Paper Seminar

SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization

Jiang et al., 2020, ACL

Myeongsup Kim

Integrated M.S./Ph.D. Student
Data Science & Business Analytics Lab.
School of Industrial Management Engineering
Korea University

Myeongsup_kim@korea.ac.kr

- Complexity of Deep Learning Model
- Complexity of Language Model

-What This Seminar Does Not Cover

< What This Seminar Does Not Cover>

Details of BERT

<u>Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL, 2019</u>

Details of RoBERTa

Liu et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, arXiv, 2019

Details of FreeLB

Zhu et al., FreeLB: Enhanced Adversarial Training for Natural Language Understanding, ICLR, 2020

-Complexity of Deep Learning Model

<Complexity>

Too Low Complexity Underfitting

Appropriate Complexity

Overfitting

-Complexity of Deep Learning Model

$$y = Wx + b$$

-Complexity of Deep Learning Model

$$y = Wx + b$$

-Complexity of Deep Learning Model

-Complexity of Deep Learning Model

$$y = Wx + b$$

-Complexity of Deep Learning Model

$$y = Wx + b$$

-Complexity of Deep Learning Model

-Complexity of Deep Learning Model

<Complexity of Deep Learning Model>

$$y = Wx + b$$

-Complexity of Deep Learning Model

<Complexity of Deep Learning Model>

-Complexity of Language Model

<Language Model>

-Complexity of Language Model

<Self Attention>

-Complexity of Language Model

<Self Attention>

-Complexity of Language Model

<Feed Forward>

-Complexity of Language Model

<Contextualized Representation>

-Transformer-Based Language Model

<Pre-Training>

-Transformer-Based Language Model

<Fine-Tuning>

Small Task Specific Data

-Transformer-Based Language Model

<Complexity of Language Model>

Wikipedia + Book Corpus Data Size: 20GB GLUE Benchmark (WNLI)
Data Size: 98KB

-Transformer-Based Language Model

<Complexity of Language Model>

There is a Risk of Overfitting Because the Amount of Data is Smaller When Fine-Tuning Model than When Pre-Training Model

345M Parameters

How to Prevent Overfitting when Fine-Tuning The Large Language Model?

Wikipedia: 2,500M words Book Corpus: 800M words IMDB: 50,000 Text Data

SMART: Robust and Efficient Fine-Tuning for Pre-Trained Natural Language Models through Principled Regularized Optimization

Jiang et al., 2020, ACL

SMART: Robust and Efficient Fine-Tuning for Pre-Trained Natural Language Models through Principled Regularized Optimization

Jiang et al., 2020, ACL

Method

- Smoothness-Inducing Adversarial Regularization
- Bregman Proximal Point Optimization

Method

-Overall Purpose

<Overall Purpose of SMART>

Smoothness-Inducing Adversarial Regularization

"Control Model Capacity"

"Prevent Aggressive Update"

-Smoothness-Inducing Adversarial Regularization

-Smoothness-Inducing Adversarial Regularization

-Smoothness-Inducing Adversarial Regularization

-Smoothness-Inducing Adversarial Regularization

<Notations>

 x_i : Embedding

 $f(x_i; \theta)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

 y_i : Label

 δ : Perturbation

 $\tilde{x}_i = x_i + \delta$: Adversarial Example

-Smoothness-Inducing Adversarial Regularization

$$\min_{\theta} \mathcal{F}(\theta) = \mathcal{L}(\theta) + \lambda_{s} \mathcal{R}_{s}(\theta)$$

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_{i}; \theta), y_{i})$$

$$\mathcal{R}_{s}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\tilde{x}_{i} - x_{i}\|_{p} \le \epsilon} \ell_{s}(f(\tilde{x}_{i}; \theta), f(x_{i}; \theta))$$

$$\ell_{s}(P, Q) = \mathcal{D}_{KL}(P||Q) + \mathcal{D}_{KL}(Q||P)$$

-Smoothness-Inducing Adversarial Regularization

$$\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda_{s} \mathcal{R}_{s}(\boldsymbol{\theta})$$

$$\boldsymbol{\mathcal{L}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}), \boldsymbol{y}_{i})$$

$$\mathcal{R}_{s}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\tilde{\boldsymbol{x}}_{i} - \boldsymbol{x}_{i}\|_{p} \le \epsilon} \ell_{s}(f(\tilde{\boldsymbol{x}}_{i}; \boldsymbol{\theta}), f(\boldsymbol{x}_{i}; \boldsymbol{\theta}))$$

$$\ell_{s}(P, Q) = \mathcal{D}_{KL}(P||Q) + \mathcal{D}_{KL}(Q||P)$$

-Smoothness-Inducing Adversarial Regularization

$$\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda_{s} \mathcal{R}_{s}(\boldsymbol{\theta})$$

