

2IMN20 - Real-Time Systems

Response-time analysis for fixed-priority preemptive scheduling (2/2)

Geoffrey Nelissen

2023-2024

Disclaimer:

Some slides were provided by Dr. Reinder Bril

Agenda

- Worst-case response-time analysis under preemptive
 Fixed priority scheduling
 - Reminder
 - Generalization (arrival curves)
- Best-case response time analysis for preemptive Fixed priority scheduling
- Worst-case schedulability analysis for periodic or sporadic tasks under preemptive EDF scheduling

For fixed priority preemptive scheduling. How do you call the execution scenario leading to the WCRT of all tasks?

- The optimal release
- The worst-case execution time
- The worst arrival
- The critical instant

For fixed priority preemptive scheduling. How do call the execution scenario leading to the WCRT of all tasks?

- The optimal release
- The worst-case execution time
- The worst arrival
- The critical instant

For fixed priority preemptive scheduling.
Which of the following statements is/are true for a critical instant?

- All tasks have their first job arriving at the same time
- All jobs execute for their worst-case execution time
- All tasks release a first job at the same time
- All jobs are released with their maximum jitter
- The worst-case response time is experienced by the first job of each task
- Jobs are released as slow as possible

For fixed priority preemptive scheduling.
Which of the following statements are true for a critical instant?

- All tasks have their first job arriving at the same time
- All jobs execute for their worst-case execution time
- All tasks release a first job at the same time
- All jobs are released with their maximum jitter
- The worst-case response time is experienced by the first job of each task
- Jobs are released as slow as possible

Which test(s) is/are a **necessary schedulability test** for fixed priority preemptive scheduling of independent sporadic tasks with **constrained deadlines** and no release jitter?

$$1.\sum_{k=1}^{n}U_{k}\leq 1$$

2.
$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

3.
$$\forall \tau_i, R_i \leq D_i \text{ with } R_i = C_i + \sum_{k=1}^{i-1} \left| \frac{R_i}{T_k} \right| \cdot C_k$$

4.
$$\forall \tau_i, \quad C_i + \sum_{k=1}^{l-1} \left[\frac{D_i}{T_k} \right] \cdot C_k \leq D_i$$

5
$$\forall \tau_i$$
, $R_i \leq D_i$ with $R_i = \max_j \{X_{i,j} + \sigma_i - (j-1) \times T_i\}$

with
$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Which test(s) is/are a sufficient schedulability test for fixed priority preemptive scheduling of independent sporadic tasks with constrained deadlines and no release jitter?

$$\sum_{k=1}^{n} U_k \le 1$$

$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

•
$$\forall \tau_i, R_i \leq D_i \text{ with } R_i = C_i + \sum_{k=1}^{i-1} \left| \frac{R_i}{T_k} \right| \cdot C_k$$

$$\forall \tau_i, \quad C_i + \sum_{k=1}^{i-1} \left[\frac{D_i}{T_k} \right] \cdot C_k \le D_i$$

•
$$\forall \tau_i$$
, $R_i \leq D_i$ with $R_i = \max_j \{X_{i,j} + \sigma_i - (j-1) \times T_i\}$

with
$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Which test(s) is/are an **exact schedulability test** for fixed priority preemptive scheduling of independent sporadic tasks with **constrained deadlines** and no release jitter?

$$\sum_{k=1}^{n} U_k \le 1$$

$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

•
$$\forall \tau_i, R_i \leq D_i \text{ with } R_i = C_i + \sum_{k=1}^{i-1} \left| \frac{R_i}{T_k} \right| \cdot C_k$$

$$\forall \tau_i, \quad C_i + \sum_{k=1}^{i-1} \left[\frac{D_i}{T_k} \right] \cdot C_k \le D_i$$

•
$$\forall \tau_i$$
, $R_i \leq D_i$ with $R_i = \max_j \{X_{i,j} + \sigma_i - (j-1) \times T_i\}$

with
$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Which test is a **necessary/sufficient/exact schedulability test** for fixed priority preemptive scheduling of independent sporadic tasks with constrained deadlines and no release jitter?

$$\sum_{k=1}^{n} U_k \le 1$$

Necessary

None

•
$$\forall \tau_i, \ R_i \leq D_i \ \text{with} \ R_i = C_i + \sum_{k=1}^{i-1} \left[\frac{R_i}{T_k}\right] \cdot C_k$$
 Necessary, sufficient, exact

•
$$\forall \tau_i$$
, $C_i + \sum_{k=1}^{l-1} \left[\frac{D_i}{T_k} \right] \cdot C_k \leq D_i$

Sufficient

•
$$\forall \tau_i$$
, $R_i \leq D_i$ with $R_i = \max_j \{X_{i,j} + \sigma_i - (j-1) \times T_i\}$

with
$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Necessary, sufficient, exact

What is the WCRT of task τ_1 when scheduled by rate monotonic priorities?

