2η Σειρά Γραπτών Ασκήσεων

Αλγόριθμοι και Πολυπλοκότητα

ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο

- 1 Κλειδιά και κλειδαριές
- 2 Puzzle
- ③ Διαστημικές Μάχες
- 4 Κεραίες
- 5 Εργοστάσιο Ποτηριών

 Θα χρησιμοποιήσουμε τα κλειδιά ως pivot για να ταξινομήσουμε τις πόρτες μας

• Τ=μέσος ολικός χρόνος

- Τ=μέσος ολικός χρόνος
- F=μέσος ολικός χρόνος εύρεσης συνόλων που διαμερίζονται

- Τ=μέσος ολικός χρόνος
- F=μέσος ολικός χρόνος εύρεσης συνόλων που διαμερίζονται
- D=μέσος ολικός χρόνος διαμερισμού

- Τ=μέσος ολικός χρόνος
- F=μέσος ολικός χρόνος εύρεσης συνόλων που διαμερίζονται
- D=μέσος ολικός χρόνος διαμερισμού
- D = $\Theta(nlogn)$ (Quicksort analysis)

- Τ=μέσος ολικός χρόνος
- F=μέσος ολικός χρόνος εύρεσης συνόλων που διαμερίζονται
- D=μέσος ολικός χρόνος διαμερισμού
- D = $\Theta(nlogn)$ (Quicksort analysis)
- $F \le nE[depth] = \Theta(nlogn)$

- Τ=μέσος ολικός χρόνος
- F=μέσος ολικός χρόνος εύρεσης συνόλων που διαμερίζονται
- D=μέσος ολικός χρόνος διαμερισμού
- D = $\Theta(nlogn)$ (Quicksort analysis)
- $F \leq nE[depth] = \Theta(nlogn)$
- $T = \Theta(nlogn)$

• Ε.Υ: έστω ότι μπορώ σε $2^{n-1} \times 2^{n-1}$ $n \ge 2$

- Ε.Υ: έστω ότι μπορώ σε $2^{n-1} \times 2^{n-1}$ $n \ge 2$
- Απόδειξη για $2^n \times 2^n$ $n \ge 2$

lacktriangle χωρίζω σε τέσσερα τετράγωνα μεγέθους $2^{n-1} \times 2^{n-1}$

- lacktriangle χωρίζω σε τέσσερα τετράγωνα μεγέθους $2^{n-1} \times 2^{n-1}$
- 💿 γεμίζω κατάλληλα με ένα γάμμα το κεντρικό τετραγωνάκι

- lacktriangle χωρίζω σε τέσσερα τετράγωνα μεγέθους $2^{n-1} \times 2^{n-1}$
- 🛾 γεμίζω κατάλληλα με ένα γάμμα το κεντρικό τετραγωνάκι
- γεμίζω επαγωγικά το καθένα ξεχωριστά

- lacktriangle χωρίζω σε τέσσερα τετράγωνα μεγέθους $2^{n-1} \times 2^{n-1}$
- γεμίζω κατάλληλα με ένα γάμμα το κεντρικό τετραγωνάκι
- γεμίζω επαγωγικά το καθένα ξεχωριστά

Διαστημικές Μάχες

Είσοδος: n Death Satellites δύναμης f_i n πλανήτες αξίας v_i με δυναμη ασπίδας s_i

Εξοδος: Ένα ταίριασμα M των Satellites με πλανητες που μεγιστοποιεί το κέρδος της Αυτοκρατορίας:

$$\max \sum_{i \in W} v_i, W = \{i \mid f_i > s_{M(i)}\}$$

Διαστημικές Μάχες - Αλγόριθμος

Greedy κριτήριο 1

Προσπάθησε να κατάστρεφεις πλανήτες με μεγάλη αξία

Greedy κριτήριο 2

Μη σπαταλάς μεγάλης δύναμης Satellites σε μικρής δύναμης ασπίδες

το μέγιστο δυνατό κέρδος με τη μικρότερη δυνατή "σπατάλη" δύναμης

Διαστημικές Μάχες - Αλγόριθμος

Greedy κριτήριο 1

Προσπάθησε να κατάστρεφεις πλανήτες με μεγάλη αξία

Greedy κριτήριο 2

Μη σπαταλάς μεγάλης δύναμης Satellites σε μικρής δύναμης ασπίδες

το μέγιστο δυνατό κέρδος με τη μικρότερη δυνατή "σπατάλη" δύναμης

Αλγόριθμος: Space

Ταξινόμησε τους πλανήτες σε φθίνουσα σειρά v_i Για κάθε πλανήτη i αντιστοίχισε το Satellite με min f_j ώστε $f_j>s_i$ Αν \nexists τέτοιο Satellite, αντιστοιχίζω min f_j

Διαστημικές Μάχες - Ορθότητα

Εστω ΟΡΤ η βέλτιστη λύση του προβλήματος, και Greedy η δική μας λύση. Εξετάζω τους πλανήτες σε φθίνουσα σειρά v_i , και η πρώτη φορά που διαφέρουν οι λύσεις είναι στον πλανήτη i: η ΟΡΤ αντιστοιχίζει το Satellite f_{op} ενώ η Greedy το Satellite f_{gr} . Διακρίνω τις περιπτώσεις:

Διαστημικές Μάχες - Ορθότητα

Έστω ΟΡΤ η βέλτιστη λύση του προβλήματος, και Greedy η δική μας λύση. Εξετάζω τους πλανήτες σε φθίνουσα σειρά v_i , και η πρώτη φορά που διαφέρουν οι λύσεις είναι στον πλανήτη i: η ΟΡΤ αντιστοιχίζει το Satellite f_{op} ενώ η Greedy το Satellite f_{gr} . Διακρίνω τις περιπτώσεις:

- Greedy χάνει, ΟΡΤ κερδίζει: $(f_{gr} \leq s_i < f_{op})$ Άτοπο! ο greedy θα είχε διαλέξει f ώστε να κερδίζει
- Greedy κερδίζει, ΟΡΤ χάνει: $(f_{gr}>s_i\geq f_{op})$ Μπορώ να αλλάξω το f_{op} με το f_{gr} στην ΟΡΤ χωρίς να μειωθεί το κέρδος

Διαστημικές Μάχες - Ορθότητα

- Greedy κερδίζει, ΟΡΤ κερδίζει: 2 περιπτώσεις
 - $f_{gr} > f_{op} > s_i$ Άτοπο! (o greedy διαλέγει το min f_i ώστε να κερδίζει)
 - $f_{op} > f_{gr} > s_i$

Μπορώ να κάνω swap τα f_{op} και f_{gr} στην ΟΡΤ χωρίς να χάσω αξία!

Διαστημικές Μάχες - Πολυπλοκότητα

Πολυπλοκότητα;

- Ταξινόμηση πλανητών: $O(n \log n)$
- Αναζήτηση σωστού s_j για κάθε f_i, ταξινόμηση ως προς s_j;

Διαστημικές Μάχες - Πολυπλοκότητα

Πολυπλοκότητα;

- Ταξινόμηση πλανητών: $O(n \log n)$
- Αναζήτηση σωστού s_j για κάθε f_i, ταξινόμηση ως προς s_j;
 Δεν αρκεί! Οι πλανήτες που αντιστοιχίζονται χαλάνε την αναζήτηση, θέλω δομή για ταξινόμηση με αφαίρεση στοιχείων → δέντρο δυαδικής αναζήτησης O(log n)

Τελικά $O(n \log n)$

Κεραίες i)

Ευθύγραμμό τμήμα με σπίτια x_i κεραίες με εμβέλεια k

Θέλω min # κεραιών

Ιδέα 1: Κάθε σπίτι πρέπει να καλύπτεται ightarrow 1 κεραία σε κάθε σπίτι

Κεραίες i)

Ευθύγραμμό τμήμα με σπίτια x_i κεραίες με εμβέλεια k

Θέλω min # κεραιών

Ιδέα 1: Κάθε σπίτι πρέπει να καλύπτεται \to 1 κεραία σε κάθε σπίτι Ιδέα 2: (Greedy) κάλυψε όσα περισσότερα μπορείς βάζοντας την κεραία στο δεξιότερο δυνατό σημείο

