บทที่ 2.

เมทริกซ์

Matrix

2.1 Introduction to the Matrix

เมทริกซ์ (Matrix หรือ Matrices) เป็นรูปแบบการเก็บข้อมูลที่เหมือนเป็น "กล่อง" ของข้อมูล ที่เราสามารถเก็บ ข้อมูลและค้นหาข้อมูลในแนว ซ้าย-ขวา (คอลัมน์ – column) หรือ บน-ล่าง (แถว - row) ได้ โดยปกติเมทริกซ์ เก็บข้อมูลเป็นตัวเลข หรือตัวแปร งานทางด้าน computer science เรารู้จักเมทริกซ์กันแล้วในรูปแบบ array 2 มิติ

ตัวอย่างการใช้งานเมทริกซ์เพื่อเก็บและแสดงข้อมูล ถ้าเราต้องการเก็บข้อมูลของเพื่อน 3 คน โดยต้องการจำนวน หน่วยกิตที่เรียนไปแล้วและเกรดเฉลี่ยที่ได้ เราสามารถเขียนในรูปแบบของเมทริกซ์ A ได้ดังนี้

เมทริกซ์เป็นการเก็บข้อมูลแบบหลายมิติ (multi-dimensional) เมื่อบอกขนาดของเมทริกซ์เราต้องบอกจำนวน แถว แล้วตามด้วยจำนวนคอลัมน์เสมอ จากตัวอย่างข้อมูลของเพื่อน เมทริกซ์ A มีขนาด (dimension) เป็น 2×3 เพราะเมทริกซ์เก็บข้อมูล 2 แถว และ 3 คอลัมน์ ตัวเลขแต่ละตัวในเมทริกซ์เรียกว่าสมาชิกของเมริกซ์ (element) และสามารถเรียกสมาชิกแต่ละตัวโดยการบอกตำแหน่งแถวและคอลัมน์ เช่น เกรดเฉลี่ยของ Jim มีค่าเป็น 3.20 และคือสมาชิกตัวที่ a₂₁ เพราะเป็นข้อมูลในแถวที่ 2 คอลัมน์ที่ 1

เมทริกซ์สามารถใช้ในการเก็บและนำเสนอข้อมูล และประยุกต์ใช้ในการแก้ปัญหาโจทย์สมการทางคณิตศาสตร์ แก้ปัญหาที่เราอาจเจอในชีวิตประจำวัน ซึ่งเราจะเห็นตัวอย่างในบทต่อไป ตัวอย่างอื่น ๆ ในการใช้เมทริกซ์เพื่อแสดงข้อมูล เช่น เปอร์เซ็นต์ยอดขาย smart phone แต่ละยี่ห้อทั่วโลก

Brands/ Years	2018	2019	2020
Huawei	14	16	18
Samsung	19	20	20
Apple	14	13	14
Xiaomi	8	8	10
Орро	8	8	9

จำนวนนิสิตที่ได้เกรดต่าง ๆ ในแต่ละวิขา

วิชา/ เกรด	А	В	С	D	Е
Programming	10	20	15	2	3
ООР	5	10	20	12	3
Database	5	5	15	20	5
Project	20	10	5	15	0

สรุปลักษณะการเขียนเมทริกซ์คือ

- เขียนสมาชิกเมทริกซ์ภายในเครื่องหมาย [...]
- ใช้ตัวอักษรพิมใหญ่ เช่น A, B, C, ...
- ขนาดของเมทริกซ์ระบุเป็น (m x n) โดย m คือจำนวนแถว และ n คือจำนวนคอลัมน์
- สมาชิกของเมทริกซ์แทนตัวพิมพ์เล็ก พร้อมทั้งระบุตำแหน่งแทนแถวและคอลัมน์ เช่น
 - O a₁₂ หมายถึง สมาชิกแถวที่ 1 คอลัมน์ที่ 2 ของเมทริกซ์ A
 - O b₂₃ หมายถึง สมาชิกแถวที่ 2 คอลัมน์ที่ 3 ของเมทริกซ์ B

ตัวอย่างการเขียนเมทริกซ์ A และสมาชิกคือ

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ตัวอย่าง 2.1 หาขนาดและสมาชิกของเมทริกซ์ต่อไปนี้

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 23 \\ 4 & 0 \\ 7 & 9 \end{bmatrix}, C = \begin{bmatrix} 5 \\ -8 \\ 2 \end{bmatrix}$$

วิธีทำ

เมทริกซ์ A มีขนาด 2 x 3เมทริกซ์ B มีขนาด 3 x 2

เมทริกซ์ C มีขนาด

a₂₁ มีค่าเป็น 2

b₁₂ มีค่าเป็น 23

c₃₁ มีค่าเป็น _____

c₂₂ มีค่าเป็น

2.1.1 ประเภทของเมทริกซ์

เมทริกซ์ที่มีลักษณะพิเศษและมีชื่อเรียกเฉพาะ มีดังนี้

ประเภท	คำอธิบาย	ตัวอย่าง
เมทริกซ์ศูนย์	เมทริกซ์ที่สมาชิกทุกตัวเป็นศูนย์	$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
Zero matrix	เขียนแทนด้วย <u>0</u>	
เมทริกซ์จัตุรัส	เมทริกซ์ที่มีจำนวนแถวเท่ากับจำนวน	$A_2 = \begin{bmatrix} 1 & 7 \\ 1 & 0 \end{bmatrix}$
Square matrix	คอลัมน์ ขนาดของเมทริกซ์เป็น n x n	FO 42 F7
	เขียนแทนด้วย A _n	$A_3 = \begin{bmatrix} 0 & 12 & 5 \\ 2 & 10 & 2 \\ 2 & -3 & 4 \end{bmatrix}$
เมทริกซ์เอกลักษณ์	เมทริกซ์จัตุรัสที่สมาชิกในแนวทแยงมี	$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Identity matrix	ค่าเป็นหนึ่งและ สมาชิกตำแหน่งอื่น ๆ	- 10 11
	มีค่าเป็นศูนย์	$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	เขียนแทนด้วย I _n	$\begin{bmatrix} & & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
เมทริกซ์แนวทแยง	เมทริกซ์จัตุรัสที่สมาชิกในแนวทแยง	$A_2 = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$
Diagonal matrix	เป็นศูนย์	
		$A_3 = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 5 \\ 6 & 9 & 0 \end{bmatrix}$
เมทริกซ์สามเหลี่ยมบน	เมทริกซ์จัตุรัสที่สมาชิกที่อยู่ใต้แนว	$\begin{bmatrix} 1 & 2 & 0 & 5 \\ 4 & 0 & 3 \end{bmatrix}$
Upper triangular matrix หรือ	ทแยงเป็นศูนย์ สมาชิกตัวอื่นเป็นค่า	1 2 0 5 0 4 0 3 0 0 5 5
Right triangular matrix	อะไรก็ได้	[<u>0 0 0 7</u>]
เมทริกซ์สามเหลี่ยมล่าง	เมทริกซ์จัตุรัสที่สมาชิกที่อยู่เหนือแนว	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 7 & 0 & 5 & 0 \\ 0 & 2 & 5 & 7 \end{bmatrix}$
Lower triangular matrix หรือ	ทแยงเป็นศูนย์ สมาชิกตัวอื่นเป็นค่า	0 0 0 0 7 0 5 0
Left triangular matrix	อะไรก็ได้	L0 2 5 7J

