Übungsblatt 9 zur Linearen Algebra I

Aufgabe 28. Ableiten und Integrieren als Endos im \mathbb{R} -VR $\mathbb{R}[X]$ (2+2+2+2=8 Punkte)

Es sei $\mathbb{R}[X]$ der Polynomring über dem Körper \mathbb{R} (mit einer Unbestimmten); $\mathbb{R}[X]$ ist bekanntlich unendlich dimensionaler \mathbb{R} -Vektorraum. Wir bezeichnen diesen Vektorraum kurz mit V. Folgende Abbildungen D und I von V nach V werden betrachtet:

$$D: V \to V, \ p(X) = \sum_{k=0}^{n} a_k X^k \mapsto \sum_{k=1}^{n} k a_k X^{k-1} = p'(X)$$

$$I: V \to V, \ p(X) = \sum_{k=0}^{n} a_k X^k \mapsto \sum_{k=0}^{n} \frac{1}{k+1} a_k X^{k+1} = \int_{0}^{X} p(t) dt$$

- a) $D, I \in Hom(V, V)$.
- b) D ist surjektiv, aber nicht injektiv.
- c) I ist injektiv, aber nicht surjektiv.
- d) Man bestimme explizit die Abbildungsvorschrift der Hintereinanderausführungen $D\circ I$ und $I\circ D.$

Ergänzende Bemerkung:

Für einen endlich dimensionalen K-Vektorraum W und eine K-lineare Abbildung $f:W\to W$ gilt "f surjektiv $\Leftrightarrow f$ injektiv $\Leftrightarrow f$ bijektiv". b) und c) zeigen, dass "..." nicht auf unendlich dimensionales W ausgeweitet werden kann.

Aufgabe 29. Die Elemente der Diedergruppe als Endos im \mathbb{R} -Vektorraum \mathbb{R}^2 (4+2=6 Punkte)

An der Beschreibung der Dieder-Gruppe D_4 in **Aufgabe 9** erkennt man, dass jedes Element von D_4 eine \mathbb{R} -lineare Abbildung von \mathbb{R}^2 nach \mathbb{R}^2 ist; jedes Element von D_4 ist von der Form $f: \mathbb{R}^2 \ni x \mapsto Ax \in \mathbb{R}^2$, wobei $A = M(f; B, B) \in \mathbb{R}^{2 \times 2}$ mit der Standardbasis $B = (e_1, e_2)$ von \mathbb{R}^2 .

a) Für R_i , S_k (i = 0, 1, 2, 3, k = 1, 2, 3, 4) bestimme man die Matrizen $M(R_i; B, B)$, $M(S_k; B, B)$.

Hinweis vorab zu b) (Er soll nicht nachgewiesen werden, dient vielmehr als Grundlage für b)!): Für $n \in \{2,3,4,\ldots\}$ bilden die $n \times n$ -Matrizen mit Komponenten in $\mathbb R$ (also insbesondere die 2×2 -Matrizen mit Komponenten in $\mathbb R$) mit der Multiplikation $A \cdot A' = (a_{ij}) \cdot (a'_{ij}) = (c_{ij})$, $c_{ij} := a_{i1}a'_{1j} + a_{i2}a'_{2j} + \ldots + a_{in}a'_{nj}$ ein Monoid mit dem neutralen Element $E_n = (\delta_{ij}), \delta_{ij} := 0$ für $i \neq j, \delta_{ii} := 1$.

b) Man zeige, dass die acht Matrizen von a) bezüglich der Multiplikation von Matrizen eine nichtabelsche Gruppe bilden.

Hilfe: Es empfiehlt sich die Herstellung eines Bezugs zu dem, was bereits in **Aufgabe 9** gezeigt wurde.

Aufgabe 30. Ein Beispiel für einen Endomorphismus von \mathbb{R}^3 aus dem Bereich der Wirtschaft (2+1+2=5 Punkte)

Drei Firmen A, B, C mit den Marktanteilen $\alpha_0,\beta_0,\gamma_0[\%]$ ($\alpha_0+\beta_0+\gamma_0=100$) konkurrieren. Nach einer Werbekampagne werden nach einem Jahr folgende Kundenbewegungen festgestellt: A hat 5% seiner Kunden an B und 10% seiner Kunden an C verloren, B hat 15% an A und 10% an C verloren, C hat jeweils 5% an A und B verloren.

(Anders ausgedrückt: A hat beispielsweise nur 85% seiner Vorjahreskunden behalten, aber 15% der Vorjahreskunden von B und 5% der Vorjahreskunden von C dazu gewonnen.)

a) Welche Marktanteile $\alpha_1, \beta_1, \gamma_1 [\%]$ ($\alpha_1 + \beta_1 + \gamma_1 = 100$) haben die Firmen A, B, C nach einem Jahr?

Man formuliere dies als lineares Gesetz, d.h. als eine \mathbb{R} -lineare Abbildung

$$\mathbb{R}^3\ni x\mapsto Mx\in\mathbb{R}^3 \text{ mit einer Matrix } M\in\mathbb{R}^{3\times3}, \text{ so dass } \begin{pmatrix}\alpha_1\\\beta_1\\\gamma_1\end{pmatrix}=M\begin{pmatrix}\alpha_0\\\beta_0\\\gamma_0\end{pmatrix}$$

Der gleiche Trend setzt sich auch in den kommenden Jahren fort.

- b) Man berechne, welche Marktanteile die Firmen A, B, C nach zwei und drei Jahren haben.
- c) Man ermittle, für welche Marktanteile $(\alpha_0, \beta_0, \gamma_0)$ dieser Trend nichts ändern würde.