# Propriétés de clôture

### But

- Savoir quelles sont les opérations qui conservent la rationalité d'un langage.
- On connaît déjà plusieurs manières de considérer les langages rationnels
  - Par les expressions rationnelles
  - Par les automates

2

# Clôture par complémentation

- La classe des langages rationnels est close par complémentation : L∈Rat( $\Sigma$ )  $\Rightarrow \Sigma$  \*\L ∈Rat( $\Sigma$ ),
- ■Preuve par automates:
  - •L $\in$ Rat( $\Sigma$ )  $\Rightarrow$  il existe A un AFD complet, A= $\langle Q, \Sigma, \delta, i, F \rangle$  t.q. L(A) = L
  - on définit A' à partir de A pour reconnaître  $\Sigma^*\backslash L$  :

$$A'=\langle Q, \Sigma, \delta, i, Q \rangle$$

 Tous les états non terminaux deviennent terminaux et vice versa

# Clôture par l'intersection

 Si L et M sont deux langages rationnels alors L∩M est également rationnel.

 $L \cap M = \overline{L} \cup \overline{M}$ 

Preuve directe:

Comme l'ensemble des langages rationnels est clos pour la complémentation et l'union, il est clos pour l'intersection

Preuve par automates

- Soit A=<Q,Σ,δ,i,T> tel que L(A)=L
- Soit B=⟨Q',Σ,δ',j,T'> tel que L(B)=M

Alors,  $C = \langle Q \times Q', \Sigma, \delta_{C}, [i,j], T \times T' \rangle$  pour  $\delta_{C}([p,q]), a) = [\delta(p,a), \delta'(q,a)]$ 

Pour tout  $p \in Q$ ,  $q \in Q'$  et  $a \in \Sigma$ 

Reconnaît LOM



# Clôture par l'union

- La construction précédente permet également de prouver la clôture par l'union
- Si L et M sont deux langages rationnels alors LOM est également rationnel.
- Preuve par automates :
  - Soit  $A=\langle Q, \Sigma, \delta, i, F \rangle$  complet tel que L(A)=L
  - Soit B=<Q',Σ,δ',j,F'> complet tel que L(B)=M

Alors, D= $\langle Q \times Q', \Sigma, \delta_D, [i,j], \{[f,f'] \mid f \in F \text{ ou } f' \in F'\} \rangle$  pour  $\delta_D([p,q]), \alpha) = [\delta(p,a), \delta'(q,a)]$ 

pour tout  $p \in Q$ ,  $q \in Q'$  et  $a \in \Sigma$  reconnaît  $L \cup M$ 



# Clôture par substitution

 À chaque lettre de l'alphabet d'une expression rationnelle on associe un langage rationnel: on substitue un langage à une lettre.

 $f(\varepsilon)=\varepsilon$  et f(ma)=f(m)f(a)

m un mot et a une lettre

■ Pour les langages:

 $f(L) = \bigcup_{m \in L} f(m)$ 

# Exemple

- f(0)=a et f(1)=b\*
- f(010)=ab\*a
- Pour L=0\*(0+1)1\*, f(L)=a\*(a+b\*)(b\*)\*=a\*b\*

1

# Clôture par substitution

- Soit L∈Rat(Σ) et ∀a ∈Σ, R<sub>a</sub> ∈Rat(Δ).
   Soit la substitution f: Σ →Δ\*, f(a)=R<sub>a</sub>
   f remplace toute occurrence de a dans L par R<sub>a</sub>.
- f(L∪M)=f(L) ∪ f(M), f(L.M)=f(L).f(M), f(M\*)=f(M)\*
- On montre par récurrence sur la structure de L que l'expression rationnelle obtenue représente bien f(L).

Récapitulatif

Union Oui

Intersection Oui

Etoile Oui

Concaténation Oui

Substitution Oui

11

# Clôture image miroir

- Si L est un langage rationnel alors le langage r(L), composé des images miroirs des mots de L est également rationnel.
- La preuve est facile. En effet, si l'automate A reconnaît L, alors l'automate inverse r(A), reconnaît r(L).

