Binary Logistic Regression DrPH (Epidemiology)

Kamarul Imran M 1 February 2016

Contents

Introduction	2
Modeling Binary Outcome Data	2
Prepare workspace	2
Locate files	2
Set the folder	
Read data	2
Preliminary analysis	2
Describe your data	2
Explore your data	
Model parameters	4
Estimate parameters	4
Interpret parameters	
Inference	
Fitted and predicted values	6
Fitted values	6
Predicted values	6
Create a new data to make prediction	6
Compare models	7
Model assessment	7
Linearity in logits	7
Overall model fitness	
Diagnostic statistics	
Logistic model with interaction of predictors	16
Resources	18

Introduction

Modeling Binary Outcome Data

The suggested steps are:

- 1. Describe data
- 2. Explore data Exploratory Data Analysis
- 3. Estimate parameters
- 4. Interpret parameters
- 5. Make Inference
- 6. Calculate the fitted values
- 7. Make Prediction
- 8. Assessing model
- 9. Remedy model

Prepare workspace

Locate files

- Browse your folders.
- Look for the files.
- Check the path to the folder containing the files

Set the folder

Set our working directory. REMEMBER! your working directory (working folder) is different from my working directory

```
# this is my working directory. You have to specify yours
setwd("E:/Epi_Stat_Matters/LectureNotes2015/binary-logistic/binary-logistic-DrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/BinaryLogisticDrPH-2015/Binary
```

Read data

- Read our data in the working folder
- Then, save as a csv file in our working directory

```
mydata <- read.csv('datalogistic.csv', sep = ",", header = TRUE)</pre>
```

Preliminary analysis

Describe your data

```
# observe data the first 10 observations
head(mydata,10)
```

More fancy, we can use *psych::describe* function

```
library(psych)
describe(mydata)
##
         vars
                    mean
                              sd median trimmed
                                                   mad
                                                           min max range
## ID
            1 400 200.50 115.61
                                  200.5
                                         200.50 148.26
                                                          1.00 400 399.00
                                                                           0.00
## admit
            2 400
                    0.32
                            0.47
                                    0.0
                                           0.27
                                                   0.00
                                                          0.00
                                                                 1
                                                                     1.00
                                                                           0.78
            3 400 587.70 115.52
                                  580.0 589.06 118.61 220.00 800 580.00 -0.14
## gre
## gpa
            4 400
                    3.39
                            0.38
                                    3.4
                                           3.40
                                                   0.40
                                                          2.26
                                                                     1.74 - 0.21
            5 400
                    2.48
                            0.94
                                    2.0
                                           2.48
                                                   1.48
                                                          1.00
                                                                     3.00 0.10
## rank
##
         kurtosis
## ID
            -1.215.78
## admit
            -1.39 0.02
            -0.36 5.78
## gre
            -0.60 0.02
## gpa
            -0.91 0.05
## rank
Admit and Rank are taken as numerical variable which does not make sense. We need to convert them to
categorical (factor) variables.
str(mydata$admit)
## int [1:400] 0 1 1 1 0 1 1 0 1 0 ...
str(mydata$rank)
## int [1:400] 3 3 1 4 4 2 1 2 3 2 ...
mydata$admit2 <- factor(mydata$admit, labels = c('no','yes'))</pre>
mydata$rank2 <- factor(mydata$rank, labels = c('first', 'second', 'third', 'fourth'))</pre>
head (mydata)
##
     ID admit gre gpa rank admit2
                                     rank2
            0 380 3.61
## 1
                                     third
                                 no
## 2 2
            1 660 3.67
                          3
                                     third
                                yes
## 3 3
            1 800 4.00
                          1
                                yes first
## 4 4
            1 640 3.19
                          4
                               yes fourth
## 5 5
            0 520 2.93
                          4
                                no fourth
## 6 6
            1 760 3.00
                          2
                                yes second
str(mydata)
## 'data.frame':
                    400 obs. of 7 variables:
##
    $ ID
            : int 1 2 3 4 5 6 7 8 9 10 ...
##
    $ admit : int 0 1 1 1 0 1 1 0 1 0 ...
            : int 380 660 800 640 520 760 560 400 540 700 ...
##
   $ gre
##
            : num 3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
   $ gpa
           : int 3 3 1 4 4 2 1 2 3 2 ...
##
   $ rank
    $ admit2: Factor w/ 2 levels "no", "yes": 1 2 2 2 1 2 2 1 2 1 ...
   $ rank2 : Factor w/ 4 levels "first", "second", ...: 3 3 1 4 4 2 1 2 3 2 ...
```

