Package 'rmimp'

July 14, 2015

Title Predicting the impact of phosphorylation	of mutations on kinase-substrate
Version 1.0	
Date 2013-10-29	
Author Omar Wagih	
Maintainer Omar Wagih <w< th=""><th>wagih@ebi.ac.uk></th></w<>	wagih@ebi.ac.uk>
Description No description	
License LGPL	
R topics document	
1	
_	
mss	
pSNVs	
•	
-	
worstSequence	
bestSequence	Given a position weight matrix, find the best matching sequence

Description

Type Package

Finds the amino acid at each position of the PWM with the highest occurence. Used in matrix similarity score calculation.

2 degeneratePWM

Usage

```
bestSequence(pwm)
```

Arguments

pwm

Position weight matrix

Examples

No Examples

computeRewiring

Score wt and mt sequences for a pwm

Description

Score wt and mt sequences for a pwm

Usage

```
computeRewiring(obj, mut_ps, prob.thresh = 0.5, log2.thresh = 1,
  include.cent = F, degenerate.pwms = F, .degenerate.groups = c("DE",
  "KR", "ILMV"))
```

Arguments

obj	MIMP kinase object containing PWM, auc, GMM parameters, family name, etc.
mut_ps	psnvs data frame containing wt and mt sequences computed from pSNVs function
prob.thresh	Probability threshold of gains and losses. This value should be between 0.5 and 1.
log2.thresh	Threshold for the absolute value of log ratio between wild type and mutant scores. Anything less than this value is discarded (default: 1).
include.cent	If TRUE, gains and losses caused by mutation in the central STY residue are kept

degeneratePWM

Create a degenerate PWM i.e. for each aa group, set weight to the best weight of the group at that position e.g. R-2 has weight 0.7, K-2 has weight 0.1. Set both R-2 and K-2 to 0.7

Description

Create a degenerate PWM i.e. for each aa group, set weight to the best weight of the group at that position e.g. R-2 has weight 0.7, K-2 has weight 0.1. Set both R-2 and K-2 to 0.7

Usage

```
degeneratePWM(pwm, dgroups = c("DE", "KR", "ILMV", "QN", "ST"))
```

dohtml 3

Arguments

pwm	position weight matrix
dgroups	groups of amino acids

dohtml Helper function for results2html

Description

Helper function for results2html

Usage

```
dohtml(x, LOGO_DIR, HL_DIR)
```

Arguments

x Data frame resulting from mimp call.LOGO_DIR Directory containing sequence logo images.

flankingSequence Get flanking sequences of a position.

Description

This function obtains the flanking sequence at one or more position. Out of bound indices are replaced by a blank character.

Usage

```
flankingSequence(seqs, inds, flank = 7, empty.char = "-")
```

Arguments

seqs	Character vector of sequences. If only one sequence is provided, indices from inds are assumed to all be from the same sequence.
	•
inds	Numerical vector of positions corresponding to the sequences provided in seqs.
flank	Value indicating the number of characters to extract, before and after an index
empty.char	Character used to replace out of bound flanking sequences

```
# One sequence and one index. Central character is B
flankingSequence(seqs=ABC, inds=2, flank=1)
# An example showing the use of empty.char
flankingSequence(seqs=ABC, inds=2, flank=5)
# An example with multiple sequences and indices
flankingSequence(seqs=c(ABC, XYZ), inds=c(2, 1), flank=1)
```

4 mimp

mimp

Predict the impact of single variants on phosphorylation.

Description

This function takes in mutation, sequence and phosphorylation data to predict the impact the mutation has on phosphorylation.

Usage

```
mimp(muts, seqs, psites = NULL, prob.thresh = 0.5, log2.thresh = 1,
    display.results = T, include.cent = F, model.data = "hconf")
```

Arguments

muts

Mutation data file: a space delimited text file OR data frame containing two columns (1) gene and (1) mutation. Example:

TP53 R282W CTNNB1 S33C CTNNB1 S37F

seqs

Sequence data file containing protein sequences in FASTA format OR named list of sequences where each list element is the uppercase sequence and the name of each element is that of the protein. Example: list(GENEA="ARNDGH", GENEB="YVRRHS")

psites

Phosphorylation data file (optional): a space delimited text file OR data frame containing two columns (1) gene and (1) positions of phosphorylation sites. Example:

TP53 280 CTNNB1 29 CTNNB1 44

prob.thresh

Probability threshold of gains and losses. This value should be between 0.5 and

 $\log 2.thresh$

Threshold for the absolute value of log ratio between wild type and mutant scores. Anything less than this value is discarded (default: 1).

include.cent

If TRUE, gains and losses caused by mutation in the central STY residue are kept. Scores of peptides with a non-STY central residue is given a score of 0 (default: FALSE).

model.data

Name of specificity model data to use, can be "hconf": individual experimental kinase specificity models used to scan for rewiring events. For experimental kinase specificity models, grouped by family, set to "hconf-fam". Both are considered high confidence. For lower confidence predicted specificity models, set to "lconf". NOTE: Predicted models are purely speculative and should be used with caution

mimp 5

Value

The data is returned in a data. frame with the following columns:

gene Gene with the rewiring event

mut Mutation causing the rewiring event

psite_pos Position of the phosphosite

mut_dist Distance of the mutation relative to the central residue

wt Sequence of the wildtype phosphosite (before the mutation). Score is NA if the

central residue is not S, T or Y

mt Sequence of the mutated phosphosite (after the mutation). Score is NA if the

central residue is not S, T or Y

score_wt Matrix similarity score of the wildtype phosphosite
score_mt Matrix similarity score of the mutated phosphosite

log_ratio Log2 ratio between mutant and wildtype scores. A high positive log ratio repre-

sents a high confidence gain-of-phosphorylation event. A high negative log ratio represents a high confidence loss-of-phosphorylation event. This ratio is NA for

mutations that affect the central phosphorylation sites

pwm Name of the kinase being rewired

pwm_fam Family/subfamily of kinase being rewired. If a kinase subfamily is available the

family and subfamily will be separated by an underscore e.g. "DMPK_ROCK".

If no subfamily is available, only the family is shown e.g. "GSK"

nseqs Number of sequences used to construct the PWM. PWMs constructed with a

higher number of sequences are generally considered of better quality.

prob Joint probability of wild type sequence belonging to the foreground distribution

and mutated sequence belonging to the background distribution, for loss and

vice versa for gain.

effect Type of rewiring event, can be "loss" or "gain"

```
# Get the path to example mutation data
mut.file = system.file("extdata", "mutation_data.txt", package = "rmimp")
# Get the path to example FASTA sequence data
seq.file = system.file("extdata", "sequence_data.txt", package = "rmimp")
# View the files in a text editor
browseURL(mut.file)
browseURL(seq.file)
# Run rewiring analysis
results = mimp(mut.file, seq.file, display.results=TRUE)
# Show head of results
head(results)
```

pRewiringPosterior

mss

Compute matrix similarity score as described in MATCH algorithm

Description

Computes matrix similarity score of a PWM with a k-mer. Score ranges from 0-1, as described in [PMID: 12824369]

Usage

```
mss(seqs, pwm, na.rm = F, ignore.central = T)
```

Arguments

seqs Sequences to be scored pwm Position weight matrix na.rm Remove NA scores?

ignore.central If TRUE, central residue is ignore from scoring.

Examples

No Examples

pRewiringPosterior

Computing posterior probability - ploss and pgain

Description

Computing posterior probability - ploss and pgain

Usage

```
pRewiringPosterior(wt.scores, mt.scores, fg.params, bg.params, auc = 1,
  intermediate = F)
```

Arguments

wt.scores	Wild type score
mt.scores	Mutant score

fg.params Distribution parameters of GMMs (foreground). This is precomputed and comes

built into mimp.

bg.params Distribution parameters of GMMs (background). This is precomputed and comes

built into mimp.

auc AUC of the model. This is precomputed and comes built into mimp.

intermediate If TRUE, intermediate likelihoods used to compute ploss and pgain is returned.

