BASES DES RÉSEAUX

Objectifs du module

OBJECTIFS

- Connaitre les couches du modèle OSI
- Manipuler les unités de mesure informatique
- Appréhender l'adressage IP
- Connaître la communication au sein d'un réseau
- Découvrir les premières commandes
- Comprendre pourquoi un équipement arrive a communiquer avec un autre

Plan du module

SOMMAIRE

- Module 1 : Le modèle OSI
- Module 2 : Les unités informatiques
- Module 3 : L'adressage IPv4
- Module 4: La communication
- Module 5 : Les premières commandes
- Module 6 : L'adressage IPv6

BASE DES RÉSEAUX

01 – LE MODÈLE OSI

PRÉSENTATION DU MODÈLE OSI

Objectifs

- Représenter le modèle OSI
- Expliquer le principe d'encapsulation
- Expliquer le principe de désencapsulation
- Illustrer la communication entre ordinateurs
- Connaître le fonctionnement des couches du modèle OSI

Présentation du modèle OSI

PRÉSENTATION DU MODÈLE OSI **Définitions**

- Modèle OSI (Open Systems Interconnection)
 - Présenté en 7 couches indépendantes et communicantes
 - Représente la communication entre systèmes d'information en réseau
 - Proposé par l'organisme de normalisation ISO (International Organization for Standardization)

Protocole

- Ensemble de règles à respecter permettant la communication entre systèmes d'information en réseau
- Exemple : Internet Protocol (ensemble de protocoles utilisés sur Internet puis dans les réseaux locaux)

PRÉSENTATION DU MODÈLE OSI Définitions

- **PDU** (Protocol Data Unit / Unité de données de Protocole)
 - Unité de mesure des données échangées dans un réseau
 - Constitué de plusieurs éléments distincts :
 - Des informations de contrôle de protocole (PCI : Protocol Control Information)
 - Des unités de données de service (SDU : Service Data Unit)

PRÉSENTATION DU MODÈLE OSI

• Les couches OSI

Couches OSI	Rôle	
Application	Point d'accès au réseau	 Communication entre applications Communication entre l'utilisateur et les applications Entrée et sortie des données
Présentation	Traduction des données	 (Dé)Chiffrement / (Dé)Compression Formatage des données (dédiées <-> non-dédiées)
Session	Fiabilisation de la communication	 Authentification entre les PC Synchronisation des échanges Création de points de contrôle
Transport	Transmission de bout en bout entre applications / Segmentation des données	 Contrôle de flux (segmentation et réduction de l'encombrement) Communication entre même type applications (ports)
Réseau	Transmission de bout en bout entre PCs Routage	 Communication entre les PC expéditeur et destinataire Choix de la meilleure route (routage) Adressage logique (adresses IPv4 & IPv6)
Liaison	Transmission de point à point	 Communication entre nœuds adjacents Contrôle d'erreurs et de flux Adressage physique (adresses Mac)
Physique	Transmission du signal	 Conversion des données informatiques en bits Mis en forme de signal en fonction de média (Modulation)

PRÉSENTATION DU MODÈLE OSI

PRÉSENTATION DU MODÈLE OSI Communication entre les couches

LE MODÈLE OSI

Encapsulation

LE MODÈLE OSI

Désencapsulation

DÉSENCAPSULATION Comment ça marche ?

Données initiales SDU **Application APDU** EA **PDU** EA 🖂 Présentation **PPDU** ΕP NCAPSULATION **EnteteX** Session EA 🔀 **SPDU** ES EP Enqueue X EA 🖂 **TPDU** ou Segment Transport ES EP ET ш EA 🖂 RPDU ou Paquet Réseau **ER** EP S ET ES LPDU ou Trame Liaison EL ET ES EP EA QL ER Physique 01100010111000011001100011001100 Bits **MEDIA**

LE MODÈLE OSI

Analogie avec La Poste

ANALOGIE AVEC LA POSTE

Scénario

LE MODÈLE OSI

Modèle OSI et communication

• Exemple de communication

MODÈLE OSI ET COMMUNICATION

Un utilisateur souhaite accéder à un site web

• Exemple de communication

MODÈLE OSI ET COMMUNICATION

e and e and a section of					
Couches OSI	Utilisateur	Serveur WEB			
Application	Utilisation du navigateur	Accès au sit Envoi de la	e web première page du site	Réception de la page web	
Présentation	Chiffrement (certificat client) Compression	Comparaison des certificats Déchiffrement Décompression	Chiffrement (certificat client) Compression	Déchiffrement Décompression	
Session	Authentification Synchronisation	Authentification Synchronisation	Authentification Synchronisation	Authentification Synchronisation	
Transport	Segmentation des données port du service (TCP:443) port de réponse (>1024)	Assemblage des données port du service (TCP:443) port de réponse (>1024)	Segmentation des données port de réponse (>1024) port du service (TCP:443)	Assemblage des données port de réponse (> 1024) port du service (TCP:443)	
Réseau	@IP du serveur Web@IP du PC local	Lecture et vérification adresse @IP du serveur Web @IP du PC distant	@IP du PC distant@IP du serveur Web	Lecture et vérification adresse @ @ IP du PC @ @ IP du serveur Web	
Liaison	Requête ARP / MAJ Cache ARP @Mac de la box @Mac du PC	Lecture et vérification adresse @Mac du Srv WEB @Mac de la box	Requête ARP / MAJ Cache ARP @ @Mac de la box @ @Mac du Srv WEB	Lecture et vérification adresse @Mac du PC @Mac de la box	
Physique	Conversion des données en Bits Envoi des bits sur le média	Conversion des Bits en données Reçoit des bits	Conversion des données en Bits Envoi des bits sur le média	Conversion des Bits en données Reçoit des bits	

