DOUBLEROOT

Cheat Sheet – Ellipse

Equations

Focus: $(\pm ae, 0)$, Directrix: $x = \pm a/e$ (Standard)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \text{where } b^2 = a^2(1 - e^2)$$

Focus: $(0, \pm ae)$, Directrix: $y = \pm a/e$

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
 where $b^2 = a^2(1 - e^2)$

Focus: (x_1, y_1) , Directrix: ax + by + c = 0

$$(x - x_1)^2 + (y - y_1)^2 = e^2 \frac{(ax + by + c)^2}{a^2 + b^2}$$

where $e \to \text{eccentricity}, 0 < e < 1$

Parametric Equation

$$x = a\cos \phi$$
 where $\phi \rightarrow eccentric$
 $y = b\sin \phi$ angle

Notations (Standard)

$$S = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$$

$$T = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1$$

$$S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1$$

Position of a point (x_1, y_1) w.r.t. the ellipse

Outside:
$$S_1 > 0$$
, On: $S_1 = 0$, Inside: $S_1 < 0$

Tangent

Equation of the tangent having slope m

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$

Equation of the tangent at the point (x_1, y_1)

$$T = 0 (S_1 = 0)$$

Equation of the tangent at the point (ϕ)

$$\frac{x}{a}\cos\varphi + \frac{y}{b}\sin\varphi - 1 = 0$$

Point of intersection of tangents at (ϕ_1) and (ϕ_2)

$$\left(a\frac{\cos\frac{\phi_1+\phi_2}{2}}{\cos\frac{\phi_1-\phi_2}{2}},b\frac{\sin\frac{\phi_1+\phi_2}{2}}{\cos\frac{\phi_1-\phi_2}{2}}\right)$$

Pair of tangents from an external point (x_1, y_1)

$$SS_1 = T^2 \qquad (S_1 > 0)$$

Normal

Equation of the normal at the point (x_1, y_1)

$$\frac{x - x_1}{\frac{x}{a^2}} = \frac{y - y_1}{\frac{y_1}{h^2}}$$

Equation of the normal at the point (φ)

$$ax \sec \phi - by \csc \phi = a^2 - b^2$$

Equation of the normal having slope m

$$y = mx \pm \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2m^2}}$$

Chord

Chord with end points (ϕ_1) and (ϕ_2)

$$\frac{x}{a}\cos\frac{\phi_1+\phi_2}{2}+\frac{y}{b}\sin\frac{\phi_1+\phi_2}{2}=\cos\frac{\phi_1-\phi_2}{2}$$

Chord of contact w.r.t the point (x_1, y_1)

$$\Gamma = 0 \tag{S_1 > 0}$$

Chord with mid-point (x_1, y_1)

$$T = S_1 \tag{S_1 < 0}$$

>> Sum of the focal distances of any point on the ellipse is equal to the major axis (PS + PS' = 2a)

>> Harmonic mean of the segments of a focal chord is equal to the semi latus rectum $(1/PS + 1/QS = 2a/b^2)$

>> Segment of tangent intercepted between point of contact and the directrix subtends right angle at focus (\angle KSP=90°)

>> Feet of perpendicular from the foci upon any tangent lie on the auxiliary circle ($SN\perp PN$, $S'N'\perp P'N'$)

>> Product of the lengths of perpendiculars from the foci upon any tangent is constant (SN x S'N' = b^2)

>> Any passing through the focus passes through the other focus after reflection (\(\subseteq SPG = \times S'PG \)