

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N. 3, 2022

Электронный журнал, рег. Эл. N ФС77-39410 от 15.04.2010 ISSN 1817-2172

http://diffjournal.spbu.ru/e-mail:jodiff@mail.ru

Теория обыкновенных дифференциальных уравнений

К ТЕОРИИ СУЩЕСТВОВАНИЯ ОГРАНИЧЕННЫХ РЕШЕНИЙ СИСТЕМ НЕЛИНЕЙНЫХ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Мухамадиев Э., Наимов А. Н.

Вологодский государственный университет emuhamadiev@rambler.ru naimovan@vogu35.ru

Аннотация. Для одного класса систем нелинейных обыкновенных дифференциальных уравнений с выделенной главной положительно однородной частью сформулированы и доказаны необходимые и достаточные условия, обеспечивающие априорную оценку ограниченных решений. В условиях априорной оценки, применяя методы направляющих функций и Важевского, доказан критерий существования ограниченного решения. Полученные результаты уточняют и обобщают ранее полученные результаты авторов в многомерном случае.

Ключевые слова: ограниченное решение, априорная оценка, гомотопные функции, метод направляющих функций, метод Важевского.

1 Введение

В статье исследовано существование ограниченных решений системы нелинейных обыкновенных дифференциальных уравнений следующего вида:

$$x'(t) = \nabla v(x(t)) + f(t, x(t)), \quad x(t) \in \mathbb{R}^n, \tag{1}$$

где $n \geq 3$, R^n – пространство n-мерных векторов с евклидовым скалярным произведением $\langle \cdot, \cdot \rangle$, ∇v – градиент функции $v \in \mathbb{V}_m$, $f \in \mathcal{R}_m$. Здесь m > 1, \mathbb{V}_m – множество функций вида

$$v(y) = |y|^{m+1-q} \prod_{i=1}^{q} (\langle c_i, y \rangle - d_i |y|), \quad y \in \mathbb{R}^n,$$

 $q=q(v)\geq 1,\ d_i\in R,\ c_i\in R^n,\ i=1,\ldots,q.$ Множество \mathcal{R}_m состоит из непрерывных отображений $f:R^{1+n}\mapsto R^n,$ удовлетворяющих условию

$$\lim_{|y|\to\infty}|y|^{-m}\sup_{t\in R}|f(t,y)|=0.$$

В системе уравнений (1) выделена главная нелинейная часть ∇v , а f является возмущением. В терминах свойств коэффициентов $d_i \in R$, $c_i \in R^n$, $i=1,\ldots,q$ функции v исследованы условия априорной оценки и существования ограниченных решений системы уравнений (1) при любом возмущении $f \in \mathcal{R}_m$.

Ограниченным решением системы уравнений (1) называем такую векторфункцию x(t), которая на всем $R=(-\infty,+\infty)$ определена и ограничена, непрерывно дифференцируема и удовлетворяет системе уравнений (1).

Вопрос о существовании ограниченных и периодических решений систем нелинейных обыкновенных дифференциальных уравнений представляет научный интерес с точки зрения применения и развития идей и методов нелинейного анализа в теории дифференциальных и интегральных уравнений. В теории нелинейных обыкновенных дифференциальных уравнений применяются такие методы нелинейного анализа, как метод априорной оценки, метод направляющих функций, методы вычисления вращения векторных полей, метод Важевского. Основы перечисленных методов и их применения изложены в монографиях [1] – [6].

Системы уравнений вида (1) являются подклассом класса уравнений, рассмотренных в работах [7, 8]. В работе [7] исследовано существование ограниченных и периодических решений систем обыкновенных дифференциальных уравнений с главной положительно однородной нелинейностью. Из результатов данной работы следует, что для $v \in \mathbb{V}_m$, $f \in \mathcal{R}_m$ существует ограниченное решение системы уравнений (1), если $\nabla v(y) \neq 0 \ \forall y \neq 0$ и $\gamma(\nabla v) \neq 0$, где $\gamma(\nabla v)$ – вращение (степень отображения) векторного поля $\nabla v : S^{n-1} \mapsto R^n$ на единичной сфере S^{n-1} . Условие $\gamma(\nabla v) \neq 0$, в общем, достаточно для существования ограниченного решения. В работе [9] доказано, что при n=3 для любой положительно однородной функции v порядка m+1 (m>1), удовлетворяющей условию $\nabla v(y) \neq 0 \ \forall y \neq 0$, система уравнений (1) имеет ограниченное решение при любом $f \in \mathcal{R}_m$ тогда и только тогда, когда множество нулей функции v на единичной сфере S^{n-1} пусто или не связно; при этом возможно $\gamma(\nabla v)=0$. Этот результат в настоящей работе уточнен и обобщен для функций $v \in \mathbb{V}_m$ при всех $n \geq 3$. А именно, сформулированы и доказаны необходимые и достаточные условия на $v \in \mathbb{V}_m$, обеспечивающие априорную оценку ограниченных решений системы уравнений (1) при любом $f \in \mathcal{R}_m$. В условиях априорной оценки, применяя методы направляющих функций и Важевского [6, гл. 10, §3], доказан критерий существования при любом $f \in \mathcal{R}_m$ ограниченного решения системы уравнений (1). Критерий существования ограниченного решения, в отличие от работы [9], сформулирован в терминах свойств коэффициентов $d_i \in R, c_i \in R^n, i = 1, \ldots, q$ функции $v \in \mathbb{V}_m$.

