Name#1	Lana	Lim	UID#1	105817312
	First (Given)	Last (Family)		
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

PLAN THE DEVELOPMENT

Step #1

Get calibration data. Worked on it in the lab by using a small sample of track to get original sensor fusion values.

Step #2

Write code to process sensor fusion values. Determining the weight schema, get raw sensor fusion values, multiply values with weights, and normalize values.

Step #3

Calculate PID. Some questions to consider at this stage: How to calculate the correction value? What is the significance of Kp, Ki, Kd?

Step #4

Start testing the system with the final track and implement cases like donut turn and final stop.

Step #5

After finding a working base with associated Kp, Ki, and Kd values (speed is not important), start tweaking the variables to achieve faster speeds.

Name#1 _	Lana First (Given)	Lim Last (Family)	_ UID#1 _	105817312
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2	706028136

CONDUCT TESTS

Parameters

Initial speed, Kp, Kd, Ki, time and speed it takes a car to do a donut, encoder count timestamps, weighting schema.

Controlled Variables

Correction added to the wheel speeds depending on sensor input, normalized sensor values, LED states, speeds on certain encoder counts.

Observed Variables

Raw sensor input, calculated error, sensor mins/maxes.

Procedure

- 1. Choose a starting position, initial speed, Kp, Kd, and Ki values. Record them in a table entry.
- 2. Start the car. If it's a practical test run, record and time the car until it completes/fails the track. If it's a debugging test run, record fused sensor values outputted in the serial monitor. Please note that while debugging, the car may operate less efficiently since it must also write to the serial monitor.
- 3. Write notes of the trial after the trial is finished.
- 4. Adjust initial speed, Kp, Kd, and Ki values from trial results. Repeat steps 1-3 for a new trial.

Name#1 _	Lana First (Given)	Lim Last (Family)	UID#1 _	105817312
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

ANALYZE & INTERPRET DATA

Sections of your hand-written logbook (full logbook to be included in the Appendix)

Found working base with fixed speed 40:

This is where we built our intuition for adjusting Kp, Ki, and Kd values based on our observations from each trial:

- A low Kp results in little to no correction and the car goes straight off the track.
- A big Kp results in big oscillations that throw the car off the track.
- The intuition behind the value of Kd is to minimize the amplitude of the oscillations caused by Kp.
- Low speeds work most of the time, but higher speeds require more tweaking of Kp, Ki, and Kd so the car can react fast enough and correctly when it's offset to the track.

Name#1 _	Lana	Lim	UID#1	105817312
	First (Given)	Last (Family)		
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

ANALYZE & INTERPRET DATA

Graphs & tables, each accompanied by interpretations of data being displayed

Figure 1. Relationship with Kp and Ki where the car's initial speed is 80. Red marks a failed trial and blue marks a successful trial.

Applied our knowledge and intuition from the base case to find a working system where car's initial speed is 80. Figure 1 is the relationship between Kp and Kd. We chose to leave out Ki in this case since we believe changing the value for Ki is only necessary for making fine-tune adjustments to an already working system. We approached this by having a mix of fractional and noticeable changes to Kp and Kd.

Name#1 _	Lana First (Given)	Lim Last (Family)	UID#1 _	105817312
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

ANALYZE & INTERPRET DATA

Graphs & tables, each accompanied by interpretations of data being displayed

Fused sensors were on a 15, 14, 12, 8 weighting schema.

Figure 2. Serial monitor output of fused sensors when the car is perfectly aligned with the straight track.

Figure 3. Serial monitor output of fused sensors when the car is on the horizontal black bar of the track.

Figure 4. Serial monitor output of fused sensors when the car is directly on the break of the track

Our biggest challenge in the project was how to make the car respond correctly when reaching the break on the track. In all other instances, there is only one focused area of the car's sensors that detects all black (or all sensors if it's on the horizontal black bar). Though, when the car reaches the break on the track, there are two areas where some sensors see all black. After noticing this in the serial monitor, we chose to encode a separate case for when the car reaches the break.

