Design Automation Methodology for Improving the Variability of Synthesized Digital Circuits Operating in the Sub/Near-Threshold Regime

Joseph Crop, Robert Pawlowski, Nariman Moezzi-Madani, Jarrod Jackson, Patrick Chiang School of EECS

Oregon State University
Corvallis, OR USA

- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

Motivation for Sub-Threshold Operation

- Battery Capacities are not improving as fast as CMOS
- Users expect long battery life
- Sensor networks need to operate remotely for longer

RFID

Mobile Phones

Wireless Sensor Nodes

We need more energy-efficiency to meet these demands

Energy Efficiency ⇒ **Sub-Threshold**

Lower Energy = Lower V_{DD}

- $E = \frac{1}{2}CV^2$
- ✓ 10x-15x energy improvement
- x 1000x-10000x slower

Challenge: Variation

- Each die has a different max speed
- Yield decreases

Sub-Threshold Operation ~ 0.4V

- Sub-threshold current is exponentially dependent on V_{th}
 - Amplifies effects of process variation and device mismatch on delay

$$I_{SUB} = \frac{W}{L_{eff}} \cdot \mu_{eff} \cdot C_d \cdot V_T^2 \cdot e^{\left(\frac{V_{gs} - V_{th}}{m \cdot V_T}\right)} \cdot \left(1 - e^{-\frac{V_{ds}}{V_T}}\right) \quad \text{\tiny Hanson; DAC,2007}$$

Oregon State

- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

Traditional Sub-Threshold Improvement Techniques

- Variation: $\sigma V_{th} \propto 1/\sqrt{WL}$
- Increasing transistor W
 - lowers variability
 - increases power

The same is true for PMOS/NMOS width ratio

[1] Kwong, J.; Chandrakasan, A.P.; , "Variation-Driven Device Sizing for Minimum Energy Sub-threshold Circuits," *Low Power Electronics and Design, 2006. ISLPED'06. Proceedings of the 2006 International Symposium on*, vol., no., pp.8-13, 4-6 Oct. 2006

Traditional Sub-Threshold Improvement Techniques

- Parallel devices
 - High-Speed XOR2

Tri-state feedback paths in flip-flops

Optimizing Digital Synthesis for Sub-Threshold

Problems:

- Manual inspection of every cell
- Expensive redesign
- No portability

• Solution:

- Automate detection
- Removal instead of redesign
- Use existing timing libraries

- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

Optimizing Digital Synthesis for Sub-Threshold

- 1. Cells are analyzed for timing
 - Compare delay of cells in sub-threshold to super-threshold
- 2. Cells are removed that simply don't work in sub-threshold
- 3. Cells are statistically removed

Typical Cell Testing Procedure

- Each cell driven/loaded by NAND2
- Delay is measured from input to output of DUT

Histogram of Cell Delays

- As V_{DD} is lowered, delay distribution widens
- Failures begin to occur

Cell Removal Decisions

Cell Removal Decisions

Delay Ratio of each cell:

• (T_{d-sub} / T_{d-super})

Oregon State

Cell Removal Decisions

- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

Removed Cells

Example of removed cells:

- Most cells that do not scale well:
 - Bad PMOS/NMOS width ratios
 - Cells designed for speed (usually large)
 - Large number of inputs

Delay Improvements

- Two designs were tested
 - Multiply Add (MADD)
 - Floating-Point Add (FP-ADD)
- Faster mean speed
- Reduction of outliers

FP-ADD

Metric	Improvement
Standard Deviation	25%
Worst Case Delay	28%
Outliers	68%

Energy Improvements

- With delays getting faster, naturally energy lowers
- Area is also lowered resulting in smaller leakage energy

Metric	Improvement
Standard Deviation	> 71%
Worst Case Energy	37% less
Average Energy	6-68% reduction

Comparison of synthesized designs

• FP-ADD @ 1.2V = 3.66pJ/operation

• FP-ADD @ 300mV = 312fJ/operation

• FP-ADD @ 300mV, culled = 228fJ/operation

Design goes from 10X energy improvement to 15X energy improvement

- Introduction
- Motivations for Sub-threshold logic design
- Existing techniques and their Limitations
- Proposed Technique
- Results
- Conclusions

Conclusions

- Benefits of this methodology:
 - Fast
 - Reliable
 - Cost Effective
 - Scalable
- Improvements in:
 - Area
 - Delay
 - Energy
 - Worst-case performance

Questions?

BACKUP 1: Leakage energy graph

Unwanted leakage is removed

BACKUP 2: Energy improvement graph

- Energy is lowered dramatically
- FP-ADD, 1 sigma culled vs. normal

