Théorie des Langages et des Automates (TLA)

- Lobna Kriaa (lobna_kriaa@yahoo.com)
- Bureau B3.
- Examen + CC.

Objectifs

Ce cours présente la théorie des langages en traitant trois aspects :

- 1. L'aspect représentation par propriétés mesurables, définitions récursives et expressions régulières.
- 2. L'aspect reconnaissance par les automates finis, les automates à pile et les machines de Turing.
- 3. L'aspect génération par les grammaires régulières, non contextuelles et contextuelles,
 - L'objectif est d'introduire des connaissances en théorie des langages et des automates afin de pouvoir les étendre à la description des langages de programmation et leur analyse syntaxique en vue de leur compilation.

Références.

- A. Aho, R. Sethi et J. Ullman, Compilateurs Principes, Techniques et Outils, InterEditions, Paris, 1991.
- P. Walper, Introduction à la Calculabilité, Dunod, Paris, 2001.
- G. Dowek et J. Lévy, Introduction à la théorie des langages de programmation, Éditions de l'École polytechnique, Paris, 2006.

Langage de Programmation Définir et Reconnaître (1)

- 1. Définir le langage en terme d'alphabet, mots clés, etc. : Définir les lexèmes
 - Quels sont les mécanismes qui me permettent de reconnaître ces unités lexicales?
- 2. Définir la syntaxe : Comment écrire l'ensemble des instructions
 - Quels sont les mécanismes qui me permettent de reconnaître la Syntaxe?
- 3. Définir la sémantique: La relation entre les types
 - Quels sont les mécanismes qui me permettent de définir cette sémantique?
- 4. Définir quelle machine exécutera le programme décrit dans ce langages de programmation
 - Comment générer du code binaire?

Langage de Programmation Définir et Reconnaître (2)

- 1. Définir le langage en terme d'alphabet, mots clé, etc. : Définir les lexèmes
 - Quels sont les mécanismes qui me permettent de reconnaitre ces unités lexicales?
- 2. Définir la syntaxe : Comment écrire l'ensemble des instructions
 - Quels sont les mécanismes qui me permettent de reconnaitre la Syntaxe?
- 3. Définir la sémantique: La relation entre les types
 - Quels sont les mécanismes qui me permettent de définir cette sémantique?
- 4. Définir quelle machine exécutera le programme décrit dans ce langages de programmation
 - Comment générer du code binaire?

Alphabet et langages

Automates à états finis

Les Grammaires

Les automates à piles

Langage de Programmation Définir et Reconnaître (3)

- Définir le langage en terme d'alphabet, mots clé, etc. : Définir les lexèmes
 - Quels sont les mécanismes qui me permettent de reconnaitre ces unités lexicales?
- 2. Définir la syntaxe : Comment écrire l'ensemble des instructions
 - Quels sont les mécanismes qui me permettent de reconnaitre la Syntaxe?
- 3. Définir la sémantique: La relation entre les types
 - Quels sont les mécanismes qui me permettent de définir cette sémantique?
- Définir quelle machine exécutera le programme décrit dans ce langages de programmation
 - Comment générer du code binaire?

Compilation

Alphabet et langages

Automates à états finis

Les Grammaires

Les automates à piles

Analyse Lexicale

Analyse Syntaxique

Génération du code Intermediaires

Génération du code cible

Chap1: Alphabets et langages

Comment reconnaitre les autres langages

Machines de Turing

Classification des langages

Plan Chapitre 1

- 1. Alphabet et Mot
- 2. Operations sur les mots
- 3. Langage
- 4. Propriétés sur les langages
- 5. Lemme d'Arden
- 6. Représentation finie des langages : expressions régulières
- 7. Loi algébriques sur les expressions régulières
- 8. Langage régulier
- 9. Propriétés des langages réguliers

Chapitre 1

Alphabets et langages

Définitions :

