11. Proof by Induction

Language & Logic

Dave Parker

University of Birmingham 2017/18

Last two weeks

- Final topic: proofs of program correctness
 - (see also connections to Elements of Functional Computing)
- This week (week 10)
 - Mon 4pm: lecture
 - Tue 11am: lecture
 - nothing on Thursday
- Next week (week 11)
 - Mon: no lecture
 - Tue 11am and Thu 10am: exercise classes
- Continuous assessment
 - assignment 3 (due 5pm this Friday 1 Dec)

Assignment 3 questions

- Q1b: "them"; "either"
- (b) Everyone who loves Bella also loves either Claire or Daisy, and none of them speak French, but at least one person who loves Daisy speaks German.
- Q1/2: sentences vs. arguments vs. theorems

Prove or disprove equivalences in <u>both</u> directions

Today & tomorrow

- Predicate calculus proofs
 - common questions/errors
- Propositional logic, predicate calculus, proof
 - applications elsewhere in maths & computer science
- Proof by induction
 - mathematical induction
- Structural induction
 - correctness of programs on recursive data structures

Predicate calculus proofs

- Disproof via counterexample
 - how to find? how to present?
 - see e.g. Exercise 8 Q4

$$\overline{\exists}x[P(x)] \land \forall x[\forall y[(P(x) \land P(y)) \to (x=y)]] : \neg \forall x[P(x)]$$

- ∀-introduction and ∃-elimination
 - take care with the usage restrictions
 - learn/remember the intuition behind them
 - think about the roles of the constants
 - sometimes need several, e.g. Exercise 8 Q5

$$\exists x [\forall y [P(y) \to (x=y)]] : \forall x [\forall y [(P(x) \land P(y)) \to (x=y)]]$$

Logic & proof (so far)

- Propositional logic & predicate calculus
 - Boolean connectives $(\neg, \land, \lor, \rightarrow)$
 - quantifiers (\forall, \exists) , variables, predicates, identity
 - formulas, arguments, theorems, equivalences
 - translation from natural language
 - formal proof using natural deduction
- Applications of logic & proof
 - program correctness
 - verification, model checking, SAT solvers, theorem provers
 - circuit design, artificial intelligence, knowledge representation
 - basis for formal proofs in mathematics & computer science

Mathematical proofs

- Ingredients of predicate logic are essential for representing mathematical facts, theorems, proofs, e.g.:
- Predicates
 - even(x) = x is even; mult(a,b,x) = x is equal to a times b
- Definitions
 - even integers are multiples of 2, i.e. even(x) $\equiv \exists y [mult(2,y,x)]$
- Theorems
 - if n² is even then n is even too,
 i.e. ∀n [even(n²) → even(n)]
- Proof techniques
 - proof by contradiction (¬−introduction)
 - proof by cases (∨-elimination)

— ...

Proof by contradiction

• Theorem:

- if n^2 is even then n is even too, i.e. $\forall n \text{ [even(}n^2\text{)} \rightarrow \text{even(}n\text{)} \text{]}$

Proof:

```
even(n<sup>2</sup>)
                                                                                       Hypothesis
2.
3.
4.
5.
6.
7.
8.
         even(n)
         even(n^2) \rightarrow \text{even}(n)
                                                                                       \rightarrow-introduction<sub>1,8</sub>
9.
10. \forall n [ even(n<sup>2</sup>) \rightarrow even(n) ]
                                                                                       \forall-introduction<sub>9</sub>
```

Proof by contradiction

• Theorem:

- if n^2 is even then n is even too, i.e. \forall n [even(n^2) → even(n)]

Proof:

```
even(n<sup>2</sup>)
                                                                                  Hypothesis
         ¬even(n)
                                                                                  Hypothesis
3.
4.
5.
6.
         \neg\negeven(n)
                                                                                   \neg-introduction<sub>2.6</sub>
                                                                                   \neg \neg - elimination_7
8.
         even(n)
         even(n^2) \rightarrow \text{even}(n)
                                                                                   \rightarrow-introduction<sub>1.8</sub>
9.
10. \forall n [ even(n<sup>2</sup>) \rightarrow even(n) ]
                                                                                   \forall-introduction<sub>9</sub>
```

Proof by contradiction

• Theorem:

- if n^2 is even then n is even too, i.e. \forall n [even(n^2) → even(n)]

Proof:

```
even(n²)
                                                                       Hypothesis
       __even(n)
                                                                       Hypothesis
      n = 2k+1
                                                                       (since n is odd)
      n^2 = (2k+1)^2 = 4k^2+4k+1 = 2(2k^2+2k)+1
                                                                       (expansion)
                                                                       (from above)
       \negeven(n<sup>2</sup>)
                                                                        \land-introduction<sub>1.5</sub>
        \neg\negeven(n)
                                                                        \neg-introduction<sub>2.6</sub>
8.
       even(n)
                                                                        \neg \neg - elimination_7
       even(n^2) \rightarrow \text{even}(n)
                                                                       \rightarrow-introduction<sub>1.8</sub>
9.
10. \forall n [ even(n<sup>2</sup>) \rightarrow even(n) ]
                                                                        \forall-introduction<sub>9</sub>
```

Proof by induction

- Mathematical induction
 - proof technique for statements of the form $\forall n [P(n)]$
 - where n is a natural number
- Two steps:
 - 1. Base case:
 - e.g. prove that P(0) is true
 - 2. Inductive step:
 - assume that P(k) is true, prove that P(k+1) is true
 - P(k) is called the inductive hypothesis
- Conclude
 - P(n) is true for all n

Proof by induction

• Inference rule:

$$\frac{P(0) \quad \forall \, k \; [\; P(k) \rightarrow P(k+1) \;]}{\forall \, n \; [\; P(n) \;]} \quad \text{by induction}$$

• Why it works:

2.
$$\forall k [P(k) \rightarrow P(k+1)]$$

3.
$$P(0) \rightarrow P(1)$$

5.
$$P(1) \rightarrow P(2)$$

6.
$$P(2)$$

Premise

Premise

∀-elimination

→-elimination

∀-elimination

→-elimination

. . .

Mathematical induction - Example

• Prove: $\forall n [\sum_{i=0...n} i = n(n+1)/2]$ - i.e. \forall n [P(n)] where P(n): $\Sigma_{i=0...n}$ i = n(n+1)/2 Base case (n=0): - LHS: $\sum_{i=0}^{\infty} n_i i = 0$ - RHS: n(n+1)/2 = (0x1)/2 = 0- so P(0) is true Inductive step - assume inductive hypothesis P(k): $\sum_{i=0...k} i = k(k+1)/2$ - then prove P(k+1), i.e. $\sum_{i=0...k+1} i = (k+1)(k+2)/2$ $- \sum_{i=0...k+1} i = (0+1+...+k+k+1) = (\sum_{i=0...k} i) + (k+1)$ = k(k+1)/2 + (k+1) (using inductive hypothesis) $= (k(k+1) + 2(k+1))/2 = (k^2+3k+2)/2 = (k+1)(k+2)/2$ - so $P(k) \rightarrow P(k+1)$ and therefore $\forall n [P(n)]$

Next up: Structural induction

• Inference rule:

$$\frac{P(0) \quad \forall \, k \, [\, P(k) \rightarrow P(k+1) \,]}{\forall \, n \, [\, P(n) \,]} \quad \text{by induction}$$

We could rewrite this as:

$$P(0) \quad \forall k [P(k) \rightarrow P(succ(k))]$$

$$\forall n [P(n)]$$

• And in fact "succ" could be any recursive definition...