届 别
 2024 届

 学 号
 20201405xxxx

湖·多学院 毕业论文(设计)

<u>基于 LAT_EX 的两月半研究</u> —以 xxx 为例

姓 名	XXX	
学 院、专 业	数学与信息科学学院	
	计算机专业	
导师姓名、职称	指导老师 副导师	
完 成 时 间	2024年5月	

目 录

摘要	I
Abstact	II
1 引言	1
1.1 为什学 \LaTeX 2 $_{\mathcal{E}}$	1
1.2 LATEX 如何安装	1
1.3 LATEX 模板使用	1
2 LATEX 快速入门	1
3 宏包与字体	2
3.1 宏包的使用	2
3.2 浅谈字体	2
4 浮动体	3
4.1 图片	3
4.2 表格	3
4.3 算法	3
4.4 代码	4
4.5 其他浮动体	4
5 数学	5
5.1 数学符号	5
5.1.1 分数	5
5.1.2 积分符号	5
5.1.3 对齐点	5
5.2 证明、定理和公理	6
6 TikZ	7
7 文献引用与 LATEX 模板	8
7.1 文献	8
7.2 模板	8
8 总结	10
致谢	12

附录	A	球体	13
附录	В	说明书	14
附录	C	流程图	15

摘 要

本文是仿湘南学院理科论文设计(2018 修订版)要求制作的简易版 LATEX 模板生成的。此模板属于个人作品,非官方模板,大多数格式遵循撰写规范,部分小格式手册未曾提及,模板参考了其他高校的格式,常见的如:证明,定理,推论等环境;代码片段的格式;附录等等。作者学 LATEX 时间不长,第一次用 LATEX 写模板,因此本模板在使用上仍然会存在问题,还请见谅,也希望有更多热爱 LATEX 的同学一起构建更好的版本。

关键词: LATEX; 明德; 博学; 创新; 笃行; 毕业论文; 第七个关键词

ABSTRACT

Xiangnan University ('Xiangnan College'; XNU) is a provincial public college in Suxian, Chenzhou, Hunan, China. Despite its English name, the institute has not been granted university status. The college is under the Hunan Provincial Department of Education.

Keywords: XNU; master thesis; XeTeX/LaTeX template

1 引言

1.1 为什学 $\Delta T_{EX} 2_{\varepsilon}$

虽然 word 处理文字方便,但想要获得一个准确的样式却很难,特别是在公式与图片较多的时候会存在很多问题,而 LATeX 排版数学公式非常高效,你一定没见过

$$\int_{a}^{b} \frac{d}{dx} \left(\frac{\sqrt{x^4 - 3x^2 + 2x + 1}}{\ln(x) - \sin(x)} \right) dx = \sum_{n=1}^{\infty} \frac{1}{n^2 + nx} \bigg|_{a}^{b} + \prod_{i=1}^{n} i^2 - \left(\frac{\cos(x) + \sin(x)}{e^{x^2} - 1} \right)^{\frac{3}{2}}$$
 (*)

这行公式仅需3行代码就搞定了。现在就带你一起来看看吧!

1.2 LATEX 如何安装

MiKTex 和 Texlive 都是主流软件,网上都有教程这里就不细说了。编辑体验比较好的有OverLeaf和 VSCode。OverLeaf 浏览器打开即用,本模板就由该网站提供的工具所作,VSCode 需要配置环境,它的主要在输入提示上非常友好,不过这一点似乎 TexLive 支持的也挺好,VSCode 适合有编程基础的同学。

1.3 LATFX 模板使用

想要写出一篇完整论文,除了.cls 文件配置的格式文件,写作的过程的其他宏包仍然需要手动添加。本文就是基于 xnuthesis.cls 编写的,不一定适合所有人,模板提供了一些基础格式,如果需要更精细的格式还需自行重构。

2 LATEX 快速入门

作者也不是什么 LaTeX 专家,只能说是入门比较快的新手,浅浅分享一波经验!新手当然是推荐看视频了,如果你是码农,那么直接上文档!

- 1.《一份不太简短的 LT_{E} X 2_{ε} 介绍》这本书做的不错,翻阅了无数遍,甚至写这篇文章还在用,入门前觉得像词典,入门后感觉是比较简洁的,放下它的 github 仓库地址: https://github.com/CTeX-org/lshort-zh-cn。
- 2. AI: 国内的通义千问,国外有许多免费 ChatGPT-4 站点可用,个人一直在用的https://www.coze.com挺不错的,作为新手几乎有一半的问题是靠它解决的。唯一不足之出就是大模型写代码还是一些存在 bug 的。
- 3. 各类开源网站论坛

