Assignment 2

CSCI 2897 - Calculating Biological Quantities - Larremore - Fall 2022

Notes: Remember to (1) familiarize yourself with the collaboration policies posted on the Syllabus, and (2) turn in your homework to Canvas as a **single PDF**. Hand-writing some or most of your solutions is fine, but be sure to scan and PDF everything into a single document. Unsure how? Ask on Slack!

Bicep curls

Calculate these derivatives.

$$1. \ \frac{d}{dx}\cos(2x) =$$

$$2. \ \frac{d}{dx}\cos(x^2) =$$

3.
$$\frac{d}{dx}xe^x =$$

$$4. \ \frac{d}{dx}\ln(x^2) =$$

EC A.
$$\frac{d}{dx} [\sin(x)\cos(x)] =$$

Tricep extensions

Calculate these indefinite integrals. Don't forget your constant!

$$5. \int x^2 dx =$$

$$6. \int x^{-2} dx =$$

$$7. \int e^{2\pi x} dx =$$

8.
$$\int \sin x \, dx =$$

EC B.
$$\int \sin x \, \csc x \, dx =$$

Planks

For each family of solutions below, (i) use the *initial condition* to solve for the unknown constant α , and then (ii) write the solution with the solved-for constant plugged in and simplified.

9.
$$y(t) = \alpha e^{3t}$$
, $y(0) = 10$

10.
$$y(t) = \alpha e^{t/2}, \quad y(6) = e$$

11.
$$n(t) = \frac{K}{1 + \alpha K e^{-rt}}, \quad n(0) = 1$$

12.
$$y(x) = \frac{1}{x^2 + \alpha}$$
, $y(2) = \frac{1}{3}$

EC C.
$$n(t) = \frac{K}{1 + \alpha K e^{-rt}}, \quad n(0) = K$$

Separation of Variables

Classify each equation as separable or not separable. Then, for separable equations, separate the variables *but do not integrate*.

13.
$$t\frac{dy}{dt} = 4y$$

$$14. \ t\frac{dy}{dt} = 4 + t$$

15.
$$y \ln t \frac{dy}{dt} = \left(\frac{y+1}{t}\right)^2$$

$$16. \ e^t + e^y = \frac{dy}{dt}$$

EC D.
$$e^{t+y} = \dot{y}$$