Explore your data

Use plots like * Histogram for numerical variables * and barplot for categorical variables, at least.

Model parameters

Estimate parameters

exp(coefficients(mylogit))

- we estimate the logit or the log odds using glm function.
- We used **summary** to see the results stored as the glm model for example **mylogit**
- We used **coefficients** to examine the regression coefficients

```
mylogit <- glm(admit2 ~ gre + gpa + rank2,family = 'binomial'(link = logit),data=mydata)
summary(mylogit)
##
## Call:
## glm(formula = admit2 ~ gre + gpa + rank2, family = binomial(link = logit),
       data = mydata)
##
## Deviance Residuals:
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.6268 -0.8662 -0.6388
                              1.1490
                                        2.0790
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979
                          1.139951 -3.500 0.000465 ***
                                    2.070 0.038465 *
## gre
               0.002264
                           0.001094
                           0.331819
                                    2.423 0.015388 *
## gpa
                0.804038
## rank2second -0.675443
                           0.316490 -2.134 0.032829 *
## rank2third -1.340204
                           0.345306 -3.881 0.000104 ***
## rank2fourth -1.551464
                           0.417832 -3.713 0.000205 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 499.98 on 399 degrees of freedom
##
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
## Number of Fisher Scoring iterations: 4
If we would like to see the estimated beta then we can use this
coefficients(mylogit)
## (Intercept)
                                      gpa rank2second
                                                         rank2third
                         gre
## -3.989979073 0.002264426 0.804037549 -0.675442928 -1.340203916
## rank2fourth
## -1.551463677
```

To obtain the odds ratios and their 95% CI, we need to exponentiate using exp the regression coefficients or the betas

```
## (Intercept) gre gpa rank2second rank2third rank2fourth
## 0.0185001 1.0022670 2.2345448 0.5089310 0.2617923 0.2119375
```

exp(confint(mylogit))

```
## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 0.001889165 0.1665354

## gre 1.000137602 1.0044457

## gpa 1.173858216 4.3238349

## rank2second 0.272289674 0.9448343

## rank2third 0.131641717 0.5115181

## rank2fourth 0.090715546 0.4706961
```

Interpret parameters

- 1. Interpret the betas (the log odds) and their 95% CIs
- 2. Interpret the odds ratios and their 95% CIs

Inference

Here, we examine

- 1. the p-values (hypothesis testing) and
- 2. the confidence intervals.

What is the p-values?

The p-value is defined as the probability of obtaining a result equal to or "more extreme" than what was actually observed, when the null hypothesis is true. In frequentist inference, the p-value is widely used in statistical hypothesis testing, specifically in null hypothesis significance testing. Ref: https://en.wikipedia.org/wiki/P-value

For example, suppose that a vaccine study produced a P value of 0.04. This P value indicates that if the vaccine had no effect, you'd obtain the observed difference or more in 4% of studies due to random sampling error. Reg: http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-correctly-interpret-p-values

