

ΤΟ ΟΚΤΑΗΧΟΝ ΣΥΣΤΗΜΑ

ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΚΑΙ ΔΗΜΩΔΟΥΣ

και το της ΑΡΜΟΝΙΚΗΣ ΣΥΝΗΧΗΣΕΩΣ

ΕΠΙΜΕΛΕΙΑ ΕΚΔΟΣΕΩΣ - ΕΙΣΑΓΩΓΗ
Υ Π Ο
ΓΕΩΡΓΙΟΥ Ι. ΧΑΤΖΗΘΕΟΔΩΡΟΥ
ΚΑΘΗΓΗΤΟΥ ΜΟΥΣΙΚΗΣ

EKAOΣΕΙΣ ΒΙΒΛΙΩΝ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ
"Ο MIX. I. ΠΟΛΥΧΡΟΝΑΚΗΣ,,

ΝΕΑΠΟΛΙΣ - ΚΡΗΤΗΣ
1 9 8 0

ΤΟ ΟΚΤΑΗΧΟ ΣΥΣΤΗΜΑ

ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ

K. A. PSACHOY PROFESSOR OF THE GREEC MUSIC

THE HYMN BOOK SYSTEM

OF THE BYZANTINE ECCLESIASTIC

AND FOLC MUSIC

AND OF THE
HARMONIOUS CONSONANCE

EDITED, WITH AN INTRODUCTION
BY

GEORGE I. HATZITHEODOROU

PROFESSOR OF MUSIC

"MICHAEL I. POLYCHRONAKIS.,
NEAPOLIS - CRETE
1980

ΒΡΑΧΥΓΡΑΦΙΑΙ - ΣΥΜΒΟΛΑ

σ.	σελίς.	
σ. σ.	σελίδες.	
σχ.	σχῆμα.	
χ.φ.	χειρόγραφο.	
$\kappa.\lambda.\pi.$	καὶ τὰ λοιπά.	
πλ.	Πλάγιος (ήχος)	
'Εφημ.	έφημερίδα	
βλ.	βλέπε	
ἔ. ἀ .	ἔνθα ἀνωτέρω	
« »	κοινή χρήση εἰσαγωγικῶν γιὰ τὴν καταχώρηση, κατὰ λέξη, ξένης φράσεως ἥ ἐνότητος.	
()	κοινή χρήση παρενθέσεων ύπὸ τοῦ συγγραφέως.	
	παράλειψις κειμένου, ἀρκτική, ἐνδιάμεση, ἤ καὶ μαρτυ- ρία συνεχείας του.	
[]	προσθήκη τοῦ ἐπιμελητοῦ.	
*	ύποσημείωσις ἐπιμελητοῦ	

Κάθε γνήσιο ἀντίτυπο φέρει τὴν ὑπογραφὴ τῶν κληρονόμων τοῦ συγγραφέα.

'Of of K. fayor

ΕΙΣΑΓΩΓΗ

Σὰν δεύτερο βιβλίο μετὰ ἀπὸ τὴν «Παρασημαντική»(1) τοῦ Κ. Ψάχου ποὺ εἶναι τὸ πιὸ ἀντιπροσωπευτικό του ἔργο, προτίμησα νὰ δημοσιεύσω τὴ μέχρι σήμερα ἀνέκδοτη ἐργασία του, «Τό ἀντάηχο σύστημα τῆς βυζαντινῆς μουσικῆς ἐκκλησιαστικῆς καὶ δημώδους καὶ τὸ τῆς άρμονικῆς συνηχήσεως». Ο λόγος, ἀκριβῶς, ἐπειδὴ περιλαμβάνει θέματα πολὺ χαρακτηριστικὰ τῆς δουλειᾶς τοῦ Κ. Ψάχου, ὅπως εἶναι ὁ ἐμπλουτισμὸς τοῦ βυζαντινοῦ ἐκκλησιαστικοῦ μέλους μὲ συνηχητικὴ γραμμὴ — λέγε βυζαντινὴ ἐναρμόνιση — καὶ ἡ σχέση τῶν δημοτικῶν μας τραγουδιῶν μέ αὐτό.

Τὴν ἐργασία αὐτή, γνωστὴ ἄλλωστε καὶ στὸν Ν. Χρυσοχοΐδη $^{(2)}$, βρῆκα ἀνάμεσα στὸ πλῆθος τῶν καταλοίπων τοῦ συγγραφέα $^{(3)}$. (Γι' αὐτὰ ἀφιερώνω εἰδικὲς γραμμὲς στὴ $^{(3)}$ καὶ στὴν ἀγγελία τῆς ἐκδόσεώς της ποὺ ἔκανα στὰ $^{(3)}$ καὶ στὴν ἐφημερίδα τῶν ἱεροψαλτῶν τῆς ᾿Α-θήνας $^{(4)}$).

Έδῶ ἀνοίγω μιὰ παρένθεση. Θεωρῶ τὸν έαυτό μου ἰδιαίτερα εὐ-

Βλ. Κ. Ψάχου «΄Η Παρασημαντική τῆς βυζαντινῆς μουσικῆς». Ἐκδ. Β΄ 'Αθῆναι 1978.

Βλ. Νεκρολογία Κ. Ψάχου ἀπὸ τὸν Ν. Χρυσοχοίδη «'Αγιορείτικη Βιβλιοθήκη» ἔτος 14, ἀρ. 158-160. Βόλος 1949, σελ. 254-56 καὶ ἀρ. 161-162. Βόλος 1950, σελ. 26-28.

^{3. &#}x27;Αναφέρω μὲ συντομία τὶς σπουδαιότερες ἀπὸ τὶς ἐργασίες του ποὺ βρίσκονται στὰ κατάλοιπά του: α' «Πρακτική διδασκαλία τῆς ἐκκλησ. μουσικῆς», β' «'Η Θεωρία τοῦ Παναρμονίου 'Οργάνου», γ' «'Ιστορική ἐπισκόπησις τῆς ἐλλ. μουσικῆς», δ' «Λεξικὸν τῆς βυζαντινῆς μουσικῆς», ε' «'Η Παρασημαντική τῆς βυζαντινῆς μουσικῆς» (τὰ χειρόγραφα ποὺ χρησιμοποίησα γιὰ τὴ δεύτερη ἔκδοση), στ' «'Ερμηνεία καὶ ἐξήγησις μουσικῶν γραμμῶν τῆς ἀρχαίας στενογραφίας», ζ' «Τὸ 'Οκτάηχον σύστημα...» (τὰ χειρόγραφα τῆς παρούσας), η' «'Η 'Αρχαία γραφή ἐξηγουμένη», θ' «Τὸ Συναξάριον τῆς 'Οσίας Εὐφροσύνης», ι' «Λειτουργικόν», ια' «Λειτουργία», ιβ' «Μελέτη καὶ ρυθμική ταυτότης τῆς μεσαιωνικῆς καὶ νεωτέρας ἔλλην. μουσικῆς», ιγ' «Σκέψεις ἐπὶ τῆς μουσικῆς», κ. ἄ.

^{4.} Βλ. «Ἡ ἐπανέκδοσις τῆς Παρασημαντικῆς τοῦ Κ. Ψάχου». Ἐφημ. «Ἱεροψαλτικὰ Νέα» Ὁκτώβριος 1975 — Ἰανουάριος 1976. ᾿Αθῆναι.

ιυχισμένο γιατὶ μοῦ δόθηκε ἡ εὐκαιρία, πρῶτος ἐγώ, νὰ ἀναδιφήσω, έστω βιαστικά, την πολύτιμη μουσική Βιβλιοθήκη του Κ. Ψάχου καί τὰ χειρόγραφά της (5), μὲ ἀποτέλεσμα νὰ ἀνοίξω λίγο τὴν αὐλαία τοδ μυστηρίου πού την περιβάλλει καὶ νὰ δημιουργήσω τὶς προϋποθέσεις γιὰ τὴν ἀξιοποίησή της. Μπορεῖ βέβαια νὰ μὴν ἔγει ἀκόμα προγωρήσει πολύ τὸ θέμα τῆς ἀποδεσμεύσεως καὶ διαθέσεως τοῦ μεγάλου αὐτου μουσικού θησαυρού στην εύγενικιά περιέργεια των είδικων μελετητών της βυζαντινής μουσικής, όμως είναι και αὐτὸ ποὺ ἔγινε μέχρι στιγμής μιὰ ἀρχή. Μιὰ ἀρχή τὴ στιγμὴ πού τὸ ὅλο θέμα είχε ἀποτελματωθεί, παρὰ τὸ ἐνδιαφέρον πολλῶν καὶ ἰδιαίτερα τοῦ, κατ' ἐξοχὴν ἐπιστήμονα μουσικοῦ ἱεράρχη, Σεβ. Μητροπολίτη Σερβίων καὶ Κοζάνης κ. Διονυσίου Ψαριανού. Μεταφέρω ἀπὸ μιά δμιλία του στὴν αίθουσα τοῦ Παρνασσοῦ (18 τοῦ Δεκέμβρη 1966) λίγα σχετικὰ λόγια: « Η σπουδαιότατη ίδιωτική βιβλιοθήκη τοῦ ἀειμνήστου Κ. Ψάχου – λέει καὶ γράφει ὁ "Αγιος Κοζάνης — κινδυνεύει νὰ χαθῆ καὶ ἴσως κανεὶς δέν γνωρίζει αὐτὴν τὴν στιγμὴν ποὺ ἀχριβῶς εὑρίσκεται, διότι κανὲν Ιδρυμα δὲν ἐνδιεφέρθη ἐπὶ εἴκοσι περίπου ἔτη ἀπὸ τοῦ θανάτου τοῦ διδασπάλου νὰ την αγοράση, είτε ή 'Αρχιεπισκοπή 'Αθηνών είτε ή 'Αποστολική Λιακονία είτε αί Θεολογικαί Σγολαί είτε τὸ 'Ωδείον '. Ιθηνών είτε τὸ Μεσαιωνικόν 'Αρχεῖον τῆς 'Ακαδημίας 'Αθηνῶν. "Εχω πληροφορίας ὅτι καὶ οί $^{\prime}A$ μερικανοί καὶ οἱ P $ilde{\omega}$ σοι γνωρίζουν τὴν $ilde{v}$ παρξίν της καὶ ὅτι ἐζήτησαν νὰ τὴν ἀγοράσουν⁽⁶⁾».

'Απὸ τότε πέρασαν βέβαια ἀρκετὰ χρόνια καὶ πολλοὶ ἔδειξαν ἐνδιαφέρον, ἴσως ὅχι τόσο ἀνιδιοτελές, πάντως σήμερα ὑπεύθυνα μπορῶ νὰ πληροφορήσω τὸ Σεβασμιώτατο, ὅτι γνωρίζουμε ποῦ βρίσκεται καὶ τὶ ἀκριβῶς περιλαμβάνει. Ἐπίσης μπορῶ νὰ πιστοποιήσω τὴν πληροφορία του, ὅτι ὑπάρχει μεγάλο ἐνδιαφέρον ἀπὸ ξένους γιὰ τὴν ἀπόκτησή της, πράγμα ποὺ ἴσως τελικὰ δὲ θὰ ἀποφευχθεῖ — ἀπεύχομαι νὰγίνει κάτι τέτοιο — ἄν δὲν ὑπάρξει καὶ ἐκ μέρους τῶν ἑλληνικῶν ἀρμοδίων παραγόντων τὸ ἀντίστοιχο ἐνδιαφέρον. Πάντως γιὰ νὰ εἶμαι εἰλικρινής, τώρα τελευταῖα μὲ τὴν ὅλη ἀνακίνηση τοῦ θέματος ἐξ ἀφορμῆς τῶν δημοσιεύσεών μου ἄρχισε νὰ ἐκδηλώνεται ἀπὸ ἑλληνικῆς

^{5.} Βλ. «Είσαγωγή» καὶ «Βιογραφία» στη Β' ἔκδ. της «Παρασημαντικής».

^{6.} Βλ. Έπισκόπου Δ. Ψαριανοῦ «΄Π βυζαντινή μουσική ώς εξηγείται καὶ ώς παρεδόθη». 'Εν Κοζάνη 1967, σελ. 15.

πλευράς θετική αντίδραση. Έλπίζω καὶ εύχομαι νὰ δικαιωθώ.

Ύστερα ἀπὸ αὐτά ἔχω νομίζω τὸ δικαίωμα νὰ θεωρῶ, ὅτι ἀποτελεῖ, πέραν ἀπὸ τὰ καθαρὰ ἐπιστημονικὰ δεδομένα, προσφορὰ ἡ προσπάθεια ποὺ ἀνάλαβα γιὰ τὴν ἔκδοση τῶν ἀνεκδότων ἔργων τοῦ Κ. Ψάχου, ὅταν μάλιστα αὐτὴ γίνεται μὲ τέλεια ἀνιδιοτέλεια μέσα σὲ φόρτο πολλαπλῶν ἀσχολιῶν καὶ ὑποχρεώσεών μου, καὶ κάτω ἀπὸ τὴν εὕκολη ἐλληνικὴ κατάκριση γιὰ ὅ,τι τὸ νεοεπιχειρούμενο, ἰδίως, μάλιστα, ὅταν αὐτὸ θίγει συμφέροντα, ἤ ἀκόμα ὅταν δὲν προέρχεται ἀπὸ μεγαλοσχήμονες!

Ό ἐλάχιστος ἐλεύθερος χρόνος ποὺ ἔχω στὴ διάθεσή μου γι'αὐτή μου τὴν ἐνασχόληση, εἶναι φυσικὸ νὰ γίνει πρόξενος παραλήψεων καὶ λαθῶν - ζητῶ γι'αὐτὸ τὴν ἐπιείκεια τῶν φίλων ἀναγνωστῶν - , πολὺ περισσότερο ἐφ' ὅσον λόγω ὑπηρεσιακῶν ἀναγκῶν βρίσκομαι μακρυὰ ἀπὸ τὸν τόπο τῆς ἐκτυπώσεως τῶν βιβλίων. "Ομως ἡ πρόθεσή μου εἶναι ἀγαθὴ καὶ κύριο σκοπὸ ἔχει νὰ φέρει σὲ φῶς ὅλο τὸ ἔργο τοῦ φωτισμένου δασκάλου, Κ. Ψάχου, γιατὶ πιστεύω ὅτι βοηθῶ μὲ τὸν τρόπο αὐτό, κατὰ τὴ δύναμή μου, τὴν ὅλη ὑπόθεση τῆς ἐκκλησιαστικῆς μας μουσικῆς, ἔστω καὶ ἄν αὐτὸ μοῦ στοιχίσει κόπο πολὺ καὶ ἐπίκριση. Κλείνω τὴν παρένθεση.

Περιγραφή τοῦ χειρογράφου

Τὸ χειρόγραφο μὲ «Τὸ ὁκτάηχο σύστημα» (βλ. πίνακα Α΄ μὲ τὸ ἐ-ξώφυλλο τοῦ χειρογράφου), ἔχει διαστάσεις 21Χ15,5 καὶ εἶναι γραμμένο μὲ μαῦρο μελάνι πάνω σὲ κοινὸ χαρτὶ τῆς ἐποχῆς. Γράφτηκε ἀπὸ τὸν Κ. Ψάχο στὴ Νέα Σμύρνη τῆς ᾿Αθήνας τοὺς μῆνες Ἰούλιο καὶ Αὕγουστο τοῦ 1941(7), σὲ ἐποχὴ δηλαδὴ δυσμενῶν περιστάσεων γιὰ τὸν Ιδιο ἀλλὰ καὶ γιὰ τὸ Ἔθνος ὁλόκληρο. Αὐτὸ πιστεύω δίνει πρόσθετη άξία στὸ ἔργο. Ἔχει ἀριθμηθεῖ ἀπὸ τὸ συγγραφέα καὶ φθάνει τὶς 336 σελίδες. Ὅμως ἡ ἀρίθμηση εἶναι διαταραγμένη ἐξ ἀφορμῆς κενῶν καὶ μεταγενεστέρων προσθηκῶν τοῦ Κ. Ψάχου. Συγκεκριμένα ἔχουν μείνει ἀνάριθμες 2 σελίδες (παράφυλλο) στὴν ἀρχἡ, ἐκτὸς τοῦ ἐξώφυλλου, καὶ στὸ τέλος (ἐδῶ ὁ πίνακας περιεχομένων). Ἐπίσης οἱ σελίδες

Βλ. στὸ τέλος τοῦ βιβλίου τὴν ἡμερομηνία μαζὶ μὲ τὴν ὑπογραφὴ τοῦ συγγραφέα.

104 - 106, 221 (αὐτὴ δὲν ὑπάρχει λόγω λάθους στὴν ἀρίθμηση. 'Απὸ τὴ 220 πάει στὴ 222), 265, 276 (ὅτι καὶ ἡ 221), 292 - 294 (σ' αὐτὲς τὶς τρεῖς ἐπρόκειτο, σύμφωνα μὲ σημείωση τοῦ Κ. Ψάχου, νὰ περιληφθεῖ τὸ κεφάλαιο «Εκτασις τῶν φωνῶν»), εἶναι λευκές. 'Εκτὸς ἀπὸ αὐτά, μεταξὺ τῶν σελίδων 173 - 174 ὑπάρχουν οἱ 173α-β καὶ στὶς σελίδες 314 - 315 οἱ 314α-δ. Τέλος ἔχουν μείνει δίχως ἀρίθμηση καὶ τὰ φύλλα ποὺ χωρίζουν τὰ μέρη τοῦ βιβλίου (Μερ. πρῶτο 2 φύλλα, μερ. δεύτερο 2 φύλλα καὶ μέρ. τρίτο 1 φύλλο). Δὲν ἔφτιαξα τὴν ἀρίθμηση γιατὶ δὲ μοῦ ἀνατέθηκε κάτι τέτοιο.

Ή κατάσταση τοῦ χειρογράφου είναι πολὺ καλή. Ἐπὶ πλέον είναι ταξινομημένο καὶ σχετικὰ καθαρογραμμένο. Ἔτσι δὲ χρειάστηκε ἀπὸ μέρους μου παρὰ λίγες διορθώσεις καὶ συμπληρώματα (στὰ μουσικὰ κυρίως παραδείγματα) καὶ φυσικὰ δακτυλογράφηση γιὰ τὸ τυπογραφείο.

Περιεχόμενο(8)

Τὸ ὅλο ἔργο διαιρεῖται σὲ τέσσερα μέρη καὶ περιλαμβάνει ἐκτὸς τοῦ προοιμίου (σελ. χφ. 1-8), τὰ ἔξῆς:

Μέρος πρῶτον. «Παραγωγή τῶν τρόπων τῶν ἀρχαίων καὶ τῶν ἤ-χων τῆς βυζαντινῆς μουσικῆς» (σελ. 9-20). «Συμφωνίαι» (21-29). «Συμφωνίαι καὶ συστήματα» (30-32). «Γένη τῆς μουσικῆς» (52-67). «Περὶ τῆς ὑποδιαιρέσεως τῶν ἤχων κατὰ τοὺς βυζαντινοὺς καὶ περί τῶν συστατικῶν αὐτῶν» (41-51). «Συγχορδίαι καὶ δεσπόζοντες φθόγγοι» (52-67). «Περὶ ἔλξεως» (68-84). «Περὶ ἀρμονικῆς συνηχήσεως» (85-103).

Μέρος δεύτερον. «Οἱ ὀκτὰν ἦχοι τῆς βυζαντινῆς μουσικῆς» (107-273). Μέρος τρίτον. «Περὶ ἐπεισάκτων μελῶν» (266-273). «Περὶ τῶν τριῶν Χροῶν». (274-289).

Μέρος τέταρτον. «Οἱ ἦχοι τῶν δημωδῶν ἀσμάτων ἐν συγκρίσει πρὸς τοὺς τῆς ἐκκλησιαστικῆς» (291-336).

Στὴ δεύτερη σελίδα τοῦ πρώτου ἀνάριθμου φύλλου τῆς ἀρχῆς, ὑπάρχει ἡ ἑξῆς σημείωση: «Εἰς τὸ βιβλίον μου Τὸ ᾿Οκτάηχον σύστημα τῆς βυζ. μουσικῆς, ἐκκλ. καὶ δημώδους καὶ τὸ τῆς ἀρμονικῆς συνηχήσε-

^{8.} Αὐτὸ γράφεται ἐπειδὴ πρόκειται ἡ παροῦσα «Εἰσαγωγή» νὰ ἐκτυπωθεῖ σὲ ἀνάτυπα, ἡ δὲ ἀρίθμηση ἀφορᾶ τὶς σελίδες τοῦ χειρογράφου.

ως θὰ προστεθῶσι ἐνηρμονισμένα τὰ ἑξῆς: α) Ἐκκλησιαστικά: 1. Σήμερον τῆς σωτηρίας, 2. Σῶσον Κύριε τὸν λαόν σου, 3. Τῆ Ὑπερμάχω, 4.
Κατεπλάγη Ἰωσήφ, 5. ᾿Αλληλουάριον ἀργοσύντομον, 6. Τὰ ᾿Ανοιξαντάρια, 7. Τὸ Κύριε ἡ ἐν πολλαῖς ἁμαρτίαις, 8. Τὸ Χριστὸς ᾿Ανέστη, 9. Δευτέραν Εὔαν τὴν Αἰγυπτίαν , 10. Στίχοι Δοξολογίας, Ἰακώβου. β) Δημώδη: 1. Κάτω στὸ βάλτο, 2. Παιδιάμ᾽ γιατὶ στ᾽ ἀνάλαγα, 3. Πούσουν πέρδικα, 4. Μάνα μ᾽ ἦρθεν ἡ ἄνοιξη, 5. Παιδιὰ μ᾽ σὰν θέλτε λεβεντιά. Ἦπαντα εἰς Εὐρωπαῖκὴν γραφήν

Δυστυχῶς τὰ παραπάνω ἐκκλησιαστικὰ καὶ δημώδη ἄσματα δὲ βρέθηκαν στὸ χειρόγραφο καὶ ἔτσι δὲν τὰ συμπεριέλαβα στὴν ἔκδοση. Θὰ μποροῦσα βέβαια νὰ τὰ βρῶ εὕκολα, μιὰ καὶ τὰ περισσότερα ἔχουν ἐκδοθεῖ μὲ συνηχητικὴ γραμμὴ καὶ τὰ ἔχω στὴν δική μου βιβλιοθήκη, ἤ καὶ νὰ τὰ φτιάξω σύμφωνα μὲ τὸ πνεῦμα τοῦ συγγραφέα, ὅμως ἦταν ἐπιθυμία τῆς συζύγου του νὰ μὴν προστεθεῖ τίποτα στὸ χειρόγραφο. Ὅποιος ὅμως ἐνδιαφέρεται μπορεῖ νὰ βρεῖ πολλὰ ἀπὸ αὐτὰ στὶς διάφορες ἐκδόσεις τοῦ Κ. Ψάχου καὶ στὶς μουσικὲς ἐφημερίδες καὶ περιοδικὰ τῆς ἐποχῆς⁽⁹⁾.

'Ανάλυση

Μὲ τὸ βιβλίο του αὐτὸ ὁ Κ. Ψάχος ἐπιχειρεῖ νὰ συστηματοποιήσει καὶ νὰ τεκμηριώσει τὸ σύστημα τοῦ ἐναρμονισμοῦ τῶν ἐκκλησιαστικῶν μελῶν, μὲ τὴ διπλῆ συνηχητικὴ γραμμή. Ἐπειδὴ ὅμως ἀναφέρω τὸν ὅρο συνηχητικὴ γραμμή, νομίζω ὅτι δὲν εἶναι ἐντελῶς ἄσκοπη μιὰ σύντομη ἑρμηνεία τοῦ ὅρου αὐτοῦ, κυρίως γιὰ ὅσους φίλους ἀναγνῶστες τοῦ «᾿Οκτάηχου συστήματος» δὲν ἔχουν διδαχθεῖ ἀρμονία.

Ή λέξη συνήχηση στὴ μουσικὴ σημαίνει τὴν ταυτόχρονη ἤχηση δύο ἤ περισσοτέρων μουσικῶν φθόγγων, διαφορετικοῦ τονικοῦ ὕψους. Στὴν εὐρωπαϊκὴ μουσική, ἡ ταυτόχρονη αὐτὴ συνήχηση λέγεται συγχορδία (accord) καὶ τὸ ὅλο σύστημα τῶν συνηχήσεων 'Αρμονία. 'Ο ὅρος εἶναι παρμένος ἀπὸ τὴν ἀρχαία ἑλληνικὴ μουσική, ἄν καὶ γιὰ

^{9.} Βλ. πρόχειρα: 1. 'Εφημ. «Φόρμιγξ» καὶ τὰ μουσικά της παραρτήματα, 2. 'Εφημ. «Νέα Φόρμιγξ» καὶ 3. Τὶς μουσικὸς ἐκδόσεις τοῦ Κ. Ψάχου: «'Η Δοξολογία τῆς 25ης Μαρτίου», 'Αθῆναι 1906. «'Η Λειτουργία», 'Αθῆναι 1909, «Τὰ Χριστὸς 'Ανέστη...», 'Αθῆναι 1909, «'Η Δοξολογία τῆς 25ης Μαρτίου», 'Αθῆναι 1938 κ. ἄ.

τοὺς ἀρχαίους Ἑλληνες ποὺ δὲ χρησιμοποιοῦσαν συνήχηση φθόγγων, πλὴν τοῦ μαγαδίσματος (ταυτόχρονη ἥχηση δύο φθόγγων ποὺ βρίσκονται σὲ ἀπόσταση μιᾶς ὀκταφωνίας μεταξύ τους), σήμαινε ἄλλο πράγμα, τὴ μελωδικὴ δηλαδὴ διαδοχὴ τῶν φθόγγων καὶ τὴν κλίμακα (τὸν τρόπο(10)).

Λέγοντας λοιπὸν διπλή συνηχητική γραμμή, ἐννοοῦμε τὴν ταυτόχρονη ἀπαγγελία δύο βοηθητικῶν μελωδικῶν γραμμῶν κάτω ἀπὸ τὴν κύρια μελωδικὴ γραμμὴ ἑνὸς μέλους. Λέγεται δὲ συνηχητικὴ διπλή γραμμή, σὲ ἀντιδιαστολὴ πρὸς τὴν άπλῆ ποὺ είναι μόνο μιὰ συνηχητικὴ γραμμή. Αὐτὸ ἰσχύει γιὰ τὸ ἴσον, ἐφ' ὅσον είναι γραμμένο λέξη πρὸς λέξη(11)

Γιὰ νὰ πετύχει τὴ σύνθεσή της, στηρίζεται, ὅπως γράφει στὸν πρόλογο τοῦ βιβλίου καὶ ἀλλοῦ(12), ἀποκλειστικὰ καὶ μόνο στὴ βάση «τῆς συμφωνικῆς άρμονίας τῆς ἡμετέρας μουσικῆς καὶ τοῦ ἀγράφως καὶ κατὰ παράδοσιν διασωθέντος *Ισου», καὶ στὴ φωνητικὴ παράδοση(13)

Θέλοντας νὰ καταστήσει τὴν ἐργασία του αὐτὴ κατανοητὴ ἀπὸ ὅλους καὶ μὲ τὴν ἐπιφύλαξη νὰ ἀναπτύξει σὲ ὅλο τὸ πλάτος τὴ θεωρία «τῆς ἐν γένει ἐλληνικῆς μουσικῆς» στὸ «Θεωρητικό» του ποὺ ἥδη εἰ-

^{10.} Τὴν πραγματική ἔννοια τοῦ ὄρου άρμονία, ὅπως τὴν ἐννοοῦσαν οἱ ἀρχαίοι Έλληνες μπορούμε νά διαπιστώσουμε καὶ ἀπὸ τὰ χωρία τῶν: 'Ηρακλείδη του Ποντικού «'Αρμονίας γάρ είναι τρείς' τρία γάρ καὶ γενέσθαι Έλλήνων γένη, Δωριεῖς, Αλολεῖς, Ἰωνας» (Βιβλ. ΙΔ 624). Πλουτάρχου «Λύδιος ή Λυδιστὶ άρμονία, Δώριος ή Δωριστὶ άρμονία....» (Περὶ μουσικής διάλογος) ή και «΄ Ως δὲ φωνή τις ἐστὶν ἄλογος καὶ ἀσήμαντος, λόγος δὲ λέξις ἐν φωνή σημαντική διανοίας, άρμονία δὲ τὸ ἐκ φθόγγων καὶ διαστημάτων....» (Κεφ. χχνιι ψυχολογίας Τιμαίου). 'Αριστείδη Κοϊντιλιανού « Αρμονία μέν οδν καλείται τό τοίς μικροτάτοις πλεονάζον διαστήμασιν ἀπὸ τοῦ συναρμόσασθαι» (Βιβλ. Α΄). Έξ ἄλλου ὁ ᾿Αριστόξενος άρμονία δνομάζει τὸ ἐναρμόνιο γένος «Τρία γένη τῶν μελφδουμένων έστί, διάτονον, χρῶμα, άρμονία» ('Αριστ. Βιβλ. Β'). Τὸ ίδιο καὶ ὁ Εὐκλείδης «'Η άρμονία μελφδεῖται ἐπὶ μὲν τὸ βαρὺ κατὰ δίτονον...». Πέραν άπὸ αὐτά οἱ ἀρχαῖοι ὀνόμαζαν άρμονική ὅτι ἐμεῖς σήμερα λέμε μουσική (βλ. Εὐκλ. «Είσαγ. άρμον». και 'Αλυπίου «Είσαγωγή» και Πλουτάρχου «Περί μουσικής»).

Βλ. Κ. Ψάχου «Περὶ ἴσου». Ἐφημ. «Φόρμιγξ» περ. Β΄ ἔτ. Α΄, ἀριθ. 6, σελ. 1, ᾿Αθήναι 31 Μαΐου 1905.

^{12.} Βλ. Πρόλογο «Λειτουργίας» Κ. Ψάχου 'Αθήναι 1909.

^{13.} Αὐτόθι.

χε ἔτοιμο γιὰ δημοσίευση(14), δὲν καταπιάνεται μὲ πολύπλοκους μαθηματικοὺς ὑπολογισμούς, παρὰ μὲ ὅτι εἶναι ἐντελῶς ἀναγκαῖο. Κυρίως ἀναπτύσσει καὶ ἀναλύει τὴ θεωρία τῶν ὀκτὼ ἤχων, ποὺ ἀποτελοῦν γι' αὐτόν, δίκαια ἄλλωστε, τὴν πηγὴ ἀπὸ τὴν ὁποία μπορεῖ κανεἰς νὰ ἀντλήσει τὸ πλούσιο ὑλικό, προκειμένου νὰ κτίσει τὸ άρμονικὸ σύστημα τῆς ἑλληνικῆς μουσικῆς, ξέχωρα γιὰ κάθε ἤχο μιὰ καὶ ἀποτελεῖ ξεχωριστὸ σύνολο ὁ ἕνας ἀπὸ τὸν ἄλλο. Ἐντελῶς δηλαδὴ ἀντίθετα ἀπὸ τὴν εὐρωπαϊκὴ μουσικὴ ποὺ στηρίζει τὸ άρμονικό της οἰκοδόμημα στὴν ἔννοια καὶ μόνο τοῦ τόνου, πρᾶγμα ποὺ τῆς ἐπιτρέπει νὰ ξεχωρίζει μόνο δύο τρόπους, τὸν μείζονα καὶ τὸν ἐλάσσονα (majeurmineur).

Ή σοβαρή αὐτὴ διαφορὰ μεταξύ βυζαντινῆς καὶ εὐρωπαϊκῆς μουσικῆς γίνεται ἀκόμα μεγαλύτερη, ἄν ἀναλογισθοῦμε ὅτι ἡ βυζαντινὴ μελωδία χρησιμοποιεῖ δίχως καμιὰ ἀμφισβήτηση, ἐφ᾽ ὅσον τόσο ἡ μουσικὴ διδασκαλία ὅσο καὶ ἡ πράξη της συμφωνοῦν ἀπὸ τὰ παλιά, τρία γένη (διατονικό—χρωματικό—ἐναρμόνιο) μέσα στὰ ὁποῖα ἐντάσσονται οἱ ὀκτώ της ἡχοι. Ἐπίσης χρησιμοποιεῖ τριῶν εἰδῶν τόνους (μείζονα—ἐλάσσονα—ἐλάχιστο)(15) ἀντὶ δύο τῆς εὐρωπαϊκῆς (τόνο—ἡμιτόνιο) καὶ τὶς ἔλξεις, τὰ ἰδιαίτερα αὐτὰ χαρακτηριστικὰ γνωρίσματα κάθε ἡχου, καὶ τὶς χρόες ποὺ προσδίνουν σ᾽ αὐτὴν πλοῦτο καὶ ποικιλία ἀπεριόριστη, ἀλλὰ δημιουργοῦν σχεδὸν ἀνυπέρβλητα ἐμπόδια σὲ ὅποιον ἐπιχειρεῖ νὰ τὴν ἐπενδύσει μὲ ἀρμονία τοῦ τύπου τῆς εὐρωπαϊκῆς(16).

^{14.} Βλ. δική μου «Εἰσαγωγή» στη Β΄ ἔκδοση τῆς «Παρασημαντικῆς» 'Αθηναι 1978, καὶ σὲ ἀνάτυπο.

Σχετικά μὲ τὰ διαστήματα τῆς βυζαντινῆς μουσικῆς δὲν ἔχει δοθεῖ ἀκόμα τελειωτικὴ ἀπάντηση. Πάντως παραπέμπω τὸν φίλο ἀναγνώστη στὴν τελευταία ἐργασία πάνω στὰ διαστήματα τῆς βυζαντινῆς μουσικῆς «Γένη καὶ διαστήματα εἰς τὴν βυζαντινὴν μουσικήν» ('Αθῆναι 1970) τοῦ κ. Σίμωνα Καρᾶ, ὁ ὁποῖος ἀσφαλῶς προχωρεῖ τὸ ὅλο θέμα σημαντικά.

^{16.} Σὲ ὅτι ἀφορᾶ τὴν ἐναρμόνιση ἤ μὴ τῆς βυζαντινῆς μουσικῆς, ἔχει χυθεῖ πολὺ μελάνι καὶ δὲ νομίζω νὰ χρειάζεται ἰδιαίτερη μνεία μιὰ ποὺ εἶναι ἄλλωστε καὶ θέμα, πέραν τοῦ ἐπιστημονικοῦ καὶ τεχνικοῦ ἐνδιαφέροντος, λίγο - πολὺ ὑποκειμενικό. "Όμως ἀξίζει νὰ ἀναφέρω τὴ γνώμη ἐνὸς ἀπὸ τοὺς θιασῶτες τῆς τετράφωνης μουσικῆς, τοῦ Θεμ. Πολυκράτη, ὁ ὁποῖος παρὰ τὴν εἰδικότητα καὶ τὴν προτίμησή του δὲ δί-

Βέβαια, μιὰ εἰδικὴ ἀναφορὰ σὲ κάθε ἕνα ἀπὸ τὰ κεφάλαια τοῦ βιβλίου θὰ πάρει πολὺ χῶρο καὶ ἴσως δὲν εἰναι καὶ τόσο χρήσιμη ἐφ' ὅσον ὑπάρχει τὸ ἴδιο τὸ βιβλίο. Γιὰ ὅσους ὅμως θὰ ἔχουν ὑπ' ὄψη τους μόνο τὸ ἀνάτυπο, νομίζω ὅτι θὰ τοὺς φανεῖ χρήσιμη μιὰ σχετικὰ σύντομη ἐλεύθερη ἀνάλυση καὶ σταχυολόγηση.

Όπως γράφω παραπάνω, βάση γιὰ τὴ βυζαντινὴ μουσική ἀποτελοῦν κατὰ πρῶτο λόγο οἱ ἦχοι της. Στὸ πρῶτο λοιπὸν κεφάλαιο, ὁ Κ. Ψάχος ἐξετάζει τὴν ἀρχικὴ προέλευση αὐτῶν τῶν ἦχων, σὲ σχέση μὲ τὴν παραγωγὴ τῶν τρόπων (ῆχων) τῆς ἀρχαίας ἑλληνικῆς μουσικῆς.

Σύμφωνα μ' αὐτὰ ποὺ ἀναπτύσσονται στὸ κεφάλαιο αὐτό, ἡ βυζαντινή μουσική ἐπειδή «βάσιν καὶ θεμέλιον αὐτῆς ἔχει κλίμακα φυσικωτέραν καὶ αὐτῆς τῆς φυσικῆς, οὐδέποτε δὲ τὴν συγκεκραμένην», μὲ τὴ διαίρεσή της σὲ δύο όμοειδῆ τετράχορδα μὲ τρεῖς διαφορετικοὺς τόνους (μείζονα-έλάσσονα-έλάχιστο), χωρισμένα ἀπὸ ἕνα μείζονα (διαζευκτικό) σὰν προσλαμβανόμενο, παράγει ὀκτὼ ἥχους διαφορετικοὺς στὸ ύψος καὶ τὸ μέλος. Ἐνῶ στὴν ἀρχαία μουσικὴ ποὺ χρησιμοποιοῦσε τὴ φυσική καὶ τὴ συγκεκραμένη (πυθαγορική—ἀριστοξενική) κλίμακα, μὲ τὴ διαίρεση τοῦ κάθε τετραγόρδου σὲ ἕνα λεῖμμα καὶ σὲ δύο τόνους όμοειδείς τούς όποίους πάλι διαιρούσαν οί άρχαιοι σε δύο ήμιτόνια (μείζον-Ελασσον), δημιουργούσαν μαζί μὲ τὸν προσλαμβανόμενο δέκα τρεῖς τρόπους(17), στοὺς ὁποίους ἀργότερα προστέθηκαν καὶ ἄλλοι δύο (ὁ Ύπεραιόλιος καὶ ὁ Ύπερλύδιος). Πιὸ γενικά, ἡ βυζαντινή μουσική παράγει τοὺς ήχους της τοὺς κύριους ἀπὸ τὸ κύριο τετράχορδο καὶ τοὺς πλάγιούς της ἀπὸ τὸν πλαγιασμό του πρὸς τὰ κάτω, ἐνῶ ἡ άρχαία άπὸ τὴν ὑπέρθεση αὐτοῦ καὶ πλαγιασμὸ πρὸς τὰ κάτω. "Έτσι ἔχουμε κύριους καὶ πλάγιους (ὑπό) στὴ βυζαντινή, καθὼς κυρίους καὶ πλάγιους (ὑπὸ καί πλάγιους ὑπέρ) στὴν ἀρχαία.

Μὲ τὰ διάφορα τώρα συστήματα, γένη καὶ τὶς χρόες (τὰ χρησιμοποιεῖ ἄλλως τε καὶ ἡ ἀρχαία) καὶ τὸ νόμο τῆς ἔλξεως, ἡ βυζαντινὴ μουσικὴ καταφέρνει νὰ ἀνταποκριθεῖ πλήρως στὴν ποικιλία καὶ στὴν

στασε νὰ γράψει ὅτι, «'Η Βυζαντινή ήμῶν μουσική πρέπει νὰ μένη ἄθικτος' πρῶτον μὲν ὡς ἱστορικὸν κειμήλιον, δεύτερον δέ, διότι δὲν ἐναρμονίζεται. 'Αλλά, καὶ ἐὰν ἐναρμονισθῆ, δὲν δύναται νὰ ἀποδώση τὴν καθ' αὐτὸ ἔννοιαν τοῦ μέλους».

^{17.} Οἱ δεκατρεῖς τρόποι τῶν ἀρχαίων ἡσαν οἱ ἐξῆς: 'Υποδώριος, Δώριος, 'Υπερδώριος, 'Υποῖάστιος, 'Ιάστιος, 'Υπεριάστιος, 'Υποφρύγιος, Φρύγιος, 'Υπερφρύγιος, 'Υποαιόλιος, Αἰόλιος, 'Υπολύδιος, Λύδιος.

πολυηχία τῆς ἀρχαίας, καὶ ἀκόμα περισσότερο ταυτίζει τὴν προέλευσή της ἀπὸ αὐτὴν ἐφ' ὅσον παρακολουθεῖ βῆμα - βῆμα τὶς ἀρχές της.

Στὸ δεύτερο κεφάλαιο, τῶν συμφωνιῶν, ἐκτὸς ἀπὸ τὸν ὁρισμὸ αὐτῶν καὶ τὴ διάκρισή τους σὲ «συμφώνους» καὶ «διαφώνους», ἀκολουθεῖ τὴν ἀρχὴ τῆς διαιρέσεως τοῦ κανόνα, ἀπὸ τὴν ὁποία προκύπτουν οἱ διάφορες συμφωνίες τῆς πρώτης $\left(\stackrel{\frown}{\Delta} - \stackrel{\frown}{\alpha} \right)$ καὶ τῆς τέταρτης $\left(\stackrel{\frown}{\Delta} - \stackrel{\frown}{\alpha} \right)$ διαπασῶν. Ήτοι γιὰ τὴν πρώτη διαπασῶν 2, 3, 4, 5, 9, καὶ 16. Γιὰ τὴν τέταρτη 2, 3, 4, $\frac{27}{16} - \frac{5}{3} \times \frac{81}{80}$, 9 καὶ $15^{(18)}$.

'Απὸ τὴ διαίρεση αὐτὴ προκύπτουν καὶ οἱ τρεῖς τόνοι τῆς βυζαντινῆς μουσικῆς, σύμφωνα μὲ τὰ πορίσματα τῆς Ἐπιτροπῆς τοῦ 81, μείζων $\left(\frac{9}{8}\right)$ ἐλάσσων $\left(\frac{10}{9}\right)$ ἐλάχιστος $\left(\frac{16}{15}\right)$ (ἥ 12, 10, 8)(19).

Τοὺς τρεῖς αὐτοὺς φυσικοὺς τόνους ἀκολουθοῦν κυρίως, ὁ Τέταρτος καὶ ὁ Πλάγιός του καθὼς ἐπίσης καὶ ὁ παράγωγος τοῦ Τετάρτου (μέσος) Λέγετος καὶ ὁ διατονικὸς Βαρύς. Αὐτὸ ἀφορᾶ ἰδιαίτερα τὶς δύο συμφωνίες (διὰ τριῶν μείζονος - μικρᾶς - καὶ διὰ ἔξ τελείας). Οἱ ὑπόλοιπες (διὰ πασῶν, διὰ πέντε, διὰ τεσσάρων καὶ διὰ δύο) είναι κοινὲς στὶς κλίμακες τῶν ἄλλων ἥχων.

'Επίσης πάνω στὴν πέμπτη διαπασῶν $(\hat{\mathbf{q}} - \hat{\mathbf{q}}')$ παράγονται συμφωνίες (2. 3, 4, διὰ τριῶν ἀτελής, 5, $\frac{100}{61}$, 16) ποὺ τὶς ἀκολουθεῖ ὁ Πρῶτος καὶ ὁ Πλάγιός του.

'Απὸ τοὺς δύο χρωματικούς, ὁ Δεύτερος ἀκολουθεῖ τὴ διὰ τριῶν (μείζονα—ἐλάσσονα) Νη - Βου, Βου - Δι, Δι - Ζω καὶ τὴ διὰ τεσσάρων Δι - Νη. 'Ο Πλάγιός του τὴ διὰ πέντε Πα - Κε ποὺ ἀκολουθεῖ ἄλλωστε καὶ ὁ Δεύτερος, γιαυτὸ καὶ δὲν ἀντιφωνοῦν. Ἐπειδή, δηλαδή, προχωροῦν κατὰ τετράχορδα διαζευγμένα, οἱ ἀρχικοί τους τόνοι είναι διαφορετικοὶ (π. χ. Δι — Κε βαρὺ τόνος ἐλάχιστος. 'Οξὸ τόνος μείζων). Αὐτὴ είναι ἡ αἰτία ποὺ δὲν ἀντιφωνοῦν καὶ ὅχι ἐπειδὴ ὅπως γράφουν τὰ πρῶτα Θεωρητικὰ ὅτι Δεύτερος είναι δίφωνος καὶ γιαυτὸ δὲν ἀντι-

Βλ. ὑποσημ. 15.

Βλ. καὶ Ν. Χρυσοχοίδη «Τὰ τονιαῖα διαστήματα τῶν κλιμάκων τῆς βυζαντινῆς μουσικῆς». 'Αθῆναι 1956.

φωνεῖ.

Οί συμφωνίες καὶ τὰ συστήματα ποὺ βρίσκει κανεὶς στὴ Βυζαντινὴ μουσικὴ είναι τὸ τρίτο κεφάλαιο τοῦ βιβλίου.

Τρία είναι τὰ αὐτοτελῆ συστήματα ποὺ ἔχουν ἰδιαίτερη καὶ καθωρισμένη σειρὰ διαστημάτων: Τὸ διαπασῶν, ὁ τροχὸς καὶ τὸ κατὰ τριφωνίαν $(\stackrel{\pi}{\mathbf{q}} - \stackrel{\pi}{\mathbf{q}}, \stackrel{\pi}{\mathbf{q}} - \stackrel{\mathbf{x}}{\stackrel{\mathbf{x}}{\mathbf{q}}}, \stackrel{\pi}{\mathbf{q}} - \stackrel{\Delta}{\stackrel{\pi}{\mathbf{q}}}).$

Τὸ διαπασῶν τὸ ἀκολουθεῖ κυρίως ὁ Πρῶτος καὶ οἱ ἄλλοι διατονικοὶ ἡχοι ποὺ κάνουν τὴ χρήση του μὲ τὰ ἰδιαίτερά τους ἰδιώματα. Τὸν Τροχὸ ὁ Πρῶτος κυρίως καὶ κατὰ δεύτερο λόγο ὁ Πλάγιός του στὰ εἰρμολογικά του μέλη, κάποτε δὲ καὶ ὁ Τέταρτος (τροχός, ὅπως εἰναι γνωστό, εἰναι τὸ σύνολο τριῶν συνημμένων πενταχόρδων καὶ εἰναι τὸ χαρακτηριστικώτερο ἀπὸ τὰ συστήματα).

Τὸ σύστημα τῆς κατὰ τριφωνίαν ἀκολουθεῖ ὁ Πλάγιος τοῦ Τετάρτου σὲ ὡρισμένα ἀργὰ καὶ σύντομα εἰρμολογικά του μέλη, καθὼς καὶ ὁ Τρίτος ῆχος στὰ παπαδικὰ μέλη.

Τὰ συστήματα αὐτὰ ἀκολουθοῦν χαρακτηριστικὰ ὡρισμένοι ἡχοι, σὲ ἀντίθεση ἀπὸ τὶς ἀπλὲς συμφωνίες (διὰ πασῶν, διὰ πέντε καὶ διὰ τεσσάρων) ποὺ εἶναι κοινὲς γιὰ ὅλους τοὺς ἥχους καὶ τὶς χρησιμοποιοῦν ἀνάλογα μὲ τὸ εἶδος τῶν μελῶν τους (τρίφωνα, τετράφωνα, πεντάφωνα κ.λ.π.)

*Αλλο θέμα τοῦ βιβλίου είναι τὰ Γένη (τέταρτο κεφάλαιο).

Τὰ ἀρχαῖα γένη τῆς μουσικῆς τῶν Ἑλλήνων, δηλαδή τὸ διάτονο, τὸ χρῶμα καὶ ἡ ἀρμονία⁽²⁰⁾, ὑπάρχουν καὶ στὴ βυζαντινὴ μουσικὴ μὲ τὰ ὀνόματα διατονικό, χρωματικὸ καὶ ἐναρμόνιο «σὐχὶ βεβαίως αὐτούσια, ἀλλὰ κατὰ προσέγγισιν ἐν τοῖς πλείστοις καταπλήσσουσαν».

Βέβαια, δὲν εἶναι δυνατὸ νὰ ὑποστηρίξει κανεὶς ὅτι ἔχουν διασωθεῖ αὐτούσια. Παρ' ὅλα ὅμως αὐτά, μέσα στὰ διαστήματα τῆς βυζαντινῆς μουσικῆς συναντιοῦνται ὅλες σχεδὸν οἱ μορφὲς τῶν μικρῶν καὶ τῶν μεγάλων διαστημάτων ποὺ διακρίνονται μέσα στὰ τετράχορδα τῶν ἀρχαίων γενῶν, ἀπὸ τὰ ὁποῖα παράγονται καὶ οἱ χρόες ποὺ τἰς βρίσκουμε καὶ στὴ βυζαντινὴ μουσική.

Απὸ τὰ ἀρχαῖα γένη, τὸ διάτονο (αὐτὸ είναι τὸ βασικὸ καὶ ά-

 [«]Τρία γένη τῶν μελφδουμένων ἐστὶ διάτονον, χρῶμα, ἀρμονία». Βλ. καὶ ὑποσημ. 10.

πὸ αὐτὸ προῆλθαν τὰ ἄλλα δύο) προχωρεῖ κατὰ ἡμιτόνιο, τόνο, τόνο « Ἡμιτόνιον, εἶτα τόνος καὶ αὖθις τόνος, τρία διαστήματα ἐν τέσσαρσιν ἀριθμοῖς, ὅ ἐστι φθόγγοις, καὶ ἐκ τούτου γε Διανονικὸν καλεῖται ἐκ τοῦ προχωρεῖν διὰ τῶν τόνων αὐτὸ μονώτατον τῶν ἀλλων $^{(21)}$ ».

Τὸ χρωματικό, βαδίζει κατὰ ἡμιτόνιο, ἡμιτόνιο, τριημιτόνιο, μὲ πυκνὰ τουτέστι διαστήματα «ηὐξημένον καὶ πεπυκνωμένον ἡμιτονίοις» κατὰ τὸν Κοϊντιλιανὸν (᾿Αριστ. Βιβλ. Β΄).

Τέλος, τὸ ἐναρμόνιο ὁδεύει κατὰ τεταρτημόριο, τεταρτημόριο, δίτονο ἀσύνθετο «Ἡ ἀρμονία μελφδεῖται ἐπὶ μὲν τῷ βαρὰ κατὰ δίτονον, δίεσιν καὶ δίεσιν, ἐπὶ δὲ τὸ ὀξὰ ἐναντίως κατὰ δίεσιν, δίεσιν καὶ δίτονον (22)».

Όλα αὐτὰ μὲ τὶς παραλλαγές τους ποὺ τὶς δημιουργούσε ἡ χρήση τῶν Χροῶν (αὐτὲς ἡταν ἐν ὅλω ἔξη. Δύο γιὰ τὸ διάτονο: Διάτονο σύντονο καὶ διάτονο μαλακό, τρεῖς γιὰ τὸ χρῶμα: Χρῶμα τονιαῖο, χρῶμα ἡμιόλιο καὶ χρῶμα μαλακό, καὶ μιὰ γιὰ τὴν ἀρμονία: Τὸ ἐναρμόνιο γένος), διακρίνονται, ὅμως γράφω παραπάνω, καὶ στὴ βυζαντινὴ μουσική, ἐφ᾽ ὅσον στὰ τετράχορδά της βλέπουμε τόνους μεγάλους, μικρούς, πιὸ μικρούς καὶ ἐλάχιστους ἐλαττωμένους καὶ μεγάλους αὐξημένους, νὰ συμπλέκονται μεταξύ τους καὶ νὰ χρωματίζονται ἀπὸ τὶς χρόες καὶ στὰ τρία γένη, ὅπως ἀκριβῶς καὶ στὴν ἀρχαία μουσική.

Τὸ πέμπτο κεφάλαιο μιλᾶ γιὰ τοὺς ὀκτώ ἤχους καὶ τὶς ὑποδιαιρέσεις τους.

Όπως είναι γνωστὸ οἱ ἡχοι τῆς βυζαντινῆς μουσικῆς είναι δκτώ, τέσσερις κύριοι καὶ τέσσερις πλάγιοι. Ὁ Πρῶτος καὶ ὁ Πλάγιός του, ὁ Τέταρτος καὶ ὁ Πλάγιός του ἀκολουθοῦν τὸ διατονικὸ . γένος (τόνος μείζων, ἐλάσσων, ἐλάχιστος). Ὁ Δεύτερος καὶ ὁ Πλάγιός του τὸ χρωματικὸ γένος (τόνος ὑπερμείζων αὐξημένος, ἐλάχιστος ἐλαττωμένος ἐλάχιστος). Καὶ τέλος ὁ Τρίτος καὶ ὁ Βαρὺς τὸ ἐναρμόνιο γένος (τόνος, ἡμιτόνιο).

Παλιότερα οἱ βυζαντινοὶ εἶχαν περισσότερες ὑποδιαιρέσεις τῶν ἤχων. Διαιροῦσαν αὐτοὺς σὲ μέσους (δύο φωνὲς κάτω ἀπὸ τὸν κύριο), παραμέσους (μιὰ φωνὴ κάτω ἀπὸ τὸ μέσο), δίφωνους (δύο φωνὲς κάτω ἀπὸ τὸν κύριο), τρίφωνους (τρεῖς φωνὲς πάνω), τετράφωνους (τέσ-

^{21.} Βλ. Νικόμαχου Γερασηνοῦ «'Αρμονικής έγχειρίδιον».

^{22.} Δίεση οἱ ἀρχαῖοι ἐννοοῦσαν τὸ τεταρτημόριο. Σύμφωνα μὲ τὸν Κοῖντιλιανὸ «Δίεσις, ὅπερ ἐστὶν ἡμιτονίου ἤμισυ» ('Αριστ. βιβλ. Β').

σερεις φωνές πάνω). Ή σχέση αὐτὴ ἴσχυε καὶ γιὰ τοὺς πλάγιους, μὲ ἀντιστροφὴ τῶν σχέσεών τους.

Τὸ ἀποτέλεσμα ήταν - είναι - οί ήχοι νὰ παρουσιάζονται τρεπτικοὶ καὶ νὰ ἀνταλλάσσονται ὁ ἔνας μὲ τὸν ἄλλο. Πλήρη ὁπωσδήποτε ἀνάλυση γιὰ τὶς ὑποδιαιρέσεις τῶν ἤχων μπορεῖ νὰ βρεῖ ὁ ἀναγνώστης στὴ Β΄ ἔκδοση τῆς «Παρασημαντικῆς» τοῦ Κ. Ψάχου. Ἐπίσης καὶ στὴν πραγματεία τοῦ Ἱερομονάχου Γαβριὴλ γίνεται εἰδικὸς λόγος (23).

Οἱ διαιρέσεις αὐτὲς τῶν ἤχων γινόντουσαν βάσει τῆς θεωρίας τοῦ τροχοῦ τῶν Βυζαντινῶν, τὴν ὁποία καθώρισαν ὁ Ἰωάννης Κουκουζέλης καὶ ὁ Ἰωάννης ὁ Πλουσιαδηνός (24).

Ή ὑποδιαίρεση αὐτὴ τῶν ἥχων ὑπάρχει καὶ στὴ σημερινὴ βυζαντινὴ μουσικὴ ὅχι ὅμως μὲ τὸ πνεῦμα τοῦ τροχοῦ, ἀλλὰ ἀνάλογα μὲ τἰς συμφωνίες ποὺ ὑπερισχύουν σὲ κάθε ἦχο, καὶ ἀνάλογα ἀπὸ τὴ σύσταση τοῦ μέλους του καὶ τῶν ἰδιωμάτων του.

Τὰ ἱδιαίτερα αὐτὰ γνωριστικὰ ἰδιώματα καὶ συστατικὰ τοῦ κάθε ήχου εἶναι ἡ κλίμακα, οἱ δεσπόζοντες φθόγγοι καὶ οἱ καταλήξεις γιὰ τὶς ὁποίες μιλοῦν ἀπὸ τοῦ Χρυσάνθου⁽²⁵⁾ καὶ ἔπειτα ὅλα τὰ Θεωρητικὰ καὶ γιαυτὸ δὲ χρειάζεται νὰ γίνει ἰδιαίτερη μνεία. Πρέπει ὅμως νὰ ἀναφερθεῖ, ὅτι ἐκτὸς τῶν κυρίων αὐτῶν συστατικῶν ὑπάρχουν καὶ ἄλλα δευτερεύοντα, μποροῦμε νὰ ποῦμε, ποὺ ὅμως διαμορφώνουν τὸ ἡθος κάθε ήχου καὶ τὸν παρουσιάζουν διαφορετικὸ ἀπό τοὺς ἄλλους, μὲ πολλὰ ἰδιαίτερα γνωριστικὰ στοιχεῖα. Αὐτὰ εἶναι τὸ ποσόν, τὸ ποιόν, τὰ διαστήματα, ὁ χρόνος, ὁ ρυθμός, ἡ χρονικἡ ἀγωγή τὰ χρώματα, οἱ ἔλξεις καὶ ὁ τρόπος.

^{23.} Βλ. Γαβριὴλ Ἱερομονάχου «Τὶ ἐστὶ ψαλτικὴ καὶ περὶ τῆς ἐτοιμολογίας τῶν σημαδίων αὐτῆς».. Παράρτημα «Ἐκκλησ. Ἡληθείας» τεῦχ. 2, Κων/πολις 1900. Ἐμμ. Βαμβουδάκη «Συμβολή». Σάμος 1938 καὶ L. Tardo «L'antica melourgia Bizantina Grottaferrata» 1938.

^{24.} Βλ. Κ. Ψάχου «΄Η παρασημαντική τῆς βυζ. μουσικῆς». Β΄ ἔκδ. ᾿Αθῆναι 1978. Σ. Καρᾶ «΄Η βυζαντινή μουσική σημειογραφία» [᾿Αθήνα 1933]. Γρ. Στάθη «΄Η παλαιὰ βυζαντινή σημειογραφία καὶ τὸ πρόβλημα μεταγραφῆς της εἰς τὸ πεντάγραμμο». «Βυζαντινά» τόμ. 7ος, Θεσ/νίκη 1975, σελ. 195 - 220 καὶ σὲ ἀνάτυπο κ. ἄ.

Βλ. Χρυσάνθου τοῦ ἐκ Μαδύτων «Θεωρητικὸν Μέγα τῆς Μουσικῆς».
 Τεριέστη 1932.

Τὸ ἔκτο κεφάλαιο είναι τὸ είδικὸ τοῦ βιβλίου γιατὶ πραγματεύεται τὶς συγχορδίες καὶ τοὺς δεσπόζοντες φθόγγους βάσει τῶν ὁποίων γίνεται ἡ ἐναρμόνιση τῶν μελῶν μὲ τἡ συνηχητικὴ γραμμή.

