Classical iterative methods for linear systems

Ed Bueler

MATH 615 Numerical Analysis of Differential Equations

27 February-1 March, 2017

example linear systems

suppose we want to solve the linear system

$$A\mathbf{x} = \mathbf{b}$$
 (1)

where $A \in \mathbb{R}^{m \times m}$ and $\mathbf{b} \in \mathbb{R}^m$, to find $\mathbf{x} \in \mathbb{R}^m$.

• throughout these notes we use just two examples:

LS₁

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$$

LS₂

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & -2 & -3 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 1 \\ 3 \end{bmatrix}$$

- on P17 (Assignment #5) you will check that these are well-conditioned linear systems
- it is trivial to find solutions of LS1, LS2 using a "x = A\b" black box, but these examples stand-in for the large linear systems we get from applying FD schemes to ODE and PDE problems

residual

the residual of a vector v in linear system (1) is the vector

$$\mathbf{r}(\mathbf{v}) = \mathbf{b} - A\mathbf{v} \tag{2}$$

making the residual zero is the same as solving the system:

$$A\mathbf{x} = \mathbf{b} \iff \mathbf{r}(\mathbf{x}) = \mathbf{0}$$

- \bullet evaluating r(v) needs a matrix-vector product and a vector subtraction
 - requires $O(m^2)$ operations at worst
 - o by comparison, applying Gauss elimination to solve linear system (1) is an $O(m^3)$ operation in general
- FD schemes for DEs generate matrices A for which the majority, often 99% or more, of the entries are zero
 - a matrix with enough zeros to allow exploitation of that fact is called sparse
 - \circ evaluating the residual of a sparse matrix typically requires O(m) operations
 - even if A is sparse, A^{-1} is generally *dense*, i.e. most entries are nonzero

Richardson iteration

- iterative methods for linear system (1) attempt to solve it based only on operations like computing the residual, or applying A to a vector
 - o one wants the sequence of approximations, the iterates, to *converge* to the solution $\mathbf{x} = A^{-1}\mathbf{b}$
 - Iterative methods always require an initial iterate x₀
- *Richardson iteration* adds a multiple ω of the last residual at each step:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \omega(\mathbf{b} - A\mathbf{x}_k) \tag{3}$$

• for system LS1, using initial iterate $\mathbf{x}_0 = 0$ and $\omega = 1/5$, (3) gives:

$$\boldsymbol{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \, \boldsymbol{x}_1 = \begin{bmatrix} 0.4 \\ 0.2 \\ 0.8 \end{bmatrix}, \, \boldsymbol{x}_2 = \begin{bmatrix} 0.6 \\ 0.16 \\ 1.04 \end{bmatrix}, \, \boldsymbol{x}_3 = \begin{bmatrix} 0.728 \\ 0.088 \\ 1.096 \end{bmatrix}, \, \dots, \, \boldsymbol{x}_{10} = \begin{bmatrix} 0.998 \\ -0.017 \\ 1.01 \end{bmatrix}, \dots$$

these iterates seem to be converging to $\mathbf{x} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$, which is the solution to LS1

recall: eigenvalues and vectors

- a complex number $\lambda \in \mathbb{C}$ is an *eigenvalue* of a square matrix $B \in \mathbb{R}^{m \times m}$ if there is a nonzero vector $\mathbf{v} \in \mathbb{C}^m$ so that $B\mathbf{v} = \lambda \mathbf{v}$
- the set of all eigenvalues of B is the spectrum $\sigma(B)$ of B
- the spectral radius $\rho(B)$ is the maximum absolute value of an eigenvalue:

$$\rho(B) = \max_{\lambda \in \sigma(B)} |\lambda|$$

• even if B is real, λ may be complex—the roots of a polynomial with real coefficients may be complex—and if λ is complex and B is real then \mathbf{v} must be complex

spectral properties and convergence of iterations

- properties of a matrix B described in terms of eigenvalues are generically called spectral properties
- some examples:

 - the 2-norm condition number $\kappa(B) = \|B\|_2 / \|B^{-1}\|_2$
- a general idea:

whether an iterative method for solving $A\mathbf{x} = \mathbf{b}$ converges, or not, depends on spectral properties of A, or on matrices built from A

- the right-hand side b and the initial iterate x₀ generally do not determine whether an iteration converges
 - o a good choice of **x**₀ can speed up convergence

convergence of the Richardson iteration

rewrite the Richardson iteration (3) as

$$\mathbf{x}_{k+1} = (I - \omega A)\mathbf{x}_k + \omega \mathbf{b}$$

• the lemma on the next slide shows that the Richardson iteration converges if and only if all the eigenvalues of the matrix $I - \omega A$ are inside the unit circle:

(3) converges if and only if
$$\rho(I - \omega A) < 1$$

- ρ(I − ωA) < 1 means $(I − ωA)x_k$ is smaller in magnitude than x_k
- if $||I \omega A|| < 1$ then (3) converges¹

convergence lemma

Lemma

$$\mathbf{y}_{k+1} = M\mathbf{y}_k + \mathbf{c}$$

converges to the solution of $\mathbf{y} = M\mathbf{y} + \mathbf{c}$ for all initial \mathbf{y}_0 if and only if

$$\rho(M) < 1.$$

Proof.

Solve the iteration by writing out a few cases:

$$\mathbf{y}_2 = M(M\mathbf{y}_0 + \mathbf{c}) + \mathbf{c} = M^2\mathbf{y}_0 + (I+M)\mathbf{c},$$

 $\mathbf{y}_3 = M(M^2\mathbf{y}_0 + (I+M)\mathbf{c}) + \mathbf{c} = M^3\mathbf{y}_0 + (I+M+M^2)\mathbf{c},$
:

By induction we get $\mathbf{y}_k = M^k \mathbf{y}_0 + p_k(M)\mathbf{c}$ where $p_k(x) = 1 + x + x^2 + \dots + x^{k-1}$. But $p_k(x) \to 1/(1-x)$ as $k \to \infty$ iff $x \in (-1,1)$. Also, $\rho(M) < 1$ iff $M^k \to 0$. Thus $\mathbf{y}_k \to (I-M)^{-1}\mathbf{c}$ iff $\rho(M) < 1$.

convergence of the Richardson iteration 2

• since the Richardson iteration converges iff $\rho(I-\omega A)<1$, we choose ω based on the principle that

 ωA should be close to the identity I

- often not possible!
- in small cases we can graph $f(\omega) = \rho(I \omega A)$:

```
omega = -1:.01:1;
rho = zeros(size(omega));
for j = 1:length(omega)
        M = eye(n) - omega(j) * A;
        rho(j) = max(abs(eig(M)));
end
plot(omega,rho)
```

```
for LS1: \rho(I - \omega A) dips below 1 for 0 < \omega \lesssim 0.6 for LS2: \rho(I - \omega A) > 1 always
```


- note $\rho(I 0A) = 1$... so no convergence when $\omega \approx 0$
- for LS1, figure suggests $\omega \approx$ 0.4 gives fastest convergence

matrix splitting

- unlike Richardson, most classical iteration methods "split" the matrix A before iterating
- the best known, and simplest, iteration based on splitting is Jacobi iteration, which extracts the diagonal of A (and inverts it)
- the splitting we consider is

$$A = D - L - U$$

where

- D is the diagonal of A
- ∘ *L* is strictly lower triangular $(\ell_{ij} = 0 \text{ if } i \leq j)$
- ∘ *U* is strictly upper triangular $(u_{ij} = 0 \text{ if } i \ge j)$
- you can split any matrix this way
- see section 4.2 of the textbook
- so that *D* is an invertible matrix, for the remaining slides we assume all diagonal entries of *A* are nonzero: $a_{ii} \neq 0$

Jacobi iteration

the Jacobi iteration is

$$D\mathbf{x}_{k+1} = \mathbf{b} + (L+U)\mathbf{x}_k \tag{4}$$

- if it converges then $D\mathbf{x} = \mathbf{b} + (L + U)\mathbf{x}$, which is the same as $A\mathbf{x} = \mathbf{b}$
- we could also write it as $\mathbf{x}_{k+1} = D^{-1} (\mathbf{b} + (L+U)\mathbf{x}_k)$ or as

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$
 (5)

where $x_j^{(k)}$ denotes the *j*th entry of the *k*th iterate \mathbf{x}_k

make sure you understand why (4) and (5) are the same!

Gauss-Seidel iteration

- Gauss-Seidel iteration extracts the non-strict lower-triangular part of A
 (and inverts it)
- again if A = D L U then it is

$$(D-L)\mathbf{x}_{k+1} = b + U\mathbf{x}_k \tag{6}$$

- we could also write it " $\mathbf{x}_{k+1} = (D-L)^{-1} (b+U\mathbf{x}_k)$ " but that would miss the point!
- instead we write it as $D\mathbf{x}_{k+1} = b + U\mathbf{x}_k + L\mathbf{x}_{k+1}$ or equivalently:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j>i} a_{ij} x_j^{(k)} - \sum_{j(7)$$

- the lower-triangular entries of A apply to those entries of \mathbf{x}_{k+1} which have already been computed
- form (7) is actually *easier* to implement than Jacobi (5) (why?)

convergence conditions for Jacobi and Gauss-Seidel

- the convergence lemma says that
 - Jacobi iteration converges if and only if $\rho(D^{-1}(L+U)) < 1$
 - Gauss-Seidel iteration converges if and only if $\rho((D-L)^{-1}U) < 1$
- these conditions are hard to use in practice because computing a spectral radius can be just as hard as solving the original system

diagonally-dominant matrices

- definition. A is strictly diagonally-dominant if $|a_{ii}| > \sum_{i \neq i} |a_{ij}|$
 - LS1 is strictly diagonally-dominant
 - LS2 is not
- two relatively-famous theorems² are these:
 - theorem. if A is strictly diagonally-dominant then both the Jacobi and Gauss-Seidel iterations converge
 - Theorem. if A is symmetric positive definite then Gauss-Seidel iteration converges
- unlike the " $\rho(...)$ < 1" conditions on the last slide:
 - it is easy to check diagonal-dominance, and it is a common property of the matrices coming from FD schemes on ODEs and PDEs
 - these are only sufficient conditions, e.g. there are nonsymmetric A, which are not diagonally-dominant, but for which the iterations converge
- see problems P19 and P20

²section 11.2 of Golub and van Loan, *Matrix Computations*, 4th edition 2013 ➤ < ■ ➤ > ■ ✓ < <

past

- the Jacobi and Gauss-Seidel iterations are from the 19th century
 - Richardson iteration first appears in a 1910 publication
- the early history of numerical partial differential equations, e.g. in the 1920 to 1970 period, heavily used these classical iterations
 - a generalization of Gauss-Seidel iteration called successive over-relaxation, was a particular favorite around 1970; see section 4.2 of the textbook
- none of these iterations work on system LS2

recent past and future

- there are better iterative ideas, and they flourished starting in the 1980-90s . . . and far into the future
 - among the best known are CG = conjugate gradients (actually from 1950-60s) and GMRES = generalized minimum residuals (from a 1986 paper by Saad and Schultz)
 - GMRES works (i.e. converges at some rate) on LS2
 - but there can be no "good iteration" with a universally-fast convergence rate³
- iteration to solve linear systems is the future:
 - it is obligatory on sufficiently-big systems
 - it works better in parallel than direct methods like Gauss elimination
 - o it can exploit partial knowledge of the underlying model

biographies

- Gauss (1777–1855) did big stuff, not just the little Gauss-Seidel thing:
 en.wikipedia.org/wiki/Carl_Friedrich_Gauss
- Jacobi (1804–1851) also has his name on the "Jacobian", the matrix of derivatives appearing in Newton's method for systems of equations:

```
en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
```

Seidel (1821–1896) is relatively little known:

```
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel
```

 Richardson (1881–1953) is the most interesting. He invented numerical weather forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker, he quit the subject entirely when he found his meteorological work was of most value to chemical weapons engineers and the British Air Force:

en.wikipedia.org/wiki/Lewis_Fry_Richardson