${ m MA553}$ Past Qualifying Examinations

Carlos Salinas

January 4, 2016

1 January 2007

Problem 1.1. Let (G, \cdot) be a group. Show that G is Abelian whenever Aut(G) is a cyclic group under composition.

Proof. Suppose that $\operatorname{Aut}(G)$ is cyclic. Then $\operatorname{Inn}(G) < \operatorname{Aut}(G)$ is cyclic. But $\operatorname{Inn}(G) \cong G/Z(G)$. Thus, G is Abelian by the following lemma.

Lemma 1. Let (G, \cdot) be a group. If G/Z(G) is cyclic, then G is Abelian.

Proof of lemma. Suppose that G/Z(G) is cyclic. Then $G/Z(G) = \langle \overline{x} \rangle$ for some representative $x \in G$. This means that for any $g \in G$, we can write $g = x^k z$ for some positive integer k, for some $z \in Z(G)$. Let $g_1, g_2 \in G$. Then, by the following obvious algebraic manipulations

$$g_1g_2 = x^{k_1}z_1x^{k_2}z_2 = z_1x^{k_1+k_2}z_2 = z_2x^{k_2+k_1}z_1 = z_2x^{k_2}x^{k_1}z_1 = (x^{k_2}z_2)(x^{k_1}z_1) = g_2g_1,$$

we see that G is Abelian.

Problem 1.2. Let (G, \cdot) be an Abelian group. The torsion subgroup of G is defined as the collection of elements of finite order:

$$\operatorname{Tor}(G) := \{ g \in G \mid g^m = e \text{ for some integer } m > 0 \}.$$

- (a) Show that the quotient group G/Tor(G) is torsion free, i.e., it contains no nontrivial elements of finite order.
- (b) Show that Tor(G) is finite whenever G is finitely generated. (Do not assume that G is finite.)

Proof. (a) (Presumably the torsion subgroup is a normal subgroup of G.) Define $T := \operatorname{Tor}(G/\operatorname{Tor}(G))$. We will show that $T = \bar{e}$. It is clear that $\langle \bar{e} \rangle \subset T$ thus, we need only show that $T \subset \langle \bar{e} \rangle$, i.e., if $t \in T$ then $g = \bar{e}$. Let $\bar{g} \in T$. Then $\bar{g} \in G/\operatorname{Tor}(G)$ and $\bar{g}^m = \bar{e}$ for some positive integer m. But $\bar{g}^m = \bar{e}$ implies that $g^m \operatorname{Tor}(G) = \operatorname{Tor}(G)$, i.e., $g^m \in \operatorname{Tor}(G)$. Thus, $(g^m)^n = g^{mn}e$ for some positive integer n. Thus, $g \in \operatorname{Tor}(G)$ so we must have $\bar{g} = \bar{e}$.

(b) Suppose that G is finitely generated. By the fundamental theorem of finitely generated Abelian groups, $G \cong \mathbb{Z}^r \times Z_{s_1} \times \cdots \times Z_{s_n}$ for positive integers $r, s_1, ..., s_n$. It suffices to show that $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n} = \mathrm{Tor}(G)$ (once we have demonstrated this, note that $|\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}| = s_1 \cdots s_n < \infty$). It is clear that $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n} \subset \mathrm{Tor}(G)$ since every element of $\mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}$ has finite order, i.e., for any $(\mathbf{1}, z_1, ..., z_n) \in \mathbf{1} \times Z_{s_1} \times \cdots \times Z_{s_n}$, we have $z = (\mathbf{1}, z_1, ..., z_n)^{s_1 \cdots s_n} = (\mathbf{1}, 1, ..., 1)$ (as a consequence of Lagrange's theorem). Now, suppose $z \coloneqq (\mathbf{z}, z_1, ..., z_n) \in \mathrm{Tor}(G)$. Then $z^m = (\mathbf{1}, 1, ..., 1)$ for some positive integer m. Since every non-identity element of \mathbb{Z}^r has infinite order, $\mathbf{z} = \mathbf{1}$ and $s_i \mid k$ for all i. Thus $z \in \mathbf{1} \times Z_{s_1} \times \cdots Z_{s_n}$. Thus, $|\mathrm{Tor}(G)| = s_1 \cdots s_n$ so $\mathrm{Tor}(G)$ is indeed finite.

Problem 1.3. Let (G, \cdot) be a group of order |G| = 351. Show that G is solvable.

Proof. The best plan of attack is to use Sylow's theorem. First, let us factor the order of G into powers of primes, $|G| = 351 = 3^3 \cdot 13$. In light of this factorization, it suffices to show that either $|\operatorname{Syl}_{13}(G)| = 1$ or $|\operatorname{Syl}_3(G)| = 1$ and hence, the unique Sylow-13 (or Sylow-3) subgroup will be a normal subgroup of G. By Sylow's theorem, $n_{13} \equiv 1 \pmod{13}$ and $n_{13} \mid 3^3$. Thus, $n_{13} = 1$ or 27. Suppose $n_{13} = 27$. Then G contains $12 \times 27 = 324$ elements of order 13 so there are 351 - 324 - 1 = 26 elements remaining. This implies that $n_3 = 1$. Thus, $P_3 \in \operatorname{Syl}_3(G)$ is the unique Sylow-3 subgroup of G hence, is normal. Thus, $G \triangleright P_3$ so G/P_3 is a group. Incidentally, $G/P_3 \cong Z_{13}$ hence, solvable and P_3 is a p-group, hence solvable. Thus, G is solvable.

On the other hand, if $n_{13} = 1$ then $P_{13} \in \text{Syl}_{13}(G)$ is the unique Sylow-13 subgroup of G hence, normal in G. Since P_{13} is a p-group, it is solvable. Moreover, G/P_{13} is a group of order 3^3 , i.e., a p-group, hence, solvable. Thus, G is solvable.

In either case, we have shown that G must be solvable.

Problem 1.4. Let (G, \cdot) be a group, and H < G a subgroup of finite index. Show that there exists a normal subgroup $N \lhd G$ contained in H which is also of finite index. (Do not assume that G is finite.)

