CS7GV2: Mathematics of Light and Sound, M.Sc. in Computer Science.

Lecture #2: Wave Equation

Fergal Shevlin, Ph.D.

School of Computer Science and Statistics, Trinity College Dublin

September 26, 2024

1/9

Notes

Simple Harmonic Oscillator

The force F acting on a mass m, sitting on a spring with stiffness k, can be described in different ways:

Newton force equals mass by acceleration, $F = m \ddot{y}$.

Hooke force prop. to spring displacement, F = -ky.

These independent descriptions of F yield a mathematical expression relating system parameters to each other: $m \ddot{v} = -k v$ so,

$$m\frac{\mathrm{d}^2y(t)}{\mathrm{d}t^2}+k\,y(t)=0.$$

Because of the derivative, this is called a differential equation whose solution is a function y(t)that satisfies it.

_		
	m	1 <u> </u>
k	₹ † °	

A solution for position y with respect to time t is, $y(t) = y_0 \cos(\omega t + \phi)$

where.

 y_0 is the amplitude of initial displacement,

$$\omega = \sqrt{k/m}$$
 is angular frequency,

 ϕ is phase which is this case is 0.

Note that $f=\omega/2\pi$ is temporal frequency.

Friction can be modelled by a damper with strength c which applies force $F=-c\ \dot{y}.$ This can be equated with the other differential

$$m \; \frac{\mathrm{d}^2 y(t)}{\mathrm{d} t^2} + c \; \frac{\mathrm{d} y(t)}{\mathrm{d} t} + k \; y(t) = 0.$$
 A solution with $\zeta = \frac{c}{2\sqrt{km}}$ is,

$$y(t) = y_0 e^{-\zeta \omega t} \cos \left(\sqrt{1 - \zeta^2} \omega t + \phi \right).$$

Wave equation development

A linear object such as a string can be approximated as a series of masses m connected by springs of lengths h and spring constants k.

Let A(x, t) be the height of a mass at position x at time t.

The force acting on mass m at position x + h at time t can be described independently:

Newton
$$F(x + h, t) = m \frac{\partial^2}{\partial t^2} A(x + h, t)$$
.
Hooke $F(x + h, t) = F(x + 2h, t) - F(x, t) = k[A(x+2h, t) - A(x+h, t)] - k[A(x+h, t) - A(x, t)]$

i.e. the difference between forces acting on the neighbours to which mass m is connected; which are proportional to height differences.

Let $c^2=\frac{\mathit{K}L^2}{\mathit{M}}$ and consider the continuous system situation where $\mathit{N}\to\infty$ (which implies taking the limit as $h \rightarrow 0$.)

Notes

$$\frac{\partial^2 A(x,t)}{\partial t^2} = c^2 \frac{\partial^2 A(x,t)}{\partial x^2}.$$

Equating these descriptions of force gives,

$$\frac{\partial^2}{\partial t^2} A(x+h,t) = \frac{k}{m} [A(x+2h,t) - 2A(x+h,t) + A(x,t)].$$

For N masses evenly spaced over total length L = Nhand total mass M = Nm and an average spring constant K = k/N, the coefficient on the rhs becomes,

$$\frac{KL^2}{M} \; \frac{1}{h^2}$$

Taking the limit

$$\lim_{h \to 0} \frac{A(x+2h,t) - 2A(x+h,t) + A(x,t)}{h^2}$$

This expression is *indeterminite* because for h = 0it becomes $\frac{0}{0}$ which is 0? ∞ ? 1?

Luckily, we have I'Hospital's Rule which says that, under certain conditions,

$$\lim_{x\to y}\frac{f(x)}{g(x)}=\lim_{x\to y}\frac{f'(x)}{g'(x)}=\lim_{x\to y}\frac{f''(x)}{g''(x)}=\ldots$$

So the quotient terms can be replaced by their derivates.

$$\frac{\partial}{\partial h}[A(x+2h,t) - 2A(x+h,t) + A(x,t)] =$$

$$2A'(x+2h,t) - 2A'(x+h,t).$$
And
$$\frac{\mathrm{d}}{\mathrm{d}h}h^2 = 2h.$$

Notes

 $\lim_{t\to 0} [2A''(x+2h,t) - A''(x+h,t)] =$ $2 \lim_{h \to 0} A''(x+2h,t) - \lim_{h \to 0} A''(x+h,t) =$ 2A''(x,t) - A''(x,t) =

$$\lim_{h \to 0} \frac{A(x+2h,t) - 2A(x+h,t) + A(x,t)}{h^2} =$$

$$\lim_{h \to 0} \frac{2A'(x+2h,t) - 2A'(x+h,t)}{2h} =$$

$$\lim_{h \to 0} \frac{4A''(x+2h,t) - 2A''(x+h,t)}{2} =$$

Wave equation solution

A solution for A(x, t) is:

$$R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t)$$

 ω is angular frequency $2\pi \nu$ in rad s⁻¹ k is the wave number $2\pi/\lambda$ in rad m⁻¹ $|R| \le 1$ specifies direction of travel.

