Forme normali e grammatiche CF

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata" a.a. 2020-2021

Giorgio Gambosi

Forma normale di Chomsky

Una grammatica di tipo 2 si dice in Forma Normale di Chomsky se tutte le sue produzioni sono del tipo $A \longrightarrow BC$ o del tipo $A \longrightarrow a$, con $A, B, C \in V_N$ ed $a \in V_T$.

Forma normale di Chomsky

Teorema 1. Data una grammatica \mathcal{G} non contestuale tale che $\varepsilon \notin L(G)$, esiste una grammatica equivalente in CNF.

Forma normale di Chomsky

Come mostrato, è possibile derivare una grammatica \mathcal{G}' in forma ridotta equivalente a \mathcal{G} : in particolare, \mathcal{G}' non ha produzioni unitarie.

Da $\dot{\mathcal{G}}'$, è possibile derivare una grammatica \mathcal{G}'' in CNF, equivalente ad essa

Forma normale di Chomsky

Sia $A \longrightarrow \zeta_{i_1} \dots \zeta_{i_n}$ una produzione di \mathcal{G}' non in CNF. Si possono verificare due casi:

• $n \geq 3$ e $\zeta_{i_j} \in V_N$, $j = 1, \ldots, n$.

In tal caso, introduciamo n-2 nuovi simboli non terminali Z_1 , ..., Z_{n-2} e sostituiamo la produzione $A \longrightarrow \zeta_{i_1} \dots \zeta_{i_n}$ con le produzioni

$$\begin{array}{ccc}
A & \longrightarrow & \zeta_{i_1} Z_1 \\
Z_1 & \longrightarrow & \zeta_{i_2} Z_2 \\
& & \cdots \\
Z_{n-2} & \longrightarrow & \zeta_{i_{n-1}} \zeta_{i_n}.
\end{array}$$

Forma normale di Chomsky

• $n \geq 2$ e $\zeta_{i_j} \in V_T$ per qualche $j \in \{1, \ldots, n\}$.

In tal caso per ciascun $\zeta_{i_j} \in V_T$ introduciamo un nuovo non terminale \overline{Z}_{i_j} , sostituiamo \overline{Z}_{i_j} a ζ_{i_j} nella produzione considerata e aggiungiamo la produzione $\overline{Z}_{i_j} \longrightarrow \zeta_{i_j}$. Così facendo o abbiamo messo in CNF la produzione considerata (se n=2) o ci siamo ricondotti al caso precedente (se $n\geq 3$).

Forma normale di Chomsky

Si consideri la grammatica di tipo 2 che genera il linguaggio $\{a^nb^n \mid n \geq 1\}$ con le produzioni

$$\begin{array}{ccc} S & \longrightarrow & aSb \\ S & \longrightarrow & ab \end{array}$$

La grammatica è in forma ridotta.

Forma normale di Chomsky

Grammatica in CNF equivalente:

•
$$V_N = \{S, Z_1, \overline{Z}_1, \overline{Z}_2, \overline{Z}_3, \overline{Z}_4\}$$

• P:

$$\begin{array}{cccc} S & \longrightarrow & \overline{Z}_1 Z_1 \\ Z_1 & \longrightarrow & S \overline{Z}_2 \\ S & \longrightarrow & \overline{Z}_3 \overline{Z}_4 \\ \overline{Z}_1 & \longrightarrow & a \\ \overline{Z}_2 & \longrightarrow & b \\ \overline{Z}_3 & \longrightarrow & a \end{array}$$

Forma normale di Greibach

 $\overline{Z}_4 \longrightarrow b$

Una grammatica di tipo 2 si dice in Forma Normale di Greibach (GNF) se tutte le sue produzioni sono del tipo $A \longrightarrow a\beta$, con $A \in V_N$, $a \in V_T$, $\beta \in V_N^*$.

Si osservi come una grammatica di tipo 3 corrisponda al caso in cui $|\beta| \leq 1$ Trasformazione in forma normale di Greibach

Lemma 1 (Sostituzione). Sia \mathcal{G} una grammatica di tipo 2 le cui produzioni includono

$$A \longrightarrow \alpha_1 B \alpha_2$$

$$B \longrightarrow \beta_1 \mid \dots \mid \beta_n,$$

 $(\alpha_1, \alpha_2 \in V^*)$ e in cui non compaiono altre B-produzioni oltre a quelle indicate. La grammatica \mathcal{G}' in cui la produzione $A \longrightarrow \alpha_1 B \alpha_2$ è stata sostituita dalla produzione

$$A \longrightarrow \alpha_1 \beta_1 \alpha_2 \mid \ldots \mid \alpha_1 \beta_n \alpha_2$$

è equivalente alla grammatica \mathcal{G} .