Proof. Suppose H < G is a subgroup of finite index, i.e., H partitions G into a finite number of cosets, say $G/H := \{H, g_1H, ..., g_{k-1}H\}$. Define a homomorphism $\varphi : G \to S_{G/H}$ by $g \mapsto gH$ (this is clearly a homomorphism: take $g_1, g_2 \in G$ then $\varphi(g_1g_2) = g_1g_2H = (g_1H)(g_2H) = \varphi(g_1)\varphi(g_2)$). Thus, $\ker \varphi \lhd G$ of finite index (in particular, by the 1st isomorphism theorem and Lagrange's theorem $|G : \ker \varphi| \mid |S_{G/H}| = |S_k| = k!$). Thus, it suffices to show that $\ker \varphi \lhd H$. But this is clear since, if $g \in \ker \varphi$ then gH = H hence, $g \in H$.

Problem 1.5. Let (G, \cdot) be a finite group, and $\varphi \colon G \to G$ be a group homomorphism. Show that for all normal Sylow *p*-subgroups $P \triangleleft G$ we have $\varphi(P) < P$.

Proof. Suppose $|G| < \infty$ and let $P \in \operatorname{Syl}_p(G)$ be normal in G. Then P is unique of order p^{α} for some α . By the 1st isomorphism theorem, $\varphi(P) \mid p^{\alpha}$ so $\varphi(P)$ must be contained in a Sylow p-subgroup of G. Since P is the unique Sylow p-subgroup of G, $\varphi(P) < P$.

Problem 1.6. Let $(R, +, \cdot)$ be a commutative ring with $1 \neq 0$.

- (a) Show that R is an integral domain if and only if (0) is a prime ideal.
- (b) Show that R is a field if and only if (0) is a maximal ideal.

Proof. (a) \Leftarrow Suppose that (0) is a prime ideal. Then R/(0) is a domain. But $R/(0) \cong R$ (canonically i.e., the map $\bar{r} \mapsto r$ is a bijective homomorphism) hence, R is a domain.

 \leftarrow Conversely, suppose that R is a domain.

Problem 1.7. let $(R, +, \cdot)$ be a unique factorization domain. Choose an irreducible element $p \in R$, and define the *localization at* p as the ring of fractions $R_p = D^{-1}R$ with respect to the multiplicative set D = R - (p). Show that R_p is a principal ideal domain.

Problem 1.8. Let $(F, +, \cdot)$ be a field, and $F(\theta)/F$ be a finite, separable extension. Let L be the splitting field of the minimal polynomial $m_{\theta,F}(x) \in F[x]$. Prove that for every prime p dividing the degree [L:F], there exists a field K such that $F \subset K \subset L$, [L:K] = p, and $L = K(\theta)$.

Proof.

Problem 1.9. Let $(\mathbb{F}_p, +, \cdot)$ be a finite field whose Cardinality p is prime. Fix a positive integer n which is not divisible by p, and let ζ_n be a primitive nth root of unity. Show that $[\mathbb{F}_p(\zeta_n) : \mathbb{F}_p] = \alpha$ is the least positive integer such that $p^{\alpha} \equiv 1 \pmod{n}$.

Proof.

Problem 1.10. Prove that the Galois group of the splitting field over \mathbb{Q} of $f(x) = x^4 + 4x^2 + 2$ is a cyclic group.

2 Spring 2008

Problem 2.1. Let (G, \cdot) be a group, (H, +) be an Abelian group, and $\varphi \colon G \to H$ be a group homomorphism. If N is a subgroup such that $\ker \varphi < N < G$, show that $N \lhd G$ is a normal subgroup.

Proof. Let N be a subgroup of G containing $\ker \varphi$. Then we must show that for any $g \in G$, $gNg^{-1} \subset N$. First we observe that, since $\ker \varphi \lhd G$, then $\ker \varphi \lhd N$ since for any $g \in N$, g is also in G so that $g(\ker \varphi)g^{-1} = \ker \varphi \subset N$. Thus, $\ker \varphi \lhd N$. By the first isomorphism theorem¹, $G/\ker \varphi \cong H$ hence, $G/\ker \varphi$ is Abelian. Moreover, $N/\ker \varphi \lhd G/\ker \varphi$ hence, $N/\ker \varphi \lhd G/\ker \varphi$. It follows immediately from the lattice isomorphism theorem² (this is essentially the UMP of the quotient by a group) that $N \lhd G$.

Problem 2.2. Let (G,\cdot) be a finite Abelian group of even order, i.e., |G|=2k for some $k\in\mathbb{N}$.

- (a) For k odd, show that G has exactly one element of order 2.
- (b) Does the same happen for k even? Prove or give a counterexample.

Proof. (a) This problem is most easily proven using Cauchy's theorem³. Suppose that k is odd. If $k=1,\ G\cong Z_2$ and we are done $(Z_2$ contains only one nontrivial element and its order is 2). Otherwise k>2. Then by Cauchy's theorem we are guaranteed that there exists an element $g\in G$ of order 2. Suppose h is another element (distinct from g) of order 2. Since 2 is the smallest prime number dividing the order of G, by a corollary to Cayley's theorem⁴, $\langle g \rangle$ is a normal subgroup of G so $G/\langle g \rangle$ is a group. Moreover, since $h \neq g$, then $\bar{h} \neq \bar{e}$ and $2 \geq |\bar{h}| > 1$ implies that $|\bar{h}| = 2$. But $2 \nmid k = |G/\langle g \rangle|$ contradicting Lagrange's theorem. It follows that G must have exactly one element of order 2.

(b) No. Here is the simplest counterexample: Consider the direct product $Z_2 \times Z_2$. The elements (1,0) and (0,1) are elements of order 2, but are not equivalent.

Problem 2.3. Let (G, \cdot) be a finite group of odd order, and $H \triangleleft G$ be a normal subgroup of prime order |H| = 17. Show that H < Z(G).

