

TUMOR TYPE
Unknown primary carcinoma
(NOS)
COUNTRY CODE

REPORT DATE 26 Feb 2021

ORD-1023717-01

**ABOUT THE TEST** FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA

**PATIENT** 

DISEASE Unknown primary carcinoma (NOS)

DATE OF BIRTH 17 August 1952

SEX Male

MEDICAL RECORD # Not given

**PHYSICIAN** 

MEDICAL FACILITY Arias Stella ADDITIONAL RECIPIENT None MEDICAL FACILITY ID 317319 PATHOLOGIST Not Provided

**SPECIMEN** 

SPECIMEN ID JCC 08/17/1952
SPECIMEN TYPE Blood

**DATE OF COLLECTION** 11 February 2021 **SPECIMEN RECEIVED** 19 February 2021

Biomarker Findings

**Blood Tumor Mutational Burden** - 28 Muts/Mb **Microsatellite status** - MSI-High Not Detected

**Tumor Fraction - 58%** 

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

**CCNE1** amplification **GATA6** amplification - equivocal<sup>†</sup>

**RAD21** W18\*

TP53 R248Q, I195T, D281N

† See About the Test in appendix for details.

O Therapies with Clinical Benefit

10 Clinical Trials

O Therapies with Lack of Response

**BIOMARKER FINDINGS** 

Blood Tumor Mutational Burden - 28 Muts/Mb

10 Trials see p. 9

Microsatellite status - MSI-High Not Detected

**Tumor Fraction - 58%** 

| THERAPIES WITH CLINICAL BENEFIT (IN PATIENT'S TUMOR TYPE) | THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE) |
|-----------------------------------------------------------|-------------------------------------------------------|
| None                                                      | None                                                  |
|                                                           |                                                       |
|                                                           |                                                       |

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is an estimate of the percentage of circulating-tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample based on observed aneuploid instability.

# No therapies or clinical trials are associated with the Genomic Findings for this sample.

If you have questions or comments about this result, please contact your Foundation Medicine customer support representative.

**Phone:** 1-888-988-3639

Online: foundationmedicine.com

Email: client.services@foundationmedicine.com





TUMOR TYPE
Unknown primary carcinoma
(NOS)
COUNTRY CODE

REPORT DATE 26 Feb 2021

ORD-1023717-01

#### GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIALS OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

| CCNE1 - amplification p. 6            | <i>RAD21</i> - W18*p. 7               |
|---------------------------------------|---------------------------------------|
| GATA6 - amplification - equivocalp. 6 | <i>TP53</i> - R248Q, I195T, D281Np. 8 |

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, BRCA1, BRCA2, BRIP1, MEN1, MLH1, MSH2, MSH6, MUTYH, NF2, PALB2, PMS2, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

Variant Allele Frequency Percentage (VAF%)



ORD-1023717-01 HISTORIC PATIENT FINDINGS VAF% **Blood Tumor** 28 Muts/Mb **Mutational Burden** Microsatellite status MSI-High Not Detected **Tumor Fraction** 58% CCNE1 amplification Detected GATA6 amplification Detected RAD21 W18\* 0.83% TP53 D281N 1.8% R248Q 58.2% I195T 0.29%

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx, FoundationOne®Liquid, FoundationOne®, or FoundationOne®CDx tests. Up to five previous tests may be

For some genes in Foundation One Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.

Not Tested = not baited, not reported on test, or test preceded addition of biomarker or gene

Not Detected = baited but not detected on test

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

Foundation Medicine, Inc. · 1.888.988.3639



TUMOR TYPE Unknown primary carcinoma (NOS)

REPORT DATE 26 Feb 2021



ORDERED TEST # ORD-1023717-01

 ${\sf Cannot\,Be\,Determined\,=\,Sample\,is\,not\,of\,sufficient\,data\,quality\,to\,confidently\,determine\,biomarker\,status}$ 



**BIOMARKER FINDINGS** 

#### BIOMARKER

## Blood Tumor Mutational Burden

RESULT 28 Muts/Mb

#### **POTENTIAL TREATMENT STRATEGIES**

On the basis of clinical evidence in NSCLC and HSNCC, increased bTMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1<sup>1-2</sup> and anti-PD-1<sup>3</sup> therapies. In NSCLC, multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 to 16 Muts/Mb¹. In HNSCC, a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate equivalency ≥8 Muts/Mb as measured by this

assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor<sup>4</sup>.

#### **FREQUENCY & PROGNOSIS**

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (cBioPortal, COSMIC, PubMed, Mar 2020)5-7. Published data investigating the prognostic implications of TMB have mainly been investigated in the context of tissue TMB. In patients with NSCLC, increased TMB is associated with higher tumor grade and poor prognosis8, as well as with a decreased frequency of known driver mutations in EGFR, ALK, ROS1, or MET (1% of high-TMB samples each), but not BRAF (10.3%) or KRAS (9.4%)9. Although some studies have reported a lack of association between smoking and increased TMB in NSCLC8,10, several other large studies did find a strong link<sup>11-14</sup>. In CRC, elevated TMB is associated with a higher frequency of BRAF V600E driver mutations<sup>15-16</sup> and with microsatellite instability (MSI)16, which in turn has been reported to correlate with better prognosis<sup>17-24</sup>. Although

increased TMB is associated with increased tumor grade in endometrioid endometrial carcinoma<sup>25-28</sup> and bladder cancer<sup>29</sup>, it is also linked with improved prognosis in patients with these tumor types<sup>26</sup>.

#### FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma<sup>30-31</sup> and cigarette smoke in lung cancer<sup>32-33</sup>, treatment with temozolomide-based chemotherapy in glioma34-35, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes15,26,36-38, and microsatellite instability (MSI)15,26,38. This sample harbors a bTMB level that may be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents<sup>1-3</sup>.

