Thesis

Ayden Lamparski

September 8, 2025

Special Elements in Semigroups

1.1 Local identities in semigroups

Throughout, let S be a semigroup with associative multiplication, written multiplicatively.

Definition 1 (Left/right/two-sided identities). Let $e \in S$.

- e is a left identity if for all $s \in S$, es = s.
- e is a right identity if for all $s \in S$, se = s.
- e is an identity (two-sided) if it is both a left and a right identity; equivalently, for all $s \in S$, es = s = se.

Lemma 2 (Idempotence of one-sided identities). Let $e \in S$.

- If e is a left identity, then ee = e.
- If e is a right identity, then ee = e.

Proof. For a left identity, apply the defining property to s := e to get ee = e. For a right identity, apply the defining property to s := e to get ee = e.

Lemma 3 (Simplification lemma). Let $s \in S$ and let $e, f \in S$ be idempotents. If s = esf, then es = s = sf.

Proof. Assume s = esf. Then

$$es = e(esf) = (ee)sf = esf = s,$$

using associativity and $e^2 = e$. Similarly,

$$sf \ = \ (esf)f \ = \ es(ff) \ = \ esf \ = \ s,$$

using associativity and $f^2 = f$.

1.2 Zero elements and null semigroups

Throughout, let S be a semigroup with associative multiplication, written multiplicatively.

Definition 4 (Left/right/two-sided zeros). Let $e \in S$.

- e is a left zero if for all $s \in S$, es = e.
- e is a right zero if for all $s \in S$, se = e.
- e is a zero (two-sided) if it is both a left and a right zero; equivalently, for all $s \in S$, es = e = se.

Lemma 5 (Idempotence of one-sided zeros). Let $e \in S$.

- If e is a left zero, then ee = e.
- If e is a right zero, then ee = e.

Proof. For a left zero, apply the defining property to s := e to get ee = e. For a right zero, apply the defining property to s := e to get ee = e.

Lemma 6 (Uniqueness of zero (at most one zero element)). A semigroup has at most one zero element.

Proof. Suppose $e, e' \in S$ are both zeros. Then e = ee' since e' is a right zero, and ee' = e' since e is a left zero. Hence e = e'.

Definition 7 (Null semigroup). A semigroup S is null if it has a zero element 0_S and for all $x, y \in S$ one has $xy = 0_S$.

1.3 Cancellativity

Throughout, let S be a semigroup with associative multiplication.

Definition 8 (Right/left/two-sided cancellative element). Let $s \in S$.

- s is right cancellative if for all $x, y \in S$, $xs = ys \implies x = y$.
- s is left cancellative if for all $x, y \in S$, $sx = sy \implies x = y$.
- s is cancellative (two-sided) if it is both left and right cancellative.

Definition 9 (Right/left/two-sided cancellative semigroup). A semigroup S is

- $right\ cancellative\ if\ every\ s\in S$ is right cancellative,
- left cancellative if every $s \in S$ is left cancellative,
- cancellative (two-sided) if every $s \in S$ is cancellative.

1.4 Inverses

Terminology note. The term "inverse" has two distinct usages. In group theory (and, more generally, in monoids), an inverse is defined using a distinguished identity element 1. This notion does not make sense in a bare semigroup that lacks a specified unit. Semigroup theory also uses a different, intrinsic notion of inverse that does not require a unit and is formulated purely in terms of the multiplication.

These notions behave differently:

- In an *infinite* monoid, an element may have several right group inverses and several left group inverses.
- In a *finite* monoid, each element has *at most one* right group inverse and *at most one* left group inverse; if both exist, they coincide (hence give a two-sided group inverse).
- In a semigroup (finite or infinite), an element may have several semigroup inverses, or none at all.

Definition 10 (Semigroup inverse). Let S be a semigroup and $x \in S$. An element $x' \in S$ is a semigroup inverse of x if

$$xx'x = x$$
 and $x'xx' = x'$.

Definition 11 (Group inverse (monoid setting)). Let M be a monoid with identity 1 and let $x \in M$.

