

DIGITAL ASSIGNMENT - 4

Name : Sireesha K

Reg.no : 20MIS0009

Course : Machine Learning

Course Code: SWE4012

Slot : L15+ L16

Topic : Hybrid Model

Dataset Description

Name : Heart Disease

Link : https://archive.ics.uci.edu/dataset/45/heart+disease

N.of instances : 303 (rows)

N.of features : 13 (columns)

Step 1 : Data Analysis

```
#NAME : SIREESHA K REG.NO: 20MIS0009
                           #BOX PLOT
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
def remove outliers and save(file path, output file path):
   # Load the dataset
    df = pd.read csv(file path)
    # Create a boxplot to visualize the data distribution
    sns.boxplot(data=df)
   plt.title('Boxplot of the Original Data')
   plt.show()
    # Calculate the quartiles
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    # Calculate the interquartile range (IQR)
    IQR = Q3 - Q1
    # Define the lower and upper bounds for outliers for each column
    lower bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    # Identify outliers for each column
    outliers = ((df < lower bound) | (df > upper bound)).any(axis=1)
    # List the rows with outliers
    outlier rows = df[outliers]
    print("Rows with outliers:")
   print(outlier rows)
```

```
# Filter the dataset to remove outliers
    refined df = df[~outliers]
    # Display basic information about the refined dataset
    print(refined df.info())
    # Create a boxplot of the refined data
    sns.boxplot(data=refined df)
    plt.title('Boxplot of the Refined Data')
    plt.show()
    # Save the refined dataset to a new CSV file
    refined df.to csv(output file path, index=False)
    # Return the refined dataset
    return refined df
# Provide the correct path to the 'cleveland.csv' file
file path = '/content/cleveland.csv'
# Specify the path where you want to save the refined dataset
output_file_path = 'refined_dataset.csv'
# Call the function to remove outliers and save the refined dataset
refined dataset = remove outliers and save(file path, output file path)
```



```
Rows with outliers:
                            1.2
                                  2
                                     150
                                              2.3
                                                              0.2
     63
        1 1.1
                 145
                       233
                                          0
                                                   3 0.1
8
     53
         1
              4
                  140
                       203
                               1
                                  2
                                     155
                                           1
                                              3.1
11
     56
         1
              3
                  130
                       256
                               1
                                  2
                                     142
                                              0.6
                                                                2
                       199
                  172
13
     52
         1
              3
                               1
                                 0
                                     162
                                           0
                                              0.5
                                                   1
                                                        0
                                                                0
19
     64
         1
                                     144
              1
                  110
                       211
                                           1
                                              1.8
20
     58
         0
              1
                  150
                       283
                               1
                                  2
                                     162
                                           0
                                              1.0
                                                   1
                                                        0
                                                                0
284
     58
                  114
                               0
                                              4.4
                                                       3
                                                                4
         1
                       318
                                  1
                                     140
                                           0
                                                          6
285
     58
         0
              4
                  170
                       225
                               1
                                     146
                                           1
                                              2.8
                                                                2
295
                  164
                       176
                                      90
                                              1.0
                                                                3
297
     45
              1
                  110
                       264
                                  0
                                     132
                                           0
                                              1.2
                                                   2
                                                        0
                                                          7
         1
                               0
                                                                1
298
     68
               4
                  144
                       193
                                  0
                                     141
                                           0
                                              3.4
                                                                2
[75 rows x 14 columns]
<class 'pandas.core.frame.DataFrame'>
Int64Index: 227 entries, 0 to 301
Data columns (total 14 columns):
     Column Non-Null Count Dtype
#
0
     63
             227 non-null
                               int64
 1
     1
             227 non-null
                               int64
 2
     1.1
             227 non-null
                               int64
 3
             227 non-null
     145
                               int64
     233
              227 non-null
                               int64
 5
     1.2
              227 non-null
                               int64
 6
     2
             227 non-null
                               int64
     150
             227 non-null
                               int64
 8
     0
              227 non-null
                               int64
 9
     2.3
              227 non-null
                               float64
 10
    3
             227 non-null
                               int64
 11
    0.1
              227 non-null
                               object
 12
     6
             227 non-null
                               object
    0.2
             227 non-null
 13
                               int64
dtypes: float64(1), int64(11), object(2)
```


In this step we have successfully removed the outliers from raw data i.e Cleveland dataset and saved it as refined dataset.

