We begin by noticing two facts related to the graph \mathcal{H} defined in the previous problem. First, if T and T' are neighbors in \mathcal{H} , then the number of X-edges in T can differ from the number of X-edges in T' by at most one. Second, the solution given above in fact provides a polynomial-time algorithm to construct a T-T' path in H.

We call a tree *feasible* if it has exactly k X-edges. Our algorithm to search for a feasible tree is as follows. Using a minimum-spanning tree algorithm, we compute a spanning tree T with the minimum possible number a of X-edges. We then compute a spanning tree T with the maximum possible number b of X-edges. If k < a or k > b, then there clearly there is no feasible tree. If k = a or k = b, then one of T or T' is a feasible tree. Now, if a < k < b, we construct a sequence of trees corresponding to a T-T' path in \mathcal{H} . Since the number of X-edges changes by at most one on each step of this path, and overall it increases from a to b, one of the trees on this path is a feasible tree, and we return it as our solution.

 $^{^{1}}$ ex708.930.216