Heatmaps in R

Kayvan Jalali & Carlos Puerta

9/20/2023

What is a heatmap?

Pheatmap Package

Applying Heatmaps

Wrapping up

Section 1

What is a heatmap?

What is a heatmap?

A heatmap is graphic that will display your data in a colorful grid. This is great for seeing trends and patterns in your data.

Generally, heatmaps are used to represent data where you have 2 categorical variables with a third continuous variable, though this is not explicitly necessary.

Advantages

- Adds another variable
- Easier to interpret
- Color is easy to parse

Disadvantages

- Need right choice of colors and data
- Only useful if clear
- A different plot may be better

Examples

When to use a heatmap

Heatmaps are applicable to both continuous and discrete variables. When working with discrete variables, distinguishing between similar colors can be challenging. To improve visibility, it is recommended to use a color palette of no more than nine colors, such as ROYGBIV, black, and white.

In the case of continuous variables, you have the option to use a sequential color scale, transitioning from a lighter hue to a darker one or vice versa. Alternatively, you can create a divergent color scale, transitioning between two distinct colors. A divergent color scale may be more useful when the center and ends of the value range are meaning full.

ggplot2

You can create a simple and quick heatmap using the geom_tile() function in ggplot2, but these heatmaps are very limited in their functionality.

Section 2

Pheatmap Package

Pheatmap Package

Pheatmap (Pretty Heatmaps) is a package for R that supercharges heatmaps and allows you to create incredibly complex and helpful heatmaps.

Basic functions

${\sf Dendogram}$

Pheatmap example

Pheatmap example

	9	18	28	37	46	55	64	73	82	92
	18	37	55	73	92	110	128	147	165	183
	28	55	82	110	138	165	192	220	248	275
	37	73	110	147	183	220	257	293	330	367
	46	92	138	183	229	275	321	367	412	458
	55	110	165	220	275	330	385	440	495	550
	64	128	192	257	321	385	449	513	578	642
	73	147	220	293	367	440	513	587		733
	82	165	248	330	412	495	578			825
Ì										

20

More Complex Example

Genes

Code for Genes

Kavvan Jalali & Carlos Puerta

```
topGenes = order(rowVars(Biobase::exprs(x)),
                 decreasing = TRUE)[1:500]
rowCenter = function(x) { x - rowMeans(x) }
pheatmap(rowCenter(dfx[topGenes, ]),
  show rownames = FALSE,
  show colnames = FALSE,
  breaks = seq(-5, +5, length = 101),
  annotation col = pData(x)[, c("sampleGroup",
                                "Embryonic.day",
                                "ScanDate",
                                "genotype")],
  annotation colors = list(
    sampleGroup = groupColor,
    genotype = c(`FGF4-KO` = "chocolate1", `WT` = "azure2"),
    Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)],
                             c("E3.25", "E3.5", "E4.5")),
    ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"),
```

9/20/2023

Section 3

Applying Heatmaps

First we get our data ready.

```
x <- flights %>%
  filter(arr_delay > 0) %>%
  group_by(month, carrier) %>%
  summarize(total_delay = sum(arr_delay / 60)) %>%
  arrange(month, carrier)
```

Then we transform it into a matrix for Pheatmap.

```
mat <- matrix(x$total_delay, nrow = 16)
rownames(mat) <- unique(x$carrier)
colnames(mat) <- unique(x$month)</pre>
```

And finally we plot it.

```
pheatmap(mat,
  cluster_row = FALSE,
  cluster_cols = FALSE,
  legend_breaks = c(150, 1200, 2300),
  legend_labels = c("Low", "Medium", "High")
)
```


MPG

Let's do it with a simpler dataset we're familiar with. We start by getting summarizing our data.

```
x <- mpg %>%
group_by(year, manufacturer) %>%
mutate(avg_mpg = (cty + hwy) / 2) %>%
summarize(avg_mpg = mean(avg_mpg)) %>%
arrange(year, manufacturer)
```

We create a matrix and then plot it.

```
mat <- matrix(x$avg_mpg, nrow = 15)
rownames(mat) <- unique(x$manufacturer)
colnames(mat) <- unique(x$year)
pheatmap(mat,
    color = colorRampPalette(
        c("red", "orange", "yellow", "darkgreen")
    )(1000),
)</pre>
```

MPG

Section 4

Wrapping up