Algebra Multilineal i Geometria

FME, UPC

Entregable 3

Descomposició de $\mathcal{T}^3(E)$

Sigui E un espai vectorial sobre un cos \mathbf{k} , de dimensió finita n. Sabem que per als 2-tensors contravariants se satisfà $\mathscr{T}^2(E) = \mathcal{S}^2(E) \oplus \mathcal{A}^2(E)$. L'objectiu és donar una descomposició similar per als 3-tensors $\mathscr{T}^3(E) = E \otimes E \otimes E$.

Denotem per $\mathcal{S}^{1,2}(E) \otimes E$ la imatge de l'aplicació lineal $\rho_{1,2} : \mathcal{T}^3(E) \longrightarrow \mathcal{T}^3(E)$ que sobre els tensors descomponibles està definida per

$$ho_{1,2}(oldsymbol{v}_1\otimesoldsymbol{v}_2\otimesoldsymbol{v}_3)=rac{1}{2}\left(oldsymbol{v}_1\otimesoldsymbol{v}_2\otimesoldsymbol{v}_3+oldsymbol{v}_2\otimesoldsymbol{v}_1\otimesoldsymbol{v}_3
ight).$$

És a dir, simetritza les dues primeres posicions. Anàlogament es poden definir les aplicacions $\rho_{1,3}, \rho_{2,3}$, que simetritzen les posicions 1,3 i 2,3, respectivament.

Denotem per $S_{1,3}(E) \otimes E$ la imatge de l'aplicació lineal $\rho^{1,3}: \mathcal{T}^3(E) \longrightarrow \mathcal{T}^3(E)$ que sobre els tensors indescomponibles està definida per

$$\rho^{1,3}(\boldsymbol{v}_1\otimes\boldsymbol{v}_2\otimes\boldsymbol{v}_3)=\frac{1}{2}\left(\boldsymbol{v}_1\otimes\boldsymbol{v}_2\otimes\boldsymbol{v}_3-\boldsymbol{v}_3\otimes\boldsymbol{v}_2\otimes\boldsymbol{v}_1\right).$$

És a dir, antisimetritzasimetritza les posicions 1 i 3. Anàlogament es poden definir les aplicacions $\rho^{1,2}$, $\rho^{2,3}$, que antisimetritzen les posicions 1,2 i 2,3, respectivament.

- 1. Proveu que $\rho_{1,2}$ és un projector i calculeu la dimensió de $\mathcal{S}^{1,2}(E)\otimes E$. Trobeu la dimensió de $\mathcal{S}^{1,2}(E) \otimes E \cap \mathcal{S}^3(E)$ i de $\mathcal{S}^{1,2}(E) \otimes E \cap \mathcal{A}^3(E)$.
- 2. Proveu que $\rho 1,3$ és un projector i calculeu la dimensió de $\mathcal{A}^{1,3}(E)\otimes E.$ Trobeu la dimensió de $S_{1,3}(E) \otimes E \cap S^3(E)$ i de $S_{1,3}(E) \otimes E \cap A^3(E)$.
- 4. Definim $\mathcal{S}_3^{1,2}$ com la imatge de la composició

$$\mathscr{T}^3(E) \xrightarrow{\rho_{1,2}} \mathcal{S}_{1,3}(E) \xrightarrow{\rho^{1,3}} \mathscr{T}^3(E)$$

Calculeu les dimensions $\mathcal{S}_{1,3}(E)$, $\mathcal{S}_3^{1,2}(E) \cap \mathcal{S}^3(E)$ i $\mathcal{S}_{1,2}(E) \cap \mathcal{A}^3(E)$.

- 4. Proveu que
 - (a) $\mathcal{S}_3^{1,2}(E) \cap \mathcal{S}^3(E) = 0$, $\mathcal{S}_3^{1,2}(E) \cap \mathcal{A}^3(E) = 0$. (b) $\mathcal{S}_3^{1,2}(E) \cap \mathcal{S}_2^{1,3}(E) = 0$.
- 5. Deduïu que es té una descomposició de $\mathcal{T}^3(E)$ en suma directa

$$\mathscr{T}^3(E) = \mathcal{S}^3(E) \oplus \mathcal{S}^{1,2}_3(E) \oplus \mathcal{S}^{1,3}_2(E) \oplus \mathcal{A}^3(E).$$

6. La descomposició anterior no és canònica, podríem utilitzar en el seu lloc els subespais $S_2^{3,1}$ i $S_1^{3,2}$, per exemple. Proveu que

$$\mathcal{S}_2^{3,1}\subset\mathcal{S}_2^{3,1}\oplus\mathcal{S}_2^{3,1}.$$

Per saber-ne més: La descomposició de l'apartat 5 es generalitza per a p-tensors $\mathscr{T}^p(E)$. Per fer-ho cal analitzar les accions irreductibles del grup simètric \mathfrak{S}_p sobre $\mathscr{T}^p(E)$, que estan codificades pels tableaux de Young. En el nostre cas, la descomposició 5 respon als tableaux de Young següents

1 2 3	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	1 3	1
	3	2	2
		<u></u>	3

Si esteu interessats en aquests aspectes combinatoris, podeu consultar:

B.E. Sagan, The Symmetric Group, Representations, Combinatorial Algorithms, and Symmetric Functions. Springer Verlag. New York, 2001.