#### **BIOMARKER**

### **Tumor Fraction**

RESULT

#### POTENTIAL TREATMENT STRATEGIES

Specimens with high tumor fraction values have high circulating-tumor DNA (ctDNA) content, and thus high sensitivity for identifying genomic alterations. Such specimens are at low risk of false negative results. However, if tumor fraction is not detected as high, it does not exclude the presence of disease burden or compromise the confidence of reported alterations. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not be overinterpreted or compared from one blood draw

to another. There are currently no targeted approaches to address specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management<sup>39-44</sup>.

#### **FREQUENCY & PROGNOSIS**

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)<sup>45</sup>. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer<sup>46</sup>, Ewing sarcoma and osteosarcoma<sup>47</sup>, prostate cancer<sup>42</sup>, breast cancer<sup>48</sup>, leiomyosarcoma<sup>49</sup>, esophageal cancer<sup>50</sup>, colorectal cancer<sup>51</sup>, and gastrointestinal cancer<sup>52</sup>.

#### **FINDING SUMMARY**

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content<sup>53</sup>, the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy<sup>54-55</sup>.



**GENOMIC FINDINGS** 

GENE

### CCNE1

**ALTERATION** amplification

#### **POTENTIAL TREATMENT STRATEGIES**

There are no approved therapies that directly target CCNE1 alterations. Because amplification or overexpression of CCNE1 leads to increased genomic instability though the ATR-CHK1 pathway<sup>56</sup> and cyclin E1 promotes cell cycle progression in a complex with CDK2<sup>57</sup>, clinical and preclinical studies have investigated inhibitors of CHK1, ATR, and CDK2 as potential therapeutic approaches for tumors with CCNE1 activation. Clinical benefit has been reported for patients with recurrent high-grade ovarian carcinoma with CCNE1 amplification or expression in response to

treatment with the CHK1 inhibitor prexasertib<sup>58</sup>. Preclinical studies have demonstrated that cell lines with CCNE1 amplification or overexpression were sensitive to inhibitors of ATR<sup>59-60</sup> or CDK2<sup>61</sup>. However, other studies have shown that sensitivity of various cell lines to CDK2 inhibitors, including SNS-032, dinaciclib, and seliciclib, at clinically achievable doses, is largely independent of CCNE1 copy number or expression<sup>62-65</sup>. One study has reported a reduction in tumor CCNE1 levels in 4/6 lung and esophageal cancer cases following treatment with the HDAC inhibitor vorinostat<sup>66</sup>.

#### **FREQUENCY & PROGNOSIS**

CCNE1 amplification has been reported most frequently in ovarian carcinoma (19% of cases), esophagogastric adenocarcinoma (12%), endometrial carcinoma (11%), and cervical adenocarcinoma (9%), and has been reported in many other cancer types at lower incidence

(cBioPortal, Jun 2020)<sup>5-6</sup>. CCNE1 amplification or elevated cyclin E1 protein expression has been associated with poor prognosis in patients with some cancer types, including breast and ovarian cancer<sup>67-70</sup>.

#### FINDING SUMMARY

CCNE1 encodes the protein cyclin E1, which plays a role in the regulated transition from the G1 to S phase by binding to and activating cyclin-dependent protein kinase 2 (CDK2). It also has a direct role in initiation of replication and the maintenance of genomic stability<sup>57</sup>. Amplification of chromosomal region 19q12-q13 has been demonstrated in many types of cancer, and CCNE1 is a well-studied gene within this amplicon<sup>71-72</sup>. Increased copy number of CCNE1 is highly associated with overexpression of the cyclin E1 protein<sup>67,73</sup>. Cyclin E1 overexpression can lead to cell transformation as a result of an increase in cyclin E1 activity<sup>57,74</sup>.

GENE

## **GATA6**

**ALTERATION** amplification - equivocal

#### **POTENTIAL TREATMENT STRATEGIES**

There are no targeted therapies available to address genomic alterations in GATA6.

#### **FREQUENCY & PROGNOSIS**

GATA6 was identified as a tumor suppressor in a preclinical model of astrocytoma and verified in human samples; GATA6 mutations, loss of GATA6 expression, or loss of heterozygosity were discovered in glioblastomas, but not in lower grade astrocytomas, and restoration of GATA6 inhibited glioblastoma cell line growth<sup>75</sup>. However, overexpression of GATA6 has been detected in pancreatic and bile duct carcinoma and is associated with increased proliferation, cell cycle progression, and colony formation, which have been shown to be inhibited by GATA6 siRNA

knockdown in pancreatic carcinoma cell lines<sup>76-77</sup>. GATA6 overexpression in colorectal carcinoma is also associated with poor prognosis and metastasis<sup>78</sup>.

#### **FINDING SUMMARY**

GATA6 encodes a zinc finger transcription factor, which is involved in the development of several tissues and is expressed in proliferating cells throughout the intestinal tract<sup>79</sup>. GATA6 has been described as both a tumor suppressor and an oncogene, which may be dependent on the tumor type.



GENOMIC FINDINGS

**GENE** 

### RAD21

ALTERATION W18\*

TRANSCRIPT ID

CODING SEQUENCE EFFECT

54G>A

#### **POTENTIAL TREATMENT STRATEGIES**

There are no therapies to target alterations in this gene.

#### **FREQUENCY & PROGNOSIS**

RAD21 amplifications, point mutations, and truncating mutations have been reported in various cancers<sup>80</sup>. In the context of breast cancer, increased RAD21 expression has been correlated with poor prognosis in multiple subtypes<sup>81-82</sup>, including sporadic Grade 3 but not Grade 1

cancers81, as well as hereditary BRCA2-mutant and hereditary BRCA-wild-type but not hereditary BRCA<sub>1</sub>-mutant cancers<sup>81</sup>. Furthermore, SNPs in or near RAD21 have been linked with risk of breast cancer development83-84. RAD21 overexpression has also been correlated with poor prognosis in endometrial cancer85 and in colorectal cancer (CRC), especially in KRAS-mutant CRC86. Heterogeneity of RAD21 expression also correlated with aggressive tumor behavior and shorter survival in endometrial cancer<sup>87</sup>. RAD21 amplification has been more frequently reported in hormone-refractory than in treatment-naïve prostate cancer, but RAD21 amplification did not correlate with expression88. In the context of ovarian cancer, both RAD21 overexpression and downregulation have been observed, but RAD21 expression was not prognostic89. Downregulation of RAD21 expression resulted in sensitization of cultured breast82,90 and CRC86 cells to chemotherapy, thereby suggesting that RAD21 overexpression confers resistance to chemotherapy.

