Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Fri May 28 11:38:59 2021 Program finished at Fri May 28 19:59:57 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2424271902

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo	0	0	0	0	0	0	0	0	0	*	*	*	
11 WhitePo	0	0	0	0	0	0	0	0	0	0	*	*	
12	U	U	U	U	U	U	U	U	U	U			
Order of parar	natars:												
1	Θ_1						~d	ienla	yed:				
2	Θ_2^1							-	iyed: iyed:				
3	Θ_3							-	yed:				
4	Θ_3								yed:				
5	Θ_4 Θ_5							-	yed:				
6	Θ_6								yed:				
7	Θ_6								yed:				
8	Θ_7								yed:				
9	Θ_8								iyed: iyed:				
10	Θ_9								iyed: iyed:				
11	$\Theta_{10}^{'}$								iyed: iyed:				
12	Θ_{11}^{10}								iyed: iyed:				
13	Θ_{12}^{11} $M_{2} > 1$							-	iyed: iyed:				
24	2->1 N/I								iyed: iyed:				
25	1->Z								iyed: iyed:				
36	3->2								iyed: iyed:				
37	2->3 NA								iyed: iyed:				
48	4->3 NA								iyed: iyed:				
49	3->4 N/I								yed:				
60	3->4 N/I								yed:				
61	4->5								yed:				
72	N/I								yed:				
73	3->0								yed:				
84	/->o								yed:				
85	N /							-	yed:				
96	N A							-	yed:				
97	/->8							-	yed:				
108	9->0							-	yed:				
109	N / 0-/9							-	yed:				
120	10-25							-	yed:				
121	N /							-	yed:				
132	N //							-	yed:				
133	10->1							-	yed:				
144	12->1							-	yed:				
177	1VI 11->1	12					\ u	Юріс	iy cu.				
Mutation rate a	mong loci:												Mutation rate is constant
Analysis strate	gy:												Bayesian inference

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

bayesfile

Print data:

No

Print genealogies [only some for some data type]:

Data summary

Datatyp	e:	Sequence data
Number	of loci:	1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	10
12	1	0
Total of all populations	1	184

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01419
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01373
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02410
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02068
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.03056
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02121
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01348
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02573
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02063
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00985
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01096
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01018
1	M _{2->1}	18000.0	32000.0	45000.0	54000.0	72000.0	47000.0	45957.7
1	M _{1->2}	0.0	4000.0	17000.0	30000.0	38000.0	27000.0	49010.9
1	M _{3->2}	16000.0	52000.0	63000.0	70000.0	0.00088	55000.0	53067.3
1	M _{2->3}	30000.0	36000.0	55000.0	72000.0	120000.0	69000.0	72733.3
1	$M_{4->3}$	0.0	4000.0	19000.0	32000.0	40000.0	29000.0	37944.2
1	M _{3->4}	38000.0	46000.0	63000.0	76000.0	0.00088	57000.0	47327.1
1	M _{5->4}	82000.0	96000.0	109000.0	120000.0	142000.0	113000.0	111521.3
1	M _{4->5}	24000.0	48000.0	77000.0	86000.0	106000.0	69000.0	66864.3
1	M _{6->5}	10000.0	14000.0	29000.0	42000.0	48000.0	73000.0	73766.0
1	M _{5->6}	54000.0	72000.0	85000.0	96000.0	114000.0	87000.0	85583.6
1	M _{7->6}	52000.0	66000.0	81000.0	96000.0	114000.0	77000.0	57155.1
1	M _{6->7}	28000.0	86000.0	103000.0	122000.0	136000.0	95000.0	86721.2
1	M _{8->7}	0.0	8000.0	25000.0	38000.0	48000.0	35000.0	41903.1
1	M _{7->8}	12000.0	28000.0	39000.0	48000.0	64000.0	41000.0	39185.4
1	M _{9->8}	0.0	18000.0	27000.0	42000.0	50000.0	31000.0	25910.9
1	M _{8->9}	32000.0	40000.0	55000.0	68000.0	78000.0	51000.0	39415.5
1	M _{10->9}	0.0	2000.0	13000.0	22000.0	32000.0	61000.0	58476.2
1	M _{9->10}	22000.0	48000.0	61000.0	72000.0	84000.0	59000.0	56439.3
1	M _{11->10}	0.0	0.0	1000.0	10000.0	24000.0	11000.0	21011.9
1	M _{10->11}	8000.0	28000.0	51000.0	68000.0	84000.0	63000.0	72854.4
1	M _{12->11}	0.0	0.0	1000.0	14000.0	26000.0	63000.0	57003.4
1	M _{11->12}	400000.0	556000.0	619000.0	742000.0	1000000.0	675000.0	648277.8

