Convex cones:
$$x,y \in C$$
 then C convex cone $\Leftrightarrow \theta_1x + \theta_2y \in C$

$$\theta_1,\theta_2 > 0$$

C io		Affine	Convex	Convex Cone
when	01	€ lR	€ [0,1]	> 0
$0, x + (1-0)y \in C$	02	= 1-0,	= 1-07	70
-				

a Are convex cones convex? Yes

Suppose that
$$x, y \in C$$
 (Convex cone)

Huen $\theta_1 x + \theta_2 y \in C$ $\Rightarrow \theta_1 x + (1-\theta_1)y \in C$

$$\forall 0, 0_2 > 0$$

use $0_2 = 1 - 0_1$

provided $0_1 \in [0,1]$

A is affine & convex C is convex

CC is convex cone & convex, not affine

Hyperplane:

 $\{x \in \mathbb{R}^n \mid a^T x = b \}$

single restriction

$$\{x \in \mathbb{R}^2 \mid x_1 = x_2 \}$$

line

$$\frac{2}{2}x \in \mathbb{R}^3 \mid x_3 = 0 \ge$$

plane

Half-space:

$$\{x \in \mathbb{R}^n \mid a^T x \leq b \}$$

Hyperplane divides space into 2 half spaces

 $a^Tx \leq b$

$$a^Tx > b \quad or \quad -a^Tx \leq -b$$

- not affine
- Convex
- · not convex cone unless b=0

(prove)

Polyhedron

: finite intersection of half-spaces & hyporplanes

$$a_1^T x = b_1$$
, $a_2^T x = b_2$...

 $\frac{\{x \in \mathbb{R}^n \mid a_1^T x = b_1, a_2^T x = b_2, \dots a_m x \leq b_m\}}{c_1^T x \leq d_1, c_2^T x \leq d_2, \dots, c_p^T x \leq d_p\}}$