Artificial Intelligence

Lecture 14: Reinforcement Learning

Credit: Ansaf Salleb-Aouissi, and "Artificial Intelligence: A Modern Approach", Stuart Russell and Peter Norvig, and "The Elements of Statistical Learning", Trevor Hastie, Robert Tibshirani, and Jerome Friedman, and "Machine Learning", Tom Mitchell.

Reinforcement Learning (RL)

- Agent interacts and learns from a **stochastic** environment
- Science of sequential decision making
- Many faces of reinforcement learning
 - Optimal control (Engineering)
 - Dynamic Programming (Operations Research)
 - Reward systems (Neuro-science)
 - Classical/Operant Conditioning (Psychology)

Characteristics of RL

- No supervisor, only reward signals
- Feedback is delayed
- Sequential decisions
- Actions effect observations (non i.i.d.)

Examples

- Automated vehicle control
 - An unmanned helicopter learning to fly and perform stunts
- Game playing
 - Playing backgammon, Atari breakout, Tetris, Tic-Tac-Toe
- Medical treatment planning
 - Planning a sequence of treatments based on the effect of past treatments
- Chat bots
 - Agent figuring out how to make a conversation

Markov Decision Processes (MDP)

- Sequential decisions in round rounds t = 1, ..., T
- Important concepts
 - State
 - Action
 - Reward
- Markov property: Future is independent of the past given the current state

Markov Decision Processes (MDP)

- Starts at some initial state s_1
- In every round *t*, the agent
 - observes the current state s_t
 - take an action a_t , and then
 - ullet observes a reward signal r_t
 - transitions to the next state s_{t+1}
- Markov Property:

```
Pr(s_{t+1} = s' | \text{ history till time t}) = Pr(s_t = s' | s_t = s, a_t = s) =: P_{s,a}(s')

E[r_t | \text{ history till time t}] = E[r_t | s_t = s, a_t = a] =: R_{s,a}
```

Markov Decision Processes (MDP)

- Goal: Maximize some form of cumulative reward
- Total reward in finite time T
 - maximize $\sum_{t=1}^{T} r_t$
- Infinite time average reward
 - maximize $\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} r_t$
- Discounted sum of rewards
 - maximize $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{i-1} r_i + \dots$
 - where γ <1

Summary: MDP

- Markov Decision Process (MDP) is a tuple (S, s_1, A, P, R)
- S is a finite set of states
- A is a finite set of actions
- P is a state transition probability matrix of dimension $S \times A \times S$

$$P_{s,a}(s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$$

• R is a reward function

$$R_{s,a} = Ex[r_t | s_t = s, a_t = a]$$

• Goal definition, discount factor $\gamma \in [0, 1)$

Example

Example

- State space:
 - standing S or fallen down F
 - location 0 or 1 or 2 or 3 or 4 or 5 or...
 - e. g., (S, 1), (F, 2)
- Action space:
 - walk or run
- Transition:
- Rewards and Goal:

MDP-Value functions-Overview

- Markov Decision Process is a tuple (S, s_1, A, P, R)
- P is a state transition probability matrix of dimension $S \times A \times S$

$$P_{s,a}(s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$$

• R is a reward function

$$R_{s,a} = E[R_{t+1} | s_t = s, a_t = a]$$

- Goal:
 - Maximize expected discounted reward $\mathrm{E}[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1]$
 - Where $r_t = R_{S_t,a_t}$, $\gamma \in [0,1)$ is a discount factor

Policy

- A policy π : $S \rightarrow A$ is a mapping from state space to action space
- Following a stationary policy π means taking action $a_t = \pi(s_t)$ at all time steps t
- Theorem

For any discounted MDP, there always exists stationary policy π that is optimal

Value function

- Value function $v_{\pi}(s)$ of a policy π
 - expected reward starting from state s and then following the policy π

$$v_{\pi}(s) = E[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \mid s_1 = s]$$

where
$$a_t = \pi(s_t)$$
, $E[r_t | s_t, a_t] = R_{s_t, a_t}$, $Pr(\cdot | s_t, a_t) = P_{s_t, a_t}$

Example

Policy: slow action 1 (black) in *Fallen* state, fast action 2 (green) in *Standing* and *Moving* state

Bellman equations

 Value function can be decomposed into immediate reward plus discounted value function of the next state

$$v_{\pi}(s) = R_{s,\pi(s)} + \gamma \sum_{s'} P_{s,\pi(s)}(s') v_{\pi}(s')$$

Compact matrix notation

$$\boldsymbol{v}_{\pi} = \boldsymbol{r}_{\pi} + \gamma P_{\pi} \boldsymbol{v}_{\pi}$$

$$\boldsymbol{v}_{\pi} = (\mathbf{I} - \gamma P_{\pi})^{-1} \boldsymbol{r}_{\pi}$$

