Ejercicio 1

Se realiza una encuesta para tratar de estimar el porcentaje de votos de determinado candidato. Al final de la misma se tendrán n respuestas, representadas en la muestra X_1, X_2, \cdots, X_n de realizaciones de la variable de Bernoulli de parámetro p (la probabilidad de que una persona elegida al azar en la población vote por el candidato en cuestión).

- 1. A partir de la mencionada muestra ¿Qué valor usaría usted para estimar p?.
- 2. Usando la Desigualdad de Chevishoff (y antes de tomar la muestra) ¿Cuántos datos tomaría para que, con una probabilidad de al menos 0.95, el estimador no distara del valor de p más de un 0.03?. (Sugerencia: Demuestre y use que para cualquier valor de $p \in [0,1]$ se cumple $p(1-p) \le 1/4$).

Ley Fuerte de los Grandes Números

Definición. Sea X_1, X_2, \dots, X_n una sucesión de variables aleatorias. Se dice que $X_n \xrightarrow[n]{c.s.} a \in R$ si se cumple que $\mathbf{P}(\{X_n \to a\}) = 1$. Se dice en este caso que la sucesión X_n converge casi seguramente a a.

Ejercicio 2

Este ejercicio describe el método de Montecarlo para el cálculo de integrales.

1. Sean $(U_i)_{i\in\mathbb{N}} \sim \mathcal{U}[a,b]$ iid y $f \in R[a,b]$ (f es integrable Riemann en [a,b]), mostrar que:

$$\frac{1}{n} \sum_{i=1}^{n} f(U_i) \xrightarrow[n]{c.s.} \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

2. Sea D una región arbitraria de $[0,1] \times [0,1]$ y sean $U_1,\ U_2,\ldots,U_n$ variables aleatorias independientes e idénticamente distribuidas con distribución $\mathcal{U}([0,1]\times[0,1])$, es decir que se cumple que $\mathbf{P}\left(U\in A\right)=\mathrm{\acute{a}rea}(A\cap [0,1]\times [0,1]).$

1

Si
$$a_n = \frac{\#\{i : 1 \leqslant i \leqslant n \ y \ U_i \in D\}}{n}$$
 probar que $a_n \xrightarrow[n]{c.s} \text{área}(D)$.

Sean $(X_i)_{i\in\mathbb{N}}$ variables independientes e idénticamente distribuidas.

Suponga que
$$\mathbf{E}(X_1) = 0$$
 y sea $Y_i = \frac{X_i + X_{i+1}}{2}$.

Suponga que $\mathbf{E}(X_1) = 0$ y sea $Y_i = \frac{X_i + X_{i+1}}{2}$. Demostrar que $\overline{Y}_n \xrightarrow[n]{c.s.} 0$, aunque Y_n , Y_{n+1} pueden ser dependientes para todo n.

Demostrar que si $X_n \xrightarrow[n]{c.s.} a$ e $Y_n \xrightarrow[n]{c.s.} b$ y $g : \mathbb{R} \to \mathbb{R}$ continua entonces

1.
$$X_n + Y_n \xrightarrow[n]{c.s.} a + b$$

2.
$$X_n Y_n \xrightarrow[n]{c.s.} ab$$

3.
$$g(X_n) \xrightarrow[n]{c.s.} g(a)$$
.

Ejercicio 5

Sea $\{X_n : n \in \mathbb{N}\}$ una sucesión de v.a. iid con $\mathbf{E}(X_1) = a > 0$. Probar que entonces

$$\sum_{i=1}^{n} X_i \xrightarrow[n]{c.s.} +\infty$$

Ejercicio 6 Sea X_1, X_2, \cdots, X_n una sucesión de variables aleatorias independientes e idénticamente distribuidas con distribución exponencial de parámetro λ .

- 1. Hallar el límite casi seguro de $(\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2}$.
- 2. Hallar el límite casi seguro de $\frac{1}{n}\sum_{i=1}^n X_i^2.$