(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-198010 (P2000-198010A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7

B 2 3 B 51/02

識別記号

FΙ

テーマコート*(参考) S 3C037

B 2 3 B 51/02

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出顧番号

(22)出顧日

特願平11-3726

(71)出願人 593162213

庄田鉄工株式会社

静岡県浜松市大蒲町116番地の6

平成11年1月11日(1999.1.11)

(72)発明者 川原 明

静岡県浜松市大蒲町116番地の6 庄田鉄

工株式会社内

(74)代理人 100095614

弁理士 越川 隆夫

Fターム(参考) 30037 AA02 BB00

(54) 【発明の名称】 ダブルツイストドリル

(57)【要約】

【課題】板材にドリルで穿孔する際に生じる「かえり」 を最小にするための切削工具を得ることにある。

【解決手段】刃先からシャンクの間に右捩じり刃からな る穿孔刃と、左捩じり刃からなる仕上げ刃との2種の刃 を同軸上に設けるとともに、前記2種の刃のうち刃先側 に配された穿孔刃の外径を、シャンク側に配された仕上 げ刃の外径より僅かに小径に形成し、穿孔刃によって生 じる「かえり」を仕上げ刃によって除去可能に構成した ものである。

(a)

(b)

【特許請求の範囲】

【請求項1】刃先からシャンクの間に右捩じり刃からな る穿孔刃と、左捩じり刃からなる仕上げ刃との2種の刃 を同軸上に設けるとともに、前記2種の刃のうち刃先側 に配された穿孔刃の外径を、シャンク側に配された仕上 げ刃の外径より僅かに小径に形成してなるダブルツイス トドリル。

【請求項2】請求項1において、前記2種の刃のうち、 シャンク側に配された仕上げ刃のすくい角を負の値に設 定してなるダブルツイストドリル。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、外周に複数の捩じれ た切り刃を有するツイストドリルに関するもので、特 に、捩じれ方向の異なる2種の切り刃を軸方向に連接し たもの、改良に関するものである。

[0002]

【従来の技術】一般に、ツイストドリル、あるいはエン ドミルによって穿孔するとき、図4(a)で示すよう による「かえり」Bを生じる他、孔の出口側にも切断残 りに起因する「かえり」bを生じることが知られてい る。従来、前記「かえり」Bを除去するため、穿孔の後 にドリルやカッタで面取りする加工を加えたり、段付き のドリルによって穿孔と面取りを同時に行う手段が採ら れている。また、ドリルによる穿孔の後、リーマ加工に よって仕上げ加工するときも、前記「かえり」Bが除去 されることが知られている。

[0003]

加工による「かえり」の除去は、工程数が増し加工コス トを上昇させる他、ワークが薄肉の場合、面取り用の工 具によって孔径が拡大することがあり、穿孔した孔径の 精度が低下する不具合があった。

[0004]

【課題を解決するための手段】上記課題は、刃先からシ ャンクの間に右捩じり刃からなる穿孔刃と、左捩じり刃 からなる仕上げ刃との2種の刃を同軸上に設けるととも に、前記2種の刃のうち刃先側に配された穿孔刃の外径 を、シャンク側に配された仕上げ刃の外径より僅かに小 40 径に形成することによって解決される。そこでは、前記 2種の刃のうち、シャンク側の刃のすくい角を負の値に 設定することが好ましい。

[0005]

【作用】穿孔刃による穿孔と仕上げ刃による穿孔とから なる一連の穿孔が行われると、ワークと穿孔刃によって 生じる「かえり」との連結部が仕上げ刃によって切断さ れ、穿孔刃による「かえり」が除去されると同時に、仕 上げ刃によって孔の径が所定の寸法になる。仕上げ刃は は孔の中へ押し込まれ、入り口側には「かえり」を生じ ない。

[0006]

【発明の実施の形態】以下、本願発明の一実施形態を説 明する。図1中、10は本願発明に係るダブルツイスト ドリルであり、先端部は切り刃を有する刃先11となっ ている。後端部にはシャンク12が形成される。なお、 本実施形態では、シャンク12はストレートシャンクと なっているが、当然、テーパシャンクの場合もある。

10 【0007】前記刃先11とシャンク12との間には、 刃先11側に位置して、範囲sに亘って一般の市販ドリ ルと同様の右捩じり刃からなる穿孔刃20が形成されて おり、シャンク12側に位置して、範囲Sに亘っては穿 孔刃20とは逆に左捩じり刃からなる仕上げ刃30が設 けられ、それらの刃20、30はどもに同軸上に配され ている。

