第一章 算法分析与 NP-完全问题

§ 1.1 算法分析

一. 程序运行时间的测量

影响程序运行时间的因素:

- 1.程序的输入的长度
- 2.编译程序生成目标代码的质量
- 3.计算机指令的性质和速度
- 4.算法的时间复杂性

二. 评价算法运行时间的标准

运行时间作为输入长度的函数 T(n)

1.最坏运行时间:

算法对具有长度 n 的任何输入的最长运行时间。

2.平均运行时间:

即在"平均"输入下,算法的运行时间。通常我们假设给定长度的各种输入概率相同。平均运行时间是在这个假设下,运行时间的数学期望值。

三. 记号Θ, O, Ω, o, ω

1.记号0

设 g(n)是一给定函数,用 $\Theta(g(n))$ 表示函数的集合:

 $\Theta(g(n)) = \{f(n) | 存在正的常数C_1, C_2 \pi n_0 使得当n \ge n_0 有0 \le C_1 g(n) \le f(n) \le C_2 g(n) \}$ 。我们写 $f(n) = \Theta(g(n))$,表示 $f(n) \in \Theta(g(n))$ 。

例 1:
$$\frac{1}{2}$$
n² - 3n = Θ (n²)。

$$\mathfrak{R}_{0} = 7, C_{1} = \frac{1}{14}, C_{2} = \frac{1}{2}$$

当
$$n \ge n_0$$
时, $C_1 n^2 \le \frac{1}{2} n^2 - 3n \le C_2 n^2$ 。

2.记号 O

设 g(n)是一给定函数,用0(g(n))表示函数的集合:

 $O(g(n)) = \{f(n) \mid 存在正的常数 C 和 n_0 使得当 n \ge n_0, 有 0 \le f(n) \le n_0 \}$

Cg(n)}。我们写f(n) = O(g(n)),表示 $f(n) \in O(g(n))$ 。显然有 $\Theta(g(n)) \subseteq O(g(n))$ 。

例 2: 同例 1, 有 $\frac{1}{2}$ n² - 3n = O(n²), 同时也有3n = O(n²),

但是3n = $\Theta(n^2)$ 不成立。

3.记号Ω

设 g(n)是一给定函数,用 $\Omega(g(n))$ 表示函数的集合:

 $\Omega(g(n)) = \{f(n) \mid$ 存在正的常数 C 和 n_0 ,使得当 $n \ge n_0$ 有 $0 \le Cg(n) \le f(n)\}$ 。

4.记号 o

设 g(n)是一给定函数,用o(g(n))表示函数的集合:

 $o(g(n)) = \{f(n) \mid$ 对任意正的常数 C,存在常数 $n_0 > 0$,使得当 $n \ge n_0$,有 $0 \le f(n) < Cg(n)\}$.

例 3: $2n = o(n^2)$,但 $2n^2 \neq o(n^2)$ 。

5.记号ω

设 g(n)是一给定函数,用 $\omega(g(n))$ 表示函数的集合:

 $\omega(g(n)) = \{f(n) \mid$ 对于任意正的常数 C,存在常数 $n_0 > 0$,使得当 $n \ge n_0$,有 $0 \le Cg(n) < f(n)\}$ 。

例 4: $\frac{1}{2}n^2 = \omega(n)$, 但 $\frac{1}{2}n^2 \neq \omega(n^2)$ 。

四. 运行时间增长率的比较

例 5: 有两个算法运行时间分别为 $\Theta(n^2)$ 和 $\Theta(n^3)$ 是否 $\Theta(n^2)$ 的算法比 $\Theta(n^3)$ 的算法好?

设 $T_1(n) = 100n^2$, $T_2(n) = 5n^3$,

$$\frac{T_2(n)}{T_1(n)} = \frac{5n^3}{100n^2} = \frac{n}{20}$$

当n < 20时, 算法 2 比算法 1 运行得快。当 n 充分大时,

$$\frac{T_2(n)}{T_1(n)} \to \infty$$

故当 n 充分大时,算法 1 比算法 2 快。

例 6: 有四个算法运行时间增长率如下: (见图 1.1)

§ 1.2 算法分析技术

一. 计算程序运行时间

```
1.加法规则:
```

```
如果T_1(n)和T_2(n)分别是两段程序P_1和P_2的运行时间,T_1(n) = O(f(n)),T_2(n) = O(g(n)),那么程序段P_1后跟P_2的运行时间为T_1(n) +T_2(n),时间复杂度为O(\max(f(n),g(n)))。 这因为存在正的常数C_1,C_2,n_1和n_2,使得当n \geq n_1时,T_1(n) \leq C_1 f(n);当n \geq n_2时,T_2(n) \leq C_2 g(n)。令n_0 = \max(n_1,n_2),C = C_1 + C_2,当n \geq n_0时,T_1(n) + T_2(n) \leq C_1 f(n) + C_2 g(n) \leq (C_1 + C_2) \max (f(n),g(n)) \leq C \max(f(n),g(n))。 2.乘法规则: 如果T_1(n)和T_2(n)为 O(f(n))和 O(g(n)),那么T_1(n)TD(n)0 D(f(n)0 D(f(n)0 D(f(n))0 D(
```

