Chapitre V

Etude des régimes compressibles en Fluide Parfait

→ Part 1 : Introduction

Description of compressible and inviscid flows Steady unidirectional compressible flows

→ Part 2 : From pressure waves to shock waves

Normal and oblique shock waves

Examples

Avertissement : Ce chapitre est tiré du cours de Master donné dans le cadre du « Summer Program » associant les écoles aéronautiques du GEA. Seule la première partie sera traitée.

Introduction (1)

- Compressibility phenomena are associated with large velocities or large accelerations in a gas flow.
- The development of this field of fluid mechanics is linked with the evolution of aeronautics in the middle of the 20th century.
- → In fact, it concerns a lot of applications :
 - ⇒ Pneumatic transport
 - ⇒ flows in Intake or exhaust ports of automotive engines
 - ⇒

Description of compressible and inviscid flows (1)

- Goals:
 - ⇒ Physical description
 - ⇒ Mathematical model
 - ⇒ Definition and properties of stagnation quantities

221

Description of compressible and inviscid flows (2)

- What are the consequences of fluid motion on the variation of the volume of an elementary fluid particle?
- M = V/a➤ Important parameter : Mach Number
- First estimation ($m = \rho \varepsilon$ constant mass of the fluid particle)

•
$$\left| \frac{\delta \varepsilon}{\varepsilon} \right| = \left| \frac{\delta \rho}{\rho} \right| = \frac{1}{a^2} \left| \frac{\delta p}{\rho} \right|$$

• If $\rho \approx \text{constant}$: $\delta p \approx \rho \frac{V_{\infty}^2}{2}$

$$\left| \frac{\delta \varepsilon}{\varepsilon} \right| \approx \frac{M_{\infty}^2}{2}$$

Description of compressible and inviscid flows (3)

--- Regimes of compressible flows

Mach number : M=V/c (c: speed of sound)

(For air in standard conditions of temperature and pressure, M=1 corresponds to 330 m/s)

→ In some flows, for example on airfoils, both subsonic and supersonic regions can co-exist. We say that the flow regime is transsonic

223

Description of compressible and inviscid flows (4)

- → On both sides of Mach ONE!
- → SOURCE IN MOTION

- \implies Subsonic regime : Information arrives before the source
- ⇒ Supersonic regime : Information arrives after
 - Mach cone of angle $\alpha / \sin(\alpha) = 1/M$
- ⇒ The properties of the equations of motion are changing :
 - * Subsonic : System elliptic in space
 - * Supersonic : System hyperbolic in space

Description of compressible and inviscid flows (5)

- → On both sides of Mach ONE
- → FIXED SOURCE in a Supersonic flow

- ⇒ In a supersonic flow, the fluid particle is not "informed" that there is an obstacle !!
 - This explains why we observe very sharp transitions
 - Explains the apparition of shock waves.

225

Mathematical model for compressible and inviscid flows. (1)

- → Large Reynolds numbers
- → Non buoyant fluid, No volumetric heat transfer
- → We assume that the fluid is a perfect gaz.
 - * Equation of state : $p/\rho = rT$ where r = R/M
 - ris the material specific gaz constant. * Joule Laws: $de = c_v dT$; $dh = c_p dT$ r is the material specific heats

 or and c, are specific heats

 at constant pressure and volume c_v and c_p supposed constant; $\gamma = c_p/c_v$

Meyer relation : $r = c_p - c_v$

* Velocity of sound : $a^2 = \frac{\partial p}{\partial \rho} \bigg|_{s} = \gamma rT = \gamma \frac{p}{\rho}$

Tables and numerical integration must be used for more complex thermodynamics.

Mathematical model for compressible and inviscid flows. (2)

- → Mass, Momentum and energy balance are written .
- → If there are no irreversibilities and no volumetric heat flux, For a general unsteady flow :

$$\Rightarrow \frac{Ds}{Dt} = 0$$

In a compressible and inviscid flow, the entropy is constant along trajectories.

→ BEWARE: This is only true « pieces by pieces » if there are shock waves.

227

Mathematical model for compressible and inviscid flows. (3)

- → Mass, Momentum and energy balance are written .
- → If there are no irreversibilities and no volumetric heat flux

 Case of a permanent flow (which will be considered afterwards)

$$\Rightarrow \vec{V}.g\vec{r}ad(s) = 0$$

$$\vec{V}.g\vec{r}ad(h_i) = 0 \quad \text{where} \quad h_i = h + \frac{V^2}{2}$$

In a permanent compressible and inviscid flow the entropy and the stagnation enthalpy are constant along streamlines.

→ BEWARE: This is again only true « pieces by pieces » if there are shock waves.

