Branch: main 2025-06-02 14:25:45+02:00

Local stability in structures with a standard sort

L. S. S. S. S. Polymath

ABSTRACT.

1. Structures with a standard sort

Let S be some Hausdorff compact topological space. We associate to S a first order structure in a language \mathcal{L}_S that has a symbol for each compact subset $C \subseteq S^n$ and a function symbol for each continuous functions $f: S^n \to S$. According to the context, C and f denote either the symbols of \mathcal{L}_S or their interpretation in the structure S. We write $x \in C$ for C(x).

1 Definition Let \mathcal{L} be a two sorted language. The two sorts are denoted by H and S. The language \mathcal{L} expands \mathcal{L}_H and \mathcal{L}_S with symbols sort $H^n \times S^m \to S$. An \mathcal{L} -structure is a structure of signature \mathcal{L} that interprets these symbols in equicontinuous functions. A standard structure is a two-sorted \mathcal{L} -structure of the form $\langle M, S \rangle$, where M is any structure of signature \mathcal{L}_H and S is fixed. Standard structures are denoted by the domain of their home sort.

We denote by \mathcal{F} the set of \mathcal{L} -formulas constructed inductively from atomic formulas of the form (i) and (ii) below using Boolean connectives \wedge , \vee ; the quantifiers \forall^H , \exists^H of sort H; and the quantifiers \forall^S , \exists^S of sort S.

- 2 Definition We call atomic formulas those of the form
 - i. atomic or negated atomic formulas of \mathcal{L}_{H} ;
 - ii. $\tau \in C$, where $C \subseteq S^n$ is a compact set and τ is a tuple of terms of sort $H^n \times S^m \to S$.
- **3 Remark** A smaller fragment of \mathcal{F} may be of interest in some specific contexts. This is obtained by excluding equalities and inequalities from (i) and requiring that C in (ii) is a regular compact set. The discussion below applies to this smaller fragment as well.

Let $M \subseteq N$ be standard structures. We say that M is an \mathcal{F} -elementary substructure of N if the latter models all sentences in $\mathcal{F}(M)$ true in M.

A standard structure M is \mathcal{F} -saturated if it realizes every type $p(x;\xi) \subseteq \mathcal{F}(A)$, for any $A \subseteq M$ of cardinality smaller than |M|, that is finitely consistent in M. The following is

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

1

proved in [AAVV] for signatures containing only symbols sort $H^n \times S^m \to S$ with $n \cdot m = 0$. In [Z] it is observed that, under the assumption of equicontinuity, the proof extends to the case $n \cdot m \ge 0$.

4 Theorem (Compactness) Every standard structure has a \mathcal{F} -saturated \mathcal{F} -elementary extension.

We introduce variables of some new sorts X_n with the sole scope of conveniently describing classes of \mathcal{F} -formulas that only differ by the sets/predicates $C \subseteq S^n$ that occur in the formula. To avoid cluttering the notation we write X for an unspecified tuple of sorts X_n . Let \mathcal{F}_X be defined as \mathcal{F} but replacing (ii) with

iii. $\tau(x;\xi) \in X$, where *X* is a variable of sort X.

Formulas in \mathcal{F}_X are denoted by $\varphi(x;\xi;X)$, where $X=X_1,\ldots,X_k$ be a tuple of variables of sort X. If $C=C_1,\ldots,C_k$ is a tuple of compact subsets of S then $\varphi(x;\xi;C)$, is a formula in \mathcal{F} . This we call an instance of $\varphi(x;\xi;X)$. All formulas in \mathcal{F} are instances of formulas in \mathcal{F}_X .

5 Definition Let $\varphi \in \mathcal{F}_X$ be formula – possibly with some (hidden) free variables. The pseudonegation of $\varphi \in \mathcal{F}_X$ is the formula obtained by replacing in φ the atomic formulas in \mathcal{L}_H by their negation and each connective \wedge , \vee , \forall , \exists by its respective dual \vee , \wedge , \exists , \forall .

The pseudonegation of φ is denoted by $\sim \varphi$.

The following fact will be used without further mention.

6 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$, where M is a standard structure. Then the following holds in M for every (tuples of) compact sets $C \subseteq C'$ and $\tilde{C} \cap C = \emptyset$

$$M \models \varphi(C) \rightarrow \varphi(C')$$

$$M \models \sim \varphi(C) \rightarrow \neg \varphi(\tilde{C})$$

Clearly, when *X* does not occur in φ , we have $\sim \varphi \leftrightarrow \neg \varphi$.