Οἱ ἀκραῖοι φθόγγοι τῶν συμφωνιῶν κάθε ἥχου (ἐστῶτες) ἀποτελοῦν τὸ θεμέλιο πάνω στὸ ὁποῖο περιστρεφόμενοι οἱ ἄλλοι (δευτερεύοντες) φθόγγοι στηρίζονται καὶ συμπληρώνουν τὸ μέλος. Οἱ φθόγγοι αὐτοὶ δὲν εἶναι ἄλλοι ἀπὸ τοὺς δεσπόζοντες φθόγγους ποὺ πράγματι κυριαρχοῦν στὴ δομὴ τὴ μελωδικὴ κάθε ἥχου. Πάνω σ' αὐτοὺς τοὺς δεσπόζοντες φθόγγους γίνονται οἱ διάφορες καταλήξεις τῶν ἤχων (ἀτελεῖς, ἐντελεῖς, τελικές). Οἱ φθόγγοι ἐπίσης αὐτοὶ εἶναι οἱ βάσιμες συγχορδίες κάθε ἥχου καὶ πάνω σ' αὐτοὺς διακρίνει αὐτὸς ποὺ θέλει νὰ βάλει ἀρμονικὴ ἐπένδυση στὸ μέλος τὴ δυνατότητα τῆς τῆς ταυτόχρονης ἠχήσεως καὶ τῆς ἀναμίξεως αὐτῶν. Αὐτὸ ἀφορᾶ ἰδιαίτερα τὸν κάθε ἡχο καὶ ὅχι ἀπλῶς μιὰ κλίμακα.

Οἱ συγχορδίες ποὺ μπορεῖ νὰ προκύψουν ἀπὸ τὴ χρήση αὐτῶν τῶν δεσποζόντων καὶ τῶν ἀκραίων φθόγγων τῶν συμφωνιῶν δὲν εἶναι καὶ οἱ μόνες ποὺ μπορεῖ νὰ ἀρκέσουν γιὰ τὸ σκοπὸ αὐτό. 'Υπάρχουν καὶ πολλὲς ἄλλες ποικιλίες στὸ πολύηχο ἄλλωστε σύστημα τῆς βυζαντινῆς μουσικῆς. Μερικὲς ἀπὸ αὐτὲς μπορεῖ νὰ συμπέσουν μὲ τὶς συγχορδίες τῆς εὐρωπαϊκῆς μουσικῆς, ὅπως στὸν Πλάγιο τοῦ Τετάρτου (μείζων τρόπος τῆς εὐρωπαϊκῆς) καὶ τοῦ ἐναρμονίου Πλαγίου τοῦ Πρώτου (ἐλάσσων τρόπος εὐρωπαϊκῆς), οἱ ὁποίες παρ' ὅλη τὴ σχετικὴ διαφορὰ ποὺ τὶς χαρακτηρίζει, χρειάζονται εἰδικὰ προσεγμένη χρησιμοποίηση οὕτως ὥστε νὰ μὴν πάρει ἡ συνηχητικὴ γραμμὴ τὸν χαρακτῆρα εὐρωπαϊκῆς ἀρμονίας ἀντιστικτικῆς, ἀλλὰ οὕτε καὶ νὰ παραμορφώνεται ἡ κυρίως μελωδία ποὺ ἔχει ἀπόλυτα τὸν κύριο λόγο στὴ Βυζαντινὴ μουσική.

Σύμφωνα μὲ τὶς σχέσεις αὐτὲς ἔχουμε συνηχήσεις π. χ. στὸν Πρῶτο ἡχο - Πλ. Α΄: Πα - Γα, Πα - Κε, Πα - Γα - Κε, Πα - Γα - Κε - Πα (στὸν στιχηραρικό), Πα - Δι, Πα - Ζω΄, Πα - Δι - Ζω΄, Πα - Δι - Ζω - Πα΄, Πα -

Δι - Ζω, Πα - Δι - Ζω΄ - Πα΄ (στὸν εἰρμολογικό). 'Ανάλογα βγαίνουν καὶ οἱ συγχορδίες τῶν ἄλλων ήχων στὰ διάφορα εἴδη τῶν μελῶν τους.

Στή συνέχεια τὸ ἔβδομο κεφάλαιο είναι γιὰ τὶς ἕλξεις τῶν ήχων. Κάθε ήχος ἀκολουθεῖ, ὅπως είναι γνωστό, δική του κλίμακα ποὺ ἔχει μιὰ καθωρισμένη σειρὰ διαστημάτων. Ἡ κλίμακα ὅμως αὐτὴ δὲν ἀρκεῖ γιὰ νὰ ἀποδώσει ὅλες τὶς μικρολεπτομέρειες τὶς διαστηματικὲς ποὺ χρησιμοποιοῦν τὰ διάφορα εἴδη τοῦ μέλους του καὶ τὴν κάνουν νὰ

άποτελεῖ ξεχωριστό σύνολο ἀνάμεσα στοὺς ἄλλους ἤχους, νὰ παρουσιάζεται δηλαδή σὰν ἤχος καὶ ὅχι ἀπλῶς σὰν κλίμακα.

"Εχει, λοιπόν, ὁ κάθε ήχος τὰ δικά του ξεχωριστὰ ἰδιώματα τὶς Ελξεις. 'Εδῶ ἀναφέρομαι στὴ μελωδικὴ Ελξη (ὑπάρχει καὶ άρμονικὴ Ελξη) ποὺ είναι νόμος τῆς μουσικῆς καὶ είναι ἰδιαίτερα ὑπαρκτὸς στὴ φωνητικὴ μουσικὴ ὅπως είναι κατ' ἐξοχὴν ἡ ἐλληνικὴ καὶ ἡ ἀνατολικὴ γενικὰ μουσική, ἐφ' ὅσον στηρίζονται πρώτιστα στὴ μελωδία.

Ή ελξη ήταν γνωστή καὶ στοὺς ἀρχαίους Έλληνες. Αὐτὸ φαίνεται ἀπὸ τὴ συχνή καὶ πολλαπλή χρήση τῶν χροῶν ποὺ ἄλλαζαν τὴν ἀρχικὴ διαίρεση τῶν τετραχόρδων σὲ πολλοὺς συνδυασμούς.

Σὲ ὅτι ἀφορᾶ τὴν ἀρχαία μουσικὴ καὶ τὴ μουσικὴ τῶν βυζαντινῶν, ὑπάρχει ἀσάφεια γιὰ τὸν ἀκριβὴ ρόλο τῶν ἔλξεων, κρύβεται ὅμως σίγουρα πίσω ἀπὸ τὰ «ἀπόρρητα» μυστήρια τοῦ Κοῖντιλιανοῦ, τὰ ὁποῖα καθὼς μᾶς λέει «ἐν ταῖς πρὸς ἀλλήλους ὁμιλίαις διεσώζοντο». Τὸ ἴδιο καὶ ὁ Μανουὴλ Χρυσάφης (26) καὶ ὁ Γαβριὴλ ὁ ἱερομόναχος (27), ἀφήνουν νὰ διαφανεῖ στὶς ἐργασίες τους ἡ ὕπαρξη καὶ ἡ γνώση τοῦ νόμου τῶν ἕλξεων.

Έλξεις λοιπὸν είναι τὸ πάθος τῶν ὑπερβασίμων φθόγγων τῆς κλίμακας ένὸς ῆχου νὰ ἔλκονται ἀπὸ τοὺς ὑπερκείμενους ἡ ἀκόμα (σπανιώτερα) ἀπὸ τοὺς ὑποκείμενους. Ἰδιαίτερα ἔντονη είναι ἡ ἕλξη αὐτῶν πρὸς τοὺς ἀκραίους (ἐστῶτες) φθόγγους τῶν τετραχόρδων. Ἐννοείται ἐδῶ ὅτι οἱ δεσπόζοντες φθόγγοι είναι σταθεροὶ καὶ ἀμετακίνητοι καὶ βασικὰ τραβοῦν πρὸς τὸ μέρος τους τοὺς ὑπερβάσιμους. Οἱ ἔλξεις ἀνήκουν στὰ ἰδιαίτερα ἰδιώματα κάθε ἡχου.

Οἱ ἔλξεις γίνονται ἔντονα ἀντιληπτὲς στὴν ἐκτέλεση τοῦ μέλους, ὅταν αὐτὴ γίνεται ἀπὸ καλοὺς ἐκτελεστές, γνῶστες τῆς βυζαντινῆς μουσικῆς πραγματικοὺς μὲ παράδοση ὕφους ψαλτικοῦ, στὸ ὁποῖο ὁ ρόλος τῶν ἔλξεων αὐτῶν είναι κάτι παραπάνω ἀπὸ σημαντικός, δεδομένου ὅτι αὐτὸ «γραφὴ οὐ γράφεται». Πρακτικὰ μόλις ἡ Ἐπιτροπὴ τοῦ 81 καθώρισε λίγες ἀπὸ τὶς ἕλξεις αὐτές (28). Είναι καὶ αὐτὲς ἕνα ἀπὸ τὰ ἰδιαί-

^{26.} Βλ. Μανουήλ Χρυσάφη «Περὶ τῶν ἐνθεωρουμένων τῆ Ψαλτικῆ Τέχνη καὶ ὧν φρονοῦσι κακῶς τινες περὶ αὐτῶν». «Φόρμιγξ» περ. Α΄, ἔτος Ζ΄, άρ. 4, ᾿Αθῆναι 1903.

^{27.} ξ. ά. ύποσημ, 23.

^{28.} Βλ. «Στοιχειώδης διδασκαλία τῆς ἐκκλησιαστικῆς μονσικῆς ἐκπονηθεῖσα ἐπὶ τῆ βάσει τοῦ Ψαλτηρίου ὑπὸ τῆς μουσικῆς Ἐπιτροπῆς». Κων/λις 1833.

τερα χαρακτηριστικά πού πρέπει νὰ ἔχει ὑπ' ὄψη του ὅποιος θέλει νὰ ντύσει τὴ βυζαντινὴ μουσικὴ μελωδία μὲ συνήχηση ἀρμονική. Σχετικὰ μπορεῖ νὰ πληροφορηθεῖ ὁ ἀναγνώστης, εἰδικὰ γιὰ τὶς ἕλξεις τοῦ κάθε ἤχου, ἀπὸ τὰ Θεωρητικὰ στὰ ὁποῖα γίνεται λόγος⁽²⁹⁾.

Περί άρμονικής συνηχήσεως (συνηχητική γραμμή)(30).

Σύμφωνα μὲ ὅσα ἔχουν λεχθεῖ, μπορεῖ νὰ καταρτισθεῖ πλῆρες σύστημα άρμονικῆς συνηχήσεως στὰ ἐκκλησιαστικὰ καὶ στὰ ἄλλα μέλη τῆς ἐν γένει ἑλληνικῆς μουσικῆς, μὲ τὴν προϋπόθεση, ὅτι θὰ γίνει συνετὴ καὶ συντηρητικὴ χρήση τοῦ ὑλικοῦ ποὺ προσφέρεται στὰ παραπάνω κεφάλαια.

Είναι λοιπὸν δυνατό νὰ γραφεῖ κάτω ἀπὸ τὸ κυρίως μέλος διπλῆ ἀρμονικὴ γραμμὴ (στὴ βυζαντινὴ ἐναρμόνιση ὀνομάζεται διπλῆ συνηχητικὴ γραμμή) ἡ ὁποία σὰν ὁμοειδής, ὁμότονη καὶ ὁμόηχη, θὰ παράγει τελικὰ ἄκουσμα πλῆρες «ἀρμονικῆς, πλὴν ἑλληνικῆς συνηχήσεως».

Ή διπλή συνηχητική γραμμή ἐφαρμόζεται, ἀνάλογα με τὰ είδη τῶν μελῶν, σὲ εὐρεία ἤ περιορισμένη κλίμακα. Πάντως γιὰ τὰ ἐκκλησιαστικὰ μέλη ἀκολουθεῖ συντηρητική καὶ περιωρισμένης ἐλευθερίας κίνηση, ἐνῶ γιὰ τὰ ἐξωτερικὰ πιὸ ἐλεύθερη καὶ ἰδιαίτερα γιὰ τὰ ἐνορχηστρωμένα.

Βάση τῆς συνηχητικῆς γραμμῆς είναι οἱ συμφωνίες καὶ οἱ συγχορδίες ποὺ παράγονται ἀπὸ αὐτές (κατὰ πρῶτο λόγο οἱ συμφωνίες ποὺ προκύπτουν ἀπὸ τοὺς δεσπόζοντες φθόγγους καὶ κατὰ δεύτερο ἀπὸ τοὺς ἄλλους, τοὺς ὑπερβάσιμους). Πρῶτος ἐναρμονίσημος φθόγγος θεωρεῖται στὴ συνηχητικὴ γραμμὴ ὁ θεμέλιος κάθε συμφωνίας, π. χ. Νη - Γα: Πρῶτος ὁ Νη σὰν θεμέλιος.

^{29.} Σχετικά μὲ τὰ μέχρι σήμερα ἐκδοθέντα Θεωρητικά βλ. ἡμέτερη «Εἰσαγωγή» στὴν τρίτη ἔκδοση τοῦ «Μ. Θεωρητικοῦ» τοῦ Χρυσάνθου, ἔκδ. Κ. Σπανοῦ. ᾿Αθῆναι 1978 καὶ σὲ ἀνάτυπο.

^{30.} Γύρω ἀπὸ τὴν ὀνομασία τῆς ἀρμονικῆς ἥ συνηχητικῆς (ἀπλῆς καὶ διπλῆς) γραμμῆς στὴ βυζαντινὴ μουσικὴ ὑποστηρίχθηκε ἡ ἄποψη, ὅτι πρῶτος ποὺ τὴν ὀνόμασε ἔτσι ἡταν ὁ Ν. Καμαράδος (βλ. Γεωργίου Καμαράδου - Βυζαντίου «Βιογραφία Νηλέως Καμαράδου» ['Αθῆναι] 1976). Όπως ὅμως καὶ νὰ ἔχει τὸ πρᾶγμα ὁ πρῶτος ποὺ τὴν συστηματοποίησε καὶ τὴν παρουσίασε στὸν τύπο είναι ὁ Κ. Ψάχος.

Ή διπλή συνηχητική γραμμή ἀκολουθεῖ τὸ τριφωνικὸ σύστημα τῆς άρμονικῆς ἐπεξεργασίας (τρίφωνη άρμονία) καὶ ποτὲ τὸ τετράφωνο. Τὸ παραγόμενο ἄκουσμα είναι διαφορετικό ἀπὸ τὴν άρμονία τῆς εὐρωπαϊκής. Ένω στὴν εὐρωπαϊκὴ άρμονία κάθε μιὰ ἀπὸ τὶς φωνὲς άκολουθεί έντελως δική της μελωδική γραμμή τίς περισσότερες φορές ἀνεξάρτητη (δὲ μιλῶ γιὰ τὸ πρίμο - σεκόντο τῆς ἀπλῆς καντάδας ποὺ έφάρμοσε σὲ μέλη τῆς βυζαντινῆς μουσικῆς ὁ Ἰωάννης Σακελλαρίδης), στή συνηχητική γραμμή οί γραμμές πού παράγονται ἀπό τήν ἀνάμιξή τους είναι τέτοιες, ώστε, ἄν μελωδηθεῖ κάθε μιὰ ίδιαίτερα δίνει μέλος παρόμοιο πρός τὸ μέλος τῆς κύριας μελωδικῆς γραμμῆς τοῦ ἴδιου ἥχου, τῆς αὐτῆς ὑφῆς καὶ τοῦ αὐτοῦ ἥθους. Αὐτὸ ἔχει σὰν συνέπεια νὰ νὰ δεσμεύει τὴν ἐλευθερία τῆς χρήσεως ὅλων τῶν συμφωνιῶν καὶ τῶν συγχορδιών. Πολλές φορές ενας φθόγγος που είναι ἀπαραίτητος σὲ μιὰ συγχορδία, δὲ μπορεί νὰ χρησιμοποιηθεί ἐφ' ὅσον ἡ χρήση του είναι είναι δυνατό να δώσει ακουσμα διαφορετικού ήχου και έπομένως παράφωνο καὶ παράχορδο (αὐτὸ είναι ἡ βασικὴ ἀδυναμία τῆς τρίφωνης άρμονικής γραμμής τοῦ Ἰ. Σακελλαρίδη. Αὐτὴ μπορεῖ σὲ πολλὲς περιπτώσεις νὰ ἔχει πλούσιο ἄκουσμα σὲ σχέση μὲ τὴ συνηγητικὴ γραμμή, δμως τὸ παραγόμενο ἄκουσμα είναι ἐκτὸς ἥχου, ὕφους καὶ ἤθους τῆς βυζαντινῆς μουσικῆς).

'Απαραίτητα ή συνηχητική γραμμή πρέπει νὰ ἀκολουθεῖ ἀπὸ κάτω τὴν κύρια μελωδική, οὐδέποτε δὲ νὰ τὴν ὑπερβαίνει. Στὶς ἀτελεῖς καταλήξεις, ή πρώτη συνηχητική καταλήγει ὅπου καὶ ἡ κύρια, ἐνῶ ἡ δεύτερη στὸν φθόγγο τῆς βάσεως. Οἱ ἐντελεῖς καὶ τελικὲς καταλήξεις εἶναι κοινὲς στὸν φθόγγο τῆς βάσεως γιὰ ὅλες τὶς γραμμὲς (ταυτοφωνία).

Όταν τὸ κυρίως μέλος είναι ψηλὰ ἤ καὶ ξεπερνᾶ τὰ ὅρια τοῦ τετραχόρδου, ἡ μεσαία συνηχητικὴ ἰσοκρατεῖ ἐνῶ ταυτόχρονα ἡ δεύτερη ἐκτελεῖ τὸ κύριο μέλος μιὰ ὀκταφωνία κάτω (μαγάδισμα).

Στὰ μέλη γιὰ ὀρχήστρα ἔχουν ἐφαρμογὴ οἱ ἴδιοι κανόνες ποὺ ἰσχύουν γιὰ τὴν ἐναρμόνιση γενικὰ τῶν μελῶν. Γιὰ τήν ἐνοργάνωσή τους ἰσχύουν οἱ κανόνες οἱ γενικοὶ τῆς ἐνορχηστρώσεως, ὁπότε ἡ διανομὴ τῶν ὀργάνων γίνεται σύμφωνα μὲ αὐτούς.

'Απὸ ὅλα αὐτὰ βγαίνει τὸ συμπέρασμα ὅτι ἡ συνηχητικὴ γραμμὴ τοῦ Κ. Ψάχου στηρίζεται στὴν ὁμοφωνία (ὅχι ὁμοτονία) καὶ στὴ γραμμὴ τοῦ παραδοσιακοῦ ἴσου ὅπως ἔχει διασωθεῖ μὲ ἄγραφο τρόπο ἀπὸ

τὰ ἀρχαῖα χρόνια στὴ βυζαντινὴ καὶ ἐν γένει ἑλληνικὴ μουσική⁽³¹⁾. Μποροῦμε συνεπῶς νὰ ποῦμε, ὅτι τὸ σύστημα τῆς συνηχητικῆς γραμμῆς ποὺ πρῶτος ὁ Κ. Ψάχος ἐφάρμοσε καὶ ἀποκρυστάλλωσε στὶς ἐκδόσεις του πλησιάζει περισσότερο ἀπὸ ὅποιο ἄλλο σύστημα πρὸς τὸ ἡθος καὶ τὸ ὕφος τῆς βυζαντινῆς μουσικῆς. Τώρα δέ, μὲ τὸ βιβλίο ποὺ κρατᾶτε στὰ χέρια σας τεκμηριώνεται καὶ θεωρητικά.

Μέχρις ἐδῶ τελειώνει τὸ πρῶτο μέρος τοῦ βιβλίου. Όλο τὸ δεύτερο μέρος εἶναι ἀφιερωμένο στοὺς ὀκτὰ ἤχους τῆς βυζαντινῆς μουσικῆς καὶ στὴν ἀνάπτυξη τοῦ συνηχητικοῦ συστήματος πάνω σ' αὐτούς, ἀνάλογα μὲ τὶς κλίμακες (διατονικές, χρωματικές, ἐναρμόνιες), τὶς συμφωνίες, τὶς συγχορδίες, τὰ συστήματα, τὰ ἰδιώματα (ἔλξεις) καὶ τὶς χρόες ποὺ χρησιμοποιοῦν, ὁ κάθε ἔνας ἀπ' αὐτοὺς ξεχωριστά.

Τὸ μέρος αὐτὸ εἶναι τὸ μεγαλύτερο σὲ σελίδες τοῦ βιβλίου καὶ τὸ πιὸ σημαντικὸ γιατὶ ἐδῶ γίνεται ἡ πρακτικὴ ἐφαρμογἡ ὅλων ὅσων ἀναφέρονται στὰ προηγούμενα κεφάλαια. Μὲ ἐξονυχιστικὴ ἐξέταση τῶν στοιχείων καὶ πληθώρα παραδειγμάτων, ὁ συγγραφέας κατορθώνει νὰ δώσει ὁλοκληρωμένη μορφὴ στὸ σύστημα τῆς συνηχητικῆς γραμμῆς.

Ἐδῶ θὰ πρέπει νὰ πῶ, ὅτι τὸ ἔργο ὁλόκληρα ἔχει μεγάλη σημασία γιατί, ἀνεξάρτητα ἀπὸ τὴν ἀποδοχὴ ποὺ ἔτυχε τὸ σύστημα τῆς συνηχητικῆς γραμμῆς στὴ μέχρι σήμερα ἐφαρμογή του, πρόκειται γιὰ κάτι τὸ ἐντελῶς νέο καὶ δίχως σχετικὸ προηγούμενο. Όπως θὰ διαπιστώσει ὁ ἀναγνώστης, δὲν εὐσταθεῖ ὅτι ὁ Ψάχος ἀπλῶς ἀντέγραψε τὸ ἴσο καὶ τὸ ψάλσιμο στὴν ἀντιφωνία, ἀλλὰ προχώρησε πιὸ πέρα στὴν στὴν ἐφαρμογὴ ἐλευθεριώτερης καὶ πιὸ σύνθετης κινήσεως τῶν δύο συνηχητικῶν γραμμῶν, βασισμένος πάντα στὴν αὐστηρὴ παράδοση καὶ στὸ σεβασμὸ τῆς διατηρήσεως τῶν ἀρχῶν ποὺ διέπουν τὸ καθαρὰ μονοφωνικὸ παραδοσιακὸ στὺλ τῶν μελωδιῶν τῆς βυζαντινῆς μουσικῆς.

Δέ θὰ ἐνδιατρίψω περισσότερο στὸ μέρος αὐτὸ — παρὰ τὴ σημασία του — , πρῶτο γιατὶ ὅλες οἱ ἀρχὲς ποὺ τὸ θεμελιώνουν ἔχουν ἐκτε-

^{31. «}Τὸ ἴσον κυρίως μέλος βοηθητικής γραμμής, παρακολουθοῦσα φθόγγον πρὸς φθόγγον καὶ γραμμήν πρὸς γραμμήν τὸ μέλος καθ' ὅλας τὰς πολλαπλᾶς καὶ ποικίλας τῶν γραμμῶν ἐξελίξεις» Κ. Ψάχος «Περὶ ἴσου». «Φόρμιγξ». ἔ. ἀ. ὑποσημ. ΙΙ.

θεί στὰ προηγούμενα κεφάλαια καὶ δεύτερο γιατὶ δὲν ἐξυπηρετεί σὲ τίποτα τὸ σκοπὸ τῆς «Εἰσαγωγῆς» μου αὐτῆς ποὺ ἔχει ἐντελῶς πληροφοριακὸ χαρακτῆρα. Ἐξ ἄλλου δὲν είναι δυνατὸ νὰ μεταφερθοῦν ἐδῶ τὰ μουσικὰ παραδείγματα ποὺ περιέχει.

Τὸ τρίτο μέρος περιλαμβάνει τὰ κεφάλαια «Περὶ ἐπεισάκτων μελῶν» καὶ «Περὶ τῶν τριῶν Χροῶν».

Λέγοντας ἐπείσακτα μέλη, ἐννοοῦμε τὰ μέλη ποὺ ἐνῶ ἀνήκουν σὲ ἄλλο ἡχο ψάλλονται σὲ διαφορετικό, φθοριζόμενα, εὐθὺς ἐξ ἀρχῆς, μὲ τὴ φθορὰ τοῦ ἥχου αὐτοῦ. Πρόκειται δηλαδὴ γιὰ ἀλληλοδανεισμὸ ἤ ἀλλιῶς γιὰ ἀνταλλαγὴ μελῶν.

Ό ἀλληλοδανεισμός αὐτὸς ἐπιτρέπεται ἐφ᾽ ὅσον ὅπως ἔγραψα καὶ παραπάνω, οἱ ἡχοι μὲ τὶς διάφορες παραλλαγές τους σὲ μέσους, παραμέσους, δίφωνους, τρίφωνους κλπ., τρέπονται καὶ ἀνταλλάσσονται ὁ ἕνας μὲ τόν ἄλλο μὲ φυσικὸ ἐπακόλουθο μελωδίες ἤ καὶ θέσεις τοῦ ἑνὸς νά χρησιμοποιοῦνται ἀπὸ τὸν ἄλλο μὲ κατάλληλη κατὰ τὴν περίσταση τοποθέτηση φθορῶν. (Κλασσικὸ παράδειγμα τὸ ἰδιόμελο τῶν αἴνων τῆς Μ. Τρίτης «Ἐν ταῖς λαμπρότησι τῶν ἀγίων σου»). Στὴν προκείμενη περίπτωση τοῦ τροπαρίου ἡ ἀνταλλαγὴ εἰναι σχεδὸν όλοκληρωτικὴ ὅχι μόνο γιὰ ἔνα τμήμα μελωδιας αλλα για ολοκληρο τὸ μέλος του. Πολὺ περισσότερο γιὰ τὰ ἐντελῶς ἐπείσακτα μέλη. Αὐτὰ ψάλλονται καθ᾽ ὁλοκληρία σὲ διαφορετικὸ ἡχο.

Ή ἀνταλλαγή αὐτή μπορεῖ νὰ ἀφορᾶ ὅπως εἴπαμε μιὰ μελωδία ἤ καὶ ἕνα μέλος, μπορεῖ ὅμως ἀκόμα νὰ ἀφορᾶ ὁλόκληρο ἡχο ὅπως ὁ Β΄ σὲ πλ. Β΄ στὰ εἰρμολογικά του καὶ ἀντίθετα ὁ πλ. Β΄ σὲ Β΄. Ἐπίσης καὶ ὁ Τρίτος σὲ πλ. Δ΄ στὰ ἀργὰ παπαδικά του μέλη.

Ή χρήση τῶν ἐπεισάκτων μελῶν μαζὶ μὲ τὶς ἀνταλλαγὲς εἶναι πολὺ παλιά. Τοῦτο διαπιστώνεται ἀπὸ διάφορα μέλη ποὺ θεωροῦνται ἀρχαῖα καὶ εἶναι ἕνα ἀπὸ τὰ βασικὰ καὶ πρωταρχικὰ γνωρίσματα τῆς λειτουργίας τῶν ἀρχαίων τρόπων καὶ τῶν ἤχων. ᾿Αξίζει νὰ σημειωθεῖ, ὅτι δὲν ἀποκλείεται ώρισμένα ἀπὸ τὰ ἐπείσακτα μέλη (τὸ ἴδιο μπορεῖ νὰ συμβαίνει καὶ σὲ ώρισμένα προσόμοια καὶ προλόγους) νὰ προϋπήρχανε σὰν μελωδίες ἀπὸ τὴν ἀρχαία ἐλληνικὴ μουσικὴ καὶ τὰ παρέλαβαν αὐτούσια οἱ Χριστιανοὶ ἀλλάζοντας μόνο τὰ λόγια. Μιὰ παρόμοια συσχέτιση κάνει καὶ ὁ Κυρ. Φιλοξένης στὸ ἔργο του «Λεξικὸν τῆς ἐλληνικῆς ἐκκλ. μουσικῆς» (ἐν Κων/πόλει 1868).

Έν πάσει περιπτώσει, τὸ θέμα τῶν ἐπεισάκτων μελῶν εἶναι λίγο

πολύ ξεκαθαρισμένο θεωρητικά και δέ μᾶς προβληματίζει.

'Απὸ τεχνικής πλευρᾶς ἀναγνωρίζονται εὔκολα ἀφοῦ στὴν ἀρχή τους ὑπάρχουν τὰ δηλωτικὰ στοιχεῖα τῆς ἀρχικῆς τους προελεύσεως καὶ τοῦ ἤχου ποὺ θὰ ψαλοῦν. Πρόβλημα ὑπάρχει μόνο σ' αὐτὰ ποὺ ψάλλονται στὸν ἴδιο ἦχο καὶ στὴν ἴδια βάση, ἐνῷ προέρχονται ἀπὸ διαφορετικοὺς ἤχους. (Β΄ ὡς πλ. Β΄ καὶ Δ΄ ὡς Β΄). Στὴν περίπτωση αὐτὴ τὸ μόνο γνωριστικὸ στοιχεῖο στὸ ἄκουσμά τους εἶναι ὁ φθόγγος τῆς τελικῆς καταλήξεώς τους καὶ ἡ ἐπεξεργασία τοῦ καταληκτικοῦ τους σχήματος. Γι' αὐτὸ μιλοῦν ὅλα τὰ Θεωρητικὰ καὶ εὕκολα ὁ ἀναγνώστης μπορεῖ νὰ κατατοπισθεῖ.

Σχετικὰ μὲ τὶς Χρόες, γνωρίζουμε, ὅτι σὲ ἀντίθεση ἀπὸ τὶς φθορὲς ποὺ μᾶς πηγαίνουν σὲ ἄλλο ἡχο, αὐτὲς ἀλλάζουν ἀπλῶς τὴ διαίρεση ἑνὸς τετραχόρδου δίχως ὅμως νὰ μᾶς ὁδηγοῦν σὲ συγκεκριμένο ἡχο. Ἡ χρόα ἀπλῶς χρωματίζει τὸ τετράχορδο ἑνὸς ἤχου καὶ ἀπὸ τὴν εἰδικὴ αὐτὴ διαίρεση τῶν διαστημάτων του παράγεται ἄκουσμα νέο, ποὺ ἐνῶ εἰναι διαφορετικὸ ἀπὸ τοῦ καθαροῦ ἤχου δὲν ἀπομακρύνεται ἀπὸ αὐτό. Γιὰ τὸ λόγο αὐτό, οἱ ἦχοι καὶ ἰδίως οἱ διατονικοὶ τῆς Βυζαντινῆς μουσικῆς χρησιμοποιοῦν πολλὲς χρόες, πολλους ὁηλαδή χρωματισμοὺς τῶν μελῶν τους. Μπορεῖ ἐπίσης ὁ χρωματισμὸς αὐτὸς νὰ μᾶς ὁδηγεῖ σχετικὰ σὲ ἄκουσμα συγγενικὸ ἄλλου ἤχου διαφορετικοῦ γένους. Ὁ λόγος αὐτὸς εἰναι ποὺ οἱ χρόες ἔχουν διαφορετικὸ χαρακτηρισμό (χρωματικὲς, ἐναρμόνιες).

Γνωρίζουμε πὼς οἱ ἀρχαῖοι (τὸ ἔγραψα καὶ παραπάνω) χρησιμοποιοῦσαν πολλὲς χρόες ὅμως ἕξη ἦταν οἱ κύριες γιὰ τοὺς δέκα πέντε τρόπους τῆς μουσικῆς τους (δύο γιὰ τὸ διάτονο, τρεῖς γιὰ τὸ χρῶμα καὶ μιὰ γιὰ τὸ ἐναρμόνιο).

'Η Βυζαντινή χρησιμοποιεῖ ἀντίστοιχα τρεῖς χρόες (μιὰ στὸ χρωματικὸ γένος, μιὰ στὸ ἐναρμόνιο καὶ μιὰ ποὺ ἀνήκει καὶ στά δυό), τὸ Ζυγό: ϫ, τὴ Σπάθη: -Θ, καὶ τὸ Κλιτόν: ϫ. Τὰ ἀκριβῆ ἀκουστικὰ καὶ ἀριθμητικὰ διαστήματά τους καθορίζει ὁ Κ. Ψάχος στὴν περὶ τοῦ «Παναρμονίου 'Οργάνου» ἀνέκδοτη⁽³²⁾ θεωρία του. Σύγχρονη ὅμως καὶ ὁπωσδήποτε ἀποδεκτὴ καθόριση τῶν διαστημάτων αὐτῶν δίνει ὁ Σ. Καρᾶς στὴν πραγματεία του «Γένη καὶ διαστήματα» ποὺ καὶ πα-

^{32.} ξ. ά. ὑποσημ. 3.

ραπάνω μνημονεύω(33).

Βασική έπομένως μέριμνα τοῦ ἐναρμονιστῆ τῆς βυζαντινῆς μουσικῆς εἶναι νὰ λάβει ὑπ' ὄψη του τὴν ἐνέργεια αὐτὴ τῶν χροῶν, οὕτως ὅστε ἡ συνηχητικὴ γραμμὴ ποὺ θὰ χρησιμοποιήσει νὰ ἀνταποκρίνεται στὸ χρῶμα καὶ στὸ ἦθος τῆς κάθε συναντούμενης χρόας.

Τὸ τέταρτο μέρος τοῦ βιβλίου ἀποτελεῖ τὸ δεύτερο σκέλος τοῦ ὅλου ἔργου τὴ σύγκριση δηλαδὴ τῶν ἤχων τῶν δημοτικῶν τραγουδιῶν μὲ τοὺς ἐκκλησιαστικοὺς τρόπους.

Δύο είναι τὰ εἴδη τῆς έλληνικῆς μουσικῆς: Ἡ ἐκκλησιαστικὴ (βυζαντινή) καὶ ἡ δημοτικὴ καὶ ἔχει γίνει πιὰ ἀποδεκτὸ ὅτι ἔχουν κοινὴ προέλευση (σχέση μάνας καὶ παιδιοῦ) ³⁴.

Ή πραγματικότητα αὐτὴ στηρίζεται στὸ ὅτι καὶ τὰ δυὸ αὐτὰ εἴδη τῆς ἐλληνικῆς μουσικῆς χρησιμοποιοῦν τοὺς ἴδιους ῆχους καὶ τὰ ἴδια περίπου ἰδιώματα. Ἡ διαφορά τους ἔγκειται στὴ διάφορη μελωδικὴ
θεώρηση ποὺ ἔχουν μεταξύ τους ἐφ' ὅσον προορίζονται γιὰ διαφορετικὸ
σκοπό. Τὰ δημοτικὰ ἐπομένως τραγούδια, γράφει ὁ Κ. Ψάχος, «ἀναπτύσσονται διὰ σχημάτων καὶ γραμμῶν διαφοροτρόπων καὶ ποικιλοτρόπων, ποιούμενα χρῆσιν ρυθμῶν διαφόρων — τὰ χορευτικὰ ἰδίως ἐν συνεχεία μετρικῆς — , τῶν αὐτῶν σχεδὸν ρυθμῶν τῆς ἀρχαίας ἐλληνικῆς ρυθμικῆς, οὕς ἀκολουθοῦσιν ἀπαραλλάκτως».

Τὸ θέμα βασικὰ τοῦ μέρους τῆς μελέτης αὐτῆς εἶναι ἡ προέλευση κυρίως τῶν δημοτικῶν τραγουδιῶν ἀπὸ τὴ βυζαντινή, τῆς ὁποίας τοὺς ἡχους ἀκολουθοῦν, καὶ ἡ σύγκριση ὁρισμένων ἀπὸ αὐτὰ μὲ μὲλη ἐκκλησιαστικά.

'Απὸ τὴ σύγκριση αὐτὴ προκύπτουν σὲ γενικὲς γραμμὲς τὰ ἑξῆς:

1. Τὰ δημοτικὰ τραγούδια χρησιμοποιοῦν τὶς ἴδιες βασικὰ κλίμακες, μὲ ἰδιαίτερη προτίμηση στὴν κλίμακα τοῦ διατονικοῦ Πρώτου — πλ. Πρώτου, Δευτέρου — πλ. Δευτέρου, πλ. Τετάρτου διατονικοῦ καὶ χρωματικοῦ, Λέγετου καὶ σπανιώτερα τῶν ὑπολοίπων. 2. Διασώζουν τὸν πλαγιασμὸ τοῦ πλ. Πρώτου ἀπὸ τὸ Κε στὸ Πα. 3. Ύπάρχουν ἀκατάληκτα τραγούδια ἀντίστοιχα μὲ τὰ ἀκατάληκτα μέλη τῆς βυζαντινῆς μουσικῆς («Ἐπεφάνης σήμερον», «Ἡ Παρθένος σήμερον» κλπ.), δίηχα

ξ. ά. ὑποσημ. 15.

^{34.} Βλ. Ιδιαίτερα Κ. Σάθα « Ιστορικόν δοκίμιον περί θεάτρου καὶ τῆς μουπικῆς τῶν Βυζαντινῶν....» Έν Βενετία 1878.

καὶ ἄλλα ποὺ χρησιμοποιοῦν ὅχι μόνο ὅλα αὐτὰ τὰ στοιχεῖα ἀλλὰ καὶ τὸ ὕφος καὶ τὸ ἦθος ὅλων τῶν ῆχων τῆς βυζαντινῆς μουσικῆς.

Ίστορικά δεδομένα

Τὸ πρόβλημα τῆς ἐναρμονίσεως τῆς βυζαντινῆς ἐκκλησιαστικῆς μουσικῆς, ἤ καὶ ἡ εἰσαγωγὴ καθαρῆς τετράφωνης μουσικῆς, κατὰ τὰ πρότυπα τὰ εὐρωπαϊκά, στὶς ἐκκλησίες, εἰναι ἀρκετὰ παλιὸ καὶ ξεκίνησε κυρίως ἀπὸ τὴν προσπάθεια βελτιώσεως τοῦ ἐκκλησιαστικοῦ μέλους, τὸ ὁποῖο στὰ χείλη χαμηλῆς στάθμης ἐκτελεστῶν — τοῦ ΙΘ΄ κυρίως αἰῶνα — εἰχε καταντήσει ἀγνώριστο⁽³⁵⁾.

Τὸ ὅτι ἡ ἀρχαία ἑλληνικὴ μουσικὴ καὶ ἡ βυζαντινὴ ἡσαν ἀνέκαθεν μονοφωνικές, δὲ χωρεῖ ἀμφιβολία. Βέβαια κατὰ καιροὺς πολλοὶ διατύπωσαν ἀντίθετη γνώμη. Γιὰ τὴν ἀρχαία πίστεψαν ὅτι χρησιμοποιουσε τὸ πολυφωνικὸ ἀρμονικὸ σύστημα, ἴσως ἀπὸ τὴν ἔλλειψη πολλῶν ἀποδεικτικῶν στοιχείων, εἴτε, ἴσως, γιατὶ παρασύρθηκαν ἀπὸ τὸ «Διατὶ ἡ διὰ πασῶν συμφωνία ἄδεται μόνη, μαγαδίζουσι γὰρ ταύτην ἄλλην δὲ οὐδεμίαν» τοῦ Αριστοτέλη, ἡ ἀπὸ τὴ διδασκαλία τοῦ ἴδιου φιλοσόφου πρὸς τὸν ἀγαπημένο του μαθητή, τὸ μέγα ᾿Αλέξανδρο. «....Μουσικὴ δέ, δξεῖς ἄμα καὶ βαρεῖς, μακρούς τε καὶ βραχεῖς φθόγγους μίξασα ἐν διαφόροις φωναῖς, μίαν ἀπετέλεσεν άρμονίαν» (περὶ κόσμου V. 50). "Όσο γιὰ τὴ βυζαντινὴ ἐκκλησιαστικὴ μουσική, τὰ πράγματα εἶναι πιὸ ξεκαθαρισμένα. Οἱ ἐλάχιστες διχογνωμίες γύρω ἀπὸ τὸ θέμα αὐτὸ στηρίζονται, κυρίως, στὶς πληροφορίες γιὰ τὴ λαμπρότητα τῶν τελετῶν κατὰ τοὺς βυζαντινοὺς χρόνους καὶ στὸ πλῆθος τῶν ψαλτῶν καὶ τῶν βοηθῶν τους στοὺς χρόνους τῆς ἀκμῆς τῆς Βυζαντινῆς Αὐτοκρατορίας (36).

^{35.} Δὲν γνωρίζω ἄν θὰ διαφωνήσουν μερικοὶ σ' αὐτή μου τὴν ἄποψη, ὅμως ἡ διαπίστωσή μου στηρίζεται στὴ μελέτη τῶν διαφόρων μουσικῶν καὶ μουσικολογικῶν ἔργων τῆς ἐποχῆς ἐκείνης, ἀπὸ τὰ ὁποῖα κανένα (τουλάχιστον ἀπὸ δσα ἔχω ὑπ' ὄψη μου καὶ εἶναι πολλά) δὲ μιλᾶ μὲ ἐνθουσιασμὸ γιὰ τὴ ψαλτικὴ ἐκείνης τῆς περιόδου, παρὰ τὸ ὅτι μᾶς ἔχουν διασωθεῖ τρανταχτὰ ὀνόματα ψαλτῶν καὶ δασκάλων.

^{36.} Πολλοί ξχουν πλανηθεί ἀπὸ αὐτὸ τὸ γεγονὸς μεταξὺ τῶν ὁποίων καὶ ὁ διαπρεπὴς ἰστοριοδίφης Κ. Σάθας, ὁ ὁποίος στὴν ὑποσημείωση Ι΄τῆς σελίδας σνη΄ τοῦ «Ἱστορικοῦ δοκιμίου» του γράφει τὰ ἐξῆς: «"Οτι ἡ μουσικὴ τῶν Βυζαντινῶν ἡν πολύφωνος καὶ πολύτονος πληροφορούμεθα ἐκ

Σήμερα δὲ νομίζω ὅτι ὑπάρχει κανείς ποὺ νὰ ὑποστηρίζει σοβαρὰ τὴν ἄποψη γιὰ πολυφωνία τῆς Βυζαντινῆς μουσικῆς, πολύ περισσότερο ἐφ' ὅσον τὸ στενογραφικό της σύστημα σχεδὸν ἀπέκλειε τέτοια χρησιμοποίηση. Έδῶ μπορῶ νὰ ἀναφέρω ότι ὁ ἐξαιρετικός μου φίλος, ό διαπρεπής μουσικολόγος καὶ ἐρευνητής τῆς βυζαντινῆς μουσικῆς κ. Γρηγόρης Στάθης (πολλά ὀφείλω στὶς ὑποδείξεις του καὶ τὸν εὐχαριστῶ μὲ τὴν εὐκαιρία) δημοσίευσε ἀπὸ τὸν κώδικα τῆς μονῆς τοῦ Δοχειαρίου (Α. Γ. Δχ. 315 11, φ. 66), στὸ περισπούδαστο ἔργο του «Tὰ χειρόγραφα βυζαντινής μουσικής, "Αγιον "Ορος»(37) (πίν. Β΄)μιὰ περίπτωση «διπλοῦ μέλους» - δίφωνο - «κατὰ τὴν τῶν Λατίνων ψαλτικήν», ὅμως πρόκειται γιὰ μετροφωνία καὶ ὄγι γιὰ μέλος μὲ πλήρη ἀνάπτυξη καὶ πλατυασμούς. Ἐπίσης ὁ συνθέτης σύγγρονης μουσικῆς κ. Μιγάλης 'Αδάμης παρουσίασε έκτελέσεις, έδῶ καὶ στὸ έξωτερικό, ένὸς κοινωνικοῦ «Aἰνεῖτε τὸν Kύριον» τοῦ Γαζῆ $^{(38)}$ στὶς όποῖες ἔδωσε πολύφωνη μορφή σύμφωνα μὲ τὰ κόκκινα σημάδια ποὺ ὑπάρχουν στὸ μουσικὸ κείμενο τοῦ κοινωνικοῦ. Δὲν ἐλέγγω τὴν έρμηνεία αὐτὴ - δὲν είναι ἄλλωστε αὐτὴ ἡ πρόθεση τῆς εἰσαγωγῆς μου - , ἀλλὰ καὶ σωστὴ ἀκόμα νὰ είναι (πρᾶγμα ἀπίθανο) πάλι πρόκειται, ὅπως καὶ στήν περίπτωση του «διπλου μέλους» που προανέφερα, για μεμονωμένες περιπτώσεις, οί δποίες ελάχιστα πείθουν για υπαρξη πολυφωνίας στη βυζαντινή μουσική. 'Αντίθετα τὸ συντριπτικὸ πληθος τῶν μαρτυριῶν καὶ ἡ ζωντανή φωνητική παράδοση θέλουν τή βυζαντινή μουσικ ή μονόφωνη καί δμότονη.

Τὸ ὅλο θέμα γιὰ τὴν ἐναρμόνιση τῆς βυζαντινῆς μουσικῆς ξεκίνησε στὶς ἀρχὲς τοῦ ΙΗ΄ αἰώνα καὶ εἶχε σὰν ἀφετηρία τὴν ἀποδέσμευση τῆς βυζαντινῆς μουσικῆς ἀπὸ τὸ παλιό της γραφικὸ σύστημα μὲ τὴν ἀνακάλυψη τοῦ νέου, ἀπὸ τοὺς τρεῖς δασκάλους τὸ Χρύσανθο, τὸ

38.

τοῦ ἐξῆς· ἐν ἔτει 614 ὁ Ἡράκλειος θέλων νὰ περιορίση ὑπερπλεονάζοντα ἀριθμὸν τῶν ἐμμίσθων ὑπηρετῶν (ὀφφικιαλίων) τοῦ ναοῦ τῆς ΄Αγίας Σοφίας ιρίσε, κατὰ τὴν τοῦ Ἰουστινιανοῦ Νεαράν, τοὺς μὲν ἀναγνώστας εἰς 160, τοὺς δὲ ψάλτας εἰς 25· γικώσκοντες δὲ ὅτι οἱ τότε ἀναγνῶσται συνέψαλλον μετὰ τῶν ὑποδεστέρων τὸ ἀξίωμα ψαλτῶν, εὐκόλως ἐννοοῦμεν ὅτι 185 ψάλται ἦτο ἀδύνατον νὰ ἐκβάλλωσιν ἔνα καὶ τὸν αὐτὸν τόνον».

^{37.} 'Αθήναι 1975.

Τὸ κοινωνικὸ αὐτὸ εὑρίσκεται σὲ κώδικα τῆς Ἐθνικῆς Βιβλιοθήκης.

Γρηγόριο καὶ τὸ Χουρμούζιο.

Ή καθιέρωση, ἀπὸ τὸ 1814⁽³⁹⁾, μὲ ἐπίσημη διδασκαλία τοὺ νέου γραφικού συστήματος των τριών παραπάνω δασκάλων, ἀσφαλώς είχε γιά τὴ μελλοντική πορεία τῆς βυζαντινῆς μουσικῆς θετικά καὶ ἀρνητικά ἀποτελέσματα μιὰ καὶ ὅπως νὰ τὸ κάνουμε ἐπρόκειτο γιὰ ἀληθινὴ μεταρρύθμιση. Στὰ ἀρνητικὰ είναι ὅτι, ἡ εὐκολία τῆς μαθήσεώς της «Τόσον εὐχολύνθη ή μουσική, ὥστε, ἀφοῦ σπουδάση τὶς αὐτὴν εἰς ένὸς ἤ δύο ἐτῶν διάστημα, κατὰ τὴν εὐστροφίαν τοῦ λάρυγγός του εἶναι ἰκανὸς νὰ γράφη καὶ ὅ,τι μέλος ἤθελεν ἀκούση»(40) τράβηξε πολλούς σπουδαστὲς πού, ὲκτὸς τοῦ ὅτι πολὺ γρήγορα καὶ ἴσως ἀνώριμα ἔνιωθαν ἀνεξάρτητοι ἀπὸ τοὺς δασκάλους τους, ἀσφαλῶς δὲν είχαν ὅλοι, βάσει τοῦ νόμου τῆς αὺστηρῆς ἐπιλογῆς, τὰ ἀπαραίτητα ἐκεῖνα αὺξημένα προσόντα τῆς μνήμης, τῆς φωνῆς καὶ τῆς καθόλου μουσικῆς ἀντιλήψεως ποὺ άπαιτούσε τὸ σοφὸ μὰ καὶ πολύπλοκο σύστημα τῆς παλιᾶς γραφῆς. Αὐτὸ είχε σὰν ἀποτέλεσμα ή μάθηση καὶ ή ἐκτέλεση τῆς βυζαντινῆς μουσικής νὰ πέσουν σὲ πιὸ χαμηλὰ ἐπίπεδα ἀπὸ πρίν. Ἡ ἀλήθεια αὐτὴ φαίνεται, άλλωστε, έμμεσα ἀπὸ τὴν ὑποσημείωση τῆς σελίδας ια΄ τοῦ προλόγου τῆς «Εἰσαγωγῆς» τοῦ Χρυσάνθου στὴν ὁποία ἀναφέρονται τὰ ἑξῆς: «Πολλοὶ νομίζουσι ὅτι ὅλοι ἐπίσης ἐπιτυγχαίνουν εἰς τὴν μουσικήν, εἴτε παράφωνοι εἶναι, εἴτε μή· ἀς μὴ κατατρίβωσιν ὅμως ματαίως τὸν καιρόν των, ὅσους ἡ φύσις δὲν ἔκαμε διὰ τὴν μουσικήν, διότι μὴ εὐδοκιμοῦντες εἰς αὐτήν, δίδουν ἀφορμήν εἰς τοὺς ἀνοήτους, νὰ προσάπτωσι τὸ ἔγκλημα εἰς τὸν νεωτερισμὸν τῆς μεθόδου(41).

Ἐπίσης ἡ νέα μέθοδος ἐπέτρεψε τὴ χρήση τῆς τυπογραφίας⁽⁴²⁾

^{39.} Περὶ τῆς λειτουργίας τῆς Σχολῆς τοῦ νέου συστήματος ἐκτὸς τῶν πληροφοριῶν ποὺ μᾶς παρέχονται στὸν πρόλογο τοῦ «Μ. Θεωρητικοῦ» βλ. καὶ ἐπιστολὴ Διονυσίου προηγουμένου Βατοπαιδίου τῆς 21ης 'Ιανουαρίου τοῦ 1815 δημοσιευμένη ἀπὸ τὸ Μ. Γεδεὼν («Πατριαρχικαὶ 'Εφημερίδες 1500 - 1913». 'Αθῆναι 1938, σελ. 379) καὶ δική μου «Εἰσαγωγή» τῆς τρίτης ἐκδόσεως τοῦ «Μ. Θεωρητικοῦ», σελ. ια'.

^{40.} Ě. å.

^{41.} Βλ. «Εἰσαγωγή εἰς τὸ θεωρητικὸν καὶ πρακτικὸν τῆς ἐκκλησιαστικῆς μουσικῆς». Ἐν Παρισίοις 1821.

^{42.} Τὸ πρῶτο ἔντυπο τῆς βυζαντινῆς μουσικῆς, τὸ «'Αναστασιματάριον» τοῦ Π. Πελοποννησίου, ἐκδόθηκε ἀπὸ τὸν Π. τὸν Ἐφέσιο τὸ 1820 στὸ Βουκουρέστι. Σχετικὰ βλ. δημοσιευμά μου στὴ «Βιβλιοφιλία» ἀρ. 2 - 3 καλοκαίρι - φθινόπωρο 1976, 'Αθῆναι, σελ. 37 - 39.

καὶ πολύ σύντομα ἀπὸ τὴν καθιέρωσή της εἰδαν τό φῶς ἀλλεπάλληλες ἐκδόσεις μουσικῶν βιβλιων πολλὰ ἀπὸ τὰ ὁποῖα δὲν εἰχαν καμιὰ σχεδὸν σχέση μὲ τὸ παλιὸ αὐστηρὸ παραδοσιακὸ μέλος καὶ ἄλλα πάλι ἔβριθαν ἀπὸ συνθέσεις χαμηλῆς, γιὰ νὰ μὴν πῶ χυδαίας μουσικῆς στάθμης. ᾿Απὸ δῶ ἀκριβῶς ξεκινᾶ καὶ ἡ προσπάθεια ἐλέγχου καὶ ἐγκρίσεως τῶν μουσικῶν ἐκδόσεων ἀπὸ μέρους τῆς Μ. Τ. Χ. Ε. ἡ ὁποία ἀπέρριψε πολλὲς ἀπὸ αὐτές (43).

'Εκτὸς ἀπὸ αὐτά, τὸ νέο σύστημα μὲ τὴν ἀναλυτικὴ πιὰ μορφή του ἐπέτρεπε τὴν κατὰ φθόγγο παράστασή του καὶ ἑπομένως διευκόλυνε τὴν ἀντιστικτικὴ ἐπένδυση τῆς μελωδίας του σύμφωνα μὲ τοὺς κανόνες τῆς εὐρωπαϊκῆς μουσικῆς, πρᾶγμα ποὺ ἦταν ἀδύνατο νὰ γίνει μὲ τὸ παλιὸ στενογραφικό.

Τέλος, ἡ ἄνθηση τοῦ άρμονικοῦ συστήματος τῆς εὐρωπαϊκῆς μουσικῆς καὶ ἡ τελειότητα τῶν ἔργων τῶν μεγάλων μουσουργῶν τῆς Δύσεως, προβλημάτισε πολλοὺς δικούς μας οἱ ὁποῖοι εἴτε ἀπὸ ἀπλῆ πρόθεση μιμήσεως, εἴτε καὶ ἀπὸ πραγματικὴ πρακτική ἀνάγκη (αὐτὸ ἀφορᾶ τὶς παροικίες τοῦ ἐξωτερικοῦ), θελήσανε νὰ δώσουνε σύμφωνα μὲ τὰ δυτικὰ πρότυπα νέα μορφὴ στὴ βυζαντινὴ μουσική. Γράφει σχετικα δ Ἰ. Χαβιαρᾶς στὸν πρόλογό του «Κατα μιμησιν τῶν ὑρθοδόξων λαῶν τούτων — ἡ ἀναφορὰ εἰναι γιὰ τοὺς Ρώσους καὶ τοὺς ἄλλους Σλαβικοὺς λαοὺς — καὶ οἱ ἐν τῷ Δυτικῷ Εὐρώπῃ ζῶντες καὶ ἀνατρεφόμενοι ὑρθοδοδοςι "Ελληνες, καίτοι μετὰ πολλοῦ ζήλου σεβόμενοι τὰ παλαιὰ ἐπεθύμουν μεταρρύθμισίν τινα τῆς ἐκκλησιαστικῆς μουσικῆς, συνάδουσαν τῷ ἀνατροφῷ αὐτῶν καὶ ἱκανὴν νὰ προξενῷ εἰς τὰς ψυχὰς τῶν γυναικῶν καὶ τέκνων αὐτῶν τὴν ψυχικὴν ἐκείνην κατάνυξιν καὶ εὐλάβειαν, οἷαν πρέπει νὰ εὐρίσκει ὁ ἐν τῷ ναῷ τοῦ Κυρίου προσευχόμενος Χριστιανός (44).

Ή πτώση, λοιπόν, τοῦ ἐπιπέδου τῆς βυζαντινῆς μουσικῆς, ἡ εὐκολία τῆς τυπογραφίας, ἡ σαφήνεια τῆς γραφῆς, ἡ νεωτεριστικὴ τάση τῶν ὁμογενῶν καὶ ἡ μιμητικὴ ἀντίληψη τῶν νεοαπελευθερωθέντων Ἑλλήνων τοῦ ἐλλαδικοῦ χώρου, ποὺ ἔνιωθαν γιὰ τὴν ἀπλῆ καὶ ἀπέρριτη μουσική τους ἀληθινὴ κατωτερότητα μπροστὰ στὴν πομπώδη μουσικὴ

^{43.} Ἰδιαίτερα ἀπέρριψε τὶς ἐκδόσεις τοῦ Νικολάου πρωτοψάλτη Σμύρνης, τοῦ Δ. Βουλγαράκη, τοῦ Σ. ᾿Αβαγιανοῦ, τοῦ Ν. Παγανᾶ κ. ἄ.

^{44.} Βλ. Ἰ. Χαβιαρᾶ «Ύμνοι τῆς Θείας καὶ Ἱερᾶς Λειτουργίας.....» (στὸν πρόλογο) Μέρος πρῶτο. Ἐν Βιέννη 1848.

τῶν Βαυαρῶν τοῦ "Οθωνα, ὑπῆρξαν οἱ παράγοντες γιὰ τὴ δημιουργία τοῦ ρεύματος τῆς ἀρμονίσεως ἤ ἀκόμα καὶ τοῦ ἐξωβελισμοῦ τῆς παραδοσιακῆς μας μουσικῆς ἀπὸ τοὺς ναοὺς ἰδίως τῶν μεγάλων ἀστικῶν κέντρων. Τὸ φαινόμενο αὐτὸ ἔλαβε μεγάλες διαστάσεις περὶ τὰ τέλη τοῦ ΙΘ΄ καὶ τὶς ἀρχὲς τοῦ Κ΄ αἰώνα, τότε δηλαδὴ ποὺ ἄρχισε καὶ ὁ Κ. Ψάχος νὰ ἐπεξεργάζεται τὸ σύστημα τῆς συνηχητικῆς γραμμῆς, σὰν ἀντίδοτο τρόπον τινὰ τῆς τάσεως αὐτῆς.

Χρονολογικὰ ἡ πρώτη ἀπόπειρα εἰσαγωγῆς ἀρμονικῆς μουσικῆς στὶς ἐκκλησίες, ἀναφέρεται ἀπὸ τὸν Θ. Συναδινό⁽⁴⁵⁾, ὁ ὁποῖος γράφει, ὅτι «Ἐπὶ τῆς ἐποχῆς τοῦ Καποδιστρίου εἰς τὸν ἐν Αἰγίνη Ναὸν τοῦ 'Ορφανοτροφείου πολλοὶ παῖδες ἐκ τῶν εἰς αὐτὸ ἐκπαιδευομένων ἔψαλλον ἐν τετραφωνία τὴν λειτουργίαν κατὰ τὰς Κυριακὰς καὶ ἑορτάς». Ἡ πληροφορία ὅμως αὐτὴ ἐλέγχεται γιατὶ δὲν ὑπάρχουν ἄλλες σχετικὲς μαρτυρίες τῆς ἐποχῆς ἐκείνης καὶ δὲ γνωρίζουμε τὸ ὄνομα κανενὸς συνθέτη ἀρμονικῆς μουσικῆς γιὰ τὸν καιρὸ ἐκεῖνο. Ἐκτὸς ἀπὸ αὐτὸ εἶναι γνωστό, ὅτι ὁ Ἰ. Καποδίστριας εἶχε λάβει εἰδικὴ πρόνοια γιὰ τὴν παραδοσιακὴ ἐκκλησιαστικὴ μουσικὴ καὶ ἵδρυσε Σχολὴ τὸ 1826 (Ωλ. Ν. Δ. 3740 19 - 10 - 1826) μὲ πρῶτο δάσκαλο τὸν Γ. Λέσβιο.