- 1. Lexème ou symbole: entité abstraite représentée par un graphique (point, ligne, etc.) exemple: une lettre, un chiffre
- 2. Alphabet: Ensemble fini non vide de symboles, noté en général par \sum
 - Alphabet Latin $\Sigma = \{a,b,c,...,z\}$
 - Alphabet binaire $\Sigma = \{0,1\}$
 - $\Sigma = \{\text{rouge,noir,0,1,a}\}\$

On note Σ^* l'ensemble de tous mots de Σ (Fermeture de l'alphabet)

- 3. Mot ou chaîne : Séquence de symboles de l'alphabet, noté w.
 - w_1 = voiture ; w_2 = voyage deux mots définies sur l'alphabet Latin
 - •w₁=00101; w₂=101101 sont deux mots définies sur l'alphabet binaire.
 - •w₁=noir01rouge; w₂=10aanoir: sont deux mots définies sur l'alphabet Σ ={rouge,noir,0,1,a}

- 3. Taille ou longueur d'un mot : soit w $\mathbb{C}\sum^*$, $|\mathbf{w}|=$ nombre de symboles constituant le mot.
 - |rouge| = 5 en considérant l'alphabet Latin
 - |001|=3 en considérant l'alphabet binaire
 - |rouge|=1 en considérant l'alphabet Σ ={rouge,noir,0,1,a}
- **4. Chaîne vide :** notée ε s'il n'appartient pas à l'alphabet.
 - $|\varepsilon|=0$.
 - ϵ est aussi l'élément neutre de Σ^*
- **5. Sous chaîne** : x est une sous chaîne de w si il existe y et z (chaînes sur le même alphabet). Tel que w = y x z.

- **6. Préfixe :** x est un préfixe de w si il existe y tel que: w = x y.
- 7. Suffixe: x est un suffixe de w si il existe y tel que w = y x.
 - *Exemple* : w=001 ;
 - x=00 est prefixe car il existe y = 1/w = xy = 001
 - X=1 est un suffixe de w car il existe y = 00 / w = yx = 001
- **8.** Facteur: soit u,v,w,t des mots définis sur \sum tel que w = uvt
 - si $u = \varepsilon$ alors v est dit facteur gauche de w (ou préfixe).
 - si $t = \varepsilon$ alors v est dit facteur droit de w (ou suffixe).
 - si $u = t = \varepsilon$ alors w est un facteur de lui même.

Opérations sur les mots

Concaténation : soient u et v deux mots définis sur l'alphabet Σ , tel que :

$$u = x_1 x_2 ... x_n$$
 $v = y_1 y_2 ... y_m$
 $w = u . v = x_1 x_2 ... x_n y_1 y_2 ... y_m$

La concaténation est non commutative

Propriétés:

- W=(uv)t=u(vt), la concaténation est associative
- $Si \ w = uv \ alors \ |w| = |uv| = |u| + |v|$
 - $Ex: |w^n| = n. |w|$ $w^n = ww...w$

• ε est l'élément neutre pour la concaténation. $\varepsilon x = x\varepsilon = x$

n fois

Opérations sur les mots

9. Occurrence d'un symbole dans un mot :

Le nombre d'occurrences d'un symbole x dans un mot ω est le nombre de fois où ce symbole apparaît dans ce mot ω . On le note

$$\left|\omega\right|_{x}$$
.
 $\left|\omega\right| = \sum_{x \in \Sigma} \left|\omega\right|_{x}$

Exercice:

Quel est le nombre d'occurrences de b dans les mots abba et ε Corrigé :

$$|abba|_b=2$$

 $|\epsilon|_b=0$

10. Image (reverse) : w=aabab w^R=babaa

- Si $x \in \Sigma$ alors $x^R = x$
- Si w=xu alors w^R=u^Rx

14

Monter que
$$(wu)^R = u^R w^R \quad \forall k/u = k$$

Par induction sur la longueur de u.