Существование периодических и ограниченных решений систем нелинейных обыкновенных дифференциальных уравнений исследовано в многочисленных работах других авторов. Среди них можно отметить работы [10], [11], где применяются подходы и методы, близкие к настоящей работе.

2 Основные результаты

Введем следующие обозначения: $C(R; R^n)$ – банахово пространство непрерывных и ограниченных на $R = (-\infty, +\infty)$ вектор-функций z(t) с нормой

$$||z|| := \sup_{t \in R} |z(t)|,$$

 $C^1(R;R^n)$ – банахово пространство непрерывно дифференцируемых и ограниченных на R вместе с производной вектор-функций z(t) с нормой $||z||_1:=||z||+||z'||$.

Существование ограниченных решений системы уравнений (1) проведем по аналогии с работой [9], применяя методы априорной оценки, направляющих функций и Важевского.

Скажем, что для функции $v \in \mathbb{V}_m$ имеет место априорная оценка ограниченных решений системы уравнений (1), если при любом $f \in \mathcal{R}_m$ множество ограниченных решений системы уравнений (1) либо пусто, либо ограничено по норме пространства $C(R; R^n)$.

Справедлива следующая теорема об априорной оценке.

Теорема 1 . Для функции $v \in \mathbb{V}_m$ имеет место априорная оценка ограниченных решений системы уравнений (1) тогда и только тогда, когда выполнено одно из условий:

- 1. $\nabla v(y) \neq 0 \ \forall y \neq 0$.
- 2. Коэффициенты $d_i \in R, c_i \in R^n, i = 1, \dots, q$ функции v удовлетворяют двум условиям:
 - a) $|c_i| \neq |d_i|, i = 1, \ldots, q;$
 - b) для любых двух номеров $i \neq j$ верна импликация

$$(|c_i| > |d_i|, |c_j| > |d_j|) \Rightarrow |d_i c_j - d_j c_i|^2 > |c_i|^2 |c_j|^2 - \langle c_i, c_j \rangle^2.$$

3. Существуют $\sigma_0 > 0$ и $r_0 > 0$ такие, что для любой вектор-функции $z \in C^1(R; R^n)$ при $||z|| > r_0$ верно неравенство $||z' - \nabla v(z)|| > \sigma_0 ||z||^m$.

Обозначим через \mathbb{V}_m^0 множество функций $v \in \mathbb{V}_m$, удовлетворяющих условиям 2a и 2b теоремы 1. Две функции $v_1, v_2 \in \mathbb{V}_m^0$ назовем гомотопными, если существует семейство функций $\tilde{v}(\cdot, \lambda) \in \mathbb{V}_m^0$, $\lambda \in [0, 1]$, непрерывно зависящее от λ и такое, что $\tilde{v}(\cdot, 0) = v_1$, $\tilde{v}(\cdot, 1) = v_2$.

Аналогично теореме 2, доказанной в работе [9], верна следующая теорема о гомотопической инвариантности существования ограниченного решения.

Теорема 2 . Если функции $v_1, v_2 \in \mathbb{V}_m^0$ гомотопны и для $v = v_1$ существует ограниченное решение системы уравнений (1) при любом $f \in \mathcal{R}_m$, то для $v = v_2$ также существует ограниченное решение системы уравнений (1) при любом $f \in \mathcal{R}_m$.

