NOAA Storm Data Analyis - Health & Economic Impacts

Vedant Mane

June 10, 2020

Exploring the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database - Health and Economic Impacts

This project involves exploring the U.S. National Oceanic and Atmospheric Administration's (NOAA) storms report gives us a brief idea about the weather events in the United States that cause major dest

Storms and other severe weather events can cause both public health and economic problems for communi

Data Processing

First, we download data from the NOAA storm database and load the same into R.

```
fileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
if(!dir.exists("./Data/")){
         dir.create("./Data/")
         download.file(fileURL, "./Data/data.csv.bz2")
}
stormData <- read.csv(bzfile("./Data/data.csv.bz2"))</pre>
```

Transforming Dataset suitable for Analysis

Now, we can see that for our analysis there are only a few columns of our interest which include the ...
We clean the dataset to classify events into appropriate categories. Then, we calculate the actual co

```
dataSet <- stormData[,c("EVTYPE","FATALITIES","INJURIES","PROPDMG","PROPDMGEXP","CROPDMGEXP")
str(dataSet)</pre>
```

```
dataSet$EVENT[grepl("HAIL", dataSet$EVTYPE, ignore.case = TRUE)] <- "HAIL"</pre>
dataSet$EVENT[grep1("HEAT", dataSet$EVTYPE, ignore.case = TRUE)] <- "HEAT"</pre>
dataSet$EVENT[grep1("FL00D", dataSet$EVTYPE, ignore.case = TRUE)] <- "FL00D"</pre>
dataSet$EVENT[grep1("STORM", dataSet$EVTYPE, ignore.case = TRUE)] <- "STORM"</pre>
dataSet$EVENT[grep1("WINTER", dataSet$EVTYPE, ignore.case = TRUE)] <- "WINTER"</pre>
dataSet$EVENT[grep1("WIND", dataSet$EVTYPE, ignore.case = TRUE)] <- "WIND"</pre>
dataSet$EVENT[grep1("SNOW", dataSet$EVTYPE, ignore.case = TRUE)] <- "SNOW"</pre>
dataSet$EVENT[grep1("TORNADO", dataSet$EVTYPE, ignore.case = TRUE)] <- "TORNADO"</pre>
dataSet$EVENT[grep1("RAIN", dataSet$EVTYPE, ignore.case = TRUE)] <- "RAIN"</pre>
table(dataSet$EVENT)
##
##
     FLOOD
              HAIL HEAT RAIN
                                        SNOW STORM TORNADO
                                                                 WIND WINTER.
     82686 289270
                       2648 12241 17664
                                                3668 60700 364853
                                                                       19597
head(dataSet$PROPDMGEXP)
## [1] K K K K K K
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
head(dataSet$CROPDMGEXP)
## [1]
## Levels: ? 0 2 B k K m M
dataSet$PROPDMGEXP <- as.character(dataSet$PROPDMGEXP)</pre>
dataSet$CROPDMGEXP <- as.character(dataSet$CROPDMGEXP)</pre>
#NA values as 10 ^O
dataSet$PROPDMGEXP[is.na(dataSet$PROPDMGEXP)] <- "0"</pre>
dataSet$CROPDMGEXP[is.na(dataSet$CROPDMGEXP)] <- "0"</pre>
#Everything except K, M & B as 10^0
dataSet$PROPDMGEXP[!(grepl("K|M|B", dataSet$PROPDMGEXP, ignore.case = TRUE))] <- "0"</pre>
dataSet$CROPDMGEXP[!(grep1("K|M|B", dataSet$CROPDMGEXP, ignore.case = TRUE))] <- "0"</pre>
#Thousands as 10^3
dataSet$PROPDMGEXP[grep("K", dataSet$PROPDMGEXP, ignore.case = TRUE)] <- "3"</pre>
dataSet$CROPDMGEXP[grep("K", dataSet$CROPDMGEXP, ignore.case = TRUE)] <- "3"</pre>
dataSet$PROPDMGEXP[grep("M", dataSet$PROPDMGEXP, ignore.case = TRUE)] <- "6"</pre>
dataSet$CROPDMGEXP[grep("M", dataSet$CROPDMGEXP, ignore.case = TRUE)] <- "6"</pre>
#Billions as 10^9
dataSet$PROPDMGEXP[grep("B", dataSet$PROPDMGEXP, ignore.case = TRUE)] <- "9"</pre>
dataSet$CROPDMGEXP[grep("B", dataSet$CROPDMGEXP, ignore.case = TRUE)] <- "9"</pre>
#Converting powers to Numeric Values
dataSet$PROPDMGEXP <- as.numeric(dataSet$PROPDMGEXP)</pre>
dataSet$CROPDMGEXP <- as.numeric(dataSet$CROPDMGEXP)</pre>
#Calculating actual damage
dataSet$property.damage <- dataSet$PROPDMG * 10^dataSet$PROPDMGEXP
dataSet$crop.damage <- dataSet$CROPDMG * 10^dataSet$CROPDMGEXP</pre>
str(dataSet)
```