- |u|=1, $(wu)^R=uw^R=u^Rw^R$.
- •Supposons que c'est vrai pour k>1 et montrons le pour n>k.
- u=tx, avec $|u| \ge k$ et |t| < k, $x \in \Sigma$.
- $$\begin{split} \bullet(wu)^R &= (wtx)^R = &x^R (wt)^R = xt^R w^R, \ par \ HI, \ |t| \leq &k. \\ &= &x^R t^R w^R = (tx)^R w^R = u^R w^R \end{split}$$

Opérations sur les mots

• $\Sigma^{\mathbf{k}}$ = ensemble des mots de longueur \mathbf{k} avec des symboles de Σ

Exemple:

•
$$\sum = \{0,1\}, \sum^{0} = \{\epsilon\}, \sum^{1} = \{0,1\}, \sum^{2} = \{00,01,10,11\}$$

• Σ * : tous les mots sur Σ y compris ε

$$\Sigma = \{ \epsilon \} \cup \Sigma^1 \cup \Sigma^2 \dots$$

• Σ * est infinie et dénombrable

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \dots$$

•On note Σ + tous les mots sur Σ sans ε $\Sigma^+ \cup \{\varepsilon\} = \Sigma^*$

•Si
$$\alpha\beta = \varepsilon$$
 alors $\alpha = \beta = \varepsilon$

•Une factorisation d'un mot est son écriture sous forme d'un produit explicite de facteurs

Définition: Langage

- •On appelle langage tout ensemble de mots
- •On définit un langage sur un alphabet Σ comme un sous ensemble de Σ *

Exemple:

- Si le vocabulaire est $\Sigma = \{0, 1, 2, 3, ...9\}$ $L = \{$ représentations décimales des nombres entiers naturels $\}$ L = |N|
- Si le vocabulaire est $\Sigma = \{x1, x2, +, *, (,)\}$

 $L = \{\text{expressions arithmétiques parenthèsées manipulant } x1, x2, + \text{ et } * \}$

Si Σ est un alphabet, et $L \subseteq \Sigma^*$ alors L est un langage

Exemples de Langages

• Si Σ est la vocabulaire du langage de programmation C $\Sigma = \{ \text{main}, (,), \text{Include}, \#, <, >, ., ;, id, nb, \}$ L= $\{ \text{programmes C corrects syntaxiquement} \}$

- Si \sum est le vocabulaire de la logique des propositions
- $\sum = \{\mathbf{p}, (,), \rightarrow, \land, \neg\}$ où p désigne une proposition $L = \{\text{formules bien formées de la logique des propositions}\}$
- •Ensemble des mots de l'alphabet binaire contenant un nombre de *n* de 0 suivie par le même nombre *n* de 1.

```
L=\{\epsilon; 01; 0011; 000111; \dots\}.
```

• Ensemble des mots de l'alphabet binaire ayant un même nombre de 0 et de 1.

$$L=\{\epsilon; 01; 10; 0101; 1001; \dots\}.$$

• Ensemble des mots de l'alphabet binaire tel que leur valeur est premier.

Définition des langages

Définition par propriété mesurable

Un langage c'est un ensemble de mots appartenant à Σ^* et qui vérifie une propriété donnée : L= {w $\in \Sigma^*$ | w possède la propriété P}

- L est l'ensemble des mots sur $\{a, b\}$ de longueur paire $L = \{ \omega \in \{a, b\}^* / |\omega| = 2k, K \ge 0 \}$
- L est l'ensemble des mots sur $\{a,b\}$ ayant un nombre impaire de b L = $\{\omega \in \{a,b\}^*/|\omega|b=2k+1, K \ge 0\}$
- L est l'ensemble des mots sur {a, b} où tous les a précèdent les b et sont de même nombre

$$L = \{ \{ \omega \in \{a, b\}^* / a^n b^n, n \ge 0 \}$$

Chap1: Alphabets et langages

Définition des langages

Définition récursive : Définition dans laquelle, un langage est définie sur lui même.

