Домашняя работа

Задача 1

Сначала вспомним определение алгебры:

Мн-во ${\mathcal A}$ подмн-в Ω наз-ся алгеброй, если:

- $\Omega \in \mathcal{A}$
- $A \in \mathcal{A}
 ightarrow \overline{A} \in \mathcal{A}$
- $A_1,A_2\in\mathcal{A}
 ightarrow A_1\cup A_2\in\mathcal{A}$

Опред. взял из книги Черновой, на лекциях не был просто ахах

Окей, имеем R - систему подмн-в Ω и она удовл. таким условиям:

- $\Omega \in R$
- $A_1, A_2 \in R \to A_1 \cap A_2 \in R$
- $A_1, A_2 \in R \rightarrow A_1 \Delta A_2 \in R$

Просто проверим условия из алгебры:

- 1. $\Omega \in R$ выполнено
- 2. Пусть $A\in R$. Тогда тк $\Omega\in R$, то $A\Delta\Omega\in R$, а $A\Delta\Omega=A\setminus\Omega\cup\Omega\setminus A=\emptyset\cup\overline{A}=\overline{A}\Rightarrow\overline{A}\in R$ доказано
- 3. Пусть $A\in R$ и $B\in R$, тогда $A\cap B\in R$ и $A\Delta B\in R$ по условию. Тогда выходит, что $(A\cap B)\Delta(A\Delta B)\in R$. А в прошлом дз мы доказали, что $(A\cap B)\Delta(A\Delta B)=A\cup B$, значит $A\cup B\in R$ доказано

чтд

Задача 2

пункт а)

Проверим все пункты из опреда алгебры, которое было написано выше

- 1. $\Omega \in \mathcal{A}$, тк $\overline{\Omega} = \emptyset$ конечное
- 2. Пусть $A \in \mathcal{A}$, то есть два случая:
 - $\circ \ \ A$ конечно, тогда $\overline{\overline{A}} = A$ тоже конечно, поэтому $\overline{A} \in \mathcal{A}$
 - $\circ \ \overline{A}$ конечно, тогда $\overline{A} \in \mathcal{A}$ просто по условию
- 3. Пусть $A \in \mathcal{A}$ и $B \in \mathcal{A}$. Рассмотрим 4 случая:
 - $\circ~~A$ и B конечны. Тогда $A \cup B$ конечны, значит по условию $A \cup B \in \mathcal{A}$
 - ullet A и \overline{B} конечны. Тогда $\overline{A\cup B}=\overline{A}\cap \overline{B}\subseteq \overline{B}$. Поэтому $\overline{A\cup B}$ конечно, тогда по условию $A\cup B\in \mathcal{A}$
 - $\circ \overline{A}$ и B конечны. Аналогично случаю выше :)

 $\circ \ \overline{A}$ и \overline{B} конечны. Тогда $\overline{A \cup B} = \overline{A} \cap \overline{B}$ конечно, поэтому по условию $A \cup \overline{B}$ $B \in \mathcal{A}$

ЧТД

пункт б)

Чтобы алгебра была сигма алгеброй, она должна быть замкнута относительно счетных объединений. Покажем, что это не выполняется:

Рассмотрим мн-во $A_n=\set{n}{orall n}\in\mathbb{N}$. Каждое из них конечно, поэтому $A_n\in\mathcal{A}$. Посмотрим теперь на их объединение:

$$igcup_{n=1}^{\infty}A_n=\mathbb{N}$$

 $\mathbb N$ не конечно, а счетное, а $\mathbb R\setminus\mathbb N$ тоже не конечно, оно вообще континуально

Поэтому $\mathbb{N}
otin \mathcal{A}$, получаем противоречие

Задача 3

Имеем $\Omega = [0,1]$ и нужна мин. сигма алгебра

Уже есть два мн-ва:

- $A = \left[\frac{1}{4}, \frac{3}{4}\right)$ $B = \left[\frac{1}{2}, 1\right]$

Посмотрим на их дополнения:

$$\overline{A} = \left[0, rac{1}{4}
ight) \cup \left[rac{3}{4}, 1
ight]$$
 $\overline{B} = \left[0, rac{1}{2}
ight)$

Окей, теперь рассмотрим 4 мн-ва:

1.
$$L_1=A\cap B=\left[\frac{1}{2},\frac{3}{4}\right)$$

2. $L_2=A\cap \overline{B}=\left[\frac{1}{4},\frac{1}{2}\right)$
3. $L_3=\overline{A}\cap B=\left[\frac{3}{4},1\right]$
4. $L_4=\overline{A}\cap \overline{B}=\left[0,\frac{1}{4}\right)$

Заметим, что $L_1 \cup L_2 \cup L_3 \cup L_4 = \Omega = [0,1]$ и что $A,B,\overline{A},\overline{B}$ через объединения L_1, L_2, L_3, L_4 выражаются.

Поэтому любое мн-во, состоящее в мин. сигма алгебре Ω является объединением подмн-в из $\set{L_1,L_2,L_3,L_4}$, так как если X - некое объединение подмн-в, то \overline{X} объединение оставшихся подмн-в. А объединение объединений подмн-в то же самое, что и объединение некоторых подмн-в. Пересечение объединений = объединение, в котором элементы входят в оба оба объединения

У нас
$$|\{\,L_1,L_2,L_3,L_4\,\}|=4$$
, а $2^{\{\,L_1,L_2,L_3,L_4\,\}}=2^4=16$

Поэтому в мин. сигма алгебре будет 16 элементов

А минимальной она является, потому что если попытаться сделать ее меньше, то пришлось бы убрать какой-то L_i , что привело бы к потере св-ва алгебры

Ответ: 16

Задача 4

пункт а

$$C_1 = \{ \, x = 0.x_1x_2x_4\ldots \in [0,1] : x_1
eq 6 \, \}$$

Если мы рассматриваем мн-во, где $x_1=6$, то оно: [0.6,0.7)

Тогда
$$C_1 = [0,1] \setminus [0.6,0.7)$$

А [0.6, 0.7) и [0, 1] - борелевские мн-ва, то и C_1 - борелевское мн-во

пункт б

$$C_2 = \set{x = 0.x_1x_2x_4\ldots \in [0,1]: x_2
eq 6}$$

Попробуем построить мн-во, где $x_2=6$:

$$L = igcup_{i=0}^9 \left[0.i6, 0.i7
ight)$$

Делаем аналогично пункту а, но отличие в том, что на месте x_1 может стоять любая цифра, поэтому по итогу получим 10 мн-в

А тк L это объединение борелевских, то оно и само борелевское!

А $C_2 = [0,1] \setminus L$, поэтому оно и борелевское!

пункт с

$$C_3 = \{\, x = 0.x_1x_2x_4\ldots \in [0,1] : x_3
eq 6 \,\}$$

Попробуем построить мн-во, где $x_3 = 6$:

Сделаем по аналогии с пунктом а и с б, но тут еще и x_2 может принимать любые значения от 0 до 9:

$$L = igcup_{i=0}^9 igcup_{j=0}^9 \left[0.ij6, 0.ij7
ight)$$

По тем же причинам, как и в пунктах выше L - борелевское мн-во

А тк $C_3 = [0,1] \setminus L$, то оно тоже борелевское

пункт д

$$C_k = \set{x = 0.x_1x_2x_4\ldots \in [0,1]: x_k
eq 6}$$

По индукции можем вывести, что для произвольного $k\geq 2$ мн-во чисел, когда $x_k=6$ - это объединение 10^{k-1} интервалов. Ну и потому что у нас до k-го разряда есть k-1 разрядов, которые могут принимать любое знач. от 0 до 9 *(очев натуральное)* и поэтому так. А так как это объединение борелевских мн-в, то и оно само борелевское и отсюда же следует, что и C_k борелевское!

