DRILLING AND MEASUREMENTS

END OF WELL REPORT

FOR

WELL NUMBER

15/9-F-12

Compiled by: MWD & DD Crew Date: Aug 2007

Verified by : Colin Cockburn Date : Aug 2007

Approved by: Colin Cockburn Date: Aug 2007

CONTENTS

- 1.0 Introduction
- 2.0 Schlumberger D & M Personnel
- 3.0 Hole and Casing Depth Record
- 4.0 MWD and DD Observations and Recommendations
- 4.1 BHA Reports
- 4.2 Slide Sheets
- 4.3 Bit Record
- 4.4 MWD Bit Run Summary
- 4.5 Tool Configuration & Performance
- 4.6 FIT /LOT / ESD Plots
- 5.0 Depth Tracking Control
- 6.0 Torque and Drag Evaluation
- 7.0 Survey Details

1.0 Introduction

COMPANY STATOIL

WELL 15/9-F-12

FIELD Volve

AREA NORWEGIAN NORTH SEA

COUNTRY NORWAY

RIG Maersk Inspirer

CONTRACTOR Maersk

SPUD DATE 14th June 2007

TD DATE 24th Aug 2007

TOTAL DEPTH 3520m

RKB-MSL 54.9m

MSL-SEABED 91.0m

RKB-SEABED 145.9m

2.0 Schlumberger D & M Personnel

2.1 MWD Engineers

Garry Boyd

Hakim Bellali

Hirondino Alberto Paulino

Edvard Larsen

Petre Panache

Thomas Hundven

Fredrik Knudsen

Kay Roger Mose Tjøsvoll

Fabio Provatti

Trond Strand

Eirik Altern

2.2 LWD Engineers

Jim Russell

Dana Kazbekova

Graeme Paterson

Vegard Leines

Alan Walker

2.3 Directional Drilling Engineers

Bogdan Cristian Nitoiu

Geir Bjoerlov

Ronny Fossberg

Christian Gjedebo

Charles Weatherley

Stig Johansen

Åge Fjerstad

Ryan Kelly

2.4 Field Service Manager

Colin Cockburn

3.0 Hole and Casing Depth Record

HOLE RECORD

HOLE SIZE	FROM	TO
36"	145.9m	261.0m
26"	261.0m	1369.0m
17 ½"	1369.0m	2572.5m
12 1/4"	2572.5m	3114m
8 ½"	3114m	3520m

CASING RECORD	FROM	ТО
30"	145.0m	251.0m
20"	145.0m	1357.0 m
14"	140.0 m	2506.0m
9 5/8"	2404.4m	3113.0m

4.0 MWD and DD Observations and Recommendations

Measurement While Drilling (MWD) - Observations and Recommendations

36" - Section - MWD:

MWD Run #1: Observations

- The BHA included a 9" PowerPulse MWD tool along with a 26" x 36" HD Hole Opener and 17 1/2 " TCI Bit. Stationary surveys with continuous D&I, shocks, downhole D&I temperature measurements and Gamma ray.
- The PowerPulse was programmed at 12 Hz frequency, QPSK at 3 bps. Signal demodulation was of good quality, with high bit confidence throughout the run and no significant noise was detected within the bandwidth.
- Before running in hole the Drawworks sensor was calibrated and the surface system set up, but still there were some depth tracking issues which were fixed during the run.
- The first survey at 141m showed an inclination of 0.35 deg. Continued drilling and took surveys every single, the wellbore inclination was kept within the limitation (0.75 deg). A max. DLS of 0.28 deg/10m was at 166m. Continue drilling to TD 258m. Some moderate stickslip was seen but overall the tool was operating at nominal conditions with a status word of zero throughout the run.

Recommendations:

 Using 12 Hz and 6 bps is good for this kind of top hole sections and a good update of realtime data.

26" – Drill out:

MWD Run #3: Observations

 A 26 in. rotary assembly was used to drill out from 258.0 mMD to 261.4 mMD. No Schlumberger equipment was used for this run.

$8\frac{1}{2}$ " – Pilot hole - MWD:

MWD Run #3: Observations

- In taking precautions concerning shallow gas, a vertical 8 ½" pilot hole was drilled through the zones of interest down to 1365mMD.
- The BHA consisted of an 6 3/4"Vision Resistivity tool (ARC), 6 3/4" TeleScope MWD, ISONIC and a 6 3/4" Vision Density Neutron (ADN) tool.
- The TeleScope was programmed with 12 Hz frequency, QPSK, at 6 bps. Signal demodulation was of good quality, with high bit confidence throughout the run and no significant noise was detected within the bandwidth.
- No significant gas levels were detected, and the hole was cemented back in order to kick off with a 26" BHA just a few meters under the conductor shoe.

Recommendations:

26" - Section - MWD:

MWD Run #4: Observations

- The BHA was made up of an 11 1/4" PowerPak mud motor, 9 ½" PowerPulse MWD, and a 9" ARC tool.
- The PowerPulse was programmed at 12 Hz frequency, QPSK at 6 bps. Signal was running on on SPTs and was good quality with high bit confidence all over the run. Some bad signal was seen after TD, when back reaming tight Skade formation.

Recommendations:

• Surveys were taken before connections, and we got good surveys all the time by just turning the flow down to turn off the MWD, instead of turning the pumps all the way off. This gives a smoother start up of the MWD when having a motor in the hole.

17 ½" - Section - MWD:

MWD Run #5: Observations

- The BHA consisted of a 9" PowerDrive, 8 1/4" ARC, 8 1/4" TeleScope, 8 1/4" ISONIC and 8 1/4" ADN tools. Included in the BHA were a 6 5/8" IL Flex Joint and a 17 1/4" Stabilizer between the PowerDrive and ARC. A 12" String Stab between the ISONIC and TeleScope.
- Note that 8" tools and collars had to be used in this 17 ½" hole section because of the request to run AND tool (not produced in 9" collar size).
- The Telescope was programmed at 12 Hz frequency, QPSK at 6 bps and gave continuous D&I, stationary surveys, shocks, stickslip and downhole D&I temperature measurements.
- In realtime, the ARC provided 2 MHZ Phase Resistivity, 28 + 40 in spacings, as well as 400KHz Phase Resistivity, 28in spacing. Gamma Ray and APWD measurements were also transmitted.
- A shallow hole test was done @ ~ 1000mMD. The tools were not responding properly in the SHT, which was re-taken 3 times, and we got some status word error

codes from the PowerDrive and TeleScope. After a while our tools started to come back to life and there was no need to POOH. Although the PD GR and Vision Res were struggled throughout the run with maxed out values, usually after connections.

- A DWE depth calibration was made at 1471.99 as it was observed that the calibration was way off, although a calibration should have been done after a Slip and Cut in the previous section.
- Drilling of the 17 ½" section for this run started from a depth of 1369 mMD and stopped at 2513mMD. The mud was displaced to Performadrill WBM at the beginning of the run, with a MW of 1.35 g/cm³. During the run, some trouble with the pumps was experienced together with failing mud conveyor belt etc. which led to a delay of the run. A concern of the tool-battery life became an issue. The circulation was attempted to be maintained in order to save battery life
- At 2513mMD it was decided to POOH and replace the bit due to the slow ROP rate.
 All LWD tools where also changed for this run, ARC, ISONIC and ADN. The memory of the LWD tools was dumped successfully. The ARC and ADN seemed to have run out of battery power. But the ISONIC still had some life in it.
- A extended Leak of Test (XLOT) was performed at a depth of 1357 mMD, and an ESD reading of 1.73 sg was received from the ARC tool. The official LOT was set to 1.70 sg.
- The BHA was POOH due to low ROP.

MWD Run #6: Observations

• Since there had been some problems with the previous BHA, it was decided to run with the backup LWD tools (kept the PD and the MWD). The run started at 2512.6 mMD and ended 2572.5 mMD. The drilling procedure and parameters remained the same as the previous run. Some stick/slip was experienced when POOH. We also seemed to lose communication with the PD at times, especially at the end when the demodulation values were maxed out and locking up at times, but the MWD was giving good readings and expected values for azimuth and inclination. A mud sample was taken, and shipped to shore due to the PD problems.

• As mentioned earlier, the MWD was kept, with the same programming as the

previous run: 6bps, 12Hz.

Recommendations:

• We experienced no problems with the signals, so the 12Hz 6bps, works very well.

12 ½ - Section - MWD:

MWD Run #7: Observations

• The BHA was made up with a 9" PowerDrive, 8 1/4" TeleScope, 8 1/4" StethoScope, 8

1/4" ISONIC, 8 1/4" ARC tool and an 8 1/4" ADN tool. The ISONIC was run in,

memory-only mode.

• The TeleScope was programmed at 12 Hz frequency, QPSK at 6 bps. The TeleScope

gave continuous D&I, stationary surveys, shocks and vibrations, and downhole D&I

temperature measurements.

• A toolbox meeting was performed prior to picking up BHA for safe handling of the

radioactive source and the BHA in general, especially the StethoScope.

• The BHA was RIH to 1000m. When filling the pipe, displacement indicated a leak in

the drill string. A faulty float valve was suspected. So POOH to replace PowerDrive

and float valve.

MWD Run #8: Observations

• BHA was RIH to 1000m. Filled pipe and perform SHT. Pipe only required 100

strokes to fill it, not 400 strokes as expected. This again indicated a leak in the drill

string. POOH to investigate. A leak was found in the accelerator.

MWD Run #9: Observations

- Due to the tripping times required for the previous two runs, it was necessary to change the ISONIC, ARC tools due to battery depletion. There had been some problems with the ADN battery assemblies, with the jam-nut battery being damaged, so the same ADN tool was used, but with the battery assembly from the backup tool.
- A good SHT was performed @1000m. The shoe and 3m of new formation was drilled out using WBM, and then the BHA weas pulled back inside the shoe to perform an FIT. The ARC tool measured an Equivalent Static Density (ESD), of 1.486 sg. No signal problems were present.
- The mud was displaced to OBM prior to drilling of the 12 ¼ in. section, and from this point onwards it became very difficult to maintain tool sync. Various combinations of gain and delay and other demodulation settings were used to try and improve the decoding of the MWD signal. The pulsation dampeners on the pumps were checked, and various combinations of pump stroke rates tried. Downlinking to the tool was utilised to change the bitrate from 6 bps to 3 bps. This narrows the band width of the tool signal frequency, and can help to exclude interfering frequencies. The downlink rate used was 36 seconds and proved to be easy to perform.
- After approx. 10 hours of poor signal, things improved, and demodulation was fairly problem free, and was so good, that the tool was downlinked again to set the tool to 6 bps again.
- Three formation pressure tests were performed.
- There was a second period of very bad signal quality, maybe coinciding with correction of mud weight and bleeding of drill water into the active system, and again the tool had to be downlinked to 3 bps.
- Apart from a few intervals at the start of the section, the realtime log was of good quality.
- Throughout this run, there were frequent changing of pumps, and it could easily be seen from the noise harmonics being produced, that the condition of the pumps had a detrimental effect on the signal quality. The mud may also have partly contributed to the signal problems, an inhomogeneous mud at the start of the run, and subsequent adding of varying density fluids would not help the situation.
- Extremely high stickslip was experienced for most of this section, due to the nature of the limestone formation being drilled with the ROP being quite low. Several attempts to alleviate the stickslip were attempted, but these resulted in unacceptably low ROP's and had to be abandoned. The Statoil company representative was made aware

of the problem.

Recommendations:

The same MWD tools were used for both the 17 ½ in. and 12 ¼ in. sections as a result of the requirement for ADN8 in the 17 ½" hole section. The gap was within acceptable range but could be optimised further. Possible noise from external sources should be investigated to avoid more problems.

8 ½" - Section - MWD:

MWD Run #10: Observations

- The BHA consisted of a 6 ¾" PowerDrive, 6 ¾" TeleScope, 6 ¾" StethoScope, 6 ¾" ISONIC, and a 6 ¾" EcoScope tool containing the radioactive source.
- The ISONIC was again run in memory only mode.
- The shoe was drilled out, and 3 m of new formation. An FIT was performed, but due to the prolonged time it took for the mud pressure to stabilise, the utility MWD data frame which contains the ESD data, did not get decoded on surface.
- As in the 12 ¼ in. section, there were some intervals of extremely bad signal quality, especially at the start of the section. Signal strength was weak to begin with, but improved after some time.
- The 6 bps data rate was again chosen due to the amount of formation evaluation data required for the section.
- Signal was reasonable, with occasional "bad" dpoints, but the realtime log quality was rarely affected by this.
- There were no stickslip issues in this run.

Recommendations:

There were again problems with signal quality in this run. When strong pump harmonic frequencies are being produced as seen on Maersk Inspirer, it would be recommended to investigate this more closely, before drilling of the next well. The option to try other signal frequencies must also be evaluated.

36" Directional Drilling Recommendations

- Verticality was the key requirement in this hole section and the BHA as run provided good response.
- No DD onboard for this hole section.

8 1/2" Pilot Directional Drilling Recommendations

• Vertical pilot hole with no DD onboard.

26" Directional Drilling Recommendations

- Firm enough formation for kickoff was not encountered until 420m
- TFA should be increased beyond 1.298 in order to get better directional response, ie not washing away formation around the bit.
- Consider a larger bend setting than the 1.15 used, although this needs to be evaluated against rpm limitations on a long run.
- 35m slides gave 2deg/30m dogleg
- Utsira drilled on high side toolface, reduced flow (3000 3200lpm). No directional control and BHA dropped 2 deg/30m.
- Skade sands caused strong drop tendency

17 1/2" Directional Drilling Recommendations

- BHA had to deliver a complex 3-D turn almost through vertical to line up on the target.
- Section drilled with 8" collars and measurements tools, due to the requirement to run ADN tool which is not available in 9" collar.
- No detrimental effects seen by using 8" collar size.
- Complex BHA gave good reliability over a long interval
- A longer flex above the PowerDrive would be useful for highly directional 17 ½" hole sections.
- Bit design needs to be reviewed to drill section in one run.

12 1/4" Directional Drilling Recommendations

- In the event of incorrect displacement of mud, the individual string components should be tested to prove where the problem lies, so that there is no risk of running back in hole with a washed out component.
- Slow ROP observed with this BHA/Bit combination in Tor / Hod.
- Stick slip was experienced which reduced steering effectiveness.

8 1/2" Directional Drilling Recommendations

- PowerDrive inclination hold worked well.
- ROP was controlled as per Statoil instructions for cutting sampling.
- NMDC tooljoint length should be less than 1 meter, in order for elevators to be used, if available from suppliers.

STATOIL VOLVE

MOTOR BHA REPOR

RIG: Maersk Inspirer

RUN No: MD In: 251m

15/9-F-12 Well Name: BHA no: 1369m

MD out:

PHASE: BIT No: INTERVAL: Job No:

26" 1118m 07SCA0021

OBJECTIVE

Drill 26" hole from 251m to 1365m MD. KO well at 284m. Build inc from 0.13deg to 8 deg by 524m with 1deg DLS/30m Azimuth 45 deg. Then turn Azimuth to 255 and build to 21 deg with 2deg General: Inclination Build from 0.13 deg to 21 deg

O with 45 deg azimuth then turn to 255 deg azimuth

BIT No. 1 20 Nozzles Make Туре Smith Features. ooth shaped inserts, double sealed roller bearings, shirttail protected with hardfacing and tungsten carbide inserts 5000 lpm Condition in: 1.03 SG bit dp = 52 bar and H.S.I = 1.09 -1-WT-A-E-IN-NO-TD Dull Gradina: Selection Criteria Durability and Steerability Good Performanc

BHA No. 4	* With none ported flo	at							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
Bit	MY8397	26"	3 3/4"	-	7 5/8 REG P	0.64	0.64		
Motor A1125M	002	11 1/4"	-	7 5/8 REG B	7 5/8 REG B	8.45	9.09	25 3/4"	
Float Sub	FLX11-025	9 1/2"	3"	7 5/8 REG B	7 5/8 REG P	1.52	10.61	w/Float SLB-308	
22 1/2" NM Stab	MWS 1217	25 3/4"	3"	7 5/8 REG P	7 5/8 REG B	3.02		midpoint = 12.11m	
ARC 9	0401	9 1/8"	3"	7 5/8 REG B	7 5/8 REG B	5.94	19.57	<u> </u>	
PowerPulse HF	MDC HE VA 97	9 5/32	-	7 5/8 REG P	7 5/8 REG B	8.46	28.03	D&I = 23.71m	
17 1/4" NM Stab.	OWS-1184	17 1/4"	3"	7 5/8 REG P	7 5/8 REG B	2.43	30.46	midpoint = 29.33m	
3 x 9 1/2" NMDC	25002/25003/25004	9 1/2"	3"	7 5/8 REG P	7 5/8 REG B	23.36	53.82		
X/O-Sub	tally	9"	3"	7 5/8 REG P	6 5/8 REG B	1.15	54.97		
3 x 8 1/4" DC	tally	8 1/4"	2 13/16"	6 5/8 REG P	6 5/8 REG B	28.57	83.54		
Jar	1018	8 1/4"	2 13/16"	6 5/8 REG P	6 5/8 REG B	10.43	93.97		
3 x 8 1/4" DC	tally	8 1/4"	2 13/16"	6 5/8 REG P	6 5/8 REG B	28.71	122.68		
Energiser	1051	8 1/4"	2 13/16"	6 5/8 REG P	6 5/8 REG B	10.30	132.98		
1 x 8 1/4" DC	tally	8 1/4"	2 13/16"	6 5/8 REG P	6 5/8 REG B	9.48	142.46		
X/O-Sub	tally	8 1/4"	3"	7 5/8 REG P	6 5/8 REG B	1.12	143.58		
12 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" HT55 P	5 1/2" HT55 B	120.00	263.58	.	
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" HT55 P	5 1/2" HT55 B		263.58		
Motor Spec:	Stab	Bend	Rotor Nozzle	rev/litre	Optimum dp	Stator	R/S gap	Bearing In /Out	Stab Out
A1125M	25 3/4	1.15	No	0.03	28	Standard	0.059	29-30 / 27-31	25 3/4"

OPERATIONS: Date & Time MD Cumulative Run Hours Bit BRT 17:30; 05/Jul/07 TOTAL 1369m 97.0 34.2 0.0 62.8 72.5 Bit above Wellhead 18:00; 08/Jul/07 -24.5 ROP 1118n 32.7 Rotary Drilling 261m % Rotated 23% Sliding ent/Shoetrack: Size Depth Drilled

No

I AKAMETERO.		Comments.							
	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(lpm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:	3000	62	0	3.8	0	(kdaN)	(kdaN)	(kdaN)	m
Max:	5011	193	70	11	15	108	110	106	310m
						149	139	127	1344m

Cmt Hours

SURVEY DATA VS Azimuth 215.05 Max DLS First survey

FORMATION

Age	Group	Formation	MD / TVD Top	Lithology
		Utsira	887 / 882	
		Skade		

Water / Oil Ba

The BHA was made up and RIH. Started to washdown from 218m. TOC was found to be at 257m. Rotated / washed down to 284m where the TF of the motor was lined up to initiate the kick off. As the drilling progressed in sliding mode with no or little differential at low flow of 3700 lpm we were not able to kick off and following the pilothole initially (confirmed by MWD surveys) due to no evidence of firm formation / cement. From 370m the flow was reduced to 3000 lpm to reduce the jetting effect. At +-420m the formation firmed up (confirmed by logs later on) and made it possible to positively continue the KO. Looking at the surveys between 392m and 432m we had a DLS of 1.5 so the KO was started earlier than we thought when looking at the WOB and diff pressure. Luckily we had set a deeper cut off depth of approximately 450m due to constraints with slots and anti collision. Slides of up to 35m was necessarry in order to get the required dogles of 2 DLS. At 887m we found top Utsira. The Utsira was drilled with the TF high side and low flow of 3000-3300 lpm and ROP up to 200 m/hr but needed to slow down due to "hard" spots were the motor stalled. Erratic to no directional control were seen. In the start of Utsira the BHA dropped 2 deg/30m, and in the middle / bottom the BHA turned up to 5.74 deg/30m and dropped again in the bottom after managing to rebuild some of the lost inclination. After Utsira 1075m "normal" drilling was continued and we slid to get back to well plan. Slides of up to 27m were performed with short intervals of rotating, achieving a one of DLS up to 3.2 deg/30m. Generally the maximum DLS achieved was 2.2 to 2.4, but more often less than 2 DLS even if there was good steady toolfaces. At 1200m the well path were lined up to converge with the plan and we started to drill the tangent to TD. The BHA was holding/building inclination whilst rotating for the first 10m, but at at 1210m the continuous inclination started to drop alarmingly (Bit depth 1235m) of 4-5 DLS even though we had 10-12 tons WOB and an ROP of 60 m/hr. From 1240m orientated TF to high side and slid to try build the inclination back up again. Again the wellpath was on its way to be lined up, from 1278m all WOB and differential pressure on the motor were were lost till we regained both from 1333m. This interval from 1278m to 1333m dropped even though we were sliding with up to 150 m/hr and reduced flow. After Skade "normal" drilling was continued and we slid down to TD@1369m to get back to well plan as much as possible. Circulated hole clean and displaced hole to 1.35sg mud. During the trip to POOH out of hole massive hole problems were encountered at varies intervals up to the final severe one at 524m to 511m. The hole was eventually displace to 1.4 sg in two stages (TD to above Utsira and above Utsira to seabed) after wiper trip to 994m in order to minimize mud waste in case of further problems and having to pump with seawater again, which was used during the drilling and working the worst tight spots

STATOIL VOLVE

PowerDrive X5 RSS BHA Report

RIG: Maersk Inspirer RUN No:

1369m

Well Name: 15/9-F-12 BHA no: 5

2513m

MD out:

PHASE: BIT No: INTERVAL: Job No:

17.5" 5 1144m 07SCA0021

OBJECTIVE:

MD In:

General: Drill 17 1/2" section. Build and turn with a planned dogleg of 2/30m

Inclination: Build inclination from 20.6 deg to 26.3 deg

Azimuth: Turn azimuth from 254.5 deg to 116.0 deg

BIT No. 5	#1	#2	#3	#4	#5	#6	#7	#8					
Nozzles:	15	15	15	15	15	16	16	16					
Size	Cone	Fixed cutter	IADC	Make	Туре	Ser. No	TFA	Gauge length					
17 1/2		PDC	M322	Hycalog	RSX616M	215765	1.452	-					
Features:	Diamond trucut gaug	amond trucut gauge with ear resistant diamond Semi Round Top inserts and impact resistant tungsten carbide relieved off-gauge inserts, twin seal, V flow technology											
Condition in:	New	ew											
Hydraulics:	With a MW of	1.35 SG	at	4550 lpm	bit dp =	45 bar	and H.S.I =	1.89					
Dull Grading:	4-4-BT-A-X-I-CT-PR												
Selection Criteria:	Previous experience												
Performance:	Good performance to Brygger Formation. Unable to drill through claystone/siltstone												
Recommendations:	Try a rock bit												

BHA No. 5	* With none ported fl	oat							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
Bit	215765	17 1/2"	3 3/4"	-	7 5/8 REG P	0.45	0.45		
PowerDrive PD1100	44215	9.75"	3 3/16"	7 5/8 REG B	7 5/8 REG B	4.30	4.75		
17 5/16" Control Stab	*	9.1/2"	3"	7 5/8 H90 B	7 5/8 REG P	1.71	6.46		
6 5/8" Flex Joint	26754	5 1/2"	2 13/16"	7 5/8 H90 P	6 5/8 FH B	2.79	9.25		
V825R	2704	8 5/8"	2 13/16"	6 5/8 FH P	6 5/8 FH B	6.20	15.45		
ISONIC	SWD8	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	7.07	22.52		
12" NM InLine Stab	35901	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	0.95	23.47		
Telescope MWD	FU86	8 3/8"	5 1/9"	6 5/8 FH P	6 5/8 FH B	7.91	31.38		
ADN 8	FF09	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	6.76	38.14		
2 x 8 1/4" NMDC	26080/2731	8 1/8"	2 13/16"	6 5/8 REG P	6 5/8 REG B	17.76	55.90		
3 x 8 1/4" DC	tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	28.57	84.47		
Hydraulic Jar	HDL-100	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.43	94.90		
3 x 8 1/4" DC	tally	8"	3"	6 5/8 REG P	6 5/8 REG B	28.71	123.61		
Energizer	S1051	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.30	133.91		
3 x 8 1/4" DC	Tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	19.08	152.99		
X/O Sub	Tally	8"	3"	6 5/8 REG P	5 1/2" FH B	1.12	154.11]
12 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" FH P	5 1/2" FH B	112.69	266.80		
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" FH P	5 1/2" FH B	2455.00	2721.80		
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)
53608	447	CMF523H9	SMV507RN	Medium	FAST			2195	4920

OPERATIONS: Comments:

	Date & Time	MD		Cumulative Run Hours						
Bit BRT:	18:30; 19/Jul/07	1369m	Pump	Drill	Ream	Circ	Other	TOTAL		
Bit ART:	00:00; 29/Jul/07	2513m	141.9	53.8	0.0	88.1	79.6	221.5		
	ROP:	1144m	in	53.8hrs	=	21.3	m/hr			
	Rotary Drilling	1144m	in	0.0hrs	#DIV/0!	% Rotated:	100%			
	Sliding	0m	in	53.8hrs	0m/hr	% Sliding:	0%			
	Cement/Shoetrack:		•				Size	Depth		
		Yes	Drilled:	12m	Cmt Hours:	7.0hrs	20"	1357.0 m		

PARAMETERS: Comments: TRQ (KN.m) 10 STRING WEIGHTS UP FLW SPP RPM WOB Depth ROT DΝ (*lpm*) 4000 (string) 130 (kdaN) 2400m

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:	1393.63	16.99	246.96	1367.98	-153.75	3.99	-158.16	2.46
1 4	0500.07	00.00	405.50	0447.50	005.04	455.04	000.00	2.40

	I OKWATION.				
	Age	Group	Formation	MD Top	Lithology
	54-5 mya	Hordaland	Grid	2155m	Sandstone
İ	65-38 mya	Rogaland	Balder	2345m	Claystone
	65-38 mya	Pogaland	Solo	2400m	Clayetone

MUD:		Comments:						
Туре	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp
PERFORMADRIL	WBM	1.35	75.00	34.00	11.50	9.90	-	15.00

Bha unable to match planned turn, drop and build due to short length of the flex joint. ROP was 50m/hr until the Brygger formation. Slowed to 1m/hr when drilled into claystone/siltstone. POOH for a rock bit. ROP could be increased to 80m/hr on next well if ECD tolerance level is raised.

STATOIL VOLVE

PowerDrive X5 RSS BHA Report

RIG: Maersk Inspirer

2513m

Well Name: 15/9-F-12

BHA no: 6

MD out: 2573m

PHASE: 17.5"

BIT No: 6

INTERVAL: 60m

Job No: 07SCA0021

OBJECTIVE:

MD In:

General: Drill 17 1/2" section to TD, continue build and turn from last run, planned dogleg is 2°/30m.

Inclination: Build inclination.

Azimuth: Turn azimuth left towards 116 deg

BIT No. 6	#1	#2	#3	#4	#5	#6	#7	#8
Nozzles:	22	22	22	20				
Size	Cone	Fixed cutter	IADC	Make	Туре	Ser. No	TFA	Gauge length
17 1/2	Milled Tooth		135	Smith		MZ0185	1.421	-
Features:	Milled Tooth bit			•	•	•	•	•
Condition in:	New							
	With a MW of	1.35 SG	at	4550 lpm	bit dp =	48 bar	and H.S.I =	1.96
	1-1-WT-A-E-I-WT-T)						
	Previous experience							
Performance:								
Recommendations:	Try a rock bit							

BHA No. 6	* With none ported f	loat							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
Bit	MZ0185	17 1/2"	3 3/4"	-	7 5/8 REG P	0.41	0.41		
PowerDrive PD1100	44215	9.75"	3 3/16"	7 5/8 REG B	7 5/8 REG B	4.30	4.71		
17 5/16" Control Stab	*	9.1/2"	3"	7 5/8 H90 B	7 5/8 REG P	1.71	6.42		
6 5/8" Flex Joint	26754	5 1/2"	2 13/16"	7 5/8 H90 P	6 5/8 FH B	2.79	9.21		
V825R	1536	8 5/8"	2 13/16"	6 5/8 FH P	6 5/8 FH B	6.26	15.47		
ISONIC	42780	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	7.14	22.61		
12" NM InLine Stab	35901	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	0.95	23.56		
Telescope MWD	FU86	8 3/8"	5 1/9"	6 5/8 FH P	6 5/8 FH B	7.91	31.47		
ADN 8	51	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	6.84	38.31		
2 x 8 1/4" NMDC	26080/2731	8 1/8"	2 13/16"	6 5/8 REG P	6 5/8 REG B	17.76	56.07		
3 x 8 1/4" DC	tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	28.57	84.64		
Hydraulic Jar	HDL-100	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.43	95.07		
3 x 8 1/4" DC	tally	8"	3"	6 5/8 REG P	6 5/8 REG B	28.71	123.78		
Energizer	S1051	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.30	134.08		
3 x 8 1/4" DC	Tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	19.08	153.16		
X/O Sub	Tally	8"	3"	6 5/8 REG P	5 1/2" FH B	1.12	154.28		<u> </u>
12 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" FH P	5 1/2" FH B	112.69	266.97		
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" FH P	5 1/2" FH B	2455.00	2721.97		
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)
53608	447	CMF523H9	SMV507RN	Medium	FAST			2195	4590

OPERATIONS: Comments

	Date & Time	MD		Cumulative Run Hours						
Bit BRT:	18:30; 19/Jul/07	2513m	Pump	Drill	Ream	Circ	Other	TOTAL		
Bit ART:	00:00; 29/Jul/07	2573m	28.3	11.6	0.0	16.7	193.2	221.5		
	ROP:	60m	in	11.6hrs	=	5.1	m/hr			
	Rotary Drilling	60m	in	0.0hrs	#DIV/0!	% Rotated:	100%			
	Sliding	0m	in	11.6hrs	0m/hr	% Sliding:	0%			
	Cement/Shoetrack:						Size	Depth		
		No	Drilled:		Cmt Hours:		20"	1357 0 m		

PARAMETERS:		Comments:							
	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(Ipm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:	4450	283	150	12	11	(kdaN)	(kdaN)	(kdaN)	m
Max:	4475	286	180	19	21	165	191	150	2530m

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:	2493.74	19.27	129.52	2407.77	-348.39	-147.11	-397.61	2.10
Last survey:	2536.07	20.86	125.56	2447.53	-335.04	-155.94	-386.09	2.19

FORMATION:

ı	I OKWATION.				
	Age	Group	Formation	MD Top	Lithology
	54-5 mya	Hordaland	Grid	2155m	Sandstone
	65-38 mya	Rogaland	Balder	2345m	Claystone
L	65-38 mya	Pogaland	Solo	2400m	Clayetone

MUD:		Comments:						
Туре	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp
PERFORMADRIL	WBM	1.35	75.00	34.00	11.50	9.90	-	15.00

RESULTS:

Drilled this last part of the 17 1/2" Section with a rock bit and this gave us a Rop of approximately 5 m/h.

Directional performance with rock bit was very poor. Despite setting the PowerDrive to 100%/288deg the maximum dogleg achieved was less than 1deg/30m. In future I would not recommend using a rock bit with PowerDrive in this section.

Td was set by geologist while drilling and was set 20m into the Ty formation.

STATOIL VOLVE

PowerDrive X5 RSS BHA Report

RIG: Maersk Inspirer RUN No:

15/9-F-12 Well Name: BHA no: MD out: 2573m

PHASE: 12.25" BIT No: INTERVAL: 0m Job No: 07SCA0021

OBJECTIVE:

MD In:

Drill 12 1/4" section to TD, continue build and turn from last run, planned dogleg is 2°/30m. Pressure points according to geologist. General:

Inclination: Build inclination.

Azimuth: Turn azimuth left towards 116 deg

2573m

BIT No. 7	#1	#2	#3	#4	#5	#6	#7	#8
Nozzles:	15	15	15	16	16	16		
Size	Cone	Fixed cutter	IADC	Make	Туре	Ser. No	TFA	Gauge length
12 1/4		PDC	M422	Hycalog	RSR616M-A12	215220	1.107	5.715 cm
Features:	PDC bit							
Condition in:	New							
Hydraulics:	With a MW of	1.40 SG	at	3500 lpm	bit dp =	48 bar	and H.S.I =	1.96
Dull Grading:	New							
Selection Criteria:	Previous experience	9						
Performance:	Did not drill any forn	nation						
Recommendations:								

BHA No. 7 * With none ported float

BHA NO. 7	with hone ported in	Jai							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
12 1/4 " Bit	215220	12 1/4"	3 3/4"	-	6 5/8 REG P	0.26	0.26		
PD 900	49497	9 3/16"	3 3/16"	6 5/8 REG B	6 5/8 REG B	4.21	4.47		
12 1/16" Control Stab	48984	8 5/16"	3"	6 5/8 REG P	6 5/8 FH B	1.88	6.35		
6 5/8" Flex Joint	51751	6 7/16"	4 1/2"	6 5/8 FH P	6 5/8 FH B	2.94	9.29		
SonicVision	42780	8 5/8"	2 13/16"	6 5/8 FH P	6 5/8 FH B	7.14	16.43		
StethoScope	AD83	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	10.16	26.59		
12" NM InLine Stab	35904	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	0.94	27.53		
Telescope MWD	DB133	8 3/8"	5 1/9"	6 5/8 FH P	6 5/8 FH B	7.15	34.68		
ARC 8	1536	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	5.80	40.48		
ADN 8	51	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	6.84	47.32		
2 x 8 1/4" NMDC	26080/2731	8 1/8"	2 13/16"	6 5/8 REG P	6 5/8 REG B	17.76	65.08		
3 x 8 1/4" DC	tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	28.57	93.65		
Hydraulic Jar	HDL-100	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.43	104.08		
3 x 8 1/4" DC	tally	8"	3"	6 5/8 REG P	6 5/8 REG B	28.71	132.79		
Energizer	S1051	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.30	143.09]
3 x 8 1/4" DC	Tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	19.08	162.17		
X/O Sub	Tally	8"	3"	6 5/8 REG P	5 1/2" FH B	1.12	163.29		
4 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" FH P	5 1/2" FH B	37.66	200.95		
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" FH P	5 1/2" FH B	2901.05	3102.00		
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)
48793	909	CMF523H9	SMV507RN	Medium	FAST			1915	5068

OPERATIONS:

	Date & Time	MD		Cumulative Run Hours						
Bit BRT:	00:00; 08/Aug/07	2573m	Pump	Drill	Ream	Circ	Other	TOTAL		
Bit ART:	19:30; 08/Aug/07	2573m	0.0	0.0	0.0	0.0	19.5	19.5		
	ROP:	0m	in	0.0hrs	-	0.0	m/hr			
	Rotary Drilling	0m	in	0.0hrs	#DIV/0!	% Rotated:	#DIV/0!			
	Sliding	0m	in	0.0hrs	#DIV/0!	% Sliding:	#DIV/0!			
	Cement/Shoetrack:		•				Size	Depth		
		Yes	Drilled:		Cmt Hours:		14"	2506.0 m		

PARAMETERS:

	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(lpm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:						(kdaN)	(kdaN)	(kdaN)	m
Max:									

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:								
Last survey:								

FORMATION:

Age	Group	Formation	MD Top	Lithology

MUD:	D: Comments:										
Туре	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp			
PERFORMADRIL	WBM	1.35	75.00	34.00	11.50	9.90	-	15.00			

RIH to 1000m. Fill pipe and perform SHT. Pipe only required 80 strokes to fill it, not 400 strokes as expected. This indicated leak in drill string. A few more stands were run to see if problem still there. Displacement still indicated a leak. A faulty float valve was suspected. So POOH to replace PowerDrive and float valve.

I suggested breaking PowerDrive to check the float valve. This was discounted to save time.

STATOIL VOLVE

PowerDrive X5 RSS BHA Report

RIG: Maersk Inspirer RUN No:

2573m

Well Name: 15/9-F-12 BHA no: MD out: 2573m

PHASE: 12.25" BIT No: 7RR1 INTERVAL: 0m 07SCA0021 Job No:

OBJECTIVE:

MD In:

Azimuth:

Drill 12 1/4" section to TD, continue build and turn from last run, planned dogleg is 2°/30m. Pressure points according to geologist. General:

Inclination: Build inclination.

Turn azimuth left towards 116 deg

7RR1	#1	#2	#3	#4	#5	#6	#7	#8
Nozzles:	15	15	15	16	16	16		
Size	Cone	Fixed cutter	IADC	Make	Туре	Ser. No	TFA	Gauge length
12 1/4		PDC	M422	Hycalog	RSR616M-A12	215220	1.107	5.715 cm
Features:	PDC bit							
Condition in:	New							
Hydraulics:	With a MW of	1.40 SG	at	3500 lpm	bit dp =	48 bar	and H.S.I =	1.96
Dull Grading:	New							
Selection Criteria:	Previous experience							
Performance:	Did not drill any form							
Recommendations:								

BHA No. 8	* With none ported flo	oat							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
12 1/4 " Bit	215220	12 1/4"	3 3/4"	- '	6 5/8 REG P	0.26	0.26		
PD 900	48229	9.125"	3 3/16"	6 5/8 REG B	6 5/8 REG B	4.23	4.49	1	Ţ
12 1/16" Control Stab	45137	8 7/16"	3"	6 5/8 REG P	6 5/8 FH B	1.87	6.36	1	J
6 5/8" Flex Joint	48270	6 1/2"	4 1/2"	6 5/8 FH P	6 5/8 FH B	2.91	9.27	1	J
SonicVision	42780	8 5/8"	2 13/16"	6 5/8 FH P	6 5/8 FH B	7.14	16.41		<u> </u>
StethoScope	AD49	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	10.38	26.79	1	
12" NM InLine Stab	35904	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	0.94	27.73	1	
Telescope MWD	DB133	8 3/8"	5 1/9"	6 5/8 FH P	6 5/8 FH B	7.15	34.88	1	
ARC 8	1536	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	5.80	40.68	1	ļ
ADN 8	51	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	6.84	47.52	1	<u></u>
2 x 8 1/4" NMDC	26080/2731	8 1/8"	2 13/16"	6 5/8 REG P	6 5/8 REG B	17.76	65.28	1	
3 x 8 1/4" DC	tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	28.57	93.85	1	
Hydraulic Jar	HDL-100	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.43	104.28		
3 x 8 1/4" DC	tally	8"	3"	6 5/8 REG P	6 5/8 REG B	28.71	132.99	1	
Energizer	S1051	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.30	143.29	1	
3 x 8 1/4" DC	Tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	19.08	162.37	1	
X/O Sub	Tally	8"	3"	6 5/8 REG P	5 1/2" FH B	1.12	163.49	1	
4 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" FH P	5 1/2" FH B	37.66	201.15	1	
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" FH P	5 1/2" FH B	2900.85	3102.00		
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)
54910	157	CMF523H9	SMV507RN	Medium	FAST			2070	4815

OPERATIONS:

	Date & Time	MD		Cumulative Run Hours							
Bit BRT:	22:00; 08/Aug/07	2573m	Pump	Drill	Ream	Circ	Other	TOTAL			
Bit ART:	20:00; 09/Aug/07	2573m	0.0	0.0	0.0	0.0	22.0	22			
	ROP:	0m	in	0.0hrs	-	0.0	m/hr				
	Rotary Drilling	0m	in	0.0hrs	#DIV/0!	% Rotated:	#DIV/0!				
	Sliding	0m	in	0.0hrs	#DIV/0!	% Sliding:	#DIV/0!				
·	Cement/Shoetrack:		•			•	Size	Depth			
		Yes	Drilled:	Drilled: Cmt Hours:			14"	2506.0 m			

PARAMETERS:

		Commonto.							
	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(lpm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:	3270	193	70	1	28	(kdaN)	(kdaN)	(kdaN)	m
Max:						157	180	145	2649m
•									

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:								
Last survey:								

FORMATION:

Age	Group	Formation	MD Top	Lithology

MUD:	JD: Comments:									
	Туре	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp	
PER	RFORMADRIL	WBM	1.35	75.00	34.00	11.50	9.90	-	15.00	

RIH to 1000m. Fill pipe and perform SHT. Pipe only required 100 strokes to fill it, not 400 strokes as expected. This indicated leak in drill string. A few more stands were run to see if problem still there. Displacement still indicated a leak. POOH to investigate.

In the meantime we checked the float valve in the previous PowerDrive, which was found to be in perfectly good condition. so a leak in another component was indicated. On reaching the top of the HWDP, the BHA was pressure tested. It was still leaking, so there was no leak in the drill pipe. As each stand was racked back, the BHA was pressure tested. It continued to leak until the stand with the Energiser was racked back. Each component in that stand was isolated and checked. The Energiser was found to be at fault. On closing the Annular Preventer below the Energiser and pumping down the BHA mud could be seen leaking from between the mandrel and the body of the Energiser.

STATOIL VOLVE

PowerDrive X5 RSS BHA Report

RIG-Maersk Inspirer Well Name

RUN No: MD In: 2573m BHA no: MD out: 3114m

15/9-F-12

PHASE: BIT No: INTERVAL: Job No:

2070

4815

12 25" 7RR2 541m 07SCA0021

OBJECTIVE

Performance:

54910

157

Drill 12 1/4" section to TD, continue build and turn from last run, planned dogleg is 2°/30m. Pressure points according to geologist General Inclination Build inclination

Azimuth: Turn azimuth left towards 116 deg

7RR2 #7 #1 #2 #3 #4 #5 #6 #8 Nozzle Cone IADO Make TFA 12 1/4 PDC M422 Hycaloc RSR616M-A12 215220 1.107 5.715 cm Features. PDC bit Condition in: With a MW of 1.40 SG 3500 lpm bit dp = 48 bar and H.S.I = 1.96 Hydraulics: at Dull Grading: 1-1-CT-A-X-IN-WT-TD. One blade has a cracked body, possibly due to stickslip. Selection Criteria: Previous experience

ROP good in Ty Fm. In Ekofisk down to Draupne ROP 2 - 10 m/hr. Good steering response but there was a TF offset of upto 70 deg.

Recommendations: As most of this section is limestone, perhaps the bit should be optimised for this type of lithology.

