第3章3.4~3.5

二又航介

2017年5月11日

説明変数を組み込んだモデル

前回まで

平均種子数λが全個体で共通であると仮定

今回

- 説明変数を組み込んだモデル
 - ullet 個体ごとの平均種子数 λ_i を体サイズ x_i や施肥処理 f_i から推定
- 体サイズが種子数に関係あると仮定
- ullet ある個体 x_i において種子数が y_i である確率 $p(y_i|\lambda_i)$ はポアソン分布に従って
- $p(y_i|\lambda_i) = \frac{\lambda_{y_i} \exp(-\lambda_i)}{y_i!}$ と仮定

線形予測子とリンク関数

x_i による λ_i の関数

- ullet 個体 x_i の差異によって種子数 λ_i を求める関数を定義
- ullet ある個体 x_i の平均種子数 λ_i が
 - $\lambda_i = \exp(\beta_1 + \beta_2 x_i)$ として仮定

線形予測子、リンク関数

線形予測子

- $\bullet \log \lambda_i = \beta_1 + \beta_2 x_i$
- 線形結合 (定数倍したパラメータ同士を和算したもの) で表される
- $\log \lambda_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ でも良い

リンク関数

- (λの関数) = (線形予測子)の関係
- 対数リンク関数
- $\lambda_i = \exp($ 線形予測子 $) \ge 0$

あてはめとあてはまりの良さ

<u>ポア</u>ソン回帰

- 観測データに対するポアソン分布を用いた統計モデルのあてはめ
- ullet 対数尤度 $\log L$ が最大となるパラメーター \hat{eta}_1 , \hat{eta}_2 の推定値を求める

$$\log L(\beta_1, \beta_2) = \sum_{i} \log \frac{\lambda_i^{y_i} \exp(-\lambda_i)}{y_i!}$$

- \bullet λ_i が β_1 と β_2 の関数
- 線形予測子: $\log \lambda_i = \beta_1 + \beta_2 x_i$

glm() 関数の引数の指定方法

指定できる確率分布

確率分布 (family)	離散 or 連続	範囲
binomial	離散変数	0 ∼ +∞
gaussian	連続変数	$-\infty \sim +\infty$
Gamma	連続変数	$0 \sim +\infty$
inverse.gaussian	連続変数	$0 \sim +\infty$
poisson	離散変数	$0 \sim +\infty$
quasi	擬似尤度モデル	

• 従属変数の分布を可視化して当てはまりそうなものを選択

指定できるリンク関数

リンク関数	名前	式
identity	恒等リンク	$\lambda = x$
log	対数リンク	$\log \lambda = x$
logit	ロジットリンク	$\log \frac{\lambda}{\lambda - 1} = x$
sqrt	平方根リンク	$\sqrt{\lambda} = x$
1/mu2		$\frac{1}{\lambda^2} = x$
inverse	逆数リンク	$\frac{1}{\lambda} = x$
power	べき乗リンク	$\lambda^n = x$

● 確率分布に線形予測子をうまく当てはめられそうなものを選択 8/20

確率分布とリンク関数の組み合わせ

Family	リンク関数
binomial	logit, probit, log, cloglog
gaussian	identity, log, inverse
Gamma	identity, inverse, log
inverse.gaussian	$rac{1}{\mu^2}$, identity, inverse, log
poisson	identity, log, sqrt
quasi	logit, probit, cloglog, identity, inverse, log, $\frac{1}{\mu^2}$

結果の見かた 実行結果

Summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.29172 0.36369 3.552 0.000383 ***

x 0.07566 0.03560 2.125 0.033580 *

結果の見かた 切片、傾き

Summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.29172 0.36369 3.552 0.000383 ***
X 0.07566 0.03560 2.125 0.033580 *

$$\lambda_{i} = \exp(\beta_1 + \beta_2 x_i)$$

最尤推定值

- $\hat{\beta}_1 = 1.29$, $\hat{\beta}_2 = 0.0757$
- $\log \lambda_i = 1.29 + 0.0757x_i$

