

M1104 Introduction aux bases de données

MODULE : Algèbre & Modèle relationnelle

NOTION D'ALGÈBRE RELATIONNELLE

Introduction

- L'algèbre relationnel est un support mathématique (théorie des ensembles...) cohérent sur lequel repose le modèle relationnel.
- L'algèbre relationnel est au SQL (Structured Query Langage) se qu'est l'algorithme à la programmation.
- □ L'algèbre relationnel à pour but de décrire les opérations qu'il est possible d'appliquer sur des relations pour produire de nouvelles relations.

La partie structurelle : Relation ou Table

La partie opérationnelle

- Deux familles d'opérateurs relationnels
 - 4 opérations ensemblistes
 - Union;
 - Intersection;
 - Différence;
 - Produit cartésien.
 - 4 opérations spécifiques des BD relationnelles
 - Sélection;
 - Projection;
 - Jointure;
 - Division.

Opérations ensemblistes: l'union

- L'union est une opération portant sur deux relations R1 et R2 ayant le même schéma¹ et construisant une troisième relation constituée des nuplets appartenant à chacune des deux relations R1 et R2 sans doublon
- Notation:

$$\blacksquare$$
 R3 = union(R1,R2) (notation formelle)

ou

 \blacksquare **R1** \cup **R2** (notation utilisant les opérateurs de l'algèbre relationnelle)

deux relations qui doivent avoir le même nombre d'attributs définis dans le même domaine (ensemble des valeurs permises pour un attribut)

Opérations ensemblistes : l'union

Exemple: liste des enseignants de la FAC

R1 = union (professeur, maitre_conference)

ou

R1 = professeur ∪ maitre_conference

PROFESSEUR

N°Ens	Nom	Prénom	Matière	
12	CHARPIN	Françoise	Economie	
15	THERY	Philippe	Droit	
16	VOGEL	Louis	Droit	
17	BALLE	Francis	Politique	

MAITRE CONFERENCE

N°Ens	Nom	Prénom	Matière
5	BEL	Liliane	Mathématiques
8	TOPOR	Lucienne	Droit
58	SKALLI	Ali	Economie
67	BERGER	Maria	Informatique

Relation résultat

N°Ens	Nom	Prénom	Matière
12	CHARPIN	Françoise	Economie
15	THERY	Philippe	Droit
16	VOGEL	Louis	Droit
17	BALLE	Francis	Politique
5	BEL	Liliane	Mathématiques
8	TOPOR	Lucienne	Droit
58	SKALLI	Ali	Economie
67	BERGER	Maria	Informatique

Opérations ensemblistes : l'intersection

■ L'intersection est une opération portant sur deux relations R1 et R2 ayant le même schéma et construisant une troisième relation dont les n-tuples sont constitués de ceux appartenant aux deux relations,

Notation:

 $R_3 = intersection(R_1,R_2)$

ou

■ R3: R1 ∩ R2

Opérations ensemblistes : l'intersection

Exemple:

les personnes qui sont étudiant et membre du CA

R1 = intersection (Etudiants, MembreCA)

ou R1 = Etudiants \cap MembreCA

Relation : Etudiants					
NumEtud NomEtud PrenomEtud					
1	Durad	Pierre			
10	Vla Jean				
20 Plan René					
30 Bir Yann					
40 Triri Saele					

Relation : MembreCA					
NumEtud NomEtud PrenomEtud					
21	Remy	Eric			
25	Raffin	Romain			
52	Thon	Sébastien			
40	Triri	Saele			
10	Vla	Jean			

Relation résultat

Relation : R1				
NumEtud NomEtud PrenomEtud				
40 Triri Saele				
10 Vla Jean				

Opérations ensemblistes : Différence

■ La différence est une opération portant sur deux relations R1 et R2 ayant le même schéma et construisant une troisième relation dont les n-tuples sont constitués de ceux ne se trouvant que dans la relation R1 et pas dans la relation R2;

- Notation:
 - \blacksquare R3 = difference (R1,R2)

ou

R3 = R1 - R2

Opérations ensemblistes: Différence

Exemple:

les personnes qui sont étudiant et PAS membre du CA

R1 = difference (Etudiants, MembreCA)

ou R1 = Etudiants - MembreCA

Relation : Etudiants					
NumEtud NomEtud PrenomEtud					
1	Durad	Pierre			
10 Vla Jean					
20 Plan René					
30 Bir Yann					
40 Triri Saele					

Relation : MembreCA				
NumEtud NomEtud PrenomEtud				
21	Remy Eric			
25	Raffin Romain			
52	52 Thon Sébastien			
40 Triri Saele				
10 Vla Jean				

Relation résultat

	Relation : R1				
	NumEtud	NomEtud	PrenomEtud		
	1 Durad 20 Plan		Pierre		
			René		
	30	Bir	Yann		