#### FINDING SUMMARY

RAD21 encodes a protein involved in DNA doublestrand break repair and sister chromatid cohesion as a part of the cohesin complex<sup>91-94</sup>. In preclinical studies, downregulation of RAD21 or other cohesin components leads to loss of expression from amplified genes, as well as amplifications themselves upon cell passaging<sup>95</sup>, but also leads to an increase in deletions, insertions, and other rearrangements<sup>96</sup>. High RAD21 expression has also been associated with increased genomic instability<sup>81</sup>. Cohesin complex also organizes chromatin domains and regulates gene expression<sup>97-98</sup>. Both overexpression and reduction of expression of RAD21 has been reported to alter gene expression<sup>99</sup>. RAD21 amplification has been correlated with increased expression in breast81-82,100 and endometrial85 cancers. Other RAD21 alterations, including truncating and point mutations, have been reported in the context of cancer, but the majority have not been characterized.

**GENOMIC FINDINGS** 

### GENE

## **TP53**

R248Q, I195T, D281N

TRANSCRIPT ID

NM\_000546, NM\_000546, NM\_000546

CODING SEQUENCE EFFECT 743G>A. 584T>C. 841G>A

#### **POTENTIAL TREATMENT STRATEGIES**

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib101-104, or p53 gene therapy and immunotherapeutics such as SGT-53<sup>105-109</sup> and ALT-801<sup>110</sup>. In a Phase 1 study, adayosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% (17/ 176) and SDs in 53.4% (94/176) of patients with solid tumors; the response rate was 21.1% (4/19) in patients with TP53 mutations versus 12.1% (4/ 33) in patients who were TP53 wild-type111. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 31.9% (30/ 94, 3 CR) ORR and a 73.4% (69/94) DCR in patients with platinum-refractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer<sup>112</sup>. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 42.9% (9/21, 1 CR) ORR and a 76.2% (16/21) DCR in patients with platinum-refractory TP53-mutated ovarian cancer<sup>113</sup>. The combination of adavosertib with paclitaxel and carboplatin in patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone  $^{114}$ . In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24.0% (6/ 25) ORR with adayosertib combined with paclitaxel115. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71.4% (5/7) response rate for patients with TP53 alterations116. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel in patients with solid tumors, 75.0% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed

and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage<sup>109</sup>. Additionally, the combination of a CHK1 inhibitor and irinotecan reportedly reduced tumor growth and prolonged survival in a TP53-mutated, but not TP53-wildtype, breast cancer xenotransplant mouse model<sup>117</sup>. Missense mutations leading to TP53 inactivation may also be sensitive to therapies that reactivate mutant p53 such as APR-246 $^{\bar{1}18-120}$ . In a Phase 1b trial in patients with p53-positive high-grade serous ovarian cancer, APR-246 combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR<sup>121</sup>. ATR inhibitor treatment of chronic lymphocytic leukemia (CLL) cells with biallelic inactivation of TP53 suppressed cell viability, promoted DNA damage, and attenuated xenograft growth in preclinical studies122-123; however, ATR inhibitors as monotherapy had little effect on these parameters in solid tumor models in other preclinical studies<sup>124-125</sup>. Therefore, it is unclear whether TP53 inactivation predicts sensitivity to ATR inhibition.

#### **FREQUENCY & PROGNOSIS**

Pan-cancer analysis of the TCGA datasets across 12 cancer types identified TP53 as the most frequently mutated gene, with 42% of more than 3,000 tumors harboring a TP53 mutation; in this study TP53 mutation occurred most frequently in ovarian serous carcinoma (95%), lung squamous cell carcinoma (SCC) (79%), head and neck SCC (70%), colorectal adenocarcinoma (59%), lung adenocarcinoma (52%), and bladder urothelial carcinoma (50%)126. TP53 loss of heterozygosity (LOH) is frequently seen in tumors and often occurs when one copy of TP53 harbors a mutation; in some tumors, LOH is correlated with progression<sup>127-130</sup>. While the prognostic significance of TP53 alteration or dysregulation varies according to tumor type, studies have shown an association with poor prognosis for patients with breast cancer<sup>131-133</sup>, endometrial cancer<sup>134-135</sup>, HNSCC<sup>136-138</sup>, or urothelial cancer<sup>139-140</sup>. In one study of 55 patients with lung adenocarcinoma, TP53 alterations correlated with immunogenic features including PD-L1 expression, tumor mutation burden and neoantigen presentation; likely as a consequence of this association TP53 mutations correlated with improved clinical outcomes to PD-1 inhibitors pembrolizumab and nivolumab in this study<sup>141</sup>.

TP53 mutation has not been consistently demonstrated to be a significant independent prognostic marker in the context of CRC142. Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion143-148. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy<sup>143-144</sup>. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease<sup>149</sup>. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to  $CH^{147,150-151}$ . Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

#### **FINDING SUMMARY**

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers<sup>152</sup>. Alterations such as seen here may disrupt TP53 function or expression<sup>153-157</sup>.

#### **POTENTIAL GERMLINE IMPLICATIONS**

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters with no conflicts) associated with Li-Fraumeni syndrome (ClinVar, Sep 2020)<sup>158</sup>. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers<sup>159-161</sup>, including sarcomas<sup>162-163</sup>. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000<sup>164</sup> to 1:20,000<sup>163</sup>. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30<sup>165</sup>. In the appropriate clinical context, germline testing of TP53 is recommended.



CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial  $\Rightarrow$  Geographical proximity  $\Rightarrow$  Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

#### BIOMARKER

## Blood Tumor Mutational Burden

RESULT
28 Muts/Mb

Increased tumor mutational burden may predict response to anti-PD-1 (alone or in combination

with anti-CTLA-4) or anti-PD-L1 immune checkpoint inhibitors.

NCTO3498521

A Phase II Randomized Study Comparing the Efficacy and Safety of Targeted Therapy or Cancer Immunotherapy Versus Platinum-Based Chemotherapy in Patients With Cancer of Unknown Primary Site

TARGETS

ALK, RET, SMO, AKTs, PARP, PD-L1, EGFR, VEGFA, BRAF, MEK, ERBB2, ERBB3, ROS1, TRKA, TRKB, TRKC

LOCATIONS: Lima (Peru), Bogota (Colombia), Monteria (Colombia), Recoleta (Chile), Temuco (Chile), Barretos (Brazil), Porto Alegre (Brazil), Sao Paulo (Brazil), Rio de Janeiro (Brazil), Salvador (Brazil)

NCT03369223

An Investigational Immunotherapy Study of BMS-986249 Alone and in Combination With Nivolumab in Solid Cancers That Are Advanced or Have Spread

TARGETS

CTLA-4, PD-1

LOCATIONS: Santiago (Chile), Buenos Aires (Argentina), Florida, Texas, South Carolina, Virginia

NCTO3179436

Safety, Pharmacokinetics (PK), and Efficacy of MK-1308 in Combination With Pembrolizumab in Advanced Solid Tumors (MK-1308-001)

TARGETS
CTLA-4, PD-1

**LOCATIONS:** Santiago (Chile), Toronto (Canada), Montreal (Canada), Sevilla (Spain), Valencia (Spain), San Sebastian (Spain), Cape Town (South Africa), Kraaifontein (South Africa), Bordeaux (France), Hospitalet de Llobregat (Spain)

NCT02693535

TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer

TARGETS

VEGFRs, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, CDK4, CDK6, CSF1R, FLT3, KIT, RET, mTOR, EGFR, ERBB2, ERBB3, MEK, BRAF, SMO, DDR2, PARP, PD-1, CTLA-4, ERBB4

LOCATIONS: Florida, Texas, Georgia, Alabama, North Carolina, Virginia, Oklahoma, Pennsylvania, Indiana



**CLINICAL TRIALS** 

| NCT03684785                                                                                                                                                                                 | PHASE 1/2                                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Intratumoral AST-008 Combined With Pembrolizumab or Cemiplimab in Patients With Advanced<br>Solid Tumors                                                                                    | TARGETS<br>PD-1, TLR9                        |  |  |
| LOCATIONS: Florida, Kentucky, Ohio, Missouri, Pennsylvania, New York, Massachusetts, Illinois, Arizor                                                                                       | na, Iowa                                     |  |  |
| NCT03611868                                                                                                                                                                                 | PHASE 1/2                                    |  |  |
| A Study of APG-115 in Combination With Pembrolizumab in Patients With Metastatic Melanomas or<br>Advanced Solid Tumors                                                                      | TARGETS<br>MDM2, PD-1                        |  |  |
| LOCATIONS: Florida, Texas, Tennessee, Arkansas, Virginia, District of Columbia, Pennsylvania, Arizona                                                                                       |                                              |  |  |
| NCT04042116                                                                                                                                                                                 | PHASE 1/2                                    |  |  |
| A Study to Evaluate Lucitanib in Combination With Nivolumab in Patients With a Solid Tumor                                                                                                  | TARGETS<br>FGFRs, VEGFRs, PD-1               |  |  |
| LOCATIONS: Florida, North Carolina, Tennessee, Oklahoma, Ohio, Pennsylvania, New York, Massachus                                                                                            | etts, Colorado, California                   |  |  |
| NCT04122625                                                                                                                                                                                 | PHASE 1/2                                    |  |  |
| Study to Assess Safety and Efficacy of the Second Mitochondrial-derived Activator of Caspases (SMAC) Mimetic Debio 1143                                                                     | TARGETS<br>PD-1, IAPs                        |  |  |
| LOCATIONS: Florida, Texas, Washington, Ohio, Missouri, Pennsylvania, New York, Massachusetts, Mic                                                                                           | higan                                        |  |  |
| NCT03656718                                                                                                                                                                                 | PHASE 1/2                                    |  |  |
| A Study of Subcutaneous Nivolumab Monotherapy With or Without Recombinant Human<br>Hyaluronidase PH20 (rHuPH20)                                                                             | TARGETS<br>PD-1                              |  |  |
| LOCATIONS: Santiago (Chile), Caba (Argentina), Sao Paulo (Brazil), Texas, Georgia, South Carolina, No                                                                                       | rth Carolina                                 |  |  |
| NCT03668119                                                                                                                                                                                 | PHASE 2                                      |  |  |
| A Study of Nivolumab Combined With Ipilimumab and Nivolumab Alone in Patients With Advanced or<br>Metastatic Solid Tumors of High Tumor Mutational Burden (TMB-H)                           | TARGETS<br>PD-1, CTLA-4                      |  |  |
| LOCATIONS: Santiago (Chile), Santiago de Chile (Chile), Cordoba (Argentina), Caba (Argentina), Ciuda<br>Autonoma de Buenos Aires (Argentina), San Juan (Puerto Rico), Texas, North Carolina | ad Autonoma Beunos Aires (Argentina), Ciudad |  |  |





