Policy Mirror Descent Inherently Explores Action Space

Yan Li

Georgia Institute of Technology

ISyE student seminar, 2023

Joint work with George Lan

▷ Sequential decision making over multiple timesteps ..

> Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet state space: ${\cal S}$
- action space: A
- ullet cost function c
- transition kernel P

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- transition kernel P

Decision making: A_t follows distribution $\pi(\cdot|S_t)$

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Decision making: A_t follows distribution $\pi(\cdot|S_t)$

▷ Sequential decision making over multiple timesteps ..

Key elements

• policy π

ullet state space: ${\cal S}$

ullet action space: ${\cal A}$

ullet cost function c

ullet transition kernel ${\mathbb P}$

Observing loss: $C_t = c(S_t, A_t) \in [0, 1]$

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

State transition: S_{t+1} follows distribution $\mathbb{P}(\cdot|S_t, A_t)$

▷ Sequential decision making over multiple timesteps ..

Key elements

- $\bullet \ \, \mathsf{policy} \,\, \pi$
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- cost function c
- ullet transition kernel ${\mathbb P}$

Repeat decision process ..

▷ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Trajectory:

$$\{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$

▶ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- cost function c
- transition kernel P

Performance (value function):

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \underbrace{\gamma^t C_t}_{ ext{discounting future}} \left| S_0 = s
ight]$$

▷ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Planning: finding the optimal policy

$$\min_{\pi} V^{\pi}(s) \ \forall s \in \mathcal{S}$$

▷ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- cost function c
- ullet transition kernel ${\mathbb P}$

Planning: finding the optimal policy

$$\min_{\pi} f_{\nu}(\pi) = \sum_{s \in \mathcal{S}} \nu(s) V^{\pi}(s)$$

> Sequential decision making over multiple timesteps ..

Key elements

- ullet policy π
- ullet state space: ${\cal S}$
- ullet action space: ${\cal A}$
- cost function c
- ullet transition kernel ${\mathbb P}$

Planning: finding the optimal policy

$$\min_{\pi} f_{\nu}(\pi) = \sum_{s \in \mathcal{S}} \nu(s) V^{\pi}(s) \quad \Rightarrow \quad \text{Non-convex!}$$

First-order policy optimization:

- 2 Construct gradient information G_k
- \bigcirc Update $(\pi_k, G_k) \to \pi_{k+1}$
- 4 Repeat ...

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

Bellman's equation: Q^{π} solves a linear system involving the transition \mathbb{P}

★ Challenge: P is unknown!

* Current status of policy gradients:

An ϵ -optimal policy can be attained using $\mathcal{O}(1/\epsilon^2)$ samples, IF ...

"The BIG IF"

Tension between evaluation and optimization

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

 $C\text{-Eval}(\pi_k)$ with unknown \mathbb{P} :

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

$C\text{-}\mathrm{Eval}(\pi_k)$ with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

$C\text{-Eval}(\pi_k)$ with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

2 Apply learning procedure that makes clever use of the trajectories

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

$C\text{-Eval}(\pi_k)$ with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

- Apply learning procedure that makes clever use of the trajectories
 - On-policy Monte-Carlo

Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

$C\text{-}\mathrm{Eval}(\pi_k)$ with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

- Apply learning procedure that makes clever use of the trajectories
 - On-policy Monte-Carlo
 - On-policy temporal-difference (TD)

Fundamental assumption:

$$\pi_k(a|s) > 0, \ \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Fundamental assumption:

$$\pi_k(a|s) > 0, \ \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Recall trajectory:

$$\xi = \{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$
 where $A_t \sim \pi_k(\cdot | S_t)$

