

11) Publication number:

0 561 412 A1

(2) EUROPEAN PATENT APPLICATION

(21) Application number: 93104500.9 (51) Int. Cl.⁵: C07K 7/10

② Date of filing: 18.03.93

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

Priority: 19.03.92 JP 63517/92 18.02.93 JP 29283/93

Date of publication of application: 22.09.93 Bulletin 93/38

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

71) Applicant: Takeda Chemical Industries, Ltd. 1-1 Doshomachi 4-chome, Chuo-ku Osaka-shi, Osaka 541(JP)

Inventor: Fukuda, Tsunehiko 10-202, 9 Oharanonishisakaedani-cho 2-chome Nishikyo-ku, Kyoto 610-11(JP) Inventor: Nakagawa, Shizue 23-709, 6 Nankonaka 5-chome Suminoe-ku, Osaka 559(JP) Inventor: Taketomi, Shigehisa 11-11, Hachizuka 3-chome Ikeda, Osaka 563(JP)

Representative: von Kreisler, Alek et al Patentanwälte von Kreisler-Selting-Werner, Postfach 10 22 41, Bahnhofsvorplatz 1 D-50462 Köln (DE)

- Parathyroid hormone derivatives.
- Parathyroid hormone (PTH) derivatives represented by the general formula:

$$\label{eq:continuous} Ser-Val-R_1-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly-Lys-R_2-Met-Glu-Arg-Val-Glu-Trp-Leu-R_3-Leu-Gln-Asp-Val-His-Asn-R_4$$

or a salt thereof, wherein R_1 represents Ser or a D- α -amino acid residue of 4 or less carbon atoms; R_2 repesents a tetrapeptide chain which contains at least one water-soluble α -amino acid residue; R_3 represents a tripeptide chain which contains at least one water-soluble α -amino acid residue; and R_4 represents an aromatic amino acid residue or an amide thereof, except that R_1 is Ser when R_2 is His-Leu-Asn-Ser, R_3 is E-F-G wherein E is Arg or His, F is Lys or His, G is Lys,

Leu or Gin, are disclosed.

The parathyroid hormone derivatives of the present invention are stable and have high biological activity, therefore they are useful as drugs for bone diseases and the like.

BACKGROUND OF THE INVENTION

The present invention relates to novel parathyroid hormone derivatives useful in hormone therapy.

Parathyroid hormone (PTH) is synthesized in the parathyroid, and plays an important role in controlling blood calcium concentrations or phosphoric acid ion concentrations by acting on the bone and the kidney which are its target organs. PTH is a peptide hormone consisting of 84 amino acids, and the biological activity thereof can be reproduced by a peptide fragment of an N-terminal (1 through 34 amino acid) portion [G. W. Tregear et al.,

Endocrinology 93, 1349-1353 (1973)].

25

30

40

50

The amino acid sequence of the peptide fragment of the N-terminal (1 through 34 amino acid) portion of this human type PTH (this peptide fragment is hereinafter abbreviated as human PTH(1-34)) is as follows:

From the biological action of PTH, it is expected that the use of PTH as a drug will provide a drug useful for various bone diseases and the like. However, the following properties of the peptide are obstacles to its efficacious use as a therapeutic agent:

- (1) The peptide is easily decomposed by various enzymes within the body;
- (2) The absorption efficiency of the peptide into the body through various routes is very low; and
- (3) The peptide is unstable to various physico-chemical conditions such as oxidation.

In order to solve such problems and understand the relationship between structure and activity of the above hormone, various derivatives have been synthesized for the PTH(1-34) fragment. While a number of syntheses have been conducted for bovine PTH(1-34), few examples are known for human PTH(1-34). For example in one such derivatives, when the C-terminus Phe of human PTH(1-34) is converted to Phe-NH₂, an increase in activity is observed (Japanese Patent Unexamined Publication No. 58-96052). This increase in activity is believed to be due to inhibition of carboxypeptidase which decomposes the hormone. Further, human PTH(1-34) contains two Met residues. A molecule in which these residues are substituted with Nle residues prevents the hormone from losing its activity due to oxidation (Japanese Patent Unexamined Publication No. 61-24598).

Furthermore, F. E. Cohen et al. substituted the 3-position Ser of bovine PTH(1-34) with various L-amino acids, but the activity was markedly reduced by the amino acid substitution, except that the Ala substituted peptide exhibited an activity approximately similar to that of the natural type peptide [The Journal of Biological Chemistry 226, 1997-2004 (1991)]. S. Reppe et al. showed that for the human PTH(1-84) protein in which the 26-position Lys was substituted with Gln, the protein had an activity similar to that of the natural type protein [The Journal of Biological Chemistry 226, 14198-14201 (1991)]. As to the active human PTH(1-34) fragment, however, no derivative similarly substituted has been known.

SUMMARY OF THE INVENTION

In order to solve the above described problems, the inventors previously substituted one or more amino acid residues of human PTH(1-34) by chemical synthesis and proposed several human PTH(1-34) derivatives by (1) amino acid residue substitution considering the resistance to various proteases, (2) enhancement in activity of the hormone according to the amino acid residue substitution considering the expected two-dimensional structure as well as hydrophilic/hydrophobic or ionic media, and (3) substitution of the amino acid residue unstable to acidic, basic or oxidation conditions with an amino acid residue stable to these conditions (European Patent Publication No.477885). As a result of further intensive investigation, the inventors have now discovered that substitution of the 3-position, 14-position, 15-position, 16-position, 17-position, 25-position, 26-position, 27-position or 34-position amino acid, or combinations thereof provide

peptide derivatives having excellent activity.

5

30

35

50

55

In particular, the present invention provides a peptide represented by the amino acid sequence:

or a salt thereof wherein R_1 represents Ser or a D- α -amino acid residue of 4 or less carbon atoms; R_2 represents a tetrapeptide chain which contains at least one water-soluble α -amino acid residue;

 R_3 represents a tripeptide chain which contains at least one water-soluble α -amino acid residue; and R_4 represents an aromatic amino acid residue or an amide thereof, except that R_1 is Ser when R_2 is His-Leu-Asn-Ser.

R₃ is E-F-G wherein E is Arg or His, F is Lys or His, G is Lys, Leu or Gln.

DESCRIPTION OF THE INVENTION

In the present specification, a water-soluble α -amino acid means a naturally occurring or non-natural type hydrophilic α -amino acid which has a polar group at the side chain. A naturally occurring water-soluble α -amino acid is especially preferable. Among them, the naturally occurring amino acid means a water-soluble amino acid constituting a natural protein originating from animals, plants or microorganisms and an amino acid which is a metabolite thereof. They may be acidic-, neutral- and basic- amino acid depending on the polar groups such as a carboxyl, amino, guanidino, carboxamide, imidazole and hydroxyl group at the side chain.

The basic amino acid residue is preferably an L- or $D-\alpha$ amino acid residue represent by the following formula:

$$\begin{array}{c}
 NH_2 \\
 \downarrow \\
 Z-(CH_2)_n-CHCOOH
\end{array}$$

wherein Z represents NH2, NHC(NH)NH2 or an imidazole ring, n represents the integer of 1 to 5.

Examples of the D- α -amino acids of 4 or less carbon atoms represented by R₁ include neutral amino acids such as D-Ala, D-Asn, D-Cys, D-Ser and D-Thr, and preferably D- α -amino acids of 3 or less carbon atoms such as D-Ser and D-Ala.

When R_2 of a tetrapeptide chain having at least one water-soluble amino acid is represented by A-B-C-D, A represents His or a water-soluble amino acid other than His; B represents Leu or a water-soluble amino acid; C represents Asn or a water-soluble amino acid other than Asn; and D represents Ser or a water-soluble amino acid other than Ser.

A water-soluble amino acid in A,B,C,D of R₂ includes D- or L-Lys, Gln, Asp, Glu, Thr, Asn, Arg, Ser, His, ornithine, homoarginine 2,3-diaminopropionic acid and Gly, among them Lys and Arg is preferable.

