan per mu) of crop i in province j weighted for the past two years, with $\tilde{d}_{ijt} = 0.67 * d_{ij,t-1} + 0.33 * d_{ij,t-2}$

The **realized profit** of crop i in province j and year t is defined as

$$\pi_{ijt} = y_{ijt}(p_{ijt} - c_{ijt}) + d_{ijt}$$

where p_{ijt} is the realized price (yuan per kilogram) for crop i in province j and year t.

Thus, the expected revenue of crop i in province j and year t is

$$Er_{ijt} = \tilde{y}_{ijt}\tilde{p}_{it} + \tilde{d}_{ijt} = E\pi_{ijt} + \tilde{y}_{ijt}c_{ijt}$$

We define the relative revenue of crop i to a baseline crop wheat as:

$$rr_{ijt} = r_{ijt}/r_{3jt}$$

OLS regression

Suppose s_{ijt} is the share of cropland area for crop i in province j and year t. Let $s_{0jt} = 1 - \sum_{i=1}^{3} s_{ijt}$. We define $z_{ijt} = \log(s_{ijt}/s_{0jt})$ as the dependent variable.

Model 1: Use expected profit as explanatory variable

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{3} E\pi_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

where

- u_i : fixed effect for province j.
- ϵ_{ijt} : random error, assumed i.i.d. with normal distribution

Model 2: Use expected revenue

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{3} Er_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

Model 3: Use expected relative revenue

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{2} Err_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

Some figures:

- (1) Expected profit against acreage share for corn:
- (2) Expected revenue against acreage share:
- (3) Logriathm of expected revenue against acreage share:

Model 1 Regression

```
(0.0003) (0.0004)
##
                                            (0.0004)
##
                           -0.001*** -0.001***
## pfex rice
                                             0.0001
                           (0.0001)
                                  (0.0001)
                                            (0.0001)
##
##
                           0.0002
                                   0.0001
                                            0.001*
## pfex_soy
                           (0.0004) (0.0005)
                                            (0.0005)
##
##
## regionNeimenggu
                         0.316*** -3.190*** -1.529***
##
                          (0.116) (0.128) (0.136)
##
## regionJilin
                          1.854***
                                  0.116
                                           -1.161***
##
                           (0.095)
                                   (0.105) (0.111)
##
## regionLiaoning
                         1.273*** -0.234** -2.134***
##
                           (0.096) (0.106)
                                            (0.113)
##
                         1.615*** 0.959*** 0.798***
## regionHeilongjiang
##
                           (0.102) (0.112) (0.119)
##
## -----
## Observations
                            0.901 0.968
                                           0.941
## R2
                                           0.936
## Adjusted R2 0.892 0.965
## Residual Std. Error (df = 73) 0.328 0.362
                                            0.384
## F Statistic (df = 7; 73) 94.975*** 314.206*** 166.889***
*p<0.1; **p<0.05; ***p<0.01
## Note:
##
## Model 1 Results
## =
## 3
## -
```

Model 2 Regression

```
##
## Model 2 Results
```

```
Soybean
##
                              Corn
                                       Rice
##
                                               (3)
                               (1)
                                       (2)
                             0.001*
                                      0.0005
                                                -0.001
## revex corn
                             (0.0004)
                                      (0.0004) (0.0004)
##
##
## revex_rice
                            0.001*** 0.001**
                                                0.001**
                            (0.0004) (0.0004) (0.0004)
##
##
                            0.002*** 0.001**
## revex_soy
                                                0.001
                                     (0.001)
                                                (0.001)
##
                             (0.001)
##
## regionNeimenggu
                            -4.164*** -6.522*** -3.099***
##
                             (0.773)
                                      (0.831)
                                                (0.890)
##
                            -2.853*** -3.381*** -2.788***
## regionJilin
                             (0.767) (0.824) (0.882)
##
##
## regionLiaoning
                            -3.576*** -3.847*** -3.917***
                             (0.811) (0.872) (0.934)
##
## regionHeilongjiang -2.734*** -2.275***
                                                -0.779
##
                            (0.721) (0.775)
                                                (0.830)
                              80
## Observations
                                       80
                                                 80
                             80 80 80
0.902 0.970 0.943
## R2
## Adjusted R2
                             0.892 0.967
                                               0.938
## Residual Std. Error (df = 73) 0.327 0.351
                                              0.376
## F Statistic (df = 7; 73) 95.850*** 334.140*** 174.003***
## Note:
                               *p<0.1; **p<0.05; ***p<0.01
## Model 2 Results
## =
## 3
## -
lm_corn_rr <- lm(y2 ~ 0 + rr_corn + rr_rice + region, # rc_corn + rc_rice + rc_soy +</pre>
            data = regdat %>% filter(crop == "corn"))
```

у2

##

Model 3 Regression

```
##
## Model 3 Results
                                        у2
##
                              Corn
                                       Rice
                                               Soybean
##
                               (1)
                                       (2)
                                                (3)
                            0.535***
                                      0.484**
                                                -0.166
## rr_corn
                             (0.190)
                                      (0.194)
                                               (0.205)
##
## rr_rice
                            -0.268*** -0.187***
                                               0.022
##
                             (0.031) (0.031)
                                               (0.033)
##
## regionNeimenggu
                             -0.268 -3.820*** -1.321***
                             (0.382) (0.390) (0.413)
##
## regionJilin
                           1.283***
                                     -0.425
                                             -0.937***
                             (0.260)
                                      (0.265) (0.280)
##
                            0.802*** -0.690*** -1.914***
## regionLiaoning
##
                             (0.239)
                                      (0.244)
                                               (0.258)
##
## regionHeilongjiang
                           1.131***
                                    0.474*
                                               0.972***
                             (0.267) (0.272)
##
                                               (0.288)
##
                              80
                                      80
                                                80
## Observations
## R2
                              0.878
                                      0.966
                                              0.938
## Adjusted R2
                              0.868 0.963
                                               0.933
## Residual Std. Error (df = 74) 0.362 0.369
## F Statistic (df = 6; 74) 88.750*** 351.123*** 186.964***
## Note:
                               *p<0.1; **p<0.05; ***p<0.01
## Model 3 Results
## =
## 3
## -
```