Fundamental assumption:

$$\pi_k(a|s) > 0, \ \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Recall trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

where $A_t \sim \pi_k(\cdot | S_t)$

⋆ Observation: action with zero probability never gets explored

If
$$\pi_k(a|s) = 0 \implies (s,a)$$
 does not appear in ξ

Fundamental assumption:

$$\pi_k(a|s) > 0, \ \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Recall trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

where $A_t \sim \pi_k(\cdot|S_t)$

⋆ Observation: action with zero probability never gets explored

If
$$\pi_k(a|s) = 0 \implies Q^{\pi_k}(s,a)$$
 not learnable

Perhaps not a big deal? Lets make some hopefully benign assumptions:

$$\underline{\sigma} := \inf_{k \ge 0} \inf_{\underline{s \in \mathcal{S}, a \in \mathcal{A}}} \pi_k(a|s) > 0$$

Fundamental assumption:

$$\pi_k(a|s) > 0, \ \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Recall trajectory:

$$\xi = \{(S_0, A_0, \frac{C_0}{C_0}), (S_1, A_1, \frac{C_1}{C_1}), \dots, (S_t, A_t, \frac{C_t}{C_t}), \dots\}$$

where $A_t \sim \pi_k(\cdot|S_t)$

⋆ Observation: action with zero probability never gets explored

If
$$\pi_k(a|s) = 0 \implies Q^{\pi_k}(s,a)$$
 not learnable

Perhaps not a big deal? Lets make some hopefully benign assumptions:

$$\underline{\sigma} := \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\underline{\sigma}_k} > 0$$

Suppose $\{S_t\}$ visits every state (ergodic) and

$$\underline{\sigma} > 0 \Rightarrow$$
 Great, we are done! (most prior works)

Perhaps not a big deal? Lets make some hopefully benign assumptions:

$$\underline{\sigma} := \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\sigma_k} > 0$$

Perhaps not a big deal? Lets make some hopefully benign assumptions:

$$\underline{\sigma} := \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\underline{\sigma}_k} > 0$$

Unfortunately - not benign at all

Perhaps not a big deal? Lets make some hopefully benign assumptions:

"A BIG IF"
$$\underline{\sigma} \coloneqq \inf_{k \ge 0} \inf_{\substack{s \in S, a \in \mathcal{A} \\ \sigma_t}} \pi_k(a|s) > 0$$

Unfortunately - not benign at all

Perhaps not a big deal? Lets make some hopefully benign assumptions:

"A BIG IF"
$$\underline{\sigma} \coloneqq \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\sigma_k} > 0$$

Unfortunately - not benign at all

Purpose of planning: structure of optimal policies

Perhaps not a big deal? Lets make some hopefully benign assumptions:

"A BIG IF"
$$\underline{\sigma} \coloneqq \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\underline{\sigma}_k} > 0$$

Unfortunately – not benign at all

Tension between evaluation and optimization

0000000

Purpose of planning: structure of optimal policies

Optimal Q-function:
$$Q^*(s, a) = \min_{\sigma} Q^{\pi}(s, a)$$
.

Classical Policy Evaluation

Perhaps not a big deal? Lets make some hopefully benign assumptions:

"A BIG IF"
$$\underline{\sigma} \coloneqq \inf_{k \ge 0} \underbrace{\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s)}_{\underline{\sigma}_k} > 0$$

Unfortunately - not benign at all

Purpose of planning: structure of optimal policies

$$\mathcal{A}^*(s) := \underset{a \in \mathcal{A}}{\operatorname{Argmin}} Q^*(s, a) \Rightarrow \boxed{\pi^*(a|s) = 0 \text{ if } a \notin \mathcal{A}^*(s)}$$

Classical Policy Evaluation

Perhaps not a big deal? Lets make some hopefully benign assumptions:

"A BIG IF"
$$\underline{\sigma} \coloneqq \inf_{k \geq 0} \inf_{\underline{s \in \mathcal{S}, a \in \mathcal{A}}} \pi_k(a|s) > 0$$

