CURRICULUM VITAE

WESSELBRUINSMA

ABOUT INTERESTS

wessel.p.bruinsma **M** @gmail.com

Wessel Bruinsma in

machine learning for environmental science and forecasting, probabilistic modelling with a focus on time series, Bayesian nonparametrics with a focus on Gaussian processes, approximate inference, probabilistic programming, probability theory, and real analysis

wessel.ai 🏠 Wessel Bruinsma 🎖

wesselb @

EDUCATION

LANGUAGES

Jan'18-Jul'22 PhD in Machine Learning

Machine Learning Group, U. of Cambridge

· Supervised by Richard E. Turner

dutch, native english, fluent croatian, basic

Oct '15 - Sep '16 MPhil in Machine Learning

Dept. of Engineering, U. of Cambridge

• Distinction, class rank 1 / \sim 20

Sep '12 – Jul '15 BSc in Electrical Engineering (Hons) EEMCS, Delft U. of Technology

- Distinction, class rank 1 / \sim 100
- · Specialisation in mathematics

PROFESSIONAL HISTORY

Jul'25 – now	Research Lead • End-to-end machine learning for environmental forecasting	The Alan Turing Institute, London
Jul'25 – now	Quantitative Researcher • Development of novel investment strategies with machine lea	Cedalion Capital, The Hague arning
Jul'25 – now	Founder	LimeLeaf A.I., Utrecht
Oct '22 – Jun '25	Senior Researcher • Research into foundation models for Earth system modelling	Microsoft Research, Amsterdam
Jul'19-Sep'19	Internship (Quantitative Research)	G-Research, London
Sep '16 – Oct '22	Machine Learning Researcher • Research into modelling multi-output time series, with a focus	Invenia Labs Limited, Cambridge s on electricity markets
Sep '14 – Jul '15	Technical SpecialistDesign and implementation of solutions to scheduling proble	EEMCS Recruitment Days, Delft ms
Sep '13 – Jul '14	Electrical EngineerCompeted in DONG Solar Energy Challenge 2014 and Solar	TU Delft Solar Boat Team, Delft 1 Monte Carlo Cup 2014

SELECTED PUBLICATIONS

- [link] Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, J., Riechert, M., Weyn, J., Dong, H., Gupta, J. K., Tambiratnam, K., Archibald, A., Wu, C., Heider, E., Welling, M., Turner, R. E., and Perdikaris, P. (2025). "A Foundation Model for the Earth System," in *Nature*, *641*.
- [link] Allen, A., Markou, S., Tebbutt, W., Requeima, J., Bruinsma, W. P., Andersson, T. R., Herzog, M., Lane, N. D., Chantry, M., Hosking, J. S., and Turner, R. E. (2025). "End-to-End Data-Driven Weather Prediction," in *Nature 641*.
- [link] Gordon, J., Bruinsma W. P., Foong, A. Y. K., Requeima, J., Dubois Y., Turner, R. E. (2020). "Convolutional Conditional Neural Processes," *International Conference on Learning Representations (ICLR), 8th.* (Awarded oral presentation.)

SELECTED SOFTWARE

[link] Stheno: Probabilistic programming with Gaussian processes in Python

[link] Aurora: Implementation of the Aurora model for atmospheric forecasting in Python

