GCGGACGCGT GGGTGAAATT GAAAATCAAG ATAAAAATGT TCACAATTAA 50 GCTCCTTCTT TTTATTGTTC CTCTAGTTAT TTCCTCCAGA ATTGATCAAG 100 ACAATTCATC ATTTGATTCT CTATCTCCAG AGCCAAAATC AAGATTTGCT 150 ATGTTAGACG ATGTAAAAAT TTTAGCCAAT GGCCTCCTTC AGTTGGGACA 200 TGGTCTTAAA GACTTTGTCC ATAAGACGAA GGGCCAAATT AATGACATAT 250 TTCAAAAACT CAACATATTT GATCAGTCTT TTTATGATCT ATCGCTGCAA 300 ACCAGTGAAA TCAAAGAAGA AGAAAAGGAA CTACATATAA 350 ACTACAAGTC AAAAATGAAG AGGTAAAGAA TATGTCACTT GAACTCAACT 400 CAAAACTTGA AAGCCTCCTA GAAGAAAAA TTCTACTTCA ACAAAAAGTG 450 AAATATTTAG AAGAGCAACT AACTAACTTA ATTCAAAATC AACCTGAAAC 500 TCCAGAACAC CCAGAAGTAA CTTCACTTAA AACTTTTGTA GAAAAACAAG 550 ATAATAGCAT CAAAGACCTT CTCCAGACCG TGGAAGACCA ATATAAACAA 600 TTAAACCAAC AGCATAGTCA AATAAAAGAA ATAGAAAATC AGCTCAGAAG 650 GACTAGTATT CAAGAACCCA CAGAAATTTC TCTATCTTCC AAGCCAAGAG 700 CACCAAGAAC TACTCCCTTT CTTCAGTTGA ATGAAATAAG AAATGTAAAA 750 CATGATGGCA TTCCTGCTGA ATGTACCACC ATTTATAACA GAGGTGAACA 800 TACAAGTGGC ATGTATGCCA TCAGACCCAG CAACTCTCAA GTTTTTCATG 850 TCTACTGTGA TGTTATATCA GGTAGTCCAT GGACATTAAT TCAACATCGA 900 ATAGATGGAT CACAAAACTT CAATGAAACG TGGGAGAACT ACAAATATGG 950 TTTTGGGAGG CTTGATGGAG AATTTTGGTT GGGCCTAGAG AAGATATACT 1000 CCATAGTGAA GCAATCTAAT TATGTTTTAC GAATTGAGTT GGAAGACTGG 1050 AAAGACAACA AACATTATAT TGAATATTCT TTTTACTTGG GAAATCACGA 1100 AACCAACTAT ACGCTACATC TAGTTGCGAT TACTGGCAAT GTCCCCAATG 1150 CAATCCCGGA AAACAAAGAT TTGGTGTTTT CTACTTGGGA TCACAAAGCA 1200 AAAGGACACT TCAACTGTCC AGAGGGTTAT TCAGGAGGCT GGTGGTGGCA 1250

FIG. 1A-1

TGATGAGTGT GGAGAAAACA ACCTAAATGG TAAATATAAC AAACCAAGAG 1300 CAAAATCTAA GCCAGAGAGG AGAAGAGGAT TATCTTGGAA GTCTCAAAAT 1350 GGAAGGTTAT ACTCTATAAA ATCAACCAAA ATGTTGATCC ATCCAACAGA 1400 TTCAGAAAGC TTTGAATGAA CTGAGGCAAT TTAAAGGCAT ATTTAACCAT 1450 TAACTCATTC CAAGTTAATG TGGTCTAATA ATCTGGTATA AATCCTTAAG 1500 AGAAAGCTTG AGAAATAGAT TTTTTTTATC TTAAAGTCAC TGTCTATTTA 1550 AGATTAAACA TACAATCACA TAACCTTAAA GAATACCGTT TACATTTCTC 1600 AATCAAAATT CTTATAATAC TATTTGTTTT AAATTTTGTG ATGTGGGAAT 1650 CAATTTTAGA TGGTCACAAT CTAGATTATA ATCAATAGGT GAACTTATTA 1700 AATAACTTTT CTAAATAAAA AATTTAGAGA CTTTTATTTT AAAAGGCATC 1750 ATATGAGCTA ATATCACAAC TTTCCCAGTT TAAAAAACTA GTACTCTTGT 1800 TAAAACTCTA AACTTGACTA AATACAGAGG ACTGGTAATT GTACAGTTCT 1850 TAAATGTTGT AGTATTAATT TCAAAACTAA AAATCGTCAG CACAGAGTAT 1900 GTGTAAAAAT CTGTAATACA AATTTTTAAA CTGATGCTTC ATTTTGCTAC 1950 AAGCAGAATT AAATACTGTA TTAAAATAAG TTCGCTGTCT TT 2042

