[13.40] Let V be an *n*-dimensional vector space, $\mathcal{V} = V \otimes V$ the tensor product of V with itself, and let $Q^{ab} \in \mathcal{V}$ be a $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ -tensor. Let

$$\textbf{Q}^{(ab)} = \frac{1}{2} \Big(\textbf{Q}^{ab} + \textbf{Q}^{ba} \Big)$$
 be the symmetric part

and

$$\mathbf{Q}^{[ab]} = \frac{1}{2} \Big(\mathbf{Q}^{ab} - \mathbf{Q}^{ba} \Big)$$
 be the antisymmetric part.

Define

$$\mathcal{V}_{_{+}}\!=\!\left\{\!\!\!\!\!\!\!\boldsymbol{\mathsf{Q}}^{(ab)}\!:\!\boldsymbol{\mathsf{Q}}^{ab}\in\mathcal{V}\right\}\text{ and }\mathcal{V}_{_{-}}\!=\!\left\{\!\!\!\!\!\boldsymbol{\mathsf{Q}}^{[ab]}\!:\!\boldsymbol{\mathsf{Q}}^{ab}\in\mathcal{V}\right\}\!.$$

Then

dim
$$\mathcal{V}_{+} = \frac{n}{2}(n+1)$$
 and dim $\mathcal{V}_{-} = \frac{n}{2}(n-1)$.

Solution.

Let $\mathscr{B} = \{e^1, \dots, e^n\}$ be the basis for V where $e^k = \begin{pmatrix} 0 \\ \vdots \\ 1_k \\ \vdots \\ 0 \end{pmatrix}$. Set

$$\mathbf{e}^{ab} = \mathbf{e}^{a} \otimes \mathbf{e}^{b} = \left(\begin{array}{cccc} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & \mathbf{1}_{ab} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{array} \right).$$

By definition, $\mathscr{B}=\left\{e^{ab}\right\}$ is a basis for \mathscr{V} , and it has n^2 terms. Observe that $e^{(aa)}=e^{aa}$ and $e^{[aa]}=0$.

So, we define

$$\mathscr{B}_{_{+}} = \left\{ \mathbf{e}^{(ab)} : a \leq b \right\} \text{ and } \mathscr{B}_{_{-}} = \left\{ \mathbf{e}^{[ab]} : a < b \right\}.$$

 \mathcal{B}_{+} has $\frac{n}{2}(n+1)$ terms with $a \le b$ and \mathcal{B}_{-} has $\frac{n}{2}(n-1)$ terms with a < b.

Note: The reason for defining \mathscr{B}_{+} and \mathscr{B}_{-} with $a \le b$ and a < b is that

$$\mathbf{e}^{(ab)} = \mathbf{e}^{(ba)}$$

and

$$\mathbf{e}^{[ba]} = -\mathbf{e}^{[ab]}$$

So, terms with b > a are not independent from the others.

Set $\mathscr{B}=\mathscr{B}_{+}\cup\mathscr{B}_{-}$. Claim \mathscr{B} is a basis for \mathcal{V} :

Consider two typical elements of \mathscr{B} ,

and

 $e^{(ab)}$ and $e^{[ab]}$ are linearly independent because there is no scalar a such that $e^{(ab)} = \alpha \, e^{[ab]}$. Moreover, $\mathscr B$ is a linearly independent set because all other elements of $\mathscr B$ have 0's in the a-b and b-a positions. $\mathcal V$ has dimension n^2 , and since $\mathscr B$ has n^2 independent elements, it is a basis for $\mathcal V$.

Observe that dim span $(\mathscr{B}_{+}) = \frac{n}{2}(n+1)$ and dim span $(\mathscr{B}_{-}) = \frac{n}{2}(n-1)$. We proceed to show that $\mathscr{V}_{+} = \operatorname{span}(\mathscr{B}_{+})$ and $\mathscr{V}_{-} = \operatorname{span}(\mathscr{B}_{-})$, which will complete the problem.

Claim:
$$\mathscr{B}_{+} \subseteq \mathscr{V}_{+}$$
:

Let $E^{ab} = e^{(ab)}$ for a , $b \le n$. When $a \le b$, $E^{ab} \in \mathscr{B}_{+}$ and

$$E^{ab} = e^{(ab)} = \frac{1}{2} \Big(e^{(ab)} + e^{(ab)} \Big) = \frac{1}{2} \Big(e^{(ab)} + e^{(ba)} \Big) = \frac{1}{2} \Big(E^{ab} + E^{ba} \Big) = E^{(ab)} \in \mathscr{V}_{+}$$

$$\Rightarrow \mathscr{B}_{+} \subseteq \mathscr{V}_{+} \qquad \checkmark$$

Claim: $\mathscr{B} \subseteq \mathcal{V}$:

Let
$$F^{ab} = \mathbf{e}^{[ab]}$$
 for a , $b \le n$. When $a < b$, $F^{ab} \in \mathscr{B}_{_}$ and
$$F^{ab} = \mathbf{e}^{[ab]} = \frac{1}{2} \Big(\mathbf{e}^{[ab]} + \mathbf{e}^{[ab]} \Big) = \frac{1}{2} \Big(\mathbf{e}^{[ab]} - \mathbf{e}^{[ba]} \Big) = \frac{1}{2} \Big(F^{ab} - F^{ba} \Big) = F^{[ab]} \in \mathscr{V}_{_}$$
 $\Rightarrow \mathscr{B}_{_} \subseteq \mathscr{V}_{_}$

Thus, Span $(\mathscr{B}_{_{\!+}})\subseteq\mathcal{V}_{_{\!+}}$ and Span $(\mathscr{B}_{_{\!-}})\subseteq\mathcal{V}_{_{\!-}}$.