Opérations ensemblistes: Produit cartésien

- Le produit cartésien est une opération portant sur deux relations R1 et R2 et qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R1 et R2.
- C'est une multiplication : nb lignes de R1 X nb lignes de R2
- Notation:
 - $\blacksquare R3 = \mathbf{produit} (R1,R2)$

ou

 $\blacksquare R3 = R1 \times R2$

Opérations ensemblistes : Produit cartésien

Exemple : R3 = COUREUR \times PAYS

Relation : COUREUR						
NumCoureur NomCoureur CodeEquipe CodePays						
8	ULLRICH Jan	TEL	ALL			
31 JALABERT Laurent		ONC	FRA			
61	ROMINGER Tony	COF	SUI			
91 BOARDMAN Chris GAN G-B						
114 CIPOLLINI Mario SAE ITA						

Relation : PAYS		
CodePays	NomPays	
ALL	Allemagne	
FRA	France	
SUI	Suisse	
G-B	Grande -Bretagne	

Relation résultat

NumCoureur	NomCoureur	CodeEquipe	CodePays	CodePays	NomPays
8	ULLRICH Jan	TEL	ALL	ALL	Allemagne
8	ULLRICH Jan	TEL	ALL	FRA	France
8	ULLRICH Jan	TEL	ALL	SUI	Suisse
8	ULLRICH Jan	TEL	ALL	G-B	Grande –Bretagne
31	JALABERT Laurent	ONC	FRA	ALL	Allemagne
31	JALABERT Laurent	ONC	FRA	FRA	France
31	JALABERT Laurent	ONC	FRA	SUI	Suisse
31	JALABERT Laurent	ONC	FRA	G-B	Grande -Bretagne

Opérations spécifiques : la sélection

■ La sélection (parfois appelée restriction) génère une relation regroupant exclusivement toutes les occurrences de la relation R qui satisfont l'expression logique E.

Relation R				
$\operatorname{Col}_{\scriptscriptstyle 1}$	Col_2	Col_3		

- Notation:
 - \blacksquare R1 = SELECTION (R, Expression)

R1 =
$$\sigma$$
 (E)R — Relation sur laquelle s'applique la restriction

Expression Logique

la Sélection (ou restriction) - σ est la lettre grecque sigma.

Exemple : Quels sont les coureurs suisses ?

R1 = SELECTION (COUREUR, CodePays = "SUI")

ou

 $R_1 = \sigma(CodePays = "SUI")COUREUR$

Relation : COUREUR					
NumCoureur NomCoureur CodeEquipe CodePays					
8	ULLRICH Jan	TEL	ALL		
31	JALABERT Laurent	ONC	FRA		
61	ROMINGER Tony	COF	SUI		
91	BOARDMAN Chris	GAN	G-B		
114	CIPOLLINI Mario	SAE	ITA		

Relation résultat

Relation : R1					
NumCoureur	NumCoureur CodeEquipe CodePays				
61	ROMINGER Tony	COF	SUI		

Opérations spécifiques : la projection

Relation restreinte aux attributs spécifiés dans la projection

Relation R					
$\operatorname{Col}_{\scriptscriptstyle 1}$	Col_2	Col_3	Col ₄	Col_5	Col_6

- Notation:
 - R1 = Projection (R, Col1...Coli)
 - $R1 = \prod (Col1...Coli)R$ Relation sur laquelle s'applique la restriction

Liste des attributs à afficher

la projection - Π est la lettre grecque pi .

Opérations spécifiques : la projection

Exemple : Nom et nationalité des coureurs ?

R1 = PROJECTION (COUREUR, NomCoureur, CodePays)

ou

 $R1 = \prod_{\text{(NomCoureur,CodePays)}} COUREUR$

Relation : COUREUR							
NumCoureur	NomCoureur		(CodeEquipe	CodePays		
8	ULLRICH Jan		T		Dolotion	D 4	
31	JALABERT Laurent		Relation: R		K1		
61	ROMINGER Tony		C	Nom	Coureur	Co	odePays
91	BOARDMAN Chris		G	ULLRICH Jan		ALI	
114	CIPOLLINI Mario		S	JALABERT Lat	urent	FRA	A
				ROMINGER TO	ony	SUI	
				BOARDMAN C	Chris	G-B	3
	Relation résultat			CIPOLLINI Ma	ario	ITA	

- La jointure est une opération portant sur deux relations R1 et R2 qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R1 et R2 qui satisfont l'expression logique E.
- Notation:
 - R3 = jointure (R1, R2, Expression de jointure)
 - \blacksquare R3 = R1 $\triangleright \triangleleft_E$ R2
- La jointure n'est rien d'autre qu'un produit cartésien suivi d'une sélection(restriction):

$$R1 \triangleright \triangleleft_E R2 = \sigma_{(E)} (R1 \times R2)$$

■ Les différentes jointures : theta-jointure

- c'est une jointure dans laquelle l'expression logique E est une simple comparaison entre un attribut A1 de la relation R1 et un attribut A2 de la relation R2.
- La theta-jointure est notée