- A right group inverse of x is an element $x' \in M$ with xx' = 1.
- A left group inverse of x is an element $x' \in M$ with x'x = 1.
- A group inverse of x is an element $x' \in M$ that is both a right and a left group inverse, i.e. xx' = x'x = 1.

Lemma 12 (Group inverse \Rightarrow semigroup inverse). Let M be a monoid and $x, x' \in M$. If x' is a group inverse of x (so xx' = x'x = 1), then x' is a semigroup inverse of x in the underlying semigroup:

$$xx'x = x$$
 and $x'xx' = x'$.

Proof. Compute $xx'x = (xx')x = 1 \cdot x = x$ and $x'xx' = x'(xx') = x' \cdot 1 = x'$, using associativity and the unit laws.

Ordered Semigroups and Monoids

Definition 13 (Ordered semigroup/monoid/group).

• An ordered semigroup is a pair (S, \leq) where S is a semigroup and \leq is a partial order on S such that multiplication is monotone in both arguments:

$$\forall a,b,x,y \in S, \quad x \leq y \implies axb \leq ayb.$$

Equivalently, for all $a, b \in S$, the maps $x \mapsto ax$ and $x \mapsto xb$ are order-preserving.

- An ordered monoid is an ordered semigroup (M, \leq) whose underlying semigroup is a monoid (M, 1). We require the same compatibility condition as above (which automatically implies 1 is \leq -minimal among right/left translates of any element).
- An ordered group is an ordered monoid whose underlying monoid is a group $(G, 1, (\cdot)^{-1})$ and such that the order is bi-invariant in the sense above (equivalently, both left and right multiplication are order embeddings).

Remark. Monotonicity in both coordinates implies: if $x \le y$ then $ax \le ay$ and $xb \le yb$ for all a, b. Conversely, these two conditions together imply $axb \le ayb$ by associativity.

Morphisms

Definition 14 (Semigroup morphism). Let S,T be semigroups. A semigroup morphism (homomorphism) is a map $\varphi: S \to T$ such that

$$\forall s_1,s_2 \in S, \qquad \varphi(s_1s_2) = \varphi(s_1)\,\varphi(s_2).$$

Definition 15 (Monoid morphism). Let M, N be monoids with identities $1_M, 1_N$. A monoid morphism is a semigroup morphism $\varphi: M \to N$ that also preserves the unit:

$$\varphi(1_M) = 1_N$$
.

Definition 16 (Morphism of ordered monoids). Let (M, \leq_M) and (N, \leq_N) be ordered monoids. A morphism of ordered monoids is a monoid morphism $\varphi: M \to N$ that is order-preserving:

$$x \leq_M y \implies \varphi(x) \leq_N \varphi(y) \quad \text{for all } x,y \in M.$$

Definition 17 (Group morphism). Let G, H be groups. A *group morphism* is a monoid morphism $\varphi: G \to H$. Equivalently, φ is a semigroup morphism satisfying

$$\varphi(1_G) = 1_H$$
 and $\forall g \in G, \ \varphi(g^{-1}) = \varphi(g)^{-1}$.

Lemma 18 (Semigroup morphisms between groups are group morphisms). Let G, H be groups. Any semigroup morphism $\varphi: G \to H$ is a group morphism.

 $\begin{array}{l} \textit{Proof. } \textit{First, } \varphi(1_G) = \varphi(1_G \cdot 1_G) = \varphi(1_G) \varphi(1_G), \textit{so } \varphi(1_G) \textit{ is idempotent in } H, \textit{hence } \varphi(1_G) = 1_H \\ \textit{since } 1_H \textit{ is the unique idempotent in a group. Next, for } g \in G, \end{array}$

$$\varphi(g^{-1})\varphi(g)=\varphi(g^{-1}g)=\varphi(1_G)=1_H, \qquad \varphi(g)\varphi(g^{-1})=\varphi(gg^{-1})=\varphi(1_G)=1_H,$$
 so $\varphi(g^{-1})=\varphi(g)^{-1}$.

Definition 19 (Isomorphism). A semigroup (resp. monoid, group) morphism $\varphi: S \to T$ is an isomorphism if there exists a morphism $\psi: T \to S$ with $\varphi \circ \psi = \mathrm{id}_T$ and $\psi \circ \varphi = \mathrm{id}_S$.

Lemma 20 (Isomorphism \Leftrightarrow bijective morphism). A semigroup/monoid/group morphism is an isomorphism if and only if it is bijective.

Proof. If φ has a two-sided inverse ψ , then φ is bijective. Conversely, if φ is bijective, its settheoretic inverse φ^{-1} satisfies $\varphi(\varphi^{-1}(x)\varphi^{-1}(y)) = \varphi(\varphi^{-1}(x))\varphi(\varphi^{-1}(y)) = xy$; applying φ^{-1} shows φ^{-1} is a morphism, hence φ is an isomorphism.

Definition 21 (Isomorphism of ordered monoids). A morphism of ordered monoids $\varphi:(M,\leq_M)\to(N,\leq_N)$ is an *isomorphism of ordered monoids* if it is bijective as a function and reflects the order:

$$\forall x,y \in M, \qquad x \leq_M y \iff \varphi(x) \leq_N \varphi(y).$$

Equivalently, φ is a bijective monoid morphism whose inverse is order-preserving.

Remark. Unlike the unordered case, a bijective morphism of ordered monoids need not be an isomorphism of ordered monoids unless it also reflects the order.

Algebraic Structures

4.1 Substructures

Definition 22 (Subsemigroup). A *subsemigroup* of a semigroup S is a nonempty subset $T \subseteq S$ such that for all $t_1, t_2 \in T$, one has $t_1t_2 \in T$.

Definition 23 (Submonoid of a monoid). A *submonoid* of a monoid M is a subsemigroup $T \subseteq M$ containing the identity 1_M .

Definition 24 (Subgroup of a group). A *subgroup* of a group G is a submonoid $H \subseteq G$ that is closed under inversion: $h \in H \Rightarrow h^{-1} \in H$.

Definition 25 (Monoid/group inside a semigroup). Let S be a semigroup.

- A subsemigroup $M \subseteq S$ is a monoid in S if there exists an idempotent $e \in M$ such that (M, \cdot, e) is a monoid (with identity e) under the inherited multiplication.
- A subsemigroup $G \subseteq S$ is a group in S if there exists an idempotent $e \in G$ such that $(G, \cdot, e, (\cdot)^{-1})$ is a group under the inherited multiplication.

Lemma 26 (Images and preimages preserve substructures). Let $\varphi: S \to T$ be a semigroup morphism.

- If $S' \subseteq S$ is a subsemigroup, then $\varphi(S')$ is a subsemigroup of T.
- If $T' \subseteq T$ is a subsemigroup, then $\varphi^{-1}(T')$ is a subsemigroup of S.

Analogous statements hold for monoid and group morphisms and their corresponding substructures

 $\begin{array}{l} \textit{Proof.} \ \ \text{If} \ t_1 = \varphi(s_1) \in \varphi(S') \ \ \text{and} \ \ t_2 = \varphi(s_2) \in \varphi(S') \ \ \text{with} \ \ s_1, s_2 \in S', \ \text{then} \ \ t_1 t_2 = \varphi(s_1) \varphi(s_2) = \varphi(s_1 s_2) \in \varphi(S'). \ \ \text{For preimages:} \ \ \text{if} \ \ s_1, s_2 \in \varphi^{-1}(T'), \ \text{then} \ \ \varphi(s_i) \in T' \ \ \text{and} \ \ \varphi(s_1 s_2) = \varphi(s_1) \varphi(s_2) \in T', \ \ \text{hence} \ \ s_1 s_2 \in \varphi^{-1}(T'). \end{array}$

Lemma 27 (Finite-group test). A nonempty subsemigroup S' of a finite group G is a subgroup of G.

Proof. Pick $g \in S'$. The set $\{g^n \mid n \geq 1\} \subseteq S'$ is finite, so $g^i = g^j$ with $1 \leq i < j$. By cancellation in G, $g^{j-i} = 1 \in S'$. For any $h \in S'$, the set $\{h^n \mid n \geq 0\}$ is finite, hence $h^a = h^b$ with a < b. Cancelling h^a yields $1 = h^{b-a} \in S'$; then $h^{b-a-1} \in S'$ is an inverse of h. Thus S' is a subgroup.

