

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY

As rescanning documents *will not* correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-102900

(43)公開日 平成11年(1999)4月13日

(51)Int.Cl.⁶

識別記号

F I

H 01 L 21/3065

H 01 L 21/302

B

C 04 B 35/563

21/22

5 0 1 M

H 01 L 21/22

5 0 1

21/31

F

21/31

C 04 B 35/56

B

審査請求 未請求 請求項の数1 O L (全 5 頁)

(21)出願番号

特願平9-264561

(71)出願人 000006633

京セラ株式会社

京都府京都市伏見区竹田烏羽殿町6番地

(22)出願日

平成9年(1997)9月29日

(72)発明者 伊東 裕見子

鹿児島県国分市山下町1番4号 京セラ株式会社総合研究所内

(54)【発明の名称】 半導体製造用耐食性部材

(57)【要約】

【課題】従来から知られる耐プラズマ材は、十分な耐食性を示さず、焼結体においては、腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じ、パーティクルが発生するなどの問題がある。

【解決手段】高集積回路素子等の半導体素子を製造するための、プラズマ処理装置などの半導体製造用の装置において、 CF_4 、 SF_4 、 BCl_3 などのハロゲン系腐食ガス或いはそのプラズマに曝される、内壁部材や被処理物を支持する支持体などの治具等の部材を、相対密度が98%以上、望ましくは強度300 MPa以上の炭化硼素(B_4C)焼結体により形成する。

ATTORNEY-CLIENT PRIVILEGED COMMUNICATION

Tom,

Here is one of several data summaries from Japanese patent applications.

(54) CORROSION RESISTANT MEMBER FOR MANUFACTURING SEMICONDUCTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the manufacturing yield of semiconductors and to allow high-quality semiconductor elements to be manufactured by using a material mainly consisting of boron carbide as a material for forming members including the inner wall members of semiconductor manufacturing equipment, particularly plasma processing equipment, and tools such as support members for supporting an object to be processed.

SOLUTION: In a semiconductor manufacturing equipment such as plasma processing equipment for manufacturing semiconductor elements such as high-density circuit elements, members including inner wall members and tools such as support members for supporting an object to be processed, which are exposed to a halogen-containing corrosive gas such as CF₄, SF₆ or BC_l3, or plasma thereof, are formed of a boron carbide (B₄C) sintered body whose relative density is 90% or higher, or desirably, whose strength is 300 MPa or higher.

Etch conditions: (1) CF₄ 60sccm + Ar 60sccm
(2) SF₆ 80sccm

both 1kW rf, 10Pa, 3 hr exposure

(3) BC_l3 100sccm
1.8kW rf, 4 Pa, 3hr

試料 No.	材料	形態	相対 密度 (%)	イチジン ガス種	ガスとの反応生成物 発生圧 (10torr) : (C)		m.p.	Etch rate (Å/min)	Particles?	
					生成物	融点 (C)			パーティクル の発生	総合 評価
* 1	BN	焼結体	98.8	CF ₄ +Ar	BF ₃	-141	-127	58000	○	×
2	B ₄ C	焼結体	99.1	CF ₄ +Ar	BF ₃	-141	-127	72	○	○
9	B ₄ C	焼結体	99.1	SF ₆	BF ₃	-141	-127	56	○	○
* 4	Single Si Si	多結晶	100	CF ₄ +Ar	SiF ₄	-130	-90	260	○	△
* 5	SiO ₂	単結晶	100	CF ₄ +Ar	SiF ₄	-130	-90	650	○	△
* 6	Si ₃ N ₄	焼結体	99.9	CF ₄ +Ar	SiF ₄	-130	-90	1500	×	×
* 7	SiC	焼結体	99.7	CF ₄ +Ar	SiF ₄	-130	-90	470	△	△
* 8	Al ₂ O ₃	焼結体	99.9	CF ₄ +Ar	AlF ₃	1043	1040	63	×	×
* 9	AlN	焼結体	99.8	SF ₆	AlF ₃	1043	1040	35	×	×

*印は本発明の範囲外の試料を示す。

Table 1. Response to various etch gases

試料 No.	B ₄ C焼結体 の焼成条件 温度 (C) 零圧気	Atmo- Sphere	Additive	Rel. density	Strength	Etch gas	Etch rate	Particles?	Etch rate acceptability	
									エッチングレート (Å/min)	パーティクル の発生
10	2300	窒素	n/a	98.2	280	CF ₄ +Ar	77	○		△
11	2250	窒素	なし	99.5	480	CF ₄ +Ar	70	○		○
12	2100	窒素	なし	98.4	330	CF ₄ +Ar	84	○		○
* 13	2020	窒素	なし	97.3	250	CF ₄ +Ar	120	○		×
14	2230	Ar	C 5.0	99.1	410	CF ₄ +Ar	81	○		○
15	2200	Ar	SiCO.8	98.4	350	CF ₄ +Ar	77	○		○

*印は本発明の範囲外の試料を示す。

Table 2. Response of B₄C with various firing conditions to etch environment

Material	Form	Relative Density	Etch gas product	Reaction temp.	10 torr.	m.p.	Etch rate	Particles?
----------	------	------------------	------------------	----------------	----------	------	-----------	------------

試料 No.	材料	試料 形態	相対 密度 (%)	エッチング ガス種	ガスとの反応生成物 生成物	蒸気圧 (10 torr) (°C)	融点 (°C)	エッチングレート (Å/min)	パーティクル の発生	総合 評価
*16	BN	焼結体	98.8	BCl ₃	BCl ₃	-67	-107	38000	○	×
17	B ₄ C	焼結体	99.1	BCl ₃	BCl ₃	-67	-107	25	○	○
*18	Si	多結晶	100	BCl ₃	SiCl ₄	-34	-69	1800	○	×
*19	SiO ₂	単結晶	100	BCl ₃	SiCl ₄	-34	-69	560	○	×
*20	SiC	焼結体	99.7	BCl ₃	SiCl ₄	-34	-69	760	△	×
*21	Al ₂ O ₃	焼結体	99.9	BCl ₃	AlCl ₃	124	190	260	×	×
*22	AlN	焼結体	99.8	BCl ₃	AlCl ₃	124	190	920	×	×

*印は本発明の範囲外の試料を示す。

Table 3. Response to BCl₃ etch.

Sintering temp	Atmo- Sphere	Additive	Rel. density	Strength	Etch gas	Etch rate	Particles?	Etch rate acceptability
----------------	--------------	----------	--------------	----------	----------	-----------	------------	-------------------------

試料 No.	B ₄ C 焼結体 の焼成条件 (C)	助剤 (wt%)	相対 密度 (%)	強度 (MPa)	エッチング ガス種	エッチングレート (Å/min)	パーティクル の発生	総合 評価	
23	2300	窒素	なし none	98.2	280	BCl ₃	44	○	△
24	2250	窒素	なし	99.5	480	BCl ₃	25	○	○
25	2100	窒素	なし	98.4	330	BCl ₃	68	○	○
*26	2020	窒素	なし	97.3	250	BCl ₃	110	○	×
27	2230	Ar	C 5.0	99.1	410	BCl ₃	42	○	○

Table 4. Response of B₄C types to BCl₃ etch.