2.1.2 การเท่ากันของเมทริกซ์ (Equality of matrices)

เมทริกซ์ A เท่ากับเมทริกซ์ B ก็ต่อเมื่อสมาชิกทุกตัวของเมทริกซ์ A มีค่าเท่ากันกับสมาชิกที่ตำแหน่งเดียวกันของ เมทริกซ์ B นั่นคือ ถ้า $A=\begin{bmatrix}a_{ij}\end{bmatrix}_{m\times n}$ และ $B=\begin{bmatrix}b_{ij}\end{bmatrix}_{p\times q}$ แล้ว A=B ก็ต่อเมื่อ m=p, n=q และ $a_{ij}=b_{ij}$ สำหรับทุกค่า i และ j

ตัวอย่าง 2.2 จากเมทริกซ์ที่กำหนดให้ จงหาค่า a และ b

กำหนดให้
$$\begin{bmatrix} a^2 & b-3 \\ b^2 & -1 \end{bmatrix} = \begin{bmatrix} 49 & 3 \\ a+43 & a+b \end{bmatrix}$$

วิธีทำ

จากข้อมูลของ 2 เมทริกซ์ที่มีค่าเท่ากัน ดังนั้น

$$a^2 = 49$$
 _____(1)

$$b^2 = a + 43$$
 _____(2)

$$b - 3 = 3$$
 _____(3)

$$a + b = -1$$
 (4)

จากสมการ (3) จะได้ b = 6

แทนค่า b = 6 ในสมการ (4) จะได้ a = -7

2.1.3 การบวกและลบเมทริกซ์ (Adding and subtracting matrices)

เราสามารถบวกหรือลบเมทริกซ์ได้ ก็ต่อเมื่อเมทริกซ์ที่นำมาบวกหรือลบนั้น มีขนาดเท่ากัน (จำนวนแถวและ คอลัมน์เท่ากัน) โดยสามารถบวกหรือลบสมาชิกในตำแหน่งที่ตรงกันของเมทริกซ์

ตัวอย่าง 2.3 กำหนดให้
$$A=\begin{bmatrix}2&4\\6&0\\1&3\end{bmatrix}$$
 และ $B=\begin{bmatrix}1&2\\0&0\\4&2\end{bmatrix}$ หาค่าของ A + B และ A – B

วิธีทำ

$$A + B = \begin{bmatrix} 2 & 4 \\ 6 & 0 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 \\ 6+0 & 0+0 \\ 1+4 & 3+2 \end{bmatrix} = \begin{bmatrix} 3 & --- \\ 6 & --- \\ 5 & --- \end{bmatrix}$$

$$A - B = \begin{bmatrix} 2 & 4 \\ 6 & 0 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ -3 \end{bmatrix}$$

ตัวอย่าง 2.4 เราต้องการเก็บข้อมูลการซื้อของตลอด 3 เดือน โดยเก็บข้อมูลแยกเป็นซื้อที่ร้าน และซื้อออนไลน์ สิ่งของที่เราซื้อคือ เสื้อ กางเกง และหมวก เราสามารถเก็บข้อมูลเหล่านี้ในรูปแบบเมทริกซ์ได้ดังนี้

	มกราคม			กุมภาพันธ์			มีนาคม	
	ร้าน	Online		ร้าน	Online		ร้าน	Online
เสื้อ	2	5	เสื้อ	1	0	เสื้อ	4	2
กางเกง	2	2	กางเกง	4	3	กางเกง	5	3
หมวก	1	0	หมวก	2	2	หมวก	4	1
เมา	ทริกซ์: [2 2 1	5 2 0	เมทริกซ์: $\begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 2 \end{bmatrix}$ เมทริกซ์: $\begin{bmatrix} 4 & 2 \\ 5 & 3 \\ 4 & 1 \end{bmatrix}$		2] 3 1]			

เมทริกซ์ทั้งสามมีขนาดเท่ากันคือ 3×2 ดังนั้นถ้าเราต้องการดูจำนวนสิ่งของที่เราซื้อทั้ง 3 เดือน เราสามารถบวก เมทริกซ์ทั้งสามได้ดังนี้

$$\begin{bmatrix} 2 & 5 \\ 2 & 2 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 5 & 3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 2+1+4 & 5+0+2 \\ 2+4+5 & 2+3+3 \\ 1+2+4 & 0+2+1 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 11 & 8 \\ 7 & 3 \end{bmatrix}$$

จากผลลัพธ์การบวกเมทริกซ์ เราจะเห็นข้อมูลได้ง่ายขึ้น ว่า เราซื้อเสื้อจากร้านค้า 7 ตัว ซื้อออนไลน์อีก 7 ตัว ซื้อ กางเกงจากร้านค้า 11 ตัว ซื้อออนไลน์ 8 ตัว และซื้อหมวกจากร้านค้า 7 ใบ ซื้อออนไลน์ 3 ใบ

2.1.4 การคูณเมทริกซ์ด้วยสเกลาร์ (Scalar multiplication matrix)

เราสามารถคูณเมทริกซ์ด้วยค่าคงที่หรือสเกลาร์ได้ โดยการคูณค่าคงที่นั้นกับสมาชิกทุกตัวในเมทริกซ์ <u>หมายเหตุ</u> การคูณเมทริกซ์ด้วยสเกลาร์แตกต่างจากการคูณเมทริกซ์ด้วยเมทริกซ์ซึ่งจะอธิบายในหัวข้อต่อไป

