Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Département de Mathématiques Al Hoceima, Maroc

Module Mathématiques AP11 Algèbre de base I

Cycle Préparatoire : Sciences et Techniques Pour l'Ingénieur

Younes ABOUELHANOUNE

Programme

Chapitres:

- Logiques & Relations et applications
- Structures algébriques
- Arithmétique dans Z
- Polynômes et fraction rationnelle

Mode d'évaluation :

Note Finale = Controle continue 40% + Examen 60%

Controle continue = Devoir Libre

- * Si NF > 10 le module est validé
- * Si NF < 10 Rattrapage

Chapitre 1

Logiques & Relations binaires

Chapitre 1 : Logiques & Relations binaires

Opérations logiques élémentaires:

- 1- Connecteurs logiques
- 2- Quantificateurs
- 3- Quelques formes de raisonnements logiques
- 4- Relation binaires et Ensembles

Objectif du mathématique :

Mathématique est un langage adapté aux phénomènes complexes, qui rend les calculs exacts et vérifiables.

les mathématiques tentent de *distinguer le vrai du faux*.

- LEIBNIZ: Notation mathématique moderne
- □ BOOLE (XXème siècle) : Logique mathématique avec calcul de vérité
- ☐ FREGE (Début XXème.) : extension tenant compte de la notion de variable ⇒ Systèmes logiques formalisés
- ☐ **HILBERT** (1900) : 23 problèmes non résolus
- ⇒ Nombreux travaux en logique : Axiomes de Peano en arithmétique, Théorie des ensembles, Théorie des modèles
- CHURCH, TURING (années 30): Algorithmique
- ⇒ Lambda-Calcul et Machine de Turing : Naissance du premier langage de programmation
- ☐ **CURRY-HOWARD**: Correspondance entre preuves formelles et Lambda-Calcul

1. Logique:

1.1. Assertions:

Une assertion est une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples:

- $\sqrt{2+2} = 4$ »
- $<\!< 2 * 3 = 7 >>$
- « Pour tout $x \in R^*$, on $a x^2 > 0$ »
- « Pour tout $z \in C$, on a/z/=1 »

Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions construites à partir de P et de Q.

1. Logique:

☐ L'opérateur logique « et »

L'assertion « P et Q » est vraie si P est vraie et Q est vraie. L'assertion « P et

Q » est fausse sinon.

$P \setminus Q$	V	F
V	V	F
F	F	F

☐ L'opérateur logique « ou »

L'assertion « P ou Q » est vraie si l'une (au moins) des deux assertions P ou

Q est vraie. L'assertion « P ou Q » est fausse si les deux assertions P et Q

sont fausses.

$P \setminus Q$	V	F
V	V	V
F	V	F

1. Logique:

☐ La négation « non »

L'assertion « non P » est vraie si P est fausse, et fausse si P est vraie.

☐ L'implication ————

L'assertion « (non P) ou Q » est notée

$$P \Rightarrow Q$$

Sa table de vérité est donc la suivante :

$P \setminus Q$	V	F
V	V	F
F	V	V

1. Logique:

☐ L'équivalence : <>>

On dira « P est équivalent à Q » ou « P équivaut à Q » ou « P si et seulement si Q ». Cette assertion est vraie

lorsque P et Q sont vraies ou lorsque P et Q sont fausses.

Table de vérité est :

Proposition 1:

Soient P,Q,R trois assertions. Nous avons les équivalences suivantes :

- 1. P <==> non(non(P))
- 2. $(P \ et \ Q) <==> (Q \ et \ P)$
- 3. (P ou Q) <==> (Q ou P)
- 4. $non(P \ et \ Q) <==> (non \ P) \ ou \ (non \ Q)$
- 5. $non(P ou Q) \le = > (non P) et (non Q)$
- 6. $P \ et \ (Q \ ou \ R) <==> (P \ et \ Q) \ ou \ (P \ et \ R)$
- 7. $P ou (Q et R) \le > (P ou Q) et (P ou R)$
- 8. P ==>Q <==> non(Q) ==> non(P)

Démonstration (TD): Montrer les équivalences 4,6 et 8

2. Quantificateurs:

 \square Le quantificateur \forall : « pour tout »

Une assertion P peut dépendre d'un paramètre x, par exemple « $x^2 > 1$ », l'assertion P(x) est vraie ou fausse selon la valeur de x.

Exemples:

- $\forall x \in [1, +\infty[x^2 \ge 1 \text{ est une assertion } \mathbf{vraie}.$
- $\forall x \in \mathbb{R} \ \mathbf{x}^2 \ge 1$ est une assertion **fausse**.
- $\forall n \in \mathbb{N} \text{ n(n+1)}$ est divisible par 2 est vraie.

2. Quantificateurs:

 \square Le quantificateur \exists : « *il existe* »

Une assertion vraie lorsque l'on peut trouver au moins un x de E pour lequel P(x) est vraie

Exemples:

- • $\exists x \in \mathbb{R} / x(x-1) < 0$ est vraie (par exemple x = 1/2 vérifie bien la propriété).
- $\exists n \in \mathbb{N} / n^2$ -n>0 est vraie (il y a plein de choix, par exemple n = 3 convient, mais aussi n = 10 ou même n = 100, un seul suffit pour dire que l'assertion est vraie).
- $\exists x \in \mathbb{R} / x^2 = -1$ est **fausse** (aucun réel au carré ne donnera un nombre négatif).

