参考

- 理論
- http://cogpsy.educ.kyoto-u.ac.jp/personal/Kusumi/datasem11/osanai.pdf (http://cogpsy.educ.kyoto-u.ac.jp/personal/Kusumi/datasem11/osanai.pdf) 実装

https://www.juen.ac.jp/lab/okumura/handout/160201R%E3%81%AB%E3%82%88%E3%82%8B%E5%9B%A0%E5%AD%90%E5%88%86%E6%9E%90.pages.pdf (https://www.juen.ac.jp/lab/okumura/handout/160201R%E3%81%AB%E3%82%8B%E5%9B%A0%E5%AD%90%E5%88%86%E6%9E%90.pages.pdf

In [1]: 1 library(openxlsx) 2 library(corrplot)

corrplot 0.84 loaded

In [6]: 1 df <- read.xlsx("../data/data_covid_fix_name.xlsx")

A data.frame: 6 × 13

	country	рор	urb	gdp	dist	hf	pf	ef	date_first	detection	status	cumul	air
	<chr></chr>	<dbl></dbl>											
1	Albania	2866376	60.319	13364.155	6996524	7.84	8.005411	7.67	70	74.3	1	108641	303.14
2	Algeria	42228429	72.629	15481.788	9108277	4.99	5.201489	4.77	58	12.0	1	80272	6442.44
3	Angola	30809762	65.514	6452.355	10490120	5.40	5.979936	4.83	83	17.9	1	303691	76.94
4	Argentina	44494502	91.870	20610.569	19025624	6.86	8.044600	5.67	65	74.9	1	92122	1516.63
5	Australia	24992369	86.012	51663.365	7608913	8.62	9.160533	8.07	26	97.3	1	1347	75667.65
6	Austria	8847037	58.297	55454.689	7103537	8.48	9.245685	7.71	58	73.2	1	80272	12935.50

In [4]: data = df[,c(2,3,4,5,6,9,10,13)] 8 head(data)

A matrix: 6 × 8 of type dbl

	pop	urb	gdp	dist	hf	date_first	detection	air
1	-0.8304081	0.14522960	0.00803967	-0.10000665	0.83937737	0.40068236	0.9784892	-0.7001144
2	0.8179593	0.55943437	0.13185308	0.37723785	-1.86965358	-0.09390578	-2.1891023	0.4308812
3	0.6247775	0.32948958	-0.60487411	0.63280474	-1.39618757	0.84870044	-1.4943360	-1.2074928
4	0.8499898	1.08357748	0.37271488	1.70998847	0.03871705	0.20577415	0.9924628	-0.1043414
5	0.4965495	0.93662818	1.14624886	0.05180777	1.40807981	-2.20412299	1.4470387	1.3424378
	-0.1308003	0.06019/10	1 20586020	-0.07254220	1 30000675	-0.00300578	0.0525753	0.6999107

In [84]: 1 #相関行列 2 cor_matrix = cor(data) 3 round(cor_matrix, 2)

A matrix: 8 × 8 of type dbl

	рор	urb	gdp	dist	hf	date_first	detection	air
por	1.00	-0.15	-0.19	-0.17	-0.26	-0.38	0.24	0.44
urt	-0.15	1.00	0.75	0.14	0.36	-0.24	0.22	0.42
gdp	-0.19	0.75	1.00	-0.15	0.54	-0.44	0.37	0.59
dis	-0.17	0.14	-0.15	1.00	0.03	0.41	-0.23	-0.28
h	-0.26	0.36	0.54	0.03	1.00	-0.32	0.52	0.25
date_firs	-0.38	-0.24	-0.44	0.41	-0.32	1.00	-0.44	-0.61
detection	0.24	0.22	0.37	-0.23	0.52	-0.44	1.00	0.46

air 0.44 0.42 0.59 -0.28 0.25 -0.61 0.46 1.00

```
In [81]: 1 #urb - gdp (0.75)
2 #detection - hf (0.52)
3 #air - date_first (-0.61)
4 corrplot(cor_matrix)
```


- In [85]: 1 #固存值 2 eigenvalue = eigen(cor_matrix)\$values 3 print(eigenvalue)

