ESPCI

Mathématiques 2^{ème} année Recueil d'exercices

1 Équations aux dérivées partielles

1.1 Méthode des caractéristiques (5 pts)

On considère l'équation aux dérivées partielles pour la fonction u:

$$y\partial_x u(x,y) + x\partial_y u(x,y) = 0. (1)$$

définie sur $\{(x,y) \in \mathbb{R}^2 | x \ge 0, |y| \le x\}.$

Question 1 (2 pts) : Déterminez l'équation des courbes caractéristiques $(\hat{x}(s), \hat{y}(s))$ le long desquelles la fonction u est constante. Montrez que $\hat{x}(s)^2 - \hat{y}(s)^2$ est constant le long d'une caractéristique.

Question 2 (1 pt): Tracez une famille de caractéristiques.

Question 3 (2 pts): Donnez la solution qui satisfait la condition u(x,0) = f(x) pour $x \in \mathbb{R}_+$. Il est possible, mais pas indispensable, de paramétrer les caractéristiques à l'aide des fonctions ch et sh.

Corrigé

Question 1 : L'équation des caractéristiques est

$$\hat{x}'(s) = \hat{y}(s),\tag{2}$$

$$\hat{y}'(s) = \hat{x}(s). \tag{3}$$

On en déduit facilement que $\frac{d}{ds}[\hat{x}(s)^2 - \hat{y}(s)^2] = 0$.

Question 2: Sur une caractéristique $x^2 - y^2 = A^2$ (car $x^2 \ge y^2$), donc on peut écrire $x = \sqrt{A^2 + y^2}$. Il s'agit d'hyperboles.

Question 3: La caractéristique d'équation $x^2 - y^2 = A^2$ coupe l'axe y = 0 en x = A, donc $u(x, y) = u(\sqrt{x^2 - y^2}, 0) = f(\sqrt{x^2 - y^2})$.

Alternativement, de l'équation des caractéristiques on déduit que $\hat{x}''(s) = \hat{x}(s)$ et $\hat{y}''(s) = \hat{y}(s)$, et les solutions qui sont sur le bon domaine sont de la forme $\hat{x}(s,A) = A\operatorname{ch}(s)$, $\hat{y}(s,A) = A\operatorname{sh}(s)$. La caractéristique $(A\operatorname{ch}(s), A\operatorname{sh}(s))$ coupe l'axe y = 0 quand s = 0, au point (A,0). Un point (x,y) appartient à la caractéristique correspondante à $A = \sqrt{x^2 - y^2}$, en s = (y/x), donc $u(x,y) = \hat{u}(s,A) = \hat{u}(0,A) = u(A,0) = f(A)$.

1.2 Méthode des caractéristiques (5 pts)

On considère l'équation aux dérivées partielles pour la fonction u:

$$y\partial_x u(x,y) - 4x\partial_y u(x,y) = 0. (4)$$

définie pour $(x, y) \in \mathbb{R}^2$.

Question 1 (2 pts) : Déterminez l'équation des courbes caractéristiques $(\hat{x}(s), \hat{y}(s))$ le long desquelles la fonction u est constante. Montrez que $4\hat{x}(s)^2 + \hat{y}(s)^2$ est constant le long d'une caractéristique.

Question 2 (1 pt): Tracez une famille de caractéristiques.

Question 3 (2 pts): Donnez (a) la solution qui satisfait $u(x,0) = x \ \forall x \in \mathbb{R}$ et (b) la solution qui satisfait $u(x,0) = x^2 \ \forall x \in \mathbb{R}$.

Corrigé

Question 1 : L'équation des caractéristiques est

$$\hat{x}'(s) = \hat{y}(s),\tag{5}$$

$$\hat{y}'(s) = -4\hat{x}(s). \tag{6}$$

On en déduit facilement que $\frac{d}{ds}[4\hat{x}(s)^2 + \hat{y}(s)^2] = 0$.

Question 2: Sur une caractéristique $4x^2 + y^2 = A^2$. Il s'agit d'ellipses (par exemple de hauteur 2 et de largeur 1 pour A = 1).