Exemples

- $L_2 = \{ w \in \Sigma * | w = a \text{ ou } w = aw_1; w_1 \in L_2 \} = \{ a, aa, ..., aaaa, ... \}$
- $L_3 = \{ w \in \Sigma * | w = \varepsilon \text{ ou } w = w_1 w_2; |w_1| = 2 \text{ et } w_2 \in L_3 \}$
- L est l'ensemble des mots sur {a, b} où tous les a précèdent les b et sont de même nombre
 - ✓ La définition par propriété mesurable est la suivante :

$$L = \{ a^n b^n, n \ge 0 \}$$

✓ La définition récursive du même langage est :

$$L = \{ \omega \in \{a, b\}^* / \omega = \varepsilon \text{ ou } \omega = a\omega_1 b \text{ et } \omega_1 \in L \}$$

Chap1: Alphabets et langages

- Le langage vide $L=\emptyset$;
- Le langage {ε} contenant le mot vide.

Note: $\emptyset \neq \{\epsilon\}$.

Note: L'alphabet Σ est un ensemble fini.

• Ensemble des palindromes sur l'alphabet $\Sigma = \{a,b\}$

$$L = \{ w \in \Sigma^* \mid w = w^R \}$$

$$L = \{\varepsilon, aba, bab, a, b, ...\}$$

Exercice

Definir le langage d'une manière récursive des palindromes sur l'alphabet {a,b}

- a- De longueur paire
- b- De longueur impaire

- $L_1 \setminus L_2 := \{ w \in \Sigma^* \mid w \in L_1 \text{ ou } w \text{ n'appartient pas à } L_2 \}$
- $L = L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ ou } w \in L_2 \}$
 - $L \cup M = M \cup L$. Union est commutative.
 - $(L \cup M) \cup N = L \cup (M \cup N)$. Union est associative.
- $L = L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ et } w \in L_2 \}$
- L : complèment $\Sigma^* \setminus L$
- Concaténation :

$$L = L_1 . L_2 = L_1 L_2 = \{ w \in \sum^* | \exists x, y, w = xy, x \in L_1, y \in L_2 \}$$

- (LM)N = L(MN) : Concaténation est associative
- Note: Concaténation n'est pas commutative. Il existe L et M tel que $LM \neq ML$.

• Fermeture de Kleene.

$$L^* = \{ w \in \Sigma^* | w = w_1 w_2 ... w_k, k \ge 0 \text{ et } w_1, w_2, ..., w_k \in L \}$$

$$k = 0 \Rightarrow w = \varepsilon ; k = 1 \Rightarrow w \in L ;$$

Si L est un langage (ensemble de mots) alors L* désigne l'ensemble de toutes les chaînes de longueurs finies formées par concaténation de mots de L, où chaque mot peut être utilisé de 0 à n fois, la chaîne vide est incluse.

•

- $L(M \cup N) = LM \cup LN$.
 - Concaténation est distributive à gauche pour l'union.
- $(M \cup N)L = ML \cup NL$.
 - Concaténation est distributive à droite pour l'union.
- $L \cup L = L$.
 - Union est idempotent.
- $\emptyset^* = \{\varepsilon\}$, $\{\varepsilon\}^* = \{\varepsilon\}$
- $L^+ = LL^* = L^*L, L^* = L^+ \cup \{\epsilon\}$
- (L^*) *= L^* . Fermeture est idempotente

Exemple:

- L={aa,b}
- L*={ε,b,aa,bb,aab,baa,bbb,aaaa,aabb,baab,bbaa,bbbb,aaaab,aaba a,aabbb,baaaa,bbaab,bbbaa,bbbbb,...}

Note : $\emptyset^* = \{\epsilon\} \neq \emptyset$

Exercice

Soit $\Sigma = \{0,1\}$

L={ $w \in \Sigma^*$ | w contient un nombre de 1 différent de nombre de 0.}

Montrer que L*= Σ^*

Il y a une différence?

Il faut faire la différence entre:

```
ε – la chaîne vide ("")
```

- \emptyset l'ensemble vide({ })
- $\{\epsilon\}$ l'ensemble qui contient tout simplement la chaîne vide.

