Nombre:			

Sección: _ Carnet: _

MA-2115—Primer Parcial, 02/02/05, 30 %—9:30am–A

#1→12 pts

Total→30 pts

1. (12 pts.) Determine cuáles de las siguientes series convergen y cuáles divergen (3 pts. c/u):

a)
$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} - \frac{2}{3^{n-1}} \right)$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

d) $\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{5^{n-1}}$

Solución:

a)
$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} - \frac{2}{3^{n-1}} \right)$$

Podemos mirar esta serie como la resta de dos series: $\sum_{n=0}^{\infty} \left(\frac{7}{n(n+1)} - \frac{2}{3^{n-1}} \right) = \sum_{n=0}^{\infty} \frac{7}{n(n+1)} - \frac{2}{3^{n-1}}$

 $\sum_{n=1}^{\infty} \frac{2}{3^{n-1}}$. Por un lado, la serie $\sum_{n=1}^{\infty} \frac{7}{n(n+1)}$ es CONVERGENTE por comparación con la

serie (mayorante) $\sum_{n=1}^{\infty} \frac{7}{n^2}$ que sabemos que es CONVERGENTE. Por otro lado, la serie $\sum_{n=1}^{\infty} \frac{2}{3^{n-1}}$ es CONVERGENTE por ser una serie geométrica de razón $r=\frac{1}{3}<1$ (con primer

Entonces la serie dada es CONVERGENTE, pues es la resta de dos series convergentes.

$$b) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$

La serie $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$ es CONVERGENTE por comparación con la serie (mayorante) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ que sabemos que es CONVERGENTE (p-serie con $p=\frac{3}{2}>1$).

$$c) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Haciendo uso del criterio de la razón tenemos: $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n!}}=\lim_{n\to\infty}\frac{n^n(n+1)!}{(n+1)^{n+1}n!}=$

Dpto. de MATEMATICAS

MA-2115-9:30am-A

$$\lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$$

Por lo tanto la serie dada es CONVERGENTE.

d)
$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{5^{n-1}}$$

Esta serie se puede escribir como $\sum_{n=1}^{\infty}\left(\frac{-2}{5}\right)^{n-1}$, y por lo tanto es una serie geométrica de razón $r=-\frac{2}{5}$, y como |r|<1 entonces la serie es CONVERGENTE.

2. (6 pts.) Halle el intervalo de convergencia de la serie de potencias $\sum_{n=1}^{\infty} \frac{(x-5)^n}{3n \, 7^n}$.

Solución: Consideremos $a_n = \frac{(x-5)^n}{3n\,7^n}$. Usando el criterio de la razón (o cociente) tenemos:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-5)^{n+1}}{3(n+1)7^{n+1}}}{\frac{(x-5)^n}{3n7^n}} \right| = \lim_{n \to \infty} \left| \frac{(x-5)^{n+1}3n7^n}{3(n+1)7^{n+1}(x-5)^n} \right| = \left| \frac{(x-5)}{7} \right| \lim_{n \to \infty} \frac{n}{n+1} = \frac{|x-5|}{7}$$

Sabemos entonces que la serie de potencias es convergente si $\frac{|x-5|}{7} < 1$, es decir si |x-5| < 7, luego si -2 < x < 12. Es decir la serie es ABSOLUTAMENTE CONVERGENTE para $x \in (-2,12)$.

Analizando los extremos se tiene que para x=-2 tenemos la serie $\sum_{n=1}^{\infty} \frac{((-2)-5)^n}{3n\,7^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{3n}$, que es CONDICIONALMENTE CONVERGENTE. Por otro lado, para x=12 tenemos la serie $\sum_{n=1}^{\infty} \frac{((12)-5)^n}{3n\,7^n} = \sum_{n=1}^{\infty} \frac{1}{3n}$, que es DIVERGENTE.

Concluimos que la serie de potencias dada es CONVERGENTE para $x \in [-2, 12)$.

3. (6 pts.) Halle la serie de Maclaurin de la función $f(x) = \ln \sqrt{\frac{1-x}{5+x}}$ Solución: Aplicando propiedades del logaritmo se tiene,

$$\begin{split} f(x) &= \ln \sqrt{\frac{1-x}{5+x}} = \frac{1}{2} \ln \left(\frac{1-x}{5+x} \right) = \frac{1}{2} \left[\ln(1-x) - \ln 5 \left(1 + \frac{x}{5} \right) \right] = \\ &= \frac{1}{2} \left[\ln(1-x) - \ln 5 - \ln \left(1 + \frac{x}{5} \right) \right] \\ &= \frac{1}{2} \left[\ln(1-x) \right] - \frac{1}{2} \ln 5 - \frac{1}{2} \left[\ln \left(1 + \frac{x}{5} \right) \right] \end{split}$$

Como sabemos $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$, si |x|<1, e integrando tenemos $-\ln(1-x)=\sum_{n=0}^{\infty}\frac{x^{n+1}}{n+1}$, si

Dpto. de MATEMATICAS *MA-2115-9:30am-A*

|x| < 1. Ahora tenemos que

$$\begin{split} f(x) &= \frac{1}{2} \left[\ln(1-x) \right] - \frac{1}{2} \ln 5 - \frac{1}{2} \left[\ln \left(1 + \frac{x}{5} \right) \right] = \\ &= -\frac{1}{2} \ln 5 - \frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \right] + \frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{n+1}}{5^{n+1} (n+1)} \right] \\ &= -\frac{1}{2} \ln 5 + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{(-1)^{n+1}}{5^{n+1}} - 1 \right) \frac{x^{n+1}}{n+1} \end{split}$$

O también, la forma equivalente $f(x) = -\frac{1}{2}\ln 5 + \sum_{n=1}^{\infty} \frac{\left(-1 + \left(-\left(\frac{1}{5}\right)\right)^n\right)\,x^n}{2n}$ para |x| < 1.

4. (6 pts.) Analice la sucesión definida por la fórmula de recurrencia

$$a_n = \frac{2n^4 - 1}{1 + 3n^4} a_{n-1}; \quad a_0 = 1.$$

Demuestre que la sucesión dada converge o demuestre que diverge según sea el caso.

Solución: Sabremos que $a_0=1>0$. Tenemos que $a_1=\frac{1}{4}a_0=\frac{1}{4}< a_0$. Observamos que $\frac{2n^4-1}{1+3n^4}>0$ para todo $n\geq 1$, por lo tanto los $a_n>0$ para todo $n\in\mathbb{N}$. Veamos que $a_n< a_{n-1}$, para todo $n\geq 1$. En efecto, $a_n=\frac{2n^4-1}{1+3n^4}a_{n-1}<\frac{2n^4}{3n^4}a_{n-1}=\frac{2}{3}a_{n-1}< a_{n-1}$. Por lo tanto la sucesión es decreciente y acotada inferiormente (por cero). Entonces la sucesión CONVERGE.

Además es fácil verificar que $\lim_{n\to\infty} a_n = 0$ pues de lo anteriormente calculado se deduce que $a_n < \left(\frac{2}{3}\right)^n$ para $n \ge 1$.