Question 3: D'après la première question $u(x,y) = f(4x^2 + y^2)$. (a) $u(x,0) = x = f(4x^2)$: ce n'est pas possible, par exemple u(1,0) = 1 donne f(4) = 1 et u(-1,0) = -1 donne f(4) = -1. (b) $u(x,0) = x^2 = f(4x^2)$, donc f(w) = w/4 et $u(x,y) = (4x^2 + y^2)/4 = x^2 + y^2/4$.

1.3 Méthode des caractéristiques (4 pts)

On considère l'équation aux dérivées partielles pour la fonction u:

$$y\partial_x u(x,y) - x\partial_y u(x,y) = u(x,y). \tag{7}$$

définie pour $(x, y) \in \mathbb{R}^2$.

Question 1 (2 pts) : Déterminez l'équation des courbes caractéristiques $(\hat{x}(s), \hat{y}(s))$ le long desquelles la fonction u est constante. Montrez que les caractéristiques sont des cercles.

Question 2 (2 pts) : Quelle équation différentielle satisfait $\hat{u}(s) = u(\hat{x}(s), \hat{y}(s))$? Donnez l'ensemble des solutions à l'équation (7).

Corrigé

Question 1 : L'équation des caractéristiques est

$$\hat{x}'(s) = \hat{y}(s),\tag{8}$$

$$\hat{y}'(s) = -\hat{x}(s). \tag{9}$$

On en déduit facilement que $\frac{d}{ds}[\hat{x}(s)^2 + \hat{y}(s)^2] = 0$: l'équation d'une caractéristique peut donc se mettre sous la forme $x^2 + y^2 = R$, c'est l'équation d'un cercle de rayon R.

Question 2 : On calcule $\hat{u}'(s) = \hat{x}'(s)\partial_x u(\hat{x}(s),\hat{y}(s)) + \hat{y}'(s)\partial_y u(\hat{x}(s),\hat{y}(s)) = u(\hat{x}(s),\hat{y}(s)) = \hat{u}(s)$. La solution est de la forme $\hat{u}(s) = \hat{u}(0)e^s$. Comme cette équation est satisfaite sur un cercle, il faut que $\hat{u}(0) = 0$: la seule solution est la fonction nulle, u(x,y) = 0.

1.4 Méthode des caractéristiques (5 pts)

Soit l'équation aux dérivées partielles définie sur \mathbb{R}^2 par

$$\partial_x u(x,y) + xy \partial_y u(x,y) = 0. (10)$$

 $\textbf{Question 1} \ (3 \ \text{pts}): \quad \text{En utilisant la méthode des caractéristiques, donner la solution générale de cette équation.}$

Question 2 (2 pts): Quelles sont les solutions satisfaisant à chacune des conditions aux limites suivantes :

- (i) $\forall y \in \mathbb{R}, \ u(0,y) = y^2;$
- (ii) $\forall x \in \mathbb{R}, u(x,0) = x^2$?

Corrigé

Question 1: Les caractéristiques vérifient l'équation $\hat{x}'(s) = 1$, $\hat{y}'(s) = \hat{x}(s)\hat{y}(s)$. On peut donc prendre $\hat{x}(s) = s$, puis $\hat{y}(s) = y_0 e^{s^2/2}$, avec $y_0 \in \mathbb{R}$ un paramètre de la caractéristique. On trouve que sur une caractérisque, $\hat{u}(s) = u(\hat{x}(s), \hat{y}(s))$ est constant, donc $\hat{u}(s) = \hat{u}(0) = u(0, y_0) = f(y_0)$.

Prenons un point $(x, y) \in \mathbb{R}^2$ et déterminons sur quelle caractéristique il se trouve et pour quelle valeur de s: x = s et $y = y_0 e^{s^2/2}$, ce qui donne s = x et $y_0 = y e^{-x^2/2}$. Donc $u(x, y) = u(0, y_0) = f(y_0) = f(y e^{-x^2/2})$:

$$u(x,y) = f(ye^{-x^2/2}) (11)$$

est la solution générale de l'équation différentielle.

