PATENT ABSTRACTS OF JAPAN

2

(11)Publication number:

06-261871

(43)Date of publication of application: 20.09.1994

(51)Int.CI.

A61B 5/0245

(21)Application number: 04-180047

(71)Applicant: DAINIPPON PHARMACEUT CO LTD

(22)Date of filing:

07.07.1992

(72)Inventor: NAGAI RYUJI

NAGATA SHIZUYA

(54) PROCESSOR FOR DATA ON CIRCULATION ACTION MEASUREMENT

(57)Abstract:

PURPOSE: To provide the processor cable of exactly making circulation action measurement.

CONSTITUTION: A blood pressure signal 28 is filtered by a low-pass filter having about several Hz cut-off frequency. A waveform 30 and a waveform 32 are thereby obtd. The max. value of the blood pressure signal 28 in the rising period $\gamma 1$ of this waveform 30 is defined as SBP. The min. value of the blood pressure signal 28 in the falling period d1 of the waveform 32 is defined as DBP. The number of pulsations is computed in accordance with the interval between the DBPs.

LEGAL STATUS

[Date of request for examination]

30.03.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3131932 [Date of registration] 24.11.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-261871

(43)公開日 平成6年(1994)9月20日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 B 5/0245

7638-4C

A 6 1 B 5/02

322

審査請求 未請求 請求項の数12 OL (全 18 頁)

(21)出願番号

(22)出願日

特顧平4-180047

平成4年(1992)7月7日

(71)出願人 000002912

大日本製薬株式会社

大阪府大阪市中央区道修町2丁目6番8号

(72)発明者 永井 隆二

京都府京都市伏見区桃山町和泉23-4コス

モ桃山南口309号

(72)発明者 永田 鎮也

兵庫県神戸市須磨区南落合2丁目2番510

-104号

(74)代理人 弁理士 古谷 栄男 (外2名)

(54) 【発明の名称】 循環動態測定データ処理装置

(57)【要約】

【目的】 正確に循環動態測定を行うことのできる処理 装置を提供することを目的とする。

【構成】 血圧信号28を数Hz程度の遮断周波数をも **フローパスフィルタによりフィルタリングする。これに** より得られるのが波形30と波形32である。波形30 の上昇期間 71 における血圧信号 28の最大値をSBP とする。また、波形32の下降期間διにおける血圧信 号28の最小値をDBPとする。DBPとDBPの間隔 に基づいて脈拍数を演算する。

【特許請求の範囲】

【請求項1】周期性を有する循環動態測定パラメータを 計測し、電気信号に変換する計測センサ、

計測センサからの電気信号を受けて、前記周期性に対応 する周波数の近傍の周波数の成分のみを通過させる周期 性検出フィルタ手段、

周期性検出フィルタ手段の出力に基づき、当該出力の下 降期間または上昇期間の少なくとも一方を決定する認識 領域決定手段、

認識領域決定手段の決定した各下降期間および上昇期間 10 における計測センサからの電気信号に基づいて、各周期の代表値を抽出する代表値抽出手段、

を備えたことを特徴とする循環動態測定データ処理装 價。

【請求項2】請求項1の循環動館測定データ処理装置に おいて、

代表値抽出手段によって抽出された代表値を、近接する 他の周期の代表値と比較することにより、不要な代表値 を除去することを特徴とするもの。

【欝求項3】請求項1の循環動態測定データ処理装置に 20 おいて、

前回の代表値から今回の代表値までの時間間隔に基づいて脈拍数または心拍数を演算することを特徴とするもの。

【請求項4】請求項3の循環動態測定データ処理装置に おいて、

脈拍数を演算するための代表値は、拡張期血圧、収縮期 血圧であり、心拍数を演算するための代表値は、左心室 拡張終期圧、左心室収縮期内圧であることを特徴とする もの。

【請求項5】請求項1の循環動態測定データ処理装置に おいて、

前記計測センサが血圧を計測する血圧測定センサであり、

前記代表値抽出手段は、

認識領域決定手段により決定された下降期間における血 圧測定センサからの血圧信号に基づいて、拡張期血圧を 算出する拡張期血圧算出手段、または認識領域決定手段 により決定された上昇期間における血圧測定センサから の血圧信号に基づいて、収縮期血圧を算出する収縮期血 40 圧算出手段の少なくとも一方、

を備えていることを特徴とするもの。

【請求項6】請求項5の循環動態データ処理装置において、

前記周期性検出フィルタ手段を、血圧信号の極小点付近 の周波数に近い透過周波数特性を有する下降期間用フィ ルタと血圧信号の極大点付近の周波数に近い透過周波数 特性を有する上昇期間用フィルタにより機成し、

認識領域決定手段を下降期間決定手段と上昇期間決定手段に分けるとともに、

下降期間決定手段は、下降期間用フィルタの出力に基づいて下降期間を決定し、

上昇期間決定手段は、上昇期間用フィルタの出力に基づいて上昇期間を決定するようにしたことを特徴とする循 環動態データ処理装置。

【請求項7】請求項1の循環動態測定データ処理装置に おいて、

前記計測センサが左心室内圧を計測する圧力測定センサであり、

10 前配代表値抽出手段は、

左心室内圧信号を微分し、左心室内圧微分信号を出力する左心室内圧微分手段および、

認識領域決定手段により決定された下降期間内において 左心室内圧微分信号が出力される時点の左心室内圧信号 に基づいて左心室拡張終期圧を算出する左心室拡張終期 圧算出手段、または認識領域決定手段により決定された 上昇期間における左心室内圧信号に基づいて、左心室収 縮期内圧を算出する左心室収縮期内圧算出手段の少なく とも一方、