Accès au site web après résolution DNS

LE MODÈLE OSI

Les couches du modèle OSI

- Connexion physique entre les nœuds réseau
- Connexion garantie par la carte réseau
 - La carte réseau est présente sur les couches 1 et 2 du modèle OSI
 - Couche 1 : connectique et modulation de données
 - Couche 2 : adresse physique (adresse MAC)

LES COUCHES DU MODÈLE OSI

Couche 1 Physique

La paire torsadée

ISO 11801	Blindage du câble	Blindage de paire
U/UTP	aucun	aucun
U/FTP	aucun	feuillard
F/UTP	feuillard	aucun
S/UTP	tresse	aucun
SF/UTP	tresse, feuillard	aucun
F/FTP	feuillard	feuillard
S/FTP	tresse	feuillard
SF/FTP	tresse, feuillard	feuillard

La paire torsadée

568A			568B
	1	Transmission +	
	2	Transmission -	
	3	Réception +	
	4	N/A	
	5	N/A	
	6	Réception -	
	7	N/A	
	8	N/A	

Fibre optique

- Les ondes électromagnétiques
 - Ondes à étalement de spectre par saut de fréquence (FHSS)
 - 802.11 fréquence 2,4 Ghz à 2,4835 Ghz
 - 79 canaux de 1 Mhz
 - Chaque canal utilisé pendant 400 ms
 - Moins sécurisées que le cable

LES COUCHES DU MODÈLE OSI Couche 2 Liaison

- Adresse physique d'un nœud réseau
 - Adresse MAC gérée par OUI (Organizationally Unique Identifier)
 - 48 bits hexadécimaux (6 octets)

Adresse MAC											
CO 3E BA			8	F	5	0	9	2			
1100	0000	0011	1110	1011	1010	1000	1111	0101	0000	1001	0010
	ID_Contructeur						ID_Perip	herique)		

- Contrôle d'erreurs (CRC control...)
 - Cyclic Redundancy Check
 - Garantir la fiabilité de la trame reçue

LES COUCHES DU MODÈLE OSI Couche 2 Liaison

Les protocoles

- ARP (Address Resolution Protocol) : résolution de l'adresse MAC à partir de l'adresse logique
- DHCP (Dynamic Host Configuration Protocol): fournit une configuration réseau aux postes clients (bail)
- PXE (Pre-boot eXecution Environnment) :
 - Serveur TFTP (Trivial File Transfer Protocol)
 - Serveur DHCP
 - Démarrer un poste à partir de sa carte réseau

LES COUCHES DU MODÈLE OSI Couche 2 Liaison

• Communication du poste A vers poste B avec l'adresse Physique

Envoi de la requête de A vers B				
Adresse MAC				
Destination				
FF:FF:FF:FF:FF 00:11:22:33:44:55 Requête ARP				

Réponse à la requête de B vers A				
Adress				
Destination	Source			
00:11:22:33:44:55	Réponse ARP			

• Mise à jour du cache ARP

LES COUCHES DU MODÈLE OSI Couche 3 Réseau

- Adresse logique d'un nœud réseau
 - *ID_Réseau* + *ID_Hôte*
 - Unique sur un réseau logique
- Adresse IP + Masque de sous-réseau = Adresse de réseau logique
 - Utilisation d'opérateur « & logique »

LES COUCHES DU MODÈLE OSI Couche 3 Réseau

• Communication du poste A vers poste B (Ping) dans le réseau 1

Envoi de la requête de A vers B					
Adres	se MAC	Adresse L	ogique		
Destination	Source	Destination	Source		
00:1A:2B:3C:4D:5E 00:11:22:33:44:55		@IP: 1B	@IP: 1A	Ping 1B	

Envoi de la requête de B vers A					
Adress	se MAC	Adresse Log			
Destination	Source	Destination	Source		
00:11:22:33:44:55	00:1A:2B:3C:4D:5E	@IP: 1A	@IP: 1B	Réponse de 1B	

LES COUCHES DU MODÈLE OSI Couche 4 Transport

- Ajout des ports
 - Port de destination (Application à contacter)
 - Port local d'écoute (Port local aléatoire ouvert pour la réponse)
- Deux protocoles
 - TCP (Transmission Control Protocol) : mode connecté avec accusé de réception
 - UDP (User Datagram Protocol) : mode non connecté sans accusé de réception

LES COUCHES DU MODÈLE OSI Couche 4 Transport

- Communications entre deux postes
 - Un poste joue le rôle de client
 - Un poste joue le rôle de serveur
- Plusieurs communications simultanées pour un poste

Un socket de communication vers le serveur	Un socket de communication pour la réponse
Adresse IP	Adresse IP
Protocole de couche 4	Protocole de couche 4
Port	Port

