Flex of Squat

Een praktische uitdaging ...

Flex/Punch Detector

• In een eerste fase gaan we proberen om een flex/punch detector te maken

Arduino Nano 33 BLE Sense

- We gebruiken hiervoor een Arduino
 Nano 33 BLE Sense bordje
- Krachtige processor, de nRF52840
 van Nordic Semiconductors, een 32 bits ARM® Cortex®-M4 CPU die
 draait op 64 MHz.
- 1 MB aan flash
- 256KB aan RAM geheugen

Hoe gaan we een punch meten?

- 9-axis Inertial Sensor
 - Een Inertial Measurement Unit (IMU) wordt gedefinieerd als een 9-assige sensor die oriëntatie, snelheid en zwaartekracht meet door accelerometer, gyroscoop en magnetometer in één te combineren.
 - Accelerometer: meten van versnelling van het device
 - Gyroscoop: oriëntatie en hoeksnelheid van een object meten
 - Magnetometer: een kompas

Niet te veel zorgen over maken. Het binnen lezen van deze data is a piece-of-cake

Edge Impulse

- Edge Impulse is het toonaangevende ontwikkelingsplatform voor machine learning op edge-apparaten, gratis voor ontwikkelaars en vertrouwd door ondernemingen.
- Edge Devices
 - Denk aan microcontrollers,
 ESPs, Arduino's, ...

Create a new project

Enter the name for your new project:

flex-squat-detector

Choose your project type:

- Developer
 - 20 min job limit, 4GB or 4 hours of data, limited collaboration.
- Enterprise
 No job or data size limits, higher performance, custom blocks. <u>Learn more</u>

Create new project

X

Edge Impulse Account

- Start met het maken van een account voor Edge Impulse @ https://www.edgeimpulse.com/
- Eens ingelogd kan je direct een nieuw project maken
 - Geef het nieuw project bv. de naam flex-squat-detector

Flex en Squat Detector

- Vervolgens dien je het type data aan te geven dat je zal verwerken.
- In ons geval is dit gewoon Accelerometer Data

You're ready to add real intelligence to your edge devices. Let's set up your project. What type of data are you dealing with?

Accelerometer data

Analyze movement of your device in real-time to predict machine failure, detect human gestures, or monitor rotating machines.

Data vergaren

- Dit kunnen we aan de hand van Edge Impulse zelf en hun data forwarder tools.
- Ze ondersteunen een hele boel aan edge devices out of the box
- Voor elk bordje voorzien we dan ook tutorials.
- De nodige tools voor de Nano 33 BLE Sense zijn reeds voor jullie voorzien. Klik dus gerust onderaan rechts op Let's get started!.

Flashen van de data forwarder

- Open een linux terminal
- Connecteer de Nano 33 BLE Sense via USB
- Druk 2x kort op de reset knop om het device in bootloader mode te plaatsen
 - Oranje LED gaat traag aan/uit
- Voer onderstaande commands uit

```
cd edge-impulse-data-forwarder
./flash_linux.sh
```

Data forwarder flashed

```
: nRF52840-0IAA
Device
        : Arduino Bootloader (SAM-BA extended) 2.0 [Arduino:IKXYZ]
Version
Address
          : 256
Pages
Page Size : 4096 bytes
Total Size : 1024KB
Planes
Lock Regions: 0
Locked
            : false
Security
Erase flash
Done in 0.000 seconds
Write 352560 bytes to flash (87 pages)
[======] 100% (87/87 pages)
Done in 13.575 seconds
Flashed your Arduino Nano 33 BLE development board.
To set up your development with Edge Impulse, run 'edge-impulse-daemon'
To run your impulse on your development board, run 'edge-impulse-run-impulse'
pi@raspberrypi:~/edge-impulse-data-forwarder $
```

Aanmelden via de CLI

- Nu dienen we aan te melden op Edge Impulse maar wel via de CLI
- Voer hiervoor onderstaande commando uit en volg de instructies

edge-impulse-daemon

Klaar om data te capteren

```
pi@raspberrypi:~/edge-impulse-data-forwarder $ edge-impulse-daemon
Edge Impulse serial daemon v1.17.1
  What is your user name or e-mail address (edgeimpulse.com)? nico.dewitte@vives.be
  What is your password? [hidden]
Endpoints:
    Websocket: wss://remote-mgmt.edgeimpulse.com
              https://studio.edgeimpulse.com
    Ingestion: https://ingestion.edgeimpulse.com
[SER] Connecting to /dev/ttyACM0
[SER] Serial is connected, trying to read config...
Failed to parse snapshot line [
[SER] Retrieved configuration
[SER] Device is running AT command version 1.7.0
 To which project do you want to connect this device? Nico / flex-squat-detector
Setting upload host in device... OK
Configuring remote management settings... OK
Configuring API key in device... OK
Configuring HMAC key in device... OK
Failed to parse snapshot line [
Failed to parse snapshot line [
[SER] Device is not connected to remote management API, will use daemon
     Connecting to wss://remote-mgmt.edgeimpulse.com
[WS ] Connected to wss://remote-mgmt.edgeimpulse.com
 What name do you want to give this device? nano-33
[WS ] Device "nano-33" is now connected to project "flex-squat-detector"
     Go to https://studio.edgeimpulse.com/studio/186819/acquisition/training to build your machine learning model!
```