Any combination of A, B, C and D of R2 can be employed and preferable combinations include

In R₃, a tripeptide chain E-F-G having at least one water-soluble amino acid resedue, a preferable amino acid is a neutral or basic amino acid. The neutral amino acid residue includes Ser, Asn, Gln, Thr, Gly, Cit and Hci. The basic amino acid residue includes Arg, Lys, His, ornithine, homoarginine, 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, 2-amino-4-guanidino-butyric acid, 2-amino-3-guanidino-pro-

pionicacid.

25

35

55

Any combination of E, F and G of R₃ can be employed, and Arg-Gln-Gln and Arg-Lys-His are most preferable.

R4, an aromatic amino acid residue or an amide thereof includes Phe, Phe-NH2, Tyr and Tyr-NH2.

Substitution in PTH(1-34) fragment may be not only at one position but also at two or more positions by a combination of R_1 , R_2 , R_3 and R_4 . The substitution combination up to four positions is practical, as will be described in the following examples. Especially in the case of substitution at 3rd or 34th position, combination with other substitution at other position is preferable.

Peptide synthesis in the present invention can be carried out by the use of an automatic peptide synthesizer. The method of R. B. Merrifield [Advances in Enzymology 32, 221-296 (1969)] applies correspondingly to a basic synthesis course. In this method, the amino acid of the carboxyl terminus is covalently bound to a resin carrier, and elimination of a protective group of an α -amino group and condensation of a protected amino acid are repeated in turn to extend a peptide chain to the amino terminus, thereby obtaining a protected peptide resin having a desired amino acid sequence. This method is based on the above-described principle. The condensation of each amino acid and the elimination of the protective groups of the α -amino groups are performed under approximately similar conditions, and purification of intermediates is not conducted. Peptides of this invention may be rapidly synthesized by this method, so that this method is very convenient to synthesize various peptides. The protected peptide resin thus obtained is reacted with, for example, anhydrous hydrogen fluoride, trifluoromethanesulfonic acid or trifluoroacetic acid in the coexistence of various additives, whereby elimination of the peptide from the resin and removal of all protective groups can be achieved in one step.

The resulting crude peptide can be purified by known means for purifying peptides or proteins. Examples of such means include column chromatography under various principles such as gel filtration, ion exchange chromatography using a cation exchange resin or an anion exchange resin, hydrophobic chromatography and partition adsorption chromatography, and high performance liquid chromatography-(HPLC).

The peptides of the present invention can be obtained in various salt forms. Examples of the salts include salts of inorganic acids, salts of organic acids such as formic acid, acetic acid, tartaric acid and citric acid, salts of inorganic bases such as sodium and ammonium, and salts of organic bases such as triethylamine, ethylamine and methylamine.

The human PTH(1-34) derivative peptides represented by the general formula of the present invention can be used as therapeutic agents for osteoporosis, hypoparathyroidism and hypertension. The forms thereof include injections, nasotracheal absorption agents, perrectum absorption agents, transvaginal absorption agents, percutaneous absorption agents and eye drops. In some cases, they are orally administered.

When the peptides are used as such therapeutic agents, effective amounts thereof are used to treat mammals especially human. Although they are generally used within the range of 1 ng to 100 μ g/kg of weight, precise amounts thereof may be determined by those skilled in the art.

When the peptides are used as the therapeutic agents, they must be carefully purified so as to contain no bacteria and no pyrogens. Such purification may be performed according to methods known in the art.

The peptides, when used as the therapeutic agents for osteoporosis and the like, can be administered parenterally in the form of the above-described injections, nasotracheal absorption agents, perrectum absorption agents, transvaginal absorption agents, percutaneous absorption agents or eye drops, solely or in combination with pharmaceutically acceptable carriers, excipients or diluents. In the case of the injections, it is appropriate that the peptides are given to adults in a dose of 50 ng/kg to 5 mg/kg for 1 to 3 days, and preferably in a dose of 1 to 500 μ g/kg for 1 to 3 days. For the injections, it is appropriate that the concentration of the therapeutic agents is 10 to 100 μ g/ml.

When amino acids and the like are indicated by abbreviations in this specification, the abbreviations adopted by the IUPAC-IUB Commission on Biochemical Nomenclature or those commonly used in the art are employed. For example, the following abbreviations are used. When the amino acids are capable of existing as optical isomers, it is understood that the L-forms are represented unless otherwise specified.

Gly : Glycine
Ala : Alanine
Val : Valine
Leu : Leucine
Ile : Isoleucine
Ser : Serine
Thr : Threonine

Cys : Cysteine Met : Methionine Glu : Glutamic acid Asp : Aspartic acid : Lysine Lys Arg : Arginine His : Histidine Phe : Phenylalanine : Tyrosine Tyr : Tryptophan 10 Trp Pro : Proline : Asparagine Asn Gln : Glutamine : Norleucine Nle : Citrulline Cit 15 Hci : Homocitrulline Orn : Ornithine hPTH : Human PTH

By the amino acid substitution in the PTH(1-34) as described above, the resistance to various proteases is increased and the persistence of the activity in blood is obtained. This is achieved by, for example, substituting the D- α -amino acids for the 3-position of PTH(1-34). Further, high PTH activity was expressed by the substitution of at least one of the 14th to 17th-position with other water-soluble α -amino acid(s), especially with amino acid(s). Furthermore, it was observed that activity was also maintained or increased by the substitution of at least one of the 25-position to 27-position basic amino acids with water-soluble α -amino acid(s) espesially other neutral or basic amino acid(s).

EXAMPLES

35

The present invention will hereinafter be described in detail with the following examples. It is understood of course that the typical examples of amino acid substitution are not intended to limit the scope of the invention.

EXAMPLE 1 Synthesis and Purification of PTH (1-34) Fragment Derivatives

The peptides were synthesized in accordance with a modified method of the solid phase peptide synthesis developed by R. B. Merrifield et al., Adv. Enzymol. 32, 221-296 (1969), and an automatic peptide synthesizer 430A (Applied Biosystems) was used. Protected peptide-resins were synthesized using protocols specified by Applied Biosystems. Protected amino acid-p-oxymethylphenylacetoamidomethyl resins (polystyrene-1% divinylbenzene) are used as starting materials when derivatives having free carboxylic acids as carboxyl termini are desired, and 4-methylbenzhydryl resins are used as starting materials when derivatives of carboxylamides are desired, and protected amino acids were condensed thereto successively. In order to protect an α-amino group of each amino acid on condensation, a tertiary butyloxycarbonyl (BOC) group was used. Side functional groups were protected in the following manner. Hydroxyl groups of serine and threonine were protected as O-benzyl ethers, a hydroxyl group of tyrosine as a p-bromobenzyloxycarbonyl ester, carboxyl groups of glutamic acid and aspartic acid as benzyl esters, imidazole nitrogen of histidine with benzyloxymethyl, a side chain amino group of lysine with 2-chlorobenzyloxycarbonyl, a side chain amino group of ornithine with benzyloxycarbonyl, a guanidine functional group of arginine with a p-toluenesulfonyl group, and indoleimine of tryptophan with a formyl group. All amino acids were obtained from Applied Biosystems Japan, Nova Biochem and Bachem Chemicals.

After all of the amino acids were condensed on the resin, the protected peptide resin was taken out of the synthesizer and dried. The peptide resin (1 g) was allowed to react with anhydrous hydrogen fluoride (8 ml) containing p-cresol (1 ml), 1,2-ethanedithiol (1 ml) and 2-mercaptopyridine (100 mg) at 0 °C for 2 hours. After completion of reaction, hydrogen fluoride was removed by distillation and the residue was washed with diethyl ether to remove most of additives. The peptide was extracted with 3% acetic acid (10 ml), and the resin was removed by filtration. The filtrate was purified by gel filtration using a Sephadex G-25 column. The conditions of gel filtration were as follows: column size: 2.8X60 cm; detecting wavelength: 230 or 280 nm; solvent: 3% acetic acid; flow rate: 40 ml/hour. Fractions containing the peptide were collected and then lyophilized. The resulting powder sample was further purified by reversed phase high performance liquid

chromatography [column: YMC-pack, A-324 ODS (10 X 250 mm); eluting solvent A: 0.1% trifluoroacetic acid-99.9% water; eluting solvent B: 0.1% trifluoroacetic acid-99.9% acetonitrile; linear gradient elution program: 0 minute (90% A + 10% B), 30 minutes (60% A + 40% B) (if necessary another elution program may sometimes be used); elution rate: 1.6 ml/minute; detecting wavelength: 230 or 280 nm]. Peak fractions containing the desired pure product were collected, and passed through a Bio RAD AGIX8 column (acetate form, 1.8 X 5 cm). The eluate was combined with the washings, and acetonitrile was removed therefrom by distillation, followed by lyophilization.

