Introdução

Redes de Computadores

Agenda

- Conceitos Básicos
- Modelos de Referência
- Métricas de Rede

Conceitos Básicos

Arquitetura de Rede

- Baseada em uma pilha de camadas em que cada camada é responsável por tarefas específicas
- Detalhes de especificação e implementação não fazem parte da arquitetura
- Tarefas de cada camada são implementadas em protocolos, criando uma pilha de protocolos

Pilha de Camadas

- Forma como as redes estão organizadas
- Razão de sucesso das redes de computadores
- Separa tarefas, reduzindo a complexidade do projeto
- Cada camada oferece serviços para suas superiores e abstrai detalhes
- Cada camada acredita que se comunica diretamente com seu par na outra máquina

Comunicação Virtual vs Real

- Comunicação virtual (horizontal) entre entidades pares é virtual e executada através do protocolo da camada
- Comunicação real (vertical) é feita entre entidades na mesma hierarquia
- Comunicação ocorre efetivamente na camada mais baixa através de um meio físico

Comunicação Virtual vs Real

Comunicação em Camadas

Comunicação em Camadas

Protocolos de Comunicação

Modelos de Referência

- Propostas concretas de arquiteturas de rede
- Duas arquiteturas de rede importantes:
 - Modelo Open Systems Interconnection (OSI) da ISO
 - Não é uma arquitetura, pois não especifica protocolos
 - Informa apenas o que cada camada deve fazer
 - TCP/IP

Modelos de Referência

Modelo de Referência OSI

- Trata da interconexão de sistemas abertos
- Aberto no sentido que qualquer sistema que seguir os padrões será capaz de se interconectar
- Possui sete camadas

Modelo de Referência TCP/IP

- Usado na "avó" de todas as redes, a ARPANET, e em sua sucessora, a Internet mundial
- Surgiu como um conjunto de protocolos que deveriam ter certas características para uso militar
- Seus protocolos são flexíveis para suportar diferentes aplicações
- Surgiu "oficialmente" com o re-projeto dos protocolos TCP/IP no início da década de 80

Organização em Camadas

PUC Minas Virtual

Organização em Camadas

Camada Física

 Trata da transmissão de bits através do canal, garantindo que quando um lado enviar um bit 1, o outro o receberá o bit 1 (não um 0)

 Define interfaces elétricas, de sincronização e outras, pelas quais os bits são enviados como sinais pelos canais

Organização em Camadas

Camada de Enlace

- Responsável pelas tarefas de:
 - Enquadramento
 - Controle de Erros
 - Controle de Fluxo

Organização em Camadas

Camada de Rede

- Responsável por tarefas como, por exemplo, o roteamento de pacotes
- O protocolo de rede da Internet é o Internet Protocol (IP) cujas versões atuais são IPv4 e IPv6
- Cada máquina na Internet possui um "único" número IP (endereço de rede)

Considerações sobre a Camada de Rede

- No IPv4, cada endereço IP tem 32 bits e é representado em quartetos de oito bits separados por um ponto. Assim, temos, x₁.x₂.x₃.x₄, onde cada x₁ é número entre 0 e 255
- Endereços 127.x₂.x₃.x₄ representam a máquina local ou (*localhost*)

There is no place like

127.0.0.1

Organização em Camadas

Camada de Transporte

- Responsável pela comunicação fim-a-fim, gerenciando processos (serviços)
 de comunicação que rodam exclusivamente na origem e destino
- Protocolos tradicionais nesta camada: Transmission Control Protocol (TCP) e
 User Datagram Protocol (UDP)
- Cada serviço disponível em uma máquina possui uma porta
- Uma máquina pode ser servidora de vários serviços (e.g., páginas, e-mails, vídeos)

Número IP e Porta

Número IP e Porta

Número IP identifica cada máquina em uma rede e a porta, cada serviço em uma máquina

Para acessarmos um serviço web, precisamos saber o número IP da máquina e a porta do serviço desejado na máquina

Portas Bem Conhecidas

- Do inglês, well-known ports
- Reservadas para protocolos de aplicação tradicionais (entre 0 e 1023)

Porta	Descrição
20/TCP	FTP - porta de dados
21/TCP	FTP - porta de controle
22/TCP,UDP	SSH
23/TCP,UDP	Telnet
25/TCP,UDP	SMTP
53/TCP,UDP	DNS
80/TCP	НТТР
81/TCP	HTTP Alternativa
110/TCP	POP3
143/TCP,UDP	IMAP4
194/TCP	IRC
366/TCP,UDP	SMTP
989/TCP,UDP	FTP – porta de dados sobre TLS/SSL
990/TCP,UDP	FTP – porta de controle sobre TLS/SSL
993/TCP	IMAP4 sobre SSL
995/TCP	POP3 sobre SSL

Organização em Camadas

Distinção entre Camadas: Superiores e Inferiores

	Modelo OSI		Arquitetura TCP/IP		Modelo Híbrido	
Camadas Superiores	Aplicação		Aplicação		Aplicação	
	Apresentação					
	Sessão					
Camadas Inferiores	Transporte		Transporte		Transporte	
	Rede		Internet		Rede	
	Enlace		Enlace		Enlace	
	Física				Física	

