1. Como $-\frac{17}{10}$ e $\frac{11}{5}$ são razões de números inteiros, são números racionais, e como $\sqrt{0,0225} = 0,15$ também é um número racional.

 $\sqrt{13}$ e $2 + \pi$ são números irracionais.

Assim, os números irracionais que pertencem ao conjunto P, são $\sqrt{13}$ e $2+\pi$

Resposta: Opção D

Prova de Matemática, 9.º ano – 2021

2. Como $\frac{17}{49}$ é uma razão de números inteiros, é um número racional, e como $\sqrt[3]{125} = 5$ também é um número racional.

 π e $\sqrt{34}$ são números irracionais.

Assim, os números racionais que pertencem ao conjunto A, são $\frac{17}{49}$ e $\sqrt[3]{125}$

Prova Final 3.º Ciclo - 2019, 2.ª fase

3. Como $\frac{1}{7}$ e $\frac{1}{64}$ são razões de números inteiros, são números racionais, ou seja, representam-se por dízimas finitas ou infinitas periódicas.

Como $\sqrt[3]{64} = 4$ é um número inteiro, e por isso não é uma dízima infinita não periódica.

 $\sqrt{7}$ é um número irracional, pelo que a sua representação na forma de dízima corresponde a uma dízima infinita não periódica.

Resposta: Opção A

Prova Final 3.º Ciclo - 2019, 1.ª fase

4. Como o ponto O é a origem da reta e a abcissa do ponto A é $-\sqrt{5}$, então $\overline{OA}=\sqrt{5}$, e o diâmetro da circunferência é:

$$d = 2 \times \overline{OA} = 2\sqrt{5}$$

Resposta: Opção B

Prova Final 3.º Ciclo – 2016, Época especial

- 5. Recorrendo à calculadora podemos verificar que:
 - $\frac{6}{7} \approx 0.857$
 - $\sqrt{0.72} \approx 0.849$

Observando que $\sqrt[3]{-8} = -2$ (porque $(-2)^3 = -8$) e que $-\frac{19}{10} = -1,9$, podemos escrever os números por ordem crescente:

$$-2 < -1.9 < 0.849 < 0.85 < 0.857$$

Ou seja:

$$\sqrt[3]{-8} < -\frac{19}{10} < \sqrt{0,72} < 0.85 < \frac{6}{7}$$

Prova de Aferição 8.º ano - 2016

- 6. Designando a fração $\frac{a}{b}$ por x, temos que:
 - x = 0.545454...
 - 100x = 54,545454...

Fazendo a subtração, obtemos:

Pelo que podemos escrever que:

$$100x - x = 54 \Leftrightarrow 99x = 54 \Leftrightarrow x = \frac{54}{99}$$

E assim, temos que a = 54 e b = 99

Prova de Aferição 8.º ano - 2016

7. Como as raízes quadradas de números naturais só são números racionais se forem também números naturais, então os números que verificam a condição imposta são os quadrados perfeitos maiores que 200 e menores do que 350.

Verificando que:

- $\sqrt{200} \approx 14.1$
- $\sqrt{350} \approx 18.7$

Temos que os quadrados perfeitos maiores que 200 e menores do que 350 são:

$$15^2$$
, 16^2 , 17^2 e 18^2

Ou seja, os números naturais:

Prova de Aferição $8.^{\rm o}$ ano - 2016

mat.absolutamente.net

8. Como $\sqrt{7} - \sqrt{17} \approx -1.48$, temos que

$$-2 < \sqrt{7} - \sqrt{17} < -1$$

Assim, o ponto que representa o número $\sqrt{7} - \sqrt{17}$ está localizado na reta real, entre os pontos C(-1) e D(-2), ou seja, pertence ao segmento de reta [BC]:

Resposta: Opção B

Prova Final 3.º Ciclo - 2015, 2.ª fase

9. O conjunto $A \cap \mathbb{Q}$ é o conjunto dos números que pertencem simultaneamente aos dois conjuntos, ou seja, os elementos do conjunto A que são números racionais.

