# Chapitre 4

# Continuité - Dérivation





## 4.1 Continuité d'1 fonction

## 4.1.1 Limite finie en 1 point

**Définition** (rappel):  $l, a \in \mathbb{R}$  et  $f: I \mapsto \mathbb{R}$ 

f tend vers l en a si :

- $\forall J$  intervalle ouvert contenant l
- $\exists I$  ouvert contenant  $a \text{ tq} : x \in I \Rightarrow f(x) \in J$
- on note :  $\lim_{x \to a} f(x) = l$



#### Remarque, exemple:

- la notion de limite nous conduit naturellement vers la notion de continuité
- <u>H.P.</u>: dans le supérieur, on écrit plutôt :

 $f: I \mapsto \mathbb{R}$  où I est un intervalle de  $\mathbb{R}$ 

f est continue en a si :  $\forall \epsilon > 0 \quad \exists \alpha > 0 \quad \forall a \in I \quad (|x - a| < \epsilon \Rightarrow |f(x) - f(a)| < \alpha)$ 

### 4.1.2 Continuité en un point

**Définition:**  $l, a \in \mathbb{R} \text{ et } f: I \mapsto \mathbb{R}$ 

- f est continue en a si  $\lim_{x\to a} f(x) = f(a)$
- f continue sur  $I \Leftrightarrow f$  continue en tout point de I
- si f n'est pas continue en a, on parle de discontinuité en a

#### $Remarque,\ exemple:$

• en gros (faux attention), 1 fonction continue est 1 fonction "que l'on peut tracer sans lever le stylo" ou bien "qui reste en 1 seul morçeau"



Fonction f discontinue en 2  $\lim_{x\to 2^+} f(x) = 3 \neq f(2)$ 



Fonction f continue sur [-1,5;5,5]

- toutes les fonctions polynômes sont continues sur  $\mathbb{R}$  (famille de fonctions très utilisées car très régulières : bien plus que continues, elles sont indéfiniment dérivables ...)
- la fonction inverse  $f: x \mapsto \frac{1}{x}$  est une fonction continue sur  $\mathbb{R}^*$  mais ne l'est pas sur  $\mathbb{R}$  si f est continue, il faut donc bien préciser où (sinon problème potentiel ...) dans le cas où on ne dit rien, c'est que l'on parle de  $\mathbb{R}$
- ce qu'il faut bien comprendre : pour 1 valeur a, vous pouvez regarder f à 3 endroits  $\neq$  :
  - $\bullet$  à gauche <u>cad</u> que vous regardez  $\lim_{x\to a^-} f(x)$
  - à droite <u>cad</u> vous regardez  $\lim_{x \to a^+} f(x)$
  - pile sur  $a \underline{\operatorname{cad}}$  vous regardez f(a)

f est continue en a si ces 3 valeurs existent et sont égales : f continue en  $a \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$ 

- il est possible de parler de :
  - $\underline{f}$  continue à gauche :  $\lim_{x \to a^{-}} f(x) = f(a)$
  - $\underline{f}$  continue à droite :  $\lim_{x \to a^+} f(x) = f(a)$
- $f(x) = \begin{cases} \frac{\sin x}{x} & si \quad x \in \mathbb{R}^* \\ 1 & si \quad x = 0 \end{cases}$  est continue sur  $\mathbb{R}$  (vérifier le!!)
- voici la fonction partie entière  $x\mapsto E(x)$  elle est <u>continue à droite</u> sur  $\mathbb R$  elle est <u>continue à gauche</u> uniquement sur  $\mathbb R\backslash \mathbb Z$



• 
$$f(x) = \begin{cases} \sin \frac{1}{x} & si \quad x \in \mathbb{R}^* \\ 0 & si \quad x = 0 \end{cases}$$

f n'est pas continue en 0 : pourquoi?



