Chapitre 4 : Introduction aux phénomènes aléatoires continus

Nathaël Gozlan

2 décembre

Introduction

Dans ce chapitre, nous souhaitons modéliser des quantités aléatoires continues telles que :

- La température T dans une pièce : $T \in \mathbb{R}$,
- ullet La durée de vie D d'un composant électronique : $D\in [0,\infty[$,
- Le temps d'attente A à un guichet : $A \in [0, \infty[$,
- ...

Ces variables T, D, A ont pour point commun de varier continument : elles peuvent prendre toutes les valeurs intermédiaires entre deux valeurs fixées.

Pour avoir une modélisation satisfaisante, on ne peut pas supposer que ces variables sont à valeurs dans un sous ensemble E fini ou dénombrable de $\mathbb R$ et on doit donc autoriser ces variables à prendre une infinité *non*-dénombrable de valeurs.

Dans ce chapitre, nous allons présenter succinctement la classe des *variables aléatoires à densité* qui permet de modéliser ce type de phénomènes aléatoires continus.

Variables aléatoires à valeurs réelles

On se place dans un espace de probabilité général $(\Omega, \mathcal{A}, \mathbb{P})$, où \mathcal{A} est une tribu sur l'espace Ω .

Définition

Une variable aléatoire à valeurs réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ est une fonction $X : \Omega \to \mathbb{R}$ telle que pour tout $t \in \mathbb{R}$, $\{X \leq t\} \in \mathcal{A}$.

Lorsque $A = \mathcal{P}(\Omega)$, la condition $\{X \leq t\} \in A$ est automatiquement vérifiée.

Par conséquent, si Ω est fini ou dénombrable et est équipé de la tribu $\mathcal{P}(\Omega)$ (choix usuel dans ce cadre), toute fonction est une variable aléatoire. On retrouve la définition du chapitre 3.

Fonction de répartition d'une variable aléatoire

Définition

Si $X:\Omega\to\mathbb{R}$ est une variable aléatoire, la fonction $F_X:t\mapsto\mathbb{P}(X\leq t)$ est appelée la fonction de répartition de X.

Cette fonction est bien définie, puisqu'on suppose que $\{X \leq t\}$ appartient à \mathcal{A} .

Proposition

La fonction F_X est croissante, continue à droite, admet une limite finie à gauche en tout point et tend vers 0 en $-\infty$ et vers 1 en $+\infty$.

Démonstration.

La preuve est identique à celle donnée dans le cas des variables aléatoires définies sur un espace fini ou dénombrable.

Densité de probabilité

Définition (Densité de probabilité)

Une fonction $p:\mathbb{R}\to\mathbb{R}$ est une densité de probabilité si

- 2 p est continue par morceaux,

Définition

Soit $X:\Omega \to \mathbb{R}$ une variable aléatoire et p une densité de probabilité sur $\mathbb{R}.$

On dit que X admet p pour densité si

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t p(x) dx, \quad \forall t \in \mathbb{R}.$$

Densité de probabilité

Si X a pour densité p alors la probabilité de l'événement $\{X \leq t\}$ correspond à l'aire sous la courbe représentative de p sur l'intervalle $]-\infty,t].$

Dérivée de la fonction de répartition

Proposition

Soit X une variable aléatoire à densité. La fonction F_X est continue sur $\mathbb R$ et dérivable en tout point t où p est continue.

Démonstration.

Pour simplifier, nous faisons la preuve en supposant que p est continue sur $\mathbb R$ tout entier.

Fixons $t \in \mathbb{R}$. Comme p est continue en t, si $\varepsilon > 0$, il existe $\eta > 0$ tel que pour tout $u \in [t - \eta, t + \eta]$, on a $|p(u) - p(t)| \le \varepsilon$.