FIG. 1A-2

Met Phe Thr Ile Lys Leu Leu Phe Ile Val Pro Leu Val Ile Ser Ser Arg Ile Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr Lys Gly Gln Ile Asn Asp Ile Phe Gln Lys Leu .65 Asn Ile Phe Asp Gln Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Ile Lys Glu Glu Lys Glu Leu Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu Glu Glu Lys Ile Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Glu Gln Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys Asp Leu Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln His Ser Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile Gln Glu Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg Thr Thr Pro Phe Leu Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp

FIG. 1B-1

Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe His Val Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Ile Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu Asp Trp Lys Asp Asn Lys His Tyr Ile Glu Tyr Ser Phe Tyr Leu Gly Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly Gly Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu

FIG. 1B-2

GGCTGAGGGG	AGGCCCGGAG	CCTTTCTGGG	GCCTGGGGGA	TCCTCTTGCA	50
CTGGTGGGTG	GAGAGAAGCG	CCTGCAGCCA	ACCAGGGTCA	GGCTGTGCTC	100
ACAGTTTCCT	CTGGCGGCAT	GTAAAGGCTC	CACAAAGGAG	TTGGGAGTTC	150
AAATGAGGCT	GCTGCGGACG	GCCTGAGGAT	GGACCCCAAG	CCCTGGACCT	200
GCCGAGCGTG	GCACTGAGGC	AGCGGCTGAC	GCTACTGTGA	GGGAAAGAAG	250
GTTGTGAGCA	GCCCGCAGG	ACCCCTGGCC	AGCCCTGGCC	CCAGCCTCTG	300
CCGGAGCCCT	CTGTGGAGGC	AGAGCCAGTG	GAGCCCAGTG	AGGCAGGGCT	350
GCTTGGCAGC	CACCGGCCTG	CAACTCAGGA	ACCCCTCCAG	AGGCCATGGA	400
CAGGCTGCCC	CGCTGACGGC	CAGGGTGAAG	CATGTGAGGA	GCCGCCCGG	450
AGCCAAGCAG	GAGGGAAGAG	GCTTTCATAG	ATTCTATTCA	CAAAGAATAA	500
CCACCATTTT	GCAAGGACCA	TGAGGCCACT	GTGCGTGACA	TGCTGGTGGC	550
TCGGACTGCT	GGCTGCCATG	GGAGCTGTTG	CAGGCCAGGA	GGACGGTTTT	600
GAGGGCACTG	AGGAGGGCTC	GCCAAGAGAG	TTCATTTACC	TAAACAGGTA	650
CAAGCGGGCG	GGCGAGTCCC	AGGACAAGTG	CACCTACACC	TTCATTGTGC	700
CCCAGCAGCG	GGTCACGGGT	GCCATCTGCG	TCAACTCCAA	GGAGCCTGAG	750
GTGCTTCTGG	AGAACCGAGT	GCATAAGCAG	GAGCTAGAGC	TGCTCAACAA	800
TGAGCTGCTC	AAGCAGAAGC	GGCAGATCGA	GACGCTGCAG	CAGCTGGTGG	850
AGGTGGACGG	CGGCATTGTG	AGCGAGGTGA	AGCTGCTGCG	CAAGGAGAGC	900
CGCAACATGA	ACTCGCGGGT	CACGCAGCTC	TACATGCAGC	TCCTGCACGA	950
GATCATCCGC	AAGCGGGACA	ACGCGTTGGA	GCTCTCCCAG	CTGGAGAACA	1000
GGATCCTGAA	CCAGACAGCC	GACATGCTGC	AGCTGGCCAG	CAAGTACAAG	1050
GACCTGGAGC	ACAAGTACCA	GCACCTGGCC	ACACTGGCCC	ACAACCAATC	1100
AGAGATCATC	GCGCAGCTTG	AGGAGCACTG	CCAGAGGGTG	CCCTCGGCCA	1150
GGCCCGTCCC	CCAGCCACCC	CCCGCTGCCC	CGCCCCGGGT	CTACCAACCA	1200

