

Discrete Structures for Computer Science

Dr.N.L.Bhanu Murthy

What is Mathematics, really?

It's *not* just about numbers!

Mathematics is *much* more than that:

Mathematics is, most generally, the study of <u>any and</u> <u>all</u> truths about <u>any and all</u> well-defined concepts.

But, these concepts can be *about* numbers, symbols, objects, images, sounds, *anything*!

So, what's this class (Discrete Structures for Computer Science) about?

A **set** is an unordered collection of objects called the **elements**.

For example, V = { a, e, i, o, u} is the set of all vowels in the English alphabet.

A **matrix** is a rectangular array of numbers arranged in m horizontal **rows** and n vertical **columns**.

Sets, Matrices etc are all called mathematical objects.

Collection of mathematical objects with operations defined on them and the accompanying properties form a mathematical structure or system.

Example: The collection of sets with the operations of union, intersection, and complement and their accompanying properties is mathematical structure. We denote this structure by (sets, \cap , U, ').

So, what's this class (Discrete Structures for Computer Science) about?

- ✓ What are "discrete structures" anyway?
- ✓ "Discrete" (≠ "discreet"!) Composed of distinct, separable parts.

 (Opposite of continuous.)

 discrete:continuous :: digital:analog

 Example integers, people, house
- ✓ "Discrete Mathematical Structures or Discrete structures" The abstract mathematical structures used to represent discrete objects and relationships between the objects

 Example graphs, sets, relations
- ✓ "Discrete Mathematics" The mathematical study of discrete objects and structures.

Why study this course?

- ✓ Information is stored and manipulated by computers in a discrete fashion. 0101101...
- ✓ Digital computers are based on discrete bits. Therefore, both a computer's
 - structure (circuits) and
 - operations (execution of algorithms)
 can be described by discrete math.
- ✓ The basis of all of computing is: *Discrete manipulations of discrete structures represented in memory.*
- ✓ Discrete Math is the basic language and conceptual foundation for all of computer science.

Discrete Math in Computer Science

- Networking
- Database
- Image Processing
- Programming
- Languages
- Compilers & Interpreters
- Software Engineering

- Artificial Intelligence
- Computer Architecture
- Operating Systems
- Security & Cryptography
- Data Structures
- Algorithms
- Graphics & Animation

What else is remaining in computer science?

Logic is a tool for working with elaborate *compound* statements.

- Propositional Logic
- Predicate Logic
- Equivalences
- Logical Inference

Aristotle (ca. 384-322 B.C.)

Chrysippus of Soli (ca. 281 B.C. – 205 B.C.)

George Boole (1815-1864)

- Methods of proof
 - •Direct proof: Assume *p* is true, and prove *q*.
 - •*Indirect* proof: Assume $\neg q$, and prove $\neg p$.
 - *Vacuous* proof: Prove $\neg p$ by itself.
 - *Trivial* proof: Prove q by itself.
 - •Proof by cases:
 - Proof by Contradiction
 - Proof by Induction
- Fundamental to all mathematical disciplines
- Useful for digital circuits, hardware design

✓ Sets, Relations & Functions

- Sets Fundamental to all mathematical disciplines
- Functions are heavily used in analysis of algorithms
- > Relations as concepts are building blocks modern databases
- Equivalence Relations, Partially Ordered Sets, Lattice Theory

✓ Number Theory & Introduction to Cryptography

- Get to rediscover the old reliable number theory and find out some surprising facts
- Very useful in crypto-systems

✓ Recurrence Relations

✓ Problems solved using recurrence

✓ Graph Theory

- Many clever data-structures for organizing information and making programs highly efficient are based on graph theory
- Very useful in describing problems in
 - Databases
 - Operating Systems
 - Networks
 - EVERY CS DISCIPLINE!!!!

✓ Counting and Combinatorics

- Compute your odds of winning lottery
- Important for predicting how long certain computer program will take to finish
- Pigeonhole principle

Books

- ✓ R1. Kolman, Busby, Ross and Rehman, Discrete Mathematical Structures for Computer Science, Pearson Education, 5th Edition, 2003.
- ✓ R2. Kenneth H. Rosen: Discrete Mathematics and its Applications, Tata McGraw Hill, 5th Edition, 2004 Seventh Edition
- R3. Goodaire & Parmenter : Discrete Mathematics & Graph Theory, Pearson Education, 2000
- ✓ R4. D.S.Malik and M.K.Sen, Discrete Mathematical Structures: Theory and Applications, Thomson, 2004.
- ✓ R5. C.L.Liu, Elements of Discrete Mathematics, 2nd Edition, McGraw Hill, 1986.

Notations

$\neg p$	$p \wedge q$	$p \oplus q$	$p \rightarrow q$	$p \Leftrightarrow q$	$\forall x P(x)$
$\exists x \ P(x)$	$\{a_1,\cdots,a_n\}$	Z, N, R	•	$\{x \mid P(x)\}$	$x \notin S$
Ø	$S \subseteq T$	S	$A \cup B$	\overline{A}	$\bigcap_{i=1}^{n} A_i$
$f:A \to B$	$f^{-1}(x)$	$f \circ g$		$\sum_{\alpha \in S} a_{\alpha}$	$\prod_{i=1}^n a_i$
O,Ω,Θ	min, max	$a \nmid b$	gcd, lcm	mod	$a \equiv b \pmod{m}$
$(a_k\cdots a_0)_b$	$[a_{ij}]$	\mathbf{A}^{T}	AOB	$\mathbf{A}^{[n]}$	$\binom{n}{r}$
$C(n; n_1, \cdots, n_m)$	$p(E \mid F)$	R^*	Δ	$[a]_R$	$\deg^+(v)$

Thank You!!