4.2 Quotients and Divisions

In this section, "quotient" means "image of a surjective morphism". For finite semigroups, the last two lemmas below show that the *division* relation (defined via quotients of subsemigroups) is a partial order on isomorphism classes.

Definition 28 (Semigroup quotient). A semigroup T is a *quotient* of a semigroup S if there exists a surjective semigroup morphism $\pi: S \twoheadrightarrow T$.

Lemma 29 (Trivial order arises as a quotient). For any ordered monoid (M, \leq) , the identity map $\mathrm{id}_M : (M, =) \to (M, \leq)$ is a surjective morphism of ordered monoids. Hence (M, \leq) is a quotient of (M, =) in the ordered-monoid sense.

Proof. The identity preserves the monoid structure and is order-preserving from equality to \leq trivially.

Definition 30 (Division (divisor)). A semigroup T divides a semigroup S (notation $T \mid S$) if there exist a subsemigroup $U \subseteq S$ and a surjective morphism $\pi: U \twoheadrightarrow T$. Equivalently, T is a quotient of a subsemigroup of S.

Lemma 31 (Transitivity of division). If $S_1 \mid S_2$ and $S_2 \mid S_3$, then $S_1 \mid S_3$.

Proof. Let $U_1 \subseteq S_2$ and $\pi_1: U_1 \twoheadrightarrow S_1$ witness $S_1 \mid S_2$, and $U_2 \subseteq S_3$ and $\pi_2: U_2 \twoheadrightarrow S_2$ witness $S_2 \mid S_3$. Then $U := \pi_2^{-1}(U_1) \subseteq S_3$ is a subsemigroup and $\pi_1 \circ \pi_2: U \twoheadrightarrow S_1$ is surjective, so $S_1 \mid S_3$.

Lemma 32 (Reflexivity and antisymmetry on finite semigroups).

- 1. For any semigroup S, S | S (take U = S and $\pi = id$).
- 2. If S_1, S_2 are finite and $S_1 \mid S_2$ and $S_2 \mid S_1$, then $S_1 \cong S_2$.

Proof. (1) is immediate. For (2), choose $U_1\subseteq S_2$ with $\pi_1:U_1\twoheadrightarrow S_1$ and $U_2\subseteq S_1$ with $\pi_2:U_2\twoheadrightarrow S_2$. Then $|S_1|\le |U_1|\le |S_2|$ and $|S_2|\le |U_2|\le |S_1|$, hence all are equalities: $|S_1|=|U_1|=|S_2|=|U_2|$. Therefore $U_1=S_2$, $U_2=S_1$ and both π_1,π_2 are bijections, i.e. isomorphisms. Thus $S_1\cong S_2$.

4.3 Products

Definition 33 (Product of semigroups). Given a family $\{S_i\}_{i\in I}$ of semigroups, the Cartesian product $\prod_{i\in I} S_i$ is a semigroup under coordinatewise multiplication:

$$(s_i)_{i \in I} \cdot (t_i)_{i \in I} := (s_i t_i)_{i \in I}.$$

Lemma 34 (Unit object for products). Let 1 denote the one-element semigroup (resp. monoid, group). Then $S \times 1 \cong S \cong 1 \times S$ via the coordinate projections; these are semigroup (resp. monoid, group) isomorphisms.

Proof. The maps $(s,*) \mapsto s$ and $s \mapsto (s,*)$ are mutually inverse morphisms.

Definition 35 (Product of ordered monoids). If $\{(M_i, \leq_i)\}_{i \in I}$ are ordered monoids, their product ordered monoid is $(\prod_i M_i, \leq)$ where

$$(s_i)_{i \in I} \leq (t_i)_{i \in I} \iff \forall i \in I, \ s_i \leq_i t_i.$$

This order is compatible with the coordinatewise multiplication.

Lemma 36 (Products preserve substructures, quotients, and division). Let $\{S_i\}_{i\in I}$ and $\{T_i\}_{i\in I}$ be families of semigroups.

