The **viabilitymetrics** package: A brief introduction

J. Aravind, S. Vimala Devi, J. Radhamani and Kalyani Srinivasan ICAR-National Bureau of Plant Genetic Resources, New Delhi 2018-03-30

Contents

Overview	1
nstallation	1
Viability constants	1
Citing viabilitymetrics	6
Session Info	6
References	7

Overview

Installation

The package can be installed using the following functions:

```
# Install from CRAN
install.packages('viabilitymetrics', dependencies=TRUE)

# Install development version from Github
devtools::install_github("aravind-j/viabilitymetrics")
```

Then the package can be loaded using the function

library(viabilitymetrics)

Viability constants

Index	Species	$K_{\rm E}$	C_{W}	C_{H}	C_{Q}	Reference
1	Abelmoschus esculentus*	6.659	2.448	0.0329	0.000478	Daniel et al. (2013)
2	Acer platanoides*	7.22	4.23	0.0329	0.000478	Dickie et al. (1991)
3	Agastache rugosa	6.93	4.255	0.0329	0.00048	Lee et al. (2017)
4	Agathus australis	6.36	3.64	0.0329	0.000478	Dickie and Smith (1995)
5	$Allium\ cepa$	6.975	3.47	0.04	0.000428	Ellis and Roberts (1981)
6	Allium cepa*	9.083	5.81	0.0329	0.000478	Ellis et al. (1990)
7	$Arabidopsis\ thaliana$	8.35	5.15	0.0563	8.39 e-05	Hay et al. (2003)
8	Arachis hypogaea	6.718	4.089	0.0329	0.000478	Ellis et al. (1990)
9	Arachis hypogaea	6.177	3.426	0.0304	0.000453	Usberti and Gomes (1998)

Index	Species	$K_{\rm E}$	C_{W}	C_{H}	C_{Q}	Reference
10	Araucaria columnaris	5.66	2.68	0.033	0.000478	Tompsett (1984); Tompsett (1992)
11	$Araucaria\ cunninghamii$	7.49	3.73	0.033	0.000478	Tompsett (1992)
12	$Bal four oden dron \ rie delianum$	2.867	9.77e-13	1.344e- 12	1.165e- 13	Ignácio (2013)
13	$Beta\ vulgaris$	9.373	5.152	0.0372	0.000467	Ellis and Hong (2007)
14	Beta vulgaris*	8.943	4.723	0.0329	0.000478	Ellis et al. (1990)
15	$Borago\ of ficinal is$	6.748	2.42	0.0665	0.000478	Far et al. (2010)
16	Brachiaria brizantha (Intact seed)	6.488	4.48	0.0475	0.001292	Usberti (2007)
17	Brachiaria brizantha (Scarified seed)	8.795	4.852	0.02114	0.000733	Usberti (2007)
18	Brassica juncea*	7.768	4.56	0.0329	0.000478	Ellis et al. (1989)
19	$Brassica\ napus^*$	7.718	4.54	0.0329	0.000478	Ellis et al. (1989)
20	Brassica napus	5.654	2.5	0.04387	1.438e- 05	Alivand et al. (2013)
21	$Capsicum\ annum^*$	7.767	4.67	0.0329	0.000478	Demir et al. (2009)
22	Celosia argentea*	4.957	1.188	0.0329	0.000478	Daniel et al. (2012)
23	$Chenopodium\ quinoa^*$	8.58	5.02	0.0329	0.000478	Ellis et al. (1988)
24	Cicer arietinum	8.901	4.847	0.0329	0.000478	Ellis et al. (1982); Dick et al. (1990)
25	$Cicer\ arietinum$	8.502	4.602	0.0295	0.000491	Ellis (1988)
26	$Citrullus\ lanatus^*$	4.86	1.59	0.0329	0.000478	Demir et al. (2011)
27	$Cucumis\ melo*$	6.11	2.59	0.0329	0.000478	Demir et al. (2011)
28	$Cucumis\ melo$	7.299	3.707	0.0367	0.000473	Kuo (1991)
29	$Cucumis\ sativus^*$	5.35	2.03	0.0329	0.000478	Demir et al. (2011)
30	$Cucurbita\ pepo$	6.913	3.604	0.04	4e-04	Hong et al. (1996)
31	Cucurbita pepo subsp. pepo convar. pepo var. styriaca	3.402	3.215	0.131	0.00264	Far et al. (2010)
32	$Dactylis\ glomerata$	4.715	0.554	0.03	2e-04	Reza (2014a)
33	Dalbergia nigra	5.199	4.524	0.08175	0.001641	Chaves and Usberti (2004)
34	$Delphinium\ ambiguum$	7.67	3.12	0.04	4e-04	Hong et al. (1996)
35	$Descurainia\ sophia$	4	0.179	0.03	0.000445	Reza (2014b)
36	Digitalis purpurea*	7.49	5.61	0.0329	0.000478	Hong et al. (1996)
37	$Dimorphandra\ mollis$	6.282	3.838	0.05405	0.001316	Chaves and Usberti (2004)
38	Dioscorea dumetorum	5.859	-3.06	-7e-04	-7e-04	Daniel et al. (2003)
39	Dioscorea togoensis	4.505	-1.646	-0.02	-0.00011	Daniel et al. (2003)
40	Dipterocarpus alatus	5.92	2.69	0.033	0.000478	Tompsett (1992)
41	$Dipterocarpus\ intricatus$	6.18	2.77	0.033	0.000478	Tompsett (1992)