2. Quantificateurs:

☐ La négation des quantificateurs

La négation de
$$\forall x \in E \ P(x)$$
 est $\exists x \in E \ non \ P(x)$

La négation de $\exists x \in E \ P(x) \ est \ \forall x \in E \ non \ P(x)$

Exemples : Donner la négation des assertions suivantes

$$\forall x \in [1, +\infty[\text{ tel que } x^2 \ge 1]$$

$$\forall x \in \mathbb{R} / x + 1 \in \mathbb{Z}$$

$$\exists z \in \mathbb{C} / z^2 + z + 1 = 0$$

$$\forall x \in \mathbb{R} \quad \exists y > 0 \quad x + y > 10$$

3. Raisonnements:

Un raisonnement est une manière d'arriver à une conclusion en partant d'une (ou de plusieurs) hypothèse(s), et en utilisant les règles de déduction d'une proposition à partir d'une autre.

Types de raisonnement :

- 1- Raisonnement direct
- 2- Cas par cas
- 3- Contraposée
- 4- Absurde
- 5- Contre-exemple
- 6- Raisonnement par Récurrence.

3.1. Raisonnement Direct:

On veut montrer que l'assertion « $P \rightarrow Q$ » est vraie. On suppose que P est vraie et on montre qu'alors Q est vraie. C'est la méthode à laquelle vous êtes le plus habitué.

Exemple 1:

Montrer que si $(a, b) \in Q$ alors $a + b \in Q$.

Démonstration. Prenons $a \in \mathbb{Q}$, $b \in \mathbb{Q}$. Rappelons que les rationnels \mathbb{Q} sont l'ensemble des réels s'écrivant $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

Alors $a=\frac{p}{q}$ pour un certain $p\in\mathbb{Z}$ et un certain $q\in\mathbb{N}^*$. De même $b=\frac{p'}{q'}$ avec $p'\in\mathbb{Z}$ et $q'\in\mathbb{N}^*$. Maintenant

$$a+b=\frac{p}{q}+\frac{p'}{q'}=\frac{pq'+qp'}{qq'}.$$

Or le numérateur pq'+qp' est bien un élément de \mathbb{Z} ; le dénominateur qq' est lui un élément de \mathbb{N}^* . Donc a+b s'écrit bien de la forme $a+b=\frac{p''}{a''}$ avec $p''\in\mathbb{Z}$, $q''\in\mathbb{N}^*$. Ainsi $a+b\in\mathbb{Q}$.

3.2. Raisonnements Cas par cas:

Si l'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l'assertion pour les x dans une partie A de E, puis pour les x n'appartenant pas à A. C'est la méthode de **disjonction ou du cas par cas.**

Exemple 2:

Montrer que
$$\forall x \in \mathbb{R} |x-1| \le x^2 - x + 1$$

Démonstration. Soit $x \in \mathbb{R}$. Nous distinguons deux cas.

Premier cas: $x \ge 1$. Alors |x-1| = x-1. Calculons alors $x^2 - x + 1 - |x-1|$.

$$x^{2}-x+1-|x-1| = x^{2}-x+1-(x-1)$$

$$= x^{2}-2x+2$$

$$= (x-1)^{2}+1 \ge 0.$$

Ainsi $x^2 - x + 1 - |x - 1| \ge 0$ et donc $x^2 - x + 1 \ge |x - 1|$.

Deuxième cas: x < 1. Alors |x-1| = -(x-1). Nous obtenons $x^2 - x + 1 - |x-1| = x^2 - x + 1 + (x-1) = x^2 \ge 0$.

Et donc $x^2 - x + 1 \ge |x - 1|$.

Conclusion. Dans tous les cas $|x-1| \le x^2 - x + 1$.

П

3.3. Raisonnements par Contraposée :

Le raisonnement par contraposition est basé sur l'équivalence suivante

l'assertion $P \Rightarrow Q$ est équivalente à non $P \Rightarrow non Q$

Donc si l'on souhaite montrer l'assertion « P => Q », on montre en fait que si non(Q) est vraie alors non(P) est vraie.

Exemple 3:

Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

Démonstration. Nous supposons que n n'est pas pair. Nous voulons montrer qu'alors n^2 n'est pas pair. Comme n n'est pas pair, il est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k+1. Alors $n^2 = (2k+1)^2 = 4k^2+4k+1 = 2\ell+1$ avec $\ell = 2k^2+2k \in \mathbb{N}$. Et donc n^2 est impair.

Conclusion : nous avons montré que si n est impair alors n^2 est impair. Par contraposition ceci est équivalent à : si n^2 est pair alors n est pair.

3.3. Raisonnements par Absurde:

montrer « P => Q » repose sur le principe suivant : on suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction. Ainsi si P est vraie alors Q doit être vraie et donc « P => Q » est vraie.

Exemple 4: Soient a,b
$$\geq$$
 0. Montrer que si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a=b

Démonstration. Nous raisonnons par l'absurde en supposant que $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$. Comme $\frac{a}{1+b} = \frac{b}{1+a}$ alors a(1+a) = b(1+b) donc $a + a^2 = b + b^2$ d'où $a^2 - b^2 = b - a$. Cela conduit à (a-b)(a+b) = -(a-b). Comme $a \neq b$ alors $a - b \neq 0$ et donc en divisant par a - b on obtient a + b = -1. La somme des deux nombres positifs a et b ne peut être négative. Nous obtenons une contradiction.

Conclusion : si
$$\frac{a}{1+b} = \frac{b}{1+a}$$
 alors $a = b$.

