Chapter 1 Propositions

Definition 1. (Proposition)

A *statement* or *proposition* is a declarative sentence that is either true or false (but not both).

For instance, the following are propositions:

- 1. 3 > 1 (true).
- 2. 2 < 4 (true).
- 3. 4 = 7 (false)

However the following are a not propositions:

- 1. what is your name?.
- 2. x is an even number.

Definition 2. (Atomic statements)

Declarative sentences which cannot be further split into simple sentences are called *atomic statements* (also called *primary statements* or *primitive statements*).

Example: p is a prime number

Definition 3. (Compound statements)

New statements can be formed from atomic statements through the use of connectives such as "and, but, or etc..." The resulting statement are called *molecular* or *compound* (composite) statements.

Example: If p is a prime number then, the divisors are p and 1 itself

Definition 4. (truth value)

The truth or falsehood of a proposition is called its *truth value*.

Definition 5. (Truth Table)

A table, giving the truth values of a compound statement interms of its component parts, is called a *Truth Table*.

Definition 6. (Connectives)

Connectives are used for making compound propositions. The main ones are the following (p and q represent given two propositions):

Table 1. Logic Connectives

Name	Represented	Meaning
Negation	$\neg p$	not in p
Conjunction	$p \wedge q$	p and q
Disjunction	$p \lor q$	p or q (or both)
Implication	$p \rightarrow q$	if p then q
Biconditional	$p \leftrightarrow q$	p if and only if q

The truth value of a compound proposition depends only on the value of its components. Writing F for false and T for true, we can summarize the meaning of the connectives in the following way:

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
T	Т	F	T	Т	T	Т
T	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Definition 7. (Tautology)

A proposition is said to be a tautology if its truth value is T for any assignment of truth values to its components.

Example: The proposition $p \vee \neg p$ is a tautology.

Definition 8. (Contradiction)

A proposition is said to be a *contradiction* if its truth value is *F* for any assignment of truth values to its components.

Example: The proposition $p \land \neg p$ is a contradiction.

Definition 9.(Contingency)

A proposition that is neither a tautology nor a contradiction is called a *contingency*.

р	$\neg p$	$p \land \neg p$	$p \lor \neg p$
Т	F	F	Т
Т	F	F	Т

I. Construct the truth table for the following statements:

(i)
$$(p \rightarrow q) \longleftrightarrow (\neg p \lor q)$$

(ii)
$$p \wedge (p \vee q)$$

(iii)
$$(p \rightarrow q) \rightarrow p$$

(iv)
$$\neg (p \land q) \longleftrightarrow (\neg p \lor \neg q)$$

(v)
$$(p \lor \neg q) \rightarrow q$$

Solution:

(i) Let
$$S = (p \rightarrow q) \longleftrightarrow (\neg p \lor q)$$

р	q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$	S
T	Т	F	Т	Т	Т
T	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

(ii) Let
$$S = p \land (p \lor q)$$

р	q	$p \lor q$	S
Т	Т	Т	Т
T	F	Т	Т
F	Т	Т	F
F	F	F	F

(iii) Let
$$S = (p \rightarrow q) \rightarrow p$$

р	q	$p \rightarrow q$	S
Т	Т	Т	Т
T	F	F	Т
F	Т	Т	F
F	F	Т	F

(iv) Let
$$S = \neg(p \land q) \longleftrightarrow \neg p \lor \neg q$$

р	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	S
Т	Т	Т	F	F	F	F	Т
T	F	F	Т	F	T	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	F	F	Т	Т	Т	Т	Т

(v) Let
$$S = (p \lor \neg q) \to q$$

р	q	$\neg q$	$p \lor \neg q$	S
Т	Т	F	Т	Т
T	F	Т	Т	F
F	Т	F	F	Т
F	F	Т	Т	F

Logical Equivalence

The compound propositions p o q and $\neg p \lor q$ have the same truth values:

р	q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$
T	Т	F	Т	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

When two compound propositions have the same truth value they are called logically equivalent.

