

Outline ☐ Introduction ☐ MOS Capacitor ☐ nMOS I-V Characteristics ☐ pMOS I-V Characteristics ☐ pMOS I-V Characteristics ☐ Gate and Diffusion Capacitance

Terminal Voltages

$$-V_{gs} = V_g - V_s$$

$$-V_{gd} = V_g - V_d$$

$$- V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- □ Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence V_{ds} ≥ 0
- □ nMOS body is grounded. First assume source is 0 too.
- ☐ Three regions of operation
 - Cutoff
 - Linear
 - Saturation

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

5

nMOS Cutoff

- No channel
- \Box $I_{ds} \approx 0$

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

I-V Characteristics

- $\hfill \square$ In Linear region, $\hfill I_{ds}$ depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

9

Channel Charge Mos structure looks like parallel plate capacitor while operating in inversions Gate – oxide – channel Q_{channel} = Gio, gate oxide good insulator, e_{ac} = 3.9) 3: CMOS Transistor Theory CMOS VLSI Design 4th Ed. 10

Carrier velocity

- ☐ Charge is carried by e-
- ☐ Electrons are propelled by the lateral electric field between source and drain
 - E =
- ☐ Carrier velocity *v* proportional to lateral E-field
 - -v=
- ☐ Time for carrier to cross channel:
 - -t=

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

11

nMOS Linear I-V

- Now we know
 - How much charge $\mathbf{Q}_{\text{channel}}$ is in the channel
 - How much time *t* each carrier takes to cross

 $I_{ds} =$

=

=

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

nMOS Saturation I-V

- \Box If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} =$
- ☐ Now drain voltage no longer increases current

$$I_{ds} =$$

=

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

13

nMOS I-V Summary

☐ Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t\right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

Example For a 0.6 μm fabrication process From AMI Semiconductor $t_{0x} = 100 \text{ Å}$ $\mu = 350 \text{ cm}^2/\text{V*s}$ $V_{t} = 0.7 \text{ V}$ Plot $V_{t} = 0.7 \text{ V}$ Plot $V_{t} = 0.7 \text{ V}$ Plot $V_{t} = 0.7 \text{ V}$ V

Capacitance

- ☐ Any two conductors separated by an insulator have capacitance
- ☐ Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- ☐ Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

17

Gate Capacitance

- Approximate channel as connected to source
- \Box $C_{gs} = \epsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- \Box C_{permicron} is typically about 2 fF/ μ m

3: CMOS Transistor Theory

CMOS VLSI Design 4th Ed.

