

#### Universidade Federal de Santa Catarina

#### Centro Tecnológico





# Sistemas Digitais

**INE 5406** 

#### Aula 3-T

 Projeto de Unidade Lógico-Aritmética (ULA). Funcionamento e características temporais de registradores. Cadenciamento com sinal de relógio (*clock*). Registradores de uso específico. Exploração de paralelismo na ULA.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

#### Registrador com Carga Paralela



- Existe um FF para cada bit a ser armazenado
- Todos os FFs "obedecem" a um mesmo sinal de controle
- O termo "carga paralela" refere-se ao fato de existir uma entrada para cada bit, de modo que é possível carregar simultaneamente todos os bits do dado

#### Símbolo no nível RT



Prof. José Luís Güntzel

#### Registrador com Carga Paralela



#### Exemplo de funcionamento (assumindo que tsu, th e td são satisfeitos)



A cada borda de subida de "controle" um novo dado é amostrado e fica armazenado no registrador (até a próxima borda de subida de "controle")

#### Registrador com Carga Paralela



- Peculiaridade: a cada borda de subida de "controle" um novo dado é amostrado, mesmo que não se queira amostrar um dado novo...
- Porém, às vezes pode ser necessário que o registrador obedeça a um sinal de controle sincronizado com o sinal de relógio. (Solução na próxima transparência...)

### Cadenciamento de Sistemas Digitais

- A maior parte dos sistemas digitais são sincronizados por um sinal monótono denominado relógio (ou *clock*, em inglês).
- Sistemas digitais cadenciados por sinal de relógio são denominados síncronos.
- No projeto de sistemas digitais síncronos, registradores são utilizados.

#### Sinal de Relógio (ou Clock)



#### **Nomenclatura**

borda ascendente = borda de subida = borda positiva = flanco de subida etc

borda descendente = borda de descida = borda negativa = flanco de descida etc

#### Características:

- **Período** (T): tempo entre duas bordas consecutivas de mesmo tipo. Medido em submúltiplos do segundo (ms, μs, **ns**)
- Frequência: f = 1/T, medida em múltiplos do hertz (kHz, MHz, GHz)
- *Duty cycle*: T1/T x 100 %, onde T1 é o tempo entre uma borda ascendente e a borda descendente que a segue.

## Estimativa do Período do Relógio

Exemplo 1: Estime o período do relógio para um circuito combinacional cujo atraso crítico é 10 ns.

#### **Preliminares:**

```
1 ns (1 nanossegundo) = 1 x 10<sup>-9</sup> s

T = 1/f \Rightarrow f = 1/T

1/1s = 1 Hz
```

#### Cálculo:

```
f = 1/(10 \times 10^{-9}) Hz = 0.1 \times 10^{+9} Hz = 100 \times 10^{+6} Hz = 100 MHz
```

## Cadenciamento de Sistemas Digitais

Registradores são usados para criar "barreiras temporais" que isolam os circuitos combinacionais



2. Aproximação grotesca; falta considerar as características temporais dos registradores R1 e R2.

#### Diagramas de Tempo

#### **Supondo:**

```
•tsu<sub>R1</sub> = tsu<sub>R2</sub> = 1ns (tempo de setup de R1 e de R2)

•th<sub>R1</sub> = th<sub>R2</sub> = 1ns (tempo de hold de R1 e de R2)

•tco<sub>R1</sub> = tco<sub>R2</sub> = 1ns (tempo de carga de R1 e de R2)

•td<sub>c1</sub> = 2ns (atraso crítico (máximo) de C1)
```























Conclusão. O período do relógio pode ser calculado por:

T = max 
$$\{tco_{R1}, th_{R1}\} + td_{C1} + tsu_{R2} =$$
  
= max $\{1, 1\} + 2 + 1 = 4$  ns

## Diagramas de Tempo

Pergunta: Como estimar td<sub>C1</sub>?

 Notar que C1 é um circuito combinacional



Estimando o Atraso Crítico de Circuito Combinacional

Supondo que td=1 unid. para qualquer porta lógica



#### Estimando o Atraso Crítico de Circuito Combinacional

Supondo que td=1 unid. para qualquer porta lógica



#### Possíveis Técnicas:

1. Simulação: repetir a análise para cada um dos 2<sup>n</sup> vetores de entrada.

Estimando o Atraso Crítico de Circuito Combinacional

Supondo que td=1 unid. para qualquer porta lógica

R1 R2 caminhos críticos

#### Possíveis Técnicas:

- 1. Simulação: repetir a análise para cada um dos 2<sup>n</sup> vetores de entrada.
- 2. Análise de Timing (STA): analisar os atrasos dos caminhos entre R1 e R2.

possíveis

### Topologia Básica de uma ULA

#### Caso Genérico



A cada borda de relógio, este circuito faz:

#### $R3 \leftarrow R1 \text{ op } R2$

onde **op** é uma das operações disponíveis na ULA

### Topologia Básica de uma ULA

#### Uma Possível Variação do Caso Genérico



#### Adição de n parcelas em n passos:

```
R1 ← A; R2 ← X; // em paralelo
R1 ← R1 op R2; R2 ←X;
...
```

### Topologia Básica de uma ULA

#### Uma Possível Variação do Caso Genérico



#### Uma ULA Dedicada

#### Adição em Paralelo de 4 Operandos Inteiros Sem Sinal



#### Uma ULA Dedicada

#### Adição em Paralelo de 4 Operandos Inteiros Sem Sinal



#### Uma ULA Dedicada

#### Adição em Paralelo de 4 Operandos Inteiros Sem Sinal

#### **Pontos Positivos:**

• Jamais ocorre overflow.