[1] 3.2940895 1.8139078 0.9550529 0.8506228 0.4465154 0.2992735 0.2103101 [8] 0.1302280

```
2020/8/12
```

```
因子分析_r - Jupyter Notebook
 \ln [7]: 1 # 固有ベクトル 2 eigenvector = eigen(cor_matrix)$vectors 3 eigenvector
          A matrix: 8 × 8 of type dbl
           -0.1101945 0.6021132 0.37923281 0.33290730 0.01672323 -0.03692528 -0.52614993 0.30363663
            -0.3457896 -0.3890415 0.44260838 -0.15011569 0.20900561 -0.46377227 -0.32851405 -0.37940713
            -0.4510701 -0.3017049 0.10691483 -0.28538511 0.06413042 0.13021587 0.08004694 0.76495625
            0.1786327 -0.3906701 0.48211330 0.63503899 -0.26090395 0.02074917 0.31625210 0.10603141
            -0.3388959 -0.3337128 -0.44309998 0.35230334 -0.32181234 0.29466419 -0.50109385 -0.10883428
            0.4146963 -0.2794451 0.04856175 0.08118728 0.69186572 0.41580075 -0.29301114 0.05969747
           In [8]: 1 #スクリーブロット
2 #固有値の1以上の数を観察(この場合2)
3 #固有値の1以上の数が共適因子の数に関係する
4 plot(eigenvalue, type="b", main="Scree Plot", xlab="Number", ylab="Eigenvalue")
              5.5
              5.0
              1.0
              9
          因子分析
            1 #因子の回転法を"varimax"もしくは"promax"から選択する。回転させない場合は"none"と指定。
2 # factor:共通因子の数を指定する。
4 #scores:回帰方法 (regession) とパートレット法 (Bartlett)
4 fitO-< factanal(x=data, factors=2, rotation="mone",scores="Bartlett")
5 fit1-< factanal(x=data, factors=2, rotation="warimax",scores="Bartlett")
6 fit2<- factanal(x=data, factors=2, rotation="promax",scores="Bartlett")
In [92]:
          結果の読み取り
            loadings 因子負荷量correlation 相関係数factors 求めた因子数

    STATISTIC カイ2乗値

            ・ Got カイ2乗決定の自由度
・ PVAL カイ2乗決定の自由度
・ PVAL カイ2乗統計量のP値(元のデータの分散と指定した共通因子のモデルに基づいて求めたデータの分散との間の有意差に関する検定統計量である。この検定統計量は、探索的に因子分析を行う際の因子の数を決める際の1つの参考材
              料となる)
In [93]: 1 # cutoff=0 は (値の小さいものも含め)全ての因子負荷の値を表示させる指示 2 # Uniquenesses:独自性 (=1-共通性) 3 # 因子の回転によって因子負荷と寄与の値は変化するが、独自性の値は変化しない (ということは共通性の値も変化しない) 4 # 共通性の値が1以上あるいはのに近い値でないか注意 5 #
                # 因子負荷量は相関係数なので0から±1の値をとる
            8 print(fit0, cutoff=0)
          Call: factanal(x = data, factors = 2, scores = "Bartlett", rotation = "none")
          Uniquenesses:
             pop urb gdp dist hf date_first detection 0.286 0.427 0.005 0.873 0.702 0.476 0.712
             air
0.226
```

| Coadings: | Factor1 | Factor2 | pop | -0.180 | 0.825 | wrb | 0.754 | -0.068 | gdp | 0.997 | -0.009 | dist | -0.149 | -0.324 | hf | 0.540 | -0.081 | date_first -0.447 | -0.569 | detection | 0.372 | 0.387 | air | 0.596 | 0.646

Factor1 Factor2 SS loadings 2.603 1.690 Proportion Var 0.325 0.211 Cumulative Var 0.325 0.537

Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 104.92 on 13 degrees of freedom. The p-value is 1.83e-16

In [77]: 1 tmp = promax(fit0\$loadings)\$rotmat solve(t(tmp) %*% tmp)

```
A matrix: 2 × 2 of type
1.0000000 0.2854474
0.2854474 1.0000000
```