CMF523H9

SMV507RN

BHA No. 9	* With none ported fi	loat							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
12 1/4 " Bit	215220	12 1/4"	3 3/4"	-	6 5/8 REG P	0.26	0.26		
PD 900	48229	9.125"	3 3/16"	6 5/8 REG B	6 5/8 REG B	4.23	4.49		
12 1/16" Control Stab		8 7/16"	3"	6 5/8 REG P	6 5/8 FH B	1.87	6.36		11 15/16""
6 5/8" Flex Joint	48270	6 1/2"	4 1/2"	6 5/8 FH P	6 5/8 FH B	2.91	9.27		
SonicVision	FJ-01	8 5/8"	2 13/16"	6 5/8 FH P	6 5/8 FH B	7.07	16.34		
StethoScope	AD49	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	10.38	26.72		11 13/16"
12" NM InLine Stab	35904	8 1/2"	4 3/16"	6 5/8 FH P	6 5/8 FH B	0.94	27.66		12"
Telescope MWD	DB133	8 3/8"	5 1/9"	6 5/8 FH P	6 5/8 FH B	7.15	34.81		
ARC 8	709	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	5.78	40.59		
ADN 8	51	8 3/8"	5"	6 5/8 FH P	6 5/8 REG B	6.84	47.43		
2 x 8 1/4" NMDC	26080/2731	8 1/8"	2 13/16"	6 5/8 REG P	6 5/8 REG B	17.76	65.19		
3 x 8 1/4" DC	tally	8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	28.57	93.76		
Hydraulic Jar		8 1/4"	3"	6 5/8 REG P	6 5/8 REG B	10.45	104.21		
5 x 8 1/4" DC	tally	8"	3"	6 5/8 REG P	6 5/8 REG B	47.79	152.00		
X/O Sub	Tally	8"	3"	6 5/8 REG P	5 1/2" FH B	1.12			
4 x 5 1/2" HWDP	tally	5 1/2"	3"	5 1/2" FH P	5 1/2" FH B	37.66	190.78		
5 1/2" DP	tally	5 1/2"	4.78"	5 1/2" FH P	5 1/2" FH B	2911.22	3102.00		
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)

FAST

OPERATIONS:		Comments:										
	Date & Time	MD		Cumulative Run Hours								
Bit BRT:	03:00; 10/Aug/07	2573m	Pump	Drill	Ream	Circ	Other	TOTAL				
Bit ART:	05:30; 18/Aug/07	3114m	138.1	96.6	0.0	41.5	56.4	194.5				
	ROP:	542m	in	96.6hrs	=	5.6	m/hr					
	Rotary Drilling	542m	in	96.6hrs	6m/hr	% Rotated:	100%					
	Sliding	0m	in	0.0hrs	0m/hr	% Sliding:	0%					
	Cement/Shoetrack:					•	Size	Depth				
		Yes	Drilled:	29m	Cmt Hours:	8.7hrs	14"	2506.0 m				

Medium

PARAMETERS:		Comments:							
	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(Ipm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:	3270	189	140	1	28	(kdaN)	(kdaN)	(kdaN)	m
Max:	3565	243	180	10	40	157	180	145	2649m

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:	2576.99	22.00	125.92	2485.96	-319.35	-169.94	-373.47	3.63
Last survey:	3081.25	54.36	97.21	2844.50	18.26	-283.12	-53.92	3.03

FORMATION:

Age	Group	Formation	MD Top	Lithology
Cretaceous	Shetland	Ekofisk	2691m	Limestone
Cretaceous	Shetland	Tor	2704m	Limestone
Cretaceous	Shetland	Hod	2885m	Limestone
Cretaceous	Shetland	Blodoeks	2984m	Marl
Jurassic	Viking	Draupne	3103m	Claystone

MUD:		Comments:						
Type	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp
Enviromul OBM	OBM	1.40		28.00	8.60	14.50	71.3/28.7	57.00

RESULTS:
The BHA was RIH. This time there was no problems with displacement. So after filling the pipe and testing the MWD/LWD tools at 1000m we continued to the top of the cement. The plugs, float, shoe track and shoe were drilled out without any problems. The rathole was cleaned out. There was some resistance at 2520m, but this was ok after reaming through it a couple of times.

After drilling 3m new formation a good FIT was performed. The hole was then displaced to 1.35 sg Environul OBM. Initially there was a problem demodulating the MWD signal. Once this was sorted out drilling in the Ty Formation continued at 20 - 30 m/hr. PowerDrive was set to turn left and build. The first setting 60%/324 deg was found to be producing mostly build. There was a 30 deg offset between set T/F and actual T/F. Once we reached the top of the Ekofisk formation at 2695m the ROP dropped to less than 10 m/hr. Also the offset between set T/F and actual T/F increased to 56 deg. In the Hod formation this increased to 70 deg.

At 2740m drilling was interrupted to take 3 pressure points in the Ty formation with Stethoscope. Drilling then continued at 3 -10 m/hr through the Tor and Hod formations. At 2920m the PowerDrive was set to Inclination Hold. By this time we were back on line in section and some 25 m right of the line in Plan. Due to stick/slip IH setting struggled to hold inclination, which crept up from 53 deg to 55.25 deg. From 3065m to 3114m stick/slip was absent and PD900 was able to steer effectively. So in IH nudge down setting the effective TF was -110 deg due to the 70 deg TF offset, which had been observed since drilling into the Hod Formation, so the hole turned sharply left for the last 50m.

TD was set at 3114m in the Draupne Formation.

STATOIL Volve

PowerDrive X5 RSS BHA Report

Maersk Inspirer RUN No:

3114m

15/9-F-12 BHA no: 10 3520m MD out:

BIT No: INTERVAL: 406m

Job No: 07SCA0021

OBJECTIVE General

Drill 8 1/2" section to TD, Slightly drop inclination and turn right from last section to start with then hold inclination and azimuth. Pressure points according to geologist.

Inclination Azimuth: Turn azimuth right towards 104 deg

BIT No. 8	#1	#2	#3	#4	#5	#6	#7	#8
Nozzles:	15	15	15	16	16	16		
Size	Cone	Fixed cutter	IADC	Make	Туре	Ser. No	TFA	Gauge length
8 1/2"		PDC	M222	Smith	MDI616LPX	SCC001	0.663	2"
Features:	PDC bit							
Condition in:	New							
Hydraulics:	With a MW of	1.40 SG	at	2215 lpm	bit dp =	54 bar	and H.S.I =	4.60
Dull Grading:	0-1-WT-S-X-IN-NO-T	D						
Selection Criteria:	Previous experience							
Performance:	Good ROP with low \	NOB and no stick-slip	or shocks through res	servoir. Good DLS ca	pability and only +/- 5	deg TF offset with PD		
Recommendations:	Good bit and BHA co	mbination, recommen	d for future wells.					

BHA No. 10	* With none ported fle	oat							
Component	Serial No	Size/OD	ID	Con dn	Con up	Length	Acc length	Comments	Stab Gauge Out
8 1/2 " Bit	SCC001	8 1/2"	3 3/4"	-	4 1/2 REG	0.26	0.26		
PD675 X5	60126	6 3/4"	3 3/16"	4 1/2 REG P	4 1/2 IF B (NC50)	4.09	4.35		
8 3/16" Control Stab	53836	6 3/4"	3"	4 1/2 IF P (NC50)	5 1/2 FH B	1.74	6.09	8 3/16" Stabilizer	8 3/16"
5 1/8" Flex Joint	60006	5 1/8"	4 1/2"	5 1/2 FH P	5 1/2 FH B	2.73	8.82		
EcoScope	816	6 3/4"	3 15/16"	5 1/2 FH P	5 1/2 FH B	7.92	16.74	8 1/4" Stabilizer	8 3/16"
Telescope MWD	AE-FN 15	6 3/4"	3 15/16"	5 1/2 FH P	5 1/2 FH B	8.38	25.12		
StethoScope	AC34	6 3/4"	3 15/16"	5 1/2 FH P	5 1/2 FH B	10.10	35.22	8 1/4" Stabilizer	8 1/8"
ISONIC	34640	6 3/4"	3 15/16"	5 1/2 FH P	4 1/2 IF B (NC50)	7.89	43.11		
8 3/8" NM Stabilizer	25640	6 13/16"	2 13/16"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	1.73	44.84	8 3/8" Stabilizer	8 11/32"
2 x 6 3/4" NM HWDP	31606,4035	6 3/4"	2 13/16"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	18.61	63.45		
2 x 5" HWDP	tally	6 5/8"	2"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	18.88	82.33		
Hydraulic Jar	PD 400 001	6 13/16"	2 3/4"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	10.28	92.61		
3 x 5" HWDP		6 5/8"	2"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	28.16	120.77		
5" DP	Tally	5"	4 1/4"	4 1/2 IF P (NC50)	4 1/2 IF B (NC50)	1464.48	1585.25		
X/O Sub	tally	7 1/4"	2 13/16"	4 1/2 IF P (NC50)	5 1/2" FH B	1.11	1586.36		
5 1/2" DP	tally	5 1/2"		5 1/2" FH P	5 1/2" FH B	1858.64	3443.89		
		<u> </u>		<u> </u>					
						j			
BU number	CU number	Comms Softw.	Sensor Softw.	Impeller size	Мар			Flow (min)	Flow (max)
53647	1038	CMF523H9	SMV507RN	Medium	FAST			1298 lpm	2240 lpm

OPERATIONS:		Comments:						
	Date & Time	MD			Cumulative	Run Hours		
Bit BRT:	07:15; 18/Aug/07	3114m	Pump	Drill	Ream	Circ	Other	TOTAL
Bit ART:	00:00; 26/Aug/07	3520m	56.3	30.1	0.0	26.2	128.5	184.75
	ROP:	406m	in	30.1hrs	=	13.5	m/hr	
	Rotary Drilling	406m	in	30.1hrs	14m/hr	% Rotated:	100%	
	Sliding	0m	in	0.0hrs	0m/hr	% Sliding:	0%	
	Cement/Shoetrack:						Size	Depth
	1	Yes	Drilled:	27m	Cmt Hours:	2 9hrs	9.5/8"	3087 0 m

PARAMETERS:		Comments:							
	FLW	SPP	RPM	WOB	TRQ		STRING WEIGHTS		Depth
	(lpm)	(bar)	(string)	(kdaN)	(KN.m)	ROT	UP	DN	
Min:	2220	203	60	2	13	(kdaN)	(kdaN)	(kdaN)	m
Max:	2227	210	140	8	24	147	166	134	3330m
						154	180	135	3453m

SURVEY DATA:		Comments:					VS Azimuth	104.32
	MD	Inc	Azm	TVD	VS	N/-S	E/-W	Max DLS
First survey:	3136.6	53.7	95.71	2877.01	62.63	-288.16	-9.42	1.74
Last survey:	3495 52	52 73	105 59	3091 77	349 69	-357 98	269.02	1.74

FORMATION:

Age	Group	Formation	MD Top	Lithology
Cretaceous	Shetland	Ekofisk	2691m	Limestone
Cretaceous	Shetland	Tor	2704m	Limestone
Cretaceous	Shetland	Hod	2885m	Limestone
Cretaceous	Shetland	Blodoeks	2984m	Mari
Jurassic	Viking	Draupne	3103m	Claystone
Jurassic	Viking	Heather	3117m	Mari
Jurassic	Viking	Hugin	3126m	Sandstone
Jurassic	Viking	Sleipner	3280m	Sandstone/Siltstone
Jurassic	Viking	Skagerrak	3338m	Claystone

MUD:		Comments:						
Туре	Water / Oil Base	Weight	FV	PV	YP	Solids	Oil/Water Ratio	Temp
Environul OBM	OBM	1 40		29.00	10.50	15.30	73 5/26 5	40.00

The BHA was RIH and SHT at 934m with all tools working. Continued to RIH and washed down from 3053m and tagged top cement at 3087m as per plan. The plugs, float, shoe track and shoe were drilled out without any problems. The rathole was cleaned out and 2 meters new formation was drilled. The BHA was reamed through the shoe track several times with no indication of hanging up or tight spots. Then a successfull FIT to 1.60 sg was performed. Initially there was a problem demodulating the MVD signal and there was continued noise in the signal even after conditioning the mud. Drilled out 5m to get the PowerDrive short-hop signal clear of casing and then set the tool to Inclination Hold 24% right. The Traget inclination was 53.2 deg. The first 45m was drilled using limited parameters until the stabilizers/BHA cleared the shoe. These were 2-5 WOB, 10 ROP, 60 rpm, maximum 20 kdaN torque. When stabilizers were out of the casing shoe, RPM was increased gradually up to 140. ROP was controlled to 10 m/hr for cuttings collection with 2-6 ton WOB. The torque was more unstable using 120 RPM than RPM's below or above this. At 3220 m PDINCL was holding at 53.7 deg so nudged -0.50 deg to set target to 52.7 deg. Increased ROP limitation to 15 m/hr as per Statoil instructions from 3220 m. PD responded quickly and dropped to 53.2 deg (appears to be slight offset from BT_b target and actual PD inc). Increased ROP limitation to 28 m/hr as per Statoil instructions from 3270 m. At 3275 set PD to IH 0/0% setting as azimuth had turned to 104 deg, which is planned tangent azimuth. Azimuth kept turning until 107 deg before it stopped turning. At 3480m the washpipe started leaking and had to be replaced. After drilling resumed, at 3489m, PD was set to IH at reference 52.7 deg and 25% left turn to come back to planned azimuth of 104.53 deg. TD was set at 3520m MD and the well was circulated clean. Performed StethoScope pressure points according to geologist while washing out of open hole.

Parameter Sheet

BHA 1: 26" A1125M3436SP Motor

Client: Statoil Field: Volve Structure: 15/9-F-12 Well: 15/9-F-12 Borehole: 15/9-F-12

Directional Driller: Ronny Fossberg Directional Driller: Geir Bjørløw

Depth In: 251.0 Inclination In: 0.13 Azimuth In: 137.00

Depth Out: 1369.0 Inclination Out: 15.54 Azimuth Out: 249.52 Tot Distance: 1118.0m SLIDE: 857.0m

SLIDE: 857.0m 76.7 %
ROTATE: 261.0m 23.3 %

Bit Hrs: 34.24 Pump Hrs: ROP: Job #: 07SCA0021

BHA / Comments:

26" Insert Bit - 11 1/4" PDM 1.15 deg bend - 22 1/4" NM stab - 9" ARC - 9" PP MWD - 3 x 9 1/2" NMDC -

L																									
	1																								
Orienting	Md From	Md To	Course	TF	Flow	SPP On B	SPP Off B	RPM	Torq On B	Torq Off B	WOB	ROP	ROT Wt	P/U Wt	S/O Wt	ECD	Svy Md	Incl	Azmth	Svy Tvd	TF	DLS	BR	TR	Comments
Method	(m)	(m)	(m)	(°)	(lpm)	(bar)	(bar)	(rpm)	(kNm)	(kNm)	(1000 kgf)	(m/hr)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(sg)	(m)	(°)	(°)	(m)	(°)	(°/30m)	(°/30m)	(°/30m)	
																	242.74	0.13	137.00	242.74					Wash down to TOC at 257m
Rotate	251	289	38		3800	91	86	40	4	2	2	30				1.080									
Slide	310	310	0	M50	3680	90	86				0	50				1.130	311.15	0.26	88.83	311.15	88.83	0.09	0.06	-21.12	
Rotate	310	320	10		3680	89	87	40	4	2	1	60	108	110	106	1.176									
Slide	320	335	15	M40	3680	91	87				1	50				1.172									
Rotate	335	341	6		3680	92	87	40	4	2	2	50	109	113	109	1.146									
Slide	341	364	23	M30	3680	91	87				0-5	+-45					351.13	0.35	79.19	351.13	79.19	0.08	0.07	-7.23	Following the 8 1/2" Pilot hole. Unable to sidetrack as plan
Rotate	364	370	6		3680	90	87	40	5	2	3	50	110	113	109	1.084									Lost diff pressure some time
Slide	370	417	47	M30	3000	60	59		5	2	0-3	50				1.090	392.29	0.54	75.84	392.29	75.84	0.14	0.14		Lost diff pressure some time
Slide	417	456	39	M30	3000	68	60		5	2	3-5	50	110	115	108	1.100	432.64	2.27	26.32	432.62	26.32	1.46	1.29	-36.82	Good slide. Mange to sidetrack from ~420m. Formation?
Rotate	456	476	20		4503	135	129	40	6	2	3-5	37				1.100									
Slide	476	497	21	M47	3000	68-70	60			_	3-5	19				1.090	473.15	4.79	25.02	473.05	25.05	1.87	1.87	-0.94	
Rotate	497	512	15	455	4458	135	130	40	8	3	5-6	30				1.090									
Slide	512	525	13	45R	3478	88	80		7		5-6	13				1.100	512.07	7.53	28.00	511.75	28.00	2.13	2.11	2.27	
Rotate	525	550	25	LS	4505	137	130	40	/	3	6-7 10	26	114	117	110	1.090		= 0.4	0.4.50					4 70	
Slide	550 562	562 570	12 8	150L	4500 4500	140 142	129 129				10	35 40				1.099 1.102	553.45	7.94	34.53	552.75	68.00	0.70	0.30	4.73	
Slide	562 570	570 582	8 12	150L	4500 4500	142	129	70	9		9	40 50	445	440	444										
Rotate				1501				70	9	4		50 45	115	119	114	1.110	E04.44	F F0	22.04	E02.42	170.00	4.74	4 74	0.50	
Slide Rotate	582	602	20 11	150L	4500	144	130	70	10		10 9		110	100	444	1.108	594.11	5.58	33.81	593.12	-178.00	1.74	-1.74	-0.53	
Slide	602 613	613 620	7	140L	4500	143	130	70	10	4	9	50	116	122	114	1.116									
Slide	620	634	14	90L	4500	149	131					35				1.109									
Rotate	634	643	9	SOL	4500	150	131	70	13	4	14	48	117	125	115	1.114									
Slide	643	670	27	90L	4500	151	132	70	13	4	16	35	117	125	113	1.114									
Rotate	670	675	5	302	4500	150	132	70	13	4.5	14	50	118	125	115	1.108	672.48	6.10	349.45	671.15	-82.00	2.20	0.83	-22.00	
Slide	675	695	20	30L-130L	4500	143-152	132	70	10	4.0	8-16	50	110	120	110	1.116	072.40	0.10	040.40	07 1.10	02.00	2.20	0.00	22.00	
Slide	695	710	15	90L	4500	149	132				15	45				1.110									
Rotate	710	717	7	002	4500	151	132	70	13	5	15	45				1.108	714.23	6.77	323.10	712.65	-90.00	2.16	0.48	-19	
Slide	717	728	11	130L	4500	151	132			-	15	30						•							
Slide	728	739	11	90L	4500	153	132				16	35				1.111									
Rotate	739	745	6		4500	148	132	70	13	5	13	45	119	125	117	1.097									
Slide	745	772	27	120L-40L	4500	152	132				15	37					754.65	7.12	296.52	752.78	-97.09	2.38	0.26	-19.73	
Rotate	772	777	5		4500	149	133	70	13	5	14	45				1.104									
Slide	777	807	30	50L-20L	4500	147-154	133				13-17	45	120	128	118	1.088	794.73	10.77	281.94	792.37	-39.19	3.20	2.73	-10.91	
Rotate	807	812	5		4500	148	133	70	13	5	13-17	50				1.091									
Slide	812	837	25	110L-50L	4500	154	135				13-17	30	121	130	120	1.100	836.21	12.86	276.21	832.97	-32.13	1.73	1.51	-4.14	
Rotate	837	845	8		4542	153	135	70	13	5	13-17	40				1.088									
Slide	845	873	28	70L-40L	5011	189	170				13-17	35				1.090									
Slide	873	880	7	70L-450L	5011	189	170	70	13	5	16-17	40				1.060	875.13	16.24	267.05	870.64	-38.74	3.15	2.61	-7.06	
Slide	880	900	20	70L-45L	5010	185	170		13	5	16-17	22	125	130	121	1.087									Top Utsira approxinmately 887m
Slide	900	941	41	30L-HS	3337	110 - 82	82				0-17	200-44				1.140	917.39	13.76		911.46	-154.67	1.99	-1.76	-3.58	Dropped in Utsira
Slide	941	982	41	30L-HS	2977	92-82	80			6	0-17	12-80				1.150	957.61	13.33	260.23	950.56	-136.75		-0.32	-1.33	
Slide	982	1022	40	30L-HS	2981	93-80	80			7	0-15	74	125	136	121	1.160	998.18	15.73	267.99	989.84	42.85	2.28	1.77	5.74	Turned right in Utsira
Slide	1022	1063	41	30L-HS	2982	78	78				0-5	122	405	400		1.200	1036.88	15.09	271.67	1027.15	124.97	0.91	-0.50	2.85	Hole packed off after ECD peaking at 1.2 Circulate clean
Slide	1063	1075	12	30L-HS	3367	90	82				0-3	170	125	136	121	1.120	4070.40	40.50	070.40	4007.45	407.00	4.40	4.46	4.40	Dec. 18-ii
Slide	1075	1102	27	60L	5011	201	180	70	40		14	22-35	400	440	405	1.110	1078.16	13.50	270.12	1067.15	-167.22	1.19	-1.16	-1.13	Base Utsira approximately 1075m.
Rotate	1102	1108	6	901	E000	100	170	70	16	ď	12	24	128	140	125	1.082									Difficult cliding late of stringers 4409 4440 4442
Slide	1108 1113	1113 1115	5 2	80L	5000	188	176									1.075 1.072									Difficult sliding lots of stringers 1108,1110, 1113
Rotate Slide	1115	1142	27	50L												1.072	1110 11	44.07	250.76	1105.00	75.05	4.00	0.65	-7.78	Rotate to clear stringers
Rotate	1115	1142	5	SUL	5000	200	178	50	14.5	8	15	50				1.078	1118.11	14.37	259.76	1105.93	-75.85	1.98	0.65	-7.78	Sliding with varied results due to formation response
Slide	1147	1174	27	20L	4540	166	148	30	14.5	0	14	40				1.078	1156.95	17.02	252 24	1143.23	-30.22	2.07	2.74	E 04	Reduce flow to aid sliding response
Rotate	1174	1183	9	201	5000	194	178	50	15	8	14	45				1.087	1100.95	17.92	253.24	1143.23	-30.22	3.07	2.14	-5.04	reduce now to aid sliding response
Slide	1183	1200	17	20L	5000	193	179	50	15	U	13	45				1.085	1198.16	21.46	248.19	1182.06	-28.00	2.85	2.58	-3.67	Finish sliding for the section. Start tangent to TD
Rotate	1200	1239	39	201	5350	220	202	100	14	8.5	11	60	133	145	127	1.003	1238.84	18.15	254.98	1220.30	148.36	2.83	-2.44	5.01	MWD cont. incl. started to show decreasing incl. Check
Slide	1239	1278	39	30L	0000	220	202	100	1-7	0.0		00	100	140	121	1.090	1274.81	20.29	249.90	1254.27	-40.42	2.26	1.78	-4.24	WWW D Cont. Incl. statted to snow decreasing incl. Clieck
Rotate	1278	1289	11	JUL												1.088	1214.01	20.23	2-3.30	1204.21	70.42	2.20	1.70	7.24	
Slide	1289	1320	31	+- HS	4000		124									1.088	1314.50	16.18	250.56	1291.96	177.44	3.11	-3.11	0.50	
Slide	1320	1333	13	+- HS	3000	81	?									1.106		. 5 5		500				2.00	Sliding with varied results due to formation response
Slide	1333	1349	16	40L-HS	4008	145	136				11	25				1.120	1344.74	15.54	249.52	1321.05	-156.55	0.69	-0.63	-1.03	Bottom skade 1350m
Rotate	1349	1350	1		5011	193	186	40	13	9	9	15	139	149	127	1.090		. 5.0 7	0.02	00	0.00	2.50	2.00		Rotate to clear stringers
Slide	1350	1369	19	20L-HS	5011	192	186			•	10	17				1.080									Good slide. TD@1369 mMD

Parameter Sheet

STATOIL

BHA 1: 26" A1125M3436SP Motor

Well: 15/9-F-12 Borehole: 15/9-F-12

76.7 %

Client: Statoil Field: Volve Structure: 15/9-F-12 Depth Out: 1369.0

Inclination Out: 15.54

Bit Hrs: 34.24

Pump Hrs:

ROP:

Job #: 07SCA0021

Directional Driller: Ronny Fossberg

Directional Driller: Geir Bjørløw

Depth In: 251.0 Inclination In: 0.13 Azimuth In: 137.00

Azimuth Out: 249.52 **ROTATE**: 261.0m 23.3 %

Tot Distance: 1118.0m

SLIDE: 857.0m

26" Insert Bit - 11 1/4" PDM 1.15 deg bend - 22 1/4" NM stab - 9" ARC - 9" PP MWD - 3 x 9 1/2" NMDC -BHA / Comments:

Orienting	Md From	Md To	Course	TF	Flow	SPP On B	SPP Off B	RPM	Torq On B	Torq Off B	WOB	ROP	ROT Wt	P/U Wt	S/O Wt	ECD	Svy Md	Incl	Azmth	Svy Tvd	TF	DLS	BR	TR	Comments
Method	(m)	(m)	(m)	(°)	(lpm)	(bar)	(bar)	(rpm)	(kNm)	(kNm)	(1000 kgf)	(m/hr)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(sg)	(m)	(°)	(°)	(m)	(°)	(°/30m)	(°/30m)	(°/30m)	

Slide Sheet

BHA: 17 1/2" PowerDrive X5

Well: 15/9-F-12 Borehole: 15/9-F-12 Directional Driller: **Directional Driller:** Christian Gjedebo

STATOIL

Directional Driller:

Stig Johansen

Client: Statoil ASA Field: Volve Structure: 15/9-F-12

Depth In: 1369 Depth Out: 2513 Tot Distance: 1144 Inclination In: 15.54 Inclination Out: 17.21 SLIDE: 0m % SLID 0.0 Azimuth In: 249.52 Azimuth Out: 135.97 ROTATE: 1144 % ROT 100.0

BHA # 5: 17 1/2" Bit-PD1100X5-17 5/16" NM Control Stab-NM Flexjoint-8 1/4" V825R-8 1/4" ISONIC-8 1/4" -12" NM InLine Stab-MWD--8 1/4" ADN- 2 x 8"NMDC

	Mwt:1.35sg Performadrill	
Orienting		

Rotate

	Mwt:1.35sg Per	ormadrill																						
Orienting Method	Md From (m)	Md To (m)	Course (m)	Toolface (°)	Power %	Flow (L/min)	SPP On Bot (bar)	RPM (c/min)	Torque off Btm (kN.m)	Torque on Btm (kN.m)	WOB (1000 kgf)	Inp ROP (m/h)	Rot Weight (1000 kgf)	Up Weight (1000 kgf)	Down Weight (1000 kgf)	ECD (s.g.)	Svy Md (m)	Incl (°)	Azmth (°)	DLS (° / 30 m)	BUR (° / 30 m)	TUR (° / 30 m)	T/F Deg	Comments
				_	_																			
Rotate	1317	1330	13	0	0	4000	130	50-90	14	14-20	1-5	1-10	134	150	122									TOC 1317m
Rotate	1330	1367	37	0	0	4000	130	50-90	14	15-17	1-3	12-10												Float @ 1330m
Rotate	1367	1372	5	0	0	4000	130	70	14	15	0-1	10												Shoe @1357m
Rotate	1372	1380	8	342	75	4545	234	120	9	12	3	10												
Rotate	1380	1422	42	342	75	4545	236	120	9	15	2-4	40					1393.63	16.99	246.96	0.99	0.89	-1.57	-27.55	
																	1407.32	17.83	245.60	2.05	1.84	-2.97	-26.50	
Rotate	1422	1430	8	342	100	4554	233	130	9	18-19	6-7	41												Cuttings sytem down
Rotate	1430	1440	10	342	100	4554	240	130	12	15-16	2-4	20												Hold Back ROP
Rotate	1440	1450	10	342	100	4544	237	130	12	17	2-4	25												
Rotate	1450	1467	17	342	100	4544	239	130	12	17	4-5	30												
Rotate	1467	1475	8	342	100	4544	239																	
Rotate	1475	1513	38	25R	IH	4544	240	180	14	19	4	50				1.374	1446.77	21.46	241.13	2.99	2.76	-3.4	-24.61	
Rotate	1513	1546	33	54	75	4545	240	180	15	20	4	50	136	150	124		1485.49	22.31	238.98	0.91	0.66	-1.67	-44.32	
Rotate	1546	1596	50	54	75	4550		180				25	136	156	119	1.377								Pump 1 leaking pumps 2&3 @ 200spm
Rotate	1596	1636	40	324	50		238	180		20-25	4-5	35	138	160	121		1525.76	20.46	242.79	1.72	-1.38	2.84	144.86	
Rotate	1636	1676	40	0	25	4457	238	179		20	4.5	45					1568.16	21.47	250.59	2.1	0.71	5.52	73.78	Set PD to 0/25%
																	1608.09	22.43	254.31	1.27	0.72	2.79	57.11	
Rotate	1676	1690	14	0	25	4455	238.6	180		20	5.4	45					1648.42	23.37	253.44	0.74	0.70	0.65	-20.11	
Rotate	1690	1700	10	0	25	4455	235.8	182		21	6	42				1.810	1689.09	23.69	253.02	0.27	0.24	0.31	-27.85	
Rotate	1700	1710	10	0	25	4455	234.4	176		20	5.6	42												
Rotate	1710	1750	40	0	25	4455	240	180		18-20	5-6	50					1728.49	23.77	253.50	0.16	0.06	0.37	67.72	
Rotate	1750	1790	40	0	25	4455	240	180	15	20	6-7	50	142	167	127	1.374	1770.63	23.62	253.27	0.17	-0.11	-0.16	-148.46	
Rotate	1790	1820	30	0	25	4455	244	180		22	5.5	48					1810.08	23.39	252.75	0.24	-0.17	-0.40	-138.20	
Rotate	1820	1830	10	0	25	4455	246	180		22	5	52					1010.00	20.00	202.10	0.24	0.11	0.40	100.20	Pump 2 down, only 1 pump up, off btm
Rotate	1830	1860	30	0	25	4458	244	180		21	5	49	144	168	136	1.375	1850.66	23.31	252.9	0.07	-0.06	0.11	143.45	r ump 2 down, only 1 pump up, on bum
Rotate	1860	1875	15	0	25	4457	248	180		22	4	47		100	100	1.010	1000.00	20.01	202.0	0.01	0.00	0.11	110.10	
Rotate	1875	1918	43	Ü		1101	2.0	100			•						1891.56	23.54	253.34	0.21	0.17	0.32	37.46	
Detete	4040	1050	41	0	25	4400	OE0	100		19	6	50	147	470	120	1 270	1022.20	22.60	252.04	0.45	0.04	0.27	70.50	Danais TDC
Rotate Rotate	1918 1959	1959 1969	10	0	25 25	4400 4450	253 252	180 180		22	5	50 50	147	172	130	1.370	1932.20	23.60	253.84	0.15	0.04	0.37	73.52	Repair TDS
Rotate	1969	1985	16	180	100	4454	252	180		22	5	50					1970.3	22.92	254.39	0.56	-0.54	0.43	162.54	
Rotate	1985	1998	13	198	75	4454	253	180		22	5	50					1970.3	22.32	204.00	0.50	-0.54	0.43	102.34	
Rotate	1998	2022	24	210	75 75	4455	253	180		22	2	10					2011.03	20.07	251.86	2.21	-2.10	-1.86	-163.15	
riotate																	2011.00	20.01	201.00	2.21	2.10	1.00	100.10	
Rotate	2022	2040	18	216	100	4455	253	180		20	5	40												
Rotate	2040	2086	46	180	100	4456	254	180		22	5	40				1.380	2051.07	17.43	248.19	2.17	-1.98	-2.75	-157.65	
Rotate	2086	2120	34	192	100	4455	256	180		20	4.6	40				1.380	2091.5	14.36	246.64	2.3	2.28	-1.15	-172.87	
Rotate	2120	2160	40	204	100	4455	258	180		20	6	35				1.380	2132.11	11.5	243.38	2.18	-137.81	-2.11	-167.28	
Rotate	2160	2201	41	252	100	4455		180		20						1.380	2172.8	9.85	233.9	1.77	-110.06	-1.22	-137.81	Stringers limiting ROP
Rotate	2201	2241	40	252	100	4455	264	180		20	9	36				1.370	2213.41	9.25	215.05	2.34	-102.34	-0.44	-110.06	
Rotate	2241	2281	40	270	100	4455	263	180		20	10	39				1.370	2253.1	9.12	194.63	2.45	-82.72	-0.1	-102.34	
Rotate	2281	2321	40	288	100	4455	262	180		20	15	38				1.370	2292.61	10.02	176.30	2.40	-60.26	0.68	-82.72	
Rotate	2321	2361	40	306	75	4455	266	180		20	13	17				1.373	2333.71	11.11	160.73	2.22	0.8	-11.36	-76.88	
Rotate	2361	2381	20	306	75	4454	271	180		23	14	13				1.010	2000.11		100.10		0.0	11.00	10.00	
D-4-4	0004	0005	44	000	75	4450	070	405		00	40	5.40				4.070	0070.01	40.71	454.40	4.05	4.07	7.00	54.00	
Rotate	2381	2395	14	306	75 75	4450	272	185		23	19	5-10	400	407	444	1.372	2372.24	12.74	151.46	1.95	1.27	-7.22	-54.20	DOD Olessed desse
Rotate	2395	2410	15	306	75	4478	277	180		23	14	5-7	162	187	144		0440.04	45.00	440.00	0.10	4.00	0.04	40.07	ROP Slowed down
Rotate	2410	2420	10	306 306	85 85	4477 4451	276	180		23 23	18	7 9					2412.61	15.33	142.93	2.46	1.92	-6.34	-42.81	Drill Break@2430m
Rotate	2420 2435	2435 2485	15 50	306	85 85	4451 4451	277 280	180 180		23 24	18	9					2454.34	17 24	135.97	1.95	1.35	-5.00		
Rotate	2400	2400	50	300	00	4401	200	100		24							2404.04	17.21	155.57	1.50	1.33	-5.00		
Rotate	2485	2490	5	306	85	4434	287	180		23	8	10	163											
Rotate	2490	2500	10	288	100	4434	282	180		24	15	4												
Rotate	2500																							
Rotate																								

Q3H Slidesheet 17.5in.xls Page 1

Orienting									Torque off	Torque on														
Method	Md From	Md To	Course	Toolface	Power	Flow	SPP On Bot	RPM	Btm	Btm	WOB	Inp ROP	Rot Weight	Up Weight	Down Weight	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
	(m)	(m)	(m)	(°)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(m/h)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(°)	(°)	(° / 30 m)	(° / 30 m)	(° / 30 m)	Deg	

Rotate Rotate Rotate Rotate

Rotate

Q3H Slidesheet 17.5in.xls Page 2

Slide Sheet

BHA: 17 1/2" PowerDrive X5

STATOIL

Well: 15/9-F-12 Directional Driller: David Collier
Borehole: 15/9-F-12 Directional Driller: Stig Johansen

Field: Volve Structure: 15/9-F-12

 Depth In: 2513
 Depth Out: 2572.5
 Tot Distance: 59.5

 clination In: 17.21
 Inclination Out: 20.86
 SLIDE: 0m

 Inclination In: 17.21
 Inclination Out: 20.86
 SLIDE:
 0m
 % SLID
 0.0

 Azimuth In: 135.97
 Azimuth Out: 125.56
 ROTATE:
 59.5
 % ROT
 100.0

BHA # 6: 17 1/2" Bit-PD1100X5-17 5/16" NM Control Stab-NM Flexjoint-8 1/4" V825R-8 1/4" ISONIC-8 1/4" -12" NM InLine Stab-MWD--8 1/4" ADN- 2 x 8"NMDC

Mwt:1.35sg Performadrill

Orienting Method	Md From (m)	Md To (m)	Course (m)	Toolface (°)		Flow (L/min)	SPP On Bot (bar)	RPM	Torque off Btm (kN.m)	Torque on Btm (kN.m)	WOB (1000 kgf)	Inp ROP (m/h)		Up Weight (1000 kgf)	Down Weight (1000 kgf)	ECD (s.g.)	Svy Md (m)	Incl (°)	Azmth (°)		BUR (° / 30 m)	TUR (° / 30 m)	T/F Deg	Comments
Rotate	2513	2572.5	59.5	288	100	4463	286	180		24	18	4	165	191	150	1.372	2536.07	20.86	125.56	2447.53	1.13	-2.81		TD 17 1/2in Section

Orienting									Torque off	Torque on														
Method	Md From	Md To	Course	Toolface	Power	Flow	SPP On Bot	RPM	Btm	Btm	WOB	Inp ROP	Rot Weight	Up Weight	Down Weight	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
	(m)	(m)	(m)	(°)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(m/h)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(°)	(°)	(° / 30 m)	(° / 30 m)	(° / 30 m)	Deg	

Rotate Rotate Rotate Rotate

Rotate

Q3H Slidesheet 17.5in.xls Page 2

Slide Sheet

BHA: 12 1/4" PowerDrive X5

STATOIL

Client: Statoil ASA Field: Volve Well: 15/9-F-12 Borehole: 15/9-F-12

Structure: 15/9-F-12

Depth In: 2572 Inclination In: 20.86 Azimuth In: 125.56

Depth Out: 3114 Tot Distance: 542 Inclination Out: 54.36 SLIDE: Azimuth Out: 97.21

0m % SLID 0.0 ROTATE: 542 % ROT 100.0

Directional Driller: Directional Driller: Stig Johansen **Directional Driller:** Åge Fjerstad

BHA # 9: 12 1/4" Bit - PD900X5 - 12 1/16" NM Control Stab - NM Flexjoint - 8 1/4" ISONIC-8 1/4" - 8 1/4" Stethoscope12" NM InLine Stab-MWD- 8 1/4" ARC - 8 1/4" ADN - 2 x 8"NMDC

Mwt:1.35sg Performadrill

Orienting									Torque off	Torque on														
Method	Md From	Md To	Course	Toolface	Power	Flow	SPP On Bot	RPM	Btm	Btm	WOB	Inp ROP	Rot Weight	Up Weight	Down Weight	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
	(m)	(m)	(m)	(°)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(m/h)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(°)	(°)	(° / 30 m)		(° / 30 m)	Deg	Comments
	(,	(,	()	\ /	,,	(=/)	(2011)	(6,11111)	(1.1.1.1.)	(1.11)	(1000 kg./	()	(1000 kg.)	(1000 kg./	(1000 119.)	(0.9.)	\···/	()	/	(, 00,	(, 66)	(/ 00)	209	1
Rotate	2572.5	2576	3.5	0	0	3342	202	140	27	34	5	17	158	180	145	1.390								
Rotate	2576	2610	34	324	60	3338	194	180	27	30	3	20	160	192	141	1.368	2576.99	22.00	125.92	0.84	0.84	0.26	6.75	
Rotate	2610	2650	40	324	60	3270	196	180	27	32	2	20	157	180	145	1.369	2617.92	26.64	124.65	3.42	3.40	-0.93	-7.01	29 deg offset
Rotate	2650	2690	40	288	50	3269	198	140	27	31	4	26				1.375	2658.30	30.86	121.61	3.32	3.14	-2.26	-20.45	
Rotate	2690	2710	20	288	50	3270	200	140	27	34	8	13	162	190	145	1.375	2699.07	33.41	117.41	2.49	1.88	-3.09	-43.02	29 deg offset, Top Ekofisk @ 2695m
Rotate	2710	2731	21	288	50	3270	200	150	28	36	7	10				1.373								
Rotate	2731	2740	9	288	50	3560	230	150	28	34	7	10	163	184	143	1.375	2738.83	36.82	115.77	2.67	2.57	-1.24	-16.14	56 deg offset
Rotate	2740	2770	30	306	80	3426	208	150	28	34	7	8	163	193	145	1.381								, and the second
Rotate	2770	2790	20	294	70	3492	224	150	28	35	9	7				1.383	2279.26	41.55	113.83	3.63	3.51	-1.44	-15.29	39 deg offset
Rotate	2790	2811	21	282	70	3492	225	150	28	32	8	7	163	193	145	1.381								
Rotate	2811	2852	41	270	70	3559	231	150	28	33	8	6	165	197	145	1.381	2820.02	45.63	112.36	3.09	3.00	-1.08	-14.49	
Rotate	2852	2862	10	270	70	3565	230	150	28	34	10	6				1.381	2860.02	49.50	108.88	3.48	2.90	-2.61	-34.76	55 deg offset
Rotate	2862	2892	30	234	80	3565	229	150	28	34	9	9				1.384								
Rotate	2892	2920	28	234	70	3565	231	150	28	36	8	10				1.387	2900.45	52.08	104.36	3.23	1.91	-3.35	-55.07	71 deg offset
Rotate	2920	2933	13	IH	IH	3565	232	150	28	33	8	10												
Rotate	2933	2960	27	IH	IH	3560	235	150	28	33	8	10					2939.72	53.78	102.53	1.71	1.30	-1.40	-41.21	Demodulation problems.
Rotate	2960	2966	6	IH	IH	3404	215	150	24	23	9	3												Drill with reduced flow due to signal problem
Rotate	2966	2973	7	IH	IH	3427	216	150	24	25-40	9	1-5				1.390								
Rotate	2973	3010	37	IH	IH	3543	233	140	23	28-37	8-9	1-5				1.393	2980.29	54.65	103.04	0.71	0.64	0.38	25.58	Increase mudweight from 2966m up to 1.38
Rotate	3010	3013	3	IH/ Nudge down	IH	3543	235	140	24	28-37	8-9	1-5				1.393	3008.61	55.25	103.40	0.71	0.64	0.38	26.26	
Rotate	3013	3053	40	IH	IH	3543	237	140	23	23-39	9 -11	2-12				1.418								Increase mudweight to 1.40sg
Rotate	3053	3068	15	IH	IH	3546	243	140	24	30-38	9	6				1.412	3060.63	54.85	99.95	1.65	-0.23	-1.99	-99.04	
Rotate	3068	3093	25	IH/ Nudge down	IH	3542	233	140	24	23-33	9	3-6				1.416	3081.25	54.36	97.21	3.33	-0.71	-3.99	-103.16	
Rotate	3093	3106	13	IH	IH	3543	235	140	23	26-35	8-9	9-10				1.423								
Rotate	3106	3114	8	IH / 25% R	IH	3543	235	140	24	26-35	8	10				1.421								

Orienting Method	Md From	Md To	Course	Toolface	Power	Flow	SPP On Bot	RPM	Btm	Torque on Btm	WOB	Rot Weight	Up Weight	Down Weight	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
	(m)	(m)	(m)	(°)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(°)			(° / 30 m)		Deg	

Rotate

Rotate Rotate

Rotate

Rotate Rotate

Q3H Slidesheet 17.5in.xls Page 2

Slide Sheet BHA: 12 1/4" PowerDrive X5

STATOIL

 Client: Statoil ASA
 Well: 15/9-F-12
 Directional Driller:
 Ryan Kelly

 Field: Volve
 Borehole: 15/9-F-12
 Directional Driller:
 Åge Fjerslad

Structure: 15/9-F-12

 Depth In: 3114
 Depth Out:
 3520
 Tot Distance:
 406

 Inclination In: 54.36
 Inclination Out:
 52.73
 SLIDE:
 0m
 % SLID
 0.0

 Azimuth In: 97.21
 Azimuth Out:
 105.59
 ROTATE:
 406
 ROT
 100.0

BHA # 10: 8 1/2" Bit - PD675X5 - 8 3/16" NM Control Stab - NM Flexjoint - EcoScope675 - TeleScope675 MWD - Stethoscope675 - ISONIC - 8 3/8" NM Stab - 2 x 5"NMDC