【0008】こゝで、本願発明に係るダブルツイストド リル10は、仕上げ刃30の径

のに対する穿孔刃20 の径

の径

の

は

が

値

が

に

小径

と

さ

れて

いる

。

こ

の

態様

では

仕上 に、ワークWに形成される孔Aには、入り口側に切削屑 20 げ刃30の径10mmに対して、穿孔刃20の径がこれ より0.02mm~0.5mm程度が好ましく、この大 きさは穿孔された孔Aの入り口側の「かえり」Bの大き さにより試験的に決定される。

【0009】ダブルツイストドリル10の切削刃は、図 3で示すように、穿孔刃20のすくい角αが軸線aより 旋回方向と逆の方向へ傾いた、いわゆる、正の値に設定 され、仕上げ刃30のすくい角βは逆の方向に傾き、い わゆる、負の値に設定されている。なお、Mは刃先が送 りを伴う回転によって創り出される線、Nは送りがない 【発明が解決しようとする課題】しかしながら、面取り 30 ときの回転によって創り出される線である。よって、穿 孔刃20による穿孔はチップ(切り屑)が穿孔刃20の 捩じれたすくい面21に沿って流れ、切削された下孔1 5の外へ流動し排出される。これに対し仕上げ刃30に よる穿孔では、チップがすくい面31によって下孔15 内へ押し出される。

> 【0010】次ぎに、上記ダブルツイストドリル10に よる穿孔の例を図4によって説明する。ワークWは厚さ 12mmの石膏ボードからなる母材如の上に厚さ1mm のステンレス板W2を貼着したもので、これに直径10m mの仕上げ刃30を持つダブルツイストドリル10によ って貫通孔を穿孔する。まず、図4(a)で示すよう に、ダブルツイストドリル10が回転しつ、ワークWへ 向けて進行すると、穿孔刃20によって下孔15が明け られる。その結果、下孔15の入り口側には母材W1とス テンレス板W2とに連なる「かえり」Bが生じ、出口側に 母材W1に連なる「かえり」bが生じる。また、ステンレ ス板W2と母材W1との間に母材W1側へ食い込む比較的小さ い「かえり」yが生じる。

【0011】引続きダブルツイストドリル10を進行さ すくい角が負になっているため、仕上げ刃による切削屑 50 せると、図4(b)で示すように、穿孔刃20が下孔1

3

5を貫通し、仕上げ刃30が入り口側に形成された「かえり」Bに接触する。仕上げ刃30はすくい角が負に設定されているので、「かえり」Bはステンレス板W2との連結部が仕上げ刃30によって押され、回転方向へ向けて曲がって折れ、ワークWから分離する。仕上げ刃30によって生じる新たなチップは下孔15の外へは排出されず、加工が終了するまでねじれ刃の中に残される。

【0012】ついで、図4(c)で示すように、仕上げ 刃30がワークWを貫通すると、下孔15の内径が僅か の量だけ切削され、拡大されて所定の仕上寸法となり、 内径の面精度が向上する。この仕上げ切削において、新 たに生じるチップは仕上げ刃30がワークWを貫通した とき下方へ落下し、あるいはダブルツイストドリル10 が加工孔から抜き出されたとき排除される。よって、仕上げ刃30によってはワークWの表面に新たな「かえり」Bを生じない。なお、本発明に係るダブルツイストドリル10による加工は上記した貼着材に限らず、単板 の加工においても下孔15の入り口側に生じる「かえり」Bを有効に減じることができるのはいうまでもない。

[0013]

【発明の効果】請求項1の発明によれば、刃先側に配された穿孔刃によって生じる「かえり」が仕上げ刃により除去されるので、穿孔された孔の入り口には大きな「かえり」を生じることがない。なお、面取り加工することのできない薄肉の材料の穿孔に使用すれば、面取り用の工具による孔径の精度低下を回避できる。請求項2の発明によれば、下孔の入り口がシャンク側の刃によって摺擦されるので、下孔がシャンク側の刃によって拡大され

る際にも、「かえり」を生じることがない。などの効果 がある。

【図面の簡単な説明】

【図1】本発明の実施の一例を示すダブルツイストドリルの側面図である。

【図2】その正面図である。

【図3】ダブルツイストドリルの刃先を示す刃先図である。

【図4】穿孔状態を示すワークの断面図である。

10. 【符号の説明】

10・・・・ダブルツイストドリル

11 · · · · · · · 刃先

12・・・・シャンク

15 · · · · 下孔

20 · · · · · 穿孔刃

30・・・・仕上げ刃

31・・・・すくい面

A・・・・孔

a · · · · · 軸線

20 B、b、y・・・かえり

C・・・・・チップ(切り屑)

D、d···径

M、N・・・刃先の軌跡

S、s···範囲

W1····母材

W2・・・・・ステンレス板 α・・・・・穿孔刃20のすくい角

 β ・・・・・仕上げ刃30のすくい角

【図4】