На основе теорем 1 и 2, применяя методы направляющих функций и Важевского, доказана

Теорема 3 . Для $v \in \mathbb{V}_m^0$ существует ограниченное решение системы уравнений (1) при любом $f \in \mathcal{R}_m$ тогда и только тогда, когда отлично от единицы число

$$p(v) := card\{i : |c_i| > |d_i|\}.$$

Из теоремы 3 и результатов работы [7] вытекает, что если p(v)=1, то $\gamma(\nabla v)=0$. А если $p(v)\neq 1$, то возможно $\gamma(\nabla v)=0$. Например, полагая n=3 и $y=(y_1,y_2,y_3)^{\top}$, рассмотрим функцию

$$v_*(y) = |y|^{m-2}(y_3 - d_1|y|)(y_3 - d_2|y|)(y_3 - d_3|y|),$$

где $0 < d_1 < d_2 < d_3 < 1$. Очевидно, $p(v_*) = 3$ и $v_* \in \mathbb{V}_m^0$. Согласно формуле, доказанной в работе [12, Theorem 1], имеем $\gamma(\nabla v_*) = p_+(v_*) - p_-(v_*)$, где $p_\pm(v_*)$ – число связных компонент множества точек y единичной сферы S^2 , где $\pm v_*(y) > 0$. В данном случае $p_\pm(v_*) = 2$, следовательно, $\gamma(\nabla v_*) = 0$. Таким образом, $\gamma(\nabla v_*) = 0$ и в силу теоремы 3 для $v = v_*$ существует ограниченное решение системы уравнений (1) при любом $f \in \mathcal{R}_m$.

3 Априорная оценка

В этом параграфе приведем доказательство теоремы 1.

Сначала докажем, что для $v \in \mathbb{V}_m$ априорная оценка ограниченных решений системы уравнений (1) равносильна условию 1. Необходимость условия 1 очевидна, так как если $\nabla v(y_0) = 0$ при некотором $y_0 \neq 0$, то функции $x_k(t) \equiv ky_0, k = 1, 2, \ldots$ будут ограниченными решениями системы уравнений (1) при $f(t,y) \equiv 0$ и в совокупности не ограничены по норме пространства $C(R;R^n)$.

Пусть для $v \in V_m$ выполнено условие 1. Предположим, что при некотором $f \in \mathcal{R}_m$ существует последовательность ограниченных решений $x_k(t)$, $k = 1, 2, \dots$ системы уравнений (1), не ограниченная по норме пространства $C(R;R^n)$: $r_k=||x_k||\to\infty$ при $k\to\infty$. Рассмотрим функции $z_k(t)=$ $r_k^{-1}x_k(t_k+r_k^{1-m}t),\; k=1,2,\ldots$, где $|x_k(t_k)|>r_k-1/k$. Для этих функций имеем: $|z_k(0)| > 1 - 1/(kr_k)$, $||z_k|| = 1$, k = 1, 2, ... и $z'_k(t) = \nabla v(z_k(t)) + o(1)$ при $k \to \infty$ равномерно по t на каждом конечном отрезке числовой прямой R(учитывая условие $f \in \mathcal{R}_m$). Переходя к пределу на расширяющихся отрезках числовой прямой R получаем ненулевое ограниченное решение автономной системы $z_0'(t) = \nabla v(z_0(t)), |z_0(t)| \le |z_0(0)| = 1, t \in R$. Для функции $z_0(t)$ при любом $t \in R$ имеем $z_0(t) \neq 0$ и $(v(z_0(t)))_t' = |\nabla v(z_0(t))|^2 > 0$ (в силу условия 1). Отсюда вытекает существование конечных пределов $v(z_0(t)) \to v_1$, $t \to -\infty$ и $v(z_0(t)) \to v_2$, $t \to +\infty$, где $v_1 < v_2$. Вдоль последовательностей $s_k \in (-k-1,-k), \; au_k \in (k,k+1), \; k=1,2,\ldots, \;$ определяемых из равенств $v(z_0(-k)) - v(z_0(-k-1)) = (v(z_0))'_t(s_k), v(z_0(k+1)) - v(z_0(k)) = (v(z_0))'_t(\tau_k),$ имеем: $|\nabla v(z_0(s_k))| \to 0$, $|\nabla v(z_0(\tau_k))| \to 0$. Отсюда, в силу условия 1, следует, что $z_0(s_k) \to 0, z_0(\tau_k) \to 0$ и $v_1 = v_2 = 0$. Пришли к противоречию.

Таким образом, для $v \in \mathbb{V}_m$ априорная оценка ограниченных решений системы уравнений (1) равносильна условию 1.

В работе [12, Theorem 1] доказана равносильность условий 1 и 2 при n=3.

Схема доказательства применима и при n > 3. Следовательно, для $v \in \mathbb{V}_m$ априорная оценка ограниченных решений системы уравнений (1) равносильна условиям 2a и 2b.

