Time Delay Estimation in Gravitationally Lensed Photon Stream Pairs

Michał Staniaszek

Supervisor: Peter Tiňo

July 15, 2013

this is the abstract

1 Introduction

· explain the project in layman's terms

2 Background

- · Ideas behind the project
- · what it's useful for
- · what gravitational lensing and time delay are

3 Photon Stream Simulation

In the early stages of the project, we developed a subsystem which could be used to generate simulated photon stream data to use for the development and testing of the rest of the project. The only property of the photons which we are interested in is their arrival time at our capture device, so the simulator should produce some event vector $\Phi = [\phi_0, \dots, \phi_N], \phi_n \in \mathbb{R}$, where ϕ_n is the arrival time of the nth photon. In order to generate arrival times, we represent the source as some random variable X, which defines the average number of photons per unit time that arrive at the capture device, and whose varies according to the characteristic function of the source object.

The characteristic function of X is modelled as a non-homogeneous Poisson process (NHPP) with continuous function of time, $\lambda(t)$, known as the rate function. The rate function can be specified either by providing an expression which is a function of t, or by sampling from a randomly generated function. Random functions are constructed by uniformly distributing M Gaussians across the interval $[t_0, T]$ in which arrival times are to be generated. Each Gaussian g_i is defined by its mean μ_i , its width σ_i , and its weight w_i , which determines its height. The means of successive Gaussians are separated by some distance Δt , such that $\mu_{m+1} = \mu_m + \Delta t$, where $\mu_0 = 0$. Greater variation in the functions is introduced by sampling the weights w_i from a uniform distribution U(-1,1) and scaling them by some multiplier. The value of the randomly generated function at some time t is computed by a weighted sum of Gaussians.

$$\lambda(t) = \sum_{i=0}^{M} w_i \cdot e^{-(t-\mu_i)^2/2\sigma_i^2}$$
 (1)

Having defined or constructed $\lambda(t)$, photon arrival times are generated from a homogeneous Poisson process (HPP) with constant rate λ , using inverse transform sampling. The waiting time to the next event in a Poisson process is [1]

$$t = -\frac{1}{\lambda}\log(U) \tag{2}$$

where $U \sim U(0,1)$. Knowing this, it is possible to generate successive events of a HPP for any finite interval, from which events for the NHPP can then be extracted by thinning, using Algorithm 1. The number of events added to the event vector Φ in any given interval is proportional to the value of $\lambda(t)$ in that interval; the probability of adding an event is low when $\lambda(t)$ is small, and increases with the value of the rate function.

Algorithm 1 Generating event times for a NHPP by thinning

```
Require: \lambda \geq \lambda(t), t_0 \leq t \leq T

1: \Phi = \emptyset, t = t_0, T = \text{interval length}

2: while t < T do

3: Generate U_1 \sim U(0, 1)

4: t = t - \frac{1}{\lambda} \ln(U_1)

5: Generate U_2 \sim U(0, 1), independent of U_1

6: if U_2 \leq \frac{\lambda(t)}{\lambda} then

7: \Phi \leftarrow t

8: end if

9: end while

10: return \Phi
```

4 Function Estimation

The function estimator subsystem receives input of the event vector Φ , and attempts to reconstruct the rate function. As the photons are emitted by a truly random process, it is only possible to obtain an estimate of the true rate function. In the project, we used two different methods to obtain an estimate.

4.1 Baseline Estimation

Development of the baseline estimator went through several stages. Based on the work of Massey et al.[2], we implemented a system to perform iterative weighted least squares (IWLS) estimates of a set of events. The interval $[t_0, T]$ is split into several sub-intervals, and each is represented by the number of events which occur within it. IWLS produces a linear estimate of the rate function by an iterative process which minimises the sum of squared residuals from an initial estimate of the function.

4.1.1 Piecewise

It is clear that the IWLS estimator alone is not sufficient to complete our task. In order to obtain a reasonable estimate of the characteristic function, we need to be able to estimate a function which is not a straight line. During the development process, we considered the possibility of approximating functions by multiple straight-line estimates, and this estimator is the result. This type of function is known as a piecewise linear function. Extending the approach presented in the previous two sections, we take the interval [0,T], and split it into several sub-intervals. Then, the function underlying each of these sub-intervals is estimated using IWLS. We also add some minor extensions in an attempt to improve the quality of the estimates.

