## Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)»

Факультет проблем физики и энергетики

# ДИПЛОМНАЯ РАБОТА

Рассеяние и захват частиц темной материи в Солнце.

Выполнил:

студент 783а группы

Товстун Артем Александрович

Научный руководитель:

Сергей Владимирович Демидов

# Содержание

| Введение                                     | 3  |
|----------------------------------------------|----|
| 1. Расчет сечения захвата                    | 4  |
| 1.1. Определение матричного элемента         | 4  |
| 1.2. Кинематика и дифференциальное сечение   | 9  |
| 1.3. Сечение при малых импульсах фотона      | 11 |
| 1.4. Кинематика захвата и сечение            | 15 |
| 1.5. Влияние температуры                     | 17 |
| 2.Расчет скорости захвата                    | 21 |
| 2.1. Определение фазовой плотности частиц ТМ | 21 |
| 2.2. Описание процесса интегрирования        | 24 |
| 3. Результаты расчета                        |    |
| 4. Заключение                                |    |

### Введение

Согласно современным представлениям темная материя (ТМ) — это одна из основных компонент современной Вселенной. Ее состав и природа не сегодняшний день неизвестны. Существование темной материи следует из анализа распределения массы в галактиках и их скоплений, которое можно определить с помощью гравитационного линзирования, исследования плотности электронов в скоплениях газа, кривой распределения орбитальных скоростей вращения вокруг центра галактики [1].

В общепринятой космологической модели, ТМ — это новые частицы. Кандидаты на роль частиц ТМ возникают во многих расширениях Стандартной модели физики частиц. Так, кандидатами на роль ТМ могут быть достаточно слабо взаимодействующие с видимой материей частицы, такие как, например, стерильные нейтрино, новые стабильные частицы, возникающие в рамках суперсимметричных моделей [1, 2].

В настоящее время активно ведутся поиски сигнала от частиц темной материи. Обнаружить ТМ можно прямым методом в низкофоновых экспериментах по отдачи ядер (прямой метод), в событиях на ускорителях, в которых не сохраняется видимый импульс или энергия, или измеряя потоки продуктов реакции взаимодействия частиц ТМ (косвенные методы) [3].

В настоящей работе нас будет интересовать метод поиска сигнала от частиц ТМ, в котором измеряются возможные потоки нейтрино, возникающие при аннигиляции частиц темной материи [4]. При этом частицы ТМ перед аннигиляцией захватываются гравитационным потенциалом Солнца или Земли и накапливаются в них, что приводит к увеличению числа актов аннигиляции. Эти процессы описываются эволюционным уравнением [5].

$$\frac{dN}{dt} = C - EN - AN^2 \tag{1}$$

C – скорость захвата, EN – испарения,  $AN^2$  – аннигиляции.

В стандартном подходе к этому сценарию учитывается возможное упругое рассеяние частиц ТМ на частицах видимого вещества, в частности, на ядрах. В данной работе изучается влияние неупругого рассеяния частиц ТМ на величину скорости захвата. При разных типах взаимодействия мы найдем и сравним скорость захвата частиц ТМ Солнцем и Землей за счет упругого и неупругого взаимодействия.

#### 1.Расчет сечения захвата

Сечение захвата в данной задаче — это характеристика, показывающая вероятность столкновения частицы темной материи с ядром и ее захватом небесным телом.

Для нахождения сечения захвата необходимо для выбранного типа взаимодействия определить матричный элемент рассеяния и проинтегрировать его по той части фазового объема, при котором частица темной материи переходит на стационарную орбиту. При таком определении сечения захвата эта величина зависит в том числе от точки, в которой произошло взаимодействие внутри Солнца или Земли.

#### 1.1. Определение матричного элемента

В этой работе мы рассмотрим Дираковскую частицу TM со спином ½ в качестве кандидата на роль темной материи. Лагранжиан теории тогда содержит фермионы: частицу TM и нуклон, взаимодействующие при помощи четырёхточечной вершины, и электромагнитное поле (ЭМП).

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \left( \gamma^{\mu} \left( i \, \partial_{\mu} - e_n A_{\mu} \right) - m_N \right) \psi + \\ + \bar{\chi} \left( i \gamma^{\mu} \, \partial_{\mu} - m_k \right) \chi - \bar{\psi} \Delta_1^a \psi \bar{\chi} \Delta_{2a} \chi$$

$$(1.1.1)$$

где  $\psi$ ,  $m_N$ ,  $\chi$ ,  $m_k$  — 4-х компонентные спиноры и массы мишени и частицы темной материи соответственно,  $A_\mu$ ,  $F^{\mu\nu}$  — вектор потенциал и тензор напряженности ЭМП,  $e_n$  — заряд нуклона.

 $\Delta_1^a$  и  $\Delta_{2a}^-$  – матрицы которые должны быть самосопряженными по Дираку, чтобы лагранжиан был вещественным.

$$\mathcal{L}^* = \mathcal{L} \Rightarrow (\bar{\psi} \Delta_1^a \psi \bar{\chi} \Delta_{2a} \chi)^* = \bar{\psi} \overline{\Delta_1^a} \psi \bar{\chi} \overline{\Delta_{2a}} \chi = \bar{\psi} \Delta_1^a \psi \bar{\chi} \Delta_{2a} \chi \Rightarrow \Delta_i^a = \overline{\Delta_i^a}$$

где  $\bar{\Delta} = \gamma^0 \Delta^+ \gamma^0$  – Дираковское сопряжение матрицы.

Возможные матрицы соответствуют взаимодействию через массивный и очень тяжелый скалярный или векторный бозон.

$$\Delta_i^a = egin{cases} (a_i + i \gamma^5 b_i), & \text{скалярного взаимодействие} \ \gamma^\mu (a_i - \gamma^5 b_i), & \text{векторное взаимодействие} \end{cases}$$

Сразу заметим, что если рассеивается не частица, а античастица темной материи (со входным и выходным импульсом частицы ТМ k и k'), то вычисления определялись бы лагранжианом преобразованным оператором  $\hat{\mathcal{C}}_k$  зарядового сопряжения ТМ.

$$\mathcal{L}^{C_k} = \hat{C}_k \mathcal{L} \hat{C}_k$$

Исходя из правил преобразования вершин [6]

$$\hat{C}_{k}\bar{\chi}\chi\hat{C}_{k} = \bar{\chi}\chi, \qquad \hat{C}_{k}\bar{\chi}\gamma^{5}\chi\hat{C}_{k} = \bar{\chi}\gamma^{5}\chi, \\ \hat{C}_{k}\bar{\chi}\gamma^{\mu}\chi\hat{C}_{k} = -\bar{\chi}\gamma^{\mu}\chi, \qquad \hat{C}_{k}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\hat{C}_{k} = \bar{\chi}\gamma^{\mu}\gamma^{5}\chi$$

можно получить, что  $\Delta_{2a}$  не изменится в скалярном взаимодействии, и изменится с  $\gamma^{\mu}(a_2-\gamma^5b_2)$  на  $-\gamma^{\mu}(a_2+\gamma^5b_2)$  в векторном случае. Что соответствует замене  $a_2\to -a_2$ . Поэтому квадрат матричного элемента для скалярного взаимодействия для частицы и античастицы одинаков. для векторного случая, если рассматривать вклады либо с  $a_2$  либо с  $b_2$ , — аналогично.

Сначала рассмотрим случай рассеяния на одним нуклоном и скалярным взаимодействием. Матричный элемент упругого рассеяния тогда равен

$$i\mathcal{M}_0 = \bar{\psi}(p')\Delta_1^a\psi(p)\bar{\chi}(k')\Delta_{2a}\chi(k)$$

где p и p' – начальный и конечный импульс нуклона.

