Bài 3. CÁC KHÁI NIỆM MỞ ĐẦU

A. TÓM TẮT LÍ THUYẾT

1. Khái niêm vectď

7 Định nghĩa 3.1. vectơ là một đoạn thẳng có hướng.

vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là \overrightarrow{AB} , đọc là "vectơ \overrightarrow{AB} ". Để vẽ vectơ \overrightarrow{AB} ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu mút B (Hình 1). Đối với vectơ AB, ta goi

- \odot Đường thẳng d đi qua hai điểm A và B là giá của vecto AB (Hình 2).
- \odot Độ dài đoạn thẳng AB là độ dài của vect
ơAB, kí hiệu là $|\overrightarrow{AB}|$.

VÍ DỤ 1.

Cho hai điểm phân biệt H, K như hình bên. Viết hai vectơ mà điểm đầu và điểm cuối là H hoặc K.

VÍ DU 2.

Tính độ dài của các vectơ \overrightarrow{AB} , \overrightarrow{CD} và \overrightarrow{MN} ở Hình 3, biết rằng độ dài cạnh của ô vuông bằng 1 cm.

2. Hai vectơ cùng phương, cùng hướng, bằng nhau

7 ĐỊNH NGHĨA 3.2. Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Nhận xét: Nếu hai vectơ cùng phương thì hoặc chúng cùng hướng hoặc chúng ngược hướng. VÍ DU 3.

Trong Hình 4, tìm vectơ cùng hướng với vectơ \overrightarrow{AB} ; ngược hướng với vectơ \overrightarrow{AB} .

 \P Định nghĩa 3.3. Hai vecto \overrightarrow{AB} , \overrightarrow{CD} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu: $\overrightarrow{AB} = \overrightarrow{CD}$.

Khi không cần chỉ rõ điểm đầu và điểm cuối của vectơ, vectơ còn được kí hiệu là \vec{a} , \vec{b} , \vec{u} , \vec{v} , ...(Hình 5). Độ dài của vectơ \vec{a} được kí hiệu là $|\vec{a}|$.

Nhận xét

- $m{\Theta}$ Hai vecto \vec{a} , \vec{b} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu là $\vec{a} = \vec{b}$.
- \odot Khi cho trước vect
ơ \overrightarrow{a} và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho $\overrightarrow{OA} = \overrightarrow{a}$.

VÍ DU 4.

Cho hình bình hành ABCD (Hình 6).

- a) vecto nào bằng vecto \overrightarrow{AB} ?
- b) vecto nào bằng vecto \overrightarrow{AD} ?

3. vecto không

 \raiset Định nghĩa 3.4. vectơ không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\overrightarrow{0}$.

Với các điểm bất kì A, B, C ta có $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC}$.

vecto \overrightarrow{AA} nằm trên mọi đường thẳng đi qua A. Ta quy ước $\overrightarrow{0}$ (vecto không) cùng phương và cùng hướng với mọi vecto; hơn nữa $|\overrightarrow{0}| = 0$.

Nhận xét: Hai điểm A, B trùng nhau khi và chỉ khi $\overrightarrow{AB} = \overrightarrow{0}$.

B. CÁC DẠNG TOÁN

Dạng 1. Xác định một vectơ, độ dài vectơ

- ❷ vectơ là một đoạn thẳng có hướng, nghĩa là, trong hai điểm mút của đoạn thẳng, đã chỉ rõ điểm đầu, điểm cuối.
- ② Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tứ giác ABCD. Hãy chỉ ra các vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của tứ giác.

VÍ DỤ 2. Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài các vecto \overrightarrow{AB} , \overrightarrow{BD} , \overrightarrow{DB} .

VÍ DU 3. Cho tam giác đều ABC có cạnh bằng a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} .

2. Bài tấp tư luân

BÀI 1. Cho lục giác đều ABCDEF có cạnh bằng a.

- a) Có bao nhiều vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của ngũ giác?
- b) Tính độ dài các vectơ \overrightarrow{AD}

BÀI 2. Cho tam giác ABC vuông tại A có BC = 2a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} .

ե Dạng 2. Hai vectơ cùng phương, cùng hướng và bằng nhau

Sử dụng các định nghĩa

- ❷ Hai vecto cùng phương nếu chúng có giá song song hoặc trùng nhau.
- ❷ Hai vecto cùng phương thì cùng hướng hoặc ngược hướng.
- ❷ Hai vectơ bằng nhau nếu chúng cùng đô dài và cùng hướng.

1. Ví dụ minh hoạ

VÍ DU 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

VÍ DỤ 2. Cho hình bình hành ABCD có tâm là O . Hãy tìm các cặp vectơ khác $\overrightarrow{0}$, bằng nhau và

- a) có điểm đầu và điểm cuối trong các điểm A , B , C và D .
- b) có điểm đầu là O hoặc điểm cuối là O.

2. Bài tập tự luận

BÀI 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

BÀI 2. Cho tam giác đều ABC, hãy chỉ ra mối quan hệ về độ dài, phương và hướng giữa cặp vectơ \overrightarrow{BA} và \overrightarrow{CA} . Hai vectơ có bằng nhau không?

BÀI 3.

Cho hình lục giác đều ABCDEF có tâm O.

- a) Hãy tìm các vectơ khác $\overrightarrow{0}$ và bằng với \overrightarrow{AB} .
- b) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là B.
- c) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là C.

BÀI 4. Chứng minh ba điểm A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB}, \overrightarrow{AC}$ cùng phương.

C. CÂU HỔI TRẮC NGHIỆM

CÂU 1. Chọn khẳng định đúng trong các khẳng định sau.

- A vectơ là một đường thẳng có hướng.
- **B** vectơ là một đoạn thẳng.
- c vectơ là một đoạn thẳng có hướng.
- D vectơ là một đoạn thẳng không phân biệt điểm đầu và điểm cuối.

CÂU 2. Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

A 2.

B 3.

C 4.

D 6.

CÂU 3. Cho hai điểm phân biệt A, B. Số vectơ (khác $\overrightarrow{0}$) có điểm đầu và điểm cuối lấy từ các điểm A, B là

A 2.

B 6.

C 13.

D 12.

CÂU 4. Cho tam giác đều *ABC*. Mệnh đề nào sau đây **sai**?

 $\overrightarrow{A} \overrightarrow{AB} = \overrightarrow{BC}.$

 $\overrightarrow{\mathbf{B}} \ \overrightarrow{AC} \neq \overrightarrow{BC}.$

 $|\overrightarrow{AB}| = |\overrightarrow{BC}|.$

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{AC} không cùng phương \overrightarrow{BC} .

CÂU 5. Khẳng định nào dưới đây là sai?

- (A) Mỗi vectơ đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.
- **B** Độ dài của vecto \vec{a} được kí hiệu là $|\vec{a}|$.
- $|\overrightarrow{PQ}| = \overrightarrow{PQ}.$
- $\left| \overrightarrow{AB} \right| = AB = BA.$

 \hat{CAU} 6. Cho tam giác ABC. Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Mệnh đề nào sau đây sai?

- $\overrightarrow{\mathbf{A}} \ \overrightarrow{BC} = 2\overrightarrow{NM}.$
- $\overrightarrow{B}\overrightarrow{MN} = \frac{1}{2}\overrightarrow{BC}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AN} = \overrightarrow{NC}$.
- $\boxed{\mathbf{D}} \left| \overrightarrow{MA} \right| = \left| \overrightarrow{MB} \right|.$

CÂU 7. Cho hai vectơ không cùng phương \vec{a} và \vec{b} . Khẳng định nào sau đây đúng?

- (A) Không có vectơ nào cùng phương với cả hai vectơ \vec{a} và \vec{b} .
- **B** Có vô số vectơ cùng phương với cả hai vectơ \vec{a} và \vec{b} .
- \bigcirc Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a} và \overrightarrow{b} .
- (D) Có hai vecto cùng phương với cả hai vecto \vec{a} và \vec{b} .

CÂU 8. Cho 3 điểm phân biệt A, B, C. Khi đó khẳng định nào sau đây sai?

- (A) A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{AC} cùng phương.
- $(\mathbf{B}) A, B, C$ thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{BC} cùng phương.
- $(\mathbf{C})A$, B, C thẳng hàng khi và chỉ khi \overrightarrow{AC} và \overrightarrow{BC} cùng phương.
- $(\mathbf{D}) A, B, C$ thẳng hàng khi và chỉ khi AC = BC.

CÂU 9. Mệnh đề nào sau đây đúng?

- (A) Có duy nhất một vectơ cùng phương với mọi vectơ.
- **B**) Có ít nhất hai vectơ cùng phương với mọi vectơ.
- Có vô số vectơ cùng phương với mọi vectơ.
- (D) Không có vectơ nào cùng phương với mọi vectơ.

CÂU 10. Khẳng định nào sau đây đúng?

- A Hai vecto cùng phương với một vecto thứ ba thì cùng phương.
- **B** Hai vecto cùng phương với một vecto thứ ba khác $\overrightarrow{0}$ thì cùng phương.
- c vecto không là vecto không có giá.
- Diều kiên đủ để hai vectơ bằng nhau là chúng có đô dài bằng nhau.

CÂU 11. Cho lục giác đều ABCDEF tâm O. Số các vectơ khác $\overrightarrow{0}$ cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác bằng

(A) 6.

B) 7

(C) 8.

D 4.

CÂU 12. Cho ba điểm A, B, C phân biệt. Khi đó

- (A) Điều kiện cần và đủ để A, B, C thẳng hàng là \overrightarrow{AC} cùng phương với \overrightarrow{AB} .
- \blacksquare Điều kiện đủ để A, B, C thẳng hàng là \overrightarrow{CA} cùng phương với \overrightarrow{AB} .
- \bigcirc Điều kiện cần để A, B, C thẳng hàng là \overrightarrow{CA} cùng phương với \overrightarrow{AB} .
- (\mathbf{D}) Điều kiện cần và đủ để A, B, C thẳng hàng là $\overrightarrow{AB} = \overrightarrow{AC}$.

CÂU 13. Cho vectơ $\overrightarrow{MN} \neq \overrightarrow{0}$. Số vectơ cùng hướng với vectơ \overrightarrow{MN} là

A vô số.

B 1.

(c) 3.

D 2.

CÂU 14. Gọi C là trung điểm của đoạn AB. Hãy chọn khẳng định đúng trong các khẳng định sau.

 $(\mathbf{A}) \overrightarrow{CA} = \overrightarrow{CB}.$

 \overrightarrow{B} \overrightarrow{AB} và \overrightarrow{AC} cùng hướng.

 $\overrightarrow{\mathbf{C}}$ \overrightarrow{AB} và \overrightarrow{CB} ngược hướng.

 $\left| \overrightarrow{AB} \right| = \overrightarrow{CB}.$

CÂU 15. Cho ba điểm M, N, P thẳng hàng, trong đó điểm N nằm giữa hai điểm M và P. Khi đó các cặp vectơ nào cùng hướng?

- $\overrightarrow{A} \overrightarrow{MP}$ và \overrightarrow{PN} .
- $\overrightarrow{\mathbf{C}}$ \overrightarrow{NM} và \overrightarrow{NP} .
- \bigcirc \overrightarrow{MN} và \overrightarrow{MP} .

CÂU 16. Phát biểu nào sau đây đúng?

- (A) Hai vecto không bằng nhau thì độ dài của chúng không bằng nhau.
- (B) Hai vecto không bằng nhau thì độ dài của chúng không cùng phương.
- (C) Hai vecto bằng nhau thì có giá trùng nhau hoặc song song nhau.
- D Hai vectơ có độ dài không bằng nhau thì không cùng hướng.

CÂU 17. Cho vecto $\vec{a} \neq \vec{0}$. Mệnh đề nào sau đây đúng?

 \bigcirc Có vô số vecto \overrightarrow{u} mà $\overrightarrow{u} = \overrightarrow{a}$.

 \blacksquare Có duy nhất một \overrightarrow{u} mà $\overrightarrow{u} = \overrightarrow{a}$.

 \mathbf{C} Có duy nhất một \vec{u} mà $\vec{u} = -\vec{a}$.

(**D**) Không có vectơ \vec{u} nào mà $\vec{u} = \vec{a}$.

CÂU 18. Cho hình bình hành ABCD. Đẳng thức nào sau đây sai?

- $|\overrightarrow{AD}| = |\overrightarrow{BC}|.$
- $|\overrightarrow{BC}| = |\overrightarrow{DA}|.$
- $|\overrightarrow{AB}| = |\overrightarrow{CD}|.$
- $\boxed{\mathbf{D}} \left| \overrightarrow{AC} \right| = \left| \overrightarrow{BD} \right|.$

CÂU 19. Cho lục giác đều ABCDEF tâm O. Ba vectơ bằng vectơ \overrightarrow{BA} là

- (A) \overrightarrow{OF} , \overrightarrow{DE} , \overrightarrow{OC} .
- \bigcirc \overrightarrow{CA} , \overrightarrow{OF} , \overrightarrow{DE} .
- $\overrightarrow{\mathbf{C}}$ \overrightarrow{OF} , \overrightarrow{DE} , \overrightarrow{CO} .
- \bigcirc \overrightarrow{OF} , \overrightarrow{ED} , \overrightarrow{OC} .

CÂU 20. Cho đoạn thẳng AB, I là trung điểm của AB. Khi đó

- $\overrightarrow{\mathbf{A}} \ \overrightarrow{BI} = \overrightarrow{AI}.$
- \overrightarrow{B} \overrightarrow{BI} cùng hướng \overrightarrow{AB} .
- $|\overrightarrow{BI}| = 2 |\overrightarrow{IA}|.$
- $\boxed{\mathbf{D}} \left| \overrightarrow{BI} \right| = \left| \overrightarrow{IA} \right|.$

CÂU 21. Cho hình thơi ABCD cạnh a và $\widehat{BAD} = 60^{\circ}$. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{BC} = \overrightarrow{DA}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AB} = \overrightarrow{AD}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{BD} = \overrightarrow{AC}.$$

$$\boxed{\mathbf{D}} \left| \overrightarrow{BD} \right| = a.$$

CÂU 22. Cho hình chữ nhật ABCD. Trong các đẳng thức dưới đây, đẳng thức nào đúng?

$$\overrightarrow{AB} = \overrightarrow{CD}.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{AD} = \overrightarrow{BC}.$$

$$\overrightarrow{C}$$
 $\overrightarrow{AC} = \overrightarrow{BD}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{BC} = \overrightarrow{DA}.$$

CÂU 23. Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó $|\overrightarrow{GA}|$ bằng

$$\bigcirc$$
 $2|\overrightarrow{GM}|$

$$\bigcirc$$
 $-\frac{2}{3}|\overrightarrow{MA}|.$

Bài 4. TỔNG VÀ HIỆU CỦA HAI VÉC-TƠ

A. CÁC DẠNG TOÁN

🖒 Dạng 1. Tính tổng, hiệu hai véc-tơ

- \odot Ghép các véc-tơ lại thích hợp.
- ❷ Dùng các quy tắc cộng véc-tơ để tính.
- **BÀI 1.** Tính tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$.
- **BÀI 2.** Cho tam giác ABC với M, N, P lần lượt là trung điểm của BC, CA, AB. Tính tổng $\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN}$.
- **BÀI 3.** Cho hai hình bình hành ABCD và AB'C'D' có chung đỉnh A. Tính $\overrightarrow{u} = \overrightarrow{B'B} + \overrightarrow{CC'} + \overrightarrow{D'D}$.
- **BÀI 4.** Cho tạm giác \overrightarrow{ABC} , gọi D, E, F, G, H, I theo thứ tự là trung điểm các cạnh $\overrightarrow{AB}, BC, CA, DF, DE, EF$. Tính véc-tơ $\overrightarrow{u} = \overrightarrow{BE} \overrightarrow{GH} \overrightarrow{AI} + \overrightarrow{FE}$?

BÀI 5.

Cho lục giác đều ABCDEF tâm O. Rút gọn véc-tơ $\overrightarrow{v} = \overrightarrow{AF} + \overrightarrow{BC} + \overrightarrow{DE}$?

- **BÀI 6.** Gọi O là tâm của tam giác đều ABC. Tính $\overrightarrow{u} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- **BÀI 7.** Cho hình bình ABCD. Trên các đoạn thẳng DC, AB theo thứ tự lấy các điểm M, N sao cho DM = BN. Gọi P là giao điểm của AM, DB và Q là giao điểm của CN, DB. Tính $\overrightarrow{u} = \overrightarrow{DP} \overrightarrow{QB}$.

Dạng 2. Xác định vị trí của một điểm từ đẳng thức véc-tơ

1. Ví dụ minh hoạ

- **VÍ DỤ 1.** Cho tam giác ABC. Điểm M thỏa mãn điều kiện $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Mệnh đề nào sau đây đúng?
 - ${\color{red} oldsymbol{\mathbb{A}}}\ M$ là điểm sao cho tứ giác BAMC là hình bình hành.
- ${\color{red} (\textbf{B})}\,M$ là điểm sao cho tứ giác ABMC là hình bình hành.

 \bigcirc M là trọng tâm tam giác ABC.

 \bigcirc \bigcirc M thuộc đường trung trực của AB.

2. Bài tập tự luận

- **BÀI 1.** Cho tam giác ABC. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.
- **BÀI 2.** Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{AM}$.
- **BÀI 3.** Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\left|\overrightarrow{MB} + \overrightarrow{CD}\right| = \left|\overrightarrow{MC} + \overrightarrow{DA}\right|$.

ե Dạng 3. Tính độ dài véc-tơ

1. Ví du minh hoa

VÍ DỤ 1. Cho tam giác đều ABC có cạnh AB = a, xác định và tính độ dài của véc-tơ

a)
$$\vec{x} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

b)
$$\vec{y} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

VÍ DU 2. Cho hình vuông ABCD tâm O có cạnh AB = 2, xác định và tính độ dài của véc-tơ $\overrightarrow{v} = \overrightarrow{OA} - \overrightarrow{CD}$.

2. Bài tấp tư luân

BÀI 1. Cho tam giác ABC vuông tại A có AB = 2, AC = 4, xác định và tính độ dài của véc-tơ $\vec{u} = \overrightarrow{AB} + \overrightarrow{AC}$.

BÁI 2. Cho hình chữ nhật ABCD có AC = 5, AB = 3, xác định và tính độ dài của véc-tơ

a)
$$\vec{a} = \overrightarrow{AD} - \overrightarrow{AC}$$
.

b)
$$\overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

BÀI 3. Cho hình thang ABCD có $\widehat{A} = \widehat{D} = 90^{\circ}$, AB = AD = 3, CD = 5, xác định và tính độ dài của véc-tơ

a)
$$\vec{x} = \overrightarrow{AB} - \overrightarrow{AC}$$
.

b)
$$\vec{y} = \overrightarrow{DB} + \overrightarrow{DC}$$
.

Dạng 4. Ứng dụng của véc-tơ trong vật lý

Cho hai lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \vec{F}_1 , \overrightarrow{F}_2 lần lượt là 300 (N) và 400 (N) và $\widehat{AMB}=90^\circ$. Tìm cường độ của lực tổng hợp tác động vào

(**A**) 0 (N).

(B) 700 (N).

(C) 100 (N).

D 500 (N).

BÀI 2.

Cho hai lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \vec{F}_1 , \vec{F}_2 đều bằng 300 (N) và $AMB = 60^{\circ}$. Tìm cường độ của lực tổng hợp tác động vào vật.

(A) 0 (N).

(B) 300 (N).

(C) $300\sqrt{3}$ (N).

(**D**) 500 (N).

B. CÂU HỔI TRẮC NGHIỆM

CÂU 1. Cho ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{CB}.$$

$$\overrightarrow{B} \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$$

CÂU 2. Rút gọn biểu thức véc-tơ $\overrightarrow{AM} + \overrightarrow{MB} - \overrightarrow{AC}$ ta được kết quả đúng là

(B) \overrightarrow{BC} .

(C) \overrightarrow{CB} .

 $(\mathbf{D}) \ \overrightarrow{AB}.$

CÂU 3. Gọi O là tâm hình vuông ABCD. Tính $\overrightarrow{OB} - \overrightarrow{OC}$.

 \overrightarrow{A} $\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{BC}$.

 $(\mathbf{B}) \ \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{DA}.$

 $\overrightarrow{(\mathbf{C})} \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{OD} - \overrightarrow{OA}.$ $\overrightarrow{(\mathbf{D})} \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{AB}.$

CÂU 4. Cho bốn điểm A, B, C, D phân biệt và $\overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CB} - \overrightarrow{BD}$. Khẳng định nào sau đây đúng?

 $(\mathbf{A}) \ \overrightarrow{u} = \overrightarrow{0}.$

(B) $\vec{u} = A\vec{D}$.

 $(\mathbf{C}) \ \overrightarrow{u} = \overrightarrow{CD}.$

 $(\mathbf{D}) \ \overrightarrow{u} = AC.$

CÂU 5.

Cho hình bình hành ABCD tâm O. Hỏi véc-tơ $\overrightarrow{AO} - \overrightarrow{DO}$ bằng véc-tơ nào trong các véc-tơ sau?

 $(\mathbf{A}) \ \overline{BA}.$

 $(\mathbf{B}) \ \overrightarrow{BC}.$

(C) \overrightarrow{DC} .

 $(\mathbf{D}) \overrightarrow{AC}$.

CÂU 6. Cho tam giác ABC. Goi M, N, P lần lượt là trung điểm các canh AB, AC, BC. Tổng $\overrightarrow{MP} + \overrightarrow{NP}$ bằng vec-tơ nào?

(A) \overrightarrow{PA} .

(B) \overrightarrow{AM} .

 $(\mathbf{C}) \overrightarrow{PB}.$

(**D**) \overrightarrow{AP} .

CÂU 7.

Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

- $(\mathbf{A}) \overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = \overrightarrow{0}.$
- $(\mathbf{B}) \overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OB} = \overrightarrow{EB}.$
- $\overrightarrow{\mathbf{c}}$ $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{0}$.
- $\overrightarrow{D}\overrightarrow{BC} + \overrightarrow{EF} = \overrightarrow{AD}.$

CÂU 8. Cho hình bình hành ABCD. Véc-tơ $\overrightarrow{BC} - \overrightarrow{AB}$ bằng véc-tơ nào dưới đây?

(A) \overrightarrow{DB} .

 $(\mathbf{B}) \overrightarrow{BD}.$

 $(\mathbf{C}) \, \overrightarrow{AC}$.

 $(\mathbf{D}) \overrightarrow{CA}.$

Cho hình bình hành ABCD. Gọi G là trọng tâm của tam giác ABC. Mệnh đề nào sau đây đúng?

- $(\mathbf{A}) \ \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{BD}.$
- \overrightarrow{B} $\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{CD}$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{O}$.
- $(\mathbf{D}) \overrightarrow{GA} + \overrightarrow{GD} + \overrightarrow{GC} = \overrightarrow{CD}.$

CÂU 10. Chọn mệnh đề sai trong các mệnh đề sau.

(A) Nếu $\vec{a} + \vec{b} = \vec{c}$ thì $|\vec{a}| + |\vec{b}| = |\vec{c}|$.

- \overrightarrow{B} $\overrightarrow{FY} \overrightarrow{BY} = \overrightarrow{FB}$ với B, F, Y bất kì.
- (C) Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.
- $(\mathbf{D}) \overrightarrow{AM} + \overrightarrow{MH} = \overrightarrow{AH} \text{ với } A, M, H \text{ bất kì.}$

CÂU 11. Trong mặt phẳng cho bốn điểm bất kì A, B, C, O. Đẳng thức nào sau đây là đúng?

- $\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA}$.
- $(\mathbf{B}) \ \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}.$
- (C) $\overrightarrow{OA} = \overrightarrow{CA} \overrightarrow{CO}$.
- $(\mathbf{D}) \ \overrightarrow{OA} = \overrightarrow{OB} \overrightarrow{BA}.$

CÂU 12. Cho ba điểm A, B, C phân biệt. Đẳng thức nào sau đây là sai?

- $(\mathbf{A}) \ \overrightarrow{AC} + \overrightarrow{AB} = \overrightarrow{CB}.$
- $(\mathbf{B}) \ \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$
- $(\mathbf{C}) \; \overrightarrow{AC} \overrightarrow{AB} = \overrightarrow{BC}.$
- \overrightarrow{D} $\overrightarrow{AC} \overrightarrow{BC} = \overrightarrow{AB}$.

CÂU 13. Tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$ bằng

(A) \overrightarrow{MR} .

(B) \overrightarrow{MN} .

 $(\mathbf{C}) \overrightarrow{MP}.$

 $(\mathbf{D}) \, \overrightarrow{MQ}.$

CÂU 14. Cho 4 điểm bất kì A, B, C, D. Đẳng thức nào sau đây sai?

- $(\mathbf{A}) \ \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}.$
- (B) $\overrightarrow{DA} = \overrightarrow{BD} \overrightarrow{CD}$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} = \overrightarrow{DB} \overrightarrow{DA}$.
- \overrightarrow{D} $\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC}$.

CÂU 15. Cho bốn điểm A, B, C. Tính $\overrightarrow{AB} - \overrightarrow{AC}$.

 $(\mathbf{A}) C A.$

- $(\mathbf{B}) \ 2 \cdot \overrightarrow{AC}$.
- $(\mathbf{C}) \ \overrightarrow{0}$.

 $(\mathbf{D}) \overrightarrow{AC}.$

CÂU 16. Cho tam giác ABC và điểm M bất kỳ, chọn đẳng thức **đúng**.

- $(\mathbf{A}) \ \overrightarrow{AB} \overrightarrow{AC} = \overrightarrow{BC}.$
- **(B)** $\overrightarrow{MA} + \overrightarrow{BM} = \overrightarrow{AB}$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{CB}$.
- $\overrightarrow{AA} \overrightarrow{BB} = \overrightarrow{AB}.$

CÂU 17. Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD. Tổng của \overrightarrow{NC} và \overrightarrow{MC} là

 $(\mathbf{A}) \ \vec{0}$.

(B) \overline{MN} .

(c) \overline{NM} .

(**D**) \overrightarrow{AC} .

CÂU 18. Cho hình bình hành ABCD. Gọi I, J lần lượt là trung điểm BC và AD. Tính $\overrightarrow{JC} - \overrightarrow{IC}$ không bằng

 $(\mathbf{A}) DC.$

(B) \overrightarrow{JI} .

(c) \overrightarrow{AB} .

 (\mathbf{D}) $A\acute{C}$.

CÂU 19. Cho hình bình hành ABCD. Điểm M thỏa mãn điều kiện $\overrightarrow{MB} - \overrightarrow{BC} + \overrightarrow{BO} = \overrightarrow{DO}$. Khẳng định nào sau đây đúng?

- (A) M trùng với A.
- (**B**) M trùng với B.
- (C) M trùng với O.
- $(\mathbf{D}) M$ trùng với C.

CÂU 20. Cho hình bình hành ABCD có tâm O. Điểm M thỏa mãn điều kiên $\overrightarrow{OM} = \overrightarrow{OA} - \overrightarrow{OB} + \overrightarrow{DC}$. Khẳng định nào sau đây đúng?

- (A) M trùng với B.
- (**B**) M trùng với D.
- $(\mathbf{C}) M$ trùng với A.
- $(\mathbf{D}) M$ trùng với điểm O.

CÂU 21. Cho bốn điểm phân biệt A, B, C, D. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{AD} + \overrightarrow{BC}$. Khẳng định nào sau đây đúng?

- (A) M là trung điểm CD.
- (**B**) M là trung điểm AB.
- (\mathbf{C}) M là trung điểm AD.
- $(\mathbf{D}) M$ là trung điểm BC.

CÂU 22. Cho các điểm phân biệt A, B, C, D, E, F. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{ME} + \overrightarrow{MF} = \overrightarrow{AC} + \overrightarrow{BE} + \overrightarrow{DF}$. Khẳng định nào sau đây đúng?

(A) M là trọng tâm tam giác ABC.

(B) M là trọng tâm tam giác BCD.

(**C**) M là trọng tâm tam giác ABD.

 $(\mathbf{D}) M$ là trọng tâm tam giác ACD.

CÂU 23. Cho hình bình hành ABCD có E là trung điểm AB. Điểm M thỏa mãn điều kiện $\overrightarrow{EB} = \overrightarrow{AM} - \overrightarrow{BC}$. Khẳng định nào sau đây đúng?

- \bigcirc M là trung điểm AD.
- (\mathbf{B}) M là trung điểm CD.
- \bigcirc M là trung điểm AB.
- \bigcirc M là trung điểm BC.

CÂU 24. Cho tam giác ABC đều có cạnh bằng a. Tìm tập hợp điểm M thỏa mãn điều kiện $\left|\overrightarrow{MC}\right| = \left|\overrightarrow{AB} + \overrightarrow{AC}\right|$.

- \bigcirc M thuộc đường tròn tâm A bán kính $a\sqrt{3}$.
- \blacksquare M thuộc đường tròn tâm C bán kính $\frac{a\sqrt{3}}{2}$.
- \bigcirc M thuộc đường tròn tâm B bán kính $a\sqrt{3}$.
- lacksquare M thuộc đường tròn tâm C bán kính $a\sqrt{3}$.

CÂU 25. Cho hình thang ABCD có AB song song với CD. Cho AB = 2a, CD = a. O là trung điểm của AD. Khi đó,

- $\left| \overrightarrow{OB} + \overrightarrow{OC} \right| = \frac{3a}{2}.$
- $|\overrightarrow{OB} + \overrightarrow{OC}| = a.$
- \bigcirc $|\overrightarrow{OB} + \overrightarrow{OC}| = 2a.$
- $\boxed{\mathbf{D}} \left| \overrightarrow{OB} + \overrightarrow{OC} \right| = 3a.$

CÂU 26. Cho tam giác ABC vuông cân tại A có $BC = a\sqrt{2}$, M là trung điểm của BC. Khẳng định nào sau đây đúng?

- $|\overrightarrow{BA} + \overrightarrow{BM}| = a.$
- $|\overrightarrow{BA} + \overrightarrow{BM}| = \frac{a\sqrt{2}}{2}.$
- $\boxed{\mathbf{c}} \left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{3}}{2}.$
- $\boxed{\mathbf{D}} \left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{6}}{2}.$

CÂU 27. Cho hình vuông ABCD cạnh a tâm O. Tính theo a độ dài của véc-tơ $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{OD} - \overrightarrow{BC}$.

 \mathbf{c} $a\sqrt{2}$.

 \bigcirc a.

CÂU 28. Cho hình vuông ABCD có cạnh bằng a. Khi đó $\left|\overrightarrow{AD} + \overrightarrow{AB}\right|$ bằng

 \bigcirc 2a.

 \mathbf{B}) $a\sqrt{2}$.

 \bigcirc $\frac{\sqrt{3}}{2}$.

CÂU 29. Cho tam giác ABC vuông cân tại C, $AB = \sqrt{2}$. Tính độ dài của $\overrightarrow{AB} + \overrightarrow{AC}$

B $2\sqrt{5}$.

 \bigcirc $\sqrt{3}$.

D $2\sqrt{3}$.

CÂU 30. Cho hình bình hành ABCD có $DA=2\mathrm{cm},\ AB=4\mathrm{cm}$ và đường chéo $BD=5\mathrm{cm}.$ Tính $\left|\overrightarrow{BA}-\overrightarrow{DA}\right|.$

A 2cm.

B 4cm.

c 5cm.

D 6cm.

CÂU 31. Cho hình thang ABCD có hai đáy $AB=a,\ CD=2a.$ Gọi $M,\ N$ là trung điểm của $AD,\ BC.$ Khi đó $\left|\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MN}\right|$ bằng

B 3a.

 \bigcirc a.

 \bigcirc 2a.

CÂU 32. Cho hình vuông \overrightarrow{ABCD} cạnh a, d là đường thẳng qua A, song song với BD. Gọi M là điểm thuộc đường thẳng d sao cho $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} - \overrightarrow{MD}|$ nhỏ nhất. Tính theo a độ dài véc-tơ \overrightarrow{MD} .

- \bigcirc a.

CÂU 33.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{AMB} = 120^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- **A** 300 (N).
- **B** 700 (N).
- **C** 100 (N).
- **D** 500 (N).

CÂU 34.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 25 (N) và góc $\overrightarrow{AMB} = 60^\circ$. Khi đó cường độ lực của \overrightarrow{F}_3 là

- **A** $25\sqrt{3}$ (N).
- **B** $50\sqrt{3}$ (N).
- **©** $50\sqrt{2}$ (N).
- **D** $100\sqrt{3}$ (N).

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\overrightarrow{AMB} = 120^\circ$ và $\overrightarrow{AMC} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- **A** 300 (N).
- **B** 700 (N).
- **C** 100 (N).
- **D** 500 (N).

CÂU 36.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\overrightarrow{AMB} = 120^\circ$ và $\overrightarrow{AMC} = 150^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- **A** 300 (N).
- **B** 700 (N).
- **C** 100 (N).
- **D** 500 (N).

Bài 5. TÍCH CỦA MỘT VECTƠ VỚI MỘT SỐ

A. TÓM TẮT LÍ THUYẾT

1. Tích của một vectơ với một số

7 Định nghĩa 5.1.

- \odot Tích của một vecto $\vec{a} \neq \vec{0}$ với một số k > 0 là một vecto, kí hiệu là $k\vec{a}$, cùng hướng với vecto \vec{a} và có độ dài bằng $k|\vec{a}|$.
- \bigcirc Tích của một vectơ $\overrightarrow{a} \neq \overrightarrow{0}$ với một số k < 0 là một vectơ, kí hiệu là $k\overrightarrow{a}$, ngược hướng với vectơ \overrightarrow{a} và có độ dài bằng $(-k)|\overrightarrow{a}|$.

A Ta quy ước $k\vec{a} = \vec{0}$ nếu $\vec{a} = \vec{0}$ hoặc k = 0.

2. Các tính chất của phép nhân vectơ với một số

Với hai vecto \vec{a} , \vec{b} và hai số thực k, t, ta luôn có

• $k(t\vec{a}) = (kt)\vec{a}$;

• $(k+t)\vec{a} = k\vec{a} + t\vec{a}$;

• $k(\vec{a} \pm \vec{b}) = k\vec{a} \pm k\vec{b};$

- $1\vec{a} = \vec{a}$; $(-1)\vec{a} = -\vec{a}$.
- lack O Diểm I là trung điểm của đoan thắng AB khi và chỉ khi $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.
- **A** Cho hai vectơ không cùng phương \vec{a} và \vec{b} . Khi đó, mọi vectơ \vec{u} đều biểu thị (phân tích) được một các duy nhất theo hai vectơ \vec{a} và \vec{b} , nghĩa là có duy nhất cặp số (x,y) sao cho $\vec{u} = x\vec{a} + y\vec{b}$.

B. CÁC DẠNG TOÁN

ե Dạng 1. Xác định vectơ tích, tính độ dài vectơ

vecto $k\overrightarrow{a}$ có độ dài bằng $|k||\overrightarrow{a}|$ và

• cùng hướng với \overrightarrow{a} nếu $k \geq 0$;

• ngược hướng với \overrightarrow{a} nếu $\begin{cases} \overrightarrow{a} \neq \overrightarrow{0} \\ k < 0. \end{cases}$

1. Ví dụ minh họa

VÍ DỤ 1. Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho $AM = \frac{1}{5}AB$. Tìm k trong các đẳng thức sau

a)
$$\overrightarrow{AM} = k\overrightarrow{AB}$$
.

b)
$$\overrightarrow{MA} = k\overrightarrow{MB}$$
.

c)
$$\overrightarrow{MA} = k\overrightarrow{AB}$$
.

VÌ DỤ 2. Cho tam giác ABC đều cạnh bằng 1, trọng tâm G. Tính độ dài vectơ \overrightarrow{AG} .

VÍ DU 3. Cho hình vuông ABCD có canh bằng a, I là trung điểm của canh BC. Tính đô dài vecto $\overrightarrow{AB} + \overrightarrow{AC}$.

2. Bài tấp áp dung

BÀI 1. Trên đoạn thẳng AB, gọi C là trung điểm AB và D là điểm đối xứng của C qua A. Tìm k trong các đẳng thức sau

a)
$$\overrightarrow{AC} = k\overrightarrow{AB}$$
.

b)
$$\overrightarrow{AD} = k\overrightarrow{AB}$$
.

BÀI 2. Cho tam giác ABC vuông cân tại A, cạnh BC = 2. Gọi M, N lần lượt là trung điểm của cạnh AB và BC. Tính độ dài \overline{MN} .

BÀI 3. Cho hình thoi ABCD có AC = 2a, BD = a. Tính độ dài vecto $\overrightarrow{AC} + \overrightarrow{BD}$.

3. Bài tấp trắc nghiệm

CÂU 1.

Cho hai vecto \overrightarrow{AB} và \overrightarrow{CD} trong hình bên. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{CD} = 3\overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{CD} = \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AB} = 2\overrightarrow{CD}$.

CÂU 2. Cho vecto \vec{a} (khác $\vec{0}$) và vecto $\vec{b} = k\vec{a}$, $(k \neq 0)$. Khẳng định nào sau đây là đúng?

 \overrightarrow{a} cùng phương \overrightarrow{b} nếu k > 0.

B \vec{a} ngược hướng \vec{b} nếu k > 0.

 \overrightarrow{a} cùng hướng \overrightarrow{b} nếu k < 0.

 \overrightarrow{a} cùng hướng \overrightarrow{b} nếu k > 0.

CÂU 3. Cho hai vectơ \vec{a} , \vec{b} bất kì và số thực k. Ta có $k\left(\vec{a}+\vec{b}\right)$ bằng

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{a} + k \overrightarrow{b}.$$

$$(\mathbf{B}) k \vec{a} + k \vec{b}.$$

$$(\overrightarrow{\mathbf{c}}) k \overrightarrow{a} - k \overrightarrow{b}$$
.

$$(\mathbf{D}) k \vec{a} + \vec{b}$$
.

CÂU 4. Cho hai vectơ \vec{a} , \vec{b} khác $\vec{0}$ thỏa mãn $\vec{a} = -\frac{1}{2}\vec{b}$. Mệnh đề nào dưới đây đúng?

 $|\vec{a}| = -\frac{1}{2} |\vec{b}|.$

 (\mathbf{B}) \overrightarrow{a} và \overrightarrow{b} là hai vecto đối nhau.

 (\mathbf{c}) \overrightarrow{a} cùng hướng với \overrightarrow{b} .

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{a} ngược hướng với \overrightarrow{b} .

CÂU 5. Cho vecto \vec{u} có độ dài bằng 2 và vecto $\vec{v} = -3\vec{u}$. Khẳng định nào sau đây là đúng?

- (A) vecto \vec{v} có độ dài bằng -6 và cùng hướng với \vec{u} .
- (B) vecto \vec{v} có độ dài bằng -6 và ngược hướng với \vec{u} .
- (c) vecto \vec{v} có độ dài bằng 6 và cùng hướng với \vec{u} .
- \overrightarrow{v} vecto \overrightarrow{v} có độ dài bằng 6 và ngược hướng với \overrightarrow{u} .

CÂU 6. Cho $\vec{a} = -2\vec{b}$. Khẳng định nào sau đây đúng?

 \overrightarrow{a} và \overrightarrow{b} là hai vecto bằng nhau.

 \overrightarrow{a} và \overrightarrow{b} là hai vectơ đối nhau.

 $\overrightarrow{\mathbf{c}}$ \overrightarrow{a} và \overrightarrow{b} ngược hướng.

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{a} và \overrightarrow{b} cùng hướng.

CÂU 7. Cho vectơ \vec{q} có độ dài bằng 27. Hỏi độ dài của vectơ $\vec{x} = -\frac{1}{9}\vec{q}$ là bao nhiêu?

(A) 243.

(**D**) = 3.

CÂU 8.

Cho đoạn thẳng AB và điểm I thuộc đoạn thẳng AB như hình vẽ bên. Mệnh đề nào sau đây đúng?

 $\overrightarrow{A} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}.$

- $\overrightarrow{\mathbf{B}} \ \overrightarrow{AI} = \frac{1}{4} \overrightarrow{IB}.$
- $\overrightarrow{\mathbf{D}} \overrightarrow{AI} = -\frac{1}{4} \overrightarrow{IB}.$ $\overrightarrow{C}\overrightarrow{AI} = \frac{\hat{1}}{5}\overrightarrow{BA}.$

CÂU 9. Đẳng thức nào mô tả đúng hình vẽ bên?

- $(\textbf{A}) \ 3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}. \qquad (\textbf{B}) \ 3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}. \qquad (\textbf{C}) \ \overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}. \qquad (\textbf{D}) \ \overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}.$

CÂU 10. Cho M là một điểm trên đoạn AB sao cho $AM = \frac{1}{3}AB$. Khẳng định nào sau đây sai?

- $\overrightarrow{\mathbf{A}} \ \overrightarrow{MB} = -\frac{2}{3} \overrightarrow{AB}.$
- $\overrightarrow{\mathbf{B}} \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}.$
- $\overrightarrow{\mathbf{C}} \overrightarrow{MA} = -\frac{1}{2} \overrightarrow{MB}.$
- $\overrightarrow{\mathbf{D}} \overrightarrow{MB} = 2\overrightarrow{AM}.$

CÂU 11. Cho đoạn thẳng AB và M là một điểm trên đoạn AB sao cho AB = 5AM. Mệnh đề nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \overrightarrow{MA} = -\frac{1}{4} \overrightarrow{MB}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{MB} = \frac{4}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MB} = -\frac{4}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AM} = \frac{1}{5} \overrightarrow{AB}.$$

CÂU 12. Cho đoạn thẳng AB, M là một điểm trên đoạn thẳng AB sao cho $AM = \frac{1}{4}AB$. Khẳng định nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MA} = \frac{1}{3} \overrightarrow{MB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{BM} = \frac{3}{4} \overrightarrow{BA}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MB} = -3 \overrightarrow{MA}.$$

CÂU 13. Cho hình bình hành ABCD có tâm O. Mệnh đề nào sau đây **sai**?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{OD} = \frac{1}{2} \overrightarrow{BD}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AC} = 2\overrightarrow{OC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AC} = 2\overrightarrow{OA}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} = \overrightarrow{DC}.$$

$$\bigcirc$$
 $2\overrightarrow{GM}$

$$\bigcirc -\frac{2}{3}\overrightarrow{AM}.$$

$$\bigcirc \frac{2}{3}\overrightarrow{GM}$$

CÂU 15. Cho tam giác ABC có G là trọng tâm, M là trung điểm của BC. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{GA} = 2\overrightarrow{GM}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{MG} = -\frac{1}{3} \overrightarrow{MA}.$$

CÂU 16. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Khẳng định nào sau đây là \mathbf{sai} ?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MN} = \frac{1}{2} \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = -\frac{1}{2} \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{BC} = -2\overrightarrow{NM}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{BC} = 2\overrightarrow{MN}.$$

CÂU 17. Cho tạm giác ABC có trọng tâm G và trung tuyến BM. Khẳng định nào sau đây là sai?

$$\overrightarrow{AM} = -\frac{1}{2}\overrightarrow{CA}.$$

$$\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

$$\bigodot \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG},$$
 với mọi điểm $O.$

$$\overrightarrow{\mathbf{D}} \; \overrightarrow{GB} = \frac{2}{3} \overrightarrow{BM}.$$

CÂU 18. Cho tam giác đều ABC với đường cao AH. Mệnh đề nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{AB} = \overrightarrow{AC}.$$

$$|\overrightarrow{AH}| = \frac{\sqrt{3}}{2} |\overrightarrow{HC}|.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{HB} = \overrightarrow{HC}$.

$$\boxed{\mathbf{D}} \left| \overrightarrow{AC} \right| = 2 \left| \overrightarrow{HC} \right|.$$

CÂU 19. Cho hình vuông ABCD cạnh a. Giá trị của $|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}|$ bằng

$$\bigcirc$$
 $2a$.

$$\bigcirc$$
 $2a\sqrt{2}$.

$$\bigcirc$$
 3a.

CÂU 20. Cho tam giác ABC đều cạnh a. Khi đó, giá trị $\left|\overrightarrow{AB} + \overrightarrow{AC}\right|$ bằng

CÂU 21. Cho tam giác đều ABC cạnh bằng 4. Độ dài $\overrightarrow{AB} + \overrightarrow{AC}$ là

$$\bigcirc$$
 $\sqrt{5}$.

$$\bigcirc$$
 $\sqrt{6}$.

$$\bigcirc 100 4\sqrt{3}.$$

CÂU 22. Cho tam giác ABC vuông tại A và AB=2, AC=3. Độ dài của vectơ $\overrightarrow{BC}+\overrightarrow{AC}$ bằng

$$\sqrt{13}$$
.

D
$$2\sqrt{10}$$
.

CÂU 23. Cho hình vuông ABCD có cạnh bằng a. Tính $|\overrightarrow{AB} + \overrightarrow{DB}|$ theo a.

$$lackbox{\textbf{B}}$$
 a .

$$\mathbf{c}$$
 $a\sqrt{5}$.

Cho ba lực $\overrightarrow{F_1} = \overrightarrow{MA}$, $\overrightarrow{F_2} = \overrightarrow{MB}$, $\overrightarrow{F_3} = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ đều bằng 100N và $\widehat{AMB}=60^\circ$. Khi đó, cường độ lực của F_3 bằng

$$\bigcirc$$
 50 $\sqrt{3}$ N.

$$\bigcirc$$
 25 $\sqrt{3}$ N.

D
$$100\sqrt{3}$$
N.

CÂU 25. Cho tam giác ABC là tam giác đều cạnh 2a với G là trọng tâm. Tính $|\overline{GB} + \overline{GC}|$.

$$\bigcirc \frac{a\sqrt{3}}{3}.$$

CÂU 26. Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. vecto $\overline{GB} - \overline{CG}$ có độ dài bằng bao nhiêu?

(B) $2\sqrt{3}$.

 (\mathbf{D}) 2.

CÂU 27. Tam giác ABC có AB = AC = a, $\widehat{ABC} = 120^{\circ}$. Độ dài vectơ tổng $\overrightarrow{AB} + \overrightarrow{AC}$ bằng

(B) $a\sqrt{3}$.

CÂU 28. Cho hình thơi ABCD cạnh a, tâm O và $\widehat{B}\widehat{AD} = 60^{\circ}$. Độ dài vectơ $\overrightarrow{OB} - \overrightarrow{CD}$ bằng

(**C**) 2a.

 $(\mathbf{D}) a\sqrt{3}.$

CÂU 29. Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính $|\overrightarrow{CA} - \overrightarrow{HC}|$ bằng

$$\bigcirc \frac{a}{2}$$
.

CÂU 30. Cho tam giác OAB vuông cân tại O với OA = OB = a. Tính độ dài vectơ $\overrightarrow{u} = 8\overrightarrow{OA} - 6\overrightarrow{OB}$.

 \bigcirc 2a.

B 14a.

C 16a.

D 10a.

CÂU 31. Cho tam giác ABC vuông tại A có AB=3, AC=4. Tính độ dài vec-tơ $\overrightarrow{u}=2\overrightarrow{AB}+3\overrightarrow{AC}$.

$$|\vec{u}| = 18.$$

$$\mathbf{B} |\vec{u}| = 6\sqrt{5}.$$

$$(\mathbf{C})|\vec{u}| = 9.$$

$$\mathbf{D} |\vec{u}| = 5\sqrt{6}.$$

CÂU 32. Gọi G là trọng tâm của tam giác ABC. Tập hợp điểm M trong mặt phẳng chứa tam giác ABC sao cho $\left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right| = 6$ là

- lack A đường tròn ngoại tiếp tam giác ABC.
- lacksquare đường tròn tâm G bán kính bằng 1.

 \bigcirc đường tròn tâm G bán kính bằng 2.

 \bigcirc đường tròn tâm G bán kính bằng 6.

CÂU 33. Cho tam giác đều ABC có cạnh bằng 2a và G là trọng tâm của tam giác. Khi đó, giá trị $\left|\overrightarrow{AB} - \overrightarrow{GC}\right|$ là

©
$$\frac{4a\sqrt{3}}{3}$$
.

$$\bigcirc \frac{2a}{3}.$$

CÂU 34. Cho ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cùng điểm đặt tại O. Trong đó, có hai lực \vec{F}_1 , \vec{F}_2 có phương hợp với nhau một góc 90° và lực \vec{F}_3 ngược hướng với lực \vec{F}_1 . Ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cường độ lần lượt là 100 N, 200 N và 300 N. Cường độ lực tổng hợp của ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 là

- (A) 400 N.
- **B**) $100\sqrt{2}$ N.
- **(c)** 600 N.

D $200\sqrt{2}$ N.

CÂU 35. Cho hình vuông ABCD có cạnh bằng 1. Độ dài của vecto $\overrightarrow{u} = 12\overrightarrow{AC} - 7\overrightarrow{AB}$ bằng

$$|\overrightarrow{\mathbf{A}}||\overrightarrow{u}| = 17.$$

$$|\vec{u}| = 5.$$

$$|\vec{u}| = 13.$$

$$|\vec{u}| = 12\sqrt{2} - 7$$

CÂU 36. Cho hình vuông ABCD có cạnh bằng 1. Độ dài của vectơ $\overrightarrow{u}=3\overrightarrow{AC}-7\overrightarrow{AB}$ là

$$|\vec{u}| = 5.$$

B
$$|\vec{u}| = 12\sqrt{2} - 7.$$

$$(\vec{c}) |\vec{u}| = 17.$$

$$(\mathbf{D}) |\vec{u}| = 13.$$

Dạng 2. Chứng minh đẳng thức vecto, thu gọn biểu thức

Phương pháp giải

- ❷ HƯỚNG 1. Biến đổi một vế thành vế còn lại. Khi đó
 - a) Nếu xuất phát từ về phức tạp ta cần thực hiện việc đơn giản biểu thức.
 - b) Nếu xuất phát từ vế đơn giản ta cần thực hiện việc phân tích vectơ.
- ❷ HƯỚNG 2. Biến đổi cả hai vế thành một vectơ hoặc biểu thức vectơ.
- ② HƯỚNG 3. Biến đổi đẳng thức cần chứng minh tương đương với một đẳng thức vecto đã biết đúng.
- ② HƯỚNG 4. Xuất phát từ một đẳng thức vectơ đã biết đúng biến đổi thành đẳng thức vectơ cần chứng minh.

Khi thực hiện các phép biến đổi cần lưu ý

- a) Quy tắc ba điểm: Với ba điểm A, B, C bất kì ta luôn có $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$.
- b) Quy tắc hình bình hành: Với hình bình hành ABCD ta luôn có $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.
- c) Quy tắc hiệu vectơ: Với ba điểm A, B, O bất kì ta luôn có $\overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{AB}$.
- d) Tính chất trung điểm của đoạn thẳng: Cho đoạn thẳng AB ta có

$$I$$
 là trung điểm của $AB \Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
 $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}, M$ là điểm bất kì.

e) Tính chất trọng tâm tam giác: Cho tam giác ABC ta có

$$G$$
 là trọng tâm tam giác $ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}, M$ là điểm bất kì .

f) Các tính chất của phép cộng, trừ vectơ và phép nhân một số với một vectơ.

1. Ví dụ minh họa

VÍ DU 1. Cho tam giác ABC với trọng tâm G. Chứng minh rằng $\overrightarrow{CA} + \overrightarrow{CB} = 3\overrightarrow{CG}$.

 \bigvee Í DỤ 2. Cho hình bình hành ABCD. Gọi G là trọng tâm tam giác ABD. Chứng minh rằng

$$\overrightarrow{AB} + \overrightarrow{2AC} + \overrightarrow{AD} = 9\overrightarrow{AG}$$
.

VÍ DỤ 3. Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD. Chứng minh rằng $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{MN}$.

VÍ DỤ 4. Cho tam giác ABC. Lần lượt lấy các điểm M, N, P trên các đoạn thẳng AB, BC và CA sao cho $AM = \frac{1}{3}AB$, $BN = \frac{1}{3}BC$, $CP = \frac{1}{3}CA$. Chứng minh rằng

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}.$$

 \mathbf{V} Í \mathbf{D} \mathbf{U} \mathbf{J} \mathbf{U} \mathbf{J} \mathbf{U} $\mathbf{$

- a) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$.
- b) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$.

VÍ DỤ 6. Cho hình bình hành ABCD. Gọi M là trung điểm CD. Lấy N trên đoạn BM sao cho BN = 2MN. Chứng minh rằng

- a) $3\overrightarrow{AB} + 4\overrightarrow{CD} = \overrightarrow{CM} + \overrightarrow{ND} + \overrightarrow{MN}$,
- b) $4\overrightarrow{AB} + 2\overrightarrow{BD} = 3\overrightarrow{AN}$.

2. Bài tấp ấp dung

BÀI 1. Cho hình bình hành ABCD có tâm O. Chứng minh rằng

$$\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BD} = 4\overrightarrow{OD}.$$

BÀI 2. Gọi G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C'. Chứng minh rằng

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$$

 $\textbf{B} \grave{\textbf{A}} \textbf{I}$ 3. Cho tứ giác ABCD. Gọi $M,\,N,\,I$ lần lượt là trung điểm của $AC,\,BD$ và MN. Chứng minh rằng

- a) $\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$,
- b) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OI}$ (với O là điểm bất kì).

BÀI 4. Cho tam giác ABC không vuông. Gọi G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC. Gọi D là điểm đối xứng của A qua O và M là trung điểm của cạnh BC. Chứng minh

a)
$$\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$$
.

d)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$$
.

b)
$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$$
.

e)
$$\overrightarrow{OH} = 3\overrightarrow{OG}$$
.

c)
$$\overrightarrow{HA} - \overrightarrow{HB} - \overrightarrow{HC} = 2\overrightarrow{OA}$$
.

f)
$$\overrightarrow{AH} = 2\overrightarrow{OM}$$
.

f BAI 5. Dựng bên ngoài tứ giác ABCD các hình bình hành $ABEF,\,BCGH,\,CDIJ,\,DAKL.$

- a) Chứng minh rằng $\overrightarrow{KF}+\overrightarrow{EH}+\overrightarrow{GJ}+\overrightarrow{IL}=\overrightarrow{0}$.
- b) Chứng minh rằng $\overrightarrow{EL} \overrightarrow{HI} = \overrightarrow{FK} \overrightarrow{GJ}$.

BÀI 6. Cho đường tròn (I) nội tiếp tam giác ABC có AB=c, AC=b, BC=a. Chứng minh rằng

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}.$$

BÀI 7. Cho tam giác ABC và một điểm M bất kì nằm trong tam giác ABC. Đặt $S_{MBC} = S_a$, $S_{MCA} = S_b$, $S_{MAB} = S_c$. Chứng minh rằng

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

lack a a) Cho M trùng với trọng tâm G của tam giác ABC, ta được $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

b) Cho M trùng với tâm đường tròn nội tiếp I của tam giác ABC, ta được kết quả

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$$
.

c) Nếu tam giác ABC đều thì với điểm M bất kì trong tam giác, Ta có

$$x\overrightarrow{MA} + y\overrightarrow{MB} + z\overrightarrow{MC} = \overrightarrow{0},$$

trong đó x, y, z lần lượt là khoảng cách từ M đến các cạnh BC, CA và AB.

- d) Khi M nằm ngoài tam giác ABC, ta có các kết quả như sau
 - (a) Nếu M thuộc góc \widehat{BAC} và góc đối đỉnh của nó thì

$$-S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

(b) Nếu M thuộc góc \widehat{ABC} và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} - S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}$$
.

(c) Nếu M thuộc góc \widehat{ACB} và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} - S_c \overrightarrow{MC} = \overrightarrow{0}$$
.

3. Bài tấp điền khuyết

CÂU 1. Cho tạm giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Biết rằng $\overrightarrow{AB} + 2\overrightarrow{AC} = x\overrightarrow{AM}$. Tìm x.

Đáp án:

CÂU 2. Cho tứ giác \overrightarrow{ABCD} . Gọi M,N lần lượt thuộc các đoạn thẳng AB,CD sao cho MB=2MA và NC=2ND. Biết rằng $2\overrightarrow{AD}+\overrightarrow{BC}=x\overrightarrow{MN}$. Tìm x.

Đáp án:

CÂU 3. Cho tam giác đều ABC tâm O. Lấy M là một điểm bất kì trong tam giác. Gọi D, E, F lần lượt là hình chiếu của M trên BC, CA, AB. Biết rằng $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = x\overrightarrow{MO}$, tìm x.

Đáp án:

CÂU 4. Cho hình bình hành ABCD có tâm O và E là trung điểm AD. Tìm các số thực x và y biết rằng

- a) $\overrightarrow{EA} + \overrightarrow{EB} + 2\overrightarrow{EC} = x\overrightarrow{AB}$.
- Đáp án:
- b) $\overrightarrow{EB} + 2\overrightarrow{EA} + 4\overrightarrow{ED} = y\overrightarrow{EC}$.
- Đáp án:

CÂU 5. Cho tam giác ABC. Dựng bên ngoài tam giác các hình bình hành ABIF, BCPQ, CARS. Biết rằng $\overrightarrow{RF} + \overrightarrow{IQ} + \overrightarrow{PS} = x(\overrightarrow{AB} + \overrightarrow{AC})$. Tìm x.

Đáp án:

4. Bài tập trắc nghiệm

 \hat{CAU} 6. Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm AB. Chọn mệnh đề sai trong các mệnh đề sau:

 $\overrightarrow{\mathbf{A}} \ \overrightarrow{CM} = -3\overrightarrow{MG}.$

 $(\mathbf{B}) \ \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{AC}.$

 $\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$

 $\overrightarrow{\mathbf{D}} \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}, O$ là điểm bất kì.

CÂU 7. Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây là **đúng**?

- \overrightarrow{A} $\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AC}$.
- $\overrightarrow{\mathbf{B}} \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$
- $\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{CA}.$
- $\overrightarrow{\mathbf{D}} \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BD}.$

CÂU 8. Cho I là trung điểm của đoạn thẳng AB. Với điểm M bất kỳ, ta luôn có

- $\overrightarrow{\textbf{A}} \ \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI}.$
- $\overrightarrow{\mathbf{B}} \ \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}.$
- $\overrightarrow{\mathbf{C}} \ \overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}.$
- $\overrightarrow{\mathbf{D}} \ \overrightarrow{MA} + \overrightarrow{MB} = \frac{1}{2} \overrightarrow{MI}.$

CÂU 9. Cho G là trọng tâm của tam giác ABC. Với mọi điểm M, ta luôn có:

 $\overrightarrow{A} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MG}.$

 $\overrightarrow{\mathbf{B}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}.$

 $\overrightarrow{\mathbf{C}} \ \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$

 $\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 4\overrightarrow{MG}.$

CÂU 10. Cho $\triangle ABC$ có G là trọng tâm, I là trung điểm BC. Đẳng thức nào đúng?

- $\overrightarrow{A} \overrightarrow{GA} = 2\overrightarrow{GI}.$
- $\overrightarrow{\mathbf{B}} \overrightarrow{IG} = -\frac{1}{3}\overrightarrow{IA}.$
- $\overrightarrow{\mathbf{C}} \ \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$
- $\overrightarrow{\mathbf{D}} \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$

CÂU 11. Khẳng định nào sau đây **không phải** là điều kiện cần và đủ để G là trọng tâm ΔABC , với M là trung điểm của BC và O là điểm bất kì?

$$\overrightarrow{A} \overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OG} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{GM} = -\overrightarrow{-GA}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GM} = -\frac{1}{2} \overrightarrow{GA}.$$

CÂU 12. Cho I là trung điểm của đoạn thẳng AB. Với M là một điểm bất kỳ, tìm đẳng thức **đúng**.

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}.$$

$$\overrightarrow{\textbf{A}} \ \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}. \qquad \qquad \overrightarrow{\textbf{B}} \ \overrightarrow{MA} + \overrightarrow{MB} = \frac{1}{2}\overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{IM}.$$

CÂU 13. Cho tam giác ABC có trọng tâm G và M là trung điểm của AB. Mệnh đề nào sau đây sai?

$$\overrightarrow{A} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

$$\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} = 2\overrightarrow{GM}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$$

CÂU 14. Cho $\triangle ABC$ có M, Q, N lần lượt là trung điểm của AB, BC, CA. Khi đó vecto $\overrightarrow{AB} + \overrightarrow{BM} + \overrightarrow{NA} + \overrightarrow{BQ}$ là vecto nào sau đây?

$$(\mathbf{A}) \overrightarrow{0}$$
.

$$(\mathbf{B}) \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{C}}$$
 \overrightarrow{AQ} .

$$\overrightarrow{\mathbf{D}}$$
 \overrightarrow{CB} .

CÂU 15. Cho $\triangle ABC$ và điểm I thỏa mãn $\overrightarrow{IA} = 3\overrightarrow{IB}$. Mệnh đề nào sau đây **đúng**?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{CI} = \frac{1}{2} \overrightarrow{CA} - \frac{3}{2} \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{CI} = \overrightarrow{CA} - 3\overrightarrow{CB}.$$

$$\overrightarrow{A} \overrightarrow{CI} = \frac{1}{2}\overrightarrow{CA} - \frac{3}{2}\overrightarrow{CB}.$$

$$\overrightarrow{B} \overrightarrow{CI} = \overrightarrow{CA} - 3\overrightarrow{CB}.$$

$$\overrightarrow{C} \overrightarrow{CI} = \frac{3}{2}\overrightarrow{CB} - \frac{1}{2}\overrightarrow{CA}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{CI} = 3\overrightarrow{CB} - \overrightarrow{CA}.$$

CÂU 16. Cho tam giác ABC có G là trọng tâm. Mệnh đề nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG} \ \text{với mọi điểm } M.$$

$$\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GA}.$$

CÂU 17. Khẳng định nào sau đây sai?

(A) Nếu
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$
 thì $ABCD$ là hình bình hành.

$$\stackrel{\bullet}{\mathbb{B}}$$
 Nếu O là trung điểm của AB thì với mọi M ta có $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MO}$.

$$\stackrel{\bullet}{\textbf{C}}$$
 Nếu G là trọng tâm của tam giác ABC thì $\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}.$

$$\bigcirc$$
 Với 3 điểm bất kì I, J, K ta có $\overrightarrow{IJ} + \overrightarrow{JK} = \overrightarrow{IK}$.

CÂU 18. Cho hình bình hành ABCD. Đẳng thức nào sau đây **đúng**?

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AD}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{BD}.$$

CÂU 19. Cho tam giác ABC biết I là trung điểm của đoạn thẳng AB, G là trọng tâm tam giác, M là điểm bất kỳ. Hãy chọn khẳng định đúng.

$$\overrightarrow{A} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{BI} + \overrightarrow{IC} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$$

CÂU 20. Cho I là trung điểm của đoạn thẳng AB. Hỏi đẳng thức nào **đúng**?

$$\overrightarrow{B} \overrightarrow{IA} - \overrightarrow{IB} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AI} - 2\overrightarrow{BI} = \overrightarrow{IB}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AI} - \overrightarrow{IB} = \overrightarrow{0}.$$

CÂU 21. Cho hình bình hành ABCD. Đẳng thức nào sau đây **đúng**?

$$(\mathbf{A}) \overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{0}.$$

$$\overrightarrow{B} \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$$

$$(\mathbf{D}) \; \overrightarrow{AC} + \overrightarrow{BD} = 2 \overrightarrow{BC}.$$

CÂU 22. Cho G là trọng tâm tam giác ABC và I là trung điểm cạnh BC. Mệnh đề nào sau đây \mathbf{sai} ?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{GA} = -2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{IG} = -\frac{1}{3} \overrightarrow{AI}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

CÂU 23. Cho tam giác ABC có trọng tâm G và M là trung điểm cạnh AC. Khẳng định nào sau đây \mathbf{sai} ?

(A) $BG = \frac{2}{3}BM$.
(B) $\overrightarrow{GA} + \overrightarrow{GC} = \overrightarrow{BG}$.
(C) $\overrightarrow{MG} = \frac{1}{3}\overrightarrow{BM}$.
(D) $GM = \frac{1}{2}$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{GA} + \overrightarrow{GC} = \overrightarrow{BG}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MG} = \frac{1}{3} \overrightarrow{BM}.$$

 $\hat{\mathbf{CAU}}$ 24. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây đúng?

$$\overrightarrow{A}$$
 $\overrightarrow{GA} = 2\overrightarrow{GM}$.

$$\overrightarrow{\mathbf{B}} \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AM} = 2\overrightarrow{AG}.$$

$$(\mathbf{D}) \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

CÂU 25. Cho G là trọng tâm tam giác ABC, gọi I là trung điểm của BC. Đẳng thức nào sau đây **đúng**?

$$\overrightarrow{\mathbf{A}} \overrightarrow{GA} = 2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{IG} = -\frac{1}{3} \overrightarrow{IA}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

$$(\mathbf{D}) \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

 $\hat{\textbf{CAU}}$ 26. Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng.

$$\overrightarrow{A} \ 2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = \overrightarrow{AC} + 2\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CA} + \overrightarrow{CB}$.

$$(\mathbf{D}) 2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CB} - \overrightarrow{CA}.$$

 $\hat{\mathbf{CAU}}$ 27. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây

$$\overrightarrow{\mathbf{A}}$$
 $\overrightarrow{GA} = 2\overrightarrow{GM}$.

$$(\mathbf{B}) \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AM} = 2\overrightarrow{AG}$.

$$(\mathbf{D}) \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

CÂU 28. Ba trung tuyến AM, BN, CP của tam giác ABC đồng quy tại G. Hỏi vecto $\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP}$ bằng vecto nào?

$$(A) \frac{3}{2} (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{CG}).$$

$$(\overrightarrow{A}) \frac{3}{2} \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{CG} \right). \qquad (\overrightarrow{B}) 3 \left(\overrightarrow{MG} + \overrightarrow{NG} + \overrightarrow{GP} \right). \qquad (\overrightarrow{C}) \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC} \right).$$

$$\bigcirc$$
 $\overrightarrow{0}$.

CÂU 29. Cho hình chữ nhật ABCD, I và K lần lượt là trung điểm của BC, CD. Hệ thức nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{AI} + \overrightarrow{AK} = 2\overrightarrow{AC}.$$

$$(\mathbf{B}) \ \overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{AD}. \qquad (\mathbf{C}) \ \overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{IK}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{IK}.$$

CÂU 30. Cho tam giác ABC có M là trung điểm của cạnh BC. Các điểm D, E thỏa mãn các đẳng thức: $\overrightarrow{BD}=4\overrightarrow{BA},$ $\overrightarrow{AE} = 3\overrightarrow{AC}$. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{AM} = \frac{1}{3} \overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AM} = \frac{1}{6} \overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AM} = \frac{3}{4} \overrightarrow{DE}.$$

CÂU 31. Cho tứ giác ABCD. Gọi M, N là trung điểm AB và DC. Lấy các điểm P, Q lần lượt thuộc các đường thẳng ADvà BC sao cho $\overrightarrow{PA} = -2\overrightarrow{PD}$, $\overrightarrow{QB} = -2\overrightarrow{QC}$. Khẳng định nào sau đây đúng?

$$(A) \overrightarrow{MN} = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{BC}).$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{MQ}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{MN} = -\frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BC} \right).$

CÂU 32. Cho hình bình hành ABCD. Đẳng thức nào đúng?

$$\overrightarrow{A} \overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{CD}.$$

$$(\mathbf{D}) \overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{CD}.$$

CÂU 33. Cho G là trọng tâm của tam giác ABC. Trong các mệnh đề sau, tìm mệnh đề đúng?

$$\overrightarrow{AB} + \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{BA} + \overrightarrow{BC} = 3\overrightarrow{BG}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{CA} + \overrightarrow{CB} = \overrightarrow{CG}.$$

$$(\mathbf{D}) \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{0}.$$

CÂU 34. Cho hình vuông ABCD có tâm là O. Trong các mệnh đề sau, tìm mệnh đề sai?

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$$

$$\overrightarrow{C} \overrightarrow{OA} + \overrightarrow{OB} = \frac{1}{2} \overrightarrow{CB}.$$

$$\overrightarrow{D} \overrightarrow{AC} + \overrightarrow{DB} = 4\overrightarrow{AB}.$$

CÂU 35. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Khi đó $\overrightarrow{AC} + \overrightarrow{BD}$ bằng

$$\overrightarrow{\mathbf{A}}$$
 \overrightarrow{MN} .

$$(\mathbf{B}) \ 2\overrightarrow{MN}.$$

$$\bigcirc$$
 $3\overrightarrow{MN}$.

$$\bigcirc$$
 $-2\overrightarrow{MN}$.

CÂU 36. Cho hình bình hành ABCD tâm O và điểm M bất kì. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MO}.$$

(B)
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 2\overrightarrow{MO}$$
.

$$\overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MO}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}.$$

CÂU 37. Cho năm điểm A, B, C, D, E. Khẳng định nào đúng?

$$\overrightarrow{A}\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 2(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}).$$

$$\overrightarrow{\mathbf{B}}$$
 $\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 3 \left(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB} \right).$

$$\overrightarrow{C} \overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \frac{\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}}{4}.$$

CÂU 38. Cho tứ giác ABCD. Gọi G là trọng tâm của tam giác ABD, I là điểm trên GC sao cho IC=3IG. Với mọi điểm M ta luôn có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$ bằng

$$\bigcirc 2\overrightarrow{MI}.$$

$$(\mathbf{B})$$
 $3\overrightarrow{MI}$

$$\bigcirc$$
 $4\overrightarrow{MI}$.

$$\bigcirc$$
 5 \overrightarrow{MI} .

CÂU 39. Cho tam giác ABC. Gọi M là điểm trên cạnh AB sao cho MA = 2MB và N là trung điểm của AC. Gọi P là trung điểm của MN. Khi đó

$$\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} - \frac{1}{4} \overrightarrow{AC}$$

$$\overrightarrow{A}\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$$

$$\overrightarrow{B}\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}.$$

$$\overrightarrow{C}\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}.$$

$$\overrightarrow{D}\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{4} \overrightarrow{AC}$$

 $\hat{\mathbf{CAU}}$ 40. Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi H, G lần lượt là trực tâm, trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{OH} = 4\overrightarrow{OG}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{OH} = 3\overrightarrow{OG}.$$

$$\label{eq:continuous} \overrightarrow{OH} = 2\overrightarrow{OG}.$$

CÂU 41. Cho $\triangle ABC$. Trên các cạnh AB, BC và CA lấy các điểm D, E, F sao cho DA = 2DB, EB = 2EC, FC = 2FA. Chọn mệnh đề đúng trong các mệnh đề sau đây.

$$\overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$\overrightarrow{B} \overrightarrow{AD} - \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AD} + \overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

CÂU 42. Cho tứ giác \overrightarrow{ABCD} và điểm G thảo mãn $\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} + k\overrightarrow{GD} = \overrightarrow{0}$. Gọi I, J lần lượt là trọng tâm tam giác các ACD, BCD. Gọi M, N lần lượt là trung điểm các cạnh CD, AB. Tìm k sao cho G là trung điểm của IJ.

$$\stackrel{\cdot}{\textbf{B}}$$
 $k=2$.

(c)
$$k = 3$$
.

$$\bigcirc$$
 $k=4.$

CÂU 43. Cho ngũ giác \overrightarrow{ABCDE} có \overrightarrow{M} , \overrightarrow{N} , \overrightarrow{P} , \overrightarrow{Q} lần lượt là trung điểm các cạnh \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} . Gọi \overrightarrow{I} , \overrightarrow{J} lần lượt là trung điểm của \overrightarrow{MP} , \overrightarrow{NQ} . Biết $\overrightarrow{IJ} = k\overrightarrow{EA}$, tìm k.

$$k = -\frac{1}{4}$$
.

Dạng 3. Xác định điểm thỏa mãn đẳng thức vector

Phương pháp giải

Bài toán: Xác định điểm M thỏa đẳng thức vecto cho trước

- \bigcirc Bước 1. Ta biến đổi đẳng thức đã cho (bằng chèn điểm, quy tắc ba điểm, qui tắc hình bình hành, tính chất trung điểm, trọng tâm,...) về dạng: $\overrightarrow{OM} = \overrightarrow{v}$. Trong đó điểm O và vectơ \overrightarrow{v} cho trước.
- $oldsymbol{\odot}$ Bước 2. Nếu muốn dựng điểm M, ta lấy điểm O làm gốc, dựng một vectơ bằng vectơ \overrightarrow{v} , khi đó điểm ngọn của vectơ này chính là điểm M.

A

- O Lưu ý 1. Thông thường, biểu thức $\overrightarrow{OM} = \overrightarrow{v}$ là những biểu thức đặc biệt (trung điểm, trọng tâm, điểm chia đoạn thẳng theo tỉ lệ $\overrightarrow{a} = k \overrightarrow{b}$, hình bình hành,... Ta dựa vào biểu thức này để dựng.
- ② Lưu ý 2. Một số cách chứng minh thường dùng.
 - $D\mathring{e}$ chứng minh I là trung điểm của đoạn thẳng AB, ta cần chứng minh một trong các hệ thức sau

$$+ \overrightarrow{IA} = \overrightarrow{IB}.$$

$$+ \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.$$

$$+ 2\overrightarrow{IA} = \overrightarrow{AB}.$$

$$+ 2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB} (O \text{ bất } kì).$$

- Để chứng minh điểm G là trọng tâm của $\triangle ABC$, ta cần chứng minh một trong các hệ thức sau $+ \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
 - + Với I là trung điểm của cạnh BC thì $\overrightarrow{AG}=rac{2}{3}\overrightarrow{AI}$.
 - + Với O là điểm bất kì trong mặt phẳng thì: $3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- Tứ giác ABCD là hình bình hành $\Leftrightarrow \begin{bmatrix} \overrightarrow{AB} = \overrightarrow{DC} \\ \overrightarrow{AD} = \overrightarrow{BC}. \end{bmatrix}$
- Để chứng minh hai điểm A_1 và A_2 trùng nhau ta có thể chứng minh một trong các hệ thức sau $+ \overrightarrow{A_1 A_2} = \overrightarrow{0}$. $+ \overrightarrow{OA_1} = \overrightarrow{OA_2}$ với O là điểm bất \mathring{y} .
- Điều kiện cần và đủ để $\triangle ABC$ và $\triangle A'B'C'$ có cùng trọng tâm là

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \overrightarrow{0}.$$

$$-- N\acute{e}u \ \overrightarrow{MB} = k \cdot \overrightarrow{MC} \ (k \neq 1) \ thì \ \overrightarrow{AM} = \frac{\overrightarrow{AB} - k \cdot \overrightarrow{AC}}{1 - k} \ (hay \ \text{diểm} \ M \ chia \ \text{doạn} \ AB \ theo \ tỉ số \ k \neq 1).$$

1. Ví dụ minh họa

VÍ DỤ 1. Cho hai điểm A và B. Xác định điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.