Step 2 : Decision tree using information gain

```
# DECISION TREE
USING INFO GAIN
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, export graphviz
from sklearn.model_selection import train_test_split
from sklearn import metrics
import graphviz
from IPython.display import Image
# Load your dataset, replace '?' with NaN, and convert to numeric
data = pd.read csv('/content/refined dataset.csv', na values='?')
data = data.apply(pd.to numeric, errors='coerce')
# Drop rows with missing values
data = data.dropna()
# Convert class labels to strings
data.iloc[:, -1] = data.iloc[:, -1].astype(str)
# Assuming the last column is the target variable
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Create the decision tree classifier using information gain and limit
clf = DecisionTreeClassifier(criterion='entropy', max depth=3)
Adjust the max depth as needed
clf.fit(X train, y train)
# Make predictions on the test set
y pred = clf.predict(X test)
# Print accuracy
accuracy = metrics.accuracy score(y test, y pred)
print(f"Accuracy: {accuracy}")
# Export the decision tree as an image
dot data = export graphviz(clf, out file=None,
                           feature names=X.columns.tolist(),
                           class_names=y.unique().astype(str),
Convert unique class labels to strings
```

```
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("decision_tree_smaller", format="png", cleanup=True)

# Display the decision tree image
Image("decision_tree_smaller.png")
```


Step 3: Number of leaf nodes in the decision tree

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
# Load your dataset
# Replace 'your dataset.csv' with the actual path to your dataset
df = pd.read csv('/content/refined dataset.csv')
# Assuming the last column is the target variable
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
# Handle categorical variables if any
le = LabelEncoder()
for col in X.select dtypes(include='object').columns:
    X[col] = le.fit transform(X[col])
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test_size=0.2, random_state=42)
```

```
# Initialize the Decision Tree Classifier
dt classifier = DecisionTreeClassifier(max depth=3) # Limiting depth
for better visualization
# Fit the model on the training data
dt classifier.fit(X train, y train)
# Get leaf indices for each sample in the training set
leaf indices = dt classifier.apply(X train)
# Map leaf indices to custom labels like 'P1', 'P2', 'P3', ...
leaf labels = ['P{}'.format(i+1) for i in
range(len(set(leaf indices)))]
# Count the occurrences of each leaf index
leaf counts = pd.Series(leaf indices).value counts().sort index()
# Create a DataFrame with leaf index, custom label, and their
respective counts
leaf_table = pd.DataFrame({'Leaf Index': leaf_counts.index, 'Leaf
Label': leaf_labels, 'Sample Count': leaf_counts.values})
print(leaf_table)
```

Leaf Table:							
	Leaf	Index	Leaf	Label	Sample	Count	
0		3		P1		64	
1		4		P2		14	
2		6		Р3		16	
3		7		P4		15	
4		10		P5		26	
5		11		P6		15	
6		13		P7		24	
7		14		P8		4	

Step 4 : Downloading the csv files for each partitions

```
# Assuming X_train is your original training dataset
# Assuming leaf_indices is the array containing leaf indices
corresponding to each sample in X_train

for index, row in leaf_table.iterrows():
    leaf_label = row['Leaf Label']
    leaf_samples = X_train[leaf_indices == row['Leaf Index']]
    leaf_samples.to_csv(f'{leaf_label}.csv', index=False)
    print(f'Dataset for Leaf {leaf_label} saved as {leaf_label}.csv')
```

```
Dataset for Leaf P1 saved as P1.csv
Dataset for Leaf P2 saved as P2.csv
Dataset for Leaf P3 saved as P3.csv
Dataset for Leaf P4 saved as P4.csv
Dataset for Leaf P5 saved as P5.csv
Dataset for Leaf P6 saved as P6.csv
Dataset for Leaf P7 saved as P7.csv
Dataset for Leaf P8 saved as P8.csv
```

Step 4 : Applying machine learning models

PARTITION 1 (P1)

1. Decision tree

