Тюленев А.И. Математический анализ. 03.09.2025

Расширенная числовая прямая

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

Арифметические операции на этом множестве не определены.

Определено отношение порядка: $-\infty < c < +\infty, \forall c \in \mathbb{R}$

Верхние и нижние грани числовых множеств

Пусть X – непустое числовое множество.

Верхняя грань

Определение

Будем говорить, что $M \in \mathbb{R}$ является верхней гранью множества X, если:

$$(\forall x \in X) \Rightarrow (x \leq M)$$

Нижняя грань

Определение

Будем говорить, что $m \in \mathbb{R}$ является нижней гранью множества X, если:

$$(orall x \in X) \Rightarrow (x \geq m)$$

Ограниченное сверху множество

Множество называется ограниченным сверху, если существует конечная верхняя грань.

E ограничено сверху \Leftrightarrow $(\exists M \in \mathbb{R}: (\forall x \in E) \Rightarrow (x \leq M)).$

E неограничено сверху \Leftrightarrow $(\forall M \in \mathbb{R}: (\exists x \in E) \Rightarrow (x > M)).$

Ограниченное снизу множество

Множество называется ограниченным снизу, если существует конечная нижняя грань.

E ограничено снизу \Leftrightarrow $(\exists m \in \mathbb{R} : (\forall x \in E) \Rightarrow (x \geq m)).$

E неограничено снизу \Leftrightarrow $(\forall m \in \mathbb{R}: (\exists x \in E) \Rightarrow (x < m)).$

Ограниченное множество

Множество называется неограниченным, если оно ограничено и сверху, и снизу.

Точная верхняя грань

Пусть $E \subset \mathbb{R}, E \neq \emptyset$.

Будем говорить, что $M \in \mathbb{R}$ является точной верхней гранью E (супремумом E) и обозначать $M = \sup E$, если выполняются два условия:

- 1. M верхняя грань E.
- 2. $\forall M' \in \mathbb{R} : (M'$ верхняя грань $E) \Rightarrow (M' \geq M)$

Если множество E неограничено сверху, то его супремум считается равным $+\infty$.

Теорема

Для любого ограниченного сверху непустого числового множества $E \subset \mathbb{R}$ супремум существует и единственный.

Доказательство

1. Существование

Поскольку E ограничено сверху, то существует хотя бы одна верхняя грань E.

Пусть B — множество всех верхних граней E.

 $B \neq \emptyset$, E располагается левее B.

Следовательно, по аксиоме непрерывности $\exists c \in \mathbb{R}$, разделяющее эти множества.

$$(*) \ a \leq c, (**) \ c \leq b, \forall a \in E, \forall b \in B$$

Покажем, что с – супремум.

Пункт 1 определения супремума выполнен, поскольку в силу (*) c – верхняя грань.

В силу (**) выполнен пункт 2 определения супремума, поскольку B – множество всех верхних граней.

2. Единственность

Пусть M_1, M_2 – различные супремумы множества E.

$$M_1 = \sup E$$

В силу пункта 2 определения супремума $orall M' \in \mathbb{R}: (M'$ – верхняя грань $E) \Rightarrow (M' \geq M_1)$

Но M_2 тоже супремум \Rightarrow в силу пункта 1 определения супремума M_2 является верхней гранью $\Rightarrow M_2 \geq M_1$.

Аналогично доказывается, что $M_1 \geq M_2$.

Точная нижняя грань

Пусть $E \subset \mathbb{R}, E \neq \emptyset$.

Будем говорить, что $m \in \mathbb{R}$ является точной нижней гранью E (инфинумом E) и обозначать $m = \inf E$, если выполняются два условия:

- 1. m нижняя грань E.
- 2. $orall m' \in \mathbb{R} : (m'$ нижняя грань $E) \Rightarrow (m' \leq m)$

Если множество E неограничено снизу, то его инфинум считается равным $-\infty$.

Теорема

Для любого ограниченного снизу непустого числового множества $E \subset \mathbb{R}$ инфинум существует и единственный.

Доказывается аналогично.

Точная верхняя грань (в общем виде)

Теорема. Если E – непустое числовое множество, $M \in \mathbb{R}$ – супремум E, если выполняются два условия:

- 1. $a \leq M, \forall a \in E$
- 2. $\forall M' < M, \exists \tilde{a} \in E : M' < a \leq M$

Точная нижняя грань (в общем виде)

Теорема. Если E – непустое числовое множество, $m \in \mathbb{R}$ – инфинум E, если выполняются два условия:

- 1. $a \geq m, \forall a \in E$
- 2. $\forall m' > m, \exists \tilde{a} \in E : m \leq \tilde{a} < m'$

Максимальный и минимальный элемент

Максимум

Пусть $E\subset \mathbb{R}, E
eq \emptyset.$

Тогда назовём $M\in\mathbb{R}$ максимумом множества E и писать $M=\max E$, если выполняются оба условия:

- 1. M верхняя грань E
- $2. M \in E$

Минимум

Пусть $E \subset \mathbb{R}, E \neq \emptyset$.