3.4. Raisonnement Contre-exemple:

Si l'on veut montrer qu'une assertion du type « $\forall x \in E \ P(x)$ » est vraie alors pour chaque x de E il faut montrer que P(x) est vraie. P. Trouver un **contre-exemple à l'assertion** « $\forall x \in E \ P(x)$ ».

Exemple 5:

Montrer que l'assertion suivante est fausse « *Tout entier positif est* somme de trois carrés ». (Les carrés sont les 0^2 , 1^2 , 2^2 , 3^2 ,... Par exemple $6 = 2^2 + 1^2 + 0^2$.)

Démonstration. Un contre-exemple est 7 : les carrés inférieurs à 7 sont 0, 1, 4 mais avec trois de ces nombres on ne peut faire 7. □

3.4. Raisonnement par Récurrence:

Le principe de récurrence permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tout $n \in \mathbb{N}$. La démonstration par récurrence se déroule en trois étapes : **Initialisation**, **l'Hérédité et la conclusion**

Exemple 6:

Montrer que pour tout $n \in \mathbb{N}$, $2^n > n$.

Démonstration. Pour $n \ge 0$, notons P(n) l'assertion suivante :

$$2^n > n$$
.

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \ge 0$.

Initialisation. Pour n = 0 nous avons $2^0 = 1 > 0$. Donc P(0) est vraie.

Hérédité. Fixons $n \ge 0$. Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) est vraie.

$$2^{n+1} = 2^n + 2^n > n + 2^n$$
 car par $P(n)$ nous savons $2^n > n$,
 $> n+1$ car $2^n \ge 1$.

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence P(n) est vraie pour tout $n \ge 0$, c'est-à-dire $2^n > n$ pour tout $n \ge 0$.

Chapitre 1 : Ensembles et Applications

1. Ensembles Et Applications:

- 3.1. Ensembles:
 - 3.1. Définition : un ensemble est une collection d'éléments.
- Exemples :

$$\{0,1\}$$
, $\{rouge, noir\}$, $\{0,1,2,...\} = \mathbb{N}$, $\{x \in \mathbb{R} / 0 \le x \le 1\}$

3.1. Propriétés sur les ensembles:

- 1- Inclusion
- 2- Union
- **3- Intersection**
- 4- Complémentaire

Chapitre 1 : Ensembles et Applications

3.1.1 Inclusion:

 $E \subset F$ si tout élément de E est aussi un élément de F. Autrement dit

$$\forall x \in E \quad \text{alors } x \in F$$

3.1.2 Union:

Pour A,B
$$\subset$$
 E $A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$

$$Si \ A \subset E \qquad C_E A = \overline{A} = \{x \in E \mid x \notin A\}$$

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

Chapitre 1 : Ensembles et Applications

3. Les ensembles: Règles de calculs

Soient A, B, C des parties d'un ensemble E.

- A∩B = B∩A
- A∩(B∩C) = (A∩B)∩C (on peut donc écrire A∩B∩C sans ambigüité)
- $A \cap \emptyset = \emptyset$, $A \cap A = A$, $A \subset B \iff A \cap B = A$
- A∪B = B∪A
- A∪(B∪C) = (A∪B)∪C (on peut donc écrire A∪B∪C sans ambiguïté)
- $A \cup \emptyset = A$, $A \cup A = A$, $A \subset B \iff A \cup B = B$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- C(CA) = A et donc $A \subset B \iff CB \subset CA$
- C(A∩B) = CA∪CB
- C(A∪B) = CA∩CB

Chapitre 2 : Ensembles et Applications

3. Les ensembles: Produit cartésien

Soient E et F deux ensembles. Le produit cartésien, noté E * F, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

Exemples:

$$\mathbb{R}^2 = \mathbb{R} * \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$
$$[0,1] * \mathbb{R} = \{(x, y) \mid 0 \le x \le 1, y \in \mathbb{R}\}$$

4. Relations et Applications :

1.1. Définitions

Une application (ou une fonction) $f: E \rightarrow F$, c'est la donnée pour chaque élément $x \in E$ d'un unique élément de F noté f(x).

Propriétés:

1- Égalité:

Deux applications f, $g: E \rightarrow F$ sont égales si et seulement si pour tout $x \in E$, f(x) = g(x).

On note alors f = g

2- Le graphe de f: f: E \rightarrow F

$$\Gamma_f = \{ (x, f(x)) \in E * F / x \in E \}$$

 $\bullet f(x)$

4. Relations et Applications :

- **3-** *Identité*: $Id_E: E \to E$ est simplement $x \to x$
- **4- Composition:** Soient $f: E \rightarrow F$ et $g: F \rightarrow G$ alors

$$g \circ f(x) = g(f(x))$$

Exemple: Définissons f, g ainsi

$$f:]0,+\infty[\longrightarrow]0,+\infty[\qquad g:]0,+\infty[\longrightarrow \mathbb{R}$$

 $x \mapsto \frac{1}{x}$, $x \mapsto \frac{x-1}{x+1}$

Monter que $g \circ f(x) = -g(x)$

4.1. Image directe, image réciproque

Soient *E*, *F* deux ensembles

Définition 1: Soit
$$A \subset E$$
 et $f : E \to F$

Alors, l'image directe de A par f est l'ensemble

$$f(A) = \left\{ f(x) / x \in A \right\}$$

Définition 2: Soit
$$B \subset F$$
 et $f : E \to F$

l'image réciproque de B par f est l'ensemble

$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$

4.2. Antécédents :

Fixons $y \in F$.

Tout élément $x \in E$ tel que f(x) = y est un antécédent de y.

