

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Genetics</u> <u>Translation</u> <u>Translation</u> Overview

Translation Overview

Translation is	nitiated when	а	binds to the		end of the matu	re messenger RNA
,			Vhen it reaches	the	(AUG), it fa	cilitates the
binding of the	WII	th the compl	lementary			
Items:						
start codon	anticodon	ribosome	stop codon c	odon tra	nsfer RNA (tRNA)	$oxed{3'}$ $oxed{5'}$
B Elongatio	n					
_		RNA to the f	firet (etart) codo	n a secon	d tRNA hinds to	the second codon
After the bindi	ng of the first t		,			the second codon.
After the bindi	ng of the first to	binds to tha	at of the next tR	NA via	. The rib	osome then
After the binding. The moves to the t	ng of the first to of one tRNA nird codon, an	to that to the data that the data third the data third the data third the data the d	at of the next tR	NA via	. The rib	osome then
After the binding. The moves to the thappens, the f	ng of the first the of one tRNA nird codon, an rst tRNA (but	to that to that do that do the third tRN not the first	at of the next tR NA binds (bringi amino acid) det	NA via ng with it that	. The rib ne third amino ac s process repea	osome then cid). As this
After the binding. The moves to the thappens, the f	ng of the first the of one tRNA nird codon, and rst tRNA (but a RNAs bind to	the mRNA,	at of the next tR NA binds (bringi amino acid) det	NA via ng with it that	. The rib ne third amino ac s process repea	osome then cid). As this ts along the length
After the binding The moves to the thappens, the formal of the mRNA:	ng of the first the of one tRNA nird codon, and rst tRNA (but a RNAs bind to	the mRNA,	at of the next tR NA binds (bringi amino acid) det	NA via ng with it that	. The rib ne third amino ac s process repea	osome then cid). As this ts along the length
After the binding The moves to the thappens, the formal of the mRNA:	ng of the first the of one tRNA nird codon, and rst tRNA (but a RNAs bind to	the mRNA,	at of the next tR NA binds (bringi amino acid) det	NA via ng with it that	. The rib ne third amino ac s process repea	osome then cid). As this ts along the length
After the binding. The moves to the thappens, the formal of the mRNA:	ng of the first to of one tRNA nird codon, and rst tRNA (but RNAs bind to acids is called	to that do that do that do third tRN not the first the mRNA,	at of the next tR NA binds (bringi amino acid) det	NA via ng with it that	. The rib ne third amino ac s process repea other, and then t	osome then cid). As this ts along the length RNAs detach. The

Part C Termination

When the ribosome reaches the	, it detaches from the mRNA	The	is then
released from the final tRNA, and und	ergoes folding and post-translation	al modifications to	o become a
functional .			
Items:			
5' cap anticodon poly(A) tail	protein polypeptide chain stop co	don	

Part D From gene to protein

Drag the steps below (left) into the correct chronological order (right).

Available items

The ribosome moves along the mRNA strand, and transfer RNA (tRNA) molecules bind to the mRNA strand, beginning at the "start" codon (AUG). Each tRNA molecule is bound at one end to a specific amino acid, and at the other end contains a specific triplet of unbound RNA bases called an "anticodon", which binds to complementary codons.

The polypeptide chain undergoes folding and post-translational modifications to become a functional, three-dimensional protein.

RNA polymerase reaches the end of the gene and transcription ends. The newly-synthesised RNA strand is called messenger RNA (mRNA).

Transcription factors and RNA polymerase bind to the promoter region of a gene.

A ribosome binds to the 5' end of the mature mRNA strand.

Adjacent amino acids bind to each other via peptide bonds, forming a polypeptide chain. Once the ribosome reaches the stop codon the polypeptide chain detaches from the last tRNA molecule.

The mRNA strand undergoes post-transcriptional modifications and is exported out of the nucleus.

RNA polymerase moves along the DNA, allowing complementary RNA nucleotides to sequentially bind to each other (through phosphodiester bonds).

Genetics Translation Translation vs Transcription <u>Home</u> <u>Gameboard</u> Biology

Translation vs Transcription

In the table below, identify which statements about translation and transcription are correct, and which are incorrect. Fill in every box with either a tick (correct) or a cross (incorrect).

	Translation	Transcription
occurs within ribosomes		
occurs within the nucleus		
free nucleotides bind as individual nucleotides		
nucleotide binding occurs in triplets		
mRNA is involved		
Items:		

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 8

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Home</u> <u>Gameboard</u> Biology Genetics Translation Transfer RNA (tRNA)

Transfer RNA (tRNA)

Part A tRNA structure

Figure 1: The secondary structure of a human tRNA molecule which binds to the amino acid serine. Adapted from Figure 1 in Holman et. al (2017) under CC BY-NC 4.0

What is the name given to the highlighted region (green) of the tRNA molecule in Figure 1?

