COMP 361: Elementary Numerical Methods Assignment no.3

Duc Nguyen

Gina Cody School of Computer Science and Software Engineering Concordia University, Montreal, QC, Canada

Winter 2020

Contents

1	Question 3																3															
	1.1	Problem																														3

NOTE:

The programs were written in Python with Jupyter Notebook.

1 Question 3

1.1 Problem

Derive the local Three-point Gauss Quadrature Formula for integrating a function f(x) over the reference interval [1, 1]. (This formula uses the roots of the orthogonal polynomial $e_3(x)$.)

Use the corresponding composite formula to integrate the function $f(x) = \sin(\pi x)$ over the interval [0, 1], using N = 2, 4, 8, 16, $\mathring{\rm u}$ $\mathring{\rm u}$, equally spaced subintervals in [0, 1]. List the observed errors (the difference between the numerical integral and the exact integral) in a Table.

How many function evaluations are needed for the error to be less than 10(7)?

1.2 Local Three-point Gauss Quadrature Formula