Κεραίες i)

Ευθύγραμμό τμήμα με σπίτια x_i κεραίες με εμβέλεια k

Θέλω min # κεραιών

Ιδέα 1: Κάθε σπίτι πρέπει να καλύπτεται \rightarrow 1 κεραία σε κάθε σπίτι Ιδέα 2: (Greedy) κάλυψε όσα περισσότερα μπορείς βάζοντας την κεραία στο δεξιότερο δυνατό σημείο

Αλγόριθμος:

Σύνολο ακάλυπτων σπιτιών: S

while $S \neq \emptyset$ do

Ξεκίνα από το πρώτο ακάλυπτο σπίτι x

Βάλε κεραία όσο δεξιότερα μπορείς (ώστε x να καλύπτεται)

Βγάλε απο το S τα σπίτια στα επόμενα k μέτρα

end

Πολυπλοκότητα: O(n)

Κεραίες i) Απόδειξη

Λύση
$$\mathit{OPT} = \{p_1, \ \dots, \ p_n\}$$
 μεγέθους $|\mathit{OPT}| = n$ Λύση $\mathit{ALG} = \{a_1, \ \dots, \ a_m\}$ μεγέθους $|\mathit{ALG}| = m$ Θ.δ.ο. $m = n$

Αρκεί η ALG να είναι πάντα "μπροστά" από την $\mathit{OPT}: a_i \geq p_i \ \forall i$ Επαγωγή στον αριθμό των κεραιών i.

Κεραίες i) Απόδειξη

Λύση
$$\mathit{OPT} = \{p_1, \ \dots, \ p_n\}$$
 μεγέθους $|\mathit{OPT}| = n$ Λύση $\mathit{ALG} = \{a_1, \ \dots, \ a_m\}$ μεγέθους $|\mathit{ALG}| = m$ Θ.δ.ο. $m = n$

Αρκεί η ALG να είναι πάντα "μπροστά" από την OPT : $a_i \geq p_i \ \forall i$ Επαγωγή στον αριθμό των κεραιών i.

• Βάση: i = 1, θα μπει 1 κεραία, $a_1 \ge p_1$ από αλγόριθμο

Κεραίες i) Απόδειξη

Λύση
$$OPT=\{p_1,\ \dots,\ p_n\}$$
 μεγέθους $|OPT|=n$ Λύση $ALG=\{a_1,\ \dots,\ a_m\}$ μεγέθους $|ALG|=m$ Θ.δ.ο. $m=n$

Αρκεί η ALG να είναι πάντα "μπροστά" από την OPT: $a_i \geq p_i \ \forall i$ Επαγωγή στον αριθμό των κεραιών i.

- Βάση: i=1, θα μπει 1 κεραία, $a_1 \ge p_1$ από αλγόριθμο
- Έστω ότι ισχύει για n, θ.δ.ο. για n+1 Επ. υπόθεση \Rightarrow οι πρώτες n κεραίες του ALG θα καλύπτουν τα σπίτια που καλύπτουν οι πρώτες n του OPT Αν βάλω την p_{n+1} στην ALG θα καλύπτει αναγκαστικά τα σπίτια στο (a_n, p_{n+1}) Από αλγόριθμο $p_{i+1} \leq a_{i+1}$

Κεραίες ii)

Σπίτια στην περιφέρεια κύκλου

Δουλεύει η λύση του i) ξεκινώντας από τυχαίο σπίτι;

Κεραίες ii)

Σπίτια στην περιφέρεια κύκλου

Δουλεύει η λύση του i) ξεκινώντας από τυχαίο σπίτι; Όχι! Παράδειγμα:

Ξεκινάω από το x_1 , κόστος: 2

Κεραίες ii)

× ((1)) × ((1))

Σπίτια στην περιφέρεια κύκλου

Δουλεύει η λύση του i) ξεκινώντας από τυχαίο σπίτι; Όχι! Παράδειγμα:

Ξεκινάω από το x_1 , κόστος: 2

Κόστος optimal: 1

Περιττή κεραία αν ξεκινήσω απο x₁

Κεραίες ii) Αλγόριθμος/Απόδειξη

Αλγόριθμος:

Τρέξε το α) ξεκινώντας από κάθε σημείο, και πάρε το min.

