7.2.2 单限比较器

$$u_i < U_{REF}$$
 $u_{o1} = 0$ D导通,T截止,灯不亮 $u_i > U_{REF}$ $u_{o1} = 1$ D截止,T饱和,灯亮 报警电路

D是保护二极管,把三极管发射结反向电压限制在 $U_{\rm D}$,从而保护三极管不被反向击穿。

电阻 R_3 决定了三极管基极的驱动电流, $I_{B^{=}}(U_{OM}$ - $U_{BE})/R_3$, I_{B} 的大小是三极管能进入饱和状态的关键因素。

$$\square \Rightarrow U_{\mathrm{T}} = u_{\mathrm{o}} \cdot \frac{R_{2}}{R_{\mathrm{F}} + R_{2}}$$

$$u_{\mathrm{O}} = \pm U_{\mathrm{Z}}$$

$$\int_{T_1} U_{T_1} = U_Z \frac{R_2}{R_F + R_2} \quad (u_O = +U_Z)$$

$$U_{T_2} = -U_Z \frac{R_2}{R_F + R_2} \quad (u_O = -U_Z)$$

- 例:测得某电路输入电压 U_1 和输出电压 U_0 的波形如图所示,
 - (1) 判断该电路是哪种电压比较器,并求解电压传输特性
 - (2) 若要使 U_{T1} =2V, U_{T2} =-4V,可以在电路中采取什么措施

解: (1) 滞回比较器

(2)

$$U_{\text{T1}} = \frac{R_2}{R_1 + R_2} \cdot U_{\text{REF}} - \frac{R_1}{R_1 + R_2} \cdot U_{Z}$$

$$U_{\text{T2}} = \frac{R_2}{R_1 + R_2} \cdot U_{\text{REF}} + \frac{R_1}{R_1 + R_2} \cdot U_{Z}$$

• 基本概念:有两个不相等的电压阈值, u_i 从零开始增大且经过阈值 U_{T1} 时 u_O 从高电平 U_{OH} 变化为低电平 U_{OL} , u_i 继续增大且经过阈值 U_{T2} 时 u_O 从低电平 U_{OL} 变化为高电平 U_{OH} 。

输入电压ui从小到大过程中使输出电压ui产生两次跃变。

电路形式:运放工作在开环状态,外加参考电压 U_{RL} 和 $U_{RH} = U_{RL} < U_{RH}$,且 R_1 、 R_2 和 R_2 和 成限幅电路。

当 $u_I > U_{RH}$ 时(u_I 必然大于 U_{RL}),运放 A_1 的输出为 $u_{O1} = +U_{OM}$,使得 D_1 导通、 D_2 截止, D_Z 工作在稳压状态,比较器的输出为 $u_O = U_Z$ 。

当 $u_{\rm I}$ < $U_{\rm RL}$ 时($u_{\rm I}$ 必然小于 $U_{\rm RH}$),运放A₂的输出为 $u_{\rm O2}$ =+ $U_{\rm OM}$,使得D₁截止、D₂导通,D₂工作在稳压状态,比 较器的输出为 $u_{\rm O}$ = $U_{\rm Z}$ 。

当 $U_{RL} < u_I < U_{RH}$ 时,运放 A_1 和 A_2 的输出为 $u_{O1} = u_{O2} = -U_{OM}$,使得 D_1 和 D_2 均截止,比较器的输出为 $u_O = 0$ 。

例:已知方框图各点的波形,填写 各电路名称

- (1) 正弦波振荡电路。
- (2) 同相输入的过零比较器
- (3) 反向输入的积分运算电路
- (4) 同相输入滞回比较器

7.2 电压比较器

电压比较器的分析方法

ightarrow 阈值电压 $u_{
m p}=u_{
m N}$

$$\blacktriangleright$$
 输出电压
输出端不接 D_z 时, $u_{\mathbf{0}}=\pm U_{\mathbf{OM}}$
输出端接 D_z 限幅时 , $u_{\mathbf{0}}=\pm U_{\mathbf{Z}}$

跃变方向决定于输入电压作用于同相输入端还是反相输入端

作业

7.13

7.16

基本组成分析

- ▶电压比较器:输出只有高电平和低电平两种情况,即两个 暂态
- ➤ 反馈网络:因需自控两种状态转换,在输出为某一暂态时能够孕育出翻转成另一暂态的条件,故应引入反馈。
- ▶延迟环节:要使两个暂态均维持一定的时间,可以采用*RC* 环节实现,进而决定着振荡频率。

1. 电路的组成

滞回比较器 + RC电路;RC回路作为延迟环节,电容C上电压作为滞回比较器输入;通过RC电路的充电和放电实现输出状态的自动转换。

$$u_{\rm P} = \frac{R_2}{R_2 + R_1} \cdot u_{\rm O}$$
$$u_{\rm N} = u_{\rm C}$$

$$u_{\mathrm{T}} = \pm \frac{R_{2}}{R_{2} + R_{1}} \cdot U_{\mathrm{OM}} = \pm KU_{\mathrm{OM}}$$

2. 工作原理

设初始时 $u_0 = U_{OM}$ $u_p = KU_{OM}$

C充电, $u_{\rm C}$

至 $U_{\mathbf{C}}=KU_{\mathbf{OM}}$

$$egin{aligned} u_{\mathbf{o}} = & U_{\mathbf{OM}} \ u_{\mathbf{P}} = & KU_{\mathbf{OM}} \ C 放电, u_{\mathbf{C}} \ \end{aligned}$$

至 $U_{\rm C}=-KU_{\rm OM}$ $U_{\rm o}=U_{\rm OM}$

3. 主要参数

$$f(t) = f(\infty) + [f(0_{+}) - f(\infty)]e^{-t/\tau}$$

幅度: $U_{\text{om}}=U_{\text{OM}}$ 周期: $T=2RCln(1+\frac{2R_2}{R_1})$

4. 占空比可调电路

实现正向充电和反向充电的时间常数可调,则占空比就可调;利用二极管单向导电性引导充电和放电电流流经不同通路。

•计算占空比

充电阶段:

$$au_1 = (R_3 + R_{W1})C$$
 $T_1 = \tau_1 \ln \left(1 + \frac{2R_2}{R_1} \right)$

放电阶段:

$$au_2 = (R_3 + R_{W2})C$$
 $T_2 = \tau_2 \ln \left(1 + \frac{2R_2}{R_1}\right)$

振荡周期

$$T = T_1 + T_2 = (R_W + 2R_3)C \cdot \ln\left(1 + \frac{2R_2}{R_1}\right)$$

$$q = \frac{T_1}{T} = \frac{R_{W1} + R_3}{R_W + 2R_3}$$

积分运算电路将方波变为三角波

三角波发生器由

A₁ — 滞回电压比较器A₂ — 反相积分电路

组成

2. 工作原理

$$u_{\mathrm{T}} = \pm \frac{R_1}{R_2} U_{\mathrm{O1M}}$$

7.3.3 锯齿波发生器

7.3.5 函数发生器

7.3.5 函数发生器

作业 7.20