Base de Dados Meteorológica

Autores: Lúcia Moreira, Nuno Costa

Data: 22/01/2020

Sumário

O presente trabalho envolveu a modelação e criação de uma base de dados referente ao tempo registado em estações meteorológicas e uma análise estatística dos dados registados. A modelação da BD considera duas entidades-tipo ligadas por uma única relação. Com base no modelo desenvolvido foi criada uma BD em SQL que foi acedida para posterior tratamento estatístico dos dados.

Descrição dos Dados

Os dados correspondem à recolha de dados meteorológicos de várias estações do Instituto Português do Mar e da Atmosfera (IPMA) referentes a parte do mês de agosto de 2015. Os dados contêm registos do nome da estação meteorológica, do ID da estação meteorológica, das coordenadas geográficas da estação (lat, lon), da data/hora do registo, da temperatura, da humidade, da precipitação, da pressão atmosférica e da direção e velocidade do vento.

1. Modelo ER e relacional

Análise descritiva textual:

Entidades:

Station:

Primary Key: - StationId: simples, valor único, base, definido

- StaName: simples, valor único, base, definido

- Location: composto, valor único, base, definido

- Lat: simples, valor único, base, definido - Lon: simples, valor único, base, definido

Weather:

Primary Key: - ID: simples, valor único, base, definido

- StationId: simples, valor único, base, definido

- Time: simples, valor único, base, definido

- Temperature: simples, valor único, base, definido

- Pressure: simples, valor único, base, opcional

- Humidity: simples, valor único, base, opcional

- Precipitation: simples, valor único, base, opcional

- Wind: composto, valor único, base, definido

- Direction: simples, valor único, base, opcional

- Speed: simples, valor único, base, opcional

Relações:

Relação	Р	С	E
Record (Station, Weather)	total > total	1 : N	(1,1) > (1,N)

⁻Todas as estações têm registos e todos os registos pertencem a uma estação;

⁻Uma estação tem apenas um registo, mas um registo pode ser igual em várias estações.

-Esquema do Modelo ER:

Fig. 1- Esquema do Modelo ER

Esquema do modelo relacional:

Fig. 2- Esquema do Modelo relacional

2. Código SQL para criação da base de dados

#conexão do sqlite à base de dados:

```
def sql_connection():
    try:
        con = sqlite3.connect('IPMA.db')
        return con
    except Error:
        print(Error)

con = sql_connection()
c = con.cursor()
```

#criação da base de dados relacional:

```
"ID" INTEGER PRIMARY KEY AUTOINCREMENT,

"Humidity" REAL,

"Precipitation" REAL,

"Pressure" REAL,

"Temperature" REAL NOT NULL,

"WindD" REAL,

"WindS" REAL,

"Time" BLOB NOT NULL,

"StationID" INTEGER NOT NULL);'''

)

c.execute('''CREATE TABLE IF NOT EXISTS "STATION" (

"LocLat" REAL NOT NULL,

"LocLon" REAL NOT NULL,

"StationId" INTEGER NOT NULL UNIQUE,

"Stalame" TEXT NOT NULL,

PRIMARY KEY("StationId") ); '''

)
```

Código python para importação dos dados e inserção na BD

#importar o ficheiro csv; usou-se o pandas para converter tudo em listas. Na tabela das estações foram removidos duplicados para conseguir uma representação única de cada valor.

```
df = pd.read_csv('ipma_201508.csv')
df_weather=df.iloc[:,[0,1,2,3,4,5,6,9]]
df_station=df.iloc[:,[7,8,9,10]]
#df_record=df.iloc[:,[6,9]]
df_station=df_station.drop_duplicates()
dfs=df_station.values.tolist()
dfw=df_weather.values.tolist()
```

#insere elementos da lista nas tabelas

4. Estatísticas da base de dados

As estatísticas aqui apresentadas foram realizadas a partir de "queries" específicos na BD e em SQL para retirar os dados em questão (ver ficheiro em phyton).

A título exemplificativo uma das estatísticas calculadas, na tabela abaixo observa-se a média dos ventos em cada quadrante principal. Pode-se concluir que o vento sopra mais forte de Oeste e de Este, com valores respetivos de 10,2 km/h e 10,5 km/h.

Direção	Norte	Sul	Oeste	Este
Velocidade / km/h	9,07	7,86	10,15	10,46

A Fig. 3 mostra a variação da temperatura numa das estações. A título exemplificativo, observase a temperatura na estação de Aljezur durante os dias correspondentes ao intervalo de tempo aqui considerado. Pode-se observar a amplitude térmica normal característica de um horário diurno e de um noturno. A temperatura máxima atingida foi de 34ºC e a mínima de 10 ºC.

A Fig. 4 mostra a relação entre humidade atmosférica e temperatura durante o ciclo temporal aqui considerado. Observa-se que humidades mais baixas estiveram relacionadas com temperaturas mais altas, característico de um clima de verão em Portugal.

Fig. 3 - História da temperatura em Aljezur para o intervalo de tempo disponibilizado.

Fig. 4 - Humidade em função da temperatura.

A Fig. 5 mostra o mapa de ocorrências de temperatura e precipitação registado em parte de agosto de 2015 em Portugal. O mapa mostra Portugal continental, Açores e Madeira. Pode-se observar que as zonas mais chuvosas naquele período temporal foram as zonas Norte de Portugal continental, caracterizadas por temperaturas mais baixas e maior humidade (Fig. 4) e Portugal Insular que é naturalmente mais húmido, apresenta temperaturas mais amenas no verão e, portanto, mais chuvoso.

A Fig. 6 mostra o mapa de ocorrência também de temperatura e pressão com ênfase na temperatura. Pode-se observar que para temperaturas mais elevadas a precipitação é nula e em linha com a correlação observada entre humidade e temperatura (Fig.3).

Fig. 5 - Mapa geográfico da temperatura e precipitação para o ciclo em questão.

Conclusão

Procedeu-se à criação de uma base de dados relativas a dados metereológicos em Portugal durante parte do Verão e efectuaram-se algumas análises estatísticas nomeadamente, a velocidade média dos ventos nos quatro principais quadrantes, um mapeamento da temperatura e precipitação assim como uma análise da correlação entre humidade e temperatura. Este exercício foi bastante importante em termos pedagógicos.

Fig. 6 - Mapa geográfico da temperatura e precipitação para o ciclo em questão.