МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Домашнее задание № 2 по курсу «Аналитические модели АСОИиУ» Вариант 4

ИСПОЛНИТЕЛЬ: группа ИУ5-14М		Журавлев Н.В.
		подпись
	"_"	2023 г.

Содержание

Задача 1	3
Задача 2	6
Задача З	9
Задача 4	11
Задача 5	13

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде замкнутой СеМО, состоящей из одноканальных СМО. Необходимо определить временные и загрузочные характеристики функционирования СеМО и составляющих ее СМО, используя метод Базена.

Таблица 1. Исходные значения задачи 1

		Время обслуживания в разных СМО				
Кол-во заявок в СеМО	Кол-во СМО в СеМО	t1	t2	t3	t4	t5
7	5	1	1	1	2	2

Определим вспомогательные коэффициенты X_i по формуле:

$$X_1 = 1$$

$$X_i = \frac{t_i}{t_1} * X_1 * \rho_i$$

Результаты расчетов приведены в таблице 2.

Таблица 2. Вспомогательные коэффициенты:

X1	X2	X3	X4	X5
1	1	1	2	2

Далее рассчитаем матрицу Базена:

Таблица 3. Матрица расчетов метода Базена

Кол-во заявок	X1	X2	X3	X4	X5
0	1	1	1	1	1
1	1	2	3	5	7
2	1	3	6	16	30
3	1	4	10	42	102
4	1	5	15	99	303

5	1	6	21	219	825
6	1	7	28	466	2116
7	1	8	36	968	5200

Определим нагрузки ОА по формулам:

$$\rho_1 = \frac{G(N-1)}{G(N)}$$
$$\rho_i = \rho_1 * X_i$$

Таким образом:

$$\begin{split} \rho_1 &= \rho_2 = \rho_3 = 0,4069 \\ \rho_4 &= 0,8138 \\ \rho_5 &= 0,8138 \end{split}$$

Рассчитаем количественные характеристики по формулам:
$$L_j = \frac{\sum_{i=1}^N X^j * G(N-i)}{G(N)}$$

$$Q_j = L_j - \rho_j$$

Результаты расчетов:

Таблица 4. Количественные характеристики СМО

	Рассчитанные параметры СМО							
	CMO1	CMO2	CMO3	CMO4	CMO5			
L	0,6508	0,6508	0,6508	2,5238	2,5238			
Q	0,2438	0,2438	0,2438	1,7100	1,7100			

Определим $T_{\mathfrak{U}}$ по формуле:

$$T_{\text{I}_{\text{I}}} = \frac{N*t_1}{U_1} = 7*\frac{1}{0,4069} = 17,2023\ [c]$$
 $\lambda = \frac{N}{T_{\text{I}_{\text{I}}}} = 0,4069\ [1/c]$ $\lambda_{\phi \text{OH}} = \frac{N-1}{T_{\text{I}_{\text{I}}}} = 0,3487\ [1/c]$

Найдем временные характеристики СМО по формулам Литтла:

$$T_{i} = \frac{L_{i}}{\lambda} [c]$$

$$W_{i} = T_{i} - t_{i} [c]$$

Результаты расчетов:

Таблица 5. Временные характеристики СМО

	Рассчитанные параметры СМО							
	CMO1 CMO2 CMO3 CMO4				CMO5			
T	1,5992	1,5992	1,5992	6,2023	6,2023			
W	0,5992	0,5992	0,5992	4,2023	4,2023			

Ответ: ответом являются данные, приведенные в таблицах 4 и 5.

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде замкнутой СеМО, состоящей из одноканальных СМО. Необходимо определить временные и загрузочные характеристики функционирования СеМО и составляющих ее СМО, используя метод Базена.

