CALORIMETRIA

ESERCIZIO 1

Un termometro di capacitá termica C_1 alla temperatura t_1 viene immerso in un fluido di massa m_2 e temperatura t_2 avente calore specifico c_2 . Si calcoli la temperatura t_m misurata dal termometro.

$$[t_m = \frac{C_1 t_1 + c_2 m_2 t_2}{C_1 + c_2 m_2}]$$

ESERCIZIO 2

Un recipiente di capacitá termica trascurabile contiene un volume $V_{H2O} = 500cm^3$ di acqua alla temperatura $t_i = 20^{\circ}C$. Si determini il valore della minima quantitá di ghiaccio fondente da introdurre nel recipiente affinché la temperatura di equilibrio finale del sistema sia $t_f = 0^{\circ}C$. (calore latente di fusione del ghiaccio: $\lambda_f = 80 \frac{cal}{g}$, calore specifico dell'acqua: $c_a = 1 \frac{cal}{g^{\circ}C}$, densitá dell' acqua: $\rho_a = 10^3 kg/m^3$).

$$[m_q = 125g]$$

ESERCIZIO 3

Un recipiente a pareti rigide, termicamente isolate, contiene una miscela all'equilibrio di acqua e ghiaccio di massa rispettivamente $m_a = 300g$ e $m_g = 600g$. Nel recipiente viene versata una massa m = 1100g di acqua alla temperatura $t = 80^{\circ}C$. Si determini il valore finale di temperatura che si stabilisce all'equilibrio. (Calore latente di fusione del ghiaccio: $\lambda_f = 80 \frac{cal}{g}$, calore specifico dell'acqua: $c_a = 1 \frac{cal}{g^{\circ}C}$).

$$[t_f = 20^{\circ}C]$$

ESERCIZIO 4

Un recipiente contiene un volume V=11 di acqua alla temperatura $t_a=25^{\circ}\mathrm{C}$. In esso viene gettato un cubetto di ghiaccio di massa $m_g=0.1kg$ alla temperatura $t_g=-20^{\circ}\mathrm{C}$. Si determini la temperatura finale t_{eq} dell'acqua trascurando scambi di calore con l'ambiente e la capacitá termica del recipiente. Si discuta poi il problema nel caso in cui la massa del ghiaccio introdotto sia $m_g=0.5kg$.

Calore latente di fusione del ghiaccio: $\lambda_{f,q} = 3.35 \cdot 10^5 J/kg$.

Calore specifico del ghiaccio: $c_g = 2051 J/kg^o C$.

Calore specifico dell'acqua: $c_a = 4186J/kg^oC$.

Densitá dell'acqua: $\rho_a = 10^3 kg/m^3$.

$$[t_{eq} = 14.56^{\circ} \text{C}]$$

ESERCIZIO 5

Un oggetto di capacitá termica incognita c_x , massa $m_c = 2$ kg e temperatura $T_c = 240$ °C viene immerso in un contenitore pieno di $V_A = 1 dm^3$ di acqua che si trova alla temperatura $T_A = 20$ °C, sino a che il sistema

si porta alla temperatura d'equilibrio T_{eq1} . A questo punto un blocchetto di ghiaccio di massa $m_g=0.5 \,\mathrm{kg}$ e temperatura $T_g=0^o\mathrm{C}$ viene immerso nel contenitore, ed il sistema si porta alla nuova temperatura di equilibrio $T_{eq2}=25^o\mathrm{C}$. Calcolare la temperatura di equilibrio T_{eq1} ed il calore specifico c_x dell'oggetto. - calore specifico dell'acqua: $c_a=4186J/kg\cdot K$

- calore latente di fusione del ghiaccio: $\lambda_{f,g}=3.35\cdot 10^5 J/kg$. - densitá dell'acqua: $\rho_a=10^3 kg/m^3$.

$$[T_{eq1} = 66.4^{\circ}\text{C}, c_x = 560J/kgK]$$