Index	Species	$K_{\rm E}$	C_{W}	C_{H}	C_{Q}	Reference
42	$Dracocephalum \ moldavica$	3.837	0.2	0.03	2e-04	Reza (2014b)
43	Eleusine coracana	7.88	4.181	0.0254	0.000489	Ellis and Hong (2007)
44	Eleusine coracana*	9.508	5.08	0.0329	0.000478	Ellis et al. (1989)
45	$Elytrigia\ elongate$	6	1.642	0.03	2e-04	Reza (2014a)
46	$Ent and oph ragma \\ angolense$	4.6	2.21	0.033	0.000478	Tompsett (1992)
47	$Eragrostis\ tef*$	10.1	6.01	0.0329	0.000478	Ellis et al. (1989)
48	Eragrostis tef cv. Muri	9.727	5.185	0.0329	0.00054	Zewdie and Ellis (1991)
49	Eragrostis tef cvs.	9.927	5.185	0.0329	0.00054	Zewdie and Ellis (1991)
50	Eruca sativa	4.33	0.4574	0.03	0.000304	Reza (2014b)
51	$Eucalyptus\ bussei^*$	7.3	3.96	0.0329	0.000478	Muthoka et al. (2009)
52	$Eucalyptus\ erythrocorys$	8.81	4.97	0.0412	0.000379	Crawford et al. (2013)
53	Eucalyptus grandis	9.661	6.467	0.03498	0.000233	Fantinatti and Usberti (2007)
54	$Eucalyptus\\heterochroma*$	8.9	6.89	0.0329	0.000478	Muthoka et al. (2009)
55	$Eucalyptus\ heterophylla*$	7.4	4.36	0.0329	0.000478	Muthoka et al. (2009)
56	$Eucalyptus\\pseudoburuana*$	10.1	7.81	0.0329	0.000478	Muthoka et al. (2009)
57	$Eucalyptus\\quinquecostata*$	10.2	8.09	0.0329	0.000478	Muthoka et al. (2009)
58	Festuca ovina	4.366	0.5	0.03	2e-04	Reza (2014a)
59	Glycine max	7.525	4.086	0.0329	0.000478	Ellis et al. (1982); Dick: et al. (1990)
60	Glycine max	7.292	3.996	0.0295	0.000491	Ellis (1988)
61	$Gossypium\ hirsutum$	9.24	5.19	0.03965	0.000426	Usberti et al. (2006)
62	$Guizotia\ abyssinica^*$	7.578	4.78	0.0329	0.000478	Ellis et al. (1989)
63	$Guizotia\ abyssinica$	7.494	4.257	0.0372	0.00048	Zewdie and Ellis (1991)
64	Gypsophila elegans	9.6	5.36	0.04	4e-04	Hong et al. (1996)
65	Helianthus annuus*	6.74	4.16	0.0329	0.000478	Ellis et al. (1988)
66	Hordeum vulgare	9.144	5.342	0.0329	0.000478	Ellis and Roberts (1980 Dickie et al. (1990)
67	Khaya senegalensis	4.76	2.15	0.033	0.000478	Tompsett (1992)
68	Lactuca sativa	7.938	5.25	0.0329	0.000478	Ellis et al. (1989)
69	Lactuca sativa*	6.895	4.2	0.0329	0.000478	Kraak and Vos (1987); Dickie et al. (1990)
70	Lallemantia royleana	4.725	2.324	0.02544	1.068e- 05	Baladi and Balouchi (2016)
71	Linum usitatissimum*	7.76	4.86	0.0329	0.000478	Ellis et al. (1988)
72	Linum usitatissimum cv. Norman	5.201	2.59	0.03613	1.5e-05	Balouchi et al. (2017)
73	Linum usitatissimum cv. Urmia	4.474	2.185	0.01467	0.000161	Balouchi et al. (2017)

