CIRCULAR CONVOLUTION

```
MATLAB CODE:
x=input('Enter x[n]');
h=input('Enter h[n]');
l1=length(x);
12=length(h);
N=max(11,12);
X=[x zeros(1,(N-l1))];
H=[h zeros(1,(N-12))];
%using Inbuilt Function
Z=cconv(X,H,N);
disp(Z);
%using the formula
for n=1:N
    y(n)=0;
    for k=1:N
         y(n)=y(n)+X(k).*H(mod((n-k),N)+1);
    end
end
%plots
n=0:(N-1);
subplot(3,1,1);
stem(n,X);
xlabel('time');
ylabel('Amp');
title('X[n]');
subplot(3,1,2);
stem(n,H);
xlabel('time');
ylabel('Amp');
title('H[n]');
subplot(3,1,3);
stem(n,y);
xlabel('time');
ylabel('Amp');
title('Y[n] convolved sequence');
TEST CASES
1.X[n]=[1 2 3 4];
  H[n]=[1 2 3 4];
COMMAND WINDOW OUTPUT
>> exp2circular
Enter x[n][1 2 3 4]
Enter h[n][1 2 3 4]
```

26 28 26 20

2.X[n]=[1 2 3 4];

H[n]=[2 3 4];

Command window output

>> exp2circular

Enter x[n][1 2 3 4]

Enter h[n][2 3 4]

26 23 16 25

PLOTS

1.

2.

Theoretical Calculation:

No.	lab 2 Circular Completion
	n(m = [1,2,3,4] h(m) = [1,2,3,4] = y'(m)
	ylot 2 niol y/colul + nill y/colul + n/21 y/c-2/41 + n/31 y/c-2/41 2 / KI + 2 K H + 3 K3 + 4 K2
	yun = no) yin + nu y'(01x1 + n(21'y(3) + n(31 y'an) = 1 x2 + 2 x1 + 3 xu + 4 x3.
	y(s) = non yin + nun yun + non yon + nun y'an = 1 × 3 + 2 × 2 + 2 × 1 + uxu = 26
	yls1 = 200 yls1 + min y'ls1 + 2x3 + 3x2 + 2x1
(2)	M(M) = [1234] d124 h(h) = [234] d223. padd h(h) w/m ll_2 zeros = 1. h(h) = [2340]. = y'(m)

```
nem + (m-n/n)
2 + 12 + 12
         + ning 101 + ning 131 + ning 1912
                     + n121 y1100 + n131 y1/31
16.
  25.
```

Linear convolution

MATLAB CODE:

```
x=input('Enter x[n]:');
nx=input('Enter x[n] time indices :');
h=input('Enter h[n]:');
nh=input("Enter h[n] time indices:");
[y,ny]=findconv(x,nx,h,nh); %findconv function present in findconv.m
subplot(3,1,1);
stem(nx,x);
```

```
xlabel('time');
ylabel('Amp');
title('X[n]');
subplot(3,1,2);
stem(nh,h);
xlabel('time');
ylabel('Amp');
title('H[n]');
subplot(3,1,3);
stem(ny,y);
xlabel('time');
ylabel('Amp');
title('Y[n]');
disp(y);
disp(ny);
findconv.m
function [y,ny]=findconv(x,nx,h,nh)
    nybegin=nx(1)+nh(1);
    nyend=nx(length(nx))+nh(length(nh));
    ny=nybegin:nyend;
    y=conv(x,h);
    y=calcconv(x,h);
end
calcconv.m
function [y]=calcconv(x,h)
    11=length(x);
    12=length(h);
    N=11+12-1;
    for n=1:N
        y(n)=0
        for k=1:11
             if(n-k+1>=1 && n-k+1<=12)
                 y(n)=y(n)+x(k).*h(n-k+1)
             end
        end
    end
end
TEST CASES
1.X[n]=[1 2 3 4]
 H[n]=[1 2 3 4]
```

Command Terminal Output:

```
>> exp2linear
Enter x[n]:[1 2 3 4]
Enter x[n] time indices:[0 1 2 3]
Enter h[n]:[1 2 3 4]
Enter h[n] time indices:[0 1 2 3]
y =
1 4 10 20 25 24 16
```

<u>2.</u> .X[n]=[1 2 3]

H[n]=[1 2 3 4]

Command Terminal Output:

```
>> exp2linear
Enter x[n]:[1 2 3]
Enter x[n] time indices :[0 1 2]
Enter h[n]:[1 2 3 4]
Enter h[n] time indices:[-2 -1 0 1]
y =
1 4 10 16 17 12
```

PLOTS

<u>1.</u>

2.

Theoretical Calculation:

	Cone 1:	The Court L'
- 0	h+2/0 , h/-2	
	ylu1 20.	Mel 2 2 2 1 4 3 8 2 + 12 8 2
- 11		25
(n')	Care 2!	
101 14 75	0 hts 201 1 win -2	F Sant Inc
	ylm 2 1.	Mars of Mark.
iii)	Case 3:	MAN S SXH + MES
	M221 -> M2-1.	24.
	y(m 2 2x1 + 2x1 2 4.	
101	Care 4:	8 Co. C. S.
	h+2 = 2 -> 420.	N 8 8 8 8 N 26
	ylm 2 3x1 +2x2+3x1	Alma Hall all
	2 10.	
		Cs. s. 17 s. 101 s. 101
N)	cases:	y(112 (1/k, 10, 16, 17, 12)
	h-120	1
	N21.	who relates they to
	you 2 has +3 x2 +2x3	LÝLIC
	yen 2 har +3 x2 +2x3	
		15
4)	Care 6:	
	h-121 -> h22	
	yan > 21x2 + 3 x3'	14.14
	2 17 11	
	5 1	
vii	Case ?!	
**	N-122. 123.	3 2 1 0 1-
	yem = 403 212.	219
	1. 10	
		1
		(\$0 md 0)