Exercícios

1) Um engenheiro está estudando a resistência Y de uma fibra em função de seu diâmetro X, e notou a partir de dados observados que as variáveis são aproximadamente proporcionais, ou seja, o modelo $Y = X\theta + \varepsilon$ é adequado para descrever essa relação. Encontre um estimador para o parâmetro θ usando o método dos mínimos quadrados. Com os dados observados, encontre a estimativa de mínimos quadrados para esse parâmetro.

X	1,2	1,5	1,7	2,0	2,6
Y	3,9	4,7	5,6	5,8	7,0

- 2) Considere uma variável aleatória X com densidade $f(x;\lambda) = \lambda e^{-\lambda x}$, e uma amostra de tamanho n. Apresentar o estimador de λ pelo método dos momentos.
- 3) Considere uma amostra de tamanho n da distribuição Bernoulli. Obter o estimador de máxima verossimilhança do parâmetro p. Encontre o estimador de p pelo método dos momentos.
- 4) Encontre o estimador de mínimos quadrados para o parâmetro do modelo linear em que cada observação da amostra é modelada como resultante de dois componentes básicos, um componente fixo e outro de natureza aleatória, ou seja, $X_i = \theta + \varepsilon_i$.
- 5) Encontre os estimadores de máxima verossimilhança para os parâmetros da distribuição normal, considerando uma amostra de tamanho n.

Exercícios regressão linear múltipla

Para os exercícios 1 e 2 a seguir, estime os parâmetros do modelo e apresente a interpretação dos coeficientes da regressão linear múltipla. Indique todas as matrizes usadas na solução. Teste a significância da regressão.

1) Neste estudo deseja-se verificar uma relação de dependência entre as variáveis. O estudo é univariado, pois tem uma única variável resposta e múltiplo, pois tem-se duas variáveis explicativas ou independentes. Note que a variável resposta (Y) são as vendas em milhares de unidades e as variáveis explicativas são o investimento em comunicação (X) e o número de vendedores (Z). Estime as vendas para um ano em que foram gastos 9,0 com comunicação e o número de vendedores foi 13.

Ano	Comunicação X (milhões de reais)	Número de vendedores (Z)	Vendas (Y)Milhares de unidades
1983	9,5	10	95
1984	6,5	8	60
1985	7,0	9	60
1986	8,0	12	80
1987	7,5	15	80

1988	8,5	11	80
1989	7,5	13	85
1990	5,5	7	60
1991	8,0	15	85
1993	6,0	10	65

2) Pretende-se investigar a utilização de um modelo de regressão linear múltipla para se tentar explicar a variação da viscosidade de um polímero (Y) em função da temperatura de reação, x1, e da taxa de alimentação do catalisador, x2, com dados na tabela. Estime a viscosidade para dois valores diferentes de temperatura e catalisador dentro do intervalo considerado.

Tabela - Dados referentes à experiência com a viscosidade de um polímero.

Observação	Viscosidade	Temperatura, °C	Catalisador lb/h
1	2256	80	8
2	2340	93	9
3	2426	100	10
4	2293	82	12
5	2330	90	11
6	2368	99	8
7	2250	81	8
8	2409	96	10
9	2364	94	12
10	2379	93	11
11	2440	97	13
12	2364	95	11
13	2404	100	8
14	2317	85	12
15	2309	86	9
16	2328	87	12