Theory of Automata and Formal Language Lecture-14

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Procedure for transforming a Mealy machine into a Moore machine

Example: Construct a Moore machine which is equivalent to the following Mealy machine

Present State	0		1	
	δ	λ	δ	λ
$\rightarrow q_1$	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	1	q_1	1
q_4	q_4	1	q ₃	0

Solution: In the first step we split the some states. We split those states that has different outputs. In this example, we split states q_2 and q_4 .

Present State	0		1	
State	δ	λ	δ	λ
$\rightarrow q_1$	q_3	0	q ₂₀	0
q ₂₀	q_1	1	q ₄₀	0
q ₂₁	q_1	1	q ₄₀	0
q_3	q ₂₁	1	q_1	1
q ₄₀	q ₄₁	1	q_3	0
q ₄₁	q ₄₁	1	q ₃	0

Now, we convert above Mealy machine into Moore machine:-

Present State		λ	
	0	1	
$\rightarrow q_1$	q_3	q ₂₀	1
q ₂₀	q_1	q ₄₀	0
q ₂₁	q_1	q ₄₀	1
q_3	q ₂₁	q_1	0
q ₄₀	q ₄₁	q_3	0
q ₄₁	q ₄₁	q_3	1

Example: Construct a Moore machine which is equivalent to the following Mealy machine

Example: Construct a Mealy machine which can output EVEN, ODD as the total number of 1's encountered is even or odd. The input symbols are 0 and 1.

Example: Construct a Mealy machine that prints 1's complement of an input binary number.

Example: Design an incremental Mealy machine.

Example: Design a Mealy machine that prints 2's complement of an input binary number.

Example: Design a Moore machine to determine residue mod 3 for binary number.

6