

X2-Class HiPerFET™ **Power MOSFET**

IXFH80N65X2-4

= 650V $I_{D25} = 80A$ $R_{DS(on)} \le 38m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

s	TO-247-4L	
03		
ngs	D S Ss	
193	Ğ	(D)Tab

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}=25^{\circ}{\rm C}$ to 150°C	650	V	
\mathbf{V}_{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	650	V	
V _{GSS}	Continuous	±30	V	
\mathbf{V}_{GSM}	Transient	±40	V	
I _{D25}	T _c = 25°C	80	А	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	160	Α	
I _A	T _c = 25°C	20	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	3	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P _D	T _c = 25°C	890	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		6	g	

S = Source	G = Gate
D = Drain	Ss = Source Sense

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

		Chara Min.	acteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	650			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.5		5.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			38	mΩ

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions C		Char	Characteristic Values		
$(T_J = 25$ °C, Unless Otherwise Specified) Min.		Min.	Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	33	55	S	
R _{Gi}	Gate Input Resistance		0.6	Ω	
C _{iss}			8300	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		5010	pF	
C _{rss}			1.6	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		280	pF	
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1160	pF	
t _{d(on)}	Resistive Switching Times		32	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		24	ns	
t _{d(off)}	$R_{G} = 3\Omega$ (External)		70	ns	
t,	Ti _G = 052 (External)		11	ns	
$Q_{g(on)}$			140	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		50	nC	
Q _{gd}			40	nC	
R _{thJC}				0.14 °C/W	
R _{thCS}			0.21	°C/W	

Source-Drain Diode

Symbol Test Conditions		Characteristic Values			
(T _J = 25°C, Unless Otherwise Specified)		Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			80	Α
SM	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			320	Α
V _{sD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{ll} \mathbf{t}_{rr} & & \\ \mathbf{Q}_{RM} & & \\ \mathbf{I}_{RM} & & \end{array} ight. ight.$	$I_F = 40A$, -di/dt = 100A/ μ s $V_R = 100V$		200 1.7 16.7		ns µC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

1ms

10ms

1,000

100

V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

0.1

10

ID - Amperes

T_J = 150°C

T_C = 25°C Single Pulse

IXFH80N65X2-4

TO-247 - 4L Outline

CVM	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
Α	.189	.205	4.80	5.20	
A1	.090	.098	2.30	2.50	
A2	.075	.083	1.90	2.10	
q	.043	.055	1.10	1.40	
b1	.063	.071	1.60	1.80	
O	.020	.031	0.50	0.80	
D	.819	.839	20.80	21.30	
D1	.630	.670	16.00	17.00	
D2	.118	.138	3.00	3.50	
Е	.620	.636	15.75	16.15	
E1	.531	.559	13.50	14.20	
E2	.169	.193	4.30	4.90	
е	.100	100 BSC		BSC	
e1	.200 BSC		5.08 BSC		
L	.780	.799	19.80	20.30	
L1	.157	.177	4.00	4.50	
ØΡ	.140	.144	3.55	3.65	
ØP1	.280	.287	7.10	7.30	
Q	.213	.236	5.40	6.00	
S	.242	.242 BSC 6.15 BSC		BSC	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.