IN THE CLAIMS:

1.-22. (Cancelled).

23. (Previously presented) A method of reducing phytotoxicity to a crop at a locus caused by the application thereto of a herbicidal benzoylisoxazole and/or dione derivative of formula (I):

$$A \longrightarrow (R^2)_z$$
 (I)

wherein

A is a group (A-1), (A-2) or (A-3):

- is a hydrogen atom or a halogen atom; a straight- or branched chain alkyl, alkenyl or alkynyl group containing from one to six carbon atoms which is optionally substituted by one or more halogen atoms; a cycloalkyl group containing from 3 to 6 carbon atoms optionally substituted by one or more groups R⁵, one or more halogen atoms or a group CO₂R³; or is a group selected from –CO₂R³, -COR⁵, cyano, nitro, -CONR³R⁴ and -S(O)_kR¹³;
- R¹ is straight- or branched-chain alkyl, alkenyl or alkynyl group containing up to six carbon atoms which is optionally substituted by one or more halogen atoms; or a

2

cycloalkyl group containing from three to six carbon atoms optionally substituted by one or more groups R⁵ or one or more halogen atoms;

is a halogen atom; a straight- or branched-chain alkyl, alkenyl or alkynyl group

- R^2 containing up to six carbon atoms which is optionally substituted by one or more halogen atoms; or is a straight- or branched-chain alkyl group containing up to six carbon atoms which is substituted by one or more groups -OR⁵; or is a group selected from nitro, cyano, -CO₂R⁵, -S(O)_pR⁶, -O(CH₂)_mOR⁵, -COR⁵, -NR¹¹R¹², - $N(R^8)SO_2R^7$, $-N(R^8)CO_2R^7$, $-OR^5$, $-OSO_2R^7$, $-SO_2R^7$, $-SO_2R^7$, $-SO_2NR^3R^4$, $-CONR^3R^4$, $-CONR^5$, - $CSNR^{3}R^{4}$, $-(CR^{9}R^{10})_{y}-S(O)_{q}R^{7}$ and $-SF_{5}$; or two groups R², on adjacent carbon atoms of the phenyl ring may, together with the carbon atoms to which they are attached, form a 5 to 7 membered saturated or unsaturated heterocyclic ring containing up to three ring heteroatoms selected from nitrogen, oxygen and sulfur, which ring is optionally substituted by one or more groups selected from halogen, nitro, -S(O)₀R¹³, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C_{1-4} haloalkoxy, = O (or a 5- or 6- membered cyclic acetal thereof), and =NO-R³, it being understood that a sulphur atom, where at present in the ring, may be in the form of a group -SO- or $-SO_2$ -;
- is an integer from one to five: when z is greater than one the groups R² may be the Z same or different;
- R³ and R⁴ are each independently a hydrogen atom, or a straight- or branched-chain alkyl group containing up to six carbon atoms which is optionally substituted by one or more halogen atoms;
- R^5 is a straight- or branched-chain alkyl group containing up to six atoms which is optionally substituted by one or more halogen atoms or a straight- or branchedchain alkenyl or alkynyl group containing from two to six carbon atoms which is optionally substituted by one or more halogen atoms;
- R⁶ and R⁷, which may be the same or different, are each R⁵; or phenyl optionally substituted by from one to five groups which may be the same or different selected from a halogen atom, a straight- or branched-chain alkyl group containing up to six carbon atoms which is optionally substituted by one or more

halogen atoms, nitro, cyano, $-CO_2R^5$, $S(O)_pR^{13}$, $-NR^{11}NR^{12}$, $-OR^5$ and $-CONR^3R^4$:

R⁸, R⁹ and R¹⁰ are each a hydrogen atom or R⁶;

R¹¹ and R¹² are each a hydrogen atom or R⁵;

R¹³ is a straight- or branched-chain alkyl group containing up to six carbon atoms which is optionally substituted by one ore more halogen atoms;

p and q are each independently zero, one or two;

k and m are each one, two or three;

y is an integer from one to four; when y is greater than one; the groups R⁹ and R¹⁰ may be the same or different;

or an agriculturally acceptable salt or metal complex thereof;

which method comprises applying to the locus of the crop before the herbicidal compound an antidotally effective amount of an antidote compound, and optionally partner herbicide,

wherein the antidotally compound is a compound selected from the group consisting of ethyl 5,5-diphenylisoxazoline-3-carboxylate and 5,5-diphenylisoxazoline-3-carboxylic acid.

