На правах рукописи

Руководство пользователя

Unifloc 7 VBA

Unifloc 7.26 VBA

Внимание!!!

7.26 - переходная версия с большим количеством изменений относительно 7.25 В описании возможно наличие большого числа неточностей. Смотрите код или используйте версию 7.25

История и авторы.

Расчетные модули Unifloc 7.26 VBA развивались в различных версиях в течении длительного периода времени примерно с 2001 года. Первая версия (условно) это расчет потенциала добычи нефти для технологического режима добывающих скважин выполненный под руководством Хасанова М.М. Форма технологического режима добычи нефти или форма расчета потенциала уже была разработана и применялось на тот момент. Но она использовала расчет забойного давления по формуле $P_{intake} = P_{cas} +
ho_o g(H_{pump} - H_{dyn})$, с постоянным значением $ho_o = 0.86$, что давало большую погрешность на ряде скважин. В первой версии унифлок появился забойного давления по динамическому уровню по оригинальной методике [0]. Тогда же была сформирована база расчетов PVT корреляций, которая была включена в расчетные модули [0]. Эта версия широко распространилась и ее можно встретить в различных компаниях. Дальше модули развивались под различные задачи разными коллективами, и единой системы версий не существовало. Поэтому текущая система версий основана на тех проектах, в которых я принимал непосредственное участие. Вторая версия представляет собой набор расчетных модулей для анализа работы фонтанирующих скважин, анализа отжима динамического уровня [0]. Появились расчеты по разным многофазным корреляциям [0]. По названию корреляции унифицированной TUFFP появилось и название unifloc (unified flow correlation). Третья версия появилась примерно тогда же. В ней были попытки расчета скважин с УЭЦН. С ее помощью были подготовлены работы [0]. Но эта версия расчетных модулей не получила широкого распространения в то время, хотя эти расчетные модули еще можно найти. К четвертой версии расчетов можно отнести группу расчетных модулей имеющих общее название - шаблоны применения технологий механизированной добычи [0]. Некоторые из них до сих пор применяются в компаниях. Пятая версия разрабатывалась уже в компании Газпромнефть. Это в основном расчеты газлифтного фонда скважин. и адаптация расчетных модулей для проведения инженерных расчетов в различных информационных системах [0]. Шестая версия - различные варианты расчета сделанные на основе предыдущих, но не получившие широкого распространения (расчет динамического уровня по данным эхолокации, расчета давления в паронагнетательной скважине и тому подобное). Все эти версии в основном носили прикладной характер и создавались для решения определенных задач. Седьмая, текущая версия информационной системы создавалась для задач обучения, что отличает ее от остальных. Она ориентирована как на обучение студентов ВУЗов (использовалась для проведения курсов в РГУ нефти и газа имени

И.М.Губкина, МФТИ, РЭШ), так и на обучение специалистов в ходе коротких курсов повышения квалификации. Эта версия сильно отличается от предыдущих. Исходный код переписан чуть менее чем полностью, проведен рефакторинг методик и алгоритмов, созданы два уровня API - на уровне классов и пользовательских функций, создана и развивается документация. При этом значительная часть функциональности предыдущих версий не реализована. Реализованы только базовые алгоритмы и методики. Большой вклад в развитие текущей версии внесли студенты и аспиранты кафедры РиЭНМ РГУ нефти и газа имени И.М.Губкина. Историю развития проекта можно проследить в репозитории на гитхабе.

Авторы Unifloc 7.26 VBA

- Хабибуллин Ринат
- Краснов Виталий
- Горидько Кирилл
- Халиков Руслан
- Водопьян Алексей
- Киян Артем
- Кобзарь Олег
- Шабонас Артур
- Полешко Михаил

Оглавление

			Стр.
Введени	1e		10
Глава 1.	. Мак	гросы VBA для проведения расчётов	11
1.1	Рабо	ота с VBA	11
	1.1.1	Ручной запуск надстройки	11
	1.1.2	Установка надстройки для автоматического запуска	12
	1.1.3	Редактор VBE	13
	1.1.4	Некоторые особенности VBA	13
1.2	Согл	пашения по названию функций и переменных Unifloc 7.26 VBA	. 14
1.3	Стро	оковые переменные и параметры	15
	1.3.1	Строковая переменная - словарь	15
	1.3.2	Строковая переменная - массив	15
1.4	Мод	ель пласт - скважина - скважинное оборудование	15
Глава 2.	. PVT	· - свойства флюидов и потока флюидов	17
2.1	Мод	ель физико-химических свойств потока флюидов	
	вUn	nifloc 7.26 VBA	17
	2.1.1	Статичные PVT параметры	18
	2.1.2	Динамические PVT параметры	19
2.2	Выб	ор набора PVT корреляций	20
2.3	Стан	ндартные условия	23
2.4	Коди	ирование PVT свойств в строке	24
2.5	Прес	образования потоков флюидов	26
	2.5.1	PVT_mod_separate_gas – сепарация части	
		свободного газа из потока	26
	2.5.2	PVT_mod_split – разделение двух потоков флюидов	31
	2.5.3	PVT_mod_mix – смешивание двух потоков флюидов	31
2.6	Coo	гношение некоторых свойств пластовых флюидов	31
	2.6.1	PVT_pb_atma давление насыщения	35
	2.6.2	PVT_rs_m3m3 – газосодержание	36

			Jтр.
	2.6.3	PVT_bo_m3m3 – объёмный коэффициент нефти	38
	2.6.4	PVT_bg_m3m3 – объёмный коэффициент газа	40
	2.6.5	PVT_bw_m3m3 – объёмный коэффициент воды	41
	2.6.6	PVT_mu_oil_cP – вязкость нефти	42
	2.6.7	PVT_mu_gas_cP – вязкость газа	43
	2.6.8	PVT_mu_wat_cP – вязкость воды	44
	2.6.9	PVT_rho_oil_kgm3 – плотность нефти	45
	2.6.10	PVT_rho_gas_kgm3 – плотность газа	46
	2.6.11	PVT_rho_wat_kgm3 – плотность воды	47
	2.6.12	PVT_Z – коэффициент сверхсжимаемости газа	48
Глава 3	. Мноі	гофазный поток в трубах, штуцере	52
3.1		ёт свойств потока	
	3.1.1	feed_q_mix_rc_m3day – расход газожидкостной смеси	52
	3.1.2	feed_rho_mix_kgm3 – плотность газожидкостной смеси	53
	3.1.3	feed_gas_fraction_d – доля газа в потоке	53
	3.1.4	feed_p_gas_fraction_atma – целевое давления для	
		заданной доли газа в потоке	54
	3.1.5	feed_rp_gas_fraction_m3m3 – целевой газовый фактор для	
		заданной доли газа в потоке	55
3.2	Сепа	рация газа в скважине	56
	3.2.1	well_ksep_natural_d – естественная сепарация газа	57
	3.2.2	well_ksep_total_d – общая сепарация газа	58
3.3	Расч	ёт многофазного потока в штуцере	59
	3.3.1	MF_choke_p_atma – Расчет давления на входе	
		или на выходе штуцера	63
	3.3.2	MF_choke_q_sm3day – функция расчёта дебита	
		жидкости через штуцер	64
	3.3.3	MF_choke_calibr_fast – простая и быстрая функция	
		настройки модели штуцера	65
	3.3.4	MF_choke_calibr – продвинутая функция	
		настройки модели штуцера	66
3.4	Расче	ет многофазного потока в трубе	68
	3.4.1	MF pipe p atma – функция расчета лавления на конце трубы	69

			JIP.
Глава 4	. Мно	гофазный поток в пласте и призабойной зоне	70
4.1	Расч	ет многофазного потока в пласте	70
	4.1.1	IPR_pi_sm3dayatm – расчёт продуктивности	
	4.1.2	IPR_p_wf_atma – расчёт забойного давления по	
		дебиту и продуктивности	73
	4.1.3	IPR_q_liq_sm3day – расчёт дебита по забойному	
		давлению и продуктивности	73
Глава 5	б. Стар	оые функция расчёта технологического режима	
	добь	івающих скважин	75
5.1	Техн	пологический режим добывающих скважин	75
	5.1.1	old_pwf_calc_atma – расчёт забойного давления по	
		динамическому уровню	76
	5.1.2	old_pwf_calc_p_intake_atma – расчёт забойного давления	
		по давлению на приеме	76
	5.1.3	old_Ppump_calc_atma – расчёт давления на приеме по	
		динамическому уровню	77
	5.1.4	old_Potential_Pwf_atma – расчёт целевого	
		забойного давления по доле газа	77
	5.1.5	old_BB_Pwf_atma – расчёт забойного давления	
		фонтанирующей скважины по буферному давлению	77
	5.1.6	old_BB_Pwf_Pin_atma – расчёт забойного давления по	
		давлению на приеме по корреляции Беггса-Брилла	78
Единиц	цы изме	ерений	80
Список	сокра	щений и условных обозначений	81
Словар	ь термі	инов	82
Список	: литер:	атуры	84
Прилож	кение А	А. Автоматически сгенерированное описание	88
A.1	crv_	fit_linear	89
A.2	crv_	fit_poly	89

	Cip.
A.3	crv_fit_spline_1D
A.4	crv_interpolation
A.5	crv_interpolation_2D
A.6	crv_intersection
A.7	crv_parametric_interpolation
A.8	crv_solve
A.9	decode_json
A.10	Ei 95
A.11	encode_ambient_formation_string
A.12	encode_ESP_cable_string
A.13	encode_ESP_motor_string
A.14	encode_ESP_pump_string
A.15	encode_ESP_separation_string
A.16	encode_feed
A.17	encode_json
A.18	encode_PVT
A.19	encode_t_model
A.20	encode_well_construction_string
A.21	ESP_eff_fr
A.22	ESP_head_m
A.23	ESP_id_by_rate
A.24	ESP_name
A.25	ESP_optRate_m3day
A.26	ESP_power_W
A.27	ESP_rate_max_sm3day
A.28	E_1
A.29	feed_calc
A.30	feed_CJT_Katm
A.31	feed_gas_fraction_d
A.32	feed_mod_mix
A.33	feed_mod_separate_gas
A.34	feed_mod_split
A.35	feed_mu_mix_cP

	CIP.
A.36	feed_p_gas_fraction_atma
A.37	feed_q_mix_rc_m3day
A.38	feed_rho_mix_kgm3
A.39	feed_rp_gas_fraction_m3m3
A.40	GLV_p_atma
A.41	GLV_q_gas_sm3day
A.42	GL_decode_string
A.43	GL_encode_string
A.44	IPR_pi_sm3dayatm
A.45	IPR_p_wf_atma
A.46	IPR_q_liq_sm3day
A.47	MF_choke_calibr
A.48	MF_choke_calibr_fast
A.49	MF_choke_p_atma
A.50	$MF_choke_q_sm3day \ldots 118$
A.51	MF_dpdl_atmm
A.52	MF_pipe_p_atma
A.53	PVT_bg_m3m3
A.54	PVT_bo_m3m3
A.55	PVT_bw_m3m3
A.56	PVT_calc
A.57	PVT_compressibility_gas_1atm
A.58	PVT_compressibility_oil_1atm
A.59	PVT_compressibility_wat_1atm
A.60	PVT_cp_gas_JkgC
A.61	PVT_cp_oil_JkgC
A.62	PVT_cp_wat_JkgC
A.63	PVT_cv_gas_JkgC
A.64	PVT_mu_gas_cP
A.65	PVT_mu_oil_cP
A.66	PVT_mu_wat_cP
A.67	PVT_pb_atma
A.68	PVT_rho_gas_kgm3

		Стр.
A.69	PVT_rho_oil_kgm3	. 127
A.70	PVT_rho_wat_kgm3	. 128
A.71	PVT_rs_m3m3	. 128
A.72	PVT_salinity_ppm	. 129
A.73	PVT_ST_liqgas_Nm	. 129
A.74	PVT_ST_oilgas_Nm	. 130
A.75	PVT_ST_watgas_Nm	. 130
A.76	PVT_z	. 131
A.77	transient_def_cd	. 131
A.78	transient_def_cs_1atm	. 132
A.79	transient_def_pd	. 132
A.80	transient_def_p_wf_atma	. 133
A.81	transient_def_td	. 133
A.82	transient_def_t_day	. 134
A.83	transient_pd_radial	. 134
A.84	transient_pwf_radial_atma	. 135
A.85	unf_version	. 136
A.86	well_ksep_natural_d	. 136
A.87	well_ksep_total_d	. 137

Введение

Документ описывает набор макросов и функций Unifloc 7.26 VBA для проведения инженерных расчетов систем нефтедобычи в Excel. Макросы Unifloc 7.26 VBA позволяют строить расчетные модули, которые могут быть использованы для изучения математических моделей систем нефтедобычи и развития навыков проведения инженерных расчётов, изучения нефтяного инжиниринга и проведения расчетов.

Макросы и функции Unifloc 7.26 VBA охватывают основные элементы математических моделей систем «пласт - скважина - скважинное оборудование» - модель физико-химических свойств пластовых флюидов (PVT модель), модели многофазного потока в трубах, скважинном оборудовании, пласте, модели скважин и узлового анализа систем нефтедобычи.

Для использования Unifloc 7.26 VBA требуются навыки уверенного пользователя MS Excel, желательно знание основ программирования и теории добычи нефти.

Алгоритмы реализованные в Unifloc 7.26 VBA не претендуют на полноту и достоверность и ориентированы на учебные задачи и проведение простых расчётов. Руководство пользователя также не претендует на полноту описания системы (часто получается, что описание отстаёт от текущего состояния Unifloc 7.26 VBA). Все приводится как есть. Более надёжным способом получения достоверной информации о работе макросов Unifloc 7.26 VBA является изучение непосредственно расчётного кода в редакторе VBE.

https://github.com/unifloc/unifloc_vba

Хабибуллин Ринат (khabibullin.ra@gubkin.ru)

Глава 1. Макросы VBA для проведения расчётов

Расчёты Unifloc 7.26 VBA выполняются с использованием макросов, написанных на языке программирования Visual Basic for Application (VBA), встроенном в Excel [wikipedia VBA].

Макросы Unifloc 7.26 VBA могут быть использованы различными способами. В самом простом варианте для использования Unifloc 7.26 VBA не требуется программировать (писать код на VBA), достаточно уметь вызывать необходимые функции из рабочей книги Excel, создавая расчётные модули. В более сложном и мощном варианте использования на основе функций Unifloc 7.26 VBA можно создавать свои макросы, которые могут быть вызваны, например, по нажатию кнопки. Это упрощает проведение больших массовых расчётов, но требует написания кода на VBA. Самый продвинутый вариант подразумевает создание собственных программ на основе объектной модели Unifloc 7.26 VBA.

Исходный код расчётных модулей находится в отдельном файле - надстройке Excel - файле с расширением.xlam. Для использования макросов данная надстройка должна быть запущена в программе Excel при проведении расчётов. Ее можно каждый раз запускать вручную или установить для автоматического запуска при старте Excel. Подробное описание процедуры установки надстройки можно найти на сайте Microsoft по ключевым словам добавление и удаление надстроек в Excel.

1.1. Работа с VBA

1.1.1. Ручной запуск надстройки

Для работы с надстройкой рекомендуется ручной способ ее запуска, описанный в данном разделе. (альтернативный способ описан в следующем разделе). Ручной запуск надстройки не требует ее установки на компьютере. Это бывает удобно, когда версия настройки часто меняется. Для этого необходимо открыть файл надстройки непосредственно в Excel, например двойным щелчком по файлу с расширением.xlam

в проводнике. При этом Excel откроется, но никаких документов в нем не появится, а сама надстройка будет загружена и готова к использованию.

Убедиться, что надстройка загружена можно по наличию закладки "unifloc" на панели кнопок Excel. Там же можно найти кнопку для проверки версии надстройки и исправления путей к надстройке.

При переносе файла использующего макросы Unifloc 7.26 VBA на другой компьютер, при запуске может возникать сообщение, что связанный файл надстройки не найден. Это происходит поскольку Excel при использовании функций любой надстройки автоматически при вызове функции сохраняет полный путь к надстройке. При изменении положения надстройки на компьютере (например при переносе на новый компьютер) Excel не может автоматически исправить путь и требует действий пользователя.

При получении такого сообщения возможны два варианта действий. Первый - в окне запроса следует выбрать кнопку "изменить" и указать правильное положение файла надстройки. Второй – в окне запроса указать – продолжить (или отменить обновление связанных файлов). После того как окно закроется, на закладке "unifloc"выбрать кнопку «исправить ссылки на надстройку». После этого для всех вызовов функций надстройки Unifloc 7.26 VBA ссылки на надстройку будут исправлены автоматически. Отчёт об исправлении можно найти в окне immediate редактора VBE.

1.1.2. Установка надстройки для автоматического запуска

- 1. На вкладке Файл выберите команду Параметры, а затем категорию Надстройки.
- 2. В поле Управление выберите пункт Надстройки Excel, а затем нажмите кнопку Перейти. Откроется диалоговое окно Надстройки.
- 3. Чтобы установить и активировать надстройку Unifloc 7.26 VBA, нажмите кнопку Обзор (в диалоговом окне Надстройки), выберите файл надстройки, а затем нажмите кнопку ОК.
- 4. Надстройка появится в списке надстроек. Галочка активации надстройки должна быть установлена

После установки и активации надстройки, встроенными в неё макросами можно будет пользоваться в любой книге Excel на данном компьютере. При переносе расчётных файлов на другой компьютер для сохранения их работоспособности должна быть передана и установлена и надстройка. При переносе файлов использующих функции Unifloc 7.26 VBA с другого компьютера или на другой компьютер может потребоваться исправить путь к надстройке. Это можно сделать с использованием соответствующей кнопки на закладке "unifloc".

1.1.3. Редактор VBE

Чтобы получить доступ к макросам в текущей версии расчётного модуля для выполнения упражнений необходимо:

- Запустить Excel запустив рабочую книгу для выполнения упражнений
- Нажать комбинацию клавиш <Alt-F11>
- Откроется новое окно с редактором макросов VBA (Рис. 1.1). Иногда в литературе окно редактирования макросов обозначают как VBE (Visual Basic Environment)
- Окне VBE можно изучить структуру проекта (набора макросов и других элементов). Раздел со структурой проекта можно открыть из меню <Вид Обозреватель проекта>. Макросы располагаются в ветках «модули» и «модули классов»

1.1.4. Некоторые особенности VBA

Строки, начинающиеся со знака 'являются комментариями. В VBE они выделяются зелёным цветом. На исполнение макросов не влияют.

Для многих макросов не обязательно задавать все параметры. Некоторые значения параметров могут не задаваться – тогда будут использованы значения параметров, принятые по умолчанию. Параметры, допускающие задание по умолчанию, помечены в исходном коде ключевым словом Optional.

Рис. 1.1 — Окно редактора VBE

1.2. Соглашения по названию функций и переменных Unifloc 7.26 VBA

При создании макросов в основном использовались международные обозначения переменных, принятые в монографиях общества инженеров нефтяников SPE. Список наиболее употребляемых обозначений приведён в приложении.