- First, using the method of maximum likelihood
- Next, using the SE method (function confint.default)

confint(mylogit)

```
## Waiting for profiling to be done...
##
                       2.5 %
                                   97.5 %
## (Intercept) -6.2716202334 -1.792547080
                0.0001375921 0.004435874
                0.1602959439 1.464142727
## rank2second -1.3008888002 -0.056745722
## rank2third -2.0276713127 -0.670372346
## rank2fourth -2.4000265384 -0.753542605
confint.default(mylogit)
                       2.5 %
                                   97.5 %
## (Intercept) -6.2242418514 -1.755716295
## gre
                0.0001202298 0.004408622
                0.1536836760 1.454391423
## gpa
## rank2second -1.2957512650 -0.055134591
```

```
## rank2third -2.0169920597 -0.663415773
## rank2fourth -2.3703986294 -0.732528724
```

Fitted and predicted values

Fitted values

The fitted values are the expected values of the model. These expected values are the predicted probability for each observation (each patient) in the dataset. You can use 2 functions of getting the fitted values

```
fitted(mylogit)
predict(mylogit, type = 'response')
```

Manually, we can do this to calculate (verify) the conditional probability of being admitted for the current dataset

```
head(fitted(mylogit))

## 1 2 3 4 5 6

## 0.1726265 0.2921750 0.7384082 0.1783846 0.1183539 0.3699699

# calculate the logistic probability for the 1st observation
exp(-1.567)/(1+exp(-1.567))

## [1] 0.1726445
```

Predicted values

In R, you can prediction of the outcome based on a set of a new data

Create a new data to make prediction

Similarly, one of the important objectives in modelling is to perform prediction based on the model using new data.

We can perform these predictions:

- 1. Predict the log odds for having the outcome
- 2. Predict the conditional probability for having the outcome

```
Let us say we have these data
```

```
gre = 380 gpa = 3.61 rank = first, second, third, fourth
First, we create a data frame
new_datal <- data.frame( gre = 380, gpa = 3.61, rank2 = c('first', 'second', 'third', 'fourth'))
new_datal</pre>
```

```
## gre gpa rank2
## 1 380 3.61 first
## 2 380 3.61 second
## 3 380 3.61 third
## 4 380 3.61 fourth
```

Now, we predict the log odds for being admitted for a population with gre=30, gpa=3.61 and for different rank

Notice, that similarity between **predict**(**x**, **type='response'**) and **fitted** Remember, we can calculate the conditional probability of having the outcome

Compare models

We compare a model with gre and without gre. This is done using the deviance method

```
mylogit2 <- glm(admit2 ~ gpa + rank2, family = 'binomial'(link = logit),data=mydata)
anova(mylogit, mylogit2, test = 'Chisq')
## Analysis of Deviance Table</pre>
```

The p-value shows that mylogit and mylogit2 are different. It suggests the importance of **gre** at the level of significance of 5%. So should we keep **gre**? Perhaps yes, if we take the p-value as the requirement to assess for variable significance.

Model assessment

Linearity in logits

gre is tested for linearity in logit. gre is linear but it is rescaled to produce less decimals

