Opravná záverečná písomka (26. 6. 2014)

Príklad 1. Odpovedzte na otázky z výrokovej logiky:

- (a) Ako je definovaný výrok?
- (b) Zostrojte syntaktický strom pre formulu $(p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p)$, a zostrojte množinu jej všetkých možných podformúl.
- (c) Ako sa nazýva formula, ktorá nie je tautológia a taktiež nie je kontradikcia?
- (d) Čo znamenajú výrazy $\{\varphi_1,...,\varphi_n\} \vdash \varphi$ a $\{\varphi_1,...,\varphi_n\} \models \varphi$?

Príklad 2. Zistite akú Boolovu funkciu reprezentuje neurónová sieť obsahujúca logické neuróny, zostrojte jej minimálnu NDF formu

Príklad 3. Doplňte výsledok v týchto schémach usudzovania.

Príklad 4. Prepíšte tvrdenie prirodzeného jazyka do formuly predikátovej logiky, vytvorte negáciu tejto formuly a prepíšte túto formulu do tvrdenia prirodzeného jazyka.

- (a) Angličania majú radi čaj.
- (b) Niektorý športovec nemá dobrú fyzickú kondíciu.
- (c) Existujú nepárne čísla (väčšie ako 2), ktoré sú prvočísla.
- (d) Niektorí ľudia, ktorí navštevujú plaváreň, nevedia plávať.
- (e) Každé dieťa má matku.

Príklad 5. Rozhodnite (<u>a zdôvodnite</u>) pre každú formulu, či je tautológia, kontradikcia, alebo či je splniteľná formula, ktorá nie je tautológia:

(a)
$$(\exists y \ \forall x \ P(x,y)) \Rightarrow (\forall x \ \exists y \ P(x,y))$$

- (b) $\forall x (P(x) \vee \neg P(x))$,
- (c) $(\exists x P(x)) \Rightarrow (\forall x P(x))$,
- (d) $(\forall x P(x)) \Rightarrow (\exists x \neg P(x))$.

Príklad 6. Riešte tieto sylogizmy pomocou prirodzenej dedukcie a odôvodnite výsledok:

(a)
Každý vodič má viac ako 15 rokov.
Každý kto má viac ako 15 rokov má OP.

(b) Niektorí študenti sú hasiči. Niektorí hasiči sú slobodní.

(c) niektorí chemici sú astronómovia žiadny fyzik nie je chemik (c) Každý študent nie je včelár niektorí včelári sú analfabeti

Príklad 7. Pomocou prirodzenej dedukcie odvoďte formuly:

(a)
$$(p \Rightarrow q) \land (r \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q)$$

(b)
$$(p \Rightarrow q) \land (p \Rightarrow r) \Rightarrow (p \Rightarrow q \land r)$$

(c)
$$\forall x (P(x) \land R(x)) \Rightarrow (\forall x P(x)) \land (\forall y R(y))$$
.

Príklad 8. Pomocou tabuľkovej metódy preverte, či formuly sú tautológie 3-hodnotovej Łukasiewiczovej logiky:

(a)
$$\neg (\neg \phi \land \phi) \equiv \phi \lor \neg \phi$$
,

(b)
$$(\psi \Rightarrow \phi) \Rightarrow (\neg \psi \Rightarrow \neg \phi)$$
,

Príklad 9. Nech atomické formuly p a q v modálnej logike majú ohodnotenie v rôznych svetoch zadané podľa obrázku.

Symbol (α,β) nech vyjadruje dvojicu binárnych čísel, kde $\alpha,\beta \in \{0,1\}$ špecifikujú pravdivostné hodnoty výrokových premenných p resp. q v danom svete (špecifikovanom číslom pri vrchole stromu). Tak napríklad pre premennú p platí: $v(w_1,p)=0$, $v(w_2,p)=1$, $v(w_3,p)=1$, $v(w_4,p)=1$, $v(w_4,p)=1$, $v(w_5,p)=1$ a $v(w_6,p)=0$. Nájdite v rôznych svetoch pravdivostné hodnoty formuly a jej podformúl:

$$p \Longrightarrow \Diamond q$$

Príklad 10. Pomocou metódy sémantických tabiel zistite, či formula predikátovej logiky $\exists x (\varphi(x) \Rightarrow \psi(x)) \Rightarrow (\forall x \varphi(x) \Rightarrow \forall x \psi(x))$ je tautológia.

