

Introducción

¿Qué es un Disco Duro?

- Dispositivo de almacenamiento **fundamental** en sistemas informáticos
- Combina tecnología mecánica y electrónica
- Almacenamiento **persistente** de gran capacidad
- Residencia habitual del sistema operativo
- Almacenamiento **no volátil** (a diferencia de la RAM)
- Información en platos metálicos dentro de una carcasa
- X Acceso aleatorio a la información

Características Fundamentales

Almacenamiento No Volátil

- Datos **permanecen** sin alimentación
- Mayor durabilidad a largo plazo
- No sufre **efecto de carga flotante** como los SSD

††† Tecnología de Almacenamiento Magnético

HAMR

Calentamiento con láser durante escritura

SMR

Pistas superpuestas como tejas

MAMR

Ondas electromagnéticas para magnetización

CMR

Pistas separadas sin superposición

Tecnología HAMR (Heat-Assisted Magnetic Recording) - Calentamiento localizado para mayor densidad

O Densidad de Almacenamiento (2024)

Estándar: 1-2 Tb por plato

HAMR/MAMR: 2.5-4 Tb por plato

Capacidad máxima: 22 TB (3.5")

Características Técnicas Clave

Capacidad de Almacenamiento

Sobremesa: **1-22 TB** (3.5")

□ Portátiles: **500 GB-5 TB** (2.5")

✓ Tendencia: HDD de 20-22 TB dominan mercado

Velocidad de Rotación (RPM)

5,400 RPM

Portátiles económicos Menor consumo

10,000 RPM

Alta gama Mayor rendimiento

7,200 RPM

Estándar sobremesa Equilibrio rendimiento

Innovaciones

Control variable
Mejor gestión térmica

Buffer/Caché

Económicos: 32-128 MB

Estándar: 256 MB

Empresariales: 512 MB - 1 GB

Comparación de diferentes tamaños de discos duros: 5.25", 3.5", 2.5", 1.8" y 1.0"

Tamaño Físico

☐ 3.5": Estándar sobremesa, hasta 22 TB

□ 2.5": Estándar portátiles, hasta 5 TB

M.2: Formato para unidades híbridas

Interfaz de Conexión

SATA III

Estándar dominante 6 Gbps

USB 3.2/4

Para externos Hasta 40 Gbps

SAS

Entornos empresariales 12-24 Gbps

Innovaciones

Zoned Storage Integración NVMe

Rendimiento del Disco Duro

Tiempo de Acceso

Tiempo de Acceso = Latencia Media + Tiempo Medio de Búsqueda

C: Latencia Media

- 5,400 RPM: 5.56 ms
- 7,200 RPM: 4.17 ms
- 10,000 RPM: 3.00 ms

Tiempo Total HDD

F Tiempo Total SSD

Q Tiempo Búsqueda

- Estándar: 8-12 ms
- Alta gama: **4-8 ms**

8-15 ms

0.08-0.1 ms

Los SSD son aproximadamente 100x más rápidos

↑ Velocidad de Transferencia

茸 Factores que Afectan

- Posición en el disco
- Tecnología de grabación (CMR vs SMR)
- Número de platos
- Tamaño del buffer
- Interfaz de conexión

→ HDD 7,200 RPM (2024)

→ Pistas Externas

200-250 MB/s

Pistas Internas

80-120 MB/s

Promedio

150-180 MB/s

Tasa Interna vs Externa

- Interna: Velocidad desde superficie del plato
- Externa: Velocidad a través de interfaz (SATA, SAS)
- La tasa interna es el cuello de botella
- SATA III (6 Gbps) es suficiente para la mayoría de HDD

Comparación con Otras Tecnologías

Comparación visual entre HDD y SSD: velocidad, consumo, ruido y resistencia

HDD vs SSD

Característica	HDD	SSD
Velocidad lectura/escritura	150-250 MB/s	3,500-7,000 MB/s
Tiempo de acceso	8-15 ms	0.08-0.1 ms
Resistencia a golpes	Baja	Alta
Consumo energético	5-10W	2-5W
Ruido	Sí (mecánico)	No
Costo por GB	0.02-0.03 €/GB	0.07-0.10 €/GB
Capacidad máxima (2024)	22 TB	8 TB
Vida útil (escritura)	Ilimitada	Limitada por ciclos

HDD vs SSHD

Característica	HDD	SSHD
Capacidad	Mayor	Ligeramente menor
Rendimiento	Menor	Mejor en operaciones frecuentes
Precio	Más económico	Más caro
Complejidad	Menor	Mayor (gestión inteligente)
Uso típico	Almacenamiento masivo	Sistema operativo + aplicaciones

Tendencias y Futuro de los Discos Duros

HAMR

- **Heat-Assisted Magnetic Recording**
- Láser calienta puntos específicos durante escritura
- Seagate: planes para 50 TB en 2026
- Mayor densidad de grabación

A Retos: Complejidad técnica y coste elevado

MAMR

- **Microwave-Assisted Magnetic Recording**
- Ondas electromagnéticas facilitan magnetización
- Western Digital: enfoque más escalable
- Menor complejidad que HAMR
- ✓ Mayor adopción esperada a corto plazo

HDD de Helio

- Menor fricción y turbulencia
- Hasta 9 platos (vs 7-8 en aire)
- Consumo energético 20-30% menor
- Menor generación de calor

Dominante en HDD empresariales de alta capacidad

Zoned Storage

- Estándar para organizar discos SMR
- Integración con sistemas de archivos modernos
- Soporte nativo en sistemas operativos
- Optimiza rendimiento en escrituras para SMR
- Mejora gestión de escrituras en discos de alta densidad

▲ Impacto Ambiental

Metales Pesados Cobalto, Platino, Tierras Raras

- Menos del **20**% de HDD se reciclan adecuadamente
- A Riesgo de liberación de metales pesados en vertederos
- Productos halógenos y plomo son altamente contaminantes

Proceso de reciclaje de discos duros con certificación ecológica

Iniciativas de Sostenibilidad

Programas de Reciclaje

WD, Seagate y otros fabricantes ofrecen programas de回收

Reutilización

HDD usados para almacenamiento secundario o NAS

Diseño para Reciclaje

Nuevos enfoques para facilitar desmontaje y回收

Desmontaje profesional de discos duros para su correcto reciclaje

Conclusión

Puntos Clave

- Almacenamiento no volátil con tecnología magnética
- Capacidad máxima actual: 22 TB (3.5")
- ✓ Velocidad de transferencia: 150-250 MB/s
- ✓ Tiempo de acceso: 8-15 ms (100x más lento que SSD)
- Ventaja principal: coste por GB muy inferior

→ Futuro del Almacenamiento

Coexistencia con SSD

Tecnologías HAMR/MAMR

HDD de Helio

Evolución y Relevancia

Evolución de los dispositivos de almacenamiento desde 1950 hasta la actualidad

- De MB a TB en pocas décadas
- Especialización en almacenamiento masivo
- Complementan en lugar de competir con SSD