SOLUTIONS OF ORTHOGONAL PROCRUSTES PROBLEMS UNDER PARTIALLY KNOWN PRIOR

JUN XU

DEPARTMENT OF COMPUTING, THE HONG KONG POLYTECHNIC UNIVERSITY

Abstract

The orthogonal Procrustes problem aims to find an orthogonal matrix which transforms one given matrix into another by minimizing their Frobenius matrix norm. This problem can be applied in applications such as permutation theory, machine learning, and camera calibration, *etc*. In real cases, the permutation matrix may have been partially known, the dictionaries can be partially learned from external data, and the calibration of camera should be done under some fixed priors. This prior information makes the original orthogonal Procrustes problem more difficult. In this paper, we consider the solution of this problem under partially known priors, which includes the original orthogonal Procrustes problem as a special case with no such prior.

Key words: orthogonal Procrustes problem, pratially known priors

1. Introduction

The classical orthogonal Procrustes problem has been applied in psychometrics, multidimensional scaling, factor analysis, rigid rotation [1], machine learning, computer vision, optical imaging, and robotics.

2. Definition of the Probelm and Solution

Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ be two given data matrices. Define $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{P} \in \mathbb{R}^{n \times q}$ where p+q=n. For simplicity, we assume $n \geq m$ and the other cases can be analyzed in a similar way. \mathbf{X} is the partially known prior which could be used to guide the solutions of \mathbf{P} . We formulate the orthogonal Procrustes problem with partially known priors as:

$$\hat{\mathbf{P}} = \arg\min_{\mathbf{D}} \|\mathbf{B} - [\mathbf{X} \ \mathbf{P}] \mathbf{A} \|_F^2 \quad s.t. \quad \mathbf{P}^\top \mathbf{P} = \mathbf{I}_{q \times q}, \mathbf{X}^\top \mathbf{P} = \mathbf{0}_{p \times q}.$$
(1)

In fact, as have been proofed, if the matrix $\mathbf{B}\mathbf{A}^{\top}$ has no zero singular value, then the solution of $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$ is unique and we do not need any preceding results.

We crop the matrix **A** into two parts: $\mathbf{A}_X \in \mathbb{R}^{p \times m}$ and $\mathbf{A}_P \in \mathbb{R}^{q \times m}$ to interact with **X** and **P**, respectively. Then we have

$$\|\mathbf{B} - [\mathbf{X} \mathbf{P}]\mathbf{A}\|_{F}^{2} = \|\mathbf{B} - [\mathbf{X} \mathbf{P}][\mathbf{A}_{X}^{\top} \mathbf{A}_{P}^{\top}]^{\top}\|_{F}^{2} = \|\mathbf{B} - [\mathbf{X} \mathbf{P}][\mathbf{A}_{X}^{\top} \mathbf{A}_{P}^{\top}]^{\top}\|_{F}^{2}$$

$$= \|\mathbf{B} - \mathbf{X}\mathbf{A}_{X}^{\top} - \mathbf{P}\mathbf{A}_{P}^{\top}]\|_{F}^{2} = \|\mathbf{B} - \mathbf{X}\mathbf{A}_{X}^{\top} - \mathbf{P}\mathbf{A}_{P}^{\top}]\|_{F}^{2}$$
(2)

The $\mathbf{B} - \mathbf{X} \mathbf{A}_X^{\top}$ is a known data matrix and we replace it with $\mathbf{B}^* = \mathbf{B} - \mathbf{X} \mathbf{A}_X^{\top}$. In the following Results 1, we remove the notation * and use \mathbf{B} as the finally known data matrix.

Results 1: Let $\mathbf{A} \in \mathbb{R}^{q \times m}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$ be two given data matrices, given partially known prior of $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p \times p}$. Then the sufficiency and necessary conditions of

$$\hat{\mathbf{P}} = \arg\min_{\mathbf{P}} \|\mathbf{B} - \mathbf{P}\mathbf{A}\|_F^2 \quad s.t. \quad \mathbf{P}^\top \mathbf{P} = \mathbf{I}_{q \times q}, \mathbf{X}^\top \mathbf{P} = \mathbf{0}_{p \times q}$$
(3)

is $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$, where $\mathbf{U} \in \mathbb{R}^{n \times q}$ and $\mathbf{V} \in \mathbb{R}^{q \times q}$ are the orthogonal matrices obtained by perfroming economy (a.k.a. reduced) SVD:

$$(\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$
(4)

