Dijkstra's algorithm

Maria Bartnik, Redvers Vecchio & Hugo Madrid

Given the weitghed map, from the starting point A, the algorithm can see the initial distance to B, C, D and E. In this initial step, the distance to B is 2, to C is 1, to D is 7 and to E is 9. Current table looks as follows:

Α	0
В	2
B C D	1
	7
E	9
F	8
F G H	8
Н	8

As C is the closest node to A, it is the next node to be visited. There, nodes F and G are discovered, and the table has to be updated:

Α	0
В	2
С	1
D	7
E	9
F	7
G H	13
Н	∞

The next visited node is B, no new nodes are discovered, but the distance to E is updated:

Α	0
В	2
С	1
D	7
Е	3

F	7
G	13
Н	8

Following, node E is visited, node H is discovered and distance to D and G is updated:

Α	0
В	2
С	1
D	6
Е	3
F	7
G H	11
Н	10

Then, node D is visited, and the distance to G is updated:

Α	0
В	2
B C	1
D	6 3
E	3
F	7
F G H	8
Н	10

Following the visit of D, node F is visited, but the table remains unchanged:

Α	0
В	2
C D	1
	6 3
Е	3
F	7
G H	8
Н	10

Finally, node G is visited, and the distance to H is updated:

Α	0
В	2

С	1
D	6
Ε	3
F	7
G	8
Н	9