Consider $\mathbf{Q}^{(ab)} \in \mathcal{V}_{_{\! +}}$.

Denote
$$\mathbf{Q}^{ab} = \left(\begin{array}{ccc} & \vdots & & \\ \cdots & q^{ab} & \cdots \\ & \vdots & \end{array} \right)$$
. Then
$$\mathbf{Q}^{(ab)} = \frac{1}{2} \left(\begin{array}{ccc} & \vdots & & \\ \cdots & q^{ab} + q^{ba} & \cdots \\ \vdots & & \end{array} \right) = \sum_{ab} \frac{1}{2} \left(q^{ab} + q^{ba} \right) \mathbf{e}^{ab}$$
.

Fix a < b:

$$\begin{split} \frac{1}{2} & \left(\boldsymbol{q}^{ab} + \boldsymbol{q}^{ba} \right) \boldsymbol{e}^{ab} + \frac{1}{2} \left(\boldsymbol{q}^{ba} + \boldsymbol{q}^{ab} \right) \boldsymbol{e}^{ba} = \left(\boldsymbol{q}^{ab} + \boldsymbol{q}^{ba} \right) \left[\frac{1}{2} \left(\boldsymbol{e}^{ab} + \boldsymbol{e}^{ba} \right) \right] \\ & = \left(\boldsymbol{q}^{ab} + \boldsymbol{q}^{ba} \right) \boldsymbol{e}^{(ab)} \end{split}$$

Since
$$\mathbf{e}^{aa} = \mathbf{e}^{(aa)}$$
, $\mathbf{Q}^{(ab)} = \sum_{a} q^{aa} \mathbf{e}^{(aa)} + \sum_{a < b} (q^{ab} + q^{ba}) \mathbf{e}^{(ab)} \in \mathrm{Span}(\mathscr{B}_{+})$

Therefore

$$\mathcal{V}_{+} \subseteq \operatorname{Span}(\mathscr{B}_{+}) \Rightarrow \mathcal{V}_{+} = \operatorname{Span}(\mathscr{B}_{+})$$

 $\Rightarrow \dim \mathcal{V}_{+} = \dim \operatorname{Span}(\mathscr{B}_{+}) = \frac{1}{2}n(n+1)$

Similarly, for a < b,

$$\begin{split} \mathbf{Q}^{[ab]} &= \sum_{ab} \frac{1}{2} \Big(q^{ab} - q^{ba} \Big) \mathbf{e}^{ab} = \sum_{a < b} \Big(q^{ab} - q^{ba} \Big) \mathbf{e}^{[ab]} \in \mathrm{Span} \Big(\mathscr{B}_{_} \Big) \\ &\Rightarrow \quad \mathcal{V}_{_} \subseteq \mathrm{Span} \Big(\mathscr{B}_{_} \Big) \quad \Rightarrow \quad \mathcal{V}_{_} = \quad \mathrm{Span} \Big(\mathscr{B}_{_} \Big) \\ &\Rightarrow \quad \dim \, \mathcal{V}_{_} = \dim \, \mathrm{Span} \Big(\mathscr{B}_{_} \Big) = \frac{1}{2} n \Big(n - 1 \Big) \qquad \checkmark \end{split}$$

Note: Since $V_+ \cap V_- = \operatorname{Span}\left(\mathscr{B}_+\right) \cap \operatorname{Span}\left(\mathscr{B}_-\right) = \begin{bmatrix} 0 \end{bmatrix}$, the set containing the zero matrix, then $V = V_+ \oplus V_-$, the sum of disjoint subspaces.

Example with n = 2:

Let

$$e^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $e^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Then $\mathscr{B} = \left\{ e^1, \ e^2 \right\}$ is a basis for V.

Let
$$e^{11} = e^1 \otimes e^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e^{12} = e^1 \otimes e^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,
$$e^{21} = e^2 \otimes e^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and $e^{22} = e^2 \otimes e^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Then $\mathscr{B}=\left\{e^{11},e^{12},e^{21},e^{22}\right\}$ is a basis for $\mathscr{V}=V\otimes V$.

Observe that

$$e^{(11)} = \frac{1}{2} (e^{11} + e^{11}) = e^{11}$$
 and $e^{(22)} = e^{22}$.

These are 2 elements of \mathcal{B}_{+} .

Note that $e^{[11]} = 0 = e^{[22]}$ so they do not contribute to \mathscr{B} .

The other term in \mathscr{B}_{+} is $e^{(12)}$ [which equals $e^{(21)} = \frac{1}{2} (e^{12} + e^{21})$].

The only term in $\mathscr{B}_{_}$ is $e^{[12]}$ (which equals $-e^{[21]}$).

Thus dim
$$V_{+} = \frac{n}{2}(n+1) = 3$$
 and dim $V_{-} = \frac{n}{2}(n-1) = 1$.