4.3. Injection, surjection, bijection

4.3.1. Injection et surjection:

Soit E, F deux ensembles et $f: E \rightarrow F$ une application.

Définition 1: f est injective si pour tout x, $x' \in E$ avec f(x) = f(x') alors x = x'.

$$\forall x, x' \in E \ f(x) = f(x') \Longrightarrow x = x'$$

Définition 2: f est surjective si pour tout $y \in F$, il existe $x \in E$ tel que y = f(x).

$$\forall y \in F \ \exists x \in E \ y = f(x)$$

Remarque.

- f est injective si et seulement si tout élément y de F a au plus un antécédent (et éventuellement aucun).
- f est surjective si et seulement si tout élément y de F a au moins un antécédent.

4.3. Injection, surjection, bijection

Exemple 1: $Soit \ f: \mathbb{N} \to \mathbb{Q} \ d\'{e}finie \ par \ f(x) = \frac{1}{1+x}$ Montrer que f est injective.

Montrons que f_1 est injective : soit $x, x' \in \mathbb{N}$ tels que $f_1(x) = f_1(x')$. Alors $\frac{1}{1+x} = \frac{1}{1+x'}$, donc 1+x=1+x' et donc x=x'. Ainsi f_1 est injective.

Est ce que f est surjective ?????

Par contre f_1 n'est pas surjective. Il s'agit de trouver un élément y qui n'a pas d'antécédent par f_1 . Ici il est facile de voir que l'on a toujours $f_1(x) \le 1$ et donc par exemple y = 2 n'a pas d'antécédent. Ainsi f_1 n'est pas surjective.

4.3. Injection, surjection, bijection

Exemple 2:

Soit $g: \mathbb{Z} \to \mathbb{N}$ définie par $g(x) = x^2$

Montrer que g n'est pas injective et non surjective.

Soit $f_2: \mathbb{Z} \to \mathbb{N}$ définie par $f_2(x) = x^2$.

Alors f_2 n'est pas injective. En effet on peut trouver deux éléments $x, x' \in \mathbb{Z}$ différents tels que $f_2(x) = f_2(x')$.

Il suffit de prendre par exemple x = 2, x' = -2.

 f_2 n'est pas non plus surjective, en effet il existe des éléments $y \in \mathbb{N}$ qui n'ont aucun antécédent.

Par exemple y = 3: si y = 3 avait un antécédent x par f_2 , nous aurions $f_2(x) = y$, c'est-à-dire $x^2 = 3$, d'où $x = \pm \sqrt{3}$. Mais alors x n'est pas un entier de \mathbb{Z} . Donc y = 3 n'a pas d'antécédent et f_2 n'est pas surjective.

4. Ensembles et Applications :

4.3. Injection, surjection, bijection

4.3.1. Bijection:

Définition:

f est bijective si elle injective et surjective.

Cela équivaut à : pour tout $y \in F$ il existe un unique $x \in E$ tel que y = f(x).

$$\forall y \in F \ \exists ! x \in E \ y = f(x)$$

L'existence du x vient de la surjectivité et l'unicité de l'injectivité. Autrement dit, tout élément de F a un unique antécédent par f.

4- Bijection

Définition:

Soit f une application de E vers F. On dit que f est une application bijective, ou une bijection, si tout élément de F possède un antécédent et un seul dans E.

b) Propriétés :

- Soit $f \in A(E,F)$:
 - o f est une bijection ssi $\forall y \in F, \exists ! x \in E / y = f(x)$
 - o f est une bijection ssi f est à la fois injective et surjective
- Soit $f \in A(E,F)$ et $g \in A(F,G)$:
 - o Si f et g sont bijectives alors $h = g \circ f$ est bijective

4- Bijection réciproque

Définition:

Soit f une bijection de E vers F. On appelle application réciproque de f et on note f^{-1} , l'application définie de F vers E et qui associe à tout élément de F son unique antécédent dans E par la bijection f.

Remarque:

 Ne pas confondre l'application réciproque d'une bijection et l'image réciproque qui existe, même lorsque n'est pas bijective.

4- Propriétés de la bijection réciproque

- Soit $f \in A(E,F)$ une bijection :
 - o f^{-1} est une bijection
 - o f c'est la réciproque de sa réciproque : $(f^{-1})^{-1} = f$

 - o $f \circ f^{-1} = Id_F$ et $f^{-1} \circ f = Id_E$
- Soit $f \in A(E,F)$:
 - o f est bijective ssi $\exists g \in A(F,E)/f \circ g = Id_F \text{ et } g \circ f = Id_E, \text{ et alors } g = f^{-1}$

4. Relations binaires:

Définition 1: On appelle relation binaire, toute assertion entre deux objets, pouvant être vérifiée ou non. On note xRy et on lit "x est en relation avec y".

Définition 2 : Soit *E et F deux ensembles*.

On appelle relation binaire R de E vers F toute partie du produit cartésien E *F .

- Cette partie s'appelle le graphe de la relation R . On note G_R
- On dit qu'un élément x de E est en relation avec un élément y de F , par la relation R , si le couple (x, y) appartient au graphe G_R .

On note xRy, xTy, $x\sim y$ ou bien x*y

4. Relations binaires:

Exemples:

- 1) La relation d'inclusion dans l'ensemble des parties de $E: ARB ssi A \subset B$
- 2) La relation de divisibilité sur l'ensemble IZ: nRm ssi n divisem
- 3) La relation de congruence modulo a sur l'ensemble IZ, $(a \in IZ *)$: nRm ssi (n-m) est divisible par a

On note cette relation par $n \equiv m$ (a) et on lit n est congru à m modulo a.