The linearity of logits is tested using library *mfp* package

```
library(mfp)
## Loading required package: survival
mylogit3 <- mfp(admit2 ~ fp(gre)+ gpa + rank2, family = 'binomial'(link = logit),data=mydata,verbose=T)</pre>
```

```
##
## Variable Deviance Power(s)
## -----
## Cycle 1
## rank2second
##
            463.096
##
            458.517
##
##
##
## rank2third
##
            474.043
##
           458.517 1
##
##
##
## rank2fourth
##
    473.551
##
           458.517 1
##
##
##
## gpa
            464.532
##
##
            458.517 1
##
##
##
## gre
##
           462.875
##
            458.517
                    0
##
            458.415
##
           458.366
                   -2 -2
##
## Tansformation
    shift scale
## rank2second 0 1
## rank2third
             0
## rank2fourth
            0 1
## gpa
             0
              0 1000
## gre
## Fractional polynomials
          df.initial select alpha df.final power1 power2
## rank2second 1 1 0.05
                               1 1 .
                 1
                       1 0.05
                                        1
## rank2third
                                   1
## rank2fourth
                 1
                      1 0.05
                                   1
                                        1
                  1 1 0.05
4 1 0.05
## gpa
                 1
                                   1
                                        1
## gre
                                    1
##
##
## Transformations of covariates:
##
             formula
```

```
## gre
        I((gre/1000)^1)
## gpa
                     gpa
## rank2
                  rank2
##
## Deviance table:
            Resid. Dev
## Null model
                 499.9765
## Linear model 458.5175
## Final model
                 458.5175
Now, let us check the estimated parameters based on fractional polynomials
summary(mylogit3)
##
## Call:
## glm(formula = admit2 ~ rank2 + gpa + I((gre/1000)^1), family = binomial(link = logit),
##
       data = mydata)
##
## Deviance Residuals:
##
      Min
                10
                      Median
                                   3Q
                                           Max
## -1.6268 -0.8662 -0.6388
                              1.1490
                                        2.0790
##
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                   -3.9900
                               1.1400 -3.500 0.000465 ***
## rank2second
                   -0.6754
                                0.3165 -2.134 0.032829 *
## rank2third
                   -1.3402
                                0.3453 -3.881 0.000104 ***
## rank2fourth
                    -1.5515
                                0.4178 -3.713 0.000205 ***
                     0.8040
## gpa
                                0.3318
                                        2.423 0.015388 *
## I((gre/1000)^1)
                    2.2644
                                1.0940
                                       2.070 0.038465 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4
mylogit3$fptable
               df.initial select alpha df.final power1 power2
##
## rank2second
                       1
                               1 0.05
                                              1
## rank2third
                        1
                               1 0.05
                                              1
                                                     1
## rank2fourth
                       1
                               1 0.05
                                              1
                                                     1
## gpa
                       1
                              1 0.05
                                              1
                                                     1
```

1

1

gre

4

1 0.05

Overall model fitness

library('LogisticDx')

##

To do these diagnostics, you can use LogisticDx package. This package produces the diagnostic measures for a binary regression model based on covariate pattern

This package produces the Goodness-of-fit for binomial regression including the Hosmer-Lemeshow GOF test and the ROC curve. Usually, the number of groups (quantiles) equal 10 to perform the Hosmer-Lemeshow test. At the same time, we plot the ROC curve. Similarly, we can check the *LogisticDx::auc* value

