Задание 10-1. Лихо закручено

Справочные данные и параметры рассматриваемых систем: трением и сопротивлением воздуха в данном задании пренебречь, ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

1.1 «Два шарика на нити» Два небольших шарика массами m_1 и m_2 , связанные легкой нитью длиной l, вращаются с угловой скоростью ω в горизонтальной плоскости (Рис. 1). Найдите силы натяжения нитей T_1 и T_2 , действующие на каждый из шариков, соответственно. Трением и сопротивлением воздуха пренебречь.

1.2 «**Три шарика на нити**» Усложним задачу и добавим к середине нити длиной l третий небольшой шарик массой m_3 (Рис. 2). При вращении такой системы на горизонтальной плоскости оказалось, что модуль силы натяжения легкой нити у первого шарика равен T_1 , а у второго, T_2 . Найдите массу m_3 третьего шарика и соответственно, угловую скорость ω вращения системы, считая массы шариков m_1 и m_2 известными.

1.3 «Космическое вращение» Космическая станция состоит из двух отсеков массами m_1 и m_2 , соединенных длинным однородным тросом длины l. Станция вращается вокруг оси, перпендикулярной тросу, при этом модуль силы натяжения троса вблизи одного отсека равен T, а вблизи другого $T + \Delta T$ ($\Delta T \ll T$). Найдите массу соединительного троса $m_{\scriptscriptstyle \mathrm{T}}$ и угловую скорость $\omega_{\scriptscriptstyle \mathrm{KC}}$ вращения космической станции.

