THE ENVIRONMENTAL DEPENDENCE OF LOW-z LY α ABSORPTION

DAVID M. FRENCH, BART P. WAKKER¹

¹Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

We present the results of a large-scale study of the Ly α -probed CGM of nearby galaxies. We have identified 1135 Ly α absorbers in the redshift range $0 \le z \le 0.033$ in the spectra of 264 background QSOs, and correlated their positions with the surrounding galaxy environment. This has produced a sample of 216 individual Ly α component-galaxy pairs, representing the largest-to-date dataset of its kind. By employing the likelihood-based matching scheme of ?, we quantify the absorber-galaxy spacial correlation and identify 4 distinct absorber sub-samples based on their relative isolation from surrounding galaxies. We find that absorber equivalent width (EW) and Doppler-b parameter are enhanced with increasing proximity to galaxies, with the isolated absorber EW distribution differing from that of galaxy-associated absorbers at a > 5σ level. Confirming the findings of ?, we find an overabundance of detections at high galaxy inclination ($\sim 4.5\sigma$). We also report the first significant detection of an azimuth dependence for Ly α absorption, with both an enhanced detection fraction and an overabundance of absorption near the major and minor axes ($\sim 3.3\sigma$). Taken together these results suggest a picture in which weak Ly α absorbers trace the filamentary Cosmic Web structure, with stronger absorbers found almost exclusively within $\sim 1.5R_{\rm vir}$ of a $0.1L^*$ or brighter galaxy. Within this region, galaxies clearly have an effect on the preferred orientation of Ly α absorption.

Keywords: galaxies:intergalactic medium, galaxies:evolution, galaxies:halos, quasars: absorption lines

1. INTRODUCTION

The relationship between high column-density H I absorption $(N({\rm H\,I})\gtrsim 10^{14}~{\rm cm}^{-2})$ and galaxies has been well studied in the past several decades (e.g., ????????). These high density absorbers have been found almost exclusively within $\sim 100~{\rm kpc}$ of galaxies, and are often linked with signatures of actively accreting material (e.g., ?).

Relatively few studies have probed the Ly α -forest galaxy relationship below this column density however (e.g., ????). The most obvious reason for this is due to the technically demanding nature of detecting these weak absorption systems. The installation of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) in 2009 however has finally opened a window to study this rich reservoir of intergalactic gas (see ? for instrument details). Thanks to the high throughput and sensitivity available with COS, a large number of distant quasi-stellar objects (QSOs) have been observed with sufficiently high signal-to-noise for a large variety of science priorities.

With numerous high signal-to-noise QSO spectra now available with COS, the second major challenge for galaxy-absorber correlation studies is obtaining data on the galaxies. While the resolution of absorption line spectroscopy is redshift-independent (e.g., a $N({\rm H\,I})\gtrsim 10^{13}~{\rm cm}^{-2}~{\rm Ly}\alpha$ absorber is just as readily detected at $z\sim 0$ as at $z\sim 1$), detecting and classifying galaxies is

a photometric exercise whose difficulty rapidly increases with redshift. Thus, while we wish to include all absorption systems in any particular sightline observation to maximize our sample size, we are instead limited by our ability to produce a matching galaxy sample. Different studies have gone about tackling this issue in different ways. Some studies (e.g., ??????) conducted deep imaging campaigns around a set of QSO targets. This has the advantage of producing a homogeneous galaxy dataset with clear magnitude limits, but is also prohibitively time-intensive for building a large sample. Also, the size of the imaging telescope aperture tends to limit the maximum galaxy-absorber separation to within $\sim 1R_{\rm vir}$.

An alternative approach is to take advantage of existing galaxy observations, which makes it easier to compile both larger samples and also study the galaxy-absorber relationship at large physical separation (e.g., ??). The downside to this approach is the inhomogeneous nature of existing galaxy data, and the difficulty in characterizing the magnitude limit of these observations and thus hazarding missing low surface-brightness galaxies near a detected absorption line. With these caveats in mind, this is the approach we have chosen for this study, which we have designed to both maximize the advantages and mitigate the disadvantages inherent in the method. Firstly, we are limiting ourselves to only the very near systems ($cz \le 10,000 \text{ km s}^{-1}$), which both maximizes the number of useful QSO targets, and also limits us to a redshift range in which we can be confident

with the quality and completeness of existing galaxy data. We have completed a data collection campaign for this existing galaxy data, producing a new, highly complete and homogeneous nearby galaxy catalog (see Chapter 2).

By correlating this new galaxy catalog with the positions of the over 700 QSO targets with archival COS data available, we present here initial results for the largest-to-date survey of low- $N({\rm H\,I})$ Ly α absorbers in the local, $cz \leq 10,000 {\rm km\,s^{-1}}$, Universe and their relationship to nearby galaxies. In Section 2 we present the datasets, sample selection, and galaxy-absorber matching methods. In Section 3 we present and discuss the results of the galaxy-absorber correlation, and in Section 4 we offer a summary of our findings and conclusions.

2. DATA ANALYSIS

In this section we discuss the selection and reduction of our sample of archival QSO spectra taken by the Cosmic Origins Spectrograph (COS) on HST. There currently exist over 700 COS spectra in the Barbara A. Mikulski Archive for Space Telescopes (MAST) with G130M exposures which cover the Ly α transition in our survey's redshift range ($cz \leq 10,000 \text{ km s}^{-1}$). In order to choose the most useful spectra for our purposes, we first sort them by signal-to-noise (SN) and make a cut at approximately SN=10. A signal-to-noise of approximately 10 or higher measured near 1238Å allows us to detect an absorption feature down to an equivalent width of $\sim 50 \text{mÅ}$ at 5σ . We then correlate the resulting (SN \ge 10) sample with our galaxy catalog (see Chapter 2), and sort the spectra by proximity to a galaxy. While this introduces a slight bias against void or isolated absorption features, we are presently most interested in the absorber-galaxy relation and therefore choose this method to maximize the associated absorber-galaxy sample size. Additionally, because this sorting is done without knowledge of line locations, we will end up with significant sample of isolated absorbers simply based on their velocity, or z-direction, isolation from galaxies. Finally, from this galaxy-proximity sorted spectra list we choose 264 targets based on the relative ease of spectral feature identification. Because many of these archival sightlines were originally observed to study systems at z > 0.03 and not because of their proximity to any nearby galaxy, the resulting final sample is mostly randomly distributed across the sky.

Data reduction, continuum fitting and line measurement are then conducted in an identical fashion to ?. In short, we determine the continuum around each line by fitting a 1st, 2nd or 3rd order polynomial to the line-free regions around each feature. All equivalent width measurements are integrated based on this fit, and we calculate the second moment of the apparent optical depth profiles to determine Doppler b-parameters. Table ?? summarizes the QSO targets included in this work.

In this sample of 264 QSOs we have detected 1135 $Lv\alpha$ absorbers. Figures ?? and ?? show all-sky maps of the positions of all absorbers split into 4 velocity bins $(v_{
m Ly}\alpha=[0-2500],~(2500-5000],~(5000-7500],~{\rm and}~(7500-10,000]~{\rm km\,s^{-1}}).$ The distribution of galaxies in the same velocity ranges are include here also (galaxies are plotted as small circles, absorbers as stars; see Chapter 2). Comparing the galaxy to absorber positions and velocities within each velocity range by eye, we can clearly see that the Ly α absorbers broadly trace the locations of the galaxies. If the current Lambda Cold Dark Matter (ACDM) cosmology is to be believed, this should not be remarkably surprising. The baryons from which galaxies are built and those found within the IGM and traced by Ly α absorption should both follow the underlying potential produced by the Dark Matter, and should therefore be found in similar places. Beyond this big-picture result however, we want to know how the absorbers react to the presence of the galaxies on a more local scale.

2.1. Sub-sample selection

A major hurdle for galaxy-absorber correlation studies has always been matching any particular absorption line to a single nearby galaxy. The basic premise of matching relies on the assumption that, in at least some cases, one particular galaxy's potential, angular momentum, and radiation field dominates what an absorber "feels" (i.e., is the primary influencer for the EW, column density and Doppler b-parameter of an absorber). With this assumption in place, the issue becomes that galaxies are generally not isolated. When faced with a distribution of galaxies of differing types, sizes, orientations and distances (impact parameters) and velocities $(\Delta v = v_{\rm absorber} - v_{\rm galaxy})$ from an absorption line, which, if any, are most likely to be "associated" with the line?

As first introduced in ?, we employ a unique likelihood method for objectively matching absorbers with nearby galaxies in a consistent, analytical manner. We define likelihood, \mathcal{L} , as follows:

$$\mathcal{L} = A \times e^{-\left(\frac{\rho}{R_{\text{eff}}}\right)^2} \times e^{-\left(\frac{\Delta v}{v_{\text{norm}}}\right)^2},\tag{1}$$

where A is a normalization constant, ρ is the impact parameter between a galaxy and sightline, $R_{\rm eff}$ is one of two possible "effective - radii" we use for galaxies (virial radius and $D^{1.5}$, or diameter to the 1.5 power), Δv is the velocity separation between absorber and galaxy heliocentric, and $v_{\rm norm}$ is a velocity normalization (equal to one of 150, 200, or 250).

We calculate \mathcal{L} for every absorber-galaxy combination, which then gives us a single number as a three-dimensional proxy for the physical separation between the two. Based on this \mathcal{L} we then separate our sample into the following 5 distinct bins: isolated, $\mathcal{L}-isolated$, $\mathcal{L}-associated-isolated$, $\mathcal{L}-associated$, and $\mathcal{L}-two+$. The isolated sample contains all the Ly α lines that are

Table 1. Summary of \mathcal{L} Variants

\mathcal{L} Variant	$\mathcal{L}-isolated$	$\mathcal{L}-associated-isolated$	$\mathcal{L}-associated$	$\mathcal{L} - two +$
Total number of Ly α absorbers: 1135				
571 are isolated regardless of normalization				
$\mathcal{L}_{min} = 0.01, rigor = 5 \ (Standard)$	267	56	146	58
$\mathcal{L}_{min} = 0.01, rigor = 5, A = 2 if \rho \leq R_{vir}$	267	56	160	55
$\mathcal{L}_{min} = 0.001, rigor = 5$	227	69	167	65
$\mathcal{L}_{min} = 0.001, rigor = 6$	227	69	162	68
$\mathcal{L}_{min} = 0.001, rigor = 7$	227	69	154	75
$\mathcal{L}_{min} = 0.001, rigor = 8$	227	69	145	78
$D^{1.5}, \mathcal{L}_{min} = 0.001, rigor = 5$	317	39	174	32
$\mathcal{L}_{min} = 0.001, rigor = 5, A = 2 if \rho \leq R_{vir}$	227	69	181	62
$\mathcal{L}_{min} = 0.005, v_{norm} = 150, rigor = 5$	265	58	148	63
$\mathcal{L}_{min} = 0.005, v_{norm} = 250, rigor = 5$	246	64	151	64

NOTE—A summary of the subset sizes resulting from varying the likelihood metric's normalization parameters. Different choices of normalization are simply shifting some of the non-isolated absorbers between different bins.

farther than 500 kpc and 400 km s⁻¹ from any galaxy. The $\mathcal{L}-isolated$ sample contains those Ly α lines are far enough away from any galaxy so as to not meet our minimum- \mathcal{L} criteria. The $\mathcal{L}-associated-isolated$ sample contains those Ly α lines which meet our \mathcal{L} criteria to be associated with a single galaxy, and that galaxy is isolated by 500 kpc and 400 km s⁻¹. The $\mathcal{L}-associated$ sample contains those Ly α lines which meet our \mathcal{L} criteria to be associated with a single galaxy, but that galaxy is not isolated. And finally, the $\mathcal{L}-two+$ sample contains those Ly α lines which meet our minimum- \mathcal{L} criteria to be associated with more than one galaxy.

Our standard criteria for a positive galaxy-absorber association are $\mathcal{L} \geq 0.01$ and $\mathcal{L}_1 \geq rigor \times \mathcal{L}_2$ with rigor = 5 (i.e., the \mathcal{L} -value for the most likely associated galaxy must be at least 5 times greater than that for the second most likely galaxy). However, we have also explored the results of adjusting the several possible \mathcal{L} normalizations. We calculate \mathcal{L} with $R_{\rm eff}$ equal to $R_{\rm vir}$ and $D^{1.5}$ and $v_{\rm norm}$ equal to 150, 200, and 250. For each of these combinations, we also calculate a variant with A=1 and another with A=2 if $R_{\rm eff} \geq \rho$, and A=1 otherwise. Additionally, we investigate the effect of changing the minimum- \mathcal{L} criteria to 0.005 and 0.001, and rigor=5, 6, 7, and 8. Table ?? summarizes the resulting subsets for each of these combinations.

Overall, we find that none of these adjustments have a major effect on the resulting samples. To check, we performed Anderson-Darling statistical distribution analyses to check for differences between the EW distributions for each \mathcal{L} -variant and found no statistically significant difference between matching subsets (e.g., the EW distribution for the $\mathcal{L}-associated$ subset does not change significantly between these different \mathcal{L} variants). For the remainder of this analysis we will concentrate on the $\mathcal{L}_{\min}=0.01, v_{\text{norm}}=200, A=2$ normalization subsets. This matches the normalization we adopted in ?, and represents a middle ground option while also

maximizing the size of the \mathcal{L} – isolated – associated, \mathcal{L} – associated, and \mathcal{L} – two+ subsets.

3. RESULTS & DISCUSSION

3.1. Detection Fraction

First we explore the Ly α detection fraction as a function of galaxy proximity. To calculate this, we start by correlating the position of every QSO with our galaxy sample. For every galaxy found within 1000 kpc in physical impact parameter of each sightline we then check if a Ly α line appears in that sightline and within 400 km s⁻¹ of the galaxy's systemic velocity. This results in a detection fraction as a function of impact parameter. Additionally, we calculate the detection fraction as a function of likelihood, \mathcal{L} , in a similar manner. However, as we are calculating detection fraction without any a priori knowledge of the velocity of the absorption lines, the likelihood function we use is modified from Eq. ?? to simply $e^{-(\rho/R_{vir})^2}$, or only the impact parameter - virial radius portion of our usual likelihood function given by Eq. ??. Note that this adjusted likelihood function is identical to Eq. ?? when $\Delta v = 0$.

We have plotted the detection fraction as a function of both impact parameter and \mathcal{L} in Figure ??. We also display the detection fraction for minimum Ly α EWs of 50, 100, 200, and 300 mÅ in purple, green, yellow, and red (respectively). As expected, the detection fraction clearly increases with decreasing impact parameter and increasing \mathcal{L} . Additionally, the detection fraction curves for higher EW absorbers increasingly become steeper. Hence, the detection fraction for strong absorbers is very low at large impact parameter or \mathcal{L} , but climbs quickly back to $\gtrsim 70\%$ within ~ 100 kpc or $0.1\mathcal{L}$.

We also note that while the detection fraction as a function of impact parameter continues to rise all the way to the 25 kpc mark, it levels off at $\sim 1.5 R_{\rm vir}$ ($\sim 0.1 \mathcal{L}$) as a function of likelihood. Perhaps this rep-

Figure 1. All sky maps of the locations of all absorbers and galaxies. Absorbers are plotted as stars and scaled in size based on their EW. Galaxies are plotted as dots. The colors of both galaxies and absorbers are mapped to their heliocentric velocities. (a) All galaxies and absorbers in the velocity range $450 \le cz \le 2500 \text{ km s}^{-1}$. (b) All galaxies and absorbers in the velocity range $2500 < cz \le 5000 \text{ km s}^{-1}$.

Figure 2. All sky maps of the locations of all absorbers and galaxies. Absorbers are plotted as stars and scaled in size based on their EW. Galaxies are plotted as dots. The colors of both galaxies and absorbers are mapped to their heliocentric velocities. (a) All galaxies and absorbers in the velocity range $5000 < cz \le 7500 \text{ km s}^{-1}$. (b) All galaxies and absorbers in the velocity range $7500 < cz \le 10,000 \text{ km s}^{-1}$.

resents the edge of the CGM; beyond $\sim 1.5R_{\rm vir}$ we are increasingly detecting the large-scale filaments that the

Figure 3. The detection fraction as a function of impact parameter (grey-circles) and \mathcal{L} (blue-diamonds). Note that the impact parameter and \mathcal{L} x-axis scales are quite different; the lowest \mathcal{L} bin (0.0001) corresponds to $\sim 3R_{\rm vir}$, whereas the largest impact parameter bin (1000 kpc) is generally $\gg 3R_{\rm vir}$. Error bars show the 1σ Poisson errors.

galaxies reside in, and inside this radius we reach a nearly constant $\sim 85\%$ covering fraction. The fact that the detection fraction remains at $\gtrsim 50\%$ all the way to (and possibly past) 1 Mpc further suggests this important contribution of general Cosmic Web absorbers to the aggregate sample.

3.2. Equivalent Width

Here we explore the effect of environment on the equivalent width of our Ly α absorber sample. Figure ?? shows the cumulative distribution function of equivalent widths for each of our 5 likelihood-separated subsets, along with that of the entire sample in black). We have only included EW > 50 mÅ here to mitigate any bias due to the detection limit of lower-SN targets. We find that each subset occupies a distinct space aside from the $\mathcal{L}-associated-isolated$ and $\mathcal{L}-associated$ sets, which are essentially indistinguishable. The physical result of this is that the strength EW of Ly α absorption depends strongly on environment. Stronger absorption lines are preferentially found near to galaxies, and the strongest lines are found near multiple galaxy systems. The result of Anderson-Darling statistical distribution tests between each subset indicate that our isolated and $\mathcal{L}-isolated$ subsets are distinct from each of $\mathcal{L}-two+$, and \mathcal{L} – associated – isolated and \mathcal{L} – associated at $a \gg 5\sigma$ level. Because $\mathcal{L}-associated-isolated$ and $\mathcal{L}-associated$ are found to be nearly indistinguishable via these test and by-eye, we will combine them for the remainder of this analysis.

Figure 4. The equivalent width (a) and Doppler b-parameter (b) cumulative distribution functions for each subset of our Ly α absorber sample. From the top-left corner to the bottom-right the curves are the fully isolated absorbers (grey), the absorbers isolated enough from any galaxy to not be likelihood-matched (brown), the full distribution (black), the absorbers likelihood-matched to a single, non-isolated galaxy (orange), the absorbers matched to a single, isolated galaxy (green), and the absorbers likelihood-matched with two or more galaxies (purple). The shaded region around each curve gives the EW (b-parameter) measurement errors. Only EW \geq 50 mÅ absorbers are included to mitigate any bias due to the detection limit of lower-SN targets.

This separation between EW distributions based on galaxy proximity is likely an effect of the distribution of the cosmic web; multiple galaxies should form from

Figure 5. Left: The equivalent width (EW) of absorbers a function of impact parameter (ρ) to the associated galaxy. The best fit shown by the dashed-black line has the form: $EW = m(\rho) + b$, with $m = -0.99 \pm 0.25$ and $b = 487 \pm 49$. Right: The EW of absorbers a function of impact parameter to the associated galaxy normalized by the galaxy virial radius ($\rho/R_{\rm vir}$). The best fit shown by the dashed-black line has the form: $EW = m(\rho/R_{\rm vir}) + b$, with $m = -265 \pm 48$ and $b = 620 \pm 59$. Both: All $\mathcal{L}-associated-isolated$ and $\mathcal{L}-associated$ systems are included here. Blue-circles indicate spiral-type galaxies, green-squares indicate irregulars, red-crosses indicate ellipticals, purple-diamonds indicate S0's, and open black-circles indicate ambiguous morphological types.

denser sections and intersections of intergalactic filaments, and these environments should thus also produce a stronger absorption profile. Indeed, many previous studies have found similar results, with weak Ly α correlating only weakly with the positions of galaxies compared to either the strong absorber-galaxy or galaxy-galaxy correlations (see e.g., ????). These weak Ly α lines are thus likely tracing the underlying larges-scale filamentary structures, and not individual galaxy halos (see ?? also).

