Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Семинар 10 января

Задача 1

$$x_1,\dots,\,x_n\sim F_\xi(x)$$
, найти функцию распределения для $X_{(n)},\,X_{(1)}$ $F_{X_{(n)}}(x)=P(X_{(n)}\leqslant x)=P(X_{(1)}\leqslant x,\dots,\,X_{(n)}\leqslant x)=P(X_1\leqslant x,\dots,\,X_n\leqslant x)=P(X_1\leqslant x)\dots P(X_n\leqslant x)=(F_\xi(x))^n$ $F_{X_{(1)}}(x)=P(X_{(1)}\leqslant x)=1-P(X_{(1)}>x)=1-P(X_{(1)}>x,\dots,\,X_{(n)}>x)=1-P(X_1>x,\dots,\,X_n>x)=1-P(X_1>x)\dots P(X_n>x)=1-(1-F_\xi(x))^n$

Задача 2

$$x_1,\dots,\,x_n\sim R(0,\,1).$$
 Найти $EX_{(n)},\,EX_{(1)}.$ $F_{X_{(n)}}(x)=\left(F_\xi(x)\right)^n$ $f_{X_{(n)}}(x)=\left(F_{X_{(n)}}(x)\right)'=n\big(F_\xi(x)\big)^{n-1}\cdot f_\xi(x)$ $F_\xi(x)=egin{cases} 0,\,x<0\ x,\,x\in[0,\,1]\ 1,\,x>1 \end{cases}$

Подставим в предыдущее уравнение:

$$f_{X_{(n)}} = \begin{cases} 0, \ x < 0 \\ nx^{n-1}, \ x \in [0, \ 1] \\ 0, \ x > 1 \end{cases}$$

$$EX_{(n)} = \int_{-\infty}^{+\infty} x f_{X_{(n)}}(x) \, dx = \int_{0}^{1} x n x^{n-1} \, dx = n \int_{0}^{1} x^{n} \, dx = \frac{n}{n+1}$$

Посчитаем лля $X_{(1)}$:

$$F_{X_{(1)}}(x) = 1 - (1 - F_{\xi}(x))^n$$

$$f_{X_{(1)}}(x) = \left(F_{X_{(1)}}(x)\right)' = n(1 - F_{\xi}(x))^{n-1} \left(F_{\xi}(x)\right)' = n(1 - F_{\xi}(x))^{n-1} f_{\xi}(x) = \begin{cases} 0, & x < 0 \\ n(1 - x)^{n-1}, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

$$EX_{(1)} = \int_{0}^{1} x n(1 - x)^{n-1} dx = n \int_{0}^{1} x(1 - x)^{n-1} dx = \left\langle \frac{t = 1 - x}{x = 1 - t} \right\rangle = -n \int_{1}^{0} (1 - t)t^{n-1} dt = n \int_{0}^{1} (1 - t)t^{n-1} dt = n \int_{0}^{1} t^{n-1} dt - n \int_{0}^{1} t^{n} dt = 1 - \frac{n}{n+1}$$

Задача 3

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$E\overline{x} = E\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = Ex_i$$

 $\mathcal{D}(\overline{x})=\mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i\right)=\frac{1}{n^2}\sum_{i=1}^n \mathcal{D}x_i=\frac{\mathcal{D}x_i}{n}$ Посчитаем выборочную дисперсию:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

 $ES^2 = E\left(\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2\right) = \frac{1}{n}\sum_{i=1}^nE(x_i-\overline{x})^2 = \mathcal{D}(x_1-\overline{x}) = \mathcal{D}(x_1) + \mathcal{D}(\overline{x}) - 2\operatorname{cov}(x_1, \overline{x}) = \frac{(n+1)\mathcal{D}(x_1)}{n} - 2\operatorname{cov}(x_1, \overline{x})$

 $cov(x_1, \overline{x}) = cov(x_1, \frac{1}{n} \sum_{i=1}^n x_i) = \frac{1}{n} cov(x_1, \sum_{i=1}^n x_i) = \frac{1}{n} cov(x_1, x_1) = \frac{\mathcal{D}(x_1)}{n}$ Тогда

$$ES^{2} = \frac{(n+1)\mathcal{D}(x_{1})}{n} - \frac{2\mathcal{D}(x_{1})}{n} = \mathcal{D}(x_{1})\left(1 - \frac{1}{n}\right)$$

Несмещённая выборачная дисперсия (её математическое ожидание равняется дисперсии x_1):

