Efficiency of OLS for linear models with correlated data

```
In [1]:
        import collections
        import numpy as np
        import pandas as pd
        from scipy import linalg
In [2]: def make covariates(n, cluster covariates):
            covariates = np.tile(cluster covariates, n)
            return np.column stack((np.ones like(covariates), covariates))
In [3]: def make_exponential_correlation_matrix(m, rho):
            correlation matrix = np.eye(m)
            for i in range(m - 1):
                for j in range(i + 1, m):
                    correlation_matrix[i, j] = correlation_matrix [j, i] = np.power(rho, j
        - i)
            return correlation matrix
In [4]: def compute efficiency(n, cluster covariates, rho):
            X = make covariates(n, cluster covariates)
            sigma = linalg.block diag(*(
                [make_exponential_correlation_matrix(len(cluster covariates), rho)]*n))
            gram matrix inv = linalg.cho solve(linalg.cho factor(X.T.dot(X)), np.eye(X.sha
        pe[1]))
            covariance ols = gram matrix inv.dot(X.T.dot(sigma).dot(X)).dot(gram matrix in
        v)
            weights = linalg.cho solve(linalg.cho factor(sigma), np.eye(X.shape[0]))
            covariance gls = linalg.cho solve(
                linalg.cho_factor(X.T.dot(weights).dot(X)), np.eye(X.shape[1]))
            return np.diag(covariance gls)/np.diag(covariance ols)
In [5]: N = 10
        CLUSTER COVARIATES = [
            [-2,-1,0,1,2],
            [-1, -2, 0, 2, 1],
            [0,-1,1,3,2],
            [0,-1,1,5,2],
        RHO = np.hstack((np.linspace(0.1, 0.9, 9), [0.99]))
        efficiency results = collections.OrderedDict([
                str(cluster covariates),
                    str(np.round(rho, 2)): compute_efficiency(N, cluster_covariates, rho)
                    for rho in RHO
                },
            for cluster covariates in CLUSTER COVARIATES
        ])
```

```
In [6]: | efficiency_table = pd.DataFrame(
            index=pd.MultiIndex.from_product([
                map(str, CLUSTER_COVARIATES),
                ['$e(\\hat{\\beta}_0)$', '$e(\\hat{\\beta}_1)$'],
            ], names=['$x$', 'Value']),
            columns=pd.Series(map(lambda rho: str(np.round(rho, 2)), RHO), name='$\\rho$'
        ),
        for cluster covariates, values in efficiency results.items():
            for rho, efficiencies in values.items():
                efficiency_table[rho][cluster_covariates, '$e(\\hat{\\beta}_0)$'] = effici
        encies[0]
                efficiency_table[rho][cluster_covariates, '$e(\\hat{\\beta}_1)$'] = effici
        encies[1]
        with open('p2_efficiencies.tex', 'w') as f:
            f.write(efficiency_table.to_latex(
                escape=False,
                float format=lambda f: str(np.round(f, 4))).replace('[', '(').replace(']',
        ')'))
        efficiency_table
```

Out[6]:

	ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	0.9
X	Value										
[-2, -1,	$e(\hat{eta}_0)$	0.99776	0.991707	0.982965	0.972888	0.963082	0.955424	0.952117	0.955846	0.970123	0.99611
0, 1, 2]	$e(\hat{\beta}_1)$	0.996874	0.9893	0.979685	0.969955	0.961538	0.955424	0.952221	0.952221	0.955424	0.96081
[-1, -2,	$e(\hat{eta}_0)$	0.99776	0.991707	0.982965	0.972888	0.963082	0.955424	0.952117	0.955846	0.970123	0.99611
0, 2, 1]	$e(\hat{\beta}_1)$	0.995921	0.98184	0.955424	0.915402	0.862069	0.797438	0.724923	0.648636	0.572575	0.50702
[0, -1,	$e(\hat{eta}_0)$	0.997183	0.988849	0.975751	0.959626	0.943244	0.930221	0.924682	0.93103	0.954102	0.99415
1, 3, 2]	$e(\hat{\beta}_1)$	0.995921	0.98184	0.955424	0.915402	0.862069	0.797438	0.724923	0.648636	0.572575	0.50702
[0, -1,	$e(\hat{eta}_0)$	0.994938	0.981695	0.96362	0.944474	0.928059	0.917849	0.91686	0.927875	0.954054	0.99432
1, 5, 2]	$e(\hat{\beta}_1)$	0.991123	0.964352	0.920638	0.862553	0.793975	0.719406	0.643193	0.568935	0.499199	0.44157