Poznámka: Každý príklad je hodnotený 6 bodmi, maximálny počet bodov je 60. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

2

Riešené príklady

Príklad 1. Odpovedzte na otázky z výrokovej logiky:

- (a) Ako je definovaný výrok?
- (b) Zostrojte syntaktický strom pre formulu $(p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p)$, a zostrojte množinu jej všetkých možných podformúl.
- (c) Ako sa nazýva formula, ktorá nie je tautológia a taktiež nie je kontradikcia?
- (d) Čo znamenajú výrazy $\{\varphi_1,...,\varphi_n\} \vdash \varphi$ a $\{\varphi_1,...,\varphi_n\} \models \varphi$?
- (a) Výrok je jednoduchá oznamovacia veta, ktorá je pravdivá alebo nepravdivá.

(b)

$$\{p,q,\neg p,\neg q,p\Rightarrow q,\neg q\Rightarrow \neg p,(p\Rightarrow q)\Rightarrow (\neg q\Rightarrow \neg p)\}$$

- (c) Formula sa nazýva splniteľná
- (d) Výraz $\{\phi_1,...,\phi_n\} \vdash \phi$ znamená, že formula ϕ logicky vyplýva z teórie predpokladov $\{\phi_1,...,\phi_n\}$; výraz $\{\phi_1,...,\phi_n\} \models \phi$ znamená, že formula ϕ sémanticky vyplýva z teórie predpokladov $\{\phi_1,...,\phi_n\}$.

Príklad 2. Zistite akú Boolovu funkciu reprezentuje neurónová sieť obsahujúca logické neuróny, zostrojte jej minimálnu NDF formu

$$y = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 \overline{x}_4 + x_1 x_2 \overline{x}_3 x_4 + x_1 x_2 \overline{x}_3 \overline{x}_4 = x_1 x_2$$

Príklad 3. Doplňte výsledok v týchto schémach usudzovania.

$$\frac{r}{\neg s}$$
,

$$r \Longrightarrow \neg s$$

$$r \Rightarrow \neg s t \Rightarrow s t \Rightarrow \neg r$$

$$r \vee \neg s$$

$$\frac{\neg r}{\neg s}$$

$$r \Longrightarrow \neg s$$

$$r \Longrightarrow \neg s \frac{\neg s}{\neg r},$$

$$\neg r \Longrightarrow \neg s$$

$$\frac{r}{2}$$

$$r \Longrightarrow s$$

$$r \Rightarrow s \\ r \Rightarrow \neg s , \\ \frac{r \Rightarrow \neg s}{\neg r} ,$$

$$\neg r$$

$$\neg r \Longrightarrow \neg s$$

$$\frac{\neg r \Rightarrow \neg s}{\neg r},$$

$$\neg r \Longrightarrow \neg s$$

$$\neg s$$

$$r^{-}$$

Príklad 4. Prepíšte tvrdenie prirodzeného jazyka do formuly predikátovej logiky, vytvorte negáciu tejto formuly a prepíšte túto formulu do tvrdenia prirodzeného jazyka.

(a) Angličania majú radi čaj.

$$\forall x (Angl(x) \Rightarrow Rad_caj(x))$$

$$\exists x (Angl(x) \land \neg Rad _caj(x))$$

Existuje taký Angličan, ktorý nemá rád čaj.

(b) Niektorý športovec nemá dobrú fyzickú kondíciu..

$$\exists x (sport(x) \land \neg fyz _kond(x))$$

$$\forall x (\neg sport(x) \lor fyz_kond(x)) \equiv \forall x (sport(x) \Rightarrow fyz_kond(x))$$

Každý športovec má dobrú fyzickú kondíciu.

(c) Existujú nepárne čísla (väčšie ako 2), ktoré sú prvočísla.

$$\exists x (odd(x) \land prime(x))$$

$$\forall x (even(x) \lor \neg prime(x)) \equiv \forall x (prime(x) \Rightarrow even(x))$$

Každé prvočíslo je párne.

