Homework I (2021)

Please solve the following problems and then submit the pdf copy of them.

1. In class, we have learned the sample size calculation for two samples. That is, $y_{i1}, \ldots, y_{in} \stackrel{iid}{\sim} N(\mu_i, \sigma^2)$ for i = 1, 2. Show that under $H_0 : \Delta = \Delta_0$ versus $H_1 : \Delta \neq \Delta_0$,

$$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\Delta - \Delta_0)^2},$$

where $\Delta = \mu_1 - \mu_2$ is the treu difference in means.

2. An experiment is conducted to compare four treatments. Five replicates are obtained per treatment.

Treatment			
1	2	3	4
41	36	103	53
46	7	75	30
56	53	84	70
56	31	82	80
69	76	80	42

- (a) Write out the cell means model, under the independent and normally distributed errors assumption.
- (b) Identify all parameters and clearly state ranges of subscripts.
- (c) Give an unbiased estimate of the common standard deviation σ .
- (d) Give the ANOVA table.
- (e) Test whether the underlying population means differ (show all parts of test, using a significance level of $\alpha = 0.05$).
- 3. In the single-factor ANOVA model, $y_{ij} = \mu + \tau_i + \epsilon_{ij}$ for $i = 1, \dots, a$ and $j = 1, \dots, n$ where $\sum_i \tau_i = 0$ and $\epsilon_{ij} \sim N(0, \sigma^2)$. Then prove the following results:

1

- (a) $E(MS_{Treatment}) = \sigma^2 + \frac{n}{a-1} \sum_{i=1}^a \tau_i^2$.
- (b) $E(MS_E) = \sigma^2$.
- (c) Under $H_0: \tau_1 = \cdots = \tau_a = 0$, prove that

$$F = MS_{Treatment}/MS_E \sim F_{a-1,a(n-1)}.$$