WALMART STORES SALES ANALYSIS

In [3]: import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import plotly.io as pio import plotly.colors as colors pio.templates.default="plotly_white"

In [5]: data=pd.read_csv('ecommerce.csv',encoding='latin-1')

In [7]: data.head()

		- (/										
	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	•••	Posta Cod
0	1	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		4242
ı	2	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		4242
2	3	CA- 2016- 138688	6/12/2016	6/16/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles		9003
3	4	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer		Fort Lauderdale		3331
4	5	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		3331
5 r	ows × 2	21 colum	ns									

In [9]: data.describe()

In [11]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):

Column Non-Null Count Dtype --------0 Row ID 9994 non-null int64 1 Order ID 9994 non-null object Order Date 9994 non-null object Ship Date 9994 non-null object Ship Mode 9994 non-null object 2 4 5 Customer ID 9994 non-null object 6 Customer Name 9994 non-null object 7 Segment 9994 non-null object 8 Country 9994 non-null object 9 City 9994 non-null object 10 State 9994 non-null object 11 Postal Code 9994 non-null int64 12 Region 9994 non-null object
13 Product ID 9994 non-null object
14 Category 9994 non-null object
15 Sub-Category 9994 non-null object 16 Product Name 9994 non-null object

 17 Sales
 9994 non-null
 float64

 18 Quantity
 9994 non-null
 int64

 19 Discount
 9994 non-null
 float64

 20 Profit
 9994 non-null
 float64

 dtypes: float64(3), int64(3), object(15) memory usage: 1.6+ MB

In [13]: data.isnull().sum()

Out[13]: Row ID Order ID Order Date 0 Ship Date 0 Ship Mode 0 Customer ID 0 Customer Name Segment 0 Country 0 City State 0 Postal Code Region 0 Product ID 0 Category 0 Sub-Category 0 Product Name 0 Sales Quantity 0

dtype: int64

0

Discount

Profit

```
In [15]: data['Order Date']=pd.to_datetime(data['Order Date'])
               data['Ship Date']=pd.to_datetime(data['Ship Date'])
In [17]: data.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 9994 entries, 0 to 9993
            Data columns (total 21 columns):
             # Column Non-Null Count Dtype
             0 Row ID 9994 non-null int64
1 Order ID 9994 non-null object
             2 Order Date 9994 non-null datetime64[ns]
3 Ship Date 9994 non-null datetime64[ns]
4 Ship Mode 9994 non-null object
5 Customer ID 9994 non-null object
              6 Customer Name 9994 non-null object
             7 Segment 9994 non-null object
8 Country 9994 non-null object
9 City 9994 non-null object
10 State 9994 non-null object
             10 State 9994 non-null object
11 Postal Code 9994 non-null int64
12 Region 9994 non-null object
13 Product ID 9994 non-null object
14 Category 9994 non-null object
15 Sub-Category 9994 non-null object
16 Product Name 9994 non-null object
17 Cales 9994 non-null object
             17 Sales 9994 non-null float64
18 Quantity 9994 non-null int64
19 Discount 9994 non-null float64
20 Profit 9994 non-null float64
            dtypes: datetime64[ns](2), float64(3), int64(3), object(13)
            memory usage: 1.6+ MB
In [19]: data['Order Month']=data['Order Date'].dt.month
               data['Order Year']=data['Order Date'].dt.year
               data['Order Day of Week']=data['Order Date'].dt.dayofweek
In [21]: data.head()
```

	ı	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	•••	Category	Cat
	0	1	CA- 2016- 152156		2016- 11-11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		Furniture	Воо
	1	2	CA- 2016- 152156		2016- 11-11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		Furniture	
	2	3	CA- 2016- 138688		2016- 06-16	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles			
	3	4	US- 2015- 108966		2015- 10-18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		Furniture	
	4	5	US- 2015- 108966		2015- 10-18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		Office Supplies	St
į	5 rows × 24 columns													
	4													•

