Função Exponencial: Crescimento e Decaimento

Professor: Jefferson

Nome: _____ Turma: ____

1. Conceito

Uma função exponencial é expressa por:

$$f(x) = a \cdot b^x$$
 ou $y = a \cdot b^x$

onde:

- a é o valor inicial $(a \neq 0)$
- b é a base $(b > 0, b \neq 1)$
- x é o expoente (variável independente)

Exemplos Característicos

- Crescimento: $f(x) = 2^x$ (a = 1, b = 2)
- Decaimento: $g(x) = 3 \cdot (\frac{1}{2})^x$ (a = 3, b = 0.5)
- Com deslocamento: $h(x) = 2^x 1$

2. Gráfico: Curva Exponencial

Características principais:

- Forma: Curva suave que cresce/decai rapidamente
- Assíntota horizontal: y = k (geralmente y = 0)
- Intercepto y: (0, a)

3. Comportamento da Função

- Base b > 1:
 - Função crescente
 - Domínio: R
 - Imagem: $(0, +\infty)$
- Base 0 < b < 1:
 - Função decrescente

- Domínio: R

- Imagem:
$$(0, +\infty)$$

4. Propriedades Fundamentais

Para a > 0 e b > 0 $(b \neq 1)$:

$$1. b^{x+y} = b^x \cdot b^y$$

2.
$$b^{x-y} = \frac{b^x}{b^y}$$

$$3. (b^x)^y = b^{x \cdot y}$$

4.
$$a^x = b^{x \cdot \log_b a}$$

5. Zero da Função

A função exponencial nunca tem zeros quando:

$$f(x) = a \cdot b^x \quad (a \neq 0, b > 0)$$

Pois $b^x > 0$ para todo $x \in R$.

Exceção com Transformações

Se houver deslocamento vertical:

$$f(x) = a \cdot b^x + k$$

O zero ocorre quando:

$$a \cdot b^x + k = 0 \Rightarrow b^x = -\frac{k}{a}$$

(Só existe solução se $-\frac{k}{a} > 0$)

6. Aplicações Práticas

Crescimento Populacional

Modelo de crescimento:

$$P(t) = P_0 \cdot e^{rt}$$

onde:

- P_0 : população inicial
- r: taxa de crescimento
- t: tempo

Decaimento Radioativo

Modelo de decaimento:

$$m(t) = m_0 \cdot e^{-kt}$$

onde:

- m_0 : massa inicial
- k: constante de decaimento

7. Exercícios Básicos (1-10)

- 1. Classifique como crescimento ou decaimento:
 - a) $f(x) = 3^x$
 - b) $g(x) = (\frac{1}{4})^x$
- 2. Determine o valor inicial e a base:
 - a) $y = 5 \cdot 2^x$
 - b) $f(x) = \frac{1}{3} \cdot (0.8)^x$
- 3. Calcule:
 - a) $2^3 \cdot 2^4$
 - b) $\frac{5^6}{5^2}$
- 4. Esboce os gráficos de:
 - a) $f(x) = 2^x$
 - b) $g(x) = (\frac{1}{2})^x$
- 5. Resolva as equações:
 - a) $2^x = 8$
 - b) $3^{x-1} = 27$

8. Exercícios Intermediários (11-20)

- 6. Determine o domínio e imagem:
 - a) $f(x) = e^x + 1$
 - b) $g(x) = -2 \cdot 3^x$
- 7. Aplicações:
 - a) Uma população cresce segundo $P(t) = 1000 \cdot 1.05^t$. Qual o tamanho após 10 anos?
 - b) Uma substância decai segundo $m(t) = 50 \cdot 0.8^t$. Quando restará 10g?
- 8. Transforme em base e:
 - a) 4^{x}
 - b) 10^{2x-1}
- 9. Compare as funções:

- a) Qual cresce mais rápido: 2^x ou 3^x ?
- b) Qual decai mais rápido: $(0.5)^x$ ou $(0.3)^x$?
- 10. Problemas:
 - a) Se $f(x) = a \cdot b^x$ passa por (0,3) e (2,12), encontre $a \in b$
 - b) Um investimento rende 7% ao ano. Escreva a função valor futuro

9. Exercícios Avançados (21-30)

- 11. Resolva as inequações:
 - a) $2^{x+1} > 16$
 - b) $(\frac{1}{3})^x \le 9$
- 12. Funções compostas:
 - a) Se $f(x) = e^{2x}$, calcule $f(\ln 3)$
 - b) Determine $f^{-1}(x)$ para $f(x) = 5 \cdot 3^x$
- 13. Modelagem:
 - a) A meia-vida do Césio-137 é 30 anos. Escreva a função decaimento
 - b) Se uma cultura bacteriana dobra a cada 2h, quanto tempo para 10x o inicial?
- 14. Desafios:
 - a) Prove que $e^x \ge x + 1$ para todo $x \in R$
 - b) Resolva $2^x + 2^{-x} = 3$
- 15. Problemas complexos:
 - a) Um carro vale \$20,000 e deprecia 15% ao ano. Quando valerá \$8,000?
 - b) A pressão atmosférica P(h) a h km de altitude é $P(h)=P_0e^{-kh}$. Se a 5km é 60% de P_0 , encontre k

Gabarito Parcial

${f Quest\~ao}$	Resposta	Questão
1a)	Crescimento	16a)
a = 3, b = 2		•
1b)	Decaimento	16b)
$V(t) = V_0(1.07)^t$		
2a)	a = 5, b = 2	17a)
x > 2		
2b)	$a = \frac{1}{3}, b = 0.8$	17b)
$x \ge -2$		
3a)	128	18a)
9		i
3b)	625	18b)
$f^{-1}(x) = \log_3(x/5)$		1
4a)	Gráfico crescente	19a)
$m(t) = m_0(0.5)^{t/30}$		
5a)	x = 3	20a)
$\approx 7.4 \text{ anos}$		
5b)	x = 4	20b
$k \approx 0.102$		