SM2 椭圆曲线公钥密码算法 第 2 部分: 数字签名算法

Public key cryptographic algorithm SM2 based on elliptic curves--

Part 2: Digital signature algorithm

目 次

1	术语和定义	. 1
	符号和缩略语	
3	数字签名算法	. 2
	3.1 综述	
	3.2 椭圆曲线系统参数	. 2
	3.3 用户密钥对	. 2
	3.4 辅助函数	
	3.5 用户其它信息	. 2
4	数字签名的生成算法及流程	. 2
	4.1 数字签名的生成算法	. 2
	4.2 数字签名生成算法流程	. 3
5	数字签名的验证算法及流程	. 4
	5.1 数字签名的验证算法	. 4
	5.2 数字签名验证算法流程	. 6
陈	,录 A 数字签名与验证示例	
	A.1 综述	
	A. 2 F_p 上的椭圆曲线数字签名	. 7
	A. 3 $F_{,m}$ 上的椭圆曲线数字签名	. 8
	γm ····································	

SM2 椭圆曲线公钥密码算法 第 2 部分: 数字签名算法

1 术语和定义

下列术语和定义适用于本部分。

1.1

消息 message

任意有限长度的比特串。

1. 2

签名消息 signed message

由消息以及该消息的签名部分所组成的一组数据项。

1 3

签名密钥 signature key

在数字签名生成过程中由签名者专用的秘密数据项,即签名者的私钥。

1 4

签名生成过程 signature generation process

输入消息、签名密钥和椭圆曲线系统参数,并输出数字签名的过程。

1.5

可辨别标识 distinguishing identifier

可以无歧义辨别某一实体身份的信息。

2 符号和缩略语

下列符号和缩略语适用于本文件。

A, B 使用公钥密码系统的两个用户。

 d_A 用户A的私钥。

 $E(F_a)$ F_a 上椭圆曲线 E 的所有有理点(包括无穷远点 O)组成的集合。

e 密码杂凑算法作用于消息 *M* 的输出值。 e' 密码杂凑算法作用于消息 *M*'的输出值。

 F_a 包含q个元素的有限域。

G 椭圆曲线的一个基点,其阶为素数。

 $H_{\nu}()$ 消息摘要长度为 ν 比特的密码杂凑算法。

 ID_A 用户A的可辨别标识。

M特签名消息。M'特验证消息。

 $\operatorname{mod} n$ 模 n 运算。例如,23 $\operatorname{mod} 7=2$ 。 n 基点 G 的阶(n 是# $E(F_a)$ 的素因子)。

O 椭圆曲线上的一个特殊点, 称为无穷远点或零点, 是椭圆曲线加法群的单位元。

 P_A 用户 A 的公钥。

 q 有限域 F_q 中元素的数目。

 a,b F_q 中的元素,它们定义 F_q 上的一条椭圆曲线 E。

 $x \parallel y$ x = y 的拼接,其中 x = x ,y 可以是比特串或字节串。

 Z_A 关于用户 A 的可辨别标识、部分椭圆曲线系统参数和用户 A 公钥的杂凑值。

 (r,s) 发送的签名。

 (r',s') 收到的签名。

[k]P 椭圆曲线上点P的 k 倍点,即,[k] $P = \underbrace{P + P + ... + P}_{k \uparrow}$,k 是正整数。

[x, y] 大于或等于 x 且小于或等于 y 的整数的集合。

3 数字签名算法

3.1 综述

数字签名算法由一个签名者对数据产生数字签名,并由一个验证者验证签名的可靠性。每个签名者有一个公钥和一个私钥,其中私钥用于产生签名,验证者用签名者的公钥验证签名。在签名的生成过程之前,要用密码杂凑算法对 \overline{M} (包含 Z_4 和待签消息M)进行压缩;在验证过程之前,要用密码杂凑算法对 \overline{M} (包含 Z_4 和待验证消息M)进行压缩。

3.2 椭圆曲线系统参数

椭圆曲线系统参数包括有限域 F_q 的规模 q (当 $q=2^m$ 时,还包括元素表示法的标识和约化多项式); 定义椭圆曲线 $E(F_q)$ 的方程的两个元素 a、 $b \in F_q$; $E(F_q)$ 上的基点 $G=(x_G,y_G)$ ($G \neq O$),其中 x_G 和 y_G 是 F_q 中的两个元素;G 的阶 n 及其它可选项(如 n 的余因子 h等)。