Monthly sales analysis

```
In [23]: monthly_sales=data.groupby('Order Month')['Sales'].sum()
         print(monthly_sales)
       Order Month
             94924.8356
       2
             59751.2514
       3
            205005.4888
            137762.1286
            155028.8117
       5
            152718.6793
       6
            147238.0970
           159044.0630
       8
           307649.9457
200322.9847
       9
       10
           352461.0710
       11
       12 325293.5035
       Name: Sales, dtype: float64
In [25]: monthly_sales=data.groupby('Order Month')['Sales'].sum().reset_index()
        fig=px.line(monthly_sales,
                    x='Order Month',
                    y='Sales',
                    title='Monthly Sales Analysis')
         fig.show()
```

Monthly Sales Analysis

While there are some fluctuations, the general trend seems to be positive, with sales increasing over the year. *There's a notable dip in sales early in the year (january & February), followed by a period of relative stability.* *The most significant growth occurs in the latter half of the year, with a peak around November*

Sales Analysis by Category

Sales Analysis by Category

Technology products are the highest performing category, accounting for 36.4% of overall sales. *Furniture and Office Supplies have similar sales contributions, with 32.3% and 31.3%, respectively.* *The sales distribution across the three categories is relatively balanced. No single category overwhelmingly dominates the others, suggesting a diversified product offering.*

Sales Analysis by Sub Category

```
In [33]: sub_cate=data.groupby('Sub-Category')['Sales'].sum().reset_index()
         print(sub_cate)
          Sub-Category
       0 Accessories 167380.3180
          Appliances 107532.1610
       1
                 Art 27118.7920
       3
             Binders 203412.7330
       4
           Bookcases 114879.9963
       5
               Chairs 328449.1030
              Copiers 149528.0300
       6
           Envelopes 16476.4020
       7
       8
           Fasteners 3024.2800
       9 Furnishings 91705.1640
10 Labels 12486.3120
             Machines 189238.6310
       11
             Paper 78479.2060
Phones 330007.0540
       12
       14
              Storage 223843.6080
       15
            Supplies 46673.5380
       16
                Tables 206965.5320
In [35]: fig=px.bar(sub_cate,x='Sub-Category',y='Sales',title='Sales Analysis by Sub Category')
         fig.update_layout(title_x=0.44)
         fig.show()
```


The sub-categories with the highest sales are Chairs and Phones, both exceeding 200k in sales. This indicates that these two product categories are the top performers in terms of sales.

Monthly Profit Analysis

```
In [37]: monthly_profit=data.groupby('Order Month')['Profit'].sum()
         print(monthly_profit)
        Order Month
        1
               9134.4461
        2
              10294.6107
        3
              28594.6872
        4
              11587.4363
        5
              22411.3078
              21285.7954
        7
              13832.6648
        8
              21776.9384
        9
              36857.4753
        10
              31784.0413
              35468.4265
        11
        12
              43369.1919
        Name: Profit, dtype: float64
In [71]: monthly_profit=data.groupby('Order Month')['Profit'].sum().reset_index()
         fig=px.line(monthly_profit,
                     x='Order Month',
                     y='Profit',
                     title='Monthly Profit Analysis')
         fig.update_traces(line_color='green')
         fig.update_layout(
             plot_bgcolor='wheat',title_x=0.44)
         fig.show()
```

Monthly Profit Analysis

Slow early-year growth: Profit slowly increase from January to February *Mid-year fluctuations: Profit stability with some fluctuations from March to July.* *Late-year surge: Noticeable profit increase from August to December, with a peak in December.*

Profit Analysis by Category

Profit Analysis by Category

^{*}Technology category has the highest profit share at 50.8%* *Office Supplies account for 42.8% of the total profit, which is substantial* *Furniture contributes the least to profit at 6.4%.*

Comparative Analysis of Sales and Profit Across Categories

Technology and Office Supplies: These categories are key drivers of profitability, with technology leading in both sales and profit contributions.