This result on it's own does not however illuminate any deeper connection or relationship between the individual galaxies and absorbers. Let us now consider the dependence of EW on galaxy impact parameter, as illustrated in Figure ??. We have also plotted EW as a function of virial radius normalized impact parameter $(\rho/R_{\rm vir})$ in Figure ??. Firstly, we notice that weak (EW $\lesssim 400$ mÅ) absorbers are found at all impact parameters and $\rho/R_{\rm vir}$, which agrees with our findings above from Figure ??. Moreover, absorbers stronger than EW ~ 400 mÅ are preferentially found close to galaxies, and absorbers with EW ~ 800 mÅ are only found within 100 kpc and $1R_{\rm vir}$. Hence, weak EW $\lesssim 400$ mÅ absorbers are most likely Ly α -forest material, while the stronger absorbers are associated with the galaxies.

Secondly, we have included linear fits in both Figures ?? and ?? as shown by the dashed-black lines. In each case we find a strong negative slope, and by eye the virial radius normalized version appearing to be the stronger

correlation. To test this we calculated the Pearson correlation coefficient r-value for each fit. For the purely impact parameter correlation we find a Pearson r-value = -0.26, with a p-value of $p = 1.2 \times 10^{-4}$, which indicates a weak but statistically significant negative correlation. For the virial radius normalized correlation we find r = -0.35 with $p = 1.2 \times 10^{-7}$, indicating a stronger and more significant negative correlation. If true, then the EW of Ly α absorption depends on the size of galaxy halos. Hence, either the physical or number density (or both) of absorbing cloudlets is greater closer to galaxies in a halo-scale dependent manner. The increased density of this neutral material could signify both inflows or outflows from galaxies, with inflows expected to harbor a greater fraction of the cool, neutral HI most readily traced by Ly α . An analysis of metals associated with these neutral cloudlets could provide clues to which is the mechanism source at play here.

Thirdly, let us consider the effect of galaxy morphology on the associated absorption, which we have indicated in Figure ?? by the color and style of the plot points. In each figure blue-circles indicate spiral-type galaxies, green-squares indicate irregulars, red-crosses indicate ellipticals, purple-diamonds indicate S0's, and open black-circles indicate ambiguous or unknown types. Spiral galaxies are clearly the dominant type, and are found at all impact parameter and EW. Irregulars are the next most common, but are not spread around as evenly. All but two irregular-type systems are separated by less than 150 kpc in Figure ??, and few low-EW ab-

Figure 6. (a) The median inclination of galaxies is shown as a function of likelihood \mathcal{L} for both detection (blue-diamonds) and non-detections (red-crosses) of associated absorbers. Detection and non-detection median inclinations are also shown for minimum EW ≥ 200 mÅ absorber equivalent widths by the thinner, semi-transparent lines. (b) The detection fraction plotted directly as a function of inclination for systems inside (blue-diamonds) and outside (red-crosses) $1.5\rho/R_{\rm vir}$.

sorbers are found within $\sim 0.5R_{\rm vir}$ in Figure ??. In the first case, this can be explained by irregulars having a smaller average size ($\overline{R}_{\rm vir}=101$ kpc for irregulars, compared to 145, 178, and 194 kpc for spirals, S0's, and ellipticals). When normalized by virial radius however, the lack of low-EW absorbers at low $\rho/R_{\rm vir}$ could be an indication of more gas-rich halos. This would make sense, since irregular galaxies are often tidally disturbed due to recent interactions which can result in extended, gas-rich halos.

Finally, we also see that elliptical and S0 galaxies are associated with mostly low-EW absorption, especially within 100 kpc and $\sim 0.5 R_{\rm vir}.$ It has been suggested that ionized metal material (e.g., O VI ? and references therein) is deficient around early-type galaxies, and also that the absorber-galaxy clustering is weaker for these

systems compared to late-type galaxies?. Our results here are consistent with this picture, and physically may be explained by a combination of a lack of star formation driven winds, shock-heating, and an overall dearth of cool gas within early type galaxy halos.

3.3. Doppler b-parameter

Here we explore the effect of environment on the Doppler b-parameter of our Ly α absorber sample. In an analogous fashion as above, Figure ?? shows the cumulative distribution functions for the Doppler b-parameters of each subset of absorbers. Similar to the EW result, the Doppler b-parameters trend toward larger values based on their proximity to galaxies. The separation here however is far weaker. While the separation between, e.g., isolated and $\mathcal{L} - two+$ samples, remains

Figure 7. Top: The distribution of all associated galaxy inclinations is shown in blue. The overlaid red histogram shows the distribution of the highest \mathcal{L} -galaxy inclinations from the $\mathcal{L}-two+$ subset. Bottom: The distribution of all galaxies in the survey volume (i.e., $cz \leq 10,000 \text{ km s}^{-1}$).

statistically significant, we cannot claim any further significance between the other subsets.

Our b-parameters are derived via the second moment of the apparent optical depth profile, and therefore these b-parameter estimates become highly uncertain for EW $\gtrsim 350$ mÅ. For these stronger lines the profile becomes saturated, producing a degeneracy between EW and b. Unfortunately these are the very lines we expect to be most associated with near or multiple galaxy galaxy systems. This issue is illustrated by Figure ??, where we have show the b-parameters as a function of impact parameter and Δv for the full sample (Figures ?? and ??) and for only those systems with EW $\leq 400 \text{mÅ}$ (Figures ?? and ??). While a strong correlation is implied between b and ρ without any cuts, this completely disappears once the stronger absorbers are removed. A similar albeit less extreme effect is seen for b as a function of Δv . A careful profile fitting analysis is the best way forward here, which we will reserve for a future work.

3.4. Inclination

Here we investigate the inclination dependence of Ly α absorber properties. In Figure ?? we display the distribution of all associated galaxies alongside the distribution of all galaxy inclinations in the survey volume (again, $\mathcal{L}-associated-isolated$ and $\mathcal{L}-associated$ subsets are combined here; see Chapter 2 for a full discussion of our galaxy dataset). As we first discovered in ?, there is an overabundance of absorbers associated with high-inclination galaxies. To test the significance of this overabundance we used the Anderson-Darling statistical distribution test, which yields a p-value of $AD_p = 7.2 \times 10^{-6}$. For a normal distribution this corresponds to $\sim 4.5\sigma$, indicating with a high confidence limit that these associated galaxies are not drawn from the same distribution as the all-sky galaxy population.

Figure 8. (a) The median inclination of galaxies is shown as a function of likelihood \mathcal{L} for both detection (blue-diamonds) and non-detections (red-crosses) of associated absorbers. Detection and non-detection median inclinations are also shown for minimum EW ≥ 200 mÅ absorber equivalent widths by the thinner, semi-transparent lines. (b) The detection fraction plotted directly as a function of inclination for systems inside (blue-diamonds) and outside (orange-pluses) $1.5\rho/R_{\rm vir}$.

To further explore this phenomenon we have also calculated the detection fraction as a function of inclination and likelihood \mathcal{L} . Figure ?? shows the median inclination as a function of \mathcal{L} for galaxies. For a galaxy at a given value of \mathcal{L} , the solid blue-diamond line gives the median inclination if we detect an absorber within $\Delta v \leq 400 \text{ km s}^{-1}$, and the dashed blue-cross line gives the same for systems without a Ly α detection. The error bars shown are calculated by a 10,000 repetition bootstrap analysis with replacement (i.e., we randomly resample the distribution of inclinations while allowing

for duplicate entries, and then compute the standard deviation of the resulting sample distribution). Figure ?? shows that at very low \mathcal{L} both detections and non-detections have the same median inclination, but the distributions then split at higher \mathcal{L} where the sightline is closer to the galaxy halos. Thus, we are more likely to detect an absorber near a highly inclined galaxy.

This result is most easily explained by evoking a non-spherical H_I galaxy halo. For example, if absorbers are distributed in a perfectly spherical manner around galaxies, then we would expect just as many nondetections as detections at any given galaxy inclination and impact parameter (or likelihood) from a sightline. We do not find this. Thus, the distribution of $Lv\alpha$ absorbers around galaxies must be non-spherical, with a flattened, disk-like Ly α halo fitting the bill nicely. Additionally, Figure ?? shows the detection fraction directly as a function of inclination, where we have separated our sample into near $(\rho/R_{\rm vir} \leq 1.5)$ and far distributions. Here we can see that the detection fraction is more strongly dependent on inclination for the near systems, where we would expect a stronger effect due to a non-spherical halo.

3.5. Azimuth

Here we investigate the dependence of $\text{Ly}\alpha$ absorber properties on their orientation with respect to the major axis of nearby galaxies. Figure ?? shows the distribution of azimuth angles for systems from the combined $\mathcal{L}-associated$ and $\mathcal{L}-associated-isolated$ subsets in blue, along with the distribution for the $\mathcal{L}-two+$ subset in red. There appears to be a bimodal distribution here, with an excess of absorbers near low (major-axis) and high (minor-axis) azimuth angles. The same is not seen for the $\mathcal{L}-two+$ subset, suggesting the presence of other nearby galaxies may be stirring up the $\text{Ly}\alpha$ absorbing material in these galaxies' halos.

Again, we can check the detection fraction as a function of azimuth. Figure ?? shows this, with the sample split into near $(\rho/R_{\rm vir} \leq 1.5)$ and far distributions shown by blue-diamonds and orange-pluses. This detection fraction further backs up the bimodal distribution suggested above, with an elevated detection fraction at both low (major-axis) and high (minor-axis) azimuth angles. The systems beyond $1.5\rho/R_{\rm vir}$ show a much weaker trend, as expected for systems beyond the direct influence of galaxy halos. This result also agrees with the expectation that gas found near the major axis of a galaxy represents accreting material, while material around the minor axis represents outflows (e.g., ?????). While we cannot tell whether this material is actively inflowing or outflowing, simply the heightened presence of material in the expected regions provides tantalizing hints.

Figure 9. (a) The distribution of azimuth angles for the combined $\mathcal{L}-associated$ and $\mathcal{L}-associated-isolated$ subsets is shown in blue, with the $\mathcal{L}-two+$ subset shown in red. (b) The detection fraction plotted as a function of azimuth for systems inside (blue-diamonds) and outside (orange-pluses) $1.5\rho/R_{\rm vir}$.

Here we summarize the results of our study of the Ly α absorber-galaxy connection.

- 1. The equivalent width of Ly α absorbers depends strongly on environment. The most isolated absorbers are the weakest, with a smooth transition to the strongest absorbers residing very near to multiple galaxies. The separation between the EWs of isolated and non-isolated absorbers is significant at a > 5σ level. A similar but far weaker trend is seen for the absorber Doppler b-parameters, which will require a dedicated fitting analysis program to overcome blending and saturation issues.
- 2. Ly α absorber EW correlates most strongly with impact parameter when normalized by the associated galaxy virial radii. We find evidence for a lack of strong absorbers within $\sim 0.5 R_{\rm vir}$ of elliptical or S0 type galax-

ies, but we lack enough systems of these types to report strong limits on this observation.

- 3. Ly α absorbers with EW $\lesssim 100$ mÅ are ubiquitous, making up nearly 50% of all Ly α systems in the nearby Universe, and do not correlate strongly with environment (70% of these weak absorbers are isolated by at least 500 kpc and 400 km s⁻¹ from any $L \gtrsim 0.1L^*$ galaxy).
- 4. We confirm the ? findings of an overabundance of absorbers located near highly inclined galaxies, and improve the significance of this finding to 4.5σ . We correspondingly find that the Ly α detection fraction increases with increasing galaxy inclination, and that this trend is strongest for systems separated by $1.5R_{\rm vir}$ or less.
- 5. We report the first detection of a Ly α azimuth angle dependence, finding that absorbers tend to be associated with galaxy major and minor axes at a 3.3σ significance. We correspondingly find that the Ly α detection fraction is double peaked around the major and minor axes within $1.5R_{\rm vir}$, but mostly flat outside of this distance.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Spectra were retrieved from the Barbara A. Mikulski Archive for Space Telescopes (MAST) at STScI. Over the course of this study, D.M.F. and B.P.W. were supported by grant XXXX

Facility: HST (COS)

REFERENCES

- Bordoloi, R., Lilly, S. J., Kacprzak, G. G., & Churchill, C. W. 2014, ApJ, 784, 108
- Bordoloi, R., Lilly, S. J., Knobel, C., et al. 2011, ApJ, 743, 10
- Bouché, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801
- Bowen, D. V., Pettini, M., & Blades, J. C. 2002, ApJ, 580, 169
- Bowen, D. V., Pettini, M., & Boyle, B. J. 1998, MNRAS, 297, 239
- Chen, D. N., Jing, Y. P., & Yoshikaw, K. 2003, ApJ, 597, 35
- Chen, H.-W., & Mulchaey, J. S. 2009, ApJ, 701, 1219
- Chen, H.-W., Prochaska, J. X., Weiner, B. J., Mulchaey, J. S., & Williger, G. M. 2005, ApJL, 629, L25
- Chen, H.-W., & Tinker, J. L. 2008, ApJ, 687, 745
- Diamond-Stanic, A. M., Coil, A. L., Moustakas, J., et al. 2016, ApJ, 824, 24
- French, D. M., & Wakker, B. P. 2017, ApJ, 837, 138
- Green, J. C., Froning, C. S., Osterman, S., et al. 2012, ApJ, 744, 60
- Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJL, 760, L7
- Lanzetta, K. M., Bowen, D. V., Tytler, D., & Webb, J. K. 1995, ApJ, 442, 538

- Morris, S. L., & Jannuzi, B. T. 2006, MNRAS, 367, 1261 Nielsen, N. M., Churchill, C. W., Kacprzak, G. G., Murphy,
 - M. T., & Evans, J. L. 2015, ApJ, 812, 83
- Prochaska, J. X., Weiner, B., Chen, H.-W., Mulchaey, J., & Cooksey, K. 2011, ApJ, 740, 91
- Rudie, G. C., Steidel, C. C., Trainor, R. F., et al. 2012, ApJ, 750, 67
- Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289
- Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200
- Tumlinson, J., Werk, J. K., Thom, C., et al. 2011, ApJ, 733, 111
- Tumlinson, J., Thom, C., Werk, J. K., et al. 2013, ApJ, 777, 59
- Wakker, B. P., Hernandez, A. K., French, D. M., et al. 2015, ApJ, 814, 40
- Wakker, B. P., & Savage, B. D. 2009, ApJS, 182, 378
- Werk, J. K., Prochaska, J. X., Thom, C., et al. 2013, ApJS, 204, 17
- Wilman, R. J., Morris, S. L., Jannuzi, B. T., Davé, R., & Shone, A. M. 2007, MNRAS, 375, 735

APPENDIX

Here we provide the observation and measurement data for all targets included in this work.

Table 2. Summary of QSO Sample

=										
_	Target	R.A.	Dec.	\mathbf{z}	Program	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks)	(1238 Å)	$({\rm kms^{-1}})$	$(m\mathring{A})$	$(\mathrm{km}\mathrm{s}^{-1})$
_	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	1075.0	249.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	1123.0	269.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	1188.0	240.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	1264.0	91.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	2020.0	9.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	7801.0	122.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	8819.0	39.0
1H0419-577	04 2	6 00.8	-57	12 01.0	0.10400	11686	20429	58.4	9962.0	34.0
1H0717+714	07 2	1 53.5	+71 2	20 36.0	0.23149	12025	6000	23.4	2873.0	349.0
1H0717+714	07 2	1 53.5	+71 2	20 36.0	0.23149	12025	6000	23.4	2988.0	33.0
1H0717+714	07 2	1 53.5	+71 2	20 36.0	0.23149	12025	6000	23.4	3840.0	39.0
1H0717+714		1 53.5	+71 2	20 36.0	0.23149	12025	6000	23.4	5283.0	51.0
1H0717+714		1 53.5		20 36.0	0.23149	12025	6000	23.4	6271.0	167.0
1H0717+714		1 53.5		20 36.0	0.23149	12025	6000	23.4	6595.0	64.0
1H0717+714	07 2	1 53.5	+71 2	20 36.0	0.23149	12025	6000	23.4	7799.0	52.0
1H1613-097	16 1	5 19.1	-09 3	36 13.0	0.06496	13448	4833	12.9	3678.0	39.0
1H1613-097	16 1	5 19.1	-09 3	36 13.0	0.06496	13448	4833	12.9	5259.0	55.0
1H1613-097	16 1	5 19.1	-09 3	36 13.0	0.06496	13448	4833	12.9	7326.0	212.0
1H1613-097	16 1	5 19.1	-09 3	36 13.0	0.06496	13448	4833	12.9	8204.0	339.0
2E1530+151	1 15 3	3 14.3	+15 (01 02.0	0.09000	14071	9348	9.1	1795.0	507.0
2E1530+1511	15	33 14.3	3 +1	5 01 02	.0 0.09000	140	71 934	8 9.1	1953.	0 137.0
2dFGRS_S393Z	082 02	2 45 00.8	3 –3	80 07 23	.0 0.33921	129	88 176	68 11.5	1236.	0 563.0
2dFGRS_S393Z	082 02	2 45 00.8	3 –3	80 07 23	.0 0.33921	129	88 176	68 11.5	3011.	0 48.0
2dFGRS_S393Z	082 02	2 45 00.8	3 –3	80 07 23	.0 0.33921	129	88 176	68 11.5	3759.	0 58.0
2dFGRS_S393Z	082 02	2 45 00.8	3 –3	80 07 23	.0 0.33921	129	88 176	68 11.5	4042.	0 36.0
3C232	09	58 20.9) +3	22 24 02	.0 0.53060) P1	07 110	00 11.4	1467.	0 3822.0
3C232	09	58 20.9) +3	32 24 02	.0 0.53060) P1	07 110	00 11.4	1408.	0 2092.
3C232	09	58 20.9) +3	22 24 02	.0 0.53060) P1	07 110	00 11.4	1510.	0 700.0
3C232	09	9 58 20.9	+3	32 24 02	.0 0.53060) P1	07 110	00 11.4	1641.	0 1635.0
3C232		9 58 20.9		32 24 02			07 110			
3C249.1	11	04 13.8	3 +7	6 58 58	.0 0.31150	493	39 191	57 9.1	1860.	0 43.0
3C249.1	11	04 13.8	3 +7	6 58 58	.0 0.31150	495	39 191	57 9.1	6674.	0 249.0
3C249.1	11	04 13.8	3 +7	6 58 58	.0 0.31150	493	39 191	57 9.1	7815.	0 287.0
3C249.1	11	04 13.8	3 +7	6 58 58	.0 0.31150	493	39 191	57 9.1	8383.	0 294.0
3C263	11	39 57.0) +6	55 47 51	.0 0.64600) 115	41 153	35.7	2175.	0 52.0
3C263	11	39 57.0) +6	55 47 51	.0 0.64600) 115	41 153	35.7	3910.	0 12.0
3C263	11	39 57.0) +6	55 47 51	.0 0.64600) 115	41 153	35.7	8954.	0 42.0
3C263		39 57.0		55 47 51						
3C263		39 57.0		55 47 51						
3C273.0		2 29 06.7		2 03 09						
C273.0		29 06.7		2 03 09.						
C273.0		29 06.7		2 03 09.						
C273.0		29 06.7		2 03 09.						
C273.0		29 06.7		2 03 09.						
C273.0		29 06.7		2 03 09.						

 $Table\ 2\ continued$

Table 2 (continued)

					Table	2 (con	inaca)			
	Target	R.A.	Dec.	z	Program	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks) (1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
3C273.0	12	2 29 06.7	+02	03 09.0	0.15834	1203	8 400	2 63.2	983	35.0 39.0
3C323.1		5 47 43.6		52 16.0						33.0 240.0
3C323.1		5 47 43.6		52 16.0						22.0 290.
3C323.1		5 47 43.6		52 16.0						16.0 138.
3C323.1		5 47 43.6		52 16.0						19.0 55.0
3C323.1		5 47 43.6		52 16.0						09.0 39.0
3C351.0		7 04 41.6		44 29.0						62.0 147.0
3C351.0		7 04 41.6		44 29.0						97.0 195.0
3C351.0		7 04 41.6		44 29.0						78.0 81.0
3C351.0		7 04 41.6		44 29.0						75.0 207.0
3C351.0		7 04 41.6		44 29.0						72.0 60.0
3C351.0		7 04 41.6		44 29.0						82.0 29.0
3C57		2 01 57.1		32 34.0						81.0 35.0
3C57		2 01 57.1		32 34.0						70.0 29.0
3C57		2 01 57.1		32 34.0						85.0 32.0
3C57		2 01 57.1		32 34.0						13.0 13.0
3C66A		2 22 39.6		02 08.0						01.0 24.0
3C66A		2 22 39.6		02 08.0						88.0 113.0
4C25.01		19 39.8		02 52.0						6.0 95.0
4C25.01		19 39.8		02 52.0						51.0 55.0
4C25.01		19 39.8		02 52.0						50.0 105.0
CSO1161		20 07.4		35 51.0					314	14.0 164.0
CSO1161		20 07.4		35 51.0						84.0 69.0
CSO1161	11	20 07.4	+42	35 51.0	0.22706	1477	2 476	57 10	732	22.0 253.0
CSO1161	11	20 07.4	+42	35 51.0	0.22706	1477	2 476	57 10	776	66.0 337.0
CSO1161	11	20 07.4	+42	35 51.0	0.22706	1477	2 476	57 10	882	27.0 187.0
CSO1161	11	20 07.4	+42	35 51.0	0.22706	1477	2 476	57 10	894	12.0 233.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	73	1.0 470.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	87	4.0 506.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	533	39.0 129.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	685	52.0 143.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	728	81.0 83.0
CSO1208	11	40 48.0	+46	22 05.0	0.11439	1472	9 722	28 7.7	742	26.0 102.0
CSO1245	11	56 30.1	+42	52 54.0	1.01545	1477	2 482	11	117	78.0 74.0
CSO1245	11	56 30.1	+42	52 54.0	1.01545	1477	2 482	11	322	28.0 98.0
CSO1245	11	56 30.1	+42	52 54.0	1.01545	1477	2 482	11	559	90.0 33.0
CSO1245	11	56 30.1	+42	52 54.0	1.01545	1477	2 482	11	707	77.0 177.0
CSO1245	11	56 30.1	+42	52 54.0	1.01545	1477	2 482	11	713	39.0 204.0
CSO295	10	52 05.5	+36	40 40.0	0.60999	1477	2 217	4 11.9	600	0.0 568.0
CSO295	10	52 05.5	+36	40 40.0	0.60999	1477	2 217	4 11.9	665	2.0 585.0
CSO295	10	52 05.5	+36	40 40.0	0.60999			4 11.9	565	58.0 117.0
CSO295		52 05.5		40 40.0						40.0 352.0
CSO295		52 05.5		40 40.0						74.0 150.0
CSO395		2 11 14.6		57 39.0						1.0 204.0
CSO395		2 11 14.6		57 39.0						22.0 355.0
CSO395		2 11 14.6		57 39.0						1.0 204.0
CSO395		2 11 14.6		57 39.0						22.0 355.0
CTS487		3 22 11.0		47 57.0						50.0 80.0
ESO141-G55		0.22 11.0 0.21 14.3		41 31.0 40 13.0						40.0 50.0
ESO141-G55		20 47 0		40 13.0						83.0 26.0
ESO265-G23		20 47.9		15 51.0						70.0 252.0 391.0
ESO350-IG38	00	36 52.9	-33	33 19.0	0.02060	1301	7 759	17.8	160	08.0

 $Table\ 2\ continued$

Table 2 (continued)

	Target	R.A.	Dec. z	Program	$T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	
	Turgot	101111	200. 2	110814111	-	,	-		
	(1)	(2)	(2) (4)	(=)	` / `	,	(km s^{-1})	(mÅ)	(km s^{-1})
DAIDALLO	(1)	(2)	(3) (4)	(5)	(6)	(7)	(8)	(9)	(10)
FAIRALL9		1 23 45.8					41.3	951	
FBQSJ0751+		7 51 12.3							
FBQSJ0751+		7 51 12.3						3560	
FBQSJ0751+		7 51 12.3						363	
FBQSJ0751+		7 51 12.3							
FBQSJ0751+		7 51 12.3						629	
FBQSJ0751+		7 51 12.3						738	
FBQSJ0751+		7 51 12.3						8020	
FBQSJ0908+		9 08 38.8						191	
FBQSJ0908+		9 08 38.8						1985	
FBQSJ0908+		9 08 38.8					10	428	
FBQSJ0908+		9 08 38.8						7920	
FBQSJ1134+:		1 34 57.6						3070	
FBQSJ1134+		1 34 57.6					9.2	6343	
FBQSJ1134+:		1 34 57.6 2 52 26 0					9.2	9555	
FBQSJ1353+3		3 53 26.0 3 53 26.0					13.9	256	
FBQSJ1353+		3 53 26.0 3 53 26.0						546- 617-	
FBQSJ1353+		3 53 26.0 3 53 26.0						658'	
FBQSJ1431+		3 33 20.0 4 31 25.8						224	
FBQSJ1431+:		$\frac{1}{4} \frac{31}{31} \frac{25.8}{25.8}$						280	
FBQSJ1431+:		4 31 25.8 4 31 25.8	•					486	
FBQSJ1431+:		4 31 25.8							
FBQSJ1431+		4 31 25.8						654	
FBQSJ1431+		4 31 25.8						662	
FBS0150+396		15306.7						581	
FBS0150+396		15306.7 15306.7						7270	
FBS1526+659		5 27 28.5						777	
FBS1526+659		5 27 28.5							
H1101-232		1 03 37.7							
H1101-232		1 03 37.7							
H1101-232		1 03 37.7							
H1101-232		1 03 37.7							
H1101-232		1 03 37.7							
H1821+643		8 21 57.2							
H1821+643		8 21 57.2							
H1821+643		8 21 57.2						731	
H1821+643		8 21 57.2							
HE0056-3622		0 58 37.4							
HE0056-3622		0 58 37.4					27.7		
HE0056-3622		0 58 37.4							
HE0153-4520		1 55 13.2							
HE0153-4520		1 55 13.2					29.8		
HE0226-4110		2 28 15.2					27.7		
HE0226-4110		2 28 15.2					27.7		
HE0226-4110		2 28 15.2							
HE0226-4110		2 28 15.2							
HE0226-4110		2 28 15.2							
HE0241-3043		2 43 37.7							
HE0241-3043		2 43 37.7							
HE0241-3043		2 43 37.7							
HE0241-3043		2 43 37.7					17.3		

 $Table\ 2\ continued$

Table 2 (continued)

		D 4	D.			TT.	C /N		THE STATE OF THE S	
	Target	R.A.	Dec.	z I	Program	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks) (1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$({\rm kms^{-1}})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
HE0241-3043	02	43 37.7	-30	30 48.0	0.66929	1298	88 6972	2 17.3	309	96.0 34.0
HE0241-3043	02	43 37.7	-30	30 48.0	0.66929	1298	88 6972	2 17.3	497	79.0 53.0
HE0241-3043	02	43 37.7	-30	30 48.0	0.66929	1298	88 6972	2 17.3	568	31.0 29.0
HE0241-3043	02	43 37.7	-30	30 48.0	0.66929	1298	88 6972	2 17.3	714	15.0 55.0
HE0241-3043	02	43 37.7	-30	30 48.0	0.66929	1298	88 6972	2 17.3	748	37.0 57.0
HE0241-3043		43 37.7		30 48.0						31.0 47.0
HE0340-2703		42 20.6		53 59.0						15.0 268.0
HE0340-2703		42 20.6		53 59.0						36.0 374.0
HE0340-2703		42 20.6		53 59.0						33.0 194.0
HE0429-5343		30 40.0		36 56.0						67.0 79.0
HE0429-5343		30 40.0		36 56.0						
										58.0 136.0
HE0429-5343		30 40.0		36 56.0						19.0 158.0
HE0429-5343		30 40.0		36 56.0						51.0 134.0
HE0429-5343		30 40.0		36 56.0						88.0 92.0
HE0429-5343		30 40.0		36 56.0						53.0 555.0
HE0435-5304		36 50.8		58 49.0						229.0
HE0435-5304		36 50.8		58 49.0						33.0 231.0
HE0435-5304	04	36 50.8	-52	58 49.0	0.42616	1152	20 8372	2 13.3	169	90.0 193.0
HE0435-5304	04	36 50.8	-52	58 49.0	0.42616	1152	20 8372	2 13.3	393	86.0 88.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	8402	26.7	61	3.0 154.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	8402	26.7	100	55.0
${\rm HE}0439\text{-}5254$	04	40 12.0	-52	48 18.0	1.05300	1152	840	26.7	114	18.0 72.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	8402	26.7	164	19.0 501.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	8402	26.7	278	30.0 48.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	8402	26.7	385	53.0 322.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	0 8402	26.7	465	66.0 64.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300	1152	20 8402	26.7	529	01.0 40.0
HE0439-5254	04	40 12.0	-52	48 18.0	1.05300					79.0 38.0
HE0439-5254		40 12.0		48 18.0						18.0 42.0
HE0439-5254		40 12.0		48 18.0						33.0 33.0
HE1029-1401		31 54.4		16 52.0						3.0 94.0
HE1029-1401		31 54.4		16 52.0		•				57.0 178.0
HE1029-1401		31 54.4		16 52.0						34.0 68.0
				50 43.0		•				
HE1136-1334 HE1136-1334		39 10.7								11.0 34.0
		39 10.7		50 43.0						20.0 27.0
HE1136-1334		39 10.7		50 43.0						31.0 32.0
HE1136-1334		39 10.7		50 43.0						79.0 74.0
HE1136-1334		39 10.7		50 43.0						23.0 57.0
HE1136-1334		39 10.7		50 43.0						01.0 118.0
HE1159-1338		01 58.7		55 00.0						24.0 378.0
HE1159-1338		01 58.7		55 00.0						11.0 47.0
HE1217+0220	12	20 11.9	+02	03 42.0	0.24037	1385	2052	2 14.6	178	39.0 250.0
HE1217+0220	12	20 11.9	+02	03 42.0	0.24037	1385	2052	2 14.6	201	6.0 521.0
HE1217+0220	12	20 11.9	+02	03 42.0	0.24037	1385	2052	2 14.6	223	35.0 548.0
HE1217+0220	12	20 11.9	+02	03 42.0	0.24037	1385	2052	2 14.6	231	6.0 139.0
HE1228+0131	12	30 50.0	+01	15 23.0	0.11700	1168	66 1103	6 40.9	117	76.0 9.0
HE1228+0131	12	30 50.0	+01	15 23.0	0.11700	1168	66 1103	6 40.9	149	95.0 160.0
HE1228+0131	12	30 50.0	+01	15 23.0	0.11700	1168	66 1103	6 40.9	157	71.0 23.0
HE1228+0131		30 50.0		15 23.0						36.0 321.0
HE1228+0131		30 50.0		15 23.0						21.0 303.0
HE1228+0131		30 50.0		15 23.0						54.0 78.0
HE1228+0131		30 50.0		15 23.0						1.0 343.0

 $Table\ 2\ continued$

Table 2 (continued)

The part	=	Target	R.A.	Dec.	z I	Program	$T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	
HEI228-0131 12 30 50.0 40 115 23.0 40 116 116 116 11606 11606 11616 11								,			
HEI228+0131		(1)	(0)	(0)	(4)	(5)	, ,	` ′		` ′	` /
Heli228+0131	_			, ,		. ,	` ′	` ′	` ,		
HEI1228-0131											
HE1228+0131											
HE1228+0131											
HE1340-0038 13 42 51.6 +00 53 45.0 0.32654 11598 4606 11.1 4547.0 78. HE1340-0038 13 42 51.6 +00 53 45.0 0.32654 11598 4606 11.1 7114.0 47. 118131-0038 13 42 51.6 +00 53 45.0 0.32654 11598 4606 11.1 7181.0 32. 182259-5524 23 01 52.0 -55 08 31.0 0.14100 13444 5185 17.9 1078.0 50. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 7129.0 98. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 8035.0 51. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 8035.0 51. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 8384.0 31. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 8384.0 31. 182259-5524 23 02 22.5 -55 08 27.0 0.85490 13444 10940 17.8 8384.0 31. 18233-3556 23 34 44.4 -35 39 47.0 0.11000 13444 7378 10.8 8391.0 64. 182332-3556 23 34 44.4 -35 39 47.0 0.11000 13444 7378 10.8 8391.0 64. 1850434-4725 0.9 46 21.2 447 11 31.0 0.23022 12248 4436 4.4 4603.0 657 8180124-3441 11 05 39.8 434 25 35.0 0.51000 11541 11381 17.4 1697.0 157 181102+3441 11 05 39.8 434 25 35.0 0.51000 11541 11381 17.4 1927.0 1918 181102+3441 11 05 39.8 434 25 35.0 0.51000 11541 11381 17.4 7245.0 106 181114-4309 11 357.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. 181111+4309 11 357.4 +42 53 27.0 0.44204 14772 4797 12.9 6436.0 99. 1813141-4309 11 357.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. 1813131+4338 13 44 25 33 40.2 0.04536 12275 8284 17.3 2735.0 102 181331+5338 18 32 49.7 453 40.2 0.04536 12275 8284 17.3 3751.0 102 181331-4338 18 32 49.7 453 40.2 0.04536 12275 8284 17.3 3630.0 7. 1813131+5338 18 32 49.7 453 40.2 0.04536 12275 8284 17.3 3630.0 30. 1813131+3338 18 32 49.7 45											
HE1340-0038											
HE1340-0038											
HE2258-5524 23 01 52.0											
He2259-5524 23 02 22.5											
HE2259-5524 23 02 22.5											
HE2259-5524											
HE2259-5524											
HE2259-5524											
HE2259-5524											
HE2332-3556 23 34 44.4 -35 39 47.0 0.11000 13444 7378 10.8 773.0 364 HE2332-3556 23 34 44.4 -35 39 47.0 0.11000 13444 7378 10.8 8391.0 64. HS0943+4725 09 46 21.2 +47 11 31.0 0.23022 12248 4436 4.4 4603.0 657 HS0943+4725 09 46 21.2 +47 11 31.0 0.23022 12248 4436 4.4 9847.0 181 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1697.0 57. HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1927.0 191 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 7245.0 196 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 8944.0 75. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 44772 4797 12.9 6429.0 70. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1302+2510 13 04 51.4 +42 54 46.0 0.08050 13382 5134 13.6 438.0 422 HS1313+8414 12 33 35.1 447 58 01.0 0.38223 11598 5929 12.9 9175.0 102 HS1302+2510 13 04 51.4 +24 54 46.0 0.06050 13382 5134 13.6 438.0 422 HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 4											
HE2332-3556 23 34 44.4 -35 39 47.0 0.11000 13444 7378 10.8 8391.0 64 HS0943+4725 09 46 21.2 +47 11 31.0 0.23022 1248 4436 4.4 4603.0 657 HS0943+4725 09 46 21.2 +47 11 31.0 0.23022 1248 4436 4.4 4603.0 657 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1697.0 57. HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1997.0 191 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1997.0 191 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 4927.0 196 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 8944.0 75. HS1111+3499 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1111+3499 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+3499 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+3499 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1313+34814 12 33 35.1 +47 58 01.0 0.38223 11598 5929 12.9 9175.0 102 HS1302+2510 13 04 51.4 +24 54 46.0 0.60500 13382 5134 13.6 438.0 422 HS1533+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 2122.0 35. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS18181+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +63 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +63 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +63 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32											
HS0943+4725 09 46 21.2											
HS0943+4725 09 46 21.2											
HS1102+3441	HS0943 + 4725	08	9 46 21.2	+47	11 31.0	0.23022	122	48 44	36 4.4	460	3.0 657.0
HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 1927.0 191 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 7245.0 196 HS110+3441 11 05 39.8 +34 25 37.0 0.44204 14772 4797 12.9 3173.0 194 HS111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6350.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0	HS0943 + 4725	08	9 46 21.2	+47	11 31.0	0.23022	122	48 44	36 4.4	984	7.0 181.0
HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 7245.0 196 HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 8944.0 75. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6351.0 40. HS1311+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6360.0 99. HS1311+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 9351.0 40. HS13131+5338 13 20 51.1 475 540.20.0 <	HS1102+3441	11	1 05 39.8	+34	25 35.0	0.51000	115	41 113	381 17.4	169'	7.0 57.0
HS1102+3441 11 05 39.8 +34 25 35.0 0.51000 11541 11381 17.4 8944.0 75. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 3173.0 194 HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 636.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 636.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 635.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6351.0 40. HS1311+4814 12 33 35.1 +47 58 01.0 0.38223 11598 5929 12.9 9175.0 102 HS1302+2510 13 04 51.4 +24 54 46.0 0.60500 13382 5134 13.6 438.0 422 HS1331+5338 18 32 49.7 +53 40 22.0 0.04	HS1102 + 3441	11	1 05 39.8	+34	$25 \ 35.0$	0.51000	115	41 113	381 17.4	192	7.0 191.0
HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6429.0 70. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 6836.0 99. HS1111+4309 11 13 57.4 +42 53 27.0 0.44204 14772 4797 12.9 636.0 99. HS1231+4814 12 33 35.1 +47 58 01.0 0.38223 11598 5929 12.9 9175.0 102 HS1302+2510 13 04 51.4 +24 54 46.0 0.60500 13382 5134 13.6 438.0 422 HS1331+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 773.0 54. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04	HS1102 + 3441	11	1 05 39.8	+34	$25 \ 35.0$	0.51000	115	41 113	381 17.4	724	5.0 196.0
HS1111+4309	HS1102 + 3441	11	1 05 39.8	+34	$25 \ 35.0$	0.51000	115	41 113	381 17.4	894	4.0 75.0
HS1111+4309	HS1111+4309	11	1 13 57.4	+42	$53\ 27.0$	0.44204	147	72 47	97 12.9	317	3.0 194.0
HS1111+4309	HS1111+4309	11	1 13 57.4	+42	$53\ 27.0$	0.44204	147	72 47	97 12.9	6429	9.0 70.0
HS1231+4814 12 33 35.1 +47 58 01.0 0.38223 11598 5929 12.9 9175.0 102 HS1302+2510 13 04 51.4 +24 54 46.0 0.60500 13382 5134 13.6 438.0 422 HS1543+5921 15 44 20.2 +59 12 27.0 0.80700 P108 8300 12.3 2889.0 8660 HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 2122.0 35. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5238 18 32 49.7 +53 40 22.0 0.	HS1111+4309	11	1 13 57.4	+42	$53\ 27.0$	0.44204	147	72 47	97 12.9	683	6.0 99.0
HS1302+2510 13 04 51.4 +24 54 46.0 0.60500 13382 5134 13.6 438.0 422 HS1543+5921 15 44 20.2 +59 12 27.0 0.80700 P108 8300 12.3 2889.0 8660 HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 773.0 54. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 5145.0 520 IRAS_F09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8419.0 27. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0	HS1111+4309	11	1 13 57.4	+42	$53\ 27.0$	0.44204	147	72 47	97 12.9	735	1.0 40.0
HS1543+5921 15 44 20.2 +59 12 27.0 0.80700 P108 8300 12.3 2889.0 8666 HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 773.0 54. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 2122.0 35. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 5145.0 520 IRAS_P09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_P21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8419.0 27. IRAS_P21325-6234 06 23 07.7 -64 36 19.0	HS1231 + 4814	12	2 33 35.1	+47	58 01.0	0.38223	1159	98 59	29 12.9	917	5.0 102.0
HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 773.0 54. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 2122.0 35. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 5145.0 520 IRAS_F09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8329.0 71. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0	HS1302+2510	13	3 04 51.4	+24	$54\ 46.0$	0.60500	133	82 51	34 13.6	438	3.0 422.0
HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 2122.0 35. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 5145.0 520 IRAS_F09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8329.0 71. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z4477 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8966.0 52. KAZ447 17 03 28.9 +61 41 09.0	HS1543 + 5921	15	5 44 20.2	+59	$12\ 27.0$	0.80700	P10	83	00 12.3	2889	9.0 8660.
HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 3637.0 79. HS1831+5338 18 32 49.7 +53 40 22.0 0.04536 12275 8284 17.3 5145.0 520 IRAS_F09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8329.0 71. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 333 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9968.0 52. KAZ447 17 03 28.9 +61 41 09.0 <t< td=""><td>HS1831 + 5338</td><td>18</td><td>8 32 49.7</td><td>+53</td><td>40 22.0</td><td>0.04536</td><td>122</td><td>75 82</td><td>84 17.3</td><td>773</td><td>3.0 54.0</td></t<>	HS1831 + 5338	18	8 32 49.7	+53	40 22.0	0.04536	122	75 82	84 17.3	773	3.0 54.0
HS1831+5338	HS1831 + 5338	18	8 32 49.7	+53	40 22.0	0.04536	122	75 82	84 17.3	212	2.0 35.0
IRAS_F09539-0439 09 56 30.2 -04 53 16.0 0.15700 12275 7696 17 1472.0 163 IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8329.0 71. IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8419.0 27. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 33 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59 <tr< td=""><td>HS1831 + 5338</td><td>18</td><td>8 32 49.7</td><td>+53</td><td>40 22.0</td><td>0.04536</td><td>122</td><td>75 82</td><td>84 17.3</td><td>363</td><td>7.0 79.0</td></tr<>	HS1831 + 5338	18	8 32 49.7	+53	40 22.0	0.04536	122	75 82	84 17.3	363	7.0 79.0
IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8329.0 71. IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8419.0 27. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 33 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59.	HS1831 + 5338	18	8 32 49.7	+53	40 22.0	0.04536	122	75 82	84 17.3	514	5.0 520.0
IRAS_F21325-6237 21 36 23.2 -62 24 00.0 0.05880 12936 4230 34.2 8419.0 27. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62.	IRAS_F09539-04	439 09	9 56 30.2	-04	53 16.0	0.15700	122	75 76	96 17	147	2.0 163.0
IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 333 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9594.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006<	IRAS_F21325-62	237 21	1 36 23.2	-62	24 00.0	0.05880	129	36 42	30 34.2	832	9.0 71.0
IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 1276.0 63. IRAS_Z06229-6434 06 23 07.7 -64 36 19.0 0.12889 11692 8728 28.2 3683.0 283 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 333 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9594.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006<	IRAS_F21325-62	237 21	1 36 23.2	-62	24 00.0	0.05880	129	36 42	30 34.2	8419	9.0 27.0
KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 8296.0 333 KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1228+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006<	IRAS_Z06229-64				36 19.0	0.12889	1169				
KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9568.0 52. KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1228+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1	IRAS_Z06229-64	134 06	6 23 07.7	-64	36 19.0	0.12889	1169	92 87	28 28.2	368	3.0 283.0
KAZ447 17 03 28.9 +61 41 09.0 0.07732 12276 5173 12.8 9994.0 176 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS12	KAZ447	17	7 03 28.9	+61	41 09.0	0.07732	122	76 51	73 12.8	829	6.0 333.0
LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6304.0 138 LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LB	KAZ447	17	7 03 28.9	+61	41 09.0	0.07732	122	76 51	73 12.8	9568	8.0 52.0
LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	KAZ447	17	7 03 28.9	+61	41 09.0	0.07732	122	76 51	73 12.8	999	4.0 176.0
LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6788.0 66. LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	LBQS1218+161	1 12	2 21 02.5	+15	54 47.0	0.22945	1169	98 22	63 6.7	630-	4.0 138.0
LBQS1218+1611 12 21 02.5 +15 54 47.0 0.22945 11698 2263 6.7 6901.0 340 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1531.0 59. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 1834.0 62. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 2458.0 86. LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 4765.0 146 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	•										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 5505.0 170 LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
LBQS1220+1006 12 23 12.1 +09 50 19.0 0.27692 11698 2258 7 6435.0 315	-										
	-										
TRUSTANTEURO 12.23.12.1 TOUSHIND H.27/602 TEON 9960 7 7005 N 779	LBQS1220+100		2 23 12.1								

 $Table\ 2\ continued$

Table 2 (continued)

=	Target	R.A.	Dec.	z 1	Program	$T_{\rm exp}$	S/N	211	$EW_{\mathrm{Ly}\alpha}$	<u>b</u>
	Target	II.A.	Dec.	Z 1	Togram	-	,	$v_{{ m Ly}lpha}$		
						` /	(1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
LBQS1230-0015	5 15	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	13.8	112	26.0 388.0
LBQS1230-0015	5 15	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	13.8	116	33.0 100.0
LBQS1230-0015	5 12	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	23 13.8	240	06.0 107.0
LBQS1230-0015	5 12	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	13.8	430	08.0 28.0
LBQS1230-0015	5 15	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	13.8	467	78.0 15.0
LBQS1230-0015	5 12	2 33 04.1	+00	31 34.0	0.47095	1159	98 1032	23 13.8	682	28.0 186.0
MCG+10-16-11	1 1:	1 18 57.9	+58	03 23.0	0.02710	1292	22 371	4 22.5	94	7.0 205.0
MCG+10-16-11	1 1:	1 18 57.9	+58	03 23.0	0.02710	1292	22 371	4 22.5	165	56.0 489.0
MCG+10-16-11	1 1:	1 18 57.9	+58	03 23.0	0.02710	1292	22 371	4 22.5	202	21.0 162.0
MCG+10-16-11	1 1:	1 18 57.9	+58	03 23.0	0.02710	1292	22 371	4 22.5	213	303.0
MCG+10-16-11	1 1:	1 18 57.9	+58	03 23.0	0.02710	1292	22 371			11.0 128.0
MCG+10-16-11		1 18 57.9		03 23.0						19.0 50.0
MCG+10-16-11		1 18 57.9		03 23.0						94.0 72.0
MCG+10-16-11		1 18 57.9		03 23.0						53.0 86.0
MRC2251-178		1 16 57.9 2 54 05.9		34 55.0						8.0 34.0
MRC2251-178 MRC2251-178				34 55.0						
		2 54 05.9		34 55.0 34 55.0						
MRC2251-178 MRC2251-178		2 54 05.9		34 55.0 34 55.0						69.0
		2 54 05.9								05.0 335.0
MRC2251-178		2 54 05.9		34 55.0						98.0 20.0
MRC2251-178		2 54 05.9		34 55.0						29.0 40.0
MRC2251-178		2 54 05.9		34 55.0						29.0 62.0
MRC2251-178		2 54 05.9		34 55.0						35.0 188.0
MRK1014		1 59 50.2		23 41.0						77.0 99.0
MRK1014		1 59 50.2		23 41.0						60.0 409.0
MRK1014		1 59 50.2		23 41.0		1256				18.0 155.0
MRK106	08	9 19 55.3	+55	21 37.0	0.12337	1202	29 653	8 23.5	239	96.0 323.0
MRK106	08	9 19 55.3	+55	21 37.0	0.12337	1202	29 653	8 23.5	353	33.0 68.0
MRK106	08	9 19 55.3	+55	21 37.0	0.12337	1202	29 653	8 23.5	380	09.0 44.0
MRK106	08	9 19 55.3	+55	21 37.0	0.12337	1202	29 653	8 23.5	820	03.0 51.0
MRK106	08	9 19 55.3	+55	21 37.0	0.12337	1202	29 653	8 23.5	882	24.0 46.0
MRK106	08	9 19 55.3	+55	$21\ 37.0$	0.12337	1202	29 653	8 23.5	950	08.0 229.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	102	23.0 178.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	156	67.0 230.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	200	07.0 58.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	266	35.0 137.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	465	56.0 313.0
MRK1179	02	2 33 22.4	+27	56 13.0	0.03760	1426	557	3 13	738	37.0 52.0
MRK1179	02	2 33 22.4		56 13.0						15.0 91.0
MRK1179		2 33 22.4		56 13.0					867	70.0 161.0
MRK1269		55 19.5		27 16.0						92.0 104.0
MRK1269		0 55 19.5		27 16.0						02.0 76.0
MRK1269		55 19.5		27 16.0						39.0 90.0
MRK1298		1 29 16.7		24 07.0						10.0 161.0
MRK1298		$1\ 29\ 16.7$ $1\ 29\ 16.7$		24 07.0						71.0 61.0
MRK1298		$1\ 29\ 16.7$ $1\ 29\ 16.7$		24 07.0						27.0 91.0
MRK1298 MRK1298		1 29 16.7 1 29 16.7		24 07.0						20.0 25.0
MRK1392		5 05 56.6		42 26.0						04.0 103.0
MRK1447		1 30 29.1		34 58.0						0.0 346.0
MRK1447		1 30 29.1		34 58.0						24.0 250.0
MRK1447		1 30 29.1		34 58.0						33.0 45.0
MRK1502		3 53 34.9		41 36.0						58.0 13.0
MRK1502	00	53 34.9	+12	41 36.0	0.06114	1256	39 948	8 16.3	911	15.0 34.0

 $Table\ 2\ continued$

Table 2 (continued)

=	Target	R.A.	Dec.	z F	rogram	$T_{\rm exp}$	S/N		$v_{\mathrm{Ly}\alpha}$	$EW_{\text{Ly}\alpha}$	t	,
						(ks)	(1238 Å) (1	$\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	(km:	s^{-1})
	(1)	(2)	(3) (4)	(5)	(6)	(7)	, (-	(8)	(9)	(1)	
MRK1513	21	1 32 27.8	+10 08	19.0	0.06298	115	24 5	5513	29.2	66	58.0	45.0
MRK1513	21	1 32 27.8	+10 08	19.0	0.06298	115	24 5	5513	29.2	83	13.0	204.0
MRK205	12	2 21 44.1	$+75 \ 18$	38.0	0.07085	495	2	760	7.6	12	78.0	653.0
MRK205	12	2 21 44.1	+75 18	38.0	0.07085	495	2	760	7.6	70	12.0	75.0
MRK205	12	2 21 44.1	+75 18	38.0	0.07085	495	2	760	7.6	73	93.0	57.0
MRK290		5 35 52.3	+57 54		0.02958	115	24 3	3856	42.8		12.0	136.0
MRK290	15	5 35 52.3	+57 54		0.02958	115		3856	42.8		82.0	520.0
MRK290		5 35 52.3	+57 54		0.02958			3856	42.8		92.0	319.0
MRK304		2 17 12.2	+14 14		0.06576			3950	25		13.0	53.0
MRK335		06 19.5	+20 12		0.02578	115		1192	64.7		54.0	216.0
MRK335		06 19.5	+20 12		0.02578			1192	64.7		74.0	150.0
MRK380		7 19 50.8	+74 27		0.47500			5491	20.2		82.0	112.0
MRK380		7 19 50.8	+74 27		0.47500			5491	20.2		05.0	86.0
MRK421		1 04 27.3	+38 12		0.03002			3684	49.7		23.0	73.0
MRK421		1 04 27.3	+38 12		0.03002			3684	49.7		09.0	12.0
MRK486		5 36 38.3	+54 33		0.03893			5001	12.1		32.0	63.0
MRK486		5 36 38.3	+54 33		0.03893			5001	12.1		86.0	184.0
MRK486		5 36 38.3	+54 33		0.03893			5001	12.1		01.0	329.0
MRK509		0 44 09.7	-10 43		0.03440			2754	92.3		32.0	28.0
MRK509		44 09.7	$-10 \ 43$		0.03440			2754	92.3		44.0	203.0
MRK771		2 32 03.7	+20 09		0.06301	1250		1868	16.5		76.0	307.0
MRK771		2 32 03.7	+20~09		0.06301	1250		1868	16.5		83.0	230.0
MRK771		2 32 03.7	+20~09		0.06301	1250		1868	16.5		53.0	240.0
MRK817	14	1 36 22.1	$+58 \ 47$	40.0	0.03146	1150)5 3	3426	48.8	20	78.0	149.0
MRK817	14	1 36 22.1	$+58 \ 47$	40.0	0.03146	1150)5 3	3426	48.8	50	47.0	50.0
MRK841	15	5 04 01.2	+10 26	16.0	0.03642	134	18 1	1740	26.4	30	58.0	24.0
MRK841	15	5 04 01.2	$+10\ 26$	16.0	0.03642	134	18 1	1740	26.4	32	17.0	96.0
MRK841	15	5 04 01.2	$+10\ 26$	16.0	0.03642	134	18 1	1740	26.4	56	57.0	94.0
MRK841	15	5 04 01.2	$+10\ 26$	16.0	0.03642	134	18 1	1740	26.4	61	07.0	59.0
MRK841	15	5 04 01.2	$+10\ 26$	16.0	0.03642	134	18 1	1740	26.4	64	94.0	83.0
MRK841	15	5 04 01.2	$+10\ 26$	16.0	0.03642	134	18 1	1740	26.4	66	22.0	32.0
MRK876	16	$6\ 13\ 57.2$	$+65\ 43$	10.0	0.12900	D02	28 14	17800	59.7	93	39.0	379.0
MRK876	16	3 13 57.2	$+65\ 43$	10.0	0.12900	D02	28 14	17800	59.7	34	78.0	280.0
MRK876	16	3 13 57.2	$+65\ 45$	10.0	0.12900	D02	28 14	17800	59.7	45	08.0	16.0
MRK876	16	3 13 57.2	$+65\ 43$	10.0	0.12900	D02	28 14	17800	59.7	50	36.0	10.0
MRK876	16	3 13 57.2	$+65\ 43$	10.0	0.12900	D02	28 14	17800	59.7	60	37.0	96.0
MRK876	16	3 13 57.2	$+65\ 43$	10.0	0.12900	D02	28 14	17800	59.7	70	05.0	28.0
MRK876		3 13 57.2		10.0	0.12900	D02	28 14	17800	59.7	98	95.0	13.0
MRK877	16	3 20 11.2	+17 24	28.0	0.11244	1250	69 1	1844	16	23	12.0	72.0
MS0117.2-2837		1 19 35.7	$-28 \ 21$		0.34700			3199			63.0	64.0
MS0117.2-2837		1 19 35.7			0.34700	-		3199	24.7		12.0	35.0
MS0244.6-3020		2 46 49.9	-30 07		0.53000	•		2230	10		54.0	417.0
MS0244.6-3020		2 46 49.9	-30 07		0.53000			2230	10		78.0	455.0
MS0244.6-3020		2 46 49.9	-30 07		0.53000			2230	10		06.0	96.0
MS0244.6-3020		2 46 49.9	-30 07		0.53000			2230			06.0	96.0
MS1217.0+0700		2 40 49.9			0.08058			2230 1639	16		84.0	89.0
		2 19 30.9 2 19 30.9										
MS1217.0+0700					0.08058			1639	16		20.0	36.0
MS1217.0+0700		2 19 30.9			0.08058			1639	16		84.0	54.0
MS1217.0+0700		2 19 30.9			0.08058			1639	16		01.0	76.0
MS1217.0+0700		2 19 30.9			0.08058			1639	16		62.0	60.0
MS1228.6+1219		2 31 13.1	+12 03		0.11612			0419	12.1		66.0	99.0
MS1228.6+1219) 12	2 31 13.1	+12 03	07.0	0.11612	140'	71 1	0419	12.1	10	46.0	176.0

 $Table\ 2\ continued$

Table 2 (continued)

			D			<i>(</i> T)	G /37		DIT!	
	Target I	R.A.	Dec.	z]	Program	T_{exp}	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks)	1238 Å)	$({\rm kms^{-1}})$	(mÅ)	$({\rm kms^{-1}})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MS1228.6+12	.9 12 3	1 13.1	+12	03 07.0	0.11612	1407	1 104	19 12.1	128	36.0 525.0
MS1228.6+12	.9 12 3	1 13.1	+12	03 07.0	0.11612	1407	1 104	19 12.1	395	66.0 37.0
MS1228.6+12	.9 12 3	1 13.1	+12	03 07.0	0.11612	1407	104	19 12.1	733	37.0 648.0
MS1228.6+12	.9 12 3	1 13.1	+12	03 07.0	0.11612	1407	104	19 12.1	781	1.0 513.0
MS1228.6+12	.9 12 3	1 13.1	+12	03 07.0	0.11612	1407	1 104	19 12.1	904	10.0 64.0
NAB1612+26	16 14	4 10.7	+26	32 50.0	0.39233	1427	7 254	13 20	250	7.0 52.0
NAB1612+26	16 14	4 10.7	+26	32 50.0	0.39233	1427	7 254	13 20	904	11.0 59.0
NAB1612+26	16 14	4 10.7	+26	32 50.0	0.39233	1427	7 254	13 20	939	01.0 676.0
NAB1612+26	16 14	4 10.7	+26	32 50.0	0.39233	1427	7 254	13 20	991	6.0 205.0
NAB1612+26	16 14	4 10.7	+26	32 50.0	0.39233	1427	7 254	13 20	997	70.0 71.0
NGC985	02 34	4 37.8	-08	47 17.0	0.04354	1295	3 711	1 55.6	5 147	73.0 9.0
NGC985	02 34	4 37.8	-08	47 17.0	0.04354	1295	3 711	1 55.6	743	39.0 49.0
PG0003+158		5 59.3		09 49.0						1.0 212.0
PG0026+129		9 13.8		16 05.0						88.0 551.0
PG0052+251		4 52.2		25 39.0						55.0 97.0
PG0052+251		4 52.2		$25\ 39.0$						7.0 76.0
PG0052+251		4 52.2		25 39.0 25 39.0						30.0 104.0
PG0804+761		0 58.5		$02\ 43.0$						3.0 183.0
PG0804+761		0 58.5		02 43.0						26.0 62.0
PG0804+761		0 58.5		02 43.0						32.0
PG0804+761		0 58.5		02 43.0						32.0 12.0
PG0804+761		0 58.5		$02\ 43.0$ $02\ 43.0$						37.0 349.0
PG0832+251		5 35.9		$59 \ 41.0$						33.0 208.0
PG0832+251		5 35.9		59 41.0						36.0 206.0 36.0 124.0
PG0832+251										
		5 35.9		59 41.0						08.0 681.0
PG0832+251		5 35.9		59 41.0						50.0 416.0
PG0832+251		5 35.9		59 41.0						36.0 495.0
PG0832+251		5 35.9		59 41.0						50.0 471.0
PG0832+251		5 35.9		59 41.0						30.0 147.0
PG0832+251		5 35.9		59 41.0						01.0 59.0
PG0832+251		5 35.9		59 41.0						19.0 65.0
PG0832+251		5 35.9		59 41.0						21.0 70.0
PG0832+251		5 35.9		59 41.0						35.0 53.0
PG0832+251		5 35.9		59 41.0						21.0 317.0
PG0838+770		4 45.3		53 10.0						1.0 552.0
PG0838+770		4 45.3		53 10.0						11.0 44.0
PG0838+770		4 45.3		53 10.0						22.0 60.0
PG0838+770		4 45.3		53 10.0						03.0 70.0
PG0838+770		4 45.3		53 10.0						1.0 59.0
PG0838+770		4 45.3		53 10.0						26.0 36.0
PG0844+349		7 42.5		45 05.0		1256	9 190	00 18.7	231	10.0 67.0
PG0844+349	08 4	7 42.5	+34	45 05.0	0.06400	1256	9 190	00 18.7	424	13.0 57.0
PG0844+349	08 4	7 42.5	+34	45 05.0	0.06400	1256	9 190	00 18.7	765	65.0
PG0844+349	08 4	7 42.5	+34	45 05.0	0.06400	1256	9 190	00 18.7	900	9.0 30.0
PG0923+201	09 25	5 54.7	+19	54 04.0	0.19000	1256	186	30 20.9	251	2.0 245.0
PG0923+201	09 25	5 54.7	+19	54 04.0	0.19000	1256	186	30 20.9	424	14.0 387.0
PG0923+201	09 25	5 54.7	+19	54 04.0	0.19000	1256	186	30 20.9	601	8.0 289.0
PG0953+414	09 56	6 52.3	+41	15 23.0	0.23410	1203	88 478	32.1	64	4.0 60.0
PG0953+414	09 56	6 52.3	+41	15 23.0	0.23410	1203	88 478	32.1	220	04.0 27.0
PG0953+414		6 52.3		15 23.0						30.0 72.0
PG0953+414		6 52.3		15 23.0						04.0 171.0
PG0953+414		6 52.3		15 23.0						66.0 136.0

