CS528 High Performance Computing

A Sahu

Dept of CSE, IIT Guwahati

Technology Trends

- Desktop 8086/80386
 - Processor, Mother Board, Co-Processor (Floating Point Unit), Graphics Card, RAM, Audio, Ethernet
- Desktop Pentium
 - Processor (Coprocessor inside) + Mother Board (Audio, Ethernet) + Graphics Card
- Desktop PIV
 - Processor + Mother Board (Graphics + Audio + Ethernet)
- Desktop Core
 - Processor (Graphics Inside) + Board (Audio, Ethernet)
- Mobile SOC
 - Processor + Graphics+ Board (Almost in Chip)

A Sahu slide 2

Technology Trend

- Performance is no longer is main issue
 - Power, Energy, Cost
 - DVFS : run at lower frequency to reduce power/energy consumption
- Most of modern day servers are
 - Under utilized (core, RAM)
 - Same for Laptop/Desktop/Mobile
- Under utilized
 - Wastage of resources, can be shared with others
 - Sharing methodology (virtualization)
 - Leads to Cloud Computing

Technology Trend

- Cloud Computing
 - Economy: Similar to OLA/UBER
 - Renting Model
- IoT : Many things on Internet
 - Control and Management of Big Work
 - Sensors and actuators
- FOG
 - Peers Computing, Multiple Level
- Edge
 - Computing at Edge not far, Latency sensitive

Cloud/IoT/Edges/FoG

Cloud/IoT/Edges/FoG

a1 asahu, 04-01-2022

Cloud/IoT/Edges/FoG

a1 asahu, 04-01-2022

Cloud/IoT/Edges/FoG

a1 asahu, 04-01-2022

Technology Trend

- Single processor/Single Computer
 - Single processor with SIMD instruction
- Multi Computer
 - Cluster, Data need to travel outside PC via LAN cable
- Multi processor
 - Tightly coupled, Data no need to travel out side PC, out side board
- Processor + Accelerator
 - PCI or Board level Communication
- Processor and Accelerator in the same chip
 - On chip, High BW, Intel Core (Graphics are in Chip)
- 3D chip

Quest for Performance

Trend of HPC

- HPC system
 - Multi Nodes/Computer/Blades
 - Programming Model MPI
- Nodes are Multicore
 - Node have accelerators
 - Programming Model : OpenMP, OpenCL/Cuda
- Core
 - Multi Threaded
 - With vector instructions
 - 4 issue OOO Pipelines, Multilevel Caches,
 - Programming Model: gcc optimized, vectorized code, OpenMP

Need to study in HPC: User Prospects

- Single Processor
 - Architecture: Core Pipeline, Core Multithreading,
 Cache Hierarchy, SIMD
 - C/C++ Optimization Methods: gcc, OpenMP,
 Simidization, cache optimized code
- Multicore node
 - Multicore, Accelerator, Interconnections
 - OpenMP Model, Cuda Model, Accelerated Model
- HPC Server
 - Multiple Nodes/Blades, Interconnection, Storages
 - Programming Model : MPI

Param Ishan HPC

- HPC system : Data Center
- Many Racks, Many rack server in a rack
- Nodes are Multicore: One rack server

Node/RackServer

Param Ishan SC @IITG

- Login Node:
 - 2x CPU login nodes, 1x GPU login node , 1x MIC login node
- Head and Management:
 - 1 pair head node (in redundant mode), 1x Management Node
- Compute Node:
 - 126x compute nodes
 - 4x high memory compute nodes
 - 16x CPU-GPU hybrid compute nodes
 - 16x CPU-MIC hybrid compute nodes.
- Network: FDR InfiniBand network
- Storage:
 - 150TB high throughput scratch space.
 - 100TB high throughput home area
 - 50TB archival for long term data storage.

Trend of HPC

- HPC system
 - Multi Nodes/Computer/Blades
 - Programming Model MPI
- Nodes are Multicore
 - Node have accelerators
 - Programming Model : OpenMP, OpenCL/Cuda
- Core
 - Multi Threaded, With vector instructions
 - 4 issue OOO Pipelines, Multilevel Caches,
 - Programming Model: gcc optimized, vectorized code, OpenMP

Need to study in HPC: User Prospects

- Single Processor
 - Architecture: Core Pipeline, Core Multithreading,
 Cache Hierarchy, SIMD
 - C/C++ Optimization Methods: gcc, OpenMP,
 Simidization, cache optimized code
- Multicore node
 - Multicore, Accelerator, Interconnections
 - OpenMP Model, Cuda Model, Accelerated Model
- HPC Server
 - Multiple Nodes/Blades, Interconnection, Storages
 - Programming Model : MPI

Multiprocessor (Will revisit again)

Example of Multicore

Mobile SoC Example

- Heterogeneous
- Diff H/W for different purpose
- Efficiency in terms
 - Perf.
 - Energy
- All in one Chip

