Universidad del Valle de Guatemala Facultad de ingeniería

Corto 5 Computación Paralela

Mariana David Sosa 201055

Guatemala 30 de agosto del 2023

Corriendo Secuencial

```
PS c:\Users\Mariana\Documents\Universidad\Semestre8\paralela\corto\corto> cd "c:\Users\Mariana\Documents\Universidad\Semestre8\paralela\corto\corto\" ; if ($?) { g++ secuencial. cpp -o secuencial } if ($$?) { .\secuencial } if ($$?) { g++ secuencial. cpr -o secuencial }; if ($$?) { .\secuencial } if ($$?) { g++ secuencial. cpr -o secuencial }; if ($$?) { secuencial } if ($$?) { g++ secuencial. cpr -o secuencial }; if ($$?) { g++ secuencial. cpr -o secuencial }; if ($$?) { g++ secuencial. cpr -o secuencial }; if ($$?) { g++ secuencial. cpr -o secuencial. cpr -o secuencial }; if ($$?) { g++ secuencial. cpr -o secuen
```

Corriendo Paralelo

```
PScd "c:\Users\Mariana\Documents\Universidad\Semestre8\paralela\corto\corto\"; if ($?) { g++ paralelo.cpp -o paralelo }; if ($?) { .\paralelo }

Por favor, ingrese la cantidad de numeros aleatorios a generar: 10

[EXITOSO] Se han generado y escrito numeros aleatorios en el archivo randomResults/random_paralelo.txt

[EXITOSO] Los numeros se han clasificado y escrito en el archivo sortedResults/sorted_paralelo.txt

Tiempo de ejecución: 6.3e-06 segundos

PS C:\Users\Mariana\Documents\Universidad\Semestre8\paralela\corto\corto> |
```

¡Observación! Las capturas de pantalla fueron tomados luego de los cálculos por lo que no coincidieron con los de la tabla

Resultados

Resultados de pruebas			
Cantidad de numeros aleatorios generados	Tiempo de secuencial (segundos)	Tiempo de paralelo (segundos)	SpeedUp (segundos)
10	0.0292134	4.09e-05	0.7127
100	0.0281204	5.2e-06	1,30E-06
1000	0.0376263	0.0005283	1,32E-04
10000	0.296464	0.0049593	1,24
100000	20.296.465	0.0512434	0,0126

SppedUp Formula:

Speed-up = 1 / (F/x + (1-F)) Tiempo de ejecución con mejora = tiempo de ejecución sin mejora * F/x + tiempo de ejecución sin mejora * (1-F)

Discusión

Los resultados de las pruebas muestran claramente la efectividad del enfoque paralelo en la mejora del rendimiento en comparación con la ejecución secuencial. A medida que aumenta la cantidad de números aleatorios generados, el speedup se vuelve más evidente. Para 10 números aleatorios, el speedup es modesto pero aún presente, mientras que para 1000 y 10000 números aleatorios, el programa paralelo logra una mejora significativa en el rendimiento. Sin embargo, en el caso de 100000 números aleatorios, el speedup disminuye notablemente debido a la creciente complejidad de administrar un gran número de tareas paralelas. Estos resultados subrayan la importancia de considerar la naturaleza de la tarea y la cantidad de recursos disponibles al decidir si la programación paralela es la solución adecuada para un problema específico.