The peptides thus obtained, the results of amino acid analysis thereof, and the retention times on reversed phase high performance liquid chromatography are shown in Table 1.

In Table 1, a, b and c are as follows:

a: The peptides were hydrolyzed in tubes sealed with 6 N hydrochloric acid under reduced pressure, in the presence of 4% thioglycolic acid at 110°C for 24 hours, and then subjected to amino acid analysis. Theoretical values are designated in parentheses.

b: Names of test compounds (no NH2 at the terminus means COOH):

```
(1) [D-Ser<sup>3</sup>]hPTH(1-34)NH<sub>2</sub>
```

- (2) [D-Ala3]hPTH(1-34)
- (3) [Thr16]hPTH(1-34)

10

15

20

25

30

35

40

45

50

- (4) [Glu16]hPTH(1-34)
- (5) [Lys16]hPTH(1-34)
- (6) [Thr27]hPTH(1-34)
- (7) [Asn²⁷]hPTH(1-34)
- (8) [Gln^{26,27}]hPTH(1-34)
- (9) [Gln^{25,26,27}]hPTH(1-34)
- (10) [Ser²⁷]hPTH(1-34)
- (11) [Gly²⁷]hPTH(1-34)
- (12) [His²⁷]hPTH(1-34)
- (13) [Lys16,Gln27]hPTH(1-34)
- (14) [Orn16,Gln27]hPTH(1-34)
- (15) [Hci16,Gln27]hPTH(1-34)
- (16) [Asp16,Gln27]hPTH(1-34)
- (17) [Arg¹⁶,Gln²⁷]hPTH(1-34)
- (18) [Arg^{26,27}]hPTH(1-34)
- (19) [Gln²⁶]hPTH(1-34)
- (20) [Lys^{15,16},His²⁷]hPTH(1-34)
- (21) [Lys¹⁵,His²⁷]hPTH(1-34)
- (22) [Gln²⁵]hPTH(1-34)
- (23) [D-Lys16]hPTH(1-34)
- (24) [Lys15,16,17,His27]hPTH(1-34)
- (25) [Gln¹⁶]hPTH(1-34)
- (26) [Ser16]hPTH(1-34)
- (27) [Gly16]hPTH(1-34)
- (28) [Lys16]hPTH(1-34)NH2
- (29) [Lys16, Asp17]hPTH(1-34)
- (30) [Lys^{14,15,16,17}]hPTH(1-34)
- (31) [Lys^{15,16,17}]hPTH(1-34)
- (32) [Lys16,17]hPTH(1-34)
- (33) [Arg^{16,17}]hPTH(1-34)
- (34) [Arg^{15,16,17}]hPTH(1-34)

c: Retention time of the peptides by high performance liquid chromatography

Analysis conditions: a VISTA 5000 high performance chromatogram (Varian) linked to a 712W autosampler (Waters) was used. Column: YMC A-324 ODS (4.6 X 250 mm); eluent A: 0.1% trifluoroacetic acid-99.9% water; eluent B: 0.1% trifluoroacetic acid-99.9% acetonitrile; linear gradient elution program: 0 minute (80% A + 20% B), 30 minutes (50% A + 50% B); flow rate: 0.7 ml/minute; detecting wavelength: 280 nm]

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a)

Derivative Peptide (b)

	Delivative reperies (2)												
5	Amino Acid	(1)	(2)	(3)	(4)	(5)							
	Asx	4.00(4)	4.00(4)	3.00(3)	3.00(3)	3.00(3)							
10	Ser	2.37(3)	1.73(2)	2.32(3)	2.59(3)	2.57(3)							
.0	Glx	4.91(5)	5.07(5)	5.02(5)	6.11(6)	5.04(5)							
	Gly	1.02(1)	0.97(1)	1.00(1)	0.98(1)	0.99(1)							
15	Val	2.64(3)	2.73(3)	2.66(3)	2.78(3)	2.72(3)							
	Met	1.80(2)	1.88(2)	2.04(2)	2.15(2)	2.14(2)							
	Ile	0.78(1)	0.89(1)	0.93(1)	0.89(1)	0.87(1)							
20	Leu	4.95(5)	5.08(5)	5.00(4)	5.08(5)	5.05(5)							
	Phe	1.08(1)	0.99(1)	1.00(2)	1.01(1)	1.01(1)							
25	Lys	3.02(3)	3.07(3)	2.92(3)	2.93(3)	3.91(4)							
20	His	3.03(3)	2.61(3)	2.54(3)	2.72(3)	2.71(3)							
	Trp	0.94(1)	0.85(1)	0.87(1)	0.90(1)	0.86(1)							
30	Arg	2.01(2)	1.90(2)	1.94(2)	1.94(2)	1.93(2)							
	Other amino acids		Ala 0.94(1)	Thr 0.86(1)									
35	HPLC reten- tion time (minute) (c)	25.0	25.1	26.6	27.2	25.7							

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

5	Derivative Peptide (b)													
5	Amino Acid	(6)	(7)	(8)	(9)	(10)								
	Asx	4.00(4)	5.00(5)	4.00(4)	4.00(4)	4.00(4)								
10	Ser	2.52(3)	2.61(3)	2.60(3)	2.62(3)	3.67(4)								
	Glx	5.12(5)	5.12(5)	7.02(7)	8.03(8)	5.09(5)								
	Gly	0.92(1)	0.95(1)	0.99(1)	1.01(1)	1.04(1)								
15	Val	2.75(3)	2.79(3)	2.81(3)	2.61(3)	2.81(3)								
	Met	1.69(2)	1.72(2)	2.04(2)	2.05(2)	1.91(2)								
20	Ile	0.88(1)	0.89(1)	0.93(1)	0.91(1)	0.94(1)								
20	Leu	4.92(5)	4.98(5)	5.01(5)	5.00(5)	4.89(5)								
	Phe	1.05(1)	1.05(1)	1.02(1)	1.02(1)	0.96(1)								
25	Lys	1.91(2)	1.92(2)	0.96(1)	0.91(1)	1.92(2)								
	His	2.60(3)	2.63(3)	2.68(3)	2.68(3)	2.46(3)								
	Trp	0.92(1)	0.89(1)	0.92(1)	1.04(1)	0.93(1)								
30	Arg	1.89(2)	1.89(2)	1.90(2)	0.92(1)	1.89(2)								
	Other amino acids	Thr 0.91(1)												
35	HPLC reten- tion time (minute) (c)	26.8	25.4	26.4	25.8	27.0								

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

Derivative Peptide (b)

	Amino Acid	(11)	(12)	(13)	(14)	(15)
	Asx	4.00(4)	4.00(4)	3.00(3)	3.00(3)	3.00(3)
10	Ser	2.59(3)	2.55(3)	2.71(3)	2.63(3)	2.66(3)
	Glx	5.05(5)	5.02(5)	6.20(6)	6.15(6)	6.20(6)
15	Gly	2.03(2)	1.01(1)	1.02(1)	1.01(1)	1.00(1)
73	Val	2.88(3)	2.89(3)	2.86(3)	2.80(3)	2.83(3)
	Met	1.94(2)	1.94(2)	1.98(2)	2.04(2)	2.03(2)
20	Ile	1.01(1)	0.98(1)	0.93(1)	0.90(1)	0.92(1)
	Leu	4.98(5)	4.94(5)	5.06(5)	5.03(5)	5.03(5)
	Phe	1.00(1)	1.01(1)	1.02(1)	1.00(1)	1.00(1)
25	Lys	1.96(2)	1.93(2)	2.97(3)	1.85(2)	2.23(2)
	His	2.75(3)	1(1) 0.98(1) 0.93(1) 0.90(1) 0.92 8(5) 4.94(5) 5.06(5) 5.03(5) 5.03 0(1) 1.01(1) 1.02(1) 1.00(1) 1.00 6(2) 1.93(2) 2.97(3) 1.85(2) 2.23 5(3) 3.66(4) 2.77(3) 2.80(3) 2.80	2.80(3)		
00	Trp	0.99(1)	0.97(1)	0.98(1)	0.99(1)	0.93(1)
30	Arg	1.91(2)	1.92(2)	1.92(2)	1.95(2)	1.96(2)
	Other amino acids				Orn 0.95(1)	
35	<pre>HPLC reten- tion time (minute) (c)</pre>	25.0	23.6	25.8	25.8	28.2

