Разбор летучки

Лекция 2

Метрические классификаторы

Екатерина Тузова

Мотивирующий пример

Мотивирующий пример

Датасет

In [4]: pokemons.head() Out[4]: Туре Sp. Sp. Name Type 2 Total HP Attack Defense Speed Generation Legendary Atk Def Poison 318 0 Bulbasaur Grass 45 49 49 65 65 45 False 1 Ivysaur Grass Poison 405 62 63 80 80 60 False 2 Venusaur Poison 525 80 82 83 Grass 100 100 80 False VenusaurMega Grass Poison 625 80 100 123 122 80 120 False Venusaur 4 Charmander Fire NaN 309 39 52 43 60 50 65 1 False

Распределения

Number of Pokemons = 800

Типы покемонов

Какие признаки есть в

датасете?

$$f:X\to D_f$$

- Бинарные $(D_f = \{0,1\})$
- Номинальные (D_f конечное множество)
- Порядковые (D_f конечное упорядоченное множество)
- Количественные $(D_f = \mathbb{R})$

– Бинарные (Legendary)

- Бинарные (Legendary)
- Номинальные (Туре 1, Туре 2)

- Бинарные (Legendary)
- Номинальные (Туре 1, Туре 2)
- Порядковые (Generation)

- Бинарные (Legendary)
- Номинальные (Туре 1, Туре 2)
- Порядковые (Generation)
- Количественные (Attack, Defense, ...)

Легендарность

Легендарный покемон это чрезвычайно редкий и зачастую очень могущественных покемон, о нем слагаются мифы и легенды в мире покемонов.

Легендарность

Датасет

	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	False
24	Rattata	Normal	NaN	253	30	56	35	25	35	72	1	False
28	Ekans	Poison	NaN	288	35	60	44	40	54	55	1	False
32	Sandshrew	Ground	NaN	300	50	75	85	20	30	40	1	False
35	Nidorina	Poison	NaN	365	70	62	67	55	55	56	1	False
156	Articuno	Ice	Flying	580	90	85	100	95	125	85	1	True
162	Mewtwo	Psychic	NaN	680	106	110	90	154	90	130	1	True
799	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

Задача классификации

X - множество объектов

Y - множество классов

Обучающая выборка: $X^l=(x_i,y_i)_{i=1}^l$

Задача: Построить алгоритм $a\colon X\to Y$, способный классифицировать произвольный объект $x\in X$.

Задача классификации в нашем контексте

X - покемоны

Y - легендарность

Обучающая выборка: $X^l=(x_i,y_i)_{i=1}^l$

Задача: Построить алгоритм $a\colon X\to Y$, способный определить, является ли покемон легендарным.

Схожие объекты, как правило, лежат в одном классе.

Схожие объекты, как правило, лежат в одном классе.

Как определить схожесть объектов?

Пример

Схожие объекты, как правило, лежат в одном классе.

Схожесть = Функция расстояния

$$\rho: X \times X \to [0, \infty)$$

Функции расстояния

Евклидово расстояние

$$\rho(u,v) = \sqrt{\sum_{j=1}^{n} |u^j - v^j|^2}, \quad u, v \in X^l$$

Признаковые описания объектов:

$$u = \{u^1, u^2, ..., u^n\}$$

$$v = \{v^1, v^2, ..., v^n\}$$

Расстояние городских кварталов

$$\rho(u,v) = \sum_{j=1}^{n} |u^j - v^j|, \qquad u,v \in X^l$$

Признаковые описания объектов:

$$u = \{u^1, u^2, ..., u^n\}$$

$$v = \{v^1, v^2, ..., v^n\}$$

Расстояние Минковского

Обобщение евклидова расстояния и расстояния городских кварталов

$$\rho(u,v) = (\sum_{j=1}^{n} |u^j - v^j|^q)^{1/q}, \quad u,v \in X^l$$

Признаковые описания объектов:

$$u = \{u^1, u^2, ..., u^n\}$$
$$v = \{v^1, v^2, ..., v^n\}$$

Minkowski distance 17

Расстояние Левенштейна

Минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую.

Расстояние Левенштейна

		Е	L	Е	Р	Н	A	Ν	H
	0	1	2	3	4	5	6	7	8
R	1	1	2	3	4	5	6	7	8
Е	2	1	2	2	3	4	5	6	7
L	3	2	1	2	3	4	5	6	7
Е	4	3	2	1	2	3	4	5	6
V	5	4	3	2	2	3	4	5	6
А	6	5	4	3	3	3	3	4	5
N	7	6	5	4	4	4	4	3	4
Т	8	7	6	5	5	5	5	4	3

Метрический классификатор

 $u \in X$ - произвольный объект, который собираемся классифицировать.

 $u \in X$ - произвольный объект, который собираемся классифицировать.

