COMPACITÉ PAR RECOUVREMENTS

Rappelons que toute fonction continue $[a,b] \to \mathbb{R}$ est bornée.

Question

Pour quels espaces topologiques X les fonctions continues $f: X \to \mathbb{R}$ sont-elles toutes bornées?

Observation : Toute fonction <u>continue</u> $f: X \to \mathbb{R}$ est *localement bornée*, càd pour tout $x \in X \exists$ un voisinage V_X de x tq f est bornée sur V_X .

Donc, nous avons un "recouvrement" de X par des ouverts

$$X = \bigcup_{X \in X} V_X$$

sur lesquels f est bornée. Si on pouvait trouver un « sous-recouvrement » fini tq

$$X=V_{X_1}\cup\cdots\cup V_{X_k},$$

alors on pourrait conclure que f est bornée sur X.

Ceci motive les définitions suivantes.

1/12

Définition

Soit $A \subset (X, \mathcal{T})$ un sous-espace d'un espace topologique. Un *recouvrement* ouvert de A est une collection

$$\mathcal{U} = \left\{ U_i \in \mathcal{T} : i \in I \right\}$$

d'ouverts tel que $A \subset \bigcup_{i \in I} U_i$.

Un sous-recouvrement du recouvrement \mathcal{U} de A est une sous-collection $\mathcal{V} \subset \mathcal{U}$ qui est encore un recouvrement de A.

Un recouvrement est dit fini s'il contient un nombre fini d'éléments.

Définition

Un espace topologique (X, T) est dit *compact* si tout recouvrement ouvert de X admet un sous-recouvrement fini.

Attention

- Parfois, dans la définition de la compacité, on exige aussi que X est Hausdorff.
- La définition ne dit pas seulement qu'il existe un recouvrement fini. Il doit être possible de trouver un <u>sous</u>-recouvrement fini quel que soit le recouvrement donné.

Exemple

- Un sous-ensemble fini est toujours compact.
- Chaque ensemble X muni de la topologie cofinie est compact (ici, A = X) : Soit U = {U_i | i ∈ I} un recouvrement ouvert quelconque. Choisissons un U_{i0} ∈ U. Alors,

$$X \setminus U_{i_0} = \{x_1, \ldots, x_k\}.$$

 \mathcal{U} est un recouvrement $\implies \forall x_j \in X \setminus U_{i_0} \ \exists U_{i_j} \in \mathcal{U} \ \mathsf{tq} \ x_j \in U_{i_j}$. Alors, $X = U_{i_0} \cup U_{i_1} \cup \cdots \cup U_{i_k}$.

 R n'est pas compact : Posons

$$\mathcal{U} = \{ U_n := (-n, n) \mid n \in \mathbb{N} \}.$$

Évidemment, \mathcal{U} est un recouvrement ouvert qui n'admet pas un sous-recouvrement fini (Pourquoi?).

3/12

Lemme

Soit A ⊂ X un sous-espace d'un espace topologique. Les assertions suivantes sont équivalentes :

- 1. A est compact par rapport a la topologie induite;
- 2. De tout recouvrement de A par des ouverts de X on peut extraire un sous-recouvrement fini.

Démonstration.

1. \Longrightarrow 2. Soit $\mathcal{U} = \{U_i \in \mathcal{T}_X \mid i \in I\}$ un recouvrement ouvert de A quelconque. Alors, $\{U_i \cap A \mid i \in I\}$ est un recouvrement ouvert (par rapport à la topologie induite). Donc, la compacité de A implique que

$$A = (U_1 \cap A) \cup \cdots \cup (U_k \cap A) = (U_1 \cup \cdots \cup U_k) \cap A.$$

Donc, $A \subset U_1 \cup \cdots \cup U_k$.

2. \Longrightarrow 1. Soit $\mathcal{V} := \{V_i \in \mathcal{T}_A \mid i \in I\}$ un recouvrement ouvert quelconque. Par définition de la top. induite, $\forall i \in I \ \exists U_i \in \mathcal{T}_X \text{ tq } V_i = U_i \cap A$. Donc,

$$A = \bigcup_{i \in I} V_i \quad \Longrightarrow \quad A = \bigcup_{i \in I} \left(U_i \cap A \right) = A \cap \left(\bigcup_{i \in I} U_i \right) \quad \Longrightarrow \quad A \subset \bigcup_{i \in I} U_i.$$

Alors,
$$A \subset U_1 \cup \cdots \cup U_k \implies A = A \cap (U_1 \cup \cdots \cup U_k) = V_1 \cup \cdots \cup V_k$$
.