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

			Derivat	ive Pepti	de (b)	
10	Amino Acid	(16)	(17)	(18)	(19)	(20)
	Asx	4.00(4)	3.00(3)	4.00(4)	4.00(4)	3.00(3)
	Ser	2.41(3)	2.43(3)	2.67(3)	2.76(3)	2.57(3)
15	Glx	5.97(6)	5.87(6)	5.12(5)	6.23(6)	5.11(5)
	Gly	0.91(1)	0.92(1)	1.06(1)	1.13(1)	1.03(1)
20	Val	2.62(3)	2.63(3)	2.85(3)	2.90(3)	2.75(3)
	Met	1.81(2)	1.87(2)	1.97(2)	1.98(2)	1.88(2)
	Ile	0.78(1)	0.82(1)	0.95(1)	0.97(1)	0.95(1)
25	Leu	4.76(5)	4.74(5)	4.89(5)	4.97(5)	4.05(4)
	Phe	0.94(1)	0.95(1)	0.98(1)	1.00(1)	1.04(1)
	Lys	1.81(2)	1.84(2)	0.95(1)	1.92(2)	3.75(4)
30	His	2.53(3)	2.61(3)	2.86(3)	2.81(3)	3.62(4)
	Trp	0.87(1)	0.77(1)	0.79(1)	0.77(1)	0.63(1)
35	Arg	1.61(2)	2.77(3)	3.83(4)	1.93(2)	1.84(2)
	Other amino acids					
40	HPLC reten- tion time (minute) (c)	26.4	26.2	24.8	25.5	21.6

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

5	Derivative Peptide (b)													
	Amino Acid	(21)	(22)	(23)	(24)	(25)								
	Asx	4.00(4)	4.00(4)	3.00(3)	3.00(3)	3.00(3)								
10	Ser	2.57(3)	2.59(3)	2.39(3)	1.62(2)	2.69(3)								
	Glx	5.18(5)	6.09(6)	4.88(5)	5.12(5)	6.22(6)								
	Gly	1.06(1)	1.07(1)	0.98(1)	1.02(1)	1.03(1)								
15	Val	2.64(3)	2.82(3)	2.58(3)	2.77(3)	2.77(3)								
	Met	1.87(2)	1.99(2)	1.85(2)	1.86(2)	2.19(2)								
20	Ile	0.93(1)	0.92(1)	0.80(1)	0.97(1)	0.94(1)								
	Leu	4.03(4)	4.86(5)	4.82(5)	4.03(4)	5.00(5)								
	Phe	1.04(1)	1.00(1)	0.98(1)	1.05(1)	1.03(1)								
25	Lys	2.79(3)	2.69(3)	3.76(4)	4.76(5)	2.87(3)								
	His	3.61(4)	2.80(3)	2.59(3)	3.62(4)	2.68(3)								
	Trp	0.73(1)	0.73(1)	0.89(1)	0.81(1)	0.92(1)								
30	Arg	1.85(2)	1.03(1)	1.86(2)	1.84(2)	1.87(2)								
	Other amino acids													
35	HPLC reten- tion time (minute) (c)	21.9	24.0	22.8	20.0	23.9								

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

5			Derivat	ive Pepti	de (b)	
	Amino Acid	(26)	(27)	(28)	(29)	(30)
	Asx	3.00(3)	3.00(3)	3.00(3)	4.00(4)	3.00(3)
10	Ser	3.35(4)	2.50(3)	2.59(3)	1.71(2)	1.76(2)
	Glx	5.09(5)	5.14(5)	4.98(5)	5.02(5)	5.20(5)
	Gly	0.95(1)	1.89(2)	0.99(1)	1.00(1)	1.00(1)
15	Val	2.54(3)	2.55(3)	2.66(3)	2.75(3)	2.79(3)
	Met	1.77(2)	1.79(2)	1.84(2)	1.89(2)	2.11(2)
20	Ile	0.86(1)	0.86(1)	0.87(1)	0.89(1)	0.93(1)
	Leu	5.13(5)	5.20(5)	5.03(5)	4.89(5)	4.05(4)
	Phe	1.08(1)	1.08(1)	1.04(1)	0.99(1)	1.05(1)
25	Lys	2.74(3)	2.81(3)	3.65(4)	3.88(4)	6.90(7)
	His	2.53(3)	2.55(3)	2.63(3)	2.49(3)	1.72(2)
	Trp	0.85(1)	0.80(1)	0.85(1)	0.90(1)	0.92(1)
30	Arg	1.93(2)	1.94(2)	1.89(2)	1.88(2)	1.96(2)
	Other amino acids					
35	HPLC reten- tion time (minute) (c)	19.2	19.0	23.4	23.4	19.8

Table 1 Amino Acid Composition of PTH(1-34) Derivatives (a) (continued)

5			Derivative Peptide (b)									
	Amino Acid	(31)	(32)	(33)	(34)							
	Asx	3.00(3)	3.00(3)	3.00(3)	3.00(3)							
10	Ser	1.74(2)	1.63(2)	1.73(2)	1.77(2)							
	${ t Glx}$	5.15(5)	5.07(5)	5.11(5)	5.07(5)							
15	Gly	1.00(1)	0.95(1)	1.00(1)	1.01(1)							
70	Val	2.71(3)	2.72(3)	2.75(3)	2.70(3)							
	Met	2.09(2)	1.96(2)	2.11(2)	2.10(2)							
20	Ile	0.90(1)	0.86(1)	0.91(1)	0.91(1)							
	Leu	4.01(4)	4.93(5)	5.01(5)	3.98(4)							
	Phe	1.06(1)	1.05(1)	1.03(1)	1.03(1)							
25	Lys	5.90(6)	4.85(5)	2.89(3)	2.89(3)							
	His	2.61(3)	2.50(3)	2.56(3)	2.52(3)							
30	Trp	0.94(1)	0.89(1)	0.95(1)	0.95(1)							
	Arg	1.96(2)	1.96(2)	3.84(4)	4.73(5)							
	Other amino acids											
35	HPLC retention time (minute) (c)	19.4	22.7	23.2	20.0							

EXAMPLE 2 Assay of Biological Activity of PTH (1-34) Derivatives

The biological activity of the PTH (1-34) derivatives was evaluated by a modified version of the method reported by Shigeno et al. in The Journal of Biological Chemistry 263, 18369-18377 (1988). A culture solution (Hank's solution, containing 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), 0.1% bovine serum albumin and 0.5 mM isobutylmethyl-xanthine) containing a 0.01, 0.1, 1, 10 or 100 nM derivative was added in an amount of 100 μ l to a mouse cranial bone-derived osteoblast-like cell strain, MC3T3-El cells, cultivated on a 96-well multiplate (Nunclon, Nunc), followed by reaction at room temperature for 30 minutes. After addition of 100 μ l of 0.2 N hydrochloric acid, the mixture was immersed in boiling water for 2.5 minutes, and cyclic adenosine monophosphate (cAMP) produced by a PTH receptor was extracted from the cells. The total cAMP in the culture solution and the cells was assayed using a commercial radioimmunoassay kit (cyclic AMP [125 I] kit "Du Pont-Daiichi", Daiichi Kagaku Yakuhin). An increase in cAMP production depending on the concentration of the human PTH (1-34) added as a standard was observed in each case. The biological activity of the PTH (1-34) derivatives is shown in Table 2.