Ό πρῶτος ποὺ τύπωσε βιβλίο καὶ ἔβαλε ἐπίσημα τὴν τετράφωνη μουσικὴ στὴν Ἐκκλησία ἡταν ὁ ψάλτης τῆς Ἐκκλησίας τοῦ 'Αγ. Γεωργίου τῆς Βιέννης, ἱεροδιάκονος "Ανθιμος Νικολαΐδης ὁ Γανοχωρίτης' Αὐτὸς σὲ συνεργασία μὲ τὸν διευθυντὴ τοῦ 'Ωδείου τῆς Βιέννης Πράθερ ἐξέδοσε τὸ 1842 τὸ τρίτομο ἔργο «"Υμνοι τῆς 'Ορθοδόξου 'Ανατολικῆς 'Εκκλησίας» (Βιέννη 1842) μὲ ἐναρμονισμένες μελωδίες γιὰ μικτὸ χορὸ ἀνδρῶν, γυναικῶν καὶ παιδιῶν. 'Απὸ αὐτές, τοὺς ὕμνους τῆς Λειτουργίας ἐναρμόνισε γιὰ ἀνδρικὸ χορὸ ὁ Αὕγουστος Σβόβοντα. (Οἱ «Ύμνοι» ἐπανεξεδόθηκαν τὸ 1844 καὶ τὸ 1847 στὴ Βιέννη).

Τὸ σύστημα αὐτὸ παρουσίαζε πολλὲς ἀτέλειες, γιατὶ τόσον ὁ Νικολαΐδης ὅσο καὶ ὁ Πράϋερ ἀγνοοῦσαν σημαντικὰ μελικὰ καὶ μετρικὰ

^{45.} Βλ. Θ. Συναδινοῦ «Ἱστορία Νεοελληνικῆς Μουσικῆς». ᾿Αθῆναι 1919, σελ. 125.

^{46.} Βλ. σχετικά Π. Γριτσάνη «Τὸ περὶ τῆς μουσικῆς τῆς έλληνικῆς Ἐκκλησίας ζήτημα». Ἐν Νεαπόλει 1870. Εὐστ. Θερειανοῦ «Περὶ τῆς μουσικῆς τῶν Ἑλλήνων». Ἐν Τεριέστη 1875 κ. ἄ.

στοιχεῖα τῆς βυζαντινῆς μουσικῆς. Ἔτσι, ὅπως γράφει ὁ Θ. Πολυκράτης $^{(47)}$, ἡ ἀποτυχία τοῦ ἔργου ὀφείλεται στὴν ἐπιτυχία τῆς ἐναρμονίσεώς του.

'Αρχής γενομένης ἀπὸ τὴ Βιέννη, πολὺ σύντομα μπῆκε στὶς 'Εκκλησίες τοῦ Μονάχου, τῆς Τεριέστης, τῆς Μαγχεστρίας κ. ἀ. ἡ τετράφωνη μουσική.

Τὸ σύστημα τοῦ Νικολαΐδη δὲν κράτησε πολύ. Δυὸ χρόνια ἀργότερα, τὸ 1844, ὁ Ἰ. Χαβιαρᾶς σὲ συνεργασία μὲ τὸν ὑποδιευθυντὴ τῆς Καισαροβασιλικῆς Καπέλλας τῆς Βιέννης Ρανδχάρτιγγερ παρουσίσε τὸ δικό του βελτιωμένο, σὲ σύγκριση μὲ τοῦ Νικολαΐδη, σύστημα. Ὁ Ἰ. Χαβιαρᾶς, σὰν καθηγητὴς τῶν ἑλληνικῶν καὶ πρῶτος ψάλτης τῆς Ἐκκλησίας τῆς ἑλληνικῆς κοινότητας τῆς Βιέννης, ἡταν λόγιος ἄνθρωπος καὶ ἔχαιρε μεγάλης ἐκτιμήσεως ὅπως μᾶς πληροφορεῖ ὁ Εὐστάθιος Θερειανὸς στὴ σελίδα 5 τοῦ ἔργου του «Περὶ μουσικῆς τῶν Ἑλλήνων» (Τεριέστη 1875).

Τὸ γεγονὸς αὐτὸ βοήθησε στὸ νὰ διαδοθεῖ εὐρύτατα τὸ σύστημα καὶ νὰ ἐπικρατήσει γιὰ πολλὰ χρόνια στοὺς περισσότερους ναοὺς τοῦ ἐξωτερικοῦ. Τὸ ἔργο του μὲ τίτλο «Ύμνοι τῆς Θείας καὶ ἱερᾶς Λειτουργίας...» (Βιέννη 1844) ἀρχικὰ περιοριζόταν μόνο στοὺς ὕμνους τῆς Θείας Λειτουργίας καὶ σὲ μερικοὺς λίγων ἄλλων ἀκολουθιῶν. Σχετικὰ μᾶς πληροφορεῖ ὁ πρόλογος τῆς Β΄ ἐκδόσεως τῶν «ἕμνων τῆς Θείας Λειτουργίας» του (Βιέννη 1848).

Τὸ σύστημα τοῦ Χαβιαρᾶ ἐκδόθηκε τὸ 1844, 1848, 1859 καὶ τὸ 1959 (ἡ τελευταία ἔκδοση τῆς Λειτουργίας ἔγινε ἀπὸ τὸν Γ. Ζερβουδάκη ποὺ τὴ μετάγραψε γιά ἀνδρικὸ χορό). Καὶ τὸ σύστημα αὐτὸ εἰχε πολλὲς ἀτέλειες κυρίως μετρικὲς. Παράλληλα σχεδόν, ἐργάζεται γιὰ τὴν τετράφωνη μουσικὴ καὶ ὁ Ν. Κύβος στὸ Λονδίνο σὰν διευθυντὴς τῆς ἑλληνικῆς ἐκκλησίας τοῦ Λονδίνου. Τὴν ἐργασία του συνέχισε ἀργότερα ὁ Ναπολέων Λαμπελέτ (ἐξέδοσε λειτουργία). Στὸ Παρίσι ὁ Σπῦρος Σπάθης, στὸ Τγκάνρογκ τῆς Ρωσίας ὁ Νικόλαος Αὐγερινός, στὴν 'Οδησσὸ ὁ Μάλτος καὶ ὁ Πρώιος (ἐξέδοσαν λειτουργίες) καὶ στὴν 'Αλεξάνδρεια ὁ Π. Γριτσάνης, ὑπῆρξαν θιασῶτες τοῦ άρμονικοῦ

^{47.} Βλ. Θεμ. Πολυκράτη «Ή τετράφωνος μουσική ἐν τῆ Ἐκκλησία». Ἐφημ. «Φόρμιγξ» περ. Β΄ ἔτ. στ΄, ἀριθ. 5 - 6. ᾿Αθῆναι 15 - 30 Σεπτεμβρίου 1910.

συστήματος και τὸ καλλιέργησαν στις ἐκκλησίες ποὺ ἔψαλλαν.

Όπως ήταν φυσικό τὸ ρεῦμα τοῦ τετραφωνισμοῦ δὲν ἄργησε νὰ ἔλθει καὶ στὸν κυρίως έλλαδικὸ χῶρο. ᾿Αρχικὰ ἡ ἐπίσημη εἰσαγωγή του τοποθετεῖται μὲ τὸν ἐρχομὸ τῆς βασίλισσας Ὅλγας στὴν Ἑλλάδα, ἡ ὁποία καὶ ἐπέβαλε νὰ ψάλλεται στὴ Μητρόπολη τῆς ᾿Αθήνας στὶς ἐθνικὲς καὶ βασιλικὲς ἑορτές. Τὸ 1869 ἔγινε ἀπόπειρα εἰσαγωγῆς τοῦ τετραφώνου συστήματος σὲ κανονικὴ λειτουργία ἀπὸ τὸ διευθυντὴ τῆς ἀνακτορικῆς χορωδίας Α. Κατακουζηνὸ(50), ἀλλὰ δὲν πέτυχε ἐξ ἀφορμῆς τῆς ἀντιδράσεως τῶν φιλακολούθων πιστῶν καὶ ἰδιαίτερα τοῦ Δημητρίου Βερναρδάκη. Τἡ χρονιὰ ἐπίσης ἐκείνη προσπάθησε νὰ ἐπιβάλει στὴν ᾿Αθήνα τὸ σύστημα τοῦ Χαβιαρᾶ ὁ Καθηγητὴς τῆς Ριζαρείου Σχολῆς Γ. Μαντζαβίνος.

Ότι ὅμως δὲν ἔγινε ἀπὸ τὴν ἀρχή ἀποδεκτὸ στὴν ᾿Αθήνα, ἔγινε στὴν Πάτρα, Καλαμάτα, Πειραιᾶ κ. ὰ., πάντως ὅχι δίχως πολλὲς ἀντιδράσεις. (βλ. γι᾽ αὐτὲς Γ. Παπαδόπουλου «Ἱστορικὴ ἐπισκόπησις.....» ᾿Αθῆναι 1904, σελ. 228 - 252. Ἐπίσης ἄρθρο τοῦ Θ. Πολυκράτη «Φόρμιγξ» περ. Β΄ ἔτ. ΣΤ΄, ἀρ. 5 - 6, 7 - 8).

Λίγο ἀργότερα, τὸ 1882 οἱ βασιλιάδες καθιέρωσαν νὰ ψάλλεται ἡ τετράφωνη λειτουργία στοὺς Ναοὺς τοῦ Πειραιᾶ καὶ τοῦ Μοσχάτου, ὅπου καὶ παραθέριζαν τὸ καλοκαίρι.

'Απὸ τὸ 1885 μπαίνει στὸν Μητροπολιτικὸ ναὸ τῆς 'Αγίας Εἰρήνης τὸ ἀρμονικὸ σύστημα καὶ τὸ 1886 στὸν "Αγ. Γεώργιο τοῦ Καρύτση μὲ τὸν "Αγγελο Δημόπουλο καὶ τὸν Θ. Πολυκράτη καὶ στὴν Χρυσο-

^{48.} Περὶ τοῦ Ἐπτανησιακοῦ μουσικοῦ συστήματος, βλ. Π. Γριτσάνη «Περὶ τῆς τῶν Ἰονίων νήσων ἐκκλησιαστικῆς μουσικῆς». Ἐφημ. «Φόρμιγζ», περ. Β΄ ἔτ. Δ΄, ἀριθ. 7 - 8. ᾿Αθῆναι 15 - 31 Ἰουλίου 1908.

^{49.} Γι' αὐτοὺς καθὸς ἐπίσης γιὰ τὴν μουσικὴ τῶν Ἐπτανήσων καὶ γενικὰ τὴ νεοελληνικὴ μουσικὴ βλ. Σπ. Μοτσενίγου «Νεοελληνικὴ μουσικὴ - Συμβολὴ εἰς τὴν ἱστορίαν της ['Αθῆναι 1958].

ξ. ἀ. καὶ Θ. Πολυκράτη «'Η τετράφωνος μουσική ἐν τῆ Ἐκκλησία».
 Ἐφημ. «Φόρμιγξ», περ. Β΄ ἔτ. ΣΤ, ἀρ. 5 - 6, 7 - 8. ᾿Αθῆναι 1910 15 - 30 Σεπτεμβρίου, 15 - 31 ᾿Οκτωβρίου.

56.

57.

σπηλιώτισσα μὲ τὸν Κανακάκη. Τότε ἐμφανίζεται καὶ ὁ Ἰ. Σακελλαρίδης ὁ ὁποῖος κατορθώνει μὲ τὴν καλή του φωνή, τὴν ἄριστη ἄρθρωση καὶ τὴ μαχητικότητά του νὰ ἐπιβάλει μέσα σὲ λίγο χρόνο τὴ δική του προσωπικότητα καὶ τὸ δικό του γνωστὸ σύστημα. Τὸ σύστημα αὐτὸ ἀκολουθεῖται σήμερα ἀπὸ πολλοὺς ψάλτες τοῦ ἐλλαδικοῦ χώρου, παρὰ τὶς ἐπικρίσεις ἄλλων καὶ σὲ ὅλες σχεδὸν τὶς ἑλληνικὲς παροικίες τοῦ ἐξωτερικοῦ(51).

'Απὸ κεῖ καὶ μετὰ πολλοὶ ναοὶ τῆς πρωτεύουσας καθιερώνουν τὸ σύστημα τὸ άρμονικὸ ἐνῶ ταυτόχρονα παρουσιάζονται καὶ πολλοὶ συνθέτες τετράφωνης μουσικῆς μὲ ἔργα ἄλλοτε λίγο καὶ ἄλλοτε πολὺ ἀπομεμακρυσμένα ἀπὸ τὴν παράδοση τῆς βυζαντινῆς μουσικῆς. 'Εκτὸς αὐτῶν ποὺ ἀνάφερα καὶ τοῦ Θ. Πολυκράτη ὁ ὁποῖος ἔγραψε τὸ καλλίτερο, κατὰ κοινὴ ὁμολογία, τετράφωνο σύστημα, σὲ τετράφωνη άρμονικὴ μουσικὴ ἔγραψαν καὶ οἱ Δ. Ρόδιος, 'Ελ. Γιαννίδης' (αὐτὸς ἔδρασε κυρίως στὴν Κων/πολη), Χρ. Στρουμπούλης, Αἰμ. Ριάδης', Γ. Παχτῖκος, Τριαντ. Κεφαλᾶς (ἔδρασε στὴν 'Αμερική', Θ. Τριάντης, Θ. Σακελλαρίδης, Πλ. Ρούγκας, Γλυκοφρύδης, Κουλούκης, Κωστῆς. 'Επίσης καὶ οἱ ἐντελῶς σύγχρονοι Σ. Καψάσκης' (αὐτὸς ἀκολούθησε κατὰ πόδας τὸ σύστημα τοῦ 'Ι. Σακελλαρίδη), 'Ι. Μαργαζιώτης', Τ. Γεωργίου', Μιχ. 'Αδάμης, 'Εμμ. Λασηθιωτάκης, Θ. Παπα-

^{51. &#}x27;Ο 'Ι. Σακελλαρίδης έξέδοσε μὲ τὸ σύστημά του ὁλόκληρη τὴ σειρὰ τῶν ἀκολουθιῶν τῆς 'Εκκλησίας μας καὶ πολλὰ παιδαγωγικὰ μέλη, σὲ εὐρωπαϊκὴ καὶ βυζαντινὴ σημειογραφία. Γιὰ τὴν εἰδικὴ περίπτωση ἀπὸ τὸ πλῆθος αὐτῶν τῶν ἐκδόσεών του ἀναφέρω σὰν πιὸ χαρακτηριστικὸ τὸ, «"Υμνοι καὶ ἀδαὶ ἐν άρμονικῆ τριφώνω συμφωνία». 'Εν 'Αθήναις 1909.

Έλ. Γιαννίδη «Βυζαντινή μουσική σὲ τετράφωνη άρμονία» (τρία τεύχη). 'Αθήναι [1937].

 ^{53.} Emile Riadis«Liturgie de Saint Jean Chrysostome» Athenes 1952.
 54. Triade C. Kefalas «Ἡ Θεία Λειτουργία - The Holy Liturgy Greek
 Orthodox Church Chicago 1953.

^{55.} Σ. Καψάσκη «'Υμνωδία τῆς 'Ορθοδόξου ελληνικῆς ἐκκλησίας» 'Αθῆναι [1960].

Ί. Μαργαζιώτη «'Η Θεία Λειτουργία». 'Αθήναι 1956 και 1973.

Τ. Γεωργίου «Bυζαντινή Λειτουργία εἰς άρμονικήν μορφήν». 'Aθῆναι 1951.

κωνσταντίνου⁽⁵⁸⁾, 'Απ. Βαληνδρᾶς κ. ἄ. 'Επίσης ἔγιναν μεταγραφὲς ἔργων ξένων συνθετῶν, κυρίως Ρώσων, ὅπως τοῦ Βορντιάσκι, Λομπόφσκι κ. ἄ. Έλληνικοὺς τέλος ὕμνους τετραφώνησαν καὶ δημοσίευσαν ὁ Γάλλος Ντουκουντράὶ καὶ οἱ Ρῶσοι 'Αλλεμάνωφ καὶ Ζβερέβ.

Οἱ συνθέσεις δλων αὐτῶν διακρίνονται γιὰ δύο τάσεις. 'Η μιὰ ἀποτελεῖται ἀπὸ ἐντελῶς ἐλεύθερες συνθέσεις ἀρμονικῆς μουσικῆς ξένης ἐντελῶς ἀπὸ τὴ βυζαντινὴ μελωδία (τέτοιες εἶναι βασικὰ τοῦ Μάντζαρου, Κατακουζηνοῦ, Πολυκράτη κ. ἄ). 'Η δεύτερη ἀποτελεῖται ἀπὸ συνθέσεις ποὺ διατηρεῖ τὴ βυζαντινὴ μελωδία σὰν κύρια μελωδικὴ γραμμὴ καὶ τὴν ντύνει μὲ ἀρμονικὸ πλαίσιο πιστὸ ἤ καὶ πιὸ ἐλεύθερο ἀπὸ τὴν τεχνικὴ τῆς εὐρωπαϊκῆς ἀρμονίας (ἀναφέρω τὶς συνθέσεις τῶν Ἐλ. Γιαννίδη, Τ. Γεωργίου, 'Απ. Βαληνδρᾶ, 'Ι. Μαργαζιώτη, Μιχ. 'Αδάμη, Θ. Παπακωνσταντίνου κ. ἄ.). Τέλος ὑπάρχει καὶ τὸ ἀρμονικὸ σύστημα τοῦ 'Ι. Σακελλαρίδη ποὺ βρίσκεται στὴ μέση ἀκριβῶς τῶν δύο αὐτῶν τάσεων καὶ ἀκολουθεῖ βασικὰ τὴν τρίφωνη ἀρμονία.

Ό χῶρος δὲν μοῦ ἐπιτρέπει δυστυχῶς νὰ ἐπεκταθῶ περισσότερο καὶ ἀφήνω τὴν περιέργεια τῶν φίλων ἀναγνωστῶν τῆς «Εἰσαγωγῆς» μου νὰ ἀνατρέξει σὲ σχετικὲς πηγές προκειμένου νὰ μορφώσει πιὸ ὁλοκληρωμένη γνώμη γιὰ τὸ μεγάλο αὐτὸ ζητημα τῆς ἐκκλησιαστικῆς μας μουσικῆς ποὺ ἐξακολουθεῖ ἀκόμα καὶ σήμερα νὰ μᾶς ἀπασχολεῖ(59).

Αὐτὴ εἶναι λοιπὸν μέ κάθε δυνατὴ συντομία ἡ ἐξέλιξη τοῦ ἐναρμονισμοῦ τῆς βυζαντινῆς μουσικῆς καὶ αὐτὸ ἀκριβῶς τὸ κλῖμα τῶν ἀρχῶν τοῦ αἰώνα μας γέννησε στὸν Κ. Ψάχο τὴν ἰδέα τῆς συνηχητικῆς γραμμῆς ποὺ τὴ θεωρεῖ ἀκριβῶς τὸν ἀντίποδα ὅλων αὐτῶν τῶν ἀποπειρῶν τῆς ἐποχῆς του. Ἔγραψε σωρεία ἀπό ἄρθρα⁽⁶⁰⁾ καὶ δημοσί-

^{58. &#}x27;Ο Θ. Παπακωνσταντίνου συνέθεσε τετράφωνη λειτουργία σύμφωνα με το πνεθμα του βυζαντινου μέλους. Δυστυχώς ο πρόωρος θάνατός του (1948 - 1969) Εβαλε τέρμα σε μια γόνιμη μουσική φαντασία. 'Ο άδελφός του που διευθύνει την περίφημη για την Έλλάδα παιδίκη χορωδία της 'Αγίας Τριάδας Θεσ/νίκης, παρουσιάζει το έργο του.

Βλ. πρόχειρα τὴ βιβλιογραφία ποὺ ἀναφέρεται στὴν «Εἰσαγωγή» αὐτή.

^{60.} Πλήρη ἀναγραφή τῶν δημοσιευμάτων του ἔχω ἤδη ἔτοιμη καὶ πρόκειται νὰ δημοσιευθεῖ πολύ σύντομα.

^{61.} Βλ. παραπάνω ὑποσημ. άρ. 9.

ευσε μὲ συνηχητικὴ γραμμὴ: α΄ τὴν Φήμη «᾿Ανωθεν οἱ Πορφῆται - Μ. Προκείμενα....», β΄ τὸ «Χριστὸς ᾿Ανέστη», γ΄ τὴ «Δοξολογία τῆς 25ης Μαρτίου», δ΄ τὰ «᾿Ανοιξαντάρια», ε΄ τὸ «Θεαρχίω νεύματι» κ. ἄ. σὲ ἀπλῆ συνηχητικὴ γραμμή. Ἐπίσης ἐξέδοσε α΄ «Λειτουργία» (βλ. πίν. Γ΄ ἑξώφυλλο), β΄ τὸ τροπάρι τῆς Κασσιανῆς «Κύριε ἡ ἐν πολλαῖς ἀμαρτίαις», γ΄ τὴ «Δοξολογία τῆς 25ης Μαρτίου» (61) κ. ἄ. σὲ διπλῆ συνηχητικὴ γραμμή. Γενικὰ ἀγωνίστηκε μὲ ὅλες του τὶς δυνάμεις ὅχι μόνο γιὰ τὴ διατήρηση καὶ διάσωση τῆς παραδοσιακῆς μας μουσικῆς, ἀλλὰ καὶ τὴν παραπέρα βελτίωσή της.

Αν τὸ σύστημα τῆς συνηχητικῆς του γραμμῆς δίνει τὴ λύση ἤ ὅχι, ξεφεύγει ἀπὸ τὸ σκοπὸ τῆς «Εἰσαγωγῆς» καὶ ἔτσι δὲν πρόκειται νὰ ἀσχοληθῶ ἰδιαίτερα. Πιστεύω ὅμως, ὅτι ἡ συνηχητικὴ γραμμὴ τοῦ Κ. Ψάχου ἴσως μᾶς δείχνει τὸ σωστὸ δρόμο γιὰ μιὰ μελλοντικὴ συνέχιση πάνω σὲ πιὸ στερεές καὶ ὑγιεῖς βάσεις τῆς προσπάθειας γιὰ τὴ βελτίωση καὶ, γιατὶ ὅχι, τὴν ἀνανέωση τῆς πατροπαράδοτης ἐκκλησιαστικῆς μας μουσικῆς. Τῆς μουσικῆς ποὺ δὲν εἶναι μουσειακὸ εἶδος, ὅπως πολλοὶ ἰσχυρίζονται (μεταξὺ δὲ αὐτῶν καὶ δρισμένοι ἱεράρχες δυστυχῶς), ἀλλὰ ζωντανὸς λειτουργικὸς ὀργανισμὸς ποὺ ἀσφαλῶς ἔχει κάθε δικαίωμα καὶ ἀνάγκη ὅχι μόνο διατηρήσεως συντηρήσεως, ἀλλὰ καὶ ἀνακαινίσεως καὶ ἐξελίξεως.

Χανιὰ 25 - 10 - 79 ΓΕΩΡΓΙΟΣ Ι. ΧΑΤΖΗΘΕΟΔΩΡΟΥ Πρωτοψάλτης τοῦ Μητρ. Ναοῦ Χανίων καὶ καθηγητής μουσικής.

ok A YAXOY

MOYELKHE

TO

THE BYZANTINHE MOYEIKHE EKKAHEIAETIKHEKAI AHMA AOYE

KA.
TO THE
APMONIKES SYNAXHESSE

ABHNHZI 1941 Remote me and a Bor to a America dead to a mi

HOLD GOT A CO

H VEILOADLIA

ΣΥΝΤΕΘΕΙΣΑ

FITA ALBAHL SYNHXHTIKHS TRAMMAS

KATA OF THE WALLEY HADARESTS.

 $\tau \mapsto \Sigma$

ΠΕΓΑΛΗΣ ΤΟΥ ΧΡΙΣΤΟΥ ΕΚΚΛΗΣΙΑΣ

ΤΟΜΟΣ ΠΡΩΤΟΣ

EN ABHNAIN

Y TYDE PARESON ZE KUTTERNING

MAATEIA AFINN OEOAHPON

1909

ΠΡΟΟΙΜΙΟΝ

Πρὶν ἡ ἀσχοληθῶ μὲ τὸ κυρίως θέμα τῆς περὶ ἀρμονικῆς συνηχήσεως μελέτης μου, θεωρῶ ἐπάναγκες νὰ προτάξω τινὰ περὶ ῆχων,
περὶ συμφωνιῶν καὶ συστημάτων, περὶ συγχορδιῶν καὶ δεσποζόντων
φθόγγων, περὶ γενῶν καὶ περὶ ἔλξεως, δεδομένου, ὅτι πάντα ταῦτα
καὶ ἰδίως οἱ ἡχοι παρέχουσι τὸ πολύμορφον ὑλικὸν καὶ ἐκμαιεύουσι
τοὺς ἀπαραιτήτους νόμους καὶ κανόνας, ἐπὶ τῶν ὁποίων βασιζόμενοι,
δυνάμεθα νὰ καταρτίσωμεν σύστημα ἀρμονικόν, μὴ ἀφιστάμενον τοῦ
ἡθους καὶ τῆς ὑφῆς ἐκάστου μελφδικοῦ τρόπου, οὐδ' ἀλλοιοῦν καὶ
παραμορφοῦν ὅ,τι παράδοσις χιλιετὴς καὶ γραφὴ διέσφσαν ἐν τῆ ἐπ'
ἐκκλησίαις ψαλλομένη μουσικῆ.

Έν τῆ μελέτη ταύτη δὲν θὰ μὲ εὕρη τις καταγινόμενον εἰς θεωρίας ἀφηρημένας, ἀλλ' ἐπιζητοῦντα νὰ καταστήσω νοητὰ καὶ κτῆμα κοινὸν ὅσα ἡ φωνητικὴ τῆς Βυζαντινῆς Μουσικῆς παράδοσις διέσφσε καὶ νὰ καθορίσω ταῦτα ἐπακριβῶς, διὰ θεωρίας τῆς ὁποίας τὰς βάσεις, ὅπως καὶ πάσης ἄλλης θεωρίας, τίθησιν ἀείποτε ἡ πρᾶξις καὶ ἡ πεῖρα.

Τούτο δέον νὰ ἔχωσιν ὑπ' ὄψιν αὐτῶν οἱ τυχὸν καραδοκοῦντες ἐπικριταί, οἶτινες ὅλην τὴν ἐμπεριστατωμένην θεωρίαν τῆς ἐν γένει ἐλληνικῆς μουσικῆς, ἡς κυριωτέρα φάσις ἡ Βυζαντινή, θὰ τὴν εὕρωσιν εἰς τὸ πλῆρες Θεωρητικόν μου, ὅπερ - ἄν ἐκδοθῆ ποτέ - ἐξηγεῖ, ἐρμηνεύει καὶ ἀναλύει κατὰ βάθος καὶ κατὰ πλάτος, μαθηματικῶς, ἀκουστικῶς καὶ διὰ παντὸς πρακτικοῦ καὶ θετικοῦ τρόπου πάντα τὰ θεωρητικὰ κεφάλαια τῆς ἡμετέρας μουσικῆς.

Αί περὶ τῶν ὀκτὼ ἤχων τῆς Βυζαντινῆς Μουσικῆς θεωρίαι, ὡς καθωρίσθησαν ὑπὸ βυζαντινῶν θεωρητικῶν καὶ νεωτέρων, πολλὰ μὲν τὰ ἄγνωστα καὶ χρήσιμα διδάσκουσιν τὸν μελετητήν, ἀλλὰ καὶ σύγχυσιν συγχρόνως προξενοῦσιν εἰς αὐτόν. Διότι - ἄν μάλιστα συμπέση ν' ἀγνοῆ τὴν φωνητικὴν παράδοσιν, ἥτις εἶναι ὁ μόνος ἀσφαλὴς γνώμων - συγκλώθων τὰ ἀσύγκλωστα, οὕτε πείθεται, οὕτε νὰ πείση τοὺς ἄλλους κατορθοῖ.

Δὲν ἔχει τις, εἰμὴ νὰ ρίψη ἕν βλέμμα ἐπὶ τῶν διασφθεισῶν θεωριῶν τοῦ Δαμασκηνοῦ (;), τοῦ Πλουσιαδηνοῦ, τοῦ Κουκουζέλου, τοῦ Βρυενίου, τοῦ Γαβριὴλ ἱερομονάχου, τοῦ παλαιοῦ Χρυσάφου καὶ ἄλλων, διὰ νὰ βεβαιωθῆ, ὅτι ὅσαι μὲν σαφῶς ὑπό τινων ἐξ αὐτῶν διετυπώθησαν, καὶ σαφέστερόν πως ἐρμηνεύουσι σκοτεινὰ τινὰ σημεῖα,

δέν καθορίζουσιν άκριβῶς τὰ ζητήματα περί ὧν πραγματεύονται. "Οσα δὲ ὑπὸ τῶν ἄλλων ἀορίστως καὶ ἀφηρημένως ἀναφέρονται εἰς σκοτεινά της θεωρίας σημεία, σκοτίζουσι τον μελετώντα αὐτάς καὶ άπορίας δυσεπιλύτους καταλείπουσιν είς αὐτόν. Καὶ αὐταὶ ἀκόμη αί έμπεριστατωμέναι θεωρητικαί περί ήχων παρατηρήσεις του Μανουήλ Βρυενίου, άλληλοσυγκρουόμεναι πρός την περί τῶν ὀκτώ ήχων θεωρίαν κατά τούς ψαλμφδούς, τίποτε τὸ θετικώτερον δὲν διδάσκουσιν. Καὶ αἱ τῶν ἐφευρετῶν δὲ τοῦ νέου γραφικοῦ συστήματος πληροφορίαι, καίτοι είς τοὺς ἤχους οὐδεμία ἐπῆλθε μεταβολή, καὶ αὐται ἐλλιπεῖς εἰσι καὶ ἀσαφεῖς. Διότι τὰ κατ' `Αριστείδην τὸν Κοϊντιλιανὸν «ἀπόρρητα ἐν τῆ μουσικῆ», τῶν ὁποίων ἀπορρήτων, εἴπερ τις καὶ ἄλλη, ή Βυζαντινή μουσική τυγχάνει ούσα βασιλίς, ούδὲ κατὰ πολλοστημόριον έρμηνεύονται καὶ καθορίζονται. Έκ χειρογράφων, ίδιοχείρων τῶν τριῶν ἐξηγητῶν, ὧν μέγα ἀριθμὸν διέσφσα ἐν τῇ ἐμῇ βιβλιοθήκη, ἐσχημάτισα πλήρη τὴν πεποίθησιν, ὅτι πολλὰ τῶν μυστηρίων τούτων δὲν διέφευγον τοὺς διδασκάλους τούτους καὶ ἰδίως τὸν Γρηγόριον. 'Αλλ' είτε δὲν είχον τὸν ἀπαιτούμενον θεωρητικὸν καταρτισμόν, είτε, ίσως, διότι δὲν ήθελον νὰ γνωρίσωσι ταῦτα εἰς τοὺς άλλους, έκ μουσικής κινούμενοι φιλαργυρίας (;), δέν καθώρισαν ταδτα γραπτώς, ἄτινα, κατά τὸν αὐτὸν Κοϊντιλιανὸν ᾿Αριστείδην, «ἐν ταῖς πρὸς ἀλλήλους δμιλίαις διεσώζοντο».

Διὰ τοὺς λόγους τούτους, ἐφόσον ἡ μελέτη μου τὸν μηχανισμὸν τῶν ἤχων κυρίως, τῶν συστημάτων, τῶν συμφωνιῶν κ. λ. π. σκοπεῖ νὰ ἐρμηνεύση, δὲν θὰ διατρίψω ἐπὶ τῶν ὑπὸ τῶν παλαιῶν καὶ νεωτέρων περὶ αὐτῶν παραδοθεισῶν θεωριῶν, ἀλλὰ, τὴν φωνητικὴν μόνον παράδοσιν καὶ τὴν πρακτικὴν αὐτῆς καὶ ἀδιάσειστον θεωρίαν τάσσων όδηγόν, θὰ ἑρμηνεύσω καὶ θὰ καθορίσω πᾶν ὅ,τι ἔμεινεν ἀκαθόριστον, συμπληρῶν ἄμα τὰ κενὰ καὶ ὑποδεικνύων τὰ τοὺς ὀκτὰ Κυρίους καὶ Πλαγίους ἤχους χαρακτηρίζοντα ὡς ἤχους, οὐχὶ δ' ἀπλῶς ὡς κλίμακας καὶ διαγράμματα, ἄτινα εἰσὶν ὁ σκελετὸς τῆς βασικῆς γραμμῆς, ἤν ἕκαστος ἀκολουθεῖ.

ΜΕΡΟΣ ΠΡΩΤΟΝ

Παραγωγή τῶν Τρόπων τῶν ἀρχαίων καὶ τῶν Ἡχων τῆς Βυζαντινῆς Μουσικῆς.

Έν τή μουσική ἀνέκαθεν δύο ὑπήρχον κλίμακες, ἡ φυσική καὶ ἡ συγκεκραμένη. Οἱ ἀρχαῖοι Ἑλληνες ἐκ τῆς συγκεκραμένης κλίμακος παρήγον ἐτέρας δώδεκα ὁμοειδεῖς κλίμακας, διαιροῦντες ἔκαστον τῶν τετραχόρδων αὐτῆς εἰς ἔν λεῖμμα καὶ εἰς δύο τόνους ὁμοειδεῖς, οὕς ὑποδιἡρουν πάλιν εἰς δύο ἄνισα ἡμιτόνια, μεῖζον καὶ ἔλασσον, ἡ ἀντιστρόφως. ᾿Αμφότερα τουτέστιν τὰ τετράχορδα διηροῦντο εἰς δέκα ἡμιτόνια, ἄτινα μεθ᾽ ἐτέρων δύο εἰς τὰ ὁποῖα διηρεῖτο ὁ προσλαμβανόμενος τόνος, ἀπετέλουν τὸν ἀριθμὸν δώδεκα. Ἐκ τῶν δέκα καὶ τριῶν χορδῶν, αἴτινες περιέκλειον τὰ δώδεκα ταῦτα ἡμιτόνια, παρήγοντο δεκατρεῖς ὁμοειδεῖς κλίμακας, εἰς τὰς ὁποίας τὸ ἡμιτόνιον εὑρίσκετο ἐν τῷ μέσῳ τῶν τετραχόρδων. Αἱ κλίμακες αὐται διέφερον ἀλλήλων κατὰ τὸ ὕψος ἐνὸς ἡμιτονίου, ἑκάστη δ᾽ αὐτῶν ἀναλόγει πρὸς ἔνα ἱδιαίτερον Τρόπον. Διότι ἀναλόγως τοῦ ἀριθμοῦ τῶν δεκατριῶν κλιμάκων καὶ οἱ Τρόποι ἡσαν δεκατρεῖς, καλούμενοι:

Ύποδώριος, Δώριος, Ύπερδώριος.

Ύποϊάστιος, Ἰάστιος, Ύπεριάστιος.

Ύποφρύγιος, Φρύγιος, Ύπερφρύγιος.

Ύποαιόλιος, Αἰόλιος.

Ύπολύδιος, Λύδιος.

'Αλλ' ἐπειδὴ εἰς τὴν Διαπασῶν προσετέθη εἰς ἔτι τόνος, διαιρούμενος καὶ οὐτος εἰς δύο ἡμιτόνια, προσετέθησαν κατόπιν δύο ἔτι
Τρόποι, ὁ 'Υπεραιόλιος καὶ ὁ 'Υπερλύδιος καὶ οὕτως ὁ ἀριθμὸς τῶν
Τρόπων ἀνῆλθεν εἰς δεκαπέντε, 'Η εἰς ἡμιτόνια λοιπὸν διαίρεσις
τῆς Διαπασῶν τῶν ἀρχαίων ἐγίνετο χάριν τῶν δεκαπέντε τρόπων, ὧν
ἔκαστος κατεῖχε θέσιν ἡμιτονίου.

"Η άρχαία έλληνική μουσική, ὡς ἐκ τῆς διαιρέσεως τῆς κλίμακος εἰς δώδεκα ἡμιτόνια, εἴχε κατ' ἀνάγκην τρεῖς μόνον συμφωνίας, τὴν διὰ ὀκτὼ, τὴν διὰ πέντε καὶ τὴν διὰ τεσσάρων. Δίδυμος ὅμως ὁ ᾿Αλεξανδρεύς, ὡς μαρτυρεῖ ὁ Πτολεμαῖος, ὁ συμπληρώσας τὴν θεωρίαν ἐκείνου, ἐφεῦρε περὶ τὰ τέλη τῆς πρώτης μ. Χρ. ἑκατονταετηρίδος τὴν ὀρθὴν διὰ τῶν τριῶν μείζονα συμφωνίαν: 5/4 καὶ τὴν διά τριῶν ἐλάσσονα: 6/5. Καὶ ἐκ μὲν τῆς μείζονος παρήγαγε τὸν ἐλάσσονα τόνον: 10/6, ἐκ δὲ τῆς ἐλάσσονος τὸν ἐλάχιστον: 10/15 καὶ τὸν μείζονα: 6/4.

Συνεπῶς· ὁμιλοῦντες σήμερον περὶ τριῶν ἰδιαιτέρων φυσικῶν τόνων: μείζονος, ἐλάσσονος καὶ ἐλαχίστου, ὀφείλομεν ν' ἀνατρέξωμεν εἰς τὸν Αον μ. Χρ. αἰῶνα, εἰς τὰς θεωρίας δηλονότι τοῦ Διδύμου καὶ τοῦ Πτολεμαίου, οἵτινες τροποποιήσαντες ἔν τισι τὴν ἀρχαίαν διατονικὴν κλίμακα, ἐποιήσαντο χρῆσιν πέντε διατονικῶν τετροχόρδων, ὡν τὰ δύο οὐσιωδῶς διέφερον ἀπὸ τῶν τετραχόρδων τῆς ἀρχαίας ἐλληνικῆς μουσικῆς.

Ή κυρία δ' αἰτία, ἥτις ἄθησε τὸν Δίδυμον καὶ τὸν Πτολεμαῖον εἰς τὴν καινοτομίαν ταύτην ἦτο, οὐ μόνον ἡ προσπάθειά των νὰ συμβιβάσωσι τοὺς διἴσταμένους Πυθαγορείους καὶ ᾿Αριστοξενείους, ἀλλὰ καὶ ἡ ἐπήρεια τῆς ἐν γένει ᾿Ανατολικῆς μουσικῆς.

'Αλλ' ή Βυζαντινή Μουσική ἀπὸ τῆς ἀρχῆς αὐτῆς, ἀναγομένης εἰς τοὺς πρώτους χριστιανικοὺς χρόνους, βάσιν καὶ θεμέλιον αὐτῆς ἔτχει κλίμακα φυσικωτέραν καὶ αὐτῆς τῆς φυσικῆς, οὐδέποτε δὲ τὴν συγκεκραμένην. Καὶ ἡ κλῖμαξ αὕτη διὰ τῆς διαιρέσεως αὐτῆς εἰς δύο ὁμοειδῆ τετράχορδα ἐκ τόνων μείζονος, ἐλάσσονος καὶ ἐλαχίστου καὶ ἑνὸς ἔτι μείζονος ὡς προσλαμβανομένου, παράγει διαστήματα ἑπτὰ ἐν τῆ Διαπασῶν, ἤτοι τρεῖς μείζονας, δύο ἐλάσσονας καὶ δύο ἐλαχίστους, ἐκ τῶν ὁποίων παράγονται ἐπτὰ κλίμακες, διάφοροι κατὰ τὸ ὕψος καὶ τὸ μέλος, αἴτινες συμφώνως πρὸς τὸν ἀριθμὸν τῶν ἑπτὰ διαστημάτων αὐτῶν, ἔχουσαι ἀνάγκην ὀκτὰ φθόγγων, παράγουσι συνεπῶς καὶ ὀκτὰ ἰδιαιτέρους ἤχους, τέσσαρας κυρίους καὶ τέσσαρας πλαγίους.

Οί ήχοι οὖτοι τῆς Βυζαντινῆς Μουσικῆς, ἐν τῆ μελφδικῆ ἀναπτύξει καὶ ἐξελίξει των ἔκαστος, δὲν είναι ὑποχρεωμένοι ν' ἀκολουθῶσι πάντοτε τὴν ἀρχικήν των κλίμακα.

Παρὰ τοῖς ἀρχαίοις, πλὴν τῶν δεκαπέντε Τρόπων, οἴτινες ἐμελφ-δοῦντο καὶ κατὰ τὰ τρία γένη ἔκαστος, ὑπῆρχον καὶ ἰδιαίτεραι τῶν τριῶν γενῶν διαιρέσεις, αἶτινες, καλούμεναι Χρόαι, ἦσαν ἔξ τὸν ἀριθμόν: 'Αρμονίας μία, Χρώματος τρεῖς καὶ Διατόνου δύο. Καὶ διὰ τῶν χροῶν τούτων κατώρθουν ν' ἀποδίδωσιν ὅ,τι διὰ τῆς εἰς τόνους καὶ ἡμιτόνια διαιρέσεως δὲν ἦτο δυνατὸν νὰ ἀποδοθἢ. Οὕτω δέ, διὰ τῆς μεθόδου ταύτης, τὰ δύο κυρίως γένη των, τὸ Διάτονον καὶ τὸ Χρῶμα, ἐλαμβάνοντο κατὰ τε τὸ σύντονον (=σκληρόν) καὶ τὸ μαλακὸν εἶδος.

Όπως παρ' ἐκείνοις, πλὴν τῶν ἀρχικῶν θεμελιωδῶν διαγραμμάτων ὑπῆρχον καὶ ἄλλαι ὑποδιαιρέσεις μετ' ἰδιαιτέρων χαρακτηριστικῶν παὶ οὐσιωδῶν διαστηματικῶν διαφορῶν, οὕτω καὶ ἐν τῆ Βυζαντινῆ Μουσικῆ οἱ ὀκτὰ αὐτῆς ἡχοι, πλὴν τῆς ἀρχικῆς βασίμου αὐτῶν κλί-

μακος ξχουσι καὶ ἄλλας, αἶτινες διὰ τῶν ἐξόχως χαρακτηριστικῶν ἰδιωμάτων καὶ τῶν διαφορῶν αὐτῶν τῶν οὐσιωδεστέρων, ἀποτελοῦσι τὸ μέσον, διὰ τοῦ ὁποίου διαμορφοῦσι καὶ διαπλάττουσι τὰς μουσικὰς γραμμὰς καὶ τὰ μελφδικὰ σχήματα τῶν πολυποικίλων αὐτῶν μελῶν.

"Αν δέ τις λάβη ὑπ' ὄψιν καὶ τὸν νόμον τῆς καλουμένης μελφδικῆς ξλξεως (περὶ ἦς ὁ λόγος ἐν ἰδιαιτέρω κεφαλαίω), ῆτις ἀναλόγως τῆς φύσεως ἑκάστου ἤχου ἀλλοιοῖ παροδικῶς εἶτε σταθερῶς, καθ' ὡρισμένας ὅμως προϋποθέσεις, τοὺς τόνους τῆς ἀρχικῆς ἑκάστου ῆχου κλίμακος, ἔχει πρὸ αὐτοῦ ὁλόκληρον ἐκεῖνον τὸν πολυσχιδῆ μηχανισμὸν τῶν μουσικῶν διαστημάτων τῆς Βυζαντινῆς Μουσικῆς, ἄνευ τῶν ὁποίων ἀδύνατον εἶναι νὰ ἀποδοθῇ ὁ διὰ τῆς φωνητικῆς παραδόσεως διασφθεὶς ἰδιαίτερος χαρακτὴρ αὐτῆς. Φωνητικὴ δὲ παράδοσις εἶναι τὸ ἰδιαίτερον ἤθος ὅλων ὁμοῦ καὶ ἐνὸς ἑκάστου ἰδιαιτέρως τῶν μελωδικῶν μας Τρόπων, ὑπὸ τὸ ὁποῖον ἐκτελοῦνται τὰ τῶν ὀκτὰ ἤχων πολυποίκιλα μέλη, ὅταν ὅμως ταῦτα ἐκτελοῦνται ὑπὸ μουσικῶν, κατεχόντων ἄπαντα τὰ ἰδιαίτερα γνωρίσματα τῆς Βυζαντινῆς Μουσικῆς, τῆς ἀπὸ στόματος εἰς στόμα διὰ μέσου τῶν αἰώνων διασφθείσης καὶ διὰ τῆς σημειογραφίας αὐτῆς εἰς σύστημα τέλειον ἀποθησαυρισθείσης.

Τήν παράδοσιν ταύτην ήν ἀποτελούσι κατά μέγα μέρος τὰ μουσικὰ διαστήματα ἐκάστου τῶν τριῶν γενῶν, τά τε σταθερὰ καὶ τὰ διὰ τοῦ νόμου τής μελφδικής ελξεως καθ' ώρισμένους κανόνας κυμαινόμενα, κατείχον οί άριστείς μουσικοδιδάσκαλοι καὶ ἐκτελεσταὶ τῆς Βυζαντινής Μουσικής, οίτινες τοσούτω μαλλον είσιν άξιοθαύμαστοι, καθ' δσον άνευ τεχνικού τινός μέσου, άνευ τής βοηθείας δηλ. όργάνου, διά μόνης τής ἀκοής και τής φωνής διατηρούντες και μεταδίδοντες αὐτήν, οὐδέποτε ἐξέκλινον ταύτης. Τὴν παράδοσιν ταύτην ζητοῦσι νὰ ἐκμηδενίσωσιν οί δπαδοί του εὐρωπαϊκου μέλους και του κλειδοκυμβάλου, συγχίζοντες καὶ ἐξισοῦντες τὸν μείζονα τόνον πρὸς τὸν ἐλάσσονα, τὸν έλάχιστον πρός τὸν ήμιτόνια κλπ. καὶ ἀπειλοῦντες ούτωσὶ νὰ ἐξαφανίσωσι τὸ ἐκ τοῦ ἰδιαιτέρου διαστηματικοῦ πλούτου τῆς Βυζαντινῆς Μουσικής προκύπτον μελφδικόν ἄκουσμα. Διὰ τὸν λόγον δὲ τοῦτον ἐπεβάλλετο ἡ κατασκευὴ εἰδικοῦ ὀργάνου πρὸς διάσφσιν τῆς παραδόσεως καί πρὸς ἀπόδοσιν καὶ διδασκαλίαν αὐτῆς, πρᾶγμα τὸ ὁποῖον ή καλή τύχη ἐπεφύλαξεν είς ἐμὲ διὰ τῆς ἐπινοήσεως καὶ κατασκευής του «Παναρμονίου» δργάνου, ή θεωρία του όποίου εκτίθεται έν ίδιαιτέρα περί αὐτοῦ μελέτη, μετά της ἐπ' αὐτοῦ ἐφαρμογης τῶν διαστημάτων της Βυζαντινής Μουσικής καὶ πάσης ἄλλης μουσικής.

Συμφωνίαι

Συμφωνία λέγεται ή κρᾶσις δύο φθόγγων, δξυτέρου καὶ βαρυτέρου. Αἱ συμφωνίαι διακρίνονται εἰς συμφώνους καὶ διαφώνους. Καὶ σύμφωνοι μὲν εἰσὶν ἐκεῖναι, τῶν ὁποίων οἱ δύο φθόγγοι συνηχοῦντες παράγουσιν ἄκουσμα εὐχάριστον εἰς τὴν ἀκοήν. Διάφωνοι δὲ ἐκείνοι, τῶν ὁποίων τὸ ἐκ τῆς μίξεως τῶν δύο φθόγγων ἄκουσμα εἰναι παράφωνον. Διότι, ὡς ἔλεγον οἱ ἀρχαῖοι, «διαφωνία δύο φθόγγων ἀμιξία, μὴ δυναμένων κραθῆναι, ἀλλὰ τραχυνθῆναι τὴν ἀκοήν».

Τὰς κυρίας καὶ πρωταρχικὰς συμφωνίας, ἑπτὰ τὸν ἀριθμόν, εὐρίσκομεν ἐν τῇ πρώτῃ διατονικῇ διαπασῶν: $\overset{\bullet}{\Delta} = \overset{\bullet}{\ddot{\alpha}}$, καὶ ἐν τῇ τετάρτη: $\overset{\bullet}{\dot{\alpha}} = \overset{\bullet}{\dot{\alpha}}$, διαιροῦντες τὴν χορδὴν τοῦ Κανόνος (= μονοχόρ-

δου) διὰ μὲν τὴν πρώτην διαπασῶν εἰς 2, 3, 4, 5, 9 καὶ 16, διὰ δὲ τὴν τετάρτην εἰς 2, 3, 4, $^{27}/_{16} = ^{5}/_{3} \times ^{81}/_{80}$, 9 καὶ 15.

Αί ἐκ τῆς διαιρέσεως τῆς πρώτης διαπασῶν προκύπτουσαι συμφωνίαι εἰσὶν αί ἑξῆς:

Αί ἐκ τῆς διαιρέσεως δὲ τῆς τετάρτης διαπασῶν συμφωνίαι εἰσὶν αί έξῆς :

$$\mathring{\Lambda} \stackrel{2}{\smile} \stackrel{2}{/_{1}} \qquad \stackrel{2}{\smile} \stackrel{2}{\wedge} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \stackrel{1}{\circ} \mathring{\Lambda} \qquad \mathring{\delta} \mathring{\Lambda} \qquad \mathring{\Lambda} \qquad \mathring{\delta} \mathring{$$

Αί συμφωνίαι αὐται τῶν δύο διατονικῶν κλιμάκων Δ΄ καὶ Α΄, διὰ τῶν μεταξὺ αὐτῶν διαφορῶν παράγουσι τοὺς τρεῖς φυσικοὺς αὐτοτελεῖς τόνους μείζονα, ἐλάσσονα καὶ ἐλάχιστον, τῶν ὁποίων ὁ ἐλάχιστος εἶναι ἡ συνεχὴς ὑπεροχὴ τῆς διὰ τεσσάρων τελείας συμφωνίας πρὸς τὴν διὰ τριῶν μείζονα τελείαν, ὁ μείζων συνεχὴς ὑπεροχὴ τῆς διὰ πέντε τελείας συμφωνίας πρὸς τὴν διὰ τεσσάρων τελείαν, ὁ δὲ ἐλάσσων συνεχὴς ὑπεροχὴ τῆς διὰ ἔξ μείζονος τελείας συμφωνίας πρὸς τὴν διὰ πέντε τελείαν συμφωνίαν.

Τοὺς τρεῖς τούτους φυσικοὺς τόνους ἀκολουθοῦσι κυρίως δύο ἡχοι τῆς Βυζαντινῆς Μουσικῆς, ὁ Τέταρτος καὶ ὁ Πλάγιος τοῦ Τετάρτου, μετ' αὐτοὺς δὲ ὁ μέσος τοῦ Τετάρτου ὁ καλούμενος Λέγετος εἰς εἰς μὲν τὸ εἰρμολογικόν του εἰδος ἀργὸν καὶ σύντομον μονίμως, εἰς δὲ τὸ στιχηραρικόν του ἀργὸν καὶ σύντομον οὐχὶ πάντοτε, καὶ ὁ διατονικὸς Βαρύς, κυρίως δ' ὁ ἑπτάφωνος. Τοῦτο δέ, προκειμένου περὶ τῶν δύο συμφωνιῶν, τῆς διὰ τριῶν μείζονος καὶ μικρᾶς καὶ τῆς διὰ ἔξ μείζονος τελείας. Καθόσον αἱ λοιπαὶ συμφωνίαι, ἡ διὰ πασῶν, ἡ διὰ πέντε, ἡ διὰ τεσσάρων καὶ ἡ διὰ δύο εἰσὶ κοιναὶ εἰς τὰς τῶν ἄλλων ἡχων κλίμακας, τῶν γενῶν διακρινομένων διὰ τῆς τοιαύτης ἡ ἀλλοίας μετακινήσεως τῶν ἐν τῷ μεταξὺ φθόγγων.

Πλὴν τῶν ἐκ τῆς φυσικῆς κλίμακος παραγομένων συμφωνιῶν ὑπάρχουσι καὶ ἄλλαι καὶ ἰδίως αἱ ἐκ τῆς πέμπτης διαπασῶν $\overset{\pi}{\mathbf{q}} \stackrel{\pi}{\longrightarrow} \overset{\pi'}{\mathbf{q}}$ παραγόμεναι, τὴν ὁποίαν διαπασῶν ἀκολουθοῦσι κυρίως οἱ ἦχοι Πρῶτος καὶ Πλάγιος τοῦ Πρώτου καὶ οἱ ἐκ τούτων τὰ πλεῖστα δανειζόμενοι ἐναρμόνιοι ἤ σκληροὶ διατονικοὶ Τρίτος καὶ Βαρύς.

Αί ἐκ τῆς πέμπτης διαπασῶν παραγόμεναι συμφωνίαι εἰσὶν αί ξξῆς:

$\pi \stackrel{\smile}{\smile} 2/1 \stackrel{\pi'}{\smile} \pi'$	διὰ ὀκτώ	- 1/2 × π q
π - 3/2 - × q	διὰ πέντε	- ²/, ω, π q
π - '/, - 'Δ Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	διὰ τεσσάρων	~ '', & π q
π	διὰ τριῶν ἀτελής	ع کے ہ
π - ⁵ / ₃ - ⁵ / ₈	διὰ ἕξ τελεία	- 3/s \(\frac{\pi}{2}\) π
π - 100/61 - 6	διὰ δύο διάφωνος	⁶¹ / ₁₀₀ γ π
π - 16/, - γ',	διὰ έπτὰ διάφωνος	- '/ ₁₆ κ π q

Έκ τῶν δύο χρωματικῶν ἤχων ὁ Δεύτερος ἀκολουθεῖ τὴν διὰ τρι-Θν μείζονα καὶ ἐλάσσονα (Νη - Βου, Βου - Δι, Δι - Ζω) καὶ τὴν διὰ τεσσάρων (Δι - Νη). 'Ο δὲ Πλάγιος τοῦ Δευτέρου τὴν διὰ τεσσάρων (Πα - Δι) καὶ τὴν διὰ πέντε (Πα - Κε) κατὰ τὸ πεντάχορδον σύστημα, τὸ ὁποῖον καὶ ὁ Δεύτερος ἀκολουθεῖ, ἐξ οὖ δὲ καὶ τὸ ὅτι ἀμφότεροι δὲν ἀντιφωνοῦν. Βαίνουσι τουτέστι κατὰ τετράχορδα ὅμοια διαζευγμένα διὰ τόνου μείζονος, συνεπῶς δὲ μετὰ τὴν ἀντιφωνίαν του ἔκαστος δὲν ἀκολουθεῖ τὰ ἀρχικά του διαστήματα, ὅπως καὶ ὁ Πρῶτος ὅταν βαίνει κατὰ τὸν Τροχόν. Ἐν ῷ δηλαδὴ εἰς τὸν Δεύτερον τὸ διάστημα Δι - Κε εἶναι τόνος ἐλάχιστος, ἔστιν ὅτε δὲ ὑπελάσσων χρωματικός, κατ' ἀντιφωνίαν εἶναι τόνος μείζων. Ὅπως καὶ εἰς τὸν Πλάγιον τοῦ Δευτέρου, ἐν ῷ τὸ Πα - Βου διάστημα εἶναι ἡμιτόνιον, τὸ κατ' ἀντιφωνίαν εἶναι τόνος μείζων. Τοῦτο σημαίνει τὸ ὅτι δὲν ἀντιφωνοῦσιν, οὐχὶ δ' ὅτι αί ὄγδοαί των, δὲν εἶναι αἱ αὐταὶ πρὸς τὸν βάσιμον φθόγγον, ἀλλὰ βαρύτεραι.

Εἰς ταύτην τὴν πλάνην περιέπεσαν οἱ τὰς πρώτας κρηπίδας γράψαντες, οἴτινες, ποιούμενοι σύγχυσιν συμφωνιῶν καὶ συστημάτων, ἐβάπτισαν τὸν Δεύτερον ἡχον ὡς βαίνοντα κατὰ διφωνίαν ὁμοίαν (Νη -Βου - Δι - Ζω) καὶ συνεπῶς μὴ ἀντιφωνοῦντα. Ἐν ῷ οὖτος ἔχων ἀκέραια τὰ τετράχορδά του, περιστρέφει τὸ μέλος του περὶ διφωνίας, οὐχὶ ὁμοίας, τῶν ὁποίων τὸ ἄκουσμα εἰναι δίφωνον, χρώμενος ἐξ ἄλλου καὶ τῆς διὰ τεσσάρων συμφωνίας (Δι - Νη), ὅτε τὸ μέλος του εἰναι τρίφωνον. Ἦλλως ὁ Δεύτερος ἡχος εἰναι ὁ ἔτερος τῶν δύο ἡχων τοῦ χρωματικοῦ γένους. Γένος δὲ εἰναι ποιά τις διαίρεσις τετραχόρδου, οὐχὶ δὲ τριχόρδου.

Συμφωνίαι καὶ συστήματα

Ἐκ τῶν συμφωνιῶν τῆς πέμπτης διαπασῶν $q = -\frac{\pi}{q}$ αὕτη, ἡ διὰ πέντε $q = -\frac{\chi}{q}$ καὶ ἡ διὰ τεσσάρων $\sqrt{\frac{\chi}{q}} - \frac{\chi}{QQ}$ ἐν τῆ Βυζαντινῆ Μουσικῆ ἀποτελοῦσι συστήματα ἰδιαίτερα. Ἡτοι, τὸ Διαπασῶν ἡ διὰ δκτώ, τὸν Τροχὸν ἡ διὰ πέντε καὶ τὴν Τριφωνίαν ἡ διὰ τεσσάρων. Τούτων τὸ διαπασῶν μὲ τὰ διαστήματα τῆς πέμπτης Διαπασῶν $q = -\frac{\pi}{q}$ ἀκολουθεῖ ὁ Πρῶτος ἡχος καὶ οἱ ποιούμενοι χρῆσιν ταύτης ἄλλοι διατονικοὶ ἡχοι μετὰ τῶν ἱδιαιτέρων ἰδιωμάτων αὐτῶν.

Τὸν τροχόν μὲ τὰ ἰδιάζοντα διαστήματα τοῦ πενταχόρδου

δια τής φθοράς του Πα ἐπὶ του Κε: \mathbf{q} \mathbf{z} \mathbf{v} \mathbf{n} \mathbf{e} μεταχειρίζεται \mathbf{v} Πρώτος ήχος κυρίως καὶ μετ' αὐτου ὁ Πλάγιος του Πρώτου εἰς τά εἰρμολογικά του καὶ ἐνίοτε ὁ Τέταρτος.