(d) Niektorí ľudia, ktorí navštevujú plaváreň, nevedia plávať.

$$\exists x (navst _ pla varen(x) \land \neg vie _ plavat(x))$$

$$\forall x (\neg navst _ pla var en(x) \lor vie _ plavat(x)) \equiv \forall x (navst _ pla var en(x) \Rightarrow vie _ plavat(x))$$

Každý, kto navštevuje plaváreň, vie plávať.

(e) Každé dieťa má matku.

$$\forall x (dieta(x) \Rightarrow matka(x))$$

$$\exists x (dieta(x) \land \neg matka(x))$$

$$\forall x (dieta(x) \Rightarrow matka(x))$$

Existuje dieťa, ktoré nemá matku.

Príklad 5. Rozhodnite pre každú formulu, či je tautológia, kontradikcia, alebo či je splniteľná formula, ktorá nie je tautológia:

(a)
$$(\exists y \ \forall x \ P(x,y)) \Rightarrow (\forall x \ \exists y \ P(x,y)),$$

Formula je tautológia, dôkaz uskutočníme tak, že implikáciu prepíšeme do disjunktívneho tvaru, pričom negácie kvantifikátorov upravíme pomocou zákonov $\neg \forall x P(x) \equiv (\exists x \neg P(x))$ a

$$\neg (\exists x \ P(x)) \equiv (\forall x \ \neg P(x))$$

$$(\exists y \, \forall x \, P(x,y)) \Rightarrow (\forall x \, \exists y \, P(x,y)) \equiv \neg(\exists y \, \forall x \, P(x,y)) \lor (\forall x \, \exists y \, P(x,y))$$

$$\equiv (\forall y \, \exists x \, \neg P(x,y)) \lor (\forall x \, \exists y \, P(x,y))$$

$$\equiv (\forall y \, \exists x \, \neg P(x,y)) \lor (\forall y \, \exists x \, P(y,x))$$

$$\equiv \forall x \, \exists y \, ((\neg P(x,y)) \lor P(y,x))$$

Výraz v zátvorke je pravdivý, pretože pre každé $x \in \mathcal{U}$ je disjunkcia $\bigvee_{y \in \mathcal{U}} ((\neg P(x, y)) \lor P(y, x))$ pravdivá (aspoň pre x = y).

(b) $\forall x (P(x) \lor \neg P(x))$, táto formula je automaticky pravdivá, pretože podformula stojaca za univerzálnym kvantifikátorom $(P(x) \lor \neg P(x)) \equiv 1$ pre každé indivíduum x.

(c) $(\exists x \ P(x)) \Rightarrow (\forall x \ P(x))$, navrhneme interpretáciu \mathcal{I} , pre ktorú je formula nepravdivá. Nech univerzum U je množina prirodzených čísel $\{0,1,2,3,...\}$ a P(x) je unárny predikát, ktorého význam je "x je párne číslo". Ľavá časť implikácie $\exists x \ P(x)$ je evidentne pravdivá, "existuje také prirodzené číslo x, ktoré je párne". Pravá časť implikácie $\forall x \ P(x)$ je evidentne nepravdivá, nie "každé prirodzené číslo je párne". To znamená, že celková implikácia $(1 \Rightarrow 0)$ je nepravdivá. To znamená, že študovaná formula nie je ani tautológia a ani kontradikcia, je splniteľná (existujú interpretácie \mathcal{I} v ktorých je pravdivá, napr. ak predikát P(x) interpretujeme "x je nezáporné číslo").

(d) $(\exists x \forall y \ P(x,y)) \Rightarrow (\exists x \ P(x,a))$, formulu $(\exists x \forall y \ P(x,y))$ môžeme pomocou zákona pre elimináciu univerzálneho kvantifikátora (konkretizáciou) $(\forall x \ P(x)) \Rightarrow P(a)$ previesť do ekvivalentného tvaru $(\exists x \ P(x,a))$, formula je tautológia.

Príklad 6. Riešte tieto sylogizmy:

(a)

Každý vodič má viac ako 15 rokov. Každý kto má viac ako 15 rokov má OP. ?