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Посчитаем дисперсию S^2 :

$$\mathcal{D}\left(x_{1} - \frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \mathcal{D}\left(\frac{(n-1)x_{1}}{n}\right) + \mathcal{D}\left(\frac{1}{n}\sum_{i=2}^{n}x_{i}\right) = \frac{(n-1)^{2}}{n^{2}}\mathcal{D}(x_{1}) + \frac{n-1}{n^{2}}\mathcal{D}(x_{1}) = \mathcal{D}(x_{1})\left(\frac{(n-1)(n-1+1)}{n^{2}}\right) = \mathcal{D}(x_{1})\frac{n-1}{n}$$

Семинар 17 января.

$$T(x_1,x_2,\dots,x_n) = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^n |x_i - m|, x_i \sim N(m,\theta^2)$$

$$ET(x_1,x_2,\dots,x_n) = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^n E|x_i - m| = \sqrt{\frac{\pi}{2}} E|x_1 - m| = \sqrt{\frac{\pi}{2}} \int_{-\infty}^{+\infty} |x - m| \frac{1}{\sqrt{2\pi}\theta} e^{-\frac{(x-m)^2}{2\theta^2}} dx$$
 Заменим $\frac{x-m}{\theta}$ на y
$$\frac{\theta}{2} \int_{-\infty}^{+\infty} |y| \cdot e^{\frac{-y^2}{2}} dy = \theta \int_{0}^{+\infty} y \cdot e^{\frac{-y^2}{2}} dy = \theta (1-0) = \theta$$

$$\frac{1}{n} \sum_{i=1}^n \sqrt{\frac{\pi}{2}} |x_i - m| \xrightarrow[n \to +\infty]{\text{II. II.}} E\sqrt{\frac{\pi}{2}} |x_i - m|$$

Задача

$$\hat{ heta} = X_{(n)}$$
, доказать $\lim_{n \to \infty} EX_{(n)} = \theta$ $F_{X_{(n)}}(x) = (F_{X_i}(x))^n = \left(\frac{x}{\theta}\right)^n$ $f_{X_{(n)}}(x) = \frac{dF_{X_{(n)}}}{dx} = \frac{nx^{n-1}}{\theta}$ $EX_{(n)} = \int \frac{nx^n}{\theta^n} dx = \frac{nx^{n+1}}{(n+1)\theta^n} \Big|_0^\theta = \frac{n}{n+1}\theta \xrightarrow[n \to \infty]{} \theta$. То есть смещённая, но асимптотически несмещённая.

Докажем состоятельность, хотим:

 $X = (X_1, \ldots, X_n), X_i \sim R(0, \theta)$

$$\forall \varepsilon > 0 \quad P(|\hat{\theta} - \theta| < \varepsilon) \xrightarrow[n \to \infty]{} 1$$

$$P(-\varepsilon < X_{(n)} - \theta < \varepsilon) = F_{X_{(n)}}(\varepsilon + \theta) - F_{X_{(n)}}(\theta - \varepsilon) = 1 - \left(\frac{\theta - \varepsilon}{\theta}\right)^n \xrightarrow[n \to \infty]{} 1$$

Задача

$$I_{n}(\theta) = E\left(\frac{\delta \ln f(x,\theta)}{\delta \theta}\right)^{2}, \ I_{n}(\theta) = nI_{1}(\theta), \ x_{1}, \dots, \ x_{n} \sim N(\theta, \ \sigma^{2}).$$

$$f(x,\theta) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}$$

$$\ln f(x,\theta) = \ln\left(\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}\right) = -\frac{(x-\theta)^{2}}{2\sigma^{2}} + \ln\frac{1}{\sqrt{2\pi\sigma}}$$

$$\frac{\delta \ln f(x,\theta)}{\delta \theta} = -\frac{2(x-\theta)}{2\sigma^{2}} \cdot (-1) = \frac{x-\theta}{\sigma^{2}}$$

$$E\left(\frac{x-\theta}{\sigma^{2}}\right)^{2} = \frac{1}{\sigma^{4}}E(x-\theta)^{2} = \frac{1}{\sigma^{4}}\sigma^{2} = I_{1}(\theta)$$

$$\mathcal{D}\hat{\theta} \geqslant \frac{1}{nI_{1}(\theta)} = \frac{\sigma^{2}}{n} = \mathcal{D}\overline{x}$$

