Local Linear Convergence of First-order Proximal Splitting Methods

Jingwei Liang
University of Cambridge

Joint work with: Clarice Poon (Bath)

Carola Schönlieb (Cambridge)

Jalal Fadili (CNRS, ENSICAEN)

Gabriel Peyré (CNRS, ENS-Paris)

Adrian Lewis (Cornell)

INRIA, February 2019

Outline

A brief overview of first-order methods

Geometry of non-smooth regularisation

Local convergence analysis

- · Finite activity identification
- Local linear convergence

Numerical Experiments

Part I First-order Proximal Splitting Algorithms

Example: data science

Sparse logistic regression [Friedman et al, 2001]

$$\begin{aligned} (z_i, y_i) \in \mathbb{R}^n \times \{\pm 1\}, i = 1, ..., m, \\ \min_{(b, x) \in \mathbb{R} \times \mathbb{R}^n} \mu \|x\|_1 + \frac{1}{m} \sum_{i=1}^m f(\langle x, z_i \rangle + b, y_i), \end{aligned}$$

where $f(u_i, y_i) = \log(1 + e^{-u_i y_i})$.

$$||x||_1 = \sum_{\ell=1}^n |x_{\ell}|.$$

Example: image processing

TV based Image deblur [Rudin et al, 1992]

$$W = Hx_{ob} + \omega$$
,

where $H \in \mathbb{R}^{m \times n}$ is blur kernel, $\omega \in \mathbb{R}^m$ is additive noise.

$$\mathsf{TV}(x) = \|\nabla x\|_1$$

 x_{ob} w recovered x

Example: computer vision

Principal component pursuit [Candès et al, 2011]

$$\mathbf{w} = \mathbf{x}_{\mathsf{ob},l} + \mathbf{x}_{\mathsf{ob},s} + \omega,$$

 $\mathbf{x}_{\mathsf{ob},l} \in \mathbb{R}^{m \times n}$ is low-rank, $\mathbf{x}_{\mathsf{ob},s} \in \mathbb{R}^{m \times n}$ is sparse and $\omega \in \mathbb{R}^{m \times n}$ is noise.

$$\|\mathbf{x}\|_* = \sum_{\ell=1}^{\operatorname{rank}(\mathbf{x})} \sigma_{\ell}(\mathbf{x}).$$

W X_{l} X_{S}

Example: inverse problems

Forward model:

$$W = (Hx_{ob}) \odot \omega$$
.

Goal: recover x_{ob}

Challenge: ill-posed

Hope: prior knowledge of x_{ob}

Example: inverse problems

Forward model:

$$\mathbf{w} = (H\mathbf{x}_{\mathsf{ob}}) \odot \omega$$
.

Goal: recover x_{ob}

Challenge: ill-posed

Hope: prior knowledge of x_{ob}

- Regularisation: promoting low-complexity structure to the solution...
- Examples:

Sparsity ℓ_1 -norm, ℓ_1 -norm, ℓ_p -norm, ℓ_0 pseudo-norm

Analysis sparsity total variation, wavelet, dictionary...

Low-rank nuclear norm, rank function

Constraints simplex, non-negativity...

Optimization problem

Non-smooth optimisation problem

$$\min_{x \in \mathbb{R}^n} \big\{ \Phi(x) \stackrel{\text{\tiny def}}{=} F(x) + \sum\nolimits_{i=1}^r R_i(x) \big\}.$$

F: data fidelity term...

R_i: non-smooth regularisation terms...

l: Introduction 8/34

Optimization problem

Non-smooth optimisation problem

$$\min_{x \in \mathbb{R}^n} \left\{ \Phi(x) \stackrel{\text{def}}{=} F(x) + \sum\nolimits_{i=1}^r R_i(x) \right\}.$$

F: data fidelity term...

R_i: non-smooth regularisation terms...

Image deblur

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mu \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|H\mathbf{x} - \mathbf{w}\|^2.$$

Sparse logistic regression

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum_{i=1}^m f(\langle \mathbf{x}, z_i \rangle + b, y_i).$$

Principal component pursuit

$$\min_{\mathbf{x}_{1},\mathbf{x}_{8} \in \mathbb{R}^{m \times n}} \ \mu_{1} \|\mathbf{x}_{8}\|_{1} + \mu_{2} \|\mathbf{x}_{1}\|_{*} + \frac{1}{2} \|\mathbf{w} - \mathbf{x}_{1} - \mathbf{x}_{8}\|^{2}.$$

Optimization problem

Non-smooth optimisation problem

$$\min_{\mathbf{x}\in\mathbb{R}^n}\big\{\Phi(\mathbf{x})\stackrel{\text{def}}{=} F(\mathbf{x})+\sum_{i=1}^r R_i(\mathbf{x})\big\}.$$

F: data fidelity term...

