

Hence,
$$\theta = \frac{\pi}{3}$$
 and the components of $\vec{a}_{are} \left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2} \right)$

Question 4:

Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Answer

$$(\vec{a}-\vec{b})\times(\vec{a}+\vec{b})$$

$$=(\vec{a}-\vec{b})\times\vec{a}+(\vec{a}-\vec{b})\times\vec{b}$$

 $= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b}$

 $=\vec{0}+\vec{a}\times\vec{b}+\vec{a}\times\vec{b}-\vec{0}$

 $=2\vec{a}\times\vec{b}$

[By distributivity of vector product over addition]

[Again, by distributivity of vector product over addition]

Question 5:

Find
$$\lambda$$
 and μ if $\left(2\hat{i}+6\hat{j}+27\hat{k}\right)\times\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\vec{0}$

$$\left(2\hat{i}+6\hat{j}+27\hat{k}\right)\times\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\vec{0}$$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

$$\Rightarrow \hat{i}(6\mu - 27\lambda) - \hat{j}(2\mu - 27) + \hat{k}(2\lambda - 6) = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

On comparing the corresponding components, we have:

$$6\mu - 27\lambda = 0$$

$$2\mu - 27 = 0$$

$$2\lambda - 6 = 0$$

Now,

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$

$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

$$\lambda = 3 \text{ and } \mu = \frac{27}{2}.$$
 Hence,

Question 6:

Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?

Answer

 $\vec{a} \cdot \vec{b} = 0$

Then,

(i) Either
$$|\vec{a}|=0$$
 or $|\vec{b}|=0$, or $\vec{a}\perp\vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

$$\vec{a} \times \vec{b} = 0$$

(ii) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or $|\vec{a}| |\vec{b}|$ (in case \vec{a} and \vec{b} are non-zero)

But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously.

Hence,
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$

Question 7:

Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$, $b_1\hat{i}+b_2\hat{j}+b_3\hat{k}$, $c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$. Then show

that
$$= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Answer

We have

$$\vec{a} = a_{_{\!1}}\hat{i} + a_{_{\!2}}\hat{j} + a_{_{\!3}}\hat{k}, \ \vec{b} = b_{_{\!1}}\hat{i} + b_{_{\!2}}\hat{j} + b_{_{\!3}}\hat{k}, \ \vec{c} = c_{_{\!1}}\hat{i} + c_{_{\!2}}\hat{j} + c_{_{\!3}}\hat{k}$$

$$(b+\vec{c})=(b_1+c_1)i+(b_2+c_2)j+(b_3+c_3)k$$

Now,
$$\vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$

$$\begin{split} &=\hat{i}\left[a_2\left(b_3+c_3\right)-a_3\left(b_2+c_2\right)\right]-\hat{j}\left[a_1\left(b_3+c_3\right)-a_3\left(b_1+c_1\right)\right]+\hat{k}\left[a_1\left(b_2+c_2\right)-a_2\left(b_1+c_1\right)\right]\\ &=\hat{i}\left[a_2b_3+a_2c_3-a_3b_2-a_3c_2\right]+\hat{j}\left[-a_1b_3-a_1c_3+a_3b_1+a_3c_1\right]+\hat{k}\left[a_1b_2+a_1c_2-a_2b_1-a_2c_1\right] \dots (1) \end{split}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \hat{i} \left[a_2 b_3 - a_3 b_2 \right] + \hat{j} \left[b_1 a_3 - a_1 b_3 \right] + \hat{k} \left[a_1 b_2 - a_2 b_1 \right] \qquad (2)$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= \hat{i} \left[a_2 c_3 - a_3 c_2 \right] + \hat{j} \left[a_3 c_1 - a_1 c_3 \right] + \hat{k} \left[a_1 c_2 - a_2 c_1 \right] \qquad (3)$$

On adding (2) and (3), we get:

$$(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + \hat{j} [b_1a_3 + a_3c_1 - a_1b_3 - a_1c_3] + \hat{k} [a_1b_2 + a_1c_2 - a_3b_1 - a_2c_1]$$
(4)

Now, from (1) and (4), we have:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Hence, the given result is proved.

Question 8

If either $\vec{a}=\vec{0}$ or $\vec{b}=\vec{0}$, then $\vec{a}\times\vec{b}=\vec{0}$. Is the converse true? Justify your answer with an example.

Answer

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Then.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0}$$

It can now be observed that:

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$\left| \vec{b} \right| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

Question 9

Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

Answer

The vertices of triangle ABC are given as A (1, 1, 2), B (2, 3, 5), and C (1, 5, 5).

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overline{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

$$\text{Area of } \Delta \text{ABC} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{BC} \right|$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i} (-6) - \hat{j} (3) + \hat{k} (2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

Hence, the area of $\Delta {\rm ABC}$ is $\frac{\sqrt{61}}{2}$ square units.

Question 10:

Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a}=\hat{i}-\hat{j}+3\hat{k}$ and $\vec{b}=2\hat{i}-7\hat{j}+\hat{k}$

Answer

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $\left| \vec{a} \times \vec{b} \right|$. Adjacent sides are given as:

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}\,$ square units .

Question 11:

Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a}\times\vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Answer

$$\left|\vec{a}\right|=3 \text{ and } \left|\vec{b}\right|=\frac{\sqrt{2}}{3}$$
 It is given that

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \, \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} .

Now, $\vec{a} \times \vec{b}$ is a unit vector if $\left| \vec{a} \times \vec{b} \right| = 1$.

$$\left| \vec{a} \times \vec{b} \right| = 1$$

$$\Rightarrow \left| \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta \, \hat{n} \right| = 1$$

$$\Rightarrow |\vec{a}||\vec{b}||\sin\theta| = 1$$

$$\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$$

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$. The correct answer is B.

Question 12:

Area of a rectangle having vertices A, B, C, and D with position vectors

$$-\hat{i} + \frac{1}{2}\,\hat{j} + 4\hat{k}, \; \hat{i} + \frac{1}{2}\,\hat{j} + 4\hat{k}, \; \hat{i} - \frac{1}{2}\,\hat{j} + 4\hat{k} \\ \text{and} \quad -\hat{i} - \frac{1}{2}\,\hat{j} + 4\hat{k} \\ \text{respectively is}$$

(A)
$$\frac{1}{2}$$
 (B) 1

Answer

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{\mathrm{OA}} = -\hat{i} + \frac{1}{2}\,\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OB}} = \hat{i} + \frac{1}{2}\,\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OC}} = \hat{i} - \frac{1}{2}\,\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OD}} = -\hat{i} - \frac{1}{2}\,\hat{j} + 4\hat{k}$$

********* END *******