Math 221 Lec 13

6.2 Diagonlizability

Asa Royal (ajr74)

October 12, 2023

Definition 1 (Diagonlizability). An $n \times n$ matrix is diagonalizable if

- 1. \exists an invertible $n \times n$ matrix P s.t. $P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$
- 2. \exists a basis for \mathbb{R}^n consistsing of eigenvectors of A.

Definition 2 (eigenspace). If λ is an eigenvalue of A, then the eigenspace associated with λ is $E(\lambda) = \{\mathbf{v} : A\mathbf{v} = \lambda\mathbf{v} = N(A - \lambda I_n)\}$

Lemma 3. If $\mathbf{v}_1, \dots, \mathbf{v}_k$ are eigenvectors of A whos associated eigenvalues are distinct, then $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly independent.

Proof. We will prove the lemma above by induction on k, the number of eigenvectors.

Base case P(1): If v_1 is an eigenvector of A, $\{v_1\}$ is trivially independent.

Inductive hypothesis P(k-1): Assume that $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$ are eigenvectors of A with distinct eigenvalues $\lambda_1, \dots, \lambda_{k-1}$, and that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent.

Inductive step: Suppose \mathbf{v}_k is an eigenvector and

$$c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k = 0 \tag{1}$$

We can multiply both sides of (1) by A, and since each term on the LHS contains an eigenvector, rewrite the equation as

$$c_1 \lambda_1 \mathbf{v}_1 + \ldots + c_k \lambda_k \mathbf{v}_k = 0 \tag{2}$$

Now suppose we multiply both sides of (1) by λ_k :

$$c_1 \lambda_k \mathbf{v}_1 + \ldots + c_k \lambda_k \mathbf{v}_k = 0 \tag{3}$$

And subract (3) from (2):

$$c_1(\lambda_1 - \lambda_k)\mathbf{v}_1 + \ldots + c_{k-1}(\lambda_1 - \lambda_{k-1})\mathbf{v}_{k-1} = 0$$

$$\tag{4}$$

The inductive hypothesis states that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ are linearly independent, so $c_1 = \dots = c_{k-1} = 0$. Plugging those values into (1), we see

$$c_k \mathbf{v}_k = 0 \tag{5}$$

And since \mathbf{v}_k is an eigenvector and cannot equal $\mathbf{0}$, $c_k = 0$. Since (1) implies that $c_1 = \ldots = c_k = 0$, $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent. We have thus shown that $P(k-1) \Rightarrow P(k)$, so we conclude the proof.

Theorem 4. Let A be an $n \times n$ matrix with n distinct eigenvalues. Then A is diagonalizable.

Proof. If A has n distinct eigenvalues, it also has n distinct eigenvectors, which means its eigenvectors are a basis for \mathbb{R}^n . Thus, by definition, A is diagonalizabile.

Definition 5 (algebraic multiplicity). The algebraic multiplicity of an eigenvalue c, denoted a(c), is the multiplicity of c as a root of the characteristic polynomial of A. When we completely factor the characteristic polynomial, we will get a factor of $(c - \lambda)^a$, where a is the algebraic multiplicity.

Definition 6 (geometric multiplicity). The geometric multiplicity of an eigenvalue λ is dim $N(A - \lambda I_n)$.

Lemma 7. Let A be an $n \times n$ matrix with eigenvalue λ , associated algebraic multiplicity a, and associated geometric multiplicity g. Then $1 \le a \le g$.

Proposition 8. The determinant of a square matrix A equals the product of A's eigenvalues, counted with multiplicity.

Proof.

$$p_A(\lambda) = \det(A - \lambda I) \tag{1}$$

$$= \lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0}$$
 because $p_{A}(\lambda)$ is a polynomial of degree n (2)

$$= (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$$
 (factor polynomial)

Per (3),

$$p_A(0) = (-\lambda_1)(-\lambda_2)\dots(-\lambda_n) = (-1)^n \lambda_1 \lambda_2 \dots \lambda_n$$
(4)

Per(1),

$$p_A(0) = \det(0 - A) = \det(-A) = (-1)^n \det A \tag{5}$$

Thus, $(-1)^n \det A = (-1)^n \lambda_1 \lambda_2 \dots \lambda_n$, and $\det A = \lambda_1 \lambda_2 \dots \lambda_n$.

Corollary 9. If A has eigenvalue 0, it has determinant 0 and is thus singular.