Furniture: Despite having a significant share of sales, the profit margins in this category are much lower. This highlights a need to review pricing strategies or cost management for furniture products.

Profit Analysis by Sub Category

```
sub_cate_profit=data.groupby('Sub-Category')['Profit'].sum().reset_index()
In [118...
         print(sub_cate_profit)
         fig=px.bar(sub_cate_profit,x='Sub-Category',y='Profit',title='Profit Analysis by Sub Category')
         fig.update_layout(title_x=0.44)
         fig.show()
           Sub-Category
                            Profit
          Accessories 41936.6357
        0
            Appliances 18138.0054
                  Art 6527.7870
        2
        3
               Binders 30221.7633
        4
             Bookcases -3472.5560
               Chairs 26590.1663
        5
               Copiers 55617.8249
        6
        7
            Envelopes 6964.1767
        8
                        949.5182
             Fasteners
           Furnishings 13059.1436
        9
        10
               Labels 5546.2540
             Machines 3384.7569
        11
                Paper 34053.5693
        13
               Phones 44515.7306
        14
               Storage 21278.8264
        15
             Supplies -1189.0995
        16
               Tables -17725.4811
```

Profit Analysis by Sub Category

The sub-category "Copiers" stands out with the highest profit, reaching approximately 40k. This indicates that copiers are a highly profitable product line.

Sub-categories such as "Accessories" and "Phones" also show high profits, both around 30k.

Underperformers: "Tables" show significant losses(around -20k), and sub-categories like "Bookcases" and "Supplies" have low or negative profits.

Comparative Analysis of Sales and Profit Across Sub Categories

1. High Sales but Low/Negative Profit Sub-Categories:

- *Tables: This sub-category has significant sales but shows a negative profit, indicating high costs or inefficiencies. Bookcases: Another sub-category with decent sales but very low or negative profits, suggesting pricing or cost management issues.*
- 2. High Sales and High Profit Sub-Categories:
- *Chairs: This sub-category has high sales and high profit, making it one of the best-performing sub-categories. Phones: This sub-category also shows strong sales and decent profits, indicating it is another well-performing area.*
- 3. Low Sales but High Profit Sub-Categories:
- *Copiers: Despite relatively low sales compared to other sub-categories, this sub-category shows significant profit, suggesting a high profit margin.*
- 4. Low Sales and Low/Negative Profit Sub-Categories:
- *Fasteners and Supplies: Both have low sales and negligible or negative profits, indicating underperformance or lack of demand.*
- 5. Consistently Strong Sub-Categories:
- *Accessories and Storage: These sub-categories show moderate-to-high sales and maintain steady profits, indicating a balanced performance.*

Sales and Profit Analysis by Customer Segment

```
sales_profit_by_segment=data.groupby('Segment').agg({'Sales':'sum','Profit':'sum'}).reset_index()
In [151...
          sales_profit_by_segment
                                             Profit
Out[151...
                Segment
                                 Sales
               Consumer 1.161401e+06 134119.2092
           1
                Corporate 7.061464e+05
                                        91979.1340
           2 Home Office 4.296531e+05 60298.6785
In [153... sales_profit_by_segment = data.groupby('Segment').agg({'Sales': 'sum', 'Profit': 'sum'}).reset_index()
          fig = px.bar(sales_profit_by_segment,
                       x='Segment',
y=['Sales', 'Profit'],
                        title='Sales and Profit Analysis by Customer Segment',
                        labels={'value': 'Amount', 'Segment': 'Customer Segment'})
           fig.show()
```

Sales and Profit Analysis by Customer Segment

The Consumer segment is the most profitable and generates the highest sales. This segment appears to be the company's primary focus, performing well in terms of both revenue and profitability.

The Home Office segment is the weakest performer in both sales and profit.