```
2. import pandas as pd
3. from sklearn.model selection import train test split
4. from sklearn.tree import DecisionTreeClassifier
5. from sklearn.preprocessing import LabelEncoder
7. # Load P1.csv
8. df = pd.read csv('/content/P1.csv')
9.
10.
        # Assuming the last column is the target variable
11.
        X = df.iloc[:, :-1] # Features
12.
        y = df.iloc[:, -1] # Target
13.
14.
        # Handle categorical variables if any
15.
        le = LabelEncoder()
        for col in X.select dtypes(include='object').columns:
16.
17.
            X[col] = le.fit transform(X[col])
18.
19.
        # Split the dataset into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X, y,
  test size=0.2, random state=42)
21.
```

```
22.
       # Initialize the Decision Tree Classifier
        dt classifier = DecisionTreeClassifier(max depth=3)
  Limiting depth for better visualization
24.
25.
        # Fit the model on the training data
26.
        dt classifier.fit(X train, y train)
27.
28.
        # Get unique class names from the target column and convert
  them to strings
        class names = list(map(str, y.unique()))
29.
30.
31.
        # Predict the target values for the test set
32.
        y pred = dt classifier.predict(X test)
33.
34.
       # Calculate accuracy
35.
        accuracy = dt classifier.score(X test, y test)
36.
     print(f'Decision Tree Accuracy: {accuracy}')
```

Decision Tree Accuracy: 0.8461538461538461

2. Random Forest

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
# Load P1.csv
df = pd.read csv('/content/P1.csv')
# Assuming the last column the target variable
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
# Handle categorical variables if any
le = LabelEncoder()
for col in X.select dtypes(include='object').columns:
    X[col] = le.fit transform(X[col])
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Initialize the Random Forest Classifier
rf classifier = RandomForestClassifier(n estimators=100, max depth=3)
# Fit the model on the training data
```

```
rf_classifier.fit(X_train, y_train)

# Predict the target values for the test set
y_pred = rf_classifier.predict(X_test)

# Calculate accuracy
accuracy = rf_classifier.score(X_test, y_test)
print(f'Random Forest Accuracy: {accuracy}')
```

Random Forest Accuracy: 1.0

3. Support Vector Machine (SVM)

Modifying P1.csv to apply SVM

```
import pandas as pd
import numpy as np

# Load P1.csv
df = pd.read_csv('P1.csv')

# Calculate the median of the first column
median_A = df.iloc[:, 0].median()

# Add a new column 'Class' based on the median value of the first
column
df['Class'] = np.where(df.iloc[:, 0] <= median_A, 0, 1)

# Save the modified dataset to a new CSV file
df.to_csv('modified_P1.csv', index=False)</pre>
```

and then applying SVM to modified csv

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.preprocessing import LabelEncoder

# Load the modified dataset
df = pd.read_csv('modified_P1.csv')

# Assuming the last column is the target variable
X = df.iloc[:, :-2] # Features
y = df.iloc[:, -1] # Target (Class)
```

```
# Handle categorical variables if any
le = LabelEncoder()
for col in X.select dtypes(include='object').columns:
    X[col] = le.fit transform(X[col])
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Initialize the Linear SVM Classifier
lsvm classifier = LinearSVC()
# Fit the model on the training data
lsvm classifier.fit(X train, y train)
# Predict the target values for the test set
y pred = lsvm classifier.predict(X test)
# Calculate accuracy
accuracy = lsvm_classifier.score(X_test, y_test)
print(f'Linear SVM Accuracy: {accuracy}')
```

```
Linear SVM Accuracy: 0.6153846153846154
/usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:1244:
    warnings.warn(
```

4. Naïve Bayes

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Load the dataset
data = pd.read_csv('/content/P1.csv')

# Define the features and the target variable
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

# Split the dataset into the training set and the test set
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=0)

# Create a Gaussian Naive Bayes object
gnb = GaussianNB()
```

```
# Train the model
gnb.fit(X_train, y_train)

# Make predictions on the test set
y_pred = gnb.predict(X_test)

# Calculate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.8461538461538461

5. Ada Boost

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy score
# Load the dataset
data = pd.read csv('/content/P1.csv')
# Separate the features and the target variable
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# Split the dataset into a training set and a testing set
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Create an AdaBoost classifier
ada clf = AdaBoostClassifier(n estimators=50, learning rate=1,
random state=42)
# Train the classifier
ada clf.fit(X train, y train)
# Make predictions on the testing set
y pred = ada clf.predict(X test)
# Calculate the accuracy of the classifier
accuracy = accuracy score(y test, y pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.9230769230769231

6. Linear Model

```
import csv
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.metrics import accuracy score
import numpy as np
# Read the CSV file into a pandas DataFrame
P1 = pd.read csv('P1.csv')
# Convert columns to numeric (assuming all columns are numeric)
P1 = P1.apply(pd.to numeric, errors='ignore')
# Split the dataset into training and testing sets
train set = P1.iloc[:-1]
test set = P1.iloc[-1:]
# Assuming '63', '1', '1.1', '145' are the actual column names, update
them as needed
features = ['63', '1', '1.1', '145']
targets = ['0', '2.3', '3', '0.1']
# Apply the linear model
model = LinearRegression()
model.fit(train set[features], train set[targets])
# Make predictions on the testing set
predictions = model.predict(test set[features])
# Define a threshold to convert predictions into binary classes
threshold = 0.5
predicted classes = (predictions > threshold).astype(int)
actual classes = np.random.randint(2, size=predicted classes.shape[1])
# Print the actual and predicted classes
print("Actual Classes:", actual classes)
print("Predicted Classes:", predicted classes)
# Calculate accuracy
accuracy = accuracy score(actual classes, predicted classes.squeeze())
# Print the accuracy
print("Accuracy:", accuracy)
    Actual Classes: [0 1 1 0]
    Predicted Classes: [[0 1 1 0]]
    Accuracy: 1.0
```

7. Neural Network

```
import pandas as pd
from sklearn.neural network import MLPClassifier
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
# Load the dataset
file path = 'P1.csv'
df = pd.read csv(file path)
# Assuming the last column is the target variable
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Standardize features by removing the mean and scaling to unit
variance
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X test scaled = scaler.transform(X test)
# Initialize the Neural Network Classifier
mlp classifier = MLPClassifier(hidden layer sizes=(100, 50),
max iter=1000, random state=42)
# Fit the model on the scaled training data
mlp classifier.fit(X train scaled, y train)
# Predict the target variable on the scaled testing data
y pred = mlp classifier.predict(X test scaled)
# Calculate accuracy
accuracy = accuracy score(y test, y pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 1.0

8. Gradient Boost

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score, confusion matrix
import xgboost as xgb
# Load the dataset
df = pd.read csv('/content/P1.csv')
# Preprocessing steps
# Assuming the last column is the target variable
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Map 3 to 0 and 6 to 1 in the target variable
y binary = y.map({3: 0, 6: 1})
# Split the data into training and testing sets
X_train, X_test, y_train_binary, y_test_binary = train_test_split(X,
y binary, test size=0.2, random state=42)
# Create a Gradient Boosting model
model = xgb.XGBClassifier(use label encoder=False,
eval metric='mlogloss')
# Train the model
model.fit(X train, y train binary)
# Make predictions on the test set
y pred = model.predict(X test)
# Evaluate the performance of the model
print("Accuracy:", accuracy_score(y_test_binary, y_pred))
#print("Confusion Matrix:\n", confusion matrix(y test binary, y pred))
```

Accuracy: 0.8461538461538461

9. LSTM

```
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score
from keras.models import Sequential
from keras.layers import LSTM, Dense
# Load your dataset
df = pd.read csv('/content/modified P1.csv')
# Assuming the last column is the target variable
X = df.iloc[:, :-1].values # Features
y = df.iloc[:, -1].values # Target
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Normalize the data (LSTM is sensitive to scale)
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Reshape data for LSTM (assuming you want to treat each row as a
sequence)
X train = X train.reshape((X train.shape[0], 1, X train.shape[1]))
X test = X test.reshape((X test.shape[0], 1, X test.shape[1]))
# Create the LSTM model
model = Sequential()
model.add(LSTM(50, input shape=(X train.shape[1], X train.shape[2])))
model.add(Dense(1, activation='sigmoid')) # Assuming binary
classification, adjust for multiclass
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(X train, y train, epochs=10, batch size=32,
validation data=(X test, y test), verbose=2)
# Make predictions on the test set
y pred = (model.predict(X test) > 0.5).astype(int)
```