Пусть для $v \in \mathbb{V}_m$ выполнено условие 3. Проверим, что при любом $f \in \mathcal{R}_m$ имеет место априорная оценка ограниченных решений. В силу условия $f \in \mathcal{R}_m$ для любого $\varepsilon > 0$ существует $M_{\varepsilon} > 0$ такое, что при любом $y \in R^n$ имеет место неравенство

$$\sup_{t \in R^n} |f(t,y)| < \varepsilon |y|^m + M_{\varepsilon}.$$

Отсюда, фиксируя $\varepsilon \in (0, \sigma_0)$, для любого ограниченного решения системы уравнений (1) выводим: либо $||x|| \le r_0$, либо $||x|| > r_0$ и в силу условия 3

$$\varepsilon ||x||^m + M_{\varepsilon} \ge \sigma_0 ||x||^m, \qquad ||x|| \le \left(M_{\varepsilon} (\sigma_0 - \varepsilon)^{-1} \right)^{1/m}.$$

Следовательно, имеет место априорная оценка ограниченных решений:

$$||x|| < r_0 + \left(M_{\varepsilon}(\sigma_0 - \varepsilon)^{-1}\right)^{1/m}.$$

Теперь покажем, что для $v \in \mathbb{V}_m$ из условия 1 следует условие 3. Действительно, если для $v \in \mathbb{V}_m$ условие 3 не выполнено, то существует последовательность вектор-функций $x_k \in C^1(R^n;R), \ k=1,2,\ldots$ такая, что $r_k = ||x_k|| \to \infty$ при $k \to \infty$ и $||x_k' - \nabla v(x_k)|| < k^{-1}||x_k||^m, \ k=1,2,\ldots$ Далее, рассматривая функции $z_k(t) = r_k^{-1}x_k(t_k + r_k^{1-m}t), \ k=1,2,\ldots$, где $|x_k(t_k)| > r_k - 1/k$, и рассуждая выше проведенным образом, приходим к противоречию с условием 1.

Теорема 1 доказана.

Следствие 1 . Если для $v \in \mathbb{V}_m$ имеет место априорная оценка ограниченных решений системы уравнений (1), то в вопросе существования ограниченных решений системы уравнений (1) без ограничения общности можно считать, что $f \in \mathcal{R}_m \cap C^{0,\infty}(R \times R^n; R^n)$.

Доказательство. Отображение $f \in \mathcal{R}_m$ приблизим отображениями

$$f_{\varepsilon}(t,y) = \int_{\mathbb{R}^n} K_{\varepsilon}(|y-z|) f(t,z) dz, \quad y \in \mathbb{R}^n, \quad \varepsilon > 0,$$

где $K_{\varepsilon}(s)=0$ при $|s|\geq \varepsilon$ и

$$K_{\varepsilon}(s) = A_{\varepsilon}e^{-\frac{\varepsilon^2}{\varepsilon^2 - s^2}}, \quad |s| < \varepsilon, \qquad \int\limits_{\mathbb{R}^n} K_{\varepsilon}(|z|)dz = 1.$$

Легко проверить, что $f_{\varepsilon}\in\mathcal{R}_m\cap C^{0,\infty}\left(R imes R^n;R^n
ight)$ и при любых r>0 и T>0

$$\sup_{t \in R, |y| \le r} |f_{\varepsilon}(t, y)| \le \sup_{t \in R, |y| \le r + \varepsilon} |f(t, y)|,$$

$$\max_{|t| \le T, |y| \le r} |f_{\varepsilon}(t,y) - f(t,y)| \to 0$$
 при $\varepsilon \to 0$.

Если при всех $\varepsilon \in (0, \varepsilon_1)$ система уравнений

$$x_{\varepsilon}'(t) = \nabla v(x_{\varepsilon}(t)) + f_{\varepsilon}(t, x_{\varepsilon}(t)) \tag{2}$$

имеет ограниченное решение x_{ε} , то верна оценка

$$\sup_{0<\varepsilon<\varepsilon_1}||x_\varepsilon||<\infty. \tag{3}$$

Действительно, для $r_{\varepsilon}:=||x_{\varepsilon}||$ при $r_{\varepsilon}>r_0$ в силу условия 3 имеем:

$$\sigma_0 r_{\varepsilon}^m < \sup_{t \in \mathbb{R}} |x_{\varepsilon}'(t) - \nabla v(x_{\varepsilon}(t))| \le \sup_{t \in \mathbb{R}, |y| \le r_{\varepsilon} + \varepsilon} |f(t, y)| \le \frac{1}{2} \sigma_0 (r_{\varepsilon} + \varepsilon)^m + M_0.$$

Отсюда вытекает оценка (3). Учитывая эту оценку и переходя к пределу в системе уравнений (2) при $\varepsilon \to 0$, получим ограниченное решение системы уравнений (1).

