УДК 621.643.2-034.14

ПРИМЕНЕНИЕ УСИЛИВАЮЩЕГО ЭЛЕМЕНТА ИЗ ПОЛИКАРБАМИДА ДЛЯ ОТВЕТВЛЕНИЙ ТРУБОПРОВОДОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ

STRENGTHENING PIPELINE BRANCHES WITH HELP REINFORCEMENT ELEMENT FROM POLYCARBAMIDE

Файрушин Айрат Миннуллович

кандидат технических наук, доцент, доцент кафедры оборудования и технологий сварки и контроля, Уфимский государственный нефтяной технический университет tna ugntu@mail.ru

Исламова Алена Вячеславовна

магистрант 1 курса механического факультета, кафедра оборудования и технологий сварки и контроля, Уфимский государственный нефтяной технический университет alena.islamova.1997@mail.ru

Аннотация. Рассматриваются вопрос о повышении работоспособности ответвлений трубопроводов и их безопасную эксплуатацию. Проведен анализ состояния конструкций по обеспечению надежности и безаварийной работы опасных участков трубопровода. Предложен способ укрепления тройниковых соединений поликарбамидом.

Ключевые слова: трубопровод, трубопроводная система, узел ответвления, сосуды давления, накладное кольцо, поликарбамид.

Fireushin Airat Minnullovich

Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Equipment and Technologies for Welding and Control, Ufa State Petroleum Technical University tna_ugntu@mail.ru

Islamova Alena Vyacheslavovna

Master of the 1st year of the Faculty of Mechanics, Department of Equipment and Technologies for Welding and Control, Ufa State Petroleum Technical University alena.islamova.1997@mail.ru

Annotation. The issue of improving the efficiency of branch pipelines and their safe operation are considered. The analysis of the state of structures to ensure the reliability and trouble-free operation of hazardous sections of the pipeline. A method is proposed for strengthening tee joints with polycarbamide.

Keywords: pipeline, pipeline system, branch node, pressure vessel, ring, polyuria.

технологические трубопроводы имеют большое количество узлов ответвлений, которые являются концентраторами напряжений, в связи с уменьшением площади поперечного сечения участка трубопровода. В случае если в месте врезки ослабление основного трубопровода не компенсируется запасом прочности соединения, то укрепление данных узлов в соответствии с ГОСТ 32569-2013 [1] является необходимой процедурой.

Для укрепления опасного участка трубопровода его усиливают специальными накладными конструкциями различных типов:

- плоским накладным кольцом;
- воротником;
- плоским кольцом, охватывающим всю трубу;
- заплечиками;
- кольцом в виде воротника;
- косынками и ребром.

Однако наиболее распространен способ укрепления накладным кольцом в виду того, что в теории он имеет лучшие прочностные свойства, но фактически в связи со сложностью пригонки, сборки и приварки накладного кольца приводит к появлению следующих дефектов:

- трещин;
- укороченного горизонтального катета углового сварного шва «труба-кольцо», что стало одной из причин разрушения нефтепровода [2];
 - зазоры между усиливающей накладкой и корпусом трубопровода [3];
 - дефекты сварного шва;
 - эксплуатационные дефекты [3, 4].

Все это ведет к появлению области повышенной концентрации напряжений в узлах врезки и как следствие к дальнейшему разрушению.

Известен способ вибрационной обработки сварных соединений, который позволяет уменьшить остаточные напряжения и увеличить сопротивляемость материала ползучести [5–6]. Однако данный способ не позволяет устранить остальные дефекты приварки накладных (укрепляющих) колец [7].

Нанесение поликарбамида на узел тройникового соединения трубопровода обеспечит его прочность, исключает зазор между накладкой и корпусом, а отсутствие сварных швов исключает остаточные сварочные напряжения, являющиеся причиной появления трещин, а так же зону термического влияния, а так же дефекты сварных швов (рис. 1).

Рисунок 1 – Схема сварного ответвления с использованием укрепляющего элемента из поликарбамида: 1 – основная труба; 2 – ответвление трубы; 3 – усиливающая накладка из поликарбамида

Основные свойства поликарбамида:

- твёрдость по Шору (A) при сохранении эластичности 96;
- удлинение при разрыве не менее 250 %;
- предел прочности при растяжении не менее 10 МПа;
- срок службы покрытия из поликарбамида до 50 лет;
- адгезионная прочность не менее 2,5 МПа, (струйная обработка) не менее 4,0 МПа;
- время отверждения (при +20 °C) 6 секунд;
- максимальная рабочая температура от минус 100 до +250 °C.

