

Einführung ARDUINO/FUNDUINO

Technische Universität

Prof. Dr.-Ing. Peter Hecker, Dipl.-Ing. Paul Frost, Andreas Dekiert M. Sc., 08. Mai 2018

Agenda

- 03. April Einführung
- 10. April Softwareprojektmanagement
- 17. April Entwicklungstools
- 24. April GitHub
- 08. Mai Einführung Arduino/Funduino
- 15. Mai Dateieingabe und -ausgabe
- 22. Mai Exkursionswoche
- 29. Mai Dokumentation und Bug-Reporting
- 05. Juni Einführung von Qt
- 12. Juni GUI-Erstellung mit Qt
- 19. Juni Anleitung erstellen
- 26. Juni Projektarbeit
- 03. Juli Vorbereitung der Abgabe
- 10. Juli Abgabe

SLACK-Update

Themen der letzten Woche:

- Zielkriterien und Aufgaben
 - Was sind Aufgaben?
- Sprint
 - Unterschied Projektstatus und Aufgabenstatus?

Aufgaben der Vorwoche

Projekt-Code-Repo

- Klont das Code-Repository.
- 2. Optional: Mit der Programmierung beginnen.

Projekt-Wiki-Repo

- 1. Wie können Bilder in das Projekt-Wiki hochgeladen werden?
- Fügt das Projektschema in das Projekt-Wiki hinzu.
- 3. Übertragt sämtliche Punkte für die Projektmappe in das Projekt-Wiki.

Institut für

Lösung:

Code-Repository klonen

 Das Code-Repository befindet sich auf der Projekt-Hauptseite https://github.com/TUBSAPISS2018/pm-...

■ Über GITHUB DESKTOP klonen.

Lösung:

Code-Repository klonen

Lösung:

Code-Repository nutzen

- src-OrdnerQuelltext und Projektdateien
- doc-Ordner ggf. Projektschema, Anleitung, ...
- lib-OrdnerExterne Bibliotheken
- res-Ordner
 Projektressourcen
 z.B.: Bilder für die Software

- Bild in das Wiki-Repository sichern
 In unserem Fall wird das Bild sidebarheader.png in den Ordner img gesichert
- Bild in gewünschter Wiki-Seite hinzufügen (hier: _Sidebar.md):
 [[Bildpfad | Alternativtext]]
 Beispiel: [[/ img/sidebarheader.png|Sidebar_header]]
- Den neuen Stand über git add und git commit versionieren
- Die Änderungen über git push hochladen

Aufgaben

Angabe von Commits im Wiki-Repo

Damit nur die besten 10 Commits bewertet werden, soll jedes Gruppenmitglied seine 10 Commits im Wiki referenzieren.

Commits referenzieren

1. Hash-Code kopieren

2. Hash-Code auf der Commit-Wiki-Seite eintragen:

Andreas Dekiert:

* 7f8424bf09d646b852ee4e2eec0e1d21b65a843b

Beispiel-projekt Aufgaben-generierung Abhängigkeiten

Rahmenbedingungen

IFF: 55+ Mitarbeiter

250+ Kaffebezüge pro Woche

Zwei Preise: Kaffee, Kaffeespezialität Abrechnung erfolgt per Strichliste

Grobe Idee

Elektronisches Abrechnungssystem als Ersatz für die Strichliste.

User-Story und Zielkriterien

User-Story

Als Mitarbeiter möchte ich meinen Kaffee automatisch über das Abrechnungssystem bezahlen können, damit ich schneller den Kaffee beziehen kann.

4 Zielkriterien

- 1. Der Mitarbeiter wird anhand seiner Kaffeetasse identifiziert
- Falls der Mitarbeiter genug Guthaben hat, werden ihm die Kaffeeoptionen angezeigt
- Nachdem der Kaffee bezogen wurde, werden die Kosten für den Kaffee von dem Guthaben abgezogen
- 4. Der Restbetrag wird dem Mitarbeiter angezeigt

Aufgabengenerierung

ZIELKRITERIUM 1

Jedes Zielkriterium kann weiter heruntergebrochen werden zu Aufgaben, die Arbeitsschritte beschreiben, bis das Zielkriterium erfüllt wird.

Ein Teammitglied zeichnet sich verantwortlich, die Bearbeitung der Aufgaben zu überwachen.