ตัวอย่าง 2.5 กำหนดให้
$$A = \begin{bmatrix} 2 & 4 \\ 6 & 0 \\ 1 & 3 \end{bmatrix}$$

$$2A = \begin{bmatrix} 4 & 8 \\ 12 & 0 \\ 2 & 6 \end{bmatrix}$$

$$-5A = \begin{bmatrix} -10 & -20 \\ -30 & 0 \\ -5 & -15 \end{bmatrix}$$

ตัวอย่าง 2.6 จาก

ตัวอย่าง 2.4 ถ้าเราต้องการรู้ว่า ถ้าเดือนมีนาคมเราซื้อของเป็น 5 เท่าของที่ซื้อไปจริงๆ ในเดือนนี้เราจะซื้อของ ทั้งหมดกี่ชิ้น เราสามารถทำได้โดยการคูณเมทริกซ์ของเดือนมีนาคม ด้วย 5

$$5\begin{bmatrix} 4 & 2 \\ 5 & 3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 4 \times 5 & 2 \times 5 \\ 5 \times 5 & 3 \times 5 \\ 4 \times 5 & 1 \times 5 \end{bmatrix} = \begin{bmatrix} 20 & 10 \\ 25 & 15 \\ 20 & 5 \end{bmatrix}$$

นั่นคือ เดือนมีนาคมเราจะซื้อเสื้อจากร้านค้า 20 ตัว และซื้อออนไลน์ 10 ตัว (และอื่น ๆ)

2.1.5 การคูณเมทริกซ์ด้วยเมทริกซ์ (Multiplying matrices)

การคูณเมทริกซ์ด้วยเมทริกซ์ มีเทคนิคนิดหน่อย คือเราไม่สามารถจับเมทริกซ์ 2 ตัวใด ๆ ก็ได้มาคูณกันได้เลย เมท ริกซ์ที่จะมาคูณกันได้ต้องมีขนาดที่ "พอดี" กันด้วย ขนาดพอดีกันที่ว่านี้คือ จำนวนคอลัมน์ของเมทริกซ์ตัวแรก ต้องเท่ากับจำนวนแถวของเมทริกซ์ตัวที่สอง ไม่เช่นนั้นจะไม่สามารถคูณเมทริกซ์สองตัวนี้ได้ นั่นคือ เมทริกซ์ A และ B สามารถคูณกันได้ก็ต่อเมื่อ จำนวนคอลัมน์ของ A เท่ากับจำนวนแถวของ B ผลคูณของเมทริกซ์ A และ B เขียนแทนด้วย AB

กำหนดให้
$$A=\left[a_{ij}
ight]_{m imes n}$$
และ $B=\left[b_{ij}
ight]_{n imes r}$ แล้ว ถ้า $C=AB$ ดังนั้น $\ C=\left[c_{ij}
ight]_{m imes r}$

ข้อสังเกต เมทริกซ์ผลลัพธ์ มีขนาดเป็น m × r

รูปภาพแสดงการคูณเมทริกซ์

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \\ c_{41} & c_{42} \end{bmatrix}$$

$$\mathbf{4} \times \mathbf{3} \qquad \mathbf{3} \times \mathbf{2} \qquad \mathbf{4} \times \mathbf{2}$$

โดยที่
$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$
 และค่าอื่น ๆ

ตัวอย่าง 2.7 กำหนดให้
$$A=\begin{bmatrix} 5 & 1 & 2 \\ 2 & 3 & 0 \end{bmatrix}$$
 และ $B=\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ หาค่าของ C เมื่อ $C=AB$

วิธีทำ เมทริกซ์ C มีขนาด 2 imes 1

$$C = \begin{bmatrix} 5 & 1 & 2 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5(2) + 1(0) + 2(1) \\ 2(2) + 3(0) + 0(1) \end{bmatrix} = \begin{bmatrix} 12 \\ 4 \end{bmatrix}$$

ตัวอย่าง 2.8 กำหนดให้
$$A=\begin{bmatrix}2&0&-1\\4&1&2\\-1&2&3\\3&-1&4\end{bmatrix}$$
 และ $B=\begin{bmatrix}3&2\\1&0\\5&1\end{bmatrix}$ หาค่าของ C เมื่อ $C=AB$

วิธีทำ เมทริกซ์ C มีขนาด _____

$$C = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 1 & 2 \\ -1 & 2 & 3 \\ 3 & -1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 2(3) + 0(1) + -1(5) & 2(2) + 0(0) + -1(1) \\ 4(3) + 1(1) + 2(5) & 4(2) + 1(0) + 2(0) \\ & & & & & & & \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \dots \\ 15 & \dots \\ 2 & \dots \end{bmatrix}$$

ตัวอย่าง 2.9 เมทริกซ์อยู่รอบตัวเรา

เราต้องการคำนวณเกรดของนิสิต โดยคิดจากการเก็บคะแนน 4 ประเภทคือ สอบมิดเทอม สอบไฟนอล การบ้าน และโปรเจค การเก็บคะแนนแต่ละประเภทเก็บ 100 คะแนน แต่สุดท้ายต้องนำคะแนนมาคำนวณเปอร์เซ็นต์ซึ่งมี น้ำหนักไม่เท่ากัน ให้หาว่านิสิตแต่ละคนได้คะแนนรวมสุดท้ายเท่าไร

คะแนนเก็บที่นิสิตได้ดังนี้

นิสิต	Midterm exam	Final exam	Homework	Project
Jim	100	90	52	60
Jack	80	85	90	100
Joe	92	50	80	70

การเก็บคะแนน	เปอร์เซ็นต์
Midterm exam	20% (0.2)
Final exam	30% (0.3)
Homework	10% (0.1)
Project	40% (0.4)

