

Ab Initio calculation of Electron Temperature Dependent Heat Capacity and Electron-Phonon Coupling Factor of Noble Metals

Reporter: Yongnan Li Date: 25/6/2022

Introduction

Femtosecond laser

Laser energy deposited in the electron subsystem

Electron-Phonon interaction

Electrons and lattice equilibrate to same temperature

Two temperature model (TTM)

$$C_e \frac{\partial T_e}{\partial t} = \nabla(\kappa_e \nabla T_e) - G_{e-ph}(T_e - T_l) + S$$

$$C_l \frac{\partial T_l}{\partial t} = \nabla(\kappa_l \nabla T_l) + G_{e-ph}(T_e - T_l)$$

- **Electron Heat Capacity** C_e
- Lattice Heat Capacity C_l
- Electron-Phonon Coupling Factor G_{e-ph}

Introduction

Noble Metals

- Used as catalysts
- Advanced hydrogen storage capacity
- Producing hydrogen polymer electrolyte fuel cell
- Getting more contact area as nanoparticles

Generate nanoparticles with femtosecond laser

	Electron Structure	
Gold (Au)	$6s^15d^{10}$	Filled <i>d</i> block
Palladium (Pd)	$4d^{10}$	rilled <i>a</i> block
Iridium (Ir)	6s ² 5d ⁷	Partially-filled d block
Rhodium (Rh)	$5s^{1}4d^{8}$	

Focusing on material parameters for TTM

Calculation Method

Electron Heat Capacity

$$\begin{aligned} &C_{e} \Big|_{T_{e}} = \left(\frac{\partial E_{int}|_{T_{e}}}{\partial T_{e}} \right)_{V} \\ &= \int_{-\infty}^{+\infty} \left(g(\varepsilon) \Big|_{T_{e}} \frac{\partial f(\varepsilon)|_{T_{e}}}{\partial T_{e}} + f(\varepsilon) \Big|_{T_{e}} \frac{\partial g(\varepsilon)|_{T_{e}}}{\partial T_{e}} \right) \varepsilon d\varepsilon \end{aligned}$$

Lattice Heat Capacity

$$C_{l} \Big|_{T_{e},T_{l}} = \left(\frac{\partial E_{vib}|_{T_{e},T_{l}}}{\partial T_{l}} \right)_{V}$$
$$= \int_{-\infty}^{+\infty} D(\omega) \Big|_{T_{e}} \frac{\partial n(\omega)|_{T_{l}}}{\partial T_{l}} \omega d\omega$$

Electron-Phonon Coupling Factor

$$G_{e-ph} \Big|_{T_e} = \frac{\pi \hbar k_B \lambda \langle \omega^2 \rangle}{g(\varepsilon_F)|_{T_e}} \int_{-\infty}^{+\infty} \left[g(\varepsilon) \Big|_{T_e} \right]^2 \left(-\frac{\partial f(\varepsilon)|_{T_e}}{\partial \varepsilon} \right) d\varepsilon$$

Fermi-Dirac Distribution Function f chemical potential μ

Fig. 1 Electron temperature T_e dependent f for (a) Au, (b) Pd, (c) Ir, and (d) Rh. Insets of (a)-(d) depict the changes of chemical potential μ to the Fermi energy ε_F , which affect the variations of f.

Electron Density of States *g*

Fig. 2 Electron density of states g for (a) Au, (b) Pd, (c) Ir, and (d) Rh for electron temperature T_e at 300 K, 5,000 K, 10,000 K, 15,000 K and 20,000 K.

Electron Heat Capacity C_e

$$C_{e} \Big|_{T_{e}} = \left(\frac{\partial E_{int}|_{T_{e}}}{\partial T_{e}}\right)_{V}$$

$$= \int_{-\infty}^{+\infty} \left(g(\varepsilon)\Big|_{T_{e}} \frac{\partial f(\varepsilon)|_{T_{e}}}{\partial T_{e}} + f(\varepsilon)\Big|_{T_{e}} \frac{\partial g(\varepsilon)|_{T_{e}}}{\partial T_{e}}\right) \varepsilon d\varepsilon$$

Fig. 3 Electron temperature T_e dependent electron heat capacity C_e for (a) Au, (b) Pd, (c) Ir, and (d) Rh. The curves are compared with several theoretical calculations and experimental results. For (a) Au: dotted line for linear factor $\gamma = \pi^2 k_B^2 g(\varepsilon_F)/3$ from the free electron gas model, dashed line for the linear factor $\gamma = 67.6 \, \mathrm{Jm}^{-3} \mathrm{K}^{-2}$ from experiment [1], the calculation results by Holst *et al.* [2] and Lin *et al.* [3] are shown. For (b) Pd, (c) Ir and (d) Rh: dotted line for linear factor $\gamma = \pi^2 k_B^2 g(\varepsilon_F)/3$ from free-electron-gas model.

