

Shop the products you love

Save time & money

Get same-day delivery or pickup

Improving Instacart 1 customer at a time

Presented by Paulette Rodrigues

Introduction

- Instacart was **launched** in June 2012 as a grocery delivery and pick-up service
- It is essentially a **delivery platform** that partners with retailers across the United States and Canada to provide food products to their customers
- By 2017 the retailer Whole Foods was responsible for **more** than 10 % of there sales
- Their competitor Amazon acquired Whole Foods, for \$13.7 billion in August 2017 ...
 putting them now in second to Amazon (Tom's Guide)
- For the past three years Instacart was able to **maintain** and **retain** their market share; based on 2019 figures, membership has **tripled** in 2020

Historical Data on Instacart Shoppers

Instacart Shoppers

2014	5,000
2016	20,000
2018	70,000
2019	130,000
2020	500,000

🥕 instacart (in billion U.S. dollars) 7.2 Apr 2020 May 2020 Jun 2020 Aug 2020

Current Trends

- Instacart earned its first monthly net profit in April 2020, netting \$10 million...reaching its 2022 goals
- Covid19 contributed to an increased in demand ...
 which has ballooned their net worth from \$7.6 to
 \$13.7 billion
- In 2020, it has expanded its support staff from 1,200 to 18,000
- They are on track to processing more than \$35 billion in grocery sales this year

Expected online growth to 2023

Why have you chosen to make your grocery purchases online? (Multiple responses allowed)

Response	Percentage
As part of COVID-19, I didn't want to venture to the store	54.4%
It saves me time	47.3%
l don't have to deal with long lines in the store	43.9%
Convenience; 24x7 shopping	37.0%
As part of COVID-19, many items were out of stock in the store	31.1%
Online search makes shopping simpler	26.5%
I don't buy things I don't need	23.9%
I don't enjoy going to the grocery store	22.1%
I can avoid the parking lot	21.5%
I don't have to shop in bad weather	18.6%
As part of COVID-19, I was unable to get to a store	15.2%
It is easy to replenish items	14.3%
It saves me money	14.0%
Access to online specials and coupons	13.2%
Price transparency	10.6%
I receive the freshest items	4.5%
None of the these	2.5%

Online Shopping Customer Survey

Question?

How can Instacart's customers **decrease** the time spent by to complete their full order, **improve** their online experience and have them **return** as customers post Covid19?

Your stores

Problem Statement

We need to predict what a customer may purchase on their next order (therefore directing them to the retailer that will fulfill their shopping needs)

Data Description

Orders (3.4 million, 206 K users):

• Describe the customers orders e.g. order number, day of week/hour of day, days since prior order etc.

Products: (50 k):

Name of the products available for purchase

Aisles (134):

Contains the aisle available

Departments (21):

• Contains the department in the stores

Order_Products (30 million):

- Listing of all items ordered by customers per order
 - "prior": orders prior to that users most recent order (~3.2m orders)
 - "train": training data supplied to participants (~131k orders)

Instacart Dataset: Entity Relationship Diagram

https://i.imgur.com/R7c37Yw.png

Data Cleaning Process

Data was aggregated to create one row per customer's per item purchased

Aggregation was done based on the following conditions:

- By items purchased from all customer's orders
- By items purchased from the last 5 orders of the customer

Department of the item was also kept as the natural category of the items

Null values were set to 0

EDA: Distribution of Day of the week and hour items are purchased

Distribution of number of times items are sold and of departments sold

Maximum days between customer's orders

Distribution of number of orders by customer last 5 times vs all orders

last5_times_item_pur =	0.28	- 0.75
last5_pct_order =	0.28	
times_ordered	0.19	
min_days_bet -	0.065	- 0.50
avg_days_bet -	0.057	
last5_avg_items =	0.041	- 0.25
avg_items_ordered	0.038	0.23
min_days_5odrs =	0.00052	
last5_total_orders	-0.00091	- 0.00
max_days_bet =	-0.0017	
max_reorder_5days =	-0.016	
avg_days_5odrs -	-0.022	0.25
max_days_5odrs -	-0.033	
avg_reorder_5days ⁻	-0.051	0.50
max_reorder_days =	-0.054	
total_orders -	-0.072	
min_reorder_5days -	-0.079	0.75

Pct_reorder, last5_times_item_purc hased, last5_pct_order seems to be the most correlated with the target (reordered)

Comparing the original dataset vs final...

The train / test set has over 30 million rows with 2.2 % for training / testing model

The aggregated dataset has over 12 million rows with 6.2% of the items recorded

Modeling

Modeling – Specifactions

Since we have an imbalanced dataset, the model must have an accuracy score of more than 93.8 to be effective

We will do a train/test split of 80/20 and report on the following

Accuracy

F1-score

Sensitivity (False Positive)

Recall (False Negative)

We also want to minimize False Negatives

Initial Results

On generation of the first model the score was as expected; all predictions were 0 and we therefore got a 93.7 % accuracy

Oversampling was then implemented using SMOTE, this produces a dataset of almost 20 million rows which resulted in long processing times

In the end a sample of 500,000 rows were taken SMOTE was then applied after the data was scaled

Modeling Results

Results Based on all numeric aggregate features

Model	Accuracy, Train	Accuracy, Test	Precision	Recall I	F1-Score	False Negative
Logistic	0.71	0.74	0.15	0.69	0.25	1945
Kneighbors	0.91	0.77	0.14	0.48	0.21	3296
Decision Tree	0.99	0.89	0.17	0.2	0.19	4939
Random Forest	0.99	0.92	0.27	0.17	0.21	5148
AdaBoost	0.77	0.82	0.18	0.57	0.28	3649
Bagging	0.99	0.92	0.23	0.12	0.16	5426

Best Model Logistic Regression Sensitivity: 0.6896 Specificity: 0.7388

Next Steps

- Train the data with other models
- Apply grid search to the best model
- Add / remove other features to get the optimal solution

References

- https://www.kaggle.com/c/instacart-market-basket-analysis/discussion/33205
- "Instacart Market Basket Analysis, Winner's Interview: 2nd place, Kazuki Onodera" by Edwin Chen, dated September 21, 2017.
- https://www.tomsguide.com/best-picks/best-grocery-delivery-services
- https://www.businessofapps.com/data/instacart-statistics/#:~:text=The%20next%20few%20months%20accelerated,had%20passed%20its%202022%20goals

Thank You!!!!!