пункт е

Мн-во C_st точек отрезка [0,1], десятичная запись которых не оканчивается 6 в периоде

Рассмотрим тогда мн-во E, десятичная запись которых оканчивается 6 в периоде

Понятно тогда, что $[0,1]\setminus E=C_*$. Поэтому нужно как-то показать, что E - борелевское мн-во

Понятно, что $x \in E$ если $\exists N \in \mathbb{N} : \forall n > N \; x_n = 6$, то есть:

$$E=\set{x\in[0,1]:\exists N\in\mathbb{N}: orall n>N|x_n=6}$$

Поэтому для каждого фикс. N рассмотрим мн-во:

$$E_N = \{ \, x \in [0,1] : \forall n > N \; x_n = 6 \, \}$$

Тогда очев, что:

$$E = igcup_{N=1}^{\infty} E_N$$

Теперь подробнее посмотрим на E_N . Если $x \in E_N$, то первые N разрядов могут быть любыми от 0 до 9, а все остальные обязаны быть 6. Поэтому:

$$E_N = igcup_{i_1=0}^9 igcup_{i_2=0}^9 \ldots igcup_{i_N=0}^9 [0.i_1i_2\ldots i_N 666666\ldots, 0.i_1i_2\ldots i_N 66666\ldots 7)$$

А так как E_N - объединение борелевских мн-в, то и оно само борелевское

А так как E - объединение борелевских мн-в, то и оно само борелевское

Ну тогда и $C_* = [0,1] \setminus E$ - борелевское мн-во

по аналогии с прошлыми пунктами в общем случае

чтд!

пункт ф

Имеем мн-во C^* точек [0,1], десятичная запись которых имеет конечное число цифр 6 Тогда для каждого $k \in \set{0,1,2,\dots}$ определим мн-во:

$$A_k = \{\, x = 0.x_1x_2x_3\ldots \in [0,1] :$$
в десятичной записи ровно k цифр $6\, \}$

Тогда понятно, что:

$$C^* = igcup_{k=0}^\infty A_k$$

В пункте д мы рассматривали мн-ва $C_k=\{\,x=0.x_1x_2x_4\ldots\in[0,1]:x_k
eq 6\,\}$ и мы доказали, что они борелевские

Тогда введем мн-во:

$$D_n = \{ x \in [0,1] : x_n = 6 \} = [0,1] \setminus C_n$$

Ну и понятно тоже, что D_n борелевское

Пусть $I = \set{i_1, i_2, \ldots, i_k}$ - набор из k различных натуральных чисел

Тогда рассмотрим мн-во:

$$G_I = D_{i_1} \cap D_{i_2} \cap \ldots \cap D_{i_k} \cap \bigcap_{j
otin I} C_j$$

То есть в G_I ровно k цифр 6, которые стоят на позициях из I

И G_I является борелевским, так как это пересечение борелевских мн-в

А мн-во A_k по сути это объединение G_I по всем возможным I размером k.

$$A_k = igcup_{\substack{I \subset \mathbb{N} \ |I| = k}} G_I$$

Выходит, что A_k это борелевское мн-во, так как это счетное объединение борелевских мн-в

А так как $C^* = \bigcup_{k=0}^\infty A_k$, то это счетное объединение борелевских мн-в, значит и C^* борелевское мн-во

чтд!

Задача 5

Пусть из отрезка [0,1] извлекли наудачу точку $0.x_1x_2x_3\dots$, где каждый x_i может принимать значения от 0 до 9

Так как в условии нас просят, чтобы 1 и 9 не были в десятичном разложении, то у нас остается только 8 допустимых значений: $\{\,0,2,3,4,5,6,7,8\,\}$

Поэтому вероятность, что x_i является допустимой равна: $\frac{8}{10}=\frac{4}{5}$

И так как все x_1 , x_2 и т.д. должны быть допустимыми, то вероятность этого:

$$rac{4}{5}\cdotrac{4}{5}\cdotrac{4}{5}\cdot\dots=\lim_{n o\infty}\left(rac{4}{5}
ight)^n=0$$

Ответ: 0