DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH6312 - MÉTHODES STATISTIQUES D'APPRENTISSAGE

Devoir nº 1 - Automne 2018

Date de remise : 21 septembre avant 23h55 (en pdf dans Moodle)

DIRECTIVES:

- ✓ Inclure dans votre rapport le code R que vous avez utilisé.
- Lors de la correction, il sera tenu compte de la clarté des démarches ainsi que la qualité de la présentation du rapport.

QUESTION Nº 1 (10 points)

On dispose de n observations indépendantes, de la forme $\{(x_i, y_i), i = 1, ..., n\}$, dans le contexte p = 1, de sorte que x_{i1} est un scalaire noté simplement x_i .

Répondre à chacune des sous questions suivantes en justifiant votre réponse.

1.a) Trouver l'estimateur du maximum de vraisemblance $\hat{\theta}$ de θ si étant donné x_i , $y_i \sim \text{Exponentielle}(x_i\theta)$, $i=1,\ldots,n$, où $\theta>0$ et les $x_i>0$. Préciser la distribution asymptotique de $\hat{\theta}$.

Rappel : une variable aléatoire $U \sim \text{Exponentielle}(\lambda)$ si $f(u|\lambda) = \begin{cases} \lambda \exp\{-\lambda u\} & \text{si } u > 0 \\ 0 & \text{sinon.} \end{cases}$

1.b) [On suppose ici que n = 1, i.e. une seule observation (x, y) et la perte est quadratique]. Trouver l'estimateur de Bayes $\hat{\theta}_{\lambda}$ de θ si étant donné x, $y \sim$ Exponentielle (θ) ; la distribution a priori de θ est Exponentielle (λ) , i.e. $\Theta \sim$ Exponentielle (λ) .

1.c) Trouver l'estimateur du maximum de vraisemblance $\hat{\theta}$ de θ si étant donné x_i , $y_i \sim N(x_i\theta, 9), i = 1, ..., n$, i.e. une loi normale de moyenne $x_i\theta$ et de variance 9. Préciser la distribution asymptotique de $\hat{\theta}$.

1.d) Trouver (séparément) les estimateurs des moindres carrés $\hat{\beta}_0$ et $\hat{\beta}_1$ définis par

$$\hat{\beta}_0 = \operatorname{argmin} \sum_{i=1}^n (y_i - \beta_0)^2$$
 et $\hat{\beta}_1 = \operatorname{argmin} \sum_{i=1}^n (y_i - \beta_1 x_i)^2$.

1.e) Trouver les estimateurs des moindres carrés $(\hat{\beta}_0, \hat{\beta}_1)$ définis par

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

QUESTION Nº 2 (10 points)

On dispose des 10 observations suivantes pour le couple de variables (X,Y)

	i	1	2	3	4	5	6	7	8	9	10
X	i	2,37	1,42	3,14	4,15	4,52	3,67	3,22	2,27	2,44	4,12
y	'i	19,6	19,8	17,9	14,6	14,8	17,9	16,7	21,7	19,2	17,3

- **2.a)** Produire le diagramme de dispersion (nuage de points) pour les 10 observations. En utilisant les données ci-dessus, donner les valeurs numériques des solutions obtenues aux sous questions 1.d) et 1.e) de la question n° 1.
- **2.b)** Tracer le graphe de $RSS(\beta_0) = \sum_{i=1}^n (y_i \beta_0)^2$ en fonction de β_0 (en considérant un intervalle approprié pour β_0). Comparer le minimum obtenu du graphe avec la solution calculée algébriquement et commenter brièvement.
- **2.c)** En considérant un intervalle approprié pour β_0 et un intervalle approprié pour β_1 , tracer les courbes de niveau de la fonction $RSS(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \beta_0 \beta_1 x_i)^2$ (voir par exemple page 46 de ISL).

Comparer le minimum indiqué par les courbes de niveau avec la solution calculée algébriquement et commenter brièvement.

2.d) Procéder à la minimisation numérique des sommes de carrés $RSS(\beta_0)$ et $RSS(\beta_0, \beta_1)$ définies en 2.b) et 2.c), en utilisant une procédure appropriée d'optimisation de R (e.g. optimize(), nlm(), etc.) Dans chaque cas, comparer la solution d'optimisation numérique avec votre solution exacte.