เราสามารถนำผลคูณเมทริกซ์มาใช้ในการคำนวณคะแนนรวมของนิสิตได้ดังนี้

เมทริกซ์	ผลคูณ
$\begin{bmatrix} 100 & 90 & 52 & 60 \\ 80 & 85 & 90 & 100 \\ 92 & 50 & 80 & 70 \end{bmatrix} \times \begin{bmatrix} .2 \\ .3 \\ .1 \\ .4 \end{bmatrix} = \begin{bmatrix} 76.2 \\ 90.5 \\ 69.4 \end{bmatrix}$	$(100 \times .2) + (90 \times .3) + (52 \times .1) + (60 \times .4) = 76.2$ $(80 \times .2) + (85 \times .3) + (90 \times .1) + (100 \times .4) = 90.5$ $(92 \times .2) + (50 \times .3) + (80 \times .1) + (70 \times .4) = 69.4$

ผลรวมคะแนนสุดท้ายของนิสิตแต่ละคน คือ Jim ได้ 76.2 คะแนน Jack ได้ 90.5 คะแนน Joe ได้ 69.4 คะแนน

ตัวอย่าง 2.10 ตัวอย่างนี้แสดงให้เห็นว่า การคูณเมทริกซ์สามารถนำไปประยุกต์ใช้ได้อย่างไร

เราทำตุ๊กตาขาย ตุ๊กตาแต่ละสีขายในราคาที่แตกต่างกัน โดยการขายต้องขายส่งทั้งหมดให้กับลูกค้าที่รับซื้อ ราคา ตุ๊กตาที่ลูกค้าแต่ละคนเสนอซื้อตามตารางต่อไปนี้

ลูกค้า / สีตุ๊กตา	แดง	ขาว	น้ำเงิน
Jim	3	2	4
Jack	4	3	1
Joe	5	1	2
Jane	4	2	3
Joy	2	1	10

เราทำตุ๊กตาสีแดง 1000 ตัว สีขาว 800 ตัว และสีน้ำเงิน 200 ตัว ถามว่าเราควรขายตุ๊กตาให้ลูกค้าคนใดจึงจะได้ เงินมากที่สุด

วิธีทำ

จากข้อมูลที่มีสามารถสร้างเป็นเมทริกซ์ได้คือ

A เป็นเมทริกซ์ราคา =
$$\begin{bmatrix} 3 & 2 & 4 \\ 4 & 3 & 1 \\ 5 & 1 & 2 \\ 4 & 2 & 3 \\ 2 & 1 & 10 \end{bmatrix}$$

B เป็นเมทริกซ์จำนวน =
$$\begin{bmatrix} 1000 \\ 800 \\ 200 \end{bmatrix}$$

ผลคูณของเมทริกซ์ C = AB แสดงถึงรายได้ ซึ่งสมาชิกแต่ละตัวแทนรายได้จากการขายตุ๊กตาทั้ง 3 ชนิดให้ลูกค้าแต่ ละคน

$$C = \begin{bmatrix} 3 & 2 & 4 \\ 4 & 3 & 1 \\ 5 & 1 & 2 \\ 4 & 2 & 3 \\ 2 & 1 & 10 \end{bmatrix} \begin{bmatrix} 1000 \\ 800 \\ 200 \end{bmatrix} = \begin{bmatrix} 3000 + 1600 + 800 \\ 4000 + 2400 + 200 \\ 5000 + 800 + 400 \\ 4000 + 1600 + 600 \\ 2000 + 800 + 2000 \end{bmatrix} = \begin{bmatrix} 5400 \\ 6600 \\ 6200 \\ 6200 \\ 4800 \end{bmatrix}$$

ลูกค้าที่รับซื้อตุ๊กตาในราคาสูงที่สุดคือซื้อในราคา 6600 บาท ดังนั้นควรขายตุ๊กตาให้ Jack

2.1.6 คุณสมบัติการบวกและคูณของเมทริกซ์

คุณสมบัติการบวกของเมทริกซ์		
กำหนดให้ A, B และ C เป็นเมทริกซ์ขนาด m × n		
การเปลี่ยนกลุ่ม	(A + B) + C = A + (B + C)	
การสลับที่	A + B = B + A	
เอกลักษณ์การบวก คือ <u>0</u>	A + Q = Q + A = A	
อินเวอร์สการบวก	อินเวอร์สการบวกของเมทริกซ์ A คือ –A ที่เมื่อนำมาบวกกับ A แล้วทำให้ได้ <u>0</u>	
(Inverse)	$A + (-A) = (-A) + A = \underline{0}$	

คุณสมบัติการคูณเมทริกซ์ด้วยค่าคงที่หรือสเกลาร์		
กำหนดให้ A, B เป็นเมทริกซ์ขนาด m × n และ c, d เป็นค่าคงที่		
การเปลี่ยนกลุ่ม	(cd) A = c (dA) = (cA) d	
เอกลักษณ์การคูณ คือ 1	1A = A	
การกระจาย	c(A + B) = cA + cB และ	
(c+d)A = cA + dA		

คุณสมบัติการคูณเม	เทริกซ์ด้วยเมทริกซ์			
กำหนดให้ A, B แ	ละ C เป็นเมทริกซ์ขนาด n × n			
การเปลี่ยนกลุ่ม	(AB) C = A (BC)			
เอกลักษณ์การคูณ	คือเมทริกซ์ I ขนาด n × n ที่ทำให้ AI = IA = A			
	โดยที่ $I_n=egin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$			
อินเวอรส์การคูณ	อินเวอร์สการคูณของเมทริกซ์ A คือ A^{-1} ที่เมื่อนำมาคูณกับA แล้วทำให้ผลลัพธ์เป็น $\mathbf{I_n}$			
	$A A^{-1} = A^{-1} A = I_n$			
	ข้อสังเกต มีเพียงเมทริกซ์จัตุรัสเท่านั้น ที่สามารถหาอินเวอร์สการคูณได้			
	และเมทริกซ์บางตัวอาจไม่มีอินเวอร์สการคูณก็ได้			
	การหาอินเวอร์สของเมทริกซ์ขนาด 2 × 2			
	ถ้า $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$			
	$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$			
	ดูเพิ่มเติมวิธีการหาอินเวอร์สการคูณใน			
	ตัวอย่าง 2.12			
ข้อสังเกตุ	เมทริกซ์ไม่มีคุณสมบัติในการสลับที่การคูณ นั่นคือ A×B ≠ B×A และโดยทั่วไปแม้ว่าเรา จะสามารถทำการคูณเมทริกซ์ A×B ได้ แต่เราอาจไม่สามารถทำ B×A ได้ เช่น			
	พิจารณาเมทริกซ์ A _{2×3} และ B _{3×4} เราสามารถทำ A×B ได้ แต่ไม่สามารถทำ B×A ได้			
คุณสมบัติของ	ให้ A และ B ขนาด $n imes n$ I_n เป็นเมทริกซ์เอกลักษณ์ และ c เป็นจำนวนจริง			
อินเวอร์สการคูณ	$\left(A^{-1}\right)^{-1} = A$			
เมทริกซ์	$(AB)^{-1} = A^{-1}B^{-1}$			
	$(A^{t})^{-1} = (A^{-1})^{t}$			
	$(cA)^{-1} = \frac{1}{c} (A)^{-1}$ เมื่อ $c \neq 0$ $AA^{-1} = I_n = A^{-1}A$			

