

ECE 3561 Advanced Digital Design

Class 01: Review: Logic Gates and De Morgan's Laws

Drew Phillips Spring 2024

Review: AND, OR, and NOT Gates

 $X' = \bar{X}$ means the inverse of X

SP24

Review: NAND and NOR Gates

Review: XOR and XNOR Gates

$$A \oplus B = A\overline{B} + \overline{A}B$$

$$X \longrightarrow Y$$
 $Y \longrightarrow Y$
 $Y \longrightarrow Y$
 $Y \longrightarrow Y$
 $Y = (X \equiv Y)$

$$\overline{A \oplus B} = A \oplus \overline{B} = \overline{A} \oplus B$$

Review: More About XOR Gate

XOR (Exclusive OR)

$$A \oplus B = A\overline{B} + \overline{A}B$$

Inputs		Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Modulo-2 sum of two Boolean variables A, B

How can the logic of an inverter be implemented by using an XOR gate?

SP24 5

Review: De Morgan's Laws

$$(X+Y)'=X'Y'$$

$$(XY)' = X' + Y'$$

Move the inversion bubble around:

How can Boolean functions be realized by 2-input NAND gates? (Example on next slide.)

SP24

6

Example 1

1.1 Realize the following functions, using only two-input NAND gates.

$$F=A'BC'+BD+AC+B'CD'$$

1.2 Use gate conversions to convert the circuit below into one containing NAND and XOR gates.

SP24

1.1 Solution

SP24 8

1.2 Solution

Questions?