Data Capteren

- Ga nu naar de website en klik links op Data acquisition
- We gaan nu 3 keer data opnemen
 - 1x een 10-tal punches
 - 1x een 10-tal flexes
 - 1x een stil liggende sensor

Data Capteren - Punches

Data Capteren - Punches

- Probeer een korte punch te geven en terug te keren naar een rust toestand.
- Je zou dan een 10 a 12 punches moeten kunnen geven
- Indien je data niet gelijkaardig is met onderstaande resultaat kan je gerust opnieuw samplen (verwijder de slechte data sets)

Data Capteren - Flex

Doe nu hetzelfde voor flexes

Data Capteren - Stil

Laat de sensor nu gewoon liggen

Opsplitsen Data Samples Punches

- Nu hebben we telkens een 10-tal bewegingen gemaakt in 1 grote datastroom.
- Die dienen we op te splitsen in aparte samples
- Klik voor de reeks punch op de drie bolletjes en kies voor Split sample
 - Afhankelijk van de snelheid waarmee je hebt gepunched kan het zijn dat je nog een beetje moet spelen met de Segment length
 - Klik op Split als het ok is

Cancel

Split

Shift samples ${ \mathfrak{D} }$

Opsplitsen Data Samples Flex

- Doe hetzelfde voor de flexes
- Indien je merkt dat de flexes niet binnen hetzelfde window passen, hertrain deze dan misschien best.
- Indien nodig kan je de segmenten ook verschuiven of manueel bijplaatsen.
- Zorg wel dat je dezelfde lengte in tijd hebben als van je punches.

Split sample 'flex.3p748ngh'

Cancel Shift samples ② Split

Opsplitsen Data Samples Stil

- Nu nog eens hetzelfde voor geen beweging.
- Hier dien je zelf wat segmenten toe te voegen

Split sample 'stil.3p718u1s'

Cancel Shift samples ③ Split

Training en Test sets

- Merk op dat er warning staat bij TRAIN / TEST SPLIT
- Om de training van het toekomstige neurale netwerk te valideren, moet de dataset worden opgesplitst in een deel om te trainen en een deel om het resulterende netwerk te testen.
- In plaats van dit handmatig te doen, kunnen we Edge Impulse dit voor ons laten doen.
- Ga hiervoor naar Dashboard scroll naar beneden en klik op Perform train/test split
 - Dit kan niet ongedaan gemaakt worden.

Heavy Lifting - Een model maken

- Kies in het menu voor Impulse design
- Kies de window size voor de input hetzelfde als de lengte van je samples

Spectral Analysis

ŵ

Name

Spectral features

Input axes (9)

- accX
- accY
- accZ
- gyrX
- 🗸 gyrY
- gyrZ
- ✓ magX
- ✓ magY
- 🗸 magZ

Processing Block

- Vervolgens gaan we een processing block toevoegen
 - Spectral Analysis
 - Deze block gaat een frequentieanalyse uitvoeren op de tijds-data
 - We zouden de data ook ruw kunnen verwerken maar betere resultaten worden hier bekomen door eerst deze processing te doen

Learning Block

- Het echte werk wordt dan gedaan door een Learning block toe te voegen die ons neuraal netwerk zal modeleren.
 - In ons geval gaan we voor
 Classification
 - Leert patronen uit data en kan deze toepassen op nieuwe data.
 - Geweldig voor het categoriseren van beweging of het herkennen van audio.
- Eens je klaar bent kies je voor Save
 Impulse

• flex punch stil

Processen van de input data

- Kies links in het menu Spectral Features en klik op Save Parameters
 - Selecteer Calculate feature importance
 - Nu kan je Generate Features selecteren, wat de processing van de data in gang zal zetten.
 - Dit kan even duren
 - Het resultaat zou "geclusterde" data moeten opleveren

Aanpassen/Trainen van het model

- Kies links in het menu voor Classifier
- In principe kan je dit model behouden zoals het is en kan je het gewoon trainen
 - Klik op Start Training

PEAK RAM USAGE

1.8K

FLASH USAGE

16.7K

INFERENCING TIME

1 ms.

Test Data Set

- Je kan je model nu ook nog eens testen met ongeziene data
- Dit kan je via het item Model testing links in het menu.

Model testing results

% ACCURACY 100.00%

	FLEX	PUNCH	STIL	UNCERTAIN
FLEX	100%	0%	0%	0%
PUNCH	0%	100%	0%	0%
STIL	0%	0%	100%	0%
F1 SCORE	1.00	1.00	1.00	

Deployen op het Edge Device

- Als laatste kunnen we ons model nu exporteren zodat we het kunnen integreren in onze code
- Kies links in het menu voor Deployment
 - Kies vervolgens voor de Arduino Library
 - En klik helemaal onderaan op Build
- Je zou nu een zip-file moeten krijgen.
 - o Download deze in de map workshop-ai-essentials-nano/flex-squat

Builden van het demo project

- Open Arduino IDE
- Importeer de zip-file als library via Sketch => Include Library => Add .ZIP Library
- Navigeer vervolgens naar File => Examples => flex-squatdetector_inferencing
 - Kies nano_33_ble_sense => nano_33_ble_sense_fusion
- Zorg er voor dat je het Arduino Nano 33 BLE Sense board hebt geselecteerd.
- Klik op Upload
- Relax even

What is Next?

