

Date: 6. 10. 2017

BI-PPA 2017

Cvi Introduction to λ -calculus

What are we going to cover Arithmetic expressions and their evaluation, relation to binry trees. Introduction to the λ -calculus, basics of the syntax and evaluations. Examples of functions and their construction.

Ex. 1. For the following simple expressions, create the expression tree and transform them to prefix notation: 147, 3+4, 3+(7*5), (8+(4*x))+(3*y).

Ex. 2. Write expressions for the following operations and then transform them into prefix notation.

- a) Increment variable x by one.
- b) Multiply two variables x a y.
- c) Add squares of variables x and y.

Ex. 3. Write the expressions from previous example in C language and then into λ -calculus.

λ -calculus syntax:

- λ ...defines a function (and its "name")
- x ... is **bound** variable (input argument for λ functions)
- \bullet + x 1 ... example of expression definition in prexix notation
- $(\lambda x. (+ x 1)) \dots$ example of function definition in λ -calculus which corresponds to the expression above.
 - ... Don't forget the enclosing parentheses.
- $(\lambda x. (+ x y)) \dots$ Definition of function with an argument (**bound** variable) x, which will be added to y (**free** variable, uspecified argument)
- $(\lambda x. (+ x 5))3...$ denotes substitution of value 3 for variable x (**application**) in the function above (i.e. adds x (replaced with 3) to 5). The result is (+ 3 5) and therefore 8.
- $(\lambda x. (\lambda y. (+ x y))5)3...$ is **application** of function (where x = 3 is added to y = 5. The result is again 8.

Rules of the λ -calculus:

- 1. Variable is a valid expression in λ -calculus (any lowercase letter from english alphabet).
- 2. If M and N are valid λ -calculus expressions, then the following are also valid expressions:
 - \bullet (M) ... enclosing an expression in parentheses,
 - $\lambda id.\ M...$ so called **abstraction**, where id is any variable,
 - $MN \dots$ so called **application**, where N is applied to M.

Free and Bound Variables

- $(\lambda x. x)$, x is bound
- $(\lambda x. (x y))$, x is bound, y is free
- $(\lambda x. (x x))x$, x is bound in the two inner uses, free in the outer one.
- $(\lambda y. (+ x y))(\lambda x. (+ x 1)) \dots$ which variables and their uses are bound and which are free?
- $((\lambda y. (yxx)) y x)$
- $((\lambda x.(\lambda x.(\lambda x.x)x)x)x)$
- $(\lambda x. y(\lambda y. x(\lambda x. xz(\lambda y.yx))))$

Ex. 4. Think in λ -calculus! Define own λ -functions for the expressions in exercise 1 and more. Some examples for your inspiration:

- a) $147 \Rightarrow (\lambda x. \ x) (147)$,
- b) $3 + 4 \Rightarrow (\lambda x. (\lambda y. (+ x y)) 4) 3$,
- c) $3+(7*5) \Rightarrow (\lambda x. (\lambda y. (+ 3 (* x y))) 5) 7$, or as two operations + and * with value substitution: $(\lambda x. (\lambda y. (+ x y)) ((\lambda l. (\lambda r. (* l r)) 5) 7)) 3$
- d) (8 + (4*x)) + (3*y) for values x = 4 and $y = 3 \Rightarrow (\lambda l. (\lambda r. (+ l r)) (\lambda y. (* 3 y))) (\lambda x. + 8 (*4 x))$, with values ($\lambda l. (\lambda r. (+ l r)) ((\lambda y. (* 3 y)) 3)) ((<math>\lambda x. + 8 (*4 x)) 4$). Try your own solution.

Simplifying the notation:

- Expressions in the form of (((((AB)C)D)E)F),
- $(\lambda x. (\lambda y. (\lambda z. ((x y) z))))$ can be written as $(\lambda x. \lambda y. \lambda z. ((x y) z))$ and then as $(\lambda xyz. (x y z))$.
- Analogically we will use $(\lambda xyz. (x y z))$ 1 2 3 in the meaning of $(\lambda x. (\lambda y. (\lambda z. ((x y) z)))$ 3) 2) 1.
- Discarding the inner parentheses, i.e. instead of $(\lambda xyz. (x y z))$ we can use $(\lambda xyz. x y z)$ and instead of $(\lambda xyz. (+ x (- yz)))$ we will write $(\lambda xyz. + x (- y z))$.

Example: $(\lambda x. (\lambda y. (+ x y)) 4) 3$ in simplified form $(\lambda xy. + x y) 3 4$ will be transformed in the following way:

$$(\lambda xy. + x y) 3 4 \rightarrow (\lambda y. + 3 y) 4 \rightarrow (+ 3 4) \rightarrow 7.$$

Ex. 5. Remove extra parentheses in the following expressions: Calculus

- a) $(\lambda x. (\lambda y. (\lambda z.((xz)(yz)))))$
- b) (((ab)(cd))((ef)(gh)))
- c) $(\lambda x. ((\lambda y. (yx)) (\lambda v.v)z)u)(\lambda w.w)$

Ex. 6. Insert parentheses so that the following expressions are valid:

- a) xxxx,
- b) $\lambda x. x. \lambda y. y$

c) λx . (x λy . yxx)x

Ex. 7. Guess what will be the result of the following expressions.

- a) (λx . (λy . (-x y)) 2) 5 ... What will be the result? 5 2 or 2 5?
- b) (λx . (λy . (-x y)) 5) 2 ... What will be the result? 5 2 or 2 5?
- c) $(\lambda xy. (-x y))$ 5 2 ... Mind the order of application. What will be the result? 5 2 or 2 5?

Ex. 8. Transform the following λ -calculus expressions, write the respective steps as expression trees.

- a) $(\lambda x. (* (+ 3 x) (- x 4))) 5$
- b) (λx y. (* (+ y x) (- x 4))) 5 2
- c) (λx . (λy . (* (+ y x) (- x 4))) 2) 5
- d) (λx . (λy . (* (+ y x) (- x 4))) 5) 2
- e) (λz .z) (λq . qq) (λs .sa) = ((λz .z) (λq . qq)) (λs .sa)
- f) $(\lambda z . zz) (\lambda z . z) (\lambda z . z q)$
- g) $(\lambda s q . s q q) (\lambda a.a) b$
- h) (λ s. ss) (λ q.q) (λ q.q)
- i) $(\lambda f. (\lambda x. f(f(x)))) (\lambda y. * y y) 2$
- j) (λ fxy. f x y) (λ ga.ggga) (λ hb.hb).

Homework 1. Find online λ expression solvers and play with various expressions. For example:

- http://www.nyu.edu/projects/barker/Lambda/
- http://www.cburch.com/dev/lambda/index.html
- http://www.itu.dk/people/sestoft/lamreduce/lamframes.html