Análisis de series de tiempo de marea en el manglar El Sargento

Andrés Rodríguez Mendoza

I. Introducción

El estudio de las mareas ha sido de gran importancia para el comercio y la ciencia durante cientos de años por diversas razones:

- Las mareas pueden producir fuertes corrientes en las aguas costeras, impidiendo la navegación.
- 2. Las corrientes al mezclarse ayudan a mover la circulación en aguas profundas, influyendo en el clima y en cambios climáticos abruptos.
- 3. La corteza terreste se dobla bajo la influencia del potencial de marea y por el peso de las aguas oceánicas. Como consecuencia, el suelo del mar y los continentes se mueven arriba y abajo alrededor de 10 cm respondiendo a la marea.
- 4. Las mareas oceánicas producen fuerzas que transfieren momento angular entre la Tierra y el cuerpo que genera la marea, especialmente la Luna. Como resultado de las fuerzas de marea, la rotación de la Tierra sobre su eje se ralentiza, incrementando la duración del día; la rotación de la Luna sobre la Tierra se ralentiza; y la rotación de la Luna sobre su eje también ralentiza, causando a la Luna mantener el mismo lado de su superficie mirando a la Tierra mientras rota alrededor de ella.
- 5. Las mareas influyen en la órbita de satelites. El conocimiento de las mareas se requiere para el cómputo de la orbita de satélites altimétricos y para corregir mediciones de topografía oceánica.

Desde hace siglos es sabido que las mareas estan relacionadas con las fases de la luna. La relación exacta, sin embargo, está oculta detras de complicados factores, y algunos de las más grandes mentes científicas de los últimos cuatro siglos trabajaron para entender, calcular, y predecir las mareas. Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Laplace y muchos otros contribuyeron a esto. Algunas de las primeras computadoras fueron desarrolladas para calcular y predecir mareas.

Las mareas son calculadas de las ecuaciones de hidrodinámica para un cuerpo océanico autogravitante sobre tierra elástica rotando. La fuerza motriz es el gradiente del campo gravitacional de la Luna y el Sol. Si la Tierra fuera un planeta de océano sin tierra, y se ingorara la influencia de la incercia y corrientes, los gradientes de gravedad producirian un par de protuberancias de agua sobre la tierra, una del lado volteando hacia la Luna o al Sol, y la otra del lado opuesto.

Los cambios en el nivel del agua es resultado de una superposición diversos factores denominados constituyentes de marea, los cuales determinan las frecuencias fundamentales de la marea. Para calcular la amplitud y la fase de la marea en un océano, se calculan los potenciales que generan las mareas provenientes del Sol y la Luna. De los potenciales se puede separar el periodo del potencial de marea lunar en tres términos de alrededor de 14 dias, 24 horas, y 12

	Periodo	Fuente
f_1	día lunar	Tiempo medio lunar local
f_2	mes	Longitud lunar media
f_3	año	Longitud solar media
f_4	años	Longitud de perigeo lunar
f_5	años	Longitud del nodo ascendente lunar
f_6	años	Longitud del perigeo solar

Cuadro 1: Frecuencias fundamentales

horas. Similarmente el potencial del Sol tiene periodos cerca de 180 dias, 24 horas, y 12 horas. Así, quedan 6 distintos grupos de frecuencias de marea. Con una expansion de Doodson se puede descomponer los constituyentes de marea en grupos con frecuencias similares. Cada constituyente tiene una frecuencia

$$f = n_1 f_1 + n_2 f_2 + n_3 f_3 + n_4 f_4 + n_5 f_5 + n_6 f_6, \tag{1}$$

donde los entero n_i son los numeros de Doodson, a veces llamados una marea parcial. $n_1 = 1,2,3$ y $n_2 - n_6$ están entre -5 y 5. Los números de Doodson n_6 usualmente se ignoran porque la modulación de largo término de las mareas por el cambio en el perigeo del Sol es muy pequeña.

Tipo de Marea	Nombre	n_1	n_2	п3	n_4	n_5	Periodo (hr)
Semidiurna							
Lunar principal	M_2	2	0	0	0	0	12.4206
Solar principal	S_2	2	2	-2	0	0	12.0000
Elíptica lunar	N_2	2	-1	0	1	0	12.6584
Lunisolar	K_2	2	2	0	0	0	11.9673
Diurna							
Lunisolar	K_1	1	1	0	0	0	23.9344
Lunar principal	O_1	1	-1	0	0	0	25.8194
Solar principal	P_1	1	1	-2	0	0	24.0659
Lunar elíptica	Q_1	1	-2	0	1	0	26.8684
Periodo largo							
· ·							
Quincenal	M_f	0	2	0	0	0	327.85
Mensual	M_m	0	1	0	-1	0	661.31
Semianual	$S_s a$	0	0	2	0	0	4383.05

Cuadro 2: Constituyentes de marea

II. Resulados

De los datos proporcionados sobre el manglar El Sargento se calcularon los periodos medios en que ocurren máximos cada mes, cada día y cada mitad de día. Los resultados se muestran en la tabla 3 expresados en días y en horas. Se puede observar la semejanza en la periodicidad de cada marea con los datos sobre los constituyentes.

Tipo de marea	Periodo (días)	Periodo (Hrs)
Periodo Largo	26.704	640.90
Diurno	0.996	23.90
Semidiurno	0.498	11.95

Cuadro 3: Tabla con resultados de periodos

De la última de las gráficas es de la que se puede obtener mas información. De ahí se concluye que el tipo de marea en el manglar El Sargento es <u>marea semi-diurna</u>, debido a que ocurren dos máximos cada día donde su diferencia es menor a un metro, y donde los mínimos varían muy poco.

III. GRÁFICAS

Figura 1: Máximos y mínimos en cada mes

Figura 2: Máximos y mínimos en cada día

Figura 3: Máximos y mínimos en cada día (ampliada)

Figura 4: Máximos y mínimos en cada mitad de día

Figura 5: Máximos y mínimos en cada mitad de día (ampliada)