

Title:

Enhancing Respiratory Disorder Diagnosis Through Deep Learning Analysis of Chest X-ray Images: A Heuristic-Based Approach for COVID-19, Viral Pneumonia, and Normal Cases.

Topic Outline

- □ Introduction
- □ Literature Review
- □ Challenges
- □ Thesis Objectives
- □ Methodology
- Datasets Details
- □ Tools
- □ Background Study
- Conclusion
- □ Future Works
- □ References

Introduction

- ☐ Chest X-ray image classification is a deep learning-driven diagnostic technique designed to automatically analyze radiographic images, categorizing them into distinct classes.[1]
- it is possible to use X-rays to screen for COVID-19 without the dedicated test kits and separate those who are infected and those who are not. [2]
- ☐ X-rays aid in the detection of viral pneumonia by revealing distinctive pulmonary abnormalities.[3]

Figure 1 : X-ray Images: Normal, Covid-19, Viral Pneumonia. [4]

Literature Review

Paper Name	Year	Used Method , Result & Limitation
A Deep Learning Approach for COVID-19 & Viral Pneumonia Screening with X-ray Images [2]	2021	Method: Used deep learning model CNN to classify among Normal, COVID-19 and Viral Pneumonia. Result: Accuracy was around 90.64%. Limitation: Shortage of COVID-19 X-rays used
Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19 [3]	2020	Method: Used a transfer learning model from a pretrained model of AlexNet. Result: Accuracy was around 94.43% . Limitation: small dataset of COVID-19, pneumonia .

Literature Review

Paper Name	Year	Used Method , Result & Limitation
Chest X-ray Classifcation Using Deep Learning for Automated COVID-19 Screening[5]	2021	Method: Used a deep learning model for COVID-19 screening from chest X-rays, employing VGG-16, DenseNet-161, and ResNet-18 to classify normal, pneumonia, tuberculosis, and COVID-19 cases. Result: Accuracy is around 96-98%. Limitation: limited number of labeled data points
COVID-19 and Pneumonia Diagnosis in X-Ray Images Using Convolutional Neural Networks [10]	2021	Method: Used deep learning model CNN to classify among Normal, COVID-19 and Pneumonia. Result: Accuracy is around 98.2%. Limitation: Can be maximized by tuning the model hyperparameters.

Challenges

☐ Model Selection☐ Handling Class Imbalance☐ Performance Improvement

ENHANCING RESPIRATORY DISORDER DIAGNOSIS THROUGH DEEP LEARNING ANALYSIS OF CHEST X-RAY IMAGES: A HEURISTIC-BASED APPROACH FOR COVID-19, VIRAL PNEUMONIA, AND NORMAL CASES.

Thesis Objective

The main objective is to predict among Normal ,COVID-19 and Viral Pneumonia from Chest X-ray with Custom CNN Model and Different Pretrained Models with transfer learning. Also try increasing the performance of the model is a part of my work.

Background Study

Convolutional Neural Network:

Fig 2 : Existing Convolutional Neural Network.[2]

Background Study

Transfer Learning:

Fig 3: Method of working of Transfer Learning.

Background Study

Different Pretrained Models for Image Classification :

Fig 4: Pretained Model: DensNet121, DenseNet169, VGG16, VGG19, ,ResNet50, ResNet152.[9]

Dataset Details

Feature	Description		
Dataset Name	COVID-19 Radiography Database		
Source	Kaggle		
Total Images	15153		
Classes	COVID-19, Normal, Viral Pneumonia		
Image Size	299 × 299		
Image Type	.png		
Imbalance	Normal: 10192, COVID-19: 3616, Viral Pneumonia: 1345, Lung Opacity: 6012		

Table 1: COVID-19 Radiography Database Dataset overview. Collected data from Kaggle.[4]

Feature	Description		
Dataset Name	Chest X-Ray Images (Pneumonia)		
Source	Kaggle		
Total Images	5863		
Classes	Normal, Pneumonia,		
Image Size	944 × 640		
Image Type	.jpeg		
Imbalance	Normal:1583, Pneumonia: 4273		

Table 2: Chest X-Ray Images (Pneumonia) Dataset overview. Collected data from Kaggle.[11]

Dataset Details

Feature	Description		
Dataset Name	COVID-19 Patients Lungs X Ray Images		
Source	Kaggle		
Total Images	100		
Classes	COVID-19, Normal		
Image Size	1024 × 842		
Image Type	.jpg		
Imbalance	Normal: 28,COVID-19:72		

Table 3: COVID-19 Patients Lungs X Ray Images Dataset overview. Collected data from Kaggle.[12]

Methodology

Figure 5 : Workflow

Methodology

Figure 6: Proposed Method 1

Methodology

Figure 7: Proposed Method 2

Tools

□ Software:

- > Anaconda navigator to use Jupiter notebook.
- > VS Code
- > Also going to use Kaggle Notebook if necessary.

