Spectrophotométrie

La spectrophotométrie est une technique d'analyse qui repose sur l'absorption de radiations lumineuses par une ou plusieurs espèces chimiques.

1. Le spectrophotomètre

1.1. Description de l'appareil

- La lumière blanche émise par la source est décomposée par un système dispersif (prisme ou réseau).
- Une fente permet de sélectionner une gamme très étroite de longueurs d'onde. La radiation lumineuse choisie traverse une cuve dans laquelle est placée la solution à analyser (échantillon).
- Un détecteur permet de mesurer l'intensité et la longueur d'onde de la radiation lumineuse à la sortie de la cuve.

1.2. Absorbance d'une solution.

Une solution aqueuse contenant une espèce chimique colorée X de concentration molaire C, contenue dans une cuve à faces parallèles de largeur L, est traversée par une radiation monochromatique de longueur d'onde λ .

- □ À partir des valeurs de I et I₀, le spectrophotomètre mesure l'absorbance de la solution étudiée A.
- L'absorbance A est une grandeur sans unité; elle caractérise la proportion de radiations lumineuses, de longueur d'onde λ, absorbée par l'échantillon de solution d'épaisseur L.

$$A = \log \left(\frac{I}{I_0} \right)$$

1.3. Loi de Beer-Lambert

Spectre d'absorption d'une solution

L'absorbance A d'une solution limpide contenant une espèce chimique colorée est propotionnelle à sa concentration molaire C. Cette loi est vérifiée si C est inférieure à 10^{-2} mol.L⁻¹.

$$A = kC$$

A: absorbance (sans unité)

C: concentration molaire (mol.L⁻¹) k: coefficient d'absorbance (L.mol⁻¹)

Conditions de validité de la loi de Beer-Lambert :

Solution limpide sans précipité

Espèce colorée de concentration molaire inférieure à 10⁻² mol.L ⁻¹

2. Dosage spectrophotométrique par étalonnage

Le spectrophotomètre peut être utilisé pour doser une solution contenant l'espèce chimique X colorée de concentration inconnue C_x .

2.1. Recherche du maximum d'absorption

- $^\circ$ Tracer le spectre d'absorption A = f(λ) de la solution contenant l'espèce chimique à doser.
- $\mbox{-}$ Déterminer la longueur d'onde λ_{max} pour laquelle l'absorption est maximale.
- $\mbox{\ }^{\mbox{\tiny α}} \lambda_{max}$ est la longueur d'onde sélectionnée pour réaliser le dosage.

2.2. Droite d'étalonnage

- $\,{}^{_{\square}}\,$ Fixer la longueur d'onde $\lambda_{\text{max}0.}$
- □ Faire le « zéro » d'absorbance (« blanc ») avec une cuve contenant toutes les espèces autres que l'échantillon X dosé.
- Prépare une gamme d'étalonnage : série de solutions étalons contenant l'espèce chimique X à différentes concentrations connues.
- Mesurer l'absorbance A_i de chaque solution étalon.
- Tracer la représentation graphique A = f(C).
- Lorsque la loi de Beer-Lambert est respectée, A est une fonction linéaire de C : on obtient une droite passant par l'origine appelée « droite d'étalonnage ».

2.3. Concentration C_x de la solution à titrer

- $^{\circ}$ Pour effectuer le dosage d'une solution de concentration inconnue C_{x} , on place la cuve contenant la solution dans le spectrophotomètre et on relève la valeur de l'absorbance A_{x} .
- $^{\circ}$ À l'aide de la droite d'étalonnage, on détermine la concentration C_x .

