Cours / TD - Introduction à la modélisation spatiale pour l'écologie

Baptiste Alglave, Sophie Elliott

Janvier 2022

- Introduction: Rappel contexte / sujet de thèse
- **Partie 1:** Modélisation intégrée et échantillonnage préférentiel "Integrated framework accounting for preferential sampling to estimate fish spatial distribution: a base framework, limits and perspectives"
- Partie 2: Modélisation spatio-temporelle "Can we trust commercial landings data to identify essential habitats of harvested fish?"
- **Partie 3:** Questions de changements de support "Going from coarse landings data to fine scale species distribution"
- Partie 4: Détails techniques / comment estimer la corrélation spatiale efficacement ?
 Approche SPDE et INLA

- Introduction: Rappel contexte / sujet de thèse
- Partie 1: Modélisation intégrée et échantillonnage préférentiel "Integrated framework accounting for preferential sampling to estimate fish spatial distribution: a base framework, limits and perspectives"
- Partie 2: Modélisation spatio-temporelle "Can we trust commercial landings data to identify essential habitats of harvested fish?"
- Partie 3: Questions de changements de support "Going from coarse landings data to fine scale species distribution"
- Partie 4: Détails techniques / comment estimer la corrélation spatiale efficacement ?
 Approche SPDE et INLA

Différence d'objectif avec Sophie

Contexte halieutique

Le renouvellement des ressources halieutiques

⇒ repose sur des zones clés de leur cycle de vie

Zones Fonctionnelles Halieutiques d'importance

Représentation schématique du cycle de vie d'une espèce d'intérêt halieutique

Contexte halieutique

Le renouvellement des ressources halieutiques

⇒ repose sur des zones clés de leur cycle de vie

Zones Fonctionnelles Halieutiques d'importance

Identification et caractérisation de ces zones dans le temps et l'espace ?

Représentation schématique du cycle de vie d'une espèce d'intérêt halieutique

Les données disponibles

- Plan d'échantillonnage standardisé

- Données coûteuses
- Couverture spatio-temporelle limitée

Données scientifiques

Sole commune - campagne ORHAGO 2018. Unité : kg.

A noter les différents types de campagnes scientifiques (démersales vs. pélagiques) Observations captures au chalut ≠ observations acoustiques

Nb. échantillons campagnes au chalut << Nb. échantillons campagnes acoustiques

Les données disponibles

Données logbooks x Données VMS

- Échantillonnage dense dans l'espace et le temps
- Peu coûteuse (pour les scientifiques)
- Échantillonnage non-standardisé et dépendant du comportement de pêche

Débarquements commerciaux

Sole commune - novembre 2018. Métier OTB_DEF : chaluts de fond ciblant les espèces démersales. Unité : kg.

Vous connaissez ? Bcp + de données que Sophie

Les données disponibles

Données logbooks x Données VMS

- Échantillonnage dense dans l'espace et le temps
- Peu coûteuse (pour les scientifiques)
- Échantillonnage non-standardisé et dépendant du comportement de pêche

Proche des questions liées à l' échantillonnage des données en sciences participatives

Isaac et al., 2020

Débarquements commerciaux

Sole commune - novembre 2018. Métier OTB_DEF : chaluts de fond ciblant les espèces démersales. Unité : kg.

Les données disponibles

Données logbooks x Données VMS

- Échantillonnage dense dans l'espace et le temps
- Peu coûteuse (pour les scientifiques)
- Échantillonnage non-standardisé et dépendant du comportement de pêche
- Flottilles de pêche non homogènes
- Hypothèses pour répartir les captures sur les points VMS

Débarquements commerciaux

Sole commune - novembre 2018. Métier OTB_DEF : chaluts de fond ciblant les espèces démersales. Unité : kg.

Objectif de la thèse :

Construction d'une approche de **modélisation spatio-temporelle intégrée** combinant données scientifiques et données commerciales

Identification de zones fonctionnelles halieutiques d'importance

Une thèse à forte composante méthodologique :

Méthodologique

Écologique

Halieutique

Gestion et conservation

Objectif de la thèse :

Construction d'une approche de **modélisation spatio-temporelle intégrée** combinant données scientifiques et données commerciales

Identification de zones fonctionnelles halieutiques d'importance

Une thèse à forte composante méthodologique :

Méthodologique

Écologique

Halieutique

Gestion et conservation

Objectif de la thèse :

Construction d'une approche de **modélisation spatio-temporelle intégrée** combinant données scientifiques et données commerciales

Identification de zones fonctionnelles halieutiques d'importance

Une thèse à forte composante méthodologique :

