Problem Set 3 MATH 26700

3 Representation Structure and Characters

- 10/20: 1. **Permutational representation**. Let X be a finite set on which the group G acts. Let ρ be the corresponding permutational representation with character χ .
 - (a) Consider an orbit Gx of an element $x \in X$; let c be the number of orbits. Prove that c equals the number of times ρ contains the trivial representation. Deduce that $(\chi, 1) = c$. In particular, if the action is transitive, $\rho = 1 \oplus \theta$ for some representation θ .
 - (b) Consider a diagonal action of G on $X \times X$. Prove that the character of the corresponding permutational representation is χ^2 .
 - (c) Suppose that G acts transitively on X and $|X| \ge 2$. We call this action **doubly transitive** if every pair of distinct elements of X can be sent to any other pair by some element of G. Prove that the following are equivalent.
 - i. The action is doubly transitive.
 - ii. The diagonal action on $X \times X$ has exactly two orbits.
 - iii. $(\chi^2, 1) = 2$.
 - iv. The representation θ is irreducible.
 - 2. Find the character table of the group A_4 .
 - 3. Consider the space of functions V from the set of faces of a cube to \mathbb{C} . This is a representation of S_4 .
 - (a) Compute the character of V.
 - (b) Describe explicitly the decomposition of V into isotypical components.
 - (c) Consider a map $A:V\to V$ acting by substituting the value of a function on a face with an average of its values on the adjacent four faces. Prove that A is an automorphism of the corresponding representation. Find its eigenvalues.
 - 4. Consider a finite representation V of a group G with character χ .
 - (a) Express the characters of $\Lambda^2 V$ and $S^2 V$ in terms of χ .
 - (b) Express the characters of $\Lambda^3 V$ and $S^3 V$ in terms of χ .
 - (c) Let (3,1) be the standard representation of S_4 . Decompose $\Lambda^2(3,1)$, $\Lambda^3(3,1)$, $S^2(3,1)$, and $S^3(3,1)$ into irreducibles.