Model 4

use the last year's true profit

```
##
## Model 4 Results
##
                                          y2
##
                                         Rice
                               Corn
                                                 Soybean
                                                   (3)
                             -0.002** -0.001**
                                                  -0.001
## pftr corn
##
                              (0.001) (0.001)
                                                 (0.0005)
##
## pftr_rice
                              0.001**
                                       0.0005
                                                 -0.001*
##
                              (0.0004)
                                       (0.0004)
                                                 (0.0003)
##
## pftr_soy
                               0.001
                                       0.0002
                                                  0.001
##
                              (0.001)
                                       (0.001)
                                                 (0.001)
##
                             -0.448*** -3.622*** -1.330***
## regionNeimenggu
                              (0.162) (0.144)
                                                 (0.124)
##
## regionJilin
                             0.970*** -0.414*** -1.000***
                                      (0.144)
##
                              (0.162)
                                                (0.124)
##
                              0.335*
                                      -0.783*** -1.925***
## regionLiaoning
##
                              (0.179)
                                       (0.160)
                                                 (0.137)
##
## regionHeilongjiang
                            0.851*** 0.508***
                                                 0.956***
##
                              (0.144)
                                      (0.128)
                                                 (0.110)
##
## Observations
                               80
                                        80
                                                   80
## R2
                               0.780
                                        0.953
                                                  0.944
## Adjusted R2
                               0.759
                                       0.949
                                                0.939
## Residual Std. Error (df = 73) 0.489
                                        0.436
                                                 0.374
## F Statistic (df = 7; 73) 36.949*** 213.016*** 175.621***
## Note:
                                 *p<0.1; **p<0.05; ***p<0.01
## Model 4 Results
```

stargazer(lm_corn_pftr, lm_rice_pftr, lm_soy_pftr, title = "Model 4 Results", column.labels = c("Corn",

Model 5

= ## 3 ## -

use the expected relative revenue, but set rice as baseline

```
lm_rice_rr2 \leftarrow lm(y2 \sim 0 + rr_corn2 + rr_soy2 + region,
            data = regdat %>% filter(crop == "rice"))
lm_soy_rr2 \leftarrow lm(y2 \sim 0 + rr_soy2 + region,
            data = regdat %>% filter(crop == "soybean"))
stargazer(lm_corn_rr2, lm_rice_rr2, lm_soy_rr2, title = "Model 5 Results", column.labels = c("Corn", "Ri
## Model 5 Results
у2
##
                              Corn
                                        Rice
                                                Soybean
                                        (2)
                                                (3)
##
                               (1)
## rr corn2
                              0.312
                                      0.076
                                                -1.252*
                              (0.720) (0.712)
##
                                                (0.723)
##
## rr_soy2
                             2.695**
                                     2.110*
                                                1.439
##
                             (1.116)
                                      (1.104)
                                                (1.122)
##
                            -1.226*** -4.237*** -1.289***
## regionNeimenggu
##
                             (0.172) (0.170)
                                                (0.173)
##
                                     -1.137*** -0.975***
## regionJilin
                              0.053
##
                              (0.172)
                                      (0.170)
                                                (0.173)
##
## regionLiaoning
                             -0.446*** -1.436*** -1.999***
##
                              (0.167) (0.165)
                                                (0.168)
##
## regionHeilongjiang
                             -0.055
                                      -0.200
                                                0.934***
##
                             (0.157) (0.155)
                                                (0.157)
##
## Observations
                               80
                                        80
                                                  80
## R2
                              0.865 0.965
                                               0.941
## Adjusted R2
                              0.854
                                       0.962
                                                0.936
                                     0.377
## Residual Std. Error (df = 74) 0.381
                                                0.383
## F Statistic (df = 6; 74) 78.798*** 336.412*** 195.100***
## Note:
                                *p<0.1; **p<0.05; ***p<0.01
##
## Model 5 Results
## =
## 3
## -
```

Prediction Results True Result in 2021

```
share_true %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
   "rownames<-"(unique(regdat$crop)[-4]) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	48.09	71.14	62.93	43.31
\mathbf{rice}	1.77	13.53	12.03	25.67
soybean	10.22	4.08	2.4	25.81

Model 1 Prediction

share_est_pf %>% data.frame() %>% "colnames<-"(unique(regdat\$region)) %>%
 "rownames<-"(unique(regdat\$crop)[-4]) %>% pander::pander()

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	43.21	68.54	62.06	42.75
${f rice}$	1.46	12.99	14.46	23.5
soybean	9.68	4.97	3.16	23.58

Model 2 Prediction

share_est_rev %>% data.frame() %>% "colnames<-"(unique(regdat\$region)) %>%
 "rownames<-"(unique(regdat\$crop)[-4]) %>% pander::pander()

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	59.4	77.73	70.61	52.26
${f rice}$	1.67	12.13	14.3	24.36
soybean	6.15	2.72	2.21	16.69

Model 3 Prediction

share_est_rr %>% data.frame() %>% "colnames<-"(unique(regdat\$region)) %>%
 "rownames<-"(unique(regdat\$crop)[-4]) %>% pander::pander()

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	49.81	68.25	58.61	42.53
\mathbf{rice}	1.52	13.12	14.34	23.45
soybean	8.25	4.57	3.1	23.45

Model 4 Prediction

share_est_pftr %>% data.frame() %>% "colnames<-"(unique(regdat\$region)) %>%
 "rownames<-"(unique(regdat\$crop)[-4]) %>% pander::pander()

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	26.95	59.42	56.45	31.44
\mathbf{rice}	1.1	13.12	14.25	21.47

	Neimenggu	Jilin	Liaoning	Heilongjiang
soybean	12.04	6.33	3.66	33.75

Model 5 prediction

```
share_est_rr2 %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
   "rownames<-"(unique(regdat$crop)[-4]) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	55.88	74.68	65.63	51.1
${f rice}$	1.63	12.71	14.9	24.87
soybean	6.27	3.09	2.54	16.8

```
MSE1 <- rowMeans((share_true - share_est_pf)^2)
MSE2 <- rowMeans((share_true - share_est_rev)^2)
MSE3 <- rowMeans((share_true - share_est_rr)^2)
MSE4 <- rowMeans((share_true - share_est_pftr)^2)
MSE5 <- rowMeans((share_true - share_est_rr2)^2)

cbind(MSE1, MSE2, MSE3, MSE4, MSE5) %>% "colnames<-"(paste0("Model", 1:5)) %>%
    "rownames<-"(unique(regdat$crop)[-4]) %>% pander::pander()
```

MSE Results

	Model1	Model2	Model3	Model4	Model5
corn	7.911	77.61	7.645	191.8	35.3
${f rice}$	2.75	2.21	2.624	5.796	2.392
soybean	1.659	25.41	2.545	18.25	24.45