7 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$, where M is a standard structure. Then for every $C \subseteq C'$ there is a $\tilde{C} \subseteq C'$ disjoint from C such that

$$M \models \varphi(C) \rightarrow \neg \sim \varphi(\tilde{C}) \rightarrow \varphi(C')$$

Conversely, for every $\tilde{C} \cap C = \emptyset$ there is a $C' \supseteq C$ such that

$$M \models \varphi(C) \rightarrow \varphi(C') \rightarrow \neg \sim \varphi(\hat{C}).$$

Proof. When $\varphi(C)$ is the atomic formula of the form $\tau \in C$, the first claim holds with $\tilde{C} = C' \setminus O$ for any open set $C \subseteq O \supseteq C'$. The second claim holds with as C' any neighborhood of C disjoint of \tilde{C} . Induction on the syntax of $\varphi(X)$ proves the general case.

The above fact has the following useful consequence.

8 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$, where M is a standard structure. Then the following are equivalent for every tuple C of compact subsets of S

$$M \models \varphi(C) \leftrightarrow \bigwedge \Big\{ \varphi(C') : C' \text{ neighborhood of } C \Big\}$$
$$M \models \neg \varphi(C) \leftrightarrow \bigvee \Big\{ \neg \varphi(\tilde{C}) : \tilde{C} \cap C = \emptyset \Big\}.$$

Note that the above fact also holds if we restrict the above C' and \tilde{C} to range over the subsets of some C'' neighborhood of C.

9 Fact The equivalent conditions in Fact 8 hold in all \mathcal{F} -saturated structures.

Proof. By induction on the syntax of $\varphi(X)$.

We say that astandard structure M is \mathcal{F} -maximal if it models all $\mathcal{F}(M)$ -sentences that hold in some of its \mathcal{F} -elementary extensions. By the following fact \mathcal{F} -saturated structures are \mathcal{F} -maximal.

10 Fact Let $\varphi(X) \in \mathcal{F}_X(M)$. Then the following are equivalent

- 1. M is \mathcal{F} -maximal
- 2. the equivalent conditions in Fact 8 hold for every $\varphi(C)$.

Proof. $1\Rightarrow 2$. If (2) in Fact 8 fails, then $\neg \varphi(C) \land \neg \neg \varphi(\tilde{C})$ holds in M for every $\tilde{C} \cap C = \varnothing$. Let \mathcal{U} be an \mathcal{F} -saturated \mathcal{F} -elementary extension of M. As M is \mathcal{F} -maximal, $\neg \varphi(C) \land \neg \neg \varphi(\tilde{C})$ also holds in \mathcal{U} . Then (2) in Fact 8 also fails in \mathcal{U} , contradicting Fact 9.

2⇒1. Let N be any \mathcal{F} -elementary extension of M. Suppose $N \models \varphi(C)$. By (2), it suffices to prove that $M \models \varphi(C')$ for every C' neighborhood of C. Suppose not. Then, by (2) in Fact 8, $M \models \neg \varphi(\tilde{C})$ for some $\tilde{C} \cap C' = \emptyset$. Then $N \models \neg \varphi(\tilde{C})$ by \mathcal{F} -elementarity. As $\tilde{C} \cap C = \emptyset$, this contradicts the above fact.

In what follows we fix a large saturated standard structure which we denote by \mathcal{U} . Unless otherwise specified, we work inside \mathcal{U} .

Let $\varphi(X) \in \mathcal{F}_{\mathsf{X}}(\mathcal{U})$ be given. Define

$$A_{\varphi} = \{ \alpha : \varphi(C) \text{ holds for every neighborhood } C \text{ of } \alpha \}$$

11 Fact Let *n* be the total length of *X*. Then $A_{\varphi} \cup A_{\neg \varphi} = S^n$ and $A_{\varphi} \cap A_{\neg \varphi} = \varnothing$.

Proof. Negate the first claim. Let $\alpha \notin A_{\varphi} \cup A_{\sim \varphi}$. Then there is a neighborhood C of α such that $\neg \varphi(C)$ and $\neg \sim \varphi(C)$.

By (2) in Fact 8, we have
$$\sim \varphi(\tilde{C})$$
 for some $\tilde{C} \cap C = \emptyset$. Thus, $\tilde{C} \cap A_{\varphi} = \emptyset$.