20 を備えていることを特徴とするもの。

【請求項8】請求項7の循環動態測定データ処理装置に おいて、

前配周期性検出フィルタ手段を、左心室内圧信号の極小 点付近の周波数に近い透過周波数特性を有する下降期間 用フィルタと左心室内圧信号の極大点付近の周波数に近 い透過周波数特性を有する上昇期間用フィルタにより構 成し、

認識領域決定手段を下降期間決定手段と上昇期間決定手段に分けるとともに、

30 下降期間決定手段は、下降期間用フィルタの出力に基づいて下降期間を決定し、

上昇期間決定手段は、上昇期間用フィルタの出力に基づいて上昇期間を決定するようにしたことを特徴とする循環動態測定データ処理装置。

【請求項9】請求項1の循環動態測定データ処理装置に おいて.

前記計測センサが血流量を計測する血流量測定センサであり、

前記代表値抽出手段は、

⑩ 血流量信号を微分し、血流量微分信号を出力する血流量 微分手段および、

認識領域決定手段により決定された下降期間内において 血流量微分信号が出力される時点の血流量信号に基づい て上昇直前血流量を算出する上昇直前血流量算出手段、

または認識領域決定手段により決定された上昇期間における血流量信号に基づいて、最大血流量を算出する最大血流量算出手段の少なくとも一方、

を備えたものであることを特徴とするもの。

【請求項10】請求項1の循環動態測定データ処理装置 50 において、

前記計測センサが血流速度を計測する血流速度測定セン サであり、

前記代表値抽出手段は、

血流速度信号を微分し、血流速度微分信号を出力する血 流速度微分手段および、

認識領域決定手段により決定された下降期間内において 血流速度微分信号が出力される時点の血流速度信号に基 づいて上昇直前血流速度を算出する上昇直前血流速度算 出手段、または認識領域決定手段により決定された上昇 期間における血流速度信号に基づいて、最大血流速度を 10 【発明が解決しようとする課題】しかしながら、上記の 算出する最大血流速度算出手段の少なくとも一方、

を備えたものであることを特徴とするもの。

【請求項11】請求項9の循環動態測定データ処理装置 において、

前記周期性検出フィルタ手段を、血流量信号または血流 速度信号の極小点付近の周波数に近い透過周波数特性を 有する下降期間用フィルタと血流量信号または血流速度 信号の極大点付近の周波数に近い透過周波数特性を有す る上昇期間用フィルタにより構成し、

認識領域決定手段を下降期間決定手段と上昇期間決定手 20 段に分けるとともに、

下降期間決定手段は、下降期間用フィルタの山力に基づ いて下降期間を決定し、

上昇期間決定手段は、上昇期間用フィルタの出力に基づ いて上昇期間を決定するようにしたことを特徴とする循 環動態測定データ処理装置。

【請求項12】 時系列に配置された循環動態の計測デー 夕を入力し、低周波通過フィルタ手段を介して、所望の サンプリング間隔で処理データを出力する循環動態測定 データ処理装置であって、

前記サンプリング間隔に対応するサンプリング周波数に 応じて、前記低周波通過フィルタ手段の通過周波数を変 化させるとともに、前記通過周波数を前記サンプリング 周波数とほぼ同じかもしくはやや高い周波数としたこと を特徴とする循環動態測定データ処理処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は循環動態測定データ処 理装置に関するものであり、特にその解析精度の向上に 関するものである。

[0002]

【従来の技術】薬品投与の影響を知るため、薬品投与に よる血圧(収縮期血圧、平均血圧、拡張期血圧)や脈拍 数などを測定することが行われている。例えば、血管内 の血圧の変化を圧力センサによって測定し、これに基づ いて収縮期血圧(SBP)、拡張期血圧 (DBP) 、脈 拍数などを演算するようにしている。

【0003】図20に、ラットの血管内の血圧を測定し た波形を示す。この例においては、3秒を1測定時間と している。この3秒間において、最大の血圧値をSBP 50

とし、最小の血圧をDBPとしている。また、波形がし きい値Thをクロスする点の数を計測し、これを1/2する ことによって脈拍数を演算している。このようにして得 られたSBP、DBP、脈拍数は、メモリに記憶され る。同様にして、次の1測定時間に関してのSBP、D

BP、脈拍数をメモリに配憶する。これを繰り返すこと により、薬品投与後のSBP、DBP、脈拍数の変化を 知ることができる。

[0004]

ような従来の測定には次のような問題点があった。図2 1に、ラットの血圧変化を測定した図を示す。図におい て、αの部分で波形が乱れているのはラットが動いたた めである。しかしながら、従来の測定法では、この部分 の血圧をSBP、DBPとして認識してしまうという問 題があった。また、αの部分があるため、脈拍数も本来 の脈拍数より多く計測されてしまうという問題もあっ た。逆に、β部分に示すように、血圧が全体的に上昇し たような場合には、波形がしきい値Thとクロスしなく なって、脈拍数が少なく計測されてしまうという問題も あった。すなわち、正確な測定を行えないおそれがあっ た。

【0005】この発明は上記のような問題点を解決し て、正確に測定を行うことのできる周期性データ処理装 置を提供することを目的とする。

[0006]

【課題を解決するための手段】請求項1の循環動態測定 データ処理装置は、周期性を有する循環動態測定パラメ 一夕を計測し、電気信号に変換する計測センサ、計測セ ンサからの電気信号を受けて、前記周期性に対応する周 波数の近傍の周波数の成分のみを通過させる周期性検出 フィルタ手段、周期性検出フィルタ手段の出力に基づ き、当該出力の下降期間または上昇期間の少なくとも― 方を決定する認識領域決定手段、認識領域決定手段の決 定した各下降期間および上昇期間における計測センサか らの電気信号に基づいて、各周期の代表値を抽出する代 表値抽出手段、を備えたことを特徴としている。

【0007】請求項2の循環動態測定データ処理装置 は、代表値抽出手段によって抽出された代表値を、近接 40 する他の周期の代表値と比較することにより、不要な代 表値を除去することを特徴としている。

【0008】請求項3の循環動態測定データ処理装置 は、前回の代表値から今回の代表値までの時間間隔に基 づいて脈拍数または心拍数を演算することを特徴として いる。請求項4の循環動態測定データ処理装置は、脈拍 数を演算するための代表値は、拡張期血圧、収縮期血圧 であり、心拍数を演算するための代表値は、左心室拡張 終期圧、左心室収縮期内圧であることを特徴としてい る。

【0009】請求項5の循環動態測定データ処理装置

は、前記計測センサが血圧を計測する血圧測定センサであり、前記代表値抽出手段は、認識領域決定手段により決定された下降期間における血圧測定センサからの血圧信号に基づいて、拡張期血圧を算出する拡張期血圧算出手段、または認識領域決定手段により決定された上昇期間における血圧測定センサからの血圧信号に基づいて、収縮期血圧を算出する収縮期血圧算出手段の少なくとも一方、を備えていることを特徴としている。

【0010】請求項6の循環動態データ処理装置は、前記周期性検出フィルタ手段を、血圧信号の極小点付近の 10 周波数に近い透過周波数特性を有する下降期間用フィルタと血圧信号の極大点付近の周波数に近い透過周波数特性を有する上昇期間用フィルタにより構成し、認識領域決定手段を下降期間決定手段と上昇期間決定手段に分けるとともに、下降期間決定手段は、下降期間用フィルタの出力に基づいて下降期間を決定し、上昇期間決定手段は、上昇期間円フィルタの出力に基づいて上昇期間を決定するようにしたことを特徴としている。

【0011】請求項7の循環動態測定データ処理装置は、前記計測センサが左心室内圧を計測する圧力測定セ 20ンサであり、前記代表値抽出手段は、左心室内圧信号を微分し、左心室内圧微分信号を出力する左心室内圧微分手段および、認識領域決定手段により決定された下降期間内において左心室内圧微分信号が出力される時点の左心室内圧信号に基づいて左心室拡張終期圧を算出する左心室拡張終期圧算出手段、または認識領域決定手段により決定された上昇期間における左心室内圧信号に基づいて、左心室収縮期内圧を算出する左心室収縮期内圧算出手段の少なくとも一方、を備えていることを特徴としている。

【0012】請求項8の循環動態測定データ処理装置は、前記周期性検出フィルタ手段を、左心室内圧信号の極小点付近の周波数に近い透過周波数特性を有する下降期間用フィルタと左心室内圧信号の極大点付近の周波数に近い透過周波数特性を有する上昇期間用フィルタにより構成し、認識領域決定手段を下降期間決定手段と上昇期間決定手段に分けるとともに、下降期間決定手段は、下降期間用フィルタの出力に基づいて下降期間を決定し、上昇期間決定手段は、上昇期間用フィルタの出力に基づいて上昇期間を決定するようにしたことを特徴としている。

【0013】請求項9の循環動態測定データ処理装置は、前記計測センサが血流量を計測する血流量測定センサであり、前記代表値抽出手段は、血流量信号を微分し、血流量微分信号を出力する血流量微分手段および、認識領域決定手段により決定された下降期間内において血流量微分信号が出力される時点の血流量信号に基づいて上昇直前血流量を算出する上昇直前血流量算出手段、または認識領域決定手段により決定された上昇期間における血流量信号に基づいて、最大血流量を算出する最大 50

血流量算出手段の少なくとも一方、を備えたものである ことを特徴としている。

【0014】 請求項10の循環動態測定データ処理装置は、前記計測センサが血流速度を計測する血流速度測定センサであり、前記代表値抽出手段は、血流速度循号を微分し、血流速度微分信号を出力する血流速度微分手段および、認識領域決定手段により決定された下降期間内において血流速度微分信号が出力される時点の血流速度信号に基づいて上昇直前血流速度を算出する上昇直前血流速度算出手段、または認識領域決定手段により決定された上昇期間における血流速度信号に基づいて、最大血流速度を算出する最大血流速度算出手段の少なくとも一方、を備えたものであることを特徴としている。