Predicted Shares

$$y_{2,corn} = \log(s_{corn}/s_{other}) \Rightarrow \exp(y_{2,corn}) = s_{corn}/s_{other}$$

$$s_{corn}/s_{other} + s_{rice}/s_{other} + s_{soy}/s_{other} + 1 = 1/s_{other}$$

```
# model 1: predict y2 first
pd_corn_pf_all <- predict(lm_corn_pf, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "corn"))
pd_rice_pf_all <- predict(lm_rice_pf, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "rice"))
pd_soy_pf_all <- predict(lm_soy_pf, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "soybean"))
# model 1: transform back to share
# Neimenggu 2001, Neimenggu 2002, ..., Neimenggu 2021,
s_other_pf <- 1/(exp(pd_corn_pf_all) + exp(pd_rice_pf_all) + exp(pd_soy_pf_all) + 1)</pre>
s_corn_pf <- s_other_pf * exp(pd_corn_pf_all)</pre>
s_rice_pf <- s_other_pf * exp(pd_rice_pf_all)</pre>
s_soy_pf <- s_other_pf * exp(pd_soy_pf_all)</pre>
# model 2: predict y2 first
pd_corn_rev_all <- predict(lm_corn_rev, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "corn"))
pd_rice_rev_all <- predict(lm_rice_rev, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "rice"))
pd_soy_rev_all <- predict(lm_soy_rev, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "soybean"))
# model 2: transform back to share
s_other_rev <- 1/(exp(pd_corn_rev_all) + exp(pd_rice_rev_all) + exp(pd_soy_rev_all) + 1)</pre>
s_corn_rev <- s_other_rev * exp(pd_corn_rev_all)</pre>
s_rice_rev <- s_other_rev * exp(pd_rice_rev_all)</pre>
s_soy_rev <- s_other_rev * exp(pd_soy_rev_all)</pre>
# model 3: predict y2 first
pd_corn_rr_all <- predict(lm_corn_rr, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "corn"))
pd_rice_rr_all <- predict(lm_rice_rr, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "rice"))
pd_soy_rr_all <- predict(lm_soy_rr, newdata = rbind(regdat, preddat) %>%
                          arrange(region, crop, year) %>% filter(crop == "soybean"))
# model 3: relative revenue
# Neimenggu 2001, Neimenggu 2002, ..., Neimenggu 2021,
s_other_rr <- 1/(exp(pd_corn_rr_all) + exp(pd_rice_rr_all) + exp(pd_soy_rr_all) + 1)</pre>
s_corn_rr <- s_other_rr * exp(pd_corn_rr_all)</pre>
s_rice_rr <- s_other_rr * exp(pd_rice_rr_all)</pre>
s_soy_rr <- s_other_rr * exp(pd_soy_rr_all)</pre>
# combine the results
predshare <- data.frame(region = rep(rep(c("Neimenggu", "Jilin", "Liaoning", "Heilongjiang"), each = 21</pre>
                         crop = rep(c("corn", "rice", "soybean", "other"), each = 84),
                         year = rep(2001:2021, 16),
                         share_true = c(share_true[1:21, ], share_true[22:42, ],
                                        share_true[43:63, ], share_true[64:84, ]),
```

```
share_pf = round(100 * c(s_corn_pf, s_rice_pf, s_soy_pf, s_other_pf), 2),
share_rev = round(100 * c(s_corn_rev, s_rice_rev, s_soy_rev, s_other_rev), 2),
share_rr = round(100 * c(s_corn_rr, s_rice_rr, s_soy_rr, s_other_rr), 2))
```

Cross Validation

We will use cross validation to compare the models.

```
# combine two datasets
alldat <- rbind(regdat, preddat) %>% arrange(region, crop, year)
alldat <- alldat %>%
   mutate(ex_revenue = yield_lag * ex_price + subsidy_lag,
         tcost = yield_lag * cost,
         rcratio = (yield_lag * ex_price + subsidy_lag)/(yield_lag * cost))
alldat <- alldat %>%
   mutate(share_wheat = alldat %>% filter(crop == "wheat") %>% "$"(share) %>%
          matrix(., nrow = 21) %>% # use 21 here since we have 21 years
          kronecker(rep(1, 4), .) %>% as.vector()) %>%
  mutate(y^2 = log(share/(other + share_wheat))) # get new y2 since now we combine other
alldat <- alldat %>%
  mutate(pfex_corn = alldat %>% filter(crop == "corn") %>% "$"(profit_ex) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pfex_rice = alldat %>% filter(crop == "rice") %>% "$"(profit_ex) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pfex soy = alldat %>% filter(crop == "soybean") %>% "$"(profit_ex) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pfex_wheat = alldat %>% filter(crop == "wheat") %>% "$"(profit_ex) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pftr_corn = alldat %% filter(crop == "corn") %>% "$"(profit_true_lag) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pftr_rice = alldat %% filter(crop == "rice") %>% "$"(profit_true_lag) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pftr_soy = alldat %% filter(crop == "soybean") %>% "$"(profit_true_lag) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         pftr_wheat = alldat %>% filter(crop == "wheat") %>% "$"(profit_true_lag) %>%
          matrix(., nrow = 21) %>% # "+"(400) %>% log() %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         revex_corn = alldat %>% filter(crop == "corn") %>% "$"(ex_revenue) %>%
          matrix(., nrow = 21) %>%
          kronecker(rep(1, 4), .) %>% as.vector(),
         revex_rice = alldat %>% filter(crop == "rice") %>% "$"(ex_revenue) %>%
```

```
matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
       revex_soy = alldat %>% filter(crop == "soybean") %>% "$"(ex_revenue) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
       revex_wheat = alldat %>% filter(crop == "wheat") %>% "$"(ex_revenue) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
      tcost_corn = alldat %>% filter(crop == "corn") %>% "$"(tcost) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
       tcost_rice = alldat %>% filter(crop == "rice") %>% "$"(tcost) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
       tcost_soy = alldat %>% filter(crop == "soybean") %>% "$"(tcost) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector(),
       tcost_wheat = alldat %>% filter(crop == "wheat") %>% "$"(tcost) %>%
        matrix(., nrow = 21) %>%
        kronecker(rep(1, 4), .) %>% as.vector())%>%
mutate(rr_corn = revex_corn/revex_soy,
      rr_rice = revex_rice/revex_soy,
      rc_corn = tcost_corn/tcost_soy,
       rc_rice = tcost_rice/tcost_soy,
      rr corn2 = revex corn/revex rice,
      rr soy2 = revex soy/revex rice)
```