Question 2:

(i) Cela correspond simplement à $f(y) = y^2$, la solution est donc

$$u(x,y) = e^{-x^2}y^2.$$
 (12)

(ii) L'ensemble $\{(x,0)|x \in \mathbb{R}\}$ correspond à la caractéristique $y_0 = 0$. Or u(x,y) est constant le long d'une caractéristique. Cette condition est incompatible avec la forme générale, il n'y a pas de solution.

1.5 Méthode des caractéristiques (5 pts)

Soit l'équation aux dérivées partielles définie sur $\mathbb{R}^2 \setminus \{0,0\}$ par

$$x\partial_x u(x,y) + y\partial_y u(x,y) + 2u(x,y) = 0. (13)$$

Question 1 (2 pts) : Déterminez l'équation des courbes caractéristiques $(\hat{x}(s), \hat{y}(s))$. Déterminez la caractéristique qui passe par le point $(\cos(\theta_0), \sin(\theta_0))$. Tracez une famille de caractéristiques.

Question 2 (3 pts) : Quelle équation différentielle satisfait $\hat{u}(s) = u(\hat{x}(s), \hat{y}(s))$? Quelle est la solution qui satisfait $u(\cos(\theta_0), \sin(\theta_0)) = \cos(\theta_0)^3$. Vous pouvez utiliser les coordonnées polaires (r, θ) et écrire la solution pour $u(r, \theta)$.

Corrigé

Question 1 : L'équation des caractéristiques est

$$\hat{x}'(s) = \hat{x}(s),\tag{14}$$

$$\hat{y}'(s) = \hat{y}(s). \tag{15}$$

La solution générale est

$$\hat{x}(s) = x_0 e^s, \tag{16}$$

$$\hat{y}(s) = y_0 e^s. \tag{17}$$

La solution passant par n_0 est donc

$$\hat{x}(s) = \cos(\theta_0)e^s, \tag{18}$$

$$\hat{y}(s) = \sin(\theta_0) e^s. \tag{19}$$

En traçant une famille de caractéristiques, il est clair que ces caractéristiques recouvrent le plan privé de l'origine.

Question 2 : Le long d'une caractéristique,

$$\hat{u}'(s) = -2\hat{u}(s),\tag{20}$$

donc

$$\hat{u}(s) = e^{-2s}\hat{u}(0).$$
 (21)

La condition donne $\hat{u}(0, \theta_0) = \cos(\theta_0)^3$, ainsi

$$\hat{u}(s,\theta_0) = e^{-2s}\cos(\theta_0)^3. \tag{22}$$

Considérons un point $\mathbf{r} = (x, y)$, de coordonnées polaires (r, θ) . Il est sur la caractéristique $\theta_0 = \theta$ à la position $r = e^s$, soit $s = \log(r)$, donc

$$u(r,\theta) = e^{-2\log(r)}\cos(\theta)^3 = \frac{\cos(\theta)^3}{r^2}.$$
 (23)

1.6 Existence et unicité pour l'équation de Poisson en dimension 1 (5 pts)

On considère l'équation de Poisson en dimension d=1 sur l'intervalle $\Omega=[0,1]$:

$$u''(x) = f(x). (24)$$

Question 1 (2 pts) : Montrez que la solution est unique avec une condition au bord de Dirichlet, de Neumann, ou mixte (la démonstration doit être spécifique à la dimension 1 du problème, mais ne doit pas utiliser la forme de la solution trouvée à la question suivante).

Question 2 (1 pt): Donnez la solution générale de l'équation homogène u''(x) = 0.

Question 3 (2 pts) : Étudiez l'existence d'une solution pour les différentes conditions au bord données à la question 1.

Corrigé

Question 1: Pour adapter le calcul des notes de cours, il faut utiliser que le bord est $\partial\Omega = \{0,1\}$ et que le vecteur unitaire normal au bord et pointant vers l'extérieur du domaine est n(0) = -1, n(1) = 1. La différence $v(x) = u_1(x) - u_2(x)$ entre deux solutions du problème est solution du problème homogène associé (avec conditions au bord nulles), on peut donc écrire

$$0 = v(1)v'(1) - v(0)v'(0) = \int_0^1 (vv')'(x)dx = \int_0^1 [vv'' + v'^2](x)dx = \int_0^1 v'(x)^2 dx.$$
 (25)

Donc v'(x) = 0 sur Ω , donc v(x) est constante sur Ω . Pour des conditions au bord de Neumann, on ne peut pas en dire plus et la solution est unique à une constante près. Pour des conditions de Dirichlet ou mixte, v(x) = 0 en un point du bord donc v(x) = 0 sur Ω .