For instance $p \to q$ and $\neg p \lor q$ are logically equivalent, and it is denoted by

$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

Definition 10. (Logically Equivalent)

Two propositions A and B are *logically equivalent* precisely when $A \Leftrightarrow B$ is a tautology.

Example: The following propositions are logically equivalent:

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p o q) \wedge (q o p)$	S
Т	Т	Т	Т	Т	Т	Т
T	F	F	F	T	F	T
F	Т	F	Т	F	F	T
F	F	Т	Т	Т	Т	Т

Table 2. Logic equivalences

Equivalences	Name
$p \wedge T \Leftrightarrow p$	Identity law
$p \lor F \Leftrightarrow p$	
$p \lor T \Leftrightarrow T$	Dominent law
$p \wedge F \Leftrightarrow F$	
$p \lor T \Leftrightarrow T$	Idempotent law
$p \wedge F \Leftrightarrow F$	
$p \lor q \Leftrightarrow q \lor p$	Commutative law
$p \wedge q \Leftrightarrow q \wedge p$	
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	Associative law
$ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r) $	

Table 2. Logic equivalences (Continued...)

Equivalences	Name
$(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$	Distributive law
$(p \wedge q) \vee r \Leftrightarrow (p \vee r) \wedge (q \vee r)$	
$(p \lor q) \land p \Leftrightarrow p$	Absorbtion law
$(p \land q) \lor p \Leftrightarrow p$	
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	De morgan's law
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	
$\neg p \land p \Leftrightarrow F$	Negation law
$\neg p \lor p \Leftrightarrow T$	
$\neg (\neg p) \Leftrightarrow p$	

Table 3. Logic equivalences involving implications

Implications		
$p o q \Leftrightarrow \neg p \lor q$		
$p o q \Leftrightarrow \neg q o \neg p$		
$ eg(p o q) \Leftrightarrow p \wedge eg q$		
$p \lor q \Leftrightarrow \neg p \to q$		
$p \wedge q \Leftrightarrow \lnot(p { o} \lnot q)$		
$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow (q \land r)$		
$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow (q \lor r)$		
$(p \to r) \land (q \to r) \Leftrightarrow (p \lor q) \to r)$		
$(p \to r) \lor (q \to r) \Leftrightarrow (p \land q) \to r)$		

Table 4. Logic equivalences involving Biconditions

Biconditions		
$p \leftrightarrow q \Leftrightarrow (p o q) \wedge (q o p)$		
$p \leftrightarrow q \Leftrightarrow \neg p \leftrightarrow \neg q$		
$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$		
$\neg(p \leftrightarrow q) \Leftrightarrow p \leftrightarrow \neg q$		

Definition 11. (Converse)

The *converse* of a conditional proposition p o q is the proposition q o p

Definition 12. (Inverse)

The *inverse* of a conditional proposition p o q is the proposition $\neg p o \neg q$

Definition 13. (Contrapositive)

The *contrapositive* of a conditional proposition $p \to q$ is the proposition $\neg q \to \neg p$.

For example

```
Let us consider the statement, "The crops will be destroyed, if there is a flood." Let F: there is a flood & C: The crops will be destroyed The symbolic form is, F \to C. Converse (C \to F) i.e., "if the crops will be destroyed then there is flood." Inverse (\neg F \to \neg C) i.e., "if there is no flood then the crops won't be destroyed, ." Contrapositive (\neg C \to \neg F) i.e., "if the crops won't be destroyed then there is no flood."
```

II. Without using truth table:

- (i) Show that $(p \lor q) \land \neg p \Leftrightarrow (\neg p \land q)$
- (ii) Show that $(p \lor q) \land \neg (\neg p \land q) \Leftrightarrow p$
- (iii) Show that $\neg(p \lor (\neg p \land q)) \Leftrightarrow \neg p \land \neg q$
- (iv) Show that $\neg(\neg((p \lor q) \land r) \lor \neg q) \Leftrightarrow q \land r$
- (v) Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- (vi) Show that $p \to (q \to r) \Leftrightarrow (p \land q) \to r$.