Α

С

D

Which image above correctly shows how a tRNA molecule binds to an amino acid and an mRNA strand?

- () A
- () B
- () c
- () D

Part C Nucleic acid types

•	: single-stranded nucleic acid that combines with specific proteins to form the
organel	les responsible for translation
•	: double-stranded nucleic acid
• differen	: single-stranded nucleic acid that folds into secondary and tertiary structures. Each t type binds to a different amino acid.
•	: single-stranded nucleic acid that is "read" by ribosomes during translation
ems:	
transfer RI	NA (tRNA) ribosomal RNA (rRNA) DNA messenger RNA (mRNA)

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 8

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Gameboard</u> Biology Genetics <u>Home</u>

Translation

Translate the Sequences

Translate the Sequences

The table below shows the corresponding tRNA anticodon(s) for a selection of amino acids.

Amino acid	tRNA(s) (3 $^{\prime}$ to 5 $^{\prime}$)
glutamine	GUU, GUC
glycine	CCA, CCG, CCU, CCC
lysine	UUU, UUC
methionine	UAC
phenylalanine	AAA, AAG
proline	GGA, GGG, GGU, GGC
tyrosine	AUA, AUG
valine	CAA, CAG, CAU, CAC

Part A mRNA to amino acid

Using the anticodon table above,	work out the amino	acid sequence that	at would be produced	from the
mRNA sequence (5' to $3'$):				

AUGGGGAAGUUC

Assume that the first three nucleotides correspond to the first codon.

Amino acid 1:	
---------------------------------	--

- Amino acid 2:
- Amino acid 3:
- Amino acid 4:

Items:

glutamine		glycine		lysine		methionine		phenylalanine		proline		tyrosine		valine
-----------	--	---------	--	--------	--	------------	--	---------------	--	---------	--	----------	--	--------

Part B Sense to amino acid

Using the anticodon table above, work out the amino acid sequence that would be produced from the following sense strand DNA sequence (5' to 3'):

ATGCAGTATCAA

Assume that the first three nucleotides correspond to the first codon.

Amino	acid	1:	
-------	------	----	--

- Amino acid 2:
- Amino acid 3:
- Amino acid 4:

Items:

glutamine		glycine		lysine		methionine		phenylalanine		proline		tyrosine		valine
-----------	--	---------	--	--------	--	------------	--	---------------	--	---------	--	----------	--	--------

Part C Antisense to amino acid

Using the anticodon table above, work out the amino acid sequence that would be produced from the following antisense strand DNA sequence (3' to 5'):

TACATGCACGTC

Assume that the first three nucleotides correspond to the first codon.

Amino acid 1:

Amino acid 2:

Amino acid 3:

Amino acid 4:

Items:

 glutamine
 glycine
 lysine
 methionine
 phenylalanine
 proline
 tyrosine
 valine

Part D What kind of sequence is it?

The four sequences below represent four complementary sequences of different types (DNA sense strand, DNA antisense strand, mRNA, and tRNA). Match the sequence type to the sequence.

• TGTGAAACTGCT: DNA sense strand (5' to 3')

• ACACUUUGACGA:

• UGUGAAACUGCU:

ACACTTTGACGA:

Items:

DNA antisense strand (3' to 5') $\boxed{ mRNA (5' \text{ to } 3') }$ $\boxed{ tRNA (3' \text{ to } 5') }$

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 8

Home Gameboard Biology Genetics Translation Translation Calculations

Translation Calculations

Part A Polypeptide length

If a section of a gene is 420 base pairs long, how many amino acids long will the encoded polypeptide be?

Assume that the first three nucleotides correspond to one codon, and that the section does not contain a stop codon (i.e. every codon is translated into an amino acid).

Part B Translation rate

A ribosome can translate 18 bases per second. How long would it take to produce a protein that was 300 amino acids long?

Part C Alien translation

Imagine that an alien organism is found that translates its RNA using pairs of nucleotides instead of triplets.

During translation, the alien organism can use 50 possible amino acids (rather than the 20 used in life on Earth).

What is the minimum number of different types of nucleotides that would be needed to code for all of the possible amino acids?

<u>Home</u> <u>Gameboard</u> Biology Genetics Translation Post-translational Modifications

Post-translational Modifications

Part A Types of modifications
After translation, a polypeptide chain undergoes folding to become a functional protein. Some proteins undergo further post-translational modifications. These include: (the addition of a phosphate group), (the addition of a carbohydrate to form a), and (the addition of a lipid to form a).
Items: glycosylation proteolipid glycoprotein phosphorylation lipidation
 Part B Modification locations Proteins that will be secreted from the cell are translated in ribosomes. They then undergo post-translational modifications in the endoplasmic reticulum and . Proteins that will remain in the cell (i.e. will not be secreted) are translated in ribosomes. They then undergo post-translational modifications in the .
Items: free Golgi apparatus bound cytoplasm

Created for isaacphysics.org by Lewis Thomson