# YOLOv3: An Incremental Improvement

Joseph Redmon

#### Introduction

- Tech report

- 작은 변화만을 적용시켜 성능을 조금 향상시킴.

- 솔직히 다른 연구에 매진하느라 YOLO에 대해 작은 향상만 이뤘다고 함.

# **Bounding Box Prediction**

- 기존과 같이 dimension cluster를 통해 anchor box를 이용.
- 네트워크는 bounding box의 x, y, w, h를 예측함.
- 다음과 같은 Squared error loss를 이용.

$$b_x = \sigma(t_x) + c_x$$

$$b_y = \sigma(t_y) + c_y$$

$$b_w = p_w e^{t_w}$$

$$b_h = p_h e^{t_h}$$



- 이는 기존 anchor box가 속한 grid cell에서 벗어나지 않도록 한다.

(tx, ty 값에 sigmoid function을 사용하기 때문에 변화 값이 0~1 사이의 값이 나옴)

# **Bounding Box Prediction**

- Objectness score(confidence)를 기존과 달리 logistic regression을 이용함.

Ground truth와 가장 overlap이 많이 되는 bounding box가 1의 값을 가짐.

- Ground truth 1개당 1개의 bounding box가 할당되도록 함.

다른 detection의 경우 ground truth당 여러 개의 bounding box가 할당됨.

#### **Class Prediction**

- YOLO v3는 기존과 달리 multilabel classification을 적용시킴.

- 하지만 softmax는 많은 class 중 오직 1개만을 선택하는 문제가 있음.

- 그래서 softmax 대신에 logistic regression을 이용함.

- 즉 (person, woman)과 같이 multi classification을 가능하게 하기 위해 각 class에 대해 logistic regression 적용으로 0 ~ 1의 값을 부여하고 threshold를 사용함.

#### **Prediction Across Scales**

- YOLO v3는 3개의 스케일에 대해 bounding box들을 예측 (feature pyramid networks)

- 각 grid cell마다 3개의 bounding box를 예측함.

- 1개의 bounding box당 85개 값을 가짐 ( 4 bbox offset, 1 objectness pred, 80 class pred ) 즉 1 scale에 N x N x [ 3 \* (4+1+80) ]의 값을 가짐.



#### **Prediction Across Scales**

사용할 dataset을 clustering 해서 최적의 anchor box의 개수와 크기를 정함.
 (v3에서는 9개 선정)

- YOLO v1:7 x 7 grid cell x 2 bbox -> total 98 bounding box. (recall이 낮음)
- YOLO v2: 13 x 13 grid cell x 5 bbox -> total 845 bounding box.
- YOLO v3: ((52 x 52) + (26 x 26) + (13 x 13)) grid cell x 3 bbox -> 10647 bounding box.

### **Feature Extractor**



# **Training**

- Full images를 대상으로 트레이닝 했고 hard negative mining을 하지 않았음.
- 다른 detection의 경우 classification에 있어 background라는 class가 있음.
- Object가 있는 데이터보다 없는 데이터가 훨씬 많기 때문에 문제가 됨.
- 그래서 이런 문제를 해결하기 위해 hard negative를 사용.
- YOLO의 경우 objectness score를 thresholding함.

(background class를 필요로 하지 않음)

## **How We Do**

|                           | backbone                 | AP   | $AP_{50}$ | $AP_{75}$ | $AP_S$ | $AP_M$ | $AP_L$ |
|---------------------------|--------------------------|------|-----------|-----------|--------|--------|--------|
| Two-stage methods         |                          |      |           |           |        |        |        |
| Faster R-CNN+++ [5]       | ResNet-101-C4            | 34.9 | 55.7      | 37.4      | 15.6   | 38.7   | 50.9   |
| Faster R-CNN w FPN [8]    | ResNet-101-FPN           | 36.2 | 59.1      | 39.0      | 18.2   | 39.0   | 48.2   |
| Faster R-CNN by G-RMI [6] | Inception-ResNet-v2 [21] | 34.7 | 55.5      | 36.7      | 13.5   | 38.1   | 52.0   |
| Faster R-CNN w TDM [20]   | Inception-ResNet-v2-TDM  | 36.8 | 57.7      | 39.2      | 16.2   | 39.8   | 52.1   |
| One-stage methods         |                          |      |           |           |        |        |        |
| YOLOv2 [15]               | DarkNet-19 [15]          | 21.6 | 44.0      | 19.2      | 5.0    | 22.4   | 35.5   |
| SSD513 [11, 3]            | ResNet-101-SSD           | 31.2 | 50.4      | 33.3      | 10.2   | 34.5   | 49.8   |
| DSSD513 [3]               | ResNet-101-DSSD          | 33.2 | 53.3      | 35.2      | 13.0   | 35.4   | 51.1   |
| RetinaNet [9]             | ResNet-101-FPN           | 39.1 | 59.1      | 42.3      | 21.8   | 42.7   | 50.2   |
| RetinaNet [9]             | ResNeXt-101-FPN          | 40.8 | 61.1      | 44.1      | 24.1   | 44.2   | 51.2   |
| YOLOv3 $608 \times 608$   | Darknet-53               | 33.0 | 57.9      | 34.4      | 18.3   | 35.4   | 41.9   |

## 정리

#### 특징

- 본 논문은 v2 이후에 개선점을 통해 발표한 tech report.

- 성능적으로는 개선을 시켰지만, 속도는 오히려 조금 떨어짐.

- Bbox의 개수를 이전 버전들보다 상당히 많이 증가시켰고 multi scale prediction을 수행.

## 참고 링크

https://www.slideshare.net/JinwonLee9/pr207-yolov3-an-incremental-improvement

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b