- If each $S_i \subseteq T_i$ is a subsemigroup, then $\prod_i S_i \subseteq \prod_i T_i$ is a subsemigroup.
- If each $\pi_i:T_i \twoheadrightarrow S_i$ is a surjective morphism, then $\prod_i \pi_i:\prod_i T_i \twoheadrightarrow \prod_i S_i$ is a surjective morphism; hence products of quotients are quotients of products.

• If each S_i divides T_i , then $\prod_i S_i$ divides $\prod_i T_i$.

Proof. All three items are checked coordinatewise.

4.4 Ideals

For a semigroup S, write S^1 for S if S already has an identity, and otherwise for the semigroup obtained by adjoining a new identity 1. This allows uniform formulations using S^1 .

Definition 37 (Right/left/two-sided ideals). Let S be a semigroup. A *right ideal* is a subset $R \subseteq S$ with $RS \subseteq R$. A *left ideal* is a subset $L \subseteq S$ with $SL \subseteq L$. An *ideal* is a subset $I \subseteq S$ with $SI \subseteq I$ and $IS \subseteq I$.

Lemma 38 (Characterizations via S^1). Let S be a semigroup and $I \subseteq S$.

- 1. I is a right ideal iff $IS^1 = I$ (equivalently, $IS^1 \subseteq I$).
- 2. I is a left ideal iff $S^1I = I$ (equivalently, $S^1I \subseteq I$).
- 3. I is an ideal iff $S^1IS^1 = I$ (equivalently, $S^1IS^1 \subseteq I$).

Proof. If I is a right ideal then $IS \subseteq I$; multiplying by $1 \in S^1$ gives $IS^1 \subseteq I$ and \supseteq is clear. The other items are analogous; for (3) combine the previous two.

Lemma 39 (Monoid case). If M is a monoid and $I \subseteq M$, then I is a right ideal iff IM = I, a left ideal iff MI = I, and an ideal iff MIM = I.

Proof. Same as above with $S^1 = M$.

Lemma 40 (Intersections). Arbitrary intersections of (right/left/two-sided) ideals are (right/left/two-sided) ideals.

Proof. If $\{I_{\alpha}\}$ are ideals, then $S(\bigcap_{\alpha}I_{\alpha})\subseteq\bigcap_{\alpha}SI_{\alpha}\subseteq\bigcap_{\alpha}I_{\alpha}$, and similarly on the right. \square

Definition 41 (Ideal generated by a set; principal ideals). For $R \subseteq S$, the ideal generated by R is S^1RS^1 ; the right (resp. left) ideal generated by R is RS^1 (resp. S^1R). An ideal is *principal* if it is generated by a single element.

Lemma 42 (Ideals and morphisms). Let $\varphi: S \to T$ be a semigroup morphism. If $J \subseteq T$ is an ideal, then $\varphi^{-1}(J)$ is an ideal of S. If φ is surjective and $I \subseteq S$ is an ideal, then $\varphi(I)$ is an ideal of T.

 $\begin{array}{ll} \textit{Proof.} \ \ \text{For preimages:} \ \ S^1\varphi^{-1}(J)S^1\subseteq \varphi^{-1}(T^1)\varphi^{-1}(J)\varphi^{-1}(T^1)\subseteq \varphi^{-1}(T^1JT^1)=\varphi^{-1}(J). \ \ \text{For images with } \varphi \ \text{surjective:} \ \ T^1\varphi(I)T^1=\varphi(S^1)\varphi(I)\varphi(S^1)=\varphi(S^1IS^1)=\varphi(I). \end{array}$

Definition 43 (Product of ideals). If I_1, \dots, I_n are ideals of S, their product is

$$I_1\cdots I_n:=\{\,s_1\cdots s_n\mid s_k\in I_k\,\}.$$

Lemma 44 (Product of ideals). The product $I_1 \cdots I_n$ is an ideal and $I_1 \cdots I_n \subseteq \bigcap_{k=1}^n I_k$.

