Sprawozdanie Jakub Świerczyński, Karolina Starzec

1. Cel

Celem było zbudowanie lekkiej aplikacji Streamlit, która klasyfikuje obrazy owoców/warzyw (zbiór Fruit-360 100 × 100 px) przy użyciu modelu w formacie ONNX. Końcowy produkt uruchamiany jest zarówno lokalnie, jak i w kontenerze Docker.

2. Zbiór danych i ich przygotowanie

- Pozyskanie danych

Model został wytrenowany na otwartym zbiorze Fruit-360, który zawiera surowe zdjęcia owoców w formacie RGB o rozdzielczości 100×100 pikseli. Dane są zorganizowane w podfolderach odpowiadających konkretnym odmianom owoców (np. *Apple Braeburn*, *Banana*, *Avocado*), co ułatwia wczytywanie ich z użyciem narzędzi typu ImageDataGenerator.

- Pogrupowanie danych

Oryginalny zbiór zawiera wiele szczegółowych odmian jednego gatunku (np. różne typy jabłek: *Apple Red 1*, *Apple Granny Smith*). W celu uproszczenia problemu klasyfikacji i zwiększenia liczebności klas, dokonano mapowania tych odmian na 82 ogólne kategorie (np. apple, banana, blueberry).

- Podział danych

Z każdej z 82 klas losowo wydzielono:

- 70% danych do zbioru treningowego wykorzystywanego podczas nauki modelu,
- 15% do zbioru walidacyjnego używanego do monitorowania jakości modelu w trakcie treningu i optymalizacji hiperparametrów,
- 15% do zbioru testowego używanego tylko po zakończeniu treningu, aby uzyskać niezależną ocenę skuteczności modelu.

- Dlaczego dzielimy dane na zbiory?

- Zbiór treningowy umożliwia modelowi naukę reprezentacji i wzorców charakterystycznych dla poszczególnych klas.
- Zbiór walidacyjny pozwala ocenić postęp treningu w sposób niezależny, zapobiegając przeuczeniu i umożliwiając dobór parametrów takich jak: współczynnik uczenia (learning rate), liczba epok, dropout czy architektura sieci.
- Zbiór testowy pozostaje "niewidoczny" aż do końca i daje obiektywną informację o generalizacji. Podział 70/15/15 jest kompromisem: 70 % zapewnia wystarczającą różnorodność do nauki, a po 15 % daje stabilną statystykę dla walidacji i testu, nie marnując zbyt wielu przykładów.

3. Wybór i implementacja modelu Al

- Wybór modelu

Wybrano model prostej sieci konwolucyjnej (CNN), który dobrze sprawdza się w zadaniach klasyfikacji obrazów z warstwami Conv, MaxPooling2D, Flatten, Dense oraz Dropout, tworząc klasyczną architekturę do rozpoznawania obrazów.

- Architektura

Blok	Parametry	Uzasadnienie
Conv 1	Conv2d(3 → 32, k=3, p=1) + ReLU	mały filtr 3 × 3 wychwytuje lokalne krawędzie
		przy minimalnej liczbie wag (0.9 k)
Pool 1	MaxPool2d(2)	redukcja wymiaru do 50 × 50, tłumi
		przesunięcia
Conv 2	Conv2d(32 → 64, k=3, p=1) + ReLU	podwaja kanały → głębsze cechy (tekstury)
Pool 2	MaxPool2d(2)	25 × 25 px, dalsza redukcja
Conv 3	Conv2d(64 → 128, k=3, p=1) + ReLU	128 kanałów wystarcza, by uchwycić
		zróżnicowanie 82 gatunków
Pool 3	MaxPool2d(2) → tensor 128 × 12 × 12	przygotowanie do warstwy w pełni połączonej
Classifier	Flatten → Linear(18432 → 256) + ReLU →	FC 256 pozwala na kompresję cech; Drop-out
	Dropout(0.3) → Linear(256 → 82)	0.3 (losowe "znikanie" neuronów) ogranicza
		przeuczenie.

- Hiperparametry

Kategoria	Wartość	Dlaczego tak?
Optymalizator	Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)	adaptacyjne LR przyspiesza zbieżność na małych batchach.
Learning Rate	1 × 10 ⁻³	przy LR = 1e-2 model divergował, przy 1e-4 zbiegał zbyt wolno.
Batch size	32	mieści się w VRAM 8 GB i stabilizuje estymację gradientu.
Epoki	20 + early-stop (zapis "best.pth" gdy val_loss ↓)	po 17 epokach poprawa < 0.1 pp → zatrzymano.
Augmentacje	RandomHorizontalFlip(), RandomRotation(10°)	zwiększają wariancję bez przesuwania klasy (owoce symetryczne).
Normalizacja	$(x-0.5)/0.5 \Rightarrow [-1,1]$	środek 0, jednostkowa skala kanałów – stabilniejsze gradienty.
Dropout	0.3	empiria: 0.2 skutkowało przeuczeniem, 0.4 spowalniało konwergencję.

Seed	42	zapewnia powtarzalność wyników przy losowym
		shufflu i augmentacjach.
		5 ,

4. Ocena wyników modelu

Skuteczność na zbiorze testowym (6 896 obrazów)

Accuracy = 99.94 % – tylko 4 błędy na cały zbiór.

Jednostkowe pomyłki dotyczą wyłącznie klas Banana, Strawberry i Nut Pecan (recall 0.99).

Macierz pomyłek

5. Wdrożenie modelu i monitorowanie

W celu uruchomienia modelu w środowisku produkcyjnym dokonano jego eksportu do formatu ONNX.

Aplikacja do klasyfikacji obrazów została stworzona przy użyciu frameworka Streamlit, który pozwala na szybkie prototypowanie interaktywnych interfejsów użytkownika. Użytkownik może przesłać obraz w formacie JPG lub PNG, a model ONNX dokona predykcji i wyświetli najbardziej prawdopodobną klasę wraz z poziomem pewności.

Całość została umieszczona w lekkim kontenerze Docker, co umożliwia szybkie i powtarzalne wdrożenie systemu na dowolnej maszynie (lokalnie, w chmurze, na serwerze).

Drag and drop file here

Limit 200MB per file • JPG, JPEG, PNG

Browse files

single-blueberry-huckleberry-on-white-260nw-353584685.jpg 10.2KB

shutterstock.com · 353584685

Podgląd

Prediction: Blueberry (99.23%)