Map-aware Motion Prediction

Course 4, Module 2, Lesson 2

Learning Objectives

- Describing a set of assumptions made by map-aware algorithms to improve motion prediction
- Define a lane follow method to improve positional prediction
 - Identify strategies to handle multiple future lane choices
- Determine methods for velocity modulation around regulatory elements
- Identify issues and short-falls with the map-aware assumptions

Assumptions to Improve Prediction

Positional Assumptions

- Vehicles on driving lane usually follow the given drive lane
- Changing drive lanes is usually prompted by an indicator signal

Velocity Assumptions

- Vehicles usually modify their velocity when approaching restrictive geometry (tight turns)
- Vehicles usually modify the velocity when approaching regulatory elements

Improvement of Position Estimation

- Roadways with natural curvature
- Vehicles on drive lane usually follow the given drive lane
- The predicted path is set to follow the center of the driving lane which the dynamic vehicle is on

Improvement of Path Prediction

• Problems with the model:

 Difficult to predict lane change maneuvers without extra information

Improvement of Path Prediction

- Problems with the model:
 - Difficult to predict lane change maneuvers without extra information
 - Multiple possible lanelets such as when on an intersection

Improvement of Path Prediction

- Solution with the model:
 - Most likely prediction
 - Multi-hypothesis prediction

Multi-hypothesis Approach

- Consider the range of all possible motions
 - Left, right, stay stopped
- Provides more information to local planner
- Safer due to human error (forgotten turn signal)

Improvements to Velocity Prediction

- Road curvature can be used to improve the velocity prediction over the path
 - Maximum lateral acceleration:
 0.5 -1 m/s²

Improvements to Velocity Prediction

- Road curvature can be used to improve the velocity prediction over the path
- Improve the velocity prediction based on regulatory elements in the environment
 - Stop locations, deceleration profiles
 - Lanelet priors

Issues with the Assumptions

- Vehicles don't always stay within their lane or stop at regulatory elements
- Vehicles off of the road map cannot be predicted using this method

Summary

- Described a set of assumptions made by map-aware algorithms to improve motion prediction
- Defined position-based and velocity-based prediction enhancements
 - Identify strategies to generated multiple hypotheses
- Identified issues with the map-aware assumptions
- Next: Calculating time to collision