R1 ▷⊲_E **R2**

Juny

Fidus

Opérations spécifiques : la jointure

Exemple de theta-jointure

R = jointure (Famille, Cadeau, (Age <= AgeC) ET (Prix < 50))

 $R = Famille \triangleright \triangleleft_{((Age <= AgeC) ET (Prix < 50))} Cadeau$

Re	elation Famill	le
Nom	Prénom	Age
Fourt	Lisa	6

42

16

Relation Cadeau			
AgeC Article Prix			
99	livre	30	
6	poupée	60	
20	baladeur	45	
10	déguisement	15	

Carole

Laure

	Relation R						
Nom	Prénom	Age	AgeC	Article	Prix		
Fourt	Lisa	6	99	livre	30		
Fourt	Lisa	6	20	baladeur	45		
Fourt	Lisa	6	10	déguisement	15		
Juny	Carole	42	99	livre	30		
Fidus	Laure	16	99	livre	30		
Fidus	Laure	16	20	baladeur	45		

Relation résultat

■ Les différentes jointures : equi-jointure

- Une equi-jointure est une theta-jointure dans laquelle l'expression logique E est un test d'égalité entre un attribut A1 de la relation R1 et un attribut A2 de la relation R2.
- L'equi-jointure est notée

$$R1 \triangleright \triangleleft_{A_1,A_2} R2$$

■ Exemple d'equi-jointure

R = jointure (coureur,pays, coureur.CodePays=pays.CodePays)

R = coureur ▷< CodePays, CodePays pays

Relation : COUREUR					
NumCoureur	NomCoureur	CodeEquipe	CodePays		
8	ULLRICH Jan	TEL	ALL		
31	JALABERT Laurent	ONC	FRA		
61	ROMINGER Tony	COF	SUI		
91	BOARDMAN Chris	GAN	G-B		
114	CIPOLLINI Mario	SAE	ITA		

Relation : PAYS			
CodePays NomPays			
ALL	Allemagne		
FRA France			
SUI Suisse			
G-B	Grande -Bretagne		

Relation résultat

NumCoureur	NomCoureur	CodeEquipe	CodePays	CodePays	NomPays
8	ULLRICH Jan	TEL	ALL	ALL	Allemagne
31	JALABERT Laurent	ONC	FRA	FRA	France
61	ROMINGER Tony	COF	SUI	SUI	Suisse
91	BOARDMAN Chris	GAN	G-B	G-B	Grande -Bretagne

■ Les différentes jointures : jointure naturelle

- Une jointure naturelle est une equi-jointure dans laquelle les attributs des relations R1 et R2 sur lesquelles se feront la jointure portent le même nom. Dans la relation construite, les attributs de jointure ne seront pas dupliqué.
- La jointure naturelle est notée

R1 ▶ ⊲ **R2**

Exemple de jointure naturelle

R = jointure (Famille, Cadeau)

R = Famille ▶

Cadeau

Relation Famille				
Nom Prénom Age				
Fourt	Lisa	6		
Juny	Carole	40		
Fidus	Laure	20		
Choupy	Emma	6		

Relation Cadeau				
Age	Article	Prix		
40	livre	30		
6	poupée	60		
20	baladeur	45		

Relation résultat

Relation R					
Nom	Prénom	Age	Article	Prix	
Fourt	Lisa	6	poupée	60	
Juny	Carole	40	livre	30	
Fidus	Laure	20	baladeur	45	
Choupy	Emma	6	poupée	60	

Opérations spécifiques : la division

■ La division est une opération portant sur deux relations R1 et R2, telles que le schéma de R2 est strictement inclus dans celui de R1, qui génère une troisième relation regroupant toutes les parties d'occurrences de la relation R1 qui sont associées à toutes les occurrences de la relation R2;

Notation:

$$R_3 = R_1 \div R_2$$

Opérations spécifiques : la division

Exemple : les athlètes qui ont participé à toutes les épreuves
 R3 = Participer ÷ Epreuve

Participer

Athlète	Epreuve		
Dupont	200 m		
Durand	400 m		
Dupont	400 m		
Martin	110 m H		
Dupont	110 m H		
Martin	200 m		

Epreuve

Epreuve		
200 m		
400 m		
110 m H		

Soit les relations :

Journal(<u>code</u> j, titre, prix, type, periodicite) Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp) Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

Requêtes :

- 1. Quel est le prix et le titre des journaux ?
- 2. Donnez tous les renseignements connus sur les journaux hebdomadaires ?
- 3. Donner les codes des journaux livrés à Bordeaux.
- 4. Donner les numéros des dépôts qui reçoivent des journaux
- 5. Donner les titres des journaux livrés sur tous les dépôts.

