

Principes fondamentaux de l'Automatique : dynamique et contrôle des systèmes

ENSTA Paris – AUT202 MAJ: 12/03/2021

SYSTÈME LINÉAIRE À ÉTAT MESURÉ

Précommande + Retour d'état

La consigne y_c doit être compatible d'un **état d'équilibre** x_e et d'une **commande d'équilibre** u_e

Le système est **commandable** si et seulement si : la matrice C(A, B) est de rang $\dim(x)$

$$C(A, B) = [B \quad A.B \quad \cdots \quad A^{n-1}.B]$$
 avec $n = \dim(x)$

Le système bouclé est stable si :

toutes les valeurs propres λ de A-B.K vérifient $\operatorname{Re}(\lambda) < 0$

Le système bouclé est **instable** si : une des valeurs propres λ de A-B.K vérifie $\operatorname{Re}(\lambda)>0$

Lorsque le système est **commandable**, on peut placer librement les valeurs propres de A - B. K

ENSTA Paris – AUT202 MAJ : 12/03/2021

SYSTÈME LINÉAIRE STANDARD

Précommande + Observateur + Retour d'état

La consigne y_c doit être compatible d'un état **d'équilibre** x_{ρ} et d'une commande d'équilibre u_{ρ}

Le système est observable si et seulement si la matrice d'observabilité $\mathcal{O}(A, \mathcal{C})$ est de rang dim(x)

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ C.A \\ \vdots \\ C.A^{n-1} \end{bmatrix} \text{ avec } n = \dim(x)$$

L'observateur est stable si:

toutes les valeurs propres λ de A-L.C vérifient $Re(\lambda) < 0$

L'observateur est instable si:

une des valeurs propres λ de A - L.C vérifie $Re(\lambda) >$

Lorsque le système est observable, on peut placer librement les valeurs propres de A - L.C

Le système est **commandable** si et seulement si : la matrice C(A, B) est de rang $\dim(x)$

 $C(A,B) = [B \quad A.B \quad \cdots \quad A^{n-1}.B] \text{ avec } n = \dim(x)$

Le système bouclé est stable si :

l'observateur est stable

toutes les valeurs propres $\lambda \operatorname{de} A - B.K$ vérifient

 $Re(\lambda) < 0$

Le système bouclé est instable si :

l'observateur est instable OU

une des valeurs propres λ de $A - B \cdot K$ vérifie $Re(\lambda) > 0$

Lorsque le système est **commandable**, on peut placer librement les valeurs propres de A - B.K

MAJ: 12/03/2021 **ENSTA Paris – AUT202**

SYSTÈME LINÉARISABLE À ÉTAT MESURÉ

Précommande + Retour d'état

La consigne y_c doit être compatible d'un **état** d'équilibre x_e et d'une commande d'équilibre

 u_e

Linéarisation autour de l'équilibre :

$$A = \frac{df}{dx}(x_e, u_e)$$
$$B = \frac{df}{du}(x_e, u_e)$$

Le système est **commandable** si et seulement si : la matrice C(A, B) est de rang $\dim(x)$

$$C(A,B) = [B \quad A.B \quad \cdots \quad A^{n-1}.B] \text{ avec } n = \dim(x)$$

Le système bouclé est stable si :

toutes les valeurs propres λ de A-B.K vérifient $\operatorname{Re}(\lambda) < 0$

Le système bouclé est **instable** si : une des valeurs propres λ de A-B. K vérifie $\operatorname{Re}(\lambda)>0$

Lorsque le système est **commandable**, on peut placer librement les valeurs propres de A-B.K

SYSTÈME LINÉARISABLE STANDARD

Précommande + Observateur + Retour d'état

La consigne y_c doit être compatible d'un état **d'équilibre** x_{ρ} et d'une commande d'équilibre u_{ρ}

Linéarisation autour de l'équilibre :

$$A = \frac{df}{dx}(x_e, u_e)$$

$$B = \frac{df}{du}(x_e, u_e)$$

$$C = \frac{dh}{dx}(x_e)$$

Le système est observable si et seulement si la matrice d'observabilité $\mathcal{O}(A, \mathcal{C})$ est de rang dim(x)

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ C.A \\ \vdots \\ C.A^{n-1} \end{bmatrix} \text{ avec } n = \dim(x)$$

L'observateur est stable si: toutes les valeurs propres $\lambda \det A - L.C$ vérifient

 $Re(\lambda) < 0$

L'observateur est instable si: une des valeurs propres λ de A - L.C vérifie $Re(\lambda) >$

Lorsque le système est observable, on peut placer librement les valeurs propres de A - L.C

Le système est **commandable** si et seulement si : la matrice C(A, B) est de rang $\dim(x)$

$$C(A,B) = \begin{bmatrix} B & A.B & \cdots & A^{n-1}.B \end{bmatrix}$$
 avec $n = \dim(x)$

Le système bouclé est stable si :

l'observateur est stable ET

 $Re(\lambda) < 0$

toutes les valeurs propres $\lambda \operatorname{de} A - B.K$ vérifient

Le système bouclé est instable si : l'observateur est instable OU

une des valeurs propres λ de $A - B \cdot K$ vérifie $Re(\lambda) > 0$

Lorsque le système est **commandable**, on peut placer librement les valeurs propres de A - B.K