

IR SYSTEM FOR ARGUMENT RETRIEVAL TO ANSWER CONTROVERSIAL QUESTIONS

Master Degree in Computer Engineering at University of Padua, Search Engines Course, Academic Year: 2021/2022

Group: LGTM, General Grievous

Barusco Manuel, Forzan Riccardo, Rizzetto Nicola, Soleymani Elham, Del Fiume Gabriele, Peloso Mario Giovanni

INTRODUCTION: TASK 1

 Purpose: support users who search for arguments to be used in conversations and debates on controversial topics

 Task: retrieve couples of strong "pro" or "con" sentences on the provided topic

Data: args.me corpus, a collection of about 650.000 preprocessed documents extracted from web debate portals and merged in a single csv file

OUR APPROACH: PIPELINE & TECHNIQUES

Parsing/Pre-Processing/Indexing

- Parsing of the CSV file.
- Filtering of the main information extracted.
- Indexing of the parsed data.

Searching

- Searching with different retrieval models:
 - LMDirichlet
 - BM25

Augmentation

- Query Boosting.
- Query Expansion based on the most important query tokens.
- Re-ranking based on:
 - Sentiment Analysis
 - Readability

of the retrieved documents.

PARSING/PRE-PROCESSING/INDEXING

Parsing: parsing of the CSV file structure and extraction of the most important informations fields

Pre-processing: application of different stoplists, filters and stemmers

Indexing: indexing of the pre-processing phase output tokens

PARSING:

Two libraries are used:

- Jackson Library
- Apache CSV

The most important informations fields extracted:

- ID, Conclusion and Stance of the Documents
- Discussion Title and Source Title of the Documents
- Text of the Documents
- Sentences ID

INDEXING: CUSTOM FIELDS

IDKeyField

For key informations such that ID's and Stance

BodyCorrelatedField

For document correlated informations such that DiscussionTitle and SourceTitle

BodyField

For the document text

PRE-PROCESSING: FILTERS

PREPROCESSING: DIFFERENT STOPLISTS

- Tried different stoplist
- Best scores with:
 - No Stop
 - CoreNLP

We decided not to use
Stop Lists

StopList	nDCG@5	P_5	RECALL	
CoreNLP	0.4240	0.3519	0.8507	
CountWords Free	0.4240	0.3482	0.8496	
EBSCO	0.4200	0.3522	0.8496	
GoogleStop	0.4240	0.3519	0.8500	
Ranks	Ranks 0.4080		0.8499	
NO STOP	NO STOP 0.4200		0.8524	

PREPROCESSING: DIFFERENT STEMMERS

- Tried different stemmers on top of No Stop Lists solution
- Best score with:
 - No Stem

Stemmer	nDCG@5	P_5	RECALL	
EnglishMinimal Stemmer	0.3532	0.4200	0.8534	
KStemFilter	0.3833	0.4300	0.8600	
PorterStemmer	0.3533	0.4243	0.8600	
NO STEM	0.4200	0.3532	0.8600	

We decided not to use

Stemmers

SEARCHING: DIFFERENT RETRIEVAL MODELS

We tested two different similarities (on the final version of the system):

- BM25
- LMDirichlet μ = 1700
- LMDirichlet μ = 1800

Similarity	nDCG@5	P_5	RECALL	
BM25	0.4428	0.5120	0.8436	
LMDirichlet	0.3926	0.4720	0.8666	
μ= 1700				
LMDirichlet	0.3870	0.4640	0.8663	
μ= 1700				

We decided to use the BM25 Similarity

AUGMENTATION: QUERY BOOSTING

We search on 4 document fields (SourceTitle, DiscussionTitle, SourceText and Conclusion) so we tried to boost the search on the different fields by using different weights.

Source Text	Conclusion	Discussion Title	Source Title	nDCG@5	P_5	RECALL
0,25	1	1	1	0.2974	0.3760	0.7473
1	0,75	0.5	0.5	0.3225	0.3920	0.7473
1	1	1	0.5	0.2974	0.3760	0.7492
2	1	1	1	0.3455	0.4280	0.7481
4	1	1	1	0.3410	0.4240	0.7391
2	2	1	1	0.3257	0.3920	0.7473
2	0.5	1	1	0.3457	0.4280	0.7410

AUGMENTATION: QUERY EXPANSION

Find keywords

Find synonyms

Generate new queries

The RAKE
algorithm was
used to recognize
the most
significant tokens
of a query

DataMuse API are used to find synonyms for the extracted keywords

Synonyms are used to generate other related queries

AUGMENTATION: QUERY EXPANSION

Expansion algorithm

- Each synonym retrieved by DataMuse API has a similarity score.
- Our query expansion algorithm is parametric so we can adjust the quality of the generated queries.

Expansion results

- The output queries are mixed with the source one.
- Duplicates are removed from the result list.
- The output set of queries is ordered by score.

AUGMENTATION: RE-RANKING

Re-Ranking

Re-ranking algorithm takes into account:

- Sentiment of the query and the conclusion field of documents retrieved
- Readability score of the documents retrieved

Details

We used an implementation of Valence Aware Dictionary and sEntiment Reasoner algorithm for judging the sentiment of text fields.

CONCLUSIONS

- Query expansion marginally improved our system (marginally better recall but loss in precision)
- Sentiment analysis has not produced better results: text fields were too short and it was inapplicable it on the corpus of the document (running time limitations)

System Configuration	nDCG@5	P_5	RECALL
Search with BOOST, NO QE, NO RE-R	0.4428	0.5120	0.8436
Search with BOOST, QE in all token, NO RE-R	0.3961	0.4640	0.7527
Search with BOOST, QE only main token, NO RE-R	0.4294	0.5000	0.7925
Search with BOOST, QE only main token, RE-R Sent	0.2383	0.2760	0.6304
Search with BOOST, QE only main token, RE-R Read	0.1416	0.1800	0.4684

FUTURE WORK

- Better Query Expansion:
 - NLP tools
 - Relevance or Pseudo Relevance Feedback

- Better Re-Rank:
 - Learning To Rank methodologies

THANKS FOR YOUR ATTENTION