Index	Species	$ m K_{E}$	C_{W}	C_{H}	C_{Q}	Reference
74	Liquidambar styraciflua	6.553	3.033	0.0081	0.00151	Bonner (1994)
75	$Liquidambar\ styraciflua$	6.385	2.706	0.0306	0.000967	Bonner (1994)
76	Lupinus polyphyllus	6.217	2.761	0.04	4e-04	Dickie and Bowyer (1985)
77	$Ly copersicon\ esculentum$	6.502	3.181	0.0324	0.000431	Kruse et al. (2005)
78	$Ly copersicon\ esculentum$	4.544	2.683	-0.05018	0.001266	Sinício et al. (2009)
79	$Malus\ domestica$	7.316	4.119	0.04	0.00042	Dickie (1988)
80	$Melilotus\ officinalis$	4.21	0.2	0.03	2e-04	Reza (2014b)
81	$Nigella\ sativa$	4.97	1.253	0.0516	0.000478	Far et al. (2010)
82	Orobanche aegyptiaca	6.434	0.0356	0.066	1e-05	Kebreab and Murdoch (1999)
83	Orobanche crenata	6.447	0.0356	0.066	1e-05	Kebreab and Murdoch (1999)
84	Orobanche minor	6.126	0.0356	0.066	1e-05	Kebreab and Murdoch (1999)
85	$Oryza\ glaberrima$	9.406	5.043	0.0375	0.000471	Ellis and Hong (2007)
86	Oryza glaberrima*	6.871	5.51	0.0329	0.000478	Bam et al. (2008)
87	Oryza sativa	8.242	4.345	0.0307	0.000501	Ellis and Hong (2007)
88	Oryza sativa*	8.668	5.03	0.0329	0.000478	Ellis et al. (1989)
89	Oryza sativa ssp. indica*	8.81	4.904	0.0329	0.000478	Ellis et al. (1992)
90	$Oryza \ sativa \ ssp.$ $japonica^*$	8.416	4.904	0.0329	0.000478	Ellis et al. (1992)
91	$Oryza \ sativa \ ssp.$ $japonica^*$	6.628	5.51	0.0329	0.000478	Bam et al. (2008)
92	Oryza sativa ssp. javanica*	8.736	4.904	0.0329	0.000478	Ellis et al. (1992)
93	$Papaver\ nudicaule$	6.838	4.101	0.027	0.000313	Belletti et al. (1991)
94	$Paspalum\ scrobiculatum$	8.066	4.449	0.0266	0.000526	Ellis and Hong (2007)
95	$Pennisetum\ glaucum^*$	8.728	4.86	0.0329	0.000478	Ellis et al. (1989)
96	Pennisetum purpureum $\tilde{A} - P$. glaucum (Cutting type)	7.735	4.658	0.01969	0.000403	Pozitano and Usberti (2009)
97	Pennisetum purpureum $\tilde{A} - P$. glaucum (Grazing type)	8.825	4.522	0.03655	3e-04	Pozitano and Usberti (2009)
98	Pennisetum purpureum $\tilde{A} - P$. glaucum (Original type)	8.417	5.037	0.02309	0.000436	Pozitano and Usberti (2009)
99	Pennisetum typhoides	8.442	5.035	0.025	0.000443	Ellis and Hong (2007)
100	Phaseolus vulgaris*	9.09	4.761	0.0329	0.000478	Ellis et al. (1990)
101	Phaseolus vulgaris	9.08	5.2	0.0057	0.00079	Wilson and McDonald (1989)
102	Phleum pratense	9.571	5.262	0.04	4e-04	Hong et al. (1996)