Mobile SoC + Peripherals

Similar to motherboard and components assembly For every components we get dozens of variety to choose

Example of Multicore Arm SoC

- Apple: A15, M1, M1X, M2
 - 2x 3.23GHz (Firestorm) + 4x 2GHz (Icestorm) or 8 core,
 Neural engine, GPU
- Qualcomm: SD888, SD870
 - y. It has 1 KryoX1@2.8, 3 A78@2.4, 4 A55@1.8, AI, 5G, GPU
- Samsung: Exynos 9611
 - 4 <u>A73@2.3Ghz</u>, 4 <u>A53@1.7Ghz</u>, Mali G72, 5G, Codecs
- Huwai : hisilicon9000
 - 1 A77@3.13, 3 A77@2.54, 4 A55@2.0, Mali MP24, AI, 5G, neural
- Mediatek : Dimensity 1200
 - 1 <u>A78@3</u>.0, 3 <u>A78@2.</u>6, 4 <u>A55@2.0</u>, Mali MP24, 5G, AI,
- Benchmarking: Antutu9, Geekbench 5, 3D Mark, Gaming FPS

- Saturation of single processor performance
- Speed limit not to crosses: 4GHz
 - The ultimate point
 - Power consumption is proportional to cube of frequency

$$P = \frac{1}{2}.C.V^{2}.f = k.f^{3}$$

as V is proportional to f

- Single-processor
 - Branch prediction accuracy gone upto 95%
 - L1 Cache hits gone upto 80%
 - ILP exploited by uniprocessor is upto 8 (mostly)
 - Thread/Data level parallelism needs to exploit

Power Aware Scheduling

- $P = 1/2 C V^2 F = kF^3$ As V-F Pairs, $V \alpha F$
 - Running Processor at 3 Ghz will consumes 27 times higher Power as compared to running at 1Ghz
- $E = kF^{3}*T$
- Running a task at F and F/3 :Assume 3Ghz and 1Ghz
 - $E_f = k F^3 T$
 - $E_{f/3} = k (F/3)^3 T*3 = k F^3 T /9 = E_f/9$
 - 2 times slower but 4 times energy efficient
 - 3 times slower but 9 times energy efficient
- If time permit reduce the frequency
- If task have enough slack before deadline reduce frequency

- Application specific IC (ASIC)
 - High performance, low power than **Processor**
 - But complexity of ASIC design is very High
 - Example: 50MP+UHDVideo, GPS Camera in side mobile handset
 - It is fixed for an application

- VLSI technology offering high integration density
- Moore's Law (In 1965, Gordon Moore Prediction)
 - Exponential growth of the number of transistors on an IC
 - Doubled every 26 months for the past three decades

Why more transistors per IC? Smaller transistors, Larger dice

- Many applications are highly parallel
 - Take benefit of all parallelism (instruction, data and thread)
- Multiprocessors
 - Flexible, programmable, high performance
 - Take benefit of all parallelism (instruction, data and thread)
 - Likely to be cost/power effective solutions

- Multiprocessors are
 - Flexible, programmable, high performance
 - Processor are programmable as compared to ASIC
 - Flexible in terms of portability as compared to ASIC
 - Higher Performance than single processor

- Multiprocessors are likely to be cost/power effective solutions
 - Share lots of resources
 - Personal room is costlier than dormitory
 - You cannot allocate a Bungalow to each student: it will too costly
 - -Hostel room with shared facility is sufficient
 - Need not require very high frequency to run
 - Lots of replication makes easy to manage and cost effective in design

Multicore Difficulties I

- Multiprocessors are likely to be cost/power effective solutions
 - Because it share lots of resources
 - Personal room is costlier than dormitory
 - Sharing resource arise many other problems
 - Critical Sections
 - Lock and Barrier Design
 - Coherence
 - -Shared data at all placed should be same
 - Consistency
 - —Order should be similar to serial (ROB)
 - One processor Interference others
 - Share efficiently using some policy

Multicore Difficulties II

- Many applications are highly parallel
 - Take benefit of all parallelism (instruction, data and thread)
 - Most of the coder write sequential code
 - Who will extract parallelism from applications?
 - There is no successful auto-parallelisation tool till date
 - » Attempts: Cetus, SUIF, SolarisCC
- Good news: CNN/DNN python parallel library is quite successful in GPU domain

Multicore Difficulties III

- Task scheduling in multiprocessors
 - Deterministic task scheduling on multiprocessor with more than 2 processor is NP-Complete problem
 - -4 Tasks (A,B, C and D), 3 Processors
 - {A,B,C,D}{}{}, {A,B,C}{D}{},Exponential Number of Solutions
- Simple Example
 - 8 tasks with execution 2, 4, 8, 5, 6, 4, 3, 20
 - Need to executed non-pre-emptively on two processor P1 and P2
 - So that overall execution time is minimized
 - Solution: Divide 8 tasks in to two subsets, with difference of their sum is minimized; Subset Sum Problem