R_i: non-smooth regularisation terms...

Image deblur

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mu \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|H\mathbf{x} - \mathbf{w}\|^2.$$

Sparse logistic regression

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum_{i=1}^m f(\langle \mathbf{x}, \mathbf{z}_i \rangle + \mathbf{b}, \mathbf{y}_i).$$

Principal component pursuit

$$\min_{\mathbf{x}_{1},\mathbf{x}_{s} \in \mathbb{R}^{m \times n}} \ \mu_{1} \|\mathbf{x}_{s}\|_{1} + \mu_{2} \|\mathbf{x}_{l}\|_{*} + \frac{1}{2} \|\mathbf{w} - \mathbf{x}_{l} - \mathbf{x}_{s}\|^{2}.$$

Non-smooth, (non-convex), composite, high dimension

First-order methods: two basic ingredients

Gradient descent

$$\min_{x\in\mathbb{R}^n}F(x)$$

where *F* is convex smooth differentiable with ∇F being *L*-Lipschitz

$$x_{k+1} = x_k - \gamma \nabla F(x_k), \ \gamma_k \in]0, 2/L[.$$

l: Introduction

First-order methods: two basic ingredients

Gradient descent

$$\min_{x\in\mathbb{R}^n}F(x)$$

where F is convex smooth differentiable with ∇F being L-Lipschitz

$$x_{k+1} = x_k - \gamma \nabla F(x_k), \ \gamma_k \in]0, 2/L[.$$

Proximal point algorithm [Rockafellar, 1976]

$$\min_{\mathbf{x}\in\mathbb{R}^n}R(\mathbf{x})$$

with R being proper convex and l.s.c.. Define "proximity operator" by

$$\operatorname{prox}_{\gamma R}(v) \stackrel{\text{def}}{=} \operatorname{argmin}_{x \in \mathbb{R}^n} \gamma R(x) + \frac{1}{2} \|x - v\|^2.$$

Proximal point algorithm

$$x_{k+1} = \operatorname{prox}_{\gamma_k R}(x_k), \ \gamma_k > 0.$$

FoM [Bauschke and Combettes, 2011]...

F+R Forward–Backward splitting (FB), inertial FB, Nesterov, FISTA $F=\frac{1}{m}\sum_i f_i$: stochastic gradient methods

l: Introduction 10/34

FoM [Bauschke and Combettes, 2011]...

F+R Forward-Backward splitting (FB), inertial FB, Nesterov, FISTA $F=\frac{1}{m}\sum_i f_i$: stochastic gradient methods

 $R_1 + R_2$ Douglas-Rachford splitting

l: Introduction 10/34

FoM [Bauschke and Combettes, 2011]...

F+R Forward–Backward splitting (FB), inertial FB, Nesterov, FISTA $F=\frac{1}{m}\sum_i f_i$: stochastic gradient methods

 $R_1 + R_2$ Douglas-Rachford splitting

F + R(W) Class of Primal-Dual splitting

Alternating Direction Method of Multipliers (ADMM)

l: Introduction 10/34

FoM [Bauschke and Combettes, 2011]...

$$F+R$$
 Forward–Backward splitting (FB), inertial FB, Nesterov, FISTA $F=\frac{1}{m}\sum_i f_i$: stochastic gradient methods

$$R_1 + R_2$$
 Douglas-Rachford splitting

$$F+R(\mathcal{W}\cdot)$$
 Class of Primal–Dual splitting
Alternating Direction Method of Multipliers (ADMM)

$$F+\sum_{i=1}^{r}R_{i}$$
 Three-operator splitting $(r=2)$ Forward-Douglas-Rachford $(r=2,R_{2}=\iota_{\mathcal{V}}(\cdot))$ Generalized Forward-Backward splitting $(r\geq2)$

- ...

I: Introduction 10/34

FoM [Bauschke and Combettes, 2011]...

$$F+R$$
 Forward–Backward splitting (FB), inertial FB, Nesterov, FISTA $F=\frac{1}{m}\sum_i f_i$: stochastic gradient methods

$$R_1 + R_2$$
 Douglas-Rachford splitting

$$F+R(\mathcal{W}\cdot)$$
 Class of Primal-Dual splitting

Alternating Direction Method of Multipliers (ADMM)

$$F+\sum_{i=1}^{r}R_{i}$$
 Three-operator splitting $(r=2)$ Forward-Douglas-Rachford $(r=2,R_{2}=\iota_{\mathcal{V}}(\cdot))$ Generalized Forward-Backward splitting $(r\geq2)$

Dates back to 1950s for numerical PDE, now ubiquitous in signal/image processing, inverse problems, data science, statistics and machine learning, game theory...

