

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/533,049	03/22/2000	Shashank Mohan Parasnis	MICR0173	8364
27792	7590	02/16/2005	EXAMINER	
MICROSOFT CORPORATION LAW OFFICES OF RONALD M. ANDERSON 600 108TH AVENUE N.E., SUITE 507 BELLEVUE, WA 98004				BOUTAH, ALINA A
ART UNIT		PAPER NUMBER		
		2143		

DATE MAILED: 02/16/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/533,049	PARASNIS ET AL.	
	Examiner	Art Unit	
	Alina N Boutah	2143	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 08 December 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-4 and 6-29 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-4 and 6-29 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on _____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
- a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). _____ |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Response to Amendment

This action is in response to Applicant's amendment filed December 8, 2004. Claims 1-4, and 6-29 are pending in the present application.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-5 and 6-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over *Mastering Microsoft Internet Information Server 4* by Peter Dyson in view of USPN 6,697,569 issued to Gomez et al. in further view of USPAP 2001/0013068 issued to Klemets et al. (hereby Dyson in view of Gomez in further view of Klemets).

Regarding claim 1, Dyson teaches a method for recording a live presentation including a predefined content portion that includes a plurality of presentation slides displayed in response to slide triggering events during the live presentation, and a live portion with live audio and/or visual content performed in conjunction with display of said plurality of presentation slides during the live presentation, the method comprising the steps of:

(b) automatically embedding the slide display commands into a data stream as the data stream is produced, the data stream comprising data corresponding to the live portion of the presentation (Encapsulation versus Streaming, 4th and 5th paragraph); and

(d) saving the data stream with embedded slide display commands to a file such that when the file is played, said live portion is reproduced and said plurality of presentation slides are displayed in substantial synchrony with said live portion as it is played, thereby replicating the live presentation (Overview, last paragraph; NetShow: The Grand Tour, page 2 of 9, under “Creating NetShow Content,” 2nd paragraph; page 3 of 9, under “Creating the ASF Files,” 1st paragraph; page 5 of 9, under “Using the ASF Editor,” 1st paragraph).

However, Dyson fails to explicitly teach the commands being slide display commands, although he mentions the ability to combine PowerPoint Slideshows into the stream (NetShow: The Grand Tour, page 3, under “Converting PowerPoint Slideshows”); wherein the live content is captured as a plurality of video frames comprising a plurality of keyframes and deltaframes; and (c) automatically time indexing the plurality of keyframes and deltaframes and deltaframes as the live content is captured to enable synchronization of the slide display commands with the live content.

Gomez teaches (a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60).

Klemets teaches a live content being captured as a plurality of video frames comprising a plurality of keyframes and deltaframes and (c) time indexing the plurality of keyframes and deltaframes to enable synchronization of displayable events (Fig. 7; 0052; 0053; 0065-0068).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Dyson with the teaching of Gomez and Klemets because slide display commands allow users to control the order of the slides, and by time indexing the plurality of deltaframes and keyframes in order to permit synchronization for display at client computer at predetermined points corresponding to the timeline of the video stream [0068]. Therefore, one of ordinary skill in the art would use the slide display commands in order to maximize the presentation's visual capabilities, thus providing more effective presentation.

Regarding claim 2, Dyson teaches the method of claim 1, wherein live portion is captured as it is performed during the live presentation; further comprising the step of encoding the live portion into a digital streaming format, thereby producing the data stream (Overview; Encapsulation vs. Streaming; NetShow: The Grand Tour, page 2 of 9, under "Creating NetShow Content," 2nd paragraph; page 3 of 9, under "Creating the ASF Files," 1st paragraph; page 5 of 9, under "Using the ASF Editor," 1st paragraph).

Regarding claim 3, Dyson teaches the method of claim 2, wherein the step of automatically embedding the slide display commands comprises the step of interleaving the slide display commands into the data stream as the slide display commands are generated (NetShow: The Grand Tour: page 5 of 9, under "Using the ASF Editor," 1st paragraph).

Regarding claim 4, Dyson teaches the method of claim 2, wherein the live portion of the live presentation is captured and encoded into the data stream using an encoding computer and

interleaving the slide display commands into the data stream as they are received by the encoding computer (Using NetShow Live Administrator, page 3 of 5, under “Adding a Live Audio Session,” entire section).