Mwt:1.40sg Performadrill

								Torque off	Torque on														
Orienting Method Md From Md 7			Toolface	Daa.	Flow	SPP On Bot	DDM	Btm	Btm	WOB	Inp ROP	Dat Walaht	IIm Walmba	Danus Walashi	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
Metriod Md From Md	110 00	ourse	Tooliace	Power										Down Weight		Svy Ivia	INCI	AZIIIIII					Comments
(m) (m	m) ((m)	(-)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(m/h)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(-)	(-)			(° / 30 m)	Deg	
																3081.25	54.36	97.21	3.33	-0.71	-3.99	-103.16	Tie in point 3081.25 (12 1/4" MWD)
Rotate 3086.0 3113	13.5 2	7.5	0	0	2000	173	50-60	14	13-18	0-4	15-20		167	135	1.445								Tag float at 3086m 05:05, Drilled Shoe at 3113.5 08:30
Rotate 3113.5 3116	16.0	2.5	0	0	2000	171	60	14	16	2	15												Drill 2 m new formation (3114-3116) and take FIT
Rotate 3116.0 3120	20.0	4.0	0	0	2220	217	60	13	15-18	2-3	15												
Rotate 3120.0 3159	59.0 3	9.0	IH - 25%R	IH	2220	215	60	13	15-20	3-5	2-8				1.451	3136.60	53.70	95.71	0.75	-0.36	-0.81	-118.97	SET PD to IH/25%R, BT_b = 1064 / 53.20deg target inc
Rotate 3159.0 3167	67.0	8.0	IH - 25%R	IH	2230	203	100	13	19-20	5	10	145	166	134	1.455								Hold ROP to 10m/hr per Statoil instruction for 3m sample catching
Rotate 3167.0 3181		4.0	IH - 25%R	ΪΗ	2230	203	110	13	19-20	5	10				1.455	3172.51	53.76	98.14	1.64	0.05	2.03	88.96	
Rotate 3181.0 3188	88.0	7.0	IH - 25%R	IH	2227	201	120	16	16-21	5	10				1.454								
Rotate 3188.0 3199		1.0	IH - 25%R	ΪΗ	2227	202	130	17	19-20	5	10	145	166	134	1.456								
Rotate 3199.0 3222		23.0	IH - 25%R	ΪΗ	2227	202	140	17	20	4-5	10				1.450	3216.39	53.72	101.30	1.74	-0.03	2.16	91.88	Increse ROP limit to 15m/hr per Statoil instruction
Rotate 3222.0 3240		8.0	IH - 25%R	-0.5 nudge	2225	202	141	17	19-21	3-5	15				1.457	0210.00	00.72	101.00		0.00	20	01.00	SET PD to Nudge -0.50, BT b = 1054 / 52.70deg target inc
Rotate 3240.0 3276		86.0	IH - 25%R	IH	2225	202	141	17	19-21	3-5	15	147	166	134	1.456	3257.05	53.20	103.39	1.30	-0.80	1.54	108.00	Increse ROP limit to 28 m/hr as per Statoil instruction
Rotate 3276.0 3279		3.0	III 257011	iH	2227	202	140	17	20-23	5-7	28	141	100	104	1.465	0201.00	00.20	100.00	1.00	0.00	1.04	100.00	SET PD to IH 0/0%, BT_b = 1054 / 52.70deg target inc
Rotate 3279.0 3279		1.0	IH	IH	2226	202	140	18	21-24	2-5	28				1.469	3297.38	53.67	105.77	1.46	0.35	1.77	77.00	3E1 FD to In 0/0 /6, B1_D = 1034 / 32.70deg target inc
								10								3291.30	33.07	105.77	1.40	0.33	1.77	11.00	
Rotate 3320.0 3361		1.0	IH.	IH	2227	205	140		22-24	2-6	28				1.469								
Rotate 3361.0 3401		0.0	IH	IH	2227	206	140		22-24	4-8	28	150	175	134	1.473	3375.41	52.87	106.59	0.29	-0.07	-0.35	-104.51	
Rotate 3401.0 3441	41.0 4	0.0	IH	IH	2227	207	140		20-22	3-7	28				1.470	3416.55	53.00	107.02	0.27	0.09	0.31	69.38	
Rotate 3441.0 3481	81.0 4	0.0	IH	IH	2227	206	140		20-22	3-7	28				1.469	3456.15	52.83	106.74	0.21	-0.13	-0.21	-127.36	Repair washpipe
Rotate 3481.0 3489	89.0	8.0	IH	IH	2227	210	140		20-22	3-7	28	154	180	135	1.468								SET PD to IH/25%L, BT_b = 1054 / 52.70deg target inc
Rotate 3489.0 3520	20.0 3	31.0	IH - 25%L	IH	2227	209	140		20-23	3-7	28				1.474	3495.52	52.73	105.59	0.70	-0.08	-0.88	-96.58	TD at 3520m

0	rienting									Torque off	Torque on														
- 1	Method	Md From	Md To	Course	Toolface	Power	Flow	SPP On Bot	RPM	Btm	Btm	WOB	Inp ROP	Rot Weight	Up Weight	Down Weight	ECD	Svy Md	Incl	Azmth	DLS	BUR	TUR	T/F	Comments
		(m)	(m)	(m)	(°)	%	(L/min)	(bar)	(c/min)	(kN.m)	(kN.m)	(1000 kgf)	(m/h)	(1000 kgf)	(1000 kgf)	(1000 kgf)	(s.g.)	(m)	(°)	(°)	(° / 30 m)	(° / 30 m)	(° / 30 m)	Deg	

Rotate

Rotate

Rotate Rotate Rotate

Rotate

Q3H Slidesheet 17.5in.xls Page 2

STATOIL - VOLVE PROJECT

BIT RECORD

WELL: 15/9-F-12

Job nr: 07SCA0021

			BIT	INFORMATION			N	ИD		тот	AL				DU	LL CO	NDITIO	ON			
Bit No.	BHA No.	Size	Make	Туре	Ser. No.	Jets / TFA	In	Out	m	Bit hrs	ROP	Pmp hrs	IR	OR	D	L	В	G	0	R	Comments
1	4	26"	Smith	MG04BC	MY8397	2x22,1x18, 1x20	251	1369	1118	34.24	32.7	97.0	1	1	WT	A	E	IN	NO	TD	TD 26" Section
5	5	17.5"	Hycalog	RSX616M	215765	5x15, 3x16	1369	2513	1144	53.8	21.3	141.9	4	4	BT	A	X	IN	CT	PR	Due to low PR,POOH to change bit
6	6	17.5"	Smith	135 / MGGH+C	MZ0185	3x22, 1x20	2513	2573	59.5	11.6	5.1	28.3	1	1	WT	A	Е	IN	WT	TD	TD 17 1/2" Section
7	7	12.25"	Hycalog	M422	RSR616M-A12	3x16, 3x15	2573	2573	0	0	0.0	0.0	0	0	No	A	X	IN	NO	DSF	Unknown leak in drillstring/BHA
7rr1	8	12.25"	Hycalog	M422	RSR616M-A12	3x16, 3x15	2573	2573	0	0	0.0	0.0	0	0	No	A	X	IN	NO	DSF	Leaking Energizer in BHA determined
7rr2	9	12.25"	Hycalog	M422	RSR616M-A12	3x16, 3x15	2573	3114	541	96.6	5.6	138.1	1	1	CT	A	X	IN	WT	TD	TD 12 1/4" Section
8	10	8 1/2"	Smith	M222	MDI616LPX	6x12, 0.663	3114	3520	406	30.06	13.5										TD 8 1/2" Section
					·				•			•									·

15/9-F-12 MWD RECORD (MWD Runs 1-)

HOLE SIZE		12.25" 1	5/9-F-12	12.25" 1	5/9-F-12	12.25" 1	5/9-F-12	8.5" 15	5/9-F-12
MWD I	RUN #	7	7	8		9)	1	0
BHA #	LWD RUN #	7	7	8	8	9	9	10	10
DRILLING PARAM	ETERS			. '					
DEPTH IN (m)	DEPTH OUT (m)	2572.50	2572.50	2572.50	2572.50	2572.50	3114.00	3114.00	3520.00
DATE IN	DATE OUT	7-Aug-07	8-Aug-07	N/A	N/A	10-Aug-07	18-Aug-07	18-Aug-07	24-Aug-07
DRILLING HOURS	PUMP HOURS	0.00	0.50	0.00	1.00	96.62	138.10	30.10	56.30
ROP (m/hr)	WOB (kkg)	0.00	0.00	0.00	0.00	5.35	6.50	13.50	6.50
RPM (surface/total)	TORQUE (kNm)	0.00	0.00	0.00	0.00	137.00	29.01	137.00	29.01
FLOW (lpm)	PRESSURE (bar)	0.00	0.00	0.00	0.00	3462.00	214.00	2215.00	214.00
BIT MAKE	BIT TYPE	Hycalog	PDC	Hycalog	PDC	Hycalog	PDC	Smith	PDC
MOTOR MAKE	MOTOR TYPE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SURVEY PARAME	TERS								
INCL START	INCL FINAL	20.86	20.86	20.86	20.86	20.86	54.00	53.70	52.73
AZIM START	AZIM FINAL	125.56	125.56	125.56	125.56	125.56	93.00	95.71	105.59
MWD OPERATION	AL PARAMETERS								
COLLAR #	TOOL#	133	72	133	72	133	72	FN15	95
Stethoscope	ADN	AD83	051	AD49	051	AD49	051	AC34	N/A
CDR/ARC/EcoScope	ISONIC/GVR	1536	42780	1536	42780	709	FJ01	816	34640
TURBINE RANGE (gpr	n)	800-	1450	800-1	450	800-	1450	400-	-800
Tur RPM @ lpm	Bit - D&I (m)	3464 @ 4000	30.54	N/A	30.74	3164 @ 2240	30.67	3164 @ 2240	20.23
Bit - Res. (m)	Bit - Gamma (m)	37.04	37.09	37.24	37.29	37.17	2.24/37.22	13.58	10.53/20.23
Bit - DT (m)	Bit - APWD (m)	13.82	36.33	13.80	36.53	13.73	36.46	39.61	10.70
Bit - Porosity (m)	Bit - Density (m)	45.17	44.22	45.37	44.42	45.28	44.33	14.02	11.79
	INDIVIDUAL SENSOR PER	FORMANCE	S	. '					
	SENSOR	OP HOURS	METERS	OP HOURS	METERS	OP HOURS	METERS	OP HOURS	METERS
	TRANSMISSION	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	INCLINATION	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	AZIMUTH	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	DWOB	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	DTORQ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Ann Press & Temp	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	MWD Gamma Ray	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	CDR/ARC/ImPulse (RT)	0.50	0.00	1.00	0.00	138.10	541.50	N/A	N/A
	CDR/ARC/ImPulse (MEMORY)	N/A	N/A	N/A	N/A	186.30	541.50	N/A	N/A
	ADN /Eco (RT)	0.50	0.00	1.00	0.00	138.10	541.50	56.30	406.00
	ADN (MEMORY)	N/A	N/A	N/A	N/A	186.30	541.50	N/A	N/A
	SON (RT)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	SON (MEMORY)	N/A	N/A	N/A	N/A	186.30	541.50		

TOOL CONFIGURATION

Schlumberger

Rig: Hole Size: Maersk Inspirer

36", 8.5" pilot, 26", 17.5",12.25"and 8.5"

Job Type: D&I, VisionR, VDN, ISONIC, StethoScope, EcoScope

WELL NUMBER : 15/9-F-12 FIRST RUN DATE : 9th June 2007

LAST RUN DATE 26th Aug 2007 MUD TYPE : Seawater (1,3), WaterBased Mud (GEM) (2), OBM (9,10)

RUN	BHA	MWD	VisionR	RAB	ADN	ISONIC	TST	MWD Flowrate	CDR/VisionR	ADN Flowrate	Bit-Survey	Bit-GR	Bit-RES	Bit-Poros	Bit-Dens	Bit-Pressure	Bitrate	Comments
		PP	CDR		CDN			PowerPulse	Flowrate									
NO	NO	YES	NO	NO	YES	NO	NO	lpm	lpm	lpm	m	m	m	m	m	m	bps	
1	1	VB-01		-	-	-	-	3028-5489	-	-	13.42	12.77		-	-	-	6	36in. Section, POOHdue to TD
2	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26in. Drill out
3	3	BB-42651	1176	-	AD02		-	1514-3028	3028	3028	13.71	4.74	4.69	30.25	29.04	3.98	6	8.5in. Pilot hole, POOH due to TD
4	4	VA-97	0401	-	-		-	3028-5489	5300	-	23.65	16.35	16.30	-	-	15.59	6	26in. Section, POOHdue to TD
5	5	FU86	2704	-	FF09	FJ01	-	3028-5489	5292	6056	27.12	12.06	12.01	36.085	35.14	11.3	6	17.5in Section, POOH @ 2513mMD due to low ROP
6	6	FU87	1536	-	051	42780	-	3028-5490	5292	6056	27.22	12.02	11.97	36.19	35.24	11.26	6	17.5in Section, POOH due to TD @2572mMD
7	7	133	1536	-	051	42780	AD83	3028-5491	5292	6056	30.54	37.09	37.04	45.17	44.22	36.33	6	12.25in Section,POOH due to loss of standpipe pressure
8	8	133	1536	-	051	42780	AD49	3028-5491	5292	6056	30.74	37.29	37.24	45.37	44.42	36.53	6	12.25in Section,POOH due to washout detection
9	9	133	709	-	051	FJ01	AD49	3028-5491	5292	6056	30.74	37.29	37.24	45.37	44.42	36.53	6/3	12.25in Section,drill to TD
10	10			-	-												6	8.5in Section,drill to TD

TOOL PERFORMANCE

RUN	BHA	CIRC	TRAN	D&I	GR	GR	RES	RES	ECD	ECD	Density	Density	Porosity	Porosity	FPWD	FPWD	LOGGED Comments.
NO	NO	HRS	HRS	HRS	HRS	Lost(m)	HRS	Lost(m)	HRS	Lost(m)	HRS	Lost(m)	HRS	Lost(m)	HRS	Lost(m)	(m)
1	1	20	20	20	20	0	20	0	0	0	-	-	-	-	-	-	113.0 D&I
2	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
3	3	90.8	91.0	91.0	91.0	0	91.0	0	91.0	0	91.0	•	91.0	-	-	-	1095.0 D&I, Vision, ADN, ISONIC
4	4	97.0	97.0			0	97.0	0	97.0	0	-	-	-		-	-	1118.0 D&I, Vision
5	5	141.4	141.4	141.4	141.4	10	141.4	10	141.4	0	141.4		141.4				1144.0 D&I, Vision, ADN, ISONIC
6	6	28.3	28.3	28.3	28.3	0	28.3	0	23.0	0	23.0	0	23.0	0	N/A	N/A	59.8 D&I, Vision, ADN, ISONIC
7	7	0.5	0.5	0.5	0.5	0	0.5	0	0.5	0	0.5	0	0.5	0	0.5	0	0.0 D&I, Vision Services, ISONIC, StethoScope
8	8	1.0	1.0	1.0	1.0	0	1.0	0	1.0	0	1.0	0	1.0	0	1.0	0	0.0 D&I, Vision Services, ISONIC, StethoScope
9	9	138.1	138.1	138.1	138.1	0	138.1	0	138.1	0	138.1	0	138.1	0	138.1	0	541.5 D&I, Vision Services, ISONIC, StethoScope
10	10					0		0		0		0		0		0	406.0 D&I, Vision Services, ISONIC, StethoScope

Equivalent Static Density Calculations

NUMBERS in blue is calculated automatically.

Well Name		15/9-18-A												
Hole Size		8.5 in. Pilot hole _MWD run 02												
ARC Pressure Offset	0	bar		Depth	FIT/LOT									
APWD Bit to Sensor Distance	3.98	m												
Elevation Hydraulic Head	1.87	m												

m					RAW VALUES FROM HSPM						CALCULATED VALUES (bar)						sq								
Date	Time	Hole Depth	Bit Depth	Sensor Depth	Sensor TVD	Sensor TVD - EHH	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	ESD	ESD _{min}	ESD _{max}	MW	ECD	FIT/LOT	degC ATMP
25-Jun-07	11:14	294.54	294.34	290.36	290.36	288.49	148	29	0	30	8	5	30.61	19.99	30.61	20.68	33.37	3	1.082	1.082	1.179	1.12	1.187	1.70	27
25-Jun-07	17:27	334.89	334.61	330.63	330.63	328.76	176	28	0	28	6	0	36.40	19.31	36.40	19.31	38.47	0	1.129	1.129	1.193	1.12	1.190	1.70	27
26-Jun-07	0:02	415.55	415.26	411.28	411.28	409.41	215	86	0	86	10	6	44.47	59.29	44.47	59.29	47.92	4	1.107	1.107	1.193	1.12	1.215	1.70	30
26-Jun-07	1:38	455.61	454.90	450.92	450.92	449.05	235	21	0	21	13	4	48.61	14.48	48.61	14.48	53.09	3	1.103	1.103	1.205	1.12	1.224	1.70	30
26-Jun-07	4:54	496.10	495.90	491.92	491.92	490.05	258	26	0	26	14	4	53.37	17.93	53.37	17.93	58.19	3	1.110	1.110	1.210	1.12	1.221	1.70	30
26-Jun-07	8:22	536.75	536.02	532.04	532.04	530.17	281	26	0	26	14	5	58.12	17.93	58.12	17.93	62.95	3	1.118	1.118	1.210	1.12	1.212	1.70	30
26-Jun-07	12:00	577.31	577.14	573.16	573.16	571.29	307	26	0	27	14	4	63.50	17.93	63.50	18.62	68.33	3	1.133	1.133	1.219	1.12	1.226	1.70	30
27-Jun-07	20:43	617.99	616.52	612.54	612.54	610.67	326	20	0	21	18	4	67.43	13.79	67.43	14.48	73.64	3	1.126	1.126	1.229	1.12	1.220	1.70	24
27-Jun-07	23:01	657.46	657.17	653.19	653.19	651.32	348	28	0	28	10	4	71.98	19.31	71.98	19.31	75.43	3	1.127	1.127	1.181	1.12	1.200	1.70	27
28-Jun-07	1:32	698.02	697.90	693.92	693.92	692.05	369	19	0	20	17	4	76.32	13.10	76.32	13.79	82.19	3	1.124	1.124	1.211	1.12	1.212	1.70	28
28-Jun-07	3:54	738.65	738.25	734.27	734.27	732.40	390	22	0	23	18	4	80.67	15.17	80.67	15.86	86.87	3	1.123	1.123	1.209	1.12	1.213	1.70	30
28-Jun-07	6:20	779.21	778.16	774.18	774.18	772.31	411	16	0	17	25	4	85.01	11.03	85.01	11.72	93.63	3	1.122	1.122	1.236	1.12	1.247	1.70	32
28-Jun-07	9:31	819.73	818.97	814.99	814.97	813.10	432	24	0	24	23	4	89.36	16.55	89.36	16.55	97.29	3	1.120	1.120	1.220	1.12	1.224	1.70	33
28-Jun-07	12:37	860.39	859.50	855.52	855.50	853.63	453	26	0	27	22	5	93.70	17.93	93.70	18.62	101.28	3	1.119	1.119	1.209	1.12	1.228	1.70	35
28-Jun-07	19:53	900.76	900.37	896.39	896.36	894.49	450	34	0	34	15	4	93.08	23.44	93.08	23.44	98.25	3	1.061	1.061	1.120	1.03	1.121	1.70	24
29-Jun-07	6:34	940.73	940.10	936.12	936.09	934.22	489	21	0	22	8	4	101.15	14.48	101.15	15.17	103.90	3	1.104	1.104	1.134	1.08	1.151	1.70	27
29-Jun-07	8:48	980.97	979.70	975.72	975.68	973.81	519	65	0	65	9	5	107.35	44.82	107.35	44.82	110.45	3	1.124	1.124	1.156	1.08	1.162	1.70	27
29-Jun-07	11:36	1021.73	1020.02	1016.04	1016.00	1014.13	554	49	0	49	8	5	114.59	33.78	114.59	33.78	117.35	3	1.152	1.152	1.180	1.08	1.186	1.70	28
29-Jun-07	14:21	1062.41	1061.50	1057.52	1057.48	1055.61	584	49	0	50	10	4	120.80	33.78	120.80	34.47	124.24	3	1.166	1.166	1.200	1.08	1.208	1.70	28
29-Jun-07	16:45	1103.16	1101.92	1097.94	1097.90	1096.03	583	22	0	22	13	5	120.59	15.17	120.59	15.17	125.07	3	1.122	1.122	1.163	1.08	1.155	1.70	29
29-Jun-07	18:42	1142.65	1141.50	1137.52	1137.48	1135.61	597	25	0	25	18	4	123.49	17.24	123.49	17.24	129.69	3	1.108	1.108	1.164	1.08	1.179	1.70	28
30-Jun-07	3:03	1182.75	1182.44	1178.46	1178.41	1176.54	607	31	0	31	17	21	125.55	21.37	125.55	21.37	131.41	14	1.088	1.088	1.139	1.08	1.159	1.70	30
30-Jun-07	4:45	1222.85	1222.52	1218.54	1218.49	1216.62	629	21	0	21	33	4	130.10	14.48	130.10	14.48	141.48	3	1.090	1.090	1.185	1.08	1.245	1.70	30
30-Jun-07	6:16	1263.45	1263.06	1259.08	1259.03	1257.16	674	34	0	35	21	4	139.41	23.44	139.41	24.13	146.65	3	1.130	1.130	1.189	1.12	1.196	1.70	31
30-Jun-07	8:21	1304.03	1302.56	1298.58	1298.54	1296.67	715	8	0	8	4	3	147.89	5.52	147.89	5.52	149.27	2	1.163	1.163	1.173	1.10	1.175	1.70	30
30-Jun-07	11:07	1344.73	1343.26	1339.28	1339.24	1337.37	692	24	0	25	24	4	143.14	16.55	143,14	17.24	151.41	3	1.091	1.091	1.154	1.10	1.173	1.70	30

Equivalent Static Density vs. Time

15/9-18-A 8.5 in. Pilot hole MWD run 02

Equivalent Static Density vs Depth

15/9-18-A 8.5 in. Pilot hole MWD run 02

Static Downhole Pressure vs. Time

15/9-18-A 8.5 in. Pilot hole MWD run 02

Static Downhole Pressure vs Depth 15/9-18-A

8.5 in. Pilot hole _MWD run 02

Equivalent Static Density Calculations

NUMBERS in blue is calculated automatically.

Well Name			15/9-F-12		
Hole Size			26in_MWD run 0	3	
ARC Pressure Offset	0	bar		Depth	FIT/LOT
APWD Bit to Sensor Distance	16.3	m			
Elevation Hydraulic Head	54	m			

				m		•		R.A	W VALUES	FROM HS	PM			CAL	CULATED	VALUES (I	bar)				sg				degC
Date	Time	Hole Depth	Bit Depth	Sensor Depth	Sensor TVD	Sensor TVD - EHH	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	ESD	ESD _{min}	ESD _{max}	MW	ECD	FIT/LOT	АТМР
06-Jul-07	21:24	376.00	376.00	359.70	359.70	305.70	154	11	0	11	1	5	31.85	7.58	31.85	7.58	32.20	0	1.062	1.062	1.074	1.02	1.086	1.70	14
06-Jul-07	23:30	416.19	415.17	398.87	398.87	344.87	175	10	0	10	1	40	36.20	6.89	36.20	6.89	36.54	0	1.070	1.070	1.080	1.02	1.087	1.70	14
07-Jul-07	1:31	456.52	456.00	439.70	439.68	385.68	195	16	0	16	3	4	40.33	11.03	40.33	11.03	41.37	3	1.066	1.066	1.093	1.02	1.102	1.70	15
07-Jul-07	3:44	797.09	494.41	478.11	478.00	424.00	214	34	0	35	2	10	44.26	23.44	44.26	24.13	44.95	7	1.064	1.064	1.081	1.02	1.097	1.70	16
07-Jul-07	6:24	537.01	536.43	520.13	519.74	465.74	233	44	0	45	3	4	48.19	30.34	48.19	31.03	49.23	3	1.055	1.055	1.077	1.02	1.082	1.70	16
07-Jul-07	8:10	577.87	577.56	561.26	560.48	506.48	256	18	0	18	3	4	52.95	12.41	52.95	12.41	53.99	3	1.066	1.066	1.087	1.02	1.091	1.70	17
07-Jul-07	9:32	618.34	618.11	601.81	600.79	546.79	278	17	0	17	4	6	57.50	11.72	57.50	11.72	58.88	4	1.072	1.072	1.098	1.02	1.108	1.70	16
07-Jul-07	11:05	658.29	657.99	641.69	640.51	586.51	298	28	0	28	3	3	61.64	19.31	61.64	19.31	62.67	2	1.071	1.071	1.089	1.02	1.101	1.70	17
07-Jul-07	12:36	698.42	696.13	679.83	678.46	624.46	318	19	0	20	4	4	65.78	13.10	65.78	13.79	67.15	3	1.074	1.074	1.096	1.02	1.104	1.70	17
07-Jul-07	14:22	738.91	737.88	721.58	719.94	665.94	338	24	0	25	4	9	69.91	16.55	69.91	17.24	71.29	6	1.070	1.070	1.091	1.02	1.098	1.70	17
07-Jul-07	16:01	779.25	778.30	762.00	760.07	706.07	358	13	0	13	4	4	74.05	8.96	74.05	8.96	75.43	3	1.069	1.069	1.089	1.02	1.098	1.70	17
07-Jul-07	17:38	819.64	818.38	802.08	799.59	745.59	379	14	0	15	5	7	78.39	9.65	78.39	10.34	80.12	5	1.072	1.072	1.095	1.02	1.105	1.70	18
07-Jul-07	20:03	860.19	859.28	842.98	839.54	785.54	399	13	0	13	6	13	82.53	8.96	82.53	8.96	84.60	9	1.071	1.071	1.098	1.02	1.101	1.70	18
08-Jul-07	0:13	900.79	900.50	884.20	879.32	825.32	419	17	0	17	2	4	86.67	11.72	86.67	11.72	87.36	3	1.070	1.070	1.079	1.02	1.081	1.70	18
08-Jul-07	1:02	941.32	940.60	924.30	918.17	864.17	457	12	0	13	3	4	94.53	8.27	94.53	8.96	95.56	3	1.115	1.115	1.127	1.02	1.137	1.70	18
08-Jul-07	1:50	981.53	981.00	964.70	957.50	903.50	489	15	0	15	3	4	101.15	10.34	101.15	10.34	102.18	3	1.141	1.141	1.153	1.02	1.164	1.70	18
08-Jul-07	2:43	1022.00	1021.56	1005.26	996.73	942.73	513	11	0	11	67	3	106.11	7.58	106.11	7.58	129.21	2	1.147	1.147	1.397	1.02	1.191	1.70	18
08-Jul-07	5:17	1062.19	1061.45	1045.15	1035.25	981.25	514	15	0	16	5	6	106.32	10.34	106.32	11.03	108.04	4	1.104	1.104	1.122	1.02	1.132	1.70	18
08-Jul-07	10:57	1142.53	1141.76	1125.46	1113.04	1059.04	534	14	0	14	2	7	110.45	9.65	110.45	9.65	111.14	5	1.063	1.063	1.070	1.02	1.079	1.70	19
08-Jul-07	12:21	1182.87	1180.60	1164.30	1150.20	1096.20	556	15	0	16	4	5	115.00	10.34	115.00	11.03	116.38	3	1.069	1.069	1.082	1.02	1.089	1.70	19
08-Jul-07	13:50	1223.02	1221.76	1205.46	1188.80	1134.80	573	18	0	19	6	8	118.52	12.41	118.52	13.10	120.59	6	1.065	1.065	1.083	1.02	1.091	1.70	20
08-Jul-07	16:12	1263.47	1262.49	1246.19	1227.35	1173.35	592	13	0	13	5	8	122.45	8.96	122.45	8.96	124.17	6	1.064	1.064	1.079	1.02	1.091	1.70	19
08-Jul-07	17:39	1304.11	1302.70	1286.40	1265.27	1211.27	622	11	0	12	6	4	128.66	7.58	128.66	8.27	130.72	3	1.083	1.083	1.100	1.02	1.102	1.70	19
08-Jul-07	19:21	1344.46	1344.05	1327.75	1304.73	1250.73	648	16	0	16	9	4	134.03	11.03	134.03	11.03	137.14	3	1.092	1.092	1.118	1.02	1.122	1.70	20

Equivalent Static Density vs. Time

15/9-F-12 26in MWD run 03

Equivalent Static Density vs Depth 15/9-F-12

26in MWD run 03

Static Downhole Pressure vs. Time 15/9-F-12

Static Downhole Pressure vs Depth 15/9-F-12 26in_MWD run 03

Temperature (degC)

Equivalent Static Density Calculations

NUMBERS in blue is calculated automatically.

Well Name			15/9-F-12		
Hole Size			17.5in_MWD run (05	
ARC Pressure Offset	0	bar		Depth	FIT/LOT
APWD Bit to Sensor Distance	11.3	m			
Elevation Hydraulic Head	2.5	m			

				m				RA	W VALUES	FROM HS	PM			CALC	CULATED	VALUES (I	oar)				sg				degC
Date	Time	Hole Depth	Bit Depth	Sensor Depth	Sensor TVD	Sensor TVD - EHH	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	ESD	ESD _{min}	ESD _{max}	MW	ECD	FIT/LOT	ATMP
21-Jul-07	17:38	1372.04	1355.02	1343.72	1320.09	1317.59	841	4	0	4	1	7	173.95	2.76	173.95	2.76	174.30	5	1.346	1.346	1.348	1.35	1.347		31
21-Jul-07	22:04	1396.81	1396.80	1385.50	1360.31	1357.81	861	122	0	123	3	7	178.09	84.12	178.09	84.81	179.13	5	1.337	1.337	1.345	1.35	1.375		39
21-Jul-07	23:05	1421.56	1420.75	1409.45	1383.39	1380.89	861	861	0	539	3	423	178.09	593.64	178.09	371.63	179.13	292	1.315	1.315	1.322	1.35	1.351		40
22-Jul-07	0:25	1436.07	1434.44	1423.14	1396.04	1393.54	861	988	0	989	3	872	178.09	681.20	178.09	681.89	179.13	601	1.303	1.303	1.310	1.35	1.357		42
22-Jul-07		1475.67	1473.90	1462.60	1432.91	1430.41	920	18	0	19	1	6	190.30	12.41	190.30	13.10	190.64	4	1.356	1.356	1.359	1.35			
23-Jul-07	1:30	1513.09	1512.62	1501.32	1468.96	1466.46	947	19	0	19	3	6	195.88	13.10	195.88	13.10	196.91	4	1.362	1.362	1.369	1.35			
23-Jul-07	7:36	1555.37	1554.75	1543.45	1508.19	1505.69	976	115	0	115	5	6	201.88	79.29	201.88	79.29	203.60	4	1.367	1.367	1.378	1.35	1.375		43
23-Jul-07	13:06	1636.29	1635.22	1623.92	1591.39	1588.89	1013	139	0	0	3	134	209.53	95.84	209.53		210.57	92	1.344	1.344	1.351	1.35	1.370		48
23-Jul-07	13:26		1597.39	1586.09	1547.88	1545.38	1022	60	0	61	5	7	211.39	41.37	211.39	42.06	213.12	5	1.394	1.394	1.406	1.35	1.373		49
23-Jul-07	15:18	1676.76	1676.24	1664.94	1630.94	1628.44	1050	69	0	72	4	6	217.18	47.57	217.18	49.64	218.56	4	1.360	1.360	1.368	1.35	1.379		50
23-Jul-07	17:00	1716.89	1716.88	1705.58	1657.79	1655.29	1075	35	0	36	4	7	222.36	24.13	222.36	24.82	223.73	5	1.369	1.369	1.378	1.35	1.38		53
23-Jul-07	19:15	1759.00	1757.47	1746.17	1694.94	1692.44	1102	23	3	85	2	4	227.94	15.86	226.91	58.61	228.63	3	1.373	1.367	1.377	1.35	1.379		52
23-Jul-07	20:48	1798.53	1797.75	1786.45	1737.85	1735.35	1121	84	0	85	4	5	231.87	57.92	231.87	58.61	233.25	3	1.362	1.362	1.370	1.35			53
23-Jul-07	22:15	1838.80	1837.20	1825.90	1768.05	1765.55	1121	605	0	606	4	526	231.87	417.13	231.87	417.82	233.25	363	1.339	1.339	1.347	1.35	1.381		54
24-Jul-07	5:37	1879.27	1877.78	1866.48	1805.29	1802.79	1150	233	0	234	8	218	237.87	160.65	237.87	161.34	240.63	150	1.345	1.345	1.361	1.35	1.374		49
24-Jul-07	8:03	1920.04	1919.44	1908.14	1843.51	1841.01	1191	33	0	33	6	7	246.35	22.75	246.35	22.75	248.42	5	1.364	1.364	1.375	1.35	1.375		54
24-Jul-07	16:57	1960.30	1959.80	1948.50	1880.50	1878.00	1204	121	0	122	6	6	249.04	83.43	249.04	84.12	251.11	4	1.352	1.352	1.363	1.35	1.366		50
24-Jul-07	19:45	1999.61	1997.73	1986.43	1915.26	1912.76	1238	9	0	9	1	8	256.07	6.21	256.07	6.21	256.42	6	1.365	1.365	1.367	1.35	1.372		51
24-Jul-07	22:32	2039.87	2038.70	2027.40	1953.84	1951.34	1238	917	0	918	4	898	256.07	632.25	256.07	632.94	257.45	619	1.338	1.338	1.345	1.35	1.375		55
25-Jul-07	0:18	2080.15	2079.71	2068.41	1991.01	1988.51	1291	8	0	8	2	7	267.03	5.52	267.03	5.52	267.72	5	1.369	1.369	1.372	1.35	1.373		57
25-Jul-07	2:15	2120.51	2118.62	2107.32	2030.58	2028.08	1289	673	0	674	5	654	266.62	464.02	266.62	464.71	268.34	451	1.340	1.340	1.349	1.35	1.386		60
25-Jul-07	7:21	2161.61	2160.45	2149.15	2071.53	2069.03	1344	90	0	91	7	6	278.00	62.05	278.00	62.74	280.41	4	1.370	1.370	1.382	1.35	1.383		59
25-Jul-07	9:01	2202.60	2201.86	2190.56	2112.32	2109.82	1378	90	0	91	7	7	285.03	62.05	285.03	62.74	287.44	5	1.377	1.377	1.389	1.35	1.390		60
25-Jul-07	10:55	2241.48	2240.33	2229.03	2150.29	2147.79	1394	60	0	62	3	25	288.34	41.37	288.34	42.75	289.37	17	1.368	1.368	1.373	1.35	1.373		60
25-Jul-07	13:33	2281.80	2281.25	2269.95	2184.78	2182.28	1414	108	0	109	6	4	292.48	74.46	292.48	75.15	294.54	3	1.366	1.366	1.376	1.35	1.374		64
25-Jul-07	15:48	2322.08	2321.87	2310.57	2230.57	2228.07	1443	311	3	19	4	10	298.47	214.43	297.44	13.10	299.85	7	1.366	1.361	1.372	1.35	1.370		67
25-Jul-07	18:48	2363.41	2363.13	2351.83	2271.23	2268.73	1463	23	0	23	6	4	302.61	15.86	302.61	15.86	304.68	3	1.360	1.360	1.369	1.35	1.371		66
25-Jul-07	23:51	2402.73	2399.37	2388.07	2306.79	2304.29	1463	1832	0	1823	6	1813	302.61	1263.12	302.61	1256.91	304.68	1250	1.339	1.339	1.348	1.35	1.366		69
26-Jul-07	7:32	2443.15	2437.73	2426.43	2443.63	2441.13	1523	10	2	57	5	11	315.02	6.89	314.33	39.30	316.75	8	1.315	1.313	1.323	1.35	1.376		72
26-Jul-07	14:16	2483.43	2482.92	2471.62	2386.88	2384.38	1532	16	0	16	6	4	316.88	11.03	316.88	11.03	318.95	3	1.355	1.355	1.364	1.35	1.366		72

Equivalent Static Density vs. Time

15/9-F-12 17.5in MWD run 05

Equivalent Static Density vs Depth 15/9-F-12

Static Downhole Pressure vs. Time 15/9-F-12

17.5in MWD run 05

Static Downhole Pressure vs Depth 15/9-F-12

17.5in_MWD run 05

Equivalent Static Density Calculations

Data in blue is calculated automatically.

Well Name			15/9-F-12		
Hole Size		12.25	in. Hole Section F	Run009	
ARC Pressure Offset		bar		Depth	FIT/LOT
APWD Bit to Sensor Distance	36.46	m			
Elevation Hydraulic Head	2.5	m			

				m				R/	AW VALUES	FROM HSF	M			CAL	CULATED	VALUES (bar)				sg				degC
Date	Time	Hole Depth	Bit Depth	Sensor Depth	Sensor TVD	Sensor TVD - EHH	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	ESD	ESD _{min}	ESD _{max}	MW	ECD	FIT/LOT	ATMP
11-Aug	0:00	2542.82	2541.73	2505.27	2451.78	2449.28	1571	96	0	96	8	7	324.95	66.19	324.95	66.19	327.71	5	1.352	1.352	1.364	1.35	1.360	1.486	60
11-Aug		2576.75	2486.73	2450.27	2366.80	2364.30	1540	115	0	115	76	174	318.54	79	319	79	345	120	1.373	1.373	1.486	1.35	1.360	1.486	65
12-Aug	3:23	2609.00	2607.66	2571.20	2480.59	2478.09	1590	14	0	15	4	11	328.88	10	329	10	330	8	1.353	1.353	1.359	1.34	1.360	1.486	67
12-Aug	9:47	2649.97	2649.68	2613.22	2519.03	2516.53	1602	64	0	64	4	258	331.36	44	331	44	333	178	1.342	1.342	1.348				1
12-Aug	12:13	2690.46	2688.97	2652.51	2553.65	2551.15	1702	38	0	39	11	10	352.05	26	352	27	356	7	1.407	1.407	1.422				1
13-Aug	12:43	2771.16	2770.51	2734.05	2621.85	2619.35	1669	161	0	161	24	6	345.22	111	345	111	353	4	1.343	1.343	1.376				
13-Aug	19:58	2811.59	2811.00	2774.54	2680.77	2678.27	1704	60	0	58	16	4	352.46	41	352	40	358	3	1.341	1.341	1.362	1.36	1.360	1.486	79
14-Aug	1:52	2852.07	2850.69	2814.23	2682.46	2679.96	1721	20	0	20	19	4	355.98	14	356	14	363	3	1.354	1.354	1.379	1.36	1.379	1.486	83
14-Aug	9:43	2892.42	2892.02	2855.56	2710.60	2708.10	1750	23	0	15	0	5	361.97	16	362	10	362	3	1.363	1.363	1.363	1.36	1.387	1.486	88
14-Aug	6:15	2972.86	2972.24	2935.78	2760.43	2757.93	1784	25	0	25	17	9	369.01	17	369	17	375	6	1.364	1.364	1.386	1.36	1.391	1.486	78
15-Aug	22:18	3012.98	3011.99	2975.53	2783.72	2781.22	1803	77	0	78	23	9	372.94	53	373	54	381	6	1.367	1.367	1.396	1.37	1.397	1.486	85
16-Aug	17:19	3053.17	3039.28	3002.82	2799.44	2796.94	1844	39	0	40	14	13	381.42	27	381	28	386	9	1.390	1.390	1.408				
17-Aug	3:51	3093.43	3092.55	3056.09	2829.94	2827.44	1872	41	0	41	15	10	387.21	28	387	28	392	7	1.396	1.396	1.415	1.4	1.419	1.486	89
17-Aug	06:38	3113.25	3111.92	3075.46	2841.13	2838.63	1898	15	0	15	5	12	392.59	10	393	10	394	8	1.410	1.410	1.416	1.4	1.424	1.486	91

Equivalent Static Density vs. Time

Time (hh:mm)

Equivalent Static Density vs Depth

15/9-F-12 12.25 in. Hole Section Run009

Static Downhole Pressure vs. Time

15/9-F-12 12.25 in. Hole Section Run009

Time (hh:mm)

Static Downhole Pressure vs Depth

12.25 in. Hole Section Run009

Equivalent Static Density Calculations

Data in blue is calculated automatically.

Well Name			15/9-F-12		
Hole Size		8.5 i	n. Hole Section Ru	un010	
ARC Pressure Offset		bar		Depth	FIT/LOT
APWD Bit to Sensor Distance	10.7	m			1.6
Elevation Hydraulic Head	2.5	m			

				m				R/	AW VALUES	FROM HSF	PM			CAI	CULATED	VALUES (bar)				sg				degC
Date	Time	Hole Depth	Bit Depth	Sensor Depth	Sensor TVD	Sensor TVD - EHH	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	PESD	ESDT	PMIN	PMIT	PMAX	PMAT	ESD	ESD _{min}	ESD _{max}	MW	ECD	FIT/LOT	ATMP
22-Aug	15:58	3118.33	3117.00	3106.30	2859.09	2856.59	1915	23	0	23	18	3	396.10	15.86	396.10	15.86	402.31	2	1.413	1.413	1.436	1.40	1.458	1.600	65
23-Aug	0:50	3158.83	3158.30	3147.60	2883.52	2881.02	1922	20	0	20	16	3	397.55	14	398	14	403	2	1.407	1.407	1.426	1.40	1.453	1.600	70
23-Aug	6:11	3199.07	3198.31	3187.61	2907.18	2904.68	1926	15	0	15	16	71	398.38	10	398	10	404	49	1.398	1.398	1.417	1.40	1.451	1.600	73
23-Aug	3:36	3239.46	3238.51	3227.81	2930.98	2928.48	1971	12	3	20	17	8	407.69	8	407	14	414	6	1.419	1.416	1.440	1.40	1.461	1.600	85
23-Aug	16:30	3320.10	3319.84	3309.14	2979.42	2976.92	2047	23	0	23	14	3	423.41	16	423	16	428	2	1.450	1.450	1.466	1.40		1.600	
23-Aug	18:32	3360.44	3359.63	3348.93	3003.30	3000.80	2014	11	0	11	20	3	416.58	8	417	8	423	2	1.415	1.415	1.439	1.40		1.600	

Equivalent Static Density vs. Time

Static Downhole Pressure vs. Time

15/9-F-12 8.5 in. Hole Section Run010

Time (hh:mm)

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

Rig: Maersk Inspirer Depth System: DWE 22-Jun-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12 Hookload System: CLT Last Cal: Run No: 3 PDA Serial No: N/A Last Cal:

GTE Serial No: N/A Last Cal: CLT Serial No: N/A Last Cal:

DWC Serial No: N/A

Date	Time	Tally Depth	ACQ Depth	Difference	New ACQ Depth	Change	Comments
						0	
25-Jun-07	11:22	296.06	295.93	0.13	295.93	0	Checked @ TJ.
25-Jun-07	16:18	323.006	322.79	0.216	322.79	0	Checked @ TJ.
25-Jun-07	17:35	336.45	336.39	0.06	336.39	0	Checked @ TJ.
25-Jun-07	18:52	363.34	363.12	0.22	363.12	0	Checked @ TJ.
25-Jun-07	19:55	377	377.8	-0.8	377.8	0	Change calibration counts to 730
26-Jun-07	0:10	417.13	416.97	0.16	416.97	0	Checked @ TJ.
26-Jun-07	1:40	457.49	456.9	0.59	457.49	0	Checked @ TJ.
26-Jun-07	4:16	484.4	483.73	0.67	416.97	0	Change bloc position +20
26-Jun-07	13:40	497.85	497.21	0.64	497.21	0	Change calibration counts to 700
26-Jun-07	17:25	511.3	511.19	0.11	511.19	0	Change calibration countsback to 720
26-Jun-07	17:55	524.75	524.52	0.23	524.52	0	Checked @ TJ.
27-Jun-07	8:25	538.212	538.18	0.032	538.18	0	Checked @ TJ.
27-Jun-07	8:54	551.66	551.48	0.18	551.48	0	Changed calibration counts to 727.5 and 717.5
27-Jun-07	10:45	578.56	578.67	-0.11	578.67	0	Changed calibration counts to 727 and 717
27-Jun-07	11:14	592.01	591.99	0.02	591.99	0	Changed calibration counts to 727.2 and 717.2
27-Jun-07	21:20	632.35	632.1	0.25	632.1	0	Checked @ TJ.
27-Jun-07	23:40	672.69	672.54	0.15	672.54	0	Checked @ TJ.
28-Jun-07	1:40	699.59	699.5	0.09	699.5	0	Checked @ TJ.
28-Jun-07	2:35	726.49	726.41	0.08	726.41	0	Checked @ TJ.
28-Jun-07	4:30	753.39	753.29	0.1	753.29	0	Checked @ TJ.
28-Jun-07	5:03	766.84	766.93	-0.09	766.93	0	Checked @ TJ.
28-Jun-07	8:02	807.22	807.81	-0.59	807.81	0	Checked @ TJ Block position +0.20
28-Jun-07	9:35	820.68	821.19	-0.51	821.19	0	Checked @ TJ Block position +0.20
28-Jun-07	10:15	834.17	834.51	-0.34	834.51	0	Checked @ TJ.
28-Jun-07	11:35	847.62	848.08	-0.46	848.08	0	Checked @ TJ.
28-Jun-07	12:40	861.07	861.77	-0.7	861.77	0	Checked @ TJ Block position +0.50
28-Jun-07	14:24	874.53	875.1	-0.57	875.1	0	Checked @ TJ.
28-Jun-07	19:34	901.43	901.96	-0.53	901.96	0	Checked @ TJ.
28-Jun-07	21:00	914.87	915.54	-0.67	914.87	-0.67	Checked @ TJ Block position -0.20
29-Jun-07	6:45	941.79	942.27	-0.48	941.8	-0.47	Checked @ TJ Block position -0.50
29-Jun-07	7:41	968.68	968.65	0.03	968.65	0	Checked @ TJ.

