"Recovering the Structure of Sparse Markov Networks from High-Dimensional Data"

Narges Bani Asadi

Irina Rish Katya Scheinberg Dimitri Kanevsky

Bhuvana Ramabhadran

IBM TJ Watson Research Center

September 19, 2008

Guassian Markov Network

- Guassian Markov Network
- Learning Sparse Gaussian Networks

- Guassian Markov Network
- Learning Sparse Gaussian Networks
- Learning the Sparsity of the Sparse Gaussian Networks

- Guassian Markov Network
- Learning Sparse Gaussian Networks
- Learning the Sparsity of the Sparse Gaussian Networks
- Results

Markov Networks

$$X = \{X_1, ..., X_p\}$$

$$G=(V,E)$$

$$P(\mathbf{X}) = \frac{1}{\mathbf{Z}} \prod_{k} \Phi_{k}(\mathbf{X})$$

Lack of edge: conditional independence

Gaussian Markov Networks

•
$$P(\mathbf{x}) = (2\pi)^{-\frac{p}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- Zeros in Σ : marginal independence
- Zeros in Σ^{-1} : conditional independence : Sparsity
- Sparsity
 - Interpretation
 - Prediction

Maximum Likelihood Estimation of the Inverse Covariance

[borrowed from A. dAspremont presentation]

• How do we make Σ^{-1} Sparse : Penalize the likelihood

Penalized Likelihood Estimation

$$\Sigma^{-1} = \underset{C}{\operatorname{arg\,max}} (\log \det C - Tr(CS) - \lambda \operatorname{Card}(C))$$

$$Card(C) = \text{number of nonzero elements of C}$$

- $\lambda = 2/(N+1)$ for AIC
- $\lambda = \log(N+1)/(N+1)$ for BIC
- This is a NP-Hard combinatorial problem

L-1 Regularized Likelihood Estimation

This is qual to solve

$$\Sigma^{-1} = \underset{C}{\operatorname{arg max}} \ logdetC - tr(SC) - \lambda ||C||_1$$

 \bullet Convex problem with unique solution for a given λ

The Role and Choice of the Sparsity parameter: λ

- ullet λ decides the amount of sparsity
- What is the criteria to pick the best λ ?
 - Model structure recovery
 - Prediction power on test data

Learning the Sparsity Parameter λ

- Cross Validation on Training Data
 - To maximize prediction power, ignoring the structure
 - Over fit to Model, almost No Sparsity!
- Method suggested by Banerjee et. al:

$$\lambda(\alpha) = (\max \sigma_i \sigma_j) \frac{t_{n-2}(\alpha/p^2)}{\sqrt{N-2+t_{n-2}^2(\alpha/p^2)}}$$

- Constructs back sparse Σ not the Σ^{-1}
- Learns a Too Sparse model!
- Weak prediction

Being Bayesian about λ

- \bullet λ as a random variable: learn its distribution
- Maximize the joint log likelihood

$$\Sigma^{-1}, \widehat{\lambda} = \underset{C,\lambda}{\arg\max} \log(P(X))$$

$$P(X) = P(X|C)P(C|\lambda)P(\lambda)$$

$$\log P(X) = \log \det C - Tr(CS) - \lambda ||C||_1 + P^2 \log(\lambda/2) + \log P(\lambda)$$

• The choice of $P(\lambda)$

The Bayesian λ

ROC Curve

The Optimization Method

- Alternating minimization with line search
 - Estimate Σ^{-1} for an initial λ
 - Update λ in the direction of the gradient: $P^2/\lambda ||C||_1$
 - Iterate until convergence

The Joint likelihood with Flat prior on λ

• When $N \gg P$ we get a global maximum

- But unbounded for N < P
 - Add regularization to the objective function
 - ullet Assume a non-flat prior for λ