Sub-intervals are estimated starting from the first, and moving to the next once the process is complete. When the estimate is completed, a short interval after the sub-interval being estimated is checked to see how well the estimate for the previous sub-interval matches it. The extension interval is split into several bins. Using a probability density function (PDF), we evaluate the likelihood of obtaining the count Y_k for each bin given the estimate λ at that point. The PDF for a Poisson distribution is calculated by

$$P(Y_k = x) = \frac{\lambda^x e^{-\lambda}}{x!} \tag{3}$$

For each bin, $P(Y_k = x)$ must exceed some threshold. A lower threshold means that lines are less likely to be successfully extended. While this technique is an improvement on using straight lines to estimate functions which are curves, it is still not sufficient, as the resulting function estimate is piecewise disjoint—the estimate for each interval does not connect smoothly into the next, but jumps at the boundary between each sub-interval.

4.1.2 Baseline

As mentioned in the previous section, the piecewise IWLS estimator gives us a piecewise disjoint estimate of the function, but we would like one which is piecewise continuous. In order to do this, the end of each interval estimate must meet the start of the next. The estimate returned by the piecewise estimator has several breakpoints—points where the start of one sub-interval and the end of another meet. If there are L lines that make up the estimate, there will be R=L-1 breakpoints. At each of these breakpoints r, we calculate the value of the previous and subsequent function estimates f, and find their midpoint m with

$$m_i = \frac{f_i(r_i) + f_{i+1}(r_i)}{2}, \quad 0 \le i < R$$
 (4)

The value of m is calculated for each breakpoint. Midpoints are not calculated at time 0 and time T. Instead, the function values at those points are used. Each sub-interval is now represented by a point p at the start and q at the end, each with an x and y coordinate. With these points, we can recalculate each sub-interval estimate f of the form $y = \hat{a} + \hat{b}x$ by replacing y with p_y and x with p_x , and recalculating the gradient \hat{b} and intercept \hat{a} with

$$\hat{b} = \frac{q_y - p_y}{q_x - p_x} \tag{5}$$

$$\hat{a} = p_y - \hat{b} \cdot p_x \tag{6}$$

In this way, each sub-interval estimate links points p and q, giving us a piecewise continuous function estimate, and this step completes the first function estimation method. Figure 1 shows an example of a piecewise and baseline estimate.

4.2 Kernel Density Estimation

The second function estimation method implemented was a kernel density estimator, which uses *kernels* to estimate the probability density of a random variable. A kernel is simply a weighting function, which affects how much a given sample is considered when constructing the function estimate. Since the photon stream data is assumed to be generated by a source whose variability is defined by some random variable, the event times are a sample drawn from the PDF of that variable. We use a Gaussian kernel

$$K(t,\mu) = e^{-(t-\mu)^2/2\sigma^2}$$
(7)

to estimate the PDF, centring a kernel at each photon arrival time ϕ_n by setting $\mu = \phi_n$. The width of the kernel depends on some fixed value σ . We perform a Gauss transform on the N kernels, finding the contribution of all the kernels at M points in time, from which we get an estimate $\hat{\lambda}(t)$ of the characteristic function

$$\hat{\lambda}(t_i) = \sum_{j=1}^{N} K(t_i, \mu_j), \quad i = 1, \dots, M$$
 (8)

Using a larger M gives a higher resolution. Depending on the value of σ used, $\hat{\lambda}(t)$ will be some multiple of the actual function $\lambda(t)$. Thus, the final step is to normalise $\hat{\lambda}(t)$. We split the stream data into B bins with midpoints b and calculate the bin count x for each. We start with the normalisation constant η at a low value, and gradually increase it to some threshold, finding

$$\sum_{i=1}^{B} \log \left(\frac{\phi^x e^{-\phi}}{x!} \right), \quad \phi = \eta \cdot \hat{\lambda}(b_i)$$
 (9)

for each value of η . The value of η which maximises this sum of log Poisson PDFs is used to normalise $\hat{\lambda}(t)$ in subsequent computations. Figure ?? shows an example of a kernel density estimate, and displays a weakness in the estimator. As one moves towards the start or end of the interval, fewer Gaussians make a noticeable contribution to the function calculation, resulting in a drop-off of the estimate.

5 Time Delay Estimation

Once we are able to estimate the characteristic function of photon streams, we can use these estimates to compute an estimate of the time delay between two streams. If the two streams come from the same source, then they should have the same characteristic function, but delayed by some value Δ . Our estimates of the characteristic function will differ for both streams due to the fact that the number of photon arrivals in each bin will be different for each stream, but each should look relatively similar. In this section we present two methods for estimating the time delay between a pair of streams based on their function estimates.

