Wstęp do matematyki finansów Sprawozdanie 1

Justyna Niedźwiedzka 229877 11 grudnia 2020

Zadanie 1

W celu wyceny opcji europejskich na drzewku dwumianowym będziemy korzystać z zaimplementowanych funkcji. Bedziemy rozpatrywać przypadki konstrukcji drzewka metodą CRR oraz JR. Parametrami naszych funkcji będą:

- \bullet S cena początkowa,
- K cena wykonania opcji,
- T termin wykonania opcji,
- r stopa procentowa (ciągła),
- σ zmienność rynku,
- call/put opcja kupna/ sprzedaży,
- n liczba kroków na drzewku.

Zbadamy także zbieżność ceny opcji wyznaczonej metodą CRR oraz JR w zależności od parametru n do ceny Blacka-Scholesa.

Cena Blacka-Scholesa europejskich opcji kupna (C) oraz sprzedaży (P) jest dana przez

$$C = S_0 \Phi(d_1) - K e^{-rT} \Phi(d_2),$$

$$P = -S_0 \Phi(-d_1) + K e^{-rT} \Phi(-d_2),$$

$$d_1 = \frac{\log \frac{S_0}{K} + (r + \frac{\sigma^2}{2})T}{\sqrt{T}\sigma},$$

$$d_2 = \frac{\log \frac{S_0}{K} + (r - \frac{\sigma^2}{2})T}{\sqrt{T}\sigma}.$$

gdzie

W funkcjach korzystających z metod CRR oraz JR będziemy używać poniższych wzorów, aby wyznaczyć cenę opcji kupna i sprzedaży:

$$C = exp(-rT) \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} \max(Su^{k} d^{n-k} - K, 0),$$

$$P = exp(-rT) \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} \max(K - Su^{k} d^{n-k}, 0).$$

Zamiast funkcji generującej całe drzewko korzystamy z tego sposobu, ponieważ jest on wygodniejszy w przypadku dużych n, a także wymaga mniej obliczeń.

Poniżej przedstawiono zaimplementowane funkcje wyznaczające cenę opcji kupna i sprzedaży wymienionymi wcześniej metodami. W obu funkcjach korzystamy z przybliżeń dla współczynników u i d.

```
CRR_approx <- function(S, K, T, r, sigma, n, type = c("call", "put")){</pre>
  dt \leftarrow T/n
  u <- exp(sigma * sqrt(dt))</pre>
  d <- 1/u
  p \leftarrow (\exp(r*dt) - d)/(u - d)
  Df \leftarrow \exp(-r*T)
  sum <- 0
  if(type == "call"){
    for (k in 0:n)
      sum \leftarrow sum + max(S*(u^k)*(d^(n-k)) - K, 0) * dbinom(k, n, prob = p)
    call <- sum*Df
    return(call)
  if(type == "put"){
    for (k in 0:n)
      sum < -sum + max(K - S*(u^k)*(d^(n-k)), 0) * dbinom(k, n, prob = p)
    put <- sum*Df
    return(put)
```

```
}
call <- sum*Df
return(call)
}
if(type == "put"){
  for (k in 0:n){
    sum <- sum + max(K - S*(u^k)*(d^(n-k)), 0) * dbinom(k, n, prob = p)
  }
  put <- sum*Df
  return(put)
}
</pre>
```

W poniższych tabelach przedstawiono odpowiednio ceny opcji kupna oraz sprzedaży dla parametrów $S=100,~K=100,~T=1,~r=0.05,~\sigma=0.1$ w zależności od metody i liczby kroków n na drzewku dwumianowym.

Tabela 1: Ceny opcji kupna

metoda	liczba kroków	cena	czas obliczeń
B-S		6.804958	
CRR	10	6.699215	$0.01~\mathrm{s}$
CRR	100	6.794247	$0.02 \mathrm{\ s}$
CRR	1000	6.803885	$0.05 \mathrm{\ s}$
CRR	10000	6.804850	$0.14 \mathrm{\ s}$
CRR	100000	6.804947	$0.47 \mathrm{\ s}$
JR	10	6.861830	$0.01 \mathrm{\ s}$
JR	100	6.808552	$0.02 \mathrm{\ s}$
JR	1000	6.804745	$0.03~\mathrm{s}$
JR	10000	6.805039	$0.11 \mathrm{\ s}$
JR	100000	6.804957	$0.52 \mathrm{\ s}$