- LaTex 工作室: 该工作室在 b 站上的视频也值得去看。
- Tex.StackexChange: 一个专注解决 Tex 问题的 "stackoverflow"。
- CTAN: 开源宏包海洋, 入海, 做一个 LATEX 极客。
- 4. 高校毕业论文模板,如https://github.com/sjtug/SJTUThesis,是上海交通大学的论文模板,这个项目用了LATEX3语法,是一个非常新的项目。人门的话更推荐北航,天津大学等的模板,它们的类文件语法偏 Tex。

3 宏包与字体

3.1 宏包的使用

LYTeX 宏包众多,能尽量用新宏包就用新的,优先用 LYTeX3 语法重构的,简要谈谈这几个宏包吧。

- 1. newtxmath 这个宏包用于修改数学字体,与宏包amsthm发生冲突\openbox重定义。
- 2. **tocloft**与**titletoc**如果同时使用在定义目录样式的时候会出现修改无效的问题。同样**titlesec**与\ctexset修改标题也会冲突,因为他们本身属于同一类宏包,修改相同的东西。

3.2 浅谈字体

LATEX 字体与 word 不同,默认使用的是 Fandol 系列字体,大多时候不建议加载一些 奇怪的字体,比较麻烦,用 ctex 宏集默认字体即可,ctex 基本的中文字体都比较全面。

英文	font	font	font
中文	粗体	斜体	无衬
宋体	黑体	仿宋	楷书

可以看到Fandol系列中文的黑体,就是无衬线字体sffamily,本文使用的\heiti与\sffamily效果一样,不同的是\heiti只对中文有效,而\sffamily是中英文都可使用。

4 浮动体

4.1 图片

注意:分辨率较高的图片会增加编译时长。图片格式一般最好用 pdf,eps 等矢量图,放大不会失真,pdf 图片兼容性好,图1。

4.2 表格

长表格一般比较比较难输入,推荐使用工具,如https://tablesgenerator.com/, 实在不行用 overleaf 自带的也行,长表格如果实在需要断页,一般来说需要标注续表。

4.3 算法

算法目前推荐使用**algorithm2e**宏包,代码环境一般用 **listings**宏包并使用\lstset设置风格。

表 1 三线表格

左对齐	居中	右对齐
a_1	\int	8
a_1, b_2	$\sum \sum$	▶◀
a_1, b_2, c_3	ППП	★ ⑤ ♡

Algorithm 1: 示例算法

Data: 输入数据 Result: 输出结果 1 Function Main():

> Data: 这里可以描述函数的输入 Result: 这里可以描述函数的输出

Sum(a,b)return a+b

4 Function Sum(a, b):

Data: 这里可以描述函数的输入 Result: 这里可以描述函数的输出

 $sum \leftarrow a + b$ **return** sum

4.4 代码

```
1 %双曲抛物面
2 clear;
3 x = linspace(-10, 10, 100);
4 y = linspace(-10, 10, 100);
5 [X, Y] = meshgrid(x, y);
6 Z = (X.^2)/3 - (Y.^2)/5;
7 surf(X, Y, Z);
```

代码 1 MATALB

4.5 其他浮动体

据说支持 JavaScript 的 PDF 阅读器,通过**media9**宏包,能实现视频或动画的播放。当然利用 TikZ(在本文第 5 节介绍) 一帧一帧的放也能实现动画效果,与 beamer 播放类似。

5 数学

LYIEX 公式符号系统比较完整,不会基本可查,作者虽是数学系但所选数学论文中公式使用的也较少,但还是总结了一些值得注意的坑。

5.1 数学符号

5.1.1 分数

使用行内公式会显得小,而使用\dfrac 会感觉太挤了,由于行间距一般不能改变,所以要么调行间距,要么使用行间公式,看下面示例

有志登山 顶
$$\frac{3}{9}$$
, 无 志站 $\frac{9}{9}$ 。

一般情况分数上下太宽建议直接放在行间。

5.1.2 积分符号

一些情况下我们可能需要直立体, 而不是斜体。

牛顿-莱布尼茨公式:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a), \forall x \in [a, b], F'(x) = f(x)$$

高斯定理(散度定理)可以表示为:

$$\iint\limits_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{V} \nabla \cdot \mathbf{F} \, dV$$

其中,

- $\iint_{\partial V} \mathbf{F} \cdot d\mathbf{S}$ 表示向量场 **F** 通过闭合表面 ∂V 的向外通量,
- $\iiint\limits_{V} \nabla \cdot \mathbf{F} \, dV$ 表示向量场 \mathbf{F} 在体积 V 内的散度的积分。

5.1.3 对齐点

这里 align 与 aligned 完全是两个环境, aligned 不是一个公式环境, align:

$$a = b + c \tag{5.1}$$

$$= d + e \tag{5.2}$$

aligned:

$$a = b + c$$

$$d = e + f + g$$

$$h + i = j + k$$

$$l + m = n$$
(5.3)