二.例子:

```
PROCEDURE Bubblesort(VAR A : array[1..n]of integer);
     VAR
      i, j, temp: integer;
    BEGIN
  FOR i := 1 TO n-1 DO
    FOR j := n DOWNTO i+1 DO
      IF A[j-1] > A[j] THEN
          BEGIN
        temp := A[j-1];
        A[j-1] := A[j];
        A[j] := temp;
          END
     END;
算法分析:
(4), (5), (6)为 O(1)+O(1)+O(1) = O(\max(1, 1, 1)) = O(1);
(3)取最坏情况, 执行条件判断 O(1), 语句内部 O(1), 结果为 O(1);
(2)执行循环控制条件为 O(1), 内部 O(1), 共循环 n-i 次, 由乘法规则
  O((n-i)\times 1) = O(n-i);
(1)将各次循环的时间加起来:
```

$$O(\sum_{i=1}^{n-1}(n-i)=O\left(\frac{n(n-1)}{2}\right)=O\left(\frac{n^2}{2}-\frac{n}{2}\right)=O(n^2)_{\,\circ}$$

§ 1.3 确定图灵机

一. 确定图灵机

1.构成:确定型单带图灵机(DTM)由有限状态控制器,读写头和一条带组成:这条带由标有…,-2,-1,0,1,2,3,…的带方格的双向无穷序列构成。(见图 1.2)

2.DTM 定义:

- 一个 DTM(程序)包括:
- (1)有穷的带符号集 Γ ,包括输入符号子集 $\Sigma \subset \Gamma$ 和一个特殊的空白符# $\in \Gamma \Sigma$;
- (2)有穷状态集合 Q,包括一个特殊的初始状态 q_0 和两个特殊的停机状态 q_Y 和 q_N ;
- (3)转移函数:
 - $\delta: (Q \backslash \{q_Y, q_N\}) \times \Gamma \to Q \times \Gamma \times \{l, r\}$

设Σ*是由 Σ 中符号组成的长度大于等于 0 的任意串的集合。

DTM 的输入 $x \in \Sigma^*$ 放在从 1 到|x|的带方格中。初始时,所有其它方格中放空白符#。DTM 初始处于 q_0 状态,读写头指向带方格 1.

 $\delta(q,s) = (q',s',\Delta)$ 表示当前有穷状态控制器处于状态 q, 读头所指方格上符号为 s。这时状态 改为 q',读头所指的方格写上 s',再根据 Δ 决定读写头左移($\Delta = 1$)或右移($\Delta = r$)一格。

运行到某一步,当 $\mathbf{q}=\mathbf{q_N}$ 时,DTM 给出答案 "是"并停机;当 $\mathbf{q}=\mathbf{q_N}$ 时,DTM 给出答案 "否"并停机。

3.例子:给出一个 DTM

$$\Gamma = \{0, 1, \#\}, \Sigma = \{0, 1\}, Q = \{q_0, q_1, q_2, q_3, q_Y, q_N\}$$

δ函数用下表给出: $\delta(q,s)$:

q	0	1	#
q_0	$(q_0, 0, r)$	$(q_0, 1, r)$	(q ₁ ,#,l)
q_1	(q ₂ ,#,l)	$(q_3, #, l)$	(q _N , #, l)
q_2	$(q_Y, \#, l)$	$(q_N, \#, l)$	$(q_N, \#, l)$
q_3	$(q_N, #, l)$	$(q_N, \#, l)$	(q _N ,#,l)

设 α , $\beta \in \Gamma^*$, $\alpha \in \Gamma$, 我们定义 DTM 的格局(α q α β)表示当前图灵机处于 q 状态,带上的符号 串为 α αβ,当前读写头指向 a 所在的这个方格。

上例中 DTM 对于输入 10100 的计算过程可表示如下:

$$(q_010100) \Rightarrow (1q_00100) \Rightarrow (10q_0100) \Rightarrow (101q_000) \Rightarrow (1010q_00)$$

 $\Rightarrow (10100q_0\#) \Rightarrow (1010q_10\#) \Rightarrow (101q_20\#\#) \Rightarrow (10q_Y1\#\#\#)$

4.DTM 接受的语言

 \forall x ∈ Σ *, DTM M接受 x 当且仅当输入 x 时,M 停机在状态 q_v 。

M 识别的语言 L_M 为: $L_M = \{x \mid x \in \Sigma^* \perp M$ 接受 $x\}$ 。

在上例中: $L_M = \{x \mid x \in \{0,1\}^* \mid x \in \{0,1\}^$

DTM 输入 x 后,有三种可能:

- (1)停机在qy状态;
- (2)停机在 q_N 状态;
- (3)永远不停机。
- *对应算法的 DTM 程序对任何输入,它都停机。

二. 判定问题

1.定义:由于任何事物都可以用 0 和 1 编码,一个判定问题可以描述如下:已知L ⊆ {0,1}*,对于 $x \in \{0,1\}^*$,若 $x \in L$,则给出答案"是";若 $x \notin L$,则给出答案"否"。

2.例子:

给定一个正整数 N, 问是否有正整数 m 使 N = 4m?

在标准编码方案下,整数 N 用二进制数表示。一个整数可被 4 整除,当且仅当它的二进制数最后两位是 00。故上例中的 DTM 可解本判定问题。

三. P 问题类

1.图灵机的时间复杂性

确定型图灵机对输入 x 的时间复杂性指的是,从开始到停机为止的运行步数。

 $T_M\colon\ Z^+\to Z^+$

 $T_{M}(n) = \max\{m \mid \forall x \in \Sigma^{*}, |x| = n, M \ \forall x \in \Sigma^{*}, |x| = n, M$

2.P 问题类

 $P = \{L \mid 有多项式时间的 DTM 程序 M 使得L = L_M\}$ 。

§1.4 非确定型图灵机

一. 非确定图灵机的定义

- 一个非确定型图灵机 NDTM M 包括:
- (1) Γ,Σ与 DTM 相同
- (2) Q,qo,qy,qN与 DTM 相同
- (3) 转移函数

 $\delta \colon \left(\mathbb{Q} \backslash \{ \mathbb{q}_{\mathbb{Y}}, \mathbb{q}_{\mathbb{N}} \} \right) \times \Gamma \to 2^{\mathbb{Q} \times \Gamma \times \{l,r\}}$

*解释 δ 的多值性,一次可做多种运算。

二. 非确定图灵机的另一种定义

NDTM 也可以看作除了多一个"猜想模块"外, 其它与 DTM 相同。这个"猜想模块"带

有"猜想头",可对带写入"猜想"。

计算分为两个阶段,一是猜想阶段,一是检验阶段。对任一输入,NDTM 首先给出(无穷多种猜想中的)一个猜想,然后按 DTM 的动作验证该猜想是否答案。检验阶段若停在 q_Y 状态,则回答"是"。检验阶段也可能停在 q_N 状态或不停机。

三. NP 问题类

NDTM 对给定的输入字符串 x 有无穷多种可能的计算,对 Γ *中每一个可能的猜想字符串有一个计算。如果这些计算中至少有一个是接受的计算(停在 q_Y 状态),则称这个 NDTM 接受 x。

NDTM 识别的语言为: $L_M = \{x \mid x \in \Sigma^* \perp M$ 接受 $x\}$

NDTM M 接受字符串 x 所需的时间定义为: M 关于 x 的所有接受计算中猜想阶段和检验阶段直到进入停机状态 q_v 时为止所需的步数的最小值。

 $T_M: Z^+ \rightarrow Z^+$

 $T_M(n) = \max\{1, m \mid \forall x \in L_M, |x| = n, M$ 接受 x 的时间为 m}。

若存在多项式 p,使得 $\forall n \in Z^+$ 有 $T_M(n) \le p(n)$,那么这个 NDTM M是一个多项式时间的 NDTM。

 $NP = \{L \mid 存在多项式时间的 NDTM M, 使得L_M = L\}$ 。

*NP 问题类是多项式时间可验证解的问题类。

§ 1.5 P 问题与 NP 问题的关系

一. P与 NP 的关系

1. $P \subseteq NP$

确定图灵机是特殊的非确定图灵机,故P⊆NP。

2.用确定图灵机解决 NP 问题

定理 **1.1**: 如果 π ∈ NP,那么存在一个多项式 **p** 使得 π 能用时间复杂性 为 $O(2^{p(n)})$ 的确定型算法解决。

证明:设非确定图灵机字母表为 Γ ,且 $|\Gamma|=k$ 。对输入x,其长度为|x|=

n。若非确定型图灵机在不超过 q(n)步内对 x 给出肯定的判断,则 NDTM 给出的猜想长度不超过 q(n)。由于猜想每位的字母有 k 种可能,故猜想的全体不超过 $k^{q(n)}$ 个。每个猜想在q(n) 步内检验完毕,故全体检验完毕的时间复杂度以 $q(n)k^{q(n)}$ 为上界。适当选取多项式 p,则 $q(n)k^{q(n)}$ 为 $O(2^{p(n)})$ 。