[link] Plum: Implementation of multiple dispatch in Python

PUBLICATIONS

- [link] Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, J., Riechert, M., Weyn, J., Dong, H., Gupta, J. K., Tambiratnam, K., Archibald, A., Wu, C., Heider, E., Welling, M., Turner, R. E., and Perdikaris, P. (2025). "A Foundation Model for the Earth System," in *Nature 641*.
- [link] Allen, A., Markou, S., Tebbutt, W., Requeima, J., Bruinsma, W. P., Andersson, T. R., Herzog, M., Lane, N. D., Chantry, M., Hosking, J. S., and Turner, R. E. (2025). "End-to-End Data-Driven Weather Prediction," in *Nature 641*.
- [link] Selz, T., Bruinsma, W., Craig, G. C., Markou, S., Turner, R. E., Vaughan, A. (2025). "On the Effective Resolution of Al Weather Prediction Models," in *preprint*.
- [link] Ashman, M., Diaconu, C., Weller, A., Bruinsma, W. P., and Turner, R. E. (2024). "Approximately Equivariant Neural Processes," in *Advances in Neural Information Processing Systems (NeurIPS)*, 37th.
- [link] Räisä, O., Markou, S., Ashman, M., Bruinsma, W. P., Tobaben, M., Honkela, A., and Turner, R. E. (2024). "Noise-Aware Differentially Private Regression via Meta-Learning," in *Advances in Neural Information Processing Systems (NeurIPS)*, 37th.
- [link] Chien, I., Bruinsma, W. P., Gonzalez, J., and Turner, R. E. (2024). "Safe Exploration in Dose Finding Clinical Trials with Heterogeneous Participants," in *International Conference on Machine Learning (ICML)*, 41th.
- [link] Ashman, M., Diaconu, C., Kim, J., Sivaraya, J., Markou, S., Requeima, J., Bruinsma, W. P., and Turner, R. E. (2024). "Translation-Equivariant Transformer Neural Processes," in *International Conference on Machine Learning (ICML)*, 41th.
- [link] Bruinsma, W. P., Markou, S., Requeima, J., Foong, A. Y. K., Andersson, T. R., Vaughan, A., Anthony, B., Hosking, J. S., and Turner, R. E. (2023). "Autoregressive Conditional Neural Processes," in *International Conference on Representation Learning (ICLR)*, 11th.
- [link] Andersson, T. R., Bruinsma, W. P., Markou, S., Requeima, J., Coca-Castro, A., Vaughan, A., Ellis, A.-L., Lazzara, M., Jones, D. C., Hosking, J. S., and Turner, R. E. (2023). "Environmental Sensor Placement with Convolutional Gaussian Neural Processes" in *Environmental Data Science 2*.
- [link] Lalchand, V., Bruinsma, W. P., Burt, D. R., and Rasmussen, C. E. (2022). "Sparse Gaussian Process Hyperparameters: Optimize or Integrate?" in *Advances in Neural Information Processing Systems (NeurIPS)*, 36th.
- [link] Rawat, A., Requeima, J. R., Bruinsma, W. P., and Turner, R. E. (2022). "Challenges and Pitfalls of Bayesian Unlearning," in *Updatable Machine Learning (UpML), ICML 2022 Workshop on*.
- [link] Foong, Y. K., Bruinsma, W. P., and Burt, D. (2022). "A Note on the Chernoff Bound for Random Variables in the Unit Interval," arXiv:2205.07880.
- [link] Bruinsma, W. P., Tegnér, M., and Turner, R. E. (2022). "Modelling Non-Smooth Signals with Complex Spectral Structure," in *Artificial Intelligence and Statistics (AISTATS)*, 25th International Conference on.
- [link] Coker, B., Burt, D., Bruinsma, W. P., Pan, W., Doshi-Velez, F. (2022). "Wide Mean-Field Bayesian Neural Networks Ignore the Data," in *Artificial Intelligence and Statistics (AISTATS), 25th International Conference on.*
- [link] Markou, S., Requeima, J. R., Bruinsma, W. P., and Turner, R. E. (2022). "Practical Conditional Neural Processes Via Tractable Dependent Predictions," in *International Conference on Learning Representations (ICLR)*, 10th.
- [link] Markou, S., Requeima, J. R., Bruinsma, W. P., and Turner, R. E. (2021). "Efficient Gaussian Neural Processes for Regression," in *Uncertainty & Robustness in Deep Learning (UDL), ICML 2021 Workshop on*.