Τὴν δὲ Τριφωνίαν, ἥτις ἀκολουθεῖ τὰ διαστήματα τοῦ τετραχόρδου $\overbrace{\mathring{\eta}}^{\pi}$ $\mathring{\eta}$ $\mathring{\eta}$ $\mathring{\eta}$ μετατιθέμενα ἐπὶ τοῦ τετραχόρδου $\overbrace{\Gamma\alpha-Z\omega}$ διὰ

τῆς φθορᾶς τοῦ Νη ἐπὶ τοῦ Γα: $\frac{2}{0}$ $\frac{\lambda}{q}$ $\frac{\chi}{\chi}$ $\frac{\chi}{2}$ ἀκολουθεῖ ὁ Πλάγιος τοῦ Τετάρτου εἰς ὡρισμένα εἰρμολογικά, ἀργὰ καὶ σύντομα μέλη του καὶ ὁ Τρίτος ῆχος εἰς τὰ παπαδικὰ μέλη.

Τρία συνεπῶς αὐτοτελῆ συστήματα ἐν πλάτει ὡρισμένων συμφωνιῶν, μετὰ ἰδιαιτέρων διαιρέσεων καὶ καθωρισμένης σειρᾶς διαστημάτων, οὐχὶ δ' ἀπλῶς διὰ ὀκτὼ (ῆ διαπασῶν), διὰ πέντε καὶ διὰ τεσσάρων συμφωνίαι, τὰς ὁποίας ἐξ ἄλλου ἔχουσιν ἐν χρήσει πάντες οἱ ἡχοι, ἀναλόγως ἑκάστου εἴδους τῶν μελῶν αὐτῶν (τριφώνων, τετραφώνων, πενταφώνων κλπ.), αἴτινες χαρακτηρίζονται ἐκ τοῦ ΰψους τῶν ἄκρων μόνον φθόγγων αὐτῶν, τῶν ἐχόντων δηλονότι μῆκος καθωρισμένον ἐκ τῆς ὅλης χορδῆς, ¹/₂ λ. χ. διὰ τὴν διαπασῶν, ²/, διὰ τὴν διὰ πέντε καὶ οὕτω καθεξῆς.

Γένη τῆς Μουσικῆς

Έν τἢ Ἑλληνικἢ Μουσικἢ ἀνέκαθεν τρία ὑπῆρχον Γένη τὸ Διάτονον, τὸ Χρῶμα καὶ ἡ Ἡρμονία, τὰ ὁποῖα διεσφθησαν καὶ ἐν τἢ Βυζαντινἢ Μουσικἢ μὲ τὰ ὀνόματα Διατονικόν, Χρωματικὸν καὶ Ἐναρμόνιον, οὐχὶ βεβαίως αὐτούσια, ἀλλὰ κατὰ προσέγγισιν ἐν τοῖς πλείστοις καταπλήσσουσαν. Διότι, ἄν δὲν διεσφθη ἡ αὐστηρὰ τῶν διαστημάτων ἑκάστου τετραχόρδου κατὰ τὸ διάτονον χρῶμα καὶ τὴν ἁρμονίαν, οὐχὶ ἤττον ὅμως πᾶσαι σχεδὸν αἱ μορφαὶ τῶν μεγάλων καὶ μικρῶν διαστημάτων ἀνευρίσκονται εἰς τε τὰ ἀρχικὰ τῶν Γενῶν τετράχορδα καὶ εἰς τὰς ἐξ αὐτῶν παραγομένας Χρόας, αἵτινες εἰσὶν εἰδικαὶ διαιρέσεις τῶν Γενῶν, ἐν ῷ Γένος, ὡς γνωστὸν εἰναι «ποιά τις διαίρεσις τετραχόρδου».

Τὸ Διάτονον τῶν ἀρχαίων Γένος περιεῖχε τόνους καὶ ἡμιτόνια, έκ τῆς τοιαύτης δὲ ἤ ἀλλοίας διαιρέσεως αὐτοῦ παρήγοντο τὰ ἔτερα δύο Γένη τὸ Χρῶμα καὶ ἡ 'Αρμονία. Χωρὶς νὰ ἐνδιατρίψω εἰς τὰ περὶ διαιρέσεως τῶν Γενῶν εἰς τὴν ἀργαίαν Ἑλληνικὴν Μουσικήν, ἀναφέρω μίαν μόνον περικοπήν τοῦ Κοϊντιλιανοῦ ᾿Αριστείδου, ἐν τῆ ὁποία σαφῶς καθορίζει, ὅτι τὸ Χρωματικὸν καὶ τὸ Ἐναρμόνιον παρήχθησαν έκ τοῦ Διατονικοῦ. «Τὸ γρωματικὸν γένος διατονικὸν ἐστίν ηὐξημένον καὶ πεπυκνωμένον ήμιτονίοις. Τὸ δὲ ἐναρμόνιον διατονικὸν ἐστί, τόνω μὲν διπλασιασθέν, τῷ δ' ἡμιτονίω δίχα διηρημένον. Διάτονον δὲ καλεῖται, διότι πεπύκνωται τοῖς τόνοις κατά τὰ διαστήματα ἀρρενωπὸν δ' ἐστὶ καὶ αὐστηρότερον. Χρωματικόν δὲ καλεῖται παρά τὸ χρώζειν αὐτὸ τὰ λοιπά διαστήματα, μή δεισθαι δὲ τινὸς ἐκείνων ἔστι δὲ ἥδιστον καὶ γοερόν. Τὸ δ' έναρμόνιον διὰ τὸ ἐν τῆ τοῦ ἡομοσμένου τελεία διαστάσει λαμβάνεσθαι. Οὔτε γάρ δίτονον πλέον, οὖτε διέσεως ἔλαττον ἐνεδέγετο κατὰ αἴσθησιν λαβεῖν τὰ διαστήματα· διεγερτικὸν δ' ἐστὶ τοῦτο καὶ ἤπιον». ('Αριστ. Κοϊντ. Βιβλίον Β΄, ΧΙV. ρ. ΙΙΙ).

Καὶ ἐν τῷ Βυζαντινῷ Μουσικῷ τὸ Διατονικὸν Γένος εἶναι ἡ ἀρχικὴ βάσις, ἐξ ἡς, δι' ὡρισμένας μετακινήσεις τῶν μὴ ἐστώτων (ἄκρων) φθόγγων τῶν τετραχόρδων τῆς διατονικῆς κλίμακος, παράγονται τὰ χρωματικὰ καὶ ἐναρμόνια τετράχορδα. Ἐκ τοῦ διατονικοῦ τετραχόρ-

δου: $\Delta \iota$ - $K \varepsilon$ - $Z \omega$ - $N \eta$ διὰ μετακινήσεως τοῦ $K \varepsilon$ πρὸς τὸ βαρύ, ἤτοι διὰ μιᾶς ὑφέσεως τοῦ $K \varepsilon$, παράγεται τὸ χρωματικὸν τετράχορδον τοῦ $\Delta \varepsilon$ υτέρου ἤχου.

'Εκ τοῦ διατονικοῦ τετραχόρδου: Πα-Βου-Γα-Δι, διὰ μετακινήσεως τοῦ Βου πρὸς τὸ βαρὰ καὶ τοῦ Γα πρὸς τὸ ὀξύ, ἤτοι διὰ διέσεως ἐπὶ τοῦ Γα, παράγεται τὸ χρωματικὸν τετράχορδον τοῦ Πλαγίου Δευτέρου ἤχου.

'Έκ τοῦ διατονικοῦ τετραχόρδου: Πα-Βου-Γα-Δι παράγονται δύο ἐναρμόνια τετράχορδα. Διὰ μὲν τῆς μετακινήσεως τοῦ Βου πρὸς τὸ βαρύ, δυνάμει τῆς ἐναρμονίου φθορᾶς: \wp παράγεται τὸ τετράχορ-

δον: Πα - Βου - Γα - Δι, διὰ δὲ τῆς μετακινήσεως τοῦ Βου πρὸς τὸ ὁξὺ δυνάμει τῆς ἐπὶ τοῦ Γα τιθεμένης φθορᾶς: Α τὸ τετράχορδον Πα - Βου - Γα - Δι 'Αλλὰ καὶ τὰ τετράχορδα τῶν ἐκ τοῦ ΊαΊα (Γα) παραγομένων ἤχων Τρίτου καὶ Βαρέως κατὰ ἐναρμονισμὸν τοῦ φυσικοῦ φθόγγου Ζω, εἰς χλιδανὸν μετατρεπομένου, ἐκ τοῦ διατονικοῦ τετραχόρδου:

Γα-Δι-Κε-Ζω παράγονται. Δύναταί τις δὲ τὸ ἐναρμόνιον τοῦτο Γένος νὰ ὀνομάση αὐτὸ σκληρὸν διατονικόν, ὡς χρώμενον μειζόνων τόνων καὶ ἡμιτονίων, ἐν ἀντιθέσει πρὸς τὸ μαλακὸν διατονικόν, τὸ χρώμενον μειζόνων, ἐλασσόνων καὶ ἐλαχίστων τόνων.

Έν παρόδφ τὸ Διάτονον τῶν ἀρχαίων ἐμελφδεῖτο κατὰ τόνον καὶ τόνον καὶ ἡμιτόνιον ἐν ἀναβάσει καὶ ἀντιθέτως ἐν καταβάσει. Τὸ Χρῶμα καθ' ἡμιτόνιον καὶ ἡμιτόνιον καὶ τριημιτόνιον ἐν ἀναβάσει καὶ ἀντιθέτως ἐν καταβάσει. Τὸ δ' ἐναρμόνιον κατὰ τεταρτημόριον καὶ τεταρτημόριον καὶ τεταρτημόριον καὶ δίτονον ἀσύνθετον, ἀντιθέτως δ' ἐν καταβάσει. Ἐννοεῖται δ' ὅτι αἱ διαιρέσεις αὐται δὲν περιωρίζοντο εἰς ἔν μόνον τετράχορδον, ἀλλὰ καὶ ἐπὶ τῶν τεσσάρων τοῦ Δισδιαπασῶν ἀμεταβόλου συστήματος, τῶν τε διεζευγμένων καὶ τῶν συνημμένων.

Έν τή Βυζαντινή ὅμως Μουσική το μέν Διατονικὸν Γένος στηρίζεται ἐπὶ τετραχόρδων ἐκ τῶν τριῶν τόνων μείζονος, ἐλάσσονος καὶ ἐλαχίστου κατὰ διάφορον ἑκάστοτε παράταξιν, τὸ Χρωματικὸν ἐπὶ τετραχόρδων ἐκ μεγαλυτέρων καὶ μικροτέρων τοῦ τόνου διαστημάτων ήτοι ἡμιτονίων, τριημιτονίων ὑπελασσόνων. χρωματικῶν κλπ., τὸ δ΄ ἐναρμόνιον ἐπὶ τετραχόρδων ἐκ τόνων καὶ ἡμιτονίων, ἄτινα ἄλλοτε εἰναι (τὰ ἡμιτόνια) εἰς τὴν ἀρχήν, ἄλλοτε εἰς τὸ μέσον καὶ ἄλλοτε εἰς

τὸ τέλος: α) Πα-Βου-Γα-Δι (τὸ ἀρχαῖον Δωρικὸν τετράχορδον), β)

Πα - Βου - Γα - Δι (τὸ ἀρχαῖον Φρυγικόν), γ) Γα - Δι - Κε - Ζω (τὸ ἀρχαῖον περίπου Λύδιον).

Περὶ ὑποδιαιρέσεως τῶν Ἡχων κατὰ τοὺς Βυζαντινοὺς καὶ περὶ τῶν συστατικῶν αὐτῶν

Οί ήχοι τής Βυζαντινής Μουσικής, κύριοι καὶ πλάγιοι, ὀκτὼ ὄντες τὸν ἀριθμὸν κατανέμονται καὶ εἰς τὰ τρία Γένη. Ἡτοι τέσσαρες εἰς τὸ Διατονικὸν:ὁ Πρῶτος, ὁ Πλάγιος τοῦ Πρώτου, ὁ Τέταρτος καὶ ὁ Πλάγιος τοῦ Τετάρτου. Δύο εἰς τὸ Χρωματικόν: ὁ Δεύτερος καὶ ὁ Πλάγιος τοῦ Δευτέρου καὶ δύο εἰς τὸ Ἐναρμόνιον: ὁ Τρίτος καὶ ὁ

Βαρύς, δστις δὲν καλεῖται Πλάγιος τοῦ Τρίτου διὰ λόγους, οἴτινες ἐκτίθενται εἰς τὸ περὶ Βαρέως ἥχου κεφάλαιον.

Οἱ Βυζαντινοὶ εἶχον καὶ ἄλλας ὑποδιαιρέσεις τῶν ἤχων. Διήρουν αὐτοὺς εἰς μέσους, παραμέσους, διφώνους, τριφώνους καὶ τετραφώνους. Τούτων οἱ μέσοι παρήγοντο ἐν καταβάσει, οἱ δὲ δίφωνοι, τρίφωνοι καὶ τετράφωνοι ἐν καταβάσει καὶ ἀναβάσει, τῶν διφώνων δεικνύοντων ἐν καταβάσει καὶ τοὺς μέσους τῶν ἤχων, τῶν δὲ τριφώνων τοὺς παραμέσους.

Ή τριφωνία ἐν ἀναβάσει καὶ καταβάσει ἐδείκνυε καὶ τὸ τρίφωνον αὐτοῦ τούτου τοῦ ἤχου. Ἡ δὲ τετραφωνία ἐν ἀναβάσει μὲν ἐδείκνυε τοὺς Κυρίους ἤχους, ἐν καταβάσει δὲ τοὺς Πλαγίους.

Αἱ διαιρέσεις αὐται τῶν ἤχων ἐγίνοντο ἐπὶ τῇ βάσει τῆς περὶ τοῦ Τροχοῦ θεωρίας τῶν Βυζαντινῶν, τὴν ὁποίαν καθώρισαν ὁ Δαμασκηνὸς καὶ ὁ Κουκουζέλης καὶ τὴν ὁποίαν πρῶτος ἀνέπτυξε καὶ καθώρησε λεπτομερῶς ὁ ἱερεὺς Ἰωάννης ὁ Πλουσιαδινὸς διὰ τοῦ μεγάλου Τροχοῦ του, περὶ οὐ καὶ ὅλων τῶν σχετικῶν γράφονται ἐν λεπτομερεία τὰ δέοντα ἐν τῇ πρὸς δευτέραν ἔκδοσιν ὑπερηυξημένην, ἐτοίμην δ' ἤδη «Παρασημαντικῷ»* μου. Ἐνταῦθα ἀναφέρω διὰ τὸ χρήσιμον τῆς θεωρίας αὐτῶν τὰ περὶ μέσων, διφώνων, τριφώνων καὶ τετραφώνων.

Μέσοι: Τοῦ Πρώτου ήχου ὁ Βαρύς. Τοῦ Δευτέρου ὁ Πλάγιος τοῦ Τετάρτου. Τοῦ Τρίτου ὁ Πλάγιος τοῦ Πρώτου. Τοῦ Τετάρτου ὁ Λεγετος.

Δίφωνοι: Τοῦ Πρώτου ἥχου ἐν ἀναβάσει ὁ Τρίτος, ἐν δὲ καταβάσει ὁ Βαρύς. Τοῦ Δευτέρου ἐν ἀναβάσει ὁ Τέταρτος, ἐν δὲ καταβάσει ὁ Πλάγιος τοῦ Τετάρτου. Τοῦ Τρίτου ἐν ἀναβάσει ὁ Πρῶτος, ἐν καταβάσει δὲ ὁ Πλάγιος τοῦ Πρώτου. Τοῦ Τετάρτου ἐν ἀναβάσει ὁ Δεύτερος, ἐν καταβάσει δὲ ὁ Πλάγιος τοῦ Δευτέρου.

Τρίφωνοι: Τοῦ Πρώτου ἥχου ἐν ἀναβάσει ὁ Τέταρτος, ἐν ἐν καταβάσει ὁ Πλάγιος τοῦ Δευτέρου. Τοῦ Δευτέρου ἐν ἀναβάσει ὁ Πρῶτος, ἐν καταβάσει ὁ Βαρύς. Τοῦ Τρίτου ἐν ἀναβάσει ὁ Δεύτερος, ἐν καταβάσει ὁ Πλάγιος τοῦ Τετάρτου. Τοῦ Τετάρτου ἐν ἀναβάσει ὁ

[&]quot;Η «Παρασημαντική τῆς Βυζαντινῆς Μουσικῆς», ἐξεδόθη τὸ πρῶτον ἐν ᾿Αθήναις τὸ ἔτος 1917, εἰς σχ. 8ον καὶ σ. σ. 94. Νῦν ἐπανεκδίδομεν ταύτην ταυτοχρόνως μετὰ τοῦ ἀνὰ χείρας βιβλίου, ἐπηυξημένη καὶ βελτιωμένη, μετὰ πλήρους δὲ βιογραφίας, εἰσαγωγῆς καὶ καταλόγου, τῶν ἔργων τοῦ συγγραφέως. (᾿Αθῆναι 1978).

Τρίτος, εν καταβάσει δε δ Πλάγιος του Πρώτου.

Τετράφωνοι: Τοῦ Πρώτου ἥχου ἐν ἀναβάσει πάλιν ὁ Πρῶτος. Τοῦ Δευτέρου ἐν ἀναβάσει πάλιν ὁ Δεύτερος, ἐν καταβάσει ὁ Πλάγιος τοῦ Δευτέρου. Τοῦ Τρίτου ἐν ἀναβάσει πάλιν ὁ Τρίτος, ἐν καταβάσει δὲ ὁ Βαρύς. Τοῦ Τετάρτου ἐν ἀναβάσει πάλιν ὁ Τέταρτος, ἐν δὲ καταβάσει ὁ Πλάγιος τοῦ Τετάρτου.

Διὰ τοὺς Πλαγίους ἤχους ἰσχύει ἡ αὐτὴ θεωρία, ἀντιστρεφομένων τῶν σχέσεων τῶν φθόγγων.

Παράμεσος τέλος ξκάστου ήχου είναι δ ξχων βάσιν ξνα τόνον ὑπὸ τὸν Μέσον, ὅπως λ. χ. τοῦ Τρίτου, ξχοντος μέσον τὸν Πλάγιον Πρῶτον, παράμεσος αὐτοῦ είναι ὁ Πλάγιος τοῦ Τετάρτου.

Καὶ παρ' ἡμῖν ὅμως οἱ ὀκτὰ ἡχοι, πλὴν τῆς εἰς κυρίους καὶ πλαγίους διαιρέσεως αὐτῶν, ὑποδιαιροῦνται εἰς διφώνους, τριφώνους, τετραφώνους, πενταφώνους καὶ ἑπταφώνους, οὐχὶ συμφώνως πρὸς τὸ πνεῦμα τοῦ Τροχοῦ τῶν Βυζαντινῶν, ἀλλ' ἀναλόγως τῶν ὑπερισχυουσῶν συμφωνιῶν ἐν ἑκάστῳ εἶδει τοῦ μέλους καὶ τῆς ἐκ τούτου διαφόρου συστάσεως αὐτῶν, διακρινομένων ἀπ' ἀλλήλων διὰ τῆς ἰδιαιτέρας διαμορφώσεώς των ἕκαστος καὶ τῶν ἰδιαζόντων χαρακτηριστικῶν αὐτῶν.

Έκαστος ήχος ἔχει ἰδιαίτερα συστατικά, τῶν ὁποίων τὰ κυριώτερα, ήτοι τὸ ᾿Απήχημα, ή Κλῖμαξ, οἱ Δεσπόζοντες φθόγγοι καὶ αἱ Καταλήξεις. Τούτων τὸ ᾿Απήχημα καὶ αἱ Καταλήξεις εἶναι τὰ κυρίως γνωριστικὰ ἐκάστου ήχου.

Έκ τῶν συστατικῶν τούτων κυρίως ἡ Κλῖμαξ καὶ οἱ Δεσπόζοντες φθόγγοι εἶναι δυνατὸν νὰ ἦναι κοινοὶ εἰς δύο ἡ περισσοτέρους ἤτους. Οἱ τέσσαρες λ. χ. διατονικοὶ ἡχοι ἔχουσι κοινὴν Κλίμακα τὴν διατονικὴν μετὰ τινων διαφορῶν. 'Ωσαύτως δύο ἡχοι εἶναι δυνατὸν νὰ ἔχωσι κοινοὺς δεσπόζοντας φθόγγους. 'Ο Πρῶτος λ. χ. εἰς τὸ Εἰρμολογικόν του εἶδος δεσπόζοντας φθόγγους ἔχει τοὺς Πα καὶ Δι, οἶτινες εἶναι οἱ αὐτοὶ εἰς τὸ Στιχηραρικὸν εἶδος τοῦ Πλαγίου Πρώτου ἡχου. Τὰ γνωριστικὰ ὅμως εἶναι ὅλως ἰδιάζοντα εἰς ἕκαστον ἡχον. Διότι ἕκαστος τῶν ἡχων ἔχει τὸ ἰδιαίτερόν του ἀπήχημα. 'Ο Πρῶτος λ. χ. ἔνει τὸ ἀπήχημα (κατὰ τοὺς Βυζαντινούς)

χει τὸ ἀπήχημα (κατὰ τοὺς Βυζαντινούς) $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ παρ' ἡμῖν $\frac{1}{\pi}$ α $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$

τος ἔχει τὸ: Δ΄ Καὶ καθεξῆς, ὡς βλέπει τις εἰς τὰ πεἢ Α γι α ρὶ ἐνὸς ἐκάστου ῆχου κεφάλαιον.

Οσαύτως έχει εκαστος ίδιαζούσας καταλήξεις, αί όποται καὶ είναι τὸ γνωριστικώτερον τῶν γνωρισμάτων του. Ὁ Πρῶτος ήχος λ. χ. έχει κατάληξιν τὴν ἐξῆς εἰς τὰ σύντομα στιχηραρικά του:

Τ Κυ υ

Τ μι ι ε

τὸ αὐτὸ είδος τοῦ μέλους ἔχει κατάληξιν τὴν ἑξῆς:

τη ης του θα α α αυ μα α α τος

Πλὴν τῶν τεσσάρων τούτων συστατικῶν τῶν ἦχων ὑπάρχουσι καὶ ἄλλα, ἄτινα, διαμορφοῦντα τὸ ἡθος ἐκάστου, ἐμφανίζουσιν αὐτὸν διάφορον ἀπὸ ἄλλου ἤχου ὡς πρὸς τὸν χαρακτῆρα, τὰς ἰδιότητας, τὴν τεχνοτροπίαν καὶ τὴν διάπλασιν αὐτοῦ εἰς γραμμὰς καὶ σχήματα μουσικά, ἱκανὰ ν' ἀπαιτήσωσι, δυνάμει τοῦ νόμου τῆς μιμήσεως, πᾶσαν τοῦ κειμένου ἔννοιαν. Εἰναι δὲ ταῦτα τὸ ποσόν, τὸ ποιόν, τὰ διαστήματα, ὁ χρόνος, ὁ ρυθμός, ἡ χρονικὴ ἀγωγή, τὰ χρώματα, ἡ ἕλξις καὶ ὁ τρόπος, καθ' ὄν καὶ καθ' δλα τὰ συστήματα ἑκάστου ἤχου δύναται νὰ συνοδεύση τὸ κυρίως μέλος ποιά τις ἀρμονικὴ συνήχησις.

Οἱ ἀρχαῖοι Ἦληνες, οἱ κατ' ἐξοχὴν ἐκεῖνοι ἄνθρωποι τῆς αἰσθήσεως καὶ τῆς ὁράσεως, εἰς ἔνα ἔκαστον τῶν Τρόπων των διέβλεπον ἱδιαίτερον ἡθος, ποιούμενοι χρῆσιν ἑκάστου ἀναλόγως τοῦ χαρακτῆρος καὶ τῆς ἐκφράσεως ὑπὸ τὰ ὁποῖα ἔπρεπε νὰ ἐμφανισθῆ πᾶσα μελφδία, δι' ὡρισμένον σκοπὸν προωρισμένη. Ὁ Δώριος λ. χ. εἰχεν ἡθος σεμνόν, ὁ Φρύγιος ἀνδρικὸν καὶ ὁρμητικὸν καὶ οὕτω καθεξῆς. Διὰ τὸν λόγον δὲ τοῦτον αἱ θρησκευτικαί των μελφδίαι ἐμελοποιοῦντο ἐπὶ τρόπων διαφόρων ἐκείνων, καθ' οὕς ἤδοντο τὰ ἄλλης φύσεως ἄσματα, οἱ δὲ ρυθμοὶ αὐτῶν δὲν ἐλαμβάνοντο εἰκῆ καὶ ὡς ἔτυχεν, ἀλλ' ἀναλόγως τοῦ πάθους, τῆς ὁρμῆς κλπ. τὸ ὁποῖον ἔπρεπε νὰ δηλώσωσιν.

Συγχορδίαι καὶ Δεσπόζοντες φθόγγοι

Οἱ ἄκροι φθόγγοι τῶν ἐν ἑκάστῳ ἤχῳ συμφωνιῶν, ἀποτελοῦσι τοὺς θεμελειώδεις φθόγγους περὶ τοὺς ὁποίους στρέφονται τὰ μέλη ἀναλόγως τῶν εἰδῶν αὐτῶν (εἰρμολογικόν, στιχηραρικὸν κλπ.) καὶ τῆς ὑποδιαιρέσεως, ὡς ἐλέχθη, τῶν ἤχων εἰς διφώνους, τριφώνους κλπ. Οἱ φθόγγοι οὐτοι προσφυῶς καλοῦνται δεσπόζοντες, ὡς κυριαρχοῦντες τῶν λοιπῶν φθόγγων. Ἐπὶ τούτων δ' ἀκριβῶς γίνονται αἱ ἐν τῆ πορεία τοῦ μέλους ἀτελεῖς, ἐντελεῖς καὶ τελικαὶ καταλήξεις, διακοπτομένου ἐν τῷ μέσῳ ὀλίγον ἤ περισσότερον τοῦ μέλους καὶ καταλήγοντος ὁλοτελῶς.

Οί δεσπόζοντες οὖτοι φθόγγοι εἰσὶν αί βάσιμοι συγχορδίαι ἐν ἐκάστῳ ἤχῳ, αἵτινες εἰς τὸν πεπειραμένον μουσικὸν δίδουσι τὴν πρώτην νύξιν περὶ τοῦ δυνατοῦ τῆς κράσεως καὶ μίξεως δύο ἤ περισσοτέρων φθόγγων, ἥτις πάλιν ἀποτελεῖ τὰς βάσεις συνηχήσεως ἀρμονικῆς οὐχὶ ἀπλῶς φθόγγων μιᾶς κλίμακος, ἀλλὰ φθόγγων ὡρισμένων δι' ἕκαστον ἦχον.

Βεβαίως αἱ ἐκ μόνων τῶν δεσποζόντων φθόγγων καὶ τῶν ἄκρων τῶν συμφωνιῶν προκύπτουσαι συγχορδίαι δὲν εἶναι αἱ μόναι, οὐδ' αἱ ἀρκεταὶ πρὸς τοῦτον τὸν σκοπόν. Ύπάρχουσι καὶ ἄλλαι πολλαί, τὰς ὁποίας δύναται νὰ παρατάξη τὸ πολύηχον σύστημα τῆς Βυζαντινῆς Μουσικῆς, τινὲς τῶν ὁποίων συμπίπτουσι καὶ πρὸς συγχορδίας κατ' ἀντίστιξιν τῆς εὐρωπαϊκῆς μουσικῆς άρμονίας, ὅπως αἱ τοῦ καθ' ἡμᾶς Πλαγίου Τετάρτου, τοῦ αὐτοῦ πρὸς τὸν μείζονα τρόπον ἐκείνης μετὰ χαρακτηριστικῆς ὅμως διαφορᾶς, καὶ αἱ τῆς καθ' ἡμᾶς Χρόας τοῦ Πλαγίου Πρώτου μετ' ἐναρμονίου φθορᾶς ἐπὶ τοῦ φθόγγου τοῦ Γα

 $(\Pi \alpha - Boυ - \Gamma \alpha - \Delta \iota)$ τοῦ συμπίπτοντος πρὸς τὸν ἐλάσσονα τρόπον τῆς εὐρωπαϊκῆς.

Τούτων ἐν γένει τῶν συμφωνιῶν ἡ ἐν γνώσει τῶν κανόνων ἑκάστου αὐτοτελοῦς ἡχου (οὐχὶ δ' ἀπλῶς ἑκάστης κλίμακος) χρῆσις καὶ μίξις ἀποτελοῦσα πρωτότυπον ἀντίστιξιν, ἐν τἢ ἀναπτύξει τῶν γραμμῶν ἑκάστου εἴδους τοῦ μέλους, εἶναι μάχαιρα δίστομος, ἡτις δεῖται χρήσεως καλῆς καὶ ἐσκεμμένης, ἵνα μή, εἴτε διὰ τῆς προσηλώσεως εἰς τὴν εὐρωπαϊκὴν ἀρμονίαν ἀφ' ἑνός, εἴτε διὰ τῆς παραμορφώσεως τοῦ κυρίως μέλους ἀφ' ἑτέρου, προκύπτη ἕν ἄθροισμα τόνων ἐμμελῶν, ἀσυναρτήτων καὶ ἀντιαισθητικῶν.

Συγχορδίαι

Τοῦ Πρώτου καὶ Πλαγίου Πρώτου ἐκ τοῦ Πα:

Τοῦ Πρώτου τετραφώνου καὶ τοῦ Πλαγίου Πρώτου ἐκ τοῦ Κε:

	., ., ., .,	
ĸ Ÿ	がなる	q ×
	355	
× Ÿ	ごろう	Å
ä		q x
ä	<u>~ e</u>	6 %
× q	263	Ă
	5555	
ά		q ×
ä	- 4 °	q
'	Τοῦ Τετάρτου	
	Α΄. Πρὸς τὸ ὀξὺ:	
۵ ۸		<u>፠</u>
	2 3	π΄ q
Ä	<u> </u>	
Δ Ä	., ., .,	π΄ q
Δ Ä	<u> </u>	Ä Ä
	Ca Ca	0.

Ä	
۵. م	<u> </u>
Ϋ́ 9,	~ ~ , ~ , ~ , ~
Δ Ä	~ ~
٥٠ ٨	
٥٢ ٨	<u>ت رت ت ، ت ،</u>
Δ	22/2
۷:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵ ۵:۵	<u>~ /~ ~,</u>

Β΄. Πρός το βαρύ:

شرط ولا منائل بال يوس منائل عائل عائل عائل

Ä Ä <u>۵</u> ٪ Τοῦ Πλαγίου Τετάρτου: ሗ ሏ ሗ ሏ ሗ า วา ሗ ر د ሏ ä ሗ ง ขา

×

้**ะ** วา

> π **q**

Τοδ Πλαγίου Τετάρτου κατά τριφωνίαν

Α΄. Πρός τὸ ὀξύ:

مدد مدد مدد مدد مدد مدد ما با با با با با با با با با ما با با با با

Β΄ Πρὸς τὸ βαρύ:

Τοῦ Δευτέρου ήχου

Α΄ 'Εκ τοῦ Νη:

6

<u>م</u>	<u> </u>	Δ' ~
ے م	<u>~ .~</u>	, v ′
ي ۳	<u>ت</u> ,	
ي م	<u>ئے ہے ہے،</u>	ے کے
ح ع	<u> </u>	ے م
	Δ΄ 'Έκ τοῦ Δι πρὸς τὸ βαρύ:	
<u>م</u>	2 %	6
م	222	ž
<u>م</u>	さななら	Ξ
	5535	
<u>م</u>	-	Ä
	Ε΄ Έκ τοῦ Κε πρὸς τὸ βαρύ:	
×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ب مر
×	ングル	π,
×	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, ,

ΣΤ΄. Ἐκ τοῦ Γα πρὸς τὸ βαρύ:

'Ωσαύτως αἱ ἐξῆς ἄνευ συνηχήσεως τοῦ Πα:

π	<u> </u>	×′
π		> o*
π		\mathbf{z}_{ω}^{o}
π		<u>بر</u> بر
π	3)3	ν΄,
π	<u>م</u> ر م	e'
π	~ · · · · · · · · · · · · · · · · · · ·	د '
π	<u></u>	์ ขา
	Τοῦ Τρίτου ἤχου	
	Α΄ Πρὸς τὸ ὀξύ:	
1,1 L	<u> </u>	Ä
ار د	<u> </u>	ว ้า
	<u>ت ، ت ، ت ، ت </u>	
ئر ل		์ กำ
ار د	3 19	ズ ヿ ゚ヿ
r	<u>ت بن ب</u>	π΄

ว์ เ		นู้ เร
	Β΄ Πρός τὸ βαρύ:	
ეე Ļ	<u> </u>	π q
ეე Ļ	がんが	Ч х
1,J	びるない	า กา
11 L	<u>~</u> &	, Ķ
1 2	286	9 x
ار د ر	ググルン	น งง
ار در	رس الم	r % วา
11 L	~ \$ 6	1. 1.1
	Τοῦ ἐναρμονίου Βαρέως	
	Α΄. Έκ τοῦ Γα πρὸς τὸ ὀξύ:	
์ เ	2 3	ヹ ??
ίη L	<u> </u>	π΄ q
	<u>ر من من من </u>	٠

Β΄ Έκ τοῦ Γα πρὸς τὸ βαρύ:

Γ΄: Ἐκ τοῦ Πα πρὸς τὸ όξὺ καὶ τὸ βαρύ:

Εἰς τὰ στιχηραρικά του τὰ ἀργὰ ὁ ἐναρμόνιος Βαρύς, ὅταν ἐργάζηται ἐντὸς τῶν πενταχόρδων: $\overset{\circ}{\eta}$ καὶ $\overset{\circ}{\chi}$ καὶ $\overset{\circ}{\chi}$ κατὰ τὸν Τροχόν), ἔχει ὅλας τὰς τοῦ Πρώτου ἥχου συγχορδίας ἐν χρήσει.

Τοῦ ἐναρμονίου Βαρέως ἐκ τοῦ Ζω:

Αί αὐταὶ καὶ ἐκ τοῦ ὀξέως πρὸς τὸ βαρὰ ἀντιστρόφως. Τοῦ διατονικοῦ Βαρέως :

WE WE		ڎ ؉ٛ
ر ک ک	Τοῦ χρωματικοῦ Πλαγίου Τετάρτου	7.5° %
\ \ \ \	<u> </u>	6
\ \ \ \	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\Delta _{arphi}$
α > α	<u>ت ب ب ب ب</u>	, , ,
4>4 4 > 4 4>4 4>4	<u> </u>	$\Delta _{arkappa ^{\prime }}$
à > à	<u> </u>	Z.
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	z s
	Τῆς ἐναρμονίου χρόας: σ ἐκ τοῦ ὀξέως:	
5.45. 2.45.	<u> </u>	€ q
11 2	5 5 5 C	Å
3.3 ^Δ	3225	c_{Δ}^{\cap}
	Τῆς χρωματικῆς χρόας: 🔑 ἐκ τοῦ ὑξέως;	

\$4\$ \$4\$	Å
2 2	0 1
	π σ*
	<u>z</u>
ή τρίτη διὰ τὴν περίπτωσιν: 🕺 💍 — καὶ ἡ τετά	ρτη διὰ τὴν
περίπτωσιν: 😤 💆 🥳	
Τῆς μικτῆς Χρόας: - ο - ο - ο - ο - ο - ο - ο - ο - ο -	
Α΄. Ἐκ τοῦ Γα:	
	1. 1.
	• • • • • • • • • • • • • • • • • • • •
Γα Ξ Θ	<u> </u>
	_
	π 9
Γα Ο	π q
Β΄. Έκ τοῦ Κε:	
ي کي	
Kε	1, 1,
→ KE	
KE .	π α

าำ์

Περί ἕλξεως

Έκαστος ήχος ἀκολουθεῖ, ὡς ἐλέχθη, ἰδίαν κλίμακα μετὰ καθωρισμένης σειρᾶς διαστημάτων. Τὰ διαστήματα ταῦτα, εἴτε διατονικὰ εἴναι εἴτε χρωματικὰ καὶ ἐναρμόνια δὲν ἀρκοῦσι πρὸς πλήρη καὶ ἀκριβῆ ἀπόδοσιν τῶν πολυποικίλων μελῶν ἑκάστου ἤχου. Εἶναι ἡ βάσις, ὁ σκελετὸς μᾶλλον, εἰς τόν ὁποῖον τὴν σάρκα καὶ τὰ νεῦρα δίδουσιν ἄλλα στοιχεῖα, ἀλλοιοῦντα οὐσιωδῶς τὴν ἀρχικὴν κλίμακα.

Εἰς τὸν ἀγνοοῦντα τὰ ἰδιαίτερα ταῦτα ἐκάστου ἤχου ἰδιώματα, ἄν δύναται νὰ τὰ ἀντιληφθή, γεννᾶται δικαίως ἡ ἰδέα, ὅτι οὐδὲν κοινὸν ὑπάρχει μεταξὺ κλίμακος καὶ ἤχου. Διὰ τοῦτον ἀκριβῶς τὸν λόγον, πάντες ὅσοι ἠσχολήθησαν εἰς τὴν μελέτην τῶν ἤχων τῆς Βυζαντινῆς Μουσικῆς δὲν ἠδυνήθησαν νὰ διακρίνωσι τὴν οὐσιώδη ταύτην διαφορὰν καὶ διὰ τῶν ἀδρῶν τοῦ πενταγράμμου διαστημάτων, οὐ μόνον τῶν συγκεκραμένων ἀλλὰ καὶ αὐτῶν τῶν φυσικῶν τοῦ ἄσματος, παρεμόρφωσαν τοὺς ἤχους οἰκτρῶς.

Αί κλίμακες, αί βάσεις αὐται καὶ τὰ θεμέλια τῶν ἤχων, καταντῶσι τρόπον τινὰ χειροπέδαι εἰς τὴν διάπλασιν ἑκάστου ἤχου, ἀν μὴ ὁ ἐκτελῶν μέλος τι αὐτοῦ τὸ ἤκουσε παρὰ διδασκάλου κατέχοντος τὴν φωνητικὴν τῆς Βυζαντινῆς Μουσικῆς παράδοσιν καὶ μεμυημένου πρακτικῶς εἰς τὰ μυστήρια τῆς τέχνης ταύτης. Διότι ἔν τῶν κυριωτέρων αὐτῆς μυστηρίων, τῶν «ἀπορρήτων», κατ' ᾿Αριστείδην τὸν Κοῖντιλιανόν, εἶναι ἡ διάπλασις καὶ ἡ μορφὴ ἑκάστου ἤχου, οὕτως ὥστε νὰ ἐμφανίζηται οὐτος οὐχὶ ὡς κλῖμαξ, ἀλλ' ὡς ἦχος.

Ποία ἡ ἐξήγησις τοῦ μυστηρίου τούτου, τὸ ὁποῖον καὶ οἱ ἄριστοι τῶν κατὰ καιροὺς μουσικοδιδασκάλων, καίτοι θαυμασίως διαισθανόμενοι τοῦτο, δὲν ἡδυνήθησαν νὰ ἐξηγήσωσιν;

Ύπάρχει ἐν τῆ μουσικῆ εἰς νόμος, ὁ καλούμενος νόμος τῆς ἔ λ-ξεως. Τοῦτον ἐγνώριζον κάλλιστα οἱ ἀρχαῖοι. ᾿Απόδειξις, ὅτι, ἐν ικ γένη των ἡκολούθουν ὡρισμένην σειρὰν διαστημάτων, αἱ λεγόμεναι χρ ὁ αι παρήλασσον τὴν ἀρχικὴν διαίρεσιν καὶ τὶς οἰδε ὁπόσους καὶ ὁποίους χρωματισμοὺς ἔδιδον εἰς τὸ ἀρχικῶς καθωρισμένον ἡθος ἐκάστου τῶν δέκα πέντε Τρόπων των. Διότι, οὐδεμία δυστυχῶς πληροφορία διεσώθη που περὶ τοῦ προορισμοῦ τῶν χροῶν καὶ τῶν ἐκ τούτων προκυπτουσῶν μετατροπιῶν καὶ ἀλλοιώσεων, πλὴν μόνης, ὅτι τὰ ἀπόρρητα ὡς λέγει ὁ Κοϊντιλιανὸς ᾿Αριστείδης, «ἐν ταῖς πρὸς ἀλλήλους ὁμιλίαις διεσώζετο».

*Αλλά καὶ οἱ Βυζαντινοὶ δὲν ἠγνόουν τὸν νόμον τοῦτον ἀνεξαρτήτως τοῦ ἄν δὲν ἠδυνήθησαν νὰ ἐξηγήσωσιν αὐτόν, ἤ καὶ ἄν, διαισθανόμενοι τοῦτον ἐν τῇ πράξει, παρεσύρθησαν εἰς θεωρίας ἀορίστους, ἀσαφεῖς καὶ πεπλανημένας, ἄλλοι δὲ ἀνήγαγον αὐτὰς εἰς περιωπὴν θεολογικῶν καὶ ὑπερφυσικῶν θεωριῶν.

Σαφέστερον τῶν ἄλλων ἔγραψάν τινα δύο θεωρητικοί, Μανουήλ Χρυσάφης ὁ παλαιός ἐν τῇ πραγματείᾳ του «Περὶ τῶν ἐνθεωρουμένων τῇ ψαλτικῇ τέχνη καὶ ὧν φρονοῦσι κακῶς τινες περὶ αὐτῶν»(1) καὶ Γαβριὴλ ὁ ἱερομόναχος ἐν τῇ «ἐξηγήσει» του «Περὶ τοῦ τὶ ἐστὶ ψαλτική» κ.λπ.(2), τῆς ὁποίας, ὡς ὁ ἱδιος προλογίζεται, σκοπὸς ἡ ἑρμηνεία ἐπὶ τῆς προκειμένης αὐτῷ ὑποθέσεως διὰ τὴν ὁποίαν «πολλῶν εἰπόντων πολλά, πάντες ὁμοίως πόρρω τοῦ σκοποῦ βάλλουσι καὶ οὐδαμῶς τῇ ὑποθέσει τῆς ψαλτικῆς φασὶ προσήκοντα, ἀλλὰ καὶ ἰδιωτικῶς πάνυ προσφέρουσι ταῦτα καὶ ἀφελῶς».

Έν τη ἐξηγήσει του ταύτη ὁ Γαβριὴλ ὁλόκληρον τὸ τελευταῖον κεφάλαιον αὐτῆς ἀφιεροῖ εἰς τὸ περὶ «ἐνάρξεως καλοφωνίας», ῆτοι περὶ τοῦ τρόπου, καθ' ὄν δέον νὰ ψάλλη ὁ ψάλτης, ὅταν καλοφωνῆ, ὅταν ψάλλη τουτέστι μόνος του.

Όμιλῶν ἐν αὐτῷ περὶ κακοφώνων καὶ παρήχων, ποιεῖται παρατηρήσεις καθαρῶς τεχνικὰς καὶ ἀριθμεῖ τὰ αἴτια τῆς ἐπὶ τὸ ὀξὺ ἤ τὸ βαρὺ ἀθήσεως τῆς φωνῆς, διὰ τῆς ὁποίας οἱ πάρηχοι καὶ κακόφωνοι «ἐπὶ τὸ ἄνω ἔλχουσιν ἡμᾶς ἤ ἐπὶ τὸ κάτω». Καὶ ἐξηγῶν τοῦτο λέγει: «Τοῦ ἀνέρχεσθαι ἤ κατέρχεσθαι λεληθότως, δύο αἰτίαι εἰσί, μία μὲν ἡ παρηχία, ἐτέρα δὲ ἡ τοῦ μέλους φύσις, τούτων δὲ πάλιν αἴτιον, τὰ ἤμιση τῶν φωνῶν καὶ τὰ τρίτα....... Ἐπεὶ δὲ λεληθότως καὶ ἤμισυ καὶ τρίτον λέγομεν φωνῆς (ὁ γὰρ τόνος ἀεὶ προ[σ]λαμβάνει τι τῆς φωνῆς), ταῦτα δὲ ἀθροιζόμενα ποιοῦσιν ἀκεραίας φωνάς, διὰ ταῦτα ἀνερχόμεθα μὴ γινώσχοντες καὶ κατερχόμεθα πάλιν, ὁπόταν δι' ἀσθένειαν φωνῆς οὐ λέγομεν τὰς φωνὰς σώας. Καὶ τοῦτο μὲν ἐστι πάθος πᾶσι τοῖς ἤχοις, ἐν ἐνίοις δὲ γίνεται μάλιστα».

Καίτοι εν τισι διαφαίνεται μία σύγχυσις μεταξύ παραφωνίας καὶ ίδιοτήτων του μέλους, εν τούτοις τὰ περί χρήσεως λεληθότως ε-

^{(1) «}Φόρμιξ» ('Αθηνών), "Ετος Β΄, άριθ. 5, 15 Μαρτίου 1903 ἔκδ. Κ. Ψάχου.

^{(2) «}Έργασίαι Έκκλ. Μουσικοῦ Συλλόγου» τεῦχος β΄ σελ. 75 · 76. Κων/πολις 1900 ἔκδ. Ἰακ. ᾿Αρχατζικάκη.

στιν - ώς λέγει - διαστημάτων μικρῶν, ἡμιτονίων δηλ. καὶ τρίτων καὶ τὰ περὶ πάθους κοινοῦ μεταξὺ τῶν ἤχων, οὐδεμίαν καταλείπουσιν ἀμφιβολίαν, ὅτι πρῶτος ὁ Γαβριὴλ μετὰ τῆς δυνατῆς αὐτῷ σαφηνείας ὁμιλεῖ, οὐ μόνον περὶ μικροτέρων τοῦ ἡμιτονίου διαστημάτων, ἀλλὰ καὶ περὶ τῶν ἐξ αὐτῶν καὶ δι' αὐτῶν εἰς ἕκαστον ἤχον παθῶν, ἄτινα οὐδὲν ἄλλο εἰναι, εἰμὴ ὁ νόμος τῆς μελφδικῆς ἕλξεως.

"Ελξις λοιπὸν μελφδική είναι ὁ ποικίλος χρωματισμὸς τῶν κλιμάκων, ἐπὶ τῶν ὁποίων ἐρείδονται οἱ ἡχοι τῆς ἐκκλησιαστικῆς μουσικῆς, ὁ προερχόμενος ἐκ τῆς παροδικῆς ἤ σταθερᾶς ἀλλοιώσεως ὁρισμένων φθόγγων τῆς κλίμακος καὶ ἰδίως τῶν μεταξὺ τῶν δύο ἑστώτων (ἄκρων) ἑκάστου τετραχόρδου φθόγγων, ὼθουμένων λεληθότως πρὸς τὸ ὀξὺ κυρίως καὶ σπανιώτερον πρὸς τὸ βαρύ. Είναι τουτέστιν "Ελξις μελφδική πάθος τῶν τόνων, ἑλκομένων ὑπὸ τοῦ ἀμέσως ὀξυτέρου ἤ βαρυτέρου.

Έκ τοῦ νόμου τῆς μελφδικῆς ἔλξεως (διότι ὑπάρχει καὶ άρμονικὴ ἔλξις) καὶ τῶν ἐκ ταύτης προκυπτόντων χρωματισμῶν, ἐξαρτῶνται πᾶσαι αἱ ἰδιότητες καὶ τὰ ἰδιαίτερα χαρακτηριστικὰ ἰδιώματα ἐκάστου ἥχου, ἄνευ τῶν ὁποίων τὸ ψαλλόμενον μέλος δὲν εἶναι μέλος ἥχου, ἀλλὰ μέλος ἐπὶ κλίμακος, γυμνῆς παντὸς χρωματισμοῦ καὶ συπῶς πτῶμα μέλους.

Πρῶτοι ἐκ τῶν νεωτέρων, οἶτινες κατενόησαν τὸ μυστήριον τοῦτο καὶ ὁπωσοῦν πλησιέστερον τῆς πραγματικότητος καθώρισαν εἰς τὰ ἐκκλησιαστικὰ μέλη περιπτώσεις τινὰς τῆς μελωδικῆς ἔλξεως, ἦσαν οἱ ἀποτελέσαντες τὴν ὑπὸ τοῦ Πατριάρχου Ἰωακεὶμ τοῦ Γ΄ συσταθεῖσαν Ἐπιτροπὴν τὸ 1881, καθορίσαντες καὶ σημεῖα διὶ αὐτήν, διὰ τῆς τροποποιήσεως τῶν σημείων τῆς ὑφέσεως (ρ) καὶ διέσεως (σ), εἰς σχήματα μονόγραμμα, δίγραμμα κ.λπ. (ρρ ἐσ΄) συμφώνως πρὸς τὴν πρακτικὴν ὑπὶ αὐτῶν διαίρεσιν τῆς Διαπασῶν εἰς ἑκτημόρια τριάκοντα ἕξ.

'Αλλ' ή διὰ τοῦ νόμου τῆς μελφδικῆς ἕλξεως δημιουργουμένη ἀλλοίωσις καὶ πολυμορφία τῶν τόνων, δὲν ἀποτελεῖ ἄρα γε πρόσκομμα εἰς τὴν περιβολὴν τυχὸν μελῶν ἐκκλησιαστικῶν δι' άρμονίας; Ἰσως ναὶ διὰ τοὺς μὴ ὄντας μεμυημένους εἰς τὰ τῆς ἡμετέρας μουσικῆς, δι' ἡμᾶς ὅμως ὅχι.

Εἶναι ἀληθές, ὅτι καὶ ἐν τῇ μουσικῇ τῆς Δύσεως, ἰδίως ἐν τῇ Γρηγοριανῇ ψαλμφδίᾳ, ἦτο γνωστὴ ἡ μελφδικὴ ἕλξις, ἀλλ' ἐξέλιπε

σὺν τῷ χρόνῳ ἔνεκα τῆς εἰσαχθείσης ἀρμονίας. Διότι ἡ μελῳδικὴ ἔλξις συνήθως ἀνατρέπει διὰ τῆς συχνῆς κινήσεως τῶν διαφόρων συμφωνιῶν καὶ συγχορδιῶν. Συμφώνως δὲ πρὸς τὸν νόμον τῆς ἀρμονικῆς ἔλξεως οἱ ἄκροι φθόγγοι ἐκάστου τετραχόρδου εἰσὶν ἀλληλένδετοι, ἐναρμονιζόμενοι δὲ ἀπαιτοῦσι συμφωνίας τῆς ἰδίας αὐτῶν φύσεως. Ἄν δηλονότι ἐκ τοῦ ἐνὸς φθόγγου προέλθη συμφωνία τελεία καὶ ἐκ τοῦ ἄλλου ἀπαραιτήτως πρέπει νὰ ὑπάρξη ὁμογενὴς τελεία συμφωνία. Εἰναι λοιπὸν προφανές, ὅτι ἡ ἀρμονία ἀντιτίθεται εἰς τοὺς χρωματισμούς, οἵτινες προκύπτουσιν ἐκ τοῦ νόμου τῆς μελῳδικῆς ἔλξεως διὰ τῆς μετακινήσεως τῶν διαστημάτων τῶν τόνων.

Είναι ὅμως ἀδύνατον νὰ εὑρεθῆ τρόπος συνδυασμοῦ μελφδικῆς καὶ ἀρμονικῆς ἔλξεως, προκειμένου ἰδίως περὶ τῆς Βυζαντινῆς Ἐκκλησιαστικῆς Μουσικῆς, τῶν ἡχων τῆς ὁποίας τὸ ἦθος, ὁ χρωματισμὸς δηλαδή, ἐξαρτῶνται ἐκ τῆς δημιουργουμένης ὑπὸ τῆς μελφδικῆς ἕλξεως παροδικῆς καὶ σταθερᾶς ἀλλοιώσεως τῶν τόνων.

Ή μουσική τῆς Δύσεως περιορισθεῖσα εἰς τὰ συγκεκραμένα διαστήματα τῶν δύο αὐτῆς τρόπων, ἀπὸ τῆς ἐφευρέσεως, ἰδίως τῶν κλειδωτῶν ὀργάνων, ἀφῆκεν εἰς ἀχρηστίαν τὰ μικρότερα τοῦ ἡμιτονίου διαστήματα. Καὶ ἐν συνεπεία τούτου ἐφεῦρε καὶ καθώρισε κανόνας ἀρμονικοὺς ἐπὶ τῆ βάσει συμφωνιῶν καὶ συγχορδιῶν, ἀποτελουμένων ἐκ τῶν καθωρισμένων διαστημάτων τῆς μείζονος καὶ ἐλάσσονος κλίμακός της.

Ή Βυζαντινή ὅμως μουσική καὶ ἡ ἐν γένει Ἐλληνική, πολύητος καὶ πολύτροπος οὖσα, γνώμονα δ' αὐτῆς ἔχουσα οὐχὶ συγκεκραμένον τι ὅργανον πρὸς ὅ νὰ κανονίζη τὰ μουσικὰ διαστήματά της, ἀλλὰ τὸν διὰ τῆς ὑπερχιλιετοῦς φωνητικῆς παραδόσεώς της διασφθέντα, δὲν εἶναι δυνατόν, ἀδύνατον εἶναι νὰ ὑπαχθῆ καὶ ὑποταχθῆ εἰς τοὺς νόμους τῆς τετραφώνου μουσικῆς. Προκειμένου δὲ νὰ περιβληθῆ ποιάν τινα συνήχησιν ἀρμονικήν, δεῖται ἰδιαιτέρου συνηχητικοῦ συστήματος, οὕτως ὥστε νὰ καθίσταται ἀντιληπτὴ ἡ συναρμογὴ τῶν διαφόρων συνηχούντων φθόγγων της καὶ ἡ ὑποταγὴ αὐτῶν εἰς ἔνα δεσπόζοντα, ὑπὸ τὴν εὐρεῖαν σημασίαν τοῦ ὅρου ἀρμονία. Καὶ διὰ τοῦ τρόπου τούτου ἡ αἰωνόβιος αὕτη μουσική, ὡς νέα πλέον τέχνη, δημιουργεῖ κανόνας ἀρμονικοὺς καὶ αὕτη, χωρὶς διόλου οἱ χρωματισμοὶ τῶν ἡχων της, οἱ γεννώμενοι κυρίως ἐκ τοῦ νόμου τῆς μελφδικῆς ἔλξεως, χωρὶς νὰ ἐναντιῶνται εἰς τοὺς νόμους τῆς ἁρμονικῆς ἕλξεως, ἀλλ' οὕτε καὶ

νὰ ὑποτάσσωνται εἰς αὐτὴν εἰκῆ καὶ ὡς ἔτυχεν. Ἄλλως, ἄν ληφθῃ ὑπ' ὄψιν καὶ μόνον τὸ ὅτι ἡ μουσική, ὡς ὁρίζει ὁ Πλούταρχος, εἰναι «ἔθος» διαμορφούμενον εἰς ἕκαστον ἔθνος ἐκ τῆς ἐπηρείας τοῦ κλίματος, τοῦ χαρακτῆρος, τῶν νόμων καὶ τῶν συνηθειῶν αὐτοῦ, ἐξηγεῖται ὁ λόγος, δι' ὄν ἡ Βυζαντινὴ ἐκκλησιαστικὴ Μουσικὴ δὲν εἶναι δυνατὸν νὰ περιβληθῇ ἀρμονίαν εὐρωπαϊκὴν ἐπὶ θυσία τοῦ θαυμασίου διαστηματικοῦ πλούτου τοῦ πολυήχου συστήματός της μὲ ἀποτέλεσμα κάκιστον καὶ εἰς τὸ ἑλληνικόν, ὅπως καὶ εἰς πᾶν ὄντως μουσικὸν οὖς, αἰσθητικῶς παράφωνον καὶ ἀπαράδεκτον (3).

Περί άρμονικής συνηχήσεως

Τὰ ἐν τοῖς προταχθεῖσι κεφαλαίοις θέματα, ἀποτελοῦσι τὸ ὑλικὸν ἐκ τῆς συνειδητῆς χρήσεως, οὐ μόνον διὰ τὰ καθαρῶς ἐκκλησιαστικὰ μέλη, ἀλλὰ καὶ διὰ τὰ κοσμικὰ τῆς ἐν γένει Ἑλληνικῆς Μουσικῆς.

'Αλλ' ἐνταῦθα ἀνοίγω μίαν ἀπαραίτητον παρένθεσιν.

'Από τῶν πρώτων τοῦ σταδίου μου βημάτων πόθος μου διακαὴς ἡτο, ν' ἀνατρέψω τὰς ἀσυστάτους μορφὰς καὶ λοιδωρίας κατὰ τῆς Βυζαντινῆς Μουσικῆς ὡς ἀνιαρῶς μονοφώνου καὶ μὴ ἀνταποκρινομένης εἰς τὴν σημερινὴν πρόοδον καὶ ἀνάπτυξιν. 'Εδίδαξα, ὡμίλησα δημοσία, ἔγραψα ἐν τῷ τύπῳ καὶ ἐν γένει δὲν παρέλειψα εὐκαιρίαν νὰ μὴ βροντοφωνήσω τὸ ἀσύστατον καὶ ἄδικον τῆς κατηγορίας ταύτης καὶ νὰ μὴ παράσχω δείγματα καὶ ἀποδείξεις ἀπτὰς περὶ τοῦ ἐναντίου. Παραλλήλως δὲ πρὸς τὴν διὰ παντὸς μέσου καὶ τρόπου ἐρμηνείαν, ἀνάλυσιν καὶ τὸν καθαρισμὸν ὅλων τῶν σκοτεινῶν καὶ ἀκαθορίστων σημείων τῆς ἡμετέρας μουσικῆς (ὅπως ἡ γραφή, τὰ διαστήματα, ὁ ρυθμός, τὸ ὄργανον κλπ.), ἔθηκα καὶ τὰς βάσεις ἀρμονικῆς συνηχήσεως, ἀνάλογον πρὸς τὸ μελφδικὸν καὶ πολύηχον σύστημα τῆς Βυζαντινῆς ἐκκλησιαστικῆς Μουσικῆς, στηριχθεὶς πρωτίστως ἐπὶ τοῦ ἀγράφως

⁽³⁾ Παραπέμπομεν τὸν ἀναγνώστην εἰς δύο χαρακτηριστικὰς ἐπιστολὰς, σχετικὰς πρὸς τὸ ζήτημα τοῦτο, τῶν: Maurique de Lara «Ἱερὸς Σύνδεσμος». 1 Ἰουνίου 1912 καὶ «Φόρμιγξ» (ἸΑθηνῶν). Ἦτος Ζ΄ (Β΄) ἀριθ. 23 - 24, 15 Ἰουνίου 1912 καὶ Α. Ο. Τ. Hellerstrom «Νέα Φόρμιγξ» Ἦτος Α΄ Ὀκτώβριος - Νοέμβριος 1921, ἀριθ. 8 - 9.

διασφθέντος Ίσου καὶ τοῦ τρόπου, καθ' ὄν ἐποιοῦντο χρῆσιν αὐτοῦ οἱ πεπειραμένοι μουσικοδιδάσκαλοι, ὅπως καὶ ἐπὶ πάσης πληροφορίας σχετικῆς, ἐν ἀρχαίοις χειρογράφοις ἀποκειμένης περὶ τοῦ τρόπου, καθ' ὄν κατηρτίζοντο καὶ ἔψαλλον οἱ πολυμελεῖς καὶ πεφημισμένοι Βυζαντινοὶ χοροί.