【0015】 請求項11の循環動態測定データ処理装置は、前記周期性検出フィルタ手段を、血流量信号または血流速度信号の極小点付近の周波数に近い透過周波数特性を有する下降期間用フィルタと血流量信号または血流速度信号の極大点付近の周波数に近い透過周波数特性を有する上昇期間用フィルタにより構成し、認識領域決定手段を下降期間決定手段と上昇期間決定手段に分けるとともに、下降期間決定手段は、下降期間用フィルタの出力に基づいて下降期間を決定し、上昇期間決定手段は、上昇期間用フィルタの出力に基づいて上昇期間を決定するようにしたことを特徴としている。

【0016】 請求項12の循環動態測定データ処理装置は、時系列に配置された循環動態の計測データを入力し、低周波通過フィルタ手段を介して、所望のサンプリング間隔で処理データを出力する循環動態測定データ処理装置であって、前記サンプリング間隔に対応するサンプリング周波数に応じて、前記低周波通過フィルタ手段の通過周波数を変化させるとともに、前記通過周波数を前記サンプリング周波数とほぼ同じかもしくはやや高い周波数としたことを特徴としている。

[0017]

【作用】請求項1の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、この期間における代表値を抽出するようにしている。したがって、異常な周期を有するデータを除外して、各期間における代表値を正確に抽出することができる。

【0018】請求項2の循環動態測定データ処理装置においては、抽出された代表値を近接する他の周期の代表値と比較することによって不要な代表値を除去している。したがって、異常なデータを排除することができる。 ・

【0019】請求項3、4の循環動態測定データ処理装置においては、前回の代表値から今回の代表値までの時間間隔に基づいて脈拍数または心拍数を演算している。 したがって、正確な脈拍数または心拍数を得ることがで

きる。

【0020】請求項5の循環動館測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、下降期間における血圧信号に基づいて拡張期血圧を算出するか、もしくは上昇期間における血圧信号に基づいて収縮期血圧を算出するようにしている。したがって、異常な周期を有する血圧信号を排除しつつ、正確に拡張期血圧または収縮期血圧を算出することができる。

【0021】請求項6、8、10の循環動態測定データ処理装置においては、下降期間用フィルタと上昇期間用フィルタによって周期性検出フィルタを構成し、下降期間用フィルタの出力によって下降期間を決定し、上昇期間用フィルタの出力によって上昇期間を決定するようにしている。したがって、下降期間、上昇期間をより正確に決定することができる。

【0022】請求項7の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間 20を決定するとともに、左心室内圧信号の微分信号を得て、下降期間内における微分信号の山力時点の左心室内圧信号に基づいて左心室拡張終期圧を算出するか、もしくは上昇期間における左心室内圧信号に基づいて左心室収縮期内圧を算出するようにしている。したがって、異常な周期を有する左心室内圧信号を排除しつつ、正確に左心室拡張終期圧または左心室収縮期内圧を算出することができる。

【0023】請求項9の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、血流量信号の微分信号を得て、下降期間内における微分信号の出力時点の血流量信号に基づいて上昇直前血流量を算出するか、もしくは上昇期間における血流量信号に基づいて最大血流量を算出するようにしている。したがって、異常な周期を有する血流量信号を排除しつつ、正確に上昇直前血流量または最大血流量を算出することができる。

【0024】請求項10の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、血流速度信号の微分信号を得て、下降期間内における微分信号の出力時点の血流速度信号に基づいて上昇直前血流速度を算出するか、もしくは上昇期間における血流速度信号に基づいて最大血流速度を算出するようにしている。したがって、異常な周期を有する血流速度信号を排除しつつ、正確に上昇直前血流速度または最大血流速度を算出することができる。

【0025】請求項12の循環動態測定データ処理装置 においては、サンプリング間隔に対応するサンプリング 50 8

周波数に応じて、低周波通過フィルタ手段の通過周波数 を変化させるとともに、通過周波数を前記サンブリング 周波数よりやや高い周波数としている。したがって、サ ンプリング間隔に応じて適切なデータが得られる。

[0026]

【実施例】

-基本的構成-

図2に、この発明の一実施例による循環動態測定データ 処理装置の概念図を示す。検体である動物A1~A8に は、血圧測定センサ(図示せず)が取り付けられてい る。各センサの出力は増幅アンプ3を経て8チャンネル のA/Dコンパータ2に入力されて、ディジタル信号に 変換される。変換されたデータは、血圧信号としてコン ピュータ4に入力される。コンピュータ4はこの血圧信 号に基づいて、収縮期血圧、拡張期血圧などの代表値を 演算し記憶する。

【0027】図3に、この実施例において用いた血圧測定センサを示す。先端に設けられた導管26を検体の血管内に挿入する。導管26には、食塩水の充填された細管28が接続され、さらに血圧測定センサ6が接続されている。したがって、血管内の血圧の変化が細管28を伝わって血圧測定センサ6に導かれる。これにより、血圧測定センサ6は、血圧に応じたアナログ信号を出力する。

【0028】図4に、図2の血圧データ処理装置のプロック図を示す。各検体に取り付けられた血圧測定センサ61~65からの出力は、増幅アンプ3で増幅され、A/Dコンパータ2に与えられる。CPU12からの指令によって、ディジタル変換された血圧信号が1つ選択されて入力ポート10に与えられる。入力ポート10は、バスライン24に接続されている。パスライン24には、CPU12、ROM14、RAM16、CRT18、レコーダ20、ハードディスク22が接続されている。CPU12はROM14に格納されたプログラムにしたがって、入力ポート10から血圧信号を取り込み処理を行う。