Der Mitarbeiter wird anhand seiner Kaffeetasse identifiziert. Marc

- 1.1 REID-Sensor an Funduino einbinden und darüber auslesen
- 1.2 RFID-Tag erkennen
- 1.3 Eine RFID-Tag-Mitarbeiterzuordnung über eine Liste erstellen
- 1.4 RFID-Tag an Tasse anbringen und testen, ob es erkannt wird

ZIELKRITERIUM 2

Die Anzahl der generierten Aufgaben ist frei wählbar.

Falls der Mitarbeiter genug Guthaben hat, werden ihm die Kaffeeoptionen angezeigt

Peter

- 2.1 Mitarbeiterliste mit Guthaben erstellen
- 2.2 Mitarbeiter in Liste finden
- 2.3 Guthaben des ausgelesenen Mitarbeiters bestimmen
- 2.4 Guthaben mit Preisen der Kaffeeoptionen vergleichen
- 2.5 Erlaubte Kaffeeoptionen per Debugausgabe anzeigen

ZIELKRITERIUM 3

Der Arbeitsaufwand je Aufgabe ist frei wählbar.

Nachdem der Kaffee bezogen wurde, werden die Kosten für den Kaffee von dem Guthaben abgezogen Andreas

- 3.1 Preis der gewählten Kaffeeoption ermitteln
- 3.2 Neues Guthaben ermitteln
- 3.3 Guthaben belasten
- 3.4 Guthaben in Liste bei dem ausgelesenen Mitarbeiter aktualisieren

Eine ungenaue Planung kann den tatsächlichen Aufwand verbergen.

Der Restbetrag wird dem Mitarbeiter angezeigt

Paul

- 4.1 Restbetrag auf Display anzeigen
- 4.2 Nach 10 Sekunden Display leeren

Verborgener Mehraufwand:

Die erste Aufgabe erfordert zunächst die Hardwareinstallation und

-Anbindung sowie softwareseitige Initialisierung des Displays.

Nicht alle generierten Aufgaben können unabhängig voneinander bearbeitet werden

→ Abhängigkeiten müssen festgehalten werden.

Beispiel: Mehrere Aufgaben setzen eine Mitarbeiterliste voraus.

- \rightarrow 2.1 "Mitarbeiterliste mit Guthaben erstellen" ist Voraussetzung für:
 - 1.3 Eine RFID-Tag-Mitarbeiterzuordnung über eine Liste erstellen
 - 2.2 Mitarbeiter in Liste finden
 - 3.4 Guthaben in Liste bei dem ausgelesenen Mitarbeiter aktualisieren

Abhängigkeiten zwischen den Aufgaben

Mögliche Art der Darstellung:

Aufgabe	Setzt voraus
1.1	-
1.2	1.1
1.3	2.1
1.4	1.2, 1.3
2.1	-
2.2	2.1
2.3	2.2
2.4	2.3
2.5	2.4

Aufgabe	Setzt voraus
3.1	-
3.2	2.3
3.3	3.2
3.4	3.3, 2.1
4.1	3.2
4.2	-

Abhängigkeiten im Diagramm

- Von 2.1 hängen 3 weitere Prozesse ab.
- \rightarrow Höhere Priorisierung von 2.1
 - 1.1, 2.1 und 4.2 können parallel bearbeitet werden

4.2

Lehrziele

Einführung Arduino/Funduino		
Als Teilnehmer soll ich am Ende dieser Übung		
☐ die Eigenschaften eines Arduinos kennen		
☐ die In- und Output-Pins eines Arduinos ansteuern können		
☐ ein Arduino-Projekt erstellen können		

Arduino? Funduino?

- Open-Source Elektronik-Plattform Funduinos sind Nachbauten von Arduinos
- Können analoge und digitale Signale empfangen
 - Knopf gedrückt
 - Sensorwerte
- Können digitale Signale ausgeben
 - Steuerung von Sensoren
 - LEDs zum Leuchten bringen
- Schnelle Prototypenentwicklung

Funduino Mega 2560

Funduino Mega 2560

Technische Daten

Mikrocontroller ATmega2560

Betriebsspannung 5V Empf. Eingangsspannung 7-12V

Grenzen Eingangsspannung 6-20V

Digitale I/O-Pins 54

dayon 15 PWM 16

Analoge Input-Pins

Max. Strom pro I/O-Pin 20 mA Max. Strom pro 3,3V-Pin 50 mA

Taktrate 16 MHz

Speicher Mikrocontroller

Speicherart	Größe	Verwendung
Flash-Speicher	256 kB	Speicherung des Programms
		8 kB vom System verwendet
SRAM	8 kB	Speicherung von Variablen
		Ausschalten entfernt Inhalt
EEPROM	4 kB	Persistenter Speicher
		Inhalt bleibt erhalten