- $\underline{\text{travail}}$  à faire : trouver tous les cas possibles de non continuité d'1 fonction f en 1 point
- <u>H.P.</u>: vous pouvez rencontrer la notation :  $f \in C([0,1],\mathbb{R})$  ou  $f \in C^0([0,1],\mathbb{R})$  qui veut dire : f est 1 fonction continue de [0,1] sur  $\mathbb{R}$

#### 4.1.3 Continuité des fonctions usuelles

Propriété: (admis - assez intuitif)

- $\bullet$ les fonctions polynômes sont continues sur  $\mathbb R$
- $x \mapsto \frac{1}{x}$  est continue sur  $\mathbb{R}^*$
- la fonction valeur absolue  $x\mapsto |x|$  est continue sur  $\mathbb R$
- $x \mapsto \sqrt{x}$  est continue sur  $\mathbb{R}^+$
- $x \mapsto \sin x$  et  $x \mapsto \cos x$  sont continues sur  $\mathbb{R}$
- $x \mapsto \tan x$  est continue sur son domaine de définition :  $\mathbb{R}\setminus\{k\frac{\pi}{2}|k\in\mathbb{Z}\}$

#### Remarque, exemple:

- $x \mapsto \frac{1}{x-a}$  est continue sur son domaine de définition :  $\mathbb{R}\setminus\{a\} = ]-\infty$ ;  $a \ [\ \cup\ ]\ a$ ;  $+\infty[$
- $x \mapsto \sqrt{x+a}$  est continue sur son domaine de définition :  $[-a; +\infty]$
- <u>H.P.</u>: 1 fraction rationnelle  $\frac{P(x)}{Q(x)}$  est continue sauf au niveau de ses pôles <u>cad</u> les racines de Q(x)
- <u>H.P.</u>: prolongement par continuité intéressons nous à la fonction  $x \mapsto \frac{\sin x}{x}$  définie sur  $\mathbb{R}^*$  on remarque que cette fonction est "presque continue" en 0 car  $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = 0$  il suffirait qu'elle soit définie en 0 ... ce qui n'est pas encore le cas ... et que sa valeur soit 0 on répare ce "problème" en décidant que f(0) = 0 et f devient continue sur  $\mathbb{R}$  cette fois-ci!

## 4.1.4 HP (approfondissement) : lien entre Continuité et Suite

 $Propriété: (u_n)$  1 suite, f 1 fonction; de plus, on suppose que tout est bien définie

- $\mathbf{Si}$ : f est continue
- Alors:  $\lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(l)$

#### Remarque, exemple:

• <u>ex d'utilisation</u>: 1 suite récursive

$$(u_n) = \begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{3u_n + 4} \end{cases}$$

l'étude de  $(u_n)$  montre que  $(u_n)$  est croissante, majorée par  $4 \Rightarrow (u_n)$  CV : l sa limite

d'une part, 
$$f(u_n) = \sqrt{3u_n + 4} \Rightarrow \lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} \sqrt{3u_n + 4}$$
  
d'autre part,  $f$  est continue  $\Rightarrow \lim_{n \to +\infty} \sqrt{3u_n + 4} = \sqrt{3 \lim_{n \to +\infty} u_n}$ 

de ces 2 informations, on obtient l'équation de la limite :

$$\lim_{n \to +\infty} u_n = l = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(l)$$

$$\lim_{n \to +\infty} u_n = l = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(l)$$

$$\underline{\operatorname{bref}} : f(l) = l \Rightarrow \sqrt{3l+4} = l \Rightarrow l^2 - 3l - 4 = 0 \Rightarrow l = -1 \text{ ou } l = 4 \Rightarrow l = 4 \text{ car } (u_n) \text{ est croissante}$$

• 1 point essentiel, dans l'exemple précédent est de bien comprendre que :

$$\lim_{n \to +\infty} u_n = l \qquad \lim_{n \to +\infty} f(u_n) = l \qquad u_{n+1} = f(u_n)$$

mais seul la continuité de f apporte l'égalité (par passage à la limite) f(l) = l

#### 4.1.5Continuité et Dérivabilité

**Propriété**: (admis - assez intuitif)

- Si: f est dérivable en a Alors: f est continue en a
- Attention la réciproque est fausse (ex :  $x \mapsto |x|$  en 0)

Remarque, exemple: même principe entre "ensemble de définition" et la "continuité"

• Si: f est continue en a **Alors:** f est définie en a (réciproque fausse évidement)

#### 4.1.6 Théorème des Valeurs Intermédiaires

Théorème des Valeurs Intermédiaires :