4 Существование ограниченного решения

В этом параграфе докажем теорему 3, применяя методы направляющих функций [3] – [5] и Важевского [6, гл. 10, §3]. Метод Важевского применяется при $p(v) \geq 2$. Суть данного метода состоит в том, что с помощью набора функций выделяется область в фазовом пространстве, где остаются некоторые решения x(t) системы дифференциальных уравнений при возрастании t. В приведенном доказательстве в качестве набора функций используются направляющие функции v(y), $v(y) - \varepsilon |y|^{m+1}$, где ε – малое положительное число.

Необходимость. Пусть для $v \in \mathbb{V}_m^0$ имеет место равенство p(v) = 1 и $|c_1| > |d_1|$. Покажем, что функция v гомотопна другой функции из \mathbb{V}_m^0 для которой не существует ограниченное решение системы уравнений (1) при некотором $f \in \mathcal{R}_m$. Тогда в силу теоремы 2 для функции v не при всех $f \in \mathcal{R}_m$ существует ограниченное решение системы уравнений (1).

Функция v посредством семейства функций

$$\tilde{v}(y,\lambda) = |y|^{m+1-q} (\langle c_1, y \rangle - \lambda d_1 |y|) \prod_{i=2}^{q} (\langle \lambda c_i, y \rangle - d_i |y|), \quad y \in \mathbb{R}^n, \quad \lambda \in [0, 1],$$

гомотопируется к функции $v_1(y) = a|y|^m \langle c_1, y \rangle$, где $a \neq 0$. Можно считать, что первая координата c_{11} вектора c_1 отлична от нуля. В этом случае функция v_1 гомотопна функции $v_2(y) = ac_{11}|y|^m y_1$. Система уравнений

$$x'(t) = \nabla v_2(x(t)) + ac_{11}(1, 0, \dots, 0)^{\top}$$

не имеет ограниченного решения, так как правая часть первого уравнения равна

$$ac_{11}\left(|x(t)|^m + m|x(t)|^{m-2}x_1^2(t) + 1\right)$$

и по модулю не меньше числа $|ac_{11}|$.

Достаточность. Пусть $v \in \mathbb{V}_m^0$ и $p(v) \neq 1$. Покажем, что при любом $f \in \mathcal{R}_m$ система уравнений (1) имеет ограниченное решение. Для этого достаточно построить последовательность вектор-функций $z_k \in C^1([0,+\infty);R^n)$, $k=1,2,\ldots$, удовлетворяющих условиям

$$\sup_{k} \sup_{t>0} |z_k(t)| < \infty, \tag{4}$$

$$z'_k(t) = \nabla v(z_k(t)) + f(t - k, z_k(t)), \quad t > 0, \quad k = 1, 2, \dots$$
 (5)

Тогда рассматривая последовательность вектор-функций $x_k(t) = z_k(t+k)$, $k=1,2,\ldots$ и на расширяющихся отрезках числовой прямой R переходя к равномерному пределу, получим ограниченное решение системы уравнений (1).

Пусть p(v) = 0. Тогда v гомотопна $-|y|^{m+1}$ или $|y|^{m+1}$. Поэтому в силу теоремы 2 можно считать, что $v(y) = -|y|^{m+1}$ или $v(y) = |y|^{m+1}$. Достаточно рассмотреть первый случай, второй случай легко сводится к первому.

Рассмотрим решения $z_k(t)$ систем уравнений

$$z'(t) = -\nabla(|z(t)|^{m+1}) + f(t - k, z(t)), \quad t > 0, \quad k = 1, 2, \dots,$$

которые удовлетворяют начальному условию $z_k(0) = 0$. Такие $z_k(t)$, $k = 1, 2, \ldots$ существуют как решения задачи Коши для систем уравнений с непрерывными правыми частями.

Выберем $r_1 > 0$ так, чтобы при $|y| > r_1$ имело место неравенство

$$\sup_{t \in R} |f(t, y)| < (m+1)|y|^m.$$

Тогда при $|z_k(t)| > r_1$ имеем:

$$(|z_k(t)|^2)' = 2\langle z_k(t), z_k'(t)\rangle = -2(m+1)|z_k(t)|^{m+1} + 2\langle z_k(t), f(t-k, z_k(t))\rangle < 0.$$

Следовательно, $|z_k(t)| \le r_1$ при t > 0 и вектор-функции $z_k(t)$, $k = 1, 2, \dots$ удовлетворяют условиям (4) и (5) при $v(y) = -|y|^{m+1}$. Таким образом, достаточность при p(v) = 0 доказана.

