

Crop simulation models evaluation

Gianni BELLOCCHI

Grassland Research Ecosystem Unit - French National Institute for Agricultural Research Clermont-Ferrand, France

28 April 2015 Sassari (Itay)

Agroecological system and modelling process

Model evaluation

Model evaluation (validation + verification):

action in which the quality of a mathematical model for specific objectives is established

Model evaluation components

Deliberative process in model-based climate change studies

Bellocchi et al. (2006)

Rivington et al. (2007)

Bellocchi et al. (2015)

A Review of Methodologies to Evaluate Agroecosystem Simulation Models

F. MARTORANA and G. BELLOCCHI

$CRM = \frac{\sum_{i=1}^{n} O_{i} - \sum_{i=1}^{n} P_{i}}{\sum_{i=1}^{n} O_{i}}$ $MAE = \frac{\sum_{i=1}^{n} |P_{i} - O_{i}|}{n}$ $RMSE = \int_{1}^{1} \frac{\sum_{i=1}^{n} (P_{i} - O_{i})^{2}}{n}$

Some metrics

non-parametric
$$MdAE = median_{i=1,...,n} |P_i - O_i|$$

Richter et al. (2012)

Error Indices

□Correlation-based

Measures

■ Dimensionless

70

Setting of thresholds

Performance measure	Unit	Value range and purpose	Reliability criteria
Coefficient of determination (R ²) of the linear regression estimates versus measurements	dimensionless	0 (absence of fit) to 1 (perfect fit): the closer values are to 1, the better the model	> 0.8
Willmott (1982) index of agreement (d)	dimensionless	0 (absence of agreement) to 1 (perfect agreement): the closer values are to 1, the better the model	> 0.8
Mean absolute error over the mean of the measured values (MAE(%))	%	0 (optimum) to positive infinity: the smaller MAE(%), the better the model performance	< 20

Key issues and factors

Kov validation issues	Major factors to investigate Modelling Model Model Modelling				
Key validation issues	Modelling	Model	Model	Model	Modelling
	objective	inputs	outputs	tructure	d onditions
Validation_purpose	X	4	_ X _ ı	1	X
Robustness of results			X	1	X
Interpretation of		- X F	$-\overline{\Lambda}$	<u> </u>	4
phenomena — — —			!	<u> </u>	<u>.</u> ,
Model comparison				<u> -</u> _X -	
Model predictions	x		X	<u> </u>	- x -
Model complexity -		- x -		- X -	
Data accuracy		X	X	1	1
Time histories		. !	X		1

Fuzzy-logic based indicators

Robustness of a model

A robustness measure would account for model performance stability over a wide range of conditions (single site versus multiple sites)

How the variability of model performance can be quantified with the variability of conditions?

Index of robustness

$$I_R = \frac{\sigma_{EF}}{\sigma_{SAM}}$$
 (0, best; +\infty, worst)

Modelling efficiency

$$EF = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O})^2} \text{ (-∞, worst; 1, best)} \qquad SAM = \frac{Rain - ET_0}{Rain + ET_0} \text{ (-1, +1)}$$

Synthetic Agro-Meteorological Indicator

$$SAM = \frac{Rain - ET_0}{Rain + ET_0} \quad (-1, +1)$$

Confalonieri et al. (2010)

Synthetic indicators

Aggregation rules: fuzzy-logic based weighing system

Non-dimensionality

Lower and upper bounding

(best) 0 – 1 (worst)

I. Agreement

- Correlation coefficient
- Index of agreement
- Probability of equal means

II. Complexity

- Ratio of relevant parameters
- Parameters-agreement criterion

III. Stability (robustness)

Index of robustness

Hindrances to overcome: thresholds and weights

0.1250

0.2174

0.0313

C. d'Agogna

Rice simulations:

above-ground biomass at maturity

Three models: CropSyst (simple), WARM (intermediate), WOFOST (complex)

MSE	M1	M2	M3
C. d'Agogna	3.26	1.86	2.42
Vercelli	2.93	1.35	1.57
Mortara	1.66	0.84	0.94
Rosate	0.97	4.96	6.75
AIC	M1	M2	M3
C. d'Agogna	34	37	79
C. d'Agogna Vercelli	34 33	37 34	79 73
0 0			
Vercelli	33	34	73

