#### HAPTIC LOOP

Student: Jesse Alves.

Advisor: Maciej Bednarczyk.



## INTRODUCTION

# The Haptic Loop is a Collision Model



**Angles Position** 

**Angles Velocity** 









#### **Virtual Environment**

$$Force(t) = egin{cases} -k * Strain - d * V_{EE}, \ 0, \end{cases} \qquad egin{cases} distance < radius \ distance \geq radius \end{cases}$$



$$\tau = (J^{-T})^{-1}f$$



Robot (Real Hardware)



**Physical Robot** 

**Measured by Encoders** 

**Angles Velocity** 



#### The Model Evolution







#### **MAZE GENERATION**

#### **Maze Generation Code**

- A new code to generate random mazes in String format.
- A new function to convert this String Maze:
  - Center of Spheres.
  - Radius of each sphere.
  - Inside of a workspace given.
- Export through a matrix in .csv file

```
• telecom@port2-ht2:~/fsr_ws/src/fsr

+--+--+--+--+

+ + + + + +

+ + +--+ + +

+ + + + + +

+ + + +--+ + +

+ + + +--+--+
```

## The .csv file

| Radius              | X     | Y     |
|---------------------|-------|-------|
| $radius_1$          | $x_1$ | $y_1$ |
| radius <sub>2</sub> | $x_2$ | $y_2$ |
| • • •               | • • • | • • • |
| •••                 | • • • | • • • |
| $radius_N$          | $x_N$ | $y_N$ |

#### **Maze Generation Code**

- This .csv file can be imported by:
  - Haptic Loop Node in ROS.
  - RViz (To be tested).
  - Visualization Part in Unity.







#### **Maze Generation Code**

- It is a Collision Model.
- Complete Model = Visual Model + Collision Model (Hidden).
- Change the Spring and Damper Model.



**Font: Courtecuisse Hadrien Slides** 



#### Soft or Stiff Walls



**Maze Simulation** 

# **OPERATION FREQUENCY**

## **First Simulation**



## **Second Simulation**







## **Third and Last Simulation**







**Torque Simulation** 





# TORQUE AND FORCE VALIDATION

## The Validation in the First Simulation



## **A New Validation**

#### Algorithm

- I. Compute the Force Impact Collision
- 2. Compute the Torque using the Jacobian.
- 3. Compute Force using Jacobian and Torque.
- 4. Plot the Force Vector in RVIZ.

Simulation to Validate

the Torque and Force.

## CONCLUSION

## The Paper of Haptic Loop



#### Task 3 – Visualization Part

| Tasks                                            | Done | Deliverable | Pending |
|--------------------------------------------------|------|-------------|---------|
| Models in ROS                                    |      |             |         |
| Haptic Loop in ROS<br>Validated                  |      |             |         |
| Effort Controller                                |      |             |         |
| Communication in ROS via topics                  |      |             |         |
| Connection with Hardware Interface               |      |             |         |
| Connection with different types of Visualization |      |             |         |

#### THANKS FOR YOUR ATTENTION!