Turing's Program

Cem Bozşahin

Cognitive Science Department, The Informatics Institute, METU

bozsahin@metu.edu.tr

2016

Alan Mathison Turing: 1912–1954

Mechanism	Behavior
simple	simple
complex	complex

Mechanism $ imes$	Behavior	
simple	simple	(not empirically relevant)
complex	simple	(not interesting)
complex	complex	(not scientifically interesting)
simple	complex	(real cogsci) (computer science)

The last one was what he was after.

Turing Test

(Ann Witbrock; Copeland, B.J., Artificial Intelligence Blackwell Publishers, Oxford, 1993.)

What was Turing up to?

He tried just about everything

- Chemistry
- Cryptology (Enigma)
- Bio-genetics (morphogenesis)
- Abstract computing (algorithms)
- Applied computing (programming)
- Mind-body problem (round-the-house chess)
- Turing test
- Artificial life
- Foundations of mathematics
- Artificial Intelligence
- Marathon

AMT the athlete

Perhaps the right question is:

How was Turing trying to do everything he did?

Mark I, 1948. Manchester's Ferranti Bros.

Mark I, 2011

Turing Machine

A TM

A Turing machine to compute f(n,m)=n x m

It copies the second string a number of times given by the first string.

From Lewis and Papadimitriou (1981).

Representation: maps #I #I n to aI m first

'#' blank
X write x
L move left
R move right
L x find first x on left
R x find first x on right

k-tape TM

Putnam-Gold TM

Non-Turing extensions to Computing

- Analog devices (where everything represents itself)
- Quantum computing
 - Bankers beware
 - New measures of complexity

What is essential to Turing?

- P-G machine is a TM
- The nature of relation between representation and computing.
- Complexity is defined over representation rather than physical time and space.
- One more move of a TM makes the solution one step more involved.

Problems

• Formulable but unsolvable problems

```
diagonal(X):
a: if halt(X,X) goto a otherwise halt.
```

diagonal(diagonal)?

Expressible but unformulable problems

What is the next number after π ?

• The difference is TM representability.

Turing Test

(Ann Witbrock; Copeland, B.J., Artificial Intelligence Blackwell Publishers, Oxford, 1993.)

Searle and Turing

Programming and Turing

- does it look like a TM?
- AMT: intelligent behavior can arise from manipulation of representation.
- With representations, we can build models. Without them we talk about them.
- Turing representability is the key to Turing's computing.

AMT @ 13

"I always seem to want to make things from the thing that is commonest in nature."

AMT @ 9