FIG. 2A

CCCACCTACA ACCGCATCAT CAACCAGATC TCTACCAACG AGATCCAGAG 1250 TGACCAGAAC CTGAAGGTGC TGCCACCCCC TCTGCCCACT ATGCCGACTC 1300 TCACCAGCCT CCCATCTTCC ACCGACAAGC CGTCGGGCCC ATGGAGAGAC 1350 TGCCTGCAGG CCCTGGAGGA TGGCCACGAC ACCAGCTCCA TCTACCTGGT 1400 GAAGCCGGAG AACACCAACC GCCTCATGCA GGTGTGGTGC GACCAGAGAC 1450 ACGACCCCGG GGGCTGGACC GTCATCCAGA GACGCCTGGA TGGCTCTGTT 1500 AACTTCTTCA GGAACTGGGA GACGTACAAG CAAGGGTTTG GGAACATTGA 1550 CGGCGAATAC TGGCTGGGCC TGGAGAACAT TTACTGGCTG ACGAACCAAG 1600 GCAACTACAA ACTCCTGGTG ACCATGGAGG ACTGGTCCGG CCGCAAAGTC 1650 TTTGCAGAAT ACGCCAGTTT CCGCCTGGAA CCTGAGAGCG AGTATTATAA 1700 GCTGCGGCTG GGGCGCTACC ATGGCAATGC GGGTGACTCC TTTACATGGC 1750 ACAACGGCAA GCAGTTCACC ACCCTGGACA GAGATCATGA TGTCTACACA 1800 GGAAACTGTG CCCACTACCA GAAGGGAGGC TGGTGGTATA ACGCCTGTGC 1850 CCACTCCAAC CTCAACGGGG TCTGGTACCG CGGGGGCCAT TACCGGAGCC 1900 GCTACCAGGA CGGAGTCTAC TGGGCTGAGT TCCGAGGAGG CTCTTACTCA 1950 CTCAAGAAG TGGTGATGAT GATCCGACCG AACCCCAACA CCTTCCACTA 2000 AGCCAGCTCC CCCTCCTGAC CTCTCGTGGC CATTGCCAGG AGCCCACCCT 2050 GGTCACGCTG GCCACAGCAC AAAGAACAAC TCCTCACCAG TTCATCCTGA 2100 GGCTGGGAGG ACCGGGATGC TGGATTCTGT TTTCCGAAGT CACTGCAGCG 2150 GATGATGGAA CTGAATCGAT ACGGTGTTTT CTGTCCCTCC TACTTTCCTT 2200 CTCTTTCTTT AAATAAATTA AGTCTCTACA ATAAAAAAAA 2290

FIG. 2B

Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala Ala Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr Glu Glu Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys Arg Ala Gly Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val Pro Gln Gln Arg Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu Pro Glu Val Leu Leu Glu Asn Arg Val His Lys Gln Glu Leu Glu Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Ile Glu Thr Leu Gln Gln Leu Val Glu Val Asp Gly Gly Ile Val Ser Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn Arg Ile Leu Asn Gln Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr Lys Asp Leu Glu His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn Gln Ser Glu Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro Ser Ala Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val Tyr Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu

Pro Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys ALTERNATION DE L'ENGRAPER. 4. 實際的 以此時後 Pro Ser Gly Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Asp Gly His Asp Thr Ser Ser Ile Tyr Leu Val Lys Pro Glu Asn Thr Asn Arg Leu Met Gln Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly Trp Thr Val Ile Gln Arg Arg Leu Asp Gly Ser Val Asn Phe Phe Arg Asn Trp Glu Thr Tyr Lys Gln Gly Phe Gly Asn Ile Asp Gly Glu Tyr Trp Leu Gly Leu Glu Asn Ile Tyr Trp Leu Thr Asn Gln Gly Asn Tyr Lys Leu Leu Val Thr Met Glu Asp Trp Ser Gly Arg Lys Val Phe Ala Glu Tyr Ala Ser Phe Arg Leu Glu Pro Glu Ser Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr His Gly Asn Ala Gly Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe Thr Thr Leu Asp Arg Asp His Asp Val Tyr Thr Gly Asn Cys Ala His Tyr Gln Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp Gly Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys Val Val Met Met Ile Arg Pro Asn Pro Asn Thr Phe His