Solution:

(i)

$S \Leftrightarrow (p \lor q) \land \neg p$	Reasons
$\Leftrightarrow (p \lor q) \land \neg p$	Given
$\Leftrightarrow (p \land \neg p) \lor (q \land \neg p)$	Distributive law
$\Leftrightarrow F \lor (\neg p \land q)$	Negation law,Commutative law
$\Leftrightarrow \neg p \land q$	Identity law

(ii)

$S \Leftrightarrow (p \lor q) \land \neg (\neg p \land q)$	Reasons
$\Leftrightarrow (p \lor q) \land \neg (\neg p \land q)$	Given
$\Leftrightarrow (p \lor q) \land (\neg \neg p \lor \neg q)$	De Morgan's law
$\Leftrightarrow (p \lor q) \land (p \lor \neg q)$	Negation law
$\Leftrightarrow p \lor (q \land \neg q)$	Distributive law
$\Leftrightarrow p \lor F$	Negation law
$\Leftrightarrow p$	Identity law

(iii)

$S \Leftrightarrow \neg(p \lor (\neg p \land q))$	Reasons
$\Leftrightarrow \neg(p \lor (\neg p \land q))$	Given
$\Leftrightarrow \neg p \land \neg (\neg p \land q))$	De Morgan's law
$\Leftrightarrow \neg p \land (p \lor \neg q))$	De Morgan's law
$\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q)$	Distributive law
$\Leftrightarrow F \lor (\neg p \land \neg q)$	Negation law
$\Leftrightarrow \neg p \land \neg q$	Identity law

(iv)

$S \Leftrightarrow \neg(\neg((p \lor q) \land r) \lor \neg q) \Leftrightarrow q \land r$	Reasons
$\Leftrightarrow \neg (\neg ((p \lor q) \land r) \lor \neg q)$	Given
$\Leftrightarrow ((p \lor q) \land r) \land q$	De Morgan's law
$\Leftrightarrow (p \lor q) \land (r \land q)$	Associative law
$\Leftrightarrow (p \land (r \land q)) \lor (q \land (r \land q))$	Distributive law
$\Leftrightarrow (p \land (r \land q)) \lor (r \land q)$	Idempotent law
$\Leftrightarrow r \land q$	Absorption law

Definition 14. (Duality)

The *dual* of a compound proposition that contains only the logical operators \vee , \wedge and \neg is the proposition obtained by replacing each \vee by \wedge , each \wedge by \vee , each T by F and each F by T. The dual of proposition A is denoted by A^* .

Example. The dual of $(T \land p) \lor q$ is $(F \lor p) \land q$

Definition 15. (Functionally complete set of connectives)

Any set of connectives in which every formula can be expressed as another equivalent formula containing connectives from this set is called *functionally complete set of connectives*.

Example. The set of connectives $\{ \lor \neg \}$ and $\{ \land \neg \}$ are functionally

 $\{\vee,\,\neg\}$ and $\{\wedge,\,\neg\}$ are functionally complete.

 $\{\neg\}, \{\vee\}$ or $\{\vee, \ \wedge\}$ are not functionally complete.

Problem. Prove that the set $\{\lor, \neg\}$ is functionally complete.

Solution:

To prove $\{\lor, \neg\}$ is functionally complete.

We have to show that for all formulas with other connectives their exists a equivalent formula which contains \neg and \lor only.

$$p \leftrightarrow q \Leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$$

$$p o q \Leftrightarrow (\neg p \lor q)$$

$$p \land q \Leftrightarrow \neg(\neg p \lor \neg q)$$

The resultant is free from biconditional, conditional and conjunction. Hence $\{\lor, \neg\}$ is functionally complete.

