- Chuỗi số
 - Định nghĩa
 - Điều kiện cần để chuỗi hội tụ
 - Chuỗi hình học
- Chuỗi số không âm
 - Tiêu chuẩn tích phân
 - Chuỗi số p
 - Tiêu chuẩn so sánh
- Chuỗi đan dấu
- 4 Chuỗi có dấu tùy ý
 - Hội tụ tuyệt đối BởI HCMUT-CNCP
 - Tiêu chuẩn tỷ số D'Alembert
 - Tiêu chuẩn căn Cauchy
 BACHKHOACNCP.COM

LIÊU SƯU TẤP

Định nghĩa

Nếu ta cộng tất cả các số hạng của một dãy số $\{a_n\}_{n=1}^{\infty}$, ta được một biểu thức có dạng

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

và được gọi là một **chuỗi số (series)**, ký hiệu là

$$\sum_{n=1}^{\infty} a_n \text{ hoặc } \sum a_n.$$

Ví dụ, tổng sau đây là một chuỗi số: - CNCP

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{4 \cdot 10^n} + \frac{1}{16 \cdot 10^n} + \frac{1}{32 \cdot 10^n} + \dots + \frac{1}{2^n} + \dots$$

Dinh nghĩa

Với mỗi $n \in \mathbb{N}^*$, ta goi

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$

là tổng riêng thứ n.

Ví du: Xét chuỗi số

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{2^n} + \dots$$

- Tổng riêng thứ 5 là $S_5 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{2^n}{32} = 0.96875;$ Tổng riêng thứ n là

$$S_n = \frac{1}{2} + \frac{1}{8 \sqrt{4}} + \frac{1}{100} + \frac{1}{100} + \frac{1}{32} + \dots + \frac{1}{2^n}.$$

HOACN

Định nghĩa

Xét chuỗi số
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$
.

• Nếu dãy $\{S_n\}_{n=1}^{\infty}$ hội tụ đến S, thì ta nói chuỗi hội tụ (convergent), và ta viết

$$\sum_{n=1}^{\infty} a_n = S.$$
TÀI LIÊU⁼¹SƯU TÂP

Ngược lại, ta nói chuỗi phân kỳ (divergent).

Ví dụ

Định lý

Chuỗi điều hòa (harmonic series)

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

là chuỗi phân kỳ.

Bởi vì dãy con S_2 , S_4 , S_8 , S_{16} , S_{32} , . . . tiến tới vô cùng. Cụ thể:

Tính chất

Nếu các chuỗi số
$$\sum_{n=1}^{\infty} a_n$$
 và $\sum_{n=1}^{\infty} b_n$ hội tụ, thì các chuỗi số $\sum_{n=1}^{\infty} c \cdot a_n$ (với c là hằng số), $\sum_{n=1}^{\infty} (a_n + b_n)$, và $\sum_{n=1}^{\infty} (a_n - b_n)$ cũng hội tụ, và
$$\bullet \sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n;$$

$$\bullet \sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n;$$

$$\bullet \sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n.$$

Bởi vì

TALLEUSUUTAP
$$a_n = S_n - S_{n-1} \rightarrow S - S = 0.$$
BÖI HCMUT-CNCP

MOACNC

Hệ quả

Nếu $\lim_{n\to\infty}a_n$ không tồn tại hoặc nếu $\lim_{n\to\infty}a_n\neq 0$, thì chuỗi $\sum_{n=1}^\infty a_n$

phân kỳ.

Ví dụ: Chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$$
 phân kỳ (theo **điều kiện cần**), bởi vì

TÀI LIÊ
$$_{n^2}$$
 SIU TÂP
 $_{5n^2+4}$ $_{05}$ $_{500}$ $_{150}$ $_{150}$ $_{150}$

Định lý

Xét chuỗi hình học (geometric series), trong đó $a \neq 0$,

$$\sum_{n=1}^{\infty} aq^{n-1} = a + aq + aq^2 + aq^3 + \cdots.$$

ullet Nếu |q| < 1 thì chuỗi hội tụ và tổng của nó là

• Nếu $|q| \ge 1$ thì chuỗi phân kỳ.

Chuỗi hình học còn được gọi là "chuỗi cấp số nhân".