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

Rig: Maersk Inspirer Depth System: DWE 6-Jul-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12Hookload System:CLTLast Cal:Run No: 4PDA Serial No:N/ALast Cal:

GTE Serial No: N/A Last Cal:
CLT Serial No: N/A Last Cal:

DWC Serial No: N/A

Date	Time	Tally Depth	ACQ Depth	Difference	New ACQ Depth	Change	Comments
06-Jul-07	7:52	296.53	296.3	0.23	296.3	0	Checked @ TJ.
06-Jul-07	14:20	296.53	296.9	-0.37	296.9	0	Checked @ TJ.Adjusted pulses from 720 to 723
06-Jul-07	14:44	336.93	337.19	-0.26	337.19	0	Checked @ TJ. New calib
06-Jul-07	21:29	377.27	377.3	-0.03	377.3	0	Checked @ TJ.
06-Jul-07	23:34	417.61	417.79	-0.18	417.61	0.18	Checked @ TJ.
07-Jul-07	1:36	457.97	457.99	-0.02	457.99	0	Checked @ TJ.
07-Jul-07	4:00	498.33	498.39	-0.06	498.39	0	Checked @ TJ.
07-Jul-07	4:35	511.78	509.9	1.88	511.78	-1.88	Checked @ TJ.
07-Jul-07	6:29	538.69	538.49	0.2	538.69	-0.2	Checked @ TJ. Rise bp 2m
07-Jul-07	7:02	552.13	552.19	-0.06	552.19	0	Checked @ TJ.
07-Jul-07	8:12	579.03	579.24	-0.21	579.24	0	Checked @ TJ. Lower bp 1m
07-Jul-07	8:35	592.48	592.83	-0.35	592.83	0	Checked @ TJ. Rise bp 2m
07-Jul-07	9:36	619.38	619.78	-0.4	619.78	0	Checked @ TJ. New calib
07-Jul-07	9:58	632.82	633.16	-0.34	633.16	0	Checked @ TJ.
07-Jul-07	10:23	646.27	646.36	-0.09	646.36	0	Checked @ TJ. New calib
07-Jul-07	11:08	659.72	659.72	0	659.72	0	Checked @ TJ.
07-Jul-07	12:42	700.06	699.82	0.24	699.82	0	Checked @ TJ. New calib
07-Jul-07	13:35	726.97	726.9	0.07	726.9	0	Checked @ TJ. New calib
07-Jul-07	14:25	740.41	740.34	0.07	740.34	0	Checked @ TJ.
07-Jul-07	14:52	753.86	753.82	0.04	753.82	0	Checked @ TJ.
07-Jul-07	15:14	767.31	767.25	0.06	767.25	0	Checked @ TJ.
07-Jul-07	16:29	794.24	794.16	0.08	794.16	0	Checked @ TJ.
07-Jul-07	16:49	807.7	807.58	0.12	807.58	0	Checked @ TJ. New calib
07-Jul-07	17:51	821.15	821.08	0.07	821.08	0	Checked @ TJ.
07-Jul-07	18:31	834.64	834.49	0.15	834.49	0	Checked @ TJ. New calib
07-Jul-07	20:10	861.55	861.48	0.07	861.48	0	Checked @ TJ.
08-Jul-07	0:31	901.91	901.87	0.04	901.87	0	Checked @ TJ.
08-Jul-07	1:53	982.62	982.58	0.04	982.58	0	Checked @ TJ.
08-Jul-07	7:25	1103.67	1104.05	-0.38	1104.05	0	Checked @ TJ. New calib
08-Jul-07	9:05	1117.12	1117.38	-0.26	1117.38	0	Checked @ TJ.
08-Jul-07	10:40	1130.57	1130.62	-0.05	1130.62	0	Checked @ TJ.
08-Jul-07	11:00	1144.02	1144	0.02	1144	0	Checked @ TJ. New calib

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

Rig: Maersk Inspirer Depth System: DWE 22-Jun-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12 Hookload System: CLT Last Cal: Run No: 5 PDA Serial No: N/A Last Cal:

GTE Serial No: N/A Last Cal:

CLT Serial No: N/A Last Cal: 21-Jul-07

DWC Serial No: N/A

Date	Time	Tally Depth	ACQ Depth	Difference	New ACQ Depth	Change	Comments
21-Jul-07	2:00	1367.4	1367.4	0	1367.4	0	Set Depth
21-Jul-07	20:45	1382.4	1381.4	-1	1382.4	1	Hole depth set to 1382.4> on bottom
21-Jul-07	22:09	1394.19	1391.82	-2.37	1394.19	2.37	Change depth: 1391,82> on bottom (1394,19m)
22-Jul-07	0:10	1434.26	1436.07	1.81	1436.07	0	Block position lowered 6m
22-Jul-07	4:30		1441.95	1441.95	1441.95	0	Counts increased from 710>730
22-Jul-07	5:36	1449.507	1450.85	1.343	1450.85	0	Check @ Tool joint
22-Jul-07	6:00	1471.9	1475.67	3.77	1475.67	0	too fast> counts increased from 740>790, low
22-Jul-07	9:59	N/A	1474.88	2.89	1471.99	-2.89	Change to depth made after calibration
22-Jul-07	11:16		1486.9		1489.8	2.9	First connection after calibration
22-Jul-07	13:22	1516.752	1514.75	-2	1516.75	2	Check @ Tool joint
23-Jul-07	4:55	1530.17	1530.17	0	1530.17	0	Bit Depth set according to tally, before cont. drilling
23-Jul-07	5:30	1543.62	1543.52	-0.1	1543.52	0	Check @ Tool joint
23-Jul-07	11:07	1597.421	1597.01	-0.411	1597.01		Check @ Tool joint> reduced 6 pulses pr. Wrap
23-Jul-07	13:26	1637.769	1637.57	-0.199	1637.57	0	Check @ Tool joint
23-Jul-07	17:04	1718.454	1718.78	0.326	1718.78	0	Check @ Tool joint
23-Jul-07		1758.779	1758.804	0.025	1758.804	0	Check @ Tool joint
23-Jul-07		1799.175	1799.66	0.485	1799.66	0	Check @ Tool joint
23-Jul-07	22:33	1839.516	1840	0.484	1840	0	Check @ Tool joint
24-Jul-07	6:00	1879.855	1880.56	0.705	1880.56	0	Check @ Tool joint> block pos reduced 0.3m
24-Jul-07	8:08	1920.212	1921.11	0.898	1920.204	-0.906	Check @ Tool joint> block pos reduced 0.4m
24-Jul-07	17:02	1960.573	1961.44	0.867		-0.886	Change depth from 1963.91 to 1963,02
24-Jul-07		1974.019	1973.8	-0.219	1973.8	0	Check @ Tool joint> block pos increased 0.1
24-Jul-07	20:10	2000.931	2000.7	-0.231	2000.7	0	Check @ Tool joint
24-Jul-07	22:40	2041.282	2041.02	-0.262	2041.02	0	Check @ Tool joint
25-Jul-07	0:03	2081.628	2081.5	-0.128	2081.5	0	Check @ Tool joint
25-Jul-07		2121.964	2121.72	-0.244	2121.72	0	Check @ Tool joint
25-Jul-07	9:01	2202.66	2202.39	-0.27	2202.39	0	Check @ Tool joint
25-Jul-07	11:08	2243.017	2242.68	-0.337	2242.68	0	Check @ Tool joint
25-Jul-07	13:39	2283.402	2282.98	-0.422	2282.98	0	Check @ Tool joint
25-Jul-07	18:54	2364.15	2363.61	-0.54	2363.61	0	Check @ Tool joint

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

Rig: Maersk Inspirer Depth System: DWE 22-Jun-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12 Hookload System: CLT Last Cal: Run No: 6 PDA Serial No: N/A Last Cal:

GTE Serial No: N/A Last Cal:

CLT Serial No: N/A Last Cal: 21-Jul-07

DWC Serial No: N/A

Date	Time	Tally Depth	ACQ Depth	Difference	New ACQ Depth	Change	Comments
29-Jul-07	16:01	182.5	267.97	85.47	-97.03	-365	t depth set according to BHA before running HWL
29-Jul-07	17:33	628.52	581.08	-47.44	628.52	47.44	Set Bit depth
29-Jul-07	2:45	2485.372	2484.6	-0.772	2485.37	0.77	Set Depth @ too joint
29-Jul-07		2498.824	2498.7	-0.124	2498.7	0	Check @ tool joint
30-Jul-07	3:04	2512.284	2512	-0.284	2512	0	subtract 4 counts from counts at top wrap
30-Jul-07		2525.738	2525.59	-0.148	2525.59	0	
30-Jul-07		2539.187	2539	-0.187	2539	0	subtract 4 counts from counts at top wrap
30-Jul-07		2552.629	2552.6	-0.029	2552.6	0	Check @ tool joint
30-Jul-07	19:43	2566.081	2565.83	-0.251	2565.83	0	Check @ tool joint

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

Rig: Maersk Inspirer Depth System: DWE 22-Jun-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12 Hookload System: CLT Last Cal: Run No: 9 PDA Serial No: N/A Last Cal:

GTE Serial No: N/A Last Cal:

CLT Serial No: N/A Last Cal: 21-Jul-07

DWC Serial No: N/A

Date	Time	Tally Depth	ACQ Depth	Difference	New ACQ Depth	Change	Comments
10-Aug-07	20:24	2476.345	2476.67	0.325		0	Checked at tool joint
11-Aug-07	2:55	2489.797	2490	0.203		0	Checked at tool joint
11-Aug-07		2543.6	2544.13	0.53		0	Checked at tool joint, on bottom
12-Aug-07	1:47	2583.954	2583.85	-0.104		0	Checked at tool joint, on bottom
12-Aug-07	2:30	2597.404	2597.24	-0.164		0	Checked at tool joint, on bottom
12-Aug-07	4:13	2610.855	2610.82	-0.035		0	Checked at tool joint, on bottom
12-Aug-07	6:00	2637.767	2637.84	0.073		0	Checked at tool joint, on bottom
12-Aug-07	10:50	2664.67	2664.86	0.19		0	Checked at tool joint, on bottom
12-Aug-07	12:16	2691.56	2691.68	0.12		0	Checked at tool joint, on bottom
12-Aug-07	13:04	2705.02	2705.42	0.4		0	Checked at tool joint, on bottom
12-Aug-07	16:45	2731.92	2732.27	0.35		0	Checked at tool joint, on bottom
12-Aug-07	19:19	2731.916	2731.96	0.044		0	Checked at tool joint, on bottom
13-Aug-07	2:43	2745.365	2745.47	0.105		0	Checked at tool joint, on bottom
13-Aug-07	13:15	2772.272	2772.27	-0.002		0	Checked at tool joint, on bottom
13-Aug-07	17:24	2799.176	2799.47	0.294		0	Checked at tool joint, on bottom
13-Aug-07	21:19	2826.078	2826.36	0.282		0	Checked at tool joint, on bottom
14-Aug-07	5:01	2866.411	2866.89	0.479		0	Checked at tool joint, on bottom
14-Aug-07	7:20	2879.85	2880.53	0.68		-0.1	Checked at tool joint, on bottom
14-Aug-07	9:51	2893.294	2893.74	0.446		-0.1	Checked at tool joint, on bottom
14-Aug-07	15:11	2933.618	2934.15	0.532		0	Checked at tool joint, on bottom
14-Aug-07	17:22	2947.06	2947.61	0.55		-0.1	Checked at tool joint, on bottom
15-Aug-07	2:40	2960.476	2960.476	0		0	Set bit depth,
15-Aug-07	3:06	2947.06	2947.31	0.25		0	Checked at tool joint
15-Aug-07	3:22		2966.51	2966.51	2966.86	0.35	Set bit depth to on bottom,System shut down
15-Aug-07	7:07	2973.919	2974.26	0.341		0	Checked at tool joint, on bottom
15-Aug-07	12:52	2987.369	2987.67	0.301		-0.1	Checked at tool joint, on bottom
15-Aug-07	22:41	3014.264	3014.39	0.126		0	Checked at tool joint, on bottom
16-Aug-07	17:34	3055	3054.7	-0.3		0	Checked at tool joint, on bottom
16-Aug-07	23:11	3081.492	3081.42	-0.072		0	Checked at tool joint, on bottom
17-Aug-07	4:15	3094.94	3094.84	-0.1		0	Checked at tool joint, on bottom
17-Aug-07				0		0	

DEPTH TRACKING SHEET

Procedure Document: D&M Depth Tracking Standard V1 30-Jan-04

N/A

Rig: Maersk Inspirer Depth System: DWE 10-Aug-07

Rig Type Jack up **Heave Comp System:** N/A

Well: 15/9-F-12 Hookload System: CLT Last Cal: Run No: 10 PDA Serial No: N/A Last Cal:

GTE Serial No:

CLT Serial No: N/A Last Cal: 10-Aug-07

Last Cal:

DWC Serial No: N/A

Date	Time		ACQ Depth		New ACQ Depth	Change	Comments
22-Aug-07	8:09	3106.06	3106.26	0.2	new neg Beptil	0	Checked at tool joint
22-Aug-07 22-Aug-07	16:13	3119.51	3119.73	0.22		0	Checked at tool joint, on bottom
23-Aug-07	1:03	3159.862	3160.07	0.208		0	Checked at tool joint, on bottom
23-Aug-07 23-Aug-07	6:35	3200.197	3200.73	0.533		0	Checked at tool joint, on bottom
23-Aug-07 23-Aug-07	11:00	3240.547	3240.71	0.163		0	Checked at tool joint, on bottom
23-Aug-07 23-Aug-07	16:33	3321.268	3321.39	0.103		0	Checked at tool joint, on bottom
23-Aug-07 23-Aug-07	18:37	3361.609	3361.66	0.122		0	Checked at tool joint, on bottom
23-Aug-07 23-Aug-07	20:46	3401.948	3401.97	0.031		0	Checked at tool joint, on bottom Checked at tool joint, on bottom
24-Aug-07	3:59	3483	3482.68	-0.32		0	Checked at tool joint, on bottom
]						

26" Hole Section - Drag Analysis

26" Section – Torque Analysis

17 1/2" Drag Analysis

17 1/2" Torque Analysis

12 ¼" Drag Analysis

12 1/4" Torque Analysis

8 1/2" Drag Analysis

8 1/2" section Volve 15/9-F-12 TORQUE (kNm)

8 ½" Torque Analysis

7.0 Survey Details

wett. 15/9-F-12			Volve F						STRUCTURE Volve F				
Magnetic Promotion.				SufsceLocation			UTKIZone 31N, Nation			Micelanica			
Mode	e .	Dip	Date:	Lat	NS8 26 29 894	Nothing	6478565.22 m	Grid Conc	-0.94801721*	Slot	F42	TVD Ret	RKS (5450 matour MSL)
		MigDec	PS:	Lon	E15314337	Easing	40000021 m	Scale Rud:	0.9998517083	Plan	159 F12 Definitive	Say Date:	August 28, 2007

Drilling rig: Maersk Inspirer

License number: PL 046BS Well name: 15/9-F-12

Slot: 12

Water depth /air gap: 91 mMSL / 54.9 mRT

Depth reference:

Unless otherwise stated, all depths are referred to RT (Rotary Table).

<u>Structure center coordinates (at wellhead level)(Slot 8 is structure center):</u>

Geographic: Lat. 58° 26' 29.807" N Long. 01° 53' 14.929" E

UTM: 6 478 563.523 m N 435 050.021 m E

Slot center coordinates (at wellhead level):

Geographic: Lat. 58° 26' 29.894" N Long. 01° 53' 14.937" E

UTM: 6 478 566.22 m N 435 050.21 m E

Rectangular: 2.7 m N 0.19 m E (from structure

center)

Depth from	Depth to	Survey Instrument	Survey	Vendor	Comments
1170	2-1		frequency	~	
145.9	251	MWD	30m	Schlumberger	Inclination only
					due to external
					magnetic
					interference
					from F4
					conductor
251	1353	MWD	45m	Schlumberger	Shallow Gas
					Pilot Hole
					(Cemented
					Back)
251	1357	MWD	45m	Schlumberger	SUCOP
					Corrected
					(Motor BHA)
1357	2506	MWD	45m	Schlumberger	
145.9	2465	Casing Gyro	30m	GyroData	GyroData job
					number
					BN0707GW060
2506	3520	MWD	45m	Schlumberger	

Magnetic Parameters by Hole Section

Interval	Declination	HTotal	Magnetic Dip	Date
36", 8 ½"	-2.339	50339.5	71.64	1st July 2007
Pilot, 26" Hole				
Sections				
17 ½" Hole	-2.338	50363.0	71.643	1st July 2007
Section				
12 ¼" Hole	-2.337	50388.2	71.644	1st July 2007
Section				
8 ½" Hole	-2.251	50398.0	71.627	1st September
Section				2007

STATOIL - Norway

SLEIPNER Volve F 15/9-F-12 F-12

Design: F-12

Standard Survey Report

11 October, 2007

Survey Report

Database:

Company: STATOIL - Norway

Project: SLEIPNER Site: Volve F 15/9-F-12 Well: F-12 Wellbore: F-12

Design:

Map Zone:

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

EDM Oracle

North Reference: Minimum Curvature **Survey Calculation Method:**

SLEIPNER, Norway **Project**

Universal Transverse Mercator Map System: Geo Datum:

European 1950 - Mean Zone 31N (0 E to 6 E)

Mean Sea Level System Datum:

> Using Well Reference Point Using geodetic scale factor

Volve F, 15/9 Site

6,478,563.52 m Site Position: Northing: Latitude: 58° 26' 29.807 N 435,050.02 m 1° 53' 14.929 E Мар Longitude: From: Easting: 0.00 m -0.95 **Position Uncertainty:** Slot Radius: **Grid Convergence:**

15/9-F-12 Well 2.70 m 6,478,566.22 m 58° 26' 29.894 N **Well Position** +N/-S Northing: Latitude: 1° 53' 14.937 E 0.19 m 435,050.21 m +E/-W Easting: Longitude: **Position Uncertainty** 0.00 m Wellhead Depth: 91.00 m Water Depth: 91.00 m

F-12 Wellbore Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (nT) (°) (°) **3NETICREFERENCE** 3/1/2007 -2.34 71.63 50,321

F-12 Design Audit Notes: 1.0 ACTUAL 145.90 Version: Phase: Tie On Depth: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (m) (m) (m) (°) 145.90 2.70 0.19 104.32

10/9/2007 **Survey Program** From To Survey (Wellbore) **Tool Name** Description (m) (m) Gyro Tool from GD 174.00 2,464.55 14" Casing Gyro Survey (F-12) Wellbore Surveyor, cont 2 464 55 2,536.07 17.5" Section MWD Survey (F-12) Magnetic, std, non-mag Magnetic Tools (MWD, EMS) Magnetic Tools (MWD, EMS) 2.536.07 3,081.25 12.25" Section MWD Survey (F-12) Magnetic, std, non-mag 3,081.25 3,520.00 8.5" Section MWD Survey (F-12) Magnetic, std, non-mag Magnetic Tools (MWD, EMS)

Survey Vertical Measured Vertical Dogleg Build Turn Inclination +N/-S Azimuth +E/-W Section Depth Depth Rate Rate Rate (°/30m) (°/30m) (°/30m) (m) (m) (m) (m) (m) 145.90 0.00 0.00 145.90 270 0.19 0.00 0.000 0.00 0.00 174.00 0.12 166.21 174.00 2.67 0.20 0.01 0.132 0.13 0.00 204.00 0.08 159.79 204.00 2.62 0.21 0.04 0.045 -0.04 -6.42 234.00 0.15 113.27 234.00 2 58 0.25 0.09 0.109 0.07 -46.52 264.00 0.25 94.15 264.00 2.56 0.36 0.20 0.125 0.11 -19.12 294.00 0.34 83.77 294.00 2.57 0.51 0.34 0.101 0.09 -10.38 324.00 0.36 81.51 324.00 2.59 0.70 0.52 0.027 0.02 -2.26354.00 0.46 79.36 354.00 2.63 0.91 0.71 0.101 0.10 -2.15 384.00 0.65 66 92 384.00 272 0.96 0.224 -12441 19 0.19 414.00 1.09 38.86 413.99 3.01 1.52 1.22 0.597 0.43 -28.06

Survey Report

Company: STATOIL - Norway

F-12

 Project:
 SLEIPNER

 Site:
 Volve F

 Well:
 15/9-F-12

 Wellbore:
 F-12

Design:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Grid
Survey Calculation Method: Minimum Curvature

Site Volve F

Rotary Table @ 54.90m (Actual RTE as installed)

Rotary Table @ 54.90m (Actual RTE as installed)

Survey Calculation Method: Minimum Curvatu

Database: EDM Oracle

rvey										
	Manager			Vertical			Vertical	Dawlan	D:I.d	T
Į.	Measured					. =		Dogleg	Build	Turn
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(m)	(°)	(°)	(m)	(m)	(m)	(m)	(°/30m)	(°/30m)	(°/30m)
	444.00	2.91	27.73	443.97	3.90	2.06	1.51	1.856	1.82	-11.13
	474.00	4.85	26.01	473.90	5.72	2.97	1.94	1.937	1.93	-1.72
	504.00	6.49	27.94	503.76	8.35	4.32	2.60	1.657	1.65	1.93
	534.00	7.69	30.42	533.53	11.58	6.13	3.56	1.234	1.20	2.47
	564.00	6.95	32.03	563.28	14.85	8.11	4.66	0.771	-0.74	1.62
	594.00	5.54	30.06	593.10	17.64	9.79	5.61	1.419	-1.40	-1.98
	624.00	4.90	17.77	622.98	20.12	10.91	6.08	1.286	-0.64	-12.28
	654.00	5.08	0.38	652.87	22.66	11.31	5.84	1.518	0.18	-17.40
	684.00	5.95	334.67	682.73	25.40	10.65	4.52	2.596	0.87	-25.71
	714.00	6.39	320.18	712.56	28.09	8.92	2.18	1.611	0.43	-14.48
	744.00	6.80	303.74	742.36	30.36	6.37	-0.85	1.924	0.41	-16.45
	774.00	8.44	288.20	772.10	32.03	2.80	-4.72	2.621	1.64	-15.53
	804.00	11.14	278.45	801.66	33.14	-2.15	-9.80	3.159	2.70	-9.76
	834.00	13.14	272.24	830.99	33.70	-8.43	-16.02	2.388	2.00	-6.21
	864.00	14.81	266.26	860.11	33.59	-15.66	-23.00	2.204	1.67	-5.98
	893.00	14.99	264.04	888.13	32.95	-23.09	-30.04	0.620	0.19	-2.30
	903.00	14.51	263.13	897.80	32.67	-25.62	-32.42	1.599	-1.44	-2.72
	913.00	14.08	262.05	907.49	32.35	-28.07	-34.72	1.513	-1.28	-3.25
	923.00	13.81	261.01	917.20	32.00	-30.45	-36.94	1.096	-0.80	-3.11
	933.00	13.78	260.55	926.91	31.62	-32.81	-39.13	0.347	-0.11	-1.38
	943.00	13.86	260.53	936.62	31.22	-35.16	-41.31	0.251	0.25	-0.06
	953.00	13.96	260.58	946.33	30.83	-37.54	-43.51	0.301	0.30	0.14
	963.00	14.13	261.38	956.03	30.45	-39.93	-45.74	0.771	0.50	2.40
	973.00	14.43	263.23	965.72	30.12	-42.38	-48.03	1.649	0.91	5.56
	983.00	14.70	264.88	975.40	29.86	-44.88	-50.39	1.475	0.79	4.94
	993.00	14.91	265.80	985.06	29.65	-47.43	-52.80	0.956	0.64	2.78
	1,003.00	15.04	266.46	994.72	29.48	-50.00	-55.26	0.625	0.37	1.95
	1,013.00	15.13	267.49	1,004.38	29.34	-52.60	-57.74	0.855	0.27	3.11
	1,023.00	15.14	268.09	1,014.03	29.24	-55.21	-60.24	0.468	0.05	1.78
	1,033.00	15.07	268.61	1,023.69	29.16	-57.82	-62.75	0.470	-0.23	1.57
	1,043.00	14.54	269.28	1,033.36	29.12	-60.37	-65.21	1.664	-1.58	2.00
	1,053.00	14.23	269.64	1,043.04	29.09	-62.85	-67.61	0.972	-0.93	1.09
	1,063.00	14.15	269.65	1,052.74	29.08	-65.30	-69.98	0.232	-0.23	0.01
	1,003.00	14.22	269.22	1,062.43	29.05	-67.75	-72.35	0.385	0.22	-1.29
	1,083.00	14.38	267.93	1,072.12	28.99	-70.22	-74.73	1.061	0.47	-3.86
	1,093.00	14.59	265.82	1,081.81	28.85	-72.72	-77.11	1.712	0.65	-6.33
	1,103.00	14.67	263.48	1,091.48	28.62	-75.24	-79.49	1.787	0.24	-7.01
	1,113.00	14.82	260.96	1,101.15	28.27	-77.76	-81.85	1.977	0.43	-7.58
	1,123.00	15.14	258.59	1,110.81	27.81	-80.30	-84.20	2.077	0.98	-7.09
	1,133.00	15.71	256.39	1,120.45	27.24	-82.90	-86.57	2.443	1.70	-6.61
	1,143.00	16.43	254.47	1,130.06	26.54	-85.57	-89.00	2.685	2.16	-5.75
	1,153.00	17.58	252.27	1,139.62	25.70	-88.38	-91.50	3.945	3.44	-6.60
	1,163.00	18.82	250.54	1,149.12	24.71	-91.33	-94.12	4.059	3.72	-5.18
	1,173.00	19.84	248.95	1,158.56	23.56	-94.44	-96.85	3.456	3.07	-4.78
	1,183.00	20.52	248.22	1,167.95	22.30	-97.65	-99.65	2.169	2.03	-2.19
	1,193.00	20.78	248.08	1,177.30	20.99	-100.92	-102.50	0.797	0.78	-0.42
	1,203.00	20.87	248.00	1,186.65	19.66	-104.22	-105.36	0.295	0.28	-0.25
	1,213.00	20.57	248.50	1,196.00	18.34	-107.51	-108.22	1.047	-0.90	1.52
	1,223.00	19.87	249.42	1,205.39	17.10	-110.73	-111.04	2.308	-2.10	2.75
	1,233.00	19.22	250.72	1,214.81	15.96	-113.88	-113.81	2.349	-1.95	3.89
	1,243.00	18.88	251.85	1,224.26	14.91	-116.97	-116.54	1.507	-1.02	3.40
	1,253.00	18.83	252.46	1,233.73	13.92	-120.05	-119.28	0.608	-0.15	1.82
	1,263.00	19.07	252.60	1,243.18	12.95	-123.15	-122.04	0.736	0.72	0.41
	1,273.00	19.35	252.60	1,252.63	11.96	-126.29	-124.84	0.842	0.84	0.02
	1,283.00	19.47	252.47	1,262.06	10.97	-129.46	-127.66	0.385	0.36	-0.41

Survey Report

Company: STATOIL - Norway

F-12

 Project:
 SLEIPNER

 Site:
 Volve F

 Well:
 15/9-F-12

 Wellbore:
 F-12

Design:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

Database:

North Reference: Survey Calculation Method: Site Volve F

Rotary Table @ 54.90m (Actual RTE as installed) Rotary Table @ 54.90m (Actual RTE as installed)

Grid

tion Method: Minimum Curvature EDM Oracle

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (m)	Inclination (°)	Azimuth (°)	Depth (m)	+N/-S (m)	+E/-W (m)	Section (m)	Rate (°/30m)	Rate (°/30m)	Rate (°/30m)
(111)	()	()	(III)	(111)	(111)	, ,	(/3011)	(/30111)	. ,
1,293.00	19.09	252.04	1,271.50	9.96	-132.60	-130.46	1.223	-1.15	-1.27
1,303.00	17.98	251.23	1,280.98	8.96	-135.62	-133.14	3.404	-3.32	-2.43
1,313.00	16.56	250.46	1,290.53	7.99	-138.42	-135.61	4.329	-4.27	-2.32
1,323.00	15.24	250.09	1,300.14	7.06	-141.00	-137.88	3.970	-3.96	-1.12
1,333.00	14.36	250.04	1,309.81	6.19	-143.40	-140.00	2.658	-2.66	-0.13
1,343.00	14.09	249.89	1,319.51	5.35	-145.71	-142.02	0.791	-0.78	-0.48
1,353.00	14.20	248.89	1,329.20	4.49	-148.00	-144.03	0.796	0.32	-2.99
1,363.00	14.61	247.86	1,338.89	3.57	-150.31	-146.04	1.450	1.23	-3.09
1,373.00	15.35	247.18	1,348.55	2.58	-152.70	-148.11	2.271	2.21	-2.03
1,383.00	16.31	246.75	1,358.17	1.52	-155.21	-150.28	2.925	2.90	-1.30
1,393.00	17.11	246.17	1,367.75	0.37	-157.85	-152.55	2.429	2.38	-1.74
1,403.00	17.79	245.40	1,377.29	-0.86	-160.58	-154.89	2.168	2.06	-2.30
1,413.00	18.50	244.47	1,386.79	-2.18	-163.40	-157.30	2.294	2.12	-2.82
1,423.00 1,433.00	19.40 20.36	243.27 242.01	1,396.25 1,405.65	-3.61 -5.18	-166.32 -169.34	-159.77 -162.31	2.945 3.154	2.70 2.88	-3.59 -3.78
1,443.00	21.22	240.96	1,415.00	-6.87	-172.45	-164.91	2.809	2.58	-3.14
1,453.00	22.14	239.94	1,424.29	-8.69	-175.67	-167.58	2.979	2.75	-3.08
1,463.00	22.83	239.04	1,433.53	-10.64	-178.96	-170.29	2.307	2.07	-2.68
1,473.00	22.85	238.62	1,442.75	-12.64	-182.28	-173.01	0.500	0.07	-1.28
1,483.00	22.44	238.58	1,451.98	-14.65	-185.57	-175.70	1.242	-1.24	-0.11
1,493.00	21.71	239.22	1,461.24	-16.59	-188.79	-178.33	2.303	-2.18	1.93
1,503.00	21.01	240.26	1,470.56	-18.43	-191.93	-180.93	2.370	-2.08	3.12
1,513.00	20.67	241.23	1,479.90	-20.17	-195.04	-183.50	1.452	-1.02	2.90
1,523.00	20.66	242.19	1,489.26	-21.84	-198.14	-186.10	1.013	-0.05	2.87
1,533.00	20.83	243.57	1,498.61	-23.45	-201.30	-188.76	1.554	0.52	4.14
1,543.00	20.97	245.58	1,507.95	-24.98	-204.52	-191.50	2.202	0.43	6.05
			1,517.29					0.48	
1,553.00	21.13	247.64		-26.41	-207.81	-194.34	2.269		6.18
1,563.00	21.38	249.38	1,526.61	-27.74	-211.19	-197.28	2.028	0.73	5.22
1,573.00	21.64	251.07	1,535.91	-28.98	-214.64	-200.32	2.027	0.80	5.07
1,583.00	21.87	252.47	1,545.20	-30.14	-218.16	-203.44	1.689	0.66	4.19
1,593.00	22.08	253.27	1,554.47	-31.24	-221.73	-206.63	1.110	0.65	2.40
1,603.00	22.29	253.50	1,563.73	-32.32	-225.35	-209.87	0.675	0.62	0.70
1,613.00	22.47	253.52	1,572.98	-33.40	-229.00	-213.14	0.555	0.55	0.06
1,623.00	22.66	253.41	1,582.21	-34.49	-232.68	-216.44	0.576	0.56	-0.34
1,633.00	22.93	253.25	1,591.43	-35.60	-236.39	-219.76	0.820	0.80	-0.47
1,643.00	23.20	253.11	1,600.63	-36.74	-240.14	-223.11	0.832	0.82	-0.42
1,653.00	23.40	252.96	1,609.82	-37.89	-243.93	-226.49	0.616	0.59	-0.45
1,663.00	23.53	252.89	1,618.99	-39.06	-243.93 -247.73	-229.89	0.415	0.41	-0.43
1,673.00									-0.23
1,673.00	23.59 23.66	252.88 252.91	1,628.16 1,637.32	-40.24 -41.41	-251.55 -255.38	-233.30 -236.72	0.179 0.199	0.18 0.20	-0.02 0.10
1,693.00	23.70	252.85	1,646.48	-42.60	-259.22	-240.15	0.141	0.12	-0.19
1,703.00	23.73	252.87	1,655.63	-43.78	-263.06	-243.58	0.102	0.10	0.07
1,713.00	23.78	252.93	1,664.78	-44.97	-266.91	-247.01	0.164	0.15	0.18
1,723.00	23.76	252.96	1,673.94	-46.15	-270.77	-250.46	0.057	-0.04	0.09
1,733.00	23.71	252.97	1,683.09	-47.33	-274.62	-253.89	0.145	-0.14	0.02
1,743.00	23.70	253.01	1,692.25	-48.50	-278.46	-257.33	0.070	-0.05	0.13
1,753.00	23.68	253.05	1,701.40	-49.68	-282.30	-260.76	0.065	-0.04	0.13
1,763.00	23.63	252.90	1,710.56	-50.85	-286.14	-264.19	0.252	-0.17	-0.47
1,773.00	23.56	252.97	1,719.73	-52.03	-289.97	-267.60	0.221	-0.20	0.47
1,783.00	23.50	252.85	1,719.73	-53.20	-209.97	-271.01	0.221	-0.19	-0.35
1,793.00	23.40	252.68	1,738.07	-54.38	-297.58	-274.40	0.358	-0.30	-0.51
1,803.00	23.37	252.68	1,747.25	-55.56	-301.37	-277.78	0.100	-0.10	0.00
1,813.00	23.36	252.63	1,756.43	-56.74	-305.16	-281.16	0.063	-0.01	-0.16

Survey Report

Company: STATOIL - Norway

 Project:
 SLEIPNER

 Site:
 Volve F

 Well:
 15/9-F-12

 Wellbore:
 F-12

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Volve F

Rotary Table @ 54.90m (Actual RTE as installed) Rotary Table @ 54.90m (Actual RTE as installed)

Grid

Minimum Curvature
FDM Oracle

n: F-12	2 Database: EDM Oracle									
Measured Depth (m)	Inclination (°)	Azimuth (°)	Vertical Depth (m)	+N/-S (m)	+E/-W (m)	Vertical Section (m)	Dogleg Rate (°/30m)	Build Rate (°/30m)	Turn Rate (°/30m)	
1,833.00	23.45	252.52	1,774.78	-59.12	-312.74	-287.91	0.241	0.19	-0.38	
1,843.00	23.48	252.56	1,783.96	-60.31	-316.54	-291.30	0.089	0.08	0.12	
1,853.00	23.41	252.72	1,793.13	-61.50	-320.33	-294.69	0.294	-0.22	0.49	
1,863.00	23.39	252.72	1,802.31	-62.68	-324.12	-298.07	0.062	-0.06	-0.02	
1,873.00	23.47	252.78	1,811.48	-63.86	-327.92	-301.45	0.258	0.25	0.19	
1,883.00	23.51	252.91	1,820.66	-65.03	-331.73	-304.85	0.195	0.12	0.38	
1,893.00	23.49	253.11	1,829.83	-66.20	-335.54	-308.26	0.247	-0.06	0.60	
1,903.00	23.50	253.09	1,839.00	-67.36	-339.36	-311.67	0.033	0.02	-0.05	
1,913.00	23.55	253.15	1,848.17	-68.51	-343.18	-315.08	0.162	0.14	0.19	
1,923.00	23.58	253.33	1,857.33	-69.67	-347.00	-318.51	0.232	0.09	0.53	
1,933.00	23.56	253.55	1,866.50	-70.81	-350.84	-321.94	0.271	-0.04	0.67	
1,943.00	23.58	253.60	1,875.66	-71.94	-354.67	-325.38	0.077	0.05	0.15	
1,953.00	23.57	253.53	1,884.83	-73.07	-358.51	-328.81	0.086	-0.02	-0.21	
1,963.00	23.19	253.55	1,894.01	-74.19	-362.32	-332.22	1.155	-1.15	0.05	
1,973.00	22.48	253.50	1,903.22	-75.29	-366.04	-335.56	2.121	-2.12	-0.16	
1,983.00	21.77	253.27	1,912.49	-76.37	-369.65	-338.79	2.143	-2.13	-0.67	
1,993.00	21.15	252.84	1,921.79	-77.44	-373.15	-341.92	1.931	-1.87	-1.30	
2,003.00	20.52	252.07	1,931.14	-78.51	-376.54	-344.94	2.049	-1.87	-2.32	
2,013.00	19.83	251.05	1,940.53	-79.60	-379.81	-347.84	2.324	-2.07	-3.04	
2,023.00	19.24	249.89	1,949.95	-80.72	-382.96	-350.62	2.120	-1.77	-3.49	
2,033.00	18.67	248.97	1,959.41	-81.86	-386.00	-353.28	1.940	-1.72	-2.75	
2,043.00	18.09	248.27	1,968.90	-83.01	-388.94	-355.84	1.867	-1.74	-2.12	
2,043.00	17.42	247.76	1,978.42	-84.15	-300.94	-358.30	2.062	-2.01	-1.52	
2,063.00	16.64	247.70	1,987.98	-85.26	-394.48	-360.65	2.329	-2.32	-0.58	
2,003.00	15.74	247.32	1,997.59	-86.33	-394.46	-362.88	2.730	-2.72	-0.56	
2,073.00	14.82	246.86	2,007.23	-87.36	-397.03	-364.98	2.786	-2.72 -2.76	-0.73 -1.40	
2,093.00	14.11	246.33	2,016.92	-88.35	-401.77	-366.95	2.142	-2.11	-1.59	
2,103.00	13.55	245.78	2,026.63	-89.32	-403.96	-368.83	1.739	-1.69	-1.63	
2,113.00	12.56	245.14	2,036.37	-90.26	-406.01	-370.59	3.005	-2.97	-1.93	
2,123.00	11.76	244.30	2,046.14	-91.15	-407.92	-372.21	2.462	-2.40	-2.53	
2,133.00	11.30	243.19	2,055.94	-92.04	-409.71	-373.73	1.514	-1.36	-3.32	
2,143.00	10.90	242.00	2,065.75	-92.92	-411.42	-375.17	1.382	-1.20	-3.57	
2,153.00	10.37	240.37	2,075.58	-93.81	-413.04	-376.52	1.841	-1.60	-4.89	
2,163.00	9.96	237.45	2,085.43	-94.72	-414.55	-377.75	1.978	-1.23	-8.77	
2,173.00	9.68	233.80	2,095.28	-95.69	-415.95	-378.88	2.040	-0.83	-10.92	
2,183.00	9.51	229.85	2,105.14	-96.72	-417.26	-379.89	2.044	-0.51	-11.88	
2,193.00	9.30	225.13	2,115.00	-97.82	-418.47	-380.79	2.398	-0.64	-14.14	
2,203.00	9.20	220.24	2,124.87	-99.00	-419.56	-381.55	2.375	-0.29	-14.67	
2,213.00	9.10	215.05	2,134.75	-100.25	-420.53	-382.18	2.491	-0.30	-15.56	
2,223.00	9.02	209.82	2,144.62	-101.58	-421.37	-382.67	2.481	-0.24	-15.69	
2,233.00	8.95	204.57	2,154.50	-102.97	-422.08	-383.02	2.471	-0.20	-15.78	
2,243.00	8.91	199.61	2,164.38	-104.41	-422.67	-383.23	2.309	-0.11	-14.86	
2,253.00	8.98	195.16	2,174.26	-105.89	-423.13	-383.31	2.088	0.19	-13.37	
2,263.00	9.11	189.99	2,184.13	-107.42	-423.47	-383.26	2.472	0.41	-15.51	
2,273.00	9.31	184.67	2,194.01	-107.42	-423.68	-383.07	2.617	0.59	-15.93	
2,283.00	9.55	179.31	2,203.87	-110.65	-423.73	-382.72	2.739	0.73	-16.11	
2,293.00	9.88	174.47	2,213.73	-112.33	-423.64	-382.21	2.638	0.99	-14.50	
				-112.33 -114.06						
2,303.00	10.25	171.03	2,223.57		-423.42	-381.57	2.116	1.10	-10.33	
2,313.00	10.48	167.42	2,233.41	-115.83	-423.08	-380.80	2.062	0.68	-10.82	
2,323.00	10.69	163.89	2,243.24	-117.61 110.40	-422.63	-379.92	2.052	0.64	-10.61	
2,333.00	10.99	161.52	2,253.06	-119.40	-422.07	-378.94	1.612	0.90	-7.10	
2,343.00	11.41	158.88	2,262.87	-121.23	-421.41	-377.85	1.974	1.24	-7.92	
2,353.00	11.77	156.24	2,272.67	-123.09	-420.64 -419.76	-376.64 -375.33	1.934 2.011	1.10 1.43	-7.91	

Survey Report

Company: STATOIL - Norway

F-12

 Project:
 SLEIPNER

 Site:
 Volve F

 Well:
 15/9-F-12

 Wellbore:
 F-12

Design:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

Site Volve F

Rotary Table @ 54.90m (Actual RTE as installed) Rotary Table @ 54.90m (Actual RTE as installed)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Database: EDM Oracle

