Design of a Gear Box Part-III & IV

Calculation of Loads on Shaft, Bearing Selection & Shaft Design

A Typical Helical Gear Box Design Problem (Example)

A helical gear reduction unit has to transmit 31 Nm input torque at 1500 rpm with a total reduction of about 37 to 40.

At starting the torque may go as high as 200% and also there is medium shock loads during operation.

The material for pinion is EN 19A and for gear wheel it is EN 18A.

The gear box may be an ordinary industrial class unit preferably with uncorrected gears.

It is continuous duty with medium shock and overhauling time is Two years.

(Alternatively -the bearing life should not be below 10,000 hours).

Recapitulation

Assembled plan view is of 2-stage gear box.

Photographic plan view is of 2-stage gear box.

A Typical Helical Gear Box Design Problem

1st. Step. > Selection of number of stages with respect to Total Transmission Ratio.

In the present problem Total Transmission Ratio, $i_t = 37$ to 40.

Considering not more than ratio 6 in a stage (particularly in 1^{st.} Stage) a total ratio above 6 and below 36 can be managed in two stages.

For a Ratio above 36, usually three stage reduction is preferred.

However, allowing a ratio little more than 6 in second stage (which is done very often to reduce cost) a total ratio of 37 to 40 is done in two stages.

Assembled plan view is of 2-stage gear box.

Now, the ratios are to be selected in a way that the size of the gear box becomes optimum.

Optimization technique to be adopted in this regard.

The process is tedious. However, experienced designer can do it with a little manipulation and trial and error on the selection of the stage reductions.

A Typical Helical Gear Box Design Problem

1st. Step (Contd).

➤ Selection of number of stages for a Total Transmission Ratio $l_t = 37$ to 40.

Considering two stage reduction the numbers of teeth of pinions and gears were selected as follows:

Assembled plan view is of 2-stage gear box.

1st. Stage:

$$i_1 = \frac{Z_2}{Z_1} = \frac{81}{17} = 4.76$$

2nd. **Stage**:
$$i_2 = \frac{Z_4}{Z_3} = \frac{131}{16} = 8.19$$

Therefore, total ratio becomes:

$$i_t = i_1 \times i_2 = \frac{Z_2}{Z_1} \times \frac{Z_4}{Z_3} = \frac{81}{17} \times \frac{131}{16}$$

= 4.76×8.19=39.01

This is acceptable.

1st. Step (Contd).

>Selection of number of stages for a Total Transmission Ratio $\dot{l}_t = 37$ to 40.

Assembled plan view is of 2-stage gear box.

In choosing the numbers of teeth and stage ratios, not only the size optimization is considered but also the roundness in centre distances with uncorrected gears is taken care* of:

2nd. Step.

In next step gears are designed as described in earlier lectures.

Estimated 1st. Stage module is $m_{n1} = 3 \text{ } mm$

and 2nd. Stage module is $m_{n2} = 4 \ mm$

With a suitable selection of helix angle, $\beta_1 = \beta_2 = 11^o 26' 52''$, for which $\cos \beta_1 = \cos \beta_2 = 0.98$ and centre distances become:

$$A_1 = \frac{(Z_1 + Z_2) \times m_{n1}}{2 \times \cos \beta_1} = \frac{(17 + 81) \times 3}{2 \times 0.98} = \frac{98 \times 3}{2 \times 0.98} = 150 \text{ mm}^*$$

and
$$A_2 = \frac{(Z_3 + Z_4) \times m_{n2}}{2 \times \cos \beta_2} = \frac{(16 + 131) \times 4}{2 \times 0.98} = \frac{147 \times 4}{2 \times 0.98} = 300 \text{ mm}^*$$

Gear Data

G1 37		First	Stage	Second	d Stage
Sl. No.	Description	Pinion	Gear	Pinion	Gear
1.	Z ,, Number of Teeth	17	81	16	131
2.	Profile	20° In	volute Full I	Depth, Un co	rrected
3.	m_n , Normal module	3 r	nm	4 r	nm
4.	β , Helix Angle	11°26′5	2"	11°26′5	2"
		RH	LH	LH	RH
5.	Addendum Height (mm) $f_a \times m_n = 1.0 \times m_n$	3	.0	4	.0
6.	Dedendum Height (mm) $f_d \times m_n = 1.25 \times m_n$	3.	75	5	.0
7.	d_p , Pitch Circle Diameter (PCD) (mm)	52.04	247.96	65.306	534.69
8.	, Addendum or Tip Diameter (mm) d_a	58.04	253.96	73.30	542.70
9.	d_d Dedendum or Root Diameter (mm)	44.54	240.46	55.30	524.70
10.	b, Face width. (mm)	63	58	68	63
11.	Material	EN 19A	EN 18A	EN 19A	EN 18A
12.	Surface Hardness (BHN) (Through Hardened)	350	300	350	300

p and g may be added to subscript of Nomenclature to indicate pinion and gear respectively. Similarly 1 and 2 can be added to indicate stage of Gear.

3rd. Step. Layout & Bearing Selection

Layout of pinion and gears is made in <u>next step</u>. Shafts are automatically shaped.

Spherical Roller Bearing

Ball Bearing (Deep Groove)

Then Bearing <u>types</u> are chosen taking into account service severity and life.

Taper Roller Bearing to be used in pair.

Other Bearings- may be used in pair or in combination.

For an example both spherical roller and ball bearing can be combined with cylindrical roller bearing in the other end.

Choice depends on type of loading mainly.

<u>Locking of bearings with shaft and</u> <u>housing</u> is to be decided at this stage.

Sharing of reaction loads by bearings depends also on of bearing Locking arrangement.

With distance between bearing supports the shaft is considered as "simply supported beam".

3rd. Step: Layout & Bearing Selection (Contd.....)

Layout of a single stage Gear Box

3rd. Step: Layout & Bearing Selection (Contd.....)

4th. Step. Loads on Gear, Pinion Teeth (Helical Gear).