APPENDIX

Variants of Unknown Significance

**NOTE** One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

| <b>APC</b><br>R1171C                             | <b>AR</b><br>D297N                  | <b>CD79B</b><br>A188S                      | <b>CDK12</b><br>T255A<br><b>CTNNA1</b><br>I255V |  |
|--------------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------------------|--|
| <b>CDK4</b><br>T19fs*18                          | <b>CHEK2</b><br>R145W and Y113C     | <b>CSF1R</b> G333D and V138I               |                                                 |  |
| <b>EPHA3</b>                                     | <b>ERBB4</b>                        | <b>FGF14</b>                               | <b>FUBP1</b>                                    |  |
| Q862L                                            | E1220A                              | V223D                                      | G606R                                           |  |
| <b>GNA13</b>                                     | <b>HGF</b>                          | <b>IRF4</b>                                | <b>NSD3 (WHSC1L1)</b>                           |  |
| R264C                                            | C271F                               | 1449V                                      | D687Y                                           |  |
| <b>PALB2</b>                                     | <b>PARP3</b> R20W and amplification | <b>PIK3C2B</b>                             | <b>RET</b>                                      |  |
| S184R                                            |                                     | P1012fs*15                                 | E901D                                           |  |
| SETD2         SYK           D2529E         Q145* |                                     | <b>TEK</b> amplification and rearrangement | <b>TERT</b> promoter -145C>T                    |  |



APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1023717-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an \*); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

| ABL1<br>Exons 4-9          | ACVR1B                                   | AKT1<br>Exon 3                 | AKT2                              | AKT3                                                      | ALK<br>Exons 20-29, Introns<br>18, 19                     | ALOX12B                                             | AMER1<br>(FAM123B)                          | APC             |
|----------------------------|------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------|
| AR                         | <b>ARAF</b><br>Exons 4, 5, 7, 11, 13, 15 | ARFRP1                         | ARID1A                            | ASXL1                                                     | ATM                                                       | ATR                                                 | ATRX                                        | AURKA           |
| AURKB                      | AXIN1                                    | AXL                            | BAP1                              | BARD1                                                     | BCL2                                                      | BCL2L1                                              | BCL2L2                                      | BCL6            |
| BCOR                       | BCORL1                                   | BCR*<br>Introns 8, 13, 14      | BRAF<br>Exons 11-18, Introns 7-10 | <b>BRCA1</b> D Introns 2, 7, 8, 12, 16, 19, 20            | BRCA2<br>0 Intron 2                                       | BRD4                                                | BRIP1                                       | BTG1            |
| BTG2                       | BTK<br>Exons 2, 15                       | C11orf30<br>(EMSY)             | C17orf39<br>(GID4)                | CALR                                                      | CARD11                                                    | CASP8                                               | CBFB                                        | CBL             |
| CCND1                      | CCND2                                    | CCND3                          | CCNE1                             | CD22                                                      | CD70                                                      | CD74*<br>Introns 6-8                                | CD79A                                       | CD79B           |
| CD274<br>(PD-L1)           | CDC73                                    | CDH1                           | CDK12                             | CDK4                                                      | CDK6                                                      | CDK8                                                | CDKN1A                                      | CDKN1B          |
| CDKN2A                     | CDKN2B                                   | CDKN2C                         | CEBPA                             | СНЕК1                                                     | CHEK2                                                     | CIC                                                 | CREBBP                                      | CRKL            |
| CSF1R                      | CSF3R                                    | CTCF                           | CTNNA1                            | CTNNB1<br>Exon 3                                          | CUL3                                                      | CUL4A                                               | CXCR4                                       | CYP17A1         |
| DAXX                       | DDR1                                     | <b>DDR2</b><br>Exons 5, 17, 18 | DIS3                              | DNMT3A                                                    | DOT1L                                                     | EED                                                 | EGFR<br>Introns 7, 15, 24-27                | EP300           |
| ЕРНАЗ                      | ЕРНВ1                                    | ЕРНВ4                          | ERBB2                             | <b>ERBB3</b> Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25 | ERBB4                                                     | ERCC4                                               | ERG                                         | ERRFI1          |
| ESR1<br>Exons 4-8          | ETV4*<br>Intron 8                        | ETV5*<br>Introns 6, 7          | ETV6*<br>Introns 5, 6             | EWSR1*<br>Introns 7-13                                    | <b>EZH2</b><br>Exons 4, 16, 17, 18                        | EZR*<br>Introns 9-11                                | FAM46C                                      | FANCA           |
| FANCC                      | FANCG                                    | FANCL                          | FAS                               | FBXW7                                                     | FGF10                                                     | FGF12                                               | FGF14                                       | FGF19           |
| FGF23                      | FGF3                                     | FGF4                           | FGF6                              | FGFR1<br>Introns 1, 5, Intron 17                          | FGFR2<br>Intron 1, Intron 17                              | FGFR3 Exons 7, 9 (alternative designation exon 10), | FGFR4                                       | FH              |
| FLCN                       | FLT1                                     | FLT3<br>Exons 14, 15, 20       | FOXL2                             | FUBP1                                                     | GABRA6                                                    | 14, 18, Intron 17<br>GATA3                          | GATA4                                       | GATA6           |
| <b>GNA11</b><br>Exons 4, 5 | GNA13                                    | GNAQ<br>Exons 4, 5             | GNAS<br>Exons 1, 8                | GRM3                                                      | GSK3B                                                     | НЗГЗА                                               | HDAC1                                       | HGF             |
| HNF1A                      | HRAS<br>Exons 2, 3                       | HSD3B1                         | ID3                               | IDH1<br>Exon 4                                            | IDH2<br>Exon 4                                            | IGF1R                                               | IKBKE                                       | IKZF1           |
| INPP4B                     | IRF2                                     | IRF4                           | IRS2                              | JAK1                                                      | JAK2<br>Exon 14                                           | JAK3<br>Exons 5, 11, 12, 13, 15,<br>16              | JUN                                         | KDM5A           |
| KDM5C                      | KDM6A                                    | KDR                            | KEAP1                             | KEL                                                       | <b>KIT</b> Exons 8, 9, 11, 12, 13, 13, 11, 11, 12, 13, 13 | KLHL6<br>,,                                         | KMT2A<br>(MLL) Introns 6, 8-11,<br>Intron 7 | KMT2D<br>(MLL2) |
| KRAS                       | LTK                                      | LYN                            | MAF                               | MAP2K1<br>(MEK1) Exons 2, 3                               | MAP2K2<br>(MEK2) Exons 2-4, 6,                            | MAP2K4<br>7                                         | МАРЗК1                                      | MAP3K13         |



APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1023717-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an \*); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

| МАРК1                     | MCL1                                                   | MDM2                                          | MDM4                                                         | MED12                                                                                   | MEF2B                 | MEN1                | MERTK               | MET                                                    |
|---------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|---------------------|---------------------|--------------------------------------------------------|
| MITF                      | MKNK1                                                  | MLH1                                          | MPL<br>Exon 10                                               | MRE11A                                                                                  | MSH2<br>Intron 5      | MSH3                | MSH6                | MST1R                                                  |
| МТАР                      | MTOR<br>Exons 19, 30, 39, 40,<br>43-45, 47, 48, 53, 56 | MUTYH                                         | MYB*<br>Intron 14                                            | MYC<br>Intron 1                                                                         | MYCL<br>(MYCL1)       | MYCN                | MYD88<br>Exon 4     | NBN                                                    |
| NF1                       | NF2                                                    | NFE2L2                                        | NFKBIA                                                       | NKX2-1                                                                                  | NOTCH1                | NOTCH2<br>Intron 26 | <b>NOTCH3</b>       | <b>NPM1</b><br>Exons 4-6, 8, 10                        |
| NRAS<br>Exons 2, 3        | NSD3<br>(WHSC1L1)                                      | NT5C2                                         | <b>NTRK1</b><br>Exons 14, 15, Introns<br>8-11                | NTRK2<br>Intron 12                                                                      | NTRK3<br>Exons 16, 17 | NUTM1*<br>Intron 1  | P2RY8               | PALB2                                                  |
| PARK2                     | PARP1                                                  | PARP2                                         | PARP3                                                        | PAX5                                                                                    | PBRM1                 | PDCD1<br>(PD-1)     | PDCD1LG2<br>(PD-L2) | PDGFRA<br>Exons 12, 18, Introns 7,<br>9, 11            |
| PDGFRB<br>Exons 12-21, 23 | PDK1                                                   | PIK3C2B                                       | PIK3C2G                                                      | PIK3CA<br>Exons 2, 3, 5-8, 10, 14,<br>19, 21 (Coding Exons 1,<br>2, 4-7, 9, 13, 18, 20) | PIK3CB                | PIK3R1              | PIM1                | PMS2                                                   |
| POLD1                     | POLE                                                   | PPARG                                         | PPP2R1A                                                      | PPP2R2A                                                                                 | PRDM1                 | PRKAR1A             | PRKCI               | РТСН1                                                  |
| PTEN                      | PTPN11                                                 | PTPRO                                         | QKI                                                          | RAC1                                                                                    | RAD21                 | RAD51               | RAD51B              | RAD51C                                                 |
| RAD51D                    | RAD52                                                  | RAD54L                                        | <b>RAF1</b><br>Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8 | RARA<br>Intron 2                                                                        | RB1                   | RBM10               | REL                 | <b>RET</b> Introns 7, 8, Exons 11, 13-16, Introns 9-11 |
| RICTOR                    | RNF43                                                  | ROS1<br>Exons 31, 36-38, 40,<br>Introns 31-35 | RPTOR                                                        | RSPO2*<br>Intron 1                                                                      | SDC4*<br>Intron 2     | SDHA                | SDHB                | SDHC                                                   |
| SDHD                      | SETD2                                                  | SF3B1                                         | SGK1                                                         | SLC34A2*<br>Intron 4                                                                    | SMAD2                 | SMAD4               | SMARCA4             | SMARCB1                                                |
| SMO                       | SNCAIP                                                 | SOCS1                                         | SOX2                                                         | SOX9                                                                                    | SPEN                  | SPOP                | SRC                 | STAG2                                                  |
| STAT3                     | STK11                                                  | SUFU                                          | SYK                                                          | ТВХЗ                                                                                    | TEK                   | TERC*               | TERT*<br>Promoter   | TET2                                                   |
| TGFBR2                    | TIPARP                                                 | TMPRSS2*<br>Introns 1-3                       | TNFAIP3                                                      | TNFRSF14                                                                                | TP53                  | TSC1                | TSC2                | TYRO3                                                  |
| U2AF1                     | VEGFA                                                  | VHL                                           | WHSC1                                                        | WTI                                                                                     | XPO1                  | XRCC2               | ZNF217              | ZNF703                                                 |

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status

Blood Tumor Mutational Burden (bTMB)

**Tumor Fraction** 

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.



#### **ABOUT FOUNDATIONONE LIQUID CDX**

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details.

#### **INTENDED USE**

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

#### **TEST PRINCIPLES**

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted cfDNA undergoes whole-genome shotgun library

construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also detects select genomic rearrangements, select copy number alterations, tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

#### THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. *Note:* A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

## QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

## RANKING OF ALTERATIONS AND THERAPIES

Biomarker and Genomic Findings
Therapies are ranked based on the following criteria: Therapies with clinical benefit in patient's tumor type (ranked alphabetically within each NCCN category) followed by therapies with clinical benefit in other tumor type (ranked alphabetically within each NCCN category).

Clinical Trials

Pediatric trial qualification → Geographical proximity → Later trial phase.

#### **LIMITATIONS**

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- 3. A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- **4.** The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5.** The test is not intended to provide information on cancer predisposition.
- **6.** Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulatingtumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from observed aneuploid instability in the sample.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- 10. Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.
- Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between

APPENDIX

About FoundationOne®Liquid CDx

germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.