• <u>Si</u>:  $f:[a,b]\mapsto \mathbb{R}$ 

f est continue

 $\forall k \text{ entre } f(a) \text{ et } f(b)$ ,

 $\exists c \in [a, b] \text{ tq } f(c) = k$ 

Noter que le c n'est pas forcément unique (dans le cas général)

#### Remarque, exemple:

- dans le théorème, on n'écrit pas  $k \in [f(a); f(b)]$  car on ne sait pas qui est le plus grand (f(a) ou f(b)
- $\bullet$  on n'a pas besoin de la continuité de f pour arriver à la même conclusion : trouver 1 ex où f n'est pas continue et tq  $\forall k$  entre f(a) et f(b), f(x) = k admet 1 solution sur [a; b]
- par contre, l'hypothèse de continuité est obligatoire si on veut que le résultat soit toujours vrai trouver 1 contre-exemple

 $T^{ale} S - Math 13.net$  2019 - 2020

•  $\underline{Si}$  f est continue sur [a; b] et  $f(a) \times f(b) < 0$ 

<u>**Alors**</u> l'équation f(x) = 0 admet au moins 1 solution sur [a; b]

On verra des algorithmes de recherche de solution approchée : dichotomie, newton, ...



 $\underline{TVI\ strictement\ monotone}\ :$  unicité du c

 $\begin{array}{ll} \underline{Si:} & \underline{Alors:} \\ f:[a,b] \mapsto \mathbb{R} & \forall k \text{ entre } f(a) \text{ et } f(b) \text{ ,} \\ f \text{ est continue} & \exists ! \ c \in [a,b] \text{ tq } f(c) = k \\ f \text{ strictement monotone} & \end{array}$ 

 $\underline{\textit{M\'ethode de Dichotomie}}$ : Résoudre de façon approchée f(x)=0

- $f(x) = x^3 + x 1$  admet 1 unique solution sur  $\mathbb{R}$  ceci peut être prouver grâce au TVI elle est comprise entre 0 et 1 (voir graphique ci-dessus)
- ullet on peut appliquer l'algorithme de dichotomie pour obtenir 1 valeur approchée de la racine lpha
- programmer cet algorithme : (ne pas regarder le programme est à la page suivante)

 $T^{ale} S - Math 13.net$  2019 - 2020

```
import math
 3
   def f(x):
 4
        return x**3+x-1
 5
 6
 7
   def dichotomie(a, b, f, epsilon=1e-6):
 8
        if(math.fabs(a - b) <= epsilon):</pre>
9
            return (a+b)/2.0
10
        else:
            fa = f(a)
11
12
            fb = f(b)
            fab = f((a+b)/2.0)
13
14
            if(fa * fab <= 0):</pre>
15
                 return dichotomie(a, (a+b)/2.0, f, epsilon)
            elif(fab * fb <= 0):</pre>
16
                 return dichotomie((a+b)/2.0, b, f, epsilon)
17
18
            else:
19
                raise Exception("Domaine invalide pour trouver un z ro par ←
                     dichotomie")
20
21
   a = 0
22 b = 1
   print("Z ro de x**3+x-1 sur [{},{}] : {}".format(a, b, round(dichotomie(a, b\leftarrow
        , f),6)))
```

#### 4.2 Dérivée d'une fonction

## 4.2.1 Dérivée : de la définition aux formules classiques

```
      Définition :
      a, l ∈ \mathbb{R} et f : I \mapsto \mathbb{R}

      • \underline{Si} : \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l
      Alors : f est dérivable en a

      • le nombre dérivé de f en a est f'(a)

      • géométriquement, il représente la pente de la courbe de f en (a, f(a))
      (cad la pente de la tangente en ce point)

      • plus généralement, on note f' ou f'(x) la dérivée de f sur un intervalle I
```

Exemple 1: calcul de limite (rappel chap fonction)