VÍ DỤ 2. Cho tam giác ABC. Gọi M là trung điểm của AB và N thuộc cạnh AC, sao cho NC=2NA. Hãy xác định K và D khi

a)
$$3\overrightarrow{AB} + 2\overrightarrow{AC} - 12\overrightarrow{AK} = \overrightarrow{0}$$
.

b)
$$3\overrightarrow{AB} + 4\overrightarrow{AC} - 12\overrightarrow{KD} = \overrightarrow{0}$$
.

VÍ Dụ 3. Cho hình bình hành ABCD.

a) Hãy dựng các điểm
$$M$$
, N thỏa mãn $\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{AD}$ và $\overrightarrow{NC} + \overrightarrow{ND} - \overrightarrow{NA} = \overrightarrow{AB} + \overrightarrow{AD} - \overrightarrow{AC}$.

b) Chứng minh rằng $\overrightarrow{MN} = \overrightarrow{BA}$.

VÍ DU 4. Cho trước hai điểm A, B và hai số thực α, β thỏa mãn $\alpha + \beta \neq 0$

- a) Chứng minh rằng tồn tại duy nhất điểm I thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} = \overrightarrow{0}$.
- b) Từ đó suy ra với điểm M bất kỳ, ta luôn có: $\alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} = (\alpha + \beta) \cdot \overrightarrow{MI}$.

A Lời bình 3

- \bigcirc Nếu $\alpha = \beta = 1$ thì điểm I chính là trung điểm của AB.
- Θ Bài toán trên được mở rộng cho ba điểm A, B, C và bộ 3 số thực α, β, γ cho trước thỏa mãn α + β + γ ≠ 0, nghĩa là:
 - Tồn tại điểm I duy nhất thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = \overrightarrow{0}$
 - Từ đó suy ra với điểm M bất kỳ, ta luôn có $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = (\alpha + \beta + \gamma) \cdot \overrightarrow{MI}$. Khi $\alpha = \beta = \gamma = 1$ thì I là trọng tâm của $\triangle ABC$.
- $m{\Theta}$ Bài toán trên vẫn đúng với n điểm A_i $(i=\overline{1,n})$ và bộ số thực α_i $(i=\overline{1,n})$ thỏa mãn $\sum_{i=1}^n \alpha_i \neq 0$
- $igotimes K\'et quả trên dùng giải bài toán "Cho n điểm <math>A_i,\ i=\overline{1,n}\ và\ bộ\ số\ thực\ lpha_i,\ i=\overline{i,n}\ thỏa\ mãn\ \sum_{i=1}^n lpha_i
 eq 0.\ Tìm\ số\ thực\ k\ và điểm cố định I sao cho đẳng thức vectơ <math>\sum_{i=1}^n lpha_i \overline{MA_i} = k\cdot \overline{MI}$ thỏa mãn với mọi điểm M".

2. Bài tập áp dụng

BÀI 1. Cho hai hình bình hành *ABCD* và *ACEF*.

- a) Dựng các điểm M, N sao cho $\overrightarrow{EM} = \overrightarrow{BD}, \overrightarrow{FN} = \overrightarrow{BD}$.
- b) Chứng minh $\overrightarrow{CA} = \overrightarrow{MN}$.

BÀI 2. Cho tam giác ABC.

- a) Chứng minh với mọi điểm M, ta luôn có $\overrightarrow{MA} + 2\overrightarrow{MB} 3\overrightarrow{MC} = \overrightarrow{CA} + 2\overrightarrow{CB}$.
- b) Hãy dựng điểm D sao cho $\overrightarrow{DA} + 2\overrightarrow{DB} 3\overrightarrow{DC} = \overrightarrow{CA} + 2\overrightarrow{CB}$.

BÀI 3. Cho tứ giác ABCD, M là điểm tùy ý. Trong mỗi trường hợp hãy tìm số k và điểm cố định I, J, K sao cho đẳng thức vectơ sau thỏa mãn với mọi điểm M.

- a) $2\overrightarrow{MA} + \overrightarrow{MB} = k \cdot \overrightarrow{MI}$.
- b) $\overrightarrow{MA} + \overrightarrow{MB} + 2 \cdot \overrightarrow{MC} = k \cdot \overrightarrow{MJ}$.
- c) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + 3 \cdot \overrightarrow{MD} = k \cdot \overrightarrow{MK}$

BÀI 4. Cho tứ giác lồi ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh $\triangle ANP$ và $\triangle CMQ$ có cùng trọng tâm.

3. Bài tập trắc nghiệm

CÂU 1. Cho điểm A và vecto \vec{u} . Có bao nhiều điểm M thoả mặn $\overrightarrow{AM} = \vec{u}$?

- A Duy nhất một.
- B Hai.

- $\begin{array}{c} \mathbf{C} \text{ Không có.} \end{array}$
- D Vô số

CÂU 2. Cho hình bình hành ABCD, điểm M thỏa mãn $4\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Khi đó M là

- lack A trung điểm AC.
- $lackbox{\textbf{B}}$ điểm C.
- \bigcirc trung điểm AB.
- \bigcirc trung điểm AD.

CÂU 3. Cho hai vecto \vec{a} và \vec{b} khác $\vec{0}$ và không cùng phương. Biết hai vecto $\vec{u} = 2\vec{a} - 3\vec{b}$ và $\vec{v} = \vec{a} + (x-1)\vec{b}$ cùng phương. Khi đó giá trị của x là

B $-\frac{3}{2}$.

 $\mathbf{c} - \frac{1}{2}$.

 \bigcirc $\frac{3}{2}$.

CÂU 4. Cho hai điểm phân biệt A, B và hai số thực α , β khác 0 thoả mãn $\alpha + \beta = 0$. Có bao nhiều điểm M thoả mãn $\alpha \overline{MA} + \beta \overline{MB} = 0$?

 \mathbf{A} 0.

B 1.

C 2.

D 3

CÂU 5. Cho ba điểm không thẳng hàng A, B, C và M là điểm thoả mãn $\overrightarrow{AB} = \overrightarrow{CM}$. Chọn khẳng định đúng.

ABMC là hình bình hành.

B ABCM là hình bình hành.

 \bigcirc M là trọng tâm của tam giác ABC.

 \bigcirc CM là trung tuyến của tam giác ABC.

CÂU 6. Cho hai điểm phân biệt A, B và hai số thực α, β thoả mãn $\alpha + \beta \neq 0$. Có bao nhiều điểm M thoả mãn $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = \overrightarrow{0}$?

 \bigcirc 0.

B 1.

C 2.

D 3.

CÂU 7. Cho hai điểm phân biệt A và B. Điểu kiện cần và đủ để I là trung điểm của đoạn thắng AB là

- $\overrightarrow{\mathbf{B}} \ \overrightarrow{IA} = -\overrightarrow{IB}.$
- (c) $\overrightarrow{IA} = \overrightarrow{IB}$.
- $(\mathbf{D}) \ \overrightarrow{AI} = \overrightarrow{BI}.$

CÂU 8. Cho tam giác ABC, điểm I là trung điểm BC. Điểm G có tính chất nào sau đây thì G là trọng tâm tam giác ABC?

- $\overrightarrow{\mathbf{A}} \ \overrightarrow{GI} = -\frac{1}{2} \overrightarrow{AI}.$
- (B) GA = 2GI.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$.
- \overrightarrow{D} $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$.

CÂU 9. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$.

- (**A**) Hình 1.
- (\mathbf{B}) Hình 2.
- **(C)** Hình 3.
- (**D**) Hình 4.

CÂU 10. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

(A) M trùng với I.

 \blacksquare M là trung điểm của BI.

 $(\mathbf{C}) M$ là trung điểm của AI.

 (\mathbf{D}) M trùng với A hoặc M trùng với B.

CÂU 11. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

- (**A**) Hình 1.
- (**B**) Hình 2.
- (C) Hình 3.
- (D) Hình 4.

CÂU 12. Trên đưường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác đinh đúng theo hình vẽ nào sau đây.

Ň M

 \bigcirc N

- **CÂU 13.** Cho tam giác ABC với I là trung điểm của AB. Tìm điểm M thỏa mãn hệ thức $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.
 - $(\mathbf{A}) M$ là trung điểm của IC.

- $oxed{\mathbf{B}}$ M là trung điểm của IA.
- (**c**) M là điểm trên canh IC sao cho IM = 2MC.
- $(\mathbf{D}) M$ là trung điểm của BC.

CÂU 14.

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

CÂU 15. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là

(A) M là trung điểm của AC.

- (**B**) M là trung điểm của BC.
- (\mathbf{C}) M là điểm thứ tư của hình bình hành ABCM.
- $(\mathbf{D}) M$ là trung điểm của AB.

CÂU 16. Cho tam giác ABC. Để điểm M thỏa mãn điều kiện $\overrightarrow{MA} + \overrightarrow{BM} + \overrightarrow{MC} = \overrightarrow{0}$ thì M phải thỏa mãn

(A) M là trọng tâm tam giác ABC.

 (\mathbf{B}) M là điểm sao cho tứ giác ABMC là hình bình hành.

 (\mathbf{C}) M thuộc trung trực của AB.

 $(\mathbf{D}) M$ là điểm sao cho tứ giác BAMC là hình bình hành.

CÂU 17. Cho tứ giác \overrightarrow{ABCD} và \overrightarrow{M} là điểm thoả $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$. Chọn khẳng định đúng.

- (A) M là giao điểm hai đường chéo của tứ giác ABCD.
- (\mathbf{B}) M là giao điểm của các đoan thẳng nối hai trung điểm hai canh đối diện của tứ giác ABCD.
- $(\mathbf{C})M$ là tâm đường tròn ngoại tiếp tứ giác ABCD.
- $(\mathbf{D})M$ là tâm đường tròn nội tiếp tứ giác ABCD.

CÂU 18. Cho tam giác ABC, gọi M là điểm thoả mãn $\overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$. Khi đó,

(A) ABCM là hình bình hành.

- (\mathbf{B}) ABMC là hình bình hành.
- (**C**) ABCM là hình bình thang có đáy lớn AM.
- (**D**) ABCM là hình bình thang có đáy lớn BC.

CÂU 19. Gọi G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'. Tìm điều kiện cần và đủ để $G \equiv G'$.

- $(\mathbf{A}) \ \overline{AA'} + \overline{BB'} + \overline{CC'} + 3\overline{GG'} = \overrightarrow{0}.$
- $\overrightarrow{\mathbf{C}}$) $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} 3\overrightarrow{G'G} = \overrightarrow{0}$.

- $\mathbf{B}) \overline{AA'} + \overline{BB'} + \overline{CC'} = 3\overline{GG'}.$
- $\overrightarrow{\mathbf{D}}$ $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{G'G}$

CÂU 20. Cho tam giác ABCtrung điểm BC. Gọi có I là Mlà điểm thoå mãn 2MA + MB + MC = 0. Xác định vị trí của điểm M.

(A) M là trọng tâm tam giác ABC.

- (**B**) M là trung điểm AI.
- (**C**) M là điểm thuộc đoạn thẳng AI thoả MA = 2MI.
- (**D**) M là điểm thuộc đoạn thẳng AI thoả MI = 2MA.

CÂU 21. Cho hình bình hành ABCD, điểm M thỏa $4\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Khi đó điểm M là

- (A) trung điểm AC.
- (\mathbf{B}) điểm C.
- (\mathbf{C}) trung điểm AB.
- (\mathbf{D}) trung điểm AD.

CÂU 22. Cho tam giác ABC. Gọi D, E là các điểm xác định bởi $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}, \overrightarrow{AE} = \frac{2}{5}\overrightarrow{AC}$. Gọi K là trung điểm của DE

CÂU 23. Cho tam giác ABC. Gọi D là trung điểm cạnh ACvà là điểm $\overrightarrow{IA} + 2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{0}$. Mệnh đề nào dưới đây đúng?

 (\mathbf{A}) I là trực tâm tam giác BCD.

(**B**) I là trọng tâm tam giác ABC.

(**C**) I là trọng tâm tam giác CDB.

 \bigcirc I là tâm đường tròn nội tiếp tam giác ABC.

CÂU 24. Cho đoạn thẳng AB và M là một điểm nằm trên đường thẳng AB sao cho $\overrightarrow{MA} = -\frac{1}{5}\overrightarrow{AB}$. Khẳng định nào sau đâv là sai?

- $\overrightarrow{\mathbf{A}} \ \overrightarrow{MB} = -4\overrightarrow{MA}.$

- $\overrightarrow{\mathbf{D}} \overrightarrow{MA} = -\frac{1}{4} \overrightarrow{MB}.$

CAU 25. Cho tam giác ABC. Hãy xác định vị trí điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.

(A) M thuộc cạnh AB và AM = 2MB.

 (\mathbf{B}) M trên AB và ngoài đoạn AB.

(**C**) M là trung điểm AB.

 $(\mathbf{D}) M$ không thuộc đoạn AB.

CÂU 26. Cho tam giác ABC, N là trung điểm AB, M là điểm thỏa mãn đẳng thức $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$. Kết luận nào dưới đây đúng?

(A) M đối xứng với C qua A.

 (\mathbf{B}) A đối xứng với M qua C.

(**C**) C đối xứng với A qua M.

 $(\mathbf{D}) M$ là điểm tùy ý.

CÂU 27. Cho tam giác ABC và điểm M thỏa mãn $\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{AB}$. Tìm vi trí điểm M.

- (A) M là điểm thứ tư của hình bình hành ABCM.
- (\mathbf{B}) M là trung điểm của AB.

 $(\mathbf{C}) M$ là trung điểm của BC.

 $(\mathbf{D}) M$ là trung điểm của AC.

CÂU 28. Cho tam giác ABC, I là trung điểm AC. Vị trí điểm N thỏa mãn $\overrightarrow{NA} + 2\overrightarrow{NB} = \overrightarrow{CB}$ xác định bởi hệ thức

- $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BI}.$
- $\overrightarrow{B}) \overrightarrow{BN} = 2\overrightarrow{BI}.$
- $\overrightarrow{\mathbf{c}}$ $\overrightarrow{BN} = \frac{2}{2}\overrightarrow{BI}$.

CÂU 29. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$.

- (**A**) Hình 1.
- (**B**) Hình 2.
- (**C**) Hình 3.
- (**D**) Hình 4.

CÂU 30. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

 $(\mathbf{A}) M$ trùng với I.

(**B**) M là trung điểm của BI.

 \bigcirc M là trung điểm của AI.

 $(\mathbf{D}) M$ trùng với A hoặc M trùng với B.

CÂU 31. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

 \dot{M} Ň Hình 4

(**A**) Hình 1.

N

- (**B**) Hình 2.
- (C) Hình 3.
- (D) Hình 4.

CÂU 32. Trên đưường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định đúng theo hình vẽ nào sau đây.

 \tilde{N} M

(C) **CÂU 33.**

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

- $(\mathbf{A}) \ 3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}.$ $(\mathbf{B}) \ 3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}$.
- $\overrightarrow{\mathbf{D}}$ $\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}$.

CÂU 34. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là

 $(\mathbf{A}) M$ là trung điểm của AC.

- (\mathbf{B}) M là trung điểm của BC.
- (\mathbf{C}) M là điểm thứ tư của hình bình hành ABCM.
- $(\mathbf{D}) M$ là trung điểm của AB.

Dạng 4. Biểu diễn vectơ theo hai vectơ không cùng phương

 ${f D}$ ặt vấn đề: Trong dạng toán này, chúng ta giải quyết bài toán dựa vào kiến thức: "Cho trước hai vectơ ${f a}$, ${f b}$ khác ${f 0}$ và không cùng phương. Với mọi vecto \vec{c} ta luôn tìm được một cặp số thực (α, β) duy nhất sao cho $\vec{c} = \alpha \cdot \vec{a} + \beta \cdot \vec{b}$ ".

Phương pháp giải : Ta có thể chọn 1 trong 2 hướng giải sau

- Hướng 1: Từ giả thiết xác định được tính chất hình học, rồi từ đó khai triển vectơ cần biểu diễn bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất trung điểm, trọng tâm, ...
- Hướng 2: Từ giả thiết, ta lập được mối quan hệ vecto giữa các đối tương, rồi từ đó khai triển biểu thức bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất trung điểm, trọng tâm, ...

1. Ví du minh hoa

VÍ DỤ 1. Cho $\triangle ABC$, gọi G là trọng tâm của tam giác và B_1 là điểm đối xứng của B qua G. Gọi M là trung điểm của BC. Hãy biểu diễn các vecto

a) $\overrightarrow{CB_1}$ và $\overrightarrow{AB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .

b) $\overrightarrow{MB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .

VÍ DU 2. Cho $\triangle ABC$. Goi I là điểm trên canh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Goi G là trong tâm $\triangle ABC$.

a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} .

b) Tính \overrightarrow{AG} theo \overrightarrow{AI} và \overrightarrow{AJ} .

VÍ DỤ 3. Cho $\triangle ABC$ và hai điểm D, E thỏa mãn $\overrightarrow{DB} = k \cdot \overrightarrow{DC}, \overrightarrow{EB} = \frac{1}{L} \overrightarrow{EC}$ (với $k \neq 1$).

- a) Biểu diễn các vecto \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{DE} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .
- b) Điểm F, I thỏa mãn $\overrightarrow{FA} = k \cdot \overrightarrow{FB}$, $\overrightarrow{IC} = k \cdot \overrightarrow{IA}$. Chứng minh $\overrightarrow{AD} + \overrightarrow{BI} + \overrightarrow{CF} = \overrightarrow{0}$.

2. Bài tấp ấp dung

BÀI 1. Cho $\triangle ABC$ có M, D lần lượt là trung điểm của AB, BC và N là điểm trên cạnh AC sao cho $\overrightarrow{AN} = \frac{1}{2} \cdot \overrightarrow{NC}$. Gọi K là trung điểm của MN. Hãy tính các vecto \overrightarrow{AK} , \overrightarrow{KD} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 2. Cho $\triangle ABC$. Trên hai cạnh AB và AC lấy hai điểm D và E sao cho $\overrightarrow{AD} = 2\overrightarrow{DB}$, $\overrightarrow{CE} = 3\overrightarrow{EA}$. Gọi M, I lần lượt là trung điểm của DE và BC. Hãy tính vecto \overrightarrow{AM} , \overrightarrow{MI} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 3. Cho $\triangle ABC$, lấy điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}$, $\overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$. Phân tích \overrightarrow{PM} , \overrightarrow{PN} theo AB, AC.

BÀI 4. Cho hình bình hành ABCD có tâm là O. Hãy tính các vectơ sau theo vectơ \overrightarrow{AB} và \overrightarrow{AD} .

- a) \overrightarrow{AI} với I là trung điểm của \overrightarrow{BO} .
- b) \overrightarrow{BG} với G là trọng tâm $\triangle OCD$.

- **BÀI 5.** Cho $\triangle ABC$ có hai đường trung tuyến BN, CP. Hãy biểu thi các vecto \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} theo các vecto \overrightarrow{BN} , \overrightarrow{CP} .
- **BÀI 6.** Cho $\triangle ABC$ có trọng tâm G. Gọi I, J nằm trên cạnh BC và BC kéo dài sao cho 2CI = 3BI, 5JB = 2JC.
 - a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} .

- b) Tính \overrightarrow{AG} theo \overrightarrow{AB} , \overrightarrow{AC} .
- **BÀI 7.** Chọ $\triangle ABC$ có G là trọng tâm tam giác và I là điểm đối xứng của B qua G. M là trung điểm của BC. Hãy tính $A\hat{I}$, $C\hat{I}$, $M\hat{I}$ theo $A\hat{B}$, $A\hat{C}$.
- **BÀI 8.** Cho $\triangle ABC$ có trọng tâm là G và các đường trung tuyến AM, BP. Gọi G' là điểm đối xứng với điểm G qua P.
 - a) Hãy biểu diễn các vecto $\overrightarrow{AG'}$, $\overrightarrow{CG'}$ theo \overrightarrow{AB} , \overrightarrow{AC} .
 - b) Chứng minh hệ thức: $5\overrightarrow{AC} 6\overrightarrow{AB} = 6\overrightarrow{MG'}$.
- **BÁI 9.** Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC, CD. Hãy biểu diễn các vector \overrightarrow{BC} , \overrightarrow{CD} theo các vecto \overrightarrow{AM} , \overrightarrow{AN} .
- **BÀI 10.** Cho tứ giác ABCD có M, N theo thứ tự là trung điểm của các cạnh AD, BC. Hãy biểu diễn vecto \overrightarrow{MN} theo \overrightarrow{AB} , $D\acute{C}$ và theo $A\acute{C}$, $D\acute{B}$.
- **BÀI 11.** Cho $\triangle ABC$. Goi I là điểm đối xứng của trong tâm G qua B.
 - a) Chứng minh $\overrightarrow{IA} 5\overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$
 - b) Đặt $\overrightarrow{AG} = \overrightarrow{a}$, $\overrightarrow{AI} = \overrightarrow{b}$. Tính \overrightarrow{AB} , \overrightarrow{AC} theo \overrightarrow{a} , \overrightarrow{b} .
- **BÀI 12.** Cho $\triangle ABC$. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Tính các vectơ $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$ theo các vectơ
- **BÀI 13.** Cho $\triangle ABC$. Gọi I là điểm trên cạnh BC kéo dài sao cho IB = 3IC.
 - a) Tính \overrightarrow{AI} theo \overrightarrow{AB} , \overrightarrow{AC} .
 - b) Gọi J và K lần lượt là các điểm thuộc cạnh AC, AB sao cho JA = 2JC và KB = 3KA. Tính \overrightarrow{JK} theo \overrightarrow{AB} , \overrightarrow{AC} .
 - c) Tính \overrightarrow{BC} theo \overrightarrow{AI} và \overrightarrow{JK} .

3. Bài tập trắc nghiệm

$$\overrightarrow{A} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AC}$$

$$\overrightarrow{C} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$$

$$\overrightarrow{D} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AC}$$

- **CÂU 2.** Cho hình bình hành ABCD, gọi I là trung điểm của CD, đặt $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$. Biểu diễn vecto \overrightarrow{BI} theo các vecto \vec{a} , \vec{b} .
 - $\overrightarrow{\textbf{A}} \overrightarrow{BI} = -\frac{1}{2} \overrightarrow{a} + \frac{1}{2} \overrightarrow{b}.$ $\overrightarrow{\textbf{B}} \overrightarrow{BI} = \overrightarrow{a} + \overrightarrow{b}.$ $\overrightarrow{\textbf{C}} \overrightarrow{BI} = -\frac{1}{2} \overrightarrow{a} + \overrightarrow{b}.$ $\overrightarrow{\textbf{D}} \overrightarrow{BI} = \frac{1}{2} \overrightarrow{a} + \overrightarrow{b}.$

$$\bigcirc \overrightarrow{BI} = -\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{BI} = \frac{1}{2} \overrightarrow{a} + \overrightarrow{b}$$

- **CÂU 3.** Cho tam giác ABC và một điểm M thỏa mãn $\overrightarrow{BM} = k\overrightarrow{BC}$. Biểu diễn vecto \overrightarrow{AM} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .
 - $(\mathbf{A}) \ \overrightarrow{AM} = (1-k)\overrightarrow{AB} + k\overrightarrow{AC}.$

 $\overrightarrow{\mathbf{B}} \overrightarrow{AM} = k\overrightarrow{AB} + k\overrightarrow{AC}.$

 $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AM} = k\overrightarrow{AB} + (1-k)\overrightarrow{AC}$.

- \overrightarrow{D} $\overrightarrow{AM} = (1-k)\overrightarrow{AB} + (1-k)\overrightarrow{AC}$.
- **CÂU 4.** Cho hình bình hành ABCD. Gọi I là điểm trên cạnh BC được xác định bởi $\overrightarrow{BI} = k\overrightarrow{BC}$ $(k \neq 1)$. Tìm hệ thức liên hệ giữa \overrightarrow{DI} , \overrightarrow{DB} , \overrightarrow{DC} .
 - \overrightarrow{A} $\overrightarrow{DI} = (k-1)\overrightarrow{DB} k\overrightarrow{DC}$.

 $\overrightarrow{\mathbf{B}}$ $\overrightarrow{DI} = (1-k)\overrightarrow{DB} + k\overrightarrow{DC}$.

 $(\mathbf{C}) \overrightarrow{DI} = (1+k)\overrightarrow{DB} - k\overrightarrow{DC}.$

- $\overrightarrow{D}\overrightarrow{DI} = (1+k)\overrightarrow{DB} + k\overrightarrow{DC}$
- **CÂU 5.** Cho tam giác ABC có M là trung điểm của BC. Tính \overrightarrow{AB} theo \overrightarrow{AM} và \overrightarrow{BC} .
 - $\overrightarrow{AB} = \overrightarrow{AM} + \frac{1}{2}\overrightarrow{BC}.$ $\overrightarrow{B} \overrightarrow{AB} = \overrightarrow{BC} + \frac{1}{2}\overrightarrow{AM}.$ $\overrightarrow{C} \overrightarrow{AB} = \overrightarrow{AM} \frac{1}{2}\overrightarrow{BC}.$

- $\overrightarrow{AB} = \overrightarrow{BC} \frac{1}{2}\overrightarrow{AM}$.
- **CÂU 6.** Cho tam giác ABC có M là trung điểm của BC, I là trung điểm của AM. Khẳng định nào sau đây **đúng**?

- $\overrightarrow{A} \overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$ $\overrightarrow{B} \overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} \overrightarrow{AC} \right).$ $\overrightarrow{C} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}.$ $\overrightarrow{D} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB} \frac{1}{2} \overrightarrow{AC}.$
- **CÂU 7.** Cho tam giác ABC. Hai điểm M, N chia cạnh BC theo ba phần bằng nhau BM = MN = NC. Tính \overrightarrow{AM} theo \overrightarrow{AB} và \overrightarrow{AC} . $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$ $\overrightarrow{B} \overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}.$ $\overrightarrow{C} \overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}.$ $\overrightarrow{D} \overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}.$

- **CÂU 8.** Cho tam giác ABC có G là trọng tâm tam giác. Trong các mệnh đề sau, mệnh đề nào đúng?
 - \overrightarrow{A} $\overrightarrow{GA} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$. \overrightarrow{B} $\overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}$.
- $(\mathbf{D}) \ 2\overrightarrow{AB} + \overrightarrow{BC} = 2\overrightarrow{AG}.$

CÂU 9. Cho $\triangle ABC$ có M là trung điểm của BC. Trong các mệnh đề sau, mệnh đề nào **sai**?

$$(\mathbf{B}) \ 2\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{BC}.$$

$$(\mathbf{C}) \ 2\overrightarrow{AM} = 2\overrightarrow{AC} - \overrightarrow{BC}.$$

CÂU 10. Cho $\triangle ABC$ và I thỏa mãn $\overrightarrow{IA} = 3\overrightarrow{IB}$. Phân tích \overrightarrow{CI} theo \overrightarrow{CA} và \overrightarrow{CB} .

$$\overrightarrow{A} \overrightarrow{CI} = \frac{1}{2} \left(\overrightarrow{CA} - 3\overrightarrow{CB} \right).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{CI} = \overrightarrow{CA} - 3\overrightarrow{CB}.$$

$$\overrightarrow{C}$$
 $\overrightarrow{CI} = \frac{1}{2} \left(3\overrightarrow{CB} - \overrightarrow{CA} \right).$

$$D) \overrightarrow{CI} = 3\overrightarrow{CB} - \overrightarrow{CA}.$$

CÂU 11. Cho hình bình hành ABCD có N là trung điểm AB và G là trọng tâm $\triangle ABC$. Phân tích \overrightarrow{GA} theo \overrightarrow{BD} và

$$\overrightarrow{\textbf{A}} \ \overrightarrow{GA} = -\frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}. \qquad \overrightarrow{\textbf{B}} \ \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} - \frac{4}{3}\overrightarrow{NC}. \qquad \overrightarrow{\textbf{C}} \ \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{GA} = \frac{1}{3} \overrightarrow{BD} - \frac{4}{3} \overrightarrow{NC}$$

$$\overrightarrow{C}$$
 $\overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GA} = \frac{1}{3} \overrightarrow{BD} - \frac{2}{3} \overrightarrow{NC}.$$

$$\overrightarrow{\textbf{A}} \ \overrightarrow{BC} = \frac{2}{3} \overrightarrow{a} + \frac{4}{3} \overrightarrow{b}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{BC} = \frac{2}{3} \overrightarrow{a} - \frac{4}{3} \overrightarrow{b}.$$

$$\overrightarrow{BC} = -\frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{BC} = \frac{1}{3} \overrightarrow{a} + \frac{4}{3} \overrightarrow{b}.$$

CÂU 13. Cho $\triangle ABC$ với trọng tâm G. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$. Biểu thị vecto \overrightarrow{AG} theo hai vecto \overrightarrow{a} và \overrightarrow{b} ta được $\overrightarrow{AG} = 2\overrightarrow{a} - \overrightarrow{b}$.

(a) $\overrightarrow{AG} = \frac{2\overrightarrow{a} - \overrightarrow{b}}{3}$.

(b) $\overrightarrow{AG} = \frac{\overrightarrow{a} - 2\overrightarrow{b}}{3}$.

$$\overrightarrow{A} \overrightarrow{AG} = \frac{2\overrightarrow{a} - \overrightarrow{b}}{3}.$$

$$\overrightarrow{B} \overrightarrow{AG} = \frac{-2\overrightarrow{a} + \overrightarrow{b}}{3}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AG} = \frac{2\overrightarrow{a} + \overrightarrow{b}}{2}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{AG} = \frac{\overrightarrow{a} - 2\overrightarrow{b}}{3}.$$

CÂU 14. Cho tam giác ABC. Gọi M trên cạnh BC sao cho MB = 3MC. Khi đó, biểu diễn vectơ \overrightarrow{AM} theo vectơ \overrightarrow{AB} và

$$\overrightarrow{A} \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB} + 3\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB} + \frac{3}{4} \overrightarrow{AC}$$

$$(A) \overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + 3\overrightarrow{AC}. \qquad (B) \overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}. \qquad (C) \overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}. \qquad (D) \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}.$$

CÂU 15. Cho tam giác ABC có trọng tâm G. Đặt $\overrightarrow{CA} = \overrightarrow{u}$, $\overrightarrow{CB} = \overrightarrow{v}$. Khi đó \overrightarrow{AG} bằng (A) (A)

CÂU 16. Cho tam giác ABC có G là trọng tâm tam giác. Điểm N trên BC sao cho $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Biểu diễn vectơ \overrightarrow{AC} theo các vecto \overrightarrow{AG} và \overrightarrow{AN} .

(A) $\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(B) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(C) $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(D) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}$.

$$\overrightarrow{A} \overrightarrow{AC} = \frac{2}{3} \overrightarrow{AG} + \frac{1}{2} \overrightarrow{AN}.$$

$$\overrightarrow{B} \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AN}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AG} - \frac{1}{2} \overrightarrow{AN}$$

$$\overrightarrow{A}\overrightarrow{AG} = \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AG} = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} - \frac{1}{3} \overrightarrow{b}$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AG} = -\frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

B)
$$m = -1$$
; $n = -2$.

$$m = -2; n = -1.$$

$$(\mathbf{D}) m = 2; n = 1.$$

CÂU 19. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Hãy tìm m và n sao cho $\overrightarrow{MN} =$ $m\overrightarrow{AB} + n\overrightarrow{DC}$.

(A)
$$m = \frac{1}{2}, n = \frac{1}{2}$$
.

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$

$$m = \frac{1}{2}, n = -\frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$
 C $m = \frac{1}{2}, n = -\frac{1}{2}.$ **D** $m = -\frac{1}{2}, n = -\frac{1}{2}.$

CÂU 20. Gọi G là trọng tâm của $\triangle ABC$. Đặt $\overrightarrow{GA} = \overrightarrow{a}$, $\overrightarrow{GB} = \overrightarrow{b}$. Hãy tìm m, n để có $\overrightarrow{BC} = m\overrightarrow{a} + n\overrightarrow{b}$.

B
$$m = -1, n = -2.$$

$$m=2, n=1.$$

$$D m = -2, n = -1.$$

CÂU 21. Cho tứ giác ABCD (với AB, CD không song song). Gọi M, N lần lượt là trung điểm của AD và BC. Tìm m, n $\vec{\text{de }} M\vec{N} = m\vec{A}\vec{B} + n\vec{D}\vec{C}.$

(A)
$$m = \frac{1}{2}, n = \frac{1}{2}$$
.

B
$$m = -\frac{1}{2}, n = \frac{1}{2}$$

$$m = \frac{1}{2}, n = -\frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$
 C $m = \frac{1}{2}, n = -\frac{1}{2}.$ **D** $m = -\frac{1}{2}, n = -\frac{1}{2}$

CÂU 22.

Cho hình bình hành ABCD tâm O. Gọi M,N lần lượt là trung điểm của BC và CD. Đặt $\vec{a} = \overline{AM}, \ \vec{b} = \overline{AN}$. Hãy biểu diễn \overline{AO} theo \vec{a} và \vec{b} .

$$\overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AO} = \frac{1}{6} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AO} = \frac{3}{3}\overrightarrow{a} + 2\overrightarrow{b}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{AO} = \overrightarrow{a} + 3\overrightarrow{b}.$$

CÂU 23. Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NC=2NA. Gọi Klà là điểm trên cạnh MN sao cho KN=3KM. Kết quả nào dưới đây đúng?

$$\overrightarrow{A}$$
 $\overrightarrow{AK} = -\frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$

$$\overrightarrow{B} \overrightarrow{AK} = -\frac{3}{8} \overrightarrow{AB} - \frac{1}{12} \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AK} = \frac{3}{8} \overrightarrow{AB} + \frac{1}{12} \overrightarrow{AC}$$

(A)
$$\overrightarrow{AK} = -\frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$$
. (B) $\overrightarrow{AK} = -\frac{3}{8}\overrightarrow{AB} - \frac{1}{12}\overrightarrow{AC}$. (C) $\overrightarrow{AK} = \frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$. (D) $\overrightarrow{AK} = \frac{3}{8}\overrightarrow{AB} - \frac{1}{12}\overrightarrow{AC}$.

CÂU 24. Cho tứ giác \overrightarrow{ABCD} . Trên cạnh \overrightarrow{AB} , \overrightarrow{CD} lần lượt lấy các điểm M, N sao cho $3\overrightarrow{AM} = 2\overrightarrow{AB}$ và $3\overrightarrow{DN} = 2\overrightarrow{DC}$. Tính vecto \overrightarrow{MN} theo hai vecto \overrightarrow{AD} , \overrightarrow{BC} .

$$\overrightarrow{A} \overrightarrow{MN} = \frac{1}{2} \overrightarrow{AD} + \frac{1}{2} \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = \frac{1}{3} \overrightarrow{AD} - \frac{2}{3} \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = \frac{1}{3} \overrightarrow{AD} - \frac{2}{3} \overrightarrow{BC}. \qquad \mathbf{\widehat{C}} \ \overrightarrow{MN} = \frac{1}{3} \overrightarrow{AD} + \frac{2}{3} \overrightarrow{BC}.$$

CÂU 25. Cho tạm giác đều ABC và điểm I thỏa mãn $\overrightarrow{IA} = 2\overrightarrow{IB}$. Mệnh đề nào sau đây **đúng**?

$$\overrightarrow{A} \overrightarrow{CI} = \frac{\overrightarrow{CA} - 2\overrightarrow{CB}}{3}.$$

$$\overrightarrow{B} \overrightarrow{CI} = \frac{\overrightarrow{CA} + 2\overrightarrow{CB}}{3}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{CI} = -\overrightarrow{CA} + 2\overrightarrow{CB}.$$

$$\overrightarrow{D} \overrightarrow{CI} = \frac{\overrightarrow{CA} + 2\overrightarrow{CB}}{-3}.$$

CÂU 26. Cho tam giác \overrightarrow{ABC} có \overrightarrow{G} là trọng tâm tam giác. Lấy các điểm \overrightarrow{P} , \overrightarrow{Q} sao cho $\overrightarrow{PA} = 2\overrightarrow{PB}$, $3\overrightarrow{QA} + 2\overrightarrow{QC} = \overrightarrow{0}$. Biểu diễn vector \overrightarrow{AG} theo các vector \overrightarrow{AP} , \overrightarrow{AQ} .

(A) $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}$.

(B) $\overrightarrow{AG} = \frac{5}{6}\overrightarrow{AP} + \frac{1}{6}\overrightarrow{AQ}$.

(C) $\overrightarrow{AG} = \frac{1}{6}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}$.

(D) $\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AP} + \frac{1}{3}\overrightarrow{AQ}$.

$$\overrightarrow{A} \overrightarrow{AG} = \frac{1}{3} \overrightarrow{AP} + \frac{5}{6} \overrightarrow{AQ}.$$

$$\overrightarrow{B} \overrightarrow{AG} = \frac{5}{6} \overrightarrow{AP} + \frac{1}{6} \overrightarrow{AQ}$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AG} = \frac{1}{6} \overrightarrow{AP} + \frac{5}{6} \overrightarrow{AQ}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AG} = \frac{1}{2} \overrightarrow{AP} + \frac{1}{3} \overrightarrow{AQ}$$

$$\overrightarrow{A} \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} - \frac{1}{16} \overrightarrow{AJ}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} + \frac{1}{16} \overrightarrow{AJ}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AG} = \frac{25}{16} \overrightarrow{AI} - \frac{3}{16} \overrightarrow{AJ}$$

CÂU 28. Cho tạm giác ABC. Gọi G là trọng tâm tạm giác và H là điểm đối xứng của B qua G. Gọi M là trung điểm BC. Biểu diễn vecto \overrightarrow{MH} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .

$$\overrightarrow{A} \overrightarrow{MH} = \frac{5}{6} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}$$

B
$$\overrightarrow{MH} = -\frac{1}{c}\overrightarrow{AB} + \frac{5}{c}\overrightarrow{AC}$$
.

$$\overrightarrow{\mathbf{C}} \overrightarrow{MH} = -\frac{5}{6} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}.$$

CÂU 29. Cho góc $\widehat{xOy} = 60^{\circ}$. Các điểm A, B nằm trên tia Ox, các điểm C, D nằm trên tia Oy sao cho AB = CD = 2. Gọi I, J lần lượt là trung điểm các đoạn AC, BD. Biết A nằm giữa O và B, C nằm giữa O và D, tính IJ.

$$\mathbf{B} IJ = \frac{3\sqrt{3}}{2}.$$

$$\bigcirc IJ = \sqrt{3}.$$

CÂU 30. Cho tam giác ABC, N là điểm xác định bởi $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Gọi G là trọng tâm tam giác ABC. Hệ thức tính \overrightarrow{AC} theo \overrightarrow{AG} và \overrightarrow{AN} là $(A) \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$ (B) $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}.$ (C) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$ (D) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}.$

$$\overrightarrow{A} \overrightarrow{AC} = \frac{2}{3} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AN}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AC} = \frac{4}{3} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{AN}$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AG} + \frac{1}{2} \overrightarrow{AN}$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AG} - \frac{1}{2} \overrightarrow{AN}$$

🗁 Dạng 5. Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trùng nhau

- \odot Để chứng minh 3 điểm A, B, C thẳng hàng, ta chứng minh: $\overrightarrow{AB} = k\overrightarrow{AC}$ (1). Để nhận được (1), ta lựa chọn một trong hai hướng sau:
 - Sử dụng các quy tắc biến đổi vecto.
 - Xác định (tính) vecto \overrightarrow{AB} và \overrightarrow{AC} thông qua một tổ hợp trung gian.

Chú ý:

- Cho ba điểm A, B, C. Điều kiện cần và đủ để A, B, C thẳng hàng là: $\overrightarrow{MC} = \alpha \overrightarrow{MA} + (1 \alpha) \overrightarrow{MB}$ với điểm M tùy ý và số thực α bất k".
 - Đặc biệt khi $0 \le \alpha \le 1$ thì $C \in AB$. Kết quả trên còn được sử dụng để tìm điều kiện của tham số k (hoặc m) cho ba điểm A, B, C thẳng hàng.
- Nếu không dễ nhận thấy k trong biểu thức $\overrightarrow{AB} = k\overrightarrow{AC}$, ta nên quy đồng biểu thức phân tích vecto \overrightarrow{AB} và \overrightarrow{AC} để tìm ra số k.
- \odot Để chứng minh $\overrightarrow{AB} \parallel CD$ ta cần chứng minh $\overrightarrow{AB} = k\overrightarrow{DC}$.

1. Ví du minh hoa

VÍ DỤ 1. Cho hình bình hành ABCD, tâm O. Gọi M, N theo thứ tự là trung điểm của AB, CD và P là điểm thỏa mãn hệ thức $\overrightarrow{OP} = -\frac{1}{2}\overrightarrow{OA}$. Chứng minh 3 điểm B, P, N thẳng hàng

VÍ DU 2. Cho bốn điểm phân biệt A, B, C, D thỏa: $2\overrightarrow{AB} + 3\overrightarrow{AC} = 5\overrightarrow{AD}$. Chứng minh B, C, D thẳng hàng.

VÍ DU 3. Cho $\triangle ABC$, lấy điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}, \overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}, \overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$.

- a) Tính \overrightarrow{PM} , \overrightarrow{PN} theo \overrightarrow{AB} , \overrightarrow{AC}
- b) Chứng minh ba điểm: M, N, P thẳng hàng.

VÍ DU 4. Cho $\triangle ABC$ có I là trung điểm của trung tuyến AM và D là điểm thỏa hệ thức $3\overrightarrow{AD} = \overrightarrow{AC}$. Biểu diễn vecto \overrightarrow{BD} , \overrightarrow{BI} theo \overrightarrow{AB} , \overrightarrow{AC} và chứmg minh ba điểm B, I, D thẳng hàng.

2. Bài tấp áp dung

BÀI 1. Cho $\triangle ABC$.

- a) Dựng các điểm K, L sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0}$, $2\overrightarrow{LB} + 3\overrightarrow{LC} = \overrightarrow{0}$
- b) Chứng minh ba điểm A, K, L thẳng hàng.

BÀI 2. Cho hình bình hành ABCD. Gọi I là trung điểm của AB và E là điềm thoả hệ thức $3\overrightarrow{IE} = \overrightarrow{ID}$. Chứmg minh ba điểm A, C, E thẳng hàng.

BÀI 3. Cho $\triangle ABC$.

- a) Dưng các điểm K, L sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0}$ và $2\overrightarrow{LB} + 3\overrightarrow{LC} = \overrightarrow{0}$
- b) Chứng minh ba điểm A, K, L thẳng hàng.

BÀI 4. Cho $\triangle ABC$. Gọi M là trung điểm của cạnh AB, N và P là hai điểm thỏa mãn hệ thức $\overrightarrow{NA} + 2\overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{PB} - 2\overrightarrow{PC} = \overrightarrow{0}$. Chứng minh ba điểm M, N, P thẳng hàng.

BÀI 5. Cho $\triangle ABC$. Hai điểm M, N được xác định bởi $3\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}, \overrightarrow{NB} - 3\overrightarrow{NC} = \overrightarrow{0}$. Chứng minh MN đi qua trọng tâm $\triangle ABC$.

BÀI 6. Cho $\triangle ABC$.

- a) Dựng các điểm D, E thỏa các hệ thức $\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB}, \overrightarrow{DE} = \frac{3}{2}\overrightarrow{BC}.$
- b) Chứng minh ba điểm A, C, E thẳng hàng.

BÀI 7. Cho hình bình hành ABCD. Gọi I là trung điểm của cạnh BC và E là điểm xác định bởi $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$. Chứng minh ba điểm D, E, I thẳng hàng.

BÀI 8. Cho $\triangle ABC$ có trung tuyến AD và M là trung điểm AD. Điểm N được lấy trên AC sao cho $3\overrightarrow{AN} = \overrightarrow{AC}$. Chứng minh ba điểm B, M, N thẳng hàng.

BÀI 9. Cho $\triangle ABC$ có M là trung điểm BC và O là trung điểm của AM. Trên AB lấy điểm I, AC lấy điểm J sao cho $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$ và $\overrightarrow{AJ} = \frac{2}{5}\overrightarrow{AC}$. Chứng minh ba điểm I, J, O thẳng hàng.

BÀI 10. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A, O, G thẳng hàng.

BÀI 11. Cho tứ giác ABCD. Gọi M,N là hai điểm di động trên AB,CD sao cho $\frac{MA}{MB} = \frac{ND}{NC}$ và hai điểm I,J lần lượt là trung điểm của AD,BC.

- a) Tính \overrightarrow{IJ} theo \overrightarrow{AB} và \overrightarrow{DC} .
- b) Chứng minh trung điểm P của MN nằm trên IJ.

BÀI 12. Cho $\triangle ABC$. Gọi $P,\,Q,\,R$ là các điểm thỏa các đẳng thức :

$$3\overrightarrow{PB}+4\overrightarrow{PC}=\overrightarrow{0},\quad \overrightarrow{AQ}=2\overrightarrow{QC},\quad k\overrightarrow{RA}=\overrightarrow{RB},\ k\neq 1.$$

- a) Chứng minh rằng: $21\overrightarrow{PQ} = 2\overrightarrow{BC} + 7\overrightarrow{BA}$.
- b) Chứng minh rằng: $\overrightarrow{RP} = \frac{k}{1-k}\overrightarrow{BA} + \frac{4}{7}\overrightarrow{BC}$.
- c) Tìm k sao cho P, Q, R thẳng hàng.

BÀI 13. Cho hình bình hành ABCD.

a) Gọi I, F, K là các điểm thỏa mãn $\overrightarrow{AI} = \alpha \overrightarrow{AB}, \overrightarrow{AF} = \beta \overrightarrow{AC}, \overrightarrow{AK} = \gamma \overrightarrow{AD}$. Chứng minh điều kiện cần và đủ đề I, F, K thẳng hàng là

$$\frac{1}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma} \quad (\alpha, \ \beta, \ \gamma \neq 0).$$

b) Gọi M, N là hai điểm lần lượt trên đoạn AB, CD sao cho $\cfrac{AM}{AB} = \cfrac{1}{3}$, $\cfrac{CN}{CD} = \cfrac{1}{2}$. Gọi G là trọng tâm $\triangle MNB$. Tính \overrightarrow{AN} , \overrightarrow{AG} theo \overrightarrow{AB} và \overrightarrow{AC} . Gọi H là điểm xác định bởi $\overrightarrow{BH} = k \cdot \overrightarrow{BC}$. Tính \overrightarrow{AH} theo \overrightarrow{AB} , \overrightarrow{AC} và k. Tìm k để đường thẳng AH đi qua điểm G.

3. Bài tấp trắc nghiệm

- **CÂU 1.** Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm thẳng hàng là
 - $(\mathbf{A}) AB = AC.$
 - $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AC} \overrightarrow{AB} = \overrightarrow{BC}$.

- $\exists k \in \mathbb{R}^* : \overrightarrow{AB} = k \cdot \overrightarrow{AC}.$
- $\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MC}, \forall \text{ diểm } M.$

- CÂU 2. Khẳng định nào sau đây sai?
 - (A) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{BC}, k \neq 0$.
 - **B**) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AC} = k\overrightarrow{BC}, k \neq 0$.
 - \bigcirc Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}, k \neq 0$.
 - (**D**) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}$.
- CÂU 3. Phát biểu nào là sai?
 - (A) Nếu $\overrightarrow{AB} = \overrightarrow{AC}$ thì $|\overrightarrow{AB}| = |\overrightarrow{AC}|$.

- \overrightarrow{B} $\overrightarrow{AB} = \overrightarrow{CD}$ thì A, B, C, D thẳng hàng.
- $(\overrightarrow{\textbf{c}})$ Nếu $3\overrightarrow{AB}+7\overrightarrow{AC}=\overrightarrow{0}$ thì A,B,C thẳng hàng.
- $(\mathbf{D}) \overrightarrow{AB} \overrightarrow{CD} = \overrightarrow{DC} \overrightarrow{BA}.$
- **CÂU 4.** Cho hai vecto \vec{a} và \vec{b} không cùng phương. Hai vecto nào sau đây là cùng phương?
 - $\overrightarrow{a} \overrightarrow{u} = 2\overrightarrow{a} + 3\overrightarrow{b} \text{ và } \overrightarrow{v} = \frac{1}{2}\overrightarrow{a} 3\overrightarrow{b}.$

B $\vec{u} = \frac{3}{5}\vec{a} + 3\vec{b}$ và $\vec{v} = 2\vec{a} - \frac{3}{5}\vec{b}$.

 $\vec{\mathbf{C}}$ $\vec{u} = \frac{2}{3}\vec{a} + 3\vec{b}$ và $\vec{v} = 2\vec{a} - 9\vec{b}$.

- **(D)** $\vec{u} = 2\vec{a} \frac{3}{2}\vec{b}$ và $\vec{v} = -\frac{1}{3}\vec{a} + \frac{1}{4}\vec{b}$.
- **CÂU 5.** Biết rằng hai vecto \vec{a} và \vec{b} không cùng phương nhưng hai vecto $2\vec{a} 3\vec{b}$ và $\vec{a} + (x 1)\vec{b}$ cùng phương. Khi đó giá trị của x là

- **CÂU 6.** Cho \vec{a} , \vec{b} không cùng phương, $\vec{x} = -2\vec{a} + \vec{b}$. vectơ cùng hướng với \vec{x} là \vec{a} (\vec{a}) (\vec{a})

- **CÂU 7.** Biết rằng hai vecto \vec{a} và \vec{b} không cùng phương nhưng hai vecto $3\vec{a}-2\vec{b}$ và $(x+1)\vec{a}+4\vec{b}$ cùng phương. Khi đó giá trị của x là
 - (A) -7.

- **CÂU 8.** Biết rằng hai vectơ \vec{a} và \vec{b} không cùng phương nhưng hai vectơ $2\vec{a} 3\vec{b}$ và $\vec{a} + (x 1)\vec{b}$ cùng phương. Khi đó giá trị của x là

B $-\frac{3}{2}$.

- **CÂU 9.** Nếu I là trung điểm đoạn thẳng AB và $\overrightarrow{IA} = k\overrightarrow{AB}$ thì giá trị của k bằng $\boxed{\mathbf{A}}$ 1. $\boxed{\mathbf{C}} \frac{1}{2}$.

- **CÂU 10.** Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vecto $\overrightarrow{v} = \overrightarrow{MA} + \overrightarrow{MB} 2\overrightarrow{MC}$. Hãy xác định vị trí của điểm D sao cho $\overrightarrow{CD} = \overrightarrow{v}$.
 - (\mathbf{A}) D là điểm thứ tư của hình bình hành ABCD.
- (\mathbf{B}) D là điểm thứ tư của hình bình hành ACBD.

 (\mathbf{C}) D là trọng tâm của tam giác ABC.

- (\mathbf{D}) D là trực tâm của tam giác ABC.
- **CÂU 11.** Cho tam giác ABC. Hai điểm M,N được xác định bởi các hệ thức $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}, \overrightarrow{AB} \overrightarrow{NA} 3\overrightarrow{AC} = \overrightarrow{0}$. Trong các khẳng định sau, khẳng định nào đúng?
 - (A) $MN \perp AC$.

(B) MN//AC.

 $(\mathbf{C}) M$ nằm trên đường thẳng AC.

- \bigcirc Hai đường thẳng MN và AC trùng nhau.
- **CÂU 12.** Cho tam giác ABC có trọng tâm G. Các điểm M, N thỏa mãn $7\overrightarrow{MG} = 3\overrightarrow{GC} \overrightarrow{GB}$; $\overrightarrow{GN} = \frac{1}{2}\left(3\overrightarrow{GC} \overrightarrow{GB}\right)$. Khẳng định nào dưới đây là đúng?
 - (A) Đường thẳng MN đi qua G.

(B) Đường thẳng MN đi qua A.

 (\mathbf{C}) Đường thẳng MN đi qua B.

- \bigcirc Đường thẳng MN đi qua C.
- **CÂU 13.** Cho hai vectơ \vec{a} và \vec{b} không cùng phương. Các điểm A, B, C sao cho $\overrightarrow{AB} = 2\vec{a} 3\vec{b}$; $\overrightarrow{AC} = m\vec{a} \frac{1}{2}\vec{b}$. Khi A, B, C thẳng hàng thì khẳng định nào sau đây đúng?
 - (A) $m \in (2;3)$.
- **(B)** $m \in (1, 2)$.
- (c) $m \in (-1; 0)$.
- (**D**) $m \in (0;1)$.
- **CÂU 14.** Cho tam giác ABC. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?
 - (\mathbf{A}) I là trọng tâm của tam giác ABC.

(B) I là tâm của đường tròn ngoại tiếp tam giác ABC.

 $(\mathbf{C})I$ là trực tâm của tam giác ABC.

(**D**) Tứ giác ABCI là hình bình hành.

CÂU 15. Cho tam giác ABC. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{IC} = \frac{1}{2} \overrightarrow{AB}.$$

$$\overrightarrow{B} \overrightarrow{IC} = \frac{1}{2} \overrightarrow{BA}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{IB} = \frac{1}{2}\overrightarrow{AC}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{IB} = \frac{1}{2} \overrightarrow{CA}.$$

CÂU 16. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} +$ 2MB + 3MC. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

 (\mathbf{A}) I là trọng tâm của tam giác OBC.

(**B**) I là tâm của đường tròn ngoại tiếp tam giác ABC.

 \bigcirc I là trung điểm của cạnh DC.

(**D**) Tứ giác *ABCI* là hình bình hành.

CÂU 17. Cho tam giác ABC có trọng tâm G. Gọi P, Q là các điểm sao cho $\overrightarrow{PA} = 2\overrightarrow{PB}$, $\overrightarrow{AQ} + k\overrightarrow{AC} = \overrightarrow{0}$ với $k \in \mathbb{R}$. Tìm k để P, Q G thẳng hàng.

B
$$k = \frac{2}{3}$$
.

$$k = -\frac{2}{5}$$
.

D
$$k = -\frac{2}{3}$$
.

CÂU 18. Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn $\overrightarrow{BM} = 3\overrightarrow{BC} - 2\overrightarrow{AB}$, $\overrightarrow{CN} = k\overrightarrow{AC} + 2\overrightarrow{BC}$. Tìm k để A, M, N thẳng hàng.

B
$$k = -\frac{1}{2}$$
.

$$k = \frac{1}{2}$$
.

CÂU 19. Cho tam giác ABC có I là trung điểm của BC. Gọi M, N, P lần lượt là các điểm xác định bởi $\overrightarrow{AM} = m\overrightarrow{AB}$; $\overrightarrow{AN} = n\overrightarrow{AI}$; $\overrightarrow{AP} = p\overrightarrow{AC}$, với $mnp \neq 0$. Tìm điều kiện của m, n, p để M, N, P thẳng hàng.

$$(A) mp = mn + np.$$

$$\mathbf{B}) 2mn = mp + np.$$

$$\bigcirc 2mp = mn + np.$$

CÂU 20. Cho tam giác ABC . Gọi D, E lần lượt là các điểm thỏa mãn $\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$; $\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AC}$. Điểm K trên AD thỏa mãn $\overrightarrow{AK} = \frac{a}{h}\overrightarrow{AD}$ (với $\frac{a}{h}$ là phân số tối giản) sao cho 3 điểm B, K, E thẳng hàng. Tính $P = a^2 + b^2$.

$$\bigcirc P = 5.$$

(B)
$$P = 13$$
.

$$P = 29.$$

$$(D) P = 10.$$

Bài 6. TÍCH VÔ HƯỚNG CỦA HAI VÉC-TƠ

A. TÓM TẮT LÝ THUYẾT

1. Góc giữa hai véc-tơ

Cho \overrightarrow{a} , $\overrightarrow{b} \neq \overrightarrow{0}$. Từ một điểm O bất kì vẽ $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$. Khi đó số đo của góc \widehat{AOB} được gọi là số đo góc giữa hai véc-to \vec{a} và \vec{b} hay đơn giản là góc giữa hai véc-to \vec{a} , \vec{b} . Kí hiệu $(\vec{a}, \vec{b}) = \widehat{AOB}$.

A

- Quy ước rằng góc giữa hai véc-tơ a và b có thể nhân một giá tri tùy ý từ O° đến 180°.
- \bigcirc $(\vec{a}, \vec{b}) = 0^{\circ} \Leftrightarrow \vec{a}, \vec{b}$ cùng hướng.
- $\textcircled{o} \left(\overrightarrow{a},\overrightarrow{b}\right) = 180^{\circ} \Leftrightarrow \overrightarrow{a},\overrightarrow{b} \ \textit{ngược hướng}.$
- Dặc biệt $\overrightarrow{0}$ được coi là vuông góc với mọi véc-tơ.

2. Tích vô hướng của hai véc-tơ

 \P ĐỊNH NGHĨA 6.1. Tích vô hướng của hai véc-tơ \vec{a} và \vec{b} là một số, kí hiệu $\vec{a} \cdot \vec{b}$, được xác định bởi công thức sau

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}).$$

- \bigcirc Ta có $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$.
- \odot $\vec{a} \cdot \vec{a}$ còn được viết là \vec{a}^2 được gọi là bình phương vô hướng của véc-tơ \vec{a} . Ta có $\vec{a}^2 = |\vec{a}| \cdot |\vec{a}| \cdot \cos 0^\circ = |\vec{a}|^2$.

B. CÁC DANG TOÁN

Dạng 1. Tính tích vô hướng của hai véc-tơ và xác định góc

Để tính tích vô hướng của hai véc-tơ ta có thể lựa chọn một trong các hướng sau đây:

 \odot Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc để xác định chính xác góc giữa hai véc-tơ rồi áp dụng định nghĩa $\overrightarrow{a} \cdot \overrightarrow{b} =$ $|\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \vec{b})$.

- ❷ Sử dụng các tính chất và các hằng đẳng thức của tích vô hướng của hai véc-tơ.
- igotimes Sử dụng dạng tọa độ nếu $\overrightarrow{a}=(a_1;a_2), \ \overrightarrow{b}=(b_1;b_2)$ thì

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2.$$

Sử dụng công thức hình chiếu

Cho hai véc-tơ \overrightarrow{OA} , \overrightarrow{OB} . Gọi B' là hình chiếu của B trên đường thẳng OA. Khi đó $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Chứng minh: Thật vậy, ta có $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \left(\overrightarrow{OB'} + \overrightarrow{B'B}\right) = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Để xác định góc giữa hai véc-tơ ta có thể lựa chọn một trong các hướng sau đây:

- \odot Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc rồi xác đinh góc theo đinh nghĩa.
- Sử dụng các tính chất và các hằng đẳng thức để tính tích vô hướng của hai véc-tơ rồi sau đó áp dụng công thức $\cos\left(\overrightarrow{a};\overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$

Cần lưu ý một số kết quả đặc biệt sau:

- \bigcirc $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a}).$
- \bigcirc Nếu $(\vec{a}, \vec{b}) = \alpha$ thì $(\vec{a}, -\vec{b}) = 180^{\circ} \alpha$.
- \bigcirc Nếu \overrightarrow{a} và \overrightarrow{b} cùng hướng thì $(\overrightarrow{a}, \overrightarrow{b}) = 0^{\circ}$.
- \odot Nếu \vec{a} và \vec{b} ngược hướng thì $(\vec{a}, \vec{b}) = 180^{\circ}$.

1. Ví dụ minh hoạ

- **VÍ DỤ 1.** Cho tam giác ABC vuông tại A và có $\widehat{B} = 50^{\circ}$. Hãy tính các góc $\left(\overrightarrow{BA}, \overrightarrow{BC}\right)$; $\left(\overrightarrow{AB}, \overrightarrow{BC}\right)$; $\left(\overrightarrow{AC}, \overrightarrow{CB}\right)$; $\left(\overrightarrow{AC}, \overrightarrow{BC}\right)$; $\left(\overrightarrow{AC}, \overrightarrow{AC}\right)$;

 \mathbf{V} Í \mathbf{D} \mathbf{U} 3. Cho tam giác ABC vuông tại A có AB=a, BC=2a và G là trọng tâm. Tính giá trị của các biểu thức sau:

- a) $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$.
- b) $\overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA}$.

 \bigvee Í Dụ 4. Cho hình vuông ABCD cạnh a. M là trung điểm của AB, G là trọng tâm tam giác ADM. Tính giá trị của các biểu thức sau:

- a) $(\overrightarrow{AB} + \overrightarrow{AD}) (\overrightarrow{BD} + \overrightarrow{BC})$.
- b) $\overrightarrow{CG}\left(\overrightarrow{CA} + \overrightarrow{DM}\right)$.

VÍ DỤ 5. Cho hai véc-tơ \vec{a} và \vec{b} có $|\vec{a}| = 7$, $|\vec{b}| = 12$ và $|\vec{a} + \vec{b}| = 13$. Tính cosin của góc giữa hai véc-tơ \vec{a} và $\vec{a} + \vec{b}$.

2. Bài tập tự luận

f BAI 1. Cho tam giác ABC vuông cân có AB=AC=a và AH là đường cao. Tính các tích vô hướng sau

a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$;

b) $\overrightarrow{AH} \cdot \overrightarrow{BC}$;

- c) $\overrightarrow{AC} \cdot \overrightarrow{CB}$ và $\overrightarrow{AB} \cdot \overrightarrow{BC}$.
- f BAI 2. Cho tam giác ABC đều cạnh a và AM là trung tuyến của tam giác. Tính các tích vô hướng sau

a)
$$\overrightarrow{AC} \left(2\overrightarrow{AB} - 3\overrightarrow{AC} \right);$$

c) $\overrightarrow{AM} \cdot \overrightarrow{AB}$;

b)
$$\overrightarrow{AC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)$$
;

d)
$$(\overrightarrow{CA} + \overrightarrow{BC})(\overrightarrow{CA} + \overrightarrow{CB})$$
.

BÀI 3. Cho hình chữ nhật ABCD có $AB = a\sqrt{2}, AD = 2a$. Gọi K là trung điểm của cạnh AD.

- a) Phân tích \overrightarrow{BK} , \overrightarrow{AC} theo \overrightarrow{AB} và \overrightarrow{AD} .
- b) Tính tích vô hướng $\overrightarrow{BK} \cdot \overrightarrow{AC}$.

BÀI 4. Cho tam giác ABC có AB=5, AC=8, BC=7. Tính tích vô hướng $\overrightarrow{AC} \cdot \overrightarrow{AB}.$

BÀI 5. Cho hai véc-tơ \vec{a} và \vec{b} có độ dài bằng 1 và thỏa mãn điều kiện $|2\vec{a}-3\vec{b}|=\sqrt{7}$. Tính $\cos\left(\vec{a},\vec{b}\right)$.

BÀI 6. Cho tam giác ABC vuông tại A có $BC = a\sqrt{3}$, M là trung điểm của BC. Biết rằng $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{a^2}{2}$. Hãy tính AB, AC.

BÀI 7. Cho hai véc-tơ \overrightarrow{a} và \overrightarrow{b} có độ dài bằng 1 và góc tạo bởi hai véc-tơ đó bằng 60°. Xác định cosin góc giữa hai véc-tơ \overrightarrow{u} và \overrightarrow{v} với $\overrightarrow{u} = \overrightarrow{a} + 2\overrightarrow{b}$, $\overrightarrow{v} = \overrightarrow{a} - \overrightarrow{b}$.

BÀI 8. Cho hai véc-tơ \vec{a} , \vec{b} thỏa mãn $|\vec{a}| = |\vec{b}| = 1$ và véc-tơ $\vec{x} = \vec{a} + 2\vec{b}$ vuông góc với véc-tơ $\vec{y} = 5\vec{a} - 4\vec{b}$. Tính góc giữa hai véc-tơ \vec{a} và \vec{b} .

BÀI 9. Cho các véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}|=2$, $|\vec{b}|=1$ và $(\vec{a},\vec{b})=60^{\circ}$. Tính góc giữa véc-tơ \vec{a} và véc-tơ $\vec{c}=\vec{a}-\vec{b}$.

BÀI 10. Cho hình chữ nhật ABCD có AB=2. M là điểm được xác định bởi $\overrightarrow{AM}=3\overrightarrow{MB}$; G là trọng tâm tam giác ADM. Tính $\overrightarrow{MB}\cdot\overrightarrow{GC}$.

BÀI 11. Cho hình chữ nhật ABCD có cạnh AB = a, AD = b. Tính theo a, b các tích vô hướng sau:

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
; $\overrightarrow{BD} \cdot \overrightarrow{AC}$; $(\overrightarrow{AC} - \overrightarrow{AB}) (\overrightarrow{AC} + \overrightarrow{AD})$;

b) $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD}$ với điểm M thuộc đường tròn ngoại tiếp hình chữ nhật ABCD.

Dạng 2. Chứng minh đẳng thức tích vô hướng hay độ dài

- ❷ Với các biểu thức về tích vô hướng ta sử dụng định nghĩa hoặc tính chất của tích vô hướng. Cần đặc biệt lưu ý phép phân tích véc-tơ để biến đổi (quy tắc ba điểm, quy tắc trung điểm, quy tắc hình bình hành,...).
- igotimes Với các công thức về độ dài ta thường sử dụng $AB^2 = \overrightarrow{AB}^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$. Cần nắm vững tính chất của các hình cơ bản.

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho đoạn thẳng AB và I là trung điểm của AB. Chứng minh rằng với mỗi điểm O ta có

a)
$$\overrightarrow{OI} \cdot \overrightarrow{IA} + \overrightarrow{OI} \cdot \overrightarrow{IB} = 0$$
.

b)
$$\overrightarrow{OI} \cdot \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{OB}^2 - \overrightarrow{OA}^2 \right)$$

VÍ DỤ 2. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều ABC cho trước. Chứng minh $MA^2 + MB^2 + MC^2 = 6R^2$.

VÍ DỤ 3. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

a)
$$MA^2 + MC^2 = MB^2 + MD^2$$
 (1);

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$$
 (2).

2. Bài tập tự luận

BÀI 1. Cho $\triangle ABC$, chứng minh $AB^2 + \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CA} = 0$.

BÀI 2. Cho $\triangle ABC$ nhọn, đường cao AH, Chứng minh rằng

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AC} \cdot \overrightarrow{AH}$$
;

b)
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{HB} \cdot \overrightarrow{BC}$$
.

BÀI 3. Chứng minh rằng với mọi tam giác ABC ta có $S_{ABC} = \frac{1}{2} \sqrt{\overrightarrow{AB^2} \cdot \overrightarrow{AC^2} - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2}$.

BÀI 4. Cho $\triangle ABC$ có trong tâm G. Chứng minh rằng với mỗi điểm M ta có

$$MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2.$$

BÀI 5. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

$$MA^2 + \overrightarrow{MB} \cdot \overrightarrow{MD} = 2\overrightarrow{MA} \cdot \overrightarrow{MO}.$$

BÀI 6. Cho hình chữ nhật ABCD nội tiếp trong đường tròn tâm O, bán kính R. Chứng minh rằng với mọi M thuộc đường tròn (O) ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \left(\overrightarrow{MB} + \overrightarrow{MD}\right) \left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}\right) = 8R^2.$$

BÀI 7. Chứng minh rằng với mọi điểm A, B, C, M ta luôn có

$$\overrightarrow{MA} \cdot \overrightarrow{BC} + \overrightarrow{MB} \cdot \overrightarrow{CA} + \overrightarrow{MC} \cdot \overrightarrow{AB} = 0$$
. (hê thức Euler).

BÀI 8. Cho $\triangle ABC$ các đường trung tuyến AD, BE, CF. Chứng minh rằng

$$\overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{BE} \cdot \overrightarrow{CA} + \overrightarrow{CF} \cdot \overrightarrow{AB} = 0.$$

BÀI 9. Cho $\triangle ABC$ đường cao AH, trung tuyến AI. Chứng minh rằng $|AB^2 - AC^2| = 2BC \cdot HI$.

Dạng 3. Điều kiện vuông góc

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0.$$

1. Ví du minh hoa

- **VÍ DỤ 1.** Cho hai véc-tơ \vec{a} và \vec{b} vuông góc với nhau và $|\vec{a}| = 1$, $|\vec{b}| = \sqrt{2}$. Chứng minh hai véc-tơ $(2\vec{a} \vec{b})$ và $(\vec{a} + \vec{b})$ vuông góc với nhau.
- **BÀI 1.** Cho $\triangle ABC$ vuông tại A có AB=c, AC=b. Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ theo b và c.
- **BÀI 2.** Cho hai véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}| = \left| \vec{b} \right| = 1$ và hai véc-tơ $\vec{u} = \frac{2}{5}\vec{a} 3\vec{b}$ và $\vec{v} = \vec{a} + \vec{b}$ vuông góc với nhau. Xác định góc giữa hai véc-tơ \vec{a} và \vec{b} .

Dạng 4. Tập hợp điểm và chứng minh bất đẳng thức

Ta sử dụng các kết quả cơ bản sau:

- a) Cho $A,\,B$ là các điểm cố định, M là điểm di động
 - \bigodot Nếu $\left|\overrightarrow{AM}\right|=k$ với k là số thực dương cho trước thì tập hợp các điểm M là đường tròn tâm A, bán kính R=k.
 - \bigcirc Nếu $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ thì tập hợp các điểm M là đường tròn đường kính AB.
 - igotimes Nếu $\overrightarrow{MA} \cdot \overrightarrow{a} = 0$ với $\overrightarrow{a} \neq \overrightarrow{0}$ cho trước thì tập hợp các điểm M là đường thẳng đi qua A và vuông góc với giá của vecto \overrightarrow{a} .
- b) Các bất đẳng thức vecto
 - $\odot \vec{a}^2 > 0 \ \forall \vec{a}$. Dấu "=" xảy ra khi $\vec{a} = \vec{0}$.
 - \bigcirc $\vec{a} \cdot \vec{b} \le |\vec{a}| \cdot |\vec{b}|$. Dấu "=" xảy ra khi $\vec{a} = k \vec{b}, \ k > 0$.
- **VÍ DU 1.** Cho hai điểm A, B cố định có độ dài bằng a, vecto \vec{a} khác $\vec{0}$. Tìm tập hợp điểm M sao cho

a)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = \frac{3a^2}{4}$$

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MA^2$$

VÍ DU 2. Cho tam giác ABC. Tìm tập hợp điểm M sao cho

$$\left(\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{CB}\right)\overrightarrow{BC} = 0.$$

VÍ DU 3. Cho tam giác ABC. Chứng minh rằng

a)
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$
.

b)
$$\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$$

1. Bài tập tự luận

BAI 1. Cho đoạn thẳng AB và số thực k. Tìm tập hợp điểm M trong mỗi trường hợp sau

a)
$$2MA^2 = \overrightarrow{MA} \cdot \overrightarrow{MB}$$
.

b)
$$MA^2 + 2MB^2 = k, k > 0.$$

c)
$$\overrightarrow{AM} \cdot \overrightarrow{a} = k$$
.

BÀI 2. Cho tứ giác ABCD, I, J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho $\overrightarrow{MA} \cdot \overrightarrow{MB} + \overrightarrow{MC} \cdot \overrightarrow{MD} =$ $\frac{1}{2}IJ^2.$

BÀI 3. Cho tam giác ABC, góc A nhọn, trung tuyến AI. Tìm tập hợp những điểm M di động trong góc BAC sao cho $AB \cdot AH + AC \cdot AK = AI^2$, trong đó H và K theo thứ tự là hình chiếu vuông góc của M lên AB và AC.

BÀI 4. Cho tam giác ABC và k là số thực cho trước. Tìm tập hợp những điểm M sao cho

$$MA^2 - MB^2 = k.$$

BÀI 5. Cho hình vuông ABCD cạnh a và số thực k cho trước. Tìm tập hợp điểm M sao cho

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = k.$$

BÀI 6. Cho tam giác ABC và các số thực x, y, z. Chứng minh rằng

$$xy\cos A + yz\cos B + zx\cos C \le \frac{x^2 + y^2 + z^2}{2}.$$

2. Câu hỏi trắc nghiêm

CÂU 1. Cho \vec{a} , \vec{b} khác $\vec{0}$. Kí hiệu (\vec{a}, \vec{b}) là góc giữa hai véc-tơ \vec{a} và \vec{b} . Khẳng định nào sau đây là đúng?

$$(\overrightarrow{a}, \overrightarrow{b}) = -(\overrightarrow{b}, \overrightarrow{a}).$$

$$\textcircled{\textbf{B}}$$
 Nếu $\left(\overrightarrow{a},\overrightarrow{b}\right)=0^{\circ}$ thì $\overrightarrow{a},\overrightarrow{b}$ có giá trùng nhau.

$$(\vec{a}, -\vec{b}) = -(\vec{a}, \vec{b}).$$

CÂU 2. Cho tam giác ABC vuông tại A và có $\widehat{B} = 60^{\circ}$. Góc giữa \overrightarrow{CA} và \overrightarrow{CB} bằng

CÂU 3. Cho tam giác ABC vuông cân tại A, góc giữa \overrightarrow{AB} và \overrightarrow{BC} là

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 45^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 60^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 120^{\circ}.$$

CÂU 4. Cho \vec{a} và \vec{b} là hai véc-tơ cùng hướng và đều khác $\vec{0}$. Mệnh đề nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}|.$$

$$(\mathbf{B}) \ \overrightarrow{a} \cdot \overrightarrow{b} = 0.$$

$$\overrightarrow{\mathbf{c}} \ \overrightarrow{a} \cdot \overrightarrow{b} = -1.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{a} \cdot \overrightarrow{b} = -|\overrightarrow{a}| \cdot |\overrightarrow{b}|.$$

CÂU 5. Cho tam giác đều ABC cạnh bằng a và H là trung điểm BC. Tính $\overrightarrow{AH} \cdot \overrightarrow{CA}$.

(A) $\frac{3a^2}{4}$.

(B) $\frac{-3a^2}{4}$.

(C) $\frac{3a^2}{2}$.

B
$$\frac{-3a^2}{4}$$
.

$$\frac{3a^2}{2}$$
.

$$\bigcirc \frac{-3a^2}{2}$$
.