FIG. 3B

GCAGCTGGTT ACTGCATTTC TCCATGTGGC AGACAGAGCA AAGCCACAAC 50 GCTTTCTCTG CTGGATTAAA GACGGCCCAC AGACCAGAAC TTCCACTATA 100 CTACTTAAAA TTACATAGGT GGCTTGTCAA ATTCAATTGA TTAGTATTGT 150 AAAAGGAAAA AGAAGTTCCT TCTTACAGCT TGGATTCAAC GGTCCAAAAC 200 AAAAATGCAG CTGCCATTAA AGTCTCAGAT GAACAAACTT CTACACTGAT 250 TTTTAAAATC AAGAATAAGG GCAGCAAGTT TCTGGATTCA CTGAATCAAC 300 AGACACAAAA AGCTGGCAAT ATAGCAACTA TGAAGAGAAA AGCTACTAAT 350 AAAATTAACC CAACGCATAG AAGACTTTTT TTTCTCTTCT AAAAACAACT 400 AAGTAAAGAC TTAAATTTAA ACACATCATT TTACAACCTC ATTTCAAAAT 450 GAAGACTTTT ACCTGGACCC TAGGTGTGCT ATTCTTCCTA CTAGTGGACA 500 CTGGACATTG CAGAGGTGGA CAATTCAAAA TTAAAAAAAT AAACCAGAGA 550 AGATACCCTC GTGCCACAGA TGGTAAAGAG GAAGCAAAGA AATGTGCATA 600 CACATTCCTG GTACCTGAAC AAAGAATAAC AGGGCCAATC TGTGTCAACA 650 CCAAGGGGCA AGATGCAAGT ACCATTAAAG ACATGATCAC CAGGATGGAC 700 CTTGAAAACC TGAAGGATGT GCTCTCCAGG CAGAAGCGGG AGATAGATGT 750 TCTGCAACTG GTGGTGGATG TAGATGGAAA CATTGTGAAT GAGGTAAAGC 800 TGCTGAGAAA GGAAAGCCGT AACATGAACT CTCGTGTTAC TCAACTCTAT 850 ATGCAATTAT TACATGAGAT TATCCGTAAG AGGGATAATT CACTTGAACT 900 TTCCCAACTG GAAAACAAAA TCCTCAATGT CACCACAGAA ATGTTGAAGA 950 TGGCAACAAG ATACAGGGAA CTAGAGGTGA AATACGCTTC CTTGACTGAT 1000 CTTGTCAATA ACCAATCTGT GATGATCACT TTGTTGGAAG AACAGTGCTT 1050 GAGGATATTT TCCCGACAAG ACACCCATGT GTCTCCCCCA CTTGTCCAGG 1100 TGGTGCCACA ACATATTCCT AACAGCCAAC AGTATACTCC TGGTCTGCTG 1150 GGAGGTAACG AGATTCAGAG GGATCCAGGT TATCCCAGAG ATTTAATGCC 1200 FIG. 4A

ACCACCTGAT	CTGGCAACTT	CTCCCACCAA	AAGCCCTTTC	AAGATACCAC	1250
CGGTAACTTT	CATCAATGAA	GGACCATTCA	AAGACTGTCA	GCAAGCAAAA	1300
GAAGCTGGGC	ATTCGGTCAG	TGGGATTTAT	ATGATTAAAC	CTGAAAACAG	1350
CAATGGACCA	ATGCAGTTAT	GGTGTGAAAA	CAGTTTGGAC	CCTGGGGGTT	1400
GGACTGTTAT	TCAGAAAAGA	ACAGACGGCT	CTGTCAACTT	CTTCAGAAAT	1450
TGGGAAAATT	ATAAGAAAGG	GTTTGGAAAC	ATTGACGGAG	AATACTGGCT	1500
TGGACTGGAA	AATATCTATA	TGCTTAGCAA	TCAAGATAAT	TACAAGTTAT	1550
TGATTGAATT	AGAAGACTGG	AGTGATAAAA	AAGTCTATGC	AGAATACAGC	1600
AGCTTTCGTC	TGGAACCTGA	AAGTGAATTC	TATAGACTGC	GCCTGGGAAC	1650
TTACCAGGGA	AATGCAGGGG	ATTCTATGAT	GTGGCATAAT	GGTAAACAAT	1700
TCACCACACT	GGACAGAGAT	AAAGATATGT	ATGCAGGAAA	CTGCGCCCAC	1750
TTTCATAAAG	GAGGCTGGTG	GTACAATGCC	TGTGCACATT	СТААССТААА	1800
TGGAGTATGG	TACAGAGGAG	GCCATTACAG	AAGCAAGCAC	CAAGATGGAA	1850
TTTTCTGGGC	CGAATACAGA	GGCGGGTCAT	ACTCCTTAAG	AGCAGTTCAG	1900
ATGATGATCA	AGCCTATTGA	CTGAAGAGAG	ACACTCGCCA	ATTTAAATGA	1950
CACAGAACTT	TGTACTTTTC	AGCTCTTAAA	AATGTAAATG	TTACATGTAT	2000
ATTACTTGGC	ACAATTTATT	TCTACACAGA	AAGTTTTTAA	AATGAATTTT	2050
ACCGTAACTA	TAAAAGGGAA	CCTATAAATG	TAGTTTCATC	TGTCGTCAAT	2100
TACTGCAGAA	AATTATGTGT	ATCCACAACC	TAGTTATTTT	AAAAATTATG	2150
TTGACTAAAT	ACAAAGTTTG	TTTTCTAAAA	TGTAAATATT	TGCCACAATG	2200
TAAAGCAAAT	CTTAGCTATA	TTTTAAATCA	ТАААТААСАТ	GTTCAAGATA	2250
CTTAACAATT	ТАТТТААААТ	CTAAGATTGC	TCTAACGTCT	AGTGAAAAAA	2300
ATATTTTTTA	AATTTCAGCC	AAATAATGCA	TTTTATTTTA	ТАААААТАСА	2350
GACAGAAAAT	TAGGGAGAAA	CTTCTAGTTT	TGCCAATAGA	AAATGTTCTT	2400

