Marek Małek, Marcin Serafin 18.04.2024 Laboratorium 06 Kwadratury

1 Zadanie 1

Celem zadania było porównanie metod numerycznych całkowania: środkowych prostokątów, trapezów oraz Simpsona. Na podstawie faktu:

$$\int_0^1 \frac{4}{1+x^2} dx = \pi \tag{1}$$

1.1 Błąd względny

Obliczono wartość powyższej całki, wykorzystując do tego metody: środkowych prostokątów, trapezów oraz Simpsona. Na przedziale całkowania równym [0,1] rozmieszczono $2^m+1, m\in\{1,...,25\}$ równoodległych węzłów, w taki sposób, że z każdym kolejnym wzrostem parametru m o 1, liczba węzłów zwiększa się dwukrotnie - pomiędzy każde dwa sąsiednie węzły wstawiany jest kolejny. W ten sposób wyznaczono wartość bezwzględą błędu względnego. Wyniki zestawiono na wykresie.

Wizualizacja 1: Wartość błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej

1.2 Porównanie h_{min}

Zestawiono wartości minimalne błędu względnego oraz odpowiadajce im wartości h. Porównano wartości h z wartością wyznaczoną w labolatorium 1.

Metoda	Minimalny błędu względnego	Wartość \boldsymbol{h} dla minimalnego błędu względnego
Równoodległe węzły		$2.38 \cdot 10^{-7}$
Trepezy	$7.99 \cdot 10^{-15}$	$2.38 \cdot 10^{-7}$
Simpson	0	$0.7 \cdot 10^{-2}$

 \mathbf{Tabela} 1: Zestawienie minimalnego błędu względnego oraz odpowiadającemu mu wartości h ze względu na metodę

W labolatorium 1 wyliczona wartość h_{min} wyniosła $9.12 \cdot 10^{-9}$. Wyliczono różnice procentowe między otrzymanymi wartościami h_{min} , a wartościa otrzymaną w labolatorium 1.

Metoda	Różnica procentowa
Równoodległe węzły Trepezy Simpson	$\begin{array}{c} 25.14 \ \% \\ 25.14 \ \% \\ 856632.78 \ \% \end{array}$

Tabela 2: Zestawienie różnic procentowych między wartościami h_{min} ze względu na metodę

1.3 Zmniejszanie kroku

Od pewnej wartości zmniejszanie kroku h nie zmniejsza już błędu kwadratury. Wyniki zestawiono w tabeli:

Metoda	Wartość parametru m
Równoodległe węzły	22
Trepezy	23
Simpson	23

Tabela 3: Zestawienie wartości parametru m, po której błąd kwadratury nie ulega zmniejszeniu

1.4 Emipiryczny rząd zbieżności

W przypadku obliczania empirycznego błędu zbieżności uwzględniono tylko pierwsze 7 wartości m, jako że dla większych błąd metody Simpsona był równy 0, co uniemożliwiało wyliczenie logarytmu. Wyniki zestawiono na wykresie:

Wizualizacja 2: Empiryczne rzędy zbieżności w zależności od m

2 Zadanie 2

Celem zadania było porównanie błędów metod z zadania 1 do metody Gaussa-Legendre'a. Wyniki przedstawiono na wykresie:

Wizualizacja 3: Wartość błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej

3 Wnioski i obserwacje

- ullet Porównując wartości h_{min} z pierwszym labolatorium widać, że dla metody równoodległych węzłów oraz metody trapezów wartości minimalne błędu względnego są zbliżone. Natomiast dla metody Simpsona różnica jest bardzo duża.
- Metoda Gaussa-Legendre'a jest dokładniejsza od innych metod.