Пусть $p(v) \geq 2$. Легко проверить, что p(v) равно числу связных компонент множества

$$\Omega_0(v) = \{ y \in \mathbb{R}^n : |y| = 1, \quad v(y) = 0 \}$$

и $p(v) + 1 = p_{+}(v) + p_{-}(v)$, где $p_{\pm}(v)$ – число связных компонент множества

$$\Omega_{\pm}(v) = \{ y \in \mathbb{R}^n : |y| = 1, \quad \pm v(y) > 0 \}.$$

Из условия $p(v) \geq 2$ следует, что $p_{\pm}(v) \geq 1$ и верно одно из неравенств $p_{+}(v) \geq 2$, $p_{-}(v) \geq 2$. Можно считать, что $p_{+}(v) \geq 2$. В этом случае замыкание множества

$$D_{r,\varepsilon}(v) = \{ y \in \mathbb{R}^n : |y| > r \quad v(y) > \varepsilon |y|^{m+1} \}$$

не связно и состоит из $p_+(v)$ связных компонент при всех r>1 и $\varepsilon\in(0,\varepsilon_0)$.

Учитывая условия $f \in \mathcal{R}_m$ и $\nabla v(y) \neq 0 \ \forall y \neq 0$, выберем $\varepsilon_1 \in (0, \varepsilon_0)$ и $r_1 > 1$ так, чтобы выполнялись неравенства

$$\langle \nabla v(y) - \varepsilon_1(m+1)|y|^{m-1}y, \nabla v(y) \rangle > 0 \quad \forall y \neq 0,$$
 (6)

$$\langle \nabla v(y) - \varepsilon_1(m+1)|y|^{m-1}y, \nabla v(y) + f(t,y) \rangle > 0 \quad \forall t \in \mathbb{R}, \quad |y| \ge r_1. \quad (7)$$

Лемма 1 . Для любого неограниченного решения $z(t), t \in [0, \alpha)$ системы уравнений

$$z'(t) = \nabla v(z(t)) + f(t - k, z(t)), \tag{8}$$

где k – фиксированное число, существует $\alpha_1 \in (0,\alpha)$ такое, что $z(t) \in D_{r_1,\varepsilon_1}(v)$ при $t \in (\alpha_1,\alpha)$.

Доказательство. Из неограниченности $z(t), t \in [0, \alpha)$ следует, что $|z(t)| \to \infty$ при $t \to \alpha$. Поэтому можно считать, что $|z(t)| > r_1$ при $t \in [0, \alpha)$.

В общем возможны два случая: 1) $v(z(t)) \leq \varepsilon_1 |z(t)|^{m+1}$ при всех $t \in [0, \alpha)$; 2) $v(z(\alpha_1)) > \varepsilon_1 |z(\alpha_1)|^{m+1}$ при некотором $\alpha_1 \in [0, \alpha)$. Покажем, что первый случай невозможен. Действительно, предположим, что имеет место первый

случай. Рассмотрим последовательность функций $z_j(t) = \rho_j^{-1} z(t_j + \rho_j^{1-m} t),$ $t \in [-t_j \rho_j^{m-1}, 0], \ j=1,2,\ldots,$ где $0 < t_1 < t_2 < \ldots,$

$$\rho_j = \max_{0 \le t \le t_j} |z(t)| = |z(t_j)|,$$

 $t_j \to \alpha$ и $\rho_j \to \infty$ при $j \to \infty$. Для этих функций имеем: $|z_j(t)| \le |z_j(0)| = 1,\ v(z_j(t)) \le \varepsilon_1 |z_j(t)|^{m+1},\ z_j'(t) = \nabla v(z_j(t)) + o(1)$ при $t \in [-t_j \rho_j^{m-1}, 0],$ $j=1,2,\ldots$ Переходя к пределу получим: $|z_0(t)| \le |z_0(0)| = 1,\ v(z_0(t)) \le \varepsilon_1 |z_0(t)|^{m+1},\ z_0'(t) = \nabla v(z_0(t))$ при $t \in (-\infty,0]$. Из ограниченности $z_0(t)$ следует, что $z_0(t) \to 0$ при $t \to -\infty$. В силу системы дифференциальных уравнений $z_0'(t) = \nabla v(z_0(t))$ выводим:

$$v(z_{0}(t))-\varepsilon_{1}|z_{0}(t)|^{m+1} = v(z_{0}(s))-\varepsilon_{1}|z_{0}(s)|^{m+1} + \int_{s}^{t} \left(v(z_{0}(\tau))-\varepsilon_{1}|z_{0}(\tau)|^{m+1}\right)_{\tau}' d\tau,$$

$$v(z_{0}(t))-\varepsilon_{1}|z_{0}(t)|^{m+1} = v(z_{0}(s))-\varepsilon_{1}|z_{0}(s)|^{m+1}$$

$$+ \int_{s}^{t} \langle \nabla v(z_{0}(\tau))-\varepsilon_{1}(m+1)|z_{0}(\tau)|^{m-1}z_{0}(\tau), \nabla v(z_{0}(\tau))\rangle d\tau.$$

Переходя к пределу при $s \to -\infty$ и учитывая неравенство (6), получаем: $v(z_0(t)) > \varepsilon_1 |z_0(t)|^{m+1}$ при $t \in (-\infty, 0]$. Пришли к противоречию. Таким образом, первый случай невозможен.

Теперь рассмотрим второй случай, когда при некотором $\alpha_1 \in [0,\alpha)$ имеет место неравенство $v(z(\alpha_1)) > \varepsilon_1 |z(\alpha_1)|^{m+1}$. Проверим, что данное неравенство сохраняется при $t \in (\alpha_1,\alpha)$. Действительно, если не так, то в первой точке $s \in (\alpha_1,\alpha)$, где имеет место равенство $v(z(s)) = \varepsilon_1 |z(s)|^{m+1}$, должно выполнятся неравенство

$$\left(v(z(t)) - \varepsilon_1 |z(t)|^{m+1}\right)'_{t=s} \le 0.$$

С другой стороны, в силу системы уравнений (8) и неравенства (7) имеем:

$$(v(z(t)) - \varepsilon_1 |z(t)|^{m+1})'_{t=s} = \langle \nabla v(z(s)) - \varepsilon_1(m+1) |z(s)|^{m-1} z(s), z'(s) \rangle$$

$$= \langle \nabla v(z(s)) - \varepsilon_1(m+1) |z(s)|^{m-1} z(s), \nabla v(z(s)) + f(s-k, z(s)) \rangle > 0.$$

Лемма 1 доказана.

В последующем, учитывая следствие 1, можно считать, что $f \in \mathcal{R}_m \cap C^{0,\infty}(R \times R^n; R^n)$. Тогда при фиксированном k и любом $y \in R^n$ существует единственное решение $Z_k(t,y)$ системы уравнений (8), которое удовлетворяет начальному условию $Z_k(0,y) = y$ и непрерывно зависит от y.

Лемма 2 . Существует вектор $y_k \in B_{r_1} = \{y \in R^n : |y| < r_1\}$ такой, что соответствующее ему решение $Z_k(t,y_k)$ системы уравнений (8) определено и ограничено на промежутке $[0,+\infty)$.

Доказательство. Предположим, что при любом $y \in B_{r_1}$ решение $Z_k(t,y)$, $t \in [0,\alpha(y))$ системы уравнений (8) не ограничено. Тогда в силу леммы 1 для любого вектора $y \in B_{r_1}$ существует наименьшее $\alpha_1(y) \in (0,\alpha(y))$ такое, что $Z_k(t,y) \in D_{r_1,\varepsilon_1}(v)$ при $t \in (\alpha_1(y),\alpha(y))$.

Связные компоненты множества $D_{r_1,\varepsilon_1}(v)$ пронумеруем числами $1,\ldots,p_+(v)$ и каждому $y\in B_{r_1}$ сопоставим номер $I_k(y)$ связной компоненты $D_{r_1,\varepsilon_1}(v)$, где окажется $Z_k(t,y)$ при $t\in (\alpha_1(y),\alpha(y))$. Полученное отображение $I_k:B_{r_1}\mapsto \{1,\ldots,p_+(v)\}$ локально постоянно в силу непрерывной зависимости $Z_k(t,y)$ от y. Следовательно, $I_k(y)$ принимает одно значение при всех $y\in B_{r_1}$. Но, с другой стороны, если точка $y\in B_{r_1}$ находится в малой окрестности границы связной компоненты с номером j, то $I_k(y)=j$, это следует из доказательства леммы 1 и непрерывной зависимости $Z_k(t,y)$ от y. Пришли к противоречию. Лемма 2 доказана.

