Resumé

David Akeley

1 Work Experience

1.1 Stanford Aetherling Project – June - September 2018

- 1. Aetherling currently aims to support automatic parallelization of hardware image pipelines designed using a Haskell intermediate representation.
- 2. Contributed to Aetherling's functional simulator and worked to remove impediments to parallelizing Aetherling line buffers.¹
- 3. Collaborated with David Durst (lead author), Dr. Kayvon Fatahalian, and Dr. Pat Hanrahan.

https://github.com/David-Durst/aetherlingHaskellIR

https://github.com/David-Durst/aetherling

1.2 MediocrePy – June 2017

- 1. Library for reducing stacks of images to a single image using pixel means or medians and optional outlier rejection (sigma clipping).
- 2. Multithreaded C core with AVX vectorization; C and Python (numpy) interface.
- 3. Collaborated with Dr. Zheng Cai, UC Santa Cruz Astrophysics.

https://github.com/akeley98/MediocrePy

1.3 Tsinghua Astrophysics – July - August 2016

- 1. Designed a library for fitting and plotting standard microlensing event light curves given a set of brightness data for a star.
- 2. Used Python, C++, SciPy, Matplotlib.
- 3. Collaborated with Dr. Shude Mao.

1.4 Jide Technology Co. – June - July 2015

1. Product testing for RemixOS, an Android derivative with a desktop-like interface.

¹A line buffer device reads in an image as a stream of pixel values and outputs rectangular portions ("windows") of the image.

- 2. Wrote RemixOS documentation in English.
- 3. Edited marketing literature in English.
- 4. Collaborated with Jason Zheng and Jeff Zhao (International Marketing Manager).

2 Other Projects

2.1 WebGL Jelly Cube Project

Simple mass-spring system simulation written with Javascript, WebAssembly, and WebGL 2.0 (for refractive and reflective effects). Earned third place in the UCLA computer graphics class contest, Fall 2017.²

https://github.com/akeley98/JellyMcJelloFace

2.2 DementedIGPU – Linux Nvidia Setup Script

Laptops with Nvidia graphics cards often work unreliably with the GNU/Linux operating system, especially when attempting to switch between high-performance discrete graphics and low-power integrated graphics. I wrote a Python 3 script that automatically installs and configures software needed to provide a (relatively) reliable option at boot time between high- and low-power graphics.³ I documented the script liberally in order to make it as beginner-friendly as a command line application can be.

https://github.com/akeley98/DementedIGPU

3 UCLA Education – 2017-Present

First Major: Computer Science

Second Major: Pure Mathematics

GPA: 3.730 (As of July 2019)

Courses Taken:

 $^{^2} https://www.facebook.com/vasilescu.alex/posts/10155206917936588$

³This automation depends on the user using a system with apt, systemd, and the GRUB bootloader. Tested with Ubuntu 18.04.

Number	Title	Content Notes
Math 110A	Algebra	Basic Ring Theory
Math 110AH	Algebra Honors	Group Theory
Math 111	Theory of Numbers	Overview of p-adic Numbers
Math 115A	Linear Algebra	
Math 120A	Differential Geometry	
Math 131AH	Analysis-Honors	Metric Spaces
Math 131BH	Analysis-Honors	Derivation, Riemann Integration
Math 132H	Complex Analysis Honors	
Math 170A	Probability Theory	
EE M16	Digital Systems	Verilog Lab
EE M116C	Computer Systems Architecture	
CS 35L	Software Construction Lab	POSIX basics (e.g. pthreads, bash)
CS 111	Operating Systems Principles	Focus on POSIX
CS 131	Programming Languages	
CS M146	Machine Learning	
CS M152A	Digital Design Lab	Verilog Team Project
CS 161	Fundamentals of Artificial Intelligence	
CS 180	Algorithms & Complexity	
CS 174A	Intro to Computer Graphics	See WebGL Jelly Cube Project
CS 181	Formal Languages ⁴	Regex, CFG, Turing Machines, Decidability
Engr 185EW	Art of Engineering Endeavors	Writing Intensive

4 West Valley College Education – 2015-2017

GPA: 4.0 (upon transferring to UCLA)

Select Courses Taken

$_{ m Number}$	Title	Content Notes
Math 4B	Differential Equations	
Math 19	Discrete Mathematics	
Psych 2	Experimental Psychophysiology	Experiment Design & Paper
Phys 4D	Modern Physics	Relativity

 $^{^4\}mathrm{Full}$ title: Introduction to Formal Languages and Automata Theory