 $Table\ 2\ continued$

Table 2 (continued)

	Target R.A.	Dec. z P	rogram	$T_{\rm exp}$ S/	'N	$v_{{ m Ly}lpha}$	$EW_{\text{Ly}\alpha}$	
	J		O			-	-	(n =1)
	(1) (2)	(2) (4)	(5)	(ks) (1238		km s ⁻¹)	(mÅ)	(km s^{-1})
D. G. J.	(1) (2)	(3) (4)	(5)	(6) (7		(8)	(9)	(10)
PG1001+054	10 04 20.1	+05 13 01.0	0.16100	13347	8225	21.8	640.	
PG1001+054	10 04 20.1	+05 13 01.0	0.16100	13347	8225	21.8	1306	
PG1001+054	10 04 20.1	$+05\ 13\ 01.0$	0.16100	13347	8225	21.8	2425	
PG1001+054	10 04 20.1	$+05\ 13\ 01.0$	0.16100	13347	8225	21.8	4092	
PG1001+054	10 04 20.1	$+05\ 13\ 01.0$	0.16100	13347	8225	21.8	6840	.0 205.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	496.	0 264.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	1061	.0 236.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	4598	.0 276.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	6361	.0 65.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	6608	33.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	8789	.0 33.0
PG1001+291	10 04 02.6	$+28\ 55\ 36.0$	0.32720	12038	6199	24.3	9198	59.0
PG1004+130	10 07 26.2	$+12\ 48\ 56.0$	0.24000	12569	4107	12.9	1253	.0 129.0
PG1004+130	10 07 26.2	$+12\ 48\ 56.0$	0.24000	12569	4107	12.9	2759	.0 251.0
PG1004+130	10 07 26.2	$+12\ 48\ 56.0$	0.24000	12569	4107	12.9	3081	.0 107.0
PG1004+130	10 07 26.2	$+12\ 48\ 56.0$	0.24000	12569	4107	12.9	3252	33.0
PG1004+130	10 07 26.2		0.24000	12569	4107	12.9	3493	
PG1004+130	10 07 26.2		0.24000	12569	4107	12.9	6942	
PG1004+130	10 07 26.2	+12 48 56.0	0.24000	12569	4107	12.9	9036	.0 312.0
PG1004+130	10 07 26.2	+12 48 56.0	0.24000	12569	4107	12.9	9500	
PG1011-040	10 14 20.7		0.05800	PGOJS	32098		944.	.0 120.0
PG1011-040	10 14 20.7		0.05800	PGOJS	32098		1301	
PG1011-040	10 14 20.7		0.05800	PGOJS	32098		3496	
PG1011-040	10 14 20.7		0.05800	PGOJS	32098		5471	
PG1048+342	10 51 43.8		0.16700	12024	7814		1593	
PG1048+342	10 51 43.8		0.16700	12024	7814	24.5	1724	
PG1048+342	10 51 43.8		0.16700	12024	7814	24.5	1822	
PG1048+342	10 51 43.8		0.16700	12024	7814	24.5	1908	
PG1048+342	10 51 43.8		0.16700	12024	7814	24.5	7229	
PG1112+431	11 15 06.0		0.30064	12275	7942	20.4	3158	
PG1112+431	11 15 06.0		0.30064	12275	7942	20.4	3443	
PG1112+431	11 15 06.0		0.30064	12275	7942	20.4	4381	
PG1112+431	11 15 06.0		0.30064	12275	7942	20.4	6402	
PG1112+431	11 15 06.0		0.30064	12275	7942	20.4	7018	
PG1115+407		•	0.35004		5109			
	11 18 30.4 11 18 30.4		0.15400	11519 11519	5109	23.1 23.1	1987 2491	
PG1115+407 PG1115+407	11 18 30.4	•	0.15400	11519	5109		6414	
PG1115+407 PG1115+407	11 18 30.4		0.15400	11519	5109	23.1	8843	
PG1116+215	11 19 08.7		0.17650	12038	4677	39.3	1480	
PG1116+215	11 19 08.7		0.17650	12038	4677	39.3	4885	
PG1116+215	11 19 08.7		0.17650	12038	4677		5806	
PG1116+215	11 19 08.7		0.17650	12038	4677	39.3	8482	
PG1116+215	11 19 08.7		0.17650	12038	4677	39.3	9657	
PG1121+423	11 24 39.2		0.22500	RQ005	8999	22.8	2580	
PG1121+423	11 24 39.2		0.22500	RQ005	8999	22.8	2976	
PG1121+423	11 24 39.2		0.22500	RQ005	8999	22.8	3138	
PG1121+423	11 24 39.2	$+42\ 01\ 45.0$	0.22500	RQ005	8999	22.8	4336	
PG1121+423	11 24 39.2	$+42\ 01\ 45.0$	0.22500	RQ005	8999	22.8	7126	.0 159.0
PG1121+423	11 24 39.2	$+42\ 01\ 45.0$	0.22500	RQ005	8999	22.8	7328	.0 363.0
PG1121+423	11 24 39.2	$+42\ 01\ 45.0$	0.22500	RQ005	8999	22.8	9284	.0 69.0
PG1148+549	11 51 20.5	$+54\ 37\ 33.0$	0.96900	11741	17823	32.1	1988	.0 192.0
PG1148+549	11 51 20.5	$+54\ 37\ 33.0$	0.96900	11741	17823	32.1	2426	65.0

 $Table\ 2\ continued$

Table 2 (continued)

						_ (
	Target	R.A.	Dec.	z I	Program	$T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks) (1238 Å)	$({\rm km}{\rm s}^{-1})$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PG1211+143	12	14 17.7	+14	03 13.0	0.08090	1394	7 2320	13.9	212	24.0 127.0
PG1211+143	12	14 17.7		03 13.0		1394				3.0 153.0
PG1211+143	12	14 17.7	+14	03 13.0	0.08090	1394	7 2320	13.9	502	22.0 228.0
PG1211+143		14 17.7		03 13.0						7.0 96.0
PG1211+143		14 17.7		03 13.0						00.0 128.0
PG1211+143		14 17.7		03 13.0						5.0 155.0
PG1211+143		14 17.7		03 13.0						2.0 16.0
PG1211+143		14 17.7		03 13.0						4.0 9.0
PG1216+069		19 20.9		38 38.0						06.0 2560.0
PG1216+069		19 20.9		38 38.0						8.0 31.0
PG1216+069		19 20.9		38 38.0						in i
PG1216+069		19 20.9		38 38.0						2.0 370.0
PG1216+069		19 20.9		38 38.0						31.0 16.0
PG1216+069		19 20.9		38 38.0						78.0 150.0
PG1216+069		19 20.9		38 38.0						7.0 158.0
PG1218+304		21 21.9		$10\ 37.0$						9.0 202.0
PG1218+304		21 21.9		$10\ 37.0$ $10\ 37.0$						ig.0 202.0
PG1218+304		21 21.9		$10\ 37.0$ $10\ 37.0$						9.0 57.0
PG1259+593		01 12.9		$02\ 07.0$						
PG1259+593		01 12.9		$02\ 07.0$ $02\ 07.0$						
PG1259+593		01 12.9		$02\ 07.0$ $02\ 07.0$						8.0 280.0
PG1259+593		01 12.9		$02 \ 07.0$ $02 \ 07.0$		1154				3.0 172.0
PG1302-102		01 12.9		33 20.0						
PG1302-102		05 33.0		$33\ 20.0$ $33\ 20.0$.4.0 332.0 .47.0 72.0
PG1302-102		05 33.0		33 20.0						57.0 52.0
PG1302-102		05 33.0		33 20.0						06.0 64.0
PG1302-102		05 33.0		$33\ 20.0$						73.0 44.0
PG1302-102		05 33.0		$33\ 20.0$						14.0 27.0
PG1302-102		05 33.0		33 20.0						05.0 21.0
PG1302-102		05 33.0		33 20.0						
PG1307+085		09 47.0		19 47.0						75.0 30.0
PG1307+085		09 47.0		19 47.0		1256				31.0 64.0
PG1309+355		12 17.7		15 20.0		1256				
PG1309+355		12 17.7		15 20.0						31.0 53.0
PG1309+355		12 17.7		15 20.0		1256				9.0 162.0
PG1341+258		43 56.8		38 48.0		1331				30.0 295.0
PG1352+183		54 35.7		05 17.0					845	
PG1352+183		54 35.7		05 17.0						36.0 47.0
PG1352+183		54 35.7		05 17.0						2.0 52.0
PG1352+183		54 35.7		05 17.0						16.0 288.0
PG1352+183		54 35.7		05 17.0						6.0 44.0
PG1352+183		54 35.7		05 17.0						37.0 161.0
PG1352+183		54 35.7		05 17.0						66.0 20.0
PG1352+183		54 35.7		05 17.0						336.0
PG1352+183		54 35.7		05 17.0						83.0 39.0
PG1411+442		13 48.3		00 14.0						22.0 196.0
PG1411+442		13 48.3		00 14.0						7.0 127.0
PG1424+240		27 00.4		48 00.0						8.0 181.0
PG1424+240		27 00.4		48 00.0						08.0 484.0
PG1435-067		38 16.2		58 21.0						50.0 113.0
PG1435-067	14	38 16.2	-06	58 21.0	0.12600	1256	9 186	16.3	361	.5.0 217.0
PG1435-067	14	38 16.2	-06	58 21.0	0.12600	1256	9 186	16.3	734	6.0 90.0

 $Table\ 2\ continued$

Table 2 (continued)

							ueu)			
	Target	R.A.	Dec.	z I	Program	$T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	b
						(ks) (1238 Å)	$({\rm km}{\rm s}^{-1})$	(mÅ)	$({\rm km}{\rm s}^{-1})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PG1435-067		38 16.2	` /	58 21.0	0.12600	` ′			. ,	30.0 98.0
PG1435-067		38 16.2		58 21.0						10.0 208.
PG1522+101		5 24 24.5		58 30.0	1.32801					38.0 138.
PG1522+101 PG1522+101		24 24.5		58 30.0 58 30.0	1.32801					
		24 24.5								11.0 49.0
PG1522+101		5 24 24.5		58 30.0	1.32801					29.0 20.0
PG1553+113		55 43.2		11 25.0	0.46699					28.0 95.0
PG1553+113		55 43.2		11 25.0	0.46699					71.0 17.0
PG1553+113		55 43.2		11 25.0	0.46699					37.0 48.0
PG1553+113		55 43.2		11 25.0	0.46699)1.0 48.0
PG1553+113	15	55 43.2	+11	11 25.0	0.46699	BLIH	M 3119	97 33	469	95.0 28.0
PG1553+113	15	55 43.2	+11	11 25.0	0.46699	BLIH	M 3119	97 33	519	93.0 35.0
PG1553+113	15	55 43.2	+11	11 25.0	0.46699	BLIH	M 3119	97 33	712	28.0 48.0
PG1553+113	15	55 43.2	+11	11 25.0	0.46699	BLIH	M 3119	97 33	974	11.0 29.0
PG1626+554	16	3 27 56.2	+55	22 32.0	0.13300	1202	9 331	8 25.9	98	5.0 23.0
PG1626+554	16	5 27 56.2	+55	22 32.0	0.13300	1202	9 331	8 25.9	825	51.0 76.0
PG1626+554	16	3 27 56.2	+55	22 32.0	0.13300	1202	9 331	8 25.9	919	93.0 35.0
PG2112+059	21	14 52.6	+06	07 42.0	0.46600	1384	0 789	1 15	131	10.0 156.
PG2112+059	21	14 52.6	+06	07 42.0	0.46600	1384	0 789	1 15	491	19.0 124.
PG2112+059	21	14 52.6	+06	07 42.0	0.46600	1384	0 789	1 15	524	10.0 34.0
PG2112+059	21	14 52.6	+06	07 42.0	0.46600	1384	0 789	1 15	844	10.0 120.
PG2349-014		8 51 56.1		09 13.0						31.0 196.
PHL1226		54 28.0		48 18.0						21.0 323.
PHL1226		54 28.0		48 18.0						20.0 162.
PHL1226		54 28.0		48 18.0	0.40400					37.0 93.0
PHL1226		54 28.0		48 18.0	0.40400					03.0 927.
PHL1226		54 28.0		48 18.0	0.40400					16.0 226.
PHL1226		54 28.0		48 18.0	0.40400					38.0 210.
PHL1226		54 28.0		48 18.0	0.40400					22.0 $342.$
PHL2525		00 24.4		45 48.0	0.20000					33.0 64.0
PHL2525		00 24.4		45 48.0						96.0 45.0
PHL2525		00 24.4		45 48.0	0.20000					89.0 257.
PHL2525		00 24.4		45 48.0						23.0 117.
PHL2525		00 24.4		45 48.0						65.0
PHL2525		00 24.4		45 48.0	0.20000					18.0 38.0
PHL2525		00 24.4		45 48.0	0.20000					09.0 57.0
PKS0405-12		07 48.4		11 37.0						52.0 33.0
PKS0405-12		07 48.4		11 37.0						26.0 35.0
PKS0405-12		07 48.4		11 37.0						33.0 6.0
PKS0405-12	04	07 48.4	-12	11 37.0	0.57259	1150	8 241	17 64	740	01.0 33.0
PKS0405-12	04	07 48.4	-12	11 37.0	0.57259	1150	8 2414	17 64	898	315.
PKS0405-12	04	07 48.4	-12	11 37.0	0.57259	1150	8 241	17 64	956	37.0 132.
PKS0558-504	05	59 47.4	-50	26 51.0	0.13700	1169	2 107	5 19.8	113	34.0 29.0
PKS0558-504	05	59 47.4	-50	26 51.0	0.13700	1169	2 107	5 19.8	182	20.0 27.0
PKS0558-504	05	59 47.4	-50	26 51.0	0.13700	1169	2 107	5 19.8	328	89.0 42.0
PKS0558-504		59 47.4		26 51.0						14.0 140.
PKS0558-504		59 47.4		26 51.0						17.0 324.
PKS0558-504		59 47.4		26 51.0)2.0 85.0
PKS0558-504		59 47.4		26 51.0						74.0 106.
PKS2005-489		09 25.4		49 54.0						37.0 293.
PKS2005-489		09 25.4		49 54.0						70.0 316.
PKS2155-304		58 52.1		13 32.0						14.0 51.0

 $Table\ 2\ continued$

Table 2 (continued)

	Target	R.A.	Dec.	z 1	Program	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\text{Ly}\alpha}$	<u>b</u>
	Target	и.л.	Dec.	Z 1	rogram	-	,	-		
	(1)	(0)	(0)	(4)	(5)		(1238 Å)	(km s^{-1})	(mÅ)	(km s^{-1})
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PKS2155-304		58 52.1		13 32.0						
PKS2155-304	21	58 52.1	-30	13 32.0	0.11600	588	9 668	2 46.1	511	13.0 155.0
PKS2155-304	21	58 52.1	-30	13 32.0	0.11600	588	9 668	2 46.1	517	71.0 61.0
PKS2155-304	21	58 52.1	-30	13 32.0	0.11600	588	9 668	2 46.1	568	83.0 67.0
PKS2155-304	21	58 52.1	-30	13 32.0	0.11600	588	9 668	2 46.1	774	15.0 21.0
QSO1500-4140	15	03 33.9	-41	$52\ 24.0$	0.33500	824	4 600	0 10	202	23.0 95.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	313	38.0 177.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	528	398.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	850	3.0 156.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	897	72.0 64.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	962	21.0 294.0
QSO1500-4140	15	03 33.9	-41	52 24.0	0.33500	824	4 600	0 10	975	57.0 503.0
RBS1024	11	44 30.0	+36	53 09.0	0.03806	147	72 471	2 18.3	304	11.0 169.0
RBS1024		44 30.0		53 09.0						11.0 65.0
RBS1024		44 30.0		53 09.0						12.0 107.0
RBS1024		44 30.0		53 09.0						10.0 150.0
RBS1024		2 17 21.3		56 31.0						23.0 251.0
RBS1307		34231.2		29 05.0						16.0 152.0
RBS1307		3 42 31.2		29 05.0						01.0 01.0 01.0
RBS1307		3 42 31.2		29 05.0						72.0 96.0
RBS1307		3 42 31.2 3 42 31.2		29 05.0						
RBS1307										35.0 435.0
		42 31.2		29 05.0						
RBS1307		42 31.2		29 05.0						11.0 52.0
RBS1307		3 42 31.2		29 05.0						13.0 327.0
RBS1454		02 04.1		45 16.0						03.0 69.0
RBS1454		02 04.1		45 16.0						56.0 54.0
RBS1454		02 04.1		45 16.0						25.0 256.0
RBS1503		5 29 07.5		16 06.0						74.0 319.0
RBS1503	15	29 07.5	+56	16 06.0	0.09900	122	76 196	4 14.3	911	5.0 44.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	486	39.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	575	55.0 378.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	586	63.0 102.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	653	31.0 15.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	930	08.0 63.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	936	306.0
RBS1768	21	38 49.9	-38	28 40.0	0.18299	129	36 696	2 24.8	943	34.0 161.0
RBS1795	21	54 51.1	-44	14 06.0	0.34400	115	11 817	3 30.3	179	95.0 35.0
RBS1795	21	54 51.1	-44	14 06.0	0.34400	115	11 817	3 30.3	358	88.0 42.0
RBS1795	21	54 51.1	-44	14 06.0	0.34400	115	11 817	3 30.3	810	3.0 52.0
RBS1795	21	54 51.1	-44	14 06.0	0.34400	115	11 817	3 30.3	903	38.0 102.0
RBS1795	21	54 51.1	-44	14 06.0	0.34400	115	41 817	3 30.3	951	7.0 18.0
RBS1892		45 18.0		51 59.0						
RBS1892		2 45 18.0		51 59.0						21.0 63.0
RBS1892		2 45 18.0		51 59.0						
RBS2000		3 24 44.7		40 49.0						98.0 35.0
RBS2000		3 24 44.7		40 49.0						31.0 45.0
RBS2023		34 52.4		38 42.0						3.0 592.0
RBS2023		34 52.4		38 42.0						91.0 85.0 25.0 76.0
RBS2055		51 52.8		19 32.0						35.0 76.0
RBS2055		51 52.8		19 32.0						
RBS2070		59 07.8		37 39.0						
RBS2070	23	59 07.8	-30	37 39.0	0.16539	1280	64 1703	33 17.3	896	66.0 482.0

