- 1. Опишите свойства временного ряда, изображенного на картинке, в терминах
 - (а) наличия тренда,
 - (b) наличия сезонности,
 - (с) стационарности 2-го порядка (постоянства моментов),
 - (d) гомоскедастичности.

2. Следующий код на языке python генерирует некоторый случайный процесс:

```
import numpy as np
eps = np.random.normal(size=1000)
series = np.zeros_like(eps)
for i in xrange(len(eps) - 1):
    series[i + 1] = 0.7 * series[i] + eps[i + 1]
```

Объясните, какой случайный процесс моделируется. Запишите описывающие его уравнения.

3. Рисунок 2 (левый) показывает смоделированные траектории трех случайных процессов.

Какая из траекторий может относиться к стационарному процессу AR(1)? Обоснуйте ваш ответ.

- 4. Рисунок 3 (правый) получен по реализации смоделированного случайного процесса $X = (X_t)_{t \geqslant 0}$, причем каждая точка представляет собой пару (X_{t-2}, X_t) . Корреляция точек на рисунке равна 0.8. Ответить на вопросы:
 - (а) Какая стохастическая модель могла использоваться для моделирования временного ряда? Обоснуйте ответ. (Подсказка: искомый процесс принадлежит к одному из типов $X_t = \varepsilon_t$; $X_t = \varepsilon_t + \beta \varepsilon_{t-1}$; $X_t = c + a X_{t-1} + \varepsilon_t$; $X_t = c + X_{t-1} + \varepsilon_t$; $X_t = c X_{t-1} + \varepsilon_t$.)
 - (b) Запишите уравнение модели, используя знание типа модели и автокорр. функции.
 - (с) Как можно смоделировать такой процесс на компьютере? Напишите соответствующую программу.

- 5. Пусть случайный процесс $X=(X_t)_{t\geqslant 0}$ задан своей моделью $X_t=3+0.5X_{t-1}+\varepsilon_t$, где $\varepsilon=(\varepsilon_t)_{t\geqslant 0}$ процесс белого шума, $\mathrm{E}\,\varepsilon_t=0, \mathrm{E}\,\varepsilon_t^2=1.$
 - (a) Запишите тип модели процесса X.
 - (b) Объясните, почему модель процесса X является «условно-гауссовской», подсчитайте ее условные математическое ожидание и дисперсию. Это модель «условного математического ожидания» или «условной дисперсии»?
 - (c) Предположим, что дано наблюдение $X_t = 2.5, X_{t-1} = 1.7$. Подсчитайте прогноз значения случайной величины X_{t+1} .
 - (d) Предположим, что дано наблюдение $X_t = 2.5, X_{t-1} = 1.7$. Подсчитайте оценку дисперсии процесса в момент t+1 (оценку дисперсии случайной величины X_{t+1}).
- 6. Какие из указанных ниже процессов являются слабо стационарными? (Процесс $\varepsilon = (\varepsilon_t)_{t\geqslant 0}$ белый шум.)
 - (a) $X_t = 1.6 + X_{t-1} + \varepsilon_t$;
 - (b) $X_t = 0.6 + X_{t-1} + \varepsilon_t$;
 - (c) $X_t = 0.8X_{t-1} + \varepsilon_t$;
 - (d) $X_t = 0.8\varepsilon_t + 0.6\varepsilon_{t-1}$;
 - (e) $X_t = \varepsilon_t \sqrt{2 + 2X_{t-1}^2}$.
- 7. Рассмотрим стохастическую модель $X_t = \varepsilon_t \sqrt{\alpha_0 + \alpha_1 X_{t-1}^2}$, где $\varepsilon = (\varepsilon_t)_{t\geqslant 0}$ белый шум, Е $\varepsilon_t = 0$, Е $\varepsilon_t^2 = 1$.
 - (a) Запишите тип модели процесса X.
 - (b) Возможно ли осуществить выбор постоянных α_0 и α_1 таким образом, чтобы эта модель хорошо описывала гетероскедастичный временной ряд? Обоснуйте ваш ответ.
- 8. Доходность акций часто оценивают в процентах согласно следующей формуле. Если S_n цена закрытия акции в день $n, n \geqslant 1$, то ее доходность равна величине $X_n = \frac{S_n S_{n-1}}{S_n}$ (отношение прироста цены закрытия за текущий день к цене предыдущего дня, daily returns in percent).

GARCH-модель была подогнана к временному ряду дневной доходности акций. Вывод оценивающего алгоритма, предполагающего гауссовский белый шум, представлен ниже:

	Estimate	Std. Error	t value	Pr(> t)	
a0	0.027832	0.006282	4.43	9.41e-06	***
a1	0.009064	0.008813	16.67	< 2e-16	***
b1	0.830477	0.008813	94.24	< 2e-16	***

Средняя доходность равна 0.0492.

- (а) Запишите уравнения модели, определяющие процесс доходности акций.
- (b) Вычислите долгосрочную дисперсию доходности указанной модели.
- (c) Предположим, сегодняшняя доходность равна +1.5%; прогноз дисперсии на сегодня равен $\widehat{\sigma}_t^2=1.1619$. Подсчитайте распределение завтрашней доходности.
- (d) Истинная завтрашняя доходность оказалась равной +4.6%. Что можно сказать о найденном в (c) распределении доходности?

(Подсказки:
$$X_t = \sigma_t \varepsilon_t$$
; $\sigma_t^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2$; $\mathbf{E} X_t = 0$; $\mathbf{E}[X_t \mid X_{t-1}] = 0$; $\mathbf{E} X_t^2 = \frac{\alpha_0}{1 - \alpha_1 - \beta_1}$; $\mathbf{E}[X_t^2 \mid X_{t-1}^2] = \sigma_{t-1}^2$.)