Name#1 _	Lana First (Given)	Lim Last (Family)	UID#1 _	105817312
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

APPENDIX

Your	entire	e hand	d-writt	en log			
		05/01/ 2 patm		Hon √a	lueu (9	MIN, MAX,	weights)
			'23 Ight lin	e porth			
	- u	av Cov	ected i	Føelf l !:	nadfway,	then turn	ld night ⇒ Kept going night
		05/15/ 2 if PID	23 Capabl	0.			
			Oriport.			JE	61 CAGEG
	speed	Lμ	Kal	<u>K</u> i	start Pob	weight <i>b</i>	Result/Notes
	50	15	0	0	Ů.	15, 14,12,8	- adjusts accordingly for straight line, overcovects for first turn
	50	9.5	Ø	D	ŧ	-	- overconnects for utvaight line.
	50	8.5	0	0	4	-	- pages straight line, blues not do downt at all-black.
	50	0.5	0	0	ф		- did a turn, us downt at all-black
	•	•		•	т		- placed it on actual track, completes firm them but
							fails marper tum.
							- it ticks vandowly
							when car is perfettly centered, tranks it sees all black
	40	9.5	0	D	1	-	- fix the tick
							- loweved the upeed no car can react to Marper turn.
							- increase time it takes for car to do donwt - detects u-turn for part of track for 2 twick black
							baya.
	40	8.5	v	ъ	4	_	- changed how car detecth all black
	40	8.5	0	b	V	15/14/13/18	
							with black bar \rightarrow black bar ends \rightarrow undefined
	40	8.5	r	0	Þ	19/14, 12/8	
	40	8.5	-2	Ø		-	- does not complete fixed term
	30	8.5	D	Đ	İ	_	- speed is not the problem, slower apred
	40	8.5	n	0	1	-	doeg not make car correct itself - process someor input differently, check if it
	90	7.7	D	U	'		detects a maximum weight in any of the sengers
	40	0.4	D	b	ı	-	- does not complete first turn
	40	8.5	10	0	i	-	- detecto 2 maximum weight value = sees
							vertical black bar
							- witched loft/night wheel wheeds
	50	8.5	b	O	1	-	- make it complete fawter.
الله	11.00	n 1					- goed oft track
7	Чø	9.5	b	0		_	- track completed!
•	40 40	9,5 9.5	V ton	b 10			- track completed - track not completed
	40	9. 9 9. 5	50 10	-		_	- track not completed - track not completed
	40	8.5	15	D D		_	- track completed
	10	0.5					The Control of the Control

Name#1 _	Lana First (Given)	Lim Last (Family)	UID#1 _	105817312
Name#2 _	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

APPENDIX

Your entire hand-written log.

speed	Kp Ka	natea
45	10	- worked, was a little fauter
50	11.4	- worked, got a little fawter, outilated a lot.
55	11. 9	y J
60	17 5	- did not work
60	17 -2	- did not work
65	19 -7	-did not work
65	19 -5	- did wat work
bG	21 -5	- did not work
44	21 O	- worked first half, still excellates too much
66	2[//
65	U 7.5	יך
70	VI -2	- wobbly, but worken.
95	35 -5	-wobbly, and not vocognize first black bar
85	36 -7	-completed first half) but then got too webbly.
97	25 7	- did not work
87	45 -T	- Aid not work.
95	75 -12	- Aid not work.
95	35 -20	- did wrt work.
95	40 -7	- did not page vertical black barg.
85	50 -10	-did unt work.
06	95 7.5	- worked first half.
85	35 -7.75	- worked fivet half.
86	35 - 7.25	- did wot work.
95	35 -8	-did not work.
95	30 -7.75	-did not work.
85	21 -7	- Aid wot work.
85	VS -7	- did not work.
85	27.5 -7	-worked fired half.
95	27.5 -7.25	- did not work.
95	20 7	-dia not work.
95	2 % 0	- did not work.
95	27.6 -7	- did not work.
95	11 -2	- worked, fawteur working vermin
		- leated on 3 other pointions > worked

Name#1	Lana First (Given)	Lim Last (Family)	UID#1 _	105817312
Name#2	Anthony First (Given)	Wang Last (Family)	UID#2 _	706028136

APPENDIX

Your entire hand-written log.

Code outline:

- 1. Sensor fusion
 - o global uint16_t sensorValues[8]
 - array of sensor values that we operate on, global so we don't have to deal with pointer issues
 - o void normalizeSensorValues()
 - normalizes sensorValues based on calibration data
 - void weightSensorValues()
 - multiply sensorValues with weighting scheme
- 2. Calculate PID
 - void calculateMotorOutputs()
 - takes final array and turns weighted + normalized sensorValues into motor outputs
 - void setMotorSpeeds()
 - sets up the car, pwm values
 - o calculatePID()
 - uses array of sensor values to calculate PID constants