LES COUCHES DU MODÈLE OSI Couche 4 Transport

• Exemple de communications entre deux postes

Je cherche à contacter le site : 173.194.34.31

173.194.34.31: TCP: 80

Je suis 80.10.20.30 et j'attends la réponse sur le port 44800

→ Port aléatoire > 1024

LES COUCHES DU MODÈLE OSI

TΡ

M01-01-TP-Packet-Tracer_Modele_OSI

BASE DES RÉSEAUX

02 – LES UNITÉS INFORMATIQUES

LES UNITÉS INFORMATIQUES

Objectifs

- Connaître le principe de numération
- Effectuer des conversions
- Comprendre les unités informatiques

LES UNITÉS INFORMATIQUES

La numération

• Les bases de numération

LA NUMÉRATION

• Principe de numération décimale

• Principe de numération binaire

Rajout d'une colonne avec la valeur 1 Reprise des valeurs précédentes

Rajout d'une colonne avec la valeur 1

Rajout d'une colonne avec la valeur 1

Base 2

LA NUMÉRATION

Valeurs possibles

Reprise des valeurs

Reprise des valeurs précédentes

LA NUMÉRATION

• Principe de numération octale

LA NUMÉRATION

• Quelques équivalence des valeurs

Base 2	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111	10000	10001
Base 8	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	20	21
Base 10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Base 16	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11

LES UNITÉS INFORMATIQUES

La conversion

• La conversion binaire/décimale

• La conversion octale/décimale

En passant par le binaire

	(2631) ₈						
Séparation	2	6	3	1			
Conversion binaire	10	110	11	1			
Ecriture (3 bits)	010	110	011	001			
Regroupement	0101 1001 1001						
Conversion décimale	(1433) ₁₀						

• La conversion hexadécimale/décimale

En passant par le binaire

	(C1A6) ₁₆						
Séparation	С	1	A	6			
Conversion binaire	1100	1	1010	110			
Ecriture (4bits)	1100	0001	1010	0110			
Regroupement	1100 0001 1010 0110						
Conversion décimale	nale (49 574) ₁₀						

• La conversion décimale/hexadécimale

En passant par le binaire

	(51966) ₁₀						
Conversion binaire	1100 1010 1111 1110						
Regroupement (4bits)	1100	1010	1111	1110			
Conversion décimale	12	10	15	14			
Conversion hexadécimale	С	Α	F	E			
	(CAFE) ₁₆						

LES UNITÉS INFORMATIQUES

Comprendre les unités informatiques

COMPRENDRE LES UNITÉS INFORMATIQUES

Unité de base

Le bit (**B**inary Dig**it**)

- Valeurs possibles **0** et **1**
- Symbole : **b**

L'octet ou Byte (anglais)

- Ensemble de 8 bits
- Symbole octet : o
- Symbole Byte : **B**

Les multiples du bit

- Le Kibibit (Kibit)
- Le Mebibit (Mibit)
- Le Gibibit (Gibit)
- Le Tebibit (Tibit)

Les multiples de l'octet (10)

- Le Kilooctet (ko)
- Le Mégaoctet (Mo)
- Le Gigaoctet (Go)
- Le Téraoctet (To)

• Les préfixes

Préfixes binaires (bits)									
Nom	Symbole	Nbre de bits							
Kibibit	Kibit	2 ¹⁰	1024 bits						
Mebibit	Mibit	2 ²⁰	1024 Kibit						
Gibibit	Gibit	2 ³⁰	1024 Mibit						
Tebibit	Tibit	2 ⁴⁰	1024 Gibit						
Pebibit	Pibit	2 ⁵⁰	1024 Tibit						
Exbibit	Eibit	2 ⁶⁰	1024 Pibit						
Zebibit	Zibit	2 ⁷⁰	1024 Eibit						
Yobibit	Yibit	280	1024 Zibit						

Préfixes binaires (usage informatique)										
Nom	Symbole	Nbre d'octets								
Kibioctet	Kio	2 ¹⁰	1024 o							
Mebioctet	Mio	2 ²⁰	1024 Kio							
Gibioctet	Gio	2 ³⁰	1024 Mio							
Tébioctet	Tio	2 ⁴⁰	1024 Gio							
Pébioctet	Pio	2 ⁵⁰	1024 Tio							
Exbioctet	Eio	2 ⁶⁰	1024 Pio							
Zébioctet	Zio	2 ⁷⁰	1024 Eio							
Yobioctet	Yio	280	1024 Zio							

LES UNITÉS INFORMATIQUES M02-01-TP-Conversion

BASE DES RÉSEAUX

03 – L'ADRESSAGE IPV4

Objectifs

- Connaître l'adressage IPv4
- Identifier les classes IPv4
- Calculer les différentes adresses
- Appréhender l'utilisation de la notation CIDR
- Calculer les adresses de sous-réseaux

Présentation de l'adressage IPv4

L'ADRESSAGE LOGIQUE Présentation

- Une adresse IPv4 est constituée de 32 bits découpés en 4 octets distincts.
- Une adresse IPv4 est composée :
 - d'un identifiant réseau (ID_Réseau)
 - d'un identifiant d'hôte unique sur le réseau logique (**ID_Hôtes**)
- Pour communiquer avec d'autres hôtes sur son réseau logique, un hôte réseau a besoin :
 - d'une adresse IP
 - d'un masque de sous-réseau.
- À partir de son adresse IP et son masque de sous-réseau, l'hôte réseau va calculer :
 - son adresse de réseau logique
 - son adresse de diffusion

