Results are obtained with h_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS USING OPTIONS LIKELIHOOD, $h_0^Q = h_t^P$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ extbf{ci} \ extbf{median}$	$2.9373e - 07$ $(\pm 4.3822e - 07)$ $4.4080e - 10$	$8.3428e - 06$ $(\pm 7.4910e - 06)$ $2.1679e - 09$	$2.0557e - 09$ $(\pm 1.1272e - 09)$ $1.1257e - 09$	$1.4603e - 06$ $(\pm 1.4013e - 06)$ $1.5347e - 09$	$1.9938e - 06$ $(\pm 1.8706e - 06)$ $1.3127e - 09$	$4.7113e - 07$ $(\pm 7.0501e - 07)$ $1.3856e - 09$	$6.9592e - 07$ $(\pm 8.3824e - 07)$ $7.3148e - 10$	$3.5608e - 07$ $(\pm 5.5763e - 07)$ $2.7972e - 10$	$2.8373e - 07$ $(\pm 5.2647e - 07)$ $4.9914e - 10$
lpha ci median	$2.6506e - 05$ $(\pm 5.9068e - 06)$ $2.1958e - 05$	$2.2808e - 05 (\pm 6.1876e - 06) 2.0325e - 05$	$2.0436e - 05$ $(\pm 4.9583e - 06)$ $1.4954e - 05$	$1.5988e - 05$ $(\pm 3.4444e - 06)$ $1.5884e - 05$	$1.4776e - 05$ $(\pm 2.5542e - 06)$ $1.4270e - 05$	$1.3678e - 05$ $(\pm 1.8989e - 06)$ $1.2722e - 05$	$1.3866e - 05$ $(\pm 2.4092e - 06)$ $1.2912e - 05$	9.2340e - 06 ($\pm 1.3797e - 06$) 9.1517e - 06	$1.6279e - 05$ $(\pm 3.0725e - 06)$ $1.5918e - 05$
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	$0.4708 \ (\pm 0.0902) \ 0.5549$	$0.3164 \ (\pm 0.0888) \ 0.3131$	0.4553 (± 0.1018) 0.6192	0.3331 (± 0.1060) 0.0023	$0.1703 \\ (\pm 0.0776) \\ 0.0002$	$0.1908 \ (\pm 0.0647) \ 0.0090$	0.2374 (± 0.0857) 0.0007	$0.1474 \ (\pm 0.0816) \ 0.0001$	$0.2896 \ (\pm 0.0940) \ 0.0010$
γ^* ci median	$155.5027 \\ (\pm 41.3407) \\ 115.7838$	$256.7574 \\ (\pm 79.8138) \\ 148.3374$	$176.9894 \\ (\pm 33.8088) \\ 137.7486$	$247.3834 \\ (\pm 75.2711) \\ 166.2098$	$225.9295 \\ (\pm 55.6646) \\ 189.4759$	$224.0573 \\ (\pm 13.4744) \\ 226.1581$	$257.7868 (\pm 68.1243) 205.5256$	$275.5854 \\ (\pm 52.2661) \\ 237.1314$	$191.7579 \\ (\pm 30.0767) \\ 159.7501$
$h_0^Q = h_t^P$ \mathbf{ci} \mathbf{median}	$1.2843e - 04 (\pm 2.4166e - 05) 1.1288e - 04$	$1.5885e - 04$ $(\pm 2.8191e - 05)$ $1.3446e - 04$	8.8858e - 05 ($\pm 1.1827e - 05$) 8.4289e - 05	$6.0313e - 05 (\pm 8.7213e - 06) 4.8973e - 05$	$6.5265e - 05$ $(\pm 1.0436e - 05)$ $5.5260e - 05$	$1.1085e - 04$ $(\pm 1.8145e - 05)$ $9.2823e - 05$	9.9075e - 05 ($\pm 2.0030e - 05$) 7.8758e - 05	$4.0828e - 05$ $(\pm 6.5382e - 06)$ $3.3053e - 05$	$1.1258e - 04$ $(\pm 2.4678e - 05)$ $9.1614e - 05$
MSE	1.3115	4.7861	2.6162	4.2244	8.4450	6.3652	10.9788	23.0601	13.4936
IVRMSE	0.0639	0.0955	0.0867	0.0890	0.0933	0.0939	0.1111	0.1248	0.0897
MAPE	0.0741	0.0936	0.1184	0.1292	0.1568	0.1523	0.1709	0.2464	0.1414
OptLL	215.4291	208.3681	251.0076	333.0039	351.3072	436.8099	513.2066	555.4006	684.7143