Tecnología Electrónica

Trabajo Práctico N°4:

Diseño de Inductor con Núcleo para Fuentes Conmutadas

30 de junio de 2017

Notes	

Objetivos

- Aprender técnicas de diseño de inductores con núcleo.
- Verificación de la calidad del bobinado.
- Familiarización con los distintos tipos de núcleos.
- ▶ Interpretación de los datos de los fabricantes de núcleos.
- Determinación de los parámetros del núcleo. Ensayos.
- Diseño de un inductor para una fuente conmutada.

Notes			

Expresión de la inductancia

$$L = \mu_0 \cdot \mu_r \frac{N^2 \cdot S}{\ell} = \frac{N^2}{\Re} \tag{1}$$

L: Inductancia [Hy]. μ_0 : Permeabilidad del vació $4\pi 10^{-7}$ [Hym $^-1$] μ_r : Permeabilidad relativa N: Número de espiras S: Sección del núcleo [cm^2] ℓ : Longitud media del circuito magnético [cm] \mathfrak{R} : Reluctancia [Hy^{-1}]

Notes			

► Ciclo de Histéresis

► Densidad de flujo en continua

$$N \cdot \mathit{lcc} = \mathit{Bcc} \cdot S \cdot \mathfrak{R} \tag{2}$$

$$Bcc = \frac{N \cdot lcc}{S \cdot \Re} \tag{3}$$

Bcc: Densidad de flujo [gauss]
lcc: Intensidad de la corriente continua[A]

Notes			
-			

► Densidad de flujo en alterna

$$E_{ef} = 4,44 \cdot f \cdot N \cdot B_{ca} \cdot S \cdot 10^8 \tag{4}$$

$$Bca = \frac{E_{ef} \cdot 10^8}{4,44 \cdot f \cdot N \cdot S} \tag{5}$$

E_{ef}: Tensión eficaz aplicada [v]f: Frecuencia [Hz]

Bca: Densidad de flujo [gauss].

► Densidad de flujo máxima

$$Bmax = Bcc + Bca$$

Notes

(6)

Para el caso de corriente continua y alterna superpuestas se utiliza como μ_r la permeabilidad efectiva μ_e

$$\mu_{e} = \frac{\Delta B}{\Delta H_{t}} = \frac{1}{\frac{\Delta H_{h}}{\Delta B} + \frac{\Delta H_{a}}{\Delta B}} = \frac{1}{\frac{1}{\mu_{\Delta}} + \frac{\ell_{a}}{\ell_{h}}}$$
(7)

► Reemplazando en *L* nos queda:

$$L = \mu_0 \cdot \mu_r \frac{N^2 \cdot S}{\ell} = \mu_0 \cdot \frac{N^2}{\frac{\ell_m}{\mu_\Delta \cdot S_m} + \frac{\ell_a}{S_a}}$$
 (8)

Se define el término A_L como Factor de Inductancia ó inductancia nominal ó índice de inductancia.

$$A_{L} = \frac{\mu_{0}}{\frac{\ell_{m}}{\mu_{\Delta} \cdot S_{m}} + \frac{\ell_{a}}{S_{a}}} [mHy/vueltas^{2}]$$
 (9)

(10)

Notes

Inductancia

$$L = A_L \cdot N^2 \tag{11}$$

► Energía almacenada

$$E = \frac{1}{2} \cdot L \cdot I_{max}^{2}[mJoules] \tag{12}$$

L: en [mHy] I_{max}: en [A]

► Inductancia en un Toroide:

$$L = N \cdot \frac{\phi}{I} = \frac{\mu_0 N^2 h}{2\pi} ln\left(\frac{b}{a}\right) \tag{13}$$

ightharpoonup En función de A_L

$$L = A_L \cdot N^2 \tag{14}$$

$$L = A_L \cdot N^2$$

$$A_L = \frac{\mu_0 h}{2\pi} ln\left(\frac{b}{a}\right)$$
(14)

► Energía almacenada en un Toroide

$$E = \frac{1}{2} \cdot L \cdot I_{max}^2 = \frac{\mu_0 \cdot h \cdot (N \cdot I_{max})^2}{4\pi} ln\left(\frac{b}{a}\right)$$
 (16)