Proof. Let G act on H by conjugation, i.e., the map $\varphi \colon G \times H \to H$ defined by the rule $\varphi(g,h) \coloneqq ghg^{-1}$ determines a group action on H. First, we verify that φ indeed defines a group action on H: First, observe that for $e_G \in G$ the identity element, $\varphi(e_G, h) = e_G h e_G^{-1} = h$; next, if $g_1, g_2 \in G$ then

$$\varphi(g_1, \varphi(g_2, h)) = \varphi(g_1, g_2 h g^{-1}) = g_1 g_2 h g_2^{-1} g_1 = g_1 g_2 h (g_1 g_2)^{-1} = \varphi(g_1 g_2, h).$$

Lastly, φ is clearly well-defined in the sense $\varphi(g,h) \in H$ for all $g \in G$, $h \in H$. Thus, φ is a group action. Now, let us ask what the kernel of this action is. Thus group action φ , induces a group homomorphism $\varphi' \colon G \to \operatorname{Aut}(H)$ given by $\varphi'(g) \coloneqq \operatorname{Eval}(\varphi,g)$. Now, since |H| = 17, $H \cong Z_{17}$, hence is cyclic. Thus, $\operatorname{Aut}(H) \cong (\mathbb{Z}/17\mathbb{Z})^{\times} \cong Z_{16}$. Now, since $|\varphi'(G)| \mid |G|, |\varphi'(G)|$ is odd. But $\varphi'(G) < \operatorname{Aut}(H)$ so, by Lagrange's theorem, $|\varphi'(G)| \mid 16$. Thus, $|\varphi'(G)| = 1$, i.e., φ' is the trivial homomorphism, i.e., $\varphi(g,h) = ghg^{-1} = h = \varphi(1,h)$. Thus, H < Z(G).

¹Theorem 16 of Dummit and Foote §3, p. 99.

²Theorem 20 of Dummit and Foote §3, p. 99.

³Theorem 11 of Dummit and Foote §3, p. 93

⁴Corollary 5 of Dummit and Foote §4, p. 121

Problem 2.4. Let (G, \cdot) be a finite group. Show that there exists a positive integer n such that G is isomorphic to a subgroup of A_n , the alternating group on n letters. [Hint: Show that A_n contains a copy of S_{n-1} when $n \geq 3$.]

Proof. Let n-2 := |G|. If n-2 = 1 or 2, $G \cong 0$ (the trivial group) or $G \cong \mathbb{Z}_2$, both of which are exactly A_1 and A_2 . Suppose $n-2 \geq 3$. By Cayley's theorem, G imbeds into S_{n-1} . Now, define a homomorphism

$$\varphi(\sigma) \coloneqq \begin{cases} \sigma & \text{if } \sigma \text{ is even} \\ \sigma(n+1 \ n+2) & \text{if } \sigma \text{ is odd} \end{cases}.$$

We check that this is in fact a homomorphism. Let $\sigma, \tau \in G$. Then

$$\varphi(\sigma\tau) = \begin{cases} \sigma\tau & \text{if } \sigma\tau \text{ is even} \\ \sigma\tau(n+1 \ n+2) & \text{if } \sigma\tau \text{ is odd} \end{cases}.$$

But $\sigma\tau$ is odd if and only if σ or τ is odd and $\sigma\tau$ is even if and only if τ is even.

Problem 2.5. Let (G, \cdot) be a group of order |G| = 200.

- (a) Show that G is solvable.
- (b) Show that G is the semidirect product of two p-subgroups.

Proof. (a) First we factor the order of the group G, $|G| = 200 = 2^3 \cdot 5^2$. Now we will make use of Sylow's theorem to show that G has at least one normal p-subgroup.

Problem 2.6. Let $(R, +, \cdot)$ and $(S, +, \cdot)$ be commutative rings with $1 \neq 0$, and let $\varphi \colon R \to S$ be a surjective ring homomorphism. Assuming that R is local, i.e., it has a unique maximal ideal, show that S is also local.

Problem 2.7. Let $(R, +, \cdot)$ be a principal ideal domain.

- (a) Show that every maximal ideal in R is a prime ideal.
- (b) Must every prime ideal in R be a maximal ideal? Prove or give a counterexample.

Problem 2.8. Let L/F be a Galois extension of degree [L:F]=2p where p is an odd prime.

- (a) Show that there exists a unique quadratic subfield E, i.e., $F \subset E \subset L$ and [E:F]=2.
- (b) Does there exist a unique subfield K of index 2, i.e., $F \subset K \subset L$ and [L:K] = 2? Prove or give a counterexample.

Problem 2.9. Fix a prime p, and consider the Artin–Schreier polynomial $f(x) = x^p - x - 1$.

(a) Let $\mathbb{F}_p(f)$ be the splitting field of f(x) over \mathbb{F}_p . Show that $\operatorname{Gal}(\mathbb{F}_p(f)/\mathbb{F}_p) \cong \mathbb{Z}_p$.

(b) Prove that f(x) is irreducible in $\mathbb{Z}[x]$.

Proof.

Problem 2.10. Determine the Galois group of the splitting field over \mathbb{Q} of $f(x) = x^4 + 4$.

3 MA 553: Midterm, Fall 2015

In full detail now:

Problem 3.1. (a) Show, for any abelian group, the map $x \mapsto x^{-1}$ is an automorphism.

(b) Show, for any n, the dihedral group D_{2n} of order 2n, satisfies $D_{2n} \cong Z_2 \ltimes Z_n$.

Proof. (a) Let G be an abelian group and define the map $\varphi \colon G \to G$ by $\varphi(x) \coloneqq x^{-1}$. Then, for any $x, y \in G$, we have

$$\varphi(xy) = (xy)^{-1}$$

$$= y^{-1}x^{-1}$$

$$= x^{-1}y^{-1}$$

$$= \varphi(x)\varphi(x).$$

Hence, φ is a homomorphism.

Next, we will show that φ is in fact an automorphism. To that end, we must show that φ is one-to-one and onto.

First, we show φ is one-to-one. Let $x \in \ker \varphi$. Then $\varphi(x) = x^{-1} = e$. Then we have $x^{-1}x = x$. But $x^{-1}x = e$ so x = e. Thus, $\ker \varphi = \{e\}$ and φ must be injective.

To see than that φ is onto, take $x \in G$ then $\varphi(x^{-1}) = (x^{-1})^{-1} = x$. Thus, φ is surjective and we conclude that $\varphi \in \operatorname{Aut}(G)$.

(b) Recall that the dihedral group of order 2n is the group

$$G := D_{2n} = \langle r, s \mid r^n = s^2 = e \text{ and } srs^{-1} = r^{-1} \rangle.$$

Now, note that the subgroup generated by $r, K := \langle r \rangle$, is order n hence, $K \triangleleft G$ since [G:H] = 2 is the smallest prime dividing the order of G. Let $H := \langle s \rangle$. This is a subgroup of order 2. Note that $H \cap K = \{e\}$ and HK < G since K is normal in G. Moreover, $|HK| = |H||K|/|H \cap K| = 2n = |G|$ so HK = G so we have $G = H \ltimes K$. Moreover, since H and K are cyclic of order 2 and n, respectively, we have $H \cong Z_2$ and $K \cong Z_n$ so $G \cong Z_2 \ltimes Z_n$.

