Лабораторная работа № 3

ВОССТАНОВЛЕНИЕ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ В УСЛОВИЯХ КОНЦЕПТУАЛЬНОЙ НЕОПРЕДЕЛЕННОСТИ

Авакумов Тарас Трусковский Кирилл Федь Владимир

Постановка задачи

Построить по заданной дискретной выборке (данные для Dst) приближающие функции (аналитически и графически представленные функциональные зависимости) в мультипликативной форме, которые с практически приемлемой погрешностью в смысле Чебышевского приближения характеризуют истинные функциональные зависимости, Построить прогнозные значения приближающих функций.

Метод Решения

Функциональные зависимости формируются в классе мультипликативных функций, которые характеризуются последовательностью следующих уровней

1)
$$y_i = \Phi_i(x)$$
; $i = \overline{1, m}$ 2) $\left[1 + \Phi_i(x)\right] = \prod_{k=1}^{K_0} \left[1 + \Phi_{ik}(x_k)\right]^{c_{ik}}$

3)
$$\left[1 + \Phi_{ik}(x_k)\right] = \prod_{j_k=1}^{n_k} \left[1 + \Psi_{kj_k}(x_{kj_k})\right]^{a_{ikj_k}}$$
 4)
$$\left[1 + \Psi_{kj_k}(x_{kj_k})\right] = \prod_{p_{j_k}=1}^{p_{kj_k}} \left[1 + \phi_{p_{j_k}}(x_{kj_k})\right]^{\lambda_{kj_k}}$$

представление в форме аддитивных функций

Представление в форме аддитивных функций

$$\Phi_{i}(x) = \exp \left\{ \sum_{k=1}^{K_{0}} c_{ik} \ln \left[1 + \Phi_{ik}(x_{k}) \right] \right\} - 1$$
 $i = \overline{1, m}$ $k = \overline{1, K_{0}}$

$$\boldsymbol{\Phi}_{ik} = \exp \left\{ \sum_{j_k=1}^{n_k} a_{ikj_k} \ln \left[1 + \boldsymbol{\Psi}_{kj_k} (\boldsymbol{x}_{kj_k}) \right] \right\} - 1 \qquad \boldsymbol{x}_k = \langle \boldsymbol{x}_{kj_k}, \boldsymbol{j}_k = \overline{1, n_k} \rangle$$

$$\Psi_{kj_k}(x_{kj_k}) = \exp\left\{\sum_{p_{j_k}=1}^{P_{kj_k}} \lambda_{kj_k} \ln\left[1 + \phi_{pj_k}(x_{kj_k})\right]\right\} - 1$$
 $p_{j_k} = \overline{1, P_{kj_k}}$