- [link] Foong, A. Y. K., Bruinsma, W. P., Burt, D. R., and Turner, R. E. (2021). "How Small can PAC-Bayes be in the Small Data Regime?" in *Advances in Neural Information Processing Systems (NeurIPS)*, 35th.
- [link] Bruinsma, W. P., Requeima, J., Foong, A. Y. K., Gordon, J., and Turner, R. E. (2021). "The Gaussian Neural Process," in *Advances in Approximate Bayesian Inference (AABI), 3rd Symposium on*. (Awarded contributed talk.)
- [link] Xia, R., Bruinsma W. P., Tebbutt W., and Turner R. E. (2021). "The Gaussian Process Latent Autoregressive Model," in *Advances in Approximate Bayesian Inference (AABI), 3rd Symposium on*.
- [link] Foong, A. Y. K., Bruinsma W. P., Gordon. J., Dubois, Y., Requeima J., and Turner R. E. (2020). "Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes," in *Advances in Neural Information Processing Systems (NeurIPS)*, 33th.
- [link] Bruinsma, W. P., Perim E., Tebbutt W., Hosking J. S., Solin A., Turner R. E. (2020). "Scalable Exact Inference in Multi-Output Gaussian Processes," in *International Conference on Machine Learning (ICML)*, 37th.
- [link] Gordon, J., Bruinsma, W. P., Foong, A. Y. K., Requeima, J., Dubois, Y., and Turner, R. E. (2020). "Convolutional Conditional Neural Processes," in *International Conference on Learning Representations* (ICLR), 8th. (Awarded oral presentation.)
- [link] Berkovich, P., Perim, E., and Bruinsma, W. P. (2019) "GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models," in *Advanced in Approximate Bayesian Inference (AABI), 2nd Symposium on*.
- [link] Requiema, J. R., Tebbutt, W. C., Bruinsma, W. P., and Turner, R. E. (2019). "The Gaussian Process Autoregressive Regression Model (GPAR)," in *Artificial Intelligence and Statistics (AISTATS)*, 22nd International Conference on.
- [link] Bruinsma, W. P. and Turner, R. E. (2018). "Learning Causally-Generated Time Series," in *arXiv* preprint:1802.08167.
- [link] Bosma, S., Bruinsma, W. P., Hes, R. P., Bentum, M. J., and Lager, I. E. (2017). "Grating Lobe Prediction in 3D Array Antennas," in *Antennas and Propagation (EuCAP), 11th European Conference on*.
- [link] Bruinsma, W. P., Hes, R. P., Bosma, S., Lager, I. E., and Bentum, M. J. (2016). "Radiation Properties of Moving Constellations of (Nano) Satellites: A Complexity Study," in *Antennas and Propagation (EuCAP)*, 10th European Conference on.
- [link] Bentum, M. J., Lager, I. E., Bosma, S., Bruinsma, W. P., and Hes, R. P. (2015). "Beamforming in Sparse, Random, 3D Array Antennas with Fluctuating Element Locations," in *Antennas and Propagation (EuCAP)*, 9th European Conference on.

THESES

- [link] Bruinsma, W. P. (2022). "Convolutional Conditional Neural Processes." Department of Engineering, University of Cambridge. Thesis for the degree Doctor of Philosophy.
- [link] Bruinsma, W. P. (2016). "The Generalised Gaussian Process Convolution Model." Department of Engineering, University of Cambridge. Thesis for the degree Master of Philosophy.
- [link] Bruinsma, W. P., Hes, R. P., Kroep, H. J. C., Leliveld, T. C., Melching, W. M., and aan de Wiel, T. A. (2015). "An Extensible Toolkit for Real-Time High-Performance Wideband Spectrum Sensing." Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. Thesis for the degree Bachelor of Science.

