Algorithms and Application in Computer Vision - 046746

Homework #2

Alexander Shender 328626114 Vladimir Tchuiev 309206795

Technion - Israel Institute of Technology

I. Dry section

A. Question 1.

1. a.

The dimensions of the layers change in the following way:

2. b.

The convolution of the size 1X1X(?) performs convolution on the same pixes in different channels. The input image contains 3 channels in our case, thus the convolution of the size 1X1X3 fits perfectly to result in a block of new layers without changing size (no need for padding). One kernel results in an output layer of size 128×128 , but since we have 64 kernels, the depth of the next layers block is 64, accordingly.

3. c.

Let's say, our normalized filter is the following:

$$\begin{bmatrix} 0.1 & 0.2 & 0.05 \\ 0.05 & 0.2 & 0.1 \\ 0.15 & 0.1 & 0.05 \end{bmatrix}$$

We choose 2 options for stride and padding:

1. stride = 2, padding = 1 The image now has a dimensions of 9×9 , and with a stride of 1 it gives an output dimensions: 3×3

Output result is the following:

2. stride = 1, padding = 2 The image now has a dimensions of 7×7 , but with stride of 2 it fits with the filter. Output dimensions: 7×7

Output result is the following: