

PATENT
10/001,267
Docket 093/004p

CLAIM AMENDMENTS

1 to 12. CANCELLED

13. (*Currently amended*) A method for producing differentiated cells from primate pluripotent stem (pPS) cells, comprising:
- a) obtaining a culture of pPS cells;
 - b) initiating differentiation of the pPS cells; and simultaneously or subsequently
 - c) culturing the cells of step b) in a medium containing an effective concentration of a histone deacetylase inhibitor, until ~~at least~~ 60% at least about 40% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α_1 -antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α -fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
14. (*Currently amended*) The method of ~~claim 13~~ claim 16, wherein at least about 60% of the cells have at least five of said characteristics.
15. (*Currently amended*) The method of ~~claim 13~~ claim 16, wherein at least about 80% of the cells have at least seven of said characteristics.
16. (*Previously presented*) The method of claim 13, wherein the histone deacetylase inhibitor is n-butyrate.
17. (*Previously presented*) The method of claim 13, wherein the histone deacetylase inhibitor is propionic acid, isovaleric acid, or isobutyric acid.
18. (*Previously presented*) The method of claim 13, wherein the histone deacetylase inhibitor is Trichostatin A.

PATENT
10/001,267
Docket 093/004p

19. *(Previously presented)* The method of claim 13, wherein differentiation of the pPS cells is initiated by forming embryoid bodies.
20. *(Previously presented)* The method of claim 13, wherein differentiation of the pPS cells is initiated by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); hexmethylene bisacetamide, or another polymethylene bisacetamide.
21. *(Previously presented)* The method of claim 13, comprising further culturing the cells in a medium containing a cytokine or hormone selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF- α , TGF- β , fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
22. *(Previously presented)* The method of claim 21, wherein the cells are cultured in a medium containing at least three of said cytokines or hormones.
23. *(Previously presented)* The method of claim 22, wherein the cells are cultured in a medium containing EGF, TGF- α , and HGF.
24. *(Previously presented)* The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing a histone deacetylase inhibitor.
25. *(Previously presented)* The method of claim 13, further comprising maintaining the differentiated cells by culturing them in a medium containing n-butyrate.

PATENT
10/001,267
Docket 093/004p

26. *(Previously presented)* The method of claim 27, wherein the pPS cells are human embryonic stem cells.
27. *(Currently amended)* A method for maintaining hepatocyte lineage cells in culture, comprising:
- obtaining a population of cells differentiated from an established culture of primate pluripotent stem (pPS) cells, wherein ~~at least~~ 60% ~~at least about~~ 40% of the differentiated cells have at least three of the following characteristics:
 - antibody-detectable expression of α_1 -antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α -fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes; and then
 - culturing the differentiated cells in a medium containing an effective concentration of a histone deacetylase inhibitor, so that ~~at least~~ 60% of the cultured cells maintain said characteristics.
28. *(Currently amended)* A method for producing differentiated cells from human embryonic stem (hES) cells, comprising:
- obtaining a culture of hES cells;
 - initiating differentiation of the hES cells; and simultaneously or subsequently
 - culturing the cells of step b) in a medium containing an effective concentration of a histone deacetylase inhibitor, until ~~at least~~ 60% ~~at least about~~ 40% of the cultured cells have at least three of the following characteristics:
 - antibody-detectable expression of α_1 -antitrypsin (AAT);
 - antibody-detectable expression of albumin;
 - absence of antibody-detectable expression of α -fetoprotein;
 - RT-PCR detectable expression of asialoglycoprotein receptor (ASGR);
 - evidence of glycogen storage;
 - evidence of cytochrome p450 activity;
 - evidence of glucose-6-phosphatase activity; or
 - the morphological features of hepatocytes.
29. *(Previously presented)* The method of claim 13, wherein the pPS cells are cultured with the histone deacetylase inhibitor without previously initiating differentiation.

PATENT
10/001,267
Docket 093/004p

30. *(Previously presented)* The method of claim 13, wherein the pPS cells are cultured on an extracellular matrix without feeder cells before contact with the histone deacetylase inhibitor.
31. *(Currently amended)* The method of claim 28, wherein at least about 60% about 40% of the cells have at least five of said characteristics.
32. *(Currently amended)* The method of claim 28, wherein at least about 60% about 40% of the cells have at least seven of said characteristics.
33. *(Previously presented)* The method of claim 28, wherein the histone deacetylase inhibitor is n-butyrate or Trichostatin A.
34. *(Previously presented)* The method of claim 28, comprising pre-differentiating the cells by culturing in a medium containing dimethyl sulfoxide (DMSO), dimethylacetamide (DMA); hexamethylene bisacetamide, or another polymethylene bisacetamide.
35. *(Previously presented)* The method of claim 28, comprising further culturing the cells in a medium containing at least three cytokines or hormones selected from glucocorticoids, epidermal growth factor (EGF), insulin, TGF- α , TGF- β , fibroblast growth factor (FGF), hepatocyte growth factor (HGF), IL-1, IL-6, IGF-I, IGF-II, and HBGF-1.
36. *(Previously presented)* The method of claim 34, wherein the cells are cultured in a medium containing EGF, TGF- α , and HGF.

PATENT
10/001,267
Docket 093/004p

37. *(Currently amended)* The method of claim 27 claim 39, wherein at least about 60% of the cells have at least five of said characteristics.
38. *(Currently amended)* The method of claim 27 claim 39, wherein at least about 80% of the cells have at least seven of said characteristics.
39. *(Previously presented)* The method of claim 27, wherein the histone deacetylase inhibitor is n-butyrate.
40. *(Previously presented)* The method of claim 27, wherein the histone deacetylase inhibitor is Trichostatin A.

Upon allowance of the application, please renumber the claims as follows:

Claim 13	→	1	Claim 28	→	16
14	→	5	29	→	7
15	→	6	30	→	8
16	→	4	31	→	17
17	→	3	32	→	18
18	→	2	33	→	19
19	→	9	34	→	20
20	→	10	35	→	21
21	→	11	36	→	22
22	→	12	37	→	26
23	→	13	38	→	27
24	→	14	39	→	25
25	→	15	40	→	24
26	→	28			
27	→	23			