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	2	5	5	0.4
$ au_2$	4	10	10	0.4
$ au_3$	1	25	25	0.04

$$U = 0.84$$

Reminder:

$$R_i = \sigma_i + X_i$$

where

$$X_i = C_i + \sum_{k=1}^{i-1} \left[\frac{X_i + \sigma_k}{T_k} \right] \cdot C_k$$

• 2

• 8

• 4

• 9

• 5

• 10

What is the WCRT of task τ_2 when scheduled by rate monotonic priorities?

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	2	5	5	0.4
$ au_2$	4	10	10	0.4
$ au_3$	1	25	25	0.04

$$U = 0.84$$

Reminder:

$$R_i = \sigma_i + X_i$$

where

$$X_i = C_i + \sum_{k=1}^{i-1} \left[\frac{X_i + \sigma_k}{T_k} \right] \cdot C_k$$

• 2

• 8

• 4

• 9

• 5

• 10

Exercise

find the WCRT of tasks τ_1 and τ_2 when they are scheduled by rate monotonic priorities

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	2	5	5	0.4
$ au_2$	4	10	10	0.4
$ au_3$	1	25	25	0.04

$$R_i = \sigma_i + X_i$$

$$R_i = \sigma_i + X_i$$
 where
$$X_i = C_i + \sum_{k=1}^{i-1} \left[\frac{X_i + \sigma_k}{T_k} \right] \cdot C_k$$

$$R_1^{(0)} = 2$$

$$R_1^{(1)} = 2 + \sum_{k=1}^{1-1} \left[\frac{R_1^{(0)}}{T_k} \right] \cdot C_k = 2$$

We stop here since $R_1^{(n)} \le R_1^{(n-1)}$

WCRT of τ_1 is 2

Exercise

• find the WCRT of tasks τ_1 and τ_2 when they are scheduled by rate monotonic priorities

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	2	5	5	0.4
$ au_2$	4	10	10	0.4
$ au_3$	1	25	25	0.04

Reminder:

$$R_i = \sigma_i + X_i$$

where

$$X_i = C_i + \sum_{k=1}^{i-1} \left[\frac{X_i + \sigma_k}{T_k} \right] \cdot C_k$$

$$R_2^{(0)} = 4$$

$$R_2^{(1)} = 4 + \sum_{k=1}^{2-1} \left[\frac{R_2^{(0)}}{T_k} \right] \cdot C_k = 4 + \left[\frac{4}{5} \right] \cdot 2 = 6$$

$$R_2^{(1)} \le R_2^{(0)}$$
? NO, so continue

$$R_2^{(2)} = 4 + \sum_{k=1}^{2-1} \left[\frac{R_2^{(1)}}{T_k} \right] \cdot C_k = 4 + \left[\frac{6}{5} \right] \cdot 2 = 8$$

$$R_2^{(2)} \le R_2^{(1)}$$
? NO, so continue

$$R_2^{(3)} = 4 + \sum_{k=1}^{2-1} \left[\frac{R_2^{(2)}}{T_k} \right] \cdot C_k = 4 + \left[\frac{8}{5} \right] \cdot 2 = 8$$

$$R_2^{(3)} \le R_2^{(2)}$$
? Yes, so stop

WCRT of au_2 is 8

Exercise

• find the WCRT of tasks τ_1 and τ_2 when they are scheduled by rate monotonic priorities

$ au_i$	C_i	T_i	D_i	U_i
$ au_1$	2	5	5	0.4
$ au_2$	4	10	10	0.4
$ au_3$	1	25	25	0.04