 $\begin{array}{lll}
\bullet & \lim_{x \to 0} \frac{\sin x}{x} & \bullet & \lim_{x \to 0} \frac{e^{x} - 1}{x} \\
\bullet & \lim_{x \to 0} \frac{\cos x - 1}{x} & \bullet & \lim_{x \to 0} \frac{(1 + x)^{n} - 1}{x} \\
\bullet & \lim_{x \to 0} \frac{\tan x}{x} & \bullet & \lim_{x \to 0} \frac{\ln(1 + x)}{x}
\end{array}$ 

Exemple 2 : étude de la continuité et de la dérivabilité d'1 fonction

• 
$$f(x) = \begin{cases} x^2 - 2x - 2 & si \quad x \leq 1 \\ \frac{x - 4}{x} & si \quad x > 1 \end{cases}$$

• étudier la continuité de f

• étudier la dérivabilité de f

Exemple 3: mais où sont pas les bonnes vieilles formules ... si simples à retenir!

• démontrer que  $(x^2)' = 2x$ 

• démontrer que  $(\sin x)' = \cos x$ 

• <u>moralité</u> : on garde les "formules" qui fonctionne quasiment tout le temps et on utilise le nombre dérivée pour les cas plus délicats ...

 $T^{ale} S - Math 13.net$  2019 - 2020

### 4.2.2 Les formules à connaître

| Fonction                                   | $\mathscr{D}_f$ | Dérivée                       | $\mathscr{D}_f'$        |  |
|--------------------------------------------|-----------------|-------------------------------|-------------------------|--|
| f(x) = k                                   | $\mathbb{R}$    | f'(x) = 0                     | IR                      |  |
| f(x) = x                                   | $\mathbb{R}$    | f'(x) = 1                     | $\mathbb{R}$            |  |
| $f(x) = x^n  n \in \mathbb{N}^*$           | $\mathbb{R}$    | $f'(x) = nx^{n-1}$            | $\mathbb{R}$            |  |
| $f(x) = \frac{1}{x}$                       | $\mathbb{R}^*$  | $f'(x) = -\frac{1}{x^2}$      | ] - ∞; 0[ ou<br>]0; +∞[ |  |
| $f(x) = \frac{1}{x^n}  n \in \mathbb{N}^*$ | $\mathbb{R}^*$  | $f'(x) = -\frac{n}{x^{n+1}}$  | ] - ∞;0[ ou<br>]0; +∞[  |  |
| $f(x) = \sqrt{x}$                          | [0;+∞[          | $f'(x) = \frac{1}{2\sqrt{x}}$ | ]0;+∞[                  |  |
| $f(x) = \sin x$                            | $\mathbb{R}$    | $f'(x) = \cos x$              | $\mathbb{R}$            |  |
| $f(x) = \cos x$                            | $\mathbb{R}$    | $f'(x) = -\sin x$             | $\mathbb{R}$            |  |

Remarque, exemple: pour aller 1 peu plus loin ...

• 
$$(\tan x)' = 1 + \tan^2 x = \frac{1}{\cos^2 x} \operatorname{sur} \mathbb{R} \setminus \{\mathbb{Z} \frac{\pi}{2}\}$$

- $(e^x)' = e^x \operatorname{sur} \mathbb{R}$
- $(\ln x)' = \frac{1}{x} \operatorname{sur} \mathbb{R}^*_+$

| Dérivée de la somme                | (u+v)'=u'+v'                                        |
|------------------------------------|-----------------------------------------------------|
| Dérivée du produit par un scalaire | (ku)' = ku'                                         |
| Dérivée du produit                 | (uv)' = u'v + uv'                                   |
| Dérivée de l'inverse               | $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$       |
| Dérivée du quotient                | $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ |
| Dérivée de la puissance            | $\left(u^{n}\right)'=nu'u^{n-1}$                    |
| Dérivée de la racine               | $\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$     |
| Dérivée autre                      | $[f(ax+b)]' = a \times f'(ax+b)$                    |

#### Remarque, exemple:

- dérivée d'1 fonction composée :  $\boxed{(fog)'(x) = f\left[g(x)\right] = f'\left[g(x)\right] \times g'(x)}$  dérivée "grande petite" égale "dérivée grande" appliquée à "petite" fois "dérivée petite"
- H.P. dérivée fonction réciproque :  $\boxed{(f^{-1})'(y) = \frac{1}{f'\left[f^{-1}(y)\right]}} \text{ là où elle existe ... (preuve : dériver } fof^{-1})$