The LogisticDx::dx produces the estimates of residual diagnostics such as 1. standardized residuals 2. dchi-square 3. ddeviance

```
dx_mylogit2 <- dx(mylogit2,byCov=T)</pre>
head(dx_mylogit2, 10)
##
       (Intercept)
                    gpa rank2second rank2third rank2fourth y
##
    1:
                  1 3.94
                                   1
                                               0
                                                           0 1 0.5001242 2
    2:
                   3.30
                                   1
                                               0
                                                             1 0.3378663 3
##
                  1
                                                           0
##
    3:
                  1 3.99
                                   0
                                               1
                                                             1 0.3412259 3
                                                           0
##
    4:
                  1 3.35
                                   1
                                               0
                                                             1 0.3497327 3
                                               0
                                                             1 0.3079792 3
##
    5:
                  1 3.17
                                   1
##
    6:
                   4.00
                                   0
                                               0
                                                             6 0.6779993 9
                                               0
##
    7:
                  1 4.00
                                   1
                                                             4 0.5158996 8
##
    8:
                  1 3.78
                                   1
                                               0
                                                             1 0.4581403 2
                                               0
##
    9:
                  1 3.75
                                   1
                                                             1 0.4503162 2
##
   10:
                  1 3.05
                                               0
                                                             1 0.2817434
##
            yhat
                             Pr
                                                                      sPr
                                            dr
                                                         h
    1: 1.0002483 -0.0003511985 -0.0003511985 0.014377039 -0.0003537507
##
    2: 1.0135990 -0.0165997514 -0.0166181074 0.006902268 -0.0166573376
##
    3: 1.0236777 -0.0288329487 -0.0288874508 0.015618469 -0.0290607843
##
    4: 1.0491980 -0.0595625368 -0.0597856465 0.006844794 -0.0597674360
##
##
    5: 0.9239375
                  0.0951239167
                                 0.0944359041 0.007474218
                                                            0.0954814103
##
    6: 6.1019933 -0.0727624780 -0.0725435839 0.021459082 -0.0735559800
##
       4.1271968 -0.0899872045 -0.0899644454 0.015995728 -0.0907156608
    8: 0.9162805
                  0.1188143108
                                0.1186054483 0.010787822
                                                            0.1194604169
##
##
    9: 0.9006323
                  0.1412260677
                                 0.1408758662 0.010240239
                                                            0.1419547634
   10: 0.8452301
                                 0.1953092157 0.008468306
##
                  0.1986365068
                                                            0.1994829438
##
                 sdr
                            dChisq
                                            dDev
                                                        dBhat
##
    1: -0.0003537506 1.251395e-07 1.251395e-07 1.825379e-09
    2: -0.0166757573 2.774669e-04 2.780809e-04 1.928462e-06
##
       -0.0291157171 8.445292e-04 8.477250e-04 1.339953e-05
##
##
    4: -0.0599913131 3.572146e-03 3.598958e-03 2.461912e-05
##
        0.0947908121 9.116700e-03 8.985298e-03 6.865333e-05
    6: -0.0733346987 5.410482e-03 5.377978e-03 1.186501e-04
##
      -0.0906927175 8.229331e-03 8.225169e-03 1.337740e-04
##
```

0.1192504186 1.427079e-02 1.422066e-02 1.556297e-04 0.1416027549 2.015115e-02 2.005134e-02 2.084876e-04 0.1961414744 3.979344e-02 3.847148e-02 3.398611e-04

Use Logistic Dx::gof to produce 1. Hosmer-Lemeshow GOF test 2. Osius and Rojek's tests 3. the auc

fit.mylogit2

```
##
         chiSq df
                       pVal
## PrI
       400.78 395 0.409645
## drI
       462.88 395 0.010379 *
## PrG
       255.36 255 0.481870
## drG
       294.60 255 0.044609 *
## PrCT 255.36 255 0.481870
## drCT 294.60 255 0.044609 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                         val df
                                    pVal
## HL chiSq
                   8.190458 8 0.415090
## mHL F
                    1.484491
                             9 0.153918
## OsRo Z
                    0.027903 NA 0.977740
## SstPgeq0.5 Z
                    0.217564 NA 0.827769
## SstP10.5 Z
                    0.422859 NA 0.672398
## SstBoth chiSq
                    0.226144
                             2 0.893086
## SllPgeq0.5 chiSq 0.047739
                             1 0.827045
## SllPl0.5 chiSq
                   0.176745
                             1 0.674186
## SllBoth chiSq
                    0.177398
                             2 0.915121
```

