AQFT mathematical preliminaries

Tony

August 7, 2015

Contents

(sono ripetizioni inutili per la tesi, sono informazioni che si ritrovano ovunque... sono informazioni adatta al knowledge base)

1 Globally Hyperbolic SpaceTimes

Recurring definitions in general Relativity (excluding the general smooth manifold prolegomena).

Definition 1: Space-Time

A quadruple (M, g, o, t) such that:

- (M,g) is a time-orientable n-dimensional manifold (n > 2)
- o is a choice of orientation
- t is a choice of time-orientation

Definition 2: Lorentzian Manifold

A pair (M, g) such that:

- M is a n-dimensional ($n \ge 2$), Hausdorff, second countable, connected, orientable smooth manifold.
- g is a Lorentzian metric.

Definition 3: Metric

A function on the bundle product of *TM* with itself:

$$g: TM \times_M TM \to \mathbb{R}$$

such that the restriction on each fiber

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

is a non-degenerate bilinear form.

Notation fixing

- *Riemman* if the sign of *g* is positive definite, *Pseudo-Riemman* otherwise.
- *Lorentzian* if the signature is (+,-,...,-) or equivalently (-,+,...,+).

Observation 1: Causal Structure

If a smooth manifold is endowed with a Lorentzian manifold of signature (+,-,...,-) then the tangent vectors at each point in the manifold can be classed into three differ-

ent types.

Notation fixing

 $\forall p \in M$, $\forall X \in T_p M$, the vector is:

- time-like if g(X,X) > 0.
- light-like if g(X, X) = 0.
- *space-like* if g(X, X) < 0.

Observation 2: Local Time Orientability

 $\forall p \in M$ the timelike tangent vectors in p can be divided into two equivalence classes taking

$$X \sim Y \text{ iff } g(X, Y) > 0 \qquad \forall X, Y \in T_p^{\text{time-like}} M$$
:

We can (arbitrarily) call one of these equivalence classes "future-directed" and call the other "past-directed". Physically this designation of the two classes of future- and past-directed timelike vectors corresponds to a choice of an arrow of time at the point. The future- and past-directed designations can be extended to null vectors at a point by continuity.

Definition 4: Time-orientation

A global tangent vector field $\mathfrak{t} \in \Gamma^{\infty}(TM)$ over the Lorenzian manifold M such that:

- $supp(\mathfrak{t}) = M$
- $\mathfrak{t}(p)$ is time-like $\forall p \in M$.

Observation 3

The fixing of a time-orientation is equivalent to a consistent smooth choice of a local time-direction.

Definition 5: Time-Orientable Lorentzian Manifold

A Lorentzian Manifold (M, g) such that exist at least one time-orientation $\mathfrak{t} \in \Gamma^{\infty}(TM)$.

Notation fixing

Consider a piece-wise smooth curve $\gamma : \mathbb{R} \supset I \to M$ is called:

• time-like (resp. light-like, space-like) iff $\dot{\gamma}(p)$ is time-like (resp. light-like, space-

like) $\forall p \in M$.

- *causal* iff $\dot{\gamma}(p)$ is nowhere spacelike.
- *future directed* (resp. past directed) iff is causal and $\dot{\gamma}(p)$ is future (resp. past) directed $\forall p \in M$.

Definition 6: Chronological future past of a point

Are two subset related to the generic point $p \in M$:

Definition 7: Causal $\frac{\text{future}}{\text{past}}$ of a point

Are two subset related to the generic point $p \in M$:

$$\mathbf{J}_{M}^{\pm}(p)\coloneqq\left\{q\in M\middle|\;\exists\gamma\in C^{\infty}\!\left((0,1),M\right)\text{ causal }\underset{\mathrm{past}}{^{\mathrm{future}}}-\text{ directed }:\,\gamma(0)=p,\,\gamma(1)=q\right\}$$

Notation fixing

Former concept can be naturally extended to subset $A \subset M$:

- $\mathbf{I}_{M}^{\pm}(A) = \bigcup_{p \in A} \mathbf{I}_{M}^{\pm}(p)$
- $\mathbf{J}_{M}^{\pm}(A) = \bigcup_{p \in A} \mathbf{J}_{M}^{\pm}(p)$

Definition 8: Achronal Set

Subset $\Sigma \subset M$ such that every inextensible timelike curve intersect Σ at most once.

Definition 9: future Domain of dependence of an Achronal set

The two subset related to the generic achornal set $\Sigma \subset M$:

$$\mathbf{D}_{M}^{\pm}(\Sigma) \coloneqq \left\{q \in M \middle| \ \forall \gamma \text{ past future} \text{ inextensible causal curve passing through } q: \ \gamma(I) \cap \Sigma \neq \emptyset \right\}$$

4

Notation fixing

 $\mathbf{D}_{M}(\Sigma) := \mathbf{D}_{M}^{+}(\Sigma) \cup \mathbf{D}_{M}^{-}(\Sigma)$ is called *total domain of dependence*.

Definition 10: Cauchy Surface

Is a subset $\Sigma \subset M$ such that:

- closed
- achronal
- $\mathbf{D}_M(\Sigma) \equiv M$

2 Linear Differential Operator

Basic Definition in L.P.D.O. on smooth vector sections.

Consider $F = F(M, \pi, V), F' = F'(M, \pi', V')$ two linear vector bundle over M with different typical fiber

Definition 11: Linear Partial Differential operator (of order at most $s \in \mathbb{N}_0$)

Linear map $L: \Gamma(F) \to \Gamma(F')$ such that:

 $\forall p \in M \text{ exists:}$

- (U, ϕ) local chart on M.
- (U, χ) local trivialization of F
- (U, χ') local trivialization of F'

for which:

$$L(\sigma|_{U}) = \sum_{|\alpha| \le s} A_{\alpha} \partial^{\alpha} \sigma \qquad \forall \sigma \in \Gamma(M)$$

Remark:

(multi-index notation)

A multi-index is a natural valued finite dimensional vector $\alpha = (\alpha_0, ..., \alpha_n - 1) \in \mathbb{N}_0^n$ with $n < \infty$.

On \mathbb{R}^n a general differential operator can be identified by a multi-index:

$$\partial^{\alpha} = \prod_{\mu=0}^{n-1} \partial_{\mu}^{\alpha_{\mu}}$$

(Until the Schwartz theorem holds, the order of derivation is irrelevant.)

The order of the multi-index is defined as:

$$|\alpha| := \sum_{\mu=0}^{n-1} \alpha_{\mu}$$

Нр:

Proposition 2.1 (Existence and uniqueness for the Cauchy Problem) • $\mathbf{M} = (M, g, \mathfrak{o}, \mathfrak{t}) a \ globally \ hyperbolic \ space-time.$

• $\Sigma \subset M$ a spacelike cauchy surface with future-pointing unit normal vector field \vec{n} .

Th:

Observation 4

"Green-hyperbolic operators are not necessarily hyperbolic in any PDE-sense and that they cannot be characterized in general by well-posedness of a Cauchy problem. " [?]

However the existence and uniqueness can be proved for the large class of the *Normally-Hyperbolic Operators*.