Rotational Dynamics

Quantities

Concept	Linear/Translational Quantity	Angular/Rotational Quantity	"Bridge"
cause of acceleration			
	units:	units:	
inertia			
	units:	units:	

Date:

Moment of Inertia for Extended Objects

Practice

1. Consider the following situation:

Image Credit: OpenStax University Physics. Authored by: OpenStax CNX.

License: © BY: Attribution.

Retrieved 2021-03-02 from https://courses.lumenlearning.com/

(a) Calculate the net torque about point S if $m_1 = 10$ kg, $m_2 = 20$ kg, and $m_3 = 30$ kg.

(b) If you took m_3 off, what mass could you replace it with such that the system would balance?

2. A torque of $1.20\,\mathrm{m\,N}$ is applied to a disk of mass $4.80\,\mathrm{kg}$ and radius $30\,\mathrm{cm}$ until it reaches a rotational speed of $10,300\,\mathrm{rpm}$. Through how many revolutions does the disk rotate during this process?