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}), \boldsymbol{y}_{i})$$

$$\mathcal{R}_{s}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{i}\|_{p} \leq \boldsymbol{\theta}} \ell_{s}(\boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{\theta}), \boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{\theta}))$$

$$\ell_{s}(P, Q) = \mathcal{D}_{KL}(P||Q) + \mathcal{D}_{KL}(Q||P)$$

-Smoothness-Inducing Adversarial Regularization

$$\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda_{s} \mathcal{R}_{s}(\boldsymbol{\theta})$$

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}), \boldsymbol{y}_{i})$$

$$\mathcal{R}_{s}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\widetilde{\boldsymbol{x}}_{i} - \boldsymbol{x}_{i}\|_{p} \leq \boldsymbol{\theta}} \ell_{s}(f(\widetilde{\boldsymbol{x}}_{i}; \boldsymbol{\theta}), f(\boldsymbol{x}_{i}; \boldsymbol{\theta}))$$

$$\ell_{s}(P, Q) = \mathcal{D}_{KL}(P||Q) + \mathcal{D}_{KL}(Q||P)$$

-Smoothness-Inducing Adversarial Regularization

<SMART VS FreeLB>

$$\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda_{s} \mathcal{R}_{s}(\boldsymbol{\theta})$$

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}), \boldsymbol{y}_{i})$$

$$\mathcal{R}_{s}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\tilde{\boldsymbol{x}}_{i} - \boldsymbol{x}_{i}\|_{p} \le \epsilon} \ell_{s}(f(\tilde{\boldsymbol{x}}_{i}; \boldsymbol{\theta}), f(\boldsymbol{x}_{i}; \boldsymbol{\theta}))$$

$$\ell_{s}(\boldsymbol{P}, \boldsymbol{Q}) = \mathcal{D}_{KL}(\boldsymbol{P}||\boldsymbol{Q}) + \mathcal{D}_{KL}(\boldsymbol{Q}||\boldsymbol{P})$$

$$< \mathsf{SMART} >$$

"Adversarial Training to **Probability**"

Clean

0.1 0.7

Adversarial 0.6 0.2

0.1 0.1

 $\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$ $\delta_{t+1} = \left. \prod_{||\delta||_{E} \le \varepsilon} (\delta_t + \alpha g(\delta_t) / \left| |g(\delta_t)| \right|_{E}) \right|$

<FreeLB>

"Adversarial Training to Label"

Label

Adversarial

0

0.2

0.6

0 0

0.1 0.1

0.1 0.1

49/101

-Smoothness-Inducing Adversarial Regularization

Decision Boundaries Learned without (a) and with (b) Smoothness-Inducing Adversarial Regularization

51/101

Method -Bregman Proximal Point Optimization <Gradient Descent>

-Bregman Proximal Point Optimization

$$f(\cdot; \theta_0): Pre\text{-}Trained \ Model, Initialization$$

$$\theta_{t+1} = arg \min_{\theta} \mathcal{F}(\theta) + \mu \mathcal{D}_{Breg}(\theta, \theta_t)$$

$$\mathcal{D}_{Breg}(\theta, \theta_t) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(f(x_i; \theta), f(x_i; \theta_t))$$

-Bregman Proximal Point Optimization

$$f(\cdot; \theta_0): Pre-Trained Model, Initialization$$

$$\theta_{t+1} = arg \min_{\theta} \mathcal{F}(\theta) + \mu \mathcal{D}_{Breg}(\theta, \theta_t)$$

$$\mathcal{D}_{Breg}(\theta, \theta_t) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(\mathbf{f}(\mathbf{x_i}; \boldsymbol{\theta}), f(\mathbf{x_i}; \theta_t))$$

