MATH 364: Lecture 21 (10/29/2024)

Today: * LP duality for dual LP

Homework 8 Problems

1. The objective function is not-linear. f(x)=|x| is a piecewise linear function.

The objective function is not linear.

$$f(x)=|x| \text{ is a piecewise linear function.}$$

$$f(x)=|x|=\begin{cases} x & \text{if } x = 0, \\ -x & \text{if } x < 0 \end{cases}$$

Try using idea for modeling ars variables $x \to x^{\dagger}, x^{-}$ Or, try solving two LPS with two (related) objective functions.

2. Consider columns of $x_i^+, x_i^- x_i^- x_i^- x_i^-$ Show what happen under

Scaling and Replacement EROS $(\frac{1}{a_j})R_j$ and $R_k + \alpha R_j$. am am

Show that the opposite sign property is maintained under both such ERCS.

what happens :
after pivol? i 1

let x leave and xe enter in its place.

* 000, so that xe can be pivoted in to Row-i.

* c=0 to start with.

LP Duality

Accounted with every LP (linear program) is another LP called its dual LP. The original LP is called the primal LP. There are important relationships between the primal and dual LPs, both from the mathematical as well as economic points of view,

A max LP in which every constraint is \leq and all variables are \approx 0 is a normal max LP. Similarly, a min LP in which every constraint is \approx and all variables are \approx 0 is a normal min LP.

A \geq constraint is hence normal for a min-LP, but is opposite to normal for a max LP. Similarly, a = constraint is normal for a max-LP, and is opposite to normal for a min-LP.

Nonnegative variables (70) are always normal (for both max- and min-LPs).

Intuition max revenue s.t. upper bounds on raw materials, for normal 1.e., < constraints

LPS min cost s.t. demands (min. requirements),

i.e., > constraints

Nonnegative voriables are always normal.

Let's write the dual LP of a normal max-LP. This dual LP will be a normal min-LP.

Primal (P)
$$\iff$$
 Dual (D) $\underset{\text{normal}}{\text{normal}}$ constraint $i \iff$ variable $y_i \equiv 0$ $\underset{\text{normal}}{\text{normal}}$ variable $x_j \equiv 0$ $\underset{\text{normal}}{\text{constraint}} j \equiv 0$ objective: min

Dual of a general form normal max-LP

$$\max_{S \in \mathcal{L}} \ Z = C_1 X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$S \in \mathcal{L}$$

$$\max_{S \in \mathcal{L}} \ Z = C_1 X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_{I_2} X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_{I_2} X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_1 X_1 + C_2 X_2 + \cdots + C_n X_n$$

$$\sum_{I \in \mathcal{L}} \ C_{I_1} X_1 + C_1 X_1 + C_1$$

"Dual of a dual is Primal": if you take the dual of the dual LP of a given LP, you get the original LP back.

Primal-Dual Relationships

	min LP	max LP
3	70 normal <pre> <pre> <pre> opposite to </pre> <pre> <pre> normal</pre> </pre></pre></pre>	normal
mais les	<pre> <pre> opposite to normal </pre></pre>	poposite to same
گ	urs <	 Coush
£	normal > opposite to enormal >	> opposite to 3 <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
constants	<pre>opposite to </pre>	7
3 	= <>	urs S

In general,

normal variables in $(P) \iff$ normal constraints in (D) Opposite to normal variables in $(P) \iff$ opposite to normal constraints in (D) urs variables in $(P) \iff$ = constraints in (D)

You should not try to memorize the above table of primal-dual relationships. Instead, use the idea of normal voruiables/constraints corresponding to normal constraints.

To stress this point, we will rewrite this table in other equivalent forms.

Write the dual UP for the given UPS

1.
$$\min_{X_1 = X_1 - X_2} Z = X_1 - X_2$$

 $S._{0} = 2X_1 + X_2 = 4 \quad y_1 = 0$
 $X_1 + X_2 = 1 \quad y_2 = 0$
 $X_1 + 2X_2 \le 3 \quad y_3 \le 0$
 $X_1, \quad X_2 = 0$
 $X_1, \quad X_2 = 0$
 $X_2 = 0$

max
$$w = 4y_1 + y_2 + 3y_3$$

S.t. $2y_1 + y_2 + y_3 \le 1$
(D) $y_1 + y_2 + 2y_3 \le -1$
 $y_1 = y_2 + 2y_3 \le 0$
 $y_1 = y_2 + 2y_3 \le 0$

2. min
$$w = 4y_1 + 2y_2 - y_3$$

S.b. $y_1 + 2y_2 \le 6$ $y_1 \le 0$
 $y_1 - y_2 + 2y_3 = 8$ y_2 uns
 $y_1, y_2 \ge 0$, y_3 uns
 $y_4 = 0$

could use
$$\{x_{11}x_{2}\}$$
 or $\{u_{11}, u_{2}\}$...