To obtain the contigency table for the Hosmer-Lemeshow GOF test, we can use

```
fit.mylogit2$ctHL
                                y0hat n
##
           P y1
                    y1hat y0
                                               Pbar
   1: 0.149 6 5.037833 34 34.96217 40 0.1259458
##
## 2: 0.192 5 6.824095 35 33.17591 40 0.1706024
   3: 0.219 7 8.260683 33 31.73932 40 0.2065171
## 4: 0.258 11 9.327547 28 29.67245 39 0.2391679
## 5: 0.293 12 11.338710 29 29.66129 41 0.2765539
## 6: 0.34 15 12.556219 25 27.44378 40 0.3139055
## 7: 0.376 14 13.796927 25 25.20307 39 0.3537674
## 8: 0.437 14 16.561867 27 24.43813 41 0.4039480
## 9: 0.511 13 18.253216 25 19.74678 38 0.4803478
## 10: 0.678 30 25.042903 12 16.95710 42 0.5962596
and for the GOF test
fit.mylogit2$gof
                                          pVal
##
            test stat
                              val df
## 1:
             HL chiSq 8.19045835 8 0.4150903
## 2:
             mHL
                  F 1.48449073 9 0.1539182
## 3:
            OsRo
                     Z 0.02790263 NA 0.9777398
                     Z 0.21756392 NA 0.8277689
## 4: SstPgeq0.5
                     Z 0.42285933 NA 0.6723979
## 5:
        SstPl0.5
## 6:
         SstBoth chiSq 0.22614408 2 0.8930863
## 7: SllPgeq0.5 chiSq 0.04773921 1 0.8270450
## 8:
        SllPl0.5 chiSq 0.17674490 1 0.6741857
## 9:
         SllBoth chiSq 0.17739848 2 0.9151208
We can also perform model fitness by using ROCR package
library(ROCR)
## Loading required package: gplots
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
##
       lowess
pred.prob2 <- predict(mylogit2, type='response')</pre>
pred.prob22 <- prediction(pred.prob2, mydata$admit2)</pre>
pred.prob22f <- performance(pred.prob22, measure='tpr', x.measure='fpr')</pre>
plot(pred.prob22f)
```



```
Using ROCR package, we can also calculate the AUC
```

```
auc2<-performance(pred.prob22, measure='auc')
auc2@y.values[[1]]</pre>
```

[1] 0.6801073

Another package is MKmisc package, to perform the Hosmer-Lemeshow test of GOF

```
library(MKmisc)
```

```
##
## Attaching package: 'MKmisc'
## The following object is masked from 'package:psych':
##
## corPlot
HLgof.test(fit = fitted(mylogit2), obs = mydata$admit)
## $C
##
```

```
## $C
##
## Hosmer-Lemeshow C statistic
##
## data: fitted(mylogit2) and mydata$admit
## X-squared = 9.8564, df = 8, p-value = 0.2752
##
##
##
##
##
```

```
##
## Hosmer-Lemeshow H statistic
##
## data: fitted(mylogit2) and mydata$admit
## X-squared = 7.6802, df = 8, p-value = 0.4653
```

Diagnostic statistics

We can start of plotting these

```
plot(dx_mylogit2$P, dx_mylogit2$dChisq)
```


plot(dx_mylogit2\$P, dx_mylogit2\$dDev)

You may try and plot the covariate pattern numbers (identifiers) by using this

4 2 3.19 fourth

```
library(epiR)
## Package epiR 0.9-79 is loaded
## Type help(epi.about) for summary information
dat.mf2 <- model.frame(mylogit2)</pre>
head(dat.mf2)
##
     admit2 gpa
                  rank2
## 1
         no 3.61
                  third
        yes 3.67
##
                  third
##
   3
        yes 4.00 first
## 4
        yes 3.19 fourth
## 5
         no 2.93 fourth
        yes 3.00 second
cv_mf2 <- epi.cp(dat.mf2[-1])</pre>
head(cv_mf2$cov.pattern)
     id n gpa
##
                rank2
## 1
      1 2 3.61
                 third
      2 2 3.67
                 third
      3 9 4.00
                first
```

```
## 5 5 2 2.93 fourth
## 6 6 2 3.00 second
```

The plot function Will return many diagnostic plots

```
plot(mylogit2)
```

Using K-fold validation. Will not discuss here.

Logistic model with interaction of predictors

Let use see how we deal an interaction. First, read data from this text file.