Tangential Load:
$$F_{t} = \frac{2T}{d_{p}}$$

$$\left(d_{p} = \frac{Z \times m_{n}}{\cos \beta}\right)$$
 Normal Load:
$$F_{tn} = \frac{F_{t}}{\cos \beta}$$

$$F_n = \frac{F_{tn}}{\cos \alpha_n} = F_t \sec \beta . \sec \alpha_n$$

Radial Load:

$$F_r = F_n.sin\alpha_n$$

$$= F_t sec\beta.sec\alpha_n.sin\alpha_n$$

$$F_r = F_t sec\beta.tan\alpha_n$$

$$(= F_t tan \varphi)$$

Axial Load:

$$F_a = F_n \sin \beta = F_t \tan \beta$$

$$F_n = F_t \sec \beta . \sec \alpha_n$$

Straight Bevel Gear Design:

Module (m, in meter) can be estimated as:

For straight tooth bevel gear:

$$m_{bevel} = \sqrt[3]{\frac{2T}{\frac{S_d}{c_v c_w} ZY\psi(1 - \psi_o)}}$$

$$= 2 \times mean \ r = Z \times m_{bevel}$$

Other relations.

$$\gamma_p + \gamma_g = 90^\circ$$

And,

$$\sin \gamma_p / \sin \gamma_g = \tan \gamma_p = Z_p / Z_g$$

Straight Tooth Bevel Gear.

4th. Step (Contd...): Calculation of Loads and Reactions on Shaft & Bearing

For Intermediate Shaft (Referring to Design Problem)

Intermediate Shaft with gears and Bearings

Applied Loads, Reactions & Moments due to Axial Loads

Nominal Torque = Input Torque x Ratio

$$T_{n2} = T_{n1} \times \frac{Z_2}{Z_1} = 31 \times 4.76 = 148 \ Nm$$

$$F_{t2} = 2 \times T_{n2} / 0.248 N = 1193.5 N$$

$$F_{r2} = F_{t2} sec\beta_1.tan\alpha_n$$

= 1193.5 × $sec(11^{\circ}26'52'')$ × $tan(20^{\circ})$
= 1193.5 × 1.02 × 0.364 = **443 N**

$$F_{a2} = F_{t2}tan\beta_1$$

= 1193.5 × tan(11°26'52")
= 240.65 N

Similarly forces (rounded of) at pinion (Z_3) of 2^{nd} . Stage:

$$F_{t3} = 4533 \text{ N}$$
 $F_{r3} = 1683 \text{ N}$ $F_{a3} = 914 \text{ N}$

4th. Step (Contd...): Calculation of Loads and Reactions on Shaft & Bearing

For Intermediate Shaft (Referring to Design Problem)

Intermediate Shaft with gears and Bearings

$$F_{t3} = 4533 \text{ N}$$
 $F_{r3} = 1683 \text{ N}$ $F_{a3} = 914 \text{ N}$

$$F_{t2} = 1193.5 \, \text{N} \quad F_{t2} = 443 \, \text{N} \quad F_{a2} = 240.65 \, \text{N}$$

Applied Loads, Reactions & Moments due to Axial Loads

Loads and reactions are calculated on the basis of Nominal Torque & approximate bearing width = 25 mm.

Bending Moment due to Axial Load:

$$M_{a2} = F_{a2} \times \frac{d_{p2}}{2} = \frac{240.65 \times 0.2479}{2} = 30 \text{ Nm}$$

$$M_{a3} = F_{a3} \times \frac{d_{p3}}{2} = \frac{914 \times 0.0653}{2} = 30 \text{ Nm}$$

For moment equilibrium (horizontal plane) about R

$$R_{HL} = \frac{1683 \times 0.125}{0.178} - \frac{443 \times 0.05}{0.178} - \frac{30}{0.178} - \frac{30}{0.178}$$
$$= 1182 - 124.4 - 168.5 - 168.5 = 720.6 \text{ N}$$

From force equilibrium- $R_{HR} = 520 \, N$

Similarly computing for vertical plane:

$$R_{_{VI}}$$
 = 3518.5 N $R_{_{VR}}$ =2208 N

5th. Step:

Bearing Life Estimation

For Intermediate Shaft (Referring to Design Problem)

Intermediate Shaft with gears and Bearings (Plan View)

Equivalent Load Acting on bearing is expressed as: $P = C_1(XVF_r + YF_a)$

Life of Rolling Element bearing in Number of Revolution is expressed as:

$$L_N = \left(\frac{C}{P}\right)^{\varepsilon} \times 10^6 \quad \text{Revolution}$$

Life in hours is then estimated as:

$$L_H = \frac{L_N}{N \times 60}$$
 Hours

Loads from Gear teeth were estimated as:

$$F_{t3} = 4533 \text{ N}$$
 $F_{r3} = 1683 \text{ N}$ $F_{a3} = 914 \text{ N}$

$$F_{t2} = 1193.5 \, \text{N} \quad F_{r2} = 443 \, \text{N} \quad F_{a2} = 240.65 \, \text{N}$$

Also, moments due to axial forces were estimated as: $M_{a2} = M_{a3} = 30 \, \text{Nm}$

Finally Bearing reactions (radial) were estimated as:

$$R_{HL} = 720.6 \text{ N}$$
 $R_{VL} = 3518.5 \text{ N}$ $R_{HR} = 520 \text{ N}$ $R_{VR} = 2208 \text{ N}$

Bearing reactions (axial) yet to be estimated.

<u>Applied Loads, Reactions &</u> Moments due to Axial Loads

5th. Step (Contd...): Bearing Life Estimation

The Final bearing reactions:

$$F_{t3} = 4533 \text{ N}$$
 $F_{r3} = 1683 \text{ N}$ $F_{a3} = 914 \text{ N}$

$$F_{t2} = 1193.5 \, \text{N} \quad F_{r2} = 443 \, \text{N} \quad F_{a2} = 240.65 \, \text{N}$$

$$R_{HL}$$
 = 720.6 N R_{VL} = 3518.5 N

$$R_{HR} = 520 \text{ N}$$
 $R_{VR} = 2208 \text{ N}$

Details of loading & Resultant bearing Reactions.