При создании макросов для обозначения переменных разработчики старались придерживаться следующих соглашений (не всегда успешно впрочем)

- название переменной или функции отражает физический смысл,
- лучше длинное и понятное название, чем короткое и непонятное, разделители слов в названиях - знаки подчёркивания (там, где это возможно),
- для расчётных функций название может содержать (последовательно) префикс, указывающий группу функций, расчётное значение, ключевые параметры, на основе которых проводится расчёт, размерность результата,
- для минимизации путаницы с размерностями физических величин все размерные переменные в названии содержат явное указание размерности.

1.3. Строковые переменные и параметры

В надстройке унифлок, начиная с версии 7.26, активно используются строковые переменные для передачи параметров и настроек расчёта различных функций. Для кодирования значений в строках используется формат json.

Работа с json строками основана на макросах github.com/VBA-tools/VBA-JSON и github.com/VBA-tools/VBA-Dictionary by Tim Hall. Макросы и информация о их разработчиках в модуле JsonConverter и модуле класса Dictionary.

Для удобства работы со строковыми переменными реализован ряд пользовательских функций для работы с ними из рабочей книги Excel. Такие функции начинаются с префикса encode_ для функций формирующих строки json и с префикса decode для функций анализирующих строки json.

1.3.1. Строковая переменная - словарь

Тут немного про словари. Используются для задания параметров проведения расчётов. Иногда результаты могут выводиться в виде словаря значений.

1.3.2. Строковая переменная - массив

Тут немного про массивы. Используются для задания векторных переменных, например инклинометрии. Некоторые результаты могут быть массивами.

1.4. Модель пласт - скважина - скважинное оборудование

Набор функций Unifloc 7.26 VBA описывает математическую модель системы нефтедобычи, часто обозначаемой как модель "пласт - скважина - скважинное оборудование". Модель состоит из набора элементов - алгоритмов, описывающих

ключевые физические процессы в системе нефтедобычи, существенно влияющие на результаты расчётов и на решения, которые могут быть приняты на основе расчётов.

К основным элементам системы можно отнести следующие модели:

- модель физико-химических свойств пластовых флюидов
- модель многофазного потока в трубопроводе, элементах инфраструктуры, скважинном оборудовании
- модель многофазного потока в стволе скважины
- модель многофазного потока в пласте и призабойной зоне скважины
- модель работы УЭЦН
- модель работы скважины как системы "пласт скважина скважинное оборудование"

Ключевым параметром модели нефтедобычи является распределение давления и температуры в системе. Моделирование всех элементов системы направлено, как правило, на то, чтобы восстановить распределение давления.

Модель нефтедобычи напрямую отражается в объектной модели Unifloc 7.26 VBA и в наборе пользовательских функций. Пользовательскими функциями называются функции VBA которые могут быть напрямую использованы из рабочих книг Excel.

В этом разделе модель нефтедобычи и ее элементы описаны как набор пользовательских функций, позволяющих провести расчёты из рабочей книги. Более полный набор пользовательских функций и их описание можно найти в коде надстройки или в приложении "Автоматически сгенерированное описание".

Глава 2. PVT - свойства флюидов и потока флюидов

2.1. Модель физико-химических свойств потока флюидов в Unifloc 7.26 VBA

В Unifloc 7.26 VBA выделяются две сущности необходимые для описания свойств добываемой продукции — флюид и поток флюидов. Флюид это статичная смесь нефти, газа и воды. Свойства флюидов как правило определяются в лаборатории и часто называются PVT свойства. Поток флюидов - это то, что движется в пласте, скважине, трубопроводах. Поток дополнительно описывается динамическими характеристиками - объёмным или массовым расходом флюида, и параметрами определяющими соотношение фаз в потоке - обводненностью и газовым фактором. Параметры потока измеряются, как правило, специальными устройствами — расходомерами. Измерения проводится непосредственно на промысле. Для обозначения флюида в коде часто используются термины fluid или PVT, для обозначения потока используется термин feed (по аналогии с симулятором OLGA).

Для расчёта свойств флюидов в Unifloc 7.26 VBA используется модель нелетучей нефти (black oil model). Это простая модель, в которой предполагается наличие в нефти только двух фаз — жидкости и газа. Модель позволят рассчитать параметры флюидов, наиболее сильно влияющие на свойства потока флюидов - плотности фаз, вязкости и их объёмные соотношения в зависимости от давления и температуры.

Для всех пользовательских функций, реализующих расчёт с учётом PVT свойств необходимо задавать одинаковый набор параметров, описывающих нефть, газ и воду. Как правило это закодированные в строки параметры флюида и потока флюидов. Для некоторых функций не все параметры влияют на результат расчёта, тем не менее, они должны быть определены. Это сделано для унификации методик расчёта — при любом вызове функции проводится расчёт всех параметров модели нелетучей нефти, но возвращаются только необходимые данные. Эта особенность может замедлить расчёты с использованием пользовательских функций Excel по сравнению с функциями объектной модели Unifloc 7.26 VBA и функциями реализующими конкретные корреляции.

2.1.1. Статичные PVT параметры

Типовой набор статичных PVT параметров, описывающий флюид в достаточной для проведения расчётов степени, приведён ниже:

- $-\gamma_g$ gamma_gas удельная плотность газа, по воздуху. Стандартное обозначение переменной gamma_gas. Безразмерная величина. Следует обратить внимание, что удельная плотность газа по воздуху не совпадает с плотностью воздуха в г/см3, поскольку плотность воздуха при стандартных условиях Const const_rho_air = 1.205 при температуре 20 °C и давлении 101325 Па для сухого воздуха. По умолчанию задается значение const gg default = 0.6
- γ_o gamma_oil удельная плотность нефти, по воде. Стандартное обозначение переменной gamma_oil. Безразмерная величина, но по значению совпадает с плотностью в г/см3. По умолчанию задаётся значение const go default = 0.86
- $-\gamma_w$ gamma_wat- удельная плотность воды, по воде. Стандартное обозначение переменной gamma_wat. Безразмерная величина, но по значению совпадает с плотность в г/см3. По умолчанию задаётся значение const_gw_default = 1 Плотность воды может отличаться от задаваемой по умолчанию, например для воды с большой минерализацией.
- $-r_{sb}$ газосодержание при давлении насыщения, м3/м3. Стандартное обозначение в коде Rsb_m3m3. Значение по умолчанию соответствует многим месторождениям Западное Сибири const Rsb default = 100.
- $-P_b$ давление насыщения, атм. Стандартное обозначение в коде Pb_atm . Калибровочный параметр. По умолчанию не задаётся, рассчитывается по корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра. При задании давления насыщения обязательно должна быть задана температура пласта температура при которой было определено давление насыщения.
- T_{res} пластовая температура, °C. Стандартное обозначение в коде Tres_C. Учитывается при расчёте давления насыщения. По умолчанию принято значение 90 °C.
- B_{ob} объёмный коэффициент нефти, м3/м3. Стандартное обозначение в коде Bob_m3m3 . Калибровочный параметр. По умолчанию рассчитывается по

- корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра.
- μ_{ob} вязкость нефти при давлении насыщения, сП. Стандартное обозначение Muob_сР. Калибровочный параметр. По умолчанию рассчитывается по корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра.
- PVTcorr номер набора PVT корреляций используемых для расчёта.
 - StandingBased = 0 на основе корреляции Стендинга
 - McCainBased = 1 на основе корреляции Маккейна
 - StraigthLine = 2 на основе упрощённых зависимостей

Статические параметры кодируются в json строку функцией encode PVT.

2.1.2. Динамические PVT параметры

Типовой набор динамических PVT параметров, описывающих поток флюидов в достаточной для проведения расчётов степени, приведён ниже:

- $-q_{liq}$ дебит жидкости в стандартных условиях, м³/сут.
- f_w обводненность, объёмная в стандартных условиях, %.
- $-R_p$ замерной газовый фактор, м³/м³. Стандартное обозначение в коде Rp_m3m3. Калибровочный параметр. По умолчанию используется значение равное газосодержанию при давлении насыщения. Если задаётся значение меньшее, чем газосодержание при давлении насыщения, то последнее принимается равным газовому фактору (приоритет у газового фактора, потому что как правило это замерное значение в отличии от газосодержания определяемого по результатам лабораторных исследований проб нефти).
- $-q_{gas}$ свободный расход газа в потоке, ст. м 3 /сут.

Динамические параметры кодируются в json строку функцией encode_feed. Данная функция кроме динамических параметров кодирует так же статические. Таким образов закодированные данные о потоке содержат все данные необходимые для расчёта элемента системы нефтедобычи.

Обратите внимание, что до версии 7.26 значение газового фактора Rp_m3m3 относилось к PVT свойствам, что было нелогично, но так сложилось исходя из логики развития расчётных модулей. Начиная с версии 7.26 в ходе рефакторинга

кода была предпринята попытка сделать код более логичным и газовый фактор отделен от статических параметров флюида.

2.2. Выбор набора PVT корреляций

Параметры пластовых флюидов PVT связаны между собой корреляционными зависимостями, позволяющими рассчитать часть параметров через другие. Ниже приведена схема из справочника по физическим свойствам нефти компании Юкос (2002 года) [0], показывающая последовательность расчётов PVT параметров нефти.

Рис. 2.1 — Схема взаимной связи PVT параметров нефти для модели black oil [0]

B Unifloc 7.26 VBA реализована возможность проведения расчётов по нескольким наборам корреляций - набору на основе корреляций Стендинга PVT correlation=0 и на основе корреляций МакКейна

Таблица 1 — Набор корреляций на основе корреляций Стендинга PVT correlation=0

Параметр	PVT_correlation=0
B_w	McCain 1990 [0]
k	Moshfeghian [0]
z	Kareem 2015 [0]
B_g	по определению через z
μ_g	Ли 1966 [0]
μ_{od}	Beggs Robinson 1975 [0]
μ_o при $p < p_b$	Beggs Robinson 1975 [0]
μ_o при $p>p_b$	Vasquez Beggs 1980 [0]
p_b	Standing 1947 [0]
r_s при $p < p_b$	Standing 1947 [0]
B_o при $p < p_b$	Standing 1947 [0]
B_o при $p>p_b$	по определению из c_o
c_o при $p>p_b$	Vasquez Beggs 1980 [0]
c_o при $p < p_b$	

PVT_correlation=1. В таблицах 1 и 2 приведены корреляции для отдельных свойств использованные в наборах. PVT корреляции позволяют восстановить все необходимые для расчётов параметры из минимального набора исходных данных - плотности газа γ_g , плотности дегазированной нефти γ_o и газосодержания при давлении насыщения r_{sb} .

Обозначение параметров в таблицах 1 и 2:

 B_w – объёмный коэффициент воды, water FVF,

k – показатель адиабаты газа, gas heat capacity ratio,

z – коэффициент сверхсжимаемости газа, gas compressibility,

 B_q – объёмный коэффициент газа, gas FVF,

 μ_g – вязкость газа, gas viscosity,

 μ_{od} – вязкость дегазированной нефти, dead oil viscosity,

 μ_{o} – вязкость нефти при произвольном давлении, вязкость насыщенной нефти, saturated oil viscosity,

 p_b – давление насыщения, bubble point pressure,

 r_s – газосодержание, solution gas ratio,

 B_o – объёмный коэффициент нефти, oil FVF,

Tаблица 2 — Набор корреляций на основе корреляций McCain PVT correlation=1

_	
Параметр	PVT_correlation=1
B_w	McCain 1990 [0], [0], [0]
k	Moshfeghian [0]
z	Kareem 2015 [0]
B_g	по определению через z
μ_g	Ли 1966 [0]
μ_{od}	Beal 1946, [0], Standing 1981 [0]
	Beal 1946, [0], Standing 1981 [0], при r_{sb} <350 м ³ /м ³
μ_o при $p < p_b$	Beggs Robinson 1975 [0], при $r_{sb}>350 \text{ м}^3/\text{м}^3$
	Standing 1981 [0], при r_{sb} <350 ${ m M}^3/{ m M}^3$
μ_o при $p > p_b$	Vasquez Beggs 1980 [0], при $r_{sb}>350 \text{ м}^3/\text{м}^3$
p_b	Valko McCain 2003 [0]
r_s при $p < p_b$	Velarde McCain 1997 [0]
B_o при $p < p_b$	McCain [0]
B_o при $p > p_b$	по определению из c_o
c_o при $p>p_b$	Vasquez Beggs 1980 [0]
c_o при $p < p_b$	

 c_o – сжимаемость нефти, oil compressibility.

Выбор корректного набора корреляций позволит более корректно описать поведение системы «пласт - скважина - скважинное оборудование».

На практике для повышения точности моделирования широко применяется задание расширенного набора исходных PVT параметров - калибровочных параметров: давления насыщения P_b , объёмного коэффициента нефти при давлении насыщения B_{ob} , вязкости нефти при давлении насыщения μ_{ob} .

Применение калибровочных параметров значительно снижает зависимость результатов расчётов от выбора корреляции, хотя и не устраняет такую зависимость полностью. Поэтому при отсутствии других соображений, рекомендуется использовать для расчётов набор на основе корреляций Стендинга (быстрее считает по сравнению с МакКейном) и применять калибровочные параметры.

Также полезно помнить, что калибровочные параметры, могут значительно искажать результаты рассчитанные по корреляциям. Например корреляция может дать давление насыщения P_b около 100 бар. Если вы введёте калибровочное значение

давления насыщения P_b 20 бар, программной ошибки в расчёте не возникнет, но в реальности расхождение давления насыщения по корреляции от фактического в 5 раз маловероятно. Скорее всего, в этом случае данные не корректны. Возможность возникновения подобных рассогласований данных следует всегда иметь в виду и применять калибровочные параметры с осторожностью.

2.3. Стандартные условия

Многие параметры нефти, газа и воды существенно зависят от давления и температуры. Например объем занимаемый определённым количеством газа примерно в два раза снизится при повышении давления в два раза.

Поэтому для удобства фиксации и сравнения параметров они часто приводятся к стандартным или нормальным условиям - определённым давлениям и температуре.

Принятые в разных дисциплинах и разных организациях точные значения давления и температуры в стандартных условиях могут различаться (смотри например https://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure), поэтому указание значений физических величин без уточнения условий, в которых они приводятся, может приводить к ошибкам. Наряду с термином «стандартные условия» применяется термин «нормальные условия». «Нормальные условия» обычно отличаются от «стандартных» тем, что под нормальным давлением принимается давление равное 101 325 Па = 1 атм = 760 мм рт. ст.

Обычно в монографиях SPE принято, что стандартное давление для газов, жидкостей и твёрдых тел, равное 10^5 Па (100 кПа, 1 бар); стандартная температура для газов, равная 15.6 °C соответствующая 60 °F.

В Российском ГОСТ 2939-63 принято, что стандартное давление для газов, жидкостей и твёрдых тел, равное 10.13^5 Па (101325 Па, 1 атм); стандартная температура для газов, равная 20 °C соответствующая 68 °F.

В Unifloc 7.26 VBA приняты следующие значения стандартных условий

```
Public Const const_psc_atma As Double = 1
Public Const const_tsc_C = 20
Public Const const convert atma Pa = 101325
```

2.4. Кодирование PVT свойств в строке.

Свойства пластовых флюидов должны быть заданы для любого расчёта связанного с добычей нефти. Для полного задания свойств флюидов в модели Unifloc 7.26 VBA требуется указать более 10 параметров. Это не всегда бывает удобно делать, особенно если проводится расчёт с использованием нескольких функций. Необходимость контролировать большое количество входных параметров функций на расчётном листе Excel может приводить к ошибкам, опечаткам.

Для удобства в большинстве функций Unifloc 7.26 VBA создан режим упрощённого задания PVT параметров с использованием кодирования в строке. Кодирование осуществляется функциями encode_PVT и encode_feed. Результатом кодирования является строка в формате json, содержащая данные обо всех необходимых параметрах. Строку можно использовать в качестве аргумента в расчётах требующих указания PVT свойств.

```
' Функция кодирования параметров PVT в строку,
' для передачи PVT свойств в прикладные функции Унифлок.
Public Function encode PVT(
                   Optional ByVal gamma gas As Double = const gg ,
                   Optional ByVal gamma_oil As Double = const_go_, _
                   Optional ByVal gamma wat As Double = const_gw_,
                   Optional ByVal rsb_m3m3 = const_rsb_default, __
                   Optional ByVal pb atma,
                   Optional ByVal t_res_C,
                   Optional ByVal bob m3m3,
                   Optional ByVal muob_cP, _
                   Optional ByVal PVT corr set
' gamma gas - удельная плотность газа, по воздуху.
             По умолчанию const qq = 0.6
' gamma oil - удельная плотность нефти, по воде.
             По умолчанию const go = 0.86
' gamma wat - удельная плотность воды, по воде.
             По умолчанию const gw = 1
'rsb m3m3 - газосодержание при давлении насыщения, м3/м3.
             По умолчанию const rsb default = 100
' rp m3m3 - замерной газовый фактор, м3/м3.
           Имеет приоритет перед rsb если rp < rsb
```

```
' pb atma - давление насыщения при температуре t res C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0, то рассчитается по корреляции.
' t res C - пластовая температура, С.
           Учитывается при расчете давления насыщения.
          По умолчанию const tres default = 90
' bob m3m3 - объемный коэффициент нефти при давлении насыщения
           и пластовой температуре, м3/м3.
           По умолчанию рассчитывается по корреляции.
' muob cP - вязкость нефти при давлении насыщения.
           и пластовой температуре, сП.
            По умолчанию рассчитывается по корреляции.
' PVT corr set - номер набора PVT корреляций для расчета:
           0 - на основе корреляции Стендинга;
           1 - на основе кор-ии Маккейна;
           2 - на основе упрощенных зависимостей.
' результат - закодированная строка
```

Закодировать json строку можно универсальной функцией encode_json передав в неё ссылку на диапазон ячеек содержащих необходимые параметры и их значения. При этом должны использоваться строго заданные наименования параметров.

Все доступные параметры флюида (по состоянию для версии 7.26) перечислены в таблице ниже

Параметр	Описание	Примечание	
gamma_gas	удельная плотность газа	обязательный	
gamma_oil	удельная плотность нефти	обязательный	
gamma_wat	удельная плотность воды	опциональный	
rsb m3m3	газосодержание при давлении насы-	обязательный	
	щения	ианапэтакоо	
pb_atma	давление насыщения	калибровочный	
t_res_C	пластовая температура	калибровочный	
bob m3m3	объёмный коэффициент нефти при	калибровочный	
	давлении насыщения		
muob cP	вязкость нефти при давлении насы-	калибровочный	
muob_cr	щения		
DVT corr sot	номер набора корреляционных зави-		
PVT_corr_set	симостей	опциональный	

Калибровочные параметры опциональны - если их не задать, соответствующие значения будут рассчитаны по корреляциям. Все доступные параметры потока флюидов (по состоянию для версии 7.26) перечислены в таблице ниже

Параметр	Описание	Примечание
q_liq_sm3day	дебит жидкости	обязательный
fw_perc	обводненность	обязательный
rp_m3m3	газовый фактор	опциональный
q_gas_free_sm3day	дебит свободного газа	опциональный

u7_Excel_functions_service - модуль в котором можно найти функции кодирования.

