Trabalho Pratico (TP) 8 - 2020

Exercício 1

Considere uma matriz de distância entre cidades 6 x 6:

Tabela 1: Distancias											
	1.(Cáceres)	2.(BBugres)	3.(Cuiabá)	4.(VGrande)	5.(Tangará)	6.(Placerda)					
1.(Cáceres)		63	210	190		190					
2.(BBugres)	63		160	150	95						
3.(Cuiabá)	210	160		10							
4.(VGrande)	190	150	10								
5.(Tangará)		95				80					
6.(PLacerda)	190				80						

Considere também um vetor de viagem indo de Cuiabá até Cáceres pela seguinte rota:

Tabela 2: Viagem										
Indice	1	2	3	4	5	6				
Cidade	3	4	2	5	6	1				

Faça um programa que leia a matriz e o vetor e calcule a distancia percorrida durante a viagem.

Exercício 2

Leia uma matriz 100×10 que se refere respostas de 10 questões de múltipla escolha, referentes a 100 alunos. Leia também um vetor de 10 posições contendo o gabarito de respostas que podem ser a, b, c ou d. Seu programa deverá comparar as respostas de cada candidato com o gabarito e emitir um vetor Resultado, contendo a pontuação correspondente.

Exercício 3

3. Leia duas matrizes 4×4 e verifique se uma é palindromo, isto é, sua leitura a partir de qualquer direção sempre apresentara a mesma sequencia.

Exercício 4

Refaça os exercícios das TPs 6,7 e 8 usando alocação dinâmica, sempre que possível. Observação: Não esqueça de apagar a estrutura no final de cada programa!

Exercício 5

1. Explique a diferença entre

$$p++; (*p)++; *(p++);$$

2. O que quer dizer *(p+10)?

3. Explique o que você entendeu da comparação entre ponteiros.

Exercício 6

Verifique o programa abaixo. Encontre o seu erro e corrija-o para que escreva o número 10 na tela.

Algorithm 1 Exercício 5

```
1: #include <iostream>
2: using namespace std;
3: int main () {
4: int x, *p, **q;
5: p = &x;
6: q = &p;
7: x = 10;
8: cout &&q «endl;
9: return 0;
10: }
```

Exercício 7

Qual o valor de y no final do programa? Tente primeiro descobrir e depois verifique no computador o resultado. A seguir, escreva um /* comentário */ em cada comando de atribuição explicando o que ele faz e o valor da variável à esquerda do '=' após sua execução.

Algorithm 2 Exercício 6

```
1: #include <iostream>
2: using namespace std;
3: int main () {
        int y, *p, x;
5:
        y = 0;
        p = \&y;
6:
7:
        x = *p;
        x = 4;
8:
9:
        (*p)++;
10:
        (*p) += x;
cout «"y = "«y «endl;
11:
12:
13:
        return 0;
14: }
```