'Αλλ' ήτο ἐκτάκτως ἐπικίνδυνον τὸ ἄλμα τοῦτο. Διότι, ὡς ἐκ τῶν προτέρων ἤμην βέβαιος, οὐ μόνον ὑπὸ τῶν ἀγνοούντων τὰ πράγματα ἡμετέρων θὰ ἐχαρακτηριζόμην ὡς νεωτεριστής καὶ θὰ κατεκρινόμην, ἀλλὰ καὶ ὑπὸ τῶν προσκειμένων εἰς τὴν μουσικὴν τῆς Δύσεως θὰ κατηγορούμην ὡς τολμηρὸς ὑποστηρικτής, ἀλλὰ καὶ διαστρεβλωτὴς τῆς μόνης κατ' αὐτοὺς ὑπὸ τὸν ῆλιον εὐρωπαϊκῆς ἀρμονικῆς ἐπιστήμης!, μετὰ τῆς αἰτιάσεως, ὅτι ἁγνοῶν ταύτην, μηχανεύομαι καὶ φιλοδοξῶ νὰ δημιουργήσω νέον σύστημα άρμονίας, ἀπαράδεκτον εἰς τὴν μουσικὴν ἀνωτερότητά των!

Ό πόθος μου ὅμως νὰ μὴ ἀφήσω τὴν τέχνην τῆς Βυζαντινῆς Μουσικῆς ἐκτεθειμένην εἰς τὰ στόματα τῶν κατηγόρων αὐτῆς ἀφ' ἑνός, εἰς τὴν ὕποπτον ἄν μὴ καὶ βάναυσον τέχνην τῶν νεωτέρων ψαλτῶν, βυζαντινῶν καὶ κανταδόρων ἀφ' ἑτέρου, ὑπερίσχυσε τῶν ἀνωτέρω ἐνδοιασμῶν καὶ ἐπιφυλάξεών μου καί, μὲ τὴν βοήθειαν τοῦ Ύψίστου, μοὶ ὑπέδειξε τὸν δρόμον, ὄν ἔπρεπε νὰ ἀκολουθήσω.

Οὕτως, πρὸ τριάκοντα καὶ πέντε ἀκριβῶς ἐτῶν ἥρχισα νά γράφω ύπὸ πᾶν μέλος ἰδίαν γραμμὴν καθωρισμένου Ίσου διὰ τοὺς βοηθοὺς τοῦ ψάλλοντος, ἀπαλλαττομένους ούτωσὶ τοῦ κακοῦ καὶ ἀνιαροῦ ἐκείνου τρόπου, καθ' ὄν ἐκρατεῖτο ὑπ' αὐτῶν τὸ Ἰσον, ὅταν μάλιστα οὖτοι, βοηθοί τε καὶ Ισοκράται, δὲν ἦσαν εἰς θέσιν νά ποιῶνται τὰς συχνάς μεταλλαγάς αὐτοῦ, διὰ τὰς ὁποίας ὁ ψάλλων ήτο ὑποχρεωμένος νὰ διακόπτη τὸ μέλος, διὰ νὰ δίδη τὴν νέαν ἀκολουθητέαν βάσιν. "Οταν ἐπείσθην ἐν τῆ ἐφαρμογῆ, ὅτι τὸ μέσον τοῦτο ἀπήλλαττε τὸν ψάλλοντα πάσης φροντίδος πρός καθοδηγίαν τῶν ἰσοκρατῶν, ἐβεβαιώθην δὲ ὅτι καὶ οἱ ἀκροαταὶ ἀπαλλαττόμενοι καὶ οὐτοι τῶν ἐν μέση ἀκολουθεία όχληρῶν παρατηρήσεων τῶν ψαλλόντων πρὸς τοὺς ἰσοκράτας των, ἠσθάνοντο εὐχάριστον ἀνακούφισιν, ἤρχισα τότε, μεθ' ὁσημέραι άνακτωμένου θάρρους, νὰ γράφω ὑπὸ τὸ κυρίως μέλος δύο γραμμάς, μίαν διὰ τοὺς βοηθοὺς καὶ ἑτέραν διὰ τοὺς ἰσοκράτας. Όταν δὲ πάλιν είδον, ὅτι καὶ τοῦτο, καίτοι εὐπρόσδεκτον καὶ ἀρεστὸν καὶ εἰς αὐτοὺς ἀκόμη τοὺς μᾶλλον μεμψιμοίρους, δὲν ἦτο ὅμως ἐκεῖνο τὸ ὁποῖον ἐγὼ

ἐπεζήτουν, προέβην εἰς τὸ μὴ περαιτέρω καὶ, ἄνευ δισταγμοῦ τινος πλέον, καθώρισα δύο ὑπὸ τὸ κυρίως μέλος άρμονικὰς γραμμάς, τὰς δποίας ἀνόμασα συνηχητικάς αἴτινες ὁμοειδεῖς, ὁμότονοι καὶ ὁμόηχοι οὐσαι, παρῆγον τὸ τελικὸν δι' ἐμὲ ἄκουσμα πλήρους ἀρμονικῆς, πλὴν ἑλληνικῆς συνηχήσεως.

Ταύτην πλέον τὴν συνήχησιν ἐφήρμοσα ποῦ μὲν ἐν εὐρείᾳ κλίμακι, ποῦ δὲ ἐν περιωρισμένη, ἀναλόγως τοῦ εἴδους καὶ τοῦ προοριρισμοῦ ἐκάστης μελφδίας. Μετὰ τῆς διαφορᾶς, ὅτι μετεχειρίσθην ταύτην ὑπὸ μορφὴν περιωρισμένην διὰ τὰ ἐκκλησιαστικὰ μέλη, ὑπὸ εὐρυτέραν δὲ διὰ τὰ κοσμικὰ ἄσματα καὶ ἰδίως διὰ τὰ δι' ὀρχήστραν προωρισμένα δημώδη, μὴ ἔξαιρουμένων τῶν ἐπ' ἀμφοτέρων τούτων συνθέσεών μου.

Έν κεφαλαίω κατήρτισα σύστημα πλήρες, στηριζόμενον ἐπὶ κανόνων καὶ τεχνικῶν προϋποθέσεων ὡρισμένων, χωρὶς ποσῶς νὰ ἐπηρεασθῶ ὑπὸ τῆς 'Αρμονίας τῆς Εὐρωπαϊκῆς Μουσικῆς, καίτοι ταύτην εἰδικῶς ἐσπούδασα καὶ καλῶς κατεῖχον.

Κλείων ήδη τὴν ἀναγκαίαν ταύτην παρένθεσιν, ἔρχομαι εἰς τὴν ἀνάπτυξιν τῶν κυριωτέρων σημείων ἐφ' ὧν στηρίζεται τὸ σύστημά μου.

Αἱ ἐν ἑκάστῳ ήχῳ συμφωνίαι καὶ συγχορδίαι, τὰς κυριωτέρας τῶν ὁποίων ἀπηρίθμησα εἰς τὰ εἰδικὰ περὶ αὐτῶν κεφάλαια, εἰσὶν αἱ ἀρχικαὶ βάσεις τῆς συνηχήσεως διὰ τὰ μέλη ἑκάστου ήχου. Καὶ ἡ εἰς ἰδιαιτέρας γραμμὰς διατυπουμένη συνήχησις προκύπτει ἐκ τῆς διὰ μιᾶς πρωτοτύπου ἀντιστίξεως - μίξεως τῶν ὑπό ἔκαστον τῶν φθόγγων τοῦ κυρίως μέλους ἑτέρων δύο, ἐκ τῆς συναρμογῆς τῶν ὁποίων παράγονται γραμμαί, μελφδικαὶ ὡσαύτως καὶ αὐται, εἰς τρόπον ὥστε ἰδιαιτέρως μελφδούμεναι ἑκάστη, νὰ δίδωσι μέλος παρόμοιον πρὸς τὸ τῆς κυρίας γραμμῆς, τοῦ αὐτοῦ ἤχου, τῆς αὐτῆς ὑφῆς, τοῦ αὐτοῦ ἤθους, τρόπον δὲ τινὰ νὰ προσδίδη τὴν ἐντύπωσιν, ὅτι τὸ αὐτὸ μέλος ἐποιήθη εἰς τριπλοῦν ὑπὸ τριῶν διαφόρων μελουργῶν, ὅμοιον κατὰ πάντα πλὴν τῆς χρήσεως διαφόρων μουσικῶν σχημάτων ἐν ἑκάστη γραμμῆ.

'Αλλ' ή τοιουτότροπος ἀντίστιξις, δὲν παρέχει ἀπόλυτον ἐλευθερίαν εἰς τὴν χρῆσιν καὶ μίξιν ὅλων ἐν γένει τῶν φθόγγων τῶν συμφωνιῶν καὶ συγχορδιῶν. Διότι, οὐχὶ σπανίως, εἰς καὶ μόνος φθόγγος ἀπαραίτητος ἐν μιῷ συγχορδίᾳ, εἰναι ἀπαράδεκτος εἰς μίαν μουσικὴν γραμμήν, ἐφ' ὅσον ἡ συνήχησίς του δίδει τὴν ἐντύπωσιν ἀναμίξεως ἄλλου ἤχου, τελείως διαφόρου κατὰ τὴν τεχνοτροπίαν πρὸς τὸν ψαλ-

λόμενον ήχον. "Αλλως, άθετουμένου τοῦ κανόνος τούτου προκύπτει άκουσμα παράφωνον, ὡς θὰ ήτο παράφωνον καὶ παράχορδον, ἄν ὑπὸ φθόγγους μείζονος κλίμακος τῆς Εὐρωπαϊκῆς Μουσικῆς ἐτίθετο πρὸς άρμονίαν φθόγγος ἐλάσσονος τρόπου, ἤ καὶ ἀντιθέτως.

Έκάστης συμφωνίας, κυριαρχούσης ἐν μιᾳ μελφδία, ἤ καὶ ἐναλλασσομένης ἐν τῷ μεταξὺ μετ' ἄλλων, πρῶτος ἐναρμονίσιμος φθόγγος εἰναι ὁ πρὸς τὸ βαρὺ ἄκρος αὐτῆς. Τῆς διὰ τριῶν Πα - Γα λ. χ. εἰναι ὁ Πα, τῆς διὰ τεσσάρων Νη - Γα ὁ Νη. τῆς διὰ πέντε Πα - Κε ὁ Πα καὶ οὕτω καθεξῆς. 'Αλλ' ἐπειδὴ αἱ μουσικαὶ γραμμαὶ δὲν σχηματίζονται διὰ μόνων τῶν ἄκρων φθόγγων τῶν συμφωνιῶν, ἀλλὰ καὶ ἐκ τῶν διαμέσων αὐτῆς φθόγγων, εἰς ἕκαστον αὐτῶν ἀναλογοῦσιν ἐν τῇ ἀντιστίξει ἄλλαι συμφωνίαι, ἕνα τούτων ἔχουσαι ὡς ἔτερον τῶν ἄκρων των.

Έκαστος φθόγγος τοῦ κυρίως μέλους, εἴτε ἀνιὼν εἴναι εἴτε κατιών, μόνον ὑπ' αὐτὸν δύναται νὰ ἔχη συνηχοῦντας φθόγγους οὐχὶ δὲ ὑπὲρ αὐτόν. Ἡ συνήχησις τουτέστι οὐδέποτε τίθεται ἡ γίνεται ὑπεράνω τοῦ μέλους, ἀλλ' ἀπαραβάτως κάτωθι αὐτοῦ, κυριαρχοῦντος ἀείποτε.

Αἱ ἐν τῷ μέσῳ τοῦ μέλους ἀτελεῖς καταλήξεις, ὑπὸ μὲν τῆς πρώτης συνηχητικῆς γραμμῆς γίνονται κυρίως ἐπὶ τοῦ φθόγγου, εἰς ὅν καταλήγει, τὸ μέλος, ὑπὸ δὲ τῆς δευτέρας συνηχητικῆς ἐπὶ τοῦ βασίμου φθόγγου τοῦ ῆχου. Ἦν δηλ. μέλος πρώτου ῆχου ποιῆται κατάληξιν ἀτελῆ εἰς τὸν Γα, ἡ πρώτη συνηχητικὴ γραμμὴ καταλήγει ὡσαύτως εἰς τὸν Γα, ἡ δὲ δευτέρα συνηχητικὴ εἰς τὸν Πα.

Αί ἐντελεῖς καὶ τελικαὶ καταλήξεις ἀμφομέρων τῶν συνηχητικῶν γραμμῶν γίνονται ἐπὶ τοῦ βασίμου φθόγγου τοῦ ἤχου.

Αν μέλος τι ἐξέρχηται τῶν φυσικῶν του ὁρίων πρὸς τὸ ὀξύ, εἴτε πρὸς τὸ βαρύ, τῇ πρώτῃ περιπτώσει τὴν γραμμὴν τοῦ μέλους ἐκτελοῦσιν μᾶλλον ὑψίφωνοι τῆς γραμμῆς τοῦ μέλους, τῆς μὲν πρώτης συνηχητικῆς σχεδὸν ἰσοκρατούσης, τῆς δὲ δευτέρας ἐκτελούσης τὸ μέλος μίαν ἑπταφωνίαν κάτω. π. χ.

Έν τῆ δευτέρα περιπτώσει οἱ βαρύτονοι τῆς δευτέρας συνηχητικῆς, ἤ ὁλόκληρος ἡ γραμμή, ἐκτελοῦσι τὴν πρὸς τὸ βαρὺ κατερχομένην γραμμήν, τῆς μὲν γραμμῆς τοῦ μέλους σιγώσης, τῆς δὲ πρώτης συνηχητικῆς ἰσοκρατούσης. Μόνον δ' ἄν ἐν τῆ γραμμῆ καὶ παιδικαὶ φωναί, δύνανται νὰ συμψάλλωσιν μὲ ἡμίσειαν φωνὴν μετὰ τῆς δευτέρας συνηχητικῆς τὸ μέλος, π. χ. Εἰς τὴν γραμμὴν «..καὶ προσκυνήσαντες αὐτόν..» τοῦ α΄ 'Εωθινοῦ «Εἰς τὸ ὄρος..» αἱ τρεῖς γραμμαὶ ἐργάζονται οὕτω:

M.
$$\frac{\pi}{q}$$
 $\frac{\pi}{\epsilon}$ \frac

Αί συνηχητικαὶ γραμμαὶ ἐνίοτε σιγῶσιν ἀμφότεραι, ὅταν γραμμή τις τοῦ μέλους δέον νὰ ἐξαρθῇ ὑπέρ τὰς ἄλλας τοῦ μέλους, ἐκτελουμένη, εἴτε ὑπὸ ἑνός τοῦ μᾶλλον ὑψιφώνου καὶ καλλιφώνου, εἴτε ἐλλείψει τοιούτου ὑφ' ὁλοκλήρου τῆς γραμμῆς τοῦ μέλους, π. χ.

Ή άρμονική συνήχησις διὰ μὲν τὰ σύντομα μέλη δέον νὰ ἡ ἀπλουστέρα ἐν εἴδει κινουμένου Ἰσου, συλλαβὴν πρὸς συλλαβὴν καὶ φθόγγον πρὸς φθόγγον ἀκολουθοῦντος τὸ μέλος, καὶ ἀναλόγως τῶν διακυμάνσεων τῆς γραμμῆς ἀνερχομένου καὶ κατερχομένου. Διὰ δὲ τά ἀργὰ καὶ ἀργότερα συνθετωτέρα καὶ ποικιλοτέρα.

Τὸ σύστημα τῆς ἀρμονικῆς συνηχήσεως είναι τρίφωνον, ἀποκλειομένης τετάρτης φωνῆς. Συνεπῶς δύο μόνον φθόγγοι κατ' ἀντίστιξιν χωροῦσιν ὑφ' ἔκαστον φθόγγον τοῦ κυρίως μέλους. Τοῦτο δια τὰ αὐστηρῶς ἐκκλησιαστικὰ μέλη.

Τὰ ἐξωτερικὰ μέλη, δημώδη τουτέστιν ἄσματα κ. λ. π. ὑπὸ μόνον χορού εκτελούμενα ακολουθούσι και ταύτα το τριφωνικόν τής διπλής συνηχητικής σύστημα μετά τινος έλευθεριότητος. Όταν δμως ταθτα έκτελούνται ύπό δρχήστρας είτε αὐτούσια, είτε διασκευασμένα είς συνθέσεις αὐτοτελεῖς, τότε ἡ ἀρμονικὴ συνήχησίς των εἶναι ποικιλοτέρα, γινομένη συμφώνως πρός τοὺς γενικοὺς κανόνας τῆς ἐνορχηστρώσεως, ούχί όμως και τής έναρμονίσεως κατά τὸν εὐρωπαϊκὸν τρόπον. Τὸ μέλος τουτέστι και αι συνηχητικαι γραμμαι διανέμονται είς τὰ τῆς ὀργήστρας πνευστά καὶ ἔγγορδα ὄργανα, ὅτε οἱ ἐν ἀντιστίξει φθόγγοι λαμβάνουσι καὶ ἄλλους φθόγγους ἐν ἀντιστίξει, ἡ εὕρεσις καὶ χρῆσις τῶν ὁποίων ἐναπόκειται εἰς τὴν μουσικὴν κρίσιν τοῦ εἰδήμονος τῆς έν γένει έλληνικής μουσικής καὶ τοῦ συστήματος τής άρμονικής συνηχήσεως της, οὐχὶ δὲ μόνης τῆς εὐρωπαϊκῆς άρμονίας, ἥτις ἐπιστήμη τελεία ούσα, ούδεμίαν έχει σχέσιν πρός τὸν άπλουν μέν, πλην σύμφωνον πρός τὸ πολύηχον μελφδικόν σύστημα καὶ τὸν τρόπον τῆς ἐναρμονίσεώς του.

ΟΙ ΟΚΤΩ ΗΧΟΙ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ

Α΄ ΟΙ ΤΕΣΣΑΡΕΣ ΔΙΑΤΟΝΙΚΟΙ:

Πρῶτος - Πλάγιος τοῦ Πρώτου, Τέταρτος - Πλάγιος τοῦ Τετάρτου

Ήχος Πρῶτος

Ό Πρῶτος ἡχος, εἰς τὸ Διατονικὸν ἀνήκων Γένος, ἀκολουθεῖ δύο συστήματα. Τὸ Διαπασῶν καὶ τὸν τροχόν, ὅστις ἐν ἐκτάσει πεντα-χόρδου ὡρισμένην σειρὰν διαστημάτων ἔχων, βαίνει κατὰ τόνον ἐλάσσονα, ἐλάχιστον, μείζονα καὶ μείζονα⁽⁴⁾.

$$\Pi\alpha \qquad \text{Bov} \qquad \Gamma\alpha \qquad \Delta\iota \qquad K\epsilon$$

$$\overbrace{\epsilon\lambda}, \qquad \epsilon\lambda\dot{\alpha}\chi, \qquad \mu\epsilon\dot{\iota}\zeta, \qquad \mu\epsilon\dot{\iota}\zeta,$$

Ό Πρῶτος ἡχος εἰς τὰ στιχηραρικά του μέλη εἶναι δίφωνος, ἔχων δεσπόζοντας φθόγγους τὸν Πα καὶ τὸν Γα, οἵτινες ἀποτελοῦσι
συμφωνίαν διὰ τριῶν μικράν. Οἱ δύο οὖτοι φθόγγοι εἶναι οἱ βάσιμοι,
περὶ τοὺς ὁποίους στρέφονται καὶ πλέκονται αἱ μελφδικαὶ γραμμαὶ τοῦ
ἡχου καὶ ἐπὶ τῶν ὁποίων γίνονται αἱ καταλήξεις του, ἀτελῶς μὲν εἰς
τὸν Γα, ἐντελῶς δὲ καὶ τελικῶς εἰς τὸν Πα.

'Ο ἐπὶ τῆς συμφωνίας ταύτης στηριζόμενος δίφωνος Πρῶτος, ἐπεκτεινόμενος πέραν τῶν δύο ἄκρων φθόγγων αὐτῆς, πρὸς μὲν τὸ ὀξὺ ἐκ τοῦ Γα φθάνει μέχρι τοῦ Χλιδανοῦ Ζω (Ζω), πρὸς τὸ βαρὺ δὲ ἐκ τοῦ

Πα, μέχρι τοῦ
$$Z_{\omega}$$
 διατονικοῦ $\left(\stackrel{\xi}{\underset{\sim}{\mathcal{Z}}} \right)$ καὶ ἐναρμονίου $\left(\stackrel{\circ}{Z_{\omega}} \right)$ καὶ μέχρι

τοῦ κάτω Δ ι κατά τε τὸ Δ ιαπασῶν $\begin{pmatrix} \overset{\triangleright}{\alpha} \\ \overset{\triangleright}{\Delta} \end{pmatrix}$ καὶ κατὰ τὸν τροχὸν $\begin{pmatrix} \overset{\circ}{\mathbf{q}} \\ \overset{\bullet}{\mathbf{\Delta}} \end{pmatrix}$.

Έκ τῶν πρὸς τὸ ὀξὸ καὶ τὸ βαρὸ ἐπεκτάσεων τούτων παράγονται ἄλλαι συμφωνίαι, μὲ βασίμους φθόγγους τὸν Πα καὶ τὸν Γα.

⁽⁴⁾ Αἱ ἐκ τῶν Θεωρητικῶν γνωσταὶ λεπτομέρειαι τῶν Ἦχων παραλείπονται καθόσον ἄλλος εἶναι ὁ σκοπὸς τῆς παρούσης μελέτης.

α'. Πρός τὸ όξύ:

- 1. Ἐκ τοῦ Πα παράγεται ἡ διὰ τεσσάρων συμφωνία: Πα—Δι, ἡ διὰ πέντε: $\widehat{\Pi\alpha}$ —Κε, ἡ διὰ ἔξ μείζων: $\widehat{\Pi\alpha}$ — $Z\omega$ καὶ ἡ διὰ ἕξ μικρά: $\widehat{\Pi\alpha}$ — $Z\omega$.
- 2. Ἐκ τοῦ Γα ἡ διὰ τριῶν μείζων ὑπέρμετρος: Γα—Κε, ἡ διὰ τεσσάρων: Γα— Z_{∞}^{0} καὶ ἡ διὰ πέντε τελεία: Γα— N_{η} .

β. Πρός τὸ βαρύ:

- 1. Ἐκ τοῦ Πα πρὸς τὸν κάτω Ζω ἡ διὰ τριῶν μικρά: Πα-Ζω, ἡ διὰ τεσσάρων: Πα-Κε καὶ ἡ διὰ πέντε: Πα-Δι, κατὰ τὸ Διαπασῶν: $\frac{1}{q}$ καὶ κατὰ τὸν Τροχόν: $\frac{1}{q}$ $\frac{1}{q}$
- 2. Ἐκ τοῦ Γα ἡ διὰ τριῶν . Γα-ΙΙα, ἡ διὰ τεσσάρων : Γα-Νη, ἡ διὰ πέντε μικρὰ : Γα-Ζω, ἡ τελεία Γα-Ζω καὶ ἡ διὰ ξξ : Γα-Κε.

Έκ τῆς ἐν τῆ πορεία τοῦ μέλους ἐπικρατήσεως ἑκάστης τούτων τῶν συμφωνιῶν προκύπτει ἡ ἀνάγκη συνηχήσεως ἑτέρων φθόγγων σχετικῶν, ἡ μίξις τῶν ὁποίων μετὰ τῶν βασίμων τῆς συμφωνίας φθόγγων, κατ' ἰδιάζουσαν ἀντίστιξιν, νὰ παράγη ἑτέρας δύο γραμμάς, παραλλήλους πρὸς τὴν τοῦ κυρίως μέλους. πρὸς ῆν συνηχοῦσιν ὁμοφώνως, ὁμοτόνως, ὁμοειδῶς καὶ ὁμοήχως

Οὕτως ὅταν τὸ μέλος ἐμμενη εἰς τὸν $\frac{\Gamma}{2}$, δύνανται νὰ συνηχῶσι μετ' αὐτοῦ ὁ $\frac{\pi}{q}$ καὶ ὁ $\frac{q}{q}$, ἄν ὅμως οὐτος (ὁ $\frac{q}{q}$) ἔχη θέσιν εἰς τὸ εἰδος τῆς γραμμῆς καὶ δὲν προκαλῆ παραφωνίαν. 'Ωσαύτως εἰς γραμμήν, ἐργαζομένην ἐντὸς τοῦ τετραχόρδου $\frac{\Gamma}{2} - \frac{\chi}{2}$, δύνανται νὰ συνηχῶσιν ὁ $\frac{\pi}{q}$ καὶ ὁ βαρὺς $\frac{\chi}{2}$.

Αί συνηχήσεις αὐται, ὅπως καὶ πᾶσα ἄλλη συνήχησις ὰπαραβάτως, κατὰ τὸν θεμελιώδη κανόνα, δέον νὰ γίνωνται ὑπὸ τοὺς θεμελιώδεις τοῦ μέλους φθόγγους, οὐδέποτε δὲ ὑπεράνω αὐτῶν.

"Όταν τὸ μέλος στρέφηται περί τὸν Πα, δύνανται νὰ συνηχῶσι

μετ' αὐτοῦ ὁ διατονικὸς $\overset{\stackrel{\raisebox{.5ex}{$\scriptstyle \chi$}}}{\overset{\raisebox{.5ex}{$\scriptstyle \chi$}}{\overset{\raisebox{.5ex}{$\scriptstyle \chi$}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}{$\scriptstyle \chi$}}{\overset{\raisebox{.5ex}{$\scriptstyle \chi$}}{\overset{\raisebox{.5ex}{$\scriptstyle \chi$}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox{.5ex}}{\overset{\raisebox.}{\overset{.}}{\overset{\raisebox.}{\overset{.}}{\overset{\raisebox.}{\overset{.}}{\overset{\raisebox.}{\overset{.}}{\overset{\raisebox.}{\overset{.}}{\overset{\raisebox.}{\overset{.}}{\overset{.}}{\overset{.}}{\overset{.}}{\overset{.}}{\overset{\raisebox.}{\overset{.}}$

$$\stackrel{\stackrel{\circ}{\mathbf{q}}}{=} \stackrel{\stackrel{\raisebox{.4ex}{\not}}{\sim}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\mathbf{q}}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\mathbf{q}}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\mathbf{q}}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\stackrel{\raisebox{.4ex}{\not}}{\sim}}{\sim} - \stackrel{\stackrel{\circ}{\stackrel{\circ}{\mathbf{q}}}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\sim}}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\sim}}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\stackrel{\circ}{\sim}}{\sim}, \stackrel{\stackrel{\circ}{\mathbf{q}}}{=} - \stackrel{\circ}{\stackrel{\circ}{\sim}}, \stackrel{\circ}{\mathbf{q}} - \stackrel{\circ}{\stackrel{\circ}{\sim}, \stackrel{\circ}{\sim}, \stackrel{\circ}{\sim},$$

Όταν τὸ μέλος περιστρέφηται περὶ τὸν ἐναρμόνιον $\frac{\chi}{\eta\eta}$, δύνανται νὰ συνηχῶσιν ἄλλοτε μὲν ὁ Γα $\frac{\chi}{\eta\eta} - \frac{\Gamma}{\eta\eta}$, ἄλλοτε δὲ ὁ Δι $\frac{\chi}{\eta\eta} - \frac{\Delta}{\eta\eta}$ συνηχοῦντος εἰς ἀμφοτέρας τὰς περιπτώσεις τοῦ $\frac{\pi}{\eta}$ καὶ τοῦ κάτω $\frac{\chi}{\eta\eta}$.

Εἰς τὰ εἰρμολογικά του μέλη, ἀργὰ καὶ σύντομα, τὰ ὅντα τρίφωνα, ἡ κυριαρχοῦσα συμφωνία εἰναι ἡ διὰ τεσσάρων $\frac{\pi}{q} - \frac{\Delta}{\ddot{\alpha}}$, τῆς ὁποίας οἱ ἄκροι φθόγγοι εἰναι καὶ οἱ δεσπόζοντες τοῦ μέλους φθόγγοι, περὶ τοὺς ὁποίους ἐξελίσσεται τὸ μέλος, ἐπὰ αὐτῶν ποιούμενον καὶ τὰς καταλήξεις του, τάς μὲν ἀτελεῖς εἰς τὸν $\frac{\Delta}{\ddot{\alpha}}$, τὰς δ' ἐντελεῖς καὶ τελικὰς εἰς τὸν $\frac{\pi}{q}$.

Όταν δὲ περιστρέφηται περὶ τὸν $\frac{\Delta}{\ddot{\alpha}}$, συνηχοῦντας φθόγγους δύναται οὖτος νὰ ἔχη πρωτίστως τὸν $\frac{\pi}{q}$ καὶ τοὺς ὑπ' αὐτὸν $\frac{2}{\ddot{\alpha}}$ καὶ $\frac{\partial}{\Delta}$. Ἐν $\frac{1}{\ddot{\alpha}}$ περιπτώσει τὸ μέλος ὑπερβαίνει τὸν $\frac{\Delta}{\ddot{\alpha}}$, ἐὰν μὲν κάμνη τὸν κύκλον τοῦ

πενταχόρδου
$$\overset{\Delta}{\ddot{\Pi}}$$
 $\overset{\times}{\gamma}$ $\overset{\times}{\gamma}$ $\overset{\times}{\gamma}$ $\overset{\vee}{\gamma}$ $\overset{\vee}{\eta}$ $\overset{\times}{\eta}$ $\overset{\vee}{\eta}$ $\overset{\vee}{\eta}$ $\overset{\vee}{\eta}$ $\overset{\vee}{\eta}$ $\overset{\vee}{\eta}$ $\overset{\times}{\eta}$ $\overset{\times}{\eta}$ τότε κυριαρχεῖ δ $\overset{\Delta}{\ddot{\Pi}}$ ώς βάσιμον ἴσον καὶ συνηχοῦσιν ἐν ἀντιστίξει

τότε κυριαρχεῖ ὁ $\frac{\Delta}{G}$ ὡς βάσιμον ἴσον καὶ συνηχοῦσιν ἐν ἀντιστίξει πρὸς ἔκαστον τῶν τόνων τοῦ κύκλου τῆς γραμμῆς ταύτης καὶ ἄλλοι ὅπως ὁ ἐν διέσει Γ^{α} διὰ τὸν φυσικὸν $\frac{\chi}{\chi}$ καὶ ὡς βάσιμος ὁ $\frac{\pi}{q}$ διὰ τὴν πρώτην συνηχητικὴν γραμμήν. Διὰ δὲ τὴν δευτέραν συνηχητικὴν γραμμὴν ὡς βάσιμος ὁ κάτω $\frac{\Delta}{\Delta}$ μετὰ τῶν σχετικῶν φθόγγων, διὰ τῆς συνηχήσεως ὁλοκλήρου τῆς γραμμῆς κατ' ὀγδόην βαρύτερον, ἤ καὶ μεμονωμένων φθόγγων, τοὺς ὁποίους ἕκαστος φθόγγος τῆς γραμμῆς δέχεται κατ' ἀντίστιξιν.

Εἰς τὰ Παπαδικά του μέλη ὁ Πρῶτος ἦχος ἐπιδέχεται ἀντίστιξιν ποικιλωτέραν. Αἱ εἰς τὸ εἰδος τοῦτο ἐπικρατοῦσαι συμφωνίαι εἰναι αἱ έξῆς: Πα——Γα, Πα——Δι, Πα——Κε, Πα——Ζω, Πα——Ζω, Πα——Ζω, Πα——Τα. Ἡ δὲ συνήχησις τῆς τε πρώτης συνηχητικῆς καὶ τῆς δευτέρας γίνεται διὰ τῆς ἀντιστίξεως δύο φθόγγων σχετικῶν πρὸς ἕνα ἕκαστον τῶν φθόγγων τῆς γραμμῆς, αῖτινες ν' ἀποτελῶσιν ὲν συνόλω γραμμὰς μελωδικὰς τοῦ αὐτοῦ ῆχου. π. χ.

Όταν κυριαρχή ή διὰ ἔξ συμφωνία: $\frac{1}{q}$ $\frac{1}{2}$ συνηχοῦντες δύνανται νὰ ἡναι ὁ $\frac{1}{Q}$, ὁ $\frac{1}{q}$ καὶ ὁ $\frac{1}{Q}$. Όταν δὲ κυριαρχή ή διὰ ἔξ ώσαύτως, πλὴν ἐλλιπής, $\frac{1}{q}$ $\frac{1}{2}$, τότε συνηχοῦντες εἶναι, ἀναλόγως τῆς εἰς ἕνα τῶν φθόγγων διατριβῆς, ὁ $\frac{1}{Q}$, ὁ $\frac{1}{q}$ καὶ ὁ $\frac{1}{Q}$, ἡ ὁ $\frac{1}{Q}$, δ $\frac{1}{q}$ καὶ ὁ $\frac{1}{Q}$ κατὰ τὴν ἑξῆς ἀντιστοιχίαν:

X	້ະ	າ
X	ກຳ	ກາ
Δ Ä	აკ L	Ä
π	π	π
9	9	9
z. ~	ะ าา	<u>ኤ</u>

Οταν τέλος δεσπόζη ὁ Πα τῆς ὀγδόης, εἴτε κατὰ τὸ Διαπασῶν, εἴτε κατὰ τὸν Τροχόν, τότε συνηχοῦσιν ὑπ' αὐτούς, διὰ μὲν τὴν πρώτην περίπτωσιν $\begin{pmatrix} \overset{\alpha}{q}' \end{pmatrix}$ ὁ $\overset{\alpha}{q}$ καὶ ὁ $\overset{\alpha}{q}$. Διὰ δὲ τὴν δευτέραν $\begin{pmatrix} \overset{\alpha}{n}' \end{pmatrix}$ ὁ $\overset{\alpha}{q}$ καὶ δ $\overset{\alpha}{q}$.

Κατὰ τὸ	Διαπασῶν	Κατά τὸν Τροχὸν
φ΄,	φ,	۲.
q	q	گ
ж	χ	Ÿ
ё	η Ϋ	Ÿ
	ำ	
π	π	π είτε καὶ π
9	9	q q
		a

Αν δέ τὸ μέλος ὑπερβαίνη τὸν $\frac{\lambda}{\pi}$ τοῦ Τροχοῦ μέχρι τοῦ ἄνω Γα $\frac{\lambda}{\pi}$ $\frac{\lambda}{\pi}$ καὶ ὁ $\frac{\lambda}{\pi}$ $\frac{\lambda}{\pi}$, ἐν φ συγχρόνως ἡ δευτέρα συνηχητική γραμμή ἐκτελεῖ τὴν γραμμήν τοῦ μέλους μίαν ὀγδόην βαρύτερον, συνηχοῦντος τότε καὶ τοῦ κάτω $\frac{\lambda}{\pi}$ π. χ.

Ό Πρῶτος ήχος ἀρχικήν του βάσιν είχε τὸν αλλαίες, ήτοι τὸν Κε καθ' ἡμᾶς, ἐκ τῆς ὁποίας μετετέθη κατὰ τετρατονίαν κατιούσαν εἰς τὴν βάσιν τοῦ Πλαγίου του αἰεαἰες, ήτοι τὸν Πα καθ' ἡμᾶς. "Αλλως κατὰ τὴν περὶ Τροχοῦ θεωρίαν τῶν Βυζαντινῶν, ἀμφοτέρων τῶν ἤχων τούτων, ὅπως καὶ τῶν ἄλλων ἔξ, αὶ βάσεις ἀντηλλάσσοντο, τῶν αὐτῶν ἤχων εὑρισκομένων κατὰ τετρατονίαν ἀνιοῦσαν, ἤ κατιοῦσαν.

Ή θεωρία αὔτη δὲν ἰσχύει σήμέρον δι' δλους τοὺς ήχους. Ἰδία ὁ κανών, ὅτι οἱ Πλάγιοι ἀπέχουσι κατὰ τετρατονίαν κατιοῦσαν ἀπὸ τῶν Κυρίων των, οἱ δὲ Κύριοι κατὰ τετρατονίαν ἀνιοῦσαν ἀπὸ τῶν Πλαγίων των, ἰσχύει διὰ μόνους τοὺς τέσσαρας διατονικοὺς ήχους. Διότι ὄντως οἱ ήχοι Πρῶτος καὶ Τέταρτος ἀπέχουσι κατὰ τετρατονίαν ἀνιοῦσαν ἀπὸ τῶν Πλαγίων των, οὖτοι δὲ κατὰ τετρατονίαν κατιοῦσαν ἀπὸ τῶν Κυρίων των. Διὰ τοὺς λοιποὺς τέσσαρας ήχους ὁ κανὼν οὖτος εἶνοι ἀνεφάρμοστος, καθόσον δι' αὐτοὺς ἰσχύουσιν ἄλλοι κατόνες, καραπλήσιοι πρὸς τοὺς τῶν ἀρχαίων, ἡ ἄγνοια τῶν ὁποίων ὧθησε τινὰς τῶν νεωτέρων νὰ μεταβάλωσι τὰς βάσεις ήχων τινῶν, ὅπως τοῦ Δευτέρου ἐπὶ τοῦ Κε, τοῦ Πλαγίου Δευτέρου ἐπὶ τοῦ Νη κλπ.

Ο Πρώτος ήχος εξς τινα τών μαθημάτων του διετήρησε την άρχικήν του βάσιν έξ ής καὶ ἀπηχεῖται διὰ τοῦ $\frac{1}{2}$ $\frac{$

Εἰς τετράφωνον Πρῶτον, ὅστις μαρτυρεῖται οὐτως: Ἡχος χονωστότερα μελφδήματα εἰσὶ τὸ «Γεύσασθε» Ἰωάννου τοῦ Κλαδᾶ, τὸ «Θεαρχίω νεύματι» Ἰακώβου τοῦ Πρωτοψάλτου, ἡ Δοξολογία τοῦ αὐτοῦ, τὸ Κοινωνικὸν τῶν Χριστουγέννων «Λύτρωσιν ἀπέστειλε» Δανιὴλ τοῦ Πρωτοψάλτου καὶ ἄλλα, ποιούμενα τελικὴν κατάληξιν ἄλλα μὲν εἰς τὸν π, ὅπως τὸ «Γεύσασθε», ἄλλα δὲ εἰς τὸν χ, ὅπως τὸ «Θεαρχίω γεύματι», τὸ «Λύτρωσιν ἀπέστειλε» κ. ἄ.

Ήχος Πλάγιος τοῦ Πρώτου

Ο Πλάγιος τοῦ Πρώτου ήχος ἀκολουθεῖ τὴν αὐτὴν περίπου κλίμακα, μετὰ ἰδιαιτέρων τινῶν ἰδιωμάτων.

Εἰς τὸ Στιχηραρικόν του εἴδος δεσπόζοντας φθόγγους ἔχει τοὺς Πα_Δι, τοὺς ὁποίους ἔχει καὶ ὁ Πρῶτος εἰς τὸ Εἰρμολογικόν του εἴδος. Εἶναι δηλονότι Τρίφωνος, μετὰ τῆς διαφορᾶς, ὅτι ὡς δεσπόζοντα δεύτερον φθόγγον ἔχει καὶ τὸν Κε. Οὕτω τὰ μέλη του ἀναπτύσσονται ἐν πλάτει δύο συμφωνιῶν τῆς διὰ τεσσάρων: $\stackrel{\triangle}{q}$ καὶ τῆς διὰ πέντε: $\stackrel{\triangle}{q}$.

Εἰς τοὺς τρεῖς τούτους φθόγγους ποιεῖται τὰς ἀτελεῖς, ἐντελεῖς καὶ τελικάς του καταλήξεις. Τὰς ἀτελεῖς εἰς τὸν $\overset{\Delta}{\overset{}_{\overset{}{\overset{}_{\overset{}}{\overset{}}{\overset{}}}}}$ καὶ ἐνίοτε εἰς τὸν $\overset{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}}}}}}$, ὅταν ἐργάζηται ἐκτὸς τοῦ τετραχόρδου $\overset{\overset{}{\overset{}{\overset{}}{\overset{}}}}{\overset{\overset{}{\overset{}}{\overset{}}}{\overset{}}}$ καὶ τὰς τελικάς του εἰς τὸν $\overset{\Delta}{\overset{}{\overset{}}}$ μέν, ὅταν ἀκολουθη συνέχεια ἄλλου τροπαρίου, εἰς τὸν $\overset{\pi}{\overset{}{\overset{}}}$ δὲ ὅταν καταπαύη τελικῶς ὡς ἑξῆς:

Š

'Αλλ' ἐν τῆ ἀναπτύξει τῶν γραμμῶν του περιστρέφεται καὶ περὶ ἄλλους φθόγγους τῆς κλίμακος, οἶτινες ἐν συνδυασμῷ μετὰ τοῦ τῆς κυρίας βάσεώς του $\frac{1}{\alpha}$, παράγουσιν ἄλλας συμφωνίας.

Όταν ἀνέρχηται μέχρι τοῦ Zω καὶ ἐπιστρέφη, ὁ Zω εἴναι πάντοτε ἐν ὑφέσει, ἐν συνδυασμῷ δὲ μετὰ τοῦ Πα παράγει ἄκουσμα διὰ ἔξ μικρᾶς συμφωνίας, μὲ ἀτελῆ κατάληξιν ἐπὶ τοῦ $\overset{\triangle}{\sigma}$ καὶ τελικὴν ἐπὶ τοῦ $\overset{\pi}{q}$, συνηχούντων συγχρόνως καὶ τῶν τριῶν μέχρι τῆς ἐπὶ τοῦ $\overset{\pi}{q}$ καταλήξεως.

Έπειδὴ ὅλοι οἱ ἡχοι ἔχουσι καταλήξεις εἰς οἰονδήποτε φθόγγον τῆς κλίμακός των, καὶ ὁ Πλάγιος τοῦ Πρώτου ποιεῖται καταλήξεις εἰς τὸν της, ὅτε προκύπτουσιν ἄλλαι συμφωνίαι ἐκ τοῦ συνδυασμοῦ φθόγγων της q = q καὶ της q = q οῖτινες καὶ δύνανται νὰ συνηχῶσιν ἀναλόγως τῆς φύσεως τοῦ μέλους καὶ ἐκ τῶν q = q της ὅταν κυριαρχῆ ὁ ἐναρμόνιος q = q

Ο ήχος οδτος συχνάκις ἐργάζεται ἐντὸς τοῦ τετραχόρδου $\overset{\mathbf{x}}{\ddot{\mathbf{q}}} \overset{\pi}{\ddot{\mathbf{q}}}$ δτε ἐν τή συνηχήσει κυριαρχεί ὁ $\overset{\mathbf{x}}{\ddot{\mathbf{q}}}$, συνηχούντων ἑκάστοτε τοῦ κάτω $\overset{\pi}{\ddot{\mathbf{q}}}$ καὶ τοῦ κάτω $\overset{\pi}{\ddot{\mathbf{q}}}$.

Εἰς τὸ Εἰρμολογικόν του εἰδος δεσπόζοντας φθόγγους ἔχει τοὺς $\overset{\pi}{\mathbf{q}}$ καὶ Γα, οὕς ἔχει εἰς τὰ Στιχηραρικά του ὁ Πρῶτος, διὰ τῶν ταυτοσήμων ὅμως τοῦ ὀξέως τετραχόρδου φθόγγων $\overset{\mathbf{x}}{\mathbf{q}} \frac{\mathbf{q}}{\mathbf{q}} \overset{\mathbf{y}'}{\mathbf{q}}$. Συνεπῶς εἰναι δίφωνος δυνάμει τῆς διὰ τριῶν συμφωνίας $\overset{\mathbf{x}}{\mathbf{q}} \frac{\mathbf{q}}{\mathbf{q}} \overset{\mathbf{y}'}{\mathbf{q}} \overset{\mathbf{q}}{\mathbf{q}} \overset{\mathbf{q}}{\mathbf{q}} \overset{\mathbf{y}'}{\mathbf{q}}$, ὅτε αἱ γνωριστικαὶ καταλήξεις του γίνονται, αἱ μὲν ἀτελεῖς εἰς τὸν $\overset{\mathbf{y}'}{\mathbf{q}}$, αί

ἐντελεῖς εἰς τὸν χ καὶ εἰς τὸν π, ὅταν κατέρχηται εἰς αὐτὸν ὡς ἀπὸ τοῦ χ καὶ αί τελικαὶ εἰς τὸν χ. $\overset{\times}{\mathbf{q}}$

Κατὰ τὴν ἀνάπτυξιν τῶν γραμμῶν τοῦ μελφδικοῦ τούτου εἴδους συνηχοῦντας φθόγγους δύναται νὰ ἔχη τοὺς ἐξῆς:

Όταν δεσπόζη ό $\frac{\kappa}{q}$ ἀπαραβάτως συνηχεῖ ὁ κατ' ὀγδόην βαρύτερος $\frac{q}{q}$, ἐνίστε δὲ καὶ ὁ $\frac{\pi}{q}$, ὅτε, ἄν ἡ μελφδία τὸ ἐπιτρέπη, συνηχεῖ καὶ δ $\frac{1}{2}$

Όταν τὸ μέλος περιστρέφηται περί τὸν $\frac{y'}{\eta'}$, εἴτε καὶ ἀνέρχηται μεχρι τοῦ ἄνω $\frac{\pi}{q}$ καὶ τοῦ $\frac{e'}{\pi}$, ώς $\frac{e'}{q}$ κατὰ τὸν Τροχόν, τότε συνηχοῦντας φθόγγους δύναται νὰ ἔχη τὸν $\frac{y'}{\eta'}$, τὸν $\frac{y}{q}$ καὶ τὸν κάτω $\frac{q}{q}$:

$$\mathbf{v}' - \mathbf{\ddot{a}} - \mathbf{\ddot{a}}$$

Έπὶ τῆ βάσει τῶν συνηχούντων τούτων φθόγγων αἱ δύο συνηχητικαὶ γραμμαὶ πλέκονται εἰς ἰδιαίτερα σχήματα, γινομένης χρήσεως κατὰ τὴν ἀντίστιξιν καὶ ὅλων τῶν φθόγγων, χωρὶς ἡ παρένθεσις αὕτη να ἐκτρέπηται τῆς μελωδικῆς τοῦ ἥχου χροιᾶς.

Είς τὸ Παπαδικὸν τοῦ Πλαγίου Πρώτου είδος ἰσχύουσιν ὅλοι οἱ κανόνες τοῦ Παπαδικοῦ μέλους τοῦ Πρώτου ἤχου, μετά τῆς διαφορᾶς, ὅτι εἰς τὸν Παπαδικὸν Πλάγιον τοῦ Πρώτου γίνεται συχνή χρῆσις τοῦ ἐναρμονίου γένους.

$$\frac{\tilde{z}}{\tilde{\gamma}} - \tilde{\gamma}_{1} - \pi$$

$$\tilde{z} - \tilde{\gamma}_{1} - \pi$$

$$\tilde{z} - \tilde{\gamma}_{1} - \pi$$

Αί δύο χρόαι τοῦ Πλαγίου Πρώτου ήχου

Είς τὸν Πλάγιον τοῦ Πρώτου ὑπάγονται δύο Χρόαι, δυνάμει τῆς

ἐναρμονίου φθορᾶς τοῦ Ίαλα: \mathcal{S} , ἥτις ἐν τῷ τετραχόρδῳ $\frac{\pi}{q} - \frac{\delta}{\lambda} - \frac{1}{2} - \frac{\Delta}{\ddot{\eta}}$, τιθεμένη ἐπὶ τοῦ $\frac{1}{2}$, παράγει τὸ τετράχορδον $\frac{\pi}{\ddot{q}} - \frac{\delta}{\lambda} - \frac{1}{2} - \frac{\Delta}{\ddot{\eta}}$, τὸ ὁποῖον βαίνει κατὰ τόνον, ἡμιτόνον καὶ τόνον, κατὰ τὸ ἀρχαῖον Φρύγιον. Τιθεμένη δὲ ἐπὶ τοῦ $\frac{\delta}{\lambda}$, παράγει τὸ ἑξῆς τετράχορδον: $\frac{\pi}{\ddot{q}} - \frac{\delta}{2} - \frac{1}{2} - \frac{\Delta}{\ddot{\eta}}$, ὅπερ βαῖνον κατὰ ἡμιτόνιον καὶ τόνον, εἶναι αὐτούσιον τὸ ἀρχαῖον Δωρικόν.

Αἱ χρόαι αὕται ἀποτελοῦσι τρόπον τινὰ δευτερεύοντας ἤχους, τῶν ὁποίων ὁ Πρῶτος, ὁ ἔχων τὸ ἡμιτόνιον ἐν τῷ μέσῳ, ἀντιστοιχεῖ πρὸς τὸν ἐλάσσονα Τρόπον τῆς Εὐρωπαϊκῆς Μουσικῆς καὶ πρὸς τὸ Πιουσελὶκ τῆς ᾿Αραβοπερσικῆς. Ὁ δεύτερος, ὁ ἔχων ἐν ἀρχῆ τὸ ἡμιτόνιον, παρεντίθεται φθορικῶς, ἤ καὶ κατὰ παραχορδὴν εἰς ἄλλους ἤχους, ἀλλ᾽ ἰδίως εἰς τοὺς Πρώτους, Κύριον καὶ Πλάγιον. Εἰς τὴν Εὐρωπαϊκὴν Μουσικὴν εἶναι ἄγνωστος εἰς δὲ τὴν ᾿Αραβοπερσικὴν εἶναι δευτερεύων ἤχος (Σιουπιές) ὑπὸ τὸ ὄνομα Κιουρδή.

Ή πρώτη χρόα, ή ἔχουσα τὴν ἐναρμόνιον φθορὰν ἐπὶ τοῦ $\frac{\Gamma}{\gamma \gamma}$ διατρέχει κλίμακα ἐκ δύο τετραχόρδων διαφόρου σχήματος, τῶν ὁποίων τὸ ὀξὺ εἶναι, ἄλλοτε μὲν ἐναρμόνιον (Δωρικόν) :

$$\pi - \stackrel{\varepsilon}{q} - \stackrel{\iota}{\mathring{\eta}} - \stackrel{\lambda}{\mathring{\eta}} - \stackrel{\lambda}{\mathring{\eta}} - \stackrel{\lambda}{\mathring{\eta}} - \stackrel{\lambda}{\mathring{\eta}} - \stackrel{\lambda'}{\mathring{\eta}} - \stackrel{\pi'}{\mathring{\eta}} - \stackrel{\pi'}$$

άλλοτε δὲ χρωματικόν

$$\overline{q} = \overline{q} - \overline{q} -$$

$$\widehat{\frac{\pi}{n}} - \widehat{\frac{d}{n}} - \widehat{\frac{d}{n}}$$

Ή συνήχησις εἰς ἀμφοτέρας τὰς χρόας ταύτας, εἶναι περίπου ἡ αὐτὴ τῶν ἤχων Πρώτου καὶ Πλαγίου Πρώτου.

Εἰς τὴν κλίμακα τῆς πρώτης Χρόας $\begin{pmatrix} \vec{\gamma}_{1} \end{pmatrix}$ δεσπόζοντες φθόγγοι είναι ὁ Πα, ὁ Γα καὶ ὁ Κε. Περὶ τούτους στρεφόμενα τὰ μέλη του παράγουσι δύο συμφωνίας, τὴν $\vec{\gamma}_{1} - \vec{\gamma}_{2}$ διὰ τριῶν μικρὰν καὶ τὴν διὰ πέντε $\vec{\gamma}_{1} - \vec{\gamma}_{2}$.

"Όταν ὑπερισχύη ὁ $\sqrt{\gamma}$, συνηχοῦσιν ὁ $\frac{\pi}{0}$ καὶ ἄλλοτε μὲν ὁ $\frac{\chi}{0}$, ἄλλοτε ὁ ἐναρμόνιος $\frac{\chi}{0}$ καὶ ἄλλοτε ὁ κάτω $\frac{\pi}{0}$, ἀναλόγως τοῦ εἴδους τῆς γραμμῆς, ὡς ἑξῆς: (συνηχοῦντος καὶ τοῦ κάτω $\frac{\pi}{0}$)

$$\frac{1}{2} \frac{1}{2} - \frac{1}{4} \frac{1}{2} - \frac{1}{4} \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \frac{1}{4} - \frac{1}{4} \frac{1}{4} - \frac{1}{4} \frac{1}{4} - \frac{1}{4$$

Όταν δὲν κωλύη τὴν συνήχησιν ἐκτροπὴ πρὸς ξένον ἤχον, δύνανται νὰ συνηχῶσιν ἐν ἀντιστίξει ὅλοι ὁμοῦ.

Ταν ὑπερισχύη ὁ χ, τότε συνηχοῦντες φθόγγοι είναι ὁ $\eta \eta$, ὁ τη δ γ καὶ ὁ κάτω q:

$$\ddot{x} - \dot{\zeta}_{c} - \dot{\zeta}_{c} - \ddot{\zeta}_{c} - \ddot{x}$$

$$\ddot{x} - \dot{\zeta}_{c} - \ddot{\zeta}_{c} - \ddot{x}$$

$$\ddot{x} - \dot{\zeta}_{c} - \ddot{\zeta}_{c} - \ddot{x}$$

Όταν τό μέλος ἐργάζηται ἐντὸς τοῦ ὀξέως τετραχόρδου καὶ ὑπερισχύῃ ὁ διατονικὸς $\gamma_{\gamma}^{\nu'}$, τότε συνηχοῦσιν ὁ $\frac{\nu}{q}$, ὁ $\gamma_{\gamma}^{\nu'}$ καὶ ὁ $\gamma_{\gamma}^{\nu'}$ οὕτως :

Όταν δ' εἰς τὸ αὐτὸ τετράχορδον ὑπερισχύη ὁ ἐναρμόνιος $\frac{z}{20}$

τότε συνηχούσιν ὁ $\frac{\pi}{12}$ καὶ ὁ $\frac{\pi}{12}$. Αν δὲ τὸ μέλος ἐμμένη περισσότερον εἰς τὸν $\frac{\pi}{12}$ καὶ ὁ κάτω $\frac{\pi}{12}$:

$$\frac{\ddot{z}}{\dot{\eta}} - \dot{\ddot{\eta}} - \ddot{\ddot{\eta}} = \ddot{\ddot{z}} - \ddot{\ddot{\eta}}$$

Εἰς ἐξαιρετικὰς περιπτώσεις, ἐπικρατοῦντος τοῦ ἐναρμονίου $\frac{\mathcal{Z}'}{\gamma \gamma}$ συνηχεῖ καὶ δ $\frac{\Delta}{\gamma}$:

$$\ddot{z}^{\circ}_{\dot{\gamma}\dot{\gamma}} - \ddot{z} - \ddot{z} - \ddot{z}^{\circ}_{\dot{\gamma}\dot{\gamma}}$$

Όταν τὸ μέλος ἐργάζηται ἐντὸς τοῦ ἄνω τετραχόρδου χρωματικῶς, τότε μετὰ τοῦ $\stackrel{\checkmark}{\sim}$ δύνανται νὰ συνηχῶσιν ὁ χρωματικὸς $\stackrel{\Gamma}{\sim}$, ὁ $\stackrel{\pi}{\sim}$ καὶ ὁ κάτω $\stackrel{\P}{\sim}$ (κατὰ τὸ διαπασῶν):

$$\frac{x}{x} - \frac{1}{x} - \frac{x}{x} - \frac{x}{x}$$

μετά τοῦ $\overset{\mathbf{Z}}{\wp}$ δ $\overset{\mathbf{A}}{\wp}$ καὶ δ $\overset{\mathbf{\pi}}{\smile}$ ἥ δ $\overset{\mathbf{f}}{\varsigma}$

$$z - \Delta - \delta$$

μετά του 🤟 δ 🗴 και δ Βου ώς 💆 :

καὶ μετὰ τοῦ ἄνω π΄, ὁ χ ὁ Γ καὶ ὁ π :

$$\frac{x}{x} - x - \frac{1}{x} - \frac{x}{x}$$

"Όταν πάλιν τὸ μέλος ἐξέρχηται τοῦ ἄνω π ώς Δ ι καὶ φθάνη μέχρι τοῦ Γα ώς Zω":

$$\pi' - \mathfrak{S} - \mathfrak{T}'$$

τότε συνηχούσι μετὰ τοῦ π ό \times , μετὰ τοῦ ϵ ό γ καὶ ό \times καὶ καὶ μετὰ τοῦ ϵ ό π καὶ ό \times :

ή Β΄ τουτέστι συνηχητική γραμμή έκτελεῖ τὸ μέλος μίαν ὀγδόην κάτω κατὰ παραχορδήν (μαγαδίζειν).

'Η δευτέρα χρόα η^{δ} ή ξχουσα τὴν ἐναρμόνιον φθορὰν ἐπὶ τοῦ Βου, σχηματίζει, ὡς ἐλέχθη, τὸ ἀρχαῖον τετράχορδον $\eta^{\epsilon} - \eta^{\epsilon} - \eta^{\epsilon} - \eta^{\epsilon}$ η^{ϵ} τὸ ὁποῖον ἐπαναλαμβανόμενον κατὰ μίαν πέμπτην ἐπὶ τὸ ὀξύ, σχηματίζει τὴν ἀρχαίαν Δωρικὴν κλίμακα

$$\overline{q} - \frac{6}{7} - \frac{1}{7} - \frac{3}{7} = \overline{q} - \frac{7}{7} - \frac{7}{7} - \overline{q}$$

τῆς ὁποίας τὰ τετράχορδα βαίνουσι κατὰ ἡμιτόνον καὶ τόνον καὶ τόνον.

Τής κλίμακος ταύτης τὸ όξὺ τετράχορδον, ἀκολουθοῦν δλας τὰς μετατροπὰς τής Χρόας ταύτης, δύναται νὰ ἡναι καὶ διατονικὸν καὶ χρωματικόν.

Αί δυναταί συνηχήσεις τής Χρόας ταύτης είσιν αί έξης:

Όταν τὸ μέλος ἐπιμένη ἐπὶ τοῦ $\frac{\pi}{q}$, συνηχοῦσιν οἱ κάτω $\frac{\chi}{2\eta}$ καὶ $\frac{\chi}{q}$, ή μόνος ὁ $\frac{\pi}{q}$ ἀναλόγως τῆς χροιᾶς τοῦ μέλους.