Proof: Since $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}_{q \times q}$, we have

$$\hat{\mathbf{P}} = \arg\min_{\mathbf{P}} \|\mathbf{B} - \mathbf{P}\mathbf{A}\|_F^2 = \arg\min_{\mathbf{P}} \|\mathbf{B}\|_F^2 + \|\mathbf{P}\mathbf{A}\|_F^2 - 2\text{Tr}(\mathbf{B}^{\top}\mathbf{P}\mathbf{A}) = \arg\max_{\mathbf{P}} \text{Tr}(\mathbf{A}\mathbf{B}^{\top}\mathbf{P}).$$
 (5)

We can use Lagrange multiplier method and define the Lagrange function as:

$$\mathcal{L} = \text{Tr}(\mathbf{A}\mathbf{B}^{\top}\mathbf{P}) - \text{Tr}(\Gamma_1(\mathbf{P}^{\top}\mathbf{P} - \mathbf{I}_{q \times q})) - \text{Tr}(\Gamma_2(\mathbf{P}^{\top}\mathbf{X})), \tag{6}$$

where Γ is the Lagrange multiplier. Take the derivative of \mathcal{L} with respect to **P** and set it to 0, we can get

$$\frac{\partial \mathcal{L}}{\partial \mathbf{P}} = \mathbf{B} \mathbf{A}^{\top} - \mathbf{P} (\Gamma_1 + \Gamma_1^{\top}) - \mathbf{X} \Gamma_2^{\top} = 0.$$
 (7)

Since $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}_{q \times q}$ and $\mathbf{X}^{\top}\mathbf{P} = \mathbf{0}_{p \times q}$, by left multiplying the Equ. (7) by \mathbf{X}^{\top} , we have

$$\mathbf{X}^{\top} \mathbf{B} \mathbf{A}^{\top} = \Gamma_2^{\top}. \tag{8}$$

Put the results back to Equ. (7), we have

$$\mathbf{B}\mathbf{A}^{\top} - \mathbf{P}(\Gamma_1 + \Gamma_1^{\top}) - \mathbf{X}\mathbf{X}^{\top}\mathbf{B}\mathbf{A}^{\top} = 0.$$
(9)

Or equivaliently,

$$(\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} = \mathbf{P}(\Gamma_1 + \Gamma_1^{\top}). \tag{10}$$

Right multiplying Equ. (10) by \mathbf{P}^{\top} , we have

$$(\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} \mathbf{P}^{\top} = \mathbf{P} (\Gamma_1 + \Gamma_1^{\top}) \mathbf{P}^{\top}.$$
(11)

This shows that $(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top}\mathbf{P}^{\top}$ is a symmetric matrix of order $n\times n$. Then we perfrom economy (or reduced) singular value decomposition (SVD) on $(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top}$ and get $(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$. Since $(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top}\mathbf{P}^{\top}$ is symmetric, we have

$$(\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} \mathbf{P}^{\top} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{P}^{\top} = \mathbf{P} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\top}$$
(12)

and hence we have $\mathbf{U} = \mathbf{P}\mathbf{V}$ and equivalently $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$. Note that we can also employ the property of symmetric matrix that every symmetric matrix can be diagonalized to obtain this results. The necessary condition is proofed.

Now we proof the sufficiency condition. If $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$, then $\hat{\mathbf{P}}$ satisfies that $\hat{\mathbf{P}}^{\top}\hat{\mathbf{P}} = \mathbf{I}_{q\times q}$ and $\mathbf{X}^{\top}\hat{\mathbf{P}} = \mathbf{0}_{p\times q}$. The first is obvious and now we consider the second one. From the Equ. (4), since $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p\times p}$, we have

$$\mathbf{X}^{\top}(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top} = \mathbf{X}^{\top}\mathbf{B}\mathbf{A}^{\top} - \mathbf{X}^{\top}\mathbf{X}\mathbf{X}^{\top}\mathbf{B}\mathbf{A}^{\top} = \mathbf{0}_{p\times n}.$$
 (13)

It means that $\mathbf{X}^{\top}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top} = \mathbf{0}_{p\times p}$ and hence $\mathbf{X}^{\top}\mathbf{U} = \mathbf{0}_{p\times p}$. Then $\mathbf{X}^{\top}\hat{\mathbf{P}} = \mathbf{X}^{\top}\mathbf{U}\mathbf{V}^{\top} = \mathbf{0}_{p\times q}$. Besides, since

$$\|\mathbf{B} - \mathbf{P}\mathbf{A}\|_F^2 = \|\mathbf{B}\|_F^2 + \|\mathbf{P}\mathbf{A}\|_F^2 - 2\text{Tr}(\mathbf{B}^{\top}\mathbf{P}\mathbf{A}),$$
 (14)

