

Winning Space Race with Data Science

<Yaoshen Li><15.09.2022>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- -Data Collection (API)
- -Data Collection (Web Scraping)
- -Data Wrangling
- -EDA with SQL
- -EDA with Data Visualization
- -Launch Sites Locations Analysis with Folium
- -Machine Learning Prediction
- •Summary of all results
 - -Exploratory Data Analysis result
 - -Interactive analytics in screenshots
 - -Predictive Analytics result

Introduction

- Project background and context
 - SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch. In this project, we need to predict whether the first stage rocket will land successfully
- Problems you want to find answers
 - 啊手动阀手动阀

Methodology

Executive Summary

- Data collection methodology:
 - Though API and Web Scraping do we collect the data
- Perform data wrangling
 - We dealt with the unmeaningful data through python
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Describe how data sets were collected.
 - API
 - We get data in form of JSON through API, we turned it into pandad dataframe and normalized it
 - We do the data Wrangling by check the missing value and filling the missing value
 - Web Scraping
 - Get data through tool of BeautifulSoup

Data Collection - SpaceX API

 With SpaceX API we collect data, clean the requested data and did some basic data wrangling and formatting.

 https://github.com/start0036/Appl ied-Data-Science-Capstone/blob/main/Data%20Coll ection.ipynb

Data Collection - Scraping

 With the library of BeautifulSoup we collect the data on website

https://github.com/start0036
/Applied-Data-ScienceCapstone/blob/main/Data%2
OWebscraping.ipynb

TASK 1: Request the Falcon9 Launch Wiki page from its URL First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response. [8]: # use requests.get() method with the provided static_url # assign the response to a object data = requests.get(static_url) data.status code [8]: 200 Create a BeautifulSoup object from the HTML response [11]: # Use BeautifulSoup() to create a BeautifulSoup object from a response text content soup = BeautifulSoup(data.text, 'html.parser') Print the page title to verify if the BeautifulSoup object was created properly [12]: # Use soup.title attribute soup.title [12]: <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>

Data Wrangling

- Wrangling Process
 - Calculate the number of launches on each site
 - Calculate the number and occurrence of each orbit
 - Calculate the number and occurence of mission outcome per orbit type
 - Create a landing outcome label from Outcome column

 https://github.com/start0036/Applied-Data-Science-Capstone/blob/main/Data%20Wangling.ipynb

Data Wrangling

EDA with Data Visualization

• We did research to find out the relationship among flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend. (Chart see below)

• https://github.com/start0036/Applied-Data-Science-
Capstone/blob/main/EDA%20with%20Visualization.ipynb

EDA with Data Visualization

EDA with Data Visualization

EDA with SQL

- We used library sqlalchemy to handle with the data, and we....
 - Display the names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - List the date when the first succesful landing outcome in ground pad was acheived.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - List the total number of successful and failure mission outcomes
 - List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
 - Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
- https://github.com/start0036/Applied-Data-Science-Capstone/blob/main/EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

- We point out all the information such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We point out which launch sites has higher successful launch rate.
- We answered questions like:
 - Are all launch sites in proximity to the Equator line?
 - Are all launch sites in very close proximity to the coast?

 https://github.com/start0036/Applied-Data-Science-Capstone/blob/main/Launch%20Sites%20Locations%20Analysis%20with%20Folium.ipynb

Build a Dashboard with Plotly Dash

• We draw the dashboard with plotly dash and a chart about total launches by a certain sites and revealed the relationship with Outcome and Payload Mass (Kg) for the different booster version

 https://github.com/start0036/Applied-Data-Science-Capstone/blob/main/Launch%20Sites%20Locations%20Analysis%20with%2 OFolium.ipynb

Predictive Analysis (Classification)

- We use numpy and pandas to deal with the data and divide them into traiding part and test part
- We built a different model
- We calculate the accuracy of each model and chose the best one
- https://github.com/start0036/Applied-Data-Science-Capstone/blob/main/SpaceX Machine%20Learning%20Prediction Part 5%2 0(1).ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Flight Number

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA' In [44]: %sql SELECT * FROM SPACEXTBL WHERE launch site LIKE 'CCA%' LIMIT 5 * ibm_db_sa://cxj24332:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done. Out[44]: DATE time_utc_ booster_version launch_site payload payload_mass_kg_ orbit customer mission_outcome landing_outcome 04-06-CCAFS LC-18:45:00 F9 v1.0 B0003 Dragon Spacecraft Qualification Unit 0 LEO SpaceX Failure (parachute) Success 2010 08-12-CCAFS LC-Dragon demo flight C1, two CubeSats, barrel NASA (COTS) LEO 15:43:00 Success Failure (parachute) F9 v1.0 B0004 0 2010 (ISS) 40 of Brouere cheese NRO 22-05-CCAFS LC-LEO 07:44:00 F9 v1.0 B0005 Dragon demo flight C2 525 NASA (COTS) Success No attempt 2012 (ISS) 08-10-CCAFS LC-LEO NASA (CRS) 00:35:00 F9 v1.0 B0006 SpaceX CRS-1 500 No attempt Success 2012 (ISS) CCAFS LC-01-03-LEO 15:10:00 F9 v1.0 B0007 SpaceX CRS-2 677 NASA (CRS) Success No attempt 2013 (ISS)

Total Payload Mass

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) In [46]: **sql SELECT SUM(payload_mass__kg_) AS Total_PayloadMass FROM SPACEXTBL WHERE Customer LIKE 'NASA (CRS)' **ibm_db_sa://cxj24332:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done. Out[46]: total_payloadmass 45596

Average Payload Mass by F9 v1.1

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

```
List the total number of successful and failure mission outcomes

In [64]:  
**sql SELECT COUNT (*) FROM SPACEXTBL where Mission_Outcome LIKE 'Success%'

**ibm_db_sa://cxj24332:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done.

Out[64]:  
1  
100

In [65]:  
**sql SELECT COUNT (*) FROM SPACEXTBL where Mission_Outcome LIKE 'Failure%%'

**ibm_db_sa://cxj24332:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done.

Out[65]:  
1  
1
```

Boosters Carried Maximum Payload

Task 8

F9 B5 B1060.3

15600

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

In [67]: %sql SELECT Booster_Version, payload_mass_kg_ FROM SPACEXTBL WHERE payload_mass_kg_ = (SELECT MAX(payload_mass_kg_) FROM SPACEXTBL) * ibm db sa://cxj24332:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done. Out[67]: booster_version payload_mass_kg_ F9 B5 B1048.4 15600 F9 B5 B1048.5 15600 F9 B5 B1049.4 15600 F9 B5 B1049.5 15600 F9 B5 B1049.7 15600 F9 B5 B1051.3 15600 F9 B5 B1051.4 15600 F9 B5 B1051.6 15600 F9 B5 B1056.4 15600 F9 B5 B1058.3 15600 F9 B5 B1060.2 15600

global map markers

5

launch sites

distance to landmarks

Success percentage of all sites

Success rate

Classification Accuracy

Confusion Matrix

Conclusions

- Launch success rate increase in 2013 till 2020
- The Decision tree is the best algorithm
- KSC LC-39A is best

