Vaja 10: Težni pospešek.

Matevž Demšar

Januar 2024

Opis. Pri vaji izmerimo težni pospešek tako, da opazujemo padanje krogliče.

Meritve. Kroglico spustimo tako, da jo obesimo na elektromagnet, počakamo, da preneha nihati, vkolikor je to počela, nato pa elektromagnet izklopimo. Ko prepotuje višino h_1 , začnemo meriti čas, merjenje ustavimo, ko kroglica prepotuje višino $h_1 + h_2$. Za večjo natančnost meritev večkrat ponovimo.

$$h_1 = 7,6 \ cm$$

$$h_2 = 19, 2 \ cm$$

N	$t_N[s]$
1	0,11274
2	0,11298
3	0,11282
4	0,11310
5	0,11296
6	0,11317
7	0,11294
8	0,11288
9	0,11316
10	0,11282
11	0,11317
12	0,11288
13	0,11289
14	0,11309
15	0,11291

Izračuni.

$$\bar{t} = 0,11298 \ s$$

$$h_2 = \frac{1}{2}gt^2 + v_0t$$

$$v_0 = \sqrt{2gh_1}$$

Enačbi pretvorimo v kvadratno enačbo z neznanko $g\colon$

$$\frac{t^4}{4}g^2 - (2h_1 + h_2)t^2g + h_2^2 = 0$$

Ko v enačbo vstavimo izmerjene vrednosti, dobimo dve rešitvi:

$$g_1 = 92,04 \ ms^{-2}$$

 $g_2 = 9,85 \ ms^{-2}$

Ocena napake. Do napake je lahko prišlo pri merjenju višin h_1 in h_2 , upoštevati želimo tudi standardno deviacijo časa.

$$\Delta h_1 = \pm 0, 2 cm$$

$$\Delta h_2 = \pm 0, 2 cm$$

$$\sigma(t) = \sqrt{\frac{\sum_{i=1}^{N} (\bar{t} - t_i)^2}{N}}$$

$$\sigma(t) = 0, 15 \times 10^{-3}$$

Na podlagi ocenjenih napak lahko predvidimo napako izmerjenega pospeška:

$$\Delta g/g = 0,08$$

$$\Delta g = 0,79 \ ms^{-2}$$

Zaključek. Razlika izmerjenega pospeša od teoretične vrednosti je v okviru napake.

N	$t_N[s]$
16	0,11280
17	0,11346 0,11286
18	0,11286
19	0,11322
20	0,11293
21	0,11288
22	0,11269
23	0,11308
24	0,11285
25	0,11322
26	0,11300
27	0,11299
28	0,11294
29	0,11288
30	0,11274
31	0,11306
32	0,11280
33	0,11314
34	0,11286
35	0,11295
36	0,11292
37	0,11295
38	0,11308
39	0,11294
40	0,11299
41	0,11299
42	0,11310
43	0,11326
44	0,11266
45	0,11310
46	0,11300
47	0,11297
48	0,11304
49	0,11297
50	0,11296