LA1 Fields and Vector Spaces

KYB

Thrn, it's a Fact mathrnfact@gmail.com

February 8, 2021

Overview

- Ch2. Fields and vector spaces
 - 2.1 Fields
 - 2.2 Vector Spaces

Goal of LA

- 1. Objects in Linear Algebra
 - ▶ fields, vector spaces, linear operators (matrices)
- 2. Fundamental Theory of Linear Algebra
 - ightharpoonup nullity + rank = dimension
- 3. Diagonalization
 - ► Eigenvalues, Eigenvectors, the Jordan Canonical Form

Definition (Fields)

A set F with $+, \times$ is called a field if F satisfies

- 0. $\alpha + \beta, \alpha \times \beta \in F$. (closed under + and ×, simply write $\alpha \times \beta = \alpha\beta$)
- 1. $\alpha + \beta = \beta + \alpha$
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 3. $\exists 0$ such that $\alpha + 0 = \alpha$ for all α
- 4. $\exists -\alpha$ such that $\alpha + (-\alpha) = 0$ for all α
- 5. $\alpha\beta = \beta\alpha$
- 6. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- 7. $\exists 1 \neq 0$ such that $\alpha \times 1 = \alpha$ for all α
- 8. $\exists \alpha^{-1}$ such that $\alpha \times \alpha^{-1} = 1$ for all $\alpha \neq 0$
- 9. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$

Remark

- Every field has at least two elements, 0 and 1
- ightharpoonup 0, 1, $-\alpha$, α^{-1} are unique
- ▶ (cancelation law for +) $\alpha + \gamma = \beta + \gamma \implies \alpha = \beta$
- ▶ (cancelation law for \times) $\alpha \gamma = \beta \gamma \implies \alpha = \beta$ if $\gamma \neq 0$
- $ightharpoonup 0 \cdot \alpha = 0, \ -1 \cdot \alpha = -\alpha$
- **.** . .

Notation

$$\sum_{i=1}^{n} \alpha_i = \alpha_1 + \alpha_2 + \dots + \alpha_n$$

▶ \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p for prime number p

What is \mathbb{Z}_p ? "a filed with exactly p elements" (if p is not a prime number \mathbb{Z}_p is not a field)

$$\mathbb{Z}_2 = \{0, 1\}, \quad \mathbb{Z}_3 = \{0, 1, 1 + 1\}, \quad \mathbb{Z}_5 = \{0, 1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1\}$$

Exercise

Prove \mathbb{Z}_2 is a field

Proof.

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=0$

Check the tables of addition and multiplication

$$\begin{array}{c|c|c}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}$$

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}.$$

For $a, b \in \mathbb{Z}$,

$$\overline{a} = \overline{b} \iff a - b = nq \text{ for some } q \in \mathbb{Z}$$

(i.e., n divides a - b, or the remainder of a by n = the remainder of b by n)

For instance, for n = 6, $\overline{1} = \overline{713} = \cdots$.

For any $a \in \mathbb{Z}$, there is $r \in \mathbb{Z}$ such that $0 \le r \le n-1$ and $\overline{a} = \overline{r}$, or

$$a = nq + r$$

(using Euclidean Algorithm)

We can define $+, \times$ on \mathbb{Z}_n by

$$\overline{a} + \overline{b} := \overline{a+b}, \quad \overline{a} \times \overline{b} := \overline{ab}$$

Check : $+, \times$ well-defined

(1)
$$\overline{a} + \overline{b}, \overline{a} \times \overline{b} \in \mathbb{Z}_n$$

(2) If
$$\overline{a}_1 = \overline{a}_2$$
 and $\overline{b}_1 = \overline{b}_2$, then

$$\left\{ \begin{array}{l} \overline{a}_1 + \overline{b}_1 = \overline{a}_2 + \overline{b}_2 \\ \overline{a}_1 \times \overline{b}_1 = \overline{a}_2 \times \overline{b}_2 \end{array} \right.$$

