Homework 2: Turkish Inflation vs Unemployment, Linear Regression and 95% Prediction Intervals

In this homework we were asked to find and download any data of our choice that we expected to be correlated. I was not very creative and ended up choosing Turkey's inflation and unemployment data that I retrieved from the Worldbank API. My expectation was that inflation and unemployment should be negatively correlated as when employment increases, wages increase which drives inflation.

After accessing the data, we were asked to clean it from NaNs, for which I implemented the CleanData class. This class not only fills NaNs, but first orders the data ascendingly as to reduce errors caused by the filling process of the NaNs. The class also checks for other basics such as input type and data lengths being equal.

Once the data is accessed and cleaned, we were asked to apply a regression formula on it to make predictions and find confidence intervals. I am not coming from a statistics, mathematics or engineering background, so I choose the only regression formula I learnt in my Business classes where; b0 = ybar - (xbar*b1) and $b1 = sum((xi-xbar)*(yi-ybar)) / sum((xi-xbar)^2)$. For the 95% prediction intervals I used the formula yhat +- RMSE*2, where yhat is the prediction and RMSE is root mean squared error.

Using the betas from the regression, I predicted what values (unemployment) would result from my independent variable (inflation). So, unemployment = b0 + b1*inflation. On each prediction value I also applied the 95% prediction interval to find an upper and lower limit. I also masked the results to show the outliers, the data that are outside the 95% prediction interval. **The betas were as follows:**

b0	b1		
11.5327	-0.0367		

The resulting scatter plot with predictions and 95% confidence interval:

Numerical Results and the final resulting pandas. DataFrame:

	inflation une	mployment upp	er predictions	lower out	tlier error
0	1.119638	12.0600 14.5818	85 11.491696	8.401508	False -0.568304
1	3.172857	12.0600 14.5066	31 11.416442	8.326253	False -0.643558
2	3.888320	12.0600 14.4804	08 11.390219	8.300030	False -0.669781
3	4.555534	12.0600 14.4559	53 11.365764	8.275576	False -0.694236
4	4.924194	12.0600 14.4424	41 11.352252	8.262064	False -0.707748
5	5.664740	12.0600 14.4152	99 11.325110	8.234921	False -0.734891
6	6.046240	12.0600 14.4013	16 11.311127	8.220938	False -0.748873
7	6.250977	12.5522 14.3938	12 11.303623	8.213434	False -1.248577
49	65.978568	8.2100 12.204	584 9.114495	6.024306	False 0.904495
50	66.093843	8.9620 12.2004	459 9.110270	6.020081	False 0.148270
51	68.809643	8.0400 12.1009	920 9.010731	5.920542	False 0.970731
52	70.076104	8.5090 12.054	502 8.964313	5.874124	False 0.455313
53	80.412151	6.6290 11.675	566 8.585477	5.495289	False 1.956477
54	84.641343	6.8880 11.520	558 8.430470	5.340281	False 1.542470
55	85.669362	6.8410 11.4829	980 8.392791	5.302602	False 1.551791
56	89.113317	7.6440 11.356	752 8.266563	5.176375	False 0.622563
57	94.260860	12.0600 11.168	085 8.077896	4.987708	True -3.982104
58	105.214986	8.5770 10.766	596 7.676407	4.586218	False -0.900593

Conclusion:

The data was negatively correlated as I expected, the numpy.corrcoef resulted in a -0.56 which is fairly strong. My linear regression estimates look fine on the plot, however I am not very happy with the prediction intervals as they are linear, I would have wanted a method with curved intervals near the middle. Overall there was only one outlier and I am ok with this analysis.