Decision Tree

Podstawowa terminologia:

Root Node – reprezentuje całą populację. Jest ona następnie dzielona na dwa lub więcej homogenicznych podzbiorów.

Splitting – proces rozdziału *node* na dwa lub więcej *sub-nodes*.

Kiedy *sub-node* rozdziela się na kolejne *sub-nodes* jest nazywany **Decision Node**

Nodes które się nie rozdzielają to Terminal Node lub Leaf

Usuwanie *sub-nodes* nosi nazwę **Pruning** (przeciwne działanie *Splitting*)

Wydzielona część całego drzewa – Branch

Node, który jest dzielony na *sub-nodes* to **parent node** a *subnode* to **childs** of *parent node*.

Jest to supervised learning algorytmem, który może być wykorzystany zarówno do regresji jak i klasyfikacji. Może wykorzystywać zarówno dane ciągłe jak i atrybutowe.

Note: A is parent node of B and C.

Dopasowanie drzewa do losowych wartości – splitting jest przypisany do jednej ośi. W rezultacie w przestrzeni wielowymiarowej będą tworzone p-dimensional "hyperblock"

Classification Tree

Zalety

Intuicyjna metoda, łatwa do wytłumaczenia. Odzwierciedla dobrze sposób podejmowania decyzji przez człowieka. Może być przedstawiona graficznie.

Wady

Brak dokładności predykcyjnej (małe zmiany w danych mogą prowadzić do dużych zmian w końcowym drzewie, podział na dwie części w różnych proporcjach da różne wyniki).

Rozwiązaniem jest agregacja wielu decision trees przy użyciu takich metod jak: bagging, random forest, boosting dokładność predykcyjna może być znacznie poprawiona)

WIZUALIZACJA

www.webgraphviz.com

```
digraph G {
    a -> b -> c;
    b -> d;
    a [shape=polygon, sides=5, peripheries=3, color=lightblue, style=filled];
    c [shape=polygon, sides=4, skew=.4, label="hello world"]
    d [shape=invtriangle];
    e [shape=polygon, sides=4, distortion=.7];
}
```


WebGraphviz is Graphviz in the Browser

Enter your graphviz data into the Text Area:

(Your Graphviz data is private and never harvested)

Generate Graph!

Bagging lub bootstrap aggregation

Jest techniką mającą na celu redukcję wariancji predykcji. Osiąga się to przez łączenie wielu klasyfikacji na podzbiorach tego samego zbioru.

$$\hat{f}_{bag}(x)=rac{1}{B}\sum_{b=1}^{B}\hat{f}_{b}(x)$$
 $\hat{f}_{bag}(x)$ - uśredniona wartość predykcji

- 1. Rozbijamy zbiór danych na szereg podzbiorów (nawet setki lub tysiące drzew)
- 2. Budujemy klasyfikatory (implementacja algorytmu) dla każdego podzbioru (models i predictions)
- 3. Wyznaczamy średnią wartość ze zbioru predykcji.

Random forest

Wszechstronny, łatwy do użycia algorytm ML który tworzy, nawet bez optymalizacji hiper-parametrów bardzo dobre modele. Jest jednym z najczęściej używanych algorytmów, ze względu na jego prostotę oraz dlatego, że może być używany zarówno do klasyfikacji i regresji.

Random forest jest supervised algorytmem – tworzy "forest" składający się z wielu Decision Trees i łączy je razem aby otrzymać lepsze i stabilniejsze wyniki predykcji.

Random Forest wprowadza (oprócz redukcji dimensions, uwzględniania missing values, outliers) istotne udoskanelenie które decorraletes trees.

Podobnie jak w bagging budowanych jest wiele drzew decyzyjnych, ale kiedy są one budowane wprowadza się w ten proces randomizację na 2 etapach (losowego wybierania punktów i wybierania losowo części features).

Random forest z dwoma drzewami

Hiperparametry:

n_estimators

Liczba drzew budowanych prze algorytm, zanim nastąpi uśrednianie. Generalnie większa liczba drzew zwiększa stabilność i wydajność modelu.

max_features

Maksymalna liczba features po której następuje rozdzielenie

min_sample_leaf

Minimalną liczbę of leafs, wymaganą do rozdzielenia.

random_state

Zapewnia powtarzalność modelu

samples - liczba elementów w node

value – liczebność klas

gini - gini impurity of the node (jak bardzo klasy są zmieszane)