ตัวอย่าง 2.11 หาเมทริกซ์เอกลักษณ์การบวกและอินเวอร์สการบวกของเมทริกซ์ A เมื่อ

$$A = \begin{bmatrix} 2 & 0 \\ 5 & -1 \\ 3 & 1 \end{bmatrix}$$

วิธีทำ

เอกลักษณ์การบวกของ A คือเมทริกซ์ $\underline{0}$ ที่เมื่อบวกกับ A แล้วทำให้ A มีค่าเท่าเดิม นั่นคือ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

อินเวอร์สการบวกของ A คือเมทริกซ์ที่เมื่อบวกกับ A แล้วทำให้ได้ $\underline{0}_{3\times 2}$ นั่นคือ $\begin{bmatrix} -2 & 0 \\ -5 & 1 \\ -3 & -1 \end{bmatrix}$

ตัวอย่าง 2.12 หาเมทริกซ์เอกลักษณ์การคูณและอินเวอร์สการคูณของเมทริกซ์ A เมื่อ

$$A = \begin{bmatrix} 2 & 0 \\ 5 & -1 \end{bmatrix}$$

วิธีทำ

เอกลักษณ์การคูณของ A คือเมทริกซ์ที่คูณกับ A แล้วทำให้ A มีค่าเท่าเดิม

A มีขนาด 2 imes 2 ดังนั้น เอกลักษณ์การคูณของ A คือ I_2 นั่นคือ $egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

อินเวอร์สการคูณของ A คือเมทริกซ์ขนาด 2 imes 2 ที่คูณกับ A แล้วทำให้ได้เมทริกซ์เอกลักษณ์ (I_2) นั่นคือ

$$A^{-1} = \frac{1}{(2 \times -1) - (0 \times 5)} \begin{bmatrix} -1 & 0 \\ -5 & 2 \end{bmatrix}$$

$$A^{-1} = -\frac{1}{2} \begin{bmatrix} -1 & 0 \\ -5 & 2 \end{bmatrix}$$

ดังนั้น
$$A^{-1} = \begin{bmatrix} 1/2 & 0\\ 5/2 & -1 \end{bmatrix}$$

ทดสอบคำนวณเพื่อยืนยันคำตอบ

$$\begin{bmatrix} 2 & 0 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 5/2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.1.7 ค่ากำหนด (ดีเทอร์มิแนนต์ - Determinant)

ดีเทอร์มิแนนต์ของเมทริกซ์ คือ ฟังก์ชันที่ให้ผลลัพธ์เป็นสเกลาร์ซึ่งขึ้นอยู่กับค่าของ n ในขนาดของเมทริกซ์จัตุรัส ขนาด n imes n ดีเทอร์มิแนนต์ของเมทริกซ์ A เขียนแทนด้วย $\det(A)$ หรือ|A|

ถ้าให้ A เป็นเมทริกซ์จัตุรัสขนาด n × n

- ถ้า $\det(A) = 0$ แล้ว A เป็นเมทริกซ์เอกฐาน (Singular matrix)
- ถ้า $\det(A) \neq 0$ แล้ว A เป็นเมทริกซ์ไม่เป็นเอกฐาน (Non-singular matrix)
- ถ้า A เป็น non-singular matrix แล้ว A สามารถหาอินเวอร์สการคูณได้
- ถ้า $\mathbf{A} = [a]$ เป็นเมทริกซ์ขนาด $\mathbf{1} \times \mathbf{1}$ และ \mathbf{a} เป็นจำนวนจริงแล้ว $\det(\mathbf{A}) = a$
- ถ้า $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ เป็นเมทริกซ์ขนาด 2 imes 2 และ a,b,c,d เป็นจำนวนจริงแล้ว $\det(A) = ad bc$
- โดยสรุป การหาค่า det(A) คือ (ผลคูณทแยงลง) (ผลคูณทแยงขึ้น)

$$\left[\left(a_{11}a_{22}a_{33}\right)+\left(a_{12}a_{23}a_{31}\right)+\left(a_{13}a_{21}a_{32}\right)\right]-\left[\left(a_{31}a_{22}a_{13}\right)+\left(a_{32}a_{23}a_{11}\right)+\left(a_{33}a_{21}a_{12}\right)\right]$$

ตัวอย่าง 2.13 กำหนดเมทริกซ์ A ต่อไปนี้ ให้หา $\det(A)$ และ A^{-1}

ดีเทอร์มิแนนต์ det(A)	อินเวอร์สการคูณ A^{-1}
5	1/5
1(6) - 2(4) = -2	$\frac{1}{1(6) - 2(4)} \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 2 & -1/2 \end{bmatrix}$
2(3) - (-5)(0) = 6	$\frac{1}{2(3) - (-5)(0)} \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1/2 & 5/6 \\ 0 & 1/3 \end{bmatrix}$
2(6) - (3)(4) = 0	$\frac{1}{2(6) - 3(4)} \begin{bmatrix} 6 & -3 \\ -4 & 2 \end{bmatrix} = \frac{1}{0} \begin{bmatrix} 6 & -3 \\ -4 & 2 \end{bmatrix}$
	ซึ่ง $\frac{1}{0}$ ไม่ใช่จำนวนจริง ดังนั้น ไม่สามารถหา A^{-1} ได้ ซึ่งตรงตามนิยามว่าถ้า $\det(A)=0$ จะไม่สามารถหา A^{-1} ได้
	5 $1(6) - 2(4) = -2$ $2(3) - (-5)(0) = 6$

2.1.8 ทรานสโพสของเมทริกซ์ (Transpose of matrix)