- (1) Since a + b, $ab \in \mathbb{Z}$, $\overline{a} + \overline{b}$, $\overline{a} \times \overline{b} \in \mathbb{Z}_n$
- (2) Since $\overline{a}_1 = \overline{a}_2$ and $\overline{b}_1 = \overline{b}_2$, there exist $q_1, q_2 \in \mathbb{Z}$ such that

$$\begin{cases} a_1 - a_2 = nq_1 \\ b_1 = b_2 = nq_2 \end{cases}$$

$$(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2) = nq_1 + nq_2 = n(q_1 + q_2)$$

 $\implies \overline{a_1 + b_1} = \overline{a_2 + b_2} \implies \overline{a_1} + \overline{b_1} = \overline{a_2} + \overline{b_2}$

$$(a_1b_1) - (a_2b_2) = a_1b_1 - a_1b_2 + a_1b_2 - a_2b_2 = a_1nq_2 + nq_1b_2 = n(a_1q_2 + q_1b_2)$$

$$\implies \overline{a_1b_1} = \overline{a_2b_2} \implies \overline{a}_1 \times \overline{b}_1 = \overline{a_2} \times \overline{b_2}$$

Now we get some properties of \mathbb{Z}_n

1.
$$\overline{a} + \overline{b} = \overline{b} + \overline{a}$$

2.
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$$

3.
$$\overline{a} + \overline{0} = \overline{a}$$

4.
$$-\overline{a} = \overline{-a}$$

5.
$$\overline{a}\overline{b} = \overline{b}\overline{a}$$

6.
$$(\overline{a}\overline{b})\overline{c} = \overline{a}(\overline{b}\overline{c})$$

7.
$$\overline{a} \cdot \overline{1} = \overline{a}$$

8.
$$\overline{a}(\overline{b} + \overline{c}) = \overline{a}\overline{b} + \overline{a}\overline{c}$$

"Caution": in general, \overline{a}^{-1} does not exists, for example, for n=4 $\overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$. If $\overline{2}^{-1}$ exists, $\overline{2} = \overline{2}^{-1} \cdot \overline{2} \cdot \overline{2} = \overline{2}^{-1} \cdot \overline{0} = \overline{0}$, but $\overline{2} \neq \overline{0}$.

If every nonzero $a \in \mathbb{Z}_n$ has the inverse a^{-1} , then \mathbb{Z}_n is a field.

Theorem

 \mathbb{Z}_n is a field if and only if n is a prime number.

Proof

(\Longrightarrow) Since every field has at least two elements, $n \ge 2$. Suppose n is not a prime, say n = ab where a, b > 1. Since 1 < a, b < n, $a, b \in \mathbb{Z}_n$ (identify $\overline{a} = a$ and $\overline{b} = b$). So $ab = \in \mathbb{Z}_n$. Since $ab = n = n \cdot 1 + 0$, ab = 0 in \mathbb{Z}_n . Since \mathbb{Z}_n is a field and $a \ne 0$, there is a^{-1} .

$$b = a^{-1}ab = a^{-1}\overline{n} = a^{-1}0 = \overline{0}$$

Since 0 < b < n, $b = 0 \cdot n + b$ implies b = 0 (contradiction), hence n is prime.

Theorem

 \mathbb{Z}_n is a field if and only if n is a prime number.

Proof

(\iff) Suppose p is a prime. Let $\alpha \in \mathbb{Z}_n$ which is nonzero. Then $\{\alpha, \alpha^2, \alpha^3, \cdots\}$ is a subset of \mathbb{Z}_n and $\alpha^k \neq 0$ for all k. Then there are $l, k \in \mathbb{N}$ such that $l \neq k$ and $\alpha^l = \alpha^k$ because \mathbb{Z}_n is finite. Without loss of generality, assume k > l.

$$\alpha^{k} = \alpha^{k-l} \alpha^{l} = \alpha^{l} \implies \alpha^{k-l} = 1$$

(cancelation law still holds) Since $k-l-1 \geq 0$, $1 = \alpha^{k-l} = \alpha^{k-l-1} \cdot \alpha$, or $\alpha^{-1} = \alpha^{k-l-1}$. So α^{-1} exists.

