Sub Word Level Embedding이 Lstm Classifier의 성능 향상에 도움을 주는가?

- 2018년 05월 09일
- 언어학과
- 이한결

Contents

- Overview(Goal)
- Experiment Design
- Development Environment
- Architecture
- Current Work (*)
- Preliminary Result
- Schedule

Overview(Goal)

- Create various levels of word embeddings
 - word2vec skipgram/cbow (Google)
 - Glove (Standford NLP Group)
 - fastText N-gram based embeddings (Facebook)
- Evaluate its performance:
 - Model : -> LSTM classifier
 - ▶ Task :-> Sentiment Analysis

Why: (1) Sub word Level?

▶ 임베딩의 단위 : 고립어(영어) vs 교착어(한국어)

- 단어 단위의 임베딩은 한국어에 적합하지 못함.
 - ▶ 임베딩 학습을 위한 각 단어당 최소 출현빈도가 보장되기 힘듬
 - ▶ 단순히 어미가 변화된 단어일지라도 다른 공간에 맵핑될수 있음

Why? (2) Sentiment Analysis

- ▶ 기존의 임베딩 질을 평가하는 방법의 한계
 - ▶ 기존의 논문들은 대부분 semantic similarity/ analogy task 에서만 임베 딩의 질을 측정했으나, 어떤 데이터 셋을 쓰는지에 따라, 성능 평가 가 달라짐
 - ex) Google Analogy vs WSW353
 - ▶ 단어 임베딩은 end-end network의 embedding layer에서 가장 많이 사용됨
 - ▶ ex) Name entity recognition/ machine translation/ part of speech tagging 등
 - ▶ 대부분의 딥러닝 기반의 nlp system에서 embedding layer를 사용함.
 - ▶ End-End System에서의 성능을 측정하는 것이 더 타당
 - ▶ Sentiment Analysis는 비교적 점수와 질과의 상관관계가 명확함 (c.f. Bleu Score)
 - ▶ Labeled Data Set을 구하기 쉬움

Why? (3) LSTM Classifier

- What Classifier? LSTM
 - ▶ Sequence model : RNN / GRU / LSTM / BRNN 가운데 **LSTM**을 택
 - ▶ Vanilla RNN 을 사용하지 않는 이유 ?
 - ▶ Sequence length가 길어지면 임베딩의 질과 관련없이 vanishing/ exploding gradient 문제에 노출되기 때문

$$\Gamma_{f}^{\langle t \rangle} = \sigma(W_{f}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{f})$$

$$\Gamma_{u}^{\langle t \rangle} = \sigma(W_{u}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{u})$$

$$\tilde{c}^{\langle t \rangle} = \tanh(W_{C}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{C})$$

$$c^{\langle t \rangle} = \Gamma_{f}^{\langle t \rangle} \circ c^{\langle t-1 \rangle} + \Gamma_{u}^{\langle t \rangle} \circ \tilde{c}^{\langle t \rangle}$$

$$\Gamma_{o}^{\langle t \rangle} = \sigma(W_{o}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{o})$$

$$a^{\langle t \rangle} = \Gamma_{o}^{\langle t \rangle} \circ \tanh(c^{\langle t \rangle})$$

- Word2Vec (objective)
 - CBOW(count bags of words)

$$\frac{1}{V} \sum_{t=1}^{V} \log p(m_t | m_{t-\frac{c}{2}} ... m_{t+\frac{c}{2}})$$

SkipGram

$$\frac{1}{V} \sum_{t=1}^{V} \sum_{j=t-c, j \neq t}^{t+c} \log p(m_{j}|m_{t})$$

- Word2Vec(loss function)
 - Hierarchical softmax (use Huffman tree)

Negative Sampling

$$E = -\log \sigma(\mathbf{v}_{w_O}'^T \mathbf{h}) - \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(-\mathbf{v}_{w_j}'^T \mathbf{h})$$

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{i=0}^{n} (f(w_i)^{3/4})}$$

Glove

Ratio
$$F(w_i - w_j, \tilde{w_k}) = \frac{P_{ik}}{P_{jk}}$$
 $F((w_i - w_j)^T \tilde{w_k}) = \frac{P_{ik}}{P_{jk}}$

- Symmetry $w > \tilde{w} \text{ and } X > X^T$ $w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik})$
- Loss Function

$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log(X_{ij}))^2$$

SGNS ~ Glove

SGNS can be viewed as shifted PMI

$$W_i \cdot C_j^T = PMI(w_i, c_j) - \log k$$

= \log \#(w_i, c_j) - \log \#(w_i) - \log \#(c_j) + \log \Sigma_w #(w) - \log k.

