Econ 513: Practice of Econometrics

Final exam, December 8, 2016, Answers

Problem 1.

- (i) For all i the dummies d_{ij} have a sum equal to 1. Therefore we have a multicollinearity problem, because the regressor for the intercept that is 1 is equal to the sum of the dummies d_{ij} .
- (ii) If we consider α_i as a random effect it is uncorrelated with x_{i1}, x_{i2}, x_{i3} . If it is a fixed effect it can be correlated with x_{i1}, x_{i2}, x_{i3} .
- (iii) The decision on the number of employees is taken by management. This implies that the decision will depend among other things on the quality of the management α_i , so that the number of employees is correlated with α_i . The sign of the correlation could be negative if good management means higher sales and fewer employees are needed for a level of sales. We need not know the sign of the correlation to make the fixed effect assumption more credible in this case.
- (iv) FD model

$$\Delta y_{it} = \beta \Delta x_{it} + \Delta \varepsilon_{it}, \ t = 2, 3$$

The assumption is (I express the lack of relation by a 0 correlation assumption) $E(\Delta x_{it}\Delta \varepsilon_{it}) = 0$, t = 2, 3 and a sufficient condition for that is

$$E(x_{it}\varepsilon_{it}) = 0, \ t = 1, 2, 3 \quad E(x_{it}\varepsilon_{i,t-1}) = 0, \ t = 2, 3 \quad E(x_{i,t-1}\varepsilon_{it}) = 0, \ t = 2, 3$$

or

$$E(x_{it}\varepsilon_{it}) = 0, \ t = 1, 2, 3 \quad E(x_{it}\varepsilon_{i,t-1}) = 0, \ t = 2, 3 \quad E(x_{it}\varepsilon_{i,t+1}) = 0, \ t = 1, 2$$

(v) This implies that the regression (1) has a linear time trend $\gamma \cdot t$.

(vi)
$$y_{i3} = \gamma y_{i2} + \beta x_{i3} + \alpha_i + \varepsilon_{i3}$$

$$y_{i2} = \gamma y_{i1} + \beta x_{i2} + \alpha_i + \varepsilon_{i2}$$

For period 1 the lagged dependent variable is for period o for which we do not have observations.

(vii)
$$\Delta y_{i3} = \gamma \Delta y_{i2} + \beta \Delta x_{i3} + \Delta \varepsilon_{i3}$$

We require that the error $\varepsilon_{i3} - \varepsilon_{i2}$ is uncorrelated with $y_{i2} - y_{i1}$ and $x_{i3} - x_{i2}$ and a sufficient condition is

$$E(x_{i3}\varepsilon_{i3}) = 0$$
 $E(x_{i3}\varepsilon_{i2}) = 0$ $E(x_{i2}\varepsilon_{i3}) = 0$ $E(x_{i2}\varepsilon_{i2}) = 0$

and

$$E(y_{i2}\varepsilon_{i3}) = 0$$
 $E(y_{i2}\varepsilon_{i2}) = 0$ $E(y_{i1}\varepsilon_{i3}) = 0$ $E(y_{i1}\varepsilon_{i2}) = 0$

(viii)(20) Because

$$y_{i2} = \gamma y_{i1} + \beta x_{i2} + \alpha_i + \varepsilon_{i2}$$

we have that y_{i2} and ε_{i2} are correlated so that

$$E(y_{i2}\varepsilon_{i2}) \neq 0$$

To deal with this correlation we can use IV with y_{i1} and x_{i1} potential instruments for Δy_{i2} .

Problem 2. In a study of the effect of financial aid on graduation from a college let the outcome variable be Y that is 1 if the student graduates and 0 if s/he drops out. The dummy D is 1 if the student receives financial aid and 0 if not. The variable Z is a score (for instance high school GPA) that measures the performance of the student in high school. The data are a sample $Y_i, D_i, Z_i, i = 1, \ldots, N$ of students who were admitted to the same college.

(i) In the regression

$$Y = \alpha + \beta D + \varepsilon \tag{1}$$

D and ε are likely to be positively correlated and this will bias the OLS estimate upward.

- (ii) Although Z and D are possibly strongly correlated the problem is that Z and ε are also likely to be correlated, because Z has a direct effect on Y even after accounting for D.
- (iii) No. Even if D is a function of Z only then Z and ε are still correlated so that D is still correlated with the error term.
- (iv) The Regression Discontinuity (RD) estimator would apply. For this estimator we would estimate E(Y|Z) by a local linear regression using data just above the cut-off and estimate

$$\lim_{z \downarrow c} E(Y|Z=z)$$

and we would estimate E(Y|Z) by a local linear regression using data just below the cut-off and estimate

$$\lim_{z\uparrow c}E(Y|Z=z)$$

The RD estimator is

$$\lim_{z \downarrow c} E(Y|Z=z) - \lim_{z \uparrow c} E(Y|Z=z)$$

(v) The assumption is that $E(Y_0|Z=z)$ is continuous in z and $E(Y_1|Z=z)$ is continuous in z. Alternatively we can require that for δ small $E(\varepsilon|Z=z-\delta)=E(\varepsilon|Z=z+\delta)$ so that

$$E(Y|Z=z+\delta) = \alpha + \beta + E(\varepsilon|Z=z+\delta)$$
 $E(Y|Z=z-\delta) = \alpha + E(\varepsilon|Z=z+\delta)$

so that under the assumption above

$$E(Y|Z = z + \delta) - E(Y|Z = z - \delta) = \beta.$$

(vi) In that case there would be more students with scores above that just below the cut-off and this would show up in the density of the distribution of the scores as a dis

(vii) (20)

$$E(Y|Z=z+\delta)-E(Y|Z=z-\delta)=\beta(E(D|Z=z+\delta)-E(D|Z=z-\delta))+E(\varepsilon|Z=z+\delta)-E(\varepsilon|Z=z-\delta)$$

Now

$$E(\varepsilon|Z=z+\delta) - E(\varepsilon|Z=z-\delta) = 0$$

because the students just below and above the cut-off are similar (except for the receipt of financial aid). Therefore

$$\beta = \frac{E(Y|Z=z+\delta) - E(Y|Z=z-\delta)}{E(D|Z=z+\delta) - E(D|Z=z-\delta)}$$

and we use the procedure in (iv) to estimate numerator and denominator.