'data.frame': 902297 obs. of 10 variables:

```
## $ EVTYPE
               : Factor w/ 985 levels " HIGH SURF ADVISORY"...: 834 834 834 834 834 834 834 834
## $ FATALITIES
               : num 000000010...
## $ INJURIES
               : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG
               : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP
               : num 3 3 3 3 3 3 3 3 3 3 ...
## $ CROPDMG
               : num 0000000000...
## $ CROPDMGEXP
               : num 0000000000...
               : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ EVENT
## $ crop.damage : num 0 0 0 0 0 0 0 0 0 ...
```

Analysing the Final Results

Perform analysis on the data to generate results (dividing the datasets into categories so that plotti:

```
data <- dataSet[,c("EVENT", "FATALITIES", "INJURIES", "property.damage", "crop.damage")]</pre>
str(data)
                 902297 obs. of 5 variables:
## 'data.frame':
## $ EVENT
                  : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ FATALITIES
                  : num 000000010...
## $ INJURIES
                  : num 15 0 2 2 2 6 1 0 14 0 ...
## $ crop.damage
                 : num 0000000000...
fatalties <- tapply(data$FATALITIES, data$EVENT, sum)</pre>
fatalties <- data.frame(names(fatalties), "fatalty", fatalties, row.names = NULL)
names(fatalties) <- c("event","type","count")</pre>
injuries <- tapply(data$INJURIES, data$EVENT, sum)</pre>
injuries <- data.frame(names(injuries), "injury", injuries, row.names = NULL)
names(injuries) <- c("event","type","count")</pre>
populationHealth <- rbind(fatalties, injuries)</pre>
populationHealth
```

```
event
                type count
## 1
       FLOOD fatalty 1524
## 2
       HAIL fatalty
                       15
## 3
        HEAT fatalty 3138
## 4
        RAIN fatalty
                      114
## 5
        SNOW fatalty
                      164
## 6
       STORM fatalty
                      206
## 7 TORNADO fatalty 5661
## 8
        WIND fatalty 1420
## 9
     WINTER fatalty
                      277
## 10
      FLOOD injury 8602
## 11
       HAIL injury 1371
## 12
        HEAT injury 9224
## 13
        RAIN injury
                      305
## 14
        SNOW injury 1164
## 15
       STORM injury 2900
## 16 TORNADO injury 91407
## 17
        WIND injury 11455
## 18 WINTER injury 1876
```

##

```
propertyDamage <- tapply(data$property.damage, data$EVENT, sum)
propertyDamage <- data.frame(names(propertyDamage), "property", propertyDamage, row.names = NULL)
names(propertyDamage) <- c("event", "type", "amount")
cropDamage <- tapply(data$crop.damage, data$EVENT, sum)
cropDamage <- data.frame(names(cropDamage), "crop", cropDamage, row.names = NULL)
names(cropDamage) <- c("event", "type", "amount")
economicDamage <- rbind(propertyDamage, cropDamage)
economicDamage</pre>
```

```
##
       event
                 type
                            amount
## 1
       FLOOD property 167502193929
## 2
       HAIL property 15733043048
## 3
        HEAT property
                          20325750
## 4
        RAIN property
                        3270230192
## 5
        SNOW property
                       1024669752
## 6
       STORM property 61080059960
## 7 TORNADO property 58593098029
        WIND property 16131522052
## 8
## 9
      WINTER property
                       6716795251
## 10
      FLOOD
                 crop 12266906100
## 11
        HAIL
                 crop
                       3046837473
## 12
        HEAT
                crop
                         904469280
## 13
        RAIN
                 crop
                         919315800
## 14
        SNOW
                 crop
                        134683100
       STORM
## 15
                 crop
                        5739219500
## 16 TORNADO
                 crop
                         417461520
                        2043974538
## 17
        WIND
                 crop
## 18 WINTER
                          42444000
                 crop
```

RESULTS

From our analysis, we can conclude that Tornado has the most severe effect on the health on the popul

Here is a plot verifying the results:

```
library(ggplot2)
ggplot(populationHealth, aes(x = event, y = count, fill = type)) + geom_bar(stat = "identity") + xlab("...)
```


From our analysis, we can conclude that Floods cause the greatest destruction to crop & property which

Here is a plot verifying the results :

```
library(ggplot2)
ggplot(economicDamage, aes(x = event, y = amount, fill = type)) + geom_bar(stat = "identity") + xlab("E
```


