# Classwork Section 01B

#### **DEEWANG BHAMIDIPATI**

MATH 111T — Spring 2021

#### Classwork 1 (Week 3)

**Problem 1.** We have the groups  $(\mathbb{R},+)$  and  $(\mathbb{R}^{\times},\cdot)$ , the latter has as a subgroup  $(\mathbb{R}_{>0}^{\times},\cdot)$ . Give a homomorphism

$$\varphi: (\mathbb{R}, +) \to (\mathbb{R}_{>0}^{\times}, \cdot)$$

such that (a)  $\varphi$  is an isomorphism. (b)  $\varphi$  is not an isomorphism.

**Problem 2.** (a) For  $(\mathbb{R}^{\times}, \cdot)$  as above, is  $(\mathbb{R}^{\times}_{<0}, \cdot)$  a subgroup? (b) Consider the group  $(\mathbb{C}^{\times}, \cdot)$ , show  $S := \{z \in \mathbb{C} : |z| = 1\}$  is a subgroup.

**Extra Problem.** Consider the group  $G = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is bijective}\}$ . This is a group under composition. Prove that the following set

$$H = \{f_r : \mathbb{R} \to \mathbb{R}, f_r(x) = x^r : r = p/q, p, q \text{ are odd}\}\$$

is a subset of G, and also a subgroup of G.

Why did we require p, q to be odd?

### Classwork 2 (Week 5)

**Problem 1.** Consider the group  $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ , find an n and subgroup  $H \leqslant S_n$  such that  $G \cong H$ .

Problem 2. Consider a regular tetrahedron, T



Carefully write down the cycles that correspond to the rotations of T. Which subgroup of  $S_4$  can you identify it with?

Extra Problem. Consider the following rectangle R



Carefully write down the cycles that correspond to the symmetries of R. Which subgroup of S<sub>4</sub> can you identify it with?

(Warning: Rotating the rectangle by 90 degrees is not a symmetry of R as the resultant rectangle has a distinctly different shape than R.)

## Classwork 3 (Week 7)

**Problem 1.** Consider a group G.

(a) For each  $g \in G$  define a map

$$c_q: G \rightarrow G, h \mapsto ghg^{-1}$$

 $Call\ Inn(G) \coloneqq \{c_g\ :\ g \in G\}.\ Prove\ that\ Inn(G) \leqslant Aut(G),\ that\ is,\ show$ 

- (i)  $Inn(G) \subseteq Aut(G)$ .
- (ii)  $Inn(G) \neq \emptyset$ .
- (iii)  $c_g \circ c_h^{-1} \in Inn(G)$ , for any  $g, h \in G$ .
- (b) Consider the function

$$\varphi: G \to Aut(G), g \mapsto c_q$$

Show that

- (i)  $\varphi$  is a group homomorphism.
- (ii) Compute ker  $\phi$ ; note that im  $\phi = Inn(G)$ .
- (iii) Use the first isomorphism theorem to write im  $\phi = \text{Inn}(\mathsf{G})$  as a quotient of  $\mathsf{G}.$