YieldFlow API

Financial Models & Mathematical Formulas

Version: 2.0

Date: December 2024

Company: YieldFlow Analytics

Key Mathematical Innovations:

- Enhanced Portfolio Optimization (EPO) with Correlation Shrinkage
- News-Enhanced Portfolio Optimization (NEPO) Integration
- FinBERT-LSTM-VAR Enhanced Dividend Forecasting
- Monte Carlo Simulation with Dynamic Confidence Intervals

1. Enhanced Portfolio Optimization (EPO)

1.1 Core Objective Function

The Enhanced Portfolio Optimization maximizes the Sharpe ratio:

$$\boxed{\text{maxSharpe} = \frac{\boldsymbol{\mu}^T \mathbf{w} - r_f}{\sqrt{\mathbf{w}^T \Sigma \mathbf{w}}}}$$

Where:

 μ = Expected returns vector for all assets

w = Portfolio weight vector

 r_f = Risk-free rate (typically 3-month Treasury rate)

 Σ = Shrunk covariance matrix

T = Transpose operator

1.2 Correlation Shrinkage Algorithm

Step 1: Sample Correlation Matrix

$$oxed{\mathbf{R}_{\mathrm{sample}} = \mathrm{corr}(\mathbf{X})}$$

 $X = \text{Historical returns matrix } (n_{\text{periods}} \times n_{\text{assets}})$

Step 2: Target Correlation Matrix

$$\mathbf{R}_{\mathrm{target}} = \mathbf{I}$$

I = Identity matrix (assumes zero correlation between assets)

Step 3: Optimal Shrinkage Parameter

$$\lambda^* = \frac{1}{T} \cdot \frac{\sum_{\substack{i \ j \neq i}} \operatorname{var}(r_{ij})}{\sum_{\substack{i \ j \neq i}} (r_{ij} - \delta_{ij})^2}$$

T = Number of time periods

 r_{ij} = Sample correlation between assets i and j

 δ_{ij} = Target correlation (0 for $i \neq j$, 1 for i = j)

Step 4: Shrunk Correlation Matrix

$$\mathbf{R}_{\mathrm{shrunk}} = \lambda * \mathbf{R}_{\mathrm{target}} + (1 - \lambda *) \mathbf{R}_{\mathrm{sample}}$$

2. News-Enhanced Portfolio Optimization (NEPO)

2.1 Hybrid Optimization Formula

$$\mathbf{w}_{\text{NEPO}} = \alpha \mathbf{w}_{\text{EPO}} + (1 - \alpha) \mathbf{w}_{\text{news}}$$

 $\mathbf{w}_{\mathrm{NEPO}}$ = Final NEPO portfolio weights

 $\mathbf{w}_{\mathrm{EPO}}$ = Enhanced Portfolio Optimization weights

 \mathbf{w}_{news} = News sentiment-adjusted weights

 α = Blending parameter (typically 0.7)

2.2 News Sentiment Integration

$$S_i = rac{\sum\limits_{j} (s_{ji} \cdot c_j \cdot r_j)}{\sum\limits_{j} (c_j \cdot r_j)}$$

 S_i = Aggregated sentiment score for asset i

 s_{ii} = Sentiment score of article j about asset i (-1 to +1)

 c_i = Source credibility weight (0.7 to 1.0)

 r_i = Recency weight based on article age

Recency Weight Formula:

$$r_j = e^{-\lambda_{\text{decay}} \cdot \text{days}_j}$$

 $\lambda_{\rm decay}$ = Decay parameter (typically 0.1)

 $days_i = Age of article j in days$

3. Enhanced Dividend Forecasting (FinBERT-LSTM-VAR)

3.1 Enhanced Gordon Growth Model

$$D_{\text{forecast}} = D_{\text{current}} \times (1 + g_{\text{enhanced}})^t$$

3.2 Enhanced Growth Rate Calculation

$$g_{
m enhanced} = g_{
m base} + g_{
m news} + g_{
m momentum} + g_{
m quality}$$

Component Formulas:

$$g_{ ext{base}} = rac{ ext{ROE} imes (1 - ext{payout ratio}) + ext{payout growth}_{3yr}}{2}$$

$$g_{\text{news}} = \beta_{\text{news}} \times S_{\text{sentiment}} \times \text{volatility adjustment}$$

$$g_{\rm momentum} = \alpha_{\rm momentum} \times (g_{\rm recent} - g_{\rm long\text{-}term})$$

3.3 FinBERT Sentiment Processing

$$S_{ ext{processed}} = anh(S_{ ext{raw}} imes ext{amplification factor})$$

 $S_{\text{raw}} = \text{Raw FinBERT output } (-1 \text{ to } +1)$

Amplification factor = 1.5 for dividend analysis

tanh() = Hyperbolic tangent function (bounds output)

4. Dynamic Confidence Calculation

$$C_{\text{total}} = \sum_{i=1}^{5} w_i \times C_i$$

Where confidence components are:

 C_1 = Data quality confidence ($w_1 = 0.25$)

 C_2 = Financial strength confidence ($w_2 = 0.30$)

 C_3 = News consistency confidence ($w_3 = 0.20$)

 C_4 = Model fit confidence ($w_4 = 0.15$)

 C_5 = Company stability confidence ($w_5 = 0.10$)

5. Monte Carlo Confidence Intervals

dividend_{sim} = dividend_{base} × exp(
$$\mu \Delta t + \sigma \sqrt{\Delta t} Z$$
)

 $Z \sim \mathcal{N}(0,1) = \text{Standard normal random variable}$ $\mu = \text{Expected growth rate}, \ \sigma = \text{Volatility}, \ \Delta t = \text{Time step}$

6. Advanced Risk Metrics

6.1 Value at Risk (VaR)

$$VaR_{\alpha} = \mu_{portfolio} + \sigma_{portfolio} \times \Phi^{-1}(\alpha)$$

 $\mu_{\text{portfolio}}$ = Expected portfolio return

 $\sigma_{\rm portfolio}$ = Portfolio standard deviation

 $\Phi^{-1}(\alpha)$ = Inverse normal CDF at confidence level α

6.2 Conditional Value at Risk (CVaR)

$$CVaR_{\alpha} = \mathbb{E}[R|R \le VaR_{\alpha}]$$

 $\mathbb{E}[R|\text{condition}] = \text{Conditional expectation of returns}$

6.3 Performance Metrics

$$ext{Sharpe} = rac{R_{ ext{portfolio}} - R_f}{\sigma_{ ext{portfolio}}}$$

$$\overline{ ext{Sortino}} = rac{R_{ ext{portfolio}} - R_f}{\sigma_{ ext{downside}}}$$

7. Key Implementation Parameters

• Risk-free rate: 4.5% (3-month Treasury)

• Lookback period: 252 trading days

• Rebalancing: Monthly

• News decay factor: 0.1 (10-day half-life)

• FinBERT model: ProsusAI/finbert

• Monte Carlo iterations: 10,000

Conclusion

The YieldFlow API implements state-of-the-art quantitative finance methodologies combining traditional portfolio theory with modern AI and machine learning techniques. Our mathematical models provide superior risk-adjusted returns through sophisticated correlation modeling, real-time news sentiment integration, and dynamic risk assessment. YieldFlow Analytics | Technical Documentation | Version 2.0 - December 2024