FIG. 4B

· 通知中心的 1000年 100 CCATTGAATA AAAGTTATTT CAAATTGAAT TTGTGCCTTT CACACGTAAT 2450 GATTAAATCT GAATTCTTAA TAATATATCC TATGCTGATT TTCCCAAAAC 2500 ATGACCCATA GTATTAAATA CATATCATTT TTAAAAATAA AAAAAAACCC 2550 AAAAATAATG CATGCATAAT TTAAATGGTC AATTTATAAA GACAAATCTA 2600 TGAATGAATT TTTCAGTGTT ATCTTCATAT GATATGCTGA ACACCAAAAT 2650 CTCCAGAAAT GCATTTTATG TAGTTCTAAA ATCAGCAAAA TATTGGTATT 2700 ACAAAAATGC AGAATATTTA GTGTGCTACA GATCTGAATT ATAGTTCTAA 2750 TTTATTATTA CTTTTTTCT AATTTACTGA TCTTACTACT ACAAAGAAAA 2800 AAAAACCCAA CCCATCTGCA ATTCAAATCA GAAAGTTTGG ACAGCTTTAC 2850 AAGTATTAGT GCATGCTCAG AACAGGTGGG ACTAAAACAA ACTCAAGGAA 2900 CTGTTGGCTG TTTTCCCGAT ACTGAGAATT CAACAGCTCC AGAGCAGAAG 2950 CCACAGGGGC ATAGCTTAGT CCAAACTGCT AATTTCATTT TACAGTGTAT 3000 GTAACGCTTA GTCTCACAGT GTCTTTAACT CATCTTTGCA ATCAACAACT 3050 TTACTAGTGA CTTTCTGGAA CAATTTCCTT TCAGGAATAC ATATTCACTG 3100 CTTAGAGGTG ACCTTGCCTT AATATATTTG TGAAGTTAAA ATTTTAAAGA 3150 TAGCTCATGA AACTTTTGCT TAAGCAAAAA GAAAACCTCG AATTGAAATG 3200 TGTGAGGCAA ACTATGCATG GGAATAGCTT AATGTGAAGA TAATCATTTG 3250 GACAACTCAA ATCCATCAAC ATGACCAATG TTTTTCATCT GCCACATCTC 3300 AAAATAAAAC TTCTGGTGAA ACAAATTAAA CAAAATATCC AAACCTCAAA 3350 AAAAA 3355

FIG. 4C

Met 1	Lys	Thr	Phe	Thr 5	Trp	Thr	Leu	Gly	Val 10	Leu	Phe	Phe	Leu	Leu 15
Val	Asp	Thr	Gly	His 20	Cys	Arg	Gly	4	Gln 25,	इन्ह ें		Bir m	Lys.	
Ile	Asn	Gln	Arg	Arg 35	Tyr	Pro	Arg	Ala	Thr 40	Asp	Gly	Lys	Glu	Glu 45
Ala	Lys	Lys	Cys	Ala 50	Tyr	Thr	Phe	Leu	Val 55	Pro	Glu	Gln	Arg	Ile 60
Thr	Gly	Pro	Ile	Cys 65	Val	Asn	Thr	Lys	Gly 70	Gln	Asp	Ala	Ser	Thr 75
Ile	Lys	Asp	Met	Ile 80	Thr	Arg	Met	Asp	Leu 85	Glu	Asn	Leu	Lys	Asp 90
Val	Leu	Ser	Arg	Gln 95	Lys	Arg	Glu	Ile	Asp 100	Val	Leu	Gln	Leu	Val 105
Val	Asp	Val	Asp	Gly 110	Asn	Ile	Val	Asn	Glu 115	Val	Lys	Leu	Leu	Arg 120
Lys	Glu	Ser	Arg	Asn 125	Met	Asn	Ser	Arg	Val 130	Thr	Gln	Leu	Tyr	Met 135
Gln	Leu	Leu	His	Glu 140	Ile	Ile	Arg	Lys	Arg 145	Asp	Asn	Ser	Leu	Glu 150
Leu	Ser	Gln	Leu	Glu 155	Asn	Lys	Ile	Leu	Asn 160	Val	Thr	Thr	Glu	Met 165
Leu	Lys	Met	Ala	Thr 170	Arg	Tyr	Arg	Glu	Leu 175	Glu	Val	Lys	Tyr	Ala 180
Ser	Leu	Thr	Asp	Leu 185	Val	Asn	Asn	Gln	Ser 190	Val	Met	Ile	Thr	Leu 195
Leu	Glu	Glu	Gln	Cys 200	Leu	Arg	Ile	Phe	Ser 205	Arg	Gln	Asp	Thr	His 210
Val	Ser	Pro	Pro	Leu 215	Val	Gln	Val	Val	Pro 220	Gln	His	Ile	Pro	Asn 225
Ser	Gln	Gln	Tyr	Thr 230	Pro	Gly	Leu	Leu	Gly 235	Gly	Asn	Glu	Ile	Gln 240
Arg	Asp	Pro	Gly	Tyr 245	Pro	Arg	Asp	Leu	Met 250	Pro	Pro	Pro	Asp	Leu 255