However, Dyson fails to explicitly teach the live presentation being performed using a local computer that generates the slide display commands in response to the slide triggering events and communicating the slide display commands from the local computer to the encoding computer. Gomez teaches a presentation being performed using a local computer that generates the slide display commands in response to the slide triggering events and communicating the slide display commands from the local computer to the encoding computer (abstract). At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Gomez with the teaching of Dyson in order to perform synchronization between the local computer and the encoding computer, thus ensuring that the presenter and the audience will be on the same pace.

Regarding claim 5, Dyson teaches the method of claim 2, wherein the live visual content is captured as a plurality of video frames (NetShow: The Grand Tour, page 2 of 9, under “Using Image Content), each being encoded into the data stream with a corresponding time stamp (NetShow: The Grand Tour, page 5 of 9, under “Using the ASF Editor); and wherein the slide display commands are interleaved into the data stream such that each slide display command has a relative time stamp based on its location in the data stream (NetShow: The Grand Tour: page 5 of 9, under “Using the ASF Editor,” 1st paragraph).

Regarding claim 6, Dyson fails to explicitly teach the method of claim 1, wherein the step of time indexing the plurality of keyframes and deltaframes, comprises the step of:

- (a) adding a plurality of time index values to the data stream;
- (b) indexing each of said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe; and
- (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command.

Klemets teaches:

- (a) adding a plurality of time index values to the data stream (Fig. 7; 0052; 0053);
- (b) indexing each of said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe [0065 – 0068]; and
- (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command (0065; 0068).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to (a) add a plurality of time index values to the data stream in order to provide a convenient way to select suitable time value for the respective frame [0053]; (b) indexing each of said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe and (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command so that it can be synchronized for display at client computer at predetermined points corresponding to the timeline of the video frames [0068].

Regarding claim 7, Dyson fails to explicitly teach the method of claim 1, wherein the step of generating slide display commands comprises the steps of: (a) capturing the slide triggering events as they occur during the live presentation; and (b) generating slide display commands based on the slide triggering events that are captured. Gomez teaches (a) capturing the slide triggering events as they occur during the live presentation (figure 4; col. 7, lines 35 to 60); and (b) generating slide display commands based on the slide triggering events that are captured (col. 3, lines 1-31). At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Gomez with the teaching of Dyson by capturing and slide triggering event and using it to generate slide display commands in order to combine it into a data stream so that when the presentation is being played back, the slide triggering commands will be in synchrony with the live presentation portion.

Regarding claim 8, Dyson teaches saving presentation files to a predetermined location (NetShow: The Grand Tour, page 7, under “Streaming Your ASF”). However, Dyson fails to explicitly teach the method of claim 1, wherein each presentation slide is associated with a slide file that is saved to a predetermined location, and at least one of the slide display commands references the predetermined location of an associated slide file. Gomez teaches each presentation slide being associated with a slide file that is saved to a predetermined location, and at least one of the slide display commands references the predetermined location of an associated slide file (figure 4; col. 7, lines 35 to 60). At the time the invention was made, it would have been obvious to one of ordinary skill in the art to save each presentation slide file to a predetermined

location in order to facilitate the presenter's computer in retrieving the file during the presentation.

Regarding claim 9, Dyson teaches a method for reproducing on a viewing computer a presentation that was previously presented live, said viewing computer having a display, said presentation including a predefined content portion with a plurality of presentation slides that were displayed in response to slide triggering events during the presentation when it was presented live, and a live portion comprising live audio and/or visual content performed in conjunction with display of said plurality of presentation slides during the presentation when it was presented live, the method comprising the steps of:

- (a) producing a recording of the presentation when it was presented live by performing the steps of:
 - (i) producing a data stream comprising data corresponding to the live portion of the presentation (Encapsulation versus Streaming, 4th and 5th paragraph);
 - (iii) automatically embedding commands into the data stream while the data stream is being produced; and
 - (iv) saving the data stream to a data stream file that is accessible by the viewing computer (Overview; Encapsulation vs. Streaming; NetShow: The Grand Tour, page 2 of 9, under "Creating NetShow Content," 2nd paragraph; page 3 of 9, under "Creating the ASF Files," 1st paragraph; page 5 of 9, under "Using the ASF Editor," 1st paragraph);
- (b) saving the predefined content portion to at least one presentation file that is accessible by the viewing computer (NetShow: The Grand Tour, page 7 of 9, Streaming Your ASF Files);

