

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (TELECOMMUNICATION AND INFORMATION TECHNOLOGY)

SPH 311: IONOSPHERIC PHYSICS

DATE: WEDNESDAY, 28TH MARCH 2012

TIME: 11.00 A.M. - 1.00 P.M.

INSTRUCTIONS

- 1. Read carefully the instructions on your answer booklet and adhere to them.
- 2. Answer question 1 and any other two questions. Question 1 carries 30 marks while the other question carry 20 marks each.
- 3. You may find the following information and constants useful.
- a). Air density at an altitude h: $\rho = \rho_0 \exp(-h/H)$

Where ρ , represents density at ground level and H is the scale height.

- b). Earth's radius $R_e = 6370$ km.
- c). Q_e is the electronic charge and = 1.602 x 10^{-19} C
- d). ϵ_0 is the permittivity of free space and = 8.854 x 10⁻¹² Fm⁻¹
- e). m_e is the electron's mass and = 9.1066 x 10^{-31} kg.

QUESTION ONE.

a. How is the ionosphere layer formed?

3 marks

b. Describe an accurate method used for measuring the electron concentration levels in the ionosphere region.

6 marks

c. Why do we study the ionospheric layer?

3 marks

d. On page two are two graphs showing the overall rate of ion formation within the ionosphere, as a function of altitude (in km) and the zenith angle for the equinox period, at various levels of the solar activity.

Each of the curves in the two graphs have <u>three</u> distinct regions, described roughly by their gradients as (positive, constant and negative).

Identify the regions represented by these slopes and explain the processes taking place and their consequences in detail.

9 marks

e. i. A radio wave propagating through space describes a curvature of radius 3185 km.

Calculate the K-factor of the concerned space and elaborate on the physical significances of the K-factor?

3 marks

ii. Determine the velocity of propagation of radio waves in a medium of refractive index 1.65. Can velocity of radio waves in a medium exceed the velocity of light? Explain your answer.

3 marks

iii. When dealing with radio wave propagation, why is there a demarcation line at a frequency of around 10 GHz.?

3 marks

QUESTION TWO.

a. Discuss any two significant phenomena of radio waves propagation in the ionosphere in the presence of earth's magnetic field.

6 marks

b. i. How is the magneto-plasma medium formed?

2 marks

g Differentiate between magneto-plasma properties and wave properties of a higher space (exosphere) medium.

4marks

Calculate the free-space loss for a LOS radio link 45 statute kilometers long.
 Given that the operating frequency = 6.135 GHz.

Double the frequency and calculate the free-space loss. Halve the frequency and calculate the free-space loss. What is the lesson learned from the last two steps?

5 marks

d. What is the significance of the Appleton-Hartree equation below?

$$n^{2} = 1 - [X/(1-z_{i}) - (Y^{2}_{T}/\{2(1-X-z_{i})\} \pm (Y^{4}_{T}/(4(1-Y-z_{i})^{2} + Y^{2}_{L})^{1/2}]$$

Where the symbols represent their usual values.

3 marks

QUESTION THREE.

a. Using actual chemical reaction equations, describe the interaction occurring between in-coming ionizing solar radiation and the elemental components of the underlying ionospheric region.

10 marks

b. From the reactions above and considering the E- layer, show that the electron concentration N_e is given by the formula $N_e = [q/\alpha]^{1/2}$.

Where q represents the electron's production rate and α is the loss coefficient.

4 marks

c. What are the significances of establishing the extent of electron concentration in the ionosphere?

4 marks

d. Calculate the power (kW) of a radio transmitter situated 1000m from a detector/receiver if the amplitude of the signal detected is 300 mV per meter.

2 marks

QUESTION FOUR.

a.	i	When is the frequency critical in radio wave propagation?	3 marks
α.		An ionosphere layer has a maximum electron density of 5.0×10^{11} electrons m ⁻³ .	
	11.	The virtual height of the layer is 90 km. Assuming a flat earth, calculate the	
		maximum usable frequency for communicating with a receiver situated 100 km	
			4 marks
L.	:	away. Derive the expression below, for the refractive index (n) of the ionospheric layer.	
b.	1.	Derive the expression below, for the remactive index (ii) of the following range $n = [1 - (81N/f^2)]^{1/2}$.	
		Where, N is the electron density and f the frequency of the radio wave	6 marks
		propagating through the ionosphere.	
	ii.	, ,	3 marks
C.		Explain what you understand by "Path Analysis Worksheet" in an analog radio	
		link.	4 marks.
		QUESTION FIVE.	
a.		Explain the following ionosphere phenomena:	
	i.	Multipath Fading	4 marks
		Dellinger Effect	4 marks
b.		With the aid of a diagram, describe the characteristics of space waves.	4 marks
Ο.			
c.		What are the significances of Chapman's theory of layer formation?	
Ο.			4 marks

List four unique properties of the ionosphere.

d.

4 marks