Announcements for Wednesday, 09OCT2024

- Tomorrow's Office Hours are Extended to go until 4:00 PM
- Exam 1 should be available for reviewing through Gradescope by tomorrow
- Application deadline for transfer into Chem 133 is Thursday, 100CT2024
 - if you got ≤ 44% on the first exam, you should *strongly* consider transferring as Chem 161 will only get harder as the semester progresses
 - see Canvas announcement from Oct 8 and "Transfer to Chemistry 133" module for more details and application directions

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try These On Your Own

- What is the molar mass of glucose (C₆H₁₂O₆)? 180.16 g/mol
- How many hydrogen atoms are in 88.0 ng glucose? 3.53×10¹⁵ hydrogen atoms
- How many molecules in 5.21 g glucose? 1.74×10²² molecules of glucose
- A sample of glucose contains 5.55×10^{24} carbon atoms. What amount of glucose, in moles, is there? 1.54 moles glucose
- What amount of oxygen atoms, in moles, is in 25.0 g glucose? 0.833 moles of oxygen atoms
- How many atoms in total are in 100.0 g glucose? 8.02×10²⁴ atoms

Try This On Your Own

• Calculate the mass percent composition of all elements in 255 g of chromium(III) phosphate trihydrate

irrelevant information!

$$CrPO_4 \cdot 3H_2O$$

1 mole
$$CrPO_4 \cdot 3H_2O = 52.00 + 30.97 + 112.0 + 6.048 = 201.02 g/mol$$

mass % Cr =
$$\frac{52.00 \text{ g}}{201.02 \text{ g}} \times 100\% = 25.87\%$$
 Cr by mass

mass % P =
$$\frac{30.97 \text{ g}}{201.02 \text{ g}} \times 100\% = 15.41\% \text{ P by mass}$$

mass %
$$0 = \frac{112.0 \text{ g}}{201.02 \text{ g}} \times 100\% = 55.71\% \text{ O by mass}$$

mass % H =
$$\frac{6.048 \text{ g}}{201.02 \text{ g}} \times 100\% = 3.01\% \text{ H by mass}$$

100% total

Determining Molecular Formula from Empirical Formula and Molar Mass

 remember that a compound's molecular formula is a whole-number multiple of its empirical formula

molecular formula = empirical formula $\times n$ (n = 1, 2, 3...)

glucose:

 $C_6H_{12}O_6$

 $CH_2O \times 6$

• because of this, the molar mass of compound is also a whole-number multiple of the compound's empirical molar mass:

$$n = \frac{molecular \text{ molar mass}}{\text{empirical formula mass}}$$

Determining Molecular Formula from Empirical Formula and Molar Mass (continued)

glucose:
$$CH_2O \times n \rightarrow C_6H_{12}O_6$$
 where $n = 6$

$$n = \frac{molecular \text{ molar mass}}{empirical \text{ molar mass}}$$

$$= \frac{(6 \times 12.01) + (12 \times 1.008) + (6 \times 16.00)}{12.01 + (2 \times 1.008) + 16.00} = \frac{180.16}{30.026} = 6$$

empirical formula and molar mass must be established separately

Determining Empirical Formula by Combustion Analysis

completely reacting an unknown compound with oxygen gas $(O_2(g))$ and recording the masses of known products

© 2018 Pearson Education, Inc.

Combustion Analysis

• completely reacting an unknown compound with oxygen gas $(O_2(g))$ and recording the masses of known products

$$C_XH_Y + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$
 vs. $C_XH_YO_Z + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

- working our way backwards from the mass of products to the number of atoms present in the original compound
- all atoms need to be accounted for
- start with known mass of sample to be combusted and form CO₂ and H₂O.

mass CO_2 \longrightarrow moles CO_2 \longrightarrow moles C from compound mass CO_2 \longrightarrow moles C from compound mass C compound = total mass C mass C mass C moles C from compound mass C moles C from compound

Combustion Analysis

• Complete combustion of 1.23 g of a compound containing C, H, and O yields $1.74 \, \mathrm{g} \, \mathrm{CO}_2$ and $1.07 \, \mathrm{g} \, \mathrm{H}_2\mathrm{O}$. In a separate experiment, the formula mass of the compound is determined to be 62.07 amu. Provide the molecular formula of this compound.

$$1.74 \ g \ CO_2 \times \frac{1 \ mole \ CO_2}{44.01 \ g} \times \frac{1 \ mole \ C \ atoms}{1 \ mole \ CO_2} = 0.0395 \ moles \ C \times \frac{12.01 \ g \ C}{1 \ mole \ C} = 0.474 \ g \ C$$

$$1.07 \ g \ H_2O \times \frac{1 \ mole \ H_2O}{18.02 \ g} \times \frac{2 \ mole \ H \ atoms}{1 \ mole \ H_2O} = 0.1188 \ moles \ H \times \frac{1.008 \ g \ H}{1 \ mole \ H} = 0.120 \ g \ H$$

