Penyelesaian Masalah Produksi dengan Metode Simpleks

Pendahuluan

Metode simpleks adalah teknik penyelesaian dalam program linier yang digunakan untuk menentukan alokasi sumber daya secara optimal. Dalam kasus ini, kita akan menganalisis produksi dua jenis produk di PT Yummy Food, yaitu Vanilla dan Violette.

Formulasi Masalah

Diberikan data sebagai berikut:

Jenis Bahan Baku / Tenaga Kerja	Vanilla (X_1)	Violette (X_2)	Maksimum Penyediaan
Bahan Baku A	2 kg	3 kg	60 kg/hari
Bahan Baku B	-	2 kg	30 kg/hari
Tenaga Kerja	2 jam	1 jam	40 jam/hari
Sumbangan Keuntungan	Rp40,00	Rp30,00	

Fungsi tujuan:

Maksimalkan
$$Z = 40X_1 + 30X_2$$

Kendala:

$$2X_1 + 3X_2 \le 60$$
$$2X_2 \le 30$$
$$2X_1 + X_2 \le 40$$
$$X_1, X_2 > 0$$

Penyelesaian dengan Metode Simpleks

Ubah kendala menjadi bentuk baku dengan menambahkan variabel slack S_1, S_2, S_3 :

$$2X_1 + 3X_2 + S_1 = 60$$
$$2X_2 + S_2 = 30$$
$$2X_1 + X_2 + S_3 = 40$$

Fungsi tujuan:

$$Z = 40X_1 + 30X_2 + 0S_1 + 0S_2 + 0S_3$$

Tabel Simpleks Awal

	C_j	40	30	0	0	0	
Ci	BV	X_1	X_2	S_1	S_2	S_3	Bi
0	S_1	2	3	1	0	0	60
0	S_2	0	2	0	1	0	30
0	S_3	2	1	0	0	1	40
	Z_{j}	0	0	0	0	0	0
	$C_j - Z_j$	40	30	0	0	0	

Tabel Iterasi Pertama

Setelah dilakukan iterasi pertama, tabel simpleks menjadi:

	C_{j}	40	30	0	0	0	
Ci	BV	X_1	X_2	S_1	S_2	S_3	Bi
0	S_1	0	2	1	0	-1	20
0	S_2	0	2	0	1	0	30
40	X_1	1	1/2	0	0	1/2	20
	Z_{j}	40	20	0	0	20	
	$C_j - Z_j$	0	10	0	0	-20	

Tabel Iterasi Kedua (Optimal)

Setelah iterasi kedua, tabel akhir adalah:

	C_j	40	30	0	0	0	
Ci	BV	X_1	X_2	S_1	S_2	S_3	Bi
30	X_2	0	1	1/2	0	-1/2	10
0	S_2	0	0	-1	1	1	10
40	X_1	1	0	-1/4	0	3/4	15
	Z_j	40	30	5	0	15	
	$C_j - Z_j$	0	0	-5	0	-15	900

Kesimpulan

Solusi optimal diperoleh ketika:

 $X_1 = 15$ unit (Vanilla)

 $X_2 = 10$ unit (Violette)

Z = Rp 900,00 (Keuntungan maksimum)