24. (Previously Presented) A method according to claim 23 wherein the compound of formula (I) is a compound of the formula (la):

wherein:

R is hydrogen or $-CO_2Et$;

R¹¹⁷ is selected from -S(O)_pMe, Me, Et, a chlorine, bromine or fluorine atom, methoxy, ethoxy and -CH₂S(O)_qMe;

- R¹¹⁸ is selected from a hydrogen atom, a chlorine, a bromine or fluorine atom, methoxy, ethoxy and -S(O)_pMe;
- R¹¹⁹ is selected from a hydrogen atom, a chlorine, a bromine or fluorine atom, methoxy and CF₃; and p and q each independently have the values zero, one or two.
- 25. (Previously Presented) A method according to claim 24 in which the compound of the formula (I) is a compound of formula (lb):

$$\begin{array}{c|c} & SO_2CH_3 \\ \hline R \\ \hline N \\ \hline O \\ \hline \end{array}$$
 (Ib)

wherein R¹²⁰ is chlorine, bromine or trifluoromethyl; and R is hydrogen or -CO₂Et.

- 26. (Previously Presented) A method according to claim 25 in which the compound of the formula (I) is 5-cyclopropyl-4-(2-methylsulphonyl-4-trifluoromethylbenzoyl)isoxazole.
- 27. (Previously Presented) A method according to claim 26 in which the antidote compound is ethyl 5,5-diphenylisoxazoline-3-carboxylate.

- 28. (Previously Presented) A method according to claim 26 in which the antidote compound is 5,5-diphenylisoxazoline-3-carboxylic acid.
- 29. (Previously Presented) A method according to claim 23 wherein A in formula (I) is a group of the formula

- 30. (Previously Presented) A method according to claim 29 in which the antidote compound is ethyl 5,5-diphenylisoxazoline-3-carboxylate.
- 31. (Previously Presented) A method according to claim 29 in which the antidote compound is 5,5-diphenylisoxazoline-3-carboxylic acid.
- 32. (Previously Presented) A method according to claim 30 wherein $(R^2)_z$ in formula (I) is 2-methylsulfonyl-4-trifluoromethyl.
- 33. (Previously Presented) A method according to claim 31 wherein $(R^2)_z$ in formula (I) is 2-methylsulfonyl-4-trifluoromethyl.
- 34. (Previously Presented) A method as claimed in claim 23, wherein in the compound of formula (I):

A is a group (A-1):

$$\begin{array}{c|c}
R & & & \\
\hline
N & & & \\
\hline
N & & & \\
\end{array}$$
(A-1)

in which R is $-S(O)_k R^{13}$.

35. (Previously Presented) A method as claimed in claim 34, wherein

R is $SO-R^{13}$ or SO_2R^{13} ,

R¹ is cyclopropyl, and

R¹³ is an alkyl group containing up to six carbon atoms.

- 36. (Previously Presented) A herbicidal composition comprising
- (a) a herbicidally effective amount of a compound of formula (I) as defined in claim 23 or an agriculturally acceptable salt or metal complex thereof, optionally in combination with a partner herbicide; and
- (b) an antidotally effective amount of an antidote compound selected from ethyl 5,5-diphenylisoxazoline-3-carboxylate and 5,5-diphenylisoxazoline-3-carboxylic acid.
- 37. (Previously Presented) A herbicidal composition as claimed in claim 36 wherein the herbicidal compound of formula (I) is 5-cyclopropyl-4-(2-methylsulphonyl-4-trifluoromethylbenzoyl)isoxazole.

- 38. (Previously Presented) A herbicidal composition as claimed in claim 37 wherein the antidote compound is ethyl 5,5-diphenylisoxazoline-3-carboxylate.
- 39. (Previously Presented) A herbicidal composition as claimed in claim 37 wherein the antidote compound is 5,5-diphenylisoxazoline-3-carboxylic acid.
- 40. (Previously Presented) A herbicidal composition as claimed in claim 39 wherein the weight ratio of the compound of formula (I): antidote is from 1:25 to 60:1.
- 41. (Previously Presented) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
 - a) a herbicidally effective amount of a compound of formula I

(I)

wherein

Q is the group

 (Q_1)

and

b) to antagonize the herbicide, an antidotally effective amount of a safener of formula II

42.-57. (Cancelled).

- 58. (Previously presented) A herbicidal composition comprising:
 - a) a herbicidally effective amount of a compound of 5-cyclopropyl-4-(2-methylsulphonyl-4-trifluoromethylbenzoyl)isoxazole.
 - b) an antidotally effective amount of an antidote compound; and
 - c) one or more herbicidally acceptable dilutents, carries and/or surface active agents.

- 59. (Previously presented) The herbicidal composition as claimed in claim 59, wherein the antidote compound is 5,5-diphenylisoxazoline-3-carboxylic acid.
- 60. (Previously presented) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
 - a) a herbicidally effective amount of a compound of formula I

$$CF_3$$

wherein

Q is the group

$$\bigcap_{N} \bigcap_{R_1} \bigcap_{R_1} \bigcap_{R_2} \bigcap_{R_3} \bigcap_{R_4} \bigcap_{R_4$$

$$(Q_2)$$

$$R_1$$
 is hydrogen, $-COO-C_1-C_4$ -alkyl, $-S-C_1-C_4$ alkyl or $-SO-C_1-C_4$ alkyl; and

b) to antagonise the herbicide, an antidotally effective amount of a safener of formula II

61. (Previously presented) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 1 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 58.

