

April, 2021

Organizers

Arjun Gopalan

Da-Cheng Juan

Cesar Ilharco Magalhaes

Chun-Sung Ferng

Yicheng Fan

Allan Heydon

Chun-Ta Lu

Philip Pham

George Yu

Yueqi Wang

All organizers are from Google Research

Agenda

- Introduction to NSL
- Data Preprocessing
- Regularizing with Natural Graphs (Lab 1)
- 5-min coffee/tea BREAK

Fundamentals

Tutorial website:

https://github.com/tensorflow/neural-structured-learning/tree/master/workshops/webconf_2021

Agenda

- Introduction to NSL
- Data Preprocessing
- Regularizing with Natural Graphs (Lab 1)
- 5-min coffee/tea BREAK
- Regularizing with Synthesized Graphs (Lab 2)
- Adversarial Learning (Lab 3)
- 5-min coffee/tea BREAK

Fundamentals

Inferred structures

Tutorial website:

https://github.com/tensorflow/neural-structured-learning/tree/master/workshops/webconf_2021

Agenda

- Introduction to NSL
- Data Preprocessing
- Regularizing with Natural Graphs (Lab 1)
- 5-min coffee/tea BREAK
- Regularizing with Synthesized Graphs (Lab 2)
- Adversarial Learning (Lab 3)
- 5-min coffee/tea BREAK
- Scalable Graph Learning
- Neural Clustering Process (Lab 4)
- Research and Future Directions
- Conclusion

Tutorial website:

https://github.com/tensorflow/neural-structured-learning/tree/master/workshops/webconf_2021

Fundamentals

Inferred structures

Advanced

Introduction to NSL

Da-Cheng Juan

How a Typical Neural Net Works

Neural Structured Learning (NSL)

Structure Among Samples

Co-Occurrence Graph

[Source: graph concept is from Juan et al., WSDM'20. Original images are from pixabay.com]

Citation Graph

[Source:

https://commons.wikimedia.org/wiki/File:Partial_citation_graph_for_%22A_screen_for_RNA-binding_proteins_in_yeast_indicates_dual_functions_for_many_enzymes%22_as_of_April_12_2017.pnql

Text Graph

[Source: copied without modification from https://www.flickr.com/photos/marc_smith/6705382867/sizes/I/]

NSL: Advantages of Learning with Structure

→ Less Labeled Data Required

Robust Model

Scenario I: Not Enough Labeled Data

Example task:

Document Classification

Lots of samples

Not enough labels

Scenario II: Model Robustness Required

Example task: Image Classification

$$oldsymbol{x}$$
 "panda"

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"

 $egin{aligned} & m{x} + \\ \epsilon \mathrm{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y)) \\ & \mathrm{"gibbon"} \end{aligned}$

[Source: Goodfellow, et al., ICLR'15]

NSL: Neural Graph Learning

Graph + Neural Net

Jointly optimizes both features
 & structured signals for better
 models

NSL: Neural Graph Learning

Graph + Neural Net

Jointly optimizes both features
 & structured signals for better
 models

Neural Graph Machines (NGM)

Paper: Bui, Ravi & Ramavajjala [WSDM'18]

NSL: Neural Graph Learning

Joint optimization with label and structured signals:

Supervised Loss

 $g_{\theta}(x_i)$: NN output for input x_i

 $\mathcal{E}(\cdot)$: Loss function

Examples: L2 (for regression)

Cross-Entropy (for classification)

$$\sum_{x_j \in \mathcal{N}(x_i)} w_{ij} \cdot \mathcal{D}(h_{\theta}(x_i), h_{\theta}(x_j))$$

 $h_{\theta}(\cdot)$: Target hidden layer

 $\mathcal{D}(\cdot)$: Distance metric

Examples: L1, L2, ...

NSL: Neural Graph Learning in Practice

Training samples with labels

[Source: Juan, et al., WSDM'20]

Structured signals (e.g., graphs)

16

NSL: Neural Graph Learning in Practice

Training samples with labels

Structured signals (e.g., graphs)

17

NSL: Neural Graph Learning in Practice

Structured signals (e.g., graphs)

Neighbor Embedding

NSL: Adversarial Learning

Adversarial + Neural Net

 Jointly optimize features from original and "adversarial" examples for more robust models

Paper: Goodfellow, et al. [ICLR'15]

Libraries, Tools and Trainers

Standalone Tool

build_graph

pack_nbrs

Graph Functions

read_tsv_graph

write_tsv_graph

add_edge

add_undirected_edges

Web: tensorflow.org/neural structured learning

Libraries, Tools and Trainers

Standalone Tool

build_graph

pack_nbrs

Graph Functions

read_tsv_graph

write_tsv_graph

add_edge

add_undirected_edges

Lib

unpack_neighbor_features

gen_adv_neighbor

replicate_embeddings

Keras

GraphRegularization

AdversarialRegularization

layers

Web: tensorflow.org/neural_structured_learning

Libraries, Tools and Trainers

Standalone Tool

build_graph

pack_nbrs

Graph Functions

read_tsv_graph

write_tsv_graph

add_edge

add_undirected_edges

TFX Integration for prod

Lib

unpack_neighbor_features

gen_adv_neighbor

replicate_embeddings

Keras

GraphRegularization

AdversarialRegularization

layers

Web: tensorflow.org/neural structured learning