Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину.

Alexander S. Baklashov

07 September, 2022

RUDN University, Moscow, Russian Federation

Цель работы

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Выполнение лабораторной работы

Запуск VirtualBox

Запустим VirtualBox

Figure 1: Запуск VirtualBox

Создадим новую виртуальную машину.Укажем имя виртуальной машины (asbaklashov), тип операционной системы — Linux, RedHat

Figure 2: Создание новой виртуальной машины

Укажем размер основной памяти виртуальной машины — 2048 Мб.

Figure 3: Оперативная память

Зададим конфигурацию жёсткого диска— загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск. Зададим размер диска— 50 ГБ и его расположение.

Figure 4: Конфигурация жёсткого диска

Добавим новый привод оптических дисков и выберите образ операционной системы.

Figure 5: Привод оптических дисков

Запустим виртуальную машину

Figure 6: Запуск виртуальной машины

Выберем English в качестве языка интерфейса

Figure 7: English

Перейдём к настройкам установки операционной системы

Figure 8: Настройки ОС

В разделе выбора программ укажем в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools

Figure 9: Настройка окружения

Отключим KDUMP

Figure 10: KDUMP

Место установки ОС оставим без изменения

Figure 11: Место установки ОС

Включим сетевое соединение и в качестве имени узла укажите asbaklashov.localdomain

Figure 12: Сетевое соединение

Установим пароль для root

Figure 13: Пароль для root

Зададим пользователя с правами администратора

Figure 14: Администратор

После завершения установки операционной системы корректно перезапустим виртуальную машину

Figure 15: Перезапуск ВМ

Подключим образ диска дополнений гостевой ОС

Figure 16: Образ диска дополнений гостевой ОС

После загрузки дополнений нажмём Enter и корректно перезагрузим виртуальную машину.

Figure 17: Перезагрузка ВМ

Домашнее задание

Домашнее задание

Необходимо получить следующую информацию:

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).
- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем.

Домашнее задание. Версия ядра Linux.

Версия ядра Linux (Linux version).

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "version"
[ 0.000000] Linux version 5.14.0-70.13.1.el9 0.x86.64 (mockbuild@dal1-prod-builder001.bld.equ
.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9) #1
SMP PREEMPT Wed May 25 21:01:57 UTC 2022
```

Figure 18: Версия ядра Linux

Домашнее задание. Частота процессора.

Частота процессора (Detected Mhz processor).

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "processor"
[ 0.000007] tsc: Detected 2904.008 MHz processor
```

Figure 19: Частота процессора

Домашнее задание. Модель процессора.

Модель процессора (CPU0).

```
[asbaklashov@asbaklashov ~]$ dmesg | grep ·1 "cpu0"
[ 0.152058] smpboot: <mark>CPU0</mark>: Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz (family: 0x6, model: 0x9e,
stepping: 0xc)
```

Figure 20: Модель процессора

Домашнее задание. Объем доступной оперативной памяти.

Объем доступной оперативной памяти (Memory available).

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "memory"
    0.001140] ACPI: Reserving FACP table
                                                 at [mem 0x7fff00f0-0x7fff01e3]
    0.001142] ACPI: Reserving DSDT table memory
                                                 at [mem 0x7fff0470-0x7fff2794]
    0.0011421 ACPI: Reserving FACS table
    0.001143] ACPI: Reserving FACS table
                                                at [mem 0x7fff0200-0x7fff023f
    0.001144] ACPI: Reserving APIC table memory
                                                 at [mem 0x7fff0240-0x7fff0293]
                                                at [mem 0x7fff02a0-0x7fff046b]
    0.0011451 ACPI: Reserving SSDT table
    0.001643] Early me
                           node ranges
    0.002579] PM: hibernation: Registered nosave
    0.002581] PM: hibernation: Registered nosave memory:
    0.002582] PM: hibernation: Registered nosave
    0.002583] PM: hibernation: Registered nosave
    0.012255] Nemory: 260860K/2096696K available (14345K kernel code, 5945K rwdata, 9052K rodat
a, 2548K init, 5460K bss, 142608K reserved, 0K cma-reserved
```

Figure 21: Объем доступной оперативной памяти

Домашнее задание. Тип обнаруженного гипервизора.

Тип обнаруженного гипервизора (Hypervisor detected).

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "hypervisor"
[ 0.000000] Hypervisor detected: KVM
```

Figure 22: Тип обнаруженного гипервизора

Домашнее задание. Тип файловой системы корневого раздела.

Тип файловой системы корневого раздела.

Figure 23: Тип файловой системы корневого раздела

Домашнее задание. Последовательность монтирования файловых систем.

Последовательность монтирования файловых систем.

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "mounting"
[ 3.069112] XFS (dm-0): Mounting V5 Filesystem
[ 4.039673] systemd[1]: Mounting Huge Pages File System...
[ 4.041192] systemd[1]: Mounting POSIX Message Queue File System...
[ 4.047432] systemd[1]: Mounting Kernel Debug File System...
[ 4.052618] systemd[1]: Mounting Kernel Trace File System...
[ 5.681465] XFS (sda1): Mounting V5 Filesystem
```

Figure 24: Последовательность монтирования файловых систем

Выводы

В ходе данной лабораторной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.