Data Structures and Algorithms Lab

Lab 02 Marks 10

Instructions

- Work in this lab individually. Follow the best coding practices and include comments to explain the logic where necessary.
- You can use your books, notes, handouts, etc. but you are not allowed to borrow anything from your peer student.
- Do not use any AI tool for help; doing so will be considered cheating and may result in lab cancellation and possible disciplinary action.
- Test your program thoroughly with various inputs to ensure proper functionality and error handling.
- Show your work to the instructor before leaving the lab to get some or full credit.

Finding Common Elements in Two Arrays

You are given two arrays, both containing *n* elements. Write functions to determine the **intersection** (i.e., common elements) of these two arrays, based on the **time complexity** requirements given below. You can assume that there are **no duplicates** in either of the two arrays.

Task 01

Implement the function:

which takes three integer arrays of size *n* as parameters. The intersection of arrays **A** and **B** will be stored in array **C**. This function will **return the number of elements** that were stored in array **C**.

The worst-case time complexity of this function should be $O(n^2)$. You are not allowed to create any new array(s).

Example 1	Example 2	Example 3
Input:	Input:	Input:
A = [7, 1, 5, 3]	A = [1, 6, 9, 2]	A = [2, 1, 4, 3]
B = [4, 3, 8, 5]	B = [3, 7, 8, 4]	B = [3, 2, 1, 4]
n = 4	n = 4	n = 4
Output:	Output:	Output:
C = [5, 3] // Order is based on appearance in A	C = []	C = [2, 1, 4, 3] // Follows order of A
Return Value: 2	Return Value: 0	Return Value: 4

Task 02

Now, you can assume that both the input arrays contain the numbers which are **sorted** in increasing order. Implement the function:

The worst-case time complexity of this function should be O(nlgn). You are not allowed to create any new array(s).

Example 1	Example 2	Example 3
Input:	Input:	Input:
A = [1, 3, 5, 7]	A = [2, 4, 6, 8]	A = [10, 20, 30]
B = [3, 5, 8, 9]	B = [1, 3, 5, 7]	B = [10, 20, 30]
n = 4	n = 4	n = 3
Output:	Output:	Output:
C = [3, 5] // Naturally sorted due to input being sorted	C = []	C = [10, 20, 30]
Return Value: 2	Return Value: 0	Return Value: 3

Task 03: Find the kth Smallest Element

Write a function to determine the k^{th} smallest element of an array containing n elements. The prototype of your function should be:

- A[] is the array containing n integers.
- **k** is the position (1-based index) of the smallest element you want to find.
- You are strictly **not allowed to sort the array**.

Also, determine the time complexity of your function and ensure it is clearly mentioned in your implementation.

Example 1	Example 2	Example 3
Input:	Input:	Input:
A = [7, 10, 4, 3, 20, 15]	A = [1, 2, 3, 4, 5]	A = [9, 3, 2, 8, 5, 6, 7]
n = 6	n = 5	n = 7
k = 3	k = 2	k = 5
Output:	Output:	Output:
4	2	7