Q. Let F be finite field. If |F| (# of elements of F) a prime number? No! Let $F = \{0, 1, \omega, \omega + 1\}$ with operations followed by

+	0	1	ω	$\omega + 1$
0	0	1	ω	$\omega + 1$
1	1	0	$\omega + 1$	ω
ω	ω	$\omega + 1$	0	1
$\omega + 1$	$\omega + 1$	ω	1	0

×	0	1	ω	$\omega + 1$
0	0	0	0	0
1	0	1	ω	$\omega + 1$
ω	0	ω	$\omega + 1$	1
$\omega + 1$	0	$\omega + 1$	1	ω

Then F is a field and there are exactly 4 elements.

Ex 2.1.19

Suppose F is a finite field.

(a) There is $n = \operatorname{char} F$ (n is the smallest k such that $\underbrace{1+1+\cdots+1}_{}=0$)

Proof.

Consider $\{1, 1+1, \dots\} \subset F$. Let |F| = p (may not prime) Since $\{1, 1+1, \dots\}$ has at most p many elements, there are a, $b \in \mathbb{N}$ with a < b such that

$$\underbrace{1+1\cdots+1}_{a \text{ times}} = \underbrace{1+1\cdots+1}_{b \text{ times}}$$

Then

$$0 = \underbrace{1 + 1 \cdots + 1}_{a \text{ times}} - 1 \underbrace{1 + 1 \cdots + 1}_{a \text{ times}} = \underbrace{1 + 1 \cdots + 1}_{b \text{ times}} - 1 \underbrace{1 + 1 \cdots + 1}_{a \text{ times}}$$
$$= \underbrace{1 + 1 \cdots + 1}_{b - a \text{ times}}$$

Using the fact that every nonempty subset of $\mathbb N$ has the smallest n, we can find char F = n.

Ex 2.1.19

Suppose F is a finite field.

(b) Let
$$n = \operatorname{char} F$$
. Then $\underbrace{\alpha + \cdots + \alpha}_{n \text{ times}} = 0$ for any $\alpha \in F$.

Proof.

$$\alpha + \cdots + \alpha = (1 + \cdots = 1) \cdot \alpha$$

(c) char F is a prime number.

Proof.

Suppose $n = l \cdot k$. Then

$$(\underbrace{1+1\cdots+1}_{l \text{ times}})(\underbrace{1+1\cdots+1}_{k \text{ times}})=0 \text{ (contradiction)}$$

(d)

Example (Quaterian H)

Let H be the set of all element of the form

$$a + bi + cj + dk$$
 $a, b, c, d \in \mathbb{R}$

where

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $ji = -k$, $jk = i$, $kj = -i$, $ki = j$, $ik = -j$

Then

- (1) $\alpha\beta \neq \beta\alpha$
- (2) there are 0 and 1
- (3) there is α^{-1} if $\alpha \neq 0$.

We call such set a "division ring" or "skew field"

Remark

$$-1 \neq 0$$
 because $1 \neq 0$. Suppose not. $0 = 1 + (-1) = 1 + 0 = 1$.

Remark

 $\alpha x + \beta = 0$ has a unique solution if $\alpha \neq 0$.

Proof.

- (1) (Existence) Let $x = \alpha^{-1}(-\beta)$. Then $\alpha(\alpha^{-1} \cdot (-\beta)) = \beta = (\alpha \cdot \alpha^{-1})(-\beta) + \beta = 1 \cdot (-\beta) + \beta = -\beta + \beta = 0$.
- (2) (Uniqueness) Suppose x' is another solution. Then $\alpha x' + \beta = 0 \implies \alpha x' = -\beta \implies x' = \alpha^{-1}(-\beta)$.

$$\alpha/\beta = \alpha\beta^{-1}$$

Ex 2.1.13

Let $F = \{(\alpha, \beta) : \alpha, \beta \in F\} = \mathbb{R} \times \mathbb{R}$. Define addition and multiplication on F as follows:

$$(\alpha, \beta) + (\gamma, \delta) = (\alpha + \gamma, \beta + \delta),$$

 $(\alpha, \beta) \cdot (\gamma, \delta) = (\alpha\gamma, \beta\delta).$

Then *F* is not a field because $(1,0) \cdot (0,1) = (0,0) = 0$.