Problem 3.2. Show that there is no simple group of order $306 = 2 \cdot 3^2 \cdot 17$.

Proof. Suppose G is a finite group of order $306 = 2 \cdot 3^2 \cdot 17$. We will show that one of n_2 , n_3 , or n_{17} equals 1.

By Sylow's theorem, $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$ where $|G| = p^{\alpha}m$. Thus, we have:

- $n_2 = 1, 3, 3^2, 17, 3 \cdot 17, \text{ or } 3^2 \cdot 17;$
- $n_3 = 1, 34;$
- $n_{17} = 1, 18.$

Seeking a contradiction, suppose that none of n_2 , n_3 , or n_{17} equal 1. Then, at least, $n_2 = 3$, $n_3 = 34$, and n_{17} . This means that there are $1 + 3 + 16 \cdot 18 = 302$ elements of order 1, 2, and 17. But there are at least 8 elements of order 3 in the remaining Sylow 3-subgroups, pushing this total to 310 which is absurd. Thus, at least one of n_2 , n_3 , or n_{17} equals 1.

Problem 3.3. Suppose R is a ring with identity, and I, J, and K are (two-sided) ideals of R with $K \subset I \cup J$. Prove that either $K \subset I$ or $K \subset J$.

Proof. We shall proceed by contradiction. Suppose that $K \not\subset I$ and $K \not\subset J$. Then there exists elements $a,b \in K$ such that $a \notin I$ and $b \notin J$. Now, consider the element $a-b \in K$. Since $K \subset I \cup J$, then $a-b \in I$ or $a-b \in J$. Without loss of generality, suppose that $a-b \in I$. Then $(a-b)+b=a \in I$ since I is additively closed. This is a contradiction. Thus, $K \subset I$ or $K \subset J$.

Problem 3.4. Let R and S be rings and suppose that $\varphi: R \to S$ is a ring homomorphism. Let I be an ideal of R and J and ideal of S.

- (a) Show that $\varphi^{-1}(J) := \{ r \in R \mid \varphi(r) \in J \}$ is an ideal in R.
- (b) Show that if φ is surjective, then $\varphi(I) := \{ \varphi(r) \mid r \in I \}$ is an ideal in S.
- (c) Given an example where φ is not surjective and $\varphi(I)$ is not an ideal in S.

Proof. (a) We need to show two things: Let $r \in R$ and $a \in \varphi^{-1}(J)$ then $\varphi(ra) = \varphi(r)\varphi(a)$, but $\varphi(a) \in J$ so $\varphi(r)\varphi(a) \in J$. Thus, $ra \in \varphi^{-1}(J)$. Lastly, we show $\varphi^{-1}(J)$ is an additive subgroup, namely, for $a_1, a_2 \in \varphi^{-1}(J)$, we have $\varphi(a_1), \varphi(a_2) \in J$ so $\varphi(a_1) + \varphi(a_2) = \varphi(a_1 + a_2) \in J$. Thus, $a_1 + a_2 \in \varphi^{-1}(J)$. Thus, $\varphi^{-1}(J)$ is an ideal in R.

- (b) Suppose φ is surjective. Then, for every element $s \in S$, there exist an element $r \in R$ such that $s = \varphi(r)$. Now, let $a \in \varphi(I)$ and $s \in S$. Then $\varphi(b) = a$ for some $b \in I$ and $\varphi(r) = s$ for some $r \in R$. Thus, $\varphi(rb) = sa \in \varphi(I)$. Lastly, if $a_1, a_2 \in \varphi(I)$ then $\varphi(b_1) = a_1$ and $\varphi(b_2) = b_2$ for $b_1, b_2 \in I$ so $b_1 + b_2 \in I$ implies that $\varphi(b_1 + b_2) = \varphi(b_1) + \varphi(b_2) \in \varphi(I)$. Thus, $\varphi(I)$ is an ideal of S.
- (c) Consider the map $\varphi: Z_4 \to Z_2 \times Z_2$ given by the rule $\varphi(s) = (s, s)$. This map is a homomorphism since for any $s_1, s_2 \in Z_4$, we have

$$\varphi(s_1 + s_2) = (s_1 + s_2, s_1 + s_2) \qquad \qquad \varphi(s_1 s_2) = (s_1 s_2, s_1 s_2)$$

$$= (s_1, s_1) + (s_2, s_2) \qquad \qquad = (s_1, s_1)(s_2, s_2)$$

$$= \varphi(s_1) + \varphi(s_2) \qquad \qquad = \varphi(s_1)\varphi(s_2).$$

But note that φ is not surjective since $\varphi(Z_4) = \{(0,0),(1,1)\}$. Moreover, the latter is not an ideal since for $(1,0) \in Z_2 \times Z_2$, $(1,0)(1,1) = (1,0) \notin \varphi(Z_4)$.

Problem 3.5. (a) Let R be a commutative ring with identity $1 \neq 0$. Suppose that, for every $r \in R$, there is some $n = n_r \geq 2$ so that $r^n = r$. Prove that every prime ideal of R is maximal.

(b) Suppose R is a unique factorization domain, $p \in R$ is irreducible, and \mathfrak{p} is a prime ideal with $0 \subseteq \mathfrak{p} \subset (p)$. Show $\mathfrak{p} = (p)$. (*Hint:* Prove that \mathfrak{p} can be generated by irreducible elements.)

Proof. (a) Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Then R/\mathfrak{p} is an integral domain. Now, let $r \in R \setminus \mathfrak{p}$ and $\pi \colon R \to R/\mathfrak{p}$ be the canonical projection. Put $\bar{r} := \pi(r)$. Then since $r^n = r$ for some $n \ge 2$ we have

$$\pi(r^n) = (\bar{r})^n (\bar{r})^n = \bar{r} = \pi(r).$$

Thus, $\bar{r}(\bar{r}^{n-1} - \bar{1}) = 0$ implies $\bar{r} = \bar{0}$ or $\bar{r}^{n-1} = \bar{1}$. But $r \notin \mathfrak{p}$ so $\bar{r} \neq \bar{0}$. Thus, $\bar{r}^{n-1} = \bar{1}$ and we see that \bar{r} is a unit. Thus, R/\mathfrak{p} is a field which implies that \mathfrak{p} is maximal.