ถ้า $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ แล้ว ทรานสโพสของ A เขียนแทนด้วย $A^{'}$, A^{t} หรือ A^{T} โดยที่ $A^{'} = \begin{bmatrix} a_{ji} \end{bmatrix}_{n \times m}$ หรือ อธิบายง่ายๆคือการสลับสมาชิกแนวนอนเป็นแนวตั้งนั่นเอง

ตัวอย่าง 2.14 ให้
$$A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$$
 จะได้ $A^{'}=\begin{bmatrix}1&4\\2&5\\3&6\end{bmatrix}$

2.2 Matrix and python

เราสามารถสร้างเมทริกซ์ได้จาก numpy array หรือ numpy.matrix คำสั่งเริ่มต้นที่ต้องสั่งคือ import numpy as np

2.2.1 คำสั่งและ function เกี่ยวกับการสร้าง matrix

function และ sourcecode	อธิบาย และ output	
<pre>np.array np.matrix 4 a = np.array([[1,2,3], [4,5,6]]) 5 print(a) 6 print(type(a)) 7 8 a = np.matrix('1 2 3; 4 5 6') 9 print(a) 10 print(type(a))</pre>	สร้าง matrix โดยกำหนดสมาชิก ใน matrix [[1 2 3] [4 5 6]] <class 'numpy.ndarray'=""> [[1 2 3] [4 5 6]] <class 'numpy.matrix'=""></class></class>	
<pre>np.zeros 4 a = np.zeros((2,3)) 5 b = np.zeros((3,3)) 6 print(a) 7 print(b)</pre>	สร้าง zero matrix (สมาชิกเป็น 0 ทั้งหมด) [[0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]	
np.ones 3	สร้าง one matrix (สมาชิกเป็น 1 ทั้งหมด) [[1.] [1.]]	

```
arange: สร้าง array ขนาด x และ
np.arange(x)
                                                initialize ค่าใน array เป็น 0 ถึง x-1
                                                reshape: แปลงขนาดของ array เป็น
np.reshape(x, y)
                                                matrix ขนาด x แถว y คอลัมน์
     a = np.arange(5)
                                                [0 1 2 3 4]
     b = np.arange(12).reshape(3,4)
5
    print(a)
                                                [[0 1 2 3]
   print(b)
                                                 [4 5 6 7]
                                                 [ 8 9 10 11]]
                                                แสดงขนาดของเมทริกฑ์
np.shape
    A = np.arange(12).reshape(3,4)
                                                (3, 4)
    print(np.shape(A))
                                                3
6
   print(A.shape[0])
                                                4
7
    print(A.shape[1])
np.identity(i) หรือ
                                                สร้าง identity matrix ขนาด i
                                                [[1. 0. 0.]
np.eye(i)
                                                 [0. 1. 0.]
    A = np.identity(3)
3
                                                [0. 0. 1.]]
    B = np.eye(2)
5
    print(A)
                                                [[1. 0.]
    print(B)
                                                [0. 1.]]
                                                สร้าง matrix โดย initialize ค่า
np.random.rand(d0, d1, ... dn)
                                                แบบ random float
                                                [[0.2667155 0.87270521]
   A = np.random.rand(3,2)
                                                 [0.5318026 0.04003233]
4
   B = np.random.rand(2,1)
                                                 [0.76498442 0.13770674]]
5
   print(A)
   print(B)
                                                [[0.10541614]
                                                 [0.63546584]]
                                                สร้าง matrix โดย initialize ค่า
np.random.randint(low, high=None, size = None)
                                                แบบ random int
                                                [[2 4]
                                                 [3 3]
3 \quad A = np.random.randint(1,5, size = (3,2))
                                                [4 2]]
4 B = np.random.randint(6,10, size = (2,4))
                                                [[9 6 9 7]
5
    print(A)
                                                 [6 6 6 8]]
   print(B)
```

2.2.2 function และตัวอย่างเกี่ยวกับ matrix operations

function และ source code อธิบาย และ output		
การบวกเมทริกซ์ 3 A =np.array([[1,2,0],[2,4,6]]) 4 B =np.array([[2,-2,7],[1,3,5]]) 5 C = A + B 6 print(C)	[[3 0 7] [3 7 11]]	
การคูณเมทริกซ์		
ใช้ .dot() หรือ np.matmul()		
<pre>A = np.array([[1,2,0],[2,4,6]]) B = np.array([[2,1],[1,7],[2,4]]) C = A.dot(B) D = np.matmul(A,B) print(C) print(D)</pre>	[[4 15] [20 54]] [[4 15] [20 54]]	
ทรานสโพสของเมทริกซ์ 3 A =np.array([[1,2,0],[2,4,6]]) 4 B =np.array([[2,1], [1,7],[2,4]]) 5 print(A.transpose()) 6 print(B.transpose())	[[1 2] [2 4] [0 6]] [[2 1 2] [1 7 4]]	
อินเวอร์สของเมทริกซ์ ใช้ np.linalg.inv		
<pre>3 A =np.array([[2,0],[5, -1]]) 4 5 A_inv = np.linalg.inv(A) 6 print(A) 7 print(A_inv)</pre>	[[2 0] [5 -1]] [[0.5 0.] [2.5 -1.]]	
<pre>10 B =np.array([[2,3], [4,6]]) 11 print(B) 12 B_inv = np.linalg.inv(B) File "E:\python_by_prymania\"</pre>	เมทริกซ์ B ไม่สามารถ หา inverse matrix ได้	

```
      ดีเทอร์มิแนนท์ของเมทริกซ์ ใช้ np.linalg.det

      3 A =np.array([[2,0],[5, -1]])

      4

      5 a = np.linalg.det(A)

      6 print(A)

      7 print(a)

-2.0
```