2.5. Преобразования потоков флюидов

При движения потока флюидов в системе нефтедобычи он может изменяться за счёт смешения различных потоков или разделения одного потока на несколько.

Простые преобразования потоков могут быть рассчитаны с использованием пользовательских функций Unifloc 7.26 VBA начинающихся с префикса PVT_mod_ – PVT modification functions.

- сепарация части свободного газа из потока
- смешение двух потоков
- разделение потока флюидов с произвольными параметрами

2.5.1. PVT_mod_separate_gas – сепарация части свободного газа из потока

Функция PVT_mod_separate_gas описывает процесс сепарации свободного газа из потока, например на приёме УЭЦН или в газосепараторе. После отделения части свободного газа из потока, свойства потока по прежнему могут быть описаны в рамках модели нелетучей нефти, но с несколько модифицированными параметрами, учитывающими изменение фазового состава. Функция PVT_mod_separate_gas как раз рассчитывает такие параметры.

Алгоритм модификации параметров потока сводится к снижению газового фактора и расхода свободного газа, что удаляет газ из потока. При необходимости проводится корректировка давления насыщения P_b , объёмного коэффициента при давлении насыщения B_{ob} и вязкости при давлении насыщения μ_{ob} .

Как правило, сепарация газа из потока проводится при относительно низком давлении, например при давлении на приёме насоса. Для потока в трубах предполагается, что в каждый момент времени все фазы потока находятся в термодинамическом равновесии, что позволяет применять корреляции для нелетучей нефти. Однако при поступлении частично дегазированного потока в насос, давление в нем резко повышается на значительную величину (для центробежного насоса с производительностью $150 \, \mathrm{m}^3$ /сут, время прохождения потоком через одну ступень составляет около $0.02 \, \mathrm{cek} \, [0]$, таким образом через ЭЦН с $400 \, \mathrm{ступеней}$ поток будет двигаться порядка $10 \, \mathrm{сek}$. При этом давление может повыситься на величину порядка $200 \, \mathrm{атм}$). За такое время свободный газ оставшийся в потоке может не успеть достичь термодинамического равновесия с нефтью, или другими слова может не успеть полностью раствориться. В работе Игревского В.И. $[0] \, \mathrm{для}$ учёта этого эффекта вводится коэффициент фазной неравновесности K_f

$$K_f = \frac{V_{sol}}{V_{eq}} = \frac{Q_{g.sol}}{Q_{g.eq}}$$

где V_{sol} - объем газа который растворится в нефти при движении через ЭЦН, V_{sol} - объем газа который растворился бы в нефти при движении через ЭЦН при достижении термодинамического равновесия.

Величина K_f зависит среди прочих параметров от дисперсности потока (размера пузырьков газа), и объёмного газосодержания. Для грубодисперсных смесей газ - вода можно принять $K_f=0.2$, для тонкодисперсных от $K_f=0.7$ до $K_f=1$. Для газонефтяных смесей можно считать $K_f=1$, то есть весь газ успевает раствориться в нефти при движении через ЭЦН. Это же предположении может быть использовано при движении газонефтяной смеси через трубы (скорость движения меньше в 5 - 10 раз в НКТ по сравнению с ЭЦН).

Для оценки влияния фазной неравновесности нефти на параметры многофазного потока при сепарации газа из потока можно использовать параметр gas goes into solution, который определяет значение K_f

При условии $K_f=0$ – газ выделившийся в свободное состояние не растворяется обратно в нефти, при $K_f=1$ – весь газ может раствориться при повышении давления.

Новый газовый фактор и расход свободного газа, после сепарации газа можно найти из условия

$$r_p^{new} = r_p - (r_p - r_s) k_{sep}$$
 (2.1)

$$q_{gas}^{new} = q_{gas}(1 - k_{sep}) (2.2)$$

Максимально возможное значение газосодержания при повышении давления можно найти из выражения

$$r_s^{max} = r_s + (r_p - r_s)(1 - k_{sep}) * K_f$$
 (2.3)

При повышении давления часть газа может раствориться в нефти, что можно описать найдя величины P_b^{new} , B_{ob}^{new} , μ_{ob}^{new} с учетом максимально достижимого значения газосодержания (2.3).

$$P_b^{new} = P_b(r_s^{max})$$

$$B_{ob}^{new} = B_{ob}(r_s^{max})$$

$$\mu_{ob}^{new} = \mu_{ob}(r_s^{max})$$

где соответствующие зависимости $P_b(r_s)$, $B_o(r_s)$, $\mu_o(r_s)$ определяются в соответствии с заданным набором корреляций.

Рассмотрим пример 1 преобразования свойств потока флюида для следующего набора параметров: параметры сепарации: $k_{sep}=0.5$, $p_{sep}=50$ атма, $t_{sep}=90$ С , $K_f=0$.

Зависимости свойств флюида от давления для примера 1 приведены на рисунке 2.2.

Из приведённых рисунков видно, что свойства нефти при давлении ниже давления сепарации не изменились, а новое давление насыщения показывает, что при повышении давления газ не будет растворяться в нефти. При этом значения параметров потока жидкости Q_{liq} , f_w не изменяются.

Таблица 3 — Исходные данные и результаты расчёта модификации флюида после частичной сепарации свободного газа. Пример 1, $K_f = 0$ – газ не растворяется при повышении давления.

Параметр	Исходные значения	Модифицированные
γ_g	0.9	0.9
γ_o	0.9	0.9
r_{sb} , ${ m M}^3/{ m M}^3$	80	25
P_b , атма	130	50
T_{res} , C	90	90
B_{ob} , ${ m M}^3/{ m M}^3$	1.2	1.09
$\mu_{ob},$ c Π	1	1.96
$Q_{gas\ free},{ m M}^3/{ m cyr}$	1000	500
Q_{liq} , м 3 /сут	15	15
f_w , %	1	1
$r_p, \mathbf{m}^3/\mathbf{m}^3$	80	52

Рис. 2.2 — Зависимость параметров флюида от давления до и после сепарации части свободного газа. Пример 1, $K_f = 0$ — газ не растворяется при повышении давления

При увеличении коэффициента неравновесности $K_f=0.9$ картина изменится - эффективное значение давления насыщения нефти вырастет, что позволит части газа раствориться. Ниже приводится пример 2, где также для наглядности изменён набор корреляций для следующего набора параметров: $k_{sep}=0.5$, $p_{sep}=50$ атма, $t_{sep}=90$ С , $K_f=0.9$. Результаты расчета приведены в таблице 4 и на рисунке 2.3.

Следует отметить, что на величину эффективного значения давления насыщения может значительно влиять выбор набора корреляций для расчёта PVT свойств, в частности корреляции для зависимости давления насыщения от газосодержания при давлении насыщения.

Таблица 4 — Исходные данные и результаты расчёта модификации флюида после частичной сепарации свободного газа. Пример 2, $K_f=0.9$ — газ частично растворяется при повышении давления.

Параметр	Исходные значения	Модифицированные
γ_g	0.9	0.9
γ_o	0.9	0.9
r_{sb} , ${ m M}^3/{ m M}^3$	80	61
P_b , атма	130	84
T_{res} , C	90	90
B_{ob} , ${ m M}^3/{ m M}^3$	1.2	1.16
$μ_{ob}$, cΠ	1	1.22
$Q_{gas\ free},{ m M}^3/{ m cyr}$	1000	500
Q_{liq} , м 3 /сут	15	15
f_w , %	1	1
$r_p, \mathbf{M}^3/\mathbf{M}^3$	80	63

Зависимости свойств флюида от давления для примера 2 приведены на рисунке 2.3.

Рис. 2.3 — Зависимость параметров флюида от давления до и после сепарации части свободного газа. Пример 2, $K_f=0.9$ — газ частично растворяется при повышении давления

2.5.2. PVT_mod_split – разделение двух потоков флюидов

Тут надо будет описать функцию расчёта параметров двух разделённых потоков флюидов с произвольными коэффициентами деления по фазам. Пока не реализовано

2.5.3. PVT_mod_mix – смешивание двух потоков флюидов

Тут надо будет описать функцию расчёта параметров двух смешанных потоков флюидов. Пока не реализовано

2.6. Соотношение некоторых свойств пластовых флюидов

Приведем в этом разделе несколько картинок, рассчитанных с использованием Unifloc 7.26 VBA показывающих соотношение некоторых параметров для различных типов флюидов. Расчет проведен с использованием ex010. PVT.xlsm и его можно повторить. Картинки представляются интересными и полезными, но не вписываются в описание отдельных функций, поэтому приводятся тут. Интересное наблюдение по этим графикам - это то, что свойства газа сильно отличаются от свойств жидкости. При этом свойства газа сильно меняются с давлением.

Рис. 2.4 — Зависимость вязкости от давления для нефти, газа и воды. Обычные и полулогарифмические координаты

Вязкость газа сильно меньше чем для нефти и воды, поэтому ее логично показать в полулогарифмических координатах. Также заметно для нефти, что давление насыщения сильно влияет.

Рис. 2.5 — Зависимость плотности от давления для нефти, газа и воды

Плотность газа сильно растет с давлением, но при этом в диапазоне интереса остается заметно ниже плотности нефти и воды.

Рис. 2.6 — Зависимость объемного коэффициента от давления для нефти, газа и воды

Рис. 2.7 — Зависимость сжимаемости от давления для нефти, газа и воды

Объемный коэффициент и сжимаемость непосредственно связаны между собой. Для нефти это справедливо только для насыщенной нефти.

$$B = B_{ref}e^{c(p-p_{ref})}$$

Для газа сжимаемость зависит от z фактора

$$c_g = \frac{1}{p} - \frac{1}{z} \frac{dz}{dp}$$

Рис. 2.8 — Зависимость коэффициента поверхностного натяжения нефть-газ и вода-газ от давления

Рис. 2.9 — Зависимость теплоемкости при постоянном давлении от давления

2.6.1. PVT рb atma давление насыщения

Функция рассчитывает давление насыщения по известным данным газосодержания при давлении насыщения, γ_q, γ_o, T_r .

При проведении расчётов с использованием значения давления насыщения, следует помнить, что давление насыщения является функцией температуры. В частности при калибровки результатов расчётов на известное значение давления насыщения P_b следует указывать значение пластовой температуры T_r при котором давление насыщения было получено.

В наборе корреляций на основе корреляции Стендинга расчет давления насыщения проводится по корреляции Стендинга [0]

Пример расчёта с использованием функции PVT_pb_atma для различных наборов PVT корреляций приведён на рисунке ниже. Видно, что результаты расчетов по различным корреляциях дают качественно схожие результаты, но не совпадают друг с другом. Отличия, по всей видимости, обусловленные применением различных наборов исходных данных, использовавшихся авторами. Поэтому при проведении расчетов для конкретного месторождения актуальной является задача выбора адекватного набора корреляций. Макросы Unifloc 7.26 VBA позволяют провести расчет с использованием различных подходов, но при этом выбор корреляции остается за пользователем.

При проведении расчётов с использованием набора корреляций на основе корреляций МакКейна следует учитывать, что они работают только для температур более $18~^{\circ}$ С. При более низких значениях температуры расчёт будет проводиться для $18~^{\circ}$ С.

Обратите внимание, что для функции PVT_pb_atma набор аргументов отличается от набора для всех остальных функций PVT. Для расчёта давления насыщения нет необходимости задавать давление при котором будет проведён расчёт, так как давление является результатом расчёта.

2.6.2. PVT rs m3m3 – газосодержание

Газосодержание это отношения объёма газа растворённого в нефти приведённого к стандартным условиям к объёму дегазированной нефти приведённой к стандартным условиям.

$$r_s = \frac{V_{g,sc}}{V_{g,sc}}$$

Газосодержание является одним из ключевых свойств нефти при расчётах производительности скважин и работы скважинного оборудования. Динамика изменения газосодержания при изменении давления и температуры во многом определяет количество свободного газа в потоке и должна учитываться при проведении расчётов.

При задании PVT свойств нефти часто используют значение газосодержания при давлении насыщения r_{sb} - определяющее объем газа растворенного в нефти в пластовых условиях. В модели флюида Unifloc 7.26 VBA газосодержание

при давлении насыщения является исходным параметром нефти и должно быть обязательно задано.

Следует отличать газосодержание в нефти при давлении насыщения r_{sb} и газовый фактор r_{p} .

$$r_p = \frac{Q_{g,sc}}{Q_{o,sc}}$$

Газовый фактор r_p в отличии от газосодержания r_{sb} является, вообще говоря, параметром скважины - показывает отношение объёма добытого из скважины газа к объёму добытой нефти приведённые к стандартным условиям. Газосодержание же является свойством нефти - показывает сколько газа растворено в нефти. Если газ добываемый из скважины это газ который выделился из нефти в процессе подъёма, что характерно для недонасыщенных нефтей, то значения газового фактора и газосодержания будут совпадать. Если газ поступает в скважину не непосредственно из добываемой нефти, а например фильтруется из газовой шапки или поступает через негерметичность ствола скважины - то в такой скважине газовый фактор может значительно превышать значение газосодержания. Такая ситуация может быть смоделирована в Unifloc 7.26 VBA. Для этого необходимо наряду с газосодержанием при давлении насыщения r_{sb} задать значение газового фактора r_p . В этом случае газосодержание при давлении насыщения r_{sb} будет определять динамику выделения попутного газа из нефти при снижении давления, а газовый фактор R_p определять общее количество газа в потоке.

При определённых условиях газовый фактор может быть меньше газосодержания. Это происходит, когда газ выделяется в призабойной зоне и скапливается в ней, не поступая в скважину вместе с нефтью. При этом в скважину поступает частично дегазированная нефть. Такие условия возникают редко, требуют определённого набора параметров, существуют на скважине ограниченное время и представляют интерес больше для разработчиков нежели чем для технологов. С точки зрения анализа работы скважины и скважинного оборудования можно считать, что значение газового фактора не может быть меньше газосодержания при давлении насыщения. Такой предположение реализовано в Unifloc 7.26 VBA. При этом значение газового фактора технически легче измерить чем газосодержание - поэтому при противоречии значений газового фактора и газосодержания при давлении насыщения приоритет отдается газовому фактору.

Примеры расчёта с использованием функции PVT_Rs_m3m3 для различных наборов PVT корреляций приведён на рисунке ниже.

2.6.3. PVT_bo_m3m3 – объёмный коэффициент нефти

Функция рассчитывает объёмный коэффициент нефти для произвольных термобарических условий. Объёмный коэффициент нефти определяется как отношение объёма занимаемого нефтью в пластовых условиях к объёму занимаемому нефтью при стандартных условиях.

$$B_o = \frac{V_{o,rc}}{V_{o,sc}}$$

Нефть в пласте занимает больший объем, чем на поверхности, за счёт растворенного в ней газа. Соответственно объёмный коэффициент нефти обычно имеет значение больше единицы при давлениях больше чем стандартное.

Для калибровки значения объёмного коэффициента можно использовать значение объёмного коэффициента нефти при давлении насыщения B_{ob} .

Следует отметить, что вообще говоря значение объёмного коэффициента нефти при давлении насыщения не является значением при пластовых условиях (при давлении выше давления насыщения играет роль сжимаемость нефти), однако при анализе производительности скважины и скважинного оборудования можно условно считать, что значение объёмного коэффициента при давлении насыщения соответствует значению объёмного коэффициента в пластовых условиях.

Примеры расчёта с использованием функции PVT_bo_m3m3 для различных наборов PVT корреляций приведены на рисунках ниже.

Объёмный коэффициент нефти хорошо коррелирует со значением газосодержания. Поэтому различный вид кривых на рисунке ниже связан с первую очередь с различным газосодержанием при проведении расчётов.

2.6.4. PVT_bg_m3m3 – объёмный коэффициент газа

Функция рассчитывает объёмный коэффициент нефтяного газа для произвольных термобарических условий.

Объёмный коэффициент газа определяется как отношение объёма, занимаемого газом для произвольных термобарических условий (при определённом давлении и температуре), к объёму, занимаемому газом при стандартных условиях.

$$B_g = \frac{V_{g,rc}(P,T)}{V_{g,sc}}$$

Значение объёмного коэффициента газа может быть определено исходя из уравнения состояния газа

$$PV = z \mathbf{v} RT$$

откуда можно получить

$$B_g = z \frac{P_{sc}}{P} \frac{T}{T_{sc}}$$

где P_{sc}, T_{sc} давление (атм) и температура (К) при стандартных условиях, P,T давление (атм) и температура (°К) при расчетных условиях, z коэффициент сверхсжимаемости газа, который вообще говоря зависит от давления и температуры z=z(P,T).

2.6.5. PVT_bw_m3m3 – объёмный коэффициент воды

Функция рассчитывает объёмный коэффициент воды для произвольных термобарических условий.

Объёмный коэффициент воды определяется как отношение объёма занимаемого водой для произвольных термобарических условий (при определённом давлении и температуре) к объёму, занимаемому водой при стандартных условиях.

$$B_w = \frac{V_{w,rc}(P,T)}{V_{w,sc}}$$

2.6.6. PVT_mu_oil_cP - вязкость нефти

Функция рассчитывает вязкость нефти при заданных термобарических условиях по корреляции. Расчёт может быть откалиброван на известное значение вязкости нефти при давлении равном давлению насыщения и при пластовой температуре за счёт задания калибровочного параметра muob_cP. При калибровке динамика изменения будет соответствовать расчету по корреляции, но значения будут масштабированы таким образом, чтобы при давлении насыщения удовлетворить калибровочному параметру.

При расчёте следует обратить внимание, что значение вязкости коррелирует со значением плотности нефти. Как правило вязкость тяжёлых нефтей выше чем для легких.

При расчёте с использованием набора корреляций на основе корреляции Стендинга - вязкость как дегазированной нефти и нефти с учетом растворенного газа рассчитывается по корреляции Беггса Робинсона [0]. Корреляции для расчета вязкости разгазированной и газонасыщенной нефти, разработанные Beggs & Robinson, основаны на 2000 замерах 600 различных нефтей. Диапазоны значений основных свойств, использованных для разработки данной корреляции, приведены в таблице ниже.

```
давление, atma 8.96...483. температура, °C 37...127 газосодержание, r_s m^3/m^3 3.6...254 относительная плотность нефти по воде,, \gamma_o 0.725...0.956
```


2.6.7. PVT mu gas cP – вязкость газа

Функция рассчитывает вязкость газа при заданных термобарических условиях. Результат расчета в сП. Используется подход предложенный Lee [0], который хорошо подходит для большинства натуральных газов. В отличии от нефти и других жидкостей вязкость газа, как правило, значительно ниже, что определяет высокую

подвижность газа. Более подробное описание методов расчета вязкости газа можно найти на странице http://petrowiki.org/gas_viscosity

2.6.8. PVT_mu_wat_cP – вязкость воды

Функция рассчитывает вязкость воды при заданных термобарических условиях. Результат расчета выдается в сП. Вязкость воды зависит от давления, температуры и наличия растворенных примесей. В общем вязкость воды растет при росте давления, снижении температуры, повышении солености. Растворение газа почти не влияет на вязкость воды и в расчетах не учитывается. Расчет проводится по корреляции McCain [0]

Более подробное описание методов расчета вязкости газа можно найти на странице http://petrowiki.org/Produced water properties

Следует отметить, что вязкость воды достаточно сильно зависит от температуры, в то время как зависимость от давления менее выражена.

