Homework 12 Section 2.7

Mark Petersen

Exercises 5,6,7,8

07/06/2020

Exercise 1. (Q5): Now that we have proved the basic facts about geometric series, supply a proof for Corollary 2.4.7.

Proof: We want to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1. Since this is a biconditional statement, we must prove both implications.

 (\Longrightarrow) : We assume directly that $\sum_{n=1}^{\infty}\frac{1}{n^p}$, then $\left(\frac{1}{n^p}\right)\to 0$ as $n\to 0$. If $p\le 0$, the sequence $\left(\frac{1}{n^p}\right)\not\to 0$ as $n\to 0$. Thus p cannot be less than or equal to 0 according to the divergence test. If $0< p\le 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n} \le \sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Since the harmonic series diverges, then by the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ also diverges when 0 . If <math>p > 1, then $\left(\frac{1}{n^p}\right)$ is decreasing and satisfies $\frac{1}{n^p} \ge 0$ for all $n \in \mathbb{N}$. Therefore, we can use the Cauchy Condensation Test. According to this test, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if the series $\sum_{n=0}^{\infty} 2^n \frac{1}{2^{np}}$ converges. Manipulating this series, we get

$$\sum_{n=0}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{n=0}^{\infty} 2^{(1-p)n}.$$

This series is a geometric series which only converges if p > 1, and since $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges p must be greater than 1. Thus, if $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges, then p > 1.

 (\Leftarrow) : We assume that p>1, then by the Cauchy Condensation Test shown above, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.

Therefore, by proving both implications, we have shown that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

Exercise 2. (Q6): Let's say that a series subverges if the sequence of partial sums contains a subsequence that converges. Consider this (invented) definition for a moment, and then decide which of the following statements are valid propositions about subvergent series.

- a) If (a_n) is bounded, then $\sum a_n$ subverges.
 - a) False, if (a_n) is bounded, then the sequence of partial sum (s_n) is not necessarily bounded. For example, if (a_n) is a sequence of 1s, then (s_n) is not bounded. Since it is not bounded, it doesn't have to contain a subsequence that converges. Just consider the example give, if (a_n) is a sequence of 1s, then (s_n) is monotonically increasing and not bounded, thus there is not subsequence that converges.
- b) All convergent series are subvergent.
 - a) True, one subsequence of the convergent series is the entire series. Since the entire series converges, this particular subsequence converges. Hence, all convergent series are subvergent.
- c) If $\sum |a_n|$ subverges, then $\sum a_n$ subverges as well.
 - a) True. Let $x_n = \sum_{k=1}^n |a_n|$, $s_n = \sum_{k=1}^n a_n$. Let (x_{n_k}) denote the subsergent sequence of (x_n) , and (s_{n_k}) denote the corresponding subsequence, then $-x_{n_k} \leq s_{n_k} \leq x_{n_k}$ for all k. Since x_{n_k} is a convergent subsequence, it is bounded. Let M denote this bound such that $x_{n_k} \leq M$ for all k. This means that

$$-M \le -x_{n_k} \le s_{n_k} \le x_{n_k} \le M,$$

thus the subsequence (s_{n_k}) is bounded. Since (s_{n_k}) is bounded, by the Bolzano-Weierstrass Theorem, it contains a convergent subsequence. Therefore, (s_n) contains a convergent subsequence and is thus subvergent.

d) If $\sum a_n$ subverges, then (a_n) has a convergent subsequence.

a) False. Let (a_n) be the sequence with the terms

$$(1,-1,2,-2,3,-3,\ldots)$$
,

ans let $s_n = \sum_{k=1}^n a_k$, then $s_{2n} = 0$, and is thus a convergent subsequence; however, since (a_n) is unbounded, it doesn't contain a convergent subsequence.

