deskriptive Statistik

Silke Bott

Sommersemester 2023

In vielen Anwendungen interessiert man sich nicht nur für ein einziges Merkmal sondern gleichzeitig für mehrere.

Bei der Untersuchen von zwei Merkmalen X und Y interessieren dabei grundsätzlich zwei Fragen:

- Beeinflussen sich die Merkmalsausprägungen von X und Y gegenseitig (Korrelationsanalyse)?
- Hängen die Ausprägungen eines Merkmals (etwa Y) funktional von den Ausprägungen des anderen Merkmals (also X) ab (Regressionsanalyse).

Sonntagsumfrage (infratest/dimap 14.9.2017 bei 1200 Befragten)

CDU/CSU	SPD	Linke	Grüne	FDP	AfD	Sonst
444	240	108	90	114	144	60

Aufgegliedert nach Ostdeutschland und Westdeutschland:

	CDU/CSU	SPD	Linke	Grüne	FDP	AfD	Sonst
WD	359	197	55	76	92	77	44
OD	85	43	53	14	22	67	16

Beispiel

Eine Befragung zu *Altersstufe* ("jung", "mittleres Alter" und "älter") und *Einkommensstufe* ("niedrig", "mittel" und "hoch") bei 100 Erwerbstätigen hat folgende Zahlen ergeben

	jg	ma	al
n	20	15	7
m	8	17	14
h	2	8	9

Wir betrachten nun allgemeiner zwei Merkmale X und Y mit den möglichen Ausprägungen a_1, \ldots, a_k für X und b_1, \ldots, b_l für Y.

Definition

Die Werte $h_{i,j}$, $i=1,\ldots,k, j=1,\ldots,I$ heißen gemeinsame Verteilung der Merkmale X und Y in absoluten Häufigkeiten und die Tabelle

heißt Kontingenztabelle der Merkmale X und Y.

Definition (Randhäufigkeiten)

Die Randhäufigkeiten des Merkmals Y sind die Spaltensummen der Kontingenztabelle

$$h_{\bullet,j} = h_{1,j} + \cdots + h_{k,j} \qquad (j = 1,\ldots,l)$$

und die Randhäufigkeiten des Merkmals X sind die Zeilensummen der Kontingenztabelle

$$h_{i,\bullet} = h_{i,1} + \cdots + h_{i,l}$$
 $(i = 1, \ldots, k)$

Die Kontingenztabelle wird oft mit den Randhäufigkeiten ergänzt und hat dann die folgende Gestalt

In unserem Beispiel mit der Sonntagsfrage etwa

	CDU/CSU	SPD	Linke	Grüne	FDP	AfD	Sonst	
WD	359	197	55	76	92	77	44	900
OD	85	43	53	14	22	67	16	300
	444	240	108	90	114	144	60	1200

In unserem Beispiel mit der Einkommensverteilung ergibt sich

	jg	ma	al	
n	20	15	7	42
m	8	17	14	39
h	2	8	9	19
	30	40	30	100

Übung

Die Aufgliederung des Beschäftigungsverhältnisses nach Geschlecht ergibt folgende Daten (in Tausend)

	arbeitslos	Teilzeit	vollbeschäftigt	
weiblich	500	4200	7300	
männlich	500	800	12700	

Bestimmen Sie die Randhäufigkeiten.

Lösung:

Die um die Randhäufigkeiten erweiterte Datentabelle ist

	arbeitslos	Teilzeit	vollbeschäftigt	
weiblich	500	4200	7300	12 000
männlich	500	800	12700	14 000
	1000	5000	20 000	26 000

Definition (relative Häufigkeiten)

Bei einer Stichprobengröße n heißt

$$f_{i,j} = f(a_i, b_j) = \frac{1}{n} \cdot h(a_i, b_j)$$

die relative (gemeinsame) Häufigkeit der Merkmalsausprägungen (a_i, b_j) , und

$$f(a_i) = f_X(a_i) = \frac{1}{n} \cdot h_{i,\bullet}, \qquad f(b_j) = f_Y(b_j) = \frac{1}{n} \cdot h_{\bullet,j}$$

heißen relative Randhäufigkeiten der Merkmalsausprägungen a_i von X und b_j von Y.

