| 11.1 Our aim is to estimate the parameters of the simultaneous equations model $y_1 = \alpha_1 y_2 + e_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$ We assume that $x_1$ and $x_2$ are exogenous and uncorrelated with the error terms $e_1$ and $e_2$ .  a. Solve the two structural equations for the reduced-form equation for $y_2$ , that is, $y_2 = \pi_1 x_1 + \pi_2 x_2 + \nu_2$ . Express the reduced-form parameters in terms of the <b>structural</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| parameters and the reduced-form error in terms of the structural parameters and $e_1$ and $e_2$ . Show that $y_2$ is correlated with $e_1$ .  b. Which equation parameters are consistently estimated using OLS? Explain.  c. Which parameters are "identified," in the simultaneous equations sense? Explain your reasoning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| d. To estimate the parameters of the reduced-form equation for y <sub>2</sub> using the method of moments (MOM), which was introduced in Section 10.3, the two moment equations are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| $N^{-i}\sum x_{ii}(y_2-\pi_ix_{i1}-\pi_2x_{i2})=0$ $N^{-i}\sum x_{i2}(y_2-\pi_ix_{i1}-\pi_2x_{i2})=0$ Explain why these two moment conditions are a valid basis for obtaining consistent estimators of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| the reduced-form parameters.  e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared errors function for $y_2 = \pi_1 x_1 + \pi_2 x_2 + \nu_2$ and find the first derivatives. Set these to zero and show that they are equivalent to the two equations in part (d).  f. Using $\sum_{r_1}^{\lambda_1} = 1$ , $\sum_{r_2}^{\lambda_2} = 1$ , $\sum_r x_1 x_2 = 0$ , $\sum_r x_1 y_2 = 2$ , $\sum_r x_1 y_2 = 3$ , $\sum_r x_2 y_1 = 3$ , and the two moment conditions in part (d) show that the MOM/OLS estimates of $\pi_1$ and $\pi_2$ are $\hat{\pi}_1 = 3$ and $\hat{\pi}_2 = 4$ .  g. The fitted value $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$ . Explain why we can use the moment condition $\sum_r \hat{y}_2(y_1 - \alpha_1 y_2) = 0$ as a valid basis for consistently estimating $\alpha_1$ . Obtain the IV estimate |  |  |  |  |  |
| $\sum_{j_2} (y_{11} - \alpha_1 y_{22}) = 0$ as a valid basis for consistently estimating $\alpha_1$ . Obtain the IV estimate of $\alpha_1$ .  h. Find the 2SLS estimate of $\alpha_1$ by applying OLS to $y_1 = \alpha_1 \hat{y}_2 + e_1^*$ . Compare your answer to that in part (g).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |



Demand: 
$$Q_i = \alpha_1 + \alpha_2 P_i + e_{di}$$
, Supply:  $Q_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + e_{si}$ 

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on these variables are in Tab

- a. Derive the algebra  $P = \pi_1 + \pi_2 W + \nu_1,$ parameters.

  b. Which structural par "identified"?
- c. The estimated reduc
- tified structural parar d. Obtain the fitted valu of the demand equati

| ty, $P$ is the price, and $W$ is the wage rate, which is assumed exogenous. Data on                                                                                                                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Table 11.7.                                                                                                                                                                                                                                        |  |  |  |  |
| TABLE 11.7 Data for Exercise 11.16                                                                                                                                                                                                                 |  |  |  |  |
| Q $P$ $W$                                                                                                                                                                                                                                          |  |  |  |  |
| 4 2 2<br>6 4 3                                                                                                                                                                                                                                     |  |  |  |  |
| 9 3 1<br>3 5 1<br>8 8 3                                                                                                                                                                                                                            |  |  |  |  |
| ebraic form of the reduced-form equations, $Q = \theta_1 + \theta_2 W + \nu_2$ and $\nu_1$ , expressing the reduced-form parameters in terms of the structural                                                                                     |  |  |  |  |
| parameters can you solve for from the results in part (a)? Which equation is                                                                                                                                                                       |  |  |  |  |
| duced-form equations are $\hat{Q} = 5 + 0.5W$ and $\hat{P} = 2.4 + 1W$ . Solve for the identral arameters. This is the method of <b>indirect least squares</b> . alues from the reduced-form equation for $P$ , and apply 2SLS to obtain estimates |  |  |  |  |
| uation.                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                    |  |  |  |  |

| <ul> <li>11.17 Example 11.3 introduces Klein's Model I.</li> <li>a. Do we have an adequate number of IVs to estimate each equation? Check the necessary condition for the identification of each equation. The necessary condition for identification is that in a system of <i>M</i> equations at least <i>M</i> – 1 variables must be omitted from each equation.</li> <li>b. An equivalent identification condition is that the number of excluded exogenous variables from the equation must be at least as large as the number of included right-hand side endogenous variables. Check that this condition is satisfied for each equation.</li> <li>c. Write down in econometric notation the first-stage equation, the reduced form, for W<sub>1r</sub>, wages of workers earned in the private sector. Call the parameters π<sub>1</sub>, π<sub>2</sub>,</li> <li>d. Describe the two regression steps of 2SLS estimation of the consumption function. This is not a question about a computer software command.</li> <li>e. Does following the steps in part (d) produce regression results that are identical to the 2SLS estimates provided by software specifically designed for 2SLS estimation? In particular, will the <i>t</i>-values be the same?</li> </ul> |  |  |  |  |  |  | m eess. |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|---------|--|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |         |  |  |  |  |  |  |  |  |