Math 440 – Real Analysis II Homework 9

Amandeep Gill

April 27, 2015

Problem 54 Let A be a measurable subset of \mathbb{R} and $f: A \to \mathbb{R}$ be measurable. For each $n \in \mathbb{N}$, the function f_n is measurable where

$$f_n(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq n \\ n & \text{if } |f(x)| > n \end{cases}$$

Proof: Let $n \in \mathbb{N}$, $s \in \mathbb{R}$, and $E = \{x : f_n(x) > s, \ \forall x \in A\}$.

case s < -n:

Then E = A since $f_n(x) > s$ for all $x \in A$. So E is measurable.

case $-n \leqslant s \leqslant n$:

If $f_n(x) > s$ then f(x) > s, hence $E = \{x : f(x) > s, \forall x \in A\}$ and is measurable by Theorem 10.5.3 for f(x).

case s > n:

 $f_n(x) \leq n$ for all $x \in A$, therefore $E = \emptyset$ and is measurable.

Thus $f_n(x)$ is measurable by Definition 10.5.1.

Problem 55 Let f be a non-negative, bounded, measurable function on [a, b]. If E and F are measurable subsets of [a, b] with $E \subset F$, then $\int_E f d\lambda \leqslant \int_E f d\lambda$.

Proof: Let $G = F \setminus E$, and let $\mathcal{P}_E = \{E_1, E_2, \dots, E_n\}$, $\mathcal{P}_G = \{G_1, G_2, \dots, G_m\}$ be partitions of E and G. Thus $\mathcal{P}_F = \mathcal{P}_E \cup \mathcal{P}_G$ is a partition of F, and by Definition 10.6.1

$$\mathcal{L}_{L}(\mathcal{P}_{F}, f) = m_{1}\lambda(E_{1}) + \cdots + m_{n}\lambda(E_{n}) + m_{1}\lambda(G_{1}) + \cdots + m_{m}\lambda(G_{m})$$

$$= \sum_{k=1}^{n} m_{k}\lambda(E_{k}) + \sum_{i=1}^{m} m_{i}\lambda(G_{i})$$

$$= \mathcal{L}_{L}(\mathcal{P}_{E}, f) + \mathcal{L}_{L}(\mathcal{P}_{G}, f)$$

Because f is bounded and non-negative, $\mathcal{L}_L(\mathcal{P}_E, f)$ and $\mathcal{L}_L(\mathcal{P}_G, f)$ are likewise both bounded and non-negative, $\mathcal{L}_L(\mathcal{P}_E, f) \leq \mathcal{L}_L(\mathcal{P}_F, f)$. Since any partition of F can be refined into partitions as shown above, this holds true for all arbitrary partitions of F. From Lemma 10.6.5 $\sup_{\mathcal{P}_E} \mathcal{L}_L(\mathcal{P}_E, f) \leq \sup_{\mathcal{P}_F} \mathcal{L}_L(\mathcal{P}_F, f)$, so $\int_E f d\lambda \leq \int_F f d\lambda$ by Definition 10.6.3.

- **Problem 56** Let f be a bounded, measurable function on [a,b]. For each c>0, $\lambda\left(\{x\in[a,b]:|f(x)|>c\}\right)\leqslant\frac{1}{c}\int\limits_{[a,b]}|f|\,d\lambda$
 - **Proof:** Let $E = \{x \in [a,b] : |f(x)| > c\}$ and $G = \{x \in [a,b] : |f(x)| \le c\}$. Then E, G are measurable sets by Theorem 10.5.3 where $E \cup G = [a,b]$ and $E \cap G = \emptyset$, so $\mathcal{P} = \{E,G\}$ is a partition of [a,b] such that $0 \le |f(x)|$ for all $x \in G$ and $c \le |f(x)|$ for all $x \in E$. Therefore, from Definition 10.6.1, $0\lambda(G) + c\lambda(E) \le \mathcal{L}_L(\mathcal{P},|f|) \le \sup_{\mathcal{Q}} (\mathcal{Q},|f|) = \int_{[a,b]} |f| \, d\lambda$. Hence $\lambda(E) \le \frac{1}{c} \int_{[a,b]} |f| \, d\lambda$

Problem 57 Let f be a non-negative bounded measurable function on [a, b].

(a) If $\int_{[a,b]} f d\lambda = 0$ then f = 0 almost everywhere on [a,b].

Proof: Let $\epsilon > 0$ and $E = \{x \in [a,b] : f(x) > \epsilon\}$. Then $\lambda(E) \leqslant \frac{1}{\epsilon} \int_{[a,b]} |f| d\lambda$, by Problem 56. By assumption, $\int_{[a,b]} |f| d\lambda = 0$, so $\lambda(E) \leqslant \frac{1}{\epsilon} \cdot 0 = 0$

(b) If $A \subset [a, b]$ is measurable and $\int_A f d\lambda = 0$ then f = 0 almost everywhere on A.

Proof: Let $\chi_A : [a, b] \to \mathbb{R}$ be defined as

$$\chi_A(x) = \begin{cases} 1 & \text{if} \quad x \in A \\ 0 & \text{if} \quad x \notin A \end{cases}$$

Then by Definition 10.6.3, $\int_A f d\lambda = \int_{[a,b]} f \chi_A d\lambda$. Because $f \chi_A$ is a bounded non-negative measurable function defined on [a,b], (a) gives $f \chi_A = 0$ almost everywhere on [a,b], and as $f \chi_A$ can only be nonzero, and is equal to f, on A this implies that f = 0 a.e. on A.