Self Driving Car

Istituto Tecnico Industriale Pietro Paleocapa

Indirizzo Informatica e Telecomunicazioni

Tutor

Prof.ssa Vita Anna Rosa Antonicelli

Studente

Niccolò Salvi salvi.16159

Isaac Asimov

- Un robot non può recar danno a un essere umano né può permettere che, a causa del suo mancato intervento, un essere umano riceva danno.
- Un robot deve obbedire agli ordini impartiti dagli esseri umani, purché tali ordini non vadano in contrasto alla Prima Legge.
- 3. Un robot deve proteggere la propria esistenza, purché la salvaguardia di essa non contrasti con la Prima o con la Seconda Legge.

Topics

O1 Veicolo

Descrizione dei componenti del robot

O3 Guida Autonoma

Descrizione algoritmi

O2 Pista

Descrizione dei componenti della pista

04 Conclusioni

Valutazioni finali

Componenti Veicolo

Romi 32U4

Gestione motori & encoders

RaspberryPi

Unità computazionale

Sensori & Attuatori

Altra componentistica

Componenti Pista

03

Guida Autonoma

3.1 Rilevamento Corsie

Descrizione Algoritmo

Frame Iniziale

Trasformazione dell'Immagine

ROI

ROI - Gray

ROI - Thresh

ROI - Warp

Applicazione Algoritmo

Area di Destra

Area di Sinistra

Aree Combinate

Algoritmi implementati

Sottrazione

Angolo = (areaDestra - areaSinistra) / k

Divisione

angolo = ((areaMinore / areaMaggiore) - 1) * k

3.2

Riconoscimento Segnale di Stop

Ottenimento ROI Classificatore a Cascata

Frame Iniziale

ROI

Contorni

Contorno ROI

Calcolo Distanza

Distanza Focale

lunghezzaFocale = distanzaReale * lunghezzaROI / lunghezzaSegnale

- lunghezzaFocale rappresenta la distanza tra il centro ottico dell'obiettivo ed il piano della messa a fuoco
- distanzaReale indica la distanza reale al momento delle misurazioni_[cm]
- **lunghezzaROI** rappresenta la lunghezza della regione di interesse $_{[px]}$ lunghezzaSegnale indica la lunghezza reale del segnale di stop $_{[cm]}$

Distanza

distanza = lunghezzaSegnale * lunghezzaFocale / lunghezzaRettangolo

- distanza indica la distanza reale, entro la quale la macchina si deve fermare_[cm]
- lunghezzaSegnale rappresenta la lunghezza reale del segnale di stop_[cm] lunghezzaFocale indica la lunghezza focale della lente (calcolata precedentemente)
- lunghezzaRettangolo rappresenta la lunghezza del rettangolo che contiene al suo interno il segnale di stop_[px]

3.3

Riconoscimento Semaforo

10 sec

4 sec

6 sec

Descrizione Algoritmo

Frame Iniziale

ROI

ROI - Gray

ROI - Thresh

ROI - Colore

Sia X la coordinata Y del angolo in alto a sinistra del contorno evidenziato nell'ultima figura

perc = 100 - (X / heightROI * 100)

- 25 < perc < 35 indica il colore verde
- 45 < perc < 55 indica il colore arancione
- 60 < perc < 70 indica il colore rosso

3.4

Riconoscimento Limite di Velocità

Descrizione Algoritmo

ROI

ROI - Gray

ROI - Thresh

ROI - Cifre

Riconoscimento Numeri

Rete Neurale

- Input Size = 1024 → lunghezza del vettore in input
- Hidden Layers = 100 → le informazioni sono propagate layer-by-layer dallo strato IN allo strato OUT
- Number Classes = 10 → numero di classi OUT

Output Trasformazione Immagine

Cifra	Predizione
0	-0.5700780749320984
1	-1.1365952491760254
2	-3.464038848876953
3	-1.893628716468811
4	1.1854283809661865
5	-0.8575473427772522
6	-1.7844761610031128
7	-2.928117275238037
8	-0.09916530549526215
9	1.4027529954910278

Cifra	Predizione
0	4.327493190765381
1	-8.269551277160645
2	-0.01426425576210022
3	-3.854306221008301
4	-7.25352668762207
5	-3.59706044197082
6	-2.2099931240081787
7	-2.458707094192505
8	-3.4987590312957764
9	-1.5457154512405396

04

Alexa Voice Interface

4.1 Alexa Skill

- la distanza percorsa
- l'ultimo segnale riconosciuto
- la velocità attuale
- il limite di velocità attualmente valido
- la velocità media
- la quantità di batteria rimanente
- partire | arrestarsi

4.2

Broker Messaggi MQTT


```
"desired": {
    "welcome":
    "aws-iot"
    "speed": 8
"reported": {
    "welcome":
    "aws-iot",
   "speed": 10
```

4.3

Sicurezza

AWS User

- AWS security credentials
- IAM policies

Device - IoT certificate

- Amazon Cognito Identity
 Authentication provider token + AWS
- IAM role policies
- IoT policies

AWS IoT - IAM Roles

- IAM Policies
- AWS Security Credentials

AWS Lambda

Amazon DynamoDB

Amazon Kinesis

05

Future Implementazioni

Alexa Notification

Alexa Notification quando vengono riconosciuti segnali stradali, ...

Riconoscimento Tutti Cartelli Stradali

Sviluppo di una rete neurale in grado di riconoscere tutti i cartelli stradali Miglioramento Riconoscimento Limiti di Velocità

Miglioramento della rete neurale in grado di riconoscere il valore dei limiti di velocità

"Viva la macchina che meccanizza la vita"

Luigi Pirandello

Inglese

Ethics of Robotics

Matematica

$$v(t) = s'(t)$$

 $a(t) = v'(t) = s''(t)$

PCTO Smi Voice Interface

THANKS

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