椭圆曲线系统参数及其验证应符合 SM2 椭圆曲线公钥密码算法第1部分第4章的规定。

3.3 用户密钥对

用户 A 的密钥对包括其私钥 d_A 和公钥 $P_A=[d_A]G=(x_A, v_A)$ 。

用户密钥对的生成算法与公钥验证算法应符合 SM2 椭圆曲线公钥密码算法第1部分第5章的规定。

3.4 辅助函数

3.4.1 概述

在本部分规定的椭圆曲线数字签名算法中,涉及到两类辅助函数:密码杂凑算法与随机数发生器。

3.4.2 密码杂凑算法

本部分规定使用国家密码管理局批准的密码杂凑算法,如 SM3 密码杂凑算法。

3.4.3 随机数发生器

本部分规定使用国家密码管理局批准的随机数发生器。

3.5 用户其它信息

作为签名者的用户 A 具有长度为 $entlen_A$ 比特的可辨别标识 ID_A ,记 $ENTL_A$ 是由整数 $entlen_A$ 转换而成的两个字节,在本部分规定的椭圆曲线数字签名算法中,签名者和验证者都需要用密码杂凑算法求得用户 A 的杂凑值 Z_A 。按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.6 和 3.2.5 给出的方法,将椭圆曲线方程 参 数 a、b、G 的 坐 标 x_G 、 y_G 和 P_A 的 坐 标 x_A 、 y_A 的 数 据 类 型 转 换 为 比 特 串, $Z_A=H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$ 。

4 数字签名的生成算法及流程

4.1 数字签名的生成算法

设待签名的消息为M,为了获取消息M的数字签名(r,s),作为签名者的用户A应实现以下运算步

骤:

- A1: 置 $\overline{M} = Z_A || M$;
- A2: 计算 $e=H_v(\overline{M})$,按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.4 和 3.2.3 给出的方法将 e 的数据类型转换为整数;
- A3: 用随机数发生器产生随机数 $k \in [1, n-1]$;
- A4: 计算椭圆曲线点 (x_1, y_1) =[k]G,按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.8 给出的方法将 x_1 的数据类型转换为整数;
- A5: 计算 $r = (e+x_1) \mod n$, 若 r = 0 或 r + k = n 则返回 A3;
- A6: 计算 $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$, 若 s = 0 则返回 A3;
- A7: 按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.2 给出的细节将 r、s 的数据类型转换为字节串,消息 M 的签名为(r,s)。
- 注:数字签名生成过程的示例参见附录 A。

4.2 数字签名生成算法流程

数字签名生成算法流程见图1。

图 1 数字签名生成算法流程

5 数字签名的验证算法及流程

5.1 数字签名的验证算法

为了检验收到的消息 M' 及其数字签名(r',s'),作为验证者的用户 B 应实现以下运算步骤:

- B1: 检验 $r' \in [1, n-1]$ 是否成立,若不成立则验证不通过;
- B2: 检验 $s' \in [1, n-1]$ 是否成立,若不成立则验证不通过;
- B3: 置 $\overline{M}'=Z_A||M';$
- B4: 计算 $e'=H_v(\overline{M}')$,按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.4 和 3.2.3 给出的方法将 e'的

数据类型转换为整数;

- B5: 按本 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.3 给出的方法将 $r' \setminus s'$ 的数据类型转换为整数,计算 $t=(r'+s') \mod n$,若 t=0,则验证不通过;
- B6: 计算椭圆曲线点 $(x'_1, y'_1) = [s']G + [t]P_A$;
- B7: 按 SM2 椭圆曲线公钥密码算法第 1 部分 3.2.8 给出的方法将 x_1 '的数据类型转换为整数,计算 $R = (e' + x_1') \mod n$,检验 R = r'是否成立,若成立则验证通过,否则验证不通过。
 - 注: 如果 Z_A 不是用户 A 所对应的杂凑值,验证自然通不过。数字签名验证过程的示例参见附录 A。