Квадрат матричного элемента находится после усреднения по спинам.

$$|\mathcal{M}_0|^2 = \frac{1}{4} tr \big[ \big( \hat{k}' + m_k \big) \Delta_{2a} (k + m_k) \Delta_{2b} \big] tr \big[ (\hat{p}' + m_N) \Delta_{1a} (p + m_N) \Delta_{1b} \big]$$

Для скалярного матричного элемента это дает

$$|\mathcal{M}_0|^2 = 4\left((a_2^2 + b_2^2)k'k + (a_2^2 - b_2^2)m_\chi^2\right)\left((a_1^2 + b_1^2)p'p + (a_1^2 - b_1^2)m_N^2\right)(1.1.2)$$

В нерелятивистском случае существует несколько вариантов:

1) 
$$a_1^2 \neq 0$$
 и  $a_2^2 \neq 0$  
$$\left| \mathcal{M}_0^{scal} \right|^2 = 16(a_1^2 a_2^2) m_N^2 m_k^2 \tag{1.1.3}$$

2) 
$$a_1^2 = 0, a_2^2 \neq 0$$
 
$$\left| \mathcal{M}_0^{scal} \right|^2 = 8b_1^2 a_2^2 m_N^2 (-(k'-k)^2)$$
 (1.1.3')

3) 
$$a_1^2 = 0, a_2^2 = 0$$

$$\left| \mathcal{M}_0^{scal} \right|^2 = 4b_1^2 b_2^2 (p' - p)^2 (k' - k)^2$$
(1.1.3'')

В этих случаях дифференциальное сечение в системе центра масс принимает следующий вид:

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{0N}}{4\pi} \tag{1.1.4}$$

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{0N}}{4\pi} \cdot \frac{\left(\vec{\mathbf{k}}' - \vec{\mathbf{k}}\right)^2}{2\vec{\mathbf{k}}_0^2}$$

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{0N}}{4\pi} \cdot \frac{3\left(\vec{\mathbf{k}}' - \vec{\mathbf{k}}\right)^4}{16\vec{\mathbf{k}}_0^4}$$
(1.1.4")

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{0N}}{4\pi} \cdot \frac{3(\vec{\mathbf{k}}' - \vec{\mathbf{k}})^4}{16\vec{\mathbf{k}}_0^4} \tag{1.1.4''}$$

где  $\sigma_{0N}$  — полное сечение упругого взаимодействия с нуклоном, посчитанное при конкретном начальном импульсе  $k_0 = m_k u_0 (u_0 - x$ арактерная скорость в задаче, которая будет определена в разделе 2). Поскольку это неизвестная величина, то ответ будем выражать через него, выделив в сечении зависимость от переданного импульса.

Далее мы рассмотрим неупругое рассеяние, происходящее с испусканием нуклоном фотона (рисунок 1.1.1)



Рисунок 1.1.1

Квадрат матричного элемента, просуммированный по спинам конечных частиц и усредненный по спинам начальных, в таком случае следующий

$$\begin{split} |\mathcal{M}|^2 &= 4e^2 \left( (a_2^2 + b_2^2) k' k + (a_2^2 - b_2^2) m_k^2 \right) \times \\ & \left[ -\left( \frac{p'^\mu}{p'q} - \frac{p^\mu}{pq} \right)^2 \left\{ (a_1^2 + b_1^2) p' p + (a_1^2 - b_1^2) m_N^2 \right\} - \right] \\ & \times \\ & \left[ -\left( \frac{p'^\mu}{p'q} - \frac{p^\mu}{pq} \right)^2 \left\{ (a_1^2 + b_1^2) p' p + (a_1^2 - b_1^2) m_N^2 \right\} - \right] \\ & + \left( a_1^2 + b_1^2 \right) \left( \frac{1}{p'q} - \frac{1}{pq} \right)^2 \cdot pq \cdot p' q \end{split}$$

Видно, что он состоит из трех частей, имеющих разную степень импульса фотона в знаменателе. Друг к другу они соотносятся по порядку величины как

$$\frac{\delta p^2}{q^2}: \frac{\delta p}{q}: 1$$

Как видно из формулы (1.2.1), каждое следующее слагаемое меньше следующего на величину порядка

$$v \cdot \frac{m_N + m_k}{m_N}$$

где v — скорость ТМ, поэтому в нерелятивистском случае в неупругом рассеянии будет преобладать исключительно мягкий вклад.

Далее необходимо получить сечение для ядра, исходя из сечения для нуклона. В таком случае нужно производить не усреднение по спинам ядра, а разложение спинора в нерелятивистском случае. Для спинора разлагаем известное решение в ряд Тейлора по импульсу.

$$\psi(p) = \sqrt{m} \cdot \left(1 + \gamma^5 \hat{\vec{S}} \frac{\vec{p}}{m}\right) \xi \tag{1.1.5}$$

где  $\xi$  — классический спинор, а  $\hat{\vec{S}}$  — оператор спина. Тогда скалярное произведение спиноров будет следующим

$$\bar{\psi}(p')\psi(p) = m\xi'^T \left(1 + \gamma^5 \hat{\vec{S}} \frac{\vec{p}'}{m}\right) \gamma^0 \left(1 + \gamma^5 \hat{\vec{S}} \frac{\vec{p}}{m}\right) \xi = 2m$$
 (1.1.6)

$$\bar{\psi}(p')\gamma^5\psi(p) = m\xi'^T\hat{\vec{S}}(\vec{p} - \vec{p}')\xi$$
 (1.1.7)

Таким образом, можно считать, что нуклон и частица ТМ взаимодействуют с помощью потенциала  $V(\vec{q} = \vec{k}' - \vec{k})$  или  $V(\vec{x})$  [7]. Для разных взаимодействий он будет иметь вид:

| Вид взаимодействия                                                 | Потенциал                                                           |
|--------------------------------------------------------------------|---------------------------------------------------------------------|
| $G_{00}ar{\psi}(p')\psi(p)ar{\chi}(k')\chi(k)$                     | $G_{00}$                                                            |
| $iG_{01}\bar{\psi}(p')\psi(p)\bar{\chi}(k')\gamma^5\chi(k)$        | $G_{01}\hat{ec{S}}_krac{-iec{q}}{m_k}$                             |
| $iG_{01}\bar{\psi}(p')\gamma^5\psi(p)\bar{\chi}(k')\chi(k)$        | $G_{f 01}\hat{ec{S}}_prac{iec{q}}{m_N}$                            |
| $G_{11}\bar{\psi}(p')\gamma^5\psi(p)\bar{\chi}(k')\gamma^5\chi(k)$ | $-G_{11}\hat{ec{S}}_prac{ec{q}}{m_N}\hat{ec{S}}_krac{ec{q}}{m_k}$ |

Таблица 1.1.1

Потенциал взаимодействия с ядром — это сумма потенциалов взаимодействия с нуклонами.

$$V(\vec{x} - \vec{x}_{\text{\tiny SIJ}}) = \sum V_N(\vec{x} - \vec{x}_N)$$

$$V(\vec{q}) = \sum V_N(\vec{q}) \, e^{-i\vec{q}(\vec{x}_N - \vec{x}_{\rm sg})} \label{eq:V}$$

Если переданные импульсы достаточно малы, то можно пренебречь экспоненциальным множителем. Тогда в потенциалах из таблицы 1 можно заменить массу нуклона на массу ядра (если предположить, что нейтроны и протоны взаимодействуют одинаково с ТМ) либо спин нуклона на спин ядра. Дифференциальное сечение тогда будет иметь тот же вид, что (1.1.4), только вместо  $\sigma_{0N}$  будет стоять  $\sigma_{0ял}$ .

Проблема зависящего от спина ядра потенциала заключается в том, что спин наиболее распространенных земных и солнечных элементов (кроме

водорода) равен нулю. Поэтому полный захват будем изучать на спин независимом потенциале.