L'ADRESSAGE IPV4

Les classes

	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³	2 ² 4	2 ¹	2º 1
0	0	0	0	0	0	0	0	0
127	0	1	1	1	1	1	1	1

- Réseau de classe A , l'ID_Réseau est compris entre :
 - Classe entière : **0** et **127**
 - Classe utilisable: 1 et 126
- Nombre d'hôtes, l'ID_Hôte unique contient
 - Nbre bits @IP Nbre bits ID_Réseau
 - 32 8 = 24
 - $2^{24} 2 = 16 777 214$ hôtes possibles

- Réseau de classe B , l'ID_Réseau est compris entre :
 - Classe entière et utilisable : 128 et 191

- 27
 26
 25
 24
 23
 22
 21
 20

 128
 64
 32
 16
 8
 4
 2
 1

 128
 1
 0
 0
 0
 0
 0
 0
 0

 191
 1
 0
 1
 1
 1
 1
 1
 1
 1
- Nombre d'hôtes, l'ID_Hôte unique contient
 - Nbre bits @IP Nbre bits ID_Réseau
 - 32 16 = <mark>16</mark>
 - $2^{16} 2 = 65 534$ hôtes possibles

LES CLASSES

- 27
 26
 25
 24
 23
 22
 21
 20

 128
 64
 32
 16
 8
 4
 2
 1

 192
 1
 1
 0
 0
 0
 0
 0
 0

 223
 1
 1
 0
 1
 1
 1
 1
 1
 1
- Réseau de classe C , l'ID_Réseau est compris entre :
 - Classe entière et utilisable : 192 et 223

- Nombre d'hôtes, l'ID_Hôte unique contient
 - Nbre bits @IP Nbre bits ID_Réseau
 - 32 24 = <mark>8</mark>
 - $2^{8} 2 = 254$ hôtes possibles

- Réseau de classe D , l'ID_Réseau est compris entre :
 - Classe entière et utilisable : 224 et 239

	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2³ 8	2 ² 4	2 ¹ 2	2º 1
224	1	1	1	0	0	0	0	0
239	1	1	1	0	1	1	1	1

• Nombre d'hôtes, la classe D ne contient pas d'hôtes

LES CLASSES

						Valeurs 1 ^{ier} octet	Nbre d'hôtes
	Classe A	Oxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	1 - 126	2 ²⁴ – 2 = 16 777 214
	Masque sous-réseau	255	0	0	0		
cast	Classe B	10xx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	128 - 191	2 ¹⁶ – 2 = 65 534
Unicast	Masque sous-réseau	255	255	0	0		
	Classe C	110x xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	192 - 223	2 ⁸ – 2 = 254
	Masque sous-réseau	255	255	255	0		
icast	Classe D	1110 xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	224 - 239	0
Multicast	Masque sous-réseau	240	0	0	0		

LES CLASSES M03-01-TP-Classe_IPv4

Calcul des adresses

Calcul de l'adresse réseau

- L'adresse de réseau logique est une sorte d'identifiant commun
- La fonction <u>Slogique</u> permet de calculer l'adresse de réseau logique

Configuration IP d'un hôte

• @IP: 192.168.76.150

• Masque: 255.255.255.0

Table de vérité de la fonction & logique								
а	a b a.b							
0	0	0						
0	1	0						
1	0	0						
1	1	1						

Octet 1	Octet 2	Octet 3	Octet 4	Octet 1	Octet 2	Octet 3	Octet 4
192	168	76	150	1100 0000	1010 1000	0100 1100	1001 0110
255	255	255	0	1111 1111	1111 1111	1111 1111	0000 0000
192	168	76	0	1100 0000	1010 1000	0100 1100	0000 0000

L'@IP **192.168.76.150** avec le masque **255.255.255.0**

appartient donc au réseau logique 192.168.76.0

Un hôte

• @IP: 192.168.76.150

• *Masque* : 255.255.255.0

Octet 1	Octet 2	Octet 3	Octet 4	Octet 1	Octet 2	Octet 3	Octet 4
192	168	76	150	1100 0000	1010 1000	0100 1100	1001 0110
255	255	255	0	1111 1111	1111 1111	1111 1111	0000 0000
192	168	76	0	1100 0000	1010 1000	0100 1100	0000 0000

- Identifier, les deux parties (ID_Réseau & ID_Hôtes) en fonction du masque de sous-réseau
- Passer toutes les valeurs de l'ID_Hôtes à 0 pour obtenir l'adresse de réseau

L'@IP **192.168.76.150** avec le masque **255.255.255.0**

provient du réseau logique 192.168.76.0

Calcul de l'adresse de diffusion (broadcast)

Un hôte

• @IP: 192.168.76.150

• Masque: 255.255.255.0

Octet 1	Octet 2	Octet 3	Octet 4	Octet 1	Octet 2	Octet 3	Octet 4
192	168	76	150	1100 0000	1010 1000	0100 1100	1001 0110
255	255	255	0	1111 1111	1111 1111	1111 1111	0000 0000
192	168	76	255	1100 0000	1010 1000	0100 1100	1111 1111

- Identifier, les deux parties (ID_Réseau & ID_Hôtes) en fonction du masque de sous-réseau
- Passer toutes les valeurs de l'ID_Hôtes à 1 pour obtenir l'adresse de diffusion