Question 2 : En intégrant deux fois u''(x) = 0 et en gardant les constantes d'intégration, on trouve u(x) = ax + b.

Question 3: Pour des conditions au bord de Dirichlet, $u(0) = \alpha$ et $u(1) = \beta$, il suffit de prendre $u(x) = \alpha + x(\beta - \alpha)$. Pour des conditions au bord mixtes, $u(0) = \alpha$, $u'(1) = \beta$, il faut prendre $u(x) = \alpha + \beta x$; si $u'(0) = \alpha$, $u(1) = \beta$, il faut prendre $u(x) = \alpha x + \beta - \alpha$. Pour des conditions de Neumann, $u'(0) = \alpha$, $u'(1) = \beta$, il n'y a pas de solution si $\alpha \neq \beta$ car $u'(x) = \alpha$ est constante sur Ω .

1.7 Diffusion avec un bord absorbant (7 pts)

On considère une particule dont la position $X(t) \in \mathbb{R}_+$ diffuse, et la particule est absorbée quand elle atteint x = 0. On cherche la loi du temps T auquel elle touche le bord, en fonction de sa position de départ x_0 . Sa densité de probabilité p(x,t) obéit à l'équation de diffusion

$$\partial_t p(x,t) = \frac{1}{2} \partial_x^2 p(x,t), \tag{26}$$

à partir de la condition initiale

$$p(x,0) = \delta(x - x_0) \tag{27}$$

et satisfait les conditions aux limites

$$p(0,t) = 0, (28)$$

$$p(x \to \infty, t) = 0. (29)$$

La première condition représente le bord absorbant.

Question 1 (1 pt): Montrez que la solution à l'équation (26) avec les conditions (27) à (29) est unique.

Question 2 (2 pts) : En utilisant la fonction de Green de l'équation de la chaleur, montrez que la solution est donnée par

$$p(x,t) = \frac{1}{\sqrt{2\pi t}} \left[\exp\left(-\frac{[x-x_0]^2}{2t}\right) - \exp\left(-\frac{[x+x_0]^2}{2t}\right) \right].$$
 (30)

La probabilité que la particule ait « survécu » jusqu'au temps t est donnée par

$$S(t) = P(T \ge t) = \int_0^\infty p(x, t) dx.$$
(31)

Question 3 (1 pt) : Exprimez cette probabilité de survie comme une intégrale sur un intervalle borné, puis avec la fonction erreur, qui est définie par $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \mathrm{e}^{-t^2} \mathrm{d}t$.

Question 4 (2 pts) : Déduisez la fonction de répartition de T puis sa loi, $f_T(t)$. Représentez graphiquement la loi $f_T(t)$.

Question 5 (1 pt): Que vaut l'espérance de T?

Corrigé

Question 1:

Question 2 : La fonction de Green de l'équation de la chaleur avec le coefficient de diffusion D=1/2 est donnée par

$$G(x,t) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right). \tag{32}$$

On montre que $p(x,t) = G(x-x_0,t) - G(x+x_0,t)$ vérifie toutes les équations (méthode des images).

Question 3:

$$S(t) = \frac{1}{\sqrt{2\pi t}} \int_{-x_0}^{x_0} \exp\left(-\frac{u^2}{2t}\right) du = \operatorname{erf}\left(\frac{x_0}{\sqrt{2t}}\right).$$
 (33)

Question 4: Comme $S(t) = P(T \ge t) = 1 - F_T(t)$,

$$f_T(t) = -S'(t) = \frac{x_0}{(2t)^{3/2}} \operatorname{erf}'\left(\frac{x_0}{\sqrt{2t}}\right) = \frac{x_0}{\sqrt{2\pi}t^{3/2}} \exp\left(-\frac{x_0^2}{2t}\right).$$
 (34)

Question 5: L'intégrale à calculer pour avoir l'espérance de T se comporte comme $t^{-1/2}$ quand $t \to \infty$, elle n'est donc pas intégrale. On peut donc écrire $E(T) = \infty$. Avec un bord en 0 et un bord en l, on avait $E(T) = x_0(l - x_0)$; en prenant la limite $l \to \infty$, on retrouve le problème avec un seul bord et $E(T) \to \infty$, le résultat n'est donc pas étonnant.