From details of loading resultant right bearing (radial) reaction is calculated as:

$$\mathbf{F_{r(R)}} = \sqrt{R_{VR}^2 + R_{HR}^2} = \sqrt{2208^2 + 520^2}$$
$$= 2268.4 \,\mathrm{N}$$

It is acting at an angle θ_{R} with vertical plane,

derived as
$$\theta_R = \tan^{-1}(R_{HR}/R_{VR}) = 13.25^{\circ}$$
.

Similarly,
$$\mathbf{F_{r(L)}} = \sqrt{R_{VL}^2 + R_{HL}^2} = \sqrt{3518.5^2 + 720.6^2}$$

= 3591.5 N

and,
$$\theta_L = \tan^{-1}(R_{HL}/R_{VL}) = 1.5.5^{-0}$$

Resultant axial load may act only on one bearing irrespective of its direction (i.e., direction of shaft rotation).

It depends on bearing locking arrangement.

In this case it is on right bearing which is with less radial load.

Net axial load
$$\mathbf{F}_{\mathbf{a}(\mathbf{Net})} = \mathbf{F}_{\mathbf{a}} = F_{a3} - F_{a2}$$
 = 673.35 N

5th. Step (Contd...): Bearing Life Estimation

Consider deep groove ball bearing SKF 6309 as both end supports of intermediate shaft:

Equivalent load on left bearing:

$$P_L = C_1 \left(XVF_{r(L)} + YF_{a(L)} \right)$$
 $X = 1 \text{ } Y = 1.6$
= 1.5 × (1.0 × 1 × 3591.5 + Y × 0)
= 5387.25 N

	Inner	Outer	Width	Corner	Basic Load	d Capacity
Bearing No.	Dia. (d)	Dia. (D)	(B)	Radius (r) Approx.	Dynamic C	Static C _o
	mm	mm	mm	mm	Newton	Newton
6309	45	100	25	2.5	40130	29200

[Note: C_1 is taken as 1.5 considering medium shock load (given) on the estimated load on bearings based on nominal torque.]

Bearing Series 63

Life (in hrs) of left bearing:

$$L_{H(L)} = \frac{L_{N(L)}}{N \times 60} = \frac{(40130/5387.5)^3 \times 10^6}{(1500 \times 17/81) \times 60}$$
$$= 0.021880 \times 10^6 \text{hrs} = 21,880 \text{ hrs}$$

5th. Step (Contd...): Bearing Life Estimation

Ball bearing SKF 6309 is selected for both end supports of intermediate shaft:

Similarly, estimated equivalent load and life of right bearing:

$$P_R = 1.5 \times (1.0 \times 1 \times 2268.4 + 1.6 \times 673.35) = 5018.64 \text{ N},$$

$$L_{m} = \frac{(40130/5018.64)^{3} \times 10^{6}}{(1500 \times 17/81) \times 60}$$
$$= 0.027067 \times 10^{6} \text{hrs} = 27,067 \text{ hrs}$$

Note: Estimated lives of both bearings are more or less same & above the required specified life (10,000 hrs).

Now it can be examined the life with bearing of lower load capacity:

	Inner	Outer	Width	Corner Radius	Basic Load Capacity			
Bearing No.	Dia. (d)	Dia. (D)	(B)	(r) Approx.	Dynamic C	Static C _o		
	mm	mm	mm	mm	Newton	Newton		
6309	45	100	25	2.5	40130	29200		
6308	40	90	23	2.5	31000	21400		
6211	55	100	21	2.5	32100	25415		

As the root diameter of pinion is 55.39 mm then a bearing of id 55 mm (maximum) may be selected.

If SKF 6308 or 6211 is selected then life will be <u>reduced</u> by $(C_{6309}/C_{6308 \text{ or } 6211})^3$ i.e., 2.17 or 1.95 times respectively, which is acceptable.

However, design with SKF 6309 will perhaps be preferred.

Specification of Deep Groove Ball Bearing

		f		D		В	*	Basic capacity, Ib.		
No.	mm.	in.	mm,	in.	mm.	in.	mm.	Dynamic C	Static C ₀	
MINGE		0.3937	35	1,3780	11	0.4331	1	1430	800	
6300	10	0.4724	37	1.4567	12	0.4724	1.5	1760	950	
01	12	0.5906	49	1.6535	13	0.5118	1.5	1930	1140	
02	35	West, and	1.77	170000000	8810	- 700 a.s.		75.104		
4464	17	0.6693	47	1.8504	14	0.5512	1.5	2320	1370	
6303	20	0.7874	52	2.0472	15	0.5906	9	2750	1700	
04	0.000	0.9843	62	2.4409	17	0.6693	2	3600	2280	
05	- 25	11,0040	1/4					SACSA:		
6306	- 20	1.1811	72	2.8346	19	0.7480	2	4800	3200	
0300	35	1.3780	80	3.1496	21	0.8268	2.5	5700	3800	
08	40	1.5748	90	3.5433	23	0.9055	2.5	6950	4800	
400	3407	100/10	45	Note the same	200	0.03 8.51		120000		
6309	45	1.7717	100	3.9370	25	0.9843	2.5	9000	6550	
10	50	1.9685	110	4.3307	27	1.0630	3	10400	7800	
11	55	2.1654	120	4.7244	29	1.1417	3	11800	9300	
	500	A. Hors	100	4.724	***					
6312	60	2.5622	130	5,1181	31	1.2205	3.5	13200	10600	
13	65	2.5591	140	5.5118	33	1.2992	3.5	15300	12000	
14	70	2.7559	150	5.9055	35	1.3780	3.5	17300	13700	
155	1.500	2,7000	100	- Diplos		5500000		7.81008.		
6315	75	2.9528	160	6.2992	37	1.4567	3.5	18600	16000	
16	80	3.1496	170	6.6929	39	1.5354	3.5	20400	17600	
17	85	3.3465	180	7.0866	41	1.6142	4	22400	19300	
		0,000	100	1,000						
6318	:30	3.5433	190	7,4803	43	1.0929	4	24000	21600	
19	95	3.7402	200	7,8740	45	1.7717	4	26500	24500	
20	100	3.9370	215	8.4646	47	1.8504	4	30500	29000	
	11.00	2000000								
6321	105	4.1339	225	8,8583	49	1.9291	4	32000	31500	
22	110	4.3307	240	9.4488	50	1.9685	4	36000	36000	
	0.00	Alaba.	241	213400						
6324	120	4.7244	260	10.2362	55	2.1654	4	36000	36500	
26	130	5.1181	280	11.0236	58	2.2835	5	40500	43000	
28	140	5.5118	300	11.8110	62	2.4409	5	45500	49000	
30	150	5.9055	320	12.5984	65	2.5591	5	49000	56000	