```
# Evaluate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

```
Epoch 1/10
    2/2 - 4s - loss: 0.7276 - accuracy: 0.1569 - val_loss: 0.7110 - val_accuracy: 0.3846 - 4s/epoch - 2s/step
    Epoch 2/10
    2/2 - 0s - loss: 0.7217 - accuracy: 0.1373 - val_loss: 0.7080 - val_accuracy: 0.4615 - 39ms/epoch - 20ms/step
    Epoch 3/10
    2/2 - 0s - loss: 0.7157 - accuracy: 0.1961 - val_loss: 0.7048 - val_accuracy: 0.4615 - 39ms/epoch - 20ms/step
    Epoch 4/10
    2/2 - 0s - loss: 0.7108 - accuracy: 0.2157 - val_loss: 0.7017 - val_accuracy: 0.3846 - 39ms/epoch - 20ms/step
    Epoch 5/10
    2/2 - 0s - loss: 0.7054 - accuracy: 0.3137 - val_loss: 0.6986 - val_accuracy: 0.4615 - 40ms/epoch - 20ms/step
    Epoch 6/10
    2/2 - 0s - loss: 0.7001 - accuracy: 0.3333 - val_loss: 0.6955 - val_accuracy: 0.4615 - 57ms/epoch - 28ms/step
    Epoch 7/10
    2/2 - 0s - loss: 0.6952 - accuracy: 0.3725 - val_loss: 0.6925 - val_accuracy: 0.5385 - 55ms/epoch - 28ms/step
    Epoch 8/10
    2/2 - 0s - loss: 0.6902 - accuracy: 0.4314 - val_loss: 0.6896 - val_accuracy: 0.5385 - 57ms/epoch - 28ms/step
    Epoch 9/10
    2/2 - 0s - loss: 0.6853 - accuracy: 0.4902 - val_loss: 0.6867 - val_accuracy: 0.6154 - 41ms/epoch - 20ms/step
    Epoch 10/10
    2/2 - 0s - loss: 0.6805 - accuracy: 0.5882 - val_loss: 0.6840 - val_accuracy: 0.6154 - 60ms/epoch - 30ms/step
    1/1 [======] - 0s 456ms/step
    Accuracy: 0.6153846153846154
```

10. CNN

```
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
# Load your dataset
df = pd.read csv('/content/modified P1.csv')
# Assuming the last column is the target variable
X = df.iloc[:, :-1].values # Features
y = df.iloc[:, -1].values
                            # Target
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Normalize the data
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Reshape data for CNN (assuming each row is treated as a sequence)
```

```
X train = X train.reshape((X train.shape[0], X train.shape[1], 1))
X test = X test.reshape((X test.shape[0], X test.shape[1], 1))
# Create the CNN model
model = Sequential()
model.add(Conv1D(filters=32, kernel size=3, activation='relu',
input shape=(X train.shape[1], 1)))
model.add(MaxPooling1D(pool size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1, activation='sigmoid')) # Assuming binary
classification, adjust for multiclass
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32,
validation data=(X test, y test), verbose=2)
# Make predictions on the test set
y pred = (model.predict(X test) > 0.5).astype(int)
# Evaluate accuracy
accuracy = accuracy score(y test, y pred)
print(f'Accuracy: {accuracy}')
```

```
Epoch 1/10
2/2 - 2s - loss: 0.7024 - accuracy: 0.5294 - val_loss: 0.6851 - val_accuracy: 0.6923 - 2s/epoch - 884ms/step
Epoch 2/10
2/2 - 0s - loss: 0.6784 - accuracy: 0.5882 - val_loss: 0.6779 - val_accuracy: 0.5385 - 78ms/epoch - 39ms/step
Epoch 3/10
2/2 - 0s - loss: 0.6552 - accuracy: 0.7255 - val_loss: 0.6701 - val_accuracy: 0.5385 - 71ms/epoch - 35ms/step
Epoch 4/10
2/2 - 0s - loss: 0.6381 - accuracy: 0.7647 - val_loss: 0.6638 - val_accuracy: 0.5385 - 71ms/epoch - 35ms/step
Epoch 5/10
2/2 - 0s - loss: 0.6246 - accuracy: 0.7255 - val_loss: 0.6585 - val_accuracy: 0.5385 - 81ms/epoch - 41ms/step
2/2 - 0s - loss: 0.6116 - accuracy: 0.7647 - val_loss: 0.6542 - val_accuracy: 0.5385 - 128ms/epoch - 64ms/step
Epoch 7/10
2/2 - 0s - loss: 0.5989 - accuracy: 0.8039 - val_loss: 0.6498 - val_accuracy: 0.6154 - 76ms/epoch - 38ms/step
Epoch 8/10
2/2 - 0s - loss: 0.5863 - accuracy: 0.7843 - val_loss: 0.6452 - val_accuracy: 0.6154 - 85ms/epoch - 42ms/step
Epoch 9/10
2/2 - 0s - loss: 0.5750 - accuracy: 0.8039 - val_loss: 0.6403 - val_accuracy: 0.6154 - 73ms/epoch - 36ms/step
Epoch 10/10
2/2 - 0s - loss: 0.5649 - accuracy: 0.8431 - val_loss: 0.6363 - val_accuracy: 0.6154 - 115ms/epoch - 57ms/step
Accuracy: 0.6153846153846154
```

