Examples for 10/19/2020 (3) & Examples for 11/06/2020 (1) (continued)

The Weibull distribution has many applications in reliability engineering, survival analysis, and general insurance. Let $\beta > 0$, $\delta > 0$. Consider the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}}, \qquad x > 0,$$
 zero otherwise.

Recall: $W = X^{\delta}$ has an Exponential $(\theta = \frac{1}{\beta}) = Gamma(\alpha = 1, \theta = \frac{1}{\beta})$ distribution.

Let X_1, X_2, \dots, X_n be a random sample from the above probability distribution.

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n} X_{i}^{\delta} = \sum_{i=1}^{n} W_{i}$ has a Gamma ($\alpha = n, \theta = \frac{1}{\beta}$) distribution.

Recall: $Y = \sum_{i=1}^{n} X_{i}^{\delta}$ is a sufficient statistic for β .

Suppose $\delta = 3$. We wish to test $H_0: \beta = 3$ vs. $H_1: \beta < 3$.

6. p) Suppose n = 5. Find the uniformly most powerful rejection region with $\alpha = 0.10$.

Hint 1: We have $f(x; \beta) = 3 \beta x^2 e^{-\beta x^3}, \quad x > 0.$

Let $\beta < 3$. Start with

$$\frac{L(H_0; x_1, x_2, ..., x_n)}{L(H_1; x_1, x_2, ..., x_n)} = \frac{L(3; x_1, x_2, ..., x_n)}{L(\beta; x_1, x_2, ..., x_n)} = \frac{\prod_{i=1}^{n} f(x_i; 3)}{\prod_{i=1}^{n} f(x_i; \beta)} \le k.$$

Simplify this. Since $Y = \sum_{i=1}^{n} X_{i}^{3}$ is a sufficient statistic for β ,

and the final form of the "best" rejection region should look like this:

"Reject H₀ if
$$\sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{5} x_i^3 \left[\le \text{ or } \ge \right] c$$
".

The direction of the inequality sign is what you are trying to determine.

Hint 2:
$$Y = \sum_{i=1}^{n} X_i^3 = \sum_{i=1}^{n} W_i$$
 has a Gamma $(\alpha = n, \theta = \frac{1}{\beta})$ distribution.

Hint 3: Want
$$c$$
 such that $0.10 = \alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^3, ?c \mid \beta = 3).$

- Hint 4: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).
- q) Suppose n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$. Find the p-value of this test.
- 7. Consider the rejection region Reject H_0 if $\sum_{i=1}^{5} x_i^3 \ge 3$.
- r) Find the significance level α of this rejection region.

Hint 1:
$$\alpha = P(\text{Reject H}_0 \mid H_0 \text{ is true}) = P(\sum_{i=1}^5 X_i^3 \ge 3 \mid \beta = 3).$$

- Hint 2: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha 1)$, where Y has a Poisson (λt) distribution.
- s) Find the power of this rejection region if $\beta = 2$ and if $\beta = 1$.

The Weibull distribution has many applications in reliability engineering, survival analysis, and general insurance. Let $\beta > 0$, $\delta > 0$. Consider the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}}, \qquad x > 0,$$
 zero otherwise.

Recall:
$$W = X^{\delta}$$
 has an Exponential $(\theta = \frac{1}{\beta}) = Gamma(\alpha = 1, \theta = \frac{1}{\beta})$ distribution.

Let X_1, X_2, \dots, X_n be a random sample from the above probability distribution.

$$\Rightarrow Y = \sum_{i=1}^{n} X_{i}^{\delta} = \sum_{i=1}^{n} W_{i} \text{ has a Gamma} (\alpha = n, \theta = \frac{1}{\beta}) \text{ distribution.}$$

Recall: $Y = \sum_{i=1}^{n} X_{i}^{\delta}$ is a sufficient statistic for β .

Suppose $\delta = 3$. We wish to test $H_0: \beta = 3$ vs. $H_1: \beta < 3$.

6. p) Suppose n = 5. Find the uniformly most powerful rejection region with $\alpha = 0.10$.

Hint 1: We have $f(x; \beta) = 3 \beta x^2 e^{-\beta x^3}, \quad x > 0.$

Let $\beta < 3$. Start with

$$\frac{L(H_0; x_1, x_2, ..., x_n)}{L(H_1; x_1, x_2, ..., x_n)} = \frac{L(3; x_1, x_2, ..., x_n)}{L(\beta; x_1, x_2, ..., x_n)} = \frac{\prod_{i=1}^n f(x_i; 3)}{\prod_{i=1}^n f(x_i; \beta)} \le k.$$

Simplify this. Since $Y = \sum_{i=1}^{n} X_i^3$ is a sufficient statistic for β ,

and the final form of the "best" rejection region should look like this:

"Reject H₀ if
$$\sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{5} x_i^3 \left[\le \text{ or } \ge \right] c$$
".

The direction of the inequality sign is what you are trying to determine.

Hint 2:
$$Y = \sum_{i=1}^{n} X_i^3 = \sum_{i=1}^{n} W_i$$
 has a Gamma $(\alpha = n, \theta = \frac{1}{\beta})$ distribution.

