BigQuery Datawarehouse

BigQuery - Datawarehouse

- Exabyte scale modern Datawarehousing solution from GCP
 - Relational database (SQL, schema, consistency etc)
 - Use **SQL-like commands** to query massive datasets
 - Traditional (Storage + Compute) + Modern (Realtime + Serverless)
- When we are talking about a Datawarehouse, importing and exporting data (and formats) becomes very important:
 - Load data from a variety of sources, incl. streaming data
 - Variety of import formats CSV/JSON/Avro/Parquet/ORC/Datastore backup
 - Export to Cloud Storage (long term storage) & Data Studio (visualization)
 - Formats CSV/JSON (with Gzip compression), Avro (with deflate or snappy compression)
- Automatically expire data (Configurable Table Expiration)
- Query external data sources without storing data in BigQuery
 - Cloud Storage, Cloud SQL, BigTable, Google Drive
 - Use Permanent or Temporary external tables

BigQuery - Accessing and Querying Data

- Access databases using:
 - Cloud Console
 - bq command-line tool (NOT gcloud)
 - BigQuery Rest API OR
 - HBase API based libraries (Java, .NET & Python)
- (Remember) BigQuery queries can be expensive as you are running them on large data sets!
- (BEST PRACTICE) Estimate BigQuery queries before running:
 - 1: Use UI(console)/bq(--dry-run) Get scanned data volume (estimate)
 - 2: Use Pricing Calculator: Find price for scanning 1 MB data. Calculate cost.

Partitioning and Clustering BigQuery Tables - Use Case

- You pay for BigQuery queries by the amount of data scanned
- How do you reduce your costs of querying BigQuery and improve performance?
- Scenario: Imagine a Questions table with millions of rows
 - You want to find all questions asked between a date range (date between 2022–10–02 and 2028–10–02) belonging to a specific category
 - If you have a single questions table you need to scan all the rows
 - o Partitioning Divide table into multiple segments (example: by date)
 - Clustering Group related data (example: by category)

Questions			
Date	Question	Category	
2025-10-02	Question Detail	GCP	
2025-10-02	Question Detail	AWS	
2025-10-02	Question Detail	GCP	
2025-10-03	Question Detail	Azure	
2025-10-03	Question Detail	GCP	
2025-10-03	Question Detail	Azure	

Partitioning and Clustering BigQuery Tables

- Partitioning: Table is divided into segments
 - Makes it easy to manage and query your data
 - Improves performance and reduces costs
 - Partition based on Ingestion time (arrival time) OR a column (TIMESTAMP, DATE, or DATETIME, or INTEGER)
 - (DEFAULT) All partitions will share same schema as table
 - Allows you to expire (delete) parts of table data easily (partition_expiration_days)
- Clustering: Organize table data based on the contents of one or more columns
 - Goal: colocate related data and eliminate scans of unnecessary data
 - Avoid creating too many small partitions (of less than 1 GB). In those cases, prefer Clustering.

Questions_2025_10_02			
Date	Question	Category	
2025-10-02	Question Detail	AWS	
2025-10-02	Question Detail	GCP	
2025-10-02	Question Detail	GCP	

Questions_2025_10_03			
Date	Question	Category	
2025-10-03	Question Detail	Azure	
2025-10-03	Question Detail	Azure	
2025-10-03	Question Detail	GCP	

Partitioning and Clustering BigQuery Tables - Syntax

```
CREATE TABLE `my_data_set.questions_partitioned_and_clustered`
...

PARTITIONED BY
   DATE(created_date)
   CLUSTER BY category
...

OPTIONS (
   expiration_timestamp=TIMESTAMP "2025-01-01 00:00:00 UTC",
   partition_expiration_days=7
)
```

Expiring Data in BigQuery

```
CREATE SCHEMA mydataset
OPTIONS(
  default_table_expiration_days=3.75
)

ALTER TABLE mydataset.mytable
SET OPTIONS (
  expiration_timestamp=TIMESTAMP "2025-01-01 00:00:00 UTC",
  partition_expiration_days=7
)
```

- You pay for data stored in BigQuery:
 - How can you automatically delete (expire) data which is not needed?
- Big Query Hierarchy: Data Set > Table > Partitions
 - You can configure expiration at each level
 - o Configure default table expiration (default_table_expiration_days) for datasets
 - Configure expiration time (expiration_timestamp) for tables
 - Configure partition expiration (partition_expiration_days) for partitioned tables
- Best Practice: Expire Tables and Partitions you are NOT using!