: Introduction 10/34

of Non-smooth Regularisation

Part II

A Geometric Perspective

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

II: Geometry of FoM

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

II: Geometry of FoM

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

FoM: generates x_k that converges to x^* .

How about

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

FoM: generates x_k that converges to x^* .

How about

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

FoM: generates x_k that converges to x^* .

How about

Goal: find x^* which has low-complexity, e.g. $x^* \in \mathcal{M}_{x^*}$.

FoM: generates x_k that converges to x^* .

How about

Typical observation

Low-rank recovery

$$\min_{\mathbf{x} \in \mathbb{R}^{n \times n}} \mu \|\mathbf{x}\|_* + \frac{1}{2} \|H\mathbf{x} - \mathbf{w}\|^2.$$

II: Geometry of FoM 13/34

Typical observation

Low-rank recovery

$$\min_{\mathbf{x} \in \mathbb{R}^{n \times n}} \mu \|\mathbf{x}\|_* + \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{w}\|^2.$$

"Activity" of
$$x_k$$
: $q = \text{rank}(x^*)$

∘ rank(
$$x$$
) ∈] q , n [: k ≤ K

∘ rank(
$$x$$
) = q : k ≥ K

Rate of convergence:

- ∘ Sub-linear: *k* < *K*
- ∘ Linear: $k \ge K$

Typical observation

Low-rank recovery

$$\min_{\mathbf{x} \in \mathbb{R}^{n \times n}} \mu \|\mathbf{x}\|_* + \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{w}\|^2.$$

"Activity" of
$$x_k$$
: $q = \text{rank}(x^*)$

∘ rank(
$$x$$
) ∈] q , n [: $k \le K$

∘ rank(
$$x$$
) = q : k ≥ K

Rate of convergence:

∘ Sub-linear: *k* < *K*

∘ Linear: $k \ge K$

Phase transition of convergence rate coincides with that of "activity".

II: Geometry of FoM 13/34

Open questions

- What are the possible mechanisms underlying the identification of "activity"?
- How fast is the global sub-linear convergence rate?
- How to explain the local linear convergence?
- What is the relation between local linear convergence and the identification of "activity"?
- · Can we accelerate
 - the local convergence rate?
 - higher-order methods?

II: Geometry of FoM 14/34

Specific problems (e.g. ℓ_1 -norm)

Specific algorithms (e.g. FB)

Cannot explain "phase transition"

A unified framework is missing!

II: Geometry of FoM

Specific problems (e.g. ℓ_1 -norm)

Specific algorithms (e.g. FB)

Cannot explain "phase transition"

A unified framework is missing!

• Global o($1/\sqrt{k}$) sub-linear convergence rate for $||x_k - x_{k-1}||$.

II: Geometry of FoM 15/34

Specific problems (e.g. ℓ_1 -norm)

Specific algorithms (e.g. FB)

Cannot explain "phase transition"

A unified framework is missing!

- Global $o(1/\sqrt{k})$ sub-linear convergence rate for $||x_k x_{k-1}||$.
- · A unified framework for:
 - Finite time activity identification
 - Local linear convergence
 - Relation between the two...

Covers both deterministic and stochastic setting.

II: Geometry of FoM 15/34

Specific problems (e.g. ℓ_1 -norm)

Specific algorithms (e.g. FB)

Cannot explain "phase transition"

A unified framework is missing!

- Global $o(1/\sqrt{k})$ sub-linear convergence rate for $||x_k x_{k-1}||$.
- A unified framework for:
 - Finite time activity identification
 - Local linear convergence
 - Relation between the two...

Covers both *deterministic* and *stochastic* setting.

 Geometry based acceleration which bridges 1st-order and 2nd-order methods.

II: Geometry of FoM 15/34

Part III

Partial Smoothness and a Unified Framework

Partial smoothness

- A partly smooth function behaves smoothly along a manifold \mathcal{M} , and sharply normal to it.
- The behaviours of the function and its minimizers depend essentially on their restrictions to the manifold.

• It offers a powerful framework for algorithmic and sensitivity analysis.

III: Local Analysis of FoM 17/34

Partial smoothness

Partly smooth function [Lewis, 2003]

Let $R \in \Gamma_0(\mathbb{R}^n)$, R is partly smooth at x relative to a set \mathcal{M}_x containing x if $\partial R(x) \neq \emptyset$

Smoothness: \mathcal{M}_x is a C^2 -manifold, $R|_{\mathcal{M}_x}$ is C^2 near x.