 $Table\ 2\ continued$

Table 2 (continued)

=	Target	R.A.	Dec.	z l	Program	$T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	<i>b</i>
						(ks)	(1238 Å)	$({\rm km}{\rm s}^{-1})$	(mÅ)	$({\rm km}{\rm s}^{-1})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RBS563	` ′	4 38 29.2	. ,	48 00.0		` ′		. ,	. ,	1.0 117.0
RBS563		4 38 29.2	-61	48 00.0						
RBS563		4 38 29.2		48 00.0						
RBS563		4 38 29.2		48 00.0						
RBS567		1 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS567		1 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS567		4 39 38.7		11 31.0						
RBS877		31 18.5		53 36.0						
RBS877		31 18.5		$53\ 36.0$						
RBS877		31 18.5		53 36.0 53 36.0						
RBS877		31 18.5		53 36.0 53 36.0						
RBS918) 54 44.7		53 36.0 31 39.0						
		54 44.7								
RBS918				31 39.0						
RBS918) 54 44.7		31 39.0						
RBS918		54 44.7		31 39.0						
RBS918		54 44.7		31 39.0						
RBS918		54 44.7		31 39.0						
RBS970		1 20 48.1		12 13.0						
RBS970		1 20 48.1		12 13.0						00.0 243.0
RBS970		1 20 48.1		12 13.0						7.0 104.0
RBS970		1 20 48.1		12 13.0						77.0 57.0
RBS970		1 20 48.1		12 13.0						88.0 207.0
RBS982		1 25 40.7		22 31.0						35.0 77.0
RBS982		1 25 40.7		22 31.0						
RBS982	1	1 25 40.7	+41	22 31.0	0.19721	. 147	72 478	9 16.3	649	94.0 146.0
RXS_J0118.8+3	836 0	1 18 49.4	+38	36 20.0	0.21600	1420	68 919	1 16.7	674	16.0 26.0
RXS_J0118.8+3		1 18 49.4	+38	36 20.0	0.21600	1420	68 919	1 16.7	729	00.0 342.0
RXS_J0118.8+3	836 0	1 18 49.4	+38	36 20.0	0.21600	1420	68 919	1 16.7	785	52.0 142.0
RXS_J0155.6+3	115 0	1 55 36.0	+31	15 17.0	0.13500	1420	38 1194	8 15	469	96.0 300.0
RXS_J0155.6+3	115 0	1 55 36.0	+31	15 17.0	0.13500	1420	58 1194	8 15	729	97.0 66.0
RX_J0023.5+15	47 00	0 23 30.6	+15	47 44.0	0.41188	3 140'	71 743	1 6.8	527	79.0 529.0
RX_J0028.1+310	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	179	00.0 35.0
RX_J0028.1+310	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	606	399.0
RX_J0028.1+310	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	622	28.0 430.0
RX_J0028.1+31	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	634	12.0 504.0
RX_J0028.1+310	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	642	25.0 116.0
RX_J0028.1+310	03 00	0 28 10.7	+31	03 48.0	0.50000	1420	371	4 16.3	933	359.0
RX_J0043.6+37	25 00	0 43 42.6	+37	25 19.0	0.07990	1420	553	2 20.3	160	7.0 53.0
RX_J0043.6+37	25 00	0 43 42.6	+37	25 19.0	0.07990	1420	553	2 20.3	426	69.0 103.0
RX_J0048.3+39	41 00	0 48 19.0	+39	41 11.0	0.13400	116	32 1348	34 27.2	183	36.0 24.0
RX_J0048.3+394	41 00	0 48 19.0	+39	41 11.0	0.13400	116	32 1348	34 27.2	240	01.0 17.0
RX_J0048.3+394	41 00	0 48 19.0	+39	41 11.0	0.13400	116	32 1348	34 27.2	396	35.0
RX_J0048.3+39		0 48 19.0		41 11.0						
RX_J0048.3+394		0 48 19.0		41 11.0						10.0 21.0
RX_J0050.8+35		0 50 50.7		36 43.0						3.0 13.0
RX_J0050.8+35		0 50 50.7		36 43.0						00.0 41.0
RX_J0050.8+35		0 50 50.7		36 43.0						19.0

 $Table\ 2\ continued$

Table 2 (continued)

	Target	рл	Doc		Program	T	g/N	217	FW-	
	Target	R.A.	Dec.	z F	Program	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	ь .
						` /	1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$({\rm kms^{-1}})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RX_J0053.7+2	2232 00	0 53 46.2	+22	32 22.0	0.14800	1426	3749	13.2	169	92.0 109.0
RX_J0053.7+2	2232 00	0 53 46.2	+22	32 22.0	0.14800	1426	3749	13.2	242	26.0 267.0
RX_J0053.7+2	2232 00	0 53 46.2	+22	32 22.0	0.14800	1426	3749	13.2	258	87.0 57.0
RX_J0053.7+2	2232 00	0 53 46.2	+22	32 22.0	0.14800	1426	3749	13.2	273	31.0 91.0
RX_J0053.7+2	2232 00	0 53 46.2	+22	32 22.0	0.14800	1426	3749	13.2	744	46.0 78.0
RX_J0714.5+7	7408 0'	7 14 36.2	+74	08 11.0	0.37100	1227	75 8333	3 17.6	133	39.0 20.0
RX_J0714.5+7	408 0'	7 14 36.2	+74	08 11.0	0.37100	1227	75 8333	3 17.6	265	50.0 94.0
RX_J0714.5+7	408 0'	7 14 36.2	+74	08 11.0	0.37100	1227	75 8333	3 17.6	407	74.0 84.0
RX_J0714.5+7	408 0'	7 14 36.2	+74	08 11.0	0.37100	1227	75 8333	3 17.6	426	64.0 420.0
RX_J0714.5+7		7 14 36.2		08 11.0						17.0 55.0
RX_J0714.5+7		7 14 36.2		08 11.0	0.37100					58.0 25.0
RX_J0925.9+4		9 25 54.5		35 44.0						17.0 25.0
RX_J0925.9+4		9 25 54.5		35 44.0	0.32989					84.0 32.0
RX_J0925.9+4		9 25 54.5 9 25 54.5		$35\ 44.0$	0.32989					67.0 84.0
RX_J0925.9+4		$9\ 25\ 54.5$		$35\ 44.0$						84.0 319.0
RX_J0925.9+4		9 25 54.5 9 25 54.5		$35\ 44.0$ $35\ 44.0$						
·										
RX_J0925.9+4		9 25 54.5 0 25 54 5		$35 \ 44.0$ $35 \ 44.0$	0.32989					04.0 34.0
RX_J0925.9+4		9 25 54.5			0.32989					09.0 105.0
RX_J0925.9+4		9 25 54.5		35 44.0						26.0 487.0
RX_J0925.9+4		9 25 54.5		35 44.0	0.32989					72.0 116.0
RX_J1017.5+4		0 17 30.9		02 25.0						9.0 71.0
RX_J1054.2+3		0 54 16.1		11 24.0						3.0 184.0
RX_J1054.2+3		0 54 16.1		11 24.0	0.20466					29.0 95.0
RX_J1100.8+2		1 00 52.4		38 01.0	0.24298					5.0 360.0
RX_J1100.8+2	2839 1	1 00 52.4	+28	38 01.0	0.24298	1374	19 4659) 11.3	69	5.0 406.0
RX_J1100.8+2		1 00 52.4		38 01.0	0.24298	1374	19 4659	11.3	578	82.0 80.0
RX_J1100.8+2	2839 1	1 00 52.4	+28	38 01.0	0.24298	1374	19 4659	11.3	727	72.0 60.0
RX_J1100.8+2	2839 1	1 00 52.4	+28	38 01.0	0.24298	1374	19 4659	11.3	735	50.0 93.0
RX_J1100.8+2	2839 1	1 00 52.4	+28	38 01.0	0.24298	1374	19 4659	11.3	921	19.0 68.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	10 4943	3 11.5	68	5.0 342.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	10 4943	3 11.5	113	31.0 374.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	4943	3 11.5	125	59.0 62.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	4943	3 11.5	237	74.0 190.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	10 4943	3 11.5	287	74.0 120.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	10 4945	3 11.5	579	98.0 220.0
RX_J1117.6+5	301 1	1 17 40.5	+53	01 50.0	0.15871	1424	10 4943	3 11.5	795	57.0 91.0
RX_J1121.2+0	0326 1	1 21 14.2	+03	25 46.0	0.15200	1224	18 2695	4.2	147	71.0 227.0
RX_J1121.2+0	326 1	1 21 14.2	+03	25 46.0	0.15200	1224	18 2695	4.2	260	05.0 190.0
RX_J1121.2+0	0326 1	1 21 14.2	+03	25 46.0	0.15200	1224	18 2695	4.2	638	84.0 182.0
RX_J1121.2+0		1 21 14.2	+03	25 46.0						75.0 678.0
RX_J1125.0+2		1 25 03.6		13 02.0						35.0 139.0
RX_J1125.0+2		1 25 03.6		13 02.0						49.0 298.0
RX_J1140.1+4		1 40 03.4		15 04.0						60.0 128.0
RX_J1140.1+4		1 40 03.4		$15\ 04.0$						18.0 147.0
RX_J1140.1+4		$1\ 40\ 00.4$ $1\ 42\ 31.7$		03 36.0						5.0 13.0
RX_J1142.5+2		$1\ 42\ 31.7$ $1\ 42\ 31.7$		03 36.0 03 36.0						26.0 60.0
RX_J1142.5+2		$1\ 42\ 31.7$ $1\ 42\ 31.7$		03 36.0 03 36.0						33.0 257.0
RX_J1142.5+2		$1\ 42\ 31.7$		$03\ 36.0$						67.0 654.0
RX_J1142.7+4		1 42 41.3		24 37.0						8.0 375.0
RX_J1142.7+4		1 42 41.3		24 37.0						20.0 62.0
RX_J1154.1+2		1 54 08.0		21 44.0						6.0 42.0
RX_J1154.1+2	2521 1	1 54 08.0	+25	21 44.0	0.33664	1477	72 4631	11.2	361	11.0 77.0

 $Table\ 2\ continued$

Table 2 (continued)

	Tones	s+ D A	Doc -	Dromes	T	Ç/N		217	FW.	
	Targe	et R.A.	Dec. z	Program	$T_{\rm exp}$	S/N		$v_{\mathrm{Ly}\alpha}$	$EW_{\mathrm{Ly}\alpha}$	Ь
					(ks)	(1238 Å)) (k	$m s^{-1}$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$
	(1)	(2)	(3) (4)	(5)	(6)	(7)		(8)	(9)	(10)
RX_J1154.1+	2521	11 54 08.0	$+25\ 21$	44.0 0.336	64 14	4772	4631	11.2	386	66.0 149.0
RX_J1154.1+	2521	11 54 08.0	$+25\ 21$	44.0 0.336	64 14	4772	4631	11.2	629	99.0 584.0
RX_J1210.7+	2725	$12\ 10\ 45.6$	$+27\ 25$	36.0 0.230	39 14	4772	4607	14.1	88	0.0 148.0
RX_J1210.7+	2725	$12\ 10\ 45.6$	$+27\ 25$	36.0 0.230	39 14	4772	4607	14.1	402	22.0 52.0
RX_J1210.7+	2725	$12\ 10\ 45.6$	$+27\ 25$	36.0 0.230	39 14	4772	4607	14.1	851	12.0 156.0
RX_J1212.2+	2803	12 12 17.2	+28 03	50.0 0.167	58 14	4772	4655	13.2	78	8.0 433.0
RX_J1212.2+	2803	12 12 17.2	+28 03	50.0 0.167	58 14	4772	4655	13.2	268	80.0 194.0
RX_J1212.2+	2803	12 12 17.2	+28 03	50.0 0.167	58 14	4772	4655	13.2	376	61.0 236.0
RX_J1217.2+	2749	$12\ 17\ 15.3$	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	103	35.0 528.0
RX_J1217.2+	2749	$12\ 17\ 15.3$	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	118	86.0 565.0
RX_J1217.2+	2749	$12\ 17\ 15.3$	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	132	26.0 128.0
RX_J1217.2+	2749	12 17 15.3	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	147	72.0 89.0
RX_J1217.2+	2749	12 17 15.3	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	257	74.0 89.0
RX_J1217.2+	2749	12 17 15.3	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	296	63.0 114.0
RX_J1217.2+	2749	12 17 15.3	$+27\ 49$	51.0 0.395	66 14	4772	4621	9.2	405	59.0 135.0
RX_J1217.2+	2749	12 17 15.3	+27 49	51.0 0.395	66 14	4772	4621	9.2	671	18.0 295.0
RX_J1236.0+	2641	12 36 04.1	+26 41	36.0 0.209	15 12	2248	4235	13.3	79	4.0 317.0
RX_J1236.0+	2641	12 36 04.1	+26 41	36.0 0.209	15 12	2248	4235	13.3	100	09.0 365.0
RX_J1236.0+	2641	12 36 04.1	$+26\ 41\ 3$	36.0 0.209	15 12	2248	4235	13.3	116	66.0 305.0
RX_J1236.0+	2641	12 36 04.1	+26 41	36.0 0.209	15 12	2248	4235	13.3	125	54.0 122.0
RX_J1236.0+	2641	12 36 04.1	$+26\ 41\ 3$	36.0 0.209	15 12	2248	4235	13.3	640	04.0 42.0
RX_J1236.0+	2641	12 36 04.1	$+26\ 41\ 3$	36.0 0.209	15 12	2248	4235	13.3	711	11.0 429.0
RX_J1236.0+	2641	12 36 04.1	$+26\ 41\ 3$	36.0 0.209	15 12	2248	4235	13.3	722	23.0 51.0
RX_J1303.7+	2633	13 03 46.0	$+26 \ 33$	13.0 0.437	00 13	3382	7015	7.4	785	53.0 139.0
RX_J1303.7+	2633	13 03 46.0	$+26 \ 33$	13.0 0.437	00 13	3382	7015	7.4	895	55.0 93.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	172	27.0 166.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	265	55.0 451.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	282	22.0 73.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	484	40.0 410.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	505	51.0 119.0
RX_J1330.8+	3119	13 30 53.2	+31 19	32.0 0.242	32 12	2248	4262	13.8	740	00.0 334.0
RX_J1342.1+	0505	13 42 06.5	+05 05 3	24.0 0.266	08 12	2248	2931	11.4	119	90.0 269.0
RX_J1342.1+	0505	13 42 06.5	+05 05 3	24.0 0.266	08 12	2248	2931	11.4	206	65.0 42.0
RX_J1342.1+	0505	13 42 06.5	+05 05 3	24.0 0.266	08 12	2248	2931	11.4	342	29.0 110.0
RX_J1342.1+		13 42 06.5					2931	11.4		38.0 563.0
RX_J1342.1+	0505	13 42 06.5					2931	11.4		14.0 351.0
RX_J1342.1+		13 42 06.5					2931	11.4		94.0 44.0
RX_J1342.7+		13 42 46.9					2938	10.6		89.0 91.0
RX_J1342.7+		13 42 46.9					2938	10.6		85.0 62.0
RX_J1342.7+		13 42 46.9					2938	10.6		82.0 524.0
RX_J1356.4+		13 56 25.6					2282	11.2		62.0 128.0
RX_J1356.4+		13 56 25.6					2282	11.2		91.0 99.0
RX_J1356.4+		13 56 25.6					2282	11.2		80.0 84.0
RX_J1356.4+		13 56 25.6					2282	11.2		75.0 131.0
RX_J1356.4+		13 56 25.6					2282	11.2		86.0 271.0
RX_J1356.4+		13 56 25.6					2282	11.2		85.0 116.0
RX_J1426.2+		14 26 13.4					5124	21.2		94.0 121.0
RX_J1426.2+		14 26 13.4					5124	21.2		04.0 121.0 12.0
RX_J1426.2+		14 26 13.4					5124	21.2		76.0 42.0 76.0 39.0
RX_J1420.2+ RX_J1429.6+		14 29 40.7					3876	9.1		39.0 39.0 39.0 414.0
RX_J1429.6+								9.1		
		14 29 40.7					3876			
RX_J1429.6+	0321	14 29 40.7	+03 21 3	26.0 0.253	44 12	2603 :	3876	9.1	190	02.0 39.0

 $Table\ 2\ continued$

Table 2 (continued)

=	Target	R.A.	Dec.	z	Program	$T_{\rm exp}$	S/N	1	$v_{\text{Ly}\alpha}$	$EW_{\text{Ly}\alpha}$	b		
	. 0								$m s^{-1}$)		(km s	-1)	
_	(1)	(2)	(3)	(4)	(5)	(ks) (6)	(1238 Å) (7)) (kı	m s ⁻) (8)	(mÅ) (9)	(km s (10)		
RX_J1429.6+032	1 14:	29 40.7	+03	21 26	.0 0.25344	126	03 3	3876	9.1	246	6.0	391.0	64.5
RX_J1429.6+032	1 14 :	29 40.7	+03	21 26	.0 0.25344	1 126	03 3	3876	9.1	787	3.0	232.0	37.6
RX_J1429.6+032	1 14:	29 40.7	+03	21 26	.0 0.25344	1 126	03 3	3876	9.1	825	3.0	179.0	32.2
RX_J1429.6+032	1 14 :	29 40.7	+03	21 26	.0 0.25344	1 126	03 3	3876	9.1	994	7.0	668.0	73.3
RX_J1429.6+032		29 40.7		21 26				3876	9.1	100		123.0	26.6
RX_J1429.6+032		29 40.7		21 26				3876	9.1	1014		135.0	42.5
RX_J1500.5+551		00 30.8		17 09				8422	17.2	359		136.0	32.0
RX_J1503.2+681		03 16.5		10 06				1932	12	720		176.0	43.5
RX_J1503.2+6810		03 16.5		10 06				1932	12	883		264.0	42.3
RX_J1503.2+6810		03 16.5		10 06				1932	12	893		94.0	31.0
RX_J1503.2+6810		03 16.5		10 06				1932	12	971		61.0	22.4
RX_J1544.5+282		44 30.5		27 56				2096	12.7	211		70.0	26.3
RX_J1544.5+282		44 30.5		27 56				2096	12.7	663		100.0	30.4
RX_J1544.5+282		44 30.5		27 56				2096	12.7	964		188.0	35.3
RX_J1544.5+282		44 30.5		27 56				2096	12.7	975		184.0	35.2
RX_J1608.3+601		08 20.5		18 28				5158	16.1	854		34.0	24.1
RX_J1608.3+601		08 20.5		18 28				5158	16.1	290		120.0	36.0
RX_J1608.3+6013		08 20.5		18 28				5158	16.1	296		373.0	42.6
RX_J1830.3+731		30 23.3		13 10				4900	28.3	155		73.0	34.0
RX_J1830.3+731	2 18	30 23.3	+73	13 10	.0 0.12300	G0:	20 2	4900	28.3	197	1.0	70.0	107.5
RX_J1830.3+731	2 18	30 23.3	+73	13 10	.0 0.12300	G0:	20 2	4900	28.3	239	0.0	81.0	67.4
RX_J1830.3+731	2 18	30 23.3	+73	13 10	.0 0.12300	G0:	20 2	4900	28.3	426	1.0	45.0	45.3
RX_J1830.3+731	2 18	30 23.3	+73	13 10	.0 0.12300	G0:	20 2	4900	28.3	476	7.0	53.0	49.5
RX_J2043.1+032	4 20	$43 \ 06.2$	+03	$24 \ 50$.0 0.27100	138	40	7834	15	140	2.0	32.0	20.3
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	328	7.0	91.0	50.8
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	408	0.0	82.0	33.2
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	506	0.0	60.0	30.0
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	644	0.0	37.0	16.9
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	744	8.0	99.0	28.0
RX_J2043.1+032	4 20	43 06.2	+03	24 50	.0 0.27100	138	40	7834	15	806	1.0	167.0	46.8
RX_J2139.7+024	6 21	39 44.2	+02	46 05	.0 0.26000	138	40	7854	15.6	408	3.0	490.0	50.7
RX_J2139.7+024	6 21	39 44.2	+02	46 05	.0 0.26000	138	40	7854	15.6	418	1.0	530.0	54.9
RX_J2139.7+024		39 44.2		46 05				7854	15.6	921		106.0	34.0
SBS0957+599		01 02.6		44 15				3300	11.2	219		143.0	38.1
SBS0957+599		01 02.6		44 15				3300	11.2	287		226.0	36.2
SBS0957+599		01 02.6		44 15				3300	11.2	306		211.0	49.0
SBS0957+599		01 02.6		44 15				3300	11.2	327		293.0	43.7
SBS0957+599		01 02.6		44 15				3300	11.2	723		49.0	25.7
SBS0957+599		01 02.6		44 15				3300	11.2	946		72.0	29.4
·		$11\ 32.1$							4		1.0	448.0	
SBS1108+560				47 25				8387					57.8
SBS1108+560		11 32.1		47 25				8387	4		3.0	268.0	31.0
SBS1108+560		11 32.1		47 25				8387	4		2.0	351.0	51.8
SBS1108+560		11 32.1		47 25				8387	4	94'		198.0	25.5
SBS1116+523		19 48.0		05 54				4949	14		1.0	259.0	41.6
SBS1116+523		19 48.0		05 54				4949	14	274		61.0	29.2
SBS1116+523		19 48.0		05 54				4949	14	572		200.0	46.0
SBS1116 + 523	11	19 48.0	+52	05 54	.0 0.35568	3 142	40 4	4949	14	866	1.0	122.0	24.8
S1116+523		11 19 4	18.0	+52 05	5 54.0 0.3	5568	14240	49	49	14	9717.0	21.0	1
S1122+594		11 25 5	53.7	+59 10	22.0 0.8	5142	11520	98	74	15	1194.0	838.0	8
S1122+594		11 25 5	53.7	+59 10	22.0 0.8	5142	11520	98	74	15	1600.0	135.0	2
S1122+594		11 25 5	53.7	+59 10	22.0 0.8	5142	11520	98	74	15	7325.0	43.0	2
S1122+594		11 25 5	3.7	+59 10	22.0 0.8	5142	11520	98	74	15	8640.0	148.0	3