Таблица 6. Исходные значения задачи 2

		Время обслуживания в разных СМО				
Кол-во заявок в СеМО	Кол-во СМО в СеМО	t1	t2	t3	t4	t5 (2 OA)
7	5	1	1	1	2	3

Определим вспомогательные коэффициенты X_i по формуле:

$$X_1 = 1$$

Для одноканальной СМО:

$$X_i = \frac{t_i}{t_1} * X_1 * \rho_i$$

Для двухканальной СМО:

$$X_i^* = 0.5 * \frac{t_i}{t_1} * X_1 * \rho_i$$

Результаты расчетов:

Таблица 7. Вспомогательные коэффициенты:

X1	X2	X3	X4	<i>X</i> 5*
1	1	1	2	2

Далее рассчитаем матрицу Базена:

Таблица 8. Матрица расчетов метода Базена

Кол-во					
заявок	X1	X2	X3	X4	X5
0	1	1	1	1	1

1	1	2	3	5	9
2	1	3	6	16	44
3	1	4	10	42	162
4	1	5	15	99	507
5	1	6	21	219	1431
6	1	7	28	466	3766
7	1	8	36	968	9432

Определим нагрузки ОА по формулам:

$$\rho_1 = \frac{G(N-1)}{G(N)}$$

$$\rho_i = \rho_1 * X_i$$

Для двухканальной СМО:

$$\rho_{i} = X_{i}^{*} * U_{i}$$

$$U_{j} = X_{j}^{*} \left[\frac{G(N-1, j-1) + G(N-1)}{G(N)} \right]$$

В итоге имеем:

$$\rho_1 = \rho_2 = \rho_3 = 0.3993$$

$$\rho_4 = 0.7986$$

$$\rho_5 = 0.8974$$

$$U_5 = 0.8974$$

Рассчитаем количественные характеристики по формулам: Для одноканальной СМО:

$$L_j = \frac{\sum_{i=1}^{N} X^j * G(N-i)}{G(N)}$$

Для двухканальной СМО:

$$L_{j} = \frac{\sum_{i=1}^{N} X^{*j} * (G(N-i, j-1) + G(N-i))}{G(N)}$$
$$Q_{j} = L_{j} - \rho_{j}$$

Результаты расчетов приведены в таблице 9.

Таблица 9. Количественные характеристики СМО

	Рассчитанные параметры СМО							
Метрика	CMO1	CMO1 CMO2 CMO3 CMO4 CMO5						
L	0,6277	0,6277	0,6277	2,3342	2,7829			
Q	0,2284	0,2284	0,2284	1,5356	1,8855			

Определим $T_{\rm ц}$ по формуле:

$$T_{\text{II}} = \frac{N * t_1}{U_1} = 7 * \frac{1}{0,4502} = 17,2022 [c]$$
 $\lambda = \frac{N}{T_{\text{II}}} = 0,4069 [1/c]$ $\lambda_{\phi \text{OH}} = \frac{N-1}{T_{\text{II}}} = 0,3488 [1/c]$

Найдем временные характеристики СМО по формулам Литтла:

$$T_{i} = \frac{L_{i}}{\lambda} [c]$$

$$W_{i} = T_{i} - t_{i} [c]$$

Результаты расчетов:

Таблица 10. Временные характеристики СМО

	Рассчитанные параметры СМО						
Метрика	CMO1	CMO1 CMO2 CMO3 CMO4 CMO5					
T	1,5720	1,5720 1,5720 1,5720 5,8460					
W	0,5720	0,5720	0,5720	3,8460	4,9697		

Ответ: ответом являются данные, представленные в таблицах 9 и 10.

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде замкнутой СеМО, состоящей из одноканальных СМО. Необходимо определить временные и загрузочные характеристики функционирования СеМО и составляющих ее СМО, используя метод «узкое место».

Таблица 11. Исходные значения задачи 3

		Время обслуживания			КИН	
			в разных СМО			
Кол-во заявок в	Кол-во СМО в					
CeMO	CeMO	t1 t2 t3 t4 t5			t5	
12	5	1 1 2 2 2			2	

Рассчитаем $T_{\mathfrak{U}}^{\mathsf{УМ}}$:

$$T_{ii}^{\text{YM}} \approx N * t_{max} + \sum_{i=1 \neq i_{max}}^{N} \frac{t_i}{t_{max}} * t_i = 12 * 2 + \left(\frac{1}{2} + \frac{1}{2}\right) = 25 [c]$$

Где $t_{max} = max(t_1, ..., t_m) = 2$

$$\lambda = \frac{N}{T_{\text{II}}^{ ext{yM}}} = 0,48 [1/c]$$
 $\lambda_{ ext{фон}} = \frac{N-1}{T_{\text{II}}^{ ext{yM}}} = 0,44 [1/c]$