(c) accessing the data stream file with the viewing computer (NetShow: The Grand Tour, page 1 of 9);

(d) reproducing the live portion of the presentation on the display of the viewing computer by playing the data stream file (NetShow: The Grand Tour, page 1 of 9);

(e) extracting script commands from the data stream as the slide display commands are encountered while playing the data stream file (NetShow: The Grand Tour, page 2 of 9; page 3 of 9, Converting PowerPoint Slideshows) ;

(f) in response to each slide display command that is extracted in the preceding step, accessing data corresponding to its associated presentation slide with the viewing computer (Looking at the On-Demand Player); and

(g) reproducing each of the plurality of presentation on the display of the viewing computer as data corresponding to that presentation is accessed by the viewing computer in the preceding step, so that when the presentation is reproduced, the associated presentation slide is displayed at substantially an identical time relative to when displayed during the live portion of the presentation when presented live (Looking at the On-Demand Player).

However, Dyson fails to explicitly teach the commands being slide display commands and the presentation files comprising of presentation slides; wherein the live portion of the presentation is captured as a plurality of video frames comprising a plurality of keyframes and deltaframes; and (iii) automatically including the slide display commands with the data corresponding to the live portion of the presentation in the data stream as the data stream as the data stream is being produced, said slide display commands being automatically time indexed in

regard to the keyframes and deltaframes within the data stream based upon the time when the slide triggering events occurred in the presentation when presented live.

Klemets teaches a live content being captured as a plurality of video frames comprising a plurality of keyframes and deltaframes and (c) time indexing the plurality of keyframes and deltaframes to enable synchronization of displayable events (Fig. 7; 0052; 0053; 0065-0068).

Gomez teaches: (a.ii) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, each slide display command controlling display of an associated presentation slide Gomez teaches (a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Dyson with the teaching of Gomez and Klemets because slide display commands allow users to control the order of the slides, and by time indexing the plurality of deltaframes and keyframes in order to permit synchronization for display at client computer at predetermined points corresponding to the timeline of the video stream [0068]. Therefore, one of ordinary skill in the art would use the slide display commands in order to maximize the presentation's visual capabilities, thus providing more effective presentation.

Regarding claim 10, Dyson teaches the method of claim 9, wherein the viewing computer accesses the data corresponding to the presentation slides with a browser program (Encapsulation vs. Streaming; Using Multimedia on Your Web Site).

Regarding claim 11, Dyson teaches the method of claim 10, wherein each of said plurality of presentation slides is associated with a corresponding HTML slide file that is saved to a predetermined location on a network accessible by the viewing computer and at least a portion of said slide display commands comprise a link to the predetermined location of an associated HTML slide file on the network, each of said HTML slide files being opened in the browser program in response to its associated slide display command, said browser program interpreting the HTML slide files to reproduce said plurality of presentation slides (NetShow: The Grand Tour, page 7-9 , entire sections).

Regarding claim 12, Dyson teaches the method of claim 11, wherein the link to each HTML slide files comprises an absolute reference to a location on the network at which the HTML slide file corresponding to the link is stored (NetShow: The Grand Tour, page 3, “Including URLs”).

Regarding claim 13, Dyson teaches the method of claim 12, wherein each of the absolute references comprises a base portion identifying a base directory on a network resource in or below which the HTML slide files are stored, and a relative portion, identifying a location at which the HTML slide files are stored relative to the base directory, further comprising the steps of: (a) passing the base portion to the browser program to indicate a location of the base directory; (b) removing the base portion from each of the links in said slide display commands so as to leave only the relative portion of the link; and (c) using the relative portion of each link to

enable the browser program to access the HTML file associated with that link (NetShow: The Grand Tour, page 3, “Including URLs”).

Regarding claim 14, Dyson fails to teach the method of claim 10, wherein the browser program includes a display area having a primary frame, and a secondary frame, a media player screen appearing in the secondary frame, said presentation slide files being reproduced in the primary frame, and said live visual content being reproduced in the media player screen.