Théorème (Heine-Borel)

[0, 1] est compact (par rapport à la topologie standard).

Démonstration.

Soit $\mathcal U$ un recouvrement de [0,1] par des ouverts de $\mathbb R$. Désignons $\tau := \sup \big\{ t \in [0,1] \mid \exists \text{ un sous-recouvrement fini qui recouvre } [0,t] \big\}.$ Évidemment, $\tau > 0$.

On veut démontrer que $\tau=1$. Supposons que $\tau<1$. Puisque $\mathcal U$ est un recouvrement de [0,1], $\exists U_0 \in \mathcal U$ tq $\tau \in U_0$. Puisque U_0 est ouvert, $\exists \delta>0$ tq $(\tau-\delta,\ \tau+\delta) \subset U_0$. Par définition de $\tau,\ \exists t_0 \in (\tau-\delta,\ \tau]$ tq l'intervalle $[0,t_0]$ admet un sous-recouvrement fini : $\{U_1,\ldots,U_k\mid U_i\in\mathcal U\}$. Alors,

$$\{U_0, U_1, \ldots, U_k\}$$

est un sous-recouvrement fini de $[0, \tau + \delta]$, ce qui est impossible. Ainsi, $\tau = 1$.

Enfin, le même argument montre en fait que [0,1] admet un sous-recouvrement fini.

5/12

Théorème

Soit $f: X \to Y$ continue. Si X est compact, alors $f(X) \subset Y$ est compact (par rapport à la topologie induite du Y).

Démonstration.

Soit $\{U_i \in \mathcal{T}_Y \mid i \in I\}$ un recouvrement de f(X), càd

$$f(X) \subset \bigcup_{i \in I} U_i \implies X \subset \bigcup_{i \in I} f^{-1}(U_i).$$

Puisque f est continue, $\{f^{-1}(U_i) \mid i \in I\}$ est un recouvrement ouvert de X. Par la compacité de X,

$$X = f^{-1}(U_1) \cup \dots \cup f^{-1}(U_k) = f^{-1}(U_1 \cup \dots \cup U_k)$$
$$\Longrightarrow f(X) \subset U_1 \cup \dots \cup U_k.$$

Ainsi, f(X) est compact.

En tant qu'illustration, considérons \mathbb{R}/\mathbb{Z} muni de la topologie quotient. Soit $\pi\colon\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ la projection canonique. Donc, π est continue et

$$\mathbb{R}/\mathbb{Z} = \pi(\mathbb{R}) = \pi([0,1]).$$

Puisque [0, 1] est compact, alors \mathbb{R}/\mathbb{Z} est compact aussi.

De la même manière, on peut démontrer que le tore, la bouteille de Klein et le plan projectif sont compacts.

Corollaire

Compacité est une propriété topologique.

Corollaire

Chaque fonction continue $f: X \to \mathbb{R}$ sur un espace X compact est bornée.

Démonstration.

Considérons le recouvrement ouvert de \mathbb{R} :

$$\mathcal{U} := \{ U_n := (-n, n) \mid n \in \mathbb{N} \}.$$

Puisque $f(X) \subset \mathbb{R}$ est compact, il existe un sous-recouvrement fini, disons $\{U_{n_1}, \ldots, U_{n_k}\}$. Posons $n = \max\{n_1, \ldots, n_k\}$. Alors,

$$f(X) \subset U_{n_1} \cup \cdots \cup U_{n_k} = (-n, n).$$

Ainsi, f est bornée.

7/12

Proposition

Un fermé d'un espace compact est lui-même compact.

Démonstration.

Soit F un fermé dans un espace compact X. Soit \mathcal{U} un recouvrement ouvert de F quelconque. Alors, $\mathcal{U} \cup \{X \setminus F\}$ est un recouvrement ouvert de X. Puisque X est compact, il existe un sous-recouvrement fini :

$$U_1, U_2, \ldots, U_k$$
.