Πολυπλοκότητα $O(n^2)$

Κεραίες ii) Αλγόριθμος/Απόδειξη

Αλγόριθμος:

Τρέξε το α) ξεκινώντας από κάθε σημείο, και πάρε το min.

Πολυπλοκότητα $O(n^2)$

Απόδειξη/επιχείρημα ορθότητας:

- Αν υπάρχει instance που δεν έχω επικάλυψη της πρώτης με την τελευταία ⇒ είναι OPT (ίδιο με α)
- Σε όλες εχω επικάλυψη και διαλέγω την min: έστω όχι η opt \to προσπαθώ να μειώσω τις επικαλύψεις
 - Εστω η τελευταία κεραία, καλύπτει και k πρώτες
 - Μετακινώ την 1η κεραία a_1 για να αποφύγω επικάλυψη
 - Στο αριστερότερο άκρο της a_1 θα έχω κάποιο άλλο σπίτι $x_i \Rightarrow$ ισοδύναμο με το να ξεκινήσω από το $x_i \Rightarrow$ το έχω ήδη κάνει σε άλλη λύση!

Εργοστάσιο Ποτηριών i)

- n=100, k=1 Βέλτιστη σειρά δοκιμών: 1εκ $\rightarrow 2$ εκ $\rightarrow 3$ εκ ... $\rightarrow (n-1)$ εκ Αν πετάξουμε το μοναδικό ποτήρι απο κάποιο ύψος χωρίς να δοκιμάσουμε όλα τα μικρότερα ύψη και αυτό σπάσει τότε δεν έχουμε βρει λύση.
- n = 100, k = 2 binary search?
 - best case: Δοκιμή από τα 50 εκατοστά. Αν το ποτήρι δεν σπάσει δοκιμή από τα 75 εκατοστά κ.ο.κ. Αν είμαστε τυχεροί χρειάζονται 7 δοκιμές.
 - worst case: Δοκιμή από τα 50 εκατοστά. Αν το ποτήρι σπάσει θα πρέπει με το ποτήρι που μένει να δοκιμάσουμε από το 1εκ ως τα 49εκ. Χρειάζονται 50 δοκιμές. Κόστος O(n)

Εργοστάσιο Ποτηριών i)

Υπάρχει καλύτερη λύση! Ξεκινάμε από τα 14 εκατοστά.

- Αν το ποτήρι σπάσει τότε με το δεύτερο ποτήρι δοκιμάζουμε από το 1εκ ως τα 13εκ. Χρειάζονται 14 δοκιμές.
- Αν το ποτήρι δεν σπάσει δοκιμάζουμε τα 27εκ. Έτσι αν το ποτήρι σπάσει θα πρέπει να δοκιμάσουμε 15εκ - 26εκ και θα χρειαζόμαστε συνολικά 14 δοκιμές.

Ακολουθούμε το ίδιο σκεπτικό διατηρώντας τις δοκιμές ίσες με 14.

Εργοστάσιο Ποτηριών i)