▶ Glove : bias term b_{W_i} and b_{C_j} may converge to the values in SGNS $\log \#(w_i)$ and $\log \#(c_j)$

$$l_{G}(w_{i}, c_{j}) = f(\#(w_{i}, c_{j})) \left(W_{i} \cdot C_{j}^{T} + b_{W_{i}} + b_{C_{j}} - \log \#(w_{i}, c_{j})\right)^{2}$$

$$W_{i} \cdot C_{j}^{T} = \log \#(w_{i}, c_{j}) - b_{W_{i}} - b_{C_{j}}$$

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

FastText

• equation $\sum_{t=1}^{T} \sum_{c \in C_t} logp(w_c|w_t)$

$$p(w_c|w_t) = \frac{e^{s(w_t, w_c)}}{\sum_{j=1}^{W} e^{s(w_t, j)}} \qquad s(w, c) = \sum_{g \in g_w} z_g^T v_c$$

$$g_{\Delta = \exists \text{MO}} = \{ < \Delta = , \Delta = \exists, = \exists \text{M},$$

트웨어,웨어 >,< 소프트웨어 >}

Experiment Design

1 create embeddings

- Word2Vec / Glove comparison
 단어단위 vs 형태소 단위 비교
- ▶ FastText n-gram comparison Syllable 단위 vs 자/모단위

	skip-	- l	-1	fastText				
	gram	cbow	glove	syllable	jamo			
word	0	0	0	0	0			
morpheme	0	0	0	0	Δ			

O 완료 / △미완료

Experiment Design

2 perform sentiment analysis task

many to one Sentiment Analysis Seq2Seq -> Vanilla LSTM Classifier The repeating module in an LSTM contains four interacting layers. GREEN: LSTM cells

RED: Embedding layer

BLUE: Output layer (sigmoid activation) binary sentiment pos/neg

Development Environment

SNU Local server

Lib: Tensorflow 1.6, Keras 2.0, KoNlp, Gensim

Lang: Python, C++

Architecture – Workflow

Sequential Diagram

Naver sentiment movie corpus v1.0

- Maas et al., 2011 데이터셋 참고
- 데이터 출처: 네이버
- 영화 당 100개의 140자평(이하 '리뷰')을 초과하지 않음
- 총 20만 개 리뷰 (수집된 64만개 중 샘플링)
 - o ratings_train.txt: 15만, ratings_test.txt: 5만
 - 긍정/부정 리뷰의 비율을 동일하게 샘플링 (i.e., random guess yields 50% accuracy)
 - 중립 리뷰는 포함하지 않음

• 크기: 19MB

URL: http://github.com/e9t/nsmc/

from: https://www.lucypark.kr/docs/2015-pyconkr/#39

▶ (1) 데이터 전처리

```
$ head ratings_train.txt
id document label
9976970 아 더빙.. 진짜 짜증나네요 목소리 0
3819312 흠...포스터보고 초딩영화줄....오버연기조차 가볍지 않구나 1
10265843 너무재밓었다그래서보는것을추천한다 0
9045019 교도소 이야기구먼 ..솔직히 재미는 없다..평점 조정 0
6483659 사이몬페그의 익살스런 연기가 돋보였던 영화!스파이더맨에서 늙어보이기만 했던 커스틴 던스트가 너무나도 이뻐보였다 1
5403919 막 걸음마 땐 3세부터 초등학교 1학년생인 8살용영화.ㅋㅋㅋ...별반개도 아까움. 0
7797314 원작의 긴장감을 제대로 살려내지못했다. 0
9443947 별 반개도 아깝다 목나온다 이응경 길용무 연기생활이몇년인지..정말 발로해도 그것보단 낫겟다 납치.감금만반복반복..이드라[7156791 액션이 없는데도 재미 있는 몇안되는 영화 1
```

각 단위의 Embedding 생성을 위해 자,모 < 음절 < 형태소 < 단어로 분리

형태소 분석기: Mecab-ko / Kkma / Twitter 중 택 1

▶ (2) 임베딩 생성

Hyperparameters

embedding dimension	50, 100, 300 ,500 ,1000
window size	2, 5, 7, 10
minimum count	10, 20, 50, 100
minimum n-gram(FastText)	1, 2, 3

* 나머지 Epoch, negative sampling rate 등의 hyper parameter은 원 논문에서 밝힌 수치를 사용

총 6(+a)개의 다른 embedding을 구함

- Word2vec word, morpheme
- Glove word, morpheme
- FastText word/morpheme syllable
- +extra jamo , different morpheme parser, n gram

▶ (3)학습 배치 생성

Tokens to Integers list

['아', '더빙', '..', '진짜', '짜증', '나네', '요', '목소리']

 \rightarrow [182, 11, 132, 22, 17, 98, 16, 52]

Integers to numpy arrays — 1 hot encoding

 \rightarrow [[0,0,0,0,0,...1,0,0,0],[0,0,0,0,0,...,1,0,0] ...]

Padding

→50(truncate above) or to max sequence length

Labels — 1 hot encoding

[[0, 1]], [1, 0] ...]