Семинар 24 января

Задача 4 ДЗ

$$\begin{split} \hat{K}_{xy} &= \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X} + Ex_1 - Ex_1)(y_i - \overline{Y} + Ey_1 - Ey_1) \\ E\hat{K}_{xy} &= E \frac{1}{n} \sum_{i=1}^{n} \left((x_i - Ex_1) - (\overline{X} - Ex_1) \right) \left((y_1 - Ey_1) - (\overline{Y} - Ey_1) \right) = \\ &= E \left((x_i - Ex_1) - (\overline{X} - Ex_1) \right) \cdot \left((y_1 - Ey_1) - (\overline{Y} - Ey_1) \right) = E \left((x_1 - Ex_1)(y_1 - Ey_1) + (x_1 - Ex_1)(\overline{Y} - Ey_1) + (x_1 - Ex_1)(\overline{Y} - Ey_1) \right) \\ &= \text{cov}(x, y) - \frac{1}{n} \text{cov}(x, y) - \frac{1}{n} \text{cov}(x, y) + \frac{1}{n} \text{cov}(x, y) \end{split}$$

Задача 5 ДЗ

Решал у доски, всем gl.

Задача 1

 $X_1,\dots,\,X_n\sim\Pi(\theta)$. Проверить, что оценка $\hat{\theta}=\overline{X}$ является R-эффективной. $E\hat{\theta}=E\frac{1}{n}\sum_{i=1}^n x_i=Ex_1=\theta$ $\mathcal{D}\frac{1}{n}\sum_{i=1}^n x_i=\frac{1}{n}\theta$ $P(\xi=x_1)=\frac{e^{-\theta}\theta^{x_1}}{x_1!}$. Логарифмируем:

$$E\theta = E\frac{1}{n}\sum_{i=1}^{n} x_i = Ex_1 = \theta$$

$$\mathcal{D}_{n}^{1} \sum_{i=1}^{n} x_{i} = \frac{1}{n} \theta$$

$$\ln \frac{e^{-\theta}\theta^{x_1}}{x_1!} = -\theta + x_1 \ln \theta - \ln x_1!$$

Возьмём частную производную:

$$\frac{\delta(-\theta + x_1 \ln \theta - \ln x_1!)}{\delta \theta} = -1 + \frac{x_1}{\theta}$$

Возьмём матожидание квадрата этой величины:

$$E(-1 + \frac{x_1}{\theta})^2 = \frac{1}{\theta^2} E(x_1 - \theta)^2 = \frac{\mathcal{D}x_1}{\theta^2} = \frac{1}{\theta} \Rightarrow I_n(\theta) = \frac{n}{\theta}$$

Попробуем самостоятельно подогнать оценку:

$$U(x, \theta) = \sum_{i=1}^{n} -1 + \frac{x_1}{\theta} = \frac{1}{\theta} \sum_{i=1}^{n} (x_i - \theta) = \frac{1}{\theta} \left(-n\theta + \sum_{i=1}^{n} \frac{x_i}{n} \right) = \frac{n}{\theta} \left(\sum_{i=1}^{n} \left(\frac{x_i}{n} \right) - \theta \right)$$

$$\hat{\theta} - \theta = a(\theta)U(x, \theta) \Rightarrow a(\theta) = \frac{\theta}{n}, \ \hat{\theta} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Д3

Задача 1

$$X_{1}, \dots, X_{n} \sim N(\theta, \sigma^{2}) \Rightarrow \forall i = \overline{1, n} \quad f(x_{i}, \theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}$$

$$\ln f(x_{i}, \theta) = \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{(x-\theta)^{2}}{2\sigma^{2}} = \ln \frac{1}{\sqrt{2\pi}\theta} - \frac{x^{2}}{2\sigma^{2}} + \frac{\theta x}{\sigma^{2}} - \frac{\theta^{2}}{2\sigma^{2}} \Rightarrow \frac{\delta}{\delta\theta} f(x_{i}, \theta) = \frac{x}{\sigma} - \frac{\theta}{\sigma^{2}}$$

$$U(x, \theta) = \sum_{i=1}^{n} \left(\frac{x_{i}}{\sigma} - \frac{\theta}{\sigma^{2}}\right)$$

По критерию эффективности хотим:

$$\hat{\theta} - \theta = \alpha(x)U(x, \theta)$$

Преобразуем:
$$U(x, \theta) = \left(\sum_{i=1}^n \frac{x_i}{\sigma}\right) - \frac{n\theta}{\sigma^2} \Rightarrow \underbrace{\frac{\sigma^2}{n}}_{\alpha(\sigma)} U(x, \theta) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^n \sigma x_i\right)}_{\hat{\theta}} - \theta$$

Задача 2

$$X_1, \ldots, X_n \sim N(m, \theta) \Rightarrow f(x_i, \theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-m)^2}{2\theta}}$$

$$\ln f(x,\;\theta) = \ln \frac{1}{\sqrt{2\pi}} - \frac{1}{2} \ln \theta - \frac{(x-m)^2}{2\theta} \Rightarrow \frac{\delta}{\delta \theta} f(x,\;\theta) = -\frac{1}{2\theta} + \frac{(x-m)^2}{2\theta^2}$$