Distinção entre Camadas: Superiores e Inferiores

Mensagem, Segmento, Pacote e Quadro

Mensagem, Segmento, Pacote e Quadro

- Custo
- Facilidade de instalação e manutenção
- Taxa de Erros
- Latency (Latência)
- Bandwidth (Largura de Banda)
- Troughput (Taxa de Dados)

- Custo
- Facilidade de instalação e manutenção
- Taxa de Erros
- Latency (Latência)
- Bandwidth (Largura de Banda)
- Troughput (Taxa de Dados)

- Custo
- Facilidade de instalação e manutenção
- Taxa de Erros
- Latency (Latência)
- Bandwidth (Largura de Banda)
- Troughput (Taxa de Dados)

Latency (Latência)

• Também conhecida como atraso (delay) ou retardo

Tipos de Atrasos

- Decorrente de processamento (por exemplo, CPU)
- Decorrente de enfileiramento (por exemplo, FIFO)
- Decorrente de serialização
- Decorrente de propagação fim a fim. Por exemplo, um enlace entre Belo Horizonte (MG) e Contagem (MG) será mais rápido que outro entre Belo Horizonte e São Luís (MA)

Métricas de Rede

- Custo
- Facilidade de instalação e manutenção
- Taxa de Erros
- Latency (Latência)
- Bandwidth (Largura de Banda)
- Troughput (Taxa de Dados)

Bandwidth (Largura de Banda)

- Quantidade máxima de dados que pode ser transmitida em um canal durante um intervalo de tempo
- Propriedade física do canal
- Depende, por exemplo: da construção, espessura e comprimento do meio

Bandwidth (Largura de Banda)

- Para o Engenheiro Eletricista, a largura de banda (analógica) é uma quantidade medida em Hz
- Para o Cientista da Computação, a largura de banda (digital) é a taxa de dados máxima de um canal, uma quantidade medida em bits/s
- Na verdade, a taxa de dados (do Cientista da Computação) é o resultado final do uso da largura de banda

Métricas de Rede

- Custo
- Facilidade de instalação e manutenção
- Taxa de Erros
- Latency (Latência)
- Bandwidth (Largura de Banda)
- Troughput (Taxa de Dados)

Troughput (Taxa de Dados)

- Número de bits transmitidos por unidade de tempo
- Unidades básicas: bps, Kbps, Mbps, Gbps ou packets per seconds (pps)

Troughput (Taxa de Dados)

1 Mbps: 1 milhão de bits por segundo (1μs para transmitir cada bit)

2 Mbps: 2 milhões de bits por segundo (0.5µs para transmitir cada bit)

Troughput vs Bandwidth

Troughput vs Bandwidth

Troughput vs Bandwidth

 Por exemplo, se dois pontos da rede tem bandwidth de 5 Gbps e 1 Gbps, respectivamente, o troughput será, no máximo, 1 Gbps

Troughput vs Bandwidth vs Latency

Exercícios

PUC Minas Virtual

Exercício (1)

• Quais são as funções das sete camadas do modelo de referência OSI?

Exercício (2)

• Qual é a diferença de visibilidade entre as camadas de rede e enlace?

Exercício (3)

• Tanto a camada de rede quanto a de transporte, são responsáveis pela transferência de dados, qual é a diferença entre elas?

Exercício (4)

• O que significa *broadcasting* na camada de rede e na de enlace?

Exercício (5)

• Em breve, teremos um terminal doméstico e seguro conectado a Internet permitindo plebiscitos instantâneos sobre questões importantes. Nesse caso, a política atual será eliminada. Os aspectos positivos dessa democracia direta são óbvios. Apresente alguns dos aspectos negativos.

Exercício (6)

O presidente da XBeer resolve trabalhar com a YBeer para produzir uma lata de cerveja invisível (medida higiênica). O presidente pede que o jurídico analise a questão. Esse contacta o departamento de Engenharia. Como resultado, o engenheiro-chefe entra em contato com seu par na YBeer para discutirem os aspectos técnicos. Em seguida, os engenheiros enviam um relatório aos departamentos jurídicos, que discutem os aspectos legais. Por fim, os presidentes discutem as questões financeiras do negócio. Esse é um exemplo de protocolo em várias camadas no sentido utilizado pelas redes de computadores? Justifique.

Exercício (7)

• Um sistema tem uma hierarquia de protocolos com n camadas. As aplicações geram mensagens com M bytes de comprimento. Em cada uma das camadas, é acrescentado um cabeçalho com h bytes. Qual é a fração dos dados enviados que corresponde ao tamanho dos cabeçalhos?

Exercício (8)

- Determine qual das camadas do modelo TCP/IP trata de cada uma das tarefas a seguir:
 - a) Dividir o fluxo de bits transmitidos em quadros.
 - b) Definir a rota que será utilizada na sub-rede.

Exercício (9)

 Cite dois aspectos em que os modelos de referência OSI e TCP/IP são similares e dois em que eles são diferentes

Exercício (10)

Diferencie os protocolos TCP e UDP

Exercício (11)

• Explique os termos Latência, Largura de Banda e Taxa de Dados