Отсортируем объекты из X^l относительно u:

$$\rho(u, x_1) \le \rho(u, x_2) \le \dots \le \rho(u, x_l)$$

 x_i – i-й сосед объекта u

 y_i – класс i-го соседа u

$$\rho(u, x_1) \le \rho(u, x_2) \le \dots \le \rho(u, x_l)$$

 x_i – i-й сосед объекта u

 y_i – класс i-го соседа u

$$\rho(u, x_1) \le \rho(u, x_2) \le \dots \le \rho(u, x_l)$$

 x_i – i-й сосед объекта u

 y_i – класс i-го соседа u

Идея 1: Посмотрим на ближайшие объекты и отнесем u к доминирующему классу.

Метрический алгоритм классификации

$$a(u,X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i,u)$$

w(i,u) - вес i-го соседа u, неотрицателен

Метод ближайшего соседа

Объект относится к тому классу, к которому относится ближайший в выборке.

$$a(u, X^l) = \arg \max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i,u) = [i=1]$$

Объект относится к тому классу, к которому относится ближайший в выборке.

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i,u) = [i=1]$$

+ Простота реализации (lazy learning)

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i, u) = [i = 1]$$

- + Простота реализации (lazy learning)
- + Интерпретируемость решения

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i, u) = [i = 1]$$

- + Простота реализации (lazy learning)
- + Интерпретируемость решения
- Неустойчивость к шуму

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i, u) = [i = 1]$$

- + Простота реализации (lazy learning)
- + Интерпретируемость решения
- Неустойчивость к шуму
- Отсутствие настраиваемых параметров

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i, u) = [i = 1]$$

- + Простота реализации (lazy learning)
- + Интерпретируемость решения
- Неустойчивость к шуму
- Отсутствие настраиваемых параметров
- Низкое качество классификации

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i, u) = [i = 1]$$

- + Простота реализации (lazy learning)
- + Интерпретируемость решения
- Неустойчивость к шуму
- Отсутствие настраиваемых параметров
- Низкое качество классификации
- Необходимость хранить всю выборку целиком

Пример

Метод k ближайших соседей

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

$$w(i,u) = [i \leq k]$$

+ Менее чувствителен к шуму

Метод k ближайших соседей

$$a(u, X^{l}) = \arg \max_{y \in Y} \sum_{y_{i}=y} w(i, u)$$

$$w(i, u) = [i \le k]$$

- + Менее чувствителен к шуму
- + Появляется настраиваемый параметр k

Метод k ближайших соседей

$$a(u, X^{l}) = \arg \max_{y \in Y} \sum_{y_{i} = y} w(i, u)$$

$$w(i, u) = [i \le k]$$

- + Менее чувствителен к шуму
- + Появляется настраиваемый параметр k

— Неоднозначность при
$$\sum\limits_{y_i=y} w(i,u) = \sum\limits_{y_i=s} w(i,u) \qquad y
eq s$$

Подбор параметров

\mathbf{K} ак выбрать k

Функционал скользящего контроля (leave-one-out):

$$LOO(k, X^{l}) = \sum_{i=1}^{l} [a(x_{i}; X^{l} \backslash \left\{x_{i}\right\}, k) \neq y_{i}] \rightarrow \min_{k}$$

Вопрос

Правда ли нужно выбрасывать один объект?

Пример

Обобщенный метрический классификатор

$$\rho(u, x_1) \le \rho(u, x_2) \le \dots \le \rho(u, x_l)$$

 $x_i - i$ -й сосед объекта u y_i – класс i-го соседа u

Идея 1: Посмотрим на ближайшие объекты и отнесем u к доминирующему классу.

Обобщенный метрический классификатор

$$\rho(u, x_1) \le \rho(u, x_2) \le \dots \le \rho(u, x_l)$$

 x_i – i-й сосед объекта u

 y_i – класс i-го соседа u

Идея 1: Посмотрим на ближайшие объекты и отнесем u к доминирующему классу.

Идея 2: Более близкие объекты важнее для классификации.

Метод k взвешенных соседей

$$a(u, X^l) = \arg\max_{y \in Y} \sum_{y_i = y} w(i, u)$$

 $w(i,u) = [i \leq k] * w_i$, где w_i это вес, зависящий только от номера соседа

Метод k взвешенных соседей

$$a(u, X^{l}) = \arg \max_{y \in Y} \sum_{y_{i} = y} w(i, u)$$

 $w(i,u) = [i \leq k] * w_i$, где w_i это вес, зависящий только от номера соседа

Возможные эвристики:

$$\cdot \; w_i = rac{k+1-i}{k}$$
 – линейное убывающие веса

Метод k взвешенных соседей

$$a(u, X^{l}) = \arg \max_{y \in Y} \sum_{y_{i} = y} w(i, u)$$

 $w(i,u) = [i \leq k] * w_i$, где w_i это вес, зависящий только от номера соседа

Возможные эвристики:

- $w_i = rac{k+1-i}{k}$ линейное убывающие веса
- $\cdot \ w_i = q^i$ экспоненциально убывающие веса

Вопрос

Как более обоснованно задать веса?