Si $U_i \in \mathcal{U}$ pour tout $i \in \{1, ..., k\}$, on a trouvé un sous-recouvrement fini de X (et, donc, de F). Si l'un de ces ensembles, disons U_k , est $X \setminus F$, on considère

$$U_1, U_2, \dots, U_{k-1}.$$
 (*)

Puisque $\bigcup_{i=1}^{k} U_i = X$, on a que $\bigcup_{i=1}^{k-1} U_i$ contient tous les points de $X \setminus U_k = X \setminus (X \setminus F) = F$. Ainsi, (*) est un sous-recouvrement de F fini. \square

L'inverse n'est généralement pas vrai, càd un compact n'est pas nécessairement fermé (Considérez (X, \mathcal{T}^{cofin})). Cependant, c'est vrai si X est Hausdorff.

Proposition

Si X est un espace Hausdorff et A ⊂ X est un sous-espace compact, alors A est fermé.

Démonstration.

Choisissons $x \in X \setminus A$. $\forall a \in A \ \exists U_a \in \mathcal{T}_X \ \text{et} \ \exists V_a \in \mathcal{T}_X \ \text{tq} \ a \in U_a, x \in V_a \ \text{et} \ U_a \cap V_a = \emptyset$. Évidemment, $\mathcal{U} := \{U_a \mid a \in A\}$ est un recouvrement ouvert de A. Alors, il existe un sous-recouvrement fini :

$$A \subset U_{a_1} \cup \cdots \cup U_{a_k}$$
.

Soient V_{a_1}, \ldots, V_{a_k} les voisinages de x correspondants et $V_x := V_{a_1} \cap \cdots \cap V_{a_k}$.

L'ouvert V_X est un voisinage de X qui est disjoint de $U_{a_1} \cup \cdots \cup U_{a_k}$ et donc de A. Ainsi, $V_X \subset X \setminus A$ et alors $X \setminus A$ est ouvert.

9/12

Théorème (Théorème des valeurs extrêmes)

Une fonction continue $f: X \to \mathbb{R}$ sur un espace X compact est bornée et atteint son maximum et son minimum.

Démonstration.

On a déjà montré que f est bornée. Puisque $f(X) \subset \mathbb{R}$ est compact dans un espace Hausdorff, f(X) est fermé.

Si $A \subset \mathbb{R}$ est un sous-ensemble fermé et borné, alors sup $A \in A$ et $\inf A \in A$ (les point limites de A sont contenus dans A). Ainsi, f atteint son maximum et son minimum.

FORMULATION ÉQUIVALENTE EN TERMES DE FERMÉS

Proposition

Un espace topologique X est compact ssi pour toute collection $\mathcal{F} = \{F_i \text{ ferm\'e de } X; i \in I\}$ de ferm\'es de X tq $\bigcap_{i \in I} F_i = \emptyset$, il existe un sous-ensemble $\{F_{i_1}, \ldots, F_{i_k}\}$ fini tq $\bigcap_{i=1}^k F_{i_i} = \emptyset$.

Démonstration.

Supposons que X est compact et \mathcal{F} est une collection de fermés comme ci-dessus. Alors, $\mathcal{U} := \{ U_i := X \setminus F_i \mid i \in I \}$ est une collection des ouverts. De plus,

$$\bigcup_{i\in I}U_i=\bigcup_{i\in I}\left(X\smallsetminus F_i\right)=X\smallsetminus\left(\bigcap_{i\in I}F_i\right)=X\smallsetminus\varnothing=X.$$

Donc, $\mathcal U$ est un recouvrement ouvert $\Longrightarrow \exists$ un sous-recouvrement fini : $\{U_{i_1},\ldots,U_{i_k}\}$. Mais cela implique que

$$\varnothing = X \setminus \left(\bigcup_{j=1}^k U_{i_j}\right) = X \setminus \left(\bigcup_{j=1}^k (X \setminus F_{i_j})\right) = \bigcap_{j=1}^k F_{i_j}.$$

La direction inverse: Exercice.

11/12

Corollaire

Soit X un espace compact et $(F_n)_{n\in\mathbb{N}}$ une famille de fermés tq $F_n\neq\emptyset$ pour tout $n\in\mathbb{N}$. Alors,

$$F_1 \supset F_2 \supset F_3 \supset \dots \longrightarrow \bigcap_{n \in \mathbb{N}} F_n \neq \emptyset.$$

Démonstration.

Supposons que $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. Comme X est compact, il existe F_{n_1}, \ldots, F_{n_k} tq $\bigcap_{i=1}^k F_{n_i} = \emptyset$. Quitte à renommer les fermés, on peut supposer que $n_1 \le n_2 \le \cdots \le n_k$. Alors, $\bigcap_{i=1}^k F_{n_i} = F_{n_k} \ne \emptyset$. Contradiction.

12/12