▶ NI en función de la Energía:

$$NI = \sqrt{\frac{4\pi \cdot E}{\mu_0 \cdot h \cdot \ln\left(\frac{b}{a}\right)}} \tag{17}$$

► A_L en función de la Energía:

$$E = \frac{1}{2} \cdot A_L \cdot (N \cdot I_{max})^2 \tag{18}$$

$$A_L = \frac{2E}{(N \cdot I)^2} \tag{19}$$

-		

Notes			

						QU	ICK RE	FEREN	CE A _L V	ALUE	FOR -	26 MA	TERIAL							
PART NO.	T25	T26	T30	T37	T38	T44	T50	T50B	T60	168	T72	T80	T80B	T94	T106	T106A	T130	T131	T150	T157
A _L VALUE	24.5	57.0	33.5	28.5	49.0	37.0	33.0	43.5	50.0	43.5	90.0	46.0	71.0	60.0	93.0	67.0	81.0	116	96.0	100
PART NO.	T175	T184	T200B	T250	T300	T300D	T400	T400D		E49	E75	E100	E137	E162	E168	E168A	E220	E305	E305A	E450
A _L VALUE	105	169	160	242	80	160	131	262		38.0	64.0	92.0	134	210	195	232	275	287	382	540

Notes			

Notes		
-		

► Pérdidas en el núcleo

$$\Delta B = \frac{E_{pk} \cdot t \cdot 10^8}{N \cdot S} \tag{20}$$

Notes			
-			

► Pérdidas en el conductor

► Resistencia del conductor

$$\mathbf{R_C} = \rho \frac{\ell_C}{A_C} \tag{21}$$

 ρ : Resistividad del conductor. ℓ_C: Longitud total del conductor
 A_C: Sección del conductor.
 Longitud del conductor

$$\ell_C = N \cdot L_M \tag{22}$$

N: Número de espiras.
L_M: Longitud media de cada espira.
▶ Potencia disipada en el conductor:

$$P_C = I_{ef}^2 \cdot R_C[Watt] \tag{23}$$

_			
_			
-			
_			

Perdida total

$$P_T = P_N + P_C[watt] (24)$$

► Elevación de temperatura

$$\Delta_T = \left[\frac{P_T}{Area}\right]^{0.833} [^{\circ}C] \tag{25}$$

Área: área total de disipación [cm²]

Tipos y formas de núcleos

MATERIAL APPLICATIONS

Typical Application	-2	-8	-14	-18	-26	-30	-34	-35	-38	-40	-45	-52
Light Dimmer Chokes					X				X	X	Χ	
60 Hz Differential-mode EMI Line Chokes					Χ				X	X	Χ	X
DC Chokes: <50kHz or low Et/N (Buck/Boost)					Χ	X	X	X	X	X	Χ	
DC Chokes: ≥50kHz or higher Et/N (Buck/Boost)		X	X	Χ		X	X	X				X
Power Factor Correction Chokes: <50kHz		Of .			X	X	X-	X		X		
Power Factor Correction Chokes: ≥50kHz	X	X	X	X		X	X	X				
Resonant Inductors: ≥50kHz	Χ		X									

140103		
-		

Tipos y formas de núcleos

Material Mix No.	Reference Permeability (μ_0)	Material Density (g/cm³)	Relative Cost	Color* Code
-2	10	5.0	2.7	Red/Clear
-8	35	6.5	5.0	Yellow/Red
-14	14	5.2	3.6	Black/Red
-18	55	6.6	3.4	Green/Red
-19	55	6.8	1.7	Red/Green
-26	<i>7</i> 5	7.0	1.0	Yellow/White
-30	22	6.0	1.4	Green/Gray
-34	33	6.2	1.5	Gray/Blue '
-35	33	6.3	1.4	Yellow/Gray
-40	60	6.9	1.0	Green/Yellow
-45	100	7.2	2.6	Black/Black
-52	75	7.0	1.2	Green/Blue

* All Micrometals color codes are protected by US Trademark law. Formal registration numbers have been issued for the -8, -18, -26 and -52 color codes by the United States Patent and Trademark office.