Exercice

Calculer A* pour chacun des ensembles A suivants:

- 1) $A = \{a\}$
- 2) $A = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\}$

Corrigé:

```
1) Si A = \{a\} alors A^* = \{a\}^* = a^*

Car A^* = A^0 + A^1 + A^2 + ... A^i + ...

A^0 = \{\epsilon\} = \{a^0\}

A^1 = AA^0 = \{a\} \{\epsilon\} = \{a\} = \{a^1\}

A^2 = AA^1 = \{a\}\{a\} = \{aa\} = \{a^2\}

A^i = \{a^i\}

A^{i+1} = A A^i = \{a\}\{a^i\} = \{a^{i+1}\}

....

A^* = \{\epsilon, a, aa, aaa, ...\} = \{a^0, a^1, a^2, a^3, ...\} = a^*
```

27

Exercice (suite)

```
2) Si A = \{\omega \in X^* / |\omega| = 2k+1 / k \ge 0\}
     A^* = X^*
     Car A^* = A^0 + A^1 + A^2 + ... A^i + ...
     A^0 = \{\varepsilon\}
     A^{1} = AA^{0} = A\{\epsilon\} = \{\omega \in X^{*} / |\omega| = 2k+1 / k \ge 0\}
     A^2 = AA^1
                      = \{ \omega \in X^* / |\omega| = 2k+1/k \ge 0 \} \{ \omega \in X^* / |\omega| = 2k+1/k \ge 0 \}
                             = \{ \omega \in X^* / |\omega| = 2k + 2/k \ge 0 \}
                             = \{ \omega \in X^* / |\omega| = 2k / k > 0 \}
     A^{0} + A^{2} = \{ \varepsilon \} + \{ \omega \in X^{*} / |\omega| = 2k / k > 0 \} = \{ \omega \in X^{*} / |\omega| = 2k / k \ge 0 \}
     A^0 + A^1 + A^2 = X^*
     Donc A^* = X^*
```

Exercices

Exercice:

Calculer $A.\phi$ et $A.\{\epsilon\}$

Montrer qu'on n'a pas $A.(B \cap C) = A.B \cap A.C$

Corrigé:

$$1 - A.\phi = \phi.A = \phi$$

2- A.
$$\{\epsilon\} = \{\epsilon\}$$
.A= A

5- On n'a pas
$$A.(B \cap C) = A.B \cap A.C$$

Contre exemple : $A = \{\epsilon, x\}, B = \{xyzt\}, C = \{yzt\}$

Chap1 : Alphabets et langages 29

Exercice

```
Contre exemple : A = \{\varepsilon, x\}, B = \{xy\}, C = \{y\}
Car A.(B\capC) \neq A.B \cap A.C
En effet (B \cap C) = \phi donc A. (B \cap C) = \phi
Par contre A.B = \{xy, xxy\} et A.C = \{y, xy\} donc A.B \cap A.C =
    \{xy\}
6- On n'a pas A^+ = A^* - \{\varepsilon\} par contre on A^* = A^+ + \{\varepsilon\}
Pour A = \{\varepsilon, a\}
A^{+} = A^{1} + A^{2} + ... = \{\epsilon, a\} + \{\epsilon, a, aa\} + ...
A^* = A^0 + A^1 + A^2 + ... = \{a^i / i \ge 0\}
A^* - \{\epsilon\} = \{a^i / i > 0\} \neq A^+ \text{ car } A \supset \{\epsilon\}
A^+ = A^* - \{\epsilon\} est vraie lorsque A ne contient pas \epsilon
```

Chap1 : Alphabets et langages 30

Exercise

Completer

$$L^{+} \bullet \{\epsilon\} = \underline{\hspace{1cm}}$$
 $\{\epsilon\} \bullet \{\epsilon\} = \underline{\hspace{1cm}}$
 $\emptyset \bullet L = \underline{\hspace{1cm}}$
 $L^{*} \bullet L^{*} = \underline{\hspace{1cm}}$
 $(L^{*})^{*} = \underline{\hspace{1cm}}$
 $L \bullet L^{*} = \underline{\hspace{1cm}}$
 $\emptyset^{*} = \underline{\hspace{1cm}}$
 $\{\epsilon\}^{*} = \underline{\hspace{1cm}}$

