RSA Signature

- KeyGen():
 - Randomly pick two large primes, p and q
 - Compute n = pq
 - *n* is usually between 2048 bits and 4096 bits long
 - Choose *e*
 - Requirement: e is relatively prime to (p 1)(q 1)
 - Requirement: 2 < e < (p 1)(q 1)
 - Compute $d = e^{-1} \mod (p 1)(q 1)$
 - **Public key**: *n* and *e*
 - Private key: d

RSA Digital Signature Algo

Step1: Generate a hash value, or message digest, mHash from the message *M* to be signed

Step2: Pad mHash with a constant value padding1 and pseudorandom value salt to form M'

Step3: Generate hash value H from M'

Step4: Generate a block DB consisting of a constant value padding 2 and salt

Step5: Use the mask generating function MGF, which produces a randomized out-put from input *H* of the same length as DB

Step 6: Create the encoded message (EM) block by padding *H* with the hexadecimal constant bc and the XOR of DB and output of MGF

Step 7: Encrypt EM with RSA using the signer's private key

RSA Signatures

- Sign(*d*, *M*):
 - Compute $H(M)^d \mod n$
- Verify(e, n, M, sig)
 - Verify that $H(M) \equiv sig^e \mod n$

RSA Signatures: Correctness

Theorem: $sig^e \equiv H(M) \mod N$

Proof:

$$sig^{e} = [H(M)^{d}]^{e} \mod N = H(M)^{ed} \mod N$$

$$= H(M)^{k\phi(n)+1} \mod N$$

$$= [H(M)^{\phi(n)}]^{k} \cdot H(M) \mod N$$

$$= H(M) \mod N$$

RSA Digital Signature: Security

- Necessary hardness assumptions:
 - Factoring hardness assumption: Given n large, it is hard to find primes pq = n
 - Discrete logarithm hardness assumption: Given n large, hash, and $hash^d$ mod n, it is hard to find d
- Salt also adds security
 - Even the same message and private key will get different signatures

Hybrid Encryption

- Issues with public-key encryption
 - Notice: We can only encrypt small messages because of the modulo operator
 - Notice: There is a lot of math, and computers are slow at math
 - Result: We don't use asymmetric for large messages
- **Hybrid encryption**: Encrypt data under a randomly generated key *K* using symmetric encryption, and encrypt *K* using asymmetric encryption
 - Enc_{Asym}(PK, K); Enc_{Sym}(K, large message)
 - Benefit: Now we can encrypt large amounts of data quickly using symmetric encryption, and we still have the security of asymmetric encryption