2.6.9. PVT_rho_oil_kgm3 – плотность нефти

Функция вычисляет значение плотности нефти при заданных термобарических условиях. Результат расчёта имеет размерность кг/м3.

$$\rho_{o,rc}(P,T) = 1000 \frac{\gamma_o + r_s(P,T)\gamma_g \frac{\rho_{air}}{1000}}{B_o(P,T)}$$

При расчёте плотности нефти при заданных условиях учитывается, что дополнительно к массе нефти при стандартных условиях, определяющей ее плотность, в нефти растворена определённая масса газа, которая должна быть учтена.

2.6.10. PVT rho gas kgm3 – плотность газа

Плотность газа при заданных термобарических условиях целиком определяется объёмным коэффициентом газа B_q .

$$\rho_{g,rc}(P,T) = \frac{\gamma_g \rho_{air}}{B_g(P,T)}$$

2.6.11. PVT_rho_wat_kgm3 – плотность воды

Плотность воды при заданных термобарических условиях целиком определяется объёмным коэффициентом воды B_w .

$$\rho_{w,rc}(P,T) = \frac{\gamma_w}{B_w(P,T)}$$

```
' p_atma - давление, атм
' t_C - температура, C.
' PVT_prop - строка с параметрами флюида,
' используйте encode_pvt для ее генерации
'
' результат - число - плотность воды
' при заданных термобарических условиях, кг/м3.
```


2.6.12. PVT_Z – коэффициент сверхсжимаемости газа

Функция позволяет рассчитать коэффициент сверхсжимаемости газа.

$$PV = z \mathbf{v} RT$$

Коэффициент сверхсжимаемости задает поправку на объем реального газа по сравнению с идеальным при изменении давления или температуры. https://en.wikipedia.org/wiki/Compressibility_factor. Отличный обзор методов вычисления z можно найти https://github.com/f0nzie/zFactor. Для расчета коэффициента сверхсжимаемости реализовано три варианта. Первый приведенный Беггсом и Бриллом (1973) простой, быстрый но не очень точный, особенно для больших давлений.

$$z = A + \frac{1 - A}{e^B} + Cp_{pr}^D,$$

$$\begin{split} A &= 1.39 (T_{pr} - 0.92)^{0.5} - 0.36 T_{pr} - 0.10, \\ B &= (0.62 - 0.23 T_{pr}) p_{pr} + \left(\frac{0.066}{T_{pr} - 0.86} - 0.037\right) p_{pr}^2 + \frac{0.32 p_{pr}^2}{10^E} \\ C &= 0.132 - 0.32 \log(T_{pr}), \ D = 10^F, \\ E &= 9 (T_{pr} - 1) \ \text{and} \ F = 0.3106 - 0.49 T_{pr} + 0.1824 T_{pr}^2 \end{split}$$

Второй вариант метода Дранчук, Абу Кассем (1975), основанный на решении кубического уравнения состояния - более точный, но медленный (так как уравнение решается итерациями)

 $z = \frac{0.27 P_{pr}}{y T_{pr}},$

где у решение уравнения

$$\left[R_5 y^2 (1 + A_{11} y^2) e^{(-A_{11} y^2)}\right] + R_1 y - \frac{R_2}{y} + R_3 y^2 - R_4 y^5 + 1 = 0$$

$$R_1 = A_1 + \frac{A_2}{T_{pr}} + \frac{A_3}{T_{pr}^3} + \frac{A_4}{T_{pr}^4} + \frac{A_5}{T_{pr}^5}, \quad R_2 = \frac{0.27 P_{pr}}{T_{pr}}$$

$$R_3 = A_6 + \frac{A_7}{T_{pr}} + \frac{A_8}{T_{pr}^2}, \quad R_4 = A_9 \left(\frac{A_7}{T_{pr}} + \frac{A_8}{T_{pr}^2}\right), \quad R_5 = \frac{A_{10}}{T_{pr}^3}$$

$$A_1 = 0.3265, \quad A_2 = -1.0700, \quad A_3 = -0.5339, \quad A_4 = 0.01569,$$

$$A_5 = -0.05165, \quad A_6 = 0.5475, \quad A_7 = 0.7361, \quad A_8 = 0.1844,$$

$$A_9 = 0.1056, \quad A_{10} = 0.6134, \quad A_{11} = 0.7210$$

Третий вариант (активирован по умолчанию начиная с версии 7.14) вариант Kareem, Al-Marhoun (2015) [0]

$$z = \frac{DP_{pr}(1 + y + y^2 - y^3)}{(DP_{pr} + Ey^2 - Fy^G)(1 - y)^3}$$
$$y = \frac{DP_{pr}}{\left(\frac{1+A^2}{C} - \frac{A^2B}{C^3}\right)},$$

где

$$t = \frac{1}{T_{pr}},$$

$$A = a_1 t e^{a_2 (1-t)^2} P_{pr}, \quad B = a_3 t + a_4 t^2 + a_5 t^6 P_{pr}^6$$

$$C = a_9 + a_8 t P_{pr} + a_7 t^2 P_{pr}^2 + a_6 t^3 P_{pr}^3$$

$$D = a_{10} t e^{a_{11} (1-t)^2}, \quad E = a_{12} t + a_{13} t^2 + a_{14} t^3,$$

$$F = a_{15} t + a_{16} t^2 + a_{17} t^3, \quad G = a_{18} + a_{19} t$$

```
0.317842 a_{11} -1.966847
a_1
     0.382216
                      21.0581
                 a_{12}
a_2
    -7.768354 a_{13} -27.0246
a_3
                         16.23
     14.290531
                 a_{14}
a_4
                       207.783
     0.000002
                 a_{15}
a_5
                 a_{16} -488.161
    -0.004693
a_6
     0.096254
                       176.29
                 a_{17}
a_7
                 a_{18} 1.88453
     0.166720
a_8
                 a_{19}
     0.966910
                       3.05921
a_9
     0.063069
a_{10}
```

Это вариант реализует явный расчет (без итераций) и обладает достаточно хорошей точностью.

Переключение метода расчета реализуется только в коде атрибутом zCorr экземпляра класса CPVT.

Глава 3. Многофазный поток в трубах, штуцере

3.1. Расчёт свойств потока

В отличии от функций расчета PVT (физико-химических свойств флюидов) функции расчета свойства потока учитывают дополнительные параметры потока флюидов - Q - дебит, объемный расход флюидов, f_w - обводненность, R_p - газовый фактор. В функциях свойств потока используется префикс feed .

Параметры потока, такие как расход ГЖС, доля газа в потоке, вязкость ГЖС важны для расчёта и анализа работы скважин и скважинного оборудования.

3.1.1. feed_q_mix_rc_m3day – расход газожидкостной смеси

Функция позволяет рассчитать объёмный расход газожидкостной смеси при заданных термобарических условиях. Объёмный расход ГЖС важен например для подбора УЭЦН в скважине, так как именно определяет в какой точке характеристики УЭЦН будет работать. При наличии свободного газа в потоке расход ГЖС может быть значительно больше расхода жидкости на поверхности фиксируемого расходомером.

$$Q_{mix,rc} = Q_{w,sc}B_{w}(P,T) + Q_{o,sc}B_{o}(P,T) + Q_{o,sc}(R_{p} - R_{s}(P,T))B_{q}(P,T)$$

Расход ГЖС определяется как сумма расходов отдельных фаз, приведённых к соответствующим термобарическим условиям, с учётом того, что часть газа будет растворена в нефти.

```
' feed - параметры потока флюидов, дебит, обводненность и пр
' используйте encode_feed для генерации
' param - параметры расчета и вывода результатов
' результат - массив, расход ГЖС в рабочих условиях,
' подпись, и лог расчета если подключен
```

3.1.2. feed_rho_mix_kgm3 – плотность газожидкостной смеси

Функция позволяет рассчитать плотность газожидкостной смеси при заданных термобарических условиях.

$$\rho_{mix,rc} = \left(\frac{\rho_{w,sc}}{B_w} f_w + \frac{\rho_{o,sc} + r_s \rho_{g,sc}}{B_o} (1 - f_w)\right) (1 - f_g) + \frac{\rho_{g,sc}}{B_g} f_g$$

3.1.3. feed_gas_fraction_d – доля газа в потоке

Функция расчёта доли свободного газа в потоке (без учёта проскальзывания) в зависимости от термобарических условий для заданного флюида.

$$f_g = \frac{Q_{gas_rc}(1 - k_{sep_add})}{Q_{wat_rc} + Q_{oil_rc} + Q_{gas_rc}(1 - k_{sep_add})}$$

где все объёмные расходы фаз приведены в соответствующих термобарических условиях, а $k_{sep,add}$ - дополнительный коэффициент сепарации, учитывающий удаление части свободного газа из потока.

Доля газа в потоке является одним из ключевых параметров ограничивающих производительность систем механизированной добычи - ЭЦН и других насосов.

```
' функция расчета коэффициента Джоуля Томсона
Public Function feed gas fraction d(
              ByVal p atma As Double,
              ByVal t C As Double, _
              ByVal feed As String,
     Optional ByVal param As String = "",
     Optional ByVal ksep add fr As Double = 0)
' р atma - давление, атм
' t C
          - температура, С.
' feed - параметры потока флюидов, дебит, обводненность и пр
       используйте encode feed для генерации
' param - параметры расчета и вывода результатов
' ksep add fr - коэффициент сепарации газа из потока
' результат - массив, значение коэффициента Джоуля Томсона потока,
             подпись, и лог расчета если подключен
```

3.1.4. feed_p_gas_fraction_atma – целевое давления для заданной доли газа в потоке

Функция расчёта давления при котором достигается заданная доля свободного газа в потоке (без учёта проскальзывания). Значение давления при котором достигается определённая доля газа в потоке может быть найдено из решения уравнения, определяющего долю газа.

$$f_g = \frac{Q_{gas_rc}(1 - k_{sep_add})}{Q_{wat_rc} + Q_{oil_rc} + Q_{gas_rc}(1 - k_{sep_add})}$$

Решение в Unifloc 7.26 VBA реализовано итеративное, методом деления отрезка пополам (дихотомия). При вызове функции пересчитывается состояние смеси с различными термобарическими условиями. Поэтому расчёт проводится относительно медленно.

Задание k_{sep_add} позволит оценить целевое давление на приеме для ЭЦН при известной доли газа и известном ожидаемом значении сепарации газа. Отметим, что значение сепарации может быть оценено по корреляционным зависимостям. Но такие зависимости требуют знания давления сепарации, а следовательно их учет совместно с алгоритмом расчета давления при котором достигается определенная доля газа потребует итеративного решения, что выходит за рамки данной функции (например из за того, что это потребует задания дополнительных параметров конфигурации скважины).

```
' расчет давления при котором
' достигается заданная доля газа в потоке
Public Function feed p gas fraction_atma( __
              ByVal free gas d As Double,
              ByVal t C As Double,
              ByVal feed As String, _
     Optional ByVal param As String = "",
     Optional ByVal ksep add fr As Double = 0)
' free gas d - допустимая доля газа в потоке;
' t C - температура, С.
' feed - параметры потока флюидов, дебит, обводненность и пр
             используйте encode feed для генерации
' param - параметры расчета и вывода результатов
' ksep add fr - коэффициент сепарации газа из потока
' результат - массив, число - давление,
              подпись, и лог расчета если подключен
```

3.1.5. feed_rp_gas_fraction_m3m3 – целевой газовый фактор для заданной доли газа в потоке

Функция расчёта газового фактора R_p при котором достигается заданная доля свободного газа в потоке (без учёта проскальзывания). Значение давления при котором достигается определённая доля газа в потоке может быть найдено из решения уравнения, определяющего долю газа.

$$f_g = \frac{Q_{gas_rc}(1 - k_{sep_add})}{Q_{wat\ rc} + Q_{oil\ rc} + Q_{gas\ rc}(1 - k_{sep\ add})}$$

Решение в Unifloc 7.26 VBA реализовано с использованием итераций, методом деления отрезка пополам (дихотомия). При вызове функции состояние смеси пересчитывается с различными термобарическими условиями. Поэтому расчёт проводится относительно медленно.

Задание k_{sep_add} позволит оценить целевой газовый фактор при известной доли газа, давлении на приеме и ожидаемом значении сепарации газа. Отметим, что значение сепарации может быть оценено по корреляционным зависимостям. Но такие зависимости требуют знания как давления сепарации так и газового фактора, а следовательно их учет совместно с алгоритмом расчета газового фактора при котором достигается определенная доля газа потребует итеративного решения, что выходит за рамки данной функции (например из за того, что это потребует задания дополнительных параметров конфигурации скважины).

```
' расчет газового фактора
' при котором достигается заданная доля газа в потоке
Public Function feed rp gas fraction m3m3(
              ByVal free_gas_d As Double, _
              ByVal p_atma As Double, _
              ByVal t C As Double, _
              ByVal feed As String,
     Optional ByVal param As String = "",
     Optional ByVal ksep add fr As Double = 0)
' free gas d - допустимая доля газа в потоке;
' t C - температура, C.
' feed - параметры потока флюидов, дебит, обводненность и пр
             используйте encode feed для генерации
' param - параметры расчета и вывода результатов
' ksep add fr - коэффициент сепарации газа из потока
' результат - массив, число - давление,
              подпись, и лог расчета если подключен
```

3.2. Сепарация газа в скважине

В скважинах оборудованных системами механизированной добычи нефти важную роль играет процесс сепарации газа на приёме насоса. Под сепарацией газа понимается отделение части свободного газа из потока и перенаправление его по

отдельному гидравлическому каналу на поверхность. В результате сепарации газа меняются свойства флюида, поступающего в насос и НКТ выше насоса. В частности меняются давление насыщения и газосодержание при давлении насыщения для флюида после сепарации. Более детальные модели флюида и сепарации могут показать, что при сепарации может поменяться и другие параметры - например состав газа после разгазирования. В модели нелетучей нефти реализованной в Unifloc 7.26 VBA эти эффекты не учитываются.

Рис. 3.1 — Схема линий тока газа на приеме ЭЦН

В скважине с ЭЦН работают два механизма сепарации свободного газа из потока, схематично показанные на рисунке 3.1 - естественная или натуральная сепарация газа, когда часть свободного газа за счет сил всплытия проходит мимо приема насоса и искусственная сепарация с применением газосепаратора, когда часть свободного газа выталкивается из насоса, обычно за счет центробежных сил.

Оценка этих механизмов, а также расчёт общей сепарации могут быть проведены приведёнными ниже функциями.

3.2.1. well_ksep_natural_d – естественная сепарация газа

Функция рассчитывает естественную сепарацию газа на приёме насоса в скважине с использованием корреляции Маркеса [0]. Результат - безразмерная величина в диапазоне от 0 до 1.

```
' расчет натуральной сепарации газа на приеме насоса
Public Function well ksep natural d(
            ByVal q liq sm3day As Double,
            ByVal fw perc As Double, _
            ByVal p intake atma As Double,
   Optional ByVal t intake C As Double = 50, _
   Optional ByVal d intake mm As Double = 90,
   Optional ByVal d cas mm As Double = 120,
   Optional ByVal str PVT As String = PVT DEFAULT)
' q liq sm3day - дебит жидкости в поверхностных условиях
' fw perc - обводненность
' p intake atma - давление сепарации
' t intake C - температура сепарации
' d intake mm - диаметр приемной сетки
' d cas mm - диаметр эксплуатационной колонны
' str_PVT - закодированная строка с параметрами PVT.
               если задана - перекрывает другие значения
' результат - число - естественная сепарация
```

3.2.2. well_ksep_total_d – общая сепарация газа

Функция рассчитывает полную сепарацию газа на приёме насосе в скважине по известным значениям естественной сепарации газа и коэффициента сепарации газосепаратора. Результат - безразмерная величина в диапазоне от 0 до 1.

$$K_{sep\ total} = K_{sep\ nat} + (1 - K_{sep\ nat})K_{sep\ gassep}$$

3.3. Расчёт многофазного потока в штуцере

Штуцер или локальное гидравлическое сопротивление - элемент скважины или системы трубопроводов, применяемых для создания дополнительного перепада давления в системе и ограничения потока. Возможны различные варианты реализации штуцера - со штуцерной камерой, с угловым краном, позволяющим менять диаметр штуцера и другие. Ключевым параметром штуцера является диаметр d_{choke} определяющий его способность к ограничению потока.

Рис. 3.2 — Схема локального гидравлического сопротивления - штуцера

Как и у любого элемента гидравлического потока есть три ключевых параметра - давление на входе P_{in} , давление на выходе P_{out} и расход газожидкостной смеси, обычно задаваемый в стандартных условиях Q_{liq} . Задание любых двух элементов позволяет вычислить третий. При задании трех элементов модель штуцера может быть настроена на замеры за счёт подбора калибровочного параметра.

Следует обратить внимание, расчёт перепада давления в штуцере сильно зависит от направления расчёта. При фиксированном давлении на выходе P_{out} , что для скважины и штуцера на устье соответствует заданному давлению в линии, для любого расхода ГЖС через штуцер можно найти соответствующее значение давления на входе, пример показан на рисунке 3.3.

Рис. 3.3 — Кривые зависимости давления на входе в штуцер от дебита при фиксированном давлении на выходе из штуцера P_{out}

А вот при фиксированном давлении на входе P_{in} или фиксированном буферном давлении P_{buf} не для всякого расхода ГЖС можно рассчитать давление на выходе, смотри рисунок 3.4. При фиксированном давлении на входе P_{in} существует максимальный расход ГЖС, который можно прокачать через штуцер с заданным диаметром проходного канала. Такой расход называется критическим. При критическом расходе в канале штуцера скорость потока достигает скорости звука и давление на входе перестаёт зависеть от давления за штуцером. Величина критического расхода через штуцер зависит от давления на входе, поскольку с повышением давления увеличивается скорость звука в среде.

Вертикальная линия на графике зависимости давления на выходе P_{out} от дебита при критическом расходе показывает, что давление не определяется однозначно, а может принимать любое значение на вертикальной линии. Подобная неоднозначность расчётного давления на выходе штуцера может осложнять расчёты и должна учитываться инженером разрабатывающим расчётный модуль или проводящим расчёты.

Перепад давления в штуцере

Рис. 3.4 — Кривые зависимости давления на выходе из штуцера от дебита при фиксированном давлении на входе в штуцер P_{in}

Функции расчета штуцера позволяют настроить модель штуцера на замерные данные. Настройка проводится за счет параметра калибровки c_{calibr} с_calibr_fr. Параметр калибровки c_{calibr} применяется как множитель на дебит при расчете характеристики штуцера.

$$Q_{real} = Q_{calc} * c_{calibr}$$

Таким образом $c_{calibr}=1$ отключает калибровку. А изменение c_{calibr} позволит изменить характеристику штуцера для согласования с измерениями, пример показан на рисунке 3.5.

Рис. 3.5 — Кривые зависимости давления на выходе из штуцера от дебита при фиксированном давлении на входе в штуцер P_{in}

Все функции для расчета штуцера содержат в названии слово choke.

