第2問

一様な伝送線路に関する以下の問いに答えよ.

- (1) 伝送線路の短い区間 Δx [m]を図 1 に示す回路で近似するとき、伝達関数 $Z(s) = \frac{V_O(s)}{V_I(s)}$ を求めよ、なお、伝送線路の抵抗、インダクタンス、容量、コンダクタンスは単位長さあたり $r[\Omega/m]$ 、I[H/m]、c[F/m]、g[S/m]である。
- (2) (1)と同じ伝送線路の短い区間 Δx において、図 2 に示すように、区間の両端の電圧 V(x)、 $V(x+\Delta x)$ 、電流 I(x)、 $I(x+\Delta x)$ を用いることで、x 点における電圧 V(x) および電流 I(x) の満たす関係式を微分方程式の形で示せ、
- (3) (2)の線路が無損失である時、この伝送線路の特性インピーダンス Z_0 をr, l, c, gの必要なものを用いて表わせ、
- (4) 特性インピーダンス Z_0 の無損失な伝送線路を図 3 に示すように x=L において抵抗 R_x で終端することを考える。この点における進行波の電圧、電流を $V_{\rm f}$, $I_{\rm f}$, 反射波の電圧、電流を $V_{\rm r}$, $I_{\rm r}$, 終端抵抗に印加される電圧、電流を $V_{\rm t}$, $I_{\rm t}$ とするとき、反射係数 $\frac{V_{\rm f}}{V_{\rm f}}$ を求めよ、さらに x=L 点において無反射となる時の R_x および Z_0 の関係を求めよ。
- (5) 伝送線路を用いた長距離通信を考える。図4のように特性インピーダンス Z_0 の無損失 伝送線路に NMOS トランジスタ M_1 , M_2 で構成される増幅回路 A, B を用いることで,信号を入力 $V_{\rm in}$ から出力 $V_{\rm out}$ に伝達したい。なお, $R_{\rm L}$ は増幅回路 B の負荷抵抗, $V_{\rm b}$, I_1 , I_2 はそれぞれバイアス電圧,バイアス電流, $C_{\rm c}$ は直流除去のための容量, $V_{\rm DD}$ は電源電圧である。この時以下の小間(5-a) (5-c)に答えよ。
 - (5-a) 増幅回路 A, B それぞれの名称およびそれぞれの図 4 の構成中での役割について 簡潔に説明せよ.
 - (5-b) NMOS を相互コンダクタンス g_m , 出力抵抗 r_o を用いて図5に示す小信号等価回路 路で近似できるとする。この時,図4の増幅回路A, B それぞれの小信号等価回路を示せ。なお, $V_{\rm in}$, $V_{\rm out}$ に対応する小信号成分を $v_{\rm in}$, $v_{\rm out}$ とし,NMOS トランジスタ M_1 , M_2 の相互コンダクタンスをそれぞれ $g_{\rm m1}$, $g_{\rm m2}$,出力抵抗をそれぞれ $r_{\rm o1}$, $r_{\rm o2}$,伝送線路の進行波の電圧の小信号成分を $v_{\rm s}$ とする。
 - (5-c) 伝送線路の両端点において反射がない場合, g_{m1} , g_{m2} , r_{o1} , r_{o2} , R_L の必要なものを用いて入出力の電圧増幅率 $A_v = \frac{v_{out}}{v_{in}}$ を求めよ.なお、 $g_{m2}r_{o2} >> 1$ と仮定してよいものとする.

Problem 2

Answer the following questions related to uniform transmission lines.

- (1) Describe the transfer function $Z(s) = \frac{V_{\rm O}(s)}{V_{\rm I}(s)}$, assuming that a short segment of Δx [m] of the transmission line is approximated as shown in Fig. 1. Note that the resistance, inductance, capacitance, and conductance of the unit length of the transmission line are r [Ω /m], l [H/m], c [F/m], and g [S/m], respectively.
- (2) Express the relation between the voltage V(x) and current I(x) in the form of differential equations at point x on the transmission line. Assume that the terminal voltages and currents of the segment are defined as V(x), $V(x + \Delta x)$, I(x), and $I(x + \Delta x)$, as shown in Fig. 2.
- (3) Express the characteristic impedance Z_0 of the transmission line using r, l, c, and g upon necessity, when the transmission line of (2) is lossless.
- (4) Suppose that the lossless transmission line with the characteristic impedance of Z_0 is terminated by a resistor $R_{\rm x}$ at x=L as shown in Fig. 3. Express the reflection coefficient $\frac{V_{\rm r}}{V_{\rm f}}$ at x=L, taking into account the voltage and current of the travelling wave as $V_{\rm f}$ and $I_{\rm f}$, those of the reflected wave as $V_{\rm r}$ and $I_{\rm r}$, and those applied to the termination resistor $R_{\rm x}$ as $V_{\rm t}$ and $I_{\rm t}$. Express the relation between $R_{\rm x}$ and Z_0 when there is no reflection at x=L.
- (5) Consider a long-distance communication from input $V_{\rm in}$ to output $V_{\rm out}$ through the lossless transmission line with the characteristic impedance of $Z_{\rm 0}$. Here, amplifiers A and B, composed of NMOS transistors $M_{\rm 1}$ and $M_{\rm 2}$, are used. Here, $R_{\rm L}$ is the load resistance of the amplifier B, $V_{\rm b}$ is the bias voltage, $I_{\rm 1}$ and $I_{\rm 2}$ are the bias currents, $C_{\rm c}$ is the DC blocking capacitance, and $V_{\rm DD}$ is the power supply voltage. Answer the following questions (5-a) (5-c).
- (5-a) What are the amplifiers A and B called? Briefly describe the role of each amplifier in the diagram shown in Fig. 4.
- (5-b) Draw small-signal equivalent circuits for amplifiers A and B in Fig. 4 using the small-signal equivalent circuit of an NMOS transistor with trans-conductance of $g_{\rm m}$ and output resistance of $r_{\rm o}$, as shown in Fig. 5. Note that small-signal components of $V_{\rm in}$ and $V_{\rm out}$ are $v_{\rm in}$ and $v_{\rm out}$, respectively, the trans-conductance of NMOS transistors M_1 and M_2 are $g_{\rm m1}$ and $g_{\rm m2}$, respectively, and the output resistance of M_1 and M_2 are $r_{\rm o1}$ and $r_{\rm o2}$, respectively. Here, small signal component of the voltage of the travelling wave through the transmission line is $v_{\rm s}$.
- (5-c) Express the voltage gain $A_{\rm v}=\frac{v_{\rm out}}{v_{\rm in}}$ with $g_{\rm ml}$, $g_{\rm m2}$, $r_{\rm o1}$, $r_{\rm o2}$, and $R_{\rm L}$ upon necessity, when there are no reflections at both ends of the transmission line. You may assume $g_{\rm m2}r_{\rm o2}>>1$.