Until now, if we want to proof that $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$ is the solution of problem (3), $\text{Tr}(\mathbf{B}^{\top}\hat{\mathbf{P}}\mathbf{A})$ has to be a maximum if $\|\mathbf{B} - \hat{\mathbf{P}}\mathbf{A}\|_F^2$ is to be a minimum, over all \mathbf{P} satisfying the subject condition in Equ. (3). Note that by cyclic perturbation which retains the trace unchanged and due to $\mathbf{X}^{\top}\hat{\mathbf{P}} = \mathbf{0}_{p \times q}$, we have

$$Tr(\mathbf{B}^{\top} \hat{\mathbf{P}} \mathbf{A}) = Tr(\mathbf{B} \mathbf{A}^{\top} \hat{\mathbf{P}}^{\top})$$

$$= Tr((\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} \hat{\mathbf{P}}^{\top})$$

$$= Tr(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{V} \mathbf{U}^{\top})$$

$$= Tr(\mathbf{\Sigma}).$$
(15)

Now we need to proof that $\text{Tr}(\Sigma) \geq \text{Tr}(\mathbf{B}^{\top}\mathbf{P}\mathbf{A})$ for every \mathbf{P} satisfying that $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}_{q \times q}, \mathbf{X}^{\top}\mathbf{P} = \mathbf{0}_{p \times q}$. Since $\text{Tr}(\mathbf{B}^{\top}\mathbf{P}\mathbf{A}) = \text{Tr}((\mathbf{I}_{n \times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top}\mathbf{P}^{\top}) = \text{Tr}(\mathbf{U}\Sigma\mathbf{V}^{\top}\mathbf{P}^{\top}) = \text{Tr}(\Sigma\mathbf{V}^{\top}\mathbf{P}^{\top}\mathbf{U}) \leq \text{Tr}(\Sigma)$. The last inequality can be obtained by using a generalization version [2] of the Kristof's Theorem [3]. The equality is obtained at $\mathbf{V}^{\top}\mathbf{P}^{\top}\mathbf{U} = \mathbf{I}_{q \times q}$, i.e., $\mathbf{P} = \mathbf{U}\mathbf{V}^{\top} = \hat{\mathbf{P}}$. This completes the proof.

3. Uniqueness and Solution Set of \hat{P}

Now we discuss the uniqueness of the solution $\hat{\mathbf{P}}$. Our discussion is according to the rankness of the Σ generated in the SVD. The rank of Σ largely depends on the rank of $\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top}$, \mathbf{B} and \mathbf{A} . Note that the rank of \mathbf{B} and \mathbf{A} are not larger than m and q, respectively. The rank of $\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top}$ is at least n-q=p (since rank($\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top}$) $\geq \operatorname{rank}(\mathbf{I}_{n\times n}) - \operatorname{rank}(\mathbf{X}\mathbf{X}^{\top}) \geq n-p=q$). From above observations, we can see that the rank of Σ can be equal to or less than q.

If $\operatorname{rank}(\Sigma) = q$ (we call this non-degenerative case), Σ may have distinct or multile non-zero singular values. In the SVD of $(\mathbf{I}_{n\times n} - \mathbf{X}\mathbf{X}^{\top})\mathbf{B}\mathbf{A}^{\top} = \mathbf{U}\Sigma\mathbf{V}^{\top}$, the singular vectors in \mathbf{U} and \mathbf{V} can be determined up to orientation. Hence, we can reformulate the SVD as

$$(\mathbf{I}_{n \times n} - \mathbf{X} \mathbf{X}^{\top}) \mathbf{B} \mathbf{A}^{\top} = \mathbf{U}^* \mathbf{K}_u \mathbf{\Sigma} \mathbf{K}_v (\mathbf{V}^*)^{\top}, \tag{16}$$

where $\mathbf{U}^* \in \mathbb{R}^{n \times q}$ and $\mathbf{V}^* \in \mathbb{R}^{q \times q}$ are arbitrarily orientated singular vectors of \mathbf{U} and \mathbf{V} , respectively. $\mathbf{\Sigma} \in \mathbb{R}^{q \times q}$ are diagonal matrix with singular values are arranged in weak descending order along the diagonal, i.e., $\mathbf{\Sigma}_{11} \geq \mathbf{\Sigma}_{22} \geq ... \geq \mathbf{\Sigma}_{qq} \geq 0$. The \mathbf{K}_u and \mathbf{K}_v are diagonal matrices with +1 or -1 as diagonal

elements in arbitrary distribution. If we fix \mathbf{K}_u , then \mathbf{K}_v is uniquely determined to meet the requirement that the diagonal elements of Σ should be nonnegative. And the orientations of the singular vectors of \mathbf{U}^* is fixed, then the $\mathbf{U} = \mathbf{U}^*\mathbf{K}_u$ is determined, so does the orientations of the singular vectors of \mathbf{V}^* and $\mathbf{V}^{\top} = \mathbf{K}_v(\mathbf{V}^*)^{\top}$. In this case, the solution of $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top} = \mathbf{U}^*\mathbf{K}_u\mathbf{K}_v(\mathbf{V}^*)^{\top}$ is unique. The case that the Σ have multiple singular values also has unique solution of $\hat{\mathbf{P}}$, which can be discussed in a similar way.

