EX:No.4 221501057

25/01/25

Program to Develop a linear regression model for forecasting time series data.

Aim:

Write a program to implement time series data for import library, load data, Preprocessing and visualising.

Algorithm:

- 1. Load the Data:
 - o Read the CSV file containing the artprice data.
 - o Parse the date column as a datetime index.
- 2. Clean the Data:
 - o Handle missing values by performing forward and backward filling.
 - o Drop any remaining NaN values.
- 3. Normalize the Data:
 - o Apply **Min-Max Scaling** to normalize each column's values between 0 and 1.
- 4. Add Time-Based Features:
 - o Extract additional features from the datetime index: day, month and year
- 5. Visualize the Data:
 - o Plot the time series for a specific column over time.
- 6. **Execute the Program**:
 - Sequentially call the functions to load, clean, normalize, add features, and visualize the data.

Code:

Import necessary libraries

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear model import LinearRegression

from datetime import datetime

Load the dataset from Google Drive or local file

from google.colab import files

uploaded = files.upload()

Read the uploaded CSV file

file_name = list(uploaded.keys())[0]

data = pd.read_csv(file_name)

Convert 'Date' column to datetime and sort data by date

data['Date'] = pd.to_datetime(data['Date'])

```
data = data.sort values(by='Date')
# Prepare features and target variable
data['Date_ordinal'] = data['Date'].apply(lambda x: x.toordinal())
X = data[['Date ordinal']]
y = data['Price(\$)']
# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)
# Get predicted prices and calculate mean predicted price
data['Predicted Price'] = model.predict(X)
mean predicted price = data['Predicted Price'].mean()
# Apply rolling average to smooth actual prices
data['Smoothed_Price'] = data['Price ($)'].rolling(window=30, min_periods=1).mean()
# Plot the final graph with corrected legend
plt.figure(figsize=(12, 6))
plt.plot(data['Date'], data['Smoothed_Price'], label='Actual Price', color='lightblue')
plt.axhline(y=mean predicted price, color='blue', linestyle='--', label='Predicted Price')
plt.title('Linear Regression Model - Time Series Forecasting')
plt.xlabel('Date')
plt.ylabel('Price ($)')
plt.legend()
plt.grid()
plt.show()
Output:
```


Result:

Thus, the program using the time series data implementation has been done successfully.