Выразим полное сечение рассеяния с ядром через сечение рассеяния на нуклоне.

$$\sigma_{0\mathrm{\tiny M}\mathrm{\tiny M}} = \frac{\left|\mathcal{M}_{\mathrm{\tiny M}\mathrm{\tiny M}}\right|^2}{\left(m_{\mathrm{\tiny M}\mathrm{\tiny M}} + m_k\right)^2} \cdot \left(\frac{|\mathcal{M}_N|^2}{(m_N + m_k)^2}\right)^{-1} \sigma_{0N}$$

Используя (1.1.3-1.1.3'') и, предположив вышесказанное про потенциал (потенциал или матричный элемент на ядре равен сумме потенциалов на нуклонах), получаем

$$\sigma_{0\text{яд}} = \sigma_{0N} \cdot \frac{N^2 (1 + \mu_k)^2}{(N + \mu_k)^2} \tag{1.1.8}$$

где N — число нуклонов в ядре,  $\mu_k$  — отношение массы частицы ТМ к массе нуклона (Мы исходим из предположения, что для нейтронов и протонов взаимодействие одинаково).

## 1.2. Кинематика и дифференциальное сечение

Сечение находится из матричного элемента по формуле [8]

$$d\sigma = \frac{|\mathcal{M}|^2}{4\sqrt{(pk)^2 - m_p^2 m_k^2}} d\Phi$$

$$d\Phi = (2\pi)\delta(E_f - E_i) \times \frac{1}{2E_{n'}} \frac{d^3\vec{q}}{(2\pi)^3 2q} \times \frac{d^3\vec{k}'}{(2\pi)^3 2E_{k'}}$$

где  $\vec{k}'$ ,  $E_{k'}$  — импульс и энергия вылетающей частицы,  $\vec{q}$ ,  $\mathbf{q}$  — импульс и энергия фотона,  $E_{p'}$  — приобретаемая энергия мишени. Интеграл будем брать в системе центра масс (рисунок 1.2.1), где кинематика относительно простая.



Рисунок 1.2.1

В сферических координатах фазовый объем и телесные углы равны

$$d\Phi = \int \frac{{\mathbf{k'}}^2 q}{4E_{k'}} \times (2\pi) \delta(E_f - E_i) \times \frac{1}{2E_{p'}} \times \frac{d\Omega_q}{(2\pi)^3} \times \frac{d\Omega_{k'}}{(2\pi)^3} d\mathbf{k'} d\mathbf{q}$$
$$d\Omega_{k'} = 2\pi d \cos \theta$$
$$d\Omega_q = d \cos \theta_1 d\varphi_1$$

При этом телесный угол  $d\Omega_q$  отсчитывается не от оси  $z \parallel \vec{k}$ , а от  $\vec{k}'$ , а телесный угол  $d\Omega_{k'} = 2\pi \ d\cos\theta$ , если матричный элемент инвариантен относительно вращений вокруг оси z.

Введя систему координат, связанную с вектором  $\vec{k}'$ , находим выражение для импульса фотона и ядра из закона сохранения импульса.

$$\vec{k}' = \mathbf{k}'(\sin\theta, 0, \cos\theta)^T = \mathbf{k}'\vec{e}_3'$$
 
$$\vec{e}_1' = (\cos\theta, 0, -\sin\theta)^T$$
 
$$\vec{e}_2' = \vec{e}_2 = (0, 1, 0)^T$$
 
$$\vec{q} = \mathbf{q}\vec{n}_q = \mathbf{q}(\cos\theta_1\,\vec{e}_3' + \sin\theta_1\sin\varphi_1\,\vec{e}_2' + \sin\theta_1\cos\varphi_1\,\vec{e}_1')$$
 
$$\vec{p}' = -\vec{q} - \vec{k}'$$

Далее дельта функция снимается с помощью интегрирования по энергии фотона

$$\frac{\delta(E_f - E_i)}{2E_{p'}} dq = dq \frac{\delta(q + \sqrt{m_p^2 + p'^2(q)} - E_{uu} + E_{k'})}{2E_{p'}} = \frac{1}{2(E_{p'} + q + k'\cos\theta_1)}$$

А из закона сохранения энергии и импульса находится импульс фотона.

$$q + \sqrt{m_p^2 + p'^2} + \sqrt{m_k^2 + k'^2} = E_{\mu\mu}$$

$$p'^2 = k'^2 + q^2 + 2qk'\cos\theta_1$$

$$q(\cos\theta_1) = \frac{E_{\mu\mu}(E_k - E_{k'})}{(E_k - E_{k'}) + E_p + k'\cos\theta_1}$$
(1.2.1)

Итого, дифференциальное сечение в системе центра масс выражается следующим образом

$$\frac{d\sigma}{d^{3}\vec{k}'} = \frac{|\mathcal{M}|^{2}}{4kE_{\text{ци}}} \cdot \frac{E_{\text{ци}}(E_{k} - E_{k'})}{8E_{k'}\left((E_{k} - E_{k'}) + E_{p} + k'\cos\theta_{1}\right)^{2} \cdot (2\pi)^{5}} d\Omega_{q}$$
(1.2.2)

Видно, что при неупругом соударении в системе центра масс выходящий импульс k' пробегает весь шар радиуса k, а не только его границу. Внутри интеграла по телесному углу фотона стоит полностью аналитическая функция углов, поэтому его можно проводить численно с помощью схемы сколь угодно высокого порядка, например, методом гаусса.

## 1.3. Сечение при малых импульсах фотона

При испускании мягкого фотона с бесконечно малой энергией учитывается только инфракрасно расходящийся вклад матричного элемента равный

$$-Z^{2}e^{2}\left(\frac{{v'}^{\mu}}{v'q}-\frac{v^{\mu}}{vq}\right)^{2}|\mathcal{M}_{0}|^{2}(p'(q),k'(q),p,k)$$

где  $|\mathcal{M}_0|^2$  – матричный элемент упругого рассеяния.

Если ввести малую массу фотона  $\mu$  [6], сделать замену и ввести обозначения

$$q = \mu \sinh \phi = x,$$
  $\sqrt{q^2 + \mu^2} = \mu \cosh \phi = y,$   $\frac{q}{\sqrt{q^2 + \mu^2}} = \sinh \phi = t$  (1.3.1)  $\vec{q} = q \cdot \vec{n}_q$  (1.3.1')

то сечение процесса с испусканием фотона будет иметь следующий вид

$$d\sigma_{\gamma} = \int_{0}^{\epsilon} \frac{dx}{y} \cdot f(y, t)$$
 (1.3.2)

Но так как матричный элемент и фазовый объем — непрерывно дифференцируемые функции по импульсам p' и k', которые при малых импульсах фотона являются гладкими по y и t, потому что задаются в неявном виде с помощью функции, производные которой не ноль и не бесконечность

$$\begin{split} F(\mathbf{k}',y,t) &= y + \sqrt{m_p^2 + p'^2(\mathbf{k}',yt,\cos\theta_1)} + \sqrt{m_k^2 + \mathbf{k}'^2} - E_{\mathbf{I}\mathbf{I}\mathbf{I}} = 0 \\ F'_{k'} &= \frac{\mathbf{k}'}{E_{k'}} + \frac{\mathbf{k}' + \mathbf{q} \cdot \cos\theta_1}{E_{p'}} \geq \frac{\mathbf{k}}{2} \left( \frac{1}{E_p} + \frac{1}{E_k} \right) = c_0 \\ F'_{y} &= 1 + \frac{t^2 y + t k' \cos\theta_1}{E_{p'}} < 1 + \frac{2\mathbf{k}}{E_p} = c_1 \end{split}$$

