

Page 1 of 102 Report No.: EED32K00204201

# TEST REPORT

**Product** Wireless Digital Video Monitoring System

Trade mark **Infant Optics** 

Model/Type reference DXR-8 N/A **Serial Number** 

**Report Number** EED32K00204201 FCC ID 2AAAM-DXR-8PU-2

Date of Issue : Aug. 21, 2018

**Test Standards** : 47 CFR Part 15 Subpart C

Test result **PASS** 

Prepared for:

STANDARD MERIT INDUSTRIAL LIMITED 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

> > Report Seal

Tested By:

Peter (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Aug. 21, 2018

Tom chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 3336814271







# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | Aug. 21, 2018 | Original    |
|             |               |             |
|             | (25)          |             |











































































Report No. : EED32K00204201 Page 3 of 102

3 Test Summary

| rest Summary                            |                                                                                      | /**              |        |  |
|-----------------------------------------|--------------------------------------------------------------------------------------|------------------|--------|--|
| Test Item                               | Test Requirement                                                                     | Test method      | Result |  |
| Antenna Requirement                     | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c)                                | ANSI C63.10-2013 | PASS   |  |
| AC Power Line Conducted<br>Emission     | 47 CFR Part 15 Subpart C Section<br>15.207                                           | ANSI C63.10-2013 | PASS   |  |
| Conducted Peak Output<br>Power          | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(1)                                    | ANSI C63.10-2013 | PASS   |  |
| 20dB Occupied Bandwidth                 | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |  |
| Carrier Frequencies Separation          | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |  |
| Hopping Channel Number                  | 47 CFR Part 15 Subpart C Section<br>15.247 (b)                                       | ANSI C63.10-2013 | PASS   |  |
| Dwell Time                              | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |  |
| Pseudorandom Frequency Hopping Sequence | 47 CFR Part 15 Subpart C Section<br>15.247(b)(4)&TCB Exclusion List<br>(7 July 2002) | ANSI C63.10-2013 | PASS   |  |
| RF Conducted Spurious<br>Emissions      | 47 CFR Part 15 Subpart C Section 15.247(d)                                           | ANSI C63.10-2013 | PASS   |  |
| Radiated Spurious emissions             | 47 CFR Part 15 Subpart C Section<br>15.205/15.209                                    | ANSI C63.10-2013 | PASS   |  |
| Comork:                                 | 163.                                                                                 | (6.5             | 10.0   |  |

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.





Report No.: EED32K00204201 Page 4 of 102

# 4 Content

| 1 COVER PAGE                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                                       |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|---|
| 2 VERSION                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                       |       |   |
| 3 TEST SUMMARY                                                                                                                                                                                                                                                                                                           | •••••                                                                                 | •••••                                                                 | ••••• |   |
| 4 CONTENT                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                       |       | 4 |
| 5 TEST REQUIREMENT                                                                                                                                                                                                                                                                                                       |                                                                                       | •••••                                                                 |       |   |
| 5.1.2 For Radiated Emis                                                                                                                                                                                                                                                                                                  | t setupssions test setup                                                              |                                                                       |       | ( |
| 6 GENERAL INFORMATION                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                       |       |   |
| 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUPPO 6.5 TEST LOCATION 6.6 DEVIATION FROM STAND 6.7 ABNORMALITIES FROM S 6.8 OTHER INFORMATION RE 6.9 MEASUREMENT UNCERT.                                                                                                   | OF EUT  N SUBJECTIVE TO THIS SERT UNITS  ARDS  TANDARD CONDITIONS.EQUESTED BY THE CUS | STANDARD                                                              |       |   |
| 7 EQUIPMENT LIST                                                                                                                                                                                                                                                                                                         | V-9-3                                                                                 |                                                                       |       |   |
| 8 RADIO TECHNICAL REQU                                                                                                                                                                                                                                                                                                   |                                                                                       |                                                                       |       |   |
| Appendix A): 20dB Occu<br>Appendix B): Carrier Fre<br>Appendix C): Dwell Time<br>Appendix D): Hopping C<br>Appendix E): Conducted<br>Appendix F): Band-edge<br>Appendix G): RF Condu<br>Appendix H): Pseudorar<br>Appendix I): Antenna Re<br>Appendix J): AC Power<br>Appendix K): Restricted<br>Appendix L): Radiated S | upied Bandwidthequency Separationehannel Number                                       | missions<br>ons<br>oing Sequence<br>sion<br>nental frequency (Radiate | ed)   |   |
| PHOTOGRAPHS OF TEST S                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                       |       |   |
| PHOTOGRAPHS OF EUT CO                                                                                                                                                                                                                                                                                                    | ONSTRUCTIONAL DI                                                                      | ETAILS                                                                |       | 8 |



Report No.: EED32K00204201 Page 5 of 102

# 5 Test Requirement

## 5.1 Test setup

## 5.1.1 For Conducted test setup



### 5.1.2 For Radiated Emissions test setup

#### Radiated Emissions setup:



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Figure 3. Above 1GHz





Report No. : EED32K00204201 Page 6 of 102

## 5.1.3 For Conducted Emissions test setup

# **Conducted Emissions setup**



## 5.2 Test Environment

| Operating Environment: | 0.       | 6 |  |
|------------------------|----------|---|--|
| Temperature:           | 24°C     |   |  |
| Humidity:              | 56 % RH  |   |  |
| Atmospheric Pressure:  | 1010mbar |   |  |

# 5.3 Test Condition

| Test Mode        | Tx                                                                                    | RF Channel  |             |             |  |
|------------------|---------------------------------------------------------------------------------------|-------------|-------------|-------------|--|
| rest Mode        | 1X                                                                                    | Low(L)      | Middle(M)   | High(H)     |  |
| CECK             | 2410.875MHz ~2471.625MHz                                                              | Channel 1   | Channel 10  | Channel19   |  |
| GFSK             |                                                                                       | 2410.875MHz | 2441.250MHz | 2471.625MHz |  |
| Transmitter mode | The EUT transmitted the continuous modulation test signal at the specific channel(s). |             |             |             |  |





Report No.: EED32K00204201 Page 7 of 102

# 6 General Information

## **6.1 Client Information**

| Applicant:               | STANDARD MERIT INDUSTRIAL LIMITED                                                |
|--------------------------|----------------------------------------------------------------------------------|
| Address of Applicant:    | 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong                  |
| Manufacturer:            | Foshan Shunde Alford Electronics Co., Ltd                                        |
| Address of Manufacturer: | Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China |
| Factory:                 | Foshan Shunde Alford Electronics Co., Ltd                                        |
| Address of Factory:      | Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China |

# 6.2 General Description of EUT

| Product Name:                    | Wireless Digital Vide  | Wireless Digital Video Monitoring System                                  |  |  |  |  |
|----------------------------------|------------------------|---------------------------------------------------------------------------|--|--|--|--|
| Model No.(EUT):                  | DXR-8                  | DXR-8                                                                     |  |  |  |  |
| Trade mark:                      | Infant Optics          | Infant Optics                                                             |  |  |  |  |
| EUT Supports Radios application: | 2410.875MHz ~247       | 2410.875MHz ~2471.625MHz                                                  |  |  |  |  |
|                                  | AC Adapter 1           | Model:BLJ06W050055P1-U,<br>Input:100-240V~50/60Hz,0.2A, Output:5V = 550mA |  |  |  |  |
| Power Supply:                    | AC Adapter 2           | Model:CS3B050055FU,<br>Input:100-240V~50/60Hz,0.2A, Output:5V==550mA      |  |  |  |  |
|                                  | LITHIUM-ION<br>BATTERY | DC 3.7V, 1200mAh                                                          |  |  |  |  |
| USB Power cable line 1:          | 100cm(Unshielded)      | S (S)                                                                     |  |  |  |  |
| USB Power cable line 2:          | 100cm(Unshielded)      |                                                                           |  |  |  |  |
| Sample Received Date:            | Aug. 01, 2018          |                                                                           |  |  |  |  |
| Sample tested Date:              | Aug. 01, 2018 to Au    | Aug. 01, 2018 to Aug. 17, 2018                                            |  |  |  |  |

# 6.3 Product Specification subjective to this standard

| Operation Frequency:  | 2410.875MHz ~2471.6                | 325MHz               | (25)  |  |  |
|-----------------------|------------------------------------|----------------------|-------|--|--|
| Modulation Technique: | Frequency Hopping Sp               | oread Spectrum(FHSS) |       |  |  |
| Modulation Type:      | GFSK                               |                      |       |  |  |
| Number of Channel:    | 19                                 |                      |       |  |  |
| Hopping Channel Type: | Adaptive Frequency Hopping systems |                      |       |  |  |
| Hardware Version:     | 4V2(manufacturer declare)          |                      |       |  |  |
| Software Version:     | V46(manufacturer dec               | lare)                |       |  |  |
| Antenna Type:         | Permanent external co              | nnecter antenna      |       |  |  |
| Antenna Gain:         | 0dBi                               |                      | Cin . |  |  |
| Test Voltage:         | AC 120V, 60Hz                      | (6,                  |       |  |  |
|                       |                                    |                      |       |  |  |













Report No. : EED32K00204201 Page 8 of 102

| Operation | Frequency ea       | ch of channe | l                  | 200     |                    |         |                    |
|-----------|--------------------|--------------|--------------------|---------|--------------------|---------|--------------------|
| Channel   | Frequency<br>(MHz) | Channel      | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 1         | 2410.875           | 6            | 2427.750           | 11      | 2444.625           | 16      | 2461.500           |
| 2         | 2414.250           | 7            | 2431.125           | 12      | 2448.00            | 17      | 2464.875           |
| 3         | 2417.625           | 8            | 2434.500           | 13      | 2451.375           | 18      | 2468.2500          |
| 4         | 2421.000           | 9            | 2437.875           | 14      | 2454.750           | 19      | 2471.625           |
| 5         | 2424.375           | 10           | 2441.250           | 15      | 2458.125           |         | 4-40               |

## 6.4 Description of Support Units

The EUT has been tested with associated equipment below.

| Associated equipment name | Manufacture                                | model           | S/N<br>serial number | Supplied by | Certification |
|---------------------------|--------------------------------------------|-----------------|----------------------|-------------|---------------|
| AE1 AC Adapter            | Zhongshan Baolijin<br>Electronic Co., Ltd. | BLJ05L050055U-U |                      | Client      | FCC           |

#### 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

#### 6.6 Deviation from Standards

None.

### 6.7 Abnormalities from Standard Conditions

None.

# 6.8 Other Information Requested by the Customer

None.