Index	Species	$K_{\rm E}$	C_{W}	C_{H}	C_{Q}	Reference
103	Phleum pratense cv. Erecta*	8.678	4.75	0.0329	0.000478	Ellis et al. (1989)
104	Phleum pratense cv. S325*	8.138	4.75	0.0329	0.000478	Ellis et al. (1989)
105	Pinus elliottii	5.588	1.449	0.0326	0.00101	Bonner (1994)
106	Pinus elliottii	5.246	0.9832	0.0508	0.000571	Bonner (1994)
107	Pinus occidentalis	5.047	1.678	0.0206	0.00126	Bonner (1994)
108	Pinus occidentalis	5.101	1.674	0.0354	0.000838	Bonner (1994)
109	Pinus taeda	3.618	-0.2567	0.00064	0.00122	Bonner (1994)
110	Pinus taeda	3.278	-0.73	0.0348	0.000328	Bonner (1994)
111	Pinus taeda	8.838	5.981	0.1034	0.0005476	Fantinatti and Usberti (2007)
112	Pisum sativum*	9.858	5.39	0.0329	0.000478	Ellis et al. (1989)
113	Pongamia pinnata	5.75	3.26	0.04	3e-04	Kundu (2008)
114	$Ranunculus\ sceleratus$	6.98	5.01	0.0329	0.000428	Hong et al. (1996)
115	Saccharum spp.	8.805	5.168	5.168	0.000581	Ellis and Hong (2007)
116	Salvia officinalis	5	1.49	0.0329	2e-04	Reza (2014b)
117	$Satureja\ hortensis$	4.46	0.391	0.0329	0.000478	Reza (2014b)
118	Secale cereale	6.361	2.059	0.03	0.000201	Reza (2014a)
119	$Secale\ montanum$	4.431	0.472	0.03	0.000201	Reza (2014a)
120	Secale montanum	6.114	2.577	0.03856	0.00013	Dehghan and Sharif-Zadeh (2015)
121	$Se samum\ indicum$	7.19	4.02	0.04	0.000428	Ellis et al. (1986)
122	Setaria italica	8.657	4.968	0.0304	0.000504	Ellis and Hong (2007)
123	Setaria italica*	8.678	4.95	0.0329	0.000478	Ellis et al. (1989)
124	$Solanum\ macrocarpon$	5.166	3.009	0.094	0.0019	Daniel et al. (2011)
125	$Solanum\ tuberosum$	7.923	5.063	0.0325	0.000432	Ellis and Hong (2007)
126	$Sorghum\ bicolor$	2.49	-0.3002	0.00725	-0.00057	Ali (2014)
127	$Sorghum\ bicolor$	9.472	5.426	0.0324	0.000478	Ellis and Hong (2007)
128	Sorghum bicolor	10.59	6.305	0.041	0.000349	Kuo et al. (1990)
129	$Sorghum\ bicolor$	2.49	-0.3002	0.00725	-0.00057	Tabatabaei (2014)
130	Swietinia humilis	5.393	2.391	0.0329	0.000478	Dickie et al. (1990)
131	Tagetes patula	12.22	3.114	0.2769	0.002212	Simões et al. (2008)
132	Terminalia brassii	5.016	2.161	0.0329	0.000478	Tompsett (1986); Tompsett (1992)
133	$Thymus\ daenensis$	5	0.753	0.0347	2e-04	Reza (2014b)
134	Thymus transcaspicus	5.065	0.0641	0.03	2e-04	Reza (2014b)
135	${\it Trifolium~subterraneum}$	7.21	3.51	0.04	4e-04	Hong et al. (1996)
136	Triticum aestivum	9.043	5.183	0.0351	0.000475	Ellis and Hong (2007)
137	$Triticum\ aestivum^*$	9.42	5.859	0.0329	0.000478	Ellis et al. (1990)
138	Ulmus carpinifolia	5.83	3.035	0.0329	0.000478	Tompsett (1986); Tompsett (1992)

Index	Species	${ m K_E}$	C_{W}	C_{H}	C_{Q}	Reference
139	Vigna radiata*	10.86	6.27	0.0329	0.000478	Ellis et al. (1989)
140	Vigna unguiculata	9.401	5.118	0.0329	0.000478	Ellis et al. (1982); Dickie et al. (1990)
141	Vigna unguiculata	9.102	4.967	0.0295	0.000491	Ellis (1988)
142	$Xanthorrhoea\ preissii$	8.77	5.29	0.0382	0.000472	Crawford et al. (2013)
143	Zea mays	10.56	6.366	0.0332	0.000577	Ellis and Hong (2007)
144	Zea mays*	8.579	4.91	0.0329	0.000478	Hong et al. (1996)

^{*} Viability constants are derived from storage experiment at a single temperature. C_H and C_Q here are the universal temperature coefficients (0.0329 and 0.000478 respectively).