Результатом работы функций является массив значений содержащий давление на входе в штуцер P_{in} , давление на выходе из штуцера P_{out} , температуру потока в штуцере T_{choke} , калибровочный коэффициент штуцера c_{calibr} . Выходной массив содержит две строки - в первой находятся значения, во второй подписи. Это позволяет при необходимости вывести только значения в той же строке в которой проводился расчет. Значение в первой строке и в первом столбце зависит от настройки функции (параметра calc_along_flow для функции MF_choke_p_atma) и содержит основной результат расчета. Значения в последующих столбцах не зависят от настройки функции и показывают все результаты расчета. Для вывода массива в Excel следует выбрать необходимый диапазон ячеек, в который будут выводится результаты в виде массива, затем ввести в адресную строку вызов функции и нажать комбинацию клавиш - Cntrl-Shift-Enter. После этого название функции в адресной строке должно отображаться в фигурных скобках, рисунок 3.6. При необходимости внести коррективы в вызов функции также необходимо подтверждать свои действия комбинацией клавиш Cntrl-Shift-Enter.

Функции расчёта штуцера поддерживают вычисления потока чистого газа через штуцер. Для этого в PVT строке надо установить gas_only=True и задать расход газа параметром q gas sm3day в соответствующей функции.

Рис. 3.6 — Пример вывода результата расчета в массив

3.3.1. MF choke р atma – Расчет давления на входе или на выходе штуцера

Функция позволяет рассчитать давление на входе или выходе штуцера по известному давлению на противоположном конце при известных параметрах пото-ка (дебите жидкости, обводнённости, газовому фактору). Расчёт проводится по корреляции Перкинса [0] с учётом многофазного потока.

```
граничное значение для проведения расчета
либо давление на входе, либо на выходе

' t_choke_C - температура потока, C.

' d_pipe_mm - диаметр трубы до и после штуцера

' calc_along_flow - флаг направления расчета относительно потока
' param - параметры расчета јѕоп строка
' результат - число - массив значений с параметрами штуцера
и давление на штуцере на расчетной стороне.
```

Если при формировании PVT строки задать параметр gas_only=True, то расчет будет проведен для потока газа заданного параметром gas sm3day.

3.3.2. MF_choke_q_sm3day – функция расчёта дебита жидкости через штуцер

Функция позволяет рассчитать по известному буферному давлению и линейному давлению дебит жидкости. Расчет проводится по корреляции Перкинса [0] с учетом многофазного потока.

```
' расчет давления в штуцере
Public Function MF_choke_q_sm3day( __
                    ByVal feed As String,
                    ByVal d_choke_mm As Double, _
                    ByVal p in atma As Double,
                    ByVal p out atma As Double,
           Optional ByVal t choke C = 20,
           Optional ByVal d pipe_mm As Double = 70, _
           Optional ByVal param As String = "")
' feed
             - закодированная строка с параметрами потока.
' d choke mm - диаметр штуцера (эффективный)
' p in atma - давление на входе в штуцер, атм.
               высокая сторона
' p_out_atma - давление на выходе из штуцера, атм.
               низкая сторона
' t choke C - температура потока, C.
' d pipe mm
             - диаметр трубы до и после штуцера
' param
             - параметры расчета json строка
' результат
             - число - массив значений с параметрами штуцера
               и давление на штуцере на расчетной стороне.
```

Если при формировании PVT строки задать параметр gas_only=True, то расчет будет проведен для потока газа.

3.3.3. MF_choke_calibr_fast – простая и быстрая функция настройки модели штуцера

Функция позволяет рассчитать корректирующий фактор для модели штуцера, позволяющий согласовать результаты замеров давления и дебита. Расчет проводится по корреляции Перкинса [0] с учетом многофазного потока.

Это быстрый способ расчета калибровочного коэффициента. По факту он просто вычисляется исходя из модели штуцера. В более сложной функции калибровки MF_calibr_choke расчет будет проводится дольше, так как подстроечные параметры подбираются итеративным алгоритмом, зато имеется возможность подбора нескольких различных параметров.

```
' расчет корректирующего фактора (множителя) модели штуцера под замеры
' быстрый расчет - калибровка вычисляется
Public Function MF choke calibr fast(
            ByVal feed As String, _
           ByVal d choke mm As Double,
            Optional ByVal p_in_atma As Double = -1, _
            Optional ByVal p out atma As Double = -1,
           Optional ByVal d pipe_mm As Double = 70, _
           Optional ByVal t choke C As Double = 20,
           Optional ByVal param As String = "")
' feed
              - закодированная строка с параметрами потока.
' d choke_mm
              - диаметр штуцера (эффективный), мм
' p_in_atma — давление на входе (высокой стороне)
' p out atma
              - давление на выходе (низкой стороне)
' d_pipe_mm - диаметр трубы до и после штуцера, мм ' t_choke_C - температура, С.
              - температура, С.
' param
              - параметры расчета json строка
' результат - число - калибровочный коэффициент для модели.
                 штуцера - множитель на дебит через штуцер
```

Если при формировании PVT строки задать параметр gas_only=True, то расчет проведен не будет.

3.3.4. MF_choke_calibr – продвинутая функция настройки модели штуцера

Функция позволяет рассчитать корректирующий фактор для модели штуцера, позволяющий согласовать результаты замеров давления и дебита. Расчет проводится по корреляции Перкинса [0] с учетом многофазного потока.

Настройка может проводиться за счет подбора различных параметров. Тип калибровки выбирается параметром calibr_type B текущей реализации может быть подобран только один из перечисленных ниже параметров.

- calibr_type=0 Калибровочный коэффициент многофазной корреляции для гравитационной составляющей c_{calibr_grav} . Ищется в диапазоне от 0.5 до 1.5.
- calibr_type=1 Калибровочный коэффициент многофазной корреляции для трения $c_{calibr\ fric}$. Ищется в диапазоне от 0.5 до 1.5.
- calibr_type=2 Газовый фактор R_p . Ищется в диапазоне $[20, 2R_p]$ относительно заданного газового фактора.
- calibr type=3 Обводненность f_w . Значение ищется в диапазоне [0,1].
- calibr_type=4 Дебит жидкости Q_{liq} . Значение ищется в диапазоне от $[0,Q_{liq}*1.5]$ относительно заданного дебита жидкости.
- calibr_type=5 Дебит жидкости Q_{gas} . Значение ищется в диапазоне от $[0,Q_{gas}*2]$ относительно заданного дебита газа или в диапазоне [0,10000] м3/сут если дебит газа не задан.

Результат расчета - массив с подобранным параметром или сообщением о невозможности подбора, информацией о количестве итераций.

```
' d_choke_mm - диаметр штуцера (эффективный), мм
' p_in_atma - давление на входе (высокой стороне)
' p_out_atma - давление на выходе (низкой стороне)
' d_pipe_mm - диаметр трубы до и после штуцера, мм
' t_choke_C - температура, C.
' param - параметры расчета json строка
' результат - число - калибровочный коэффициент для модели.
' штуцера - множитель на дебит через штуцер
```

Если при формировании PVT строки задать параметр gas_only=True, то расчет проведен не будет.

3.4. Расчет многофазного потока в трубе

Расчет распределения давления в трубе основан на многофазных корреляциях. Выбор типа корреляции определяется параметром hydr_corr. В текущей версии Unifloc 7.26 VBA реализован следующий набор гидравлических корреляций:

- 1. hydr corr = 0. Корреляция Беггса Брилла.
- 2. hydr corr = 1. Корреляция Ансари.
- 3. hydr corr = 2. Корреляция TUFFP Unified.
- 4. hydr_corr = 3. Корреляция Грея, модифицированная.
- 5. hydr corr = 4. Корреляция Хайгедорна Брауна.
- 6. hydr corr = 5. Корреляция Сахарова Мохова.
- 7. hydr corr = 10. Расчет на основе плотности газа, без учета жидкости.

Ниже на рисунке 3.7 приведены результаты расчёта кривой оттока (перепада давления в вертикальной трубе) для различных корреляций, реализованных в Unifloc 7.26 VBA.

Рис. 3.7 — Кривые характеристики многофазного потока для вертикальных труб рассчитанные с использованием различных корреляций

3.4.1. MF_pipe_p_atma – функция расчета давления на конце трубы

```
расчет распределения давления и температуры в трубопроводе
' с использованием многофазных корреляций
Public Function MF pipe p atma(
                ByVal p calc from atma As Double, _
                ByVal t calc from C As Double,
       Optional ByVal construction As String = "",
       Optional ByVal feed As String = "",
       Optional ByVal t model As String = "", _
       Optional ByVal calc along coord As Boolean = True,
       Optional ByVal flow along coord As Boolean = True,
       Optional ByVal param As String)
' p calc from atma - давление с которого начинается расчет, атм
           граничное значение для проведения расчета
' t calc from C - температура в точке где задано давление расчета
' feed
          - параметры потока флюидов json строка. Используйте
           функцию encode feed() для генерации
' construction - параметры конструкции json строка. Используйте
           функцию encode pipe() для генерации
' t model - параметры температурной модели json строка.
          Используйте функцию encode feed() для генерации
' calc along coord - направление расчета относительно координат.
' flow along coord - направление потока относительно координат.
' param - дополнительные параметры расчета потока
' результат - число - давление на другом конце трубы atma.
          и распределение параметров по трубе
```

Глава 4. Многофазный поток в пласте и призабойной зоне

4.1. Расчет многофазного потока в пласте

Для анализа работы скважины и скважинного оборудования в большинстве случаев достаточно простейшего подхода для описания производительности пласта. На текущий момент в Unifloc 7.26 VBA используется линейная индикаторная кривая с поправкой Вогеля для учета разгазирования в призабойной зоне пласта с учетом обводненности [0].

Пользовательские функции для расчета производительности пласта начинаются с префикса IPR $\,$.

Для расчета притока из пласта необходимо определить связь между дебитом жидкости Q_{liq} (притоком) и забойным давлением работающей скважины P_{wf} . Линейная индикаторная кривая на основе закона Дарси задает такую связь через коэффициент продуктивности скважины, который определяется как

$$PI = \frac{Q_{liq}}{P_{res} - P_{wf}} \tag{4.1}$$

где P_{res} - пластовое давление - давление на контуре питания скважины. Закон Дарси описывает установившийся приток несжимаемой жидкости в однородном пласте.

Соответственно уравнение притока будет иметь вид

$$Q_{liq} = PI\left(P_{res} - P_{wf}\right)$$

Для линейного притока по закону Дарси коэффициент продуктивности может быть оценен либо по данным эксплуатации из уравнения 4.1 либо по аналитической зависимости по характеристикам пласта и системы заканчивания. Например для радиального притока к вертикальной скважине широко известна формула Дюпюи согласно которой

$$PI = f \cdot \frac{kh}{\mu B} \frac{1}{\ln \frac{r_e}{r_w} + S} \tag{4.2}$$

здесь f - размерный коэффициент, зависящий от выбранной системы единиц для остальных параметров. Так для системы единиц

Таблица 5 — Размерности параметров выражения 4.2

Обозначение	Параметр	СИ	Практические	Американские
			метрические	промысловые
f	размерный	2π	1	1
	коэффициент		$\overline{18.41}$	$\overline{141.2}$
k	проницаемость	\mathbf{M}^2	мД	mD
h	мощность	М	М	ft
	пласта			
В	объемный	M^3/M^3	$\mathrm{m}^3/\mathrm{m}^3$	scf/bbl
	коэффициент			
μ	вязкость	Па · с	сП	cР
r_e	радиус зоны	M	M	ft
	дренирования			
r_w	радиус	M	М	ft
	скважины			
S	скин фактор	безразмерный		

При снижении забойного давления добывающей скважины ниже давления насыщения, оценка дебита жидкости по закону Дарси оказывается завышенной. Газ выделяющийся в призабойной зоне пласта создает дополнительное гидравлическое сопротивление. В Unifloc 7.26 VBA поправка на снижение забойного давления ниже давления насыщения реализована на основе поправки Вогеля. Для безводной нефти по Вогелю продуктивность скважины по данным тестовой эксплуатации - дебите жидкости Q_{liq} и соответствующем забойном давлении P_{wf} может быть оценен по выражению 4.3.

$$PI = \frac{Q_{liq}}{P_{res} - P_b + \frac{P_b}{1.8} \left[1.0 - 0.2 \frac{P_{wf}}{P_b} - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]}$$
(4.3)

При наличии обводненности зависимость усложняется.

В Unifloc 7.26 VBA реализована модель определения коэффициента продуктивности по данным эксплуатации. Сравнение индикаторных кривых, построенных по тестовым данным $Q_{liq}=100$ и $P_{wf}=150$ при наличии и отсутствии воды, приведено на рисунке 4.1.

Индикаторные кривые IPR

Рис. 4.1 — Сравнение индикаторных кривых для заданных тестовых параметров $Q_{liq}=100$ и $P_{wf}=150$ при наличии и отсутствии воды в потоке

4.1.1. IPR_pi_sm3dayatm – расчёт продуктивности

Функция позволяет рассчитать коэффициент продуктивности скважины по данным тестовой эксплуатации. Особенность линейной модели притока к скважине с поправкой Вогеля заключается в минимальном наборе исходных данных, необходимых для построения индикаторной кривой. Достаточно знать пластовое давление, дебит и забойное давление в одной точке.

```
Optional ByVal fw_perc As Double = 0, _
Optional ByVal pb_atma As Double = -1)

' Qtest_sm3day - тестовый дебит скважины, ст.м3/сут
' pwf_test_atma - тестовое забойное давление, абс. атм
' p_res_atma - пластовое давление, абс. атм
' fw_perc - обводненность, %
' pb_atma - давление насыщения, абс. атм
' результат - значение коэффициента продуктивности, ст.м3/сут/атм
```

4.1.2. IPR_p_wf_atma – расчёт забойного давления по дебиту и продуктивности

Функция позволяет рассчитать забойное давление скважины по известным значениям дебита и продуктивности.

4.1.3. IPR_q_liq_sm3day – расчёт дебита по забойному давлению и продуктивности

Функция позволяет рассчитать дебит жидкости скважины на поверхности по забойному давлению и продуктивности.

Глава 5. Старые функция расчёта технологического режима добывающих скважин

5.1. Технологический режим добывающих скважин

Одна из первых реализаций расчётных модулей Unifloc 7.26 VBA была создана для проведения расчётов потенциала добычи нефти в форме технологического режима добывающих скважин. Расчёты были реализованы в начале 2000х годов. Расчётная форма оказалась удобной для практического применения и со временем алгоритмы расчёта распространились по разным компаниям и широко использовались.

Функции расчета параметров технологического режима добывающих скважин находятся в модуле u old mdlTecRegimes

Для обеспечения обратной совместимости расчётов в Unifloc 7.26 VBA заложены основные функции расчёта из технологического режима работы скважин. У функций изменены названия функций и имена аргументов, однако алгоритмы расчётов оставлены без изменений.

Пользовательские функции для расчета параметров технологического режима работы добывающих скважин начинаются с префикса old_. Листинги определений функций в описании не приводятся, кому интересно, лучше искать непосредственно в коде.

5.1.1. old_pwf_calc_atma – расчёт забойного давления по динамическому уровню

Функция рассчитывает забойное давление добывающей нефтяной скважины. Расчёт выполняется по известному значению затрубного давления и динамическому уровню. [0]

Результат расчёта - абсолютное значение забойного давления.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления как для интервала выше насоса в межтрубном пространстве, так и для участка ниже насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]

Функция позволяет учесть удлинения скважин для забоя, глубины спуска насоса, и динамического уровня. Два последних значения являются опциональными и могут быть опущены при проведении расчёта.

5.1.2. old_pwf_calc_p_intake_atma – расчёт забойного давления по давлению на приеме

Функция рассчитывает забойное давление добывающей нефтяной скважины по известному значению давления на приёме насоса.

Результат расчёта - абсолютное значение забойного давления.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления для участка ниже насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]

Функция позволяет учесть удлинения скважин для забоя, глубины спуска насоса. Последние значения являются опциональными и могут быть опущены при проведении расчёта.

5.1.3. old_Ppump_calc_atma – расчёт давления на приеме по динамическому уровню

Функция рассчитывает давление на приёме насоса добывающей нефтяной скважины по известному значению затрубного давления и динамическому уровню.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления для участка выше насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]. Значение коэффициента сепарации используется для оценки объёмного расхода газа в межтрубном пространстве.

Результат расчёта - абсолютное значение давления на приёме насоса.

5.1.4. old_Potential_Pwf_atma — расчёт целевого забойного давления по доле газа

Функция рассчитывает целевое забойное давление добывающей нефтяной скважины, при котором достигается заданная доля газа в потоке.

Результат расчёта - абсолютное значение забойного давления.

5.1.5. old_BB_Pwf_atma – расчёт забойного давления фонтанирующей скважины по буферному давлению

Функция рассчитывает забойное давление фонтанирующей добывающей скважины по известному значению буферного давления. Расчет выполняется по корреляции Бегсса Брилла.

Расчет отличается рядом упрощений - из PVT свойств используется только значение газового фактора - давление насыщения и объемный коэффициент газа вычисляются по корреляциям.

В отличии от расчёта скважин с насосом в корреляции Беггса Брилла учитывается наличие трения. Хотя для низких дебитов эта корреляция может давать завышенные значения перепада давления.

Для расчётов рекомендуется использовать функцию Unifloc 7.26 VBA реализующую аналогичную функциональность с меньшим набором допущений Результат расчёта - абсолютное значение забойного давления.

5.1.6. old_BB_Pwf_Pin_atma – расчёт забойного давления по давлению на приеме по корреляции Беггса-Брилла

Функция рассчитывает забойное давление добывающей скважины по известному значению давления на приёме. Расчёт выполняется по корреляции Бегсса-Брилла. Расчёт отличается рядом упрощений - из PVT свойств используется только значение газового фактора - давление насыщения и объёмный коэффициент газа вычисляются по корреляциям.

В отличии от расчёта скважин с насосом в корреляции Беггса Брилла учитывается наличие трения. Хотя для низких дебитов эта корреляция может давать завышенные значения перепада давления.

Для расчётов рекомендуется использовать функцию Unifloc 7.26 VBA реализующую аналогичную функциональность с меньшим набором допущений Результат расчёта - абсолютное значение забойного давления.

Заключение

Заключение возможно будет тут когда то

Единицы измерений

Давление

atm, атм — физическая атмосфера atma, атма — абсолютное значение величины в атмосферах atmg, атми — избыточное (измеренное) значение величины в атмосферах. отличается от абсолютной на величину атмосферного давления (1.01325 атма)

Список сокращений и условных обозначений

 γ_g — gamma gas — удельная плотность газа, по воздуху.

 ho_{air} — rho_air — плотность воздуха, относительная плотность газа γ_g считается по воздуху $ho_{air}=1.22$ кг/м 3

 γ_o – gamma oil – удельная плотность нефти, по воде.

 γ_w — gamma wat — удельная плотность воды, по воде.

 R_{sb} – Rsb_m3m3 – газосодержание при давлении насыщения, м $^3/$ м 3 .