Remark

 $\mathbb{R} \times \mathbb{R}$ can not be field for all $+, \times$?

$$(\alpha, \beta) + (\gamma, \delta) = (\alpha + \gamma, \beta + \delta),$$

$$(\alpha, \beta) \cdot (\gamma, \delta) = (\alpha\gamma - \beta\delta, \alpha\delta + \beta\delta).$$

In these $+,\cdot$, $\mathbb{R} \times \mathbb{R}$ is a field. In fact, $\mathbb{C} \cong \mathbb{R} \times \mathbb{R}$.

Definition (Vector Spaces)

A set V with $+, \times$ is called a vector space over a field F if V satisfies

- 0. For all $u, v \in V$, $u + v \in V$, and for all $\alpha \in F$ and $v \in V$, $\alpha \cdot v \in V$.
- 1. u + v = v + u
- 2. (u + v) + w = u + (v + w)
- 3. $\exists 0 \in V$ such that u + 0 = u for all u
- 4. $\exists -u$ such that u + (-u) = 0 for all u
- 5. $\alpha(\beta u) = (\alpha \beta)u$
- 6. $\alpha(u+v) = \alpha u + \alpha v$
- 7. $(\alpha + \beta)u = \alpha u + \beta u$
- 8. $1 \cdot u = u$

Remark

$$V = \{\text{vectors}\}, F = \{\text{scalars}\}$$

- \triangleright 0, -u are unique
- -(u+v)=(-u)+(-v)
- $\triangleright u + v = u + w \text{ implies } v = w$
- ightharpoonup For $0 \in V$, $\alpha \cdot 0 = 0$
- $ho \quad \alpha \cdot u = 0$ implies $\alpha = 0$ or u = 0.
- $ightharpoonup 0 \cdot u = 0, (-1) \cdot u = -u.$
- . . .

▶ Consider

$$\mathbb{R}^n = \{(x_1, \cdots, x_n) : x_1, \cdots, x_n \in \mathbb{R}\} = \{\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_1, \cdots, x_n \in \mathbb{R}\}$$

- ► Scalar multiplication $\alpha x = (\alpha x_1, \dots, \alpha x_n)$
- Addition $x + y = (x_1 + y_1, \dots, x_n + y_n)$
- ▶ In general, if F is a field, then F^n is a vector space.
- $ightharpoonup \mathbb{C}$ is a vector space over \mathbb{R} .

- ▶ Let $F[a,b] = \{f : [a,b] \to \mathbb{R}\}$. For $f \in \mathbb{R}$ and $f,g \in F[0,1]$, define
 - ightharpoonup (rf)(x) = rf(x)
 - ► (f + g)(x) = f(x) + g(x)

Then F[a, b] is a vector space over \mathbb{R} .

- $ightharpoonup C[a,b] = \{f : [a,b] \rightarrow \mathbb{R} | f \text{ is continuous} \}$
- $ightharpoonup C^1[a,b]=\{f:[a,b] o \mathbb{R}|f ext{ is differentible on } [a,b] ext{ and } f' ext{ is continuous on } [a,b] \}$

- $ightharpoonup \mathcal{P}_n = \{a_n x^n + \dots + a_0 | a_0, \dots, a_n \in \mathbb{R}\}$ the set of polynomials of degree $\leq n$
- ▶ $\{ax^n : a \in \mathbb{R}\}$ the set of all monomials of degree n and 0
- ▶ If P is the set of all polynomial of degree exactly n together with 0 is not a vector space. Consider $(x^n + 1) x^n = 1$.

Ex 2.1.1

 $\{0\}$ is a vector space, say trivial vector space.