Полиномы Лежандра

Смещенный полином Лежандра

Lab_3	EE 9 3-1	
Данные Размер выборки 45 Входные данные :s\Lab3\input2.txt Открыть Исходные данные output.txt Выбрать	Тип полинома	Размерности Степени полином X1 2 при X1 7 при X2 7 х3 3 три X3 7 Построить график Y1
ПредложеннаяНаша	Запустить	
(1+T2(x10))+1.0*ln(1+T3(x10))+1.0*ln(1+T4(0000583218944141*ln(1+exp(+1.0*ln(1+T0)+1.0*ln(1+T6(x11))+1.0*ln(1+T6(x11))+1.0*ln(1+T6(x11))+1.0*ln(1+T0)+1.0*ln(1+T5(x20))+1.0*ln(1+T6(x20))+1.0*ln(1+T1(x21))+1.0*ln(1+T2(x21))+1.0*ln(1+T3((x21)))-1))-1)+0.5536692799179904*ln(1++10*ln(1+T2(x30))+1.0*ln(1+T3(x30))+1.0*ln(1+T9)+1.0*ln(1+T2(x30))+1.0*ln(1+T3(x30))+1.0*ln(1+T0)	+0.9999726189056888*In(1+e x10))+1.0*In(1+T5(x10))+1.0*In (x11))+1.0*In(1+T1(x11))+1.0*In 1(1+T7(x11)))-1))-1)+0.0782074 (x20))+1.0*In(1+T1(x20))+1.0*In 1(1+T7(x20)))-1)+0.999865332 (x21))+1.0*In(1+T4(x21))+1.0*In exp(+1.0006764990963144*In +T4(x30))+1.0*In(1+T5(x30))+1. (x31))+1.0*In(1+T1(x31))+1.0*In 1(1+T7(x31)))-1)+0.9991837744	xp(+1.0*ln(1+T0(x10))+1.0*ln(1+T1(x10))+1.0*ln h(1+T6(x10))+1.0*ln(1+T3(x11))+1.0*ln(1+T4(x11)) h(1+T2(x11))+1.0*ln(1+T3(x11))+1.0*ln(1+T4(x11)) h(508391781*ln(1++exp(+0. n(1+T2(x20))+1.0*ln(1+T3(x20))+1.0*ln(1+T4(x20)) 8407479*ln(1+exp(+1.0*ln(1+T0(x21))+1.0*ln h(1+T5(x21))+1.0*ln(1+T6(x21))+1.0*ln(1+T7 (1+exp(+1.0*ln(1+T0(x30))+1.0*ln(1+T7 (1+exp(+1.0*ln(1+T0(x30)))+1.0*ln(1+T1(x30))+1. n(1+T2(x31))+1.0*ln(1+T3(x31))+1.0*ln(1+T4(x31)) 8950407*ln(1+exp(+1.0*ln(1+T0(x32))+1.0*ln

Полином Лаггера

Результаты Прогнозные значения

Прогнозные значения для солнечных бурь

Наша выборка

Возможно построить зависимость сервера по его показателям и предсказывать критические ситуации

Источник uci.edu(http://archive.ics.uci.edu/ml/datasets/Computer+Hardware)

Данные

Attribute Information:

1. vendor name: 30

(adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec, dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson, microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry, sratus, wang)

- 2. Model Name: many unique symbols
- 3. MYCT: machine cycle time in nanoseconds (integer)
- 4. MMIN: minimum main memory in kilobytes (integer)
- 5. MMAX: maximum main memory in kilobytes (integer)
- 6. CACH: cache memory in kilobytes (integer)
- 7. CHMIN: minimum channels in units (integer)
- 8. CHMAX: maximum channels in units (integer)
- 9. PRP: published relative performance (integer)
- 10. ERP: estimated relative performance from the original article (integer)

Результаты наша выборка

Вариант структуры функций

$$\begin{split} &\left[1 + \arcsin\left(\boldsymbol{\Phi}_{i}\right)(\boldsymbol{x})\right] = \prod_{k=1}^{K_{0}} \left[1 + \arcsin\left(\boldsymbol{\Phi}_{ik}(\boldsymbol{x}_{k})\right)\right];\\ &\left[1 + \arcsin\left(\boldsymbol{\Phi}_{ik}(\boldsymbol{x}_{k})\right)\right] = \prod_{j_{k}=1}^{n_{k}} \left[1 + \arcsin\left(\boldsymbol{\Psi}_{kj_{k}}(\boldsymbol{x}_{kj_{k}})\right)\right];\\ &\left[1 + \arcsin\left(\boldsymbol{\Psi}_{kj_{k}}(\boldsymbol{x}_{kj_{k}})\right)\right] = \prod_{p_{j_{k}}=1}^{P_{kj_{k}}} \left[1 + \arcsin\left(\boldsymbol{\phi}_{p_{j_{k}}}(\boldsymbol{x}_{kj_{k}})\right)\right], \end{split}$$

Результаты Для солнечных бурь

Наша функция

Наша функция

Вывод

- Уменьшение невязки для у1 и у2
- Перебирая разныне фунции arcsin подходит лучше всего для нашей выборки
- Arcsin имеет обратную sin, и хорошо подходит для нашей задачи