 R_p – Rp_m3m3 – замерной газовый фактор, м $^3/{
m m}^3.$

 P_b – Pb $\,$ atma – давление насыщения, атма.

 T_{res} – Tres_C – пластовая температура, °C.

 B_{ob} – Bob_m3m3 – объёмный коэффициент нефти, м $^3/$ м 3 .

 $\mu_{o}-$ mu oil сР-вязкость нефти, по воде.

 μ_{ob} – Muob_cP – вязкость нефти при давлении насыщения, с Π .

 Q_{liq} — Qliq_scm3day — дебит жидкости измеренный на поверхности (приведенный к стандартным условиям), м3/сут.

 f_w — fw_perc, fw_fr — объёмная обводненность (fraction of water), проценты или доли единиц.

 f_g — fg_perc, fg_fr — объёмная доля газа в потоке (fraction of gas), проценты или доли единиц.

PI – pi_sm3dayatm – коэффициент продуктивности скважины, м 3 /сут/атм

Словарь терминов

Словарь описывает термины и сокращения широко используемые в описании и в системе Unifloc 7.26 VBA.

- **VBA** Visual Basic for Application язык программрования встроенный в Excel и использованный для написания макросов Unifloc 7.26 VBA.
 - **VBE** Среда разработки для языка VBA. Встроена в Excel.
 - BHP, Pwf Bottom hole pressure. Well flowing pressure. Забойное давление
 - BHT, ТВН Bottom hole temperature. Забойная температура
- **WHP, PWH** Well head pressure. Устьевое давление. Как правило, соответствует буферному давлению.
- **WHT, TWH** Well head temperature. Устьевая температура. Температура флюида на устье скважины. Температура в точке замера буферного давления.
- **IPR** Inflow performance relationship. Индикаторная кривая. Зависимость забойного давления от дебита для пласта. Широко используется в узловом анализе.
- **VLP, VFP** Vertical lift performance, vertical flow performance, outflow curve. Кривая лифта, кривая оттока. Зависимость забойного давления от дебита для скважины. Широко используется в узловом анализе.
 - **ESP** Electrical submersible pump. Электрический центробежный насос.
 - **GL** Gas Lift. Газлифтный способ эксплуатации добывающих скважин.
- **РНХ** ЭЦН Расходно напорная характеристика электрического центробежного насоса. Ключевая характеристика ЭЦН. Дается производителем в каталоге ЭЦН для новых насосов или определяется на стенде для ремонтных ЭЦН.
- **PVT** Pressure Volume Temperature. Общепринятое обозначение для физико-химических свойств пластовых флюидов нефти, газа и воды.
- **MF** MultiPhase. Много Фазный поток. Префикс для функций имеющих дело с расчетом многофазного потока в трубах и скважине.
- **НКТ** Насосно компрессорная труба. Часть конструкции скважины. по колонне НКТ добывается скважинная продукция или закачивается вода. Может быть заменена в процессе эксплуатации при ремонте скважины.
- \mathbf{K} Эксплуатационная колонна. Часть конструкции скважины. Не может быть заменена в процессе эксплуатации при ремонте скважины.
- Γ ЖС Газо жидкостная смесь. Часто используется для обозначения совместно двигающихся флюидов в многофазном потоке нефти, газа, воды.

Барботаж, ZNLF—Движение газа через неподвижный столб жидкости. ZNLF - zero net liquid flow. Встречается в скважинах с насосами - в межтрубном пространстве газ движется через неподвижный столб жидкости. Влияет на динамический уровень в скважине.

ЭЦН — Электрический центробежный насос.

УЭЦН — Установка электрического центробежного насоса. Включает весь комплекс погружного и поверхностного оборудования необходимого для работы насоса - насос (ЭЦН), погружной электрический двигатель (ПЭД), гидрозащита (ГЗ), входной модуль (ВМ) и газосепаратор (ГС), электрический кабель, станция управления (СУ) и другие элементы

ЧРП — Частотно регулируемый привод. Элемент УЭЦН обеспечивающий возможность вращения вала УЭЦН с различными частотами.

Список литературы

- 0. *Хасанов М.*, *Пашали А.*, *Хабибуллин Р.*, *Краснов В.* Оценка забойного давления механизированной скважины: теория и опыт применения // Научно-технический вестник ОАО НК Роснефть. 2006. Февр.
- 0. *Хасанов М.*, *Байков В.*, *Афанасьев В.*, *Мухамедшин Р.*, *Булгакова Г.*, *Гладков А.* Стандарт компании ЮКОС. Физические свойства нефти. Методы расчета. Уфа Москва, 2002. 45 с.
- 0. *Хасанов М.*, *Краснов В.*, *Хабибуллин Р.*, *Пашали А.*, *Семенов А.* Метод интерпретации отжима динамического уровня с использованием современных подходов к расчету многофазного потока // Нефтяное хозяйство. 2009. Янв.
- 0. *Khasanov M.*, *Krasnov V.*, *Khabibullin R.*, *Pashali A.*, *Semenov A.* New Method for Fluid Level Depression Test Interpretation Based on Modern Multiphase Flow Calculation Techniques. // SPE 129562. 2010. DOI: https://doi.org/10.2118/129562-MS.
- 0. *Khasanov M.*, *Krasnov V.*, *Khabibullin R.*, *Pashali A.* Monitoring and Optimization of Well Performance in Rosneft Oil Company–The Experience of the Unified Model Application for Multiphase Hydraulic Calculations // SPE 104359. 2006. DOI: https://doi.org/10.2118/104359-RU.
- 0. Хабибуллин Р., Пашали А., Краснов В., Бикбулатов С., Еличев В., Михайлов В. Оптимизация режима работы фонтанирующих скважин в НК «Роснефть» // Нефтяное хозяйство. 2006. Сент.
- 0. Khasanov M., Krasnov V., Khabibullin R., Pashali A., Guk V., Litvinenko K., Elichev V., Prado M. High GLR ESP technologies Comparison, Field Test Results // SPE 117414. 2008. DOI: https://doi.org/10.2118/117414-RU.
- 0. Дроздов А., Вербицкий В., Деньгаев А., Арсеньв А., Литвиненко В., Хабибуллин Р., Литвиненко К., Еличев В. Результаты исследований работы погружных центробежных газосепараторов при эксплуатации скважин ООО «РН-Пурнефтегаз» с высоким входным газосодержанием. Сравнение стендовых и промысловых испытаний // SPE 117415. 2008. DOI: https://doi.org/10.2118/117415-RU.

- 0. *Krasnov V.*, *Khabibullin R.*, *Pashali A.*, *Guk V.*, *Litvinenko K.*, *Elichev V.*, *Prado M.* Performance Analysis of ESP Systems in High-GLR Wells: From Lab Experiments to Practical Field Applicationss // SPE 120628. 2009. DOI: https://doi.org/10.2118/120628-MS.
- 0. *Кудряшов С., Хасанов М., Краснов В., Хабибуллин Р., Семенов А.* Шаблоны Применения Технологий эффективный способ систематизации знаний. // Нефтяное хозяйство. 2007. Нояб.
- 0. *Хасанов М.*, *Семенов А.*, *Пашали А.*, *Хабибуллин Р.* Подход к выбору оптимального способа эксплуатации скважин на примере Ванкорского месторождения. // Нефтяное хозяйство. 2007. Нояб.
- 0. Шушаков А., Павлечко Н., Кибирев Е., Бурцев Я., Хабибуллин Р., Хазиев А., В.В. К. Оптимизация работы газлифтного фонда скважин в условиях ЗАО Газпромнефть Оренбург с помощью нового расчетного модуля. // Нефтяное хозяйство. 2015. Дек.
- 0. Lubnin A., Yudin E., Fazlytdinov R., Khabibullin R., Grishchenko E., Bovt A. A New Approach of Gas Lift Wells Production Optimization on Offshore Fields // SPE-181903. 2016. DOI: https://doi.org/10.2118/181903-RU.
- 0. *PEH*. Produced water formation volume factor. 2021. URL: https://petrowiki.spe.org/Produced_water_formation_volume_factor (visited on 01/21/2021).
- 0. *McCain Jr. W.* Reservoir-Fluid Property Correlations-State of the Art (includes associated papers 23583 and 23594) // SPE Res Eng SPE-18571-PA. 1991. DOI: https://doi.org/10.2118/18571-PA.
- 0. *McCain W. J.* The Properties of Petroleum Fluids, second edition. PennWell Books, 1990.
- 0. *PetroSkills*. Variation of Ideal Gas Heat Capacity Ratio with Temperature and Relative Density. 2013. URL: http://www.jmcampbell.com/tip-of-the-month/2013/05/variation-of-ideal-gas-heat-capacity-ratio-with-temperature-and-relative-density/ (visited on 01/21/2021).
- 0. *Kareem L.*, *Iwalewa T.*, *Al-Marhoun M.* New explicit correlation for the compressibility factor of natural gas: linearized z-factor isotherms. // J Petrol Explor Prod. 2016. DOI: https://doi.org/10.1007/s13202-015-0209-3.
- 0. *PEH*. Gas viscosity. 2021. URL: http://petrowiki.org/Gas_viscosity (visited on 01/21/2021).

- 0. Lee A., Gonzalez M., Eakin B. The Viscosity of Natural Gases SPE-1340-PA // J Pet Technol. 1966.
- 0. Beggs H., Robinson J. SPE-5434-PA Estimating the Viscosity of Crude Oil Systems // J Pet Technol. 1975. DOI: http://dx.doi.org/10.2118/5434-PA.
- 0. *PEH*. Oil viscosity. 2021. URL: https://petrowiki.spe.org/Oil_viscosity (visited on 01/21/2021).
- 0. *Vazquez M.*, *Beggs H.* SPE-6719-PA Correlations for Fluid Physical Property Prediction // J Pet Technol. 1980. DOI: http://dx.doi.org/10.2118/6719-PA.
- 0. *PEH*. Oil System Correlations. 2021. URL: https://petrowiki.spe.org/PEH: Oil System Correlations (visited on 01/21/2021).
- 0. *PEH*. Oil System Correlations. Appendix table A-7 Undersaturated Oil Viscosity Correlations. 2021. URL: https://petrowiki.spe.org/File:Vol1_Page_329_Image 0001.png (visited on 01/21/2021).
- 0. *Standing M.* A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases // API Drilling and Production Practice. 1947.
- 0. *PEH*. Oil System Correlations. Appendix table A-7 Dead Oil Viscosity Correlations. 2021. URL: https://petrowiki.spe.org/File:Vol1_Page_323_Image_0001.png (visited on 01/21/2021).
- 0. *Standing M.* Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, ninth edition. Society of Petroleum Engineers of AIME, 1981.
- 0. *Valkó P., McCain W.* Reservoir oil bubblepoint pressures revisited; solution gas—oil ratios and surface gas specific gravities // Journal of Petroleum Science and Engineering. 2003. DOI: https://doi.org/10.1016/S0920-4105(02)00319-4.
- 0. *Velarde J.*, *Blasingame T.*, *McCain W.* Correlation of Black Oil Properties At Pressures Below Bubble Point Pressure A New Approach. // SPE Annual Technical Meeting, Calgary, Alberta, June 1997. 1997. DOI: https://doi.org/10.2118/97-93.
- 0. *Игревский В*. Исследование влияния газовой фазы на характеристику многоступенчатого центробежного насоса при откачке газожидкостных смесей из скважин: дис. ... канд. тех. наук: 05.15.06. М., 1977. 190 с.
- 0. *Marquez R.*, *Prado M.* A New Robust Model For Natural Separation Efficiency // SPE 80922-MS. 2003. DOI: https://doi.org/10.2118/80922-MS.

- 0. *Perkins T.* Critical and Sub-Critical Flow of Multiphase Mixtures Through Chokes // SPE 20633, SPE Drilling and Complition. 1993. DOI: https://doi.org/10.2118/20633-PA.
- 0. Bratland O. Pipe Flow 1. Single-phase flow assurance. URL: http://www.drbratland.com/free-book-pipe-flow-1-single-phase-flow-assurance/ (visited on 06/04/2020).
- 0. *Brown K*. The Technology of Artificial Lift Methods. Volume 4. Production Optimization of Oil and Gas Wells by Nodal System Analysis. PennWell, 1984. 464 p.
- 0. *Gabor T.* Electrical Submersible Pumps Manual. 2nd edition. Elsevier, 2018. 578 p. DOI: 10.1016/B978-1-85617-557-9.X0001-2.
- 0. *Гридин В*. Расчет параметров и характеристик асинхронных двигателей.Методические указания к выполнению домашнего задания по курсу Электротехника и электроника. URL: http://www.cdl.bmstu.ru/fn7/Gridin.pdf (дата обр. 04.06.2020).
- 0. *Гридин В*. Расчет характеристик асинхронных двигателей по каталожным данным. // Электричество. 2018. Сент. DOI: http://dx.doi.org/10.24160/0013-5380-2018-9-44-48.
- 0. Каталог продукции Новомет 2013 [Текст].

Приложение А

Автоматически сгенерированное описание

Далее следует описание расчётных функций Unifloc 7.26 VBA автоматически сгенерированное из исходного кода. Подробности по ключевым пользовательским функциям можно найти в описании выше. Автоматическое описание возможно будет более полным и актуальным пока продолжается разработка.

A.1. crv_fit_linear

```
'Аппроксимация данных линейной функцией.
'Решается задача min|XM-Y| ищется вектор М
Public Function crv fit linear (YA,
                          XA,
                   Optional out As Long,
                   Optional weight,
                   Optional constraints)
' YA
      - Y вектор исходных данных [0..N-1] (столбец или массив)
' XA
      - x матрица исходных данных [0..N-1, 0..D-1]
        (таблица или массив)
' out
      - тип вывода,
      out=0 (по умолчанию) коэффициенты аппроксимации [0..D-1],
      out=1 код ошибки подбора аппроксимации
      out=2 отчет по подбору аппроксимации,
          AvgError, AvgRelError, MaxError, RMSError, TaskRCond.
' weight - вектор весов [0..N-1] для каждого параметра
' constraints - матрица ограничений С [0..K-1, 0..D] такая что
               C[I,0]*M[0] + ... + C[I,D-1]*C[D-1] = CMatrix[I,D]
' результат
          вектор М минимизирующий min|XM-Y|
```

A.2. crv fit poly

```
out — тип вывода, out=0 (по умолчанию) значения полинома для XIA,

out=1 код ошибки аппроксимации

out=2 отчет по подбору аппроксимации,

AvgError, AvgRelError, MaxError, RMSError, TaskRCond.

XIA — X вектор значений для расчета аппроксимации [0..D-1]

weight — вектор весов [0..N-1] для каждого параметра

constraints — матрица ограничений C[0..K-1,0..2].

C[i,0] — значение x где задано ограничение

C[i,1] — велична ограничения,

C[i,2] — тип ограничения (0 —значение,1 —производная)

результат

вектор YIA значений полинома для XIA
```

A.3. crv fit spline 1D

```
'Поиск пересечений для кривых заданных таблицами.
'Используется линейная интерполяция.
'Возможно несколько решений.
Public Function crv fit spline 1D(XA As Variant,
                           YA As Variant, _
                           M As Long, _
                  Optional XIA As Variant, _
                  Optional WA As Variant, _
                  Optional XCA As Variant,
                  Optional YCA As Variant, _
                  Optional DCA As Variant,
                  Optional hermite As Boolean = False)
' ХА - х значения исходных данных (строка значений или массив)
' YA
       - у значения исходных данных (столбец значений или массив)
       - количество точек для сплайна интерполяции
        должно быть четное для hermite = True
       - таблица выходных значений
' XIA
         столбц значений (х) или массив в возрастающем порядке
' если не заданы возвращаются кубические коэффициента для сегментов
' WA - веса исходных данных
       - х значения матрицы ограничений (столбец или массив)
' XCA
' YCA - величина ограничения для заданного значения
         (столбец или массив)
' DCA - тип ограничения. 0 - значение, 1 - наклон.
```

```
' (столбец или массив).
' если хоть одно из ограничений не задано - они не учитываются
' результат
' значение функции для заданного XIA
```

A.4. crv_interpolation

```
' функция поиска значения функции по заданным табличным данным
\hookrightarrow (интерполяция)
Public Function crv_interpolation(x_points, y_points, x_val, _
                      Optional ByVal type interpolation As Integer = 0)
' x points - таблица аргументов функции
' y points - таблица значений функции
              количество агрументов и значений функции должно совпадать
              для табличной функции одному аргументу соответствует
              строго одно значение функции (последнее)
' x val
            - аргумент для которого надо найти значение
              одно значение в ячейке или диапазон значений
              для диапазона аргументов будет найден диапазон значений
              диапазоны могут быть заданы как в строках,
              так и в столбцах
' type interpolation - тип интерполяции
              0 - линейная интерполяция
              1 - кубическая интерполяция
              2 - интерполяция Акима (выбросы)
                  https://en.wikipedia.org/wiki/Akima spline
              3 - кубический сплай Катмулла Рома
                  https://en.wikipedia.org/wiki/Cubic Hermite spline
 результат
              значение функции для заданного x val
```

A.5. crv_interpolation_2D

```
' функция поиска значения функции по двумерным табличным данным
\hookrightarrow (интерполяция 2D)
Function crv interpolation 2D(XA As Variant, _
                              YA As Variant, _
                              FA As Variant,
                     Optional XYIA As Variant, _
                     Optional out As Long = 1,
                     Optional ByVal type interpolation As Integer = 0)
                     ⇔ As Variant
' XA
      - х значения исходных данных (строка значений или массив)
' YA
        - у значения исходных данных (столбец значений или массив)
       - табличные значения интерполируемой функции,
         двумерная таблица или массив
' XYIA - таблица значений для которой надо найти результат
         два столбца значений (х,у) или массив с двумя колонками
         если не заданы возвращаются кубические коэффициента
         для каждого сегмента
' out
       - для интерполяции кубическими сплайнами
            out = 0 возвращаются только значения
            out = 1 возвращаются значения и производные
' type interpolation - тип интерполяции
                     0 - линейная интерполяция
                     1 - кубическая интерполяция
' результат
           значение функции для заданного XYIA
```

A.6. crv intersection

```
'Поиск пересечений для кривых заданных таблицами.
'Используется линейная интерполяция.
'Возможно несколько решений.
Public Function crv_intersection(x1_points, y1_points, _ x2_points, y2_points)
' x1_points - таблица аргументов функции 1
' y1_points - таблица значений функции 1
```

```
количество агрументов и значений функции должно совпадать для табличной функции одному аргументу соответствует строго одно значение функции (последнее)

х2_points — таблица аргументов функции 2

у2_points — таблица значений функции 2

количество агрументов и значений функции должно совпадать для табличной функции одному аргументу соответствует строго одно значение функции (последнее)

результат

массив значений аргументов пересечений двух функций
```