Institut für

Flugführung

Quellen

VSCode:

https://code.visualstudio.com

VSCode-Erweiterung PlatformIO:

https://platformio.org/get-started

Arduino Enwicklungsumgebung (IDE):

http://www.arduino.org/downloads

• Arduino Online-IDE¹ https://create.arduino.cc/

Institut für

Flugführung

¹Nicht alle Funktionen werden von der Online-IDE unterstützt

Abgehakt

Einführung .	Arduino	/Funduino
--------------	---------	-----------

Als Teilnehmer soll ich am Ende dieser Übung...

die Eigenschaften eines Arduinos kennen

die In- und Output-Pins eines Arduinos ansteuern können

ein Arduino-Projekt erstellen können

Programmablauf

Listing 1: Basisfunktionen

```
#include <Arduino.h>

void setup() {
    // Wird nur einmal
        ausgefuehrt
}

void loop() {
    // Wird wiederholt
        ausgefuehrt
}
```


Steckplatine

Mit einer Steckplatine können Bauteile temporär verbunden werden.

Abbildung 1: Leiterbahnen einer Steckplatine

Steckplatine

Mit einer Steckplatine können Bauteile temporär verbunden werden.

Abbildung 1: Leiterbahnen einer Steckplatine

Institut für

Flugführung

Pin-Setup

Bevor die Pins eines Arduinos genutzt werden können, muss jeweils festgelegt werden, ob diese als Eingangs- oder Ausgangs-Pins genutzt werden.

Listing 2: Pin-Mode Einstellung

```
#include <Arduino.h>

void setup() //Wird als erstes aufgerufen
{
   pinMode(12, OUTPUT);
   // Ab jetzt ist Pin 12 ein Ausgang
   pinMode(4, INPUT);
   // Ab jetzt ist Pin 4 ein Eingang
}

void loop() { /* ... */ }
```


Pins verwenden

Nach dem Pin-Setup können die Pins verwendet werden.

Listing 3: Nutzung der Pins 4 und 12

```
// nach void setup() {...}

void loop() {
    digitalWrite(12, HIGH); //pin 12 -> 5V
    digitalWrite(12, LOW); //pin 12 -> 0V

// Auslesen von Pin 4
    int wert = digitalRead(4); // HIGH oder LOW
    int wert = analogRead(4); // 0-1023
}
```


Wie dimme ich eine LED, wenn ich nur über 5-Volt-Ausgänge verfüge?

Institut für

Analoger Ausgang über PWM

- Problem:
 - Ausgabe nur als 5 Volt Highpegel möglich
- → Generierung eines pseudo-analogen Signals über eine Pulsweitenmodulation
 - Bereich von 0 bis 5 Volt
 - PWM-Frequenz von 500 Hz
 - 255 Schritte

Analoger Ausgang über PWM

Listing 4: Pulsweitenmodulation über analogWrite

```
void setup()
  // PIN 12 wird als Ausgangspin gesetzt
  pinMode (12, OUTPUT);
void loop()
  analogWrite(12, 127); // 2,5 V ueber PWM
  delay(10); //Hauptprogramm wartet 10ms
```


Wie kann ich zuverlässig einen Knopfdruck registrieren?

Institut für

Flugführung

Eingangssignal

Externer Pull-Up

Das Problem:

Der Eingang ist anfällig für Störsignale.

Die Lösung:

Ein Eingang muss mit einem definierten Potential versehen werden.

Eingangssignal

Externer Pull-Up

Das Problem:

Der Eingang ist anfällig für Störsignale.

Die Lösung:

Ein Eingang muss mit einem definierten Potential versehen werden.

Schema

pinMode(pin, INPUT);

Zustand Schalter offen: Spannung liegt am Eingang an digitalRead(pin) == HIGH

Zustand Schalter geschlossen: Masse liegt am Eingang an digitalRead(pin) == LOW

Schema

pinMode(pin, INPUT);

Zustand Schalter offen: Masse liegt am Eingang an digitalRead(pin) == LOW

Zustand Schalter geschlossen: Spannung liegt am Eingang an

digitalRead(pin) == HIGH

Beispiel

Der Arduino verfügt bereits über eine interne Pull-Up-Schaltung.