## 4.2.3 Interprétation - Application

#### Propriété:

• comme vu supra, le nombre dérivée représente la pente de la tangente en 1 point



• localement en a, on peut "approximer f" à cette droite :  $h \to 0$ ,  $f(a+h) \approx f(a) + hf'(a)$ 



## Remarque, exemple :

•  $\underline{ex\ 1}$ : valeur approchée de  $\sqrt{4.03}$ 

• on pose  $f(x) = \sqrt{x}$ , a = 4, h = 0.03

• 
$$f(4) = 2$$
 et  $f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f'(4) = \frac{1}{4}$ 

• donc  $\sqrt{4.03} \approx 2 + 0.03 \times \frac{1}{4} = 2.0075$ 

• la calculatrice nous donne 2.00786; nous sommes (sans calculatrice) déjà à 10<sup>-4</sup> près!!

 $\bullet$   $\underline{ex~2~:}$ énergie cinétique relativiste

• en mécanique relativiste, la masse m de vitesse v est :  $m = \frac{m_0}{\sqrt{1-(\frac{v}{c})^2}}$  où c est la vitesse de la lumière et  $m_0$  la masse du corps au repos (à l'arrêt)

• l'énergie cinétique est alors :  $E_c = (m - m_0)c^2 = m_0c^2(\frac{1}{\sqrt{1-x}} - 1)$  où  $x = (\frac{v}{c})^2$  (le vérifier)

• quand x est petit, c'est la mécanique classique avec Newton et sa "pomme"; on voudrait alors retrouver la formule classique :  $E_c=\frac{1}{2}m_0c^2$ 

• on vérifie facilement que :  $f(x) = \frac{1}{\sqrt{1-x}} - 1$  est dérivable en 0 et  $f'(x) = \frac{1}{2(1-x)\sqrt{1-x}}$ 

• on peut alors faire l'approximation affine en zéro :  $f(x) \approx f(0) + f'(0) \times x = \frac{x}{2}$ 

•  $\Rightarrow E_c \approx m_0 c^2 \times \frac{x}{2} = \approx \frac{1}{2} m_0 c^2 \times (\frac{v}{c})^2 = \frac{1}{2} m_0 v^2$ 

## 4.2.4 Signe de la dérivée - Sens de Variation

**Propriété**: soit  $f: I \mapsto \mathbb{R}$  dérivable sur I intervalle de  $\mathbb{R}$ 

•  $\underline{Si}$  f' est nulle  $\underline{Alors}$  f est constante

•  $\underline{Si}$  f' est strictement positive (sauf en des points isolés) sur I<u>Alors</u> f est strictement croissante sur I

•  $\underline{Si}$  f' est strictement négative (sauf en des points isolés) sur I $\underline{Alors}$  f est strictement décroissante sur I

• Étude des variations de  $f\Rightarrow$  Étude du signe de f'

#### Remarque, exemple:

• <u>ex</u> : étudier les variations sur  $\mathbb{R}$  de  $f(x) = x^3 - 6x^2 + 1$ 

• en étudiant le signe de f', on obtient (faites le!!) :

| x     | $-\infty$ |   | 0   |   | 4   |   | +∞ |
|-------|-----------|---|-----|---|-----|---|----|
| f'(x) |           | + | ф   | _ | ф   | + |    |
| f(x)  | -∞        | / | , 1 | \ | -31 |   | +∞ |

#### 4.2.5 Dérivée et Extremum local

 $\textbf{\textit{Propriété}}: \text{soit } f: I \mapsto \mathbb{R}$  dérivable sur I intervalle de  $\mathbb{R}$  et  $a \in I$ 

- $\underline{Si}$  f admet un extremum local en a  $\underline{Alors}$  f'(a) = 0
- $\underline{Si}$  f'(a) = 0 en changeant de signe  $\underline{Alors}$  f admet un extremum local en a

#### Remarque, exemple:

- $\bullet$  strat'egie : on cherchera donc les extremum local de f parmi les zéros de la dérivée
- <u>attention</u> : chaque zéro de f' n'est pas forcément un extremum de f; donner 1 exemple!!