varimax(直行回転)

```
In [64]: 1 #相關が出ない
2 #distとhf、detectionに関しては独自因子が0.5を超えているので、これらの変数は共通因子で説明できない情報が半分を超えていると言える。
3 print(fit1, cutoff=0)
             factanal(x = data, factors = 2, scores = "Bartlett", rotation = "varimax")
             Uniquenesses:
                pop urb gdp dist hf date_first detection 0.286 0.427 0.005 0.873 0.702 0.476 0.712
                air
0.226
            Factor1 Factor2
SS loadings 2.225 2.068
Proportion Var 0.278 0.259
Cumulative Var 0.278 0.537
             Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 104.92 on 13 degrees of freedom. The p-value is 1.83e-16
In [78]: 1 tmp = promax(fit1$loadings)$rotmat 2 solve(t(tmp) %*% tmp)
             A matrix: 2 × 2 of type
             dbl
              1.0000000 0.2854632
              0.2854632 1.0000000
             promax(斜交回転)
In [63]: 1 #因子間の相関を仮定
2 #but, 相関はなかった
3 print(fit2, cutoff=0)
             factanal(x = data, factors = 2, scores = "Bartlett", rotation = "promax")
             Uniquenesses:
                pop urb gdp dist hf date_first detection 0.286 0.427 0.005 0.873 0.702 0.476 0.712
                air
0.226
            Factor1 Factor2
             SS loadings 2.279 1.947
Proportion Var 0.285 0.243
Cumulative Var 0.285 0.528
            Factor Correlations:
Factor1 Factor2
Factor1 1.000 -0.285
Factor2 -0.285 1.000
             Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 104.92 on 13 degrees of freedom. The p-value is 1.83e-16
  In [1]: 1 tmp = promax(fit2$loadings)$rotmat 2 solve(t(tmp) %*% tmp)
             Error in ncol(x): オブジェクト 'fit2' がありません
             1. promax(fit2$loadings)
2. ncol(x)
             結果の解釈
               • fit2では因子間の相関を仮定してpromax(斜交回転)で因子分析をした。

    1112 では成了声回が信例を仮定してPromax(科文回知)ではテか析をした。しかし、相関は得られなかった。(相関係数-0.285)よって相関をないと仮定する
    111では因子間の相関はないと仮定してvarimax(直行回転)で因子分析をした。結果、因子間相関はなかった。(相関係数0.285)
```

In [13]: 1 unclass(fit1\$loadings)

A matrix: 8 × 2 of type dbl

	Factor1	Factor2				
рор	-0.4020358	0.74297671				
urb	0.7430598	0.14301895				
gdp	0.9608995	0.26771818				
dist	-0.0534007	-0.35297926				
hf	0.5413911	0.07163641				
date_first	-0.2719973	-0.67102067				
detection	0.2500562	0.47489143				
-1-	0.2020072	0.70025022				

因子負荷量の可視化

- factor1・・・gdp, urb, hfが影響(先進国)
 factor2・・・pop, air, data_firstが影響()

- In [96]: 1 #因子負荷量の散布図(儲は相関係数) 2 plot(fit1\$loadings[,1:2],type="n") 3 text(fit1\$loadings[,1:2],colnames(data))

In [14]: 1 #因子得点の散布図と因子負荷量の散布図 biplot(fit1\$scores,fit1\$loading,cex=2)

62 144

pop 134 70 air
147 63 9, 127

459 100 42 8138 attion
7249 133 114123

143 143 143 155 01:286 6 6 7 25 01:286 6 6 7 25 01:286 6 7 25 01:286 6 7 25 01:286

```
Call: factanal(x = data, factors = 2, scores = "Bartlett", rotation = "varimax")
 Uniquenesses:
      pop urb gdp dist hf date_first detection
0.286  0.427  0.005  0.873  0.702  0.476  0.712
      air
0.226
Doadings:
Factor1 Factor2
pop -0.402 0.743
urb 0.743 0.143
gdp 0.961 0.268
dist -0.353
hf 0.541
date_first -0.272 -0.671
detection 0.250 0.475
air 0.394 0.786
 Factor1 Factor2
SS loadings 2.225 2.068
Proportion Var 0.278 0.259
Cumulative Var 0.278 0.537
```

Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 104.92 on 13 degrees of freedom. The p-value is 1.83e-16

In [61]: 1 score_df = as.data.frame(fit1\$score) head(score_df) A data.frame: 6 × 2 Factor1 Factor2 <dbl> <dbl> 1 0.239466982 -0.8067330 2 0.001249695 0.4462947 **3** -0.466127050 -0.6306339 4 0.306802239 0.2783279 6 1.161208313 0.3134312 In [55]: 1 #Factor1の因子スコアが多い国の確認 A data.frame: 6×13 gdp dist hf country pop urb pf ef date_first detection status cumul <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> Brunei 428962 77.629 80920.05 3719566 5.69 4.760902 6.62 30.5 1234.45 1 113067 Iceland 353574 93.813 57303.06 7695516 8.41 9.084634 7.74 37.2 61 Kuwait 4137309 100.000 72897.56 5244993 6.19 5.968881 6.41 56 47.5 1 78620 6464.85 74
 82
 Luxembourg
 607728
 90.981
 113337.42
 751071
 8.56
 9263800
 7.86
 62
 41.7