Assim, como $\sqrt{5}$ e π são dízimas infinitas não periódicas, $\sqrt{6,25}=2,5$ e $\sqrt[3]{125}=5$, temos que apenas $\sqrt{6,25}$ e $\sqrt[3]{125}$ são números racionais, pelo que

$$A \cap \mathbb{Q} = \left\{ \sqrt{6,25}, \sqrt[3]{125} \right\}$$

Resposta: Opção $\mathbf D$

Prova Final 3.º Ciclo - 2015, 1.ª fase

10. Representando os valores na reta real, temos:

Assim, podemos verificar que -0.04 < -0.035 < -0.03

Resposta: Opção C

Teste Intermédio 9.º ano - 21.03.2014

11. Como $-\frac{7}{11} \approx -0.63636$, representando os valores na reta real, temos

Logo, ordenando por ordem crescente os valores temos

$$-0.7 < -0.64 < -0.637 < -\frac{7}{11} < -0.6363$$

Resposta: Opção A

Teste Intermédio 9.º ano - 12.04.2013

mat.absolutamente.net

12. Representando os valores na reta real, temos:

Assim, podemos verificar que -0.07 < -0.065 < -0.06

Resposta: Opção A

Teste Intermédio 9.º ano – 12.04.2013

13. Como $\pi \approx 3,1416$, o número

3,141

é maior que 3,14 e menor que π

Prova Final 3.º Ciclo - 2012, 2.ª chamada

- 14. Analisando cada uma das afirmações, temos que
 - a afirmação da opção (A) é falsa porque qualquer quociente de números inteiros é um número racional.
 - a afirmação da opção (B) é falsa porque 2π é uma dízima infinita não periódica, ou seja, um número irracional, pelo que $2\pi \notin \mathbb{Q}$.
 - a afirmação da opção (C) é verdadeira porque 1,32(5) é uma dízima infinita periódica, ou seja, é um número racional: $1,32(5) \in \mathbb{Q}$
 - a afirmação da opção (D) é falsa porque $\sqrt{16}=4$, ou seja, não é uma dízima infinita não periódica, logo é um número irracional, $\sqrt{16}\in\mathbb{Q}$.

Resposta: Opção C

Exame Nacional 3.º Ciclo - 2011, Época Especial

15. Como $\sqrt[3]{8} = 2$, ou seja $\sqrt[3]{8} \in \mathbb{Q}$, e $\sqrt[3]{27} = 3$, ou seja $\sqrt[3]{27} \in \mathbb{Q}$, em cada uma das opções (A), (B) e (C) existe, pelo menos, um número racional.

Resposta: Opção D

Exame Nacional 3.º Ciclo - 2010, 2.ª Chamada

16. Como $\sqrt{5} \approx 2,24$, temos que, por exemplo, $2,3 > \sqrt{5}$ e 2,3 < 2,5

Assim, um número x, que verifique a condição $\sqrt{5} < x < 2.5$, pode ser x = 2.3, por exemplo. Escrevendo 2,3 na forma de uma fração, em que o numerador e o denominador sejam números naturais,

$$2,3 = \frac{23}{10}$$

Exame Nacional 3.º Ciclo - 2010, 2.ª Chamada

17. Analisando cada uma das opções, temos que

- $\sqrt{25} = 5$, logo $\sqrt{25} \in \mathbb{Q}$, ou seja $\sqrt{25}$ não é um número irracional
- $\sqrt{2,5} = \sqrt{\frac{25}{10}} = \frac{\sqrt{25}}{\sqrt{10}} = \frac{5}{\sqrt{10}}$, logo, como $\sqrt{10}$ é um número irracional, também $\sqrt{2,5}$ é um número irracional
- $\sqrt{0,25} = \sqrt{\frac{25}{100}} = \frac{\sqrt{25}}{\sqrt{100}} = \frac{5}{10} = \frac{1}{2}$, logo $\sqrt{0,25} \in \mathbb{Q}$, ou seja $\sqrt{0,25}$ não é um número irracional
- $\sqrt{0,0025} = \sqrt{\frac{25}{10000}} = \frac{\sqrt{25}}{\sqrt{10000}} = \frac{5}{100} = \frac{1}{20}$, logo $\sqrt{0,0025} \in \mathbb{Q}$, ou seja $\sqrt{0,0025}$ não é um número irracional

