Dokumentace úlohy XTD: XML2DDL v PYTHON 3 do IPP 2012/2013

Jméno a Příjmení: Martin Krippel

Login: xkripp00

Úvod

Tento dokument popisuje návrh a způsob implementace projektu (zadání XML2DDL) do předmětu IPP v skriptovacím jazyce Python 3.

Návrh

Návrh se zabývá zpracováním vstupního XML souboru a jeho transformováním na SQL příkazy, respektive výstupní XML soubor, dle zadaných parametrů.

Vstupní XML je nejprve zpracováno pomocí knihovny ElementTree. Pomocí této knihovny vznikne stromová struktura popisující XML. Z této struktury jsou následně získávány potřebné údaje pomocí funkci z knihovny ElementTree a ukládány do polí. Ze získaných údajů se dají vytvořit SQL příkazy i XML soubory, proto je zpracování vstupního XML stejné pro oba případy.

Výsledný výstup závisí od přepínače -g, podle něj se vytváří XML soubor nebo SQL příkazy, zároveň i od přepínače --output=filename, který určuje kam se vypíše výsledek.

Implementace

Program začíná načtením a zpracováním parametrů, využívá funkci getopt. Po načtení parametrů, zkontroluje případné kolize mezi nimi.

Následně zpracuje vstupní XML soubor pomocí funkce parse_xml. Tato funkce ze stromové struktury XML souboru, nejprve získá jména všech tabulek, které je třeba vytvořit. Potom pomocí tohoto pole prochází všechny uzly stromu s danými jmény a získává údaje potřebné ze zadání. To znamená, že vytvoří pole pro atributy elementů, pole jmen podelementů (dále o něm budu mluvit jen jako o poli podelementů) a pole textových elementů daných XML elementů (dále jen pole hodnot). Jednotlivá pole mají strukturu:

Obrázek č. 1 - struktura pole pro data z XML souboru

kde, M je jméno sloupce, T jeho typ a I je index, který se nachází jen v poli podelementů. Celé pole (obr. 1) se skládá z takového počtu prvků (obr. 1 - části označené zeleným obdélníkem), kolik má být tabulek. Umístění těchto prvků odpovídá pořadí jmen v poli jmen tabulek. A každý tento prvek se skládá z polí (obr. 1 - červený text) obsahujících M, T, případně I (samozřejmě, pokud daný element nemá žádný z požadovaných údajů, tak je prvek dané tabulky prázdný (obr. 1 - třetí zelený prvek)). Funkce parse_xml vrací čtyři pole: pole jmen tabulek, pole atributů, pole podelementů a pole hodnot.

Tato pole se předají jako parametry funkcím prep_g (v případě zadaného prepíanača -g) nebo vytvor sql. Tyto funkce mají i další parametry v závislosti na zadání.

Funkce vytvor_sql se rozvětvuje na dvě hlavní větve podle přepínačů -b a --etc. Na základě zadání podle těchto parametrů se zpracovávají pole s údaji a vytvářejí se SQL příkazy. Po vytvoření všech SQL příkazů se vypíší a program se ukončí.

Funkce prep_g pracuje pouze s polem podelementů. V případě přepínače --etc pole upraví na základě hodnoty. Následně je společná část pro přepínače -b a --etc, kde se odstraní prvky se stejným jménem. Poté, pomocí více funkcí, se vytvoří tabulka závislostí, a naplní se. Naplnění tabulky závislostí: pro každou tabulku se program podívá, zda má tabulka nějaký cizí klíč. Pokud ano, vytvoří se vztah N:1 mezi těmito tabulkami a zároveň se vytvoří symetrický vztah 1:N. Pokud tabulka, na kterou ukazuje cizí klíč má také nějaký cizí klíč, tak se postup opakuje. Toto provádí rekurzivní funkce rek pro každou tabulku a každý cizí klíč. Vztahy 1:1 se doplnily při inicializáci a vztahy N: M doplní místo ostatních nevytvořených vztahů. Nakonec se vypíše nový XML soubor a program se ukončí.

V případě nějaké chyby se program ukončuje se zadanými chybovými kódy a na standardní chybový výstup vypíše funkce chyba chybové hlášení.

Testování

Testování probíhalo nejprve na jednoduchém XML souboru ze zadání. Pro pokročilejší testy byly použity zveřejněné referenční testy, při kterých se výsledky shodovaly. Vlastní testy na XML souboru s vnořenými elementy byly také uspokojivé, ale bez referenčního řešení se na ně nedalo spoléhat.