-Bregman Proximal Point Optimization

$$f(\cdot; \theta_0): Pre-Trained Model, Initialization$$

$$\theta_{t+1} = arg \min_{\theta} \mathcal{F}(\theta) + \mu \mathcal{D}_{Breg}(\theta, \theta_t)$$

$$\mathcal{D}_{Breg}(\theta, \theta_t) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(\mathbf{f}(\mathbf{x_i}; \boldsymbol{\theta}), \mathbf{f}(\mathbf{x_i}; \boldsymbol{\theta_t}))$$

-Bregman Proximal Point Optimization

$$f(\cdot; \theta_0): Pre-Trained Model, Initialization$$

$$\theta_{t+1} = arg \min_{\theta} \mathcal{F}(\theta) + \mu \mathcal{D}_{Breg}(\theta, \theta_t)$$

$$\mathbf{D}_{Breg}(\theta, \theta_t) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{f}(\mathbf{x}_i; \theta_t))$$

-Bregman Proximal Point Optimization

$$f(\cdot; \theta_0): Pre-Trained Model, Initialization$$

$$\theta_{t+1} = \underset{\boldsymbol{\theta}}{arg} \min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta}) + \mu \mathcal{D}_{Breg}(\boldsymbol{\theta}, \boldsymbol{\theta_t})$$

$$\mathcal{D}_{Breg}(\boldsymbol{\theta}, \boldsymbol{\theta_t}) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(\boldsymbol{f}(\boldsymbol{x_i}; \boldsymbol{\theta}), \boldsymbol{f}(\boldsymbol{x_i}; \boldsymbol{\theta_t}))$$

-Bregman Proximal Point Optimization

< Momentum Bregman Proximal Point Optimization >

$$f(\cdot; \theta_0): Pre-Trained Model, Initialization$$

$$\theta_{t+1} = arg \min_{\theta} \mathcal{F}(\theta) + \mu \mathcal{D}_{Breg}(\theta, \widetilde{\boldsymbol{\theta}_t})$$

$$\mathcal{D}_{Breg}(\theta, \theta_t) = \frac{1}{n} \sum_{i=1}^{n} \ell_s(f(x_i; \theta), f(x_i; \theta_t))$$

$$\widetilde{\boldsymbol{\theta}_t} = (\mathbf{1} - \boldsymbol{\beta}) \boldsymbol{\theta_t} + \boldsymbol{\beta} \widetilde{\boldsymbol{\theta}_{t-1}}$$

Experiments

- GLUE Benchmark
- Ablation Study

- GLUE Benchmark

<GLUE Benchmark>

Madal	MNLI-m/mm	QQP	RTE	QNLI	MRPC	CoLA	SST	STS-B
Model	Acc	ACC/F1	Acc	Acc	Acc/F1	Мсс	Мсс	P/S Corr
			BER	T _{BASE}				
BERT (Devlin et al., 2019)	84.4/-	-	-	88.4	-/86.7	-	92.7	-
BERT _{Relmp}	84.5/84.4	90.9/88.3	63.5	91.1	84.1/89.0	54.7	92.9	89.2/88.8
SMART _{BERT}	85.6/86.0	91.5/88.5	71.2	91.7	87.7/91.3	59.1	93	90.0/89.4
			RoBER	Ta _{LARGE}				
RoBERTa(Liu et al., 2019)	90.2/-	92.2/-	86.6	94.7	-/90.9	68	96.4	92.4/-
PGD (Zhu et al., 2020)	90.5/-	92.5/-	87.4	94.9	-/90.9	69.7	96.4	92.4/-
FreeAT(Zhu et al., 2020)	90.0/-	92.5/-	86.7	94.7	-/90.7	68.8	96.1	92.4/-
FreeLB(Zhu et al., 2020)	90.6/-	92.6/-	88.1	95	-/91.4	71.1	96.7	92.7/-
SMART _{RoBERTa}	91.1/91.3	92.4/89.8	92	95.6	89.2/92.1	70.6	96.9	92.8/92.6