Citing viabilitymetrics

```
Warning in citation("viabilitymetrics"): no date field in DESCRIPTION file
of package 'viabilitymetrics'
Warning in citation("viabilitymetrics"): could not determine year for
'viabilitymetrics' from package DESCRIPTION file
To cite package 'viabilitymetrics' in publications use:
  J. Aravind, J. Radhamani, S. Vimala Devi, Sherry Rachel Jacob
  and Kalyani Srinivasan (NA). viabilitymetrics: Seed Viability
  Calculations and Curve Fitting.
  https://github.com/aravind-j/viabilitymetrics,
  https://aravind-j.github.io/viabilitymetrics/.
A BibTeX entry for LaTeX users is
  @Manual{,
   title = {viabilitymetrics: Seed Viability Calculations and Curve Fitting},
   author = {{J. Aravind} and {J. Radhamani} and {S. Vimala Devi} and {Sherry Rachel Jacob} and {Kalya
   note = {https://github.com/aravind-j/viabilitymetrics,
https://aravind-j.github.io/viabilitymetrics/},
   year = {2018},
```

Session Info

```
R version 3.4.3 (2017-11-30)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_India.1252 LC_CTYPE=English_India.1252
```

```
[3] LC MONETARY=English India.1252 LC NUMERIC=C
[5] LC_TIME=English_India.1252
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
                                                                  base
other attached packages:
[1] viabilitymetrics 0.0.0.9000 ggplot2 2.2.1
loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16
                         assertthat_0.2.0
                                              rprojroot_1.3-2
 [4] digest_0.6.15
                         utf8_1.1.3
                                              R6_2.2.2
 [7] plyr_1.8.4
                         backports_1.1.2
                                              evaluate_0.10.1
[10] httr_1.3.1
                         pillar_1.2.1
                                              Rdpack_0.7-0
[13] rlang_0.2.0
                         rematch_1.0.1
                                              lazyeval_0.2.1
[16] curl_3.1
                         rstudioapi_0.7
                                              data.table_1.10.4-3
[19] whisker_0.3-2
                         callr_2.0.2.9002
                                              rmarkdown_1.9.7
[22] pkgdown 0.1.0.9000
                         desc 1.1.1
                                              labeling 0.3
[25] devtools_1.13.5
                         stringr_1.3.0
                                              pander_0.6.1
[28] munsell 0.4.3
                         tinytex 0.4.2
                                              compiler 3.4.3
[31] pkgbuild_0.0.0.9001 htmltools_0.3.6
                                              highlight_0.4.7.2
[34] tibble 1.4.2
                         roxygen2 6.0.1
                                              crayon_1.3.4
[37] withr_2.1.2
                         MASS_7.3-49
                                              commonmark_1.4
[40] grid 3.4.3
                         gtable_0.2.0
                                              magrittr 1.5
[43] scales_0.5.0
                         bibtex_0.4.2
                                              cli_1.0.0
[46] stringi_1.1.6
                         debugme_1.1.0
                                              fs 1.2.2
[49] testthat_2.0.0
                         xm12_1.2.0
                                              tools_3.4.3
[52] purrr_0.2.4
                         pkgload_1.0.0
                                              yaml_2.1.18
[55] colorspace_1.3-2
                         gbRd_0.4-11
                                              memoise_1.1.0
[58] knitr_1.20
```

References

Ali, T. S. (2014). Determination of seed viability constants in sorghum under various storage conditions. *Iranian Journal of Field Crop Science (Iranian Journal of Agricultural Sciences)* 45, 377–387. Available at: http://www.sid.ir/En/Journal/ViewPaper.aspx?ID=461469.

Alivand, ramin, Tavakol Afshari, R., and Sharifzade, farzad (2013). Germination response and estimation of seed deterioration of *Brassica napus* under various storage conditions. *Iranian Journal of Field Crop Science* 44, 69–81. doi:10.22059/ijfcs.2013.30485.

Baladi, S., and Balouchi, H. (2016). Evaluation of *Lallemantia royleana* seed longevity under varying conditions of temperature and moisture content. *Seed Science and Technology* 44, 320–326. doi:10.15258/sst.2016.44.2.03.

Balouchi, H., Baladi, S., Moradi, A., and Dehnavi, M. M. (2017). The influence of temperature and moisture content on seed longevity of two genotypes of *Linum usitatissimum*. Seed Science and Technology 45, 130–138. doi:10.15258/sst.2017.45.1.08.

Bam, R. K., Hong, T. D., Ellis, R. H., Kumaga, F. K., and Asiedu, E. A. (2008). Storage behaviour of two contrasting upland rice genotypes. *Ghana Journal of Agricultural Science* 41. doi:10.4314/gjas.v41i1.46154.

Belletti, P., Lanteri, S., and Lotito, S. (1991). The influence of temperature and moisture on seed ageing in Iceland poppy (*Papaver nudicaule L.*). *Scientia Horticulturae* 48, 153–158. doi:10.1016/0304-4238(91)90162-r.

Bonner, F. (1994). Predicting seed longevity for four forest tree species with orthodox seeds. *Proceedings of the International Seed Testing Association*.

- Chaves, M., and Usberti, R. (2004). Controlled seed deterioration in Dalbergia nigra and Dimorphandra mollis, endangered Brazilian forest species. Seed Science and Technology 32, 813–823. doi:10.15258/sst.2004.32.3.16.
- Crawford, A. D., Hay, F. R., Plummer, J. A., Probert, R. J., and Steadman, K. J. (2013). One-step fitting of seed viability constants for two Australian plant species, *Eucalyptus erythrocorys* (Myrtaceae) and *Xanthorrhoea preissii* (Xanthorrhoeacea). *Australian Journal of Botany* 61, 1–10. doi:10.1071/bt12171.
- Daniel, I., Kruse, M., and Börner, A. (2011). Comparative longevity and viability modeling of *Solanum macrocarpon L. Seeds. Seed Science and Technology* 39, 680–685. doi:10.15258/sst.2011.39.3.16.
- Daniel, I., Kruse, M., and Börner, A. (2012). Predicting longevity of Celosia Argentea L. Seeds during storage. *Acta Horticulturae* 953, 319–324. doi:10.17660/ActaHortic.2012.953.44.
- Daniel, I., Ng, N., Tayo, T., and Togun, A. (2003). Storage of West African yam (*dioscorea* spp.) seeds: Modelling seed survival under controlled storage environments. *Seed Science and Technology* 31, 139–147. doi:10.15258/sst.2003.31.1.14.
- Daniel, I. O., Kruse, M., and Börner, A. (2013). Controlled deterioration and predicting viability of okra seed in storage. *International Journal of Vegetable Science* 19, 324–333. doi:10.1080/19315260.2012.729261.
- Dehghan, M., and Sharif-Zadeh, F. (2015). Viability model and effect of two drying procedures on seed longevity of *Secale montanum* seeds. *Biomedicine and Nursing* 1, 43–48.
- Demir, I., Kenanoglu, B. B., Mavi, K., Celikkol, T., Hay, F., and Sariyildiz, Z. (2009). Derivation of constants (KE, CW) for the viability equation for pepper seeds and the subsequent test of its applicability. *HortScience* 44, 1679–1682. Available at: http://hortsci.ashspublications.org/content/44/6/1679.
- Demir, I., Kenanoglu, B., Hay, F., Mavi, K., and Celikkol, T. (2011). Determination of seed moisture constants (KE, CW) for the viability equation for watermelon, melon, and cucumber seeds. *Seed Science and Technology* 39, 527–532. doi:10.15258/sst.2011.39.2.23.
- Dickie, J. (1988). Prospects for the long-term storage of apple seeds. Veroffentlichungen der Landwirtschajthch-Chemischen Bundesanstalt Linz/Donau 19, 47–63.
- Dickie, J. B., and Bowyer, J. T. (1985). Estimation of provisional seed viability constants for apple (*Malus domestica borkh*. Cv. Greensleeves). *Annals of Botany* 56, 271–275. doi:10.1093/oxfordjournals.aob.a087012.
- Dickie, J. B., Ellis, R. H., Kraak, H. L., Ryder, K., and Tompsett, P. B. (1990). Temperature and seed storage longevity. *Annals of Botany* 65, 197–204. doi:10.1093/oxfordjournals.aob.a087924.
- Dickie, J. B., May, K., Morris, S. V. A., and Titley, S. E. (1991). The effects of desiccation on seed survival in *Acer platanoides* L. And *Acer pseudoplatanus* L. *Seed Science Research* 1. doi:10.1017/s0960258500000829.
- Dickie, J. B., and Smith, R. D. (1995). Observations on the survival of seeds of *agathis* spp. Stored at low moisture contents and temperatures. *Seed Science Research* 5. doi:10.1017/s0960258500002531.
- Ellis, R. (1988). The viability equation, seed viability nomographs, and practical advice on seed storage. Seed Science and Technology 16, 29–50.
- Ellis, R. H., and Hong, T. D. (2007). Quantitative response of the longevity of seed of twelve crops to temperature and moisture in hermetic storage. *Seed Science and Technology* 35, 432–444. Available at: http://centaur.reading.ac.uk/8496/.
- Ellis, R. H., Hong, T. D., and Roberts, E. H. (1986). Logarithmic relationship between moisture content and longevity in sesame seeds. *Annals of Botany* 57, 499–503. doi:10.1093/oxfordjournals.aob.a087131.
- Ellis, R. H., Hong, T. D., and Roberts, E. H. (1988). A low-moisture-content limit to logarithmic relations between seed moisture content and longevity. *Annals of Botany* 61, 405–408. doi:10.1093/oxfordjournals.aob.a087571.
- Ellis, R. H., Hong, T. D., and Roberts, E. H. (1989). A comparison of the low-moisture-content limit to the logarithmic relation between seed moisture and longevity in twelve species. *Annals of Botany* 63, 601–611. doi:10.1093/oxfordjournals.aob.a087788.