2.2.3 การเข้าถึงสมาชิกในเมทริกซ์ (matrix elements, rows and columns)

```
function และ sourcecode
                                                   อธิบาย และ output
การเข้าถึง element โดยใช้ [ i ] เลข index ของ element เริ่มนับที่ 0
ถ้า i เป็นลบ จะเริ่มนับที่ element สุดท้าย (-1 คือตัวสุดท้าย, -2 คือตัว
รองสุดท้าย)
 3
     A = np.array([[2,0,-1], [4,1,2], [-5,3,7]])
 4
                                                    [[ 2 0 -1]
     print(A, '\n')
 5
                                                    [4 1 2]
 6
                                                    [-5 3 7]]
 7
     #access elements of matrix
 8
     print('A[0][0] = ', A[0][0])
                                                    A[0][0] = 2
     print('A[0][2] = ', A[0][2])
 9
                                                    A[0][2] = -1
     print('A[1][0] = ', A[1][0])
10
                                                    A[1][0] = 4
     print('A[-1][-1] = ', A[-1][-1])
11
                                                   A[-1][-1] = 7
     print('A[-1][-2] = ', A[-1][-2])
12
                                                    A[-1][-2] = 3
13
     print('\n')
14
     #access rows of matrix
15
     print('A[0] = ', A[0])
                                                   A[0] = [2 0 -1]
     print('A[1] = ', A[1])
                                                    A[1] = [4 1 2]
16
     print('A[2] = ', A[2])
                                                   A[2] = [-5 \ 3 \ 7]
17
     print('A[-1] = ', A[-1])
                                                    A[-1] = [-5 \ 3 \ 7]
18
19 print('\n')
 20
      #access columns of matrix
                                                   A[:,0] = [2 4 -5]
21
     print('A[:,0] = ', A[:,0])
     print('A[:,1] = ', A[:,1])
                                                    A[:,1] = [0 1 3]
22
                                                    A[:,2] = [-1 2 7]
     print('A[:,2] = ', A[:,2])
23
                                                    A[:,-1] = [-1 2 7]
     print('A[:,-1] = ', A[:,-1])
 24
```

```
การตัด matrix โดยการบอกจำนวน row, column
     A = np.array([[1,2,3,4], [5,6,7,8],
                                                       [[ 1 2 3 4]
                                                        [5 6 7 8]
4
     [9,10,11,12],[13,14,15,16]])
 5
                                                        [ 9 10 11 12]
                                                       [13 14 15 16]]
 6
     print(A, '\n')
 7
                                                       [[1]]
8
     print(A[:1, :1])
                           # 1 row, 1 col
                                                       [[1 2]]
                           # 1 row, 2 cols
9
     print(A[:1, :2])
                                                       [[1 2 3]]
10
     print(A[:1, :3])
                           # 1 row, 3 cols
                                                       [[1 2 3 4]]
     print(A[:1, :4])
                           # 1 row, 4 cols
11
                                                       [[1]
[5]]
13
     print(A[:2, :1])
                           # 2 rows, 1 col
14
    print(A[:2, :2])
                           # 2 rows, 2 cols
                                                       [[1 2]
15
     print(A[:2, :4])
                           # 2 rows, 4 cols
                                                       [5 6]]
                                                       [[1 2 3 4]
                                                       [5 6 7 8]]
17
     print(A[:3, :1])
                         # 3 rows, 1 col
                                                       [[1]
                                                       [5]
[9]]
18
     print(A[:3, :2])
                        # 3 rows, 2 col
                                                       [[ 1 2]
                                                       [ 5 6]
[ 9 10]]
                                                       [[ 1 2]
                                                       [5 6]
                                                       [ 9 10]
20
     print(A[:, 0:2])
                           # all rows, col 0,1
                                                       [13 14]]
     print(A[:, 1:2])
21
                           # all rows, col 1
                                                       [[ 2]
22
     print(A[:, 1:4])
                           # all rows, col 1,2,3
                                                       [ 6]
                                                        [10]
23
     print(A[:, 2:3])
                           # all rows, col 2
                                                       [14]]
24
     print(A[2:4, 2:4]) # row 2,3 , col 2,3
                                                       [[2 3 4]
25
     print(A[2:9, 2:8]) # row 2,3 , col 2,3
                                                        [6 7 8]
                                                       [10 11 12]
                                                       [14 15 16]]
                                                       [[ 3]
                                                        [7]
                                                        [11]
                                                       [15]]
                                                       [[11 12]
                                                       [15 16]]
                                                       [[11 12]
                                                        [15 16]]
```

2.2.4 ฟังชันอื่น ๆ ที่สำคัญเกี่ยวกับ matrix

function และ sourcecode	อธิบาย และ output
argmax() แสดง index ที่มีค่ามากที่สุดใน matrix amax() แสดงค่าที่มากที่สุดใน matrix argmin() แสดง index ที่มีค่าน้อยที่สุดใน matrix amin() แสดงค่าที่น้อยที่สุดใน matrix 4	[[14 13 8 6 18] [18 7 17 17 16] [17 16 1 5 16]] 4 18 12 1 เมทริกซ์ A ค่าที่มากที่สุดคือ 18 ซึ่งอยู่ ในตำแหน่ง index ที่ 4 ดังนั้น argmax คือ 4 amax คือ 18
sum(axis = 0) หาผลบวกรวมในเมทริกซ์ แต่ละ column sum(axis = 1) หาผลบวกรวมในเมทริกซ์ แต่ละ row 16 A = np.array([[1,2,3,4],[5,6,7,8]]) 17 s1 = A.sum(axis = 0) 18 s2 = A.sum(axis = 1) 19 print(A) 20 print(s1) 21 print(s2)	[[1 2 3 4] [5 6 7 8]] [6 8 10 12] [10 26]

2.3 แบบฝึกหัด

1. หาค่าของ A+B และ $A\times B$ (ถ้าสามารถหาได้)

Q	A, B	A + B	$A \times B$
1.1	$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ -2 & -4 \end{bmatrix}$	$\begin{bmatrix} -2 & -6 \\ 2 & 6 \end{bmatrix}$
1.2	$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & -2 & 0 \\ -1 & -2 & 2 \end{bmatrix}$		
1.3	$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & -2 & 0 \\ -1 & -2 & 7 \end{bmatrix}$		
1.4	$A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 2 \\ 2 & 4 & 6 \end{bmatrix}$		

2. หาค่าของ $\det(A)$, A^{-1} และ A^t (ถ้าสามารถหาได้)

Q	Α	det(A)	A^{-1}	A^{-t}
2.1	$\begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$	0		$\begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$
2.2	$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$	-6		
2.3	$\begin{bmatrix} 1 & 2 & 4 \\ 2 & -2 & 0 \\ 1 & -2 & -1 \end{bmatrix}$			