Ядерная оценка плотности

Метод окна Парзена

K(r) – ядро, невозрастающее, положительное на $[0,\infty]$

Ядерная оценка плотности

Метод окна Парзена

$$K(r)$$
 – ядро, невозрастающее, положительное на $[0,\infty]$

Фиксированной ширины:

$$a(u,X^l,h,K) = rg \max_{y \in Y} \sum_{y_i=y} K(rac{
ho(u,x_i)}{h}) \qquad h$$
 – ширина окна

Ядерная оценка плотности

Метод окна Парзена

$$K(r)$$
 – ядро, невозрастающее, положительное на $[0,\infty]$

Фиксированной ширины:

$$a(u,X^l,h,K) = rg \max_{y \in Y} \sum_{y_i=y} K(rac{
ho(u,x_i)}{h}) \qquad h$$
 – ширина окна

Переменной ширины:

$$a(u, X^l, k, K) = \arg\max_{y \in Y} \sum_{y_i = y} K(\frac{\rho(u, x_i)}{\rho(u, x_k)})$$

Более наглядно

Идея: Максимизировать сумму расстояний между объектами разных классов при этом сохраняя сумму расстояний между объектами одного класса небольшой.

Идея: Максимизировать сумму расстояний между объектами разных классов при этом сохраняя сумму расстояний между объектами одного класса небольшой.

$$\max \sum_{x_i \in D, x_j \in F} \rho(x_i, x_j) \qquad D \neq F$$

Идея: Максимизировать сумму расстояний между объектами разных классов при этом сохраняя сумму расстояний между объектами одного класса небольшой.

$$\max \sum_{x_i \in D, x_j \in F} \rho(x_i, x_j) \qquad D \neq F$$

$$\sum_{x_i, x_j \in S} \rho^2(x_i, x_j) \le 1$$

Проклятие размерности

Если используемая метрика $\rho(u,x_i)$ основана на суммировании различий по всем признакам, а число признаков очень велико, то все точки выборки могут оказаться практически одинаково далеки друг от друга.

Пример

Набор признаков объекта генерируется подбрасыванием честной монетки n раз. Соответственно каждый объект описывается вектором $[0,1]^n$. При таких условиях все объекты будут равноудалены.

Предобработка

Предобработка данных

Что произойдет, если признаки представлены в разном масштабе?

Предобработка данных

Все признаки должны быть представлены в одном масштабе.

В противном случае признак с наибольшими числовыми значениями будет доминировать в метрике.

Отбор признаков

Жадное добавление признаков

1.
$$ho_j(u,x_i)=|u^j-x_i^j|$$
 – расстояние по ј-му признаку $LOO(j)
ightarrow \min$

Жадное добавление признаков

- 1. $ho_j(u,x_i)=|u^j-x_i^j|$ расстояние по ј-му признаку $LOO(j)
 ightarrow \min$
- 2. Добавляем признак и строим ρ' $\rho'(u,x_i)=\rho(u,x_i)+w_j\rho_j(u,x_i)$ $LOO(j,w_j)\to \min$

Жадное добавление признаков

- 1. $ho_j(u,x_i)=|u^j-x_i^j|$ расстояние по ј-му признаку $LOO(j)
 ightarrow \min$
- 2. Добавляем признак и строим ρ' $\rho'(u,x_i)=\rho(u,x_i)+w_j\rho_j(u,x_i)$ $LOO(j,w_j)\to \min$
- 3. Добавляем признаки, пока LOO не увеличивается

Сверхбольшие выборки

- Проблема хранения

Сверхбольшие выборки

- Проблема хранения
- Проблема быстрого поиска ближайших соседей

Отбор эталонов

Метрический алгоритм классификации

$$a(u,X^l) = \arg\max_{y \in Y} \underbrace{\sum_{y_i = y} w(i,u)}_{\Gamma_y(u)}$$

w(i,u) - вес i-го соседа u, неотрицателен $\Gamma_y(u)$ - оценка близости объекта u к классу y

Отступ

$$\Gamma_y(u) = \sum\limits_{y_i = y} w(i,u)$$
 – оценка близости объекта u к классу y

Отступ показывает степень типичности объекта.

