SE102:Multivariable Calculus

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

> Lecture 08 Manifolds

The integral $\iint_D f(x,y)dxdy$ is called **improper** if it satisfies one of the following.

- \triangleright the region D is unbounded, or
- \blacktriangleright the function diverges at some point in D.

Let $D = \mathbb{R}^2$ be the entire 2-dimensional plane. Let us compute

$$\iint_{\mathbf{R}^2} e^{-x^2 - y^2} dx dy$$

By polar coordinate $T(r, \theta) = (r \cos \theta, r \sin \theta)$,

$$T^{-1}(D) = [0, \infty) \times [0, 2\pi].$$

Thus by change of coordinates,

$$\iint_{\mathbf{R}^2} e^{-x^2 - y^2} dx dy = \int_0^\infty \int_0^{2\pi} e^{-r^2} r d\theta dr = 2\pi \left(\frac{-1}{2} e^{-r^2}\right) \Big|_0^\infty = \pi$$

The gamma function $\Gamma: \mathbf{R} \to \mathbf{R}$ is defined by

$$\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx$$

Example

- 1. $\Gamma(n) = (n-1)!$ for $n \ge 1$.
- 2. $\Gamma(x)$ diverges at each non-positive integer x.
- 3. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

The **beta function** $B(x,y): \mathbf{R}^2 \to \mathbf{R}$ is defined by

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

Proposition

- 1. B(x,y) = B(y,x)
- 2. $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

The n-dimensional ball of radius r is the set of points in 4-dimensional space defined by

$$B_n(r) = \{(x_1, \dots, x_n) \mid x_1^2 + \dots + x_n^2 \le r^2\}.$$

The n-1-dimensional sphere of radius r is the boundary of $B_n(r)$, defined by

$$S_{n-1}(r) = \{(x_1, \dots, x_n) \mid x_1^2 + \dots + x_n^2 = 1\}.$$

Proposition

Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a transformation (i.e. one-to-one, differentiable) such that

$$T(u_1,\cdots,u_n)=(x_1,\cdots,x_n).$$

If U be a region in \mathbb{R}^n and V = T(U). Then

$$\int_{V} dx_{1} \cdots dx_{n} = \int_{U} \left| \det \frac{\partial(x_{1}, \cdots, x_{n})}{\partial(u_{1}, \cdots, u_{n})} \right| du_{1} \cdots du_{n}$$

We define the **volume** of the cube $[0,1]^n$ to be 1. There are 3 ways to compute the volume of 4-dimensional ball.

- 1. Using spherical coordinate.
- 2. Integrating sections.
- 3. Finding recursive formula.

Let $T:[0,1]\times[0,\pi]\times[0,\pi]\times[0,2\pi]\to\mathbf{R}^4$ be a transformation defined by

$$T(r, \theta_1, \theta_2, \phi) = (r \sin \theta_1 \sin \theta_2 \cos \phi, r \sin \theta_1 \sin \theta_2 \sin \phi,$$

$$r \sin \theta_1 \cos \theta_2, r \cos \theta_1)$$

Such T is called a 4-spherical transformation and the Jacobian is

$$J_T = r^3 \sin^2 \theta_1 \sin \theta_2$$

Thus the volume of $B_4(1)$ is

$$\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2\pi} r^{3} \sin^{2} \theta_{1} \sin \theta_{2} d\phi d\theta_{2} d\theta_{1} dr = \frac{\pi^{2}}{2}$$

As we slice the 4-dimensional ball $B_4(1)$ at each w-coordinate, we obtain 3-dimensional ball of radius $\sqrt{1-w^2}$. Thus the volume of $B_4(1)$ is

$$\int_{-1}^{1} \operatorname{vol}B_3(\sqrt{1-w^2})dVdw$$

Since we know $\operatorname{vol} B_3(r) = \frac{4\pi}{3}r^3$, we can compute the integral using Gamma and Beta functions.

The ball $B_4(1)$ is the union of 3-dimensional spheres $S_3(r)$ for $0 \le r \le 1$. Thus the volume of $B_4(1)$ is

$$\int_0^1 S_3(r)dr = \int_0^1 \text{vol}S_3(1)r^3dr = \text{vol}S_3(1)/4$$

Meanwhile, the 3-dimensional sphere $S_3(1)$ is the union of product of two circles $S_1(r) \times S_1(r')$ where $r^2 + r'^2 = 1$. Thus the volume of $S_3(1)$ is

$$\int_0^{\pi/2} \text{vol} S_1(r) \text{vol} S_1(r') d\theta = 2\pi^2$$

Multivariable Calculus summerizes in two sentences:

- ▶ Derivative is a linear transformation.
 - Derivative $Df(\mathbf{a})$ of a multivariable function is a linear map between tangent spaces at \mathbf{a} and $f(\mathbf{a})$.
- ▶ Divergence theorem is a Stokes' theorem.
 - ▶ The general form of Stokes' theorem is

$$\int_{V} d\omega = \int_{\partial V} \omega$$

where ω is a differential (k-1)-form and V is a k-dimensional space. The differential $d\omega$ is a k-form. The Stokes theorem is when

$$\omega = Pdx + Qdy = Rdz$$

and divergence theorem is when

$$\omega = Pdx \wedge dy + Qdy \wedge dz + Rdz \wedge dx.$$

Let $C^{\infty}(\mathbf{R}^n)$ be the set of all C^{∞} -class real-valued functions defined on \mathbf{R}^n . A tangent vector \mathbf{v} at $\mathbf{p} \in \mathbf{R}^n$ is a map $C^{\infty}(\mathbf{R}^n) \to \mathbf{R}$ such that there is a parametric curve $\mathbf{c}(t)$ of C^{∞} -class that satisfies

- ▶ c(0) = p, and
- $\mathbf{v}(f) = (f \circ \mathbf{c})'(0).$

Remark

A tangent vector at \mathbf{p} in \mathbf{R}^n is usually denoted as

$$\mathbf{v} = a_0 \left. \frac{\partial}{\partial x^0} \right|_{\mathbf{p}} + \dots + a_{n-1} \left. \frac{\partial}{\partial x^{n-1}} \right|_{\mathbf{p}}$$

for real coefficients a_0, \ldots, a_{n-1} .

A *n*-dimensional **vector field F** is a map assigns a tangent vector at \mathbf{p} to each point \mathbf{p} in \mathbf{R}^n . We can write \mathbf{F} as

$$\mathbf{F}(\mathbf{p}) = a_0(\mathbf{p}) \frac{\partial}{\partial x^0} + \dots + a_{n-1}(\mathbf{p}) \frac{\partial}{\partial x^{n-1}}$$

for real-valued function \mathbf{a}_i . We say \mathbf{F} is of class \mathcal{C}^{∞} if all coefficient functions a_i are of class \mathcal{C}^{∞} .

Remark

The set of all tangent vectors at \mathbf{p} is denoted by $T_{\mathbf{p}}\mathbf{R}^n$, and it is a n-dimensional vector space. A \mathcal{C}^{∞} -vector field \mathbf{F} is a map that sends \mathcal{C}^{∞} -functions to \mathcal{C}^{∞} -functions. The set of all \mathcal{C}^{∞} -vector fields on \mathbf{R}^n is denoted by $\mathfrak{X}(\mathbf{R}^n)$. As a vector space $\mathfrak{X}(\mathbf{R}^n)$ is generated by $\frac{\partial}{\partial x^j}$, $j=0,\ldots,n-1$.

Let V be a n-dimensional vector space. The **dual space** V^* of V is the vector space defined by

$$V^* = \{ f : V \to \mathbf{R} \mid f \text{ is linear} \}.$$

Let e_0, \ldots, e_{n-1} be a basis for V. The linear map $e_i^* : V \to \mathbf{R}$ defined by

$$e_i^*(e_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

is called a dual vector to e_i .

Definition

Let dx^j be the dual vector to the vector field $\frac{\partial}{\partial x^j}$. The n-dimensional 1-form ω is a linear combination of dx^j with coefficients in $\mathcal{C}^{\infty}(\mathbf{R}^n)$.

$$\omega = f_0 dx^0 + \dots + f_n dx^{n-1}.$$

The **wedge** product between two *n*-dimensional 1-forms dx^i and dx^j , denoted by $dx^i \wedge dx^j$ satisfies

- $dx^i \wedge dx^j = -dx^j \wedge dx^i;$
- $dx^i \wedge dx^i = 0.$

A k-form is a linear combination of wedge products on k 1-forms. The n-dimensional n-form is called the **volume form**.

Remark

The integration of *n*-form $dx_1 \wedge \cdots \wedge dx_n$ on the cube $[0,1]^n$ is defined by

$$\int_{[0,1]^n} dx_1 \wedge \dots \wedge dx_n = 1.$$

The volume of *n*-dimensional region $V \subset \mathbf{R}^n$ is defined by

$$\int_V dx_1 \wedge \cdots \wedge dx_n.$$

Anti-commutativity of the wedge product $(dx \wedge dy = -dy \wedge dx)$ implies that the integration of *n*-form is a generalization of surface (and line) integrals of vector fields.

Let $\mathcal{T}^k(\mathbf{R}^n)$ be the set of all k-forms on \mathbf{R}^n . The d-operator is a linear map $d: \mathcal{T}^k(\mathbf{R}^n) \to \mathcal{T}^{k+1}(\mathbf{R}^n)$ defined by

$$d(fdx^{i_1} \wedge \dots \wedge dx^{i_k}) = \sum_{j=0}^{n-1} \frac{\partial f}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge d^{i_k}.$$

Theorem (Stokes)

Let ω be a k-1-form defined a bounded region $V \subset \mathbf{R}^n$. Then

$$\int_{V} d\omega = \int_{\partial V} \omega.$$

Problem

Compute the improper integral $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Problem

Find the volume of $B_5(1)$ using

- 1. spherical coordinates on 5-dimensional space.
- 2. Gamma and Beta functions.
- 3. recursive formula on volumme of n-dimensional balls.