из чего следует, что  $\partial k'/\partial y = F_y'/F_{k'}' < \infty$ , то есть k' - гладкая функция (y,t) при  $(y,t) \in [0,\epsilon] \times [0,1]$ , значит функция из (1.3.2) – гладкая и имеет константу Липшица  $C_f$  по переменной y . Следовательно, интеграл (1.3.2) можно представить в виде суммы его упрощенного варианта, где y=0, и добавки  $D_2$ , стремящейся к нулю с первым по  $\epsilon$  (максимальный импульс фотона, до которого делается аналитическое интегрирование как в [9]) порядку.

$$(2) = \int_0^{\epsilon} \frac{dx}{y} \cdot f(0, t) + D_2$$

$$|D_2| = \left| \int_0^{\epsilon} \frac{dx}{y} \cdot \left( f(y, t) - f(0, t) \right) \right| \le \int_0^{\epsilon} \frac{dx}{y} \cdot y C_f = \epsilon C_f$$

$$(1.3.2')$$

Далее, в интеграле (1.3.2') проводим замену переменных (1.3.1)

$$\int_0^{\ln\left(\frac{2\epsilon}{\mu}\right)} d\phi \cdot f(0, \operatorname{th} \phi)$$

и выделяем расходящуюся часть, приравняв th  $\phi$  к единице и проделав похожие рассуждения с константой Липшица по аргументу t. Поэтому расходящаяся часть сечения имеет вид

$$d\sigma_{\gamma}^{\text{pacx}} = f(0,1) \ln \left(\frac{\epsilon}{\mu}\right) \tag{1.3.3}$$

В итоге (1.3.3) переходит при подстановки фазового объема и матричного элемента в следующее выражение

$$d\sigma_{\gamma}^{\text{pacx}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln \left(\frac{\epsilon}{\mu}\right) \int -\frac{d\Omega_q}{4\pi} \left(\frac{v'^{\mu}}{v'_0 - \vec{v}'\vec{n}_q} - \frac{v^{\mu}}{v_0 - \vec{v}\vec{n}_q}\right)^2$$

Этот интеграл берется с помощью техники усреднения по телесному углу и параметров Фейнмана.

$$\int \frac{d\Omega_q}{4\pi} \frac{v'v}{(v'_0 - \vec{v}'\vec{n}_q)(v_0 - \vec{v}\vec{n}_q)} =$$

$$\int_0^1 dx \frac{d\Omega_q}{4\pi} \frac{v'v}{(xv'_0 + (1-x)v_0 - (\vec{v}'x + \vec{v}(1-x))\vec{n}_q)^2}$$
(1.3.4)

Зная, как проводится усреднение по телесному углу,

$$\int \frac{d\Omega_q}{4\pi} \frac{1}{\left(A - \vec{\mathbf{n}}_a \vec{B}\right)^2} = \frac{1}{A^2 - \vec{B}^2}$$

получаем значение интеграла (1.3.4).

$$\int_0^1 dx \, \frac{v'v}{(xv_0' + (1-x)v_0)^2 - \left(\vec{v}'x + \vec{v}(1-x)\right)^2} = \frac{1}{2} \cdot \frac{v'v}{\sqrt{(v'v)^2 - 1}} \ln \left(\frac{v'v + \sqrt{(v'v)^2 - 1}}{v'v - \sqrt{(v'v)^2 - 1}}\right)$$

Мягкая часть сечения равна известному результату [10]

$$d\sigma_{\gamma}^{\text{pacx}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln \left(\frac{\epsilon}{\mu}\right) \cdot W(x)$$
 (1.3.5)

Где W(x) и x равны следующим выражениям

$$W(x) = \left(\frac{1}{x} \ln \frac{(1+x)}{(1-x)} - 2\right)$$
$$x = \frac{\sqrt{(v'v)^2 - 1}}{(v'v)}$$

В нерелятивистском приближении они равны соответственно

$$W(x) = \frac{2}{3}x^2 + \frac{2}{5}x^4 + \cdots$$
$$x = \sqrt{(\vec{v}' - \vec{v})^2}$$

Известно [6], что петлевой вклад в упругом сечении сокращает расходимость, тогда регуляризованные массой фотона упругое и неупругое сечения имеют соответственно вид

$$d\sigma_{\gamma}^{\text{ynpyroe}} = d\sigma_0 \cdot \left(1 + \frac{Z^2 \alpha}{\pi} \ln\left(\frac{\mu}{m}\right) \cdot W(x)\right)$$
 (1.3.6)

$$d\sigma_{\gamma}^{\text{неупругое}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln \left(\frac{\epsilon}{\mu}\right) \cdot W(x)$$
 (1.3.6')

Хотя сумма сечений не расходится, однако нельзя строго разделить упругое сечение и неупругое — результат будет зависеть от  $\mu$ . Это отражает тот факт, что экспериментально невозможно отличить чисто упругое рассеяние и неупругое с бесконечно маленьким импульсом фотона. Эта проблема приведет к неопределенности понятия неупругого вклада, однако можно сразу отметить как мы поступим: обнулим сечение, если происходит инфракрасная расходимость. В дальнейшем мы вернемся к этому вопросу.

Далее, продифференцировав (1.3.5) по  $\epsilon$ , получаем в нерелятивистском случае выражение для неупругого сечение, которое совпадает с [11].

$$d\sigma_{\gamma}^{\text{Heynpyroe}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \cdot \frac{dq}{q} \cdot \frac{2}{3} (\vec{v}' - \vec{v})^2$$
 (1.3.7)

Также, используя результаты выше, можно в нерелятивистском случае выразить интеграл по телесному углу в формуле (1.2.1).

$$\frac{d\sigma}{d^{3}\vec{k'}} = \frac{|\mathcal{M}_{0}|^{2}}{64E_{\text{IIM}}^{2} \cdot \pi^{3}} \cdot \frac{Z^{2}\alpha W(x)}{kE_{k'}(E_{k} - E_{k'})}$$
(1.3.8)

#### 1.4. Кинематика захвата и сечение

Захваченной частица считается в том случае, если ее энергия станет менее, чем гравитационный барьер небесного тела в точке, где произошло рассеяние. Это условие эквивалентно тому, что скорость частицы в лабораторной системе отсчета станет меньше скорости вылета ( $v' \leq v_{esc}$ ), которая выражается через гравитационный потенциал  $\phi(r)$ .

$$v_{esc} = \sqrt{2\phi(r)} \tag{1.4.1}$$

Изобразим условие захвата на рисунке 1.4.1 (в лабораторной СО и в системе центра масс). Зеленым цветом закрашена область возможного выходного импульса, а красным – область, при в которой происходит захват. Для нахождения сечения захвата необходимо проинтегрировать дифференциальное сечение по пересечению красной и зеленой области.



#### Рисунок 1.4.1

В системе центра масс скорость частицы ТМ равна  $v_{\rm II}$ 

$$v_{\mathrm{II}} = \frac{m_p}{m_p + m_k} v \tag{1.4.2}$$

Расстояние от центра красной сферы захвата до центра масс равно  $v_t$  (скорость движения центра масс в лабораторной системе)

$$v_t = v - v_{II} = \frac{m_k}{m_p + m_k} v \tag{1.4.3}$$

В системе центра масс условие захвата выглядит следующим образом

$$\left( \vec{v}_{\text{II}}' + \vec{v}_t \right)^2 < v_{esc}^2 \Leftrightarrow v_{\text{II}}'^2 + v_{\text{II}}' v_t \cos \theta' + v_t^2 < v_{esc}^2$$
 (1.4.4)

Существует несколько вариантов расположения двух сфер:

- 1) При  $v_t + v_{esc} \le v_{\text{Ц}}$  красная сфера внутри зеленой. Происходит неупругий процесс.
- 2) При  $v_t + v_{esc} \ge v_{\text{Ц}}, \ v_{\text{Ц}} + v_{esc} \ge v_t$  упругое столкновение. Неупругий вклад не учитывается.
- 3) При  $v_t \ge v_{esc} + v_{\rm II}$  частица ТМ не замечает ядро и не захватывается.

