<u>1S</u>

Composition de Mathématiques n° 1

le 19 novembre 2013

Durée: 3h

calculatrice autorisée

Prénom:

NOM:

I 1) Résoudre dans
$$\mathbb{R}$$
 l'équation :
$$\frac{2x^2 - 2x - 4}{3x^2 - 2x - 1} = \frac{x - 2}{x - 1}.$$

2) Résoudre dans \mathbb{R} l'inéquation : $\frac{4}{3x^2-2x-1} \leqslant 1$.

II On pose $f: x \mapsto \sqrt{x^2 - x - 6}$ et $g: x \mapsto \sqrt{x + 2} \sqrt{x - 3}$.

- 1) Déterminer les ensembles de définition de f et g.
- 2) Quel lien existe-t-il entre f et g?
- 3) Résoudre les équations suivantes :

(E):
$$f(x) = \sqrt{x+2}$$
.

(F):
$$f(x) = x + 2$$
.

III Pour chaque question, indiquer sur le sujet si les affirmations proposées sont vraies (V) ou fausses (F).

Aucune justification n'est attendue.

1) Le plan est muni d'un repère $(0, \vec{\iota}, \vec{\jmath})$.

Soit
$$\vec{u}$$
 (-4; 5) et \vec{v} (- $\frac{1}{2}$; $\frac{5}{8}$) deux vecteurs de \mathcal{V} .

 (P_1) : le vecteur \vec{u} est colinéaire au vecteur \vec{v} .

(P₂): le point P tel que $\overrightarrow{OP} = \overrightarrow{u} - 4\overrightarrow{v}$ a pour couple de cordonnées $(-2; \frac{5}{2})$.

- (P_3) : le vecteur $3\vec{u} + 2\vec{v}$ est colinéaire au vecteur $4\vec{i} 5\vec{j}$.
- (P₄): pour tout réel a, le vecteur \vec{u} est colinéaire au vecteur \vec{w} (2 $a^2 8$; $-\frac{5}{2}a^2 + 10$).
- 2) Le plan est muni d'un repère $(0, \vec{\iota}, \vec{j})$.

Soit (d) la droite passant par le point E (7 ; 4) et de vecteur directeur \vec{u} (-3 ; 2).

- (P_1) : (d) coupe l'axe des abscisses au point de couple de coordonnées (0; 13).
- (P_2) : le point F(-4;6) appartient à (d).
- (P₃) : (d) et la droite d'équation $x\sqrt{2} + y\sqrt{3} \sqrt{26} = 0$ sont parallèles.
- (P_4) : (d) et la droite d'équation $y = \frac{-2x+5}{3}$ sont sécantes.

IV Soit *ABCD* un parallélogramme non aplati de centre 0.

On considère les points G et H définis par : $\overrightarrow{GA} = 3\overrightarrow{GB}$ et $\overrightarrow{AH} = 3\overrightarrow{AD}$.

- 1) Construire une figure
- 2) Démontrer que les points H, G et C sont alignés.
- 3) Démontrer que, pour tout M du plan, $\overrightarrow{MA} 3 \overrightarrow{MB} = -2\overrightarrow{MG}$.
- 4) Définir les ensembles de points suivants et les construire sur la figure:

$$\mathcal{A} = \{ M \in \mathcal{P} / \overrightarrow{MA} - 3 \overrightarrow{MB} \text{ colinéaire à } \overrightarrow{AC} \}$$

$$\mathcal{B} = \{ M \in \mathcal{P} / || \overrightarrow{MA} - 3 \overrightarrow{MB} || = AC \}$$

$$C = \{ M \in \mathcal{P} / || \overrightarrow{MA} - 3 \overrightarrow{MB}|| = 2 MD \}$$

$$\mathcal{D} = \{ M \in \mathcal{P} / || \overrightarrow{MA} - 3 \overrightarrow{MB} || = || \overrightarrow{MD} + \overrightarrow{MB} || \}$$

- V Soit $(0, \vec{\imath}, \vec{\jmath})$ un repère du plan, on note A_m le point de couple de coordonnées (2m; -3) et B_m le point de couple de coordonnées $(m^2+1; 2-m)$ où m désigne un réel.
 - 1) Démontrer que, pour tout réel m, les points A_m et B_m sont des points distincts.
 - 2) Pour tout réel m, on note d_m la droite passant par les points A_m et B_m .

Démontrer que, pour tout réel m, d_m admet pour équation :

$$(m-5) x + (m-1)^2 y + m^2 + 4m + 3 = 0.$$

- 3) Pour quelle(s) valeur(s) de m,
 - a) d_m passe-t-elle par 0?
 - b) d_m est-elle parallèle à la droite Δ d'équation y = 1?
- 4) Donner une équation de d_3 et de d_{-1} . Ces deux droites sont-elles parallèles ? Justifier.

Si la réponse est non, déterminer le couple de coordonnées de leur point d'intersection.

(on ne demande pas la figure)

Barème possible : I 3,5 pts II 3,5 pts III4 pts IV 4,5 pts V 4,5 pts