PROBLEM SET 8

Due: Th, April 16, 6.00 PM

Topics: Sobolev spaces, symmetric operators

- 1. Reading. Sections 4.4, 4.5, 2.8 and 2.9 (up to Theorem 2.14) in Holland's book.
- **2.** Distributional derivatives. Consider the real Hilbert space $H^1(\mathbb{R}; dx)$, as defined in the lecture. We gave a different definition in problem **6** of problem set 7; let's denote the corresponding space by $\widetilde{H}^1(\mathbb{R}; dx)$. Show that $H^1(\mathbb{R}; dx) = \widetilde{H}^1(\mathbb{R}; dx)$. Hints:
 - i) You are allowed to use the product rule for $H^1(\mathbb{R}; dx)$, as discussed in class.
 - ii) You are allowed to use the following analysis fact: if $f \in L^2(\mathbb{R}; dx)$ satisfies

$$\int_{\mathbb{R}} f(x)\varphi'(x) = 0$$

for all $\varphi \in C_c^{\infty}(\mathbb{R})$, then f(x) = C for some constant $C \in \mathbb{R}$ and a.e. $x \in \mathbb{R}$.

- 3. Symmetric Operators 1. Consider the complex Hilbert space $\mathcal{H} = L^2([0;1];dx)$ and the operator $\ell = i\partial_x$ with domain $D_1 = \{\psi \in H^1([0;1];dx) : \psi(0) = \psi(1) = 0\}$, introduced in the lecture. Prove that ℓ is a symmetric operator. Is this still true if we change the domain to $D_2 = \{\psi \in H^1([0;1];dx) : \psi(0) = 0\}$?
- **4. Symmetric Operators 2.** Consider the complex Hilbert space $\mathcal{H} = L^2([0;1];dx)$ and the operator $\ell = -\partial_x^2$ with domain

$$D_1 = \{ \psi \in H^2([0;1]; dx) : \psi(0) = \psi(1) \text{ and } \psi'(0) = \psi'(1) \}.$$

Prove that ℓ is a symmetric operator. Find all the eigenvalues and eigenfunctions of the operator ℓ . Is ℓ still symmetric if defined on the domain

$$D_2 = \{ \psi \in H^2([0;1]; dx) : \psi(0) = \psi(1) = 0 \}$$

and if so, what are its eigenvalues and eigenfunctions in this case?

5. Symmetric Operators 3 Suppose \mathcal{H} is a Hilbert space and $T: D_T \to \mathcal{H}$ is a symmetric operator. Suppose that T has a complete orthonormal eigenbasis. That is, T has eigenvalues $(\lambda_j)_{j\in\mathbb{N}}$ with corresponding eigenvectors $(\varphi_j)_{j\in\mathbb{N}}$ in D_T such that $T\varphi_j = \lambda_j \varphi_j$ and such that $(\varphi_j)_{j\in\mathbb{N}}$ forms a complete orthonormal basis of \mathcal{H} . Let $\psi \in D_T$. Prove that $T\psi$ is represented in terms of the $(\varphi_j)_{j\in\mathbb{N}}$ as

$$T\psi = \sum_{j=1}^{\infty} \lambda_j \langle \psi, \varphi_j \rangle \varphi_j.$$

This means, we can pull T inside the (infinite!) summation.

¹There are several conventions for denoting (partial) derivatives in mathematics. My favorite notation is the ∂ -notation. From now on, please identify $\psi' = \frac{d}{dx}\psi = \partial_x \psi$, $\psi'' = \frac{d^2}{dx^2} = \partial_x^2 \psi$, etc..