La estructura union-búsqueda

Union – Find Disjoint sets

Descripción del problema

- Se tienen parejas de objetos p,q. Se desea determinar si estas parejas están "conectadas" o no.
- Se pueden conectar parejas p,q para formar una componente conexa.
- Inicialmente hay N objetos desconectados, es decir N componentes. Por cada pareja p,q leída se conectan (unen) sus respectivas componentes.

"Conectividad" es una relación de equivalencia

- Reflexiva: Un nodo siempre está conectado a si mismo.
- Simétrica: Si A está conectado a B, entonces B esta conectado a A.
- Transitiva: Si A está conectado a B y B está conectado a C, entonces A está conectado a C.

Aplicaciones

- En redes: Interesa determinar conectividad entre nodos de una red.
- En el grafo social: Un grupo de amigos es una componente conexa
- En lenguajes de programación: Todas las referencias a una misma instancia en memoria son una componente conectada.
- En teoría de conjuntos: Cada partición de un conjunto es una componente. Las componentes son disjuntas y su unión es el conjunto original.

Formulación del problema

- Se asumen N nodos, inicialmente desconectados y numerados 0..n-1.
- El API a implementar es

public class UF		
	UF(N)	// Crear estructura
boolean	<pre>connected(p,q)</pre>	// Están conectados p y q?
int	find(p)	// Encontrar componente de p
void	union(p,q)	// Unir la componentes p,q
int	count()	// Número de componentes

Solución del problema

- Una representación de la estructura de datos
- Una implementación de las operaciones

Como se verá, hay varias posibles soluciones con importantes diferencias en términos de su desempeño.

1ª solución: QuickFind

- Representación:
 - vector de enteros id[0..n-1]
 - id[i] es el número de la componente de i
- Implementación de las operaciónes
 - find(p): Retornar id[p]
 - connected(p,q): Retornar find(p)==find(q)
 - union(p,q): Reemplazar las referencias al id[p] por el id[q].

Implementación de QuickFind

Ver código fuente: QuickFindUF

Análisis de QuickFind

Modelo de costo: Accesos al arreglo

- find: Un acceso al arreglo
- connected: Dos accesos al arreglo
- union: Entre 2+(N+1) y 2+(2N+1) accesos al arreglo

2ª solución: QuickUnion

- Representación:
 - vector de enteros parent [0..n-1]
 - parent[i] es el número del antecesor de i. El nodo raíz tiene parent[i]=i.
 - Cada componente queda descrito por un "árbol"
- Implementación de las operaciones
 - find(p): Retorna el id de la raíz del árbol al que pertenece p.
 - connected(p,q): Retornar find(p)==find(q)
 - union(p,q): Asignar raíz del árbol q como antecesor de la raíz del árbol p.

Implementación de QuickUnion

Ver código fuente: QuickUnionUF

Atributos de un árbol

Se define:

- Tamaño del árbol: Su número de nodos
- Profundidad de un nodo: Número de aristas del nodo a la raíz
- Altura del árbol: Mayor profundidad de todos los nodos

Análisis de QuickUnion

- find: 2 x profundidad del nodo más 1.
- connected: 2 llamados a find.
- union: 2 llamados a find, más un acceso para la asignación.

Peor caso: Qué el árbol sea una cadena de N nodos, en cuyo caso find requiere ~2N accesos.

3ª solución: WeightedQuickUnion

- Idea general: Evitar árboles de mucha profundidad
- Representación: Se maneja el vector parent [0..N-1] igual que en QuickUnion y un segundo vector size[0..N-1] para indicar el tamaño del árbol en la raíz.
- Operaciones find y connected no cambian.
- Operación union: Se conecta el árbol más pequeño como hijo del árbol mayor. Arbitrariamente si son de igual tamaño.

Implementación de WeightedQuickUnion

Ver código fuente: WeightedQuickUnionUF

Desempeño de WeightedQuickUnion

- Proposición: La altura del árbol obtenido por WeightedQuickUnion tiene como máximo altura lg(N) para un conjunto de N nodos.
- Corolario: Las operaciones find, connected y union de WeightedQuickUnion son de orden log(N).

Demostración

Caso base: $N = 1, H = 0, 0 \le \lg 1$

Hipotesis: N = k, se asume $H_k \leq \lg(k)$

Paso inductivo: Sea N = i + j, con $i, j \leq k$.

Asumimos $i \leq j$, el arbol i como hijo del arbol j

Se pueden presentar 2 casos

a. El arbol resultante tiene la misma altura de j

$$h_N = h_j \le \lg j \le \lg N$$

b. El arbol resultante tiene altura $h_i + 1$

$$egin{array}{ll} i+j &=& N \ i+i &\leq & N \ \lg 2i &\leq & \lg N \ \lg 2 + \lg i &\leq & \lg N \ 1+h_i &\leq & \lg N \ h_N &\leq & \lg N \end{array}$$

Extensiones

- Es posible mejorar aún más el desempeño, por ejemplo con la técnica de compresión de caminos.
- El análisis amortizado utilizando está técnica lleva a que el desempeño se acerca a tiempo constante.