AWARDS AND GRANTS

Jan 2022 Christ's College Excellence in Teaching Prize

2018-2021 International Doctoral Scholarship (IDS) Grant Covering PhD Fees and Stipend

Mar 2016 UfD – Damen Bachelor Award

INVITED TALKS

Jul 2025	UCL Al CentreAurora: A Foundation Model for the Earth System	London, UK
Jul 2025	CDI AI/ML Webinar, US Geological Survey • Aurora: A Foundation Model for the Earth System	Online
Jul 2025	Al4X 2025 • Aurora: A Foundation Model for the Earth System (plenary)	Singapore, Singapore
Jul 2025	Royal Meteorological Society Early Career & Student Conference 202 • Aurora: A Foundation Model for the Earth System (keynote)	Manchester, UK
Mar 2025	Statistical Learning in Atmospheric Chemistry Monthly Seminar • Aurora: A Foundation Model for the Earth System	Online
Jan 2025	Building a Dutch Al-Earth System Modelling CommunityAurora: A Foundation Model for the Earth System	KNMI, De Bilt, NL
Oct 2024	Advancing Ecosystem Carbon Flux Research • Foundation Models for Earth Systems	Leiden, NL
Jan 2024	Center for Basic Machine Learing in Life Sciences (MLLS) Autoregressive Conditional Neural Processes	Copenhagen, DK
Feb 2022	Sheffield Machine Learning Group Seminar Series • Meta-Learning as Prediction Map Approximation	Sheffield, UK
Jan 2019	Online Winter School on Spectral Methods for Complex Systems • Spectral Methods in Gaussian Modelling	Online

MACHINE LEARNING SOFTWARE

[link]	Stheno: Probabilistic programming with Gaussian processes in Python
[link]	Aurora: Implementation of the Aurora model for Earth system forecasting
[link]	GPAR: Implementation of GPAR in Python
[link]	NeuralProcesses.jl: A framework for composing Neural Processes in Julia
[link]	NeuralProcesses: A framework for composing Neural Processes in Python
[link]	ConvCNP: Implementation of the ConvCNP in Python
[link]	GPCM: Implementation of several variants of the Gaussian Process Convolution Model in Python
[link]	OILMM: Implementation of the OILMM in Python
[link]	MLKernels: Flexible implementation of kernels in Python

OTHER SOFTWARE

[link]	Plum: Implementation of multiple dispatch in Python
[link]	LAB: A generic interface for linear algebra backends in Python
[link]	FDM: Estimate derivatives with finite differences in Python
[link]	FiniteDifferences.jl: Estimate derivatives with finite differences in Julia
[link]	Varz: Painless optimisation of constrained variables in AutoGrad, TensorFlow, PyTorch, and JAX
[link]	Matrix: Structured matrices in Python
[link]	Algebra: Algebraic structures in Python

REVIEWING

AABI 2024 Reviewer
NeurlPS 2023 Reviewer
ICML 2023 Reviewer
GPSMDMS 2022 Reviewer

ICML 2022 Reviewer (top 10%)

AISTATS 2022 Reviewer
ICML 2021 Reviewer
NeurIPS 2020 Reviewer

TEACHING

All below teaching was done at the University of Cambridge.

Easter 2022 **Cosupervisor for two MPhil Projects** MPhil in Machine Learning and Machine Intelligence Easter 2021 **Cosupervisor for two MPhil Projects** MPhil in Machine Learning and Machine Intelligence Lent 2021 **Supervisor for Inference** Part IIA, Engineering Tripos Michaelmas '21 Supervisor for Introduction to ML MPhil in Machine Learning and Machine Intelligence Easter 2020 **Cosupervisor for MPhil Project** MPhil in Machine Learning and Machine Intelligence Lent 2020 **Supervisor for Inference** Part IIA, Engineering Tripos Michaelmas '20 **Demonstrator** Al for the study of Environmental Risks (CDT) Michaelmas '20 **Demonstrator** MPhil in Machine Learning and Machine Intelligence Lent 2019 **Supervisor for Inference** Part IIA, Engineering Tripos

FULL PORTFOLIO

See wessel.ai/publications and wessel.ai/software for a full overview of my software, publications, posters, theses, talks, and write-ups.