Appendix B

Vector and Dyadic Identities

Vector Identities

1.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

2.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$$

3.
$$\nabla (ab) = a\nabla b + b\nabla a$$

4.
$$\nabla (a\mathbf{b}) = a\nabla \mathbf{b} + (\nabla a)\mathbf{b}$$

5.
$$\nabla (a\mathbf{b}) = a \nabla \mathbf{b} + \mathbf{b} \cdot \nabla a$$

6.
$$\nabla (a\mathbf{b}) = a \nabla \mathbf{b} - \mathbf{b} \times \nabla a$$

7.
$$\nabla (\mathbf{a} \cdot \mathbf{b}) = (\nabla \mathbf{a}) \cdot \mathbf{b} + \mathbf{a} \cdot \nabla \mathbf{b} = \mathbf{a} \times \nabla \mathbf{b} + \mathbf{b} \times \nabla \mathbf{a} + \mathbf{a} \cdot \nabla \mathbf{b} + \mathbf{b} \cdot \nabla \mathbf{a}$$

8.
$$\nabla (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot \nabla \mathbf{a} - \mathbf{a} \cdot \nabla \mathbf{b}$$

9.
$$\nabla (\mathbf{ab}) = (\nabla \mathbf{a})\mathbf{b} + \mathbf{a} \cdot \nabla \mathbf{b}$$

10.
$$\mathbf{a} \times \nabla \mathbf{b} = (\nabla \mathbf{b}) \cdot \mathbf{a} - \mathbf{a} \cdot \nabla \mathbf{b}$$

11.
$$\nabla (\mathbf{a} \times \mathbf{b}) = \nabla (\mathbf{b}\mathbf{a} - \mathbf{a}\mathbf{b}) = \mathbf{a} \nabla \mathbf{b} - \mathbf{b} \nabla \mathbf{a} - \mathbf{a} \cdot \nabla \mathbf{b} - \mathbf{b} \cdot \nabla \mathbf{a}$$

12.
$$\nabla \nabla \mathbf{a} = \nabla \nabla \mathbf{a} - \nabla \nabla \mathbf{a}$$

13.
$$\nabla \nabla a = 0$$

14.
$$\nabla \nabla \mathbf{a} = 0$$

166 Appendix B

Dyadic Identities

15.
$$\mathbf{a} \cdot (\mathbf{b} \times \overline{c}) = -\mathbf{b} \cdot (\mathbf{a} \times \overline{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \overline{c}$$

16.
$$\mathbf{a} \times (\mathbf{b} \times \bar{c}) = \mathbf{b}(\mathbf{a} \cdot \bar{c}) - (\mathbf{a} \cdot \mathbf{b})\bar{c}$$

17.
$$\nabla (a\bar{b}) = a\nabla \bar{b} + (\nabla a) \cdot \bar{b}$$

18.
$$\nabla (a\bar{b}) = a \nabla \bar{b} + (\nabla a) \times \bar{b}$$

19.
$$\nabla (\mathbf{a} \times \overline{b}) = (\nabla \mathbf{a}) \cdot \overline{b} - \mathbf{a} \cdot \nabla \overline{b}$$

20.
$$\nabla \nabla \bar{a} = \nabla \nabla \bar{a} - \nabla \nabla \bar{a}$$

21.
$$\nabla \nabla \bar{a} = 0$$

22.
$$\nabla \nabla \bar{a} = 0$$

23.
$$\mathbf{a} \cdot \mathbf{\bar{b}} = [\mathbf{\bar{b}}]^{\mathsf{T}} \cdot \mathbf{a}$$

24.
$$\mathbf{a} \times \mathbf{\bar{b}} = -\left\{ [\mathbf{\bar{b}}]^{\mathsf{T}} \times \mathbf{a} \right\}^{\mathsf{T}}$$

25.
$$[\bar{\bar{c}}]^{\mathrm{T}} \cdot (\mathbf{a} \times \bar{\bar{b}}) = -[\mathbf{a} \times \bar{\bar{c}}]^{\mathrm{T}} \cdot \bar{\bar{b}}$$