- GLUE Benchmark

<GLUE Benchmark>

Madal	MNLI-m/mm	QQP	RTE	QNLI	MRPC	CoLA	SST	STS-B
Model	Acc	ACC/F1	Acc	Acc	Acc/F1	Мсс	Мсс	P/S Corr
			BER	T _{BASE}				
BERT(Devlin et al., 2019)	84.4/-	-	-	88.4	-/86.7	-	92.7	-
BERT _{Relmp}	84.5/84.4	90.9/88.3	63.5	91.1	84.1/89.0	54.7	92.9	89.2/88.8
SMART _{BERT}	85.6/86.0	91.5/88.5	71.2	91.7	87.7/91.3	59.1	93	90.0/89.4
			RoBER	Ta _{LARGE}				
RoBERTa(Liu et al., 2019)	90.2/-	92.2/-	86.6	94.7	-/90.9	68	96.4	92.4/-
PGD (Zhu et al., 2020)	90.5/-	92.5/-	87.4	94.9	-/90.9	69.7	96.4	92.4/-
FreeAT(Zhu et al., 2020)	90.0/-	92.5/-	86.7	94.7	-/90.7	68.8	96.1	92.4/-
FreeLB(Zhu et al., 2020)	90.6/-	92.6/-	88.1	95	-/91.4	71.1	96.7	92.7/-
SMART _{RoBERTa}	91.1/91.3	92.4/89.8	92	95.6	89.2/92.1	70.6	96.9	92.8/92.6

- GLUE Benchmark

<GLUE Benchmark>

Madal	MNLI-m/mm	QQP	RTE	QNLI	MRPC	CoLA	SST	STS-B
Model 	Acc	ACC/F1	Acc	Acc	Acc/F1	Мсс	Мсс	P/S Corr
			BER	T _{BASE}				
BERT(Devlin et al., 2019)	84.4/-	-	-	88.4	-/86.7	-	92.7	-
BERT _{Relmp}	84.5/84.4	90.9/88.3	63.5	91.1	84.1/89.0	54.7	92.9	89.2/88.8
SMART _{BERT}	85.6/86.0	91.5/88.5	71.2	91.7	87.7/91.3	59.1	93	90.0/89.4
			RoBER	Ta _{LARGE}				
RoBERTa(Liu et al., 2019)	90.2/-	92.2/-	86.6	94.7	-/90.9	68	96.4	92.4/-
PGD (Zhu et al., 2020)	90.5/-	92.5/-	87.4	94.9	-/90.9	69.7	96.4	92.4/-
FreeAT(Zhu et al., 2020)	90.0/-	92.5/-	86.7	94.7	-/90.7	68.8	96.1	92.4/-
FreeLB(Zhu et al., 2020)	90.6/-	92.6/-	88.1	95	-/91.4	71.1	96.7	92.7/-
SMART _{ROBERTa}	91.1/91.3	92.4/89.8	92	95.6	89.2/92.1	70.6	96.9	92.8/92.6

- GLUE Benchmark

<GLUE Benchmark>

Madal	MNLI-m/mm	QQP	RTE	QNLI	MRPC	CoLA	SST	STS-B
Model 	Acc	ACC/F1	Acc	Acc	Acc/F1	Мсс	Мсс	P/S Corr
			BER	T _{BASE}				
BERT(Devlin et al., 2019)	84.4/-	-	-	88.4	-/86.7	-	92.7	-
BERT _{Relmp}	84.5/84.4	90.9/88.3	63.5	91.1	84.1/89.0	54.7	92.9	89.2/88.8
SMART _{BERT}	85.6/86.0	91.5/88.5	71.2	91.7	87.7/91.3	59.1	93	90.0/89.4
			RoBER	Ta _{LARGE}				
RoBERTa(Liu et al., 2019)	90.2/-	92.2/-	86.6	94.7	-/90.9	68	96.4	92.4/-
PGD (Zhu et al., 2020)	90.5/-	92.5/-	87.4	94.9	-/90.9	69.7	96.4	92.4/-
FreeAT(Zhu et al., 2020)	90.0/-	92.5/-	86.7	94.7	-/90.7	68.8	96.1	92.4/-
FreeLB(Zhu et al., 2020)	90.6/-	92.6/-	88.1	95	-/91.4	71.1	96.7	92.7/-
SMART _{ROBERTA}	91.1/91.3	92.4/89.8	92	95.6	89.2/92.1	70.6	96.9	92.8/92.6