Как мы выяснили в предыдущем разделе, для упругого сечения захвата нужно проинтегрировать дифференциальное по переменной  $\cos \theta'$  от -1 до  $\cos \theta^{**}$ , который находится из (1.4.4).

$$\cos \theta^{**} = \frac{v_{esc}^2 - v_t^2 - v_{II}^2}{v_{II}v_t}$$
 (1.4.5)

Для неупругого случая можно интегрировать дифференциальное сечение в сферической системе координат, связанной с красным шаром.

$$\sigma_c = \int_0^{m_k v_{esc}} 2\pi k_e^{\prime 2} dk_e^{\prime} d\cos\theta_e \cdot \frac{d\sigma}{d^3 \vec{k}^{\prime}}$$
 (1.4.6)

Импульс k' и  $\cos \theta$  выражаются через выходной импульс  $k'_e$  и косинус  $\cos \theta_e$  в лабораторной системе отсчёта (т.е. в координатах красной сферы):

$$k'^{2} = k_e'^{2} + k_t^{2} - 2k_e'k_t \cdot \cos\theta_e$$
$$\cos\theta' = \frac{k_e'\cos\theta_e - k_t}{k'}$$

### 1.5. Влияние температуры

При ненулевой температуре красная сфера смещается и может попасть на границу зеленой, тогда происходит упругий захват. Из-за температуры происходит и испарение.



Рисунок 1.5.1

Если  $\overrightarrow{w}$  – скорость ядра, а  $\overrightarrow{v}$  – скорость частицы ТМ в ЛСО, то скорость переноса (1.4.3) и скорость в системе центра масс изменятся, а между ними появляется угол  $\theta_0$ .

$$\vec{v}_t = \frac{m_p \vec{w} + m_k \vec{v}}{m_p + m_k} \tag{1.5.1}$$

$$\vec{v}_{\text{II}} = \vec{v} - \vec{v}_t = \frac{m_p}{m_p + m_k} (\vec{v} - \vec{w})$$
 (1.5.2)

$$\cos \theta_0 = -\frac{\vec{v}_t \vec{v}_{II}}{v_{II} v_t}$$

Упругое столкновение происходит, как мы выяснили выше, при  $v_{esc} > |v_{\rm L} - v_t|$ . Если раскрыть модуль и найти предельные при постоянных модулях скоростей случаи, достигающиеся при коллинеарных векторах  $\vec{w}$  и  $\vec{v}$ , то мы получим ограничения модуля скорости ядра, при котором происходит температурное взаимодействие.

$$w > \frac{m_p + m_k}{2 \cdot m_p} \cdot \left( \left| \frac{m_p - m_k}{m_p + m_k} \right| v - v_{esc} \right) \tag{1.5.3}$$

$$w > \frac{m_p + m_k}{2 \cdot m_p} \cdot (v_{esc} - v) \tag{1.5.4}$$

С помощью отрицания (1.5.3) можно получить условие, при котором не происходит упругого захвата.

$$\frac{v_{esc}}{v_{\pi CO}} \lesssim \left| \frac{m_k - m_p}{m_p + m_k} \right| - 2 \frac{m_p}{m_p + m_k} \frac{w}{v_{\pi CO}}$$
 (1.5.5)

Для Солнца при характерной скорости ТМ  $u_0$ , которая будет определено в (2.1.6),  $v_{\rm JCO}$  близко к  $v_{esc}$ , поэтому, разлагая его в ряд Тейлора по  $u_0$ , получится условие неупругости захвата

$$\left(\frac{u_0}{v_{esc}}\right)^2 \ge 4\left(\frac{m_k}{m_p + m_k} + \frac{m_p}{m_p + m_k} \frac{w}{v_{esc}}\right)$$
$$0.1 \ge \frac{m_k}{m_p + m_k} + \frac{m_p}{m_p + m_k} \frac{w}{v_{esc}}$$

Это условие не мажет быть выполнено в интересующих нас массах и при Солнечных температурных скоростях. Поэтому на Солнце неупругий процесс не вносит значительного никакого вклада в захват.

Для Земли (1.5.3') выполняется, когда массы ядра и частицы ТМ различаются.

Сечение для процесса с температурой будем брать методом Монте-Карло, поскольку пределы интегрирования сложны, а подынтегральные выражения не гладкие функции.

Частично сечение можно посчитать и аналитически. Для этого в системе центра масс нужно перейти в сферические координаты относительно вектора  $-\vec{v}_t$ , выразить угол вылета  $\theta'$  (угол между вектором конечной скорости и начальной) через  $\theta''$  (угол между вектором конечной скорости и скорости переноса  $-\vec{v}_t$ ).

$$\cos \theta' = \cos \theta'' \cos \theta_0 - \sin \theta'' \sin \theta_0 \cos \varphi$$

Тогда в формуле для сечения интегрируем по  $\varphi$  от 0 до  $2\pi$ , а  $\cos\theta'$  от 1 до  $\cos\theta^*$  в случае захвата и от -1 до  $\cos\theta^*$  в случае испарения.

$$\cos \theta^* = \frac{v_t^2 + v_{II}^2 - v_{esc}^2}{2v_t v_{II}}$$

Если сечение взаимодействия имеет следующий вид

$$\frac{d\sigma}{d\cos\theta'} = A(v_{II}) \cdot \frac{(n+1)}{2} \cdot \left(\frac{1-\cos\theta'}{2}\right)^n$$

то сечение захвата или испарения мы представим в следующем виде:

$$\sigma_c = A(v) \cdot \tilde{\sigma}_c$$

где  $\tilde{\sigma}_c$  — безразмерный множитель, приведенный в таблице ниже и выраженный через переменные x и y, равные

$$x = \frac{1 - \cos \theta^*}{2}, \qquad y = \frac{1 + \cos \theta^*}{2}$$

| n | захват                     | испарение            |
|---|----------------------------|----------------------|
| 0 | x                          | у                    |
| 1 | $x\cdot (1-y\cos\theta_0)$ | $y(1+x\cos\theta_0)$ |

$$\begin{vmatrix} x \cdot \left(1 - y\left(\frac{3}{2}\cos\theta_0 + \frac{3}{4}\cos^2\theta_0\right) & y \cdot \left(1 + x\left(\frac{3}{2}\cos\theta_0 - \frac{3}{4}\cos^2\theta_0\right) \\ -\frac{1}{4} & + y\left(\frac{3}{2}\cos^2\theta_0 - \frac{1}{2}\right)\right) \end{vmatrix} + x\left(\frac{3}{2}\cos^2\theta_0 - \frac{1}{2}\right) \right)$$

Таблина 1.5.1

Для того, чтобы получить эффективное сечение захвата, как в неупругом случае (т.е. вероятность процесса на единицу времени равна  $\sigma_c nv$ ), нужно проинтегрировать по температурному распределению ядер сечение, полученное выше.

$$\sigma_c^{\vartheta \varphi \varphi} = \int \frac{d^3 \vec{w}}{(2\pi w_T^2)^{\frac{3}{2}}} \cdot e^{-\frac{\vec{w}^2}{2w_T^2}} \cdot \sigma_c(v, v_{esc}, \vec{w}) \cdot \frac{|\vec{v} - \vec{w}|}{v}$$
(1.5.6)

Этот интеграл мы будем брать методом Монте-Карло [8]. Направление вектора  $\overrightarrow{w}$  находится с помощью сферического распределения, когда косинус угла  $\theta_{\overrightarrow{w}}$  распределен равномерно от -1 до 1. Модуль вектора  $\overrightarrow{w}$  мы разыграем со следующим генератором:

$$\frac{w}{w_T} = \sqrt{-2\ln\left(e^{-\frac{w_m^2}{2w_T^2}} \cdot \text{rand}(0..1)\right)}$$

где  $w_m$  — минимальная скорость из (1.5.3) или (1.5.4), а rand(0..1) — рандомное число от нуля до единицы.