Sharpness: Tangent space $\mathcal{T}_{\mathcal{M}_x}(x)$ is $\mathcal{T}_x \stackrel{\text{def}}{=} \operatorname{par}(\partial R(x))^{\perp}$.

Continuity: $\partial R : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is continuous along \mathcal{M}_x near x.

III: Local Analysis of FoM 18/34

Partial smoothness

Partly smooth function [Lewis, 2003]

Let $R \in \Gamma_0(\mathbb{R}^n)$, R is partly smooth at x relative to a set \mathcal{M}_x containing x if $\partial R(x) \neq \emptyset$

Smoothness: \mathcal{M}_x is a C^2 -manifold, $R|_{\mathcal{M}_x}$ is C^2 near x.

Sharpness: Tangent space $\mathcal{T}_{\mathcal{M}_x}(x)$ is $T_x \stackrel{\text{def}}{=} \operatorname{par}(\partial R(x))^{\perp}$. **Continuity**: $\partial R : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is continuous along \mathcal{M}_x near x.

Calculus rules:

- · Sum and composition
- Smooth perturbation
- Spectral lifting

par(C): sub-space parallel to C, where $C \subset \mathbb{R}^n$ is a non-empty convex set.

Partial smoothness

Partly smooth function [Lewis, 2003]

Let $R \in \Gamma_0(\mathbb{R}^n)$, R is partly smooth at x relative to a set \mathcal{M}_x containing x if $\partial R(x) \neq \emptyset$

Smoothness: \mathcal{M}_x is a C^2 -manifold, $R|_{\mathcal{M}_x}$ is C^2 near x.

Sharpness: Tangent space $\mathcal{T}_{\mathcal{M}_x}(x)$ is $T_x \stackrel{\text{def}}{=} \operatorname{par}(\partial R(x))^{\perp}$. **Continuity**: $\partial R : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is continuous along \mathcal{M}_x near x.

 $\mathsf{PSF}_{\mathsf{x}}(\mathcal{M}_{\mathsf{x}})$: partly smooth function at x relative to \mathcal{M}_{x}

Proximal splitting algorithm

Proximal splitting algorithm

Convergence of objective function, sequence

Proximal splitting algorithm

 \downarrow

Convergence of objective function, sequence

 \downarrow

Non-degeneracy condition: finite activity identification

Proximal splitting algorithm

 \downarrow

Convergence of objective function, sequence

 \downarrow

Non-degeneracy condition: finite activity identification

1

Local linearised iteration: matrix M

Proximal splitting algorithm

 \Downarrow

Convergence of objective function, sequence

 \downarrow

Non-degeneracy condition: finite activity identification

 \downarrow

Local linearised iteration: matrix M

⇓

Spectral properties of M

Proximal splitting algorithm

 \Downarrow

Convergence of objective function, sequence

 \downarrow

Non-degeneracy condition: finite activity identification

1

Local linearised iteration: matrix M

11

Spectral properties of M

⇓

Local linear convergence

Proximal splitting algorithm (non-linear) Convergence of objective function, sequence Non-degeneracy condition: finite activity identification Local linearised iteration: matrix *M* (**linear**) Spectral properties of M **Local linear convergence**

- Forward-Backward-type:
 - FB, inertial FB, FISTA [L, Jalal & Peyré, 14, 17]
 - Stochastic variants [Poon, L & Schönlieb, 18]
 - o Non-convex [L, Jalal & Peyré, 16]
- Douglas-Rachford splitting, ADMM [L, Jalal & Peyré, 16]
- Class of Primal-Dual splitting methods [L, Jalal & Peyré, 18]
- Forward-Douglas-Rachford/Generalized Forward-Backward splitting, Threeoperator splitting [Molinari, L & Jalal, 18]

- Forward-Backward-type:
 - FB, inertial FB, FISTA [L, Jalal & Peyré, 14, 17]
 - Stochastic variants [Poon, L & Schönlieb, 18]
 - o Non-convex [L, Jalal & Peyré, 16]
- Douglas-Rachford splitting, ADMM [L, Jalal & Peyré, 16]
- Class of Primal-Dual splitting methods [L, Jalal & Peyré, 18]
- Forward-Douglas-Rachford/Generalized Forward-Backward splitting, Threeoperator splitting [Molinari, L & Jalal, 18]

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Inexact Forward-Backward (iFB)

Let $\gamma_k \in]0, 2/L[$ and $\epsilon_k \in \mathbb{R}^n$:

$$x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k (\nabla F(x_k) + \epsilon_k))$$

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Inexact Forward-Backward (iFB)