Prenons $t \leq s \leq t + \eta$, on a alors

$$F_X(s) - F_X(t) = \int_t^s p(u) du \le \int_t^s p(t) + \varepsilon du = (p(t) + \varepsilon)(s - t).$$

Donc

$$\frac{F_X(s)-F_X(t)}{s-t}\leq p(t)+\varepsilon$$

On voit de même que

$$\frac{F_X(s)-F_X(t)}{s-t}\geq p(t)-\varepsilon$$

On a donc montré que

$$\lim_{s\to t^+}\frac{F_X(s)-F_X(t)}{s-t}=p(t).$$

En raisonnant de même pour la limite à gauche, on trouve

$$\lim_{s\to t^-}\frac{F_X(s)-F_X(t)}{s-t}=p(t).$$

Autrement dit $\lim_{s\to t} \frac{F_X(s)-F_X(t)}{s-t} = p(t)$, ce qui prouve que $F_X'(t) = p(t)$.

Probabilité d'un intervalle

Proposition

Si X admet p pour densité

$$\mathbb{P}(X \in]a,b]) = \int_a^b p(x) dx.$$

Démonstration.

Si $a \leq b$, on a

$$\mathbb{P}(X \leq b) = \mathbb{P}(X \leq a) + \mathbb{P}(X \in]a, b])$$

Donc, par la relation de Chasles,

$$\mathbb{P}(X \in]a,b]) = F_X(b) - F_X(a) = \int_{-\infty}^b p(t) dt - \int_{-\infty}^a p(t) dt = \int_a^b p(t) dt.$$

Absence d'atomes

La principale différence entre les variables discrètes et continues est que la probabilité qu'une variable à densité prenne une valeur fixée à l'avance est toujours nulle.

Proposition

Si X est une variable aléatoire à densité, alors $\mathbb{P}(X=a)=0$ pour tout $a\in\mathbb{R}$.

Démonstration.

Remarquons que

$${X = a} = \bigcap_{n \in \mathbb{N}^*} {X \in]a - 1/n, a]}.$$

Les événements $A_n = \{X \in]a - 1/n, a]\}$ formant une suite décroissante, on a donc, en utilisant les axiomes des mesures de probabilité

$$\mathbb{P}(X=a)=\lim_{n\to\infty}\mathbb{P}(X\in]a-1/n,a]).$$

Or, comme X admet une densité p, la fonction de répartition F_X de X est continue en a et donc

$$\mathbb{P}(X \in]a - 1/n, a]) = F_X(a) - F_X(a - 1/n) \to 0,$$

lorsque $n \to +\infty$. On en déduit que $\mathbb{P}(X = a) = 0$.

Conséquence

Corollaire

Si X admet une densité, $\mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b])$.

Démonstration.

Par exemple,

$$\mathbb{P}(X\in[a,b])=\mathbb{P}(\{X=a\}\cup\{X\in]a,b]\})=\mathbb{P}(X=a)+\mathbb{P}(X\in]a,b])=\mathbb{P}(X\in]a,b]).$$

Plan

- Variables aléatoires à densité
- Exemples de variables aléatoires à densité
 - Densité uniforme sur [a, b]
 - Densité exponentielle
 - Densité gaussienne
- Spérance et moments des variables aléatoires à densité
 - Généralités
 - Calcul des moments des lois usuelles

Densité uniforme sur [a, b]

Définition

On dit que X suit la loi uniforme sur [a,b] et on note $X \sim \mathcal{U}([a,b])$ si X admet la densité p suivante :

$$p(t) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(t), \qquad \forall t \in \mathbb{R}.$$

Densité uniforme sur [a, b]

Proposition

Si $X \sim \mathcal{U}([a,b])$, alors

$$F_X(t) = \begin{cases} \frac{t-a}{b-a} & \text{si } t \in [a,b] \\ 0 & \text{si } t < a \\ 1 & \text{si } t > b \end{cases}$$

Démonstration.

