NYC TAXI TRIP DURATION

Overview

- Background nowadays, the intelligent transportation is gradually changing people's way of life.
- Research Object in this project our main aim is to predict the total ride duration of taxi trips in New York City with some primary data provided such as datetime and geo-coordinates.
- Financial value offer better service and gain larger market share.

Data

DATA SOURCE -

TARGET VARIABLE -

trip duration

FEATURES - 1458644 Samples

trip id, supplier,

longitude and latitude of pickup and dropoff position

X1 passenger numbers

X2 pickup time and dropoff time

	Min	Mean	Std	Max
vendor_id	1	1.53495	0.498777	2
passenger_count	0	1.66453	1.314242	9
pickup_longitude	-121.933	-73.9735	0.070902	-61.3355
pickup_latitude	34.3597	40.75092	0.032881	51.88108
dropoff_longitude	-121.933	-73.9734	0.070643	-61.3355
dropoff_latitude	32.18114	40.7518	0.035891	43.92103
trip_duration	1	959.4923	5237.432	3526282

point: pick-up points in New York City color: the gradient color from red to blue indicates the duration of trips from long to short

Baseline & Advanced Model

Method	RMSLE	Square of R
Mean	0.6961	0.00201
DT	0.5556	0.6327
RF	0.3612	0.8092
NN	0.7949	0.0144
KNN	0.4717	0.8092
XGB	0.3966	0.7866
LGBM	0.3469	0.7992

Feature Engineering

EXTERNAL DATA -

OSRM total distance total travel time number of steps

Weather atmosphere pressure humidity dewpoint

INTERESTING FEATURES -

Cluster: use k-means to cluster the pick-up and drop-off position

Airport: if the pick-up or drop-off is within 2km from airports **Direction:** the direction of the trip

Holiday: if the trip is on the holiday

Speed of the road: the average speed from one cluster to

Trip count in hour: the number of records during the near hour

TOP 15 IMPORTANT FEATURES -

Final Result

RERUN MODELS -

	RMSLE		Square of R	
Method	Before	After	Before	After
DT	0.5556	0.4885	0.6327	0.6454
RF	0.3612	0.3394	0.8092	0.8185
XGB	0.3966	0.3420	0.7866	0.8069
LGBM	0.3469	0.3201	0.7992	0.8464

BEST PERFORMACE MODEL ---- STACKING

- level-1 training data set is the predictions of LightGBM and XGBoost, meta-regressor is linear regression
- it is likely to get a better result when combining best single model with others
- when several models both get a good result, using stacking can add marginal improvement
- the chosen models should have different edges

Conclusion

- due to the size of data, over fitting is not that easy
- a feature too simple is also not that good
 - o eg.holiday--only a few samples make a contribution
- trust the algorithm, but not so much
 - o pressure, temperature, hum .etc can be learnt

POSITION IN LEADERBOARD LGB_final Stacking **/** XGB_final NN_final DT_final RF_final 46.1% 63.4% 30.2% TAXI No.63 NYC KNN_base__DT_base RF_base XGB_base LGBM_base T NN_base