Exercise 3 (Geteaux derivative).

Let X, Y be normed spaces. We call a function $\Phi: X \to Y$ Gateaux differentiable if the limit

$$d\Phi(u,v) := \lim_{t\to 0} \frac{\Phi(u+t\cdot v) - \Phi(u)}{t}$$

exists for all $u, v \in X$.

a) Let $\Phi: X \to \mathbb{R}$ be convex and Gateaux differentiable. Prove that for any $u, v \in X$, we have the estimate

$$d\Phi(u, v - u) \le \Phi(v) - \Phi(u).$$

Y is convex it:

boot:

$$\frac{d\Psi(u,v-u)=\lim_{t\to 0}\frac{\Psi(u+t(v-u))-\Psi(u)}{t}$$

thus
$$dy(u,v-u) \subseteq y(v) - y(u)$$

- b) In the setting of part a), prove that $u^* \in X$ minimizes the functional Φ over the space X if and only if $d\Phi(u^*, v) = 0$ for all $v \in X$.
 - If I is differentiable, the Gallaux derivative is the standard directional derivative

 $dP(u,v) = \nabla P(u)^{T} \cdot v \qquad \forall \quad v,v \in X$

brook:

=>) Assume n'EX is a minimiter of 4

then by definition of a minimizer,

48 (u*, v) = 0 VVEX

(=) Assume dy(u*,v) = 0

from part (m)

49(u, v-u) = 18(u) T(v-u) = P(v) - P(u)

thus,

9(v) = 9(u*) + 79(u*) 7

much P(n*) = P(V) Y V E X

=> u* is the unique minimizer of 4

4mul, " minimites P if and only if