Specification of Taper Roller Bearing

TAPER ROLLER BEARINGS

Metric Dimension Series 22

Bearing No.	d			D		T max.		В	С	* *	r₁ ≈	
200	mm.	in.	mm,	in.	mm.	in.	Millimetres					
32206	30	1.1811	62	2.4409	21.5	0.846	21	20	17	1.5	0.5	
07	35	1.3780	72	2.8346	24.5	0.965	21	23	19	2	0.8	
08	40	1.5748	80	3.1496	25	0.984	24.5	23	19	2	0.8	
32209	45	1,7717	85	3.3465	25	0,984	24.5	23	19	2	0.8	
10	50	1,9685	90	3.5433	25	0,984	24.5	23	19	2	0.8	
11	55	2,1654	100	3.9370	27	1,063	26.5	25	21	2.5	0.8	
32212	60	2.3622	110	4,3307	30	1.181	29.5	28	24	2.5	0.8	
13	65,	2.5591	120	4,7244	33	1.299	32.5	31	27	2.5		
14	70	2.7559	125	4,9213	33,5	1.319	33	31	27	2.5		
32215	75	2.9528	130	5.1181	33.5	1.319	33	31	27	2.5	0.5	
16	80	3.1496	140	5.5118	35.5	1.398	35	33	28	3	1	
17	85	3.3465	150	5.9055	39	1.535	38	36	30	3	1	
32218	90	3.5433	160	6,2992	43	1.693	42	40	34	3	1.5	
19	95	3.7402	170	6,6929	46	1.811	45	43	37	3.5		
20	100	3.9370	180	7,0866	49.5	1.949	48.5	46	39	3.5		
32221 22 24	105 110 120	4.1339 4.3307 4.7244	190 200 215	7.4803 7.8740 8.4646	53,5 56,5 62	2.106 2.224 2.441	52.5 55.5 61	50 53 58	43 46 50	3.5 3.	1.5	

Bearing Series 3

Follow the directions on pp. 13-24 when determining the bearing

	Basic cap	acity, Ib.				Re	volu	tions	per	minu
Bearing No.	Dynamic	Static	40	63	100	160	250	400	630	1000
Foller	C	Co	0.27	1835	14 1	Rela	tive	radia	1 cap	acit
32206	7200	6100	6800	5850	5000	4300	3650	3150	2700	2320
07	9500	8150	9000	7650	6550	5600	4800	4150	3550	3050
08	10600	9000	10000	8650	7350	6300	5400	4650	4000	3400
32209	11400	10200	10800	9300	8000	6800	5850	5000	4300	3650
10	11600	10600	11000	9500	8150	6950	6000	5100	4400	3750
11	15300	13700	14300	12200	10600	9150	7800	6700	5700	4900
32212	18300	17000	17300	14600	12500	10800	9300	8000	6800	5850
13	22000	20400	20800	18000	15300	12900	11200	9650	8300	7100
14	22400	20400	21200	18300	15600	13200	11400	9800	8500	7200
32215	23600	22400	22400	19300	16600	14000	12000	10400	9000	7650
16	27500	25500	26000	22400	19300	16600	14000	12000	10400	9000
17	31500	30500	30000	25500	22000	19000	16300	13700	11800	10200
32218	37500	36000	35500	30500	26000	22400	19300	16600	14000	12000
19	43000	40500	40500	34500	30000	25500	22000	10000	16300	13700
20	48000	46500	45500	39000	33500	28500	24500	21200	18300	15600
32221	56000	54000	53000	45500	39000	33500	28500	24500	21200	18300
22	63000	61000	60000	51000	44000	37500	32000	27500	23600	20400
24	75000	75000	71000	61000	52000	45000	38000	32500	28000	24000

Specification of Taper Roller Bearing

TAPER ROLLER BEARINGS

Metric Dimension Series 22

Bearing No.	d			D		T max.		В	С	* *	r₁ ≈	
200	mm.	in.	mm,	in.	mm.	in.	Millimetres					
32206	30	1.1811	62	2.4409	21.5	0.846	21	20	17	1.5	0.5	
07	35	1.3780	72	2.8346	24.5	0.965	21	23	19	2	0.8	
08	40	1.5748	80	3.1496	25	0.984	24.5	23	19	2	0.8	
32209	45	1,7717	85	3.3465	25	0,984	24.5	23	19	2	0.8	
10	50	1,9685	90	3.5433	25	0,984	24.5	23	19	2	0.8	
11	55	2,1654	100	3.9370	27	1,063	26.5	25	21	2.5	0.8	
32212	60	2.3622	110	4,3307	30	1.181	29.5	28	24	2.5	0.8	
13	65,	2.5591	120	4,7244	33	1.299	32.5	31	27	2.5		
14	70	2.7559	125	4,9213	33,5	1.319	33	31	27	2.5		
32215	75	2.9528	130	5.1181	33.5	1.319	33	31	27	2.5	0.5	
16	80	3.1496	140	5.5118	35.5	1.398	35	33	28	3	1	
17	85	3.3465	150	5.9055	39	1.535	38	36	30	3	1	
32218	90	3.5433	160	6,2992	43	1.693	42	40	34	3	1.5	
19	95	3.7402	170	6,6929	46	1.811	45	43	37	3.5		
20	100	3.9370	180	7,0866	49.5	1.949	48.5	46	39	3.5		
32221 22 24	105 110 120	4.1339 4.3307 4.7244	190 200 215	7.4803 7.8740 8.4646	53,5 56,5 62	2.106 2.224 2.441	52.5 55.5 61	50 53 58	43 46 50	3.5 3.	1.5	