【0029】-血圧信号の処理-

図5に、ROM14に格納されているプログラムのフローチャートを示す。まず、CPU12はステップSoにおいて血圧測定センサ $6_1 \sim 6_8$ の出力を順次ディジタル信号として取り込む。ここでは説明の便宜上、血圧測定センサ 6_1 の出力のみについて説明するが、他の血圧測定センサ $6_2 \sim 6_8$ についても同様の処理がなされる。

【0030】取り込まれたディジタルの血圧信号は、RAM16に配憶されていく。この血圧信号を波形として示すと、図1の28のようになる。CPU12は、この血圧信号に対して、ディジタル・フィルタリングを行う(ステップS1)。フィルタリング処理のフローチャートを図6に示す。まずCPU12は、血圧信号に対してノイズ除去のためのフイルタリングを行う(ステップS

6) 。例えば、検体がラットである場合には100Hz 以上の周波数成分をカットする。

【0031】次に、上昇期間用のローバスフィルタリング処理を行う(ステップS1)。このローバスフィルタの透過周波数は、血圧信号の極大点付近(図1Aの7)部分の周波数成分を通過させるように選択する。例えば、検体がラットである場合には8Hz以下の周波数成分を透過するようにしている。これにより、図1Aに示すような低周波成分30が得られる。なお、得られた低周波成分30はフィルタリング処理による遅延時間を有10している。

【0032】次に、下降期間用のローパスフィルタリング処理を行う(ステップS₁)。このローパスフィルタの透過周波数は、血圧信号の極小点付近(図1Bのδ)部分の周波数成分を透過するようにしている。特に、極小点から極大点までの時間間隔が少ないので、フィルタリング処理の遅延時間を余り大きくすることができず、遮断周波数も余り低くできない。例えば、検体がラットである場合には15Hz以下の周波数成分を透過するようにしている。

【0033】ノイズ除去のためのフィルタリングが施された血圧データ、上昇期間用のフィルタリングが施されたデータ、下降期間用のフィルタリングが施されたデータは、それぞれRAM16に記憶される。

【0034】なお、上記のようにこの実施例においてはディジタルフィルタ(この実施例では2次IIRパターワース型のフィルタ処理とした)によって各フィルタリング処理を行っているが、アナログフィルタによって構成してもよい。

【0035】図5に戻って、ステップS2において、下降期間用のフィルタ処理を施されたデータの極小点Xが表われた否かを検出する。極小点Xが表われていなければ、ステップS0に戻って次の血圧データの収集を行う。

【0036】極小点Xが表われたら、CPU12はRAM16に記憶されたフィルタリングデータに基づいて代表値の抽出を行う(図5のステップ S_3)。図7に、代表値抽出処理のフローチャートを示す。まず、CPU12は、上昇期間用フィルタ処理を施された低周波成分(図1A030 δ 8 \mathbb{R} 90 \mathbb{R} 9

【0037】次に、前回のDBPから今回のDBPの期 出することができる。 間までの血圧データを積分平均し、平均血圧(MBP) 異常なデータを容易し を算出する(ステップS11)。さらに、DBPからSB 50 を行うことができる。

Pまでの時間および前回のDBPから今回のDBPまでの時間を算出するとともに、その逆数に60を乗じて脈拍数を求める(ステップ S_{12})。次に、前回のDBPと今回のDBPとの差を演算する(ステップ S_{13})。さらに、前回のDBPから今回のDBPまでの被形の差分の絶対値を演算し、これを血圧波形変位値とする(ステップ S_{14})。次に、前回のDBPと今回のDBPの血圧の傾き(血圧勾配) θ を演算する(ステップ S_{15})。上記のようにして得られた代表値は、図9に示すように、ハードディスク22に記憶される。また、図10に示すように、CPU12は代表値の抽出結果をCRT18に表

示させることも可能である。

10

【0038】代表値の抽出及び配憶が終了すると、棄却検定に移る(ステップS4)。図8に、棄却検定処理のフローチャートを示す。この実施例においては、ステップS3において算出した代表値全てについて棄却検定を行っている(ステップS15~S21)。ステップS15においては、SBPの棄却検定を行っている。棄却検定の対象となるSBPが、前後5つのSBPからみて異常な値になっていないか否かを判定している。この実施例では、前後5つのSBPの平均値、分散値を演算し、分散値が平均値の10%以上になったときに、1%のSmirnov棄却検定を行って判定している。ステップS15以下においては、他の代表値について同様にして棄却検定を行う。

【0039】以上のようにして棄却検定を行い、各代表値のうちの何れか一つでも異常な値であると判定すると、当該1組の代表値を全て棄却する。すなわち、ハードディスク22から消去し、以後の処理においては用いないようにする。このようにして、異常なデータを排除することができる。例えば、図21のαに示すような異常なデータが血圧信号として得られた場合、この部分の代表値は他の正常な部分の代表値とかけ離れたものとなる。したがって、上記の棄却検定によりαの部分のデータが排除されて正確なデータ処理が可能となる。