- Sur l'ensemble R des nombres réels, on connaît les relations usuelles :

$$\leq$$
 , $<$, \geq , $>$, $=$,etc

(on peut aussi considérer les restrictions de ces relations à \mathbb{Q} , \mathbb{Z} , \mathbb{N} ...)

4. Propriétés des relations binaires :

Définition :

Soit R une relation définie sur un ensemble E.

- La relation R est dite réflexive si $(\forall x \in E, x R x)$
- La relation R est dite symétrique si $(\forall (x,y) \in E^2, (xRy) \Rightarrow (yRx))$
- La relation R est dite transitive si $(\forall (x, y, z) \in E^3, (xRy) \text{ et } (yRz) \Rightarrow (xRz))$
- La relation R est dite antisymétrique si $(\forall (x,y) \in E^2, ((xRy)) \text{ et } (yRx)) \Rightarrow x = y)$

Remarques:

- Une relation R est antisymétrique si $\forall (x, y) \in E^2$, $((x R y) \text{ et } (x \neq y)) \Rightarrow non(y R x)$.
- Une relation R est symétrique si $(\forall (x,y) \in E^2, (xRy) \Leftrightarrow (yRx))$.
- Une relation R qui n'est pas symétrique n'est pas nécessairement antisymétrique.
- Une relation qui est symétrique, antisymétrique et réflexive sur un ensemble E c'est la relation d'égalité sur cet ensemble.

4. Exemples Relations binaires :

- 1) La relation d'inclusion large dans l'ensemble des parties de $E: ARB ssi A \subseteq B$
 - a. est réflexive, antisymétrique et transitive.
 - b. n'est pas symétrique.
- 2) La relation d'inclusion stricte dans l'ensemble des parties de E: ARB ssi $A \subset B$
 - a. est antisymétrique et transitive.
 - b. n'est pas réflexive, n'est pas symétrique.
- 3) La relation de divisibilité sur l'ensemble IN: nRm ssi n divisem
 - a. est réflexive, antisymétrique et transitive.
 - b. n'est pas symétrique.
- 4) La relation de divisibilité sur l'ensemble IZ: nRm ssi n divisem
 - a. est réflexive et transitive.
 - b. n'est pas symétrique et n'est pas antisymétrique.

4. Exemples Relations binaires :

- 5) La relation de congruence modulo a sur l'ensemble IZ, $(a \in IZ *)$: $n \equiv m$ (a)
 - a. est réflexive, symétrique et transitive.
 - b. n'est pas antisymétrique.
- 6) La relation d'inégalité large " \leq " dans les ensembles IN, IZ, IQ et IR: xRy ssi $x \leq y$
 - a. est réflexive, antisymétrique et transitive.
 - b. n'est pas symétrique.
- 7) La relation d'inégalité stricte "<" dans les ensembles IN, IZ, IQ et IR: xRy ssi x < y
 - a. est réflexive, antisymétrique et transitive.
 - b. n'est pas réflexive, n'est pas symétrique.

4. Relations d'équivalence :

Définition : On dit qu'une relation binaire R sur un ensemble E est une relation d'équivalence si elle est **Réflexive**, **Symétrique et Transitive**.

Exemple 1: Etant donné E un ensemble non vide, alors L'égalité = est une relation d'équivalence dans E.

Exercice: Dans **?** on définit la relation T par :

$$\forall x, y \in \mathbb{R}, \quad xTy \Leftrightarrow x^2-1=y^2-1$$

Montrer que T est une relation d'équivalence

R est une relation Reflexive, car d'après la Réflexivité de l'égalité on a :

$$\forall x, y \in \mathbb{R}, x^2 - 1 = x^2 - 1,$$

donc

$$\forall x, y \in \mathbb{R}, \quad x\Re x$$

ce qui montre que R est une relation Réflexive.

II) R est une relation Symétrique, car d'après la Symétrie de l'égalité on a :

donc

$$\forall x, y \in \mathbb{R}, \quad x\Re x \iff y\Re x$$

ce qui montre que R est une relation Symétrique.

III) R est une relation Transitive, car d'après la Transitivité de l'égalité on a :

$$\begin{array}{lll} \forall\,x,\,\,y,\,\,z\in\mathbb{R}, & (x\Re y)\wedge(y\Re z) &\Longrightarrow & (x^2-1=y^2-1)\wedge(y^2-1=z^2-1)\\ &\Longrightarrow & (x^2-1=z^2-1) & car\,\,l'\acute{e}galit\acute{e}\,\,est\,\,Transitive.\\ &\Longrightarrow & (x\Re y)\,(x\Re y) \end{array}$$

donc

$$\forall x, y, z \in \mathbb{R}, \quad (x\Re y) \land (y\Re z) \Longrightarrow (x\Re y)$$

ce qui montre que R est une relation Transitive.

De I) , II) et III) , on déduit que \Re est une relation déquivalence.

4. Classe d'équivalence :

Définition:

Soit R une relation d'équivalence définie sur un ensemble E.

- On appelle la classe d'équivalence d'un élément x de E, l'ensemble de tous les éléments de E qui sont en relation avec x.
- On note $C(x) = \{ y \in E / x R y \} = \{ y \in E / y R x \}.$
- On note aussi la classe d'équivalence de x par \overline{x} ou \dot{x} .