CÂU 6. Cho tam giác ABC cân tại A, $\widehat{A}=120^\circ$ và AB=a. Tính $\overrightarrow{BA}\cdot\overrightarrow{CA}$.

(A) $\frac{a^2}{2}$.

(B) $-\frac{a^2}{2}$.

(C) $\frac{a^2\sqrt{3}}{2}$.

B
$$-\frac{a^2}{2}$$
.

$$\bigcirc \frac{a^2\sqrt{3}}{2}.$$

D
$$-\frac{a^2\sqrt{3}}{2}$$
.

CÂU 7. Cho tam giác ABC vuông tại A có $\widehat{B} = 60^{\circ}$, AB = a. Tính $\overrightarrow{AC} \cdot \overrightarrow{CB}$.

(A) $3a^2$.

B
$$-3a^2$$
.

$$\bigcirc$$
 3a.

$$\bigcirc$$
 0.

CÂU 8. Cho hình vuông ABCD cạnh a. Tính tích vô hướng của hai véc-tơ \overrightarrow{AB} và \overrightarrow{AC} .

$$\overrightarrow{A} \overrightarrow{AB} \cdot \overrightarrow{AC} = a\sqrt{2}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AB} \cdot \overrightarrow{AC} = 2a.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = a^2.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} \cdot \overrightarrow{AC} = 2a^2.$$

CÂU 9. Cho hai véc-tơ \vec{a} và \vec{b} khác $\vec{0}$. Xác định góc α giữa hai véc-tơ \vec{a} và \vec{b} khi $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$.

$$(\mathbf{A}) \ \alpha = 180^{\circ}.$$

$$\bigcirc$$
 $\alpha = 0^{\circ}$.

$$\alpha = 90^{\circ}$$
.

$$\alpha = 45^{\circ}$$
.

CÂU 10. Cho tam giác ABC vuông tại A và có góc $\widehat{B} = 50^{\circ}$. Mệnh đề nào sau đây là mệnh đề đúng?

- \triangle Góc giữa hai véc-tơ \overrightarrow{AC} , \overrightarrow{CB} bằng 140°.
- (B) Góc giữa hai véc-tơ \overrightarrow{AB} , \overrightarrow{BC} bằng 50°.
- \bigcirc Góc giữa hai véc-tơ \overrightarrow{BC} , \overrightarrow{AC} bằng 90°.
- \bigcirc Góc giữa hai véc-tơ \overrightarrow{AB} , \overrightarrow{CB} bằng 130°.

CÂU 11. Tam giác ABC vuông ở A và có BC = 2AC. Tính $\cos(\overrightarrow{AC}, \overrightarrow{CB})$.

$$(\overrightarrow{A} \cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = \frac{1}{2}.$$

$$(\mathbf{B}) \cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = -\frac{1}{2}.$$

$$(\overrightarrow{C})\cos(\overrightarrow{AC},\overrightarrow{CB}) = \frac{\sqrt{3}}{2}.$$

$$(\mathbf{B}) \cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = -\frac{1}{2}. \qquad (\mathbf{C}) \cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = \frac{\sqrt{3}}{2}. \qquad (\mathbf{D}) \cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = -\frac{\sqrt{3}}{2}.$$

CÂU 12.

Cho tam giác ABC như hình vẽ. Mênh đề nào sau đây là đúng?

 $(\mathbf{A}) (BC, AB) = 40^{\circ}.$

(B) $(BC, BA) = 140^{\circ}$.

(C) $(\overrightarrow{AC}, \overrightarrow{CB}) = 80^{\circ}$.

 $(\mathbf{D})(\overrightarrow{AC},\overrightarrow{BA})=120^{\circ}.$

CÂU 13. Cho hình vuông ABCD, tính $\cos(AB, CA)$.

 $\bigcirc A \frac{1}{2}$.

B) $-\frac{1}{2}$.

 \bigcirc $\frac{\sqrt{2}}{2}$.

CÂU 14. Cho tam giác đều ABC. Tính $P = \cos\left(\overrightarrow{AB}, \overrightarrow{BC}\right) + \cos\left(\overrightarrow{BC}, \overrightarrow{CA}\right) + \cos\left(\overrightarrow{CA}, \overrightarrow{AB}\right)$

- **A** $P = \frac{3\sqrt{3}}{2}$.
- **B** $P = \frac{3}{2}$.
- $P = -\frac{3}{2}$
- **D** $P = -\frac{3\sqrt{3}}{2}$.

CÂU 15. Cho hình vuông ABCD cạnh a. Tính $(\overrightarrow{AB} + \overrightarrow{AD})$ $(\overrightarrow{BC} + \overrightarrow{BD})$.

 \bigcirc $-2a^2$.

(B) a^2 .

 $(\mathbf{C}) 2a^2$.

CÂU 16. Cho $\triangle ABC$ đều cạnh bằng 3. Trên các cạnh AB, AC lần lượt lấy các điểm M, N sao cho 2AM = MB, NA = 2NC. Giá trị của tích vô hướng $B\dot{N}\cdot C\dot{M}$ là

CÂU 17. Cho tam giác ABC vuông tại A có AB=a, BC=2a. Tính $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC}$ theo a.

 $(\mathbf{A}) \ \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -a\sqrt{3}.$

(B) $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -3a^2$

 $\overrightarrow{\mathbf{C}} \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = a\sqrt{3}.$

 $(\mathbf{D}) \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = 3a^2.$

CÂU 18. Cho tam giác ABC vuông tại A, có số đo góc B là 60° và AB = a. Kết quả nào sau đây là \mathbf{sai} ?

- $(\mathbf{A}) \ \overrightarrow{AB} \cdot \overrightarrow{AC} = 0.$
- **(B)** $\overrightarrow{CA} \cdot \overrightarrow{CB} = 3a^2$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} \cdot \overrightarrow{BC} = -a^2$.
- $(\mathbf{D}) \, \overrightarrow{AC} \cdot \overrightarrow{CB} = -3\sqrt{2}a^2$

CÂU 19. Cho M là trung điểm AB, tìm mệnh đề sai.

 \overrightarrow{A} $\overrightarrow{MA} \cdot \overrightarrow{AB} = -MA \cdot AB$.

 \overrightarrow{B} $\overrightarrow{MA} \cdot \overrightarrow{MB} = -MA \cdot MB$.

 $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AM} \cdot \overrightarrow{AB} = AM \cdot AB$.

 $\overrightarrow{\mathbf{D}}$ $\overrightarrow{MA} \cdot \overrightarrow{MB} = MA \cdot MB$.

CÂU 20. Cho 2 véc-tơ \vec{a} và \vec{b} thỏa $|\vec{a} + \vec{b}| = 2$ và có độ lớn bằng 1. Hãy tính $(3\vec{a} - 4\vec{b})(2\vec{a} + 5\vec{b})$.

(B) 5.

CÂU 21. Cho hình thang vuông ABCD có đường cao AD = 3a. Tính $\overrightarrow{DA} \cdot \overrightarrow{BC}$.

(B) $15a^2$.

(**D**) $9a^2$.

CÂU 22. Cho tam giác ABC có BC = a, CA = b, AB = c. Gọi M là trung điểm cạnh BC. Tính $\overrightarrow{AM} \cdot \overrightarrow{BC}$.

 $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{b^2 - c^2}{2}.$ $\overrightarrow{C} \overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{c^2 + b^2 + a^2}{3}.$

CÂU 23. Cho hình vuông ABCD cạnh a. Tính $P = (\overrightarrow{AB} + \overrightarrow{AC})(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA})$.

- **B** $P = 2a^2$.
- $P = a^2$.
- $P = -2a^2$.

CÂU 24. Cho hình vuông ABCD cạnh a. Gọi E là điểm đối xứng của D qua C. Tính $\overrightarrow{AE} \cdot \overrightarrow{AB}$

- \overrightarrow{A} $\overrightarrow{AE} \cdot \overrightarrow{AB} = 2a^2$.
- **(B)** $\overrightarrow{AE} \cdot \overrightarrow{AB} = \sqrt{3}a^2$.
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AE} \cdot \overrightarrow{AB} = \sqrt{5}a^2$.
- $\overrightarrow{AE} \cdot \overrightarrow{AB} = 5a^2$.

CÂU 25. Biết \vec{a} , $\vec{b} \neq \vec{0}$ và $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$. Khẳng định nào sau đây đúng?

- $(\mathbf{A}) \vec{a}$ và \vec{b} cùng hướng.
- (B) \vec{a} và \vec{b} nằm trên hai dường thẳng hợp với nhau một góc 80° .
- $(\mathbf{c}) \vec{a}$ và \vec{b} ngược hướng.
- $(\mathbf{D}) \vec{a}$ và \vec{b} nằm trên hai dường thẳng hợp với nhau một góc 60° .

CÂU 26. Cho tam giác ABC vuông tại A, AB = a, $AC = a\sqrt{3}$. Gọi M là trung điểm của BC. Tính cô-sin góc giữa hai véc-to MA và BC.

- $(\mathbf{A})\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = \frac{1}{2}.$

- $(\mathbf{B})\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = -\frac{1}{2}.$ $(\mathbf{C})\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = \frac{\sqrt{3}}{2}.$ $(\mathbf{D})\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = -\frac{\sqrt{3}}{2}.$

A 180°.

CÂU 27. Cho tam giác ABC. Tính tổng $(\overrightarrow{AB}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{CA}) + (\overrightarrow{CA}, \overrightarrow{AB})$. **B** 360°.

D 120°.

(A) 360°.	B) 180°.	© 80°.	(D) 160°.
CÂU 29. Cho hình vuông $ABCD$ tâm O . Tính tổng $(\overrightarrow{AB}, \overrightarrow{DC}) + (\overrightarrow{AD}, \overrightarrow{CB}) + (\overrightarrow{CO}, \overrightarrow{DC})$.			
A 45°.	B 405°.	© 315°.	D 225°.
CÂU 30. Cho tam giác ABC cân tại A , góc $\hat{A}=20^{\circ}$. Gọi BM là đường phân giác trong của góc \widehat{ABC} . Tính $\cos\left(\overrightarrow{BM},\overrightarrow{MC}\right)$.			
\bigcirc $\frac{1}{2}$.		\bigcirc $\frac{\sqrt{2}}{2}$.	\bigcirc $\frac{-1}{2}$.
CÂU 31. Cho hình thang vuông $ABCD$, vuông tại A và D, biết $AB = AD = a, CD = 2a$. Tính $\cos\left(\overrightarrow{BD}, \overrightarrow{CB}\right)$.			
\bigcirc $\frac{\sqrt{2}}{2}$.	B $\frac{-1}{2}$.	© 0.	
CÂU 32. Cho hình thoi $ABCD$ cạnh a , góc $\widehat{ABC}=120^\circ$. Gọi G là trọng tâm của tam giác BCD và α là góc giữa hai đường thẳng DA và BG . Tính $\sin\alpha$.			
$\mathbf{\hat{A}}\sin\alpha=\frac{1}{2}.$	$\mathbf{B} \sin \alpha = \frac{\sqrt{3}}{2}.$	$\mathbf{c} \sin \alpha = \frac{\sqrt{2}}{2}.$	$\bigcirc \!$
CÂU 33. Cho tạm giác ABC có các cạnh bằng a, b, c . Tính tích vô hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$ theo a, b, c .			
$\overrightarrow{A} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(a^2 + b^2 - c^2)$	().	$\overrightarrow{B} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(a^2 + c^2 - b^2)$	
$\overrightarrow{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 + a^2)$).	$\overrightarrow{\mathbf{D}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 - a^2)$	2).
CÂU 34. Cho nửa đường tròn tháy cung \overrightarrow{AM} và \overrightarrow{BN} cắt nhau tháy $\overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{AB}$	ại I. Khẳng định nào sau đây	là khẳng định đúng?	
		$\bigcirc P = r^2.$	
CÂU 36. Cho hình vuông $ABCD$ có cạnh là a . Giá trị của biểu thức $\left(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA}\right) \left(\overrightarrow{AC} - \overrightarrow{AB}\right)$ là			
A 0.	B $2a^2$.	\bigcirc $-2a^2$.	
CÂU 37. Cho hình vuông $ABCD$ cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho $AM = \frac{AC}{4}$. Gọi N là trung			
điểm của đoạn thẳng DC . Tính $\overrightarrow{MB} \cdot \overrightarrow{MN} = -4$.			
CÂU 38. Cho hình thoi $ABCD$ $\overrightarrow{A}\overrightarrow{AB} \cdot \overrightarrow{AC} = 24.$	có $\overrightarrow{AC} = 8$. Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$. $\overrightarrow{B} \overrightarrow{AB} \cdot \overrightarrow{AC} = 26$.	$\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 28$.	$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} \cdot \overrightarrow{AC} = 32.$
CÂU 39. Cho hình chữ nhật \overrightarrow{AR} $\overrightarrow{BK} \cdot \overrightarrow{AC} = 0$.	$BCD \text{ có } AB = a \text{ và } AD = a\sqrt{2}$ $\overrightarrow{B} \overrightarrow{BK} \cdot \overrightarrow{AC} = -a^2\sqrt{2}.$	$\overline{2}$. Gọi K là trung điểm của cại \overrightarrow{C} $\overrightarrow{BK} \cdot \overrightarrow{AC} = a^2 \sqrt{2}$.	$ \begin{array}{ccc} \text{nh } AD. \text{ Tính } \overrightarrow{BK} \cdot \overrightarrow{AC}. \\ \hline \mathbf{D} \overrightarrow{BK} \cdot \overrightarrow{AC} = 2a^2. \end{array} $
CÂU 40. Cho tứ giác $ABCD$ có hai đường chéo vuông góc với nhau tại M và $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$. Gọi P là trung điểm của AD . Góc giữa hai đường thẳng MP và BC là			
A 90°.	B 60°.	C 45°.	D 30°.
CÂU 41. Cho hình vuông $ABCD$ cạnh a . Gọi M và N lần lượt là trung điểm của BC và CD . Tính $\cos\left(\overrightarrow{AM},\overrightarrow{NA}\right)$.			
$\mathbf{A} \frac{4}{5}$.	B $-\frac{4}{5}$.	\bigcirc $\frac{3}{5}$.	\bigcirc $-\frac{3}{5}$.
CÂU 42. Cho hình vuông <i>ABC</i>	$^{\prime}D$. Gọi M là trung điểm của c \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 30°.	canh BC . Tính góc giữa hai vé	c-to \overrightarrow{AM} và $\overrightarrow{DA} + \overrightarrow{DB}$.

CÂU 43. Cho hình vuông ABCD. Trên cạnh AD, AB lần lượt lấy hai điểm E, F sao cho AE = AF. Gọi H là hình chiếu

vuông góc của A lên đường thẳng BE. Tính $\cos\left(\overrightarrow{FH},\overrightarrow{CH}\right)$.

 \bigcirc 0.

CÂU 28. Tam giác ABC có góc A bằng 100° và có trực tâm H. Tính tổng $\left(\overrightarrow{HA},\overrightarrow{HB}\right) + \left(\overrightarrow{HB},\overrightarrow{HC}\right) + \left(\overrightarrow{HC},\overrightarrow{HA}\right)$.

CÂU 44. Cho hai điểm A và B, O là trung điểm của AB và M là điểm tùy ý, biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = OM^2 + kOA^2$. Khẳng đinh nào sau đây đúng?

(A)
$$k = 1$$
.

B)
$$k = -1$$
.

$$(\mathbf{c}) k = 2.$$

$$(\mathbf{D}) k = -2.$$

CÂU 45. Cho I là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MI} \cdot \overrightarrow{AB} = k (MB^2 - MA^2)$. Khẳng định nào sau đây là

$$(c)$$
 $k = -1.$

CÂU 46. Cho I là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 + kAB^2$. Khẳng định nào sau đây là đúng?

B
$$k = \frac{1}{2}$$
.

$$k = -1.$$

CÂU 47. Khẳng định nào sau đây là đúng?

$$(\mathbf{A})(\vec{a}\cdot\vec{b})\vec{c} = \vec{a}(\vec{b}\cdot\vec{c}).$$

$$\cdot \overrightarrow{c}$$
).

$$(\mathbf{B}) (\vec{a} \cdot \vec{b})^2 = \vec{a}^2 \cdot \vec{b}^2.$$

$$\overrightarrow{c}$$
 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \sin(\overrightarrow{a}, \overrightarrow{b})$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{a} \cdot (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a} \cdot \overrightarrow{c}.$$

CÂU 48. Cho hai véc-tơ \vec{a} và \vec{b} . Đẳng thức nào sau đây sai?

$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{4} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

$$(\mathbf{B}) \ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

$$\overrightarrow{\mathbf{c}} \ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} \right|^2 - \left| \overrightarrow{b} \right|^2 \right).$$

$$\overrightarrow{b} \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left(|\overrightarrow{a}|^2 + \left| \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

CÂU 49. Cho hình thoi ABCD có cạnh bằng a và $\widehat{A} = 60^{\circ}$, điểm M tùy ý. Biết rằng $MA^2 - MB^2 + MC^2 - MD^2 = ka^2$. Khẳng định nào sau đây đúng?

$$(\mathbf{B}) k = 2.$$

$$(c)$$
 $k=4$.

CÂU 50. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo AC và BD, M là điểm tuỳ ý. Biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MC} = MO^2 + kBD^2$. Khẳng định nào sau đây đúng?

$$k = -\frac{1}{2}$$

CÂU 51. Cho tam giác ABC, gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{2}BC^2$$

$$\overrightarrow{A} \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{2}BC^2.$$

$$\overrightarrow{B} \overrightarrow{MH} \cdot \overrightarrow{MA} = -\frac{1}{4}BC^2.$$

$$\overrightarrow{C} \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{4}BC^2.$$

$$\overrightarrow{D} \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{5}BC^2.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{4}BC^2$$

CÂU 52. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều ABC cho trước. Biết rằng $MA^2 + 2\overrightarrow{MB} \cdot \overrightarrow{MC} = kR^2$. Khẳng định nào sau đây đúng?

$$(\mathbf{A}) k = 2.$$

$$(\mathbf{B}) k = 3.$$

$$(\mathbf{C}) k = 4.$$

CÂU 53. Cho \vec{a} , \vec{b} có $(\vec{a} + 2\vec{b})$ vuông góc với véc-tơ $(5\vec{a} - 4\vec{b})$ và $|\vec{a}| = |\vec{b}|$. Khi đó

$$(\mathbf{A})\cos\left(\overrightarrow{a},\overrightarrow{b}\right) = \frac{\sqrt{2}}{2}.$$

$$\mathbf{B}\cos\left(\vec{a},\vec{b}\right) = 90^{\circ}.$$

$$(\mathbf{A}) \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{\sqrt{2}}{2}.$$

$$(\mathbf{B}) \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = 90^{\circ}.$$

$$(\mathbf{C}) \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{\sqrt{3}}{2}.$$

$$(\mathbf{D}) \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{1}{2}.$$

CÂU 54. Cho tam giác ABC. Tập hợp điểm M thỏa mãn $\overrightarrow{MA} \cdot \overrightarrow{BC} = 0$ là

(A) Đường trung trực đoạn BC.

- (**B**) Đường tròn có tâm A.
- (**C**) Đường thẳng đi qua A và vuông góc với BC.
- (**D**) Đường thẳng đi qua A song song với BC.

CAU 55. Cho đoạn thẳng AB. Tập hợp điểm M thỏa mãn $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ là

(A) Đường trung trực đoạn AB.

- (B) Đường tròn.
- (**C**) Đường thẳng đi qua A và vuông góc với AB.
- (\mathbf{D}) Đường thẳng đi qua B và vuông góc với AB.

CÂU 56. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overrightarrow{MA} - \overrightarrow{MB})(2\overrightarrow{MB} - \overrightarrow{MC}) = 0$ là

(A) Đường thẳng vuông góc với AB.

(**B**) Đường thẳng vuông góc với AC.

 (\mathbf{C}) Đường thẳng vuông góc với BC.

(D) Đường tròn.

CÂU 57. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overrightarrow{MA} + 2\overrightarrow{MB})$ $(\overrightarrow{MB} + 2\overrightarrow{MC}) = 0$ là

(A) Đường thẳng vuông góc với AB.

(B) Đoạn thẳng.

(**C**) Đường thẳng song song với AB.

(D) Đường tròn.

CÂU 58. Cho tam giác ABC. Tập hợp các điểm M thỏa $2MA^2 + \overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MA} \cdot \overrightarrow{MC}$ là

(A) Đường thẳng.

 (\mathbf{B}) Đường tròn đường kính BC.

(**C**) Đường tròn đi qua A.

 (\mathbf{D}) Đường tròn đi qua B.

 $\hat{\textbf{CAU}}$ 59. Cho hình vuông ABCD cạnh a. TÌm tập hợp các điểm M thỏa mãn

$$\left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right)\left(\overrightarrow{MC} - \overrightarrow{MB}\right) = 3a^2$$

 ${\color{red} {\color{blue} {\bf A}}}$ Đường thẳng vuông góc với BC.

lacksquare Đường thẳng song song với BC.

 \bigcirc Đường tròn đường kính AB.

 \bigcirc Đường tròn đường kính AC.

CÂU 60. Cho tam giác ABC. Giá trị lớn nhất của biểu thức $P=2\cos A+6\cos B+3\cos C$ bằng

A 11.

B 10.

C 7.

D 6.

LỜI GIẢI CHI TIẾT

Bài 1. CÁC KHÁI NIỆM MỞ ĐẦU

A. TÓM TẮT LÍ THUYẾT

1. Khái niệm vectơ

7 ĐịNH NGHĨA 1.1. vectơ là một đoạn thẳng có hướng.

vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là \overrightarrow{AB} , đọc là "vectơ AB". Để vẽ vectơ \overrightarrow{AB} ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu mút B (Hình 1). Đối với vectơ AB, ta gọi

- \odot Đường thẳng d đi qua hai điểm A và B là giá của vecto AB (Hình 2).
- \odot Độ dài đoạn thẳng AB là độ dài của vect
ơAB, kí hiệu là $\left|\overrightarrow{AB}\right|$.

VÍ DỤ 4.

Cho hai điểm phân biệt H, K như hình bên. Viết hai vectơ mà điểm đầu và điểm cuối là H hoặc K.

🗩 Lời giải.

Hai vectơ thỏa mãn yêu cầu đề bài là \overrightarrow{HK} và \overrightarrow{KH} .

VÍ DỤ 5.

Tính độ dài của các vectơ \overrightarrow{AB} , \overrightarrow{CD} và \overrightarrow{MN} ở Hình 3, biết rằng độ dài cạnh của ô vuông bằng 1 cm.

Hình 3

🗩 Lời giải.

$$\begin{split} \left| \overrightarrow{AB} \right| &= AB = 4 \text{ cm}, \left| \overrightarrow{CD} \right| = CD = 4 \text{ cm}, \\ \left| \overrightarrow{MN} \right| &= MN = \sqrt{3^2 + 4^2} = 5 \text{ cm}. \end{split}$$

2. Hai vectơ cùng phương, cùng hướng, bằng nhau

🧗 ĐỊNH NGHĨA 1.2. Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

 ${f Nhận}$ ${f x\acute{e}t}$: Nếu hai vectơ cùng phương thì hoặc chúng cùng hướng hoặc chúng ngược hướng.

VÍ DỤ 6.

Trong Hình 4, tìm vectơ cùng hướng với vectơ \overrightarrow{AB} ; ngược hướng với vectơ \overrightarrow{AB} .

🗩 Lời giải.

vecto \overrightarrow{CD} cùng hướng với vecto \overrightarrow{AB} , vecto \overrightarrow{MN} ngược hướng với vecto \overrightarrow{AB} .

Khi không cần chỉ rõ điểm đầu và điểm cuối của vecto, vecto còn được kí hiệu là \vec{a} , \vec{b} , \vec{u} , \vec{v} , ... (Hình 5). Độ dài của vecto \vec{a} được kí hiệu là $|\vec{a}|$.

Nhận xét

- \odot Hai vecto \vec{a} , \vec{b} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu là $\vec{a} = \vec{b}$.
- \odot Khi cho trước vectơ \overrightarrow{a} và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho $\overrightarrow{OA} = \overrightarrow{a}$.

VÍ DỤ 7.

Cho hình bình hành ABCD (Hình 6).

- a) vecto nào bằng vecto \overrightarrow{AB} ?
- b) vecto nào bằng vecto \overrightarrow{AD} ?

🗩 Lời giải.

- a) Vì \overrightarrow{AB} , \overrightarrow{DC} cùng hướng và AB = DC nên $\overrightarrow{DC} = \overrightarrow{AB}$.
- b) Vì \overrightarrow{AD} , \overrightarrow{BC} cùng hướng và AD = BC nên $\overrightarrow{AD} = \overrightarrow{BC}$.

3. vecto không

 \P Định nghĩa 1.4. vectơ không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\overrightarrow{0}$.

Với các điểm bất kì A, B, C ta có $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC}$. vectơ \overrightarrow{AA} nằm trên mọi đường thẳng đi qua A. Ta quy ước $\overrightarrow{0}$ (vectơ không) cùng phương và cùng hướng với mọi vectơ; hơn nữa $|\overrightarrow{0}| = 0$.

Nhận xét: Hai điểm A, B trùng nhau khi và chỉ khi $\overrightarrow{AB} = \overrightarrow{0}$.

B. CÁC DẠNG TOÁN

Dạng 1. Xác định một vectơ, độ dài vectơ

- ❷ vectơ là một đoạn thẳng có hướng, nghĩa là, trong hai điểm mút của đoạn thẳng, đã chỉ rõ điểm đầu, điểm cuối.
- ❷ Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

1. Ví dụ minh hoạ

Từ hai điểm phân biệt của tứ giác ta xác định được hai vectơ khác vectơ không, chẳng hạn từ hai điểm A, B ta xác định được hai vectơ khác vectơ không là \overrightarrow{AB} và \overrightarrow{BA} . Suy ra tứ giác \overrightarrow{ABCD} có 12 vectơ khác vectơ không là \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} , \overrightarrow{CA} , \overrightarrow{AD} , \overrightarrow{DA} , \overrightarrow{BC} , \overrightarrow{CB} , \overrightarrow{BD} , \overrightarrow{DB} , \overrightarrow{DB} , \overrightarrow{DB} .

VÍ DỤ 2. Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài các vectơ \overrightarrow{AB} , \overrightarrow{BD} , \overrightarrow{DB} .

3′

Vì cạnh của hình vuông ABCD có độ dài bằng 1 nên $|\overrightarrow{AB}|=1$ và đường chéo của hình vuông có độ dài bằng $\sqrt{2}$.

Suy ra $|\overrightarrow{BD}| = |\overrightarrow{DB}| = BD = \sqrt{2}$.

VÍ DỤ 3. Cho tam giác đều ABC có cạnh bằng a. Gọi M là trung điểm của BC tính độ dài vectơ \overrightarrow{AM} . \bigcirc Lời giải.

Vì ABC là tam giác đều nên $AM = \frac{a\sqrt{3}}{2} \Rightarrow |\overrightarrow{AM}| = AM = \frac{a\sqrt{3}}{2}.$

2. Bài tập tự luận

BÀI 1. Cho lục giác đều ABCDEF có cạnh bằng a.

- a) Có bao nhiều vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của ngũ giác?
- b) Tính độ dài các vecto \overrightarrow{AD}

🗩 Lời giải.

a) Từ hai điểm phân biệt của tứ giác ta xác định được hai vectơ khác vectơ không, chẳng hạn từ hai điểm $A,\,B$ ta xác định được hai vectơ khác vectơ không là \overrightarrow{AB} và \overrightarrow{BA} .

Lục giác đều ABCDEF có 15 cặp điểm phân biệt do đó có 30 vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của ngũ giác.

b) Ta có $|\overrightarrow{AD}| = AD = 2AB = 2a$.

BÀI 2. Cho tam giác ABC vuông tại A có BC=2a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} . \bigcirc Lời giải.

Độ dài vecto \overrightarrow{AM} là $|\overrightarrow{AM}| = AM = \frac{BC}{2} = a$.

Dạng 2. Hai vectơ cùng phương, cùng hướng và bằng nhau

Sử dụng các định nghĩa

- ❷ Hai vectơ cùng phương nếu chúng có giá song song hoặc trùng nhau.
- ❷ Hai vecto cùng phương thì cùng hướng hoặc ngược hướng.
- ❷ Hai vectơ bằng nhau nếu chúng cùng độ dài và cùng hướng.

1. Ví dụ minh hoạ

VÍ DU 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

🗩 Lời giải.

Dựa vào hình vẽ ta thấy

- \odot Các vecto cùng phương là \overrightarrow{a} , \overrightarrow{b} và \overrightarrow{c} .
- \odot Các cặp vectơ ngược hướng là \overrightarrow{a} với \overrightarrow{c} và \overrightarrow{b} với \overrightarrow{c} .
- \bigcirc Các cặp vectơ bằng nhau là \overrightarrow{a} với \overrightarrow{b} .

VÍ DỤ 2. Cho hình bình hành ABCD có tâm là O . Hãy tìm các cặp vectơ khác $\overrightarrow{0}$, bằng nhau và

- a) có điểm đầu và điểm cuối trong các điểm A , B , C và D .
- b) có điểm đầu là O hoặc điểm cuối là O.

🗩 Lời giải.

- a) Các cặp vectơ khác $\overrightarrow{0}$, bằng nhau và có điểm đầu và điểm cuối trong các điểm A, B, C và D: \overrightarrow{AB} và \overrightarrow{DC} , \overrightarrow{BA} và \overrightarrow{CD} , \overrightarrow{BC} và \overrightarrow{AD} , \overrightarrow{CB} và \overrightarrow{DA} .
- b) Các cặp vectơ khác $\overrightarrow{0}$, bằng nhau và có điểm đầu là O hoặc điểm cuối là O: \overrightarrow{OA} và \overrightarrow{CO} , \overrightarrow{AO} và \overrightarrow{OC} , \overrightarrow{OB} và \overrightarrow{DO} , \overrightarrow{BO} và \overrightarrow{OD} .

2. Bài tập tự luận

BÀI 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

🗩 Lời giải.

Dựa vào hình vẽ ta thấy

- $\ensuremath{ \bigodot}$ Các vecto cùng phương là $\overrightarrow{a}, \ \overrightarrow{b}$ và $\overrightarrow{c}.$
- $\ensuremath{ \bigodot}$ Các cặp vectơ bằng nhau là \overrightarrow{a} với \overrightarrow{b} .

BÀI 2. Cho tam giác đều ABC, hãy chỉ ra mối quan hệ về độ dài, phương và hướng giữa cặp vecto \overrightarrow{BA} và \overrightarrow{CA} . Hai vecto có bằng nhau không?

D Lời giải.

Dựa vào hình vẽ ta thấy hai vectơ \overrightarrow{BA} và \overrightarrow{CA} cùng độ dài nhưng không cùng phương nên cũng không cùng hướng. Do đó, hai vectơ \overrightarrow{BA} và \overrightarrow{CA} không bằng nhau.

BÀI 3.

Cho hình lục giác đều ABCDEF có tâm O.

- a) Hãy tìm các vectơ khác $\overrightarrow{0}$ và bằng với \overrightarrow{AB} .
- b) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là B.
- c) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là C.

🗩 Lời giải.

- a) các vecto khác $\overrightarrow{0}$ và bằng với vecto \overrightarrow{AB} là \overrightarrow{FO} , \overrightarrow{OC} , \overrightarrow{ED} .
- b) Vì ABDE là tứ giác có hai đường chéo cắt nhau tại mỗi đường nên là hình bình hành. Suy ra, vectơ bằng với \overrightarrow{AE} có điểm đầu B là \overrightarrow{BD} .
- c) Giả sử \overrightarrow{CG} là vectơ cần dựng và vì $\overrightarrow{CG} = \overrightarrow{AE}$ nên \overrightarrow{AEGC} là hình bình hành.

Vây điểm G cần dựng là đỉnh còn lai của hình bình hành AEGC.

BÀI 4. Chứng minh ba điểm A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB}, \overrightarrow{AC}$ cùng phương. \bigcirc Lời giải.

- \odot Giả sử A, B, C thẳng hàng. Khi đó, chúng cùng nằm trên một đường thẳng. Suy ra, \overrightarrow{AB} , \overrightarrow{AC} có giá trùng nhau. Vậy \overrightarrow{AB} , \overrightarrow{AC} cùng phương.
- \bigcirc Giả sử \overrightarrow{AB} , \overrightarrow{AC} cùng phương. Khi đó, \overrightarrow{AB} , \overrightarrow{AC} có giá song song hoặc trùng nhau. Mặt khác, giá của \overrightarrow{AB} , \overrightarrow{AC} cùng đi qua điểm A nên chúng trùng nhau. Vậy A, B, C thẳng hàng.

C. CÂU HỎI TRẮC NGHIỆM

CÂU 1. Chọn khẳng định đúng trong các khẳng định sau.

- (A) vecto là một đường thẳng có hướng.
- (B) vectơ là một đoạn thẳng.
- (C) vecto là một đoạn thẳng có hướng.
- (D) vectơ là một đoạn thẳng không phân biệt điểm đầu và điểm cuối.

D Lời giải.

vecto là một đoạn thẳng có hướng.

Chọn đáp án (C)

CÂU 2. Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

A 2.

(B) 3.

(c) 4.

D 6.

🗩 Lời giải.

Có thể xác định được 6 vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C là các vectơ $\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}$.

Chọn đáp án D

CÂU 3. Cho hai điểm phân biệt A, B. Số vectơ (khác $\overrightarrow{0}$) có điểm đầu và điểm cuối lấy từ các điểm A, B là

(A) 2.

B 6.

(C) 13.

D 12.

D Lời giải.

Có 2 vectơ có điểm đầu và điểm cuối lấy từ các điểm A, B là \overrightarrow{AB} và \overrightarrow{BA} .

Chọn đáp án A

CÂU 4. Cho tam giác đều ABC. Mệnh đề nào sau đây sai?

 $\overrightarrow{A} \overrightarrow{AB} = \overrightarrow{BC}.$

 $|\overrightarrow{AB}| = |\overrightarrow{BC}|.$

 $\overrightarrow{\mathbf{B}}) \overrightarrow{AC} \neq \overrightarrow{BC}.$

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{AC} không cùng phương \overrightarrow{BC} .

© Lời giải.

Có \overrightarrow{AB} và \overrightarrow{BC} là 2 vectơ không cùng phương nên $\overrightarrow{AC} \neq \overrightarrow{BC}$.

Chọn đáp án (A)

CÂU 5. Khẳng định nào dưới đây là sai?

(A) Mỗi vectơ đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

 \bigcirc Độ dài của vecto \overrightarrow{a} được kí hiệu là $|\overrightarrow{a}|$.

 $|\overrightarrow{PQ}| = \overrightarrow{PQ}.$

 $\left| \overrightarrow{AB} \right| = AB = BA.$

🗩 Lời giải.

 $\left|\overrightarrow{PQ}\right|$ khác \overrightarrow{PQ} do vectơ là một đoạn thẳng định hướng còn độ dài vectơ là độ dài đoạn thẳng nối điểm đầu và điểm cuối vectơ đó.

Chọn đáp án \bigcirc Chọc đáp án \bigcirc Chọc tam giác ABC. Gọi M,N lần lượt là trung điểm các cạnh AB, AC. Mệnh đề nào sau đây \mathbf{sai} ?

 $\overrightarrow{\mathbf{B}} \overrightarrow{MN} = \frac{1}{2} \overrightarrow{BC}.$

 $\overrightarrow{\mathbf{C}} \ \overrightarrow{AN} = \overrightarrow{NC}.$

 $\boxed{\mathbf{D}} \left| \overrightarrow{MA} \right| = \left| \overrightarrow{MB} \right|.$

♥ Lời giải.

• $\overrightarrow{AN} = \overrightarrow{NC}$ đúng vì \overrightarrow{AN} và \overrightarrow{NC} cùng hướng và cùng độ dài.

• $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{BC}$ đúng vì MN là đường trung bình của ΔABC nên $MN = \frac{1}{2}BC$ và \overrightarrow{MN} , \overrightarrow{BC} cùng hướng.

• $|\overrightarrow{MA}| = |\overrightarrow{MB}|$ đúng vì M là trung điểm AB nên MA = MB.

• $\overrightarrow{BC} = 2\overrightarrow{NM}$ sai vì mệnh đề đúng tương ứng là $\overrightarrow{BC} = 2\overrightarrow{MN}$.

Chọn đáp án (A)

CÂU 7. Cho hai vectơ không cùng phương \vec{a} và \vec{b} . Khẳng định nào sau đây đúng?

lack A Không có vectơ nào cùng phương với cả hai vect
ơ \overrightarrow{a} và \overrightarrow{b} .

f B Có vô số vectơ cùng phương với cả hai vectơ $\vec a$ và $\vec b$.

 $lackbox{\textbf{C}}$ Có một vectơ cùng phương với cả hai vect
ơ \overrightarrow{a} và \overrightarrow{b} .

 $\stackrel{\frown}{\mathbb{D}}$ Có hai vectơ cùng phương với cả hai vect
ơ \overrightarrow{a} và \overrightarrow{b} .

p Lời giải.

Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a} và \overrightarrow{b} đó là vectơ không. Chon đáp án (\overrightarrow{C})

CÂU 8. Cho 3 điểm phân biệt A, B, C. Khi đó khẳng định nào sau đây **sai**?

- (\mathbf{A}) A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{AC} cùng phương.
- $(\mathbf{B}) A, B, C$ thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{BC} cùng phương.
- $(\mathbf{C}) A, B, C$ thẳng hàng khi và chỉ khi \overrightarrow{AC} và \overrightarrow{BC} cùng phương.
- $(\mathbf{D}) A, B, C$ thẳng hàng khi và chỉ khi AC = BC.

🗩 Lời giải.

 $A,\,B,\,C$ thẳng hàng khi và chỉ khi các vect
ơ $\overrightarrow{AB},\,\overrightarrow{AC},\,\overrightarrow{BC}$ đôi một cùng phương. Chọn đáp án $\stackrel{\frown}{(D)}$

CÂU 9. Mệnh đề nào sau đây đúng?

- A Có duy nhất một vectơ cùng phương với mọi vectơ.
- B Có ít nhất hai vectơ cùng phương với mọi vectơ.
- Có vô số vectơ cùng phương với mọi vectơ.
- hông có vectơ nào cùng phương với mọi vectơ.

D Lời giải.

Có duy nhất một vectơ cùng phương với mọi vect
ơ đó là vectơ không. Chọn đáp án $\widehat{\mathbb{A}}$

CÂU 10. Khẳng định nào sau đây đúng?

- (A) Hai vecto cùng phương với một vecto thứ ba thì cùng phương.
- \blacksquare Hai vecto cùng phương với một vecto thứ ba khác $\overrightarrow{0}$ thì cùng phương.
- C vecto không là vecto không có giá.
- Diều kiện đủ để hai vectơ bằng nhau là chúng có độ dài bằng nhau.

D Lời giải.

Hai vectơ cùng phương với một vectơ thứ ba khác $\overrightarrow{0}$ thì cùng phương. Chọn đáp án (\overrightarrow{B})

CÂU 11. Cho lục giác đều ABCDEF tâm O. Số các vectơ khác $\overrightarrow{0}$ cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác bằng

(A) 6.

B 7.

(c) 8.

D 4.

🗩 Lời giải.

Số các vectơ khác $\overrightarrow{0}$ cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{FC} , \overrightarrow{CF} , \overrightarrow{ED} , \overrightarrow{DE} .

Chọn đáp án (A)

CÂU 12. Cho ba điểm A, B, C phân biệt. Khi đó

- $\stackrel{\frown}{\mathbf{A}}$ Điều kiện cần và đủ để A, B, C thẳng hàng là \overrightarrow{AC} cùng phương với \overrightarrow{AB} .
- $\stackrel{ullet}{\blacksquare}$ Điều kiện đủ để $A,\,B,\,C$ thẳng hàng là \overrightarrow{CA} cùng phương với \overrightarrow{AB} .
- \bigcirc Điều kiện cần để A, B, C thẳng hàng là \overrightarrow{CA} cùng phương với \overrightarrow{AB} .
- \bigcirc Diều kiện cần và đủ để A, B, C thẳng hàng là $\overrightarrow{AB} = \overrightarrow{AC}$.

D Lời giải.

Điều kiện cần và đủ để A, B, C thẳng hàng là \overrightarrow{AC} cùng phương với \overrightarrow{AB} . Chon đáp án (A)

CÂU 13. Cho vecto $\overrightarrow{MN} \neq \overrightarrow{0}$. Số vecto cùng hướng với vecto \overrightarrow{MN} là

A vô số.

B 1.

C 3.

D 2.

🗩 Lời giải.

Có vô số vectơ cùng hướng với một vectơ khác vectơ-không cho trước. Chon đáp án $\stackrel{\frown}{(A)}$

CÂU 14. Gọi C là trung điểm của đoạn AB. Hãy chọn khẳng định đúng trong các khẳng định sau.

 $\overrightarrow{A} \overrightarrow{CA} = \overrightarrow{CB}.$

 $\overrightarrow{\mathbf{B}}$ \overrightarrow{AB} và \overrightarrow{AC} cùng hướng.

 $\overrightarrow{\mathbf{C}}$ \overrightarrow{AB} và \overrightarrow{CB} ngược hướng.

 $|\overrightarrow{AB}| = \overrightarrow{CB}.$

🗩 Lời giải.

Có \overrightarrow{AB} và \overrightarrow{AC} cùng hướng.

CB

Chọn đáp án (B)

 \hat{CAU} 15. Cho ba điểm M, N, P thẳng hàng, trong đó điểm N nằm giữa hai điểm M và P. Khi đó các cặp vectơ nào cùng hướng?

- $(A) \overrightarrow{MP}$ và \overrightarrow{PN} .
- $\overrightarrow{\mathbf{B}}$ \overrightarrow{MN} và \overrightarrow{PN} .
- $\overrightarrow{\mathbf{C}}$ \overrightarrow{NM} và \overrightarrow{NP} .
- $(\mathbf{D}) \overrightarrow{MN} \text{ và } \overrightarrow{MP}.$

🗩 Lời giải.

Cặp vecto \overrightarrow{MN} và \overrightarrow{MP} là cùng hướng.

Chọn đáp án (D)

CÂU 16. Phát biểu nào sau đây đúng?

- (A) Hai vecto không bằng nhau thì độ dài của chúng không bằng nhau.
- (B) Hai vecto không bằng nhau thì độ dài của chúng không cùng phương.
- (C) Hai vecto bằng nhau thì có giá trùng nhau hoặc song song nhau.
- (D) Hai vecto có độ dài không bằng nhau thì không cùng hướng.
- Dèi giải.

Hai vectơ bằng nhau thì cùng phương nên chúng có giá trùng nhau hoặc song song nhau.

Chọn đáp án (C) **CÂU 17.** Cho vecto $\vec{a} \neq \vec{0}$. Mệnh đề nào sau đây đúng?

- (A) Có vô số vectơ \vec{u} mà $\vec{u} = \vec{a}$.
- **C**) Có duy nhất một \vec{u} mà $\vec{u} = -\vec{a}$.

- (B) Có duy nhất một \vec{u} mà $\vec{u} = \vec{a}$.
- (**D**) Không có vectơ \vec{u} nào mà $\vec{u} = \vec{a}$.

■ Lời aiải.

Có vô số vecto \vec{u} mà $\vec{u} = \vec{a}$.

Chọn đáp án (A)

CÂU 18. Cho hình bình hành ABCD. Đẳng thức nào sau đây sai?

- $(\mathbf{A}) |\overrightarrow{AD}| = |\overrightarrow{BC}|.$
- $|\overrightarrow{BC}| = |\overrightarrow{DA}|.$
- $\boxed{\mathbf{c}} |\overrightarrow{AB}| = |\overrightarrow{CD}|.$
- $|\overrightarrow{AC}| = |\overrightarrow{BD}|.$

🗩 Lời giải.

Theo tính chất của hình bình hành, ta có $|\overrightarrow{AC}| = |\overrightarrow{BD}|$ là đẳng thức sai.

Chọn đáp án (D)

CÂU 19. Cho luc giác đều ABCDEF tâm O. Ba vecto bằng vecto \overrightarrow{BA} là

- (A) \overrightarrow{OF} , \overrightarrow{DE} , \overrightarrow{OC} .
- (B) \overrightarrow{CA} , \overrightarrow{OF} , \overrightarrow{DE} .
- (C) \overrightarrow{OF} , \overrightarrow{DE} , \overrightarrow{CO} .
- $(\mathbf{D}) \overrightarrow{OF}, \overrightarrow{ED}, \overrightarrow{OC}.$

Dèi giải.

Các vecto bằng vecto \overrightarrow{BA} là \overrightarrow{DE} , \overrightarrow{OF} , \overrightarrow{CO} .

Chon đáp án (C)

CÂU 20. Cho đoạn thẳng AB, I là trung điểm của AB. Khi đó

- \overrightarrow{A} $\overrightarrow{BI} = \overrightarrow{AI}$.
- (B) \overrightarrow{BI} cùng hướng \overrightarrow{AB} .
- $|\overrightarrow{BI}| = 2 |\overrightarrow{IA}|.$

🗩 Lời giải.

Do I là trung điểm AB nên IA = IB, suy ra $|\overrightarrow{BI}| = |\overrightarrow{IA}|$.

B

Chọn đáp án (D)

CÂU 21. Cho hình thơi ABCD cạnh a và $\widehat{BAD} = 60^{\circ}$. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{BC} = \overrightarrow{DA}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AB} = \overrightarrow{AD}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{BD} = \overrightarrow{AC}$.

$$\boxed{\mathbf{D}} \left| \overrightarrow{BD} \right| = a.$$

🗩 Lời giải.

Từ giả thiết suy ra tam giác ABD đều cạnh a nên $BD = a \Rightarrow \left|\overrightarrow{BD}\right| = a$.

Chọn đáp án D

 \hat{CAU} 22. Cho hình chữ nhật ABCD. Trong các đẳng thức dưới đây, đẳng thức nào đúng?

$$\overrightarrow{A}\overrightarrow{AB} = \overrightarrow{CD}$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AD} = \overrightarrow{BC}.$$

$$\overrightarrow{AC} = \overrightarrow{BD}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{BC} = \overrightarrow{DA}.$$

🗩 Lời giải.

Vì \overrightarrow{ABCD} là hình chữ nhật nên ta có $\overrightarrow{AD} = \overrightarrow{BC}$.

Chọn đáp án B

CÂU 23. Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó $|\overrightarrow{GA}|$ bằng

$$\bigcirc$$
 $2|\overrightarrow{GM}|.$

$$\bigcirc -\frac{2}{3}|\overrightarrow{MA}|.$$

🗩 Lời giải.

Theo tính chất đường trung tuyến $AG = \frac{2}{3}AM$ hay $GA = 2 \cdot GM$.

Chọn đáp án \bigcirc

Bài 2. TỔNG VÀ HIỆU CỦA HAI VÉC-TƠ

A. CÁC DẠNG TOÁN

Dạng 1. Tính tổng, hiệu hai véc-tơ

- ❷ Ghép các véc-tơ lại thích hợp.
- ❷ Dùng các quy tắc cộng véc-tơ để tính.

BÀI 1. Tính tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$.

DAI I. IIII.

Ta có $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} = \overrightarrow{MN} + \overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} = \overrightarrow{MN}.$

BÀI 2. Cho tam giác ABC với M, N, P lần lượt là trung điểm của BC, CA, AB. Tính tổng $\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN}$. \bigcirc Lời giải.

Đễ dàng có BPNM là hình bình hành suy ra $\overrightarrow{BM}=\overrightarrow{PN}$ và $\overrightarrow{CN}=\overrightarrow{NA}$ vì N là trung điểm của CA. Do đó

$$\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN} = \overrightarrow{AP} + \overrightarrow{PN} + \overrightarrow{NA} = \overrightarrow{0} \, .$$

BÀI 3. Cho hai hình bình hành ABCD và AB'C'D' có chung đỉnh A. Tính $\overrightarrow{u} = \overrightarrow{B'B} + \overrightarrow{CC'} + \overrightarrow{D'D}$. \bigcirc Lời giải.

Theo quy tắc trừ và quy tắc hình bình hành ta có

$$\overrightarrow{B'B} + \overrightarrow{CC'} + \overrightarrow{D'D} = (\overrightarrow{AB} - \overrightarrow{AB'}) + (\overrightarrow{AC'} - \overrightarrow{AC}) + (\overrightarrow{AD} - \overrightarrow{AD'})$$

$$= (\overrightarrow{AB} + \overrightarrow{AD}) - \overrightarrow{AC} - (\overrightarrow{AB'} + \overrightarrow{AD'}) + \overrightarrow{AC}$$

$$= \overrightarrow{0}$$

 $V_{ay} \vec{u} = 0.$

BÀI 4. Cho tạm giác ABC, gọi D, E, F, G, H, I theo thứ tự là trung điểm các cạnh AB, BC, CA, DF, DE, EF. Tính véc-tơ $\overrightarrow{u} = \overrightarrow{BE} - \overrightarrow{GH} - \overrightarrow{AI} + \overrightarrow{FE}$?

🗩 Lời giải.

Ta có

$$\overrightarrow{u} = \overrightarrow{BE} - \overrightarrow{GH} - \overrightarrow{AI} + \overrightarrow{FE}$$

$$= \left(\overrightarrow{BE} + \overrightarrow{FE} \right) - \left(\overrightarrow{GH} + \overrightarrow{AI} \right)$$

$$= \left(\overrightarrow{BE} + \overrightarrow{FE} \right) - \left(\overrightarrow{IE} + \overrightarrow{AI} \right)$$

$$= \overrightarrow{DE} - \overrightarrow{AE} = \overrightarrow{DA}.$$

BÀI 5.

Cho lục giác đều ABCDEF tâm O. Rút gọn véc-tơ $\overrightarrow{v} = \overrightarrow{AF} + \overrightarrow{BC} + \overrightarrow{DE}$?

🗩 Lời giải.

$$\overrightarrow{v} = \overrightarrow{AF} + \overrightarrow{BC} + \overrightarrow{DE} = \overrightarrow{BO} + \overrightarrow{BC} + \overrightarrow{CO} = \overrightarrow{BO} + \overrightarrow{BO} = \overrightarrow{BO} + \overrightarrow{OE} = \overrightarrow{BE}.$$

BÀI 6. Gọi O là tâm của tam giác đều ABC. Tính $\overrightarrow{u} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. \bigcirc Lời giải.

Vẽ lục giác đều AMBNCP nội tiếp đường tròn (O). Vì BOCN là hình bình hành nên $\overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{ON}$. Do đó $\overrightarrow{u} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{ON} = \overrightarrow{0}$.

BÀI 7. Cho hình bình hành ABCD. Trên các đoạn thẳng DC, AB theo thứ tự lấy các điểm M, N sao cho DM = BN. Gọi P là giao điểm của AM, DB và Q là giao điểm của CN, DB. Tính $\overrightarrow{u} = \overrightarrow{DP} - \overrightarrow{QB}$.

Dèi giải.

Ta có $DM = BN \Rightarrow AN = MC$, mặt khác AN song song với MC do đó tứ giác ANCM là hình bình hành. Suy ra $\overrightarrow{AM} = \overrightarrow{NC}$.

$$\widehat{PDM} = \widehat{QBN} \text{ (so le trong)}.$$

Mặt khác $\widehat{DMP} = \widehat{APB}$ (đối đỉnh) và $\widehat{APQ} = \widehat{NQB}$ (hai góc đồng vị) suy ra $\widehat{DMP} = \widehat{BNQ}$. Do đó $\triangle DMP = \triangle BNQ$ (c.g.c) suy ra DB = QB.

Dễ thấy $\overrightarrow{DP}, \overrightarrow{QB}$ cùng hướng vì vậy $\overrightarrow{DP} = \overrightarrow{QB}$ hay $\overrightarrow{u} = \overrightarrow{DP} - \overrightarrow{QB} = 0$.

Dạng 2. Xác định vị trí của một điểm từ đẳng thức véc-tơ

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tam giác ABC. Điểm M thỏa mãn điều kiện $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Mệnh đề nào sau đây đúng?

- igap A M là điểm sao cho tứ giác BAMC là hình bình hành. igap B M là điểm sao cho tứ giác ABMC là hình bình hành.
- \bigcirc M là trọng tâm tam giác ABC.

 \bigcirc M thuộc đường trung trực của AB.

Dèi giải.

Ta có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$ nên M là trọng tâm tam giác ABC. Chọn đáp án \overrightarrow{C}

2. Bài tập tự luận

BÀI 1. Cho tam giác ABC. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.

🗭 Lời giải.

Ta có $\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} - \overrightarrow{MB} = -\overrightarrow{MC} \Leftrightarrow \overrightarrow{BA} = \overrightarrow{CM}$. Suy ra M là đỉnh của hình bình hành BAMC.

BÀI 2. Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{AM}$. \bigcirc Lời giải.

Vì \overrightarrow{ABCD} là hình bình hành nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$. Khi đó $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{AM} \Leftrightarrow \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AM} - \overrightarrow{AC} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{CM}$. Suy ra M đối xứng với A qua C.

BÀI 3. Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\left|\overrightarrow{MB} + \overrightarrow{CD}\right| = \left|\overrightarrow{MC} + \overrightarrow{DA}\right|$.

🗩 Lời giải.

Vì ABCD là hình bình hành nên $\begin{cases} \overrightarrow{BA} = \overrightarrow{CD} \\ \overrightarrow{DA} = \overrightarrow{CB}. \end{cases}$

Ta có

Vậy M thuộc đường trung trực của cạnh AB.

🗁 Dạng 3. Tính độ dài véc-tơ

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tam giác đều ABC có cạnh AB = a, xác định và tính độ dài của véc-tơ

a)
$$\vec{x} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

b)
$$\vec{y} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

🗩 Lời giải.

- a) Ta có $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Suy ra $|\overrightarrow{x}| = |\overrightarrow{AC}| = AC = a$.
- b) Dụng $\overrightarrow{BD} = \overrightarrow{AC}$, ta có $\overrightarrow{y} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$. Suy ra $|\overrightarrow{y}| = \left|\overrightarrow{AD}\right| = AD$.

Gọi M là trung điểm của BC, ta có $AD=2AM=2\cdot\frac{a\sqrt{3}}{2}=a\sqrt{3}$. Vậy $|\overrightarrow{y}|=a\sqrt{3}$.

VÍ DỤ 2. Cho hình vuông ABCD tâm O có cạnh AB=2, xác định và tính độ dài của véc-tơ $\overrightarrow{v}=\overrightarrow{OA}-\overrightarrow{CD}$. \bigcirc Lời giải.

Ta có
$$\overrightarrow{v} = \overrightarrow{OA} - \overrightarrow{CD} = \overrightarrow{OA} + \overrightarrow{DC} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$
. Vậy ta có $|\overrightarrow{v}| = \left| \overrightarrow{OB} \right| = OB = \frac{BD}{2} = \sqrt{2}$.

2. Bài tập tự luận

BÀI 1. Cho tam giác ABC vuông tại A có AB=2, AC=4, xác định và tính độ dài của véc-tơ $\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}$. \bigcirc Lời giải.

Dựng $\overrightarrow{BD} = \overrightarrow{AC}$, ta có $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$. Suy ra $|\overrightarrow{u}| = |\overrightarrow{AD}| = AD$.

Ta có ABDC là hình chữ nhật nên $AD = \sqrt{AB^2 + AC^2} = 2\sqrt{5}$. Vậy $|\vec{u}| = 2\sqrt{5}$. **Dài giải.**

BÀI 2. Cho hình chữ nhật ABCD có $AC=5,\,AB=3,\,$ xác định và tính độ dài của véc-tơ

a)
$$\vec{a} = \overrightarrow{AD} - \overrightarrow{AC}$$
.

b)
$$\overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

🗩 Lời giải.

- a) Ta có $\overrightarrow{a} = \overrightarrow{AD} \overrightarrow{AC} = \overrightarrow{CD}$. Suy ra $|\overrightarrow{a}| = \left| \overrightarrow{CD} \right| = CD = AB = 3$.
- b) Dựng $\overrightarrow{BE} = \overrightarrow{AC}$, ta có $\overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$. Suy ra $\left| \overrightarrow{b} \right| = \left| \overrightarrow{AE} \right| = AE$. Gọi M là trung điểm của BC. Ta có $AE = 2AM = 2\sqrt{AB^2 + BM^2} = 2\sqrt{13}$. Vậy $\left| \overrightarrow{b} \right| = 2\sqrt{13}$.

Dèi giải.

BÀI 3. Cho hình thang ABCD có $\widehat{A}=\widehat{D}=90^{\circ},\ AB=AD=3,\ CD=5,\ \text{xác định và tính độ dài của véc-tơ}$

a)
$$\vec{x} = \overrightarrow{AB} - \overrightarrow{AC}$$
.

b)
$$\vec{y} = \overrightarrow{DB} + \overrightarrow{DC}$$
.

🗩 Lời giải.

a) Ta có $\vec{x} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$. Suy ra $|\vec{x}| = |\overrightarrow{CB}| = CB$.

Gọi H là hình chiếu của B lên CD, ta có BH = AD = 3, CH = CD - DH = 2. Tam giác BHC có $BC = \sqrt{BH^2 + CH^2} = \sqrt{13}$. Vậy $|\vec{x}| = CB = \sqrt{13}$.

b) Dựng $\overrightarrow{BE} = \overrightarrow{DC}$, ta có $\overrightarrow{y} = \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{DB} + \overrightarrow{BE} = \overrightarrow{DE}$. Suy ra $|\overrightarrow{y}| = \left| \overrightarrow{DE} \right| = DE$. Ta có AE = AB + BE = 8, $DE = \sqrt{AD^2 + AE^2} = \sqrt{73}$. Vậy $|\overrightarrow{y}| = \sqrt{73}$.

Dạng 4. Ứng dụng của véc-tơ trong vật lý

BÀI 1.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 lần lượt là 300 (N) và 400 (N) và $\overrightarrow{AMB} = 90^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- (A) 0 (N).
- **B** 700 (N).
- **(c)** 100 (N).
- **D** 500 (N).

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình chữ nhật MADB, ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy cường độ lực tổng hợp tại M là $\left|\overrightarrow{MD}\right| = MD = \sqrt{MB^2 + MA^2} = 500$ (N).

Chọn đáp án (D)

BÀI 2.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}, \overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực $\overrightarrow{F}_1, \overrightarrow{F}_2$ đều bằng 300 (N) và $\overrightarrow{AMB} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

- **A** 0 (N).
- **B** 300 (N).
- \bigcirc 300 $\sqrt{3}$ (N).
- **D** 500 (N).

B A 60° A

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình thoi MBDA, ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy cường độ lực tổng hợp tại M là $\left|\overrightarrow{MD}\right| = MD$.

Gọi O là tâm hình thoi MBDA có cạnh 300, ta có $MD = 2MO = 300\sqrt{3}$ (N).

Chọn đáp án \bigcirc

B. CÂU HỔI TRẮC NGHIÊM

CÂU 1. Cho ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng?

$$(\mathbf{A}) \ \overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{BC}.$$

$$(\mathbf{D}) \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$$

🗩 Lời giải.

Ta có $\overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$.

Măt khác

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{AC} = 2\overrightarrow{AC} + \overrightarrow{CB} \neq \overrightarrow{CB}.$$

$$\bigcirc$$
 $\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB} \neq \overrightarrow{BC}$.

$$\bigcirc$$
 $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB} \neq \overrightarrow{BC}$.

Chọn đáp án (A)

CÂU 2. Rút gọn biểu thức véc-tơ $\overrightarrow{AM} + \overrightarrow{MB} - \overrightarrow{AC}$ ta được kết quả đúng là

(A) \overrightarrow{MB} .

 $(\mathbf{B}) \overrightarrow{BC}$.

(C) \overrightarrow{CB} .

 $(\mathbf{D}) \ \overrightarrow{AB}.$

P Lời giải.

Ta có $\overrightarrow{AM} + \overrightarrow{MB} - \overrightarrow{AC} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$.

Chọn đáp án (C)

CÂU 3. Gọi O là tâm hình vuông ABCD. Tính $\overrightarrow{OB} - \overrightarrow{OC}$.

- \overrightarrow{A} $\overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{BC}$.
- $\overrightarrow{\mathbf{B}}) \overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{DA}.$
- $\overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{OD} \overrightarrow{OA}.$ $\overrightarrow{D} \overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{AB}.$

🗩 Lời giải.

Ta có $\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = \overrightarrow{DA}$.

Chọn đáp án (B)

CÂU 4. Cho bốn điểm A, B, C, D phân biệt và $\vec{u} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CB} - \overrightarrow{BD}$. Khẳng định nào sau đây đúng?

- $(\mathbf{A}) \ \overrightarrow{u} = \overrightarrow{0}.$
- $\overrightarrow{\mathbf{B}}$ $\overrightarrow{u} = \overrightarrow{AD}$.
- $(\mathbf{C}) \ \overrightarrow{u} = \overrightarrow{CD}.$
- (**D**) $\vec{u} = \overrightarrow{AC}$.

🗩 Lời giải.

Ta có $\overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CB} - \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BD} - \overrightarrow{BD} = \overrightarrow{AD}$.

Chọn đáp án (B)

Cho hình bình hành ABCD tâm O. Hỏi véc-tơ $\overrightarrow{AO} - \overrightarrow{DO}$ bằng véc-tơ nào trong các véc-tơ sau?

 $(\mathbf{A}) B \hat{A}.$

(B) \overrightarrow{BC} .

 $\bigcirc \overrightarrow{DC}.$

 $(\mathbf{D}) \overrightarrow{AC}.$

P Lời giải.

Ta có $\overrightarrow{AO} - \overrightarrow{DO} = -\overrightarrow{OA} + \overrightarrow{OD} = \overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} = \overrightarrow{BC}$.

Chọn đáp án (B)

CÂU 6. Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Tổng $\overrightarrow{MP} + \overrightarrow{NP}$ bằng vec-tơ nào?

(A) \overrightarrow{PA} .

 $(\mathbf{B}) \ \overline{AM}.$

 $(\mathbf{C}) \ \overrightarrow{PB}.$

 $(\mathbf{D}) \overrightarrow{AP}.$

Dòi giải.

Ta có tứ giác MANP là hình bình hành.

Mà $\overrightarrow{MP} + \overrightarrow{NP} = -(\overrightarrow{PM} + \overrightarrow{PN}) = -\overrightarrow{PA} = \overrightarrow{AP}$.

Chọn đáp án (D)

CÂU 7.

Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

- \overrightarrow{A} $\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = \overrightarrow{0}$.
- $(\mathbf{B}) \overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OB} = \overrightarrow{EB}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{0}$.
- $(\mathbf{D})\overrightarrow{BC} + \overrightarrow{EF} = \overrightarrow{AD}.$

Dèi giải.

Ta có

$$\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = (\overrightarrow{OA} + \overrightarrow{OC}) + \overrightarrow{OE} = \overrightarrow{OB} + \overrightarrow{OE} = \overrightarrow{0}$$
 dúng.

$$\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OB} = (\overrightarrow{OA} + \overrightarrow{OC}) + \overrightarrow{OB} = \overrightarrow{OB} + \overrightarrow{OB} = 2\overrightarrow{OB} = \overrightarrow{EB}$$
 đúng.

$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = (\overrightarrow{AB} + \overrightarrow{BO}) + \overrightarrow{OA} = \overrightarrow{AO} + \overrightarrow{OA} = \overrightarrow{AA} = \overrightarrow{O}$$
 dúng.

Chọn đáp án (D)

(A) \overrightarrow{DB} .

$$(\mathbf{B}) \overrightarrow{BD}.$$

$$\bigcirc$$
 \overrightarrow{CA} .

P Lời giải.

$$\overrightarrow{BC} - \overrightarrow{AB} = \overrightarrow{BC} + \overrightarrow{BA} = \overrightarrow{BD}.$$

Chọn đáp án (B)

CÂU 9.

Cho hình bình hành ABCD. Gọi G là trọng tâm của tam giác ABC. Mệnh đề nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{BD}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{CD}.$$

$$\overrightarrow{\mathbf{C}}) \overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{O}.$$

$$\overrightarrow{\mathbf{D}}) \overrightarrow{GA} + \overrightarrow{GD} + \overrightarrow{GC} = \overrightarrow{CD}.$$

🗩 Lời giải.

Vì G là trọng tâm của tam giác \overrightarrow{ABC} nên $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Rightarrow \overrightarrow{GA} + \overrightarrow{GC} = -\overrightarrow{GB}$.

Do đó $\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = -\overrightarrow{GB} + \overrightarrow{GD} = \overrightarrow{GD} - \overrightarrow{GB} = \overrightarrow{BD}$.

Chon đáp án (A)

CÂU 10. Chọn mệnh đề sai trong các mệnh đề sau.

$$\textcircled{\textbf{B}})\overrightarrow{FY}-\overrightarrow{BY}=\overrightarrow{FB}$$
 với $B,\,F,\,Y$ bất kì.

$$\bigcirc$$
 Nếu $ABCD$ là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

$$(\mathbf{D}) \overrightarrow{AM} + \overrightarrow{MH} = \overrightarrow{AH} \text{ với } A, M, H \text{ bất kì.}$$

Dòi giải.

Mệnh đề sai: Nếu $\vec{a} + \vec{b} = \vec{c}$ thì $|\vec{a}| + |\vec{b}| = |\vec{c}|$.

Chon đáp án (A)

CÂU 11. Trong mặt phẳng cho bốn điểm bất kì A, B, C, O. Đẳng thức nào sau đây là đúng?

- $\overrightarrow{A}\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA}.$
- \overrightarrow{B} $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}$.
- $(\mathbf{C}) \overrightarrow{OA} = \overrightarrow{CA} \overrightarrow{CO}.$
- $\overrightarrow{OA} = \overrightarrow{OB} \overrightarrow{BA}$.

Dòi giải.

Nhắc lại lý thuyết: Với 3 điểm O, A, B bất kì:

Quy tắc 3 điểm: $O\acute{A} + A\acute{B} = O\acute{B}$.

Quy tắc hiệu: OA - OB = BA.

Chọn đáp án (C)

CÂU 12. Cho ba điểm A, B, C phân biệt. Đẳng thức nào sau đây là **sai**?

- $(\mathbf{A}) \ \overrightarrow{AC} + \overrightarrow{AB} = \overrightarrow{CB}. \qquad (\mathbf{B}) \ \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$
- $(\mathbf{C}) \ \overrightarrow{AC} \overrightarrow{AB} = \overrightarrow{BC}.$
- \overrightarrow{D} $\overrightarrow{AC} \overrightarrow{BC} = \overrightarrow{AB}$.

Dòi aiải.

Nhắc lại lý thuyết: Với 3 điểm C, A, B bất kì:

Quy tắc 3 điểm: $\overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$.

Quy tắc hiệu: $\overrightarrow{CA} - \overrightarrow{CB} = \overrightarrow{BA}$.

Chọn đáp án (A)

 $(\mathbf{C}) \overrightarrow{MP}.$

 $(\mathbf{D}) MQ.$

🗩 Lời giải.

Ta có $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} = \overrightarrow{MN} + \overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} = \overrightarrow{MN}$.

Chọn đáp án (B)

CÂU 14. Cho 4 điểm bất kì A, B, C, D. Đẳng thức nào sau đây sai?

$$\overrightarrow{A}\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{DA} = \overrightarrow{BD} - \overrightarrow{CD}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AB} = \overrightarrow{DB} - \overrightarrow{DA}$.

$$(\mathbf{D}) \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC}.$$

🗩 Lời giải.

Ta có $\overrightarrow{BD} - \overrightarrow{CD} = \overrightarrow{BC}$.

Chọn đáp án (B)

CÂU 15. Cho bốn điểm A, B, C. Tính $\overrightarrow{AB} - \overrightarrow{AC}$.

$$\overrightarrow{A}$$
 \overrightarrow{CA} .

$$\bigcirc \mathbf{B} \ 2 \cdot \overrightarrow{AC}.$$

$$\bigcirc \vec{0}$$
.

$$\overrightarrow{\mathbf{D}}$$
 \overrightarrow{AC} .

🗩 Lời giải.

$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{AC}.$$

Chọn đáp án (D)

CÂU 16. Cho tam giác ABC và điểm M bất kỳ, chọn đẳng thức **đúng**.

$$\overrightarrow{A} \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{MA} + \overrightarrow{BM} = \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{CB}.$$

$$(\mathbf{D}) \overrightarrow{AA} - \overrightarrow{BB} = \overrightarrow{AB}.$$

Dòi giải.

Áp dụng quy tắc công, trừ. Ta có: $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CA}$

$$\frac{\overrightarrow{M}\overrightarrow{A} + \overrightarrow{B}\overrightarrow{M} = \overrightarrow{B}\overrightarrow{M} + \overrightarrow{M}\overrightarrow{A} = \overrightarrow{B}\overrightarrow{A}}{\overrightarrow{A}\overrightarrow{A} - \overrightarrow{B}\overrightarrow{B} = \overrightarrow{0}}$$

CÂU 17. Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD. Tổng của \overrightarrow{NC} và \overrightarrow{MC} là (B) \overline{MN} . $(\mathbf{D}) \overrightarrow{AC}$. (C) NM.

🗩 Lời giải.

ANCM là hình bình hành nên $\overrightarrow{NC} = \overrightarrow{AM}$.

Do đó: $\overrightarrow{NC} + \overrightarrow{MC} = \overrightarrow{AM} + \overrightarrow{MC} = \overrightarrow{AC}$.

Chon đáp án (D)

CÂU 18. Cho hình bình hành ABCD. Gọi I, J lần lượt là trung điểm BC và AD. Tính $\overrightarrow{JC} - \overrightarrow{IC}$ không bằng

$$\bigcirc$$
 \overrightarrow{DC}

$$\bigcirc$$
 \overrightarrow{JI} .

$$\overrightarrow{\mathbf{C}}$$
 \overrightarrow{AB} .

$$\overrightarrow{\mathbf{D}}$$
 \overrightarrow{AC} .

Dèi giải.

Ta có $\overrightarrow{JC} - \overrightarrow{IC} = \overrightarrow{JC} + \overrightarrow{CI} = \overrightarrow{JC} + \overrightarrow{DJ} = \overrightarrow{DC} = \overrightarrow{JI} = \overrightarrow{AB}$.

Chọn đáp án (D)

CÂU 19. Cho hình bình hành ABCD. Điểm M thỏa mãn điều kiện $\overrightarrow{MB} - \overrightarrow{BC} + \overrightarrow{BO} = \overrightarrow{DO}$. Khẳng định nào sau đây đúng?

(A) M trùng với A.

(**B**) M trùng với B.

(**C**) M trùng với O.

 $(\mathbf{D}) M$ trùng với C.

Dòi giải.

VìO là tâm hình bình hành ABCD nên $\overrightarrow{DO} = \overrightarrow{OB}$.

Khị đó $\overrightarrow{MB} - \overrightarrow{BC} + \overrightarrow{BO} = \overrightarrow{DO} \Leftrightarrow \overrightarrow{MB} + \overrightarrow{BO} = \overrightarrow{DO} - \overrightarrow{BC} \Leftrightarrow \overrightarrow{MO} = \overrightarrow{OB} + \overrightarrow{BC} \Leftrightarrow \overrightarrow{MO} = \overrightarrow{DO} = \overrightarrow{DO}$

Chọn đáp án (A)

CÂU 20. Cho hình bình hành ABCD có tâm O. Điểm M thỏa mãn điều kiện $\overrightarrow{OM} = \overrightarrow{OA} - \overrightarrow{OB} + \overrightarrow{DC}$. Khẳng định nào sau đây đúng?

(A) M trùng với B.

(**B**) M trùng với D.

 $(\mathbf{C}) M$ trùng với A.

 $(\mathbf{D}) M$ trùng với điểm O.

🗩 Lời giải.

Vì ABCD là hình bình hành nên $\overrightarrow{BA} = \overrightarrow{CD}$. Khi đó

$$\overrightarrow{OM} = \overrightarrow{OA} - \overrightarrow{OB} + \overrightarrow{DC}$$

$$\Leftrightarrow \overrightarrow{OM} = \overrightarrow{BA} + \overrightarrow{DC}$$

$$\Leftrightarrow \overrightarrow{OM} = \overrightarrow{CD} + \overrightarrow{DC}$$

$$\Leftrightarrow \overrightarrow{OM} = \overrightarrow{0}.$$

Suy ra M trùng với điểm O.

Chọn đáp án (D)

CÂU 21. Cho bốn điểm phân biệt A, B, C, D. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{AD} + \overrightarrow{BC}$. Khẳng định nào sau đây đúng?

- $(\mathbf{A}) M$ là trung điểm CD.
- (**B**) M là trung điểm AB.
- (\mathbf{C}) M là trung điểm AD.
- $(\mathbf{D}) M$ là trung điểm BC.

Dòi giải.

Ta có

$$\overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{AD} + \overrightarrow{BC}$$

$$\Leftrightarrow \overrightarrow{MC} - \overrightarrow{BC} + \overrightarrow{MD} - \overrightarrow{AD}$$

$$\Leftrightarrow \overrightarrow{MC} + \overrightarrow{CB} + \overrightarrow{MD} + \overrightarrow{DA} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MB} + \overrightarrow{MA} = \overrightarrow{0}.$$

Suy ra M là trung điểm AB.

Chọn đáp án (B)

CÂU 22. Cho các điểm phân biệt A, B, C, D, E, F. Biết điểm M thỏa mãn điều kiện $\overrightarrow{MC} + \overrightarrow{ME} + \overrightarrow{MF} = \overrightarrow{AC} + \overrightarrow{BE} + \overrightarrow{DF}$. Khẳng định nào sau đây đúng?

- $(\mathbf{A}) M$ là trọng tâm tam giác ABC.
- $(\mathbf{C}) M$ là trọng tâm tam giác ABD.

- (B) M là trọng tâm tam giác BCD.
- $(\mathbf{D}) M$ là trọng tâm tam giác ACD.

Dòi giải.

Ta có

$$\overrightarrow{MC} + \overrightarrow{ME} + \overrightarrow{MF} = \overrightarrow{AC} + \overrightarrow{BE} + \overrightarrow{DF}$$

$$\Leftrightarrow \overrightarrow{MC} - \overrightarrow{AC} + \overrightarrow{ME} - \overrightarrow{BE} + \overrightarrow{MF} - \overrightarrow{DF} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MC} + \overrightarrow{CA} + \overrightarrow{ME} + \overrightarrow{EB} + \overrightarrow{MF} + \overrightarrow{FD} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MD} = \overrightarrow{0}.$$

Suy ra M là trọng tâm tam giác ABD.