Unfortunately – not benign at all

Purpose of planning: structure of optimal policies

$$\mathcal{A}^*(s) := \operatorname*{Argmin}_{a \in \mathcal{A}} Q^*(s, a) \Rightarrow \pi^*(a|s) = 0 \text{ if } a \notin \mathcal{A}^*(s)$$

Tension between policy optimization and evaluation:

If
$$\pi_k \approx \pi^* \Rightarrow \underbrace{\underline{\sigma_k} \approx 0}_{\pi_k \text{ becomes deterministic}} \Rightarrow \text{C-Eval}(\pi_k) \text{ fails } \Rightarrow \text{bad } \pi_{k+1}$$

Theorem (Li and Lan, '23 – Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, \square

Theorem (Li and Lan, '23 - Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, \blacksquare

Some key ingredients:

Theorem (Li and Lan, '23 - Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, JF....

Some key ingredients:

1 A 2-year-old dog for policy improvement: stochastic policy mirror descent (Lan, '21)

Theorem (Li and Lan, '23 - Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, JF....

Some key ingredients:

- A 2-year-old dog for policy improvement: stochastic policy mirror descent (Lan, '21)
- 2 A few new tricks: novel evaluation procedures

Theorem (Li and Lan, '23 – Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, \square

Some key ingredients:

- A 2-year-old dog for policy improvement: stochastic policy mirror descent (Lan, '21)
- 2 A few new tricks: novel evaluation procedures
- 4 Analysis:

Prior development – optimization and evaluation are independent

Theorem (Li and Lan, '23 - Informal)

An ϵ -optimal policy can be attained by policy gradient methods using $\mathcal{O}(1/\epsilon^2)$ samples, \square

Some key ingredients:

- ♠ A 2-year-old: stochastic policy mirror descent (Lan, '21)
- 2 New tricks: novel evaluation procedures
- 4 Analysis:

Our perspective - jointly consider optimization and evaluation

Stochastic Policy Mirror Descent

* suppose everything is still ok

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimated \widehat{Q}^{π_k} from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1} = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}^p_{\pi_k}(s)$$

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimated \widehat{Q}^{π_k} from $\text{Eval}(\pi_k)$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1} = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}^p_{\pi_k}(s)$$

η_k – stepsize

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimated \widehat{Q}^{π_k} from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1} = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}^p_{\pi_k}(s)$$

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s)$ Bregman divergence

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimated \widehat{Q}^{π_k} from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1} = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}^p_{\pi_k}(s)$$

- η_k stepsize
- $\mathcal{D}^p_{\pi_k}(s)$ Bregman divergence
 - ① Projected gradient: $\mathcal{D}_{\pi_k}^p(s) = \|p \pi_k(\cdot|s)\|_2^2$

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimated \widehat{Q}^{π_k} from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1} = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}^p_{\pi_k}(s)$$

- η_k stepsize
- $\mathcal{D}^p_{\pi_k}(s)$ Bregman divergence
 - ① Projected gradient: $\mathcal{D}_{\pi_k}^p(s) = \|p \pi_k(\cdot|s)\|_2^2$
 - ② Natural policy gradient: $\mathcal{D}_{\pi_k}^p(s) = \mathrm{KL}(p \| \pi_k(\cdot | s))$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k \widehat{Q}^{\pi_k}(s,a)\right)$$

Theorem (Lan, '21 - Informal)

1 Choose a trajectory of length $\mathcal{O}(\log(1/\epsilon))$ at each iteration

Theorem (Lan, '21 - Informal)

- **1** Choose a trajectory of length $\mathcal{O}(\log(1/\epsilon))$ at each iteration
- 2 Apply TD-type evaluation method (CTD, Kotsalis et al., '20)

Theorem (Lan, '21 - Informal)

- **1** Choose a trajectory of length $\mathcal{O}(\log(1/\epsilon))$ at each iteration
- 2 Apply TD-type evaluation method (CTD, Kotsalis et al., '20)
- Set proper stepsize

Theorem (Lan, '21 – Informal)