•									
Measured	Inclination	A =:th	Vertical	IN/ C	+E/-W	Vertical Section	Dogleg	Build Rate	Turn
Depth (m)	Inclination (°)	Azimuth (°)	Depth (m)	+N/-S (m)	+E/- VV (m)	(m)	Rate (°/30m)	(°/30m)	Rate (°/30m)
2,373.00	12.79	151.93	2,292.21	-126.90	-418.78	-373.89	2.098	1.62	-6.15
2,383.00	13.35	149.87	2,301.95	-128.88	-417.68	-372.34	2.184	1.68	-6.17
2,393.00	14.04	147.61	2,311.67	-130.90	-416.45	-370.65	2.614	2.07	-6.77
2,403.00	14.66	145.72	2,321.35	-132.97	-415.08	-368.82	2.328	1.86	-5.68
2,413.00	15.34	143.81	2,331.01	-135.09	-413.59	-366.85	2.524	2.04	-5.74
2,423.00	15.89	141.95	2,340.65	-137.23	-411.97	-364.74	2.237	1.66	-5.59
2,433.00	16.32	140.28	2,350.25	-139.39	-410.22	-362.52	1.886	1.28	-5.00
2,443.00	16.72	138.81	2,359.84	-141.55	-408.38	-360.20	1.741	1.21	-4.40
2,453.00	17.17	136.78	2,369.41	-143.71	-406.42	-357.77	2.223	1.34	-6.08
2,463.00	17.67	134.92	2,378.95	-145.86	-404.34	-355.21	2.261	1.52	-5.59
2,464.55	17.75	134.64	2,380.42	-146.19	-404.00	-354.81	2.271	1.55	-5.46
2,493.74	18.80	129.52	2,408.14	-152.31	-397.21	-346.71	1.970	1.08	-5.26
2,536.07	20.39	125.56	2,448.02	-160.94	-385.94	-333.66	1.467	1.13	-2.81
2,576.99	21.70	125.92	2,486.21	-169.52	-374.02	-319.98	0.965	0.96	0.26
2,617.92	26.34	124.65	2,523.59	-179.13	-360.41	-304.42	3.422	3.40	-0.93
2,658.30	30.56	121.61	2,559.08	-189.61	-344.29	-286.21	3.314	3.14	-2.26
2,699.07	33.11	117.41	2,593.72	-200.17	-325.57	-265.47	2.485	1.88	-3.09
2,738.83	35.52	115.77	2,626.56	-210.20	-305.53	-243.56	1.947	1.82	-1.24
2,779.26	41.25	113.83	2,658.24	-220.70	-282.74	-218.89	4.344	4.25	-1.44
2,820.02	45.33	112.36	2,687.90	-231.64	-257.03	-191.27	3.093	3.00	-1.08
2,860.02	49.20	108.88	2,715.05	-241.96	-229.54	-162.08	3.478	2.90	-2.61
2,900.45	51.78	104.36	2,740.77	-250.85	-199.66	-130.93	3.218	1.91	-3.35
2,939.72	53.48	102.53	2,764.61	-258.10	-169.31	-99.73	1.709	1.30	-1.40
2,980.29	54.35	103.04	2,788.51	-265.36	-137.34	-66.95	0.712	0.64	0.38
3,008.61	54.95	103.40	2,804.89	-270.64	-114.85	-43.86	0.708	0.64	0.38
3,060.63	54.55	99.95	2,834.92	-279.24	-73.26	-1.43	1.641	-0.23	-1.99
3,081.25	54.06	97.21	2,846.95	-281.74	-56.70	15.23	3.315	-0.71	-3.99
3,136.60	53.84	95.71	2,879.53	-286.77	-12.24	59.56	0.668	-0.12	-0.81
3,172.51	53.90	98.14	2,900.70	-290.27	16.55	88.32	1.640	0.05	2.03
3,216.39	53.86	101.30	2,926.57	-296.25	51.48	123.64	1.745	-0.03	2.16
3,257.05	53.34	103.39	2,950.70	-303.25	83.45	156.34	1.299	-0.38	1.54
3,297.38	53.81	105.77	2,974.65	-311.42	114.85	188.79	1.467	0.35	1.77
3,337.63	53.10	107.03	2,998.62	-320.55	145.87	221.10	0.922	-0.53	0.94
3,375.41	53.01	106.59	3,021.33	-329.28	174.77	251.27	0.288	-0.07	-0.35
3,416.55	53.14	107.02	3,046.04	-338.79	206.26	284.13	0.268	0.09	0.31
3,456.15	52.97	106.74	3,069.84	-347.98	236.54	315.74	0.213	-0.13	-0.21
3,495.52	52.87	105.59	3,093.58	-356.72	266.71	347.14	0.703	-0.08	-0.88
3,520.00	52.87	105.59	3,108.36	-361.97	285.51	366.65	0.000	0.00	0.00

Casing Points							
	Measured	Vertical			Casing	Hole	
	Depth (m)	Depth (m)		Name	Diameter (in)	Diameter (in)	
	251.00	251.00	30"		30.000	36.000	
	1,357.00	1,333.08	20"		20.000	26.000	
	2,506.00	2,419.73	14"		14.000	17.500	
	3,113.00	2,865.62	9 5/8"		9.625	12.250	

Checked By:	Approved By:	Date:	
,			

STATOIL - Norway

SLEIPNER Volve F 15/9-F-12 F-12

Design: F-12

Error Ellipse Survey Report

11 October, 2007

Error Ellipse Report

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site: Well: 15/9-F-12

Wellbore: F-12 Design: F-12 Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method:** Output errors are at 2.45 sigma Database: **EDM Oracle**

SLEIPNER, Norway Project

Universal Transverse Mercator Map System:

European 1950 - Mean Geo Datum: Zone 31N (0 E to 6 E) Map Zone:

Mean Sea Level System Datum:

Using Well Reference Point Using geodetic scale factor

Volve F, 15/9 Site

6,478,563.52 m Northing: 58° 26' 29.807 N Site Position: Latitude: Мар 435,050.02 m 1° 53' 14.929 E From: Easting: Longitude: 0.00 m -0.95 ° **Position Uncertainty:** Slot Radius: Grid Convergence:

15/9-F-12 Well 2.70 m 6,478,566.22 m 58° 26' 29.894 N **Well Position** +N/-S Latitude: Northing: 0.19 m 435,050.21 m 1° 53' 14.937 E +E/-W Easting: Longitude: 0.00 m Wellhead Depth: 91.00 m Water Depth: 91.00 m **Position Uncertainty**

Wellbore F-12 Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (°) (nT) **3NETICREFERENCE** 3/1/2007 -2.34 71.63 50,321

F-12 Design **Audit Notes:** 1.0 ACTUAL 145.90 Version: Phase: Tie On Depth: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (m) (m) (m) (°) 145.90 2.70 104.32 0.19

Survey Program	Date 10/9/2007		
From (m)	To (m) Survey (Wellbore)	Tool Name	Description
174.00 2,464.55 2,536.07 3,081.25	2,464.55 14" Casing Gyro Survey (F-12) 2,536.07 17.5" Section MWD Survey (F-12) 3,081.25 12.25" Section MWD Survey (F-12) 3,520.00 8.5" Section MWD Survey (F-12)	Wellbore Surveyor, cont Magnetic, std, non-mag Magnetic, std, non-mag Magnetic, std, non-mag	Gyro Tool from GD Magnetic Tools (MWD, EMS) Magnetic Tools (MWD, EMS) Magnetic Tools (MWD, EMS)

Position (uncertainty	and bias	at survey s	tation									
Measured Depth (m)	Inclination (°)	Azimuth	Vertical Depth (m)	Highsi Error (m)	de Bias (m)	Later Error (m)	al Bias (m)	Vertic Error (m)	al Bias (m)	Magnitude of Bias (m)	Semi-major Error (m)	Semi-r Error (m)	ninor Azimuth Tool (°)
145.90	0.00	0.00	145.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 UNDEFINED
174.00	0.12	166.21	174.00	0.06	0.00	0.06	0.00	0.86	0.00	0.00	0.06	0.06	45.00 Wellbore Surveyor, cont (1)
204.00	0.08	159.79	204.00	0.19	0.00	0.19	0.00	0.86	0.00	0.00	0.19	0.19	74.02 Wellbore Surveyor, cont (1)
234.00	0.15	113.27	234.00	0.32	0.00	0.32	0.00	0.87	0.00	0.00	0.32	0.32	63.47 Wellbore Surveyor, cont (1)
264.00	0.25	94.15	264.00	0.45	0.00	0.45	0.00	0.87	0.00	0.00	0.45	0.44	45.00 Wellbore Surveyor, cont (1)
294.00	0.34	83.77	294.00	0.58	0.00	0.58	0.00	0.88	0.00	0.00	0.58	0.57	37.41 Wellbore Surveyor, cont (1)
324.00	0.36	81.51	324.00	0.70	0.00	0.70	0.00	0.90	0.00	0.00	0.71	0.70	28.50 Wellbore Surveyor, cont (1)
354.00	0.46	79.36	354.00	0.83	0.00	0.83	0.00	0.91	0.00	0.00	0.84	0.83	21.92 Wellbore Surveyor, cont (1)

Error Ellipse Report

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site:

15/9-F-12 Well: Wellbore: F-12 F-12 Design:

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Survey Calculation Method: Minimum Curvature

/leasured	Inclination	Azimuth	Vertical	Highsi		Later		Vertic		Magnitude	Semi-major	Semi-n		
Depth (m)	(°)	(°)	Depth (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	of Bias (m)	Error (m)	Error (m)	Azimuth (°)	Tool
384.00	0.65	66.92	384.00	0.96	0.00	0.96	0.00	0.93	0.00	0.00	0.97	0.96	16.12	Wellbore Surveyor, cont (
414.00	1.09	38.86	413.99	1.09	0.00	1.09	0.00	0.94	0.00	0.00	1.09	1.09	9.53	Wellbore Surveyor, cont (
444.00	2.91	27.73	443.97	1.21	0.00	1.22	0.00	0.96	0.00	0.00	1.22	1.21	1.93	Wellbore Surveyor, cont (
474.00	4.85	26.01	473.90	1.34	0.00	1.35	0.00	0.98	0.00	0.00	1.35	1.34	174.12	Wellbore Surveyor, cont (
504.00	6.49	27.94	503.76	1.47	0.00	1.48	0.00	1.01	0.00	0.00	1.48	1.47		Wellbore Surveyor, cont (
534.00		30.42	533.53	1.59	0.00	1.60	0.00	1.03	0.00	0.00	1.61	1.60		Wellbore Surveyor, cont (
564.00	6.95	32.03	563.28	1.72	0.00	1.73	0.00	1.06	0.00	0.00	1.74	1.73	172.33	Wellbore Surveyor, cont (
594.00	5.54	30.06	593.10	1.85	0.00	1.86	0.00	1.09	0.00	0.00	1.87	1.85	176.25	Wellbore Surveyor, cont (
624.00	4.90	17.77	622.98	1.98	0.00	1.99	0.00	1.12	0.00	0.00	1.99	1.98	177.59	Wellbore Surveyor, cont (
654.00		0.38	652.87	2.11	0.00	2.12	0.00	1.15	0.00	0.00	2.12	2.11	177.28	Wellbore Surveyor, cont (
684.00		334.67	682.73	2.23	0.00	2.25	0.00	1.18	0.00	0.00	2.25	2.24		Wellbore Surveyor, cont (
714.00	6.39	320.18	712.56	2.36	0.00	2.37	0.00	1.21	0.00	0.00	2.38	2.37	174.35	Wellbore Surveyor, cont (
744.00	6.80	303.74	742.36	2.49	0.00	2.50	0.00	1.25	0.00	0.00	2.50	2.49	170.39	Wellbore Surveyor, cont (
774.00	8.44	288.20	772.10	2.60	0.00	2.62	0.00	1.28	0.00	0.00	2.63	2.62	165.32	Wellbore Surveyor, cont (
804.00	11.14	278.45	801.66	2.71	0.00	2.75	0.00	1.31	0.00	0.00	2.76	2.75	157.24	Wellbore Surveyor, cont (
834.00	13.14	272.24	830.99	2.82	0.00	2.88	0.00	1.35	0.00	0.00	2.88	2.88	136.41	Wellbore Surveyor, cont (
864.00	14.81	266.26	860.11	2.92	0.00	3.01	0.00	1.38	0.00	0.00	3.01	3.00	107.67	Wellbore Surveyor, cont (
893.00	14.99	264.04	888.13	3.04	0.00	3.13	0.00	1.42	0.00	0.00	3.13	3.12	95.56	Wellbore Surveyor, cont (
903.00	14.51	263.13	897.80	3.08	0.00	3.18	0.00	1.43	0.00	0.00	3.18	3.16	93.62	Wellbore Surveyor, cont (
913.00	14.08	262.05	907.49	3.13	0.00	3.22	0.00	1.45	0.00	0.00	3.22	3.19	91.85	Wellbore Surveyor, cont (
923.00	13.81	261.01	917.20	3.17	0.00	3.26	0.00	1.46	0.00	0.00	3.26	3.23	90.46	Wellbore Surveyor, cont (
933.00	13.78	260.55	926.91	3.21	0.00	3.31	0.00	1.48	0.00	0.00	3.31	3.27	89.28	Wellbore Surveyor, cont (
943.00	13.86	260.53	936.62	3.25	0.00	3.35	0.00	1.49	0.00	0.00	3.35	3.32	88.24	Wellbore Surveyor, cont (
953.00		260.58	946.33	3.29	0.00	3.39	0.00	1.51	0.00	0.00	3.39	3.36		Wellbore Surveyor, cont (
963.00	14.13	261.38	956.03	3.33	0.00	3.44	0.00	1.52	0.00	0.00	3.44	3.40		Wellbore Surveyor, cont (
973.00	14.43	263.23	965.72	3.37	0.00	3.48	0.00	1.53	0.00	0.00	3.48	3.44		Wellbore Surveyor, cont (
983.00		264.88	975.40	3.41	0.00	3.52	0.00	1.55	0.00	0.00	3.52	3.48		Wellbore Surveyor, cont (
993.00	14.91	265.80	985.06	3.45	0.00	3.57	0.00	1.56	0.00	0.00	3.57	3.52	84.82	Wellbore Surveyor, cont (
1,003.00		266.46	994.72	3.49	0.00	3.61	0.00	1.58	0.00	0.00	3.61	3.56		Wellbore Surveyor, cont (
1,013.00	15.13	267.49	1,004.38	3.53	0.00	3.65	0.00	1.59	0.00	0.00	3.65	3.60		Wellbore Surveyor, cont (
1,023.00	15.14	268.09	1,014.03	3.57	0.00	3.69	0.00	1.61	0.00	0.00	3.69	3.64		Wellbore Surveyor, cont (
1,033.00		268.61	1,023.69	3.61	0.00	3.73	0.00	1.63	0.00	0.00	3.73	3.68		Wellbore Surveyor, cont (
1,043.00	14.54	269.28	1,033.36	3.66	0.00	3.77	0.00	1.64	0.00	0.00	3.77	3.72	83 00	Wellbore Surveyor, cont (1
1,053.00		269.64	1,043.04	3.71	0.00	3.82	0.00	1.66	0.00	0.00	3.82	3.76		Wellbore Surveyor, cont (
1,063.00	14.15	269.65	1,052.74	3.75	0.00	3.86	0.00	1.68	0.00	0.00	3.86	3.80		Wellbore Surveyor, cont (
1,073.00	14.22	269.22	1,062.43	3.79	0.00	3.90	0.00	1.69	0.00	0.00	3.90	3.84		Wellbore Surveyor, cont (
1,083.00		267.93	1,072.12	3.83	0.00	3.94	0.00	1.71	0.00	0.00	3.94	3.88		Wellbore Surveyor, cont (
1,093.00	14.59	265.82	1,081.81	3.87	0.00	3.98	0.00	1.72	0.00	0.00	3.98	3.92	84.10	Wellbore Surveyor, cont (
1,103.00	14.67	263.48	1,091.48	3.91	0.00	4.03	0.00	1.74	0.00	0.00	4.03	3.96		Wellbore Surveyor, cont (
1,113.00	14.82	260.96	1,101.15	3.95	0.00	4.07	0.00	1.76	0.00	0.00	4.07	4.00		Wellbore Surveyor, cont (
1,123.00		258.59	1,110.81	3.98	0.00	4.11	0.00	1.77	0.00	0.00	4.11	4.04		Wellbore Surveyor, cont (
1,133.00		256.39	1,120.45	4.02	0.00	4.15	0.00	1.79	0.00	0.00	4.15	4.08		Wellbore Surveyor, cont (
1,143.00	16.43	254.47	1,130.06	4.05	0.00	4.19	0.00	1.81	0.00	0.00	4.19	4.12	84.10	Wellbore Surveyor, cont (
1,153.00	17.58	252.27	1,139.62	4.07	0.00	4.23	0.00	1.82	0.00	0.00	4.23	4.16	83.98	Wellbore Surveyor, cont (
1,163.00		250.54	1,149.12	4.09	0.00	4.27	0.00	1.84	0.00	0.00	4.27	4.20	83.82	Wellbore Surveyor, cont (
1,173.00	19.84	248.95	1,158.56	4.12	0.00	4.31	0.00	1.85	0.00	0.00	4.31	4.24	83.52	Wellbore Surveyor, cont (
1,183.00		248.22	1,167.95	4.15	0.00	4.35	0.00	1.87	0.00	0.00	4.36	4.28	83.05	Wellbore Surveyor, cont (
1,193.00	20.78	248.08	1,177.30	4.18	0.00	4.39	0.00	1.88	0.00	0.00	4.40	4.32	82.39	Wellbore Surveyor, cont (
1,203.00		248.00	1,186.65	4.22	0.00	4.43	0.00	1.90	0.00	0.00	4.44	4.36		Wellbore Surveyor, cont (
1,213.00		248.50	1,196.00	4.27	0.00	4.48	0.00	1.92	0.00	0.00	4.48	4.39		Wellbore Surveyor, cont (
1,223.00		249.42	1,205.39	4.32	0.00	4.52	0.00	1.94	0.00	0.00	4.52	4.43		Wellbore Surveyor, cont (
1,233.00		250.72	1,214.81	4.37	0.00	4.56	0.00	1.96	0.00	0.00	4.57	4.47		Wellbore Surveyor, cont (
1,243.00	18.88	251.85	1,224.26	4.42	0.00	4.61	0.00	1.98	0.00	0.00	4.61	4.51	78.71	Wellbore Surveyor, cont (
1,253.00		252.46	1,233.73	4.46	0.00	4.65	0.00	2.00	0.00	0.00	4.65	4.55		Wellbore Surveyor, cont (

Error Ellipse Report

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site:

15/9-F-12 Well: Wellbore: F-12 F-12 Design:

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Survey Calculation Method: Minimum Curvature

Measured	Inclination	Azimuth	Vertical	Highsi	de	Later	al	Vertic	al	Magnitude	Semi-major	Semi-n	ninor	
Depth (m)	(°)	(°)	Depth (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	of Bias (m)	Error (m)	Error (m)	Azimuth (°)	Tool
1,263.00		252.60	1,243.18	4.50	0.00	4.69	0.00	2.02	0.00	0.00	4.70	4.59	77.83	Wellbore Surveyor, cont (
1,273.00	19.35	252.60	1,252.63	4.53	0.00	4.74	0.00	2.04	0.00	0.00	4.74	4.63	77.49	Wellbore Surveyor, cont (
1,283.00	19.47	252.47	1,262.06	4.57	0.00	4.78	0.00	2.05	0.00	0.00	4.78	4.67	77.16	Wellbore Surveyor, cont (
1,293.00	19.09	252.04	1,271.50	4.62	0.00	4.83	0.00	2.07	0.00	0.00	4.83	4.70	76.86	Wellbore Surveyor, cont (
1,303.00		252.04	1,280.98	4.62	0.00	4.87	0.00	2.07	0.00	0.00	4.87	4.70		Wellbore Surveyor, cont
1,313.00	16.56	250.46	1,290.53	4.73	0.00	4.91	0.00	2.12	0.00	0.00	4.92	4.78		Wellbore Surveyor, cont
1,323.00		250.09	1,300.14	4.79	0.00	4.96	0.00	2.14	0.00	0.00	4.96	4.82		Wellbore Surveyor, cont
1,333.00		250.04	1,309.81	4.84	0.00	5.00	0.00	2.16	0.00	0.00	5.00	4.86		Wellbore Surveyor, cont (
4 0 40 00	44.00	040.00	4 040 54	4.00	0.00	5.04	0.00	0.40	0.00		5.04	4.00	75.74	
1,343.00		249.89	1,319.51	4.89	0.00	5.04	0.00	2.18	0.00	0.00	5.04	4.90		Wellbore Surveyor, cont
1,353.00	14.20	248.89	1,329.20	4.93	0.00	5.08	0.00	2.20	0.00	0.00	5.09	4.94		Wellbore Surveyor, cont
1,363.00	14.61	247.86	1,338.89	4.97	0.00	5.13	0.00	2.22	0.00	0.00	5.13	4.98		Wellbore Surveyor, cont
1,373.00		247.18	1,348.55	5.00	0.00	5.17	0.00	2.24	0.00	0.00	5.17	5.02		Wellbore Surveyor, cont
1,383.00	16.31	246.75	1,358.17	5.03	0.00	5.21	0.00	2.25	0.00	0.00	5.21	5.06	75.40	Wellbore Surveyor, cont
1,393.00	17.11	246.17	1,367.75	5.06	0.00	5.25	0.00	2.27	0.00	0.00	5.25	5.10	75.30	Wellbore Surveyor, cont (
1,403.00	17.79	245.40	1,377.29	5.09	0.00	5.29	0.00	2.29	0.00	0.00	5.29	5.15	75.18	Wellbore Surveyor, cont
1,413.00	18.50	244.47	1,386.79	5.12	0.00	5.33	0.00	2.31	0.00	0.00	5.33	5.19	75.03	Wellbore Surveyor, cont (
1,423.00	19.40	243.27	1,396.25	5.15	0.00	5.37	0.00	2.33	0.00	0.00	5.37	5.23	74.86	Wellbore Surveyor, cont
1,433.00	20.36	242.01	1,405.65	5.17	0.00	5.41	0.00	2.35	0.00	0.00	5.42	5.26		Wellbore Surveyor, cont (
1,443.00	21.22	240.96	1,415.00	5.19	0.00	5.45	0.00	2.37	0.00	0.00	5.46	5.30	74 40	Wellbore Surveyor, cont (
1,453.00	22.14	239.94	1,424.29	5.22	0.00	5.49	0.00	2.39	0.00	0.00	5.50	5.34		Wellbore Surveyor, cont
1,463.00	22.83	239.04	1,433.53	5.24	0.00	5.53	0.00	2.41	0.00	0.00	5.54	5.38		Wellbore Surveyor, cont
1,473.00		238.62	1,442.75	5.28	0.00	5.57	0.00	2.43	0.00	0.00	5.58	5.42		Wellbore Surveyor, cont
1,483.00	22.44	238.58	1,451.98	5.33	0.00	5.62	0.00	2.45	0.00	0.00	5.63	5.46		Wellbore Surveyor, cont
1,493.00		239.22	1,461.24	5.38	0.00	5.66	0.00	2.47	0.00	0.00	5.67	5.49		Wellbore Surveyor, cont
1,503.00	21.01	240.26	1,470.56	5.44	0.00	5.71	0.00	2.49	0.00	0.00	5.71	5.53		Wellbore Surveyor, cont
1,513.00	20.67	241.23	1,479.90	5.49	0.00	5.75	0.00	2.52	0.00	0.00	5.76	5.57		Wellbore Surveyor, cont
1,523.00		242.19	1,489.26	5.53	0.00	5.80	0.00	2.54	0.00	0.00	5.80	5.61		Wellbore Surveyor, cont
1,533.00	20.83	243.57	1,498.61	5.57	0.00	5.84	0.00	2.56	0.00	0.00	5.84	5.65	70.49	Wellbore Surveyor, cont
1,543.00	20.97	245.58	1,507.95	5.61	0.00	5.89	0.00	2.58	0.00	0.00	5.89	5.69	70.15	Wellbore Surveyor, cont
1,553.00	21.13	247.64	1,517.29	5.65	0.00	5.93	0.00	2.60	0.00	0.00	5.93	5.73	69.86	Wellbore Surveyor, cont
1,563.00	21.38	249.38	1,526.61	5.68	0.00	5.98	0.00	2.63	0.00	0.00	5.98	5.76	69.63	Wellbore Surveyor, cont
1,573.00	21.64	251.07	1,535.91	5.72	0.00	6.03	0.00	2.65	0.00	0.00	6.03	5.80	69.46	Wellbore Surveyor, cont
1,583.00	21.87	252.47	1,545.20	5.76	0.00	6.07	0.00	2.67	0.00	0.00	6.07	5.84	69.35	Wellbore Surveyor, cont (
1,593.00	22.08	253.27	1,554.47	5.80	0.00	6.12	0.00	2.69	0.00	0.00	6.12	5.88	69 29	Wellbore Surveyor, cont
1,603.00	22.29	253.50	1,563.73	5.83	0.00	6.16	0.00	2.72	0.00	0.00	6.17	5.92		Wellbore Surveyor, cont
1,613.00	22.47	253.52	1,572.98	5.87	0.00	6.21	0.00	2.74	0.00	0.00	6.21	5.96		Wellbore Surveyor, cont
1,623.00		253.41	1,582.21	5.91	0.00	6.26	0.00	2.76	0.00	0.00	6.26	5.99		Wellbore Surveyor, cont (
1,633.00	22.93	253.25	1,591.43	5.94	0.00	6.31	0.00	2.78	0.00	0.00	6.31	6.03		Wellbore Surveyor, cont (
4 040 0-	20.0-	050.4:	4.000.00		2.22	2.25	2.22	224	2.25	0.0-	2.25	2.25	20	Mallhara O.
1,643.00		253.11	1,600.63	5.98	0.00	6.35	0.00	2.81	0.00	0.00	6.36	6.07		Wellbore Surveyor, cont (
1,653.00	23.40	252.96	1,609.82	6.01	0.00	6.40	0.00	2.83	0.00	0.00	6.40	6.11		Wellbore Surveyor, cont (
1,663.00		252.89	1,618.99	6.05	0.00	6.45	0.00	2.85	0.00	0.00	6.45	6.14		Wellbore Surveyor, cont
1,673.00 1,683.00		252.88 252.91	1,628.16 1,637.32	6.09 6.13	0.00	6.50 6.55	0.00	2.88 2.90	0.00	0.00	6.50 6.55	6.18 6.22		Wellbore Surveyor, cont Wellbore Surveyor, cont
.,000.00	25.00	202.81	1,001.02	0.13	0.00	0.55	0.00	2.30	0.00	0.00	0.00	0.22	03.40	
1,693.00		252.85	1,646.48	6.17	0.00	6.60	0.00	2.92	0.00	0.00	6.60	6.26		Wellbore Surveyor, cont
1,703.00	23.73	252.87	1,655.63	6.20	0.00	6.65	0.00	2.95	0.00	0.00	6.65	6.30	69.51	Wellbore Surveyor, cont
1,713.00	23.78	252.93	1,664.78	6.24	0.00	6.70	0.00	2.97	0.00	0.00	6.70	6.33	69.55	Wellbore Surveyor, cont
1,723.00	23.76	252.96	1,673.94	6.28	0.00	6.75	0.00	3.00	0.00	0.00	6.75	6.37	69.58	Wellbore Surveyor, cont
1,733.00	23.71	252.97	1,683.09	6.33	0.00	6.80	0.00	3.02	0.00	0.00	6.80	6.41	69.62	Wellbore Surveyor, cont
1,743.00	23.70	253.01	1,692.25	6.37	0.00	6.85	0.00	3.05	0.00	0.00	6.85	6.45	69.66	Wellbore Surveyor, cont
1,753.00		253.05	1,701.40	6.41	0.00	6.90	0.00	3.07	0.00	0.00	6.90	6.48		Wellbore Surveyor, cont
1,763.00		252.90	1,710.56	6.45	0.00	6.96	0.00	3.09	0.00	0.00	6.96	6.52		Wellbore Surveyor, cont
1,773.00		252.90	1,719.73	6.49	0.00	7.01	0.00	3.12	0.00	0.00	7.01	6.56		Wellbore Surveyor, cont
1,773.00		252.85	1,719.73	6.53	0.00	7.01	0.00	3.14	0.00	0.00	7.06	6.60		Wellbore Surveyor, cont (
1,793.00	23.40	252.68	1,738.07	6.57	0.00	7.11	0.00	3.17	0.00	0.00	7.11	6.63	00.05	Wellbore Surveyor, cont

Error Ellipse Report

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site:

15/9-F-12 Well: Wellbore: F-12 F-12 Design:

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Survey Calculation Method: Minimum Curvature

Measured	Inclination	Azimuth	Vertical	Highsi		Later	al	Vertic	al	Magnitude	Semi-major	Semi-n	ninor	
Depth (m)	(°)	(°)	Depth (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	Error (m)	Bias (m)	of Bias (m)	Error (m)	Error (m)	Azimuth (°)	Tool
1,803.00		252.68	1,747.25	6.62	0.00	7.17	0.00	3.19	0.00	0.00	7.17	6.67	69.89	Wellbore Surveyor, cont (
1,813.00	23.36	252.63	1,756.43	6.66	0.00	7.22	0.00	3.22	0.00	0.00	7.22	6.71	69.92	Wellbore Surveyor, cont (
1,823.00	23.39	252.65	1,765.61	6.70	0.00	7.27	0.00	3.24	0.00	0.00	7.27	6.75	69.95	Wellbore Surveyor, cont (
1,833.00	23.45	252.52	1,774.78	6.73	0.00	7.33	0.00	3.27	0.00	0.00	7.33	6.78	69.98	Wellbore Surveyor, cont (
1,843.00	23.48	252.56	1,783.96	6.77	0.00	7.38	0.00	3.29	0.00	0.00	7.38	6.82	70.01	Wellbore Surveyor, cont (
1,853.00	23.41	252.72	1,793.13	6.82	0.00	7.43	0.00	3.32	0.00	0.00	7.44	6.86	70.05	Wellbore Surveyor, cont (
1,863.00	23.39	252.72	1,802.31	6.86	0.00	7.49	0.00	3.35	0.00	0.00	7.49	6.90	70.08	Wellbore Surveyor, cont (
1,873.00	23.47	252.78	1,811.48	6.90	0.00	7.54	0.00	3.37	0.00	0.00	7.54	6.94	70.11	Wellbore Surveyor, cont (
1,883.00	23.51	252.91	1,820.66	6.94	0.00	7.60	0.00	3.40	0.00	0.00	7.60	6.97	70.14	Wellbore Surveyor, cont (
1,893.00	23.49	253.11	1,829.83	6.98	0.00	7.65	0.00	3.42	0.00	0.00	7.66	7.01	70.18	Wellbore Surveyor, cont (
1,903.00	23.50	253.09	1,839.00	7.02	0.00	7.71	0.00	3.45	0.00	0.00	7.71	7.05		Wellbore Surveyor, cont (
1,913.00		253.15	1,848.17	7.06	0.00	7.77	0.00	3.47	0.00	0.00	7.77	7.09		Wellbore Surveyor, cont (
1,923.00	23.58	253.33	1,857.33	7.10	0.00	7.82	0.00	3.50	0.00	0.00	7.82	7.13		Wellbore Surveyor, cont (
1,933.00	23.56	253.55	1,866.50	7.14	0.00	7.88	0.00	3.53	0.00	0.00	7.88	7.16		Wellbore Surveyor, cont (
1.040.00	20.50	050.00	1 075 00	7.40	0.00	7.00	0.00	3.55	0.00	0.00	704	7.00	70.00	Wollboro Sungaria
1,943.00	23.58	253.60	1,875.66	7.18	0.00	7.93	0.00	3.55	0.00	0.00	7.94	7.20		Wellbore Surveyor, cont (
1,953.00	23.57	253.53	1,884.83	7.22	0.00	7.99	0.00	3.58	0.00	0.00	7.99	7.24		Wellbore Surveyor, cont (
1,963.00		253.55	1,894.01	7.27	0.00	8.05	0.00	3.60	0.00	0.00	8.05	7.28		Wellbore Surveyor, cont (
1,973.00 1,983.00	22.48 21.77	253.50 253.27	1,903.22 1,912.49	7.32 7.38	0.00	8.11 8.16	0.00 0.00	3.63 3.66	0.00	0.00	8.11 8.17	7.32 7.35		Wellbore Surveyor, cont (Wellbore Surveyor, cont (
1,993.00	21.15	252.84	1,921.79	7.43	0.00	8.22	0.00	3.69	0.00	0.00	8.22	7.39	70.58	Wellbore Surveyor, cont (
2,003.00		252.07	1,931.14	7.48	0.00	8.28	0.00	3.71	0.00	0.00	8.28	7.43		Wellbore Surveyor, cont (
2,013.00	19.83	251.05	1,940.53	7.53	0.00	8.34	0.00	3.74	0.00	0.00	8.34	7.47	70.61	Wellbore Surveyor, cont (
2,023.00	19.24	249.89	1,949.95	7.58	0.00	8.39	0.00	3.77	0.00	0.00	8.39	7.51	70.61	Wellbore Surveyor, cont (
2,033.00	18.67	248.97	1,959.41	7.63	0.00	8.45	0.00	3.79	0.00	0.00	8.45	7.55	70.60	Wellbore Surveyor, cont (
2,043.00	18.09	248.27	1,968.90	7.68	0.00	8.51	0.00	3.82	0.00	0.00	8.51	7.59	70.57	Wellbore Surveyor, cont (
2,053.00	17.42	247.76	1,978.42	7.73	0.00	8.56	0.00	3.85	0.00	0.00	8.56	7.63	70.53	Wellbore Surveyor, cont (
2,063.00	16.64	247.57	1,987.98	7.78	0.00	8.62	0.00	3.88	0.00	0.00	8.62	7.67	70.50	Wellbore Surveyor, cont (
2,073.00	15.74	247.32	1,997.59	7.83	0.00	8.67	0.00	3.90	0.00	0.00	8.68	7.71		Wellbore Surveyor, cont (
2,083.00	14.82	246.86	2,007.23	7.87	0.00	8.72	0.00	3.93	0.00	0.00	8.72	7.75	70.44	Wellbore Surveyor, cont (
2,093.00	14.11	246.33	2,016.92	7.92	0.00	8.76	0.00	3.96	0.00	0.00	8.76	7.79	70 43	Wellbore Surveyor, cont (
2,103.00	13.55	245.78	2,026.63	7.97	0.00	8.79	0.00	3.98	0.00	0.00	8.80	7.83		Wellbore Surveyor, cont (
2,113.00		245.14	2,026.03	8.01	0.00	8.83	0.00	4.01	0.00	0.00	8.84	7.87		Wellbore Surveyor, cont (
2,123.00	11.76	244.30	2,046.14	8.06	0.00	8.87	0.00	4.04	0.00	0.00	8.88	7.92		Wellbore Surveyor, cont (
2,123.00	11.70	243.19	2,055.94	8.10	0.00	8.90	0.00	4.04	0.00	0.00	8.92	7.96		Wellbore Surveyor, cont (
2,143.00	10.90	242.00	2,065.75	8.15	0.00	8.93	0.00	4.09	0.00	0.00	8.95	8.00		Wellbore Surveyor, cont (
2,153.00	10.37	240.37	2,075.58	8.20	0.00	8.97	0.00	4.12	0.00	0.00	8.99	8.04		Wellbore Surveyor, cont (
2,163.00	9.96	237.45	2,085.43	8.25	0.00	8.99	0.00	4.14	0.00	0.00	9.03	8.08		Wellbore Surveyor, cont (
2,173.00	9.68	233.80	2,095.28	8.32	0.00	9.00	0.00	4.17	0.00	0.00	9.07	8.13		Wellbore Surveyor, cont (
2,183.00	9.51	229.85	2,105.14	8.39	0.00	9.00	0.00	4.19	0.00	0.00	9.11	8.17	70.39	Wellbore Surveyor, cont (
2,193.00	9.30	225.13	2,115.00	8.48	0.00	8.99	0.00	4.22	0.00	0.00	9.15	8.21	70.38	Wellbore Surveyor, cont (
2,203.00	9.20	220.24	2,124.87	8.58	0.00	8.96	0.00	4.25	0.00	0.00	9.19	8.25	70.38	Wellbore Surveyor, cont (
2,213.00	9.10	215.05	2,134.75	8.68	0.00	8.93	0.00	4.27	0.00	0.00	9.23	8.30	70.38	Wellbore Surveyor, cont (
2,223.00	9.02	209.82	2,144.62	8.79	0.00	8.89	0.00	4.30	0.00	0.00	9.27	8.34	70.38	Wellbore Surveyor, cont (
2,233.00	8.95	204.57	2,154.50	8.90	0.00	8.84	0.00	4.32	0.00	0.00	9.30	8.38	70.38	Wellbore Surveyor, cont (
2,243.00	8.91	199.61	2,164.38	9.01	0.00	8.80	0.00	4.35	0.00	0.00	9.34	8.42	70.38	Wellbore Surveyor, cont (
2,253.00		195.16	2,174.26	9.10	0.00	8.77	0.00	4.37	0.00	0.00	9.38	8.46		Wellbore Surveyor, cont (
2,263.00		189.99	2,184.13	9.19	0.00	8.74	0.00	4.40	0.00	0.00	9.42	8.51		Wellbore Surveyor, cont (
2,273.00		184.67	2,194.13	9.19	0.00	8.71	0.00	4.42	0.00	0.00	9.42	8.55		Wellbore Surveyor, cont (
2,273.00		179.31	2,194.01	9.26	0.00	8.69	0.00	4.42	0.00	0.00	9.46	8.59		Wellbore Surveyor, cont (
2,293.00		174.47	2,213.73	9.40	0.00	8.69	0.00	4.47	0.00	0.00	9.54	8.63		Wellbore Surveyor, cont (
2,303.00		171.03	2,223.57	9.44	0.00	8.71	0.00	4.50	0.00	0.00	9.57	8.67		Wellbore Surveyor, cont (
2,313.00		167.42	2,233.41	9.48	0.00	8.73	0.00	4.52	0.00	0.00	9.61	8.72		Wellbore Surveyor, cont (
2,323.00		163.89	2,243.24	9.51	0.00	8.76	0.00	4.55	0.00	0.00	9.65	8.76		Wellbore Surveyor, cont (
2,333.00	10.99	161.52	2,253.06	9.53	0.00	8.80	0.00	4.57	0.00	0.00	9.69	8.80	70.40	Wellbore Surveyor, cont (

Error Ellipse Report

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site: 15/9-F-12 Well:

Wellbore: F-12 F-12 Design:

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Survey Calculation Method: Minimum Curvature