Отступом объекта $x_i \in X^l$ относительно классификатора a называется величина:

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i)$$

1. Эталонные

- 1. Эталонные
- 2. Надёжно классифицируемые (неинформативные)

- 1. Эталонные
- 2. Надёжно классифицируемые (неинформативные)
- 3. Пограничные

- 1. Эталонные
- 2. Надёжно классифицируемые (неинформативные)
- 3. Пограничные
- 4. Ошибочные

- 1. Эталонные
- 2. Надёжно классифицируемые (неинформативные)
- 3. Пограничные
- 4. Ошибочные
- 5. Шумовые

Отбор эталонных объектов

 ${\sf 3agaчa}$: Выбрать оптимальное подмножество эталонов $\Omega\subseteq X^l$

Классификатор будет иметь вид:

$$a(u,\Omega) = \arg\max_{y \in Y} \sum_{x_i \in \Omega} [y_i = y] w(i,u)$$

Prototype selection 45

- 1. Исключить ошибочные, шумовые и пограничные объекты
- 2. Найти по одному эталону в каждом классе
- 3. Добавлять каждый следующий объект x в Ω , если классификация с текущим набором эталонов ошибается на нём
- 4. Продолжать до тех пор пока Ω не перестанет пополняться

+ Сокращается число хранимых объектов

- + Сокращается число хранимых объектов
- + Сокращается время классификации

- + Сокращается число хранимых объектов
- + Сокращается время классификации
- + Объекты разделяются по величине отступа

- + Сокращается число хранимых объектов
- + Сокращается время классификации
- + Объекты разделяются по величине отступа
- Очень медленный

- + Сокращается число хранимых объектов
- + Сокращается время классификации
- + Объекты разделяются по величине отступа
- Очень медленный
- Классификация на тестовом наборе может отличаться

Вопросы?

Быстрый поиск ближайших

соседей

Быстрый поиск ближайших соседей

- граф ближайших соседей
- k-d дерево
- хеширование (LSH)

k-d дерево

Идея: разложим множество по которому будем искать в бинарное дерево с простыми условиями и конкретными точками в узлах.

k-d дерево

Идея: разложим множество по которому будем искать в бинарное дерево с простыми условиями и конкретными точками в узлах.

- 1. По циклу, или рандомно выбираем ось.
- 2. Ищем медиану (точку, разбивающую множество на как можно более равные части).
- 3. Повторяем 1-2 для каждого из получившихся подмножеств

k-d дерево

Идея: разложим множество по которому будем искать в бинарное дерево с простыми условиями и конкретными точками в узлах.

- 1. По циклу, или рандомно выбираем ось.
- 2. Ищем медиану (точку, разбивающую множество на как можно более равные части).
- 3. Повторяем 1-2 для каждого из получившихся подмножеств

Сложность построения: $O(n \log n)$

Сложность поиска: в лучшем случае $O(\log n)$, в худшем – O(n)

2-d дерево

k-d дерево. Особенности

+ Один из наиболее простых методов

k-d дерево. Особенности

- + Один из наиболее простых методов
- Работает только при малом количестве параметров

k-d дерево. Особенности

- + Один из наиболее простых методов
- Работает только при малом количестве параметров
- Затратный алгоритм перестроения

Задача: Найти похожие документы в интернете

Проблема: Сколько сравнений нам понадобится для того, чтобы найти похожие среди N документов?

Проблема: Сколько сравнений нам понадобится для того, чтобы найти похожие среди N документов?

$$C = \frac{N(N-1)}{2}$$

$$N=10^6\Rightarrow C=5*10^{11}$$

Идея: Давайте от каждого документа (строки из нулей и единиц) возьмем хэш h:

1. Если документы C_1 и C_2 похожи, то с большой вероятностью h(C1) == h(C2)

Идея: Давайте от каждого документа (строки из нулей и единиц) возьмем хэш h:

- 1. Если документы C_1 и C_2 похожи, то с большой вероятностью h(C1) == h(C2)
- 2. Иначе с большой вероятностью $h(C1) \neq h(C2)$

Идея:

- 1. Разбить документ на п-граммы
- 2. Взять от каждого n-грамма хэш
- 3. Получим представление документа в виде строки из нулей и единиц. Длина такого вектора = количество всевозможных n-грамм.
- 4. Посчитаем документы похожими, если у них много совпадающих n-грамм

Min Hash

Что почитать по этой лекции

- · Tom Mitchell "Machine Learning". Chapter 8
- К. Воронцов "Лекции по метрическим алгоритмам классификации"
- Обзор методов поиска ближайших соседей
- Ullman, Leskovec, Rajaraman "Mining of Massive Datasets" Chapter 3.4—3.8

Что происходит сейчас в области knn

ICML'16: Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing

NIPS'16: k^* -Nearest Neighbors: From Global to Local

NIPS'16: Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators

На следующей лекции

- Кластеризация. K-means.
- Цели кластеризации.
- Типы кластерных структур.
- Функционал качества кластеризации
- К-средних
- Иерархическая кластеризация.