55

Table 2

	Biological Activity of PTH(1-34) Analogues [Represented	by Relative Activity to hPTH(1-34)]
5	hPTH(1-34)	1.00
	[D-Ala ³]hPTH(1-34)	2.17
	[Thr ¹⁶]hPTH(1 -34)	1.74
	[Glu ¹⁶]hPTH(1 -34)	1.55
	[Lys ¹⁶]hPTH(1-34)	3.37
10	[Thr ²⁷]hPTH(1-34)	0.96
	[Gln ^{26,27}]hPTH(1-34)	1.19
	[Gln ^{25,26,27}]hPTH(1 - 34)	0.41
	[Orn ¹⁶ ,Gln ²⁷]hPTH(1-34)	1.82
	[Hci ¹⁶ ,Gln ²⁷]hPTH(1-34)	1.54
15	[Arg ¹⁶ ,Gln ²⁷]hPTH(1-34)	2.16
	[Arg ^{26,27}]hPTH(1-34)	0.98
	[Lys ^{15,16} ,His ²⁷]hPTH(1-34)	1.49
	[D-Lys ¹⁶]hPTH(1-34)	0.86
	[Lys ^{15,16,17} ,His ²⁷]hPTH(1-34)	7.47
20	[Gln ¹⁶]hPTH(1-34)	1.73
	[Lys ¹⁶ ,Asp ¹⁷]hPTH(1 -34)	1.24
	[Lys ^{15,16,17}]hPTH(1-34)	7.62
	[Lys ^{16,17}]hPTH(1 -3 4)	8.85
	[Lys ^{14,15,16,17}]hPTH(1-34)	6.39
25	[Lys ¹⁶]hPTH(1-34)	5.48

SEQUENCE LISTING

E	(1)	GENE	RAL INFORMATION:
5 10		(i)	APPLICANT: (A) NAME: Takeda Chemical Industries, Ltd. (B) STREET: 1-1 Doshomachi 4-chome (C) CITY: Chuo-ku, Osaka (E) COUNTRY: Japan (F) POSTAL CODE (ZIP): 541
		(ii)	TITLE OF INVENTION: Parathyroid Hormone Derivatives
		(iii)	NUMBER OF SEQUENCES: 41
15		(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)
20		(v)	CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 93104500.9
	(2)	INFO	RMATION FOR SEQ ID NO:1:
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
		(v)	FRAGMENT TYPE: N-terminal
30			
		(rei \	CECHENGE DECERIPATION, CEO. ID. NO. 1.
			SEQUENCE DESCRIPTION: SEQ ID NO:1:
35		ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn 5 10 15
		Ser	Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His 20 25 30
		Asn	Phe
40	(2)	TNEO	RMATION FOR SEQ ID NO:2:
	(2)		
4 5		(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
		(v)	FRAGMENT TYPE: N-terminal
50		(ix)	FEATURE: (A) NAME/KEY: Modified-site

15

		<pre>(B) LOCATION: 3 (D) OTHER INFORMATION: /note= "Xaa=Ser or D-alpha-amino</pre>
5	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 14 (D) OTHER INFORMATION: /note= "Xaa=His or water-soluble alpha-amino acid"
10	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15 (D) OTHER INFORMATION: /note= "Xaa=Leu or water-soluble alpha-amino acid"
15	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /note= "Xaa=water-soluble alpha-amino acid"
20	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17 (D) OTHER INFORMATION: /note= "Xaa=Ser or water-soluble alpha-amino acid"
25	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 25 (D) OTHER INFORMATION: /note= "Xaa=water-soluble alpha-amino acid"
30	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26 (D) OTHER INFORMATION: /note= "Xaa=water-soluble alpha-amino acid"
35	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27 (D) OTHER INFORMATION: /note= "Xaa=water-soluble alpha-amino acid"
40	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 34 (D) OTHER INFORMATION: /note= "Xaa=aromatic amino acid or amide thereof"
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:2:
	Ser 1	Val Xaa Glu Ile Gln Leu Met His Asn Leu Gly Lys Xaa Xaa Xaa 5 10 15
50	Xaa	Met Glu Arg Val Glu Trp Leu Xaa Xaa Xaa Leu Gln Asp Val His 20 25 30
	Asn	Xaa

	(2)	INFOR	OITAM	N FOR	SEQ	ID N	0:3:									
5		(i)	(B) :	NCE C LENGT TYPE: TOPOL	H: 34 amir	amin o ac	no ao id									
		(ii)	MOLEC	ULE T	YPE:	prot	ein									
10		(v)	FRAGMI	ENT T	YPE:	N-te:	rmina	al								
		(ix)	(B) I	RE: NAME/ LOCAT OTHER	ION:	3				"Xaa:	=D-Se	er"				
15		(ix)	(B) I	RE: NAME/ LOCAT OTHER	ION:	34				"Xaa:	=Phe-	-amio	ie"			
20		(xi)	SEQUE	NCE D	ESCRI	PTIO	N: SI	EQ II	ои с	:3:						
		Ser 1	Val X	aa Gl	u Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asu
25		Ser	Met G	lu Ar 20	_	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Xaa													
	(2)	INFOR	CITAM	n for	SEQ	ID N	0:4:									
30		(i)	(B) '	NCE C LENGT TYPE: TOPOL	H: 34 amir	l ami:	no ao id									
05		(ii)	MOLEC	ULE T	YPE:	prot	ein									
35		(v)	FRAGM	ENT T	YPE:	N-te	rmina	al								
40		(ix)	(B)	RE: NAME/ LOCAT OTHER	ION:	3				"Xaa:	=D- A .	la"				
		(xi)	SEQUE	NCE D	ESCR	PTIO	N: S	EQ I	D NO	:4:						
45		Ser 1	Val X	aa Gl	u Ile 5	e Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
		Ser	Met G	lu Ar 20		l Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
50		Asn	Phe													
	(2)	INFO	RMATIO	N FOR	SEQ	ID N	0:5:									

_		(i)	(A) LEI (B) TYI (D) TOI	NGTH: PE: a	34 mino	amin aci	o ac .d									
5		(ii)	MOLECULI	E TYP	E: I	rote	in									
		(v)	FRAGMEN	r typ	E: N	1-ter	mina	1								
10		(ix)	FEATURE (A) NAI (B) LO	ME/KE			ied-	∙sit∈	e							
		(xi)	SEQUENC	E DES	CRII	OITS	1: SE	EQ II	NO:	:5:						
15		Ser 1	Val Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Thr
		Ser	Met Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
20		Asn	Phe													
	(2)	INFO	RMATION	FOR S	EQ I	ID NO	0:6:									
25		(i)	SEQUENCE (A) LET (B) TY (D) TO	NGTH: PE: a	34 mino	amir o aci	io ac									
		(ii)	MOLECUL	E TYP	E: I	prote	ein									
30		(v)	FRAGMEN	т түн	PE: 1	N-tei	cmina	al								
		(ix)	FEATURE (A) NA (B) LO	ME/KE			ied-	-site	e							
35		(xi)	SEQUENC	E DES	CRI	PTIO	N: SE	EQ II	ON C	:6:						
		Ser 1	Val Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Glu
40		Ser	Met Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Phe													
4 5	(2)	INFO	RMATION	FOR S	SEQ :	ID N	0:7:									
40		(i)	SEQUENC (A) LE (B) TY (D) TO	NGTH:	: 34 amin	amin o ac:	no ao id									
50		(ii)	MOLECUL	E TYI	PE:]	prote	ein									
		(v)	FRAGMEN	T TYI	PE: 1	N-te:	rmina	al								

		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16
5		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:
		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Lys 5 10 15
10		Ser	Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His 20 25 30
		Asn	Phe
15	(2)	INFO	RMATION FOR SEQ ID NO:8:
		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
20		(ii)	MOLECULE TYPE: protein
		(v)	FRAGMENT TYPE: N-terminal
25		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:
30		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn 5 10 15
		Ser	Met Glu Arg Val Glu Trp Leu Arg Lys Thr Leu Gln Asp Val His 20 25 30
35		Asn	Phe
	(2)	INFO	RMATION FOR SEQ ID NO:9:
40		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
45		(v)	FRAGMENT TYPE: N-terminal
50		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27

		Ser 1	Val S	er Gl	u Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
5		Ser	Met G	lu Ar 20	_	Glu	Trp	Leu	Arg 25	Lys	Asn	Leu	Gln	Asp 30	Val	His
		Asn	Phe													
10	(2)	INFOR	OITAMS	N FOR	SEQ	ID N	0:10	:								
		(i)	(B)	LENGT TYPE :	HARAC H: 34 amin OGY:	amii o ac:	no a id									
15		(ii)	MOLEC	ULE 7	YPE:	prot	ein									
		(v)	FRAGM	ENT I	YPE:	N-te:	rmina	al								
20		(ix)		NAME/	KEY:		fied	-site	€							
		(ix)		NAME/	KEY:		fied	-site	€							
25		(xi)	SEQUE	NCE I	ESCRI	PTIO	N: S	EQ II	OM C	:10:						
		Ser 1	Val S	er Gl	u Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
30		Ser	Met G	lu Ar 20	_	Glu	Trp	Leu	Arg 25	Gln	Gln	Leu	Gln	Asp 30	Val	His
		Asn	Phe													
35	(2)		CITAMS													
		(1)	(B)	LENGT TYPE :	HARAC H: 34 amin OGY:	ami: o ac	no a id									
40		(ii)	MOLEC	ULE 1	YPE:	prot	ein									
		(v)	FRAGM	ENT T	YPE:	N-te	rmin	al								
45		(ix)		NAME,	KEY:		fied	-sit	е							
		(ix)		NAME,	KEY:		fied	-sit	e							
50		(ix)		NAME,	KEY:		fied	-sit	е							

			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	1: S	EQ II	D NO	:11:						
			Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
	5		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Gln 25	Gln	Gln	Leu	Gln	Asp 30	Val	His
			Asn	Phe														
7	10	(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID N	0:12	:								
7	15		(i)	(A)) LEI) TYI	NGTH:	: 34 amin	TERIS amin o ac: lines	no a id									
			(ii)	MOLI	ECULI	E TYI	PE:]	prot	ein									
			(v)	FRAG	GMEN'	r TYI	PE: 1	N-te:	rmina	al								
2	20		(ix)	(A)		ME/K		Modi: 27	fied	-site	е							
,	25		(xi)	SEQ	JENCI	E DES	SCRI:	PTIO	N: S	EQ II	D NO	:12:						
2	:0		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
	30		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Ser	Leu	Gln	Asp 30	Val	His
	50		Asn	Phe														
		(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID N	0:13	:								
3	35		(i)	(A)) LEI	NGTH PE: 8	: 34 amin	TERI: amin o ac: line:	no a id									
			(ii)	MOLI	ECULI	E TYI	PE:]	prot	ein									
4	40		(v)	FRAG	GMEN'	r TYI	PE: 1	N-te:	rmin	al								
4	4 5		(ix)	(A)		ME/KI		Modi: 27	fied	-sit	e							
			(xi)	SEQ	UENCI	E DES	SCRI	PTIO	N: S	EQ II	D NO	:13:						
			Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
5	50		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Gly	Leu	Gln	Asp 30	Val	His

Asn Phe

55

5	(2)	INFORM	ATION	FOR S	SEQ	ID NO	:14:									
J			(A) L (B) T	CE CHI ENGTH YPE: 8 OPOLOG	: 34 amin	amin o aci	o ac d									
10		(ii) M	OLECU	LE TY	PE:	prote	in									
		(v) Fl	RAGME	NT TY	PE:	N-ter	mina	.1								
15			(A) N	E: AME/KI OCATIO			ied-	site	•							
		(xi) S	EQUEN	CE DE	SCRI	PTION	: SE	Q II	NO:	:14:						
20		Ser Va	al Se	r Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
		Ser M	et Gl	u Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	His	Leu	Gln	Asp 30	Val	His
25		Asn Pl	he													
	(2)	INFORM	ATION	FOR	SEQ	ID NO	:15:	:								
30			(A) L (B) T	CE CH ENGTH YPE: OPOLO	: 34 amin	amin o aci	o ac									
		(ii) M	OLECU	LE TY	PE:	prote	in									
		(v) F	RAGME	NT TY	PE:	N-ter	mina	11								
35		(ix) F	(A) N	E: AME/K OCATI			ied-	-site	€							
40		(ix) F	(A) N	E: AME/K OCATI			ied-	-site	e							
		(xi) S	EQUEN	CE DE	SCRI	PTION	I: SI	EQ II	o n o	:15:						
45		Ser V 1	al Se	r Glu	Il∈ 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Lys
		Ser M	et Gl	u Arg 20	Va]	l Glu	Trp	Leu	Arg 25	Lys	Gln	Leu	Gln	Asp 30	Val	His
50		Asn P	he													
	(2)	INFORM	MOITA	FOR	SEQ	ID NO	0:16	:								

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
5	(ii)	MOLECULE TYPE: protein
	(v)	FRAGMENT TYPE: N-terminal
10	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /note= "Xaa=Orn"
15	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:16:
20	Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Xaa 5 10 15
	Ser	Met Glu Arg Val Glu Trp Leu Arg Lys Gln Leu Gln Asp Val His 20 25 30
25	Asn	Phe
	(2) INFO	RMATION FOR SEQ ID NO:17:
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: protein
35	(v)	FRAGMENT TYPE: N-terminal
40	(ix)	<pre>FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /note= "Xaa=homocitrulline (Hci)"</pre>
40	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:17:
	Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Xaa 5 10 15
50	Ser	Met Glu Arg Val Glu Trp Leu Arg Lys Gln Leu Gln Asp Val His 20 25 30
	Asn	Phe

	(2)	INFOR	RMATI	ON F	OR	SEQ	ID NO	0:18	:								
5		(i)	(A) (B)	LEN TYE	IGTH E:	: 34 amin	TERIS amin o aci	no ao id									
		(ii)	MOLE	CULE	TY	PE:	prot	ein									
		(v)	FRAG	MENT	TY	PE:	N-te:	rmina	al								
10		(ix)			IE/K		Modi: 16	fied.	-site	e							
15		(ix)			Œ/K		Modi: 27	fied	-site	e							
		(xi)	SEQU	ENCE	E DE	SCRI	PTIO	N: S	EQ II	ONO:	:18:						
20		Ser 1	Val	Ser	Glu	11e	e Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asp
		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Gln	Leu	Gln	Asp 30	Val	His
25		Asn	Phe														
	(2)	INFO	RMATI	ON I	FOR	SEQ	ID N	0:19	:								
30		(i)	(A) (B)	TY!	IGTH PE:	: 34 amir	TERI amino ac line	no a id									
		(ii)	MOLE	CULI	TY	PE:	prot	ein									
35		(v)	FRAG	MENT	г тү	PE:	N-te	rmin	al								
		(ix)			4Ε/K		Modi 16	fied	-sit	e							
40		(ix)			ME/K		Modi 27	fied	-sit	е							
		(xi)	SEQU	JENCI	E DE	SCR	IPTIO	N: S	EQ I	D NO	:19:						
45		Ser 1	Val	Ser	Glu	ı Ile 5	e Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Arg
		Ser	Met	Glu	Arg 20	y Va:	l Glu	Trp	Leu	Arg 25	Lys	Gln	Leu	Gln	Asp 30	Val	His
50		Asn	Phe														