Depth (m) 2,343.00 2,363.00 2,363.00 2,363.00 2,373.00 2,383.00 2,403.00 2,413.00 2,413.00 2,413.00 2,443.00 2,453.00 2,463.00 2,463.07 2,576.99 2,617.92 2,658.30 2,738.83 2,779.26 2,820.02 2,860.02 2,990.45	(°) 11.41 11.77 12.25 12.79 13.35 14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56 33.11	(°) 158.88 156.24 153.98 151.93 149.87 147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.64 129.52 125.56 125.92 124.65	Depth (m) 2.262.87 2.272.67 2.282.45 2.292.21 2.301.95 2.311.67 2.321.35 2.331.01 2.340.65 2.350.25 2.359.84 2.369.41 2.378.95 2.380.42 2.408.14	9.55 9.56 9.57 9.57 9.57 9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.39	Bias (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	8.84 8.89 8.93 8.98 9.04 9.09 9.15 9.20 9.26 9.32 9.37 9.44 9.50 9.51	Bias (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	4.60 4.62 4.65 4.67 4.70 4.72 4.74 4.77 4.79 4.82 4.84 4.86 4.89	Bias (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	of Bias (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	9.73 9.76 9.80 9.84 9.88 9.91 9.95 9.99 10.02 10.06	Error (m) 8.84 8.88 8.92 8.96 9.00 9.04 9.08 9.13 9.17 9.21	70.55 70.59 70.63 70.68 70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1
2,353.00 2,363.00 2,373.00 2,373.00 2,383.00 2,403.00 2,410.00 2,423.00 2,423.00 2,433.00 2,433.00 2,443.00 2,453.00 2,464.55 2,493.74 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,990.45 2,939.72 2,980.29	11.77 12.25 12.79 13.35 14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 18.80 20.39 21.70 26.34 30.56	156.24 153.98 151.93 149.87 147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52	2,272.67 2,282.45 2,292.21 2,301.95 2,311.67 2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.56 9.57 9.57 9.57 9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.89 8.93 8.98 9.04 9.09 9.15 9.20 9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.62 4.65 4.67 4.70 4.72 4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.76 9.80 9.84 9.88 9.91 9.95 9.99 10.02 10.06	8.88 8.92 8.96 9.00 9.04 9.08 9.13 9.17 9.21	70.55 70.59 70.63 70.68 70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1
2,363.00 2,373.00 2,383.00 2,393.00 2,403.00 2,413.00 2,423.00 2,433.00 2,433.00 2,453.00 2,463.00 2,463.00 2,463.00 2,663.00 2,663.00 2,663.00 2,676.99 2,676.99 2,677.92 2,677.92 2,677.92 2,860.02 2,900.45 2,939.72 2,939.72	12.25 12.79 13.35 14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	153.98 151.93 149.87 147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,282.45 2,292.21 2,301.95 2,311.67 2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.57 9.57 9.57 9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.93 8.98 9.04 9.09 9.15 9.20 9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.65 4.67 4.70 4.72 4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.80 9.84 9.88 9.91 9.95 9.99 10.02 10.06	8.92 8.96 9.00 9.04 9.08 9.13 9.17 9.21	70.59 70.63 70.68 70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1
2,373.00 2,383.00 2,393.00 2,403.00 2,413.00 2,423.00 2,433.00 2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	12.79 13.35 14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	151.93 149.87 147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,292.21 2,301.95 2,311.67 2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.57 9.57 9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.98 9.04 9.09 9.15 9.20 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.67 4.70 4.72 4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.84 9.88 9.91 9.95 9.99 10.02 10.06	8.96 9.00 9.04 9.08 9.13 9.17 9.21	70.63 70.68 70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1
2,383.00 2,393.00 2,403.00 2,413.00 2,423.00 2,433.00 2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	13.35 14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	149.87 147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,301.95 2,311.67 2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.57 9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.04 9.09 9.15 9.20 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.70 4.72 4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	9.88 9.91 9.95 9.99 10.02 10.06	9.00 9.04 9.08 9.13 9.17 9.21	70.68 70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1
2,393.00 2,403.00 2,413.00 2,423.00 2,433.00 2,433.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	14.04 14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	147.61 145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,311.67 2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.56 9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.09 9.15 9.20 9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.72 4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	9.91 9.95 9.99 10.02 10.06	9.04 9.08 9.13 9.17 9.21	70.73 70.78 70.84 70.91 70.98	Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1
2,403.00 2,413.00 2,423.00 2,433.00 2,443.00 2,443.00 2,453.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	14.66 15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	145.72 143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,321.35 2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.55 9.54 9.52 9.52 9.51 9.50 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.15 9.20 9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.74 4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	9.95 9.99 10.02 10.06	9.08 9.13 9.17 9.21	70.78 70.84 70.91 70.98 71.07	Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1
2,413.00 2,423.00 2,433.00 2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	15.34 15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	143.81 141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,331.01 2,340.65 2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.54 9.52 9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.20 9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00 0.00	4.77 4.79 4.82 4.84 4.86	0.00 0.00 0.00	0.00 0.00 0.00	9.99 10.02 10.06	9.13 9.17 9.21 9.25	70.84 70.91 70.98 71.07	Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1
2,423.00 2,433.00 2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	15.89 16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	141.95 140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,340.65 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.52 9.52 9.51 9.50 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.26 9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00 0.00	4.79 4.82 4.84 4.86	0.00 0.00 0.00	0.00 0.00 0.00	10.02 10.06 10.10	9.17 9.21 9.25	70.91 70.98 71.07	Wellbore Surveyor, cont (1 Wellbore Surveyor, cont (1
2,443.00 2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	16.32 16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	140.28 138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,350.25 2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.52 9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00 0.00	9.32 9.37 9.44 9.50 9.51	0.00 0.00 0.00 0.00	4.82 4.84 4.86	0.00	0.00	10.06 10.10	9.21 9.25	70.98 71.07	Wellbore Surveyor, cont (1
2,443.00 2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	16.72 17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	138.81 136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,359.84 2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.51 9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00 0.00	9.37 9.44 9.50 9.51	0.00 0.00 0.00	4.84 4.86	0.00	0.00	10.10	9.25	71.07	
2,453.00 2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,900.45 2,939.72 2,980.29	17.17 17.67 17.75 18.80 20.39 21.70 26.34 30.56	136.78 134.92 134.64 129.52 125.56 125.92 124.65	2,369.41 2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.50 9.48 9.48 9.39	0.00 0.00 0.00 0.00	9.44 9.50 9.51	0.00 0.00	4.86						Wellbore Surveyor, cont (1
2,463.00 2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,900.45 2,939.72 2,980.29	17.67 17.75 18.80 20.39 21.70 26.34 30.56	134.92 134.64 129.52 125.56 125.92 124.65	2,378.95 2,380.42 2,408.14 2,448.02 2,486.21	9.48 9.48 9.39 9.23	0.00 0.00 0.00	9.50 9.51	0.00		0.00	0.00	40.40	0.00	74 47	
2,464.55 2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,900.45 2,939.72 2,980.29	17.75 18.80 20.39 21.70 26.34 30.56	134.64 129.52 125.56 125.92 124.65	2,380.42 2,408.14 2,448.02 2,486.21	9.48 9.39 9.23	0.00	9.51		4.89		0.00	10.13	9.29	71.17	Wellbore Surveyor, cont (1
2,493.74 2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	18.80 20.39 21.70 26.34 30.56	129.52 125.56 125.92 124.65	2,408.14 2,448.02 2,486.21	9.39 9.23	0.00		0.00		0.00	0.00	10.17	9.33	71.28	Wellbore Surveyor, cont (1
2,536.07 2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	20.39 21.70 26.34 30.56	125.56 125.92 124.65	2,448.02 2,486.21	9.23		9.63	0.00	4.89	0.00	0.00	10.18	9.33	71.30	Wellbore Surveyor, cont (1
2,576.99 2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	21.70 26.34 30.56	125.92 124.65	2,486.21				0.00	4.96	0.00	0.00	10.23	9.39	71.55	Magnetic, std, non-mag (2
2,617.92 2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,900.45 2,939.72 2,980.29	26.34 30.56	124.65		0.47	0.00	9.70	0.00	5.07	0.00	0.00	10.24	9.40	71.95	Magnetic, std, non-mag (2
2,658.30 2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	30.56		0.500.50	9.17	0.00	9.72	0.00	5.18	0.00	0.00	10.25	9.41	72.68	Magnetic, std, non-mag (3
2,699.07 2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29		121.61	2,523.59	8.86	0.00	9.78	0.00	5.28	0.00	0.00	10.26	9.44	73.91	Magnetic, std, non-mag (3
2,738.83 2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	33 11		2,559.08	8.52	0.00	9.89	0.00	5.38	0.00	0.00	10.30	9.48	76.13	Magnetic, std, non-mag (3
2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	50.11	117.41	2,593.72	8.26	0.00	10.06	0.00	5.47	0.00	0.00	10.36	9.54	79.74	Magnetic, std, non-mag (3
2,779.26 2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	35.52	115.77	2,626.56	8.07	0.00	10.23	0.00	5.57	0.00	0.00	10.45	9.60	84.50	Magnetic, std, non-mag (3
2,820.02 2,860.02 2,900.45 2,939.72 2,980.29	41.25	113.83	2,658.24	7.62	0.00	10.47	0.00	5.66	0.00	0.00	10.61	9.67		Magnetic, std, non-mag (3
2,900.45 2,939.72 2,980.29	45.33	112.36	2,687.90	7.31	0.00	10.77	0.00	5.75	0.00	0.00	10.86	9.73		Magnetic, std, non-mag (3
2,900.45 2,939.72 2,980.29	49.20	108.88	2,715.05	7.00	0.00	11.16	0.00	5.84	0.00	0.00	11.19	9.77	100.41	Magnetic, std, non-mag (3
2,980.29	51.78	104.36	2,740.77	6.80	0.00	11.62	0.00	5.92	0.00	0.00	11.62	9.80		Magnetic, std, non-mag (3
2,980.29	53.48	102.53	2,764.61	6.72	0.00	12.12	0.00	6.01	0.00	0.00	12.12	9.81	104.57	Magnetic, std, non-mag (3
	54.35	103.04	2,788.51	6.71	0.00	12.70	0.00	6.10	0.00	0.00	12.71	9.82		Magnetic, std, non-mag (3
	54.95	103.40	2,804.89	6.71	0.00	13.15	0.00	6.16	0.00	0.00	13.15	9.83		Magnetic, std, non-mag (3
3,060.63	54.55	99.95	2,834.92	6.80	0.00	13.99	0.00	6.28	0.00	0.00	14.02	9.85		Magnetic, std, non-mag (3
3,081.25	54.06	97.21	2,846.95	6.87	0.00	14.30	0.00	6.33	0.00	0.00	14.39	9.85		Magnetic, std, non-mag (3
3,136.60	53.84	95.71	2,879.53	6.95	0.00	15.02	0.00	6.45	0.00	0.00	15.14	9.86	105.26	Magnetic, std, non-mag (4
3,172.51	53.90	98.14	2,900.70	6.92	0.00	15.44	0.00	6.51	0.00	0.00	15.51	9.86		Magnetic, std, non-mag (4
3,216.39	53.86	101.30	2,926.57	6.91	0.00	16.00	0.00	6.59	0.00	0.00	16.02	9.87		Magnetic, std, non-mag (4
3,257.05	53.34	103.39	2,950.70	6.95	0.00	16.53	0.00	6.67	0.00	0.00	16.54	9.88		Magnetic, std, non-mag (4
3,297.38	53.81	105.77	2,974.65	6.96	0.00	17.09	0.00	6.75	0.00	0.00	17.10	9.90		Magnetic, std, non-mag (4
3,337.63	53.10	107.03	2,998.62	7.03	0.00	17.68	0.00	6.84	0.00	0.00	17.69	9.92	104.83	Magnetic, std, non-mag (4
3,375.41	53.01	106.59	3,021.33	7.05	0.00	18.27	0.00	6.92	0.00	0.00	18.27	9.93		Magnetic, std, non-mag (4
3,416.55	53.14	107.02	3,046.04	7.09	0.00	18.93	0.00	7.02	0.00	0.00	18.94	9.96		Magnetic, std, non-mag (4
3,456.15	52.97	106.74	3,069.84	7.13	0.00	19.60	0.00	7.11	0.00	0.00	19.60	9.98		Magnetic, std, non-mag (4
3,495.52	52.87	105.59	3,093.58	7.16	0.00	20.29	0.00	7.21	0.00	0.00	20.29	10.01		Magnetic, std, non-mag (4
3,520.00	02.01	105.59	3,108.36	7.19	0.00	20.73	0.00	7.27	0.00	0.00	20.73	10.02		Magnetic, std, non-mag (4

Casing Points					
	Measured Depth	Vertical Depth		Casing Diameter	Hole Diameter
	(m)	(m)	Name	(in)	(in)
	251.00	251.00	30"	30.000	36.000
	1,357.00	1,333.08	20"	20.000	26.000
	2,506.00	2,419.73	14"	14.000	17.500
	3,113.00	2,865.62	9 5/8"	9.625	12.250

Error Ellipse Report

Company: STATOIL - Norway
Project: SLEIPNER
Site: Volve F
Well: 15/9-F-12

Well: 15/9-F-12
Wellbore: F-12
Design: F-12

Local Co-ordinate Reference: Site Volve F

TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

MD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

North Reference: Grid

Survey Calculation Method: Minimum Curvature
Output errors are at 2.45 sigma
Database: EDM Oracle

Checked By:	Approved By:	Date:	

STATOIL - Norway

SLEIPNER Volve F 15/9-F-12 F-12

Design: F-12

Survey Report - Geographic

11 October, 2007

Survey Report - Geographic

Database:

STATOIL - Norway Company: **SLEIPNER**

Project: Volve F Site: Well: 15/9-F-12 Wellbore: F-12

Design:

Local Co-ordinate Reference:

Site Volve F

Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed) MD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method: EDM Oracle**

SLEIPNER, Norway Project

F-12

Universal Transverse Mercator Map System: European 1950 - Mean Geo Datum: Zone 31N (0 E to 6 E) Map Zone:

System Datum: Mean Sea Level

Using Well Reference Point Using geodetic scale factor

Volve F, 15/9 Site

Northing: 6,478,563.52 m 58° 26' 29.807 N Site Position: Latitude: 435,050.02 m From: Мар Easting: Lonaitude: 1° 53' 14.929 E Grid Convergence: **Position Uncertainty:** 0.00 m Slot Radius: -0.95 °

15/9-F-12 Well 58° 26' 29.894 N **Well Position** +N/-S 2.70 m Northina: 6,478,566.22 m Latitude: 0.19 m 435,050.21 m 1° 53' 14.937 E +E/-W Easting: Longitude: 0.00 m 91.00 m 91.00 m Wellhead Depth: Water Depth: **Position Uncertainty**

F-12 Wellbore Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (°) (nT) **SNETICREFERENCE** 3/1/2007 -2.34 71.63 50,321

F-12 Design **Audit Notes:** Version: 1.0 Phase: **ACTUAL** Tie On Depth: 145.90 +N/-S **Vertical Section:** Depth From (TVD) +E/-W Direction (m) (m) (m) (°) 145.90 104.32 2.70 0.19

Survey Program		Date 10/9/2007		
From (m)	To (m)	Survey (Wellbore)	Tool Name	Description
	` ,	,		.
174.00	2,464.55	14" Casing Gyro Survey (F-12)	Wellbore Surveyor, cont	Gyro Tool from GD
2,464.55	2,536.07	17.5" Section MWD Survey (F-12)	Magnetic, std, non-mag	Magnetic Tools (MWD, EMS)
2,536.07	3,081.25	12.25" Section MWD Survey (F-12)	Magnetic, std, non-mag	Magnetic Tools (MWD, EMS)
3,081.25	3,520.00	8.5" Section MWD Survey (F-12)	Magnetic, std, non-mag	Magnetic Tools (MWD, EMS)

Survey Report - Geographic

Company: STATOIL - Norway

Project: SLEIPNER
Site: Volve F
Well: 15/9-F-12
Wellbore: F-12

Design:

F-12

Local Co-ordinate Reference:

Site Volve F

TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

MD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Database: EDM Oracle

Survey									
Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	Latitude	Longitude
145.90	0.00	0.00	145.90	2.70	0.19	6,478,566.22	435,050.21	58° 26' 29.894 N	1° 53' 14.937 E
174.00	0.12	166.21	174.00	2.67	0.20	6,478,566.19	435,050.22	58° 26' 29.893 N	1° 53' 14.938 E
204.00	0.08	159.79	204.00	2.62	0.21	6,478,566.14	435,050.23	58° 26' 29.892 N	1° 53' 14.939 E
234.00	0.15	113.27	234.00	2.58	0.25	6,478,566.10	435,050.28	58° 26' 29.890 N	1° 53' 14.942 E
264.00	0.25	94.15	264.00	2.56	0.36	6,478,566.08	435,050.38	58° 26' 29.890 N	1° 53' 14.948 E
294.00	0.34	83.77	294.00	2.57	0.51	6,478,566.09	435,050.53	58° 26' 29.890 N	1° 53' 14.957 E
324.00	0.36	81.51	324.00	2.59	0.70	6,478,566.11	435,050.72	58° 26' 29.891 N	1° 53' 14.969 E
354.00	0.46	79.36	354.00	2.63	0.91	6,478,566.15	435,050.93	58° 26' 29.892 N	1° 53′ 14.982 E
384.00	0.65	66.92	384.00	2.72	1.19	6,478,566.24	435,051.21	58° 26' 29.895 N	1° 53' 14.999 E
414.00	1.09	38.86	413.99	3.01	1.52	6,478,566.53	435,051.54	58° 26' 29.905 N	1° 53' 15.019 E
444.00	2.91	27.73	443.97	3.90 5.72	2.06 2.97	6,478,567.42	435,052.08	58° 26' 29.934 N	1° 53' 15.051 E
474.00 504.00	4.85 6.49	26.01 27.94	473.90 503.76	8.35	4.32	6,478,569.24 6,478,571.87	435,052.99 435,054.34	58° 26' 29.993 N 58° 26' 30.079 N	1° 53' 15.105 E 1° 53' 15.186 E
534.00	7.69	30.42	533.53	11.58	6.13	6,478,575.10	435,054.34	58° 26' 30.184 N	1° 53' 15.186 E
564.00	6.95	32.03	563.28	14.85	8.11	6,478,578.37	435,058.12	58° 26' 30.291 N	1° 53' 15.413 E
594.00	5.54	30.06	593.10	17.64	9.79	6,478,581.16	435,059.81	58° 26' 30.382 N	1° 53' 15.514 E
624.00	4.90	17.77	622.98	20.12	10.91	6,478,583.63	435,060.93	58° 26' 30.463 N	1° 53' 15.580 E
654.00	5.08	0.38	652.87	22.66	11.31	6,478,586.18	435,061.33	58° 26' 30.545 N	1° 53' 15.602 E
684.00	5.95	334.67	682.73	25.40	10.65	6,478,588.91	435,060.67	58° 26' 30.633 N	1° 53' 15.559 E
714.00	6.39	320.18	712.56	28.09	8.92	6,478,591.60	435,058.94	58° 26' 30.719 N	1° 53' 15.449 E
744.00	6.80	303.74	742.36	30.36	6.37	6,478,593.87	435,056.39	58° 26' 30.791 N	1° 53' 15.290 E
774.00	8.44	288.20	772.10	32.03	2.80	6,478,595.54	435,052.82	58° 26' 30.843 N	1° 53' 15.069 E
804.00	11.14	278.45	801.66	33.14	-2.15	6,478,596.65	435,047.87	58° 26' 30.877 N	1° 53' 14.762 E
834.00	13.14	272.24	830.99	33.70	-8.43	6,478,597.21	435,041.59	58° 26' 30.891 N	1° 53' 14.375 E
864.00	14.81	266.26	860.11	33.59	-15.66	6,478,597.10	435,034.36	58° 26' 30.884 N	1° 53' 13.929 E
893.00	14.99	264.04	888.13	32.95	-23.09	6,478,596.47	435,026.94	58° 26' 30.859 N	1° 53' 13.472 E
903.00	14.51	263.13	897.80	32.67	-25.62	6,478,596.18	435,024.41	58° 26' 30.849 N	1° 53′ 13.316 E
913.00	14.08	262.05	907.49	32.35	-28.07	6,478,595.86	435,021.96	58° 26' 30.837 N	1° 53' 13.166 E
923.00	13.81	261.01	917.20	32.00	-30.45	6,478,595.51	435,019.58	58° 26' 30.825 N	1° 53′ 13.019 E
933.00	13.78	260.55	926.91	31.62	-32.81	6,478,595.13	435,017.22	58° 26' 30.811 N	1° 53' 12.874 E
943.00 953.00	13.86 13.96	260.53 260.58	936.62 946.33	31.22 30.83	-35.16 -37.54	6,478,594.74 6,478,594.34	435,014.87 435,012.50	58° 26' 30.797 N 58° 26' 30.783 N	1° 53' 12.729 E 1° 53' 12.584 E
963.00	14.13	261.38	956.03	30.65	-37.54	6,478,593.96	435,012.30	58° 26' 30.769 N	1° 53' 12.436 E
973.00	14.13	263.23	965.72	30.43	-39.93 -42.38	6,478,593.63	435,007.66	58° 26' 30.757 N	1° 53' 12.286 E
983.00	14.70	264.88	975.40	29.86	-44.88	6,478,593.37	435,007.00	58° 26' 30.748 N	1° 53' 12.132 E
993.00	14.91	265.80	985.06	29.65	-47.43	6,478,593.16	435,002.61	58° 26' 30.740 N	1° 53' 11.975 E
1,003.00	15.04	266.46	994.72	29.48	-50.00	6,478,592.99	435,000.03	58° 26' 30.733 N	1° 53' 11.817 E
1,013.00	15.13	267.49	1,004.38	29.34	-52.60	6,478,592.85	434,997.44	58° 26' 30.727 N	1° 53' 11.657 E
1,023.00	15.14	268.09	1,014.03	29.24	-55.21	6,478,592.75	434,994.83	58° 26' 30.722 N	1° 53' 11.496 E
1,033.00	15.07	268.61	1,023.69	29.16	-57.82	6,478,592.68	434,992.23	58° 26' 30.718 N	1° 53' 11.336 E
1,043.00	14.54	269.28	1,033.36	29.12	-60.37	6,478,592.63	434,989.67	58° 26' 30.715 N	1° 53' 11.178 E
1,053.00	14.23	269.64	1,043.04	29.09	-62.85	6,478,592.61	434,987.19	58° 26' 30.713 N	1° 53' 11.025 E
1,063.00	14.15	269.65	1,052.74	29.08	-65.30	6,478,592.59	434,984.74	58° 26' 30.711 N	1° 53' 10.874 E
1,073.00	14.22	269.22	1,062.43	29.05	-67.75	6,478,592.57	434,982.29	58° 26' 30.709 N	1° 53' 10.723 E
1,083.00	14.38	267.93	1,072.12	28.99	-70.22	6,478,592.50	434,979.82	58° 26' 30.706 N	1° 53' 10.571 E
1,093.00	14.59	265.82	1,081.81	28.85	-72.72	6,478,592.37	434,977.33	58° 26' 30.700 N	1° 53' 10.417 E
1,103.00	14.67	263.48	1,091.48	28.62	-75.24	6,478,592.13	434,974.81	58° 26' 30.691 N	1° 53' 10.263 E
1,113.00	14.82	260.96	1,101.15	28.27	-77.76	6,478,591.79	434,972.29	58° 26' 30.679 N	1° 53' 10.108 E
1,123.00	15.14	258.59	1,110.81	27.81	-80.30	6,478,591.33	434,969.75	58° 26' 30.663 N	1° 53' 9.951 E
1,133.00	15.71	256.39	1,120.45	27.24	-82.90	6,478,590.75	434,967.15	58° 26' 30.643 N	1° 53' 9.792 E
1,143.00	16.43	254.47	1,130.06	26.54	-85.57	6,478,590.05	434,964.48	58° 26' 30.619 N	1° 53' 9.628 E
1,153.00 1,163.00	17.58 18.82	252.27 250.54	1,139.62 1,149.12	25.70 24.71	-88.38 -91.33	6,478,589.22	434,961.68 434,958.72	58° 26' 30.590 N	1° 53' 9.456 E 1° 53' 9.274 E
1,163.00	19.84	250.5 4 248.95	1,149.12 1,158.56	24.71 23.56	-91.33 -94.44	6,478,588.22 6,478,587.07	434,955.61	58° 26' 30.556 N 58° 26' 30.518 N	1° 53' 9.274 E 1° 53' 9.084 E
1,173.00	20.52	248.22	1,156.56	23.30	-94.44 -97.65	6,478,585.81	434,952.40	58° 26' 30.475 N	1° 53' 8.888 E
1,103.00	20.02	240.22	1,107.93	22.30	-51.00	0,470,000.01	404,802.40	JU ZU JU.473 IN	1 33 0.000 E

Survey Report - Geographic

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site: 15/9-F-12 Well: Wellbore: F-12

Design:

F-12

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: MD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

North Reference:

Survey Calculation Method: Minimum Curvature EDM Oracle Database:

ırvey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	Latitude	Longitude
1,193.00	20.78	248.08	1,177.30	20.99	-100.92	6,478,584.50	434,949.13	58° 26' 30.431 N	1° 53' 8.68
1,203.00	20.87	248.00	1,186.65	19.66	-104.22	6,478,583.17	434,945.84	58° 26' 30.386 N	1° 53' 8.48
1,213.00	20.57	248.50	1,196.00	18.34	-107.51	6,478,581.86	434,942.55	58° 26' 30.342 N	1° 53' 8.28
1,223.00	19.87	249.42	1,205.39	17.10	-110.73	6,478,580.62	434,939.33	58° 26' 30.300 N	1° 53' 8.08
1,233.00	19.22	250.72	1,214.81	15.96	-113.88	6,478,579.48	434,936.18	58° 26' 30.262 N	1° 53' 7.89
1,243.00	18.88	251.85	1,224.26	14.91	-116.97	6,478,578.43	434,933.09	58° 26' 30.226 N	1° 53' 7.70
1,253.00	18.83	252.46	1,233.73	13.92	-120.05	6,478,577.44	434,930.02	58° 26' 30.193 N	1° 53' 7.51
1,263.00	19.07	252.60	1,243.18	12.95	-123.15	6,478,576.47	434,926.92	58° 26' 30.159 N	1° 53' 7.32
1,273.00	19.35	252.60	1,252.63	11.96	-126.29	6,478,575.48	434,923.78	58° 26' 30.126 N	1° 53' 7.13
1,283.00	19.47	252.47	1,262.06	10.97	-129.46	6,478,574.49	434,920.61	58° 26' 30.092 N	1° 53' 6.93
1,293.00	19.09	252.04	1,271.50	9.96	-132.60	6,478,573.48	434,917.47	58° 26' 30.058 N	1° 53' 6.74
1,303.00	17.98	251.23	1,280.98	8.96	-135.62	6,478,572.48	434,914.45	58° 26' 30.024 N	1° 53' 6.56
1,313.00	16.56	250.46	1,290.53	7.99	-138.42	6,478,571.51	434,911.65	58° 26' 29.991 N	1° 53' 6.38
1,323.00	15.24	250.09	1,300.14	7.06	-141.00	6,478,570.58	434,909.07	58° 26' 29.960 N	1° 53' 6.23
1,333.00	14.36	250.04	1,309.81	6.19	-143.40	6,478,569.71	434,906.67	58° 26' 29.930 N	1° 53' 6.08
1,343.00	14.09	249.89	1,319.51	5.35	-145.71	6,478,568.87	434,904.36	58° 26' 29.902 N	1° 53' 5.94
1,353.00	14.20	248.89	1,329.20	4.49	-148.00	6,478,568.01	434,902.07	58° 26' 29.873 N	1° 53' 5.80
1,363.00	14.61	247.86	1,338.89	3.57	-150.31	6,478,567.09	434,899.76	58° 26' 29.842 N	1° 53' 5.66
1,373.00	15.35	247.18	1,348.55	2.58	-152.70	6,478,566.11	434,897.37	58° 26' 29.809 N	1° 53' 5.5′
1,383.00	16.31	246.75	1,358.17	1.52	-155.21	6,478,565.04	434,894.86	58° 26' 29.773 N	1° 53' 5.36
1,393.00	17.11	246.17	1,367.75	0.37	-157.85	6,478,563.89	434,892.23	58° 26' 29.734 N	1° 53' 5.20
1,403.00	17.79	245.40	1,377.29	-0.86	-160.58	6,478,562.66	434,889.50	58° 26' 29.693 N	1° 53' 5.03
1,413.00	18.50	244.47	1,386.79	-2.18	-163.40	6,478,561.34	434,886.68	58° 26' 29.649 N	1° 53' 4.86
1,423.00	19.40	243.27	1,396.25	-3.61	-166.32	6,478,559.91	434,883.76	58° 26' 29.601 N	1° 53' 4.68
1,433.00	20.36	242.01	1,405.65	-5.18	-169.34	6,478,558.35	434,880.74	58° 26' 29.549 N	1° 53' 4.49
1,443.00	21.22	240.96	1,415.00	-6.87	-172.45	6,478,556.65	434,877.63	58° 26' 29.492 N	1° 53' 4.30
1,453.00	22.14	239.94	1,424.29	-8.69	-175.67	6,478,554.83	434,874.41	58° 26' 29.432 N	1° 53' 4.1
1,463.00	22.83	239.04	1,433.53	-10.64	-178.96	6,478,552.89	434,871.12	58° 26' 29.367 N	1° 53' 3.9°
1,473.00	22.85	238.62	1,442.75	-12.64	-182.28	6,478,550.88	434,867.80	58° 26' 29.301 N	1° 53' 3.70
1,483.00	22.44	238.58	1,451.98	-14.65	-185.57	6,478,548.88	434,864.52	58° 26' 29.234 N	1° 53' 3.50
1,493.00	21.71	239.22	1,461.24	-16.59	-188.79	6,478,546.94	434,861.30	58° 26' 29.170 N	1° 53' 3.3′
1,503.00	21.01	240.26	1,470.56	-18.43	-191.93	6,478,545.10	434,858.16	58° 26' 29.109 N	1° 53' 3.1
1,513.00	20.67	241.23	1,479.90	-20.17	-195.04	6,478,543.36	434,855.05	58° 26' 29.051 N	1° 53' 2.92
1,523.00	20.66	242.19	1,489.26	-21.84	-198.14	6,478,541.69	434,851.95	58° 26' 28.995 N	1° 53' 2.7
1,533.00	20.83	243.57	1,498.61	-23.45	-201.30	6,478,540.08	434,848.80	58° 26' 28.941 N	1° 53' 2.5
1,543.00	20.97	245.58	1,507.95	-24.98	-204.52	6,478,538.55	434,845.58	58° 26' 28.890 N	1° 53' 2.3
1,553.00	21.13	247.64	1,517.29	-26.41	-207.81	6,478,537.12	434,842.28	58° 26' 28.842 N	1° 53' 2.14
1,563.00	21.38	249.38	1,526.61	-27.74	-211.19	6,478,535.80	434,838.91	58° 26' 28.797 N	1° 53' 1.94
1,573.00	21.64	251.07	1,535.91	-28.98	-214.64	6,478,534.56	434,835.46	58° 26' 28.755 N	1° 53' 1.7
1,583.00	21.87	252.47	1,545.20	-30.14	-218.16	6,478,533.40	434,831.94	58° 26' 28.716 N	1° 53' 1.5′
1,593.00	22.08	253.27	1,554.47	-31.24	-221.73	6,478,532.30	434,828.37	58° 26' 28.679 N	1° 53' 1.29
1,603.00	22.29	253.50	1,563.73	-32.32	-225.35	6,478,531.22	434,824.75	58° 26' 28.642 N	1° 53' 1.07
1,613.00	22.47	253.52	1,572.98	-33.40	-229.00	6,478,530.14	434,821.10	58° 26' 28.605 N	1° 53' 0.84
1,623.00	22.66	253.41	1,582.21	-34.49	-232.68	6,478,529.04	434,817.42	58° 26' 28.568 N	1° 53' 0.62
1,633.00	22.93	253.25	1,591.43	-35.60	-236.39	6,478,527.93	434,813.71	58° 26' 28.530 N	1° 53' 0.39
1,643.00	23.20	253.11	1,600.63	-36.74	-240.14	6,478,526.80	434,809.96	58° 26' 28.491 N	1° 53' 0.16
1,653.00	23.40	252.96	1,609.82	-37.89	-243.93	6,478,525.65	434,806.18	58° 26' 28.452 N	1° 52' 59.93
1,663.00	23.53	252.89	1,618.99	-39.06	-247.73	6,478,524.48	434,802.37	58° 26' 28.412 N	1° 52' 59.70
1,673.00	23.59	252.88	1,628.16	-40.24	-251.55	6,478,523.30	434,798.56	58° 26' 28.372 N	1° 52' 59.46
1,683.00	23.66	252.91	1,637.32	-41.41	-255.38	6,478,522.12	434,794.73	58° 26' 28.332 N	1° 52' 59.23
1,693.00	23.70	252.85	1,646.48	-42.60	-259.22	6,478,520.94	434,790.89	58° 26' 28.291 N	1° 52' 58.99
1,703.00	23.73	252.87	1,655.63	-43.78	-263.06	6,478,519.76	434,787.05	58° 26' 28.251 N	1° 52' 58.76
1,713.00	23.78	252.93	1,664.78	-44.97	-266.91	6,478,518.57	434,783.20	58° 26' 28.211 N	1° 52' 58.52
1,723.00	23.76	252.96	1,673.94	-46.15	-270.77	6,478,517.39	434,779.35	58° 26' 28.171 N	1° 52' 58.28
1,733.00	23.71	252.97	1,683.09	-47.33	-274.62	6,478,516.21	434,775.50	58° 26' 28.130 N	1° 52' 58.05

Survey Report - Geographic

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site: 15/9-F-12 Well: Wellbore: F-12

Design:

F-12

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: MD Reference: Rotary Table @ 54.90m (Actual RTE as installed) North Reference:

Survey Calculation Method: Minimum Curvature EDM Oracle Database:

Survey									
Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	Latitude	Longitude
1,743.00	23.70	253.01	1,692.25	-48.50	-278.46	6,478,515.04	434,771.66	58° 26' 28.090 N	1° 52' 57.817 E
1,753.00	23.70	253.01	1,701.40	-46.50 -49.68	-276.40	6,478,513.86	434,767.82	58° 26' 28.050 N	1° 52' 57.581 E
1,763.00	23.63	252.90	1,710.56	-50.85	-286.14	6,478,512.69	434,763.98	58° 26' 28.010 N	1° 52' 57.346 E
1,773.00	23.56	252.97	1,719.73	-52.03	-289.97	6,478,511.52	434,760.16	58° 26' 27.970 N	1° 52' 57.112 E
1,783.00	23.50	252.85	1,728.90	-53.20	-293.78	6,478,510.34	434,756.34	58° 26' 27.930 N	1° 52' 56.878 E
1,793.00	23.40	252.68	1,738.07	-54.38	-297.58	6,478,509.16	434,752.54	58° 26' 27.890 N	1° 52' 56.645 E
1,803.00	23.37	252.68	1,747.25	-55.56	-301.37	6,478,507.98	434,748.76	58° 26' 27.850 N	1° 52' 56.412 E
1,813.00	23.36	252.63	1,756.43	-56.74	-305.16	6,478,506.80	434,744.97	58° 26' 27.810 N	1° 52' 56.180 E
1,823.00	23.39	252.65	1,765.61	-57.93	-308.94	6,478,505.62	434,741.19	58° 26' 27.769 N	1° 52' 55.948 E
1,833.00	23.45	252.52	1,774.78	-59.12	-312.74	6,478,504.43	434,737.39	58° 26' 27.729 N	1° 52' 55.715 E
1,843.00	23.48	252.56 252.72	1,783.96	-60.31 -61.50	-316.54 -320.33	6,478,503.23	434,733.60	58° 26' 27.688 N	1° 52' 55.483 E
1,853.00 1,863.00	23.41 23.39	252.72	1,793.13 1,802.31	-61.50 -62.68	-320.33 -324.12	6,478,502.05 6,478,500.87	434,729.80 434,726.01	58° 26' 27.648 N 58° 26' 27.608 N	1° 52' 55.250 E 1° 52' 55.017 E
1,873.00	23.47	252.72	1,811.48	-63.86	-327.92	6,478,499.69	434,722.21	58° 26' 27.568 N	1° 52' 54.785 E
1,883.00	23.51	252.70	1,820.66	-65.03	-331.73	6,478,498.51	434,718.41	58° 26' 27.528 N	1° 52' 54.551 E
1,893.00	23.49	253.11	1,829.83	-66.20	-335.54	6,478,497.35	434,714.59	58° 26' 27.488 N	1° 52' 54.317 E
1,903.00	23.50	253.09	1,839.00	-67.36	-339.36	6,478,496.19	434,710.78	58° 26' 27.448 N	1° 52' 54.083 E
1,913.00	23.55	253.15	1,848.17	-68.51	-343.18	6,478,495.03	434,706.96	58° 26' 27.409 N	1° 52' 53.849 E
1,923.00	23.58	253.33	1,857.33	-69.67	-347.00	6,478,493.88	434,703.14	58° 26' 27.370 N	1° 52' 53.614 E
1,933.00	23.56	253.55	1,866.50	-70.81	-350.84	6,478,492.74	434,699.31	58° 26' 27.331 N	1° 52' 53.379 E
1,943.00	23.58	253.60	1,875.66	-71.94	-354.67	6,478,491.61	434,695.47	58° 26' 27.292 N	1° 52' 53.144 E
1,953.00	23.57	253.53	1,884.83	-73.07	-358.51	6,478,490.48	434,691.64	58° 26' 27.253 N	1° 52' 52.909 E
1,963.00	23.19	253.55	1,894.01	-74.19	-362.32	6,478,489.36	434,687.83	58° 26' 27.215 N	1° 52' 52.675 E
1,973.00	22.48	253.50	1,903.22	-75.29	-366.04	6,478,488.26	434,684.11	58° 26' 27.177 N	1° 52' 52.447 E
1,983.00	21.77	253.27 252.84	1,912.49	-76.37	-369.65 -373.15	6,478,487.18	434,680.50	58° 26' 27.141 N	1° 52' 52.226 E 1° 52' 52.011 E
1,993.00 2,003.00	21.15 20.52	252.0 4 252.07	1,921.79 1,931.14	-77.44 -78.51	-373.15 -376.54	6,478,486.11 6,478,485.04	434,677.00 434,673.61	58° 26' 27.104 N 58° 26' 27.068 N	1° 52' 51.803 E
2,003.00	19.83	251.05	1,940.53	-78.51	-379.81	6,478,483.95	434,670.34	58° 26' 27.031 N	1° 52' 51.603 E
2,023.00	19.24	249.89	1,949.95	-80.72	-382.96	6,478,482.83	434,667.19	58° 26' 26.993 N	1° 52' 51.410 E
2,033.00	18.67	248.97	1,959.41	-81.86	-386.00	6,478,481.69	434,664.15	58° 26' 26.955 N	1° 52' 51.223 E
2,043.00	18.09	248.27	1,968.90	-83.01	-388.94	6,478,480.54	434,661.22	58° 26' 26.916 N	1° 52' 51.044 E
2,053.00	17.42	247.76	1,978.42	-84.15	-391.77	6,478,479.40	434,658.39	58° 26' 26.878 N	1° 52' 50.871 E
2,063.00	16.64	247.57	1,987.98	-85.26	-394.48	6,478,478.29	434,655.68	58° 26' 26.840 N	1° 52' 50.705 E
2,073.00	15.74	247.32	1,997.59	-86.33	-397.05	6,478,477.22	434,653.11	58° 26' 26.804 N	1° 52' 50.547 E
2,083.00	14.82	246.86	2,007.23	-87.36	-399.48	6,478,476.20	434,650.68	58° 26' 26.770 N	1° 52' 50.399 E
2,093.00	14.11	246.33	2,016.92	-88.35	-401.77	6,478,475.21	434,648.39	58° 26' 26.736 N	1° 52' 50.258 E
2,103.00	13.55	245.78	2,026.63	-89.32	-403.96	6,478,474.24	434,646.20	58° 26' 26.704 N	1° 52' 50.125 E
2,113.00	12.56	245.14	2,036.37	-90.26	-406.01	6,478,473.30	434,644.15	58° 26' 26.672 N	1° 52' 49.999 E 1° 52' 49.883 E
2,123.00 2,133.00	11.76 11.30	244.30 243.19	2,046.14 2,055.94	-91.15 -92.04	-407.92 -409.71	6,478,472.40 6,478,471.52	434,642.25 434,640.46	58° 26' 26.642 N 58° 26' 26.613 N	1° 52' 49.773 E
2,143.00	10.90	242.00	2,055.94	-92.92	-411.42	6,478,470.63	434,638.75	58° 26' 26.583 N	1° 52' 49.669 E
2,153.00	10.37	240.37	2,075.58	-93.81	-413.04	6,478,469.74	434,637.13	58° 26' 26.554 N	1° 52' 49.570 E
2,163.00	9.96	237.45	2,085.43	-94.72	-414.55	6,478,468.83	434,635.62	58° 26' 26.523 N	1° 52' 49.478 E
2,173.00	9.68	233.80	2,095.28	-95.69	-415.95	6,478,467.87	434,634.21	58° 26' 26.492 N	1° 52' 49.392 E
2,183.00	9.51	229.85	2,105.14	-96.72	-417.26	6,478,466.84	434,632.90	58° 26' 26.458 N	1° 52' 49.312 E
2,193.00	9.30	225.13	2,115.00	-97.82	-418.47	6,478,465.74	434,631.70	58° 26' 26.421 N	1° 52' 49.239 E
2,203.00	9.20	220.24	2,124.87	-99.00	-419.56	6,478,464.56	434,630.61	58° 26' 26.383 N	1° 52' 49.173 E
2,213.00	9.10	215.05	2,134.75	-100.25	-420.53	6,478,463.30	434,629.64	58° 26' 26.342 N	1° 52' 49.115 E
2,223.00	9.02	209.82	2,144.62	-101.58	-421.37	6,478,461.98	434,628.80	58° 26' 26.298 N	1° 52' 49.064 E
2,233.00	8.95	204.57	2,154.50	-102.97	-422.08	6,478,460.59	434,628.08	58° 26' 26.253 N	1° 52' 49.022 E
2,243.00	8.91	199.61 105.16	2,164.38	-104.41	-422.67 -423.13	6,478,459.15 6,478,457,67	434,627.50	58° 26' 26.206 N	1° 52' 48.987 E 1° 52' 48.960 E
2,253.00 2,263.00	8.98 9.11	195.16 189.99	2,174.26 2,184.13	-105.89 -107.42	-423.13 -423.47	6,478,457.67 6,478,456.14	434,627.04 434,626.70	58° 26' 26.158 N 58° 26' 26.108 N	1° 52' 48.960 E 1° 52' 48.941 E
2,273.00	9.11	184.67	2,104.13	-107.42	-423.47 -423.68	6,478,454.55	434,626.49	58° 26' 26.057 N	1° 52' 48.930 E
2,283.00	9.55	179.31	2,203.87	-110.65	-423.73	6,478,452.92	434,626.44	58° 26' 26.004 N	1° 52' 48.928 E
	0.00	., 0.01	_,_00.07		0., 0	5, 5, 102.02	,020.17	33 23 20.00111	. 32 10.023 L

Survey Report - Geographic

Company: STATOIL - Norway

Project: SLEIPNER
Site: Volve F
Well: 15/9-F-12
Wellbore: F-12

Local Co-ordinate Reference:

Site Volve F
Rotary Table @ 54 90m

TVD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

MD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

North Reference: Gri

	F-12 F-12	Survey Calculation Method: Database:	Minimum Curvature EDM Oracle
Survey			

rvey									
Measured Depth (m)	Inclination (°)	Azimuth (°)	Vertical Depth (m)	+N/-S (m)	+E/-W (m)	Map Northing (m)	Map Easting (m)	Latitude	Longitude
2,293.00	9.88	174.47	2,213.73	-112.33	-423.64	6,478,451.23	434,626.53	58° 26' 25.950 N	1° 52' 48.935 E
2,303.00	10.25	171.03	2,223.57	-114.06	-423.42	6,478,449.50	434,626.75	58° 26' 25.894 N	1° 52' 48.951 E
2,313.00	10.48	167.42	2,233.41	-115.83	-423.08	6,478,447.73	434,627.09	58° 26' 25.837 N	1° 52' 48.973 E
2,323.00	10.69	163.89	2,243.24	-117.61	-422.63	6,478,445.96	434,627.54	58° 26' 25.780 N	1° 52' 49.003 E
2,333.00	10.99	161.52	2,253.06	-119.40	-422.07	6,478,444.16	434,628.10	58° 26' 25.722 N	1° 52' 49.040 E
2,343.00	11.41	158.88	2,262.87	-121.23	-421.41	6,478,442.33	434,628.76	58° 26' 25.663 N	1° 52' 49.082 E
2,353.00	11.77	156.24	2,272.67	-123.09	-420.64	6,478,440.48	434,629.53	58° 26' 25.604 N	1° 52' 49.131 E
2,363.00	12.25	153.98	2,282.45	-124.97	-419.76	6,478,438.59	434,630.40	58° 26' 25.543 N	1° 52' 49.187 E
2,373.00	12.79	151.93	2,292.21	-126.90	-418.78	6,478,436.66	434,631.39	58° 26' 25.481 N	1° 52' 49.250 E
2,383.00	13.35	149.87	2,301.95	-128.88	-417.68	6,478,434.69	434,632.49	58° 26' 25.418 N	1° 52' 49.320 E
2,393.00	14.04	147.61	2,311.67	-130.90	-416.45	6,478,432.67	434,633.72	58° 26' 25.353 N	1° 52' 49.398 E
2,403.00	14.66	145.72	2,321.35	-132.97	-415.08	6,478,430.60	434,635.08	58° 26' 25.287 N	1° 52' 49.484 E
2,413.00	15.34	143.81	2,331.01	-135.09	-413.59	6,478,428.48	434,636.57	58° 26' 25.220 N	1° 52' 49.578 E
2,423.00	15.89	141.95	2,340.65	-137.23	-411.97	6,478,426.34	434,638.20	58° 26' 25.151 N	1° 52' 49.680 I
2,433.00	16.32	140.28	2,350.25	-139.39	-410.22	6,478,424.18	434,639.94	58° 26' 25.082 N	1° 52' 49.790 I
2,443.00	16.72	138.81	2,359.84	-141.55	-408.38	6,478,422.02	434,641.78	58° 26' 25.014 N	1° 52' 49.906 E
2,453.00	17.17	136.78	2,369.41	-143.71	-406.42	6,478,419.86	434,643.74	58° 26' 24.945 N	1° 52' 50.029 E
2,463.00	17.67	134.92	2,378.95	-145.86	-404.34	6,478,417.72	434,645.83	58° 26' 24.877 N	1° 52' 50.159 I
2,464.55	17.75	134.64	2,380.42	-146.19	-404.00	6,478,417.38	434,646.16	58° 26' 24.866 N	1° 52' 50.180 E
2,493.74	18.80	129.52	2,408.14	-152.31	-397.21	6,478,411.27	434,652.95	58° 26' 24.672 N	1° 52' 50.605 E
2,536.07	20.39	125.56	2,448.02	-160.94	-385.94	6,478,402.64	434,664.21	58° 26' 24.399 N	1° 52' 51.308 I
2,536.07	21.70	125.92	2,446.02	-169.52	-374.02	6,478,394.06	434,676.13	58° 26' 24.128 N	1° 52' 52.052 I
2,617.92	26.34	124.65	2,523.59	-179.13	-360.41	6,478,384.45	434,689.73	58° 26' 23.825 N	1° 52' 52.900 l
2,658.30	30.56	124.03	2,559.08	-189.61	-344.29	6,478,373.98	434,705.85	58° 26' 23.495 N	1° 52' 53.904
2,699.07	33.11	117.41	2,593.72	-200.17	-344.29 -325.57	6,478,363.42	434,724.56	58° 26' 23.164 N	1° 52' 55.069
2,738.83	35.52	117.41	2,626.56	-200.17	-305.53	6,478,353.40	434,744.60	58° 26' 22.851 N	1° 52' 56.314
2,730.03	41.25	113.77	2,658.24	-210.20	-305.53 -282.74	6,478,342.90	434,744.60	58° 26' 22.524 N	1° 52' 57.729
2,779.26			,		-262.74 -257.03	, ,	,		1° 52' 59.325
,	45.33	112.36	2,687.90	-231.64		6,478,331.96	434,793.08	58° 26' 22.184 N	
2,860.02	49.20	108.88	2,715.05	-241.96	-229.54	6,478,321.65	434,820.56	58° 26' 21.865 N	1° 53' 1.030
2,900.45	51.78	104.36	2,740.77	-250.85	-199.66	6,478,312.76	434,850.43	58° 26' 21.594 N	1° 53' 2.880
2,939.72	53.48	102.53	2,764.61	-258.10	-169.31	6,478,305.51	434,880.77	58° 26' 21.376 N	1° 53' 4.758
2,980.29	54.35	103.04	2,788.51	-265.36	-137.34	6,478,298.26	434,912.73	58° 26' 21.158 N	1° 53' 6.736
3,008.61	54.95	103.40	2,804.89	-270.64	-114.85	6,478,292.97	434,935.21	58° 26' 21.000 N	1° 53' 8.127
3,060.63	54.55	99.95	2,834.92	-279.24	-73.26	6,478,284.38	434,976.79	58° 26' 20.744 N	1° 53' 10.699
3,081.25	54.06	97.21	2,846.95	-281.74	-56.70	6,478,281.88	434,993.34	58° 26' 20.672 N	1° 53' 11.722
3,136.60	53.84	95.71	2,879.53	-286.77	-12.24	6,478,276.85	435,037.79	58° 26' 20.533 N	1° 53' 14.467
3,172.51	53.90	98.14	2,900.70	-290.27	16.55	6,478,273.35	435,066.57	58° 26' 20.436 N	1° 53' 16.244 I
3,216.39	53.86	101.30	2,926.57	-296.25	51.48	6,478,267.37	435,101.48	58° 26' 20.261 N	1° 53' 18.403 l
3,257.05	53.34	103.39	2,950.70	-303.25	83.45	6,478,260.38	435,133.44	58° 26' 20.052 N	1° 53' 20.380 I
3,297.38	53.81	105.77	2,974.65	-311.42	114.85	6,478,252.21	435,164.83	58° 26' 19.805 N	1° 53′ 22.324 I
3,337.63	53.10	107.03	2,998.62	-320.55	145.87	6,478,243.09	435,195.84	58° 26' 19.526 N	1° 53' 24.244 I
3,375.41	53.01	106.59	3,021.33	-329.28	174.77	6,478,234.36	435,224.73	58° 26' 19.260 N	1° 53' 26.034
3,416.55	53.14	107.02	3,046.04	-338.79	206.26	6,478,224.85	435,256.21	58° 26' 18.969 N	1° 53' 27.984 I
3,456.15	52.97	106.74	3,069.84	-347.98	236.54	6,478,215.67	435,286.48	58° 26' 18.688 N	1° 53' 29.860 l
3,495.52	52.87	105.59	3,093.58	-356.72	266.71	6,478,206.93	435,316.64	58° 26' 18.422 N	1° 53′ 31.728 E
3,520.00	52.87	105.59	3,108.36	-361.97	285.51	6,478,201.68	435,335.43	58° 26' 18.262 N	1° 53′ 32.892 F