Soit les relations :

Journal(<u>code</u> j, titre, prix, type, periodicite) Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp) Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

- Solutions des requêtes :
 - 1. Quel est le prix et le titre des journaux?

R = Projection(JOURNAL,titre,prix)

ou

 $R = \Pi_{\text{(titre, prix)}}$ journal

Soit les relations :

Journal(<u>code_j</u>, titre, prix, type, periodicite)
Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp)
Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

- Requêtes :
 - 2. Donnez tous les renseignements connus sur les journaux hebdomadaires ?

R = selection(JOURNAL, periodicite = 'hebdomadaires')

ou

R: σ(periodicite='hebdomadaires') journal

Soit les relations :

Journal(<u>code</u> j, titre, prix, type, periodicite) Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp) Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

- Requêtes :
 - 3. Donner les codes des journaux livrés à Bordeaux.

R1=jointure (depot,livraison, depot.no-depot,livraison.no-depot)

R2=selection(R1, ville='Bordeaux')

R=projection(R2,code_j)

ou

 $R: \prod_{(code_j)} \sigma_{(ville='Bordeaux')} (depot \triangleright \triangleleft_{no-depot, no-depot} livraison)$

Soit les relations :

Journal(<u>code</u> j, titre, prix, type, periodicite) Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp) Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

- Requêtes :
 - 4. Donner <u>les numéros des dépôts</u> qui reçoivent des journaux

```
R1=projection(depot,no_depot)
```

R2=projection(livraison,no_depot)

R=intersection(R1,R2)

ou

 $R = (\Pi_{\text{(no depot)}} \text{ depot)} \cap (\Pi_{\text{(no depot)}} \text{ livraison)}$

Ou plus simple, la relation livraison ne fait apparaître que les dépôts qui sont livrés :

$$R = \Pi_{(no_depot)}$$
 livraison

Soit les relations :

Journal(<u>code</u> j, titre, prix, type, periodicite)
Depot(<u>no-depot</u>, nom-depot, adresse, ville, cp)
Livraison(<u>#no-depot</u>, <u>#code-j</u>, <u>date-liv</u>, quantite-livree)

Requêtes :

5. Donner les titres des journaux livrés sur tous les dépôts.

```
R1=projection(depot,no_depot)
R2=jointure(livraison, journal)
R3=projection(R2,titre,no_depot)
R=division(R3,R1)
ou
R=(∏<sub>(titre,no_depot)</sub>(livraison ▷▷ journal)) ÷ (∏<sub>(no_depot)</sub>depot)
```


Remarques sur l'algèbre relationnelle

- L'algèbre relationnelle permet l'étude des opérateurs entre eux (commutativité, associativité, groupe d'opérateurs minimaux ,...)
 - équivalence de certaines expressions
 - programmes d'optimisation qui transforment toute requête en sa forme équivalente la plus efficace
- L'opération de jointure est très coûteuse : proportionnelle au nombre de ntuples (m*n pour deux relations jointes)
 - toujours préférable de faire les restrictions le plus tôt possible afin de manipuler des tables les plus réduites possibles.

Pourquoi une requête est-elle meilleure qu'une autre?

Une requête n'est pas l'unique solution d'un problème.

- efficacités différentes
 - Exemple:

Fournisseur (Nofno, Nom, Adresse, Ville)

Produit (N°prod, Designation, Prix, Poids, Couleur)

Commande (N°comm, #N°fno, #N°prod, , Quantité)

Produit = 8 lignes * 5 colonnes * 10 char = 400 octets Commande = 10 lignes * 4 colonnes * 10 char = 400 octets

Requête : Références, prix et quantités des produits commandés en plus de 10 exemplaires par commande ?

Pourquoi une requête est-elle meilleure qu'une autre?

Solution 1:

R1= JOINTURE(Commande, Produit)

R2 = SELECTION(R1, Quantité > 10)

R3 = PROJECTION(R2, N°prod, Prix, Quantité)

■ R1 = jointure sur la table Commande et la table Produit = 400*400 = 160 000 octets

Pourquoi une requête est-elle meilleure qu'une autre?

Solution 2:

R1 = PROJECTION(SELECTION(Commande, Quantité>10), N°prod, Quantité)

R2 = JOINTURE(R1, PROJECTION(Produit, N°prod, Prix))

R3 = PROJECTION(R2, N°prod, Prix, Quantité)

■ R2 = jointure sur le couple (N°prod, Prix) de la table Produit = 8*2*10 = 160 octets

et

- sur le couple (N°prod, Quantité) de la table
 Commande = 2*2*10 = 40 octets
 - □ Total = 40*160 = 6400 octets
- Gain de 75% (facteur 25) en taille mémoire