▶ (₄) 훈련

Layer (type)	Output Shape	Param #	<u> </u>
input_1 (InputLaye	r) (None, 50)	0	
embedding_1 (Emb	pedding) (None, 5	0, 300)	88354800
lstm_1 (LSTM)	(None, 300)	721200	
dense_1 (Dense)	(None, 2)	602	

Total params: 89,076,602 Trainable params: 721,802

Non-trainable params: 88,354,800

14011 trainable params. 00/354/000

Optimizer: adam, **Loss**: binary_crossentropy, **EarlyStopping**: 5 (patience level)

Preliminary Result – word vs morpheme

모든 모델에서 형태소 단위의 입력이 성능이 더 좋음

Preliminary Result – between models

형태소 단위의 입력에서는 fastText > w2vec(sgns) ~ glove¶

Preliminary Result – compare params

size파라메터가 모델의 정확도에 가 장 영향을 많이주었다¶

window 나 minimum count 파라 메터의 조합에 따른 성능 비교는 다음에서 확인할 수 있다

Preliminary Result – window-min_count

50:[5 10 2 7]

100:[52710]

300:[52107]

500:[57210]

1000:[10572]

50:[5 10 2 7] 100:[5 2 7 10] 300:[5 2 10 7] 500:[5 7 2 10] 1000:[10 5 7 2]

Preliminary Result – groupby count

Preliminary Result – surf plot

300 dim/MORPHEME fastText

Preliminary Result – SkipGram vs CBOW

Word2vec 에서는 SkipGram 이 CBOW보다 더 우세했다.

* 둘 모두 loss함수는 negative sampling 방식이다.

Preliminary Result – Jamo vs Syllable

fastText에서는 ngram의 단위로 자모 단위가 음절 단위보다 성능이 더 좋았다.

- Skipgram negative sampling
- Input unit word

Preliminary Result – Top 5 params

	type	model	window	size	count	acc	loss	val_acc	val_loss
333	WORD	word2vec	7	300	10	0.377015	0.900680	0.650707	0.385647
339	WORD	word2vec	10	300	10	0.380762	0.883067	0.636348	0.439269
341	WORD	word2vec	7	300	50	0.351410	0.879842	0.635897	0.375007
342	WORD	word2vec	7	300	20	0.617167	0.614238	0.632890	0.540539
343	WORD	word2vec	7	1000	10	0.358466	0.886352	0.632841	0.365796

	type	model	window	size	count	acc	loss	val_acc	val_loss
12	MORPHEME	word2vec	10	500	20	0.931570	0.374700	0.841400	0.563303
17	MORPHEME	word2vec	10	500	10	0.831208	0.846291	0.839851	0.663142
22	MORPHEME	word2vec	10	500	50	0.824999	0.856095	0.837884	0.729713
25	MORPHEME	word2vec	5	1000	10	0.820471	0.830271	0.835784	0.660463
31	MORPHEME	word2vec	7	1000	10	0.962463	0.357063	0.831170	0.600407

Preliminary Result – Top 5 params

	type	model	window	size	count	асс	loss	val_acc	val_loss
23	MORPHEME	glove	7	1000	10	0.600841	1.046637	0.837040	0.774622
27	MORPHEME	glove	7	500	10	0.770527	0.805446	0.833323	0.770552
52	MORPHEME	glove	10	1000	10	0.656234	1.051976	0.822339	0.777445
68	MORPHEME	glove	10	500	10	0.709046	0.767489	0.818054	0.779282
90	MORPHEME	glove	5	1000	10	0.693206	0.746265	0.808366	0.767530

	type	model	window	size	count	асс	loss	val_acc	val_loss
1	MORPHEME	fastText	2	1000	20	0.857537	0.455650	0.859990	0.831212
4	MORPHEME	fastText	7	300	20	0.928033	0.407341	0.854770	0.589227
5	MORPHEME	fastText	7	1000	50	0.875044	0.790955	0.853934	0.590042
6	MORPHEME	fastText	10	300	20	0.926173	0.417405	0.852230	0.562615
7	MORPHEME	fastText	2	300	20	0.930363	0.405508	0.850180	0.583748

Preliminary Result – PCA

Preliminary Result – TSNE

fastText 모델에 따르면 target word와 gram을 공유하는 단어의 벡터도 변하기때문에 원래의 윈도우에 포함되어 있지 않은 단어일지라도 학습가능하다.

참고문헌

- Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. "Enriching Word Vectors with Subword Information." 2016.
- Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient Estimation of Word Representations in Vector Space." 2013.
- Naili, Chaibi, and Ben Ghezala. "Comparative Study of Word Embedding Methods in Topic Segmentation." Procedia Computer Science 112 (2017): 340-49.
- Omer Levy, Yoav Goldberg, and Ido Dagan. "Improving distributional similarity with lessons learned from word embeddings." TACL. 2015a.
- Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global Vectors for Word Representation." In EMNLP,vol. 14,pp. 1532-43. 2014
- Shi, Tianze, and Zhiyuan Liu. "Linking GloVe with Word2vec." 2014.
- ▶ 최상혁 외, 제28회 한글 및 한국어 정보처리 학술대회 논문집 (HCLT), 2016.

Schedule

ı II O	3월			4월				5월				6월	
내용													
데이터 전처리	0	0	0										
네트워크 정의			0	0	0								
훈련 단계					0	0	0	0					
평가 단계							0	0					
코드 리뷰 /데모 계획						0	0	0	0				
논문 작성				0	0	0	0	0	0	0	0	0	0
논문 발표/수정						,			0	0	0	0	0

감사합니다

이한결(miroblog@snu.ac.kr)