Bei der Sonntagsumfrage

	CDU/CSU	SPD	Linke	Grüne	FDP	AfD	Sonst	
WD	0.299	0.164	0.046	0.063	0.077	0.064	0.037	0.75
OD	0.071	0.036	0.044	0.012	0.018	0.056	0.013	0.25
	0.370	0.200	0.090	0.075	0.095	0.12	0.050	1

Beispiel

Beim Einkommensbeispiel erhalten wir

	jg	ma	al
n	0.20	0.15	0.07
m	0.08	0.17	0.14
h	0.02	0.08	0.09

Übung

Bestimmen Sie die Tabelle der relativen Häufigkeiten für das Beschäftigungsbeispiel mit

	arbeitslos	Teilzeit	vollbeschäftigt	
weiblich	500	4200	7300	12 000
männlich	500	800	12700	14 000
	1000	5000	20 000	26 000

Lösung:

Die Tabelle der relativen Häufigkeiten für das Beschäftigungsbeispiel ist

	arbeitslos	Teilzeit	vollbeschäftigt	
weiblich	0.0192	0.1615	0.2808	0.4615
männlich	0.0192	0.0308	0.4885	0.5385
	0.0385	0.1923	0.7692	1

Definition (bedingete Häufigkeiten)

Die bedingten Häufigkeiten von Y unter der Bedingung $X=a_i$, kurz auch $Y|X=a_i$ sind gegeben durch

$$f_Y(b_1|a_i) = \frac{h_{i,1}}{h_{i,\bullet}}, \quad \dots \quad , f_Y(b_I|a_i) = \frac{h_{i,I}}{h_{i,\bullet}}$$

Die bedingten Häufigkeiten von X unter der Bedingung $Y=b_j$, kurz auch $Y|X=a_i$ sind gegeben durch $f_X(a_1|b_j)=\frac{h_{1,j}}{h_{\bullet,j}},\ldots,f_X(a_k|b_j)=\frac{h_{k,j}}{h_{\bullet,j}}$. Die Merkmale X und Y heiße empirisch unabhängig, wenn gilt

$$f_Y(b_j|a_i) = \frac{1}{n} \cdot h_{\bullet,j}$$
 für alle j, i
 $f_X(a_i|b_j) = \frac{1}{n} \cdot h_{i,\bullet}$ für alle j, i

Bemerkung

Sind X und Y empirisch unabhängig, so gilt

$$h_{i,j} = \frac{h_{i,\bullet} \cdot h_{\bullet,j}}{n}$$

Deshalb nennen wir auch

$$\widetilde{h_{i,j}} = \frac{h_{i,\bullet} \cdot h_{\bullet,j}}{n}$$

die Häufigkeiten, die zu erwarten sind, wenn kein Zusammenhang vorliegt.

Bei der Sonntagsumfrage wären die zu erwartenden Häufigkeiten bei empirischer Unabhängigkeit

	CDU/CSU	SPD	Linke	Grüne	FDP	AfD	Sonst	
WD	333	180	81	67.5	85.5	108	45	900
OD	111	60	27	22.5	28.5	36	15	300
	444	240	108	90	114	144	60	1200

Die Merkmale sind also offensichtlich nicht empirisch unabhängig.

Im Einkommensbeispiel mit den Daten

	jg	ma	al	
n	20	15	7	42
m	8	17	14	39
h	2	8	9	19
	30	40	30	100

erhalten wir als Tabelle der erwarteten Häufigkeiten bei empirischer Unabhängigkeit

	jg	ma al		
n	12.6	16.8	12.6	42
m	11.7	15.6	11.7	39
h	5.7	7.6	5.7	19
	30	40	30	100

Auch hier sind die Merkmale offensichtlich nicht empirisch unabhängig.

Übung

Bestimmen Sie die erwarteten Häufigkeiten im Beschäftigungsbeispiel mit

	arbeitslos	Teilzeit	vollbeschäftigt	
weiblich	500	4200	7300	12 000
männlich	500	800	12700	14 000
	1000	5000	20 000	26 000

Lösung:

Die Tabelle der erwarteten Häufigkeiten bei empirischer Unabhängigkeit ist

	arbeitslos	Teilzeit	vollbeschäftigt
weiblich	461.54	2307.69	9230.77
männlich	538.46	2692.31	10 769.23

Auch hier sind die Daten offensichtlich nicht empirisch unabhängig (was man vor allem an der Spalte "Teilzeit" sieht).