Vykonáme prepis sylogizmu do predikátovej logiky

$$\varphi_1: \forall x (vodic(x) \Rightarrow nad15(x)) \Rightarrow (vodic(t) \Rightarrow nad15(t))$$

$$\varphi_2: \forall x (nad15(x) \Rightarrow maOP(x)) \Rightarrow (nad15(t) \Rightarrow maOP(t))$$

použitím hypotetického sylogizmu $(p\Rightarrow q)\Rightarrow ((q\Rightarrow r)\Rightarrow (p\Rightarrow r))$ dostaneme

 $(vodic(t) \Rightarrow maOP(t))$ pre l'ubovolné indivíduum t, čiže platí aj

$$\forall x \left(vodic \left(x \right) \Rightarrow maOP \left(x \right) \right)$$

Záver zo sylogizmu je: "každý vodič má OP."

(b)

Niektorí študenti sú hasiči. Niektorí hasiči sú slobodní.

? $\varphi_1: \exists x (st(x) \land hasic(x)) \Rightarrow (st(a) \land hasic(a))$ $\varphi_2: \exists x (hasic(x) \land slob(x)) \Rightarrow (hasic(b) \land slob(b))$ Vo všeobecnosti platí $a \neq b$, z týchto dvoch implikácií nič nevyplýva, sylogizmus nemá platný záver.

(c)

niektorí chemici sú astronómovia každý fyzik nie je chemik

?

$$\phi_1: \exists x \left(chem(x) \land astr(x) \right) \Rightarrow \left(chem(a) \land astr(a) \right) \\
\phi_2: \forall x \left(fyz(x) \Rightarrow \neg chem(x) \right) \Rightarrow \left(fyz(a) \Rightarrow \neg chem(a) \right)$$

Z premisy φ_1 vyplýva, že súčasne platí *chem*(*a*) a astr(a). Použitím *chem*(*a*) a predpokladu φ_2 spolu s pravidlom modus tollens dostaneme $\neg fyz(a)$. To znamená, že záver sylogizmu má tvar

$$astr(a) \land \neg fyz(a) \Rightarrow \exists x \ astr(x) \land \neg fyz(x)$$

alebo, "niektorí astronómovia nie sú fyzici".

(d)

Žiadny študent nie je včelár Niektorí včelári sú analfabeti

?

$$\varphi_1: \forall x \left(st(x) \Rightarrow \neg vce(x) \right) \Rightarrow \left(st(a) \Rightarrow \neg vce(a) \right) \Rightarrow \left(vce(a) \Rightarrow \neg st(a) \right) \\
\varphi_2: \exists x \left(vce(x) \land anal(x) \right) \Rightarrow \left(vce(a) \land anal(a) \right)$$

Z druhej premisy vyplýva, že analf(a) a vce(a). Použitím vce(a) s prvou premisou dostaneme $\neg st(a)$, spojením s anal(a) dostaneme

$$anal(a) \land \neg st(a) \Rightarrow \exists x (anal(x) \land \neg st(x))$$

Záver zo sylogizmu je (za predpokladu, že existuje včelár): "niektorý analfabet nie je študent"

Príklad 7. Pomocou prirodzenej dedukcie odvoďte formuly:

(a)
$$(p \Rightarrow q) \land (r \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q)$$

1.
$$(p\Rightarrow q)\land (r\Rightarrow q)$$
 (aktivácia 1. pomocného predpokladu)
2. $\neg q$ (aktivácia 2. pomocného predpokladu)
3. $(p\Rightarrow q)$ (4. a 5. riadok obsahuje rozklad 1. predpokladu)
4. $(r\Rightarrow q)$ (aplikácia m.t. na 2. a 4.)
6. $\neg r$ (aplikácia m.t. na 2. a 5.)
7. $(\neg p \land \neg r) \equiv \neg (p \lor r)$ (konjunkcia 6. a 7.)
8. $(\neg q\Rightarrow \neg (p\lor r)) \equiv ((p\lor r)\Rightarrow q)$ (deaktivácia 2. na 7)
9. $((p\Rightarrow q)\land (r\Rightarrow q))\Rightarrow ((p\lor r)\Rightarrow q)$ (deaktivácia 1. na 8.)