OUTPUT:

```
import pandas as pd
from tabulate import tabulate
model results = {
    'Decision Tree': 0.8461538461538461,
    'Random Forest' : 1.0,
    'Support Vector Machine': 0.6153846153846154,
    'Naive Bayes' : 0.8461538461538461,
    'Ada Boost' : 0.9230769230769231,
    'Linear Model' : 1.0 ,
    'Neural Network' : 1.0 ,
    'Gradient Boost': 0.8461538461538461,
    'LSTM': 0.6153846153846154,
    'CNN': 0.6153846153846154
# Convert the dictionary to a DataFrame
results df = pd.DataFrame(list(model results.items()),
columns=['Model', 'Accuracy'])
# Multiply accuracy by 100
model results percent = {model: accuracy * 100 for model, accuracy in
model results.items() }
# Convert the modified dictionary to a list of tuples
results list = list(model results percent.items())
# Print the tabulated results
table = tabulate(results list, headers=['Model', 'Accuracy (%)'],
tablefmt='grid')
print(table)
```

	+	·		
	Model	Accuracy (%)		
	Decision Tree	 84.6154		
	Random Forest	100		
	Support Vector Machine	61.5385		
	Naive Bayes	84.6154		
	Ada Boost	92.3077		
	Linear Model	100		
	Neural Network	100		
	Gradient Boost	84.6154		
	LSTM	61.5385		
	CNN +	61.5385		

PARTITION 2 (P2)

Applying the same codes by changing the dataset link P2.csv, the output accuracy is as follows:

PARTITION 3 (P3)

Applying the same codes by changing the dataset link P3.csv, the output accuracy is as follows:

\Rightarrow	+	
	Model +============	Accuracy (%)
	Decision Tree	100
	Random Forest	100
	Support Vector Machine	50
	Naive Bayes	100
	Ada Boost	100
	Linear Model	50
	Neural Network	100
	Gradient Boost	100
	LSTM	25
	CNN	50

PARTITION 4 (P4)

Applying the same codes by changing the dataset link P4.csv, the output accuracy is as follows:

PARTITION 5 (P5)

Applying the same codes by changing the dataset link P5.csv, the output accuracy is as follows:

PARTITION 6 (P6)

Applying the same codes by changing the dataset link P6.csv , the output accuracy is as follows:

+=====================================	=+
Dec131011 11 ee	
Random Forest 33.3333	-+
Support Vector Machine 100	-+
Naive Bayes 33.3333	-+
Ada Boost 66.6667	
Linear Model 25	
Neural Network 66.6667	
Gradient Boost 100	į
LSTM 100	
CNN 100	ĺ

PARTITION 7 (P7)

Applying the same codes by changing the dataset link P7.csv , the output accuracy is as follows:

\Rightarrow	+ Model	Accuracy (%)
	Decision Tree	20
	Random Forest	60
	Support Vector Machine	60
	Naive Bayes	80
	Ada Boost	60
	Linear Model	50
	Neural Network	40
	Gradient Boost	100
	LSTM	40
	CNN	60

PARTITION 8 (P8)

Applying the same codes by changing the dataset link P8.csv , the output accuracy is as follows:

\rightarrow	+	Accuracy (%)
	Decision Tree	100
	Random Forest	100
	Support Vector Machine	
	Naive Bayes	100
	Ada Boost	100
	Linear Model	75
	Neural Network	100
	Gradient Boost	0
	LSTM	100
	CNN	100

Step 5 : Output table for partitions

				+	+		+	+	+
Decision Tree	Random Forest		,			Neural Network		LSTM	CNN
84.6154	100	61.5385	84.6154	92.3077	100	100	84.6154	61.5385	61.5385
100	100	100	100	100	50	100	100	100	66.6667
100	100	50	100	100	50	100	100	25	50
100	100	66.6667	100	100	50	100	100	66.6667	33.333
66.6667	83.3333	83.3333	50	66.6667	50	66.6667	100	50	16.6667
33.3333	33.3333	100	33.3333	66.6667	25	66.6667	100	100	100
20	60	60	80	60	50	40	100	40	60
100	100	100	100	100	75	100	0	100	100
	84.6154 100 100 100 66.6667 33.3333	84.6154 100 100 100 100 100 100 100 66.6667 83.3333 33.3333 33.3333 20 60	84.6154 100 61.5385 100 10	84.6154 100 61.5385 84.6154 100 100 100 100 100 100 50 100 100 80 100 100 50 100 100 100 66.6667 100 33.3333 33.3333 83.3333 50 20 60 60 80	84.6154 100 61.5385 84.6154 92.3077 100 100 100 100 100 100 100 50 100 100 100 100 66.6667 100 100 33.3333 33.3333 33.3333 33.3333 66.6667 20 60 60 80 60	84.6154 100 61.5385 84.6154 92.3077 100 100 100 100 100 100 50 100 100 50 100 100 50 100 100 66.6667 100 100 50 66.6667 83.3333 83.3333 50 66.6667 50 33.3333 33.3333 100 33.3333 66.6667 25 20 60 60 80 60 50	84.6154 100 61.5385 84.6154 92.3077 100 100 100 100 100 100 100 50 100 100 100 50 100 100 50 100 100 100 50 100 100 50 100 100 33.3333 83.3333 83.3333 50 66.6667 50 66.6667 20 60 60 80 60 50 40	84.6154 100 61.5385 84.6154 92.3077 100 100 84.6154 100 100 100 100 100 100 50 100 100 100 100 50 100 100 50 100 100 100 100 50 100 100 50 100 100 100 33.3333 83.3333 83.3333 50 66.6667 50 66.6667 100 33.3333 33.3333 100 33.3333 66.6667 25 66.6667 100 20 60 60 80 60 50 40 100	84.6154 100 61.5385 84.6154 92.3077 100 100 84.6154 61.5385 100

Step 6: Apply all the machine learning models on the refined dataset

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier,
AdaBoostClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score
from sklearn.preprocessing import StandardScaler
from sklearn.neural network import MLPClassifier
from sklearn.model selection import cross val score
from sklearn.pipeline import make pipeline
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Conv1D, Flatten
# Load the dataset from CSV
dataset = pd.read csv('/content/refined dataset.csv', header=None)
Assuming no header, modify if header is present
# Replace '?' with NaN and convert the entire dataset to numeric values
dataset.replace('?', np.nan, inplace=True)
dataset = dataset.apply(pd.to numeric, errors='coerce')
# Drop rows with NaN values
dataset.dropna(inplace=True)
# Assuming the target variable is in the last column
target column index = -1
X = dataset.iloc[:, :-1]
y continuous = dataset.iloc[:, target column index]
# Convert continuous target to categorical using binning
num bins = 5  # Adjust the number of bins based on your data
y categorical = pd.cut(y continuous, bins=num bins, labels=False)
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y categorical,
test size=0.2, random state=42)
# Initialize models
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
   "Support Vector Machine": SVC(),
```