Survey Report - Geographic

STATOIL - Norway Company:

SLEIPNER Project: Volve F Site: 15/9-F-12 Well: Wellbore: F-12

Local Co-ordinate Reference:

Site Volve F Rotary Table @ 54.90m (Actual RTE as installed) TVD Reference: MD Reference: Rotary Table @ 54.90m (Actual RTE as installed)

North Reference:

Survey Calculation Method: Minimum Curvature EDM Oracle Database:

F-12 Design:

Casing Points					
	Measured	Vertical		Casing	Hole
	Depth	Depth		Diameter	Diameter
	(m)	(m)	Name	(in)	(in)
	251.00	251.00	30"	30.000	36.000
	1,357.00	1,333.08	20"	20.000	26.000
	2,506.00	2,419.73	14"	14.000	17.500
	3,113.00	2,865.62	9 5/8"	9.625	12.250

Checked By:	Approved By:	Date:
1		

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL	4	Acceptance	Criteria:			
Well:	15/9-F-12	Tool G:	1001	1.84	+/- 2.5 coun	ts	
Hole Size :	8.5"	Tool H:	1006	3.79	+/- 6 counts		BGGN
		Dip:	71.	64	+/- 0.45 deg		Total I
Mwd Run :	2						Grid C
Date :	19-Jun-07	Declination	n Date:	1-	Jul-07		Total 0
MWD Tool Number :	VB01	EDI Az Ei	ror:	0	Deg		

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.950
Total Correction(deg): -1.389

Corrections from Local Model:
Declination (deg): -1.39
Field Strength (nT): 50339.50
Dip (deg): 71.64

BHA Sag C	correction app	olied:			
INCL	Correction	INCL	Correction	INCL	Correctio

					EDI interf	erring field:	40	26.0																	
		Raw val	ues					Tempera	ture correcte	d														Final	
Raw	Raw	Raw	Raw	Raw	Raw	T_corr.		T_corr.	T_corr.	T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth	SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	Н	Angle			m	deg	deg	Type	Type	m	Incl corr Azim	deg	
																		0	0			0.00	deg deg	0.00	
-2004.00	-13.00	-13.00				1002.00		6.50	960.00	-240.60	200.30	1002.00	1009.80	71.88	25-Jun-07	17:11:30	320.93	0.53	81.79	PUP	None	320.93		81.79	
-2004.00 -2004.00	10.00 -1.00	-13.00 -16.00	1497.00 1495.00		-351.00 20.00	1002.00 1002.00	-5.00 0.50	6.50 8.00	958.10 956.80	-229.10 -318.70	-224.60 12.80	1002.00 1002.00	1010.40 1008.60	71.42 71.55	25-Jun-07 25-Jun-07	19:35:15 23:27:12	360.28 400.04	0.47 0.46	80.36 85.96	PUP	None None	360.28 400.04		80.36 85.96	
-2004.00	-18.00	-3.00	1493.00			1002.00	9.00	1.50	955.50	-36.50	311.70	1002.00	1005.70	71.84	26-Jun-07	1:19:27	440.75	0.46	89.81	PUP	None	440.75		89.81	
-2004.00	12.00	12.00	1494.00	281.00	-414.00	1002.00	-6.00	-6.00	956.20	179.80	-265.00	1002.00	1008.40	71.57	26-Jun-07	4:39:32	481.57	0.49	98.01	PUP	None	481.57		98.01	
-2004.00 -2004.00	-12.00 17.00	14.00 -4.00				1002.00 1002.00	6.00 -8.50	-7.00 2.00	956.20 954.90	279.00 -169.00	149.10 -274.60	1002.00 1002.00	1007.10 1007.80	71.80 71.50	26-Jun-07 26-Jun-07	8:04:24 10:26:19	522.46 563.36	0.53 0.50	99.53 105.56	PUP	None None	522.46 563.36		99.53 105.56	
-2004.00	13.00	8.00				1002.00	-6.50	-4.00	956.20	97.90	-305.90	1002.00	1007.00	71.53	27-Jun-07	20:08:52	601.86	0.44	101.20	PUP	None	601.86		101.20	
-2004.00	2.00	17.00	1493.00			1002.00	-1.00	-8.50	955.50	283.50	-149.10	1002.00	1007.80	71.64	27-Jun-07	22:47:15	642.28	0.49	108.27	PUP	None	642.28		108.27	
-2004.00 -2004.00	6.00 17.00	15.00 4.00		277.00 -299.00		1002.00 1002.00	-3.00 -8.50	-7.50 -2.00	954.20 953.00	177.30 -191.40	-273.90 -266.20	1002.00 1002.00	1008.50 1007.80	71.39 71.39	28-Jun-07 28-Jun-07	1:17:46 3:41:52	683.70 723.26	0.46	122.78 136.59	PUP	None None	683.70 723.26		122.78 136.59	
-2004.00	-13.00	-16.00	1489.00			1002.00	6.50	8.00	953.00	-59.50	314.90	1002.10	1005.40	71.79	28-Jun-07	6:06:56	764.46	0.59	127.45	PUP	None	764.46		127.45	
-2004.00	12.00	-18.00	1488.00			1002.00	-6.00	9.00	952.30	-323.20	35.80	1002.10	1006.30	71.54	28-Jun-07	9:18:56	805.27	0.62	127.21	PUP	None	805.27		127.21	
-2004.00 -2004.00	-21.00 11.00	4.00 19.00				1002.00 1002.00	10.50 -5.50	-2.00 -9.50	953.60 954.20	265.00 133.80	181.80 -298.90	1002.10 1002.10	1006.30 1008.90	71.80 71.42	28-Jun-07 28-Jun-07	12:22:24 19:41:52	845.35 885.85	0.61 0.63	132.06 122.92	PUP	None None	845.35 885.85		132.06 122.92	
-2004.00	-5.00	8.00	1494.00	466.00	162.00	1002.00	2.50	-4.00	956.20	298.20	103.70	1002.00	1006.90	71.78	29-Jun-07	6:26:08	926.54	0.27	100.65	PUP	None	926.54		100.65	
-2004.00	7.00	36.00		437.00			-3.50	-18.00	954.90	279.70	-161.30	1002.20	1008.00	71.63	29-Jun-07	8:32:00	965.84	1.05	104.59	PUP	None	965.84		104.59 62.27	
-2004.00 -2004.00	13.00 12.00	13.00 -7.00	1496.00 1495.00		-495.00	1002.00 1002.00	-6.50 -6.00	-6.50 3.50	957.40 956.80	293.80 3.20	-107.50 -316.80	1002.00 1002.00	1007.20 1007.90	71.68 71.47	29-Jun-07 29-Jun-07	11:09:52 14:06:56	1006.31 1047.80	0.53	62.27 56.76	PUP	None None	1006.31 1047.80		56.76	
-2004.00	-3.00	13.00	1494.00	495.00	25.00	1002.00	1.50	-6.50	956.20	316.80	16.00	1002.00	1007.40	71.71	29-Jun-07	16:34:08	1088.21	0.38	97.58	PUP	None	1088.21		97.58	
-2004.00 -2004.00	0.00 -4.00	-13.00 -14.00	1493.00 1492.00		48.00 267.00	1002.00	0.00 2.00	6.50 7.00	955.50 954.90	-318.10 -268.80	30.70 170.90	1002.00 1002.00	1007.50 1006.60	71.54 71.67	29-Jun-07 30-Jun-07	18:22:56 2:44:56	1127.79 1167.24	0.37	93.02 103.91	PUP	None None	1127.79 1167.24		93.02 103.91	
-2004.00	-4.00	-8.00	1492.00	-477.00		1002.00	2.00	4.00	955.50	-200.00	88.30	1002.00	1006.60	71.56	30-Jun-07	4:28:49	1208.62	0.42	77.43	PUP	None	1208.62		77.43	
-2004.00	-6.00	-9.00	1494.00	-494.00		1002.00	3.00	4.50	956.20	-316.20	0.60	1002.00	1007.10	71.53	30-Jun-07	6:04:19	1249.17	0.31	54.26	PUP	None	1249.17		54.26	
-2004.00 -2004.00	5.00 -4.00	-6.00 -15.00	1495.00	-110.00		1002.00 1002.00	-2.50 2.00	3.00 7.50	956.80 958.10	-70.40 44.80	-313.00 -311.00	1002.00 1002.00	1009.10 1008.30	71.33 71.43	30-Jun-07 30-Jun-07	7:57:41 10:54:07	1288.86 1329.56	0.22	50.57 336.00	PUP	None None	1288.86 1329.56		50.57 336.00	
-2004.00	-4.00	-15.00	1497.00	70.00	-400.00	1002.00	2.00	7.50	936.10	44.00	-311.00	1002.00	1000.30	71.43	30-Juli-07	10.54.07	1329.30	0.44	330.00	FUF	Notie	1329.30		336.00	

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 8.5*

Mwd Run: 2 Date: 19-Jun-07 MWD Tool Numbe VB01

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg

Declination Date EDI Az Error: 39264 0 Deg BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg): -2.339 -2.339 -0.950 -1.389 Corrections from Local Model: Declination (deg): -1.39 Field Strength (nT): 50339.50

				Magnetic t	to grid correc	ction		-1.389														
					- g						D surveys	T		MV					ison DD v			l
Surv	Depth	Temperature corrected axes	G H H	Statoil Reference Dip	Inc	Mag Az		Grid Az Az Corr	Interval	Depth	Inc Az		MD	Inc Az		Inc w sag	Depth		Azm corr		Inc	Comment
#		Gx Gy Gz Hx Hy Hz	(mg) (nT) (counts) #VALUE! #VALUE! #VALUE!	(nT) (deg) #VALUE! ######	(deg) #VALUE! :	(deg) #VALUE! #	******	(deg) (deg)	(m)	m	deg de	' H-	m	0.00 deg		deg	m	deg	deg	deg	deg	ı
14	320.93	1002.0 6.5 6.5 960.0 -240.6 200.3	3 1002.04 50488 1009.76	260.72 71.88	0.53	#VALUE: #	135	81.79 -1.39	#REF!		1	1 -	20.93	0.53 81.			-320.93	-0.53	-81.79			ı
15	360.28	1002.0 -5.0 6.5 958.1 -229.1 -224.6	5 1002.03 50519 1010.39	261.63 71.42	0.47	81.75	52	80.36 -1.39	39.35		1		60.28	0.47 80.3			-360.28	-0.47	-80.36			ı
16	400.04	1002.0 0.5 8.0 956.8 -318.7 12.8	1002.03 50428 1008.56	120.03 71.55	0.46	87.35	94	85.96 -1.39	39.76		1		00.04	0.46 85.	96		-400.04	-0.46	-85.96			i
17	440.75	1002.0 9.0 1.5 955.5 -36.5 311.7	7 1002.04 50286 1005.72	179.81 71.84	0.52	91.20	171	89.81 -1.39	40.71		1		40.75	0.52 89.8			-440.75	-0.52	-89.81			i
18	481.57	1002.0 -6.0 -6.0 956.2 179.8 -265.0	0 1002.04 50420 1008.40	101.80 71.57	0.49	99.41	-45	98.01 -1.40	40.82		1		81.57	0.49 98.			-481.57	-0.49				ı
19	522.46 563.36	1002.0 6.0 -7.0 956.2 279.0 149.1 1002.0 -8.5 2.0 954.9 -169.0 -274.6	1 1002.04 50358 1007.17 5 1002.04 50393 1007.87	142.81 71.80 139.78 71.49	0.53	100.92 106.95	-131 13	99.53 -1.39 105.56 -1.39	40.89 40.90		1		63.36	0.53 99. 0.50 105.		_	-522.46 -563.36	-0.53 -0.50		-		ı
21	601.86	1002.0 -6.5 -4.0 956.2 97.9 -305.9	0 1002.03 50435 1007.07	134.26 71.53	0.44	102.59	-32	101.20 -1.39	38.50		1		01.86	0.44 101.3		+	-601.86	-0.44				i
22	642.28	1002.0 -1.0 -8.5 955.5 283.5 -149.1	1002.04 50388 1007.76	48.64 71.64	0.49	109.66	-83	108.27 -1.39	40.42		1		42.28	0.49 108.3			-642.28	-0.49				i
23	683.70	1002.0 -3.0 -7.5 954.2 177.3 -273.9	1002.03 50422 1008.44	238.59 71.39	0.46	124.16	-68	122.78 -1.38	41.42		1		83.70	0.46 122.	78		-683.70	-0.46				i
24	723.26	1002.0 -8.5 -2.0 953.0 -191.4 -266.2	2 1002.04 50391 1007.82	226.93 71.39	0.50	137.98	-13	136.59 -1.39	39.56		1		23.26	0.50 136.			-723.26	-0.50				i
25	764.46	1002.0 6.5 8.0 953.0 -59.5 314.9	9 1002.05 50272 1005.44	146.73 71.79	0.59	128.84	129	127.45 -1.39	41.20		1		64.46	0.59 127.			-764.46	-0.59				i
26 27	805.27 845.35	1002.0 -6.0 9.0 952.3 -323.2 35.8 1002.0 10.5 -2.0 953.6 265.0 181.8	3 1002.06 50314 1006.29 3 1002.06 50315 1006.29	92.54 71.54 143.89 71.80	0.62	128.59 133.45	-169	127.21 -1.38 132.06 -1.39	40.81 40.08		1		05.27 145.35	0.62 127.		_	-805.27 -845.35	-0.62 -0.61	-132.06	-		1
28	885.85	1002.0 10.5 -2.0 953.6 263.0 181.6	0 1002.06 50442 1008.83	220.18 71.42	0.63	124.30	-60	122.92 -1.38	40.08				85.85	0.63 122.			-885.85	-0.63	-122.92			l
29	926.54	1002.0 2.5 -4.0 956.2 298.2 103.7	7 1002.01 50349 1006.97	128.59 71.79	0.27	102.03	-122	100.65 -1.38	40.69				26.54	0.27 100.0			-926.54	-0.27	-100.65			ı
30	965.84	1002.0 -3.5 -18.0 954.9 279.7 -161.3	8 1002.17 50400 1008.01	61.29 71.63	1.05	105.98	-79	104.59 -1.39	39.30				65.84	1.05 104.			-965.84	-1.05				i
31	1006.31	1002.0 -6.5 -6.5 957.4 293.8 -107.5	1002.04 50361 1007.22	38.84 71.68	0.53	63.66	-45	62.27 -1.39	40.47		1		06.31	0.53 62.3			-1006.31	-0.53	-62.27			i
32	1047.80	1002.0 -6.0 3.5 956.8 3.2 -316.8	3 1002.02 50394 1007.89	157.13 71.47	0.40	58.15	30	56.76 -1.39	41.49		1		147.80	0.40 56.			-1047.80	-0.40	-56.76			1
33	1088.21	1002.0 1.5 -6.5 956.2 316.8 16.0 1002.0 0.0 6.5 955.5 -318.1 30.7	0 1002.02 50372 1007.44 7 1002.02 50376 1007.53	70.21 71.71 96.13 71.54	0.38	98.97 94.40	-103 90	97.58 -1.39 93.02 -1.38	40.41 39.58		1		27.79	0.38 97.		1	-1088.21 -1127.79	-0.38 -0.37	-97.58 -93.02			i
35	1167.24	1002.0 0.0 6.5 955.5 -516.1 50.7	9 1002.03 50376 1007.53	24.92 71.67	0.42	105.30	106	103.91 -1.39	39.45		1		67.24	0.42 103.			-1167.24	-0.42	-103.91			1
36	1208.62	1002.0 2.0 4.0 955.5 -305.3 88.3	8 1002.01 50348 1006.97	75.94 71.55	0.26	78.81	117	77.43 -1.38	41.38		1		08.62	0.26 77.			-1208.62	-0.26	-77.43			i
37	1249.17	1002.0 3.0 4.5 956.2 -316.2 0.6	5 1002.01 50356 1007.13	99.02 71.53	0.31	55.65	124	54.26 -1.39	40.55		1		49.17	0.31 54.3			-1249.17	-0.31	-54.26			1
38	1288.86	1002.0 -2.5 3.0 956.8 -70.4 -313.0	1002.01 50458 1009.15	300.20 71.33	0.22	51.96	50	50.57 -1.39	39.69		1		88.88	0.22 50.			-1288.86	-0.22	-50.57			i
39	1329.56	1002.0 2.0 7.5 958.1 44.8 -311.0	0 1002.03 50415 1008.31	196.44 71.43	0.44	337.39	105	336.00 -1.39	40.70		1	1:	29.56	0.44 336.	00		-1329.56	-0.44	-336.00			1
40			#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	#VALUE! ###### #VALUE! ######			******				1	- 1 ⊢-			+							1
42			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####				1	- 1 ⊢	-		+		-					1
43			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####				1	11			+							1
44			#VALUE! #VALUE! #VALUE!	#VALUE! ######	#VALUE!	#VALUE! #	*####				1											1
45			#VALUE! #VALUE! #VALUE!				#####				1											i
46			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####				1											1
47 48			#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	#VALUE! ###### #VALUE! ######			******				1	- 1 ⊢-			+							1
49			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####				1	- 1 ⊢	-		+		-					1
50			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####					11			1 -		-					l
51			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*####															i
52			#VALUE! #VALUE! #VALUE!	#VALUE! ######			#####															i
53			#VALUE! #VALUE! #VALUE!				*#####					11			4		-					1
54 55			#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	#VALUE! ###### #VALUE! ######			******		—			- 1 ⊨			+		-			-		ı
56			#VALUE! #VALUE! #VALUE!	#VALUE! ######			******		\vdash			- 1 ├			+	1	-					1
57			#VALUE! #VALUE! #VALUE!	#VALUE! ######			#####						-		+ -	1	-					ı
58			#VALUE! #VALUE! #VALUE!				*#####															l
59			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*####															i
60			#VALUE! #VALUE! #VALUE!	#VALUE! ######		WALLEY.	#####															ı
61			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*####					11-	_			1	·					ı
62			#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	#VALUE! ###### #VALUE! ######			******		\vdash			1 -				1	-					l
64			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####		\vdash			11			1		-					1
65			#VALUE! #VALUE! #VALUE!	#VALUE! ######			*#####						-		+		-					1
66			#VALUE! #VALUE! #VALUE!	#VALUE! ######	#VALUE!	#VALUE! #	*****															l
67			#VALUE! #VALUE! #VALUE!	#VALUE! ######			#####															i
68			#VALUE! #VALUE! #VALUE!	#VALUE! ######			#####					11]		4		ΙЩ					1
69			#VALUE! #VALUE! #VALUE!	#VALUE! ######	#VALUE! :	#VALUE! #	*#####			i I	l I	11		I	1	1						i

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	36"
Mwd Run ·	1

Declination Date: EDI Az Error: 1-Jul-07 0 Deg

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.950
Total Correction(deg): -1.389

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
5033 -1.39 50339.50 71.64

BHA Sag C	orrection app	olied:			
INCL	Correction	INCL	Correction	INCL	Correctio
6-7	-0.11	9-10	-0.14		
7-8	-0.12	10-11	-0.15		
8-9	-0.13				

					EDI interf	erring field	: 40	026.0																	
Raw Sgx_t	Raw Sgy_t	Raw va Raw Sgz_t	ues Raw Shx_t	Raw Shy_t	Raw Shz_t		T_corr. Sgy	Tempera T_corr. Sgz	T_corr. Shx		T_corr. Shz	Tool G	Tool H	Dip Angle	Date	Time	Depth m	Incl deg	Azim deg	Tool Type	Qual Type	Depth m	SUCOP Incl corr Azim deg deg	Final Azim deg	Comments
-2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00 -2004.00	12.00 -6.00 -4.00 -1.00 -1.00 -5.00 -1.00 -5.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	-2.00 -1.00 -9.00 -1.00	1776.00 1738.00 1757.00 1717.00 1708.00 1694.00 1690.00 1686.00 1500.00 1497.00	63.00 210.00 -429.00 401.00 -67.00	-552.00 336.00 109.00 -210.00 -460.00 -511.00 43.00 213.00 313.00 -351.00	1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00	3.00 2.00 -0.50 2.50 -0.50 -0.50 2.50 -1.00 6.50 -5.00	1.00 0.50 4.50 2.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	1177.00 1136.60 1112.30 1112.450 11038.30 1093.10 1093.10 1094.00 960.00 960.00 956.10 956.80	-274.60 256.60 -42.90	322.60 -353.30 215.00 215.00 215.00 215.00 215.00 215.00 225.00 227.50 227.50 222.00 225.00 224.60 224.60 224.60	1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00 1002.00	1222.20 1191.00 1140.20 1140.20 1136.40 1136.40 1133.00 1134.10 1138.20 1009.80 1010.40 1008.60	74.49 72.62 77.64 77.64 76.52 76.52 74.67 73.07 72.64 71.62 71.82 71.55	14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 15-Jun-07 15-Jun-07 25-Jun-07 25-Jun-07	13:56:16 17:18:56 17:18:56 17:18:56 17:18:56 17:18:56 17:18:56 17:11:30 17:11:30 17:51:28 17:11:30 17:31:32 17:	141.69 154.88 166.02 195.17 207.43 222.45 235.69 242.74 320.93 360.28 400.04	0 0,35 0,17 0,28 0,15 0,15 0,15 0,12 0,12 0,13 0,5 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14	0 248.65 272.11 186.82 195.09 195.09 162.53 137.00 81.79 80.36 85.96	MWD	None None None None None None None None	0.00 1414.89 1416.99 1416.99 1416.99 1416.99 140.00		272.11 186.82 113.64 195.09 20.76 153.90 162.53	Going by GWD Incl and Az Going by GWD Incl and Az Going by SWD Incl and Az Going by GWD Incl and Az

Expiry Date: 2006-05-12 Classification: Statoil internal Status: Draft

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	36"

 Mwd Run :
 1

 Date :
 19-Jun-07

 MWD Tool Number :
 VB01

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg Declination Date: EDI Az Error: EDI interferring field:

1-Jul-07 0 Deg 4026.0

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.950
Total Correction(deg): -1.389

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
5033 -1.39 50339.50

BHA Sag C	orrection app	olied:			
INCL	Correction	INCL	Correction	INCL	Correction
6-7	-0.11	9-10	-0.14		
7-8	-0.12	10-11	-0.15		
8-9	-0.13				

		Raw val	2011					Tempera	ture correcte	d															Final	
Raw	Raw	Raw	Raw					T_corr.	T_corr.	T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth		Azim	Tool	Qual	Depth	to at	SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Sny_t	Snz_t	Sgx	Sgy	Sgz	SIIX	Shy	Shz	l G	н	Angle			m	deg	deg	Туре	Type	m	Incl	corr Azim deg	deg	
																						0.00				

-2.339 -2.339 -0.950 -1.389

Schlumberger

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	36"

Mwd Run : 1
Date : 19-Jun-07
MWD Tool Numbe VB01

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg

Declination Date EDI Az Error: 39264 0 Deg BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

Corrections from Local Model: Declination (deg): -1.39 Field Strength (nT): 50339.50

					Magnetic	to grid corr	rection		-1.389				·D				MWD				0	rison DD v	1414/5		•
Surv Depth	Temperature corrected axes G	I III	H	Statoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	D survey Inc	/s Azim	MD	Inc			Inc w sag	Depth		Azm corr		Inc	Comment
# Deptil	Gx Gy Gz Hx Hy Hz (mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg	deg	dea	m	deg	deg	deg	deg	Comment
1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######	0.00	(==3)	(,			i ,		0.00									
3 141.6	9 1002.0 -6.0 1.0 1177.0 -66.6 322.6 1002.02	61111	1222.23	11191.58	74.49	0.35	250.04	9	248.65	-1.39	#VALUE!				141.69	0.35	248.65			-141.69	-0.35	-248.65			Going by GWD Incl and Az
5 154.8		59546	1190.93	9262.69	72.62	0.17	273.51	171	272.11	-1.40	13.19				154.88		272.11			-154.88	-0.17	-272.11			Going by GWD Incl and Az
6 166.2	9 1002.0 2.0 4.5 1112.3 134.4 215.0 1002.01	57042	1140.83	8844.87	77.44	0.28	188.22	114	186.82	-1.40	11.41				166.29		186.82			-166.29	-0.28	-186.82			Going by GWD Incl and Az
8 183.0	0 1002.0 -0.5 2.5 1124.5 -274.6 69.8 1002.00	57982	1159.65	8784.89	75.92	0.15	115.05	79	113.64	-1.41	16.71				183.00		113.64			-183.00	-0.15	-113.64			Going by GWD Incl and Az
9 195.1		56822 56643	1136.44 1132.86	7464.88 6977,28	75.37 74.67	0.15	196.49 22.16	-169 76	195.09 20.76	-1.40 -1.40	12.17				195.17		195.09			-195.17	-0.15 -0.12	-195.09 -20.76			Going by GWD Incl and Az
10 207.4		56649	1132.86	6497.27	73.21	0.12	155.30	-72	153.90	-1.40	15.02				207.43		20.76 153.90			-207.43	-0.12	-20.76			Going by GWD Incl and Az Going by GWD Incl and Az
12 235.6		56703	1134.05	6440.58	72.65	0.05	163.94	-169	162.53	-1.41	13.24				235.69		162.53			-235.69	-0.05	-162.53			Going by GWD Incl and Az
13 242.7	4 1002.0 -1.0 2.0 1079.0 -336.0 136.3 1002.00	56915	1138.29	6576.29	71.52	0.13	138.39	63	137.00	-1.39	7.05				242.74		137.00			-242.74	-0.13	-137.00			Going by GWD Incl and Az
14 320.9	1002.0 6.5 6.5 960.0 -240.6 200.3 1002.04	50488	1009.76	260.72	71.88	0.53	83.18	135	81.79	-1.39	78.19				320.93	0.53	81.79			-320.93	-0.53	-81.79			
15 360.2	8 1002.0 -5.0 6.5 958.1 -229.1 -224.6 1002.03	50519	1010.39	261.63	71.42	0.47	81.75	52	80.36	-1.39	39.35				360.28	0.47	80.36			-360.28	-0.47	-80.36			
16 400.0		50428	1008.56	120.03	71.55	0.46	87.35	94	85.96	-1.39	39.76				400.04	0.46	85.96			-400.04	-0.46	-85.96			
17	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	####### ########	#VALUE!	#VALUE!	######																	
19	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
20	#VALUE!	#VALUE!	#VALUE!	#VALUE!	*******	#VALUE!	#VALUE!	######		-	-														
21	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
22	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
23	#VALUE!		#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
24	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
25	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
26 27	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	#######	#VALUE!	#VALUE!	######																	
28	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
29	#VALUE!	#VALUE!	#VALUE!	#VALUE!	*******	#VALUE!	#VALUE!	######																	
30	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
31	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
32	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
33	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
34	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	#######	#VALUE!	#VALUE!	######																	
35 36	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
37	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######		_															
38	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
39	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
40	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	#####																	
41	#VALUE!			#VALUE!	#######	#VALUE!																			
42	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	#######	#VALUE!	#VALUE!	######																	
44	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
45	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
46	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
47	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
48	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
49	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	#######	#VALUE!	#VALUE!	######							—					\vdash		-			
50 51	#VALUE!		#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######			\vdash				\vdash	\vdash	-			\vdash		-			
52	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######												\vdash					
53	#VALUE!		#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
54	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
55	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
56	#VALUE!		#VALUE!	#VALUE!	######	#VALUE!		######												\vdash					
57 58	#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	#######	#VALUE!	#VALUE!	######							<u> </u>	—				\vdash		-			
59	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######							-					\vdash		-			
60	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######		_	-				-	-				\vdash		-			
61	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
62	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
63	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																	
64	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	
65	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######							<u> </u>	\sqcup				\vdash					
66 67	#VALUE!	#VALUE!	#VALUE! #VALUE!	#VALUE! #VALUE!	####### ########	#VALUE!	#VALUE!	######							—	\vdash				\vdash		-			
07	#VALUE:	#VALUE:	#YALUE!	#YALUE:	************	#VALUE:	#VALUE:	**********			\square		1 1		I			ı	I	i i		ļ			

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 36°

SURVEY QC

|H| |H| (nT) (counts)

Rev#3.5 w/ Statoil Ref.

Mwd Run :

Date: 19-Jun-07 MWD Tool Numbe VB01

Temperature corrected axes

Gx Gy Gz Hx Hy Hz

Declination Date EDI Az Error: 39264 0 Deg

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dio: 71.64 +/- 0.45 deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

Corrections from Local Model: Declination (deg): -1.39 Field Strength (nT): 50339.50

Comparison DD vs. MWD
Depth SAG Azm corr Azm

Az Corr Az Inc w sag

Magnetic to grid correction

ic	to grid corr	ection		-1.389					
								D survey	/S
	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	Inc	Azi
	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	de
#	#VALUE!	#VALUE!	######						Ī

-2.339 -2.339 -0.950 -1.389

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client : Well : Hole Size : STATOIL 15/9-F-12 26" Mwd Run :

Date : MWD Tool Number :

7-Jul-07 MDC HE VA97/MEA675

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg Declination Date: EDI Az Error: 1-Jul-07 0.39 Deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Convergence(deg): Total Correction(deg):

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
5033 -2.339 -2.339 -0.950 -1.389 -1.39 50339.50

BHA Sag C	orrection app	olied:			
INCL	Correction	INCL	Correction	INCL	Correction
0-12	0	17-21	-0.21		
12-14	-0.27				
14-17	-0.25				
	0-12 12-14	INCL Correction 0-12 0 12-14 -0.27	0-12 0 17-21 12-14 -0.27	INCL Correction INCL Correction	INCL Correction INCL Correction INCL

					EDI interfe	erring field:	31	1 nT																	
		Raw val	Jes					Tempera	ture correcte	d														Final	
Raw	Raw	Raw	Raw					T_corr.	T_corr.	T_corr.		Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth	SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	Н	Angle			m	deg	deg	Type	Type	m	Incl corr Azim deg deg	deg	
-2004.00	2.00	-4.00				1002.00		2.00	1079.00	-336.00	136.30	1002.00	1138.30	71.52	15-Jun-07	7:51:28	242.74	0.13	137.00	MWD	None	242.74	0.13	137.00	
1002.00	5.00 -1.00	-1.00 8.00	967.00	74.00 -301.00		1002.00	4.50 -1.00	-1.00 6.00	955.50 955.80	73.60 -302.10	305.30 -97.30	1002.00	1005.80 1007.10	71.81 71.58	6-Jul-07 6-Jul-07	14:28:16 16:17:04	311.15 351.13	0.26	88.83 79.19	MWD MWD	S S	311.15 351.13	0.26 0.35		Sucop survey Sucop survey
1002.00	0.00	10.00		-301.00		1002.00	0.00	9.50	955.80	-302.10	-97.30 -61.40	1002.00	1007.10	71.58	6-Jul-07 6-Jul-07	23:21:36	392.25	0.54	79.19	MWD	S	392.25	0.35		Sucop survey Sucop survey
1002.00	39.00	10.00	972.00	-271.00	85.00	1001.50	38.50	9.50	965.90	-271.40	85.10	1002.30	1006.90	71.62	7-Jul-07	1:23:12	432.64	2.27	26.32	MWD	S	432.64	2.27	26.32	Sucop survey
999.00 994.00	83.00 -109.00	-11.00 -74.00		-182.00 211.00		998.50 993.50	83.00 -108.50	-11.00 -74.00	975.90 983.50	-182.40 211.20	166.40 -44.80	1002.00 1002.10	1006.70 1006.90	71.67 71.60	7-Jul-07 7-Jul-07	3:35:28 6:09:04	473.15 512.07	4.79 7.53	25.05 28.01	MWD MWD	S	473.15 512.07	4.79 7.53		Sucop survey Sucop survey
993.00	59.00	126.00		-218.00			58.50	125.50	983.50	-217.60	-44.80	1002.10	1006.90	71.80	7-Jul-07 7-Jul-07	7:55:44	553.45	7.53	34.53	MWD	S	512.07	7.53 7.94		Sucop survey Sucop survey
998.00	-3.00	98.00		-172.00		997.50	-2.50	97.50	976.20	-172.20	-160.00	1002.30	1004.10	72.28	7-Jul-07	9:18:56	594.11	5.58	33.81	MWD	S	594.11	5.58	33.81	Sucop survey
999.00 997.00	83.00 107.00	-29.00 -2.00		-172.00 -207.00		998.50 996.50	83.00 106.50	-28.50 -2.00	978.20 983.40	-172.20 -207.40	166.40 -46.10	1002.30 1002.20	1007.10 1006.10	71.58 71.83	7-Jul-07 7-Jul-07	10:52:48 12:20:16	633.54 672.48	5.02 6.10	17.20 349.45	MWD MWD	S S	633.54 672.48	5.02 6.10	17.20 349.45	Sucop survey Sucop survey
995.00	35.00	-113.00		-223.00		995.00	34.50	-113.00	979.30	-207.40	87.70	1002.20	1008.10	71.03	7-Jul-07 7-Jul-07	14:06:56	714.23	6.77	323.10	MWD	S	714.23	6.77		Sucop survey
995.00	85.00	-91.00		-228.00			84.50	-91.00	966.60	-227.80	-170.20	1002.20	1007.60	71.48	7-Jul-07	15:49:20	754.65	7.12	296.52	MWD	S	754.65	7.12		Sucop survey
985.00 976.00	61.00 -10.00	-177.00 -228.00		-259.00 -324.00		984.50 976.00	61.00 -10.00	-177.00 -227.50	952.40 940.10	-259.20 -323.80	-201.60 -161.90	1002.10 1002.20	1007.40 1007.40	71.52 71.53	7-Jul-07 7-Jul-07	17:27:28 19:54:40	794.73 836.23	10.77 13.13	281.94 276.21	MWD MWD	S	794.73 836.23	10.77 12.86		Sucop survey Sucop survey
961.00	-16.00	-284.00		-332.00			-15.50	-284.00	913.80	-332.20	-261.80	1002.20	1006.90	71.62	8-Jul-07	0:02:08	875.13	16.49	267.05	MWD	s	875.13	16.24		Sucop survey
973.00	16.00	-243.00		-298.00		972.50	16.00	-242.50	918.20	-297.60	-287.40	1002.40	1007.10	71.59	8-Jul-07	0:51:12	917.39	14.03	262.01	MWD	S	917.39	13.76		Sucop survey
975.00 964.00	187.00 -52.00	143.00 -271.00		401.00 -362.00			187.00 -51.50	143.00 -271.00	918.00 917.70	401.30 -362.20	-82.60 -202.20	1002.50 1002.20	1005.30 1007.10	71.88 71.59	8-Jul-07 8-Jul-07	1:40:16 2:31:28	957.61 998.18	13.60 15.98	260.23 267.99	MWD MWD	S S	957.61 998.18	13.33 15.73		Sucop survey Sucop survey
967.00	233.00	-127.00		60.00			233.00	-126.50	926.00	59.50	-386.60	1002.20	1007.10	71.93	8-Jul-07	5:09:20	1036.88	15.34	271.67	MWD	S	1036.88	15.09		Sucop survey
974.00	-207.00	-120.00		-351.00				-119.50	930.10	-351.40	169.60	1002.30	1008.60	71.33	8-Jul-07	7:04:32	1078.16	13.77	270.12	MWD	S	1078.16	13.50		Sucop survey
970.00 953.00	-2.00 -241.00	253.00 -198.00		314.00 -490.00			-1.50 -241.00	253.00 -198.00	912.30 881.90	313.60 -490.20	290.60 0.00	1002.50 1002.30	1007.50 1009.00	71.53 71.35	8-Jul-07 8-Jul-07	10:33:36 12:07:28	1118.11 1156.95	14.62 18.13	259.76 253.24	MWD MWD	S S	1118.11 1156.95	14.37 17.92		Sucop survey Sucop survey
932.00	-335.00	-158.00		-541.00			-335.00	-157.50	847.10	-541.40	77.40	1002.40	1008.30	71.46	8-Jul-07	13:39:12	1198.13		248.19	MWD	s	1198.13	21.46		Sucop survey
951.00	-72.00	-308.00		-383.00			-71.50	-307.50	883.30	-382.70	-292.50	1002.00	1006.10	71.73	8-Jul-07	15:57:52	1238.84	18.36	254.98	MWD	S	1238.84	18.15		Sucop survey
939.00 962.00	228.00 283.00	267.00 -18.00	871.00 897.00	504.00 343.00	133.00 -316.00	939.00 961.50	228.00 283.00	267.00 -17.50	859.40 888.70	504.30 343.00	133.10 -315.50	1002.50 1002.40	1005.30 1003.50	71.82 72.07	8-Jul-07 8-Jul-07	17:29:36 18:59:12	1274.81 1314.50	20.50 16.43	249.90 250.56	MWD MWD	S S	1274.81 1314.50	20.29 16.18		Sucop survey Sucop survey
965.00	78.00	-262.00		-182.00			77.50	-261.50	891.30	-182.40	-428.20	1002.30	1005.50	71.81	8-Jul-07	22:21:52	1344.74	15.79	249.52	MWD	s	1344.74	15.54		Sucop survey

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	26"

 Mwd Run :
 4

 Date :
 7-Jul-07

 MWD Tool Number :
 MDC HE VA97/MEA675

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg Declination Date: EDI Az Error: EDI interferring field: 1-Jul-07 0.39 Deg 311 nT

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.950
Total Correction(deg): -1.389

Corrections from Local Model: Declination (deg): Field Strength (nT): -1.39 50339.50

BHA Sag C	orrection app	olied:			
INCL	Correction	INCL	Correction	INCL	Correction
0-12	0	17-21	-0.21		
12-14	-0.27				
14-17	-0.25				
	0-12 12-14	INCL Correction 0-12 0 12-14 -0.27	0-12 0 17-21 12-14 -0.27	INCL Correction INCL Correction	INCL Correction INCL Correction INCL

		Raw val	ues					Tempera	ture correcte	d															Final	
Raw	Raw	Raw								T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth	S	JCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	н	Angle			m	deg	deg	Type	Type	m	Incl co	r Azim	deg	
						•																	deg	deg		

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL	Accepta	nce Criteria :					
Well:	15/9-F-12	Tool G: 1	001.84 +	- 2.5 counts				
Hole Size :	17.5"	Tool H: 1	007.26 +	- 6 counts	BGGM Magnetic Declination(deg):	-2.339	Corrections from Local N	odel:
		Dip:	71.64 +	- 0.45 deg	Total Magnetic Declination(deg):	-2.339	Declination (deg):	
Mwd Run :	5				Grid Convergence(deg):	-0.950	Field Strength (nT):	
Date :	21-Jul-07	Declination Date	: 1-Ju	I-07	Total Correction(deg):	-1.389	Dip (deg):	
MWD Tool Number :	VB01	EDI Az Error:	0 0					

	vuilibei .				EDI interfe	erring field:	: 40	26.0																	
Raw Sgx_t	Raw Sgy_t	Raw va Raw Sgz_t	lues Raw Shx_t		Raw Shz_t	T_corr. Sgx	T_corr. Sgy	Tempera T_corr. Sgz	T_corr. Shx	T_corr. Shy	T_corr. Shz	Tool G	Tool H	Dip Angle	Date	Time	Depth m	Incl deg	Azim deg	Tool Type	Qual Type	Depth m	SUCOP Incl corr Azim deg deg	Final Azim deg	Comments
-1889.00 -1870.00	-535.00 671.00	404.00 269.00	1297.00 1285.00	868.00 -611.00	-186.00 -674.00	944.50 935.00	267.50 -335.50	-202.00 -134.50	830.10 822.40	555.50 -391.00	-119.00 -431.40	1002.20 1002.40	1005.90	71.61 71.55	30-Jul-07 30-Jul-07	6:45:20 18:37:52	2493.74 2536.07	19.27 20.86	129.52 125.56	PUP PUP	I -0.27 I -0.28			129.52 125.56	
																						0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			
																						0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			

Schlumberger

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL	Acc	eptance Criteri	a:
Well:	15/9-F-12	Tool G:	1001.84	+/- 2.5 counts
Hole Size :	26"	Tool H:	1006.79	+/- 6 counts
		Dip:	71.64	+/- 0.45 deg

Mwd Run: 4
Date: 07-Jul-07
MWD Tool Numbe MDC HE VA97/MEA675 Declination Date EDI Az Error: 39264 0.39 Deg BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg): -2.339 -2.339 -0.950 -1.389 Corrections from Local Model: Declination (deg): -1.39 Field Strength (nT): 50339.50