- **1** Choose a trajectory of length $\mathcal{O}(\log(1/\epsilon))$ at each iteration
- 2 Apply TD-type evaluation method (CTD, Kotsalis et al., '20)
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(1/\epsilon^2)$ iterations

Theorem (Lan, '21 – Informal)

- **1** Choose a trajectory of length $\mathcal{O}(\log(1/\epsilon))$ at each iteration
- 2 Apply TD-type evaluation method (CTD, Kotsalis et al., '20)
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(1/\epsilon^2)$ iterations

• Requires the "BIG IF": $\underline{\sigma} > 0$

SPMD with New Evaluation Operators

* facing the reality

Some prior development:

• Explicit exploration: force policy to explore every action

- Explicit exploration: force policy to explore every action
 - mix with uniform distribution (a.k.a. ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)

- Explicit exploration: force policy to explore every action
 - mix with uniform distribution (a.k.a. ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)
 - ullet policy perturbation within evaluation (Li et al., '22): $\mathcal{O}(1/\epsilon^2)$

- Explicit exploration: force policy to explore every action
 - mix with uniform distribution (a.k.a. ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)
 - policy perturbation within evaluation (Li et al., '22): $\mathcal{O}(1/\epsilon^2)$
- No exploration:

- Explicit exploration: force policy to explore every action
 - mix with uniform distribution (a.k.a. ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)
 - policy perturbation within evaluation (Li et al., '22): $\mathcal{O}(1/\epsilon^2)$
- No exploration:
 - weighted policy evaluation (Hu et al., '22): $\mathcal{O}(1/\epsilon^{16})$

- Explicit exploration: force policy to explore every action
 - can be efficient

- Explicit exploration: force policy to explore every action
 - can be efficient
 - need to modify the policy within evaluation

- Explicit exploration: force policy to explore every action
 - can be efficient
 - need to modify the policy within evaluation
 - repeatedly taking high-risk actions

- Explicit exploration: force policy to explore every action
 - can be efficient
 - need to modify the policy within evaluation
 - repeatedly taking high-risk actions
- No exploration:
 - simple, but inefficient

What can be improved?

- Explicit exploration: force policy to explore every action
 - can be efficient
 - need to modify the policy within evaluation
 - repeatedly taking high-risk actions
- No exploration:
 - simple, but inefficient

Can we be efficient, and avoid pitfalls above?

Algorithm Truncated Monte-Carlo: $\pi_k \to \widehat{Q}^{\pi_k}$

Generate a trajectory of length n

$$\{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_{n-1}, A_{n-1}, C_{n-1})\}$$

for every state-action pair (s,a) do

$$t(s,a) = \begin{cases} \text{first timestep hitting } (s,a) \text{ before } n \\ n, \text{otherwise} \end{cases}$$

$$\widehat{Q}^{\pi_k}(s,a) = \sum_{t=t(s,a)}^{n-1} \gamma^t C_t$$

if $\pi_k(a|s) \leq \tau$:

$$\widehat{Q}^{\pi_k}(s,a) = \frac{1}{1-\gamma}$$
 [Truncation step]

end for

Theorem (Li and Lan, '23 - Informal)

1 Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration

Theorem (Li and Lan, '23 – Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$

Theorem (Li and Lan, '23 - Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$
- Set proper stepsize

Theorem (Li and Lan, '23 - Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(\mathcal{M}/\epsilon^2)$ iterations.

Theorem (Li and Lan, '23 - Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(\mathcal{M}/\epsilon^2)$ iterations.

Some remarks:

- **1** \mathcal{M} depend on the divergence $\mathcal{D}^p_{\pi_k}(s)$ in SPMD
 - KL divergence: exponential on $\frac{1}{1-\gamma}$ (effective horizon)
 - Tsallis divergence: polynomial

SPMD with TOMC

Theorem (Li and Lan, '23 - Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(\mathcal{M}/\epsilon^2)$ iterations.

