Anatomy of a Data Science Project

Lecture 2, DSC 180A

Announcements

Friday Sections -- what are they for? Mandatory or not?

Lecture (Methodology) HW -- release first HW Tuesday. Do it in Friday lab.

First assignment -- "Data and the DGP" up soon on Domain webpage.

Career Readiness Survey

Data Science Lifecycle

The code for an investigation must:

- Be flexibly written.
- Clearly documented.
- Accessible to others.

In order to adapt to successive iterations through the lifecycle.

The Real Data Science Lifecycle

Poorly developed code results in:

- Fewer iterations and slower progress on the project
- Higher likelihood of mistakes in the results
- Difficult to understand conclusions
- The project fading into obscurity...

Better code ⇒ higher chance of success

Tools/Libraries for Managing Project Components

Managing Project Components

Too many tools to learn and new ones everyday!

Instead, learn the core issues:

- What contract does one component need to speak to another?
- Maximize the isolation of each component to enable easy code changes.
- Components relationship to computational graph:
 - When to recompute a step...
 - When can steps run in parallel?
- How can different components scale as the project or data grows in scope?
- Best use of 'configuration files' to manage and track iterations.

Domain Research

Domain Research informs the bulk of a project's structure:

- Why you made certain design decisions
- The context behind the quantities of interest
- The subset and kind of data used
- The cleaning logic and any simplifications in modeling

Understanding these choices requires:

- Extensive narrative documentation
- Code comments to explain specific instances requiring context

Documenting Domain Research

Markdown for exposition

- GitHub Rendered Markdown (e.g. README.md)
- Jupyter Notebook Reports (embedded markdown)
- Python Library auto-build documentation (Sphinx)
- R-markdown
- Hosted Webpage

Code Comments

- When domain expertise justifies detailed coding decisions.
- E.g. `... # filter non-voters in data, as case doesn't apply`

Question / Hypothesis

The question being investigated changes as a project evolves.

When the questions are similar:

- Write code parameterized to handle all questions simultaneously.
- Each choice of parameters ⇔ a different question.
- Parameters are kept in configuration files (e.g. json, ini, cfg, yaml).
 - E.g. Configuration file is instructions to run 10 instances of the investigation, for 10 different questions, simultaneously on 10 different servers (e.g. questions by year for 2010-2020)
- Strive to write (and rewrite) code to parameterize many possible questions!

Data ETL (extract-transform-load)

As a project evolves, the data may change or new data may be added...

- Keep schema and parameters in configuration (beware: magic numbers!)
- Is the source stable? (DB, API, Scrape)
 - Separate the data ingestion from any transformations
- Unnecessary computation wastes time and resources:
 - Problem: don't re-pull data because your cleaning code changed!
 - Answer: write intermediate files to disk (or a personal file store)
- Write processing code that is agnostic to the computer running it:
 - 'git clone => run' on your laptop or DataHub; scale up only when needed
 - Even better, is the intermediate data accessible from both? (and when do you want that?)

Model Building

Choosing the best model involves exploring *many* parameters!

- Keep track of parameters and results in configuration files.
- Use frameworks that enable 'pipelining' (e.g. sklearn, spark, tensorflow)
- Often need to scale-up processing on different servers

Continued Prediction / Inference

Once a model is built, a project often still lives on...

- Is the finished model being used for live predictions?
 - How does a scikit-learn model get called by a Java backend website?
 - `mdl.predict` may be called via HTTP-requests (RESTful interface).
- Model Quality Reporting:
 - If inference: is the project easily rerun on a new dataset? Can it be automated?
 - For live predictions: are the distributions of predictions stable? What is their quality? Can you create automated reporting?
- What if someone else uses their model? Does it work?
 - Package as a python module or in a Docker Container.

Conclusions / Decision / Report

Once a model is built to your satisfaction...

- Document and explain your results (e.g. in markdown).
- Justify any decisions made from the model
- Create reporting from the model
 - Update the reporting from new data, by rerunning project from scratch.
 - Email the compiled reporting (markdown=>HTML) automatically from a server.

Your project will fade into GitHub obscurity without good documentation!

A Template for Encouraging Best Practices

We will follow general opinion of Cookie cutter data science.

An organized project structure encourages a clean project!

The Data Scientist's Work Environment

- Local Development on laptop
 - Cheap and convenient
 - Higher efficiency in your 'home' environment
- Development on Server
 - More RAM and CPU available
 - Long running programs
- Need ability to do both!
 - Code must run both places
 - Both must have 'latest' versions

Remote Servers in DSC 180A

UCSD datahub as you know it:

- Jupyter portal just a server.
- Open a JupyterLab IDE by natigating to:
 - https://datahub.ucsd.edu/user/<NAME>/lab
- Open a Terminal from Jupyter to pull from git, etc...
- DataHub shuts down after 30 minutes of client inactivity =(

Remote Servers in DSC 180A

Accessing DataHub DSMLP through the Terminal.

- See Documentation: http://go.ucsd.edu/2CZladZ
- Use ssh to log-in remotely to a datahub server.
 - Personal and persistent disk space
 - Shared disk space among entire class (request from staff)
 - Ability to request CPU/GPU and more RAM
 - Ability to specify and update custom environment and software
 - Kick-off long running programs
- Use your own personal server; up your cloud-computing skills!

Logging into DSMLP Servers

- ssh <u>user@dsmlp-login.ucsd.edu</u> (your school username)
 - Logs you into your home directory in a jump-box.
- launch-scipy-ml.sh (launches a server with 8GB RAM)
 - Your home directory is also available from here (called a "Volume")
 - Other scripts launch-XXX-XXX.sh launch different server configurations
 - Can open a Jupyter Notebook from this server, if on campus network or VPN
- The launch scripts can take a Dockerfile that configures the environment.