# 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| No. | ltem                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2   | DE nower conducted              | 0.31dB (30MHz-1GHz)     |
| 2   | RF power, conducted             | 0.57dB (1GHz-18GHz)     |
| 2   | Dedicted Courieus amission test | 4.5dB (30MHz-1GHz)      |
| 3   | Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)   |
| 4   | Conduction aminging             | 3.6dB (9kHz to 150kHz)  |
| 4   | Conduction emission             | 3.2dB (150kHz to 30MHz) |
| 5   | Temperature test                | 0.64°C                  |
| 6   | Humidity test                   | 2.8%                    |
| 7   | DC power voltages               | 0.025%                  |
|     | 217                             | ·                       |



Report No. : EED32K00204201 Page 9 of 102

7 Equipment List

| RF test system             |              |                                  |                  |                           |                                      |  |  |
|----------------------------|--------------|----------------------------------|------------------|---------------------------|--------------------------------------|--|--|
| Equipment                  | Manufacturer | Model No.                        | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due<br>date<br>(mm-dd-<br>yyyy) |  |  |
| Signal Generator           | Keysight     | E8257D                           | MY53401106       | 03-13-2018                | 03-12-2019                           |  |  |
| Spectrum Analyzer          | Keysight     | N9010A                           | MY54510339       | 03-13-2018                | 03-12-2019                           |  |  |
| Signal Generator           | Keysight     | N5182B                           | MY53051549       | 03-13-2018                | 03-12-2019                           |  |  |
| High-pass filter           | Sinoscite    | FL3CX03WG18<br>NM12-0398-<br>002 |                  | 01-10-2018                | 01-09-2019                           |  |  |
| power meter & power sensor | R&S          | OSP120                           | 101374           | 04-11-2018                | 04-10-2019                           |  |  |
| RF control unit            | JS Tonscend  | JS0806-2                         | 2015860006       | 03-13-2018                | 03-12-2019                           |  |  |

|                                 | N. 71        |                |                  | 1.200.00                  | 1 200                         |
|---------------------------------|--------------|----------------|------------------|---------------------------|-------------------------------|
|                                 | Coi          | nducted distur | bance Test       |                           |                               |
| Equipment                       | Manufacturer | Model No.      | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| Receiver                        | R&S          | ESCI           | 100435           | 05-25-2018                | 05-24-2019                    |
| Temperature/ Humidity Indicator | Belida       | TT-512         | A19              | 01-24-2018                | 01-23-2019                    |
| LISN                            | R&S          | ENV216         | 100098           | 05-11-2018                | 05-10-2019                    |





Page 10 of 102

|                                    | 3M Se        | emi/full-anech                   | oic Chamber       |                           |                               |
|------------------------------------|--------------|----------------------------------|-------------------|---------------------------|-------------------------------|
| Equipment                          | Manufacturer | Model No.                        | Serial<br>Number  | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber & Accessory Equipment   | TDK          | SAC-3                            |                   | 06-04-2016                | 06-03-2019                    |
| TRILOG Broadband<br>Antenna        | SCHWARZBECK  | VULB9163                         | 9163-617          | 03-29-2018                | 03-28-2019                    |
| Microwave Preamplifier             | Tonscend     | EMC051845<br>SE                  | 980380            | 01-19-2018                | 01-18-2019                    |
| Microwave Preamplifier             | EMCI         | EMC001330                        | 980563            | 06-20-2018                | 06-19-2019                    |
| Horn Antenna                       | Schwarzbeck  | 3117                             | 00057407          | 04-25-2018                | 04-23-2021                    |
| Loop Antenna                       | ETS          | 6502                             | 00071730          | 06-22-2017                | 06-21-2019                    |
| Microwave Preamplifier             | A.H.SYSTEMS  | PAP-1840-<br>60                  | 6041.6042         | 06-05-2018                | 06-03-2021                    |
| Double Ridge Guide<br>Horn Antenna | A.H.SYSTEMS  | SAS-574                          | 374               | 06-05-2018                | 06-03-2021                    |
| Spectrum Analyzer                  | R&S          | FSP40                            | 100416            | 05-11-2018                | 05-10-2019                    |
| Receiver                           | R&S          | ESCI                             | 100435            | 05-25-2018                | 05-24-2019                    |
| LISN                               | schwarzbeck  | NNBM8125                         | 81251547          | 05-11-2018                | 05-10-2019                    |
| LISN                               | schwarzbeck  | NNBM8125                         | 81251548          | 05-11-2018                | 05-10-2019                    |
| Signal Generator                   | Agilent      | E4438C                           | MY45095744        | 03-13-2018                | 03-12-2019                    |
| Signal Generator                   | Keysight     | E8257D                           | MY53401106        | 03-13-2018                | 03-12-2019                    |
| Temperature/ Humidity Indicator    | TAYLOR       | 1451                             | 1905              | 05-02-2018                | 05-01-2019                    |
| Communication test set             | Agilent      | E5515C                           | GB47050534        | 03-16-2018                | 03-15-2019                    |
| Cable line                         | Fulai(7M)    | SF106                            | 5219/6A           | 01-10-2018                | 01-09-2019                    |
| Cable line                         | Fulai(6M)    | SF106                            | 5220/6A           | 01-10-2018                | 01-09-2019                    |
| Cable line                         | Fulai(3M)    | SF106                            | 5216/6A           | 01-10-2018                | 01-09-2019                    |
| Cable line                         | Fulai(3M)    | SF106                            | 5217/6A           | 01-10-2018                | 01-09-2019                    |
| Communication test set             | R&S          | CMW500                           | 152394            | 03-16-2018                | 03-15-2019                    |
| High-pass filter                   | Sinoscite    | FL3CX03WG<br>18NM12-<br>0398-002 |                   | 01-10-2018                | 01-09-2019                    |
| band rejection filter              | Sinoscite    | FL5CX01CA<br>09CL12-<br>0395-001 |                   | 01-10-2018                | 01-09-2019                    |
| band rejection filter              | Sinoscite    | FL5CX01CA<br>08CL12-<br>0393-001 |                   | 01-10-2018                | 01-09-2019                    |
| band rejection filter              | Sinoscite    | FL5CX02CA<br>04CL12-<br>0396-002 | ( <del>1</del> 2) | 01-10-2018                | 01-09-2019                    |
| band rejection filter              | Sinoscite    | FL5CX02CA<br>03CL12-<br>0394-001 |                   | 01-10-2018                | 01-09-2019                    |















# 8 Radio Technical Requirements Specification

Reference documents for testing:

| N | 0. | Identity         | Document Title                                                    |
|---|----|------------------|-------------------------------------------------------------------|
| 1 | 1  | FCC Part15C      | Subpart C-Intentional Radiators                                   |
| 2 | 2  | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices |

### **Test Results List:**

| Test requirement                     | Test method | Test item                                                          | Verdict | Note        |
|--------------------------------------|-------------|--------------------------------------------------------------------|---------|-------------|
| Part15C Section<br>15.247 (a)(1)     | ANSI 63.10  | 20dB Occupied<br>Bandwidth                                         | PASS    | Appendix A) |
| Part15C Section<br>15.247 (a)(1)     | ANSI 63.10  | Carrier Frequencies<br>Separation                                  | PASS    | Appendix B) |
| Part15C Section 15.247 (a)(1)        | ANSI 63.10  | Dwell Time                                                         | PASS    | Appendix C) |
| Part15C Section<br>15.247 (b)        | ANSI 63.10  | Hopping Channel Number                                             | PASS    | Appendix D) |
| Part15C Section<br>15.247 (b)(1)     | ANSI 63.10  | Conducted Peak Output<br>Power                                     | PASS    | Appendix E) |
| Part15C Section<br>15.247(d)         | ANSI 63.10  | Band-edge for RF<br>Conducted Emissions                            | PASS    | Appendix F) |
| Part15C Section<br>15.247(d)         | ANSI 63.10  | RF Conducted Spurious<br>Emissions                                 | PASS    | Appendix G) |
| Part15C Section 15.247 (a)(1)        | ANSI 63.10  | Pseudorandom<br>Frequency<br>Hopping Sequence                      | PASS    | Appendix H) |
| Part15C Section<br>15.203/15.247 (c) | ANSI 63.10  | Antenna Requirement                                                | PASS    | Appendix I) |
| Part15C Section<br>15.207            | ANSI 63.10  | AC Power Line<br>Conducted<br>Emission                             | PASS    | Appendix J) |
| Part15C Section<br>15.205/15.209     | ANSI 63.10  | Restricted bands around fundamental frequency (Radiated) Emission) | PASS    | Appendix K) |
| Part15C Section<br>15.205/15.209     | ANSI 63.10  | Radiated Spurious<br>Emissions                                     | PASS    | Appendix L) |













Report No. : EED32K00204201 Page 12 of 102

# Appendix A): 20dB Occupied Bandwidth

### **Test Result**

| Mode | Channel. | 20dB Bandwidth<br>[MHz] | 99% OBW [MHz] | Verdict | Remark   |
|------|----------|-------------------------|---------------|---------|----------|
| GFSK | LCH      | 3.806                   | 3.4438        | PASS    | (0,      |
| GFSK | MCH      | 3.610                   | 3.4273        | PASS    | Peak     |
| GFSK | НСН      | 3.584                   | 3.4301        | PASS    | detector |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.





Report No. : EED32K00204201 Page 13 of 102

# **Test Graph**















Report No. : EED32K00204201 Page 14 of 102

# **Appendix B): Carrier Frequency Separation**

## **Result Table**

| Mode | Channel. | Carrier Frequency Separation [MHz] | Verdict |
|------|----------|------------------------------------|---------|
| GFSK | LCH      | 3.384                              | PASS    |
| GFSK | MCH      | 3.368                              | PASS    |
| GFSK | НСН      | 3.400                              | PASS    |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.





Report No. : EED32K00204201 Page 15 of 102

# **Test Graph**















Report No. : EED32K00204201 Page 16 of 102

# Appendix C): Dwell Time

## **Result Table**

| Mode | Channel | Observe<br>time[s] | one set of pulses[ms] | pulses<br>within 1s | Dwell<br>Time[s] | Verdict |
|------|---------|--------------------|-----------------------|---------------------|------------------|---------|
| GFSK | LCH     | 7.6                | 2.52                  | 19                  | 0.363            | PASS    |
| GFSK | MCH     | 7.6                | 2.52                  | 20                  | 0.383            | PASS    |
| GFSK | HCH     | 7.6                | 2.52                  | 18                  | 0.345            | PASS    |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.





Report No. : EED32K00204201 Page 17 of 102

# **Test Graph**























Report No. : EED32K00204201 Page 20 of 102

# **Appendix D): Hopping Channel Number**

## **Result Table**

| Mo | ode | Channel. | Number of Hopping Channel | Verdict |
|----|-----|----------|---------------------------|---------|
| GF | SK  | Нор      | 19                        | PASS    |

Remark: Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

**Test Graph** 







Report No.: EED32K00204201 Page 21 of 102

# Appendix E): Conducted Peak Output Power

## **Result Table**

| Mode | Channel. | Maximum Peak Output Power [dBm] | Verdict |
|------|----------|---------------------------------|---------|
| GFSK | LCH      | 13.112                          | PASS    |
| GFSK | MCH      | 12.279                          | PASS    |
| GFSK | НСН      | 11.767                          | PASS    |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.





Report No. : EED32K00204201 Page 22 of 102

# **Test Graph**















Report No.: EED32K00204201 Page 23 of 102

# Appendix F): Band-edge for RF Conducted Emissions

#### **Result Table**

| Mode  | Channel | Carrier<br>Frequency<br>[MHz] | Carrier<br>Power<br>[dBm] | Frequency<br>Hopping | Max Spurious<br>Level [dBm] | Limit<br>[dBm] | Verdict |
|-------|---------|-------------------------------|---------------------------|----------------------|-----------------------------|----------------|---------|
| 05014 |         | (0,0)                         | 9.087                     | Off                  | -42.497                     | -10.91         | PASS    |
| GFSK  | LCH     | 2410.875                      | 12.346                    | On                   | -41.651                     | -7.65          | PASS    |
|       |         |                               | 6.990                     | Off                  | -40.139                     | -13.01         | PASS    |
| GFSK  | HCH     | 2471.625                      | 9.982                     | On                   | -36.887                     | -10.02         | PASS    |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.