Some remarks:

- **1** \mathcal{M} depend on the divergence $\mathcal{D}^p_{\pi_k}(s)$ in SPMD
 - KL divergence: exponential on $\frac{1}{1-\gamma}$ (effective horizon)
 - Tsallis divergence: polynomial
- 2 No changes to the policy, no explicit exploration

SPMD with TOMC

Theorem (Li and Lan, '23 - Informal)

- **1** Choose $n = \mathcal{O}(\log(1/\epsilon))$ at each iteration
- **2** Apply TOMC for evaluation with proper $\tau > 0$
- Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(\mathcal{M}/\epsilon^2)$ iterations.

Some remarks:

- **1** \mathcal{M} depend on the divergence $\mathcal{D}^p_{\pi_k}(s)$ in SPMD
 - KL divergence: exponential on $\frac{1}{1-\gamma}$ (effective horizon)
 - Tsallis divergence: polynomial
- 2 No changes to the policy, no explicit exploration
- Has certain "memory"

$$\pi_k(a|s) < \tau \implies \pi_{k+1}(a|s) < \pi_k(a|s) < \tau$$

How does SPMD + TOMC work - conceptually?

Let us revisit the tension

If
$$\pi_k \approx \pi^* \Rightarrow \underbrace{\underline{\sigma_k} \approx 0}_{\pi_k \text{ becomes deterministic}} \Rightarrow \text{C-Eval}(\pi_k) \text{ fails } \Rightarrow \text{bad } \pi_{k+1}$$

How does SPMD + TOMC work - conceptually?

Let us revisit the tension

If
$$\pi_k \approx \pi^* \Rightarrow \underbrace{\sigma_k \approx 0}_{\pi_k \text{ becomes deterministic}} \Rightarrow \text{C-Eval}(\pi_k) \text{ fails } \Rightarrow \text{bad } \pi_{k+1}$$

Wait ..

If
$$\pi_k pprox \pi^* \Rightarrow \underbrace{ ext{We should use this!}}_{ ext{TOMC handles this}} \Rightarrow \underline{\pi_{k+1} pprox \pi^*}$$

How does SPMD + TOMC work - conceptually?

Let us revisit the tension

If
$$\pi_k \approx \pi^* \Rightarrow \underbrace{\sigma_k \approx 0}_{\pi_k \text{ becomes deterministic}} \Rightarrow \text{C-Eval}(\pi_k) \text{ fails } \Rightarrow \text{bad } \pi_{k+1}$$

Wait ..

If
$$\pi_k pprox \pi^* \Rightarrow \underbrace{ \text{We should use this!} }_{\text{TOMC handles this}} \Rightarrow \pi_{k+1} pprox \pi^*$$

Technical challenge

Difficult to detect
$$\pi_k \approx \pi^*$$
 (we do not know π^*)

Imagine an oracle $\mathbb O$

- At every iteration:
 - $\bullet \ \pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s) \ \text{(i.e., a is non-optimal)}$

Imagine an oracle **□**

- At every iteration:
 - ullet $\pi_k(a|s) < au \stackrel{\mathbb{O}}{\longrightarrow} a
 ot\in \mathcal{A}^*(s)$ (i.e., a is non-optimal)

Imagine an oracle O

- At every iteration:
 - $\bullet \ \pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s) \ \text{(i.e., a is non-optimal)}$

Some observations

ullet 0 does not exist (even) for policy iteration (with exact Q^{π_k})

Imagine an oracle O

- At every iteration:
 - $\bullet \ \pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s) \ \text{(i.e., a is non-optimal)}$

- \mathbb{O} does not exist (even) for policy iteration (with exact Q^{π_k})
- \mathbb{O} exists for SPMD (with exact Q^{π_k})

Imagine an oracle O

- At every iteration:
 - $\pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s)$ (i.e., a is non-optimal)

