Deep Learning CNN

Chest Disease X-Ray Image

Presented by:

Abdullatif Alsabr

Eman Albarakah

Yazeed Alharthi

Rahaf Alturbaq

Aljoharah Alaqeel

Outline

01.

Introduction

02.

About Project

03.

Challenges

04.

Models

05.

Tools

06.

Conclusion

Introduction

Pneumonia is an inflammatory condition of the lung affecting primarily the small air sacs known as alveoli. Symptoms typically include some combination of productive or dry cough, chest pain, fever and difficulty breathing. The severity of the condition is variable.

Pneumonia is usually caused by infection with viruses or bacteria and less commonly by other microorganisms, certain medications or conditions such as autoimmune diseases.

Risk factors include cystic fibrosis, chronic obstructive pulmonary disease (COPD), asthma, diabetes, heart failure, a history of smoking, a poor ability to cough such as a stroke and a weak immune system.

About Project

- The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal).
- There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal).
- Data from Kaggle.

Challenges

1. Excution time problems such:

- Epoch 12 20 50.
- Improve accuracy after Epoch.
- Cannot execute all models at the same time unless using multiple files for each model.
- 2. Define number of hidden layers.
- 3. Hard to define and find best parameters for each model.

An Example of Normal and Infected by Pneumonia Lugs

Normal Lungs

Lungs infected by Pneumonia

Models

Preprocess

Reshapping 224 x 224

Normalization 1./255

Batch Size 10

1. Sequential

Optimizer	Early Stopping	Without Early Stopping
rmsprop -	Epoch 20 Stopped at 3/20	Epoch 12
Accuracy	96 %	95 %

2. VGG16

Optimizer	Early Stopping	Without Early Stopping
Adam -	Epoch 20 Stopped at 3/20	Epoch 20
Accuracy	96 %	98 %

3. VGG19

Optimizer	Early Stopping	Without Early Stopping
Adam -	Epoch 50 Stopped at 6/50	Epoch 12
Accuracy	97 %	98 %

4. MobileNetV2

Optimizer	Early Stopping	Without Early Stopping
Adam -	Epoch 50 Stopped at 3/50	Epoch 12
Accuracy	96 %	98 %

5. InceptionV3

Optimizer	Early Stopping	Without Early Stopping
Adam -	Epoch 50 Stopped at 3/50	Epoch 12
Accuracy	94 %	97 %

Models

Model	Accuracy	
	Train - Validation	Test
Sequnetial	96%	82%
VGG16	98%	91.50%
VGG19	95%	91.82%
MobileNetV2	95%	91.82%
InceptionV3	95%	87%

Conclusion

The test results showed that VGG19 and MobileNetV2 outperforms other models by accuracy of 91.82%.

Whereas Sequential model outperformed by accuracy of 96% and VGG16 outperformed other models by accuracy of 98% that showes us in train we've had a good results but not in test.

Future Work

- ✓ Improve the classification accuracy of all the models.
- ✓ Classify other lung diseases.
- ✓ Create an application to detect all lung diseases.

Tools

Here are the tools we used in this project

Thank you for your attention. Any questions?