Exercise

Completer

$$L^{+} \bullet \{\epsilon\} = \underline{\qquad} L^{+} \underline{\qquad}$$
 $\{\epsilon\} \bullet \{\epsilon\} = \underline{\qquad} \{\epsilon\} \underline{\qquad}$
 $\emptyset \bullet L = \underline{\qquad} \emptyset \underline{\qquad}$
 $L^{*} \bullet L^{*} = \underline{\qquad} L^{*} \underline{\qquad}$
 $(L^{*})^{*} = \underline{\qquad} L^{*} \underline{\qquad}$
 $L \bullet L^{*} = \underline{\qquad} L^{+} \underline{\qquad}$
 $\emptyset^{*} = \underline{\qquad} \{\epsilon\} \underline{\qquad}$
 $\{\epsilon\}^{*} = \underline{\qquad} \{\epsilon\} \underline{\qquad}$

Lemme d'Arden

Pour deux langages A et B d'un vocabulaire ∑*, Les équations L= AL+B et L = LA+B admettent respectivement comme solution minimale A*B et BA*. Cette solution est unique si ε∉A.

langages

Expressions régulières :

Notation:

Considérons l'étoile de la fermeture de Kleene appliquée à la lettre x. x*

• x* indiquera une séquence quelconque de x qui peut être vide.

•
$$x^* = \varepsilon$$
 ou x ou xx ou $xxx...$ $L_4 = langage (x^*)$

Chap1 : Alphabets et langages

Considérons le langage

$$L = \{a, ab, abb, abbb, abbb, \ldots\}$$

Toutes les chaînes constitués par un a suivi d'un nombre quelconque de b

On peut noter : L=Langage(ab*)

Langage dans lequel les mots sont la concaténation d'un a (a) initial avec un nombre quelconque de b (b*).

Appliquons l'étoile de Kleene à toute la chaîne ab, on aura :

 $(ab)^* = \varepsilon$ ou ab ou abab ou

• Le langage définit par l'expression :

$$ab*a$$

Ensemble de toutes les chaînes de a et de b qui ont au moins deux lettres, qui commencent et finissent par un a. et qui n'ont que des b ou rien à l'intérieur.

langage $(ab*a)=\{aa,aba,abba,abbba,...\}$

Remarque:

Fausse description : Ensemble de tous les mots qui commencent et puis finissent par a et qui n'ont que des b (ou rien) entre eux.

Le mot a appartient a cette description.

• Le langage définit par l'expression :

$$a*b*$$

Ensemble de toutes les chaînes de *a* et de *b dans lesquelles les a's viennent avant les b's*.

langage
$$(a*b*)=\{\varepsilon,a,b,aa,bb,ab,bb,aaa,abb,...\}$$

Remarque:

$$a*b* \neq (ab)*$$

Le langage à droite contient *abab* tandis que celui à gauche ne le contient pas

T définie sur $\Sigma = \{a,b,c\}$

$$T=\{a,c,ab,cb,abb,cbb,abbb,cbbb,abbb,cbbbb,...\}$$

• Tous les mots de T commencent avec un *a* ou un *c* ensuite ils sont suivis par un nombre quelconque éventuellement nulle de b.

Symboliquement T=langage $((a \cup c)b^*)$

Exemple:

• Ensemble des chaînes de a et de b de longueur 3.