 $Proof. \ \text{Since} \ S^1I_1=I_1 \ \text{and} \ I_nS^1=I_n, \ \text{we have} \ S^1(I_1\cdots I_n)S^1=(S^1I_1)\cdots (I_nS^1)=I_1\cdots I_n. \ \text{For inclusion, fix} \ k; \ \text{then} \ I_1\cdots I_n\subseteq S^1I_kS^1=I_k.$

Definition 45 (Minimal and 0-minimal ideals). A nonempty ideal I of S is minimal if $J \subseteq I$ and J an ideal implies J = I. If S has a zero 0, a nonempty ideal $I \neq \{0\}$ is 0-minimal if every nonempty ideal $J \subseteq I$ satisfies $J = \{0\}$ or J = I.

Lemma 46 (Uniqueness of a minimal ideal). A semigroup has at most one minimal ideal.

Proof. If I_1, I_2 are minimal ideals, then I_1I_2 is a nonempty ideal contained in $I_1 \cap I_2$. By minimality, $I_1I_2 = I_1 = I_2$.

Lemma 47 (Existence in the finite case). Every finite semigroup has a minimal ideal.

Proof. Among the nonempty ideals (nonempty because singletons $\{s\}$ generate ideals), pick one of minimal cardinality; it is minimal by definition.

Lemma 48 (Zero yields a minimal ideal). If S has a zero 0, then $\{0\}$ is a minimal ideal.

Proof. $\{0\}$ is an ideal since $S\{0\}=\{0\}=\{0\}S$. If $J\subseteq\{0\}$ is a nonempty ideal, then $J=\{0\}$.

4.5 Simple and 0-Simple semigroups

Definition 49 (Simple and 0-simple). A semigroup S is *simple* if its only ideals are \emptyset and S. If S has a zero 0, then S is 0-simple if $S^2 \neq \{0\}$ and the only ideals are $\emptyset, \{0\}, S$. One-sided versions (right/left simple, right/left 0-simple) are defined analogously.

Lemma 50. If S is 0-simple, then $S^2 = S$.

Proof. S^2 is a nonempty, nonzero ideal, hence $S^2 = S$.

Lemma 51 (Characterizations via principal two-sided ideals).

- 1. S is simple iff SsS = S for every $s \in S$.
- 2. If $S \neq \emptyset$ and has a zero 0, then S is 0-simple iff SsS = S for every $s \in S$ $\{0\}$.

Proof. (2) Suppose S is 0-simple. By Lemma 50, $S^2 = S$, so $\bigcup_{s \in S} SsS = S$. The set $I = \{s \in S \mid SsS = \{0\}\}$ is an ideal containing 0 but not equal to S; hence $I = \{0\}$. Thus for $s \neq 0$, $SsS \neq \{0\}$, and being an ideal, it equals S. Conversely, if $S \neq \emptyset$ and SsS = S for all $s \neq 0$, then $S^2 \neq \{0\}$ and any nonzero ideal S contains some $S \neq S$, hence $S = SsS \subseteq SSS = SSS \subseteq SSS \subseteq SSS \subseteq SSS \subseteq SSS$. The proof of (1) is the same without the zero case. □

Semigroup Congruences

Definition 52 (Semigroup congruence). An equivalence relation \sim on a semigroup S is a *congruence* if it is stable under multiplication: $s \sim t$ implies $xsy \sim xty$ for all $x, y \in S^1$.

Lemma 53 (Quotient by a congruence). If \sim is a congruence on S, the set S/\sim of equivalence classes is a semigroup under $[s] \cdot [t] := [st]$. The canonical projection $\pi: S \to S/\sim$ is a surjective semigroup morphism.

Proof. Well-definedness and associativity follow from stability and associativity in S. Surjectivity and multiplicativity of π are immediate.

Definition 54 (Rees congruence). If I is an ideal of S, the Rees congruence \equiv_I identifies all elements of I and keeps distinct elements of S I: $s \equiv_I t \iff (s = t)$ or $(s, t \in I)$. The quotient $S/I := S/\equiv_I$ has support $(S \mid I) \cup \{0\}$ with multiplication

$$s * t = \begin{cases} st, & s, t, st \notin I, \\ 0, & \text{otherwise.} \end{cases}$$

Definition 55 (Syntactic congruence). Given $P \subseteq S$, the syntactic congruence \sim_P is

$$s \sim_P t \quad :\iff \quad \forall x, y \in S^1, \quad xsy \in P \iff xty \in P.$$

The quotient S/\sim_P is the *syntactic semigroup* of P in S.

