

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIENCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO SISTEMAS DE INFORMAÇÃO

PEDRO PAULO LISBOA DE SOUSA

PROBABILIDADE E ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DA LISTA DE VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIENCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO SISTEMAS DE INFORMAÇÃO ESTUDANTE: Pedro Paulo Lisboa de Sousa/ 201711140038

TURMA: 2017

DATA: 04 de Dezembro de 2018

RESOLUÇÃO DAS QUESTÕES DA LISTA DE VARIÁVEIS ALEATÓRIAS

Resolução das questões da lista referentes à disciplina de Probabilidade e Estatística, do curso de Bacharelado em Sistemas de Informação, como complemento à 2ª avaliação.

Professor: Miguel Monteiro de Souza

Sumário

Variável Aleatória Discreta										 					
Modelos de Probabilidade Discretos .										 					3
Variável Aleatória Contínua										 					2
Modelos de Probabilidade Contínuos .										 					4
Referências Bibliográficas										 					7

Variável Aleatória Discreta

1. Em um determinado condomínio residencial 30% das famílias não tem filhos, 40% tem 1 filho, 20% tem 2 filhos e 10% tem 3 filhos. Seja *X* o número de filhos de uma família sorteada ao acaso dentro desse condomínio residencial.

30% não tem filhos 40% tem 1 filho 20% tem 2 filhos 10% tem 3 filhos

a) Determine a função de probabilidade e a distribuição acumulada de X.

x: n° de filhos $\{0,1,2,3\} \rightarrow$ possíveis valores que x pode assumir. p(0) = 0,3; p(1) = 0,4; p(2) = 0,2; p(3) = 0,1

OBS: Falta o gráfico

b) Calcule a esperança e o desvio padrão de X.

$$E(X) = \sum_{i=1}^{n} x_i p(x_i); \ Var(x) = \sum_{i=1}^{n} x_i^2 p(x_i) - [E(X)]^2; \ DP = \sqrt{Var(X)}$$

X	$p(x_i)$	$x_i.p(x_i)$
0	0,3	0
1	0,4	0,4
2	0,2	0,4
3	0,1	0,3
Total		1,1

X	$p(x_i)$	$x_i^2.p(x_i)$
0	0,3	0
1	0,4	0,4
2	0,2	0,8
3	0,1	0,9
Total		2,1

$$E(X) = 1, 1;$$

 $Var(X) = 2, 1 - (1, 1)^2 \rightarrow 2, 1 - 1, 21 = 0, 89$
 $DP = \sqrt{0.89} \rightarrow 0.9434$

2. Um indivíduo que possui um seguro de automóvel de uma determinada empresa é selecionado aleatoriamente. Seja *Y* o número de infrações ao código de trânsito para as quais o indivíduo foi reincidente nos últimos 3 anos. A função de de probabilidade de *Y* é:

Y	0	1	2	3
P(Y = y)	0,60	0,25	0,10	0,05

a) Calcule E(Y).

$$E(Y) = \sum_{i=1}^{n} y_i p(y_i)$$

Y	$p(y_i)$	$y_i.p(y_i)$
0	0,6	0
1	0,25	0,25
2	0,1	0,2
3	0,05	0,15
Tot	al	0,6

Logo, E(Y) = 0.6.

b) Suponha que um indivíduo com Y infrações reincidentes incorra em uma multa de U100Y^2$. Calcule o valor esperado da multa.

$$v = 100Y^{2} \rightarrow E(v) = E(100Y^{2}) \rightarrow E(v) = 100.E(Y^{2})$$

$$E(Y^2) = \sum_{i=1}^{n} y_i^2 . p(y_i)$$

Y	$p(y_i)$	$y_i.p(y_i)$
0	0,6	0
1	0,25	0,25
2	0,1	0,4
3	0,05	0,45
Tot	al	1,1

Logo,
$$E(Y^2) = 1, 1$$
.
Com isso, $E(v) = 100.E(Y^2) \rightarrow 100.1, 1 \rightarrow 110$.
Valor esperado: U \$110.

5. Um dado é lançado duas vezes. Seja X a soma dos resultados. Calcule E(X).

$$\Omega = \left\{ \begin{array}{llll} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6) \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6) \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6) \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6) \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6) \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{array} \right\} X = \left\{ \begin{array}{lll} 2, & 3, & 4, & 5, & 6, & 7 \\ 3, & 4, & 5, & 6, & 7, & 8 \\ 4, & 5, & 6, & 7, & 8, & 9 \\ 5, & 6, & 7, & 8, & 9, & 10 \\ 6, & 7, & 8, & 9, & 10, & 11 \\ 7, & 8, & 9, & 10, & 11, & 12 \end{array} \right\}$$

ſ	X	2	3	4	5	6	7	8	9	10	11	12
ľ	$p(x_i)$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36
ſ	$x_i.p(x_i)$	2/36	6/36	12/36	20/36	30/36	42/36	40/36	36/36	30/36	22/36	12/36

$$E(X) = \sum_{i=1}^{n} x_i . p(x_i)$$

$$E(X) = \frac{2}{36} + \frac{6}{36} + \frac{12}{36} + \dots + \frac{12}{36} = \frac{252}{36} = 7$$

6. Um homem possui 4 chaves em seu bolso. Como está escuro, ele não consegue ver qual a chave correta para abrir a porta de sua casa. Ele testa cada uma das chaves até encontrar a correta.

C - chave da porta.

 E_1, E_2 e E_3 - outras chaves.

a) Defina um espaço amostral para esse experimento.
$$\Omega = \left\{ \begin{array}{cccc} C, & E_1C, & E_2C, & E_3C, & E_1E_2C, & E_2E_1C, & E_1E_3C, & E_3E_1C \\ E_2E_3C, & E_3E_2C, & E_1E_2E_3C, & E_1E_3E_2C, & E_2E_1E_3C, & E_2E_3E_1C, & E_3E_1E_2C, & E_3E_2E_1C \end{array} \right\}$$

b) Defina a v.a. $X = \text{número de chaves experimentadas até conseguir abrir a porta (inclusive a chave$ correta). Quais são os valores de X? Qual é a função de probabilidade de X?

 Ω (em n° de tentativas) = {1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4} A partir de Ω , podemos ver que $X = \{1, 2, 3, 4\}$.

$$p(1) = \frac{1}{4}$$

$$p(2) = p(E_1C \ U \ E_2C \ U \ E_3C) \rightarrow \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{3} \rightarrow 3 \cdot \frac{1}{12} \rightarrow \frac{1}{4}$$

$$p(3) = p(E_1 E_2 C U E_2 E_1 C U E_1 E_3 C U E_3 E_1 C U E_2 E_3 C U E_3 E_2 C) \rightarrow \frac{1}{4}$$

$$p(4) = p() \rightarrow \frac{1}{4}$$

7. Seja uma v.a. X com fdp dada na tabela a seguir:

X	0	1	2	3	4	5
P(X=x)	0	p^2	p^2	р	р	p^2

- a) Encontre o valor de p.
- b) Calcule $P(X \ge 4)$ e P(X < 3).
- c) Calcule $P(|X-3| \ge 2)$.

Modelos de Probabilidade Discretos

- 1. Um atirador acerta na mosca do alvo, 20% dos tiros. Qual a probabilidade de ele acertar na mosca pela primeira vez no 10° tiro?
- 2. Joga-se um dado equilibrado. Qual é a probabilidade de serem necessários 10 lançamentos até a primeira ocorrência de um seis?
- 3. Joga-se um dado equilibrado. Qual é a probabilidade de serem necessários 10 lançamentos até a terceira ocorrência de um seis?
- 4. Um atirador acerta na mosca do alvo, 20% dos tiros. Se ele dá 10 tiros, qual a probabilidade de ele acertar na mosca no máximo 1 vez?
- 5. Entre os 16 programadores de uma empresa, 12 são do sexo masculino. A empresa decide sortear 5 programadores para fazer um curso avançado de programação. Qual é a probabilidade dos 5 sorteados serem do sexo masculino?
- 6. Uma central telefônica recebe uma média de 5 chamadas por minuto. Supondo que as chamadas que chegam constituam uma distribuição de Poisson, qual é a probabilidade de a central não receber nenhuma chamada em um minuto? e de receber no máximo 2 chamadas em 2 mintuos?
- 7. Seja *X* uma v.a. aleatória binomial (n, p) com n = 5, $p = \frac{1}{3}$. Calcule $E(X^2)$.
- 8. Em um certo tipo de fabricação de fita magnética, ocorrem cortes a uma taxa de um corte por 2000 pés. Qual é a probabilidade de que um rolo com comprimento de 4000 pés apresente no máximo dois cortes? Pelo menos dois cortes?
- 10. A probabilidade de uma máquina produzir uma peça defeituosa em um dia é 0,1.
 - a) Qual a probabilidade de que, em 20 peças produzidas em um dia, exatamente 5 sejam defeituosas?
 - b) Qual a probabilidade de que a 10ª peça produzida em um dia seja a primeira defeituosa?
- 11. Certo curso de treinamento aumenta a produtividade de uma certa população de funcionários em 80% dos casos. Se 10 funcionários quaisquer participam deste curso, encontre a probabilidade de:
 - a) exatamente 7 funcionários aumentarem a produtividade;
 - b) pelo menos 3 funcionários não aumentarem a produtividade;
 - c) não mais que 8 funcionários aumentarem a produtividade.

Variável Aleatória Contínua

1. Seja X uma v.a. contínua cuja densidade de probabilidade é dada por:

$$f(x) = kx^2 \text{ se } 0 \le x \le 1.$$

- a) Determine o valor de k.
- b) Calcule $P(\frac{1}{4} < X < \frac{1}{2})$.
- c) Calcule E(X) e Var(X).
- 2. O tempo de vida útil, em anos, de um eletrodoméstico é uma variável aleatória com densidade dada por

$$f(x) = \frac{xe^{\frac{-x}{2}}}{4}, \ x > 0.$$

- a) Mostre que f(x) integra 1.
- b) Se o fabricante dá um tempo de garantia de seis meses para o produto, qual a proporção de aparelhos que devem usar essa garantia?
- 4. A percentagem de álcool (100X) em certo composto pode ser considerada uma variável aleatória com a seguinte fdp:

$$f(x) = 20x^3(1-x), 0 < x < 1.$$

- a) Estabeleça a FD de X.
- b) Calcule $P(X < \frac{2}{3})$.
- c) Suponha que o preço de venda desse composto dependa do conteúdo de álcool. Especificamente, se $\frac{1}{3} < X < \frac{2}{3}$, o composto se vende por C_1 dólares/galão, caso contrário ele se vende por C_2 dólares/galão. Se o custo C_3 dólares/galão, calcule a distribuição de probabilidade do lucro líquido por galão.

Modelos de Probabilidade Contínuos

- 1. Dada a v.a. X, uniforme em [5, 10], calcule as probabilidades abaixo:
 - a) P(X < 7).
 - b) P(8 < X < 9).
 - c) P(X > 8,5).
 - d) P(|X-7,5| > 2).
- 3. Suponha que a duração de uma componente eletrônica possui distribuição exponencial com parâmetro $\lambda=1$, calcule:
 - a) A probabilidade de que a duração seja menor a 10.
 - b) A probabilidade de que a duração esteja entre 5 e 15.
 - c) O valor t tal que a probabilidade de que a duração seja maior a t assuma o valor 0.01.
- 4. As alturas de 10:000 alunos de um colégio têm distribuição aproximadamente normal, com média 170*cm* e desvio padrão 5*cm*. Qual o número esperado de alunos com altura superior a 165*cm*?
- 11. O saldo médio dos clientes de um banco é uma v.a. normal com média *R*\$2.000,00 e desvio padrão *R*\$250,00. Os clientes com os 10% maiores saldos médios recebem tratamento VIP, enquanto aqueles com os 5% menores saldos médios receberão propaganda extra para estimular maior movimentação da conta.
 - a) Quanto você precisa de saldo médio para se tornar um cliente VIP?
 - b) Abaixo de qual saldo médio o cliente receberá a propaganda extra?

Referências Bibliográficas

- [1] MEYER, P.L. *Probabilidade: Aplicações à Estatística*. 2 ed. Rio de Janeiro: Livros Técnicos e Científicos, 1983.
- [2] BUSSAB, W.; Morettin, P. Estatística básica. 5.ed. São Paulo: Saraiva, 2006. ISBN 9788502034979.