MARR	12%									
N	(F/P, i, N)	(P/F, i, N)	(F/A, i, N)	(A/F, i, N)	(P/A, i, N)	(A/P, i, N)				
1	1.1200	0.8929	1.0000	1.0000	0.8929	1.1200				
2	1.2544	0.7972	2.1200	0.4717	1.6901	0.5917				
3	1.4049	0.7118	3.3744	0.2963	2.4018	0.4163				
4	1.5735	0.6355	4.7793	0.2092	3.0373	0.3292				
5	1.7623	0.5674	6.3528	0.1574	3.6048	0.2774				
6	1.9738	0.5066	8.1152	0.1232	4.1114	0.2432				
7	2.2107	0.4523	10.0890	0.0991	4.5638	0.2191				
8	2.4760	0.4039	12.2997	0.0813	4.9676	0.2013				
9	2.7731	0.3606	14.7757	0.0677	5.3282	0.1877				
10	3.1058	0.3220	17.5487	0.0570	5.6502	0.1770				
N	1	2	3	4	5	6	7	8	9	10
(F/P, i, N)	1.1200	1.2544	1.4049	1.5735	1.7623	1.9738	2.2107	2.4760	2.7731	3.1058
(P/F, i, N)	0.8929	0.7972	0.7118	0.6355	0.5674	0.5066	0.4523	0.4039	0.3606	0.3220
(F/A, i, N)	1.0000	2.1200	3.3744	4.7793	6.3528	8.1152	10.0890	12.2997	14.7757	17.5487
(A/F, i, N)	1.0000	0.4717	0.2963	0.2092	0.1574	0.1232	0.0991	0.0813	0.0677	0.0570
(P/A, i, N)	0.8929	1.6901	2.4018	3.0373	3.6048	4.1114	4.5638	4.9676	5.3282	5.6502
(A/P, i, N)	1.1200	0.5917	0.4163	0.3292	0.2774	0.2432	0.2191	0.2013	0.1877	0.1770

Table_Values Page 1 of 7

Recovery	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
Year	Property	Property	Property	Property	Property	Property
1	33.33%	20.00%	14.29%	10.00%	5.00%	3.75%
2	44.45%	32.00%	24.49%	18.00%	9.50%	7.22%
3	14.81%	19.20%	17.49%	14.40%	8.55%	6.68%
4	7.41%	11.52%	12.49%	11.52%	7.70%	6.18%
5		11.52%	8.93%	9.22%	6.93%	5.71%
6		5.76%	8.92%	7.37%	6.23%	5.29%
7			8.93%	6.55%	5.90%	4.89%
8			4.46%	6.55%	5.90%	4.52%
9				6.56%	5.91%	4.46%
10				6.55%	5.90%	4.46%
11				3.28%	5.91%	4.46%
12					5.90%	4.46%
13					5.91%	4.46%
14					5.90%	4.46%
15					5.91%	4.46%
16					2.95%	4.46%
17						4.46%
18						4.46%
19						4.46%
20						4.46%
21						2.23%

LECTURE 10

Consider the following 6 investment opportunities:

Project		Annual Saving
Α	\$160	\$130
В	\$170	\$105
С	\$180	\$140
D	\$220	\$160
E	\$250	\$180
F	\$260	\$200

Projects A and B are mutually exclusive. Project C is contingent upon Project A. Projects D and E are also mutually exclusive. Project F is contingent upon Project D.

a. How many mutually exclusive decision alternatives are in the problem including the do-nothing alternatives? [6 points]

	Project								
Uternative	Α	В	Č	D	E	F			
1	0	0	0	0	0	0			
2	1	0	0	0	0	0			
3	1	0	1	0	0	0			
4	1	0	0	1	0	0			
5	1	0	0	1	0	1			
6	1	0	0	0	1	0			
7	1	0	1	1	0	0			
8	1	0	1	1	0	1			
9	1	0	1	0	1	0			
10	0	1	0	0	0	0			
11	0	1	0	1	0	0			
12	0	1	0	1	0	1			
13	0	1	0	0	1	0			
14	0	0	0	1	0	0			
15	0	0	0	1	0	1			
16	0	0	0	0	1	0			

16 alternatives exist as shown above.

b. What is the total required investment for each alternative? [2 points]

			Project				Required
Uternative	Α	В	c	D	E	F	Investment
1	0	0	0	0	0	0	\$0
2	1	0	0	0	0	0	\$160
3	1	0	1	0	0	0	\$340
4	1	0	0	1	0	0	\$380
5	1	0	0	1	0	1	\$640
6	1	0	0	0	1	0	\$410
7	1	0	1	1	0	0	\$560
8	1	0	1	1	0	1	\$820
9	1	0	1	0	1	0	\$590
10	0	1	0	0	0	0	\$170
11	0	1	0	1	0	0	\$390
12	0	1	0	1	0	1	\$650
13	0	1	0	0	1	0	\$420
14	0	0	0	1	0	0	\$220
15	0	0	0	1	0	1	\$480
16	0	0	0	0	1	0	\$250

c. What is the total annual savings for each alternative? [2 points]