Remarques:

- Tout élément x de E appartient à sa propre classe d'équivalence, puisque la relation R est réflexive : (∀x ∈ E, xRx) ⇒ x ∈ C(x)
- Deux classes d'équivalences sont ou bien égales ou bien disjointes :

$$\forall (x, y) \in E^2$$
: Si $x R y$, alors $C(x) = C(y)$
Si non, alors $C(x) \cap C(y) = \phi$

4. Relations d'ordre:

Définition : On dit qu'une relation binaire R sur un ensemble E est une relation d'ordre si elle est **Réflexive**, anti-Symétrique et **Transitive**.

Relation totale ou partielle

Définition 4 : Soit R une relation binaire sur E.

- On dit que x et y de E sont comparable par \mathscr{R} si : $x \mathscr{R} y$ ou $y \mathscr{R} x$.
- On dit que la relation R est totale si deux éléments quelconques de E sont comparable :
 ∀x, y ∈ E, x R y ou y R x
- On dit que la relation R est partielle dans le cas contraire.

Exemple :

- La relation de divisibilité | sur Z* est partielle : on ne peut comparer 3 et 5 car l'un des deux n'est pas un diviseur de l'autre.

Exercice:

On munit dans \mathbb{R}^2 de la relation < définie par :

$$(x, y) < (x', y') \Leftrightarrow x \le x' \text{ et } y \le y'$$

- 1. Monter que < est une relation d'ordre sur \mathbb{R}^2 .
- 2. L'ordre est-il Total ?????

Solution

- 1. La relation ≺ est
 - réflexive : pour tout $(x,y) \in \mathbb{R}^2$, on a $x \leq x$ et $y \leq y$.
 - ullet transitive : si $(x_1,y_1) \prec (x_2,y_2)$ et $(x_2,y_2) \prec (x_3,y_3)$, alors

$$x_1 \le x_2 \le x_3 \text{ et } y_1 \le y_2 \le y_3$$

donc $(x_1, y_1) \prec (x_3, y_3)$.

• antisymétrique : si $(x,y) \prec (x',y')$ et $(x',y') \prec (x,y)$, alors on a à la fois $x \leq x'$ et $x' \leq x$ et donc x = x' et de même y = y'.

Elle définit donc bien une relation d'ordre sur \mathbb{R}^2 . L'ordre n'est pas total, car on ne peut pas comparer (0,1) et (1,0).

Solution TD 1

Dans chacun des cas suivants, déterminer f(I) puis pré ciser f^{-1} :

- 1. $f(x) = x^2 4x + 3$, $I =]-\infty; 2]$.
- 2. $f(x) = \frac{2x-1}{x+2}$, $I =]-2; +\infty]$.

Solution

1. $f(x) = x^2 - 4x + 3$, $I =]-\infty; 2]$.

f est dérivable sur $I =]-\infty; 2]$, et pour $x \in]-\infty; 2]$, f'(x) = 2x - 4. f est donc continue et strictement décroissante sur $]-\infty; 2]$.

Par suite, f réalise une bijection de $]-\infty;2]$ sur $f(]-\infty;2]$) = $[f(2); \lim_{-\infty} f[=[-1,+\infty[=J.$

On note g l'application de I dans J qui, à x associe $x^2 - 4x + 3$. g est bijective admet donc une réciproque. Déterminons g^{-1} .

Dans chacun des cas suivants, déterminer f(I) puis pré ciser f^{-1} :

1.
$$f(x) = x^2 - 4x + 3$$
, $I =]-\infty; 2]$.

2.
$$f(x) = \frac{2x-1}{x+2}$$
, $I =]-2; +\infty]$.

Solution

2.
$$f(x) = \frac{2x-1}{x+2}$$
, $I =]-2; +\infty]$.
On vérifie facilement que f réalise une bijection de $]-2; +\infty]$ vers $]-\infty; 2]$
Soit alors $x \in]-2; +\infty]$ et $y \in]-\infty; 2]$
 $y = g(x) \Leftrightarrow x = \frac{2y+1}{2-y}$
 $donc \quad \forall x \in]-\infty; 2]$ $g^{-1}(x) = \frac{2x+1}{2-x}$

A, B, C et E des ensembles. Montrer les assertions suivantes :

- **1.** $\forall A, B \in P(E)$ $A \cap B = A \cup B \Rightarrow A = B$
- **2.** $\forall A, B, C \in P(E)$ $A \cap B = A \cap C$ et $A \cup B = A \cup C \Rightarrow B = C$.
- 3. $[(A \cap B) \cup C] \cap B = B \cap (A \cup C)$

Solution

- 1. Si $A \cap B = A \cup B$ alors A = B. En effet, si $x \in A$ alors $x \in A \cup B = A \cap B$ et donc $x \in B$. Ceci montre que $A \subset B$. On montre de la même manière que $B \cup A$. Ainsi A = B.
- 2. nous le montrons par contraposition. Nous supposons que

 $A \neq B$ et devons monter que $A \cap B \neq A \cup B$.

Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A \setminus B$ ou alors un élément $x \in B \setminus A$. Quitte à échanger A et B, nous supposons qu'il existe $x \in A \setminus B$. Alors $x \in A \cup B$ mais $x \notin A \cap B$. Donc $A \cap B \neq A \cup B$.