Let $\gamma_k \in]0, 2/L[$ and $\epsilon_k \in \mathbb{R}^n$:

$$x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k (\nabla F(x_k) + \epsilon_k))$$

Remark For
$$F = \frac{1}{m} \sum_{i} f_i$$
: $i_k \in \{1, \dots, n\}$

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Inexact Forward-Backward (iFB)

Let $\gamma_k \in]0, 2/L[$ and $\epsilon_k \in \mathbb{R}^n$:

$$x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k (\nabla F(x_k) + \epsilon_k))$$

Remark For $F = \frac{1}{m} \sum_{i} f_i$: $i_k \in \{1, \dots, n\}$

Stochastic gradient descent (SGD):

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla F(x_k).$$

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Inexact Forward-Backward (iFB)

Let $\gamma_k \in]0, 2/L[$ and $\epsilon_k \in \mathbb{R}^n$:

$$x_{k+1} = \operatorname{prox}_{\gamma_k R} (x_k - \gamma_k (\nabla F(x_k) + \epsilon_k))$$

Remark For $F = \frac{1}{m} \sum_{i} f_i$: $i_k \in \{1, \dots, n\}$

• Stochastic gradient descent (SGD):

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla F(x_k).$$

• SAGA [Defazio et al, 14]:

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_{k-1}) + \frac{1}{m} \sum_{j=1}^m \nabla f_{i_{k-j}}(x_{k-j}) - \nabla F(x_k).$$

Recall the optimisation problem

$$\min_{x\in\mathbb{R}^n} \ \big\{\Phi(x)=R(x)+F(x)\big\}.$$

Inexact Forward-Backward (iFB)

Let $\gamma_k \in]0, 2/L[$ and $\epsilon_k \in \mathbb{R}^n$:

$$x_{k+1} = \mathsf{prox}_{\gamma_k R} (x_k - \gamma_k (\nabla F(x_k) + \epsilon_k))$$

Remark For $F = \frac{1}{m} \sum_{i} f_i$: $i_k \in \{1, \dots, n\}$

Stochastic gradient descent (SGD):

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla F(x_k).$$

SAGA [Defazio et al, 14]:

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_{k-1}) + \tfrac{1}{m} \sum_{j=1}^m \nabla f_{i_{k-j}}(x_{k-j}) - \nabla F(x_k).$$

• Prox-SVRG [Xiao & Zhang, 14]

$$\epsilon_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}_\ell) + \nabla F(\tilde{x}_\ell) - \nabla F(x_k).$$

Let $x^* \in Argmin(\Phi)$ be a global minimiser.

Convergence of iFB [L, Jalal & Peyré, 16, Poon, L & Schönlieb, 18]

Deterministic: $x_k \to x^*$ if

$$\gamma_k \in]0, 2/L[$$
 and $\sum_k \|\epsilon_k\| < +\infty.$

Stochastic: $x_k \to x^*$ almost surely if

$$\gamma_k \equiv \gamma \in]0, 1/L[$$
 and $\sum_k \mathbb{E}[\|\epsilon_k\|^2] < +\infty.$

Let $x^* \in Argmin(\Phi)$ be a global minimiser.

Convergence of iFB [L, Jalal & Peyré, 16, Poon, L & Schönlieb, 18]

Deterministic: $x_k \to x^*$ if

$$\gamma_k \in]0, 2/L[$$
 and $\sum_k \|\epsilon_k\| < +\infty.$

Stochastic: $x_k \to x^*$ almost surely if

$$\gamma_k \equiv \gamma \in]0, 1/L[$$
 and $\sum_k \mathbb{E}[\|\epsilon_k\|^2] < +\infty.$

Remark

• The convergence of $\Phi(x_k)$ follows that of x_k

Let $x^* \in Argmin(\Phi)$ be a global minimiser.

Convergence of iFB [L, Jalal & Peyré, 16, Poon, L & Schönlieb, 18]

Deterministic: $x_k \to x^*$ if

$$\gamma_k \in]0, 2/L[$$
 and $\sum_k \|\epsilon_k\| < +\infty.$

Stochastic: $x_k \to x^*$ almost surely if

$$\gamma_k \equiv \gamma \in]0, 1/L[$$
 and $\sum_k \mathbb{E}[\|\epsilon_k\|^2] < +\infty.$

Remark

- The convergence of $\Phi(x_k)$ follows that of x_k
- SPG:

$$\mathbb{E}[\|\epsilon_k\|] \in]0, +\infty[.$$

Let $x^* \in Argmin(\Phi)$ be a global minimiser.