- Ellis, R. H., Hong, T. D., and Roberts, E. H. (1992). The Low-moisture-content Limit to the Negative Logarithmic Relation Between Seed Longevity and Moisture Content in Three Subspecies of Rice. *Annals of Botany* 69, 53–58. doi:10.1093/oxfordjournals.aob.a088306.
- Ellis, R. H., Hong, T. D., Roberts, E. H., and Tao, K.-L. (1990). Low moisture content limits to relations between seed longevity and moisture. *Annals of Botany* 65, 493–504. doi:10.1093/oxfordjournals.aob.a087961.
- Ellis, R. H., Osei-Bonsu, K., and Roberts, E. H. (1982). The influence of genotype, temperature and moisture on seed longevity in chickpea, cowpea and soya bean. *Annals of Botany* 50, 69–82. doi:10.1093/oxfordjournals.aob.a086347.
- Ellis, R. H., and Roberts, E. H. (1980). The influence of temperature and moisture on seed viability period in barley (*Hordeum Distichum* l.). *Annals of Botany* 45, 31–37. doi:10.1093/oxfordjournals.aob.a085798.
- Ellis, R., and Roberts, E. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology.
- Fantinatti, J. B., and Usberti, R. (2007). Seed viability constants for *Eucalyptus grandis*. *Pesquisa Agropecuária Brasileira* 42, 111–117. doi:10.1590/s0100-204s2007000100015.
- Far, F. G., Soltani, A., and Sadeghipour (2010). Determination of seed viability constants in medicinal pumpkin (cucurbita pepo l. Subsp. Pepo. Convar. Pepo var. Styriaca greb), borago (*Borago officinalis* L.) And black cumin (*Nigella sativa* L.). *Journal of Plant Production (Journal of Agricultural Sciences and Natural Resources*) 17, 53–66. Available at: http://www.sid.ir/En/Journal/ViewPaper.aspx?ID=214959.
- Hay, F. R., Mead, A., Manger, K., and Wilson, F. J. (2003). One-step analysis of seed storage data and the longevity of *Arabidopsis thaliana* seeds. *Journal of Experimental Botany* 54, 993–1011. doi:10.1093/jxb/erg103.
- Hong, T. D., Linington, S., and Ellis, R. H. (1996). Seed Storage Behaviour: A Compendium. Rome, Italy: International Plant Genetic Resources Institute (IPGRI).
- Ignácio, V. L. (2013). Germinação e conservação de sementes de Balfourodendron riedelianum (Engler) Engler. Available at: http://tede.unioeste.br:8080/tede/handle/tede/1454.
- Kebreab, and Murdoch (1999). Effect of temperature and humidity on the longevity of *orobanche* seeds. Weed Research 39, 199–211. doi:10.1046/j.1365-3180.1999.00138.x.
- Kraak, H. L., and Vos, J. (1987). Seed viability constants for lettuce. *Annals of Botany* 59, 343–349. doi:10.1093/oxfordjournals.aob.a087323.
- Kruse, M., Ghiasi, K. G., and Schmohl, S. (2005). The seed viability equation for analysing seed storage behaviour. Available at: https://www.seedtest.org/upload/cms/user/presentation5Kruseetal.pdf.
- Kundu, M. (2008). Prediction of viability of seeds of *Pongamia pinnata* (Karanj) under controlled conditions. *Seed Science and Technology* 36, 481–485. doi:10.15258/sst.2008.36.2.23.
- Kuo, W. H. J. (1991). On the prediction of the storage longevity of muskmelon seeds. *Memoirs of the College of Agriculture* 31, 22–29.
- Kuo, W. H. J., Shan, M. L., and Tseng, M. T. (1990). Effects of temperature and seed moisture-content on the longevity of sorghum seeds. *Journal of the Agricultural Association of China*, 32–41.
- Lee, M. H., Hong, S. H., Na, C. S., Kim, J. G., Kim, T. W., and Lee, Y. H. (2017). Analysis of seed storage data and longevity for *Agastache rugosa*. Korean Journal of Environmental Biology 35, 207–214.
- Muthoka, P., Hay, F., Dida, M., Nyabundi, J., and Probert, R. (2009). Moisture content and the longevity of seeds of six *euphorbia* species in open storage. *Seed Science and Technology* 37, 383–397. doi:10.15258/sst.2009.37.2.12.
- Pozitano, M., and Usberti, R. (2009). Seed controlled deterioration of three interspecific elephant grass pearl millet hybrids. *Revista Brasileira de Zootecnia* 38, 428–434. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982009000300005&nrm=iso.