Найдем нагрузки ОА по формулам:

$$ho_i = rac{\lambda}{\mu_i} = \lambda * t_i$$
 $ho_{ ext{фон } i} = rac{\lambda_{ ext{фон}}}{\mu_i} = \lambda_{ ext{фон }} * t_i$

Результаты расчетов:

Таблица 12. Параметры загрузок ОА

	Параметры СМО							
Метрики	CMO1	CMO1 CMO2 CMO3 CMO4 CMO5						
t	1	1	2	2	2			
ρ	0,48	0,48	0,96	0,96	0,96			
$ ho_{ m \phioh}$	0,44	0,44	0,88	0,88	0,88			

Рассчитаем:

$$L_i = \frac{\rho_i}{1 - \rho_{\phi \text{oh } i}}$$

$$Q_i = L_i - \rho_i$$

Результаты расчетов:

Таблица 13. Временные параметры СМО

	Временные параметры СМО								
Метрики	CMO1	CMO1 CMO2 CMO3 CMO4 CMO5							
L	0,3771	0,3771 0,3771 7,04 7,04 7,04							
Q	0,8571	0,8571	8	8	8				

Рассчитаем количественные характеристики СМО по формулам Литтла:

$$T_{i} = \frac{L_{i}}{\lambda} [c]$$

$$W_{i} = T_{i} - t_{i} [c]$$

Результаты расчета:

Таблица 14. Количественные параметры СМО

	Временные параметры СМО								
Метрики	CMO1	CMO1 CMO2 CMO3 CMO4 CMO5							
T	0,7857	0,7857 0,7857 14,6667 14,6667 14,6667							
W	1,7857	1,7857	16,6667	16,6667	16,6667				

Ответ: ответом являются данные, представленные в таблицах 13 и 14.

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде замкнутой СеМО, состоящей из одноканальных СМО. Необходимо определить временные и загрузочные характеристики функционирования СеМО и составляющих ее СМО, используя метод «баланса».

Таблица 15. Исходные значения задачи 4.

		Время			
		обслуживания в			В
		разных СМО)
Кол-во заявок	Кол-во СМО				
в СеМО	в СеМО	t1 t2 t3 t4 t5			t5
7	5	1 1 1 2 2			2

Рассчитаем общую нагрузку по формуле и пропорциональную нагрузку на каждые СМО:

$$\rho_{c}^{CE} = N * \frac{m}{N + m - 1} = 7 * \frac{5}{7 + 5 - 1} = \frac{35}{11} = 3,1818$$

$$\rho_{i} = \frac{t_{i}}{\sum_{j=1}^{m} t_{j}} * \rho_{c}^{CE}$$

Результаты расчетов нагрузок:

Таблица 16. Нагрузки СМО

Метрика	CMO1	CMO2	CMO3	CMO4	CMO5
t	1	1	1	2	2
p	0,4545	0,4545	0,4545	0,9091	0,9091

Рассчитаем время цикла:

$$T_{\text{II}}^{\text{CE}} = \frac{N * t_1}{U_1} = 7 * \frac{1}{0,4545} = 15,4015 [c]$$

Рассчитаем интенсивность фонового потока и фоновые загрузки ОА:

$$\lambda = \frac{N}{T_{\text{II}}^{CM}} = 0,4545 [1/c]$$

$$\lambda_{\text{фон}} = \frac{N-1}{T_{\text{II}}^{\text{YM}}} = 0.3896 [1/c]$$

Найдем нагрузки ОА по формулам:

$$ho_{\Phi ext{oh }i} = rac{\lambda_{\Phi ext{oh}}}{\mu_i} = \lambda_{\Phi ext{oh}} * t_i$$
 $L_i = rac{
ho_i}{1 -
ho_{\Phi ext{oh }i}}$
 $Q_i = L_i -
ho_i$

Результаты расчетов:

Таблица 17. Временные параметры СМО

	Временные параметры СМО						
Метрики	CMO1	CMO1 CMO2 CMO3 CMO4 CM					
р фон	0,3896	0,3896	0,3896	0,7792	0,7792		
L	0,7447	0,7447	0,7447	4,1172	4,1172		
Q	0,2901	0,2901	0,2901	3,2082	3,2082		

Рассчитаем количественные характеристики СМО по формулам Литтла:

$$T_{i} = \frac{L_{i}}{\lambda} [c]$$

$$W_{i} = T_{i} - t_{i} [c]$$

Результаты расчетов:

Таблица 18. Количественные параметры СМО

	Временные параметры СМО						
Метрики	CMO1	CMO1 CMO2 CMO3 CMO4 CMO3					
T	1,6384	1,6384	6384 1,6384 9,0588 9,				
W	0,6384	0,6384	0,6384	7,0588	7,0588		

Ответ: ответом являются данные, приведенные в таблицах 17 и 18.