Bellman equations

Example

Policy: slow action 1 (black) in *Fallen* state, fast action 2 (green) in *Standing* and *Moving* state

Recap

• Value function $v_{\pi}(s)$ of a policy π

$$v_{\pi}(s) = E[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid s_1 = s]$$

Bellman equations

$$\boldsymbol{v}_{\pi} = \boldsymbol{r}_{\pi} + \gamma P_{\pi} \boldsymbol{v}_{\pi}$$

$$\boldsymbol{v}_{\pi} = (\mathbf{I} - \gamma P_{\pi})^{-1} \boldsymbol{r}_{\pi}$$

Optimal Policy

• Optimal policy when starting in state *s*.

$$\underset{\pi}{\operatorname{argmax}} v_{\pi}(s)$$

Optimal Policy

Define partial ordering over policies

$$\pi \geqslant \pi'$$
 if $v_{\pi}(s) \geqslant v_{\pi'}(s)$ for all s

- Theorem
 - There always exists a policy that is better than all other policies

$$\pi \geqslant \pi'$$
 for all π'

Such a policy is called an optimal policy

• All optimal policies achieve the same value function $v_*(s)$ called the optimal value function

Bellman Optimality Equations

Optimal value functions are recursively related by Bellman optimality equations

$$v_*(s) = \max_{a \in A} R_{s,a} + \gamma \sum_{s'} P_{s,a}(s') v_*(s')$$

Matrix notation

$$\boldsymbol{v}_* = \max_{\pi} \; \boldsymbol{r}_{\pi} + \gamma P_{\pi} \boldsymbol{v}_*$$

Optimal policy can be computed by solving Bellman equations

Solving the Bellman optimality equations

- No closed form solution in general
- Iterative solution methods
 - Policy iteration
 - Value Iteration

Policy Iteration method

- Start with a random policy π In every iteration,
- Evaluate the policy
 - Compute the value vector for $\mathbf{v}_{\pi} = (1-P_{\pi})^{-1}\mathbf{r}_{\pi}$
- Improve the policy
 - New policy: $\pi'(s) = \arg \max_{a} R_{s,a} + \gamma P_{s,a} v_{\pi}$
- Stop if no strict improvement ($v_{\pi} = v_{\pi'}$)

$$v_{\pi}(s) = \max_{a} R_{s,a} + \gamma P_{s,a} v_{\pi} , \forall s$$

Starting Policy: always slow action

$$r_{\pi} = \begin{bmatrix} -0.2 \\ 1 \\ 1 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\gamma = 0.1$$

Iteration 1

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1655 \\ 1.1111 \\ 1.1111 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\text{arg max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$

State Standing,

Slow Action: = 1.1111

Fast Action: 0.8+

$$0.1 \begin{bmatrix} 0.4 & 0 & 0.6 \end{bmatrix} \begin{bmatrix} -0.1655 \\ 1.1111 \\ 1.1111 \end{bmatrix} = 0.86$$

Starting Policy: always slow action

$$r_{\pi} = \begin{bmatrix} -0.2\\1\\1 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0\\0 & 0 & 1\\0 & 0 & 1 \end{bmatrix}$$
$$\gamma = 0.1$$

Iteration 1

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1655\\1.1111\\1.1111 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\text{arg max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$

State Standing, SLOW action

State *Moving*

Slow Action: = 1.1111

Fast Action: 1.4+

$$0.1 [0.2 \quad 0 \quad 0.8] \begin{bmatrix} -0.1655 \\ 1.1111 \\ 1.1111 \end{bmatrix} \approx 1.48$$

Starting Policy: always slow action

$$r_{\pi} = \begin{bmatrix} -0.2\\1\\1 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0\\0 & 0 & 1\\0 & 0 & 1 \end{bmatrix}$$
$$\gamma = 0.1$$

Iteration 1

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1655\\1.1111\\1.1111 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\operatorname{arg\,max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$ **State** *Standing*, SLOW action **State** *Moving*, FAST action

New Policy: fast action in moving state, slow elsewhere

$$r_{\pi} = \begin{bmatrix} -0.2\\1\\1.4 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0\\0 & 0 & 1\\0.2 & 0 & 0.8 \end{bmatrix}$$