If $0 \le \operatorname{rank}(\Sigma) = r < q$, there is q - r (at least one) zero singular values and we call this case the degenerative case. The previous discussion on non-degerative case still can be applied to the singular vectors related to the nonzero singular values, and this part is still unique. However, the singular vectors related to the zero singular values can be in arbitrary orientations as long as they satisfy the orthogonal conditions that $\mathbf{U}^{\top}\mathbf{U} = \mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_{q \times q}$. Note that $\mathbf{U} \in \mathbb{R}^{n \times q}$, so $\mathbf{U}\mathbf{U}^{\top}$ no longer equals to the identity matrix of order n. From Equ. (12), we can get

$$\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}} = \mathbf{P}\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\mathsf{T}} \tag{17}$$

Right multiplying each side by PV and then left multiplying each side by U^{\top} , we can get

$$\Sigma = \mathbf{U}^{\mathsf{T}} \mathbf{P} \mathbf{V} \Sigma \mathbf{U}^{\mathsf{T}} \mathbf{P} \mathbf{V} \tag{18}$$

Hence, we can define a diagonal matrix $\mathbf{D} = \mathbf{U}^{\top} \mathbf{P} \mathbf{V} \in \mathbb{R}^{q \times q}$, the diagonal elements of which are

$$\mathbf{D}_{ii} = \left\{ \begin{array}{ll} 1 & \text{if } 1 \le i \le r; \\ \pm 1 & \text{if } r < i \le q. \end{array} \right.$$

Thus, we obtain that $\mathbf{P} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$, where \mathbf{D} is defined above. Hence, once we get the solution of $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$ in problem (3), the final solution for \mathbf{P} when $\mathrm{rank}(\mathbf{\Sigma}) < q$ is not unique since the matrix \mathbf{D} is not uniquely determined. In fact, since the number of \mathbf{D} with different diagonal combinations is 2^{q-r} , the number of solutions for \mathbf{P} is 2^{q-r} given fixed \mathbf{U} and \mathbf{V} .

Since the solution of $\hat{\mathbf{P}}$ is not unique when rank(Σ) < q, we define the set of solutions for in a formal manner and discuss its properties. The solution set can be defined as:

$$S = \{ \mathbf{S} \in \mathbb{R}^{n \times q} : \mathbf{S}^{\top} \mathbf{S} = \mathbf{I}_{q \times q}, \| \mathbf{B} - \mathbf{S} \mathbf{A} \|_F^2 = \min_{\mathbf{P}} \| \mathbf{B} - \mathbf{P} \mathbf{A} \|_F^2 \}$$
(19)

Note that if the partially known prior were not present, the solution is clearly the solution of the original orthogonal Procrustes problem, i.e., $\hat{\mathbf{P}} = \mathbf{U}\mathbf{V}^{\top}$, where \mathbf{U} and \mathbf{V} are the orthogonal matrices obtained by perfroming economy (a.k.a. reduced) SVD: $\mathbf{B}\mathbf{A}^{\top} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$. The difference between the solutions of the original orthogonal Procrustes problem and its partially known prior version quantify the effect on the residual of requiring \mathbf{P} to be orgothonal to the external prior $\mathbf{P}^{\top}\mathbf{X}$.

4. Sensitivity of P to Data Perturbations

In this section, we examine the sensitivity of the solution to perturbation in the data. To measure this sensitivity, we give the relative residuals and the Fro-norm condition numbers of the solutions. The condition number of the matrix **A** is defined as $k_F(\mathbf{A}) = \frac{\sigma_1}{\sigma_r}$, where $r = \text{rank}(\mathbf{A})$.

FIGURE 1. North Carolina End-of-Grade Math Skills Test Subscores.

5. Concluding Remarks

References

- [1] Jos M. F. ten Berge. The rigid orthogonal procrustes rotation problem. *Psychometrika*, 71(1):201–205, 2006.
- [2] Jos M. F. Ten Berge. A generalization of kristof's theorem on the trace of certain matrix products. *Psychometrika*, 48(4):519–523, 1983.
- [3] Walter Kristof. A theorem on the trace of certain matrix products and some applications. *Journal of Mathematical Psychology*, 7(3):515 530, 1970.