1 Идеалы и факторкольца

Определение 1. Π одкольцом K кольца R называется подмножество, замкнутое относительно сложения и умножения.

Пример 1. Подкольцом кольца целых чисел служат, например, чётные числа, поскольку сумма и произведение чётных чётно.

Пример 2. В кольце многочленов $\mathbb{R}[x]$ можно рассмотреть все многочлены без свободного члена: $a_n x^n + ... + a_1 x$. Проверьте, если вам не очевидно, что это множество является подкольцом в $\mathbb{R}[x]$.

Пример 3. Также в кольце многочленов $\mathbb{R}[x]$ можно рассмотреть все многочлены по модулю многочлена x^n . Это множество будет состоять, очевидно, из всех многочленов степени не выше n-1. Проверьте, если вам не очевидно, что это тоже подкольцо. Оно обозначается $\mathbb{R}[x]/x^n$.

Напомним, как строится кольцо вычетов \mathbb{Z}_n . Жило-было государство целых чисел \mathbb{Z} . Для заданного числа n можно разделить жителей этого государства на n различных народностей. Чтобы понять, к какой народности относится тот или иной житель a нужно его представить в виде a = r + (n), где в слагаемое (n) входит наибольший натуральный кусок, делящийся на n, то бишь остаток при делении a на n. Таким образом, на государство целых чисел мы можем смотреть по модулю добавления кратных n, т. е. как на $\mathbb{Z}/n\mathbb{Z}$.

Обобщая конструкцию кольца вычетов $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ и последний пример, можно рассмотреть отношения эквивалентности, согласованные с операциями, в абстрактных кольцах. Пусть $I \subset A$ — подкольцо кольца A. Мы хотим соорудить множество

$$A/I = \{a + (I)|a \in A\},\$$

состоящее из классов эквивалентности по модулю элементов подкольца I, причём так, чтобы это множество само являлось кольцом, а не абы чем! Для каждого элемента a+(I) множества A/I элемент a называется представителем элемента a+(I). Представители определены неоднозначно, с точностью до прибавления элементов подкольца I.

Стало быть, чтобы A/I было корректным кольцом, нам нужно следить, чтобы результат операций над элементами множества A/I не зависел от выбора представителей — когда мы складываем и умножаем вычеты, например, по модулю 5 (остатки) нам ведь не важно, сложим (или умножим) мы 3 и 4 или 18 и (-6), ведь результат будет одинаков по модулю прибавления чисел, кратных 5.

Посмотрим, для каких I результат не будет зависеть от выбора представителей. Пусть $a \equiv a' \pmod{I}$ и $b \equiv b' \pmod{I}$ — это означает, как и с числами, что a' = a + u и b' = b + v, где $u, v \in I$, т. е. элементы a и a' представляют элемент a + (I), а элементы b и b' представляют элемент b + (I). Теперь запишем сумму элементов a' + b':

$$a' + b' = (a + u) + (b + v) = (a + b) + (u + v),$$

т. к. относительно сложения кольцо коммутативно. И вот, мы видим, что результат по модулю прибавления элементов из множества I одинаков — не зависит от представителей фактор-цольца для любого I. Затем запишем умножение:

$$a'b' = (a + u)(b + v) = ab + av + ub + uv.$$

Здесь мы уже видим, что ответ отличается от ab+uv на слагаемое av+ub, которое, вообще говоря, не обязано лежать в I. Но мы можем потребовать, чтобы это было так, сказав, что $aI\subset I$ и $Ia\subset I$ для любого $a\in A$. В этом случае $av\in I$ и $ub\in I$, и значит, их сумма тоже лежит в I, т. е.

$$ab + av + ub + uv = ab + (I),$$

и произведение в A/I не зависит от представителей.

Определение 2. Подкольцо I кольца A называется udeanom (двусторонним), если для любого элемента $a \in A$ выполнены включения $aI \subset I$ и $Ia \subset I$. То есть идеалы — это засасывающие множества по умножению в кольце: если вы умножились на элемент идеала, то вас засосало в идеал.

Пример 4. В любом кольце идеалом является, очевидно, множество, состоящее из одного нуля, а также множество, совпадающее со всем кольцом — это тривиальные идеалы. Факторкольцо по нулевому идеалу — это оно же и будет. А фактор кольца по нему самому — это нуль.