Поскольку плотность распределения в таком распределении следующая

$$dw \frac{w}{w_T^2} e^{-\frac{w^2}{2w_T^2}}$$

то для взятия интеграла (1.5.5) методом Монте-Карло нужно еще домножить подынтегральную функцию на множитель, приведенный ниже, и найти среднее значение итоговой функции в случайных точках.

$$\sqrt{\frac{2}{\pi}} \frac{w}{w_T} e^{-\frac{w_m^2}{2w_T^2}}$$

## 2.Расчет скорости захвата

Если  $\sigma_c^i = \sigma_c^i(v, v_{esc})$  — сечение захвата на частице определенного сорта, то вероятность захвата на такой частице за единицу времени выражается через концентрацию элемента сорта i.

$$\frac{dP}{dt} = \sigma_c^i(v, v_{esc}) \cdot n_i \cdot v \tag{2.1}$$

где  $n_i$  – концентрация элемента сорта i.

Для нахождения скорости захвата нужно проинтегрировать (2.1) по фазовой плотности  $\rho(\vec{x}, \vec{v})$  (распределение частиц по скоростям и координатам).

$$C = \int \rho(\vec{x}, \vec{v}) d^3 \vec{x} d^3 \vec{v} \cdot \sigma_c^i n_i v$$
 (2.2)

Если по индексу i ведется суммирование, то выражение (2.2) дает полную скорость захвата, иначе — скорость захвата на конкретном элементе.

## 2.1. Определение фазовой плотности частиц ТМ

Фазовая плотность удовлетворяет кинетическому уравнению Больцмана, которое следует из закона сохранения частиц (что верно при малом взаимодействии частиц TM) и теоремы Лиувилля. Предположим, что  $\rho$  имеет стационарное распределение, в итоге уравнение будет следующим

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial\vec{x}} \cdot \frac{d\vec{x}}{dt} + \frac{\partial\rho}{\partial\vec{v}} \cdot \frac{d\vec{v}}{dt} = 0$$
 (2.1.1)

$$\frac{d\vec{x}}{dt} = \vec{v}, \qquad \frac{d\vec{v}}{dt} = \nabla\phi \tag{2.1.2}$$

здесь  $\phi$  – это гравитационный потенциал с обратным знаком (т.е. его модуль).

Мы не будем учитывать неоднородности сферического тела по угловым координатам, поэтому уравнения движения и фазовая плотность зависит только от трех переменных: скорость v, радиус r и угол  $\theta_v$  (рисунок 3).



Рисунок 2.1.1

Известно, что решением линейного уравнения первого порядка с тремя переменными – функция, зависящая от двух первых интегралов движения (2.1.2) частицы в центральном поле. Это уравнение имеет два известных интеграла – энергия и момент импульса (мы будем брать их на единицу массы).

$$u^2 = v^2 - 2\phi, \qquad L = rv\sin\theta_v$$
 (2.1.3)

$$\rho = \rho(u^2, L) \tag{2.1.4}$$

В этих переменных фазовый объем будет следующим

$$d\Phi = d^{3}\vec{x}d^{3}\vec{v} = dV \cdot \frac{\pi}{\sqrt{v^{2} - \frac{L^{2}}{r^{2}}}} du^{2} \frac{dL^{2}}{r^{2}}$$
 (2.1.5)

Для решения (2.1.4) осталось определить граничные условия вдали от тела, где фазовая плотность ТМ состоит из постоянной плотности  $\rho_V$  и плотности распределения по скоростям  $f(\vec{u})$ .

$$\rho(r = \infty, \vec{u}) = \rho_V \cdot f(\vec{u})$$

Если  $f(\vec{u})$  – однородно распределена, то ответ найден

$$\rho(r, v, L) = \rho_V \cdot f\left(\sqrt{v^2 - 2\phi}\right) = \rho_V \cdot f(u)$$

Иной случай возникает, когда тело движется относительно гало ТМ со скоростью  $\vec{u}_0$  (скорость вращения Солнечной системы вокруг центра галактики).

$$u_0 = 230 \frac{\text{KM}}{\text{C}} = 0.7667 \cdot 10^{-3} \tag{2.1.6}$$

А вот внутри гало ТМ распределена однородно и выражается через скорость  $\vec{\xi}=\vec{u}-\vec{u}_0$ 

$$f(\vec{u})d^3\vec{u} = f(\xi^2)d^3\vec{\xi}$$

Для того, чтобы найти f(u,L), необходимо усреднить по углу  $\theta_0$  (рисунок 4), определяющего положение частицы (рисунок) и углу  $\varphi$ , указывающего на направление скорости частицы в полярных координатах репера  $\vec{e}_1, \vec{e}_2, \vec{e}_3$ . Тогда можно найти координаты вектора  $\vec{\xi}$  и его модуль.



Рисунок 2.1.2

 $\xi^2 = u_\theta^2 + u_r^2 + u_0^2 - 2u_0(u\cos\theta\cos\theta_0 + u\sin\theta\cos\phi\sin\theta_0)$ 

$$f(u,L) = \int \frac{d\cos\theta_0 \, d\varphi}{4\pi} f(\xi^2)$$

Если заметить, что  $d\cos\theta_0\,d\varphi$  – это телесный угол  $d\Omega$ , который проходится вектором  $\vec{n}=(\cos\theta_0\,\cos\varphi\sin\theta_0\,\sin\varphi\sin\theta_0)^T$  и ввести вектор  $\vec{y}=(\cos\theta\,\sin\theta\,0)$ , то усреднение будет следующим

$$f(u,L) = \int d^2\vec{n} f(u^2 + u_0^2 - 2u_0 u(\vec{y}\vec{n}))$$

В результате эффективная функция распределения будет изотропна.

$$f_{\theta \phi}(u) = \int_{-1}^{1} f(u^2 + u_0^2 - 2u_0 u \cdot x) \cdot \frac{dx}{2}$$
 (2.1.7)

В нашей задаче мы возьмем нормальное распределение по скоростям темной материи

$$f(\vec{\xi}^2) = \frac{1}{(2\pi\xi_0)^{\frac{3}{2}}} e^{-\frac{\vec{\xi}^2}{2\xi_0^2}}$$

Итоговая функция распределения будет следующей [12]

$$f(u) = \frac{e^{-\frac{(u-u_0)^2}{2\xi_0^2}}}{(2\pi\xi_0^2)^{\frac{3}{2}}} \operatorname{thc}\left(\frac{2u_0u}{\xi_0^2}\right)$$

$$\operatorname{thc}(x) = \frac{(1-e^{-x})}{x}$$
(2.1.8)

Поскольку функция распределения однородная, то в (2.1.5) можно проинтегрировать по моменту импульса и получить конечное выражение для скорости захвата [12].

$$C = \rho_V \int dV f(u) \cdot \sigma_c^i n_i v^2 \cdot 4\pi u du \qquad (2.1.9)$$