Convergence of iFB [L, Jalal & Peyré, 16, Poon, L & Schönlieb, 18]

Deterministic: $x_k \to x^*$ if

$$\gamma_k \in]0, 2/L[$$
 and $\sum_k \|\epsilon_k\| < +\infty.$

Stochastic: $x_k \to x^*$ almost surely if

$$\gamma_k \equiv \gamma \in]0, 1/L[$$
 and $\sum_k \mathbb{E}[\|\epsilon_k\|^2] < +\infty.$

Remark

- The convergence of $\Phi(x_k)$ follows that of x_k
- SPG:

$$\mathbb{E}[\|\epsilon_k\|] \in]0, +\infty[.$$

SAGA/Prox-SVRG:

$$\mathbb{E}[\|\epsilon_k\|] \to 0.$$

Let
$$x^* \in Argmin(\Phi)$$
, then

$$0 \in \nabla F(x^*) + \partial R(x^*).$$

Let $x^* \in Argmin(\Phi)$, then

$$0 \in \nabla F(\mathbf{x}^*) + \partial R(\mathbf{x}^*).$$

Finite identification [L, Jalal & Peyré, 17, Poon, L & Schönlieb, 18]

Let the convergence of iFB hold. Suppose that $R \in \mathsf{PSF}_{x^*}(\mathcal{M}_{x^*})$, and the non-degeneracy condition

$$0 \in \operatorname{ri}(\nabla F(x^{\star}) + \partial R(x^{\star})), \tag{ND}$$

holds. Then, there exists a K > 0 such that for all k > K:

$$x_k \in \mathcal{M}_{x^*}$$
.

Let $x^* \in Argmin(\Phi)$, then

$$0 \in \nabla F(\mathbf{x}^{\star}) + \partial R(\mathbf{x}^{\star}).$$

Finite identification [L, Jalal & Peyré, 17, Poon, L & Schönlieb, 18]

Let the convergence of iFB hold. Suppose that $R \in \mathsf{PSF}_{x^*}(\mathcal{M}_{x^*})$, and the non-degeneracy condition

$$0 \in \operatorname{ri}(\nabla F(x^*) + \partial R(x^*)), \tag{ND}$$

holds. Then, there exists a K > 0 such that for all k > K:

$$x_k \in \mathcal{M}_{x^*}$$
.

Remark

• A bound on K can be provided.

Let $x^* \in Argmin(\Phi)$, then

$$0 \in \nabla F(\mathbf{x}^{\star}) + \partial R(\mathbf{x}^{\star}).$$

Finite identification [L, Jalal & Peyré, 17, Poon, L & Schönlieb, 18]

Let the convergence of iFB hold. Suppose that $R \in \mathsf{PSF}_{x^*}(\mathcal{M}_{x^*})$, and the non-degeneracy condition

$$0 \in \operatorname{ri}(\nabla F(x^*) + \partial R(x^*)), \tag{ND}$$

holds. Then, there exists a $K \ge 0$ such that for all $k \ge K$:

$$x_k \in \mathcal{M}_{x^*}$$
.

Remark

- A bound on K can be provided.
- Stochastic proximal gradient does **NOT** have finite identification.

Let $x^* \in Argmin(\Phi)$, then

$$0 \in \nabla F(\mathbf{x}^{\star}) + \partial R(\mathbf{x}^{\star}).$$

Finite identification [L, Jalal & Peyré, 17, Poon, L & Schönlieb, 18]

Let the convergence of iFB hold. Suppose that $R \in \mathsf{PSF}_{x^*}(\mathcal{M}_{x^*})$, and the non-degeneracy condition

$$0 \in \operatorname{ri}(\nabla F(x^{\star}) + \partial R(x^{\star})), \tag{ND}$$

holds. Then, there exists a $K \ge 0$ such that for all $k \ge K$:

$$x_k \in \mathcal{M}_{x^*}$$
.

Remark

- A bound on K can be provided.
- Stochastic proximal gradient does NOT have finite identification.
- The identification of SAGA/Prox-SVRG is almost surely.

Step 3 - Local linearisation: deterministic

Local linearisation [L, Jalal & Peyré, 17]

For the iFB iteration, suppose the **Identification** theorem holds. If F is locally C^2 around x^* ,

$$\gamma_k \to \gamma \in]0, 2/L[,$$

then for all k large enough, there exist a matrix M such that

$$X_{k+1} - X^* = M(X_k - X^*) + o(\|X_k - X^*\|) + \epsilon_k.$$

Step 3 - Local linearisation: deterministic

Local linearisation [L, Jalal & Peyré, 17]

For the iFB iteration, suppose the **Identification** theorem holds. If F is locally C^2 around x^* ,

$$\gamma_k \to \gamma \in]0, 2/L[,$$

then for all k large enough, there exist a matrix M such that

$$X_{k+1} - X^* = M(X_k - X^*) + o(\|X_k - X^*\|) + \epsilon_k.$$

Remark

• $o(||x_k - x^*||)$ vanishes if R is locally polyhedral around x^* , and

$$\gamma_{\mathbf{k}} \equiv \gamma$$
.

