VE281

Data Structures and Algorithms

Graphs

Review

- 2-3 Tree: Removal
 - Swap the key with its in-order successor and then delete the key.
 - If the key is in a 2-node, removing the key violates the 2-3 tree property.
 - We restore the 2-3 tree property by either rotating keys or merging nodes.
- Graphs
 - Nodes, edges, simple graphs.

Outline

- Graph Basics
- Graph Representation
- Graph Search

Complete Graphs

• A complete graph is a graph where every pair of nodes is directly connected.

• How many edges are there in a complete graph of *N* nodes?

Directed Graphs

• Directed graph (digraph): edges are directional. v v e₂

- Nodes incident to an edge form an **ordered** pair.
 - $e = (v_1, v_2)$ means there is an edge **from** v_1 **to** v_2 . However, there is no edge **from** v_2 **to** v_1 .
- Examples: rivers and streams, one-way streets, customer-provider relationships.

Undirected Graphs

• Undirected graph: all edges have no orientation.

- There is no ordering of nodes on edges.
 - $e = (v_1, v_2)$ means there is an edge between v_1 and v_2 .
- Examples: friendship and two-way roads.

Paths

- A path is a series of nodes v_1 , ..., v_n that are connected by edges.
 - For a directed graph, if v_1 , …, v_n is a path, then there is an edge $from\ v_i$ to v_{i+1} for each i.

• For an undirected graph, if v_1 , ..., v_n is a path, then there is an for each v_1 , v_2 , v_3 is a path. v_{i+1} v_1 , v_2 , v_3 is a path. v_1 , v_2 , v_3 , v_2 , v_1 is also a path.

Simple Paths

- A **simple path** is a path with no node appearing twice
 - e.g., v_1 , v_2 , v_3 is a simple path; v_1 , v_2 , v_3 , v_4 , v_2 is pot.

Connected Graphs

- A connected graph is a graph where a simple path exists between all pairs of nodes.
- A directed graph is **strongly connected** if there is a simple **directed path** between any pair of nodes.
- A directed graph is **weakly connected** if there is a simple path between any pair of nodes in the underlying undirected graph.

The directed graph is wear connected, but not strong connected.

Node Degree

• The degree of a node is the number of edges incident to the node, e.g., degree $(v_2) = 3$, degree $(v_3) = 2$.

- What is the relationship between the sum of degrees of all nodes and the number of edges?
 - Sum (degrees) = 2 * Number (edges)

Node Degree for Directed Graphs

- For directed graphs, we differentiate between incoming edges and outgoing edges of a node. Thus we differentiate between a node's in-degree and its out-degree.
 - in-degree: number of incoming edges of a node
 - out-degree; number of outgoing edges of a node v e_2 $in-degree(v_2) = v$ e_3 v $out-degree(v_2) = v$

- Nodes with zero in-degree are **source** nodes, e.g., v₁.
- Nodes with zero out-degree are sink nodes,

Cycles and Directed Acyclic Graphs

- A cycle is a path starting and finishing at the same node.
 - A self-loop is a cycle of length 1.
 - A simple cycle has no repeated nodes, except the first and the last vnode, e.g., e_2v_1 , v_2 , v_3 , v_1 .

- A graph with no cycle is called an acyclic graph.
- A directed graph with no cycles is called a directed acyclic graph, or DAG for short.

Directed Acyclic Graphs (DAG)

• Are the following graphs DAGs?

Weighted Graphs

- Weighted graph: edges of a graph may have different costs or weights.
 - For example, the weights on edges represent the distance between two nodes.

Graph Size and Complexity

- Whereas a BST increases height by extending a single path, a
 2-3 tree increases height globally by raising the root.
- Therefore, all of the leaves of a 2-3 tree are at the same level.
 - The 2-3 tree is always balanced.
- What is the worst case time complexity?
 - $O(\log N)$

Linked Lists, Trees, and Graphs

Linked Lists, Trees, and Graphs

Sample Graph Problems

- Path finding problems
 - Find if there exists a path between two given nodes.
 - Find the shortest path between two given nodes.
- Connectedness problems
 - Find if the graph is a connected graph.

Outline

- Graph Basics
- Graph Representation
- Graph Search

Graph Representation

Adjacency Matrix

- Adjacency matrix: a $|V| \times |V|$ matrix representation of a graph.
- A(i,j) = 1, if (v_i, v_j) is an edge; otherwise A(i,j) = 0.

Adjacency Matrix for Undirected Graph

V V V V V

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	0	1	0
3	1	0	0	1	0
4	0	1	1	0	1
5	0	0	0	1	0

- Diagonal entries are zero.
- The matrix is **symmetric**, i.e., A(i,j) = A(j,i) for all i and j.
- Number of ones in the matrix is twice the number of edges.

Adjacency Matrix for Directed Graph

- Diagonal entries are zero.
- The matrix need not be symmetric.
- Number of ones in the matrix equals the number of edges.

Adjacency Matrix for Weighted Graph

• If (v_i, v_j) is an edge and its weight is w_{ij} , then $A(i,j) = w_{ij}$; otherwise $A(i,j) = \infty$.

