Problem Sheet: Digital Circuits

Cezar Ionescu

WS 2023-24

1. Define the truth table for the following circuits:

(e)

- 2. (a) Give the truth table for the counterpart *nor* of the *nand* gate (a better name for *nor* would be *negmax*).
 - (b) Implement nor using the standard gates (not, and, or).
 - (c) Implement nor using only nand gates.
 - (d) Implement the standard gates using only nor gates.
 - (e) Nor gates are represented in the same way as or gates, except for having a circle at their output. Give the truth table for the following circuit:

- 3. Derive the simplest possible sum-of-terms expressions for each of the following functions
 - (a) $f:\mathbb{B}^5\to\mathbb{B}$, f(x)=1 if x is the binary representation of a number between 20 and 30, and 0 otherwise
 - (b) $f: \mathbb{B}^3 \to \mathbb{B}$, f(x) = 1 if there are more 1s than 0s in x
 - (c) same as the previous one, but for $f:\mathbb{B}^4 \to \mathbb{B}$
 - (d) $f: \mathbb{B}^4 \to \mathbb{B}$, f(x) = 0 if the number represented by x is even
 - (e) $f: \mathbb{B}^4 \to \mathbb{B}$, $f(x_0, x_1, x_2, x_3) = 1$ if the number represented by x_0x_1 is smaller than x_2x_3 .
 - (f) same as the previous one, but with "smaller than equal".
- 4. Construct Karnaugh maps for each of the following expressions, and derive simplified versions:
 - (a) $w\overline{xy} + wx\overline{y} + \overline{w}xy + \overline{w}x\overline{y} + wxy + w\overline{x}y$
 - (b) $wx\overline{y} + \overline{w}x\overline{y} + w\overline{x}y + \overline{w}xy$
 - (c) $x\overline{y} + \overline{w}\overline{y} + \overline{w}x\overline{y} + \overline{w}xy + \overline{w}x\overline{y}$
 - (d) $\overline{wxyz} + w\overline{xyz} + \overline{wxy}z + w\overline{xy}z + wxyz + \overline{w}xyz + wx\overline{y}z + \overline{w}x\overline{y}z$

References

- Brookshear, Brylow "An Overview of Computer Science", 13th Ed.
- Lee "From Hardware to Software", 1982