

Lecture 6 - Topics

- Introduction
- Unilateral and Bilateral
- Properties of Z transform
- Region of Convergence
- Application of Z transform

Introduction

- In Signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain representation.
- It can be considered as a discrete-time equivalent of the Laplace transform.

The z-transform of a sequence x[n] is

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}.$$

Uni and Bilateral Transformations

Two sided or bilateral z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Unilateral z-transform

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Properties of Z transform

1. Linearity

If
$$x(n) \overset{\mathrm{Z.T}}{\longleftrightarrow} X(Z)$$

and
$$y(n) \overset{\mathrm{Z.T}}{\longleftrightarrow} Y(Z)$$

Then linearity property states that

$$a\,x(n) + b\,y(n) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} a\,X(Z) + b\,Y(Z)$$

Properties of Z transform

2. Time shifting property:

Time Shifting Property

If
$$x(n) \overset{\mathrm{Z.T}}{\longleftrightarrow} X(Z)$$

Then Time shifting property states that

$$x(n-m) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} z^{-m} X(Z)$$

Properties of Z transform

3. Time Reversal Property:

If
$$x(n) \overset{\mathrm{Z.T}}{\longleftrightarrow} X(Z)$$

Then time reversal property states that

$$x(-n) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} X(1/Z)$$

Region of Convergence (ROC)

 \bigcirc

The range of variation of z for which z-transform converges is called region of convergence of z-transform.

The region of convergence (ROC) is the set of points in the complex plane for which the Z-transform summation converges.

Applications of Z transform

- Analysis of Discrete signal.
- Voice transmission.
- Use to simulate continous signals.
- Used instead of Fourier transform: it is generalized form of Fourier transform.

