Теорема Эрроу

Выборы

- Допустим, что в городе N грядут выборы
- Избиратели (население) должны выбрать мэра среди нескольких кандидатур
- Каждому избирателю в день голосования планируется выдать бюллетень, в котором необходимо будет расставить кандидатов по приоритету
- Затем бюллетени обрабатываются, подсчитываются некоторым образом голоса и выявляется победитель

Интересный вопрос

- А как сделать вывод из полученных данных?
- Какие есть возможности вообще?
- Пример. Пусть имеется 3 кандидата: Абрикосов, Брусникин и Виноградова.
- 1. Абрикосов, Брусникин, Виноградова
- 2. Брусникин, Виноградова, Абрикосов
- 3. Брусникин, Виноградова, Абрикосов
- Как будет выглядеть профиль общественного предпочтения здесь?
- \bullet Правило простого большинства: А 1/3, Б 2/3, В 0
- **Вопрос.** Почему правило простого большинства может оказаться несправедливым?
- Пример. Пусть за Брусникина проголосовало 40%, а за остальных по 30%

Интересный вопрос

- Б лучше В 3/3, В лучше А 2/3, т. е: Брусникин, Виноградова, Абрикосов
- Вопрос. С чем могут возникнуть проблемы здесь?
- Рассмотрим циклический исход голосования:
- 1. Абрикосов, Брусникин, Виноградова
- 2. Брусникин, Виноградова, Абрикосов
- 3. Виноградова, Абрикосов, Брусникина
- lacktriangle Тогда A лучше Б 2/3, Б лучше В 2/3, В лучше А 2/3 \Rightarrow В лучше Б

Разумные ограничения

- 1. В любом случае общественность должна знать по итогам выборов, какой из кандидатов лучше, или они одинаково предпочитаемы **универсальность**
- 2. Если все считают, что один избиратель лучше другого, то и по итогам выборов должно быть также **единогласие**
- 3. Итоговое положение в рейтинге любых двух кандидатов должно зависеть только от **их** положений в бюллетенях **независимость**
- 4. Нет избирателя, навязывающего мнение всем остальным **отсутствие диктатора**

Теорема Эрроу'

Не существует избирательной системы, удовлетворяющей всем приведённым условиям

Теорема Эрроу

Не существует избирательной системы (когда кандидатов больше 2), удовлетворяющей всем приведённым условиям

Формализация

- ullet Обозначим через E множество избирателей (electorate), а через C кандидатов (candidates)
- Каждый избиратель составляет свой ранжированный список
- lacktriangle Для избирателя $e\in E$ будем писать, что $c_1>_e c_2$, если кандидат c_1 лучше c_2
- lacktriangle Итак, $e \leftrightarrow c_{i_1} >_e c_{i_2} >_e \ldots >_e c_{i_n}$ это профиль предпочтений для избирателя e
- lacktriangle Если a лучше b и b лучше c, то a лучше c
- lackвoldright Формально: $(a >_e b) \& (b >_e c) \Rightarrow a >_e c$
- lacktriangle Либо a лучше b, либо b лучше a
- \bullet a лучше (не хуже) a
- lacktriangle Итог выборов получить общий рейтинг кандидатов: $c_{i_1} >_E c_{i_2} >_E \ldots >_E c_{i_n}$

Формализация: ЧУМ

- lacktriangle Пусть M некое множество элементов
- lacktriangle Рассмотрим на M imes M дополнительную структуру \geqslant , обладающую свойствами
- 1. $\forall m \in M \ m \geq m$ (рефлексивность)
- 2. $(a \ge b) \& (b \ge c) \Rightarrow a \ge c$ (транзитивность)
- 3. $(a \ge b) \& (b \ge a) \Rightarrow a = b$ (антисимметричность)
- Банальный пример: (ℕ, ≥)
- Вопрос. Есть ли ещё какие-нибудь другие примеры, отличные от приведённых?

Ещё раз: условия теоремы

- 1. Универсальность: $\forall a, b \in E$ и любых личных рейтингов $(a > b) \lor (b > a) \lor (a = b)$
- 2. Единогласие: $a >_e b \ \forall e \in E \Rightarrow a >_E b$
- 3. Независимость: итоговое положение зависит только от личных рейтингов
- 4. Отсутствие диктатора: не существует такого $e: a>_e b\Rightarrow a>_E b \ \forall a,b\in E$

Решающие коалиции

- lacktriangle Определение. Коалиция избирателей $D\subset E$ называется решающей для кандидатов a и b: $(a>_D b)$ & $(b>_{E\setminus D} a)\Rightarrow a>_E b$
- Определение. Коалиция избирателей $D \subset E$ называется решающей, если она решающая для любых двух кандидатов
- Глупый вопрос 1. Почему всегда существует решающая коалиция?
- Глупый вопрос 2. Может ли решающая коалиция быть пустой?

