The Cueing Task (Posner, 1980)

- -Detect a target that can appear in one of two locations
- -A cue appears beforehand giving the observer the likely location of the target
- -Valid cues typically lead to better and faster performance

3. Assess if the users employ the expectancy information Control conditions to account for size and location differences

Target absent Target present High expectation Low expectation

Applied to webpage design

Proposal: make web browsing more efficient by placing information where users expect it

- 1. Assess the expectancies of users: locations of key links, e.g., 'Buy', 'Recommended'
 - Perhaps online, as in the driving study
 - Or, through eye-tracking
- 2. Adjust the visual layout to account for the expectancies
- 3. Assess if the users employ the expectancy information
 - Google Analytics
 - A/B testing

Bayesian model

Image with 2 assumed relevant locations

Observer judges if the target is in the display, yes or no

Compute the posterior probability of signal presence (S₁) for each location

$$p(S_{1,low}|X_{low}, X_{high}),$$

 $p(S_{1,high}|X_{low}, X_{high})$

Apply Bayes' theorem to express as prior probabilities

$$p(S_{1, low} | x_{low}, x_{high}) = p(S_{1, low}) p(x_{low}, x_{high} | S_{1, low})$$

$$p(S_{1, high} | x_{low}, x_{high}) = p(S_{1, high}) p(x_{low}, x_{high} | S_{1, high})$$

Compute ratio of overall posterior probability of signal presence (S_1) and overall posterior probability of signal absence (S_0)

$$[p(S_{1,low}|x_{low},x_{high}) + p(S_{1,high}|x_{low},x_{high})]/p(S_0|x_{low},x_{high})$$

Compare ratio to a criterion (ideal criterion is $p(S_1)/p(S_0)$)

Respond 'yes' if ratio >= crit

Respond 'no' if ratio < crit