L'@IP **192.168.76.150** avec le masque **255.255.255.0**

a pour adresse de broadcast 192.168.76.255

Calcul du nombre d'hôtes

Un hôte

• @IP: 192.168.76.150

• *Masque* : 255.255.255.0

Octet 1	Octet 2	Octet 3	Octet 4	Octet 1	Octet 2	Octet 3	Octet 4
192	168	76	150	1100 0000	1010 1000	0100 1100	1001 0110
255	255	255	0	1111 1111	1111 1111	1111 1111	0000 0000

- Identifier, les deux parties (ID_Réseau & ID_Hôtes) en fonction du masque de sous-réseau
- Prendre le nombre de bits de l'*ID_Hôtes*, pour l'exemple 8 bits
- Utiliser la formule : **2**^{bits_ID_Hôte} **2** (les adresses de réseau et de diffusion)

$$\rightarrow$$
 28 – 2 = 254 hôtes possibles

Résumé

• Obtenir l'adresse de réseau : passer tous les bits de l'ID_Hôtes à 0

Obtenir l'adresse de diffusion : passer tous les bits de l'ID_Hôtes à 1

• Obtenir le masque de sous-réseau : passer tous les bits de l'ID_Réseau à 1

• Obtenir le nombre d'hôtes : prendre le nombre de bits (n) de l'ID_Hôtes

Utiliser la formule : Nbre d'hôtes = $2^n - 2$

CALCUL DES ADRESSES

M03-02-TP-Calcul_Adresses

La notation CIDR

LA NOTATION CIDR

- La notation CIDR (Classless Inter Domain Routing) publiée en septembre 1993 (RFC 1518 et 1519)
- Suppression du fonctionnement par classes car :
 - devenu obsolète,
 - trop restrictif,
 - peu évolutif
- Suppression du masque de sous-réseau, remplacer par le préfixe
- Le préfixe représente le nombre de bits de l'ID_Réseau

Classe A : 255.0.0.0 devient	/8	Classe C : 255.255.255.0	devient /24
Classe B : 255.255.0.0 <u>devient</u>	/16	Classe D : 240.0.0.0	devient /4

@IP: 192.168.150.68

Masque: 255.255.248.0

Masque de sous-réseau : 255.255.248.0

- → Convertir les octets en binaire
- → Additionner le nombre de bits à « 1 »
- → ce qui représente l'ID_Réseau donc le préfixe

	Octet 1	Octet 2	Octet 3	Octet 4
255.255.248.0	1111 1111	1111 1111	1111 1000	0000 0000
Nbre de bits	8	8	5	0

Le masque 255.255.248.0 devient /21 en notation CIDR

@IP: 192.168.150.68 /20

Préfixe: /20

- Dans un tableau représentant une adresse IP découpée en octets
- → Mettez 1 dans les 20 premiers bits (ID_Réseau)
- → Mettez **0** dans les **12** bits suivants(ID Hôtes)
- Convertissez chaque octet en décimale (Masque de sous-réseau)

	Octet 1	Octet 2	Octet 3	Octet 4		
/ 20	1111 1111	11 1111 1111 1111		0000 0000		
Masque de sous réseau 255 255 240 0						
Le préfixe /20 devient le masque 255.255.240.0						

CALCUL DES SOUS-RÉSEAUX

TΡ

MO3-O3-TP-CIDR

Les adresses privées

LES ADRESSES PRIVÉES RFC 1918

- Les adresses privées ont été définies en février 1996.
- Elles sont utilisables seulement dans les réseaux locaux privés.
- Elles ne sont pas routables sur Internet.

LES ADRESSES PRIVÉES

• Classe A

	Plage d'adresses globale	Plage d'adresses utilisable	Masque sous-réseau	Notation CIDR
Privée de Classe A	10.0.0.0 10.255.255.255	10.0.0.1 10.255.255.254	255.0.0.0	10.0.0.0 /8

LES ADRESSES PRIVÉES

• Classe B

	Plage d'adresses globale	Plage d'adresses utilisable	Masque sous-réseau	Notation CIDR
Privée de Classe B	172.16.0.0 172.31.255.255	172.16.0.1 172.31.255.254	255.240.0.0	172.16.0.0 /12

LES ADRESSES PRIVÉES

• Classe C

	Plage d'adresses globale	Plage d'adresses utilisable	Masque sous-réseau	Notation CIDR
Privée de Classe C	192.168.0.0 192.168.255.255	192.168.0.1 192.168.255.254	255.255.0.0	192.168.0.0 /16

LES ADRESSES PRIVÉES Résumé

Définies en février 1996

	Plage d'adresses globale	Plage d'adresses utilisable	Masque sous-réseau	Notation CIDR
Privée de Classe A	10.0.0.0 10.255.255.255	10.0.0.1 10.255.255.254	255.0.0.0	10.0.0.0 /8
Privée de Classe B	172.16.0.0 172.31.255.255	172.16.0.1 172.31.255.254	255.240.0.0	172.16.0.0 /12
Privée de Classe C	192.168.0.0 192.168.255.255	192.168.0.1 192.168.255.254	255.255.0.0	192.168.0.0 /16

