Algebraic Geometry

Example Sheet I, 2021

Note: If you would like to receive feedback, please turn in solutions to any subset of Questions 1,7,8,11,13 to the course instructor by email by Thursday, October 28.

- 1. Describe the topological spaces $\operatorname{Spec} \mathbb{R}[x]$, $\operatorname{Spec} \mathbb{C}[x,y]$, $\operatorname{Spec} \mathbb{Z}[x]$, and $\operatorname{Spec} \mathbb{C}[x]$. In each case, describe the subset of maximal ideals.
- 2. Given an example of a homomorphism of rings $\varphi:A\to B$ such that the preimage of a maximal ideal is not maximal. Prove that if φ is surjective then the preimage of a maximal ideal is maximal.
- 3. Let X_1 and X_2 be the Zariski spectra of rings A_1 and A_2 . Describe a natural ring whose Zariski spectrum is homeomorphic $X_1 \sqcup X_2$. Notice in particular how this is not $X_1 \times X_2$.
- 4. Find a ring A whose Zariski spectrum is the *connected doubleton*, i.e. the topological space consisting of two points $\{p_1, p_2\}$ such that $\{p_1\}$ is dense and $\{p_2\}$ is closed. (*) Find a ring A whose Zariski spectrum consists of three points $\{q_1, q_2, q_3\}$ such that $\{q_1\}$ is dense, the set $\{q_2\}$ contains q_3 in its closure, and $\{q_3\}$ is closed.
- 5. Let A be the quotient of a polynomial ring in finitely many variables by a prime ideal. Let mSpec(A) be the set of maximal ideals of A equipped with the Zariski topology. Describe a procedure that reconstructs the full Zariski spectrum Spec(A) and its topology in terms of the irreducible closed subsets of mSpec(A). Apply this procedure with $A = \mathbb{C}[x]$ to conclude that some rings "do not have enough maximal ideals".
- 6. (Sheafification is functorial) Prove that if $f: \mathcal{F} \to \mathcal{G}$ is a morphism of presheaves, there is an induced morphism $f^{\text{sh}}: \mathcal{F}^{\text{sh}} \to \mathcal{G}^{\text{sh}}$ with $(f^{\text{sh}})_p = f_p$.
- 7. Describe a non-zero presheaf of abelian groups all of whose stalks are 0. Conclude that the sheafification is the constant sheaf 0.
- 8. (Exactness is stalk local) Show that a sequence $\cdots \to \mathcal{F}_{i-1} \to \mathcal{F}_i \to \mathcal{F}_{i+1} \to \cdots$ is exact if and only if for every $p \in X$, the corresponding sequence of maps of abelian groups is exact.
- 9. Show that if $f: \mathcal{F} \to \mathcal{G}$ is a morphism between sheaves, then the sheaf image im f can be naturally identified with a subsheaf of \mathcal{G} .
- 10. Show a morphism of sheaves is an isomorphism if and only if it is injective and surjective.
- 11. $(f^{-1} \text{ and } f_* \text{ are adjoint functors.})$ Given a continuous map $f: X \to Y$, sheaves \mathcal{F} on X and \mathcal{G} on Y, construct natural maps $f^{-1}f_*\mathcal{F} \to \mathcal{F}$ and $\mathcal{G} \to f_*f^{-1}\mathcal{G}$. Use this to construct a bijection

$$\operatorname{Hom}_X(f^{-1}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}_Y(\mathcal{G},f_*\mathcal{F}),$$

(i.e., f^{-1} is left adjoint to f_* and f_* is right adjoint to f^{-1} .)

- 12. Observe that there is a unique morphism from \mathbb{Z} to any commutative ring with identity, i.e. \mathbb{Z} is an initial object in this category. Show that Spec \mathbb{Z} is a final object in the category of schemes, i.e., every scheme has a unique morphism to Spec \mathbb{Z} .
- 13. (Gluing) Let $\{X_i\}$ be a family of schemes (possibly infinite) and suppose for each $i \neq j$ we are given an open subscheme $U_{ij} \subseteq X_i$. Suppose also given for each $i \neq j$ an isomorphism of schemes $\varphi_{ij}: U_{ij} \to U_{ji}$, such that (1) for each $i, j, \varphi_{ji} = \varphi_{ij}^{-1}$ and (2) for each $i, j, k, \varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$, and $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on $U_{ij} \cap U_{ik}$.

Then show there is a scheme X, together with morphisms $\psi_i: X_i \to X$ for each i, such that (1) ψ_i is an isomorphism of X_i with an open subscheme of X; (2) the $\psi_i(X_i)$ cover X; (3) $\psi_i(U_{ij}) = \psi_i(X_i) \cap \psi_j(X_j)$; and (4) $\psi_i = \psi_j \circ \varphi_{ij}$ on U_{ij} .