Reminder:

$$R_i = \sigma_i + X_i$$

where

$$X_i = C_i + \sum_{k=1}^{i-1} \left[\frac{X_i + \sigma_k}{T_k} \right] \cdot C_k$$

$$R_3^{(0)} = 1$$

$$R_3^{(1)} = 1 + \sum_{k=1}^{3-1} \left[\frac{R_3^{(0)}}{T_k} \right] \cdot C_k = 1 + \left[\frac{1}{5} \right] \cdot 2 + \left[\frac{1}{10} \right] \cdot 4 = 7$$

$$R_3^{(1)} \le R_3^{(0)}$$
? NO, so continue

$$R_3^{(2)} = 1 + \sum_{k=1}^{2-1} \left[\frac{R_3^{(1)}}{T_k} \right] \cdot C_k = 1 + \left[\frac{7}{5} \right] \cdot 2 + \left[\frac{7}{10} \right] \cdot 4 = 9$$

$$R_3^{(2)} \le R_3^{(1)}$$
? NO, so continue

$$R_3^{(3)} = 1 + \sum_{k=1}^{2-1} \left[\frac{R_3^{(2)}}{T_k} \right] \cdot C_k = 1 + \left[\frac{9}{5} \right] \cdot 2 + \left[\frac{9}{10} \right] \cdot 4 = 9$$

$$R_3^{(3)} \le R_3^{(2)}$$
? Yes, so stop

WCRT of au_3 is 9

Visualizing the WCRT: the critical instant

$ au_i$	C_i	T_i	D_i	U_i	R_i
$ au_1$	2	5	5	0.4	2
$ au_2$	4	10	10	0.4	8
$ au_3$	1	25	25	0.04	9

Agenda

- Worst-case response-time analysis under preemptive
 Fixed priority scheduling
 - Reminder
 - Generalization (arrival curves)
- Best-case response time analysis for periodic tasks under preemptive Fixed priority scheduling
- Worst-case schedulability analysis for periodic or sporadic tasks under preemptive EDF scheduling

The most generic WCRT test we learned so far

Level-i busy window

$$L_i = \sum_{k=1}^{l} \left[\frac{L_i + \sigma_k}{T_k} \right] \cdot C_k$$

$$N_i = \left[\frac{L_i + \sigma_i}{T_i} \right]$$

Jobs finishing times relative to the first job release time

$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Valid for periodic/sporadic independent tasks with release jitter and arbitrary deadlines

Worst-case response time

$$R_{i,j} = X_{i,j} + \sigma_i - (j-1) \times T_i$$

$$(R_i = \max_{1 \le j \le N_i} \{R_{i,j}\})$$

The most generic WCRT test we learned so far

Level-i busy window

$$L_i = \sum_{i} \left[L_i + \sigma_k \right] \cdot C_i$$

$$N_i = \left[\frac{L_i + \sigma_i}{L_i}\right]$$

Jok

What if the tasks are not periodic or sporadic?

Is there a way to extend the existing test?

Wd

What tools do we know to model any arbitrary release patterns?

$$R_{i,j} - A_{i,j} + O_i - (j-1) \times I_i$$
 Arrival curve

Modelling complex arrival patterns with arrival curves

 An arrival curve represents the lower bound and upper bound on the number of events in any time interval.

 α^+ = maximum number of events in any interval of duration δ

 α^- = minimum number of events in any interval of duration δ

Inverse function of arrival curves

 The inverse of arrival curves provide a lower bound and upper bound on the inter-arrival time between consecutive events in a system.

$$\delta^+$$
 = maximum inter-arrival time between η events

$$\delta^-$$
 = minimum inter-arrival time between η events

Understanding the terms

Level-i busy window

$$L_i = \sum_{k=1}^{i} \left[\frac{L_i + \sigma_k}{T_k} \right] \cdot C_k$$

$$N_i = \left\lceil \frac{L_i + \sigma_i}{T_i} \right\rceil$$

Jobs finishing times relative to the first job release time

$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \left[\frac{X_{i,j} + \sigma_k}{T_k} \right] \cdot C_k$$

Worst-case response time

$$R_{i,j} = X_{i,j} + \sigma_i - (j-1) \times T_i$$

$$(R_i = \max_{1 \le j \le N_i} \{R_{i,j}\})$$

$$L_i = \sum_{k=1}^i \left| \frac{L_i + \sigma_k}{T_k} \right|$$

the terms

Count the maximum number of jobs released by task τ_k in the interval $[0, X_{i,j})$

