Aritmetične funkcije

Marko Petkovšek

Fakulteta za matematiko in fiziko Oddelek za matematiko

24. februar 2017

Oznaka

$$\mathbb{N} = \{1,2,3,\ldots\}$$

Oznaka

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Definicija

Aritmetična funkcija je preslikava oblike

$$f: \mathbb{N} \to A$$
, $A \subseteq \mathbb{C}$.

Oznaka

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Definicija

Aritmetična funkcija je preslikava oblike

$$f: \mathbb{N} \to A$$
, $A \subset \mathbb{C}$.

Aritmetična funkcija f je multiplikativna, če za poljubni tuji števili a, $b \in \mathbb{N}$ velja:

$$f(ab)=f(a)f(b).$$

 \bullet $\tau(n) =$ število pozitivnih deliteljev števila n

- \bullet $\tau(n)=$ število pozitivnih deliteljev števila n
- $\circ \sigma(n) = vsota pozitivnih deliteljev števila n$

- \bullet $\tau(n)=$ število pozitivnih deliteljev števila n
- $\circ \sigma(n) = v$ sota pozitivnih deliteljev števila n

Zgled

n	pozitivni delitelji n	$\tau(n)$	$\sigma(n)$
1	1	1	1
2	1,2	2	3
3	1,3	2	4
4	1, 2, 4	3	7
5	1,5	2	6
6	1, 2, 3, 6	4	12

- \bullet $\tau(n) =$ število pozitivnih deliteljev števila n
- $\circ \sigma(n) = vsota pozitivnih deliteljev števila n$

Zgled

n	pozitivni delitelji n	$\tau(n)$	$\sigma(n)$
1	1	1	1
2	1,2	2	3
3	1,3	2	4
4	1, 2, 4	3	7
5	1,5	2	6
6	1, 2, 3, 6	4	12

Trditev

Funkciji τ in σ sta multiplikativni.

Eulerjeva funkcija

Eulerjeva funkcija

Definicija

Za vse $n \in \mathbb{N}$ s $\varphi(n)$ označimo število celih števil iz množice $\{1,2,\ldots,n\}$, ki so tuja številu n. Preslikavo $\varphi:\mathbb{N}\to\mathbb{N}$ imenujemo Eulerjeva funkcija.

Eulerjeva funkcija

Definicija

Za vse $n \in \mathbb{N}$ s $\varphi(n)$ označimo število celih števil iz množice $\{1,2,\ldots,n\}$, ki so tuja številu n. Preslikavo $\varphi:\mathbb{N}\to\mathbb{N}$ imenujemo Eulerjeva funkcija.

Zgled

n	$\{1,2,\ldots,n\}$	$\varphi(n)$
1	{1 }	1
2	{1 , 2}	1
3	{1,2, 3}	2
4	{1 , 2, 3 , 4}	2
5	{1, 2, 3, 4, 5}	4
6	{1 , 2, 3, 4, 5 , 6}	2

Trditev

Naj bo p praštevilo. Potem je $\varphi(p) =$

Trditev

Naj bo p praštevilo. Potem je $\varphi(p) = p - 1$.

Trditev

Naj bo p praštevilo. Potem je $\varphi(p) = p - 1$.

Trditev

Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) =$

Trditev

Naj bo p praštevilo. Potem je $\varphi(p) = p - 1$.

Trditev

Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) = p^k - p^{k-1}$.

Trditev

Naj bo p praštevilo. Potem je $\varphi(p) = p - 1$.

Trditev

Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) = p^k - p^{k-1}$.

Izrek

Če sta a in b tuji naravni števili, je $\varphi(ab) = \varphi(a)\varphi(b)$.

