Звіт

про виконання завдання з самостійної роботи

з курсу «**Теорія ймовірностей та математична статистика**»

тема «КОРЕЛЯЦІЙНИЙ ТА РЕГРЕСІЙНИЙ АНАЛІЗ»

студентом Попов А. А. (група КС-231) в 2024-2025 навчальному році за індивідуальним варіантом даних №17

3ada va 7. Знайти вибіркове рівняння прямої лінії регресії Y на X за даними спостережень:

\boldsymbol{x}	2,00	8,50	12,00	9,50	11,00
y	4,30	4,20	4,50	4,60	4,90

Розв'язання:

1. Загальна форма рівняння регресії:

Пряма регресії Ү на Х має вигляд:

$$Y = a + bX$$
.

щоб визначити коефіцієнти а і b використаємо наступні формули:

$$a = \overline{y} - b\overline{x}. \quad i \quad b = \frac{\sum_{i=1}^{n} (x_i - \overline{x} \dot{c})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

b коефіцієнт показує, на скільки одиниць зміниться Y, якщо X зміниться на одну одиницю.

Вільний член а показує значення Y, коли X=0.

Розрахунок середніх значень $\overline{x}i\overline{y}$:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \ \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

дано:

$$x = \{2, 8.5, 12, 9.5, 11\}.$$

$$y = \{4.3, 4.2, 4.5, 4.6, 4.9\}.$$

кількість спостережень: n = 5.

Знаходимо середні значення $\bar{x}i\bar{y}$:

$$\sum x_i = 2 + 8.5 + 12 + 9.5 + 11 = 43.$$

$$\sum y_i = 4.3 + 4.2 + 4.5 + 4.6 + 4.9 = 22.5.$$

$$\overline{x} = \frac{43}{5} = 8.6., \ \overline{y} = \frac{22.5}{5} = 4.5.$$

Обчислюємо відхилення і їхні добутки:

X_{i}	y _i	$X_i - \overline{X}$	$y_i - \overline{y}$	$(x_i-\overline{x})(y_i-\overline{y})$	$(x_i-\overline{x})^2$
2	4.3	2-8.6=-6.6	4.3-4.5=-0.2	(-6.60) (-0.20)=1.32	$(-6.60)^2 = 43.56$
8.5	4.2	8.5-8.6= -0.1	4.2-4.5=-0.3	(-0.10) (-0.30)=0.03	$(-0.10)^2 = 0.01$
12	4.5	12-8.6=3.4	4.5-4.5=0	(3.40) (0.00)=0.00	$(3.40)^2 = 11.56$
9.5	4.6	9.5 – 8.6=0.9	4.6-4.5=0.1	(0.90) (0.10)=0.09	$(0.90)^2 = 0.81$
11	4.9	11-8.6=2.4	4.9-4.5=0.4	(2.40) (0.40)=0.96	$(2.40)^2 = 5.76$

Підставляємо у формули:

Сума добутків $(x_i - \overline{x})(y_i - \overline{y})$:

$$\sum (x_i - \overline{x})(y_i - \overline{y}) = 1.32 + 0.03 + 0 + 0.09 + 0.96 = 2.4.$$

Сума квадратів відхилень $(x_i - \overline{x})^2$:

$$\sum (x_i - \overline{x})^2 = 43.56 + 0.01 + 11.56 + 0.81 + 5.76 = 61.7.$$

Знаходимо b і а:

$$b = \frac{2.4}{61.7} = 0.0389$$
. $a = 4.5 - (0.0389 * 8.6) = 4.1655$.

Рівняння прямої регресії: Y = 4.1655 + 0.0389X.

Висновок: За допомогою методу найменших квадратів було знайдено вибіркове рівняння прямої лінії регресії Y на X. Це означає, що при збільшенні значення X на 1 одиницю, значення Y в середньому зростає на 0.039 одиниць. Вільний член 4.17 показує орієнтовне значення Y, коли X=0. Таким чином, отримана пряма відображає залежність між змінними X та Y для даних спостережень.