Bearing Series 3

Follow the directions on pp. 13-24 when determining the bearing

	Basic cap	acity, Ib.				Re	volu	tions	per	minu
Bearing No.	Dynamic	Static	40	63	100	160	250	400	630	1000
Foller	C	Co	0.27	1835	14 1	Rela	tive	radia	1 cap	acit
32206	7200	6100	6800	5850	5000	4300	3650	3150	2700	2320
07	9500	8150	9000	7650	6550	5600	4800	4150	3550	3050
08	10600	9000	10000	8650	7350	6300	5400	4650	4000	3400
32209	11400	10200	10800	9300	8000	6800	5850	5000	4300	3650
10	11600	10600	11000	9500	8150	6950	6000	5100	4400	3750
11	15300	13700	14300	12200	10600	9150	7800	6700	5700	4900
32212	18300	17000	17300	14600	12500	10800	9300	8000	6800	5850
13	22000	20400	20800	18000	15300	12900	11200	9650	8300	7100
14	22400	20400	21200	18300	15600	13200	11400	9800	8500	7200
32215	23600	22400	22400	19300	16600	14000	12000	10400	9000	7650
16	27500	25500	26000	22400	19300	16600	14000	12000	10400	9000
17	31500	30500	30000	25500	22000	19000	16300	13700	11800	10200
32218	37500	36000	35500	30500	26000	22400	19300	16600	14000	12000
19	43000	40500	40500	34500	30000	25500	22000	10000	16300	13700
20	48000	46500	45500	39000	33500	28500	24500	21200	18300	15600
32221	56000	54000	53000	45500	39000	33500	28500	24500	21200	18300
22	63000	61000	60000	51000	44000	37500	32000	27500	23600	20400
24	75000	75000	71000	61000	52000	45000	38000	32500	28000	24000

Specification of Taper Roller Bearing

motors of	Basic cap	acity, Ib.				Re	volu	tions	per	minu	te
No.	Dynamic	Static	40	63	100	160	250	400	630	1000	1600
	C	Co				Rela	Relative radi			acity	, Ib.
30203	2280		Michigan S				1	1 73 - 3			
04		1860	2160	1860	1600	1340	1160	1000	865	735	630
05	3450	2850	3250	2800	2400	2080	1800	1530	1290	1120	963
	3800	3400	3600	3100	2650	2280	1960	1700	1430	1220	1060
30206		000000	0000	9100	2000	2200	1000	ALOU	1400	1.000	2000
07	5300	4550	F000	1000	0000		amaa	0000	2000		
08	6800	5850	5000	4300	3650	3150	2700	2320	2000	1730	1460
OR.	8000		6400	5500	4750	4050	3450	3000	2550	2200	1900
2000		6800	7500	6400	5500	4750	4050	3450	3000	2550	2200
30209	9150	2000	1	68.00	Store of	10000	100000	10000		36567	100
10	10000	8000	8650	7350	6300	5400	4650	4000	3400	2900	2506
11		9000	9500	8150	6950	6000	5100	4400	3750	3200	2750
- Day of the last	12200	11400	11600	10000	8650	7350	6300	5400	4650	4000	3400
30212	-	- Constitution	22000	10000	0000	1000	0000	2400	4000	4000	0400
13	13200	12200	12500	10800	0000	mana	4000		****	4300	3650
14	16000	14300			9300	8000	6800	5850	5000		
1 1999	17300	15600	15000	12700	11000	9500	8150	6950	6000	5100	4400
30215		10000	16300	13700	11800	10200	8800	7500	6400	5500	4750
16	19000	-	SARTE STA	8527044	Env. (40)	1200	- C203	7.50	LE STORY	1,000,000	1000
17	21200	18000	18000	15300	12900	11200	9650	8300	7100	6100	5200
100	25000	19300	20000	17300	14600	12500	10800	9300	8000	6800	5850
30218	777	23200	23600	20400	17600	15000	12700	11000	9500	8150	6950
	28000			20100	11000	*********				100 Car 10	NAME OF TAXABLE
- 19	31000	26500	26500	22800	19600	17000	14300	12200	10600	9150	7800
20	21000	29000	29000	25000	21600	18600	16000	13400	11600	10000	8650
300	35500	34000							13200	11400	9800
30221	1		33500	28500	24500	21200	18300	15600	10200	11400	8000
22	40000	36500	37500	32000	27500	23600	20400	17600	15000	12700	11000
24	45000	43000						19600	17000	14300	12200
3000	50000	47500	42500	36000	31000	26500	22800			16300	13700
30226	-	*1000	47500	40500	34500	30000	25500	22000	19000	10300	10/00
28	54000	E1000	3033300	(L 1000	2000	The state of	PERSONAL PROPERTY.		00100	17600	15000
30	63000	51000 62000	51000	44000 51000	37500	32000	27500	23600	20400	20400	17600