Chọn đáp án (C)

CÂU 23. Cho hình bình hành ABCD có E là trung điểm AB. Điểm M thỏa mãn điều kiện $\overrightarrow{EB} = \overrightarrow{AM} - \overrightarrow{BC}$. Khẳng đinh nào sau đây đúng?

- $(\mathbf{A}) M$ là trung điểm AD.
- (**B**) M là trung điểm CD.
- (**C**) M là trung điểm AB.
- $(\mathbf{D}) M$ là trung điểm BC.

🗩 Lời giải.

Ta có $\overrightarrow{EB} = \overrightarrow{AM} - \overrightarrow{BC} \Leftrightarrow \overrightarrow{EB} + \overrightarrow{BC} = \overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} = \overrightarrow{EC}$.

Do đó AMCE là hình bình hành.

Suy ra AE = MC và $AE \parallel MC$.

Vậy M là trung điểm CD.

Chọn đáp án (B)

CÂU 24. Cho tam giác ABC đều có cạnh bằng a. Tìm tập hợp điểm M thỏa mãn điều kiện $|\overrightarrow{MC}| = |\overrightarrow{AB} + \overrightarrow{AC}|$

- (A) M thuộc đường tròn tâm A bán kính $a\sqrt{3}$.
- (**c**) M thuộc đường tròn tâm B bán kính $a\sqrt{3}$.
- **B** M thuộc đường tròn tâm C bán kính $\frac{a\sqrt{3}}{2}$.
- (**D**) M thuộc đường tròn tâm C bán kính $a\sqrt{3}$.

Dựng hình bình hành ABDC. Suy ra $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$.

Khi đó
$$\left| \overrightarrow{MC} \right| = \left| \overrightarrow{AB} + \overrightarrow{AC} \right| \Leftrightarrow \left| \overrightarrow{MC} \right| = \left| \overrightarrow{AD} \right| \Leftrightarrow MC = AD.$$

Gọi I là tâm của hình bình hành ABDC. Ta có $AD = 2AI = 2 \cdot \frac{AB\sqrt{3}}{2} = a\sqrt{3}$.

Do đó $MC = a\sqrt{3}$.

Vậy M thuộc đường tròn tâm C bán kính $a\sqrt{3}$.

Chọn đáp án (D)

CÂU 25. Cho hình thang ABCD có AB song song với CD. Cho AB = 2a, CD = a. O là trung điểm của AD. Khi đó,

$$\left| \overrightarrow{OB} + \overrightarrow{OC} \right| = \frac{3a}{2}.$$

$$|\overrightarrow{OB} + \overrightarrow{OC}| = a.$$

$$\overrightarrow{OB} + \overrightarrow{OC} = 2a.$$

$$\boxed{\mathbf{D}} \left| \overrightarrow{OB} + \overrightarrow{OC} \right| = 3a.$$

🗭 Lời giải.

Gọi M là trung điểm của BC. Ta có $\overrightarrow{OB} + \overrightarrow{OC} = 2\overrightarrow{OM}$, mà OM là đường trung bình của hình thang ABCD nên 2OM = AB + AD = 3a suy ra $\left| \overrightarrow{OB} + \overrightarrow{OC} \right| = 3a$.

Chọn đáp án (D)

CÂU 26. Cho tam giác ABC vuông cân tại A có $BC = a\sqrt{2}$, M là trung điểm của BC. Khẳng định nào sau đây đúng?

$$|\overrightarrow{BA} + \overrightarrow{BM}| = a.$$

$$\left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{2}}{2}.$$

$$\left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{2}}{2}. \qquad \mathbf{C} \left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{3}}{2}.$$

$$\boxed{\mathbf{D}} \left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \frac{a\sqrt{6}}{2}.$$

🗩 Lời giải.

Dựng hình bình hành ABMN.

Ta có: $B\hat{A} + B\hat{M} = B\hat{N}$ nên

$$\left| \overrightarrow{BA} + \overrightarrow{BM} \right| = \left| \overrightarrow{BN} \right| = BN.$$

Tam giác BCN vuông tại C có

$$NC = AM = \frac{1}{2}BC = \frac{a\sqrt{2}}{2}.$$

Suy ra

Chọn đáp án (D)

 $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{OD} - \overrightarrow{BC}.$ vuông ABCDO. Tính canh tâm độ dài của theo véc-tơ

 \bigcirc $\frac{3a\sqrt{2}}{2}$.

 $(\mathbf{c}) a\sqrt{2}.$

 $(\mathbf{D}) a$.

🗩 Lời giải.

Ta có $\vec{u} = \overrightarrow{AB} + \overrightarrow{OD} - \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BO} - \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{CO} = \overrightarrow{AB} + \overrightarrow{OA} = \overrightarrow{OB}$. Suy ra $|\vec{u}| = |\overrightarrow{OB}| = OB = \frac{\sqrt{2}}{2}AB = \frac{a\sqrt{2}}{2}$.

Chọn đáp án (A)

CÂU 28. Cho hình vuông ABCD có cạnh bằng a. Khi đó $|\overrightarrow{AD} + \overrightarrow{AB}|$ bằng

 $(\mathbf{A}) 2a.$

 \mathbf{B} $a\sqrt{2}$.

 \bigcirc $\frac{\sqrt{3}}{2}$

🗩 Lời giải.

Ta có $|\overrightarrow{AD} + \overrightarrow{AB}| = |\overrightarrow{AC}| = a\sqrt{2}$.

Chọn đáp án (B)

CÂU 29. Cho tam giác ABC vuông cân tại C, $AB = \sqrt{2}$. Tính độ dài của AB + AC

(A) $\sqrt{5}$.

(B) $2\sqrt{5}$.

(**c**) $\sqrt{3}$.

(D) $2\sqrt{3}$.

Lời giải.

Ta có
$$AC^2 + BC^2 = AB^2 \Leftrightarrow 2AC^2 = 2 \Rightarrow AC = BC = 1.$$

$$AM = \sqrt{AC^2 + CM^2} = \sqrt{1^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{5}}{2}.$$

$$\left| \overrightarrow{AB} + \overrightarrow{AC} \right| = \left| 2\overrightarrow{AM} \right| = 2\overrightarrow{AM} = \sqrt{5}.$$

Chọn đáp án (A)

CÂU 30. Cho hình bình hành ABCD có DA = 2cm, AB = 4cm và đường chéo BD = 5cm. Tính $|\overrightarrow{BA} - \overrightarrow{DA}|$.

(A) 2cm.

B) 4cm.

(C) 5cm.

D 6cm.

🗩 Lời giải.

$$\left| \overrightarrow{BA} - \overrightarrow{DA} \right| = \left| \overrightarrow{BA} + \overrightarrow{AD} \right| = \left| \overrightarrow{BD} \right| = BD = 5 \text{cm}.$$

Chọn đáp án \bigcirc

CÂU 31. Cho hình thang ABCD có hai đáy $AB=a,\ CD=2a.$ Gọi $M,\ N$ là trung điểm của $AD,\ BC.$ Khi đó $\left|\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MN}\right|$ bằng

B 3a.

 \bigcirc a.

 \bigcirc 2a.

🗩 Lời giải.

Ta có $\overrightarrow{MA} + \overrightarrow{MC} - \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{NC}$.

Qua A, dựng véc-tơ $\overrightarrow{AI} = \overrightarrow{NC}$. Suy ra I nằm trên đường thẳng MN và tứ giác ABNI là hình bình hành.

Khi đó, từ (1) suy ra $\overrightarrow{MA} + \overrightarrow{NC} = \overrightarrow{MA} + \overrightarrow{AI} = \overrightarrow{MI}$. (2)

Vì M, N lần lượt là trung điểm các cạnh AD và BC nên MN là đường trung bình của hình thang ABCD. Suy ra, $MN = \frac{3a}{2}$ và $MI = \frac{a}{2}$

Từ (1) và (2), suy ra $\left| \overrightarrow{MA} + \overrightarrow{MC} - \overrightarrow{MN} \right| = \left| \overrightarrow{MI} \right| = \frac{\overline{a}}{2}$

Chọn đáp án (A)

CÂU 32. Chọ hình vuông \overrightarrow{ABCD} cạnh a, d là đường thẳng qua A, song song với BD. Gọi M là điểm thuộc đường thẳng d sao cho $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} - \overrightarrow{MD}|$ nhỏ nhất. Tính theo a độ dài véc-tơ \overrightarrow{MD} .

- \bigcirc a.

Dựng hình bình hành MBEC, BCEF, ta có $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} - \overrightarrow{MD}| = |\overrightarrow{ME} + \overrightarrow{DA}| = |\overrightarrow{ME} + \overrightarrow{EF}| = |\overrightarrow{MF}|$. Khi M thay đổi trên d thì F thuộc đường thẳng cố định qua C song song với d, điểm M cần tìm là hình chiếu vuông góc của B trên d.

Khi đó, ta có $|\overrightarrow{MD}| = MD = \sqrt{BD^2 + BM^2} = \frac{a\sqrt{10}}{2}$.

Chọn đáp án $\stackrel{\frown}{(B)}$

CÂU 33.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{AMB} = 120^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình thoi MBDA, ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy cường độ lực tổng hợp tại M là $\left|\overrightarrow{MD}\right| = MD$.

Gọi O là tâm hình thoiMBDA có cạnh 300, do $\widehat{BMA}=120^\circ\Rightarrow\widehat{MBD}=60^\circ.$ Vậy tam giác MBD đều cạnh 300 suy ra MD=300 (N). Chọn đáp án $\stackrel{\frown}{\rm A}$

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 25 (N) và góc $\overrightarrow{AMB} = 60^\circ$. Khi đó cường độ lực của \overrightarrow{F}_3 là

B
$$50\sqrt{3}$$
 (N).

©
$$50\sqrt{2}$$
 (N).

D
$$100\sqrt{3}$$
 (N).

Gọi D là đỉnh thứ tư của hình tho
iMADB,ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy lực tổng hợp tại M là

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MD} + \overrightarrow{MC}.$$

Do vật đứng yên nên $\overrightarrow{MD} + \overrightarrow{MC} = \overrightarrow{0} \Rightarrow \overrightarrow{MC} = -\overrightarrow{MD}$. Vậy cường độ lực \overrightarrow{F}_3 là

$$\left| \overrightarrow{MC} \right| = \left| \overrightarrow{MD} \right| = MD.$$

Gọi O là tâm hình thơi MBDA có cạnh 25, ta có $MD=2MO=25\sqrt{3}$ (N).

Chọn đáp án (A)

CÂU 35.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\widehat{AMB} = 120^\circ$ và $\widehat{AMC} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

A 300 (N).

B 700 (N).

C 100 (N).

D 500 (N).

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình thoi MBDA, ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy cường độ lực tổng hợp tại M là

$$\left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right| = \left|\overrightarrow{MD} + \overrightarrow{MC}\right|.$$

Lại có \overrightarrow{MD} và \overrightarrow{MD} là 2 véc-tơ cùng hướng nên $\left|\overrightarrow{MD} + \overrightarrow{MC}\right| = MD + MC$.

Gọi O là tâm hình thơi MBDA có cạnh 300, do $\widehat{BMA} = 120^{\circ} \Rightarrow \widehat{MBD} = 60^{\circ}$.

Vậy tam giác MBD đều cạnh 300 suy ra MD=300 (N).

Vậy cường độ lực tổng hợp tại M là MD + MC = 300 + 400 = 700 (N).

Chọn đáp án B

CÂU 36.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\overrightarrow{AMB} = 120^\circ$ và $\overrightarrow{AMC} = 150^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

A 300 (N).

B 700 (N).

C 100 (N).

D 500 (N).

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình thoi MBDA, ta có

$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD}.$$

Vậy cường độ lực tổng hợp tại M là

$$\left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right| = \left|\overrightarrow{MD} + \overrightarrow{MC}\right|.$$

Gọi O là tâm hình thoi MBDA có cạnh 300, do $\widehat{BMA} = 120^{\circ} \Rightarrow \widehat{MBD} = 60^{\circ}$.

Vậy tam giác MBD đều cạnh 300 suy ra MD = 300 (N) và $\widehat{D}M\widehat{A} = 60^{\circ}$.

Suy ra $\widehat{CMD} = 150^{\circ} - 60^{\circ} = 90^{\circ}$ hay tam giác CMD vuông tại M.

Gọi E là đỉnh thứ tư của hình chữ nhật CMDE, ta có

$$\left|\overrightarrow{MD} + \overrightarrow{MC}\right| = \left|\overrightarrow{ME}\right| = ME.$$

Do CMDE là hình chữ nhật nên

$$ME = \sqrt{300^2 + 400^2} = 500$$
 (N).

Bài 3. TÍCH CỦA MỘT VECTƠ VỚI MỘT SỐ

A. TÓM TẮT LÍ THUYẾT

1. Tích của một vectơ với một số

7 Định nghĩa 3.1.

- igotimes Tích của một vecto $\vec{a} \neq \vec{0}$ với một số k > 0 là một vecto, kí hiệu là $k\vec{a}$, cùng hướng với vecto \vec{a} và có độ dài bằng $k|\vec{a}|$.
- \odot Tích của một vecto $\overrightarrow{a} \neq \overrightarrow{0}$ với một số k < 0 là một vecto, kí hiệu là $k \overrightarrow{a}$, ngược hướng với vecto \overrightarrow{a} và có độ dài bằng $(-k)|\overrightarrow{a}|$.

2. Các tính chất của phép nhân vectơ với một số

Với hai vecto \vec{a} , \vec{b} và hai số thực k, t, ta luôn có

•
$$k(t\vec{a}) = (kt)\vec{a}$$
;

•
$$(k+t)\vec{a} = k\vec{a} + t\vec{a}$$
;

•
$$k(\vec{a} \pm \vec{b}) = k\vec{a} \pm k\vec{b}$$
;

•
$$1\vec{a} = \vec{a}$$
; $(-1)\vec{a} = -\vec{a}$.

 $lack ext{ } ext{$

 \odot Cho tam giác ABC, điểm G là trọng tâm của tam giác ABC khi và chỉ khi $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Cho hai vectơ không cùng phương \vec{a} và \vec{b} . Khi đó, mọi vectơ \vec{u} đều biểu thị (phân tích) được một các duy nhất theo hai vectơ \vec{a} và \vec{b} , nghĩa là có duy nhất cặp số (x,y) sao cho $\vec{u} = x\vec{a} + y\vec{b}$.

B. CÁC DẠNG TOÁN

Dạng 1. Xác định vectơ tích, tính độ dài vectơ

vecto $k\overrightarrow{a}$ có độ dài bằng $|k||\overrightarrow{a}|$ và

• cùng hướng với \vec{a} nếu $k \geq 0$;

• ngược hướng với \overrightarrow{a} nếu $\begin{cases} \overrightarrow{a} \neq \overrightarrow{0} \\ k < 0. \end{cases}$

1. Ví dụ minh họa

VÍ DỤ 1. Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho $AM = \frac{1}{5}AB$. Tìm k trong các đẳng thức sau

a)
$$\overrightarrow{AM} = k\overrightarrow{AB}$$
.

b)
$$\overrightarrow{MA} = k\overrightarrow{MB}$$
.

c)
$$\overrightarrow{MA} = k\overrightarrow{AB}$$
.

🗩 Lời giải.

a) Thấy \overrightarrow{AM} và \overrightarrow{AB} cùng hướng nên k>0.

Ta có
$$|k| = \frac{\left|\overrightarrow{AM}\right|}{\left|\overrightarrow{AB}\right|} = \frac{AM}{AB} = \frac{1}{5}$$
. Suy ra $k = \frac{1}{5}$.

b) Thấy \overrightarrow{MA} và \overrightarrow{MB} ngược hướng nên k < 0.

Ta có
$$|k| = \frac{\left|\overrightarrow{MA}\right|}{\left|\overrightarrow{MB}\right|} = \frac{AM}{MB} = \frac{1}{4}$$
. Suy ra $k = -\frac{1}{4}$.

c) Thấy \overrightarrow{MA} và \overrightarrow{AB} ngược hướng nên k < 0.

Ta có
$$|k| = \frac{\left| \overrightarrow{MA} \right|}{\left| \overrightarrow{AB} \right|} = \frac{AM}{AB} = \frac{1}{5}$$
. Suy ra $k = -\frac{1}{5}$.

VÍ DỤ 2. Cho tam giác ABC đều cạnh bằng 1, trọng tâm G. Tính độ dài vectơ \overrightarrow{AG} .

D Lời giải.

Gọi M là trung điểm của BC.

Khi đó, ta có $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AM}$ nên

$$\left|\overrightarrow{AG}\right| = \frac{2}{3}\left|\overrightarrow{AM}\right| = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}.$$

VÍ DỤ 3. Cho hình vuông ABCD có cạnh bằng a, I là trung điểm của cạnh BC. Tính độ dài vectơ $\overrightarrow{AB} + \overrightarrow{AC}$.

🗩 Lời giải.

Vì I là trung điểm BC nên ta có $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$.

Do đó
$$\left| \overrightarrow{AB} + \overrightarrow{AC} \right| = \left| 2\overrightarrow{AI} \right| = 2AI$$
.

Xét $\triangle ABI$ vuông tại B, ta có $AI = \sqrt{AB^2 + BI^2} = \frac{a\sqrt{5}}{2}$.

Vậy
$$\left| \overrightarrow{AB} + \overrightarrow{AC} \right| = a\sqrt{5}$$
.

2. Bài tập áp dụng

BÀI 1. Trên đoạn thẳng AB, gọi C là trung điểm AB và D là điểm đối xứng của C qua A. Tìm k trong các đẳng thức sau

a)
$$\overrightarrow{AC} = k\overrightarrow{AB}$$
.

b)
$$\overrightarrow{AD} = k\overrightarrow{AB}$$
.

🗩 Lời giải.

 $\ensuremath{\bigodot}$ Vì C là trung điểm của ABnên \overrightarrow{AC} và \overrightarrow{AB} cùng hướng. Do đó k>0.

Ta lại có
$$|k| = \frac{|\overrightarrow{AC}|}{|\overrightarrow{AB}|} = \frac{AC}{AB} = \frac{1}{2}$$
. Suy ra $k = \frac{1}{2}$.

 \bigodot Vì D đối xứng với C qua Anên \overrightarrow{AD} và \overrightarrow{AB} là ngược hướng, do đó k<0.

Ta lại có
$$AD = AC$$
 nên $|k| = \frac{\left|\overrightarrow{AD}\right|}{\left|\overrightarrow{AB}\right|} = \frac{AD}{AB} = \frac{AC}{AB} = \frac{1}{2}$. Suy ra $k = -\frac{1}{2}$.

BÀI 2. Cho tam giác ABC vuông cân tại A, cạnh BC = 2. Gọi M, N lần lượt là trung điểm của cạnh AB và BC. Tính độ dài \overrightarrow{MN} .

🗩 Lời giải.

Vì $\triangle ABC$ vuông cân tại A nên $AB^2 = AC^2 = \frac{1}{2}BC^2 = 2$, do đó $AB = AC = \sqrt{2}$.

Dễ thấy rằng MN là đường trung bình của $\triangle \overrightarrow{ABC}$ nên $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AC}$.

Suy ra
$$\left| \overrightarrow{MN} \right| = \frac{1}{2} \left| \overrightarrow{AC} \right| = \frac{1}{2} AC = \frac{\sqrt{2}}{2}$$
.

BÀI 3. Cho hình thoi ABCD có AC=2a, BD=a. Tính độ dài vectơ $\overrightarrow{AC}+\overrightarrow{BD}$. \bigcirc Lời giải.

Gọi O là tâm của hình thoi.

Khi đó ta có $|\overrightarrow{AC} + \overrightarrow{BD}| = |2\overrightarrow{AO} + 2\overrightarrow{OD}| = |2\overrightarrow{AD}| = 2AD.$

Áp dụng định lý Pi-ta-go trong tam giác AOD ta có

Do đó $\left| \overrightarrow{AC} + \overrightarrow{BD} \right| = 2AD = a\sqrt{5}$.

3. Bài tập trắc nghiệm

CÂU 1.

Cho hai vecto \overrightarrow{AB} và \overrightarrow{CD} trong hình bên. Khẳng định nào sau đây đúng?

 $\overrightarrow{\mathbf{A}} \ \overrightarrow{CD} = 3\overrightarrow{AB}.$

 $(\mathbf{B}) \ \overrightarrow{CD} = \overrightarrow{AB}.$

 $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} = 2\overrightarrow{CD}$.

 $\overrightarrow{D} \overrightarrow{CD} = -3\overrightarrow{AB}.$

🗩 Lời giải.

Từ hình vẽ, theo định nghĩa ta có $\overrightarrow{CD} = -3\overrightarrow{AB}$.

Chọn đáp án D

- **CÂU 2.** Cho vecto \vec{a} (khác $\vec{0}$) và vecto $\vec{b} = k\vec{a}$, $(k \neq 0)$. Khẳng định nào sau đây là đúng?
 - \overrightarrow{a} cùng phương \overrightarrow{b} nếu $\overrightarrow{k} > 0$.

 $\overrightarrow{\mathbf{B}}$ \overrightarrow{a} ngược hướng \overrightarrow{b} nếu k > 0.

 \overrightarrow{c} \overrightarrow{a} cùng hướng \overrightarrow{b} nếu k < 0.

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{a} cùng hướng \overrightarrow{b} nếu k > 0.

D Lời giải.

vecto $\overrightarrow{b} = k \overrightarrow{a}$ có độ dài bằng $|k| |\overrightarrow{a}|$ và

- \odot cùng hướng với \vec{a} nếu k > 0;
- Θ ngược hướng với \overrightarrow{a} nếu k < 0.

Chọn đáp án \bigcirc

- **CÂU 3.** Cho hai vectơ \vec{a} , \vec{b} bất kì và số thực k. Ta có $k \left(\vec{a} + \vec{b} \right)$ bằng
- $(\mathbf{c}) k \vec{a} k \vec{b}$.
- $(\mathbf{D}) k \vec{a} + \vec{b}$.

🗩 Lời giải.

Theo tính chất, ta có $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$.

Chọn đáp án B

- **CÂU 4.** Cho hai vecto \vec{a} , \vec{b} khác $\vec{0}$ thỏa mãn $\vec{a} = -\frac{1}{2}\vec{b}$. Mệnh đề nào dưới đây đúng?
 - $\boxed{\mathbf{A}} \ |\overrightarrow{a}| = -\frac{1}{2} \, \Big| \, \overrightarrow{b} \, \Big|.$

 \overrightarrow{b} \overrightarrow{a} và \overrightarrow{b} là hai vectơ đối nhau.

 \overrightarrow{c} \overrightarrow{a} cùng hướng với \overrightarrow{b} .

 $\overrightarrow{\mathbf{D}}$ \overrightarrow{a} ngược hướng với \overrightarrow{b} .

🗩 Lời giải.

Do $\vec{a} = -\frac{1}{2}\vec{b}$ và $-\frac{1}{2} < 0$ nên \vec{a} ngược hướng với \vec{b} .

Chọn đáp án \bigcirc

- **CÂU 5.** Cho vectơ \vec{u} có độ dài bằng 2 và vectơ $\vec{v} = -3\vec{u}$. Khẳng định nào sau đây là đúng?
 - \mathbf{A} vecto \vec{v} có độ dài bằng -6 và cùng hướng với \vec{u} .
- B vecto \vec{v} có độ dài bằng -6 và ngược hướng với \vec{u} .
- $\overset{\bullet}{\mathbf{C}}$ vectơ $\overset{\bullet}{v}$ có độ dài bằng 6 và cùng hướng với $\overset{\bullet}{u}$.
- \bigcirc vecto \overrightarrow{v} có độ dài bằng 6 và ngược hướng với \overrightarrow{u} .

D Lời giải.

Với $\overrightarrow{u} \neq \overrightarrow{0}$ và số thực $k \neq 0$, ta có $k\overrightarrow{u}$ ngược hướng với \overrightarrow{u} nếu k < 0 và $|k\overrightarrow{u}| = |k| \cdot |\overrightarrow{u}|$.

Với $\vec{u} \neq 0$ và số thực $\vec{k} \neq 0$, tả có \vec{k} ử ngược hưởng với \vec{u} hiện $\vec{k} \neq 0$ và ngược hướng với \vec{u} ."

Chọn đáp án D

- **CÂU 6.** Cho $\vec{a} = -2\vec{b}$. Khẳng định nào sau đây đúng?
 - $\overrightarrow{\mathbf{A}}$ \overrightarrow{a} và \overrightarrow{b} là hai vecto bằng nhau.

 \blacksquare \overrightarrow{a} và \overrightarrow{b} là hai vecto đối nhau.

 \overrightarrow{c} \overrightarrow{a} và \overrightarrow{b} ngược hướng.

 \overrightarrow{a} và \overrightarrow{b} cùng hướng.

🗩 Lời giải.

Theo định nghĩa, nếu $\vec{a}=-2\,\vec{b}$ thì \vec{a} và \vec{b} là hai vectơ ngược hướng.

Chọn đáp án C

CÂU 7. Cho vectơ \vec{q} có độ dài bằng 27. Hỏi độ dài của vectơ $\vec{x} = -\frac{1}{9}\vec{q}$ là bao nhiêu?

(A) 243.

(B) 3.

 $(\mathbf{C}) \, 9.$

(**D**) -3.

🗩 Lời giải.

Ta có $|\vec{x}| = \frac{1}{9} |\vec{q}| = \frac{27}{9} = 3.$

Chọn đáp án (B)

CÂU 8.

Cho đoạn thẳng AB và điểm I thuộc đoạn thẳng AB như hình vẽ bên.

Mệnh đề nào sau đây đúng?

$$\overrightarrow{A}\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{IB}.$$

$$\overrightarrow{A} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}.$$

$$\overrightarrow{C} \overrightarrow{AI} = \frac{1}{5} \overrightarrow{BA}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AI} = -\frac{1}{4} \overrightarrow{IB}.$$

P Lời giải.

Từ hình vẽ ta có $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{IB}$.

Chọn đáp án (B)

CÂU 9. Đẳng thức nào mô tả đúng hình vẽ bên?

$$\overrightarrow{A}$$
 $3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$

(A)
$$3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$$
. (B) $3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$. (C) $\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}$. (D) $\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}$.

🗩 Lời giải.

Từ hình vẽ ta thấy $\overrightarrow{IA} = \frac{1}{3}\overrightarrow{AB} \Leftrightarrow 3\overrightarrow{IA} = \overrightarrow{AB} \Leftrightarrow 3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$.

Chọn đáp án (A)

CÂU 10. Cho M là một điểm trên đoạn AB sao cho $AM = \frac{1}{3}AB$. Khẳng định nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MB} = -\frac{2}{3} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MA} = -\frac{1}{2} \overrightarrow{MB}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MB} = 2\overrightarrow{AM}.$$

Ta có \overrightarrow{MB} , \overrightarrow{AB} cùng hướng và $MB = \frac{2}{3}AB$ nên $\overrightarrow{MB} = \frac{2}{3}\overrightarrow{AB}$.

Khẳng định sai là $\overrightarrow{MB} = -\frac{2}{3}\overrightarrow{AB}$.

Chọn đáp án (A)

CÂU 11. Cho đoạn thẳng AB và M là một điểm trên đoạn AB sao cho AB=5AM. Mệnh đề nào sau đây \mathbf{sai} ?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MA} = -\frac{1}{4} \overrightarrow{MB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MB} = \frac{4}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MB} = -\frac{4}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AM} = \frac{1}{5} \overrightarrow{AB}.$$

Dễ thấy rằng \overrightarrow{MB} và \overrightarrow{AB} là hai vectơ cùng hướng nên mệnh đề sai là $\overrightarrow{MB} = -\frac{4}{5}\overrightarrow{AB}$.

П

Chọn đáp án (C)

CÂU 12. Cho đoạn thẳng AB, M là một điểm trên đoạn thẳng AB sao cho $AM = \frac{1}{4}AB$. Khẳng định nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MA} = \frac{1}{3} \overrightarrow{MB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{BM} = \frac{3}{4} \overrightarrow{BA}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{MB} = -3\overrightarrow{MA}.$$

🗩 Lời giải.

Ta có \overrightarrow{MA} , \overrightarrow{MB} ngược hướng và $MA = \frac{1}{3}MB$ nên $\overrightarrow{MA} = -\frac{1}{3}\overrightarrow{AB}$.

Khẳng định sai là $\overrightarrow{MA} = \frac{1}{3}\overrightarrow{MB}$.

Chọn đáp án (C)

CÂU 13. Cho hình bình hành ABCD có tâm O. Mệnh đề nào sau đây \mathbf{sai} ?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{OD} = \frac{1}{2} \overrightarrow{BD}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AC} = 2\overrightarrow{OC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AC} = 2\overrightarrow{OA}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} = \overrightarrow{DC}.$$

🗭 Lời giải.

Ta có \overrightarrow{AC} và \overrightarrow{OA} là hai vecto ngược hướng và AC = 2OA nên $\overrightarrow{AC} = 2\overrightarrow{OA}$.

Chọn đáp án (C)

CÂU 14. Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó, vectơ \overrightarrow{GA} bằng với vectơ nào sau đây?

 $(\mathbf{A}) \ 2\overrightarrow{GM}.$

- $\bigcirc = \frac{2}{3}\overrightarrow{AM}.$
- $\bigcirc \frac{2}{3}\overrightarrow{GM}.$
- \bigcirc $\frac{1}{2}\overrightarrow{AM}$.

🗩 Lời giải.

Ta có $GA = \frac{2}{3}AM$ và \overrightarrow{GA} ngược hướng \overrightarrow{AM} nên $\overrightarrow{GA} = -\frac{2}{3}\overrightarrow{AM}$.

Chọn đáp án (B)

CÂU 15. Cho tam giác ABC có G là trọng tâm, M là trung điểm của BC. Đẳng thức nào sau đây đúng?

- \overrightarrow{A} $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}$.
- $\overrightarrow{\mathbf{B}}) \overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{GA} = 2\overrightarrow{GM}$.
- $\overrightarrow{\mathbf{D}} \overrightarrow{MG} = -\frac{1}{3} \overrightarrow{MA}.$

🗩 Lời giải.

Theo tính chất trung điểm ta có $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}$.

Chọn đáp án (A)

CÂU 16. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Khẳng định nào sau đây là sai?

- $\overrightarrow{A} \overrightarrow{MN} = \frac{1}{2} \overrightarrow{BC}.$
- $\overrightarrow{\mathbf{B}} \overrightarrow{MN} = -\frac{1}{2} \overrightarrow{BC}. \qquad \qquad \overrightarrow{\mathbf{C}} \overrightarrow{BC} = -2 \overrightarrow{NM}.$
- $\overrightarrow{\mathbf{D}}$ $\overrightarrow{BC} = 2\overrightarrow{MN}$.

🗩 Lời giải.

 Vì M,N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của $\triangle ABC$. Do đó $MN \parallel BC$ và $MN = \frac{1}{2}BC$.

Ta có các đẳng thức đúng là

- $\circ \quad \overrightarrow{MN} = \frac{1}{2}\overrightarrow{BC}.$
- $\circ \ \overrightarrow{BC} = 2\overrightarrow{MN}.$
- $\circ \quad \overrightarrow{BC} = -2\overrightarrow{NM}.$

Đẳng thức $\overrightarrow{MN} = -\frac{1}{2}\overrightarrow{BC}$ là khẳng định sai.

Chọn đáp án (B)

CÂU 17. Cho tam giác ABC có trọng tâm G và trung tuyến BM. Khẳng định nào sau đây là sai?

 $\overrightarrow{A} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{CA}.$

- $\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$, với mọi điểm O.
- $\overrightarrow{\mathbf{D}} \ \overrightarrow{GB} = \frac{2}{3} \overrightarrow{BM}.$

Do $\triangle ABC$ có trọng tâm G và trung tuyến BM nên ta có $BG = \frac{2}{3}BM$.

Lại có \overrightarrow{GB} và \overrightarrow{BM} là hai vectơ ngược hướng nên $\overrightarrow{GB} = -\frac{2}{3}\overrightarrow{BM}$.

Suy ra khẳng định sai là $\overrightarrow{GB} = \frac{2}{3}\overrightarrow{BM}$.

Chọn đáp án (D)

CÂU 18. Cho tam giác đều ABC với đường cao AH. Mệnh đề nào sau đây đúng?

- $\overrightarrow{A}\overrightarrow{AB} = \overrightarrow{AC}.$
- $|\overrightarrow{AH}| = \frac{\sqrt{3}}{2} |\overrightarrow{HC}|.$
- $|\overrightarrow{AC}| = 2 |\overrightarrow{HC}|.$

🗩 Lời giải.

Ta có 2 $\left|\overrightarrow{HC}\right| = \left|\overrightarrow{BC}\right| = BC = AC = \left|\overrightarrow{AC}\right|$.

Chọn đáp án (D)

CÂU 19. Cho hình vuông ABCD cạnh a. Giá trị của $\left|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}\right|$ bằng

 \bigcirc 2a.

 \bigcirc $2a\sqrt{2}$.

 \bigcirc 3a.

₽ Lời giải.

Ta có

$$\left|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}\right| = \left|\overrightarrow{AC} + \overrightarrow{AC}\right| = 2\left|\overrightarrow{AC}\right| = 2AC = 2a\sqrt{2}.$$

Chọn đáp án \bigcirc

CÂU 20. Cho tam giác ABC đều cạnh a. Khi đó, giá trị $\left|\overrightarrow{AB} + \overrightarrow{AC}\right|$ bằng

C 2a.

Dài giải.

Gọi M là trung điểm của BC.

Vì AM là đường trung tuyến của tam giác đều nên

$$AM = \frac{\sqrt{3}}{2} \cdot a = \frac{a\sqrt{3}}{2}.$$

Khi đó, ta có

$$\left|\overrightarrow{AB} + \overrightarrow{AC}\right| = \left|2\overrightarrow{AM}\right| = 2 \cdot AM = 2 \cdot \frac{a\sqrt{3}}{2} = a\sqrt{3}.$$

Chọn đáp án (A)

CÂU 21. Cho tam giác đều ABC cạnh bằng 4. Độ dài $\overrightarrow{AB} + \overrightarrow{AC}$ là **(B)** $\sqrt{5}$.

P Lời giải.

Gọi M là trung điểm của BC.

Vì AM là đường trung tuyến của tam giác đều cạnh 4 nên

$$AM = \frac{\sqrt{3}}{2} \cdot 4 = 2\sqrt{3}.$$

Do đó
$$\left|\overrightarrow{AB} + \overrightarrow{AC}\right| = \left|2\overrightarrow{AM}\right| = 2AM = 4\sqrt{3}.$$

Chọn đáp án (D)

CÂU 22. Cho tam giác ABC vuông tại A và AB=2, AC=3. Độ dài của vecto $\overrightarrow{BC}+\overrightarrow{AC}$ bằng **(C)** $\sqrt{13}$. **(D)** $2\sqrt{10}$.

Gọi I là trung điểm của AB. Ta có

$$\left|\overrightarrow{BC} + \overrightarrow{AC}\right| = \left|\overrightarrow{CB} + \overrightarrow{CA}\right| = \left|2\overrightarrow{CI}\right| = 2CI.$$

Tam giác AIC vuông tại A nên $CI = \sqrt{AI^2 + AC^2} = \sqrt{1^2 + 3^2} = \sqrt{10}$. Vậy $\left|\overrightarrow{BC} + \overrightarrow{AC}\right| = 2\sqrt{10}$.

Chọn đáp án (D)

CÂU 23. Cho hình vuông ABCD có cạnh bằng a. Tính $\left|\overrightarrow{AB} + \overrightarrow{DB}\right|$ theo a.

 $lackbox{\textbf{B}}$ a.

 $\bigcirc a\sqrt{5}$.

 \bigcirc $a\sqrt{3}$.

₽ Lời giải.

Gọi M là trung điểm của BC.

Ta có $\left| \overrightarrow{AB} + \overrightarrow{DB} \right| = \left| \overrightarrow{DC} + \overrightarrow{DB} \right| = 2 \left| \overrightarrow{DM} \right| = 2\sqrt{a^2 + \left(\frac{a}{2}\right)^2} = a\sqrt{5}.$

Chọn đáp án C

CÂU 24.

Cho ba lực $\overrightarrow{F_1} = \overrightarrow{MA}$, $\overrightarrow{F_2} = \overrightarrow{MB}$, $\overrightarrow{F_3} = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ đều bằng 100N và $\overrightarrow{AMB} = 60^\circ$. Khi đó, cường độ lực của $\overrightarrow{F_3}$ bằng

- \bigcirc 50 $\sqrt{2}$ N.
- **(c)** $25\sqrt{3}$ N.

🗩 Lời giải.

Gọi D là đỉnh thứ tư của hình bình hành \underline{MADB} và O là tâm hình bình hành.

Khi đó, hợp lực $\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MD} = 2\overrightarrow{MO}$.

Dễ thấy rằng $\triangle AMB$ là tam giác đều nên $MO = 100 \frac{\sqrt{3}}{2}$.

Suy ra hợp lực $\overrightarrow{F_1} + \overrightarrow{F_2}$ có độ lớn $100\sqrt{3}$.

Vì điểm M đứng yên nên độ lớn của lực $\overrightarrow{F_3}$ là $100\sqrt{3}N$.

Chọn đáp án \bigcirc

CÂU 25. Cho tam giác ABC là tam giác đều cạnh 2a với G là trọng tâm. Tính $|\overrightarrow{GB} + \overrightarrow{GC}|$.

 \mathbf{c} $\frac{a\sqrt{3}}{3}$.

p Lời giải.

Gọi M là trung điểm của BC.

Ta có $\left| \overrightarrow{GB} + \overrightarrow{GC} \right| = \left| 2\overrightarrow{GM} \right| = 2 \cdot GM = 2 \cdot \frac{1}{3} \cdot AM = \frac{2}{3} \cdot \frac{2a\sqrt{3}}{2} = \frac{2a\sqrt{3}}{3}.$

Chọn đáp án A

CÂU 26. Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. vectơ $\overrightarrow{GB} - \overrightarrow{CG}$ có độ dài bằng bao nhiêu?

A 4

B $2\sqrt{3}$.

c 8.

(D) 2.

🗩 Lời giải.

Gọi M là trung điểm của BC.

Ta có $\overrightarrow{GB} - \overrightarrow{CG} = \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}$.

Vì $\triangle ABC$ vuông tại A nên $AM = \frac{BC}{2} = 6 \Rightarrow GM = \frac{1}{3}AM = 2.$

Vậy $\left| \overrightarrow{GB} - \overrightarrow{CG} \right| = 2 \left| \overrightarrow{GM} \right| = 2GM = 4.$

Chọn đáp án (A)

CÂU 27. Tam giác ABC có AB = AC = a, $\widehat{ABC} = 120^{\circ}$. Độ dài vectơ tổng $\overrightarrow{AB} + \overrightarrow{AC}$ bằng

igatherapsi 2a.

 \bigcirc a

 \bigcirc 3a.

Dùi giải.

Gọi M là trung điểm của BC, ta có $\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}.$

Tam giác ABC cân tại A có $\widehat{BAC} = 120^{\circ}$ nên

$$\widehat{ABM} = \frac{1}{2} (180^{\circ} - 120^{\circ}) = 30^{\circ}.$$

Tam giác ABM vuông tại M có $\widehat{ABM}=30^\circ$ nên

$$AM = AB \cdot \sin 30^\circ = \frac{a}{2}.$$

CÂU 28. Cho hình thơi ABCD cạnh a, tâm O và $\widehat{BAD} = 60^{\circ}$. Độ dài vecto $\overrightarrow{OB} - \overrightarrow{CD}$ bằng

Vây
$$\left|\overrightarrow{AB} + \overrightarrow{AC}\right| = 2\left|\overrightarrow{AM}\right| = 2AM = a.$$

Chọn đáp án C

🗩 Lời giải.

Gọi G là trung điểm của đoạn OC.

Ta có
$$|\overrightarrow{OB} - \overrightarrow{CD}| = |\overrightarrow{DO} + \overrightarrow{DC}| = 2|\overrightarrow{DG}| = 2DG.$$

Tam giác DOG vuông tại O có $DO=\frac{a}{2},\,OG=\frac{OC}{2}=\frac{a\sqrt{3}}{4}$ nên

$$DG = \sqrt{DO^2 + OG^2} = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a\sqrt{3}}{4}\right)^2} = \frac{a\sqrt{7}}{4}.$$

Suy ra $\left|\overrightarrow{OB} - \overrightarrow{CD}\right| = 2 \cdot \frac{a\sqrt{7}}{4} = \frac{a\sqrt{7}}{2}$.

Chọn đáp án A

CÂU 29. Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính $|\overrightarrow{CA} - \overrightarrow{HC}|$ bằng

$$\bigcirc \frac{a}{2}$$
.

$$\bigcirc \frac{3a}{2}.$$

De Loi giải.

Gọi K là trung điểm của AH. Khi đó

$$\left| \overrightarrow{CA} - \overrightarrow{HC} \right| = \left| \overrightarrow{CA} + \overrightarrow{CH} \right| = \left| 2\overrightarrow{CK} \right| = 2CK.$$

Xét $\triangle KHC$ vuông tại H có $HC=\frac{a}{2},\,KH=\frac{1}{2}AH=\frac{a\sqrt{3}}{4}.$ Do đó

$$CK = \sqrt{CH^2 + HK^2} = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a\sqrt{3}}{4}\right)^2} = \frac{a\sqrt{7}}{4}.$$

 $\text{Vây } \left| \overrightarrow{CA} - \overrightarrow{HC} \right| = \frac{a\sqrt{7}}{4}.$

Chọn đáp án B

CÂU 30. Cho tam giác OAB vuông cân tại O với OA = OB = a. Tính độ dài vecto $\overrightarrow{u} = 8\overrightarrow{OA} - 6\overrightarrow{OB}$.

Dài giải.

Lấy điểm M sao cho $\overrightarrow{OM} = 8\overrightarrow{OA}$. Khi đó

$$OM = \left| \overrightarrow{OM} \right| = \left| 8\overrightarrow{OA} \right| = 8OA = 8a.$$

Lấy điểm N sao cho $\overrightarrow{ON} = 6\overrightarrow{OB}$. Khi đó

$$ON = \left| \overrightarrow{ON} \right| = \left| 6\overrightarrow{OB} \right| = 6OB = 6a.$$

Vì $OA \perp OB$ nên $OM \perp ON$, hay $\triangle OMN$ vuông tại O. Do đó

$$\begin{split} |\overrightarrow{u}| &= \left| 8\overrightarrow{OA} - 6\overrightarrow{OB} \right| = \left| \overrightarrow{OM} - \overrightarrow{ON} \right| \\ &= \left| \overrightarrow{NM} \right| = MN = \sqrt{OM^2 + ON^2} \\ &= \sqrt{(8a)^2 + (6a)^2} = 10a. \end{split}$$

Chọn đáp án (D)

CÂU 31. Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài vec-tơ $\overrightarrow{u} = 2\overrightarrow{AB} + 3\overrightarrow{AC}$.

$$(\mathbf{A}) |\vec{u}| = 18.$$

$$(\mathbf{B}) |\vec{u}| = 6\sqrt{5}.$$

$$|\vec{u}| = 9.$$

D Lời giải.

Goi D, E là hai điểm thỏa $\overrightarrow{AD} = 2\overrightarrow{AB}$ và $\overrightarrow{AE} = 3\overrightarrow{AC}$.

Suy ra AD = 6, AE = 12.

Gọi F là điểm sao cho tứ giác ADFE là hình chữ nhật.

Suy ra $AF = \sqrt{AD^2 + AE^2} = \sqrt{6^2 + 12^2} = 6\sqrt{5}$.

Ta có

$$\overrightarrow{u} = 2\overrightarrow{AB} + 3\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AF}.$$

Suy ra $|\vec{u}| = |\overrightarrow{AF}| = 6\sqrt{5}$.

Chọn đáp án B

CÂU 32. Gọi G là trọng tâm của tam giác ABC. Tập hợp điểm M trong mặt phẳng chứa tam giác ABC sao cho $\left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right| = 6$ là

- \triangle đường tròn ngoại tiếp tam giác ABC.
- $oxed{\textbf{B}}$ đường tròn tâm G bán kính bằng 1.

 \bigcirc đường tròn tâm G bán kính bằng 2.

lacksquare đường tròn tâm G bán kính bằng 6.

D Lời giải.

Ta có G là trọng tâm $\triangle ABC$ nên $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

Do đó $\left| 3\overrightarrow{MG} \right| = 6 \Leftrightarrow MG = 2.$

Vậy tập hợp điểm M là đường tròn tâm G bán kính bằng 2.

Chọn đáp án C

CÂU 33. Cho tam giác đều ABC có cạnh bằng 2a và G là trọng tâm của tam giác. Khi đó, giá trị $\left|\overrightarrow{AB} - \overrightarrow{GC}\right|$ là

Dài giải.

Vì G là trọng tâm của $\triangle ABC$ nên ta có $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Do đó

$$\left|\overrightarrow{AB} - \overrightarrow{GC}\right| = \left|\overrightarrow{GB} - \overrightarrow{GA} - \overrightarrow{GC}\right| = \left|\overrightarrow{GB} + \overrightarrow{GB}\right| = \left|2\overrightarrow{GB}\right| = 2GB.$$

Gọi M là trung điểm AC. Khi đó

$$GB = \frac{2}{3}BM = \frac{2}{3} \cdot 2a \cdot \frac{\sqrt{3}}{2} = \frac{2a\sqrt{3}}{3}.$$

Suy ra $\left| \overrightarrow{AB} - \overrightarrow{GC} \right| = 2 \cdot \frac{2a\sqrt{3}}{3} = \frac{4a\sqrt{3}}{3}$.

Chọn đáp án C

CÂU 34. Cho ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cùng điểm đặt tại O. Trong đó, có hai lực \vec{F}_1 , \vec{F}_2 có phương hợp với nhau một góc 90° và lực \vec{F}_3 ngược hượng với lực \vec{F}_1 . Ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cường độ lần lượt là 100 N, 200 N và 300 N. Cường độ lực tổng hợp của ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 là

B
$$100\sqrt{2}$$
 N.

(D) $200\sqrt{2}$ N.

🗩 Lời giải.

Gọi
$$\vec{F}_{13} = \vec{F}_1 + \vec{F}_3$$
.

Suy ra
$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{F}_{13} + \vec{F}_2$$
.

Gọi
$$\vec{F}_{13} = \vec{F}_1 + \vec{F}_3$$
.
Vì \vec{F}_1 ngược hướng với \vec{F}_3 nên $F_{13} = |F_1 - F_3| = 200$ N.
Suy ra $\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{F}_{13} + \vec{F}_2$.
Do $\vec{F}_2 \perp \vec{F}_{13}$, suy ra $F = \sqrt{F_2^2 + F_{13}^2} = \sqrt{200^2 + 200^2} = 200\sqrt{2}$ N.

Chọn đáp án (D)

CÂU 35. Cho hình vuông ABCD có canh bằng 1. Đô dài của vecto $\vec{u} = 12\overrightarrow{AC} - 7\overrightarrow{AB}$ bằng

$$|\overrightarrow{u}| = 17.$$

$$\mathbf{B} |\vec{u}| = 5.$$

$$|\vec{u}| = 13.$$

$$\mathbf{D} |\vec{u}| = 12\sqrt{2} - 7.$$

🗭 Lời giải.

Gọi O, M, N lần lượt là tâm của hình vuông ABCD, trung điểm của đoạn AD, trung điểm của đoan DM. Ta có

$$12\overrightarrow{AC} - 7\overrightarrow{AB} = 6\overrightarrow{AO} - 6\overrightarrow{AB} - \overrightarrow{AB} = 6\overrightarrow{BO} - \overrightarrow{AB}$$

$$= 3\overrightarrow{BD} + \overrightarrow{BA} = 2\overrightarrow{BD} + (\overrightarrow{BD} + \overrightarrow{BA})$$

$$= 2\overrightarrow{BD} + 2\overrightarrow{BM} = 2(\overrightarrow{BD} + \overrightarrow{BM})$$

$$= 2 \cdot 2\overrightarrow{BN} = 4\overrightarrow{BN}.$$

Do đó $|\vec{u}| = 4BN$.

Xét
$$\triangle ABN$$
 vuông tại A , có $BN = \sqrt{AB^2 + AN^2} = \sqrt{1^2 + \left(\frac{3}{4}\right)^2} = \frac{5}{4}$.

Vây
$$|\vec{u}| = 4 \cdot \frac{5}{4} = 5.$$

Chọn đáp án (B)

CÂU 36. Cho hình vuông ABCD có cạnh bằng 1. Độ dài của vecto $\vec{u} = 3\vec{AC} - 7\vec{AB}$ là

$$|\vec{u}| = 5.$$

B
$$|\vec{u}| = 12\sqrt{2} - 7.$$

$$|\vec{u}| = 17.$$

$$\boxed{\mathbf{D}} |\overrightarrow{u}| = 13.$$

🗩 Lời giải.

Ta có
$$\vec{u} = 3(\overrightarrow{AB} + \overrightarrow{AD}) - 7\overrightarrow{AB} = -4\overrightarrow{AB} + 3\overrightarrow{AD}$$
.

Dựng E, F, G sao cho $\overrightarrow{AE} = -4\overrightarrow{AB}, \overrightarrow{AF} = 3\overrightarrow{AD}$ và \overrightarrow{AEGF} là hình bình hành.

Vì $AB \perp AD$ nên $AE \perp AF$. Do đó AEGF là hình chữ nhật.

Vậy
$$\vec{u} = \overrightarrow{AG}$$
 và $|\vec{u}| = |\overrightarrow{AG}| = AG = EF = \sqrt{AE^2 + AF^2} = \sqrt{4^2 + 3^2} = 5.$

Chọn đáp án (A)

Dạng 2. Chứng minh đẳng thức vecto, thu gọn biểu thức

Phương pháp giải

- ❷ HƯỚNG 1. Biến đổi một vế thành vế còn lại. Khi đó
 - a) Nếu xuất phát từ vế phức tạp ta cần thực hiện việc đơn giản biểu thức.
 - b) Nếu xuất phát từ vế đơn giản ta cần thực hiện việc phân tích vecto.
- ❷ HƯỚNG 2. Biến đổi cả hai vế thành một vectơ hoặc biểu thức vectơ.

- ❷ HƯỚNG 3. Biến đổi đẳng thức cần chứng minh tương đương với một đẳng thức vectơ đã biết đúng.
- ❷ HƯỚNG 4. Xuất phát từ một đẳng thức vectơ đã biết đúng biến đổi thành đẳng thức vectơ cần chứng minh.

Khi thực hiện các phép biến đổi cần lưu ý

- a) Quy tắc ba điểm: Với ba điểm A, B, C bất kì ta luôn có $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$.
- b) Quy tắc hình bình hành: Với hình bình hành ABCD ta luôn có $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.
- c) Quy tắc hiệu vectơ: Với ba điểm A, B, O bất kì ta luôn có $\overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{AB}$.
- d) $Tinh \ chất \ trung \ diễm của đoạn thẳng: Cho đoạn thẳng <math>AB$ ta có

$$I$$
 là trung điểm của $AB \Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
 $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}, M$ là điểm bất kì.

e) $Tinh \ chất \ trọng \ tâm \ tam \ giác:$ Cho tam giác ABC ta có

$$G$$
 là trọng tâm tam giác $ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}, M$ là điểm bất kì .

f) Các tính chất của phép cộng, trừ vecto và phép nhân một số với một vecto.

1. Ví du minh hoa

VÍ DỤ 1. Cho tam giác ABC với trọng tâm G. Chứng minh rằng $\overrightarrow{CA} + \overrightarrow{CB} = 3\overrightarrow{CG}$.

🗩 Lời giải.

Gọi
$$K$$
 là trung điểm của AB thì $\overrightarrow{CA} + \overrightarrow{CB} = 2\overrightarrow{CK}$. (1)
Vì G là trọng tâm của tam giác ABC nên $\overrightarrow{CG} = \frac{2}{3}\overrightarrow{CK}$, tức là $3\overrightarrow{CG} = 2\overrightarrow{CK}$. (2)
Từ (1) và (2) ta có $\overrightarrow{CA} + \overrightarrow{CB} = 3\overrightarrow{CG}$.

 \bigvee Í Dụ 2. Cho hình bình hành ABCD. Gọi G là trọng tâm tam giác ABD. Chứng minh rằng

$$\overrightarrow{AB} + \overrightarrow{2AC} + \overrightarrow{AD} = 9\overrightarrow{AG}.$$

🗩 Lời giải.

Vì ABCD là hình bình hành nên ta có $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$. Suy ra

$$\overrightarrow{AB} + 2\overrightarrow{AC} + \overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{AD}) + 2\overrightarrow{AC}$$
$$= \overrightarrow{AC} + 2\overrightarrow{AC} = 3\overrightarrow{AC}.$$
(1)

Gọi O là tâm hình bình hành ABCD.

Vì
$$G$$
 là trọng tâm tam giác \overrightarrow{ABD} nên ta có $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AO} = \frac{1}{3}\overrightarrow{AC}$. Suy ra $\overrightarrow{AC} = 3\overrightarrow{AG}$. Từ (1) và (2) ta có $\overrightarrow{AB} + \overrightarrow{2AC} + \overrightarrow{AD} = 9\overrightarrow{AG}$.

VÍ DỤ 3. Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD. Chứng minh rằng $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{MN}$.

Dèi giải.

Cách 1. Ta có

$$\overrightarrow{AC} = \overrightarrow{AM} + \overrightarrow{MN} + \overrightarrow{NC},$$

$$\overrightarrow{BD} = \overrightarrow{BM} + \overrightarrow{MN} + \overrightarrow{ND}.$$

Cộng hai đẳng thức trên theo vế ta được:

$$\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{MN} + \left(\overrightarrow{AM} + \overrightarrow{BM}\right) + \left(\overrightarrow{NC} + \overrightarrow{ND}\right)$$
$$= 2\overrightarrow{MN}.$$

(Vì $\overrightarrow{AM} + \overrightarrow{BM} = \overrightarrow{0}$ và $\overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}$). Cách 2. Ta có

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} + \overrightarrow{CN},
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BD} + \overrightarrow{DN}.$$

Cộng hai đẳng thức trên theo vế ta được

$$\begin{array}{rcl} 2\overrightarrow{MN} & = & \left(\overrightarrow{AM} + \overrightarrow{BM}\right) + \left(\overrightarrow{NC} + \overrightarrow{ND}\right) + \overrightarrow{AC} + \overrightarrow{BD} \\ & = & \overrightarrow{AC} + \overrightarrow{BD}. \end{array}$$

(Vì $\overrightarrow{AM} + \overrightarrow{BM} = \overrightarrow{0}$ và $\overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}$).

lack A Ta cũng có đẳng thức $\overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{MN}$. Học sinh chứng minh tương tự.

VÍ DỤ 4. Cho tam giác ABC. Lần lượt lấy các điểm M, N, P trên các đoạn thẳng AB, BC và CA sao cho $AM = \frac{1}{3}AB$, $BN = \frac{1}{3}BC, CP = \frac{1}{3}CA$. Chứng minh rằng

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC} \Leftrightarrow \overrightarrow{AN} - \overrightarrow{AB} = \frac{1}{3}\overrightarrow{BC}.$$
 (1)

$$\overrightarrow{CP} = \frac{1}{3}\overrightarrow{CA} \Leftrightarrow \overrightarrow{BP} - \overrightarrow{BC} = \frac{1}{3}\overrightarrow{CA}. \tag{2}$$

$$\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} \Leftrightarrow \overrightarrow{CM} - \overrightarrow{CA} = \frac{1}{3}\overrightarrow{AB}. \tag{3}$$

Từ (1), (2) và (3) ta suy ra

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} - \left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}\right) = \frac{1}{3}\left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}\right)$$

$$\Leftrightarrow \overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \frac{4}{3}\left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}\right)$$

$$\Leftrightarrow \overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \frac{4}{3}\overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}.$$

 \mathbf{V} Í \mathbf{D} \mathbf{U} \mathbf{J} \mathbf{U} \mathbf{J} \mathbf{U} $\mathbf{$

a)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
.

b)
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$$
.

🗩 Lời giải.

a) Chứng minh $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$.

Vì O là trung điểm của AC và BD nên ta có

$$\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{0},$$

$$\overrightarrow{OB} + \overrightarrow{OD} = \overrightarrow{0}.$$

Do đó
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
.

b) Theo quy tắc ba điểm ta có

$$\overrightarrow{MA} = \overrightarrow{MO} + \overrightarrow{OA},$$

$$\overrightarrow{MB} = \overrightarrow{MO} + \overrightarrow{OB},$$

$$\overrightarrow{MC} = \overrightarrow{MO} + \overrightarrow{OC},$$

$$\overrightarrow{MD} = \overrightarrow{MO} + \overrightarrow{OD}.$$

Suy ra
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO} + \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}\right)$$
.
Theo $\circ a$ ta có $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$.
Vây $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$ với M là điểm bất kì.

 \mathbf{V} Í \mathbf{D} \mathbf{U} 6. Cho hình bình hành ABCD. Gọi M là trung điểm CD. Lấy N trên đoạn BM sao cho BN=2MN. Chứng minh rằng

a)
$$3\overrightarrow{AB} + 4\overrightarrow{CD} = \overrightarrow{CM} + \overrightarrow{ND} + \overrightarrow{MN}$$
,

b)
$$4\overrightarrow{AB} + 2\overrightarrow{BD} = 3\overrightarrow{AN}$$
.

Dèi giải.

a) Ta có

$$VT = 3\overrightarrow{AB} + 4\overrightarrow{CD} = 3(\overrightarrow{AB} + \overrightarrow{CD}) + \overrightarrow{CD} = \overrightarrow{CD}.$$
 (1)
$$VP = \overrightarrow{CM} + \overrightarrow{MN} + \overrightarrow{ND} = \overrightarrow{CD}.$$
 (2)

Từ (1) và (2) suy ra VT = VP.

b) Ta có N thuộc đoạn BM và BN=2MNnên N là trọng tâm của tam giác BCD. Ta có

$$\begin{split} VP &=& 3\overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} = 2\overrightarrow{AC}. \\ VT &=& 4\overrightarrow{AB} + 2\overrightarrow{BD} \\ &=& 2\overrightarrow{AB} + 2(\overrightarrow{AB} + \overrightarrow{BD}) \\ &=& 2\overrightarrow{AB} + 2\overrightarrow{AD} \\ &=& 2\overrightarrow{AB} + 2\overrightarrow{BC} \\ &=& 2\left(\overrightarrow{AB} + \overrightarrow{BC}\right) = 2\overrightarrow{AC}. \end{split}$$

$$\overrightarrow{\text{Vay }} 4\overrightarrow{AB} + 2\overrightarrow{BD} = 3\overrightarrow{AN}$$

-

2. Bài tập áp dụng

BÀI 1. Cho hình bình hành ABCD có tâm O. Chứng minh rằng

$$\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BD} = 4\overrightarrow{OD}.$$

Lời giải.

Ta có

$$\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BD} = 2\overrightarrow{BD} = 4\overrightarrow{OD}.$$

BÀI 2. Gọi G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C'. Chứng minh rằng

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$$

🗩 Lời giải.

Áp dụng quy tắc ba điểm, ta có

$$\overrightarrow{AA'} = \overrightarrow{AG} + \overrightarrow{GG'} + \overrightarrow{GA'},$$

$$\overrightarrow{BB'} = \overrightarrow{BG} + \overrightarrow{GG'} + \overrightarrow{GB'},$$

$$\overrightarrow{CC'} = \overrightarrow{CG} + \overrightarrow{GG'} + \overrightarrow{GC'}.$$

Suy ra $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'} + \left(\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG}\right) + \left(\overrightarrow{GA'} + \overrightarrow{GB'} + \overrightarrow{GC'}\right)$.

Vì G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C' nên ta có

$$\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0},$$

$$\overrightarrow{GA'} + \overrightarrow{GB'} + \overrightarrow{GC'} = \overrightarrow{0}.$$

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$$

BÀI 3. Cho tứ giác ABCD. Gọi M, N, I lần lượt là trung điểm của AC, BD và MN. Chứng minh rằng

a)
$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$$
,

b)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OI}$$
 (với O là điểm bất kì).

Dèi giải.

a) Vì M, N lần lượt là trung điểm của AC và BD nên ta có

$$\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM},$$

 $\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN}.$

Suy ra

$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = (\overrightarrow{IA} + \overrightarrow{IC}) + (\overrightarrow{IB} + \overrightarrow{ID})$$
$$= 2(\overrightarrow{IM} + \overrightarrow{IN}).$$

Mặt khác I là trung điểm của MN nên $\overrightarrow{IM} + \overrightarrow{IN} = \overrightarrow{0}$.

Vậy
$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = 2\overrightarrow{0} = \overrightarrow{0}$$
.

b) Với điểm O bất kì ta có

$$\overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{OM},$$

$$\overrightarrow{OB} + \overrightarrow{OD} = 2\overrightarrow{ON},$$

$$\overrightarrow{OM} + \overrightarrow{ON} = 2\overrightarrow{OI}.$$

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \left(\overrightarrow{OA} + \overrightarrow{OC}\right) + \left(\overrightarrow{OB} + \overrightarrow{OD}\right)$$
$$= 2\overrightarrow{OM} + 2\overrightarrow{ON}$$

$$= 2\left(\overrightarrow{OM} + \overrightarrow{ON}\right)$$
$$= 4\overrightarrow{OI}.$$

BÀI 4. Cho tam giác ABC không vuông. Gọi G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC. Gọi D là điểm đối xứng của A qua O và M là trung điểm của cạnh BC. Chứng minh

a)
$$\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$$
.

d)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$$
.

b)
$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$$
.

e)
$$\overrightarrow{OH} = 3\overrightarrow{OG}$$
.

c)
$$\overrightarrow{HA} - \overrightarrow{HB} - \overrightarrow{HC} = 2\overrightarrow{OA}$$
.

f)
$$\overrightarrow{AH} = 2\overrightarrow{OM}$$
.

🗩 Lời giải.

a) Chứng minh $\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$.

Chung minn HB + HC = HD.

Ta có $BH \parallel CD$ (vì cùng vuông góc với AC). Và $BD \parallel CH$ (vì cùng vuông góc với AB).

Suy ra *BDCH* là hình bình hành.

Vậy $\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$ (quy tắc hình bình hành).

b) Chứng minh $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$. Ta có

$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HA} + \overrightarrow{HD}$$
 (theo ý trên)
= $2\overrightarrow{HO}$ (vì O là trung điểm của AD).

c) Chứng minh $\overrightarrow{HA}-\overrightarrow{HB}-\overrightarrow{HC}=2\overrightarrow{OA}.$ Ta có

$$\overrightarrow{HA}-\overrightarrow{HB}-\overrightarrow{HC}=\overrightarrow{HA}-\left(\overrightarrow{HB}+\overrightarrow{HC}\right)=\overrightarrow{HA}-\overrightarrow{HD}=\overrightarrow{DA}=2\overrightarrow{OA}.$$

d) Chứng minh $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$. Ta có

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OH} + \overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} \text{ (Quy tắc 3 điểm)}$$

$$= 3\overrightarrow{OH} + 2\overrightarrow{HO} \text{ (theo ý (2))}$$

$$= \overrightarrow{OH}.$$

- e) Chứng minh $\overrightarrow{OH} = 3\overrightarrow{OG}$. Theo ý (4) ta có $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$. Mặt khác, G là trọng tâm tam giác \overrightarrow{ABC} nên $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$. Suy ra $\overrightarrow{OH} = 3\overrightarrow{OG}$.
- f) Chứng minh $\overrightarrow{AH}=2\overrightarrow{OM}.$ Trong tam giác AHD, ta có OM là đường trung bình nên $\overrightarrow{AH}=2\overrightarrow{OM}.$

BÀI 5. Dựng bên ngoài tứ giác ABCD các hình bình hành ABEF, BCGH, CDIJ, DAKL.

- a) Chứng minh rằng $\overrightarrow{KF} + \overrightarrow{EH} + \overrightarrow{GJ} + \overrightarrow{IL} = \overrightarrow{0}$.
- b) Chứng minh rằng $\overrightarrow{EL} \overrightarrow{HI} = \overrightarrow{FK} \overrightarrow{GJ}$.

🗩 Lời giải.

a) Chứng minh rằng $\overrightarrow{KF} + \overrightarrow{EH} + \overrightarrow{GJ} + \overrightarrow{IL} = \overrightarrow{0}$.

Ta có

$$\overrightarrow{KF} = \overrightarrow{KA} + \overrightarrow{AF}. \quad (1)$$

$$\overrightarrow{EH} = \overrightarrow{EB} + \overrightarrow{BH}. \quad (2)$$

$$\overrightarrow{GJ} = \overrightarrow{GC} + \overrightarrow{CJ}. \quad (3)$$

$$\overrightarrow{IL} = \overrightarrow{ID} + \overrightarrow{DL}. \quad (4)$$

Cộng vế theo vế của (1), (2), (3), (4) ta được

$$= \underbrace{(\overrightarrow{KA} + \overrightarrow{DL})}_{\overrightarrow{0}} + \underbrace{(\overrightarrow{EB} + \overrightarrow{AF})}_{\overrightarrow{0}} + \underbrace{(\overrightarrow{BH} + \overrightarrow{GC})}_{\overrightarrow{0}} + \underbrace{(\overrightarrow{CJ} + \overrightarrow{ID})}_{\overrightarrow{0}}.$$

Suy ra $\overrightarrow{KF} + \overrightarrow{EH} + \overrightarrow{GJ} + \overrightarrow{IL} = \overrightarrow{0}$ (dpcm).

b) Chứng minh rằng $\overrightarrow{EL} - \overrightarrow{HI} = \overrightarrow{FK} - \overrightarrow{GJ}$. Ta có

$$\overrightarrow{EL} - \overrightarrow{HI} = \overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DL} - (\overrightarrow{HG} + \overrightarrow{GC} + \overrightarrow{CD} + \overrightarrow{DI})$$

$$= \overrightarrow{EB} + \overrightarrow{DL} - (\overrightarrow{GC} + \overrightarrow{DI}) \text{ (vì } BCGH \text{ là hình bình hành nên } \overrightarrow{BC} = \overrightarrow{HG})$$

$$= \overrightarrow{FA} + \overrightarrow{AK} - (\overrightarrow{GC} + \overrightarrow{CJ})$$

$$= \overrightarrow{FK} - \overrightarrow{GJ}.$$

(Vì ABEF, ADLK, CDIJ là các hình bình hành nên $\overrightarrow{EB} = \overrightarrow{FA}$, $\overrightarrow{DL} = \overrightarrow{AK}$, $\overrightarrow{DI} = \overrightarrow{CJ}$.)

BÀI 6. Cho đường tròn (I) nội tiếp tam giác ABC có $AB=c,\ AC=b,\ BC=a.$ Chứng minh rằng

$$a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}.$$

- Qua C dựng đường thẳng song song với IA, cắt đường thẳng BI tại E.
- Qua C dựng đường thẳng song song với IB, cắt đường thẳng AI tại F.
- IECF là hình bình hành nên $\overrightarrow{IC} = \overrightarrow{IE} + \overrightarrow{IF}$. (1).
- Gọi D là giao điểm của AI và BC. Vì $ID \parallel CE$ và AD là đường phân giác nên ta có

$$\frac{BI}{IE} = \frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b} \Rightarrow \overrightarrow{IE} = -\frac{b}{c}\overrightarrow{IB}.$$
 (2)

Tương tự ta chứng minh được $\overrightarrow{IF} = -\frac{a}{c}\overrightarrow{IA}$. (3)

Từ (1), (2), (3) suy ra

$$\overrightarrow{IC} = -\frac{b}{c}\overrightarrow{IB} - \frac{a}{c}\overrightarrow{IA} \Leftrightarrow a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}.$$

Bài tập tương tự: Cho đường tròn (I) nội tiếp tam giác ABC. Chứng minh rằng

$$\sin A \cdot \overrightarrow{IA} + \sin B \cdot \overrightarrow{IB} + \sin C \cdot \overrightarrow{IC} = \overrightarrow{0}$$

BÀI 7. Cho tam giác ABC và một điểm M bất kì nằm trong tam giác ABC. Đặt $S_{MBC} = S_a$, $S_{MCA} = S_b$, $S_{MAB} = S_c$. Chứng minh rằng

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

A

M

A'

Gọi A' là giao điểm của đường thẳng MA với BC.

Ta có
$$\overrightarrow{MA'} = \frac{A'C}{BC}\overrightarrow{MB} + \frac{A'B}{BC}\overrightarrow{MC}$$
.

Ta có
$$\overrightarrow{MA'} = \frac{A'C}{BC}\overrightarrow{MB} + \frac{A'B}{BC}\overrightarrow{MC}$$
.

Mà $\frac{A'C}{A'B} = \frac{S_{MA'C}}{S_{MA'B}} = \frac{S_{MAC}}{S_{MAB}} = \frac{S_b}{S_c}$ nên

$$\frac{A'C}{BC} = \frac{S_b}{S_b + S_c}, \ \frac{A'B}{BC} = \frac{S_c}{S_c + S_b}.$$

Suy ra
$$\overrightarrow{MA'} = \frac{S_b}{S_b + S_c} \overrightarrow{MB} + \frac{S_c}{S_b + S_c} \overrightarrow{MC}.$$
 (1)

Mặt khác

$$\frac{MA'}{MA} = \frac{S_{MA'B}}{S_{MAB}} = \frac{S_{MA'C}}{S_{MAC}} = \frac{S_{MA'B} + S_{MA'C}}{S_{MAB} + S_{MAC}} = \frac{S_a}{S_b + S_c} \Rightarrow \overrightarrow{MA'} = \frac{-S_a}{S_b + S_c} \overrightarrow{MA}. \tag{2}$$

Thay (2) vào (1) ta được

$$-S_a \overrightarrow{MA} = S_b \overrightarrow{MB} + S_c \overrightarrow{MC} \Leftrightarrow S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

- a) Cho M trùng với trọng tâm G của tam giác ABC, ta được $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
- b) Cho M trùng với tâm đường tròn nội tiếp I của tam giác ABC, ta được kết quả

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}.$$

c) Nếu tam giác ABC đều thì với điểm M bất kì trong tam giác, Ta có

$$x\overrightarrow{MA} + y\overrightarrow{MB} + z\overrightarrow{MC} = \overrightarrow{0}$$

trong đó x, y, z lần lượt là khoảng cách từ M đến các cạnh BC, CA và AB.

- d) Khi M nằm ngoài tam giác ABC, ta có các kết quả như sau
 - (a) Nếu M thuộc góc \widehat{BAC} và góc đối đỉnh của nó thì

$$-S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

(b) Nếu M thuộc góc \widehat{ABC} và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} - S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

(c) Nếu M thuộc góc $\widehat{A}\widehat{C}\widehat{B}$ và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} - S_c \overrightarrow{MC} = \overrightarrow{0}.$$

3. Bài tập điền khuyết

CÂU 1. Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Biết rằng $\overrightarrow{AB} + 2\overrightarrow{AC} = x\overrightarrow{AM}$. Tìm x.

Đáp án:

🗩 Lời giải.

$$M$$
 là điểm thuộc cạnh BC và $MB=2MC \;\;\Leftrightarrow\;\; \overrightarrow{MB}=-2\overrightarrow{MC}$

$$\Leftrightarrow \quad \overrightarrow{AB} - \overrightarrow{AM} = -2(\overrightarrow{AC} - \overrightarrow{AM})$$

$$\Leftrightarrow \overrightarrow{AB} + 2\overrightarrow{AC} = 3\overrightarrow{AM}.$$

CÂU 2. Cho tứ giác \overrightarrow{ABCD} . Gọi M,N lần lượt thuộc các đoạn thẳng AB,CD sao cho MB=2MA và NC=2ND. Biết rằng $2\overrightarrow{AD}+\overrightarrow{BC}=x\overrightarrow{MN}$. Tìm x.

Đáp án:

Dòi giải.

Vì M, N lần lượt thuộc các đoạn thẳng AB, CD sao cho MB=2MA và NC=2ND nên ta có $2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$ và $2\overrightarrow{DN}+\overrightarrow{CN}=\overrightarrow{0}$.

Áp dụng quy tắc ba điểm, ta có

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}.$$
 (1)

$$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}$$

$$\Rightarrow 2\overrightarrow{MN} = 2\overrightarrow{MB} + 2\overrightarrow{BC} + 2\overrightarrow{CN}.$$
 (2)

Cộng (1) và (2) vế theo vế ta được

$$\begin{split} 3\overrightarrow{MN} &= \left(2\overrightarrow{MA} + \overrightarrow{MB}\right) + 2\overrightarrow{AD} + \overrightarrow{BC} + \left(2\overrightarrow{DN} + \overrightarrow{CN}\right) \\ \Leftrightarrow & 3\overrightarrow{MN} = 2\overrightarrow{AD} + \overrightarrow{BC} \\ \Leftrightarrow & \overrightarrow{MN} = \frac{2}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{BC}. \end{split}$$

CÂU 3. Cho tam giác đều ABC tâm O. Lấy M là một điểm bất kì trong tam giác. Gọi D, E, F lần lượt là hình chiếu của M trên BC, CA, AB. Biết rằng $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = x\overrightarrow{MO}$, tìm x.

Đáp án:

🗭 Lời giải.

Qua điểm M dựng

- \odot đường thẳng song song với BC, cắt các cặp đường thẳng AB, AC tại V, Z;
- \odot đường thẳng song song với AB, cắt các cặp đường thẳng AC, BC tại T, X;
- \odot đường thẳng song song với BC, cắt các cặp đường thẳng AB, AC tại V, Z.

Ta thấy các tứ giác MTAU, MVBX, MYCZ là các hình bình hành và các điểm D, E, F tương ứng là trung điểm của XY, ZT, UV.