Les adresses APIPA

LES ADRESSES APIPA RFC 3927

- Les adresses d'autoconfiguration ont été définies en mai 2005
- APIPA: Automatic Private Internet Protocol Addressing
 - Adressage Privé IP Automatique
- Adresse de réseau logique : 169.254.0.0 /16
- Caractéristiques de ses adresses
 - Pas routables sur Internet
 - Pas distribuables par un serveur DHCP
 - Pas déclarées dans un serveur DNS

Les sous-réseaux

LES SOUS-RÉSEAUX

La création de sous-réseaux (RFC 1878)

• La création de sous-réseaux :

- Permettre de limiter l'impact des diffusions ARP
- Équilibrer le trafic réseau
- Isoler des machines
- Mettre en place un peu de sécurité
- Optimiser l'utilisation des adresses IP
- Nouvelle partie dans l'adresse IP :
 - ID_Réseau
 - ID_ss-réseau (créé à partir de bits issus de l'ID_Hôtes)
 - ID_Hôtes

Calculs des sous-réseaux

@ du réseau : 192.168.0.0 /16 Découpage du réseau en 6 SR Nombre de bits de l'ID_ss-réseau

- Nbre ss-réseau ≤ 2ⁿ
- *n* représente le nbre de bits

Tableau binaire										
2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1

L'ID_ss-réseau est composé de **3 bits** pris sur l'ID_Hôte

CALCUL DES SOUS-RÉSEAUX

@ du réseau : 192.168.0.0 /16 Découpage du réseau en 6 SR

Octet 3 = 0 Octet 1 = 192 **Octet 2 = 168** Octet 4 = 032 128 64 32 128 64 32 16 8 2 128 64 32 16 128 64 16 16 2 1 2 SRO 0 32 SR1 64 SR2 96 SR3 **192** SR4 128 160 SR5 192 SR6 224 SR7 ID_ss-réseau 🖃 Nouveau masque (/19) ID_Réseau

ID_ss-réseau

ID Réseau

ID_ss-réseau

ID_Hôtes

CALCUL DES SOUS-RÉSEAUX

TP

M03-04-TP-Sous-réseaux
M03-05-TP-Packet-Tracer_Adressage_IPv4

BASE DES RÉSEAUX

04 – LA COMMUNICATION

LA COMMUNICATION

Objectifs

- Expliquer la communication entre ordinateurs
- Présenter le routage
- Calculer des adresses de sur-réseaux

LA COMMUNICATION

La théorie

Communication entre deux PC

LA THÉORIE

Communication entre deux PC (ping)

LA THÉORIE

Recherche de l'adresse de physique de R						
Adresse physique		Adresse lo				
Destinataire	Source	Destinataire	Source			
FF:FF:FF:FF:FF	Phy1A	1R	1A	Requête ARP		

Réponse du routeur						
Phy1A	Phy1R	1A	1R	Réponse ARP		

Envoi de la trame Ping au routeur						
Phy1R	Phy1A	2D	1A	Ping D		

Communication entre deux PC (ping)

LA THÉORIE

Recherche de l'adresse de physique de D						
Adresse physique		Adresse lo				
Destinataire	Source	Destinataire	Source			
FF:FF:FF:FF:FF	Phy2R	2D	2R	Requête ARP		