Specification of Spherical Roller Bearing

Bearing with	Bearing d with taper			D		В	**	Basic capacity, Ib.		
bore No.	bore No.	mm.	in.	mm.	in.	mm.	in.	mm.	Dynamic C	Static C ₀
22205		25	0.9843	52	2.0472	18	0.7087	1.5	4150	4550
06	T	30	1.1811	62	2.4409	20	0.7874	1.5	-6000 1	6550
07		35	1.3780	72	2.8346	23	0.9055	2	8150	9000
22208	22208 K	40	1.5748	80	3.1496	23	0.9055	2	8800	9800
09	09 K	45	1.7717	85	3.3465	23	0.9055	2	9500	11000
10	10 K	50	1.9685	90	3.5433	23	0.9055	2	9800	11800
22211	22211 K	55	2.1654	100	3.9370	25	0.9843	2.5	11800	14000
12	12 K	60	2,3622	110	4.3307	28	1.1024	2.5	15000	18300
13	13 K	65	2.5591	120	4.7244	31	1.2205	2.5	18600	22400
22214	22214 K	70	2.7559	125	4.9213	31	1.2205	2.5	19300	23200
15	15 K	75	2.9528	130	5.1181	31	1.2205	2.5	19600	24500
22216	22216 K	80	3.1496	140	5.5118	33	1.2992	3	20800	22400
17	17 K	85	3.3465	150	5.9055	36	1.4173	3	27000	29000
18	18 K	50	3.5433	160	6.2992	40	1.5748	3	34000	34500
22219	22219 K	95	3.7402	170	6.6929	43	1.6929	3.5	40000	41500
20	20 K	100	3.9370	180	7.0866	46	1.8110	3.5	46500	46500
22	22 K	110	4.3307	200	7.8740	53	2.0866	3.5	61000	57000
22224	22224 K	120	4.7244	215	8.4646	58	2.2835	3.5	75000	73500
26	26 K	130	5.1181	230	9.0551	64	2.5197	4	93000	91500
28	28 K	140	5.5118	250	9.8425	68	2.6772	4	106000	104000
22230	22230 K	150	5.9055	270	10 0000	ma	0.0040	7		
32	32 K	160	6.2992	290	10.6299	73	2.8740	4	118000	116000
34	34 K	170	6.6929	310	11.4173 12.2047	80 86	3.1496	5	143000 163000	143000 156000
22236	22236 K	100	Spices	20000		IRSY.	The second of		The second second	
38	38 K	180	7.0866	320	12.5984	86	3.3858	5	166000	170000
40	40 K	190	7.4803	340	13.3858	92	3.6220	5	183000	186000
ENGLISHED .	40 K	200	7.8740	360	14.1732	98	3.8583	5	204000	208000

Specification of Cylindrical Roller Bearing

	Bearing series			d		D		8	I.	*	1	*	2
NU 2	NJ2 Searing No	N1	mm.	în.	mm.	in.	in. mm.	in.	1	Millimetres			
NU 204	NJ 204	N 204	20	0.7874	47	1.8504	14	0.5512	40	27	30	1,5	1
205	205	205	25	0.9843	52	2.0472	15	0.5906	45	32	35	1.5	1
206	206	206	20	1.1811	62	2.4400	16	0.6299	53.5	35.5	41.6	1.5	-1
NU 207	NJ 207	N 207	35	1,3780	72	2.8346	17	0.6693	61.5	45.8	47.6		1
206	208	208	40	1.5748	80	3.1496	16	0.7087	70	50	54.2	2	2
309	209	209	45	1.7717	85	3.3405	10	0.7480	75	5.5	50	2	2
NU 210	NJ 210	N 210	50	1.9685	90	3,5493	20	0.7874	50.4	60.4	64.6	2	2
211	211	211	55	2.1654	100	3.9370	21	0.8265	88.5	66.5	70.5	2.5	2
212	212	212	60	2.3622	110	4.3307	22	0.8661	97.5	73.5	78.4	2.5	2.5
NU 213	NJ 213	N 213	1	Last I	.3		1						
214	214	214	65	2.5561	120	4.7244	23	0,9055	105,6	70.6	84.8	2.5	2.5
218	215	215	70 75	2,7559	125	4.9213	24	0.9449	110.5	84.5	89.6	2.5	2.5
NU 216	CO. CONTROL	-	79.	2.0528	130	5,1181	25	0.9843	116,5	88.5	94	2.5	2.5
217	NJ 216	N 216	80	3,1495	140	5.5118	26	1.0236	125.3	95.5	101.2	3	3
218	217	217	85	3,3465	150	5,9055	28	1.1024	133.8	101.6	108.2		
	218	218	90	3.5433	160	6.2992	20	1.1811	143	107	114.2	3	2
NU 219	NJ 219	The state of		S SAN	108	W. 155	570	1	BIJES.	-	200		1.11
220	230	N 219	95.	3,7402	170	6.6929	32	1.2596	151.5	113.5	121	8.5	3.5
221	221	220	100	3.9370	180	7,0666	34	1.3386	100	120	125	3.5	3.5
ATTE CO		221	105	4.1339	190	7.4803	36	1,4173	168.8	126.8	135	3.5	3.5
NU 222	NJ 222	N 222	1000	The state of the s	100	C. N. AMPRI	No. of	Walder	The same	Sept. Company	-		1
224	224	224	110	4.5307	200	7.8740	38	1.4901	176.5	132.5	141.5	3.5	3.5
436	226	N 226	120	4.7244	215	8,4646	40	1.5748	191.5	143.5	153	3.5	0.5
NUm	30/15		130	5.1181	230	9.0551	40	1.5748	204	156	165.5		- 6