Reza, E. H. (2014a). Estimation of seed viability constants for tall wheatgrass, cocksfoot, rye, and sheep fescue to inform gene banking decisions. *Iranian Journal of Plant Physiology* 4, 1145–1149. Available at: http://www.sid.ir/En/Journal/ViewPaper.aspx?ID=518161.

Reza, E. H. (2014b). Prediction of seed regeneration time of some medicinal plants by estimation of viability equation constants. *Iranian Journal of Field Crop Science* 45, 399–407. doi:10.22059/ijfcs.2014.53536.

Simões, F., Usberti, R., and Paiva, P. (2008). Controlled seed deterioration in *Tagetes patula* L. Cultivars. *Seed Science and Technology* 36, 524–533. doi:10.15258/sst.2008.36.3.02.

Sinício, R., Lopes, J., Silva, D., and Mattedi, A. (2009). Longevity equation for tomato seeds. Seed Science and Technology 37, 667–675. doi:10.15258/sst.2009.37.3.14.

Tabatabaei, S. A. (2014). Determination of seed viability constants in sorghum under various storage conditions. *Iranian Journal of Field Crop Science* 45, 377–387. doi:10.22059/ijfcs.2014.53534.

Tompsett, P. B. (1984). The effect of moisture content and temperature on the storage life of Araucaria columnaris. Seed Science and Technology 12, 801–816.

Tompsett, P. B. (1986). The effect of temperature and moisture content on the longevity of seed of *Ulmus carpinifolia* and *Terminalia brassii*. *Annals of Botany* 57, 875–883. doi:10.1093/oxfordjournals.aob.a087172.

Tompsett, P. B. (1992). A review of the literature on storage of dipterocarp seeds. Seed Science and Technology 20, 251–267.

Usberti, R. (2007). Performance of tropical forage grass (Brachiaria brizantha) dormant seeds under controlled storage. Seed Science and Technology 35, 402–413. doi:10.15258/sst.2007.35.2.15.

Usberti, R., and Gomes, R. B. R. (1998). Seed viability constants for groundnut. *Annals of Botany* 82, 691–694. doi:10.1006/anbo.1998.0736.

Usberti, R., Roberts, E. H., and Ellis, R. H. (2006). Prediction of cottonseed longevity. *Pesquisa Agropecuária Brasileira* 41, 1435–1441. doi:10.1590/s0100-204X2006000900013.

Wilson, D. O., and McDonald, M. B. (1989). A probit planes method for analyzing seed deterioration data. *Crop Science* 29, 471–476. doi:10.2135/cropsci1989.0011183X002900020046x.

Zewdie, M., and Ellis, R. (1991). Response of tef and niger seed longevity to storage temperature and moisture. Seed Science and Technology 19, 319–329.