			Project				Annual
Uternative	Α	В	c	D	E	F	Savings
1	0	0	0	0	0	0	\$0
2	1	0	0	0	0	0	\$130
3	1	0	1	0	0	0	\$270
4	1	0	0	1	0	0	\$290
5	1	0	0	1	0	1	\$490
6	1	0	0	0	1	0	\$310
7	1	0	1	1	0	0	\$430
8	1	0	1	1	0	1	\$630
9	1	0	1	0	1	0	\$450
10	0	1	0	0	0	0	\$105
11	0	1	0	1	0	0	\$265
12	0	1	0	1	0	1	\$465
13	0	1	0	0	1	0	\$285
14	0	0	0	1	0	0	\$160
15	0	0	0	1	0	1	\$360
16	0	0	0	0	1	0	\$180

LECTURE 10

Pinkman Pharmaceuticals is a new company that will manufacture and deliver generic drugs to residents of Albuquerque, New Mexico. They need to raise \$20,000,000 in order to build their new manufacturing plant and distribution center. The Pharmacy Depot's target capital structure calls for a debt ratio of 50%. Therefore, \$10,000,000 needs to be financed from equity from the following sources:

Sources	Amount
Retained earnings	\$4,000,000
New Common Stock	\$4,000,000
Preferred Stock	\$2,000,000

The following details the financial data for both the common stock and preferred stock options:

	Common Stock	Preferred St	ock
Market Price	\$100	\$160	
Annual Cash Dividend	\$15	\$23	
Ann Cash Div Growth Rate	10.5%	-	
Issue Price	\$90	\$140	
Flotation Costs	18.00%	10%	

a. Calculate the cost of equity required to finance the new process unit. [10 points]

I \$20,000,000

Debt Ratio	50%									(Mkt Price)
			Source	Amount	Fraction	Mkt Price	Dividend	Div Growth	Sale Price	Flotation Cost
Equity	\$10,000,000	=	Ret Earnings	\$4,000,000	0.4000					
			Common St	\$4,000,000	0.4000	\$100	\$15	10.50%	\$90	18.00%
			Preferred St	\$2,000,000	0.2000	\$160	\$23		\$140	10%

1. Cost of retained earnings 2.5 points

$$k_r = \frac{D_1}{P_0} + g$$
 where,

 k_r = rate of return required by shareholder B_r = first year dividend;

 P_0 =market price; g=annual growth rate

2. Flotation costs for common stock 2.5 points

$$k_e = \frac{D_1}{P_0(1-f_c)} + g \qquad \text{where,}$$

 k_e = cost of common equity; D_1 = first year dividend;

 P_0 =market price; f_c =flotation cost as a percentage of the st g=annual growth rate

3. Flotation costs for preferred stock 2.5 points

$$k_p = \frac{D^*}{P^*(1 - f_c)} \qquad \text{where,}$$

 $k_{\rm p} = {
m costof} \ {
m preferred equity}; \qquad D^* = {
m fixed annual dividend};$

 P^* = issuingprice; f_c = flotationcostas a percentage of the stockprice

4. Cost of Equity

2.5 points

$$i_e = \left(\frac{c_r}{c_e}\right) k_r + \left(\frac{c_c}{c_e}\right) k_e + \left(\frac{c_\rho}{c_e}\right) k_\rho$$
 where,

 i_e = weightedaverage cost of equity for a project;

 c_r = amount of equity financed from retained earnir

 c_c =amount of equity financed from issuing new sto

 c_p =amount of equity financed from issuing preferr

k, =rate of return required by shareholders;

 $k_{\rm e}$ = cost of common equity

 k_p =cost of preferred equity;

Note

$$C_r + C_c + C_\rho = C_e$$

cr	\$4,000,000
СС	\$4,000,000
ср	\$2,000,000
ce	\$10,000,000
cr/ce	0.4000
cc/ce	0.4000
cp/ce	0.2000
kr	25.50%
ke	28.79%
kp	18.25%
ie	25.37%

LECTURE 11

Embraer Aircrafts needs to raise \$24,000,000 in order to build a new training facility for their employees. The following table lists 4 critical input variables for the financial analysis and the associated limits of uncertainty:

Embraer Aircrafts needs to raise \$24,000,000 in order to build a new training facility for their employees. The following table lists 4 critical input variables for the financial analysis and the associated limits of uncertainty:

Input Building Cost Equipment Cost Annual Revenue Annual O&M Costs	Lower Limit	Base Case	Upper Limit
	90%	\$10,000,000	110%
	85%	\$8,000,000	120%
	90%	\$16,000,000	115%
	80%	\$6,000,000	120%

With a MARR of 8% and a project life of 5 years, perform a sensitivity analysis on the data using PW as the figure of merit assessed.

a. Present the data in abular format as shown in the lecture. [6 points]

b. Present the data in a spiderplot format. [2 points]

c. Which input has the biggest impact on the PW? [1 point]