Tabela 2: Ceny opcji sprzedaży

, 1	1: 1 1 1/	1 0 1	<u> </u>
metoda	liczba kroków	cena	czas obliczeń
B-S		1.927900	
CRR	10	1.822158	$0.01 \mathrm{\ s}$
CRR	100	1.917190	$0.02 \mathrm{\ s}$
CRR	1000	1.926828	$0.03 \mathrm{\ s}$
CRR	10000	1.927793	$0.11 \mathrm{\ s}$
CRR	100000	1.927889	$0.47 \mathrm{\ s}$
JR	10	1.984856	$0.01 \mathrm{\ s}$
JR	100	1.931502	$0.02 \mathrm{\ s}$
JR	1000	1.927688	$0.03~\mathrm{s}$
JR	10000	1.927981	$0.09 \mathrm{\ s}$
JR	100000	1.927900	$0.47 \mathrm{\ s}$

Teraz przedstawimy na kilku wykresach cenę opcji w zależności od ilości kroków n na drzewku dwumianowym.

Opcja kupna - metoda CRR

Rysunek 1: Cena opcji sprzedaży, metoda CRR

Opcja kupna - metoda JR

Rysunek 2: Cena opcji sprzedaży, metoda JR

Opcja sprzedaży - metoda CRR

Rysunek 3: Cena opcji kupna, metoda CRR

Opcja sprzedaży - metoda JR

Rysunek 4: Cena opcji kupna, metoda JR

Porównamy jeszcze wyniki dla parametrów $S=100,\,K=100,\,T=2,\,r=0.05,\,\sigma=0.5.$

Tabela 3: Ceny opcji kupna

metoda	liczba kroków	cena	czas obliczeń
B-S		31.32768	
CRR	10	30.67453	$0.01 \mathrm{\ s}$
CRR	100	31.26153	$0.02 \mathrm{\ s}$
CRR	1000	31.32106	$0.03~\mathrm{s}$
CRR	10000	31.32702	$0.12 \mathrm{\ s}$
CRR	100000	31.32762	$0.61 \mathrm{\ s}$
JR	10	31.54712	$0.01 \mathrm{\ s}$
JR	100	31.26519	$0.02 \mathrm{\ s}$
JR	1000	31.32999	$0.02 \mathrm{\ s}$
JR	10000	31.32796	$0.08 \mathrm{\ s}$
JR	100000	31.32772	$0.50 \mathrm{\ s}$

Tabela 4: Ceny opcji sprzedaży

rabeia 4. Ceny opcji sprzedazy			
metoda	liczba kroków	cena	czas obliczeń
B-S		21.81143	
CRR	10	21.15828	$0.01 \; { m s}$
CRR	100	21.74527	$0.01~\mathrm{s}$
CRR	1000	21.80480	$0.02 \mathrm{\ s}$
CRR	10000	21.81076	$0.08~\mathrm{s}$
CRR	100000	21.81136	$0.49 \; {\rm s}$
JR	10	22.23625	$0.01~\mathrm{s}$
JR	100	21.76973	$0.01 \; { m s}$
JR	1000	21.81581	$0.02 \mathrm{\ s}$
JR	10000	21.81191	$0.08 \mathrm{\ s}$
JR	100000	21.81148	$0.50 \; { m s}$

Opcja kupna - metoda CRR

Rysunek 5: Cena opcji sprzedaży, metoda CRR

Opcja kupna - metoda JR

Rysunek 6: Cena opcji sprzedaży, metoda JR

Opcja sprzedaży - metoda CRR

Rysunek 7: Cena opcji kupna, metoda CRR

Opcja sprzedaży - metoda JR

Rysunek 8: Cena opcji kupna, metoda JR

Zarówno w przypadku metody CRR jak i JR występuje zbieżność do ceny Blacka-Scholesa. Z wykresów zauważamy, że dla metody JR występują wahania ceny. Biorąc pod uwagę n=100000 możemy stwierdzić, iż metoda JR wypada nieco lepiej od CRR.

