Computational tools for problem solving

Lab list 5

Baby Step Giant Step Algorithm for the Discrete Logarithm Problem.

This assignment is about Shanks' baby step-giant step algorithm (BSGS) for computing discrete logarithms in the multiplicative group \mathbb{Z}_p^* of a prime field. This group is cyclic of order p-1 and has generator g given by a primitive root modulo p: $\mathbb{Z}_p^* = \langle g \rangle$.

The discrete logarithm problem (DLP) in \mathbb{Z}_p^* with generator g, consists of finding for a given $y \in \mathbb{Z}_p^*$, an integer $x \in \{0, \dots, p-2\}$, denoted $\log_q(y)$, such that

$$y = g^x$$
.

The BSGS algorithm is a meet-in-the-middle algorithm that computes x as x = is - j, where s is the integer $\lceil \sqrt{p} \rceil$ and $i, j \in \{0, ..., s\}$ are such that there is a match (collision) between both sides of the equivalent formulation $yg^j = g^{is}$. The left hand side is called the baby step side while the right hand side is the giant step side.

Example.

DL instance: Solve $2 = 10^x \mod 19$.

BSGS solution:

- i) $\mathbb{Z}_p^* = \{1, 2, \dots, 18\}$ and g = 10 is generator since its order is the highest possible.
- ii) Compute $s = \lceil \sqrt{19} \rceil = 5$.
- iii) Compute the baby step set and giant step set

$$BS = \{(2 \cdot 10^{j}, j) : 0 \le j \le s\} = \{(2, 0), (1, 1), (10, 2), (5, 3), (12, 4), (6, 5)\}$$
$$GS = \{(10^{5i}, i) : 0 \le i \le s\} = \{(1, 0), (3, 1), (9, 2), (8, 3), (5, 4), (15, 5)\}\}$$

iv) A match of 5 is obtained for (i, j) = (4, 3), then we have $x = 4 \cdot 5 - 3 = 17$.

Problem.

- 1) Write a code to compute discrete logarithms using BSGS.
- 2) Solve $3^x \equiv 12 \pmod{29}$, $13^x \equiv 19 \pmod{71}$ and $7^x \equiv 50 \pmod{143}$.