

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-24 (Canceled)

Claim 25. (Currently Amended) Apparatus for ablating cardiac tissue in ~~an organ in a body~~ a heart of a subject, comprising:
a probe catheter, which is adapted to be inserted into the body and within the heart so as to contact the cardiac tissue to be ablated at a desired position in the heart organ, the probe catheter comprising:
at least one sensor, which measures one or more local parameters at the position prior to and after ablating the tissue and a position sensor which generates signals for determining position and orientation coordinates of the distal end of the catheter probe; and
an ablation device, which applies a given dosage of energy to the tissue so as to ablate the tissue;
a display, which displays a map of the heart organ; and
a controller, which determines the position and orientation coordinates of the distal end of the catheter probe using the signals generated by the position sensor and generates the map showing, based on the one or more local parameters measured by the at least one sensor, a predicted extent of ablation of the tissue to be achieved for the given dosage of energy, and an actual extent of the ablation determined subsequent to ablating the tissue, for comparison with the predicted extent using the position and orientation coordinates.

Claim 26. (Canceled)

Claim 27. (Currently Amended)

The apparatus according to claim 25, wherein the controller is adapted, responsively to the output of the

position sensor, to determine at least one of a penetration depth of the catheter probe in the cardiac tissue and an orientation angle of the catheter probe relative to the cardiac tissue, and to predict the extend of the ablation responsively to the at least one of the penetration depth and the orientation angle.

Claim 28. (Currently Amended)

The apparatus according to claim 25, wherein the controller is adapted to generate the map by processing the output of the position sensor as the distal end of the catheter probe is brought into contact with the cardiac tissue at multiple positions inside the heart organ.

Claim 29. (Previously Presented)

The apparatus according to claim 28, wherein the at least one sensor comprises an electrical sensor, which is adapted to measure electrical potentials at the multiple positions, and wherein the controller is adapted to provide an indication of electrical activity on the map, based on the measured electrical potentials.

Claim 30. (Original)

The apparatus according to claim 25, wherein the at least one sensor comprises one or more ultrasonic transducers, which are adapted to transmit ultrasonic waves into the tissue and to generate an output signal responsively to the ultrasonic waves reflected from the tissue.

Claim 31. (Original)

The apparatus according to claim 30, wherein the controller is adapted to measure a propagation speed of the ultrasonic waves in the tissue responsively to the output signal from the one or more ultrasonic transducers, and to estimate a temperature of the tissue based on the propagation speed.

- Claim 32. (Original) The apparatus according to claim 30, wherein the controller is adapted to assess blood flow in the tissue responsively to the output signal from the one or more ultrasonic transducers.
- Claim 33. (Original) The apparatus according to claim 30, wherein the controller is adapted to determine the actual extent of the ablation based on the output signal from the one or more ultrasonic transducers after applying the given dosage of the energy.
- Claim 34. (Currently Amended) The apparatus according to claim 25, wherein the controller is adapted to determine an orientation angle of the distal end of the catheter probe relative to the cardiac tissue, and to predict the extent of the ablation responsively to the orientation angle.
- Claim 35. (Currently Amended) The apparatus according to claim 25, wherein the one or more local parameters comprise at least one of a penetration depth of the distal end of the catheter probe in the cardiac tissue, an electrical impedance between the catheter probe and the tissue, a temperature of the tissue and a flow of blood associated with the tissue.
- Claim 36. (Original) The apparatus according to claim 25, wherein the controller is adapted to adjust the dosage of the energy responsively to the map.
- Claim 37. (Original) The apparatus according to claim 25, wherein the ablation device comprises an electrode, which is adapted to apply radio frequency (RF) energy to ablate the tissue.
- Claim 38. (Currently Amended) The apparatus according to claim 25, wherein the catheter probe is adapted to ablate a succession of

mutually-adjacent sites in the tissue, and wherein the controller is adapted to provide a visual indication of overlap between the sites.

Claim 39. (Canceled)

Claim 40. (Currently Amended)

Apparatus for ablating cardiac tissue in ~~an organ inside a body~~ a heart of a subject, comprising:
a catheter probe, which is adapted to be inserted into the body and within the heart so as to contact the cardiac tissue to be ablated, the catheter probe comprising:
a position sensor, which generates an output indicative of a position and orientation of the probe distal end of the catheter relative to the cardiac tissue with which the probe catheter is in contact; and
an ablation device, which applies a given dosage of energy to the tissue so as to ablate the tissue;
a display, which displays a map of the heart organ; and
a controller, which computes position and orientation coordinates of the probe distal end of the catheter based on the output from the position sensor and, a prediction of an extent of ablation of the tissue to be achieved for the given dosage of energy, so as to enable the dosage to be adjusted responsively to the prediction using the position and orientation coordinates of the distal end of the catheter probe.

Claim 41. (Original)

The apparatus according to claim 40, wherein the position sensor comprises one or more sensor coils, which are adapted to generate the output indicative of the position and orientation responsively to an externally-applied magnetic field.

- Claim 42. (Currently Amended) The apparatus according to claim 40, wherein the controller is adapted to generate a map of the heart organ by processing the output of the position sensor as the probe catheter is brought into contact with the cardiac tissue at multiple positions inside the heart organ, and recording position coordinates of the probe distal end of the catheter at the multiple positions.
- Claim 43. (Currently Amended) The apparatus according to claim 42, wherein the controller is adapted to determine an orientation angle of the probe distal end of the catheter relative to the cardiac tissue using the map.
- Claim 44. (Currently Amended) The apparatus according to claim 43, wherein the controller is adapted to determine a depth of penetration of the probe catheter into the cardiac tissue, based on the position coordinates of the probe catheter and on the map, and to predict the extent of the ablation responsively to the depth of penetration and the orientation angle of the catheter probe.
- Claim 45. (Currently Amended) The apparatus according to claim 40, wherein the probe catheter comprises a sensor, which is adapted to measure at least one local parameter selected from a list of local parameters consisting of an electrical impedance between the probe catheter and the cardiac tissue, a temperature of the tissue and a flow of blood associated with the tissue, and wherein the controller is adapted to predict the extent of the ablation responsively to the at least one local parameter.
- Claim 46. (Original) The apparatus according to claim 40, wherein the controller is adapted to adjust the dosage of the energy responsively to the map.

Claim 47. (Original)

The apparatus according to claim 40, wherein the ablation device comprises an electrode, which is adapted to apply radio frequency (RF) energy to ablate the tissue.

Claim 48. (Canceled)