Répons	Réponse du poste D			
Phy2R	Phy2D	2R	2D	Réponse ARP

Envoi de la trame Ping au routeur				
Phy2D	Phy2R	2D	1A	Ping D

LA COMMUNICATION

La pratique

00:29:0C:1E:30:1A

Poste B

00:29:0C:1E:30:1B

192.168.1.20/24

192.168.2.128/26

Routeur

00:29:0C:1E:30:1F

192.168.1.0/24

00:29:0C:1E:30:2F

92.168.1.254/24 192.168.2.254/

Poste C

00:29:0C:1E:30:2C

192.168.2.130/20 192.168.2.254 Poste D 00:29:0C:1E:30:2D 192.168.2.140/26

192.168.2.254

Faire un ping du poste A vers le poste B

Faire un ping de 192.168.1.10/24 vers 192.168.1.20

C:\> ping 192.168.1.20

00:29:0C:1E:30:1A

192.168.1.254

Poste B

00:29:0C:1E:30:1B

192.168.1.20/24 192.168.1.254

192.168.2.128/26

Routeur

00:29:0C:1E:30:1F

00:29:0C:1E:30:2F

Poste C

00:29:0C:1E:30:2C

192.168.2.130/20

192.168.2.254

Poste D

00:29:0C:1E:30:2E

92.168.2.140/26

192 168 2 254

Faire un ping du poste A vers le poste D

Faire un ping de 192.168.1.10/24 vers 192.168.2.140

C:\> ping 192.168.2.140

Communication entre deux PC

LA PRATIQUE

LA COMMUNICATION

Le routage

• La couche réseau LE ROUTAGE

Routeur R1			
R	P	M	
1	1R1	1	
2	2R1	1	
3	2R2	2	
4	2R2	3	
3	1R4	3	
4	1R4	2	

Routeur R2		
R	P	M
2	2R2	1
3	3R2	1
1	2R1	2
4	3R3	2
1	3R3	3
4	2R1	3

Routeur R3		
R	P	M
3	3R3	1
4	4R3	1
1	3R2	3
2	3R2	2
1	4R4	2
2	4R4	3

Routeur R4			
R	P	M	
4	4R4	1	
1	1R4	1	
2	1R1	2	
3	4R3	2	
2	4R3	3	
3	1R1	3	

LE CALCUL DE SUR-RÉSEAU

TP

M04-01-01-TP-La_communication
M04-01-02-TP-Packet_Tracer-La_communication

BASE DES RÉSEAUX

05 – LES PREMIÈRES COMMANDES

- Utiliser les commandes réseau
- Différencier les commandes

Les premières commandes

LES PREMIÈRES COMMANDES Commande ARP

- Visualiser le cache ARP
 - Correspondance @IP = @MAC
 - Enregistrements statiques (ajout dans le cache)
 - Enregistrements dynamiques (requêtes ARP)
- Modifier le cache
 - Ajout d'enregistrements statiques
- Vider le cache
 - Supprimer un enregistrement
 - Supprimer tous les enregistrements

Cache ARP

Table ARP

Interface 01

Table ARP

Interface 02

@IP ⇔ @MAC	Windows
Affiche le cache	arp -a
Affiche la table d'une interface	arp -a -n @ipiface
Ajoute un enregistrement statique	arp -s @ip @mac
Ajoute un enregistrement statique dans la table ARP d'une interface	arp -s @ip @mac @ipiface
Vider le cache	arp -d
Vider le cache d'une interface	arp -d @ipiface

	Debian
Affiche le cache (Nom d'hôte ⇔ @MAC)	arp -a
Affiche le cache (@IP ⇔ @MAC)	arp -n
Affiche le cache pour une interface	arp -a -i <i>interface</i> arp -n -i <i>interface</i>
Ajoute un enregistrement statique	arp -s <i>hôte @mac</i>
Supprime un enregistrement	arp –d <i>hôte</i>

LES PREMIÈRES COMMANDES Commande IPCONFIG

Afficher la configuration reseau Windows

C:\>ipconfig

Configuration IP de Windows

Carte Ethernet Ethernet:

Statut du média : Média déconnecté

Suffixe DNS propre à la connexion :

Exemple sous Windows

Carte Ethernet Ethernet 2:

Suffixe DNS propre à la connexion :

Adresse IPv6 :2a01:cb05:8d6a:3000:148e:f75f:6574:5b0f Adresse IPv6 temporaire :2a01:cb05:8d6a:3000:bc4f:245a:384f:9bfc

Adresse IPv6 de liaison locale:fe80::148e:f75f:6574:5b0f%8

Adresse IPv4 : 192.168.1.31 Masque de sous-réseau : 255.255.255.0

Passerelle par défaut : fe80::da7d:7fff:fed1:b090%8

: 192.168.1.1

• Commande IPCONFIG

ipconfig (Windows)						
ipconfig	Affiche la configuration réseau simplifiée					
ipconfig /all	Affiche la configuration réseau complet					
ipconfig /displaydns	Affiche le cache DNS					
ipconfig /flushdns	Vide le cache DNS					
ipconfig /renew	Demande de renouvellement de bail					
ipconfig /release	Libération d'un bail					

Commande IP

Afficher la configuration reseau Debian

root@Client-deb:~# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:0c:29:bf:29:f8 brd ff:ff:ff:ff:ff

inet 192.168.255.100/24 brd 192.168.255.255 scope global ens33

valid_lft forever preferred_lft forever

inet6 2a01:cb05:8d6a:3000:20c:29ff:febf:29f8/64 scope global dynamic mngtmpaddr

valid_lft 1778sec preferred_lft 578sec

inet6 fe80::20c:29ff:febf:29f8/64 scope link

valid_lft forever preferred_lft forever

Exemple sous Debian

• Commande IP

ip (Debian)								
ip a ou ip addr ou ip address ou ip address show	Affiche la configuration réseau							
ip address show iface	Affiche la configuration réseau complet							
ip -4 addr	Affiche la configuration réseau IPv4							
ip addr add @ip/cidr dev iface	Attribue une @ip à une interface							
ip link set dev <i>iface</i> up	Active une interface							
ip link set dev <i>iface</i> down	Désactive une interface							

LES PREMIÈRES COMMANDES Commande PING

- Protocole ICMP
- Vérifier la « présence » d'un nœud informatique
 - Connecter à un réseau
 - Démarrer
 - Appartenant au réseau logique
 - Demande ICMP autorisée dans le pare-feu

Réponse reçue sous Windows	
Réponse de @ip : octets=32 Réponse de @ip : octets=32 Réponse de @ip : octets=32 Réponse de @ip : octets=32	Réponse reçue de l'hôte @ip
Réponse de @ip : impossible de joindre l'hôte Réponse de @ip : impossible de joindre l'hôte Réponse de @ip : impossible de joindre l'hôte Réponse de @ip : impossible de joindre l'hôte	L'hôte @ip n'a pas répondu - L'hôte n'est pas démarré - L'hôte n'est pas connecté au réseau - Le pare-feu de l'hôte n'est pas paramétré - L'hôte n'existe pas
PING : échec de la transmission. Défaillance générale PING : échec de la transmission. Défaillance générale PING : échec de la transmission. Défaillance générale PING : échec de la transmission. Défaillance générale	L'hôte appartient à un réseau inconnu de l'ordinateur local