 $Table\ 2\ continued$

Table 2 (continued)

	Target	R.A.	Dec.	z	Progra	$m T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	b	=
						(ks)	(1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$({\rm km}{\rm s}^{-1})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
SBS1122+594		11 25		+59 1	. ,	0.85142	11520	9874	15	9064.0	71.0
SBS1122+594		11 25		+59 1		0.85142	11520	9874	15	9779.0	32.0
SBS1122+651 SBS1503+570		15 04		+56 4		0.35894	12276	5163	13.8	708.0	301.0
SBS1503+570		15 04		+564		0.35894	12276	5163	13.8	2312.0	55.0
SBS1503+570 SBS1503+570		15 04		+564		0.35894	12276	5163	13.8	8923.0	583.0
SBS1505+570 SBS1537+577		15 38		+57 3		0.07342	12276		8.8	739.0	
								5193			132.0
SBS1537+577		15 38		+57 3		0.07342	12276	5193	8.8	3264.0	349.0
SBS1537+577		15 38		+57 3		0.07342	12276	5193	8.8	3548.0	441.0
SBS1537+577		15 38		+57 3		0.07342	12276	5193	8.8	4077.0	50.0
SBS1537+577		15 38		+57 3		0.07342	12276	5193	8.8	8451.0	48.0
SBS1537+577		15 38		+57 3		0.07342	12276	5193	8.8	9008.0	53.0
SBS1537+577		15 38	10.0	+57 3	6 13.0	0.07342	12276	5193	8.8	9175.0	66.0
SBS1537+577		15 38	10.0	+57 3	6 13.0	0.07342	12276	5193	8.8	9809.0	46.0
SDSSJ014143.20+	134032.0	01 41	43.2	$+13 \ 4$	0 32.0	0.04541	12275	7669	5.2	637.0	482.0
SDSSJ014143.20+	134032.0	01 41	43.2	+13 4	0 32.0	0.04541	12275	7669	5.2	789.0	846.0
SDSSJ014143.20+	134032.0	01 41	43.2	$+13 \ 4$	0 32.0	0.04541	12275	7669	5.2	3240.0	555.0
SDSSJ015530.02-0	85704.0	01 55	30.0	$-08\ 5$	7 04.0	0.16443	12248	2931	10.5	1642.0	617.0
SDSSJ015530.02-0	85704.0	01 55	30.0	$-08\ 5$	7 04.0	0.16443	12248	2931	10.5	4761.0	230.0
SDSSJ015530.02-0	85704.0	01 55	30.0	$-08\ 5$	7 04.0	0.16443	12248	2931	10.5	8046.0	81.0
SDSSJ015952.95+	134554.3	01 59	53.0	$+13 \ 4$	5 54.0	0.50378	12603	7623	12.9	3524.0	47.0
SDSSJ015952.95+	134554.3	01 59	53.0	$+13 \ 4$	$5\ 54.0$	0.50378	12603	7623	12.9	4706.0	231.0
SDSSJ015952.95+	134554.3	01 59	53.0	+13 4	5 54.0	0.50378	12603	7623	12.9	9741.0	58.0
SDSSJ021218.32-0	73719.8	$02 \ 12$	18.3	$-07\ 3$	7 20.0	0.17392	12248	6525	11.2	4756.0	528.0
SDSSJ021218.32-0	73719.8	$02 \ 12$	18.3	$-07\ 3$	7 20.0	0.17392	12248	6525	11.2	4833.0	500.0
SDSSJ021218.32-0	73719.8	$02 \ 12$	18.3	$-07\ 3$	7 20.0	0.17392	12248	6525	11.2	5272.0	123.0
SDSSJ080838.80+	051440.0	08 08	38.8	$+05 \ 1$	4 40.0	0.36061	12603	4674	10	2469.0	124.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	2594.0	253.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	4138.0	106.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	4351.0	179.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	4854.0	150.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	8738.0	783.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	8926.0	128.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	9476.0	61.0
SDSSJ080838.80+	051440.0	08 08	38.8	+05 1	4 40.0	0.36061	12603	4674	10	9750.0	52.0
SDSSJ080908.13+	461925.6	08 09	08.1	+46 1	9 26.0	0.65873	12248	3146	14.3	2272.0	77.0
SDSSJ080908.13+	461925.6	08 09	08.1	+46 1	9 26.0	0.65873	12248	3146	14.3	3117.0	198.0
SDSSJ080908.13+	461925.6	08 09	08.1	+46 1	9 26.0	0.65873	12248	3146	14.3	6779.0	544.0
SDSSJ080908.13+	461925.6	08 09	08.1	+46 1	9 26.0	0.65873	12248	3146	14.3	6880.0	156.0
SDSSJ080908.13+	461925.6	08 09	08.1	+46 1	9 26.0	0.65873	12248	3146	14.3	7105.0	181.0
SDSSJ082024.20+	233450.0	08 20	24.2	+23 3		0.47056	11598	5035	11.4	3928.0	110.0
SDSSJ082024.20+	233450.0	08 20	24.2	+23 3		0.47056	11598	5035	11.4	4081.0	95.0
SDSSJ082024.20+		08 20		+23 3		0.47056	11598	5035	11.4	4210.0	258.0
SDSSJ084159.20+		08 41		+14 0		1.25567	13314	11204	13.1	2054.0	300.0
SDSSJ084159.20+		08 41		+14 0		1.25567	13314	11204	13.1	5445.0	360.0
SDSSJ084159.20+		08 41		+14 0		1.25567	13314	11204	13.1	8358.0	122.0
SDSSJ084159.20+		08 41		+140		1.25567	13314	11204	13.1	8428.0	178.0
SDSSJ094159.20+ SDSSJ091052.80+		09 10		+33 3		0.11631	14240	7442	9.2	589.0	211.0
SDSSJ091052.80+		09 10		+33 3			14240	7442	9.2	1824.0	266.0
SDSSJ091052.80+		09 10				0.11631		7442	9.2	1975.0	68.0
				+33 3		0.11631	14240				
SDSSJ091052.80+		09 10 09 10		+33 3		0.11631	$14240 \\ 14240$	7442 7442	9.2 9.2	3386.0 5800.0	122.0 58.0
SDSSJ091052.80+						0.11631					

 $Table\ 2\ continued$

Table 2 (continued)

	Target	R.A.	Dec.	z	Progra		S/N	211	$EW_{\text{Ly}\alpha}$	b	=
	rarget	n.A.	Dec.	Z	Frogra	$I_{\rm exp}$,	$v_{{ m Ly}lpha}$	-		
						(ks)	(1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	-
SDSSJ091127.30+3	325337.0	09 11	27.3	$+32\ 53$	37.0	0.29038	14240	10028	8.5	3855.0	148.0
SDSSJ091127.30+3	325337.0	09 11	27.3	$+32\ 53$	37.0	0.29038	14240	10028	8.5	4320.0	608.0
SDSSJ091127.30+3	325337.0	09 11	27.3	$+32\ 53$	37.0	0.29038	14240	10028	8.5	5487.0	68.0
SDSSJ091127.30+3	325337.0	09 11	27.3	$+32\ 53$	37.0	0.29038	14240	10028	8.5	8003.0	71.0
SDSSJ091728.60+2	271951.0	09 17	28.6	+27 19	51.0	0.07564	14071	15471	11.4	1727.0	68.0
SDSSJ091728.60+2	271951.0	09 17	28.6	+27 19	51.0	0.07564	14071	15471	11.4	2028.0	99.0
SDSSJ091728.60+2	271951.0	09 17	28.6	+27 19	51.0	0.07564	14071	15471	11.4	5920.0	102.0
SDSSJ091728.60+2	271951.0	09 17	28.6	+27 19	51.0	0.07564	14071	15471	11.4	7141.0	384.0
SDSSJ091728.60+2		09 17	28.6	+27 19		0.07564	14071	15471	11.4	7282.0	284.0
SDSSJ091728.60+2		09 17		+27 19		0.07564	14071	15471	11.4	8102.0	41.0
SDSSJ091728.60+2		09 17		+27 19		0.07564	14071	15471	11.4	9814.0	103.0
SDSSJ093706.90+1		09 37		+17 00		0.50567	12603	7635	9.2	4332.0	67.0
								7635	9.2		
SDSSJ093706.90+1		09 37		+17.00		0.50567	12603			4388.0	175.0
SDSSJ093706.90+1		09 37		+17 00		0.50567	12603	7635	9.2	8120.0	155.0
SDSSJ094840.10+5		09 48		+58 00		0.49179	13774	8835	10	1196.0	172.0
SDSSJ094840.10+5		09 48		+58 00		0.49179	13774	8835	10	7262.0	198.0
SDSSJ094840.10+5		09 48		+58 00		0.49179	13774	8835	10	8385.0	904.0
SDSSJ094840.10+5		09 48		+58 00		0.49179	13774	8835	10	8516.0	371.0
SDSSJ095914.80+3		09 59		+32 03		0.56462	12603	2273	11.4	1493.0	623.0
SDSSJ095914.80+3		09 59		+32 03		0.56462	12603	2273	11.4	4493.0	154.0
SDSSJ095914.80+3	320357.0	09 59	14.8	+32~03		0.56462	12603	2273	11.4	4781.0	76.0
SDSSJ095914.80+3	320357.0	09 59	14.8	+32~03	3 57.0	0.56462	12603	2273	11.4	7852.0	315.0
SDSSJ095914.80+3	320357.0	09 59	14.8	+32~03	3 57.0	0.56462	12603	2273	11.4	7940.0	97.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	3 55.0	0.16263	12248	2931	13.6	1579.0	627.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	355.0	0.16263	12248	2931	13.6	1858.0	37.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	55.0	0.16263	12248	2931	13.6	2167.0	83.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	55.0	0.16263	12248	2931	13.6	3762.0	108.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	355.0	0.16263	12248	2931	13.6	3806.0	129.0
SDSSJ095915.60+0	050355.0	09 59	15.6	+05 03	3 55.0	0.16263	12248	2931	13.6	9951.0	108.0
SDSSJ104241.30+2	250123.0	10 42	41.3	+25 01	23.0	0.34157	14071	10068	6.2	6261.0	279.0
SDSSJ104335.90+1	115129.0	10 43	35.9	+11 51	29.0	0.79400	14071	4736	13.5	717.0	823.0
SDSSJ104335.90+1	115129.0	10 43	35.9	+11 51	29.0	0.79400	14071	4736	13.5	882.0	621.0
SDSSJ104335.90+1	115129.0	10 43	35.9	+11 51	29.0	0.79400	14071	4736	13.5	1030.0	391.0
SDSSJ104335.90+1	115129.0	10 43	35.9	+11 51	29.0	0.79400	14071	4736	13.5	1974.0	202.0
SDSSJ104335.90+1		10 43		+11 51		0.79400	14071	4736	13.5	2801.0	72.0
SDSSJ104335.90+1		10 43		+11 51		0.79400	14071	4736	13.5	3717.0	43.0
SDSSJ104335.90+1		10 43		+11 51		0.79400	14071	4736	13.5	9920.0	40.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	652.0	297.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	713.0	283.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	1443.0	540.0
						0.63171					
SDSSJ105945.30+1		10 59		+14 41			12248	4217	11.8	3128.0	424.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	5278.0	107.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	5411.0	517.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	5757.0	146.0
SDSSJ105945.30+1		10 59		+14 41		0.63171	12248	4217	11.8	5853.0	262.0
SDSSJ105945.30+1		10 59		$+14\ 41$		0.63171	12248	4217	11.8	7107.0	243.0
SDSSJ105945.30+1	144142.0	10 59	45.3	+14 41	42.0	0.63171	12248	4217	11.8	7243.0	410.0
SDSSJ105945.30+1	144142.0	10 59	45.3	$+14\ 41$	42.0	0.63171	12248	4217	11.8	8076.0	220.0
SDSSJ105945.30+1	144142.0	10 59	45.3	$+14\ 41$	42.0	0.63171	12248	4217	11.8	9322.0	137.0
SDSSJ105945.30+1	144142.0	10 59	45.3	$+14 \ 41$	42.0	0.63171	12248	4217	11.8	9385.0	144.0
SDSSJ111443.70+5	525834.0	11 14	43.7	$+52\ 58$	34.0	0.07921	14240	13440	6.9	1163.0	232.0
SDSSJ111443.70+5	525834.0	11 14	43.7	+52 58	34.0	0.07921	14240	13440	6.9	2839.0	334.0

 $Table\ 2\ continued$

Table 2 (continued)

		D 1			D.				T17.7		=
	Target	R.A.	Dec.	z	Progra	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\mathrm{Ly}\alpha}$	b	
						(ks)	(1238 Å)	$({\rm kms^{-1}})$	(mÅ)	$({\rm kms^{-1}})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	_
SDSSJ111443.70+	525834.0	11 14	43.7	+52 58	34.0	0.07921	14240	13440	6.9	5497.0	270.
SDSSJ111443.70+	525834.0	11 14	43.7	+52 58	34.0	0.07921	14240	13440	6.9	5911.0	155.
SDSSJ111443.70+	525834.0	11 14	43.7	+52 58	34.0	0.07921	14240	13440	6.9	7316.0	62.0
SDSSJ111908.70+		11 19		+25 45		0.57967	14772	4701	11.5	6393.0	441.
SDSSJ112005.00+		11 20		+04 13		0.54689	12603	4708	8.5	2285.0	27.0
SDSSJ112005.00+		11 20	05.0	+04 13		0.54689	12603	4708	8.5	2578.0	116.
SDSSJ112005.00+		11 20		+04 13	3 23.0	0.54689	12603	4708	8.5	6096.0	171.
SDSSJ112005.00+		11 20		+04 13		0.54689	12603	4708	8.5	8810.0	157.
SDSSJ112005.00+		11 20		+04 13		0.54689	12603	4708	8.5	9533.0	255.
SDSSJ112224.10+		11 22		+03 18		0.47528	12603	7588	12.9	1049.0	295.
SDSSJ112224.10+		11 22		+03 18		0.47528	12603	7588	12.9	1264.0	423.
SDSSJ112224.10+		11 22		+03 18		0.47528	12603	7588	12.9	6606.0	70.0
SDSSJ112224.10+		11 22		+03 18		0.47528	12603	7588	12.9	8872.0	432.
SDSSJ112224.10+ SDSSJ112224.10+		11 22		+03 18		0.47528 0.47528	12603	7588	12.9	9890.0	51.0
SDSSJ112224.10+ SDSSJ112439.50+		11 24		+11 3		0.14285	14071	10427	9.4	1047.0	345.0
SDSSJ112439.50+		11 24		+11 3		0.14285	14071	10427	9.4	1047.0	272.0
SDSSJ112439.50+ SDSSJ112439.50+		11 24		+11 3		0.14285 0.14285	14071	10427	9.4	2042.0	80.0
SDSSJ112439.50+ SDSSJ112439.50+		11 24		+11 3		0.14285 0.14285	14071	10427	9.4	2176.0	51.0
SDSSJ112439.50+ SDSSJ112439.50+		11 24		+11 3		0.14285 0.14285	14071	10427	9.4	3255.0	188.0
SDSSJ112439.50+		11 24		+11 3		0.14285 0.14285	14071	10427	9.4	8255.0	108.
SDSSJ112448.30+		11 24		+53 18		0.53151	14240	7920	10	664.0	339.0
SDSSJ112448.30+ SDSSJ112448.30+		11 24		+53 18		0.53151	14240	7920	10	1019.0	71.0
SDSSJ112448.30+		11 24		$+53 \ 18$		0.53151	14240	7920 7920	10	1141.0	165.
SDSSJ112448.30+		11 24		+53 18		0.53151	14240		10	5752.0	121.0
SDSSJ112448.30+		11 24		+53 18		0.53151	14240	7920	10	8867.0	66.0
SDSSJ112448.30+		11 24		+53 18		0.53151	14240	7920	10	9883.0	229.
SDSSJ114046.10+		11 40		+11 30		0.68736	14071	10129	9.1	928.0	252.
SDSSJ114046.10+		11 40		+11 30		0.68736	14071	10129	9.1	967.0	275.
SDSSJ114046.10+		11 40		+11 30		0.68736	14071	10129	9.1	1016.0	209.
SDSSJ114646.00+		11 46		+37 1		0.29586	14772	2162	12.5	873.0	267.
SDSSJ114646.00+		11 46		+37 1		0.29586	14772	2162	12.5	980.0	226.
SDSSJ114646.00+		11 46		+37 1		0.29586	14772	2162	12.5	3085.0	185.0
SDSSJ114646.00+		11 46		+37 1		0.29586	14772	2162	12.5	6698.0	41.0
SDSSJ115722.40+		11 57		+11 40		0.29091	14071	10034	10.3	2755.0	294.
SDSSJ115722.40+		11 57		+11 40		0.29091	14071	10034	10.3	6200.0	366.
SDSSJ115722.40+		11 57		+11 40		0.29091	14071	10034	10.3	6428.0	689.0
SDSSJ115722.40+		11 57		+11 40		0.29091	14071	10034	10.3	9736.0	90.0
SDSSJ121640.60+		12 16		+07 13		0.58756	11698	2048	10.2	3845.0	106.0
SDSSJ121640.60+		12 16		+07 12		0.58756	11698	2048	10.2	7021.0	324.0
SDSSJ121640.60+		12 16		+07 12		0.58756	11698	2048	10.2	3845.0	106.0
SDSSJ121640.60+		12 16		+07 12		0.58756	11698	2048	10.2	7021.0	324.0
SDSSJ121640.60+		12 16		+07 13		0.58756	11698	2048	10.2	7021.0	324.0
SDSSJ124210.30+		12 42		+32 14		1.49257	14085	13008	12.2	640.0	586.0
SDSSJ124210.30+		12 42		+32 14		1.49257	14085	13008	12.2	715.0	585.0
SDSSJ124210.30+		12 42		+32 14		1.49257	14085	13008	12.2	3284.0	180.0
SDSSJ124210.30+		12 42		+32 14		1.49257	14085	13008	12.2	3711.0	61.0
SDSSJ124210.30+		$12\ 42$	10.3	+32 14	1 27.0	1.49257	14085	13008	12.2	3969.0	54.0
SDSSJ124210.30+		$12\ 42$	10.3	+32 14	1 27.0	1.49257	14085	13008	12.2	4490.0	131.0
SDSSJ124210.30+	321427.0	$12\ 42$	10.3	+32 14	1 27.0	1.49257	14085	13008	12.2	5370.0	62.0
SDSSJ124210.30+	321427.0	$12\ 42$	10.3	+32 14	1 27.0	1.49257	14085	13008	12.2	5509.0	125.0
SDSSJ124210.30+	321427.0	$12\ 42$	10.3	+32 14	1 27.0	1.49257	14085	13008	12.2	6933.0	483.
SDSSJ125846.70 +	242739.0	12 58	46.7	$+24\ 2'$	7 39.0	0.37110	13382	7546	8.3	3177.0	63.0