Ex 2.1.2

If F is an infinite field and V is a nontrivial vector space over F. Then F is infinite.

Proof.

Main idea)

$$\begin{cases} \underbrace{1 + \dots + 1}_{n} \neq 0 & n > 0 \\ \alpha u \neq u & \text{if } \alpha \neq 0, u \neq 0 \end{cases}$$

(a)
$$\left|\mathbb{Z}_p^n\right| = p^n$$

(b)
$$\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

(a)
$$\mathcal{P}_1(\mathbb{Z}_2) = \{0, 1, x, 1 + x\}$$

Let $V=(0,\infty)$ and define addition \oplus and scalar multiplication \odot by

$$u \oplus v = uv\alpha \odot u = u^{\alpha}$$

Is V a vector space over \mathbb{R} ?

Proof.

- 1. $u \oplus v = v \oplus u$
- 2. $(u \oplus v) \oplus w = u \oplus (v \oplus w)$
- 3. $\overline{0} = 1$
- 4. $\ominus u = u^{-1}$
- 5. $(\alpha\beta) \odot u = \alpha \odot (\beta \odot u)$
- 6. $\alpha \odot (u \oplus v) = (\alpha \odot u) \oplus (\alpha \odot v)$
- 7. $\alpha + \beta$) \odot $u = (\alpha \odot u) \oplus (\beta \odot u)$
- 8. $1 \odot u = u^1 = u$.

Let $V = \mathbb{R}^2$. Fix $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \mathbb{R}$. Define vector addition on V by

$$u \oplus v = (\alpha_1 u_1 + \beta_1 v_1, \alpha_2 u_u + \beta_2 v_2)$$

and assume scalar multiplication on V is defined by the usual componentwise formula. What values of $\alpha_1, \beta_1, \alpha_2\beta_2$ will make V a vector space over \mathbb{R} under these operations?

Proof

- ▶ $(1,1) \oplus (0,0) = (\alpha_1, \alpha_2)$, $(0,0) \oplus (1,1) = (\beta_1, \beta_2)$ and $u \oplus v = v \oplus u$ implies $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$.
- $\triangleright u \oplus 0 = u$ where $0 = (e_1, e_2)$ implies

$$\begin{cases} \alpha_1 u_1 + \alpha_1 e_1 = u_1 \\ \alpha_2 u_2 + \alpha_2 e_2 = u_2 \end{cases}$$

for all
$$u = (u_1, u_2)$$
.
Put $u = (0, 0)$, then $\alpha_1 e_1 = \alpha_2 e_2 = 0$.

(continued)

Proof.

 $\triangleright u \oplus 0 = u$ where $0 = (e_1, e_2)$ implies

$$\begin{cases} \alpha_1 u_1 + \alpha_1 e_1 = u_1 \\ \alpha_2 u_2 + \alpha_2 e_2 = u_2 \end{cases}$$

for all $u = (u_1, u_2)$.

Put u = (0,0), then $\alpha_1 e_1 = \alpha_2 e_2 = 0$. Then there are four cases

(1)
$$\alpha_1 = \alpha_2 = 0$$
, (2) $\alpha_1 = e_2 = 0$, (3) $e_1 = \alpha_2 = 0$, (4) $e_1 = e_2 = 0$.

- (1) $u \oplus 0 = u$ implies $u_1 = u_2 = 0$ for all u_1, u_2 (contradiction)
- (2) $\alpha_1 e_2 = u_1$ for all u_1 (contradiction), (3) is similar to (2)

(4) 0=(0,0). Then
$$(1,1)=(1,1)\oplus(0,0)=(\alpha_1,\alpha_2)$$
. Hence $\alpha_1=\beta_1=\alpha_2=\beta_2=1$.

If X and Y are any two sets, then the Cartesian product of X and Y is the set

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

If U and V are two vector spaces over a field F, then we define operations on $U \times V$ by

$$(u, v) + (w, z) = (u + w, v + z),$$

$$\alpha(u, v) = (\alpha u, \alpha v).$$

Prove that $U \times V$ is a vector space over F.

The End