結果の見かた 標準誤差

Summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.29172 0.36369 3.552 0.000383 ***

x 0.07566 0.03560 2.125 0.033580 *

Std. Error: 標準誤差

- 推定値 $\hat{\beta}_1,\hat{\beta}_2$ のばらつきを標準偏差で表したもの
- 推定値の精度についての指標となる

結果の見かたz値

Summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

x 0.07566 0.03560 2.125 0.033580 *

Z value: Z 值

- 最尤推定量を Std. Error で割った値 (Estimate / Std. Error)
- Wald 統計量
 - Wald 信頼区間を構成
 - 推定値が0から十分に離れているかの確認
 - 値が大きければ大きいほど離れている
- 0 から離れている ≃ 信頼できる推定値

結果の見かた Pr(>|z|)

Summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.29172 0.36369 3.552 0.000383 ***

x 0.07566 0.03560 2.125 0.033580 *

Pr(>|z|): p 値

- 数値が大きいほど z 値が 0 に近い ≃ 推定値が 0 に近い
- p値として考えらるが、信頼区間として捉えるほうが良い
- 小さい値であるほど信頼区間が狭い ≥ 推定値が信頼できる

Wald 統計量

- ポアソン回帰などで、推定された偏回帰係数の優位性を検定
- ullet eta_1 , eta_2 の最尤推定量のばらつきが正規分布に近似
- 帰無仮説 = 偏回帰係数は0
- Z value = $\frac{Estimate}{Std.Error}$
- ullet $Zvalue^2$ は自由度 1(パラメータ数 1) のカイ二乗分布に従う

結果の見かた 最大対数尤度

>logLik(fit)
'log Lik.' -235.3863 (df=2)

最大対数尤度

- $\log L(\beta_1, \beta_2)$ が最大
- モデルの当てはまりの良さの指標
- df:自由度
 - 最尤推定したパラメーターの個数
 - 今回は β₁ と β₂ の 2 個

モデルの可視化

- > plot(d\$x, d\$y, pch = c(21, 19)[d\$f]) > xx <- seq(min(d\$x), max(d\$x), length = 100)
- > lines(xx, exp(1.29 + 0.0757 * xx), lwd = 2)

$$\lambda = \exp(1.29 + 0.0757x)$$

説明変数が因子型の統計モデル

施肥処理を説明変数に利用

- 因子型の説明変数はダミー変数で表される
- 種子数 y が施肥処理の有無 f に関係あると仮定
- $\lambda_i = \exp(\beta_1 + \beta_3 d_i)$ の関係

$$d_i = egin{cases} 0 & f_i = \mathsf{C} \ \mathcal{O}$$
場合 $1 & f_i = \mathsf{T} \ \mathcal{O}$ 場合

- 個体 i が肥料なし $(f_i = C)$ の場合
 - $\lambda_i = \exp(\beta_1)$
- 施肥処理した場合 $(f_i = T)$
 - $\lambda_i = \exp(\beta_1 + \beta_3)$

結果の見かた 実行結果

```
> fit.f <- glm(y ~ f, data=d, family = poisson)
> fit.f

Call: glm(formula = y ~ f, family = poisson, data = d)

Coefficients:
(Intercept) fT

2.05156 0.01277
```

$$\lambda_i = \exp(\beta_1 + \beta_3 x_i)$$
 切片 傾き

- 最尤推定值
 - $\hat{\beta}_1 = 2.05, \hat{\beta}_3 = 0.01277$
 - $\log \lambda_i = 2.05 + 0.0128x_i$

結果の見かた, 実行結果

- $f_i = C$ の時,
 - $\lambda_i = \exp(2.05 + 0) = \exp(2.05) = 7.77$
- $f_i = T$ の時,
 - $\lambda_i = \exp(2.05 + 0.128) = \exp(2.0628) = 7.87$

「肥料をやると平均種子数が少しだけ増える」と予想

logLik(fit.f)
'log Lik.' -237.6273 (df=2)

x_i だけのモデルの対数尤度-235.4 より当てはまりが悪い