1ο Ποτήρι	Αν σπάσει: 2ο Ποτήρι	Δοκιμές
14	$1 \rightarrow 2 \rightarrow \rightarrow 13$	1 + 13 = 14
27	$15 \rightarrow 16 \rightarrow \rightarrow 26$	2 + 12 = 14
39	$28 \rightarrow 29 \rightarrow \rightarrow 38$	3 + 11 = 14
50	40 o 41 o o 49	4 + 10 = 14
60	$51 \rightarrow 52 \rightarrow \rightarrow 59$	5 + 9 = 14
69	$61 \rightarrow 62 \rightarrow 63 \rightarrow 64 \rightarrow 65 \rightarrow 66 \rightarrow 67 \rightarrow 68$	6 + 8 = 14
77	$70 \rightarrow 71 \rightarrow 72 \rightarrow 73 \rightarrow 74 \rightarrow 75 \rightarrow 76$	7 + 7 = 14
84	$78 \rightarrow 79 \rightarrow 80 \rightarrow 81 \rightarrow 82 \rightarrow 83$	8 + 6 = 14
90	$85 \rightarrow 86 \rightarrow 87 \rightarrow 88 \rightarrow 89$	9 + 5 = 14
95	$91 \rightarrow 92 \rightarrow 93 \rightarrow 94$	10 + 4 = 14
99	$96 \rightarrow 97 \rightarrow 98$	11 + 3 = 14

Εργοστάσιο Ποτηριών i) Βελτιστότητα

Έστω x ο βέλτιστος αριθμός δοκιμών στην χειρότερη περίπτωση.

- Δοκιμάζουμε στα x εκατοστά καλύπτουμε x βαθμίδες
- Δοκιμάζουμε στα (x+(x-1)) εκατοστά καλύπτουμε x-1 βαθμίδες.
- κ.ο.κ

Συνολικά καλύπτουμε $x+(x-1)+(x-2)+...+2+1=\frac{x(x+1)}{2}$ βαθμίδες. Πρέπει να καλυφθούν n=100 βαθμίδες άρα:

$$\frac{x(x+1)}{2} \ge 100 \Rightarrow x = 14$$

Εργοστάσιο Ποτηριών ii) Αλγόριθμος

Δυναμικός προγραμματισμός

Αναδρομή

$$D[n, k] = 1 + \min\{\max\{D[i-1, k-1], D[n-i, k]\}\}, i = 1, 2, ..., n$$

$$D[1, k] = 1, D[0, k] = 0$$

$$D[n, 1] = n$$

D[n,k] ελάχιστος αριθμός δοκιμών στην χειρότερη περίπτωση για n εκατοστά (βαθμίδες) και k ποτήρια

Δοκιμάζουμε την i-οστή από μία ακολουθία n διαδοχικών βαθμίδων.

- Αν το ποτήρι σπάσει το πρόβλημα περιορίζεται σε k-1 ποτήρια και i-1 διαδοχικές βαθμίδες.
- Αν δεν σπάσει έχουμε k ποτήρια και n-i διαδοχικές βαθμίδες.

Εργοστάσιο Ποτηριών ii) Πολυπλοκότητα

Πολυπλοκότητα

State Space \times Work for each step = $O(nk \times n) = O(n^2k)$

Εργοστάσιο Ποτηριών iii) Με διωνυμικούς συντελεστές

Έστω b(t,k) ο αριθμός των βαθμίδων που καλύπτονται από k ποτήρια με t δοκιμές.

- Αν το ποτήρι σπάσει καλύπτονται b(t-1,k-1) βαθμίδες.
- ullet Αν δεν σπάσει έχουμε καλύπτονται b(t-1,k) βαθμίδες.
- b(t,k) = 1 + b(t-1,k-1) + b(t-1,k)

Ορίζουμε g(t,k) = b(t,k+1) - b(t,k) = g(t-1,k) + g(t-1,k-1). Η παραπάνω σχέση ισχύει για τους διωνυμικούς συντελεστές,

επομένως $g(t,k) = {t \choose k}$

(εξαίρεση: g(0,0) = 0 λόγω αρχικών συνθηκών)

Εργοστάσιο Ποτηριών iii) Με διωνυμικούς συντελεστές

Επίσης ισχύει:

$$b(t,k)=g(t,k-1)+g(t,k-2)+...+g(t,0)=\sum_{i=1}^k inom{t}{i}$$
 (τηλεσκοπικό άθροισμα)

Τώρα αρκεί απλώς να βρούμε ένα t τ.ω. $b(t,k) = \sum_{i=1}^k {t \choose i} \ge n$ ώστε να καλυφθούν όλες οι βαθμίδες.

Πολυπλοκότητα

Mε binary search έχουμε $O(k \log(n))$