Start the cross validation:

```
RMSE1 list <- NULL
RMSE2 list <- NULL
RMSE3 list <- NULL
RMSE4 list <- NULL
RMSE5_list <- NULL
for(i in 2001:2021)
  # Step 1: select regdat and preddat
  regdat <- alldat %>% filter(year != i)
  preddat <- alldat %>% filter(year == i)
  # Step 2: get the true share
  share_true <- preddat$share %>% matrix(., nrow = 4) %>% "["(-4,)
  # Step 3: run all the models
  # model 1
  lm_corn_pf <- lm(y2 ~ 0 + pfex_corn + pfex_rice + pfex_soy + region,</pre>
              data = regdat %>% filter(crop == "corn"))
  lm_rice_pf <- lm(y2 ~ 0 + pfex_corn + pfex_rice + pfex_soy + region,</pre>
                data = regdat %>% filter(crop == "rice"))
```

```
lm_soy_pf <- lm(y2 ~ 0 + pfex_corn + pfex_rice + pfex_soy + region,</pre>
              data = regdat %>% filter(crop == "soybean"))
# model 2
lm_corn_rev <- lm(y2 ~ 0 + revex_corn + revex_rice + revex_soy + region,</pre>
            data = regdat %>% filter(crop == "corn"))
lm rice rev <- lm(y2 ~ 0 + revex corn + revex rice + revex soy + region,</pre>
              data = regdat %>% filter(crop == "rice"))
lm_soy_rev <- lm(y2 ~ 0 + revex_corn + revex_rice + revex_soy + region,</pre>
              data = regdat %>% filter(crop == "soybean"))
# model 3
lm_corn_rr <- lm(y2 ~ 0 + rr_corn + rr_rice + region, # rc_corn + rc_rice + rc_soy +</pre>
            data = regdat %>% filter(crop == "corn"))
lm_rice_rr <- lm(y2 ~ 0 + rr_corn + rr_rice + region,</pre>
              data = regdat %>% filter(crop == "rice"))
lm_soy_rr \leftarrow lm(y2 \sim 0 + rr_corn + rr_rice + region,
             data = regdat %>% filter(crop == "soybean"))
# model 4
lm_corn_pftr <- lm(y2 ~ 0 + pftr_corn + pftr_rice + pftr_soy + region,</pre>
            data = regdat %>% filter(crop == "corn"))
lm_rice_pftr <- lm(y2 ~ 0 + pftr_corn + pftr_rice + pftr_soy + region,</pre>
              data = regdat %>% filter(crop == "rice"))
lm_soy_pftr <- lm(y2 ~ 0 + pftr_corn + pftr_rice + pftr_soy + region,</pre>
              data = regdat %>% filter(crop == "soybean"))
# model 5
lm_corn_rr2 <- lm(y2 ~ 0 + rr_corn2 + rr_soy2 + region, # rc_corn + rc_rice + rc_soy +</pre>
            data = regdat %>% filter(crop == "corn"))
lm_rice_rr2 \leftarrow lm(y2 \sim 0 + rr_corn2 + rr_soy2 + region,
            data = regdat %>% filter(crop == "rice"))
lm_soy_rr2 \leftarrow lm(y2 \sim 0 + rr_soy2 + region,
            data = regdat %>% filter(crop == "soybean"))
# Step 4: calculate the predict share:
# model 1
pd_corn_pf <- predict(lm_corn_pf, newdata = preddat %>% filter(crop == "corn"))
pd_rice_pf <- predict(lm_rice_pf, newdata = preddat %% filter(crop == "rice"))</pre>
pd_soy_pf <- predict(lm_soy_pf, newdata = preddat %>% filter(crop == "soybean"))
```

```
y_pred_pf <- rbind(pd_corn_pf, pd_rice_pf, pd_soy_pf)</pre>
share_est_pf <- round(sweep(exp(y_pred_pf), MARGIN = 2, FUN = "/", STATS =</pre>
                               colSums(exp(y_pred_pf)) + 1) * 100, 2)
# model 2
pd_corn_rev <- predict(lm_corn_rev, newdata = preddat %% filter(crop == "corn"))</pre>
pd rice rev <- predict(lm rice rev, newdata = preddat %>% filter(crop == "rice"))
pd_soy_rev <- predict(lm_soy_rev, newdata = preddat %>% filter(crop == "soybean"))
y_pred_rev <- rbind(pd_corn_rev, pd_rice_rev, pd_soy_rev)</pre>
share_est_rev <- round(sweep(exp(y_pred_rev), MARGIN = 2, FUN = "/", STATS =</pre>
                                colSums(exp(y_pred_rev)) + 1) * 100, 2)
# model 3:
pd_corn_rr<- predict(lm_corn_rr, newdata = preddat %>% filter(crop == "corn"))
pd_rice_rr <- predict(lm_rice_rr, newdata = preddat %% filter(crop == "rice"))</pre>
pd_soy_rr <- predict(lm_soy_rr, newdata = preddat %>% filter(crop == "soybean"))
y_pred_rr <- rbind(pd_corn_rr, pd_rice_rr, pd_soy_rr)</pre>
share_est_rr <- round(sweep(exp(y_pred_rr), MARGIN = 2, FUN = "/", STATS =</pre>
                               colSums(exp(y_pred_rr)) + 1) * 100, 2)
# model 4:
pd_corn_pftr <- predict(lm_corn_pftr, newdata = preddat %% filter(crop == "corn"))</pre>
pd_rice_pftr <- predict(lm_rice_pftr, newdata = preddat %% filter(crop == "rice"))</pre>
pd_soy_pftr <- predict(lm_soy_pftr, newdata = preddat %>% filter(crop == "soybean"))
y_pred_pftr <- rbind(pd_corn_pftr, pd_rice_pftr, pd_soy_pftr)</pre>
share_est_pftr <- round(sweep(exp(y_pred_pftr), MARGIN = 2, FUN = "/", STATS =</pre>
                                 colSums(exp(y_pred_pftr)) + 1) * 100, 2)
# model 5:
pd_corn_rr2 <- predict(lm_corn_rr2, newdata = preddat %% filter(crop == "corn"))</pre>
pd_rice_rr2 <- predict(lm_rice_rr2, newdata = preddat %>% filter(crop == "rice"))
pd_soy_rr2 <- predict(lm_soy_rr2, newdata = preddat %>% filter(crop == "soybean"))
y_pred_rr2 <- rbind(pd_corn_rr2, pd_rice_rr2, pd_soy_rr2)</pre>
share_est_rr2 <- round(sweep(exp(y_pred_rr2), MARGIN = 2, FUN = "/", STATS =</pre>
                                 colSums(exp(y pred rr2)) + 1) * 100, 2)
# Step 5: calculate the RMSE
RMSE1 <- rowMeans((share_true - share_est_pf)^2) %>% sqrt()
RMSE2 <- rowMeans((share_true - share_est_rev)^2) %>% sqrt()
RMSE3 <- rowMeans((share_true - share_est_rr)^2) %>% sqrt()
RMSE4 <- rowMeans((share_true - share_est_pftr)^2) %>% sqrt()
RMSE5 <- rowMeans((share_true - share_est_rr2)^2) %>% sqrt()
```

```
# Step 6: combine the results
RMSE1_list <- rbind(RMSE1_list, RMSE1)
RMSE2_list <- rbind(RMSE2_list, RMSE2)
RMSE3_list <- rbind(RMSE3_list, RMSE3)
RMSE4_list <- rbind(RMSE4_list, RMSE4)
RMSE5_list <- rbind(RMSE5_list, RMSE5)
}

RMSE1_avg <- colMeans(RMSE1_list)
RMSE2_avg <- colMeans(RMSE2_list)
RMSE3_avg <- colMeans(RMSE3_list)
RMSE4_avg <- colMeans(RMSE4_list)
RMSE5_avg <- colMeans(RMSE5_list)</pre>
```

