Key Discovery / Pay Username

Proposal

wallet Prove ownership of email/phone number user

Light weight crypto operation

wallet crypto material Prove ownership Transaction of email/phone modified crypto number material user user Light weight crypto operation

BLS sign**

BLS sign** Smart contract verify modified crypto material wallet crypto material Prove ownership Authorities Transaction of email/phone modified crypto number material user user user Light weight crypto Light weight crypto operation operation

Setup

wallet

 n_{A}

 $t_1 = H_1(n_A)^w \in G_1$ $t_2 = H_2(n_A)^w \in G_2$

user

$$a \leftarrow Z_q$$

 $BLS.vrfy(\sigma_1, m_1, pk_{w_1})$ $SLB.vrfy(\sigma_2, m_2, pk_{w_2})$ BLS sign in G1 and G2

BLS sign with hash function

$$m_1^s = H_1(n_A)^{as}$$

$$k_1 = H_1(n_A)^s = (m_1^s)^{-a}$$

$$k_2 = H_2(n_A)^s = (m_2^s)^{-\alpha}$$

Smart contract

BLS. $vrfy(\sigma_1, m_1, pk_{w_1})$ SLB. $vrfy(\sigma_2, m_2, pk_{w_2})$

user

 n_{A}

 $a \leftarrow Z_q$

Transaction

$$\sigma_1 = t_1^a , \ m_1 = H_1(n_A)^a$$

$$\sigma_2 = t_2^a , \ m_2 = H_2(n_A)^a$$

BLS sign in G1 and G2

BLS sign with hash function = identity function

Authorities

$$k_1 = H_1(n_A)^s = (m_1^s)^{-\alpha}$$

Setup

Smart contract

 $BLS.vrfy(\sigma_1, m_1, pk_{w_1})$ $SLB.vrfy(\sigma_2, m_2, pk_{w_2})$

user

$$a \leftarrow Z_q$$

Transaction

$$\sigma_1 = t_1^a , \ m_1 = H_1(n_A)^a$$

$$\sigma_2 = t_2^a , \ m_2 = H_2(n_A)^a$$

$$k_1 = H_1(n_A)^s = (m_1^s)^{-a}$$

 $k_2 = H_2(n_A)^s = (m_2^s)^{-a}$

 $\sigma_1 = t_1^a , \ m_1 = H_1(n_A)^a$

 $\sigma_2 = t_2^a$, $m_2 = H_2(n_A)^a$

BLS sign in G1 and G2
BLS sign with hash function
= identity function

user

 $a \leftarrow Z_a$

user

Smart contract

BLS. $vrfy(\sigma_1, m_1, pk_{w_1})$ SLB. $vrfy(\sigma_2, m_2, pk_{w_2})$

Authorities

$$k_1 = H_1(n_A)^s = (m_1^s)^{-a}$$

 $k_2 = H_2(n_A)^s = (m_2^s)^{-a}$

BLS sign in G1 and G2
BLS sign with hash function
= identity function

KYC

$$t_1 = H_1(n_A)^w \in G_1$$

 $t_2 = H_2(n_A)^w \in G_2$

Smart contract

BLS.
$$vrfy(\sigma_1, m_1, pk_{w_2})$$

SLB. $vrfy(\sigma_2, m_2, pk_{w_1})$

user

$$a \leftarrow Z_a$$

Transaction

$$\sigma_1 = t_1^a , \ m_1 = H_1 (n_A)^a$$

$$\sigma_2 = t_2^a , \ m_2 = H_2(n_A)^a$$

$$m_1^s = H_1(n_A)^{as}$$

Authorities

$$k_1 = H_1(n_A)^s = (m_1^s)^{-a}$$

$$k_2 = H_2(n_A)^s = (m_2^s)^{-a}$$

Setup Crypto

wallet

Prove ownership of email/phone

user

$$a \leftarrow Z_q$$

authorities

$$\sigma_1 = t_1^a , \quad m_1 = H_1(n_A)^a$$
 $\sigma_2 = t_2^a , \quad m_2 = H_2(n_A)^a$

$$BLS.vrfy(\sigma_1, m_1, pk_{w_1})$$

 $SLB.vrfy(\sigma_2, m_2, pk_{w_2})$

$$k_1 = H_1(n_A)^s = (m_1^s)^{-a}$$

 $k_2 = H_2(n_A)^s = (m_2^s)^{-a}$

Key Derivation

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

$$val = c_{AB} = AEAD_k(addr_A)$$

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{BA}}, \ t_{BA} = H(s_{BA})$$

$$val = c_{BA} = AEAD_k(addr_B)$$

Key Derivation

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

$$val = c_{AB} = AEAD_k(addr_A)$$

$$S_{AB} = e(H_1(n_A), k_2) = e(H_1(n_A), H_2(n_B)^s)$$

 $S_{BA} = e(k_1, H_2(n_A)) = e(H_1(n_B)^s, H_2(n_A))$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{BA}}, \ t_{BA} = H(s_{BA})$$
 $val = c_{BA} = AEAD_k(addr_B)$

Key Derivation

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

 $val = c_{AB} = AEAD_k(pk_A)$

$$S_{AB} = e(H_1(n_A), k_2) = e(H_1(n_A), H_2(n_B)^s)$$

 $S_{BA} = e(k_1, H_2(n_A)) = e(H_1(n_B)^s, H_2(n_A))$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{BA}}, t_{BA} = H(s_{BA})$$

$$val = c_{BA} = AEAD_k(pk_B)$$

Sui is special

$$S_{AB} = e(k_1, H_2(n_B)) = e(H_1(n_A)^s, H_2(n_B))$$

 $S_{BA} = e(H_1(n_B), k_2) = e(H_1(n_B), H_2(n_A)^s)$

$$k_{AB} = KDF(S_{AB} \ XOR \ S_{BA})$$

$$key = g_1^{t_{AB}}, t_{AB} = H(s_{AB})$$

$$val = c_{AB} = AEAD_k(addr_A)$$

- 1. Create a new owned object with owner hash(key)
- 2. The object contains a single field: val
- 3. Readers can gather all objects owned by a public key they know.
- 4. Single-owner object structure remains because there is a single writer for every key