12. The test is not intended to replace germline testing or to provide information about cancer predisposition.

#### VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters with no conflicts), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are BAP1, BRCA1, BRCA2, BRIP1, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

## NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2020. All rights reserved. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any

responsibility for their application or use in any way.

#### **LEVEL OF EVIDENCE NOT PROVIDED**

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

#### **NO GUARANTEE OF CLINICAL BENEFIT**

This report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

#### **NO GUARANTEE OF REIMBURSEMENT**

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

## TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this report.

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

#### **SELECT ABBREVIATIONS**

| ABBREVIATION | DEFINITION                  |  |  |
|--------------|-----------------------------|--|--|
| CR           | Complete response           |  |  |
| DCR          | Disease control rate        |  |  |
| DNMT         | DNA methyltransferase       |  |  |
| HR           | Hazard ratio                |  |  |
| ITD          | Internal tandem duplication |  |  |
| MMR          | Mismatch repair             |  |  |
| Muts/Mb      | Mutations per megabase      |  |  |
| NOS          | Not otherwise specified     |  |  |
| ORR          | Objective response rate     |  |  |
| os           | Overall survival            |  |  |
| PD           | Progressive disease         |  |  |
| PFS          | Progression-free survival   |  |  |
| PR           | Partial response            |  |  |
| SD           | Stable disease              |  |  |
| TKI          | Tyrosine kinase inhibitor   |  |  |

MR Suite Version 2.2.0

References

#### ORDERED TEST # ORD-1023717-01

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid: 32102950
- 4. Li et al., 2020; ASCO Abstract 6511
- 5. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 6. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 7. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 8. Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 9. Spigel et al., 2016; ASCO Abstract 9017
- 10. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 11. Govindan R. et al. Cell (2012) pmid: 22980976
- 12. Ding L, et al. Nature (2008) pmid: 18948947
- 13. Imielinski M, et al. Cell (2012) pmid: 22980975
- 14. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- 15. Nature (2012) pmid: 22810696
- 16. Stadler ZK, et al. J. Clin. Oncol. (2016) pmid: 27022117
- 17. Samowitz WS, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11535541
- Elsaleh H, et al. Clin Colorectal Cancer (2001) pmid: 12445368
- 19. Brueckl WM, et al. Anticancer Res. () pmid: 12820457
- **20.** Guidoboni M, et al. Am. J. Pathol. (2001) pmid: 11438476
- 21. Gryfe R. et al. N. Engl. J. Med. (2000) pmid: 10631274
- 22. Sinicrope FA, et al. Gastroenterology (2006) pmid: 16952542
- 23. Guastadisegni C, et al. Eur. J. Cancer (2010) pmid: 20627535
- 24. Laghi L, et al. Dig Dis (2012) pmid: 22722556
- 25. Mehnert JM, et al. J. Clin. Invest. (2016) pmid: 27159395
- 26. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- **27.** Hussein YR, et al. Mod. Pathol. (2015) pmid: 25394778
- 28. Church DN, et al. Hum. Mol. Genet. (2013) pmid: 23528559
- 29. Cazier JB, et al. Nat Commun (2014) pmid: 24777035
- **30.** Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 31. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 32. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- **33.** Rizvi NA, et al. Science (2015) pmid: 25765070
- **34.** Johnson BE, et al. Science (2014) pmid: 24336570
- 35. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- **36.** Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 40. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- **41.** Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573
- **42.** Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- **43.** Goodall J, et al. Cancer Discov (2017) pmid: 28450425
- 44. Goldberg SB, et al. Clin. Cancer Res. (2018) pmid: 2933020745. Bettegowda C, et al. Sci Transl Med (2014) pmid:
- 24553385
- **46.** Lapin M, et al. J Transl Med (2018) pmid: 30400802
- Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
   Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- **49.** Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095
- **50.** Egyud M, et al. Ann. Thorac. Surg. (2019) pmid: 31059681
- **51.** Fan G, et al. PLoS ONE (2017) pmid: 28187169
- **52.** Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 53. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320

- 54. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 55. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 56. Lin AB, et al. Clin. Cancer Res. (2017) pmid: 28331049
- Möröy T, et al. Int. J. Biochem. Cell Biol. (2004) pmid: 15147722
- 58. Lee JM, et al. Lancet Oncol. (2018) pmid: 29361470
- Toledo LI, et al. Nat. Struct. Mol. Biol. (2011) pmid: 21552262
- 60. Buisson R, et al. Mol. Cell (2015) pmid: 26365377
- 61. Yang L, et al. Oncotarget (2015) pmid: 26204491
- **62.** Taylor-Harding B, et al. Oncotarget (2015) pmid: 25557169
- 63. Etemadmoghadam D, et al. Clin. Cancer Res. (2013) pmid: 24004674
- Scaltriti M, et al. Proc. Natl. Acad. Sci. U.S.A. (2011) pmid: 21321214
- Nanos-Webb A, et al. Breast Cancer Res. Treat. (2012) pmid: 21695458
- 66. Ma T, et al. Mol. Cancer Ther. (2013) pmid: 23686769
- 67. Nakayama N, et al. Cancer (2010) pmid: 20336784
- 68. Keyomarsi K, et al. N. Engl. J. Med. (2002) pmid: 12/320/3
- 69. Potemski P, et al. Med. Sci. Monit. (2009) pmid:
- **70.** Callagy G, et al. J. Pathol. (2005) pmid: 15682439
- 71. Leung SY, et al. Mod. Pathol. (2006) pmid: 16575401
- **72.** Lin L, et al. Cancer Res. (2000) pmid: 11156406
- 73. Mayr D, et al. Am. J. Clin. Pathol. (2006) pmid: 16753589
- 74. Stamatakos M, et al. World J Surg Oncol (2010) pmid: 21176227
- Kamnasaran D, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 17463088
- 76. Fu B, et al. Cancer Biol. Ther. (2008) pmid: 18769116
- 77. Kwei KA, et al. PLoS Genet. (2008) pmid: 18535672
- 78. Shen F, et al. Oncol. Rep. (2013) pmid: 23784465
- 79. Zheng R, et al. Genes Cancer (2010) pmid: 21779441
- **80.** Zehir A, et al. Nat. Med. (2017) pmid: 28481359
- 81. Yan M, et al. Breast Cancer Res. (2012) pmid: 2253793482. Xu H, et al. Breast Cancer Res. (2011) pmid: 21255398
- 83. Stevens KN, et al. Breast Cancer Res. Treat. (2011) pmid:
- 21607584 84. Sehl ME, et al. Clin. Cancer Res. (2009) pmid: 19276285
- 85. Supernat A, et al. Oncol Lett (2012) pmid: 23205091
- 86. Deb S, et al. Br. J. Cancer (2014) pmid: 24548858
- 87. Supernat A, et al. Transl Oncol (2014) pmid: 25048628
- 88. Porkka KP, et al. Genes Chromosomes Cancer (2004) pmid: 14603436
- 89. Davis SJ, et al. Mol. Cancer Ther. (2015) pmid: 25852062
- 90. Atienza JM, et al. Mol. Cancer Ther. (2005) pmid: 15767545
- 91. Xu H, et al. Nat. Rev. Cancer (2011) pmid: 21326324
- **92.** Hill VK, et al. Biochim. Biophys. Acta (2016) pmid: 27207471
- 93. Solomon DA, et al. BMB Rep (2014) pmid: 24856830
- 94. Bauerschmidt C, et al. Nucleic Acids Res. (2010) pmid: 19906707
- 95. Yun J, et al. Nucleic Acids Res. (2016) pmid: 26420833
- 96. Gelot C, et al. Nucleus (2016) pmid: 27326661
- **97.** Sofueva S, et al. EMBO J. (2013) pmid: 24185899
- 98. Deng Z, et al. EMBO J. (2012) pmid: 23010778
   99. Yun J, et al. EMBO Rep. (2016) pmid: 27466323
- 100. Mahmood SF, et al. Carcinogenesis (2014) pmid: 24148822
- 101. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- **102.** Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- 103. Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid:

21389100

- **104.** Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 25504633
- 105. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850

**APPENDIX** 

- 106. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- **107.** Camp ER, et al. Cancer Gene Ther. (2013) pmid: 23470564
- 108. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- **109.** Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 110. Hajdenberg et al., 2012; ASCO Abstract e15010
- 111. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 112. Moore et al., 2019; ASCO Abstract 5513
- 113. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224114. Oza et al., 2015; ASCO Abstract 5506
- 115. Lee J, et al. Cancer Discov (2019) pmid: 31315834 116. Méndez E, et al. Clin. Cancer Res. (2018) pmid:
- 29535125 117. Ma CX, et al. J. Clin. Invest. (2012) pmid: 22446188
- 118. Lehmann S, et al. J. Clin. Oncol. (2012) pmid: 22440160
- 119. Mohell N, et al. Cell Death Dis (2015) pmid: 26086967
- 120. Fransson Å, et al. J Ovarian Res (2016) pmid: 27179933
- 121. Gourley et al., 2016; ASCO Abstract 5571
- 122. Kwok M, et al. Blood (2016) pmid: 26563132
- **123.** Boudny M, et al. Haematologica (2019) pmid: 30975914
- **124.** Dillon MT, et al. Mol. Cancer Ther. (2017) pmid: 28062704
- **125.** Middleton FK, et al. Cancers (Basel) (2018) pmid: 30127241
- 126. Kandoth C, et al. Nature (2013) pmid: 24132290
- 127. Wongsurawat VJ, et al. Cancer Epidemiol. Biomarkers Prev. (2006) pmid: 16537709
- 128. Brosh R, et al. Nat. Rev. Cancer (2009) pmid: 19693097
- **129.** Baker SJ, et al. Science (1989) pmid: 2649981
- 130. Calcagno DQ, et al. BMC Gastroenterol (2013) pmid: 24053468
- 131. Alsner J, et al. Acta Oncol (2008) pmid: 18465328
- **132.** Olivier M, et al. Clin. Cancer Res. (2006) pmid: 16489069
- 133. Végran F, et al. PLoS ONE (2013) pmid: 23359294
- 134. Wild PJ, et al. EMBO Mol Med (2012) pmid: 22678923
- 135. Lee EJ, et al. Gynecol. Oncol. (2010) pmid: 20006376
- 136. Ganci F, et al. Ann. Oncol. (2013) pmid: 24107801137. Lindenbergh-van der Plas M, et al. Clin. Cancer Res.
- (2011) pmid: 21467160 138. Peltonen JK, et al. Head Neck Oncol (2011) pmid:
- 21513535 139. Bringuier PP, et al. Int. J. Cancer (1998) pmid: 9761125
- **140.** Feng C, et al. Sci Rep (2014) pmid: 24500328
- 141. Dong ZY, et al. Clin. Cancer Res. (2017) pmid: 28039262
- **142.** Russo A, et al. J. Clin. Oncol. (2005) pmid: 16172461
- 143. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837144. Genovese G, et al. N. Engl. J. Med. (2014) pmid:
- 25426838
- 145. Xie M, et al. Nat. Med. (2014) pmid: 25326804146. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid:
- 28669404
- **147.** Severson EA, et al. Blood (2018) pmid: 29678827 **148.** Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 149. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 150. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 151. Razavi P. et al. Nat. Med. (2019) pmid: 31768066
- 152. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675153. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid:
- 154. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 155. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130

156. Zerdoumi Y. et al. Hum. Mol. Genet. (2017) pmid:

TUMOR TYPE
Unknown primary carcinoma
(NOS)

report date 26 Feb 2021



APPENDIX

References

#### ORDERED TEST # ORD-1023717-01

28472496

- **157.** Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- **158.** Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- 159. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 160. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- **161.** Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 162. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- 163. Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid:

19204208

164. Lalloo F, et al. Lancet (2003) pmid: 12672316

165. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713