- Variants of Actively Loaded CS Stage:
 - > Saturated Enhancement Load
 - > Depletion Load
 - > Complementary PMOS Load
 - Also known as CMOS Gain Stage
- The last one is the most popular

• Saturated Enhancement Load:

- > Both bodies tied to ground
 - $For M_1: V_{SR1} = 0$
 - For M_2 : $V_{SB2} = V_o$
- $> M_2$ is enhancement mode
 - V_{TN02} positive
- \rightarrow M_2 is also diode-connected
 - Always operates in saturation
- $\succ M_2$ has a floating body effect problem: V_o is a variable and V_{TN2} will continuously change with a change in V_o

Circuit Schematic

- For M_2 to remain on, its V_{GS2} (= $V_{DD} V_o$)

 must be > V_{TN2}
- Thus, there is a maximum possible V_o , beyond which it cannot rise $(M_2 \text{ would cut off})$
- To estimate this maximum V_o , for the time being, neglect that $3V_T$ cushion
- > Then:

$$V_{DD} - V_{o,max} > V_{TN2}$$
 (with $V_{SB2} = V_{o,max}$)

$$V_{TN2} = V_{TN02} + \gamma \left(\sqrt{2\phi_F + V_{o,max}} - \sqrt{2\phi_F} \right)$$

- \triangleright Solution of this equation would give $V_{o,max}$
- ightharpoonup Once $V_{o,max}$ is obtained, the best bias point would be at $V_0 = V_{o,max}/2$
- \triangleright Before doing ac analysis, let's investigate M_2 :

ac Midband Equivalent of M 2

Simplified Equivalent