(b) First note that if p is irreducible in R then it is prime. We will show that \mathfrak{p} contains a principal prime ideal. Let $a \in \mathfrak{p}$. Then, since R is a UFD, we may write $a = p_1 \cdots p_n$ for $p_1, ..., p_n$ irreducible in R. Hence, each p_i is prime in R and (p_i) is a prime ideal. Moreover, since $a = p_1 \cdots p_n \in \mathfrak{p}, p_k \in \mathfrak{p}$ for some $1 \le k \le n$. Thus, $(p_k) \subset \mathfrak{p}$. Hence, we have $(p_k) \subset \mathfrak{p}$. But this implies $p_k = rp$ for some $r \in R$. Since p_k is irreducible, r must be a unit so $(p_k) = (p)$ which implies that $\mathfrak{p} = (p)$.

4 MA 553: Final, Fall 2015

Problem 4.1. Let G be a finite non-Abelian group, and let Z(G) be the center of G. Prove that $|Z(G)| \leq |G|/4$.

Proof. Seeking a contradiction, suppose 4 > [G:Z(G)]. Since $Z(G) \triangleleft G$, we have G/Z(G) is a group of order 1, 2, or 3. Thus, $G/Z(G) \cong Z_1$, Z_2 , or Z_3 all of which are cyclic. This implies that G is Abelian. This is a contradiction.

Problem 4.2. Let

$$G = \operatorname{SL}_2(\mathbf{Z}/(5)) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbf{Z}/(5), \text{ and } ad - bc \equiv 1 \pmod{5} \right\}.$$

- (a) Show |G| = 120.
- (b) Show $N := \{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \mid b \in \mathbf{Z}/(5) \}$ is a Sylow 5-subgroup of G.
- (c) Find the number of Sylow 5-subgroups of G.

Proof. (a) We'll do a case by case analysis. First, suppose that a = 0. Then $bc \equiv 1 \pmod{5}$ and we have elements of the form

$$\begin{bmatrix} 0 & b \\ c & d \end{bmatrix}.$$

Hence, we have 5 choices for c and 4 choices for b (d is determined by the equivalence $bd \equiv 1 \pmod{5}$). So there are $5 \cdot 4 = 20$ elements with a = 0.

Now, suppose $a \neq 0$. Then $d \equiv (1 + bc)a^{-1} \pmod{5}$. Hence there are 4 choices for a and 5 choices for both b and c. Hence, there are $4 \cdot 5 \cdot 5 = 100$ elements of the form

$$\begin{bmatrix} a & b \\ c & (1+bc)a^{-1} \end{bmatrix}.$$

with $a \neq 0$. Tallying up this total, we have 20 + 100 = 120, as was to be shown.

(b) First, note that $|G| = 120 = 2^3 \cdot 3 \cdot 5$ and since 5 is the smallest power of 5 dividing |G|, it suffices to show that |N| = 5. Now, note that

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^b = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

hence, N is generated by $g := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Moreover,

$$g^5 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^5 = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Hence, |N| = |g| = 5 so $N \in \text{Syl}_5(G)$.

(c) By Sylow's theorem, there are $n_5 = 1$ or 6. We will show that N is not normal in $SL_2(\mathbf{Z}/(5))$ so that $n_5 \neq 1$. Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbf{Z}/(5))$. Then, for any matrix in N we have

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 1 - ac & a^2 \\ -bc & 1 + ba \end{bmatrix}$$

is in N if and only if ac = ba = 0 and -bc = 0. But $ad \equiv 1 + bc \pmod{5}$. Implies bc = 0 so b = 0 or c = 0 so either b = 0 and c = 0 or c = 0. The former implies that $ad = 1 \equiv \pmod{5}$ so a = d = 1. This would imply that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Thus, $N \not \preceq \mathrm{SL}_2(\mathbf{Z}/(5))$ so $n_5 = 6$.

Problem 4.3. Suppose R is a UFD and F is the quotient field of R. Let $f(X) \in R[X]$ and suppose f(X) factors as a product of lower degree polynomials in F[X]. Show f(X) factors as a product of lower degree polynomials in R[X].

Proof. This is an important result called $Gau\beta$'s lemma and is proven in Dummit and Foote more or less as follows:

Suppose f(X) factors as f(X) = g(X)h(X) for polynomials $g, h \in F[X]$ with $\deg(g), \deg(h) < \deg(f)$. Then each coefficient $\{a_i\}, \{b_i\}$ of g and h, respectively, is in F. Thus, clearing denominators, we have df(X) = g'(X)h'(X) for $g'(X), h'(X) \in R[X]$. If d is a unit in R we are done since $f(X) = d^{-1}df(X) = d^{-1}g'(X)h'(X)$.

Suppose d is not a unit. Then, since R is a UFD, we may write d as the product $d = d_1 \cdots d_n$ of irreducible elements $d_i \in R$. Since d_1 is irreducible and R is a UFD, then d_1 is prime so the ideal generated by d_1 is prime. Thus, $(R/(d_1))[X]$ is a domain and

$$\bar{0} = \overline{df(X)} = \bar{d} \cdot \overline{f(X)} = \overline{g'(X)h'(X)} = \overline{g'(X)} \cdot \overline{h'(X)}.$$

Thus, either $\overline{g'(X)} = \overline{0}$ or $\overline{h'(X)} = \overline{0}$ since $(R/(d_1))[X]$ is a domain. Without loss of generality, suppose $\overline{g'(X)} = 0$. Then, $(1/d_1)g'(X) \in R[X]$ so, dividing over F, we have $(d_2 \cdots d_n)f(X) = ((1/d_1)g'(X))h'(X)$ in R[X]. Proceeding recursively in this fashion until, we may arrive at f(X) = G(X)H(X) where $G(X), H(X) \in R[X]$. Since we reduced by elements in the subring R, $\deg(G) = \deg(g)$ and $\deg(H) = \deg(h)$ so that f(X) factors as a product of polynomials of lower degree in R[X], as desired.