Columns (variables) no 2, and from 5 to 10 need to be converted to categorical (factor) variables. We will use lapply function for that.

```
data.l<-read.table("LOWBWT.txt",header=T)
data.l[,c(2,5:10)]<-lapply(data.l[,c(2,5)],factor)</pre>
```

Now, observe the first few data

```
head(data.1)
```

```
ID LOW AGE LWT RACE SMOKE PTL HT UI FTV
## 1 4
          1 28 120
                                      1
                                                709
                        3
                              1
                                   3
                                         3
                                             1
## 2 10
             29 130
                                   1
                                      1
                                        1
                                             1 1021
          1
                        1
                              1
## 3 11
          1
             34 187
                        2
                              1
                                   2
                                      1
                                         2
                                             1 1135
## 4 13
             25 105
                        3
                                   3
                                      1 3
                                             1 1330
          1
                              1
## 5 15
          1
             25 85
                        3
                              1
                                   3
                                     1
                                         3
                                             1 1474
## 6 16
          1
             27 150
                        3
                              1
                                   3
                                     1
                                        3
                                             1 1588
```

To simulate a binary predictor variable, we now recode LWT to LWD (LWT<110 vs >=110)

```
data.1$LWD <- findInterval(data.1$LWT, 110)
head(data.1$LWD)</pre>
```

```
## [1] 1 1 1 0 0 1
```

Let us verify our categorization

```
data.l$LWD <- factor(data.l$LWD, labels = c("less 110",">=110"))
head(data.l$LWD, 10)
```

```
## [1] >=110 >=110 >=110 less 110 less 110 >=110 less 110
## [8] >=110 >=110 >=110
## Levels: less 110 >=110
head(data.l$LWT, 10)
```

```
## [1] 120 130 187 105 85 150 97 128 132 165
str(data.1$LWD)
```

```
## Factor w/ 2 levels "less 110",">=110": 2 2 2 1 1 2 1 2 2 2 ...
```

Model the relationship between the outcome variable (LOW = 0,1) with predictors of LWD and AGE interacting with each other. You may use # to perform that

```
mod.lwd.age <- glm(LOW ~ LWD*AGE, family = binomial(link =logit ),data=data.l)
summary(mod.lwd.age)</pre>
```

```
##
## Call:
## glm(formula = LOW ~ LWD * AGE, family = binomial(link = logit),
##
       data = data.1)
##
## Deviance Residuals:
                      Median
       Min
                 10
                                    30
                                            Max
## -1.4257 -0.8554 -0.6960
                                         2.0329
                                1.1602
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.16959
                             1.46515 -0.798
                                               0.4247
## LWD>=110
                 1.94409
                             1.72481
                                       1.127
                                               0.2597
                                       0.816
## AGE
                 0.05262
                             0.06449
                                               0.4145
## LWD>=110:AGE -0.13220
                             0.07570 -1.746
                                               0.0807 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 221.14 on 185 degrees of freedom
## AIC: 229.14
## Number of Fisher Scoring iterations: 4
Predict our model (with a two-way interaction between age and LWD using a new set of data. We can create
such a dataset with this
newdata.2 < -data.frame(AGE = c(15,15,20,20),LWD = rep(c("less 110",">=110"), 2))
newdata.2
##
     AGE
              LWD
## 1 15 less 110
## 2 15
            >=110
## 3
     20 less 110
## 4 20
            >=110
Now let us predict the log odds for the model with the interaction term
predict(mod.lwd.age, newdata = newdata.2)
## -0.3802252 -0.4190874 -0.1171023 -0.8169483
Can you prove the predicted log odds manually?
-1.1696 + 0 + 0.0526*15 + 0
## [1] -0.3806
-1.1696 + 1.944*1 + 0.0526*15 - 0.1322*1*15
## [1] -0.4196
-1.1696 + 0 + 0.0526*20 + 0
## [1] -0.1176
```

```
-1.1696 + 1.944*1 + 0.0526*20 - 0.1322*1*20
```

[1] -0.8176

Resources

- $1.\ http://www.ats.ucla.edu/stat/r/dae/logit.htm$
- 2. https://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_logistic_regression_glm.pdf