【0040】次に、ステップS₅において、異常データが排除された正常データのみに基づいて、各代表値につき所定時間毎の平均値等が演算される。その後、再びステップS₀に戻って処理を続ける。

【0041】以上のようにこの実施例においては、ディジタルフィルタによって下降期間、上昇期間を決定し、この期間内の血圧データに基づいて代表値を算出するようにしている。したがって、正確に代表値の抽出を行うことができる。また、ディジタルフィルタによって本来の血圧変化の周波数近傍の血圧データを透過させるようにしている。また、プDBPとDBPの間隔に基づいて脈拍数を演算するようにしているので、正確に脈拍数を算出することができる。さらに棄却検定を行っているので、異常なデータを容易に排除することができ、正確な測定を行うことができる。

【0042】上記の説明では、1つの血圧測定センサ61からの血圧信号の処理について説明したが、CPU12は時分割により他の血圧測定センサ62~68からの血圧信号も取り込んで同様の処理を行う。このようにして算出された代表値は、各センサ61~68ごとにハードディスク22に記憶される。また、図11に示すように、8つのセンサ61~68に対応する代表値を、CRT18に同時に表示することができる。図において、画面が8分割され、Ch1の部分は血圧測定センサ61からの血圧信号に基づく代表値である脈拍数(HR)、SBP、MBP、DBPの時間的変化のグラフを表わしている。Ch2~Ch8はそれぞれ血圧測定センサ62~68からの血圧信号の代表値を表示している。なお、他の実施例においては、A/D変換器2のチャネル数を増減して、同時に測定できる検体の数を選択することができる。

【0043】-左心室内圧信号の処理-

上記においては、血管内の血圧をセンサで測定した血圧 信号の処理について説明した。左心室内圧についても同様の処理を行うことができる。左心室内圧を測定するセンサは、図3に示すものと同様のものを用いることがで 20 きる。したがって、ハードウエア構成は図4に示すとおりである。

【0044】ROM14に記憶された左心室内圧信号を処理するためのプログラムを、図12にフローチャートで示す。ステップS30のA/D変換は、図5の血圧信号の場合の処理と同じである。図16Aに、左心室内圧信号の場合の処理と同じである。図16Aに、左心室内圧信号なるをグラフで示す。なお、ディジタル変換された左心室内圧信号は、RAM16に順次記憶されて行く。つぎに、CPU12はフィルタリング処理を行う(ステップS31)。フィルタリング処理のフローチャートを図13に示す。まず、ステップS351においてノイズ除去のためのフィルタリング処理を行う。検体がラットである場合には40Hz以上の周波数成分をカットするようにしている。ノイズカットされた左心室内圧データは、RAM16に記憶される。

【0045】その後、周期性検出のためのフィルタリングを行う(ステップSョブ)。血圧信号は立ち上がりと立ち下がりが非対象(すなわち周波数が異なる)であったが、左心室内圧信号は図16Aに示すように、立ち上 40がりと立ち下がりがほぼ対象である。したがって、上昇期間検出用のフィルタリングと下降期間検出用のフィルタリングの周波数を同じものとすることができる。この実施例においては、検体がラットの場合には6Hz以上の成分をカットし、犬の場合には4Hz以上の成分をカットするようにしている。周期性検出のフィルタリング処理が施されたデータは、RAM16に記憶される。

【0046】周期性検出のフィルタリングがされたデータを、図16Aの38に波形として示す。この波形はフィルタリング処理により、左心室内圧信号波形36に対 50

して所定の時間遅延されている。

【0047】図12に戻って、ステップSxxにおいて、 周期性検出のフィルタ処理を施されたデータの極大点Y が表われたか否かを検出する。極大点Yが表われていな ければ、ステップSxxに戻って次の左心室内圧データの 収集を行う。

12

【0048】極大点 Yが表われたら、CPU12はRAM16に記憶されたフィルタリングデータに基づいて代表値の抽出を行う(図12のステップS $_{33}$)。図14に、代表値抽出処理のフローチャートを示す。まず、CPU12は、代表値抽出用フィルタ処理を施された低周波成分(図16Aの38参照)のデータ下降期間 $_{62}$ およびデータ上昇期間 $_{72}$ 内における左心室内圧データの最大値を求め、これを左心室収縮期期内圧(LVSP)とする(ステップS $_{34}$)。

【0049】次に、CPU12はRAM16に記憶され ている左心室内圧データを1次微分する (ステップ Sa7)。微分されたデータを波形で表わしたのが、図1 6 Bである。次に、期間δ2 および期間γ2 の通算期間内 におけるこの微分データの最小値を求め、これを左心室 内圧最大拡張速度(Min dp/dt)とする(ステ ップ Saa)。さらに、微分データの立ち上がり点2(図 16 B参照) における左心室内圧データを求め、これを 左心室拡張終期圧 (LVEDP) とする (ステップ Sag)。次に、期間 δ 2 および期間 γ 2 の通算期間内にお けるこの微分データの最大値を求め、これを左心室内圧 最大収縮速度(Max dp/dt)とする(ステップ San)。ステップSan においては、LVEDPからLV SPまでの時間を演算するとともに前回のLVEDPか ら今回のLVEDP間での時間(LVEDP-LVED P間隔)を算出する。さらに、LVEDP-LVEDP 間隔に基づいて心拍数を演算する(ステップSn)。上 記のようにして得られた代表値は、ハードディスク22 に記憶される。