The RMSE table:

```
cbind(RMSE1_avg, RMSE2_avg, RMSE3_avg, RMSE4_avg, RMSE5_avg) %>%
  "colnames<-"(paste0("Model", 1:5)) %>%
  "rownames<-"(unique(regdat$crop)[-4]) %>% pander::pander()
```

	Model1	Model2	Model3	Model4	Model5
corn	3.964	4.234	4.818	7.639	5.013
${f rice}$	1.747	1.857	1.761	2.503	1.824
soybean	2.342	2.724	2.818	3.411	2.565

The standard deviation of RMSE

```
RMSE1_sd <- apply(RMSE1_list, MARGIN = 2, FUN = sd)
RMSE2_sd <- apply(RMSE2_list, MARGIN = 2, FUN = sd)
RMSE3_sd <- apply(RMSE3_list, MARGIN = 2, FUN = sd)
RMSE4_sd <- apply(RMSE4_list, MARGIN = 2, FUN = sd)
RMSE5_sd <- apply(RMSE5_list, MARGIN = 2, FUN = sd)

cbind(RMSE1_sd, RMSE2_sd, RMSE3_sd, RMSE4_sd, RMSE5_sd) %>%
    "colnames<-"(paste0("Model", 1:5)) %>%
    "rownames<-"(unique(regdat$crop)[-4]) %>% pander::pander()
```

	Model1	Model2	Model3	Model4	Model5
corn	0.9372	3.028	1.655	3.18	1.869
\mathbf{rice}	0.6454	0.6957	0.7443	0.8889	0.7277
soybean	1.65	1.862	1.909	1.736	1.607

print(predshare)

```
##
            region
                      crop year share_true share_pf share_rev share_rr
## 1
         Neimenggu
                      corn 2001
                                     26.61
                                              24.35
                                                       26.56
                                                                20.67
## 2
         Neimenggu
                      corn 2002
                                     26.54
                                              25.27
                                                        27.12
                                                                20.77
## 3
         Neimenggu
                      corn 2003
                                     27.66
                                              26.51
                                                       26.58
                                                                23.28
```

##	4	Neimenggu	corn	2004	28.28	28.60	28.74	31.10
##		Neimenggu		2005	29.05	28.69	25.37	26.95
	6	Neimenggu		2006	30.44	31.39	27.07	31.14
	7	Neimenggu		2007	29.76	29.15	28.99	35.29
	8	Neimenggu		2008	34.11	29.77	36.53	37.99
##		Neimenggu		2009	35.38	30.53	32.63	31.57
	10	Neimenggu		2010	35.50	33.61	31.38	38.73
##	11	Neimenggu		2011	37.55	37.36	40.90	45.92
##	12	Neimenggu		2012	39.61	41.23	42.07	46.86
##	13	Neimenggu		2013	43.97	43.72	52.68	45.18
##	14	Neimenggu		2014	45.84	42.56	48.99	45.22
##	15	Neimenggu		2015	45.02	46.92	47.51	46.88
##	16	Neimenggu		2016	42.91	49.35	34.17	39.23
##	17	Neimenggu		2017	41.23	48.92	40.53	40.64
##	18	Neimenggu		2018	42.41	44.63	42.79	41.12
##	19	Neimenggu		2019	42.50	45.28	42.56	42.06
##	20	Neimenggu		2020	43.05	43.99	48.62	43.42
##	21	Neimenggu		2021	48.09	43.21	59.40	49.81
##		Jilin		2001	53.36	49.66	50.10	47.46
##		Jilin		2002	55.03	50.70	51.02	48.20
##		Jilin		2003	55.70	52.43	50.58	51.10
##		Jilin		2004	59.17	53.38	54.22	58.30
	26	Jilin		2005	56.02	53.91	53.51	57.36
##		Jilin		2006	57.79	54.41	55.35	58.76
	28	Jilin		2007	57.72	55.72	60.62	61.52
	29	Jilin		2008	58.47	56.66	64.80	63.05
	30	Jilin		2009	58.24	59.42	59.77	61.53
	31	Jilin		2010	58.35	61.85	59.72	63.55
	32	Jilin		2010	60.02	63.96	66.23	67.74
	33	Jilin		2011	61.79	67.17	65.76	67.97
	34	Jilin		2012	64.64	70.06	69.82	68.29
	35	Jilin		2013	65.83	69.70	68.96	67.93
	36	Jilin		2014	66.91	70.93	67.91	68.52
	37	Jilin		2016	69.96	71.44	59.31	64.01
	38	Jilin		2010	68.42	68.63	67.67	65.19
	39	Jilin		2017	69.59	67.45	69.98	66.03
##		Jilin		2019	68.98	68.75	69.18	66.28
##		Jilin				69.27		66.25
##		Jilin		2020 2021	69.70 71.14	68.54	71.89 77.73	68.25
##		Liaoning		2001	39.52	41.32	40.43	40.68
##		Liaoning		2002	37.58	42.37	41.52	41.42
##		Liaoning		2002	38.58	43.36	41.90	43.36
	46	Liaoning		2003	42.94	43.84	47.56	49.91
	47	Liaoning		2005	47.21	44.53	47.05	47.96
	48	Liaoning		2006	52.65	45.50	47.16	48.80
	49	Liaoning		2007	53.96	45.66	50.42	52.03
	50	Liaoning		2008	50.72	47.69	56.35	54.52
##	51	Liaoning		2009	50.72	49.06	50.93	52.56
	52	Liaoning		2009	51.38	55.88	51.58	54.71
	53	Liaoning		2010	51.49	56.19	53.38	59.16
	54	•		2011	51.49	59.32	53.31	59.10
##		Liaoning Liaoning		2012	53.35	59.85	58.07	60.14
##	56	•		2013		57.54	60.48	59.76
		Liaoning			55.96			
##	31	Liaoning	corn	2015	57.27	60.74	59.35	60.24