Пример 5. В кольце целых чисел множества $n\mathbb{Z}$ (все кратные n числа) — идеал. Фактор-кольцом $\mathbb{Z}/n\mathbb{Z}$ будет кольцо остатков по модулю n, обозначаемое символом \mathbb{Z}_n .

Пример 6. В кольце многочленов $\mathbb{R}[x]$ рассмотрим множество многочленов, обозначаемое (P), делящихся на фиксированный многочлен P. Легко понять, что (P) — идеал, и можно рассмотреть факторкольцо $\mathbb{R}[x]/(P)$, состоящее из многочленов с точностью до боваления кратных P многочленов.

Задача 1. Докажите, что в поле нет нетривиальных (т. е. отличных от нуля и всего поля) идеалов.

Определение 3. Отображение колец $f:A\to B$ называется *гомоморфизмом*, если оно «уважает» сложение и умножение, т. е.

$$f(a+b) = f(a) + f(b),$$

$$f(ab) = f(a)f(b).$$

Задача 2. Пусть есть гомоморфизм колец $f:A\to B$. Назовём множество $\mathrm{Ker} f=\{a\in A|f(a)=0\}$ ядром этого гомоморфизма. Докажите, что $\mathrm{Ker} f$ — идеал кольца A.

Задача 3. Пусть есть гомоморфизм колец $f:A\to B$. Назовём множество $\mathrm{Im} f=\{b\in B|$ существует $a\in A:f(a)=b\}$ образом этого гомоморфизма. Докажите, что $\mathrm{Im} f$ — подкольцо кольца B.

Задача 4. Рассмотрим отображение $\pi:A\to A/I$, где $I\subset A$ — идеал в A, причём $\pi(a)=a+(I)$ — просто элементу кольца A ставим в соответствие представителя кольца A/I. Проверьте, что это отображение является гомоморфизмом колец.

Определение 4. *Изоморфизмом* колец называется гомоморфизм колец, который является ещё и взаимно однозначным отображением множеств (т. е. биекцией).

Пример 7. Кольцо $\mathbb{R}[x]/(x-1)$ изоморфно кольцу всех действительных чисел \mathbb{R} посредством изоморфизма

$$f: \mathbb{R}[x]/(x-1) \to \mathbb{R},$$

 $P(x) + (x-1) \cdot Q(x) \mapsto P(1).$

Задача 5. Поймите, почему это изоморфизм.

Описанный выше пример можно обобщить при помощи теоремы о гомоморфизме:

Теорема 1 (о гомоморфизме). Пусть $f: A \to B$ — гомоморфизм колец. Тогда

Im
$$f \cong A/\text{Ker } f$$
.

Более точно, имеется изоморфизм

$$\varphi: \operatorname{Im} f \to A/\operatorname{Ker} f$$
,

ставящий в соответствие каждому элементу $b = f(a) \in \text{Im } f$ класс a + Ker f.

Задача 6. Докажите, что $\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}$. И вообще, пусть x^2+px+q — квадратный трёхчлен с действительными коэффициентами и отрицательным дискриминантом. Докажите, что $\mathbb{R}/(x^2+px+q)\cong\mathbb{C}$.

2 Рождественская теорема Ферма

Задача 7. Пусть \mathbb{F} — некоторое поле. Докажите, что кольцо $\mathbb{F}[x]/(P)$ — поле \Leftrightarrow многочлен P неприводим над \mathbb{F} (т. е. не раскладывается в произведение непостоянных многочленов).

Задача 8. Докажите, что для числа $a \in \mathbb{Z}$ существует такое число $x \in \mathbb{Z}$, что $a \equiv x^2 \pmod{p}$, где $p \in \mathbb{Z}$ — простое число $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Задача 9. Когда уравнение $x^2 + 1 = 0$ имеет решение в \mathbb{Z}_p , где p — простое целое число?

Задача 10. Докажите, что $\mathbb{Z}[i]/(p) \cong \mathbb{Z}_p[x]/(x^2+1)$.

Задача 11. Какие целые простые числа просты и в гауссовых числах?

Задача 12 (Собственно, рождественская теорема Ферма). Докажите, что простое натуральное число p представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда p=4k+1.

Задача 13 (Обобщение). Докажите, что натуральное число n представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда в его разложение на простые множители в $\mathbb Z$ все множители вида 4k+3 входят в чётной степени.

Задача 14. В зависимости от простых чисел $p_i, i = 1, ..., s$ найдите количество представлений числа $p_1...p_s$ в виде суммы двух квадратов.