Zadanie 2

W tym zadaniu rozważamy obie metody z Zadania 1, biorąc dokładne wyliczenia współczynników u i d. Skorzystamy z zaimplementowanych funkcji:

```
CRR_exact <- function(S, K, T, r, sigma, n, type = c("call", "put")){</pre>
  dt <- T/n
  a \leftarrow exp(r*dt + dt*sigma^2) + exp(-r*dt)
  u \leftarrow 0.5 * (a + sqrt(a^2 - 4))
  d \leftarrow 0.5 * (a - sqrt(a^2 - 4))
  p \leftarrow (\exp(r*dt) - d)/(u - d)
  Df \leftarrow \exp(-r*T)
  sum <- 0
  if(type == "call"){
    for (k in 0:n)
      sum \leftarrow sum + max(S*(u^k)*(d^(n-k)) - K,0) * dbinom(k, n, prob = p)
    call <- sum*Df
    return(call)
  if(type == "put"){
    for (k in 0:n)
      sum = sum + \max(K - S*(u^k)*(d^(n-k)),0) * dbinom(k, n, prob = p)
    put <- sum*Df
    return(put)
```

```
JR_exact <- function(S, K, T, r, sigma, n, type = c("call", "put")){
    dt <- T/n
    u <- exp(r*dt) * (1 + sqrt(exp(dt*sigma^2) - 1))
    d <- exp(r*dt) * (1 - sqrt(exp(dt*sigma^2) - 1))
    p <- 1/2
    Df <- exp(-r*T)
    sum <- 0
    if(type == "call"){
        for (k in 0:n){
            sum <- sum + max(S*(u^k)*(d^(n-k)) - K, 0) * dbinom(k, n, prob = p)
        }
        call <- sum*Df
        return(call)
    }
    if(type == "put"){
        for (k in 0:n){
            sum <- sum + max(K - S*(u^k)*(d^(n-k)), 0) * dbinom(k, n, prob = p)
        }
    }
}</pre>
```

```
put <- sum*Df
  return(put)
}</pre>
```

Przeprowadzimy analizę dla parametrów $S=100,\,K=100,\,T=1,\,r=0.05,\,\sigma=0.1,$ aby móc porównać wyniki do tych z poprzedniego zadania.

Tabela 5: Ceny opcji kupna

metoda	liczba kroków	cena	czas obliczeń
B-S		6.804958	
CRR	10	6.749737	$0.01 \mathrm{\ s}$
CRR	100	6.799446	$0.02 \mathrm{\ s}$
CRR	1000	6.804407	$0.02 \mathrm{\ s}$
CRR	10000	6.804903	$0.09 \mathrm{\ s}$
CRR	100000	6.804952	$0.58 \mathrm{\ s}$
JR	10	6.864074	$0.01 \mathrm{\ s}$
JR	100	6.808753	$0.02 \mathrm{\ s}$
JR	1000	6.804765	$0.02 \mathrm{\ s}$
JR	10000	6.805041	$0.09 \mathrm{\ s}$
JR	100000	6.804958	$0.55 \mathrm{\ s}$

Tabela 6: Ceny opcji sprzedaży

metoda	liczba kroków	cena	czas obliczeń
B-S		1.927900	
CRR	10	1.872679	$0.01 \mathrm{\ s}$
CRR	100	1.922389	$0.01 \mathrm{\ s}$
CRR	1000	1.927349	$0.02 \; { m s}$
CRR	10000	1.927845	$0.08 \mathrm{\ s}$
CRR	100000	1.927895	$0.45 \mathrm{\ s}$
JR	10	1.987016	$0.01 \mathrm{\ s}$
JR	100	1.931695	$0.01 \mathrm{\ s}$
JR	1000	1.927708	$0.02 \mathrm{\ s}$
JR	10000	1.927983	$0.07~\mathrm{s}$
JR	100000	1.927900	$0.46 \mathrm{\ s}$

Po przeanalizowaniu wyników kolejny raz okazuje się, że metoda JR daje lepsze rezultaty. Dla n=100000 dostajemy dokładnie cenę Blacka-Scholesa. Porównując wyniki do tych z Zadania 1 możemy stwierdzić, że ceny opcji wyznaczonych za pomocą dokładnych wyliczeń współczynników są bliższe cenie B-S. Czasy obliczeń dla każdej z metod są podobne.