											Magnetic	to grid co	rrection		-1.389								MWD.			0	·! DD ··	- 1040		7				
Surv	Depth		-	empe	ature	correc	ted axe		_	IGI	_	IHI I	IHI	Statoil Reference	Dip	Inc	Mag Az	I TE	Grid Az	Az Corr	Interva		Survey Inc	s Azim	MD	Inc	MWD Az Corr A	z Inc w sag	Depth		rison DD v Azm corr		Inc	Comment
#	Бории	Gx			Gz	Hx			z	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg deg	deg	m	deg	deg	deg	deg	Comment
13	242.74	1002	2.0	-1.0		1079.			36.3	1002.00		6915	1138.29	6576.29	71.52	0.13	138.39	63	137.00	-1.39	242.7	242.74	0.13	137.00	242.74	0.13	137.00	0.13	0.00	0.00	0.00	0.00		T.I.P
3	311.15	1002		4.5		955.			05.3	1002.01	_	0289	1005.79	156.28	71.81	0.26	90.22	-167	88.83	-1.39	68.4	311.15	0.26	88.83	311.15	0.26	88.83	0.26	0.00	0.00	0.00	0.00		Sucop survey
5 6	351.13 392.25	1002		-1.0		955. 956.			97.3 51.4	1002.02		0356	1007.12	57.82 87.90	71.58	0.35	80.58 77.23	81 90	79.19 75.84	-1.39 -1.39	39.9	351.13 392.25	0.35 0.54	79.19 75.84	351.13 392.25	0.35	79.19 75.84	0.35	0.00	0.00	0.00	0.00	0.00	Sucop survey Sucop survey
8	432.64	1002		38.5		965.			35.1	1002.05		0345	1007.38	20.96	71.62	2.27	27.71	166	26.32	-1.39	40.3		2.27	75.84 26.32	432.64	2.27	26.32	+ -	0.00			0.00	0.00	
9	473.15	998				975.			66.4	1002.00		0332	1006.65	24.27	71.67	4.79	26.44	-172	25.05	-1.39	40.5		4.79	25.05	473.15	4.79	25.05		0.00			0.00	0.00	
10	512.07	993		08.5	-74.0	983.			14.8	1002.14		0346	1006.92	32.77	71.60	7.53	29.40	-34	28.01	-1.39	38.9	512.07	7.53	28.01	512.07	7.53	28.01		0.00			0.00	0.00	
11	553.45	992				981.			30.7	1002.11		0310	1006.19	156.38	71.81	7.94	35.93	115	34.53		41.3	553.45	7.94	34.53	553.45	7.94			0.00			0.00		
12	594.11 633.54	997		-2.5 33.0		976.	2 -172 2 -172		60.0 66.4	1002.26		0205 0354	1004.10	571.82 59.77	72.27 71.57	5.58 5.02	35.21 18.59	-161	33.81 17.20	-1.40 -1.39	40.6 39.4		5.58 5.02	33.81 17.20	594.11 633.54	5.58 5.02	33.81 17.20	+	0.00			0.00	0.00	
14	672.48	996		06.5		983.			16.1	1002.33		0304	1006.09	164.23	71.82	6.10	350.84	-179	349.45		38.9	672.48	6.10	349.45	672.48		349.45	+	0.00			0.00	0.00	
15	714.23	995	5.0	34.5	113.0	979.	3 -223	.4	37.7	1001.99		0414	1008.28	333.58	71.27	6.77	324.49	-107	323.10	-1.39	41.7	714.23	6.77	323.10	714.23		323.10	1 1	0.00			0.00	0.00	
16	754.65						6 -227			1002.22		0378	1007.56	143.17	71.48	7.12	297.92	-133	296.52	-1.40	40.4	754.65	7.12	296.52	754.65		296.52		0.00			0.00	0.00	
17	794.73 836.23						4 -259 1 -323			1002.14		0371 0370	1007.42 1007.40	111.35 103.10	71.52 71.53	10.77	283.33 277.61	-109 -87	281.94 276.21	-1.39 -1.40	40.0		10.77 12.86	281.94 276.21	794.73 836.23		281.94 276.21	12.86	0.00	0.27		0.00		Sucop survey
19	875.13						8 -332			1002.21		0347	1007.40	21.65	71.62	16.49	268.43	-87	267.05	-1.40	38.9		16.24	267.05	875.13	16.49		16.24	0.00	-0.27 -0.25		0.00		Sucop survey Sucop survey
20	917.39	972				918.				1002.41		0355	1007.10	43.25	71.59	14.03	263.39	-94	262.01	-1.38	42.2		13.76	262.01	917.39	14.03		13.76	0.00	-0.27		0.00	0.00	
21	957.61		4.5 1						32.6	1002.53		0264	1005.28	220.43	71.88	13.58	261.63	143	260.23	-1.40	40.2		13.33	260.23	957.61	13.60		13.33	0.00	-0.27		0.00	0.00	outop sairey
22	998.18		3.5 -							1002.21		0355	1007.10	48.74	71.59	15.98	269.39	-79	267.99	-1.40	40.5		15.73	267.99	998.18		267.99	15.73	0.00	-0.25		0.00	0.00	
23	1036.88		6.5 2 3.5 -2		126.5				36.6 39.6	1002.20 1002.31		0261	1005.22	265.55 289.50	71.93	15.34	273.06 271.51	-152 -30	271.67 270.12	-1.39 -1.39	38.7 41.2	1036.88 1078.16	15.09 13.5	271.67 270.12	1036.88	15.34	271.67	15.09 13.50	0.00	-0.25 -0.27	0.00	0.00	0.00	Sucop survey Sucop survey
25	1118.11		0.0						30.6	1002.31		0376	1007.51	100.04	71.53	14.62	261.14	90	259.76	-1.38	39.9	1118.11	14.37	259.76	1118.11		259.76	14.37	0.00	-0.25	0.00	0.00	0.00	Sucop survey
26	1156.95	952	2.5 -2	11.0	198.0	881.	9 -490		0.0	1002.27	50	0449	1008.98	280.72	71.35	18.13	254.64	-39	253.24	-1.40	38.8	1156.95	17.92	253.24	1156.95	18.13	253.24	17.92	0.00	-0.21	0.00	0.00		Sucop survey
27	1198.13		1.5 -3						77.4	1002.36		0415	1008.31	172.90	71.46	21.67	249.57	-25	248.19	-1.38	41.1		21.46	248.19	1198.13	21.67		21.46	0.00	-0.21	0.00	0.00		Sucop survey
28	1238.84		1.0 - 9.0 2							1002.03		0305	1006.10	86.57	71.73	18.36	256.36 251.30	-77	254.98 249.90	-1.38	40.7	1238.84 1274.81	18.15	254.98	1238.84	18.36		18.15 20.29	0.00	-0.21	0.00	0.00	0.00	
30	1274.81		1.5 2						33.1 15.5	1002.49		0264	1005.29 1003.48	176.09 411.73	71.82 72.07	20.50 16.43		130 -176	250.56	-1.40 -1.40	35.9 39.6	1314.50	20.29 16.18	249.9 250.56	1274.81 1314.50		249.90 250.56	16.18	0.00	-0.21 -0.25		0.00	0.00	
31	1344.74						3 -182			1002.32		0275	1005.51	165.76	71.81	15.79	250.91	-107	249.52		30.2		15.54	249.52	1344.74		249.52	15.54	0.00	-0.25		0.00		Sucop survey
32										#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE		#####				11 1												1
33		_								#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE		#####				41 I											Ь—	4
34		┝							_	#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	******	#VALUE		#####				- 1			-			+	\vdash				\vdash	4
36		1								#VALUE!		ALUE!	#VALUE!	#VALUE!	######	#VALUE		#####				1						+ +	-					1
37		İ								#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE	#VALUE!	#####				11 1												
38										#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE		#####]												1
39 40		 								#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	######	#VALUE		#####							-			+	-				⊢—	4
41		 							_	#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE						-						+ -	-					4
42		1								#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE						11 1												1
43										#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE						11 1												1
44 45		!								#VALUE!		ALUE!	#VALUE!	#VALUE!	######	#VALUE		#####				41 1											Ь——	4
45		╁							_	#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	######	#VALUE	#VALUE! #VALUE!	#####	_			11 1			-	-		+	-				\vdash	4
47		t								#VALUE!		ALUE!	#VALUE!	#VALUE!	######	#VALUE		#####				11 1												
48										#VALUE!		ALUE!	#VALUE!	#VALUE!	######		! #VALUE!					11 1												1
49 50		<u> </u>								#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	######	#VALUE		#####				- 1			\vdash			+	\vdash		$\vdash \vdash \vdash$			-
50		Η-							_	#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE						11 1			\vdash			+	\vdash					4
52		1								#VALUE!		ALUE!	#VALUE!	#VALUE!	######			#####				11 1						1 1	\vdash					1
53										#VALUE!	#V	ALUE!	#VALUE!	#VALUE!	######	#VALUE	#VALUE!	#####				11 1												1
54										#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE]]]												1
55 56		_								#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	######	#VALUE		#####				- 1			\vdash				\vdash				—	4
56		1							-	#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE						- 1			-			+ +	\vdash		H +			1
58		t								#VALUE!		ALUE!	#VALUE!	#VALUE!	######	#VALUE		#####				11						1 1						1
59										#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE		#####																1
60										#VALUE!		ALUE!	#VALUE!	#VALUE!			#VALUE!	#####															\vdash	4
61		-							_	#VALUE!		ALUE!	#VALUE!	#VALUE! #VALUE!	######	#VALUE	#VALUE!	#####			-	{			\vdash			+	\vdash				⊢—	4
63		1							_	#VALUE!		ALUE!	#VALUE!	#VALUE!		#VALUE		#####				11 1			1			+ +	\vdash					1
64		t								#VALUE!		ALUE!	#VALUE!	#VALUE!	######			#####				11 1						1 1						1
65										#VALUE!		ALUE!	#VALUE!	#VALUE!	######	#VALUE		#####				11 1												1
66										#VALUE!		ALUE!	#VALUE!	#VALUE!	######			#####															\vdash	1
67		L								#VALUE!	#V/	ALUE!	#VALUE!	#VALUE!	######	#VALUE	#VALUE!	#####			L	11 I		l I		I	ļ	1 1	1 1		I I		ı	1

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

-2.339 -2.339 -0.950 -1.389

-1.389

Schlumberger

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	26"

Mwd Run : 4
Date : 07-Jul-07
MWD Tool Numbe MDC HE VA97/MEA675

Declination Date EDI Az Error: 39264 0.39 Deg

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1006.79 +/- 6 counts
Dip: 71.64 +/- 0.45 deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

Corrections from Local Model: Declination (deg): -1.39 Field Strength (nT): 50339.50

BHA Sag Co	orrection App	lied			
INCL	Correction	INCL	Corr	INCL	Corr
0-12	0				
12-14	-0.27				
14-17	-0.25	17-21	-0.21		

MWD Comparison DD vs. MWD Inc Az Corr Az Inc w sag Depth SAG Azm corr Azm

Magnetic to grid correction

											Magnetic	to grid corr	ection		-1.389						
																		DI	D survey	s	
th		Temp	erature	correct	ed axes		G	H	H	Statoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	Inc	Azim	
	Gx	Gy	Gz	Hx	Hy	Hz	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	
							#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######							
							#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######							
_																			•	•	

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	17.5"

Mwd Run : Date : MWD Tool Number : 5 21-Jul-07 VB01

Tool G: Tool H: Dip: Declination Date: 1-Jul-07 EDI Az Error: EDI interferring field: 0 Deg 4026.0

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.950
Total Correction(deg): -1.389

Corrections from Local Model: Declination (deg): Field Strength (nT): Dip (deg):

		Raw valu	ues						ature correcte																Final	
Raw	Raw	Raw	Raw	Raw	Raw	T_corr.	T_corr.	T_corr.	T_corr.	T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth		SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	Н	Angle			m	deg	deg	Type	Type	m	Incl	corr Azim	deg	
																							de	g deg		
																						0.00				
																						0.00				

SURVEY QC

0 Deg

Rev#3.5 w/ Statoil Ref.

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 17.5"

Mwd Run : 5 Date : 21-Jul-MWD Tool Numbe VB01 5 21-Jul-07

Declination Date EDI Az Error:

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.26 +/- 6 counts
Clar 71.64 +/- 0.45 deg 39264

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg): -2.339 -2.339 -0.950 -1.389

Corrections from Local Model: Declination (deg): 0.00
Field Strength (nT): 0.00
Dip (deg): 0.00

						Magnetio	to grid co	rection		-1.389	,			DD survey	rs I			MWD				Compar	ison DD v	s. MWD		ı
Surv Depth	Temperature corrected axes	G	H	H	Statoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	Inc	Azim	MD	Inc		Corr Az	Inc w sag	Depth		Azm corr		Inc	Comment
#	Gx Gy Gz Hx Hy Hz	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg	deg	deg	m	deg	deg	deg	deg	ı
1 2493.7 3 2536.0		1002.22	50294 50382	1005.89 1007.64	72.00 84.78	71.62 71.55		130.90 126.94	-143 -22	129.52 125.56	-1.38 -1.38	2493.74 42.33	2493.74 2536.07		129.52 125.56	# 2493.74 2536.07	19.27 20.86	129.52		18.80 20.39	0.00	-0.47 -0.47	0.00	0.00	0.00	ı
5	57 555.5 555.5 154.5 GEE.4 551.5 451.5	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######	120.00	1.00	42.00	2000.07	1	120.00	2000.01	20.00	120.00		20.00	0.00	0.41	0.00	0.00	0.00	ı
6		#VALUE!		#VALUE!	#VALUE!	######			######																	1
8		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######																	i
9		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######							-		-								ı
10		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######												-					ı
12		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
13		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	i
14 15		#VALUE!		#VALUE!	#VALUE!	######			######							-		-								ı
16		#VALUE!		#VALUE!	#VALUE!	######	" TYLLOL		######		-					-		-	-		-					ı
17		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
18		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	i
19		#VALUE!			#VALUE!	######	#VALUE!		######																	ı
20		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######							-		-	-		-					ı
22		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######									- 1								1
23		#VALUE!		#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	1
24		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######																	ı
25		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######									+								1
27		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
28		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######																	ı
29		#VALUE!		#VALUE!	#VALUE!	######			######																	ı
30	_	#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######							#					-					ı
32		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######							"					-					1
33		#VALUE!		#VALUE!	#VALUE!	######			######																	ı
34		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
35	_	#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######												-					ı
37		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######			_									-					1
38		#VALUE!		#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	1
39		#VALUE!		#VALUE!	#VALUE!	######			######																	ı
40	_	#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######												-					ı
42		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
43		#VALUE!		#VALUE!	#VALUE!	######	" TYLLOL	#VALUE!	######																	i
44		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
45 46		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######							-										ı
47		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######																	ı
48		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	1
49		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	1
50		#VALUE!		#VALUE!	#VALUE!	######	" TYLLOL	#VALUE!	######												-					ı
52		#VALUE!		#VALUE!	#VALUE!	######			######							-				-	\vdash			— t		1
53		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	1
54		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######																	ı
55 56		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######							-					\vdash					1
57		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######			\vdash				-					1					1
58		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######		#VALUE!	######																	ı
59		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!		######																	1
60		#VALUE!		#VALUE!	#VALUE!	######		#VALUE!	######		\blacksquare	\Box				<u> </u>					\vdash					1
62		#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	######	" TYLLOL	#VALUE!	######		\vdash	\vdash				-				-	-					1
63		#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######									- 1								ı
64		#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	1
65		#VALUE!		#VALUE!	#VALUE!	######	" TYLLOL	#VALUE!	######																	ı
66		#VALUE!		#VALUE!	#VALUE! #VALUE!	######	" TYLLOL	#VALUE!	######							-					\vdash					1
Ü.,				,	WWW.		*/ LOL:							1					Į.				ı	Į.		

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 17.5"

SURVEY QC

0 Deg

Rev#3.5 w/ Statoil Ref.

Mwd Run : 5 Date : 21-Jul-0 MWD Tool Numbe VB01 5 21-Jul-07

Declination Date EDI Az Error:

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.26 +/- 6 counts
Oliv 71.64 +/- 0.45 deg 39264

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

-2.339 -2.339 -0.950 -1.389

Corrections from Local Model: Declination (deg): 0.00
Field Strength (nT): 0.00
Dip (deg): 0.00

HA Sag C	orrection App	oliec			
INCL	Correction	INCL	Corr	INCL	Corr

Magnetic to grid correction -1.389

																					D au vey				IIIII				Compan	HOUH DD VO	3. INITED		
Γ	Surv	Depth		Tem	erature	correc	ed axes		G	[H]	H	Statoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval (m)	Depth	Inc	Azim	MD	Inc	Az	Corr Az	Inc w sag	Depth	SAG	Azm corr	Azm	Inc	Comment
L	#		Gx	Gy	Gz	Hx	Hy	Hz	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg	deg	deg	m	deg	deg	deg	deg	
Γ	68								#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######						·											
Г	69								#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######																	

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client :	STATOIL
Well:	15/9-F-12
Hole Size :	

Mwd Run : Date : MWD Tool Number :

21-Jul-07 VB01

Acceptance Criteria : 5: 1001.84 +/- 2.5 counts 1: 1007.76 +/- 6 counts 71.64 +/- 0.45 deg Tool G: Tool H: Dip: Declination Date: EDI Az Error: EDI interferring field: 1-Jul-07 0.16 Deg 57.0

Corrections from Local Model: Declination (deg): Field Strength (nT):

					EDI interfe	erring field	i: 5	7.0																		
		Raw val							ture correct															Final		
Raw	Raw	Raw	Raw	Raw	Raw	T_corr.	T_corr.			T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth	SUCOP	Azim		Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	Н	Angle			m	deg	deg	Type	Type	m	Incl corr Azim deg deg	deg		
-1856.00	756.00	-74.00		-881.00				37.00	809.00	-563.80	-201.60	1002.70	1006.50	71.38	12-Aug-07	3:22:40	2576.99	22	125.92	PUP	I -0.26	2576.99	deg deg	125.92		
-1789.00	296.00	858.00		75.00				-429.00	766.70	48.00	-650.20	1003.00	1006.50	71.56	12-Aug-07	9:10:24	2617.92	26.64	124.65	PUP	I -0.26	2617.92		124.65		
-1717.00 -1669.00	-1036.00 -1106.00	-46.00 -120.00		980.00 971.00				23.00 60.00	728.30 709.80	627.20 621.40	291.20 344.30	1002.90 1002.90	1004.30 1004.20	71.80 71.77	12-Aug-07	11:58:56 16:14:56	2658.3 2699.07	30.86 33.41	121.61 117.41	PUP	I -0.27 I -0.28	2658.30 2699.07		121.61 117.41	Good Good	
-1599.00	-943.00	757.00		1115.00				-378.50	674.60	713.60	-213.80	1002.90	1004.20	71.77	12-Aug-07 13-Aug-07	7:17:20	2738.83	36.82	115.77	PUP	1-0.28	2738.83		115.77	Good	
-1494.00	1138.00	-703.00		-1219.00			-569.00	351.50	618.20	-780.20	140.20	1002.70	1005.20	71.35	13-Aug-07	19:05:36	2779.26	41.55	113.83	PUP	I -0.29	2779.26		113.83		
-1395.00 -1294.00	-1327.00 1506.00	561.00 278.00		1289.00 -1145.00			663.50 -753.00	-280.50 -139.00	572.20 531.20	825.00 -732.80	-35.20 -441.00	1002.70 1002.50	1004.60 1006.80	71.69 71.44	14-Aug-07 14-Aug-07	1:48:48 9:29:36	2820.02 2860.02	45.63 49.50	112.36 108.88	PUP	I -0.29 I -0.30	2820.02 2860.02		112.36 108.88	Good Good	
-1224.00	1588.00	16.00		-1258.00			-794.00	-8.00	513.30	-805.10	-316.20	1002.50	1005.80	71.45	14-Aug-07	14:36:48	2900.45	52.08	104.36	PUP	1-0.30	2900.45		104.36	Good	
-1177.00	-248.00	-1606.00		-283.00				803.00	496.00	-181.10	853.10	1003.30	1003.30	71.49	15-Aug-07	5:58:24	2939.72	53.78	102.53	PUP	I -0.31	2939.72		102.53	Good	
-1151.00 -1134.00	-799.00 717.00	1434.00 1490.00		1047.00 -132.00				-717.00 -745.00	483.20 473.00	670.10 -84.50	-572.80 -883.80	1002.40 1002.50	1005.30 1006.00	71.65 71.59	15-Aug-07 16-Aug-07	21:47:44 16:55:28	2980.29 3008.61	54.65 55.25	103.04 103.40	PUP	I -0.31 I -0.31	2980.29 3008.61		103.04	Good	
-1145.00	-65.00	1644.00	772.00	534.00	-1259.00	572.50	32.50	-822.00	494.10	341.80	-805.80	1002.20	1005.10	71.69	17-Aug-07	3:35:28	3060.63	54.85	99.95	PUP	I -0.31	3060.63		99.95	Good	
-1159.00	-481.00	1563.00	802.00	836.00	-1060.00	579.50	240.50	-781.50	513.30	535.00	-678.40	1002.20	1005.00	71.71	17-Aug-07	6:38:56	3081.25	54.36	97.21	PUP	I -0.31	3081.25		97.21	Good	

Schlumberger

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Client : Well : Hole Size :	STATOIL 15/9-F-12	12.3
Hole Size :		12.3
Mwd Run :	9	
Date :	21-Jul-07	
MWD Tool Number :	VB01	

А	cceptance	Criteria:	
Tool G:	1001	.84	+/- 2.5 counts
Tool H:	1007	.76	+/- 6 counts
Dip:	71.6	64	+/- 0.45 deg
Declinatio EDI Az Er	ror:		Jul-07 6 Deg
EDI interfe	erring field:		57.0

BGGM Magnetic Declination(deg): -2.339
Total Magnetic Declination(deg): -2.339
Grid Convergence(deg): -0.948
Total Correction(deg): -1.389

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
Dip (deg):

				LDI IIII	orning noid.	 7.0																		
		Raw val					ature correcte																Final	
Raw Sgx_t	Raw Sgy_t	Raw Sgz_t					T_corr. Shx	T_corr. Shy	T_corr. Shz	Tool G	Tool H	Dip Angle	Date	Time	Depth m	Incl deg	Azim deg	Tool Type	Qual Type	Depth m		SUCOP corr Azim		Comments
																					deg	deg		

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 12.3

Mwd Run : 9
Date : 21-Jul-07
MWD Tool Numbe VB01

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.76 +/- 6 counts
Plin: 71.64 +/- 0.45 deg Declination Date EDI Az Error:

39264 0.16 Deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

-2.339 -2.339 -0.948 -1.389

Corrections from Local Model: Declination (deg): 0.00
Field Strength (nT): 0.00
Dip (deg): 0.00

| INCL | Correction | INCL | Corr | INCL | Corr | 20-50 | -0.3 |

	Magnetic to grid correction -1.389										D	D survey	•		MV	/D			Compar	ison DD v	: MWD		ſ			
Surv	Depth	Temperature corrected axes	G	H	H	Statoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	Inc	Azim	MD	Inc Az		Inc w Sag	Depth		Azm corr		Inc	Comment
#		Gx Gy Gz Hx Hy Hz	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg deg			m	deg	deg	deg	deg	
1	2576.99	928.0 -378.0 37.0 809.0 -563.8 -201.6	1002.71	50324	1006.48	233.34	71.38	22.26	127.30	6	125.92	-1.38	2576.99	2576.99	21.70	125.92	2576.99	22.00 125.		21.70	0.00	-0.30	0.00	0.00	0.00	
3	2617.92	894.5 -148.0 -429.0 766.7 48.0 -650.2	1003.03	50321	1006.43	97.13	71.56	26.90	126.04	-71	124.65	-1.39	40.93	2617.92	26.34	124.65	2617.92	26.64 124.		26.34	0.00	-0.30	0.00	0.00		Good
5	2658.30	858.5 518.0 23.0 728.3 627.2 291.2	1002.93	50214	1004.29	221.78	71.80	31.13	123.00	177	121.61	-1.39	40.38	2658.3	30.56	121.61	2658.30	30.86 121.		30.56	0.00	-0.30		0.00		Good
6	2699.07 2738.83	834.5 553.0 60.0 709.8 621.4 344.3 799.5 471.5 -378.5 674.6 713.6 -213.8	1002.90	50212 50250	1004.24	211.76 169.11	71.77 71.75	33.69 37.10	118.79 117.17	174 -141	117.41 115.77	-1.38 -1.40	40.77 39.76	2699.07 2738.83	33.11 36.52	117.41 115.77	2699.07 2738.83	33.41 117. 36.82 115.		33.11 36.52	0.00	-0.30 -0.30		0.00	0.00	Good
9	2779.26	747.0 -569.0 351.5 618.2 -780.2 140.2	1002.38	50250	1005.00	169.11 282.33	71.75	41.84	117.17	32	113.83	-1.40	40.43	2779.26			2779.26	41.55 113		41.25	0.00	-0.30		0.00	0.00	Good
10	2820.02	697.5 663.5 -280.5 572.2 825.0 -35.2	1002.71	50231	1004.63	163.79	71.69	45.92	113.74	-157	112.36	-1.38	40.76	2820.02	45.33		2820.02	45.63 112.		45.33	0.00	-0.30		0.00		Good
11	2860.02	647.0 -753.0 -139.0 531.2 -732.8 -441.0	1002.47	50340	1006.80	183.55	71.44	49.80	110.27	-10	108.88	-1.39	40.00	2860.02	49.20	108.88	2860.02	49.50 108.		49.20	0.00	-0.30		0.00		Good
12	2900.45	612.0 -794.0 -8.0 513.3 -805.1 -316.2	1002.52	50290	1005.81	197.87	71.44	52.38	105.74	-1	104.36	-1.38	40.43	2900.45	51.78	104.36	2900.45	52.08 104.	36	51.78	0.00	-0.30		0.00	0.00	Good
13	2939.72	588.5 124.0 803.0 496.0 -181.1 853.1	1003.25	50165	1003.29	259.61	71.49	54.08	103.92	99	102.53	-1.39	39.27	2939.72	53.48	102.53	2939.72	53.78 102.		53.48	0.00	-0.30		0.00	0.00	
14	2980.29	575.5 399.5 -717.0 483.2 670.1 -572.8	1002.44	50265	1005.29	123.41	71.65	54.96	104.43	-119	103.04	-1.39	40.57	2980.29	54.35		2980.29	54.65 103.		54.35	0.00	-0.30		0.00		Good
15	3008.61 3060.63	567.0 -358.5 -745.0 473.0 -84.5 -883.8 572.5 32.5 -822.0 494.1 341.8 -805.8	1002.51	50298 50256	1005.97	97.70 137.42	71.60 71.68	55.56 55.16	104.79	-64 -92	103.40 99.95	-1.39 -1.39	28.32 52.02	3008.61 3060.63	54.95 54.55	103.40 99.95	3008.61	55.25 103. 54.85 99.		54.95 54.55	0.00	-0.30 -0.30		0.00		Good Good
17	3081.25		1002.25	50248	1005.12	157.42	71.68	54.67	98.59	-92	99.95	-1.39	20.62	3081.25		99.95	3081.25	54.85 99.		54.06	0.00	-0.30		0.00		Good
18	0001.20	070.0 240.0 701.0 010.0 000.0 070.4	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!		07.21	1.00	20.02	0001.20	04.00	07.21	0001.20	04.00 07.	4	04.00	0.00	0.00		0.00	0.00	i
19			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																\neg	ı
20			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															-	ı
21			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																ı
22			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																二二	,
23			#VALUE!	#VALUE!	#VALUE!		#######	#VALUE!	#VALUE!								\vdash				\vdash				\longrightarrow	ſ
25			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	####### ########	#VALUE!	#VALUE!	######			-				\vdash		-	\vdash	\vdash				\longrightarrow	1
26			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######										+	\vdash				\rightarrow	i
27			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															-	ı
28			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															-	ı
29			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																ı
30			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######						ŀ	#									1
31			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!							ŀ	#									,
32			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	*******	#VALUE!	#VALUE!	######							_		_		\vdash				-	ſ
34			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######							\vdash		_	1	\vdash				\rightarrow	í
35			#VALUE!	#VALUE!	#VALUE!		******	#VALUE!	#VALUE!	######									_						\rightarrow	i
36			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															-	ı
37			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																
38			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																	1
39			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																,
40			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	####### ########	#VALUE!	#VALUE!								\vdash		_		\vdash					r
41			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!										+		\vdash				\rightarrow	í
43			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!											+	\vdash				\rightarrow	i
44			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															\neg	1
45			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																ı
46			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######				2576.99	22.00	125.92					#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	ı
47			#VALUE!	#VALUE!	#VALUE!		#######	#VALUE!	#VALUE!																	,
48			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	####### ########	#VALUE!	#VALUE!	######			-				\vdash		-	\vdash	\vdash				\longrightarrow	1
50			#VALUE!	#VALUE!	#VALUE!	#VALUE!	*******	#VALUE!	#VALUE!								\vdash		+	\vdash	\vdash				\rightarrow	í
51			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######								_	1		\vdash				\rightarrow	
52			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															\rightarrow	
53			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																=	ı
54		,	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																	ı
55			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!																	,
56 57			#VALUE!	#VALUE!	#VALUE!	#VALUE!	####### ########	#VALUE!	#VALUE!								\vdash				\vdash				\longrightarrow	ſ
58			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	*******	#VALUE!	#VALUE!								\vdash		-	\vdash	\vdash					i
59			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!				-				\vdash		1	+	\vdash				\rightarrow	i
60			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															\rightarrow	
61			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															\rightarrow	
62			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######															=	ı
63		,	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######																ı
64			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######											\Box					,
65			#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!								\vdash			1	\vdash					r
66 67			#VALUE!	#VALUE!	#VALUE!	#VALUE! #VALUE!	*******	#VALUE!	#VALUE!	######							\vdash			\vdash	\vdash				\longrightarrow	1
67			#VALUE!	#VALUE!	#VALUE!	#VALUE:	**************************************	#VALUE!	#VALUE!	#######			<u> </u>	ı		I		1	1	. !	, ,		ļ ļ	l	I	

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 12.3

SURVEY QC

Rev#3.5 w/ Statoil Ref.

Mwd Run : 9
Date : 21-Jul-07
MWD Tool Numbe VB01

Declination Date EDI Az Error:

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.76 +/- 6 counts
Dip: 71.64 +/- 0.45 deg 39264 0.16 Deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg):

Corrections from Local Model:
Declination (deg): 0.00
Field Strength (nT): 0.00
Dip (deg): 0.00

BHA Sag	Correction Ap	pliec											
INCL Correction INCL Corr INCL C													
20-50	-0.3												

Magnetic to grid correction

-1.389

-2.339 -2.339 -0.948 -1.389

														wagneuc	to grid cor	IECHOII		-1.308	,								 					
_																					D	D survey	'S			MWD			Compa	rison DD vs	s. MWD	
Sur	rv	Depth Temperature corrected axes G H H Statoil										Statoil Reference	Dip	Inc	Mag Az	TF		Az Corr	Interval	Depth	Inc	Azim	MD	Inc	Az	Inc w Sag	Depth	Sag	Azm corr	Azm		
#			Gx	Gy	Gz	Н	Нx	Hy	Hz	(mg)	(nT)	(counts)	(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg		m	deg	deg	deg	
68	3									#VALUE!	#VALUE!	#VALUE!	#VALUE!	######	#VALUE!	#VALUE!	######															Γ
69	9									#VALUE!	#VALUE!	#VALUE!	#VALUE!	#######	#VALUE!	#VALUE!	######										$\overline{}$					Г

Schlumberger
Ciient: STATOIL
Well: 15/9-F-12
Hole Size: 8.5 in.

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Mwd Run : Date : MWD Tool Number : 10 21-Aug-07 FN15

Acceptance Criteria : 5: 1001.84 +/- 2.5 counts 1: 1007.96 +/- 6 counts 71.63 +/- 0.45 deg Tool G: Tool H: Dip: Declination Date: EDI Az Error: EDI interferring field: 1-Sep-07 0.08 Deg 29.0

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
Dip (deg):

					EDI interfe	erring field:		29.0																	
		Raw val	lues					Tempera	ture correcte	ed														Final	
Raw	Raw	Raw	Raw					T_corr.		T_corr.		Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth	SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	н	Angle			m	deg	deg	Type	Type	m	Incl corr Azim deg deg	deg	
-1187.00						593.50			533.10		-204.80	1002.60	1004.90	71.56	23-Aug-07	0:27:44	3136.6	53.7	95.71	PUP	None	3136.60	GOY GOY	95.71	Good
-1185.00	1344.00	-899.00				592.50		449.50	521.60	-839.00	184.30	1002.30	1005.00	71.58	23-Aug-07	5:55:11	3172.51	53.76	98.14	PUP	None	3172.51			Good
-1186.00 -1200.00	-1109.00 859.00					593.00 600.00			508.20 506.20	781.40 -174.70	-375.70 -849.90	1002.10 1001.70	1005.00 1004.60	71.55 71.55	23-Aug-07 23-Aug-07		3216.39 3257.05	53.72 53.2	101.3 103.39	PUP	None None	3216.39 3257.05			Good Good
-1188.00	1151.00	-1134.00				594.00			489.60	-799.40	361.60	1001.70	1004.60	71.55	23-Aug-07 23-Aug-07		3297.38	53.67	105.39	PUP	None	3297.38			Good
-1207.00	1480.00	-607.00	772.00	-1366.00	50.00	603.50	-740.00	303.50	494.10	-874.20	32.00	1002.00	1004.70	71.53	23-Aug-07	18:17:31	3337.63	52.96	107.03	PUP	None	3337.63		107.03	
-1209.00 -1207.00	1385.00 741.00	795.00 -1420.00			-1047.00 920.00		-692.50 -370.50	-397.50 710.00	497.30 494.10	-559.40 -647.00	-670.10 588.80	1001.50 1002.80	1004.60 1004.70	71.54 71.59	23-Aug-07 23-Aug-07	20:22:22 23:05:19	3375.41 3416.55	52.87 53.00	106.59 107.02	PUP	None None	3375.41 3416.55			Good Good
-1211.00	-1503.00	540.00	779.00	1365.00	10.00	605.50	751.50	-270.00	498.60	873.60	6.40	1002.10	1005.90	71.63	24-Aug-07	3:42:47	3456.15	52.83	106.74	PUP	None	3456.15		106.74	Good
-1213.00	1497.00	547.00	787.00	-1032.00	-883.00	606.50	-748.50	-273.50	503.70	-660.50	-565.10	1001.40	1004.60	71.56	24-Aug-07	5:47:05	3495.52	52.73	105.59	PUP	None	3495.52		105.59	Good

Schlumberger
Client: STATOIL
Well: 15/9F-12
Hole Size: 8.5 in.

SURVEY HOLD

Rev#3.5 w/ Statoil Ref.

Mwd Run : Date : MWD Tool Number : 10 21-Aug-07 FN15

Tool G: Tool H: Dip:

Acceptance Criteria : 5: 1001.84 +/- 2.5 counts 1: 1007.96 +/- 6 counts 71.63 +/- 0.45 deg

1-Sep-07 0.08 Deg 29.0

Corrections from Local Model:
Declination (deg):
Field Strength (nT):
Dip (deg):

Mwd Run :		10									Grid Conve			-0.950		Field Streng	th (nT):									
Date :		21-Aug-07			Declination	n Date:	1-S	ep-07			Total Correct	ction(deg):		-1.300		Dip (deg):										
MWD Tool N	lumber :	FN15			EDI Az E	rror:	0.08	B Deg																		
,					EDI interf	erring field	: 2	9.0																		
		_						_																		
		Raw val							ature correct																Final	
Raw	Raw	Raw	Raw	Raw	Raw	T_corr.	T_corr.	T_corr.	T_corr.	T_corr.	T_corr.	Tool	Tool	Dip	Date	Time	Depth	Incl	Azim	Tool	Qual	Depth		SUCOP	Azim	Comments
Sgx_t	Sgy_t	Sgz_t	Shx_t	Shy_t	Shz_t	Sgx	Sgy	Sgz	Shx	Shy	Shz	G	Н	Angle			m	deg	deg	Type	Type	m	Incl	corr Azim	deg	
																							deg	g deg		

Rev#3.5 w/ Statoil Ref. **SURVEY QC**

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 8.5 in. Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.96 +/- 6 counts
Dip: 71.63 +/- 0.45 deg

 Mwd Run:
 10

 Date:
 21-Aug-07

 MWD Tool Numbe FN15
 Declination Date EDI Az Error: 39326 0.08 Deg

Corrections from Local Model:
Declination (deg): 0.00
Field Strength (nT): 0.00
Dip (deg): 0.00 BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg): -2.251 -2.251 -0.950 -1.300

	Magnetic to grid correction -1.300												MWD			0	ison DD v	- 1000		r
Surv Depth Temperature corrected axes G H H Statoil Referen	e Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval		DD survey Inc	S Azim	MD	Inc	Az	Inc w Sag	Depth		Azm corr		Inc	Comment
# Gx Gy Gz Hx Hy Hz (mg) (nT) (counts) (nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	m	deg	deg	deg	m	deg	deg	deg	deg	1
1 3136.60 593.5 -800.5 110.0 533.1 -826.9 -204.8 1002.57 50247 1004.94 161.44	71.56			8	95.71		3136.60	3136.60		95.71	# 3136.60			53.84	0.00			0.00	0.00	Good
3 3172.51 592.5 -672.0 449.5 521.6 -839.0 184.3 1002.34 50248 1004.96 155.79	71.58	53.76	99.44	34	98.14	-1.30	35.91	3172.51	53.90	98.14	3172.51	53.76	98.14	53.90	0.00	0.14		0.00	0.00	Good
5 3216.39 593.0 554.5 -587.5 508.2 781.4 -375.7 1002.14 50249 1004.99 162.92	71.55	53.72	102.60	-133	101.30	-1.30	43.88	3216.39	53.86	101.30	3216.39	53.72	101.30	53.86	0.00	0.14		0.00	0.00	Good
6 3257.05 600.0 -429.5 -677.5 506.2 -174.7 -849.9 1001.74 50227 1004.53 183.84	71.55	53.20	104.69	-58	103.39	-1.30	40.66	3257.05		103.39	3257.05	53.20	103.39	53.34	0.00	0.14		0.00	0.00	Good
8 3297.38 594.0 -575.5 567.0 489.6 -799.4 361.6 1002.76 50237 1004.74 165.75	71.58	53.67	107.07	45	105.77		40.33	3297.38		105.77	3297.38	53.67	105.77	53.81	0.00	0.14		0.00	0.00	Good
9 3337.63 603.5 -740.0 303.5 494.1 -874.2 32.0 1001.96 50234 1004.68 183.86	71.53		108.32	22	107.03	-1.29	40.25	3337.63		107.03	3337.63		107.03	53.10	0.00	0.14		0.00	0.00	
10 3375.41 604.5 -692.5 -397.5 497.3 -559.4 -670.1 1001.49 50231 1004.62 182.38	71.54		107.89	-30	106.59	-1.30	37.78	3375.41		106.59	3375.41	52.87		53.01	0.00	0.14		0.00	0.00	
11 3416.55 603.5 -370.5 710.0 494.1 -647.0 588.8 1002.79 50235 1004.70 165.72 12 3456.15 605.5 751.5 -270.0 498.6 873.6 6.4 1002.14 50295 1005.89 103.45	71.59			62 -160	107.02		41.14			107.02	3416.55	53.00		53.14 52.97	0.00	0.14		0.00		
12 3456.15 605.5 751.5 -270.0 498.6 873.6 6.4 1002.14 50295 1005.89 103.45 13 3495.52 606.5 -748.5 -273.5 503.7 -660.5 -565.1 1001.45 50232 1004.65 176.29	71.63 71.56			-160 -20	106.74 105.59	-1.30	39.60 39.37	3456.15	52.97	106.74 105.59	3456.15		106.74 105.59	52.97	0.00	0.14		0.00	0.00	Good
14 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######	100.00	-1.50	38.31	3400.02	JZ.07	100.00	3493.32	32.73	100.00	32.07	0.00	0.14		0.00	0.00	0000
15 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######									_	-						í
16 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######																ı
17 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																ı
18 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																ı
19 #VALUE! #VALUE! #VALUE! #VALUE!	######			######																1
20 #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I												,
21 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE # #VALUE		######				I			<u> </u>			4	<u> </u>		\sqcup			r
22 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 23 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			—		\vdash	+	-		\vdash			1
24 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			-			+	-		\vdash			1
25 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######										+						i
26 #VALUE! #VALUE! #VALUE! #VALUE!	######			######																ı
27 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																ı
28 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######																ı
29 #VALUE! #VALUE! #VALUE! #VALUE!	######		! #VALUE!	######																ı
30 #VALUE! #VALUE! #VALUE! #VALUE!	######			######							#									,
31 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 32 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######							#									r
32 #VALUE! #VALUE! #VALUE! #VALUE! 33 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	******			######																r
34 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######										_	-					í
35 #VALUE! #VALUE! #VALUE! #VALUE!	######			######																ı
36 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																ı
37 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																1
38 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######																1
39 #VALUE! #VALUE! #VALUE! #VALUE!	######			######																ı
40 #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######																,
41 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######																r
42 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	" " TILOL		######										+						ſ
44 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######										+						i
45 #VALUE! #VALUE! #VALUE! #VALUE!	######			######																ı
46 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######																ı
47 #VALUE! #VALUE! #VALUE! #VALUE!	######		! #VALUE!	######				I												
48 #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I												,
49 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			<u> </u>			4	<u> </u>		\sqcup			r
50 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 51 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE # #VALUE		######				I			—		\vdash	+	-		\vdash			1
51 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######		H		I			-			+	-		\vdash			1
53 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			—		 	+						1
54 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I						1 1						1
55 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE	! #VALUE!	######				I												1
56 #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I												
57 #VALUE! #VALUE! #VALUE! #VALUE!	######	" " TILOL		######				I												ı
58 #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE		######				I												,
59 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			<u> </u>			4	<u> </u>		\sqcup			r
60 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 61 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			—			+	-		$\vdash \vdash$			ſ
62 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######	# #VALUE # #VALUE		######		H		I			-			+	-		\vdash			1
63 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######		H		I			-			+ -						í
64 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	######			######				I			—		 	+						1
65 #VALUE! #VALUE! #VALUE! #VALUE!	######		! #VALUE!	######				I						1 1						1
66 #VALUE! #VALUE! #VALUE! #VALUE!		# #VALUE		######				I												1
67 #VALUE! #VALUE! #VALUE! #VALUE!	######	#VALUE	! #VALUE!	######																1

Classification: Statoil internal Status: Draft Expiry Date: 2006-05-12

Schlumberger
Client: STATOIL
Well: 15/9-F-12
Hole Size: 8.5 in.

SURVEY QC

Rev#3.5 w/ Statoil Ref.

 Mwd Run :
 10

 Date :
 21-Aug-07

 MWD Tool Numbe FN15

Temperature corrected axes

Gx Gy Gz Hx Hy Hz

Acceptance Criteria :
Tool G: 1001.84 +/- 2.5 counts
Tool H: 1007.96 +/- 6 counts
Dip: 71.63 +/- 0.45 deg Declination Date EDI Az Error: 39326 0.08 Deg

BGGM Magnetic Declination(deg): Total Magnetic Declination(deg): Grid Correction(deg): Total Correction(deg): -2.251 -2.251 -0.950 -1.300 Corrections from Local Model: Declination (deg): 0.00 Field Strength (nT): 0.00 Dip (deg): 0.00

Magnetic to grid correction

								L D	D survey	/S	11			MWD)			Compa	irison DD v	s. MWD		
tatoil Reference	Dip	Inc	Mag Az	TF	Grid Az	Az Corr	Interval	Depth	Inc	Azim	Н	MD	Inc	Az		Inc w Sag	Depth	Sag	Azm corr	Azm	Inc	Comment
(nT)	(deg)	(deg)	(deg)		(deg)	(deg)	(m)	m	deg	deg	Н	m	deg	deg		deg	m	deg	deg	deg	deg	
#VALUE!	#######	#VALUE!	#VALUE!	######							П											Ī
#VALUE!	#######	#VALUE!	#VALUE!	######							Ιſ											Ī