Όταν ὑπερισχύη ὁ η_{η}^{ξ} , τότε συνηχούσιν οἱ κάτω η_{η}^{ξ} καὶ η_{η}^{ξ} , οὐτοπανίως δὲ καὶ μόνος ὁ η_{η}^{ξ} ἐν διέσει.

$$\frac{\pi}{q} - \frac{\chi^2}{2\eta} - \frac{\eta}{2\eta}$$

$$\frac{\pi}{q} - \frac{q}{\eta}, \qquad \text{èviote kai ó káta } \frac{\eta}{\eta} \text{ kai :}$$

$$\frac{\pi}{\eta} - \frac{\chi}{\eta} \left(\frac{\pi}{q} - \frac{\eta}{\eta} - \frac{\pi}{q} \right)$$

Οταν ὑπερισχύη ὁ $\frac{\Delta}{\alpha}$, συνηχούσιν οί $\frac{\pi}{q}$, $\frac{\lambda}{\alpha}$ καὶ α , ή οί $\frac{\delta}{\alpha}$, $\frac{\lambda}{\alpha}$ καὶ α .

Όταν τὸ μέλος στρέφηται περὶ τὸν $\frac{\chi^2}{10}$, ὅτε καὶ ὑπερισχύει οὐτος, τότε συνηχοῦσιν ὁ $\frac{1}{10}$, ὁ $\frac{\pi}{9}$ καὶ ὁ κάτω $\frac{\chi}{10}$, ἡ ὁ $\frac{\Lambda}{10}$, ὁ $\frac{\chi}{10}$ καὶ ὁ κάτω $\frac{\Lambda}{10}$.

Όταν τέλος ἐργάζηται ἐντὸς τοῦ ὀξέως τετραχόρδου, διατρέχον δλους τοὺς φθόγγους αὐτοῦ, τότε τηροῦνται δλαι αἱ ἀναλογίαι τοῦ Πλαγίου Πρώτου, ἀντιστιχούντων εἰς τὸν $\overset{\times}{q}$ τοῦ $\overset{\circ}{q} \overset{\circ}{,}$, τοῦ $\overset{\circ}{q}$ καὶ τοῦ

$$\ddot{\ddot{q}} - \ddot{\dot{q}} - \ddot{\ddot{q}} - \ddot{\ddot{q}} - \ddot{\ddot{q}} = \ddot{\ddot{q}}$$

$$\ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{\ddot{q} + \ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{\ddot{q}} + \ddot{$$

είς τὸν $\overset{\circ}{\overset{\circ}{\gamma}}$ τὸν ἐναρμόνιον, τῶν αὐτῶν φθόγγων: $\overset{\circ}{\overset{\circ}{\gamma}} - \overset{\Delta}{\overset{\circ}{\Pi}} - \overset{\pi}{\overset{\sigma}{\eta}} - \overset{\sigma}{\overset{\sigma}{\eta}}$

$$ec{z}' - \Delta - \pi - ec{z}'$$

eis tòn $\gamma_{\eta}^{\nu'}$ (διατονικώς), του \ddot{q} , του $\ddot{\eta}_{\eta}^{\nu}$ καὶ του $\ddot{\eta}_{\eta}^{\nu}$

εἰς τὸν $\stackrel{\mathsf{y}}{\smile} (χρωματικῶς)$ τοῦ $\stackrel{\mathsf{x}}{\smile}$, τοῦ $\stackrel{\mathsf{f}}{\smile}$, ἢ τοῦ $\stackrel{\mathsf{f}}{\smile}$ (ὡς $\stackrel{\mathsf{f}}{\smile}$)

Ήχος Τέταρτος

'Ο Τέταρτος ήχος ἀκολουθεί τὴν διατονικὴν κλίμακα τῆς πρώτης Διαπασών, τὴν ἔχουσαν τοὺς τρεῖς φυσικοὺς τόνους, μείζονα (*/,), ἐλάσσονα (⁹/₁₀) καὶ ἐλάχιστον (¹⁵/₁₆).

Τῆς κλίμακος ταύτης Δι - Δι΄ ποιείται χρήσιν εἰς τὸ Παπαδικόν του είδος, τὸ ὁποίον είναι ὁ κυρίως Τέταρτος, μὲ ἀρχικὴν καὶ δεσπόζουσαν βάσιν τὸν Δ.

Ή πρώτη Διαπασῶν, ἥν ἀκολουθεῖ, περιέχει τὰς ἐν σελίδι 52 συμφωνίας έκ του βαρέως πρός τὸ όξὺ καὶ τάνάπαλιν.

Δεσπόζοντας φθόγγους, πλὴν τοῦ βασίμου $\frac{\Delta}{6}$ ἔχει τὸν $\frac{\lambda}{2}$ καὶ τὸν $\frac{6}{\lambda}$. Ἡ δ' ἔκτασίς του εἶναι πρὸς μὲν τὸ ὀξὺ μέχρι τοῦ ἄνω $\frac{6}{\lambda}$ ὡς $\frac{6}{a}$ κατά τὸν Τροχὸν καὶ σπανίως μέχρι τοῦ $\overset{\Delta'}{\tilde{\mathcal{N}}}$ τῆς Δισδιαπασῶν, πρὸς δὲ τὸ βαρὺ μέχρι τοῦ κάτω $\overset{\Delta}{\mathcal{N}}$ κατά τὸ Διαπασῶν.

Καταλήξεις ποιείται ἀτελεῖς εἰς τοὺς φθόγγους $\overset{\mathcal{L}}{\lambda}$ καὶ $\overset{6}{\lambda}$ καὶ εἰς οἰονδήποτε ἄλλον φθόγγον τῆς κλίμακος, ἐντελεῖς δὲ καὶ τελικὰς εἰς τὸν $\overset{6}{\lambda}$.

Αί συμφωνίαι τῆς πρώτης Διαπασών ἀποτελούσι τὰς θεμελιώδεις βάσεις, ἐφ' ὧν στηρίζεται ἡ ἐν τῷ Παπαδικῷ μέλει δυνατὴ συνήχησις.

Οὕτως· δταν ὁ ήχος οὐτος ἐργάζηται ἐντὸς τοῦ ὀξέως τετραχόρ-

δου
$$\widehat{A} = \widehat{\gamma}'$$
, συνηχούντες φθόγγοι είναι δ \widehat{A} , δ $\widehat{\gamma}$ και δ κάτω \widehat{A} .

Όταν τὸ μέλος περιστρέφηται περὶ τὸν $\frac{\chi}{\lambda}$, οὖτος ἔλκει πρὸς ἑ-αυτὸν τὸν ὑπ' αὐτὸν $\frac{\chi}{\eta}$ δι' ἀναλόγου ἑκάστοτε διέσεως, ὅτε ἀπαραιτήτως ὁ $\frac{1}{\eta}$ συνηχεί καὶ οὖτος ἑν διέσει :

Όταν τὸ μέλος ἐργάζηται ἐν τῷ αὐτῷ τετραχόρδῷ, ἔχον δεσπόζοντας φθόγγους τοὺς $\stackrel{\Delta}{\sim}$ καὶ $\stackrel{V}{\gamma'}$, στρεφόμενον δὲ περὶ τὸν $\stackrel{V}{\gamma'}$ κρατῆ ἐν συνεχεῖ ἔλξιν τὸν $\stackrel{Z}{\sim}$, τότε συνηχούντες φθόγγοι καὶ πάλιν εἶναι ὁ $\stackrel{\Delta}{\sim}$ καὶ ὁ $\stackrel{\Delta}{\sim}$ ἐν διέσει :

μετ' ἀναλόγου συνηχήσεως ἐν τῇ βαρεία ὀγδόη.

Όταν τὸ μέλος ἐκτείνηται μέχρι τοῦ ἄνω $\overset{\pi}{q}$ εἴτε κατὰ τὸ Διαπασῶν, εἴτε κατὰ τὸν Τροχόν, ἐν πλάτει τουτέστι πενταχόρδου, τότε, ἐμμένοντος τοῦ μέλους εἰς τὸν $\overset{\pi}{q}$, συνηχοῦντες φθόγγοι εἴναι ὁ $\overset{\chi}{\chi}$, ὁ $\overset{\Delta}{\ddot{\eta}}$ καὶ ὁ $\overset{\pi}{q}$, συνηχοῦντος καὶ τοῦ κάτω $\overset{\Delta}{\Delta}$ λ. χ.

Όταν τὸ μέλος ἐργάζηται κάτω τοῦ $\overset{\triangle}{\mathcal{H}}$ μὲ τάσιν πρὸς κατάληξιν ἐπὶ τοῦ $\overset{\pi}{\mathbf{q}}$, τότε δεσπόζει ὁ $\overset{\pi}{\mathbf{q}}$, συνηχούντος τοῦ κάτω $\overset{\triangle}{\mathcal{H}}$, τοῦ $\overset{\mathbf{y}}{\mathcal{H}}$ καὶ τοῦ $\overset{\mathbf{q}}{\mathbf{q}}$ π. χ.

"Όταν δὲ τείνη πρὸς κατάληξιν ἐπὶ τοῦ $\frac{6}{3}$, τότε, δεσπόζοντος τοῦ $\frac{6}{3}$, συνηχοῦσιν ἀναλόγως τῆς κινήσεως τῆς γραμμῆς οἱ φθόγγοι $\frac{7}{3}$, κατὰ τὸ ἐξῆς παράδειγμα:

Όταν τὸ μέλος ἐργάζηται περὶ τὸν ξε μὲ τάσιν πρὸς κατάληξιν ἐπὶ τοῦ ξε, τότε, διὰ μὲν τὴν πρώτην περίπτωσιν συνηχοῦσιν ὁ ξε καὶ ὁ κάτω ξε ἡ καὶ ὁ ໆ:

διὰ δὲ τὴν δευτέραν περίπτωσιν συνηχούσιν ὁ $\overset{\sim}{\bigwedge}$, ὁ $\overset{\sim}{\swarrow}$, ὁ \tilde{q} καὶ ὁ κάτω $\overset{\sim}{\bigwedge}$:

Όταν ἡ γραμμὴ ἀπὸ τοῦ $\frac{\pi}{q}$ κατέρχηται εἰς τὸν κάτω $\frac{\Lambda}{\Delta}$, τότε συνηχοῦντες φθόγγοι εἶναι ὁ $\frac{\infty}{\Delta}$ καὶ ὁ $\frac{\Lambda}{\Delta}$, συνηχοῦντος πρὸς τὸν ἐν διέσει $\frac{d}{d}$ καὶ τοῦ κάτω $\frac{\pi}{\Delta}$ ώσαύτως ἐν διέσει.

Εἰς τὸ Στιχηραρικόν του είδος, ἀργὸν καὶ σύντομον, δεσπόζοντας φθόγγους ἔχει τοὺς $\frac{\pi}{q}$, $\frac{\delta}{\lambda}$ καὶ $\frac{\Delta}{\tilde{\zeta}}$, καταλήξεις δὲ ποιείται, ἀτελεῖς μὲν εἰς τοὺς $\frac{\Delta}{\tilde{\zeta}}$ καὶ $\frac{\delta}{\lambda}$, ἐντελεῖς εἰς τὸν $\frac{\pi}{q}$ καὶ τελικὰς εἰς τὸν $\frac{\delta}{\lambda}$,

Κύριον χαρακτηριστικόν τοῦ Στιχηραρικοῦ Τετάρτου εἶναι ἡ διαδοχικὴ περιστροφὴ τοῦ μέλους περὶ τοὺς φθόγγους $\overset{\pi}{\mathbf{q}}$ καὶ $\overset{\mathfrak{S}}{\overset{\pi}{\overset{\pi}{\mathbf{q}}}}$, ἐπὶ τῶν ὁποίων ἐναλλάξ καταλήγων, παράγει ἄκουσμα μιᾶς διὰ δύο ἐλάσσονος διαφώνου συμφωνίας : $\overset{\overset{\pi}{\overset{\pi}{\overset{\pi}{\mathbf{q}}}}}{\overset{\mathfrak{S}}{\overset{\pi}{\overset{\pi}{\overset{\pi}{\mathbf{q}}}}}}$.

Παρατηρητέον ἐνταῦθα ὅτι πολλοὶ τῶν ψαλλόντων, ἄν μὴ πάντες, παρερμηνεύοντες τὴν ἀρχικὴν μαρτυρίαν Ἡχος $\stackrel{!}{\tilde{q}}$ καὶ τῶν πρὸ ἑκάστου τροπαρίου μαρτυριῶν τοῦ $\stackrel{\pi}{q}$, νομίζουσιν, ὅτι βάσιμον αὐτοῦ φθόγγον ἔχει τὸν $\stackrel{\pi}{q}$. Τούτου διαρκῶς κρατουμένου ὡς Ἱσου, ἀκόμη καὶ ὅταν ἐν τῷ μέσῳ τοῦ μέλους ἀτελεῖς καταλήξεις γίνονται ἐπὶ τοῦ $\stackrel{6}{\chi}$ προκύπτει μιὰ διαρκὴς παραφωνία μὲ σύγχρονον ἄκουσμα τῶν δύο διαφώνων φθόγγων Πα καὶ Βου.

Έν ῷ ἑκάτερος τῶν δύο φθόγγων δέον νὰ ἦναι τὸ Ἰσον, τῆς γραμμῆς ἐν τῆ ὁποίᾳ ἐπικρατεῖ, τῆς μεταβάσεως ἀπὸ τοῦ ἑνὸς εἰς τὸν ἄλλον γινομένης τεχνηέντος ἀπὸ τοῦ σημείου, καθ' ὅ ἀρχίζει νὰ πλαγιάζη εἰς ἔνα ἐκ τῶν δύο φθόγγων.

"Αλλως κυρία βάσις έκάστου ήχου είναι έκεῖνος ὁ φθόγγος, ἐκ τοῦ ὁποίου γίνονται αἱ καταλήξεις αὐτοῦ. Ἐπειδὴ δὲ αἱ τελικαὶ καταλήξεις τοῦ στιχηραρικοῦ Τετάρτου γίνονται ἀπαραβάτως ἐπὶ τοῦ $\frac{6}{\kappa}$, οὖτος εἶναι ὁ βάσιμος φθόγγος του. Ὁ δὲ παρὰ τὴν μαρτυρίαν τοῦ ήχου $\frac{1}{4}$ ($\frac{1}{1}$), ὅπως καὶ ἐν τῷ μεταξὺ τοῦ μικροῦ τέλους καὶ τῆς ἀρχῆς τοῦ ἐπομένου στιχηροῦ μαρτυρίαι τοῦ $\frac{1}{4}$, δηλοῦσιν, ἡ ὅτι ἐν ἀρχῆ τοῦ τροπαρίου, στιχηροῦ κλπ. ἐπικρατεῖ ὁ Πα, ἡ ὅτι οἱ προψαλλόμενοι στίχοι δέον νὰ καταλήγωσι εἰς τὸν $\frac{1}{4}$. Κατὰ φυσικόν δὲ λόγον ἡ ἐν ἀρχῆ τοῦ ἡχου τιθεμένη τριφωνία μετὰ τὴν μαρτυρίαν $\frac{1}{4}$, ἐφ` ὅσον δὲν προηγήθη ἄλλο τι, ὰλλὰ δίδεται ώς ἀπήχημα ὁ $\frac{6}{4}$ δια τοὺ:

Συνήχησις: Είς τὸ Στιχηραρικόν του τὸ είδος συνηχοῦντες φθόγγοι δύνανται νὰ ἤναι ὁ Πα, ὁ Βου, ὁ Δι, ὁ Νη καὶ ὅσοι ἄλλοι είναι δυνατὸν νὰ μὴ παραλλάσωσι τὴν φυσικότητα τοῦ ἤχου. Οὐτως:

Όταν εἰς μίαν γραμμὴν δεσπόζη ὁ Βου, δύνανται νὰ συνηχῶσιν ὁ Νη, ἤ ὁ Ζω εἰς ἀμφοτέρας δὲ τὰς περιπτώσεις καὶ ὁ κάτω Δι, ὅταν ἔχη θέσιν ἐν τῆ διασκευῆ τῆς γραμμῆς:

Όταν δεσπόζη ὁ Πα, τότε ἀπαιτείται πολλή προσοχή, διότι συνηχούντας φθόγγους ζητεί ἄλλοτε μὲν τοὺς Zω καὶ κάτω Δι, ἄλλοτε δὲ τὸν κάτω Kε (q) π. χ.

Όταν τὸ μέλος ὁδεύη ἐργαζόμενον ἐντὸς τῆς διὰ τεσσάρων συμφωνίας $\frac{1}{q}$ $\frac{\Delta}{\sigma}$, μετὰ τοῦ Πα δύνανται νὰ συνηχῶσιν οἱ ἐν τῆ προηγουμένη περιπτώσει φθόγγοι, ὅπως καὶ μετὰ τοῦ Βου οἱ τῆς ἄλλης περιπτώσεως, μετά τοῦ Δι ὁ Βου, ὁ Πα, ἥ ὁ Νη, μετὰ δὲ τοῦ Γα ὁ Πα, ἥ ὁ Νη καὶ ἐνίοτε ὁ κάτω Κε, ὅταν δὲν παρεισάγεται ὡς ξενικὸς φθόγγος καὶ σύνεπῶς παράφωνος. π. χ.

είς δὲ τὸν Δι ἄλλοτε ὁ Βου καὶ ἄλλοτε ὁ Πα, συνηχοῦντος ἐκάστοτε καὶ τοῦ κάτω Δι ἐν τῆ Β΄ συνηχητικῆ γραμμῆ.

Εἰς τὸ Εἰρμολογικόν του εἰδος, ἀργὸν καὶ σύντομον, οδτινος βάσιμος φθόγγος εἶναι ὁ Βου, δεσπόζοντες φθόγγοι εἶναι πρωτίστως ὁ Βου καὶ ὁ Δι κατὰ δεύτερον δὲ λόγον ὁ Νη καὶ ὁ Ζω ($\frac{\chi}{\lambda}$).

Καταλήξεις τὸ είδος τοῦτο ποιεῖται, ἀτελεῖς μὲν εἰς τοὺς φθόγγους Βου, Πα καὶ Δι καὶ εἰς οἰονδήποτε ἄλλον, ἐντελεῖς εἰς τὸν Βου καὶ τελικὰς εἰς τὸν Βου.

Συνηχούντες φθόγγοι είς τὸν Λέγετον ὡς καλείται, ἥ τὸν Μέσον τοῦ Τετάρτου εἰσὶν οἱ ἐξῆς:

"Όταν ἐπικρατή ὁ Βου συνηχοῦσιν μετ' αὐτοῦ οί Νη, ή Ζω καὶ ὁ κάτω Δι.

Όταν ἐπικρατῆ ὁ Δι ἀναλόγως τῆς περιπτώσεως, συνηχοῦσιν ὁ Βου, ὁ Νη, ὁ Ζω καὶ ὁ κάτω Δι, τῶν ἐν τῆ ἀναπτύξει τῆς γραμμῆς παροδικῶν φθόγγων λαμβανόντων ἐν ἀντιστίξει συνηχοῦντας αὐτοὺς τοὺς μὴ ἀλλοιοῦντας τὴν μορφὴν τοῦ ῆχου σχετικοὺς φθόγγους π. χ.

Όταν τὸ μέλος ἀνέρχηται ὑπεράνω τοῦ $\frac{\Delta}{G}$, τότε συνηχοῦντες φθόγγοι δύνανται νὰ ἤναι ὅλοι οἱ ἐν τῷ κυρίως Τετάρτ ϕ (τῷ Παπαδι-

κφ δηλ.) ὑποδεικνυόμενοι. Σημειωτέον, ὅτι τὸ Εἰρμολογικόν τοῦ Λεγέτου μέλος, ὅταν ἐγγίζη τὸν τοῦ καὶ ἀμέσως κατέρχηται, ὁ Ζω ὑφίσταται Ελξιν διὰ ὑφέσεως, ὡς ἑξῆς:

1.
$$\frac{6}{2}$$
 $\frac{1}{2}$ \frac

Παρατήρησις: Ὁ Λέγετος ὅταν ἐργάζηται ἐντὸς τοῦ τετραχόρδου $\widehat{\beta} - \widehat{\gamma}$ τὸ ὁποῖον, ἀποτελούμενον ἐξ' ἑνὸς τόνου ἐλαχίστου καὶ δύο μειζόνων, εἶναι ὑπέρμετρον, ὑφίσταται εἰς τὸν Κε ἕλξιν μικρᾶς ὑφέσεως, διὰ τῆς ὁποίας ὁ $\Delta \iota - K$ ε ἀπό μείζονος μεταβάλλεται εἰς ἐλάσσονα, ὁ δὲ Kε - Zω, διὰ τῆς εἰς αὐτὸν προσθήκης τοῦ ἐκ τοῦ Kε ἀφαιρουμένου τμήματος, εἰς μείζονα τόνον. Ἐπειδὴ δὲ ὁ ῆχος οὐτος ἀνέρχεται καὶ μέχρι τῆς ἀντιφωνίας του, σχηματίζων τήν Κλίμακα $\widehat{\gamma} - \widehat{\gamma}$ ἀποτελουμένην ἐκ δύο τετραχόρδων ἀνομοίου σχήματος:

1.
$$\frac{6}{\varkappa}$$
 $\frac{\hat{\epsilon}\lambda\acute{\alpha}\chi}{\hat{\epsilon}\lambda\acute{\alpha}\chi}$. $\frac{1}{\hat{\gamma}\gamma}$ $\frac{1}{\mu\epsilon\acute{i}\zeta}$. $\frac{\Delta}{\ddot{\alpha}}$ $\frac{1}{\mu\epsilon\acute{i}\zeta}$. $\frac{\chi}{\ddot{\alpha}}$ $\frac{\hat{\epsilon}\lambda\acute{\alpha}\sigma}{\dot{\alpha}}$. $\frac{\chi}{\ddot{\alpha}}$ $\frac{\hat{\epsilon}\lambda\acute{\alpha}\sigma}{\dot{\alpha}}$. $\frac{\chi}{\ddot{\alpha}}$

ή ἐπὶ τοῦ Κε ὕφεσις ἐπανορθοῦσα τὴν ἀνωμαλίαν ταύτην, ῆν δὲν ἀνέχεται ἡ φύσις, ἐπιφέρει τὴν ἰσορροπίαν τῶν δύο τετραχόρδων καὶ σχηματίζει ὀρθὴν κλίμακα ἐκ δύο όμοίων τετραχόρδων, διὰ μείζονος τόνου διαζευγμένων.

Παράδειγμα, καθ' ὅ ὁ Λέγετος, διατρέχων τὴν κλίμακα ταύτην, ἀνέρχεται μέχρι τῆς ἀντιφωνίας του:

Ήχος Πλάγιος τοῦ Τετάρτου

Ο Πλάγιος τοῦ Τετάρτου ήχος κλίμακά του ἔχει τὴν τετάρτην φυσικὴν διατονικὴν Διαπασῶν $\widehat{N\eta} - \widehat{N\eta}$, ής αἱ ἑπτὰ συμφωνίαι, σύμφωνοι καὶ διάφωνοι, ἀναφέρονται ἐν τῆ 52 σελίδι.

Ο Ήχος οδτος ἀκολουθεῖ δύο συστήματα, τὸ Διαπασῶν καὶ τὴν Τριφωνίαν. Καὶ ὅταν μὲν ὁδεύη κατὰ τὸ Διαπασῶν, ὑπερισχύει ἡ διὰ πέντε συμφωνία $\stackrel{\mathsf{Y}}{\bigcap} \stackrel{\Delta}{\bigcap}$, ὅταν δὲ κατὰ τὴν Τριφωνίαν, ἡ διὰ τεσσάρων

Οὕτως ἡ Κλτμαξ $\sqrt{-\frac{y}{12}}$ κατά μέν τὸ Διαπασών ἔχει ὑποκειμένην τὴν διὰ πέντε καὶ ὑπερκειμένην τὴν διὰ τεσσάρων.

κατά δὲ τὴν τριφωνίαν ἔχει ὑποκειμένην τὴν διὰ τεσσάρων καὶ ὑπερκειμένην τὴν διὰ πέντε

Είς τὸ Στιχηραρικόν του είδος, άργὸν καὶ σύντομόν, ὁ Πλάγιος

τοῦ Τετάρτου δεσπόζοντας φθόγγους ἔχει τοὺς Νη, Βου καὶ Δι καὶ ὡς ἐκ τῶν συμφωνιῶν, αἴτινες προκύπτουσιν ἐξ αὐτῶν, τῆς διὰ τριῶν δηλονότι $\overbrace{\overset{\checkmark}{O_i}}{\overset{\checkmark}{O_i}}$ καὶ τῆς διὰ πέντε $\overbrace{\overset{\checkmark}{O_i}}{\overset{\checkmark}{O_i}}$, εἶναι δίφωνος καὶ τετράφωνος, ἀναλόγως τῆς μιᾶς ἥ τῆς ἄλλης.

Καταλήξεις εἰς τὸ εἴδος τοῦτο ποιεῖται, ἀτελεῖς μὲν εἰς τοὺς φθόγγους Βου καὶ Δι καὶ εἰς οἰονδήποτε ἄλλον φθόγγον ζητεῖ ἡ ἔννοια τοῦ κειμένου, ἐντελεῖς δὲ καὶ τελικὰς εἰς τὸν Νη.

Όπως εἰς τὸν Κύριόν του ἡχον, τὸν Τέταρτον, οὕτω καὶ εἰς αὐτὸν ὁ νόμος τῆς ἔλξεως ἐπιδρῷ ἐπὶ τῶν τόνων $\overset{\pi}{q}$ καὶ $\overset{\times}{q}$, ἐλκομένων τοῦ $\overset{\pi}{q}$ ὑπὸ τοῦ $\overset{6}{\chi}$ τοῦ δὲ $\overset{\times}{q}$ ὑπὸ τοῦ $\overset{\times}{\chi}$ διὰ διέσεως οὐχὶ πάντοτε τοῦ αὐτοῦ ΰψους, ἀλλά, συμφώνως πρὸς εἰδικὰς περιπτώσεις, ἄλλοτε μικροτέρας καὶ ἄλλοτε μεγαλυτέρας, π . χ .

Διά τὸν Πα:

Διὰ τὸν Κε:

Είς τὸ Είρμολογικόν του είδος, άργὸν καὶ σύντομον δεσπόζοντας φθόγγους ἔχει τοὺς Νη, Δι καὶ Βου. Ἐπειδὴ δὲ ὑπερισχύει εἰς αὐτὸ ἡ διὰ πέντε συμφωνία, είναι τετράφωνος, ποιούμενος καταλήξεις, ἀτε-

λεῖς μὲν εἰς τοὺς Δι καὶ Βου, ἐντελεῖς δὲ καὶ τελικὰς εἰς τὸν Νη.

Τοταν όδεύη κατὰ τριφωνίαν, τότε δεσπόζοντας φθόγγους ἔχει τοὺς Νη καὶ Γα, ποιούμενος καταλήξεις ἀτελεῖς μὲν εἰς τοὺς φθόγγους χ΄ (ὡς χ΄) χ΄ (ὡς χ΄) εἰς τὸν χ΄ (ὡς χ΄) εἰς τὸν $\overset{\checkmark}{\alpha}$ (ὡς $\overset{\checkmark}{\alpha}$) καὶ εἰς οἰονδήποτε ἄλλον, ἐντελεῖς εἰς τὸν $\overset{\checkmark}{\alpha}$ (ὡς $\overset{\checkmark}{\alpha}$) καὶ τελικὰς εἰς τὸν $\overset{\checkmark}{\alpha}$.

Είς τὸ κατά τετραφωνίαν μέλος ἐνίοτε ποιεῖται τελικὰς καταλήξεις καὶ εἰς τὸν Βου, ὅταν ἔπηται ὅμως ἔτερον μέλος, διὰ τὸν τόνον τῆς τελευταίας συλλαβῆς τοῦ κειμένου π. χ.

1.
$$\frac{\Delta}{\beta}$$
 To o vo $\frac{\Delta}{\beta}$ To $\frac{\Delta}{\beta}$ To o vo $\frac{\Delta}{\beta}$ To $\frac{\Delta}{\beta}$ To o vo $\frac{\Delta}{\beta}$ To $\frac{\Delta}{\beta}$ To $\frac{\Delta}{\beta}$ To o vo $\frac{\Delta}{\beta}$ To $\frac{\Delta}{\beta$

Ή ἀρχικὴ μαρτυρία τοῦ ἤχου τούτου εἶναι δι' ὅλα τὰ εἴδη τῶν μελῶν του αὕτη: Ἡχος λ ἢ Νη, κατὰ τὸ σύστημα τῆς τριφωνίας προτιθεμένης καὶ τῆς τριφωνίας: —. Ε.

'Αλλ' ὅταν προψάλλωνται στίχοι μετὰ τὸ «Κύριε ἐκέκραξα», τὰ 'Απόστιχα καὶ τοὺς Αἴνους, τότε, ὅταν μὲν ἤναι δίφωνος, προτάσσεται ἡ μαρτυρία Νη μετὰ μιᾶς διφωνίας οὕτω: ΄΄ , ὅτε ὁ προψαλλόμενος στίχος ὀφείλει νὰ καταλήξη εἰς τὸν Βου π. χ.

Όταν τὸ μέλος ἤναι τετράφωνον, τότε ὁ προψαλλόμενος στίχος ἀρχόμενος ἐκ τοῦ Νη δεικνύει ἀμέσως τὴν τετραφωνίαν Δ ι καὶ καταλήγει εἰς τὸν Νη π . χ.

$$\lambda$$
 λ
 λ

'Ωσαύτως, δταν προτάσσηται στιχηρῶν ἥ τροπαρίων Κανόνων τὸ «Δόξα Πατρί» ἡ κατάληξις αὐτοῦ γίνεται ἐπὶ τοῦ Δι, τοῦ «Καὶ νῦν» καταλήγοντος εἰς τὸν Νη π. χ.

1.
$$\frac{1}{\delta} \Delta o \quad \delta \quad \xi \alpha \quad \Pi \alpha \quad \tau \rho \iota \quad \kappa \alpha \iota \quad \upsilon \iota \quad \omega \quad \omega \quad \kappa \alpha \iota \quad \alpha \quad \gamma \iota$$

$$\omega \quad \Pi \nu \epsilon \upsilon \quad \mu \alpha \quad \tau \iota$$

$$o \quad \theta \alpha \quad \nu \alpha \quad \tau \circ \varsigma \quad \sigma \circ \upsilon \quad K \upsilon \quad \rho \iota \quad \epsilon$$
2.
$$\chi \quad K \alpha \iota \quad \nu \upsilon \upsilon \quad \kappa \alpha \iota \quad \alpha \quad \epsilon \iota \quad \kappa \alpha \iota \quad \epsilon \iota \varsigma \quad \tau \circ \upsilon \varsigma \quad \alpha \iota$$

$$\nu \alpha \varsigma \tau \omega \upsilon \quad \alpha \iota \quad \omega \quad \upsilon \omega \upsilon \quad \alpha \quad \mu \eta \upsilon$$

"Όταν τὸ μέλος βαδίζη κατὰ τριφωνίαν πάντα τὰ προψαλλόμενα καταλήγουσιν εἰς τὸν Τ΄ ὡς Τ΄.

Όταν μετα τὸν κατὰ τετραφωνίαν προψαλλόμενον στίχον τὸ ἀμέσως τροπάριον ἥ στιχηρὸν καταλήγει ἄμα τῇ ἐνάρξει του εἰς τὸν Νη, τότε ὁ προψαλλόμενος στίχος καταλήγει εἰς τὸν Δι π. χ.

Τὸ αὐτὸ ἐνίοτε γίνεται καὶ εἰς μέλη κατὰ τριφωνίαν ψαλλόμενα, ὅπως λ. χ.

$$\Delta$$
Α γι ε του Θε ου πρε σβευ ε υ περ η μων $\ddot{\beta}$
Συ λ ι θον θε με λ ι ον κ λ π.

Είς τὸ Παπαδικόν του μέλος ὁ Πλάγιος τοῦ Τετάρτου δεσπόζοντας φθόγγους ἔχει τοὺς Νη, Βου καὶ Δι, καταλήξεις δὲ ποιεῖται ἀτελεῖς εἰς τοὺς Βου, Δι καὶ δπου ἀλλαχοῦ ζητεῖ τὸ μέλος, ἐντελεῖς εἰς

τὸν Νη καὶ τελικάς, εἴτε ἄν ἀκολουθῆ ἔτερον μέλος, εἴτε ἄν καταλήγη πρὸς παῦσιν εἰς τὸν Νη.

Αί δεσπόζουσαι συγχορδίαι είς τὸν ήχον τοῦτον είναι ή διὰ τρι-

Ή άρμονική συνήχησις εἰς τὸν Πλάγιον Τετάρτου εἰναι φύσει ποικιλωτέρα, ὡς ἐκ τῆς ἐπικρατήσεως ὅλων τῶν συμφωνιῶν τῆς τετάρτης φυσικῆς διατονικῆς κλίμακος. Οὕτως: Συμφώνως πρὸς τὸν θεμελιώδη καὶ ἀπαράβατον κανόνα, καθ' ὄν ἡ συνήχησις οὐδέποτε καὶ οὐδὲ κατὰ ἔνα ποτὲ φθόγγον ὑπέρκειται τῆς κυρίως μελφδικῆς γραμμῆς. Όταν ἐπικρατῆ ὁ Νη τῆς Μέσης () συνηχοῦσιν ὁ κάτω ος ἡ ὁ q

"Όταν ἐπικρατή ὁ Βου, τότε συνηχοῦσι κατὰ τὰς περιστάσεις ὁ Νη, ὁ Ζω καὶ ὁ κάτω Δι, ἐνίοτε δὲ καὶ ὁ κάτω Κε π. χ.

Όταν ἐπικρατῆ ὁ Δι, τότε συνηχοῦντες φθόγγοι δύνανται νὰ ἡναι ὁ Βου ὁ Νη, ὁ κάτω Ζω καὶ ὁ κάτω Δι π. χ.

μεθ' δλων τῶν παρεκβάσεων διὰ τοὺς διαμέσους φθόγγους κατὰ τοὺς κανόνας τῆς ἐμῆς ἀντιστίξεως.

Όταν τὸ μέλος ἐργάζηται ἐν τῇ ἑπταφωνία τοῦ ἥχου $\binom{\mathbf{v}'}{\mathbf{q}'}$, τότε συνηχοῦντες φθόγγοι, δυνάμει τῶν ἰσχυουσῶν συμφωνιῶν δύνανται νὰ ਜριαι κυρίως ὁ Δι $\binom{\Delta}{\mathbf{q}'}$ καὶ κατὰ δεύτερον λόγον ὁ κάτω Νη $\binom{\mathbf{v}}{\mathbf{q}'}$) καὶ δ Βου $\binom{\delta}{\mathbf{q}'}$ π. χ.

፠

δτε ή δευτέρα συνηχητική γραμμή ἀκολουθεῖ τὴν γραμμὴν τοῦ μέλους μίαν έπταφωνίαν κάτω π. χ.

Όταν τὸ μέλος ὑπερβαίνη τὴν ἑπταφωνίαν $({\stackrel{\mathsf{v}'}{\gamma\gamma}})$, τότε συνηχοῦσιν οί φθόγγοι $\frac{\sqrt{}}{2}$ καὶ $\frac{\sqrt{}}{2}$ καὶ κατὰ δεύτερον λόγον δ $\frac{\Delta}{12}$ ή καὶ δ $\frac{\delta}{2}$, **ὅπως καὶ ὄσοι δύνανται νὰ συνηχῶσι μετὰ τῶν διαμέσων φθόγων π. χ.**

Έν κεφαλαίω είς τὸν Πλάγιον τοῦ Τετάρτου οἱ συνηχοῦντες φθόγγοι ἀκολουθοῦσι τοὺς κανόνας τῆς ἀντιστίξεως δι' ἔνα ἕκαστον τῶν φθόγγων τῆς κυρίως μελφδίας χωρὶς οὐδὲ σκιὰ ξένου πρὸς αὐτὸν ήχου νὰ ἐπεισάγηται, ὅπως συμβαίνει κατὰ τὴν εὐρωπαϊκὴν ἐναρμόνησιν μελών έλληνικών, όπου έκάστη τών τεσσάρων φωνών άκολουθεί κατά τούς νόμους τῆς ἡμετέρας μουσικής καὶ ἔνα διάφορον ἡχον.

Δύνανται δηλονότι νὰ ἀκούωνται ἐν τῷ μεταξὺ καὶ οἱ φθόγγοι τῶν διαφώνων συμφωνιῶν, ἀλλ' ἐν πλήρει ἁρμονία πρὸς τὸν ἦχον μὴ έπιτρεπομένης άλλοιώσεως αύτοῦ διὰ τῆς συγχύσεως γραμμῶν ἄλλου ήχου π. χ.

า ้า	Å	า [ั] ก		
ያ ያ	ä	ä		
ۇ ك	<u> </u>	۶ گ		
Å	ሏ	ሉ	Å	ሏ
			δ	เ. 33 * a
			ー み 6	ı, JJ

Ο Πλάγιος του Τετάρτου βαίνει και κατά τὸ χρωματικὸν Γένος, ἄλλοτε ὡς ἡχος Δεύτερος και ἄλλοτε ὡς Πλάγιος του Δευτέρου.

Έν τη Ἐκκλησιαστική μουσική οὕτε ὡς Δεύτερος οὕτε ὡς Πλάγιος τοῦ Δευτέρου εἶναι αὐτοτελής, χρωματιζόμενος παροδικῶς διὰ τῶν φθορῶν ἀμφοτέρων τῶν χρωματικῶν ἡχων, ἐπανερχόμενος δὲ εἰς τὸν διατονικὸν π. χ.

'Ως Δεύτερος:

'Ως Πλάγιος τοῦ Δευτέρου:

'Αλλ' εἰς τὴν Δημώδη Μουσικὴν ὡς Πλάγιος Δευτέρου εἶναι ἦχος αὐτοτελής, ἰδίως εἰς τὰ καλούμενα «Κλέφτικα ἄσματα» ("Ιδὲ μέρος τέταρτον σελὶς 190).

Τὰ τῆς συνηχήσεως τῶν χρωματιζομένων μελῶν ἴδε εἰς τὸν Δεύτερον καὶ Πλάγιον τοῦ Δευτέρου.

Β΄ ΟΙ ΔΥΟ ΕΝΑΡΜΟΝΙΟΙ

Τρίτος - Βαρύς

Ήχος Τρίτος

'Ο Τρίτος ήχος είναι ὁ είς ἐκ τῶν δύο ἐναρμονίων ἤχων. Έχει βάσιν τὸν φθόγγον Γα τῆς διατονικῆς κλίμακος, ἥν καὶ ἀκολουθεῖ μετ' ἰδιαιτέρων χαρακτηριστικῶν ἀλλοιώσεων ὡρισμένων φθόγγων αὐτῆς.

Δεσπόζοντας φθόγγους ἔχει εἰς τε τὸ Στιχηραρικὸν καὶ τὸ Είρμολογικὸν αὐτοῦ είδος τοὺς φθόγγους Γα, Πα, καὶ Κε.

Καταλήξεις ποιείται, ἀτελεῖς μὲν εἰς τὸν Κε καὶ ὅπου ἀλλαχοῦ ζητεῖ ἡ διασκευὴ τῶν μελῶν του, ἐντελεῖς εἰς τοὺς Πα, Νη καὶ Ζω, διατονικὸν καὶ ἐναρμόνιον, τελικὰς δὲ εἰς τὸν Γα.

Τὸ κυρίως ἐναρμόνιον τοῦ Τρίτου ἥχου συνίσταται εἰς ὕφεσιν, ἥν ὑφίσταται ὁ Zω διὰ τῆς ἐναρμονίου φθορᾶς \wp , μεταβάλλοντος αὐτὸν ἀπὸ τόνον ἐλάσσονος εἰς ἡμιτόνιον, τοῦ τετραχόρδου $\overbrace{\Gamma α - Z}ω$ συσυνισταμένου ἐκ δύο μειζόνων τόνων καὶ ἡμιτονίου.

καί συμπίπτοντος πρός τὸ τοῦ ἀρχαίου Λυδίου Τρόπον.

'Ο Τρίτος ήχος, φέρων τὰ χαρακτηριστικὰ τοῦ Πυθαγορείου διαγράμματος, ἐφ' ὅσον περιστρέφεται ἐντὸς τοῦ ἄνωθι τετραχόρδου, ἀκούεται ὡς καθαρῶς ἐναρμόνιος, καθόσον ὁ πρὸς τὸ ὀξὺ ἄκρος αὐτοῦ φθόγγος Ζω ἐναρμονίζεται διὰ τῆς φθορᾶς τοῦ ⅂α⅂α (ᢞ), ἥτις, ἀνήκουσα εἰς τὸν Γα ὡς φύσει ἐναρμόνιον, ἐπὶ τοῦ Ζω ἐνεργεῖ ὡς σημεῖον ὑφέσεως, μεταβαλλομένου τούτου ἀπὸ ἐλάσσονος εἰς ἡμιτόνιον. 'Αλλ' ὅταν ἐξέρχηται τοῦ τετραχόρδου του, εἴτε κάτω τοῦ Γα, εἴτε ὑπεράνω τοῦ Ζω, τότε ἀλλάσσει τελείως μορφήν, ἐργαζόμενος διατονικῶς εἴτε ὡς Πρῶτος, εἴτε ὡς Πλάγιος Πρώτου.

Οὕτως · ὅταν τὸ μέλος περιστρέφηται περὶ τὸν Γα, ὁ ὑπ' αὐτὸν Βου είναι πάντοτε δίεσις καθ' ἔλξιν π. χ.

Όταν κατέρχηται πρὸς τὸν Πα, ποιούμενος κατάληξιν ἐντελῆ, λαμβάνει ἡθος Πρώτου ἥχου μὲ μικρὰν δίεσιν τοῦ Βου κατὰ τὴν κάθοδον π. χ.

"Όταν δὲ ἀναπτύσσεται εἰς γραμμήν, κυριαρχοῦντος τοῦ Πα, τότε εἰναι καθαρῶς Πρῶτος, τοῦ τελευταίου πρὸς τὸν Γα φθόγγου Βου οὐδεμίαν δεχομένου δίεσιν π. χ.

Όταν κατέρχηται μέχρι του Νη πρὸς ἐντελῆ κατάληξιν είναι ὡσαύτως καθαρῶς διατονικὸς μὲ φυσικὸν τὸν Βου π. γ.

Κατέρχεται ώσαύτως μέχρι τοῦ Ζω, ἄλλοτε διατονικῶς κατὰ τὸ Διαπασῶν π. χ.

καὶ ἄλλοτε ἐναρμονίως (κατὰ τὸν Τροχόν) π. χ.

Όταν ἐξέρχηται τοῦ τετραχόρδου του πρὸς τὸ ὀξύ, ἀνερχόμενος μέχρι τοῦ Νη καὶ καταλήγων εἰς τὸν Κε, ἔχει τὸν Ζω κατὰ μὲν τὴν ἀνάβασιν διατονικόν, κατὰ δὲ τὴν κατάβασιν ἐναρμόνιον π. χ.

καὶ ἄλλοτε διατονικῶς ὅταν ἡ γραμμὴ διατρέχη τὸν κύκλον τοῦ τετραχόρδου $\stackrel{\leftarrow}{x} \stackrel{\pi'}{=} \pi'$ π. χ.

Οὕτως · κατερχόμενος μέχρι τοῦ ἐναρμονίου $\frac{\chi}{2\eta}$, ἀνερχόμενος μέχρι τοῦ ἄνω $\frac{\pi}{q}$ καὶ ἐγγίζων τὸν ἄνω $\frac{\delta}{\chi}$ ὡς $\frac{\delta}{q}$ κατὰ τὸν Τροχόν, ἀλλάσσει ἡθος, ἀκουόμενος — ὡς ἐλέχθη — ἑκάστοτε ὡς καθαρῶς Τρίτος, ἡ ὡς Πλάγιος τοῦ Πρώτου.

Οἱ αὐτοὶ κανόνες ἰσχύουσι καὶ διὰ τὸ σύντομον Εἰρμολογικόν του μέλος, μὲ τὰ καθορισθέντα ἰδιώματα.

Είς τὸ Παπαδικόν του είδος ὁ Τρίτος βαίνει κατὰ τὸ σύστημα τῆς τριφωνίας, ἀλλὰ μὲ γνωριστικὰς γραμμάς, διαφερούσας τῶν τοῦ

Πλαγίου Τετάρτου, μὲ μαρτυρίαν ήχου ταύτην Γα καὶ μὲ δλας τὰς λεπτομερείας, αἵτινες ἐξετέθησαν εἰς τὸ περὶ Τριφωνίας ἐν τῷ Πλαγίῳ τοῦ Τετάρτου.

Εἰς τὸν Τρίτον Ἡχον αἱ ἐπικρατοῦσαι συμφωνίαι εἰσίν: Ἡ διὰ τεσσάρων $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ διὰ τριῶν $\frac{1}{1}$ $\frac{1}{1}$ καὶ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ καὶ $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Όταν τὸ μέλος, περιστρεφόμενον περὶ τὸν Γ α, κατέρχηται μέχρι τοῦ $\frac{\pi}{q}$, τοῦ $\frac{\sqrt{3}}{\sqrt{3}}$, τότε ἀντίστοιχοι συνηχοῦντες φθόγγοι είναι διὰ μὲν τὴν μέχρι τοῦ $\frac{\pi}{q}$ κατὰληξιν ὁ Π α, διὰ τὴν μέχρι τοῦ $\frac{\sqrt{3}}{\sqrt{3}}$ οἱ Π α καὶ \mathbf{Z} ω π. χ.

1.
$$(\frac{r}{2\eta} - \frac{\pi}{q})$$

$$\frac{\pi}{2\eta} = \frac{\pi}{K\nu} \quad \nu \quad \rho_1 \quad i \quad \epsilon \quad \epsilon \quad \pi_q = \epsilon$$

$$\frac{\pi}{2} = \frac{\pi}{2} =$$

τῶν διαμέσων φθόγγων λαμβανόντων ώσαύτως ἀντιστοίχους συνηχούντας, ἀναλόγως τῆς φύσεως ἐκάστου τούτων, χωρὶς οὐδὲ σκιὰ ξένου ἤτου νὰ ὑπεισάγηται.

Όταν τὸ μέλος ἀνέρχηται ἀπὸ τοῦ $\frac{1}{2}$ πρὸς τὸν Κε, Ζω, Νη καὶ Πα, τότε συνηχοῦντες φθόγγοι, διὰ τὸν \tilde{q} εἶναι ὁ $\overset{\sim}{\eta}$ καὶ ὁ $\overset{\sim}{\eta}$. Διὰ τὸν $\overset{\sim}{\eta}$ ό $\overset{\sim}{\eta}$ καὶ ὁ $\overset{\sim}{\eta}$, $\overset{\sim}{\eta}$ ὁ $\overset{\sim}{\eta}$ καὶ ὁ $\overset{\sim}{\eta}$, $\overset{\sim}{\eta}$ ο $\overset{\sim}{\eta}$ καὶ ὁ $\overset{\sim}{\eta}$, $\overset{\sim}{\eta}$ ο $\overset{\sim}{\eta}$ καὶ ό $\overset{\sim}{\eta}$ καὶ $\overset{\sim}{\eta}$ $\overset{\sim}{\eta}$ καὶ κάτω $\overset{\sim}{\eta}$ $\overset{\sim}{\eta}$ $\overset{\sim}{\eta}$ καὶ κάτω $\overset{\sim}{\eta}$

را د

ر ر

'n

J.J

3,J

ሗ

1.
$$\left(\begin{array}{c} \Gamma \\ \gamma \gamma \end{array} \right) \stackrel{\times}{=} \left(\begin{array}{c} \chi \\ \ddot{q} \end{array} \right)$$

$$(\gamma_1^r \longrightarrow \gamma_1^r)$$

$$\left(\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array}\right) = \left(\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array}\right)$$

$$\frac{11}{10}$$
 $\frac{1}{10}$ $\frac{1}{10}$

Ήχος Βαρύς

1. ENAPMONIOS

'Ο ἔτερος τῶν ἐναρμονίων ἤχων ειναι διττός. Ἐναρμόνιος εἰς τὰ Στιχηραρικὰ καὶ Εἰρμολογικά του μέλη, διατονικὸς δὲ εἰς τὰ Παπαδικά του.

Καλεῖται Βαρύς, διότι βάσιμον φθόγγον ἔχει τὸν βαρύτερον τῆς Διαπασῶν, ἐκ τοῦ ὁποίου παράγεται ἤχος, κάτω δὲ τοῦ ὁποίου οὐδεὶς ἄλλος ὑπάρχει ἤχος, μὲ βάσιν τουτέστι τοὺς τῆς Ὑπάτης φθόγγους ϒ καὶ $\frac{1}{\Delta}$. Ἦν δὲ ὑπάρχωσι κλάδοι τινὲς ἤχων, ἔχοντες βαρεῖς ἀντιφώνους τοὺς δύο τούτους φθόγγους, ὅπως καὶ τὸν ἐναρμόνιον $\frac{1}{2}$, οἱ κλάδοι οὐτοι ἀνήκουσιν εἰς τὴν τάξιν τῶν ἑπταφώνων ἤχων — οἱ διὰ τῆς ὑπὲρ (Ὑπερδώριος κλπ.) τῶν ἀρχαίων —, οἶτινες ἀρχόμενοι ἐκ τῶν ἄνω πρὸς τὸν τῆς κάτω ὀγδόης φθόγγον π. χ.

Έκ τοῦ τ Δοξολ. Π. Βυζαντίου χ Δο ξα α σοι οι τω ω δει ξα αν τι το ο φως α και ε πι γης ει ρη η η νη η (Δοξολ. Π. Πελοποννησίου) Έκ τοῦ Δ΄ $\frac{1}{\varphi \omega \varsigma} \stackrel{\Delta}{\ddot{\eta}} \dots \kappa \alpha \iota \quad \epsilon \quad \pi \iota \quad \gamma \eta \varsigma \quad \epsilon \iota \quad \epsilon \iota \quad \epsilon \iota \quad \rho \eta \quad \eta \quad \eta$ री Έκ τοῦ 🔀 (Δοξολ. Χ. Χαρτοφύλακος) $\frac{z'}{27}$ $\frac{1}{2}$ $\frac{$ 20 Οἱ τρεῖς οὖτοι κλάδοι ἐν τῇ ἐξωτερικῇ μουσικῇ ἀποτελοῦσι πλή-

Οἱ τρεῖς οὐτοι κλάδοι ἐν τῇ ἐξωτερικῇ μουσικῇ ἀποτελούσι πλή-ρεις ἥχους μὲ τὰ ὀνόματα ᾿Ατζὲμ ᾿Ασιρὰν (ζ΄), Νουχιοὺφτ (q) καὶ Γεγκιὰχ, (ત).

Ό ήχος ούτος κατά τὸ ἐναρμόνιόν του είδος, ἔπρεπε νὰ καλήται πλάγιος τοῦ Τρίτου καὶ ὡς τοιοῦτος νὰ ἔχη βάσιν του τὸν ἐναρμόνιον ζ, ὅτε θὰ ἀπεῖχε τοῦ Κυρίου του Τρίτου κατὰ τετρατονίαν κατιοῦσαν, σχηματίζων κλίμακα ταύτην:

$$\overset{\circ}{\overset{\circ}{\mathcal{Z}}} - \overset{\circ}{\overset{\circ}{\mathsf{Y}}} - \overset{\pi}{\overset{\circ}{\mathsf{q}}} - \overset{\circ}{\overset{\circ}{\mathsf{q}}} - \overset{\circ}{\mathsf{q}} - \overset{\circ}$$

ἐκ δύο τετραχόρδων όμοίου σχήματος, διαζευγμένων διὰ τοῦ μείζονος τόνου. $\frac{6^{-5}}{22}$ $\frac{1}{22}$

'Αλλ' ὡς βασιζόμενος ἐπὶ τόσον βαρείας βάσεως, δὲν ἡτο δυνατὸν ν' ἀναπτύξη τὰ ἰδιώματά του καὶ διὰ τοῦτο μετετέθη ἡ βάσις κατὰ ἕν πεντάχορδον ὀξύτερον ὅπου ἡ βάσις τοῦ Κυρίου του, ἐξ οὖ καὶ ἡ κοινὴ βάσις ἀμφοτέρων, ὁ $\frac{1}{2}$.

Οὕτως· ὁ ἐναρμόνιος Βαρὺς δύναται νὰ ὀνομασθή Πλάγιος τοῦ Τρίτου, οὐχὶ ὅμως καὶ ὁ διατονικός. Διότι ἄν ἡτο Πλάγιος θὰ ἔπρεπε νὰ ἀπέχη τοῦ Κυρίου του κατὰ ἕν πλήρες πεντάχορδον, ἔχον μήκος χορδής ³/,. Ἐν ῷ τὸ πεντάχορδον τοῦ διατονικοῦ Βαρέως — τη ἀτελὲς ὄν, ἔχει μήκος χορδής ٤/4,, ἡ δὲ κλῖμαξ αὐτοῦ ἀποτελεῖται ἐκ δύο τετραχόρδων ἀνομοίου σχήματος, τῶν ὁποίων οὐδ' αὐτὸς ὁ πρῶτος δὲν εἶναι ὅμοιος, καθόσον τὸ πρῶτον τετράχορδον ἄρχεται ἐκ τόνου ἐλαχίστου, ἀκολουθούντων ἑνὸς μείζονος καὶ ἑνὸς ἐλάσσονος, τὸ δὲ δεύτερον ἄρχεται ἐκ τόνου μείζονος, ἀκολουθούντων ἑνὸς μείζονος καὶ ἐτέρου ἐλάσσονος. ᾿Αλλως μεταξὺ Κυρίων καὶ Πλαγίων πρέπει νὰ ὑπάρχη ὁμοιότης οὐ μόνον ὡς πρὸς τὸ σχήμα τῆς Διαπασῶν, ἀλλὰ καὶ πρὸς τὸ τετράχορδον, τὸ τρίχορδον καὶ πρὸς αὐτὸν ἔτι τὸν πρῶτον τόνον.

'Απόδειξις τούτου οἱ τέσσαρες διατονικοὶ ἤχοι, δι' οὕς, ὡς ἐλέχθη, ἰσχύει ὁ κανὼν τῆς ἀποχῆς τοῦ Κυρίου ἀπὸ τοῦ Πλαγίου κατὰ τετρατονίαν ὰνιοῦσαν καὶ ἀντιστρόφως τοῦ Πλαγίου ἀπὸ τοῦ Κυρίου κατὰ τετρατονίαν κατιοῦσαν, τῶν ὁποίων δὲ τὰ τετράχορδα καὶ λοιπὰ εἰσὶν ὅμοια, ὅπως τοῦ Πρώτου τοῦ Τρώτου τοῦ Τρώτου τοῦ Πλαγίου Τετάρτου $\frac{\Delta}{q}$ τοῦ Τετάρτου $\frac{\Delta}{q}$ τοῦ $\frac{Z}{q}$ τοῦ Τοῦ Πλαγίου Τετάρτου $\frac{\Delta}{q}$ τοῦ $\frac{Z}{q}$ τοῦ Τοῦ Πλαγίου Τετάρτου $\frac{\Delta}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ Τετάρτου $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ Τετάρτου $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦς τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦ $\frac{Z}{q}$ τοῦς \frac

Τὸν λόγον, δι' ὄν ὁ ἐναρμόνιος Βαρὺς μετετέθη ἐπὶ τῆς βάσεως τοῦ Κυρίου του εὖρον καί εἰς τὸν ὑπ' ἀριθ. 317 κώδικα τῆς ἐν "Αθφ Μονῆς Ξηροποτάμου, ὅπου ἀνωνύμως μεταξὺ ἄλλων γράφονται τὰ ἑ-ξῆς: «'Ορῶ δὲ καὶ ἐν τῷ Βαρεῖ ξένον τι καὶ τοῖς ἄλλοις ἀνόμοιον. "Ο-

πως, πλάγιος ὤν, εἰς ἀνιοῦσαν λήγει φωνήν, ὅπες — κατὰ τοῦ εἰπόντα οὐδέποτε εὐρήσεις κύριον εἰς κατιοῦσαν, οὐδὲ πλάγιον εἰς ἀνιοῦσαν — ἄτοπον....... Δοκεῖ δέ μοι, ὅτι στενοχωρημένος ὤν ὁ Βαρὺς παρὰ τοῖς ἐτέροις πλαγίοις καὶ μὴ ἔχων πλάτος πρὸς οἰκείαν ἔνδειξιν, ἐξ ἀνάγκης ἔληξεν εἰς ἀνιοῦσαν, τὸν αὐτοῦ κύριον μιμούμενος ἤ μᾶλλον ἐξομοιούμενος ἀπό τε παραλλαγῆς καὶ ἀπὸ μέλους».

Τὸν φθόγγον λοιπὸν Γα ἔχων βάσιν του ὁ ἐναρμόνιος Βαρὺς εἰς τὸ Στιχηραρικὸν καὶ Εἰρμολογικόν του μέλος, ἐργάζεται ἐντὸς τοῦ ἐναρμονισμένου τετραχόρδου $\frac{1}{12}$, ὅπως καὶ ὁ Τρίτος, καθ' ἄλλα ὅμως ἰδιώματα, ἐπεκτεινόμενος πρὸς τε τὸ ὀξὺ καὶ ὀξὺ καὶ πρὸς τὸ βαρύ.

Δεσπόζοντας φθόγγους εἰς τὰ σύντομα στιχηραρικὰ καὶ εἰρμολογικά του μέλη ἔχει τοὺς φθόγγους Γα, Ζω, Δι καὶ Πα.

Καταλήξεις δὲ ποιεῖται ἀτελεῖς μὲν εἰς τὸν $\overset{\Delta}{q}$ καὶ εἰς τὸν $\overset{\pi}{q}$, ἐντελεῖς δὲ καὶ τελικὰς εἰς τὸν $\overset{\Gamma}{q}$.

Είς τὸ ἀργὸν στιχηραρικόν του είδος δεσπόζοντας φθόγγους ἔχει τοὺς Γα, Δι, Κε, Ζω καὶ Πα.

Καταλήξεις δὲ ποιεῖται ἀτελεῖς εἰς τοὺς φθόγγους χ, εἰς τὸν ἄ-νω $\frac{v}{\eta}$ κατὰ τὸν Τροχὸν καὶ ὅπου ἀλλαχοῦ ζητεῖ ἡ μεταξὺ ἐναρμονίου καὶ διατονικοῦ γένους κυμαινομένη πορεία του. Ἐντελεῖς εἰς τοὺς $\frac{v}{\eta}$, χ καὶ $\frac{\pi}{\eta}$ καὶ τελικὰς εἰς τὸν $\frac{v}{\eta}$.

