AVL Tree Deletion, Other Balanced Trees

EECS 233

- ☐ Deletion is more complicated.
 - > It requires both single and double rotations
 - We may need more than one rebalance operation (rotation) on the path from the deleted node back to the root.
- ☐ Steps:
 - > First delete the node the same as deleting it from a binary search tree
 - Remember that a node can be either *a leaf node* or *a node with a single child* or *a node with two children*
 - Walk through from the deleted node back to the root and rebalance the nodes on the path if required
 - ☐ Since a rotation can change the height of the original tree
- □ Deletion is O(logN)
 - Each rotation takes O(1) time
 - We may have at most h (height) rotations, where h = O(logN)

- ☐ For the implementation
 - We have a shorter flag that shows if a subtree has been shortened
 - Each node is associated with a balance factor
 - □ *left-high* the height of the left subtree is higher than that of the
 - right subtree
 - right-high the height of the right subtree is higher than that of
 - the left subtree
 - equal the height of the left and right subtrees is equal
- ☐ In the deletion algorithm
 - Shorter is initialized as true
 - Starting from the deleted node back to the root, take an action depending on
 - ☐ The value of shorter
 - The balance factor of the current node
 - Sometimes the balance factor of a child of the current node
 - Until shorter becomes false

<u>Case 1</u>: The balance factor of p is equal.

- Change the balance factor of p to right-high (or left-high)
- Shorter becomes false

Case 2: The balance factor of p is not equal and the taller subtree is shortened.

- Change the balance factor of p to equal
- Shorter remains true

No rotations Height reduced

<u>Case 3</u>: The balance factor of p is not equal and the shorter subtree is shortened.

- Rotation is necessary
- Let q be the root of the taller subtree of p
- We have three sub-cases according to the balance factor of q

Case 3a: The balance factor of q is equal.

- Apply a single rotation
- Change the balance factor of q to left-high (or right-high)
- Shorter becomes false

Single rotation Height unchanged

Case 3b: The balance factor of q is the same as that of p.

- Apply a single rotation
- Change the balance factors of p and q to equal
- Shorter remains true

Single rotation Height reduced

Case 3c: The balance factor of q is the opposite of that of p.

- Apply a double rotation
- Change the balance factor of the new root to equal
- Also change the balance factors of p and q
- Shorter remains true

Double rotation Height reduced

Exercise: Delete o from the following AVL tree

Efficiency of AVL Trees

- \square An AVL tree containing n items has a height that is $O(\log_2 n)$.
- \square Search and insertion are both $O(\log_2 n)$.
 - Search travels at most one path down the tree
 - An insertion goes down one path to the insertion point, and then goes back up adjusting balances/performing rotations
 - □ in the worst case, both the path down and the path back up consider O(log₂n) nodes
 - each rotation requires a constant number of operations, and we perform at most two of them for a given insertion
- □ Deletion begins with the same procedure used in binary search trees (O(log₂n) complexity). It can also require rotations to rebalance the tree, also at the complexity of *O*(log₂n).

Other Trees

- □ 2-3 trees
- □ Splay trees
- □ Red-black trees
- □ B-trees

Aren't AVL Trees Perfect?

- □ AVL tree binary balanced tree
 - Searching an item requires traversing from root to (at most) leaf
 - logN descents (random accesses)
 - Visiting each node one comparison.
- □ On disk:
 - > Random access is expensive
 - Disk read is in blocks (e.g. 4K bytes at once)
 - Disk-based AVL trees waste much of a block for an internal node read
 - ☐ The node is smaller than the block
 - Payload of the node is not used

Designing for Disk Particulars

B-Tree

- □ Reduce the number of disk accesses
- All leaves are at same level
- □ Defined by its *minimum degree* 't'
- Every node except root must contain at least t-1 keys
 - Root may contain minimum 1 key
- □ All nodes (including root) may contain at most 2t 1 keys
- Number of children of a node is equal to the number of keys in it plus 1

B-Tree – Alternative Definition

- ☐ B-Trees are specialized *M*-ary search trees
- Each node has many keys
- □ maximum branching factor of *M*
- \Box the root has between 2 and **M** children or at most **L** keys
- \square other internal nodes have between $\lceil M/2 \rceil$ and M children
- ☐ internal nodes contain only *search* keys (no data)
- \Box each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys
- all leaves are at the same depth

B-Tree Example

