DSAA Assignment1

Ziheng Wang SID:12310401

September 2024

1 Answer 1.1

24	Ţ	5	6	23	42	45	2	1	8
1		5	6	23	42	45	2	24	8
1		2	6	23	42	45	5	24	8
1		2	5	23	42	45	6	24	8
1		2	5	6	42	45	23	24	8
1		2	5	6	8	45	23	24	42
1		2	5	6	8	23	45	24	42
1		2	5	6	8	23	24	45	42
1		2	5	6	8	23	24	42	45

2 Answer 1.2

Loop invariant: At the start of each iteration of the for loop of lines 2-6, the subarray $A[1\cdots j-1]$ consists of the element originally in $A[1\cdots n]$, but in sorted order. Besides, all of the elements $A[1\cdots j-1]$ are smaller or equal to the elements in $A[j\cdots n]$

Initialisation: For j = 1 the empty subarray has no element(trivial)

Maintenance: The inner for loop find the index of the minimum of $A[j\cdots n]$ and swap the value of A[j] and A[smallest]. Then because $A[j\cdots n]\geq A[1\cdots j-1]$, we can get $A[j]\geq A[j-1]$. As a result, the subarray $A[1\cdots j]$ is sorted. Meanwhile, $A[1\cdots j-1]\leq A[j+1\cdots n]$ and $A[j]\leq A[j+1\cdots n]$. So $A[1\cdots j]\leq A[j+1\cdots n]$. Then by the end of the iteration, the loop invariant still holds for step j+1

Termination: The loop ends when j=n. Then the loop invariant for j=n says that the subarray $A[1\cdots n-1]$ is sorted and all of the elements are smaller than A[n]. Then the $A[1\cdots n]$ is sorted.

3 Answer 1.3

If we also assume that one execution of each line of the algorithm takes time 1 for INSERTIONSORT. We can get the runtime:

best-case:
$$5n-4$$
 worst-case: $\frac{3}{2}n^2 + \frac{7}{2}n - 4$

We solve the inqualities

$$\begin{cases} n^2 + n \ge 5n - 4 \\ n^2 + n \ge \frac{3}{2}n^2 + \frac{7}{2}n - 4 \end{cases}$$

After solve the inequalities, we can get that for all the $n \in [2, \infty]$, SELECTIONSORT is worse than the **best-case** of INSERTIONSORT but **better** than the **worst-case** of INSERTIONSORT.

ps: If n=1 SELECTIONSORT > INSERTIONSORT

4 Answer 1.4