Εἰς τὸν Βαρὺν τὰ ἐναρμόνια διαστήματα $\frac{\chi}{q} - \frac{\chi}{2}$ καὶ $\frac{\zeta}{2} - \frac{\delta}{2}$ εἶναι πυκνότερα τῶν τοῦ Τρίτου ήχου. Διότι ὅταν ἐργάζηται ἐντὸς τοῦ τετραχόρδου $\frac{\zeta}{2}$ ὁ $\frac{\chi}{2}$ ὁ δεσπόζοντος τοῦ $\frac{\zeta}{2}$ ὑφίσταται ἔλξιν πρὸς τὸ βαρύ, ὁ δὲ $\frac{\chi}{q}$ ἔλξιν πρὸς τὸ ὀξύ, ὅταν περιστρέφηται περὶ τὸν $\frac{\chi}{2}$, δεσπόζοντα ἐν τῆ γραμμῆ. Περιστρεφομένου δὲ τοῦ μέλους περὶ τὸν $\frac{\zeta}{2}$, ὁ ὑπ' αὐτὸν $\frac{\zeta}{2}$ εἶναι πάντοτε ὀξύτερος, ὑφιστάμενος ἕλξιν διὰ διέσεως μικρᾶς ἡ μεγάλης.

Έξερχόμενος τοῦ $\frac{\chi}{2\eta}$ καὶ φθάνων μέχρι τοῦ $\frac{\chi}{2\eta}$ ή τοῦ $\frac{\pi}{2}$ ἔχει πάντοτε τὸν Zω ἐναρμόνιον ἔν τε τῆ ἀναβάσει καὶ τῆ καταβάσει. Κατερχόμενος δὲ μέχρι τοῦ $\frac{\pi}{q}$ ἔχει τὸν $\frac{6}{2}$ ἐν διέσει εἰς θέσιν μείζονος τόνου.

Οὕτως· ὅταν τὸ μέλος περιστρέφηται περὶ τὸν Γα, ὁ Βου, ὡς ἐλέχθη, εἶναι πάντοτε καθ' ἕλξιν δίεσις μικρά ἤ μεγάλη π. χ.

 Oταν κατέρχηται μέχρι τοῦ $\frac{\pi}{q}$, δ Bou ἐν διέσει π. χ.

Όταν κατέρχηται μέχρι τοῦ ἐναρμονίου $\frac{\chi}{\sqrt{2}}$, ὁ Βου εἰναι πάντοτε ἐναρμόνιος, λαμβάνων τὴν ἐναρμόνιον φθορὰν $\frac{\chi}{\sqrt{2}}$: $\frac{\xi}{\sqrt{2}}$ $\frac{\pi}{\sqrt{2}}$ $\frac{\pi}{\sqrt{2}}$

Όταν ἀνέρχηται ἐκ τοῦ $\frac{\Gamma}{2}$ καὶ φθάνη μέχρι τοῦ ἄνω $\frac{2}{2}$ τότε οδτος είναι πάντοτε ἐναρμόνιος (χλιδανός) π. χ.

1.
$$\frac{1}{2} \frac{1}{2} \frac$$

2.
$$\begin{cases} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}$$

'Αλλ' είς τὸ ἀργὸν στιχηραρικὸν μέλος, ὅταν ἐξέρχηται τοῦ ἐ-

ναρμονίου τετραχόρδου $\eta = \frac{1}{2} \frac$

δτε συνήθως εν συνεχεία γίνεται κατάληξις έπὶ τοῦ $\frac{y'}{2}$, οδτως :

$$\frac{1}{\sigma} = \frac{1}{\sigma}$$

Πολλάκις τὸ μέλος φθάνει καὶ μέχρι τοῦ ἄνω $\overset{\Delta'}{\Box}$, κατὰ τὸν Τροχὸν πάντοτε π. χ.

Όταν πάλιν τὸ μέλος ἐκ τοῦ $\frac{\Gamma}{2}$ κατέρχηται εἰς τὸν $\frac{\pi}{q}$, εἶναι πάντοτε διατονικὸν π. χ.

Όταν ἀπὸ καταλήξεως εἰς τὸν χ΄ (εἰς τὸ ἀργὸν Στιχηραρικὸν ἢ εἰδος) λαμβάνη τὸν Βου ἡ ἀντιστρόφως ἐκ τοῦ Βου ἀνέρχηται εἰς τὸν Κε, ὁ Βου εἰναι πάντοτε ἐν διέσει:

Τοῦτο δὲ διότι τὸ τετράχορδον Βου — Κε είναι ὑπέρμετρον καὶ διὰ τῆς διέσεως ἀποκαθίσταται εἰς τὴν φυσικήν του θέσιν.

2. ΔΙΑΤΟΝΙΚΟΣ ΒΑΡΥΣ

Ο Διατονικὸς Βαρὺς καλεῖται οὕτω, διότι βάσιν αὐτοῦ, ὡς ἐλέχθη, ἔχει τὸν βαρύτερον τῆς Διαπασῶν φθόγγον ἐκ τοῦ ὁποίου παράγεται ἡχος, τὸν πρῶτον δηλ. τῆς μέσης $\overset{\raisebox{.4ex}{\begin{subarray}{c} \end{subarray}}$.

Είς τὸν Διατονικὸν Βαρὺν ἀνάγονται τὰ παπαδικά του μέλη, εἰς τὰ ὁποῖα παρατηροῦνται ἀνώμαλά τινα ἰδιώματα, ἄτινα ἀνάγονται εἰς τὰ μουσικὰ ἀπόρρητα, περὶ ὧν ἀμέσως κατωτέρω.

 $^{\circ}O$ ήχος οὐτος δεσπόζοντας φθόγγους ἔχει τὸν $Z\omega,$ τὸν Πα, τὸν $\Delta\iota$ καὶ τὸν ἄνω $Z\omega.$

Καταλήξεις δὲ ποιεῖται, ἀτελεῖς εἰς τὸν Πα, Γα καὶ Δι, ἐντελεῖς εἰς τὸν κάτω καὶ ἄνω Ζω, τελικὰς δὲ εἰς τὸν κάτω Ζω.

Όταν ἐκ τοῦ βασίμου φθόγγου Ζω δεικνύεται ὁ Γα, περὶ τοῦτον δὲ στρέφηται τὸ μέλος, τότε ὁ Γα εἶναι ὀξύτερος, ἀπὸ ἐλαχίστου τόνου λαμβάνων θέσιν μείζονος, διότι τὸ πεντάχορδον $\frac{z}{\sqrt{1}}$ εἶναι ἐλλιπές, ἡ δὲ φύσις δὲν ἀνέχεται τοῦτο. Συνεπῶς αὐξανομένου τοῦ Γα διὰ μικρᾶς διέσεως, ἡ διὰ πέντε συμφωνία $\frac{z}{\sqrt{1}}$ καθίσταται πλήρης καὶ τελεία π. χ.

$$\sum_{X_{\varepsilon}} X_{\varepsilon} = \sum_{\varepsilon} \sum_{\varepsilon$$

Καίτοι ή περὶ διαστημάτων θεωρία μου οὐδεμίαν ἀπολύτως ἔχει σχέσιν μὲ τὰ ἐν ταῖς Κρηπίσι καθιερωθέντα καὶ λεγόμενα τμήματα, ἐν τούτοις πρὸς εὐκολωτέραν κατανόησιν, ποιούμενος ἐνταῦθα ἐξαίρεσιν, τὴν διὰ τῆς διέσεως τοῦ Γα ἐπερχομένην ἀλλοίωσιν ἐν τῆ κλίμακι τοῦ βαρέως παριστῶ διὰ τῶν ἀναλόγων ἐκάστου τόνου τμημάτων — ὅπως καὶ ὁ ἀρμονικὸς Εὐκλείδης — ἀποδιδομένων κατὰ συνθήκην 12 εἰς τὸν μείζονα, 10 εἰς τὸν ἐλάσσονα καὶ 8 εἰς τὸν ἐλάχιστον τόνου.

Οὕτως τὸ πεντάχορδον, τὸ πλήρες, δέον νὰ ἔχη ἐν συνόλφ 42 τοιαῦτα τμήματα. Τὸ πεντάχορδον ὅμως

$$\sum_{k=0}^{\infty} \frac{8}{6} \chi_{k}^{k} \frac{12}{9} \chi_{k}^{m} \frac{10}{9} \chi_{k}^{m} \frac{8}{9} \chi_{k}^{m} = 38$$

περιέχον 38 είναι ἐλλιπὲς κατὰ 4 τμήματα, συμπληρούμενον διὰ τῆς ἐπὶ τοῦ Γα διέσεως, ἀναλογούσης πρὸς 4, ἀποκαθιστῷ τὴν ἀτελῆ διὰ πέντε συμφωνίαν εἰς τελείαν τοιαύτην

Καὶ οὐτωσί, κατὰ φυσικὴν ἐπήρειαν, ἐπέρχεται ἀποκατάστασις τῶν τετραχόρδων τῆς κλίμακος, καθισταμένων διὰ τῆς διέσεως τοῦ Γα ὁμοίων καὶ διαζευγμένων διὰ μείζονος τόνου, καθ' δν τρόπον καὶ ἡ κλῖμαξ τοῦ Λεγέτου ἀποκαθίσταται, ὡς εἶδομεν, διὰ τῆς ἐπὶ τοῦ Κε μικρᾶς ὑφέσεως.

'Αλλ' δταν, ἐπικρατοῦντος τοῦ Πα, τὸ μέλος ἀνέρχηται εἰς τὸν Γα καὶ περὶ τοῦτο ἐνδιατρίβη, τότε ὁ Γα εἶναι φυσικὸς π. χ.

Εἰς τόν διατονικόν Βαρὺν ἐνίοτε ἐπεισάγεται ἐναρμόνιος, ἐκ τοῦ $\frac{1}{20}$ πρὸς τὸν $\frac{1}{20}$.

Όταν ή ἐπεισαγωγή αὕτη γίνεται ἐκ τοῦ φυσικοῦ Γα, ὑπερισχύοντος, ὡς Ἰσου, τοῦ Πα, τότε ὁ Ζω εἰναι χλιδανὸς ήλαττωμένος δηλ. κατὶ ὕφεσιν π. χ.

"Όταν δὲ ἡ ἐπεισαγωγὴ γίνεται ἐκ τοῦ ἐν διέσει Γα, ἐπικρατοῦντος ὡς "Ισου τοῦ κάτω $\overset{\sim}{\sim}$, τότε ἡ ἐπεισαγωγὴ γίνεται κατὰ παραγορδὴν

μετακινουμένων δηλ. πλήν τοῦ Γα καὶ τῶν Δι καὶ Κε, τοῦ Ζω ἐπὶ τῆς αὐτῆς βάσεως μετατρεπομένου ὡς ἐναρμονίου π. χ.

Είναι καὶ τοῦτο ἔν τῶν μυστηρίων, καθ' ὅ ὁ αὖτὸς ἡχος λαμβάνει δύο ὕψη, τοῦ βασίμου φθόγγου του λαμβανομένου ἄλλοτε διατονικῶς καὶ ἄλλοτε ἐναρμονίως. Έλξεις εἰς τὸν ήχον τοῦτον χαρακτηριστικαὶ εἰναι ἡ τοῦ Βου πρός τὸν Γα, εἴτε τὸν φυσικόν, εἴτε τὸν ἐν διέσει καὶ ἡ τοῦ Κε, ἑλκομένου ὑπό τοῦ Ζω, τοῦ τε ἄνω καὶ τοῦ κάτω π. χ.

Κατὰ τὸν ἡχον τοῦτον ψάλλονται σύντομά τινα μέλη, ὅπως ἡ σύντομος Δοξολογία καὶ οἱ Μακαρισμοί, ὅτε τό μέλος κυμαίνεται μεταξὺ τοῦ Πρώτου ἥχου καὶ τοῦ Βαρέως, μὲ τὴν χαρακτηριστικὴν προσωνυμίαν Πρωτόβαρος.

Συμφωνίαι - συνηχήσεις

1. ΕΙΣ TON ENAPMONION

Έπικρατοῦσαι συμφωνίαι εἰς τὸν ἐναρμόνιον Βαρὺν εἶναι πρὸς

μέν τὸ ὀξὸ αί διὰ τεσσάρων $\eta \overline{\eta} - \overline{\chi}$ καὶ $\frac{\Delta}{\eta} - \overline{\eta}$ καὶ ἡ διὰ τριῶν $\frac{\Delta}{\eta} - \overline{\chi}$. Πρὸς τὸ βαρὸ ἡ διὰ τριῶν $\frac{\pi}{\eta} - \overline{\eta}$ καὶ αί διὰ τεσσάρων $\frac{\Delta}{\eta} - \overline{\eta}$ καὶ $\frac{\pi}{\eta} - \overline{\eta}$ καὶ $\frac{\pi}{\eta} - \overline{\eta}$ καὶ $\frac{\pi}{\eta} - \overline{\eta}$.

Χαρακτηριστικόν τοῦ ήχου τούτου είναι, ὅτι, ἔχει δεσπόζοντας φθόγγους τοὺς παραλλήλους Γα καὶ Δι καὶ περὶ αὐτοὺς ἐπιμόνως περιστρεφόμενος, διὰ τῆς ἐναλλαγῆς αὐτῶν παράγει ἄκουσμα μιᾶς μείζονος διαφώνου διὰ δύο συμφωνίας $\begin{pmatrix} \Gamma & \Delta & -\Gamma \\ \gamma & \gamma & \Gamma \end{pmatrix}$ π. χ.

η ο τι συ ει μο νος α α γι ος Κυ ρι ος

ἐν ἀντιθέσει πρὸς τὸν Τρίτον ἤχον, ὅστις, περιστρεφόμενος περὶ τοὺς δύο δεσπόζοντας φθόγγους του $\Gamma \alpha$ — Kε, παράγει ἄκουσμα διὰ τριῶν μείζονος συμφωνίας $\frac{\Gamma}{2^{2}}$ — $\frac{x}{3}$.

Όταν ὁ ήχος οὖτος ἐργάζηται ἐντὸς τοῦ ἐναρμονίου τετραχόρδου $\vec{\gamma}_{1}$ $\vec{\gamma}_{2}$, συνηχοῦντες φθόγγοι εἰσί, διὰ μὲν τὸν $\vec{\gamma}_{1}$ ὁ $\vec{\eta}_{1}$ ἡ ὁ $\vec{\gamma}_{2}$ ἡ ὁ $\vec{\gamma}_{2}$, διὰ δὲ τὸν $\vec{\gamma}_{2}$ ὁ $\vec{\gamma}_{1}$, δ $\vec{\lambda}_{2}$ καὶ ὁ κάτω $\vec{\lambda}_{2}$. Διά τοὺς διαμέσους δὲ φθόγγους ὅλοι οἱ δυνάμενοι νὰ ἔχωσι θέσιν εἰς γένος ἐναρμόνιον, χωρὶς ὁ ήχος νὰ προσκλίνη πρὸς ἄλλον, οὕτε κἄν καὶ πρὸς αὐτὸν τὸν Κύριόν του Τρίτον π. χ.

Οταν τὸ μέλος περιστρέφηται ἐντὸς τῆς διὰ τεσσάρων συμφωνίας $\overset{\Delta}{\ddot{\eta}}$ $\overset{\gamma}{-}$ $\overset{\gamma}{\eta}$, τότε συνηχοῦντες φθόγγοι, διὰ μὲν τὸν $\overset{\Delta}{\ddot{\eta}}$ εἶναι δ $\overset{\pi}{\eta}$ δ $\overset{\delta}{\ddot{\eta}}$, διὰ δὲ τὸν $\overset{\gamma'}{\eta}$ δ $\overset{\Delta}{\ddot{\eta}}$ ἤ ἐνίοτε καὶ δ $\overset{\varkappa}{\ddot{\eta}}$ π. χ.

Τες φθόγγοι διὰ μὲν τὸν $\frac{\Delta}{\ddot{\eta}}$ εἶναι ὁ $\frac{\delta}{\ddot{\eta}}$ ἤ ὁ $\frac{\pi}{\ddot{q}}$, διὰ δὲ τὸν $\frac{\chi}{\dot{\eta}}$, ὁ $\frac{\Delta}{\ddot{\eta}}$, ὸ $\frac{\Delta}$

Οταν τὸ μέλος περιστρέφηται ἐντὸς τῆς διὰ τριῶν συμφωνίας $\overbrace{}^{\pi}$, τότε συνηχοῦντες φθόγγοι εἶναι διὰ μὲν τὸν $\overbrace{}^{\pi}$, ὅ δ καὶ ὁ κάτω $\overbrace{}^{\eta}$, διὰ δὲ τὸν $\overbrace{}^{\pi}$ δ κάτω $\overbrace{}^{\eta}$, ἤ δ $\overbrace{}^{\chi}$ καὶ ὁ κάτω $\overbrace{}^{\eta}$, διὰ δὲ τὸν $\overbrace{}^{\pi}$ δ κάτω $\overbrace{}^{\eta}$, ἤ δ $\overbrace{}^{\chi}$ καὶ ἐνίοτε δ $\overbrace{}^{\pi}$ π.χ.

Όταν τὸ μέλος περιστρέφηται ἐντὸς τῆς διὰ τεσσάρων $\overset{\Delta}{\ddot{n}} - \overset{\pi}{\ddot{q}}$ τότε συνηχούντες φθόγγοι εἶναι διὰ μὲν τὸν $\overset{\Delta}{\dot{o}}$ $\overset{\pi}{\dot{q}}$ $\overset{\pi}{\dot{o}}$ $\overset{\pi}{\dot{q}}$ $\overset{\pi}{\dot{q}}$

Όταν τὸ μέλος ἐργάζηται ἐντὸς τῆς διὰ τεσσάρων συμφωνίας \vec{q} , τότε συνηχοῦντες φθόγγοι δύνανται νὰ ἤναι διὰ μὲν τὸν \vec{q} , ὅ α, ἥ ὁ χ, ὁ κάτω \vec{q} καὶ ὁ κάτω \vec{q} , διὰ τὲ τὸν χ, ὁ κάτω \vec{q} καὶ \vec{q} , π. χ.

2. EIX TON AIATONIKON

Εἰς τὸν διατονικὸν Βαρὺν ἐπικρατοῦσαι συμφωνίαι εἰσὶν ἐκ τοῦ βαρέως πρὸς τὸ ὀξὺ ἡ διὰ τριῶν $\overset{\sim}{\underset{q}{\sim}} -\overset{\pi}{\underset{q}{\sim}}$, ἡ διὰ πέντε $\overset{\sim}{\underset{q}{\sim}} -\overset{\sigma}{\underset{q}{\sim}}$, ἡ διὰ τριῶν $\overset{\sim}{\underset{q}{\sim}} -\overset{\sigma}{\underset{q}{\sim}}$, ἡ διὰ τριῶν $\overset{\sim}{\underset{q}{\sim}} -\overset{\sim}{\underset{q}{\sim}}$ καὶ ἡ διὰ ὀκτὼ $\overset{\sim}{\underset{q}{\sim}} -\overset{\sim}{\underset{q}{\sim}}$. Πρὸς τὸ βαρὸ δὲ αἱ αὐταὶ συμφωνίαι ἀντεστραμμέναι.

Όταν τὸ μέλος ἐργάζηται ἐντὸς τῆς διὰ τριῶν συμφωνίας ζω πη τότε συνηχοῦντες φθόγγοι δύνανται νὰ ἥναι διὰ μὲν τὸν ζω ὁ κάτω Λ, διὰ δὲ τὸν π ὁ ζω καὶ ὁ Λ, οὐδενὸς ἄλλου φθόγγου δυναμένου νὰ ὑπεισέλθη πλὴν τοῦ ζω ἐν διέσει, κατ' ἀντίστιξιν πρὸς τὸν διάμεσον Κε ὡσαύτως ἐν διέσει π. χ.

τε συνηχοῦντες κατ' ἀντίστιξιν φθόγγοι δύνανται νὰ ἡναι διὰ μὲν τὸν $\overset{\sim}{\sim}$ ὁ κάτω $\overset{\sim}{\wedge}$, διὰ δὲ τὸν $\overset{\leftarrow}{\varsigma}$ ὁ $\overset{\pi}{q}$ καὶ ὁ $\overset{\sim}{\sim}$ π. χ.

Οταν ὑπερισχύῃ ἡ διὰ τριῶν συμφωνία $\stackrel{\frown}{q} - \stackrel{\frown}{\eta'}_{\eta}$ τότε συνηχούσι διὰ μὲν τὸν $\stackrel{\frown}{\eta'}_{\eta}$ δ $\stackrel{\frown}{q}$, διὰ δὲ τὸν $\stackrel{\mp}{q}$ οἱ κάτω $\stackrel{\frown}{q}$ καὶ $\stackrel{\frown}{\alpha}_{\Lambda}$ π. χ.

Οταν ἐπικρατῆ ἡ διὰ τεσσάρων συμφωνία $\frac{\pi}{q}$ $\stackrel{\Delta}{\longrightarrow}$, τότε συνη-χοῦντες φθόγγοι διὰ μὲν τὸν $\stackrel{\Delta}{\bigcirc}$ εἶναι ὁ $\stackrel{\pi}{q}$, ὁ $\stackrel{\Sigma}{\smile}$ καὶ ὁ $\stackrel{\Delta}{\bigcirc}$, διὰ δὲ τὸν $\stackrel{\pi}{q}$ οἱ κάτω $\stackrel{q}{\leftarrow}$ καὶ $\stackrel{\Delta}{\bigcirc}$ ἀναλόγως τῆς χροιᾶς τοῦ μέλους $\stackrel{\pi}{\rightarrow}$.

Οταν ἐπικρατῆ ἡ διὰ τριῶν συμφωνία $\overset{\triangle}{\mathring{\Pi}} - \overset{\Sigma}{\mathring{\chi}}$, τότε συνηχοῦσι διὰ μὲν τὸν $\overset{\triangle}{\mathring{\chi}}$ ὁ $\overset{\triangle}{\mathring{\Pi}}$, ὁ $\overset{\triangle}{\mathring{\eta}}$ ἐν διέσει ($\overset{\triangle}{\Gamma}$ α), ὁ κάτω $\overset{\Sigma}{\mathring{\chi}}$ καὶ ἐνίοτε ὁ $\overset{\pi}{\mathring{\eta}}$ διὰ δὲ τὸν ὁ $\overset{\triangle}{\mathring{\Pi}}$ ὁ $\overset{\pi}{\mathring{\eta}}$ καὶ οἱ κάτω $\overset{\Sigma}{\mathring{\chi}}$ καὶ $\overset{\triangle}{\mathring{\eta}}$ π. $\overset{\Sigma}{\mathring{\chi}}$.

Όταν τέλος, τὸ μέλος ἀναπτύσσηται ἐντὸς τῆς διὰ ὁκτὼ συμφωνίας (Διαπασῶν) $\frac{\chi}{\chi} - \frac{\chi}{\chi}$ $- \frac{\chi}{\chi}$, τότε ὁ ἡχος καλεῖται ἑπτάφωνος Βαρύς, δτε, ἐπικρατοῦντος τοῦ ἄνω $\frac{\chi}{\chi}$, συνηχοῦντες φθόγγοι εἶναι πρωτίστως ὁ κάτω $\frac{\chi}{\chi}$, ἀναλόγως δὲ τῆς κλίσεως τοῦ μέλους ὁ $\frac{\Delta}{\zeta}$ $\frac{\Delta}{\zeta}$ καὶ εἴτις ἄλλος σχετικός.

Κατ' έξοχὴν ἐπτάφωνος διατονικὸς Βαρὺς εἶναι ἡ Δοξολογία Δα-νιὴλ τοῦ Πρωτοψάλτου.

$$\frac{2}{2}$$
 Δ 0 ξα σοι τω δει ει ξαν τι το ο φως $\frac{2}{2}$ $\frac{2}{2}$ Δ 0 ξα σοι τω δει ει ξαν τι το φως $\frac{2}{2}$ $\frac{2}{2}$ Δ 0 ξα σοι τω δει ει ξαν τι το φως $\frac{2}{2}$

Εἰς τὸν διατονικὸν Βαρὺν οὐχὶ σπανίως κατὰ τὴν ἐξέλιξιν τοῦ μέλους ἐμφανίζεται καὶ ἡ διὰ τεσσάρων συμφωνία $\frac{2}{2}$ $\frac{6}{2}$ ἐκ τοῦ

Βαρέως δηλ. πρὸς τὸ ὀξὺ καὶ ἡ ἐκ τοῦ ὀξέος πρὸς τὸ βαρὺ διὰ πέντε συμφωνία $\frac{\chi}{\chi}$ $\frac{6}{\chi}$. Έν τῆ περιπτώσει ταύτη συνηχοῦντες φθόγγοι δύνανται νὰ ἡναι διὰ μὲν τὸν $\frac{6}{\chi}$ ὁ $\frac{\chi}{\chi}$, διὰ τὸν $\frac{\chi}{\chi}$ δὲ ὁ κάτω $\frac{1}{\chi}$ π.χ.

Διὰ δὲ τὴν διὰ πέντε συμφωνίαν $\overset{\sim}{\chi}$ $\overset{\leftarrow}{\sim}$ $\overset{\leftarrow}{\chi}$ συνηχοῦντες φθόγγοι είναι πρωτίστως ὁ $\overset{\leftarrow}{\chi}$ καὶ κατὰ δεύτερον λόγον ὁ $\overset{\bigtriangleup}{\eta}$ καὶ ὁ κάτω $\overset{\sim}{\chi}$ π. χ .

$$\chi'_{\lambda} = \frac{1}{2} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta}$$

Γ΄. ΟΙ ΔΥΟ ΧΡΩΜΑΤΙΚΟΙ

Δεύτερος - Πλάγιος Δευτέρου

Ήχος Δεύτερος

Ο Δεύτερος Ήχος, ὁ Κύριος τῶν δύο χρωματικῶν, βάσιμον αὐ-

του φθόγγον έχει τὸν Δι τῆς μέσης καὶ τετράχορδον χρωματικόν, τό:

$$\Delta - \chi - \chi' - \chi'$$

Ύπάρχει, ὡς ἐλέχθη, κανών, καθ' ὄν οἱ Κύριοι ἡχοι ἀπέχουσι τῶν Πλαγίων κατὰ τετρατονίαν καὶ ἀντιστρόφως. 'Αλλ' ὁ κανὼν οὕτος ἰσχύει διὰ μόνους τοὺς διατονικοὺς ἤχους, ἐκ τῶν κλιμάκων τῶν ὁποίων, δι' ὡρισμένων ἀλλοιώσεων παράγονται οἱ τῶν ἄλλων γενῶν.

Ό Πρῶτος, οὖτινος ἡ ἀρχικὴ βάσις ἡτο ὁ Κε, ἔχει τὸν Πλάγιόν του κατὰ τετρατονίαν κατιοῦσαν μὲ βάσιν τὸν Πα. Ὁ Τέταρτος, ἔχων βάσιν τὸν Δι, δεικνύει τὸν Πλάγιόν του κατὰ τετρατονίαν ὡσαύτως κατιοῦσαν μὲ βάσιν τὸν Νη. ᾿Αλλ᾽ εἰς τοὺς χρωματικοὺς καὶ τοὺς σκληροὺς διατονικοὺς (ἐναρμονίους) ὁ κανὼν οὖτος δὲν ἰσχύει. Διότι οἱ χρωματικοὶ καὶ ἐναρμόνιοι, κατά τὸ σύστημα τῶν ἀρχαίων Τρόπων, παράγονται ἐκ ποιᾶς τινὸς διαιρέσεως τῶν διατονικῶν τετραχόρδων. Ἦδε σελὶς 56.

Συνεπῶς τὸ τετράχορδον τοῦ Δευτέρου ἤχου παράγεται ἐκ τοῦ διατονικοῦ $\frac{\Delta}{\ddot{\eta}}$ $\frac{\gamma}{2}$ δι' ὑφέσεως ἐπὶ τοῦ Κε, μετατρεπομένου ἀπὸ μείζονος τόνου εἰς χρωματικὸν ὑπελάσσονα ἤ ἐλάχιστον.

'Αλλ' ὁ Δεύτερος ήχος ἐκτείνεται μέχρι τοῦ κάτω Νη, σχηματίζων κλίμακα ἐκ δύο ὁμοίων τετραχόρδων, τοῦ διατονικοῦ τετραχόρδου τοῦ τοῦς χρωματικὸν διὰ μιᾶς ὡσαύτως ὑφέσεως ἐπὶ τοῦ Πα

Έφ' δσον δ Δεύτερος ήχος περιορίζηται έντὸς τῶν δρίων τῆς

κλίμακος χ΄ γ΄, οὐδεμία διαστηματική ἀνωμαλία παρουσιάζεται. 'Αλλ' ὅταν ἐξέρχηται ὑπεράνω τοῦ χ΄, εἴτε κάτω τοῦ τῆς ὀγδόης χ΄, τότε τὰ διαστήματα εἰσὶ διάφορα, διότι ὁ ἡχος οὐτος, ὅπως καὶ ὁ Πλάγιος αὐτοῦ βαίνουσι κατὰ πεντάχορδον σύστημα.

Ταύτην τὴν διαφορὰν παρερμηνεύοντες οἱ γράψαντες θεωρητικὰς διδασκαλίας τῆς τῆς ἐκκλησιαστικῆς μουσικῆς, τὸ «δὲν ἀντιφωνεῖ ὁ Δεύτερος» τὸ ἐξέλαβον ὡς σημεῖον, ὅτι ἡ ἀντιφωνία του εἶναι βαρύτερα τῆς φυσικῆς του βάσεως. Καὶ διὰ τῆς ἐμπειρικῆς παρατάξεως τῶν 68 λεγομένων τμημάτων παριστῶσιν αὐτὸν ὡς χωλαίνοντα κατὰ τόσα ἤ τόσα τμήματα.

Τὸ «δὲν ἀντιφωνεῖ» ὅμως σημαίνει, ὅτι δὲν δύναται νὰ ψαλἢ κατ' ἀντιφωνίαν «ἑπτὰ φωναὶ διπλασιασμός» τῶν Βυζαντινῶν - (Διαπασῶν), διότι τὰ πέραν ταύτης
διαστήματα εἰσὶ διάφορα πρὸς τε τὸ ὀξὺ
καὶ πρὸς τὸ βαρύ. Ἐκτὸς ἐὰν θελήση τις νὰ
μαγαδίση διὰ παραχορδῆς.

Τὸ παρατιθέμενον διάγραμμα δεικνύει τὴν κατὰ πεντάχορδον σύστημα (οὐχὶ τὸν Τροχόν) πορείαν τοῦ ἤχου. Οἱ δὲ κατὰ συνθήκην ἀριθμοὶ τὰ ὕψη τῶν διαστημάτων τοῦ Δευτέρου ἤχου, οὖτινος τὰ πραγματικὰ διαστήματα εὑρίσκονται εἰς τὸ ἰδιαίτερον βιβλίον μου περὶ τῶν μουσικῶν ἐν γένει διαστημάτων ἐν ἐφαρμογῆ ἐπὶ τοῦ «Παναρμονίου» ὀργάνου, ὅπου καθορίζονται ταῦτα μαθηματικῶς καὶ ἀκουστικῶς.

Πλὴν τῆς παρερμηνείας τοῦ «δὲν ἀντιφωνεῖ», ὑπάρχει καὶ ἄλλη εἰς τὰ θεωρητικά ὅτι ὁ Δεύτερος βαίνει κατὰ διφωνίαν ὁμοίαν. Κατὰ διφωνίας βαίνει, οὐχὶ ὅμως ὁμοίας. 'Ως ἐκ τῶν δεσποζόντων φθόγγων

του $N\eta - B$ ου $-\Delta\iota - Z$ ω είναι ήχος δίφωνος, διότι έντὸς τῶν διφωνι- ῶν τούτων περιστρεφόμενος δεικνύει πάντοτε, κατὰ φυσικὴν συνέπειαν, δίφωνον μέλος, οὐχὶ ὅμως καὶ διφωνίαν δμοίαν, διότι ἡ διὰ τριῶν μείζων συμφωνία $\frac{v}{2}$ $\frac{6}{2}$ είναι μεγαλυτέρα τῆς $\frac{6}{2}$ $\frac{\Delta}{2}$. ᾿Αλλ᾽ ἡ διφωνία ἰσχύει διὰ τὰ ἀργὰ καὶ σύντομα στιχηραρικά του μέλη καὶ εἰς αὐτὰ τὰ παπαδικά του, ἐν μέρει δὲ εἰς τὰ εἰρμολογικά του, τὰ δποῖα - ὡς δείκνυται κατωτέρω - εἰσὶ τριφωνικά.

Δεσπόζοντας φθόγγους είς τὸ στιχηραρικόν του είδος ἔχει τοὺς φθόγγους Δι, Ζω, Βου καὶ Νη ἐν διφωνία.

'Επεισαγομένης διμως τριφωνίας, εἴς τε τὸ δξὺ τετράχορδον $\Delta = \sum_{p'} \gamma'$ καὶ εἰς τὸ βαρὺ $\Delta = \sum_{p'} \gamma'$, ἔχει τοὺς φθόγγους Νη και Γα.

Καταλήξεις ποιείται, ἀτελείς μὲν εἰς τοὺς φθόγγους Δι καὶ Ζω, ἐντελείς εἰς τὸν Βου καὶ εἰς τὸν Νη καὶ τελικὰς εἰς τὸν Δι.

Δυνάμει τοῦ ἐκ τῶν δεσποζόντων φθόγγων του (συγχορδιῶν) προκύπτοντος ἀκούσματος, παράγονται αί διὰ τριῶν συμφωνίαι $\underbrace{\Delta}_{}$ — $\underbrace{z}_{}$,

$$\Delta = 6$$
, kai $6 = 2$ π . χ .

3.
$$z' = |z| = |z$$

Ό Δεύτερος ήχος ἀπὸ τῆς βάσεώς του κατέρχεται καὶ μέχρι καὶ τοῦ Νη. Κατερχόμενος μέχρι τοῦ Πα καὶ ἀμέσως ἐπιστρέφων εἰς τὸν Βου, λαμβάνει τοῦτον πάντοτε διατονικῶς, οὐχὶ σπανίως δὲ καὶ ἐν διέσει μικρᾶ π. χ.

Ποιούμενος δὲ κατάληξιν ἐντελῆ ἐπὶ τοῦ Πα είναι ἀείποτε καὶ ἀπαραβάτως διατονικός, χωρὶς νὰ ὑπάρχη ἀνάγκη ἐπεισαγωγῆς διατονικής φθορᾶς, ὅπως καὶ εἰς τὸ ἀνωτέρω παράδειγμα π. χ.

Κατερχόμενος ὅμως εἰς τὸν Νη καταλήγει ἄλλοτε χρωματικῶς καὶ ἄλλοτε διατονικῶς. Καὶ ὅταν μὲν κατέρχηται χρωματικῶς, τότε τὸ τετράχορδον Γα — Νη εἰναι χρωματικόν, τιθεμένης ἐν τῇ ἀρχῇ αὐτοῦ, ἐπὶ τοῦ Γα τουτέστι, τῆς φθορᾶς ద, ἤ τῆς τοῦ Πλαγίου Δευτέρου, ὅταν τὸ μέλος ἔχῃ τούτου τὴν χροιάν π. χ.

Όταν δὲ κατέρχηται διατονικῶς, τότε ἐπὶ τοῦ Δι τίθεται ὡς προειδοποίησις ἡ φθορὰ $\ \ \ \pi$. $\ \chi$.

$$\Delta = \frac{1}{\kappa \alpha_1} \left| \frac{\partial}{\partial x} \right| =$$

Εἰς τὸν Δεύτερον ήχον φθόγγοι ὑποκείμενοι εἰς ἕλξιν εἰσὶν ὁ Γα ὅστις ἕλκεται ὑπὸ τοῦ Δι κατὰ τὰς εἰς αὐτὸν καταλήξεις:

ό Πα, έλκόμενος ύπὸ τοῦ Βου:

καὶ ὁ Κε, ἐλκόμενος ὑπὸ τοῦ Ζω εἰς ἐπ' αὐτοῦ γινομένας καταληξεις π. χ.

Έπειδή δὲ τὸ μέλος ἐν ταῖς περιπτώσεσι ταύταις ἀκολουθεῖ πυκνότερα διαστήματα, ἐφαρμόζονται αἱ ἔλξεις τοῦ Πλαγίου Δευτέρου.

Τοταν εἰς τὸν Δεύτερον ἦχον ἐπικρατῆ ἡ διὰ τεσσάρων συμφωνία $\Delta = \gamma'$ τότε συνηχοῦντες φθόγγοι εἶναι διὰ μὲν τὸν γ' ὁ Δι ὁ Βου καὶ ὁ κάτω Νη, τῶν διαμέσων φθόγγων τῆς γραμμῆς λαμβανόντων κατ ἀντίστιξιν τοὺς ἀντιστοίχους φθόγγους. Διὰ δέ τὸν $\Delta = \delta$ ὁ Βου, ὁ Νη καὶ ὁ κάτω Δι κατ ἀντιφωνίαν καὶ κατὰ τὸ Διαπασῶν $(\frac{11}{2})$ π. χ.

τῆς δευτέρας συνηχητικῆς δυναμένης νὰ ἐκτελῇ τὴν γραμμὴν τοῦ μέλους κατ' ἀντιφωνίαν πρὸς τὸ βαρύ.

ἔτερον παράδειγμα:

Όταν ἐπικρατῆ ἡ διὰ τριῶν συμφωνία $\Delta = 2 \%$, τότε συνηχοῦντες φθόγγοι διὰ μὲν τὸν Zω εἶναι ὁ Δ ι καὶ ὁ Bου, διὰ δὲ τὸν Δ ὁ Bου, ὁ κάτω Δ ι (Δ) καὶ ἐνίστε ὁ Nη μετὰ τῶν διὰ τοὺς διαμέσους φθόγγους καταλλήλων συνήχων αὐτοῦ π . χ .

"Όταν ἐπικρατῆ ἡ διὰ τριῶν συμφωνία $\Delta = \underline{b}'$, τότε συνηχοῦντες φθόγγοι εἶναι διὰ μὲν τὸν Δ ι ὁ Βου, ὁ Νη καὶ ὁ κάτω Δ ι Δ ι, διὰ δὲ τὸν Βου ὁ Νη ἥ καὶ ὁ κάτω ὡσαύτως Δ ι π. χ.

τής δευτέρας συνηχητικής ἀκολουθούσης τὴν γραμμὴν τοῦ μέλους μίαν ἐπταφωνίαν πρὸς τὸ βαρύ.

Όταν τὸ μέλος ἐργάζηται ἑντὸς τῆς διὰ πέντε συμφωνίας Δ΄ — ν τότε, ἐὰν μὲν κατέρχηται εἰς τὸν Νη διατονικῶς ἰσχύουσιν οἱ κανόνες τοῦ Πλαγίου Τετάρτου. Ἐὰν δὲ κατέρχηται χρωματικῶς, συνηχοῦντες φθόγγοι εἰναι ὁ Βου καὶ ὁ Νη καὶ ὁ κάτω Δι παροδικῶς π. χ.

$$\Delta = \varepsilon \quad \varepsilon \quad \lambda \varepsilon \quad \varepsilon \quad \varepsilon \quad o\varsigma$$

$$\Delta = \varepsilon \quad \varepsilon \quad \lambda \varepsilon \quad \varepsilon \quad \varepsilon \quad o\varsigma$$

$$\Delta = \varepsilon \quad \varepsilon \quad \lambda \varepsilon \quad \varepsilon \quad \varepsilon \quad o\varsigma$$

$$\Delta = \varepsilon \quad \varepsilon \quad \lambda \varepsilon \quad \varepsilon \quad \varepsilon \quad o\varsigma$$

τοῦ Πλαγίου Δευτέρου $\overset{\Delta}{\wp}$ $\overset{\pi}{-}$, ὅπως καί αἱ ἀνάλογοι ἔλξεις τῶν διαμέσων φθόγγων π. χ.

Εἰς τό Εἰρμολογικόν του είδος ὁ Δεύτερος ἡχος είναι κυρίως τρίφωνος, ἐργαζόμενος ἐκτὸς τοῦ τετραχόρδου $\Delta - y'$, ὡς Πλάγιος Δευτέρου $\Delta - y'$ (δεικνύων ὅμως ἐν ἀντιθέσει πρὸς τὸν Πλάγιόν του) καὶ τὴν φυσικήν του διφωνίαν π. χ.

Δ Οι κος του Ευ φρα θα Ξ η πο λις η η
α γι α Ξ των προ φη τω ων η δο ξα Ξ ευ τρε
πι σον τον οι οι κον εν ω το θει ον τι κτε ται Ξ

 Ω ς παρατηρείται εἰς τὸ Προσόμοιον τοῦτο, τὸ μέλος περιστρεφό; ιενον ἐντὸς τῶν διφωνιῶν $\Delta = \frac{\chi}{2}$ καὶ $\Delta = \frac{6}{2}$ ἀπὸ τοῦ «εὐτρέπισον τὸν οἶχον» εἰσέρχεται εἰς τὴν τριφωνίαν $\Delta = \frac{\chi}{2}$, λαμβάνον ἤθος Πλαγίου Δευτέρου.

Συνεπῶς δεσπόζοντας φθόγγους ἔχει τοὺς Δι, Ζω, Βου καὶ τὸν ἄνω Νη ὡς Δι $\begin{pmatrix} y' \\ y' \end{pmatrix}$, καταλήξεις δὲ ποιεῖται ἀτελεῖς μὲν εἰς τοὺς φθόγγους Δι, Ζω, Νη καὶ εἰς τὸν Βου ἐνίοτε, ἐντελεῖς δέ καὶ τελικὰς εἰς τὸν Δι ὡς Πα: $\begin{pmatrix} \Delta \\ \end{pmatrix}$) π. χ.

'Εξερχόμενος ὑπεράνω τῆς τριφωνίας, φθάνει καὶ μέχρι τοῦ ἄνω Γα ὡς Νη κατὰ τὸ ἰδίωμα τοῦ Πλαγίου Δευτέρου π. χ.

 καὶ $\Delta = 6$, συνηχοῦντες δὲ φθόγγοι οἱ αὐτοὶ τοῦ Πλαγίου Δευτέρου, ὅπου γίνεται ὁ προσήκων λόγος.

Σημείωσις: Εἰς τὰ Θεωρητικὰ τοῦ νέου συστήματος τῆς γραφῆς ὁ εἰρμολογικὸς Δεύτερος τοποθετεῖται ἐπὶ τοῦ Βου, ἐξ' αὐτοῦ ψαλλόμενος ὡς Πλάγιος Δευτέρου. Τοῦτο κατὰ τὴν θεωρίαν τοῦ Τροχοῦ τῶν Βυζαντινῶν εἰναι ὀρθόν. ᾿Αλλ' εἰς τὸ σύστημα τὸ ὁποῖον ὰκολουθεῖ ὁ Δεύτερος δὲν ἰσχύει τοῦτο. Ὅπως εἰς τὰ στιχηραρικὰ καὶ παπαδικά του μέλη, οὕτω καὶ εἰς τὰ εἰρμολογικά του. βάσις αὐτῶν εἰναι ὁ $\frac{\Delta}{\Delta}$. Μετὰ τῆς διαφορᾶς, ὅτι εἰς τὰ εἰρμολογικὰ τὸ τετράχορδον $\frac{\Delta}{\Delta}$ — χ $\frac{Z'}{\Delta}$ — $\frac{Z'}{\Delta}$

Εἰς μίαν μόνον περίπτωσιν δύναται ὁ φθόγγος Βου νὰ λαμβάνηται ὡς βάσις τῶν εἰρμολογικῶν τοῦ Δευτέρου ἤχου. Όταν δηλονότι ἐν συνεχεία ψάλλωνται τροπάριά του κατά τε τὸν καθαρὸν Δεύτερον καὶ κατὰ τὸν Πλάγιον Δευτέρου, ὅτε ἡ εἰς τὸν Βου κατάληξις τοῦ προηγουμένου τροπαρίου, τοῦ κατὰ τὸν καθαρόν Δεύτερον ψαλλομένου, γίνεται βάσις ὡς Πα τοῦ ἐπομένου καὶ κατὰ τὸν Πλάγιον Δευτέρου ψαλλομένου, κατὰ παραχορδήν π. χ.

Είς τὸν κανόνα καὶ τὰς καταβασίας τῶν Θεοφανείων:

Ήχος Πλάγιος τοῦ Δευτέρου

Ο Πλάγιος τοῦ Δευτέρου είναι ὁ ἔτερος τῶν δύο χρωματικῶν ἤ-χων, ἔχων βάσιμον φθόγγον τὸν Πα τῆς μέσης.

Όπως ὁ κύριός του Δεύτερος παράγεται ἐκ τοῦ διατονικοῦ τετραχόρδου $\frac{\Delta}{ij}$ $\frac{\lambda}{ij}$ δι' ὑφέσεως τοῦ Κε, οὕτω καὶ αὐτὸς παράγεται ἐκ τοῦ διατονικοῦ τετραχόρδου $\frac{\lambda}{ij}$ $\frac{\lambda}{ij}$ δι' ὑφέσεως τοῦ Βου καὶ διέσεως τοῦ Γα, κατὰ τὸν ὁρισμὸν τοῦ Γένους, ὅτι τοῦτο εἶναι «ποιά τις διαίρεσις τετραχόρδου».

Σημειωτέον δμως, δτι τὰ διαστήματα τοῦ Πλαγίου Δευτέρου εἰναι πυκνότερα τῶν τοῦ Δευτέρου, μετὰ τῆς διαφορᾶς, ὅτι ἥτε ὕφεσις τοῦ Βου καὶ ἡ δίεσις τοῦ Γα δὲν ἔχουσι πάντοτε τὸ αὐτὸ ὕψος, αὐξομειούμενον κατὰ τὴν ἀνάπτυξιν μιᾶς γραμμῆς, ὡς ἐκτίθεται λεπτομερῶς ἐν τῆ περὶ διαστημάτων θεωρία μου, ἐν ἐφαρμογῆ ἐπὶ τοῦ ὀργάνου.

Ο Πλάγιος Δευτέρου, ὅταν θέλη νὰ σχηματίση πλήρη χρωματικὴν κλίμακα Πα — Πα΄ τότε τὸ τετράχορδον $\overset{\checkmark}{\mathbf{q}} \overset{\pi}{\mathbf{q}}$ δι' ἀναλόγου πρὸς τὸ βαρὰ τετράχορδον ὑφέσεως τοῦ $\mathbf{Z}\omega$ καὶ διέσεως τοῦ $\mathbf{N}\eta$ μετατρέπεται εἰς χρωματικόν, ἀποτελουμένης τῆς κλίμακός του ἐκ δύο δμοίων τετραχόρδων διαζευγμένων διὰ τοῦ μείζονος τόνου $\Delta\iota$ — $\mathbf{K}\varepsilon$.

Ο Πλάγιος τοῦ Δευτέρου ἐξερχόμενος τῶν ὁρίων τοῦ τετραχόρδου $\frac{\Delta}{\pi} - \frac{\Delta}{\sigma}$ εἴτε πρὸς τὸ ὀξύ, εἴτε πρός τὸ βαρύ, εἶναι πάντοτε διατονικός. Όταν δὲ θέλη νὰ ἐργασθῆ ἐντὸς τοῦ ὀξέως τετραχόρδου $\frac{\Delta}{\pi}$ εἴτε καὶ μέχρι τοῦ $\frac{\Delta}{\pi} - \frac{\Delta}{\pi}$ τότε πρέπει ἐπὶ τοῦ Κε νὰ τεθῆ ἡ πρώτη ἐκ τῶν φθορῶν του: $\frac{\Delta}{\pi}$. $\frac{\Delta}{\pi}$ τότε ἐπὶ τοῦ Νη τίθεται ἡ ἑτέρα φθορὰ τοῦ τοῦ Δι: $\frac{\Delta}{\pi}$ καὶ κατέρχεται μέχρις αὐτοῦ χρωματικῶς ὡς $\frac{\pi}{\pi} - \frac{\Delta}{\pi}$. $\frac{\Delta}{\pi}$ Ο ἡχος οὐτος, ὅταν περιορίζηται ἐν-

τὸς τῆς κλίμακός του $\Pi \alpha - \Pi \alpha'$, οὐδὲν τὸ ἀνώμαλον παρουσιάζει. ᾿Αλλ᾽ ὅταν ἐξέρχηται ταύτης ἐπεκτεινόμενος, εἴτε πρὸς τὸ ὀξύ, εἴτε πρὸς τὸ βαρύ, τότε καὶ οὖτος, ὅπως ὁ Δεύτερος, δὲν ἀντιφωνεῖ, διότι βαίνει κατὰ πεντάχορδον σύστημα, τοῦ $\overbrace{\pi} - \overbrace{\phi}$ τῆς μέσης μὴ ἀντιφωνοῦντος πρὸς τὸν $\Pi \alpha - B$ ου τῆς νήτης, ὅστις εἶναι μείζων τόνος $\overbrace{\pi'} - \overbrace{\phi}$ οὐδὲ τοὖ $\overbrace{\gamma'} - \overbrace{\pi'}$ ἀντιφωνοῦντος πρὸς τὸν κάτω $N \eta - \Pi \alpha$, ὅστις εἶναι ώσαύτως μείζων τόνος $\overbrace{\gamma'} - \overbrace{\pi}$. Αν δὲ παρίσταται ἀνάγκη νὰ δδεύση ὁ ἡχος κατὰ μίαν ἑπταφωνίαν ὀξύτερον, ὅπως ὅταν συμψάλλωσιν ὀξύφωνοι μετὰ βαρυτόνων, ἡ παῖ-

δες καὶ γυναῖκες μετ' ἀνδρῶν, τότε τοῦτο γίνεται κατὰ τὸ μαγαδίζειν, ψάλλειν τουτέστι κατὰ μίαν ὀγδόην ὀξύτερον ἤ βαρύτερον συγχρόνως, καὶ ἐν τῇ γραφῇ διὰ παραχορδῆς, τιθεμένης τῆς φθορᾶς: - ἐπὶ τοῦ

ανω $\frac{\pi}{\wp}$, ὅστις ἀντὶ ταύτης τῆς μαρτυρίας ἔχει ταύτην $\frac{\pi}{\wp}$.

'Ιδοὺ πῶς βαίνει κατὰ πεντάχορδα, εἴτε τετράχορδα, διαζευγμένα διά μείζονος τόνου. Τὰ ὕψη τῶν τόνων του καθορίζονται ἐν τῷ περὶ διαστημάτων κεφαλαίῳ τῆς θεωρητικῆς διδασκαλίας μου.

Ό Πλάγιος τοῦ Δευτέρου εἰς τὸ Στιχηραρικὸν καὶ Παπαδικόν του εἰδος δεσπόζοντας φθόγγους ἔχει τοὺς Πα, Δι καὶ Κε. Καταλήξεις δέ ποιεῖται, ἀτελεῖς μὲν εἰς τοὺς Δι, Κε καὶ τὸν ἄνω Πα, ἐντελεῖς εἰς τὸν βάσιμόν του Πα καὶ τελικάς, μικρὰς μὲν εἰς τὸν Πα μεγάλας δὲ πρὸς παῦσιν εἰς τόν Δι π. χ.

Κατάληξις άτελής:

$$\frac{\pi}{\pi} = \frac{1}{\kappa} \times \frac{1}$$

Κατάληξις άτελής:

$$\pi$$
 α θυ μουν τες ως ει ει κος x

Κατάληξις ἀτελής:

$$\frac{x}{x}$$
 τους ου ρα α νους $\frac{\pi}{2}$

Κατάληξις ἐντελής:

$$\Delta = \left| \begin{array}{c} \Delta \\ \eta \end{array} \right| \sum_{\chi \in I} \sum_{\epsilon I \rho} \sigma_{00} \left| \begin{array}{c} \Delta \epsilon \\ \Delta \epsilon \end{array} \right| \int_{0}^{\infty} \sigma_{\pi 0} \int_{0}^{\infty} \sigma_{\pi 0} \left| \begin{array}{c} \Delta \epsilon \\ \sigma \end{array} \right| \left|$$

Κατάληξις μικρά τελική:

Κατάληξις τελική πρός παῦσιν:

$$\frac{1}{\omega} \int_{\omega}^{\Gamma} \frac{c^{2}}{\omega v} \psi$$

Καταλήξεις ἀτελεῖς εἰς τὸ στιχηραρικὸν καὶ παπαδικὸν μέλος τοῦ Πλαγίου Δευτέρου γίνονται καὶ ἐπὶ τοῦ φθόγγου Γα (, , , ὅτε οὖτος δὲν εἶναι ἡ μεγάλη αὐτοῦ δίεσις, ἡ κατὰ τὴν περὶ τὸν Δι περιστροφήν, ἀλλ' ὁ φυσικὸς χρωματικός Γα π. χ.

είτε είς τὸ παπαδικὸν μέλος:

'Ο νόμος τῆς ἔλξεως εἰς τὸν ἡχον τοῦτον ἐπιδρῷ ἐπὶ τῶν φθόγγων Γα καὶ Νη, ἑλκομένων ὀλίγον ἤ πλειότερον τοῦ μὲν Γα ὑπὸ τοῦ Δι π. χ.

τοῦ δὲ Νη ὑπὸ τοῦ Πα:

'Ωσαύτως εἰς ἔλξιν δι' ὑφέσεως ὑπόκειται ὁ φθόγγος Βου ὅταν τὸ μέλος ἐκ τοῦ Δι κατερχόμενον πλαγιάζη εἰς τὸν Πα πρὸς κατάλη-ξιν π. χ.

$$\frac{\pi}{2} \underbrace{\times}_{K_{\mathcal{V}}} \underbrace{\times}_{\mathcal{V}} \underbrace{\times}$$

Εἰς τὸ Εἰρμολογικόν του είδος ὁ Πλάγιος Δευτέρου είναι καθαρὸς Δεύτερος μετὰ ἰδιαιτέρων ὅμως ἰδιωμάτων, περὶ ὧν ὁ λόγος εἰς τὸ περὶ ἐπεισάκτων μελῶν κεφάλαιον (Ἰδε Μέρος τρίτον σελ. 167).

Δεσπόζοντας φθόγγους ξχει τοὺς Δι, Ζω καὶ Βου, ἐπὶ τῶν ὁποίων ποιεῖται τὰς καταλήξεις του, ἀτελεῖς μὲν εἰς τοὺς Δι καὶ Ζω, ἐντελεῖς εἰς τὸν Βου καὶ εἰς τὸν Νη καὶ τελικὰς εἰς τὸν Βου π. χ. ἀτελής:

ἐντελής:

έντελής είς τὸν Νη:

τελική είς τόν Βου:

$$\Delta$$
 ει σα κου σον μου Κυ ρι ι ε ε ε Δ τελική πρὸς παῦσιν εἰς τὸν Δ ι:

Συμφωνίαι - Συνηχήσεις

Εἰς τὸ Στιχηραρικὸν καὶ Παπαδικὸν είδος του, ὁ Πλάγιος τοῦ Δευτέρου ἐπικρατούσας συμφωνίας ἔχει τὰς διὰ τεσσάρων $\overbrace{\pi} - \Delta_{\sigma}^{\Delta}$ καὶ $\overbrace{\chi} - \overbrace{\sigma}^{\pi'}$ καὶ τὴν διὰ πέντε $\overbrace{\pi} - \chi$.

Όταν ἐπικρατῆ ἡ διὰ τεσσάρων $\overset{\frown}{\pi}$ $\overset{\Delta}{\longrightarrow}$ $\overset{\Delta}{\nearrow}$, δ ἡχος εἶναι τρίφωνος, ἐπικρατοῦντος τοῦ $\overset{\pi}{\pi}$, ἐν ἀντιθέσει πρὸς τὸν Τρίφωνον Νενανώ, εἰς ὅν ἐπικρατεῖ ὁ $\overset{\Delta}{\nearrow}$. Συνήθης συμφωνία εἰς τὸν ἡχον τοῦτον εἶναι καὶ ἡ διατονικὴ $\overset{\Delta}{\bigcirc}$ $\overset{\nabla}{\bigcirc}$ $\overset{\nabla}{\bigcirc}$, ὅταν ἐκ τοῦ $\overset{\Delta}{\bigcirc}$ ἀνερχόμενος ἐργάζηται ἐν τῷ τετραχόρδῳ $\overset{\Delta}{\triangle}$ $\overset{\Delta}{\bigcirc}$ Νη διατονικῶς.

Διὰ τὴν συμφωνίαν $\overset{\pi}{\underset{\sigma}{\longleftarrow}} \overset{\Delta}{\longrightarrow} \overset{\Delta}{\longrightarrow}$ συνηχοῦντας φθόγγους ἔχει διὰ μὲν τὸν Δι τὸν Πα, τὸν Βου καὶ τὸν Νη, ὅπως καὶ τόν κάτω Δι, διὰ δὲ τὸν Πα τοὺς κάτω Κε καὶ Δι π . χ.

διά τὸν Πα:

Όταν ἐπικρατῆ ἡ διὰ πέντε συμφωνία π χ, τότε διὰ μὲν τὸν Κε συνηχουντες φθόγγοι είναι ὁ Γα, ὁ Πα καὶ ὁ κάτω Κε, διὰ δὲ τὸν Πα ἀναλόγως τῆς ὑφῆς τῆς μελφδικῆς γραμμῆς εἶναι οἱ κάτω Ζω, Κε καὶ Δι π. χ.

Όταν ύπερισχύουσιν αί πρὸς τὸ ὀξὺ δύο διὰ τεσσάρων συμφωνίαι, ἡ $\Delta \iota$ Νη΄ καὶ ἡ $K \epsilon$ Πα΄, τότε διὰ μὲν τὴν $\Delta \iota$ Νη΄, ἥτις είναι πάντοτε διατονική, συνηχοῦντες φθόγγοι είναι οἱ αὐτοὶ τοῦ Τετάρτου ῆχου. Δ ιὰ δὲ τὴν $K \epsilon$ Πα΄ οἱ τῆς χρωματικῆς $\Pi \alpha$ Δ ι, κατὰ μίαν πέμπτην (τετραφωνίαν) ὀξύτερον

Πρὸς τὸ βαρύ. Όταν ὁ ήχος ἐκ τοῦ Πα κατέρχηται εἰς τὸν κάτω εἰς τὸν κάτω Κε κατὰ παραχορδήν, τότε διά τὸν $\frac{\pi}{2}$, ώς $\frac{\pi}{2}$, συνη-χοῦντες φθόγγοι εἰναι ὁ κάτω Κε $\left(\frac{\pi}{2}\right)$ ή ὁ κάτω Ζω $\frac{\pi}{2}$ ώς $\frac{6}{2}$ π. χ.

"Όταν κατέρχηται ἐκ τοῦ κάτω Νη εἰς τὸν Δι $\overset{\circ}{y}$ — \tilde{z} — $\overset{\circ}{\gamma}$ τότε συνηχοῦντες φθόγγοι εἶναι διὰ τὸν $\overset{\circ}{y}$ δ κάτω $\overset{\sigma}{x}$ (ώς $\overset{\circ}{b}$) ή δ $\overset{\circ}{\Delta}$ (ώς $\overset{\pi}{z}$) κατὰ τὰς περιστάσεις π. χ.

$$\pi$$
 τω ε δ α α φει τη η ης γης Δ
 π τω ε δ α α φει τη η ης γης Δ
 π τω ε δ α α φει τη η ης γης Δ

Ο Πλάγιος τοῦ Δευτέρου ὅταν ἐκ τοῦ π κατέρχηται μέχρι τοῦ Ζω καὶ τοῦ Κε ἐπανερχόμενος αὖθις εἰς τὸν Πα, εἶναι πάντοτε διατονικός π. χ.