Permanent regime: practical definitions of the stagnation quantities (1).

 \rightarrow Practical point of view : In a tank : $h_i = c_p T_i = c_p T_0$

→ Following theoretical results, along streamlines :

*
$$h_i = h + \frac{V^2}{2}$$
 or $T_i = T + \frac{V^2}{2c_p}$ are constant quantities

- → If then the properties of the gaz are uniform in the tank :
 - $\Rightarrow h_i$ et T_i are constant EVERYWHERE.
- Note that: $h_i = \frac{a^2}{(\gamma 1)} + \frac{V^2}{2}$ and $\frac{T_i}{T} = \left(1 + \frac{(\gamma 1)}{2}M^2\right)$

Permanent regime: practical definitions of the stagnation quantities (2).

- Following theoretical results, along streamlines:
 - * $h_i(p_i, \rho_i) = c_p T_i$ AND $s(p_i, \rho_i)$ are independent constant quantities.
 - \Rightarrow T_i ; p_i et ρ_i are constant quantities along streamlines
- \longrightarrow If then the properties of the gaz are uniform in the tank :
 - $\Rightarrow T_i$; p_i et ρ_i are constant EVERYWHERE. (Not valid if there are shock waves !!)

Permanent regime: Saint Venant Relations

→ At a given Mach number M, the ratio between a quantity and the corresponding stagnation quantity are given by :

SAINT-VENANT RELATIONS

$$\begin{split} \frac{T}{T_i} &= \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1} & \frac{p}{p_i} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\gamma/(\gamma - 1)} \\ \frac{\rho}{\rho_i} &= \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1/(\gamma - 1)} & \frac{a}{a_i} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1/2} \end{split}$$

231

→ In a permanent compressible and inviscid flow If the boundary conditions are UNIFORM, and if there are NO shock waves :

Permanent compressible and inviscid Monodimensional flow

Laval Nozzle Flow

233

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (1)

- * Quasi-monodimensional flow along the x coordinate
- * Slow variations of A(x) with dA/A << 1
- * Weak curvatures $A/R^2 \ll 1$
- * Uniform boundary conditions

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (2)

- * Continuity : $\rho.U.A = cste$
- * Momentum : $\rho.U.\frac{dU}{dx} = -\frac{dp}{dx}$
- * Enthalpy : $h_i = cste$
- * Entropy : $s = cste \Rightarrow \frac{p}{\rho^{\gamma}} = cste$

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (3)

- * Continuity : $\frac{d\rho}{\rho} + \frac{dU}{U} + \frac{dA}{A} = 0$
- * Momentum : $\rho.U.\frac{dU}{dx} + \frac{dp}{dx} = 0$
- * Enthalpy : $h_i = cste$
- * Entropy : $\frac{dp}{p} = \gamma \frac{d\rho}{\rho} \Rightarrow dp = a^2 d\rho$

Permanent compressible and inviscid monodimensional flow: Laval nozzle flow (4)

- * Reducing variables : $(M^2 1)\frac{dU}{U} = \frac{dA}{A}$
- * In a SUBSONIC FLOW, When section increases, The velocity decreases (and vice versa)
- * In a SUPERSONIC FLOW, When section increases, The velocity increases (and vice versa)

237

Laval nozzle flow (5)

* If M=1, then dA=0

If an isentropic monodimensional flow is sonic, then we are at a minimum of the cross-section.

- * Conversely, if dA=0:
- \Rightarrow Either dU=0
- \Rightarrow Either M=1. In this case, we are at a MINIMUM of the section

Laval nozzle flow(6)

* With a sonic flow at the throat, we obtain for the mass flux :

$$\Rightarrow Q_m = \sqrt{\frac{\gamma}{r}} \left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \frac{p_i}{\sqrt{T_i}} A_c = \left(4.04.10^{-2}\right) \frac{A_c p_i}{\sqrt{T_i}} \qquad (\gamma = 1.4)$$

* This relation has a lot of practical applications if one wants to regulate a mass flux just by controlling the initial stagnation pressure p_i

230

Laval nozzle flow (7)

- * By definition, the throat conditions are defined by : $M = M_C = 1$ at $A = A_C$ (This section can be virtual!!)
- * An important theoretical link between A/A_c and the local Mach number is :

$$\Rightarrow \frac{A}{A_c} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Laval nozzle flow (11)

- * For : $p_{a3} < p_s < p_{a2}$
- Compression at the oulet by oblique shock waves
- * For : $p_s = p_{a3}$ Isentropic Supersonic flow
- * For : $p_s < p_{a3}$
- Expansion wave at the outlet reflecting on the boundary of the jet (p is a constant on this surface)

(From Chassaing 1997)