	(2)	INFORMATION FOR SEQ ID NO:20:
5		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: protein
10		(v) FRAGMENT TYPE: N-terminal
		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26</pre>
15		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27</pre>
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
20		Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn 1 10 15
		Ser Met Glu Arg Val Glu Trp Leu Arg Arg Arg Leu Gln Asp Val His 20 25 30
25		Asn Phe
	(2)	INFORMATION FOR SEQ ID NO:21:
30		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: protein
35		(v) FRAGMENT TYPE: N-terminal
		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26</pre>
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn 1 5 10 15
45		Ser Met Glu Arg Val Glu Trp Leu Arg Gln Lys Leu Gln Asp Val His 20 25 30
		Asn Phe
	(2)	INFORMATION FOR SEQ ID NO:22:
50		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids

							o aci linea										
5		(ii)	MOLE	CULE	TYF	E:	prote	ein									
		(v)	FRAG	MENT	TY	PE:	N-tei	rmina	al								
10		(ix)	(A)		IE/KI		Modii 15	ied-	-site	9							
		(ix)	(A)		IE/KI		Modii 16	ied-	-site	9							
15		(ix)	(A)		IE/KI		Modii 27	fied [.]	-site	9							
20		(xi)	SEQU	JENCE	DES	CRI	PTIOI	1: SI	EQ II	on c	:22:						
		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Lys 15	Lys
		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	His	Leu	Gln	Asp 30	Val	His
25		Asn	Phe														
	(2)	INFO	RMATI	ON E	OR S	SEQ	ID N	0:23	:								
30		(i)	_	LEN			TERI										
			(B)				o ac	id									
		(ii)	(B) (D)	TOI	POLO	3Y:	o ac	id ar									
35			(B) (D) MOLE	TOI	OLO E TY	GY: PE:	o ac: line	id ar ein									
		(v)	(B) (D) MOLE FRAC FEAT (A)	TOI ECULI EMENT	POLOG E TYI T TYI KE/KI	GY: PE: PE:	o actions and actions	id ar ein rmin	al	e							
35 40		(v)	(B) (D) MOLE FRAC (A) (B) FEAT (A)	TOI ECULI GMENT FURE: NAM LOC	POLOGE TYI	EY:	o ac line proto N-te: Modi 15	id ar ein rmin	al -sit								
		(v) (ix) (ix)	(B) (D) MOLE FRAC (A) (B) FEAT (A) (B)	TOI ECULE FURE: NAI LOC TURE NAI LOC	POLOGE TYDES TY TYDES TY	EY: CN:	o ac line proto N-te: Modi 15	id ar ein rmin fied	al -sit	e	:23:						
40		(v) (ix) (ix)	(B) (D) MOLE FRAC FEAT (A) (B) FEAT (A) (B)	TOI CULE CURE NAM LOC CURE NAM LOC CURE UENCI	POLOGE TY	EY: PE: PE: EY: ON: EY: SCRI	o ac: linea prote N-te: Modi 15	id ar ein rmina fied fied	al -sit -sit EQ I	e D NO		Leu	Gly	Lys	His	Lys 15	Asn
40		(v) (ix) (ix) (xi) Ser 1	(B) (D) MOLE FRAC (A) (B) FEAT (A) (B) SEQU Val	TOIL ECULE FURE NAM LOC FURE NAM LOC UENCI	POLOG E TYI T TYI : ME/KI CATIC CATIC E DE	PE: PE: PE: EY: DN: SCRI	o ac. line prote Modi 15 Modi 27	id ar ein rmin fied N: S Leu	al -sit -sit EQ I Met	e D NO His	Asn 10					15	

	(2)	INFOR	MATI	ON F	OR S	EQ	ID NO	0:24	:								
5		(i)	(A) (B)	LEN TYP	IGTH: E: a	34 umin	TERIS amin o aci lines	no ao id									
		(ii)	MOLE	CULE	TYP	E:	prote	ein									
10		(v)	FRAG	MENT	TYP	E:	N-te	rmina	al								
		(ix)	(A)	NAM			Modi: 25	fied-	-site	2							
15		(xi)	SEQU	ENCE	DES	CRI	PTIO	N: SI	EQ II	OM C	:24:						
		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Asn
20		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Gln 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Phe						~								
25	(2)	INFOR	MATI	ON F	OR S	SEQ	ID N	0:25	:								
20		(i)	(A) (B)	LEN	IGTH: PE: a	: 34 amin	TERIS amin o aci lines	no ao id									
30		(ii)	MOLE	CULE	TYF	PE:	prot	ein									
		(v)	FRAG	MENT	TYF	PE:	N-te:	rmina	al								
35		(ix)	(A) (B)	NAN LOC	ME/KE	ON:	Modi: 16 RMAT:				"Xaa:	=D-L	ys"				
		(xi)	SEQU	ENCE	E DES	SCRI	PTIO	N: S	EQ II	OM C	:25:						
40		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Xaa
		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
45		Asn	Phe														
	(2)	INFOR	ITAM	ON I	FOR S	SEQ	ID N	0:26	:								
50		(i)	(A) (B)	LEI TYI	NGTH:	: 34 amin	TERI ami o ac line	no a id									

		(ii)	MOLE	CULE	TYI	PE:	prote	ein									
		(v)	FRAG	MENT	TYI	?E:	N-te	cmina	1								
5		(ix)	(A)		E/KE		Modi: 15	fied-	site	€							
10		(ix)					Modi: 16	fied-	site	e							
		(ix)					Modii 17	fied-	site	€							
15		(ix)					Modi: 27	fied-	site	e							
		(xi)	SEQU	ENCE	DES	SCRI	PTIO	N: SE	Q II	ON C	:26:						
20		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Lys 15	Lys
		Lys	Met	Glu	Arg 20	Val	Glu	Trp	Ĺeu	Arg 25	Lys	His	Leu	Gln	Asp 30	Val	His
25		Asn	Phe														
	(2)	INFO	RMATI	ON F	OR S	SEQ	ID NO	0:27:									
30		(i)	(A) (B)	LEN TYP	GTH:	: 34 amin	TERIS amin o aci	no ac id									
		(ii)	MOLE	CULE	TYI	PE:	prote	ein									
35		(v)	FRAG	MENT	TYI	PE:	N-te	rmina	1								
		(ix)			E/KE		Modi: 16	fied-	site	e							
40		(\)	OHOT:	IENGE	DEC	an t	DELLO	a ar	30 TI		27						
							PTIO					T 011	C1	T	ui a	T 011	Cln
		1	vai	ser	GIU	5	Gln	Leu	Met	HIS	10	ьeu	GIY	пув	nis	15	GIII
45		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Phe														
50	(2)	INFO	RMATI	ON F	OR S	SEQ	ID N	0:28:	:								
		(i)	SEQU	ENCE	CHA	ARAC	TERI	STICS	3:								

			(B)	TYP	E: a	ming	amin o aci linea	.d	eids								
5		(ii)	MOLE	CULE	TYF	E: I	prote	ein	•								
		(v)	FRAG	MENT	TYE	PE: 1	N-ter	rmina	al								
10		(ix)					Inhik 16	itor	ry-si	ite							
		(xi)	SEQU	ENCE	DES	CRI	PTION	1: SE	II QE	NO:	28:						
15		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Ser
		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
20		Asn	Phe														
	(2)	INFOR	RMATI	ON F	OR S	EQ :	ID NO	0:29:	:								
25		(i)	(B)	LEN TYP	GTH:	: 34 amin	TERIS amir o aci lines	no ao id									
		(ii)	MOLE	CULE	TYI	PE:]	prote	ein									
30		(v)	FRAG	MENT	TYI	PE: 1	N-te	rmina	al								
		(ix)			IE/KI		Modii 16	fied-	-site	9							
35		(xi)	SEQU	ENCE	DES	SCRI	PTIO	N: SI	EQ II	OM C	:29:						
		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Gly
40		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Phe														
4 5	(2)	INFO	RMATI	ON E	OR :	SEQ	ID N	0:30	:								
		(i)	(B)	LEN TYI	IGTH PE: 3	: 34 amin	TERIS amin o aci lines	no a id									
50		(ii)	MOLE	CULE	TY:	PE:	prot	ein									
		(v)	FRAG	MENT	TY	PE:	N-te	rmin	al								

		(ix)	(A)	TURE: NAM LOC	IE/KE			ied	-site	•							
5		(ix)	(A) (B)	TURE: NAM LOC OTE	ME/KE	ON: 3	34				'Xaa:	=Phe-	-amio	de"			
10		(xi)	SEQ	JENCE	E DES	SCRII	PTION	1: S	EQ II	OMC	:30:						
		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Lys
		Ser	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
15		Asn	Xaa														
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N (0:31	:								
20		(i)	(A (B	UENCI) LEI) TYI) TOI	NGTH:	: 34 amin	amin aci	no ao id									
		(ii)	MOL	ECULI	TYI	PE:]	prote	ein									
25		(v)	FRA	GMENT	r TY	PE: 1	N-te	rmina	al								
30		(ix)	(A	TURE) NAM) LO	ME/KI			fied	-site	е							
30		(ix)	(A	TURE) NAI) LO	ME/KI			fied	-sit	e							
35		(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ I	D NO	:31:						
		Ser 1	Val	Ser	Glu	Ile 5	Gln	Leu	Met	His	Asn 10	Leu	Gly	Lys	His	Leu 15	Lys
40		Asp	Met	Glu	Arg 20	Val	Glu	Trp	Leu	Arg 25	Lys	Lys	Leu	Gln	Asp 30	Val	His
		Asn	Phe														
	(2)	INFO	RMAT	ION :	FOR	SEQ	ID N	0:32	:								
45		(i)	(A (B	UENC) LE) TY) TO	NGTH PE:	: 34 amin	ami: o ac	no a id									
		(ii)	MOL	ECUL	E TY	PE:	prot	ein									
50		(v)	FRA	GMEN	T TY	PE:	N-te	rmin	al								

