F01T3A1

Es sei $\mathbb{E}:=\{z\in\mathbb{C}:|z|<1\}$ und $f:\mathbb{E}\to\mathbb{C}$ eine holomorphe Funktion mit der Eigenschaft $f(z)=f(z^2)$ für alle $z\in\mathbb{E}$. Zeige, dass f konstant ist.

Lösung:

$$\frac{1}{2} \in \mathbb{E} \quad \Rightarrow f(\frac{1}{2}) = f(\frac{1}{4}) = f(\frac{1}{16}) = \dots = f(\frac{1}{2^{2^n}}), \ n \in \mathbb{N}$$

 $\{\frac{1}{2^{2k}}:\ k\in\mathbb{N}\}$ hat 0 als Häufungspunkt, denn für jede Umgebung U von U gibt es $\varepsilon>0$ mit $K(0,\varepsilon)\subseteq U$ und da $\frac{1}{2^{2k}}\xrightarrow[k\to\infty]{}0$ gibt es $K(\varepsilon)/in\mathbb{N}$ mit $\left|\frac{1}{2^{2k}}\right|<\varepsilon$ für $k\geq K(\varepsilon)$

$$\Rightarrow \frac{1}{2^{2^{K(\varepsilon)}}} \in (U \setminus \{0\}) \cap \{\frac{1}{2^{2^k}} : k \in \mathbb{N}\} \neq \emptyset$$

 $\stackrel{\text{Identitätssatz}}{\Longrightarrow} f = g \text{ mit } g : \mathbb{E} \to \mathbb{C}, \, z \mapsto f(\frac{1}{2}) \text{ konstant, holomorph.}$