A.7. crv_parametric_interpolation

```
' интерполяция функции заданной параметрически
' параметр номер значения
Public Function crv parametric interpolation(x points, y points, x val,
                       Optional ByVal type interpolation As Integer = 0,
                        Optional param points = -1)
' x points - таблица аргументов функции
' y points - таблица значений функции
              количество агрументов и значений функции должно совпадать
              для табличной функции одному аргументу соответствует
             строго одно значение функции (последнее)
            - аргумент для которого надо найти значение
x val
              одно значение в ячейке или диапазон значений
              для диапазона аргументов будет найден диапазон значений
              диапазоны могут быть заданы как в строках,
              так и в столбцах
' type interpolation - тип интерполяции
              0 - линейная интерполяция
              1 - кубическая интерполяция
              2 - интерполяция Акима (выбросы)
                  https://en.wikipedia.org/wiki/Akima spline
              3 - кубический сплайн Катмулла Рома
                  https://en.wikipedia.org/wiki/Cubic Hermite spline
 результат
              значение функции для заданного x val
```

A.8. crv_solve

```
' функция решения уравнения в табличном виде f(x) = y_val
' ищется значение аргумента соответствующее заданному значению
' используется линейная интерполяция
' возможно несколько решений
Public Function crv_solve(x_points, y_points, ByVal y_val As Double)
' x_points - таблица аргументов функции
' y_points - таблица значений функции
' количество агрументов и значений функции должно совпадать
' для табличной функции одному аргументу соответствует
' строго одно значение функции (последнее)
```

```
' y_val — значение функции для которого надо ищутся аргументы
' строго одно вещественное число (ссылка на ячейку)
' результат
' массив значений аргументов — решений уравнения
```

A.9. decode json

A.10. Ei

```
' Расчет интегральной показательной функции Ei(x)
Function Ei(ByVal x As Double)
' х - агрумент функции, может быть и положительным и отрицательным
' результат - значение функции
```

A.11. encode ambient formation string

```
' функция кодирования температурных парамметров окружающей среды
Public Function encode ambient formation string(
    Optional ByVal therm cond form WmC As Double = 2.4252,
    Optional ByVal sp heat_capacity_form_JkgC As Double = 200, _
    Optional ByVal therm cond cement WmC As Double = 6.965,
    Optional ByVal therm cond_tubing_WmC As Double = 32, __
    Optional ByVal therm cond casing WmC As Double = 32,
    Optional ByVal heat transfer casing liquid Wm2C As Double = 200,
    Optional ByVal heat transfer casing gas Wm2C As Double = 10,
    Optional ByVal heat transfer fluid convection Wm2C As Double = 200,
    Optional ByVal t calc hr As Double = 240)
' therm cond form WmC - теплопроводность породы окружающей среды
' sp heat capacity form JkgC - удельная теплоемкость породы окружающей
⇔ среды
' therm cond cement \mbox{WmC} - теплопроводность цементного камня вокруг
' therm cond tubing WmC - теплопроводность стенок НКТ
' heat transfer casing liquid Wm2C - теплопередача через затруб
\hookrightarrow с жидкостью
' heat transfer casing gas Wm2C - теплопередача через затруб с газом
' heat transfer fluid convection Wm2C - теплопередача в потоке
                                с жидкостью за счет конвекции
' t calc hr - время на которое расчитывается распределение температуры
```

A.12. encode_ESP_cable_string

```
' cable_X_Omkm - удельное реактивное сопротивление
' cable_t_max_C - максимально допустимая температура
' manufacturer - производитель, для справки
' name - название кабеля, для справки
' d_mm - диаметр жилы
' length_m - длина кабельной линии, м
```

A.13. encode ESP motor string

```
' функция кодирования параметров ПЭД в строку
Public Function encode ESP_motor_string(
            Optional ByVal motor ID As Long = 0,
            Optional ByVal U surf high lin V As Double,
            Optional ByVal f surf Hz As Double,
            Optional ByVal power fact kW As Double, _
            Optional ByVal U_nom_lin_V As Double, _
            Optional ByVal P nom kW As Double,
            Optional ByVal f nom Hz As Double,
            Optional ByVal eff nom fr As Double,
            Optional ByVal cosphi nom fr As Double, _
            Optional ByVal slip_nom_fr As Double, _
            Optional ByVal d od mm As Double,
            Optional ByVal Lambda As Double, _
            Optional ByVal alpha0 As Double,
            Optional ByVal xi0 As Double,
           Optional ByVal Ixcf As Double)
'motor ID - тип 0 - постоянные значения,
               1 - задается по каталожным кривым, ассинхронный
               2 - задается по схеме замещения, ассинхронный
'U surf high lin V - напряжение на поверхности
                    на высокой стороне трансформатора
'f surf Hz - частота питающего напряжения
'U nom lin V - номинальное напряжение двигателя, линейное, В
'P nom kW - номинальная мощность двигателя kBT
'f nom Hz - номинальная частота тока, Гц
'eff nom fr - КПД при номинальном режиме работы
'cosphi nom fr - коэффициент мощности при номинальном режиме работы
'slip nom fr - скольжение при номинальном режиме работы
'd od mm - внешний диаметр - габарит ПЭД
```

```
'lambda - для motorID = 2 перегрузочный коэффициент

' отношение макс момента к номинальному

'alpha0 - параметр. влияет на положение макс КПД.для motorID = 2

'xi0 - параметр. определяет потери момента при холостом ходе.

' для motorID = 2

'Ixcf - поправка на поправку тока холостого хода

' при изменении напряжения и частоты от минимальной.
```

A.14. encode ESP_pump_string

```
' функция кодирования параметров работы УЭЦН в строку
Public Function encode ESP pump string(
           Optional ByVal ESP ID As Long = "1005",
           Optional ByVal head nom m As Double = 2000, _
           Optional ByVal num stages As Integer = 0, _
           Optional ByVal freq Hz As Double = 50,
           Optional ByVal gas correct,
           Optional ByVal c calibr,
           Optional ByVal dnum stages integrate = 1)
' esp ID
               - идентификатор насоса
' head nom m
               - номинальный напор системы УЭЦН
                - соответствует напора в записи ЭЦН 50-2000
' num_stages - количество ступеней, если задано
                 перекрывает значение напора
' freq Hz
               - частота, Гц
' t intake C
               - температура на приеме насоа
' t dis C
               - температура на выкиде насоса.
                  если = 0 и calc along flow = 1 то рассчитывается
' gas correct - деградация по газу:
      0 - 2 задает значение вручную;
      10 стандартный ЭЦН (предел 25%);
      20 ЭЦН с газостабилизирующим модулем (предел 50%);
      30 ЭЦН с осевым модулем (предел 75%);
      40 ЭЦН с модифицированным ступенями (предел 40%).
      110+, тогда модель n-100 применяется ко всем ступеням отдельно
         Предел по доле газа на входе в насос после сепарации
         на основе статьи SPE 117414 (с корректировкой)
        поправка дополнительная к деградации (суммируется).
' c calibr - коэффициент поправки на напор.
```

```
' если массив то второе значение - поправыка на подачу (множитель)
' третье на мощность (множитель)
' dnum_stages_integrate - шаг интегрирования для расчета
' результат — строка с параметрами УЭЦН
```

A.15. encode_ESP_separation_string

```
' функция кодирования газосепаратора
Public Function encode ESP separation string(
           Optional ByVal separation mode As String, _
           Optional ByVal gassep type As Long,
           Optional ByVal natsep_type As Long = 0, _
           Optional ByVal psep_man_atma As Double, _
            Optional ByVal tsep man C As Double,
           Optional ByVal ksep gassep man d As Double,
           Optional ByVal ksep nat man d As Double,
           Optional ByVal ksep liquid man d As Double,
           Optional ByVal M Nm As Double,
           Optional ByVal manufacturer As String = "no",
           Optional ByVal name As String = "no",
           Optional ByVal length m As Double)
' separation mode - режим расчета сепарации
' gassep type - тип - номер из базы
' natsep type - модель расчета естественной сепарации
' psep_man_atma - давление для расчета
                     коэффициента сепарации заданного вручную
' tsep man C - температура для расчета
                     коэффициента сепарации заданного вручную
' ksep gassep man d - коэффициент сепарации ГС заданный вручную
' ksep nat man d - коэффициент сепарации натуральной
                   заданный вручную
' ksep liquid man d - коэффициент сепарации жидкости для режима
                     потока через затруб
' М Nm - момент на валу
' manufacturer - производитель, для справки
' name - название кабеля, для справки
' length m - длина кабельной линии, м
```

A.16. encode_feed

```
'Функция кодирования параметров потока флюидов в строку,
Public Function encode_feed(

Optional ByVal q_liq_sm3day As Double = 10, _

Optional ByVal fw_perc As Double = -1, _

Optional ByVal rp_m3m3 As Double = -1, _

Optional ByVal q_gas_free_sm3day As Double = -1, _

Optional ByVal fluid As String = PVT_DEFAULT)

' q_liq_sm3day - дебит жидкости в ст.условиях.

' fw_perc - ободненность, %

' rp_m3m3 - газовый фактор, м3/м3:

' q_gas_free_sm3day - расход свободного газа, ст. м3/сут

' результат - закодированная строка
```

A.17. encode_json

A.18. encode_PVT

```
' Функция кодирования параметров PVT в строку,

' для передачи PVT свойств в прикладные функции Унифлок.

Public Function encode_PVT(

Optional ByVal gamma_gas As Double = const_gg_,

Optional ByVal gamma_oil As Double = const_go_,

Optional ByVal gamma_wat As Double = const_gw_,
```

```
Optional ByVal rsb m3m3 = const rsb default,
                   Optional ByVal pb atma,
                   Optional ByVal t res C,
                   Optional ByVal bob_m3m3, _
                   Optional ByVal muob cP,
                   Optional ByVal PVT corr set
' gamma gas - удельная плотность газа, по воздуху.
             По умолчанию const gg = 0.6
' gamma oil - удельная плотность нефти, по воде.
            По умолчанию const go = 0.86
' gamma wat - удельная плотность воды, по воде.
            По умолчанию const gw = 1
' rsb m3m3 - газосодержание при давлении насыщения, м3/м3.
            По умолчанию const rsb default = 100
' rp m3m3 - замерной газовый фактор, м3/м3.
          Имеет приоритет перед rsb если rp < rsb
' pb atma - давление насыщения при температуре t res C, атма.
           Опциональный калибровочный параметр,
           если не задан или = 0, то рассчитается по корреляции.
' t res C - пластовая температура, С.
           Учитывается при расчете давления насыщения.
           По умолчанию const tres default = 90
' bob m3m3 - объемный коэффициент нефти при давлении насыщения
            и пластовой температуре, м3/м3.
           По умолчанию рассчитывается по корреляции.
' muob cP - вязкость нефти при давлении насыщения.
            и пластовой температуре, сП.
            По умолчанию рассчитывается по корреляции.
' PVT corr set - номер набора PVT корреляций для расчета:
           0 - на основе корреляции Стендинга;
           1 - на основе кор-ии Маккейна;
           2 - на основе упрощенных зависимостей.
' результат - закодированная строка
```

A.19. encode t model

```
' кодирование параметров температурной модели трубы/скважины

Public Function encode_t_model(Optional t_model As TEMP_CALC_METHOD =

→ StartEndTemp,

Optional t_list_C As Variant = 50,

Optional t_start_C As Double = -100,

Optional t_end_C As Double = -100,

Optional param As String = "")

' t_model - номер температурной модели
' t_list_C - массив n*2 распределения температуры
' t_start_C - температура в начале трубы
' t_end_C - температура в конце трубы
' рагам - параметры температурной модели
' список параметров в мануале
```

A.20. encode well construction string

```
' функция кодирования параметров работы скважины с газлифтом
Public Function encode well construction string(
            ByVal h perf m As Double,
            ByVal h tub_m As Double, _
            ByVal h list m As Variant, _
            ByVal d tub list_mm As Variant, _
            ByVal d cas list mm As Variant,
   Optional ByVal d choke mm As Double,
   Optional ByVal t_val_C As Variant, _
    Optional ByVal rough m As Double = 0.0001)
'h perf m - глубина перфорации по длине скважины
           точка узлового анализа для забоя
'h tub m - глубина спуска НКТ, или глубина
          спуска ЭЦН
'h list m - траектория скважины, если число то измеренная
          длина, range или таблица [0..N,0..1] то траектория
'd tub list mm - диаметр НКТ. range или таблица [0..N,0..1]
'd cas list mm - диаметр эксп колонны.
              range или таблица [0..N,0..1]
'd choke mm - диаметр штуцера
't val C - температура вдоль скважины
           если число то температура на устье скважины
           если range или таблица [0..N,0..1] то температура
```

```
' окружающей среды по вертикальной глубине, С
'rough_m - шероховатость трубы
' результат - строка с закодированными параметрами
```

A.21. ESP_eff_fr

```
' номинальный КПД ЭЦН (на основе каталога ЭЦН)
' учитывается поправка на вязкость
Public Function ESP eff fr(
       ByVal qliq m3day As Double,
        Optional ByVal num_stages As Integer = 1, _
        Optional ByVal freq_Hz As Double = 50, _
        Optional ByVal pump_id As Long = 737, _
        Optional ByVal mu_cSt As Double = -1, _
        Optional ByVal c calibr = 1) As Double
' qliq m3day - дебит жидкости в условиях насоса (стенд)
' num stages - количество ступеней
' freq Hz
           - частота вращения насоса
' pump id
             - номер насоса в базе данных
' mu cSt
           - вязкость жидкости
' c calibr - коэффициент поправки на напор.
               если массив то второе значение - поправыка на подачу
\hookrightarrow (множитель)
               третье на мощность (множитель)
```

A.22. ESP_head_m

A.23. ESP_id_by_rate

```
' функция возвращает идентификатор типового насоса по значению
' номинального дебита
Public Function ESP_id_by_rate(q As Double)
' возвращает ID в зависимости от номинального дебита.
' насосы подобраны вручную из текущей базы.
' Q - номинальный дебит
```

A.24. ESP_name

```
' название ЭЦН по номеру
Public Function ESP_name(Optional ByVal pump_id As Long) As String
' pump_id - идентификатор насоса в базе данных
' результат - название насоса
```

A.25. ESP_optRate_m3day

A.26. ESP_power_W

```
' номинальная мощность потребляемая ЭЦН с вала (на основе каталога ЭЦН)
' учитывается поправка на вязкость
Public Function ESP power W(
       ByVal qliq_m3day As Double, _
        Optional ByVal num_stages As Integer = 1, _
        Optional ByVal freq_Hz As Double = 50, _
        Optional ByVal pump_id As Long = 737, _
        Optional ByVal mu_cSt As Double = -1, _
        Optional ByVal c calibr = 1) As Double
' мощность УЭЦН номинальная потребляемая
' qliq m3day - дебит жидкости в условиях насоса (стенд)
' num stages - количество ступеней
' freq Hz
              - частота вращения насоса
' pump id
            - номер насоса в базе данных
' mu cSt - вязкость жидкости
' c calibr
             - коэффициент поправки на напор.
               если массив то второе значение - поправыка на подачу
\hookrightarrow (множитель)
               третье на мощность (множитель)
```

A.27. ESP_rate_max_sm3day

A.28. E 1

```
' Расчет интегральной показательной функции $E_1(x)$
' для вещественных положительных x, x>0 верно E_1(x)=- Ei(-x)

Function E_1(ByVal x As Double)
' x - агрумент функции, может быть и положительным и отрицательным
' результат - значение функции
```

A.29. feed_calc

```
' результат - массив всех расчетных значений,
' с подписями во второй строке
```

A.30. feed_CJT_Katm

A.31. feed_gas_fraction_d

```
' результат - массив, значение коэффициента Джоуля Томсона потока,
подпись, и лог расчета если подключен
```

A.32. feed mod mix

A.33. feed_mod_separate_gas

```
' функция расчета свойст потока после сепарации газа
Public Function feed_mod_separate_gas( _
              ByVal k sep As Double, _
              ByVal p_atma As Double, _
              ByVal t C As Double,
              ByVal feed As String,
     Optional ByVal param As String = "")
' k sep
          - коэффициент сепарации газа
' p atma
            - давление, атм
' t C
            - температура, С.
' feed - параметры потока флюидов, дебит, обводненность и пр
             используйте encode feed для генерации
' param - параметры расчета и вывода результатов
```

```
' результат - массив, расход ГЖС в рабочих условиях,
подпись, и лог расчета если подключен
```

A.34. feed mod split

```
' функция расчета свойств разделенного потока флюидов
Public Function feed mod split(
              ByVal k sep gas As Double,
              ByVal k_sep_oil As Double, _
              ByVal k sep wat As Double, _
              ByVal p atma As Double,
              ByVal t_C As Double, _
              ByVal feed As String,
     Optional ByVal param As String = "")
' k sep gas - коэффициент сепарации газа
' k sep oil - коэффициент сепарации газа
' k sep wat - коэффициент сепарации газа
' p_atma - давление, атм
' t C
            - температура, С.
' feed - параметры потока флюидов, дебит, обводненность и пр
             используйте encode feed для генерации
' param - параметры расчета и вывода результатов
' результат - массив, расход ГЖС в рабочих условиях,
             подпись, и лог расчета если подключен
```

A.35. feed mu mix cP

```
't_C - температура, C.
'feed - параметры потока флюидов, дебит, обводненность и пр
' используйте encode_feed для генерации
'param - параметры расчета и вывода результатов
'peзультат - массив, расход ГЖС в рабочих условиях,
подпись, и лог расчета если подключен
```

A.36. feed p gas fraction atma

```
' расчет давления при котором
' достигается заданная доля газа в потоке
Public Function feed_p_gas_fraction_atma(
              ByVal free gas d As Double, _
              ByVal t C As Double,
              ByVal feed As String,
     Optional ByVal param As String = "",
     Optional ByVal ksep add fr As Double = 0)
' free_gas_d - допустимая доля газа в потоке;
' t C - температура, C.
' feed - параметры потока флюидов, дебит, обводненность и пр
             используйте encode feed для генерации
' param - параметры расчета и вывода результатов
' ksep add fr - коэффициент сепарации газа из потока
' результат - массив, число - давление,
             подпись, и лог расчета если подключен
```

A.37. feed_q_mix_rc_m3day

```
' p_atma - давление, атм
' t_C - температура, C.
' feed - параметры потока флюидов, дебит, обводненность и пр
' используйте encode_feed для генерации
' param - параметры расчета и вывода результатов
' результат - массив, расход ГЖС в рабочих условиях,
' подпись, и лог расчета если подключен
```

A.38. feed rho mix kgm3

A.39. feed_rp_gas_fraction_m3m3

```
Optional ByVal ksep_add_fr As Double = 0)

'free_gas_d - допустимая доля газа в потоке;

't_C - температура, С.

'feed - параметры потока флюидов, дебит, обводненность и пр

' используйте encode_feed для генерации

'param - параметры расчета и вывода результатов

'ksep_add_fr - коэффициент сепарации газа из потока

'peзультат - массив, число - давление,

подпись, и лог расчета если подключен
```