Report No. : EED32K00204201 Page 25 of 102

# **Appendix G): RF Conducted Spurious Emissions**

## **Result Table**

| Mode | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
|------|---------|------------|--------------------------------------|---------|
| GFSK | LCH     | 8.297      | <limit< th=""><th>PASS</th></limit<> | PASS    |
| GFSK | MCH     | 7.779      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| GFSK | НСН     | 6.458      | <limit< td=""><td>PASS</td></limit<> | PASS    |

Remark : Pretest the four adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.





Report No. : EED32K00204201 Page 26 of 102

# **Test Graph**





























## Appendix H): Pseudorandom Frequency Hopping Sequence

#### Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### **EUT Pseudorandom Frequency Hopping Sequence**

The embedded FHSS engine uses 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875MHz to 2471.625MHz with separating in 3.375MHz apart from each of the channels. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list. Each channel is occupied 3.45milliseconds. Typically, the initiation of an FHSS communication is as follows:

- 1. The initiating party sends a request via a predefined frequency or control channel.
- 2. The receiving party sends a number, known as a seed back to the initiating party.
- 3. The initiating party sends a synchronization signal acknowledging to the receiving party as it has successfully established a transmission link.
- 4. The communication begins, and both the receiving and the sending party change their frequencies along an unpredictable hopping sequence with pseudorandom properties.

#### Pseudorandom Frequency Hopping Sequence:

2410.875; 2414.250; 2417.625; 2421.000; 2424.375; 2427.750; 2431.125; 2434.500; 2437.875; 2441.250; 2444.625; 2448.000; 2451.375; 2454.750; 2458.125; 2461.500; 2464.875; 2468.250; 2471.625.

#### System Receiver Input Bandwidth:

The receiver bandwidth is equal to the receiver bandwidth in the 19 hopping channel mode. The receiver bandwidth was verified during RF hopping to the relative channel.

#### Receiver Hopping Capability:

The associated receiver has the ability to shift frequencies in synchronization with the transmitted signals, with they start connect with a same channel and then hop to next channel with a same formula among each other.





Report No.: EED32K00204201 Page 29 of 102

## Appendix I): Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is 2.4GHz permanent external connector antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.







Report No. : EED32K00204201 Page 30 of 102

# Appendix J): AC Power Line Conducted Emission

|                                         | 100                                                              | ency range :150KHz-                                                                                                              |                                                                                                                                                                             | (0,)                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 2) The EU<br>Stabiliz<br>power<br>which w<br>for the<br>multiple | T was connected to ation Network) whic cables of all other universe bonded to the granit being measured power cables to a second | ce voltage test was co<br>AC power source thro<br>n provides a 50Ω/50µ<br>nits of the EUT were<br>ound reference plane<br>d. A multiple socket of<br>single LISN provided t | ough a LISN 1 (Line $_{\rm H}$ H + 5 $_{\rm H}$ linear impersonmented to a section the same way as outlet strip was used | Impedance The cond LISN 2 the LISN do not to connect the connect to connect the light to connect the light to connect the light the connect the light the connect the light the connect the light th |
|                                         | referen                                                          | etop EUT was place                                                                                                               | ed upon a non-metalli<br>or-standing arrangem                                                                                                                               |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 4) The tes<br>EUT sh<br>referen<br>1 was<br>ground<br>plane.     | t was performed with all be 0.4 m from the ce plane was bonde placed 0.8 m from the reference plane for this distance was be     | h a vertical ground re-<br>e vertical ground refer<br>d to the horizontal gro<br>he boundary of the u<br>r LISNs mounted or<br>etween the closest po                        | ence plane. The verbund reference plan init under test and lan top of the groun ints of the LISN 1 a                     | rtical ground<br>e. The LISN<br>bonded to a<br>d reference<br>nd the EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | LISN 2                                                           |                                                                                                                                  | nd associated equipm                                                                                                                                                        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | of the in                                                        |                                                                                                                                  | emission, the relative<br>be changed accordin                                                                                                                               |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mit:                                    | 6                                                                | <u> </u>                                                                                                                         | (6)                                                                                                                                                                         | (6.)                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                  |                                                                                                                                  | Limit (d                                                                                                                                                                    | BuV)                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | Freque                                                           | ncy range (MHz)                                                                                                                  | Quasi-peak                                                                                                                                                                  | Average                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 130                                                              | 0.15-0.5                                                                                                                         | 66 to 56*                                                                                                                                                                   | 56 to 46*                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                  | 0.5-5                                                                                                                            | 56                                                                                                                                                                          | 46                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                                                                  |                                                                                                                                  |                                                                                                                                                                             |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                  | 5-30                                                                                                                             | 60                                                                                                                                                                          | 50                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | MHz to                                                           | 0.50 MHz.                                                                                                                        | 60 with the logarithm of the transition                                                                                                                                     | 215                                                                                                                      | range 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | MHz to                                                           | decreases linearly v                                                                                                             |                                                                                                                                                                             | the frequency in the                                                                                                     | range 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| initial pre-scan wa<br>asi-Peak and Ave | MHz to NOTE : The as performed on                                | decreases linearly v<br>0.50 MHz.<br>e lower limit is applic<br>the live and neutral li                                          | with the logarithm of                                                                                                                                                       | the frequency in the<br>frequency<br>or.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| initial pre-scan wa<br>asi-Peak and Ave | MHz to NOTE : The as performed on                                | decreases linearly v<br>0.50 MHz.<br>e lower limit is applic<br>the live and neutral li                                          | with the logarithm of the cable at the transition nes with peak detector                                                                                                    | the frequency in the<br>frequency<br>or.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | MHz to NOTE : The as performed on                                | decreases linearly v<br>0.50 MHz.<br>e lower limit is applic<br>the live and neutral li                                          | with the logarithm of the cable at the transition nes with peak detector                                                                                                    | the frequency in the<br>frequency<br>or.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$ 



Page 31 of 102

### Adapter 1: BLJ06W050055P1-U

Live line: 80.0 dBuV



| No. | Freq.   | Reading_Level<br>(dBuV) |       |       | Correct<br>Factor | Measurement<br>(dBuV) |       |       | Limit<br>(dBu∀) |       | Margin<br>(dB) |        |     |         |
|-----|---------|-------------------------|-------|-------|-------------------|-----------------------|-------|-------|-----------------|-------|----------------|--------|-----|---------|
|     | MHz     | Peak                    | QP    | AVG   | dB                | peak                  | QP    | AVG   | QP              | AVG   | QP             | AVG    | P/F | Comment |
| 1   | 0.1620  | 47.33                   | 44.25 | 22.02 | 9.75              | 57.08                 | 54.00 | 31.77 | 65.36           | 55.36 | -11.36         | -23.59 | Р   |         |
| 2   | 0.2220  | 40.74                   | 37.45 | 22.64 | 9.73              | 50.47                 | 47.18 | 32.37 | 62.74           | 52.74 | -15.56         | -20.37 | Р   |         |
| 3   | 0.3260  | 35.83                   | 32.66 | 10.40 | 9.77              | 45.60                 | 42.43 | 20.17 | 59.55           | 49.55 | -17.12         | -29.38 | Р   |         |
| 4   | 0.7060  | 29.83                   | 26.35 | 14.42 | 9.75              | 39.58                 | 36.10 | 24.17 | 56.00           | 46.00 | -19.90         | -21.83 | Р   |         |
| 5   | 4.1340  | 23.69                   | 20.18 | 12.46 | 9.65              | 33.34                 | 29.83 | 22.11 | 56.00           | 46.00 | -26.17         | -23.89 | Р   |         |
| 6   | 16.5459 | 31.57                   | 27.85 | 20.74 | 10.03             | 41.60                 | 37.88 | 30.77 | 60.00           | 50.00 | -22.12         | -19.23 | Р   |         |





Page 32 of 102

### Neutral line:



| No | . Freq. | Reading_Level<br>(dBuV) |       |       | Correct<br>Factor | Measurement<br>(dBuV) |       |       | Limit<br>(dBuV) |       | Margin<br>(dB) |        |     |         |
|----|---------|-------------------------|-------|-------|-------------------|-----------------------|-------|-------|-----------------|-------|----------------|--------|-----|---------|
|    | MHz     | Peak                    | QP    | AVG   | dB                | peak                  | QP    | AVG   | QP              | AVG   | QP             | AVG    | P/F | Comment |
| 1  | 0.1660  | 47.64                   | 44.32 | 25.22 | 9.75              | 57.39                 | 54.07 | 34.97 | 65.15           | 55.15 | -11.08         | -20.18 | Р   |         |
| 2  | 0.2340  | 43.61                   | 40.12 | 19.56 | 9.73              | 53.34                 | 49.85 | 29.29 | 62.30           | 52.30 | -12.45         | -23.01 | Р   |         |
| 3  | 0.2940  | 37.76                   | 34.25 | 18.24 | 9.78              | 47.54                 | 44.03 | 28.02 | 60.41           | 50.41 | -16.38         | -22.39 | Р   |         |
| 4  | 0.7260  | 27.14                   | 24.16 | 12.45 | 9.75              | 36.89                 | 33.91 | 22.20 | 56.00           | 46.00 | -22.09         | -23.80 | Р   |         |
| 5  | 1.1100  | 19.86                   | 16.33 | 5.81  | 9.72              | 29.58                 | 26.05 | 15.53 | 56.00           | 46.00 | -29.95         | -30.47 | Р   |         |
| 6  | 15.7220 | 32.93                   | 29.85 | 22.95 | 10.02             | 42.95                 | 39.87 | 32.97 | 60.00           | 50.00 | -20.13         | -17.03 | Р   |         |







































Page 33 of 102

### Adapter 2: CS3B050055FU

Live line:



| No. | Freq.   | Reading_Level<br>(dBuV) |       |       | Correct<br>Factor | Measurement<br>(dBuV) |       |       | Limit<br>(dBuV) |       | Margin<br>(dB) |        |     |         |
|-----|---------|-------------------------|-------|-------|-------------------|-----------------------|-------|-------|-----------------|-------|----------------|--------|-----|---------|
|     | MHz     | Peak                    | QP    | AVG   | dB                | peak                  | QP    | AVG   | QP              | AVG   | QP             | AVG    | P/F | Comment |
| 1   | 0.1539  | 33.11                   | 30.47 | 11.91 | 9.76              | 42.87                 | 40.23 | 21.67 | 65.78           | 55.78 | -25.55         | -34.11 | Р   |         |
| 2   | 0.3140  | 28.38                   | 25.32 | 19.49 | 9.78              | 38.16                 | 35.10 | 29.27 | 59.86           | 49.86 | -24.76         | -20.59 | Р   |         |
| 3   | 1.0420  | 27.69                   | 24.11 | 15.88 | 9.72              | 37.41                 | 33.83 | 25.60 | 56.00           | 46.00 | -22.17         | -20.40 | Р   |         |
| 4   | 2.4860  | 25.36                   | 22.15 | 15.61 | 9.70              | 35.06                 | 31.85 | 25.31 | 56.00           | 46.00 | -24.15         | -20.69 | Р   |         |
| 5   | 3.7780  | 28.49                   | 26.35 | 16.07 | 9.66              | 38.15                 | 36.01 | 25.73 | 56.00           | 46.00 | -19.99         | -20.27 | Р   |         |
| 6   | 22.3180 | 27.02                   | 25.48 | 12.52 | 10.12             | 37.14                 | 35.60 | 22.64 | 60.00           | 50.00 | -24.40         | -27.36 | Р   |         |



































| No. | Freq.  | Reading_Level<br>(dBuV) |       |       | Correct<br>Factor | Measurement<br>(dBuV) |       |       | Limit<br>(dBu∀) |       | Margin<br>(dB) |        |     |         |
|-----|--------|-------------------------|-------|-------|-------------------|-----------------------|-------|-------|-----------------|-------|----------------|--------|-----|---------|
|     | MHz    | Peak                    | QP    | AVG   | dB                | peak                  | QP    | AVG   | QP              | AVG   | QP             | AVG    | P/F | Comment |
| 1   | 0.3140 | 25.35                   | 22.36 | 12.08 | 9.78              | 35.13                 | 32.14 | 21.86 | 59.86           | 49.86 | -27.72         | -28.00 | Ρ   |         |
| 2   | 0.7620 | 22.20                   | 19.85 | 7.98  | 9.74              | 31.94                 | 29.59 | 17.72 | 56.00           | 46.00 | -26.41         | -28.28 | Р   |         |
| 3   | 1.1420 | 22.41                   | 19.46 | 8.52  | 9.72              | 32.13                 | 29.18 | 18.24 | 56.00           | 46.00 | -26.82         | -27.76 | Р   |         |
| 4   | 2.3300 | 21.79                   | 18.74 | 7.09  | 9.71              | 31.50                 | 28.45 | 16.80 | 56.00           | 46.00 | -27.55         | -29.20 | Р   |         |
| 5   | 3.7900 | 24.96                   | 21.56 | 11.46 | 9.66              | 34.62                 | 31.22 | 21.12 | 56.00           | 46.00 | -24.78         | -24.88 | Р   |         |
| 6   | 7.4420 | 20.72                   | 17.44 | 11.71 | 9.64              | 30.36                 | 27.08 | 21.35 | 60.00           | 50.00 | -32.92         | -28.65 | Р   |         |