 $Table\ 2\ continued$

Table 2 (continued)

	Target	R.A.	Dec.	z	Progra	$T_{\rm exp}$	S/N	217	$EW_{\text{Ly}\alpha}$	b	=
	rargei	n.A.	Dec.	z	rrogra	I = I = I = I	·	$v_{{ m Ly}lpha}$		b	
						(ks)	(1238 Å)	$(\mathrm{km}\mathrm{s}^{-1})$	(mÅ)	$(\mathrm{km}\mathrm{s}^{-1})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	_
SDSSJ130524.30+0	035731.0	$13 \ 05$	24.3	$+03\ 57$	31.0	0.54566	12603	7588	13.3	374.0	210.0
SDSSJ130524.30+0	035731.0	$13 \ 05$	24.3	$+03\ 57$	31.0	0.54566	12603	7588	13.3	425.0	531.0
SDSSJ130524.30+0	035731.0	$13 \ 05$	24.3	+0357	31.0	0.54566	12603	7588	13.3	7043.0	462.0
SDSSJ131545.20+	152556.0	13 15	45.2	$+15\ 25$	56.0	0.44811	12603	4688	10.5	6528.0	192.0
SDSSJ131545.20+	152556.0	13 15	45.2	$+15\ 25$	56.0	0.44811	12603	4688	10.5	6702.0	266.0
SDSSJ131545.20+	152556.0	13 15	45.2	$+15\ 25$	56.0	0.44811	12603	4688	10.5	8025.0	440.0
SDSSJ135341.03+3	361948.0	13 53	41.0	+36 19	48.0	0.14659	13444	10199	19.5	6169.0	266.0
SDSSJ135341.03+3		13 53		+36 19		0.14659	13444	10199	19.5	6528.0	493.0
SDSSJ135341.03+3		13 53		+36 19		0.14659	13444	10199	19.5	6639.0	223.0
SDSSJ135424.90+2		13 54		$+24 \ 30$		1.89283	12603	6829	10	5826.0	302.0
SDSSJ135424.90+2		13 54		$+24\ 30$		1.89283	12603	6829	10	6025.0	136.0
				$+24\ 30$				6829			
SDSSJ135424.90+2		13 54				1.89283	12603		10	8500.0	377.0
SDSSJ135424.90+2		13 54		+24 30		1.89283	12603	6829	10	9616.0	93.0
SDSSJ135712.60+3		13 57		+17 04		0.15050	12248	4223	13.9	3180.0	53.0
SDSSJ135712.60+		13 57		+17 04		0.15050	12248	4223	13.9	3287.0	64.0
SDSSJ135712.60+		13 57		+17 04		0.15050	12248	4223	13.9	6640.0	34.0
SDSSJ135712.60+		13 57		+17 04		0.15050	12248	4223	13.9	7155.0	26.0
SDSSJ135726.27+0	043541.4	13 57		$+04 \ 35$	41.0	1.23453	12264	14148	21	967.0	348.0
SDSSJ135726.27+0	043541.4	$13 \ 57$	26.2	$+04 \ 35$	41.0	1.23453	12264	14148	21	1124.0	83.0
SDSSJ135726.27+0	043541.4	$13\ 57$	26.2	$+04\ 35$	41.0	1.23453	12264	14148	21	2586.0	59.0
SDSSJ135726.27+0	043541.4	$13\ 57$	26.2	$+04\ 35$	41.0	1.23453	12264	14148	21	4540.0	32.0
SDSSJ135726.27+0	043541.4	$13\ 57$	26.2	$+04\ 35$	41.0	1.23453	12264	14148	21	5092.0	129.0
SDSSJ135726.27+0	043541.4	$13\ 57$	26.2	$+04\ 35$	41.0	1.23453	12264	14148	21	5825.0	38.0
SDSSJ135726.27+0	043541.4	$13\ 57$	26.2	$+04\ 35$	41.0	1.23453	12264	14148	21	8804.0	89.0
SDSSJ140428.30+3	335342.0	14 04	28.3	+33 53	42.0	0.54996	12603	7705	8.9	1515.0	178.0
SDSSJ140428.30+3	335342.0	14 04	28.3	+3353	42.0	0.54996	12603	7705	8.9	2157.0	111.0
SDSSJ140428.30+3	335342.0	14 04	28.3	+33 53	42.0	0.54996	12603	7705	8.9	5765.0	314.0
SDSSJ140428.30+3	335342.0	14 04	28.3	+33 53	42.0	0.54996	12603	7705	8.9	7913.0	888.0
SDSSJ141038.40+2	230447.0	14 10	38.4	+23 04		0.79580	12958	11275	11.3	2229.0	37.0
SDSSJ141038.40+2	230447.0	14 10	38.4	+23 04	47.0	0.79580	12958	11275	11.3	2313.0	31.0
SDSSJ141038.40+2		14 10		+23~04		0.79580	12958	11275	11.3	8671.0	142.0
SDSSJ141542.90+		14 15		+16 34		0.74350	12486	18479	19	2318.0	3632.0
SDSSJ141542.90+		14 15		+16 34		0.74350	12486	18479	19	5355.0	67.0
SDSSJ141542.90+		14 15		$+16\ 34$		0.74350	12486	18479	19	9242.0	140.0
SDSSJ141949.40+0		14 19		+06 06		1.64892	13473	11028	11.9	921.0	82.0
SDSSJ141949.40+0		14 19		+06 06		1.64892	13473	11028	11.9	1155.0	85.0
SDSSJ141949.40+0		14 19		+06 06			13473		11.9		
SDSSJ141949.40+0		14 19				1.64892		11028		1411.0 1691.0	662.0 3001.0
				+06 06		1.64892	13473	11028	11.9	1691.0	
SDSSJ141949.40+0		14 19		+06 06		1.64892	13473	11028	11.9	1825.0	60.0
SDSSJ141949.40+0		14 19		+06 06		1.64892	13473	11028	11.9	5015.0	160.0
SDSSJ141949.40+0		14 19		+06 06		1.64892	13473	11028	11.9	8531.0	167.0
SDSSJ142859.10+3		14 28		+32 25		0.62717	13314	11314	20.7	1994.0	78.0
SDSSJ142859.10+3		14 28		$+32\ 25$		0.62717	13314	11314	20.7	3423.0	363.0
SDSSJ142859.10+3		14 28		$+32\ 25$		0.62717	13314	11314	20.7	4126.0	260.0
SDSSJ142859.10+3	322507.0	$14\ 28$	59.1	$+32\ 25$	07.0	0.62717	13314	11314	20.7	4220.0	302.0
SDSSJ142859.10+3	322507.0	$14\ 28$	59.1	$+32\ 25$	07.0	0.62717	13314	11314	20.7	6242.0	67.0
SDSSJ150928.30+0	070235.0	15 09	28.3	+07 02	35.0	0.41878	12603	7612	11.3	1214.0	93.0
SDSSJ150928.30+0	070235.0	15 09	28.3	+07 02	35.0	0.41878	12603	7612	11.3	3911.0	90.0
SDSSJ150928.30+0	070235.0	15 09	28.3	+07 02	35.0	0.41878	12603	7612	11.3	7854.0	56.0
SDSSJ150928.30+0	070235.0	15 09	28.3	+07 02	35.0	0.41878	12603	7612	11.3	9386.0	822.0
SDSSJ150952.20+		15 09		+11 10		0.28494	12614	57130	12	1241.0	131.0
SDSSJ150952.20+3		15 09		+11 10		0.28494	12614	57130	12	8256.0	416.0

 $Table\ 2\ continued$

Table 2 (continued)

Target	R.A. Dec.	z Progi	am $T_{\rm exp}$	S/N	$v_{\mathrm{Ly}\alpha}$	$EW_{\text{Ly}\alpha}$	b	=	
Target	10.11. 200.	2 11081	_			-	$({\rm km}{\rm s}^{-1})$		
(1)	(2) (3)	(4) (5)	(ks)	(1238 Å)	$({\rm km}{\rm s}^{-1})$	(mÅ) (9)	,		
<u>(1)</u>			` ′	(7)	(8)		(10)	-	
SDSSJ151237.15+012846.0		+01 28 46.0	0.26625	12603	7590	6.8	2029.0	599.0	
SDSSJ151237.15+012846.0		+01 28 46.0	0.26625	12603	7590	6.8	8575.0	2695.0	
SDSSJ151237.15+012846.0		+01 28 46.0	0.26625	12603	7590	6.8	8661.0	918.0	
SDSSJ151237.15+012846.0		+01 28 46.0	0.26625	12603	7590	6.8	8753.0	755.0	
SDSSJ151237.15+012846.0		+01 28 46.0	0.26625	12603	7590	6.8	8831.0	3947.0	
SDSSJ160519.70+144852.2		+14 48 52.0	0.37210	12614	8374	15.3	9934.0	249.0	
SDSSJ225738.20+134045.0		+13 40 45.0	0.59455	11598	3428	8.8	2582.0	180.0	
SDSSJ225738.20+134045.0		+13 40 45.0	0.59455	11598	3428	8.8	8695.0	97.0	
SDSSJ225738.20+134045.0		+13 40 45.0	0.59455	11598	3428	8.8	8870.0	500.0	
TON1009	09 09 06.1	+32 36 31.0	0.81028	12603	4740	12.4	1908.0	111.0	
TON1009	09 09 06.1	+32 36 31.0	0.81028	12603	4740	12.4	1980.0	243.0	
TON1009	09 09 06.1	+32 36 31.0	0.81028	12603	4740	12.4	4295.0	333.0	
TON1009	09 09 06.1	+32 36 31.0	0.81028	12603	4740	12.4	7917.0	72.0	
TON1009	09 09 06.1	+32 36 31.0	0.81028	12603	4740	12.4	7971.0	69.0	
TON1015	09 10 37.0	+33 29 24.0	0.35400	14240	4774	14.8	611.0	225.0	
TON1015	09 10 37.0	+33 29 24.0	0.35400	14240	4774	14.8	1833.0	244.0	
TON1015	09 10 37.0	+33 29 24.0	0.35400	14240	4774	14.8	1985.0	80.0	
TON1015	09 10 37.0	+33 29 24.0	0.35400	14240	4774	14.8	3369.0	97.0	
TON1187	10 13 03.1	+35 51 22.0	0.07910	12275	1958	20	4491.0	117.0	
TON1187	10 13 03.1	+35 51 22.0	0.07910	12275	1958	20	4567.0	169.0	
TON1187	10 13 03.1	+35 51 22.0	0.07910	12275	1958	20	5666.0	37.0	
TON1187	10 13 03.1	+35 51 22.0	0.07910	12275	1958	20	8008.0	118.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	1790.0	128.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	7394.0	205.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	8791.0	154.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	9072.0	115.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	9148.0	71.0	
TON1364	11 13 59.7	+35 03 06.0	0.34681	14772	4725	10.8	9274.0	146.0	
TON236	15 28 40.6	+28 25 29.0	0.45000	12038	6554	20	2032.0	89.0	
TON236	15 28 40.6	+28 25 29.0	0.45000	12038	6554	20	5325.0	48.0	
TON236	15 28 40.6	+28 25 29.0	0.45000	12038	6554	20	6072.0	25.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	1371.0	454.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	4076.0	39.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	4788.0	39.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	5013.0	128.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	5640.0	39.0	
TON488	10 10 00.7	+30 03 21.0	0.25643	12025	10796	18.9	5729.0	34.0	
TON52	11 04 07.0	+31 41 11.0	0.43572	12248	2982	10.7	1772.0	117.0	
TON52	11 04 07.0	+31 41 11.0	0.43572	12248	2982	10.7	6458.0	54.0	
TON52	11 04 07.0	+31 41 11.0	0.43572	12248	2982	10.7	8359.0	250.0	
TON52	11 04 07.0	+31 41 11.0	0.43572	12248	2982	10.7	8674.0	60.0	
TON52	11 04 07.0	+31 41 11.0	0.43572	12248	2982	10.7	9642.0	191.0	
TON580	11 31 09.5	+31 14 05.0	0.28900	11519	4903	20.2	2509.0	129.0	
TON580	11 31 09.5	+31 14 05.0	0.28900	11519	4903	20.2	8288.0	78.0	
TON605	12 17 52.1	+30 07 01.0	0.13000	13651	7369	27.8	853.0	456.0	
TON605	12 17 52.1	+30 07 01.0	0.13000	13651	7369	27.8	1048.0	305.0	
TON605	12 17 52.1	+30 07 01.0	0.13000	13651	7369	27.8	3781.0	268.0	
TON605	12 17 52.1	+30 07 01.0	0.13000	13651	7369	27.8	9136.0	124.0	
TON605	12 17 52.1	+30 07 01.0	0.13000	13651	7369	27.8	9255.0	74.0	
TON_S180	00 57 20.0	-22 22 56.0	0.06198	D028	24400	31.8	1932.0	70.0	
TON_S180	00 57 20.0	$-22\ 22\ 56.0$	0.06198	D028	24400	31.8	2795.0	61.0	
TON_S180	00 57 20.0	$-22\ 22\ 56.0$	0.06198	D028	24400	31.8	3003.0	45.0	

 $Table\ 2\ continued$

FRENCH & WAKKER

Table 2 (continued)

_											:	
	Target	R.A.	Dec.	\mathbf{z}	Progra	$T_{\rm exp}$	S/N	$v_{{ m Ly}lpha}$	$EW_{\text{Ly}\alpha}$	b		
						(ks)	(1238 Å)	$({\rm kms^{-1}})$	(mÅ)	$({\rm kms^{-1}})$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	_	
TON_S180		00 57	20.0	$-22\ 22$	56.0	0.06198	D028	24400	31.8	5519.0	274.0	
TON_S180		00 57	20.0	$-22\ 22$	56.0	0.06198	D028	24400	31.8	6306.0	59.0	
TON_S180		00 57	20.0	$-22\ 22$	56.0	0.06198	D028	24400	31.8	7039.0	260.0	
TON_S210		01 21	51.6	$-28 \ 20$		0.11600	12204	5047	36.5	5924.0	35.0	
UM228		00 21	01.0	+00 52	47.0	0.09830	13017	1060	7.1	1738.0	126.0	
UM228		00 21		+00 52	47.0	0.09830	13017	1060	7.1	2941.0	77.0	
UM228		00 21	01.0	+00 52	47.0	0.09830	13017	1060	7.1	5491.0	277.0	
UM228		00 21	01.0	+00 52	47.0	0.09830	13017	1060	7.1	5816.0	540.0	
UM228		00 21	01.0	+00 52	47.0	0.09830	13017	1060	7.1	9975.0	121.0	
US136		13 01	00.8	+28 19	44.0	1.36000	13314	13429	14.6	1753.0	93.0	
US136		13 01	00.8	+28 19	44.0	1.36000	13314	13429	14.6	2320.0	93.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	2502.0	80.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	4747.0	57.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	6381.0	50.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	9182.0	179.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	9304.0	192.0	
US136		13 01		+28 19		1.36000	13314	13429	14.6	9691.0	40.0	
US2816		11 42		+30 16		0.48190	12603	4790	10.5	1800.0	100.0	
US2816		11 42		+30 16		0.48190	12603	4790	10.5	2854.0	269.0	
JS2816		11 42		+30 16		0.48190	12603	4790	10.5	3015.0	72.0	
US2816		11 42		+30 16		0.48190	12603	4790	10.5	9607.0	414.0	
JS2816		11 42		+30 16		0.48190	12603	4790	10.5	9666.0	274.0	
JS2816		11 42		+30 16		0.48190	12603	4790	10.5	9744.0	273.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	1190.0	11.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	4983.0	295.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	5028.0	254.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	7704.0	61.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	8335.0	339.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	8480.0	204.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	8547.0	137.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	8955.0	287.0	
JS645		09 29		+46 44		0.23998	12248	2415	19.4	9788.0	155.0	
JVQSJ101629.20-31	5023.6	10 16		-31 50		0.24141	14687	10961	22.4	2012.0	116.0	
JVQSJ101629.20-31		10 16		-31 50		0.24141	14687	10961	22.4	2110.0	37.0	
UVQSJ101629.20-31		10 16		-31 50		0.24141	14687	10961	22.4	2828.0	168.0	
JVQSJ101629.20-31		10 16		-31 50		0.24141	14687	10961	22.4	2901.0	37.0	
JVQSJ101629.20-31		10 16		-31 50		0.24141	14687	10961	22.4	5278.0	31.0	
JVQSJ101629.20-31		10 16		-31 50		0.24141	14687	10961	22.4	8965.0	305.0	
VIIZw348		10 51		+65 59		0.03251	13654	4241	8.8	574.0	146.0	
/IIZw348		10 51		+65 59		0.03251	13654	4241	8.8	1148.0	345.0	
VIIZw348		10 51		+65 59		0.03251	13654	4241	8.8	1795.0	230.0	
/IIZw348		10 51		+65 59		0.03251	13654	4241	8.8	3416.0	671.0	
/IIZw348		10 51		+65 59		0.03251	13654	4241	8.8	3556.0	293.0	
VCom		12 21		$+28 \ 13$		0.10200	14772	2141	9.1	1619.0	58.0	
WCom		12 21		+28 13		0.10200	14772	2141	9.1	2316.0	235.0	
WCom		12 21		+28 13		0.10200	14772	2141	9.1	2540.0	269.0	
WCom		12 21		+28 13		0.10200	14772	2141	9.1	4167.0	61.0	
WCom		12 21		+28 13		0.10200	14772	2141	9.1	4383.0	123.0	
Zw535.012		00 36		+45 39		0.04764	14268	5234	18.9	5071.0	50.0	
Zw535.012		00 36		+45 39		0.04764	14268	5234	18.9	5153.0	178.0	

Note—Summary of COS targets and each measured ${\rm Ly}\alpha$ absorption line in this study.