Par définition, si $t \in [a, b]$,

$$F_X(t) = \frac{1}{b-a} \int_{-\infty}^{t} \mathbf{1}_{[a,b]}(x) dx = \frac{1}{b-a} \int_{a}^{t} 1 dx = \frac{t-a}{b-a}.$$

Plan

- Variables aléatoires à densité
- Exemples de variables aléatoires à densité
 - Densité uniforme sur [a, b]
 - Densité exponentielle
 - Densité gaussienne
- 3 Espérance et moments des variables aléatoires à densité
 - Généralités
 - Calcul des moments des lois usuelles

Densité exponentielle

Définition

On dit que X suit la loi exponentielle de paramètre $\lambda>0$ et on note $X\sim\mathcal{E}(\lambda)$ si X admet la densité p_λ suivante :

$$p_{\lambda}(t) = \lambda e^{-\lambda t} \mathbf{1}_{[0,\infty[}(t), \quad \forall t \in \mathbb{R}.$$

Il s'agit bien d'une densité car

$$\int_{-\infty}^{+\infty} p_{\lambda}(t) dt = \int_{0}^{+\infty} \lambda e^{-\lambda t} dt = [-e^{-\lambda t}]_{0}^{+\infty} = 1.$$

Densité exponentielle

Proposition

Si $X \sim \mathcal{E}(\lambda)$, alors

$$F_X(t) = \left\{ egin{array}{ll} 1 - e^{-\lambda t} & ext{ si } t \geq 0 \ 0 & ext{ si } t < 0. \end{array}
ight.$$

Remarquons que $\mathbb{P}(X > 0) = 1 - \mathbb{P}(X \le 0) = 1$.

La densité exponentielle est souvent utilisée pour modéliser des durées : temps d'attente, durée de vie, . . .

Démonstration.

Prenons t > 0,

$$F_X(t) = \lambda \int_{-\infty}^t e^{-\lambda x} \mathbf{1}_{\mathbb{R}^+}(x) dx = \lambda \int_0^t e^{-\lambda x} dx = [-e^{-\lambda x}]_0^t = 1 - e^{-\lambda t}.$$

Plan

- Variables aléatoires à densité
- Exemples de variables aléatoires à densité
 - ullet Densité uniforme sur [a, b]
 - Densité exponentielle
 - Densité gaussienne
- 3 Espérance et moments des variables aléatoires à densité
 - Généralités
 - Calcul des moments des lois usuelles

Densité gaussienne

C'est peut être la densité la plus importante en théorie des probabilités!

Définition

On dit que X suit la loi gaussienne de paramètres $m \in \mathbb{R}$ et σ^2 et on note $X \sim \mathcal{N}(m, \sigma^2)$ si X admet la densité p_{m,σ^2} suivante :

$$p_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-m)^2\right), \qquad \forall x \in \mathbb{R}.$$

Lorsque m=0 et $\sigma^2=1$, on dit que X est centrée réduite. On dit que la loi $\mathcal{N}(0,1)$ est la loi gaussienne standard.

Nous allons voir que le paramètre m correspond à la moyenne de X et σ^2 à sa variance. On ne dispose pas de formule explicite pour F_X .

Densité Gaussienne

Densité gaussienne

Pour montrer que p_{m,σ^2} est une densité, on utilise d'abord le fait que

$$\int_{-\infty}^{+\infty} p_{m,\sigma^2}(x) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2\sigma^2}(x-m)^2\right) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}u^2\right) du$$

où la dernière égalité vient du changement de variable $u=(x-m)/\sigma$, puis la formule

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}u^2\right) du = \sqrt{2\pi}.$$
 (1)

Il y plusieurs moyens classiques de montrer (1): changement de variables polaires, utilisation des formules de Wallis, résolution d'une équation différentielle,...(cf L3)

Densité gaussienne

On peut montrer une propriété de stabilité des variables aléatoires gaussiennes :

Proposition

Si $X \sim \mathcal{N}(0,1)$ alors $Y = \sigma X + m \sim \mathcal{N}(m, \sigma^2)$.

Démonstration.

On remarque que, pour tout $t \in \mathbb{R}$,

$$Y \le t \Leftrightarrow X \le (t - m)/\sigma$$
.

Donc

$$G_Y(t) = \mathbb{P}(X \le (t-m)/\sigma) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(t-m)/\sigma} \exp\left(-\frac{1}{2}u^2\right) du = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^t \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) du$$

en effectuant le changement de variable $u = (x - m)/\sigma$.

Donc Y a pour densité p_{m,σ^2} .

