Regression Models with Python Code

#	Model Name	Use Case /	Python Implementation Code
		Description	
1	Linear Regression	For simple linear relationships	from sklearn.linear_model import LinearRegression model = LinearRegression()
	D. I	.	Ç
2	Ridge Regression	Linear regression with L2 regularization	from sklearn.linear_model import Ridge model = Ridge(alpha=1.0)
3	Lasso Regression	Linear regression with L1 regularization	from sklearn.linear_model import Lasso model = Lasso(alpha=0.1)
4	Elastic Net Regression	Combines L1 and L2 regularization	from sklearn.linear_model import ElasticNet model = ElasticNet(alpha=0.1, 11_ratio=0.5)
5	Polynomial Regression	Handles non-linear data	from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) model = LinearRegression()
6	Support Vector Regression	Good for small datasets or complex data	from sklearn.svm import SVR model = SVR(kernel='rbf')
7	Decision Tree Regressor	Handles non-linear relationships, interpretable	from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor()
8	Random Forest Regressor	Ensemble of decision trees, reduces overfitting	from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=100)
9	Gradient Boosting Regressor	Powerful ensemble model for structured data	from sklearn.ensemble import GradientBoostingRegressor model = GradientBoostingRegressor()

10	XGBoost	Fast and accurate	from xgboost import XGBRegressor
	Regressor	gradient boosting	model = XGBRegressor()
		model	