Both of the estimators work by starting Δ at $-\Delta_{max}$, and increment it by some step until reach $+\Delta_{max}$ is reached, using a metric to evaluate how good the estimate is with that value. It is important to note that the value of Δ_{max} defines the interval in which the metric is computed. The need for calculation only in some specific interval should be clear—if one function is shifted by Δ , and both functions have the same time interval, then there will be an interval of length Δ at either end of the range in which only one of the function estimates has values. As such, the metric can only be computed in the overlapping area. Varying Δ changes the overlapping interval. Setting $\Delta=0$ minimises the value, and $\Delta=\pm\Delta_{max}$ maximises

it. Performing calculations on different interval lengths would require the value of the metric for longer intervals to be scaled to that of the shortest. To make useful comparisons, we must perform calculations only on the interval in which the two functions overlap for all values of Δ . Imposing this constraint means that the value of $\Delta_{\rm max}$ can never exceed the interval length $T_{\rm est}$ in which we are performing the estimate. We are left with the constraints $T_{\rm est} = [t_0 + \Delta_{\rm max}, T - \Delta_{\rm max}], \ \Delta_{\rm max} < T$ on the interval and the maximum value of Δ .

5.1 Area Method

The first of the two methods uses a very simple metric to estimate the time delay. By taking the two function estimates, we can attempt to match up the two functions so that they "fit together" best. The goodness of fit can be determined by the area between the two functions $\hat{\lambda}_1$ and $\hat{\lambda}_2$, calculated by

$$d(\hat{\lambda}_1, \hat{\lambda}_2) = \int (\hat{\lambda}_1(t) - \hat{\lambda}_2(t + \Delta))^2 dt$$

$$\approx \frac{1}{N} \sum_{i=1}^N (\hat{\lambda}_1(t) - \hat{\lambda}_2(t + \Delta))^2$$
(10)

for each value of Δ . Our estimate of Δ is set to the value at which $d(\hat{\lambda}_1, \hat{\lambda}_2)$ is minimised. Rather than using an integral to get the exact area between the functions, we use a less computationally expensive discrete approximation.

5.2 PDF Method

The second method of estimation is using probability density functions. As before, we guess a value of Δ between $-\Delta_{max}$ and $+\Delta_{max}$ and shift $\hat{\lambda}_2$ by that amount. However, we know that there must be a single characteristic function, and we want to see how well our estimate of that matches the bin counts in each stream. We make an "average" function $\bar{\lambda}$ by combining the two function estimates we have, $\hat{\lambda}_1$ and $\hat{\lambda}_2$ (which is shifted by Δ).

$$\bar{\lambda}(t) = \frac{\hat{\lambda}_1(t) + \hat{\lambda}_2(t + \Delta)}{2} \tag{11}$$

The point on $\bar{\lambda}$ at time t is the midpoint between the values of the two estimates at that time. Once we have $\bar{\lambda}$, we can assign some score to the current estimate of the value of Δ .

$$\log P(S_A, S_B \mid \bar{\lambda}(t)) = \sum_{t=\Delta_{\text{max}}}^{T-\Delta_{\text{max}}} \log P(S_A(t) \mid \bar{\lambda}(t)) + \log P(S_B(t+\Delta) \mid \bar{\lambda}(t))$$
(12)

Here, we calculate the probability that the function $\bar{\lambda}$ is the characteristic function of the two streams S_A and S_B . The streams are split into bins, and the log probability of the number of events in each bin given the value of λ calculated for that bin is computed and summed over all bins, as in Equation (9).

The calculation of λ is slightly more complicated than just taking its value at the midpoint of each bin. Since we are considering a number of events occurring in a given interval, we must consider the value of λ for the same interval. In order to do this, we use a discrete approximation of integrating $\lambda(t)$ over the

interval.

$$\lambda_{a,b} = \int_{a}^{b} \lambda(t) \, dt \tag{13}$$

In the approximation t is incremented by some finite step for each successive value. The smaller the value of the step the more accurate the approximation of $\lambda_{a,b}$ becomes. As with the previous estimator, the estimate is made in two stages, first with a coarse pass over the values of delta to compute an initial estimate, and then a finer second pass around the first estimated value in order to refine the estimate.

6 Experimental Results

- general explanation of the experiments performed
- · how was model selection done
- what sort of data were experiments performed on

7 System

• very brief explanation of the system features

8 Conclusion

• some suggestions for extensions

References

- [1] Donald E. Knuth. *The Art Of Computer Programming, Volume 2: Seminumerical Algorithms, 3/E.* 1998. Chap. 3.4.1.
- [2] William A Massey, Geraldine A Parker, and Ward Whitt. "Estimating the parameters of a nonhomogeneous Poisson process with linear rate". In: *Telecommunication Systems* 5.2 (1996), pp. 361–388.

¹ FOOTNOTE DEFINITION NOT FOUND: 1