



# Automotive Vehicles AEL ZC441

BITS Pilani
Pilani Campus

Pooja Lakshmi D, BTech Mechanical Engg, MTech Design Engg Adjunct Faculty – Automotive Vehicles (Sem I)



### Lecture 1 - Recap

- Introduction to Automobile
- Development of Automobile (1769 to 2005)
- General Classification (Type I & II)
- Basic Structure &
- Components of Automobile (Basic Structure, Power Plant, Transmission System, Auxiliaries, Controls, Superstructure)

### Lecture 2 - Recap

- Chassis & Body
- Classification
- Conventional Construction
- Sub frames
- Frameless Constructions
- Classifications of Body

## Lecture 3 - Recap

- Cylinder Block and crank case
- Cylinder Head
- Sump or oil pan
- Intake and Exhaust Manifolds
- Gaskets
- Cylinder Liners
- Piston

- Piston Rings
- Connecting Rods
- Piston Pins
- Crankshaft
- Main bearings
- Valves and Valve actuating mechanisms
- Mufflers

### Lecture 4 - Recap

- Need of Cooling system
- Variation of Gas temperature
- Theory of Engine heat transfer and co-relation
- Parameters affecting Heat transfer
- Air cooled Systems



# **Today's Topic**

| Lect<br>No. | Learning<br>Objectives                       | Topics to be covered                                                                                                                                                                  | Reference<br>to Text |
|-------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1           | An introduction to automobiles               | Overview of the course and evaluation scheme Development of automobiles, General classification, Basic structure and components of automobile                                         | 1TB1,1TB2            |
| 2           | The chassis<br>Construction and<br>Body      | Classification, Conventional construction, Sub frames, Frame less constructions, Classification of body, Numerical problems on chassis member bending.                                | 11TB1, 1<br>TB2      |
| 3           | Reciprocating Engine Construction and basics | Constructional details, Calculation of displacement velocity and acceleration of piston and connecting rod, Working of 2and 4 stroke engines.  Numerical problems on the above topics | 3TB1                 |
| 4           | Cooling systems                              | Need. Variation of gas temperature. Piston temperature distribution. Theory of engine heat transfer and correlation. Parameters affecting engine heat transfer. Air-cooled systems.   | 8TB1,<br>12RBa       |
| 5           | Cooling systems                              | Types of water-cooling systems. Radiators. Fans. Correlation for the power required for engine cooling. Numerical problems on the above topics                                        | 8TB1,<br>12RBa       |
| 6           | Lubrication systems                          | Causes of engine friction. Function of lubrication. Mechanism of lubrication. Journal bearing lubrication.                                                                            | 7TB1,<br>11RBa       |
|             | Lubrication systems                          | Types of lubrication systems. Lubrication of engine components.                                                                                                                       | 7TB1,<br>11RBa       |
| 7           | Clutch                                       | Definition of clutch, requirements, classification, principle of working of friction clutches, Driving system and Plate clutch (uniform pressure and uniform wear).                   | 14TB1,<br>3TB2       |



# Automotive Vehicles Lecture 5

# Water Cooling system

- Water Cooling system
- Types of Water cooling
- Components of Water Cooling system
- Other coolants & Anti-freeze solutions
- Intelligent cooling system



# Water cooling system

- Cooling medium is Water
- Engine cylinders are surrounded by Water jackets
- Heat flows from Cylinder walls into Water, goes to radiator and loses heat to air
- Antifreeze is added to water, act as coolant





### Two types:

- 1. Thermosyphon System
- 2. Pump Circulation System







### **Thermosyphon System:**

- Simple system
- Consists of Radiator connected to hoses
- Circulation of water is obtained from difference in densities of hot and cold regions
- Circulating water gets heat from Engine cyl and cooling by the same
- Heat is dissipated to atmosphere by conduction & convection
- Water becomes cold when it reaches collecting tank of Radiator and circulated again
- The rate at which water circulates is proportional to heat output or load on the engine
- Fans are mounted and driven by belt / pulleys to assist the flow of cooling air



### **Advantages:**

- Simplicity & low cost

### **Disadvantages:**

- Cooling is slow due to natural convection
- To have adequate cooling, capacity of the system to be large
- Radiator tank must be located higher than the cylinders which is not possible with modern body styles
- Minimum level of coolant to be maintained in the system, if fails below continuity will break and system will fail