Тогда назовём $m\in\mathbb{R}$ минимумом множества E и писать $m=\min E$, если выполняются оба условия:

- 1. m нижняя грань E
- $2. m \in E$

Теорема. $E \subset \mathbb{R}, E \neq \emptyset$.

Если $\exists \min E$, то $\min E = \inf E$.

Если $\exists \max E$, то $\max E = \sup E$.

Доказательство тривиально.

Лемма Архимеда

Множество натуральных чисел неограничено сверху.

Доказательство

Предположим противное, что № ограничено сверху.

Тогда $\exists M \in \mathbb{R} : M = \sup \mathbb{N}.$

Тогда в силу пункта 2 определения супремума:

$$orall M' < M, \exists n' \in \mathbb{N} : n' > M'$$

Положим $(M'=M-1)\Rightarrow (\exists n'\in\mathbb{N}:n'>M-1)\Rightarrow (\exists n'\in\mathbb{N}:n'+1>M)\Rightarrow (\exists n\in\mathbb{N}:n>M).$

Но по пункту 1 определения супремума $n \leq M, \forall n \in \mathbb{N}.$

Противоречие.

Последовательность отрезков

Пусть $\forall n \in \mathbb{N}$ выполняется $a_n \leq b_n$ и зафиксирован отрезок $[a_n,b_n]$. Тогда будем говорить, что задана последовательность отрезков $\{[a_n,b_n]\}_{n=1}^\infty$

Последовательность вложенных отрезков

Будем говорить, что последовательность $\{[a_n,b_n]\}_{n=1}^\infty$ является последовательностью вложенных отрезков, если $\forall n\in\mathbb{N}, a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$.

Принцип вложенных отрезков Кантора

Любая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ имеет хотя бы одну общую точку.

$$(\exists c \in \mathbb{R} : c \in [a_n, b_n], \forall n \in \mathbb{N}) \Leftrightarrow$$
 (пересечение непусто). $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.

Доказательство

$$A=\{a_1,a_2,\ldots,a_n,\ldots\}$$
 – левые концы.
 $B=\{b_1,b_2,\ldots,b_n,\ldots\}$ – правые концы.

Покажем, что A располагается левее B: $\forall a \in A, \forall b \in B, a \leq b$.

Достаточно доказать, что $\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, a_n \leq b_m$

Будем считать, что m>n (m=n очевидно).

Отрезки вложенные $(a_{n+1} \ge a_n) \Rightarrow (a_m \ge \ldots \ge a_n)$ (по индукции).

Ho $[a_m,b_m]$ – отрезок, из чего следует $a_n \leq \ldots \leq a_m \leq b_m.$

В силу аксиомы 15 существует $c \in \mathbb{R}$: c разделяет A и B.

$$a_n \leq c \leq b_m, \forall n \in \mathbb{N}, orall m \in \mathbb{N}.$$

$$c \in [a_n,b_n], \forall n \in \mathbb{N}.$$

$$c\in igcap_{n=1}^\infty[a_n,b_n], orall n\in\mathbb{N}.$$

Стягивающаяся последовательность вложенных отрезков

[От автора конспекта] Стягивающейся называется такая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, отрезки которой при стремлении n к ∞ имеют длину, стремящуюся к 0.

$$\forall l \in \mathbb{N}, \exists n \in \mathbb{N} : |a_n - b_n| < \frac{1}{l}.$$

Теорема (Кантора)

Стягивающаяся последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ имеет единственную общую точку.

Доказательство

По принципу вложенных отрезков Кантора, $\bigcap_{n=1}^{\infty} [a_n,b_n]
eq \emptyset.$

Предположим, что пересечение состоит из более чем одной точки.

Тогда
$$\exists c,c'\in\mathbb{R}:c
eq c',\,(c,c'\in\{[a_n,b_n]\}_{n=1}^\infty)$$
 . Пусть $c'\geq c$. Заметим, что $[c,c']\in\{[a_n,b_n]\}_{n=1}^\infty$

По лемме Архимеда, множество натуральных чисел неограничено сверху.

Из этого следует, что
$$(\exists l \in \mathbb{N}: l > rac{1}{|c-c'|}) \Rightarrow (\exists l \in \mathbb{N}: rac{1}{l} < |c-c'|)$$

По определению стягивающейся последовательности вложенных отрезков:

$$orall l \in \mathbb{N}, \exists n \in \mathbb{N}: |a_n - b_n| < rac{1}{l}$$

Тогда в силу леммы Архимеда $\exists n \in \mathbb{N} : |a_n - b_n| < |c - c'|.$

Но поскольку $([c,c']\subset [a_n,b_n])\Rightarrow (|a_n-b_n|\geq |c-c'|)$