## 2.2. Описание процесса интегрирования

Для интегрирования (2.1.9) будем использовать модель Солнца [13] и Земли [14, 15]. Модель будет представлять из зависимость таких параметров как масса, плотность и концентрация элементов от безразмерного радиуса  $\xi_r$ 

$$\xi_r = \frac{r}{R}$$

Радиусы Солнца и Земли равны соответственно

$$R_{\rm C} = 6.957 \cdot 10^8 {\rm M}$$

$$R_3 = 6.4 \cdot 10^6 \text{M}$$

Мы также введем безразмерную массу  $\mu$  и безразмерный потенциал  $\omega$ , равные отношению соответствующих величин к их значениям в

$$\mu = \frac{M(r)}{M_T}$$

$$\omega = \frac{\phi(r)}{\phi(R)}$$

Потенциалы на поверхности Солнца и Земли следующие

$$\phi_{\rm C}(R) = 2.114 \cdot 10^{-6}$$

$$\phi_3(R) = 6.97 \cdot 10^{-10}$$

Из уравнения Пуассона находится безразмерный гравитационный потенциал внутри тела.

$$\frac{\partial \omega}{\partial \xi_r} = -\frac{\mu}{\xi_r^2}$$

$$\omega = 1 + \int_{\xi}^{1} \frac{\mu(\xi_r')}{\xi_r'^2} d\xi_r'$$

Скорость захвата  $v_{esc}$  выражается через безразмерный потенциал.

$$v_{esc} = \sqrt{2\phi} = v_{esc}^0 \sqrt{\omega}$$

где  $v_{esc}^{0}$  – скорость вылета на поверхности. Для Солнца и Земли это

$$v_{esc}^0 = 2.056 \cdot 10^{-3}$$
 (Солнце) (2.2.1)

$$v_{esc}^0 = 3.7336 \cdot 10^{-5}$$
 (Земля) (2.2.1')

Для интегрирования (2.1.9) будем использовать безразмерные параметры: радиус  $\xi$ , безразмерное сечение захвата на элементе  $\hat{\sigma}_i = \sigma_c/\sigma_0$  ( $\sigma_0$  — полное упругое сечение взаимодействия, посчитанное при скорости частицы ТМ на бесконечности равной  $u_0$ ), массовую долю элемента  $\alpha_i$ , безразмерную плотность вещества  $\hat{\rho} = \rho(r)/\langle \rho \rangle$  ( $\langle \rho \rangle$  — средняя плотность вещества) и массовое число ядер N. Тогда скорость захвата на i-ом элементе равна

$$C_i = \rho_V \cdot \sigma_0 \left( \frac{4}{3} \pi R^3 \frac{\langle \rho \rangle}{m_{\text{HyK}}} \right) \int 3\xi_r^2 d\xi_r \cdot f(u) \cdot \hat{\sigma}_i \frac{\alpha_i}{N} \, \hat{\rho} \, \frac{v^2 u}{u_0} \cdot 4\pi du^2$$

Этот интеграл будем считать численно в два этапа. Сначала находим безразмерную величину, характеризующую вероятность захвата при начальной скорости  $\boldsymbol{u}$ 

$$\tilde{\sigma}_i(u) = \int 3\xi_r^2 d\xi_r \cdot \hat{\sigma}_i \alpha_i \hat{\rho} \cdot \frac{v^2}{u_0^2}$$
 (2.2.2)

Данные для параметров сферического тела заданы в таблице, и мы будем их аппроксимировать кусочно-линейной функцией.  $\hat{\sigma}_i$  тоже будет задан в виде таблицы (матрицы), поэтому (2.2.2) будем интегрировать с помощью метода трапеций. Результатом будет одномерный массив.

Далее берем второй интеграл по скоростному распределению методом трапеций и получаем безразмерный фактор подавления.

$$\vartheta_i = \int f(u) \cdot \tilde{\sigma}_i(u) \cdot 4\pi u_0 u du \qquad (2.2.3)$$

Скорость захвата выражается через  $\theta_i$ .

$$C_i = \rho_V \sigma_0^i \cdot \frac{M}{Nm_N} \cdot u_0 \cdot \vartheta_i \tag{2.2.4}$$

Из плотности темной материи равной  $0.4\frac{\Gamma_{9}B}{c_{M}^{3}}$  можно найти концентрацию ТМ  $\rho_{V}$  зная ее массу. Запишем тогда для Солнца и Земли (2.2.3), подставив известные числа.

$$C_i^C \left[ \frac{1}{c} \right] = 1.2 \cdot 10^{28} \sigma_0^i [\text{пбн}] \cdot \frac{\vartheta_i}{N\mu_k}$$
 (2.2.5)

$$C_i^3 \left[ \frac{1}{c} \right] = 3.5 \cdot 10^{22} \sigma_0^i [\text{пбн}] \cdot \frac{\vartheta_i}{N\mu_k}$$
 (2.2.5')

где  $\sigma_0^i$  — выражаются в пикобарнах, а  $\mu_k$  — отношение массы частицы ТМ к массе нуклона.

Скорость захвата на единицу объема Солнца и Земли тогда следующие

$$C_i^C \left[ \frac{1}{\text{год}} \right] = 2.6 \cdot 10^2 \frac{1}{\text{см}^3} \sigma_0^i [\text{пбн}] \cdot \frac{\vartheta_i}{N\mu_k}$$
 (2.2.6)

$$C_i^3 \left[ \frac{1}{\text{год}} \right] = 10 \cdot 10^2 \frac{1}{\text{см}^3} \sigma_0^i [\text{пбн}] \cdot \frac{\vartheta_i}{N\mu_k}$$
 (2.2.6')

Если выразить сечение взаимодействия на ядре (1.1.8), то (2.2.3) изменится на

$$C = \sigma_{0N} \cdot \left[ \rho_{0.4\Gamma \ni B} \cdot \frac{M}{m_N} \cdot u_0 \right] \cdot P \tag{2.27}$$

$$P = \sum_{\text{SUDAM}} \frac{N(1 + \mu_k)^2}{(N + \mu_k)^2 \mu_k} \vartheta_N$$
 (2.2.8)

Величина сечения на нуклоне неизвестна, выражение в квадратных скобках (2.2.6) – это число в формуле (2.2.4) или (2.2.5), а величина P – будет искомой величиной в данной задаче.

## 3. Результаты расчета

Для начала обсудим проблему с инфракрасной расходимостью. На рисунке 3.1 изображено безразмерное сечение упругое (синяя линия) и полное сечение (оранжевая линия), полученное с помощью численной регуляризации (1.3.6) + (1.3.6'), при  $\mu_k = 4$ , N = 16. Видно, что существует естественная граница между областью с полностью неупругим захватом и упругим из-за того, что промежуточная область очень узкая. Поскольку фотонные поправки дают вклад порядка  $10^{-10}$  к упругому захвату, то для полной скорости захвата поправка от ЭМП в упругой области будет незначительна по сравнению со скоростью неупругого захвата, посчитанной во второй области. Поэтому вариант устранения расходимости с помощью обнуления корректен при вкладах неупругого захвата более чем  $10^{-10}$ .



Построим графики, на которых изображено отношение скорости захвата при учете температуры к скорости захвата без учета температуры на самых легких рассматриваемых элементах, для которых максимальная температурная скорость. У Солнца это протон (рисунок 3.1a), у Земли – кислород (рисунок 3.1б). Во всех графиках число n – это показатель степени квадрата импульса (таблица 1.5.1).

Видно, что в Солнце температура незначительно (не более 5%) влияет на захват. Для Земли влияние температуры есть только при очень маленьких массах частицы ТМ, притом, изменения не очень большие. Таком образом, температура вносит вклад в захват порядка нескольких процентов.



Ниже представлены (рисунок 3.2) графики величины P из (2.2.7) на Солнце (a, 6) и Земле  $(B, \Gamma, д, e)$  при упругом и неупругом сечении с n = 0 (1.1.4)(а, в, д, ж) и n = 1 (1.1.4') (б, г, е, з), и отношения неупругой скорости захвата (или P) к упругой на Земле для этих случаев (ж, з).