Bearing No.	Basic cop	acity, Ib.				R	rvolu	tions
NU	Dynamic	Static	100	160	250	400	630	1000
NJ N	C	Co				Relo	tive	radio
1-1/11	Stram	50.0	S Creek	A server		The said		9.50
204	2160	1330	1500	1270	1100	950	815	690
205	2400	1860	1700	1430	1220	1000	915	784
206	3200	2550	2240	1930	1000	1400	1200	1040
207	4650	3650	3200	2700	2360	2010	1760	100
208	6100	5100	4250	3600	3100	2650	2280	356
209	6400	5500	4500	3900	3250	2800	2400	206
210	8700	6000	4650	4000	3400	2900	2500	216
211	8150	7200	5600	4500	4150	3550	3050	260
212	9850	8800	6700	5700	4900	4250	3600	310
213	11200	10400	7800	6700	5700	4500	4250	360
214	11600	11000	8150	6950	6000	5100	4400	375
215	13400	12700	9500	8150	6950	6000	5100	440
216	15600	15000	10600	9300	8000	6800	5650	500
217	18000	17300	12200	10600	9150	7800	6700	570
218	21600	20400	15000	12700	11000	9500	8150	695
219	25000	24000	17600	15000	12700	11000	9500	815
220	28000	27000	19600	17000	14500	12200	10600	915
221	31000	30500	21600	18600	16000	13400	11600	1000
222	35500	33500	24500	21200	18300	15600	13200	1140
234	40000	19000	27500	23600	20400	17600	15000	1270
226	41500	41500	28500	24500	21200	18300	15000	1820
228	49000	49000	34000	20000	25000	21600	18600	16000
350	80000	68000	41500	86500	80500	26000	BS400	1030
232	65000	71000	47500	40500	34500	20000	25500	2200
234	78000	H1500	94000	46500	40000	34000	29000	2500

Bearing Life Estimation (Contd...)

The Final bearing reactions:

$$F_{t3} = 4533 \text{ N}$$
 $F_{r3} = 1683 \text{ N}$ $F_{a3} = 914 \text{ N}$

$$F_{t2} = 1193.5 \, \text{N} \quad F_{r2} = 443 \, \text{N} \quad F_{a2} = 240.65 \, \text{N}$$

$$R_{HL} = 720.6 \text{ N}$$
 $R_{VL} = 3518.5 \text{ N}$

$$R_{HR} = 520 \text{ N}$$
 $R_{VR} = 2208 \text{ N}$

Details of loading & Resultant bearing Reactions.

From details of loading resultant right bearing (radial) reaction is calculated as:

$$\mathbf{F_{r(R)}} = \sqrt{R_{VR}^2 + R_{HR}^2} = \sqrt{2208^2 + 520^2}$$
$$= 2268.4 \,\mathrm{N}$$

It is acting at an angle θ_{R} with vertical plane,

derived as
$$\theta_R = \tan^{-1}(R_{HR}/R_{VR}) = 13.25^{\circ}$$
.

Similarly,
$$\mathbf{F_{r(L)}} = \sqrt{R_{VL}^2 + R_{HL}^2} = \sqrt{3518.5^2 + 720.6^2}$$

= 3591.5 N

and,
$$\theta_L = \tan^{-1}(R_{HL}/R_{VL}) = 11.57^{\circ}$$

Resultant axial load may act only on one bearing irrespective of its direction (i.e., direction of shaft rotation).

It depends on bearing locking arrangement.

In this case it is on right bearing which is with less radial load.

Net axial load
$$\mathbf{F_{a(Net)}} = \mathbf{F_a} = F_{a3} - F_{a2}$$
$$= 673.35 \text{ N}$$

6th. Step Shaft Design

Bending moment on Intermediate Shaft due to Tangential Forces

In case of gear box the diameters of a shaft is dominated by the size (root diameter) of the integral pinion and optimum bearing size mainly.

The length is determined by the placement of gear, pinion, bearings, coupling, key size, seals etc. and the optimum gap required between two consecutive elements.

The a shaft is automatically shaped during first layout and bearing selection, as shown earlier.

Therefore, instead of designing the shaft the critical sections are verified for developed stresses.

Bending Moment (respective plane) Calculation

$$BM_{P3V} = -3518.5 \times 0.053 = -186.5 Nm$$

$$BM_{e2V} = -3518.5 \times 0.128 + 4533 \times 0.075 = -110.4 \text{ Nm}$$

Shaft Design (Contd...)

Bending moment on Intermediate Shaft due to Tangential Forces

<u>Bending Moment (respective</u> <u>plane) Calculation (Contd...)</u>

Considering from left support Bending Moment just left of section 3-3:

B M
$$_{P3HL} = 720 \times 0.053 = 38.2 \text{ N m}$$

And just right of section 3-3:

$$BM_{P31} = 38.2 + 30 = 68.2 \text{ Nm}$$

Similarly, BM just left of section 2-2:

$$BM_{CH} = 720 \times 0.128 - 1683 \times 0.075 + 30 = -4 \text{ Nm}$$

And BM just right of section 2-2:

$$BM_{C2} + = -4.1 + 30 = 26 \text{ Nm}$$

Shear Force Diagram (SFD).

Bending Moment Diagram (BMD)

Second Step: Resultant Bending
Moment and Critical Section

It is to be noted that in a rotating shaft outer layer experiences maximum flexural bending stress.

As bending stress is expressed by bending moment divided by section modulus, it is necessary to verify those for probable critical sections.

In the Intermediate shaft, any of sections 2-2, 3-2 & 3-3 may be critical i.e., experiences maximum bending stress.

Next: Resultant Bending Moment and Critical Section (Contd...)

Reasons are as follows:

Among these three sections, through which full torque transmits, section 3-3 has maximum bending moment, although it has also the maximum diameter.

It has medium stress concentration as it is roots of teeth.

Sections 2-2 & 3-2 have equal diameters but different stress concentration factors.

At section 3-2 there is step, where as at section 2-2 a there is keyway.

Therefore, section 2-2 may be severe than section 3-2 in stress concentration point of view.

Again 2-2 usually experiences less BM.

Resultant Bending Moment and Critical Section (Contd...)

Resultant bending moment at 3-3:

$$BM_{R (3-3)} = \sqrt{68.2^2 + 186.5^2} = 198.6 \text{ Nm}$$

Resultant bending moment at 2-2:

BM_R
$$= \sqrt{26^2 + 110.4^2} = 113.42 \text{ Nm}$$

Resultant bending moment at 3-2 is estimated as follows:

$$BM_{V (3-2)} = 3518.5 \times 0.099 - 4533 \times 0.046 = 139.81 Nm$$

BM_H
$$32$$
 = $720.6 \times 0.099 + 30 - 1683 \times 0.046 = 23.92$ Nm

BM_R
$$\sqrt{23.92^2 + 139.81^2} = 141.84 \text{ Nm}$$

Bending Stress and search for Critical Section (Contd...)