3. จากเมทริกซ์ที่กำหนดให้ ให้ค่าของตัวแปร a และ b

Q	เมทริกซ์	คำตอบ
3.1	$\begin{bmatrix} b+2 & 1 \\ -1 & b-1 \end{bmatrix} = \begin{bmatrix} a-5 & a+b \\ a-5 & -4 \end{bmatrix}$	a =
	- 1 b 1 u 5 - + -	b =
3.2	$\begin{bmatrix} 2 & 5 \\ -4 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$	a =
	1-4 -31101 1-31	b =

4. เขียนโปรแกรมด้วย python เพื่อทำงานต่อไปนี้

Q	การทำงาน
4.1	สร้างเมทริกซ์ A ขนาด 3 rows, 4 columns โดย initialize ค่า (กำหนดค่าเริ่มต้น) เป็นเท่าไรก็ได้
	สร้างเมทริกซ์ B ขนาด 4 rows, 2 columns โดย initialize ค่าเป็นเท่าไรก็ได้
	C = A × B แสดง output เป็นเมทริกซ์ A, B และ C
	ตัวอย่าง output
	A [[1 2 3 4] [-1 -2 -3 0] [2 3 6 7]]
	B [[0 -2] [-7 -6] [3 6] [0 5]]
	$C = A \times B$ [[-5 24] [5 -4] [-3 49]]
4.2	ใช้ฟังก์ชัน arange() และ reshape() เพื่อ
	สร้างเมทริกซ์ A ขนาด 3 rows, 2 columns
	สร้างเมทริกซ์ B ขนาด 3 rows, 2 columns
	C = A + B แสดง output เป็นเมทริกซ์ A, B และ C
	ตัวอย่าง output

```
[[0 1]
     [2 3]
     [4 5]]
     [[0 1]
     [2 3]
     [4 5]]
     C = A + B
     [[ 0 2]
     [46]
     [ 8 10]]
   ใช้ฟังก์ชัน np.random.randint() และกำหนดค่า parameters ที่เหมาะสม เพื่อ
4.3
    สร้างเมทริกซ์ A ขนาด 3 rows, 4 columns โดยสมาชิกในเมทริกซ์มีค่าอยู่ระหว่าง 1 ถึง 10
    สร้างเมทริกซ์ B ขนาด 3 rows, 4 columns โดยสมาชิกในเมทริกซ์มีค่าอยู่ระหว่าง 2 ถึง 5
    C = A + B
    D = A - B
    แสดง output เป็นเมทริกซ์ A, B, C และ D
    ตัวอย่าง output
     [[5 4 6 1]
     [2 6 6 5]
     [7 2 8 6]]
     [[2 4 2 4]
     [4 4 2 4]
     [3 2 3 2]]
     C = A + B
     [[7 8 8 5]
     [61089]
     [10 4 11 8]]
     D = A - B
     [[ 3 0 4 -3]
     [-2 2 4 1]
     [ 4 0 5 4]]
```

ใช้ฟังก์ชัน np.random.randint() และกำหนดค่า parameters ที่เหมาะสม เพื่อ สร้างเมทริกซ์ A ขนาด 3 rows, 3 columns โดยสมาชิกในเมทริกซ์มีค่าอยู่ระหว่าง -5 ถึง 5 สร้างเมทริกซ์ B ขนาด 3 rows, 2 columns โดยสมาชิกในเมทริกซ์มีค่าอยู่ระหว่าง -2 ถึง 2 แสดง output ต่อไปนี้ เมทริกซ์ A เมทริกซ์ B $A \times B$ transpose ของเมทริกซ์ A inverse ของเมทริกซ์ A determinant ของเมทริกซ์ A ตัวอย่าง output [[2 -1 3] [3 -1 0] [-2 2 -2]] [[1-1] [-1 -1] [-2 1]] AxB [[-3 2] [4-2] [0-2]] Transpose of A [[2 3 -2] [-1 -1 2] [3 0 -2]] Inverse of A [[0.2 0.4 0.3] [0.6 0.2 0.9] [0.4 -0.2 0.1]] Determinant of A 10.00000000000000002

สร้างเมทริกซ์ A ขนาด 3 × 4 โดยกำหนดค่าในเมทริกซ์ดังนี้

- เมทริกซ์ A
- row ที่ index 0
- row สุดท้าย (โดยไม่ให้บอกว่าเป็น index ที่ 2)
- column ที่ index 1
- column สุดท้าย (โดยไม่ให้บอกว่าเป็น index ที่ 3)
- เลข 7 (โดยการบอก row, column ของเมทริกซ์)
- สมาชิกตัวสุดท้ายของเมทริกซ์ (เลข -4)
- row ที่ index 0 และ 1
- column ที่ index 1 และ 2
- index ที่มีค่ามากที่สุดในเมทริกซ์ A
- ค่าที่มากที่สุดในเมทริกซ์ A
- index ที่มีค่าน้อยที่สุดในเมทริกซ์ A
- ค่าที่น้อยที่สุดในเมทริกซ์ A
- ผลรวมของเมทริกซ์แต่ละ column
- ผลรวมของเมทริกซ์แต่ละ row

ตัวอย่าง output

```
[[1 2 3 4]
[8 7 6 5]
[-2 -4 -6 -8]]
row#0: [1 2 3 4]
last row: [-2 -4 -6 -8]
column#1: [ 2 7 -4]
last col: [ 4 5 -8]
A[1][2]: 6
last element: -8
row #0,1:
[[1 2 3 4]
[8 7 6 5]]
col #1,2:
[[ 2 3]
[7 6]
[-4 -6]]
index of max value: 4
max value:
              8
index of min value: 11
min value:
                   -8
sum of each column: [7 5 3 1]
sum of each row: [ 10 26 -20]
```

2.4 References

https://www.mathsisfun.com/algebra/matrix-inverse.html

https://www.shelovesmath.com/algebra/advanced-algebra/matrices-and-solving-systems-with-matrices/#AddingandSubtractingMatrices

https://www.intmath.com/matrices-determinants/5-inverse-matrix.php

https://th.wikihow.com/%E0%B8%AB%E0%B8%B2%E0%B8%94%E0%B8%B5%E0%B9%80%E0%B
8%97%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B8%A1%E0%B8%B4%E0%B9%81%E0%B8%9
9%E0%B8%99%E0%B8%95%E0%B9%8C%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E
0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C%E0%B
8%A1%E0%B8%B4%E0%B8%95%E0%B8%B4-3x3