

## AMENDMENTS TO THE CLAIMS

1. (currently amended) A solid catalyst component for the polymerization of olefins comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):



wherein R is a branched alkyl group, R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub>, same or different, are hydrogen, halogen, R<sup>4</sup>, OR<sup>4</sup>, COOR<sup>4</sup>, SR<sup>4</sup>, NR<sup>4</sup><sub>2</sub> ~~and/or~~ PR<sup>4</sup><sub>2</sub>, wherein R<sup>4</sup> is a linear or branched C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>2</sub>-C<sub>20</sub> alkenyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl group, optionally containing ~~one or more heteroatoms~~at least one heteroatom, and ~~two or more~~at least two of said R<sub>1</sub>-R<sub>3</sub> groups can also be joined to form a cycle, with the ~~provisions~~proviso that at least one of R<sub>1</sub> and R<sub>2</sub> is COOR<sup>4</sup> and that when R<sub>2</sub> is COO-i-octyl and R is i-octyl, at least one of R<sub>1</sub> and/or R<sub>3</sub> are different from hydrogen.

2. (currently amended) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R is a primary branched alkyl having from 4 to 15 carbon atoms.
3. (currently amended) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R<sub>2</sub> is a COOR group.
4. (currently amended) The catalyst ~~components~~component according to claim 3 in which at least one of R<sub>1</sub> and/or R<sub>3</sub> is a C<sub>1</sub>-C<sub>20</sub> alkyl group.
5. (currently amended) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R<sub>1</sub> is a COOR group.

6. (currently amended) The catalyst ~~components~~component according to claim 5 in which one of R<sub>2</sub> and R<sub>3</sub> of formula (I) are different from hydrogen.
7. (original) The catalyst component of claim 1 comprising a titanium compound having at least a Ti-halogen bond and the thiophene derivatives of formula (I) supported on a Mg halide in active form.
8. (currently amended) A catalyst for the polymerization of olefins comprising the product of the reaction between:

1.- a solid catalyst component according to any of the claims 1-7 comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):



wherein R is a branched alkyl group, R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub>, same or different, are hydrogen, halogen, R<sup>4</sup>, OR<sup>4</sup>, COOR<sup>4</sup>, SR<sup>4</sup>, NR<sup>4</sup><sub>2</sub> or PR<sup>4</sup><sub>2</sub>, wherein R<sup>4</sup> is a linear or branched C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>2</sub>-C<sub>20</sub> alkenyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl group, optionally containing at least one heteroatom, and at least two of said R<sub>1</sub>-R<sub>3</sub> groups can also be joined to form a cycle, with the proviso that at least one of R<sub>1</sub> and R<sub>2</sub> is COOR<sup>4</sup> and that when R<sub>2</sub> is COO-i-octyl and R is i-octyl, at least one of R<sub>1</sub> and R<sub>3</sub> are different from hydrogen;

- an alkylaluminum compound; and[,] optionally,
- one or more at least one electron-donor compound (external donor).

9. (currently amended) The catalyst according to claim 8 in which the alkylaluminum compound ~~(b)~~ is a trialkyl aluminum compound.

10. (currently amended) Process for the (co)polymerization of A process comprising (co)polymerizing olefins, the (co)polymerization being carried out in the presence of any of the catalysts of claims 8-9a catalyst comprising the product of the reaction between:

- a solid catalyst component comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):



wherein R is a branched alkyl group, R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub>, same or different, are hydrogen, halogen, R<sup>4</sup>, OR<sup>4</sup>, COOR<sup>4</sup>, SR<sup>4</sup>, NR<sup>4</sup><sub>2</sub> or PR<sup>4</sup><sub>2</sub>, wherein R<sup>4</sup> is a linear or branched C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>2</sub>-C<sub>20</sub> alkenyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl group, optionally containing at least one heteroatom, and at least two of said R<sub>1</sub>-R<sub>3</sub> groups can also be joined to form a cycle, with the proviso that at least one of R<sub>1</sub> and R<sub>2</sub> is COOR<sup>4</sup> and that when R<sub>2</sub> is COO-i-octyl and R is i-octyl, at least one of R<sub>1</sub> and R<sub>3</sub> are different from hydrogen;

- an alkylaluminum compound; and optionally,

- at least one electron-donor compound (external donor).