Adjacency Matrix Properties

- **8** Space complexity: $|V|^2$ units
 - For an unweighted graph, $|V|^2$ bits.
 - For an undirected graph, may store only the lower or upper triangle. Thus, (|V|-1)|V|/2 units.
- What is the time complexity for finding if node v_i is adjacent to node v_i ?
 - *0*(1)
- What is the time complexity for finding all nodes adjacent to a given node v_i ?
 - \bullet O(|V|)

Graph Representation Adjacency List

- lacktriangle Adjacency list: an array of |V| linked lists.
 - Each array element represents a node and its linked list represents the node's neighbors.

Graph Representation Adjacency List

• Each edge in an undirected graph is represented twice.

- Each edge in a directed graph is represented once.
- Weighted graph stores edge weight in linkedlist node

Adjacency List Properties

- What is the space complexity? O(|E| + |V|)
- What is the worst case time complexity for checking if node v_i is adjacent to node v_j ? O(|V|)
- What is the worst case time complexity for finding all nodes adjacent to a given node v_i ? O(|V|)

Comparison of Graph Representation

- Worst case time complexity for two common operations:
- 1. Determine whether v_i is adjacent to v_j
 - Adjacency matrix: O(1); Adjacency list: O(|V|)
- 2. Determine all the nodes adjacent to v_i
 - Both adjacency matrix and adjacency list: O(|V|)
- Adjacency list often requires less space than adjacency matrix.
- Dense graphs are more efficiently represented as adjacency matrices and sparse graphs as adjacency lists.

Outline

- Graph Basics
- Graph Representation
- Graph Search

Graph Search

- A node u is **reachable** from a node v if and only if there is a path from v to u.
- A graph search method starts at a given node v and visits every node that is reachable from v.
- Many graph problems are solved using a search method.
 - Find a path from one node to another.
 - Find if the graph is connected.
- Commonly used search methods:
 - Depth-first search.
 - Breadth-first search.

Depth-First Search (DFS)

```
DFS(v) {
   visit v;
   mark v as visited;
   for(each node u adjacent to v)
     if(u is not visited) DFS(u);
}
```

- How to mark a node "visited"?
 - Keep a "visited" field in the node, or
 - Keep a global "visited" array, one entry per node:
 - Initially mark all entries false.
 - When a node is visited, set its entry to true.
 - Check this array to avoid visiting previously visited node.

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
Start from A.
DFS (A)
```

```
Depth-First Search (DFS)
Example |
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
DFS(A):
Mark A as visited;
Choose A's neighbor
DFS (B)
```

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
DFS (B):
Visit and mark B;
Choose B's neighbor
DFS (C)
```

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
 DFS(C):
 Visit and mark C;
 Choose C's neighbor
 A is visited;
 Choose C's neighbor B;
 B is visited;
 Choose C's neighbor D
 DFS (D)
```

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
DFS(D):
Visit and mark D;
Choose D's neighbor
B is visited;
Choose D's neighbor C;
                              DFS(D) finished.
C is visited;
                              Back to its caller DFS
```

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
DFS(C):
DFS(D);
Choose C's neighbor
DFS (E)
```

```
Depth-First Search (DFS)
Example
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
DFS (E):
Visit and mark E;
Choose E's neighbor
B is visited;
Choose E's neighbor C;
C is visited;
                              DFS(E) finished.
                              Back to its caller DF
```

```
Depth-First Search (DFS)
 Example
DFS(v) {
   visit v;
  mark v as visited;
   for (each node u adjacent to v)
     if (u is not visited) DFS(u);
DFS(C) finished.
Back to its caller DFS (B)
```

```
Depth-First Search (DFS)
Example |
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
Now in DFS(B), all the
remaining neighbors are
visited.
DFS(B) finished.
Back to its caller DFS(A)
```

```
Depth-First Search (DFS)
Example |
DFS(v) {
  visit v;
  mark v as visited;
  for (each node u adjacent to v)
    if (u is not visited) DFS(u);
Now in DFS(A), all the
remaining neighbors are
visited.
DFS(A) finished.
```

```
Depth-First Search (DFS)
Time Complexity

DFS(v) {
    visit v;
    mark v as visited;
    for(each node u adjacent to v)
        if(u is not visited) DFS(u);
}
```

- If graph is implemented as adjacency matrix:
 - Visit each node exactly once: O(V).
 - The row of each node in the adjacency matrix is scanned once: O(|V|) for each node.
 - Total running time: $O(|V|^2)$.

Depth-First Search (DFS) Time Complexity

- Whereas a BST increases height by extending a single path, 2-3 tree increases height **globally** by **raising** the test.
- Therefore, all of the leaves of a 2-3 tree are at the same level.
 - The 2-3 tree is always balanced.
- What is the worst case time complexity?
 - $O(\log N)$

```
Depth-First Search (DFS)
Summary

DFS(v) {
    visit v;
    mark v as visited;
    for(each node u adjacent to v)
        if(u is not visited) DFS(u);
}
```

- Explore the graph as far as possible along edges, before backtracking.
- When backtracking, return to the **most recent** node that hasn't been fully explored.
- DFS can also be implemented non-recursively using a stack.