MARR N

a. Present the data in tabular format as shown in the lecture. [6 points]

MARR 7% N 4 (P/F, i, N) 0.7629 (P/A, i, N) 3.3872

Input	Low	rer Limit	Base Case	Upper L	imit
Building Cost	90%	\$9,000,000	\$10,000,000	\$11,000,000	110%
Equipment Cost	85%	\$6,800,000	\$8,000,000	\$9,600,000	120%
Annual Revenue	90%	\$14,400,000	\$16,000,000	\$18,400,000	115%
Annual O&M Costs	80%	\$4,800,000	\$6,000,000	\$7,200,000	120%

	PRESENT WORTH						
Input	Low	er Limit	Base Case	Upper Limit			
Building Cost	90%	\$16,872,113	\$15,872,113	\$14,872,113	110%		
Equipment Cost	85%	\$17,072,113	\$15,872,113	\$14,272,113	120%		
Annual Revenue	90%	\$10,452,575	\$15,872,113	\$24,001,420	115%		
Annual O&M Costs	80%	\$19,936,766	\$15,872,113	\$11,807,459	120%		

INPUT VALUES (FULL RANGE FOR SPIDER PLOT)

INPUT VALUES

Input	Low	er Range	Base Case	Upper Range		
Building Cost	90%	\$9,000,000	\$10,000,000	\$11,000,000	110%	
Building Cost	85%	\$8,500,000	\$10,000,000	\$11,500,000	115%	
Building Cost	90%	\$9,000,000	\$10,000,000	\$11,000,000	110%	
Equipment Cost	85%	\$6,800,000	\$8,000,000	\$9,600,000	120%	
Equipment Cost	90%	\$7,200,000	\$8,000,000	\$8,800,000	110%	
Annual Revenue	85%	\$13,600,000	\$16,000,000	\$18,400,000	115%	
Annual Revenue	90%	\$14,400,000	\$16,000,000	\$17,600,000	110%	
Annual O&M Costs	80%	\$4,800,000	\$6,000,000	\$6,900,000	115%	
Annual O&M Costs	90%	\$5,400,000	\$6,000,000	\$7,200,000	120%	

PRESENT WORTH (FULL RANGE FOR SPIDER PLOT) Lower Range Base Case Upper Range

Building Cost	90%	\$16,872,113	\$15,872,113	\$14,872,113	110%	
Building Cost	85%	\$17,372,113	\$15,872,113	\$14,372,113	115%	
Building Cost	90%	\$16,872,113	\$15,872,113	\$14,872,113	110%	
Equipment Cost	85%	\$17,072,113	\$15,872,113	\$14,272,113	120%	
Equipment Cost	90%	\$16,672,113	\$15,872,113	\$15,072,113	110%	
Annual Revenue	85%	\$7,742,806	\$15,872,113	\$24,001,420	115%	
Annual Revenue	90%	\$10,452,575	\$15,872,113	\$21,291,651	110%	
Annual O&M Costs	80%	\$19,936,766	\$15,872,113	\$12,823,622	115%	
Annual O&M Costs	90%	\$17,904,439	\$15,872,113	\$11,807,459	120%	

		Building Cost		Equipment Cost		Annual Revenue		Annual O&M					
% of Base	% Deviation	PW	% Change PW	Ratio	PW	6 Change PV	Ratio	PW	% Change PW	Ratio	PW	6 Change PV	Ratio
80%	-20.00%				-	-	-		-	-	\$19,936,766	25.61%	1.28
85%	-15.00%				\$17,072,113	7.56%	0.50	\$7,742,806	-51.22%	3.41			
90%	-10.00%	\$16,872,113	6.30%	0.63	\$16,672,113	5.04%	0.50	\$10,452,575	-34.15%	3.41	\$17,904,439	12.80%	1.28
100%	0.00%	\$15,872,113	0.00%		\$15,872,113	0.00%	-	\$15,872,113	0.00%		\$15,872,113		
110%	10.00%	\$14,872,113	-6.30%	0.63	\$15,072,113	-5.04%	0.50						
115%	15.00%	\$14,372,113	-9.45%	0.63	-			\$24,001,420	51.22%	3.41	\$12,823,622	-19.21%	1.28
120%	20.00%				\$14,272,113	-10.08%	0.50		-	-	\$11,807,459	-25.61%	1.28

b. Present the data in a spiderplot format. [3 points]

	PRESENT WORTH							
% of Base	Building Cost	quipment Cos	Annual Revenue	Annual O&M				
80%	\$0	-	-	\$19,936,766				
85%	\$0	\$17,072,113	\$7,742,806	\$0				
90%	\$16,872,113	\$16,672,113	\$10,452,575	\$17,904,439				
100%	\$15,872,113	\$15,872,113	\$15,872,113	\$15,872,113				
110%	\$14,872,113	\$15,072,113	\$0	\$0				
115%	\$14,372,113	-	\$24,001,420	\$12,823,622				
120%	\$0	\$14,272,113		\$11,807,459				

Cost

Page 7 of 7