对齐需要对齐点,一般在 & 处对齐。

5.2 证明、定理和公理

本模板序号都用 section 编号,如果想使用单个序号 1, 2, 3 等,当然也可以通过类文件自定义。

推论 5.1: 生活可能不像你想象的那么好,但是也不会像你想象的那么糟,人的脆弱和坚强都超乎了自己的想象,有时候脆弱的一句话会让你泪流满面,有时候你发现自己咬着牙已经走过了很长的路。

定理 5.1 (三角形的内积和): 两直角的平方差一定小于正弦的 30°的一半。

练习 5.1: 子曰: 打架用砖乎! 不亦乱乎! — 《论语》

引理 5.1: 可导函数的每一个可导的极值点都是驻点(函数的导数在该点为零)。

证明: 利用

$$i+j=m\overrightarrow{a}$$

,可以得到

$$\lim_{x+y} = C + +$$

例 5.1 (新高考 II): 想象有 n 个有序排列的箱子,其中每个箱子可以放一个球或者不放球。令二项式系数 (或称为组合数) m 个球的情况种数。

解: 利用组合数,

$$C_n^m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

我们可以归纳得出...

6 TikZ

与 TikZ 有关的 LATEX 中宏包非常丰富,常规的流程图(附录 C 图6),函数图,电路图等都有对应的宏包支持,它的语法也不同于 Tex。人门 TikZ 建议看视频,这一块不建议上来就磕文档,官方文档有上千页。当然其绘图功能也是十分强大!

图 2 二叉树

图 3 扇形图

图 4 电路图

上面的图形都是 TikZ 代码绘制的, TikZ 功能远不止此,由于国内视频缺乏完整教程,所以学习起来会有些吃力,作者也只是触碰到它的冰山一角,图2 和图3来自https://texample.net/tikz,图4转载自latexstudio。

7 文献引用与 LATEX 模板

7.1 文献

本文参考文献的格式为 GB/T7714-2015, 使用 bibtex 进行管理, \cite{}对文献引用: 单文件引用[1], 多个文献引用[2-13]。

7.2 模板

xnuthesis 论文结构大致如下,更多使用方法可以参考本文的源码,如需学习撰写类文件可以看https://github.com/rockyzhz/latexdoc-chinese-translation提供的文档,有许多翻译后的中文文档可以参考。

Lettex 2_E对类文件开发维护困难,主要体现在许多命名规范上的问题,于是就产生了Lettex 3, Lettex 3 语法就是由 expl3 宏包提供的,https://texdoc.org/serve/interface3/0是Lettex 3 语法的完整手册。Lettex 3 更像是一门面向开发者的编程语言,有类型并且支持函数式编程,命名规范,缺点是目前还未完全普及,许多宏包还没支持新的13 语法,但这是未来的发展趋势。为了以后兼容性,本模板在类文件中部分也使用了Lettex 3 语法。

```
\documentclass{xnuthesis}
%======导言区
\input{setup} %配置文件, 自由加载宏包与论文的信息
\begin{document}
%======對面
\input{cover/cover}
                %如果有问题,封面可以用word转PDF再进行插入
%=====目录
\tableContents
\frontmatter
\input{contents/abstract}
\mainmatter
\input{contents/intro}
\input{contents/sect_pkg_font}
\input{contents/sect_float}
\input{contents/sect_math}
\input{contents/sect_tikz}
\input{contents/sect_cite_template}
%=====参考文献
\ printreferences
%=======致谢
\input{contents/acknowledgements}
%======附录
\appendix
\input{contents/app_tikzpic}
\input{contents/app_interpreter}
\input{contents/app_process}
\end{document}
```

代码 2 LaTex 论文结构

8 总结

本模板的许多结构方面参考了北航和上交的模板,作者全程依赖 GPT 解决了许多疑问,不得不说的是人工智能时代,信息获取方式越来越快,AI 已经能实现模块化的基本需求,学习和写出 LATEX 程序变得更加轻松了,Typst 与 MathML 发展日益强大,也希望某一天能出现更优秀简洁排版方式吧!