Từ đó suy ra

$$\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = \frac{1}{2} \left(\overrightarrow{MX} + \overrightarrow{MY} \right) + \frac{1}{2} \left(\overrightarrow{MZ} + \overrightarrow{MT} \right) + \frac{1}{2} \left(\overrightarrow{MU} + \overrightarrow{MV} \right)$$

$$= \frac{1}{2} \left(\overrightarrow{MT} + \overrightarrow{MU} \right) + \frac{1}{2} \left(\overrightarrow{MV} + \overrightarrow{MX} \right) + \frac{1}{2} \left(\overrightarrow{MY} + \overrightarrow{MZ} \right)$$

$$= \frac{1}{2} \left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right)$$

$$= \frac{3}{2} \overrightarrow{MO}.$$

CÂU 4. Cho hình bình hành ABCD có tâm O và E là trung điểm AD. Tìm các số thực x và y biết rằng

a)
$$\overrightarrow{EA} + \overrightarrow{EB} + 2\overrightarrow{EC} = x\overrightarrow{AB}$$
. Dáp án:

b)
$$\overrightarrow{EB} + 2\overrightarrow{EA} + 4\overrightarrow{ED} = y\overrightarrow{EC}$$
. Dáp án:

🗩 Lời giải.

a) Theo tính chất trung điểm ta có $4\overrightarrow{EO} = 2\overrightarrow{AB}$. Khi đó

$$\overrightarrow{EA} + \overrightarrow{EB} + 2\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{EB} + 2\overrightarrow{EC}$$

$$= \overrightarrow{EA} + \overrightarrow{EA} + \overrightarrow{AB} + 2\overrightarrow{EC}$$

$$= 2(\overrightarrow{EA} + \overrightarrow{EC}) + \overrightarrow{AB}$$

$$= 4\overrightarrow{EO} + \overrightarrow{AB}$$

$$= 2\overrightarrow{AB} + \overrightarrow{AB} = 3\overrightarrow{AB}.$$

b) Ta có

$$\overrightarrow{EB} + 2\overrightarrow{EA} + 4\overrightarrow{ED} = \overrightarrow{EB} + 2\overrightarrow{EA} + 4\overrightarrow{ED}$$

$$= \overrightarrow{EA} + \overrightarrow{AB} + 2\overrightarrow{ED} + 2\left(\overrightarrow{EA} + \overrightarrow{ED}\right)$$

$$= \left(\overrightarrow{EA} + \overrightarrow{ED}\right) + \overrightarrow{ED} + \overrightarrow{AB}$$

$$= \overrightarrow{ED} + \overrightarrow{DC} = \overrightarrow{EC}.$$

CÂU 5. Cho tam giác ABC. Dựng bên ngoài tam giác các hình bình hành ABIF, BCPQ, CARS. Biết rằng $\overrightarrow{RF} + \overrightarrow{IQ} + \overrightarrow{PS} =$ $x(\overrightarrow{AB} + \overrightarrow{AC})$. Tim x.

Đáp án:

₽ Lời giải.

Ta có
$$\begin{cases} \overrightarrow{RF} = \overrightarrow{RA} + \overrightarrow{AF} & (1) \\ \overrightarrow{IQ} = \overrightarrow{IB} + \overrightarrow{BQ} & (2) \\ \overrightarrow{PS} = \overrightarrow{PC} + \overrightarrow{CS}. & (3) \end{cases}$$

Công vế theo vế của (1), (2), (3), ta được
$$\overrightarrow{RF} + \overrightarrow{IQ} + \overrightarrow{PS} = \underbrace{(\overrightarrow{RA} + \overrightarrow{CS})}_{\overrightarrow{0}} + \underbrace{(\overrightarrow{AF} + \overrightarrow{IB})}_{\overrightarrow{0}} + \underbrace{(\overrightarrow{BQ} + \overrightarrow{PC})}_{\overrightarrow{0}}.$$

Suy ra $\overrightarrow{RF} + \overrightarrow{IQ} + \overrightarrow{PS} = \overrightarrow{0}$.

4. Bài tập trắc nghiệm

CÂU 6. Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm AB. Chọn mệnh đề **sai** trong các mệnh đề sau:

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{CM} = -3 \overrightarrow{MG}.$$

$$\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

 \overrightarrow{OO} $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$, O là điểm bất kì.

🗩 Lời giải.

Vì G là trọng tâm tam giác ABC nên ta có

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

Chon đáp án (B)

 \mathbf{CAU} 7. Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây là $\mathbf{dúng}$?

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AC}.$$

$$\overrightarrow{B} \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{CA}.$$

$$(\mathbf{D}) \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BD}.$$

Dòi giải.

Theo quy tắc hình bình hành ta có $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$. Mặt khác O là trung điểm AC nên $\overrightarrow{AC} = 2\overrightarrow{AO}$. Vây $\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}$.

Chọn đáp án (B)

CÂU 8. Cho I là trung điểm của đoạn thẳng AB. Với điểm M bất kỳ, ta luôn có

$$\overrightarrow{\mathbf{A}} \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MA} + \overrightarrow{MB} = \frac{1}{2} \overrightarrow{MI}.$$

Dèi giải.

Ap dụng tính chất trung điểm của đoạn thẳng: Với điểm M bất kỳ, ta luôn có $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$. Chọn đáp án (B)

CÂU 9. Cho G là trọng tâm của tam giác ABC. Với mọi điểm M, ta luôn có:

$$(\mathbf{A}) \ \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MG}.$$

$$\overrightarrow{B} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}.$$

$$\overrightarrow{\mathbf{C}}$$
) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 4\overrightarrow{MG}.$$

Dòi giải.

Áp dụng tính chất trọng tâm của tam giác: Với mọi điểm M, ta luôn có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$. Chon đáp án (C)

CÂU 10. Cho $\triangle ABC$ có G là trọng tâm, I là trung điểm BC. Đẳng thức nào đúng?

$$\overrightarrow{A} \overrightarrow{GA} = 2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{IG} = -\frac{1}{3} \overrightarrow{IA}.$$

$$\overrightarrow{\textbf{C}} \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

🗩 Lời giải.

Áp dung tính chất trung điểm của đoan thẳng, ta có $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$. Chọn đáp án (C)

CẦU 11. Khẳng định nào sau đây **không phải** là điều kiện cần và đủ để G là trọng tâm ΔABC , với M là trung điểm của BC và O là địểm bất kì?

$$\overrightarrow{A}\overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OG} = \overrightarrow{0}.$$

$$(\mathbf{C}) \overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GM} = -\frac{1}{2} \overrightarrow{GA}.$$

Dèi giải.

Xét khẳng định $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OG} = \overrightarrow{0}$, ta có

 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OG} = \overrightarrow{0} \Leftrightarrow 6\overrightarrow{OG} = \overrightarrow{0} \Leftrightarrow G \equiv O$ với mọi điểm O (vô lí).

Vậy khẳng định $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OC} = \overrightarrow{0}$ không phải là điều kiện cần và đủ để G là trọng tâm ΔABC . Chon đáp án (B)

CÂU 12. Cho I là trung điểm của đoạn thẳng AB. Với M là một điểm bất kỳ, tìm đẳng thức **đúng**.

$$\overrightarrow{\mathbf{A}} \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI}.$$

Dòi giải.

Áp dụng tính chất trung điểm. Chọn đáp án (A)

CÂU 13. Cho tam giác ABC có trọng tâm G và M là trung điểm của AB. Mệnh đề nào sau đây **sai**?

$$\overrightarrow{A} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

$$\overrightarrow{B} \overrightarrow{GA} + \overrightarrow{GB} = 2\overrightarrow{GM}.$$

$$(\mathbf{C}) \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}.$$

$$(\mathbf{D}) \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$$

🗩 Lời giải.

 \bigcirc Vì G là trong tâm của tam giác \overrightarrow{ABC} nên $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

 \bigodot Vì M là trung điểm của ABnên $\overrightarrow{GA}+\overrightarrow{GB}=2\overrightarrow{GM}.$ (G có thể tùy ý)

 \odot Vì G là trọng tâm của tam giác \overrightarrow{ABC} nên $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$. (M có thể tùy ý)

Chọn đáp án (C)

CÂU 14. Cho $\triangle ABC$ có M, Q, N lần lượt là trung điểm của AB, BC, CA. Khi đó vectơ AB + BM + NA + BQ là vectơ nào sau đây?

 $(\mathbf{C}) \overrightarrow{AQ}.$

 $(\mathbf{D}) \overrightarrow{CB}.$

Dèi giải.

Ta có

$$\overrightarrow{AB} + \overrightarrow{BM} + \overrightarrow{NA} + \overrightarrow{BQ} = \overrightarrow{NA} + \overrightarrow{AB} + \overrightarrow{BM} + \overrightarrow{BQ}$$
$$= \overrightarrow{NM} + \overrightarrow{BQ}$$
$$= \overrightarrow{0}.$$

Chọn đáp án (A)

CÂU 15. Cho $\triangle ABC$ và điểm I thỏa mãn $\overrightarrow{IA} = 3\overrightarrow{IB}$. Mệnh đề nào sau đây **đúng**?

- $\overrightarrow{A} \overrightarrow{CI} = \frac{1}{2}\overrightarrow{CA} \frac{3}{2}\overrightarrow{CB}.$ $\overrightarrow{B} \overrightarrow{CI} = \overrightarrow{CA} 3\overrightarrow{CB}.$ $\overrightarrow{C} \overrightarrow{I} = \frac{3}{2}\overrightarrow{CB} \frac{1}{2}\overrightarrow{CA}.$
- \overrightarrow{D} $\overrightarrow{CI} = 3\overrightarrow{CB} \overrightarrow{CA}$.

Ta có

$$\overrightarrow{IA} = 3\overrightarrow{IB} \Leftrightarrow \overrightarrow{CA} - \overrightarrow{CI} = 3(\overrightarrow{CB} - \overrightarrow{CI}) \Leftrightarrow \overrightarrow{CI} = \frac{3}{2}\overrightarrow{CB} - \frac{1}{2}\overrightarrow{CA}.$$

Chọn đáp án (C)

CÂU 16. Cho tam giác ABC có G là trọng tâm. Mệnh đề nào sau đây sai?

- \overrightarrow{A} $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$ với mọi điểm M.
- \overrightarrow{B} $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

 $(\mathbf{C}) \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GA}.$

 $\overrightarrow{\mathbf{D}}$ $3\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AC}$.

🗩 Lời giải.

- \odot Theo tính chất trọng tâm tam giác ta có $\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG} \Leftrightarrow \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}$.
- \bigcirc Ta có $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{GB} + \overrightarrow{GC} = -\overrightarrow{GA}$. Suy ra mệnh đề $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GA}$ là mệnh đề sai.

Chọn đáp án (C)

CÂU 17. Khẳng định nào sau đây sai?

- (A) Nếu $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ thì ABCD là hình bình hành.
- **(B)** Nếu O là trung điểm của AB thì với mọi M ta có $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MO}$.
- (**c**) Nếu G là trọng tâm của tam giác ABC thì $\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{AG}$.
- \bigcirc Với 3 điểm bất kì I, J, K ta có $\overrightarrow{IJ} + \overrightarrow{JK} = \overrightarrow{IK}$.

Lời giải.

Khẳng định "Nếu $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ thì ABCD là hình bình hành" là phương án sai trong trường hợp bốn điểm A, B, C, Dthẳng hàng.

Tứ giác ABCD là hình bình hành $\Leftrightarrow \begin{cases} A, B, C \text{ không thẳng hàng} \\ \overrightarrow{AB} = \overrightarrow{DC} \end{cases} \Leftrightarrow \begin{cases} A, B, C \text{ không thẳng hàng} \\ \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}. \end{cases}$

Chọn đáp án (A)

CÂU 18. Cho hình bình hành ABCD. Đẳng thức nào sau đây **đúng**?

 $\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AB}.$

 $\overrightarrow{\mathbf{B}}) \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}.$

 $\overrightarrow{\mathbf{C}}$ $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AD}$.

 $(\mathbf{D}) \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{BD}.$

🗩 Lời giải.

Theo qui tắc hình hình hành ta có

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$
.

Do đó

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}.$$

Chọn đáp án (B)

CÂU 19. Cho tam giác ABC biết I là trung điểm của đoạn thẳng AB, G là trọng tâm tam giác, M là điểm bất kỳ. Hãy chọn khẳng định đúng.

 \overrightarrow{A} $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}$.

 $\overrightarrow{B} \overrightarrow{BI} + \overrightarrow{IC} = \overrightarrow{0}.$

 $\overrightarrow{\mathbf{C}}$ $\overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}$.

 $\overrightarrow{\mathbf{D}}$ $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

🗩 Lời giải.

- \bigcirc Vì $\overrightarrow{BI} + \overrightarrow{IC} = \overrightarrow{BC}$ nên phương án $\overrightarrow{BI} + \overrightarrow{IC} = \overrightarrow{0}$ là phương án sai.
- \bigcirc Vì $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$ nên phương án $\overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}$ là phương án sai.
- \odot Theo quy tắc trọng tâm tam giác ta có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

Chọn đáp án (D)

CÂU 20. Cho I là trung điểm của đoạn thẳng AB. Hỏi đẳng thức nào **đúng**?

- $(\mathbf{A}) \ 2\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}.$
- $(\mathbf{B}) \ \overrightarrow{IA} \overrightarrow{IB} = \overrightarrow{0}.$
- $\overrightarrow{AI} \overrightarrow{IB} = \overrightarrow{0}$.

🗩 Lời giải.

Ta có:

- $\overrightarrow{AI} \overrightarrow{IB} = \overrightarrow{AI} + \overrightarrow{BI} = \overrightarrow{0}$ nên $\overrightarrow{AI} \overrightarrow{IB} = \overrightarrow{0}$ đúng.
- \bigcirc $2\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{AB} = 2\overrightarrow{AB} \neq \overrightarrow{0}$ nên $2\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$ là phương án sai.
- $\overrightarrow{B} \overrightarrow{IA} \overrightarrow{IB} = \overrightarrow{BA} \neq \overrightarrow{0}$ nên $\overrightarrow{IA} \overrightarrow{IB} = \overrightarrow{0}$ là phương án sai.
- $\odot \overrightarrow{AI} 2\overrightarrow{BI} = \overrightarrow{IB} + 2\overrightarrow{IB} = 3\overrightarrow{IB} \neq \overrightarrow{IB}$ nên $\overrightarrow{AI} 2\overrightarrow{BI} = \overrightarrow{IB}$ là phương án sai.

Chọn đáp án (D)

CÂU 21. Cho hình bình hành ABCD. Đẳng thức nào sau đây **đúng**?

- $(\mathbf{A}) \; \overrightarrow{AC} \overrightarrow{BD} = \vec{0} \, .$
- $(\mathbf{B}) \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$
- $(\mathbf{C}) \overrightarrow{AC} \overrightarrow{AD} = \overrightarrow{CD}.$
- $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$

🗩 Lời giải.

- $\overrightarrow{AC} \overrightarrow{BD} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$ sai vì \overrightarrow{AC} và \overrightarrow{BD} không cùng phương.
- \bigcirc $\overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{BC} + \overrightarrow{BC} = \overrightarrow{0}$ là phương án sai.
- \bigcirc Vì $\overrightarrow{AC} \overrightarrow{AD} = \overrightarrow{DC}$ nên $\overrightarrow{AC} \overrightarrow{AD} = \overrightarrow{CD}$ là phương án sai.
- $\overrightarrow{BC} + \overrightarrow{BD} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right) + \left(\overrightarrow{BC} + \overrightarrow{CD}\right) = 2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD}\right) = 2\overrightarrow{BC} + \overrightarrow{0} = 2\overrightarrow{BC}.$

Chọn đáp án (D)

CÂU 22. Cho G là trọng tâm tam giác ABC và I là trung điểm cạnh BC. Mệnh đề nào sau đây sai?

- \overrightarrow{A} $\overrightarrow{GA} = -2\overrightarrow{GI}$.
- $\overrightarrow{\mathbf{B}} \ \overrightarrow{IG} = -\frac{1}{3} \overrightarrow{AI}.$
- $\overrightarrow{\mathbf{C}}$ $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$. $\overrightarrow{\mathbf{D}}$ $\overrightarrow{GA} = \frac{2}{2}\overrightarrow{AI}$.

🗩 Lời giải.

Ta thấy mệnh đề sai là mệnh đề $\overrightarrow{GA} = \frac{2}{3}\overrightarrow{AI}$.

Chọn đáp án (D)

CÂU 23. Cho tam giác ABC có trọng tâm G và M là trung điểm cạnh AC. Khẳng định nào sau đây ${f sai}$?

- $BG = \frac{2}{3}BM.$
- $(B) \overrightarrow{GA} + \overrightarrow{GC} = \overrightarrow{BG}. \qquad (C) \overrightarrow{MG} = \frac{1}{3} \overrightarrow{BM}.$
- $\bigcirc GM = \frac{1}{2}GB.$

🗩 Lời giải.

Do M là trung điểm là AC và G là trọng tâm của $\triangle ABC$

nên
$$BG = \frac{2}{3}BM$$
; $MG = \frac{1}{3}BM$ và $GM = \frac{1}{2}GB$.

Mặt khác \overrightarrow{MG} và \overrightarrow{BM} ngược hướng; \overrightarrow{GM} và \overrightarrow{BG} cùng hướng

nên
$$\overrightarrow{MG} = -\frac{1}{3}\overrightarrow{BM}; \overrightarrow{GM} = \frac{1}{2}\overrightarrow{BG}.$$

Do M là trung điểm AC nên $\overrightarrow{GA} + \overrightarrow{GC} = 2\overrightarrow{GM} = \overrightarrow{BG}$.

Chọn đáp án (C)

 $\hat{\mathbf{CAU}}$ 24. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây

$$\overrightarrow{A} \overrightarrow{GA} = 2\overrightarrow{GM}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}. \qquad \qquad \overrightarrow{\mathbf{C}} \ \overrightarrow{AM} = 2\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AM} = 2\overrightarrow{AG}$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

Dòi giải.

Vì G là trọng tâm của tam giác ABC nên ta có GA = 2GM. Suy ra $\overrightarrow{GA} = -2\overrightarrow{GM} \Rightarrow \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}$.

Chọn đáp án (B)

CÂU 25. Cho G là trọng tâm tam giác ABC, gọi I là trung điểm của BC. Đẳng thức nào sau đây **đúng**?

$$\overrightarrow{\mathbf{A}} \overrightarrow{GA} = 2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{IG} = -\frac{1}{3} \overrightarrow{IA}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

🗭 Lời giải.

Vì I là trung điểm của BC nên $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$.

Chọn đáp án (C)

CÂU 26. Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng.

$$\overrightarrow{\mathbf{C}} \ 2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CA} + \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{D}} \ 2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CB} - \overrightarrow{CA}.$$

Ta có $2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2(\overrightarrow{MA} - \overrightarrow{MC}) + \overrightarrow{MB} - \overrightarrow{MC} = 2\overrightarrow{CA} + \overrightarrow{CB}$.

Chọn đáp án (C)

CÂU 27. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{GA} = 2\overrightarrow{GM}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AM} = 2\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

🗩 Lời giải.

Vì G là trọng tâm của tam giác ABC nên ta có GA = 2GM.

 $\Rightarrow \overrightarrow{GA} = -2\overrightarrow{GM} \Rightarrow \overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}.$

Chọn đáp án (B)

CÂU 28. Ba trung tuyến AM, BN, CP của tam giác ABC đồng quy tại G. Hỏi vecto $\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP}$ bằng vecto nào?

$$(A) \frac{3}{2} \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{CG} \right)$$

$$\overrightarrow{\mathbf{D}}$$
 $\overrightarrow{0}$.

🗭 Lời giải.

Ta có

$$\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP} = \frac{3}{2}\overrightarrow{AG} + \frac{3}{2}\overrightarrow{BG} + \frac{3}{2}\overrightarrow{CG}$$
$$= \frac{3}{2}\left(\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG}\right)$$
$$= \overrightarrow{0}.$$

Chọn đáp án (D)

CÂU 29. Cho hình chữ nhật ABCD, I và K lần lượt là trung điểm của BC, CD. Hệ thức nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{AI} + \overrightarrow{AK} = 2\overrightarrow{AC}.$$

(B)
$$\overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{AD}$$
. **(C)** $\overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{IK}$.

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{IK}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AI} + \overrightarrow{AK} = \frac{3}{2} \overrightarrow{AC}.$$

🗩 Lời giải.

Gọi J là giao điểm của AC và KI.

Ta có
$$\overrightarrow{AI} + \overrightarrow{AK} = 2\overrightarrow{AJ} = 2 \cdot \frac{3}{4}\overrightarrow{AC} = \frac{3}{2}\overrightarrow{AC}$$
.

Chọn đáp án (D)

CÂU 30. Cho tam giác ABC có M là trung điểm của cạnh BC. Các điểm D, E thỏa mãn các đẳng thức: BD = 4BA, $\overrightarrow{AE} = 3\overrightarrow{AC}$. Khẳng định nào sau đây đúng? $\overrightarrow{A}\overrightarrow{AM} = \frac{1}{2}\overrightarrow{DE}.$ $\overrightarrow{B}\overrightarrow{AM} = \frac{1}{6}\overrightarrow{DE}.$

$$\overrightarrow{A} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AM} = \frac{1}{6} \overrightarrow{DE}.$$

$$\bigcirc \overrightarrow{AM} = \frac{1}{2}\overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AM} = \frac{3}{4} \overrightarrow{DE}.$$

Lời giải.

Ta có $\overrightarrow{BD} = 4\overrightarrow{BA}$, suy ra $\overrightarrow{AD} - \overrightarrow{AB} = 4\overrightarrow{BA}$ hay $\overrightarrow{AD} = -3\overrightarrow{AB}$. Khi đó

$$\overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = 3\overrightarrow{AC} + 3\overrightarrow{AB} = 3\left(\overrightarrow{AC} + \overrightarrow{AB}\right) = 6\overrightarrow{AM}.$$

Vậy $\overrightarrow{AM} = \frac{1}{6}\overrightarrow{DE}$.

Chọn đáp án (B)

$$\overrightarrow{A} \overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BC} \right).$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{MQ}.$$

🗩 Lời giải.

$$\frac{\text{Ta có } \overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}}{\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}} (2)$$
Công theo vố (1) vò 2) to được

$$2\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{MA} + \overrightarrow{BC} + \overrightarrow{AD} + \overrightarrow{CN} + \overrightarrow{DN}$$
$$= \overrightarrow{0} + \overrightarrow{BC} + \overrightarrow{AD} + \overrightarrow{0}$$
$$= \overrightarrow{BC} + \overrightarrow{AD}.$$

Vậy
$$\overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BC} \right).$$

Chọn đáp án (A)

$$\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}.$$

$$\mathbf{B}) \ \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{CD}.$$

$$(\mathbf{D}) \overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{CD}.$$

🗩 Lời giải. Ta có

$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} + \overrightarrow{CD}$$
$$= 2\overrightarrow{BC} + (\overrightarrow{AB} + \overrightarrow{CD})$$
$$= 2\overrightarrow{BC}.$$

Chọn đáp án (A)

CÂU 33. Cho G là trọng tâm của tam giác ABC. Trong các mệnh đề sau, tìm mệnh đề đúng?

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AC} = \frac{2}{3} \overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{CA} + \overrightarrow{CB} = \overrightarrow{CG}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{0}.$$

🗩 Lời giải.

Gọi M là trung điểm của AC.

Ta có

$$\overrightarrow{BA} + \overrightarrow{BC} = 2\overrightarrow{BM} = 2 \cdot \frac{3}{2}\overrightarrow{BG} = 3\overrightarrow{BG}.$$

Chọn đáp án (B)

CÂU 34. Cho hình vuông ABCD có tâm là O. Trong các mệnh đề sau, tìm mệnh đề \mathbf{sai} ?

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$$

B
$$\overrightarrow{AD} + \overrightarrow{DO} = -\frac{1}{2}\overrightarrow{CA}$$
. **C** $\overrightarrow{OA} + \overrightarrow{OB} = \frac{1}{2}\overrightarrow{CB}$.

$$\overrightarrow{C} \overrightarrow{OA} + \overrightarrow{OB} = \frac{1}{2} \overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AC} + \overrightarrow{DB} = 4\overrightarrow{AB}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{AC} + \overrightarrow{DB} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{CB}$$

= $\overrightarrow{AB} + \overrightarrow{DC}$
= $2\overrightarrow{AB}$.

Chọn đáp án (D)

CÂU 35. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Khi đó $\overrightarrow{AC} + \overrightarrow{BD}$ bằng

$$(A) \overrightarrow{MN}.$$

$$(\mathbf{B}) \ 2\overrightarrow{MN}.$$

$$\bigcirc$$
 $3\overrightarrow{MN}$.

$$\bigcirc D = 2\overrightarrow{MN}.$$

🗩 Lời giải.

Ta có

$$\begin{cases} \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} + \overrightarrow{CN} \\ \overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BD} + \overrightarrow{DN} \end{cases} \Rightarrow 2\overrightarrow{MN} = \overrightarrow{AC} + \overrightarrow{BD}.$$

Chọn đáp án (B)

CÂU 36. Cho hình bình hành ABCD tâm O và điểm M bất kì. Khẳng định nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MO}.$$

$$\overrightarrow{B} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 2\overrightarrow{MO}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 3\overrightarrow{MO}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = (\overrightarrow{MA} + \overrightarrow{MC}) + (\overrightarrow{MB} + \overrightarrow{MD})$$

$$= 2\overrightarrow{MO} + 2\overrightarrow{MO}$$

$$= 4\overrightarrow{MO}.$$

Chọn đáp án (D)

CÂU 37. Cho năm điểm A, B, C, D, E. Khẳng định nào đúng?

(A)
$$\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 2 \left(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB} \right)$$
.

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 3 \left(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB} \right).$$

$$\overrightarrow{C} \overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \frac{\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}}{4}$$

$$(\mathbf{D}) \overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}$$

$$\Leftrightarrow (\overrightarrow{AC} - \overrightarrow{AE}) + (\overrightarrow{CD} - \overrightarrow{CB}) - \overrightarrow{EC} + \overrightarrow{DB} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{EC} + \overrightarrow{BD} - \overrightarrow{EC} + \overrightarrow{DB} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{BD} + \overrightarrow{DB} = \overrightarrow{0}.$$

Chon đáp án (D)

CÂU 38. Cho tứ giác ABCD. Gọi G là trọng tâm của tam giác ABD, I là điểm trên GC sao cho IC = 3IG. Với mọi điểm M ta luôn có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$ bằng

(B) 3MI.

 \bigcirc $4\overrightarrow{M}\overrightarrow{I}$.

 $(\mathbf{D}) 5 \overrightarrow{MI}$.

🗩 Lời giải.

Ta có $3\overrightarrow{IG} = -\overrightarrow{IC}$.

Do G là trọng tâm của tam giác ABD nên

$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{ID} = 3\overrightarrow{IG}$$

$$\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{ID} = -\overrightarrow{IC}$$

$$\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}.$$

Khi đó

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$$

$$= \overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{MI} + \overrightarrow{IB} + \overrightarrow{MI} + \overrightarrow{IC} + \overrightarrow{MI} + \overrightarrow{ID}$$

$$= 4\overrightarrow{MI} + (\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID})$$

$$= 4\overrightarrow{MI} + \overrightarrow{0} = 4\overrightarrow{MI}.$$

Chọn đáp án (C)

trung điểm của MN. Khi đó

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} - \frac{1}{4} \overrightarrow{AC}$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AP} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AC}.$$

$$\overrightarrow{A} \overrightarrow{AP} = \frac{1}{4} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}.$$

$$\overrightarrow{B} \overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} - \frac{1}{4} \overrightarrow{AC}.$$

$$\overrightarrow{C} \overrightarrow{AP} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AC}.$$

$$\overrightarrow{D} \overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{4} \overrightarrow{AC}.$$

Vì P là trung điểm của MN nên $\overrightarrow{AP} = \frac{1}{2} \left(\overrightarrow{AM} + \overrightarrow{AN} \right)$.

VÌ N là trung điểm của AC nên $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AC}$.

Ta có M thuộc cạnh AB sao cho MA = 2MB nên suy ra $MA = \frac{2}{3}AB$.

Do đó $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$.

Từ (1), (2), (3) ta có $\overrightarrow{AP} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{4} \overrightarrow{AC}$.

Chọn đáp án (D)

 \hat{CAU} 40. Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi H, G lần lượt là trực tâm, trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào đúng?

$$(\mathbf{A}) \ \overrightarrow{OH} = 4\overrightarrow{OG}.$$

$$\mathbf{B}) \overrightarrow{OH} = 3\overrightarrow{OG}.$$

$$\overrightarrow{OH} = 2\overrightarrow{OG}.$$

Lời giải.

Gọi D là điểm đối xứng với A qua O. Ta có

$$\overrightarrow{HA} + \overrightarrow{HD} = 2\overrightarrow{HO}. \tag{1}$$

Vì HBDC là hình bình hành nên $\overrightarrow{HD} = \overrightarrow{HB} + \overrightarrow{HC}$. (2)Từ (1), (2) suy ra

$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$$

$$\Leftrightarrow (\overrightarrow{HO} + \overrightarrow{OA}) + (\overrightarrow{HO} + \overrightarrow{OB}) + (\overrightarrow{HO} + \overrightarrow{OC}) = 2\overrightarrow{HO}$$

$$\Leftrightarrow 3\overrightarrow{HO} + (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) = 2\overrightarrow{HO}$$

$$\Leftrightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = -\overrightarrow{HO}$$

$$\Leftrightarrow 3\overrightarrow{OG} = \overrightarrow{OH}.$$

Chọn đáp án B

CÂU 41. Cho $\triangle ABC$. Trên các cạnh AB, BC và CA lấy các điểm D, E, F sao cho DA = 2DB, EB = 2EC, FC = 2FA. Chọn mệnh đề đúng trong các mệnh đề sau đây.

$$(\mathbf{A}) \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AD} + \overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$.

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AD} - \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} - \overrightarrow{AC}.$$

D Lời giải.

Vì DA = 2DB nên $AD = \frac{2}{3}AB \Rightarrow \overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$.

Tương tự
$$\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BC}$$
; $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC}$.

Khi đó

$$VT = \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$$

$$= \frac{2}{3}\overrightarrow{AB} + (\overrightarrow{AB} + \overrightarrow{BE}) + \frac{1}{3}\overrightarrow{AC}$$

$$= \frac{5}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{BC}$$

$$= \frac{5}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}(\overrightarrow{AC} - \overrightarrow{AB})$$

$$= \overrightarrow{AB} + \overrightarrow{AC} = VP.$$

Vậy $\overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$. Chọn đáp án (A)

CÂU 42. Cho tứ giác ABCD và điểm G thảo mãn $\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} + k\overrightarrow{GD} = \overrightarrow{0}$. Gọi I, J lần lượt là trọng tâm tam giác các ACD, BCD. Gọi M, N lần lượt là trung điểm các cạnh CD, AB. Tìm k sao cho G là trung điểm của IJ.

$$(\mathbf{A}) k = 1.$$

$$\stackrel{\cdot}{\mathbf{B}} k = 2.$$

$$k = 3.$$

🗩 Lời giải.

Vì I, J lần lượt là trọng tâm tam giác các ACD, BCD nên

$$\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = 3\overrightarrow{GI},$$

$$\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = 3\overrightarrow{GJ}.$$

Cộng vế theo vế hai đẳng thức vectơ trên ta được

$$\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} + 2\overrightarrow{GD} = 3\left(\overrightarrow{GI} + \overrightarrow{GJ}\right).$$

Nhưng G là trung điểm của \overrightarrow{IJ} nên $\overrightarrow{GI} + \overrightarrow{GJ} = \overrightarrow{0}$. Do đó $\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} + 2\overrightarrow{GD} = \overrightarrow{0}$.

Vây k=2.

Chọn đáp án (B)

CÂU 43. Cho ngũ giác ABCDE có M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm của MP, NQ. Biết $\overrightarrow{IJ} = k\overrightarrow{EA}$, tìm k.

$$k = -\frac{1}{2}$$
.

$$k = -\frac{1}{4}$$
.

🗩 Lời giải.

Ta có

$$\begin{split} \overrightarrow{IJ} &= \frac{1}{2} \left(\overrightarrow{IQ} + \overrightarrow{IN} \right) \\ &= \frac{1}{4} \left(\overrightarrow{IE} + \overrightarrow{ID} + \overrightarrow{IB} + \overrightarrow{IC} \right) \\ &= \frac{1}{4} \left(\overrightarrow{IA} + \overrightarrow{AE} + \overrightarrow{IB} + \overrightarrow{ID} + \overrightarrow{IC} \right) \\ &= \frac{1}{4} \overrightarrow{AE} \\ &= -\frac{1}{4} \overrightarrow{EA}. \end{split}$$

Vậy $k = -\frac{1}{4}$.

Chọn đáp án (C)

Dạng 3. Xác định điểm thỏa mãn đẳng thức vecto

Phương pháp giải

Bài toán: Xác định điểm M thỏa đẳng thức vecto cho trước

- igotimes Bước 1. Ta biến đổi đẳng thức đã cho (bằng chèn điểm, quy tắc ba điểm, qui tắc hình bình hành, tính chất trung điểm, trọng tâm,...) về dạng: $\overrightarrow{OM} = \overrightarrow{v}$. Trong đó điểm O và vectơ \overrightarrow{v} cho trước.
- $oldsymbol{\odot}$ Bước 2. Nếu muốn dựng điểm M, ta lấy điểm O làm gốc, dựng một vectơ bằng vectơ \overrightarrow{v} , khi đó điểm ngọn của vectơ này chính là điểm M.

A

- O Lưu ý 1. Thông thường, biểu thức $\overrightarrow{OM} = \overrightarrow{v}$ là những biểu thức đặc biệt (trung điểm, trọng tâm, điểm chia đoạn thẳng theo tỉ lệ $\overrightarrow{a} = k \overrightarrow{b}$, hình bình hành,... Ta dựa vào biểu thức này để dựng.
- ❷ Lưu ý 2. Một số cách chứng minh thường dùng.
 - $D\mathring{e}$ chứng minh I là trung điểm của đoạn thẳng AB, ta cần chứng minh một trong các hệ thức sau

$$+ \overrightarrow{IA} = \overrightarrow{IB}.$$

+ $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.$

$$+ 2\overrightarrow{IA} = \overrightarrow{AB}.$$

$$+ \ 2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB} \ (O \ b\acute{a}t \ k\grave{\imath}).$$

- Để chứng minh điểm G là trọng tâm của $\triangle ABC$, ta cần chứng minh một trong các hệ thức sau $+ \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
 - + Với I là trung điểm của cạnh BC thì $\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AI}$.
 - + Với O là điểm bất kì trong mặt phẳng thì: $3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- Tứ giác ABCD là hình bình hành $\Leftrightarrow \begin{bmatrix} \overrightarrow{AB} = \overrightarrow{DC} \\ \overrightarrow{AD} = \overrightarrow{BC} \end{bmatrix}$
- Để chứng minh hai điểm A_1 và A_2 trùng nhau ta có thể chứng minh một trong các hệ thức sau $+\overrightarrow{A_1A_2}=\overrightarrow{0}$.
 - $+ \overrightarrow{OA_1} = \overrightarrow{OA_2} \text{ với O là điểm bất } \hat{y}.$
- Điều kiện cần và đủ để $\triangle ABC$ và $\triangle A'B'C'$ có cùng trọng tâm là

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \overrightarrow{0}.$$

 $-- N \acute{e}u \ \overrightarrow{MB} = k \cdot \overrightarrow{MC} \ (k \neq 1) \ thì \ \overrightarrow{AM} = \frac{\overrightarrow{AB} - k \cdot \overrightarrow{AC}}{1 - k} \ (hay \ \emph{diểm} \ M \ chia \ \emph{doạn} \ AB \ theo \ tỉ \ số \ k \neq 1).$

1. Ví dụ minh họa

VÍ DỤ 1. Cho hai điểm A và B. Xác định điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.

🗩 Lời giải.

Ta có
$$2\overrightarrow{MA} - 3\overrightarrow{MB} = 2\overrightarrow{MA} - 3\left(\overrightarrow{MA} + \overrightarrow{MB}\right) = -\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AM} = 3\overrightarrow{AB}.$$

 $A \qquad B \qquad M$

- Khi đó điểm M được xác định như sau:
 - \bigcirc M nằm trên đường thẳng AB và nằm ngoài đoạn AB, gần B. Hai vecto \overrightarrow{AM} , \overrightarrow{AB} cùng hướng.
 - \odot Độ dài AM = 3AB, nghĩa là điểm B chia AM ra 3 đoạn bằng nhau.

VÍ DỤ 2. Cho tam giác ABC. Gọi M là trung điểm của AB và N thuộc cạnh AC, sao cho NC=2NA. Hãy xác định K và D khi

a)
$$3\overrightarrow{AB} + 2\overrightarrow{AC} - 12\overrightarrow{AK} = \overrightarrow{0}$$
.

b)
$$3\overrightarrow{AB} + 4\overrightarrow{AC} - 12\overrightarrow{KD} = \overrightarrow{0}$$
.

🗩 Lời giải.

a) Xác định điểm K thỏa mãn $3\overrightarrow{AB} + 2\overrightarrow{AC} - 12\overrightarrow{AK} = \overrightarrow{0}$ (1)

Theo giả thiết thì

$$\begin{cases} AB = 2AM \\ \overrightarrow{AB} \uparrow \uparrow \overrightarrow{AM} \end{cases} \Leftrightarrow \overrightarrow{AB} = 2\overrightarrow{AM} \qquad (2).$$

$$v\grave{a} \begin{cases} \overrightarrow{AC} = 3AN \\ \overrightarrow{AC} \uparrow \uparrow \overrightarrow{AN} \end{cases} \Leftrightarrow \overrightarrow{AC} = 3\overrightarrow{AN} \qquad (3)$$

Thay (2) và (3) vào (1) ta được: $6\overrightarrow{AM} + 6\overrightarrow{AN} - 12\overrightarrow{AK} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AK} = \frac{1}{2} \left(\overrightarrow{AM} + \overrightarrow{AN} \right)$.

 $\overline{\mathbf{S}}$ uy ra K là trung điểm của MN.

b) **Xác định điểm D thỏa mãn** $3\overrightarrow{AB} + 4\overrightarrow{AC} - 12\overrightarrow{KD} = \overrightarrow{0}$ (4) Ta có $\overrightarrow{KD} = \overrightarrow{AD} - \overrightarrow{AK}$ (5). Mà theo (4) suy ra $\overrightarrow{AK} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$ (6)

Thay (6) vào (5) ta được: $\overrightarrow{KD} = \overrightarrow{AD} - \frac{1}{4}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$ (7)

Thay (7) vào (4) ta được

$$3\overrightarrow{AB} + 4\overrightarrow{AC} - 12\left(\overrightarrow{AD} - \frac{1}{4}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}\right) = \overrightarrow{0} \Leftrightarrow \overrightarrow{AD} = \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$$

Suy ra D là trung điểm của BC.

VÍ DU 3. Cho hình bình hành ABCD.

- a) Hãy dựng các điểm M, N thỏa mãn $\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{AD}$ và $\overrightarrow{NC} + \overrightarrow{ND} \overrightarrow{NA} = \overrightarrow{AB} + \overrightarrow{AD} \overrightarrow{AC}$.
- b) Chứng minh rằng $\overrightarrow{MN} = \overrightarrow{BA}$.

🗩 Lời giải.

- a) Dựng điểm M thỏa: $\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{AD}$.

 Ta có $\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{AD} \Leftrightarrow \overrightarrow{BA} \overrightarrow{MC} = \overrightarrow{AD} \Leftrightarrow \overrightarrow{CM} = \overrightarrow{AD} \overrightarrow{BA} = \overrightarrow{AD} + \overrightarrow{AB}$ Do \overrightarrow{ABCD} là hình bình hành nên: $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AC} \Rightarrow \overrightarrow{CM} = \overrightarrow{AC} \Rightarrow C$ là trung điểm của CM.
- b) Dựng điểm M thỏa: $\overrightarrow{NC} + \overrightarrow{ND} \overrightarrow{NA} = \overrightarrow{AB} + \overrightarrow{AD} \overrightarrow{AC}$. Ta có

$$\overrightarrow{NC} + \overrightarrow{ND} - \overrightarrow{NA} = \overrightarrow{AB} + \overrightarrow{AD} - \overrightarrow{AC}$$

$$\Leftrightarrow (\overrightarrow{NC} - \overrightarrow{NA}) + \overrightarrow{ND} = (\overrightarrow{AB} + \overrightarrow{AD}) - \overrightarrow{AC}$$

$$\Leftrightarrow \overrightarrow{AC} + \overrightarrow{ND} = \overrightarrow{AC} - \overrightarrow{AC}$$

$$\Leftrightarrow \overrightarrow{DN} = \overrightarrow{AC}.$$

Suy ra N là đỉnh thứ tư của hình bình hành DACN.

c) Chứng minh rằng $\overline{MN} = \overline{BA}$. Ta có DACN là hình bình hành (câu b) bên NC = DA. Mà ABCD là hình bình hành (giả thiết) nên DA = BC.

Suy ra $NC = NB \Rightarrow C$ là trung điểm BN.

Suy ra tứ giác \overrightarrow{ABMN} là hình bình hành (do dó 2 đường chéo NB và \overrightarrow{AM} cắt nhau tại trung điểm của mỗi dường) Suy ra $\overrightarrow{MN} = \overrightarrow{BA}$.

VÍ DỤ 4. Cho trước hai điểm A, B và hai số thực α, β thỏa mãn $\alpha + \beta \neq 0$

- a) Chứng minh rằng tồn tại duy nhất điểm I thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} = \overrightarrow{0}$.
- b) Từ đó suy ra với điểm M bất kỳ, ta luôn có: $\alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} = (\alpha + \beta) \cdot \overrightarrow{MI}$.

🗭 Lời giải.

a) Chứng minh rằng tồn tại duy nhất điểm I thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} = \overrightarrow{0}$. Ta có

$$\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} = \overrightarrow{0}$$

$$\Leftrightarrow \alpha \cdot \overrightarrow{IA} + \beta \cdot \left(\overrightarrow{IA} + \overrightarrow{IB}\right) = \overrightarrow{0}$$

$$\Leftrightarrow (\alpha = \beta) \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{AB} = \overrightarrow{0}$$

$$\Leftrightarrow (\alpha + \beta) \cdot \overrightarrow{AI} = \beta \cdot \overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{AI} = \frac{\beta}{\alpha + \beta} \cdot \overrightarrow{AB}.$$

Vì A, B cố định nên vect
ơ $\frac{\beta}{\alpha + \beta} \cdot \overrightarrow{AB}$ không đổi, do đó tồn tại duy nhất điểm I thỏa mãn đề bài.

b) Từ đó suy ra với điểm M bất kỳ, ta luôn có: $\alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} = (\alpha + \beta) \cdot \overrightarrow{MI}$. Ta có

$$\begin{split} \alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} &= \alpha \left(\overrightarrow{MI} + \overrightarrow{IA} \right) + \beta \cdot \left(\overrightarrow{MI} + \overrightarrow{IB} \right) \\ &= \left(\alpha + \beta \right) \cdot \overrightarrow{MI} + \left(\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} \right) \\ &= \left(\alpha + \beta \right) \cdot \overrightarrow{MI}. \end{split}$$

Vậy $\alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} = (\alpha + \beta) \cdot \overrightarrow{MI}, \forall M \text{ (dpcm)}.$

A

Lời bình 3

- \bigcirc Nếu $\alpha = \beta = 1$ thì điểm I chính là trung điểm của AB.
- 9 Bài toán trên được mở rộng cho ba điểm A, B, C và bộ 3 số thực α, β, γ cho trước thỏa mãn $\alpha + \beta + \gamma \neq 0$, nghĩa là:
 - Tồn tại điểm I duy nhất thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = \overrightarrow{0}$
 - Từ đó suy ra với điểm M bất kỳ, ta luôn có $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = (\alpha + \beta + \gamma) \cdot \overrightarrow{MI}$. Khi $\alpha = \beta = \gamma = 1$ thì I là trọng tâm của $\triangle ABC$.
- $oldsymbol{\Theta}$ Bài toán trên vẫn đúng với n điểm A_i $(i=\overline{1,n})$ và bộ số thực α_i $(i=\overline{1,n})$ thỏa mãn $\sum_{i=1}^n \alpha_i \neq 0$
- $igotimes K \acute{e}t$ quả trên dùng giải bài toán "Cho n điểm A_i , $i=\overline{1,n}$ và bộ số thực α_i , $i=\overline{i,n}$ thỏa mãn $\sum_{i=1}^n \alpha_i \neq 0$. Tìm số thực k và điểm cố định I sao cho đẳng thức vecto $\sum_{i=1}^n \alpha_i \overrightarrow{MA_i} = k \cdot \overrightarrow{MI}$ thỏa mãn với mọi điểm M".

2. Bài tập áp dụng

BÀI 1. Cho hai hình bình hành *ABCD* và *ACEF*.

- a) Dựng các điểm M, N sao cho $\overrightarrow{EM} = \overrightarrow{BD}, \overrightarrow{FN} = \overrightarrow{BD}.$
- b) Chứng minh $\overrightarrow{CA} = \overrightarrow{MN}$.

🗩 Lời giải.

a) Ta có $\overrightarrow{EM} = \overrightarrow{BD}$ suy ra EMDB là hình bình hành. Ta có $\overrightarrow{FN} = \overrightarrow{BD}$ suy ra FNDB là hình bình hành.

- b) Ta có $\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DN} = \overrightarrow{EB} + \overrightarrow{BF} = \overrightarrow{EF} = \overrightarrow{CA}$.
- **BÁI 2.** Cho tam giác ABC.
 - a) Chứng minh với moi điểm M, ta luôn có $\overrightarrow{MA} + 2\overrightarrow{MB} 3\overrightarrow{MC} = \overrightarrow{CA} + 2\overrightarrow{CB}$.
 - b) Hãy dựng điểm D sao cho $\overrightarrow{DA} + 2\overrightarrow{DB} 3\overrightarrow{DC} = \overrightarrow{CA} + 2\overrightarrow{CB}$.

P Lời giải.

- a) Ta có $\overrightarrow{MA} + 2\overrightarrow{MB} 3\overrightarrow{MC} = \overrightarrow{CA} + 2\overrightarrow{CB} \Leftrightarrow \overrightarrow{MC} + \overrightarrow{CA} + 2\overrightarrow{MC} + 2\overrightarrow{CB} 3\overrightarrow{MC} = \overrightarrow{CA} + 2\overrightarrow{CB}$ luôn thỏa, với mọi điểm
- b) Mọi điểm trong mặt phẳng đều thỏa bài toán.
- **BÀI 3.** Cho tứ giác ABCD, M là điểm tùy ý. Trong mỗi trường hợp hãy tìm số k và điểm cố định I, J, K sao cho đẳng thức vecto sau thỏa mãn với mọi điểm M.
 - a) $2\overrightarrow{MA} + \overrightarrow{MB} = k \cdot \overrightarrow{MI}$.
 - b) $\overrightarrow{MA} + \overrightarrow{MB} + 2 \cdot \overrightarrow{MC} = k \cdot \overrightarrow{MJ}$.
 - c) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + 3 \cdot \overrightarrow{MD} = k \cdot \overrightarrow{MK}$

🗩 Lời giải.

- a) Tìm k thỏa mãn $2\overrightarrow{MA} + \overrightarrow{MB} = k \cdot \overrightarrow{MI}$.
 - Vì $2 \cdot \overrightarrow{MA} + \overrightarrow{MB} = k \cdot \overrightarrow{MI}$ (1) thỏa với mọi M, do đó nó cũng đúng với $M \equiv I$.

Khi đó $2 \cdot \overrightarrow{IA} + \overrightarrow{IB} = k \cdot \overrightarrow{II} = \overrightarrow{0}$ (2)

Ta có $(2) \Leftrightarrow 2\overrightarrow{IA} + (\overrightarrow{IA} + \overrightarrow{IB}) = \overrightarrow{0} \Leftrightarrow \overrightarrow{IA} = -\frac{1}{3}\overrightarrow{AB} \Rightarrow I$ được xác định. Nó nằm trên đường thẳng AB, ngoài đoạn

AB, vecto \overrightarrow{IA} ngược chiều với vecto \overrightarrow{AB} và có độ dài lớn hơn $IA = \frac{1}{3}AB$.

Từ (2) ta có $2\overrightarrow{MA} + \overrightarrow{MB} = (2+1)\overrightarrow{MI} = 3\overrightarrow{MI}$ (3) (áp dụng lời bình 3 và $M \equiv I$) $T\mathring{u}(1), (3) \Rightarrow 3\overrightarrow{MI} = k \cdot \overrightarrow{MI} \Rightarrow k = 3.$

b) Tìm k thỏa: $\overrightarrow{MA} + \overrightarrow{MB} + 2 \cdot \overrightarrow{MC} = k \cdot \overrightarrow{MJ}$.

Vì $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = k \cdot \overrightarrow{MJ}$ (4) thỏa với mọi M, do đó nó cũng đúng với $M \equiv I$. Khi đó $\overrightarrow{JA} + \overrightarrow{JB} + 2\overrightarrow{JC} = k \cdot \overrightarrow{IJ} = \overrightarrow{0}$ (5)

Whi dó
$$\overrightarrow{IA} + \overrightarrow{IB} + 2\overrightarrow{IC} - k \cdot \overrightarrow{II} - \overrightarrow{0}$$
 (5)

Gọi E là trung điểm của AB, từ $(5) \Rightarrow 2\overrightarrow{JE} + 2\overrightarrow{JC} = \overrightarrow{0} \Rightarrow \overrightarrow{JE} + \overrightarrow{JC} = \overrightarrow{0} \Rightarrow J$ là trung điểm của CE.

 $\overrightarrow{\text{Từ }}(5), \text{ ta được } \overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = (1+1+2)\overrightarrow{MJ} = 4\overrightarrow{MJ}$ (6)

Từ (4) và (6) suy ra $k\overrightarrow{MJ} = 4\overrightarrow{MJ} \Rightarrow k = 4$.

- c) Tìm k thỏa $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + 3 \cdot \overrightarrow{MD} = k \cdot \overrightarrow{MK}$
 - Vì $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + 3\overrightarrow{MD} = k\overrightarrow{MK}$ (7) thỏa mãn với mọi điểm M nên ns đúng với $M \equiv K$.
 - Khi đó $\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} + 3\overrightarrow{KD} = k \cdot \overrightarrow{KD} = \overrightarrow{0}$ (8) Gọi G là trọng tâm $\triangle ABC$, từ (8) $\Leftrightarrow 3\overrightarrow{KG} + 3\overrightarrow{KD} = \overrightarrow{0} \Leftrightarrow \overrightarrow{KG} = \overrightarrow{KD} \Rightarrow K$ là trung điểm của GD.
 - $\overrightarrow{\text{Tù }}(8), \text{ ta được } \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + 3\overrightarrow{MD} = (1+1+1+3)\overrightarrow{MK} = 6\overrightarrow{MK}$ (9)
 - $\overrightarrow{\text{Tù }}(7), (9) \Rightarrow k \cdot \overrightarrow{MK} = 6 \cdot \overrightarrow{MK} \Rightarrow k = 6.$
- **BÀI 4.** Cho tứ giác lồi ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh $\triangle ANP$ và $\triangle CMQ$ có cùng trọng tâm.

p Lời giải.

Gọi G_1 , G_2 lần lượt là trọng tâm của $\triangle ANP$, $\triangle CMQ$, O là một điểm tùy ý.

Ta có
$$\begin{cases} \overrightarrow{OA} + \overrightarrow{ON} + \overrightarrow{OP} = 3\overrightarrow{OG_1} \\ \overrightarrow{OC} + \overrightarrow{OM} + \overrightarrow{OQ} = 3\overrightarrow{OG_2}. \end{cases}$$
 (1)

Mặc khác
$$\overrightarrow{OA} + \overrightarrow{ON} + \overrightarrow{OP} = \overrightarrow{OA} + \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right) + \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{OD} \right) = \overrightarrow{OA} + \overrightarrow{OC} +$$

$$\frac{1}{2}\left(\overrightarrow{OB} + \overrightarrow{OD}\right).$$

$$\overrightarrow{OC} + \overrightarrow{OM} + \overrightarrow{OQ} = \overrightarrow{OC} + \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) + \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OD} \right) = \overrightarrow{OA} + \overrightarrow{OC} +$$

$$\frac{1}{2}\left(\overrightarrow{OB} + \overrightarrow{OD}\right) \qquad (2)$$

Từ (1), (2) suy ra $\overrightarrow{OG_1} = \overrightarrow{OG_2} \Rightarrow G_1 \equiv G_2 \Rightarrow \triangle ANP$ và $\triangle CMQ$ có cùng trọng tâm (đpcm).

3. Bài tấp trắc nghiêm

- **CÂU 1.** Cho điểm A và vecto \vec{u} . Có bao nhiều điểm M thoả mãn $\overrightarrow{AM} = \vec{u}$?
 - A Duy nhất một.
- (B) Hai.

- $\begin{array}{c} \text{man } AM = u: \\ \hline \textbf{C} \text{ Không có.} \end{array}$
- D Vô số.

D Lời giải.

Có duy nhất điểm M thỏa mãn $\overrightarrow{AM} = \overrightarrow{u}$.

Chọn đáp án (A)

- **CÂU 2.** Cho hình bình hành ABCD, điểm M thỏa mãn $4\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Khi đó M là
 - lack A trung điểm AC.
- lacksquare điểm C.
- \bigcirc trung điểm AB.
- $\stackrel{\text{la}}{\bigcirc}$ trung điểm AD.

🗩 Lời giải.

Gọi G là trọng tâm tam giác BCD. Khi đó $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 3\overrightarrow{AG}$. Từ đó ta có

$$4\overrightarrow{AM} = 3\overrightarrow{AG} \Leftrightarrow \overrightarrow{AM} = \frac{3}{4}\overrightarrow{AG}.$$

- Vậy điểm M là trung điểm của AC.
- Chọn đáp án $\stackrel{\frown}{\mathbb{A}}$
- **CÂU 3.** Cho hai vectơ \vec{a} và \vec{b} khác $\vec{0}$ và không cùng phương. Biết hai vectơ $\vec{u} = 2\vec{a} 3\vec{b}$ và $\vec{v} = \vec{a} + (x-1)\vec{b}$ cùng phương. Khi đó giá trị của x là
 - $\frac{1}{2}$.

B $-\frac{3}{2}$.

 \mathbf{c} $-\frac{1}{2}$.

 $\bigcirc \frac{3}{2}$.

🗩 Lời giải.

Hai vecto $\vec{u} = 2\vec{a} - 3\vec{b}$ và $\vec{v} = \vec{a} + (x - 1)\vec{b}$ cùng phương $\Leftrightarrow \frac{1}{2} = \frac{x - 1}{-3} \Leftrightarrow x = -\frac{1}{2}$.

Chọn đáp án \bigcirc

- **CÂU 4.** Cho hai điểm phân biệt A, B và hai số thực α , β khác 0 thoả mãn $\alpha + \beta = 0$. Có bao nhiều điểm M thoả mãn $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = \overrightarrow{0}$?
 - (A) 0.

B 1.

(C) 2.

D 3.

₽ Lời giải.

- Ta có $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = \alpha \overrightarrow{MA} \alpha \overrightarrow{MB} = \alpha \left(\overrightarrow{MA} \overrightarrow{MB} \right) = \alpha \overrightarrow{AB} = \overrightarrow{0}$ (Vô lí vì $\overrightarrow{AB} \neq \overrightarrow{0}$ và $\alpha \neq 0$).
- Vậy không có điểm M nào thỏa mãn đề bài.
- Chọn đáp án (A)
- **CÂU 5.** Cho ba điểm không thẳng hàng A, B, C và M là điểm thoả mãn $\overrightarrow{AB} = \overrightarrow{CM}$. Chọn khẳng định đúng.
 - ABMC là hình bình hành.

f B ABCM là hình bình hành.

🗩 Lời giải.

Ta có $\overrightarrow{AB} = \overrightarrow{CM} \Rightarrow \begin{cases} AB \parallel CM \\ AB = CM \end{cases} \Rightarrow ABMC$ là hình bình hành.

Chọn đáp án (A)

CÂU 6. Cho hai điểm phân biệt A, B và hai số thực α, β thoả mãn $\alpha + \beta \neq 0$. Có bao nhiều điểm M thoả mãn $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = 0$

 (\mathbf{A}) 0.

(B) 1.

(C) 2.

(D) 3.

🗩 Lời giải.

Ta có

$$\begin{split} \alpha \overrightarrow{MA} + \beta \overrightarrow{MB} &= \overrightarrow{0} \\ \Leftrightarrow \alpha \overrightarrow{MA} + \left(-\alpha + \beta + \alpha \right) \overrightarrow{MB} &= \overrightarrow{0} \\ \Leftrightarrow \alpha \left(\overrightarrow{MA} - \overrightarrow{MB} \right) + \left(\beta + \alpha \right) \overrightarrow{MB} &= \overrightarrow{0} \\ \Leftrightarrow \alpha \overrightarrow{BA} + \left(\beta + \alpha \right) \overrightarrow{MB} &= \overrightarrow{0} \\ \Leftrightarrow \overrightarrow{MB} &= -\frac{\alpha}{\beta + \alpha} \overrightarrow{BA} . \end{split}$$

Vậy có 1 điểm M nào thỏa mãn đề bài. Chọn đáp án (B)

CÂU 7. Cho hai điểm phân biệt A và B. Điểu kiện cần và đủ để I là trung điểm của đoạn thẳng AB là

- $(\mathbf{A}) IA = IB.$
- $(\mathbf{B}) \overrightarrow{IA} = -\overrightarrow{IB}.$
- (c) $\overrightarrow{IA} = \overrightarrow{IB}$.

🗩 Lời giải.

Ta có I là trung điểm AB khi và chỉ khi IA = IB và \overrightarrow{IA} ngược hướng \overrightarrow{IB} hay $\overrightarrow{IA} = -\overrightarrow{IB}$. Chọn đáp án (B)

CÂU 8. Cho tam giác ABC, điểm I là trung điểm BC. Điểm G có tính chất nào sau đây thì G là trọng tâm tam giác

- $\overrightarrow{A} \overrightarrow{GI} = -\frac{1}{3}\overrightarrow{AI}.$
- $\overrightarrow{(\mathbf{C})}$ $\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$. $\overrightarrow{(\mathbf{D})}$ $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$.

Dòi giải.

Ta có G là trọng tâm tam giác \overrightarrow{ABC} suy ra $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow -\overrightarrow{AG} - \overrightarrow{BG} - \overrightarrow{CG} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$. Chọn đáp án (C)

CÂU 9. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$.

A Hình 1.

- (B) Hình 2.
- **(C)** Hình 3.
- (**D**) Hình 4.

🗩 Lời giải.

 $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} + 4\overrightarrow{MA} + 4\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow 5\overrightarrow{AM} = 4\overrightarrow{AB}.$ Suy ra M nằm trên tia AB và $AM = \frac{4}{5}AB$.

Chọn đáp án (D)

CÂU 10. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overline{MA} + \overline{MB} = \overrightarrow{0}$.

 $(\mathbf{A}) M$ trùng với I.

 (\mathbf{B}) M là trung điểm của BI.

(**C**) M là trung điểm của AI.

 (\mathbf{D}) M trùng với A hoặc M trùng với B.

🗩 Lời giải.

Do I là trung điểm của đoạn thẳng AB nên $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$.

$$3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{MA} + (\overrightarrow{MA} + \overrightarrow{MB}) = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{MA} + 2\overrightarrow{MI} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MI} = \overrightarrow{0}.$$

Vậy M là trung điểm của IA. Chon đáp án (C)

CÂU 11. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

(A) Hình 1.

(**B**) Hình 2.

(**c**) Hình 3.

(**D**) Hình 4.

🗩 Lời giải.

Ta có $\overrightarrow{MN} = -3\overrightarrow{MP}$ nên M nằm giữa N, P và MN = 3MP. Chọn đáp án (C)

CÂU 12. Trên đưường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định đúng theo hình vẽ nào sau đây.

Dèi giải.

Vì $\overrightarrow{MN} = -3\overrightarrow{MP}$ nên \overrightarrow{MN} , \overrightarrow{MP} ngược hướng và MN = 3MP. Chọn đáp án (C)

CÂU 13. Cho tam giác ABC với I là trung điểm của AB. Tìm điểm M thỏa mãn hệ thức $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.

 (\mathbf{A}) M là trung điểm của IC.

- (**B**) M là trung điểm của IA.
- (**C**) M là điểm trên cạnh IC sao cho IM = 2MC.
- $(\mathbf{D}) M$ là trung điểm của BC.

🗩 Lời giải.

Ta có

$$\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{MI} + 2\overrightarrow{MC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MI} + \overrightarrow{MC} = \overrightarrow{0}.$$

Suy ra M là trung điểm của IC.

Chọn đáp án (A)

CÂU 14.

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

 $(A) \ 3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}. \qquad (B) \ 3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}. \qquad (C) \ \overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}. \qquad (D) \ \overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}.$

B

🗩 Lời giải.

Hai vec-tơ \overrightarrow{AI} , \overrightarrow{AB} ngược hướng và AB = 3AI nên đẳng thức mô tả đúng hình vẽ là $3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$. Chọn đáp án (A)

CÂU 15. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là

 (\mathbf{A}) M là trung điểm của AC.

- (**B**) M là trung điểm của BC.
- (**c**) M là điểm thứ tư của hình bình hành ABCM.
- $(\mathbf{D}) M$ là trung điểm của AB.

Lời giải.

Vì G là trọng tâm $\triangle ABC$ nên

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{GA} + \overrightarrow{AC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

Do đó $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM} \Leftrightarrow 3\left(\overrightarrow{AB} + \overrightarrow{AC}\right) = 6\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} = \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$

Suy ra M là trung điểm của BC.

Chọn đáp án (B)

CÂU 16. Cho tam giác ABC. Để điểm M thỏa mãn điều kiên $\overrightarrow{MA} + \overrightarrow{BM} + \overrightarrow{MC} = \overrightarrow{0}$ thì M phải thỏa mãn

(A) M là trọng tâm tam giác ABC.

 (\mathbf{B}) M là điểm sao cho tứ giác ABMC là hình bình hành.

 $(\mathbf{C}) M$ thuộc trung trực của AB.

 $(\mathbf{D}) M$ là điểm sao cho tứ giác BAMC là hình bình hành.

Lời giải.

Ta có $\overrightarrow{MA} + \overrightarrow{BM} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} + \overrightarrow{BC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{BC} = \overrightarrow{AM}$. Vây BAMC là hình bình hành.

Chọn đáp án (D)

CÂU 17. Cho tứ giác ABCD và M là điểm thoả $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$. Chọn khẳng định đúng.

- (A) M là giao điểm hai đường chéo của tứ giác ABCD.
- $ig(egin{aligned} egin{aligned} ig(ig) ig(ig) ig(ig) ig) \end{matrix} \end{matrix}$
- $(\mathbf{C})M$ là tâm đường tròn ngoại tiếp tứ giác ABCD.
- $(\mathbf{D})M$ là tâm đường tròn nôi tiếp tứ giác ABCD.

Lời giải.

Gọi E, F lần lượt là trung điểm AB, CD.

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{ME} + 2\overrightarrow{MF} = \overrightarrow{0}$$

$$\Leftrightarrow M \text{ là trung điểm } EF.$$

Tương tư nếu gọi P, Q lần lượt là trung điểm của AD, BC thì ta cũng có M là trung điểm PQ. Khi đó M cũng chính là giao điểm của EF và PQ.

Chọn đáp án (B)

CÂU 18. Cho tam giác ABC, gọi M là điểm thoả mãn $\overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$. Khi đó,

(A) ABCM là hình bình hành.

- $(\mathbf{B}) ABMC$ là hình bình hành.
- (**C**) ABCM là hình bình thang có đáy lớn AM.
- (\mathbf{D}) ABCM là hình bình thang có đáy lớn BC.

Dèi giải.

$$\overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MA} + 2\overrightarrow{BC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{AM} = 2\overrightarrow{BC}.$$

Khi đó ABCM là hình thang với đáy lớn AM.

Chon đáp án (C)

CÂU 19. Gọi G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'. Tìm điều kiện cần và đủ để $G \equiv G'$.

$$\overrightarrow{A} \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} + 3\overrightarrow{GG'} = \overrightarrow{0}.$$

$$(\mathbf{B}) \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} - 3\overrightarrow{G'G} = \overrightarrow{0}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{G'G}.$$

Dèi giải.

Ta có:
$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{G'G}$$

$$\Leftrightarrow \overrightarrow{AG} + \overrightarrow{GG'} + \overrightarrow{G'A'} + \overrightarrow{BG} + \overrightarrow{GG'} + \overrightarrow{G'B'} + \overrightarrow{GG'} + \overrightarrow{GG'} + \overrightarrow{G'C'} = 3\overrightarrow{G'G}$$

$$\Leftrightarrow (\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG}) + (\overrightarrow{C'A'} + \overrightarrow{G'B'} + \overrightarrow{G'C'}) + 3\overrightarrow{GG'} = 3\overrightarrow{G'G}$$

$$\Leftrightarrow (\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG}) + (\overrightarrow{G'A'} + \overrightarrow{G'B'} + \overrightarrow{G'C'}) + 3\overrightarrow{GG'} = 3\overrightarrow{G'G}$$

$$\Leftrightarrow \overrightarrow{0} + \overrightarrow{0} + 3\overrightarrow{GG'} = 3\overrightarrow{G'G} \Leftrightarrow 3\overrightarrow{GG'} = 3\overrightarrow{G'G} \Leftrightarrow \overrightarrow{GG'} = \overrightarrow{G'G} \Leftrightarrow G \equiv G'.$$

Chọn đáp án (D)

CÂU 20. Cho tam giác ABC có I là $2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Xác định vị trí của điểm M. điểm điểm trung BC. Goi Mthoå mãn

(A) M là trọng tâm tam giác ABC.

- (**B**) M là trung điểm AI.
- (**C**) M là điểm thuộc đoạn thẳng AI thoả MA = 2MI.
- (**D**) M là điểm thuộc đoạn thẳng AI thoả MI = 2MA.

Ta có $2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow 2\overrightarrow{MA} + 2\overrightarrow{MI} = \overrightarrow{0} \Leftrightarrow 4\overrightarrow{MF} = \overrightarrow{0} \Leftrightarrow M \equiv F \text{ với } F \text{ là trung điểm } AI.$ Chọn đáp án (B)

CÂU 21. Cho hình bình hành ABCD, điểm M thỏa $4\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Khi đó điểm M là

- (\mathbf{A}) trung điểm AC.
- (\mathbf{B}) điểm C.
- (\mathbf{C}) trung điểm AB.
- (\mathbf{D}) trung điểm AD.

Lời giải.

Ta có
$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC} = 4\overrightarrow{AM} \Rightarrow \overrightarrow{AM} = \frac{\overrightarrow{AC}}{2}$$

Từ đó suy ra M là trung điểm của AC.

Chọn đáp án (A)

CÂU 22. Cho tam giác ABC. Gọi D, E là các điểm xác định bởi $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}, \overrightarrow{AE} = \frac{2}{5}\overrightarrow{AC}$. Gọi K là trung điểm của DE và M xác định bởi $\overrightarrow{BM} = x\overrightarrow{BC}$. Tìm giá trị thực của x sao cho A, K, M thẳng hàng.

$$\frac{3}{8}$$
.

B
$$-\frac{4}{3}$$
.

$$\frac{8}{3}$$
.

$$-\frac{3}{4}$$
.

p Lời giải.

$$\text{Ta có } \overrightarrow{AK} = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{AE} \right) = \frac{1}{2} \left(\frac{2}{3} \overrightarrow{AB} + \frac{2}{5} \overrightarrow{AC} \right) = \frac{1}{3} \overrightarrow{AB} + \frac{1}{5} \overrightarrow{AC}$$

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + x\overrightarrow{BC} = \overrightarrow{AB} + x\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = (1-x)\overrightarrow{AB} + x\overrightarrow{AC}$$

Do đó A, K, M thẳng hàng khi và chỉ khi \overrightarrow{AM} và \overrightarrow{AK} cùng phương

$$\Leftrightarrow \overrightarrow{AM} = k\overrightarrow{AK} \Leftrightarrow (1-x)\overrightarrow{AB} + x\overrightarrow{AC} = \frac{k}{3}\overrightarrow{AB} + \frac{k}{5}\overrightarrow{AC}$$

$$\Leftrightarrow \left\{ \begin{array}{l} 1 - x = \frac{k}{3} \\ x = \frac{k}{5} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = \frac{15}{8} \\ x = \frac{3}{8} \end{array} \right..$$

 $V \hat{a} y \ x = \frac{3}{8}$

Chọn đáp án (A)

CÂU 23. Cho tam giác ABC. Gọi D là trung điểm cạnh AC và I là điểm thỏa mãn $\overrightarrow{IA} + 2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{0}$. Mệnh đề nào dưới đây đúng?

lack A I là trực tâm tam giác BCD.

 $oxed{\textbf{B}}$ I là trọng tâm tam giác ABC.

 \bigcirc I là trọng tâm tam giác CDB.

 $lue{\mathbb{D}}$ I là tâm đường tròn nội tiếp tam giác ABC.

D Lời giải.

Ta có $\overrightarrow{IA} + 2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{IA} + 2\overrightarrow{IB} + 2\overrightarrow{IC} + \overrightarrow{IC} = 2(\overrightarrow{ID} + \overrightarrow{IB} + \overrightarrow{IC}) = \overrightarrow{0}$.

Khi đó I là trọng tâm tam giác BCD.

Chọn đáp án (C)

CÂU 24. Cho đoạn thẳng AB và M là một điểm nằm trên đường thẳng AB sao cho $\overrightarrow{MA} = -\frac{1}{5}\overrightarrow{AB}$. Khẳng định nào sau đây là sai?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MB} = -4 \overrightarrow{MA}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MB} = -\frac{4}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AM} = \frac{1}{5} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MA} = -\frac{1}{4} \overrightarrow{MB}.$$

🗩 Lời giải.

Ta có
$$\overrightarrow{MA} = -\frac{1}{5}\overrightarrow{AB} \Leftrightarrow \overrightarrow{MB} - \overrightarrow{AB} = -\frac{1}{5}\overrightarrow{AB} \Leftrightarrow \overrightarrow{MB} = \frac{4}{5}\overrightarrow{AB}$$

Vậy mệnh đề " $\overrightarrow{MB} = -\frac{4}{5}\overrightarrow{AB}$ " là sai.

 $A \stackrel{M}{\longleftarrow} B$

Chọn đáp án (B)

CÂU 25. Cho tam giác ABC. Hãy xác định vị trí điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.

 \bigcirc M thuộc cạnh AB và AM = 2MB.

 \blacksquare M trên AB và ngoài đoạn AB.

 \bigcirc M là trung điểm AB.

 \bigcirc M không thuộc đoạn AB.

p Lời giải.

Ta có $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} = \frac{3}{2}\overrightarrow{MB}$.

Khi đó M không thuộc đoạn AB sao cho $\overrightarrow{MA} = \frac{3}{2}\overrightarrow{MB}$.

Chọn đáp án B

CÂU 26. Cho tam giác ABC, N là trung điểm AB, M là điểm thỏa mãn đẳng thức $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$. Kết luận nào dưới đây đúng?

(A) M đối xứng với C qua A.

 \bigcirc A đối xứng với M qua C.

 $(\mathbf{C}) C$ đối xứng với A qua M.

 $(\mathbf{D}) M$ là điểm tùy ý.

🗩 Lời giải.

Ta có

$$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC} \Leftrightarrow \overrightarrow{MN} = \overrightarrow{AN} + \overrightarrow{AC}$$

$$\Leftrightarrow \overrightarrow{MN} + \overrightarrow{NA} = \overrightarrow{AC} \Leftrightarrow \overrightarrow{AM} + \overrightarrow{AC} = \overrightarrow{0}.$$

Suy ra A là trung điểm MC hay M đối xứng với C qua A.

Chọn đáp án (A)

CÂU 27. Cho tam giác ABC và điểm M thỏa mãn $\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{AB}$. Tìm vị trí điểm M.

- (A) M là điểm thứ tư của hình bình hành ABCM.
- (**B**) M là trung điểm của AB.

 $(\mathbf{C}) M$ là trung điểm của BC.

 $(\mathbf{D}) M$ là trung điểm của AC.

🗩 Lời giải.

Gọi I là trung điểm của BC.

Ta có
$$\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{AB} \Leftrightarrow 2\overrightarrow{MI} = \overrightarrow{AB} \Leftrightarrow \overrightarrow{MI} = \frac{1}{2}\overrightarrow{AB}$$
.

Suy ra MI song song và bằng một nửa AB, mà I là trung điểm BC nên M phải là trung điểm của AC. Chọn đáp án (D)

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{BN} = \frac{1}{3} \overrightarrow{BI}.$$

$$\overrightarrow{BN} = 2\overrightarrow{BI}.$$

$$\overrightarrow{\mathbf{c}} \ \overrightarrow{BN} = \frac{2}{3} \overrightarrow{BI}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{BN} = \overrightarrow{BI}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{NA} + 2\overrightarrow{NB} = \overrightarrow{CB}$$

$$\Leftrightarrow \overrightarrow{IA} - \overrightarrow{IN} + 2\overrightarrow{IB} - 2\overrightarrow{IN} = \overrightarrow{IB} - \overrightarrow{IC}$$

$$\Leftrightarrow 3\overrightarrow{IN} = \overrightarrow{IA} + \overrightarrow{IC} + \overrightarrow{IB}$$

$$\Leftrightarrow \overrightarrow{IN} = \frac{1}{3}\overrightarrow{IB}. \quad (\text{Do } \overrightarrow{IA} + \overrightarrow{IC} = \overrightarrow{0})$$

$$\Leftrightarrow 3\overrightarrow{BN} - 3\overrightarrow{BI} = -\overrightarrow{BI}$$

$$\Leftrightarrow \overrightarrow{BN} = \frac{2}{3}\overrightarrow{BI}.$$

Chọn đáp án (C)

CÂU 29. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$.

(A) Hình 1.

(B) Hình 2.

(**C**) Hình 3.

(**D**) Hình 4.

Dòi giải.

 $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} + 4\overrightarrow{MA} + 4\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow 5\overrightarrow{AM} = 4\overrightarrow{AB}.$ Suy ra M nằm trên tia AB và $AM = \frac{4}{5}AB$.

Chọn đáp án (D)

CÂU 30. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

 $(\mathbf{A}) M$ trùng với I.

