Lab3.4 Q2(c)-Q10

Name: YUEN Yiu Yeung StudentNo:200171873 Class:IT114105/1C

Declaration:

I understand the meaning of academic dishonesty, in particular plagiarism, copyright infringement and collusion. I am aware of the consequences if found to be involved in these misconducts. I hereby declare that the work submitted for the "ITP4510 Data Structures & Algorithms" is authentic record of my own work.

Q2(c)

Word to search for	Results		Time needed (BST)	Time needed (linked list)		
water	□ Found	□ Not Found	10300	333500		
ever	□ Found	□ Not Found	26700	17000		
snail	□ Found	□ Not Found	9200	165900		
better	□ Found	□ Not Found	7400	98300		
apple	□ Found	□ Not Found	8600	72900		
door	□ Found	□ Not Found	11200	267900		
foolish	□ Found	□ Not Found	10600	85500		

Q3.

A general tree

A binary tree

A proper binary tree

A complete binary tree

Q4.
Number of leaf nodes = N / 2 + 1
Number of non-leaf nodes = N / 2

Q5.

Total number nodes in the tree: $2^{8+1} - 1 = 511$

Let d be the depth

Total number of nodes of a complete binary tree: 2^{d+1} - 1

 $d = log_2(Total number of nodes + 1) - 1$

Q6.

(a) Ε В U G W Q R J F Р Н

50	51	52	53	54	55	56	57	58	59
60	61	62				<u> </u>			

(b)

(i) pre-order traversal: QBGEFJIHPURW

(ii) in-order traversal: BEFGHIJPQRUW

(iii) post-order traversal: F E H I P J G B R W U Q

Q7. (Attached scan photo of hand-writing)

```
Q8.
```

```
BinaryNode search (BinaryNode t, key x)
begin
   if t is null
      return null;
   if (x is less than t.data.key)
      return search (t.left, x);
   else if (x is greater than t.data.key)
      return search (t.right, x);
   else
      return t;
end
```

enu

Q9.

- 7(a) is an ordinary binary tree
- 7(b) is a complete binary tree
- 7(c) is an almost complete binary tree (non-strictly)
- 7(d) is an almost complete binary tree (strictly)
- 7(e) is a binary tree of N nodes with depth N-1. All non-leaf nodes only have a right son. In fact, it is similar to a linear list.
- 7(f) is same as (e) where non-leaf nodes only have a left son.

Q10.

Postfix expression: A B + C * D E + / F *

Reason: (Attached scan photo of hand-writing)

Prefix expression: * / * + A B C + D E F

10. Expression tree