Definition 56 (Congruence generated by a relation). For a (symmetric) relation $R \subseteq S \times S$, the *congruence generated by* R is the intersection of all congruences containing R.

Lemma 57 (Description of generated congruence). If $R \subseteq S \times S$ is symmetric, the congruence it generates is the reflexive-transitive closure of

$$\overline{R} := \{ (xry, \ xsy) \mid (r,s) \in R, \ x,y \in S^1 \}.$$

Proof. Any congruence containing R contains \overline{R} and hence its reflexive-transitive closure \overline{R}^* . Conversely, \overline{R}^* is readily checked to be a congruence: if $u \to v$ is a step from \overline{R} , then $xuy \to xvy$ is again a step for any $x, y \in S^1$; closures preserve this property.

Definition 58 (Nuclear congruence). For a morphism $\varphi: S \to T$, the nuclear congruence \sim_{φ} on S is defined by $x \sim_{\varphi} y \iff \varphi(x) = \varphi(y)$.

Theorem 59 (First isomorphism theorem). Let $\varphi: S \to T$ be a semigroup morphism and $\pi: S \to S/\sim_{\varphi}$ the quotient map. There exists a unique semigroup morphism $\widetilde{\varphi}: S/\sim_{\varphi} \to T$ with $\varphi = \widetilde{\varphi} \circ \pi$. Moreover, $\widetilde{\varphi}$ is an isomorphism $S/\sim_{\varphi} \cong \varphi(S)$.

Proof. Define $\widetilde{\varphi}([x]) = \varphi(x)$; this is well-defined by definition of \sim_{φ} , multiplicative, and has image $\varphi(S)$. It is bijective onto $\varphi(S)$ with inverse given by $[x] \leftarrow \varphi(x)$.

Theorem 60 (Second isomorphism theorem for congruences). Let \sim_1, \sim_2 be congruences on S with \sim_2 coarser than \sim_1 . Then there is a unique surjective morphism $\Pi: S/\sim_1 \to S/\sim_2$ such that $\Pi \circ \pi_1 = \pi_2$, where $\pi_i: S \to S/\sim_i$ are the projections.

Proof. Define $\Pi([s]_1) := [s]_2$; this is well-defined since $\sim_1 \subseteq \sim_2$, multiplicative, and clearly surjective.

Lemma 61 (Intersection embeds in a product). Let $(\sim_i)_{i\in I}$ be congruences on S and $\sim=\bigcap_i\sim_i$. Then S/\sim embeds into $\prod_{i\in I}S/\sim_i$ as a subsemigroup.

Proof. Consider $\pi = (\pi_i)_{i \in I} : S \to \prod_i S/\sim_i$. Its nuclear congruence is \sim . By Theorem 59, $S/\sim \cong \pi(S)$, a subsemigroup of the product.

Lemma 62 (Two distinct 0-minimal ideals give a product embedding). If S has (at least) two distinct 0-minimal ideals I_1, I_2 , then S embeds into $S/I_1 \times S/I_2$ as a subsemigroup.

Proof. Since $I_1 \cap I_2 = \{0\}$, the intersection of the Rees congruences \equiv_{I_1} and \equiv_{I_2} is equality. Apply Lemma 61.

Definition 63 (Congruences of ordered monoids). Let (M, \leq) be an ordered monoid. A congruence of ordered monoids is a stable preorder \preccurlyeq on M that is coarser than \leq and is compatible with multiplication: $x \preccurlyeq y \Rightarrow axb \preccurlyeq ayb$. Writing $x \sim y$ for the induced equivalence $x \preccurlyeq y \& y \preccurlyeq x$, the quotient M/\sim carries a well-defined ordered-monoid structure with the order induced by \preccurlyeq , and the projection $M \to (M/\sim, \leq)$ is a morphism of ordered monoids.