

25/OCTUBRE

REGULARIZACIÓN

:D

OLS

$$y = f(x) + \varepsilon$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$

$$\min SCR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Función de pérdida

Ordinary Least Squares (OLS / MCO)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_p x_{pi}$$

OLS: interpretabilidad

$$y = 1 + 2x_1 + 2x_2 + \epsilon$$

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	x2	28.9	14.8	1.95	0.0533
2	x1	-10.5	16.2	-0.650	0.517
3	(Intercept)	8.14	11.2	0.729	0.467
4	xc1_32	1.28	0.429	2.97	0.00340
5	xc2 291	-1.16	0.379	-3.05	0.00268
6	xc1_211	-1.12	0.401	-2.80	0.00576
7	xc2_157	-1.11	0.384	-2.90	0.00423
8	xc1 349	1.06	0.409	2.59	0.0104
9	xc2 109	1.01	0.407	2.48	0.0140
10	xc2 396	-1.01	0.427	-2.36	0.0196
#	with 793	more rows			

Simulación: 2 variables relevantes y el resto son ruido

$$n = 960$$
 $p = 802$

No hay variable selection 😕

⇒ el modelo puede ser innecesariamente complejo si hay muchas variables potencialmente irrelevantes

TBA

OLS: capacidad predictiva

$$y = 1 + 2x_1 + 2x_2 + \epsilon$$

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	x2	28.9	14.8	1.95	0.0533
2	x1	-10.5	16.2	-0.650	0.517
3	(Intercept)	8.14	11.2	0.729	0.467
4	xc1_32	1.28	0.429	2.97	0.00340
5	xc2_291	-1.16	0.379	-3.05	0.00268
6	xc1_211	-1.12	0.401	-2.80	0.00576
7	xc2_157	-1.11	0.384	-2.90	0.00423
8	xc1_349	1.06	0.409	2.59	0.0104
9	xc2 109	1.01	0.407	2.48	0.0140
10	xc2_396	-1.01	0.427	-2.36	0.0196
#	with 793	more nous			

$$n = 960$$
 $p = 802$

$$p/n = 0.83$$

$$RMSE_{test}^{p=2} = 3.56$$

$$RMSE_{test}^{p=802} = 10.10$$

OLS: capacidad predictiva

$$y = 1 + 2x_1 + 2x_2 + \epsilon$$

Se deteriora el rendimiento cuando p/n alto :

$$n = 960$$
 $p = 802$

fitted

p/n = 0.83

$$RMSE_{test}^{p=2} = 3.56$$

$$RMSE_{test}^{p=802} = 10.10$$

Subset selection

Best subset selection

(Probamos todos los posibles modelos)

- → Para cada p elegimos el que mejor ajusta (R²)
- → Elegimos el modelo X de mejor ajuste en validation (o CV) entre los p restantes

Subset selection

Restringiendo la búsqueda:

Forward stepwise selection

- → Comenzamos con el modelo nulo
- → Incluir cada covariable por separado y elegir la que mejora el ajuste
- → Repetir el paso anterior hasta incluir las p variables (terminamos con p modelos)
- → Elegimos el modelo de mejor ajuste en validation (o CV)

Backward stepwise selection

- → Comenzamos con el modelo saturado
- → Sacar cada covariable por separado y eliminar la que mejora el ajuste
- → Repetir el paso anterior hasta eliminar todas las variables (terminamos con p modelos)
- → Elegimos el modelo de mejor ajuste en validation (o CV)

ITBA

Regularización

$$\min SCR + P$$

Cambiamos la **función de pérdida**

P: término de penalización

RIDGE

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$||x||_2 = \sqrt{\sum_{j=1}^p x_j^2}$$

norma ℓ-2

LASSO

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$||x||_1 = \sum_{j=1}^p |x_j|$$

norma ℓ-1

$$\beta^A = (2,5)$$
$$\beta_B = (1,4)$$

$$\beta_B = (1, 4)$$

¿Qué vector tiene mayor norma ℓ-1? ¿Y l-2?

TBA

Regularización

⇒ La penalización tiende a restringir el tamaño de los coeficientes (shrinkage)

$$min SCR + P$$

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Con λ podemos controlar el peso de P \Rightarrow Es decir, λ es un ...

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

(¡hay que normalizar las variables!)

¿Qué pasa con los β_hat del modelo cuando ...

$$\lambda \to \infty$$

Con λ podemos controlar el peso de P \Rightarrow Es decir, λ es un hiperparámetro

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

(¡hay que normalizar las variables!)

¿Qué pasa con los β _hat del modelo cuando ... $\lambda = 0 \Rightarrow \text{OLS}$ $\lambda \rightarrow \infty \Rightarrow \beta \text{_hat} \rightarrow 0$?

Con λ podemos controlar el peso de P \Rightarrow Es decir, λ es un hiperparámetro

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

(jhay que normalizar las variables!)

Test MSE

¿Qué son la línea negra y la verde?

