

iDTRONIC GmbH

BlueBoxShow

© iDTRONIC

BlueBoxShow

BlueBoxShow, free of charge and included in the BlueBox SDK, is the graphical testing and configuration tool that with just few clicks customizes the functions of any BlueBox RFID devices.

Please note that not all the functions included in this guide will be displayed in any BlueBox. The software itself will show only the parameters that are meant to be managed. This guide refers to BlueBox CX series, but can be used with any BlueBox device.

Connection

PROFESSIONAL REID

MAIN BAR MENU

File: load or save a configuration (functionality not yet implemented)

Edit: activate/deactivate «beep» on tag event.

Open Engineering mode (only for soltec developers)

Engineering Mode: reserved for manufacturer

Upgrade: safely upgrade the firmware **Demos:** spontaneous mode demo

About: shows information about firmware and hardware

INTERFACE

In order to connect the device to the BlueBoxShow first of all it is necessary to choose the proper interface between Ethernet (TCP) or Serial (RS232 / RS485).

For TCP connection the default IP address is 192.168.4.200 (Port 3000). For serial the defaults are baud rate 19200 bps, 8 data bits, 1 stop bit and no parity check. Indeed the correct serial port must be selected first.

Address

Default is 255, but any number between 1-255 can be assigned to a a device part of a RS485 network.

SHORTCUT ICONS

Configuration

Right after the connection the device version is shown in the highlighted blue panel (in the picture BLUEBOX CX UHF LONG RANGE DUAL CHANNEL)

The Commands colon contains all the parameters controlled by the BlueBoxShow.

This panel allows to set network Address node of the device, and the **Configuration:**

serial communication parameters.

It is used to avoid multiple detections of the same tag. The Filter time

says the device to ignore the tag after the detection for the specified

Buzzer activation on new tag event:

enables/disable the buzzer on tag detection

Relay 1 activation on tag present:

activate the Relay1, the behaviour is controlled in the I/O configuration

section.

Reading antenna Information:

Filter Time:

upon tag detection, enables/disables adding the antenna information together with the tag ID

upon tag detection, enables/disables adding Tag type information:

the tag information together with the tag ID

Spontaneous mode: enables/disables the spontaneous mode

Continuos mode by enabling this option the continuos mode is controlled in the I/O configuration panel triggered by inputs:

Continuos mode: enables/disables the continous mode

Default Read Write

Ethernet configuration – Remote IP configuration

Ethernet Configuration: view/change the IP address, TCP Port, Subnet Mask and Gateway Address

Remote IP Configuration: it is possible to stream the readings to a remote server by specifing the IP address and the TCP listening Port

Wiegand configuration – Can Bus configuration

Wiegand Configuration: set the Wiegand parameters (it applies only to Wiegand versions)

Can Bus Configuration: set the Can Bus parameters (it applies only to Can Bus versions)

Default

Read

Write

I/O Configuration – Spontaneous Configuration

Input mode 1: sets the behaviour when Input 1 is in ON or OFF state

Input mode 2: not yet implemented in the firmware

Antibump input time: sets the time to manage the antibump (default time is 50 msec)

Trigger mode extend time: extends the reaction time of the input

Gate mode cross time: when enabled the device, for the specified time, is set to idenfy the crossing gate direction

Output 1 activation time: sets the oper relay time

Interfaces: it is possible to choose through the checkboxes, the interfaces where to send the spontaneous message to

Read: reads the stored values, **Write:** saves the values in the memory (a reboot may be required)

Default: calls the factory default values

RF Configuration

RF geographical region: Europe (ETSI) or North America (FCC)

RF output power: from 0dBM to the Max supported (27 for 500mW, 30 for 1W)

RF input sensitivity: the lower, the more tags are detected

RF Channel: it is possible to choose between 10 channels for ETSI and 50 for FCC. Very useful to avoid interferences where more readers are working simultaneously

Antennas: the checkboxes control which antenna is active

RF Channel max allocation time: according to the application it is possible to specify the max allocation time of the specific channel

RF Channel min pause time: according to the application it is possible to specify the pause time of the specific channel

RF chip standby mode: puts the RF chip in standby

Read: reads the stored values, **Write:** saves the values in the memory (a reboot may be required)

Default: calls the factory default values

EPC C1G2 Configuration

Inventory mode: Fast take the tag to the acknowleged mode, **Standard** to the Opened mode. The first is faster the second is more secure. **Multi** does anticollision procedure, **Single** no.

T=>R link frequency: defaults suggested, refer to the product manual.

T=>R bit coding: defaults suggested, refer to the product manual.

Q tuning section

Q tells the reader informations about the number of tags that could be expected in the field according with the equation $n=2^Q$ so, if the Q value is set to **0** and the Q algorithm to **fixed** the reader expects 1 tag in the field. When the Q algorithm is set to Dynamic, the reader changes automatically the values to match the actual scenario.

Tags singulation search mode: according to the EPC C1G2 specifications, an UHF tag when energized puts its state from A to B, when selected Dual Target the reader looks for tags that are in A and B state, when selected Single Target the reader looks for tags that are in the specified Target

Session: indicates which is the session managed by the reader. For further informations refers to EPC C1G2 specifications

EPC size: indicates the amount of EPC memory that will be used.