- GLUE Benchmark

<GLUE Benchmark>

	CoLA	SST	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score	#params
Model /#Train	8.5k	67k	3.7k	7k	634k	393k	108k	2.5k	634			
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1	
					Ense	mble Models						
RoBERTa	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89	48.7	88.5	356M
FreeLB	68	96.8	93.1/90.8	92.4/92.2	74.8 /90.3	91.1/90.7	98.8	88.7	89	50.1	88.8	356M
ALICE	69.2	97.1	93.6/91.5	92.7/92.3	74.4/ 90.7	90.7/90.2	99.2	87.3	89.7	47.8	89	340M
ALBERT	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3/91.0	99.2	89.2	91.8	50.2	89.4	235M
MT-DNN-SMART	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0/90.8	99.2	89.7	94.5	50.2	89.9	356M
					Sir	ngle Model						
BERT _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5	335M
MT-DNN	62.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	93.1	75.5	65.1	40.3	82.7	335M
Т5	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0/91.7	96.7	92.5	93.2	53.1	89.7	11,000M
SMART _{ROBERTa}	65.1	97.5	93.7/91.6	92.9/92.5	74.0/90.1	91.0/90.8	95.4	87.9	87.9	50.2	88.4	356M

- GLUE Benchmark

<GLUE Benchmark>

	CoLA	SST	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score	#params
Model /#Train	8.5k	67k	3.7k	7k	634k	393k	108k	2.5k	634			•
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1	
					Ense	mble Models						
RoBERTa	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89	48.7	88.5	356M
FreeLB	68	96.8	93.1/90.8	92.4/92.2	74.8 /90.3	91.1/90.7	98.8	88.7	89	50.1	88.8	356M
ALICE	69.2	97.1	93.6/91.5	92.7/92.3	74.4/ 90.7	90.7/90.2	99.2	87.3	89.7	47.8	89	340M
ALBERT	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3/91.0	99.2	89.2	91.8	50.2	89.4	235M
MT-DNN-SMART	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0/90.8	99.2	89.7	94.5	50.2	89.9	356M
					Sir	ngle Model						
BERT _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5	335M
MT-DNN	62.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	93.1	75.5	65.1	40.3	82.7	335M
Т5	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0/91.7	96.7	92.5	93.2	53.1	89.7	11,000M
SMART _{ROBERTa}	65.1	97.5	93.7/91.6	92.9/92.5	74.0/90.1	91.0/90.8	95.4	87.9	87.9	50.2	88.4	356M

- GLUE Benchmark

<GLUE Benchmark>

	CoLA	SST	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score	#params
Model /#Train	8.5k	67k	3.7k	7k	634k	393k	108k	2.5k	634			
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1	
					Ense	mble Models						
RoBERTa	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89	48.7	88.5	356M
FreeLB	68	96.8	93.1/90.8	92.4/92.2	74.8 /90.3	91.1/90.7	98.8	88.7	89	50.1	88.8	356M
ALICE	69.2	97.1	93.6/91.5	92.7/92.3	74.4/ 90.7	90.7/90.2	99.2	87.3	89.7	47.8	89	340M
ALBERT	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3/91.0	99.2	89.2	91.8	50.2	89.4	235M
MT-DNN-SMART	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0/90.8	99.2	89.7	94.5	50.2	89.9	356M
					Sir	ngle Model						
BERTLARGE	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5	335M
MT-DNN	62.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	93.1	75.5	65.1	40.3	82.7	335M
Т5	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0/91.7	96.7	92.5	93.2	53.1	89.7	11,000M
SMART _{RoBERTa}	65.1	97.5	93.7/91.6	92.9/92.5	74.0/90.1	91.0/90.8	95.4	87.9	87.9	50.2	88.4	356M