Iteration 2

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1638 \\ 1.1518 \\ 1.5182 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\text{arg max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$

State Standing

Slow Action: = 1.1518

Fast Action: 0.8+

$$0.1 [0.4 \quad 0 \quad 0.6] \begin{bmatrix} -0.1638 \\ 1.1518 \\ 1.5182 \end{bmatrix} \approx 0.88$$

New Policy: fast action in moving state, slow elsewhere

$$r_{\pi} = \begin{bmatrix} -0.2 \\ 1 \\ 1.4 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0 \\ 0 & 0 & 1 \\ 0.2 & 0 & 0.8 \end{bmatrix}$$

Iteration 2

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1638 \\ 1.1518 \\ 1.5182 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\text{arg max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$

State Standing, SLOW action

State Moving,

Fast Action: = 1.5182

Slow Action: 1+

$$0.1 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -0.1638 \\ 1.1518 \\ 1.5182 \end{bmatrix} \approx 1.1518$$

New Policy: fast action in moving state, slow elsewhere

$$r_{\pi} = \begin{bmatrix} -0.2\\1\\1.4 \end{bmatrix} \quad P_{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0\\0 & 0 & 1\\0.2 & 0 & 0.8 \end{bmatrix}$$

Iteration 2

$$v_{\pi} = (I - P_{\pi})^{-1} r_{\pi} = \begin{bmatrix} -0.1638\\ 1.1518\\ 1.5182 \end{bmatrix}$$

Improve policy:

Compute $\underset{a}{\text{arg max}} R_{s,a} + \gamma P_{s,a} v_{\pi}$

State Standing, SLOW action

State Moving, FAST action

New policy is the same as the old policy STOP!

Value Iteration method

- Finding optimal value function
 - No explicit policy
- In every iteration k, improve the value vector

$$v^{(k+1)}(s) = \max_{a} R_{s,a} + \gamma P_{s,a} v^{(k)}$$

• Converges to $oldsymbol{v}_*$

$$v^{(k)} \rightarrow v_*$$

Optimal policy given by

$$\max_{a} R_{s,a} + \gamma P_{s,a} \boldsymbol{v}_{*}$$

Model free methods

- Reinforcement learning = MDP with unknown transition model and/or reward distribution
- Model is unknown but agent observes samples
- Learn while optimizing the policy

Formulation

- Starts at some initial state s_1 In every round t, the agent
- observes the current state s_t ,
- take an action a_t , and then
- ullet observes a reward signal r_t , and next state s_{t+1}

$$E[r_t|s_t = s, a_t = a] = R_{s,a}$$

 $Pr(s_{t+1} = s'|s_t = s, a_t = a) = P_{s,a}(s')$

 $\{R_{s,a}, P_{s,a}\}$ are unknown

Goal

• Find the optimal policy: Policy that maximizes expected sum of discounted reward $\{R_{s,a}, P_{s,a}\}$ are unknown

Q-learning

- Uses "Q-values" instead of value function
- Q(s,a): the value of taking action a in state s
- Formally

$$Q(s,a) = R_{s,a} + \gamma E_{s'}[\max_{a'} Q(s',a')]$$

Immediate expected reward plus the best utility from the next state onwards.

ullet From Bellman optimality equations, an optimal policy π satisfies

$$Q(s, \pi(s)) = R_{s,\pi(s)} + \gamma E_{s'} [Q(s', \pi(s'))] = v_*(s)$$

Q-learning

• Proceeds in discrete rounds t = 1, 2, ...

In every round t,

• Choose action greedily using "estimated" Q-values

$$a_t = \underset{a}{\operatorname{argmax}} \hat{Q}(s_t, a)$$

- Take action a_t observe reward r_t , next state s_{t+1}
- Update Q-values for s_t , a_t

$$\hat{Q}(s_t, a_t) = \hat{Q}(S_t, a_t) + \alpha \left(r_t + \gamma \max_{a} \hat{Q}(S_{t+1}, a) - \hat{Q}(S_t, a_t) \right)$$
or
$$\hat{Q}(s_t, a_t) = r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

(Compare to Q(s, a) =
$$R_{s,a} + \gamma E_{s'}[\max_{a'} Q(s', a')]$$
)

The need for Exploration

Epsilon Greedy exploration

• With probability $1-\epsilon$, use greedy action

$$a_t = \underset{a}{\operatorname{argmax}} \hat{Q}(s_t, a)$$

• With probability ϵ , play random action

Deep Q-network

 Human-level control through deep reinforcement learning, Nature 2015.

To be continued