• A convenção para dados no nível RT é obedecida.

#### **Ponto Negativo:**

• 2 somadores p/ números com 9 bits e 1 somador para números de 10 bits (mais recursos do que o necessário...)



#### Uma ULA Dedicada

#### Adição em Paralelo de 4 Operandos Inteiros Sem Sinal

#### **Pontos Positivos:**

- Jamais ocorre overflow.
- A convenção para dados no nível RT é obedecida.
- Somadores dimensionados de modo a economizar recursos (2 somadores p/ números com 8 bits e 1 somador para números de 8 bits)



INE/CTC/UFSC

Slide 3T.30

Prof. José Luís Güntzel

### Registradores de Uso Específico

No Projeto de Sistemas Digitais no Nível RT, também é comum se utilizar os seguintes tipos de registradores:

- Registrador com carga paralela controlada (ck + sinal de carga)
- Registrador de Deslocamento.
- Registrador-Contador.

#### Registrador com Carga Paralela Controlada



#### Símbolo no nível RT



- Existe um sinal de "carga" e um sinal de relógio (ck)
- A cada borda ativa de "ck" cada FF amostra um valor de sua respectiva entrada "D":
  - Se carga=0, cada FF amostra seu respectivo "Q"
  - Se carga=1, cada FF amostra um valor externo "Di"

#### Registrador com Carga Paralela Controlada



Exemplo de funcionamento (assumindo que tsu, th e td são satisfeitos)



#### Registradores de Deslocamento à Direita

(Shift Register)



#### Símbolo no nível RT



- Existe um sinal de "desloca"
- A cada borda ativa do sinal "desloca", cada FF amostra o valor da saída "Q" do FF adjacente à esquerda
- O FF mais à esquerda lê um bit da entrada "dado", a qual corresponde a uma "entrada serial"
- Este registrador também pode ser visto como um registrador com carga serial...

Registradores de Deslocamento à Direita



### Registradores de Deslocamento à Direita

Registrador de Deslocamento com Controle

Complete as ligações faltantes



Quantos ciclos de relógio será preciso manter "desloca"=1 até preencher o conteúdo deste registrador?

# Registrador-Contador (*Ripple*)

#### Contador de 1 bit



# Registrador-Contador (*Ripple*) de 3 Bits



# Mapeamento Tecnológico

Basicamente, há duas soluções para se materializar um sistema digital:

- 1. Com FPGA (usado na aula prática).
- 2. Mandando fabricar um chip dedicado também referido por ASIC (não iremos utilizar devido o custo e o tempo).



# Mapeamento Tecnológico

2. Mandando fabricar um chip dedicado – também referido por ASIC



Exige que o circuito seja "mapeado" para a tecnologia de fabricação (CMOS)

Exemplos de portas lógicas em CMOS:

# Mapeamento Tecnológico

#### Exemplos de portas lógicas em CMOS:













### Custo dos Blocos Básicos do Nível RT

#### Somador/Subtrator



### Custo dos Blocos Básicos do Nível RT

Somador/Subtrator



### Custo dos Blocos Básicos do Nível RT

Somador/Subtrator



#### Algumas Implementações CMOS para a xor



16 transistores



12 transistores (necessita de 2 inversores)

### Custo dos Blocos Básicos do Nível RT

Somador/Subtrator



Algumas Implementações CMOS para a xor



8 transistores



6 transistores (é a mais usada)

#### Custo dos Blocos Básicos do Nível RT

#### Somador/Subtrator



#### **Custo do Somador/subtrator, por bit:**

- 3 portas xor: 3 x 6 = 18 transistores
- 3 portas nand de duas entradas: 3 x 4 = 12 transistores
- Logo, custo de um bit = 30 transistores (ignorando-se a xor que calcula o overflow)

Custo de um somador/subtrator de n bits: 30n transistores

### Custo dos Blocos Básicos do Nível RT

Multiplexador 2:1 (mux2:1)



14 ou 12 transistores



6 ou 4 transistores (mais usado)

### Custo dos Blocos Básicos do Nível RT

Flip-flop D (Mestre-Escravo)



18 ou 20 transistores (eventualmente, podemos considerar somente um inversor para o clock de todos os bits)



OBS: para set ou reset assíncrono, adicionar 2 transistores

### Custo dos Blocos Básicos do Nível RT

Flip-flop D CMOS com habilitação de carga paralela



18+4= 22 transistores

**OBS:** para set ou reset assíncrono, adicionar 2 transistores

#### Custo dos Blocos Básicos RT

| Componente RT                                                                            | Custo (nº transistores) |          |
|------------------------------------------------------------------------------------------|-------------------------|----------|
| Somador                                                                                  | 24n                     |          |
| Subtrator                                                                                | 26n                     | D        |
| Somador/subtrator                                                                        | 30n                     |          |
| Mux 2:1                                                                                  | 4n                      | C Q      |
| Registrador com carga paralela (+4 transistores para set ou reset assíncrono)            | 18n                     |          |
| Registrador com carga paralela controlada (+4 transistores para set ou reset assíncrono) | 22n —                   | dado D Q |
|                                                                                          |                         | carga CK |