Применим критерий эффективности:

$$U(x, \theta) = \sum_{i=1}^{n} \left(\frac{(x-m)^2}{2\theta^2} - \frac{1}{2\theta} \right) = \sum_{i=1}^{n} \left(\frac{(x-m)^2 - \theta}{2\theta^2} \right) = \frac{1}{2\theta^2} \sum_{i=1}^{n} \left((x-m)^2 - \theta \right) = \frac{1}{2\theta^2} \left(\sum_{i=1}^{n} \left((x-m)^2 \right) - n\theta \right) = \frac{n}{2\theta^2} \left(\frac{1}{n} \sum_{i=1}^{n} \left((x-m)^2 \right) - \theta \right) \Rightarrow \underbrace{\frac{2\theta^2}{n}}_{\alpha(\theta)} U(x, \theta) = \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} (x-m)^2 \right) - \theta}_{\hat{\theta}} \right)$$

Задача 3

 $X_1,\ldots,\ X_n \sim G(\theta) \Rightarrow Ex = \frac{1}{\theta}.$ Проверить оценку $\hat{\theta} = \frac{1}{X}$ на несмещённость.

Хотим $E\hat{\theta} = \theta$. Попробуем по определению:

$$E\hat{\theta} = E \frac{n}{\sum_{i=1}^{n} x_i} = nE \frac{1}{\sum_{i=1}^{n} x_i}?$$

Попробуем решить через функцию правдободобия:

$$L(x_1, ..., x_n, \theta) = \prod_{i=1}^n P(\xi = x_i, \theta) = \prod_{i=1}^n (1 - \theta)^{x_i - 1} \theta \approx f(x, \theta)$$

$$\ln f(x_i, \theta) = \ln \left((1 - \theta)^{x_i - 1} \theta \right) = (x_i - 1) \ln(1 - \theta) + \ln \theta$$

$$\frac{\delta}{\delta \theta} \ln f(x, \theta) = \frac{1}{\theta} - \frac{x_i - 1}{1 - \theta} = \frac{1 - \theta - \theta x_i + \theta}{\theta - \theta^2} = \frac{1 - \theta x_i}{\theta - \theta^2}$$

Применим критерий эффективности:

$$U(x, \theta) = \sum_{i=1}^{n} \frac{1 - \theta x_i}{\theta - \theta^2} = \frac{1}{\theta - \theta^2} \left(n - \theta \sum_{i=1}^{n} x_i \right) = \frac{n}{\theta - \theta^2} \left(1 - \frac{\theta}{n} \sum_{i=1}^{n} \right) = \frac{n\overline{X}}{\theta - \theta^2} \left(\frac{1}{\overline{X}} - \theta \right)$$

Значит $\frac{1}{\overline{X}}$ является R-эффективной, то есть несмещённой.

Задача 4

 $X_1,\dots,\,X_n\sim Bi(k,\,\theta)$. Показать, что $\hat{\theta}=\frac{\overline{X}}{k}$ R-эффективная. Посчитаем функцию правдободобия:

$$L(x_1, ..., x_n, \theta) = \prod_{i=1}^n P(\xi = x_i, \theta) = \prod_{i=1}^n C_n^k \theta^{x_i} \cdot (1 - \theta)^{k - x_i} \approx f(x_i, \theta)$$

$$\ln f(x_i, \theta) = \ln \frac{n!}{k!(n - k)!} + x_i \ln \theta + (k - x_i) \ln(1 - \theta)$$

$$\frac{\delta}{\delta\theta}\ln f(x_i, \ \theta) = \frac{x_i}{\theta} + \frac{x_i - k}{1 - \theta} = \frac{x_i - \theta x_i + \theta x_i - \theta k}{\theta - \theta^2} = \frac{x_i - \theta k}{\theta - \theta^2}$$

Применим критерий эффективности:

$$U(x, \theta) = \sum_{i=1}^{n} \frac{x_i - \theta k}{\theta - \theta^2} = \frac{1}{\theta - \theta^2} \left(-n\theta k + \sum_{i=1}^{n} x_i \right) = \frac{nk}{\theta - \theta^2} \left(\frac{1}{nk} \sum_{i=1}^{n} (x_i) - \theta \right) = \frac{nk}{\theta - \theta^2} \left(\frac{\overline{X}}{k} - \theta \right)$$

Получается, что $\frac{\overline{X}}{k}$ является R-эффективной (тут также выполнена 5 задача, так как я применил критерий эффективности в доказательстве).