Statistical Methods for Data Science Project

Eros Fabrici, Doğan Can Demirbilek, Pietro Morichetti, Michele Rispoli

University of Trieste

2019/2020

Table of Contents

1 Forecasting confirmed cases

State

India has been chosen for this project, in particular the following regions were picked: Gujarat, Maharashtra, Madhya Pradesh, Chhattisgarh, Jharkhand, Odisha, West Bengal.

Central India and Total Confirmed Cases

Forecasting confirmed cases

Models

After visualising the data, our initial approach is try to model the confirmed cases with a linear model.

We identified to possible models:

- $Y_{i} = \beta_{0} + \beta_{1} * yesterday_confirmed_{i} + \beta_{2} * num_day_{i} + \beta_{3} * swabs_{i-1} + \epsilon_{i}$
- 2 $Y_i = \beta_0 + \beta_1 * yesterday_confirmed_i + \beta_2 * num_day_i + \beta_3 * swabs_{i-1} + \beta_4 * num_day^2 + \epsilon_i$

where *num_day* is a counter representing the time. Now we proceed and asses the two models for each state.

Gujarat

Both models have $R^2=0.999$. By applying the F-test to the models the p-value is very high (0.92) therefore we cannot reject $H_0:\beta_4=0$, thus the simpler model is preferable. Finally, we observed then that both the β_0 and β_2 have a very high p-value with the t-test. We can conclude then that the best model for this state in order to obtain short term predictions is $Y_i=\beta_1*yesterday_confirmed_i+\beta_3*swabs_{i-1}+\epsilon_i$

Gujarat prediction

Maharashtra

- Same $R^2 = 0.999$ for both models
- F-test: p-value = 0.61 we cannot reject H_0 , e.g. we keep the simpler model
- t-test on the simpler model showed that only β_1 and β_3 have a significant p-value ($p \le 0.05$, therefore we can get rid of the remaining covariates.
- Final model: $Y_i = \beta_1 * yesterday_confirmed_i + \beta_3 * swabs_{i-1}$

Maharashtra prediction

Madhya Pradesh

- Same $R^2 = 0.997$ for both models
- F-test: p-value = 0.09 we reject H_0 , e.g. we keep the more sophisticated model
- *t*-test on the selected model showed that all covariates are significant ($p \le 0.05$) except for the num_day^2 which has a p-value= 0.09, but has we decided to keep after the *F*-test we continue to maintain it in the model
- Final model: $Y_i = \beta_0 + \beta_1 * yesterday_confirmed_i + \beta_2 * num_day_i + \beta_3 * swabs_{i-1} + \beta_4 * num_day_i^2 + \epsilon_i$

Madhya Pradesh prediction

Chhattisgarh

- $R^2 = 0.9972$ for the first model and $R^2 = 0.9974$ for the second model.
- F-test: p-value = 0.005 we reject H_0 , e.g. we keep the more sophisticated model.
- *t*-test on the selected model showed that β_0 's p-value is 0.92 and β_2 's p-value is equal to 0.25, while for the remaining ones the p-values are very significant.
- Final model: $Y_i = \beta_1 * yesterday_confirmed_i + \beta_3 * swabs_{i-1} + \beta_4 * num_day^2 + \epsilon_i$

Chhattisgarh prediction

Jharkhand

- $R^2 = 0.997$ for the first model and $R^2 = 0.998$ for the second model.
- F-test: p-value = 0.001; we reject H_0 , e.g. we keep the more sophisticated model.
- t-test on the selected model showed that β_0 's p-value is 0.28, while for the remaining coefficients the p-values are \leq 0.05, therefore we can remove β_0 .
- Final model: $Y_i = \beta_1 * yesterday_confirmed_i + \beta_2 * num_day_i + \beta_3 * swabs_{i-1} + \beta_4 * num_day^2 + \epsilon_i$

Jharkhand prediction

Odisha

- $R^2 = 0.997$ for both models.
- F-test: p-value = 0.51; we cannot reject H_0 , e.g. we keep the simpler model.
- *t*-test on the selected model's coefficients showed that β_0 's p-value is 0.32 and β_2 's p-value= 0.115, while for the remaining coefficients the p-values are \leq 0.05, therefore we can remove β_0 and $\beta_2 * num_day$.
- Final model:
 - $Y_i = \beta_1 * yesterday_confirmed_i + \beta_3 * swabs_{i-1} + \epsilon_i$

Odisha prediction

West Bengal

- $R^2 = 0.9998$ for both models.
- F-test: p-value = 0.67; we cannot reject H_0 , e.g. we keep the simpler model.
- *t*-test on the selected model's coefficients showed that β_0 's p-value is 0.88 and β_2 's p-value= 0.09, while for the remaining coefficients the p-values are \leq 0.05, therefore we can remove β_0 and $\beta_2 * num_day$.
- Final model:

$$Y_i = \beta_1 * yesterday_confirmed_i + \beta_3 * swabs_{i-1} + \epsilon_i$$

West Bengal prediction