шш	го	T 4 4		0016	CF 7C	62.00	40.07	F4 10
	58	Liaoning		2016	65.76	63.02	49.87	54.12
	59	Liaoning		2017	64.52	58.89	59.32	54.65
	60	Liaoning		2018	64.49	60.26	62.86	54.82
	61	Liaoning		2019	63.43	61.54	61.38	55.49
##	62	Liaoning		2020	62.95	60.98	64.52	56.23
	63	Liaoning		2021	62.93	62.06	70.61	58.61
	64	Heilongjiang		2001	21.48	24.03	25.16	21.44
##	65	Heilongjiang	corn	2002	23.18	24.68	25.48	22.02
##	66	Heilongjiang	corn	2003	20.95	27.02	24.93	25.51
##	67	Heilongjiang	corn	2004	22.04	27.85	26.39	30.88
##	68	Heilongjiang	corn	2005	22.02	28.66	25.95	28.64
##	69	Heilongjiang	corn	2006	31.57	28.18	28.57	29.13
##	70	Heilongjiang	corn	2007	32.64	28.31	33.40	33.36
##	71	Heilongjiang	corn	2008	29.73	29.90	36.53	36.00
##	72	Heilongjiang	corn	2009	33.06	32.29	32.52	33.61
##	73	Heilongjiang	corn	2010	35.94	34.52	33.37	36.84
##	74	Heilongjiang	corn	2011	37.53	37.10	40.23	42.50
##	75	Heilongjiang	corn	2012	42.42	40.28	40.49	42.80
##	76	Heilongjiang	corn	2013	44.65	41.98	42.84	42.76
##	77	Heilongjiang		2014	44.50	40.77	41.47	42.19
	78	Heilongjiang		2015	47.35	43.18	42.47	43.22
	79	Heilongjiang		2016	44.02	45.24	34.39	37.57
	80	Heilongjiang		2017	39.70	40.96	40.24	38.50
##		Heilongjiang		2018	43.06	40.59	41.95	38.39
	82	Heilongjiang		2019	39.77	43.72	41.71	38.57
	83	Heilongjiang		2020	36.76	44.03	44.83	39.33
	84	Heilongjiang		2021	43.31	42.75	52.26	42.53
	85	Neimenggu	rice		1.51	1.09	1.14	1.02
	86	Neimenggu	rice		1.53	1.11	1.15	0.99
	87	Neimenggu	rice		1.16	1.15	1.14	1.10
	88	Neimenggu	rice		1.10	1.20	1.14	1.19
	89	Neimenggu	rice		1.36	1.19	1.10	1.17
##	90		rice		1.14	1.19	1.14	1.31
##	91	Neimenggu	rice		1.14	1.21	1.14	1.47
		Neimenggu	rice					
##	92 93	Neimenggu	rice		1.43	1.22 1.24	1.36 1.29	1.39 1.33
##		Neimenggu	rice		1.47			
##		Neimenggu			1.32	1.30	1.24	1.43
	95	Neimenggu	rice		1.27	1.37	1.43	1.50
	96	Neimenggu		2012	1.25	1.43	1.45	1.51
	97	Neimenggu		2013	1.05	1.47	1.61	1.45
	98	Neimenggu		2014	1.06	1.46	1.56	1.47
	99	Neimenggu		2015	1.04	1.52	1.54	1.49
	100	Neimenggu		2016	1.21	1.55	1.29	1.31
	101	Neimenggu		2017	1.36	1.53	1.43	1.40
	102	Neimenggu		2018	1.70	1.48	1.48	1.43
	103	Neimenggu		2019	1.81	1.49	1.46	1.40
	104	Neimenggu		2020	1.81	1.47	1.55	1.40
	105	Neimenggu		2021	1.77	1.46	1.67	1.52
	106	Jilin		2001	14.05	13.09	13.05	12.77
	107	Jilin		2002	14.21	13.12	13.10	12.59
	108	Jilin		2003	11.47	13.27	13.07	13.14
	109	Jilin		2004	12.24	13.23	13.18	12.94
	110	Jilin		2005	13.20	13.34	13.19	13.14
##	111	Jilin	rice	2006	13.17	13.39	13.32	13.48

	112	Jilin	rice		13.55	13.44	13.46	13.51
	113	Jilin	rice		13.18	13.32	13.35	13.13
##	114	Jilin	rice	2009	13.01	13.45	13.43	13.44
##	115	Jilin	rice	2010	12.90	13.40	13.38	13.37
##	116	Jilin	rice	2011	13.24	13.39	13.27	13.39
##	117	Jilin	rice	2012	13.19	13.22	13.29	13.44
##	118	Jilin	rice	2013	13.42	13.03	13.09	13.37
##	119	Jilin	rice	2014	13.30	13.09	13.18	13.48
##	120	Jilin	rice	2015	13.41	13.00	13.21	13.45
##	121	Jilin	rice	2016	13.20	12.87	13.31	13.15
	122	Jilin	rice	2017	13.49	13.19	13.28	13.38
	123	Jilin	rice		13.81	13.24	13.19	13.61
	124	Jilin	rice		13.74	13.04	13.19	13.40
	125	Jilin	rice		13.61	12.99	12.93	13.20
	126	Jilin	rice		13.53	12.99	12.13	13.12
	127	Liaoning	rice		13.00	13.67	13.36	13.57
	128	Liaoning	rice		14.61	13.77	13.52	13.41
	129	Liaoning	rice		13.46	13.90	13.55	13.92
	130	Liaoning	rice		14.62	13.88	14.14	14.00
	131	Liaoning	rice		14.97	13.98	14.16	14.06
	132	Liaoning	rice		16.59	14.10	14.17	14.47
	133	Liaoning	rice		17.84	14.10	14.17	14.71
	134	Liaoning	rice		17.73	14.12	14.75	14.71
	135	_	rice					14.44
		Liaoning			16.76	14.37	14.46	
	136	Liaoning	rice		16.63	14.61	14.43	14.68
	137	Liaoning	rice		15.91	14.64	14.35	14.85
	138	Liaoning	rice		15.72	14.64	14.33	14.82
	139	Liaoning	rice		15.42	14.65	14.51	14.72
	140	Liaoning	rice		13.50	14.73	14.65	14.84
	141	Liaoning	rice		12.91	14.71	14.63	15.00
	142	Liaoning	rice		11.23	14.52	14.26	14.42
	143	Liaoning	rice		11.81	14.65	14.90	14.64
	144	Liaoning	rice		11.61	14.58	14.96	14.72
	145	Liaoning	rice		12.02	14.53	14.86	14.42
	146	Liaoning	rice		12.14	14.50	14.77	14.31
	147	Liaoning	rice		12.03	14.46	14.30	14.34
		Heilongjiang	rice		15.78	18.60	18.96	17.29
		Heilongjiang	rice		15.87	18.77	18.97	17.17
		Heilongjiang		2003	13.17	19.82	19.05	19.09
##	151	Heilongjiang		2004	16.06	19.78	19.48	20.14
		Heilongjiang	rice	2005	16.37	20.31	19.39	19.86
##	153	Heilongjiang	rice	2006	19.03	20.40	20.37	20.81
##	154	Heilongjiang	rice	2007	18.94	20.66	21.84	22.34
##	155	Heilongjiang	rice	2008	19.78	20.67	22.48	22.42
##	156	Heilongjiang	rice	2009	20.29	21.78	21.67	22.44
##	157	Heilongjiang	rice	2010	22.78	22.25	22.08	23.26
##	158	Heilongjiang	rice	2011	24.10	23.09	23.95	24.64
##	159	Heilongjiang	rice	2012	25.09	23.80	24.01	24.60
##	160	Heilongjiang	rice	2013	26.03	24.17	24.27	24.42
##	161	Heilongjiang	rice	2014	26.22	23.73	24.10	24.66
##	162	Heilongjiang	rice	2015	25.60	24.17	24.34	24.79
		Heilongjiang	rice	2016	26.47	24.01	22.09	22.39
##	164	Heilongjiang	rice	2017	26.74	23.30	23.23	22.84
		Heilongjiang	rice	2018	25.78	23.54	23.46	22.96