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

KHOACNCD

Định lý

Giả sử f là một hàm số liên tục, dương, giảm trên [1; ∞). Đặt

$$a_n = f(n), \quad n = 1, 2, \ldots$$

Khi đó, chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ khi và chỉ khi tích phân suy rộng

$$\int_{1}^{\infty} f(x)dx \text{ hội tụl. LIỆU SƯU TẬP}$$

BOT HCMUT-CNCP

Chuỗi số p

Định <u>lý</u>

Xét chuỗi số 😃

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots$$

- Nếu p > 1 thì chuỗi hội tụ.
- Nếu $p \le 1$ thì chuỗi phân kỳ.

Ví dụ: Chuỗi điều hòa (ứng với p = 1) là chuỗi phân kỳ.

Định lý

Giả sử $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ là các chuỗi số không âm và

$$a_n \le b_n$$
, với mọi $n \ge n_0$,

trong đó $n_0 \in \mathbb{N}^*$ là một chỉ số nào đó.

- (a) Nếu chuỗi $\sum_{n=1}^{\infty} b_n$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} a_n$ cũng hội tụ.
- (b) Nếu chuỗi $\sum a_n$ phân kỳ, thì chuỗi $\sum b_n$ cũng phân kỳ.

CHKHOACNC

Ví dụ

Khảo sát tính hội tụ của các chuỗi số sau:

(a)
$$\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
.

BổI HCMUT-CNCP

KHOACNCD

Định lý

Giả sử $\sum_{n=0}^{\infty} a_n$ và $\sum_{n=0}^{\infty} b_n$ là các chuỗi dương. Nếu tồn tại giới hạn

hữu hạn

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L>0,$$

thì cả hai chuỗi số hoặc cùng hội tụ hoặc cùng phân kỳ.

BỞI HCMUT-CNCP

CHKHOACNCD

Ví du

Khảo sát tính hội tụ của chuỗi số dương sau:

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}.$$

TAI LIEU SƯU TAP

BổI HCMUT-CNCP

B A C H K H O A C N C P . C O N

Định lý (Leibnitz)

Xét chuỗi đan dấu

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots,$$

trong đó $b_n > 0$ với mọi n. Nếu $\{b_n\}$ là dãy số giảm và hội tụ về 0, thì chuỗi hội tụ.

CHKHOACNCD.

Ví dụ

Khảo sát tính hội tụ của chuỗi đan dấu sau:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

KHOACNC

Định nghĩa

Chuỗi $\sum_{n=1}^{\infty} a_n$ được gọi là **hội tụ tuyệt đối (absolutely**

convergent) nếu chuỗi các giá trị tuyệt đối

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$
TAP

hội tụ.

KHOACNC

Định lý

Nếu chuỗi số $\sum a_n$ hội tụ tuyệt đối, thì nó hội tụ.

Chiều ngược lại nói chung không đúng, chẳng hạn chuỗi đan dấu $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ hội tụ theo tiêu chuẩn Leibnitz nhưng chuỗi các giá

trị tuyệt đối là $\sum_{n=1}^{\infty} \frac{1}{n}$ không hội tụ (vì là chuỗi điều hòa).

CHKHOACNCD

Ví dụ

Khảo sát tính hội tụ của chuỗi số sau:

 $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}.$

TÀI LIẾU SƯU TẬP

BỞI HCMUT-CNCP

B A C H K H O A C N C P . C O N

Tiêu chuẩn tỷ số D'Alembert

Định lý

- (a) Nếu $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1$, thì chuỗi số $\sum_{n=1}^{\infty}a_n$ hội tụ tuyệt đối (và do đó nó hội tụ).
- (b) Nếu $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ hoặc $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, thì chuỗi số $\sum_{n=1}^{\infty} a_n$ phân kỳ.

Ví du

Khảo sát tính hội tụ của chuỗi số sau:

$$\sum_{n=1}^{\infty} \frac{n^n}{n!}.$$

TAI LIEU SƯU TAP

BỞI HCMUT-CNCP

Tiêu chuẩn căn Cauchy

Định lý

- (a) Nếu $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, thì chuỗi số $\sum_{n=1} a_n$ hội tụ tuyệt đối (và do đó nó hội tụ).
- (b) Nếu $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ hoặc $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, thì chuỗi số $\sum_{n=1}^{\infty} a_n \text{ phân kỳ}.$

CHKHOACNCD

Ví du

Khảo sát tính hội tụ của chuỗi số sau:

$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2} \right)^n.$$

TAI LIEU SƯU TAP

BỞI HCMUT-CNCP

