DIGITAL CIRCUITS

Week-10, Lecture-2 Sequential Circuits

Sneh Saurabh 10th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Latches

SR Latch: Basics

Can you derive function table for an SR Latch?

- **Set State**: When output Q = 1 and Q' = 0
- Reset State: When Q = 0 and Q' = 1
- Outputs Q and Q' are normally the *complement* of each other

S	R	Q	Q'	_
1 0 0 0	0 0 1 0	1 1 0 0	0 0 1 1 0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
1	1	0	0	(forbidden)

SR Latch: Normal operation (Set State)

1 0 0		
$\begin{array}{c cccc} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	1 1	(after $S = 1, R = 0$)
$\begin{array}{c ccc} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}$	0 0 1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)

• Under normal conditions S = R = 0 unless the state has to be changed

Reaching Set State:

- The application of a momentary S = 1 causes the latch to go to the **set state**
 - Then S = 0 is made before any other changes take place, to avoid forbidden input condition (S = R = 1)
 - ➤ When S goes back to 0, the latch still remains in the set state (memory action)

SR Latch: Normal operation (Reset State)

S	R	S	Q
1 1	0 1 1 1	1 1	0
0	1	0	1
1	1	1	1

(forbidden)

Reaching Reset State:

- After S = R = 0, it is possible to go to the *reset state* by momentarily applying a R = 1
- Then R = 0 is made, and the latch still remains in the reset state

• When S = R = 0, the latch can be in either the set or the reset state, depending on which input was most recently a 1

SR Latch: Forbidden State

S	R	Q	Q'
1	0	1	0
0	0 0 1 0 1	1	0
0	1	0	1
0	0	0	1
1	1	0	0

Forbidden state:

- When S = R = 1, Q = Q' = 0
 - ➤ Both outputs are equal to 0 (rather than be mutually complementary)
- Race condition: In the forbidden state, if both inputs are switched to S = R = 0 simultaneously, the device will enter an unpredictable or undefined state
- In practical applications, setting both inputs to 1 is forbidden

SR Latch: Active Low

Can you derive function table for an NAND-based SR Latch?

- Input signals for the NAND-based latch requires the complement of those values used for the NOR-based latch
- Because the NAND latch requires a 0 signal to change its state, it is sometimes referred to as an S'R' latch or $S\bar{R}$ latch (primes indicate active low)

D Latch (Transparent Latch): Basics

- Most widely used latch is D latch for circuit applications
- Eliminates reaching forbidden state in the SR latch by ensuring that inputs *S* and *R* are never equal to 1 at the same time

Can you derive function table for an SR Latch with Enable?

S	R	Q	Q'	_
1 1	0	0	1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	1	1	0	(after $S = 0$, $R = 1$)
0	0	1	1	(forbidden)

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

D Latch (Transparent Latch): Functionality

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

- The D latch holds data in its internal storage
- The binary information present at the data input of the D latch is transferred to the Q output when the enable input is asserted.
- **Transparent latch:** The output follows changes in the data input as long as the enable input is asserted

• When En = 0, the binary information that was present at the data input at the time the transition occurred is retained (i.e., stored) at the Q output [Memory Action]

D Latch (Transparent Latch): Illustration

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

D Latch (Transparent Latch): Active Low Enable

- An inverter can be placed before the *En* pin
- D Latch is enabled when En = 0

Problem: Assuming that the latch is active low enabled, draw the waveform at the Q-pin of the D latch

