Advance Calculus Exercise

Question: Let \mathcal{T}_1 and T_2 be topologies on a set X. Prove or disprove that $\mathcal{T}_1 \cup \mathcal{T}_2$ and $\mathcal{T}_1 \cap \mathcal{T}_2$ are topologies on X. Solution.

Question: In any metric space, $\overline{B(x,r)} \subseteq \overline{B}(x,r) \forall r \geq 0$ Solution.

Question: Let X be a metric space, $S \subseteq X$. Then S is closed $\Leftrightarrow \partial S \subseteq S$ Solution.

Question: (De-Morgan's Law) Show that:

Show that:
(a)
$$(\bigcup_{\alpha \in I} E_{\alpha})^{c} = \bigcap_{\alpha \in I} (E_{\alpha})^{c}$$

(b) $(\bigcap_{\alpha \in I} E_{\alpha})^{c} = \bigcup_{\alpha \in I} (E_{\alpha})^{c}$

Solution.

Question: (Inverse Image)

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}$$

is called the inverse image of a set B with the function $f: X \to Y$ Show that:

(a)
$$f^{-1}(F(B)) \supseteq B$$

(b) $f(f^{-1(B)}) \subseteq B$

(b)
$$f(f^{-1(B)}) \subseteq B$$

Solution.