Which is the superposition of two sinusoidal waves travelling in opposite directions. Non-sinusoidal solutions are possible too.

Notes			

5/9

6/9

Notes

d'Alembert's solution development

Start with "transformation of variables," let $\xi \equiv x - c_s t$ and $\eta \equiv x + c_s t$,

$$x = \frac{1}{2}(\xi - \eta) \text{ and } t = \frac{1}{2c}(\xi + \eta).$$

By the Chain Rule the first derivatives are,

$$\frac{\partial A}{\partial x} = \frac{\partial A}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial A}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial A}{\partial \xi} + \frac{\partial A}{\partial \eta}$$
$$\frac{\partial A}{\partial t} = \frac{\partial A}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial A}{\partial \eta} \frac{\partial \eta}{\partial t} = -c_s \frac{\partial A}{\partial \xi} + c_s \frac{\partial A}{\partial \eta}$$

and the second derivatives are,

$$\begin{split} \frac{\partial^{2} A}{\partial x^{2}} &= \frac{\partial}{\partial x} \left(\frac{\partial A}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial A}{\partial \xi} + \frac{\partial A}{\partial \eta} \right) \\ &= \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) \left(\frac{\partial A}{\partial \xi} + \frac{\partial A}{\partial \eta} \right) = \frac{\partial^{2} A}{\partial \xi^{2}} + 2 \frac{\partial^{2} A}{\partial \xi \partial \eta} + \frac{\partial^{2} A}{\partial \eta^{2}} \\ \frac{\partial^{2} A}{\partial t^{2}} &= \frac{\partial}{\partial t} \left(\frac{\partial A}{\partial t} \right) = \frac{\partial}{\partial t} \left(-c_{s} \frac{\partial A}{\partial \xi} + c_{s} \frac{\partial A}{\partial \eta} \right) \\ &= \left(-c_{s} \frac{\partial}{\partial \xi} + c_{s} \frac{\partial}{\partial \eta} \right) \left(-c_{s} \frac{\partial A}{\partial \xi} + c_{s} \frac{\partial A}{\partial \eta} \right) = c_{s}^{2} \frac{\partial^{2} A}{\partial \xi^{2}} - 2c_{s}^{2} \frac{\partial^{2} A}{\partial \xi \partial \eta} + c_{s}^{2} \frac{\partial^{2} A}{\partial \eta^{2}}. \end{split}$$

So the wave equation $\frac{\partial^2 A}{\partial x^2} - \frac{1}{c_s^2} \frac{\partial^2 A}{\partial t^2} = 0$ becomes

$$\begin{split} &(\frac{\partial^2 A}{\partial \xi^2} + 2\frac{\partial^2 A}{\partial \xi \partial \eta} + \frac{\partial^2 A}{\partial \eta^2}) - \frac{1}{c_s^2}(c_s^2\frac{\partial^2 A}{\partial \xi^2} - 2c_s^2\frac{\partial^2 A}{\partial \xi \partial \eta} + c_s^2\frac{\partial^2 A}{\partial \eta^2}) = 0 \\ &\text{which is } \frac{\partial^2 A}{\partial \xi \partial \eta} = \frac{\partial}{\partial \xi} = 0. \end{split}$$

for which any solution is known to have the form:

$$p(\xi,\eta)=f(\eta)+g(\xi)=f(x+c_st)+g(x-c_st)$$

Notes			

7/9

Chain Rule(s) of differentiation

Rules that specify derivatives of compositions of functions, e.g. for f(g(x)).

Leibnitz notation often used: e.g. let $u \equiv g(x)$ and $y \equiv f(u)$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} = f'(g(x)) g'(x).$$

Let
$$x \equiv g(t)$$
 and $y \equiv h(t)$ and $z \equiv f(x, y)$,

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}.$$

Let
$$x \equiv g(s, t)$$
 and $y \equiv h(s, t)$ and $z \equiv f(x, y)$,
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial s} \frac{\mathrm{d}s}{\mathrm{d}x} + \frac{\partial z}{\partial t} \frac{\mathrm{d}t}{\mathrm{d}x}$$

Notes			

Easier approaches

- * To solve differential equations, or tricky mathematics in general, you can use a symbolic mathematics-oriented system like Mathematica (e.g. through a Trinity site license version or through the free Wolfram Alpha web interface.)
- * The ChatGPT interface to the WolframGPT makes it very easy to use (although perhaps it is available only with a non-free subscription.)
- * Using ChatGPT for mathematics without the support of WolframGPT is probably not a good idea!

Notes			

Notes ______