

Flight Delay Prediction

Asher Erickson, Linqing Mo, Kyllan Wunder

Explaining the problem

- Impact on customers
- Impact on airlines
- Delaying other flights
- Economic impact
- Environmental impact

Data Description

- Flights from 2014 to 2018 collected by the US Office of Airline Information and the Bureau of Transportation Statistics, including date, time, origin, destination, airline, and flight delay status.
- 60 files
- Over 30 millions rows of flights data
- 109 variables

Focus on 9 main airports and 5 main airlines: 2 millions rows

Data Cleaning

- Remove columns with most missing values
- Remove arrival statistics(actual arrival time etc.): the goal is to predict if a flight will be delayed before it leaves
- Combine columns with repeating information(StateID, StateName etc.)
- Remove rows with missing value: about 1%

24 variables remaining

Causes of air traffic delay in the National Airspace System - FAA

Combine Weather Data

About 75% of delays come from weather -

- Request Climatological Data Station Details Data from NOAA(National Centers for Environmental Information) for each airport station
- Partition hourly weather type descriptions and group them into different levels based on FAA records
- Combine hourly wind speed, hourly visibility and hourly weather type into
 Flight dataframe

Visibility	WindSpeed	SevereWeather	BadWeather	DepDelay
10.0	5.0	0	0	-3.0

Create More Variable and Targets

 About 15% of delays come from volume of airport

- Flight Density is created based on counts or many acpartare in a simple interval for each flight
- Holiday variable is created based on if the flight is on the week of federal holidays

Two targets for classification problem: delay_binary(with threshold of 15 min)
 delay_interval(multiclass classification)

is_holiday_week	Origin Flight Density	DepDelay	delay_binary	delay_interval
1	6.0	21.0	1	3

How to Choose Airlines/Airports

Overall: 19.87%

Delta Airlines (DL): 16.50%

American Airlines (AA): 18.42%

United Airlines (UA): 20.30%

SkyWest Airlines (OO): 21.32%

Southwest Airlines (WN): 27.68%

Charlotte Douglas (CLT): 16.64%

Atlanta (ATL): 17.07% Phoenix (PHX): 17.73% Denver (DEN): 19.59%

Dallas/Fort Worth (DFW): 20.08%

Houston (IAH): 20.13%

San Francisco (SFO): 21.03% Los Angeles (LAX): 21.09%

Chicago O'Hare (ORD): 22.92%

Airline Airport dependency

Independent if $P(A) * P(B) = P(A \cap B)$

 $P(Delta) * P(Phoenix) = P(Delta \cap Phoenix)$

P(.165) * P(.1773) = P(.785)

No equal thus dependant

All combinations of airlines and airports are dependent

Best combinations:

PHX DL 7.85%

CLT DL 13.01%

PHX UA 13.35% DEN DL 13.50%

DFW UA 13.90%

Worst combinations:

DEN WN 24.81%

ORD UA 24.86%

PHX WN 26.24%

SFO WN 28.66%

LAX WN 32.24%

How Weather Affects Flight Delay

Ratio of flights under bad weather: 0.0271 Ratio of flights under severe weather: 0.008

Ratio of delay under normal weather: 0.194
Ratio of delay under bad weather: 0.264
Ratio of delay under severe weather: 0.530

Delay	Yes	No
Mean	9.7	8.8
25% percentile	6.0	5.0
75% percentile	13.0	11.0

Delay Over Time

Ratio of Delayed Flights by Hour:

3-5	0.058	6-8	0.097
9-11	0.179	12-14	0.212
15-17	0.245	18-20	0.290
21-23	0.259		

From FAA (shows similar seasonality)

Naive approach

First predict if a flight will be delayed

Accuracy: 79.3%

Feature importance:

DestAirportSeqID 50.36
OriginAirportSeqID 49.64

Then predict how long the delay will be

Accuracy: 52%

Feature importance:

DestAirportSeqID 50.03
OriginAirportSeqID 49.72
Year 0.08
CRSArrTime 0.06
CRSDepTime 0.05
Distance 0.04
CRSElapsedTime 0.01

Comparing models (binary)

Logistic Regression: 79.4%

Random Forest: 79.6%

XGBoost Classification: 79.8%

Neural Network: 80.3%

Feature importance for XGBoost:

Top features:

CRSDepTime: 0.13519437611103058

Reporting_Airline_WN: 0.11107633262872696

SevereWeather: 0.08239080011844635 CRSArrTime: 0.07548076659440994 Visibility: 0.06928591430187225

DestAirportSeqID: 0.053225867450237274

Month: 0.041327688843011856 Origin_ORD: 0.032815366983413696

Comparing models (multi)

Neural Network: 58.25%

Xgboost: 51.45%

Random Forest: 51.43%

KNN: 49.96%

Feature importance:
SevereWeather (12.0%)
CRSDepTime (8.07%)
Reporting_Airline (7.44%)
DestAirportSeqID (6.5%)
Distance (5.86%)
Month (5.67%)
OriginAirportSeqID (5.67%)
Visibility (4.9%)
BadWeather (4.34%)

Xgboost results

Future Work

- Build more detailed model on how weather affects flights delay
- Research on relationship between Hour of day and flights delay
- Calculate real airports volume
- One-hot ensemble for some categorical variables