Доказательство

Минимальная решающая коалиция

- lacktriangle Рассмотрим самую минимальную по количеству участников решающую коалицию M
- Она непустая
- Идея доказательства:
- 1. Предъявляем примеры профилей предпочтений
- 2. Минимальная решающая коалиция состоит из одного избирателя
- 3. Этот избиратель диктатор

Минимальная решающая коалиция состоит из одного избирателя

- lacktriangle Пусть $e\in M$ и M минимальная решающая относительно a и b
- lacktriangle Покажем, что либо $\{e\}$, либо $M \setminus \{e\}$ решающая

$$a >_{e} b >_{e} c$$
 $c >_{M\setminus\{e\}} a >_{M\setminus\{e\}} b$
 $b >_{E\setminus M} c >_{E\setminus M} a$

- lacktriangle Тогда $a>_E b$ почему?
- Если $c >_E b$, то...
- lacktriangle Коалиция $M ackslash \{e\}$ решающая. Противоречие с минимальностью M
- Если $b >_E c$, то...
- lacktriangle $\{e\}$ решающая коалиция для a и c

$\{e\}$ — решающая коалиция

lacktriangle Мы выяснили, что $\{e\}$ — решающая для a и c

$$a >_{e} c >_{e} x$$
 $c >_{E\setminus\{e\}} x >_{E\setminus\{e\}} a$

$$y >_{e} c >_{e} a$$
 $c >_{E\setminus\{e\}} y >_{E\setminus\{e\}} a$

•
$$\Rightarrow y >_E a$$

$\{e\}$ — диктатор

lacktriangle Пусть $a>_e b$, и A — те, кто с этим согласен, а B — наоборот

$$a >_e c >_e b$$

$$c >_A a >_A b$$

$$c >_B b >_B a$$

- $a >_E c$ почему?
- $\bullet c >_E b$
- $\bullet \Rightarrow a >_E b$
- lacktriangle Значит, e диктатор \Box

Система выборов в США

- Палата представителей
- Сенат
- Это всё Конгресс
- Есть две партии: Респебликанская и Демократическая
- Голосование в два этапа:
- Сначала выбирают выборщиков от каждого штата в количестве, пропорциональном числу жителей штата
- Затем голосуют выборщики
- Победитель забирает всё правило подсчёта голосов выборщиков от каждого штата

Система выборов в США

- Всего: 538 выборщиков
- Число выборщиков от каждого штата пропорционально численности населения штата
- Для победы необходимо набрать не меньше 270 голосов выборщиков

Вчём проблема?

Кандидат может выиграть выборы на национальном уровне (набрав наибольшее число совокупных голосов), но проиграть выборы

Округление

Вопрос

- Округлите данные числа так, чтобы получающаяся сумма не изменилась:
- 6.408; 1.594; 2.226; 1.987; 8.622; 12.814; 3.826; 4.965; 9.175; 10.651; 11.693; 1.864; 6.716; 2.301; 20.158

Метод Гамильтона

- Тогда, в 1790 г. выделялось 105 мест в палате представителей
- 1. Считаем станд. квоты: $\frac{237\,655}{3\,893\,874} \cdot 105 = 6.4 \dots$
- 2. Округляем до пола: $6.4 \approx 6...$
- 3. Подсчитываем, сколько осталось свободных мест
- 4. И распределяем их по одному между штатами, дробные части которых наибольшие

Итоги общенациональной переписи населения 1790 г. по штатам

Штат	Население
Коннектикут	237 655
Делавэр	59 096
Джорджия	82 548
Кентукки	73 677
Мэриленд	319 728
Массачусетс	475 199
Нью-Гэмпшир	141 899
Нью-Джерси	184 139
Нью-Йорк	340 241
Северная Каролина	395 005
Пенсильвания	433 611
Род-Айленд	69 112
Южная Каролина	249 073
Вермонт	85 341
Вирджиния	747 550
Bcero:	3 893 874

Метод Джефферсона

- Принадлежит методу делителей
- ullet Стандартный делитель системы $\frac{3\,893\,874}{105} = 37\,084.51$

$$\bullet \frac{237655}{3893874} \cdot 105 = \frac{237655}{3893874}$$

$$105 = \frac{105}{105}$$

- 1. Считаем стандартные квоты
- 2. Округляем до пола
- 3. Берём новый делитель
- 4. Возвращаемся к пункту 1
- 5. Получилось целое?
- 6. Если да ура, нет возрвращаемся в пункт 3

Метод Уэбстера

• То же, что и в методе Джефферсона, но округление обычное

Что с ними не так?

- Для метода Гамильтона:
- 1902 г. парадокс населения
- Штат Вирджиния уступает одно место штату Мэн, хотя последние 10 лет население первой приросло в процентах на большую величину
- Парадокс нового штата
- Для метода Джефферсона:
- Получить новые места проще штатам с большим населением, т. к. при уменьшении стандартного делителя большие квоты растут быстрее, чем меньшие

Метод Хилла

- Этот метод используется и поныне
- В методе Уэбстера округление по среднему арифметическому нужно заменить округлением по среднему геометрическому