Definition (Kontingenzkoeffizienten)

Die Größe

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(h_{i,j} - \widetilde{h_{i,j}}\right)^2}{\widetilde{h_{i,j}}}$$

heißt χ^2 –Koeffizient von X und Y.

Die Größe

$$K = \sqrt{\frac{\chi^2}{n + \chi^2}}$$

heißt Kontingenzkoeffizient von X und Y.

Die Größe

$$K^* = \frac{K}{\sqrt{\frac{M-1}{M}}}$$
 wobei $M = \min\{k, l\}$

heißt korrigierter Kontingenzkoeffizient von X und Y.

Bemerkung

Es gilt

- Die Kontingenzkoeffizienten bilden ein Maß dafür, ob die Merkmalsausprägungen für X mit denen für Y zusammenhängen.
- 2 Die Kontingenzkoeffizienten sind geeignet für die Untersuchung mindestens nominalskalierter Merkmale.
- **3** $\chi^2 \in [0, \infty[, K \in [0, \sqrt{\frac{M-1}{M}}] \text{ und } K^* \in [0, 1].$
- χ^2 hängt ab von der Skalierung der Merkmale (werden alle Häufigkeiten verdoppelt, so verdoppelt sich auch χ^2), K und K^* sind unabhängig davon. Ferner ist K^* normiert.
- Genau dann sind die Kontingenzkoeffizienten 0, wenn X und Y empirisch unabhängig sind.
- **1** Je näher K bzw. K^* an $\sqrt{\frac{M-1}{M}}$ bzw. 1 liegen, desto stärker ist der Zusammenhang zwischen X und Y.

Bei der Sonntagsumfrage gilt

$$\chi^2 = 89.865$$
 $K = 0.264$
 $K^* = 0.373$

Auch diese Zahlen zeigen, dass die die Merkmale nicht empirisch unabhängig sind.

Übung

Berechnen Sie den χ^2 -Koeffizienten, den Kontingenzkoeffizienten und den korrigierten Kontingenzkoeffizienten der Daten des Einkommensbeispiels:

Н	jg	ma	al	
n	20	15	7	42
m	8	17	14	39 19
h	2	8	9	19
	30	40	30	100

\widetilde{H}	jg	ma	al	
n	12.6	16.8	12.6	42
m	11.7	15.6	11.7	39
h	5.7	7.6	5.7	19
	30	40	30	100

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(h_{i,j} - \widetilde{h_{i,j}}\right)^2}{\widetilde{h_{i,j}}}, \quad K = \sqrt{\frac{\chi^2}{n + \chi^2}}, \quad K^* = \frac{K}{\sqrt{\frac{M-1}{M}}}$$

$$K = \sqrt{\frac{\chi^2}{n + \chi^2}}, \quad K^* = \frac{K}{\sqrt{\frac{M}{n}}}$$

Lösung:

Es gilt

$$\chi^2 = 13.1$$
 $K = 0.34$
 $K^* = 0.42$

Auch hier zeigen die Zahlen, dass die Merkmale nicht empirisch unabhängig sind.

Beispiel

Im Beispiel mit den Beschäftigungsverhältnissen gilt

$$\chi^2 = 3637.7$$
 $K = 0.350$
 $K^* = 0.496$

Auch hier zeigen die Zahlen, dass die Merkmale nicht empirisch unabhängig sind.

Wir betrachten jetzt wieder metrische skalierte Merkmale X und Y mit Merkmalsausprägungen x_1, \ldots, x_n und y_1, \ldots, y_n .

Definition (Korrelationskoeffizienten)

Die Größe

$$r = r_{X,Y} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum\limits_{i=1}^{n} (y_i - \overline{y})^2}}$$

heißt Bravais-Pearson-Korrelationskoeffizient oder empirischer Korrelationskoeffizient von X und Y.