4

2. Externally definable sets

Let $\varphi(x;z;X)$ be a formula in \mathcal{F}_X with the variables of sort H partitioned in two tuples x;z. A global $\varphi(x;z;X)$ -type is a maximally consistent set of formulas that are instances of $\varphi(x;b;X)$ and/or $\sim \varphi(x;b;X)$ for some $b \in \mathcal{U}^{|z|}$.

Let p(x) be a global $\varphi(x;z;X)$ -type. We define

$$\mathcal{D}_{p,\varphi,C} = \{b \in \mathcal{U}^z : \varphi(x;b;C) \in p\}$$

Proof. (\subseteq). Let $b \notin \mathcal{D}_{p,\varphi,C}$. Let $A \subseteq \mathcal{U}$ be such that every instance of $\varphi(x;b;X)$ and $\sim \varphi(x;b;X)$ that is consistent with $p(x) \upharpoonright A$ is finitely consistent with p(x). Finally pick $a \models p(x) \upharpoonright A$. As $\neg \varphi(a,b,C)$, from Fact 10 we obtain that $\sim \varphi(a;b;\tilde{C})$ holds for some $\tilde{C} \cap C = \varnothing$. Then $\sim \varphi(x;b;\tilde{C})$ is consistent with $p(x) \upharpoonright A$. By maximality of p(x), we have $\sim \varphi(x;b;\tilde{C}) \in p$. Then $b \in \mathcal{D}_{p,\sim \omega,\tilde{C}}$.

- **13 Fact** Let $\varphi(x;z;X)$ and C be given. Then for every $\mathcal{D} \subseteq \mathcal{U}^z$ the following are equivalent
 - 1. $\mathcal{D} = \mathcal{D}_{p,\varphi,C}$ for some global $\varphi(x;z;X)$ -type p(x)
 - 2. for every finite set $B \subseteq \mathcal{U}^z$ there is an $a \in \mathcal{U}^x$ such that

$$B \cap \mathcal{D} = B \cap \varphi(a; \mathcal{U}^x; C).$$

Proof. Let $B_0 = B \setminus \mathcal{D}$ and $B_1 = B \cap \mathcal{D}$.

1 \Rightarrow 2. By the above fact, there is a $\tilde{C} \cap C = \emptyset$ such that $b \in \mathcal{D}_{p,\sim \phi,\tilde{C}}$ form every $b \in B_0$. Let a realize the type containing $\varphi(x;b;C)$ for every $b \in B_1$ and $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$.

2⇒1. There is a set $\tilde{C} \cap C = \emptyset$ such that $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$. Let p(x) be any global $\varphi(x;z;X)$ -type containing $\varphi(x;b;C)$ for every $b \in B_1$ and $\sim \varphi(x;b;\tilde{C})$ for every $b \in B_0$. Such type exists as (2) guarantees consistency.

Let $\mathcal{D} \subseteq \mathcal{U}^z \times S^{|X|}$. For $\alpha \in S^{|X|}$, we write \mathcal{D}_α for the set of all $b \in \mathcal{U}^z$ such that $\langle b, \alpha \rangle \in \mathcal{D}$. We say that \mathcal{D} is externally definable by $\varphi(x;z;X)$ if there is a global $\varphi(x;z;X)$ -type p(x) such that for every α

$$\mathcal{D}_{\alpha} = \bigcap \{ \mathcal{D}_{p,\varphi,C} : \alpha \in C^{\circ} \}$$

We say that \mathcal{D} is approximable by $\varphi(x;z;X)$ if for every $\alpha \in S^{|X|}$ and every finite $B \subseteq \mathcal{U}^z$ there is an $a \in \mathcal{U}^{|x|}$ such that

$$B \cap \mathcal{D}_{\alpha} = B \cap \bigcap \{ \varphi(a; \mathcal{U}^z; C) : \alpha \in C^{\circ} \}$$

- **14 Fact** Let $\varphi(x;z;X)$ be given. Then, for every $\mathcal{D}\subseteq\mathcal{U}^z\times S^{|X|}$ the following are equivalent
 - 1. \mathcal{D} is externally definable by $\varphi(x;z;X)$
 - 2. \mathcal{D} is approximated by $\varphi(x;z;X)$.

