Supplementary material

A Universal Airborne LiDAR Approach for Tropical Forest Carbon Mapping

Gregory P. Asner^{1*}, Joseph Mascaro^{1,2}, Helene C. Muller-Landau², Ghislain Vieilledent³, Romuald Vaudry⁴, Maminiaina Rasamoelina⁵, Jefferson Hall², Michiel van Breugel²

In previously published and forthcoming papers, we developed equations to estimate aboveground carbon density (ACD; Mg C ha⁻¹) from LiDAR-derived Mean Canopy Profile Height (MCH; m) for tropical forests in Hawaii, Peru, Panama, and Madagascar (see main text; <u>Asner et al. 2011</u>; <u>Asner et al. 2010</u>; <u>Mascaro et al. 2011</u>). These were fit in two forms: (1) using linear regression on In-transformed ACD and MCH data, and applying a correction factor to account for the back-transformation of the regression error (<u>Baskerville 1972</u>), or (2) using non-linear regression in the form of a power-law model (Table S1). For a given region, the fitting approach that provided the more consistent distribution of residuals was used.

We also previously generated diameter-to-height models using 2nd or 3rd-order polynomial models fit to In-transformed diameter (D; cm) and height (H; m) data, again applying a correction factor. For the present study, we related both basal area (BA; m² ha⁻¹) and wood density (WD; g cm⁻³) to LiDAR MCH using linear regression; in the case of BA, the model was forced through the origin to provide a ratio of BA to MCH. Additional relationships between WD and ACD are provided for congruity with previous studies (Table S2).

For all trees globally, ACD is approximately proportional to $D^{2*}H^{*}WD$ (Chave et al. 2005), and because H is typically related to D^{2} with in a power model with an exponent between 0.46 and 0.65 (Feldpausch et al. 2010), ACD is approximately proportional to $D^{2.5}$ or BA^{1.25}. At the plot scale, we found that this was the case for the sites considered in this study (Figure S1).

¹ Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305 USA

² Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama

³ CIRAD, UR105 Forest Ecosystem Goods and Services, TA C-105/D, Campus de Baillarguet, 34398 Montpellier Cedex 5, France & DRP Forêt et Biodiversité, BP 853, Antananarivo, Madagascar

⁴GoodPlanet Foundation, Carrefour de Longchamp, 75116 Paris, France

⁵ World Wide Fund for Nature, BP 738, Antananarivo, Madagascar

Table S1: Summary of equations used to develop a universal approach to LiDAR-based carbon monitoring. For parameters, the estimated value is followed by its standard error in parentheses.

Equation/Region	а		b ₁		b ₂		b ₃		r ²	n	RMSE	CF
$ln(ACD) = a + b_1*ln$	(MCH)											
Hawaii	1.852 0	(0.0870	1.240 0	(0.0410					0.86	149	0.3795	1.074 7
ACD = a*MCH ^{b1}												
Panama Peru Madagascar	1.116 2 0.353 0 3.928 8	(0.0787) (0.1110) (1.6263	1.449 8 1.925 0 1.215	(0.0310) (0.1010) (0.1445					0.85 0.85 0.68	157 130 46	17.5377 23.6566 35.4286	
BA = b ₁ *MCH	J	,	Ü	,					0.00	10	00.1200	
Hawaii Panama Peru Madagascar			3.529 9 1.488 8 1.532 9 2.229	(0.0740) (0.2200) (0.0220) (0.3170					0.77 0.84 0.82 0.55	149 157 130 46	9.1768 4.9523 4.8536 10.4597	
$ln(H) = a + b_1*ln(D)$	+ h _o *ln(Γ)) ² + h _a *ln([,					0.55	40	10.4337	
$m(n) = \alpha \cdot b_1 m(D)$	· D2 III(L	, , , ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>-</i> ,									
Hawaii Panama	0.512 0 0.862 0	(0.0200) (0.0320)	0.758 0 0.611 0	(0.0190) (0.0470)	0.032 0 0.051 0	(0.0040) (0.0200)	0.013	(0.0030	0.86 0.91	2257 1218	0.2828 0.2236	1.040 8 1.025 3

0

Peru	0.569 0	(0.1100	0.989	(0.0650	0.072 0	(0.0090			0.68	1681	0.2191	1.024 3
Madagascar WD = a + b ₁ *MCH	0.590 0	(0.6530	1.979 0	(0.6750	0.362	(0.2210	0.027	(0.0230	0.83	250	0.2191	1.024
Hawaii	0.669 9	(0.0110	0.002	(0.0011					0.03	149	0.0656	
Panama	0.554 9 0.455	(0.0081) (0.0170	0.000 9 0.004	(0.0004) (0.0009					0.03	157	0.0346	
Peru	1)	9)					0.20	130	0.0608	
Madagascar	0.575 0	(0.0210	0.000	(0.0010					0.00	46	0.0566	

Table S2: Relationships between wood density and aboveground carbon density . For parameters, the estimated value is followed by its standard error in parentheses.

Equation/Region	a		b ₁		r ²	n	RMSE
$\overline{WD = a + b_1^*ACD}$							
Hawaii	-6.93E-05	(6.94E-05)	0.6560	(0.0090)	0.01	149	0.0660
Panama	-5.23E-05	(4.86E-05)	0.5440	(0.0060)	0.01	157	0.0340
Peru	5.44E-04	(8.97E-05)	0.4860	(0.0110)	0.22	130	0.0600
Madagascar	2.03E-04	(1.32E-04)	0.5530	(0.0160)	0.05	46	0.0550

References

- Asner GP et al. (2011) High-resolution carbon mapping on the million-hectare Island of Hawaii. Frontiers in Ecology and the Environment:doi:10.1890/100179
- Asner GP et al. (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107:16738-16742
- Baskerville G (1972) Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 2:49-53
- Feldpausch TR et al. (2010) Height-diameter allometry of tropical forest trees. Biogeosciences Discussion 7:7727-7793
- Mascaro J, Asner GP, Muller-Landau HC, van Breugal M, Hall J, Dahlin K (2011) Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences 8:1615-1629

Figure S1. Relationship between aboveground carbon density and basal area across 482 plots in four tropical ecoregions: Hawaii, Panama, Peru and Madagascar.