Ripton Rosen

NBA Prediction Model

Basketball Reference and the NBA

FiveThirtyEight

Create a classification model that can accurately predict NBA wins and losses

Data Process

Web Scrape

From Basketball-Reference.com

Data Cleaning

Deal with missing values and rename columns

Data Exploration

Sort through and understand the data

Modeling

Create models based on the data to predict game outcomes

Interpretation

Learn from the models

Further Work

Come up with plans for the next steps in the project

Game Logs

- All 30 NBA teams
- 2009-2010 season up until 2019-2020 season
- Basic game statistics and advanced game statistics

\$	Train_accuracy \$	Test_accuracy \$	F1_score \$	False_Negative \$	True_Positive \$
Decision Tree	100.00	99.62	1.00	9.0	3290.0
XGBoost	100.00	99.89	1.00	2.0	3297.0
Logistic Regression	100.00	100.00	1.00	0.0	3299.0
Support Vector Machine	99.99	100.00	1.00	0.0	3299.0
Random Forest	100.00	99.07	0.99	25.0	3274.0
K-Nearest Neighbors	98.53	97.27	0.97	77.0	3222.0

Findings

 Offensive Rating and Defensive Rating have complete priority

Models' accuracy perfect/nearly perfect

+	Train_accuracy \$	Test_accuracy \$	F1_score \$	False_Negative \$	True_Positive \$
XGBoost	99.95	94.54	0.95	196.0	3103.0
RS XGBoost	99.96	94.82	0.95	175.0	3124.0
Random Forest	100.00	90.85	0.91	307.0	2992.0
Random Search Random Forest	99.55	91.05	0.91	290.0	3009.0
Logistic Regression	87.55	87.83	0.88	402.0	2897.0
Support Vector Machine	83.53	84.10	0.84	542.0	2757.0
Decision Tree	81.96	80.36	0.81	579.0	2720.0
K-Nearest Neighbors	81.89	70.97	0.71	963.0	2336.0

New Findings

(Without Offensive and Defensive ratings)

 Other metrics find new life within the models

 Models no longer perfect... simply nearly

Further Work

Last 10 games statistics

Aggregate statistics on a last 10 games level to avoid running into data issues

Betting lines

Use point spreads as a next level for the model to predict

Artificial Neural Network

Implement a neural network model into the project to help with predictions

Thank You!

Does anyone have any questions?

Ripton.Rosen@gmail.com