FIG. 5A

Ala	Thr	Ser	Pro	Thr 260	Lys	Ser	Pro	Phe	Lys 265	Ile		; ; .		270
Phe	Ile	Asn	Glu	Gly 275	Pro	Phe	Lys	Asp	Cys 280	Gln	Gln	Ala	Lys	Glu 285
Ala	Gly	His	Ser	Val 290	Ser	Gly	Ile	Tyr	Met 295	Ile	Lys	Pro	Glu	Asn 300
Ser	Asn	Gly	Pro	Met 305	Gln	Leu	Trp	Cys	Glu 310	Asn	Ser	Leu	Asp	Pro 315
Gly	Gly	Trp	Thr	Val 320	Ile	Gln	Lys	Arg	Thr 325	Asp	Gly	Ser	Val	Asn 330
Phe	Phe	Arg	Asn	Trp 335	Glu	Asn	Tyr	Lys	Lys 340	Gly	Phe	Gly	Asn	Ile 345
Asp	Gly	Glu	Tyr	Trp 350	Leu	Gly	Leu	Glu	Asn 355	Ile	Tyr	Met	Leu	Ser 360
Asn	Gln	Asp	Asn	Туг 365	Lys	Leu	Leu	Ile	Glu 370	Leu	Glu	Asp	Trp	Ser 375
Asp	Lys	Lys	Val	Tyr 380	Ala	Glu	Tyr	Ser	Ser 385	Phe	Arg	Leu	Glu	Pro 390
Glu	Ser	Glu	Phe	Tyr 395	Arg	Leu	Arg	Leu	Gly 400	Thr	Tyr	Gln	Gly	Asn 405
Ala	Gly	Asp	Ser	Met 410	Met	Trp	His	Asn	Gly 415	Lys	Gln	Phe	Thr	Thr 420
Leu	Asp	Arg	Asp	Lys 425	Asp	Met	Tyr	Ala	Gly 430	Asn	Cys	Ala	His	Phe 435
His	Lys	Gly	Gly	Trp 440	Trp	Tyr	Asn	Ala	Cys 445	Ala	His	Ser	Asn	Leu 450
Asn	Gly	Val	Trp	Tyr 455	Arg	Gly	Gly	His	Tyr 460	Arg	Ser	Lys	His	Gln 465
Asp	Gly	Ile	Phe	Trp 470	Ala	Glu	Tyr	Arg	Gly 475	Gly	Ser	Tyr	Ser	Leu 480
Arg	Ala	Val	Gln	Met 485	Met	Ile	Lys	Pro	Ile 490	_				

