Traffic Forecast Prediction

ADVANCED DATA SCIENCE CAPSTONE PROJECT

Contents

- ▶ Introduction (Use Case | Business Value)
- Data Exploration
- ► SARIMA(X)
- ► LSTM
- Results / Outlook

Use Case | Business Value

- Use Case
 - Visits Traffic Forecast for a News Media Website
 - Multi-Step Time Series Predicition required
 - Challenges for prediciting Visits of a New Media Website
- Business Value
 - ▶ Forecast to receive estimated revenue from the Marketer
 - Automate the Traffic Forecast process to be more efficient

Data Exploration

- Checking for Missing Values
- Checking if values range within one/two Std. Deviations
- Checking for Outliers
- ► Checking for Stationary, Trend and Seasonality

Data Exploration - Overview

Data Exploration – Outlier, Stationary

 Outlier in range: Christmas, 5% Traffic low bucket (2-3 Mio.), only a few with (7-9 Mio.) Visits

Adfuller Test: p-value > 0.01 (p=0.27) Reject Null Hypothesis that Time Series is stationary

Data Exploration – Trend, Seasonality,

Data
Exploration –
Weekday
Seasonality,

Model: SARIMA(X)

SARIMA

- Seasonal ARIMA Model (Autoregressive integrated moving average)
 - ▶ Seasonal → seasonal effect (year, month, week, weekday,etc)
 - ► AR (autogregressive) → refers to using lagged values of our target variable to make our prediction
 - ▶ I (integrated) → differencing to make Times Series stationary
 - ► MA (moving average) → based on the error of the lagged forecast
- \blacktriangleright Hyperparameter: (p,d,q) x (P,D,Q)S

Model: SARIMA(X) - Own

- SARIMA
 - ▶ (p, d, q) x (P, D, Q)S
 - ▶ (0, 1, 1) x (0, 1, 1)7
- ► R-squared = 0.87

Model: SARIMA(X) – AIC (Grid Search)

- SARIMA (AIC)
 - ▶ (p, d, q) x (P, D, Q)S
 - ► (1, 0, 1) × (1, 1, 1)7
- ► R-squared = 0.86

Model: LSTM

► LSTM

- ▶ LSTM stands for Long Short Term Memory. It is a special form of an RNN
- capability to take past events into consideration and only store the relevant information over time
- Hyperparameter:
 - ▶ Batch Size (sequences looked at at the same time during learning. It's the limitation of the batches shown to the network before a weight update can be performed
 - ▶ Epochs (number of iterations the algorithm goes through the training dataset for learning purposes)
 - Neurons (capability of the network to learn)

Model: LSTM

ModelSettings: epochs: 90, batch_size: 15, lstm_neuron_number: 100, rolling_forecast_range: 214, layers: LSTM, DENSE(1)

R2 = 0.83. This seems to be a good combination of hyper params.

Model: LSTM – Batch Size

ModelSettings: epochs: 90, batch_size: 45, lstm_neuron_number: 150, rolling_forecast_range: 214, layers: LSTM, DENSE(1)

R2 = 0.86. This means that the LSTM performed far better than before with this combination of hyper params.

Findings | Evaluation | Outlook

- Findings
 - ▶ No outliers, decreasing trend, technical change, Seasonality, non-Stationary Series
- Evaluation
 - ▶ Based on R-squared: SARIMA(X) scored a little better with R-squared → looking at prediction either SARIMA(X) with R-squared = 0.86 or LSTM as recommendation
- Outlook
 - ► Further Testing Sarima(x) with BIC optimisation
 - stacked LSTM with return_sequence = true
 - Monthly predicition
 - Different performance measure
 - Multivariate models such as a Vector Auto Regression Model