We say that \mathcal{D} is approximable from below if for every $B \subseteq \mathcal{D}$ there is an $a \in \mathcal{U}^{|x|}$ such that

$$B \subseteq \varphi(a; \mathcal{U}^z; C) \subseteq \mathcal{D}.$$

3. Stable formulas

We say that $\varphi(x;z;X)$ is unstable if there are some compact sets $C \cap \tilde{C} = \emptyset$ and a sequence $\langle a_i; b_i : i < \omega \rangle$ such that for every $i < j < \omega$

$$\varphi(a_i;b_j;C) \wedge \sim \varphi(a_j;b_i;\tilde{C})$$

We say that $\varphi(x;z;X)$ is stable if it is not unstable.

The following fact is a characterization of stability in a context of particular interest. Let $\tau: \mathcal{U}^{x,z} \to S$ be a definable function. We say that $\tau(x;z)$ is stable if so is the formula $\tau(x;z) \in X$.

15 Fact Let $\tau: \mathcal{U}^{x;z} \to S$ be a definable function. Then the following are equivalent

- 1. the formula $\tau(x; z) \in X$ is unstable
- 2. for some sequence $\langle a_i; b_i : i < \omega \rangle$

$$\lim_{i \to \infty} \lim_{j \to \infty} \tau(a_i; b_j) \ \neq \ \lim_{j \to \infty} \lim_{i \to \infty} \tau(a_i; b_j)$$

3. for some sequence $\langle a_i; b_i : i < \omega \rangle$ and some neighborhood ε of the diagonal of S^2

$$\left\langle \tau(a_i;b_j),\,\tau(a_j;b_i)\right\rangle \ \notin \ \varepsilon$$

for every $i < j < \omega$.

Proof. $2 \Leftrightarrow 3$. Clear.

1⇒3. Let $C \cap \tilde{C} = \emptyset$ be such that $\tau(a_i; b_j) \in C$ and $\tau(a_j; b_i) \in \tilde{C}$ for every $i < j < \omega$ as given by (1). Then (3) holds for any ε contained in the complement of $C \times \tilde{C}$.

2⇒1. Let C and \tilde{C} be two disjoint intervals centered in the two limits in (2). Then (1) is witnessed by a tail of the sequence $\langle a_i; b_i : i < \omega \rangle$.

16 Fact Let S = [0,1]. Let $\tau(x;z)$ be a stable definable function. Let $f: \mathcal{U}^{x;z} \to S$. Assume that for every finite $B \subseteq \mathcal{U}^z$ and every $\varepsilon > 0$ there is an $a \in \mathcal{U}^x$ such that

$$|f(b) - \tau(a; b)| \le \varepsilon$$
 for every $b \in B$.

Then there are some $\langle a_{i,j} : 1 \le i, j \le n \rangle$ such that

$$f(b) \ = \ \max_{i=1,\dots,n} \ \min_{j=1,\dots,n} \tau(a_{i,j};b) \qquad \qquad \text{for every } b \in \mathcal{U}^z.$$

Proof.

17 Lemma Let $\varphi(x;z;X)$ be stable. Let $\mathcal{D}\subseteq\mathcal{U}^{|z|}$ be approximated by $\varphi(x;z;X)$ from below. Then

$$\mathfrak{D}_{p,\varphi,C} = \bigcup_{i=1}^{n} \varphi(a_i; \mathfrak{U}^z; C)$$

for some $\langle a_i : 1 \le i \le n \rangle$.

Garbage after this line

We define $\mathcal{D}_p \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ as follows

$$\mathcal{D}_p = \Big\{ \langle b, \alpha \rangle : \varphi(x; b; C) \in p \text{ for every } C \text{ neighborhood of } \alpha \Big\}.$$

18 Fact
$$\neg \mathcal{D}_p = \left\{ \langle b, \alpha \rangle : \neg \varphi(x; b; \tilde{C}) \in p \text{ for every } \tilde{C} \not\ni \alpha \right\}.$$

Proof. Let $a \models p(x) \upharpoonright b$. Let C be the intersection of all neighborhoods of α such that $\varphi(a;b;C')$. Assume $\langle b,\alpha\rangle \notin \mathcal{D}_p$, in other words $\varphi(a;b;C)$, then C is a neighborhood of α . By Fact 10 we have $\varphi(a;b;C)$. Let $\tilde{C} \subseteq C \setminus \{\alpha\}$ be such that C is a neighborhood of \tilde{C} . Then $\neg \varphi(a;b;\tilde{C})$. Therefor by the definition of \mathcal{D}_p .