3 On a

$$[(A \cap B) \cup C] \cap B = (A \cap B \cap B) \cup C \cap B$$
$$= (B \cap A) \cup (B \cap C)$$
$$= B \cap (A \cup C)$$

1. Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+1}$ Montrer par récurrence que :

$$\forall n \in \mathbb{N}; \quad x_n > 3$$

2. En utilisant le raisonnement par contraposition, Montrer que :

$$x \neq 2$$
 et $y \neq 2 \Rightarrow xy - 2x - 2y + 4 \neq 0$

3. Démontrer que si a et b sont deux entiers relatifs tels que $a + b\sqrt{2} = 0$ alors a = b = 0.

1. Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+1}$ Montrer par récurrence que :

$$\forall n \in \mathbb{N}; \quad x_n > 3$$

Correction 1 Montrons par récurrence $\forall n \in \mathbb{N} \ x_n > 3$. Soit l'hypothèse de récurrence :

$$(\mathcal{H}_n)$$
: $x_n > 3$.

- La proposition H₀ est vraie car x₀ = 4 > 3.
- Soit n ≥ 0, supposons H_n vraie et montrons que H_{n+1} est alors vraie.

$$x_{n+1} - 3 = \frac{2x_n^2 - 3}{x_n + 2} - 3 = \frac{2x_n^2 - 3x_n - 9}{x_n + 2}.$$

Par hypothèse de récurrence $x_n > 3$, donc $x_n + 2 > 0$ et $2x_n^2 - 3x_n - 9 > 0$ (ceci par étude de la fonction $x \mapsto 2x^2 - 3x - 9$ pour x > 3). Donc $x_{n+1} - 3$ et \mathcal{H}_{n+1} est vraie.

Nous avons montrer

$$\forall n \in \mathbb{N} \quad \mathcal{H}_n \Rightarrow \mathcal{H}_{n+1}$$

et comme \mathcal{H}_0 est vraie alors \mathcal{H}_n est vraie quelque soit n. Ce qui termine la démonstration.

2. En utilisant le raisonnement par contraposition, Montrer que :

$$x \neq 2$$
 et $y \neq 2 \Rightarrow xy - 2x - 2y + 4 \neq 0$

Solution

En utilisant le raisonnement par contraposition :

On suppose que

$$xy-2x-2y+4=0 \implies x=2$$
 et $y=2$

on a

$$xy - 2x - 2y + 4 = 0 \implies (x-2)(y-2)=0$$

alors x = 2 et y = 2

Par suite on déduit que l'assertion est Vrai.

3. Démontrer que si a et b sont deux entiers relatifs tels que $a + b\sqrt{2} = 0$ alors a = b = 0.

Raisonnons par l'absurde. Supposons que $a+b\sqrt{2}=0$ sans que a=b=0. Alors, nécessairement $b\neq 0$ car si b=0 alors on devrait aussi avoir a=0, ce qui est contraire à l'hypothèse $(a,b)\neq (0,0)$. Mais alors, on a $\sqrt{2}=\frac{-a}{b}\in \mathbb{Q}$ ce qui est faux. L'hypothèse de départ est donc fausse, et on a a=b=0.

Soit X un ensemble. Pour $f \in F(X,X)$, on définit $f^0 = id$ et par récurrence pour $n \in \mathbb{N}$, $f^{n+1} = f^n o f.$

1. Montrer que $\forall n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$

Solution

Correction 1. Montrons la proposition demandée par récurrence : soit A_n l'assertion $f^{n+1} = f \circ f^n$. Cette assertion est vraie pour n = 0. Pour $n \in \mathbb{N}$ supposons A_n vraie. Alors

$$f^{n+2}=f^{n+1}\circ f=(f\circ f^n)\circ f=f\circ (f^n\circ f)=f\circ f^{n+1}.$$

Nous avons utiliser la definition de f^{n+2} , puis la proposition \mathcal{A}_n , puis l'associativité de la composition, puis la définition de f^{n+1} . Donc \mathcal{A}_{n+1} est vraie. Par le principe de récurrence

$$\forall \in \mathbb{N} \ f^n \circ f = f \circ f^n.$$

Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que

$$f(x) = 3x + 1$$
 et $g(x) = x^2 - 1$.

 $V\acute{e}rifier\ que\ fog = gof$

Solution

Correction Si $f \circ g = g \circ f$ alors

$$\forall x \in \mathbb{R} \ f \circ g(x) = g \circ f(x).$$

Nous allons montrer que c'est faux, en exhibant un contre-exemple. Prenons x=0. Alors $f \circ g(0) = f(-1) = -2$, et $g \circ f(0) = g(1) = 0$ donc $f \circ g(0) \neq g \circ f(0)$. Ainsi $f \circ g \neq g \circ f$

Soient $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{(1+x^2)}$.

- 1. f est-elle injective ? surjective ?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.

Solution

- **Correction** 1. f n'est pas injective car $f(2) = \frac{4}{5} = f(\frac{1}{2})$. f n'est pas surjective car g = 2 n'a pas d'antécédent : en effet l'équation f(x) = 2 devient $2x = 2(1+x^2)$ soit $x^2 x + 1 = 0$ qui n'a pas de solutions réelles.
 - 2. f(x) = y est équivalent à l'équation $yx^2 2x + y = 0$. Cette équation a des solutions x si et seulement si $\Delta = 4 4y^2 \ge 0$ donc il y a des solutions si et seulement si $y \in [-1, 1]$. Nous venons de montrer que $f(\mathbb{R})$ est exactement [-1, 1].