Importing Data into BigQuery

- Batch Import (FREE):
 - Import from Cloud Storage and local files
 - Import after processing by Cloud Dataflow and Cloud Dataproc
- Streaming Import (\$\$\$\$):
 - From Cloud Pub/Sub, Streaming Inserts
 - Import after processing by Cloud Dataflow and Cloud Dataproc
- Federated Queries: Query external data
 - Cloud Storage, Cloud SQL, BigTable, Google Drive
- BigQuery Data Transfer Service: Import from
 - Google SaaS apps (Google Ads, Cloud Storage etc)
 - External cloud storage providers Amazon S3
 - Data warahawaa Taradata Amaa-an Dadahiff

Streaming Data into BigQuery

- Loading data in bulk is free but streaming data is NOT FREE
 - AND there are a lot of limitations (Use with caution!)

- Streaming data can contain duplicates. How can you avoid duplicates?
 - Add insertId with each streaming insert:
 - insertId is used to provide best effort de-duplication (for up to one minute)
 - o For strict de-duplication and transactions, try Google Cloud Datastore
- There are strict streaming quotas with BigQuery:
 - IF you are NOT populating insertId:
 - Maximum bytes per second 1 GB per second, per project (REMEMBER per project NOT per table)
 - ELSE (i.e. you are using insertId)
 - o Maximum rows per second per project
 - o US and EU multi-regions: 500,000, Other locations: 100,000
 - o per table limitation: 100,000
 - Maximum bytes per second: 100 MB
 - = If you have streaming of millions of rows nor second profer DigTable

Understanding BigQuery Best Practices

- Estimate your queries before running them
 - bq --dry_run flag or dryRun API parameter
- Use clustering and partitioning for your tables

- Loading data in bulk is free but streaming data is NOT FREE
- Offers Best effort de-duplication (when you use insertId)
- Remember Quota limits

• Expire Data Automatically:

- Configure default table expiration (default_table_expiration_days) for datasets
- Configure expiration time for tables
- Configure partition expiration for partitioned tables

Understanding BigQuery Best Practices - 2

- Consider Long-term storage option
 - Long-term storage: Table in which data is NOT edited for 90 consecutive days
 - Lower Storage cost Similar to Cloud Storage Nearline

- BUT it is not as well optimized for narrow-range queries (Prefer Cloud Bigtable)
- (REMEMBER) Too much complexity in setting up a query
- Optimize BigQuery usage using audit logs:
 - Analyze queries/jobs that were run earlier
 - Stream your audit logs (BigQueryAuditMetadata) to BigQuery
 - Understand usage patterns (query costs by user)
 - Optimize (visualize using Google Data Studio)

Cloud Dataproc

- Managed Spark and Hadoop service:
 - Variety of jobs are supported:
 - Spark, PySpark, SparkR, Hive, SparkSQL, Pig, Hadoop
 - Perform complex batch processing
- Multiple Cluster Modes:
 - Single Node / Standard/ High Availability (3 masters)
 - Use regular/preemptible VMs
- Use case: Move your Hadoop and Spark clusters to the cloud
 - Perform your machine learning and AI development using open source frameworks
- (REMEMBER) Cloud Dataproc is a data analysis platform
 - You can export cluster configuration but NOT data
- (ALTERNATIVE) BigQuery When you run SQL queries on Petabytes
 - Go for Cloud Dataproc when you need more than queries (Example: Complex batch processing Machine Learning and Al workloads)