• Ensemble des chaînes de a et de b de longueur quelconque

Expression régulière Définition

Une *expression régulière* sur un alphabet Σ est une chaîne de caractère sur l'alphabet Σ ,(,), \cup ,*, \varnothing . Tel que :

- 1. Toute lettre de $\Sigma \cup \{\epsilon\}$ et \varnothing est une expression régulière
- 2. si r₁ et r₂ sont deux expressions régulières alors ;
 - (\mathbf{r}_1)
 - \bullet r_1r_2
 - $\mathbf{r}_1 \cup \mathbf{r}_2$
 - r₁*

Sont des expressions régulières

3. Rien d'autre n'est une expression régulière.

Exemples d'ER

- a^*b^*
- $(a+b)^*c^+$
- (0+1+2+...9)+
- $(a+b)^*aa$
- $(a+b+c)^*abc(a+b+c)^*$
- 0*(1+2+...9)(0+1+...9)*
- (0+1+2+...9)*1(0+1+2+...9)

• (0+1+2+...9)*10

représentations décimales des entiers mots sur {a, b} ayant aa comme facteur droit mots sur {a,b,c} ayant abc comme facteur représentations décimales des entiers non nuls

représentation décimale des entiers naturels ayant 1 dans les dizaines

représentation décimale des entiers naturels ayant 1 dans les dizaines et 0 dans les unités

•
$$(a+b+...z+A+B+...Z)(a+b+...z+A+B+...Z+0+1+...9)^*$$

les identificateurs alphanumériques qui commencent par un caractère alphabétique

Lois algébriques sur les ER

Soit r1, r2, r3 des expressions régulières

- r_1 . $\varepsilon = \varepsilon . r_1 = r_1$
- r_1^* U $\varepsilon = r_1^*$
- $\mathbf{r}_1 \cup \mathbf{r}_{2=} \mathbf{r}_2 \cup \mathbf{r}_1$
- $(r_1 \cup r_2) \cup r_{3=}r_1 \cup (r_2 \cup r_3)$
- $(r_1 . r_2). r_{3=}r_1 . (r_2. r_3)$
- $(r_1 \cup r_2) \cdot r_3 = (r_1 \cdot r_3) \cup (r_2 \cdot r_3)$
- $r_1 r_1^* = r_1^+$
- $r_1 U r_1 = r_1$
- \emptyset $\mathbf{r}_1 = \mathbf{r}_1 \emptyset = \emptyset$
- $\varnothing U r_1 = r_1 U \varnothing = r_1$

Expression régulière exemples

Exercice 1:

$$\sum = \{a,b\}$$

L={ $w \in \Sigma^* | w \text{ contient la sous chaîne } aa}$ }

Exercice 2:

$$\Sigma = \{a,b\}$$

L={ $w \in \Sigma^* | w \text{ ne contient pas } 3 \text{ } b \text{ consécutifs } }$

Expression régulière Langage régulier

Théorème:

Un langage L est dit régulier si et seulement si il existe une expression régulière qui le génère.

Exemple:

$$\Sigma = \{a,b\}$$

L={ $w \in \Sigma^* | w$ contient un nombre paire de a et un nombre pair de b }

Expression régulière Langage régulier

Propriétés

Étant donné deux langages réguliers L₁ et L₂

- $L_1 \cup L_2$: est un langage régulier
- L₁ . L₂ : est un langage régulier
- L₁* : est un langage régulier
- $\overline{L_1} = \sum * \setminus L_1$ est un langage régulier
- $L_1 \cap L_2 = (\overline{L_1 \cup L_2})$ est un langage régulier
- L^R : est un langage régulier
- $L_1 \setminus L_2$: est un langage régulier

Expression régulière Langage régulier

Définition: Deux expressions régulières α et β sont dites équivalentes si $L(\alpha) = L(\beta)$

Autrement s'ils génèrent le même langage

Exemple:

Langage de tous les mots qui ont au moins 2 a's peut être décrit par l'expression régulière :

$$(a \cup b)*a (a \cup b)*a (a \cup b)*$$

Autre expression régulière

$$b*ab*a(a \cup b)*$$

On peut noter:

$$(a \cup b)*a (a \cup b)*a (a \cup b)*=b*ab*a(a \cup b)*$$