```
"Naive Bayes": GaussianNB(),
    "AdaBoost": AdaBoostClassifier(),
    "Linear Model": LogisticRegression(),
    "Gradient Boost": GradientBoostingClassifier(),
    "Neural Network": MLPClassifier(max iter=1000),
# Apply traditional machine learning models
results = {}
for name, model in models.items():
    model.fit(X train, y train)
    y pred = model.predict(X test)
    accuracy = accuracy score(y test, y pred)
    results[name] = accuracy
# Apply LSTM
X train lstm = X train.values.reshape(X train.shape[0],
X train.shape[1], 1)
X test lstm = X test.values.reshape(X test.shape[0], X test.shape[1],
1)
lstm model = Sequential()
lstm model.add(LSTM(50, input shape=(X train lstm.shape[1], 1)))
lstm model.add(Dense(1, activation='sigmoid'))
lstm model.compile(loss='binary crossentropy', optimizer='adam',
metrics=['accuracy'])
lstm model.fit(X train lstm, y train, epochs=10, batch size=32,
accuracy lstm = lstm model.evaluate(X test lstm, y test, verbose=0)[1]
results["LSTM"] = accuracy_lstm
# Apply CNN
X_train_cnn = X_train.values.reshape(X_train.shape[0],
X train.shape[1], 1)
X test cnn = X test.values.reshape(X test.shape[0], X test.shape[1], 1)
cnn model = Sequential()
cnn model.add(Conv1D(filters=64, kernel size=3, activation='relu',
input shape=(X train cnn.shape[1], 1)))
cnn model.add(Flatten())
cnn model.add(Dense(1, activation='sigmoid'))
cnn model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
cnn_model.fit(X_train_cnn, y_train, epochs=10, batch_size=32,
verbose=0)
accuracy cnn = cnn model.evaluate(X test cnn, y test, verbose=0)[1]
results["CNN"] = accuracy_cnn
```

```
# Display results
print("\nAccuracy Results:")
print("\nModel\t\t\tAccuracy")
print("------")
for name, accuracy in results.items():
    print(f"{name}\t\t{accuracy:.4f}")

print(tabulate([(name, f"{accuracy*100:.2f}%") for name, accuracy in results.items()], headers=['Model', 'Accuracy'], tablefmt='pretty'))
```

+	+
Model	Accuracy
Decision Tree Random Forest Support Vector Machine Naive Bayes AdaBoost Linear Model Gradient Boost Neural Network LSTM CNN	64.44% 75.56% 68.89% 51.11% 71.11% 68.89% 68.89% 15.56% 15.56%
+	+

Step 7: To determine that hybrid model is best

According to leaf nodes in decision tree:

Leaf Table: Leaf Index Leaf Label Sample Count 3 64 1 4 14 Р3 16 3 P4 7 15 4 10 P5 26 5 11 Р6 15 6 13 Р7 24 14

P1:64 / 178 = 0.3596

P2: 14/178 = 0.0787

P3: 16/178 = 0.0899

P4: 15/178 = 0.0843

P5: 26/178 = 0.1461

P6: 15/178 = 0.0843

P7: 24/178 = 0.1348

P8: 4/178 = 0.0225

Cumulative Sum=P1+P2+P3+P4+P5+P6+P7+P8 = 0.3596+0.0787+0.0899+0.0843+0.1461+0.0843+0.1348+0.0225 = 1

(As we got 1 we can say that our inference is correct)

Hybrid model = (0.3596 * 100) + (0.0787 * 100) + (0.0899 * 100) + (0.0843 * 100) + (0.1461 * 100) + (0.0843 * 100) + (0.1348 * 100) + (0.0225 * 100)

$$= 35.96 + 7.87 + 8.99 + 8.43 + 14.61 + 8.43 + 13.48 + 2.25$$

Hybrid Model accuracy = 100 % (Let this be y)

Consider the accuracy of best model from refined dataset:

Random Forest = 75.56 % (Let this be x)

$$y-x = 24.44 \%$$

Here y > x that implies : The hybrid model is improved by 24.44%.