Из леммы 2 вытекает, что при $p(v) \geq 2$ существует последовательность вектор-функций $z_k \in C^1([0,+\infty);R^n)$, $k=1,2,\ldots$ с начальными значениями из B_{r_1} и удовлетворяющих условию (5). Покажем, что данная последовательность вектор-функций удовлетворяет условию (4). Этим самым завершится доказательство теоремы 3.

Предположим, что

$$\rho_k = \sup_{t \ge 0} |z_k(t)| \to \infty, \quad k \to \infty.$$

Рассмотрим функции $\tilde{z}_k(t) = \rho_k^{-1} z_k(t_k + \rho_k^{1-m} t), \ t \in [-\rho_k^{m-1} t_k, +\infty), \ k = 1, 2, \ldots$, где $|z_k(t_k)| > \rho_k - 1/k$ и $t_k \to +\infty$ при $k \to \infty$. Для этих функций имеем: $|\tilde{z}_k(0)| > 1 - 1/(k\rho_k), \ |\tilde{z}_k(t)| \le 1, \ \tilde{z}_k'(t) = \nabla v(\tilde{z}_k(t)) + o(1), \ t \in [-\rho_k^{m-1} t_k, +\infty), \ k = 1, 2, \ldots$ Переходя к пределу получаем ненулевое ограниченное решение автономной системы $\tilde{z}_0'(t) = \nabla v(\tilde{z}_0(t)), \ |\tilde{z}_0(t)| \le |\tilde{z}_0(0)| = 1, \ t \in R$. В ходе доказательства теоремы 1 установлено, что существование такого решения противоречит условию $\nabla v(y) \neq 0 \ \forall y \neq 0$.

Теорема 3 доказана.

Список литературы

- [1] Красовский Н. Н. Некоторые задачи теории устойчивости движения. М.: ГИФМЛ, 1959.
- [2] Плисс В. А. Нелокальные проблемы теории колебаний. М.: Наука, 1964.
- [3] Красносельский М. А. Оператор сдвига по траекториям дифференциальных уравнений. М.: Наука, 1966.
- [4] Красносельский М. А., Забрейко П. П. Геометрические методы нелинейного анализа. М.: Наука, 1975.
- [5] Obukhovskii V., Kornev S., Van Loi N., Zecca P. Method of guiding functions in problems of nonlinear analysis. Lecture notes in mathematics. GmbH, Springer-Verlag, 2076. 2013. Pp. 1–173.
- [6] Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.
- [7] Мухамадиев Э. О построении правильной направляющей функции для системы дифференциальных уравнений. М.: Доклады Академии наук СССР. 1970. Т. 190, № 4. С. 777-779.
- [8] Мухамадиев Э. Ограниченные решения и гомотопические инварианты систем нелинейных дифференциальных уравнений. М.: Доклады Академии наук. 1996. Т. 351, № 5. С. 596-598.
- [9] Мухамадиев Э., Наимов А.Н. Критерии существования периодических и ограниченных решений для трехмерных систем дифференциальных уравнений. Екатеринбург: Труды ИММ УрО РАН. 2021. Т.27. № 1. С. 157-172.
- [10] Перов А. И., Каверина В. К. Применение идей метода направляющих функций при исследовании неавтономной системы обыкновенных дифференциальных уравнений. Тамбов: Вестник Тамбовского универ. Серия: Естест. и техн. науки. 2018. Т. 23, № 123. С. 510-516.
- [11] Перов А. И., Каверина В. К. Об одной задаче Владимира Ивановича Зубова. М.: Дифференц. уравнения. 2019. Т. 55, № 2. С. 269-272.
- [12] Mukhamadiev E., Naimov A. N. On the homotopy classification of positively homogeneous functions of three variables. Petrozavodsk: J. Issues Anal. 2021. V.10 (28). № 2. Pp. 67–78.

ON THE THEORY OF THE EXISTENCE OF BOUNDED SOLUTIONS OF SYSTEMS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Mukhamadiev E., Naimov A. N.

Vologda State University emuhamadiev@rambler.ru naimovan@vogu35.ru

Abstract. We formulate and prove necessary and sufficient conditions that provide an a priori estimate for bounded solutions for one class of systems of nonlinear ordinary differential equations with the main positively homogeneous part. A criterion for the existence of bounded solutions is proved using the method of guiding functions and Vazhevski's method under the condition of an a priori estimate. These results refine and generalize the previously obtained results of the authors in the multidimensional case.

Keywords: bounded solution, a priori estimate, homotopic functions, method of guiding functions, Vazhevski's method.