Méthodologique

Écologique

Halieutique

Gestion et conservation

Integrated framework accounting for preferential sampling to estimate fish spatial distribution: a base framework, limits and perspectives

- Présentation du modèle
- Evaluation du modèle par scénarios de simulation-estimation
- Application à 3 espèces démersales du golfe de Gascogne

Integrated framework accounting for preferential sampling to estimate fish spatial distribution: a base framework, limits and perspectives

- Présentation du modèle
- Focus
- Evaluation du modèle par scénarios de simulation-estimation
- Application à 3 espèces démersales du golfe de Gascogne

Integrated framework accounting for preferential sampling to estimate fish spatial distribution: a base framework, limits and perspectives

Rq: bcp moins de 0 que chez Sophie (30 - 40 %)

Présentation du modèle

Focus

- Evaluation du modèle par scénarios de simulation-estimation
- Application à 3 espèces démersales du golfe de Gascogne

Petit rappel modèles hiérarchiques

(ou modèles à espace d'état)

Modèles qui distinguent :

- Observations
- Champ latent (non-observé)
- → le processus écologique (i.e. la variable d'intérêt)
- Paramètres contrôlant
 - → la structure du champ latent
 - → la variance/l'erreur d'observation

Simulation du processus ponctuel pour 3 niveaux d'échantillonnage préférentiel

Bleu : champ latent, points : échantillons commerciaux

Contribution des sources de données dans l'inférence

Plusieurs questions

- Données commerciales >> Données scientifiques

 ⇒ Comment faire en sorte que les deux sources de données informent l'estimation ?

 (data-weighting / model misspecification)
- Ne pas modéliser l'échantillonnage préférentiel
 - ⇒ Surestimation de la biomasse
- L'approche permet de prendre en compte de façon parcimonieuse l'échantillonnage préférentiel
 - ⇒ <u>I</u> simplifie beaucoup l'ensemble des processus de ciblage

Passage à une approche spatio-temporelle

Can we trust commercial landings data to identify essential habitats of harvested fish?

- Passage à un modèle spatio-temporel
- Analyse des patrons de distribution pour la sole commune
- Evolution de l'échantillonnage préférentiel

Modèle spatial → Modèle spatio-temporel

- Auto-corrélation temporelle du champ de biomasse (S(x,t))
- Niveau moyen de la biomasse : effet année / effet saison
- Paramètre de ciblage (b) :
 - Effet année / effet saison
 - Effet aléatoire gaussien
- Niveau moyen d'intensité de pêche : effet année / effet saison

Modèle spatio-temporel

SSBDéfinition

Effort - métier OTB_DEF

Ajustement du modèle sur la période 2008 - 2018 pour la sole du golfe de Gascogne

Pas de tps mensuel = 132 cartes

SSBDéfinition

Effort - métier OTB_DEF

Prédictions du modèle pour l'année 2018

Ajustement du modèle sur la période 2008 - 2018 pour la sole du golfe de Gascogne

Pas de tps mensuel = 132 cartes

SSB

Effort - métier OTB_DEF

Ajustement du modèle sur la période 2008 - 2018 pour la sole du golfe de Gascogne

Pas de tps mensuel = 132 cartes

SSB

EOF

capture des principaux patrons de distribution

Qql. cartes + time series

Effort - métier OTB_DEF

Empirical Orthogonal Functions (EOF)

$$\overrightarrow{\mathbf{S}}_t^* = \sum_{k=1}^K \alpha_k(t) \overrightarrow{p}^k + \overrightarrow{n}_t$$
 Champ de biomasse normalisé Loading factors Patrons spatiaux Variabilité résiduelle

Dans une EOF, les indices ak et les patterns pk sont construits tel que

- la variance résiduelle nt soit minimale
- les patrons p^k soient orthogonaux

Migration 'côte-large' ⇒

EOF1

Longitude (deg)

Et pour les autres espèces ?

Ligne bleue : février

EOF1

Longitude (deg)

47°N

Et pour les autres espèces ?

Ligne bleue : février

Evolution temporelle du paramètre de ciblage (b)

Rappel paramètre b

Paramètre b

[0.8; 1.2]

VS.