	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 14	
5	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15	
10	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16	
	((ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17	
15	((xi)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	
		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys Lys Lys 5 10 15	
20		Lys	Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His 20 25 30	
		Asn	Phe	
05	(2) I	NFOF	RMATION FOR SEQ ID NO:33:	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
30	((ii)	MOLECULE TYPE: protein	
		(v)	FRAGMENT TYPE: N-terminal	
35	((ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15	
40	ı	(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16	
40	((ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17	
45		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	
		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Lys Lys 5 10 15	
50		Lys	Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His 20 25 30	
		Asn	. Phe	

	(2)	INFOR	MATION FOR SEQ ID NO:34:
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
10		(v)	FRAGMENT TYPE: N-terminal
		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16
15		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:34:
20		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Lys 5 10 15
		Lys	Met Glu Arg Val Glu Trp Leu Arg Lys Leu Gln Asp Val His 20 25 30
25		Asn	Phe
	(2)	INFOR	RMATION FOR SEQ ID NO:35:
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
35		(v)	FRAGMENT TYPE: N-terminal
40		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16
40		(ix)	FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17
45		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:35:
		Ser 1	Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Arg
50		Arg	Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
		Asn	Phe

	(2)	INFORMATION FOR SEQ ID NO:36:
5		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: protein
10		(v) FRAGMENT TYPE: N-terminal
		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15</pre>
15		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16</pre>
20		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17</pre>
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
		Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Arg Arg 1 5 10 15
25		Arg Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
		Asn Phe
30	(2)	INFORMATION FOR SEQ ID NO:37:
		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 4 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
35		(ii) MOLECULE TYPE: peptide
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
40		His Leu Asn Ser 1
	(2)	INFORMATION FOR SEQ ID NO:38:
45		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 4 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
50		(ii) MOLECULE TYPE: peptide

	H: 1	s Lys Lys
5	(2) IN	CORMATION FOR SEQ ID NO:39:
5	(:	.) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
10	(i:) MOLECULE TYPE: peptide
15	(x:	.) SEQUENCE DESCRIPTION: SEQ ID NO:39:
	H: 1	s Leu Lys Lys
00	(2) IN	FORMATION FOR SEQ ID NO:40:
20	(:	.) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
25	(i) MOLECULE TYPE: peptide
00	(x:	SEQUENCE DESCRIPTION: SEQ ID NO:40:
30	Ly 1	rs Lys Lys
	(2) IN	FORMATION FOR SEQ ID NO:41:
35	(:	 SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(i) MOLECULE TYPE: peptide
	(x)) SEQUENCE DESCRIPTION: SEQ ID NO:41:
45	H 1	ls Leu Lys Ser
50	Claims	
	1. A peptide represented by	he amino acid sequence:
	•	

Ser-Val-R₁-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly-Lys-R₂-Met-Glu-Arg-Val-Glu-Trp-Leu-R₃-Leu-Gln-Asp-Val-His-Asn-R₄

or a salt thereof, wherein R_1 represents Ser or a D- α -amino acid residue of 4 or less carbon atoms; R_2 represents a tetrapeptide chain which contains at least one water-soluble α -amino acid residue; R_3 represents a tripeptide chain which contains at least one water-soluble α -amino acid residue; and R_4 represents an aromatic amino acid residue or an amide thereof, except that R_1 is Ser when R_2 is His-Leu-Asn-Ser, R_3 is E-F-G wherein E is Arg or His, F is Lys or His, G is Lys, Leu or Gln.

- 2. A pepetide or a salt thereof according to claim 1, wherein R₁ is a neutral amino acid residue; R₂ is A-B-C-D wherein A represents His or a water-soluble amino acid residue other than His, B represents Leu or a water-soluble amino acid residue; C represents a water-soluble amino acid residue and D represents Ser or a water-soluble amino acid residue; R₃ is a tripeptide chain consisting of basic or neutral water-soluble α-amino acids.
 - 3. A peptide or a salt thereof according to claim 2, wherein a basic amino acid residue is an L- or $D-\alpha$ amino acid residue represent by the following formula:

$$NH_2$$
 \downarrow
 $Z-(CH_2)_n-CHCOOH$

[Wherein Z represents NH₂, NHC(NH)NH₂ or an imidazole ring, n represents the integer of 1 to 5].

- 4. The peptide or a salt thereof according to claim 3 wherein a basic amino acid residue is Lys, Arg or Orn.
- 5. The peptide or a salt thereof according to claim 1 wherein R₁ is Ser, D-Ser or D-Ala.
- 6. The peptide or a salt thereof according to claim 2 wherein A is His or Lys.
- 7. The peptide or a salt thereof according to claim 2 wherein B is Leu, Lys or Arg.
- 40 8. The peptide or a salt thereof according to claim 2 wherein C is Asn, Orn, Hci, Asp, Arg, Lys, D-Lys, Ser or Gly.
 - 9. The peptide or a salt thereof according to claim 2 wherein D is Ser, Lys, Asp or Arg.
- 45 10. The peptide or a salt thereof according to claim 1 wherein R₂ is His-Lys-Lys, His-Leu-Lys-Lys, Lys-Lys-Lys-Lys or His-Leu-Lys-Ser.
 - 11. The peptide or a salt thereof according to claim 1 wherein E is Arg or Gln.
- 12. The peptide or a salt thereof according to claim 1 wherein F is Lys, Gln or Arg.
 - 13. The peptide or a salt thereof according to claim 1 wherein G is Lys, Gln, Arg, His, Asn, Thr or Ser.
 - 14. The peptide or a salt thereof according to claim 1 wherein R₃ is Arg-Gln-Gln or Arg-Lys-His.
 - 15. The peptide or a salt thereof according to claim 1 wherein R₄ is Phe, Phe-NH₂, Tyr or Tyr-NH₂.
 - 16. The peptide or a salt thereof according to claim 1, wherein

5

10

25

30

5	(2) (3) (4) or	R₁ R₁ R₁	is is is	Ser, Ser, Ser,	R ₂ R ₂	is is is	His- His- Lys-	Lys- Leu- Lys	·Lys· ·Lys· -Lys	-Lys, -Lys, -Lys, -Lys, -Ser,	R ₃ R ₃ R ₃	is is is	Arg- Arg- Arg-	Lys- Lys- -Lys-	Lys, Lys, ·Lys,	R ₄ R ₄ R ₄	is I is I is	Phe; Phe; Phe;	NH ₂ .
10																			
15																			
20																			
25																			
30																			
35																			
40																			
45																			
55																			

EUROPEAN SEARCH REPORT

EP 93 10 4500

Category	Citation of document with in of relevant pa	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)				
(WO-A-9 200 753 (THE UNIVERSITY OF CALIF page 33, line 20;	ORNIA)	1-4,6-9, 11-13,15	C07K7/10				
(US pages 3188 - 3191 M. ROSENBLATT ET AL Arginines in Parath on Biological Activ	olumn, paragraph 3 -	1-3,5					
	US-A-4 086 196 (G.W * claims; table 2 *	. TRAGEAR)	1-9, 11-13,15					
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)				
				C07K				
	The present search report has be							
7	Place of search THE HAGUE	Date of completion of the search 29 JUNE 1993		Examples FUHR C.K.				
X : part Y : part doc	CATEGORY OF CITED DOCUMEN ticularly relevant if taken alone ticularly relevant if combined with ano ument of the same category	E : earlier patent doc after the filing d	cument, but publi ate n the application					
O: non	nnological background n-written disclosure ermediate document	& : member of the sa document	ame patent family					