

Complejidad Computacional

Tema 1: Modelos de computación

Definiciones

- Teoría de la computación
 - Modelos matemáticos
 - Formalizar el concepto de cómputo
 - Clasificar problemas
 - * Límites para solucionar problemas mediante algoritmos.
 - Funciones computables o calculables
 - No se consideran detalles de implementación

Definiciones

Tipos de funciones

$$f: \mathbb{N}^n \to \mathbb{N}^m$$

- Función total
 - Definidas para cualquier valor del dominio
- Función parcial
 - ▶ Definidas en X ⊆ N
- Recursión
 - Método para definir una función especificando cada uno de sus valores en término de valores previamente definidos y, posiblemente, utilizando otras funciones ya definidas

Funciones recursivas

Problema:

$$f: \mathbb{N}^n \to \mathbb{N}$$

- * Dominio y rango: números naturales
- Función recursiva:
 - Una base: funciones iniciales
 - Reglas de construcción recursiva
 - Determinar otros valores a partir de valores conocidos
 - * La función sólo toma aquellos valores que resultan de aplicar, un número finito de veces, las reglas de construcción recursiva

Funciones recursivas básicas

- A partir de este conjunto de funciones se construyen funciones computables más complejas
 - Función Nula o Cero

$$z: N \to N$$
$$x \in N \to z(x) = 0 \in N$$

Función Sucesor o Siguiente

$$s: N \to N$$

$$x \in N \to s(x) = x + 1 \in N$$

Función Proyección

$$P_i^n \colon N^n \to N$$

$$(x_1, \dots x_n) \in N^n \to P_i^n(x_1, \dots x_n) = x_i, n \ge 1, 1 \le i \le n$$
 Función Indentidad: P_1^1

Operaciones

Combinación:

$$h = f \times g \colon N^n \to N^{m+k}$$

* Se define a partir de:

$$f: N^n \to N^m$$

 $g: N^n \to N^k$

* como:

$$h: N^n \to N^{m+k}$$

$$X = (x_1, \dots, x_n) \in N^n \to h(X) = (f(X), g(X))$$

Operaciones

Composición:

$$h = f \circ (g_1, \dots, g_m) \colon N^n \to N$$

* Se define a partir de:

$$f \colon N^m \to N$$

y una familia de funciones g_i , i = 1, ..., m

$$g_i \colon N^n \to N$$

* como:

$$h: N^n \to N$$

$$X = (x_1, \dots, x_n) \in N^n \to h(X) = f(g_1(X), \dots, g_m(X))$$

* También se puede definir para funciones con rango N^k

Operaciones

- Recursión primitiva:
 - Se define a partir de:

$$g: N^n \to N$$
$$h: N^{n+2} \to N$$

* como:

$$f: N^{n+1} \to N$$

$$Sea X = (x_1, \dots, x_n) \in N^n$$

$$f(X, 0) = g(X)$$

$$f(X, S(y)) = h(X, y, f(X, y))$$

- Se denominan ecuación límite y ecuaciones de recursión
- * También se puede definir recursión sin parámetros

Funciones primitivas recursivas

- El conjunto de funciones primitivas recursivas se define según las siguientes reglas:
 - Las funciones básicas son funciones recursivas primitivas
 - 2. Las funciones obtenidas a partir de funciones recursivas primitivas mediante composición y recursión, son funciones recursivas primitivas
 - 3. Éstas son todas las funciones recursivas primitivas

Predicados recursivos primitivos

- Predicado: relación sobre n números naturales $P(x_1, ..., x_n) \subseteq N^n$
- Función característica de un predicado:

$$fp(x_1, ..., x_n) = \begin{cases} 1 & si \ P(x_1, ..., x_n) \ es \ verdadero \\ 0 & si \ P(x_1, ..., x_n) \ es \ falso \end{cases}$$

- Un predicado se dice predicado recursivo primitivosu función característica es primitiva recursiva
- Predicados disjuntos
 - Función definida por casos

10

FRP sobre cadenas

Se pueden definir funciones recursivas primitivas sobre cadenas de caracteres

$$f:(\Sigma^*)^n \to \Sigma^*$$

- Es una función recursiva primitiva si:
 - \clubsuit Es una función base para cadenas, definidas sobre Σ^*
 - * Se puede generar a partir de las funciones iniciales sobre Σ aplicando las funciones constructoras

Funciones computables

- Una función es computable:
 - Es posible encontrar la solución por medio de un algoritmo
 - Se puede limitar el cálculo por adelantado
 - * Se puede determinar que el cálculo terminará
- Existen funciones computables, que no son primitivas recursivas
 - Funciones parcialmente recursivas

Funciones µ-recursivas

Funciones parcialmente recursivas:

$$f: \mathbb{N}^n \to \mathbb{N}^m$$

- * Conjunto de funciones que pueden obtenerse de las funciones básicas, a partir de un número finito de operaciones de composición, recursividad primitiva y minimización
- Operación de minimización:

$$f(x) = \mu y[g(x,y) = 0]$$

t.q. \forall z < y, \quad g(x,y) \quad definido

Mínimo y tal que se cumpla la condición, y para todos los valores z < y, g(x,y) está definido