### Exemple

 Le langage des mots ayant abb comme suffixe (a+b)\*abb

est reconnu par l'automate A



## Exemple

Pour reconnaître le langage miroir, il suffit d'inverser l'orientation des arcs - r(A).



# Exemple (suite)

- Mais, nous avons obtenu un automate A' non déterministe!
- Il faut donc déterminiser, pour obtenir d(A')



# Quelques propriétés

Soit A un automate fini et q un état de A.

- Le langage droit (suffixe) de q est le langage  $L_d(A,q)$  reconnu par l'automate  $A_d(A,q)$  obtenu de A en fixant l'état initial q.
- Le langage gauche (préfixe) de q est le langage  $L_g(A,q)$  reconnu par l'automate  $A_g(q)$  obtenu de A en fixant l'état final (unique) q.

# 

# Quelques propriétés

**Propriété 1**: Un automate fini est déterministe si et seulement si les langages gauches de ses états sont deux à deux disjoints.

Preuve: sinon, on le choix ...

# Quelques propriétés

■ **Propriété 2**: Si le langage gauche (resp. droit) de q est  $L_g(A,q)$  (resp.  $L_d(A,q)$ ), alors le langage gauche (resp. droit) de q dans r(A) est  $L_d(r(A),q)$  (resp.  $L_q(r(A),q)$ ).

20

# Quelques propriétés

Propriété 3 : Le langage droit d'un état q'de d(A) est l'union des langages droits des états de q de A qui appartiennent à q'.

21

# Quelques propriétés

 Propriété 4: Un automate déterministe complet ayant toutes les états accessibles est minimal si et seulement si toutes ses langages droits sont différents.

2:

### Théorème de Brzozowski

#### ■Théorème (1962) :

Soit A un automate (pas nécessairement déterministe) qui accepte le langage L. Alors l'automate d(r(d(r(A)))) est l'automate minimal qui reconnaît L.

23

### Théorème de Brzozowski

- Par la construction, il s'agit d'un AFD complet ayant toutes les états accessibles. Comme on a vu, le langage accepté est L.
- Il reste à montrer que toutes les langages droits de drdr(A)sont différents.
- Par la propriété 1, les langages gauches de dr(A) sont deux à deux disjoints.
- Les langages droits de rdr(A) sont les langages gauches de dr(A). Ainsi, ils sont deux à deux disjoints.

# Théorème de Brzozowski

- ■Par la proposition 3, un langage droit de drdr(A) est l'union de langages droits de rdr(A). Comme les langages droits de rdr(A) sont deux à deux disjoints, les langages droits de drdr(A) sont différents.
- ■Donc drdr(A) est minimal.



# Exemple (l'inverse) a 1 a 4 a,b a,b a,b b a,b b a,b









Problème de l'égalité d'expressions rationnelles

# Égalité d'expressions rationnelles

- Problème
  - <u>Données</u> : e<sub>1</sub> et e<sub>2</sub> deux expressions rationnelles
  - •Question :  $e_1 = e_2$ ?
- Exemple
  - (a\*b\*)\*(b\*a\*)\*bb((b\*a\*)\*+(b+a)\*)=(a+b)\*bb(a+b)\*

Fonctionnement  $e_1 \longrightarrow AFND \longrightarrow \mu AF$ Isomorphes?  $e_2 \longrightarrow AFND \longrightarrow \mu AF$ Non  $e_1 \neq e_2$ 





| Exemple                       |            |    |    |
|-------------------------------|------------|----|----|
| Chempie                       |            | α  | b  |
| L'= (abb+bb)*(a+ab+b)a (a+b)* | <u></u> →1 | 24 | 35 |
|                               | 2          | -  | 3  |
| -1 b b 33 a                   | 3          | -  | 1  |
|                               | 4          | 6  | 5  |
|                               | 5          | 6  | -  |
|                               | <u>←6</u>  | 6  | 6  |
|                               | <b>→1</b>  | 24 | 35 |
| Minimal, à vue de nez         | 24         | 6  | 35 |
|                               | 35         | 6  | 1  |
|                               | <b>←</b> 6 | 6  | 6  |
|                               |            | _  | 37 |