参考文献

- [1] 程根伟. 1998 年长江洪水的成因与减灾对策[M]//许厚泽, 赵其国. 长江流域洪涝灾害与科技对策. 北京: 科学出版社, 1999: 32-36.
- [2] 中国力学学会. 第 3 届全国实验流体力学学术会议论文集[C]. 天津: 天津大学出版社, 1990: 20-24.
- [3] 国家标准局信息分类编码研究所. GB/T 2659-1986 世界各国和地区名称代码[S]//全国文献工作标准化技术委员会. 文献工作国家标准汇编: 3. 北京: 中国标准出版社, 1988: 59-92.
- [4] 河北绿洲生态环境科技有限公司. 一种荒漠化地区生态植被综合培育种植方法: 中国, 01129210.5[P/OL]. 2001-10-24 [2002-05-28]. http://211.152.9.47/sipoasp/zlijs/hyjs-yx-new.asp?recid=01129210.5&leixin.
- [5] Hopkinson A. UNIMARC and metadata: Dublin core[EB/OL]. [1999-12-08]. http://www.ifla.org/IV/ifla64/138-161e.htm.
- [6] 姜锡洲. 一种温热外敷药制备方案: 中国, 88105607.3[P]. 1989-07-26.
- [7] 蒋有绪, 郭泉水, 马娟, 等. 中国森林群落分类及其群落学特征[M]. 北京: 科学出版社, 1998: 11-12.
- [8] 李炳穆. 理想的图书管理员和信息专家的素养与形象[J]. 图书情报工作, 2000(2): 5-8.
- [9] 李晓东, 张庆红, 叶瑾琳. 气候学研究的若干理论问题[J]. 北京大学学报: 自然科学版, 1999, 35(1): 101-106.
- [10] 中国图书馆学会. 图书馆学通讯[J]. 1957(1)-1990(4). 北京: 北京图书馆, 1957-1990.
- [11] World Health Organization. Factors regulating the immune response: report of WHO Scientific Group[R]. Geneva: WHO, 1970.
- [12] 余敏. 出版集团研究[M]. 北京: 中国书籍出版社, 2001: 179-193.
- [13] 张志祥. 间断动力系统的随机扰动及其在守恒律方程中的应用[D]. 北京: 北京大学 数学学院, 1998: 50-55.

致 谢

感谢湘南学院提供论文格式! 感谢室友及指导老师给出的意见!

附录 A 球体

这是一个 TikZ 绘制的 3D 图形,也是 example.net/tikz上面的例子。

图 5 dandelin-spheres

附录 B 说明书

C++ 是一种被广泛使用的计算机程序设计语言。它是一种通用程序设计语言,支持 多重编程范式,例如过程化程序设计、面向对象程序设计、泛型程序设计和函数式程序 设计等。

比雅尼·斯特劳斯特鲁普博士在贝尔实验室工作期间在 20 世纪 80 年代发明并实现了 C++。起初,这种语言被称作"C with Classes"("包含'类'的 C 语言"),作为 C 语言的增强版出现。随后,C++不断增加新特性。虚函数、运算符重载、多继承、标准模板库、异常处理、运行时类型信息、命名空间等概念逐渐纳入标准草案。1998 年,国际标准组织颁布了 C++程序设计语言的第一个国际标准 ISO/IEC 14882:1998,目前最新标准为 ISO/IEC 14882:2020。ISO/IEC 14882 通称 ISO C++。ISO C++ 包含了主要包含了核心语言和标准库的规则。尽管从核心语言到标准库都有显著不同,ISO C++直接正式(normative) 引用了 ISO/IEC 9899(通称 ISO C),且 ISO C++标准库的一部分和 ISO C 的标准库的 API 完全相同,另有很小一部分和 C 标准库略有差异(例如,streat 等函数提供对 const 类型的重载)。这使得 C 和 C++的标准库实现常常被一并提供,在核心语言规则很大一部分兼容的情况下,进一步确保用户通常较容易把符合 ISO C 的源程序不经修改或经极少修改直接作为 C++源程序使用,也是 C++语言继 C 语言之后流行的一个重要原因。

作为广泛被使用的工业语言,C++存在多个流行的成熟实现:GCC、基于 LLVM 的Clang 以及 Visual C++等。这些实现同时也是成熟的 C 语言实现,但对 C 语言的支持程度不一(例如,VC++对 ANSI C89 之后的标准支持较不完善)。大多数流行的实现包含了编译器和 C++部分标准库的实现。编译器直接提供核心语言规则的实现,而库提供ISO C++标准库的实现。这些实现中,库可能同时包含和 ISO C 标准库的共享实现(如VC++的 msvcrt);而另一些实现的 ISO C 标准库则是单独于编译器项目之外提供的,如glibc 和 musl。C++标准库的实现也可能支持多种编译器,如 GCC 的 libstdc++库支持GCC 的 g++和 LLVM Clang 的 clang++。这些不同的丰富组合使市面上的 C++环境具有许多细节上的实现差异,因而遵循 ISO C++这样的权威标准对维持可移植性显得更加重要。现今讨论的 C++语言,除非另行指明,通常均指 ISO C++规则定义的 C++语言(虽然因为实现的差异,可能不一定是最新的正式版本)。

附录 C 流程图

