Analyse

Équations

différentielles linéaires

Question 1/5

Solutions de X' = MX, $X(t_0) = X_0$

Réponse 1/5

$$X(t) = e^{(t-t_0)M} X_0$$

Question 2/5

Caractérisation d'un système fondamental de solutions par le Wronskien

Réponse 2/5

$$(s_1, \dots, s_n)$$
 est un système fondamental de solutions si et seulement si $\exists t \in I, W(t) \neq 0$ (ou $\forall t \in I, W(t) \neq 0$)

Question 3/5

Méthode de variation des constantes pour des EDL scalaires d'ordre 2

Réponse 3/5

Chercher une solution particulière
$$\lambda u + \mu v = b$$

avec $(\lambda, \mu) \in \mathcal{D}^1(I)$ sour la contrainte
 $\lambda' u + \mu' v = 0$

Question 4/5

Solutions de $x' = a(x), x(t_0) = x_0$

Réponse 4/5

$$x(t) = \exp((t - t_0)a)(x_0)$$

Question 5/5

Wronskien

Réponse 5/5

$$W(t) = \det_{\mathcal{B}}(s_1(t), \dots, s_n(t))$$

 (s_1, \dots, s_n) un système fondamental de solutions