Réponse reçue sous Debian	
64 bytes from @ip: icmp_seq=1 ttl=64 time 64 bytes from @ip: icmp_seq=2 ttl=64 time 64 bytes from @ip: icmp_seq=3 ttl=64 time 64 bytes from @ip: icmp_seq=4 ttl=64 time	Réponse reçue de l'hôte @ip
From @ip icmp_seq=1 Destination Host Unreachable From @ip icmp_seq=2 Destination Host Unreachable From @ip icmp_seq=3 Destination Host Unreachable From @ip icmp_seq=4 Destination Host Unreachable	L'hôte @ip n'a pas répondu - L'hôte n'est pas démarré - L'hôte n'est pas connecté au réseau - Le pare-feu de l'hôte n'est pas paramétré - L'hôte n'existe pas - L'hôte appartient à un réseau inconnu de l'ordinateur local

LES PREMIÈRES COMMANDES Commande NETSTAT

Afficher des informations réseau

Affichage dynamique	Windows
Afficher les connexions TCP actives et les ports TCP/UDP en écoute	netstat -a
Afficher le processus des connexions TCP actives et des ports TCP/UDP	netstat -b
Affiche les connexions pour un protocole (TCP, UDP, TCPv6, UDPv6)	netstat -p proto
Afficher les statistiques Ethernet (nbre d'octets, nbre de paquets)	netstat -E

Affichage instantané	Windows
Afficher les connexions TCP actives et les ports TCP/UDP en écoute	netstat -n
Afficher la table de routage	netstat -r
Afficher les statistiques par protocole	netstat -s

LES PREMIÈRES COMMANDES Commande NETSTAT

Afficher des informations réseau

	Debian
Afficher les connexions TCP actives	netstat
Afficher la table de routage	netstat -r
Afficher les statistiques Ethernet	netstat -i
Afficher le processus des connexions TCP actives	netstat -p
Afficher les @IP des connexions TCP actives	netstat -n

LES PREMIÈRES COMMANDES Commande SS

Afficher des informations réseau

	Debian
Afficher tous	ss -a
Afficher les connexions IPv4	ss -4
Afficher les connexions IPv6	ss -6
Afficher le processus des connexions actives	ss -p
Afficher les connexions TCP	ss –t
Afficher les connexions UDP	ss -u

ss (Sockets Statistics) remplaçant de netstat sous Debian

LES PREMIÈRES COMMANDES Commande TRACERT

Commande sous Windows

- Afficher le chemin vers une destination
 - Affiche les interfaces d'entrée des routeurs traversés
- tracert @IP/site
 - tracert 172.217.18.195
 - tracert <u>www.google.fr</u>
- tracert -4 @IP/site
 - Pour forcer l'utilisation IPv4

LES PREMIÈRES COMMANDES Commande TRACEROUTE

Commande sous Debian

- Afficher le chemin vers une destination
 - Affiche les interfaces d'entrée des routeurs traversés
- traceroute @IP/site
 - traceroute 172.217.18.195
 - traceroute <u>www.google.fr</u>
- traceroute -4 @IP/site
 - Pour forcer l'utilisation IPv4

LES PREMIÈRES COMMANDES M05-01-TP-Packet_Tracer_Les_commandes

BASE DES RÉSEAUX

06 – L'ADRESSAGE IPV6

• Distinguer une adresse IPv6

L'ADRESSAGE IPV6

Les bénéfices de l'adressage IPve

- Constitué de 8 hextets de 16 bits
- Espace d'adressage plus grand
 - Global: 340x10³⁶ adresses soit 340 sextillions (340 trillions de trillions)
 - Par réseau local : 18,4x10¹⁸ adresses soit 18,4 milliards de milliards
- Suppression de la traduction d'adresses publiques en adresses privées (NAT)
- Suppression des adresses de broadcast (adresses de diffusion)
- Amélioration du routage
- Amélioration de la mobilité et de la sécurité
- Simplification de la numérotation des préfixes
- Adresses multiples par interface
- Adresse d'auto-configuration sans DHCP
- Mécanismes de transition entre IPv4 et IPv6

Adresse	Écriture hexadécimale complète (8 hextets de 16 bits)																		
IPv6		2036 0001				2036)1	2BC5	5	0000		0000		0000	0	87C	00	00A
Adresse	Écriture séparée par octets (16 octets de 8 bits)																		
IPv6	20	36	00	01	2B	C5	00	00	00	00	00	00	08	7C	00	0A			
Adresse	Écriture binaire (128 bits)																		
IPv6	0010 0000	0011 0110	0000 0000	0000 0001	0010 1011	1100 0101	0000 0000	0000 0000	0000 0000	0000 0000	0000 0000	0000 0000	0000 1000	0111 1100	0000 0000	0000 1010			

L'ADRESSAGE IPV6

A 1 ID .C	Écriture hexadécimale complète (8 hextets de 16 bits)										
Adresse IPv6	2036	0001	2BC5	0000	0000	(0000	087	'C	000A	
			Écriture sir	nplifiée san	s les 0 nor	ı-siani	ficatifs				
Adresse IPv6	2036	1	2BC5	0	0	1 319111	0	87	С	A	
				Écriture co	omprossó.						
Adresse IPv6	2036	1	2BC5	ECHUIE C	ompressee			87	C :	A	
Adresse IPv6	2036:1:2BC5::87C:A										

L'ADRESSAGE IPV6 M06-01-TP-IPv6