ממן 13

יונתן אוחיון

2017 בספטמבר 3

1 שאלה 1

1.1 הקבוצות

$$\begin{split} A &= [-1,1] \\ B &= [0,2] \\ A - B &= [-1,0) \\ A \oplus B &= \{x \in \mathbb{R} \mid x \in [-1,2] \ \land \ x \not\in (0,1)\} \\ A \cup B &= [-1,2] \end{split}$$

1.2 עוצמת הקבוצות

לפי משפט 4.5, ניתן להסיק כי העוצמה של קטעים פתוחים וסגורים לפיכך, כל הקבוצות לפי משפט 4.5, ניתן להסיק כי העוצמה של קטעים שוות־עוצמה ועוצמתן הינה $A,B,A-B,A\oplus B,A\cup B$

1.3 שונות הקבוצות

א. נראה שA שונה משאר הקבוצות:

$$\begin{split} &-1 \in A \land -1 \not\in B \to A \neq B \\ &0 \in A \land 0 \not\in A - B \to A \neq A - B \\ &0.5 \in A \land 0.5 \not\in A \oplus B \to A \neq A \oplus B \\ &2 \not\in A \land 2 \in A \cup B \to A \neq A \cup B \end{split}$$

ב. נראה שB שונה משאר הקבוצות:

$$A
eq B$$
 (לפי סעיף א)
$$0\in B\land 0\not\in A-B\to B
eq A-B$$

$$0.5\in B\land 0.5\not\in A\oplus B\to B
eq A\oplus B$$

$$-1\not\in B\land -1\in A\cup B\to B
eq A\cup B$$

ג. נראה שA-B שונה משאר הקבוצות:

$$A
eq A-B$$
 (לפי סעיף א)
$$B
eq A-B$$
 (לפי סעיף ב)
$$2
ot\in A-B\land 2\in A\oplus B\to A-B
eq A\oplus B$$

$$2
ot\in A-B\land 2\in A\cup B\to A-B
eq A\cup B$$

ד. נראה ש $A \oplus B$ שונה משאר הקבוצות:

$$A
eq A \oplus B$$
 (לפי סעיף א)
$$B
eq A \oplus B$$
 (לפי סעיף ב)
$$A - B
eq A \oplus B$$
 (לפי סעיף ג)
$$0.5
eq A \oplus B \land 0.5 \in A \cup B \rightarrow A \oplus B
eq A \cup B$$

ה. נראה ש $A \cup B$ שונה משאר הקבוצות:

 $A \neq A \cup B$ (לפי סעיף א) $B \neq A \cup B$ (לפי סעיף ב) $A-B \neq A \cup B$ (לפי סעיף ג) $A-B \neq A \cup B$ (לפי סעיף ד) $A \cap B \neq A \cup B$

לפיכך, הצלחנו למצוא קבוצות אחת אחת לא כך אחת אחת אחת אחת אחת לפיכד, הצלחנו למצוא קבוצות האחת מהשנייה.

2 שאלה 2

טעיף א 2.1

 $n \in \mathbb{N} \land n > 0$ יהי

תהי תהי קבוצת התת־קבוצות של $\mathbb N$ באורך n (כלומר, $T_n=\{X\mid X\in\mathcal P(\mathbb N)\land |X|=n\}$). תהי תהי מעל $\mathbb N$ באורך n מעל $\mathbb N$ (כלומר, $\mathbb N\times\mathbb N\times\mathbb N\times\mathbb N\times\mathbb N\times\mathbb N$). לפיכך, קיימת פונקציה F_n המתאימה לכל קבוצה ב T_n את סדרת המספרים הנמצאים בה בסדר עולה ב T_n

פונקציה זו הינה חח"ע, שכן לכל קבוצה P ב T_n נוכל להתאים סדרה של איברה בסדר עולה, ולכן פונקציה זו אינה על, שכן לכל קבוצה תותאם רק סדרה אחת עם איבריה אך קיימות ותר $|T_n| \leq |F_n|$ (פונקציה זו אינה על, שכן לכל קבוצה חינה אינסופית, מכיוון שלכל $P \in T_n$ קיימת T_n הינה אינסופית, מכיוון שלכל והיא בת מנייה. |P| = |M| - 1, ולכן עוצמתה היא לפחות |R| והיא בת מנייה.

2.2 סעיף ב

לפי סעיף א, הוכחנו שלכל n>0, קבוצת התת־קבוצות של \mathbb{N} באורך n>0 (מסומנת בn>0) היא בת מנייה. מכיוון שאיחוד של קבוצות בנות מננייה הינו קבוצה בת מנייה בעצמו, נוכל לייצג את קבוצת תת הקבוצות בנות המנייה כך:

$$M = \bigcup_{0 < i \le n}^{\infty} T_i$$

עוצמתן שווה ל \mathbb{N} שעוצמתן שווה לא כוללת את קבוצת תת הקבוצות של ולכן קבוצה או לא כוללת את הקבוצה או לא כמובן חלק מקבוצות תת הקבוצה ל $\{\emptyset\}$, שהיא כמובן חלק מקבוצות תת הקבוצה לא לפיכך,

$$M = \bigcup_{0 \le i \le n}^{\infty} T_i$$

לפיכך, קבוצת תת הקבוצות הסופיות של $\mathbb N$ הינה בת מנייה.

2.3 סעיף ג

תהי $|L|=\aleph_0$ ונגיע לסתירה: עניח האינסופיות הקבוצות האינסופיות של \mathbb{N} . נניח בשלילה ש $\mathcal{P}(\mathbb{N})=L$ ונגיע לסתירה: יו $\mathcal{P}(\mathbb{N})=M\cup L$ היא קבוצת כל תת הקבוצות של \mathbb{N} . לפיכך,

$$|M|+|L|=|\mathcal{P}(\mathbb{N})| \xrightarrow{\text{(2)}} \aleph_0+\aleph_0=C$$
 (לפי סעיף ב)

והגענו לסתירה. לפיכך, L היא אינה בת מנייה.

3

סעיף ד 2.4

|L|=C ,לפיכד, מנייה. לפיכך אינה בע בכך של להיווכח לפי

סעיף ה 2.5

i 2.5.1

$$\aleph_0 = |\{\emptyset\} \cup \{\{X \in \mathcal{P}(\mathbb{N}) \mid |X| = i\} \mid i \in \mathbb{N} \land i > 0\}|$$

ii **2.5.2**

$$C = |\{X \in \mathcal{P}(\mathbb{N}) \mid |X| = \aleph_0\}|$$

3 שאלה

דוגמה נגדית:

$$A = \{1, 2, 3\}, \ B = \{2, 3\}, \ A \oplus B = \{1\}$$
$$|A| = 3, \ |B| = 2, \ |A \oplus B| = 1$$
$$|A| \oplus |B| = (|A| - |B|) + (|B| - |A|) = 1 - 1 = 0$$
$$|A| \oplus |B| \neq |A \oplus B|$$