【0050】次に、得られた代表値について棄却検定を行う(図12のステップS34)。棄却検定のフローチャートを図15に示す。この実施例においては、血圧データの場合(図8参照)と同様に、前後5つのデータに基づいてSmirnov棄却検定を行っている。各代表値のうちの何れか一つでも異常な値であると判定すると、当該1組の代表値を全て棄却する。すなわち、ハードディスク22から消去し、以後の処理においては用いないようにする。

【0051】次に、ステップS35において、異常データが排除されだ正常データのみに基づいて、各代表値につき所定時間毎の平均値等が演算される。その後、再びステップS30に戻って処理を続ける。

【0052】 -血流量信号および血流速度信号の処理-血圧信号、左心室内圧信号と同様にして、血流量信号お よび血流速度信号についても処理を行うことができる。 ただし、血流量信号および血流速度信号を得るためには 血流速度センサが必要である。例えば、パルスドップラ 一血流計(プライムテック株式会社のPD-20など) を用いるとよい。したがって、図4の血圧測定センサ6 1~68に代えて血流速度センサを接続すればよい。

【0053】図17Aに、血流速度測定センサからの血流量信号(または血流速度信号)42を示す。また、周期性検出フィルタリング処理の出力液形を44で示す。さらに、図17Bは血流量信号(または血流速度信号)42の微分波形である。上昇期間73、下降期間63、上昇直前血流量または上昇直前血流速度(DBF)、最大血流量または最大血流速度(SBF)の演算等は、左心室内圧データの場合と同様である。なお、平均血流量または平均血流速度(MBF)は、それぞれ前回のDBFから今回のDBFまでの血流量または血流速度を平均して算出する。

【0054】ーデータの出力ー

上記のような処理によってハードディスク22には代表値が記憶されていく。この代表値は、CRT18もしく 20 はレコーダ20に出力することによって確認することができる。図18Aに、血圧信号に基づいて得られた脈拍数(HR)収縮期血圧(SBP)平均血圧(MBP)拡張期血圧(DBP)の時間的変化をレコーダ20に出力した例を示す。横軸は、時刻を表わしており1目盛が1時間である。破線50で示される時刻に薬品の投与があった。

【0055】図18Aの出力グラフは、微細な変化まで表わしているため、かえって長時間の全体経過を観察するためには不十分である。一方、薬品投与直後の変化を 30 観察したい場合には、微細な変化を完全に表現できることが好ましい。そこで、この実施例では次のようなフィルタリング処理を行うことによって適切な出力グラフを得られるようにしている。

【0056】出力用フィルタリング処理のフローチャートを図19に示す。まず、ステップS50において収集時間間隔t,の入力および出力表示したい代表値の選択を行う。ここで、収集時間間隔t,とは、出力表示する際、希望する最小時間間隔をいうものである。収集時間間隔t,が大きくなれば微細な変化が取り除かれて全体のな傾向を捉らえやすくなり、収集時間間隔t,が小さくなれば微細な変化まで正確に表現できることになる。例えば、図18Aの例では収集時間間隔t,を10分程度とすれば微細な変化を除去できて全体的な傾向を明瞭に捉らえられるであろう。

[0058]

【数1】 fc=1/t, · · · · · · · · (1)

14 例えば、収集時間間隔 t p が 1 0 分である場合には、遮 断周波数 f cは 0 . 0 0 1 6 H z となる。

【0059】次に、CPU12は対象となる代表値をハードディスク22から読み出し、演算した遮断周波数fcに基づいてフィルタリング処理を行う(ステップSi2)。このようにして得られたデータは、ハードディスク22に記憶される。

【0060】図18Aに示すデータをフィルタリング処理(0.0016Hzの遮断周波数で)して得られたデ 10 ータをレコーダ20によって表示すると、図18Bのようになる。図18Aと比べれば明らかなように、長期的な全体傾向が明瞭に表示されている。

【0061】なお、遮断周波数 f cは(1)式よりもやや低くしてもよい。

【0062】 -その他の実施例-

上記実施例においては、循環動態測定データとして血圧 データ、左心室内圧データ、血流量データを対象とした が、他の循環動態測定データを対象としてもよい。

【0063】また、上記実施例では、CPUを用いて各 手段を構成したが、その全部または一部をハードウエア ロジックによって構成してもよい。

[0064]

【発明の効果】請求項1の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、この期間における代表値を抽出するようにしている。したがって、異常な周期を有するデータを除外して、各期間における代表値を正確に抽出することができる。すなわち、測定データの信頼性を向上させることができる。請求項2の循環動態測定データ処理装置においては、抽出された代表値を近接する他の周期の代表値と比較することによって不要な代表値を除去している。したがって、異常なデータを排除することができる。

【0065】 請求項3、4の循環動態測定データ処理装置においては、前回の代表値から今回の代表値までの時間間隔に基づいて脈拍数または心拍数を演算している。したがって、正確な脈拍数または心拍数を得ることができる。すなわち、異常なデータによって誤った脈拍数または心拍数を検出する恐れがない。

【0066】 請求項5の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、下降期間における血圧信号に基づいて拡張期血圧を算出するか、もしくは上昇期間における血圧信号に基づいて収縮期血圧を算出するようにしている。したがって、異常な周期を有する血圧信号を排除しつつ、正確に拡張期血圧または収縮期血圧を算出することができる。

