EAE6029 - Econometria I Lista 1

Prof: Pedro Forquesato

Faculdade de Economia, Administração e Contabilidade Universidade de São Paulo

2024/1

/ Exercise list 1

// Analytical problems

- 1. If $\mathbb{E}\left[Y|X\right]=a+bX$, find $\mathbb{E}\left[XY\right]$ as a function of moments of X.
- 2. Show that in the linear regression model (see slides) for any function h(x) of the covariates, $\mathbb{E}\left[h(X)e\right]=0$ as long as it is finite.
- 3. True of false. If $Y=X\beta+e$, $X\in\mathbb{R}$ and $\mathbb{E}\left[Xe
 ight]=0$, then $\mathbb{E}\left[X^2e
 ight]=0$
- 4. Consider X and Y such that their joint density is $f(x,y)=3/2(x^2+y^2)$ on $[0,1]^2$. Compute the coefficients of the best linear predictor $Y=\alpha+\beta X+e$. Compute the conditional expectation function $m(x)=\mathbb{E}\left[Y|X=x\right]$. Are they different?
- 5. Consider the long and short projections $Y=X_1\gamma_1+e$ and $Y=X_1\beta_1+X_1^2\beta_2+u$. When is $\gamma_1=\beta_1$? What if we consider $Y=X_1\theta_1+X_1^3\theta_2+v$, is there a situation when $\theta_1=\gamma_1$?
- 6. Consider the estimation of the (sample-wide) linear regression $\mathbf{Y} = \mathbf{X}\beta + \mathbf{e}$. Now change the regressors to $\mathbf{Z} = \mathbf{X}\mathbf{C}$, where \mathbf{C} is a $k \times k$ non-singular matrix. How does this affect (i) the OLS estimates, and (ii) residuals of this regression?
- 7. Consider $\widetilde{\mathbf{Y}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$. Find the OLS coefficient of a regression of $\widetilde{\mathbf{Y}}$ on \mathbf{X} .
- 8. Show that ${f M}$ is idempotent.
- 9. Show that if ${f X}=[{f X_1}{f X_2}]$, and ${f X_1}'{f X_2}=0$, then ${f P}={f P_1}+{f P_2}$
- 10. A friend suggests that the assumption that observations (Y_i,X_i) are i.i.d. implies that the errors e of the regression $Y=X'\beta+e$ are homoskedastic. Do you agree? Explain why.
- 11. Consider the model $Y=X'\beta+e$ and the (very important nowadays) $\emph{ridge regression}$ estimator:

$$\widehat{eta}_{ ext{RIDGE}} = \left(\sum_{i=1}^n X_i X_i' + \lambda I_k
ight)^{-1} \left(\sum_{i=1}^n X_i Y_i
ight)$$

Is $\widehat{eta}_{\mathrm{RIDGE}}$ unbiased estimator of eta? Is it consistent?

12. Take a regression model with i.i.d. observations $(Y_i,X_i)_i$ and $X\in\mathbb{R}$, such that $Y=X\beta+e$, $\mathbb{E}\left[e|X\right]=0$ and define $\Omega=\mathbb{E}\left[X^2e^2\right]$. If $\widehat{\beta}$ is the OLS estimator and \widehat{e}_i the OLS residuals, find the assymptotic distribution $\sqrt{n}\left(\widehat{\Omega}-\Omega\right)$ of the estimators:

$$\widehat{\Omega} = rac{1}{n} \sum_{i=1}^n X_i^2 e_i^2$$

$$\widetilde{\Omega} = rac{1}{n} \sum_{i=1}^n X_i^2 \hat{e}_i^2$$

// Computational/interpretative problems

For this list, we will use the <code>cps09mar.dta</code> file provided by the textbook author. You should **provide** the code and the results *together*.

```
library(haven)
library(kableExtra)
library(knitr)

# setwd() <- this might help

# you can download the file directly in R, or just do it manually
# url <- "https://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics%20Data.zip"
# download.file(url, "./econ_data.zip")
# unzip("./econ_data.zip")

cps09mar <- read_dta("./cps09mar.dta")
knitr::kable(head(cps09mar, 10))</pre>
```

age	female	hisp	education	earnings	hours	week	union	uncov	region	race	marit
52	0	0	12	146000	45	52	0	0	1	1	1
38	0	0	18	50000	45	52	0	0	1	1	1
38	0	0	14	32000	40	51	0	0	1	1	1
41	1	0	13	47000	40	52	0	0	1	1	1
42	0	0	13	161525	50	52	1	0	1	1	1
66	1	0	13	33000	40	52	0	0	1	1	5
51	0	0	16	37000	44	52	0	0	1	1	1
49	1	0	16	37000	44	52	0	0	1	1	1

age	female	hisp	education	earnings	hours	week	union	uncov	region	race	marit
33	0	0	16	80000	40	52	0	0	1	1	1
52	1	0	14	32000	40	52	0	0	1	1	1

We are interested in running (linear) **Mincerian regressions** of the type $\ln(\text{wage}) = X'\beta + e$, where X is a vector of worker characteristics, the most important of which (for this kind of regression) is education.

- 1. Run a linear regression of log earnings on age, age squared, sex and education. What is the expected log earnings of a 20 years old woman as a function of her education? What is the average partial effect of another year of age on log earnings?
- 2. In the job market, an important predictor of wages is *experience*. Unfortunately, that is a variable almost universally missing from data sets, which at most have tenure at current work. So many applied economists **proxy** for experience as age 15 (minimum working age at the data). Add this variable to the regression. What happens? Calculate $(\mathbf{X}'\mathbf{X})$ and explain.

For what follows, remove age variables and leave only experience and experience squared. (Also: now that you are already half-way there, also calculate $\mathbf{X}'\mathbf{Y}$ and calculate by hand both $\widehat{\beta}$ and $\mathrm{Var}(\widehat{\beta})$)

- 3. Compute homoskedastic and heteroskedastic-robust standard errors of the estimators. Do they differ? Which one do you prefer? Now estimate cluster-robust standard errors at the level of the region. Discuss whether this is a reasonable approach in this case.
- 4. Now use the Frisch-Waugh-Lovell theorem to estimate the effect of education on wages, while partialling out the controls in (1). Is the estimated coefficient the same? What about its standard deviation?
- 5. Consider a 18 years-old prospective college student deciding whether to study or work. He wants to know the $ratio\ \theta$ between returns of education and returns to experience, given his age. Write θ as a function of the parameters β and estimate it.
- 6. Write out the formula for the asymptotic variance of $\hat{\theta}$ as a function of the variance-covariance matrix and find the standard deviation of the estimator.
- 7. Construct a 90% confidence interval for $\hat{\theta}$.
- 8. Test (jointly) whether $\beta_{\rm educ}$ equals $\beta_{\rm exp}+6\beta_{\rm exp^2}$ and $\beta_{\rm educ}$ for men equals $\beta_{\rm educ}$ for women using a Wald statistic. Interpret.