C-3MA: Tartu-Riga-Zurich Translation Systems for WMT17

Matīss Rikters

Faculty of Computing University of Latvia matiss@lielakeda.lv

Chantal Amrhein

University of Zurich Institute of Computational Linguistics chantal.amrhein@uzh.ch

Maksym Del and Mark Fishel Institute of Computer Science University of Tartu {maksym.del, fishel}@ut.ee

Confidence Scores

Terminal Visualisations

System	En->	En->De		>En					
Values	abs	rel (%)	abs	rel (%)					
# recogn. NEs	4546	-	4201	-	System	En->De		De->En	
# changed NEs	178	3.92	192	4.57	Dataset	Dev	Test	Dev	Test
neg -> pos	116	65.17	160	83.33	Baseline NT	27.4	21	31.9	27.2
pos -> neg	53	29.78	22	11.46	+ filt. synth.	30.7	22.5	36.8	28.8
neg -> neg	9	5.06	10	5.21	i ilic. Sylicii.	30.7	22.3	30.8	20.0
					+ NE forcing	30.9	22.7	36.9	29

System	En	->Lv	Lv->En		
Dataset	Dev	Test	Dev	Test	
Baseline NM	11.9	11.9	14.6	12.8	
Baseline NT	12.2	10.8	13.2	11.6	
Baseline LMT	19.8	12.9	24.3	13.4	
+filt. synth. NM	16.7	13.5	15.7	14.3	
+filt. synth. NT	16.9	13.6	15.0	13.8	
NM+NT+LMT	-	13.6	-	14.3	

De->En

En->De

En->Lv

Lv->En

GitHub Poster

Filtered Synthetic Training Data

Experimental Settings

- . Translate 4 million news sentences from the mono-. lingual data of the source language
- . Train a character-level RNN from the monolingual news data of the target language
- Score each of the translated 4 million sentences with the language model; drop the worst 50%

Named Entity Forcing

- . Recognise NEs in source and target corpora
- . Align the NEs with Giza++; filter-out some noise; **Post-processing** create a parallel NE dictionary
- . After translating a sentence, check if the source had |u| < unk > tokens in the target with the aligned sourany NEs from the dictionary; replace the aligned word(s) in the translation

Hybrid System Combination

Translate the same sentence with two different NMT systems and one SMT system; save attention alignment data from the NMT systems

- . Choose output from the system that does not
- Align most of its attention to a single token
- . Have only very strong one-to-one alignments
- . Otherwise back off to the output of the SMT system

- . Replace any
- ce tokens
- . consecutive repeating n-grams with a single ngram

Rank **BLEU** Ave % 6 of 7 6-7 of 7 7 of 7 10 of 11 9 of 11 9-11 of 11 11 of 12 1-11 of 12 11 of 12

5 of 6

ej.uz/C-3MA

ej.uz/nmt-poster

Acknowledgements

4 of 6

