MATH 300: Homework 5

Aren Vista

October 20, 2025

1 Question 1

Suppose A, B, C are pairwise dijoint sets. Prove or disprove $|A \cup B \cup C| = |A| + |B| + |C|$

Proof. Suppose A, B, C are pairwise disjoint sets. Then:

$$|A \cap B| = 0,$$

$$|A \cap C| = 0,$$

$$|B \cap C| = 0,$$

$$|A \cap B \cap C| = 0.$$

By the principle of inclusion-exclusion, we have:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

Substituting the values from above, we get:

$$|A \cup B \cup C| = |A| + |B| + |C| - 0 - 0 - 0 + 0.$$

Therefore, $|A \cup B \cup C| = |A| + |B| + |C|$.

2 Question 2

Let A, B be nonempty sets. Prove $A \times B = B \times A$ iff A = B

Proof. Suppose A = B.

Observe $A \times B = A \times A = B \times B = B \times A$ by definition of A = B.

Suppose $A \times B = B \times A$.

Observe $A \times B = \{(a,b) | a \in A, b \in B\} = C$

Observe $B \times A = \{(b, a) | a \in A, b \in B\} = D$

Then $A \times B = B \times A \equiv \{(a,b)|a \in A, b \in B\} = \{(b,a)|a \in A, b \in B\}$

Observe $\exists b_0 \in B \ni \forall a \in A, (a, b_0) \in A \times B$

By supposition $(a, b_0) \in B \times A$

By defn. of $B \times A \implies a \in B \land b_0 \in A$

 $A \subset B$

Observe $\exists a_0 \in A \ni \forall b \in B, (a_0, b) \in A \times B$

By supposition $(a_0, b) \in B \times A$

By defn. of $B \times A \implies a_0 \in B \land b \in A$

 $\therefore B \subset A$

$$A \subset B \land B \subset A \implies A = B$$

Thus both directions of the biconditional have been proven and we can conclude. $A \times B = B \times A$ iff A = B

3 Question 3

For each of the following statements, determine whether it is true or false. If the statement is true, provide a proof; if it is false, present a counterexample.

$$|A - B| = |A| - |B|$$

Proof.

Suppose $B = \{b_1, b_2\}$ and $A = \{a_1, b_1\}$

Observe $A - B = \{a_1\}$

Observe |A - B| = 1 and |A| - |B| = 2 - 2 = 0

 $1 \neq 0$: $|A - B| \neq |A| - |B|$

|A - B| = |A| - |B| is false by counterexample

4 Question 4

Let $X = \{1, 2, 3\}$. For two subsets $A, B \in X$, define a relation ARB if |A| = |B|. Show this is an equivalence relation. What is the equivalence class containing $\{1\}$

Suppose $A, B \in X \implies a \in A \land a \in X, b \in B \land b \in X$

 $ARB = \{(A, B) : |A| = |B|\}$

 $|A| = |B| \iff |B| = |A| \implies ARB \land BRA$ therefore symmetric

 $ARB \land BRC \implies |A| = |B| \land |B| = |C| \implies |A| = |C| :: ARC \in R$ therefore is transitive

 $\forall A, |A| = |A| \implies ARA \in R$ therefore is reflexive

Since is symmetric, transitive, and reflexive, R is an equivalence relation.

$$[\{1\}] = \{\{1\}, \{2\}, \{3\}\}$$

5 Question 5

Given two sets A and B with |A|=3 and |B|=4 what is the cardinality of the power set of $A\times B$ $|A\times B|=|A|\times |B|=3^*4=12$

$$P|A \times B| = 2^{|A \times B|} = 2^{12}$$