Then we can find \tilde{C} such that $\alpha \notin \tilde{C}$ and C is a neighborhood of \tilde{C} . contains two dijoint compacts Then $\sim \varphi(x;b;\tilde{C}') \in p$ by the definition of \mathcal{D}_p .

Then $\sim \varphi(x;b;\tilde{C}') \in p$ for every neighborhood \tilde{C}' of α disjoint from C'. Then for every neighborhood C of α , we have $\varphi(x;b;C) \in p$.

We say that \mathcal{D} is externally defined by p(x) and $\varphi(x;z;X)$ if $\mathcal{D}_p \subseteq \mathcal{D}$ and $\tilde{\mathcal{D}}_p \subseteq \neg \mathcal{D}$.

We say that $\mathcal{D} \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ is approximated by $\varphi(x;z;X)$ if for every finite $B \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ there is an $a \in \mathcal{U}^{|x|}$ such that

 $\langle b, \alpha \rangle \in B \cap \mathcal{D} \implies \varphi(a; b; C)$ for every neighborhood C of α

 $\langle b, \alpha \rangle \in B \setminus \mathcal{D} \implies \neg \varphi(a; b; C)$ for every C such that $\alpha \notin C$

19 Fact For every $\mathcal{D} \subseteq \mathcal{U}^{|z|} \times S^{|X|}$, the following are equivalent

- 1. \mathcal{D} is externally definable by some global φ -type
- 2. \mathcal{D} is approximated by $\varphi(x;z;X)$.

Proof. (1) \Rightarrow (2). Let $B \subseteq \mathcal{U}^{|z|} \times S^{|X|}$ be finite. For $\langle b, \alpha \rangle \in B \cap \mathcal{D}$ let $C_{\langle b, \alpha \rangle}$ be some neightborhood of α . Let C be the union of all these neighborhoods. For $\langle b, \alpha \rangle \in B \setminus \mathcal{D}$ let $\tilde{C}_{\langle b, \alpha \rangle}$ be some neighborhood of α . Let \tilde{C} be the union of all these neighborhoods. By the finiteness of B, we can require that C and \tilde{C} are disjoint. Then (2) follows from the concistency of p(x).

(2) \Rightarrow (1). Note that the condition of approximability asserts the finite concistency of the type p(x) that is union of the following two sets of formulas

$$\begin{split} &\left\{ \varphi(x;b;C) \,:\, \langle b,\alpha\rangle \in \mathcal{D} \text{ and } C \text{ neighborhood of } \alpha \right\} \\ &\left\{ \neg \varphi(x;b;C) \,:\, \langle b,\alpha\rangle \notin \mathcal{D} \text{ and } \alpha \notin C \right\} \end{split}$$

The inclusion $\mathcal{D} \subseteq \mathcal{D}_p$ is immediate. For the converse inclusion, let $\langle b, \alpha \rangle \notin \mathcal{D}$ and let \tilde{C} be a neighborhood of α such that $\sim \varphi(x;b;\tilde{C})$.

4.

References

- [AAVV] Claudio Agostini, Stefano Baratella, Silvia Barbina, Luca Motto Ros, and Domenico Zambella, *Continuous logic in a classical setting* (2025). t.a. in Bull. Iranian Math. Soc.
 - [A] Josef Auslander, *Topological Dynamics*, Scholarpedia (2008), doi:10.4249/scholarpedia.3449.
 - [BY] Itaï Ben Yaacov, Model theoretic stability and definability of types, after A. Grothendieck, Bull. Symb. Log. **20** (2014), no. 4, 491–496.
- [BBHU] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, *Model theory for metric structures*, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315–427.
 - [HI] C. Ward Henson and José Iovino, *Ultraproducts in analysis*, Analysis and logic (Mons, 1997), London Math. Soc. Lecture Note Ser., vol. 262, Cambridge Univ. Press, Cambridge, 2002, pp. 1–110.
 - [K] H. Jerome Keisler, *Model Theory for Real-valued Structures*, in Beyond First Order Model Theory (José Iovino, ed.), Vol. II, Chapman and Hall/CRC, 2023.
 - [Z] Domenico Zambella, Standed analysis (2023), arXiv:2311.15711