Page 35 of 102

#### **USB Power cable line 1: BLJ**





| No   | Freq.  |       | ding_Le | vel   | Correct<br>Factor | Measurement<br>(dBuV) |        |       | Limit<br>(dBuV) |        | Margin<br>(dB) |        |     |         |
|------|--------|-------|---------|-------|-------------------|-----------------------|--------|-------|-----------------|--------|----------------|--------|-----|---------|
| 140. |        |       | (dBuV)  |       |                   |                       | (ubuv) |       |                 | (ubuv) |                | (ub)   |     |         |
|      | MHz    | Peak  | QP      | AVG   | dB                | peak                  | QP     | AVG   | QP              | AVG    | QP             | AVG    | P/F | Comment |
| 1    | 0.1539 | 50.43 | 47.52   | 24.87 | 9.76              | 60.19                 | 57.28  | 34.63 | 65.78           | 55.78  | -8.50          | -21.15 | Р   |         |
| 2    | 0.1900 | 44.27 | 41.21   | 18.78 | 9.72              | 53.99                 | 50.93  | 28.50 | 64.03           | 54.03  | -13.10         | -25.53 | Р   |         |
| 3    | 0.3140 | 39.08 | 36.55   | 22.85 | 9.78              | 48.86                 | 46.33  | 32.63 | 59.86           | 49.86  | -13.53         | -17.23 | Р   |         |
| 4    | 0.4580 | 33.85 | 30.12   | 21.29 | 9.73              | 43.58                 | 39.85  | 31.02 | 56.73           | 46.73  | -16.88         | -15.71 | Р   |         |
| 5    | 0.8300 | 28.61 | 25.44   | 16.80 | 9.74              | 38.35                 | 35.18  | 26.54 | 56.00           | 46.00  | -20.82         | -19.46 | Р   |         |
| 6    | 1.2100 | 27.83 | 23.61   | 12.76 | 9.72              | 37.55                 | 33.33  | 22.48 | 56.00           | 46.00  | -22.67         | -23.52 | Р   |         |





## Page 36 of 102



| No. | Freq.  | Reading_Level<br>(dBuV) |       |       | Correct<br>Factor | Measurement<br>(dBuV) |       |       | Lin<br>(dBı |       |        | rgin<br>dB) |     |         |
|-----|--------|-------------------------|-------|-------|-------------------|-----------------------|-------|-------|-------------|-------|--------|-------------|-----|---------|
|     | MHz    | Peak                    | QP    | AVG   | dB                | peak                  | QP    | AVG   | QP          | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.1539 | 50.83                   | 47.51 | 25.28 | 9.76              | 60.59                 | 57.27 | 35.04 | 65.78       | 55.78 | -8.51  | -20.74      | Р   |         |
| 2   | 0.2340 | 41.73                   | 38.45 | 18.87 | 9.73              | 51.46                 | 48.18 | 28.60 | 62.30       | 52.30 | -14.12 | -23.70      | Р   |         |
| 3   | 0.3140 | 38.18                   | 36.21 | 20.80 | 9.78              | 47.96                 | 45.99 | 30.58 | 59.86       | 49.86 | -13.87 | -19.28      | Р   |         |
| 4   | 0.4540 | 34.25                   | 31.15 | 20.10 | 9.73              | 43.98                 | 40.88 | 29.83 | 56.80       | 46.80 | -15.92 | -16.97      | Р   |         |
| 5   | 0.8300 | 26.03                   | 23.63 | 12.84 | 9.74              | 35.77                 | 33.37 | 22.58 | 56.00       | 46.00 | -22.63 | -23.42      | Р   |         |
| 6   | 2.0700 | 25.42                   | 22.88 | 8.00  | 9.72              | 35.14                 | 32.60 | 17.72 | 56.00       | 46.00 | -23.40 | -28.28      | Р   |         |





Page 37 of 102

### **USB Power cable line 2: CS**

Live line: 80.0 dBuV



| N   | 0. | Freq.  |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | M     | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|----|--------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     |    | MHz    | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| -   | 1  | 0.1500 | 51.67 | 48.57            | 29.06 | 9.77              | 61.44 | 58.34              | 38.83 | 65.99      | 55.99 | -7.65  | -17.16      | Р   |         |
| - 2 | 2  | 0.2300 | 46.17 | 43.25            | 23.82 | 9.73              | 55.90 | 52.98              | 33.55 | 62.45      | 52.45 | -9.47  | -18.90      | Р   |         |
| -3  | 3  | 0.3100 | 41.20 | 38.46            | 27.19 | 9.78              | 50.98 | 48.24              | 36.97 | 59.97      | 49.97 | -11.73 | -13.00      | Р   |         |
|     | 1  | 0.4540 | 36.39 | 33.62            | 24.02 | 9.73              | 46.12 | 43.35              | 33.75 | 56.80      | 46.80 | -13.45 | -13.05      | Р   |         |
| Į.  | 5  | 0.8260 | 27.92 | 24.15            | 16.17 | 9.74              | 37.66 | 33.89              | 25.91 | 56.00      | 46.00 | -22.11 | -20.09      | Р   |         |
| - ( | 3  | 1.5940 | 29.74 | 26.33            | 12.26 | 9.72              | 39.46 | 36.05              | 21.98 | 56.00      | 46.00 | -19.95 | -24.02      | Р   |         |







## Page 38 of 102





| No. | Freq.  |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | M     | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|--------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     | MHz    | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.1582 | 51.31 | 48.51            | 31.30 | 9.76              | 61.07 | 58.27              | 41.06 | 65.55      | 55.55 | -7.28  | -14.49      | Р   |         |
| 2   | 0.2340 | 42.69 | 39.68            | 19.43 | 9.73              | 52.42 | 49.41              | 29.16 | 62.30      | 52.30 | -12.89 | -23.14      | Р   |         |
| 3   | 0.3060 | 40.11 | 37.41            | 18.39 | 9.78              | 49.89 | 47.19              | 28.17 | 60.08      | 50.08 | -12.89 | -21.91      | Р   |         |
| 4   | 0.4580 | 35.22 | 32.15            | 19.57 | 9.73              | 44.95 | 41.88              | 29.30 | 56.73      | 46.73 | -14.85 | -17.43      | Р   |         |
| 5   | 0.8260 | 26.48 | 23.66            | 11.31 | 9.74              | 36.22 | 33.40              | 21.05 | 56.00      | 46.00 | -22.60 | -24.95      | Р   |         |
| 6   | 2.0740 | 24.59 | 21.47            | 9.17  | 9.72              | 34.31 | 31.19              | 18.89 | 56.00      | 46.00 | -24.81 | -27.11      | Р   |         |

#### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.





Report No. : EED32K00204201 Page 39 of 102

# Appendix K): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                              | RBW                                                                                                                                                                                       | VBW                                                                                                                   | Remark                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak                                                                                                                                                                                                                                                            | 120kHz                                                                                                                                                                                    | 300kHz                                                                                                                | Quasi-peak                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Above 1011-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                  | 1MHz                                                                                                                                                                                      | 3MHz                                                                                                                  | Peak                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                  | 1MHz                                                                                                                                                                                      | 10Hz                                                                                                                  | Average                                                                                                                                             | ć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Procedure: | Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v 1GHz test proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ure as below:                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | That a 3 determ The was modeterm polarize the an was tue The Bandverte frequents and the control of the control | me EUT was placed meter semi-anecho mine the position of me EUT was set 3 m nounted on the top one antenna height is mine the maximum vations of the antenior each suspected extenna was tuned to urned from 0 degree the test-receiver systwidth with Maximum lace a marker at the ency to show compli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on the top of a rolic camber. The tathe highest radial eters away from of a variable-height varied from one value of the field sha are set to make mission, the EUT heights from 1 m s to 360 degrees em was set to Per Hold Mode. end of the restrictance. Also meas | able was ro<br>tion.<br>the interfer<br>ht antenna<br>meter to fo<br>strength. Bo<br>se the meas<br>r was arran<br>neter to 4 m<br>to find the<br>eak Detect<br>cted band o<br>ure any em | ence-recei<br>tower.<br>our meters<br>oth horizon<br>surement.<br>ged to its v<br>leters and<br>maximum<br>Function a | degrees to iving antenna, above the groatal and vertical worst case and the rotatable to reading, and Specified the transmit the restricted living. | whound all distributions with the second sec |
|                 | and hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the spectrum analyzighest channel e 1GHz test proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lure as below:                                                                                                                                                                                                                                                        |                                                                                                                                                                                           |                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jure as below:  ove is the test site r and change for neter and table is lowest channel ements are perforund the X axis p                                                                                                                                             | e, change fi<br>m table 0.8<br>1.5 meter).<br>, the Highe<br>rmed in X,<br>ositioning v                                                                                                   | rom Semi-<br>meter to 1<br>st channel<br>Y, Z axis p<br>vhich it is v                                                 | Anechoic Cha<br>I.5 meter( Abo<br>positioning for<br>worse case.                                                                                    | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Limit:          | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel  e 1GHz test proced  ifferent between about  Anechoic Chamber  z the distance is 1 m  Test the EUT in the me radiation measur  mitting mode, and for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jure as below:  ove is the test site r and change for neter and table is lowest channel ements are perforund the X axis p                                                                                                                                             | e, change fi<br>m table 0.8<br>1.5 meter).<br>, the Highe<br>rmed in X,<br>ositioning v<br>uencies me                                                                                     | rom Semi-<br>meter to 1<br>st channel<br>Y, Z axis p<br>which it is v                                                 | Anechoic Cha<br>I.5 meter( Abo<br>positioning for<br>worse case.                                                                                    | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _imit:          | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel  e 1GHz test proced  ifferent between about Anechoic Chamber  z the distance is 1 m  Test the EUT in the lighter rediation measure mitting mode, and for the lighter rediation proceded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lure as below:  ove is the test site r and change for neter and table is e lowest channel ements are perfo ound the X axis p ures until all freq                                                                                                                      | e, change fim table 0.8 1.5 meter)., the Highermed in X, ositioning vuencies med/m @3m)                                                                                                   | rom Semi-<br>meter to 1<br>st channel<br>Y, Z axis p<br>which it is we<br>easured wa                                  | Anechoic Cha<br>1.5 meter( Abo<br>positioning for<br>worse case.<br>as complete.                                                                    | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _imit:          | and hi Above Di to fully 18GH: b. Tr Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ighest channel  e 1GHz test proced  ifferent between about  Anechoic Chamber  z the distance is 1 in  Test the EUT in the  ne radiation measur  mitting mode, and for  epeat above proced  Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jure as below:  ove is the test site r and change for neter and table is e lowest channel ements are perfo ound the X axis p ures until all freq  Limit (dBµV                                                                                                         | e, change fim table 0.8 1.5 meter). , the Highermed in X, ositioning valuencies med/m @3m)                                                                                                | rom Semi- meter to 1 st channel Y, Z axis p which it is v easured wa  Rer  Quasi-pe                                   | Anechoic Cha<br>1.5 meter( Abo<br>positioning for<br>worse case.<br>as complete.<br>mark<br>eak Value                                               | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Limit:          | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel e 1GHz test proced ifferent between abo y Anechoic Chambe z the distance is 1 n Test the EUT in the ne radiation measur mitting mode, and for epeat above proced  Frequency  30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lure as below:  ove is the test site r and change for neter and table is e lowest channel ements are perfo ound the X axis p ures until all freq  Limit (dBµV 40.0                                                                                                    | e, change fim table 0.8 1.5 meter). , the Highermed in X, cositioning valuencies med/m @3m)                                                                                               | rom Semi- meter to 1 st channel Y, Z axis p which it is v easured wa  Rer  Quasi-pe                                   | Anechoic Cha<br>1.5 meter( Abo<br>positioning for<br>worse case.<br>as complete.                                                                    | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Limit:          | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel  e 1GHz test proced  ifferent between about Anechoic Chamber  z the distance is 1 m  Test the EUT in the radiation measur mitting mode, and for the procedure of | lure as below:  ove is the test site r and change form neter and table is e lowest channel ements are performed the X axis p ures until all freq  Limit (dBµV  40.6                                                                                                   | e, change fim table 0.8 1.5 meter). , the Highermed in X, ositioning vuencies med/m @3m)                                                                                                  | rom Semi- meter to 1 st channel Y, Z axis p which it is weasured wa  Rer Quasi-pe Quasi-pe Quasi-pe                   | Anechoic Cha<br>1.5 meter( Abo<br>positioning for<br>worse case.<br>as complete.<br>mark<br>eak Value<br>eak Value                                  | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Limit:          | and hi Above Di to fully 18GH: b. Tr Transi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ighest channel e 1GHz test proced ifferent between abo y Anechoic Chambe z the distance is 1 n Test the EUT in the ne radiation measur mitting mode, and for epeat above proced  Frequency 30MHz-88MHz 88MHz-216MHz 216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lure as below:  ove is the test site r and change for neter and table is e lowest channel ements are perfor ound the X axis p ures until all freq  Limit (dBµV  40.0  43.9                                                                                            | e, change firm table 0.8 1.5 meter). , the Highermed in X, ositioning valuencies mediam) 0 5                                                                                              | rom Semi- meter to 1 st channel Y, Z axis p which it is v easured wa  Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe         | Anechoic Cha<br>1.5 meter( Abo<br>positioning for<br>worse case.<br>as complete.<br>mark<br>eak Value<br>eak Value                                  | amb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