Trasformazione in forma normale di Greibach

Lemma 2 (Eliminazione ricursione sinistra). Sia data una grammatica $\mathcal G$ con ricursione sinistra sul non terminale A e sia

$$A \longrightarrow A\alpha_1 \mid \ldots \mid A\alpha_m \mid \beta_1 \mid \ldots \mid \beta_n$$

l'insieme dell A-produzioni in \mathcal{G} , dove nessuna delle stringhe β_i inizia per A. La grammatica \mathcal{G}' in cui le A-produzioni in \mathcal{G} sono state sostituite dalle produzioni:

$$A \longrightarrow \beta_1 A' \mid \dots \mid \beta_n A' \mid \beta_1 \dots \mid \beta_n$$

$$A' \longrightarrow \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \alpha_1 \dots \mid \alpha_m$$

è equivalente a \mathcal{G} e non presenta ricursione sinistra rispetto al non terminale A.

Trasformazione in forma normale di Greibach

Teorema 2. Ogni linguaggio non contestuale L tale che $\varepsilon \notin L$ può essere generato da una grammatica di tipo 2 in GNF.

2

Trasformazione in forma normale di Greibach

Si assuma che \mathcal{G} sia una grammatica CF in CNF che generai L.

La derivazione di \mathcal{G}' da \mathcal{G} avviene applicando iterativamente i due lemmi precedenti, a partire da un ordinamento arbitrario A_1, \ldots, A_n tra i non terminali di \mathcal{G} .

Trasformazione in forma normale di Greibach

Fase 1

- per k da 2 a n
 - **-** per i da 1 a k-1
 - * Applica il Lemma di sostituzione ad ogni produzione del tipo $A_k \longrightarrow A_j \alpha$
 - * Applica il Lemma di eliminazione della ricursione sinistra ad ogni produzione del tipo $A_k \longrightarrow A_k \alpha$

Trasformazione in forma normale di Greibach

Siano B_1, \ldots, B_l i non terminali aggiunti. A questo punto le produzioni sono tutte di uno tra i tipi:

- (a) $A_k \longrightarrow A_j \gamma \operatorname{con} j > k, \gamma \in (V_N \cup \{B_1, \dots, B_l\})^*$
- (b) $A_k \longrightarrow a\gamma \text{ con } a \in V_T, \gamma \in (V_N \cup \{B_1, \dots, B_l\})^*$
- (c) $B_k \longrightarrow \gamma \text{ con } \gamma \in V_N \cdot (V_N \cup \{B_1, \dots, B_l\})^*$

Inoltre, le A_k -produzioni sono:

- se k = n tutte del tipo (b)
- se k < n del tipo (b) o del tipo (a), con $j \le n$

Trasformazione in forma normale di Greibach

Fase 2

- per h da n-1 a 1
 - per j da n a h
 - * Applica il Lemma di sostituzione ad ogni produzione del tipo $A_h \longrightarrow A_j \gamma$

A questo punto le produzioni sono tutte del tipo (b) o (c)

Trasformazione in forma normale di Greibach

Fase 3

- per i da 1 a l
 - per j da 1 a m
 - * Applica il Lemma di sostituzione ad ogni produzione del tipo $B_i \longrightarrow A_i \gamma$

A questo punto le produzioni sono tutte del tipo (b)

Esempio

Data una grammatica avente le produzioni

$$S \quad \longrightarrow \quad AB \mid b$$

$$A \longrightarrow b \mid BS$$

$$B \longrightarrow a \mid BA \mid AS$$
,

consideriamo in modo arbitrario l'ordinamento S,A,B tra i non terminali

Esempio

Fase 1.

Sostituiamo alla produzione $B \longrightarrow AS$ la coppia di produzioni $B \longrightarrow bS \mid BSS$:

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid BS$$

$$B \longrightarrow a \mid bS \mid BA \mid BSS$$

Esempio

Fase 1.

Eliminiamo la ricursione sinistra nelle B-produzioni, ottenendo

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid BS$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

$$B' \longrightarrow A \mid SS \mid AB' \mid SSB'.$$

Esempio

Fase 2.

Sostituiamo alla produzione $A \longrightarrow BS$ le produzioni $A \longrightarrow aS \mid bSS \mid aB'S \mid bSB'S$ ottenendo

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid aS \mid bSS \mid aB'S \mid bSB'S$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

$$B' \longrightarrow A \mid SS \mid AB' \mid SSB'.$$

Esempio

Fase 2.

Sostituiamo alla produzione $S \longrightarrow AB$ le produzioni $S \longrightarrow aSB \mid bSSB \mid aB'SB \mid bSB'SB \mid bB$ ottenendo

$$S \longrightarrow aSB \mid bSSB \mid aB'SB \mid bSB'SB \mid bB \mid b$$

$$A \longrightarrow b \mid aS \mid bSS \mid aB'S \mid bSB'S$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

$$B' \longrightarrow A \mid SS \mid AB' \mid SSB'.$$

Esempio

Fase 3.

Sostituiamo nelle B'-produzioni ottenendo

$$S \longrightarrow aSB \mid bSSB \mid aB'SB \mid bSB'SB \mid bB \mid b$$

 $bSB'SBSB' \mid bBSB' \mid bSB'$.

$$A \longrightarrow b \mid aS \mid bSS \mid aB'S \mid bSB'S$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

Esercizio

Sia data la seguente grammatica:

$$\begin{array}{ccc} S & \longrightarrow & AbA \mid b \\ A & \longrightarrow & SaS \mid a. \end{array}$$

Derivare una grammatica in GNF equivalente ad essa.