• Part 1 (20 points)

Write a function that samples a discrete random variable. You will use this to implement Step 1 of the boosting algorithm given above. The function should take in a positive integer n and a k-dimensional probability distribution w. It should return a $1 \times n$ vector c, where each $c_i \in \{1, \ldots, k\}$ and $\operatorname{Prob}(c_i = j|w) = w(j)$. The entries of c should be independently generated. For the distribution w = [0.1, 0.2, 0.3, 0.4], show the histogram of one sampled vector c when n = 50, 250, 500.

Solution N=50

N=250

N=500

• Part 2 (50 points)

For T = 1000 iterations of boosting, do the following:

- 1. Implement a boosted version of this Bayes classifier, where class-specific π and μ, and shared Σ are learned on the bootstrap set B_t. Notice that you only need to store w₀ and w for this problem, as written in the equation above. Since the data already contains a bias dimension equal to 1, you can store a single "augmented" vector where w₀ and w are combined. (When calculating μ₁, μ₀ and Σ, make sure you don't use this extra dimension!)
- 2. On a single plot, show the training and testing error as a function of iteration t for t = 1, ..., T. Soluiton

3. What is the testing accuracy for this Bayes classifier without boosting?

Solution

error_bayes =

0.1585

4. Plot α_t and ϵ_t as a function of t on different plots.

5. Pick 3 data points and plot their corresponding $p_t(i)$ as a function of t on the same plot. Select the points such that there is some variation in these values.

i=3,33,45

• Part 3 (50 points)

For t = 1, ..., 1000 iterations of boosting, do the following:

- 1. Implement the online logistic regression classifier described above.
- 2. On a single plot, show the training and testing error as a function of iteration t for $t=1,\ldots,T$.

Solution

 What is the testing accuracy of the logistic regression model without boosting? (You can use the two-class version of your logistic regression code from Homework 2, or your own implementation of binary logistic regression to do this.)

Solution

I used Logistic Regression Algorithm (Steepest Ascent) with 1000 iterations.

ans =

0.0273

4. Plot α_t and ϵ_t as a function of t on different plots.

Solution

5. Pick 3 data points and plot their corresponding $p_t(i)$ as a function of t on the same plot. Select the points such that there is some variation in these values.