Report No.: EED32K00204201 Page 40 of 102

#### Test plot as follows:

## Adapter 1: BLJ06W050055P1-U

| Worse case mode:       | GFSK                 |                          |              |
|------------------------|----------------------|--------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |



|        | Worse case mode:       | GFSK                 |                          |                 |
|--------|------------------------|----------------------|--------------------------|-----------------|
| e<br>S | Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Average |





Page 41 of 102

| Worse case mode:       | GFSK                 | 215                    |              |
|------------------------|----------------------|------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Peak |



| Worse case mode:       | GFSK                 |                        |                 |  |  |
|------------------------|----------------------|------------------------|-----------------|--|--|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Average |  |  |







Page 42 of 102

| Worse case mode:       | GFSK                  | GFSK                     |              |  |  |  |
|------------------------|-----------------------|--------------------------|--------------|--|--|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Peak |  |  |  |



| Worse case mode:       | GFSK                  |                          |                 |  |  |
|------------------------|-----------------------|--------------------------|-----------------|--|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Average |  |  |





| Page | 43 | of  | 102 |
|------|----|-----|-----|
| rauc | 40 | OI. | 102 |

| Worse case mode:       | GFSK                  | GFSK                   |              |  |
|------------------------|-----------------------|------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Peak |  |



| Worse case mode:       | GFSK                  |                        |                 |
|------------------------|-----------------------|------------------------|-----------------|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Average |





Report No. : EED32K00204201 Page 44 of 102

#### Adapter 2: CS3B050055FU

| Worse case mode:       | GFSK                 |                          |              |
|------------------------|----------------------|--------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |



| Worse case mode:       | GFSK                 |                          |                 |
|------------------------|----------------------|--------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Average |





| Page | 15 | of 102 |  |
|------|----|--------|--|
| Paue | 40 | UI IUZ |  |

| Worse case mode:       | GFSK                 | 200                    |              |
|------------------------|----------------------|------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Peak |



| Worse case mode:       | GFSK                 |                        |                 |
|------------------------|----------------------|------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Average |















Page 46 of 102

| Worse case mode:       | GFSK                  | GFSK                     |              |  |
|------------------------|-----------------------|--------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Peak |  |



| Worse case mode:       | GFSK                  |                          |                 |
|------------------------|-----------------------|--------------------------|-----------------|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Average |





| Dogo | 17 | of 1 | 100 |
|------|----|------|-----|
| Page | 41 | OI   | IUZ |

| Worse case mode:       | GFSK                  |                        |              |  |
|------------------------|-----------------------|------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Peak |  |



| Worse case mode:       | GFSK                  |                        |                 |
|------------------------|-----------------------|------------------------|-----------------|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Average |





Report No.: EED32K00204201 Page 48 of 102

### **USB Power cable line 1: BLJ**

| Worse case mode:       | GFSK                 |                          |              |
|------------------------|----------------------|--------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |



| Worse case mode:       | GFSK                 |                          |                 |
|------------------------|----------------------|--------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Average |





Page 49 of 102

| Worse case mode:       | GFSK                 | 200                    | 205          |  |
|------------------------|----------------------|------------------------|--------------|--|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Peak |  |



| Worse case mode:       | GFSK                 |                        | 6.              |
|------------------------|----------------------|------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Average |









Page 50 of 102

| Worse case mode:       | GFSK                  | GFSK                     |              |  |
|------------------------|-----------------------|--------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Peak |  |



| Worse case mode:       | GFSK                  |                          |                 |  |
|------------------------|-----------------------|--------------------------|-----------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Average |  |





| Dogo | <b>E</b> 1 | of 100 |  |
|------|------------|--------|--|
| Paue | วเ         | of 102 |  |

| Worse case mode:       | GFSK                  | 200                    |              |  |
|------------------------|-----------------------|------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Peak |  |



| Worse case mode:       | GFSK                  |                        |                 |
|------------------------|-----------------------|------------------------|-----------------|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Average |





Report No. : EED32K00204201 Page 52 of 102

### **USB Power cable line 2: CS**

| Worse case mode: GFSK  |                      |                          |              |
|------------------------|----------------------|--------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |



| Worse case mode:       | GFSK                 |                          |                 |
|------------------------|----------------------|--------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Average |





Page 53 of 102

| Worse case mode:       | GFSK                 | 215                    |              |
|------------------------|----------------------|------------------------|--------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Peak |



| Worse case mode:       | GFSK                 |                        | (6.)            |
|------------------------|----------------------|------------------------|-----------------|
| Frequency: 2410.875MHz | Test channel: Lowest | Polarization: Vertical | Remark: Average |







| Dogo | E 1 | of 1 | 100 |
|------|-----|------|-----|
| Page | 24  | OI   | IUZ |

| , | Worse case mode:       | GFSK                  |                          |              |  |  |
|---|------------------------|-----------------------|--------------------------|--------------|--|--|
| ı | Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Peak |  |  |



| Worse case mode:       | GFSK                  |                          |                 |
|------------------------|-----------------------|--------------------------|-----------------|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Horizontal | Remark: Average |





Page 55 of 102

| Worse case mode:       | GFSK                  | 2000                   |              |  |
|------------------------|-----------------------|------------------------|--------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Peak |  |



| Worse case mode:       | GFSK                  | GFSK                   |                 |  |
|------------------------|-----------------------|------------------------|-----------------|--|
| Frequency: 2471.625MHz | Test channel: Highest | Polarization: Vertical | Remark: Average |  |



#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Report No.: EED32K00204201 Page 56 of 102

# **Appendix L): Radiated Spurious Emissions**

Above 1GHz

| Receiver Setup: |                   |            |        |        |            |
|-----------------|-------------------|------------|--------|--------|------------|
|                 | Frequency         | Detector   | RBW    | VBW    | Remark     |
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |
| -               | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
| /               | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
|                 | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |
| (C)             | (62)              | Peak       | 1MHz   | 3MHz   | Peak       |

#### **Test Procedure:**

#### Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Peak

1MHz

10Hz

Average

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel ,the middle channel ,the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

| Limit: | Frequency         | Field strength (microvolt/meter) | Limit<br>(dBµV/m) | Remark     | Measurement distance (m) |
|--------|-------------------|----------------------------------|-------------------|------------|--------------------------|
|        | 0.009MHz-0.490MHz | 2400/F(kHz)                      | -                 | -          | 300                      |
|        | 0.490MHz-1.705MHz | 24000/F(kHz)                     | - /               | - OS       | 30                       |
| )      | 1.705MHz-30MHz    | 30                               | - (               | (2)        | 30                       |
|        | 30MHz-88MHz       | 100                              | 40.0              | Quasi-peak | 3                        |
|        | 88MHz-216MHz      | 150                              | 43.5              | Quasi-peak | 3                        |
|        | 216MHz-960MHz     | 200                              | 46.0              | Quasi-peak | 3                        |
| (8.5)  | 960MHz-1GHz       | 500                              | 54.0              | Quasi-peak | 3                        |
|        | Above 1GHz        | 500                              | 54.0              | Average    | 3                        |

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.