Hint 3: Want c such that $0.10 = \alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^3 ? c \mid \beta = 3).$

Hint 4: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

Let $\beta < 3$.

$$\lambda(x_{1},x_{2},...,x_{n}) = \frac{L(H_{0}; x_{1},x_{2},...,x_{n})}{L(H_{1}; x_{1},x_{2},...,x_{n})} = \frac{\prod_{i=1}^{n} \left(9x_{i}^{2}e^{-3x_{i}^{3}}\right)}{\prod_{i=1}^{n} \left(3\beta x_{i}^{2}e^{-\beta x_{i}^{3}}\right)}$$
$$= \left(\frac{3}{\beta}\right)^{n} \exp\left\{(\beta-3)\sum_{i=1}^{n}x_{i}^{3}\right\}.$$

$$\lambda (x_1, x_2, ..., x_n) \le k \qquad \Leftrightarrow \qquad (\beta - 3) \sum_{i=1}^n x_i^3 \le k_1$$

$$\Leftrightarrow \qquad \sum_{i=1}^n x_i^3 \ge c \qquad \text{(since } \beta < 3\text{)}.$$

Reject H_0 if $\sum_{i=1}^n x_i^3 \ge c$.

$$\sum_{i=1}^{n} X_{i}^{3} \text{ has a Gamma distribution with } \alpha = n = 5 \text{ and } \theta = \frac{1}{\beta}.$$

Then $\frac{2}{\theta} \sum_{i=1}^{n} X_i^3 = 2 \beta \sum_{i=1}^{n} X_i^3$ has a $\chi^2(2\alpha = 10 \text{ degrees of freedom})$ distribution.

$$0.10 = \alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^3 \ge c \mid \beta = 3)$$

$$= P(2 \cdot 3 \cdot \sum_{i=1}^5 X_i^3 \ge 2 \cdot 3 \cdot c \mid \beta = 3) = P(\chi^2(10) \ge 6c).$$

$$\Rightarrow$$
 6 $c = \chi_{0.10}^2(10) = 15.99.$ \Rightarrow $c = 2.665.$

Reject H₀ if $\sum_{i=1}^{5} x_i^3 \ge 2.665$.

OR

$$6 c = \chi_{0.10}^2(10) = 15.98718.$$
 $\Rightarrow c = 2.66453.$

Reject H₀ if $\sum_{i=1}^{5} x_i^3 \ge 2.66453$.

OR

0.10 =
$$\alpha = P(\text{Reject H}_0 | \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^3 \ge c | \beta = 3)$$

= $P(\text{Poisson}(c \times 3) \le 5 - 1) = P(\text{Poisson}(3c) \le 4).$

$$P(Poisson(8.0) \le 4) = 0.100.$$
 $3c = 8.$ $c = 2.66666...$

Reject H₀ if
$$\sum_{i=1}^{5} x_i^3 \ge 2.66666...$$
.

q) Suppose n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$. Find the p-value of this test.

$$\sum_{i=1}^{n} x_i^3 = 2.5.$$

p-value =
$$P(\sum_{i=1}^{5} X_{i}^{3} \ge 2.5 \mid \beta = 3) = P(Poisson(2.5 \times 3) \le 5 - 1)$$

= $P(Poisson(7.5) \le 4) = \mathbf{0.132}$.

OR

p-value =
$$P(\sum_{i=1}^{5} X_{i}^{3} \ge 2.5 \mid \beta = 3) = P(2 \cdot 3 \cdot \sum_{i=1}^{5} X_{i}^{3} \ge 2 \cdot 3 \cdot 2.5 \mid \beta = 3)$$

= $P(\chi^{2}(10) \ge 15) = 0.132062$.

- 7. Consider the rejection region Reject H_0 if $\sum_{i=1}^{5} x_i^3 \ge 3$.
- r) Find the significance level α of this rejection region.

Hint 1:
$$\alpha = P(\text{Reject H}_0 \mid H_0 \text{ is true}) = P(\sum_{i=1}^5 X_i^3 \ge 3 \mid \beta = 3).$$

Hint 2: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

$$\alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^5 X_i^3 \ge 3 \mid \beta = 3)$$

$$= P(\text{Poisson}(3 \times 3) \le 5 - 1) = P(\text{Poisson}(9) \le 4) = \mathbf{0.055}.$$
OR
$$= P(\chi^2(10) \ge 18) = 0.054964.$$

s) Find the power of this rejection region if $\beta = 2$ and if $\beta = 1$.

Power(
$$\beta$$
) = P(Reject H₀ | β) = P($\sum_{i=1}^{5} X_i^3 \ge 3 | \beta$)
= P(Poisson($3 \times \beta$) $\le 5 - 1$) = P(Poisson(3β) ≤ 4).
OR = P($\chi^2(10) \ge 6\beta$).

Power(2) =
$$P(Poisson(6) \le 4) = 0.285$$
. 0.285057.

Power(1) =
$$P(Poisson(3) \le 4) = 0.815$$
. 0.815263.