Posledica

$$\varphi(n) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Posledica

$$\varphi(n) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Izrek

$$\sum_{d \mid n} \varphi(d) =$$

Posledica

$$\varphi(n) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Izrek

$$\sum_{d\mid n}\varphi(d) = n$$

Izrek (Eulerjev izrek)

Naj bosta $n \in \mathbb{N}$ in $a \in \mathbb{Z}$ tuji števili. Potem je

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Izrek (Eulerjev izrek)

Naj bosta $n \in \mathbb{N}$ in $a \in \mathbb{Z}$ tuji števili. Potem je

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Posledica (mali Fermatov izrek)

Naj bo p praštevilo in a $\in \mathbb{Z}$ celo število, ki ni deljivo s p. Potem je

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Möbiusova funkcija

Möbiusova funkcija

Definicija

Preslikavo $\mu : \mathbb{N} \to \mathbb{Z}$, definirano s predpisom

$$\mu(n) = \left\{ egin{array}{ll} 0, & ilde{c}e \ n \ deljiv \ s \ kvadratom \ praštevila, \ (-1)^r, & sicer, \end{array}
ight.$$

kjer je r število različnih prafaktorjev števila n, imenujemo Möbiusova funkcija.

Möbiusova funkcija

Definicija

Preslikavo $\mu : \mathbb{N} \to \mathbb{Z}$, definirano s predpisom

$$\mu(n) = \begin{cases} 0, & \check{c}e \ n \ deljiv \ s \ kvadratom \ praštevila, \ (-1)^r, & sicer, \end{cases}$$

kjer je r število različnih prafaktorjev števila n, imenujemo Möbiusova funkcija.

Če sta a in b tuji naravni števili, je $\mu(ab) = \mu(a)\mu(b)$.

Če sta a in b tuji naravni števili, je $\mu(ab) = \mu(a)\mu(b)$.

$\mathsf{Trditev}$

 $Za\ vse\ n\in\mathbb{N}\ velja\ enačba$

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$

kjer d preteče vse pozitivne delitelje števila n.

Če sta a in b tuji naravni števili, je $\mu(ab) = \mu(a)\mu(b)$.

Trditev

 $Za\ vse\ n\in\mathbb{N}\ velja\ enačba$

$$\sum_{d\mid n}\mu(d) = \begin{cases} 1, & n=1, \\ 0, & n>1, \end{cases}$$

kjer d preteče vse pozitivne delitelje števila n.

Posledica

$$\mu(n) = \begin{cases} 1, & n = 1, \\ -\sum_{d \mid n, d < n} \mu(d), & n > 1. \end{cases}$$

(Möbiusov obrat) Za aritmetični funkciji $f, g : \mathbb{N} \to \mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

(Möbiusov obrat) Za aritmetični funkciji $f, g : \mathbb{N} \to \mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d\mid n}\varphi(d) = n \Longrightarrow$$

(Möbiusov obrat) Za aritmetični funkciji $f, g : \mathbb{N} \to \mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d \mid n} \varphi(d) = n \implies \varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d$$

(Möbiusov obrat) Za aritmetični funkciji $f,g:\mathbb{N}\to\mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d \mid n} \varphi(d) = n \quad \Longrightarrow \quad \varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d$$

$$\tau(n) = \sum_{d \mid n} 1 \quad \Longrightarrow$$

(Möbiusov obrat) Za aritmetični funkciji $f, g : \mathbb{N} \to \mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d \mid n} \varphi(d) = n \implies \varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d$$

$$\tau(n) = \sum_{d \mid n} 1 \implies \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) = 1$$

(Möbiusov obrat) Za aritmetični funkciji $f,g:\mathbb{N}\to\mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d \mid n} \varphi(d) = n \quad \Longrightarrow \quad \varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d$$

$$\tau(n) = \sum_{d \mid n} 1 \quad \Longrightarrow \quad \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) = 1$$

$$\sigma(n) = \sum_{d \mid n} d \quad \Longrightarrow$$

(Möbiusov obrat) Za aritmetični funkciji $f,g:\mathbb{N}\to\mathbb{C}$ velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

$$\sum_{d \mid n} \varphi(d) = n \implies \varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d$$

$$\tau(n) = \sum_{d \mid n} 1 \implies \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) = 1$$

$$\sigma(n) = \sum_{d \mid n} d \implies \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d) = n$$