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде замкнутой СеМО, состоящей из одноканальных СМО. Необходимо сравнить временные и загрузочные характеристики функционирования СеМО и составляющих её СМО, полученные с помощью разных методов и выработать рекомендации по возможности практического использования этих методов.

Таблица 19. Исходные значения задачи 5.

		-	Время обслуживания в разных СМО			
Кол-во заявок в СеМО	Кол-во СМО в СеМО	t1	t1 t2 t3 t4 t5			t5
8	5 1 1 2 3				3	4

Для проведения сравнения получаемых характеристик, воспользуемся методом Базена, «узкого места» и «баланса».

Найдём временные и загрузочные характеристики функционирования СеМО методом Базена. Получим:

Таблица 20. Временные и загрузочные характеристики функционирования СеМО методом Базена.

	CMO1	CMO2	CMO3	CMO4	CMO5
L	0,3074	0,3074	0,8598	1,9898	4,5357
Q	0,0706	0,0706	0,3861	1,2793	3,5884
T	1,2980	1,2980	3,6304	8,4021	19,1526
W	0,2980	0,2980	1,6304	5,4021	15,1526

Найдём временные и загрузочные характеристики функционирования СеМО методом «узкое место». Получим:

Таблица 21. Временные и загрузочные характеристики функционирования CeMO методом «узкое место».

	CMO1	CMO2	CMO3	CMO4	CMO5
L	0,2991	0,2991	0,8101	1,8824	5,5652

Q	0,0620	0,0620	0,3361	1,1712	4,6171
T	1,2617	1,2617	3,4177	7,9412	23,4783
W	0,2617	0,2617	1,4177	4,9412	19,4783

Найдём временные и загрузочные характеристики функционирования СеМО методом «баланса». Получим:

Таблица 22. Временные и загрузочные характеристики функционирования СеМО методом «баланса».

	CMO1	CMO2	CMO3	CMO4	CMO5
L	0,3175	0,3175	0,8793	2,1437	7,6273
Q	0,0690	0,0690	0,3824	1,3983	6,6334
T	1,2778	1,2778	3,5388	8,6273	30,6956
W	0,2778	0,2778	1,5388	5,6273	26,6956

Сравнение времени цикла с аналогами:

Возьмем характеристики, полученные методом Базена за идеальные и найдем погрешность среднего времени цикла обработки заявок методом Базена по сравнению с «узким местом»:

$$T_{II} = \frac{N * t_1}{U_1} = 8 * \frac{1}{0,2368} = 33,7811 [c]$$

$$T_{II}^{YM} \approx N * t_{max} + \sum_{i=1 \neq i,max}^{N} \frac{t_i}{t_{max}} * t_i = 8 * 4 + \left(\frac{1}{4} + \frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) = 33,75 [c]$$

Погрешность среднего времени цикла обработки заявок методом Базена

по сравнению с «узким местом» в СеМО:
$$\delta_1 = \frac{|T_{\rm II} - T_{\rm II}^{\rm yM}|}{T_{\rm II}} 100 \approx 0.09\%$$

Теперь найдем погрешность среднего времени цикла обработки заявок методом Базена по сравнению с «балансом»:

$$T_{\text{II}}^{\text{CE}} = \frac{N * t_1}{\rho_1} = 8 * \frac{1}{0,3030} = 32,1954 [c]$$

$$\delta_2 = \frac{\left|T_{\text{II}} - T_{\text{II}}^{\text{CE}}\right|}{T_{\text{II}}} * 100\% = 4,6938 \%$$

Ответ: наименьшим средними временами пребывания заявок в каждой СМО обладает метод Базена, а наибольшими — метод «баланса». Такие же соотношения и для средних времён ожидания заявок в очереди каждой СМО. Таким образом, видно, что по сравнению друг с другом все эти методы дают некую погрешность - не более 5%, что позволяет применять их для получения значений при инженерных расчётах.