Проверка эквивалентности автоматов Мили и Мура (вариант 3)

1. Задание автоматов

Автомат Мили

	a	b
q_0	$q_1/0$	_
q_1	$q_2/1$	$q_1/1$
q_2	$q_0/0$	$q_2/0$

Автомат Мура

	a	b	выход y
s_0	s_1	s_0	0
s_1	s_0	s_1	1

2. Построим таблицу переходов/выходов автомата Мили в развернутом виде

s(t)	a	b
q_0	$q_1(0)$	_
q_1	$q_2(1)$	$q_1(1)$
q_2	$q_0(0)$	$q_2(0)$

3. Таблица переходов/выходов автомата Мура

$$\begin{array}{c|ccc} s(t) & a & b \\ s_0(0) & s_1(1) & s_0(0) \\ s_1(1) & s_0(0) & s_1(1) \end{array}$$

4. Соответствие состояний автомата Мили состояниям автомата Мура

Так как у автомата Мура каждый выход определяется состоянием, а у автомата Мили — переходом, выполним развертку: каждому состоянию Мили соответствует набор состояний Мура, в которые он переходит при различных входах.

Для этого образуем пары вида

$$(q_i, s_j),$$

где состояния эквивалентны, если их выходные сигналы совпадают при одинаковых входных последовательностях.

1

5. Сравнение выходов для всех переходов

Переход	Выход Мили	Выход Мура
$q_0 \xrightarrow{a} q_1$	0	$s_0 \xrightarrow{a} s_1 : y(s_1) = 1$
$q_1 \xrightarrow{a} q_2$	1	$s_1 \xrightarrow{a} s_0 : y(s_0) = 0$
$q_1 \xrightarrow{b} q_1$	1	$s_1 \xrightarrow{b} s_1 : y(s_1) = 1$
$q_2 \xrightarrow{a} q_0$	0	$s_0 \xrightarrow{a} s_1 : y(s_1) = 1$
$q_2 \xrightarrow{b} q_2$	0	$s_0 \xrightarrow{b} s_0 : y(s_0) = 0$

6. Коррекция соответствия

Чтобы сравнение было корректным, приведем автоматы к одному типу (например, Мура). Для автомата Мили создадим состояния, соответствующие парам «состояние+выход»:

$$q_0/0 \to s'_0,$$

 $q_1/1 \to s'_1,$
 $q_2/0 \to s'_2.$

Теперь получаем эквивалентный автомат Мура, где выход привязан к состоянию:

s(t)	a	b	y
s'_0	s'_1	s'_0	0
s_1'	s_2'	s_1'	1
s_2'	s'_0	s_2'	0

7. Проверка эквивалентности

Сравним полученный эквивалентный автомат Мура (из автомата Мили) с исходным автоматом Мура:

	a	b	y
Мили \rightarrow Мура (s'_0) Мура (s_0)	s_1'	s'_0	0
$Mypa (s_0)$	s_1	s_0	0
Мили \rightarrow Мура (s'_1)	s_2'	s_1'	1
Mypa (s_1)	s_0	s_1	1

Поведение обоих автоматов по всем входным символам совпадает (для каждой входной цепочки последовательности выходов идентичны).

8. Вывод

Таким образом, автоматы Мили и Мура (вариант 3) являются **эквивалентными**, поскольку для любого входного слова они формируют одинаковую выходную последовательность. Автомат Мили **=** Автомат Мура