Problem 4.4. Let R be a commutative ring. Recall an element $a \in R$ is *nilpotent* if $r^n = 0$ for some $n \ge 1$. Let $I = \{ a \in R \mid a \text{ is nilpotent} \}$.

- (a) Show I is an ideal. (*Hint:* To show I is an additive subgroup, show if $x, y \in I$ there is an N > 0 so that $(x y)^N = 0$ using the binomial expansion of $(x y)^N$.)
- (b) Show I is contained in any prime ideal of R.

Proof. (a) In fact, one can show that $I = Nil(R) = \bigcap_{\mathfrak{p} \in Spec(R)} \mathfrak{p}$, i.e., I is the intersection of all prime ideals in R hence, an ideal.

First, we show that R is multiplicatively closed. Let $r \in R$ and $a \in I$. Then $(ar)^n = a^n r^n$ since R is commutative. But $r^n = 0$, so $(ar)^n = a^n \cdot 0 = 0$. Thus $ar \in I$.

Next, we show that it is additively closed. Suppose $a, b \in I$. Then $a^m = 0$ and $b^n = 0$ for some positive integer m and n. Suppose, without loss of generality, that $n \ge m$. Let N = n + m. Then

$$(a+b)^{N} = (a+b)^{n+m}$$
$$= \sum_{i=1}^{n+m} {n+m \choose i} a^{i} b^{n+m-i}.$$

Now, note that if $k \ge n$, $x^k = 0$ so $\binom{n+m}{k}a^kb^{n+m-k} = 0$. On the other hand, if k < n, n+m-k > m so $b^{n+m-k} = 0$ so $\binom{n+m}{k}a^kb^{n+m-k} = 0$. In either case, we see that $\binom{n+m}{k}a^kb^{n+m-k} = 0$ so $(a+b)^N = 0$. Thus, $a+b \in I$. Hence, I is an ideal.

(b) Let \mathfrak{p} be a maximal ideal of R. Now, since \mathfrak{p} is an ideal of R, $0 \in R$. Moreover, for any $a \in I$, $a^n = 0$ for some positive integer n. Thus, $a^n = 0 \in \mathfrak{p}$. But \mathfrak{p} is a prime ideal. Thus, $a \in \mathfrak{p}$ or $a^{n-1} \in \mathfrak{p}$. If the former, we are done. In the later, $a^{n-1} \in \mathfrak{p}$ so $a \in \mathfrak{p}$ or $a^{n-2} \in \mathfrak{p}$. Proceeding recursively in this manner, we have $a \in \mathfrak{p}$. Thus, $I \subset \mathfrak{p}$, as desired.

Problem 4.5. Let $\alpha \in \mathbf{C}$ be algebraic over \mathbf{Q} , and let $f(X) \in \mathbf{Q}[x]$ be its minimal polynomial. Let $\sqrt{\alpha}$ be a square root of α , and let $g(X) \in \mathbf{Q}[X]$ be its minimal polynomial.

- (a) Show $\deg f(X)$ divides $\deg g(X)$.
- (b) Show $\sqrt{\alpha} \in \mathbf{Q}(\alpha)$ if and only if $f(X^2)$ is reducible in $\mathbf{Q}[X]$.

Proof. (a) This follows directly from the tower of fields theorem. Let $\mathbf{Q}(f)$ denote the splitting field of f. Then, $\alpha \in \mathbf{Q}(f)$ so that $\mathbf{Q}(g) \supset \mathbf{Q}(f)$. Thus, we have

$$[\mathbf{Q}(g):\mathbf{Q}] = [\mathbf{Q}(g):\mathbf{Q}(f)][\mathbf{Q}(f):\mathbf{Q}] = k \cdot \deg(f)$$

Thus, $deg(f) \mid deg(g)$.

- (b) \Longrightarrow Suppose that $\sqrt{\alpha} \in \mathbf{Q}(\alpha)$. Then $f(\sqrt{\alpha}^2) = f(\alpha) = 0$ hence, $f(X^2)$ has a root in \mathbb{Q} hence, is reducible.
- \Leftarrow Conversely, suppose that $f(X^2)$ is reducible. Then, we may write $f(X^2) = \prod_{i=1}^k f_i(X)$ where $f_i \in \mathbf{Q}[X]$ is irreducible. Now, each of these factors, f_i , have degree less than 2n where $n := \deg(f(X^2))$. Suppose

$$f_i(X) = X^k + a_{k-1}X^{k-1} + \dots + a_0$$

for $a_{k-1},...,a_0 \in \mathbf{Q}$. Then

$$f_i(\sqrt{\alpha}) = \alpha^{k/2} + a_{k-1}\alpha^{(k-1)/2} + \dots + a_0.$$

Problem 4.6. Let $f(X) = X^6 + 3 \in \mathbf{Q}[X]$.

- (a) Let α be a root of f(X). Prove $(\alpha^3 + 1)/2$ is a primitive 6th root of unity.
- (b) Determine the Galois group of f(X) over \mathbf{Q} .

Proof. (a) To show that $(\alpha^3 + 1)/2$ is a 6th root of unity, suffices to show that $\Phi_6((\alpha^3 + 1)/2) = 0$ where Φ_6 is the 6th cyclotomic polynomial. Recall that we may derive the *n*th cyclotomic polynomial via the formula

$$X^n - 1 = \prod_{d|n} \Phi_d(X)$$

so that

$$X^{6} - 1 = \Phi_{1}(X)\Phi_{2}(X)\Phi_{3}(X)\Phi_{6}(X) = (X - 1)(X + 1)(X^{2} + X + 1)$$

and we have

$$\Phi_6(X) = \frac{X^6 - 1}{(X - 1)(X + 1)(X^2 + X + 1)}$$
$$= X^2 - X + 1.$$

Thus,

$$\Phi_6((\alpha^3 + 1)/2) = \frac{1}{4}(\alpha^3 + 1)^2 - \frac{1}{2}(\alpha^3 + 1) + 1$$

$$= \frac{1}{4}\alpha^6 + \frac{1}{2}\alpha^3 + \frac{1}{4} - \frac{1}{2}\alpha^3 - \frac{1}{2} + 1$$

$$= \frac{1}{4}\alpha^6 + \frac{3}{4}$$

$$= \frac{1}{4}(\alpha^6 + 3)$$

$$= 0.$$

Thus, $(\alpha^3 + 1)/2$ is 6th root of unity.