(**B**) M là trung điểm của BI.

 \bigcirc M là trung điểm của AI.

 (\mathbf{D}) M trùng với A hoặc M trùng với B.

🗩 Lời giải.

Do I là trung điểm của đoan thẳng AB nên $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$. Ta có

$$3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{MA} + (\overrightarrow{MA} + \overrightarrow{MB}) = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{MA} + 2\overrightarrow{MI} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MI} = \overrightarrow{0}.$$

Vậy M là trung điểm của IA. Chọn đáp án \bigcirc

CÂU 31. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

A Hình 1.

B Hình 2.

C Hình 3.

D Hình 4.

p Lời giải.

Ta có $\overrightarrow{MN} = -3\overrightarrow{MP}$ nên M nằm giữa N, P và MN = 3MP. Chọn đáp án \bigcirc

CÂU 32. Trên đưu
òng thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định đúng theo hình vẽ nào sau đây.

D Lời giải.

Vì $\overrightarrow{MN} = -3\overrightarrow{MP}$ nên \overrightarrow{MN} , \overrightarrow{MP} ngược hướng và MN = 3MP. Chon đáp án \bigcirc

CÂU 33.

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

ang thực nào sau day mô ta dụng hình vẻ bên?

(A)
$$3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$$
. (B) $3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$. (C) $\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}$. (D) $\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}$.

D Lời giải.

Hai vec-tơ \overrightarrow{AI} , \overrightarrow{AB} ngược hướng và AB = 3AI nên đẳng thức mô tả đúng hình vẽ là $3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}$.

Chọn đáp án (A)

CÂU 34. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là

lack A M là trung điểm của AC.

 $lue{c}$ M là điểm thứ tư của hình bình hành ABCM.

 \bigcirc M là trung điểm của AB.

🗩 Lời giải.

Vì G là trọng tâm $\triangle ABC$ nên

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{GA} + \overrightarrow{AC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

Do đó $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM} \Leftrightarrow 3\left(\overrightarrow{AB} + \overrightarrow{AC}\right) = 6\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} = \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$

Suy ra M là trung điểm của BC.

Chọn đáp án (B)

Dạng 4. Biểu diễn vectơ theo hai vectơ không cùng phương

Phương pháp giải : Ta có thể chọn 1 trong 2 hướng giải sau

- ❷ Hướng 1: Từ giả thiết xác định được tính chất hình học, rồi từ đó khai triển vectơ cần biểu diễn bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất trung điểm, trọng tâm, . . .
- **Hướng 2**: Từ giả thiết, ta lập được mối quan hệ vectơ giữa các đối tượng, rồi từ đó khai triển biểu thức bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất trung điểm, trọng tâm, ...

1. Ví dụ minh họa

VÍ DỤ 1. Cho $\triangle ABC$, gọi G là trọng tâm của tam giác và B_1 là điểm đối xứng của B qua G. Gọi M là trung điểm của BC. Hãy biểu diễn các vecto

a) $\overrightarrow{CB_1}$ và $\overrightarrow{AB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .

b) $\overrightarrow{MB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .

🗩 Lời giải.

Theo giả thiết thì AB_1CG là hình bình hành.

- a) Tính $\overrightarrow{CB_1}$ và $\overrightarrow{AB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .
 - Ta có $\overrightarrow{CB_1} = \overrightarrow{GA} = -\overrightarrow{AG} = -\frac{2}{3}\overrightarrow{AM}$.

Mà M là trung điểm của đoạn BC nên

$$\overrightarrow{AM} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

Do đó $\overrightarrow{CB_1} = -\frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$

❷ Mặt khác

$$\overrightarrow{AB_1} = \overrightarrow{GC} = \overrightarrow{AC} - \overrightarrow{AG} = \overrightarrow{AC} - \frac{2}{3}\overrightarrow{AM}$$
$$= \overrightarrow{AC} - \frac{1}{3}\left(\overrightarrow{AB} + \overrightarrow{AC}\right) = \frac{2}{3}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}.$$

b) Tính $\overrightarrow{MB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} . Ta có

$$\overrightarrow{MB_1} = \overrightarrow{AB_1} - \overrightarrow{AM} = \left(\frac{2}{3}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}\right) - \left(\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}\right)$$
$$= -\frac{5}{6}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}.$$

VÍ DỤ 2. Cho $\triangle ABC$. Gọi I là điểm trên cạnh BC sao cho 2CI=3BI và J là điểm trên BC kéo dài sao cho 5JB=2JC. Gọi G là trọng tâm $\triangle ABC$.

a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} .

b) Tính \overrightarrow{AG} theo \overrightarrow{AI} và \overrightarrow{AJ} .

🗩 Lời giải.

a) Tính các vecto \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} và \overrightarrow{AC} . Do 2CI = 3BI và \overrightarrow{IC} , \overrightarrow{IB} ngược hướng nên

$$2\overrightarrow{IC} = -3\overrightarrow{IB} \quad \Leftrightarrow \quad 2\left(\overrightarrow{AC} - \overrightarrow{AI}\right) = -3\left(\overrightarrow{AB} - \overrightarrow{AI}\right)$$
$$\Leftrightarrow \quad 5\overrightarrow{AI} = 3\overrightarrow{AB} + 2\overrightarrow{AC}.$$

$$\overrightarrow{AI} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}.$$

Do 5JB = 2JC và \overrightarrow{JC} , \overrightarrow{JB} cùng hướng nên

$$\begin{split} 5\overrightarrow{JB} &= 2\overrightarrow{JC} &\Leftrightarrow 5\left(\overrightarrow{AB} - \overrightarrow{AJ}\right) = 2\left(\overrightarrow{AC} - \overrightarrow{AJ}\right) \\ &\Leftrightarrow 3\overrightarrow{AJ} = 5\overrightarrow{AB} - 2\overrightarrow{AC} \\ &\Leftrightarrow \overrightarrow{AJ} = \frac{5}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}. \end{split}$$

b) Tính vecto \overrightarrow{AG} theo \overrightarrow{AI} và \overrightarrow{AJ} .

Gọi M là trung điểm của BC nên $\overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$.

Do
$$\begin{cases} \overrightarrow{AI} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC} \\ \overrightarrow{AJ} = \frac{5}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC} \end{cases} \Rightarrow \begin{cases} \overrightarrow{AB} = \frac{5}{8}\overrightarrow{AI} + \frac{3}{8}\overrightarrow{AJ} \\ \overrightarrow{AC} = \frac{25}{16}\overrightarrow{AI} + \frac{9}{16}\overrightarrow{AJ}. \end{cases}$$
Vây $\overrightarrow{AG} = \frac{35}{48}\overrightarrow{AI} - \frac{1}{16}\overrightarrow{AJ}.$

VÍ DỤ 3. Cho $\triangle ABC$ và hai điểm D, E thỏa mãn $\overrightarrow{DB} = k \cdot \overrightarrow{DC}, \overrightarrow{EB} = \frac{1}{k} \overrightarrow{EC}$ (với $k \neq 1$).

- a) Biểu diễn các vectơ \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{DE} theo các vectơ \overrightarrow{AB} , \overrightarrow{AC} .
- b) Điểm F, I thỏa mãn $\overrightarrow{FA} = k \cdot \overrightarrow{FB}$, $\overrightarrow{IC} = k \cdot \overrightarrow{IA}$. Chứng minh $\overrightarrow{AD} + \overrightarrow{BI} + \overrightarrow{CF} = \overrightarrow{0}$.

🗩 Lời giải.

a) Biểu diễn các véctơ \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{DE} theo các véctơ \overrightarrow{AB} , \overrightarrow{AC} .

$$\begin{array}{ll} \hline \textbf{O} & \text{Tính } \overrightarrow{DE} \text{ theo } \overrightarrow{AB}, \overrightarrow{AC}. \\ & \text{Ta có } \overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD}. \end{array} \tag{3} \\ & \text{Thay (1), (2) vào (3) và rút gọn, ta được } \overrightarrow{DE} = \frac{k+1}{k-1} \left(\overrightarrow{AB} - \overrightarrow{AC} \right). \end{array}$$

b) Điểm F, I thỏa mãn hệ thức $\overrightarrow{FA} = k \cdot \overrightarrow{FB}, \overrightarrow{IC} = k \cdot \overrightarrow{IA}$. Chứng minh $\overrightarrow{AD} + \overrightarrow{BI} + \overrightarrow{CF} = \overrightarrow{0}$.

$$igotharpoonup$$
Từ giả thiết, ta có $\overrightarrow{FA} = k \cdot \overrightarrow{FB} \Rightarrow \overrightarrow{AF} = \frac{k}{k-1} \cdot \overrightarrow{AB}$.
Nên $\overrightarrow{CF} = \overrightarrow{AF} - \overrightarrow{AC} = \frac{k}{k-1} \cdot \overrightarrow{AB} - \overrightarrow{AC}$.

2. Bài tập áp dụng

BÀI 1. Cho $\triangle ABC$ có M, D lần lượt là trung điểm của AB, BC và N là điểm trên cạnh AC sao cho $\overrightarrow{AN} = \frac{1}{2} \cdot \overrightarrow{NC}$. Gọi K là trung điểm của MN. Hãy tính các vecto \overrightarrow{AK} , \overrightarrow{KD} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 2. Cho $\triangle ABC$. Trên hai cạnh AB và \overrightarrow{AC} lấy hai điểm D và E sao cho $\overrightarrow{AD} = 2\overrightarrow{DB}$, $\overrightarrow{CE} = 3\overrightarrow{EA}$. Gọi M, I lần lượt là trung điểm của DE và BC. Hãy tính vecto \overrightarrow{AM} , \overrightarrow{MI} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 3. Cho $\triangle ABC$, lấy điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}, \overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}, \overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$. Phân tích $\overrightarrow{PM}, \overrightarrow{PN}$ theo $\overrightarrow{AB}, \overrightarrow{AC}$.

BÀI 4. Cho hình bình hành ABCD có tâm là O. Hãy tính các vectơ sau theo vectơ \overrightarrow{AB} và \overrightarrow{AD} .

- a) \overrightarrow{AI} với I là trung điểm của \overrightarrow{BO} .
- b) \overrightarrow{BG} với G là trọng tâm $\triangle OCD$.

BÀI 5. Cho $\triangle ABC$ có hai đường trung tuyến BN, CP. Hãy biểu thị các vecto \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} theo các vecto \overrightarrow{BN} , \overrightarrow{CP} .

BÀI 6. Cho $\triangle ABC$ có trọng tâm G. Gọi I, J nằm trên cạnh BC và BC kéo dài sao cho 2CI=3BI, 5JB=2JC.

a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} .

b) Tính \overrightarrow{AG} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 7. Cho $\triangle ABC$ có G là trong tâm tam giác và I là điểm đối xứng của B qua G. M là trung điểm của BC. Hãy tính \overrightarrow{AI} , \overrightarrow{CI} , \overrightarrow{MI} theo \overrightarrow{AB} , \overrightarrow{AC} .

BÀI 8. Cho $\triangle ABC$ có trọng tâm là G và các đường trung tuyến AM, BP. Gọi G' là điểm đối xứng với điểm G qua P.

- a) Hãy biểu diễn các vecto $\overrightarrow{AG'}$, $\overrightarrow{CG'}$ theo \overrightarrow{AB} , \overrightarrow{AC}
- b) Chứng minh hệ thức: $5\overrightarrow{AC} 6\overrightarrow{AB} = 6\overrightarrow{MG'}$.

BÀI 9. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC, CD. Hãy biểu diễn các vector \overrightarrow{BC} , \overrightarrow{CD} theo các vecto \overrightarrow{AM} , \overrightarrow{AN} .

BÀI 10. Cho tứ giác ABCD có M, N theo thứ tự là trung điểm của các cạnh AD, BC. Hãy biểu diễn vecto \overrightarrow{MN} theo \overrightarrow{AB} , \overrightarrow{DC} và theo \overrightarrow{AC} , \overrightarrow{DB} .

BÀI 11. Cho $\triangle ABC$. Gọi I là điểm đối xứng của trọng tâm G qua B.

- a) Chứng minh $\overrightarrow{IA} 5\overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$.
- b) Đặt $\overrightarrow{AG} = \overrightarrow{a}$, $\overrightarrow{AI} = \overrightarrow{b}$. Tính \overrightarrow{AB} , \overrightarrow{AC} theo \overrightarrow{a} , \overrightarrow{b}

BÀI 12. Cho $\triangle ABC$. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Tính các vectơ $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$ theo các vectơ

BÀI 13. Cho $\triangle ABC$. Gọi I là điểm trên cạnh BC kéo dài sao cho IB = 3IC.

- a) Tính \overrightarrow{AI} theo \overrightarrow{AB} . \overrightarrow{AC} .
- b) Gọi J và K lần lượt là các điểm thuộc cạnh AC, AB sao cho JA = 2JC và KB = 3KA. Tính \overrightarrow{JK} theo \overrightarrow{AB} , \overrightarrow{AC} .
- c) Tính \overrightarrow{BC} theo \overrightarrow{AI} và \overrightarrow{JK} .

3. Bài tấp trắc nghiệm

$$\overrightarrow{A} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AC}.$$

$$\overrightarrow{\textbf{C}} \overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$$

$$\overrightarrow{D} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AC}.$$

🗩 Lời giải.

Vì M là trung điểm của BC nên ta có

$$\overrightarrow{AM} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}.$$

Chọn đáp án (C)

CÂU 2. Cho hình bình hành ABCD, gọi I là trung điểm của CD, đặt $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$. Biểu diễn vecto \overrightarrow{BI} theo các vecto \vec{a} , \vec{b} .

$$\overrightarrow{\mathbf{A}} \overrightarrow{BI} = -\frac{1}{2} \overrightarrow{a} + \frac{1}{2} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{BI} = \overrightarrow{a} + \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{BI} = \frac{1}{2} \overrightarrow{a} + \overrightarrow{b}$$

Lời giải.

Ta có

$$\overrightarrow{BI} = \overrightarrow{BC} + \overrightarrow{CI} = \overrightarrow{AD} - \frac{1}{2}\overrightarrow{AB}$$
$$= -\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}.$$

Chọn đáp án (C)

CÂU 3. Cho tam giác ABC và một điểm M thỏa mãn $\overrightarrow{BM} = k\overrightarrow{BC}$. Biểu diễn vecto \overrightarrow{AM} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .

- $(\mathbf{A}) \ \overline{AM} = (1-k)\overline{AB} + k\overline{AC}.$
- $(\mathbf{C}) \, \overrightarrow{AM} = k \overrightarrow{AB} + (1-k) \overrightarrow{AC}.$

- $(\mathbf{B}) \, \overrightarrow{AM} = k \overrightarrow{AB} + k \overrightarrow{AC}.$
- $(\mathbf{D}) \overrightarrow{AM} = (1-k)\overrightarrow{AB} + (1-k)\overrightarrow{AC}.$

■ Lời aiải.

Ta có

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + k\overrightarrow{BC}$$
$$= \overrightarrow{AB} + k\left(\overrightarrow{AC} - \overrightarrow{AB}\right)$$
$$= (1 - k)\overrightarrow{AB} + k\overrightarrow{AC}.$$

Chọn đáp án (A)

CÂU 4. Cho hình bình hành ABCD. Gọi I là điểm trên cạnh BC được xác định bởi $\overrightarrow{BI} = k\overrightarrow{BC}$ $(k \neq 1)$. Tìm hệ thức liên hê giữa \overrightarrow{DI} , \overrightarrow{DB} , \overrightarrow{DC} .

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{DI} = (k-1)\overrightarrow{DB} - k\overrightarrow{DC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{DI} = (1+k)\overrightarrow{DB} - k\overrightarrow{DC}$.

$$\overrightarrow{\mathbf{B}} \overrightarrow{DI} = (1 - k)\overrightarrow{DB} + k\overrightarrow{DC}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{DI} = (1+k)\overrightarrow{DB} + k\overrightarrow{DC}.$$

P Lời giải.

Từ giả thiết ta có

$$\overrightarrow{BI} = k\overrightarrow{BC} \quad \Leftrightarrow \quad \overrightarrow{DI} - \overrightarrow{DB} = k\left(\overrightarrow{DC} - \overrightarrow{DB}\right)$$

$$\Leftrightarrow \quad \overrightarrow{DI} = (1 - k)\overrightarrow{DB} + k\overrightarrow{DC}.$$

Chọn đáp án (B)

CÂU 5. Cho tam giác ABC có M là trung điểm của BC. Tính \overrightarrow{AB} theo \overrightarrow{AM} và \overrightarrow{BC} .

$$\overrightarrow{AB} = \overrightarrow{AM} + \frac{1}{2}\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AB} = \overrightarrow{BC} + \frac{1}{2}\overrightarrow{AM}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AB} = \overrightarrow{BC} + \frac{1}{2}\overrightarrow{AM}. \qquad \overrightarrow{\mathbf{C}} \overrightarrow{AB} = \overrightarrow{AM} - \frac{1}{2}\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} = \overrightarrow{BC} - \frac{1}{2} \overrightarrow{AM}.$$

🗭 Lời giải.

Ta có $\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{AM} - \frac{1}{2}\overrightarrow{BC}$.

Chọn đáp án (C)

$$\overrightarrow{A} \overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} - \overrightarrow{AC} \right).$$

$$\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AC}$$

Dèi giải.

Ta có

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AM} = \frac{1}{2} \cdot \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$$
$$= \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

Chọn đáp án (A)

CÂU 7. Cho tam giác ABC. Hai điểm M, N chia cạnh BC theo ba phần bằng nhau BM = MN = NC. Tính AM theo

$$\overrightarrow{A}\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}.$$

(A)
$$\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$
. (B) $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$. (C) $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$. (D) $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} - \frac{2}{3} \overrightarrow{AC}$$

🗩 Lời giải.

Ta có

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{BC}$$
$$= \overrightarrow{AB} + \frac{1}{3}(\overrightarrow{AC} - \overrightarrow{AB})$$
$$= \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$$

Chọn đáp án (A)

CÂU 8. Cho tam giác ABC có G là trọng tâm tam giác. Trong các mệnh đề sau, mệnh đề nào đúng?

$$\overrightarrow{A} \overrightarrow{GA} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}.$$

$$\overrightarrow{B} \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}.$$

$$(\mathbf{D}) \ 2\overrightarrow{AB} + \overrightarrow{BC} = 2\overrightarrow{AG}.$$

🗩 Lời giải.

Gọi I là trung điểm của BC, ta có $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$.

Do G là trọng tâm $\triangle ABC$ nên $\overrightarrow{AI} = \frac{3}{2}\overrightarrow{AG}$.

Suy ra $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI} = 3\overrightarrow{AG}$.

Chọn đáp án (B)

CÂU 9. Cho $\triangle ABC$ có M là trung điểm của BC. Trong các mệnh đề sau, mệnh đề nào **sai**?

$$(\mathbf{A}) \ 2\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$(\mathbf{B})\ 2\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{C}} \ 2\overrightarrow{AM} = 2\overrightarrow{AC} - \overrightarrow{BC}.$$

Dòi giải.

Do M là trung điểm của BC nên ta có

$$2\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$= \overrightarrow{AB} + \left(\overrightarrow{AB} + \overrightarrow{BC}\right) = 2\overrightarrow{AB} + \overrightarrow{BC}$$
$$= 2\left(\overrightarrow{AC} - \overrightarrow{BC}\right) + \overrightarrow{BC} = 2\overrightarrow{AM} = 2\overrightarrow{AC} - \overrightarrow{BC}.$$

Từ các phương án đã cho, ta thấy mệnh đề sai là " $2\overrightarrow{AM} = 2\overrightarrow{AC} + \overrightarrow{BC}$ ". Chọn đáp án (D)

CÂU 10. Cho $\triangle ABC$ và I thỏa mãn $\overrightarrow{IA} = 3\overrightarrow{IB}$. Phân tích \overrightarrow{CI} theo \overrightarrow{CA} và \overrightarrow{CB} .

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{CI} = \overrightarrow{CA} - 3\overrightarrow{CB}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{CI} = \frac{1}{2} \left(3\overrightarrow{CB} - \overrightarrow{CA} \right).$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{CI} = 3\overrightarrow{CB} - \overrightarrow{CA}.$$

P Lời giải.

Ta có

Chọn đáp án (C)

$$\overrightarrow{\textbf{A}} \overrightarrow{GA} = -\frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}. \qquad \overrightarrow{\textbf{B}} \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} - \frac{4}{3}\overrightarrow{NC}. \qquad \overrightarrow{\textbf{C}} \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}.$$

$$\overrightarrow{B} \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} - \frac{4}{3}\overrightarrow{NC}$$

$$\overrightarrow{\textbf{C}} \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{GA} = \frac{1}{3} \overrightarrow{BD} - \frac{2}{3} \overrightarrow{NC}.$$

Dèi giải.

Vì G là trọng tâm $\triangle ABC$ nên

$$\begin{split} \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} &= \overrightarrow{0} \quad \Leftrightarrow \quad \overrightarrow{GA} = -\left(\overrightarrow{GB} + \overrightarrow{GC}\right) \\ &\Leftrightarrow \quad \overrightarrow{GA} = -\left(-\frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}\right) \\ &\Leftrightarrow \quad \overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} - \frac{2}{3}\overrightarrow{NC}. \end{split}$$

Chọn đáp án (D)

CÂU 12. Cho $\triangle ABC$ có AK, BM là hai trung tuyến. Đặt $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{BM} = \overrightarrow{b}$. Hãy biểu diễn \overrightarrow{BC} theo \overrightarrow{a} và \overrightarrow{b} là $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}$. **B** $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{a} - \frac{4}{3}\overrightarrow{b}$. **C** $\overrightarrow{BC} = -\frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}$. **D** $\overrightarrow{BC} = \frac{1}{2}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}$.

🗭 Lời giải.

Gọi
$$G$$
 là trọng tâm tam giác ABC .
Ta có $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{GB} = \frac{2}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}$ (1)
Do K là trung điểm của BC nên $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AK}$

$$\Rightarrow \overrightarrow{AC} = 2\overrightarrow{a} - \overrightarrow{AB} = \frac{4}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$$
 (2)

$$\Rightarrow \overrightarrow{AC} = 2\overrightarrow{a} - \overrightarrow{AB} = \frac{4}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b} \qquad (2)$$

Từ (1) và (2) $\Rightarrow \overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = \frac{2}{2}\overrightarrow{a} + \frac{4}{2}\overrightarrow{b}$.

Chọn đáp án (A)

🗭 Lời giải.

Ta có

$$3\overrightarrow{AG} = \overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AC}$$
$$= (\overrightarrow{AC} + \overrightarrow{CB}) + \overrightarrow{AC} = 2\overrightarrow{AC} + \overrightarrow{CB}$$
$$= -2\overrightarrow{a} + \overrightarrow{b}.$$

Do đó $\overrightarrow{AG} = \frac{-2\overrightarrow{a} + \overrightarrow{b}}{3}$.

Chọn đáp án (B

$$\overrightarrow{A} \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB} + 3\overrightarrow{AC}.$$

$$\overrightarrow{B} \overrightarrow{AM} = \frac{1}{4} \overrightarrow{AB} + \frac{3}{4} \overrightarrow{AC}$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}$

🗩 Lời giải.

Ta có

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC}$$
$$= \overrightarrow{AB} + \frac{3}{4}\left(\overrightarrow{AC} - \overrightarrow{AB}\right)$$
$$= \frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}.$$

Chọn đáp án (B)

CÂU 15. Cho tam giác ABC có trọng tâm G. Đặt $\overrightarrow{CA} = \overrightarrow{u}$, $\overrightarrow{CB} = \overrightarrow{v}$. Khi đó \overrightarrow{AG} bằng $\underbrace{2\overrightarrow{u} - \overrightarrow{v}}_{3}$.

$$\bigcirc \frac{\vec{u}-2\vec{v}}{3}.$$

$$\bigcirc \frac{-2\vec{u} + \vec{v}}{3}.$$

D Lời giải.

Ta có

$$\overrightarrow{AG} = \overrightarrow{CG} - \overrightarrow{CA} = \frac{2}{3}\overrightarrow{CM} - \overrightarrow{CA}$$

$$= \frac{1}{3}\left(\overrightarrow{CA} + \overrightarrow{CB}\right) - \overrightarrow{CA} = -\frac{2}{3}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB}$$

$$= \frac{-2\overrightarrow{u} + \overrightarrow{v}}{3}.$$

Chọn đáp án (D)

CÂU 16. Cho tam giác ABC có G là trọng tâm tam giác. Điểm N trên BC sao cho $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Biểu diễn vectơ \overrightarrow{AC} theo các vecto \overrightarrow{AG} và \overrightarrow{AN} .

(A) $\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(B) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(C) $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$.

(D) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}$.

(A)
$$\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$$
.

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AG} + \frac{1}{2} \overrightarrow{AN}.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AC} = \frac{4}{3} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AN}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AG} - \frac{1}{2} \overrightarrow{AN}.$$

🗩 Lời giải.

Do G là trọng tâm của $\triangle ABC$ nên

$$\overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG} \Leftrightarrow \overrightarrow{AB} = 3\overrightarrow{AG} - \overrightarrow{AC}.$$

Ta có

$$\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{CN} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{BC}$$

$$= -\frac{1}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC} = -\frac{1}{2}\left(3\overrightarrow{AC} - \overrightarrow{AC}\right) + \frac{3}{2}\overrightarrow{AC}$$

$$= \frac{3}{4}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AN}.$$

Chon đáp án (B)

CÂU 17. Cho $\triangle ABC$ với G là trọng tâm. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$. Khi đó \overrightarrow{AG} được biểu diễn theo hai vecto \overrightarrow{a} và \overrightarrow{b} là $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}$. **B** $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$. **C** $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b}$.

$$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} - \frac{1}{3} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{D}} \; \overrightarrow{AG} = -\frac{2}{3} \, \overrightarrow{a} + \frac{1}{3} \, \overrightarrow{b}$$

🗩 Lời giải.

Gọi M là trung điểm cạnh BC.

Ta có

$$\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AM} = \frac{2}{3} \cdot \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$$

$$= \frac{1}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{CA} = \frac{1}{3} \left(\overrightarrow{AC} + \overrightarrow{CB} \right) - \frac{1}{3}\overrightarrow{CA}$$

$$= \frac{1}{3}\overrightarrow{CB} - \frac{2}{3}\overrightarrow{CA} = -\frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

Chọn đáp án (D)

CÂU 18. Gọi G là trọng tâm tam giác ABC. Đặt $\overrightarrow{GA} = \overrightarrow{a}$, $\overrightarrow{GB} = \overrightarrow{b}$. Tìm các giá trị thực của m, n để $\overrightarrow{BC} = m\overrightarrow{a} + n\overrightarrow{b}$.

$$\bigcirc m = 1; n = 2.$$

B
$$m = -1; n = -2.$$

$$\bigcirc m = -2; n = -1.$$

🗩 Lời giải.

Vì G là trọng tâm tam giác ABC nên

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Rightarrow \overrightarrow{GC} = -\overrightarrow{GA} - \overrightarrow{GB}.$$

Ta có

$$\overrightarrow{BC} = \overrightarrow{BG} + \overrightarrow{GC}$$

$$= -\overrightarrow{GB} - \overrightarrow{GA} - \overrightarrow{GB}$$

$$= -\overrightarrow{GA} - 2\overrightarrow{GB}.$$

Suy ra m = -1; n = -2.

Chọn đáp án (B)

CÂU 19. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Hãy tìm m và n sao cho $M\dot{N}=$ $m\overrightarrow{AB} + n\overrightarrow{DC}$.

(A)
$$m = \frac{1}{2}, n = \frac{1}{2}$$
.

B
$$m = -\frac{1}{2}, n = \frac{1}{2}$$

$$\mathbf{C}$$
 $m = \frac{1}{2}, n = -\frac{1}{2}.$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$
 C $m = \frac{1}{2}, n = -\frac{1}{2}.$ **D** $m = -\frac{1}{2}, n = -\frac{1}{2}.$

$$\text{Ta có } \overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{MB} + \overrightarrow{MC} \right) = \frac{1}{2} \left(\overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{MD} + \overrightarrow{DC} \right).$$

Vì M là trung điểm AD nên $\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0}$.

Vây
$$\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{DC}) = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{DC}.$$

Suy ra
$$m = \frac{1}{2}, n = \frac{1}{2}$$
.

Chọn đáp án (A)

$$(A)$$
 $m = 1, n = 2.$

B
$$m = -1, n = -2.$$

$$m=2, n=1.$$

$$\bigcirc$$
 $m = -2, n = -1.$

🗩 Lời giải.

Ta có
$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{GC} = -\overrightarrow{GA} - \overrightarrow{GB}$$
. Suy ra

$$\overrightarrow{BC} = \overrightarrow{GC} - \overrightarrow{GB}$$

$$= -\overrightarrow{GA} - \overrightarrow{GB} - \overrightarrow{GB}$$

$$= -\overrightarrow{a} - 2\overrightarrow{b}.$$

Chọn đáp án (B)

CÂU 21. Cho tứ giác ABCD (với AB, CD không song song). Gọi M, N lần lượt là trung điểm của AD và BC. Tìm m, n $\vec{\text{de}} \ \overrightarrow{MN} = m\overrightarrow{AB} + n\overrightarrow{DC}.$

$$\mathbf{A} \ m = \frac{1}{2}, \ n = \frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$

$$m = \frac{1}{2}, n = -\frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$
 C $m = \frac{1}{2}, n = -\frac{1}{2}.$ **D** $m = -\frac{1}{2}, n = -\frac{1}{2}.$

Vậy
$$m = \frac{1}{2}, n = \frac{1}{2}.$$

Chọn đáp án (A)

Cho hình bình hành ABCD tâm O. Gọi M,N lần lượt là trung điểm của BC và CD. Đặt $\overrightarrow{a} = \overrightarrow{AM}, \overrightarrow{b} = \overrightarrow{AN}$. Hãy biểu diễn \overrightarrow{AO} theo \overrightarrow{a} và \overrightarrow{b} .

$$\overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AO} = \frac{1}{6} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AO} = \frac{1}{3} \overrightarrow{a} + 2 \overrightarrow{b}.$$

$$(\mathbf{D}) \overrightarrow{AO} = \overrightarrow{a} + 3 \overrightarrow{b}.$$

🗩 Lời giải.

 $\mathrm{Ta}\ \mathrm{c}\acute{\mathrm{o}}$

$$\overrightarrow{AO} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AD}\right)$$
$$= \frac{1}{2}\left(2\overrightarrow{AM} - \overrightarrow{AC} + 2\overrightarrow{AN} - \overrightarrow{AC}\right)$$
$$= \overrightarrow{AM} + \overrightarrow{AN} - \overrightarrow{AC}.$$

Suy ra

$$\overrightarrow{AO} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{AO} \Leftrightarrow 3\overrightarrow{AO} = \overrightarrow{a} + \overrightarrow{b} \Leftrightarrow \overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

Chọn đáp án (A)

CÂU 23. Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NC=2NA. Gọi K

$$\overrightarrow{A}\overrightarrow{AK} = -\frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AK} = -\frac{3}{8} \overrightarrow{AB} - \frac{1}{12} \overrightarrow{AC}$$

$$\overrightarrow{AK} = \frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AK} = \frac{3}{8} \overrightarrow{AB} - \frac{1}{12} \overrightarrow{AC}$$

🗭 Lời giải.

Ta có

$$\overrightarrow{AK} = \overrightarrow{AM} + \overrightarrow{MK} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{MN}$$

$$= \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\left(\overrightarrow{AN} - \overrightarrow{AM}\right)$$

$$= \frac{1}{2}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC} - \frac{1}{8}\overrightarrow{AB}$$

$$= \frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}.$$

Chọn đáp án (C)

CÂU 24. Cho tứ giác ABCD. Trên cạnh AB, CD lần lượt lấy các điểm M, N sao cho $3\overrightarrow{AM}=2\overrightarrow{AB}$ và $3\overrightarrow{DN}=2\overrightarrow{DC}$. Tính vecto \overrightarrow{MN} theo hai vecto \overrightarrow{AD} , \overrightarrow{BC} .

$$\overrightarrow{A}$$
 $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BC}$.

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MN} = \frac{1}{3} \overrightarrow{AD} - \frac{2}{3} \overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BC}$

(A)
$$\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{BC}$$
. (B) $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{BC}$. (C) $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BC}$. (D) $\overrightarrow{MN} = \frac{2}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{BC}$.

🗩 Lời giải.

$$\begin{array}{ll} 3\overrightarrow{MN} & = & \overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} + 2\left(\overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}\right) \\ & = & \left(\overrightarrow{MA} + 2\overrightarrow{MB}\right) + \overrightarrow{AD} + 2\overrightarrow{BC} + \left(\overrightarrow{DN} + 2\overrightarrow{CN}\right). \end{array}$$

Theo bài ra, ta có $\overrightarrow{MA} + 2\overrightarrow{MB} = \overrightarrow{0}$ và $\overrightarrow{DN} + 2\overrightarrow{CN} = \overrightarrow{0}$.

Vây
$$3\overrightarrow{MN} = \overrightarrow{AD} + 2\overrightarrow{BC} \Leftrightarrow \overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BC}$$
.

Chọn đáp án (C)

CÂU 25. Cho tam giác đều ABC và điểm I thỏa mãn $\overrightarrow{IA} = 2\overrightarrow{IB}$. Mệnh đề nào sau đây **đúng**?

$$\overrightarrow{CI} = \frac{\overrightarrow{CA} - 2\overrightarrow{CB}}{3}$$

$$\overrightarrow{B} \overrightarrow{CI} = \frac{\overrightarrow{CA} + 2\overrightarrow{CB}}{3}.$$

$$\overrightarrow{C} \overrightarrow{CI} = -\overrightarrow{CA} + 2\overrightarrow{CB}.$$

Từ giả thiết, ta có $\overrightarrow{IA} = 2\overrightarrow{IB} \Rightarrow B$ là trung điểm của IA.

Suy ra
$$\overrightarrow{BI} = \overrightarrow{AB}$$
; $\overrightarrow{AI} = 2\overrightarrow{AB}$.

Lai có
$$\begin{cases} \overrightarrow{CI} = \overrightarrow{CB} + \overrightarrow{BI} \\ \overrightarrow{CI} = \overrightarrow{CA} + \overrightarrow{AI}. \end{cases}$$

Do đó

$$\begin{aligned} 2\overrightarrow{CI} &= \overrightarrow{CB} + \overrightarrow{CA} + \overrightarrow{BI} + \overrightarrow{CI} \\ &= \overrightarrow{CA} + \overrightarrow{CB} + \overrightarrow{AB} + 2\overrightarrow{AB} \\ &= \overrightarrow{CA} + \overrightarrow{CB} + 3\overrightarrow{AB} \\ &= \overrightarrow{CA} + \overrightarrow{CB} + 3\left(\overrightarrow{CB} - \overrightarrow{CA}\right) \\ &= -2\overrightarrow{CA} + 4\overrightarrow{CB}. \end{aligned}$$

 $V_{\text{ay}} \overrightarrow{CI} = -\overrightarrow{CA} + 2\overrightarrow{CB}.$ Chọn đáp án (C)

$$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}.$$

$$\overrightarrow{B} \overrightarrow{AG} = \frac{5}{6} \overrightarrow{AP} + \frac{1}{6} \overrightarrow{AQ}.$$

(A)
$$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}$$
. (B) $\overrightarrow{AG} = \frac{5}{6}\overrightarrow{AP} + \frac{1}{6}\overrightarrow{AQ}$. (C) $\overrightarrow{AG} = \frac{1}{6}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}$. (D) $\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AP} + \frac{1}{3}\overrightarrow{AQ}$.

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AG} = \frac{1}{2} \overrightarrow{AP} + \frac{1}{3} \overrightarrow{AQ}$$

Ta có
$$\overrightarrow{AP} = 2\overrightarrow{BP} = 2\left(\overrightarrow{AP} - \overrightarrow{AB}\right), \text{ suy ra } \overrightarrow{AB} = \frac{1}{2}\overrightarrow{AP}.$$

$$\bigcirc$$
 $3\overrightarrow{AQ} = 2\overrightarrow{QC} = 2\left(\overrightarrow{AC} - \overrightarrow{AQ}\right)$, suy ra $\overrightarrow{AC} = \frac{5}{2}\overrightarrow{AQ}$.

Do đó
$$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} = \frac{1}{6}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}.$$

Chọn đáp án (C)

CÂU 27. Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J thuộc BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác ABC. Biểu diễn vecto AG theo các vecto AI, AJ.

$$\overrightarrow{AG} = \frac{35}{48}\overrightarrow{AI} - \frac{1}{16}\overrightarrow{AJ}.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} + \frac{1}{16} \overrightarrow{AJ}.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AG} = \frac{25}{16} \overrightarrow{AI} - \frac{3}{16} \overrightarrow{AJ}$$

$$\overrightarrow{A} \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} - \frac{1}{16} \overrightarrow{AJ}.$$

$$\overrightarrow{B} \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} + \frac{1}{16} \overrightarrow{AJ}.$$

$$\overrightarrow{C} \overrightarrow{AG} = \frac{25}{16} \overrightarrow{AI} - \frac{3}{16} \overrightarrow{AJ}.$$

$$\overrightarrow{D} \overrightarrow{AG} = \frac{25}{16} \overrightarrow{AI} + \frac{3}{16} \overrightarrow{AJ}.$$

Ta có
$$\overrightarrow{AI} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$$
, $\overrightarrow{AJ} = \frac{5}{3}\overrightarrow{AB} - \frac{2}{5}\overrightarrow{AC}$
Suy ra $\overrightarrow{AB} = \frac{5}{8}\overrightarrow{AI} + \frac{3}{8}\overrightarrow{AJ}$, $\overrightarrow{AC} = \frac{25}{16}\overrightarrow{AI} - \frac{9}{16}\overrightarrow{AJ}$.
Do đó $\overrightarrow{AG} = \frac{1}{3}\left(\overrightarrow{AB} + \overrightarrow{AC}\right) = \frac{35}{48}\overrightarrow{AI} - \frac{1}{16}\overrightarrow{AJ}$.

Chọn đáp án (A)

CÂU 28. Cho tam giác ABC. Gọi G là trọng tâm tam giác và H là điểm đối xứng của B qua G. Gọi M là trung điểm BC. Biểu diễn vecto \overrightarrow{MH} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .

$$\overrightarrow{A} \overrightarrow{MH} = \frac{5}{6} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}.$$

$$\overrightarrow{C}$$
 $\overrightarrow{MH} = -\frac{5}{6}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}$

$$\overrightarrow{\mathbf{D}} \overrightarrow{MH} = \frac{1}{6} \overrightarrow{AB} + \frac{5}{6} \overrightarrow{AC}.$$

Ta có
$$\overrightarrow{AH} = \overrightarrow{AC} - \overrightarrow{AG} = \frac{2}{3}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}$$
.

Lại có
$$\overrightarrow{BH} = 2\overrightarrow{BG} = \frac{2}{3} \left(\overrightarrow{AC} - 2\overrightarrow{AB} \right)$$
.

Do đó

$$\overrightarrow{MH} = -\overrightarrow{HM} = -\frac{1}{2}\overrightarrow{HB} - \frac{1}{2}\overrightarrow{HC}$$

$$= \frac{1}{2}\overrightarrow{BH} - \frac{1}{2}\left(\overrightarrow{AC} - \overrightarrow{AH}\right)$$

$$= -\frac{5}{6}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}.$$

Chọn đáp án (C)

CÂU 29. Cho góc $xOy = 60^{\circ}$. Các điểm A, B nằm trên tia Ox, các điểm C, D nằm trên tia Oy sao cho AB = CD = 2. Gọi I, J lần lượt là trung điểm các đoạn AC, BD. Biết A nằm giữa O và B, C nằm giữa O và D, tính IJ.

$$\bigcirc IJ = \sqrt{3}.$$

Trên các tia Ox, Oy lần lượt lấy các điểm X, Y sao cho OX = OY = 2. Dựng hình bình hành OXZY, ta có

$$2\overrightarrow{IJ} = (\overrightarrow{IA} + \overrightarrow{AB} + \overrightarrow{BJ}) + (\overrightarrow{IC} + \overrightarrow{CD} + \overrightarrow{DJ})$$
$$= \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{OX} + \overrightarrow{OY} = \overrightarrow{OZ}.$$

Suy ra $IJ = \frac{1}{2}OZ = \sqrt{3}$.

Chọn đáp án (C)

CÂU 30. Cho tam giác ABC, N là điểm xác định bởi $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Gọi G là trọng tâm tam giác ABC. Hệ thức tính \overrightarrow{AC} theo \overrightarrow{AG} và \overrightarrow{AN} là $(A) \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$ (B) $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}.$ (C) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$ (D) $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}.$

$$\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AN}$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AC} = \frac{4}{3} \overrightarrow{AG} - \frac{1}{2} \overrightarrow{AN}$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AN}.$$

🗭 Lời giải.

Gọi M là trung điểm của BC.

Vì G là trọng tâm tam giác $ABC \Rightarrow \overrightarrow{AM} = \frac{3}{2}\overrightarrow{AG}$.

Ta có

$$\overrightarrow{AC} = \frac{1}{2} \left(\overrightarrow{AM} + \overrightarrow{AN} \right) = \frac{1}{2} \cdot \frac{3}{2} \overrightarrow{AG} + \frac{1}{2} \overrightarrow{AN}$$
$$= \frac{3}{4} \overrightarrow{AG} + \frac{1}{2} \overrightarrow{AN}.$$

Chọn đáp án C

Dạng 5. Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trùng nhau

- \odot Để chứng minh 3 điểm A, B, C thẳng hàng, ta chứng minh: $\overrightarrow{AB} = k\overrightarrow{AC}$ (1). Để nhân được (1), ta lựa chon một trong hai hướng sau:
 - Sử dụng các quy tắc biến đổi vectơ.
 - Xác định (tính) vectơ \overrightarrow{AB} và \overrightarrow{AC} thông qua một tổ hợp trung gian.

Chú ý:

- Cho ba điểm A, B, C. Điều kiện cần và đủ để A, B, C thẳng hàng là: $\overrightarrow{MC} = \alpha \overrightarrow{MA} + (1 \alpha) \overrightarrow{MB}$ với điểm M tùy ý và số thực α bất k".
 - Đặc biệt khi $0 \le \alpha \le 1$ thì $C \in AB$. Kết quả trên còn được sử dụng để tìm điều kiện của tham số k (hoặc m) cho ba điểm A, B, C thẳng hàng.
- Nếu không dễ nhận thấy k trong biểu thức $\overrightarrow{AB} = k\overrightarrow{AC}$, ta nên quy đồng biểu thức phân tích vectơ \overrightarrow{AB} và \overrightarrow{AC} để tìm ra số k.
- \odot Để chứng minh $\overrightarrow{AB} \parallel CD$ ta cần chứng minh $\overrightarrow{AB} = k\overrightarrow{DC}$.

1. Ví dụ minh họa

VÍ DỤ 1. Cho hình bình hành ABCD, tâm O. Gọi M, N theo thứ tự là trung điểm của AB, CD và P là điểm thỏa mãn hệ thức $\overrightarrow{OP} = -\frac{1}{3}\overrightarrow{OA}$. Chứng minh 3 điểm B, P, N thẳng hàng.

Dèi giải.

Ta có CO là đường trung tuyến của tam giác BCD. Hơn nữa $\overrightarrow{OP} = -\frac{1}{3}\overrightarrow{OA} \Leftrightarrow \overrightarrow{OP} = \frac{1}{3}\overrightarrow{OC}$ suy ra P là trọng tâm của tam giác BCD.

Mặt khác BN cũng là đường trung tuyến trong tam giác BCD nên B, P, N thẳng hàng.

VÍ DỤ 2. Cho bốn điểm phân biệt A, B, C, D thỏa: $2\overrightarrow{AB} + 3\overrightarrow{AC} = 5\overrightarrow{AD}$. Chứng minh B, C, D thẳng hàng. \bigcirc Lời giải.

Ta có

$$\begin{split} 2\overrightarrow{AB} + 3\overrightarrow{AC} &= 5\overrightarrow{AD} \\ \Leftrightarrow & 2\overrightarrow{AB} + 3\overrightarrow{AC} - 5\overrightarrow{AD} = \overrightarrow{0} \\ \Leftrightarrow & 2\overrightarrow{AB} - 2\overrightarrow{AD} + 3\overrightarrow{AC} - 3\overrightarrow{AD} = \overrightarrow{0} \\ \Leftrightarrow & 2\left(\overrightarrow{AB} - \overrightarrow{AD}\right) + 3\left(\overrightarrow{AC} - \overrightarrow{AD}\right) = \overrightarrow{0} \\ \Leftrightarrow & 2\left(\overrightarrow{DB} + 3\overrightarrow{DC} = \overrightarrow{0} \right) \\ \Leftrightarrow & \overrightarrow{DB} = -\frac{3}{2}\overrightarrow{DC}. \end{split}$$

Suy ra ba điểm B, C, D thẳng hàng.

VÍ DỤ 3. Cho $\triangle ABC$, lấy điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}, \overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}, \overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$.

- a) Tính \overrightarrow{PM} , \overrightarrow{PN} theo \overrightarrow{AB} , \overrightarrow{AC} .
- b) Chứng minh ba điểm: M, N, P thẳng hàng.

🗩 Lời giải.

a) Ta có:

$$\overrightarrow{MB} = 3\overrightarrow{MC} \quad \Leftrightarrow \quad \overrightarrow{AB} - \overrightarrow{AM} = 3\left(\overrightarrow{AC} - \overrightarrow{AM}\right)$$

$$\Leftrightarrow \quad 2\overrightarrow{AM} = -\overrightarrow{AB} + 3\overrightarrow{AC}$$

$$\Leftrightarrow \quad \overrightarrow{AM} = -\frac{1}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC}.$$

$$\overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0} \quad \Leftrightarrow \quad -\overrightarrow{AN} + 3\left(\overrightarrow{AC} - \overrightarrow{AN}\right) = \overrightarrow{0}$$

$$\Leftrightarrow \quad -4\overrightarrow{AN} = -3\overrightarrow{AC}$$

$$\Leftrightarrow \quad \overrightarrow{AN} = \frac{3}{4}\overrightarrow{AC}.$$

$$\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0} \quad \Leftrightarrow \quad -\overrightarrow{AP} + \overrightarrow{AB} - \overrightarrow{AP} = \overrightarrow{0}$$

$$\Leftrightarrow \quad -2\overrightarrow{AP} = -\overrightarrow{AB}$$

$$\Leftrightarrow \quad \overrightarrow{AP} = \frac{1}{2}\overrightarrow{AB}.$$

Suy ra

$$\overrightarrow{PM} = \overrightarrow{AM} - \overrightarrow{AP} = \left(-\frac{1}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC} \right) - \frac{1}{2}\overrightarrow{AB} = -\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC} \; ;$$

$$\overrightarrow{PN} = \overrightarrow{AN} - \overrightarrow{AP} = \frac{3}{4}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB}.$$

b) Ta có
$$\begin{cases} \overrightarrow{PM} = -\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC} \\ \overrightarrow{PN} = -\frac{1}{2}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC} \end{cases} \Rightarrow \overrightarrow{PM} = 2\overrightarrow{PN}.$$

Suy ra hai vecto \overrightarrow{PM} và \overrightarrow{PN} cùng phương, nên ba điểm M, N, P thẳng hàng.

VÍ DỤ 4. Cho $\triangle ABC$ có I là trung điểm của trung tuyến AM và D là điểm thỏa hệ thức $3\overrightarrow{AD} = \overrightarrow{AC}$. Biểu diễn vecto \overrightarrow{BD} , \overrightarrow{BI} theo \overrightarrow{AB} , \overrightarrow{AC} và chứmg minh ba điểm B, I, D thẳng hàng.

🗩 Lời giải.

Ta có
$$\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = \frac{1}{3}\overrightarrow{AC} - \overrightarrow{AB}$$
. (1)
Lai có

$$\overrightarrow{BI} = \frac{1}{2} \left(\overrightarrow{BA} + \frac{1}{2} \overrightarrow{BC} \right) \Leftrightarrow \overrightarrow{BI} = \frac{1}{2} \left(\overrightarrow{BA} + \frac{1}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{AB} \right)$$
$$\Leftrightarrow \overrightarrow{BI} = \frac{1}{4} \overrightarrow{AC} - \frac{3}{4} \overrightarrow{AB}. \tag{2}$$

Từ (1) và (2) ta có $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{BD}$, suy ra ba điểm $B,\,I,\,D$ thẳng hàng.

2. Bài tập áp dụng

BÀI 1. Cho $\triangle ABC$.

- a) Dựng các điểm K, L sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0}$, $2\overrightarrow{LB} + 3\overrightarrow{LC} = \overrightarrow{0}$
- b) Chứng minh ba điểm A, K, L thẳng hàng.

🗩 Lời giải.

a) Gọi H, I lần lượt là trung điểm của BC, AC. Khi đó

$$\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0} \quad \Leftrightarrow \quad \overrightarrow{KA} + \overrightarrow{KC} + 2\left(\overrightarrow{KB} + \overrightarrow{KC}\right) = \overrightarrow{0}$$

$$\Leftrightarrow \quad 2\overrightarrow{KI} + 4\overrightarrow{KH} = \overrightarrow{0} \Leftrightarrow \overrightarrow{IK} = \frac{2}{3}\overrightarrow{IH}.$$

Từ đó dựng các điểm K, L như hình vẽ.

b) Ta có

$$\begin{array}{ll} \overrightarrow{AK} & = & \overrightarrow{AI} + \overrightarrow{IK} = \frac{1}{2}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{IH} \\ & = & \frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} \text{ (do }IH \text{ là đường trung bình trong } \triangle ABC \text{)}. \end{array}$$

Lại có

$$\overrightarrow{AL} = \overrightarrow{AB} + \overrightarrow{BL} = \overrightarrow{AB} + \frac{3}{5}\overrightarrow{BC}$$

$$= \frac{2}{5}\overrightarrow{AB} + \frac{3}{5}\overrightarrow{AC} = \frac{6}{5}\left(\frac{1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}\right) = \frac{6}{5}\overrightarrow{AK}.$$

Vậy ba điểm A, K, L thẳng hàng.

BÀI 2. Cho hình bình hành ABCD. Gọi I là trung điểm của AB và E là điềm thoả hệ thức $3\overrightarrow{IE} = \overrightarrow{ID}$. Chứmg minh ba điểm A, C, E thẳng hàng.

🗩 Lời giải.

Ta có
$$3\overrightarrow{IE} = \overrightarrow{ID} \Leftrightarrow \overrightarrow{DI} = \frac{3}{2}\overrightarrow{DE}$$
.

Do ABCD là hình bình hành nên

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AI} + \overrightarrow{AD}$$

= $2\overrightarrow{AD} + 2\overrightarrow{DI} + \overrightarrow{AD} = 3\overrightarrow{AD} + 3\overrightarrow{DE} = 3\overrightarrow{AE}$.

Vậy ba điểm A, C, E thẳng hàng.

BÀI 3. Cho $\triangle ABC$.

- a) Dựng các điểm K, L sao cho $\overrightarrow{KA}+2\overrightarrow{KB}+3\overrightarrow{KC}=\overrightarrow{0}$ và $2\overrightarrow{LB}+3\overrightarrow{LC}=\overrightarrow{0}$
- b) Chứng minh ba điểm A, K, L thẳng hàng.

Dèi giải.

a) Gọi H, I lần lượt là trung điểm của BC, AC. Khi đó

$$\begin{split} \overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} &= \overrightarrow{0} \quad \Leftrightarrow \quad \overrightarrow{KA} + \overrightarrow{KC} + 2\left(\overrightarrow{KB} + \overrightarrow{KC}\right) = \overrightarrow{0} \\ \Leftrightarrow \quad 2\overrightarrow{KI} + 4\overrightarrow{KH} &= \overrightarrow{0} \Leftrightarrow \overrightarrow{IK} = \frac{2}{3}\overrightarrow{IH}. \end{split}$$

Từ đó dựng các điểm K, L như hình vẽ.

b) Ta có

$$\overrightarrow{AK} = \overrightarrow{AI} + \overrightarrow{IK} = \frac{1}{2}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{IH}$$

$$= \frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB} \text{ (do } IH \text{ là đường trung bình trong } \triangle ABC \text{)}.$$

Lại có

Vậy ba điểm A, K, L thẳng hàng.

BÀI 4. Cho $\triangle ABC$. Gọi M là trung điểm của cạnh AB, N và P là hai điểm thỏa mãn hệ thức $\overrightarrow{NA} + 2\overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{PB} - 2\overrightarrow{PC} = \overrightarrow{0}$. Chứng minh ba điểm M, N, P thẳng hàng.

🗩 Lời giải.

Ta có
$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
.
Lai có

$$\begin{split} \overrightarrow{MP} &= \overrightarrow{MB} + \overrightarrow{BP} = \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BC} \\ &= \frac{1}{2}\overrightarrow{AB} + 2\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = -\frac{3}{2}\overrightarrow{AB} + 2\overrightarrow{AC} \\ &= 3\left(-\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}\right) = 3\overrightarrow{MN}. \end{split}$$

Vậy ba điểm M, N, P thẳng hàng.

BÀI 5. Cho $\triangle ABC$. Hai điểm M, N được xác định bởi $3\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}, \overrightarrow{NB} - 3\overrightarrow{NC} = \overrightarrow{0}$. Chứng minh MN đi qua trọng tâm $\triangle ABC$.

🗩 Lời giải.

Gọi G là trọng tâm của $\triangle ABC$. Ta có

$$\overrightarrow{MG} = \overrightarrow{MA} + \overrightarrow{AG} = -\frac{4}{7}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AH}$$

$$= -\frac{4}{7}\overrightarrow{AB} + \frac{2}{3}\left(\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}\right) = -\frac{5}{21}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$$

Lại có

$$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BN} = \frac{3}{7}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{BC}$$

$$= \frac{3}{7}\overrightarrow{AB} + \frac{3}{2}\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = -\frac{15}{14}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC} = \frac{9}{2}\overrightarrow{MG}.$$

Vậy $M,\ N,\ G$ thẳng hàng, hay MN đi qua trọng tâm G của $\triangle ABC.$

BÀI 6. Cho $\triangle ABC$.

- a) Dựng các điểm D, E thỏa các hệ thức $\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB}$, $\overrightarrow{DE} = \frac{3}{2}\overrightarrow{BC}$.
- b) Chứng minh ba điểm A, C, E thẳng hàng.

🗩 Lời giải.

- a) Ta dựng các điểm D, E như hình vẽ.
- b) Ta có

$$\overrightarrow{AE}$$
 = $\overrightarrow{AD} + \overrightarrow{DE} = \frac{3}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{BC}$
 = $\frac{3}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{3}{2}\overrightarrow{AC}$.

Vậy ba điểm A, C, E thẳng hàng.

BÀI 7. Cho hình bình hành ABCD. Gọi I là trung điểm của cạnh BC và E là điểm xác định bởi $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$. Chứng minh ba điểm D, E, I thẳng hàng.

🗩 Lời giải.

Ta có

$$\overrightarrow{DI} = \frac{1}{2}\overrightarrow{DB} + \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}\left(\overrightarrow{DA} + \overrightarrow{DC}\right) + \frac{1}{2}\overrightarrow{DC}$$

$$= \frac{1}{2}\overrightarrow{DA} + \overrightarrow{DC} = \frac{1}{2}\overrightarrow{DA} + \overrightarrow{DA} + \overrightarrow{AC}$$

$$= \frac{3}{2}\overrightarrow{DA} + \frac{3}{2}\overrightarrow{AE} = \frac{3}{2}\overrightarrow{DE}.$$

Vậy ba điểm D, E, I thẳng hàng.

BÀI 8. Cho $\triangle ABC$ có trung tuyến AD và M là trung điểm AD. Điểm N được lấy trên AC sao cho $3\overrightarrow{AN} = \overrightarrow{AC}$. Chứng minh ba điểm B, M, N thẳng hàng.

Dài giải.

Ta có

$$\begin{split} \overrightarrow{BM} &= \frac{1}{2}\overrightarrow{BA} + \frac{1}{2}\overrightarrow{BD} = \frac{1}{2}\overrightarrow{BA} + \frac{1}{4}\overrightarrow{BC} \\ &= \frac{1}{2}\overrightarrow{BA} + \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AB} = \frac{3}{4}\overrightarrow{BA} + \frac{1}{4}\overrightarrow{AC} \\ &= \frac{3}{4}\left(\overrightarrow{BA} + \frac{1}{3}\overrightarrow{AC}\right) = \frac{3}{4}\left(\overrightarrow{BA} + \overrightarrow{AN}\right) = \frac{3}{4}\overrightarrow{BN}. \end{split}$$

Vậy ba điểm B, M, N thẳng hàng.

BÀI 9. Cho $\triangle ABC$ có M là trung điểm BC và O là trung điểm của AM. Trên AB lấy điểm I, AC lấy điểm J sao cho $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$ và $\overrightarrow{AJ} = \frac{2}{5}\overrightarrow{AC}$. Chứng minh ba điểm I, J, O thẳng hàng.

🗩 Lời giải.

Do
$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$
 nên $\overrightarrow{IB} = \frac{1}{3}\overrightarrow{AB}$. Tương tự thì $\overrightarrow{JC} = \frac{3}{5}\overrightarrow{AC}$.

Ta có

$$2\overrightarrow{IO} = \overrightarrow{IA} + \overrightarrow{IM} = \frac{-2}{3}\overrightarrow{AB} + \overrightarrow{IB} + \overrightarrow{BM} = \frac{-2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \frac{-1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$

Tương tự,

$$2\overrightarrow{JO} = \frac{1}{5}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB} = \frac{1}{5}\left(\overrightarrow{AB} + \overrightarrow{BC}\right) - \frac{1}{2}\overrightarrow{BC} = \frac{1}{5}\overrightarrow{AB} - \frac{3}{10}\overrightarrow{BC}.$$

Suy ra $6\overrightarrow{IO} = -10\overrightarrow{JO}$ hay $\overrightarrow{IO} = \frac{-5}{3}\overrightarrow{JO}$.

Vậy ba điểm I, J, O thẳng hàng.

BÀI 10. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A, O, G thẳng hàng.

🗩 Lời giải.

MN, PQ lần lượt là đường trung bình của $\Delta ABC, \Delta ACD$

$$\Rightarrow \begin{cases} MN \parallel PQ \parallel AC \\ MN = PQ = \frac{1}{2}AC \end{cases}$$

Do đó tứ giác MNPQ là hình bình hành $\Rightarrow O$ là trung điểm của MP.

$$G$$
 là trọng tâm $\Delta BCD \Rightarrow \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 3\overrightarrow{OG}$.

Khi đó
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0} \Leftrightarrow \overrightarrow{OA} + \overrightarrow{3OG} = \overrightarrow{0} \Leftrightarrow \overrightarrow{OA} = -3\overrightarrow{OG}$$
.

Vậy ba điểm A, O, G thẳng hàng (đpcm).

BÀI 11. Cho tứ giác ABCD. Gọi M,N là hai điểm di động trên AB,CD sao cho $\frac{MA}{MB} = \frac{ND}{NC}$ và hai điểm I,J lần lượt là trung điểm của AD,BC.

- a) Tính \overrightarrow{IJ} theo \overrightarrow{AB} và \overrightarrow{DC} .
- b) Chứng minh trung điểm P của MN nằm trên IJ.

🗩 Lời giải.

a)
$$2\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AB} + \overrightarrow{ID} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{DC}$$
.

Suy ra
$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{DC}$$
.

b) Từ giải thiết ta có
$$\overrightarrow{BM} = -\overrightarrow{AM} \cdot \frac{NC}{ND}$$
 và $\overrightarrow{CN} = -\overrightarrow{DN} \cdot \frac{MB}{MA}$

Mặt khác

$$2\overrightarrow{IP} = \overrightarrow{IM} + \overrightarrow{IN} = \overrightarrow{IA} + \overrightarrow{AM} + \overrightarrow{ID} + \overrightarrow{DN} = \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{AM} + \overrightarrow{DN}$$

Mà

$$2\overrightarrow{JP} = \overrightarrow{BM} + \overrightarrow{CN} = -\overrightarrow{AM} \cdot \frac{NC}{ND} - \overrightarrow{DN} \cdot \frac{MB}{MA} = -\frac{MB}{MA} (\overrightarrow{AM} + \overrightarrow{DN}) = -\frac{2MB}{MA} \cdot \overrightarrow{IP}.$$

Suy ra I, P, J thẳng hàng hay P của MN nằm trên IJ.

BÀI 12. Cho $\triangle ABC$. Gọi P, Q, R là các điểm thỏa các đẳng thức :

$$3\overrightarrow{PB} + 4\overrightarrow{PC} = \overrightarrow{0}, \quad \overrightarrow{AQ} = 2\overrightarrow{QC}, \quad k\overrightarrow{RA} = \overrightarrow{RB}, \ k \neq 1.$$

- a) Chứng minh rằng: $21\overrightarrow{PQ}=2\overrightarrow{BC}+7\overrightarrow{BA}$.
- b) Chứng minh rằng: $\overrightarrow{RP} = \frac{k}{1-k}\overrightarrow{BA} + \frac{4}{7}\overrightarrow{BC}$.

c) Tìm k sao cho P, Q, R thẳng hàng.

Dèi giải.

a) Từ $3\overrightarrow{PB} + 4\overrightarrow{PC} = \overrightarrow{0}$, $\overrightarrow{AQ} = 2\overrightarrow{QC}$ suy ra $\overrightarrow{PC} = \frac{3}{7}\overrightarrow{BC}$ và $\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$.

 $21\overrightarrow{PQ} = 21\overrightarrow{PC} + 21\overrightarrow{CQ} = 9\overrightarrow{BC} + 7\overrightarrow{CA} = 9\overrightarrow{BC} + 7(\overrightarrow{CB} + \overrightarrow{BA}) = 2\overrightarrow{BC} + 7\overrightarrow{BA}.$

Do đó
$$\overrightarrow{RP} = \overrightarrow{RB} + \overrightarrow{BP} = \frac{k}{1-k}\overrightarrow{BA} + \frac{4}{7}\overrightarrow{BC}$$
.

c) Để
$$P$$
, Q , R thẳng hàng thì $\overrightarrow{RP} = a \cdot \overrightarrow{PQ}$, $a \neq 0$.
Suy ra $\frac{k}{1-k}\overrightarrow{BA} + \frac{4}{7}\overrightarrow{BC} = a \cdot \left(\frac{2}{21}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{BA}\right)$

Suy ra $k = \frac{2}{3}$

BÀI 13. Cho hình bình hành ABCD.

a) Gọi I, F, K là các điểm thỏa mãn $\overrightarrow{AI} = \alpha \overrightarrow{AB}, \overrightarrow{AF} = \beta \overrightarrow{AC}, \overrightarrow{AK} = \gamma \overrightarrow{AD}$. Chứng minh điều kiện cần và đủ đề I, F, Kthẳng hàng là

 $\frac{1}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma} \quad (\alpha, \ \beta, \ \gamma \neq 0).$

b) Gọi M, N là hai điểm lần lượt trên đoạn AB, CD sao cho $\cfrac{AM}{AB} = \cfrac{1}{3}$, $\cfrac{CN}{CD} = \cfrac{1}{2}$. Gọi G là trọng tâm $\triangle MNB$. Tính \overrightarrow{AN} , \overrightarrow{AG} theo \overrightarrow{AB} và \overrightarrow{AC} . Gọi H là điểm xác định bởi $\overrightarrow{BH} = k \cdot \overrightarrow{BC}$. Tính \overrightarrow{AH} theo \overrightarrow{AB} , \overrightarrow{AC} và k. Tìm k để đường thẳng AH đi qua điểm G.

🗭 Lời giải.

a) Do
$$\overrightarrow{KI} = \overrightarrow{AI} - \overrightarrow{AK} = \alpha \overrightarrow{AB} - \gamma \overrightarrow{AD}$$
 và

$$\overrightarrow{KF} = \overrightarrow{AF} - \overrightarrow{AK} = \beta \overrightarrow{AC} - \gamma \overrightarrow{AD} = \beta (\overrightarrow{AB} + \overrightarrow{AD}) - \gamma \overrightarrow{AD}.$$

Suy ra $\overrightarrow{KF} = \beta \overrightarrow{AB} + (\beta - \gamma) \overrightarrow{AD}$.

Mặt khác, I, F, K thẳng hàng khi và chỉ khi $\overrightarrow{KI} = k\overrightarrow{KF}, k \neq 0$.

Hay
$$\begin{cases} \alpha = k\beta \\ \gamma = -k(\beta - \gamma) \end{cases} \Leftrightarrow \frac{\alpha\gamma}{\beta} = \alpha + \gamma \Leftrightarrow \frac{1}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma}.$$

b) Từ giả thiết suy ra $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$ và $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{CD} = \frac{-1}{2}\overrightarrow{AB}$.

- $\overrightarrow{AN} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{AC}) = \overrightarrow{AC} \frac{1}{2}\overrightarrow{AB}$.
- $\overrightarrow{AG} = \overrightarrow{\overrightarrow{AN}} + \overrightarrow{NG} = \overrightarrow{AN} + \frac{1}{3}(\overrightarrow{NM} + \overrightarrow{NB}) = \frac{1}{3}\overrightarrow{AN} + \frac{2}{9}\overrightarrow{AB} + \frac{2}{9}\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AN} + \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AN} + \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AN} + \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AN} + \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AN} + \frac{$

 $\frac{1}{3}\overrightarrow{AC} + \frac{5}{18}\overrightarrow{AB}.$ • $\overrightarrow{AH} = \overrightarrow{AB} + \overrightarrow{BH} = \overrightarrow{AB} + k\overrightarrow{BC} = (1 - k)\overrightarrow{AB} + k\overrightarrow{AC}.$

Để AH đi qua điểm G khi và chỉ khi $\overline{AH} = t\overline{AG}, t \neq 0$ hay

$$(1-k)\overrightarrow{AB} + k\overrightarrow{AC} = t\left(\frac{1}{3}\overrightarrow{AC} + \frac{5}{18}\overrightarrow{AB}\right) \Leftrightarrow \begin{cases} 1-k = \frac{5}{18}t \\ k = \frac{t}{3} \end{cases} \Leftrightarrow \begin{cases} k = \frac{6}{11} \\ t = \frac{18}{11}. \end{cases}$$

Vậy $k = \frac{6}{11}$.

3. Bài tấp trắc nghiệm

- **CÂU 1.** Cho ba điểm A, B, C phân biệt. Điều kiên cần và đủ để ba điểm thắng hàng là
 - $(\mathbf{A}) AB = AC.$
 - $\overrightarrow{\mathbf{C}}) \overrightarrow{AC} \overrightarrow{AB} = \overrightarrow{BC}.$

- $\exists k \in \mathbb{R}^* \colon \overrightarrow{AB} = k \cdot \overrightarrow{AC}.$
- $\overrightarrow{\mathbf{D}}$ $\overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MC}, \forall \text{ diểm } M.$

🗩 Lời giải.

Ba điểm A, B, C thẳng hàng khi và chỉ khi tồn tại số $k \in \mathbb{R}$ khác 0 để $\overrightarrow{AB} = k\overrightarrow{AC}$. Chon đáp án (B)

CÂU 2. Khẳng định nào sau đây sai?

- (A) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{BC}, k \neq 0$.
- (B) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AC} = k\overrightarrow{BC}, k \neq 0$
- (**c**) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}, k \neq 0$.
- \bigcirc Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}$.

Dèi giải.

Ta có ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi sao cho $\overrightarrow{AB} = k\overrightarrow{AC}$. Chọn đáp án (D)

CÂU 3. Phát biểu nào là **sai**?
(A) Nếu
$$\overrightarrow{AB} = \overrightarrow{AC}$$
 thì $\left| \overrightarrow{AB} \right| = \left| \overrightarrow{AC} \right|$.

$$(\mathbf{C})$$
 Nếu $3\overrightarrow{AB} + 7\overrightarrow{AC} = \overrightarrow{0}$ thì \overrightarrow{A}, B, C thẳng hàng.

$$\stackrel{\textstyle \bullet}{B} \overrightarrow{AB} = \overrightarrow{CD}$$
 thì A,B,C,D thẳng hàng.

$$\overrightarrow{\mathbf{D}} \overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{DC} - \overrightarrow{BA}.$$

Ta có
$$\overrightarrow{AB} = \overrightarrow{CD}$$
 thì
$$\begin{bmatrix} AB \parallel CD \\ AB \equiv CD \end{bmatrix}$$

Nên khẳng đinh " $\overrightarrow{AB} = \overrightarrow{CD}$ thì A, B, C, D thẳng hàng "sai. Chon đáp án (B)

CÂU 4. Cho hai vecto \vec{a} và \vec{b} không cùng phương. Hai vecto nào sau đây là cùng phương?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{u} = 2\overrightarrow{a} + 3\overrightarrow{b} \ \text{và} \ \overrightarrow{v} = \frac{1}{2}\overrightarrow{a} - 3\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{u} = \frac{3}{5}\overrightarrow{a} + 3\overrightarrow{b} \ \text{và} \ \overrightarrow{v} = 2\overrightarrow{a} - \frac{3}{5}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{c}} \vec{u} = \frac{2}{3}\vec{a} + 3\vec{b} \text{ và } \vec{v} = 2\vec{a} - 9\vec{b}.$$

$$\vec{\mathbf{D}} \vec{u} = 2\vec{a} - \frac{3}{2}\vec{b} \text{ và } \vec{v} = -\frac{1}{3}\vec{a} + \frac{1}{4}\vec{b}.$$

Lời giải

$${\rm Ta\ có}\ \vec{v} = -\frac{1}{3}\vec{a} + \frac{1}{4}\vec{b} = -\frac{1}{6}\left(2\vec{a} - \frac{3}{2}\vec{b}\right) = -\frac{1}{6}\vec{u}\ .$$

Hai vecto \vec{u} và \vec{v} là cùng phương.

Chọn đáp án (D)

CÂU 5. Biết rằng hai vecto \vec{a} và \vec{b} không cùng phương nhưng hai vecto $2\vec{a} - 3\vec{b}$ và $\vec{a} + (x - 1)\vec{b}$ cùng phương. Khi đó giá trị của x là

A
$$\frac{1}{2}$$
.

B
$$-\frac{3}{2}$$
.

$$(c) - \frac{1}{2}$$
.

$$\bigcirc \frac{3}{2}$$
.

₽ Lời giải.

Ta có $2\vec{a} - 3\vec{b}$ và $\vec{a} + (x - 1)\vec{b}$ cùng phương nên có tỉ lệ $\frac{1}{2} = \frac{x - 1}{-3} \Rightarrow x = -\frac{1}{2}$.

Chon đáp án (C)

CÂU 6. Cho \vec{a} , \vec{b} không cùng phương, $\vec{x} = -2 \vec{a} + \vec{b}$. vectơ cùng hướng với \vec{x} là (\vec{a}) (\vec{a})

$$\mathbf{B} - \vec{a} + \frac{1}{2} \vec{b}.$$

$$\bigcirc$$
 $4\vec{a} + 2\vec{b}$

$$\bigcirc$$
 $-\vec{a} + \vec{b}$.

🗭 Lời giải.

Ta có
$$-\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} = \frac{1}{2}\left(-2\overrightarrow{a} + \overrightarrow{b}\right) = \frac{1}{2}\overrightarrow{x}$$
.

Chọn đáp án (B)

CÂU 7. Biết rằng hai vecto \vec{a} và \vec{b} không cùng phương nhưng hai vecto $3\vec{a}-2\vec{b}$ và $(x+1)\vec{a}+4\vec{b}$ cùng phương. Khi đó giá trị của x là

(A) -7.

(D) 6.

Lời giải.

Điều kiện để hai vecto $3\vec{a} - 2\vec{b}$ và $(x+1)\vec{a} + 4\vec{b}$ cùng phương là $\frac{x+1}{3} = \frac{4}{-2} \Leftrightarrow x = -7$.

Chọn đáp án (A)

CÂU 8. Biết rằng hai vectơ \vec{a} và \vec{b} không cùng phương nhưng hai vectơ $2\vec{a} - 3\vec{b}$ và $\vec{a} + (x - 1)\vec{b}$ cùng phương. Khi đó giá trị của x là

$$\frac{1}{2}$$

 $(c) - \frac{1}{2}$.

🗩 Lời giải.

Từ giả thiết, ta có $\frac{1}{2} = \frac{x-1}{-3} \Leftrightarrow x = \frac{-1}{2}$.

Chọn đáp án (C)

CÂU 9. Nếu I là trung điểm đoạn thẳng AB và $\overrightarrow{IA} = k\overrightarrow{AB}$ thì giá trị của k bằng

(**D**) -2.

🗭 Lời giải.

Ta có $IA = \frac{1}{2}AB$ và \overrightarrow{IA} , \overrightarrow{AB} ngược hướng. Vậy $\overrightarrow{IA} = -\frac{1}{2}\overrightarrow{AB}$.

Chọn đáp án (C)

CÂU 10. Cho tam giác \overrightarrow{ABC} và một điểm M tùy ý. Chứng minh rằng vecto $\overrightarrow{v} = \overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC}$. Hãy xác định vi trí của điểm D sao cho $\overrightarrow{CD} = \overrightarrow{v}$.

 (\mathbf{A}) D là điểm thứ tư của hình bình hành ABCD.

 (\mathbf{B}) D là điểm thứ tư của hình bình hành ACBD.

 (\mathbf{C}) D là trọng tâm của tam giác ABC.

 $(\mathbf{D}) D$ là trực tâm của tam giác ABC.

🗩 Lời giải.

Ta có: $\overrightarrow{v} = \overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC} = \overrightarrow{MA} - \overrightarrow{MC} + \overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{CA} + \overrightarrow{CB} = 2\overrightarrow{CI}$ (Với I là trung điểm của AB).

Vậy vectơ \overrightarrow{v} không phụ thuộc vào vị trú điểm M. Khi đó: $\overrightarrow{CD} = \overrightarrow{v} = 2\overrightarrow{CI} \Rightarrow I$ là trung điểm của CD

Vậy D là điểm thứ tư của hình bình hành ACBD.

Chọn đáp án (B)

CÂU 11. Cho tam giác \overrightarrow{ABC} . Hai điểm M, N được xác định bởi các hệ thức $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}, \overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$. Trong các khẳng định sau, khẳng định nào đúng?