Step 3 - Local linearisation: deterministic

Local linearisation [L, Jalal & Peyré, 17]

For the iFB iteration, suppose the **Identification** theorem holds. If F is locally C^2 around x^* ,

$$\gamma_k \to \gamma \in]0, 2/L[,$$

then for all k large enough, there exist a matrix M such that

$$X_{k+1} - X^* = M(X_k - X^*) + o(\|X_k - X^*\|) + \epsilon_k.$$

Remark

• $o(||x_k - x^*||)$ vanishes if R is locally polyhedral around x^* , and

$$\gamma_{\mathbf{k}} \equiv \gamma$$
.

• *M* is similar to a symmetric positive semidefinite matrix.

Step 4 - Local linear convergence: deterministic

Restricted injectivity:
$$\exists \alpha > 0$$
 such that $\forall h \in T_{\mathsf{X}^{\star}}$,

$$\langle h, \nabla^2 F(\mathbf{x}^*) h \rangle \ge \alpha \|h\|^2.$$
 (RI)

Step 4 - Local linear convergence: deterministic

Restricted injectivity:
$$\exists \alpha > 0$$
 such that $\forall h \in T_{x^*}$, $\langle h, \nabla^2 F(x^*)h \rangle \ge \alpha \|h\|^2$. (RI)

Spectral radius of M [L, Jalal & Peyré, 17]

For matrix M, suppose (RI) holds, then $\rho(M) < 1$ as long as

$$\gamma \in]0, 2/L[,$$

and $\rho(M)$ can be given explicitly.

Step 4 - Local linear convergence: deterministic

Restricted injectivity:
$$\exists \alpha > 0$$
 such that $\forall h \in T_{x^*}$, $\langle h, \nabla^2 F(x^*)h \rangle \geq \alpha \|h\|^2$. (RI)

Spectral radius of M [L, Jalal & Peyré, 17]

For matrix M, suppose (RI) holds, then $\rho(M) < 1$ as long as

$$\gamma \in]0, 2/L[,$$

and $\rho(M)$ can be given explicitly.

Local linear convergence [L, Jalal & Peyré, 17]

Suppose iFB creates a sequence $x_k \to x^* \in \text{Argmin}(\Phi)$ such that the **Identification**, **Linearisation** and **Spectral radius** theorems hold, and $\|\epsilon_k\|$ decays fast enough. Then given any $\rho \in [\rho(M), 1[$, there is K large enough such that for all $k \geq K$,

$$\|\mathbf{x}_k - \mathbf{x}^{\star}\| = O(\rho^k).$$

Step 4 - Local linear convergence: stochastic

Quadratic growth [L, Jalal & Peyré, 17]

Let $x^* \in \text{Argmin}(\Phi)$ be such that (ND) and (RI) are fulfilled and $R \in \text{PSF}_{x^*}(\mathcal{M}_{x^*})$, then x^* is the unique minimiser of Φ and there exist $\alpha > 0$ and r > 0 such that

$$\Phi(\mathbf{x}) - \Phi(\mathbf{x}^*) \ge \alpha \|\mathbf{x} - \mathbf{x}^*\|^2 : \ \forall \mathbf{x} \ \text{s.t.} \ \|\mathbf{x} - \mathbf{x}^*\| \le r.$$

Step 4 - Local linear convergence: stochastic

Quadratic growth [L, Jalal & Peyré, 17]

Let $x^* \in \text{Argmin}(\Phi)$ be such that (ND) and (RI) are fulfilled and $R \in \text{PSF}_{x^*}(\mathcal{M}_{x^*})$, then x^* is the unique minimiser of Φ and there exist $\alpha > 0$ and r > 0 such that

$$\Phi(\mathbf{x}) - \Phi(\mathbf{x}^*) \ge \alpha \|\mathbf{x} - \mathbf{x}^*\|^2 : \ \forall \mathbf{x} \ \text{s.t.} \ \|\mathbf{x} - \mathbf{x}^*\| \le r.$$

Local linear convergence [Poon, L & Schönlieb, 18]

Suppose iFB creates a sequence $x_k \to x^* \in \text{Argmin}(\Phi)$ such that the **Identification** theorem and condition (RI) hold. Then there exists $\rho < 1$ such that for all k large enough,

$$\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}^\star\|] = O(\rho^k).$$

