Universidade do Minho

Dep. de Matemática e Aplicações

sistemas dinâmicos discretos

Exercício 1. Determine o conjunto estável do ponto fixo zero da transformação $x\mapsto \lambda x$, $x\in\mathbb{R}$, ao variar o parâmetro λ .

Exercício 2. Em cada alínea, apresente um exemplo de uma transformação contínua $f: \mathbb{R} \to \mathbb{R}$ tal que:

- (a) $W^s(0) =]-1,1[.$
- (b) $\omega(x) = \{1\}$ para todo o $x \in \mathbb{R}$.
- (c) $\omega(x) = \emptyset$ para todo o $x \in \mathbb{R}$.
- (d) $\omega(2) = \{-2, 2\}$ para todo o $x \in \mathbb{R}$.
- (e) O conjunto [-1,1] não contém pontos periódicos.
- (f) $\sqrt{3}$ é um ponto periódico de período 2.
- (g) f tem um único ponto fixo x e $W^s(x) = \mathbb{R}$.
- (h) Todo o ponto da reta é periódico.
- (i) Todo o ponto da reta é recorrente.
- (j) Todo o ponto da reta é não-errante.
- (k) Nenhum ponto da reta é periódico.
- (I) Nenhum ponto da reta é recorrente.
- (m) O conjunto dos pontos recorrentes é [0,2].

Exercício 3. Dê exemplo de, ou justifique por que não existe:

- 1. Uma transformação $f:[0,1] \rightarrow [0,1]$ que não tenha pontos fixos.
- 2. Uma transformação contínua $f:]0,3[\rightarrow]0,3[$ que não tenha pontos fixos.
- 3. Um homeomorfismo $f:\mathbb{R} \to \mathbb{R}$ que não tenha pontos fixos.

Exercício 4. Apresente um exemplo de uma contração $f: [0,1] \rightarrow [0,1]$ sem pontos fixos.

Determine os pontos fixos e use a iteração gráfica para estudar o comportamentos de pontos próximos dos pontos fixos para as seguintes transformações:

1.
$$f(x) = x - x^2$$
, $x \in [0, 1]$.

2.
$$g(x) = 2x - x^2$$
, $x \in [0, 1]$.

Exercício 6. Em cada alínea estude a dinâmica da transformação $f: \mathbb{R} \to \mathbb{R}$ definida por:

(a)
$$f(x) = x^3$$

(b)
$$f(x) = -x^3$$

(c)
$$f(x) = x^{1/3}$$

(a)
$$f(x) = x^3$$
 (b) $f(x) = -x^3$ (c) $f(x) = x^{1/3}$ (d) $f(x) = x^3 + x$

(e)
$$f(x) = x^3 - x$$
 (f) $f(x) = x^2 + 1/4$ (g) $f(x) = |x - 1|$ (h) $f(x) = \sin x$

(f)
$$f(x) = x^2 + 1/4$$

$$(g) f(x) = |x - 1|$$

$$(\mathsf{h})\,f(x) = \mathsf{sen}\,x$$

Utilize o Maxima para simular a evolução da dinâmica de cada um dos sistemas.

Exercício 7. Considere a transformação $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. Mostre que $W^s(1) = \mathbb{R}^+$. $x \mapsto \sqrt{x}$

Exercício 8. Para cada uma das seguintes transformações $f: \mathbb{R} \to \mathbb{R}$ determine os pontos fixos e indique quais são atrativos e quais são repulsivos:

(a)
$$f(x) = x^2 - x/2$$
 (b) $f(x) = 4x - x^2$ (c) $f(x) = x^2 - 1$

(b)
$$f(x) = 4x - x^2$$

(c)
$$f(x) = x^2 - 1$$

$$(\mathsf{d}) f(x) = x$$

$$(e) f(x) = x + x^3$$

(d)
$$f(x) = \operatorname{sen} x$$
 (e) $f(x) = x + x^3$ (f) $f(x) = x - x^3$

$$(g) f(x) = x + x^2$$

$$(h) f(x) = x - x^2$$

(g)
$$f(x) = x + x^2$$
 (h) $f(x) = x - x^2$ (i) $f(x) =\begin{cases} 2x & \text{se } x \le 1/2 \\ 2 - 2x & \text{se } x > 1/2 \end{cases}$

Exercício 9. Em cada alínea, apresente um exemplo de uma transformação contínua $f:\mathbb{R}\longrightarrow\mathbb{R}$ tal que:

- (a) $\sqrt{2}$ é um ponto fixo repulsivo.
- (b) $\sqrt{3}$ é um ponto fixo atrativo.
- (c) π e $-\pi$ são pontos fixos repulsivos.