- GLUE Benchmark

<GLUE Benchmark>

	CoLA	SST	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score	#params
Model /#Train	8.5k	67k	3.7k	7k	634k	393k	108k	2.5k	634			
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1	
					Ense	mble Models						
RoBERTa	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89	48.7	88.5	356M
FreeLB	68	96.8	93.1/90.8	92.4/92.2	74.8 /90.3	91.1/90.7	98.8	88.7	89	50.1	88.8	356M
ALICE	69.2	97.1	93.6/91.5	92.7/92.3	74.4/ 90.7	90.7/90.2	99.2	87.3	89.7	47.8	89	340M
ALBERT	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3/91.0	99.2	89.2	91.8	50.2	89.4	235M
MT-DNN-SMART	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0/90.8	99.2	89.7	94.5	50.2	89.9	356M
					Sir	ngle Model						
BERT _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5	335M
MT-DNN	62.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	93.1	75.5	65.1	40.3	82.7	335M
Т5	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0/91.7	96.7	92.5	93.2	53.1	89.7	11,000M
SMART _{ROBERTa}	65.1	97.5	93.7/91.6	92.9/92.5	74.0/90.1	91.0/90.8	95.4	87.9	87.9	50.2	88.4	356M

- GLUE Benchmark

<GLUE Benchmark>

	CoLA	SST	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score	#params
Model /#Train	8.5k	67k	3.7k	7k	634k	, 393k	108k	2.5k	634			1
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1	
					Ense	mble Models						
RoBERTa	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89	48.7	88.5	356M
FreeLB	68	96.8	93.1/90.8	92.4/92.2	74.8 /90.3	91.1/90.7	98.8	88.7	89	50.1	88.8	356M
ALICE	69.2	97.1	93.6/91.5	92.7/92.3	74.4/ 90.7	90.7/90.2	99.2	87.3	89.7	47.8	89	340M
ALBERT	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3/91.0	99.2	89.2	91.8	50.2	89.4	235M
MT-DNN-SMART	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0/90.8	99.2	89.7	94.5	50.2	89.9	356M
					Sir	ngle Model						
BERTLARGE	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5	335M
MT-DNN	62.5	95.6	90.0/86.7	88.3/87.7	72.4/89.6	86.7/86.0	93.1	75.5	65.1	40.3	82.7	335M
Т5	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0/91.7	96.7	92.5	93.2	53.1	89.7	11,000M
SMART _{ROBERTa}	65.1	97.5	93.7/91.6	92.9/92.5	74.0/90.1	91.0/90.8	95.4	87.9	87.9	50.2	88.4	356M

- Ablation Study

<Ablation Study>

Madal	MNLI	RTE	QNLI	SST	MRPC
Model	Acc	Acc	Acc	Acc	Acc
BERT	84.5	63.5	91.1	92.9	89
SMART	95.6	71.2	91.7	93	91.3
- \mathcal{R}_s	84.8	70.8	91.3	92.8	90.8
- \mathcal{D}_{Breg}	85.4	71.2	91.6	92.9	91.2

<Ablation Study of SMART on 5 GLUE Task>
Backbone: BERT

- Ablation Study

<Ablation Study>

Model	MNLI	RTE	QNLI	SST	MRPC
wiodei	Acc	Acc	Acc	Acc	Acc
BERT	84.5	63.5	91.1	92.9	89
SMART	95.6	71.2	91.7	93	91.3
- \mathcal{R}_s	84.8	70.8	91.3	92.8	90.8
- $\mathcal{D}_{\mathbf{Breg}}$	85.4	71.2	91.6	92.9	91.2

<Ablation Study of SMART on 5 GLUE Task>
Backbone: BERT

- Ablation Study

<Ablation Study>

Madal	MNLI	RTE	QNLI	SST	MRPC
Model	Acc	Acc	Acc	Acc	Acc
BERT	84.5	63.5	91.1	92.9	89
SMART	95.6	71.2	91.7	93	91.3
- \mathcal{R}_s	84.8	70.8	91.3	92.8	90.8
- \mathcal{D}_{Breg}	85.4	71.2	91.6	92.9	91.2

<Ablation Study of SMART on 5 GLUE Task>
Backbone: BERT

Conclusion

Conclusion

<Conclusion>

- Proposed a <u>Smoothness-Inducing Adversarial Regularization</u> Technique to Effectively Control the **Extremely High Complexity** of the Model
- Proposed a Class of <u>Bregman Proximal Point Optimization</u> Method to Prevent Aggressive Updating
- Achieved State-of-the-art Results on Several Popular NLP Benchmarks (e.g. GLUE, ...)

Any Questions?

Thank You