- 62. (Previously presented) The method according to claim 59, wherein the cultivated plants are maize.
- 63. (Previously presented) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
 - a) a herbicidally effective amount of a compound of formula I

(l)

wherein

Q is the group

$$\bigcap_{N} \bigcap_{R_1} \bigcap_{R_1$$

 (Q_2)

$$R_1$$
 is hydrogen, $-COO-C_1-C_4$ -alkyl, $-S-C_1-C_4$ alkyl or $-SO-C_1-C_4$ alkyl; and

b) to antagonise the herbicide, an antidotally effective amount of a safener of formula II

- 64. (Previously presented) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 4 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 61.
- 65. (Previously presented) The method according to claim 62, wherein the cultivated plants are maize.
- 66. (Previously presented) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
 - a) a herbicidally effective amount of a compound of formula I

wherein

Q is the group

and

b) to antagonise the herbicide, an antidotally effective amount of a safener of formula II

- 67. (Previously presented) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 64 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 64.
- 68. (Previously presented) The method according to claim 65, wherein the cultivated plants are maize.
- 69. (Previously presented) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
 - a) a herbicidally effective amount of a compound of formula I

(I)

wherein

Q is the group

 (Q_1)

and

b) to antagonise the herbicide, an antidotally effective amount of a safener of formula II

- 70. (Previously presented) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 10 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 67.
- 71. (Previously presented) The method according to claim 68, wherein the cultivate plants are maize

- 72. (Previously presented) A method according to claim 23 in which the crop plant to be protected is maize.
- 73. (Previously presented) A method according to claim 23 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 74. (Previously presented) A method according to claim 23 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 75. (Previously presented) A method according to claim 25 in which the crop plant to be protected is maize.
- 76. (Previously presented) A method according to claim 25 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 77. (Previously presented) A method according to claim 25 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 78. (Previously presented) A method according to claim 26 in which the crop plant to be protected is maize.
- 79. (Previously presented) A method according to claim 26 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.

- 80. (Previously presented) A method according to claim 26 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 81. (Previously presented) A method according to claim 27 in which the crop plant to be protected is maize.
- 82. (Previously presented) A method according to claim 27 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 83. (Previously presented) A method according to claim 27 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 84. (Previously presented) A method according to claim 28 in which the crop plant to be protected is maize.
- 85. (Previously presented) A method according to claim 28 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 86. (Previously presented) A method according to claim 28 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.

- 87. (Previously presented) A method according to claim 29 in which the crop plant to be protected is maize.
- 88. (Previously presented) A method according to claim 29 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 89. (Previously presented) A method according to claim 29 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 90. (Previously presented) A method according to claim 34 in which the crop plant to be protected is maize.
- 91. (Previously presented) A method according to claim 34 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.004 kg to 5 kg per hectare.
- 92. (Previously presented) A method according to claim 34 in which the application rate of the benzoylisoxazole and/or dione of formula (I) is from 0.01 kg to 2 kg per hectare.
- 93. (New) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
- a) a herbicidally effective amount of a compound of formula I

$$\begin{array}{c|c} Q & O & (I) \\ \hline & O & CH_3 \\ \hline & O & \\ \hline & CF_3 & \end{array}$$

wherein

$$\begin{array}{c} \text{Q}_1 \\ \text{Q}_2 \\ \text{Q} \\ \text{Is the group} \end{array}$$

R₁ is hydrogen, -COO-C₁-C₄-alkyl, -S-C₁-C₄-alkyl or -SO-C₁-C₄-alkyl; and

b) to antagonise the herbicide, an antidotally effective amount of a safener comprising the ethyl esters of the compound of formula II

94. (New) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of

formula I according to claim 93 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 93.

95. (New) The method according to claim 94, wherein the cultivated plants are maize.

96. (New) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of

a) a herbicidally effective amount of a compound of formula I

wherein

Q is the group

$$(Q_2)$$

b) to antagonise the herbicide, an antidotally effective amount of a safener comprising the ethyl esters of the compound of formula II

97. (New) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 96 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 96.

98. (New) The method according to claim 97, wherein the cultivated plants are maize.

- 99. (New) A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
- a) a herbicidally effective amount of a compound of formula I

wherein

$$Q \text{ is the group} \qquad \begin{matrix} (Q_1) \\ R_1 \end{matrix} \qquad ; \text{ and} \qquad$$

b) to antagonise the herbicide, an antidotally effective amount of a safener comprising the ethyl esters of the compound of formula II

100. (New) A method of selectively controlling weeds and grasses in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the compound of formula I according to claim 99 and, to antagonise the herbicide, an antidotally effective amount of the safener of formula II according to claim 99.

101. (New) The method according to claim 100, wherein the cultivated plants are maize.