MAT02018 - Estatística Descritiva

Distribuição de Frequências (dados contínuos)

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

☐ Distribuição de Frequências

Distribuição de Frequências

- Dados contínuos podem assumir diversos valores diferentes¹, mesmo em amostras pequenas.
- ▶ Por essa razão, a menos que sejam em grande número, são apresentados na forma como foram coletados.

¹Aqui chamamos mais uma vez a atenção para a importância de distinguirmos os diferentes tipos de variáveis. Uma variável *quantitativa contínua* é uma variável! E portanto, **pode variar** de um indivíduo para outro! No entanto, a variável *quantitativa contínua* possui um conjunto de valores possíveis **infinito** (um intervalo da reta real), e assim, podemos observar um número de unidades com valores distintos para uma certa variável contínua maior que no caso de uma variável nominal. **Exercício**: compare os valores possíveis para as variáveis **altura** e **estado civil**.

- Considere, como exemplo, que o pesquisador resolveu organizar as idades dos empregados da seção de orçamentos da Companhia MB em uma tabela.
- Pode escrever os dados na ordem em que foram coletados, como segue:

20	41	23	37
40	43	33	44
28	34	27	30
	40	40 43	40 43 33

- Quando em grande número, os dados contínuos podem ser organizados, para apresentação, em uma tabela de distribuição de frequências.
- ▶ Vamos entender como isso é feito por meio de novo exemplo.

- Foram propostas muitas maneiras de avaliar a capacidade de uma criança para o desempenho escolar.
- Algumas crianças estão "prontas" para aprender a escrever aos cinco anos, outras, aos oito anos.
- Imagine que um professor aplicou o Teste de Desempenho Escolar (TDE) a 27 alunos da 1ª série do Ensino Fundamental.
- Os dados obtidos pelo professor estão apresentados em seguida.

7	25	81	95	100	99	95	105	117
18	101	75	98	94	84	102	100	96
111	85	100	108	34	90	96	107	17

- ▶ Para conhecer o comportamento do desempenho escolar desses alunos, o professor deve organizar uma distribuição de frequências.
- No entanto, para isso, é preciso agrupar os dados em faixas, ou classes².
 - Em quantas faixas ou classes podem ser agrupados os dados?

²Note que se procedermos da mesma forma que procedemos para os casos anteriores, a nossa tabela de distribuição de frequências apresentaria um grande número de valores com baixas frequências. Isso nos daria tanta informação quanto a tabela de dados brutos, e portanto, não nos ajudaria a conhecer o comportamento da variável.

Uma regra prática é a seguinte: o número de classes deve ser aproximadamente igual à raiz quadrada do tamanho da amostra.

Número de classes =
$$\sqrt{n}$$
.

- No exemplo, são 27 alunos.
 - ▶ O tamanho da amostra é, portanto, n = 27.
 - ▶ A raiz quadrada de 27 está entre $5(\sqrt{25})$ e $6(\sqrt{36})$. Portanto, podem ser organizadas **cinco classes**.
 - Mas como?

- Observe cuidadosamente o conjunto de dados.
- Ache o valor mínimo, o valor máximo e a amplitude.
- ▶ Valor mínimo é o menor valor de um conjunto de dados.
- ▶ Valor máximo é o maior valor de um conjunto de dados.
- ▶ **Amplitude** é a diferença entre o valor máximo e o valor mínimo.

- Para os valores obtidos pelos 27 alunos no Teste de Desempenho Escolar, temos:
 - Valor mínimo = 7;
 - ▶ Valor máximo = 117;
 - ightharpoonup Amplitude = 117 7 = 110.
- Uma vez obtida a amplitude do conjunto de dados, é preciso calcular a amplitude das classes.

- ► Amplitude de classe é dada pela divisão da amplitude do conjunto de dados pelo número de classes.
- Para os dados do TDE, a amplitude (110) deve ser dividida pelo número de classes que já foi calculado (5):

$$110 \div 5 = 22$$
.

- ► A **amplitude de classe** será, então, 22. Isso significa que:
 - ▶ a primeira classe vai do valor mínimo, 7 até 7 + 22 = 29;
 - a segunda classe vai de 29 a 29 + 22 = 51;
 - ightharpoonup a terceira classe vai de 51 a 51 + 22 = 73;
 - a quarta classe vai de 73 a 73 + 22 = 95;
 - ightharpoonup a quinta classe vai de 95 a 95 + 22 = 117, inclusive.
- Os valores que delimitam as classes são denominados extremos.

- Extremos de classe são os valores que delimitam as classes.
- Uma questão importante é saber como as classes devem ser escritas. Alguém pode pensar em escrever as classes como segue:

No entanto, essa notação traz dúvidas.

- ► Como saber, por exemplo, para qual classe vai o valor 28,5?
- Esse tipo de dúvida é evitado indicando as classes como segue:

 Usando essa notação, fica claro que o intervalo é fechado à esquerda e aberto à direita.