Klemets teaches a browser program including a display area having a primary frame, and a secondary frame, a media player screen appearing in the secondary frame, said presentation slide files being reproduced in the primary frame, and said live visual content being reproduced in the media player screen (figure 6). At the time the invention was made, it would have been obvious to one of ordinary skill in the art to incorporate the teaching of Klemets into the teaching of Dyson in order to allow viewers to view presentation slides and live content of the presentation at the same time, which will allow views from remote location to attend the presentation without having to be there physically.

Regarding claim 15, Dyson fails to teach the method of Claim 14, further comprising the steps of: (a)-(c). Klemets teaches:

- (a) indicating a location at which the data stream file is stored to the viewing computer [0049-0052];
- (b) directing the data stream to the secondary frame [0049-0052];

(c) playing the data stream in the secondary frame after at least a portion of the data stream file is received, to reproduce the live portion of the presentation [0049-0052].

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to incorporate the teaching of Klemets into the teaching of Dyson in order to allow viewers to view presentation slides and live content of the presentation at the same time, which will allow views from remote location to attend the presentation without having to be there physically.

Regarding claim 16, Dyson teaches a system for recording a live presentation including a predefined content portion having a plurality of presentation slides that are displayed in response to slide triggering events during the live presentation, and a live portion with live audio and/or visual content performed in conjunction with display of said plurality of presentation slides during the live presentation, the system comprising:

(a) although Dyson does not explicitly teach all of the mentioned components such as a local computer with a memory, a user interface, and a processor; these are inherently required in order to make a computer system work;

(c) an audio capture subsystem that produces a digital audio signal corresponding to the live audio content (NetShow: The Grand Tour, page 2, under “Creating Audio Content”); and

(d) an encoding application module comprising a portion of the plurality of machine instructions stored in the memory of the local computer, said encoding application module being used for:

(i) encoding the digital audio signal into a data stream having a streaming data format

(NetShow: The Grand Tour, page 2, under “Creating Audio Content”);

(ii) automatically including the slide display commands with the digital audio signal in the data stream as the digital audio signal is encoded into the data stream (NetShow: The Grand Tour, page 3, under “Creating the ASF Files”); and

(iii) saving the data stream to a data stream file such that when the data stream file is played, said audio content is reproduced (NetShow: The Grand Tour, page 7, under “Streaming Your ASF Files”).

Although he mentions the ability to combine PowerPoint Slideshows into the stream (NetShow: The Grand Tour, page 3, under “Converting PowerPoint Slideshows”), Dyson fails to explicitly teach (b), and said data stream being time indexed to enable synchronization of the slide display commands with the digital audio signal.

Klemets teaches time indexing a plurality of keyframes and deltaframes to enable synchronization of displayable events (Fig. 7; 0052; 0053; 0065-0068).

Gomez teaches (b) a presentation application program comprising a portion of the plurality of machine instructions stored in the memory of the local computer, the presentation application program enabling: (i) a presenter to change slides during the live presentation in response to slide triggering events entered through the user interface Gomez teaches (a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60); and (ii) slide display commands to be generated in response to the slide triggering events Gomez teaches (a) generating slide display

commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Dyson with the teaching of Gomez and Klemets because slide display commands allow users to control the order of the slides, and by automatically time indexing the plurality of deltaframes and keyframes in order to permit synchronization for display at client computer at predetermined points corresponding to the timeline of the video stream [0068]. Therefore, one of ordinary skill in the art would use the slide display commands in order to maximize the presentation's visual capabilities, thus providing more effective presentation.

Regarding claim 17, Dyson teaches the system of claim 16, wherein the live portion of the live presentation further comprises live visual content, further including a video capture subsystem that produces a digital video signal corresponding the live visual content, whereby the digital video signal is encoded along with the digital audio signal into the data stream, such that the audio and visual content is reproduced in synchrony when the data stream file is played (NetShow: The Grand Tour).

Regarding claims 19, Dyson fails to explicitly teach the method of claim 5, wherein the plurality of video frames comprises a plurality of keyframes and deltaframes, further comprising the step of: (a) adding a plurality of time index values to the data stream; (b) indexing each of

said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe; and (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command.

Klemets teaches the method of claim 5, wherein the plurality of video frames comprises a plurality of keyframes and deltaframes, further comprising the step of:

- (a) adding a plurality of time index values to the data stream (Fig. 7; 0052; 0053);
- (b) indexing each of said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe [0065 – 0068]; and
- (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command (0065; 0068).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to (a) add a plurality of time index values to the data stream in order to provide a convenient way to select suitable time value for the respective frame [0053]; (b) indexing each of said plurality of keyframes to a corresponding time index value based on the time stamp of the keyframe and (c) indexing each slide display command to a nearest preceding keyframe time index value based on a time stamp of the slide display command so that it can be synchronized for display at client computer at predetermined points corresponding to the timeline of the video frames [0068].

Regarding claim 20, Dyson teaches a system for recording a live presentation including a predefined content portion having a plurality of presentation slides that are displayed in response to slide triggering events during the live presentation, and a live portion comprising live audio

content performed in conjunction with display of said plurality of presentation slides during the live presentation, the system comprising:

- (a) although Dyson does not explicitly teach all of the mentioned components such as a local computer with a memory, a user interface, and a processor; these are inherently required in order to make a computer system work;
- (b) an audio capture subsystem that produces a digital audio signal corresponding to the live audio content (NetShow: The Grand Tour);
- (c) an encoding computer having a memory in which a plurality of machine instructions are stored, and a processor coupled to the memory for executing the machine instructions, the encoding computer being linked in communication with the local computer and the audio capture subsystem (NetShow: The Grand Tour);
- (d) a portion of the plurality of machine instructions stored in the memory of the encoding computer comprising an encoding module, execution of the encoding module performing the functions of: (i) encoding the digital audio signal into a data stream having a streaming data format (NetShow: The Grand Tour); and (ii) saving the data stream to a data stream file (NetShow: The Grand Tour).

Although he mentions the ability to combine PowerPoint Slideshows into the stream (NetShow: The Grand Tour, page 3, under “Converting PowerPoint Slideshows”), embedding commands into a data stream, such that when data is played, said audio and presentation contents are displayed in synchrony, thereby replicating the live presentation, and communicating the commands to the encoding computer (NetShow: The Grand Tour), Dyson fails to explicitly teach

(e) and the data stream being time indexed to enable synchronization of the slide display commands with the digital audio signal.

Klemets teaches automatically time indexing a plurality of keyframes and deltaframes to enable synchronization of displayable events (Fig. 7; 0052; 0053; 0065-0068).

Gomez teaches (e) a presentation application program comprising a portion of the plurality of machine instructions stored in the memory of the local computer, execution of the presentation application program enabling: (i) a presenter to change slides during the live presentation by entering slide triggering events through the user interface Gomez teaches (a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60); (ii) slide display commands to be generated in response to the slide triggering events Gomez teaches (a) generating slide display commands corresponding to said slide triggering events captured in real time during the presentation when presented live, for controlling display of said plurality of presentation slides (figure 4; col. 7, lines 35 to 60).

At the time the invention was made, it would have been obvious to one of ordinary skill in the art to combine the teaching of Dyson with the teaching of Gomez and Klemets because slide display commands allow users to control the order of the slides, and by time indexing the plurality of deltaframes and keyframes in order to permit synchronization for display at client computer at predetermined points corresponding to the timeline of the video stream [0068]. Therefore, one of ordinary skill in the art would use the slide display commands in order to maximize the presentation's visual capabilities, thus providing more effective presentation.

Claim 18 is similar to claim 5, therefore are rejected under the same rationale.

Claim 21 is similar to claim 17, therefore are rejected under the same rationale.

Claim 22 is similar to claim 5, therefore are rejected under the same rationale.

Claim 24 is similar to claim 1, therefore are rejected under the same rationale.

Claim 25 is similar to claim 2, therefore are rejected under the same rationale.

Claim 26 is similar to claim 3, therefore are rejected under the same rationale.

Claim 27 is similar to claim 5, therefore are rejected under the same rationale.

Claim 29 is similar to claim 7, therefore are rejected under the same rationale.

Response to Arguments

Applicant's arguments have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37

CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Alina N Boutah whose telephone number is 571-272-3908. The examiner can normally be reached on Monday-Friday (9:00 am - 5:00 pm).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David A Wiley can be reached on 571-272-3923. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

ANB

ANB

DW
DAVID WILEY
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100