Step 4 - Local linear convergence: stochastic

Quadratic growth [L, Jalal & Peyré, 17]

Let $x^* \in \text{Argmin}(\Phi)$ be such that (ND) and (RI) are fulfilled and $R \in \text{PSF}_{x^*}(\mathcal{M}_{x^*})$, then x^* is the unique minimiser of Φ and there exist $\alpha > 0$ and r > 0 such that

$$\Phi(\mathbf{x}) - \Phi(\mathbf{x}^*) \ge \alpha \|\mathbf{x} - \mathbf{x}^*\|^2 : \ \forall \mathbf{x} \ \text{s.t.} \ \|\mathbf{x} - \mathbf{x}^*\| \le r.$$

Local linear convergence [Poon, L & Schönlieb, 18]

Suppose iFB creates a sequence $x_k \to x^* \in \text{Argmin}(\Phi)$ such that the **Identification** theorem and condition (RI) hold. Then there exists $\rho < 1$ such that for all k large enough,

$$\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}^*\|] = O(\rho^k).$$

Remark The theoretical rate estimation of in general is not as tight as their deterministic counterparts.

Higher-order acceleration

$$\begin{array}{c} \text{global} & \xrightarrow{\text{finite activity iden.}} & \text{local} \\ \text{non-smooth} (\mathbb{R}^n) & & \text{C}^2\text{-smooth} (\mathcal{M}) \end{array}$$

Local condition better Lipschitz constant along $\mathcal{M}_{x^{\star}}$

Locally polyhedral finite termination if *F* is quadratic

General manifold Newton-like, Conjugate gradient, Manifold based optimisation methods

Part V

Numerical Experiments

Examples

Sparse LR
$$(z_i, y_i) \in \mathbb{R}^n \times \{\pm 1\}$$
, $m = 64$, $n = 96$

$$\min_{(b, x) \in \mathbb{R} \times \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m f(\langle x, z_i \rangle + b, y_i) + \mu \|x\|_1,$$

where $f(w_i, y_i) = \log(1 + e^{-w_i y_i})$.

 $\min_{\mathbf{x}} \mu R(\mathbf{x}) + \frac{1}{2} \|H\mathbf{x} - \mathbf{w}\|^2$

 $\min_{\mathbf{x}} \mu \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|H\mathbf{x} - \mathbf{w}\|^2$

Numerical result: deterministic

IV: Numerical Experiments

Numerical result: deterministic

Low-rank recovery

IV: Numerical Experiments

Numerical result: deterministic

IV: Numerical Experiments

Numerical result: stochastic

$$\min_{\mathbf{x} \in \mathbb{R}^3} \frac{1}{3} \|\mathbf{x}\|_1 + \frac{1}{3} \sum_{i=1}^3 \frac{1}{2} \|H_i \mathbf{x} - b_i\|^2, \ \ H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix} \ \ \text{and} \ \ b = \begin{pmatrix} 2 \\ \sqrt{2}/3 \\ \sqrt{3}/4 \end{pmatrix}.$$

IV: Numerical Experiments 30/34

Numerical result: stochastic

IV: Numerical Experiments 31/34

Extension of partial smoothness

Extensions

- Beyond non-degeneracy: enlarged manifold (with J. Fadili)
- Beyond optimization: set-valued operators (with A. Lewis)

Let
$$\bar{x} = (5; 0; 0)$$
, $\mathcal{M}_x = [\mathbb{R}; 0; 0]$, $A = \partial \| \cdot \|_1$ and $\bar{v} \in ri(A(\bar{x}))$:

$$\mathcal{U} = \cup_{\mathbf{x} \in \mathcal{M}_{\mathbf{x}}} (\mathbf{x} + \partial \| \cdot \|_{1}(\mathbf{x})) \to \bar{\mathbf{x}} + \bar{\mathbf{v}} \in \mathbf{int}(\mathcal{U})$$

V: Current work & Conclusions 32/34

Adaptive acceleration

Non-smooth opt.
$$\xrightarrow{structure}$$
 FoM $\xrightarrow{geometry?}$ Tra. of Seq. \Longrightarrow Acceleration?

Power iteration in 3D: 2nd biggest eigenvalue is complex; the trajectory of eigenvector of the biggest eigenvalue

Ada-acceleration (with C. Poon): adaptive acceleration based on geometry

V: Current work & Conclusions 33/34

Takeaway messages

Partial smoothness builds an elegant connection between functions and the underlying Riemannian geometry

A unified framework for local analysis Higher-order acceleration

Better understanding of existing algorithms
Steer new direction for designing accelerated schemes

Thank you very much!

https://jliang993.github.io/

V: Current work & Conclusions 34/34