Proportion relative de sole dans les débarquements

 $(\rightarrow$ indicateur de ciblage)

[2,5%; 7.5%] des débarquements

Coefficient de corrélation = 0.5

En résumé

Approche permettant:

- de capturer les principaux patrons de distributions des espèces halieutiques à partir de la donnée commerciale ⇔ reproduction
- d'estimer la force de l'échantillonnage préférentiel vis-à-vis de l'espèce d'intérêt et son évolution dans le temps

Going from coarse landings data to fine scale species distribution

Going from coarse landings data to fine scale species distribution

Les données de déclaration de pêche sont déclarées à l'échelle de carrés statistiques

Quantité pêchée

10

par heure

Captures ré-allouées

Quantité totale pêchée $(y_{total}) = 50$ Nombre de points de pêche (n) = 5

$$\frac{(y_{\text{total}})}{(n)} = \frac{50}{5} = 10 = y_{\text{réallouée}}$$

 → Quantités pêchées ré-allouées :
 identiques pour tous les points de pêche du bateau d'un carré statistique.

Quantité totale pêchée (y_{total}) = **50** Nombre de points de pêche (n) = **5**

$$\frac{(y_{\text{total}})}{(n)} = \frac{50}{5} = 10 = y_{\text{réallouée}}$$

 → Quantités pêchées ré-allouées :
 identiques pour tous les points de pêche du bateau d'un carré statistique.

Résultats

Paramètre de la relation espèce-habitat

Yi: Observation ponctuelle

 $Y_i \sim Zinfl Lognorm(\mu_i, \sigma^2)$

D_i: Déclaration

$$D_j = \sum_{i \in \mathcal{P}_j} Y_i$$

Vecteur de tous les points de pêche associés à la donnée de déclaration j

Annexes

Processus d'observation

 \rightarrow homogène dans le temps et l'espace

Paramètre de zero-inflation

$$P(Y_i = y_i | x_i, t_i, S(x_i, t_i)) = \begin{cases} \exp\left(-e^{\xi_f} \cdot \mu_f(x_i, t_i)\right) & if y_i = 0 \\ \left(1 - \exp\left(-e^{\xi_f} \cdot \mu_f(x_i, t_i)\right)\right) \cdot L\left(y_i, \frac{\mu_f(x_i, t_i)}{\left(1 - \exp\left(-e^{\xi_f} \cdot \mu_f(x_i, t_i)\right)\right)}, \sigma_f^2\right) & if y_i > 0 \end{cases}$$
 Espérance des observations
$$\mu_f(x_i) = q_f \cdot S(x_i, t_i) \qquad \text{Champ de biomasse}$$

$$q_{fest} = k_f * q_{ref}$$
 Capturabilité Scaling factor

f: flottille

Perspectives

→ Application à d'autres cas d'études / d'autres aires géographiques

Stocks d'intérêt

Quelles cas d'étude choisir?

Des stocks où la donnée est disponible :

- ⇒ stock évaluées,
- ⇒ où les captures sont majoritairement françaises,
- ⇒ où les données VMS sont disponibles (bateaux > 12 m)

Manche-Est/Mer du Nord

Sole (Solea solea - Division 27.7.d (Eastern English Channel) Fr (50%) - UK (25%) - Belg. (25%)

Cephalopods ???

Striped red mullet (Mullus surmuletus) - rouget barbet de roche - Subarea 4 (North Sea), divisions 7.d (Eastern English Channel) and 3.a (Skagerrak, Kattegat) Neth (½)- Fr (⅓) - UK - Belg

Plaice in Division 7.d Belg. (1/2) - Fr (1/3) - UK

Whiting (Merlangius merlangus - merlan - Subarea 4 (North Sea), Division 7.d (Eastern English Channel) and 3.a (Skagerrak, Kattegat) VIId: Fr (3) Neth UK Belg.

Golfe de Gascogne

Bay of Biscay Sole (Solea solea - sole commune - 8a, 8b) Fr

Nephrops (Divisions 8.a,b, FU 23-24) Fr

European seabass (Dicentrarchus labrax - Bar - Divisions 8.a-b (Bay of Biscay North and Central)

Fr

Sardine in divisions 8a, b, d Fr (%)- Esp

Hake (Merluccius merluccius - merlu - Division 3.a, Subareas 4, 6 and 7 and Divisions 8.a,b,d (Northern stock) Fr (1/4) - Sp - UK - Dan. - Ir.

Anglerfish (Lophius piscatorius and Lophius budegassa - Baudroie - Sub-area 7 and Divisions and 8.a,b,d) **Fr (60%)** - **UK** - **Ir** - **Sp**

Pollack (Pollachius pollachius - lieu jaune - Subarea 8 and Division 9.a) Fr

Whiting (Merlangius merlangus - merlan - Subarea 8 and Division 9.a) Fr

Herring - Subarea 8 (Bay of Biscay) - Data poor Fr

Plaice (Pleuronectes platessa - Plie - Subarea 8 and Division 9.a) Fr (2/3) - Port.

Constrained refined Delaunay triangulation