Otherwise only ploss and pgain returned

pSNVs

pSNVs	Find phosphorylation related variants (pSNVs)	

Description

Given mutation data and psites, find variants that exist in the flanking regions of the psite

Usage

```
pSNVs(md, pd, seqdata, flank = 7)
```

Arguments

flank	Number of amino acids flanking the psite to be considered
muts	Mutation data as data frame of two columns (1) name of gene or protein (2) mutation in the format X123Y, where X is the reference amino acid and Y is the alternative amino acid.
psites	Phosphorylation data as a data frame of two columns (1) name of gene or protein (2) Position of the phosphorylated residue
seqs	Sequence data as a name list. Names of the list correspond to the gene or protein

name. Each entry contains the collapsed sequence.

Examples

No examples

PWM	Construct position weight matrix	

Description

Makes a position weight matrix given aligned sequences.

Usage

```
PWM(seqs, pseudocount = 0.01, relative.freq = T, is.kinase.pwm = T,
    priors = AA_PRIORS_HUMAN, do.pseudocounts = F)
```

Arguments

seqs Aligned sequences all of the same length

pseudocount

relative.freq Set to TRUE if each column should be divided by the sum

is.kinase.pwm Set to TRUE if matrix is being built for a kinase

priors Named character vector containing priors of amino acids.

do.pseudocounts

TRUE if we are to add pseudocounts

Examples

No examples

8 scoreArray

results2html

Display MIMP results interactively in browser

Description

Display MIMP results interactively in browser

Usage

```
results2html(x, max.rows = 5000)
```

Arguments

x Data frame resulting from mimp call.

max.rows If data contains more rows than this value, results won't be displayed.

scoreArray

Get weight/probability for each amino acid in a sequence

Description

Gets weight/probability for the amino acid at each position of the sequence as an array.

Usage

```
scoreArray(seqs, pwm)
```

Arguments

seqs One or more sequences to be processed

pwm Position weight matrix

```
# No Examples
```

scoreWtOnly 9

scoreWtOnly	Score phosphosites using MIMP models (without mutation information)

Description

Score phosphosites using MIMP models (without mutation information)

Usage

```
scoreWtOnly(psites, seqs, model.data = "hconf", posterior_thresh = 0.8,
  intermediate = F, kinases)
```

Arguments

psites phosphorylation data, see ?mimp for details

seqs sequence data, see ?mimp for details

model.data MIMP model used, see ?mimp for details

posterior_thresh

posterior probability threshold that the score belongs to the foreground distribution of the kinase, probabilities below this value are discarded (default 0.8)

intermediate if TRUE intermediate MSS scores and likelihoods are reported (default FALSE)

kinases vector of kinases used for the scoring (e.g. c("AURKB", "CDK2")), if this isn't

Value

The data is returned in a data. frame with the following columns:

provided all kinases will be used.

gene	Gene with the rewiring event
pos	Position of the phosphosite
wt	Sequence of the wildtype phosphosite
score_wt	(intermediate value) matrix similarity score of sequence
1.wt.fg	(intermediate value) likelihood of score given foreground distribution
1.wt.bg	(intermediate value) likelihood of score given background distribution
post.wt.fg	posterior probability of score in foreground distribution
post.wt.bg	posterior probability of score in background distribution
pwm	Name of the predicted kinase
pwm_fam	Family/subfamily of the predicted kinase. If a kinase subfamily is available the family and subfamily will be seprated by an underscore e.g. "DMPK_ROCK". If no subfamily is available, only the family is shown e.g. "GSK"

10 worstSequence

Examples

```
# Get the path to example phosphorylation data
psites.file = system.file("extdata", "ps_data.txt", package = "rmimp")

# Get the path to example FASTA sequence data
seq.file = system.file("extdata", "sequence_data.txt", package = "rmimp")

# Run for all kinases
results_all = scoreWtOnly(psites.file, seq.file)

# Run for select kinases
results_select = scoreWtOnly(psites.file, seq.file, kinases=c("AURKB", "CDK2"))
```

unfactor

Converts all columns of a data frame of class factor to character

Description

Converts all columns of a data frame of class factor to character

Usage

```
unfactor(df)
```

Arguments

string

String to be manipulated

Examples

```
unfactor( data.frame(x=c(A, B)) )
```

 ${\tt worstSequence}$

Given a position weight matrix, find the worst matching sequence

Description

Finds the amino acid at each position of the PWM with the lowest occurence. Used in matrix similarity score calculation.

Usage

```
worstSequence(pwm)
```

Arguments

pwm

Position weight matrix

```
# No Examples
```