Maximum bending stress in any section of rotating shaft (solid):

$$\sigma_b = f_c \frac{My}{I} = f_c \frac{32M}{\pi d^3}$$

(Section modulus $\frac{I}{v} = \frac{\pi d^4 / 64}{d / 2}$ and

 f_c stress concentration factor).

Maximum bending stress at section 3-3:

$$\sigma_{b (3-3)} = \frac{1.5 \times 32 \times 198.6}{\pi \times 0.0553^3} = 18 \times 10^6 \text{ Pas}$$

 f_c is taken 1.5 for hob cut gear.

Bending Stress and search for Critical Section (Contd...)

Maximum bending stress at section 3-2:

$$\sigma_b \approx 2$$
 = $\frac{1.5 \times 32 \times 141.84}{\pi \times 0.05^3} = 17.34 \times 10^6 \text{ Pas}$

 f_c is taken 1.5 for well designed step.

Maximum bending stress at section 2-2:

$$\sigma_b \approx 2$$
 = $\frac{2 \times 32 \times 113.42}{\pi \times 0.05^3} = 18.5 \times 10^6 \text{ Pas}$

 f_c is taken 2 for milled keyway.

It is apparent that section 2-2 is critical.

68.2Nm 26Nm 23.92Nm 26Nm

Lastly: Verification of Overall factor of safety at Critical Section

As already mentioned earlier, in gear unit design the size of the gear shaft usually biased by the sizes of gears, bearing layout and centre distances.

Particularly in case of shaft integral with the pinion there is little scope of predesigning the shaft.

In such cases maximum stresses in the shaft are estimated identifying critical sections.

Then a <u>factor of safety</u> f_s can be estimated using the following formula, which is base on <u>maximum shear stress theory under combined, bending, torsion and direct normal stresses.</u>

$$\frac{S_y}{f_s} = \sqrt{\left(\sigma_m + k_f \frac{S_y}{S_{en}} \sigma_a\right)^2 + 4\tau_m^2}$$

Where,

 S_{v} = Yield strength of shaft material

 S_{en} = Endurance strength of shaft material

 σ_m = Mean (average) stress at considered section due to axial load.

 σ_a = Maximum alternating stress at considered section due to bending.

 τ_m = Maximum shear stress at considered section due to torsion.

 k_f = A factor considering the feature of section and severity of service. It is chosen considering on what basis σ_a has been calculated.

Verification of Overall factor of safety at Critical Section (Contd...)

In present design, the pinion is integral with shaft therefore shaft material is EN19A.

Therefore, for the critical section 2-2:

$$S_{v}$$
 = 600 MPa,

 $S_{en} =$ 420 MPa (About 45% of S_u for well finished /ground shaft),

$$\sigma_m = f_c \frac{F_a}{\pi d^2} = 2 \times \frac{673.5}{\pi \times 0.05^2}$$
= 0.172×10⁶ Pas

$$\sigma_a = \sigma_{b (3-2)} = 18.5 \times 10^6 \text{ Pas}$$

$$\tau_m = f_c \frac{16T}{\pi d^3} = 2 \times \frac{16 \times 148}{\pi \times 0.05^3}$$

= 12.1×10⁶ Pas

is taken 2 in general for milled single keyway.

<u>Verification of Overall factor of</u> <u>safety at Critical Section (Contd...)</u>

Substituting values f_s for the critical section 2-2 is calculated as follows:

$$\frac{600 \times 10^{6}}{f_{s}} = \sqrt{\left[\left(0.172 + 1.5 \times \frac{600}{420} \times 18.5\right) \times 10^{6}\right]^{2} + 4 \times (12.1 \times 10^{6})^{2}}$$

$$= 46.6 \times 10^{6}$$

Therefore,

$$f_s = \frac{600}{46.6} = 12.87$$

This is highly satisfactory.

Usually f_s is taken as 2.5 to 3.

6th. Step (Contd....) Shaft Design Input Shaft

The Input Shaft is also integral with the 1st. stage pinion.

Therefore, the material is EN19A.

Shaft design verification is done in same way as it is done for intermediate shaft.

Output Shaft

The Output Shaft *not integral* with the gear.

Therefore, medium carbon steel (C40 or C45, Equivalent to EN8), having ultimate strength- 560 MPa and yield strength- 280 Mpa, is taken as the material.

The Shaft diameter is initially estimated on transmitted torque as follows:

$$d_o = \sqrt[3]{\frac{16T_o}{\pi S_{sa}}}$$

In the present design considering a factor of 1.5 with nominal torque the Output torque:

$$T_o = 1.5 \times 31 \times 39.1 = 1818 \text{ Nm}$$

Considering allowable shear stress (S_{sa}) of material is 60 MPa.

Nominal
$$d_o = 53.65 \,\mathrm{mm}$$

Considering the end bearings of ID 55 mm (Say SKF Ball Bearing 6311) Shaft design verification is done same way as is done for intermediate shaft.

Design of a Bevel- Helical Two Stage Gear Box:

IMPORTANT:

Complete the Gear Design, Bearing Selection and Shaft design part and

Complete the full plan view as shown below-

By 14 April, 2017

(Not of the same one as below)

IMPORTANT:

<u>Drawing is Individual Task.</u>

Use Full sheet.

Scale may be 1:1 or 1:2 or 1:2.5

Plan the layout to accommodate

Plan, elevation and side views in single side of the drawing sheet.

A Compensatory class will be held on 15_04_2017 (Saturday) 8:00 am to 11:00 am In MED Drawing Hall

The class test and viva will be held on 17-04-2017 (Monday)

Thank you