Problem Set 2

Due on Canvas Monday August 24, 11pm Central Time

- (1) Consider the set $A = \left\{\frac{1}{n}\right\}_{n \in \mathbb{N}} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$. Does there exist $S \subset \mathbb{R}$, such that the set of S's limit points equals A?
- (2) Prove that $f(x) = \cos x^2$ is not uniformly continuous on **R**.
- (3) Show that if the function $f: \mathbb{R} \to \mathbb{R}_{++}$ is continuous on an interval [a, b], where $\mathbb{R}_{++} = \{x \in \mathbb{R} | x > 0\}$, then the reciprocal of this function $\left(\frac{1}{f}\right)$ is bounded on this same interval.
- (4) Bisection method. Let $f:[a,b] \to \mathbb{R}$ be a continuous function, a < b, $a,b \in \mathbb{R}$. Assume that f(a) < 0 < f(b). We want to show that $\exists c \in (a,b)$ such that f(c) = 0. To do this, construct the following sequences:
 - (I): Set $l_1 = a$, $u_1 = b$.
 - (II): For each n, let $m_n = (l_n + u_n)/2$.
 - if $f(m_n) > 0$, then set $l_{n+1} = l_n$, $u_{n+1} = m_n$;
 - if $f(m_n) < 0$, then set $l_{n+1} = m_n$, $u_{n+1} = u_n$
 - if $f(m_n) = 0$, then stop.

Using what you have learned about the limits of real sequences, prove

- (a) Sequences $\{l_n\}$ and $\{u_n\}$ both converge.
- (b) Both sequences converge to the same limit, i.e. $\lim_{n\to\infty} l_n = \lim_{n\to\infty} u_n$. Hint: Show that $\{u_n - l_n\} \to 0$.
- (c) Define the common limit of two sequences c and show that f(c) = 0.

 Hint: Use the continuity of f and the fact that taking limits preserves weak inequalities.
- (5) Prove that at any time there are two antipodal points (diametrically opposite) on Earth that share the same temperature.

Hint: Use the Intermediate Value Theorem.