### **Pump Circulation system:**

- Pump is used for circulation of coolant and Thermostat is employed to control the flow of coolant
- Pump is driven by belt from Engine crankshaft

### <u>Advantages:</u>

- Circulation is proportional to load and speed
- Radiator need not to be placed on the side, as it can be placed at rear or side

### **Disadvantages:**

More complicated and Costlier

# Components of Water cooling system



- Radiator
- Pressure cap
- Expansion reservoir
- Thermostat
- Pump
- Fan

### Radiator

- To ensure close contact of the hot coolant coming out of the engine with outside air, so as to ensure high rates of heat transfer from coolant to air
- Consists of Upper tank, core, lower tank
- Overflow pipe in the header tank and drain pipe in the lower tank are provided
- Hot coolant enters Radiator at top and cooled by cross-flow of air while flowing down the radiator.
- Coolant collects in the collector tank where it is pumped to the engine for cooling
- <u>Two types:</u> <u>Tubular (Coolant Tube, Air around)</u> and Cellular (Air Tube, Coolant around) type.
- Materials: Copper, Yellow Brass, Aluminum



### Pressure cap

innovate achieve

- Radiator filler neck in modern use is covered with a Pressure cap which forms air-tight joint due to which the coolant is maintained at some pressure higher than the atmosphere.
- Consists of Pressure valve and vacuum valve
- Pressure blow off valve opens releasing excess pressure through overflow pipe.





## **Expansion Reservoir**

- Replacing Overflow pipe with expansion reservoir
- Connected with Radiator and receives excess coolant
- And recirculates to the radiator keeping the system full of coolant
- Made of Translucent plastic to indicate level of coolant
- Coolant Recovery system

### <u>Advantages:</u>

- No loss of coolant
- 2. Corrosion and deterioration of antifreeze is reduced
- 3. Smaller upper tank is used with Radiator



### **Thermostat**

- To keep a rigid control over the cooling, Thermostat keeps the cooling water temperature to a pre-determined value.
- Helps the engine to reach the operating temperature to operate engine efficiently over 80-100 deg Celsius
- Two types
  - 1. Bellows or Aneroid type
  - 2. Wax or Hydrostatic type



Figure: Bellows type Thermostat







## **Coolant Pump**

- Necessity for the forced circulation type of engine cooling system
- Pump is mounted at the front end of engine driven by crankshaft by V-belt.
- Centrifuge type pump is used



# Fan



- To provide desired cooling for vehicle moving at heavy load and at a slow speed (E.g. While driving uphill)
- Mounted behind radiator on same shaft of coolant pump
- Driven by V-belt from crankshaft pulley
- Have 4 to 7 blades, spaced unevenly to reduce noise.
- Made of sheet metal and molded plastic materials (E.g. Nylon, Poly propylene) are used.



### Other coolants and Anti-Freeze solutions

### **Coolants:**

- Other than water, liquids having high boiling points are used for engine cooling
- E.g. Glycerin (BP 290 deg. Celsius), Ethylene Glycol (BP 195 deg. Celsius).
- High BP increases capacity of coolant to carry heat

### Anti Freeze solutions:

- In cold climates, water conversion to Ice causes bursting of radiator core and cylinder jackets
- Hence additives used and called as Antifreezes
- E.g. Wood alcohol (Methyl alcohol), denaturated alcohol (ethyl alcohol), Glycerin, ethylene glycol etc..,

### Other coolants and Anti-Freeze solutions



### **Requirements of Anti- Freeze:**

- Thoroughly miscible with water and prevent freezing of coolant to the lowest Amb. Temperature
- Should not have any corrosive action on components
- Its boiling point should be high and hence coolant can operate at higher temperatures
- Should not deposit any foreign matter in jackets, hose pipes or radiator core
- Should have high specific heat capacity than coolant
- Its viscosity should not be excessive so that circulation will not be affected

# Intelligent Cooling system

- Engine cooling system to operate at more accurate temperature with uniformity and greater control
- It consists of
  - High performance electric pump instead of an engine speed related water pump in a conventional system
  - Multi port, proportional flow control valve instead of thermostat
  - Speed controllable cooling fan
  - Cylinder head gasket with embedded sensors

### **Advantages:**

- Improvement of Thermal efficiency
- Improvement in Fuel economy
- Reduced warm-up time

Pump circulation system

https://www.youtube.com/watch?v=V7inC4lOpGs

Petrol and Diesel Engine

https://www.youtube.com/watch?v=rlK7JlAz9WY