Assignment 1

刘锦坤 行健-能源 2 2022013352

2024年5月6日

Explanation

At first, I tried using LaTeX to complete my homework, but typing the LaTex code was too slow, so I ended up writing it on paper.

Question 1

The specific weight can be calculated as

specific weight =
$$\frac{8N}{400ml}$$
 = 20000N·m⁻³

The density can be calculated as

density =
$$\frac{8N}{400 \text{ml} \cdot 9.81 \text{N} \cdot \text{kg}^{-1}} = 2038.74 \text{kg} \cdot \text{m}^{-3}$$

The specific gravity can be calculated as

specific gravity =
$$\frac{2038.74 \text{kg} \cdot \text{m}^{-3}}{1000 \text{kg} \cdot \text{m}^{-3}} = 2.03874$$

Question 2

The dimension of c is $[c] = L \cdot T^{-1}$, the dimension of E_v is $[E_v] = M \cdot L^{-1} \cdot T^{-2}$, the dimension of ρ is $[\rho] = M \cdot L^{-3}$, due to that $c = E_v^a \cdot \rho^b$ is dimensionally homogeneous, we can get

$$\begin{cases} a+b=0\\ -a-3b=1 \end{cases} \Rightarrow \begin{cases} a=\frac{1}{2}\\ b=-\frac{1}{2} \end{cases}$$

So we can get the relationship between $c,\,E_v$ and ρ as

$$c = \sqrt{\frac{E_v}{\rho}}$$

Therefore

$$E_v = \rho \cdot c^2 = 2000 \times 2000^2 \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2} = 8 \times 10^9 \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$$

Question 3

The dimension of Q is $[Q] = L^3 \cdot T^{-1}$, the dimension of Δp is $[\Delta p] = M \cdot L^{-1} \cdot T^{-2}$, the dimension of R and L is L, the dimension of μ is $[\mu] = M \cdot L^{-1} \cdot T^{-1}$. Considering that the equation $Q = \frac{cR^4 \Delta p}{\mu L}$ is dimensionally homogeneous, we can finally get that \mathbf{c} is a dimensionless constant. Actually this equation is called Poiseuille's law, in which c is equal to $\frac{\pi}{8}$.