Complexity

Robustness

Vercelli	0.1070	0.0853	0.1372	
Mortara	0.2188	0.0000	0.2174	
Rosate	0.0313	0.2284	0.2388	
MQI _m	0.0750	0.1940	0.3356	
EF	M1	M2	M3	
C. d'Agogna	0.90	0.95	0.93	
Vercelli	0.92	0.97	0.96	
Mortara	0.96	0.98	0.98	
Rosate	0.92	0.62	0.48	
I_R	0. 16	1.24	1.71	

Wheat simulations:

above-ground biomass at maturity

Model	Aboveground biomass at maturity: performance metrics, modules and indicator					
Model	$\overline{P(t)}$	$ar{r}$	\overline{d}	$\overline{R_p}$	$\overline{w_k}$	I_R
M1	0.23	0.46	0.64	0.32	1.99E-13	65.4
M2	0.20	0.46	0.60	0.28	2.66E-11	6.0
M3	0.01	-0.25	0.70	0.53	0.12	149.5
M4	0.08	-0.36	0.25	0.50	0.88	344.6
M5	0.08	0.49	0.60	0.37	1.34E-08	377.6
	Agreement			Complexity		Robustness
M1	0.8000			0.7975 1.0		1.0000
M2	0.8000			0.7975		0.6049
М3	1.0000			1.0000		1.0000
M4	0.8640			0.5000		1.0000
M5	0.8640			0.8944		1.0000
	MQI _m					
M1	0.8976					
M2	0.7471					
M3	1.0000					
M4	0.8428					
M5	0.9640					

Model evaluation / deliberative process

rehensive evaluation

Components of model quality

Agreement with actual data (rmetrics, test statistics)

Complexity (set of equations, parameters)

Stability (performance over different conditions)

(experimental / observational research, socio-economic / climate scenarios)

Deliberative process

(review, exchange of information, consensus)

Context

Credibility

Transparency

Uncertainty

Background

Stakeholders

Bellocchi et al. (2015)

Towards a consolidated, internationally-agreed protocol to evaluate models: what does go forth?

Review of settings

- Selection of metrics
- Attribution of thresholds and weights

Extension to multiple outputs

Institutionalising deliberative practices for context-specific model evaluations

Model evaluation(s) are (sometimes) an (important) orientating landmark in the skyline of decisions, without replacing them

To evaluate simulation models (in agriculture) is far more urgent as many of the (tactical and strategic) decisions (in agriculture) are based on model outcomes

Dealing with (existing) and designing (new) agricultural systems is a priority that deliberations about model evaluation contribute to accomplish in a more efficient (maybe more appropriate) manner, in any case with more awareness if (genuine) collective deliberations are possible

The central issue is to think and conceive model evaluation in a (clear) decisional perspective about type of model, operability, transparency, etc.

As several models are at hand, "mod-diversity" imposes the analysis of case-by-case issues, while also integrating the specific context in a larger-scale perspective (in space and time)

Literature sources

- Bellocchi G., Confalonieri R., Donatelli M., 2006. Crop modelling and validation: integration of IRENE_DLL in the WARM environment. Italian Journal of Agrometeorology 11, 35-39.
- Bellocchi G., Rivington M., Matthews K., Acutis M., 2015. Deliberative processes for comprehensive evaluation of agroecological models. A review. Agronomy for Sustainable Development 35, 589-605.
- Bellocchi G., Rivington M., Donatelli M., Matthews K.B., 2010. Validation of biophysical models: issues and methodologies. A review. Agronomy for Sustainable Development 30, 109-130.
- De Jager J.M., 1994. Accuracy of vegetation evaporation formulae for estimating final wheat yield. Water SA 20, 307-314.
- Richter K., Atzberger C., Hank T.B., Mauser W., 2012. Derivation of biophysical variables from Earth observation data: validation and statistical measures. Journal of Applied Remote Sensing 6, 063557.
- Rivington M., Matthews K.B., Bellocchi G., Buchan K., Stöckle C.O., Donatelli M., 2007. An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environmental Modelling & Software 22, 202-210.
- Schlesinger S., 1979. Terminology for model credibility. Simulation 32, 103-104