1.23
$$g \ compound - 0.474 \ g \ C - 0.120 \ g \ H = 0.636 \ g \ O \times \frac{1 \ moles \ O}{16.00 \ g \ O} = 0.0397 \ mol \ O$$

$$C_{\underbrace{0.0395}_{0.0395}}H_{\underbrace{0.1188}_{0.0395}}O_{\underbrace{0.0395}_{0.0395}} \qquad n = \frac{molar\ mass}{EF\ mass} = \frac{62.07}{(1)(12.01) + (3)(1.008) + (1)(16.00)} = \frac{62.07}{31.03} = \mathbf{2}$$

$$\begin{array}{ccc} & \downarrow & & \downarrow & & \\ C_1 H_3 O_1 & \longrightarrow & CH_3 O & \stackrel{\text{n = 2}}{\longrightarrow} & C_2 H_6 O_2 \\ & \text{empirical formula} & & \text{molecular formula} \end{array}$$

Organic Compounds

- organic compounds =
 compounds composed of carbon,
 hydrogen, and often other
 nonmetals (O, N, S, P, F, Cl, Br, I)
- the key element is carbon
 - able to make four bonds (i.e., tetravalent) and can bond to itself to form long chains
- hydrocarbon = organic compound containing only carbon and hydrogen

TABLE 4.5 Common Hydrocarbons				
Name	Molecular Formula	Structural Formula	Space-filling Model	
Methane	CH ₄	H — C — H		
Propane	C ₃ H ₈	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
<i>n</i> -Butane*	C ₄ H ₁₀	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
<i>n</i> -Pentane*	C ₅ H ₁₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Ethene	C ₂ H ₄	$rac{1}{\sqrt{C}} = C + C + C + C + C + C + C + C + C + C$		
Ethyne	C_2H_2	$H-C \equiv C-H$		

Functional Groups

- groups of atoms that have a characteristic influence on the shape and reactivity of a hydrocarbon containing the functional group
- molecules having the same functional group are categorized into the same organic family
 - compounds in the same family exhibit similar chemical behaviors
- R = a generic carboncontaining group
- be able to identify alcohols, carboxylic acids, and amines

Family	General Formula	Example
Alcohols	R—OH	CH₃CH•OH
Carboxylic acids	O R—C—OH	H_3C C C C C C
Amines	R R—N—R	H_3CH_2C-N-H

Determining Empirical and Molecular Formulas

- What is the empirical formula of a compound that is composed of 5.00×10²⁴ hydrogen atoms, 5.00×10²⁴ bromine atoms, and 2.00×10²⁵ oxygen atoms?
- 60.00 g of a compound containing only sulfur and oxygen contains 24.03 g sulfur. What is the empirical formula of this compound?
- Determine the empirical formula of a compound that is 21.95% sulfur by mass and 78.05% fluorine by mass.
- Determine the *molecular* formula of a compound that is 65.19% arsenic by mass, 34.81% oxygen by mass, and has a molar mass of 459.68 g/mol.
- Combustion analysis of 12.01 g of an organic compound containing only carbon, hydrogen, and oxygen produces 14.08 g $\rm CO_2$ and 4.32 g $\rm H_2O$. Determine the compound's empirical formula.

Chapter 5: Chemical Bonding I

Some questions we'll try to answer

- How evenly are electrons in a bond shared and what property of an atom dictates this behavior?
- How can we represent the structures of molecules and polyatomic ions?
- What does it mean when a species exhibits resonance?
- What criteria is used to establish "the best" Lewis structure(s) of a molecule or polyatomic ion?
- How do bonds differ in their length and in their strength?
- How can the shape of a species be established from its Lewis structure?
- What is molecular polarity and how can you determine if a molecule exhibits a net dipole moment?

The Continuum of Bonding

- The distinction between covalent bonding and ionic bonding is not always well defined
- Covalent bonds and ionic bonds represent two ends of the spectrum

What specifically dictates the position of a bond on this continuum?

- the ability of an atom to attract bonding electrons to itself
 - not to be confused with electron affinity
- electronegativity increases left-to-right across a period
- electronegativity decreases going down a group
 - F is most electronegative, followed by O and then N and Cl
 - H is located between B and C
 - noble gases are not assigned electronegativities as they don't readily bond to other atoms (except Xe, Kr, and recently Ar)
 - main group metals tend to have low electronegativities

- Impacts several behaviors/properties about a molecule
 - molecular polarity
 - formal charges
 - oxidation numbers
 - the ability to form H-bonds
 - acid strength

Covalent Bonds: Polar vs. Nonpolar Bonds

- electrons can be shared evenly or unevenly
 - the evenness of sharing dictates polarity
- the evenness of sharing depends on the electronegativity difference (Δ EN) between the atoms participating in the bond
 - greater $\Delta EN = more polar bond$
 - think about the electronegativity trend
- the bonding spectrum can be arbitrarily divided into specific regions based on ΔEN