##	166	Heilongjiang	rice	2019	25.81	23.86	23.33	22.63
		Heilongjiang		2020	25.97	23.54	23.61	22.60
		Heilongjiang	rice		25.67	23.50	24.36	23.45
	169	Neimenggu			13.23	13.36	13.42	13.62
	170	Neimenggu	•		10.13	13.54	13.83	14.04
	171	Neimenggu	•		12.12	12.80	13.02	13.02
	172	Neimenggu	•		12.71	12.07	12.62	12.28
	173	Neimenggu	•		12.82	12.78	12.55	12.53
	174	Neimenggu	•		14.94	10.78	11.81	11.32
	175	Neimenggu	Ü		11.19	11.32	11.05	10.04
	176	Neimenggu	-		9.74	12.58	10.95	10.31
	177	Neimenggu	•		12.13	11.48	11.95	11.15
	178	Neimenggu	•		11.60	11.62	10.71	10.02
	179	Neimenggu	•		9.67	10.01	8.79	8.89
	180	Neimenggu	•		8.62	9.87	8.44	8.72
	181	Neimenggu	•		7.83	9.80	8.21	9.26
	182	Neimenggu	•		6.85	9.23	8.52	9.13
	183	Neimenggu	•		7.00	7.79	8.08	8.80
	184	Neimenggu			6.87	7.44	10.93	10.74
	185	Neimenggu	•		10.97	8.96	10.29	10.00
	186	Neimenggu			12.40	9.19	10.25	9.81
	187	Neimenggu	-		13.39	9.61	9.83	9.90
	188	Neimenggu	-		13.53	10.05	9.05	9.74
	189	Neimenggu	•		10.22	9.68	6.15	8.25
	190		soybean		8.85	10.18	9.99	10.40
	191		soybean		8.85	10.10	10.11	10.40
	192		soybean		9.12	9.09	9.46	9.20
	193		soybean		10.72	9.31	8.58	7.49
	194		soybean		10.72	8.52	8.58	7.59
	195		soybean		4.86	8.15	7.88	6.97
	196		soybean		9.00	7.71	6.73	6.21
	197		soybean		9.15	8.31	6.06	6.03
	198		soybean		8.61	6.88	6.88	6.25
	199		soybean		7.22	6.33	6.46	5.74
	200		soybean		5.84	5.46	4.46	4.56
	201		soybean		4.33	4.74	4.45	4.47
	202		soybean		3.96	3.84	3.83	4.42
	203		soybean		3.80	3.86	4.05	4.46
	204		soybean		2.84	3.47	4.02	4.31
	205		soybean		3.30	3.67	6.51	5.75
	206		soybean		3.62	4.03	4.97	5.28
	207		soybean		4.59	4.52	4.37	4.91
	208		soybean		5.64	4.63	4.47	4.96
	209		soybean		5.22		4.12	5.09
	210		soybean		4.08	4.97	2.72	4.57
	211	Liaoning	-		8.40	5.17	5.13	5.37
	212	Liaoning	-		7.49		5.23	5.39
	213	Liaoning	•		8.20	4.84	4.93	4.96
	214	Liaoning	•		7.95	5.36	4.62	4.26
	215	Liaoning	-		6.68		4.67	4.45
	216	Liaoning	•		3.42	4.50	4.39	4.18
	217	Liaoning	•		3.52		3.97	3.74
	218	Liaoning	-		4.87	4.82	3.61	3.56
	219	Liaoning	-		4.19	4.10	3.95	3.71
			20,00011		1.10	1.10	0.00	0.11

