Package SpQN

February 16, 2020

	Title	Spatial	Quantile	Norma	lizatio
--	-------	---------	----------	-------	---------

Version 1.0

Description The SpQN package contains the function to normalize the local distribution in a matrix. Specifically, the SpQN package contains the function to approximate the local distribution and trasformed them to the target distribution. SpQN approximated the local distribution by binnning the matrix into disjoint bins, and using empirical distribution of larger bins to approximate the distribution of disjoint bins. The quantile normalization was used to map the disjoint bins to target bin. After normalization, the local distribution are approximately the same.

License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.0.2

R topics documented:

	normalize_correlation	1	1
Index			3
norm	alize_correlation	Spatial Quantile Normalization	

Description

The normalize_correlation function allows users to normalize the correlation matrix, such that the local distributions of the correlations are approximately the same.

Usage

```
normalize_correlation(cor_mat, ngrp, size_grp, ref_grp)
```

Arguments

cor_mat	Matrix, correlation matrix, generated by sorted expression matrix
ngrp	Integer, number of bins to use in the normalization
size_grp	Integer, size of large bin
ref_grp	Integer, the location of reference bin that represents target distribution

2 normalize_correlation

Value

The normalized correlation matrix

Examples

```
a=rnorm(10000)
b=a/max(abs(a))
cor_ori=array(b,dim=c(100,100))
normalize_correlation(cor_ori,ngrp=10,size_grp=15,ref_grp=9)
```

Index

 ${\tt normalize_correlation}, 1$