

蘑菇街高并发多终端无线网关实践

美丽联合 - 无线应用 - 王子默

三 概述

架构演进

问题

分层

选型

技术实现

接入层

路由层

聚合层

挑战与规划

接入层改造

下行通道

去中心化

MVP出现之前

HTTP + HTTPs

X服务单一扩展性差

服务发布/升级困难 噪音太多无法专注业务开发

×数据安全无法保证

请求数据篡改 下发配置不安全 ×无法多路复用

链接使用不充分 平均RT 650ms

* 建连成功率低

弱网下https建连成功率低 大部分超时出现在https建连

MWP

提供一个双工的安全可靠的云服务

服务标准化

标准的输入输出 多端适配 服务治理

高效安全通道

O-RTT 算法优化

聚合服务

前后端分离 提升用户体验

三 MWP整体架构

Meili-inc Wireless Platform - MWP

三 MWP客户端接入层

应用层

- → 协议封装
- ✔ 平台化服务
- ✓ 横向拓展

网络层

- ✓ 链接管理
- ✔ 地址调度
- ✓ 建链优化

三 MWP网络接入层

安全链路

无线环境2-RTT是不能接受

http建连耗时		https建连耗时	
2G	2202.16	2G	3624.74
3G	300.21	3G	1068.22
4G	98.77	4G	705.37
WIFI	195.41	WIFI	625.64

三 MWP网络接入层

MLS

TLS1.3 {0-RTT}

证书预埋

ECDH

算法选择

AEAD, 向前加密

session reuse

session加密下发

加密流程

协商非对称,传输对称

MLS vs TLS 建连耗时提升百分比

43% 26% 57% 44% wifi

s Platform - MWP

三 MWP通讯协议 vs HTTP

此外缓存包头也为客户端节省了36%的流量

Meili-inc Wireless Platform - MWP

三 MWP整体架构

Meili-inc Wireless Platform - MWP

= MWP路由层

MVP-Router

Servlet3 + async RPC client

泛化调用

服务治理

服务聚合

三 MWP路由层泛化调用

Actionlet

- ✔ 服务标准化,专注业务代码
- ✔ 多端渲染
- @MWPApi(name=xx.xx.xx,version=xx)

三 MWP路由层服务治理

App管理

包括管理App的基础信息和版本信息,最重要的维护订阅的应用列表

应用管理

包括管理应用的基础信息和 版本信息,最重要的维护提 供api列表及api级别的配置

别名管理

主要用于接口迁移,分流等场景

DSL管理

也就是服务聚合脚本的管理

监控细项

包含appkey, appinfo, version, api, result等级别 的监控细项

配置下发

通过configcenter实时下发 配置

三 MWP路由层服务聚合

聚合层出现之前

字 订单状态 渲染数据的转换

字 商品详情页 多接口的合并

三 MWP路由层服务聚合

N个接口任意组合

M个Flush到客户端

T个Callback

Web IDE

代码补全/提示

Debug工具

单元测试/接口测试

DSON!

基于JSON,所见即所得

能力受限的api及udf

自身语法和目标语言隔离

三 MWP路由层服务聚合 - DSON

```
"#set($m1)": "$payloadMap['mwp.application.api@1']",
"flushMap": {
  "flushkey": {
    "ret": "$m1['ret']",
    "data": {
      "MRArray": [{
        "#map($m1['data']['feature'],Map)": {
          "id": "$node['id']",
          "counter": {
            "#set($templist1)": "[1,2,3,4]",
            "#reduce($templist1, int, 0)": {
              "#set($my)": "_DInteger.valueOf($init)",
              "#if($init+1)": "$my+_DInteger.valueOf($node)",
              "#else": "$my"
"parameterMap" : {},
"header" : {}
```

```
"flushMap" : {
  "flushkey" : {
    "ret": "SUCCESS",
    "data" : {
      "MRArray" : [ {
       "id" : 1,
       "counter" : 6
      },
       "id" : 2,
        "counter" : 6
     },{
        "id" : 3,
        "counter" : 6
     },{
        "id" : 4,
        "counter" : 6
"parameterMap" : {},
"header" : {}
```


三 MWP路由层服务聚合 - 客户端使用

```
MWPRemote.getDSL()
         .apiAndVersionId("dsl.test","1")
         .parameterIs(dslParam).newCall()
         .addObserver("flushkey1",new IDslObserver<List<Pet>>(){
             @Override
             public void call(IRemoteResponse<List<Pet>> response){
                 List<Pet> list = response.getData();
         .addObserver("flushkey2",new IDslObserver(){
             @Override
             public void call(IRemoteResponse response){
                 Map data = response.getData();
          })
         .async(new IDslCallBack(){
            @Override
             public void onCompleted(IRemoteContext context, IRemoteResponse response){
```


E MWP聚合层

= MWP挑战与规划

接入层改造

协议

语言

效率

下行通道

状态服务器

消息堆积

消息风暴

去中心化

稳定性

职责下沉

容器化运维

三 MWP整体架构

= MWP挑战与规划

接入层改造

协议

语言

效率

- ★ 需要更适合RPC的协议

 stream RPC / bigpipe / 易扩展
- ✓ C++ & Java & Golang 野指针 / lambda / 内存 / gc / cgo
- ✓ 运维和效率 Nginx化/守护进程/插件化开发

$\equiv MWCS$

Meili-inc Wireless Platform - MWP

■ MWCS VS NGINX

思考和规划

Stream-RPC

- 多次调用flush的性能
- 滑动窗口优化

Log

- SDK log对内存和api不友好
- flush dirty page ratio

GC & CGO

- sync.pool是好东西
- cgo 有风险
- golang 1.8

Meili-inc Wireless Platform - MWP

Thank you