(A) $MN \perp AC$.

(B) MN//AC.

 $(\mathbf{C}) M$ nằm trên đường thẳng AC.

 (\mathbf{D}) Hai đường thẳng MN và AC trùng nhau.

Lời giải.

Ta có $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0} \Rightarrow \overrightarrow{AM} = \overrightarrow{BC} \Rightarrow M$ là điểm thứ tư của hình bình

hành ABCM nên $M \notin AC$.

(1)Cộng vế theo vế hai đẳng thức

 $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}$, $\overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$, ta được

 $\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$

 $\Leftrightarrow (\overrightarrow{MA} + \overrightarrow{AN}) + (\overrightarrow{AB} + \overrightarrow{BC}) - 3\overrightarrow{AC} = \overrightarrow{0}$

 $\Leftrightarrow \overrightarrow{MN} + \overrightarrow{AC} - 3\overrightarrow{AC} \Leftrightarrow \overrightarrow{MN} = 2\overrightarrow{AC}$

 $\Rightarrow \overrightarrow{MN}$ cùng phương với \overrightarrow{AC} . Từ (1) và (2) suy ra MN//AC.

Chọn đáp án (B)

CÂU 12. Cho tam giác ABC có trọng tâm G. Các điểm M, N thỏa mãn $7\overrightarrow{MG} = 3\overrightarrow{GC} - \overrightarrow{GB}$; $\overrightarrow{GN} = \frac{1}{2} \left(3\overrightarrow{GC} - \overrightarrow{GB} \right)$.

Khẳng định nào dưới đây là đúng?

(**B**) Đường thẳng MN đi qua A.

(A) Đường thẳng MN đi qua G. (**C**) Đường thẳng MN đi qua B.

(**D**) Đường thẳng MN đi qua C.

Dòi giải.

Theo giả thiết ta có $2\overrightarrow{GN} = 7\overrightarrow{MG}$.

Vậy ba điểm M, N, G thẳng hàng hay đường thẳng MN đi qua G.

Chọn đáp án (A)

CÂU 13. Cho hai vectơ \vec{a} và \vec{b} không cùng phương. Các điểm A, B, C sao cho $\overrightarrow{AB} = 2\vec{a} - 3\vec{b}$; $\overrightarrow{AC} = m\vec{a} - \frac{1}{2}\vec{b}$. Khi A, B, C thẳng hàng thì khẳng định nào sau đây đúng?

(A) $m \in (2;3)$.

(B) $m \in (1; 2)$.

(c) $m \in (-1; 0)$.

 $(\mathbf{D}) m \in (0;1).$

🗩 Lời giải.

Yêu cầu bài toán $\Leftrightarrow \overrightarrow{AB}$ cùng phương $\overrightarrow{AC} \Leftrightarrow \frac{m}{2} = \frac{-\frac{1}{2}}{-3} \Leftrightarrow m = \frac{1}{2}$.

Chọn đáp án (D)

CÂU 14. Cho tạm giác ABC. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

(A) I là trọng tâm của tam giác ABC.

(**B**) I là tâm của đường tròn ngoại tiếp tam giác ABC.

 $(\mathbf{C})I$ là trực tâm của tam giác ABC.

(**D**) Tứ giác ABCI là hình bình hành.

Lời giải.

Gọi I là trọng tâm của tam giác ABC suy ra I cố định.

Khi đó $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MI}$.

Suy ra $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \Leftrightarrow \overrightarrow{MN} = 3\overrightarrow{MI} \Leftrightarrow 3$ điểm M, N, I thẳng hàng.

 \Rightarrow đường thẳng MN luôn đi qua điểm Icố định.

Vậy đường thẳng MN luôn đi qua điểm cố định I là trọng tâm của tam giác ABC.

Chon đáp án (A)

CÂU 15. Cho tam giác ABC. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{IC} = \frac{1}{2} \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{IC} = \frac{1}{2} \overrightarrow{BA}.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{IC} = \frac{\vec{1}}{2} \overrightarrow{BA}. \qquad \qquad \overrightarrow{\mathbf{C}} \ \overrightarrow{IB} = \frac{1}{2} \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{IB} = \frac{1}{2} \overrightarrow{CA}.$$

🗭 Lời giải.

Gọi I điểm thỏa mãn $\overrightarrow{IA} - \overrightarrow{IB} + 2\overrightarrow{IC} = \overrightarrow{0}$.

Ta có
$$\overrightarrow{IA} - \overrightarrow{IB} + 2\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{BA} + 2\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{IC} = \frac{1}{2}\overrightarrow{AB}$$
.

Vì A, B, C cố định nên I cố định. Khi đó

$$\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} = \left(\overrightarrow{MI} + \overrightarrow{IA}\right) - \left(\overrightarrow{MI} + \overrightarrow{IB}\right) + 2\left(\overrightarrow{MI} + \overrightarrow{IC}\right) = 2\overrightarrow{MI} + \left(\overrightarrow{IA} - \overrightarrow{IB} + 2\overrightarrow{IC}\right) = 2\overrightarrow{MI}.$$

Suy ra $\overrightarrow{MN} = \overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} \Leftrightarrow \overrightarrow{MN} = 2\overrightarrow{MI} \Leftrightarrow 3$ điểm M, N, I thẳng hàng.

 \Rightarrow đường thẳng MN luôn đi qua điểm I cố định.

Vậy đường thẳng MN luôn đi qua I là điểm cố định thỏa mãn $\overrightarrow{IC} = \frac{1}{2}\overrightarrow{AB}$.

Chon đáp án (A)

CÂU 16. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Các điểm M, N thỏa mãn $\overline{MN} = \overline{MA} + \overline{MN}$ $2\overline{MB} + 3\overline{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

(A) I là trọng tâm của tam giác OBC.

(B) I là tâm của đường tròn ngoại tiếp tam giác ABC.

(**C**) I là trung điểm của cạnh DC.

 (\mathbf{D}) Tứ giác ABCI là hình bình hành.

Dòi giải.

Ta có

$$\overrightarrow{MN} = \overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC}$$

$$= (\overrightarrow{MA} + \overrightarrow{MC}) + 2\overrightarrow{MB} + 2\overrightarrow{MC}$$

$$= 2\overrightarrow{MO} + 2\overrightarrow{MB} + 2\overrightarrow{MC}$$

$$= 2(\overrightarrow{MO} + \overrightarrow{MB} + \overrightarrow{MC})$$

$$= 6\overrightarrow{MI} \text{ (v\'oi } I \text{ là trọng tâm của } \triangle OBC \text{)}.$$

 \Rightarrow 3 điểm M, N, I thẳng hàng.

 \Rightarrow đường thẳng MN luôn đi qua điểm I cố định.

Vậy đường thẳng MN luôn đi qua điểm cố định I là trọng tâm của tam giác OBC.

Chọn đáp án (A)

CÂU 17. Cho tam giác ABC có trọng tâm G. Gọi P, Q là các điểm sao cho $\overrightarrow{PA} = 2\overrightarrow{PB}$, $\overrightarrow{AQ} + k\overrightarrow{AC} = \overrightarrow{0}$ với $k \in \mathbb{R}$. Tìm

B
$$k = \frac{2}{3}$$
.

$$k = -\frac{2}{5}$$
.

Lời giải.

Ta có $\overrightarrow{PA} = 2\overrightarrow{PB}$ suy ra P đối xứng với A qua B. Gọi M là trung điểm của BC.

$$\overrightarrow{PG} = \overrightarrow{PA} + \overrightarrow{AG} = -2\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} = -\frac{5}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{AQ} = -k\overrightarrow{AC} \Rightarrow \overrightarrow{AP} + \overrightarrow{PQ} = -k\overrightarrow{AC} \Rightarrow \overrightarrow{PQ} = -2\overrightarrow{AB} - k\overrightarrow{AC}.$$

Vì P, Q, G thẳng hàng nên $\frac{-k}{\frac{1}{2}} = \frac{2}{\frac{5}{2}}$. Suy ra $k = -\frac{2}{5}$.

$$V_{ay} k = -\frac{2}{5}.$$

Chọn đáp án (C)

CÂU 18. Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn $\overrightarrow{BM} = 3\overrightarrow{BC} - 2\overrightarrow{AB}, \overrightarrow{CN} = k\overrightarrow{AC} + 2\overrightarrow{BC}$. Tìm k để A, M, N thẳng hàng.

B
$$k = -\frac{1}{2}$$
.

Ta có $\overrightarrow{BM} = 3\overrightarrow{BC} - 2\overrightarrow{AB} \Rightarrow \overrightarrow{AM} - \overrightarrow{AB} = 3\overrightarrow{AC} - 3\overrightarrow{AB} - 2\overrightarrow{AB} \Rightarrow \overrightarrow{AM} = 3\overrightarrow{AC} - 4\overrightarrow{AB}.$ Mặt khác $\overrightarrow{CN} = k\overrightarrow{AC} + 2\overrightarrow{BC} \Rightarrow \overrightarrow{AN} - \overrightarrow{AC} = k\overrightarrow{AC} + 2(\overrightarrow{AC} - \overrightarrow{AB}) \Rightarrow \overrightarrow{AN} = (k+3)\overrightarrow{AC} - 2\overrightarrow{AB}.$ Vì A, M, N thẳng hàng nên $\frac{k+3}{3} = \frac{1}{2}$. Suy ra $k = -\frac{3}{2}$.

Vậy
$$k = -\frac{3}{2}$$
.

Chọn đáp án (A)

CÂU 19. Cho tam giác ABC có I là trung điểm của BC . Gọi M, N, P lần lượt là các điểm xác định bởi $\overrightarrow{AM} = m\overrightarrow{AB}$; $\overrightarrow{AN} = n\overrightarrow{AI}$; $\overrightarrow{AP} = p\overrightarrow{AC}$, với $mnp \neq 0$. Tìm điều kiện của m, n, p đề M, N, P thẳng hàng.

🗩 Lời giải.

Ta có

$$\overrightarrow{MP} = \overrightarrow{AP} - \overrightarrow{AM} = p\overrightarrow{AC} - m\overrightarrow{AB}$$

$$\overrightarrow{MN} = \overrightarrow{AN} - \overrightarrow{AM} = n\overrightarrow{AI} - m\overrightarrow{AB}$$

$$\begin{split} \text{Mà } \overrightarrow{AI} &= \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \text{ suy ra } \overrightarrow{MN} = \frac{n}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) - m \overrightarrow{AB} = \left(\frac{n}{2} - m \right) \overrightarrow{AB} + \frac{n}{2} \overrightarrow{AC}. \\ \text{Do } mnp \neq 0 \text{ nên } M, N, P \text{ thẳng hàng khi và chỉ khi } \frac{\frac{n}{2} - m}{-m} = \frac{\frac{n}{2}}{p} \Leftrightarrow 2mp = mn + np. \end{split}$$

Chon đáp án (D)

CÂU 20. Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn $\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$; $\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AC}$. Điểm K trên AD thỏa mãn $\overrightarrow{AK} = \frac{a}{b}\overrightarrow{AD}$ (với $\frac{a}{b}$ là phân số tối giản) sao cho 3 điểm B, K, E thẳng hàng. Tính $P = a^2 + b^2$.

$$P=5.$$

B
$$P = 13$$
.

$$(c) P = 29.$$

$$(D) P = 10.$$

D Lời giải.

$$\begin{aligned} & \text{Vì } \overrightarrow{AE} = \frac{1}{4}\overrightarrow{AC} \Leftrightarrow \overrightarrow{AB} + \overrightarrow{BE} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{BC} \\ & \Leftrightarrow \overrightarrow{BE} = \frac{1}{4}\overrightarrow{BC} + \frac{3}{4}\overrightarrow{BA}. \\ & \text{Giå sử } \overrightarrow{AK} = x.\overrightarrow{AD}. \end{aligned}$$

Ta có $\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK} = \overrightarrow{BA} + x\overrightarrow{AD} = \overrightarrow{BA} + x\left(\overrightarrow{AB} + \overrightarrow{BD}\right) = (1-x)\overrightarrow{BA} + x\overrightarrow{BD}$.

Mà
$$\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$$
 nên $\overrightarrow{BK} = \frac{2x}{3}\overrightarrow{BC} + (1-x)\overrightarrow{BA}$.

Do đó có:
$$\frac{m}{4}\overrightarrow{BC} + \frac{3m}{4}\overrightarrow{BA} = \frac{2x}{3}\overrightarrow{BC} + (1-x)\overrightarrow{BA}$$
.

Vì
$$B, K, E$$
 thẳng hàng $(B \neq E)$ nên có m sao cho $\overrightarrow{BK} = m\overrightarrow{BE}$.
Do đó có: $\frac{m}{4}\overrightarrow{BC} + \frac{3m}{4}\overrightarrow{BA} = \frac{2x}{3}\overrightarrow{BC} + (1-x)\overrightarrow{BA}$.
Hay $\left(\frac{m}{4} - \frac{2x}{3}\right)\overrightarrow{BC} + \left(\frac{3m}{4} + x - 1\right)\overrightarrow{BA} = \overrightarrow{0}$.

Do \overrightarrow{BC} ; \overrightarrow{BA} không cùng phương nên $\frac{m}{4} - \frac{2x}{3} = 0$; $\frac{3m}{4} + x - 1 = 0$. Từ đó suy ra $x = \frac{1}{3}$; $m = \frac{8}{9}$.

Suy ra
$$\overrightarrow{AK} = \frac{1}{3}\overrightarrow{AD}$$
. Vậy $P = a^2 + b^2 = 10$.

Bài 4. TÍCH VÔ HƯỚNG CỦA HAI VÉC-TƠ

TÓM TẮT LÝ THUYẾT

1. Góc giữa hai véc-tơ

Cho \vec{a} , $\vec{b} \neq \vec{0}$. Từ một điểm O bất kì vẽ $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. Khi đó số đo của góc \widehat{AOB} được gọi là số đo góc giữa hai véc-to \vec{a} và \vec{b} hay đơn giản là góc giữa hai véc-to \vec{a} , \vec{b} . Kí hiệu $(\vec{a}, \vec{b}) = \widehat{AOB}$.

- Quy ước rằng góc giữa hai véc-tơ a và b có thể nhân một giá tri tùy ý từ O° đến 180°.
- \bigcirc $(\vec{a}, \vec{b}) = 0^{\circ} \Leftrightarrow \vec{a}, \vec{b}$ cùng hướng.

- $\textcircled{o} \left(\overrightarrow{a}, \overrightarrow{b} \right) = 180^{\circ} \Leftrightarrow \overrightarrow{a}, \overrightarrow{b} \ \textit{ngược hướng}.$

2. Tích vô hướng của hai véc-tơ

 \P Định nghĩa 4.1. Tích vô hướng của hai véc-tơ \vec{a} và \vec{b} là một số, kí hiệu $\vec{a} \cdot \vec{b}$, được xác định bởi công thức sau

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}).$$

- \bigcirc Ta có $\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0$.
- \odot $\vec{a} \cdot \vec{a}$ còn được viết là \vec{a}^2 được gọi là bình phương vô hướng của véc-tơ \vec{a} . Ta có $\vec{a}^2 = |\vec{a}| \cdot |\vec{a}| \cdot \cos 0^\circ = |\vec{a}|^2$.

B. CÁC DANG TOÁN

Dang 1. Tính tích vô hướng của hai véc-tơ và xác định góc

Để tính tích vô hướng của hai véc-tơ ta có thể lựa chọn một trong các hướng sau đây:

- Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc để xác định chính xác góc giữa hai véc-tơ rồi áp dụng định nghĩa $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos{\left(\overrightarrow{a}, \overrightarrow{b}\right)}$.
- ❷ Sử dụng các tính chất và các hằng đẳng thức của tích vô hướng của hai véc-tơ.
- $\ensuremath{ \odot}$ Sử dụng dạng tọa độ nếu $\overrightarrow{a} = (a_1; a_2), \ \overrightarrow{b} = (b_1; b_2)$ thì

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2.$$

Sử dụng công thức hình chiếu

Cho hai véc-tơ \overrightarrow{OA} \overrightarrow{OR} Coi R' là hình chiếu của

Cho hai véc-tơ \overrightarrow{OA} , \overrightarrow{OB} . Gọi B' là hình chiếu của B trên đường thẳng OA. Khi đó $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Chứng minh: Thật vậy, ta có $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \left(\overrightarrow{OB'} + \overrightarrow{B'B} \right) = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Để xác định góc giữa hai véc-tơ ta có thể lựa chọn một trong các hướng sau đây:

- \odot Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc rồi xác định góc theo định nghĩa.
- Sử dụng các tính chất và các hằng đẳng thức để tính tích vô hướng của hai véc-tơ rồi sau đó áp dụng công thức $\cos\left(\overrightarrow{a}; \overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$

Cần lưu ý một số kết quả đặc biệt sau:

$$\bigcirc$$
 $(\overrightarrow{a}, \overrightarrow{b}) = (\overrightarrow{b}, \overrightarrow{a}).$

- $\mbox{\Large \ \ }$ Nếu $\left(\overrightarrow{a},\overrightarrow{b}\right)=\alpha$ thì $\left(\overrightarrow{a},-\overrightarrow{b}\right)=180^{\circ}-\alpha.$
-
 Nếu \overrightarrow{a} và \overrightarrow{b} cùng hướng thì $\left(\overrightarrow{a},\overrightarrow{b}\right)=0^{\circ}$.
- $\ensuremath{ \bigodot}$ Nếu \overrightarrow{a} và \overrightarrow{b} ngược hướng thì $\left(\overrightarrow{a},\overrightarrow{b}\right)=180^\circ.$

1. Ví dụ minh hoạ

Lời giải.

Vẽ điểm D sao cho ABDC là hình chữ nhật và vẽ điểm E sao cho B là trung điểm của AE.

- \bigcirc $(\overrightarrow{BA}, \overrightarrow{BC}) = \widehat{ABC} = 50^{\circ}.$
- \bigcirc $(\overrightarrow{AB}, \overrightarrow{BC}) = (\overrightarrow{BE}, \overrightarrow{BC}) = \widehat{CBE} = 130^{\circ}.$
- \bigcirc $(\overrightarrow{CA}, \overrightarrow{CB}) = \widehat{ACB} = 40^{\circ}.$
- \bigcirc $(\overrightarrow{AC}, \overrightarrow{BC}) = (\overrightarrow{BD}, \overrightarrow{BC}) = \widehat{DBC} = 40^{\circ}.$
- \bigcirc $(\overrightarrow{AC}, \overrightarrow{CB}) = (\overrightarrow{AC}, -\overrightarrow{BC}) = 180^{\circ} 40^{\circ} = 140^{\circ}$
- \bigcirc $(\overrightarrow{AC}, \overrightarrow{BA}) = (\overrightarrow{BD}, \overrightarrow{BA}) = \widehat{ABD} = 90^{\circ}$

VÍ DU 2. Cho tam giác đều ABC có cạnh a và trọng tâm G. Tính các tích vô hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{AC} \cdot \overrightarrow{CB}$; $\overrightarrow{AG} \cdot \overrightarrow{AB}$; $\overrightarrow{GB} \cdot \overrightarrow{GC}$; $\overrightarrow{BG} \cdot \overrightarrow{GA}; \overrightarrow{GA} \cdot \overrightarrow{BC}.$

🗩 Lời giải.

Ta có G là trọng tâm của tam giác đều ABC nên $GA = GB = GC = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{2}$.

Cách 1: Theo định nghĩa, ta có

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = a \cdot a \cdot \cos 60^{\circ} = \frac{1}{2}a^2;$$

$$\overrightarrow{AC} \cdot \overrightarrow{CB} = a \cdot a \cdot \cos 120^{\circ} = -\frac{1}{2}a^{2};$$

$$\overrightarrow{AG} \cdot \overrightarrow{AB} = \frac{a\sqrt{3}}{3} \cdot a \cdot \cos 30^{\circ} = a^{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2}a^{2};$$

$$\overrightarrow{GB} \cdot \overrightarrow{GC} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3} \cdot \cos 120^{\circ} = -\frac{a^{2}}{6};$$

$$\overrightarrow{BG} \cdot \overrightarrow{GA} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3} \cdot \cos 60^{\circ} = \frac{a^{2}}{6};$$

$$\overrightarrow{GG} \cdot \overrightarrow{BG} = a \cdot \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3} \cdot \cos 60^{\circ} = \frac{a^{2}}{6};$$

$$\overrightarrow{GB} \cdot \overrightarrow{GC} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3} \cdot \cos 120^{\circ} = -\frac{a^2}{6};$$

$$\overrightarrow{BG} \cdot \overrightarrow{GA} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3} \cdot \cos 60^{\circ} = \frac{a^2}{6};$$

$$\overrightarrow{GA} \cdot \overrightarrow{BC} = 0$$
 do $GA \perp BC$.

Cách 2: Sử dụng công thức hình chiếu.

Gọi M, N và P lần lượt là trung điểm của BC, CA và AB.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AP} = a \cdot \frac{1}{2}a = \frac{1}{2}a^2$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AP} = a \cdot \frac{1}{2}a = \frac{1}{2}a^2;$$

$$\overrightarrow{AC} \cdot \overrightarrow{CB} = \overrightarrow{MC} \cdot \overrightarrow{CB} = \frac{1}{2}a \cdot (-a) = -\frac{1}{2}a^2;$$

$$\overrightarrow{AG} \cdot \overrightarrow{AB} = \overrightarrow{AP} \cdot \overrightarrow{AB} = \frac{1}{2} \overrightarrow{a} \cdot \overrightarrow{a} = \frac{1}{2} a^2;$$

$$\overrightarrow{GB} \cdot \overrightarrow{GC} = \overrightarrow{GB} \cdot \overrightarrow{GN} = -\frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{6} = -\frac{a^2}{6};$$

$$\overrightarrow{BG} \cdot \overrightarrow{GA} = \overrightarrow{BG} \cdot \overrightarrow{GN} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{6} = \frac{a^2}{6};$$

$$\overrightarrow{BG} \cdot \overrightarrow{GA} = \overrightarrow{BG} \cdot \overrightarrow{GN} = \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{6} = \frac{a^2}{6};$$

$$\overrightarrow{GA} \cdot \overrightarrow{BC} = \overrightarrow{MM} \cdot \overrightarrow{BC} = 0.$$

VÍ DỤ 3. Cho tam giác ABC vuông tại A có AB = a, BC = 2a và G là trọng tâm. Tính giá trị của các biểu thức sau:

- a) $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$.
- b) $\overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA}$.

🗩 Lời giải.

a) Cách 1:

Vì tam giác \overrightarrow{ABC} vuông tại \overrightarrow{A} nên $\overrightarrow{CA} \cdot \overrightarrow{AB} = 0$.

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = -\overrightarrow{BA} \cdot \overrightarrow{BC}$$

$$= -|\overrightarrow{BA}| \cdot |\overrightarrow{BC}| \cdot \cos(\overrightarrow{BA}, \overrightarrow{BC})$$

$$= 2a^2 \cos \widehat{ABC} = 2a^2 \cdot \frac{a}{2a} = -a^2.$$

Theo định lý Py-ta-go ta có $CA = \sqrt{(2a)^2 - a^2} = a\sqrt{3}$. $\overrightarrow{BC} \cdot \overrightarrow{CA} = -\overrightarrow{CB} \cdot \overrightarrow{CA} = -|\overrightarrow{CB}| \cdot |\overrightarrow{CA}| \cdot \cos\left(\overrightarrow{CB}, \overrightarrow{CA}\right)$

$$= -2a \cdot a\sqrt{3} \cdot \cos \widehat{ACB} = -2a \cdot a\sqrt{3} \cdot \frac{a\sqrt{3}}{2a} = -3a^2.$$

 $\overrightarrow{Vay} \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} = -a^2 - 3a^2 = -4a^2.$

Cách 2: Ta có $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$. Bình phương hai vế của đẳng thức, ta được

$$AB^{2} + BC^{2} + CA^{2} + 2\left(\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}\right) = 0.$$

Do đó

$$\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} = -\frac{1}{2} \left(AB^2 + BC^2 + CA^2 \right) = -\frac{1}{2} \left(a^2 + 4a^2 + 3a^2 \right) = -4a^2.$$

Cách 3: Đặt hệ trục tọa độ Oxy vào tam giác ABC sao cho $A \equiv O$, AB nằm trên tia Ox và AC nằm trên tia Oy. Khi đó ta có A(0;0), B(a;0) và $C(0;a\sqrt{3})$.

Dễ dàng tính được $\overrightarrow{AB} = (a; 0), \overrightarrow{BC} = (-a; a\sqrt{3})$ và $\overrightarrow{CA} = (0; -a\sqrt{3})$. Suy ra

$$\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$$

$$= [a \cdot (-a) + 0 \cdot a\sqrt{3}] + [-a \cdot 0 + a\sqrt{3} \cdot (-a\sqrt{3})] + [0 \cdot a + (-a\sqrt{3}) \cdot 0] = -4a^2.$$

Cách 4: Sử dụng cộng thức hình chiếu. $\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{AB} \cdot \overrightarrow{BA} = -a^2$. $\overrightarrow{BC} \cdot \overrightarrow{CA} = \overrightarrow{AC} \cdot \overrightarrow{CA} = -3a^2$. $\overrightarrow{CA} \cdot \overrightarrow{AB} = 0$.

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{AB} \cdot \overrightarrow{BA} = -a^2.$$

$$\overrightarrow{BC} \cdot \overrightarrow{CA} = \overrightarrow{AC} \cdot \overrightarrow{CA} = -3a^2$$

$$\overrightarrow{CA} \cdot \overrightarrow{AB} = 0$$

$$\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} = -a^2 - 3a^2 = -4a^2.$$

b) Cách 1: Biến đổi tương tự cách 2 của câu a,

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \text{ nên } \overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA} = -\frac{1}{2} \left(GA^2 + GB^2 + GC^2 \right).$$

Gọi M,N và Plần lượt là trung điểm của $BC,\,CA$ và AB.

Ta có
$$GA^2 = \left(\frac{2}{3}AM\right)^2 = \left(\frac{2}{3} \cdot \frac{1}{2}BC\right)^2 = \frac{4a^2}{9}.$$

Theo định lý Py-ta-go ta có:

$$GB^2 = \frac{4}{9}BN^2 = \frac{4}{9}\left(AB^2 + AN^2\right) = \frac{4}{9}\left(a^2 + \frac{3a^2}{4}\right) = \frac{7a^2}{9};$$

$$GC^2 = \frac{4}{9}CP^2 = \frac{4}{9}\left(AC^2 + AP^2\right) = \frac{4}{9}\left(3a^2 + \frac{a^2}{4}\right) = \frac{13a^2}{9}$$

Suy ra
$$\overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA} = -\frac{1}{2} \left(\frac{4a^2}{9} + \frac{7a^2}{9} + \frac{13a^2}{9} \right) = -\frac{4a^2}{3}.$$

Cách 2: Sử dụng hệ trục toa độ như cách 3 của câu a, lúc này ta cần tính thêm tọa độ của trọng tâm G. Theo công thức tính tọa độ của trọng tâm tam giác, ta tính được $G\left(\frac{a}{3}; -\frac{a\sqrt{3}}{3}\right)$

Từ đó suy ra
$$\overrightarrow{GA} = \left(-\frac{a}{3}; \frac{a\sqrt{3}}{3}\right), \overrightarrow{GB} = \left(\frac{2a}{3}; \frac{a\sqrt{3}}{3}\right)$$
 và $\overrightarrow{GC} = \left(-\frac{a}{3}; \frac{4a\sqrt{3}}{3}\right)$.

Suy ra
$$\overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA} = \left(-\frac{a}{3} \cdot \frac{2a}{3} + \frac{a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3}\right) + \left[\frac{2a}{3} \cdot \left(-\frac{a}{3}\right) + \frac{a\sqrt{3}}{3} \cdot \frac{4a\sqrt{3}}{3}\right] + \left[\left(-\frac{a}{3}\right) \cdot \left(-\frac{a}{3}\right) + \frac{4a\sqrt{3}}{3} \cdot \frac{a\sqrt{3}}{3}\right] = -\frac{4a^2}{3}.$$

VÍ DU 4. Cho hình vuông ABCD cạnh a. M là trung điểm của AB, G là trọng tâm tam giác ADM. Tính giá trị của các biểu thức sau:

a)
$$(\overrightarrow{AB} + \overrightarrow{AD}) (\overrightarrow{BD} + \overrightarrow{BC})$$
.

b)
$$\overrightarrow{CG} \left(\overrightarrow{CA} + \overrightarrow{DM} \right)$$
.

🗩 Lời giải.

a) Cách 1:

Theo quy tắc hình bình hành ta có $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$. Do đó

$$\left(\overrightarrow{AB} + \overrightarrow{AD}\right)\left(\overrightarrow{BD} + \overrightarrow{BC}\right) = \overrightarrow{AC} \cdot \overrightarrow{BD} + \overrightarrow{AC} \cdot \overrightarrow{BC} = \overrightarrow{CA} \cdot \overrightarrow{CB}$$

$$(\overrightarrow{AC} \cdot \overrightarrow{BD} = 0 \text{ vì } \overrightarrow{AC} \perp \overrightarrow{BD})$$

Theo định lý Py-ta-go ta có $AC = \sqrt{a^2 + a^2} = a\sqrt{2}$.

Góc giữa hai véc-tơ \overrightarrow{CA} và \overrightarrow{CB} là góc $ACB = 45^{\circ}$.

$$\widehat{\text{Vay}}\left(\overrightarrow{AB} + \overrightarrow{AD}\right)\left(\overrightarrow{BD} + \overrightarrow{BC}\right) = \overrightarrow{CA} \cdot \overrightarrow{CB} = |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| \cdot \cos \widehat{ACB} = a \cdot a\sqrt{2}\cos 45^{\circ} = a^{2}.$$

Cách 2: Đặt hệ trực tọa độ Oxy vào hình vuông ABCD sao cho $O \equiv \underline{D}$, DC nằm trên tia Ox và DA nằm trên tia Oy. Khi đó ta có D(0;0), A(0;a), B(a;a), $C(\underline{a};0)$. Dễ dàng tính được $\overrightarrow{AB} = (a;0)$; $\overrightarrow{AD} = (0;-a)$; $\overrightarrow{BD} = (-a;-a)$; $\overrightarrow{BC} = (0;-a)$. Suy ra $\overrightarrow{AB} + \overrightarrow{AD} = (a;-a)$ và $\overrightarrow{BD} + \overrightarrow{BC} = (-a;-2a)$. Vây $(\overrightarrow{AB} + \overrightarrow{AD})$ $(\overrightarrow{BD} + \overrightarrow{BC}) = a \cdot (-a) + (-a) \cdot (-2a) = a^2$.

b) Cách 1:

Nhận xét: Nếu ta nhân phân phối véc-tơ \overrightarrow{CG} vào với \overrightarrow{CA} và \overrightarrow{DM} thì ta sẽ nhận được những tích vô hướng mà khó tính được bằng định nghĩa. Tuy nhiên, hãy nhớ lại rằng một véc-tơ có thể được phân tích thành nhiều véc-tơ khác nhau, và nếu chúng ta chọn phân tích véc-tơ ra những thành phần đã biết trước có sự vuông góc với nhau thì khi nhân phân phối vào những thành phần vuông góc đó có tích vô hướng bằng 0 và bị triệt tiêu. Theo ý tưởng này, ta thử chọn chuyển hết các véc-tơ về hai véc-tơ \overrightarrow{CD} và \overrightarrow{CB} .

Vì G là trọng tâm của tam giác ADM nên theo quy tắc trọng tâm

$$\overrightarrow{CG} = \frac{1}{3} \left(\overrightarrow{CA} + \overrightarrow{CD} + \overrightarrow{CM} \right).$$

Mặt khác

$$\overrightarrow{CA} = \overrightarrow{CD} + \overrightarrow{CB}$$

và

$$\overrightarrow{CM} = \frac{1}{2} \left(\overrightarrow{CA} + \overrightarrow{CB} \right) = \frac{1}{2} \left(\overrightarrow{CD} + \overrightarrow{CB} + \overrightarrow{CB} \right) = \frac{1}{2} \overrightarrow{CD} + \overrightarrow{CB},$$

suv ra

$$\overrightarrow{CG} = \frac{1}{3} \left(\overrightarrow{CA} + \overrightarrow{CD} + \overrightarrow{CM} \right) = \frac{1}{3} \left[\left(\overrightarrow{CD} + \overrightarrow{CB} \right) + \overrightarrow{CD} + \left(\frac{1}{2} \overrightarrow{CD} + \overrightarrow{CB} \right) \right] = \frac{5}{6} \overrightarrow{CD} + \frac{2}{3} \overrightarrow{CB}.$$

Theo quy tắc trung điểm thì

$$\overrightarrow{DM} = \frac{1}{2} \left(\overrightarrow{DA} + \overrightarrow{DB} \right) = \frac{1}{2} \left(\overrightarrow{CB} + \overrightarrow{CB} - \overrightarrow{CD} \right) = \overrightarrow{CB} - \frac{1}{2} \overrightarrow{CD}.$$

Như vậy

$$\overrightarrow{CG}\left(\overrightarrow{CA} + \overrightarrow{DM}\right) = \left(\frac{5}{6}\overrightarrow{CD} + \frac{2}{3}\overrightarrow{CB}\right) \left[\left(\overrightarrow{CD} + \overrightarrow{CB}\right) + \left(\overrightarrow{CB} - \frac{1}{2}\overrightarrow{CD}\right)\right]$$

$$= \left(\frac{5}{6}\overrightarrow{CD} + \frac{2}{3}\overrightarrow{CB}\right) \left(\frac{1}{2}\overrightarrow{CD} + 2\overrightarrow{CB}\right)$$

$$= \frac{5}{12}CD^2 + 6\overrightarrow{CD} \cdot \overrightarrow{CB} + \frac{4}{3}CB^2 = \frac{5}{12}a^2 + \frac{4}{3}a^2 = \frac{21a^2}{12}.$$

Cách 2: Sử dụng hệ trực tọa độ giống như cách 2 ở câu a.

Vì M là trung điểm của AB và G là trọng tâm tam giác ADM nên sử dụng các công thức tọa độ tương ứng tính được $M\left(\frac{a}{2};a\right)$ và $G\left(\frac{a}{6};\frac{2a}{3}\right)$. Từ đó suy ra $\overrightarrow{CG}=\left(-\frac{5a}{6};\frac{2a}{3}\right)$; $\overrightarrow{CA}=(-a;a)$ và $\overrightarrow{DM}=\left(\frac{a}{2};a\right)$.

$$\overrightarrow{Vay} \ \overrightarrow{CG} \left(\overrightarrow{CA} + \overrightarrow{DM} \right) = \left[-\frac{5a}{6} \cdot \left(-a + \frac{a}{2} \right) \right] + \left[\frac{2a}{3} \cdot (a+a) \right] = \frac{21a^2}{12}.$$

118

VÍ DỤ 5. Cho hai véc-tơ \vec{a} và \vec{b} có $|\vec{a}| = 7$, $|\vec{b}| = 12$ và $|\vec{a} + \vec{b}| = 13$. Tính cosin của góc giữa hai véc-tơ \vec{a} và $\vec{a} + \vec{b}$.

Dựng các điểm A, B, C sao cho $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b}$, khi đó $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$. Ta có $\overrightarrow{a} \left(\overrightarrow{a} + \overrightarrow{b} \right) = \overrightarrow{AB} \cdot \overrightarrow{AC}$.

Mặt khác, từ đẳng thức $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$, ta bình phương hai vế và chuyển vế thu được

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right) = \frac{1}{2} \left(7^2 + 13^2 - 12^2 \right) = 37.$$

 $\widehat{\text{Vay}} \cos \left(\overrightarrow{a}, (\overrightarrow{a} + \overrightarrow{b}) \right) = \cos \left(\overrightarrow{AB}, \overrightarrow{AC} \right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right|} = \frac{37}{7 \cdot 13} = \frac{37}{91}.$

2. Bài tấp tư luân

BÀI 1. Cho tam giác ABC vuông cân có AB = AC = a và AH là đường cao. Tính các tích vô hướng sau

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
;

b)
$$\overrightarrow{AH} \cdot \overrightarrow{BC}$$
:

c)
$$\overrightarrow{AC} \cdot \overrightarrow{CB}$$
 và $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

🗩 Lời giải.

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$$
 vì $AB \perp AC$.

b)
$$\overrightarrow{AH} \cdot \overrightarrow{BC} = 0$$
 vì $AH \perp BC$.

c)
$$\overrightarrow{AC} \cdot \overrightarrow{CB} = -\overrightarrow{CA} \cdot \overrightarrow{CB} = -CA \cdot CB \cdot \cos 45^{\circ} = -a \cdot a\sqrt{2} \cdot \frac{\sqrt{2}}{2} = -a^{2};$$
 $\overrightarrow{AB} \cdot \overrightarrow{BC} = -\overrightarrow{BA} \cdot \overrightarrow{BC} = -BA \cdot BC \cdot \cos 45^{\circ} - a \cdot a\sqrt{2} \cdot \frac{\sqrt{2}}{2} = -a^{2}.$

 $\textbf{B} \hat{\textbf{A}} \textbf{I}$ 2. Cho tam giác ABC đều cạnh a và AM là trung tuyến của tam giác. Tính các tích vô hướng sau

a)
$$\overrightarrow{AC} \left(2\overrightarrow{AB} - 3\overrightarrow{AC} \right)$$
;

c)
$$\overrightarrow{AM} \cdot \overrightarrow{AB}$$
;

b)
$$\overrightarrow{AC} \left(\overrightarrow{AC} - \overrightarrow{AB} \right)$$
;

d)
$$(\overrightarrow{CA} + \overrightarrow{BC})(\overrightarrow{CA} + \overrightarrow{CB})$$
.

🗩 Lời giải.

a)
$$\overrightarrow{AC}(2\overrightarrow{AB} - 3\overrightarrow{AC}) = 2\overrightarrow{AC} \cdot \overrightarrow{AB} - 3\overrightarrow{AC} \cdot \overrightarrow{AC} = 2a \cdot a \cos 60^{\circ} - 3a^{2} = -2a^{2}$$
.

b)
$$\overrightarrow{AC}\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = \overrightarrow{AC} \cdot \overrightarrow{AC} - \overrightarrow{AC} \cdot \overrightarrow{AB} = a^2 - a \cdot a \cos 60^\circ = \frac{1}{2}a^2$$
.

c)
$$\overrightarrow{AM} \cdot \overrightarrow{AB} = \frac{a\sqrt{3}}{2} \cdot a \cos 30^{\circ} = \frac{3}{4}a^{2}$$
.

$$\mathrm{d)} \ \left(\overrightarrow{CA} + \overrightarrow{BC}\right)\left(\overrightarrow{CA} + \overrightarrow{CB}\right) = \overrightarrow{CA^2} + \overrightarrow{CA} \cdot \overrightarrow{CB} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BC} \cdot \overrightarrow{CB} = \overrightarrow{CA^2} - \overrightarrow{BC^2} = a^2 - a^2 = 0.$$

BÀI 3. Cho hình chữ nhật ABCD có $AB=a\sqrt{2}, AD=2a.$ Gọi K là trung điểm của cạnh AD.

- a) Phân tích $\overrightarrow{BK}, \overrightarrow{AC}$ theo \overrightarrow{AB} và \overrightarrow{AD} .
- b) Tính tích vô hướng $\overrightarrow{BK} \cdot \overrightarrow{AC}$.

🗩 Lời giải.

- a) Gọi M là trung điểm của cạnh BC. Theo quy tắc hình bình hành, ta có $\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{BM} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}.$ Mặt khác $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.
- b) $\overrightarrow{BK} \cdot \overrightarrow{AC} = \left(-\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} \right) \left(\overrightarrow{AB} + \overrightarrow{AD} \right)$ $= -\overrightarrow{AB} \cdot \overrightarrow{AB} - \overrightarrow{AB} \cdot \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AD} \cdot \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} \cdot \overrightarrow{AD}$ $= -2a^2 + 0 + 0 + \frac{1}{2}(2a)^2 = 0.$

BÀI 4. Cho tam giác ABC có AB = 5, AC = 8, BC = 7. Tính tích vô hướng $\overrightarrow{AC} \cdot \overrightarrow{AB}$. \bigcirc Lời giải.

Ta có
$$BC^2 = \overrightarrow{BC}^2 = \left(\overrightarrow{AC} - \overrightarrow{AB}\right)^2 = \overrightarrow{AC}^2 + \overrightarrow{AB}^2 - 2\overrightarrow{AC} \cdot \overrightarrow{AB}$$
.
Suy ra $\overrightarrow{AC} \cdot \overrightarrow{AB} = \frac{\overrightarrow{AC}^2 + \overrightarrow{AB}^2 - \overrightarrow{BC}^2}{2} = \frac{8^2 + 5^2 - 7^2}{2} = 20$.

BÀI 5. Cho hai véc-tơ \vec{a} và \vec{b} có độ dài bằng 1 và thỏa mãn điều kiện $|2\vec{a}-3\vec{b}|=\sqrt{7}$. Tính $\cos\left(\vec{a},\vec{b}\right)$.

$$\left|2\overrightarrow{a}-3\overrightarrow{b}\right|=\sqrt{7} \Leftrightarrow \left(2\overrightarrow{a}-3\overrightarrow{b}\right)^2=7 \Leftrightarrow 4\left|\overrightarrow{a}\right|^2-6\overrightarrow{a}\cdot\overrightarrow{b}+9\left|\overrightarrow{b}\right|^2=7 \Leftrightarrow \overrightarrow{a}\cdot\overrightarrow{b}=-1.$$

Do đó
$$\cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}=-1.$$

BÀI 6. Cho tam giác ABC vuông tại A có $BC = a\sqrt{3}$, M là trung điểm của BC. Biết rằng $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{a^2}{2}$. Hãy tính AB, AC.

₽ Lời giải.

Theo định lý Py-ta-go ta có $AB^2 + AC^2 = BC^2 = 3a^2$. Mặt khác

$$\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{a^2}{2} \Leftrightarrow \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \left(\overrightarrow{AC} - \overrightarrow{AB} \right) = \frac{a^2}{2}$$
$$\Leftrightarrow \frac{1}{2} \left(AC^2 - AB^2 \right) = \frac{a^2}{2} \Leftrightarrow AC^2 - AB^2 = a^2.$$

Giải hệ phương trình $\begin{cases} AC^2 + AB^2 = 3a^2 \\ AC^2 - AB^2 = a^2 \end{cases}$ ta được AB = a và AC = 2a.

BÀI 7. Cho hai véc-tơ \overrightarrow{a} và \overrightarrow{b} có độ dài bằng 1 và góc tạo bởi hai véc-tơ đó bằng 60°. Xác định cosin góc giữa hai véc-tơ \overrightarrow{u} và \overrightarrow{v} với $\overrightarrow{u} = \overrightarrow{a} + 2\overrightarrow{b}$, $\overrightarrow{v} = \overrightarrow{a} - \overrightarrow{b}$.

Dòi giải.

Ta có

Do đó
$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = -\frac{1}{2}.$$

BÀI 8. Cho hai véc-tơ \vec{a} , \vec{b} thỏa mãn $|\vec{a}| = |\vec{b}| = 1$ và véc-tơ $\vec{x} = \vec{a} + 2\vec{b}$ vuông góc với véc-tơ $\vec{y} = 5\vec{a} - 4\vec{b}$. Tính góc giữa hai véc-tơ \vec{a} và \vec{b} .

Dài giải.

Ta có

$$\vec{x} \cdot \vec{y} = 0 \Leftrightarrow \left(\vec{a} + 2\vec{b} \right) \cdot \left(5\vec{a} - 4\vec{b} \right) = 0 \Leftrightarrow 5 \left| \vec{a} \right|^2 + 6\vec{a} \cdot \vec{b} - 8 \left| \vec{b} \right|^2 = 0 \Leftrightarrow \vec{a} \cdot \vec{b} = \frac{1}{2}.$$

Do đó
$$\cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|\cdot|\overrightarrow{b}|}=\frac{1}{2}$$

Từ đó suy ra góc giữa hai véc-to \vec{a} và \vec{b} bằng 60°.

BÀI 9. Cho các véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}|=2$, $|\vec{b}|=1$ và $(\vec{a},\vec{b})=60^\circ$. Tính góc giữa véc-tơ \vec{a} và véc-tơ $\vec{c}=\vec{a}-\vec{b}$.

Ta có $\vec{c}^2 = (\vec{a} - \vec{b})^2 = \vec{a}^2 + \vec{b}^2 - 2\vec{a} \cdot \vec{b} = 3 \text{ nên } |\vec{c}| = \sqrt{3}.$

Lại có $\vec{a} \cdot \vec{c} = \vec{a} \left(\vec{a} - \vec{b} \right) = \vec{a}^2 - \vec{a} \cdot \vec{b} = 3.$

Do đó $\cos(\vec{a},\vec{c}) = \frac{\vec{a} \cdot \vec{c}}{|\vec{a}| \cdot |\vec{c}|} = \frac{\sqrt{3}}{2}$. Từ đó tính được góc giữa véc-tơ \vec{a} và \vec{c} là 30° .

BÀI 10. Cho hình chữ nhật ABCD có AB = 2. M là điểm được xác định bởi $\overrightarrow{AM} = 3\overrightarrow{MB}$; G là trọng tâm tam giác ADM. Tính $\overrightarrow{MB} \cdot \overrightarrow{GC}$.

🗩 Lời giải.

Gọi N là trung điểm của DM; G' và N' lần lượt là hình chiếu vuông góc của G và N

Theo định lý Ta-lét ta có được các kết quả sau:
$$AG'=\frac{2}{3}AN'=\frac{2}{3}\cdot\frac{1}{2}AM=\frac{1}{3}AM.$$

Mà điểm M được xác định bởi $\overrightarrow{AM}=3\overrightarrow{MB}$ nên $AM=\frac{3}{4}AB$. Do đó $AG'=\frac{1}{4}AB=\frac{1}{2}AB$

suy ra $G'B = \frac{3}{2}$.

 $\overrightarrow{Vay} \ \overrightarrow{MB} \cdot \overrightarrow{GC} = \overrightarrow{MB} \cdot \overrightarrow{G'B} = \frac{1}{4} \cdot \frac{3}{2} = \frac{3}{8}.$

BÁI 11. Cho hình chữ nhật ABCD có cạnh AB = a, AD = b. Tính theo a, b các tích vô hướng sau:

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
; $\overrightarrow{BD} \cdot \overrightarrow{AC}$; $(\overrightarrow{AC} - \overrightarrow{AB}) (\overrightarrow{AC} + \overrightarrow{AD})$;

b) $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD}$ với điểm M thuộc đường tròn ngoại tiếp hình chữ nhật ABCD.

🗩 Lời giải.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = a^{2}.$$

$$\overrightarrow{BD} \cdot \overrightarrow{AC} = (\overrightarrow{BC} + \overrightarrow{BA}) (\overrightarrow{AD} + \overrightarrow{AB})$$

$$= \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{BC} \cdot \overrightarrow{AB} + \overrightarrow{BA} \cdot \overrightarrow{AD} + \overrightarrow{BA} \cdot \overrightarrow{AB}$$

$$= \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{BA} \cdot \overrightarrow{AB} = \overrightarrow{AD} \cdot \overrightarrow{AD} + \overrightarrow{BA} \cdot \overrightarrow{AB} = b^{2} - a^{2}.$$

$$(\overrightarrow{AC} - \overrightarrow{AB}) (\overrightarrow{AC} + \overrightarrow{AD}) = \overrightarrow{BC} (\overrightarrow{AC} + \overrightarrow{AD}) = \overrightarrow{BC} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{AD}$$

$$= \overrightarrow{BC} \cdot \overrightarrow{BC} + \overrightarrow{AD} \cdot \overrightarrow{AD} = 2b^{2}.$$

b) Gọi I là tâm hình chữ nhật ABCD, suy ra I là trung điểm của AC và BD. Theo quy tắc trung điểm, ta có $\overrightarrow{MA} + \overrightarrow{MC} =$ $2\overline{MI}$ và $\overline{MB} + \overline{MD} = 2\overline{MI}$. Bình phương hai vế của hai đẳng thức này, ta được

$$\begin{split} MA^2 + MC^2 + 2\overrightarrow{MA} \cdot \overrightarrow{MC} &= 4MI^2 \Leftrightarrow 2\overrightarrow{MA} \cdot \overrightarrow{MC} = 4MI^2 - MA^2 - MC^2 \\ MB^2 + MD^2 + 2\overrightarrow{MB} \cdot \overrightarrow{MD} &= 4MI^2 \Leftrightarrow 2\overrightarrow{MB} \cdot \overrightarrow{MD} = 4MI^2 - MB^2 - MD^2. \end{split}$$

Cộng về theo về của hai đẳng thức trên, ta có

$$2\left(\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD}\right) = 8MI^2 - \left(MA^2 + MC^2 + MB^2 + MD^2\right). \tag{*}$$

Vì điểm M nằm trên đường tròn ngoại tiếp hình chữ nhật ABCD có AC và BD là hai đường kính nên $MA^2 + MC^2 =$ $AC^2 = 4MI^2$ và $MB^2 + MD^2 = BD^2 = 4MI^2$. Thay vào (*) ta được kết quả $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = 0$.

Dạng 2. Chứng minh đẳng thức tích vô hướng hay độ dài

- ❷ Với các biểu thức về tích vô hướng ta sử dụng định nghĩa hoặc tính chất của tích vô hướng. Cần đặc biệt lưu ý phép phân tích véc-tơ để biến đổi (quy tắc ba điểm, quy tắc trung điểm, quy tắc hình bình hành,...).
- \bigcirc Với các công thức về đô dài ta thường sử dụng $AB^2 = \overrightarrow{AB}^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$. Cần nắm vững tính chất của các hình cơ bản.

1. Ví du minh hoa

 ${\sf V\acute{I}}$ ${\sf D}{\sf U}$ 1. Cho đoạn thẳng AB và I là trung điểm của AB. Chứng minh rằng với mỗi điểm O ta có

a)
$$\overrightarrow{OI} \cdot \overrightarrow{IA} + \overrightarrow{OI} \cdot \overrightarrow{IB} = 0$$
.

b)
$$\overrightarrow{OI} \cdot \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{OB}^2 - \overrightarrow{OA}^2 \right)$$

🗩 Lời giải.

- a) Vì I là trung điểm AB nên $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$. Vậy $\overrightarrow{OI} \cdot \overrightarrow{IA} + \overrightarrow{OI} \cdot \overrightarrow{IB} = \overrightarrow{OI} \cdot \left(\overrightarrow{IA} + \overrightarrow{IB}\right) = \overrightarrow{OI} \cdot \overrightarrow{0} = 0$.
- b) Vì I là trung điểm AB nên $2\overrightarrow{OI} = \overrightarrow{OB} + \overrightarrow{OA} \Leftrightarrow \overrightarrow{OI} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OA} \right)$. Do đó

$$\overrightarrow{OI} \cdot \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OA} \right) \cdot \left(\overrightarrow{OB} - \overrightarrow{OA} \right)$$

$$= \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OA} \right) \cdot \overrightarrow{OB} + \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OA} \right) \cdot \left(-\overrightarrow{OA} \right)$$

$$= \frac{1}{2} \overrightarrow{OB} \cdot \overrightarrow{OB} + \frac{1}{2} \overrightarrow{OA} \cdot \overrightarrow{OB} - \frac{1}{2} \overrightarrow{OB} \cdot \overrightarrow{OA} - \frac{1}{2} \overrightarrow{OA} \cdot \overrightarrow{OA}$$

$$= \frac{1}{2} \left(\overrightarrow{OB}^2 - \overrightarrow{OA}^2 \right).$$

VÍ DỤ 2. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều ABC cho trước. Chứng minh $MA^2 + MB^2 + MC^2 = 6R^2$.

Dòi giải.

⊘ Cách 1 (*Dùng tích vô hướng*). Vì tam giác ABC đều nên tâm O của đường tròn ngoại tiếp đồng thời là trọng tâm của tam giác. Vậy $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$. Ta có

$$\begin{split} MA^2 + MB^2 + MC^2 &= \overrightarrow{MA}^2 + \overrightarrow{MB}^2 + \overrightarrow{MC}^2 \\ &= \left(\overrightarrow{MO} + \overrightarrow{OA}\right)^2 + \left(\overrightarrow{MO} + \overrightarrow{OB}\right)^2 + \left(\overrightarrow{MO} + \overrightarrow{OC}\right)^2 \\ &= 3MO^2 + OA^2 + OB^2 + OC^2 + 2\overrightarrow{MO} \cdot \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\right) \\ &= 6R^2. \end{split}$$

⊘ Cách 2 (*Dùng tọa độ*). Xét hệ trục tọa độ có gốc trùng với tâm O của đường tròn ngoại tiếp tam giác ABC. Gọi tọa độ của các điểm là $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$, M(x, y). Vì tam giác ABC đều nên tâm đường tròn ngoại tiếp O(0;0) đồng thời là trọng tâm của tam giác. Do đó $x_A + x_B + x_C = 0$ và $y_A + y_B + y_C = 0$. Vì $OM^2 = OA^2 = R^2$ nên $x^2 + y^2 = x_A^2 + y_A^2 = R^2$. Vây

$$MA^2 = (x - x_A)^2 + (y - y_A)^2$$

= $2R^2 - 2xx_A - 2yy_A$.

Tương tự $MB^2 = 2R^2 - 2xx_B - 2yy_B$ và $MC^2 = 2R^2 - 2xx_C - 2yy_C$. Do đó $MA^2 + MB^2 + MC^2 = 6R^2 - 2x\left(x_A + x_B + x_C\right) - 2y\left(y_A + y_B + y_C\right) = 6R^2$.

 \mathbf{V} Í \mathbf{D} \mathbf{U} 3. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

a)
$$MA^2 + MC^2 = MB^2 + MD^2$$
 (1);

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$$
 (2).

D Lời giải.

Nhận xét: Ta có ABCD là hình chữ nhật nên O là trung điểm AC và BD, do đó

$$\begin{cases} \overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MO} \\ \overrightarrow{MB} + \overrightarrow{MD} = 2\overrightarrow{MO} \end{cases} \Rightarrow \begin{cases} MA^2 + MB^2 + 2\overrightarrow{MA} \cdot \overrightarrow{MC} = 4MO^2 \\ MB^2 + MD^2 + 2\overrightarrow{MB} \cdot \overrightarrow{MD} = 4MO^2. \end{cases}$$

Từ đây ta có thể thấy hai mệnh đề (1) và (2) là hai mệnh đề tương đương, tức là chứng minh được một mệnh đề thì sẽ suy ra được mệnh đề còn lại.

Tuy nhiên, ở đây hai mệnh đề vẫn được chứng minh một cách độc lập để bạn đọc có thêm nhiều cách nhìn nhận giải quyết vấn đề hơn.

a) Ta có ABCD là hình chữ nhật nên $\overrightarrow{BA} \perp \overrightarrow{DA} \Rightarrow \overrightarrow{BA} \cdot \overrightarrow{DA} = 0$. Do đó

$$\begin{split} MA^2 + MC^2 &= \left(\overrightarrow{MB} + \overrightarrow{BA}\right)^2 + \left(\overrightarrow{MD} + \overrightarrow{DC}\right)^2 \\ &= \overrightarrow{MB}^2 + \overrightarrow{MD}^2 + \overrightarrow{BA}^2 + \overrightarrow{DC}^2 + 2\overrightarrow{MB} \cdot \overrightarrow{BA} + 2\overrightarrow{MD} \cdot \overrightarrow{DC} \\ &= MB^2 + MD^2 + 2\overrightarrow{BA}^2 + 2\overrightarrow{BA}\left(\overrightarrow{MB} - \overrightarrow{MD}\right) \text{ (vì } \overrightarrow{DC} = -\overrightarrow{BA}.\text{)} \\ &= MB^2 + MD^2 + 2\overrightarrow{BA}\left(\overrightarrow{BA} + \overrightarrow{DB}\right) \\ &= MB^2 + MD^2 + 2\overrightarrow{BA} \cdot \overrightarrow{DA} = MB^2 + MD^2. \end{split}$$

b) Ta có O là trung điểm AC nên $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{0}$. Do đó

$$\overrightarrow{MA} \cdot \overrightarrow{MC} = \left(\overrightarrow{MO} + \overrightarrow{OA} \right) \left(\overrightarrow{MO} + \overrightarrow{OC} \right)$$
$$= MO^2 + \overrightarrow{MO} \left(\overrightarrow{OA} + \overrightarrow{OC} \right) - OA^2$$
$$= MO^2 - OA^2.$$

Tương tự ta cũng chứng minh được $\overrightarrow{MB} \cdot \overrightarrow{MD} = MO^2 - OB^2$.

Mà OA = OB nên ta có điều phải chứng minh.

 $Nh\hat{q}n$ $x\acute{e}t$: Ta có thể vận dụng cách chứng minh mệnh đề (1) để chứng minh mệnh đề (2) và ngược lại, bạn đọc có thể tự mình thử nghiệm để hiểu rõ hơn về các cách tiếp cận giải quyết các bài toán dạng này.

2. Bài tấp tư luân

BÀI 1. Cho $\triangle ABC$, chứng minh $AB^2 + \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CA} = 0$. \bigcirc Lời giải.

Ta có

$$VT = \overrightarrow{AB}^2 + \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CA}$$
$$= \overrightarrow{AB} \cdot \left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} \right)$$
$$= \overrightarrow{AB} \cdot \overrightarrow{0} = 0.$$

BÀI 2. Cho $\triangle ABC$ nhọn, đường cao AH, Chứng minh rằng

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AC} \cdot \overrightarrow{AH}$$
;

b)
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{HB} \cdot \overrightarrow{BC}$$
.

Dèi giải.

Vì $AH \perp BC$ nên $\overrightarrow{AH} \cdot \overrightarrow{BC} = \overrightarrow{AH} \cdot \overrightarrow{HB} = \overrightarrow{AH} \cdot \overrightarrow{HC} = 0$.

a)

Ta có

$$\overrightarrow{AC} \cdot \overrightarrow{AH} = \left(\overrightarrow{AH} + \overrightarrow{HC}\right) \cdot \overrightarrow{AH} = \overrightarrow{AH} \cdot \overrightarrow{AH} + \overrightarrow{HC} \cdot \overrightarrow{AH} = AH^2.$$

$$\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AC} \cdot \overrightarrow{AH}.$$

b) Ta có
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = (\overrightarrow{AH} + \overrightarrow{HB}) \cdot \overrightarrow{BC} = \overrightarrow{AH} \cdot \overrightarrow{BC} + \overrightarrow{HB} \cdot \overrightarrow{BC} = \overrightarrow{HB} \cdot \overrightarrow{BC}$$
.

BÀI 3. Chứng minh rằng với mọi tam giác ABC ta có $S_{ABC} = \frac{1}{2} \sqrt{\overrightarrow{AB}^2 \cdot \overrightarrow{AC}^2 - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2}$.

Dèi giải.

Ta có

$$\overrightarrow{AB^2} \cdot \overrightarrow{AC^2} - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2 = AB^2 \cdot AC^2 - \left(AB^2 \cdot AC^2 \cdot \cos A\right)^2$$

$$= AB^2 \cdot AC^2 \cdot \left(1 - \cos^2 A\right)$$

$$= AB^2 \cdot AC^2 \cdot \sin^2 A$$

$$= (AB \cdot AC \cdot \sin A)^2$$

$$= (2S_{ABC})^2.$$

Vậy ta có điều phải chứng minh.

BÀI 4. Cho $\triangle ABC$ có trọng tâm G. Chứng minh rằng với mỗi điểm M ta có

$$MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2$$
.

🗩 Lời giải.

Ta có G là trọng tâm $\triangle ABC$ nên $\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$. Do đó

$$\begin{split} VT &= \overrightarrow{M}\overrightarrow{A}^2 + \overrightarrow{M}\overrightarrow{B}^2 + \overrightarrow{M}\overrightarrow{C}^2 \\ &= \left(\overrightarrow{MG} + \overrightarrow{GA}\right)^2 + \left(\overrightarrow{MG} + \overrightarrow{GB}\right)^2 + \left(\overrightarrow{MG} + \overrightarrow{GC}\right)^2 \\ &= 3MG^2 + GA^2 + GB^2 + GC^2 + 2\overrightarrow{MG} \cdot \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}\right) = VP. \end{split}$$

BÀI 5. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

$$MA^2 + \overrightarrow{MB} \cdot \overrightarrow{MD} = 2\overrightarrow{MA} \cdot \overrightarrow{MO}.$$

Dèi giải.

Ta có ABCD là hình chữ nhật nên O là trung điểm AC, do đó $2\overrightarrow{MO} = \overrightarrow{MA} + \overrightarrow{MC}$.

Suy ra $2\overrightarrow{MA} \cdot \overrightarrow{MO} = \overrightarrow{MA} \left(\overrightarrow{MA} + \overrightarrow{MC} \right) = MA^2 + \overrightarrow{MA} \cdot \overrightarrow{MC}$.

Mà theo Ví dụ 3 lại có $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$ nên ta có điều phải chứng minh.

BÀI 6. Cho hình chữ nhật ABCD nội tiếp trong đường tròn tâm O, bán kính R. Chứng minh rằng với mọi M thuộc đường tròn (O) ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \left(\overrightarrow{MB} + \overrightarrow{MD}\right) \left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}\right) = 8R^2.$$

 $\mathbf{P} \stackrel{\mathbf{AB}}{\mathbf{G}} \mathbf{D} \stackrel{\mathbf{A}}{\mathbf{D}} \mathbf{A}$ hình chữ nhật nên O là trung điểm AC và BD. Ta có

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$$

$$= \overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{MO} + \overrightarrow{OB} + \overrightarrow{MO} + \overrightarrow{OC} + \overrightarrow{MO} + \overrightarrow{OD}$$

$$= 4\overrightarrow{MO} + (\overrightarrow{OA} + \overrightarrow{OC}) + (\overrightarrow{OB} + \overrightarrow{OD}) = 4\overrightarrow{MO}.$$

Vì AC là đường kính của (O) nên $MA \perp MC$.

Suy ra $\overrightarrow{MA} \cdot \overrightarrow{MC} = 0$, dẫn tới

$$(\overrightarrow{MB} + \overrightarrow{MD}) (\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD})$$

$$= 2\overrightarrow{MO} \cdot 4\overrightarrow{MO} = 8MO^2 = 8R^2.$$

BÀI 7. Chứng minh rằng với mọi điểm A, B, C, M ta luôn có

$$\overrightarrow{MA}\cdot\overrightarrow{BC}+\overrightarrow{MB}\cdot\overrightarrow{CA}+\overrightarrow{MC}\cdot\overrightarrow{AB}=0.$$
 (hệ thức Euler).

Dèi giải.

Ta có

$$\begin{split} VT &= \overrightarrow{MA} \cdot \overrightarrow{BC} + \left(\overrightarrow{MA} + \overrightarrow{AB} \right) \cdot \overrightarrow{CA} + \left(\overrightarrow{MA} + \overrightarrow{AC} \right) \cdot \overrightarrow{AB} \\ &= \overrightarrow{MA} \left(\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} \right) + \overrightarrow{AB} \cdot \overrightarrow{CA} + \overrightarrow{AC} \cdot \overrightarrow{AB} \\ &= \overrightarrow{MA} \cdot \overrightarrow{BB} + \overrightarrow{AB} \left(\overrightarrow{CA} + \overrightarrow{AC} \right) = 0. \end{split}$$

BÀI 8. Cho $\triangle ABC$ các đường trung tuyến AD, BE, CF. Chứng minh rằng

$$\overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{BE} \cdot \overrightarrow{CA} + \overrightarrow{CF} \cdot \overrightarrow{AB} = 0.$$

🗩 Lời giải.

Ta có AD, BE, CF là trung tuyến nên

$$\begin{split} VT &= \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \overrightarrow{BC} + \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{BC} \right) \overrightarrow{CA} + \frac{1}{2} \left(\overrightarrow{CA} + \overrightarrow{CB} \right) \overrightarrow{AB} \\ &= \frac{1}{2} \left(\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AC} \cdot \overrightarrow{BC} + \overrightarrow{BA} \cdot \overrightarrow{CA} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} + \overrightarrow{CB} \cdot \overrightarrow{AB} \right) \\ &= \frac{1}{2} \left[\left(\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{CB} \cdot \overrightarrow{AB} \right) + \left(\overrightarrow{AC} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} \right) + \left(\overrightarrow{BA} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} \right) \right] \\ &= 0. \end{split}$$

BÀI 9. Cho $\triangle ABC$ đường cao AH, trung tuyến AI. Chứng minh rằng $\left|AB^2 - AC^2\right| = 2BC \cdot HI$. \bigcirc Lời giải.

Ta có $\overrightarrow{AH} \perp \overrightarrow{BC}$ nên $\overrightarrow{\overrightarrow{AH}} \cdot \overrightarrow{\overrightarrow{BC}} = 0$. Do đó

$$AB^{2} - AC^{2} = \left(\overrightarrow{AB} - \overrightarrow{AC}\right)\left(\overrightarrow{AB} + \overrightarrow{AC}\right)$$

$$= \overrightarrow{CB} \cdot 2\overrightarrow{AI}$$

$$= 2\overrightarrow{CB}\left(\overrightarrow{AH} + \overrightarrow{HI}\right)$$

$$= 2\overrightarrow{CB} \cdot \overrightarrow{HI}$$

Do $B,\,C,\,H,\,I$ thẳng hàng nên $\left|\cos\left(\overrightarrow{CB},\overrightarrow{HI}\right)\right|=1.$ Vậy ta có điều phải chứng minh.

Dạng 3. Điều kiện vuông góc

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0.$$

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho hai véc-tơ \vec{a} và \vec{b} vuông góc với nhau và $|\vec{a}| = 1$, $|\vec{b}| = \sqrt{2}$. Chứng minh hai véc-tơ $(2\vec{a} - \vec{b})$ và $(\vec{a} + \vec{b})$ vuông góc với nhau.

p Lời giải.

Vì $\vec{a} \perp \vec{b}$ nên $\vec{a} \cdot \vec{b} = 0$.

Ta có

$$\begin{aligned} \left(2\vec{a} - \vec{b}\right) \cdot \left(\vec{a} + \vec{b}\right) &= 2\vec{a}^2 + \vec{a} \cdot \vec{b} - \vec{b}^2 \\ &= 2|\vec{a}|^2 + 0 + \left|\vec{b}\right|^2 \\ &= 2 \cdot 1^2 - \left(\sqrt{2}\right)^2 = 0. \end{aligned}$$

Vậy hai véc-tơ $(2\vec{a} - \vec{b})$ và $(\vec{a} + \vec{b})$ vuông góc với nhau.

BÀI 1. Cho $\triangle ABC$ vuông tại A có AB=c, AC=b. Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ theo b và c.

Lời giải.

 $\triangle ABC$ vuông tại $\overrightarrow{A} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0$. Ta có $\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{BA} \cdot \left(\overrightarrow{BA} + \overrightarrow{AC} \right) = \overrightarrow{BA}^2 + \overrightarrow{BA} \cdot \overrightarrow{AC} = AB^2 = c^2$.

BÀI 2. Cho hai véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}| = |\vec{b}| = 1$ và hai véc-tơ $\vec{u} = \frac{2}{5}\vec{a} - 3\vec{b}$ và $\vec{v} = \vec{a} + \vec{b}$ vuông góc với nhau. Xác định góc giữa hai véc-tơ \vec{a} và \vec{b} .

Dèi giải.

Ta có $\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = 0 \Rightarrow \left(\frac{2}{5}\vec{a} - 3\vec{b}\right) \cdot \left(\vec{a} + \vec{b}\right) = 0 \Rightarrow \frac{2}{5}\vec{a}^2 - \frac{13}{5}\vec{a}\vec{b} - 3\vec{b}^2 = 0$ (1).

Vì $|\vec{a}| = |\vec{b}| = 1$ nên từ (1) ta suy ra $\vec{a} \vec{b} = -1$.

Khi đó ta có

$$\cos\left(\overrightarrow{a},\overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = -1 \Rightarrow \left(\overrightarrow{a},\overrightarrow{b}\right) = 180^{\circ}.$$

Dạng 4. Tập hợp điểm và chứng minh bất đẳng thức

Ta sử dụng các kết quả cơ bản sau:

- a) Cho $A,\,B$ là các điểm cố định, M là điểm di động
 - \bigcirc Nếu $|\overrightarrow{AM}| = k$ với k là số thực dương cho trước thì tập hợp các điểm M là đường tròn tâm A, bán kính R = k.
 - \bigcirc Nếu $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ thì tập hợp các điểm M là đường tròn đường kính AB.
 - igotimes Nếu $\overrightarrow{MA} \cdot \overrightarrow{a} = 0$ với $\overrightarrow{a} \neq \overrightarrow{0}$ cho trước thì tập hợp các điểm M là đường thẳng đi qua A và vuông góc với giá của vecto \overrightarrow{a} .
- b) Các bất đẳng thức vecto
 - $\odot \vec{a}^2 \ge 0 \ \forall \vec{a}$. Dấu "=" xảy ra khi $\vec{a} = \vec{0}$.

VÍ DU 1. Cho hai điểm A, B cố định có độ dài bằng a, vecto \vec{a} khác $\vec{0}$. Tìm tập hợp điểm M sao cho

a)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = \frac{3a^2}{4}$$

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MA^2$$

🗩 Lời giải.

a) Gọi I là trung điểm của AB ta có

$$\begin{split} \overrightarrow{MA} \cdot \overrightarrow{MB} &= \frac{3a^2}{4} \Leftrightarrow \left(\overrightarrow{MI} + \overrightarrow{IA}\right) \left(\overrightarrow{MI} + \overrightarrow{IB}\right) = \frac{3a^2}{4} \\ &\Leftrightarrow MI^2 - IA^2 = \frac{3a^2}{4} \text{ (Do } \overrightarrow{IB} = -\overrightarrow{IA}\text{)} \\ &\Leftrightarrow MI^2 = \frac{a^2}{4} + \frac{3a^2}{4} \Leftrightarrow MI = a. \end{split}$$

Vậy tập hợp điểm M là đường tròn tâm I bán kính R=a.

b) Ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MA^2 \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MA}^2$$
$$\Leftrightarrow \overrightarrow{MA} \cdot \left(\overrightarrow{MA} - \overrightarrow{MB} \right) = 0$$
$$\Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{BA} = 0 \Leftrightarrow \overrightarrow{MA} \bot \overrightarrow{BA}.$$

Vậy tập hợp điểm M là đường thẳng vuông góc với đường thẳng AB tại A.

VÍ DU 2. Cho tam giác ABC. Tìm tập hợp điểm M sao cho

$$\left(\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{CB}\right)\overrightarrow{BC} = 0.$$

P Lời giải.

Gọi I là điểm xác định bởi

$$\overrightarrow{IA} + 2\overrightarrow{IB} = \overrightarrow{0}.$$

Khi đó

$$\begin{split} \left(\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{CB}\right)\overrightarrow{BC} &= 0\\ \Leftrightarrow \left[\left(\overrightarrow{MI} + \overrightarrow{IA}\right) + 2\left(\overrightarrow{MI} + \overrightarrow{IB}\right)\right] \cdot \overrightarrow{BC} &= 3BC^2\\ \Leftrightarrow \overrightarrow{MI} \cdot \overrightarrow{BC} &= BC^2 \end{split}$$

Gọi M', I' lần lượt là hình chiếu của M, I lên đường thẳng BC.

Theo công thức hình chiếu ta có

$$\overrightarrow{MI} \cdot \overrightarrow{BC} = \overrightarrow{M'I'} \cdot \overrightarrow{BC}$$
.

Do đó

$$\overrightarrow{M'I'} \cdot \overrightarrow{BC} = BC^2.$$

0 0

Vì $BC^2 > 0$ nên $\overrightarrow{M'I'}$, \overrightarrow{BC} cùng hướng suy ra

$$\overrightarrow{M'I'} \cdot \overrightarrow{BC} = BC^2 \Leftrightarrow M'I' \cdot BC = BC^2 \Leftrightarrow M'I' = BC.$$

Do I cố định nên I' cố định suy ra M' cố định.

Vậy tập hợp điểm M là đường thẳng đi qua M' và vuông góc với BC.

VÍ DỤ 3. Cho tam giác *ABC*. Chứng minh rằng

a)
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$
.

b)
$$\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$$
.

🗩 Lời giải.

a) Đặt
$$\overrightarrow{i} = \frac{1}{AB}\overrightarrow{AB}$$
, $\overrightarrow{j} = \frac{1}{BC}\overrightarrow{BC}$, $\overrightarrow{k} = \frac{1}{CA}\overrightarrow{CA}$. Khi đó

$$|\overrightarrow{i}| = |\overrightarrow{j}| = |\overrightarrow{k}| = 1$$

và

$$(\vec{i}, \vec{j}) = 180^{\circ} - B, \ (\vec{j}, \vec{k}) = 180^{\circ} - C, \ (\vec{k}, \vec{i}) = 180^{\circ} - A.$$

Ta có

$$\begin{split} (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})^2 &\geq 0 \Leftrightarrow \overrightarrow{i}^2 + \overrightarrow{j}^2 + \overrightarrow{k}^2 + 2 \overrightarrow{i} \cdot \overrightarrow{j} + 2 \overrightarrow{j} \cdot \overrightarrow{k} + 2 \overrightarrow{k} \cdot \overrightarrow{i} \geq 0 \\ &\Leftrightarrow 1^2 + 1^2 + 1^2 + 2 \cos(180^\circ - B) + 2 \cos(180^\circ - C) + 2 \cos(180^\circ - A) \geq 0 \\ &\Leftrightarrow 3 - 2 \cos A - 2 \cos B - 2 \cos C \geq 0 \\ &\Leftrightarrow \cos A + \cos B + \cos C \leq \frac{3}{2}. \end{split}$$

b) Gọi (O,R) là tròn ngoại tiếp tam giác ABC. Ta có

$$(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})^2 \ge 0 \Leftrightarrow OA^2 + OB^2 + OC^2 + 2\overrightarrow{OA} \cdot \overrightarrow{OB} + \overrightarrow{OB} \cdot \overrightarrow{OC} + \overrightarrow{OC} \cdot \overrightarrow{OA} \ge 0$$
$$\Leftrightarrow 3R^2 + 2R^2(\cos 2A + \cos 2B + \cos 2C) \ge 0$$
$$\Leftrightarrow \cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}.$$

1. Bài tập tự luận

BÀI 1. Cho đoạn thẳng AB và số thực k. Tìm tập hợp điểm M trong mỗi trường hợp sau

a)
$$2MA^2 = \overrightarrow{MA} \cdot \overrightarrow{MB}$$
.

b)
$$MA^2 + 2MB^2 = k, k > 0.$$

c)
$$\overrightarrow{AM} \cdot \overrightarrow{a} = k$$
.

