EE4704 Image Processing and Analysis

Tutorial Set G – Solutions

Question 1

From the results, we see that

$$P^c = Q$$

i.e.

$$(A \bullet B)^c = A^c \circ \hat{B}$$

which is the dual property of opening and closing.

 $I_1 = I \circ S_1$

 $I_1 \ominus S_1$

 I_1^c

 $I_1^c \ominus S_2$

 $I_2 = (I_1 \ominus S_1) \cap (I_1^c \ominus S_2)$

Part (a)

$$I(E) = -\log_r P(E)$$

= $-\log_2(0.2) = 2.322$ bits
= $-\log_{10}(0.2) = 0.699$ Hartleys

Part(b)

Probability values: $p(r_k) = \frac{1}{L}, \quad r_k = 0, 1, 2, \dots, L-1$

The entropy is

$$H = -\sum_{k=0}^{L-1} p(r_k) \log p(r_k)$$

$$= -\sum_{k=0}^{L-1} \frac{1}{L} \log(\frac{1}{L})$$

$$= \frac{1}{L} \log(L) \sum_{k=0}^{L-1}$$

$$= \frac{1}{L} \log(L) \times L$$

$$= \log(L)$$

$$= \log(10)$$

$$= 3.322 \text{ bits}$$

Part (c)

The entropy is

$$H = -\sum_{k=0}^{L-1} p(r_k) \log p(r_k)$$

$$= \frac{L}{2} \left\{ \frac{2}{L} \log(\frac{L}{2}) \right\}$$

$$= \log(\frac{L}{2})$$

$$= \log(5)$$

$$= 2.322 \text{ bits}$$

Part (d)

Probability values: $p(r_k) = Kr_k$, $r_k = 0, 1, 2, \dots, 9$

$$\sum_{k} p(r_k) = 1 \Rightarrow K = \frac{1}{45}$$

Hence,

$$p(r_k) = \frac{1}{45}r_k$$

The entropy is

$$H = -\sum_{k=0}^{9} p(r_k) \log p(r_k)$$
$$= -\sum_{k=0}^{9} \frac{r_k}{45} \log \frac{r_k}{45}$$
$$= 2.96 \text{ bits}$$

Symbol: a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 Gray level: 7 0 1 2 3 4 5 6 Probability: 0.4 0.08 0.08 0.2 0.12 0.08 0.03 0.01

Part (a)

The entropy is

$$H = -\sum P(a_i) \log_2 P(a_i)$$

$$= -0.4 \log 0.4 - 3 \times 0.08 \log 0.08 - 0.12 \log 0.12$$

$$-0.2 \log 0.2 - 0.03 \log 0.03 - 0.01 \log 0.01$$

$$= 2.453 \text{ bits}$$

Coding efficiency using the natural binary code is

$$2.453/3 = 81.8\%$$

Part (b)

Original source				Source reduction										
Symbol	Pro	b.	1		2		3		4		5		6	
$\overline{a_0}$	0.4	1	0.4	1	0.4	1	0.4	1	0.4	1	0.4	1	0.6	0
a_3	0.2	000	0.2	000	0.2	000	0.2	000	0.24	01	0.36 _	00	0.4	1
$\overline{a_4}$	0.12	010	0.12	010	0.12	010	0.16	001	0.2 _	000	0.24	01		
$\overline{a_1}$	0.08	0010	0.08	0010	0.12	011	0.12	010	0.16	001				
$\overline{a_2}$	0.08	0011	0.08	0011	0.08_	0010	0.12	011						
a_{5}	0.08	0110	0.08_	0110	0.08_	0011								
a_6	0.03_	01110	0.04	0111										
a_7	0.01_	01111												

Gray		Straight	Huffman	
Level	Prob.	binary code	code	L
0	0.4	000	1	1
1	0.08	001	0010	4
2	0.08	010	0011	4
3	0.2	011	000	3
4	0.12	100	010	3
5	0.08	101	0110	4
6	0.03	110	01110	5
7	0.01	111	01111	5

Average code length for the Huffman code is

$$\bar{L} = (1 \times 0.4) + (4 \times 0.08) + (4 \times 0.08) + (3 \times 0.2) + (3 \times 0.12) + (4 \times 0.08) + (5 \times 0.03) + (5 \times 0.01) = 2.520 \text{ bits}$$

Code efficiency is

$$\eta = \frac{2.453}{2.520} = 97.3\%$$

Part (c)

With 3 bits/pixel, the image occupies 3×10^4 bits. Therefore,

savings =
$$(3 - 2.52) \times 10^4 = 4,800$$
 bits (16%)

Part (a)

Hence, $0.23355 \longrightarrow a_2 \ a_1 \ a_3 \ a_3 \ (EOM)$

Part (b)

0	1	2	3	4	5	
0	1	2	3	4	5	
0	1	2	3	4	5	
0	1	2	3	4	5	
0	1	2	3	4	5	
0	1	2	3	4	5	
I_1						

1	1	3	3	5	5
1	1	3	3	5	5
1	1	3	3	5	5
1	1	3	3	5	5
1	1	3	3	5	5
1	1	3	3	5	5

 I_2

The symbol probabilities are:

Image I_1							
Symbol	Gray-level	Prob.					
$\overline{a_0}$	0	1/6					
a_1	1	1/6					
a_2	2	1/6					
a_3	3	1/6					
a_4	4	1/6					
a_5	5	1/6					

Image I_2							
Symbol	Gray-level	Prob.					
a_0	0	0					
a_1	1	1/3					
a_2	2	0					
a_3	3	1/3					
a_4	4	0					
a_5	5	1/3					

Image I_1 :

After the first symbol, $R_1 = (\frac{1}{6})$.

After the second symbol, $R_2 = \left(\frac{1}{6}\right)^2$.

. . .

After the sixth symbol, $R_6 = \left(\frac{1}{6}\right)^6 = 2.143 \times 10^{-5}$

Image I_2 :

After the first symbol, $R_1 = \left(\frac{1}{3}\right)$.

After the second symbol, $R_2 = \left(\frac{1}{3}\right)^2$.

. . .

After the sixth symbol, $R_6 = (\frac{1}{3})^6 = 1.372 \times 10^{-3}$.

After the 36th pixel, R_{36} for I_1 would be much smaller than R_{36} for I_2 . Since more decimal digits are needed for a smaller range, Image I_1 would require more digits for transmission.

Each pixel is stored as 1 byte. Without run-length coding, the number of bytes required is

$$N_0 = 16^2 = 256$$

Our run-length coding scheme assumes that each row begins with a white pixel, and each run requires 1 byte (to denote the length of the run). For a row starting with a black pixel, an extra byte is needed for the first run (of zero length).

One run per row, 16 rows

Number of bytes required is

$$N_1 = 16 < N_0$$

 $C_R = 16$

For a row starting with 1, there are two runs

For a row starting with 0, there are three runs

Number of bytes required is

$$N_2 = 8 \times 2 + 8 \times 3 = 40 < N_0$$
 $C_R = 6.4$

For a row starting with 1, there are four runs

For a row starting with 0, there are five runs

Number of bytes required is

$$N_4 = 8 \times 4 + 8 \times 5 = 72 < N_0$$
 $C_R = 3.6$

For a row starting with 1, there are eight runs

For a row starting with 0, there are nine runs

Number of bytes required is

$$N_8 = 8 \times 8 + 8 \times 9 = 136 < N_0$$

 $C_R = 1.9$

For a row starting with 1, there are sixteen runs

For a row starting with 0, there are seventeen runs

Number of bytes required is

$$N_{16} = 8 \times 16 + 8 \times 17 = 264 > N_0$$

 $C_R = 0.97$