Resposta: Opção B

Exame Nacional 3.º Ciclo - 2010, 1.ª Chamada

18. Como

- $\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{2}$, temos que $\sqrt{\frac{1}{4}} \in \mathbb{Q}$
- $\sqrt[3]{\frac{1}{64}} = \frac{\sqrt[3]{1}}{\sqrt[3]{64}} = \frac{1}{4}$, temos que $\sqrt[3]{\frac{1}{64}} \in \mathbb{Q}$
- $\sqrt[3]{27} = 3$, temos que $\sqrt[3]{27} \in \mathbb{Q}$

e $\sqrt{27}$ é uma dizima infinita não periódica, o elemento do conjunto S que é um número irracional é $\sqrt{27}$

Teste Intermédio $9.^{\rm o}$ ano -11.05.2010

19. Temos que $-8 \in \mathbb{Q}$; $\frac{3}{7}$ é uma quociente de números inteiros, pelo que pode ser representado por uma dízima finita ou infinita periódica, logo $\frac{3}{7} \in \mathbb{Q}$ e $\sqrt{81} = 9$, logo $\sqrt{81} \in \mathbb{Q}$

E como $-\sqrt{27}$ e π são dízimas infinitas não periódicas, então são estes os elementos do conjunto A que são números irracionais.

Resposta: Opção A

Exame Nacional 3.º Ciclo - 2009, 1.ª Chamada

20. Como

- $-3.5 \in \mathbb{Q}$
- $\frac{1}{7} \in \mathbb{Q}$
- $2,(45) \in \mathbb{Q}$

e $\sqrt{109}$ é um número irracional, ou seja é este o elemento do conjunto S que corresponde a uma dízima infinita não periódica.

Teste Intermédio 9.º ano – 11.05.2009

21. Considerando uma dízima finita conseguimos garantir que o número não é inteiro, e escolhendo um número compreendido entre -4 e -2, temos, por exemplo,

$$-3,25$$

Teste Intermédio 8.º ano - 30.04.2009

mat.absolutamente.net

22. Como

•
$$\sqrt{\frac{1}{16}} = \frac{\sqrt{1}}{\sqrt{16}} = \frac{1}{4}$$
, temos que $\sqrt{\frac{1}{16}} \in \mathbb{Q}$

•
$$\sqrt{0,16} = \sqrt{\frac{16}{100}} = \frac{\sqrt{16}}{\sqrt{100}} = \frac{4}{10} = \frac{2}{5}$$
, temos que $\sqrt{0,16} \in \mathbb{Q}$

•
$$\frac{1}{16} \in \mathbb{Q}$$

e $\sqrt{1,16}$ é uma dízima infinita não periódica, ou seja é o único número irracional de entres as opções apresentadas.

Teste Intermédio 9.º ano - 31.01.2008

23. Simplificando as frações temos:

$$\bullet \left(\frac{1}{9}\right)^2 = \frac{1^2}{9^2} = \frac{1}{81}$$

$$\bullet \ \frac{1}{\sqrt{9}} = \frac{1}{3}$$

•
$$\frac{1}{9} \div 2 = \frac{1}{9} \times \frac{1}{2} = \frac{1}{18}$$

•
$$2 \div \frac{1}{9} = 2 \times 9 = 18$$

E assim verificamos que, de entre os números apresentados o menor é $\frac{1}{81}$, ou seja, $\left(\frac{1}{9}\right)^2$

Resposta: Opção A

Exame Nacional 3.º Ciclo - 2007, 2.ª Chamada

24. Como sabemos que:

•
$$3 \times 10^{-1} = 0.3$$

•
$$\frac{1}{3} = 0,(3)$$

Então um número compreendido entre 3×10^{-1} e $\frac{1}{3},$ é, por exemplo: 0,31

Exame Nacional 3.º Ciclo - 2006, 2.ª Chamada

25. Como π é um número irracional e $\pi \approx 3,14$, então

$$\pi + 1$$

é um número irracional compreendido entre 4 e $5\,$

Exame Nacional 3.º Ciclo - 2005, 1.ª Chamada

26. Como se pretende escrever sob a forma de fração um número compreendido entre 0,1818 e 0,2727, e considerando, por exemplo, o número 0,2 porque 0,1818 < 0,2 < 0,2727, então temos que:

$$0,2 = \frac{2}{10}$$

Prova de Aferição - 2004

