Table de la loi du khi-deux

Claude Blisle

La table qui apparaît à la page suivante nous donne certains quantiles de la loi du khi-deux. Voici quelques exemples illustratifs.

EXEMPLE 1. Trouvons le quantile d'ordre 0.975 de la loi du khi-deux avec 18 degrés de liberté. On pose $1-\gamma=0.975$. On a donc $\gamma=1-0.975=0.025$. Dans la table, le quantile d'ordre 0.975 de la loi du khi-deux avec 18 degrés de liberté se trouve donc à l'intersection de la ligne $\ll k=18 \gg$ avec la colonne $\ll \gamma=0.025 \gg$. On obtient la valeur 31.53. Ce quantile est habituellement dénoté $\chi^2_{18,0.025}$. On a donc $\chi^2_{18,0.025}=31.53$.

EXEMPLE 2. Trouvons le 99^e centile de la loi du khi-deux avec 15 degrés de liberté. Il s'agit donc du quantile d'ordre 0.99. Ce quantile est souvent dénoté $\chi^2_{15,0.01}$. On le trouve à l'intersection de la ligne « k=15 » avec la colonne « $\gamma=0.01$ ». On obtient $\chi^2_{15,0.01}=30.58$.

EXEMPLE 3. Trouvons la médiane de la loi du khi-deux avec 23 degrés de liberté. Il s'agit donc du quantile d'ordre 0.50. Ce quantile est souvent dénoté $\chi^2_{23,0.50}$. La table nous donne $\chi^2_{23,0.50} = 22.34$. La médiane de la loi du khi-deux avec 23 degrés de liberté est donc 22.34.

EXEMPLE 4. On suppose que U suit la loi du khi-deux avec 15 degrés de liberté. Que vaut $\mathbb{P}[8.55 < U < 25.0]$? On cherche la surface sous la densité de la loi du khi-deux avec 15 degrés de liberté entre l'abscisse u = 8.55 et l'abscisse u = 25.0. La table nous dit que la surface à gauche de 25.0 est 0.95 et que la surface à gauche de 8.55 est 0.10. La surface recherchée est donc 0.95 - 0.10 = 0.85. On a donc $\mathbb{P}[8.55 < U < 25.0] = 0.85$.

EXEMPLE 5. On suppose que U suit la loi du khi-deux avec 7 degrés de liberté. Que vaut $\mathbb{P}[U \geq 12.4]$? On cherche la surface sous la densité de la loi du khi-deux avec 7 degrés de liberté à droite de l'abscisse u=12.4. La table nous dit que la surface à droite de 12.02 est 0.10 et que la surface à droite de 14.07 est 0.05. La surface recherchée est donc quelque part entre 0.05 et 0.10. Autrement dit, si U suit la loi du khi-deux avec 7 degrés de liberté, alors $0.05 < \mathbb{P}[U \geq 12.4] < 0.10$. Si on fait une interpolation linéaire, on obtient $\mathbb{P}[U \geq 12.4] \approx 0.091$. (D'après le logiciel R, la valeur exacte est 0.08815).

EXEMPLE 6. Trouvons le 95^e centile de la loi du khi-deux avec 45 degrés de liberté. Ce quantile est dénoté $\chi^2_{45,0.05}$. La table nous donne $\chi^2_{40,0.05} = 55.76$ et $t_{50,0.05} = 67.50$. On peut donc conclure que $55.76 < \chi^2_{45,0.05} < 67.50$. Si on fait une interpolation linéaire, on obtient $\chi^2_{45,0.05} \approx 61.63$. (D'après le logiciel R, la valeur exacte est 61.6562).

EXEMPLE 7. Supposons qu'on veuille trouver le 95^e centile de la loi du khi-deux avec 200 degrés de liberté. La valeur $\ll k = 200 \gg$ est hors table. La remarque au bas de la table nous dit que le 95^e centile de la loi du khi-deux avec 200 degrés de liberté peut-être approximé par le 95^e centile de la loi N(200,400). Ce centile est égal à

$$200 + z_{0.05}\sqrt{400} = 200 + 1.645 \times 20 = 232.9.$$

On a donc $\chi^2_{200,0.05} \approx 232.9$. (D'après le logiciel R, la valeur exacte est 233.9943).

Loi du khi-deux avec k degrés de liberté Quantiles d'ordre $1-\gamma$

						γ					
$\parallel k$	0.995	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005
1	0.00	0.00	0.00	0.00	0.02	0.45	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.94	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.81	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

Si k est entre 30 et 100 mais n'est pas un multiple de 10, on utilise la table ci-haut et on fait une interpolation linéaire. Si k>100 on peut, grâce au théorème limite central, approximer la loi $\chi^2(k)$ par la loi N(k,2k).