# **Radiated Spurious Emissions test Data:**

Radiated Emission below 1GHz

Adapter 1: BLJ06W050055P1-U

| Mode:   | GFSK |  |   |
|---------|------|--|---|
| Remark: | QP   |  | / |

#### **Test Graph**



### **Suspected List**

| NO | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity   |
|----|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|------------|
| 1  | 82.7786        | -23.29                    | 50.84             | 27.55          | 40.00             | 12.45      | Pass   | Horizontal |
| 2  | 94.0328        | -20.92                    | 49.50             | 28.58          | 43.50             | 14.92      | Pass   | Horizontal |
| 3  | 151.0802       | -22.97                    | 49.53             | 26.56          | 43.50             | 16.94      | Pass   | Horizontal |
| 4  | 226.1732       | -18.56                    | 45.06             | 26.50          | 46.03             | 19.53      | Pass   | Horizontal |
| 5  | 617.9376       | -9.89                     | 32.60             | 22.71          | 46.70             | 23.99      | Pass   | Horizontal |
| 6  | 742.5105       | -8.58                     | 34.06             | 25.48          | 46.83             | 21.35      | Pass   | Horizontal |





Page 58 of 102

| Mode:   | GFSK | all the | 506 |
|---------|------|---------|-----|
| Remark: | QP   |         |     |





| Jusi | Decieu List    |                           |                   |                |                   |            |        |          |
|------|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|----------|
| NO   | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity |
| 1    | 47.8516        | -18.14                    | 41.28             | 23.14          | 40.00             | 16.86      | Pass   | Vertical |
| 2    | 94.2268        | -20.88                    | 39.04             | 18.16          | 43.50             | 25.34      | Pass   | Vertical |
| 3    | 208.9038       | -19.1                     | 46.06             | 26.96          | 43.50             | 16.54      | Pass   | Vertical |
| 4    | 270.0260       | -17.32                    | 34.56             | 17.24          | 46.15             | 28.91      | Pass   | Vertical |
| 5    | 742.5105       | -8.58                     | 36.01             | 27.43          | 46.83             | 19.40      | Pass   | Vertical |
| 6    | 892.5025       | -6.01                     | 37.60             | 31.59          | 46.95             | 15.36      | Pass   | Vertical |





Report No. : EED32K00204201 Page 59 of 102

## Adapter 2: CS3B050055FU

| Mode:   | GFSK |  |
|---------|------|--|
| Remark: | QP   |  |

### **Test Graph**



**Suspected List** 

| NO | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity   |
|----|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|------------|
| 1  | 110.9142       | -20.08                    | 50.39             | 30.31          | 43.50             | 13.19      | Pass   | Horizontal |
| 2  | 160.9762       | -22.55                    | 51.73             | 29.18          | 43.50             | 14.32      | Pass   | Horizontal |
| 3  | 205.0230       | -19.22                    | 45.56             | 26.34          | 43.50             | 17.16      | Pass   | Horizontal |
| 4  | 260.3241       | -17.54                    | 42.29             | 24.75          | 46.00             | 21.25      | Pass   | Horizontal |
| 5  | 582.0404       | -10.40                    | 33.79             | 23.39          | 46.00             | 22.61      | Pass   | Horizontal |
| 6  | 742.5105       | -8.58                     | 37.27             | 28.69          | 46.00             | 17.31      | Pass   | Horizontal |











| Mode:   | GFSK | (3)   |        |
|---------|------|-------|--------|
| Remark: | QP   | (275) | (8.5.) |





| Odopotica List |                |                           |                   |                |                   |            |        |          |  |  |
|----------------|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|----------|--|--|
| NO             | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity |  |  |
| 1              | 52.5085        | -18.48                    | 41.48             | 23.00          | 40.00             | 17.00      | Pass   | Vertical |  |  |
| 2              | 109.7500       | -19.93                    | 43.36             | 23.43          | 43.50             | 20.07      | Pass   | Vertical |  |  |
| 3              | 208.9038       | -19.10                    | 45.08             | 25.98          | 43.50             | 17.52      | Pass   | Vertical |  |  |
| 4              | 582.0404       | -10.40                    | 31.86             | 21.46          | 46.66             | 25.20      | Pass   | Vertical |  |  |
| 5              | 742.5105       | -8.58                     | 37.36             | 28.78          | 46.83             | 18.05      | Pass   | Vertical |  |  |
| 6              | 890.9502       | -6.04                     | 32.37             | 26.33          | 46.95             | 20.62      | Pass   | Vertical |  |  |









































## Page 61 of 102

## **USB Power cable line 1: BLJ**

| Mode:   | GFSK |  |
|---------|------|--|
| Remark: | QP   |  |



| NO | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity   |
|----|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|------------|
| 1  | 91.5103        | -21.34                    | 50.92             | 29.58          | 43.50             | 13.92      | Pass   | Horizontal |
| 2  | 205.0230       | -19.22                    | 44.24             | 25.02          | 43.50             | 18.48      | Pass   | Horizontal |
| 3  | 420.9882       | -13.65                    | 33.35             | 19.70          | 46.45             | 26.75      | Pass   | Horizontal |
| 4  | 599.8920       | -10.03                    | 32.01             | 21.98          | 46.68             | 24.70      | Pass   | Horizontal |
| 5  | 742.5105       | -8.58                     | 34.32             | 25.74          | 46.83             | 21.09      | Pass   | Horizontal |
| 6  | 941.9824       | -5.20                     | 29.46             | 24.26          | 46.99             | 22.73      | Pass   | Horizontal |











| Mode:   | GFSK | (3)  | (3)    |
|---------|------|------|--------|
| Remark: | QP   | (55) | (6.50) |





| Ous | pecieu List    |                           |                   |                |                   |            |        |          |
|-----|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|----------|
| NO  | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity |
| 1   | 52.5085        | -18.48                    | 40.99             | 22.51          | 40.00             | 17.49      | Pass   | Vertical |
| 2   | 91.1222        | -21.40                    | 43.01             | 21.61          | 43.50             | 21.89      | Pass   | Vertical |
| 3   | 208.9038       | -19.10                    | 44.99             | 25.89          | 43.50             | 17.61      | Pass   | Vertical |
| 4   | 329.9840       | -15.74                    | 33.59             | 17.85          | 46.28             | 28.43      | Pass   | Vertical |
| 5   | 663.1486       | -9.46                     | 34.80             | 25.34          | 46.75             | 21.41      | Pass   | Vertical |
| 6   | 905.3091       | -5.80                     | 45.86             | 40.06          | 46.96             | 6.90       | Pass   | Vertical |









































## Page 63 of 102

## **USB Power cable line 2: CS**

| Mode:   | GFSK |  |
|---------|------|--|
| Remark: | QP   |  |

#### **Test Graph**



## **Suspected List**

|   | Cuopoctou Liet |                |                           |                   |                |                   |            |        |            |
|---|----------------|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|------------|
|   | NO             | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity   |
| Š | 1              | 86.0772        | -22.52                    | 59.16             | 36.64          | 40.00             | 3.36       | Pass   | Horizontal |
|   | 2              | 208.1276       | -19.13                    | 43.74             | 24.61          | 43.50             | 18.89      | Pass   | Horizontal |
|   | 3              | 260.3241       | -17.54                    | 40.65             | 23.11          | 46.13             | 23.02      | Pass   | Horizontal |
|   | 4              | 424.6749       | -13.59                    | 34.64             | 21.05          | 46.45             | 25.40      | Pass   | Horizontal |
|   | 5              | 742.5105       | -8.58                     | 34.04             | 25.46          | 46.83             | 21.37      | Pass   | Horizontal |
|   | 6              | 890.9502       | -6.04                     | 31.41             | 25.37          | 46.95             | 21.58      | Pass   | Horizontal |





Page 64 of 102

| Mode:   | GFSK | 400 |  |
|---------|------|-----|--|
| Remark: | QP   |     |  |

## **Test Graph**



|    | pected List    |                           |                   |                |                   |            |        |          |
|----|----------------|---------------------------|-------------------|----------------|-------------------|------------|--------|----------|
| NO | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | Reading<br>[dBµV] | Level [dBµV/m] | Limit<br>[dBµV/m] | Magin [dB] | Result | Polarity |
| 1  | 52.8966        | -18.54                    | 40.53             | 21.99          | 40.00             | 18.01      | Pass   | Vertical |
| 2  | 87.6295        | -22.15                    | 45.53             | 23.38          | 40.00             | 16.62      | Pass   | Vertical |
| 3  | 208.9038       | -19.10                    | 45.04             | 25.94          | 43.50             | 17.56      | Pass   | Vertical |
| 4  | 290.0120       | -16.85                    | 33.92             | 17.07          | 46.20             | 29.13      | Pass   | Vertical |
| 5  | 440.0040       | -13.36                    | 31.69             | 18.33          | 46.48             | 28.15      | Pass   | Vertical |
| 6  | 742.5105       | -8.58                     | 34.33             | 25.75          | 46.83             | 21.08      | Pass   | Vertical |





Report No. : EED32K00204201 Page 65 of 102

## **Transmitter Emission above 1GHz**

Adapter 1: BLJ06W050055P1-U

| Mode:   | GFSK | Chai | nnel: | 2410.875 |
|---------|------|------|-------|----------|
| Remark: | _0_  | /    | 195   |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59            | -36.73                | 47.44          | 48.59             | 74.00             | 25.41         | Pass   | Н        | PK     |
| 2  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 59.23          | 62.22             | 74.00             | 11.78         | Pass   | Н        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 47.56          | 50.55             | 54.00             | 3.45          | Pass   | Н        | AV     |
| 4  | 5745.8746      | 35.39                 | 4.95            | -36.13                | 43.71          | 47.92             | 74.00             | 26.08         | Pass   | Н        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 47.20          | 52.89             | 74.00             | 21.11         | Pass   | Н        | PK     |
| 6  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 36.10          | 41.79             | 54.00             | 12.21         | Pass   | Н        | AV     |
| 7  | 8394.2394      | 36.56                 | 6.31            | -36.31                | 44.11          | 50.67             | 74.00             | 23.33         | Pass   | Н        | PK     |
| 8  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 44.28          | 51.74             | 74.00             | 22.26         | Pass   | Н        | PK     |
| 9  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 30.15          | 37.61             | 54.00             | 16.39         | Pass   | Н        | AV     |

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3215.4966      | 33.29                 | 4.59            | -36.74                | 48.33          | 49.47             | 74.00             | 24.53         | Pass   | V        | PK     |
| 2  | 4821.750       | 34.50                 | 4.60            | -36.11                | 52.43          | 55.42             | 74.00             | 18.58         | Pass   | V        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 33.54          | 36.53             | 54.00             | 17.47         | Pass   | V        | AV     |
| 4  | 6358.2358      | 35.87                 | 5.44            | -36.17                | 43.00          | 48.14             | 74.00             | 25.86         | Pass   | V        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 44.17          | 49.86             | 74.00             | 24.14         | Pass   | V        | PK     |
| 6  | 8527.8278      | 36.66                 | 6.40            | -36.38                | 44.16          | 50.84             | 74.00             | 23.16         | Pass   | V        | PK     |
| 7  | 9643.500       | 37.66                 | 6.71            | -36.91                | 44.44          | 51.90             | 74.00             | 22.10         | Pass   | V        | PK     |
| 8  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 33.02          | 40.48             | 54.00             | 13.52         | Pass   | V        | AV     |



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$ 



| Dago | 66 | of ' | 102 |
|------|----|------|-----|
| Page | סט | OT 1 | 102 |

|   | Mode:   | GFSK | Channel: | 2441.250 |
|---|---------|------|----------|----------|
| 7 | Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 1131.6263      | 28.03                 | 2.64            | -37.79                | 50.24             | 43.12             | 74.00             | 30.88         | Pass   | Н        | PK     |
| 2  | 3255.4755      | 33.30                 | 4.46            | -36.81                | 48.13             | 49.08             | 74.00             | 24.92         | Pass   | Н        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 53.87             | 57.08             | 74.00             | 16.92         | Pass   | Н        | PK     |
| 4  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 44.36             | 47.57             | 54.00             | 6.43          | Pass   | Н        | AV     |
| 5  | 6298.7549      | 35.86                 | 5.46            | -36.23                | 42.92             | 48.01             | 74.00             | 25.99         | Pass   | Н        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 46.82             | 52.68             | 74.00             | 21.32         | Pass   | Н        | PK     |
| 7  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 34.97             | 40.83             | 54.00             | 13.17         | Pass   | Н        | AV     |
| 8  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 44.46             | 52.05             | 74.00             | 21.95         | Pass   | Н        | PK     |
| 9  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 29.85             | 37.44             | 54.00             | 16.56         | Pass   | Н        | AV     |

| Mode:   | GFSK | Channel: | 2441.250 |
|---------|------|----------|----------|
| Remark: | 23   |          | 75       |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3254.5005      | 33.30                 | 4.46            | -36.81                | 49.77             | 50.72             | 74.00             | 23.28         | Pass   | V        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 50.09             | 53.30             | 74.00             | 20.70         | Pass   | V        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 39.02             | 42.23             | 54.00             | 11.77         | Pass   | V        | AV     |
| 4  | 5527.4527      | 35.04                 | 5.16            | -36.09                | 43.50             | 47.61             | 74.00             | 26.39         | Pass   | V        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 44.85             | 50.71             | 74.00             | 23.29         | Pass   | V        | PK     |
| 6  | 7805.2805      | 36.48                 | 6.09            | -36.63                | 43.68             | 49.62             | 74.00             | 24.38         | Pass   | V        | PK     |
| 7  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 41.82             | 49.41             | 74.00             | 24.59         | Pass   | V        | PK     |