Notes			
-			

Desarrollo del práctico

Diseño de un inductor para fuente conmutada

Datos:

- ▶ Valor de la inductancia deseada *L*.
- Máxima corriente continua circulante I.
- ► Tensión alterna aplicada E
- Frecuencia de trabajo f.

► Tareas a realizar:

- Diseño del inductor
 - Determinación del número de vueltas del devanado.
 - Elección del material y del tipo de núcleo.
 Determinación del conductor a emplear.
- ► Comprobación del diseño.
- ► Ensayo del núcleo. Determinación de A_L.

Materiales a utilizar

- ▶ Diferentes tipos de núcleos comerciales con sus hojas de datos correspondientes.
- ► Alambres esmaltados de diferentes secciones.
- ► Medidor puente RLC.

Notes			

Diseño de un inductor para fuente conmutada

Pasos a realizar

Nota: realizar los procedimientos con al menos dos tipos de núcleos.

1. Calcular la energía a almacenar en el núcleo:

$$E = \frac{1}{2} \cdot L \cdot I_{max}^2[mJoules]$$
 (26)

L: en [mHy] I_{max}: en [A]

- 2. Ubicar este valor en el gráfico de Factor de Inductancia vs Energía: Seguir este valor hasta que intercepte la primera curva. Leer el máximo Factor de Inductancia sobre el eje Y. Este valor representa el menor tamaño del núcleo y el mayor valor de A_L, evitando la saturación del núcleo.
- 3. Determinar el número de vueltas necesarias:

$$N = 10^3 \sqrt{\frac{L}{A_L}} \tag{27}$$

- 4. Para el caso de poseer el gráfico [N · I] vs Energía: Seguir este valor hasta que intercepte la curva del núcleo a utilizar (P.E N26). Leer el valor [NI] sobre el eje Y.
- 5. Determinar el número de vueltas necesarias:

$$N = \frac{NI}{I} \tag{28}$$

-		

Diseño de un inductor para fuente conmutada

Pasos a realizar

6. Determinar la sección del conductor a utilizar. Adoptando una densidad de corriente $J = 2[A/mm^2]$.

$$S_c = \frac{I}{J} \tag{29}$$

 S_c :Sección del conductor [mm^2]

7. Verificar la sección de la ventana con el N y la S_c .

$$S_{v} \geq S_{c} \cdot N \tag{30}$$

 S_v :Sección de la ventana del núcleo [mm^2]

- 8. Realizar el bobinado con el conductor elegido.
- 9. Verificar el valor de *L* con el puente RLC.

Comprobación del diseño

Pasos a realizar

- 1. Determinar la **densidad de flujo máxima** B_{max} evitando que sea superior a la B_{sat} del núcleo.
- 2. Calcular las perdidas en el núcleo y en el bobinado. Realizar los cálculos para diferentes números de vueltas
- 3. Calcular la elevación de temperatura y contrastarla con la medición de la misma, con el inductor en funcionamiento.

Determinación del Factor de Inducción A_L

Pasos a realizar

- 1. Bobinar el núcleo con 5 vueltas.
- 2. Medir la inductancia resultante *L* con el puente RLC.
- 3. Repetir para 10 y 15 vueltas. (o las que crea conveniente)
- 4. Obtener A_L por promediación.
- 5. Probar con varios tipos de núcleos.

-		

Evaluación del Trabajo Practico

La evaluación se basará en los siguientes puntos:

- 1. Base teórica sobre inductores, materiales magnéticos y núcleos.
- 2. Interpretación de hojas de datos de núcleos comerciales.
- 3. Informe con los cálculos y las mediciones realizadas, como así también, las conclusiones correspondientes. En las conclusiones se deberá realizar teniendo en cuenta los siguientes puntos:

- ► Ventajas y desventajas de este método.
- Comparación de los valores obtenidos.

Notes			

Resumen

- ► Diseño de un inductor.
- Comprobación.
- Medición de parámetros.

Notes			