Soit l'application f définie comme suit :

$$f : \mathbb{R} \setminus \{\frac{1}{2}\} \to \mathbb{R} \setminus \{\frac{1}{2}\}$$
$$x \to f(x) = \frac{x+1}{2x-1}$$

- 1. f ainsi définie est-elle injective ? surjective ?
- 2. Donner l'expression de $(f \circ f)(x)$.
- 3. Déterminer l'expression de $f^{-1}(x)$
- 4. Soit T la relation définie sur $]1;+\infty[$ par :

$$xTy \Leftrightarrow \frac{y}{1+y^2} \le \frac{x}{1+x^2}$$

1. – Injectivité : Soient $x_1, x_2 \in \mathbb{R} \setminus \{\frac{1}{2}\}$, tels que $f(x_1) = f(x_2)$

$$f(x_1) = f(x_2) \Rightarrow \frac{x_1 + 1}{2x_1 - 1} = \frac{x_2 + 1}{2x_2 - 1}$$

$$\Rightarrow (2x_1 - 1)(x_2 + 1) = (2x_2 - 1)(x_1 + 1)$$

$$\Rightarrow 2x_2x_1 + 2x_1 - x_2 - 1 = 2x_2x_1 + 2x_2 - x_1 - 1$$

$$\Rightarrow x_1 = x_2,$$

alors f est injective.

- Surjectivité : soit $y \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$, y = f(x)

$$y = f(x) \Rightarrow y = \frac{x+1}{2x-1}$$

$$\Rightarrow y(2x-1) = x+1$$

$$\Rightarrow x(1-2y) = -y-1$$

$$\Rightarrow x = \frac{y+1}{2y-1}.$$

Observons que $x = \frac{y+1}{2y-1} = \frac{1}{2} \Rightarrow -1 = 2$ ce qui est impossible, donc $x \neq \frac{1}{2}$.

En conclusion $\forall y \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$, $\exists x = \frac{y+1}{2y-1} \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$ tel que y = f(x), et par suite f est surjective.

 Il est essentiel de noter que (f o f) est bien définie, car l'ensemble d'arrivée de f est égal à son ensemble de départ.

$$(f \circ f)(x) = f(f(x)) = \frac{f(x) + 1}{2f(x) - 1} = \frac{\frac{x+1}{2x-1} + 1}{2\frac{x+1}{2x-1} - 1} = \frac{3x}{3} = x.$$

- 3. 1ère méthode : on a déjà montré que ∀x ∈ R \ {1/2} on a (f ∘ f)(x) = x, en d'autres termes (f ∘ f) = Id_{R \ {1/2}}. nous pouvons conclure que f est bijective et de plus f⁻¹ = f.
 - 2ème méthode : la méthode classique $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x) = \frac{x+1}{2x-1}$ alors $x = \frac{y+1}{2y-1}$, par un changement d'inconnue $y = f^{-1}(x) = \frac{x+1}{2x-1} = f(x)$

4/

Première méthode

$$\frac{x}{1+x^2} \ge \frac{x}{1+x^2} \operatorname{donc} x \mathcal{E} x, \ \mathcal{E} \text{ est réflexive.}$$
Si $x \mathcal{E} y$ et $y \mathcal{E} x$ alors $\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$ et $\frac{y}{1+y^2} \ge \frac{x}{1+x^2} \operatorname{donc} \frac{x}{1+x^2} = \frac{y}{1+y^2} \Leftrightarrow x(1+y^2) = y(1+x^2) \Leftrightarrow x - y + xy^2 - yx^2 = 0 \Leftrightarrow x - y + xy(y - x) = 0 \Leftrightarrow x - y - xy(x - y) = 0 \Leftrightarrow (x - y)(1 - xy) = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y \operatorname{car} x > 1 \text{ et } y > 1 \text{ entraine } 1 - xy < 0 \text{ en particulier } 1 - xy \neq 0. \text{ Donc } \mathcal{E} \text{ est antisymétrique.}$

Si
$$x \mathcal{E} y$$
 et $x \mathcal{E} z$ alors $\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$ et $\frac{y}{1+y^2} \ge \frac{z}{1+z^2}$ donc $\frac{x}{1+x^2} \ge \frac{z}{1+z^2}$, d'où $x \mathcal{E} z$. \mathcal{E} est transitive.

Finalement \mathcal{E} est une relation d'ordre.

Soit
$$\frac{x}{1+x^2} \ge \frac{y}{1+y^2}$$
 et alors $x\mathcal{R}y$, soit $\frac{y}{1+y^2} \ge \frac{x}{1+x^2}$ et alors $y\mathcal{R}x$, il s'agit d'une relation d'ordre total.

Soit la relation définie sur \mathbb{R} par

$$xRy \Leftrightarrow x^2 - y^2 = x - y$$

- 1. Montrer que R est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de x de \mathbb{R} .

Correction

1. $x^2 - x^2 = x - x$ donc \mathcal{R} est réflexive.

Si xRy alors $x^2 - y^2 = x - y$ alors $y^2 - x^2 = y - x$ alors yRx donc R est symétrique.

Si xRy et yRz alors $x^2 - y^2 = x - y$ et $y^2 - z^2 = y - z$, en additionnant ces deux égalités on trouve $x^2 - z^2 = x - z$. R est transitive.

Finalement \mathcal{R} est une relation d'équivalence.

2. Soit $x \in \dot{a}$ si xRa c'est-à-dire si $x^2 - a^2 = x - a \Leftrightarrow x^2 - x + a - a^2 = 0$ autrement dit si x est solution de l'équation du second degré $X^2 - X + a - a^2 = 0$, évidemment a est solution, le produit des solutions est $a - a^2 = a(1 - a)$ donc l'autre solution est 1 - a. Donc $\dot{a} = \{a, 1 - a\}$