Equivalent to $\alpha_k^+(L_i)$

Equivalent to

$$\alpha_i^+(L_i)$$

$$N_i = \left[\frac{L_i + \sigma_i}{T_i} \right]$$

j jobs of au_i must execute until the finish time of the j^{th} jobs of au_i

$$X_{i,i} = i \times C_i + \sum_{i=1}^{i-1}$$

Equivalent to $\alpha_{i}^{+}(X_{i,i})$

For all higher-priority tasks

Number of jobs of au_i release in the level-i busy window

$$\cdot C_k$$

Equivalent to $\alpha_k^+(X_{i,j})$

Count the maximum number of jobs released by task au_k in the interval $[0, X_{i,j})$

$$R_{i,j} = X_{i,j} + \sigma_i - (j-1) \times T_i$$

ponse time

$$R_i = \max_{1 \le j \le N_i} \{R_{i,j}\}$$

Understanding the terms

Level-i busy window

$$L_i = \sum_{k=1}^{3} \alpha_k^+(L_i) \cdot C_k$$

$$N_i = \alpha_i^+(L_i)$$

Jobs finishing times relative to the first job release time

$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \alpha_k^+(X_{i,j}) \cdot C_k$$

Worst-case response time

$$R_{i,j} = X_{i,j} + \sigma_i - (j-1) \times T_i$$

$$R_i = \max_{1 \le j \le N_i} \{R_{i,j}\}$$

Understanding the terms

Level-i busy window

$$L_i = \sum_{k=1}^{s} \alpha_k^+(L_i) \cdot C_k$$

$$N_i = \alpha_i^+(L_i)$$

Jobs finishing times relative to the first job release time

$$X_{i,j} = j \times C_i + \sum_{k=1}^{i-1} \alpha_k^+(X_{i,j}) \cdot C_k$$

Worst-case response time

$$R_{i,j} = (X_{i,j} + \sigma_i) - ((j-1) \times T_i)$$

$$R_i = \max_{1 \le j \le N_i} \{R_{i,j}\}$$

Time from the arrival of the first job au_i to the finish time the j^{th} jobs of au_i

Earliest arrival time of the j^{th} jobs of τ_i

Equivalent to $\delta_i^-(j)$

For all higher or equal-priority tasks than τ_i

the terms

Count the maximum number of jobs released by task τ_k in the interval $[0, L_i]$

$$L_i = \sum_{k=1}^l \alpha_k^+(L_i) \cdot C_k$$

$$C_k$$

$$N_i = \alpha_i^+(L_i)$$

For all higher or equal-priority Jobs fil tasks than τ_i

Number of jobs of τ_i release in the level-i busy window

$$(X_{i,j}) = j \times C_i + \sum_{k=1}^{i-1} \alpha_k^+(X_{i,j})$$

Latest finishing time of the j^{th} jobs of τ_i

Jnse time

Count the maximum number of jobs released by task τ_k in the interval $[0, X_{i,i}]$

$$R_{i,j} = X_{i,j} + \sigma_i - \delta_i (j)$$

$$(R_i = \max_{1 \le j \le N_i} \{R_{i,j}\}$$

Worst-case response time of the j^{th} jobs of τ_i IRIS

Earliest arrival of the j^{th} jobs of τ_i

WCRT of τ_i

28

Agenda

- Worst-case response-time analysis under preemptive
 Fixed priority scheduling
 - Reminder
 - Generalization (arrival curves)
- Best-case response time analysis for preemptive Fixed priority scheduling
- Worst-case schedulability analysis for periodic or sporadic tasks under preemptive EDF scheduling

Motivation

Why would we be interested in the best-case?

Motivation 1

Too early may be as bad as too late!

Example: airbag system

Motivation 2

Used for activation jitter of tasks in multicore/distributed systems

Example: distributed system

- 1. a strictly **periodic** system event activates a **task** τ_i
- 2. Task τ_i sends message μ_i on the bus/network
 - \rightarrow Response time jitter of τ_i causes release jitter of μ_i
- 3. Message μ_i triggers task τ_k :
 - \rightarrow Transmission time jitter of μ_j causes release jitter of τ_k
- 4. Task τ_k generates a *system* response

Release jitter of τ_k influences the system response and response times of task τ_l with a lower priority

Best-case vs worst-case

 The best-case response time is the dual of the worst-case response time

Worst-case response time

$$R_i = \sup\{R_{i,j} | \forall j, 1 \le j \le \infty\}$$

Assume jobs execute for their **WCET**

Assume latest possible release

Assume **largest** possible interference by higher priority tasks

Assume largest possible blocking

Best-case response time

$$BR_i = \inf\{R_{i,j} | \forall j, 1 \le j \le \infty\}$$

Assume jobs execute for their **BCET**

Assume earliest possible release

Assume **smallest** possible interference by higher priority tasks

Assume **smallest** possible blocking

Best-case response time: general case

 The best-case response time is the dual of the worst-case response time

Worst-case response time

$$R_i = \sup\{R_{i,j} | \forall j, 1 \le j \le \infty\}$$

If $R_i \leq T_i$, R_i is the **smallest** positive solution of

$$X_i = C_i + \sum_{k=1}^{i-1} \alpha_k^+(X_i) \cdot C_k$$

$$R_i = X_i + \sigma_i$$

Best-case response time

$$BR_i = \inf\{R_{i,j} | \forall j, 1 \le j \le \infty\}$$

If $BR_i \leq T_i$, BR_i is the *largest* positive solution of

$$BR_i = BCET_i + \sum_{k=1}^{i-1} \alpha_k^{-}(BR_i) \cdot BCET_k$$

What does α_k^- look like for periodic or sporadic tasks with release jitter?