Con λ podemos controlar el peso de P \Rightarrow Es decir, λ es un hiperparámetro

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

(¡hay que normalizar las variables!)

OLS en dimensionalidad alta

TBA

OLS en dimensionalidad alta

Cuando p/n es alto:

OLS puede tener mucha varianza (depende mucho de los puntos de entrenamiento)

⇒ ajuste bueno en train y pobre en test

RIDGE

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s$$

LASSO

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

Equivale a una optimización con restricción (Los coeficientes se pueden mover dentro de un presupuesto)

Ridge vs Lasso

Standardized Coefficients -200

shrinkage!

Ridge vs Lasso

No hay coeficientes = 0

Hay coeficientes = 0

Selección de modelos

Con validation set o Cross Validation

Podemos usar

one-standard-error rule (1se):

elegimos el modelo *más simple* cuyo error esté dentro de un desvío del mínimo

Ridge

$$y = 1 + 2x_1 + 2x_2 + \epsilon$$

$$n = 960$$
 $p = 802$

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	x2	28.9	14.8	1.95	0.0533
2	x1	-10.5	16.2	-0.650	0.517
3	(Intercept)	8.14	11.2	0.729	0.467
4	xc1_32	1.28	0.429	2.97	0.00340
5	xc2 291	-1.16	0.379	-3.05	0.00268
6	xc1_211	-1.12	0.401	-2.80	0.00576
7	xc2_157	-1.11	0.384	-2.90	0.00423
8	xc1_349	1.06	0.409	2.59	0.0104
9	xc2 109	1.01	0.407	2.48	0.0140
10	xc2_396	-1.01	0.427	-2.36	0.0196
#	with 793	more rows			

 $RMSE_{test}^{p=2} = 3.56$

	term <chr></chr>	step <dbl></dbl>		lambda <dbl></dbl>	dev.ratio
4					
1	(Intercept)	1	-0.777	24.1	0.911
2	x1	1	0.00455	24.1	0.911
3	x2	1	0.00450	24.1	0.911
4	xc1_112	1	0.00337	24.1	0.911
5	xc1_110	1	0.00336	24.1	0.911
6	xc2_112	1	0.00335	24.1	0.911
7	xc1_125	1	0.00335	24.1	0.911
8	xc1_100	1	0.00335	24.1	0.911
9	xc2_111	1	0.00334	24.1	0.911
10	xc1_121	1	0.00334	24.1	0.911
#	with 793	more i	rows		

Lasso

$$y = 1 + 2x_1 + 2x_2 + \epsilon$$

$$n = 960$$
 $p = 802$

	term	estimate	std.error	statistic	p.value
	<chr>></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	x1	2.09	0.0677	30.9	1.20e-68
2	x2	2.04	0.0699	29.2	2.13e-65
3	(Intercept)	-0.897	0.967	-0.928	3.55e- 1
4	xnoc_101	0.206	0.0666	3.10	2.31e- 3
5	xnoc_388	0.199	0.0687	2.90	4.23e- 3
6	xnoc_561	0.181	0.0653	2.77	6.34e- 3
7	xnoc_218	-0.176	0.0684	-2.58	1.09e- 2
8	xnoc_13	-0.172	0.0665	-2.59	1.06e- 2
9	xnoc_787	0.166	0.0646	2.57	1.10e- 2
10	xnoc_64	0.165	0.0700	2.36	1.96e- 2
# .	with 793	more rows	5		

$$RMSE_{test}^{p=2} = 3.56$$

$$RMSE_{test}^{p=802} = 10.10$$

	term	step	estimate	lambda	dev.ratio
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	x1	1	1.90	0.0398	0.916
2	x2	1	1.88	0.0398	0.916
3	(Intercept)	1	1.12	0.0398	0.916

$$\lambda_{1se} = 0.039$$

$$RMSE_{test}^{L} = 4.09$$

En resumen:

- El modelo lineal tiene buen rendimiento cuando:

En resumen:

- El modelo lineal tiene buen rendimiento cuando:
 - → La verdadera relación es lineal (sesgo bajo)
 - → La dimensionalidad (p/n) es baja (varianza baja)
- Podemos usar **regularización** (restringir la norma de los coeficientes) para **reducir la varianza** a costa de **aumentar el sesgo**. Es una alternativa elegante y computacionalmente eficiente a **subset selection**.
- Usamos el hiperparámetro lambda para controlar el peso de la regularización
- La variante **ridge** incluye siempre todas las covariables, mientras que **lasso** hace **variable selection**. Ninguno domina al otro en la práctica podemos elegir usando un validation set o cross validation.
- Ridge/Lasso funcionan aún cuando p/n>=1. Pero OJO: aún con regularización, incluir muchas variables irrelevantes deteriora el rendimiento (como vimos en el último ejemplo) y la interpretabilidad (e.g. el set de covariables que quedan en lasso es inestable)
- La regularización se usa en **muchos otros contextos** (deep learning, árboles de decisión, boosting, etc.)