5.2 数字签名验证算法流程

数字签名验证算法流程见图2。

图 2 数字签名验证算法流程

附 录 A 数字签名与验证示例

A. 1 综述

本附录选用《SM3 密码杂凑算法》给出的密码杂凑算法,其输入是长度小于 2^{64} 的消息比特串,输出是长度为 256 比特的杂凑值,记为 H_{256} ()。

本附录中,所有用16进制表示的数,左边为高位,右边为低位。

本附录中,消息采用 GB/T1988 给出的编码。

设用户 A 的身份是: ALICE123@YAHOO.COM。用 GB/T1988 给出的编码 *ID*₄:414C 49434531 32334059 41484F4F 2E434F4D。*ENTL*₄=0090。

A. 2 F_p 上的椭圆曲线数字签名

椭圆曲线方程为: $v^2 = x^3 + ax + b$

示例 1: F_p-256

素数 p: 8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3 系数 a: 787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498 系数 b: 63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A 基点 G = (x_G, y_G), 其阶记为 n。

坐标 x_G : 421DEBD6 1B62EAB6 746434EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD43D 坐标 y_G : 0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2 阶 n: 8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7 待签名的消息 M: message digest

私钥 d_A : 128B2FA8 BD433C6C 068C8D80 3DFF7979 2A519A55 171B1B65 0C23661D 15897263 公钥 $P_A = (x_A, y_A)$:

坐标 x_A : 0AE4C779 8AA0F119 471BEE11 825BE462 02BB79E2 A5844495 E97C04FF 4DF2548A 坐标 y_A : 7C0240F8 8F1CD4E1 6352A73C 17B7F16F 07353E53 A176D684 A9FE0C6B B798E857 杂凑值 $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$ 。

Z_A: F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A

签名各步骤中的有关值:

 $\overline{M} = Z_A || M$:

F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A 6D657373 61676520 64696765 7374

密码杂凑函数值 $e=H_{256}(\overline{M}$): B524F552 CD82B8B0 28476E00 5C377FB1 9A87E6FC 682D48BB 5D42E3D9 B9EFFE76

产生随机数 k: 6CB28D99 385C175C 94F94E93 4817663F C176D925 DD72B727 260DBAAE 1FB2F96F 计算椭圆曲线点(x₁, y₁)=[k]G:

坐标 x_1 : 110FCDA5 7615705D 5E7B9324 AC4B856D 23E6D918 8B2AE477 59514657 CE25D112 坐标 y_1 : 1C65D68A 4A08601D F24B431E 0CAB4EBE 084772B3 817E8581 1A8510B2 DF7ECA1A 计算 $r=(e+x_1) \bmod n$: 40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5

5BACDB49 C4E755D1

 $(1+d_A)^{-1}$: 79BFCF30 52C80DA7 B939E0C6 914A18CB B2D96D85 55256E83 122743A7 D4F5F956 计算 $s = ((1+d_A)^{-1} \cdot (k - r \cdot d_A)) \bmod n$: 6FC6DAC3 2C5D5CF1 0C77DFB2 0F7C2EB6 67A45787 2FB09EC5 6327A67E C7DEEBE7

消息 M 的签名为 (r,s):

值 r: 40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5 5BACDB49 C4E755D1 值 s: 6FC6DAC3 2C5D5CF1 0C77DFB2 0F7C2EB6 67A45787 2FB09EC5 6327A67E C7DEEBE7 验证各步骤中的有关值:

密码杂凑算法值 $e'=H_{256}(\overline{M}')$: B524F552 CD82B8B0 28476E00 5C377FB1 9A87E6FC 682D48BB 5D42E3D9 B9EFFE76

计算 $t = (r' + s') \mod n$: 2B75F07E D7ECE7CC C1C8986B 991F441A D324D6D6 19FE06DD 63ED32E0 C997C801

计算椭圆曲线点 $(x_0', y_0') = [s']G$:

坐标 χ_0' : 7DEACE5F D121BC38 5A3C6317 249F413D 28C17291 A60DFD83 B835A453 92D22B0A 坐标 χ_0' : 2E49D5E5 279E5FA9 1E71FD8F 693A64A3 C4A94611 15A4FC9D 79F34EDC 8BDDEBD0 计算椭圆曲线点 $(\chi_0')\chi_0'$)= $[t]P_4$:

坐标 χ_{00}^{\prime} 1657FA75 BF2ADCDC 3C1F6CF0 5AB7B45E 04D3ACBE 8E4085CF A669CB25 64F17A9F 坐标 χ_{00}^{\prime} 19F0115F 21E16D2F 5C3A485F 8575A128 BBCDDF80 296A62F6 AC2EB842 DD058E50 计算椭圆曲线点 $(\chi_1^{\prime}, \chi_1^{\prime}) = [s^{\prime}]G + [t]P_{4}$:

坐标 x_1^\prime : 110FCDA5 7615705D 5E7B9324 AC4B856D 23E6D918 8B2AE477 59514657 CE25D112 坐标 y_1^\prime : 1C65D68A 4A08601D F24B431E 0CAB4EBE 084772B3 817E8581 1A8510B2 DF7ECA1A 计算 $R = (e^2 + x_1^2) \mod n$: 40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5 5BACDB49 C4E755D1

A. 3 F_{m} 上的椭圆曲线数字签名

椭圆曲线方程为: $y^2 + xy = x^3 + ax^2 + b$

示例 2: F₂m-257

基域生成多项式: $x^{257}+x^{12}+1$

系数 a: 0

系数 b: 00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B 基点 G=(x_G, y_G), 其阶记为 n。

私钥 d_A : 771EF3DB FF5F1CDC 32B9C572 93047619 1998B2BF 7CB981D7 F5B39202 645F0931 公钥 $P_A = (x_A, y_A)$:

坐标 x_A : 01 65961645 281A8626 607B917F 657D7E93 82F1EA5C D931F40F 6627F357 542653B2 坐标 y_A : 01 68652213 0D590FB8 DE635D8F CA715CC6 BF3D05BE F3F75DA5 D5434544 48166612 杂凑值 $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$ 。

Z_A: 26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5 **签名各步骤中的有关**值:

 $\overline{M} = Z_A || M$:

26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5 6D657373 61676520 64696765 7374

密码杂凑算法值 $e=H_{256}(\overline{M}$): AD673CBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12

产生随机数 k: 36CD79FC 8E24B735 7A8A7B4A 46D454C3 97703D64 98158C60 5399B341 ADA186D6 计算椭圆曲线点 $(x_1,y_1)=[k]G$:

坐标 x_1 : 00 3FD87D69 47A15F94 25B32EDD 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66 坐标 y_1 : 00 80771114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2 计算 $r = (e + x_1) \mod n$: 6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B

 $(1+d_A)^{-1}$: 73AF2954 F951A9DF F5B4C8F7 119DAA1C 230C9BAD E60568D0 5BC3F432 1E1F4260 计算 $s = ((1+d_A)^{-1} \cdot (k - r \cdot d_A)) \mod n$: 3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556

消息 M 的签名为 (r,s):

值 r: 6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B 值 s: 3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556 验证各步骤中的有关值:

密码杂凑算法值 $e'=H_{256}(\overline{M}')$: AD673CBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12

计算 $t = (r' + s') \mod n$: 1E647F8F 784891A6 51AFC342 0316F44A 042D7194 4C91910F 835086C8 2CB07194

计算椭圆曲线点 $(x_0', y_0') = [s']G$:

坐标 x_0' : 00 252CF6B6 3A044FCE 553EAA77 3E1E9264 44E0DAA1 0E4B8873 89D11552 EA6418F7 坐标 y_0' : 00 776F3C5D B3A0D312 9EAE44E0 21C28667 92E4264B E1BEEBCA 3B8159DC A382653A 计算椭圆曲线点 $(x_{00}',y_{00}')=[t]P_4$:

坐标 x_{00} : 00 07DA3F04 0EFB9C28 1BE107EC C389F56F E76A680B B5FDEE1D D554DC11 EB477C88 坐标 y_{00} : 01 7BA2845D C65945C3 D48926C7 0C953A1A F29CE2E1 9A7EE6B E0269FB4 803CA68B 计算椭圆曲线 $\triangle(x_1^*,y_1^*)=[s^*]G+[t]P_A$:

坐标 x_1^\prime : 00 3FD87D69 47A15F94 25B32EDD 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66 坐标 y_1^\prime : 00 80771114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2 计算 $R = (e^\prime + x_1^\prime) \bmod n$: 6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B

9