ReadAfterDetect (RAD) info: tells the reader what to read after the tag detection (TID, or custom)

RAD Bank: if Custom is selected then it is possible to specify which memory bank to read from, between EPC, TID or User

RAD blocks: when Custom is selected then it is possible to specify the number of blocks to read

ReadAfter Detec EPC info: select The EPC bank info to include in the tag's ID in ReadAfterDetect mode

Dynamic Power Configuration - Temperature

Dynamic Power Configuration:

when set to 'on' the reader changes the power according to the specified parameters. While changing its power, it changes the shape of the lobe as well. This could increase the reading range of the device.

Temperature

Internal Temperature of the device is shown.

BLUEBOX CX UHF LONG RANGE DUAL CHANNEL

- 🖋 💥 🔁 🗇 📋

Read: reads the stored values, **Write:** saves the values in the memory (a reboot may be required)

File Edit Engineering Mode Upgrade Demos About

IP address

- Address: 255

Default: calls the factory default values

Data request - Queue request

Data Request:

when Request button is pressed the panel shows the tag in the reading range, if infinite request is flagged the reader keep searching until stopped.

Clear: clears the panel.

Export: exports in .csv file the Data Request panel content.

Queue Request:

when Request button is pressed the panel shows all the tags red by the device since the last request. Due to memory limit a total of approx 1000 readings are stored

Export: exports in .csv file the Queue Request panel content

Read: reads the stored values, Write: saves the values in the memory (a reboot may be required)

Default: calls the factory default values

Records - Output

Records:

In this panel are shown the stored readings (for BlueBox with Real Time Clock, time stamp is added)

Number of: returns the number of readings stored in the flash memory

Read All: reads the content of the memory

Re-read: updates and reads the content of the memory

Reset All: clears the flash memory and the panel

Clear: clears the panel only

Export: saves the content as .csv file

Output:

Within this panel it is possible to test the output activating countinuosly or impulsively Relay1 and Relay2

Reader Status - Reading Test

Reader Status

panel that shows what's on and what's off in the BlueBox

Reading Test:

when set to ON, the readers beeps continuously when a tag is in the field. This functionality is useful when testing reading ranges.

RF Power Test - RF Sensitivity Test

RF Power Test

This test Panel returns the RF Power

RF Sensitivity Test

This test Panel returns the RF Sensitivity

RF ON/OFF

For test and lab purpose only. It switches the RF power on the selected channel.

Inventory - Program EPC

Inventory:

When **Request** is pressed, each tag in the reading range appears in the panel. Additionally by flagging the **Get the RSSI of the transponders** it is also possible to have, for each tag, the indication of the **Receive Signal Strenght Indicator** that shows the signal strenght. If Infinite Request is flagged the reader keeps looking for the TAGs in the field.

Program EPC

In order to write the EPC area of a tag it is necessary to select a tag by pressing the magnifier Icon. Once selected, please fill in the blanks and press write.

Read - Write

PROFESSIONAL REID

00 00 00 00

Write

Read

By pressing the magnifier, please choose between the tags within the reading range the one to operate with. Then from the scroll down menu select which memory bank read from, the starting address and the number of blocks. End the operation by pressing 'Read' so that the values will be displayed in the panel.

Write

By pressing the magnifier choose between the tags within the reading range the one to operate with. Then from the scroll down menu select which memory bank write to, the starting address and the number of blocks. End the operation by pressing 'write' so that the values will be stored in the tag.

Read: reads the stored values, **Write:** saves the values in the memory (a reboot may be required) **Default:** calls the factory default values

Reserved

ISO 18000-6C - Write

Password:

Address

Block nr. 0

IP address

3000

Ė-ISO 18000-6C

-Lock -Kill

⊕ Monza 40T

Magnus S2
Magnus S3

()

Inventory

Program EPC

Blockwrite - Lock

Blockwrite

By pressing the magnifier choose between the tags within the reading range the one to operate with. Then from the scroll down menu select which memory bank write to, the starting address and the number of blocks. End the operation by pressing 'write' so that the values will be stored in the tag. While 'write' writes one block at a time, blockwrite writes all the blocks in one operation, so its faster, but it is not supported by all the tags.

Lock

By pressing the magnifier, choose between the tags within the reading range the one to operate with. Then from the scroll down menu select which memory bank to lock. End the operation by pressing 'Lock'.

Read: reads the stored values, **Write:** saves the values in the memory (a reboot may be required) **Default:** calls the factory default values

Lock

Monza 40T

Magnus S2
Magnus S3

Kill

By pressing the magnifier, choose between the tags within the reading range the one to operate with. Then input the kill Password. End the operation by pressing 'Kill'.

Monza 4QT

Monza 40T

Bluebox UHF CX series, manage the double memory profile of Impini Monza QT chips. Please refers to the Monza 4QT manual.

Magnus S2

Magnus S2

Sensor Code' menu.

Bluebox UHF CX series, manage the RFMicron Magnus Sensor Tags. For further details please refer to the RFMicron Magnus Sensor Tags manual. Press the magnifier in order to select the tag to operate with. From the scroll down menu it is possible to set reading criteria (up or under the threesold), the threesold. After pressing the sent button, the readings are graphically shown in the 'Read

Magnus S3

Sensor Code' and Read Temperature menus.

Magnus S3

Bluebox UHF CX series, manage the RFMicron Magnus Sensor Tags. For further details please refer to the RFMicron Magnus Sensor Tags manual. Press the magnifier in order to select the tag to operate with. From the scroll down menu it is possible to set reading criteria (up or under the threesold), the threesold. After pressing the sent button, the readings are graphically shown in the 'Read

Your trusted partner for RFID hardware solutions

iDTRONIC GmbH

www.idtronic-rfid.com

© iDTRONIC