Assignment for Insurance project

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

Solution:

After analyse the customers data, we have to predict the insurance charges.

- 1.) Identify your problem statement
- We have clear set of data's with numbers so will take ML

Domain Selection- Machine Learning

• We have clear requirements to predict the insurance charges

Learning selection- Supervised learning

• The requirements for the prediction is numeric value.

Departments - Regression

2.) Tell basic info about the dataset

Columns – 6 Rows - 1338

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Since the values are in words we converting words to number using One Hot Encoding by nominal data

- 4.)Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 1 Multiple Linear Regression

R Score = 0.789479034986701

Support Vector Machine R_Score								
S								
No	Hyper parameter	Linear	RBF(Non Linear)	Poly	Sigmoid			
1	C=0.1	-0.080959968	-0.08970665	-0.088	-0.088			
2	C=10	0.628879286	-0.08970665	0.0387	0.0393			
3	C=100	0.628879286	0.320031783	0.618	0.5276			
4	C=1000	0.764931174	0.810206491	0.8566	0.2875			

Decision Tree					
Sno	Crterion	Splitter	R Value		
1	mae	best	0.6900954		
2	mae	random	0.745554277		
3	friedman_mse	best	0.696553742		
4	friedman_mse	random	0.697402953		

Random forest ensamble

S No	estimator	R Value
1	50	0.849637541
2	100	0.853703664

The highest R score we have got is Random forest ensemble model but still we have received below score value.