Bemerkung

Die Größe

$$s_{X,Y}^2 = \frac{1}{n-1} \cdot \sum (x_i - \overline{x}) \cdot (y_i - \overline{y})$$

wird als korrigierte empirische Kovarianz der Stichprobe bezeichnet. Damit gilt

$$r_{X,Y} = \frac{s_{X,Y}^2}{s_X \cdot s_Y}$$

Genau dann ist $s_{X,Y}^2 = 0$, wenn $r_{X,Y} = 0$.

Bemerkung

Es gilt

- $r_{X,Y} \in [-1,1].$
- ② $r_{X,Y}$ untersucht einen linearen Zusammenhang zwischen X und Y: Genau dann gilt $r_{X,Y}=\pm 1$, wenn $y_i=ax_i+b$ für alle $i\in\{1,\ldots,n\}$, wobei $a,b\in\mathbb{R}, a\neq 0$ fest sind. Dabei ist $r_{X,Y}=1$ wenn a>0 und $r_{X,Y}=-1$ wenn a<0.
- **3** Ist $r_{X,Y} > 0$ so heiße X und Y positiv oder gleichsinnig linear korreliert, ist $r_{X,Y} < 0$, so sind sie negativ oder gegensinning linear korreliert. Ist $r_{X,Y} = 0$, so sind sie unkorreliert.

Beispiel

Betrachte $X = Gr\"{o}Be$ und Y = Gewicht und folgende Daten

Proband	1	2	3	4
Größe	175	184	179	182
Gewicht	82	81	96	81

Es gilt

$$\overline{x} = 180, \quad \overline{y} = 85$$

und damit

$$r_{x,y} = \frac{-20}{\sqrt{46 \cdot 162}} = -\frac{20}{\sqrt{7452}} = -0.232$$

Damit sind X und Y hier leicht negativ korreliert.

Übung

Bestimmen Sie $r_{X,Y}$ für $X = Gr\"{o}Be$ und Y = Gewicht und folgende Daten

Proband	1	2	3	4	5
Größe	170	175	180	185	190
Gewicht	68	76	74	84	88

Zur Erinnerung:

$$r = r_{X,Y} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum\limits_{i=1}^{n} (y_i - \overline{y})^2}}$$

Übung

Bestimmen Sie $r_{X,Y}$ für $X = Gr\"{o}Be$ und Y = Gewicht und folgende Daten

Proband	1	2	3	4	5
Größe	170	175	180	185	190
Gewicht	68	76	74	84	88

Lösung:

Es gilt

$$\overline{x} = 180, \quad \overline{y} = 78$$

und

$$r_{x,y} = \frac{240}{\sqrt{250 \cdot 256}} = \frac{240}{\sqrt{64\,000}} = 0.948$$

Damit sind X und Y hier stark positiv korreliert.

Ein alternativer Korrelationskoeffizient für mindestens ordinal skalierte Merkmale ist möglich, wenn wir von den ursprünglichen Werten von X und Y zu ihren Rängen übergehen.

Definition

Die Größe

$$r_{SP} = \frac{\sum\limits_{i=1}^{n} (rg(x_i) - \overline{rg}_X) \cdot \left(rg(y_i) - \overline{rg}_y\right)}{\sqrt{\sum\limits_{i=1}^{n} (rg(x_i) - \overline{rg}_X)^2 \cdot \sum\limits_{i=1}^{n} (rg(y_i) - \overline{rg}_Y)^2}}$$

heißt Spearman-Korrelationskoeffizient.

Bemerkung

Es gilt

- **1** $r_{SP} \in [-1, 1].$
- 2 r_{SP} ist der Bravais-Pearson-Korrelationskoeffizient der Rangausprägungen $(rg(x_i), rg(y_i))$ der Merkmale X und Y.
- **3** Genau dann ist $r_{SP} > 0$, wenn es einen gleichsinnigen montonen Zusammenhang zwischen X und Y gibt.
- **4** Genau dann ist $r_{SP} < 0$, wenn es einen gegensinnigen montonen Zusammenhang zwischen X und Y gibt.
- $r_{SP} \approx 0$ wenn es keinen monotonen Zusammenhang zwischen X und Y gibt.