Listing 5: Pull-Up über digitalRead

```
void setup() {
   pinMode(2, INPUT_PULLUP);
}

void loop() {
   if(digitalRead(2) == LOW)
   {
      // Button wurde gedrueckt
      // das wird ausgefuehrt...
   }
}
```


Ich möchte die Werte von Sensoren ausgeben und wissen, welche Programmteile gerade ausgeführt werden.

Institut für

Flugführung

Quellcode

Listing 6: Serielle Ausgabe

```
void setup() {
  Serial.begin (9600); // Initialisierung
void loop() {
  int sensorValue = analogRead(A0);
  Serial.println(sensorValue); // Ausgabe
  delay(1);
```


Serielle Kommunikation

Serieller Monitor

```
int sensorValue = analogRead(A0);
Serial.println(sensorValue); // Ausgabe
```

```
/dev/cu.usbmodem1411 (Arduino/Genuino Uno)
                                                                                        Senden
457
186
227
461
417
185
250
493
368
184
277
505
314
182
                                                 Kein Zeilenende
                                                                                9600 Baud
 Autoscroll
```


Gibt es Fragen oder Anmerkungen zu dem Unterthema Arduino Grundlagen?

Abgehakt

Einführung Arduino/Funduino

Als Teilnehmer soll ich am Ende dieser Übung...

die Eigenschaften eines Arduinos kennen

die In- und Output-Pins eines Arduinos ansteuern können

ein Arduino-Projekt erstellen können

Programmieren mit einem Arduino

- 1. Entwicklung
 - Programmierung
 - Schaltung erstellen
- 2. Programm kompilieren
- 3. Programm auf Arduino/Funduino hochladen
- 4. Programm testen
- 5. Programm und Schaltung für die Anleitung dokumentieren

IDE-Einstellungen

Wichtig

Bei den Funduinos muss der Arduino Mega 2560 ausgewählt werden.

Institut für

Flugführung

Organisation von Arduino-Projekten

Die platformio.ini Datei enthält die Projekteinstellungen für das Arduino-Projekt

Programm

```
void setup() //Wir starten mit dem Setup
  pinMode (12, OUTPUT); // Pin 12 ist ein Ausgang
  pinMode (4, OUTPUT); // Pin 4 ist ein Ausgang
void loop() // Das Hauptprogramm beginnt.
  digitalWrite(12, HIGH); // Pin12 einschalten.
  delay (1000);
  digitalWrite(12, LOW); // Pin12 ausschalten.
  digitalWrite(4, HIGH); // Pin4 einschalten.
  delay (1000);
  digitalWrite(4, LOW); // Pin4 ausschalten.
```


Bauteile:

2 x Widerstand 100 O.

2 x LED blau

LEDs NIE ohne Widerstand verwenden!

Programm hochladen

- Über den Bootloader können Sketche direkt auf den Mikrocontroller geladen werden
- Frforderliche Schritte:
 - 1. Arduino per USB anschließen
 - 2. Programm kompilieren und hochladen

Abbildung 2: VSCode Statusleiste, von links: kompilieren, hochladen

Weiteres Vorgehen

Wenn ich einen Sensor oder ein anderes Bauteil nutzen möchte:

- Lesen der Dokumentation
 Repository API-Materialien auf GITHUB
- Beispiele nutzen
 Beispielprojekte auf arduino.cc
 Funduino-Beispiele und -Anleitungen

Schritte zum Lösen eines Problems:

- 1. Fehlermeldungen beachten
- https://www.google.de
- http://stackoverflow.com/ mit dem Tag [arduino] nach Lösungen suchen
- 4. Beitrag mit Fehlermeldung und Kontext in Slack verfassen

Gibt es Fragen oder Anmerkungen zu dem Thema Arduino?

Abgehakt

Einführung Arduino/Funduino

Als Teilnehmer soll ich am Ende dieser Übung...

die Eigenschaften eines Arduinos kennen

die In- und Output-Pins eines Arduinos ansteuern können

ein Arduino-Projekt erstellen können

Sprintmeeting

Jetzt besteht die Möglichkeit, das Sprintmeeting durchzuführen.

Protokolliert bitte

- die bearbeiteten Aufgaben der Vorwoche.
- die Zwischenstände der geplanten Aufgaben.
- die in der kommenden Woche zu bearbeitenden Aufgaben.

Vielen Dank für eure Aufmerksamkeit!