 114
 Qata
 2781677
 99.135
 126898.43
 5117748
 6.15
 238267
 7.07
 62
 32.7
 1 86276 2099.10 1 86276 29178.92 **123** Singapore 5638676 100.000 101531.63 3897578 8.11 7.502452 8.71 25 64.5 1 896 40401.51 In [56]: 1 #Factor2の因子スコアが多い国の確認 2 tmp = subset(score_df, Factor2 > 1.5) 3 index_f2 = as.integer(rownames(tmp)) 4 df[index_f2,]

A data.frame: 16 × 13

	country	pop	urb	gdp	dist	hf	pf	ef	date_first	detection	status	cumul	air
	<chr></chr>	<dbl></dbl>											
19	Brazil	209469333	86.569	16096.401	16335606	6.48	6.739923	6.23	58	82.4	1	80272	102109.98
26	Canada	37058856	81.411	48130.256	8965622	8.65	9.222964	8.08	27	96.4	1	2020	89380.00
48	France	66987244	80.444	45342.396	8550121	8.02	8.693716	7.35	26	75.3	1	1347	70188.03
52	Germany	82927922	77.312	53074.540	7170071	8.53	9.247491	7.82	29	84.6	1	4580	109796.20
62	India	1352617328	34.030	7762.882	2777278	6.64	6.368844	6.91	31	47.4	1	7815	164035.64
63	Indonesia	267663435	55.325	13079.619	4514121	6.83	6.384634	7.27	63	68.1	1	88313	115154.10
70	Japan	126529100	91.616	42797.459	3024190	8.28	8.699179	7.86	16	70.1	1	61	126387.53
85	Malaysia	31528585	76.036	31782.153	3678054	6.52	5.698542	7.34	26	73.2	1	1347	60481.77
111	Philippines	106651922	46.907	8951.086	3345565	6.88	6.442997	7.32	31	63.6	1	7815	43080.12
116	Russia	144478050	74.433	27588.125	2870579	6.34	5.899881	6.78	64	34.1	1	89882	99327.31
127	South Korea	51635256	81.459	40111.776	2146566	8.20	8.814165	7.59	21	92.1	1	239	88157.88
128	Spain	46723749	80.321	39715.439	8741360	8.12	8.686116	7.55	33	83.0	1	11936	80672.10
134	Thailand	69428524	49.949	19051.333	2392656	6.55	6.247297	6.86	14	81.0	1	60	76053.04
142	UK	66488991	83.398	45973.574	7765919	8.47	8.849797	8.09	32	87.3	1	9817	165388.61
144	USA	327167434	82.256	62794.586	10196715	8.46	8.720049	8.19	22	98.2	1	391	889022.00
147	Vietnam	95540395	35.919	7447.814	2220676	6.29	6.310973	6.27	25	57.4	1	896	47049.67

可視化(各変数の大小の確認)

```
In [184]: 1 library(classInt)
                                1 library(classInt)
2  #b5 n等分する。style=によって分け方変わるので注意
3  b5<-classIntervals(as.integer(df$air),n=5)
4
5  #c5(ab5で分けした数(length(b5$brks)の色を用意
6  c5<-rev(heat.colors(length(b5$brks)-1))
7  #b.cdで区分の色を決め
8  b.col<-findColours(b5,c5)
In [205]:
```

```
In [229]:
            tmp = df
tmp["air"] = log(tmp["air"])
            149 codes from your data successfully matched countries in the map 1 codes from your data failed to match with a country code in the map 94 codes from the map weren't represented in your data
        各国の空の移動量
```

```
In [228]: 1
```

```
tmp = df
tmp["pop"] = log(tmp["pop"])
map_obj <- joinCountryData2Map(tmp, joinCode="NAME", nameJoinColumn="country")
par(family="Osaka")
mapCountryData(map_obj, nameColumnToPlot="pop"
, catMethod="fixedWidth"
, mapTitle = "希腊の人口"
#, colourPalette=heat.colors(7)
#, colourPalette=heat.colors(7)
#, colourPalette=b.col
, addLegend = TRUE)
```

 $149\,\text{codes}$ from your data successfully matched countries in the map 1 codes from your data failed to match with a country code in the map 94 codes from the map weren't represented in your data

各国の人口

中国でコロナ感染者が出てから各国でコロナ感染者が初めて出るまでの日数

In []: 1