(b)
$$((p \Rightarrow q) \land (r \Rightarrow q)) \Rightarrow ((p \lor r) \Rightarrow q)$$

1.
$$(p\Rightarrow q)\land (r\Rightarrow q)$$
 (aktivácia 1. pomocného predpokladu)
2. $\neg q$ (aktivácia 2. Pomocného predpokladu)
3. $p\Rightarrow q$ (1. a 2. riadok obsahuje rozklad 1. riadku)
4. $r\Rightarrow q$
5. $\neg p$ (aplikácia m.t. na 2. a 3.)
6. $\neg r$ (aplikácia m.t. na 2. a 4.)
7. $(\neg p \land \neg r) \equiv \neg (p \lor r)$ (konjunkcia 5. a 6.)
8. $(\neg q \Rightarrow \neg (p \lor r)) \equiv (p \lor r \Rightarrow q)$ (deaktivácia 2. na 7.)
9. $((p\Rightarrow q)\land (r\Rightarrow q))\Rightarrow ((p\lor r)\Rightarrow q)$ (deaktivácia 1. na 8.)

(c)
$$\forall x (P(x) \land R(x)) \Rightarrow (\forall x P(x)) \land (\forall y R(y)).$$

1.
$$\forall x (P(x) \land R(x))$$

2. $P(t) \land R(t)$
3. $P(t)$
4. $R(t)$
5. $\forall x P(x)$
6. $\forall y R(y)$
7. $\forall x P(x) \land \forall y R(y)$
8. $\forall x (P(x) \land R(x)) \Rightarrow \forall x P(x) \land \forall y R(y)$

Príklad 8. Pomocou tabuľkovej metódy preverte, či formuly sú tautológie 3-hodnotovej Łukasiewiczovej logiky:

(a)
$$\neg (\neg \phi \land \phi) \equiv \phi \lor \neg \phi$$
,

(b)
$$(\psi \Rightarrow \phi) \Rightarrow (\neg \psi \Rightarrow \neg \phi)$$
,

Pomocou tabul'kovej metódy preverte, či formule sú tautológie 3-hodnotovej Łukasiewiczovej logiky:

1	2	3	4	5	6	7	8
φ	¬φ	$\neg \phi \land \phi$	$\neg \phi \land \phi \mid \neg (\neg \phi \land \phi)$		4⇒5	5⇒4	6∧7
0	1	0	1	1	1	1	1
1/2	1/2	1/2	1/2	1/2	1	1	1
1	0	0	1	1	1	1	1

(b)
$$\varphi \Rightarrow (\psi \Rightarrow \varphi)$$
,

φ	Ψ	$\psi \Rightarrow \varphi$	$\neg \psi \Rightarrow \neg \phi$	$(\psi \Rightarrow \varphi) \Rightarrow (\neg \psi \Rightarrow \neg \varphi)$
0	0	1	1	1
0	1/2	1/2	1	1
0	1	0	1	1
1/2	0	1	1	1
1/2	1/2	1	1/2	1/2
1/2	1	1/2	1	1
1	0	1	0	0
1	1/2	1	1/2	1/2
1	1	1	1	1

Príklad 9. Nech atomické formuly *p* a *q* majú ohodnotenie v rôznych svetoch zadané podľa obrázku.

Symbol (α,β) nech vyjadruje dvojicu binárnych čísel, kde $\alpha,\beta \in \{0,1\}$ špecifikujú pravdivostné hodnoty výrokových premenných p resp. q v danom svete (špecifikovanom číslom pri vrchole stromu). Tak napríklad pre premennú p platí: $v(w_1,p)=0$, $v(w_2,p)=1$, $v(w_3,p)=1$, $v(w_4,p)=1$, $v(w_4,p)=1$, $v(w_5,p)=1$ a $v(w_6,p)=0$. Nájdite v rôznych svetoch pravdivostné hodnoty formuly a jej podformúl:

 $p \Rightarrow \Diamond q$

podformula	w_1	w_2	<i>W</i> 3	w_4	W5	w_6
p	0	1	1	1	1	0
q	1	1	0	0	1	1
ýq	1	1	0	1	1	1
p⇒ýq	1	1	0	1	1	1

Príklad 10. Pomocou metódy sémantických tabiel zistite, či formula predikátovej logiky $\exists x (\varphi(x) \Rightarrow \psi(x)) \Rightarrow (\forall x \varphi(x) \Rightarrow \forall x \psi(x))$ je tautológia.

.

Pravá vetva sémantického tabla nie je uzavretá, preto formula nie je tautológia.