□ Language Support:

> Python

Figure 8: Required tools – Python , VS Code , Jupyter Notebook [6]

Dataset Preprocessing

- Balancing the Dataset by Oversampling.[13]
 - CLAHE(Contrast Limited Adaptive Histogram Equalization)
 - CLAHE + Median Filter
 - Contrast Straching + Median Filter
 - Histogram Equilization

Fig 9: Before and After of Oversampling

Implementation

Fig. 10: CNN Model from Similar Work [10]

Implementation(Continued)

Hyperparameters	Value
Learning Rate	0.001
Batch Size	16
Optimizer	Adam
Loss Function	Mean Square Error

Table 4: Model Hyperparameter

Implementation(Continued)

Loss Function of Previous work:

Categorical Cross-Entropy:

$$-\frac{1}{N} \sum_i y_{true_i} * \log(p_i)$$

Fig 11: Training and Validation loss using Categorical Cross-Entropy

Current Loss Function : Mean Square Error:

$$\frac{1}{N} \sum_{i}^{N} (y_{true_i} - y_{pred_i})^2$$

Training and Validation Loss

Fig 12: Training and Validation loss using Mean Square Error.

Result & Analysis (Continued)

Method	Model Accuracy	Normal Accuracy	Covid Accuracy	Pneumonia Accuracy	Precision	Recall	F1-Score
ResNet-50	77.62%	61.68%	93.17%	79.11%	0.8	0.78	0.78
ResNet-152	69.80%	24.05%	89.84%	96.42%	0.75	0.69	0.65
DenseNet-121	94.04%	97.59%	86.89%	97.20%	0.95	0.94	0.94
DenseNet-169	95.08%	95.02%	91.87%	98.16%	0.95	0.95	0.95
VGG-16	97.40%	98.45%	97.14%	96.59%	0.97	0.97	0.97
VGG-19	98.08%	98.02%	97.88%	98.34%	0.98	0.98	0.98
Model-1	98.11%	98.88%	97.69%	97.73%	0.98	0.98	0.98
Model-2	98.26%	98.63%	98.06%	98.08%	0.98	0.98	0.98

Table 5: Performance of Different Model

Result & Analysis

Fig. 13: Grad-Cam Output

1803102

Conclusion

- Heuristic approach was applied with a CNN model.
- Mean Square Error perform better.
- Per class accuracy increased.
- Transfer Learning was applied

Future Works

Future Works:

- Ensemble Learning can be implemented.
- Explore advanced synthetic data generation models (eg. GANs).

References

- [1] E. Çallı, E. Sogancioglu, B. van Ginneken, K. G. van Leeuwen, and K. Murphy, "Deep learning for chest X-ray analysis: A survey," Medical Image Analysis, vol. 72, p. 102125, 2021.
- [2] F. Ahmed, S. A. C. Bukhari, and F. Keshtkar, "A deep learning approach for COVID-19 viral pneumonia screening with x-ray images," Digital Government: Research and Practice, vol. 2, no. 2, pp. 1-12, 2021. ACM New York, NY, USA.
- [3] A. U. Ibrahim, M. Ozsoz, S. Serte, F. Al-Turjman, and P. S. Yakoi, "Pneumonia classification using deep learning from chest X-ray images during COVID-19," Cognitive Computation, pp. 1-13, 2021. Springer.
- [4] T. Rahman, "COVID-19 Radiography Database," Kaggle, 2020. [Online]. Available: https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database. [Accessed: Oct. 19, 2023].
- [5] A. Shelke, M. Inamdar, V. Shah, A. Tiwari, A. Hussain, T. Chafekar, and N. Mehendale, "Chest X-ray classification using deep learning for automated COVID-19 screening," SN Computer Science, vol. 2, no. 4, p. 300, 2021.
- [6] Google. [Online]. Available: https://www.google.com. [Accessed: Nov. 23, 2023].
- [7] Aigents. [Online]. Available: https://aigents.co/. [Accessed: Nov. 23, 2023].

References

- [8] ResearchGate. [Online]. Available: https://www.researchgate.net.[Accessed: Nov. 23, 2023].
- [9] Keras Applications Documentation. [Online]. Available: https://keras.io/api/applications/. [Accessed: Nov. 23, 2023].
- [10] R. H. Abiyev and A. Ismail, "COVID-19 and pneumonia diagnosis in X-ray images using convolutional neural networks," Mathematical Problems in Engineering, vol. 2021, pp. 1-14, 2021, Hindawi Limited.
- [11] P. T. Mooney, "Chest X-Ray Images (Pneumonia)," Kaggle, 2024. [Online]. Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. [Accessed: Jan. 2, 2024].
- [12] N. Sajid, "COVID-19 Patients Lungs X Ray Images 10000," Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/nabeelsajid917/covid-19-x-ray-10000-images. [Accessed: Oct. 19, 2023].
- [13] D. R. Ningsih et al., "Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters," International Journal of Image, Graphics and Signal Processing, vol. 10, no. 2, pp. 30, 2020, Modern Education and Computer Science Press.

Thank you!

Roll: 1803102