

# **Algorithms for Data Science**

Optimization: Integer Programming

## **Integer Programming**

Integer programming (IP) is an extension of linear programming where some or all variables are restricted to integer values.

#### Standard Form:

Maximize or Minimize  $c^T x$  s.t.  $Ax \leq b, x \in \mathbb{Z}^n$ 

### Key Differences from LP:

LP allows for continuous variables, IP requires discrete variables. Integer constraints make the problem combinatorial.









## **Types of Integer Programming**

### **Pure IP**

- All decision variables are integers.
- E.g. Assigning workers to tasks where partial assignments are not allowed.
- Use Case: Resource Allocation

### Mixed IP (MIP)

- Some variables are integers, others continuous.
- E.g. Optimizing costs with integer constraints but continuous costs.
- Use Case: Portfolio Optimization

### **Binary IP**

- Variables are restricted to 0 or 1 (binary).
- E.g. Selecting projects to fund given budget.
- Use Case: Project Selction



## **Methods for Solving IP Problems**

### **Branch & Bound**

 Systematically divides the problem into smaller subproblems to exclude infeasible solutions.

#### Process:

- Solve the relaxed LP problem.
- Identify fractional variables.
- Prune subproblems

### **Cutting Plane**

 Iteratively refines the feasible region by adding linear constraints to exclude non-integer solutions.

#### Process:

- Solve the relaxed LP problem.
- Identify violated integer constraints.
- Add cutting planes.

### **Heuristic Methods**

 Approximation techniques that provide near-optimal solutions quickly.

#### • Examples:

- Genetic Algorithms
- Simulated Annealing



## **Integer Programming Example**

- **Objective:** Assign tasks to workers while minimizing the total costs.
- **Constraints:** 
  - Each task must be assigned to exactly one coworker.
  - Each worker can handle only a limited number of tasks.
  - Assignments must be binary.
- **Mathematical Formulation:** 
  - $\circ$  Let  $x_{ij}$  represent whether task j is assigned to worker i or not.

$$\circ$$
 Objective Function: Minimize  $\sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$ 

$$\circ$$
 Constraints:  $\sum_{iar{n}^1}^m x_{ij} = 1, orall j = 1$  (Each task assigned to one worker)

$$\sum_{i=1}^n x_{ij} \leq k_i, orall i$$
 (Worker capacity constraint)



$$x_{ij} \in \{0,1\}, orall i, j$$

