MATH 7752 - HOMEWORK 10 DUE WEDNESDAY 04/15/22 AT 1 P.M.

- (1) Let F be a field, $f(x) \in F[x]$ be an irreducible separable polynomial over F of degree n and let K be a splitting field of f(x).
 - (a) Prove that $|\operatorname{Gal}(K/F)|$ is a multiple of n and divides n!.
 - (b) Let n = 3. Prove that Gal(K/F) is isomorphic to either $\mathbb{Z}/3\mathbb{Z}$ or S_3 .
 - (c) Let n = 4 and assume that $|\operatorname{Gal}(K/F)| = 8$. Determine the isomorphism class of $\operatorname{Gal}(K/F)$.
- (2) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree n, and let K be a splitting field of f(x) contained in \mathbb{C} . Label the roots of f(x) by $\alpha_1, \ldots, \alpha_n$ (in some order), and let $\rho : \operatorname{Gal}(K/\mathbb{Q}) \hookrightarrow S_n$ be the associated embedding.
 - (a) Assume that f(x) has at least one non-real root. Prove that the complex conjugation gives an element τ of $Gal(K/\mathbb{Q})$ of order 2. What can you say about τ if f(x) has precisely two non-real roots?
 - (b) Suppose that the degree n of f(x) is a prime number, and that f(x) has precisely two non-real roots. Prove that $Gal(K/\mathbb{Q})$ is isomorphic to S_n . **Hint:** You might need to recall some facts from Algebra I about generators of S_n .
- (3) Let K be the splitting field of $f(x) = x^4 2 \in \mathbb{Q}[x]$.
 - (a) Choose an order on the set of roots of f(x) and describe the associated embedding $Gal(K/\mathbb{Q}) \hookrightarrow S_4$. (You can use the information you obtained in Homework 8).
 - (b) Describe all subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ and the corresponding subfields of K.
- (4) Let K/F and L/F be field extensions.
 - (a) Assume that L/F is finite Galois. Show that KL/K is also Galois.
 - (b) Suppose that both K/F and L/F are Galois extensions.
 - (i) Prove that the extension KL/F is also Galois and there is a natural embedding $\iota: \operatorname{Gal}(KL/F) \to \operatorname{Gal}(K/F) \times \operatorname{Gal}(L/F)$.
 - (ii) Assume now that K/F and L/F are both finite. Prove that the map ι in part (i) is an isomorphism if and only if $K \cap L = F$.