Dài giải.

a) Ta có

$$2MA^{2} = \overrightarrow{MA} \cdot \overrightarrow{MB} \Leftrightarrow \overrightarrow{MA} \left(2\overrightarrow{MA} - \overrightarrow{MB} \right) = 0. \tag{*}$$

Gọi I là điểm thoả mãn:

$$2\overrightarrow{IA} - \overrightarrow{IB} = \overrightarrow{0}.$$

Khi đó

$$2\overrightarrow{MA} - \overrightarrow{MB} = \overrightarrow{MI}.$$

Do đó:

$$(*) \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MI} = 0 \Leftrightarrow \overrightarrow{MA} \perp \overrightarrow{MI}.$$

Vậy tập hợp điểm M là đường tròn đường kính AI.

b) Gọi E là điểm thoả mãn

$$\overrightarrow{EA} + 2\overrightarrow{EB} = \overrightarrow{0}$$
.

Ta có

$$\begin{split} MA^2 + 2MB^2 &= k \\ \Leftrightarrow \left(\overrightarrow{ME} + \overrightarrow{EA} \right)^2 + \left(\overrightarrow{ME} + \overrightarrow{EB} \right)^2 &= k \\ \Leftrightarrow 3ME^2 &= k - EA^2 - 2EB^2. \quad (*) \end{split}$$

Mặt khác từ

$$\overrightarrow{EA} + 2\overrightarrow{EB} = \overrightarrow{0}$$
.

suy ra

$$EA = \frac{2}{3}AB; \quad EB = \frac{1}{3}AB,$$

nên

$$(*) \Leftrightarrow 3ME^2 = k - \frac{2}{3}AB^2 \Leftrightarrow ME^2 = \frac{1}{3}\left(k - \frac{2}{3}AB^2\right).$$

- $\ensuremath{ \bigodot}$ Nếu $k < \frac{2}{3}AB^2$: Tập hợp điểm M là rỗng.
- \odot Nếu $k=rac{2}{3}AB^2$: Tập hợp điểm M là một điểm E.
- c) Gọi Δ là giá của vectơ \vec{a} và A', M' lần lượt là hình chiếu của A, M lên Δ . Theo công thức hình chiếu ta có

$$\overrightarrow{AM} \cdot \overrightarrow{a} = \overrightarrow{A'M'} \cdot \overrightarrow{a}$$
.

Suy ra

$$\overrightarrow{A'M'} \cdot \overrightarrow{a} = k \Leftrightarrow \overline{A'M'} \cdot \overline{a} = k \Leftrightarrow \overline{A'M'} = \frac{k}{\overline{a}},$$

trong đó \overline{a} là độ dài đại số của vecto \overrightarrow{a} .

Vì A' là điểm cố định, $\frac{k}{a}$ là hằng số không đổi nên M' là điểm cố định.

Do đó tập hợp điểm M là đường thẳng vuông góc với Δ tại M'.

BÀI 2. Cho tứ giác ABCD, I, J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho $\overrightarrow{MA} \cdot \overrightarrow{MB} + \overrightarrow{MC} \cdot \overrightarrow{MD} = \frac{1}{2}IJ^2$.

D Lời giải.

Ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MB} + \overrightarrow{MC} \cdot \overrightarrow{MD} = \frac{1}{2}IJ^2 \Leftrightarrow \overrightarrow{MI}^2 + \overrightarrow{MJ}^2 - IA^2 - JC^2 = \frac{1}{2}IJ^2.$$

Goi K là trung điểm IJ suy ra

$$\overrightarrow{MI}^2 + \overrightarrow{MJ}^2 = 2MK^2 + 2IK^2.$$

Do đó

$$MK^2 = \frac{IA^2 + JC^2}{2}.$$

Suy ra tập hợp điểm M là đường tròn tâm K bán kính $R = \sqrt{\frac{IA^2 + JC^2}{2}}$.

BÀI 3. Cho tam giác ABC, góc A nhọn, trung tuyến AI. Tìm tập hợp những điểm M di động trong góc \widehat{BAC} sao cho $AB \cdot AH + AC \cdot AK = AI^2$, trong đó H và K theo thứ tự là hình chiếu vuông góc của M lên AB và AC.

Dèi giải.

Sử dụng công thức hình chiếu ta có:

$$AB \cdot AH + AC \cdot AK = AI^{2} \Leftrightarrow \overrightarrow{AI}^{2} = \overrightarrow{AB} \cdot \overrightarrow{AH} + \overrightarrow{AC} \cdot \overrightarrow{AK}$$

$$\Leftrightarrow \overrightarrow{AI}^{2} = \overrightarrow{AB} \cdot \overrightarrow{AM} + \overrightarrow{AC} \cdot \overrightarrow{AM}$$

$$\Leftrightarrow \overrightarrow{AI}^{2} = 2\overrightarrow{AI} \cdot \overrightarrow{AM}.$$

Gọi M_0 là hình chiếu của M lên AI khi đó ta có

$$AI^2 = 2AI \cdot AM_0 \Leftrightarrow AM_0 = \frac{AI}{2}$$

 $(M_0 \text{ nằm trên tia } AI).$

Suy ra tập hợp điểm M là đoạn trung trực của AI nằm trong góc $\widehat{B}A\widehat{C}$.

BÀI 4. Cho tam giác ABC và k là số thực cho trước. Tìm tập hợp những điểm M sao cho

$$MA^2 - MB^2 = k.$$

Gọi I là trung điểm AB ta có

$$MA^2 - MB^2 = k \Leftrightarrow 2\overrightarrow{MI} \cdot \overrightarrow{BA} = k \Leftrightarrow \overline{M'I} = \frac{k}{2\overline{BA}}.$$

Với M' là hình chiếu M lên AB suy ra M' là điểm cố định.

Vậy tập hợp điểm M là đường thẳng đi qua M' và vuông góc với AB.

BAI 5. Cho hình vuông ABCD cạnh a và số thực k cho trước. Tìm tập hợp điểm M sao cho

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = k.$$

🗩 Lời giải.

Gọi I là tâm của hình vuông ABCD. Ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MC} = \left(\overrightarrow{MI} + \overrightarrow{IA}\right) \left(\overrightarrow{MI} + \overrightarrow{IC}\right)$$

$$= MI^2 + \overrightarrow{MI} \left(\overrightarrow{IC} + \overrightarrow{IA}\right) + \overrightarrow{IA} \cdot \overrightarrow{IC}$$

$$= MI^2 + \overrightarrow{IA} \cdot \overrightarrow{IC}.$$

Tương tự

$$\overrightarrow{MB} \cdot \overrightarrow{MD} = MI^2 + \overrightarrow{IB} \cdot \overrightarrow{ID},$$

nên

$$\begin{split} \overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} &= k \Leftrightarrow 2MI^2 + \overrightarrow{IB} \cdot \overrightarrow{ID} + \overrightarrow{IA} \cdot \overrightarrow{IC} = k \\ &\Leftrightarrow 2MI^2 - IB^2 - IA^2 = k \Leftrightarrow MI^2 = \frac{k}{2} + IA^2 \\ &\Leftrightarrow MI^2 = \frac{k}{2} + a^2 \\ &\Leftrightarrow MI = \sqrt{\frac{k}{2} + IA^2} = \sqrt{\frac{k + a^2}{2}}. \end{split}$$

- \odot Nếu $k < -a^2$: Tập hợp điểm M là tập rỗng.
- \odot Nếu $k=-a^2$ thì $MI=0 \Leftrightarrow M\equiv I$ suy ra tập hợp điểm M là điểm I.
- igotimes Nếu $k>-a^2$ thì $MI=\sqrt{\frac{k+a^2}{2}}$. Suy ra tập hợp điểm M là đường tròn tâm I bán kính $R=\sqrt{\frac{k+a^2}{2}}$.

BÁI 6. Cho tam giác ABC và các số thực x, y, z. Chứng minh rằng

$$xy\cos A + yz\cos B + zx\cos C \le \frac{x^2 + y^2 + z^2}{2}.$$

🗭 Lời giải.

Đặt
$$\vec{i} = \frac{\overrightarrow{AB}}{AB}$$
, $\vec{j} = \frac{\overrightarrow{BC}}{BC}$, $\vec{k} = \frac{\overrightarrow{CA}}{CA}$. Suy ra $\left| \vec{i} \right| = \left| \vec{j} \right| = \left| \vec{k} \right| = 1$ và $\vec{i} \cdot \vec{j} = -\cos B$, $\vec{j} \cdot \vec{k} = -\cos C$, $\vec{k} \cdot \vec{i} = -\cos A$. Ta có
$$\left(x\vec{k} + y\vec{i} + z\vec{j} \right)^2 \ge 0 \Leftrightarrow x^2 + y^2 + z^2 + 2xy\vec{i} \cdot \vec{k} + 2yz\vec{i} \cdot \vec{j} + 2zx\vec{j} \cdot \vec{k} \ge 0$$

$$\Leftrightarrow xy\cos A + yz\cos B + zx\cos C \le \frac{x^2 + y^2 + z^2}{2} \text{ (dpcm)}.$$

2. Câu hỏi trắc nghiệm

CÂU 1. Cho \vec{a} , \vec{b} khác $\vec{0}$. Kí hiệu (\vec{a}, \vec{b}) là góc giữa hai véc-tơ \vec{a} và \vec{b} . Khẳng định nào sau đây là đúng?

$$(\mathbf{A})(\vec{a},\vec{b}) = -(\vec{b},\vec{a}).$$

B Nếu
$$(\vec{a}, \vec{b}) = 0^{\circ}$$
 thì \vec{a}, \vec{b} có giá trùng nhau.

$$(\vec{a}, -\vec{b}) = -(\vec{a}, \vec{b}).$$

$$(k\vec{a},\vec{b}) = (\vec{a},\vec{b}) \text{ v\'oi mọi } k \in \mathbb{R}^+.$$

🗩 Lời giải.

 $\overrightarrow{\text{Vì }k\overrightarrow{a}} \text{ với mọi } k \in \mathbb{R}^+ \text{ và } \overrightarrow{a} \text{ cùng hướng nên } (k\overrightarrow{a}, \overrightarrow{b}) = (\overrightarrow{a}, \overrightarrow{b}) \text{ với mọi } k \in \mathbb{R}^+.$

CÂU 2. Cho tam giác ABC vuông tại A và có $\widehat{B} = 60^{\circ}$. Góc giữa \overrightarrow{CA} và \overrightarrow{CB} bằng

🗩 Lời giải.

Ta có $(\overrightarrow{CA}; \overrightarrow{CB}) = \widehat{ACB}$.

Do $\triangle ABC$ vuộng tại A và có $\widehat{B}=60^\circ$ nên $\widehat{C}=30^\circ$.

Chọn đáp án (B)

CÂU 3. Cho tam giác ABC vuông cân tại A, góc giữa \overrightarrow{AB} và \overrightarrow{BC} là

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 45^{\circ}.$$

$$(\overrightarrow{B})(\overrightarrow{AB},\overrightarrow{BC}) = 60^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 120^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 135^{\circ}.$$

🗩 Lời giải.

$$(\overrightarrow{AB}, \overrightarrow{BC}) = (-\overrightarrow{BA}, \overrightarrow{BC}) = 180^{\circ} - \widehat{ABC} = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

Chọn đáp án (D)

CÂU 4. Cho \vec{a} và \vec{b} là hai véc-tơ cùng hướng và đều khác $\vec{0}$. Mênh đề nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}|.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{a} \cdot \overrightarrow{b} = 0.$$

$$(\mathbf{c}) \ \overrightarrow{a} \cdot \overrightarrow{b} = -1.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{a} \cdot \overrightarrow{b} = - \big| \overrightarrow{a} \big| \cdot \big| \overrightarrow{b} \big|.$$

🗩 Lời giải.

Ta có
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}).$$

Do \vec{a} và \vec{b} là hai véc-tơ cùng hướng nên $(\vec{a}, \vec{b}) = 0^{\circ}$.

 $V_{ay} \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}|.$

Chọn đáp án (A)

CÂU 5. Cho tam giác đều ABC cạnh bằng a và H là trung điểm BC. Tính $\overline{AH}\cdot\overline{CA}$.

B
$$\frac{-3a^2}{4}$$
.

$$\bigcirc \frac{3a^2}{2}.$$

$$\bigcirc \frac{-3a^2}{2}.$$

🗩 Lời giải.

Ta có
$$\overrightarrow{AH} \cdot \overrightarrow{CA} = AH \cdot CA \cdot \cos\left(\overrightarrow{AH}, \overrightarrow{CA}\right) = \frac{a\sqrt{3}}{2} \cdot a \cdot \cos 150^{\circ} = -\frac{3a^2}{4}$$
.

Chọn đáp án (B)

CÂU 6. Cho tam giác ABC cân tại A, $\widehat{A} = 120^{\circ}$ và AB = a. Tính $\overrightarrow{BA} \cdot \overrightarrow{CA}$.

B
$$-\frac{a^2}{2}$$
.

$$\bigcirc \frac{a^2\sqrt{3}}{2}.$$

$$\bigcirc -\frac{a^2\sqrt{3}}{2}.$$

🗩 Lời giải.

Ta có
$$\overrightarrow{BA} \cdot \overrightarrow{CA} = BA \cdot CA \cdot \cos 120^\circ = -\frac{1}{2}a^2$$
.

Chọn đáp án (B)

CÂU 7. Cho tam giác ABC vuông tại A có $\widehat{B} = 60^{\circ}$, AB = a. Tính $\overrightarrow{AC} \cdot \overrightarrow{CB}$.

(A) $3a^2$.

B
$$-3a^2$$
.

$$(\mathbf{c})$$
 $3a$.

$$\bigcirc$$
 0.

🗩 Lời giải.

$$\overrightarrow{AC} \cdot \overrightarrow{CB} = AC \cdot BC \cdot \cos 150^\circ = a\sqrt{3} \cdot 2a \cdot \left(-\frac{\sqrt{3}}{2}\right) = -3a^2.$$

Chọn đáp án (B)

CÂU 8. Cho hình vuông ABCD cạnh a. Tính tích vô hướng của hai véc-tơ \overrightarrow{AB} và \overrightarrow{AC} .

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{AB} \cdot \overrightarrow{AC} = a\sqrt{2}.$$

$$\overrightarrow{\textbf{B}} \overrightarrow{AB} \cdot \overrightarrow{AC} = 2a. \qquad \qquad \overrightarrow{\textbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = a^2.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = a^2.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AB} \cdot \overrightarrow{AC} = 2a^2.$$

🗩 Lời giải.

Ta có
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cdot \cos(\overrightarrow{AB}, \overrightarrow{AC}) = a \cdot a\sqrt{2}\cos 45^\circ = a^2$$
.

Chọn đáp án (C)

CÂU 9. Cho hai véc-tơ \vec{a} và \vec{b} khác $\vec{0}$. Xác định góc α giữa hai véc-tơ \vec{a} và \vec{b} khi $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$.

$$(\mathbf{A}) \ \alpha = 180^{\circ}.$$

$$\alpha = 90^{\circ}$$
.

$$\bigcirc$$
 $\alpha = 45^{\circ}$

P Lời giải.

Ta có
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}).$$

Mà theo giả thiết $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$ nên $\cos(\vec{a}, \vec{b}) = -1$ hay $\alpha = 180^{\circ}$.

Chon đáp án (A)

CÂU 10. Cho tam giác ABC vuông tại A và có góc $\widehat{B} = 50^{\circ}$. Mệnh đề nào sau đây là mệnh đề đúng?

- \triangle Góc giữa hai véc-tơ \overrightarrow{AC} , \overrightarrow{CB} bằng 140° .
- (B) Góc giữa hai véc-tơ \overrightarrow{AB} , \overrightarrow{BC} bằng 50°.
- \bigcirc Góc giữa hai véc-tơ \overrightarrow{BC} , \overrightarrow{AC} bằng 90°.
- \bigcirc Góc giữa hai véc-tơ \overrightarrow{AB} , \overrightarrow{CB} bằng 130°.

🗩 Lời giải.

Gọi D, E lần lượt là các điểm thuộc đường thẳng AB, AC sao cho $\overrightarrow{AB} = \overrightarrow{BD}$ và $\overrightarrow{AC} = \overrightarrow{CE}$.

Vì tam giác ABC vuông tại A và có $\widehat{ABC} = 50^{\circ}$ nên $\widehat{ACB} = 40^{\circ}$.

Khi đó

$$(\overrightarrow{AC}, \overrightarrow{CB}) = (\overrightarrow{CE}, \overrightarrow{CB}) = \widehat{BCE} = 180^{\circ} - 40^{\circ} = 140^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = (\overrightarrow{BD}, \overrightarrow{BC}) = \widehat{CBD} = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

$$(\overrightarrow{BC}, \overrightarrow{AC}) = \widehat{ACB} = 40^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{CB}) = \widehat{ABC} = 50^{\circ}.$$

Chọn đáp án (A)

CÂU 11. Tam giác ABC vuông ở A và có BC = 2AC. Tính $\cos(\overrightarrow{AC}, \overrightarrow{CB})$

🗩 Lời giải.

Xác định được $(\overrightarrow{AC}, \overrightarrow{CB}) = 180^{\circ} - \widehat{ACB}$.

Ta có $\cos \widehat{ACB} = \frac{AC}{BC} = \frac{1}{2} \Rightarrow \widehat{ACB} = 60^{\circ}$. Vậy $\cos \left(\overrightarrow{AC}, \overrightarrow{CB} \right) = \cos 120^{\circ} = -\frac{1}{2}$.

Chọn đáp án (B)

CÂU 12.

Cho tam giác ABC như hình vẽ. Mênh đề nào sau đây là đúng?

- $(\mathbf{A}) \left(BC, AB \right) = 40^{\circ}.$
- **(B)** $(BC, BA) = 140^{\circ}$.
- $(\mathbf{C})(\overrightarrow{AC},\overrightarrow{CB}) = 80^{\circ}.$
- $(\overrightarrow{D})(\overrightarrow{AC},\overrightarrow{BA}) = 120^{\circ}.$

🗩 Lời giải.

$$(\overrightarrow{AC}, \overrightarrow{BA}) = (\overrightarrow{AC}, -\overrightarrow{AB}) = 180^{\circ} - 60^{\circ} = 120^{\circ}.$$

Chọn đáp án (D)

CÂU 13. Cho hình vuông ABCD, tính $\cos(\overrightarrow{AB}, \overrightarrow{CA})$.

B $-\frac{1}{2}$.

 \mathbf{c} $\frac{\sqrt{2}}{2}$.

 $\widehat{\text{Vi}}\left(\overrightarrow{AB}, \overrightarrow{CA}\right) = 180^{\circ} - \left(\overrightarrow{AB}, \overrightarrow{AC}\right) = 135^{\circ} \text{ nên } \cos\left(\overrightarrow{AB}, \overrightarrow{CA}\right) = -\frac{\sqrt{2}}{2}$

Chọn đáp án (D)

CÂU 14. Cho tam giác đều ABC. Tính $P = \cos\left(\overrightarrow{AB}, \overrightarrow{BC}\right) + \cos\left(\overrightarrow{BC}, \overrightarrow{CA}\right) + \cos\left(\overrightarrow{CA}, \overrightarrow{AB}\right)$.

- $P = \frac{3}{2}.$
- $P = -\frac{3}{2}$.
- $P = -\frac{3\sqrt{3}}{2}$.

🗭 Lời giải.

Ta có $(\overrightarrow{AB}, \overrightarrow{BC}) = (-\overrightarrow{BA}, \overrightarrow{BC}) = 180^{\circ} - \widehat{CBA} = 120^{\circ} \Rightarrow \cos(\overrightarrow{AB}, \overrightarrow{BC}) = -\frac{1}{2}.$

Tương tự, ta cũng có $\cos\left(\overrightarrow{BC},\overrightarrow{CA}\right) = \cos\left(\overrightarrow{CA},\overrightarrow{AB}\right) = -\frac{1}{2}.$

 $V_{\text{ay}}\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right) + \cos\left(\overrightarrow{BC},\overrightarrow{CA}\right) + \cos\left(\overrightarrow{CA},\overrightarrow{AB}\right) = -\frac{3}{2}.$

Chọn đáp án (C)

CÂU 15. Cho hình vuông ABCD cạnh a. Tính $(\overrightarrow{AB} + \overrightarrow{AD})$ $(\overrightarrow{BC} + \overrightarrow{BD})$.

$$\bigcirc$$
 $-2a^2$.

$$\bigcirc$$
 a^2 .

$$\bigcirc 2a^2$$
.

$$\bigcirc -\frac{a^2}{\sqrt{2}}$$

🗩 Lời giải.

 \overrightarrow{ABCD} là hình vuông canh a nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$, $\overrightarrow{AC} \perp \overrightarrow{BD}$ và $\overrightarrow{AC} = a\sqrt{2}$. Do đó

$$(\overrightarrow{AB} + \overrightarrow{AD}) (\overrightarrow{BC} + \overrightarrow{BD}) = \overrightarrow{AC} (\overrightarrow{BC} + \overrightarrow{BD})$$

$$= \overrightarrow{AC} \cdot \overrightarrow{BC} + \overrightarrow{AC} \cdot \overrightarrow{BD} = \overrightarrow{CA} \cdot \overrightarrow{CB} = AC \cdot BC \cdot \cos 45^{\circ} = a^{2}.$$

Chọn đáp án (B)

CẦU 16. Cho $\triangle ABC$ đều cạnh bằng 3. Trên các cạnh AB, AC lần lượt lấy các điểm M, N sao cho 2AM=MB, NA=2NC. Giá trị của tích vô hướng $B\dot{N}\cdot C\dot{M}$ là

$$\frac{7}{2}$$
.

$$-\frac{11}{2}$$
.

🗭 Lời giải.

$$\overrightarrow{BN} \cdot \overrightarrow{CM} = (\overrightarrow{AN} - \overrightarrow{AB}) \cdot (\overrightarrow{AM} - \overrightarrow{AC})$$

$$= \overrightarrow{AN} \cdot \overrightarrow{AM} - \overrightarrow{AN} \cdot \overrightarrow{AC} - \overrightarrow{AB} \cdot \overrightarrow{AM} + \overrightarrow{AB} \cdot \overrightarrow{AC}$$

$$= 1 \cdot 2 \cdot \cos 60^{\circ} - 2 \cdot 3 \cos 0^{\circ} - 3 \cdot 1 \cos 0^{\circ} + 3 \cdot 3 \cos 60^{\circ}$$

$$= -\frac{7}{2}.$$

Chon đáp án (B)

CÂU 17. Cho tam giác ABC vuông tại A có AB = a, BC = 2a. Tính $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC}$ theo a.

$$\overrightarrow{A} \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -a\sqrt{3}.$$

$$\overrightarrow{\textbf{B}} \ \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -3a^2.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = a\sqrt{3}$.

$$\overrightarrow{\mathbf{D}} \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = 3a^2.$$

🗩 Lời giải.

Tam giác ABC vuông tại A nên $CA^2 = BC^2 - AB^2 = 3a^2$. $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = \overrightarrow{AC}(\overrightarrow{BA} - \overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{CA} = -3a^2.$

Chon đáp án (B)

CÂU 18. Cho tam giác ABC vuông tại A, có số đo góc B là 60° và AB = a. Kết quả nào sau đây là sai?

$$\overrightarrow{A} \overrightarrow{AB} \cdot \overrightarrow{AC} = 0.$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{CA} \cdot \overrightarrow{CB} = 3a^2.$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{BC} = -a^2.$$

$$\overrightarrow{\textbf{C}} \overrightarrow{AB} \cdot \overrightarrow{BC} = -a^2. \qquad \overrightarrow{\textbf{D}} \overrightarrow{AC} \cdot \overrightarrow{CB} = -3\sqrt{2}a^2.$$

🗩 Lời giải.

Ta có $AB = a, BC = 2a, AC = a\sqrt{3}$.

- \bigcirc Do $AB \perp AC$ nên $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$.
- \odot Ta có $\overrightarrow{CA} \cdot \overrightarrow{CB} = CA \cdot CB \cdot \cos 30^{\circ} = 3a^{2}$.
- \odot Ta có $\overrightarrow{AB} \cdot \overrightarrow{BC} = -\overrightarrow{BA} \cdot \overrightarrow{BC} = -BA \cdot BC \cdot \cos 60^{\circ} = -a^{2}$.
- \odot Ta có $\overrightarrow{AC} \cdot \overrightarrow{CB} = -\overrightarrow{CA} \cdot \overrightarrow{CB} = -CA \cdot CB \cdot \cos 30^{\circ} = -3a^{2}$.

Chọn đáp án (D)

CÂU 19. Cho M là trung điểm AB, tìm mệnh đề sai.

$$\overrightarrow{A} \overrightarrow{MA} \cdot \overrightarrow{AB} = -MA \cdot AB.$$

$$(\mathbf{A}) MA \cdot AB = -MA \cdot AB.$$

$$(\mathbf{C}) \overrightarrow{AM} \cdot \overrightarrow{AB} = AM \cdot AB.$$

$$\overrightarrow{\mathbf{B}}) \overrightarrow{MA} \cdot \overrightarrow{MB} = -MA \cdot MB.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{MA} \cdot \overrightarrow{MB} = MA \cdot MB.$$

Lời giải.

 $\overline{MA}, \overline{AB}$ ngược hướng suy ra $\overline{MA} \cdot \overline{AB} = MA \cdot AB \cdot \cos 180^{\circ} = -MA \cdot AB$.

 $\overline{M}A, \overline{M}B$ ngược hướng suy ra $\overline{M}A \cdot \overline{M}B = MA \cdot MB \cdot \cos 180^{\circ} = -MA \cdot MB$.

 \overrightarrow{AM} , \overrightarrow{AB} cùng hướng suy ra $\overrightarrow{AM} \cdot \overrightarrow{AB} = AM \cdot AB \cdot \cos 0^{\circ} = AM \cdot AB$. $M\acute{A}, M\acute{B}$ ngược hướng suy ra $M\acute{A} \cdot M\acute{B} = MA \cdot MB \cdot \cos 180^{\circ} = -MA \cdot MB$.

Chọn đáp án (D)

CÂU 20. Cho 2 véc-tơ \vec{a} và \vec{b} thỏa $|\vec{a} + \vec{b}| = 2$ và có độ lớn bằng 1. Hãy tính $(3\vec{a} - 4\vec{b})(2\vec{a} + 5\vec{b})$.

(B) 5.

 $(\mathbf{C}) - 7.$

🗩 Lời giải.

 $|\vec{a}| = |\vec{b}| = 1.$

 $|\vec{a} + \vec{b}| = 2 \Leftrightarrow (\vec{a} + \vec{b})^2 = 4 \Leftrightarrow \vec{a} \cdot \vec{b} = 1.$

 $(3\vec{a} - 4\vec{b})(2\vec{a} + 5\vec{b}) = 6\vec{a}^2 - 20\vec{b}^2 + 7\vec{a} \cdot \vec{b} = -7.$

Chọn đáp án (C)

CÂU 21. Cho hình thang vuông ABCD có đường cao AD = 3a. Tính $\overrightarrow{DA} \cdot \overrightarrow{BC}$.

 $(A) -9a^2.$

(B) $15a^2$.

(**D**) $9a^2$.

🗩 Lời giải.

 $\overrightarrow{DA} \cdot \overrightarrow{BC} = \overrightarrow{DA} \cdot \left(\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} \right) = \overrightarrow{DA} \cdot \overrightarrow{AD} = -9a^2.$

Chọn đáp án (A)

CÂU 22. Cho tam giác ABC có BC = a, CA = b, AB = c. Gọi M là trung điểm cạnh BC. Tính $\overrightarrow{AM} \cdot \overrightarrow{BC}$.

(A) $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{b^2 - c^2}{2}$. (C) $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{c^2 + b^2 + a^2}{2}$.

 $\overrightarrow{B} \overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{c^2 + b^2}{2}.$ $\overrightarrow{D} \overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{c^2 + b^2 - a^2}{2}.$

Dèi giải.

Vì M là trung điểm của BC suy ra $\overrightarrow{AB} + \overrightarrow{AC} = 2 \overrightarrow{AM}$. Khi đó

 $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \overrightarrow{BC} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \left(\overrightarrow{BA} + \overrightarrow{AC} \right)$

$$=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\frac{1}{2}\left(\overrightarrow{AC^2}-\overrightarrow{AB^2}\right)=\frac{1}{2}\left(AC^2-AB^2\right)=\frac{b^2-c^2}{2}.$$

Chọn đáp án (A

CÂU 23. Cho hình vuông ABCD cạnh a. Tính $P = (\overrightarrow{AB} + \overrightarrow{AC})(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA})$.

(A) $P = 2\sqrt{2}a$.

B $P = 2a^2$.

 $(\mathbf{D}) P = -2a^2.$

🗩 Lời giải.

 $\begin{cases} \overrightarrow{BD} = a\sqrt{2} \\ \overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA} = (\overrightarrow{BC} + \overrightarrow{BA}) + \overrightarrow{BD} = \overrightarrow{BD} + \overrightarrow{BD} = 2\overrightarrow{BD}. \end{cases}$

Khi đó

$$P = (\overrightarrow{AB} + \overrightarrow{AC}) \cdot 2\overrightarrow{BD} = 2\overrightarrow{AB} \cdot \overrightarrow{BD} + 2\overrightarrow{AC} \cdot \overrightarrow{BD} = -2\overrightarrow{BA} \cdot \overrightarrow{BD} + 0$$
$$= -2 \cdot BA \cdot BD \cos (\overrightarrow{BA}, \overrightarrow{BD}) = -2 \cdot a \cdot a\sqrt{2} \cdot \frac{\sqrt{2}}{2} = -2a^2.$$

Chọn đáp án (D)

CÂU 24. Cho hình vuông ABCD cạnh a. Gọi E là điểm đối xứng của D qua C. Tính $\overrightarrow{AE} \cdot \overrightarrow{AB}$.

(A) $A\acute{E} \cdot A\acute{B} = 2a^2$.

(B) $A\acute{E} \cdot A\acute{B} = \sqrt{3}a^2.$

(c) $\overrightarrow{AE} \cdot \overrightarrow{AB} = \sqrt{5}a^2$.

(D) $\overrightarrow{AE} \cdot \overrightarrow{AB} = 5a^2$.

🗩 Lời giải.

Ta có C là trung điểm của DE nên DE = 2a. Khi đó

$$\overrightarrow{AE} \cdot \overrightarrow{AB} = \left(\overrightarrow{AD} + \overrightarrow{DE}\right) \cdot \overrightarrow{AB} = \underbrace{\overrightarrow{AD} \cdot \overrightarrow{AB}}_{0} + \overrightarrow{DE} \cdot \overrightarrow{AB}$$
$$= DE \cdot AB \cdot \cos\left(\overrightarrow{DE}, \overrightarrow{AB}\right) = DE \cdot AB \cdot \cos 0^{\circ} = 2a^{2}.$$

Chọn đáp án (A)

CÂU 25. Biết \vec{a} , $\vec{b} \neq \vec{0}$ và $\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}|$. Khẳng định nào sau đây đúng?

 \overrightarrow{a} và \overrightarrow{b} cùng hướng.

(B) \vec{a} và \vec{b} nằm trên hai dường thẳng hợp với nhau một góc 80° .

 (\mathbf{c}) \vec{a} và \vec{b} ngược hướng.

 $(\mathbf{D}) \vec{a}$ và \vec{b} nằm trên hai dường thẳng hợp với nhau một góc 60° .

🗩 Lời giải.

Ta có

$$\vec{a} \cdot \vec{b} = -|\vec{a}| \cdot |\vec{b}| \Leftrightarrow |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \vec{b}) = -|\vec{a}| \cdot |\vec{b}| \Leftrightarrow \cos(\vec{a}, \vec{b}) = -1$$

nên \vec{a} và \vec{b} ngược hướng. Chọn đáp án (C)

CÂU 26. Cho tam giác ABC vuông tại A, AB = a, $AC = a\sqrt{3}$. Gọi M là trung điểm của BC. Tính cô-sin góc giữa hai véc-to \overline{MA} và \overline{BC} .

$$\label{eq:definition} \boxed{ \pmb{\mathbb{A}}} \, \cos \left(\overrightarrow{MA}, \overrightarrow{BC} \right) = \frac{1}{2}.$$

$$\mathbf{C}\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = \frac{\sqrt{3}}{2}.$$

$$(\mathbf{B}) \cos \left(\overrightarrow{MA}, \overrightarrow{BC} \right) = -\frac{1}{2}. \qquad (\mathbf{C}) \cos \left(\overrightarrow{MA}, \overrightarrow{BC} \right) = \frac{\sqrt{3}}{2}. \qquad (\mathbf{D}) \cos \left(\overrightarrow{MA}, \overrightarrow{BC} \right) = -\frac{\sqrt{3}}{2}.$$

Dèi giải.

Từ giả thiết suy ra $\widehat{B} = 60^{\circ}$ và $\widehat{C} = 30^{\circ}$. $(\overrightarrow{MA}, \overrightarrow{BC}) = (\overrightarrow{MA}, \overrightarrow{MC}) = \widehat{AMC} = 120^{\circ}$

$$\Rightarrow \cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) = \cos 120^\circ = -\frac{1}{2}.$$

Chọn đáp án (B)

CÂU 27. Cho tam giác ABC. Tính tổng $(\overrightarrow{AB}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{CA}) + (\overrightarrow{CA}, \overrightarrow{AB})$.

🗩 Lời giải.

$$\text{Ta có} \left\{ \begin{array}{l} \left(\overrightarrow{AB},\overrightarrow{BC}\right) = 180^{\circ} - \widehat{ABC} \\ \left(\overrightarrow{BC},\overrightarrow{CA}\right) = 180^{\circ} - \widehat{BCA} \\ \left(\overrightarrow{CA},\overrightarrow{AB}\right) = 180^{\circ} - \widehat{CAB} \end{array} \right.$$

Suy ra $(\overrightarrow{AB}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{CA}) + (\overrightarrow{CA}, \overrightarrow{AB}) = 360^{\circ}$.

Chọn đáp án (B)

CÂU 28. Tam giác ABC có góc A bằng 100° và có trực tâm H. Tính tổng $(\overrightarrow{HA}, \overrightarrow{HB}) + (\overrightarrow{HB}, \overrightarrow{HC}) + (\overrightarrow{HC}, \overrightarrow{HA})$.

(**B**) 180°.

Dèi giải.

Gọi BI và CF là hai đường cao của tam giác ABC. Suy ra tứ giác HIAF nội tiếp, kéo theo $\widehat{BHC}=80^{\circ}$.

Ta có
$$\begin{cases} (\overrightarrow{HA}, \overrightarrow{HB}) = \widehat{BHA} \\ (\overrightarrow{HB}, \overrightarrow{HC}) = \widehat{BHC} \\ (\overrightarrow{HC}, \overrightarrow{HA}) = \widehat{CHA} \end{cases}$$

 $(\overrightarrow{HA}, \overrightarrow{HB}) + (\overrightarrow{HB}, \overrightarrow{HC}) + (\overrightarrow{HC}, \overrightarrow{HA}) = 2\widehat{BHC} = 160^{\circ}.$

Chon đáp án (D)

CÂU 29. Cho hình vuông ABCD tâm O. Tính tổng $(\overrightarrow{AB}, \overrightarrow{DC}) + (\overrightarrow{AD}, \overrightarrow{CB}) + (\overrightarrow{CO}, \overrightarrow{DC})$.

(A) 45° .

(B) 405°.

(**D**) 225° .

🗭 Lời giải.

Vì \overrightarrow{AB} , \overrightarrow{DC} cùng hướng nên $(\overrightarrow{AB}, \overrightarrow{DC}) = 0^{\circ}$.

Vì \overrightarrow{AD} , \overrightarrow{CB} ngược hướng nên $(\overrightarrow{AD}, \overrightarrow{CB}) = 180^{\circ}$.

Vẽ $\overrightarrow{CE} = \overrightarrow{DC}$, khi đó $(\overrightarrow{CO}, \overrightarrow{DC}) = (\overrightarrow{CO}, \overrightarrow{CE}) = \widehat{OCE} = 135^{\circ}$.

 $\widehat{\text{Vay}}\left(\overrightarrow{AB}, \overrightarrow{DC}\right) + \left(\overrightarrow{AD}, \overrightarrow{CB}\right) + \left(\overrightarrow{CO}, \overrightarrow{DC}\right) = 0^{\circ} + 180^{\circ} + 135^{\circ} = 315^{\circ}.$

Chọn đáp án (C)

CÂU 30. Cho tam giác ABC cân tại A, góc $\hat{A} = 20^{\circ}$. Gọi BM là đường phân giác trong của góc $\hat{A}B\hat{C}$. Tính $\cos\left(\overline{BM},\overline{MC}\right)$.

 $\frac{-\sqrt{2}}{2}$.

 $\bigcirc \frac{\sqrt{2}}{2}$.

Dèi giải.

Ta có $\widehat{BMC} = 180^{\circ} - (\widehat{MBC} + \widehat{BCM}) = 180^{\circ} - (40^{\circ} + 80^{\circ}) = 60^{\circ}.$

 $(\overrightarrow{BM}, \overrightarrow{MC}) = 180^{\circ} - 60^{\circ} = 120^{\circ}.$

 $\Rightarrow \cos\left(\overrightarrow{BM},\overrightarrow{MC}\right) = \frac{-1}{2}$

Chọn đáp án (D)

CÂU 31. Cho hình thang vuông ABCD, vuông tại A và D, biết AB = AD = a, CD = 2a. Tính $\cos(BD, CB)$.

$$\frac{-1}{2}$$
.

$$\bigcirc \hspace{-3pt} \begin{array}{c} -\sqrt{2} \\ \hline 2 \end{array}.$$

Gọi E là trung điểm của đoạn thẳng CD. Khi đó, tam giác BCE vuông cân tại E. $\Rightarrow \widehat{B}\widehat{C}\widehat{E} = 45^{\circ} \Rightarrow \widehat{D}\widehat{B}\widehat{C} = 90^{\circ}.$

$$\overrightarrow{(BD,CB)} = 180^{\circ} - 90^{\circ} = 90^{\circ} \Rightarrow \cos(\overrightarrow{BD},\overrightarrow{CB}) = 0.$$

Chọn đáp án (C)

CÂU 32. Cho hình thơi ABCD cạnh a, góc $\widehat{ABC}=120^\circ$. Gọi G là trọng tâm của tam giác BCD và α là góc giữa hai đường thẳng DA và BG. Tính $\sin \alpha$.

$$\mathbf{B}\sin\alpha = \frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\sin\alpha = \frac{\sqrt{2}}{2}.$$

$$\bigcirc \sin \alpha = \frac{\sqrt{2}}{2}.$$

Vì $AD \parallel BC$ nên Ta có $\alpha = (DA, BG) = (BC, BG) = 30^{\circ} \Rightarrow \sin \alpha = \sin 30^{\circ} = \frac{1}{2}$. Chon đáp án (A)

CÂU 33. Cho tạm giác \overrightarrow{ABC} có các cạnh bằng a, b, c. Tính tích vô hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$ theo a, b, c.

$$\overrightarrow{A} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(a^2 + b^2 - c^2).$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(a^2 + c^2 - b^2)$$

$$\overrightarrow{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 + a^2).$$

$$\overrightarrow{\textbf{B}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(a^2 + c^2 - b^2).$$

$$\overrightarrow{\textbf{D}} \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 - a^2).$$

Dèi giải.

Ta có $\overrightarrow{BC^2} = (\overrightarrow{AC} - \overrightarrow{AB})^2 \Rightarrow BC^2 = AC^2 + AB^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$. Do đó $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 - a^2)$.

Chọn đáp án (D)

CÂU 34. Cho nửa đường tròn tâm O, có đường kính AB = 2R. Gọi M, N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I. Khẳng định nào sau đây là khẳng định đúng?

$$(\mathbf{A}) \ \overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{AB}.$$

(B)
$$\overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AN} \cdot \overrightarrow{AB}$$
. **(C)** $\overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{AN}$.

$$\overrightarrow{\mathbf{C}} \overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{AN}.$$

$$(\mathbf{D}) \overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{BA}.$$

🗩 Lời giải.

Ta có

$$\overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI}(\overrightarrow{AB} + \overrightarrow{BM})$$

$$= \overrightarrow{AI} \cdot \overrightarrow{AB} + \overrightarrow{AI} \cdot \overrightarrow{BM}$$

$$= \overrightarrow{AI} \cdot \overrightarrow{AB}.$$

Chọn đáp án (A)

CÂU 35. Cho hai điểm M, N nằm trên đường tròn đường kính AB = 2r. Gọi I là giao điểm của hai đường thẳng AM và BN. Tính theo r giá trị biểu thức $P = \overrightarrow{AM} \cdot \overrightarrow{AI} + \overrightarrow{BN} \cdot \overrightarrow{BI}$.

$$\bigcirc P = 4r^2.$$

$$\bigcirc{\bf B} P = 2r^2.$$

$$\bigcirc P = r^2.$$

Dòi giải.

Vì $AI \perp BM$ và $BI \perp AN$ nên $\overrightarrow{AI} \cdot \overrightarrow{BM} = \overrightarrow{BI} \cdot \overrightarrow{AN} = 0$. Do đó

$$\begin{split} P &= \overrightarrow{AM} \cdot \overrightarrow{AI} + \overrightarrow{BN} \cdot \overrightarrow{BI} \\ &= \left(\overrightarrow{AB} + \overrightarrow{BM} \right) \cdot \overrightarrow{AI} + \left(\overrightarrow{BA} + \overrightarrow{AN} \right) \cdot \overrightarrow{BI} \\ &= \overrightarrow{AB} \cdot \overrightarrow{AI} - \overrightarrow{AB} \cdot \overrightarrow{BI} \\ &= \overrightarrow{AB} \cdot \left(\overrightarrow{AI} + \overrightarrow{IB} \right) \\ &= \overrightarrow{AB}^2 = AB^2 = 4r^2. \end{split}$$

Chọn đáp án (A)

CÂU 36. Cho hình vuông ABCD có cạnh là a. Giá trị của biểu thức $(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA})(\overrightarrow{AC} - \overrightarrow{AB})$ là

B
$$2a^2$$
.

$$(c) -2a^2$$
.

$$\bigcirc \hspace{-3mm} -2\sqrt{2}a^2.$$

🗩 Lời giải.

$$\left(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA}\right)\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = 2\overrightarrow{BD} \cdot \overrightarrow{BC} = 2\left|\overrightarrow{BD}\right| \cdot \left|\overrightarrow{BC}\right| \cdot \cos\left(\overrightarrow{BD}, \overrightarrow{BC}\right) = 2 \cdot a\sqrt{2} \cdot a \cdot \frac{\sqrt{2}}{2} = 2a^2.$$

Chọn đáp án (B)

CÂU 37. Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho $AM = \frac{AC}{4}$. Gọi N là trung điểm của đoan thẳng DC. Tính $\overrightarrow{MB} \cdot \overrightarrow{MN}$.

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MB} \cdot \overrightarrow{MN} = -4.$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MB} \cdot \overrightarrow{MN} = 0.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{MB} \cdot \overrightarrow{MN} = 4.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MB} \cdot \overrightarrow{MN} = 16.$$

🗩 Lời giải.

Vì giả thiết không cho góc nên ta thử phân tích các véc-tơ \overrightarrow{MB} , \overrightarrow{MN} theo các véc-tơ có giá vuông góc với nhau.

$$\overrightarrow{MB} = \overrightarrow{AB} - \overrightarrow{AM} = \overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} = \overrightarrow{AB} - \frac{1}{4}\left(\overrightarrow{AB} + \overrightarrow{AD}\right) = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AD}.$$

$$\overrightarrow{MN} = \overrightarrow{AN} - \overrightarrow{AM} = \overrightarrow{AD} + \overrightarrow{DN} - \frac{1}{4}\overrightarrow{AC} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} - \frac{1}{4}\left(\overrightarrow{AB} + \overrightarrow{AD}\right)$$

$$= \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB} - \frac{1}{4}\left(\overrightarrow{AB} + \overrightarrow{AD}\right) = \frac{3}{4}\overrightarrow{AD} + \frac{1}{4}\overrightarrow{AB}.$$

Suy ra

$$\overrightarrow{MB} \cdot \overrightarrow{MN} = \left(\frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AD}\right)\left(\frac{3}{4}\overrightarrow{AD} + \frac{1}{4}\overrightarrow{AB}\right) = \frac{1}{16}\left(3\overrightarrow{AB} \cdot \overrightarrow{AD} + 3\overrightarrow{AB}^2 - 3\overrightarrow{AD}^2 - \overrightarrow{AD} \cdot \overrightarrow{AB}\right)$$
$$= \frac{1}{16}\left(0 + 3a^2 - 3a^2 - 0\right) = 0.$$

Chon đáp án (B)

CÂU 38. Cho hình thoi ABCD có AC = 8. Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 24.$$

$$\overrightarrow{B} \overrightarrow{AB} \cdot \overrightarrow{AC} = 26.$$

$$\overrightarrow{\mathbf{C}} \ \overrightarrow{AB} \cdot \overrightarrow{AC} = 28.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{AB} \cdot \overrightarrow{AC} = 32.$$

🗩 Lời giải.

Gọi $O = AC \cap BD$, giả thiết không cho góc, ta phân tích các véc-tơ \overrightarrow{AB} , \overrightarrow{AC} theo các véc-tơ có giá vuông góc với nhau. Ta có $\overrightarrow{AB} \cdot \overrightarrow{AC} = (\overrightarrow{AO} + \overrightarrow{OB}) \cdot \overrightarrow{AC} = \overrightarrow{AO} \cdot \overrightarrow{AC} + \overrightarrow{OB} \cdot \overrightarrow{AC} = \frac{1}{2}\overrightarrow{AC} \cdot \overrightarrow{AC} + 0 = \frac{1}{2}\overrightarrow{AC} \cdot \overrightarrow{AC}$

Chọn đáp án (D)

CÂU 39. Cho hình chữ nhật ABCD có AB=a và $AD=a\sqrt{2}$. Gọi K là trung điểm của cạnh AD. Tính $\overrightarrow{BK}\cdot\overrightarrow{AC}$.

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{BK} \cdot \overrightarrow{AC} = 0.$$

B
$$\overrightarrow{BK} \cdot \overrightarrow{AC} = -a^2 \sqrt{2}$$
. **C** $\overrightarrow{BK} \cdot \overrightarrow{AC} = a^2 \sqrt{2}$.

$$\overrightarrow{\mathbf{C}} \overrightarrow{BK} \cdot \overrightarrow{AC} = a^2 \sqrt{2}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{BK} \cdot \overrightarrow{AC} = 2a^2.$$

Dòi giải.

Ta có
$$AC = BD = \sqrt{AB^2 + AD^2} = \sqrt{2a^2 + a^2} = a\sqrt{3}$$
.

Ta có
$$AC = BD = \sqrt{AB^2 + AD^2} = \sqrt{2a^2 + a^2} = a\sqrt{3}$$
.
Lại có
$$\begin{cases} \overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK} = \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AD} \\ \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}. \end{cases}$$

$$\overrightarrow{BK} \cdot \overrightarrow{AC} = \overrightarrow{BA} \cdot \overrightarrow{AB} + \overrightarrow{BA} \cdot \overrightarrow{AD} + \frac{1}{2} \overrightarrow{AD} \cdot \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AD} \cdot \overrightarrow{AD} = -a^2 + 0 + 0 + \frac{1}{2} \left(a \sqrt{2} \right)^2 = 0.$$

Chọn đáp án (A)

CÂU 40. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau tại M và $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$. Gọi P là trung điểm của AD. Góc giữa hai đường thẳng MP và BC là

🗩 Lời giải.

Ta có $\overrightarrow{BC} = \overrightarrow{MC} - \overrightarrow{MB}; \overrightarrow{MP} = \frac{1}{2} \left(\overrightarrow{MA} + \overrightarrow{MD} \right)$

Suy ra
$$2\overrightarrow{MP} \cdot \overrightarrow{BC} = \left(\overrightarrow{MC} - \overrightarrow{MB}\right) \left(\overrightarrow{MA} + \overrightarrow{MD}\right)$$

$$= \overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MC} \cdot \overrightarrow{MD} - \overrightarrow{MA} \cdot \overrightarrow{MB} - \overrightarrow{MB} \cdot \overrightarrow{MD}$$

$$= \overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MC} \cdot \overrightarrow{MD} - \overrightarrow{MA} \cdot \overrightarrow{MB} - \overrightarrow{MB} \cdot \overrightarrow{MD}$$

$$= \overrightarrow{MC} \cdot \overrightarrow{MD} - \overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \text{ (Vi } \overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD} \text{ và } \overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MC} \cdot \overrightarrow{MD} = 0)$$

Vậy $MP \perp BC \Rightarrow (MP, BC) = 90^{\circ}$.

Chọn đáp án (A)

CÂU 41. Cho hình vuông ABCD cạnh a. Gọi M và N lần lượt là trung điểm của BC và CD. Tính $\cos\left(\overrightarrow{AM},\overrightarrow{NA}\right)$.

B
$$-\frac{4}{5}$$
.

$$\frac{3}{5}$$

$$\bigcirc -\frac{3}{5}$$
.

🗩 Lời giải.

Từ giả thiết ta có $AM = AN = \frac{a\sqrt{5}}{2}$. $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM}; \overrightarrow{NA} = \overrightarrow{ND} + \overrightarrow{DA}$.

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM}; \overrightarrow{NA} = \overrightarrow{ND} + \overrightarrow{DA}$$

$$\Rightarrow \overrightarrow{AM} \cdot \overrightarrow{NA} = \left(\overrightarrow{AB} + \overrightarrow{BM}\right) \left(\overrightarrow{ND} + \overrightarrow{DA}\right)$$

$$= \overrightarrow{AB} \cdot \overrightarrow{ND} + \overrightarrow{AB} \cdot \overrightarrow{DA} + \overrightarrow{BM} \cdot \overrightarrow{ND} + \overrightarrow{BM} \cdot \overrightarrow{DA}$$
$$= a \cdot \frac{a}{2} \cdot \cos 180^{\circ} + 0 + 0 + a \cdot \frac{a}{2} \cdot \cos 180^{\circ} = -a^{2}$$

$$= a \cdot \frac{1}{2} \cdot \cos 180^{\circ} + 0 + 0 + a \cdot \frac{1}{2} \cdot \cos 180^{\circ} = -a^{2}$$
Suy ra $\cos \left(\overrightarrow{AM}, \overrightarrow{NA}\right) = \frac{\overrightarrow{AM} \cdot \overrightarrow{NA}}{|\overrightarrow{AM}| \cdot |\overrightarrow{NA}|} = \frac{-a^{2}}{\frac{a\sqrt{5}}{2} \cdot \frac{a\sqrt{5}}{2}} = -\frac{4}{5}.$

Chọn đáp án (B)

CÂU 42. Cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC. Tính góc giữa hai véc-tơ \overrightarrow{AM} và $\overrightarrow{DA} + \overrightarrow{DB}$

(A) 45° .

(B) 30°.

(C) 135°.

(**D**) 90°.

🗩 Lời giải.

Gọi N là trung điểm AB.

Có
$$\overrightarrow{DA} + \overrightarrow{DB} = 2\overrightarrow{DN}$$

Chứng minh được $AM \perp DN$

Suy ra góc giữa hai véc-tơ \overrightarrow{AM} và $\overrightarrow{DA} + \overrightarrow{DB}$ bằng $(\overrightarrow{AM}, \overrightarrow{DN}) = 90^{\circ}$.

Chọn đáp án (D)

CÂU 43. Cho hình vuông ABCD. Trên cạnh AD, AB lần lượt lấy hai điểm E, F sao cho AE = AF. Gọi H là hình chiếu vuông góc của A lên đường thẳng BE. Tính $\cos(FH, CH)$.

 (\mathbf{A}) 0.

 \bigcirc $\frac{\sqrt{3}}{2}$.

 $\frac{-1}{2}$.

 $\bigcirc \frac{\sqrt{2}}{2}.$

Lời giải.

Gọi $K = AH \cap CD$. Khi đó BCKF là hình chữ nhật.

Ta có $\widehat{BHK} = 90^{\circ}$.

Do đó H thuộc đường tròn ngoại tiếp hình chữ nhật BCKF.

$$\Rightarrow \widehat{CHF} = 90^{\circ} \Rightarrow \left(\overrightarrow{FH}, \overrightarrow{CH}\right) = 90^{\circ} \Rightarrow \cos\left(\overrightarrow{FH}, \overrightarrow{CH}\right) = 0.$$

Chọn đáp án (A)

CÂU 44. Cho hai điểm A và B, O là trung điểm của AB và M là điểm tùy ý, biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = OM^2 + kOA^2$. Khẳng định nào sau đây đúng?

(A) k = 1.

- **B** k = -1.
- (c) k = 2.

(D) k = -2.

🗩 Lời giải.

Ta có O là trung điểm AB nên $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{0}$. Do đó

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = \left(\overrightarrow{MO} + \overrightarrow{OA} \right) \cdot \left(\overrightarrow{MO} + \overrightarrow{OB} \right)$$
$$= \overrightarrow{MO}^2 + \overrightarrow{MO} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) + \overrightarrow{OA} \cdot \overrightarrow{OB}$$
$$= OM^2 - OA^2.$$

Vây k = -1.

Chon đáp án (B)

CÂU 45. Cho I là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MI} \cdot \overrightarrow{AB} = k (MB^2 - MA^2)$. Khẳng định nào sau đây là đúng?

- (A) k = 2.
- **B** $k = \frac{1}{2}$.
- (c) k = -1.
- $k = -\frac{1}{2}$.

Lời giải.

Ta có I là trung điểm AB nên $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$. Do đó

$$\begin{array}{rcl} MB^2 - MA^2 & = & \overrightarrow{MB}^2 - \overrightarrow{MA}^2 \\ & = & \left(\overrightarrow{MB} - \overrightarrow{MA} \right) \cdot \left(\overrightarrow{MB} + \overrightarrow{MA} \right) \\ & = & \overrightarrow{AB} \cdot \left(2\overrightarrow{MI} \right) \\ & = & 2\overrightarrow{MI} \cdot \overrightarrow{AB}. \end{array}$$

$$\Rightarrow \overrightarrow{MI} \cdot \overrightarrow{AB} = \frac{1}{2} \left(MB^2 - MA^2 \right). \text{ Vậy } k = \frac{1}{2}.$$
 Chọn đáp án $\stackrel{\textstyle (B)}{}$

CÂU 46. Cho I là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 + kAB^2$. Khẳng định nào sau đây là đúng?

$$(A) k = 2.$$

$$(c)$$
 $k = -1.$

D
$$k = -\frac{1}{4}$$
.

🗩 Lời giải.

Ta có I là trung điểm AB nên $\overrightarrow{IA} + \overrightarrow{IB} = 0$. Do đó

Vậy
$$k - \frac{1}{4}$$
.

Chọn đáp án (D)

CÂU 47. Khẳng định nào sau đây là đúng?

$$(\vec{a} \cdot \vec{b}) \vec{c} = \vec{a} (\vec{b} \cdot \vec{c}).$$

$$\overrightarrow{c}$$
 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \sin(\overrightarrow{a}, \overrightarrow{b}).$

$$(\mathbf{B}) \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 = \overrightarrow{a}^2 \cdot \overrightarrow{b}^2.$$

$$(\overrightarrow{\mathbf{D}}) \overrightarrow{a} \cdot (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a} \cdot \overrightarrow{c}.$$

₽ Lời giải.

 \odot Xét hình vuông ABCD cạnh bằng 1 thì

$$- \left(\overrightarrow{AB} \cdot \overrightarrow{AD} \right) \overrightarrow{BC} = 0 \cdot \overrightarrow{BC} = \overrightarrow{0}.$$

$$--\overrightarrow{AB}\left(\overrightarrow{AD}\cdot\overrightarrow{BC}\right)=\overrightarrow{AB}\cdot 1=\overrightarrow{AB}\neq\overrightarrow{0}.$$

Do đó $(\vec{a} \cdot \vec{b}) \vec{c} = \vec{a} (\vec{b} \cdot \vec{c})$ là khẳng định sai.

 \odot Xét hình vuông ABCD cạnh bằng 1 thì

$$(\overrightarrow{AB} \cdot \overrightarrow{AD})^2 = 0^2 = 0.$$

$$\overrightarrow{AB^2} \cdot \overrightarrow{AD^2} = 1 \cdot 1 = 1.$$

Do đó $(\vec{a} \cdot \vec{b})^2 = \vec{a}^2 \cdot \vec{b}^2$ là khẳng định sai.

Chọn đáp án D

CÂU 48. Cho hai véc-tơ \vec{a} và \vec{b} . Đẳng thức nào sau đây sai?

$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{4} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

$$\overrightarrow{\mathbf{c}} \ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} \right|^2 - \left| \overrightarrow{b} \right|^2 \right).$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left(|\overrightarrow{a}|^2 + \left| \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

Dòi giải.

Ta có

Suy ra

$$\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 = 4 \overrightarrow{a} \cdot \overrightarrow{b} \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{4} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

Chon đáp án (B)

CÂU 49. Cho hình thoi ABCD có cạnh bằng a và $\widehat{A} = 60^{\circ}$, điểm M tùy ý. Biết rằng $MA^2 - MB^2 + MC^2 - MD^2 = ka^2$. Khẳng định nào sau đây đúng?

$$B k = 2.$$

(c)
$$k = 4$$
.

🗩 Lời giải.

Ta có ABCD là hình thoi cạnh a và $\widehat{A}=60^\circ$ nên $\triangle ABC$ đều cạnh a do đó $OB=OD=\frac{a}{2},\ OA=OC=\frac{a\sqrt{3}}{2}.$ Do đó

$$\begin{split} &MA^2 - MB^2 + MC^2 - MD^2 \\ &= \left(\overrightarrow{MO} + \overrightarrow{OA}\right)^2 - \left(\overrightarrow{MO} + \overrightarrow{OA}\right)^2 + \left(\overrightarrow{MO} + \overrightarrow{OC}\right)^2 - \left(\overrightarrow{MO} + \overrightarrow{OD}\right)^2 \\ &= 2\overrightarrow{MO}\left(\overrightarrow{OA} - \overrightarrow{OB} + \overrightarrow{OC} - \overrightarrow{OD}\right) + OA^2 - OB^2 + OC^2 - OD^2 \\ &= 2\overrightarrow{MO}\left(\overrightarrow{BA} + \overrightarrow{DC}\right) + \frac{3a^2}{4} - \frac{a^2}{4} + \frac{3a^2}{4} - \frac{a^2}{4} \\ &= a^2. \end{split}$$

Vây k = 1.

Chọn đáp án (A)

CÂU 50. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo AC và BD, M là điểm tuỳ ý. Biết rằng $\overline{MA} \cdot \overline{MC} = MO^2 + kBD^2$. Khẳng định nào sau đây đúng?

$$k = -\frac{1}{2}$$
.

$$k = -\frac{1}{4}$$
.

P Lời giải.

Do O là trung điểm của AC nên $\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MO} \Rightarrow \left(\overrightarrow{MA} + \overrightarrow{MC}\right)^2 = \left(2\overrightarrow{MO}\right)^2$

$$\Rightarrow MA^2 + MC^2 + 2\overrightarrow{MA} \cdot \overrightarrow{MC} = 4MO^2. \tag{1}$$

Lai có
$$\overrightarrow{MC} - \overrightarrow{MA} = \overrightarrow{AC} \Rightarrow \left(\overrightarrow{MC} - \overrightarrow{MA}\right)^2 = \left(\overrightarrow{AC}\right)^2$$

$$\Rightarrow MA^2 + MC^2 - 2\overrightarrow{MA} \cdot \overrightarrow{MC} = AC^2. \tag{2}$$

Từ (1) và (2), trừ vế theo vế ta được:

$$4\overrightarrow{MA} \cdot \overrightarrow{MC} = 4MO^2 - AC^2 \Rightarrow \overrightarrow{MA} \cdot \overrightarrow{MC} = MO^2 - \frac{1}{4}BD^2 \text{ (do } AC^2 = BD^2 \text{)}.$$

 $V_{\text{ay }} k = -\frac{1}{4}.$

Chọn đáp án (C)

CÂU 51. Cho tam giác ABC, gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Đẳng thức nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{2}BC^2$$

$$\overrightarrow{\mathbf{B}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = -\frac{1}{4}BC^2.$$

$$\overrightarrow{\textbf{A}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{2}BC^2. \qquad \ \overrightarrow{\textbf{B}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = -\frac{1}{4}BC^2. \qquad \ \overrightarrow{\textbf{C}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{4}BC^2. \qquad \ \overrightarrow{\textbf{D}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{5}BC^2.$$

$$\overrightarrow{\mathbf{D}} \ \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{5}BC^2$$

🗩 Lời giải.

M là trung điểm của BC, ta có $\begin{cases} \overrightarrow{MH} = \frac{1}{2}(\overrightarrow{BH} + \overrightarrow{CH}) \\ \overrightarrow{MA} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{CA}) \end{cases}$

$$\Rightarrow \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{4} (\overrightarrow{BA} \cdot \overrightarrow{BH} + \overrightarrow{CA} \cdot \overrightarrow{BH} + \overrightarrow{BA} \cdot \overrightarrow{CH} + \overrightarrow{CA} \cdot \overrightarrow{CH})$$

Do H là trực tâm nên lại có

$$\overrightarrow{BA} \cdot \overrightarrow{BH} = \overrightarrow{BA} \cdot \overrightarrow{BC}, \ \overrightarrow{CA} \cdot \overrightarrow{CH} = \overrightarrow{CA} \cdot \overrightarrow{CB},$$

suy ra

$$\overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{4} (\overrightarrow{BA} \cdot \overrightarrow{BC} + \overrightarrow{BA} \cdot \overrightarrow{CH} + \overrightarrow{CB} \cdot \overrightarrow{CA} + \overrightarrow{BH} \cdot \overrightarrow{CA})$$

$$= \frac{1}{4} (\overrightarrow{BA} \cdot \overrightarrow{BH} + \overrightarrow{CA} \cdot \overrightarrow{CH})$$

$$= \frac{1}{4} (\overrightarrow{BA} \cdot \overrightarrow{BC} - \overrightarrow{CA} \cdot \overrightarrow{BC})$$

$$= \frac{1}{4}\overrightarrow{BC}(\overrightarrow{BA} - \overrightarrow{CA})$$
$$= \frac{1}{4}BC^{2}.$$

Chọn đáp án (C)

 CAU 52. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều ABC cho trước. Biết rằng $MA^2 + 2\overrightarrow{MB} \cdot \overrightarrow{MC} = kR^2$. Khẳng định nào sau đây đúng?

$$(\mathbf{A}) k = 2.$$

$$(\mathbf{B}) k = 3.$$

$$(c) k = 4.$$

$$D) k = 6.$$

🗩 Lời giải.

Ta có $\triangle ABC$ đều nên $\widehat{BOC} = 2\widehat{BAC} = 120^{\circ}, \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$. Do đó

$$\begin{split} MA^2 + 2\overrightarrow{MB} \cdot \overrightarrow{MC} \\ &= \left(\overrightarrow{MO} + \overrightarrow{OA} \right)^2 + 2 \left(\overrightarrow{MO} + \overrightarrow{OB} \right) \left(\overrightarrow{MO} + \overrightarrow{OC} \right) \\ &= 3MO^2 + OA^2 + 2\overrightarrow{OB} \cdot \overrightarrow{OC} + 2\overrightarrow{MO} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right) \\ &= 4R^2 + 2R^2 \cdot \cos 120^\circ = 3R^2. \end{split}$$

Vậy k = 3.

Chọn đáp án (B)

CÂU 53. Cho \vec{a} , \vec{b} có $(\vec{a} + 2\vec{b})$ vuông góc với véc-tơ $(5\vec{a} - 4\vec{b})$ và $|\vec{a}| = |\vec{b}|$. Khi đó

$$(\mathbf{A})\cos\left(\vec{a},\vec{b}\right) = \frac{\sqrt{2}}{2}.$$

$$(\mathbf{D}) \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{1}{2}.$$

Dèi giải.

Theo giả thiết, ta có

$$\left\{ \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \left(5\overrightarrow{a} - 4\overrightarrow{b} \right) = 0 \\ \Leftrightarrow \left\{ 5 \left| \overrightarrow{a} \right|^2 - 8 \left| \overrightarrow{b} \right|^2 + 6\overrightarrow{a} \cdot \overrightarrow{b} = 0 \\ \left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \right. \\ \Leftrightarrow \left\{ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left| \overrightarrow{a} \right|^2 \right.$$

Từ đó

$$\cos\left(\overrightarrow{a},\overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\frac{1}{2} |\overrightarrow{a}|^2}{|\overrightarrow{a}| \cdot |\overrightarrow{a}|} = \frac{1}{2}.$$

Chọn đáp án (D)

CÂU 54. Cho tam giác ABC. Tập hợp điểm M thỏa mãn $\overline{MA} \cdot \overline{BC} = 0$ là

(A) Đường trung trực đoạn BC.

- (**B**) Đường tròn có tâm A.
- (**c**) Đường thẳng đi qua A và vuông góc với BC.
- (**D**) Đường thẳng đi qua A song song với BC.

🗩 Lời giải.

Ta có $\overrightarrow{MA} \cdot \overrightarrow{BC} = 0$, nên $MA \perp BC$. Vậy tập hợp điểm M là đường thẳng đi qua A và vuông góc với BC. Chọn đáp án (C)

CÂU 55. Cho đoạn thẳng AB. Tập hợp điểm M thỏa mãn $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ là

(A) Đường trung trực đoạn AB.

- (B) Đường tròn.
- (\mathbf{c}) Đường thẳng đi qua A và vuông góc với AB.
- \bigcirc Đường thẳng đi qua B và vuông góc với AB.

🗩 Lời giải.

Ta có $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$, nên $MA \perp MB$, hay M nằm trên đường tròn đường kính AB. Vậy tập hợp M là đường tròn. Chọn đáp án (B)

CÂU 56. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overrightarrow{MA} - \overrightarrow{MB})(2\overrightarrow{MB} - \overrightarrow{MC}) = 0$ là

(A) Đường thẳng vuông góc với AB.

 (\mathbf{B}) Đường thẳng vuông góc với AC.

 (\mathbf{C}) Đường thẳng vuông góc với BC.

(D) Đường tròn.

Dèi giải.

Gọi I là điểm thoả mãn

$$2\overrightarrow{IB} - \overrightarrow{IC} = \overrightarrow{0}$$
,

ta có

$$(\overrightarrow{MA} - \overrightarrow{MB})(2\overrightarrow{MB} - \overrightarrow{MC}) = 0 \Leftrightarrow \overrightarrow{BA}.\overrightarrow{MI} = 0.$$

Suy ra tập hợp điểm M là đường thẳng đi qua I và vuông góc với AB.

Chọn đáp án (A)

CÂU 57. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overrightarrow{MA} + 2\overrightarrow{MB})$ $(\overrightarrow{MB} + 2\overrightarrow{MC}) = 0$ là

lack Đường thẳng vuông góc với AB.

B Đoạn thẳng.

 \bigcirc Đường thẳng song song với AB.

D Đường tròn.

Dèi giải.

Gọi D và E là các điểm thoả mãn:

$$\overrightarrow{DA} + 2\overrightarrow{DB} = \overrightarrow{0}, \ \overrightarrow{EB} + 2\overrightarrow{EC} = \overrightarrow{0}.$$

Ta có

$$(\overrightarrow{MA} + 2\overrightarrow{MB})(\overrightarrow{MB} + 2\overrightarrow{MC}) = 0 \Leftrightarrow \overrightarrow{MD} \cdot \overrightarrow{ME} = 0.$$

Tập hợp điểm M là đường tròn đường kính DE.

Chọn đáp án D

CÂU 58. Cho tam giác ABC. Tập hợp các điểm M thỏa $2MA^2 + \overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MA} \cdot \overrightarrow{MC}$ là

A Đường thẳng.

lacksquare Đường tròn đường kính BC.

 \bigcirc Đường tròn đi qua A.

 \bigcirc Đường tròn đi qua B.

Lời giải.

Ta có:

$$2MA^2 + \overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{MA}.\overrightarrow{MC},$$

hay

$$\Leftrightarrow \overrightarrow{MA} \left(2\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC} \right) = 0. \tag{*}$$

Gọi J là điểm xác định bởi

$$2\overrightarrow{JA} + \overrightarrow{JB} - \overrightarrow{JC} = \overrightarrow{0}.$$

Ta có

$$(*) \Leftrightarrow 2\overrightarrow{MA} \cdot \overrightarrow{MJ} = 0 \Leftrightarrow \overrightarrow{MA} \perp \overrightarrow{MJ}.$$

Tập hợp điểm M là đường tròn đường kính AJ.

Chọn đáp án (C)

 $\hat{\textbf{CAU}}$ 59. Cho hình vuông ABCD cạnh a. TÌm tập hợp các điểm M thỏa mãn

$$\left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\right)\left(\overrightarrow{MC} - \overrightarrow{MB}\right) = 3a^2$$

lack A Đường thẳng vuông góc với BC.

lacksquare Đường thẳng song song với BC.

 \bigcirc Đường tròn đường kính AB.

lackbox Đường tròn đường kính AC.

Dèi giải.

Gọi G là trọng tâm tam giác ABC, ta có:

$$(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC})(\overrightarrow{MC} - \overrightarrow{MB}) = 3a^{2}$$

$$\Leftrightarrow 3\overrightarrow{MG}.\overrightarrow{BC} = 3a^{2} \Leftrightarrow \overrightarrow{MG}.\overrightarrow{BC} = a^{2}$$

Gọi M', G' lần lượt là hình chiếu của M, G lên đường thẳng BC. Suy ra

$$\overrightarrow{M'G'} \cdot \overrightarrow{BC} = BC^2 \Leftrightarrow M'G' = BC.$$

Do G cố định nên G' cố định, suy ra M' cố định.

Vậy tập hợp điểm M là đường thẳng đi qua M' và vuông góc với BC.

Chọn đáp án (A)

CÂU 60. Cho tam giác ABC. Giá trị lớn nhất của biểu thức $P = 2\cos A + 6\cos B + 3\cos C$ bằng (A) 11. (B) 10. (C) 7. (D) 6.

Lời giải.

Áp dụng bất đẳng thức

$$xy\cos A + yz\cos B + zx\cos C \le \frac{x^2 + y^2 + z^2}{2}$$

với x = 1, y = 2, z = 3, ta có $P \le 7$.

Chọn đáp án C

-----Mục lục chính

Bài 3.	Các khái niệm mở đâu	1
A	Tóm tắt lí thuyết	1
B	Các dạng toán	2
	Dạng 1.Xác định một vectơ, độ dài vectơ	2
	Dạng 2.Hai vectơ cùng phương, cùng hướng và bằng nhau	2
	Câu hỏi trắc nghiệm	3
Bài 4.	Tổng và hiệu của hai véc-tơ	5
A	Các dạng toán	5
	Dạng 1.Tính tổng, hiệu hai véc-tơ	5
	Dạng 2.Xác định vị trí của một điểm từ đẳng thức véc-tơ	
	Dạng 3. Tính độ dài véc-tơ	
	Dạng 4.Ứng dụng của véc-tơ trong vật lý	
B	Câu hỏi trắc nghiệm	6
Bài 5.	Tích của một vectơ với một số	9
A	Tóm tắt lí thuyết	9
B	Các dạng toán	9
	Dạng 1.Xác định vectơ tích, tính độ dài vectơ	9
	Dạng 2.Chứng minh đẳng thức vectơ, thu gọn biểu thức	
	Dạng 3.Xác định điểm thỏa mãn đẳng thức vectơ	
	Dạng 4.Biểu diễn vectơ theo hai vectơ không cùng phương	
D):6	Dạng 5. Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trùng nhau	
Bài 6.	Tích vô hướng của hai véc-tơ	27
A	Tóm tắt lý thuyết	
B	Các dạng toán	
	Dạng 1. Tính tích vô hướng của hai véc-tơ và xác định góc	
	 Dạng 2.Chứng minh đẳng thức tích vô hướng hay độ dài Dạng 3.Điều kiện vuông góc 	
	► Dạng 4.Tập hợp điểm và chứng minh bất đẳng thức	
. ? .		
L <mark>ỜI GIẢI CHI TI</mark> ÊT		36
Bài 1.	Các khái niệm mở đầu	36
A	Tóm tắt lí thuyết	36
B	Các dạng toán	37
	Dạng 1.Xác định một vectơ, độ dài vectơ	37
_	Dạng 2.Hai vectơ cùng phương, cùng hướng và bằng nhau	38
	Câu hỏi trắc nghiệm	40
Bài 2.	Tổng và hiệu của hai véc-tơ	44
A	Các dạng toán	44
	Dạng 1.Tính tổng, hiệu hai véc-tơ	44
	Dạng 2.Xác định vị trí của một điểm từ đẳng thức véc-tơ	
	► Dạng 3.Tính độ dài véc-tơ	
	Dạng 4.Ứng dụng của véc-tơ trong vật lý	
B	Câu hỏi trắc nghiệm	49

Bài 3.	Tích của một vectơ với một số	56
A	Tóm tắt lí thuyết	57
B	Các dạng toán	57
	Dạng 1.Xác định vectơ tích, tính độ dài vecto	57
	Dạng 2.Chứng minh đẳng thức vectơ, thu gọn biểu thức	66
	Dạng 3.Xác định điểm thỏa mãn đẳng thức vectơ	84
	Dạng 4.Biểu diễn vectơ theo hai vectơ không cùng phương	94
	Dạng 5.Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trù	nng nhau 104
Bài 4.	Tích vô hướng của hai véc-tơ	114
A	Tóm tắt lý thuyết	114
B	Các dạng toán	115
	Dạng 1.Tính tích vô hướng của hai véc-tơ và xác định góc	115
	Dạng 2.Chứng minh đẳng thức tích vô hướng hay độ dài	121
	Dạng 3.Điều kiện vuông góc	125
	Dạng 4.Tập hợp điểm và chứng minh bất đẳng thức	126

