Notebook 17: Integration in Vector Fields

▼ Line Integrals

Compute the line integral of $f(x, y, z) = \sqrt{1 + x^2 + y^2}$ along $r(t) = \langle t, t^2, t^3 \rangle$ from t = 0 to $t = \frac{\pi}{2}$.

First, f and r are defined and the magnitude of the velocity vector is calculated.

> with(VectorCalculus):

$$\begin{split} f(x,y,z) &:= \sqrt{1+x^2+y^2} \,; \, r(t) \,:= \langle t,t^2,t^3 \rangle \, \dot{r}(t) \, \dot{=} \, r(t) \\ f &:= \langle x,y,z \rangle \, {\rightarrow} \sqrt{1+x^2+y^2} \\ r(t) &= \langle t,t^2,t^3 \rangle \, \dot{r}(t) \, \dot{=} \, r(t) \\ r(t) &= \langle t,t^2,t^3 \rangle \, \dot{r}(t) \, \dot{r$$

 $\rightarrow dsdt := \sqrt{r'(t).r'(t)}$

$$dsdt := \sqrt{1 + 4t^2 + 9t^4}$$

The integrand is then calculated by

>
$$integrand := f(r(t) [1], r(t) [2], r(t) [3]) \cdot dsdt$$

 $integrand := \sqrt{1 + t^2 + t^4} \sqrt{1 + 4t^2 + 9t^4}$

Maple does not return an exact answer for this integral, but a decimal approximation can be obtained.

$$> \int_0^{\pi/2} integrand dt$$
, evalf(%)

$$\int_{0}^{\frac{1}{2}\pi} \sqrt{1+t^{2}+t^{4}} \sqrt{1+4t^{2}+9t^{4}} dt$$

$$10.45184189$$

▼ Vector Fields, Work, Circulation, and Flux

Find the work done by the force $F = \langle x \cdot z, z, y \cdot z \rangle$ over the curve $r(t) = \langle t^2, t, t^3 \rangle$ from t = 0 to t = 1.

The force and curve vectors are defined

>
$$F(x, y, z) := \langle x \cdot z, z, y \cdot z \rangle$$
 : $F = F(x, y, z)$;
 $r(t) := \langle t^2, t, t^3 \rangle$: $r(t) = r(t)$

$$F = (xz)e_x + (z)e_y + (yz)e_z$$

$$r(t) = (t^2)e_x + (t)e_y + (t^3)e_z$$

The force along the curve is

>
$$F(r(t)[1], r(t)[2], r(t)[3])$$
 $(f^{\delta})e_{x} + (f^{\delta})e_{y} + (f^{\delta})e_{z}$

The integrand is defined as

> integrand :=
$$F(r(t)[1], r(t)[2], r(t)[3]) x'(t)$$

integrand := $5 f + \beta$

So, the total work is

$$\rightarrow \int_0^1 integrand dt$$

▼ Green's Theorem in the Plane

Find the counterclockwise circulation of the field $F = \langle x - 2y, 3x + y \rangle$ around the simple closed curve $C: 4x^2 + y^2 = 16$.

The form of Green's Theorem to use is the following

>
$$m(x, y) := x - 2y : n(x, y) := 3x + y :$$

 $integrand := \frac{\partial}{\partial x} n(x, y) - \frac{\partial}{\partial y} m(x, y)$

$$integrand := 5$$

>
$$\int_{-2}^{2} \int_{-\sqrt{16-4x^2}}^{\sqrt{16-4x^2}} integrand \, dy \, dx$$

 40π