Были проведены численные исследования на моделях в программе ANSYS WORCKBENCH в модуле Static Structural для определения и сравнения напряженно-деформированного состояния узла при укреплении металлическим кольцом и различными конструктивными исполнениями накладок из поликарбамида.

Модель представляла собой цилиндрическую трубу с врезанным патрубком, нагруженная внутренним избыточным давлением. Геометрия: основная труба наружным диаметром 820 мм, толщина стенки 12 мм; патрубок наружным диаметром 219 мм, толщина стенки 4 мм. На патрубке толщина покрытия соответственно 4 мм, на основной трубе 12 мм.

Место врезки и укрепления отверстия усиливалось покрытием из поликарбамида путем сборки основной трубы с моделью накладной конструкции (рис. 2).

Рисунок 2 — Основные размеры расчетной модели

Остается неизвестным диаметр и высота будущего покрытия. Для сравнения были взяты 3 модели, варьируемые диаметром нанесенного покрытия и его высотой:

- d = 350 MM, H = 100 MM;
- d = 400 MM, H = 150 MM;
- d = 450 MM. H = 200 MM.

Модель узла врезки представлена на рисунке 3.

Рисунок 3 – Модель узла врезки

После импорта моделей в ANSYS WB задались свойства материалов:

- основная труба и патрубок 09Г2С σ_{τ} = 343 МПа;
- покрытие алюминиевый сплав, так как он имеет самые приближенные в библиотеке материалов свойства (предел прочности на разрыв 20 МПа, плотность 1101 кг/м³, твердость 627 НВ)

Построение сетки проводилось с упором на регулярность основной трубы (рис. 4), так как именно ее напряжение мы должны вычислить.

Рисунок 4 – Сетка расчетной модели

Параметры нагружения модели составили:

- давление 1,6 МПа;
- перемещение 0,0003 м.

График эквивалентных напряжений наружной поверхности трубы в поперечном сечении трубы представлен на рисунке 5.

Переход основной трубы с покрытием на основную трубу без покрытия является аналогом сварного шва для укрепления накладным кольцом.

По результатам моделирования видно, что при использовании укрепляющих элементов диаметром 400 и 450 мм, эквивалентные напряжения в основной трубе и патрубке не превышают допускаемые напряжения материала основной трубы (сталь 09Г2С). Следовательно, в рамках данного исследования оптимальный размер покрытия:

диаметр d = 400 мм;

Рисунок 5 – График эквивалентных напряжений

Выводы

- 1. Предложен способ укрепления узла из поликарбамида вместо традиционного укрепления приварным укрепляющим кольцом. Альтернативный способ позволяет исключить необходимость в сварных соединениях, и, как следствие, зону термического влияния, а также дефекты сварных швов.
- 2. На основании проведенного численного моделирования на примере модели трубопроводпатрубок было установлено, что укрепление накладными кольцами можно заменить на укрепляющий элемент из поликарбамида. Можно предположить, что размеры покрытия соответствуют следующим утверждениям:
- диаметр наносимого покрытия системой горячего безвоздушного распыления на основной трубе D_{покр} ≥ 2·d_{пат};
- толщина покрытия на патрубке и основной трубе равна толщине стенки основной трубы, что обеспечивается путем нанесения нескольких слоев поликарбамида (1 слой = 4 мм толщины);
 - высота покрытия на патрубке равна H ≥ 0,75 d_{пат} [8].

Литература:

- 1. ГОСТ 32569-2013. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах. М.: Межгосуд. совет по стандартизации, метрологии и сертификации, 2015. 131 с.
- 2. Гумеров А.К., Шмаков А.К., Хайрутдинов Ф.Ш. Механизмы разрушения магистральных трубопроводов с приварными элементами // Электронный научный журнал «Нефтегазовое дело». 2007. № 1. С. 1–5. URL: http://ogbus.ru/files/ogbus/authors/GumerovAK/GumerovAK 1.pdf (дата обращения 28.02.2020).
- 3. Анализ напряженного состояния укрепленного накладным кольцом штуцерного узла с учетом дефектов сборки / И.В. Аписов и др. // Электронный научный журнал «Нефтегазовое дело». 2014. № 5. С. 223–237. URL : http://ogbus.ru/files/ogbus/issues/5_2014/ogbus_5_2014_p223-237_ApisovIV_ ru.pdf (дата обращения 28.02.2020).
- 4. Файрушин А.М. Разработка рекомендаций по применению локально укрепленных штуцерных узлов с ребрами жесткости / А.М. Файрушин и др. // Электронный научный журнал «Heфтегазовое дело». 2017. № 6. С. 76–95. URL: http://ogbus.ru/files/ogbus/issues/6_2017/ogbus_6_2017_p76-95_FairushinAM_ru.pdf (дата обращения 03.03.2020).
- 5. Ризванов Р.Г. Повышение качества изготовления сварных нефтехимических аппаратов применением вибрационной обработки в процессе сварки / Р.Г. Ризванов и др. // Башкирский химический журнал. 2005. Т. 12. № 1. С. 27—29.
- 6. Файрушин А.М. О влиянии параметров вибрационной обработки на свойства металла сварного соединения / А.М. Файрушин и др. // Нефтегазовое дело. 2011. Т. 9. № 2. С. 70–75.
 - 7. Яковлева Д.Н. Повышение безопасности при эксплуатации узлов ответвления трубопроводов с помо-

щью укрепляющих (накладных) колец / Д.Н. Яковлева, А.М. Файрушин, А.В. Исламова // Электронный научный журнал «Нефтегазовое дело». -2018. -№ 6. - С. 43-59. - URL: http:// ogbus.ru/files/ogbus/issues/6_2018/ogbus_6_2018_p43-59_YakovlevaDN_ru.pdf (дата обращения 03.03. 2020).

8. Пат. 194931 РФ, F16L 49/00. Конструкция узла тройникового соединения трубопровода с применением накладной угловой конструкции / А.М. Файрушин, Д.В. Каретников, А.В. Исламова, Д.Н. Яковлева. № 2019121092; Заявлено 03.07.2019; Опубл. 30.12.2019; Бюл. № 1.

References:

- 1. GOST 32569-2013. Steel technological pipelines. Requirements for the device and operation in explosive and fire hazardous and chemically hazardous industries. M.: Interstate. Council for Standardization, Metrology and Certification, 2015. 131 p.
- 2. Gumerov A.K. Destruction mechanisms of main pipelines with welded elements / A.K. Gumerov, A.K. Shmakov, F.Sh. Khairutdinov // Electronic scientific journal «Oil and Gas Business». 2007. № 1. P. 1–5. URL: http://ogbus.ru/files/ogbus/authors/GumerovAK/GumerovAK_1.pdf (accessed 28.02.2020).
- 3. Apisov I.V. Analysis of the stress state of the nozzle assembly strengthened by the overhead ring taking into account assembly defects / I.V. Apisov et al. // Electronic scientific journal «Oil and Gas Business». 2014. № 5. P. 223–237. URL: http://ogbus.ru/files/ogbus/issues/5_2014/ogbus_5_2014_p223-237_ ApisovIV_ru.pdf (accessed 28.02.2020).
- 4. Fireushin A.M. Development of recommendations for the use of locally reinforced choke assemblies with stiffeners / A.M. Fireushin et al. // Electronic scientific journal «Oil and Gas Business». 2017. № 6. P. 76–95. URL: http://ogbus.ru/files/ogbus/issues/6_2017/ogbus_6_2017_p76-95_FairushinAM_ru.pdf (accessed 03.03.2020).
- 5. Rizvanov R.G. Improving the quality of manufacturing of welded petrochemical apparatuses using vibration processing in the welding process / R.G. Rizvanov et al. // Bashkir Chemical Journal. − 2005. − Vol. 12. − № 1. − P. 27–29.
- 6. Fireushin A.M. About the influence of vibration processing parameters on the properties of the weld metal / A.M. Fireushin et al. // Oil and gas business. –2011. Vol. 9. № 2. P. 70–75.
- 7. Yakovleva D.N. Improving safety during the operation of pipeline branch nodes using reinforcing (overhead) rings / D.N. Yakovleva, A.M. Fireushin, A.V. Islamova // Electronic scientific journal «Oil and Gas Business». 2018. № 6. P. 43–59. URL: http://ogbus.ru/files/ogbus/issues/6_2018/ogbus_6_2018_p43-59_YakovlevaDN_ru.pdf (accessed date 03.03.2020).
- 8. Pat. 194931 RF, F16L 49/00. The design of the node tee connection of the pipeline with the use of invoice angular design / A.M. Fireushin, D.V. Karetnikov A.V. Islamova, D.N. Yakovleva. № 2019121092; Announced July 3, 2019; Publ. 30.12.2019; Bull. № 1.