FIG. 5B

GGCTCAGAGG	CCCCACTGGA	CCCTCGGCTC	TTCCTTGGAC	TTCTTGTGTG	50
				GGTGAGAGGG	
TGGGAAGGTC	CGCCGCGATG	GGGAAGCCCT	GGCTGCGTGC	GCTACAGCTG	150
CTGCTCCTGC	TGGGCGCGTC	GTGGGCGCGG	GCGGGCGCCC	CGCGCTGCAC	200
CTACACCTTC	GTGCTGCCCC	CGCAGAAGTT	CACGGGCGCT	GTGTGCTGGA	250
GCGGCCCCGC	ATCCACGCGG	GCGACGCCCG	AGGCCGCCAA	CGCCAGCGAG	300
CTGGCGGCGC	TGCGCATGCG	CGTCGGCCGC	CACGAGGAGC	TGTTACGCGA	350
GCTGCAGAGG	CTGGCGGCGG	CCGACGCCC	CGTGGCCGGC	GAGGTGCGCG	400
CGCTGCGCAA	GGAGAGCCGC	GGCCTGAGCG	CGCGCCTGGG	CCAGTTGCGC	450
GCGCAGCTGC	AGCACGAGGC	GGGGCCCGGG	GCGGGCCCGG	GGGCGGATCT	500
GGGGGCGGAG	CCTGCCGCGG	CGCTGGCGCT	GCTCGGGGAG	CGCGTGCTCA	550
ACGCGTCCGC	CGAGGCTCAG	CGCGCAGCCG	CCCGGTTCCA	CCAGCTGGAC	600
GTCAAGTTCC	GCGAGCTGGC	GCAGCTCGTC	ACCCAGCAGA	GCAGTCTCAT	650
CGCCCGCCTG	GAGCGCCTGT	GCCCGGGAGG	CGCGGGCGGG	CAGCAGCAGG	700
TCCTGCCGCC	ACCCCCACTG	GTGCCTGTGG	TTCCGGTCCG	TCTTGTGGGT	750
AGCACCAGTG	ACACCAGTAG	GATGCTGGAC	CCAGCCCCAG	AGCCCCAGAG	800
AGACCAGACC	CAGAGACAGC	AGGAGCCCAT	GGCTTCTCCC	ATGCCTGCAG	850
GTCACCCTGC	GGTCCCCACC	AAGCCTGTGG	GCCCGTGGCA	GGATTGTGCA	900
GAGGCCCGCC	AGGCAGGCCA	TGAACAGAGT	GGAGTGTATG	AACTGCGAGT	950
GGGCCGTCAC	GTAGTGTCAG	TATGGTGTGA	GCAGCAACTG	GAGGGTGGAG	1000
GCTGGACTGT	GATCCAGCGG	AGGCAAGATG	GTTCAGTCAA	CTTCTTCACT	1050
ACCTGGCAGC	ACTATAAGGC	GGGCTTTGGG	CGGCCAGACG	GAGAATACTG	1100
GCTGGGCCTT	GAACCCGTGT	ATCAGCTGAC	CAGCCGTGGG	GACCATGAGC	1150
TGCTGGTTCT	CCTGGAGGAC	TGGGGGGCC	GTGGAGCACG	TGCCCACTAT	1200
			_		

FIG. 6A

(2) A service of the control of t

GATGGCTTCT CCCTGGAACC CGAGAGCGAC CACTACCGCC TGCGGCTTGG 1250
CCAGTACCAT GGTGATGCTG GAGACTCTCT TTCCTGGCAC AATGACAAGC 1300
CCTTCAGCAC CGTGGATAGG GACCGAGACT CCTATTCTGG TAACTGTGCC 1350
CTGTACCAGC GGGGAGGCTG GTGGTACCAT GCCTGTGCCC ACTCCAACCT 1400
CAACGGTGTG TGGCACCACG GCGGCCACTA CCGAAGCCGC TACCAGGATG 1450
GTGTCTACTG GGCTGAGTTT CGTGGTGGGG CATATTCTCT CAGGAAGGCC 1500
GCCATGCTCA TTCGGCCCCT GAAGCTGTGA CTCTGTGTTC CTCTGTCCC 1550
TAGGCCCTAG AGGACATTGG TCAGCAGGAG CCCAAGTTGT TCTGGCCACA 1600
CCTTCTTTGT GGCTCAGTGC CAATGTGTC CACAGAACTT CCCACTGTGG 1650
ATCTGTGACC CTGGGCGCTG AAAATGGGAC CCCAGGAATCC CCCCCGTCAA 1700
TATCTTGGCC TCAGATGGCT CCCCAAGGTC ATTCATATCT CGGTTTGAGC 1750
TCATATCTTA TAATAACACA AAGTAGCCAC 1780