50 【0067】請求項6、8、10の循環動態測定データ

処理装置においては、下降期間用フィルタと上昇期間用フィルタによって周期性検出フィルタを構成し、下降期間用フィルタの出力によって下降期間を決定し、上昇期間用フィルタの出力によって上昇期間を決定するようにしている。したがって、下降期間、上昇期間をより正確に決定することができる。

【0068】請求項7の循環動館測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間を決定するとともに、左心室内圧信号の微分信号を得て、下降期間内における微分信号の出力時点の左心室内圧信号に基づいて左心室拡張終期圧を算出するか、もしくは上昇期間における左心室内圧信号に基づいて左心室収縮期内圧を算出するようにしている。したがって、異常な周期を有する左心室内圧信号を排除しつつ、正確に左心室拡張終期圧または左心室収縮期内圧を算出することができる。

【0069】請求項9の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期間 20 を決定するとともに、血流量信号の微分信号を得て、下降期間内における微分信号の山力時点の血流量信号に基づいて上昇直前血流量を算出するか、もしくは上昇期間における血流量信号に基づいて最大血流量を算出するようにしている。したがって、異常な周期を有する血流量信号を排除しつつ、正確に上昇直前血流量または最大血流量を算出することができる。

【0070】請求項10の循環動態測定データ処理装置においては、周期性検出フィルタ手段によって周期性の成分を取り出し、これに基づいて下降期間または上昇期 30間を決定するとともに、血流速度信号の微分信号を得て、下降期間内における微分信号の出力時点の血流速度信号に基づいて上昇直前血流速度を算出するか、もしくは上昇期間における血流速度信号に基づいて最大血流速度を算出するようにしている。したがって、異常な周期を有する血流速度信号を排除しつつ、正確に上昇直前血流速度または最大血流速度を算出することができる。

【0071】請求項12の循環動態測定データ処理装置においては、サンプリング間隔に対応するサンプリング 周波数に応じて、低周波通過フィルタ手段の通過周波数 40 を変化させるとともに、通過周波数を前記サンプリング 周波数よりやや高い周波数としている。したがって、サンプリング間隔に応じて適切なデータが得られる。

【図面の簡単な説明】

【図1】この発明の一実施例による循環動態測定データ 処理装置に基づく血圧データ処理を示すための図であ る。 ---【図2】この発明の一実施例による循環動態測定データ

処理装置の外観を示す図である。

【図3】図2の装置に用いた血圧センサを示す図である。

16

【図4】図2の装置のプロック図である。

【図 5】 R O M 1 4 に格納されたデータ処理のプログラムのフローチャートである。

【図6】フィルタリング処理のフローチャートである。

【図7】代表値抽出処理のフローチャートである。

0 【図8】棄却検定処理のフローチャートである。

【図9】ハードディスク22に記憶される代表値の一例を示す図である。

【図10】CRT18に表示された代表値抽出の画面である。

【図11】CRT18に8チャンネル同時に表示された 代表値の推移を示す画面である。

【図12】ROM14に格納されたデータ処理のプログ ラムのフローチャートである。

【図13】フィルタリング処理のフローチャートである。

【図14】代表値抽出処理のフローチャートである。

【図15】 棄却検定処理のフローチャートである。

【図16】この発明の一実施例による循環動態測定データ処理装置に基づく左心室内圧データ処理を示すための 図である。

【図17】この発明の一実施例による循環動態測定データ処理装置に基づく血流量データ処理または血流速度データ処理を示すための図である。

【図18】代表値の時間変化およびフィルタリング処理 の を施した後の代表値の時間変化をレコーダ20から出力 した例である。

【図19】出力のためのフィルタリング処理を示すフローチャートである。

【図20】従来の血圧データの測定を示すグラフであ ス

【図21】従来の血圧データの測定を示すグラフである。

【符号の説明】

2···A/D変換器

40 61~68・・・血圧測定センサ

12 · · · CPU

14 · · · ROM

16 · • · RAM

18 · · · CRT

20・・・レコーダ

22・・・ハードディスク

【図4】

【図9】

(mm Hg)	(mmHg)	(mmHg)	(Beats/min)	(sec)	(sec)	(mmHg)
SBP	MBP	DBP	脈拍数	DBP-DBP 間隔	DBP-SBP 間隔	血圧波形 変位値
1 5 2 . 6	116.4	92.3	3 1 2	0.193	0.050	1 2 3 . 5
150.8	117.3	92.5	3 3 3	0.180	0.050	116.8
1 5 2. 9	118.4	91.8	338	0.177	0.050	121.4
1 5 3. 6	1 1 8 . 6	94.0	3 3 3	0.180	0.050	121.3
1 5 2 . 5	1 1 8 . 8	93.6	3 3 3	0.180	0.052	117.3
				-		

【図20】

【図21】

血压*

[図10]

【図13】

[図15]

【図18】

【図19】

Family list
2 family member for:
JP6261871
Derived from 1 application.

2

PROCESSOR FOR DATA ON CIRCULATION ACTION MEASUREMENT Publication info: JP3131932B2 B2 - 2001-02-05

JP6261871 A - 1994-09-20

Data supplied from the esp@cenet database - Worldwide