SENTIMENT ANALYSIS FOR MARKETING

PHASE 2

NAME	SATTANATHAN V
TEAM ID	proj_212173_Team_2

Project: Sentient Analysis For Marketing

Introduction:

Sentiment analysis using BERT and RoBERTa models is a powerful approach to extract sentiment information from text data. These models, based on transformer architecture, have achieved state-of-the-art performance on various NLP tasks, including sentiment analysis. In this introduction, I'll walk you through the steps to perform sentiment analysis using the Hugging Face Transformers library, which provides pre-trained BERT and RoBERTa models.

Data Collection and Preprocessing:

- Importing the dataset: Obtain a comprehensive dataset containing relevant features such as tweet count, tweet timezone, tweet id, etc.,
- Data pre-processing: Clean the data by handling missing values, outliers and categorical variables. Standardize or normalize numerical features

Exploratory Data Analysis(EDA):

- Visualize and analysis the dataset to gain insights into the relationship between variables.
- Identify correlations and patterns that can inform features selected and engineering

ADVANCED TECHNIQUES:

• BERT or RoBERTa for Text Embeddings:

First, you can use BERT or RoBERTa to generate text embeddings (vectors) for your text data. These embeddings capture the semantic information of the text, which you can then use as input to a regression model.

• Random Forest Regressor:

Random Forest is an ensemble learning method that can handle both regression and classification tasks effectively. It's known for its ability to capture complex relationships in the data.

• Gradient Boosting Regressor (e.g., XGBoost, LightGBM, or CatBoost):

Gradient boosting algorithms often provide excellent predictive performance by combining the predictions of multiple weak learners. Each of these libraries (XGBoost, LightGBM, and CatBoost) has its advantages and can be fine-tuned for optimal results.

DATA SOURCE:

A good data source for Sentimental analysis for marketing using nlp should be Accurate, Complete, Covering the reviews of customers from all possible ways like Social Media, Direct review and trends of products.

Dataset Link: https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment

PROGRAM:

SENTIMENT ANALYSIS FOR MARKETING

IMPORTING DEPENDENCIES:

import pandas as pd

import numpy as np

import torch

import tokenize

import seaborn as sns

import matplotlib.pyplot as plt

import nltk

import tensorflow as tf

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, classification_report

from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments

from skearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor

import xgboost as xg

Loading Data:

dataset=pd.read csv('Tweets.csv')

dataset.info()

print(dataset.shape)

print(dataset['airline sentiment'].value counts())

Out[1]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14640 entries, 0 to 14639
Data columns (total 15 columns):
```

Non-Null Count	Dtype
14640 non-null	int64
14640 non-null	object
14640 non-null	float64
9178 non-null	object
10522 non-null	float64
14640 non-null	object
40 non-null	object
14640 non-null	object
32 non-null	object
14640 non-null	int64
14640 non-null	object
1019 non-null	object
	14640 non-null 14640 non-null 14640 non-null 9178 non-null 10522 non-null 14640 non-null 40 non-null 14640 non-null 32 non-null 14640 non-null 14640 non-null

```
12 tweet_created 14640 non-null object 13 tweet_location 9907 non-null object 14 user_timezone 9820 non-null object dtypes: float64(2), int64(2), object(11) memory usage: 1.7+ MB (14640, 15) negative 9178 neutral 3099 positive 2363
Name: airline sentiment, dtype: int64
```

Pre-Process the Data:

```
def preprocess text(text):
  # Remove punctuations and numbers
  text = re.sub('[^a-zA-Z]', '', text)
  # Single character removal
  text = re.sub(r'\s+[a-zA-Z]\s+', '', text)
  # Removing multiple spaces
  text = re.sub(r'\s+', '', text)
  # Converting to Lowercase
  text = text.lower()
  # Lemmatization
  \#text = text.split()
  #lemmatizer = WordNetLemmatizer()
  #text = [lemmatizer.lemmatize(word) for word in text if not word in
set(stopwords.words('english'))]
  #text = ' '.join(text)
  return text
# Apply the preprocessing to the 'text' column
df['text'] = df['text'].apply(preprocess text)
# Display the first 5 rows of the dataframe after preprocessing
df.head()
```

output:

S.no	airline_sentiment	text
0	neutral	virginamerica what dhepburn said
1	positive	virginamerica plus you ve added commercials t
2	neutral	virginamerica didn today must mean need to ta
3	negative	virginamerica it really aggressive to blast o
4	negative	virginamerica and it a really big bad thing a

DATA CLEANING:

```
data = data[['airline_sentiment', 'text']]
data['airline_sentiment'] = data['airline_sentiment'].map({'positive': 2, 'neutral': 1, 'negative': 0})
```

SPLIT THE DATA INTO TRAINING AND TESTING SETS:

```
X = data['text']
y = data['airline_sentiment']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

REGRESSION MODELS:

LOGISTIC REGRESSION:

```
model=LogisticRegression(max_iter=10000)
model.fit(train_vec,train_labels)
Output : LogisticRegression(max_iter=10000)
```

RANDOM FORESTING:

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

rf_classifier.fit(X_train_tfidf, y_train)

rf_predictions = rf_classifier.predict(X_test_tfidf)

Output:

Classification Report for Random Forest:

	precision	recall	f1-score	support
negative neutral	0.79	0.93	0.85	1889 580
positive	0.73	0.56	0.64	459
accuracy			0.76	2928
macro avg	0.70	0.62	0.64	2928
weighted avg	0.74	0.76	0.74	2928

r_train_accuracy, r_test_accuracy, r_train_auc, r_test_auc= check_scores(RandomForestClassifier(random_state=0).fit(x_train, y_train), x_train,x_test,y_train,y_test)

Output:

Train confusion matrix is: [[6829 26] [5 1795]]

Test confusion matrix is: [[2215 108] [238 325]]

	precision	recall	f1-score	support
0	0.90	0.95	0.93	2323
1	0.75	0.58	0.65	563
accuracy			0.88	2886
macro avg	0.83	0.77	0.79	2886
weighted avg	0.87	0.88	0.87	2886

Train accuracy score: 0.996418255343732 Test accuracy score: 0.8801108801108801

Train ROC-AUC score: 0.9982442661479861 Test ROC-AUC score: 0.8956867344777572

Are under Precision-Recall curve: 0.6526104417670683

GRADIANT BOOSTING CLASSIFICATION:

```
gb_classifier = GradientBoostingClassifier(n_estimators=100, random_state=42)
gb_classifier.fit(X_train_tfidf, y_train)
gb_predictions = gb_classifier.predict(X_test_tfidf)
```

Output:

Classification Report for Gradient Boosting:

	precision	recall	f1-score	support
negative	0.76	0.96	0.85	1889
neutral	0.67	0.24	0.35	580
positive	0.74	0.54	0.63	459
accuracy			0.75	2928
macro avg	0.72	0.58	0.61	2928
weighted avg	0.74	0.75	0.71	2928

PLOTING THE REGRESSION MODELS:

CONFUSION MATRIX

```
def plot_confusion_matrix(y_test, y_pred):
    cm = confusion_matrix(y_test, y_pred)

df_cm = pd.DataFrame(cm, index = [i for i in ['negative', 'neutral', 'positive']],
        columns = [i for i in ['negative', 'neutral', 'positive']])

plt.figure(figsize = (10,7))

sns.heatmap(df_cm, annot=True, fmt='d', cmap='Blues')

plt.title('Confusion Matrix')

plt.xlabel('Predicted')
```

plt.ylabel('True')
plt.show()
plot_confusion_matrix(y_test, y_pred)

Creating column 'tweet_length'
df['tweet_length'] = df['text'].apply(len)
distribution of sentiments
plt.figure(figsize=(8,6))
sns.countplot(x='airline_sentiment', data=df)
plt.title('Distribution of Sentiments')
plt.show()

Histogram of tweet lengths

plt.figure(figsize=(8,6))

sns.histplot(df['tweet_length'], bins=30)

plt.title('Distribution of Tweet Lengths')

plt.show()

Boxplot of tweet lengths plt.figure(figsize=(8,6))

sns.boxplot(x='airline_sentiment', y='tweet_length', data=df)
plt.title('Distribution of Tweet Lengths by Sentiment')
plt.show()

CONCLUSION:

• In the phase 2 conclusion, I summarize the key findings and insights from the advanced techniques. We will reiterate the impact of these techniques on the improving the accuracy and robustness of Sentiment analysis.