Max $w = 6y_{1} + 8y_{2}$
 ≤ 0
 ≤ 0
 $y_{1} + y_{2} \leq 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$
 $= 4$

3.
$$\max z = 3x_{2} - 4x_{1} + 2x_{3}$$

s.t. $2x_{1} + 0.5x_{3} + 7x_{2} > 5 \quad y_{1} \leq 0$
 $-3x_{2} + 5x_{1} \leq -3 \quad y_{2} = 0$
 $2x_{1} + 6x_{3} = 2 \quad y_{3} \quad \text{urs}$
 $x_{4} > 5 \quad y_{4} \leq 0$
 $x_{1} \neq 0, \quad x_{2} \leq 0, \quad x_{3} \quad \text{urs}, \quad x_{4} \neq 0$
 $x_{1} \neq 0, \quad x_{2} \leq 0, \quad x_{3} \quad \text{urs}, \quad x_{4} \neq 0$
 $x_{1} \neq 0, \quad x_{2} \leq 0, \quad x_{3} \quad \text{urs}, \quad x_{4} \neq 0$

min
$$W = 5y_1 - 3y_2 + 2y_3 + 5y_4$$

s.t. $2y_1 + 5y_2 + 2y_3$ $7 - 4$
 $7y_1 - 3y_2 \leq 3$
(D) $0.5y_1 + 6y_3 = 2$
 $y_4 = 0$
 $y_1 \leq 0$, $y_2 \neq 0$, $y_3 = 0$

Notice the variables might not be ordered (or arranged) nicely. But you just have to read down the column of each variable to get the corresponding constraint in the dual.

 $\begin{array}{c|c}
2u + 700 \\
+ 400 \\
- 2^* = 370
\end{array}$

1_{Z_l} - 120

Motivation behind the dual (how and vohy)

Farmer Jones LP

 $max z = 30x, +100x_2$ (total revenue) s.t. $x_1 + x_2 \leq 7$ (land)

 $4x_1 + 10x_2 \le 40$ (labor hvs) ignore for now, 10x, 30 (min corn)
just for interpretation $x_1, x_2 > 0$ (non-neg)

Optimal solution: $X_1 = 3$, $X_2 = 2-8$, $Z^* = 370$

Let Zu= upper bound on Z*, Ze = lower bound on Z*.

This is a standard approach to many optimization problems - start with lower and upper bounds for the quantity you are optimizing, and tighten these bounds.

Any feasible point (x_1, X_2) gives a lower bound, e.g., $X_1 = 4$, $X_2 = 0$, giving $Z_l = 120$. So we could consider How do we get (an) upper bound? (5,2), or ...

Consider $100 \times (land)$: $100 \times_1 + 100 \times_2 \le 700$. But

 $Z = 30x_1 + 100x_2 \le 100x_1 + 100x_2 \le 700$ as long as x1, x270 (which is true here).

Notice also that the coefficients of x, xz in z should compare in the right way with the coefficients in 100 (land).

The goal is to get smaller and smaller Zu values. May be the (Labor his) constraint could give us a smaller Zu value.

 $10 \times (\text{Labor hrs}): 40 \times_1 + 100 \times_2 \le 400$ Again $Z = 30 \times_1 + 100 \times_2 \le 40 \times_1 + 100 \times_2 \le 400 \longrightarrow \text{new } Z_u$

But we must be able to compare the coefficients of x, and x2 to those in z properly:

 $y_1(x_1+x_2 \le 7)$ (land) + $y_2(4x_1+10x_2 \le 40)$ (labor hrs)

So we need y, +4y_ 230 and y, +10y_ 2100. Also, we want to find the smallest upper bound w = 7y, +40yz. Combining all these requirements gives the dual LP!

min $W = 7g_1 + 40g_2$ S.b. $g_1 + 4g_2 = 30$ $g_1 + 10g_2 = 100$ $g_1, g_2 = 0$