To show that $(\alpha^3 + 1)/2$ is in fact a primitive root of unity, we need to show that 6 is the smallest integer such that $((\alpha^3 + 1)/2)^6 = 1$. And that is too much work.

(b) Put $\zeta_6 := (\alpha^3 + 1)/2$. The roots of the polynomial are $\sqrt[6]{3}$, $\zeta_6\sqrt[6]{3}$, ..., $\zeta_6\sqrt[5]{3}$. Hence, the splitting field of f contains $\sqrt[6]{3}$ and a primitive sixth root of unity $(\alpha^3 + 1)/2$. Since $\deg(\Phi_6) = 2$, and $\sqrt{3} \in \mathbf{Q}(\Phi_6)$, the minimal polynomial of $\sqrt[6]{3}$ over $\mathbf{Q}(Phi_6)$ is $X^3 - \sqrt{3}$. Hence, the degree of the extension

$$[\mathbf{Q}(f): \mathbf{Q}] = [\mathbf{Q}(f): \mathbf{Q}(\Phi_6)][\mathbf{Q}(\Phi_6): \mathbf{Q}] = 3 \cdot 2 = 6.$$

Thus, the Galois group of $\mathbf{Q}(f)/\mathbf{Q}$ is order 6.

Moreover, the Galois group acts transitively on the roots of f so there are automorphism of the splitting field fixing the subfields $\mathbf{Q}(\Phi_6)$ and \mathbf{Q} . These are the automorphism

$$\sigma : \alpha \mapsto -\alpha$$
 and $\tau : \alpha \mapsto \zeta_6 \alpha$.

Note that σ has order 2 and τ has order 3 so that $Gal(\mathbf{Q}(f)/\mathbf{Q}) \cong D_6$.

Problem 4.7. Let $R := (\mathbf{Z}/(3))[X]$. Consider the ideals $I_1 := (X^2 + 1)$, and $I_2 := (X^2 + X + 2)$. For i = 1, 2 we set $F_i = R/I_i$.

- (a) Show F_1 and F_2 are fields.
- (b) Are F_1 and F_2 isomorphic? If not, why not, and if so give an isomorphism from F_1 to F_2 .

Proof. (a) Recall by some theorem in chapter 13 that F[X]/(f) is a field if and only if f is irreducible. Therefore, it suffices to show that $X^2 + 1$ and $X^2 + X + 2$ are irreducible over $\mathbb{Z}/(3)$. To that end, since the degree of these polynomials is two, it suffices to show that they have no roots over $\mathbb{Z}/(3)$.

In the case of $X^2 + 1$, we have $0^2 + 1 \neq 0$, $1^2 + 1 = 1 \neq 0$, and $2^2 + 1 = 4 + 1 = 1 + 1 = 2 \neq 0$. Thus, $X^2 + 1$ is irreducible.

In the case of $X^2 + X + 2$, we have $0^2 + 0 + 2 = 2 \neq 0$, $1 + 1 + 2 = 1 \neq 0$, and $4 + 2 + 2 = 8 = 2 \neq 0$. Thus, F_1 and F_2 are fields.

(b) By the classification theorem for finite fields, both F_1 and F_2 are an extension over $\mathbf{F}_3 = \mathbf{Z}/(3)$ of degree 2 hence, both are isomorphic to \mathbf{F}_{3^2} . In particular, they are isomorphic to each other. Let α be a root of $X^2 + 1$ and β be a root of $X^2 + X + 2$. Then the map $\alpha \mapsto \beta$ which fixes \mathbf{F}_3 is an isomorphism. It suffices to show that this is an injective homomorphism. First, this is a homomorphism since for any $x, y \in F_1$, if $x, y \in \mathbf{F}_3$, $\varphi(x + y) = x + y = \varphi(x) + \varphi(y)$. If one of x or y not in \mathbf{F}_3 , suppose x, then $x = \alpha^k + x'$ for $x' \in \mathbf{F}_3$ so

$$\varphi(\alpha^k + x' + y) = \beta^k + x' + y = \varphi(\alpha^k + x') + \varphi(y)$$

etc., thus this is an isomorphism.

To see that this map is injective, note that $\ker \varphi = \{0\}$. Thus, φ is an isomorphism.

Problem 4.8. Suppose F is a field, $K = F(\alpha)$ is a Galois extension, with cyclic Galois group generated by $\sigma(\alpha) := \alpha + 1$. Show that $\operatorname{ch}(K) = p \neq 0$, and $\alpha^p - \alpha \in F$.

Proof. Suppose that the Galois group of K is cyclic of order n > 1. Then,

$$\sigma^n(\alpha) = \alpha = \alpha + n.$$

Thus, $0 = \alpha - \alpha = n \in F$ so ch(F) is prime since the order of a field is always prime. Lastly, note that $\alpha^p - \alpha = \alpha(\alpha^{p-1} - 1)$ since α is the root of the polynomial $x^p - x$.

5 Qualifying Exam, January 2000

Problem 5.1. Find all groups of order $7 \cdot 11^3$ which have a cyclic subgroup of order 11^3 .

Proof. Suppose G is a group of order $7 \cdot 11^3$. By Sylow's theorem, $n_{11} \equiv 1 \pmod{11}$ and $n_{11} \mid 7$, thus $n_{11} = 1$ and we see that G must have a unique, therefore normal, Sylow 11-subgroup P of order 11^3 . Also by Sylow's theorem, we see than $n_7 = 1$ or $11^3 = 1331$ (what an outrageous number!!!).

If $n_7=1$, again the Sylow 7-subgroup Q is unique hence, normal in G and we must have PQ=QP=G (since $P\cap Q=\{e\}$ and $|PQ|=|P||Q|/|P\cap Q|=11^3\cdot 7/1=|G|$). Thus, $G\cong Z_7\times Z_{11^3}$.

Otherwise, $n_7 = 11^3$. Thus, there are $6 \cdot 11^3 + 1$ elements of order 7 plus the identity plus $11^3 - 1$ elements in P. Thus, there are a total of $6 \cdot 11^3 + 1 + 11^3 - 1 = 7 \cdot 11^3$ elements of order 7, in Q, plus the identity. No contradiction here. But we still have $P \cap Q = \{e\}$ for any $Q \in \text{Syl}_7(G)$. Therefore, I suspect that the only other (nonabelian) group that has a cyclic subgroup of order 11^3 must be the semidirect product $Z_7 \rtimes Z_{11^3}$.

This is what 성준 had to say about the matter:

Suppose Q is a group of order 7 and P is a cyclic group of order 11³. If $\varphi: Q \to \operatorname{Aut}(P)$ is a homomorphism, then $\varphi(Q) \mid 7$ so $\varphi(Q) = 1$ or $\varphi(Q) = 7$. But if $\psi \in \operatorname{Aut}(P)$, then ψ must send a generator g of P to another generator of P. Since there are only $\varphi(11^3) = 11^3 - 11^2 = 1331 - 121 = 1220$ which is not divisible by 7. Thus φ can only be the trivial homomorphism and $Q \rtimes_{\varphi} P \cong Z_7 \times Z_{11^3}$.

Problem 5.2. Let R be a ring with identity 1 and consider the following two conditions:

- (i) If $a, b \in R$ and ab = 0, then ba = 0;
- (ii) If $a, b \in R$ and ab = 1, then ba = 1;
- (a) Show that (i) implies (ii).
- (b) Show by example that (ii) does not imply (i).

Proof. (i) \Longrightarrow (ii) Suppose that ab=0 implies ba=0. Let $c,d\in R$ such that cd=1. Then consider the product

$$d(cd-1)c = 0$$

Since ab = 0 implies ba = 0 and multiplication is associative in R, we may rewrite the expression above as

$$dc(cd-1) = 0.$$

Hence, we have dccd = dc.

$$(ii) \implies (ii)$$

Problem 5.3. Let F be a field. Suppose that E/F is a Galois extension, and that L/F is an algebraic extension with $L \cap E = F$. Let EL be the composite field, i.e., the subfield of an algebraic closer \bar{F} of F generated by E and L.

(a) Show EL/L is a Galois extension.

(b) Show that there is an injective homomorphism

$$\varphi \colon \operatorname{Gal}(EL/L) \hookrightarrow \operatorname{Gal}(E/F).$$

Find the fixed field of the image of φ .

- (c) Show that [EL : L] = [E : F].
- (d) Give an example to show that the conclusion of (c) is false if we do not assume that E/F is Galois.

Proof.

Problem 5.4. Let G be a finite group. Let p be a prime and suppose that $|G| = p^k m$, with $k \ge 1$ and $p \nmid m$. Let X be the collection of all subsets of G of order p^k . Then G acts on X by left multiplication, i.e., $g \cdot A = \{ ga \mid a \in A \}$. For $A \in X <$ denote by H_A the stabilizer in G of A. Show that $|H_A| \mid p^k$.

Proof.

Problem 5.5. Let $R = \mathbf{Z} + X\mathbf{Q}[X] \subset \mathbf{Q}[X]$ be the ring consisting of polynomials with rational coefficients whose constant term is an integer.

- (a) Prove that R is an integral domain, with units 1 and -1.
- (b) Show that x is not an irreducible element of R.
- (c) Let (X) := Rx be the ideal of R generated by X. Describe R/(X) and show that R/(X) is not an integral domain. What can you conclude about X?

6 Qualifying Exam, January 2011

Problem 6.1. Let

$$G = \operatorname{SL}_2(\mathbf{Z}/(5)) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbf{Z}/(5), \text{ and } ad - bc \equiv 1 \pmod{5} \right\}.$$

- (a) Show |G| = 120.
- (b) Show

$$N := \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \mid b \in \mathbf{Z}/(5) \right\}$$

is a Sylow 5-subgroup of G.

(c) Find the number of Sylow 5-subgroups of G.

Proof.

Problem 6.2. (a) Let G be a group, H a subgroup of G with [G:H]=2. Suppose K is a subgroup of G of odd order. Show $K \subset H$.

(b) Let G be a finite group and suppose there is a sequence of subgroups

$$G_0 := G \supset G_1 \supset G_2 \supset \cdots \supset G_n := H$$
,

with $[G_i:G_{i+1}]=2$ for $i\in\{1,...,n-1\}$. Suppose H has odd order. Show $H\triangleleft G$.

(c) Suppose $|G| = 2^n m$, with m odd. Suppose G has a normal subgroup H of order m. Show there is a sequence of subgroups $G_0 := G \supset G_1 \supset \cdots \supset G_n := H$, with $[G_i : G_{i+1}] = 2$, for all i.

Proof.

Problem 6.3. Let R be a commutative ring with identity $1 \neq 0$, and let I be an ideal of R. Define rad(I) to be the intersection of all maximal ideals containing I, with the convention rad(R) = R. Let $\sqrt{I} := \{ r \in R \mid r^n \in R \text{ for some } n > 0 \}$.

- (a) Prove rad(I) is an ideal of R containing I.
- (b) Prove $\sqrt{I} \subset \operatorname{rad}(I)$.
- (c) Let F be a field, set R = F[X], and let I = (f), for some nonzero polynomial $f(X) \in R$. Describe rad(I) in this intstance.

Proof.

Problem 6.4. Let S be the subring of $\mathbb{C}[X] \times \mathbb{C}[Y]$ consisting of pairs (f,g) with f(0) = g(0).

- (a) Let $\varphi \colon \mathbf{C}[X,Y] \to S$ be defined by $\varphi(h) = (f,g)$, where f(X) = h(x,0), and g(Y) = g(0,Y). Prove φ is a surjective homomorphism.
- (b) Prove $\mathbf{C}[X,Y]/(X,Y) \cong S$.

(c) Use (b) to describe the prime ideals of S. Be sure to justify your answer.

Proof.

Problem 6.5. Let p be a prime, let $F = \mathbf{F}_p$ be the field of p elements and $K = \mathbf{F}_{p^{10}}$ be the unique extension of F with p^{10} elements.

- (a) Find all subfields of K. Make sure to justify your answer.
- (b) Find a formula for the number of monic irreducible polynomials of degree 10 in F[X]. Justify your answer.

Proof.

Problem 6.6. Let $f(X) = (X^2 - 3)(X^3 - 7) \in \mathbb{Q}[X]$. Let K be the splitting field of f(X) over \mathbb{Q} .

- (a) Find the degree of K over \mathbf{Q} .
- (b) Classify the Galois group $Gal(K/\mathbf{Q})$.
- (c) Find all subfields E of K so that E/\mathbf{Q} is a quadratic extension.