- \mathbb{O} does not exist (even) for policy iteration (with exact Q^{π_k})
- \mathbb{O} exists for SPMD (with exact Q^{π_k})
- ullet If ${\mathbb O}$ exists for SPMD, we consider two cases

Imagine an oracle **○**

- At every iteration:
 - $\pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s)$ (i.e., a is non-optimal)

- ullet 0 does not exist (even) for policy iteration (with exact Q^{π_k})
- \mathbb{O} exists for SPMD (with exact Q^{π_k})
- If $\mathbb O$ exists for SPMD, we consider two cases
 - **1** If $\pi_k(a|s) \leq \tau$, then $a \notin \mathcal{A}^*(s)$, SPMD + TOMC makes sure

$$\pi_{k+1}(a|s) < \pi_k(a|s)$$

Imagine an oracle O

- At every iteration:
 - $\pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s)$ (i.e., a is non-optimal)

Some observations

- ullet 0 does not exist (even) for policy iteration (with exact Q^{π_k})
- \mathbb{O} exists for SPMD (with exact Q^{π_k})
- If $\mathbb O$ exists for SPMD, we consider two cases
 - $\textbf{ 1} \text{ If } \pi_k(a|s) \leq \tau \text{, then } a \notin \mathcal{A}^*(s) \text{, SPMD} + \text{TOMC makes sure }$

$$\pi_{k+1}(a|s) < \pi_k(a|s)$$

2 If $\pi_k(a|s)>\tau$, then a is explored by π_k , and $Q^{\pi_k}(s,a) \text{ can be learned well}$

Imagine an oracle O

- At every iteration:
 - $\pi_k(a|s) < \tau \stackrel{\mathbb{O}}{\longrightarrow} a \not\in \mathcal{A}^*(s)$ (i.e., a is non-optimal)

Some observations

- $\mathbb O$ does not exist (even) for policy iteration (with exact Q^{π_k})
- \mathbb{O} exists for SPMD (with exact Q^{π_k})
- If $\mathbb O$ exists for SPMD, we consider two cases
 - $\textbf{ 1} \text{ If } \pi_k(a|s) \leq \tau \text{, then } a \notin \mathcal{A}^*(s) \text{, SPMD} + \text{TOMC makes sure }$

$$\pi_{k+1}(a|s) < \pi_k(a|s)$$

- ② If $\pi_k(a|s) > au$, then a is explored by π_k , and $Q^{\pi_k}(s,a) \text{ can be learned well}$
- O Power of O:

"We can learn every action that still matters"

Constructing the oracle $\mathbb O$

• O should be robust in the presence of noise

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - ① If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - **1** If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - ② A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples

Constructing the oracle **O**

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - **1** If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - 2 A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples
- Construction $\mathbb O$ requires interaction of optimization and evaluation

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - **1** If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - ② A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples
- ullet Construction ${\mathbb O}$ requires interaction of optimization and evaluation
 - lacktriangle Recall PI does not have such an $\Bbb O$

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - ② A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples
- ullet Construction ${\mathbb O}$ requires interaction of optimization and evaluation
 - Recall PI does not have such an O
- More details in the paper

Constructing the oracle O

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - ② A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples
- Construction $\mathbb O$ requires interaction of optimization and evaluation
 - Recall PI does not have such an O
- More details in the paper
 - * An alternative evaluation procedure

Constructing the oracle $\mathbb O$

- O should be robust in the presence of noise
- O should be (approximately) correct at every iteration
 - If using inductive argument, $\mathcal{O}(1/\epsilon^4)$ samples
 - 2 A more refined probabilistic argument, $\mathcal{O}(1/\epsilon^2)$ samples
- Construction $\mathbb O$ requires interaction of optimization and evaluation
 - Recall PI does not have such an O
- More details in the paper
 - * An alternative evaluation procedure

Presentation based on Preprint

 Li, Y., & Lan, G. (2023). Policy Mirror Descent Inherently Explores Action Space. arXiv preprint arXiv:2303.04386.