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$ 



| _    | ~- | -  | 400 |  |
|------|----|----|-----|--|
| Page | 67 | OŤ | 102 |  |

|   | Mode:   | GFSK | Channel: | 2471.625 |
|---|---------|------|----------|----------|
| 7 | Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 49.01          | 50.10             | 74.00             | 23.90         | Pass   | Н        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 49.91          | 53.02             | 74.00             | 20.98         | Pass   | Н        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 40.52          | 43.63             | 54.00             | 10.37         | Pass   | Н        | AV     |
| 4  | 5768.3018      | 35.43                 | 4.95            | -36.09                | 43.65          | 47.94             | 74.00             | 26.06         | Pass   | Н        | PK     |
| 5  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 43.54          | 49.63             | 74.00             | 24.37         | Pass   | Н        | PK     |
| 6  | 9268.9019      | 37.65                 | 6.62            | -36.76                | 42.65          | 50.16             | 74.00             | 23.84         | Pass   | Н        | PK     |
| 7  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.60          | 48.26             | 74.00             | 25.74         | Pass   | Н        | PK     |



| 00.00                                                      |   |    |
|------------------------------------------------------------|---|----|
| 1 3294.4794 33.32 4.57 -36.80 48.71 49.80 74.00 24.20 Pass | V | PK |
| 2 4943.2500 34.50 4.83 -36.22 48.69 51.80 74.00 22.20 Pass | V | PK |
| 3 4943.2500 34.50 4.83 -36.22 39.52 42.63 54.00 11.37 Pass | V | AV |
| 4 7414.8750 36.52 5.85 -36.28 43.80 49.89 74.00 24.11 Pass | V | PK |
| 5 7718.4969 36.51 6.25 -36.43 44.48 50.81 74.00 23.19 Pass | V | PK |
| 6 8821.3321 37.31 6.39 -36.59 42.95 50.06 74.00 23.94 Pass | V | PK |
| 7 9886.5000 37.75 6.78 -36.87 40.56 48.22 74.00 25.78 Pass | V | PK |





Report No. : EED32K00204201 Page 68 of 102

## Adapter 2: CS3B050055FU

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59            | -36.73                | 49.78          | 50.93             | 74.00             | 23.07         | Pass   | Н        | PK     |
| 2  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 59.28          | 62.27             | 74.00             | 11.73         | Pass   | Н        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 43.87          | 46.86             | 54.00             | 7.14          | Pass   | Н        | AV     |
| 4  | 5852.1602      | 35.56                 | 5.08            | -36.02                | 43.10          | 47.72             | 74.00             | 26.28         | Pass   | Н        | PK     |
| 5  | 6951.0951      | 36.08                 | 5.81            | -36.26                | 43.60          | 49.23             | 74.00             | 24.77         | Pass   | Н        | PK     |
| 6  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 44.86          | 50.55             | 74.00             | 23.45         | Pass   | Н        | PK     |
| 7  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 42.36          | 49.82             | 74.00             | 24.18         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2410.875 |  |
|---------|------|----------|----------|--|
| Remark: |      | 1        |          |  |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 1914.9830      | 31.14                 | 3.42                  | -36.80                | 45.41          | 43.17             | 74.00             | 30.83         | Pass   | V        | PK     |
| 2  | 3214.5215      | 33.29                 | 4.59                  | -36.73                | 45.15          | 46.30             | 74.00             | 27.70         | Pass   | V        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 52.11          | 55.10             | 74.00             | 18.90         | Pass   | V        | PK     |
| 4  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 41.37          | 44.36             | 54.00             | 9.64          | Pass   | V        | AV     |
| 5  | 7232.6250      | 36.33                 | 5.79                  | -36.43                | 44.71          | 50.40             | 74.00             | 23.60         | Pass   | V        | PK     |
| 6  | 8308.4308      | 36.52                 | 6.12                  | -36.59                | 44.69          | 50.74             | 74.00             | 23.26         | Pass   | V        | PK     |
| 7  | 9643.5000      | 37.66                 | 6.71                  | -36.91                | 42.51          | 49.97             | 74.00             | 24.03         | Pass   | V        | PK     |



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$ 



| _    |    |     |     |
|------|----|-----|-----|
| Page | 69 | Ot. | 102 |

| Mode:   | GFSK | Channel: | 2441.250 |
|---------|------|----------|----------|
| Remark: |      |          | (0)      |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3254.5005      | 33.30                 | 4.46            | -36.81                | 49.05          | 50.00             | 74.00             | 24.00         | Pass   | Н        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 52.92          | 56.13             | 74.00             | 17.87         | Pass   | Н        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 43.27          | 46.48             | 54.00             | 7.52          | Pass   | Н        | AV     |
| 4  | 6362.1362      | 35.87                 | 5.42            | -36.17                | 42.98          | 48.10             | 74.00             | 25.90         | Pass   | Н        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 46.59          | 52.45             | 74.00             | 21.55         | Pass   | Н        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 35.83          | 41.69             | 54.00             | 12.31         | Pass   | Н        | AV     |
| 7  | 8572.6823      | 36.76                 | 6.33            | -36.48                | 43.85          | 50.46             | 74.00             | 23.54         | Pass   | Н        | PK     |
| 8  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 42.35          | 49.94             | 74.00             | 24.06         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2441.250 |
|---------|------|----------|----------|
| Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3058.5059      | 33.22                 | 4.81            | -36.86                | 43.94          | 45.11             | 74.00             | 28.89         | Pass   | V        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 50.27          | 53.48             | 74.00             | 20.52         | Pass   | V        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 43.27          | 46.48             | 54.00             | 7.52          | Pass   | V        | AV     |
| 4  | 5536.2286      | 35.06                 | 5.16            | -36.07                | 41.91          | 46.06             | 74.00             | 27.94         | Pass   | V        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 44.71          | 50.57             | 74.00             | 23.43         | Pass   | V        | PK     |
| 6  | 8436.1686      | 36.57                 | 6.38            | -36.37                | 43.31          | 49.89             | 74.00             | 24.11         | Pass   | V        | PK     |
| 7  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 40.79          | 48.38             | 74.00             | 25.62         | Pass   | V        | PK     |



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$ 



| _    |    | -  |     |  |
|------|----|----|-----|--|
| Page | 70 | O† | 102 |  |

| Mode:   | GFSK | Channel: | 2471.625 |
|---------|------|----------|----------|
| Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 49.21          | 50.30             | 74.00             | 23.70         | Pass   | Н        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 47.74          | 50.85             | 74.00             | 23.15         | Pass   | Н        | PK     |
| 3  | 5924.3174      | 35.68                 | 5.19            | -36.20                | 42.52          | 47.19             | 74.00             | 26.81         | Pass   | Н        | PK     |
| 4  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 41.40          | 47.49             | 74.00             | 26.51         | Pass   | Н        | PK     |
| 5  | 9189.9190      | 37.66                 | 6.44            | -36.73                | 43.47          | 50.84             | 74.00             | 23.16         | Pass   | Н        | PK     |
| 6  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.88          | 48.54             | 74.00             | 25.46         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2471.625 |
|---------|------|----------|----------|
| Remark: | (0)  | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 2236.6473      | 32.03                 | 3.75            | -36.76                | 47.25          | 46.27             | 74.00             | 27.73         | Pass   | V        | PK     |
| 2  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 45.56          | 46.65             | 74.00             | 27.35         | Pass   | V        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 49.83          | 52.94             | 74.00             | 21.06         | Pass   | V        | PK     |
| 4  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 36.29          | 39.40             | 54.00             | 14.60         | Pass   | V        | AV     |
| 5  | 5894.0894      | 35.63                 | 5.06            | -36.21                | 43.27          | 47.75             | 74.00             | 26.25         | Pass   | V        | PK     |
| 6  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 42.77          | 48.86             | 74.00             | 25.14         | Pass   | V        | PK     |
| 7  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 41.38          | 49.04             | 74.00             | 24.96         | Pass   | V        | PK     |





Page 71 of 102

## **USB Power cable line 1: BLJ**

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59            | -36.73                | 47.45          | 48.60             | 74.00             | 25.40         | Pass   | Н        | PK     |
| 2  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 59.31          | 62.30             | 74.00             | 11.70         | Pass   | Н        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 42.29          | 45.28             | 54.00             | 8.72          | Pass   | Н        | AV     |
| 4  | 6307.5308      | 35.86                 | 5.46            | -36.21                | 42.78          | 47.89             | 74.00             | 26.11         | Pass   | Н        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 46.69          | 52.38             | 74.00             | 21.62         | Pass   | Н        | PK     |
| 6  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 38.66          | 44.35             | 54.00             | 9.65          | Pass   | Н        | AV     |
| 7  | 8407.8908      | 36.56                 | 6.34            | -36.28                | 43.49          | 50.11             | 74.00             | 23.89         | Pass   | Н        | PK     |
| 8  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 43.26          | 50.72             | 74.00             | 23.28         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59                  | -36.73                | 47.73          | 48.88             | 74.00             | 25.12         | Pass   | V        | PK     |
| 2  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 52.74          | 55.73             | 74.00             | 18.27         | Pass   | V        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 39.63          | 42.62             | 54.00             | 11.38         | Pass   | V        | AV     |
| 4  | 6053.0303      | 35.81                 | 5.21                  | -36.24                | 40.99          | 45.77             | 74.00             | 28.23         | Pass   | V        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79                  | -36.43                | 43.58          | 49.27             | 74.00             | 24.73         | Pass   | V        | PK     |
| 6  | 7707.7708      | 36.52                 | 6.26                  | -36.40                | 42.66          | 49.04             | 74.00             | 24.96         | Pass   | V        | PK     |
| 7  | 9643.5000      | 37.66                 | 6.71                  | -36.91                | 43.21          | 50.67             | 74.00             | 23.33         | Pass   | V        | PK     |























