2022학년도 1학기 컴퓨터언어학

제12강 합성곱 신경망 (2)

박수지

서울대학교 인문대학 언어학과

2022년 4월 13일 수요일

오늘의 목표

1 Kim (2014)에서 CNN 모형을 사용하여 문장 분류를 훈련한 방법을 설명할 수 있다.

모형 개괄

Figure 1: Model architecture with two channels for an example sentence.

박수지

n x k representation of sentence with static and non-static channels

재료

- 단어 n 개로 이루어진 문장
- 각 단어의 k-**차원**짜리 벡터

문장의 "이미지"

"높이" n, "너비" k

"차원"의 두 가지 의미

[1, 2, 3, 4, 5]는 몇 차원인가?

■ 5차원 벡터

컴퓨터언어학

■ 크기가 5인 1차원 배열

합성곱의 차원

2차원 필터가 두 방향으로 움직인다.

1차원 필터가 한 방향으로 움직인다.

사람의 시선은 단어를 따라 이동한다.

pooling

오버피팅 피하기

- 드롭아웃
- l₂ 정규화: 가중치 패러미터 벡터 W의 크기 ||W||₂가 일정 값 s을 넘지 않도록 한다.

일반적으로 자주 쓰이는 정규화 방식은 아니다.

with dropout and

softmax output

문장 분류 관련 데이터셋

Data	c	l	N	V	$ V_{pre} $	Test	
MR	2	20	10662	18765	16448	CV	
SST-1	5	18	11855	17836	16262	2210	
SST-2	2	19	9613	16185	14838	1821	
Subj	2	23	10000	21323	17913	CV	
TREC	6	10	5952	9592	9125	500	
CR	2	19	3775	5340	5046	CV	
MPQA	2	3	10606	6246	6083	\mathbf{CV}	

Table 1: Summary statistics for the datasets after tokenization. c: Number of target classes. l: Average sentence length. N: Dataset size. |V|: Vocabulary size. $|V_{pre}|$: Number of words present in the set of pre-trained word vectors. Test: Test set size (CV means there was no standard train/test split and thus 10-fold CV was used).

관찰

- 문장이 짧다.
- 데이터셋이 작다.
- 단어 대부분이 사전학습된 벡터가 있다.

비교적 쉬운 편…

컴퓨터언어학

주요 데이터셋: 사용자 생성

MR Movie reviews (Pang and Lee 2005)

- https:
 - //www.cs.cornell.edu/people/pabo/movie-review-data
- 영어 1문장짜리 영화평 10662개로 구성
 - 긍정 5331개, 부정 5331개
 - Rotten Tomatoes fresh/rotten \rightarrow 긍정/부정 분류
- 감정분석 연구의 선구: Pang and Lee (2002) "Thumbs up? Sentiment Classification using Machine Learning Techniques"
- **SST-1** Stanford Sentiment Treebank
- **SST-2** Stanford Sentiment Treebank

주요 데이터셋: 전문가의 가공 주석

TREC Text REtrieval Conference (1992–)

- https://trec.nist.gov/
- 미국 NIST에서 주최하는 정보 검색 시스템 경진대회
- 트랙별 테스트셋 제공

MPQA Multi-perspective Question Answering (2005)

- http://www.cs.pitt.edu/mpqa
- 감정 표현들의 의미 주석

최근의 동향

크라우드소싱: 불특정 다수의 사람들에게 정답 레이블링을 맡김

■ Amazon Mechanical Turk 등

참조: 한국어 데이터셋: 사용자 생성

NSMC Naver Sentiment Movie Corpus (2016)

- https://github.com/e9t/nsmc
- 한국어 140차 이내의 네이버 영화평 20만 개로 구성
 - 띄어쓰기, 철자 변형 등 노이즈가 많음
 - ▶ "괜찮네요오랜만포켓몬스터잼밌어요"
 - ▶ "한번본적은업지만재미있을것같다"
 - ▶ "완전잼없음보지마삼요후회함."
- 작성자가 부여한 평점에 따라 긍정/부정 분류
 - 긍정: 9-10점, 부정: 1-4점
- 한국어 문장 분류 연구에서 자주 활용됨

구체적 훈련 과정

하이퍼패러미터

활성화 함수 ReLU 필터 크기 3,4,5 필터 개수 100 드롭아웃 비율 0.5 [2 제약 3 미니배치 크기 50

초매개변수

- Word2Vec (CBOW)
- 구글 뉴스 1000억 개 단어에서 학습
- 300차원 벡터

학습된 목록에 없는 단어는 랜덤으로 초기화

CNN 모형들

rand 단어 벡터의 값들을 랜덤으로 초기화 & 업데이트

■ Baseline: 아래의 모형들이 이것보다는 잘해야 모형을 만드는 의미가 있다!

static 단어 벡터로 Word2Vec 임베딩 값 사용
non-static 단어 벡터로 Word2Vec 임베딩 값 사용 & 업데이트

multichannel static과 non-static을 별개의 채널로 모두 사용

실험 결과

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM _S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from Wikinedia (Socher et al. 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al. 2012). 컴퓨터언어학

관찰

- 채널을 두 개 사용하면 성능이 더 좋아지는가?
 - ⇒그렇지만은 않다(표 2 참조).
- 2 훈련 과정에서 단어 벡터의 값들을 업데이트하면 어떻게 되는가? ⇒ 과제(예: 감정 분류)의 목적에 맞게 학습된다(표 3 참조).

	Most Sim	ilor Words for			
	Most Similar Words for				
	Static Channel	Non-static Channel			
bad	good	terrible			
	terrible	horrible			
	horrible	lousy			
	lousy	stupid			
good	great	nice			
	bad	decent			
	terrific	solid			
	decent	terrific			
n't	os	not			
	ca	never			
	ireland	nothing			
	wo	neither			
I	2,500	2,500			
	entire	lush			
	jez	beautiful			
	changer	terrific			
,	decasia	but			
	abysmally	dragon			
	demise	a			
	valiant	and			