Problem E. Tenzing and Balls

Time limit 1000 ms **Mem limit** 262144 kB

Enjoy erasing Tenzing, identified as Accepted!

Tenzing has n balls arranged in a line. The color of the i-th ball from the left is a_i .

Tenzing can do the following operation any number of times:

- select i and j such that $1 \le i < j \le |a|$ and $a_i = a_j$,
- remove $a_i, a_{i+1}, \ldots, a_j$ from the array (and decrease the indices of all elements to the right of a_j by j-i+1).

Tenzing wants to know the maximum number of balls he can remove.

Input

Each test contains multiple test cases. The first line of input contains a single integer t ($1 \le t \le 10^3$) — the number of test cases. The description of test cases follows.

The first line contains a single integer n ($1 \le n \le 2 \cdot 10^5$) — the number of balls.

The second line contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le n$) — the color of the balls.

It is guaranteed that sum of n of all test cases will not exceed $2 \cdot 10^5$.

Output

For each test case, output the maximum number of balls Tenzing can remove.

Sample 1

Input	Output
2	4
5	3
1 2 2 3 3	
4	
1 2 1 2	

Note

In the first example, Tenzing will choose i=2 and j=3 in the first operation so that a=[1,3,3]. Then Tenzing will choose i=2 and j=3 again in the second operation so that a=[1]. So Tenzing can remove 4 balls in total.

In the second example, Tenzing will choose i=1 and j=3 in the first and only operation so that a=[2]. So Tenzing can remove 3 balls in total.