Малость неупругого сечения объясняется большим фактором подавления в формуле (1.3.7). При характерных скоростях  $u_0$  он будет порядка:

$$P_{in} \sim Z^2 \alpha \cdot \left(\frac{m_k}{m_p + m_k}\right)^2 \frac{v_{esc}^3}{u_0}$$

 $v_{esc}^3$  берется из интегрирования по трёхмерному фазовому объему в сечении. Интегрирование по скоростям (2.2.2) и (2.2.3) не изменяет порядок величины, поскольку неупругое сечение определено при скоростях порядка  $u_0$ .

Упругое сечение в случае резонанса имеет следующее P (оценить можно из размера телесного угла, в котором происходит захват, находящегося на пересечении зеленой и красной сферы)

$$P_{el}^{res} \sim \frac{v_{esc}^2}{u_0^2}$$

При резонансе, когда масса ТМ и ядра совпадают, захват происходит при всех скоростях, в отличии от случая на рисунке 3.1. При отсутствии резонанса характерная скорость ТМ, при которой может быть захват, — это  $v_{esc}$ . При различных значениях показателя степени 2n переданного импульса в сечении фактор подавления упругого сечения будет следующим:

$$P_{el} \sim \left(\frac{v_{esc}}{u_0}\right)^{2n+4}$$

Четверка берется из формул (2.2.2) и (2.2.3), так как интегрирование происходит при скоростях порядка  $v_{esc}$  и содержит умножение на скорость. Поэтому увеличение n ведет к увеличению влияния неупругого захвата и, одновременно, к увеличению захвата на Солнце.

Если наивно применить (2.2.8) для n=2, то вклад неупругого процесса будет еще более ощутимым (рисунок 3.3а). Также видно, что при увеличении n проявляются резонансы даже самых редких элементов земли, а температурный вклад будет более ощутимым (рисунок 3.3б — влияние температуры при захвате на кислороде), поскольку упругое сечение (рис 3.1) размазывается по скоростям и становится ненулевым в области с большими скоростями.



Более-менее значимый вклад неупругого рассеяния в захват возможен только при массах ТМ до 10 ГэВ, однако он будет порядка температурного вклада.

Неупругий процесс мог бы также происходить за счет переходов уровней в ядре, однако это накладывает ограничения на кинематику (из закона сохранения энергии)

$$\frac{m_p}{m_p + m_k} \sqrt{v_{\text{JCO}}^2 - \frac{2\Delta E}{m_p} \cdot \frac{\left(m_k + m_p\right)}{m_k}} + v_{esc} \ge \frac{m_k}{m_p + m_k} v_{\text{JCO}}$$

Но  $v_{\rm JCO}^2$  порядка  $10^{-6}$ , а второе слагаемое в корне порядка  $10^{-4}$ , которое соответствует разнице энергий  $\Delta E$  между нижним энергетическим уровнем ядра и первым возбужденным порядка 0.1-1 МэВ т.е. требуется скорость на порядок больше, чтобы произошёл резонанс.

Возможен неупругий захват также и за счет эффекта Мигдала [16], когда в результате соударения с ядром происходит переход электрона в атоме на другой уровень. Этот эффект может быть на несколько порядков выше.

Также можно грубо оценить отношение потоков аннигиляции на земле и Солнце. Из уравнения (1), если пренебречь испарением, можно найти число аннигиляций [17]. А отношения потоков определяются радиусом земли  $R_3$  и расстоянием от земли до солнца  $R_{\rm C3}$ .

$$\Gamma_{ann} = \frac{C}{2} \operatorname{th}^2 \left(\frac{t}{\tau}\right), \qquad \tau = \sqrt{CA}$$

Для Земли время  $\tau$  больше чем на Солнце, поэтому гиперболический тангенс будет меньше. Так отношение потока с Земли к потоку с Солнца ограничивается следующим выражением

$$\frac{J_3}{J_C} \lesssim \frac{C_3}{C_C} \cdot \left(\frac{R_3}{R_{C3}}\right)^2 \sim 1.6 \cdot 10^3 \cdot \frac{P_3}{P_C}$$

Получается, что поток частиц с Земли будет меньше потока частиц с Солнца на несколько порядков в области с неупругим взаимодействием (рисунок 3.3 а, в и б, г). Поэтому неупругое рассеяние на Земле или Солнце не могут привести к значительному изменению потока частиц.

#### 4. Заключение

Мы вычислили скорость захвата частиц темной материи при разных видах взаимодействия в упругом и неупругом случае.

Неупругое рассеяние происходит в случае, когда масса частицы ТМ меньше массы ядра, а скорость вдали от небесного тела превышает скорость вылета  $v_{esc}$  (1.5.5). На Солнце эти условия, очевидно, не выполняются как при больших массах частицы ТМ, поскольку Солнце состоит в основном из легких элементов, так и при малых массах ТМ, где характерные температурные скорости сместят область неупругого захвата в упругую. Поэтому на Солнце неупругий процесс вносит незначительный вклад.

Однако для Земли ситуация иная.  $v_{esc}$  на один два порядка меньше, чем характерная скорость движения частиц вдали, а вещество состоит из тяжелых элементов. Поэтому упругий захват имеет резонансный характер и вдали от резонансов (совпадение массы ТМ и элемента) упругий захват имеет подавление, которое усиливается тем более, чем больше степень импульса в сечении, а неупругий захват не имеет такого подавления. Неупругий захват с испусканием фотона получился на несколько порядков меньше упругого во всей области масс ТМ. Однако есть шанс, что неупругий захват за счет эффекта Мигдала будет выше.

## 5.Список литературы

- 1. Д.С.Горбунов, В.А.Рубаков Введение в теорию ранней вселенной. Теория горячего Большого взрыва. 17с.
- 2. В.А.Рябов, В.А.Царев, А.М. Цховребов. Поиски частиц темной материи.
- 3. В.А.Бедняков. Физика элементарных частиц и атомного ядра, № 47, Выпуск 5 за 2016 г 1316с.
- 4. S.Baum, L.Visinelli, K.Freese, P.Stengel. A tale of dark matter capture, subdominant WIMPs, and neutrino observatories. Phys. Rev. D 95, 043007 (2017)
- 5. G.Busoni, 1 A.De Simone, P.Scott, A.C. Vincent. Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun. JCAP10(2017)037
- 6. М.Пескин, Д.Шредер. Введение в квантовую теорию поля.
- 7. R.Catena. WIMP capture and annihilation in the Earth in effective theories. arXiv:1609.08967.
- 8. P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
- 9. M.Ram. Inner Brernsstrahlung in Low-Energy Electron-Neutrino (Antineutrino) Scattering. PHYSICAL REVIEW VOLUME 155, NUM 8 ER 5 25 MARCH 1967
- 10.С.Вайнберг. Квантовая теория поля. (580с)
- 11.C.Kouvaris, J.Pradler. Probing sub-GeV Dark Matter with conventional detectors. Phys. Rev. Lett. 118, 031803 (2017)
- 12.A.Gould. Resonant Enhancements In WIMP Capture By The Earth. Astrophys. J. 321, 571 (1987).
- 13.N.Vinyoles et al. A New Generation of Standard Solar Models. The American Astronomical Society (2017).
- 14.A.M. Dziewonski, D.L.Anderson. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (1981) 297—356
- 15.H.D.Holland, K.K.Turekian, Compositional Model for the Earth's Core. Treatise on Geochemistry, Pergamon (2003) 547-568.
- 16.N.F. Bell et al. The Migdal Effect and Photon Bremsstrahlung in effective field theories of dark matter direct detection and coherent elastic neutrino-nucleus scattering. Phys. Rev. D 101, 015012 (2020)
- 17.F.Ferrer, L.M. Krauss, S.Profumo. Indirect detection of light neutralino dark matter in the NMSSM. Phys.Rev.D74:115007,2006