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 11:38:59]

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 11:38:59]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2166.198677	(1a)
	-2090.396166	(1b)
Harmonic mean	-1823.030152	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
$\overline{\Theta}_1$	1669/4492	0.37155
Θ_2^{-}	794/4388	0.18095
Θ_3^-	1181/4383	0.26945
Θ_4°	1567/4405	0.35573
Θ_5^{T}	888/4427	0.20059
Θ_6°	1224/4348	0.28151
Θ_7°	1787/4341	0.41166
$\Theta_8^{'}$	1310/4375	0.29943
Θ_9°	1346/4407	0.30542
Θ_{10}	1335/4472	0.29852
9 ₁₁	3085/4490	0.68708
Θ_{12}^{11}	4290/4393	0.97655
$\sqrt{12}_{2->1}$	4414/4414	1.00000
$M_{1->2}^{2}$	4388/4388	1.00000
$VI_{3->2}$	4356/4356	1.00000
$V_{2->3}^{3->2}$	4284/4284	1.00000
$V_{4\rightarrow 3}^{2\rightarrow 3}$	4338/4338	1.00000
$M_{3->4}$	4390/4390	1.00000
VI 5->4	4390/4390	1.00000
VI 4->5	4395/4395	1.00000
A 6->5	4505/4505	1.00000
$M_{5->6}^{0->5}$	4313/4313	1.00000
A 7->6	4352/4352	1.00000
$M_{6->7}^{7->6}$	4471/4471	1.00000
$M_{8->7}^{0->7}$	4399/4399	1.00000
$M_{7->8}^{8->7}$	4430/4430	1.00000
M_{9-8}	4305/4305	1.00000
$M_{8->9}^{9->8}$	4465/4465	1.00000
M _{10->9}	4452/4452	1.00000
$M_{9->10}^{10->9}$	4352/4352	1.00000
$M_{11->10}^{9->10}$	4484/4484	1.00000
$M_{10->11}^{11->10}$	4398/4398	1.00000
10->11 /	4360/4360	1.00000
M _{12->11} M _{11->12}	4404/4404	1.00000
Genealogies	34772/150434	0.23114

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.71146	538.27
Θ_2	0.85937	233.12
Θ_3	0.84707	250.47
94	0.72738	496.49
) ₅	0.82010	310.13
06	0.81240	312.69
) ₇	0.72762	474.50
) ₈	0.82445	308.87
$\mathbf{p}_{\mathbf{q}}$	0.79544	342.66
) ₁₀	0.79205	375.84
) ₁₁	0.45374	1145.30
12	0.18653	2057.67
1 2->1	0.83809	269.63
1 _{1->2}	0.87375	205.72
1 _{3->2}	0.75354	421.82
$M_{2->3}$	0.82234	294.42
1 4->3	0.80439	335.02
1 3->4	0.76721	401.51
1 5->4	0.85820	230.11
4->5	0.77040	393.19
1 6->5	0.85805	235.58
1 5->6	0.81507	310.64
1 7->6	0.79515	345.64
6->7	0.82134	294.73
1 8->7	0.78500	368.45
1 7->8	0.83094	289.05
1 9->8	0.80118	345.39
1 8->9	0.72283	515.24
1 10->9	0.75896	416.06
1 _{9->10}	0.72927	472.91
1 11->10	0.86321	220.16
10->11	0.72347	485.87
1 12->11	0.84036	264.79
1 11->12	0.62333	735.64
n[Prob(D G)]	0.98538	22.07

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run