The Regularized likelihood with Flat Prior on λ

- Do not penalize the diagonal elements in the estimation of the Σ^{-1}
- Update λ as before

$$\log P(X) = \log \det C - Tr(CS) - \lambda ||C||_1 + P^2 \log(\lambda/2) + \log P(\lambda)$$

The Joint likelihood with Exponential Prior on λ

$$P(\lambda) = -b \exp(-b\lambda)$$
 $E(\lambda) = 1/b$

- How to learn b from data?
- b indicates density of the empirical inverse covariance
- approximate b with $||S^{-1}||_1/P^2$ multiply it by P/N

b for P=50 as a function of N

Results with Original Density = 4% and with the Prior on λ

Р	N	λ	TP	FP	Prediction Error
100	30	λ =34	108	510	1.5
		λ_b =603	2	0	3.2
		$\lambda_c=2$	294	3097	0.5
100	50	λ =50	122	516	1.4
		λ_b =693	2	0	3.2
		$\lambda_c=1$	350	5087	0.6
100	500	<i>λ</i> =62	328	1236	0.35
		λ_b =2510	46	136	3.2
		λ_c =0.1	356	9390	0.32
100	1000	λ=26	356	2388	0.28
		λ_b =3415	60	204	3.2
		λ_c =0.1	356	9421	0.34

Results with Original Density = 52% and with the Prior on λ

Р	N	λ	TP	FP	Prediction Error
100	30	λ =32	690	616	1.9
		$\lambda_b=1120$	2	2	6.5
		λ_c =0.4	2630	2157	0.62
100	50	<i>λ</i> =47	694	86	1.9
		λ_b =2209	6	12	6.47
		λ_c =0.4	3225	2555	0.42
100	500	<i>λ</i> =24	2286	1376	0.38
		λ_b =5710	116	158	5.9
		λ_c =0.1	5089	4480	0.17
100	1000	λ =14	3465	1957	0.20
		λ_b =7691	186	240	4.3
		λ_c =0.1	5102	4623	0.15

Results with Original Density = 4% and Regularized Likelihood

Р	N	λ	TP	FP	Prediction Error
100	30	λ =190	22	60	3.2
		λ_b =603	2	0	3.2
		$\lambda_c=2$	294	2976	0.48
100	50	λ =208	148	156	1.4
		λ_b =693	2	0	3.2
		$\lambda_c=1$	350	4979	0.6
100	500	λ =55	336	1132	0.33
		λ_b =2510	46	136	3.2
		λ_c =0.1	356	9390	0.32
100	1000	<i>λ</i> =27	356	2174	0.28
		λ_b =3415	60	204	3.2
		λ_c =0.1	356	9421	0.34

Results with Original Density = 52% and Regularized Likelihood

Р	N	λ	TP	FP	Prediction Error
100	30	λ =500	44	72	6.4
		$\lambda_b=1120$	2	2	6.5
		λ_c =0.4	2630	2157	0.62
100	50	λ =500	120	156	4.2
		λ_b =2209	6	12	6.3
		λ_c =0.4	3225	2555	0.42
100	500	<i>λ</i> =24	2183	1304	0.35
		$\lambda_b=5710$	116	158	5.9
		λ_c =0.1	5085	4480	0.17
100	1000	λ =14	3430	1899	0.20
		$\lambda_b = 7691$	186	240	4.3
		λ_c =0.1	5102	4625	0.15

The Results on fMRI data

- Test on 2007 PBAIC competition
- Filtering with correlation
- comparison with the Elastic Net Results on correlation of the estimated response with the true response on the test data
 - On the 24th response c=0.82 with 127 pre-selected voxels Elastic Net: c=0.69 with 300 pre-selected voxels
 - On the 15th response c=0.74 with 126 pre-selected voxels Elastic Net: c=0.66 with 300 pre-selected voxels

On-going Work

- Different λ for each variable in the network
- ullet Learning appropriate prior for λ
- Alternative penalties for the likelihood
- Application of non-convex optimization methods: EBW