*人们普遍认为P ≠ NP, 即有 (见图 1.3)

二. P,NP 与 co-NP 的关系

1.co-NP 的定义

由 NP 类的定义,我们不知L \in NP是否蕴含 L 的补集 \overline{L} \in NP。定义 co - NP = {L | \overline{L} \in NP}。

2. P, NP, co - NP关系的几种可能性

(见图 1.4)

注意有以下结论:

- 1. $P \subseteq co NP$
- 2.如果NP ≠ co NP,则 P ≠ NP
- *人们认为情形(a)可能性最小,(d)可能性最大。

三. 多项式变换和 NP 完全性

1.多项式变换

从语言 $L_1 \subseteq \Sigma_1^*$ 到语言 $L_2 \subseteq \Sigma_2^*$ 的多项式变换是满足下述两个条件的函数 $f: \Sigma_1^* \to \Sigma_2^*:$ (1)存在计算 f 的多项式 DTM;

(2) $\forall x \in \Sigma_1^*, x \in L_1$ 当且仅当 $f(x) \in L_2$ 。 如果存在一个从 L_1 到 L_2 的多项式变换,则记作 $L_1 \propto L_2$ 。

2.多项式变换的几个性质

定理 1.2: 如果 $L_1 \propto L_2$, 那么 $L_2 \in P$ 蕴含 $L_1 \in P$ 。

证明:设 Σ_1 和 Σ_2 分别是 L_1 和 L_2 的字母表,f: $\Sigma_1^* \to \Sigma_2^*$ 是从 L_1 到 L_2 的多项式变换。设 M_f 为计算 f 的多项式时间的 DTM, M_2 为识别 L_2 的多项式时间的 DTM。构造识别 L_1 的多项式时间的 DTM M_1 如下:对输入 $X \in$

 Σ_1^* , M_1 首先按 M_f 方法计算 $f(x) \in \Sigma_2^*$,然后按 M_2 方法确定是否 $f(x) \in L_2$ 。因为 $x \in L_1$ 当且仅当 $f(x) \in L_2$,故 M_1 是识别 L_1 的 DTM。如果 p_f 和 p_2 是限制 M_f 和 M_2 运行时间的多项式函数,那么 $|f(x)| \leq p_f(|x|)$, M_1 的运行时间为 $O(p_f(|x|) + p_2(p_f(|x|)))$,它不超过|x|的某个多项式。证毕。

定理 1.3: 若 $L_1 \propto L_2 \coprod L_2 \propto L_3$, 那么 $L_1 \propto L_3$ 。

证: 设 Σ_1 , Σ_2 和 Σ_3 分别是语言 L_1 , L_2 和 L_3 的字母表, f_1 : $\Sigma_1^* \to \Sigma_2^*$ 是从 L_1 到 L_2 的多项式变换, f_2 : $\Sigma_2^* \to \Sigma_3^*$ 是从 L_2 到 L_3 的多项式变换。 $f: \Sigma_1^* \to \Sigma_3^*$ 定义为: $\forall x \in \Sigma_1^*$, $f(x) = f_2(f_1(x))$,那么,f 是从 L_1 到 L_3 的多项式变换。显然, $f(x) \in L_3$ 当且仅当 $x \in L_1$ 。可以用类似定理 1.2 的证明,证明可用多项式时间的 DTM 计算 f。

3.多项式等价性

 若 $L_1 \propto L_2 \coprod L_2 \propto L_1$,则称 $L_1 \hookrightarrow L_2$ 是多项式等价的。 多项式等价性是一个等价关系。P 类是其中的一个等价类。

4.NP 完全类(NPC)

如果语言 $L \in NP$, 并且对所有其它语言 $L' \in NP$, 有 $L' \propto L$, 则 L 称为是NP – 完全的。

- *如果判定问题 $\pi \in NP$,并且对所有其它判定问题 $\pi' \in NP$,有 $\pi' \propto \pi$,则 π 是NP-完全的。NP-完全问题是 NP 中最难的问题。
- *NP 与 P 的关系图可描述如图 1.5
- *如果P≠NP,则NP\P≠NPC。

5.NP-完全问题的证明方法

定理 **1.4**: 如果 L_1 和 L_2 属于 NP, L_1 是 NP-完全的,且 $L_1 \propto L_2$,那么 L_2 也是 NP-完全的。

证明:因为 $L_2 \in NP$,只要证: $\forall L' \in NP$, $L' \propto L_2$ 即可。由于 L_1 是 NP-完全, $L' \propto L_1$,且 $L_1 \propto L_2$ 。由 \times 的传递性, $L' \propto L_2$ 。*定理 1.4 给出了证明一个问题是 NP-完全的方法:

- (1) $\pi \in NP$
- (2) 某个已知的 NP-完全问题 π '可多项式变换到 π 。