FIG. 6B

Met 1	Gly	Lys	Pro	Trp 5	Leu	Arg	Ala	Leu	Gln 10	Leu	Leu	Leu	Leu	Leu 15
Gly	Ala	Ser	Trp	Ala 20	Arg	Ala			Pro 25		Cys		Tyr	Thr 30
Phe	Val	Leu	Pro	Pro 35	Gln	Lys	Phe	Thr	Gly 40	Ala	Val	Cys	Trp	Ser 45
Gly	Pro	Ala	Ser	Thr 50	Arg	Ala	Thr	Pro	Glu 55	Ala	Ala	Asn	Ala	Ser 60
Glu	Leu	Ala	Ala	Leu 65	Arg	Met	Arg	Val	Gly 70	Arg	His	Glu	Glu	Leu 75
Leu	Arg	Glu	Leu	Gln 80	Arg	Leu	Ala	Ala	Ala 85	Asp	Gly	Ala	Val	Ala 90
Gly	Glu	Val	Arg	Ala 95	Leu	Arg	Lys	Glu	Ser 100	Arg	Gly	Leu	Ser	Ala 105
Arg	Leu	Gly	Gln	Leu 110	Arg	Ala	Gln	Leu	Gln 115	His	Glu	Ala	Gly	Pro 120
Gly	Ala	Gly	Pro	Gly 125	Ala	Asp	Leu	Gly	Ala 130	Glu	Pro	Ala	Ala	Ala 135
Leu	Ala	Leu	Leu	Gly 140	Glu	Arg	Val	Leu	Asn 145	Ala	Ser	Ala	Glu	Ala 150
Gln	Arg	Ala	Ala	Ala 155	Arg	Phe	His	Gln	Leu 160	Asp	Val	Lys	Phe	Arg 165
Glu	Leu	Ala	Gln	Leu 170	Val	Thr	Gln	Gln	Ser 175	Ser	Leu	Ile	Ala	Arg 180
Leu	Glu	Arg	Leu	Cys 185	Pro	Gly	Gly	Ala	Gly 190	Gly	Gln	Gln	Gln	Val 195
Leu	Pro	Pro	Pro	Pro 200	Leu	^Val	Pro	Val	Val 205	Pro	Val	Arg	Leu	Val 210
Gly	Ser	Thr	Ser	Asp 215	Thr	Ser	Arg	Met	Leu 220	Asp	Pro	Ala	Pro	Glu 225
Pro	Gln	Arg	Asp	Gln 230	Thr	Gln	Arg	Gln	Gln 235	Glu	Pro	Met	Ala	Ser 240
Pro	Met	Pro	Ala	Gly 245	His	Pro	Ala	Val	Pro 250	Thr	Lys	Pro	Val	Gly 255

FIG. 7A

Pro	Trp	Gln	Asp	Cys 260	Ala	Glu	Ala		Gln 265		Gly		Glu	270
Ser	Gly	Val	Tyr	Glu 275	Leu	Arg	Val	Gly	Arg 280	His	Val	Val:		
Trp	Cys	Glu	Gln	Gln 290	Leu	Glu	Gly	Gly	Gly 295	Trp	Thr	Val	Ile	Gln 300
Arg	Arg	Gln	Asp	Gly 305	Ser	Val	Asn	Phe	Phe 310	Thr	Thr	Trp	Gln	His 315
Tyr	Lys	Ala	Gly	Phe 320	Gly	Arg	Pro	Asp	Gly 325	Glu	Tyr	Trp	Leu	Gly 330
Leu	Glu	Pro	Val	Tyr 335	Gln	Leu	Thr	Ser	Arg 340	Gly	Asp	His	Glu	Leu 345
Leu	Val	Leu	Leu	Glu 350	Asp	Trp	Gly	Gly	Arg 355	Gly	Ala	Arg	Ala	His 360
Tyr	Asp	Gly	Phe	Ser 365	Leu	Glu	Pro	Glu	Ser 370	Asp	His	Tyr	Arg	Leu 375
Arg	Leu	Gly	Gln	Tyr 380	His	Gly	Asp	Ala	Gly 385	Asp	Ser	Leu	Ser	Trp 390
His	Asn	Asp	Lys	Pro 395	Phe	Ser	Thr	Val	Asp 400	Arg	Asp	Arg	Asp	Ser 405
Tyr	Ser	Gly	Asn	Cys 410	Ala	Leu	Tyr	Gln	Arg 415	Gly	Gly	Trp	Trp	Tyr 420
His	Ala	Суѕ	Ala	His 425	Ser	Asn	Leu	Asn	Gly 430	Val	Trp	His	His	Gly 435
Gly	His	Tyr	Arg	Ser 440	Arg	Tyr	Gln	Asp	Gly 445	Val	Tyr	Trp	Ala	Glu 450
Phe	Arg	Gly	Gly	Ala 455	Tyr	Ser	Leu	Arg	Lys 460	Ala	Ala	Met	Leu	Ile 465
Arg	Pro	Leu	Lys	Leu 470		RE	Œ		D					

FIG. 7B

Publishing Division

1

DNA 22779 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.

FIG. 8A

DNA 22779 H&E

FIG. 8B

DNA 28497 H&E

FIG. 9A

DNA 28497 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.

FIG. 9B

DNA 23339 H&E

FIG. 10A

DNA 23339 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.
FIG. 10B

NL1 Northern

FIG. 11

NL5 Northern

FIG. 12