

 $\mathbf{PAGE}\ 1/3$

MEMO

TITLE Python / TeX Introduction

DATE December 2, 2016

TO John Doe

COPY Jane Doe

FROM Me

PROJECT NO A123456

ADDRESS COWI North America, Inc.

276 5th Avenue

Suite 1006

New York, NY 10001

USA

TEL +1 (646) 545 2125

WWW cowi-na.com

1 My first PyTeX section

Something very technical goes here

We can even have some fancy math!

This is the dispersion relation:

$$\omega^2 = gk \tanh(kh)$$

where,

$$\omega = \frac{2\pi}{T} = \frac{2 \cdot 3.14}{10} = 0.63$$
$$k = \frac{2\pi}{L}$$

Now lets solve it for wave number k with $g = 9.81 \, m/s^2$ and $h = 5 \, m$:

$$0.63^2 = 9.81 \cdot k \cdot tanh(k \cdot 5)$$

Python finds the solution with the iterative Newton-Rhapson method, which gives us:

$$k = 0.09$$

which, in turn, gives us wave length:

$$L = \frac{2\pi}{k} = \frac{2 \cdot 3.14}{0.09} = 67.67 \, m$$

We can also have figures automatically generated!

Figure 1: Square root plot

Figure 2: 10000 normally distributed random values histogram plot