Exercise 3. (Q7): Do the following:

a) Show that if $a_n > 0$ and $\lim (na_n) = \ell$ with $\ell \neq 0$, then the series $\sum a_n$ diverges. Proof: We suppose directly that $a_n > 0$ and $\lim (na_n) = \ell$ with $\ell \neq 0$. According to the order limit theorem, since $na_n > 0$, then $\ell > 0$. Since (na_n) converges, given and $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that when $n \in \mathbb{N} > N$

$$\begin{aligned} |na_n - \ell| &< \epsilon \\ -\epsilon + \ell &< na_n < \ell + \epsilon \\ \frac{-\epsilon + \ell}{n} &< a_n < \frac{\ell + \epsilon}{n}. \end{aligned}$$

The value of ϵ can be chosen such that $-\epsilon + \ell > 0$, then we have

$$0 < \frac{\ell - \epsilon}{n} < a_n$$

for all n > N. Using the comparison test, since $\sum \frac{\ell - \epsilon}{n}$ diverges, the series $\sum a_n$ also diverges. b) Assume $a_n > 0$ and $\lim (n^2 a_n)$ exists. Show that $\sum a_n$ converges.

Proof: We suppose directly that $a_n > 0$ and that $\lim_{n \to \infty} (n^2 a_n)$ exists. Let ℓ denote the limit of $(n^2 a_n)$. Note that $n^2 a_n > 0$ for all $n \in \mathbb{N}$; thus, according to the order limit theorem, $\ell \geq 0$. Since $(n^2 a_n)$ converges, there exists an $N \in \mathbb{N}$ such that whenever $n \in \mathbb{N} > N$

$$\left| n^2 a_n - \ell \right| < \frac{\ell}{2},$$

which can be manipulated to yield

$$\frac{\ell}{2n^2} < a_n < \frac{3\ell}{2n^2}.$$

By the comparison test, since $\sum \frac{3\ell}{2n^2}$ converges according to the p-test, the series $\sum a_n$ also converges.

Exercise 4. (Q8): Consider each of the following propositions. Provide short proofs for those that are true and counterexamples for any that are not.

- a) If $\sum a_n$ converges absolutely, then $\sum a_n^2$ converges absolutely.
 - a) True. Since $\sum a_n$ converges absolutely, given an epsilon $1 > \epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \in \mathbb{N} > N$

$$|a_{m+1}| + |a_{m+2}| + \dots + |a_n| < \epsilon.$$

Since this inequality must hold for when $0 < \epsilon < 1$, the individual terms $|a_{m+1}|, |a_{m+2}|, \ldots, |a_n|$ must be less than 1. Thus

$$|a_{m+1}| < a_{m+1}^2,$$

 $|a_{m+2}| < a_{m+1}^2,$
 \vdots
 $|a_n| < a_n^2,$

Hence

$$a_{m+1}^2 + a_{m+2}^2 + \dots + a_n^2 < \epsilon.$$

Therefore, given any $\epsilon >$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \in \mathbb{N} > N$

$$\sum_{k=m+1}^{n} a_k^2 < \epsilon,$$

thus $\sum a_n^2$ converges absolutely.

- b) If $\sum a_n$ converges and (b_n) converges, then $\sum a_n b_n$ converges.
 - a) False, let $a_n = \frac{(-1)^{n+1}}{n^{0.1}}$, then by the alternating series test, $\sum a_n$ converges. Also, let $b_n = \frac{(-1)^{n+1}}{n^{0.9}}$, then (b_n) converges. Note that

$$a_n b_n = \frac{\left(-1\right)^{n+1} \left(-1\right)^{n+1}}{n^{0.1} n^{0.9}} = \frac{1}{n},$$

thus

$$\sum a_n b_n = \sum \frac{1}{n},$$

which is the harmonic series and does not converge. If (b_n) were a monotonic bounded series, then by Abel's test, $\sum a_n b_n$ would converge.

- c) If $\sum a_n$ converges conditionally, then $\sum n^2 a_n$ diverges.
 - a) True. Suppose by contrapositive that $\sum n^2 a_n$ converges, then the series $(n^2 a_n) \to 0$ and $n \to \infty$. Thus, there exists and $N \in \mathbb{N}$ such that when $n \in \mathbb{N} > N$,

$$\left| n^2 a_n \right| < 1$$
$$|a_n| < \frac{1}{n^2}.$$

By the comparison test, $\sum a_n$ converges absolutely, thus the original statement must be true.