- 1. Пусть S конечная полугруппа. Покажите, что существует $s \in S$ такой, что $s^2 = s$.
- 2. Покажите, что множество $[-\infty, \infty)$ с операцией \max моноид.
- 3. Покажите, что, если к элементу a моноида существуют правый и левый обратные, то они совпадают. Выведите отсюда, что, если обратный элемент к a существует, то он единственный. Верно ли, что, если существует правый обратный к a, то он единственен?
- 4. Опишите все возможные группы порядков 2, 3, 4.
- 5. Покажите что множество состоящее из всех возможных поворотов и отражений правильного n-угольника, переводящих вершины в вершины группа.
- 6. Покажите, что множество всех биективных отображений множества на себя группа.
- 7. Постройте таблицу Кэлли группы симметрий правильного треугольника. Покажите, что эта группа может быть отождествлена с группой автоморфизмов множества $\{1,2,3\}$.
- 8. Покажите, что подмножество группы, содержащее нейтральный элемент и замкнутое относительно умножения и взятия обратного, группа.
- 9. Покажите, что любая группа может быть отождествлена с некоторым подмножеством биекиций на себя.
- 10. Опишите все возможные кольца с единицей порядков 2,3,4.
- 11. Покажите, что аксиомы кольца влекут такие тождества:

$$0a = 0, -1a = -a$$

для любого элемента a кольца.

- 12. Пусть A кольцо с единицей, для которого верно $a^2=a$ для всех $a\in A$. Покажите, что для такого кольца a+a=0 для всех $a\in A$.
- 13. Пусть A кольцо с единицей. Покажите, что $A \cong B \times C$ для двух ненулевых колец B и C тогда и только тогда, когда сушествует $e \in A$ не равный 0 или 1 и коммутирующий со всеми элементами A такой, что $e^2 = e$.
- 14. Рассмотрим

$$\{\frac{a}{b} \mid a, b \in Z, b \neq 0, b - \text{нечетноe}\}.$$

Покажите, что это кольцо с единицей отностительно операций + и \times , опишите множество обратимых элементов.

- 15. Проверьте аксиомы кольца для множества матриц 2×2 с вещественными коэффициентами. Является ли это кольцо коммутативным?
- 16. Какие из колец $\mathbb{Z}/n\mathbb{Z}$ являются полями?
- 17. Докажите, что множество \mathbb{R}^3 с покомпонентным сложением и векторным умножением образует неассоциативное кольцо, удовлетворяющее тождеству $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$. Подсказка: Докажите сначала, что $a \times (b \times c) = b(a,c) c(a,b)$, где (x,y) скалярное произведение векторов x и y.