Assume ideal behaviour unless stated otherwise.

- 1. A sample consisting of 3.00 mol of diatomic perfect gas molecules at 200 K is compressed reversibly and adiabatically until its temperature reaches 250 K. Given that $C_{V,m}$ = 27.5 J K⁻¹mol⁻¹, calculate $q, w, \Delta U, \Delta H$ and ΔS .
- 2. Calculate ΔS (for the system) when the state of 3.00 mol of a perfect gas, for which $C_{p,m} = 5/2 R$, is changed from 25 °C and 1.00 atm to 125 °C and 5.00 atm. How do you rationalize the sign of ΔS ?
- 3. Consider a system consisting of 2.0 mol CO₂(g), initially at 25 °C and 10 atm and confined to a cylinder of cross-section 10.0 cm². It is allowed to expand adiabatically against an external pressure of 1.0 atm until the piston has moved outwards through 20 cm. Assume that carbon dioxide may be considered a perfect gas with $C_{V,m}$ = 28.8 J K⁻¹ mol⁻¹ and calculate $q, w, \Delta U, \Delta T$ and ΔS
- 4. Calculate the change in the entropies of the system and the surroundings, and the total change in entropy, when a sample of nitrogen gas of mass 14 g at 298 K and 1.00 bar doubles its volume in (a) an isothermal reversible expansion, (b) an isothermal irreversible expansion against $p_{ext} = 0$, and (c) an adiabatic reversible expansion.
- 5. The molar heat capacity, $C_{p,m}$ (in Joule K⁻¹ mol⁻¹) of chloroform (CHCl3) in the range 240 K to 330 K is given by $C_{p,m} = 91.47 + 7.5 \times 10^{-2} T$ where T is the absolute temperature. In a particular experiment, 1.00 mol CHCl3 is heated from 273 K to 300 K. Calculate ΔS .
- 6. 20 lit of nitrogen gas at 100 atm and 200 0 C expands adiabatically against a constant external pressure of 1 atm until the equilibrium is attained. Calculate ΔS for (a) the change and (b) if the process is carried out reversibly to the same final pressure. Given, $C_{p,m} = 7$ cal/mol/K.
- 7. If α (isobaric expansion coefficient) = 1.82 x 10⁻⁴ K⁻¹ and κ (isothermal compressibility) = 3.87 x 10⁻⁵ atm⁻¹ at 20 0 C for mercury, then determine $\left(\frac{\partial p}{\partial T}\right)_{V}$ for mercury.

- 8. The enthalpy of vaporization of ethanol is 43.5 kJ/mol at its normal boiling point of 352 K. Calculate (a) the entropy of vaporization of ethanol at this temperature and (b) the entropy change of its surroundings.
- 9. Calculate the difference in the molar entropy between liquid water and ice at -5⁰C and 1 atm. The difference in the heat capacities on melting is 37.3 J/K. Calculate the change in entropy for the system, surrounding, and universe, and conclude if ice would melt spontaneously at -5⁰C at 1 atm.