##	220	Liaoning	sovbean	2010	3.03	3.41	3.69	3.44
	221	Liaoning	-		2.90	3.19	2.97	2.86
	222	Liaoning	-		2.75	2.81	2.97	2.86
	223	Liaoning	•		2.73	2.68	2.62	2.78
	224	Liaoning	•		2.75	2.57	2.54	2.79
	225	•	•				2.54	2.79
		Liaoning	•		2.54	2.17		
	226	Liaoning	•		3.12	2.62	3.94	3.61
	227	Liaoning	•		1.78	2.92	3.34	3.46
	228	Liaoning			1.75	3.05	3.08	3.42
	229	Liaoning	•		1.99	3.00	3.23	3.45
	230	Liaoning	-		2.41	3.33	2.99	3.40
	231	Liaoning	-		2.40	3.16	2.21	3.10
##	232	Heilongjiang	soybean	2001	33.50	40.95	39.64	43.33
##	233	Heilongjiang	soybean	2002	29.72	40.60	39.94	43.23
##	234	Heilongjiang	soybean	2003	34.58	37.53	38.48	38.90
##	235	${\tt Heilongjiang}$	soybean	2004	35.96	37.79	37.19	34.55
##	236	Heilongjiang	soybean	2005	35.19	36.13	37.59	36.20
##	237	Heilongjiang	soybean	2006	40.56	35.77	35.57	34.77
##	238	Heilongjiang	soybean	2007	32.01	34.88	31.61	30.51
##	239	Heilongjiang	soybean	2008	33.39	35.01	29.25	28.79
##	240	Heilongjiang	soybean	2009	33.04	31.50	31.93	30.25
		Heilongjiang	•		29.19	29.82	30.09	27.35
		Heilongjiang	•		26.19	26.84	23.28	22.27
		Heilongjiang	•		21.77	23.94	22.94	22.11
		Heilongjiang	•		19.92	22.32	21.70	22.31
		Heilongjiang	•		21.08	23.92	22.80	22.45
		Heilongjiang	•		19.53	21.78	21.62	21.64
		Heilongjiang	-		19.45	21.13	29.82	27.82
		Heilongjiang	-		25.30	24.93	25.99	26.73
		Heilongjiang	-		24.31	24.49	25.01	26.68
		Heilongjiang	-		28.97	22.25	25.26	26.92
		Heilongjiang	-		32.41	22.84	23.12	26.46
		Heilongjiang	-		25.81	23.58	16.69	23.45
	253		other		50.51	61.20	58.88	64.69
	254	Neimenggu						64.20
	255	Neimenggu			53.91	60.09	57.90	
		Neimenggu			53.54	59.54	59.26	62.60
	256	Neimenggu	other		50.57	58.13	57.46	55.43
	257	Neimenggu	other		49.36	57.34	60.99	59.35
	258	Neimenggu	other		45.80	56.57	59.98	56.23
	259	Neimenggu	other		49.98	58.32	58.77	53.20
	260	Neimenggu	other		48.13	56.44	51.15	50.31
	261	Neimenggu	other		43.40	56.74	54.13	55.95
	262	Neimenggu	other		43.49	53.48	56.67	49.82
	263	Neimenggu	other		43.52	51.26	48.89	43.69
	264	Neimenggu	other		42.00	47.46	48.04	42.91
##	265	Neimenggu	other	2013	39.23	45.01	37.51	44.11
##	266	Neimenggu	other	2014	38.59	46.74	40.93	44.18
##	267	Neimenggu	other	2015	39.49	43.77	42.88	42.82
##	268	Neimenggu	other	2016	42.39	41.66	53.60	48.72
##	269	Neimenggu	other	2017	38.96	40.60	47.75	47.96
##	270	Neimenggu	other	2018	36.73	44.70	45.67	47.65
##	271	Neimenggu	other	2019	36.24	43.62	46.14	46.65
##	272	Neimenggu	other	2020	36.22	44.50	40.77	45.44
##	273	Neimenggu	other	2021	34.86	45.65	32.78	40.42
		· -						

##	274	Jilin	other	2001	23.27	27.07	26.86	29.36
	275	Jilin	other		21.42	26.13	25.77	28.81
	276	Jilin	other		23.24	25.21	26.89	26.56
	277	Jilin	other		17.64	24.09	24.02	21.28
	278	Jilin	other		20.40	24.23	24.72	21.20
	279	Jilin	other		24.16	24.05	23.44	20.79
	280	Jilin	other		19.62	23.12	19.19	18.76
	281	Jilin	other		19.02	21.72	15.19	17.78
	282	Jilin	other		20.06	20.25	19.92	18.78
	283	Jilin	other		21.46	18.42	20.45	17.34
	284		other		20.84	17.19	16.04	14.31
		Jilin				14.88		
	285	Jilin	other		20.69		16.50	14.12
	286	Jilin	other		17.98	13.06	13.26	13.92
	287	Jilin	other		17.06	13.36	13.81	14.13
	288	Jilin	other		16.83	12.60	14.86	13.72
	289	Jilin	other		13.54	12.02	20.88	17.09
	290	Jilin	other		14.43	14.14	14.08	16.15
	291	Jilin	other		11.99	14.80	12.46	15.46
	292	Jilin	other		11.59	13.59	13.16	15.36
	293	Jilin	other		11.39	13.22	11.06	15.46
	294	Jilin	other		11.18	13.51	7.42	14.06
	295	O	other		37.95	39.85	41.09	40.38
	296	O	other		39.14	38.68	39.73	39.78
	297	O	other		39.28	37.90	39.62	37.75
	298	0	other		34.03	36.92	33.68	31.83
	299	Liaoning	other		30.58	36.52	34.12	33.54
	300	Liaoning	other		27.13	35.90	34.28	32.55
	301	Liaoning	other	2007	24.35	35.78	31.17	29.53
##	302	Liaoning	other	2008	26.40	33.29	25.30	27.49
##	303	Liaoning	other	2009	28.71	32.47	30.66	29.11
##	304	Liaoning	other	2010	28.78	26.10	30.30	27.17
##	305	Liaoning	other	2011	29.53	25.98	29.30	23.13
##	306	Liaoning	other	2012	28.96	23.22	29.39	23.10
##	307	Liaoning	other	2013	28.37	22.82	24.80	22.36
##	308	Liaoning	other	2014	27.84	25.16	22.33	22.61
##	309	Liaoning	other	2015	27.15	22.38	23.52	22.08
##	310	Liaoning	other	2016	19.75	19.84	31.93	27.85
##	311	Liaoning	other	2017	21.80	23.54	22.43	27.24
##	312	Liaoning	other	2018	22.09	22.10	19.10	27.04
##	313	Liaoning	other	2019	22.50	20.94	20.53	26.64
##	314	Liaoning	other	2020	22.43	21.19	17.72	26.06
##	315	Liaoning	other	2021	22.58	20.31	12.88	23.95
##	316	Heilongjiang	other	2001	26.61	16.41	16.24	17.94
##	317	Heilongjiang	other	2002	28.58	15.96	15.62	17.58
##	318	Heilongjiang	other	2003	28.96	15.63	17.54	16.50
##	319	Heilongjiang	other	2004	23.36	14.58	16.94	14.43
##	320	Heilongjiang	other	2005	23.96	14.90	17.06	15.30
##	321	Heilongjiang	other	2006	6.51	15.66	15.48	15.29
##	322	Heilongjiang	other	2007	14.45	16.14	13.16	13.79
		Heilongjiang	other		15.12	14.43	11.74	12.79
		Heilongjiang	other		11.19	14.44	13.88	13.70
		Heilongjiang	other		9.79	13.41	14.46	12.55
		Heilongjiang	other		9.74	12.97	12.54	10.59
		Heilongjiang	other		9.00	11.99	12.57	10.49
		55 5						

##	328	Heilongjiang	other	2013	8.31	11.52	11.18	10.50
##	329	Heilongjiang	other	2014	7.01	11.58	11.63	10.70
##	330	Heilongjiang	other	2015	6.94	10.87	11.57	10.35
##	331	Heilongjiang	other	2016	9.52	9.62	13.71	12.22
##	332	Heilongjiang	other	2017	7.57	10.81	10.54	11.92
##	333	Heilongjiang	other	2018	6.10	11.38	9.57	11.97
##	334	Heilongjiang	other	2019	5.07	10.16	9.71	11.88
##	335	Heilongjiang	other	2020	4.53	9.59	8.45	11.62
##	336	Heilongjiang	other	2021	4.76	10.17	6.68	10.57