388
$$y = -x^2 + 6|x|$$
; DISFSHARE IL GALFICO

$$\begin{cases}
x^2 + 6 \\
y = -|x|^2 + 6|x| & -x^2 + 6x & -x^2 - 6x = \\
& = x^2 - 6x + 9 - 9 \\
& = (x - 3)^2 - 9 \\
& = (x - 3)^2 - 9
\end{cases}$$

$$\begin{cases}
(x - 3)^2 \\
3 \\
4 \\
-x^2 + 6x \\
\end{cases}$$
(x - 3) $x - 9 = x^2 - 6x \\
\end{cases}$

$$\begin{cases}
x - 3 \\
3 \\
3 \\
\end{cases}$$

$$\begin{cases}
x - 3 \\
3 \\
\end{cases}$$

$$\begin{cases}
x - 3 \\
3 \\
\end{cases}$$

$$\begin{cases}
x - 3 \\$$

Considera la relazione $\frac{1}{x} + \frac{1}{y} = \frac{1}{a}$, dove a è un parametro reale positivo.

- **a.** Esprimi y in funzione di x e, indicata con f la funzione trovata, determina il dominio, l'insieme immagine e gli intervalli in cui f è positiva.
- **b.** Dopo aver posto a = 1, considera g(x) = -x + 4 e determina le espressioni di $f \circ g$ e $g \circ f$.
- **c.** Dimostra che $f \circ g$ è una funzione crescente in \mathbb{R} .

[a)
$$y = \frac{ax}{x-a}$$
, $D = \mathbb{R} - \{0, a\}$, $Im(f) = \mathbb{R} - \{0, a\}$, $]-\infty$; $0[\cup]a; +\infty[$;
b) $(f \circ g)(x) = \frac{x-4}{x-3}$, $(g \circ f)(x) = \frac{3x-4}{x-1}$

fer y + a e y +0

a)
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{a}$$
 $a \ge 0$ $x, y \ne 0$

$$\frac{1}{y} = \frac{1}{a} - \frac{1}{x}$$
 $\frac{1}{y} = \frac{x - a}{ax}$ $y = \frac{ax}{x - a}$

$$f(x) = \frac{ax}{x - a}$$
 $D = \mathbb{R} \setminus \{0, a\} = (-\infty, 0) \cup (0, a) \cup (a, +\infty)$

puli deino dollo relosione inisiolo (WESSENEMIE)

Ber determinare l'innienne immagine lisagne stabilire per quali y l'equatione
$$\frac{ax}{x - a} = y \qquad \text{he salutione}$$

$$\frac{ax}{x - a} = y \qquad \text{he salutione}$$

$$\frac{x \ne a}{x + a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a} \qquad (x \ne a)$$

$$\frac{x \ne a}{x - a}$$

Significa che, dots $y \neq 0$ e $y \neq a$, la x che ha fer immogine questa $cy = x = \frac{\alpha cy}{y-a}$

