Data Structure Hashing

Yongjun Park
Hanyang University

hashing

- hashing is a technique used for performing insertion, deletion, and finding in constant time
- tree operations such as FindMin, FindMax, and the printing all elements in sorted order are not supported
- hash table is an array of fixed size, containing the keys
- hash function maps each key to some cell in the hash table
 - should be easy to compute
 - should minimize the number of collision
 - uniform hash function, the probability of h(k) = i is 1/b for all i (b is bucket size)
- collision occurs when different keys are mapped to the same cell

Hash functions

- adding all characters (alphabets) in the key
 - for example, h(abc) = h(bca) = 1+2+3 = 6 (a=1, b=2, c=3)
 - all ordering information is lost
 - the number of hash function value is too small, considering the number of possible keys
 - for example, length(key) = 8
 - the number of hash function value H(key) = 26 * 8 = 208
 - the number of possible keys = 268
- polynomial function (using horner's rule)
 - $h(k) = k_1 + 27k_2 + 27^2k_3 = ((k_3) * 27 + k_2) * 27 + k_1$
 - number gets easily too big
- division
 - \blacksquare h(k) = k mod m, where m is the size of hash table
 - good choice for m is a prime number

resolving collision

separate chaining:

put keys that collide in a list associated with index

open addressing:

when a new key collides, find next empty slot and put it there

resolving collision: separate chaining (open hashing)

- keep a list of all elements that hash to the same value
- operations
 - Find: use hash function to determine which list to traverse
 - Insert: traverse down the list to check whether the element is in the list if not, it is inserted at the front (or at the end)

resolving collision: separate chaining (open hashing)

resolving collision: separate chaining (open hashing)


```
0
Position Find (ElementType Key, HashTable H){
             Position P;
                                                              2
             List L;
                                                              3
             L = H -> TheLists [ Hash(key, H->TableSize)];
             P = L -> Next;
                                                              4
                                                              5
             while (P != NULL && P->Element != Key)
                          P = P->Next:
                                                              6
             return P;
                                                              7
                                                              8
                                                              9
```



```
void Insert (ElementType Key, HashTable H){
         Position Pos, newCell;
         List L;
         Pos = Find(Key, H);
         if (Pos == NULL){
                  NewCell = malloc(sizeof (struct ListNode));
                  NewCell ->Element = Key;
                  L = H->TheLists[Hash(Key, H->TableSize)];
                  NewCell ->Next = L->Next;
                  L->Next = NewCell;
```

- load factor: the ratio of the number of elements in the hash table to the table size
 - $\lambda = n / m$

n is the number of keys in the table, m is the size of the table

- successful search (i.e. no clustering): 1 (hash function) + $(\lambda/2)$ =O(1)
- unsuccessful search: $1 + \lambda = O(1)$
- needs extra space and operation for pointers and new nodes

resolving collision: open addressing (closed hashing)

- all the keys are stored in the table without pointers
- use special value Del to determine which entries have keys & which don't.
- if a collision occurs, alternative cells are tried until an empty cell is found
- \blacksquare try h₀(key), h₁(key), h₂(key), . . .
 - where $h_i(key) = (Hash(key) + F(i)) \mod m$
 - F(i) is the collision resolution strategy
 - linear probing: F(i) is a linear function, F(i) = i

```
for example, h_1(key) = (Hash(key) + 1), h_2(key) = (Hash(key) + 2), ...
```

quadratic probing: F(i) is a quadratic function, $F(i) = i^2$

for example,
$$h_1(key) = (Hash(key) + 1), h_2(key) = (Hash(key) + 4), \dots$$

resolving collision: linear probing

• F(i) is a linear function. for example, F(i) = i

inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
1		1		1	58	1	58
2		2		2		2	69
3		3		3		3	
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: linear probing

- primary clustering: any key that hashes into the cluster will require several attempts to resolve the collision and then it will add to the cluster
- secondary clustering: keys with different hash values have nearly the same probe sequence.
- expected number of probes $S = \frac{1}{2}(1 + \frac{1}{1 \lambda})$
 - unsuccessful search $U = \frac{1}{2} \left(1 + \left(\frac{1}{1 \lambda} \right)^2 \right)$

- as λ approaches to 1, the search time grows to infinity
- linear probing does well if the table is less than 75% full

resolving collision: linear probing

number of probes

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

load factor

---- linear probing

random strategy

U: unsuccessful search

I:insertion

S: successful search

Deletions in closed hashing

 Use special value Del to distinguish deleted and empty locations delete(42), find(31)

0	10	0	10
1	50	1	50
2	42	2	Del
3	92	3	92 31
4	31	4	31
5		5	
6		6	
7		7	
8		8	18
9		9	89

If we see Del during probing

- find(): keep searching until empty
- Insert(): reuse the Del location for placing a new key

resolving collision: quadratic probing

- a collision resolution method that eliminates the primary clustering problem of linear probing
- collision function F(i) = i^{2,} h_i(key) = (Hash(key) + F(i)) mod m inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
1		1		1		1	
2		2		2	58	2	58
3		3		3		3	69
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: quadratic probing

One tricky question

- In linear probing, it is guaranteed that as long as there is one free location in the table, we will eventually find it without repeating any probe locations
- Is this also true for quadratic probing?

Fortunately, quadratic probing does a good job of visiting different locations => It can be formally proved that if m is prime, the first m/2 locations that quadratic probing visits will be distinct.

resolving collision: double hashing

- use other hash function for random probing
- for example, $(h_i(key) = (Hash(key) + F(i)) \mod m)$

 $Hash(key) = key \mod m$

 $F(i)=i*Hash_2(key)$, $Hash_2(key)=R-(key mod R)$

R=7 inserting keys: 89, 18, 49, 58, 69

0		0		0		0	69
1		1		1		1	
2		2		2		2	
3		3		3	58	3	58
4		4		4		4	
5		5		5		5	
6		6	49	6	49	6	49
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

49: $Hash_2(49) = 7 - 0 = 7$

58: $Hash_2(58) = 7 - 2 = 5$

69: $Hash_2(69) = 7 - 6 = 1$

rehashing

if the table gets too full, the running time for the operations start taking too long

- what if the hash table is too large to fit in main memory?
 - locality is important for large data structure since disk access is costly but memory access is cheap
 - efficient probing is the lack of locality
 - need a method to reduce the number of disk access

- The hash table is broken into a number of smaller hash tables, each is called a bucket.
- The maximum size of each bucket is the size of a disk page.
- To find which bucket to search for, we store a data structure called *directory* in main memory, and each entry in the directory holds a disk address of the corresponding bucket.
- Each bucket can hold as many records that can be fit in one page, and we will try to keep each bucket at least half full.

D: the number of bits used by the root D = 2

d_L: the number of leading bits that all elements of some leaf L have in common

$$d_L = 2$$

