Chapter 10 Image Segmentation

- 10.1 Fundamentals
- 10.2 Point, Line, and Edge Detection
- 10.3 Thresholding
- 10.4 Region-Based Segmentation

10.1 Fundamentals

R: entire image – partition into *n* subregions $\{R_1, R_2, ..., R_n\}$

$$\bigcup_{i=1}^{n} R_i = R$$

$$R_i \text{ is a connected set, } i = 1,2,...,n$$

$$R_i \cap R_j = \emptyset \text{ for all } i \text{ and } j, i \neq j$$

$$Q(R_i) = True \text{ for all } i = 1,2,...,n$$

$$Q(R_i \cup R_i) = False \text{ for any adjacent regions } R_i \text{ and } R_i$$

Edge-based segmentation algorithm

Region-based segmentation algorithm

10.2 Point, Line, and Edge Detection

Detect using derivatives

$$\frac{\partial f}{\partial x} = f'(x) = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f''(x) = f(x+1) + f(x-1) - 2f(x)$$

$$R = \sum_{k=1}^{9} w_k z_k = w_1 z_2 + w_2 z_2 + \dots + w_9 z_9$$

Point, Line Detection

Line Detection

Detect line that are one pixel thick 45° mask

$$|R| \ge T$$

Edge Models

Edge Detection Methods – using image gradient

$$\nabla f \equiv \operatorname{grad}(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Magnitude:
$$M(x, y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$\approx |g_x| + |g_y|$$

Direction: $\alpha(x, y) = \tan^{-1} \left[\frac{g_y}{g_x} \right]$

Gradient operators

$$g_x = \frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y) \qquad g_y = \frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$

$$g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y+1) - f(x, y)$$

Roberts

-1

1

1

-1

Symmetric about the center points

Prewitt								
0	1	2		-2	-1	0		
-1	0	1		-1	0	1		
-2	-1	0		0	1	2		

Sobel

	Prewitt					
-1	-2	-1	-1	0		
0	0	0	-2	0		
1	2	1	-1	0		
Sobel						

Sobel mask edge detection example

Gradient angle

Reduce noise: Smoothing

Smooth with 5×5 average filter

Diagonal edge detection

Edge detection + threshold: 33% highest value

10.3 Thresholding

The basics of intensity thresholding

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

Multiplethresholding

$$g(x,y) = \begin{cases} a & \text{if } f(x,y) > T_2 \\ b & \text{if } T_1 \le f(x,y) \le T_2 \\ c & \text{if } f(x,y) \le T_1 \end{cases}$$

The role of noise in image thresholding

The role of illumination and reflectance

play a central role in image segmentation Basic Global Thresholding – when the intensity distributions of objects and background pixels are sufficiently distinct

Iterative thresholding algorithm

- 1. Select initial threshold T
- 2. Segment image into $\{G_1, G_2\}$ using T using $g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T \\ 0 & \text{if } f(x, y) \leq T \end{cases}$
- 3. Compute mean values m_1 and m_2 for the pixels in G_1 and G_2
- 4. Computer new threshold: $T=(m_1+m_2)/2$
- 5. Repeat steps 2 through 4 until the difference between values of T in successive iterations is smaller than ΔT

T=125

Optimal Global Thresholding Using Otsu's Method

- maximize the between-class variance
- perform on histogram

$$k=0,1,2,...,L-1$$

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > k^* \\ 0 & \text{if } f(x,y) \le k^* \end{cases}$$

- 1. Compute normalized histogram of input image p_i , i = 0,1,...,L-1
- 2. Compute the cumulative sums $P_1(k) = \sum_{i=1}^{k} p_i$ $P_1(k)$ using

$$P_1(k) = \sum_{i=0}^k p_i$$

- $P_1(k)$ using

 3. Compute the cumulative means m(k) using $m(k) = \sum_{i=0}^{k} ip_i$
- 4. Compute the global intensity mean m_G , using

$$m_G = \sum_{i=0}^{L-1} i p_i$$

5. Compute the between-class variance

$$\sigma_B^2(k)$$
 using $\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$

- 6. Obtain the Otsu threshold, k^* , as the value of k for which $\sigma_B^2(k)$ is maximum. If the maximum is not unique, obtain k^* by averaging the values of k. corresponding to the various maxima detected.
- 7. Obtain the separability measure, η^* , by evaluating $\eta(k) = \frac{\sigma_G^2(k)}{\sigma_g^2}$ at $k=k^*$.

Basic global

Otsu's method

$$\eta(k) = \frac{\sigma_G^2(k)}{\sigma_G^2}$$
 at $k=k^*$

Using Image Smoothing to Improve Global Thresholding

Otsu's method

Using Edges to Improve Global Thresholding

Gradient magnitude image threshold at 99.7%

Multiple Thresholding

$$g(x,y) = \begin{cases} a & \text{if } f(x,y) \le k_1^* \\ b & \text{if } k_1^* < f(x,y) \le k_2^* \\ c & \text{if } f(x,y) > k_2^* \end{cases}$$

Variable Thresholding

Iterative global

Otsu's method

Image partition

Variable thresholding based on local image properties

Using moving averages

$$m(k+1) = \frac{1}{n} \sum_{i=k+2-n}^{k+1} z_i$$

= $m(k) + \frac{1}{n} (z_{k+1} - z_{k-n})$

$$m(1) = z_1 / n$$

Otsu's method

Indrinty six between stockley of Kny and Staty of Tennessey Indrew Jackson of the other part day aforeson for a fact Stockley Donelson for a fand paid the two thousand hand paid the twent presents and hand had by their firesents. Full alien enfeoff and Confir Jackson has heirs and a certain traits or parall of La sand acres on thousand are

moving averaging

10.4 Region-Based Segmentation

Seeds:

connected

10.4.1 Region growing – a procedure that groups pixels or subregions into larger regions based on predefined criteria (e.g. similar color) for growth.

Dual threshold

10.4 Region-Based Segmentation

10.4.1 Region Splitting and Merging

- 1. Split into four disjoint quadrants any region R_i for $Q(R_i)$ =false
- 2. When no further splitting is possible, merge any adjacent regions R_j and R_k for which $Q(R_i \cup R_k)$ =true
- 3. Stop when no further merging is possible

32 ×32

R_1	R_2	
R_3	R_{41}	R_{42}
N	R_{43}	R ₄₄