Plan

- Variables aléatoires à densité
- Exemples de variables aléatoires à densité
 - ullet Densité uniforme sur [a, b]
 - Densité exponentielle
 - Densité gaussienne
- Spérance et moments des variables aléatoires à densité
 - Généralités
 - Calcul des moments des lois usuelles

Espérance et moments des variables aléatoires à densité

Définition

Soit X une variable aléatoire ayant une densité p_X .

• Pour toute fonction $h: \mathbb{R} \to \mathbb{R}$ continue par morceaux telle que l'intégrale $\int_{-\infty}^{+\infty} |h(x)| p_X(x) \, dx$ converge, on pose

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x) p_X(x) \, dx. \tag{2}$$

Cette quantité est appelée espérance de h(X).

• En particulier si $\int_{-\infty}^{+\infty} |x| p_X(x) \, dx$ converge alors l'espérance de X est définie par

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x p_X(x) \, dx.$$

• Plus généralement, si $\int_{-\infty}^{+\infty} |x|^k p_X(x) dx$ converge pour $k \in \mathbb{N}$ alors le moment d'ordre k de X est défini par

$$\mathbb{E}[X^k] = \int x^k p_X(x) \, dx.$$

Espérance et moments des variables aléatoires à densité

Remarque

• La formule (2) est l'analogue continu de la formule

$$\mathbb{E}[h(X)] = \sum_{i=0}^{+\infty} h(x_i) \mathbb{P}(X = x_i),$$

pour une variable aléatoire discrète à valeurs dans $E = \{x_i : i \in \mathbb{N}\}.$

• Remarquons que si $h(x)=\mathbf{1}_{[a,b]}(x)$, alors $\int_{-\infty}^{+\infty}h(x)p_X(x)\,dx$ converge et on a

$$\mathbb{E}[\mathbf{1}_{[a,b]}(X)] = \int_a^b p_X(x) \, dx = \mathbb{P}(X \in [a,b]).$$

La notion d'espérance est donc une extension aux fonctions de la notion de probabilité.

Variance

Définition (Variance)

Si X est une variable aléatoire de densité p_X possédant un moment d'ordre 2 fini, on appelle variance de X la quantité

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{\mathbb{R}} \left(x - \int_{\mathbb{R}} y p_X(y) \, dy\right)^2 p_X(x) \, dx$$

On a la formule

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Inégalités

Proposition (Inégalité de Markov)

Si X admet un moment d'ordre 1 fini, alors

$$\mathbb{P}(|X| > a) \le \frac{\mathbb{E}[|X|]}{a}, \quad \forall a > 0$$

Démonstration.

$$\mathbb{E}[|X|] = \int_{-\infty}^{+\infty} |x| p_X(x) \, dx \ge \int_{-\infty}^{+\infty} |x| \mathbf{1}_{|x|>a} p_X(x) \, dx \ge a \mathbb{E}[\mathbf{1}_{|X|>a}] = a \mathbb{P}(|X|>a).$$

Corollaire

Si X admet un moment d'ordre 2 fini, on a

$$\mathbb{P}(|X - \mathbb{E}[X]| > a) \le \frac{\operatorname{Var}(X)}{a^2}, \quad \forall a > 0.$$

Plan

- Variables aléatoires à densité
- Exemples de variables aléatoires à densité
 - ullet Densité uniforme sur [a, b]
 - Densité exponentielle
 - Densité gaussienne
- Spérance et moments des variables aléatoires à densité
 - Généralités
 - Calcul des moments des lois usuelles

Loi uniforme

Proposition

Si $X \sim \mathcal{U}([a, b])$, alors

$$\mathbb{E}[X] = \frac{a+b}{2} \qquad \text{et} \qquad \operatorname{Var}(X) = \frac{(b-a)^2}{12}.$$

Loi exponentielle

Proposition

Si
$$X \sim \mathcal{E}(\lambda)$$
, $\lambda > 0$, alors

$$\mathbb{E}[X] = \frac{1}{\lambda}$$
 et $\operatorname{Var}(X) = \frac{1}{\lambda^2}$.

Loi gaussienne

Proposition

Si
$$X \sim \mathcal{N}(m, \sigma^2)$$
, alors

$$\mathbb{E}[X] = m$$
 et $Var(X) = \sigma^2$.