[1] F. Mandl, Phys. Bull. **24** (1973) 492.

- [2] B. Holst *et al.*, Phys. Rev. B. **90** (2014) 1–9.
- [3] Z. Lin et al., Phys. Rev. B. 77 (7) (2008).

Electron-Phonon Coupling Factor G_{e-ph}

0.80

(d) Rh

10

 $T_e [10^3 K]$

(d) Rh.

1.12

(c) Ir

15

10

 $T_e [10^3 K]$

Electron-Phonon Coupling Factor G_{e-ph}

$$= \frac{\pi \hbar k_B \lambda \langle \omega^2 \rangle}{g(\varepsilon_F)|_{T_e}} \int_{-\infty}^{+\infty} \left[g(\varepsilon) \Big|_{T_e} \right]^2 \left(-\frac{\partial f(\varepsilon)|_{T_e}}{\partial \varepsilon} \right) d\varepsilon$$

Fig. 5 Electron temperature T_e dependent electron-phonon coupling factor G_{e-ph} for (a) Au, (b) Pd, (c) Ir, and (d) Rh. For (a) Au, the curve is compared with several theoretical calculations, the calculation results by Holst *et al.* [1] and Lin *et al.* [2] are shown.

Phonon Density of States D

Fig. 6 Phonon density of states g for (a) Au, (b) Pd, (c) Ir, and (d) Rh for electron temperature T_e at 300 K, 5,000 K, 10,000 K, 15,000 K and 20,000 K.

Lattice Heat Capacity C_l

$$C_l \Big|_{T_e, T_l} = \int_{-\infty}^{+\infty} D(\omega) \Big|_{T_e} \frac{\partial n(\omega)|_{T_l}}{\partial T_l} \omega d\omega$$

Fig. 7 Electron temperature T_e dependent lattice heat capacity C_l for (a) Au, (b) Pd, (c) Ir, and (d) Rh. Vertical dotted lines indicates to the corresponding Debye temperature Θ_D . Obviously, the result is consistent to classical limit 24.94 J mol⁻¹ K⁻¹.

Debye Temperature Θ_D

Fig. 8 Electron temperature T_e dependent Debye Temperature Θ_D for (a) Au, (b) Pd, (c) Ir, and (d) Rh.

The theoretical calculation result for Au by Recoules et al. [1].

Phonon Dispersion Curves

Fig. 9 Electron temperature T_e dependent Phonon dispersion curves for (a) Au, (b) Pd, (c) Ir, and (d) Rh, the curves are compared with experimental results. Circle symbols for Lynn et al. [1], Miiller et al. [2], Heid et al. [3], Eichler et al. [4] for (a) Au, (b) Pd, (c) Ir, and (d) Rh, respectively. Theoretical calculation result by Recoules et al. [5].

[1] J.W. Lynn *et al.*, Phys. Rev. B **8**, 3493 (1973).

[4] A. Eichler *et al.*, Phys. Rev. B **57**, 324 (1973). [5] V. Recoules *et al.*, Phys. Rev. Lett. **96** (2006) 1–4. [2] A.P. Miiller et al., Phys. Rev. Lett. **20** (1968) 798.

[3] R Heid et al., J. Phys.: Condens. Matter 10 (1998) 7967.

Conclusion

Ab Initio Calculation

- **Electron Heat Capacity** C_e
- Lattice Heat Capacity C_l
- Electron-Phonon Coupling Factor G_{e-ph}

Electrons Transitions

Phonon Response

Generate nanoparticles with femtosecond laser

THANK YOU FOR YOUR ATTENTION

Reporter: Yongnan Li Date: 25/6/2022