Assignment 1 (50 pts)

Due online before class

Thursday, September 1

- **1.(10 pts)** Consider a point p = (2, 6).
 - (a) (4 pts) Suppose that the point undergoes first a translation by b = (1, -2) and then a rotation about the origin through $\frac{\pi}{3}$. Give the coordinates of the resulting point p'.
 - (b) (4 pts) In a second scenario, p at its original position (2,6) first rotates about the origin through $\frac{\pi}{3}$, and then translates by b. Give the coordinates of the resulting point p''.
 - (c) (2 pts) Are rotation and translation commutative?
- **2.(10 pts)** Consider three points $p_1 = (2,3)$, $p_2 = (5,1)$, and q = (1,1). Find the point on the line ℓ through p_1 and p_2 that is the closest to q. You are required to use homogeneous coordinates.
- **3.(8 pts)** Consider a planar displacement T that starts with a rotation about the origin through $\pi/3$ and follows with a translation $\binom{1}{0}$. Locate the point s that is not changed under T. (This point is called the *pole* of T.)
- **4.(10 pts)** Two coordinate frames x-y and u-v share the same origin in the plane. Let \hat{i} and \hat{j} be the unit vectors along the u- and v-axes, respectively. They are represented in x- and y-coordinates.
 - (a) (5 pts) Give the matrix R describing the rotation from the xy-frame to the uv-frame, that is, the matrix mapping a point p in the uv-coordinates $\binom{p_u}{p_v}$ to its xy-coordinates $R\binom{p_u}{p_v}$.
 - (b) (5 pts) Let $\hat{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\hat{j} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Suppose that a point p has coordinates $\begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ in the xy-frame. What are its coordinates $\begin{pmatrix} p_u \\ p_v \end{pmatrix}$ in the uv-frame?
- **5.**(12 pts) In this problem you are required to use homogeneous coordinates.
 - (a) (6 pts) Determine the line passing through (2, -4) and (11, 13).
 - (b) (6 pts) Give the point of intersection of the lines -2x + 3y 8 = 0 and 5x + 2y + 6 = 0.