Problem 5.1

5.1 A data mining routine has been applied to a transaction dataset and has classified 88 records as fraudulent (30 correctly so) and 952 as non-fraudulent (920 correctly so). Construct the classification matrix and calculate the error rate.

Answer to 5.1:

Explanation

		Predicted Class	
		C_0	C_1
Actual Class	C_0	$n_{0,0}$ = Number of correctly classified C_0 cases	$n_{0,1}$ = Number of C_0 cases incorrectly classified as C_1
	C_1	$n_{1,0}$ = Number of C_1 cases incorrectly classified as C_0	$n_{1,1}$ = Number of correctly classified C_1 cases

Therefore in our problem the confusion matrix is

Classification Confusion Matrix				
		Predicted Class		
Actual Class	1 (fraudulent)	0 (non-fraudulent)		
1 (fraudulent)	30	32		
0 (non-fraudulent)	58	920		

Error Rate = (n0.1 + n1.0) / n = (32 + 58) / 1040 = 0.0865 = 8.65%

Problem 5.2

- 5.2 Suppose that this routine has an adjustable cutoff (threshold) mechanism by which you can alter the proportion of records classified as fraudulent. Describe how moving the cutoff up or down would affect
 - a. The classification error rate for records that are truly fraudulent.

Answer to 5.2.a:

Let us assume a given cutoff, say, 0.5.

Classification Confusion Matrix					
	Predicted Class				
Actual Class	1 (Fraudulent)	0 (Non-fraudulent)			
1 (Fraudulent)	a	b			
0 (Non-fraudulent)	С	d			

The classification error rate for truly fraudulent records (with this 0.5 cutoff) is a / (a+b)

The classification error rate for truly non-fraudulent records (with this 0.5 cutoff) is c / (c+d)

Lowering the cutoff (here, below 0.5) leads to classifying more non-fraudulent records as fraudulent records (more zeros misclassified as 1).

- a. The numerator of the classification error rate for truly fraudulent records becomes less than or equal to b. In general, lowering the cutoff will result in a decrease (or no change) in the classification error rate for truly fraudulent records.
- b. The numerator of the classification error rate for truly non-fraudulent records becomes greater than or equal to c. In general, decreasing the cutoff will result in an increase (or no change) in the classification error rate for truly non-fraudulent records.

Increasing the cutoff (here, above 0.5) leads to classifying more fraudulent records as non-fraudulent records (more 1 misclassified as 0).

- a. The numerator of the classification error rate for truly fraudulent records becomes greater than or equal to b. In general, increasing the cutoff will result in an increase (or no change) in the classification error rate for truly fraudulent records..
- a. The The numerator of the classification error rate for truly non-fraudulent records is less than or equal to c. In general, increasing the cutoff will result in a decrease (or no change) in the classification error rate for truly non-fraudulent records.