Όταν δὲ ἀνέρχηται μέχρι τοῦ ἄνω Νη ἐκ τοῦ Δι είναι πάντοτε διατονικός, τοῦ Ζω ἐν τῆ καταβάσει λαμβάνοντος ὕφεσιν.

'Εξαίρεσιν χαρακτηριστικήν ἀποτελεῖ ἡ ἐκ τοῦ $\frac{\Delta}{\tilde{N}}$ μέχρι τοῦ ἄ-νω Νη ἀνάβασις κατὰ τὸ εἴδος τοῦ [εʔαʔω (Νενανώ), ὅτε ὁ Νη εἴναι πάντοτε χρωματικὸς π. χ.

Σημειούται ή ὕφεσις καὶ ή δίεσις πρὸς πρόληψιν ἐκτροπῆς πρὸς τὸ διατονικόν.

Έξόχως χαρακτηριστικαὶ γραμμαὶ τῆς τοιαύτης μέχρι τοῦ Νη χρωματικῆς ἀναβάσεως εἰσὶν αἱ τοῦ Τρισαγίου τοῦ Ἐπιταφίου (νεκρώσιμον «"Αγιος ὁ Θεός») π. χ.

Διὰ τὸ Εἰρμολογικὸν είδος τοῦ Πλαγίου Δευτέρου συνηχοῦντες φθόγγοι είναι οἱ αὐτοὶ τοῦ Στιχηραρικοῦ Δευτέρου, ἐφ, ὅσον ψάλλονται διὰ καθαροῦ Δευτέρου. Διότι τινὰ εἰρμολογικά του ψάλλονται διὰ καθαροῦ Πλαγίου Δευτέρου π. χ.

ΠΕΡΙ ΕΠΕΙΣΑΚΤΩΝ ΜΕΛΩΝ — ΠΕΡΙ ΤΩΝ ΤΡΙΩΝ ΧΡΟΩΝ

α΄. Περὶ Ἐπεισάκτων Μελῶν

Ἐλέχθη, ὅτι χαρακτηριστικὰ ἐκάστου τῶν ἤχων εἶναι τὸ ἀπήχημα, ἡ κλῖμαξ, οἱ δεσπόζοντες φθόγγοι καὶ αἱ καταλήξεις. Τὸ ἀπήχημα
δὲ καὶ ἰδίως αἱ καταλήξεις, ὅτι εἶναι τὰ γνωριστικὰ αὐτοῦ, διότι ἐκ
τοῦ ἀπηχήματος καὶ ἐκ μιᾶς μόνον καταλήξεως ὁ εἰδήμων μουσικὸς διακρίνει ἀμέσως τὸν ψαλλόμενον ἦχον. Καὶ τοῦτο, προκειμένου περὶ
γραμμῶν ἤχων διαφόρων τοῦ ἐνὸς ἀπὸ τοῦ ἄλλου.

'Αλλ' ὑπάρχουσι καὶ μέλη διαφόρων μὲν ἤχων, ἀλλὰ διὰ μιᾶς καὶ τῆς αὐτῆς φθορᾶς ψαλλόμενα, διακρινομένου ὅμως τοῦ ἤχου ἑκάστου ἐκ τῆς διαφορᾶς τῶν καταλήξεων αὐτῶν.

Τοιαῦτα μέλη εἰσὶ τὰ ἀργὰ καὶ σύντομα εἰρμολογικὰ τῶν ἤχων Τετάρτου καὶ Πλαγίου Δευτέρου, ὅπως καὶ τὰ κατὰ τὸν πρόλογον «Τὸν τάφον σου Σωτήρ» ψαλλόμενα τοῦ Πρώτου ἤχου, ἄτινα διὰ τῆς ἐπεισαγωγῆς τῆς τοῦ Δευτέρου ἤχου φθορᾶς ψάλλονται εἰς καθαρὸν Δεύτερον.

Τὸ μόνον ἀσφαλὲς μέσον, δι' οδ διακρίνονται ἀπ' ἀλλήλων οἱ ἡχοι, εἰς οδς ἀνήκουσι τὰ μέλη ταῦτα, τὰ καλούμενα ἐπείσακτα, εἰναι αἱ καταλήξεις αὐτῶν αἱ ἰδιότροποι, ἀτελεῖς, ἐντελεῖς καὶ τελικαί. Ἡ διάκρισις δ' αὕτη γίνεται οὐ μόνον μεταξύ των, ἀλλὰ καὶ μεταξυ ὅλων αὐτῶν καὶ τοῦ Δευτέρου ἡχου, καθ' ὄν ψάλλονται,

Ο Δεύτερος ήχος, ώς έλέχθη, καταλήξεις ποιείται, άτελείς είς τὸν Δι, ἐντελείς εἰς τὸν Βου καὶ τελικάς εἰς τὸν Δι.

Κατάληξις άτελής:

Κατάληξις ἐντελής:

Κατάληξις τελική:

Ο διὰ τῆς φθορᾶς τοῦ Δευτέρου ἥχου ψαλλόμενος Τέταρτος καταλήξεις ποιεῖται τάς ἑξῆς:

Κατάληξις άτελής:

Κατάληξις έντελής:

Κατάληξις τελική:

'Ο είρμολογικός Πλάγιος τοῦ Δευτέρου, ὁ ὡς Δεύτερος ψαλλόμενος ἔχει τὰς ἑξῆς καταλήξεις:

Κατάληξις άτελής:

Κατάληξις έντελής:

Κατάληξις τελική:

$$\Delta = | \sum_{\rho \in \chi \omega V \tau \omega} | \sum_{\kappa \sigma \sigma \mu \omega \tau \sigma} | - \sum_{\mu \in \gamma \alpha} | \sum_{\kappa \delta \in \epsilon} | \sum_{\kappa \delta$$

'Αλλὰ καὶ ὁ Πρῶτος ἡχος, τοῦ ὁποίου τό Κοντάκιον «Τόν τάφον σου Σωτήρ» ψάλλεται διὰ τῆς φθορᾶς τοῦ Δευτέρου, ἔχει καὶ οὖτος τὰς ἱδιαζούσας καταλήξεις μετὰ τοῦ χαρακτηριστικῶς ἰδιαιτέρου γνωρίσματος, ὅτι αὖται ἀτελεῖς, ἐντελεῖς καὶ τελικαὶ ἐπὶ τοῦ Δι παραγινόμεναι, ἔχουσιν ἰδιαίτερον σχῆμα ἑκάστη.

Κατάληξις άτελής:

Κατάληξις ἐντελής:

Κατάληξις τελική:

Οΰτως διὰ τῆς χαρακτηριστικῆς ταύτης διαφορᾶς τῶν καταλήξε-

ων, ὁ διδαχθεὶς καλῶς τὴν μουσικὴν καὶ ἰδίως ὁ κατέχων τὴν φωνητικὴν παράδοσιν, δύναται νὰ διακρίνη τὸν ἔνα ἦχον ἀπὸ τοῦ ἄλλου, οὐ-χὶ δέ, ὅπως ἡ ἀμάθεια καθιέρωσε, νὰ ψάλλωνται διὰ τῶν αὐτῶν μουσικῶν γραμμῶν τὰ ἐπείσακτα ταῦτα τῶν ἄνωθι ἤχων μέλη, κατὰ τὸν μᾶλλον ἀχαρακτήριστον καὶ ἀθλιέστερον τρόπον.

Εἰς τὴν τάξιν τῶν ἐπεισάκτων μελῶν ἀνάγονται καὶ τὰ κατὰ τὸν πρόλογον «Κατεπλάγη Ἰωσήφ» ψαλλόμενα Καθίσματα τοῦ Τετάρτου ἤ-χου διὰ τῆς τοῦ Νενανὰ φθορᾶς τοῦ Πλαγίου Δευτέρου, ἔχοντα καὶ ταῦτα ἰδιαίτερα σχήματα τῶν καταλήξεών των.

Κατάληξις ἀτελής:

Κατάληξις έντελής:

Κατάληξις τελική:

β΄. Περὶ τῶν τριῶν Χροῶν

Έκ ποιᾶς τινός διαιρέσεως ένὸς τετραχόρδου παράγεται τὸ Γενος, ἐκ τῆς εἰδικῆς δὲ διαιρέσεως τοῦ Γένους παράγονται αἱ Χρόαι.

'Ως είδομεν έν σελίδι 50 , οί άρχαῖοι Έλληνες πλήν τῆς άρχι-

κής διαιρέσεως τῶν τριῶν Γενῶν των είχον καὶ τὰς διὰ Χροῶν εἰδικὰς αὐτῶν διαιρέσεις. Καὶ ἡ Βυζαντινὴ μουσικὴ ἐν τοῖς πλείστοις τῶν ἤ-χων τοῦ διατονικοῦ Γένους ἰδίως ἔχει οὐκ ὀλίγας Χρόας, περὶ τῶν κυ-ριωτέρων ἐκ τῶν ὁποίων ἐγένετο ἐν τῷ οἰκείῳ τόπῳ λόγος.

'Αλλ' ὑπάρχουσι καὶ τρεῖς εἰδικαὶ Χρόαι αὕται: ৣσ, ৣσ, ——, τῶν ὁποίων ἡ πρώτη ἀνήκει εἰς τὸ χρωματικὸν Γένος, ἡ δευτέρα εἰς τὸ ἐναρμόνιον καὶ ἡ τρίτη εἰς ἀμφότερα.

΄Η πρώτη \wp είναι ή φθορὰ τοῦ Νενανὼ τοῦ Πλαγίου Δευτέρου κεκομμένη κάτωθι διὰ γραμμῆς. Αὕτη τίθεται ἐπὶ τοῦ διατονικοῦ $\stackrel{\Delta}{\wp}$, $\stackrel{\Xi}{\wp}$

ένεργούσα έντὸς τού πενταχόρδου
$$rac{\Delta}{\ddot{\Omega}} - rac{1}{2} - rac{6}{2} - rac{\pi}{q} - rac{7}{6}$$
 .

Δι' αὐτῆς χρωματίζονται οἱ φθόγγοι Γα καὶ Πα, τοῦ Βου παραμένοντος πάντοτε διατονικοῦ. Χρῆσιν αὐτῆς ποιεῖται κυρίως ὁ Τέταρτος καὶ ὁ μέσος αὐτοῦ Λέγετος, ὅπως καὶ ἔκαστος τῶν ῆχων κατ' ἐπεισαγωγήν.

Τὰ διαστήματα ταύτης είναι τὰ έξης:

καθοριζόμενα δμως άριθμητικώς καὶ άκουστικώς εν τή θεωρία μου περὶ τοῦ «Παναφμονίου» ὀργάνου.

Όταν ή χρόα αὕτη παρευρεθή εῖς τι μέλος, τότε ὁ Γα εἶναι πάντοτε μεγάλη δίεσις, ὅπως καὶ ὁ Πα. Καὶ ὅταν μὲν τὸ μέλος κατέρχηται ἐκ τοῦ Δι εἰς τὸν Βου καὶ ἐκ τούτου εἰς τὸν Νη, αἱ διέσεις αὐται εἶναι εἰς τὰς θέσεις των π. χ.

τής διέσεως του Πα μενούσης τής αὐτής κατά τε τὴν κατάβασιν καὶ τὴν ἀνάβασιν.

'Αλλ' δταν περιστρέφηται τὸ μέλος περί τὸν Βου καὶ ἐγγίζον τὸν Γα καταλήγη εἰς τὸν Βου, τότε ὁ Γα είναι διατονικὸς εἰς τὴν θέσιν του π. χ.

'Ωσαύτως, δταν τὸ μέλος βαίνη πρὸς κατάληξιν ἐπὶ τοῦ Νη μὲ τελευταίαν ἀνάβασιν εἰς τὸν Πα, οὖτος (ὁ Πα) εἴναι πάντοτε διατονικός, εἰς τὴν θέσιν του δηλονότι π. χ.

Καταλήξεις ή Χρόα αὕτη ποιεῖται ἀτελεῖς εἰς τοὺς Δι καὶ Νη, ἐντελεῖς δὲ εἰς τὸν Βου. Τελικὰς καταλήξεις δὲν ἔχει ἡ Χρόα αὕτη, διότι ἐπεισαγομένη παροδικῶς, πρὸς χρωματισμόν, λύεται ἀμέσως διὰ τῆς διατονικῆς φθορᾶς τοῦ ἥχου, εἰς τὸν ὁποῖον παρεντίθεται.

Δεσπόζοντας φθόγγους ἔχει τοὺς Δι, Βου καὶ Νη, ἐκ τῆς ἐπικρατήσεως τῶν ὁποίων ἀκούονται δύο διὰ τριῶν συμφωνίαι ἡ $\frac{\delta}{\delta}$ — $\frac{\delta}{\delta}$ καὶ ἡ $\frac{\delta}{\delta}$ — $\frac{\delta}{\delta}$ καὶ ἡ $\frac{\delta}{\delta}$ — $\frac{\delta}{\delta}$. Εἰς τοὺς διαμέσους ἐν διέσει φθόγγους Γα καὶ Πα οὐδέποτε γίνεται κατάληξις, ἀλλ' ἀείποτε, δυνάμει τοῦ νόμου τῆς ἔλξεως, κρέμανται ἕκαστος ἐκ τοῦ ὑπὲρ αὐτὸν τόνου, ποικίλλοντες ὡς πρὸς τὸ ὕψος των ἀναλόγως τῆς χροιᾶς τοῦ μέλους.

Συνηχοῦντες φθόγγοι εἰς τὰς παροδικὰς γραμμὰς τῆς Χρόας ταύτης εἶναι οἱ αὐτοὶ τοῦ Λεγέτου ὡς πρὸς τοὺς φθόγγους Δι, Βου καὶ Νη.

Διὰ τοὺς διαμέσους ἐν διέσει χρωματικοὺς φθόγγους Γα καὶ Πα ἀντίστοιχοι εἶναι διὰ μὲν τὸν Γα ὁ Πα διὰ δὲ τὸν Πα ὁ $\mathbf{Z}_{\omega}^{\bullet}$ π. χ.

'Η δευτέρα Χρόα: σ είναι ἐναρμόνιος φθορὰ τοῦ λαλα ρ μετ' ἀ-κίδος ἄνωθι.

Καὶ αὕτη ἐργάζεται ἐντὸς τοῦ πενταχόρδου $\frac{\Delta}{6\ddot{\zeta}}$ $\frac{V}{6\ddot{\zeta}}$, ἔχουσα σταθεροὺς φθόγγους τοὺς Δ ι, Πα καὶ Νη, τῶν ἄλλων δύο Γα καὶ Βου ὄντων κινητῶν. Καὶ ὁ μὲν Γα εἶναι πάντοτε μεγάλη δίεσις, ποικίλλου

σα καθ' ἔλξιν ὑπὸ τοῦ Δι, ὁ δὲ Βου ὑπερμείζων τόνος, ποικίλλων καὶ οὖτος κατὰ τὴν ἀνάβασιν καὶ τὴν κατάβασιν.

Δεσπόζοντες φθόγγοι εἰς τὴν Χρόαν ταύτην είναι ὁ Δι καὶ ὁ Νη, ὅλοι δὲ οἱ διάμεσοι είναι παροδικοί.

Καταλήξεις ποιείται ἀτελεῖς εἰς τὸν Βου, ἐντελεῖς δὲ εἰς τοὺς Δι καὶ Νη. Τελικὰς δὲν ἔχει, διότι καὶ αὕτη παρεντίθεται ἐν τῷ μέσῷ τοῦ ψαλλομένου ἥχου, λυομένη ἄμα τῇ λήξει της.

Κυρία ἀτελής κατάληξις αὐτης γίνεται ἐπὶ τοῦ Βου, οὕτως:

ότε ὁ Βου είναι ὑπερμείζων, κατὰ τι ὑψηλότερος.

'Αλλ' ὅταν διατρέχη ὁλόκληρον τὸ πεντάχορδον $\frac{\Delta}{\ddot{i}}$ $\frac{\lambda}{\ddot{i}}$ καὶ καταλήγη εἰς τὸν Νη, τότε ἡ δίεσις τοῦ Γα εἶναι βαρυτέρα, ὁ δὲ Βου σωστὸς ὑπερμείζων π. χ.

Όταν ἐκ τοῦ Νη ἀνέρχηται εἰς τὸν Δ ι πρὸς κατάληξιν ἐντελῆ, τότε καὶ οἱ δύο φθόγγοι Βου καὶ Γα εἶναι πάντοτε ὀξύτεροι π. χ.

Συνηχοῦντες φθόγγοι εἰς τὴν Χρόαν ταύτην εἰναι οἱ τοῦ ἐναρμονίου Γένους. Κυρίως ὅμως, ἐπειδὴ εἰναι παροδικὴ πρέπει νὰ σταματῷ ἡ συνήχησις, ἥ νά συνηχῇ διὰ μὲν τὸν Γα ὁ Πα διὰ δὲ τὸν Δι ὁ ὑπερμείζων Βου π. χ.

'Η τρίτη Χρόα: — είναι ή χρωματική φθορά τοῦ [εα[ες κεκομμένη διά γραμμής.

Ή Χρόα αὕτη τίθεται εἰς τοὺς φθόγγους Κε καὶ Γα καὶ ἐνεργεῖ ὡς μία πυκνὴ ὑφεσοδίεσις ౚ⁄σ, μετέχουσα τοῦ τε χρωματικοῦ καὶ τοῦ ἐναρμονίου γένους.

Όταν τίθηται ἐπὶ τοῦ Κε, χρωματικὸν ἄκουσμα ἔχει, ἐφ' ὅσον περιστρέφηται τὸ μέλος μὲ ὕφεσιν τοῦ Ζω καὶ δίεσιν τοῦ Δι π. χ.

'Αλλ' ὅταν ἐγγίζη τὸν Νη, εἴτε φθάνη μέχρι τοῦ Πα, τότε τὸ ἄκουσμα εἰναι ἐναρμόνιον ὡς ἐκ τῆς θέσεως τοῦ γ_2^{\vee} , ὅστις εἶναι ὁ ἕ-

τερος ἄκρος τῆς διὰ τριῶν μικρᾶς συμφωνίας
$$\overset{\mathsf{x}}{\overset{\mathsf{y}}{\mathsf{q}}} \overset{\mathsf{y}}{\overset{\mathsf{y}}{\mathsf{q}}}$$
.

Μόνον δ' ὅταν ἡ ἐντὸς τοῦ τετραχόρδου ἐργαζομένη γραμμὴ (Κε - Πα) δδεύη χρωματικῶς, τότε ἀπαραβάτως ἐπὶ τοῦ Κε τίθεται ἡ χρωματικὴ φθορὰ \leadsto π. χ.

×

μὲ ἄκουσμα ἐναρμόνιον. Διὰ τὸ χρωματικὸν ἄκουσμα π. χ.

"Όταν τίθηται ἐπὶ τοῦ Γα, ἔχει τὴν αὐτὴν ἐνέργειαν, ἥν καὶ ἐ-πὶ τοῦ Κε μὲ ὕφεσιν τὸν Δι καὶ δίεσιν τὸν Βου π. χ.

'Αλλ' ὅταν ἀνέρχηται μέχρι τοῦ Κε, τότε τὸ ἄκουσμα εἰναι χρωματικόν, διότι ὁ Κε εἰναι ὁ ἕτερος τῶν ἄκρων τῆς διὰ τριῶν ὑπερμείζονος συμφωνίας $\frac{r}{20}$ — $\frac{x}{a}$.

Καὶ τῆς Χρόας ταύτης ἡ συνήχησις γίνεται δι' ἀπλοῦ ἴσου ἐπὶ τοῦ φθόγγου Γα καὶ Κε, μόνον δ' ὅταν συνδυάζηται μετὰ τοῦ Πλαγίου Πρώτου, τότε ἐν ἀναλογία πρὸς τοῦτον καὶ πρὸς τοὺς παρεμβαλλομένους χρωματικοὺς ἡ ἐναρμονίους φθόγγους, συνηχοῦσιν οἱ αὐτόθι ὁρισθέντες φθόγγοι.

ΟΙ ΗΧΟΙ ΤΩΝ ΔΗΜΩΔΩΝ ΑΣΜΑΤΩΝ ΕΝ ΣΥΓΚΡΙΣΕΙ ΠΡΟΣ ΤΟΥΣ ΤΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ

Ή Έλληνική Μουσική περιλαμβάνει δύο κλάδους, τὸν ίερὸν καὶ τὸν κοσμικόν. Τὸν ἱερὸν κλάδον ἀποτελεῖ ἡ Ἐκκλησιαστική Μουσική, ἡ καλουμένη Βυζαντινή, τὸν δὲ κοσμικὸν ἡ μουσική τοῦ λαοῦ, ἤτοι τὰ δημώδη ἑλληνικὰ ἄσματα.

Τὰ δημώδη ἄσματα τροφὸν αὐτῶν ἔχουσι τὴν ἀρχαίαν καὶ κυρίως τὴν Βυζαντινὴν μουσικήν, ἐπὶ τῶν αὐτῶν ὀκτὼ ἤχων ἐκείνης στηριζόμενα καὶ τὰ αὐτὰ περίπου ἰδιώματα αὐτῶν ἀκολουθοῦντα. Μετὰ τῆς οὐσιαστικῆς ὅμως διαφορᾶς, ὅτι, κοσμικὴν χροιὰν ἔχοντα, ἀναπτύσσονται διὰ σχημάτων καὶ γραμμῶν διαφοροτρόπων καὶ ποικιλωτέρων, ποιούμενα χρῆσιν ρυθμῶν διαφόρων — τὰ χορευτικὰ ἰδίως ἐν συνεχεία μετρικῆς —, τῶν αὐτῶν σχεδὸν ρυθμῶν τῆς ἀρχαίας ἑλληνικῆς ρυθμικῆς, οὕς ἀκολουθοῦσιν ἀπαραλλάκτως.

Περί τῆς καταγωγῆς, τῆς ίστορίας, τῆς τέχνης καὶ τῶν ρυθμῶν τῆς δημώδους Μουσικῆς, ἐδημοσίευσα πλείστας μελέτας καὶ πραγματείας (5) ἔχω δ' ἐτοίμην καὶ μακρὰν ἐπ' αὐτῶν μελέτην, ἐν τῆ ὁποίᾳ

^{(5) «}Οἱ ἀρχαῖοι ἐλληνικοὶ ρυθμοὶ καὶ τὰ δημώδη ἄσματα». «Φόρμιγξ» (᾿Αθηνῶν) περίοδ. Β΄, ἔτος ΣΤον, ἀριθ. 4 - 5 - 6. 3Ι Μαΐου — 30 Ἰουνίου 1908. «Τὰ δημώδη ἐλληνικὰ ἄσματα ὑπὸ διάφορα εἶδη καὶ ἰδιώματα». Αὐτόθι. ᾿Αριθ. 19 - 20. 15 — 31 Ἰανουαρίου 1900. «Δημώδη ἄσματα Σκύρου» πρώτη καὶ δευτέρα Συλλογή. Ἐν ᾿Αθήναις 1910 καὶ 1911. «Δημώδη ἄσματα Γορτυνίας». ᾿Αθήναι 1923. «Δημώδη ἄσματα Πελοποννήσου καὶ Κρήτης». ᾿Αθήναι 1930. «Ἡ δημώδης ποίησις καὶ ἡ μουσική». Ἐφημερίς ᾿Αθηνῶν «Σκρίπ» 6 - 12 Μαΐου 1928. «Τὰ δημώδη ἔλληνικὰ ἄσματα κατὰ τοὺς ἀρχαίους, τοὺς βυζαντινοὺς καὶ τοὺς νεωτέρους χρόνους». «Νέα Πολιτική». Τεῦχος 12 Δεκέμβριος 1937, σελ. 1467 - 1472.

έρευνῶνται τὰ δημώδη ἄσματα ἀπὸ πάσης ἀπόψεως, κυρίως δὲ μελικῶς καὶ ρυθμικῶς.

Έν τῆ παρούση μελέτη θεωρῶ ἀπαραίτητον νὰ ἑρμηνεύσω τὸ θέμα τῆς ἐκ τῆς Βυζαντινῆς κυρίως μουσικῆς προελεύσεως αὐτῶν, ἦς καὶ ἀκολουθοῦσι τοὺς ῆχους, συγκρίνων τινὰ ἐξ αὐτῶν πρὸς μέλη ἐκκλησιαστικά.

'Ηχοι τῶν ὁποίων συνηθέστερον ποιοῦνται χρῆσιν τὰ δημώδη ἑλληνικὰ ἄσματα, εἰσὶν ὁ Πρῶτος, ὁ Δεύτερος, ὁ Πλάγιος τοῦ Πρώτου, ὁ Πλάγιος τοῦ Δευτέρου, ὁ Πλάγιος τοῦ Τετάρτου διατονικὸς καὶ χρωματικός, ὁ Λέγετος καὶ σπανιώτερον ὁ Τρίτος, ὁ Τέταρτος, ὁ ἐκ τοῦ Δι καὶ ὁ Βαρύς.

'Ωρισμένοι τῶν ἤχων τούτων ἰδιάζουσιν εἰς ὡρισμένα τμήματα τῆς ἑλληνικῆς γῆς, ὅπως ὁ Πρῶτος, ὁ κατ' ἑξοχὴν οὖτος ἦχος τῶν βουνῶν καὶ τῶν λαγκαδιῶν, εἰς τὴν Ρούμελην, ὁ Πλάγιος τοῦ Τετάρτου ὁ χρωματικὸς εἰς τὴν Πελοπόννησον, ὁ Λέγετος εἰς τὰς Νήσους τοῦ Αἰγαίου καὶ ἄλλοι εἰς τὴν Ἡπειρον, τὴν Μακεδονίαν καὶ ἀλλαγοῦ.

Γράφων διὰ τῆς παρούσης μελέτης μου, οὐχὶ ἱστορίαν, εἴτε μέθοδον διδασκαλίας διὰ Συλλογῆς ἀσμάτων, ἀλλὰ ποιούμενος παρατηρήσεις τεχνικὰς πρὸς ἀπόδειξιν τῆς στενῆς ταυτότητος μεταξὺ τῶν ἤχων τῆς ἐκκλησιαστικῆς μουσικῆς καὶ τῶν δημωδῶν ἀσμάτων παρατίθημι παραδείγματα τῶν δυσκολωτέρων περιπτώσεων.

Ο Τέταρτος ήχος ὁ ἐκ τοῦ Δι (Ἄγια) σπανίως ἀπαντᾶ εἰς δημώδη ἄσματα. Τὰ ὀλίγα ὅμως ταῦτα οὐδεμίαν καταλείπουσιν ἀμφιβολίαν ὅτι ὁ Τέταρτος, αὐτούσιος ἀπαντᾶ εἰς αὐτά.

Παραδείγματα ἔστωσαν τὰ έξῆς:

Έκ τῆς εἰς ήχον Τέταρτον Δοξολογίας Πέτρου Λαμπαδαρίου:

Δημῶδες «Ἡ κότα» (Ἐκ τῆς Συλλογῆς Δ. Περιστέρη) Ρυθμὸς ἐπτάσημος [Β΄ ἐπίτριτος]

Έτερον ἐκ τῆς Συλλογῆς μου τῶν Γορτυνιανῶν ἀσμάτων (σελ. 108) «Τὰ κοριτσάκια τοῦ Μωριᾶ».

Ρυθμός έπτάσημος [Β΄ ἐπίτριτος]

$$\frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} = \frac{$$

'Ωσαύτως αὐτούσιος ἀπαντῷ εἰς δημώδη ἄσματα ὁ Τέταρτος ἐκ τοῦ Βου, ὁ Μέσος δηλ. τοῦ Τετάρτου, ἤ Λέγετος. Παράδειγμα:

Έκ τῆς Συλλογῆς ἀσμάτων Σκύρου

«'Αποκριάτικος χορευτικός»

Ρυθμός δκτάσημος [Δάκτυλος καὶ Σπονδεῖος]

$$\frac{\delta}{\lambda}$$
 'Aη τὸ ος $\frac{\varepsilon}{\varepsilon}$ χα α α σε ε πέ ε ρ δι

κα στὰ δά α ση τὴ η ην γυ υ ρε ε εύ

 $\frac{\varepsilon}{\varepsilon}$ (ἐπωδός) $\frac{\varepsilon}{\varepsilon}$ κι'ὰ πά σὲ πέ τρ' ἀ μὰ α αν $\frac{\delta}{\varepsilon}$ $\frac{\delta}{\varepsilon}$ κι'ὰ πὰ σὲ πέ τρα πέ ε ε τα ξε $\frac{\delta}{\varepsilon}$

Σπανίως ώσαύτως εἰς δημώδη ἄσματα ἀπαντῷ ὁ διατονικὸς Βαρὺς ἡχος. Παράδειγμα ἕν τοῦτο :

Έκ τῆς εἰς ἡχον τοῦτον συντόμου Δοξολογίας ὅστις, ὡς ἐκ τῆς μίξεως μετὰ τοῦ Πρώτου ἡχου, καλεῖται Πρωτόβαρος:

$$z$$
 Δο ξα σοι τω δει ξαν τι το φως $\ddot{\alpha}$ δο ξα εν

^{* &#}x27;Η ἐπωδὸς σὲ ρυθμὸ δωδεκάσημο, Τροχαΐον Σημαντόν.

$$υ$$
 $ψ$ ι ι $σ$ τοις $Θ$ ε $ω$ $\ddot{ο}$ και $ε$ $π$ ι $γ$ ης $ε$ ι $ρ$ η η $ν$ η $\ddot{σ}$ $ε$ ν $αν$ $θρω$ $π$ οις $ε$ υ $δ$ ο κι ι ι $α$

Δημῶδες «Ή παπαρούνα»

Ρυθμός έπτάσημος. [Β΄ ἐπίτριτος]

Ἰδιαιτέρως χαρακτηριστικὰ είναι καὶ τὰ εἰς ήχον Πλάγιον τοῦ Πρώτου ἀδόμενα ἄσματα. Τινὰ τούτων δύναταί τις νὰ εὕρη ἐν τῇ Συλλογῇ μου δημωδῶν ἀσμάτων Σκύρου, ὅπως τοὺς κώμους «Τοῦ Λούκα», τοῦ «Κορέλη», τὸν «Ξανθουλιάνικο» καὶ τὸν «Συκαμίνου». ᾿Αλλ᾽ ἐνταῦθα παραθέτω ἔν ἄσμα γαμήλιον τῆς Μυτιλήνης καὶ ἔτερον τῆς Σκύρου, τῶν ὁποίων οὐ μόνον ὁ ήχος είναι ὁ αὐτὸς τῶν ἐκκλησιαστικῶν μελῶν, ἀλλὰ καὶ ἕν ἰδιαίτερον ἰδίωμα τοῦ Πλαγίου Πρώτου, πλαγιασμὸς δηλ. τοῦ μέλους ἐκ τοῦ Κε πρὸς τὸν Πα, είναι κοινὸν καὶ τοῦτο.

Έκ τῶν τοῦ «Ἐπιταφίου Θοήνου» ἐγκωμίων τὸ «Ἡ ζωὴ ἐν τάφω».

ε \ddot{q} και αγ γε ε λων στρα τι ι αι αι ε ξε πλη η ττο ο ον το \ddot{q}

Έτερον ἐκ τῶν ᾿Αποστίχων (τῶν ᾿Αναστασίμων) τοῦ Πλαγίου Πρώτου ήχου.

ἄ Νυ γει ει σης σου της πλευ ρας Ζω ο δο τα κρουνους α φε σε ως ἢ πα σιν ε ξε βλυ σας ζω ης και σω τη ρι ι ας ἢ ····· ἢ οι κη σας τα φω δε η μας η λευ θε ρω σας ἢ συ να να στη σας σε αυ νω εν δο ξως ως Θε ος ἢ

Δημώδες γαμήλιον Μυτιλήνης Ρυθμός τετράσημος [Σπονδεΐος]

α τρι αν τά φυλ λα μα δί ι

Έτερον τής περιφερείας Κυζίκου (Προποντίδος) Ρυθμός έπτάσημος [Β΄ ἐπίτριτος]

Έτερον τῆς νήσου Σκύρου «'Ο χρυσοπράσινος ἀητός»
Ρυθμὸς τετράσημος [σπονδεῖος]
Οἱ δύο χρόνοι ὡς εἰς

α σι ι ι νε κα λὲ εμ' ὰ α η τὲ
ε ε δη τι ε χει εις καὶ αι μα
ρα θης η χρυ υ υ υ σο πρά σι νε ε

'Αλλ' ὑπάρχουσι καὶ ἄλλα τῶν ἤχων ἰδιώματα κοινὰ μεταξὺ τῶν ἐκκλησιαστικῶν ἤχων καὶ τῶν δημωδῶν ἀσμάτων. Τούτων ἕν οὐσιωδέστατον εἶναι τὸ ἑξῆς:

Έν τῆ ἐκκλησιαστικῆ μουσικῆ ὑπάρχει τὸ Κοντάκιον τῶν Χριστουγέννων «Ἡ Παρθένος σήμερον» εἰς ἡχον Τρίτον, βαίνον ἐν ἀρχῆ κατὰ τὸν Μέσον ἡχον τοῦ Τρίτου ὅστις εἰναι ὁ Πλ. Πρῶτος καὶ καταλῆγον εἰς τὸν Παράμεσόν του, ὅστις εἰναι ὁ Πλ. τοῦ Τετάρτου. Ἡ ἐμμονὴ τοῦ μέλους του εἰς τὸν Μέσον (π/q) μετὰ τὰς δύο ἐν ἀρχῆ καταλήξεις εἰς τὸν Νη, δίδει τὴν ἐντύπωσιν ὅτι ὁ ἡχος εἰναι Πρῶτος, περὶ τὸ τέλος δὲ Πλ. Τετάρτου. Ἐναλλάσσονται τουτέστιν εἰς ἕν καὶ τὸ αὐτὸ μέλος δύο ἡχοι, ὧν τὸ ἄκουσμα ἐξόχως γλυκὸ καὶ εὔρεστον, καίτοι οἱ ἡχοι Πρῶτος καὶ Πλάγιος τοῦ Τετάρτου ἔχουσι βάσεις τοὺς ἄκρους τῆς διὰ δύο μείζονος διαφώνου συμφωνίας Νη — Πα.

Η Παρ θε νος ση με ρον εξ τον Υ

πε ρου σι ον τι ι ι κτει η και η γη το

σπηλαι ον εξ τω α προ σι τω προ σα α α

γει η Αγ γε λοι με τα ποι με ε ε νων εξ δο

ξο λο γου ου σι η Μα γοι δε με τα α στε

ε ε ρος ο δοι πο ρου ου ου σι η δι η μας

γαρ έ γεν νη η θη εξ παι δι ον νε ον ο προ αι ω

νων θε ος

ሗ

'Ιδοῦ ἐν παραβολή πρὸς αὐτὸ δύο δημώδη ἄσματα: Ρυθμὸς τρίσημος [Τρίβραχυς μικτὸς μετ' 'Ιάμβου καὶ Τροχαίου]

α νι ι στὸ βου ου νὸ [ὤχ μπρέ] στο βου ου ου νο [ἄῖ ντε] δὲ εν εἰν στὸ ο ο πε ε ε ε μα α α α κλά ψε ε ε με] Τ΄ κιὰ α πο ο θα α με ε νο ο γρά ψε ε ε με

"Ετερον «'Ο ποταμός»

Ρυθμός έπτάσημος [Β΄ ἐπίτριτος]

 $\frac{\pi}{q}$ Πο τα α α α $\frac{\pi}{q}$ $\frac{\pi}{q}$

$$\frac{1}{\kappa \nu} \sum_{\nu} \frac{1}{\mu \alpha} \frac{1}{\tau i} \int_{\xi \in i \zeta} \xi ||$$

Ύπάρχει ὡσαύτως ἔτερον Κοντάκιον, τὸ τῶν Θεοφανείων «Ἐπεφάνης σήμερον», εἰς Λέγετον, ἥτοι εἰς τὸν μέσον τοῦ Τετάρτου ἐκ τοῦ Βου, παρεμφερῆ πρὸς τὴν τοῦ «Ἡ Παρθένος σήμερον» ἀκολουθοῦν θεωρίαν. ᾿Αρχόμενον ἐκ τοῦ Βου, κατέρχεται δὶς εἰς τὸν Πα, δστις εἰναι ὁ παράμεσος (ὁ Πλ. τοῦ Α΄) τοῦ Κυρίου Τετάρτου. ᾿Αφ᾽ οὖ δὲ δείξη τὸν Κύριόν του διὰ τῆς καταλήξεως «ἐφ᾽ ἡμᾶς» ἐπὶ τοῦ Δι καταλήγει εἰς τὸν Πλάγιόν του, τὸν Πλάγιον Τετάρτου δηλονότι (Νη).

Καὶ εἰς τὸ είδος τοῦτο τῶν ἀκαταλήκτων μελῶν ὑπάρχουσιν ἀντίστοιχα καὶ εἰς τὴν δημώδη μουσικήν, τῶν ὁποίων ἄλλα μὲν ποιοῦνται τελικὴν κατάληξιν εἰς τὸν Νη, ἄλλα δὲ εἰς τὸν Πα.

'Ιδοὺ δύο ἀντίστοιχα δημώδη ἐκ τῆς Συλλογῆς μου τῆς Σκύρου. Έν καταλῆγον εἰς τὸν Νη (ἐλεύθερον ρυθμοῦ).

«Κώμος» Αὐλωνιτιάνικος

Έτερον καταλήγον είς τὸν Πα, «χορευτικόν τῶν ᾿Απόκρεω». Ρυθμὸς τετράσημος [Σπονδεῖος]

Περιέργως εἰς τὰ δημώδη ἄσματα συμβαίνει καὶ τὸ ἀντίθετον. Ἐν ῷ δηλ. ἄρχονται μὲ Πλάγιον τοῦ Τετάρτου (διατονικόν) καταλήγουσιν εἰς τὴν βάσιν τοῦ Πρώτου, τὸν Πα.

'Ιδοῦ ἔν ἄσμα τοῦ τρόπου τούτου.

«Γαμήλιον Πελοποννήσου»

Ρυθμός έπτάσημος [Β΄ ἐπίτριτος]

$$\frac{1}{1} || \frac{1}{\kappa \alpha i} || \frac{1}{\mu \pi \hat{\eta}} || \frac{1}{\kappa \epsilon} = \frac{1}{\kappa \alpha i} || \frac{1}{\kappa i$$

Όλα τὰ τοῦ εἴδους τούτου ἄσματα τὰ καταλήγοντα εἰς ἄλλην βάσιν ἀπὸ τῆς ἀρχικῆς των, καλοῦνται έτεροκατάληκτα.

Τοιούτου είδους είναι πάντα σχεδὸν τὰ εἰς ἡχον Πλάγιον Τετάρτου χρωματικὸν ἀδόμενα ἐπιτραπέζια τῆς Πελοποννήσου, τὰ καλούμενα«Κλέφτικα», τὰ ὁποῖα στερεοτύπως ἐκ τοῦ χρωματικοῦ Νη καταλήγουσιν εἰς τὸν χρωματικὸν Πα. Παράδειγμα ἔν ἔστω τὸ ἑξῆς:

Έλεύθερον ρυθμοῦ

^{*} Συλλογή Γορτυνιακών άσμάτων, σελ. 60.

Πλήν τῶν ἐτεροκαταλήκτων ὑπάρχουσιν καὶ δίη χα, τῶν ὁποίων τὸ πρῶτον ήμισυ ἀνήκει εἰς ἕνα ήχον τὸ δὲ δεύτερον εἰς ἔτερον, Παράδειγμα ἔστω τὸ ἑξῆς Γαμήλιον παίγνιον τῆς Πελοποννήσου, τοῦ ὁποίου τὸ πρῶτον μέρος εἰναι ήχος Τρίτος, τὸ δὲ δεύτερον Λέγετος.

Ρυθμός τετράσημος

Κατὰ τὸ ἐναρμόνιον τετράχορδον το Δ καθ ά πο χο παθ' δ βαίνουσιν οἱ ἡχοι Τρίτος καὶ Βαρὺς ἐναρμόνιος, ἄδονται πολλὰ δημώδη ἄσματα. Εἰναι ὅμως δύσκολον νὰ καθορισθῆ τὶς τῶν δύο ἀνωτέρω ἡχων εἰναι ὁ ἡχος των. Διότι αἱ γραμμαί των ἀκολουθουσαι σχήματα καὶ καταλήξεις ἰδιοτύπους, δὲν παρέχουσι τὴν πρὸς διάκρισιν εὐκολίαν, τὴν ὁποίαν εὐρίσκει τις εἰς τὰς καταλήξεις τοῦ Τρίτου ἡχου καὶ τοῦ Βαρέως, ὅπως αἱ δύο αὐται λ. χ. χαρακτηριστικαὶ γνωριστικαί των.

Τρίτου:

$$\frac{\chi}{q}$$
 προ σχες τη φω νη της δε η σε ω ως μου $\frac{1}{q}$

Βαρέως:

$$\Delta$$
 π poscesth $\phi\omega$ vh h the $\delta\epsilon$ h se ω ω hou 12

Ο ήσκημένος όμως την άκοην δύναται, αν γνωρίζη καλώς τούς

ήχους τῆς Βυζαντινῆς Μουσικῆς, νὰ διακρίνη ἐκ τοῦ ἤθους τοῦ ἄσματος τὸν Τρίτον ἀπὸ τοῦ Βαρέως καὶ ἐξ ἑνὸς ἀκόμη δεσπόζονος φθόγγου ἐν αὐτῷ π. χ.

Τὸ ἐπιτραπέζιον δημῶδες ἄσμα τῆς Κρήτης «'Ο πόθος τοῦ Κρητὸς ἐπαναστάτου» ἔχει ἡθος τοσοῦτον ἀνδρικὸν ὥστε ὁ ἀκούων τοῦτο δὲν δυσκολεύεται νὰ ὁρίση ὡς ἡχον του τὸν Τρίτον, ἄν μάλιστα προσέξη εἰς τὴν συχνὴν ἐπανάληψιν τοῦ φθόγγου: Κε καὶ εἰς τὴν κυριαρχοῦσαν διὰ τριῶν ὑπερμείζονα συμφωνίαν Γα — Κε.

Καὶ τὸ ἐπόμενον ὅμως, τῆς Κρήτης ὡσαύτως, ἄσμα, ἔχει τοσοῦτον ἀνδροπρεπῆ χαρακτῆρα, ὡστε λαμβανομένης ὑπ' ὄψιν καὶ τῆς ἀναπτύξεως αὐτοῦ ἐντὸς τοῦ ἐναρμονίου τετραχόρδου $\sqrt{\frac{1}{12}}$ καὶ τῆς ἐκ τοῦ κάτω Νη $\binom{1}{2}$ πρὸς τὸν $\binom{1}{2}$ ἄνοδόν του, ἡμπορεῖ χωρὶς δισταγμὸν νὰ όρισθῆ ὡς ἦχος του ὁ Βαρύς.

«'Ο Λεβέντης»

Ρυθμός τετράσημος
Τ΄ Σὲ πε ρι βό λι στὸ ο για α α λὸ ο ο

Καὶ μίαν ἔτι λεπτομέρειαν χαρακτηριστικήν προσθέτω εἰς ἀπόδειξιν τῆς ταυτότητος τῶν ἐκκλησιαστικῶν καὶ δημωδῶν ἤχων.

Ο Πλάγιος τοῦ Πρώτου ήχος εἰς τὰ στιχηραρικά του μέλη κλπ. τελικὴν κατάληξιν πρὸς παῦσιν ποιεῖται εἰς τὸν φθόγγον Δι $\begin{pmatrix} \Delta \\ \ddot{\mathbf{q}} \end{pmatrix}$ Π.χ. τὸ τέλος τοῦ ἐν τοῖς ἀνωτέρω παρατεθέντος ἐγκωμίου τοῦ Ἐπιταφίου «Ἡ ζωὴ ἐν Τάφω» καταλήγει οὕτω:

'Ιδοῦ καὶ δημῶδες ἄσμα τῆς Κρήτης ὡσαύτως, Γαμήλειον, ἐκ τοῦ Κε, ὡς τὸ «'H ζωὴ ἐν Τάφῳ», ψαλλόμενον καὶ καταλήγον εἰς τὸν $\overset{\Delta}{\ddot{\wp}}$, ἀφ' οὖ δείξη τὴν ὕφεσιν τοῦ Ζω, ἔξωθεν ὑπακουομένης καὶ τῆς διέσεως τοῦ $\overset{\Gamma}{\dot{\wp}}$.

Ρυθμός τετράσημος [Σπονδεΐος] (οἱ δύο χρόνοι ὡς εἰς)

Έν τέλει παρατίθημι ἕν ἐξόχως χαρακτηριστικὸν ἄσμα τῆς Πελοποννήσου, ἐκ τῆς ἀνεκδότου Συλλογῆς τοῦ ἐν Μαγουλιάνοις μουσολήπτου φίλου μου κ. Κωνσταντίνου Παπαναστασίου. Τὸ χορευτικὸν τοῦτο ἄσμα ἀδόμενον καὶ χορευόμενον πρὸς ρυθμὸν ἐξάσημον, ἀνάγεται εἰς τὸν Τρίτον ἦχον καὶ καταληκτικῶς προσομοιάζει πρὸς τὸ τῆς Ὑπαπαντῆς μεγαλυνάριον τῆς Θ΄ ἀδῆς «Θεοτόκε ἡ ἐλπίς» κατά τε τὸ μέλος καὶ τὸν ρυθμὸν αὐτόν. Ἰδοῦ ἀμφότερα ἐν παραβολῆ.

'Ασμα Γορτυνίας «Τῆς 'Ωρηᾶς τὸ Κάστρο»
Ρυθμὸς ἑξάσημος [Χορίαμβος]

Ἐπὶ τοῦ ζωτικοῦ τούτου ζητήματος τῆς ταυτότητος τῶν ἤχων καὶ τῆς μελικῆς χροιᾶς ἐκκλησιαστικῶν καὶ δημωδῶν μελφδιῶν, ἀμφοτέρων προερχομένων ἐκ τῆς ἀρχαίας ἑλληνικῆς Μουσικῆς, μετὰ μεγίστης δυσφορίας θὰ παρεμβάλω μίαν παρένθεσιν, καθόσον ἡ σοβαρότης αὐτοῦ δὲν ἐπιτρέπει παρεμβολὰς γνωμῶν ἀσυστάτων καὶ παιδαριωδῶν. Ἐπειδὴ δὲ ἐπ' αὐτοῦ ἡσχολήθησαν τινὲς μουσικῶς ἀνάπηροι, ἴνα μὴ καὶ τι ἄλλο εἴπω, παρεισάγω τὴν παρένθεσιν ταύτην ἐξ ἀφορμῆς Συλλογῆς τινὸς τραγουδιῶν τῆς Ρούμελης τῆς κυρίας Μέλπως Μερλιέ, ῆτις, ἐκμεταλευθεῖσα τὴν πρὸς αὐτὴν διδασκαλίαν μου, ἄνευ μάλιστα οίασδήποτε ἀμοιβῆς, ἐνόμισεν πρέπον ἐν τῷ προλόγω της νὰ ἐπικρίνη (!) τὸν καθοδηγήσαντα αὐτὴν καὶ πρὸς αὐτὴν ἔτι τὴν διευθέτησιν τῆς ἐν λόγω Συλλογῆς της. Ἦλλως, πῶς θὰ ἐπαλήθευεν ἐκεῖνο, τὸ ὁποῖον ἐν τῷ ἀρχαιότητι εἴπεν ὁ ἀνάχαρσις πρὸς τὸν Σόλωνα, ὅτι «ἐν Ἑλλάδι λέγονσιν οί σος οὶ καὶ κρίνονσιν οί ἀμαθεῖς;»

Ακριβῶς λοιπὸν ἐκεῖνο, τὸ όποῖον μετὰ δυσφορίας παρεισάγω ἐκ τῶν τόσων ἄλλων ἀσυστάτων τῆς διαληφθείσης Συλλογῆς, εἶναι τὸ ζήτημα «προσαρμογῆς τοῦ δημοτικοῦ τραγουδιοῦ εἰς τὸ βυζαντινὸ μουσικὸ σύστημα».

Μεθ' ὅλης τῆς μαλλιαρικῆς χάριτός της ἡ ἐν λόγῳ κυρία λέγει: «Μιλῶντας λοιπὸν γιὰ τὰ τραγούδια εἶναι σφάλμα νὰ μεταχειριζώμαστε ὅρους τῆς Βυζαντινῆς, ἀφοῦ, στὴ μιὰ καὶ στὴν ἄλλη μουσική, δὲ λὲν τὸ ἴ-διο πρᾶμα». Καὶ ἀλλαχοῦ: «Εἰς τὸ δημοτικὸ τραγούδι δὲν ἔχομε ἤχους, ἀλλὰ τρόπους». Καὶ μὲ περισσὴν ἐπιπολαιότητα ἐξαπολύει τοὺς μουσικοὺς ἀφορισμούς της, ὁρίζουσα τούς τρόπους τῶν τραγουδιῶν της, καὶ κατατάσσουσα αὐτὰ εἰς τρόπον τοῦ Ρε, τοῦ Λα, τοῦ Ντο κλπ. "Οπου δέ, τὸ κοινῆ λεγόμενον «τὰ βλέπει σκοῦρα», καταφεύγει εἰς τὴν Βυζαντινὴν μουσικήν, λέγουσα μετὰ μελαγχολίας «Γιὰ τοὺς χρωματικοὺς τρόπους θ' ἀναφερθοῦμε στὴ Βυζαντινὴ μουσικὴ γιατὶ τίποτα παρόμοιο δὲν βρίσκουμε στὴν εὐρωπαῖκή».

Τὴν προσοχὴν τοῦ ἀναγινώσκοντος τὰς γραμμάς μου ταύτας δὲν διαφεύγει ὑποθέτω τὸ θάρσος τῆς ἀμαθείας, ἥτις, μουσικὴν ἑλληνικὴν ἔχουσαν ὅλα τὰ τεχνικὰ στοιχεῖα, πλεονάζοντα μάλιστα ἐν συγκρίσει πρὸς τὴν εὐρωπαϊκήν, νὰ τὴν ἐμφανίζη ὡς θεραπαινίδα τοῦ Ρε καὶ τοῦ Ντο, διότι δὲν εἴναι εἰς θέσιν, ἄτε ὁλοτελῶς στερουμένη ἀντιλήψεως, νὰ τακτοποιήση τὰς σκέψεις της, περὶ πολλὰ ἄλλα μεριμνῶσα καὶ τυρβάζουσα, ἐν ῷ, ἑνὸς καὶ μόνου ἔστὶ χρεία: γνώσεως καὶ εἶλικρινείας.

Κλείων τὴν ἀνιαρὰν ταύτην παρένθεσιν, ἐπανέρχομαι εἰς τὸ θέμα μου, διὰ νὰ καταλήξω μὲ τὴν ἑξῆς παρατήρησιν.

Ή δημώδης έλληνική μουσική, κοσμικόν προορισμόν έχουσα, άποτελεί δικαίως τὸ ἔτερον σκέλος τῆς ἐν γένει ἐλληνικῆς μουσικῆς, οὖσα τέχνη ἐφάμιλλος τῆς ἐκκλησιαστικῆς Βυζαντινῆς, ὑπὸ ἰδίωμα δμως μελικόν, ἔχον ἴδια μουσικὰ σχήματα, ἰδιαιτέρας χροιᾶς καὶ μορφῆς μουσικὰς γραμμάς, πλοῦτον ρυθμικόν ἀμύθητον καὶ ἐν γένει οὖσα ἰκανὴ νὰ ἐξωτερικεύση πᾶν αἴσθημα τοὺ ἑλληνικοῦ λαοῦ διά τε τοῦ ἄσματος καὶ τῶν χορῶν της.

'Ελευθεριωτέρα κατὰ πάντα οὖσα, ἐλευθεριωτέραν ἔχει καὶ τὴν ἀρμονικὴν συνήχησίν της, ἥτις ἀκολουθεῖ τοὺς αὐτοὺς κανόνας, οὕς καὶ οἱ ἡχοι τῆς ἐκκλησιαστικῆς μουσικῆς.

'Αλλ' ἐπειδὴ ἡ δημώδης μουσικὴ ἐκτελείται τῷ συνοδείᾳ καὶ ὀργάνων καὶ δὴ καὶ διὰ πλήρους ὀρχήστρας, ἡ ἐνορχήστρωσις τῶν δημωδῶν ἀσμάτων καὶ τῶν ἐπ' αὐτῶν εἰδικῶν συνθέσεων, ἡ χρῆσις, ἡ τεχνοτροπία καὶ ἡ ἀνάπτυξις αὐτῶν ἐξαρτῶνται ἐκ τῆς γνώσεως τῶν νόμων καὶ κανόνων τῆς ἐλληνικῆς μουσικῆς, οὐχὶ δ' ἐκ μόνης τῆς ἐφαρμογῆς τῶν θεωρητικῶν καὶ ἀρμονικῶν κανόνων τῆς εὐρωπαϊκῆς, ὡς ὑπολαμβάνουσιν οἱ Έλληνες συνθέται εὐρωπαϊκῆς, μὲ ψιχία τινά ἐξ ἀσμάτων ἑλληνικῶν, ὡς ἐμβαλώματα παρεμβαλλόμενα, οἴτινες συνθέται, παντελῶς ἀμύητοι ὄντες εἰς τὴν τέχνην τῆς ἑλληνικῆς μουσικῆς, πλανῶσι τὸν κόσμον καὶ ἰδίως τὸν ἑλληνικὸν λαόν, ἰσχυριζόμενοι, ὅτι διὰ τῶν συνθέσεων αὐτῶν δημιουργοῦσιν ἐλληνικὴν μουσικήν. Ἐπειδὴ δὲ αἱ συνθέσεις των, οὐδεμίαν ἐπίδρασιν ἔχουσιν ἐπὶ τῆς ἑλληνικῆς ψυχῆς, ὡς τελείως ξένον, ἀποκαλοῦσιν αὐτὸν μουσικῶς ἀπαιδαγώγητον, αὐτοὶ ἐπαγγελλόμενοι τὴν διαπαιδαγώγησίν του, ἤτοι τὸν μουσικὸν ἐκφραγκισμόν του! 'Οποία πλάνη!!!

Δείγματα τινά άρμονικής συνηχήσεως δημωδών άσμάτων παρατίθενται εν τῷ τέλει τής παρούσης μελέτης*, ἐκ τῶν ὁποίων ὁ ἀναγνώστης λαμβάνει πλήρη ὁπωσοῦν ἰδέαν τῶν κυριωτέρων καὶ ἐπικρατεστέρων εἰς τὴν δημώδη μουσικὴν ήχων, ὅπως ὁ Πρῶτος, ὁ Πλάγιος τοῦ Τετάρτου, ὁ χρωματικὸς κλπ. Πλήρους ὅμως ἐναρμονίσεως καὶ ἐνορ-

Δέν εύρέθησαν μεταξύ των χειρογράφων τής παρούσης έργασίας καὶ γιαυτό δὲν καταχωρούνται.

χηστρώσεως αὐτῶν καὶ τῶν ἐπὶ ἐκκλησιαστικῶν μελῶν καὶ δημωδῶν ἀσμάτων συνθέσεών μου ἰδέαν δύναται νὰ δώση ἡ πληθὺς αὐτῶν, ἥτις δὲν γνωρίζω ἄν ποτὲ θὰ ἴδη τὸ φῶς, ἀλλὰ τῆς ὁποίας οὐκ ὀλίγα ἐκτελεσθέντα ἐν διαλέξεσι καὶ συναυλίας ἐν τῇ ἀλλοδαπῇ ἐκίνησαν τὸ ἐνδιαφέρον τῶν καλλιτεχνικῶν κύκλων, μέχρι τοῦ σημείου νὰ ἐκφρασθῷ ἡ γνώμη, ὅτι ἡ ἑλληνικὴ μουσικὴ εἰναι ἀξία νὰ καταλάβη ἐν τῇ διεθνεῖ μουσικῇ προόδῳ θέσιν ἰδιαιτέρας Σχολῆς, παραλλήλως πρὸς τὴν Γερμανικήν, τὴν Γαλλικὴν καὶ τὴν Ἰταλικήν.

Έγραφον εν Νέα Σμύρνη κατά τοὺς μῆνας Ἰούλιον καὶ Αὕγουστον τοῦ 1941.

K. A. Ψ[AXOΣ]

ΠΙΝΑΞ ΤΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΕΙΣΑΓΩΓΗ τοῦ ἐπιμεληθέν	-	-				-11	•
						ελὶς	11
ΠΙΝΑΚΕΣ		•	•			>>	41 - 42 - 43
прооіміон		•	•			>>	45
ME	ΡΟΣ	Γ	ΙΡΩ	то	N		
Παραγωγή τῶν τρόπων τῶν	, ἀρχα	ίων	καὶ	τῶν	, Ή·		
χων τῆς	Βυζαν	ντιν:	ῆς Μ	lovo	ικῆς	>>	49
Συμφωνίαι						»	52
Συμφωνίαι καὶ συστήματα						»	55
Γένη τῆς Μουσικῆς						»	56
Περὶ ὑποδιαιρέσεως τῶν "Η							
τινούς και περί				-	-	>>	58
Συγχορδίαι και Δεσπόζοντι						»	62
Περὶ ἔλξεως						>>	77
Περὶ άρμονικής συνηχήσει	υς					»	8
MEF	ΟΣ	Δ	EY1	EP	ON		
Οἱ ὀκτώ ἤχοι τῆς Βυζαντιν	νῆς M	ουσ	ικῆς			»	89
— Ήχος Πρῶτος						»	89
 ΤΗχος πλάγιος τοῦ Πρά 	του					»	95
— Ἡχος Τέταρτος						>>	103
 Ηχος πλάγιος τοῦ Τετά 	άρτου.					»	112
- Ἡχος Τρίτος						>>	12:
— Ἡχος Βαρὺς						>>	12
— Ἡχος Δεύτερος						»	143
ΤΗχος πλάγιος τοῦ Δευ	τέρου					»	154
	EPO	L	171	10	IA		
Περί των έπεισάκτων μελώ	ν					»	16

Περί τῶν τριῶν Χροῶν	»	170
ΜΕΡΟΣ ΤΕΤΑΡΤΟΝ		
Οί Ήχοι τῶν Δημωδῶν ἀσμάτων ἐν συγκρίσει		
πρός τούς τῆς Ἐκκλησιαστικῆς Μουσικῆς	»	179
Time of the section of the section		100