Optimal instant for periodic tasks

(opposite of critical instant)

- An *optimal* instant of task τ_i is when τ_i "assumes" its BR_i .
- An optimal instant requires to minimize the number of higher priority jobs executing during τ_i 's response time
 - Job $\tau_{i,k}$ ends simultaneously with the release of all tasks with a higher priority, and $\tau_{i,k}$'s release time is equal to its start time.
 - Optimal instant different for each task!

Optimal instant for periodic tasks - visualisation

• **Timeline:** optimal instant for τ_2

Optimal instant for periodic tasks - visualisation

• **Timeline:** optimal instant for τ_3

Optimal instant for periodic tasks - calculation

• BR_i is the *largest* positive solution of the recursive equation

$$x = BCET_i + \sum_{k < i} \left(\left\lceil \frac{x}{T_k} \right\rceil - 1 \right) BCET_k$$
 Minimum number of jobs released by task τ_k in the interval $[0, x)$

Solved with an iterative procedure:

Initialize to the WCRT because
$$BR_i^{(0)} = R_i$$

$$BCRT \leq WCRT \text{ by definition}$$

$$BR_i^{(l+1)} = BCET_i + \sum_{k \leq i} \left(\left\lceil \frac{BR_i^{(l)}}{T_k} \right\rceil - 1 \right) BCET_k$$

Stop iterating when the same value is found for two successive iterations.

Techniques

• Example for task τ_3 : $C_1 = 3, T_1 = 10$ $C_2 = 11, T_1 = 19$ $C_3 = 5, T_3 = 100$

Techniques

- Example for task τ_3 : $C_1 = 3, T_1 = 10$ $C_2 = 11, T_1 = 19$ $C_3 = 5, T_3 = 100$
 - $BR_3^{(0)} = R_3 = 56$
 - $BR_3^{(1)} = C_3 + \sum_{j < 3} (\lceil BR_3^{(0)}/T_j \rceil 1)C_j = 5 + (\lceil 56/10 \rceil 1) \cdot 3 + (\lceil 56/19 \rceil 1) \cdot 11 = 5 + 5 \cdot 3 + 2 \cdot 11 = 42$
 - $BR_3^{(2)} = 5 + (\lceil 42/10 \rceil 1) \cdot 3 + (\lceil 42/19 \rceil 1) \cdot 11 = 5 + 4 \cdot 3 + 2 \cdot 11 = 39$
 - $BR_3^{(3)} = 5 + (\lceil 39/10 \rceil 1) \cdot 3 + (\lceil 39/19 \rceil 1) \cdot 11 = 5 + 3 \cdot 3 + 2 \cdot 11 = 36$
 - $BR_3^{(4)} = 5 + (\lceil 36/10 \rceil 1) \cdot 3 + (\lceil 36/19 \rceil 1) \cdot 11 = 5 + 3 \cdot 3 + 1 \cdot 11 = 25$
 - $BR_3^{(5)} = 5 + (\lceil 25/10 \rceil 1) \cdot 3 + (\lceil 25/19 \rceil 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22$
 - $BR_3^{(6)} = 5 + (\lceil 22/10 \rceil 1) \cdot 3 + (\lceil 22/19 \rceil 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22$
 - Because $BR_3^{(5)} = BR_3^{(6)} = 22$, $BR_3 = 22$.

Jitter analysis

- Types of jitter:
 - Activation or release jitter σ_i : variation in release times (e.g. output of one task triggers a next task or delay induced by OS to treat an event and make the task ready)
 - Response jitter: variations in response times
- Response jitter RJ_i of a task τ_i :

$$RJ_i \stackrel{\text{def}}{=} \sup_{\phi,k,l} (R_{i,k}(\phi) - R_{i,l}(\phi))$$

• A bound on response jitter: $RJ_i \leq R_i - BR_i$

Note: this is only an upper bound (hence the \leq) because R_i and BR_i may be obtained for different phasings