A.40. GLV_p_atma

```
' функция расчета давления на входе или на выходе
' газлифтного клапана (простого) при закачке газа.
' результат массив значений и подписей
Public Function GLV p atma(ByVal d mm As Double,
                          ByVal p calc_atma As Double, _
                          ByVal q gas sm3day As Double,
                          Optional ByVal gamma g As Double = 0.6,
                          Optional ByVal t C As Double = 25,
                          Optional ByVal calc along flow As Boolean =
                           \hookrightarrow False,
                          Optional ByVal p_open_atma As Double = 0, _
                           Optional ByVal c calibr As Double = 1)
'd mm
              - диаметр клапана, мм
' p calc atma
               - давление на входе (выходе) клапана, атма
' q_gas_sm3day - расход газа, ст. м3/сут
' gamma g
               - удельная плотность газа
'tC
                - температура в точке установки клапана
' calc along flow - направление расчета:
               0 - против потока (расчет давления на входе);
               1 - по потоку (расчет давления на выходе).
               - давление открытия/закрытия клапана, атм
' p open atma
' c calibr - коэффициент калибровки
```

A.41. GLV_q_gas_sm3day

```
' функция расчета расхода газа через газлифтный клапан/штуцер
' результат массив значений и подписей
Public Function GLV q gas sm3day(ByVal d mm As Double,
                                ByVal p in atma As Double, _
                                ByVal p out atma As Double,
                                ByVal gamma g As Double,
                                ByVal t C As Double,
                       Optional ByVal c calibr As Double = 1)
'd mm
            - диаметр основного порта клапана, мм
' p in atma - давление на входе в клапан (затруб), атма
' p out atma - давление на выходе клапана (НКТ), атма
' gamma g
             - удельная плотность газа
' t C
             - температура клапана, С
```

A.42. GL_decode_string

```
'' функция расшифровки параметров газлифтной компоновки скважины
'Public Function GL_decode_string(well_GL_str As String, _
' Optional ByVal getStr As Boolean = False)
'' well_GL_str - строка с параметрами газлифтной скважины
'' getStr - флаг проверки работы функции
'' по умолчанию False (0) - функция выдает объект CESPsystem
'' если задать True - функция раскодирует строку и снова закодирует
'' и выдаст строку (можно использовать из листа)
'' результат - объект CESPsystem
```

A.43. GL_encode_string

```
'' функция кодирования параметров работы скважины с газлифтом
'Public Function GL_encode_string( _
```

```
Optional q_gas_inj_sm3day As Double = 0, _
Optional p_gas_inj_atma As Double = 0, _
Optional d_gas_inj_mm As Double = 0, _
Optional d_gas_inj_mm As Double = 0, _
Optional HmesGLV_m = 0, _
Optional dGLV_mm = 0, _
Optional PsurfGLV_atma = 0)

q_gas_inj_sm3day - pacxod газа закачки
p_gas_inj_atma - давление газа закачки на поверхности
d_gas_inj_mm - диаметр штуцера регулировки закачки газа на

поверхности
HmesGLV_m - измеренные глубины установки газлифтных клапанов
dGLV_mm - диаметры порта установленных газлифтных клапанов
PsurfGLV_atma - давления зарядки газлифтных клапанов
PsurfGLV_atma - строка с закодированными параметрами
```

A.44. IPR_pi_sm3dayatm

```
' расчет коэффициента продуктивности пласта
' по данным тестовой эксплуатации
Public Function IPR pi sm3dayatm(
                ByVal Qtest_sm3day As Double, _
                ByVal pwf_test_atma As Double, _
                ByVal p_res_atma As Double, _
       Optional ByVal fw perc As Double = 0,
       Optional ByVal pb_atma As Double = -1)
' Qtest sm3day - тестовый дебит скважины, ст.м3/сут
' pwf test atma - тестовое забойное давление, абс. атм
' p_res_atma - пластовое давление, абс. атм
               - обводненность, %
' fw perc
' pb atma
               - давление насыщения, абс. атм
' результат
               - значение коэффициента продуктивности, ст.м3/сут/атм
```

A.45. IPR_p_wf_atma

A.46. IPR_q_liq_sm3day

```
' расчет дебита по давлению и продуктивности
Public Function IPR q liq sm3day(
                ByVal pi sm3dayatm As Double, _
                ByVal p res_atma As Double, _
                ByVal p_wf_atma As Double, _
       Optional ByVal fw perc As Double = 0,
       Optional ByVal pb atma As Double = -1)
' pi sm3dayatm - коэффициент продуктивности, ст.м3/сут/атм
' p_res_atma - пластовое давление, абс. атм
' p wf atma
                - забойное давление, абс. атм
' fw perc
               - обводненность, %
' pb atma
               - давление насыщения, абс. атм
' результат - значение дебита жидкости, ст.м3/сут
```

A.47. MF_choke_calibr

```
' расчет корректирующего фактора (множителя) модели штуцера под замеры
' медленный расчет - калибровка подбирается
Public Function MF_choke_calibr( __
           ByVal feed As String,
           ByVal d choke mm As Double,
           Optional ByVal p in atma As Double = -1,
           Optional ByVal p_out_atma As Double = -1, _
           Optional ByVal d pipe mm As Double = 70,
           Optional ByVal t_choke_C As Double = 20, _
           Optional ByVal param As String = "")
' feed
              - закодированная строка с параметрами потока.
' d choke mm
              - диаметр штуцера (эффективный), мм
' p in atma
               - давление на входе (высокой стороне)
' p out atma
              - давление на выходе (низкой стороне)
' d pipe mm
              - диаметр трубы до и после штуцера, мм
' t_choke C
              - температура, С.
' param
              - параметры расчета json строка
' результат
              - число - калибровочный коэффициент для модели.
                 штуцера - множитель на дебит через штуцер
```

A.48. MF choke calibr fast

A.49. MF_choke_p_atma

```
' расчет давления в штуцере (дросселе)
Public Function MF_choke_p_atma(
                    ByVal d_choke_mm As Double, _
                    ByVal feed As String,
                    ByVal p calc_from_atma As Double, _
           Optional ByVal t_choke_C As Double = 20, _
           Optional ByVal d pipe mm As Double = 70,
           Optional ByVal calc along flow As Boolean = True,
           Optional ByVal param As String = "")
' d choke mm
               - диаметр штуцера (эффективный)
' feed
                 - закодированная строка с параметрами потока.
' p calc from atma - давление с которого начинается расчет, атм
                 граничное значение для проведения расчета
                 либо давление на входе, либо на выходе
' t choke C
                - температура потока, С.
' d pipe mm - диаметр трубы до и после штуцера
' calc along flow - флаг направления расчета относительно потока
' param
                 - параметры расчета json строка
' результат
                - число - массив значений с параметрами штуцера
                  и давление на штуцере на расчетной стороне.
```

A.50. MF_choke_q_sm3day

```
' расчет давления в штуцере
Public Function MF choke q sm3day(
                    ByVal feed As String,
                    ByVal d choke mm As Double, _
                    ByVal p_in_atma As Double, _
                    ByVal p out atma As Double,
           Optional ByVal t choke C = 20,
           Optional ByVal d pipe mm As Double = 70,
           Optional ByVal param As String = "")
' feed
              - закодированная строка с параметрами потока.
' d choke mm - диаметр штуцера (эффективный)
' p in atma
              - давление на входе в штуцер, атм.
               высокая сторона
' p_out_atma - давление на выходе из штуцера, атм.
               низкая сторона
' t choke C
             - температура потока, С.
' d_pipe mm
             - диаметр трубы до и после штуцера
' param
              - параметры расчета json строка
              - число - массив значений с параметрами штуцера
' результат
                и давление на штуцере на расчетной стороне.
```

A.51. MF_dpdl_atmm

```
Optional ByVal theta deg As Double = 90,
   Optional ByVal hcorr As Integer = 1,
   Optional ByVal param out As Integer = 0,
   Optional ByVal c calibr_grav As Double = 1, _
   Optional ByVal c calibr fric As Double = 1)
' расчет градиента давления по одной из корреляций
' d m - диаметр трубы в которой идет поток
' р atma - давление в точке расчета
' Ql rc m3day - дебит жидкости в рабочих условиях
' Qg rc m3day - дебит газа в рабочих условиях
' mu oil cP - вязкость нефти в рабочих условиях
' mu gas cP - вязкость газа в рабочих условиях
' sigma oil gas Nm - поверхностное натяжение
             жидкость газ
' rho lrc_kgm3 - плотность нефти
' rho grc kgm3 - плотность газа
^{\prime} eps m ^{-} шероховатость
' theta deg - угол от горизонтали
' hcorr - тип корреляции
' param out - параметр для вывода
' c calibr grav - калибровка гравитации
' c calibr fric - калибровка трения
```

A.52. MF_pipe_p_atma

```
' feed - параметры потока флюидов json строка. Используйте
' функцию encode_feed() для генерации
' construction - параметры конструкции json строка. Используйте
' функцию encode_pipe() для генерации
' t_model - параметры температурной модели json строка.
' Используйте функцию encode_feed() для генерации
' calc_along_coord - направление расчета относительно координат.
' flow_along_coord - направление потока относительно координат.
' param - дополнительные параметры расчета потока
' результат - число - давление на другом конце трубы atma.
' и распределение параметров по трубе
```

A.53. PVT bg m3m3

A.54. PVT_bo_m3m3

```
' расчет объемного коэффициента нефти
Public Function PVT_bo_m3m3(

ByVal p_atma As Double,

ByVal t_C As Double, _
```

```
ByVal PVT_prop As String)

' p_atma - давление, атм

' t_C - температура, C.

' PVT_prop - строка с параметрами флюида,

' используйте encode_pvt для ее генерации

' Возвращает значение объемного коэффициента нефти, м3/м3

' для заданных термобарических условий.
```

A.55. PVT_bw_m3m3

A.56. PVT_calc

```
't_C - температура, C.
'PVT_prop - статичные свойства флюида - плотности rsb и пр
' используйте encode_PVT для генерации
'param - набор параметров расчета в виде json строки
'
Возвращает значения всех PVT свойств
'для заданных термобарических условий.
```

A.57. PVT_compressibility_gas_1atm

A.58. PVT_compressibility_oil_1atm

```
используйте encode_pvt для ее генерации
результат - число
Возвращает коэффициента поверхностного натяжения жидкость - газ, Нм
для заданных термобарических условий.
```

A.59. PVT_compressibility_wat_1atm

A.60. PVT_cp_gas_JkgC

```
' результат - число
' Возвращает коэффициента поверхностного натяжения жидкость - газ, Нм
' для заданных термобарических условий.
```

A.61. PVT_cp_oil_JkgC

A.62. PVT_cp_wat_JkgC

- ' Возвращает коэффициента поверхностного натяжения жидкость газ, Нм
- ' для заданных термобарических условий.

A.63. PVT_cv_gas_JkgC

A.64. PVT_mu_gas_cP

A.65. PVT_mu_oil_cP

A.66. PVT_mu_wat_cP

A.67. PVT_pb_atma

A.68. PVT_rho_gas_kgm3

A.69. PVT_rho_oil_kgm3

```
' расчет плотности нефти в рабочих условиях
Public Function PVT_rho_oil_kgm3( _
```

```
ByVal p_atma As Double, _
ByVal t_C As Double, _
ByVal PVT_prop As String)

' p_atma - давление, атм
' t_C - температура, C.
' PVT_prop - строка с параметрами флюида,
' используйте encode_pvt для ее генерации
'
' результат - плотность нефти
' при заданных термобарических условиях, кг/м3.
```

A.70. PVT_rho_wat_kgm3

A.71. PVT_rs_m3m3

```
't_C - температура, C.
'PVT_prop - строка с параметрами флюида,
' используйте encode_pvt для ее генерации
'
Возвращает значение газосодержания, м3/м3
'для заданных термобарических условий.
```

A.72. PVT_salinity_ppm

A.73. PVT_ST_liqgas_Nm

```
' результат - число
' Возвращает коэффициента поверхностного натяжения жидкость - газ, Нм
' для заданных термобарических условий.
```

A.74. PVT_ST_oilgas_Nm

A.75. PVT_ST_watgas_Nm

```
' Возвращает коэффициента поверхностного натяжения вода - газ, Нм
```

A.76. PVT_**z**

A.77. transient_def_cd

```
' расчет безразмерного коэффициента влияния ствола скважины

→ (определение)

Function transient_def_cd(ByVal cs_1atm As Double, _

Optional ByVal rw_m As Double = 0.1, _

Optional ByVal h_m As Double = 10, _

Optional ByVal porosity As Double = 0.2, _

Optional ByVal ct_1atm As Double = 0.00001 _

) As Double

' cs_1atm — коэффициент влияния ствола скважины, 1/атм
' rw_m — радиус скважины, м
' h_m — толщина пласта, м
' porosity — пористость
```

^{&#}x27; для заданных термобарических условий.

```
' ct_latm - общая сжимаемость системы в пласте, 1/атм
' результат - безразмерный коэффициент влияния ствола скважины cd
```

A.78. transient def cs 1atm

```
' расчет коэффициента влияния ствола скважины (определение)
Function transient def cs latm(ByVal cd As Double,
            Optional ByVal rw_m As Double = 0.1, _
            Optional ByVal h_m As Double = 10, _
            Optional ByVal porosity As Double = 0.2, _
            Optional ByVal ct latm As Double = 0.00001
            ) As Double
' cs latm
            - коэффициент влияния ствола скважины, 1/атм
' rw m
            - радиус скважины, м
' h m
            - толщина пласта, м
' porosity
            - пористость
' ct latm - общая сжимаемость системы в пласте, 1/атм
' результат - коэффициент влияния ствола скважины сs
```

A.79. transient_def_pd

```
' h_m — толщина пласта, м
' mu_cP — вязкость флюида в пласте, сП
' b_m3m3 — объемный коэффициент нефти, м3/м3
' результат — безразмерное время td
```

A.80. transient def p wf atma

```
' расчет безразмерного давления (определение)
Function transient def p wf atma(ByVal pd As Double,
                         ByVal q_liq_sm3day As Double, _
                Optional ByVal pi atma As Double = 250,
                Optional ByVal k mD As Double = 100,
                Optional ByVal h m As Double = 10, _
                Optional ByVal mu cP As Double = 1, _
                Optional ByVal b m3m3 As Double = 1.2
            ) As Double
' p wf atma - забойное давление, атма
' q liq sm3day - дебит запуска скважины, м3/сут в стандартных условиях
' pi_atma - начальное пластовое давление, атма
' k mD
            - проницаемость пласта, мД
'h m
            - толщина пласта, м
' mu cP
            - вязкость флюида в пласте, сП
' b_m3m3 - объемный коэффициент нефти, м3/м3
' результат - безразмерное время td
```

A.81. transient_def_td

```
' расчет безразмерного времени (определение)

Function transient_def_td(ByVal t_day As Double, _

Optional ByVal rw_m As Double = 0.1, _

Optional ByVal k_mD As Double = 100, _

Optional ByVal porosity As Double = 0.2, _

Optional ByVal mu_cP As Double = 1, _

Optional ByVal ct_latm As Double = 0.00001 _
```

```
) As Double
't_day - время для которого проводится расчет, сут
'rw_m - радиус скважины, м
'k_mD - проницаемость пласта, мД
'porosity - пористость
'mu_cP - вязкость флюида в пласте, сП
'ct_latm - общая сжимаемость системы в пласте, 1/атм
'результат - безразмерное время td
```

A.82. transient_def_t_day

```
' расчет времени по безразмерному времени (определение)
Function transient_def_t_day(ByVal td As Double, __
            Optional ByVal rw_m As Double = 0.1, _
            Optional ByVal k mD As Double = 100,
            Optional ByVal porosity As Double = 0.2, _
            Optional ByVal mu cP As Double = 1,
            Optional ByVal ct 1atm As Double = 0.00001
            ) As Double
' t day
           - время для которого проводится расчет, сут
           - радиус скважины, м
' rw m
' k mD
            - проницаемость пласта, мД
            - вязкость флюида в пласте, сП
' ct latm - общая сжимаемость системы в пласте, 1/атм
' результат - время t
```

A.83. transient_pd_radial

```
' Расчет неустановившегося решения уравнения фильтрации
' для различных моделей радиального притока к вертикльной скважине
' основано не решениях в пространстве Лапласа и преобразовании Стефеста
Function transient_pd_radial(ByVal td As Double, __
Optional ByVal cd As Double = 0, __
```

```
Optional ByVal skin As Double = 0,
                   Optional ByVal rd As Double = 1, _
                   Optional Model As Integer = 0)
'td
            - безразмерное время для которого проводится расчет
' cd
            - безразмерный коэффициент влияния ствола скважины
            - скин-фактор, безразмерный skin>0.
' skin
              для skin<0 используйте эффективный радиус скважины
            - безразмерное расстояние для которого проводится расчет
'rd
             rd=1 соответвует забою скважины
            - модель проведения расчета. О - модель линейного стока Еі
' model
              1 - модель линейного стока через преобразование Стефеста
              2 - конечный радиус скважины
              3 - линейный сток со скином и послепритоком
              4 - конечный радиус скважины со скином и послепритоком
' результат - безразмерное давление pd
```

A.84. transient pwf radial atma

```
' расчет изменения забойного давления после запуска скважины
' с постоянным дебитом (terminal rate solution)
Function transient_pwf_radial_atma(ByVal t hr As Double, __
                                  ByVal q liq sm3day As Double, _
                         Optional ByVal pi_atma As Double = 250, _
                         Optional ByVal skin As Double = 0,
                         Optional ByVal cs 1atm As Double = 0, _
                         Optional ByVal r m As Double = 0.1,
                         Optional ByVal rw_m As Double = 0.1, _
                         Optional ByVal k_mD As Double = 100, _
                         Optional ByVal h m As Double = 10,
                         Optional ByVal porosity As Double = 0.2, _
                         Optional ByVal mu_cP As Double = 1, _
                         Optional ByVal b m3m3 As Double = 1.2,
                         Optional ByVal ct latm As Double = 0.00001,
                         Optional ByVal Model As Integer = 0) As Double
             - время для которого проводится расчет, час
't hr
' q liq sm3day - дебит запуска скважины, м3/сут в стандартных условиях
' рі atma - начальное пластовое давление, атма
' skin
             - скин - фактор, может быть отрицательным
' cs latm - коэффициент влияния ствола скважины, 1/атм
```

```
'r m
             - расстояние от скважины для которого проводится расчет, м
'rw m
             - радиус скважины, м
' k mD
             - проницаемость пласта, мД
'h m
             - толщина пласта, м
' porosity
            - пористость
' mu cP
             - вязкость флюида в пласте, сП
' b m3m3
            - объемный коэффициент нефти, м3/м3
' ct latm
            - общая сжимаемость системы в пласте, 1/атм
' model
            - модель проведения расчета. 0 - модель линейного стока Еі
              1 - модель линейного стока через преобразование Стефеста
              2 - конечный радиус скважины
              3 - линейный сток со скином и послепритоком
              4 - конечный радиус скважины со скином и послепритоком
' результат - давление pwf
```

A.85. unf_version

```
' функция возвращает номер версии Унифлок VBA
Public Function unf_version() As String
```

A.86. well_ksep_natural_d

```
' t_intake_C - температура сепарации
' d_intake_mm - диаметр приемной сетки
' d_cas_mm - диаметр эксплуатационной колонны
' str_PVT - закодированная строка с параметрами PVT.
' если задана - перекрывает другие значения
' результат - число - естественная сепарация
```

A.87. well_ksep_total_d