Page 72 of 102

| Mode:   | GFSK | Channel: | 2441.250 |
|---------|------|----------|----------|
| Remark: | (37) |          | (5,2)    |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3255.4755      | 33.30                 | 4.46            | -36.81                | 47.68          | 48.63             | 74.00             | 25.37         | Pass   | Н        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 54.35          | 57.56             | 74.00             | 16.44         | Pass   | Н        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 45.36          | 48.57             | 54.00             | 5.43          | Pass   | Н        | AV     |
| 4  | 5758.5509      | 35.41                 | 4.95            | -36.11                | 43.77          | 48.02             | 74.00             | 25.98         | Pass   | Н        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 47.53          | 53.39             | 74.00             | 20.61         | Pass   | Н        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 34.24          | 40.10             | 54.00             | 13.90         | Pass   | Н        | AV     |
| 7  | 9155.7906      | 37.67                 | 6.45            | -36.73                | 43.53          | 50.92             | 74.00             | 23.08         | Pass   | Н        | PK     |
| 8  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 42.58          | 50.17             | 74.00             | 23.83         | Pass   | Н        | PK     |





| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3254.5005      | 33.30                 | 4.46            | -36.81                | 50.11          | 51.06             | 74.00             | 22.94         | Pass   | V        | PK     |
| 2  | 4473.3723      | 34.46                 | 4.74            | -36.23                | 43.92          | 46.89             | 74.00             | 27.11         | Pass   | V        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 52.02          | 55.23             | 74.00             | 18.77         | Pass   | V        | PK     |
| 4  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 38.54          | 41.75             | 54.00             | 12.25         | Pass   | V        | AV     |
| 5  | 6352.3852      | 35.87                 | 5.45            | -36.14                | 42.61          | 47.79             | 74.00             | 26.21         | Pass   | V        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 46.05          | 51.91             | 74.00             | 22.09         | Pass   | V        | PK     |
| 7  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 34.09          | 39.95             | 54.00             | 14.05         | Pass   | V        | AV     |
| 8  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.55          | 48.21             | 74.00             | 25.79         | Pass   | V        | PK     |































| _     |    | -   |    | _ |
|-------|----|-----|----|---|
| Page  | 73 | Ωf  | 10 | つ |
| ı auc | 10 | OI. | 10 | _ |

|   | Mode:   | GFSK | Channel: | 2471.625 |
|---|---------|------|----------|----------|
| 7 | Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 49.53          | 50.62             | 74.00             | 23.38         | Pass   | Н        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 51.71          | 54.82             | 74.00             | 19.18         | Pass   | Н        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 41.98          | 45.09             | 54.00             | 8.91          | Pass   | Н        | AV     |
| 4  | 5898.9649      | 35.64                 | 5.06            | -36.24                | 42.94          | 47.40             | 74.00             | 26.60         | Pass   | Н        | PK     |
| 5  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 43.54          | 49.63             | 74.00             | 24.37         | Pass   | Н        | PK     |
| 6  | 8413.7414      | 36.57                 | 6.35            | -36.31                | 43.96          | 50.57             | 74.00             | 23.43         | Pass   | Н        | PK     |
| 7  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.63          | 48.29             | 74.00             | 25.71         | Pass   | Н        | PK     |



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 49.27          | 50.36             | 74.00             | 23.64         | Pass   | V        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 49.55          | 52.66             | 74.00             | 21.34         | Pass   | V        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 40.63          | 43.74             | 54.00             | 10.26         | Pass   | V        | AV     |
| 4  | 5677.6178      | 35.28                 | 5.00            | -36.07                | 43.10          | 47.31             | 74.00             | 26.69         | Pass   | V        | PK     |
| 5  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 45.52          | 51.61             | 74.00             | 22.39         | Pass   | V        | PK     |
| 6  | 7414.8750      | 36.51                 | 5.85            | -36.28                | 33.68          | 39.76             | 54.00             | 14.24         | Pass   | V        | AV     |
| 7  | 8448.8449      | 36.58                 | 6.40            | -36.42                | 43.69          | 50.25             | 74.00             | 23.75         | Pass   | V        | PK     |
| 8  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.85          | 48.51             | 74.00             | 25.49         | Pass   | V        | PK     |



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$ 



Page 74 of 102

## **USB Power cable line 2: CS**

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      | 1        |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59            | -36.73                | 47.30          | 48.45             | 74.00             | 25.55         | Pass   | Н        | PK     |
| 2  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 59.78          | 62.77             | 74.00             | 11.23         | Pass   | Н        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60            | -36.11                | 44.47          | 47.46             | 54.00             | 6.54          | Pass   | Н        | PK     |
| 4  | 6343.6094      | 35.87                 | 5.46            | -36.14                | 43.12          | 48.31             | 74.00             | 25.69         | Pass   | Н        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 45.51          | 51.20             | 74.00             | 22.80         | Pass   | Н        | PK     |
| 6  | 7232.6250      | 36.33                 | 5.79            | -36.43                | 37.00          | 42.69             | 54.00             | 11.31         | Pass   | Н        | PK     |
| 7  | 8421.5422      | 36.57                 | 6.36            | -36.33                | 43.84          | 50.44             | 74.00             | 23.56         | Pass   | Н        | PK     |
| 8  | 9643.5000      | 37.66                 | 6.71            | -36.91                | 42.86          | 50.32             | 74.00             | 23.68         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2410.875 |
|---------|------|----------|----------|
| Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3214.5215      | 33.29                 | 4.59                  | -36.73                | 49.47          | 50.62             | 74.00             | 23.38         | Pass   | V        | PK     |
| 2  | 3950.7201      | 33.76                 | 4.34                  | -36.05                | 44.68          | 46.73             | 74.00             | 27.27         | Pass   | V        | PK     |
| 3  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 53.66          | 56.65             | 74.00             | 17.35         | Pass   | V        | PK     |
| 4  | 4821.7500      | 34.50                 | 4.60                  | -36.11                | 40.03          | 43.02             | 54.00             | 10.98         | Pass   | V        | PK     |
| 5  | 7232.6250      | 36.33                 | 5.79                  | -36.43                | 44.80          | 50.49             | 74.00             | 23.51         | Pass   | V        | PK     |
| 6  | 8414.7165      | 36.57                 | 6.35                  | -36.31                | 43.62          | 50.23             | 74.00             | 23.77         | Pass   | V        | PK     |
| 7  | 9643.5000      | 37.66                 | 6.71                  | -36.91                | 43.87          | 51.33             | 74.00             | 22.67         | Pass   | V        | PK     |
| 8  | 9643.5000      | 37.66                 | 6.71                  | -36.91                | 31.50          | 38.96             | 54.00             | 15.04         | Pass   | V        | PK     |



















Page 75 of 102

| Mode:   | GFSK | Channel: | 2441.250 |
|---------|------|----------|----------|
| Remark: | (35) | 1        | (6,2)    |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3254.5005      | 33.30                 | 4.46            | -36.81                | 48.07          | 49.02             | 74.00             | 24.98         | Pass   | Н        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 54.70          | 57.91             | 74.00             | 16.09         | Pass   | Н        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 44.92          | 48.13             | 54.00             | 5.87          | Pass   | Н        | PK     |
| 4  | 5990.6241      | 35.78                 | 5.34            | -36.29                | 43.53          | 48.36             | 74.00             | 25.64         | Pass   | Н        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 46.38          | 52.24             | 74.00             | 21.76         | Pass   | Н        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 33.74          | 39.60             | 54.00             | 14.40         | Pass   | Н        | PK     |
| 7  | 8266.5017      | 36.51                 | 6.18            | -36.60                | 44.67          | 50.76             | 74.00             | 23.24         | Pass   | Н        | PK     |
| 8  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 42.77          | 50.36             | 74.00             | 23.64         | Pass   | Н        | PK     |



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3254.5005      | 33.30                 | 4.46            | -36.81                | 50.04          | 50.99             | 74.00             | 23.01         | Pass   | V        | PK     |
| 2  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 52.03          | 55.24             | 74.00             | 18.76         | Pass   | V        | PK     |
| 3  | 4882.5000      | 34.50                 | 4.81            | -36.10                | 42.02          | 45.23             | 54.00             | 8.77          | Pass   | V        | AV     |
| 4  | 6324.1074      | 35.86                 | 5.46            | -36.18                | 42.77          | 47.91             | 74.00             | 26.09         | Pass   | V        | PK     |
| 5  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 45.44          | 51.30             | 74.00             | 22.70         | Pass   | V        | PK     |
| 6  | 7323.7500      | 36.42                 | 5.85            | -36.41                | 32.90          | 38.76             | 54.00             | 15.24         | Pass   | V        | AV     |
| 7  | 8346.4596      | 36.54                 | 6.17            | -36.69                | 44.24          | 50.26             | 74.00             | 23.74         | Pass   | V        | PK     |
| 8  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 44.06          | 51.65             | 74.00             | 22.35         | Pass   | V        | PK     |
| 9  | 9765.0000      | 37.71                 | 6.71            | -36.83                | 30.36          | 37.95             | 54.00             | 16.05         | Pass   | V        | AV     |































Page 76 of 102

|   | Mode:   | GFSK | Channel: | 2471.625 |
|---|---------|------|----------|----------|
| 7 | Remark: |      |          |          |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57                  | -36.80                | 48.99             | 50.08             | 74.00             | 23.92         | Pass   | Н        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83                  | -36.22                | 50.64             | 53.75             | 74.00             | 20.25         | Pass   | Н        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83                  | -36.22                | 41.49             | 44.60             | 54.00             | 9.40          | Pass   | Н        | AV     |
| 4  | 5813.1563      | 35.50                 | 5.01                  | -36.02                | 43.78             | 48.27             | 74.00             | 25.73         | Pass   | Н        | PK     |
| 5  | 6993.0243      | 36.10                 | 5.70                  | -36.20                | 44.25             | 49.85             | 74.00             | 24.15         | Pass   | Н        | PK     |
| 6  | 7414.8750      | 36.52                 | 5.85                  | -36.28                | 44.39             | 50.48             | 74.00             | 23.52         | Pass   | Н        | PK     |
| 7  | 9886.5000      | 37.75                 | 6.78                  | -36.87                | 41.35             | 49.01             | 74.00             | 24.99         | Pass   | Н        | PK     |

| Mode:   | GFSK | Channel: | 2471.625 |
|---------|------|----------|----------|
| Remark: |      | 1 (6)    | (4       |

| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Magin<br>[dB] | Result | Polarity | Remark |
|----|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|---------------|--------|----------|--------|
| 1  | 3295.4545      | 33.32                 | 4.57            | -36.80                | 49.59             | 50.68             | 74.00             | 23.32         | Pass   | V        | PK     |
| 2  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 50.00             | 53.11             | 74.00             | 20.89         | Pass   | V        | PK     |
| 3  | 4943.2500      | 34.50                 | 4.83            | -36.22                | 39.83             | 42.94             | 54.00             | 11.06         | Pass   | V        | AV     |
| 4  | 6369.9370      | 35.87                 | 5.40            | -36.21                | 42.73             | 47.79             | 74.00             | 26.21         | Pass   | V        | PK     |
| 5  | 7414.8750      | 36.52                 | 5.85            | -36.28                | 44.77             | 50.86             | 74.00             | 23.14         | Pass   | V        | PK     |
| 6  | 7922.2922      | 36.43                 | 6.07            | -36.33                | 44.28             | 50.45             | 74.00             | 23.55         | Pass   | V        | PK     |
| 7  | 9886.5000      | 37.75                 | 6.78            | -36.87                | 40.70             | 48.36             | 74.00             | 25.64         | Pass   | V        | PK     |

#### Note:

- 1) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.





Report No. : EED32K00204201 Page 77 of 102

# PHOTOGRAPHS OF TEST SETUP

Test model No.:DXR-8

Adapter 1: BLJ06W050055P1-U



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-2(Above 1GHz)



Report No. : EED32K00204201 Page 78 of 102



Radiated spurious emission Test Setup-3(Below 30MHz)



**Conducted Emissions Test Setup** 













Report No. : EED32K00204201 Page 79 of 102

# Adapter 2: CS3B050055FU



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-2(Above 1GHz)













Report No. : EED32K00204201 Page 80 of 102



Radiated spurious emission Test Setup-3(Below 30MHz)



**Conducted Emissions Test Setup** 









