

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

1	N I	lema	m		
1		3	m	Δ	۰
1	N	а	111	C	

Mallory tharlik

UB Person Number:

	- T		1000			-	
5	0	2	3	1	7	0	3
0 1 2 3 4 6 6 7 8 9	(a) (a) (a) (b) (c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	0 1 3 4 5 6 7 8 9	0 1 2 9 4 5 6 7 8 9		0 1 2 3 4 5 6 8 9	(a) (b) (c) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	0 1 2 4 5 6 7 8 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

10	4	9	9	5	4	7	48	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

16=-6,6

since x3= free, three one infinitely many solutions

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 & 0 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 7 \\ 1 & 6 & 1 \\ 6 & 7 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \qquad A^{T} C = B \qquad \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$C_{11} + C_{21} = 1$$

$$-C_{11} + C_{21} = 9$$

$$-C_{11} + C_{21} - C_{31} = 3$$

$$-C_{21} + C_{21} - C_{31} = 3$$

$$-C_{21} + C_{31} = 3$$

$$1 - 24i = 3$$

 $-2c_{2i} = 7$ $c_{2i} = -1 \Rightarrow \begin{vmatrix} c_{1i} = 2 \\ c_{2i} = -1 \\ c_{3i} = 0 \end{vmatrix}$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\begin{bmatrix}
A = \begin{bmatrix}
1 & -2 \\
1 & 1 \\
1 & -3
\end{bmatrix}$$

6)
$$T(u) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 $U = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -2 \\ 0 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -2 \\ 0 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 &$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$
 $\Rightarrow \begin{bmatrix} x_1 & x_2 & 0 \\ 0 & 2x_2 & 9x_5 \\ 3x_1 & 9x_2 & 2x_3 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 + 1 + 0 & 3 \\ 0 + 2 + 0 & 2 \\ 1 + 1 + 0 & 10 \end{bmatrix}$$

$$\begin{array}{c} x_1 + 2x_2 = \\ x_1 + 2x_3 = \end{array}$$

$$x_1 + x_2 = 2$$
 $x_1 = 2 - x_2$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 7 & 1 & 2 & 28 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 0 \\ 32 & 28 & 0 \\ 1 & 1 & 2 & 28 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 2 & 2 & 3 \\
0 & 1 & 2 & 9
\end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True, linear combination

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True, if set of replies is linerly independent,
then {v, v} one also linerly independent is long
is var v one net a scalar multiple of the ofter

- **7. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

True by liney combination