Evolution of volumetric response in cyclic shearing using a memory-enhanced SANISAND model

M. Yang¹ A. R. Barrero¹ M. Taiebat¹ Y. F. Dafalias^{2,3}

Caltech, California, USA June 20, 2019

ACKNOWI EDGEMENT:

National Science and Engineering Research Council of Canada

¹Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada

²Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

³Department of Mechanics, National Technical University of Athens, Athens, Greece

Impact of CSR on rate of pore pressure generation

ullet Undrained cyclic torsional tests on Ottawa-F65 sand with $D_r=50\%$ (Ueda 2018)

Reference model: SANISAND04

- SANISAND: Simple ANIsotropic SAND plasticity model
 - Evolving fabric anisotropy (Dafalias and Manzari 2004)

"Memory surface": memorizing recent stress history

Homologous to yield surface; isotropic and kinematic hardening; size influencing the plastic stiffness: Severn-Trent (Corti et al. 2016), SANISAND04 (Liu et al. 2018)

Mean effective stress, p' (kPa)

SANISAND04 with MS

CSR=0.10

CSR=0.19

• Improved response at low CSR, but ruined performance at high CSR. Solution?

Improved memory-enhanced SANISAND

Balance between high CSR and low CSR: making μ_0 a linear function of the stress ratio at loading reversal (α_{in}): μ_{ref} , μ_k

CSR=0.10

Model parameters

Improved SANISAND

Parameters	Symbol	Ottawa-F65 ¹	$Karlsruhe^2$
Elasticity	G_0	125	95
	ν	0.05	0.05
CSL	Μ	1.26	1.35
	С	1.0	1.0
	$e_{\rm c}^{\rm ref}$	0.78	1.038
	λ_{c}	0.0287	0.056
	ξ	0.7	0.28
Yield surface	m	0.01	0.01
Dilatancy	n^{d}	2.50	2.15
	A_0	0.626	0.56
Kinematic	n^{b}	2.30	1.20
Hardening	h_0	5.00	7.60
	c_{h}	0.968	1.015
Fabric dilatancy	z_{max}	11.0	6.5
	c_z	500	800
Memory surface	μ_{ref}	304	324
	μ_{k}	1148	865
	ζ	0.0001	0.0001

¹Cyclic torsional tests from Ueda (2018)

Ming Yang (UBC)

²Cyclic triaxial tests from Wichtmann and Triantafyllidis (2016)

Undrained cyclic torsional on Ottawa-F65 sand

CSR=0.19 Simulation - Improved SANISAND Experiment - Ottawa-F65 20 20 20 Shear stress, 7 (kPa) Shear stress, 7 (kPa) Shear stress, (kPa) 10 10 10 -10 -10 -20 -20 -20 40 60 100 120 40 60 80 100 120 20 40 100 120 0 Mean effective stress, p' (kPa) Mean effective stress, p' (kPa) Mean effective stress, p' (kPa)

Undrained cyclic torsional on Ottawa-F65 sand cont'd

CSR = 0.13Simulation - Improved SANISAND Experiment - Ottawa-F65 20 20 20 Shear stress, 7 (kPa) Shear stress, 7 (kPa) Shear stress, (kPa) 10 10 -20 -20 -20 100 120 60 80 100 120 20 100 120 0 Mean effective stress, p' (kPa) Mean effective stress, p' (kPa) Mean effective stress, p' (kPa)

Undrained cyclic torsional on Ottawa-F65 sand cont'd

Undrained cyclic triaxial on Karlsruhe fine sand

Undrained cyclic triaxial on Karlsruhe fine sand cont'd

CSR=0.10 Experiment - Karlsruhe Simulation - SANISAND04 Simulation - Improved SANISAND Deviatoric stress, q (kPa) Deviatoric stress, q (kPa) Deviatoric stress, q (kPa) 20 20 20 -20 -20 60 100 120 60 80 100 120 20 40 100 120 Mean effective stress, p' (kPa) Mean effective stress, p' (kPa) Mean effective stress, p' (kPa)

Pore pressure generation

Liquefaction strength curve

• Initial liquefaction: $r_u = 0.95$

Undrained cyclic torsional on Ottawa-F65

Undrained cyclic triaxial on Karlsruhe

Conclusions

- Memory surface:
 - Isotropic and kinematic hardening; size influencing plastic stiffness
- Improved SANISAND:
 - Pace of excess pore pressure generation for low CSRs
 - Balance between high CSRs and low CSRs
 - Excellent capturing the number of cycles to reach liquefaction triggering
- Ongoing works:
 - Exploring the effects of confinement, initial static shear bias and different types of loading

Thank you!