

CS7.403: Statistical Methods in Al

Monsoon 2022:

Experimentation and Performance Evaluation

Anoop M. Namboodiri

Biometrics and Secure ID Lab, CVIT,
IIIT Hyderabad

Overfitting and Generalization

- *Overfitting*: The process of a model becoming too specific to the training set that its performance on an independent test set becomes poor. Also known as poor *generalization*.
- Solutions we have seen:
 - 1. Use of simple classifiers: Linear Models
 - 2. Large-Margin Classification, SVMs
 - 3. Ensemble Classifiers
 - 4. Dimensionality Reduction
- Experimental Check: Cross Validation

Training-Validation-Testing

- What if our selection of validation/test set is biased
 - What happens to our model during training?
 - What happens to our estimate of error rate?

Removing the potential Bias

Removing the potential Bias

k-fold Cross Validation

Train on N - {1}	Test on {1}	Error: e ₁		
Train on N - {2}	Test on {2}	Error: e ₂		
Train on N - {3}	Test on {3}	Error: e ₃		
Train on N - {4}	Test on {4}	Error: e ₄		
Train on N - {5}	Test on {5}	Error: e ₅		
Train on N - {6}	Test on {6}	Error: e ₆		

Train on N - {k} Test on {k} Error: e_k

Extreme case: $|\{i\}| = 1$ Leave-one-out Cross Validation

$$u_e = \frac{1}{k} \sum_{i=1}^k e_i$$

$$\sigma_e^2 = \frac{1}{k} \sum_{i=1}^k (e_i - \mu_e)^2$$

- Significantly reduces the bias of error estimate
 - Note: Each error estimate may not be reliable, but the mean is.
- Provides a confidence interval for error estimate
- Can use the whole data for both training and validation
- Does not produce a single trained model
 - May train the model using the whole labelled data
- Takes more time to train

Questions?

Evaluating Classification

Binary Classification

- Class Labels: {0, 1} or {-,+}
- Test Samples: 150; {66, 84}
- Accuracy = (61 + 77) / 150 = 0.92
- Misclassification = (7 + 5) / 150 = 0.08
- True Positive Rate (TP) = 77 / 84 = 0.92
- False Positive Rate (FP) = 5 / 66 = 0.08

N = 150	Predicted:	Predicted: Predicted: +	
Actual: -	TN = 61	FP = 5	66
Actual: +	FN = 7	TP = 77	84
	68	82	

Related Terms

- Hit = 77/84 (TPR)
- Miss = 7/84 (FNR)
- False Alarm = 5/66 (FPR)
- Genuine Reject = 61/66 (TNR)

• Precision: 77 / 82

• Recall: 77 / 84 (TPR)

N = 150	Predicted:	Predicted: Predicted: +	
Actual: -	TN = 61	FP = 5	66
Actual: +	FN = 7	TP = 77	84
	68	82	

Evaluating Verification

• Test Data:

FMR100 (best FNMR/FMR<=1%)
FMR1000 (best FNMR/FMR<=0.1%)

Which rates are Important?

- Screening for a terminal disease
 - Do not want to miss anyone: Low Miss Rate, High Recall
- Classification between apples and oranges
 - Both types of errors are equally imp.: High Accuracy
- Automatic bombing on detecting a target from a drone
 - Should not hurt civilians: Zero False Alarms
- Giving access to a secure installation
 - Should not give access to unauthorized personnel: Low False Positives

Extension to Multi-class Classifier

Confusion Matrix

Pred → Act ↓	1	2	3	4	5	6
1	98	2	0	0	0	0
2	1	97	1	0	1	0
3	0	0	100	0	0	0
4	0	0	1	99	0	0
5	0	0	0	0	100	0
6	0	1	0	1	2	96

Questions?

Precision vs Recall

The Tradeoff

Precision Recall Tradeoff

- In most cases one can tradeoff between the two types of errors.
- Consider a search for a document from a database:
- Strategy
 - Retrieve all document that are closer than a threshold in distance
- The Tradeoff
 - Low distance threshold
 - Fewer false positives; High Precision
 - More misses (false negatives), Low Recall
 - High distance threshold
 - Higher Recall, Lower Precision

- As threshold varies, we move along a curve
- Different representations / distance metrics / algorithms produce different curves
- Blue > Red > Black
- Ideal
- Other variants exist
 - Detection Error Tradeoff Curves
 - FPR vs. FNR
- Semi-log plots

Receiver Operating Characteristic Curves

F-1 Measure: A Single Metric

- One classifier has high Precision but lower Recall; Another behaves exactly the opposite
- F-1 Measure (Information Retrieval)

$$F_{1} = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

- Punishes extreme values more
- Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

Notes on Performance Metrics

- Use the right metric based on the type of problem
- Use a chart that best demonstrates/compares the results
- Use cross-validation whenever possible
 - Report the standard deviation of accuracies
 - Use it to decide if a difference is significant
- Use Single Metrics when appropriate
 - F-Measure
 - Area Under Curve

Questions?