LINEAR LOGIC Homework #2

two separate Lemmas for Substitution

Jiawen LIU

UBID: jliu223 person #: 50245965

Types
$$T ::= A|B|C$$

Term $t ::= x|t| \lambda x.t$

Figure 1: syntax

 $\Gamma \vdash t : A$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \rightarrow B} \text{ ABS}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \rightarrow B} \text{ ABS}$$

$$\frac{\Gamma \cap \Delta = \emptyset \quad \Gamma \vdash t : A \rightarrow B \quad \Delta \vdash u : A}{\Gamma, \Delta \vdash t u : B} \text{ APP}$$

$$\frac{\Gamma, x : A, y : B \vdash u : C}{\Gamma, y : B, x : A \vdash u : C} \text{ EXCHANGE}$$

$$\frac{\Gamma \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ WEAKING}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ DERELICTION}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ DERELICTION}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ PROMOTION}$$

Figure 2: Typing rules

Lemma 1 (Preservation under Substitution).

- 1. If $\Gamma \vdash t : A$ and $\Delta, x : A \vdash u : B$ then $\Gamma, \Delta \vdash u[t/x] : B$.
- 2. If $!\Gamma \vdash t : !A \text{ and } \Delta, x : !A \vdash u : B \text{ then } !\Gamma, \Delta \vdash u[t/x] : B$.

Proof. Lemma 1.1 is proved in lecture.

Lemma 1.2 is proved by induction on the typing derivation of the second premise Δ , $x : !A \vdash u : B$. Assume we know: $!\Gamma \vdash t : !A$

Case

SubCase1:

$$\frac{\Delta \vdash u : B}{\Delta, x : !A \vdash u : B}$$
 WEAKING

TS: $!\Gamma, \Delta \vdash u[t/x] : B$

STS: $!\Gamma, \Delta \vdash u : B$, because x doesn't show up in u.

By applying WEAKING rule on hypothesis, we get: Δ ,! $\Gamma \vdash u : B$.

By applying WEAKING rule, we get: $!\Gamma, \Delta \vdash u : B$.

This case is proved.

SubCase2:

$$\frac{\Delta, x : !A \vdash u : B}{\Delta, x : !A, \hat{x} : !A \vdash u : B} \text{ WEAKING}$$

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

By IH, we get: $!\Gamma, \Delta \vdash u[t/x] : B$

By apply WEAKING rule, we get: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

This case is proved.

Case

SubCase1:

$$\frac{\Delta, x : A \vdash u : B}{\Delta, x : A \vdash u : B}$$
 DERELICTION

TS: $!\Gamma, \Delta \vdash u[t/x] : B$.

By IH of Lemma 1.1, we get: $\Gamma, \Delta \vdash u[t/x] : B$.

By applying the DERELICTION rule, we get: $!\Gamma, \Delta \vdash u[t/x] : B$.

This case is proved.

SubCase2:

$$\frac{\Delta, x : !A, \hat{x} : A \vdash u : B}{\Delta, x : !A, \hat{x} : !A \vdash u : B} \text{ DERELICTION}$$

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$.

By IH, we get: $!\Gamma, \Delta, \hat{x} : A \vdash u[t/x] : B$.

By applying DERELICTION rule, we get: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$.

This case is proved.

Case

SubCase1:

$$\frac{\Delta, x : !A, y : !A \vdash v : B}{\Delta, x : !A \vdash \nu[x/y] : B}$$
CONTRACT

TS: $!\Gamma, \Delta \vdash u[t/x] : B$

STS: $!\Gamma, \Delta \vdash \nu[x/y][t/x] : B$

STS: $!\Gamma, \Delta \vdash \nu[t/y][t/x] : B$

By IH on Δ , x : !A, $y : !A \vdash v : B$, we get:

 $!\Gamma, \Delta, y : !A \vdash v[t/x] : B$

[[Rename all the variables in premise 1: $!\Gamma \vdash t: !A$, we get:

 $!\Gamma' \vdash t[\Gamma'/\Gamma] : !A$

Apply Induction Hypothesis again on $!\Gamma, \Delta, y : !A \vdash v[t/x] : B$ **with premise** $!\Gamma' \vdash t[!\Gamma'/!\Gamma] : !A$, **we get:** $!\Gamma', !\Gamma, \Delta \vdash v[t/x][t[\Gamma'/\Gamma]/y] : B$

Apply CONTRACT rule on every pair of same variables in Γ' , Γ with different name, we get:

 $!\Gamma, \Delta \vdash v[t/x][t[\Gamma'/\Gamma]/y][\Gamma/\Gamma'] : B.$

Because $v[t/x][t[\Gamma'/\Gamma]/y][\Gamma/\Gamma'] = v[t/x][t/y] = v[t/y][t/x]$.

this case is proved.

SubCase2:

$$\frac{\Delta, x : !A, \hat{x} : !A, y : !A \vdash v : B}{\Delta, x : !A, \hat{x} : !A \vdash \nu [\hat{x}/y] : B}$$
CONTRACT

where $v[\hat{x}/y] = u$.

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

STS: $!\Gamma, \Delta, \hat{x} : !A \vdash \nu[\hat{x}/y][t/x] : B$

We know Δ , $\hat{x}: A, y: A, x: A \vdash v: B$ by applying EXCHANGE rule on Δ , $x: A, \hat{x}: A, y: A \vdash v: B$.

By IH on Δ , \hat{x} :!A, y:!A, x:! $A \vdash v$: B, we get:

 $!\Gamma, \Delta, \hat{x} : !A, \gamma : !A \vdash \nu[t/x] : B$

By applying CONTRACT rule on $!\Gamma, \Delta, \hat{x} : !A, y : !A \vdash v[t/x] : B$, we get:

 $!\Gamma, \Delta, \hat{x} : !A \vdash \nu[t/x][\hat{x}/y] : B.$

Because $v[t/x][\hat{x}/y] \equiv v[\hat{x}/y][t/x]$, this case is proved.

Case

$$\frac{!\Delta, x : !A \vdash u : C}{!\Delta, x : !A \vdash u : !C}$$
 PROMOTION

where B = !C.

TS: $!\Gamma$, $!\Delta \vdash u[t/x] : B$. STS: $!\Gamma$, $!\Delta \vdash u[t/x] : !C$ By IH, we get: $!\Gamma, !\Delta \vdash u[t/x] : C$ By applying the PROMOTION rule, we get: $!\Gamma, !\Delta \vdash u[t/x] : !C$. This case is proved. \Box **Theorem 0.1** (Preservation). *If* $\Gamma \vdash t : A$ *and* $t \to t'$ *then* $\vdash t' : A$ *Proof.* of Theorem 0.1 by induction on the derivation of first premise: $\Gamma \vdash t : A$: