Séquence : 09

Document : TD04 Lycée Dorian Renaud Costadoat Françoise Puig

Référence	S09 - TD04			
Compétences	B2-10: Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables. B2-11: Intégrer ou modifier une pièce dans un assemblage à l'aide d'un modeleur volumique 3D.			
	E1-05: Lire et décoder un document technique.			
Description	Modéliser géométriquement des solides, et mettre en mouvement un assemblage sur SolidWorks			
Système	Borne de calage			

Borne de calage

1.1 Création d'une esquisse

Croquis de la pièce, appelée "Corps", en perspective avec les cotes principales.

- Créez un nouveau fichier pièce
 - Enregistrez votre travail sous : "Borne de calage/Corps"
- Créer un volume de base
 - Ouvrir une esquisse,
 - Tracer l'esquisse du volume de base,
 - Réalisez le contour fermé suivant en plaçant le premier point sur l'origine.

1.2 Création d'un volume

- Créer le bossage extrusion
 - Sélectionnez la fonction volumique base/bossage extrudé,
 - Dans la fenêtre de la fonction volumique base/bossage extrudé,
 - Réglez la condition d'extrusion sur plan milieu
 - Réglez la longueur d'extrusion à la valeur de 68 mm
 - Validez
- Après avoir validez vous pouvez renommer la fonction volumique dont l'ancien nom devient bleu. (s'il n'est pas bleu vous pouvez le sélectionner en double-cliquant lentement sur l'ancien nom)
- Nommez la fonction volumique : "Volume de base".

T Annotations

Lumière

Frontal

Horizontal Vertical

1.3 Création d'une rainure

Esquisse

- Orienter l'esquisse face à vous, pour cela choisissez l'icône "Normal à".
- Choisir l'icône esquisse,
- Tracer un rectangle correspondant à la rainure souhaitée à l'aide de l'outil,
- Coter l'esquisse avec l'outil cotation largeur 51mm, hauteur 21 mm,
- Coter en position la rainure, horizontalement et verticalement.

Volume

- Sélectionnez la fonction volumique enlèvement matière extrudé
- Dans la fenêtre de la fonction :
 - Régler la condition d'enlèvement sur A travers tout
 - Valider
- Nommez la fonction volumique : rainure.

1.4 Création d'un chanfrein

- Orienter la vue comme ci-contre,
- Ouvrir la fonction volumique chanfrein,
- Sélectionner les deux arêtes en avant de l'image suivante,
- Créer des plans inclinés
- Réglez les paramètres de chanfrein :
 - distance-distance
 - valeur 1 = 20
 - valeur 2 = 44
- Nommer la fonction : chanfreins latéraux 1.
- Sélectionner l'arête arrière,
- Créer le « chanfrein » et régler les paramètres de chanfrein :
 - distance-angle,
 - distance = 24,
 - angle = 45° .
- Nommer la fonction : "Chanfrein arrière".

1.5 Création d'un trou

- Sélectionnez la face supérieure du modèle qui devient verte,
- Créer le trou par assistance pour le perçage
 - Sélectionnez la fonction volumique,
 - Choisissez l'onglet données précédentes,
 - Type de perçage : simple,
 - Diamètre: 20,
 - Pour la profondeur, choisir "Condition de fin" : "A travers tout",
 - Cliquez sur suivant puis Terminer.
- Nommer la fonction : "trou débouchant".
- Positionner le trou,
 - Orienter la vue comme ci-contre en choisissant l'icône vue de dessus.
 - Double cliquer sur la fonction volumique trou débouchant que vous venez de renommer,
 - Cliquer sur "Éditer l'esquisse",
 - Créez une ligne de construction passant par les points milieux,
 - Glissez le centre du cercle sur la ligne de construction puis lâchez,
 - Cotez la position du trou débouchant.

1.6 Création d'un trou lamé

Créer un trou lamé débouchant

- Sélectionner la surface,
- Orientez la vue comme ci-contre.
- Sélectionnez la face avant du modèle qui devient verte,
- Sélectionnez la fonction volumique,
- Choisissez l'onglet données précédentes,
- Type de perçage : chambrage (lamage),
 - Diamètre perçage : 5,
 - Ne pas compléter la profondeur,
 - Diamètre chambrage: 12,
 - Profondeur: 1,
 - Cliquez sur suivant puis Terminer,
 - Condition de fin : Jusqu'à la prochaine surface.
- Nommer la fonction volumique : trou lamé

1.7 Création d'un trou lamé

Positionner un trou lamé débouchant

- Orienter la vue comme ci-contre,
- Double cliquer sur la fonction volumique trou lamé,
- Cliquer sur "Éditer l'esquisse",
 - Créer une ligne de construction passant par l'axe du trou,
 - Glisser le centre du cercle sur la ligne de construction puis lâchez,
 - Coter la position du trou lamé : 13 mm.
- Sélectionner l'arête
 - Orientez la vue comme ci-contre.
 - Sélectionnez l'arête du trou qui devient verte
- Créer le taraudage par «la représentation de filetage »
 - Sélectionnez la fonction volumique,
 - Représentation de filetage,
 - Entrez la valeur du taraudage : 6,
 - Indiquez la condition de fin : A travers tout,
 - Validez : ok
- Enregistrer votre travail.

1.8 Modélisation de l'axe

A partir de l'esquisse suivante.

Modéliser la pièce suivante. Prendre toutes les décisions nécessaires si les informations permettant la modélisation ne sont pas complètes.

1.9 Modélisation de l'écrou

A partir de l'esquisse suivante.

Modéliser la pièce suivante. Prendre toutes les décisions nécessaires si les informations permettant la modélisation ne sont pas complètes.

1.10 Modélisation de la vis

A partir de l'esquisse suivante.

Modéliser la pièce suivante. Prendre toutes les décisions nécessaires si les informations permettant la modélisation ne sont pas complètes.

1.11 Mise en mouvement

A l'aide de l'onglet Meca3D, mettre en place des liaisons sur le système et montrer une mise en mouvement.

2 Cavalier

Un cavalier est une pièce constituée d'un clou et d'une arche en plastique permettant de guider des câbles.

Question 1 : Réaliser l'arbre de construction de l'arche du cavalier.

