Algebra Linear - 2023.2 - Prof. Itacira Ataide

Data de entrega: 11.03

I UNIDADE:

Exercício 1: Considere as matrizes:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 2 & -3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 4 \end{pmatrix}$$

Determine:

- a. $A \cdot B$
- b. $C \cdot B$
- c. $C \cdot (A 2B)$
- d. Os valores de λ para os quais $det[B 2I_3] = 0$

Exercício 2: Utilizando a definição verifique a dependência linear dos vetores dados:

- a. $\{(1,2,3,0),(1,1,1,1),(2,3,4,2)\}$
- b. $\{t^2 + t, t^2 + 1, t 1\}$
- c. $\{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 3 & 3 \end{pmatrix}\}$

Exercício 3: Verifique se o conjunto dado é um subespaço vetorial de \mathbb{R}^3 :

- a. $\{(x, y, z)|x + y + z = 0\}$
- b. $\{(x, y, z)|x + y + z = 1\}$

Exercício 4: Considere os susbespaços vetoriais $W_1 = \{(x, y, z)|x + y = 0, x + y + z = 0\}$, $W_2 = [(1, 2, -1)]$ e $W_3 = [(2, 2, 2), (0, 1, -2)]$. Determine uma base e a dimensão do suespaço vetorial abaixo:

- a. W_1
- b. $W_1 + W_2$
- c. $W_2 + W_3$
- d. $W_1 \cap W_3$
- e. $W_2 \cap W_3$