Влияние микротрубочек на скорость образования стрессовых гранул

Артем Вольхин

МФТИ

23 июня 2013 г.

Стрессовые гранулы

- CГ это скопления РНП в клетках
- Размер от 20 нм до 5 мкм
- Возникают при тепловом шоке,
 UV-облучении, окислительном стрессе
- Время образования 10-20 минут
- Двигаются в цитоплазме клетки
- При столкновениях сливаются в большие гранулы

Микротрубочки

- Микротрубочки это белковые внутриклеточные структуры, входящие в состав цитоскелета
- Полые цилиндры диаметром 25 нм
- Образованы димерами тубулина
- Полярны сборка на одном конце, разборка — на другом
- Перемещаются за счет элонгации

Основные факты

- СГ двигаются хаотически, 10% неподвижны, 10% двигаются направленно
- Микрофилламенты препятствуют движению больших гранул
- Наблюдается быстрое движение, не диффузия
- СГ прикрепляются к микротрубочкам и двигаются вдоль них
- Без МТ движутся медленнее и для образования больших СГ требуется больше времени

Постановка задачи

Основная задача при изучении СГ:

- Изучение числа, расположения и движения СГ
- Изучение взаимодействия со структурой микротрубочек

Цель работы:

- Построить модель движения СГ и взаимодействия с микротрубочками
- Проверить на модели теоретические результаты

Почему выбрано моделирование?

Теоретические оценки

Время между столкновениями РНП:

$$t_d \sim \frac{\eta}{K_B T C_{RNP}} \sim \frac{1}{4\pi D r C_{RNP}} \tag{1}$$

 η — вязкость среды, r и C_{RNP} — радиус и концентрация изначальных РНП частиц, K_BT — тепловая энергия, df — фрактальная размерность, равная ~ 1.8 , a — радиус микротрубочки, L — ее длина, D и D_s — коэффициенты диффузии.

Теоретические оценки

Время до столкновения СГ с микротрубочкой:

$$t_m \sim \frac{1}{4\pi D \left((a+r)^2 L \right)^{1/3} C_{RNP}}$$
 (2)

Время до столкновения с другой СГ на микротрубочке:

$$t_S \sim \frac{f_S^2}{D_S} \tag{3}$$

r и C_{RNP} — радиус и концентрация изначальных РНП частиц, соответственно, a — радиус микротрубочки, L — ее длина, D и D_s — коэффициенты диффузии, I_S — среднее расстояние между двумя частицами.

Описание модели

- Замкнутный кубический объем со СГ и микротрубочками
- Броуновское движение частиц
- Слияние СГ при столкновении
- При столкновении с микротрубочками присоединение и движение вдоль вдоль них
- Плотность сети микрофилламентов порог подвижности
- 15 настраиваемых параметров
- Инструменты для исследования зависимости модели от поднабора параметров

Частота столкновения между гранулами

Частота столкновения СГ с микротрубочками

Зависимость времени образования СГ от ее размера (слева) и зависимость времени между столкновения СГ от размера среды (справа).

Планы на будущее

- В дальнейшем планируется повышение достоверности модели (более реалистичная сеть микротрубочек, СГ с изначально разными параметрами и другое)
- Исследование и поиск новых зависимостей

Стрессовые гранулы Микротрубочки Исследование стрессовых гранул Модель **Рез**ультаты

Спасибо за внимание!