- Então, na classe 7 ⊢ 29 estão incluídos os valores iguais ao extremo inferior da classe, que é 7 (o intervalo é fechado à esquerda), mas não estão incluídos os valores iguais ao extremo superior da classe, que é 29 (o intervalo é aberto à direita).
 - A indicação de que o intervalo é fechado é dada pelo lado esquerdo do traco vertical do símbolo ⊢.
 - A indicação de intervalo aberto é dada pela ausência de traço vertical no lado direito do símbolo ⊢.
- ▶ Uma alternativa a esta notação é dada por colchetes e parênteses.

- Considere *ei* e *es* os **extremos inferior** e **superior** de uma classe qualquer, respectivamente.
 - "(ei; es]", ou " \dashv " é um intervalo aberto à esquerda e fechado à direita;
 - "[ei; es)", ou "⊢" é um intervalo aberto à direita e fechado à esquerda;
 - "(ei; es)", ou "]ei; es[", ou "-" é um intervalo aberto;
 - ▶ "[ei; es]", ou " $\vdash \dashv$ " é um intervalo fechado.

- Estabelecidas as classes, é preciso obter as frequências.
- ▶ Para isso, contam-se quantos alunos estão na classe de 7 a 29 (exclusive)³, quantos estão na classe de 29 a 51 (exclusive), e assim por diante.

Apuração

- Aqui uma abordagem poderia ser a criação de uma "nova variável" (transformada) de idade em classes na planilha de dados brutos, e então proceder com a apuração desta "nova variável" como no caso de uma variável qualitativa.
- Afinal de contas, as classes de idade são categorias.
 - Neste caso, categorias de uma variável qualitativa ordinal.

³Ou, seja, sem incluir o extremo direito do intervalo de classe; neste caso, o valor 29.

A distribuição de frequências pode então ser organizada como segue.

Classe TDE	Frequência (<i>n_i</i>)
7 ⊢ 29	4
29 ⊢ 51	1
51 ⊢ 73	0
73 ⊢ 95	6
95 ⊢ 117	15
Total	27

- Embora a regra prática apresentada aqui para a determinação do número de classes seja útil, ela não é a única forma de determinar classes em uma tabela de frequências para dados contínuos.
- O pesquisador pode especificar as classes de acordo com "convenções".
- ▶ É comum vermos as frequências da variável idade serem apresentadas em classes de amplitude 5 ou 10 anos.
- ► Ainda, podem ser especificadas classes com amplitudes distintas (Idade de 0 a 19 anos, 20 a 59 anos, 60 a 79 anos, 80 anos ou mais).

- Outro ponto importante é que nem sempre existe interesse em apresentar todas as classes possíveis.
- Em aluns casos, a primeira classe pode incluir todos os elementos menores que determinado valor.
- Diz-se, então, que o extremo inferior da primeira classe não está definido.
- Como exemplo, veja a distribuição de frequências das pessoas conforme a altura, com as seguintes classes:

Menos de 150 cm $150 \vdash 160$ cm $160 \vdash 170$ cm, etc.

- ▶ Do mesmo modo, todos os elementos iguais ou maiores que determinado valor podem ser agrupados na última classe.
- Diz-se, então, que o extremo superior da última classe não está definido.
- Muitos dados de idade publicados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) estão em tabelas de distribuição de frequências com intervalos de classes diferentes (em relação a amplitude) e não possuem extremo superior definido.
- Veja o exemplo a seguir.

Grupo de idade	Frequência
0 a 4 anos	13796159
5 a 9 anos	14969375
10 a 14 anos	17166761
15 a 19 anos	16990870
20 a 24 anos	17245190
25 a 29 anos	17104413
30 a 34 anos	15744512
35 a 39 anos	13888581
40 a 44 anos	13009367
45 a 49 anos	11833351
50 a 54 anos	10140402
55 a 59 anos	8276219
60 a 64 anos	6509119
65 a 69 anos	4840810
70 a 74 anos	3741637
75 a 79 anos	2563448
80 a 84 anos	1666972
85 a 89 anos	819483
90 a 94 anos	326559
95 a 99 anos	98335
Mais de 100 anos	24236
Total	190755799

Figure 1: População residente, segundo grupos de idade no Brasil (Censo 2010; https://censo2010.ibge.gov.br/sinopse/index.php?dados=12).

Para casa

- 1. Resolver os exercícios 4, 5 e 6 do Capítulo 3.5 do livro **Fundamentos** de **Estatística**⁴ (disponível no Sabi+).
- 2. Para os dados contínuos do seu levantamento estatístico, construa tabelas de frequências e compartilhe no Fórum Geral do Moodle. Discuta como você definiu as classes e suas amplitudes.

⁴Vieira, S. Fundamentos de Estatística, Atlas, 2019, pg. 37-38.

Próxima aula

Distribuição de frequências: frequências relativa, acumulada, relativa acumulada e porcentagem.

Por hoje é só!

Bons estudos!