Beispiel

Für $X = Gr\"{o}Be$ und Y = Gewicht aus dem ersten Beispiel gilt

Proband	1	2	3	4
rg_X	4	1	3	2
rg_{Y}	2	3.5	1	3.5

Es gilt

$$\overline{\text{rg}_X} = 2.5, \quad \overline{\text{rg}_Y} = 2.5$$

und damit

$$r_{SP} = \frac{-3.5}{\sqrt{5 \cdot 4.5}} = -\frac{20}{\sqrt{22.5}} = -0.738$$

Damit sind X und Y relativ stark negativ rangkorreliert.

Übung

Bestimmen Sie r_{sp} für X= $Gr\"{o}Be$ und Y= Gewicht und folgende Daten

Proband	1	2	3	4	5
Größe	170	175	180	185	190
Gewicht	68	76	74	84	88

Lösung:

Wir ermitteln zunächst die Rangtabelle

Proband	1	2	3	4	5
rg_X	5	4	3	2	1
rg_{Y}	5	3	4	2	1

Es gilt

$$\overline{\operatorname{rg}_X} = 3, \quad \overline{\operatorname{rg}_Y} = 3$$

und

$$r_{x,y} = \frac{9}{\sqrt{10 \cdot 10}} = \frac{9}{10} = 0.90$$

Damit sind X und Y hier stark positiv rangkorreliert.

Lineare Regression für Beobachtungen $(x_1, y_1), \ldots, (x_n, y_n)$: Finde Gerade $y = f(x) = a \cdot x + b$, so dass $\sum_{i=1}^{n} (y_i - f(x_i))^2$ minimal wird. Setze

$$\widehat{a} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \qquad \widehat{b} = \overline{y} - \widehat{a} \cdot \overline{x}$$

Definition (Lineare Regression)

Die Gerade

$$f(x) = \hat{a} \cdot x + \hat{b}$$

heißt *lineare Einfachregression* der Merkmale X und Y.

Die Werte

$$\varepsilon_i = y_i - f(x_i)$$

heißen Residuen der Einfachregression.

Definition

Die Größe

$$R^{2} = \frac{\sum_{i=1}^{n} (f(x_{i}) - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

heißt Bestimmtheitsmaß der linearen Regression.

Bemerkung

$$R^2 = r_{X,Y}^2$$

<u>Be</u>merkung

$$\sum_{i=1}^{n} \left(y_i - \widehat{a} \cdot x_i - \widehat{b} \right)^2 = \min \left\{ \sum_{i=1}^{n} \left(y_i - a \cdot x_i - b \right)^2 \mid a, b \in \mathbb{R} \right\}$$

Beispiel

Wir betrachten zwei Merkmale X und Y mit den folgenden Ausprägungen

k x _k y _k	1	2	3	4	5	6	7
X_k	3	5	6	7	8	10	12
Уk	24	30	31	30	28	44	42

Es gilt

$$\overline{x} = 7.2875, \quad \overline{y} = 32.7142$$

und damit

$$\widehat{a} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} = 2.1211 \quad \text{und } \widehat{b} = \overline{y} - \widehat{a} \cdot \overline{x} = 17.2603$$

Es ist $R^2=0.757$ (also eine recht ordentliche Erklärung), und die lineare Regressionsgerade ist gegeben durch

$$f(x) = 17.2603 + 2.1211 \cdot x$$

Übung

Bestimmen Sie die Regressionsgerade für $X = Gr\"{o}Be$, Y = Gewicht und

Proband	1	2	3	4
Größe	160	170	180	190
Gewicht	57	72	81	86

Lösung:

Zunächst ist

$$\overline{x} = 175, \quad \overline{y} = 74$$

und damit

$$\widehat{a} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} = 0.96 \quad \text{und } \widehat{b} = \overline{y} - \widehat{a} \cdot \overline{x} = -94$$

Es ist und $R^2=0.95$, also eine sehr gute Erklärung, und die lineare Regressionsgerade ist gegeben durch

$$f(x) = -94 + 0.96 \cdot x$$

An der großen Skala ist schwer zu erkennen, wie gut die Gerade, die Punkte erklärt, aber auch nähere Betrachtung zeigt ein gutes Bild:

