國立清華大學資訊工程

邏輯設計 Digital Design

Course Administration

- 授課老師:張世杰
- 辦公室: 台達R619 電話: 03-5742964 email: scchang@cs.nthu.edu.tw
- 助教:
- TA hour: (Tue.) 13:20~14:00 @ EECS R2341
- 上課時間:
 - _ CS4100: 星期一 15:30-17:20

星期四 14:20-15:10

- 上課地點: 台達館 107室
- Textbook

Digital Design (6th edition),

by M.M. Mano and M.D. Ciletti

Pearson International Edition.

Why Logic Design

- A foundation for VLSI design
 - Digital circuit design
 - Verification
 - Testing
 - CAD
- Many job offerings for logic design engineer
 - Logic Design Flow CAD Engineer
 - Logic Design Engineer
 - Logic Design Engineer 數位線路設計_213WN
 - KH1204-CP產品測試工程師(RF/Logic IC)-湖口區光復廠
 - 一 研發類--邏輯電路設計研發工程師(竹北)
 - 系統設計資深工程師_儲能系統產品(桃五)
 - _ 數位IC設計工程師
 - 演算法開發工程師(F)

台灣IC產業產值成長率vs.全球半導體市場成長率

- 2020 全球半導體成長6.5%,台灣成長20.9% 因遠距辦公室與HPC 高速運算的需求
- TSMC became the world's 10th most valuable company.

2020年台灣 IC 產業總產值保持全球第二

IC設計No.2、晶圓代工No.1、IC封測No.1、記憶體No.4

台灣半導體產業屬高附加價值產業(附加價值率超過50%)

- 附加價值 = 企業盈餘 + 勞動報酬 + 折舊費用
- ▶ 產業附加價值率 = 產業附加價值 / 產業總產值

2019年台灣半導體產業附加價值佔GDP比重7.6%

2019年台灣半導體產業產值佔工業產值的19%

資料來源:工業生產統計

台灣半導體產業就業人數約23萬人

人均產值超過1千萬新台幣

如果沒有積體電路產業

- ●半導體是台灣經濟命脈,過去十年來,幾乎台灣順差全靠半導體積體電路。以2019年為例,台灣的整體出口值是10.2兆新台幣,進口值是8.8兆新台幣,呈現順差1.3兆新台幣。
- ●而2019年台灣的半導體積體電路(海關碼8542)出口值是3.1 北新台幣,進口值是1.7兆新台幣,呈現順差1.4兆新台幣。也就是說,如果台灣沒有半導體積體電路,那台灣整體進出口就會呈現逆差0.1兆新台幣。

IC設計全球排名

表、2020年第三季全球前十大IC設計公司營收排名 (單位:百萬美元)

排名	公司名稱	3Q20營收	3Q19營收	YoY
1	高通(Qualcomm)	4,967	3,611	37.6%
2	博通(Broadcom)	4,626	4,486	3.1%
3	輝達 (Nvidia)	4,261	2,737	55.7%
4	聯發科(MediaTek)	3,300	2,154	53.2%
5	超微 (AMD)	2,801	1,801	55.5%
6	賽靈思(Xilinx)	767	833	-7.9%
7	瑞昱半導體 (Realtek)	760	514	47.9%
8	聯詠科技(Novatek)	746	532	40.4%
9	邁威爾(Marvell)	742	660	12.4%
10	戴樂格半導體 (Dialog)	386	409	-5.6%

註:

- 1. 此排名僅統計公開財報之前十大廠商
- 2. NVIDIA扣除OEM/IP營收
- 3. 高通僅計算QCT部門營收,構通僅計算半導體部門營收
- 4. 台幣對美金匯率: 20Q3為29.48:1;19Q3則為31.21

Source: 拓墣産業研究院, Dec., 2020

Chips in Devices

Processors

Logic Design


```
2 module counter(clk, rst_n, digit);
     parameter delay=0.7;
     input clk;
 4
     input rst_n;
 5
6
     output [2:0] digit;
 7
     reg [2:0] digit;
 8
9
     wire [2:0] digit_next;
10
11
       always@(posedge clk or negedge rst_n)begin
12
           if(!rst_n) begin
13
                digit <= #(delay) 3'b0;
14
           end else begin
15
                digit <= #(delay) digit next;</pre>
16
           end
17
       end
18
19
       assign digit_next = digit + 3'b1;
20
21 endmodule
```


Logic Optimization

Logic Synthesis = Translation + Optimization + Mapping

X <= A OR B; X1 <= (C XOR D) OR X; X2 <= E AND F; X3 <= G OR X2;

RTL Code

VLSI Design

Hardware courses

- Logic Design :
 - Gate level Design
- 硬體實驗:
 - High Level Design with Verilog
- Computer Architecture:
 - Architecture (Register Level) Design
- Basic VLSI Design:
 - Transistor + Layout Design

- 應用軟體
- 系統軟體
- 架構設計
- 邏輯設計
- 電路設計
- 元件設計
- 材料製成

Digital Design

- Fundamental knowledge of digital logic circuits.
- Just enough for the use of hardware description language Verilog
- A systematic methodology for designing a state machine of a digital system.

End of Introduction!