Solutions aux exercices préparatoires du procédural 1

- 1. Représentez ces nombres sans utiliser la calculatrice :
 - a. $1000\ 1011_2 = ?_{10} = ?_8 = ?_{16} = ?_{BCD}$
 - b. $125_{10} = ?_{\text{Amplitude sign\'ee}} = ?_{\text{Compl\'ement 1}} = ?_{\text{Compl\'ement 2}}$
 - c. -12.55₁₀=?_{IEEE} single precision Floating point representation
- 2. Simplifiez l'expression $F = A \cdot B + A \cdot B \cdot C' \cdot D + A \cdot B \cdot D \cdot E' + A' \cdot B \cdot C' \cdot E + A' \cdot B' \cdot C' \cdot E$

Réponse1.a:

 139_{10} , 213_8 , $8B_{16}$, $0001\ 0011\ 1001_{BCD}$

Réponse1.b:

Conversion en binaire:

125	÷	2	->	1
62	÷	2	->	0
31	÷	2	->	1
15	÷	2	->	1
7	÷	2	->	1
3	÷	2	->	1
1	÷	2	->	1
0			->	0

+125₁₀ se représente de la même façon

 $0111\ 1101_{base2}\ Amplitude\ sign\'ee$,

 $0111\ 1101\ \mathsf{complément}\ \mathsf{1}$

0111 1101 complément 2,

Étant donné que c'est un nombre positif,

Alors que -125₁₀ se représenterait

```
1111 1101<sub>base2</sub> Amplitude signée ,
```

1000 0010 base2 complément 1,

1000 0011 base2 Complément 2

Il faut faire attention entre faire la conversion et représenter en complément à 2. + 125 ne change pas en complément à 2. Cependant, il faut appliquer le complément à 2 à +125 pour obtenir le nombre -125...

Réponse1.c:

La représentation est de la forme :

Bit 31	The bit $b1$ corresponds to the sign σ of x where $b1=\{01\text{if}\sigma=+1\text{if}\sigma=-1.$		
Bits 23-30	Most computers do not store the exponent e of a floating point binary number directly. Instead, they define $E=e+127$ which is a positive binary number (since $-126 \le e$). The eight bits $b2b3b8b9$ correspond to this number E .		
Bits 0-22	The 23 succeeding digits $a1a2a22a23$ of the significand of x , $1.a1a2a22a23$ are store here.		

Réponse : 1 10000010 10010001100110011001101 (sans espace)

Réponse 2:

$$\begin{aligned} A \cdot B + A \cdot B \cdot C' \cdot D + A \cdot B \cdot D \cdot E' + A' \cdot B \cdot C' \cdot E + A' \cdot B' \cdot C' \cdot E \\ &= A \cdot B + A \cdot B \cdot D \cdot E' + A' \cdot B \cdot C' \cdot E + A' \cdot B' \cdot C' \cdot E \text{ (T9)} \\ &= A \cdot B + A' \cdot B \cdot C' \cdot E + A' \cdot B' \cdot C' \cdot E \text{ (T9)} \\ &= A \cdot B + A' \cdot C' \cdot E \text{ (T10)} \end{aligned}$$

Note T9 et T10 sont les théorèmes dans le livre de Wakerly. Vous retrouvez les même dans votre livre de référence.