1.8 Diffusion dans une boîte (8 pts)

On considère l'équation différentielle

$$\partial_t u(x,t) = D\partial_x^2 u(x,t) \tag{35}$$

définie pour $(x,t) \in [0,1] \times \mathbb{R}_+$, avec les conditions aux limites $\partial_x u(0,t) = \partial_x u(1,t) = 0 \ \forall t$. On définit la norme d'une fonction g(x) sur [0,1] par $||g|| = \left[\int_0^1 g(x)^2 dx\right]^{1/2}$.

Question 1 (1 pt) : Pour une solution de l'équation (35), on définit $U(t) = \int_0^1 u(x,t) dx$. Montrez que U(t) est constante.

Question 2 (1 pt): Déterminez les solutions stationnaires de l'équation (35), c'est à dire les fonctions telles que u''(x) = 0 et qui vérifient les conditions aux limites. Donnez la solution $u_0(x)$ telle que $||u_0|| = 1$.

Question 3 (3 pts): On considère l'équation aux valeurs propres $u''(x) = \lambda u(x)$ avec les conditions aux limites u'(0) = u'(1) = 0. Montrez que les valeurs propres doivent vérifier $\lambda \leq 0$. Déterminez les valeurs propres λ_n et les fonctions propres normalisées $u_n(x)$ correspondantes (telles que $||u_n|| = 1$).

On considère maintenant l'équation (35) avec la condition initiale $u(x,0) = \delta(x-x_0)$, avec $x_0 \in [0,1]$.

Question 4 (1 pt): Déterminez la limite $\lim_{t\to\infty} u(x,t)$.

Question 5 (2 pts): En utilisant les valeurs propres et fonctions propres calculées plus haut, trouvez un équivalent de $v(x,t) = u(x,t) - \lim_{t \to \infty} u(x,t)$ quand $t \to \infty$.

Corrigé

Question 1: $\dot{U}(t) = \int_0^1 \partial_t u(x,t) dx = D \int_0^1 \partial_x^2 u(x,t) dx = D[\partial_x u(x,t)]_0^1 = 0$ avec les conditions aux limites.

Question 2: La solution stationnaire doit vérifier u''(x) = 0, donc u(x) = ax + b. Les conditions aux limites imposent a = 0, donc u(x) = b. La solution stationnaire normalisée est $u_0(x) = 1$.

Question 3: En multipliant par u(x) et en intégrant sur x, on obtient $\int_0^1 u(x)u''(x)\mathrm{d}x = -\lambda \int_0^1 u(x)^2\mathrm{d}x$. En intégrant le terme de gauche par parties et en utilisant les conditions aux limites, on arrive à $-\int_0^1 u'(x)^2\mathrm{d}x = -\lambda \int_0^1 u(x)^2\mathrm{d}x$, donc $\lambda \leq 0$ si $u(x) \neq 0$. $\lambda = 0$ est valeur propre pour la solution stationnaire $u_0(x)$ de la question précédente.

Si $\lambda < 0$, $u(x) = a\cos(\sqrt{-\lambda}x) + b\sin(\sqrt{-\lambda}x)$, et les conditions aux limites imposent b = 0 et $\sqrt{-\lambda} = \pi n$, soit $\lambda_n = -\pi^2 n^2$ et $u_n(x) = \sqrt{2}\cos(\pi nx)$ (le facteur $\sqrt{2}$ est choisi de sorte que $||u_n|| = 1$).

Question 4: Quand $t \to \infty$, la fonction u(x,t) doit tendre vers une solution stationnaire: $\lim_{t\to\infty} u(x,t) = bu_0(x)$. Alors U(0) = 1 et $\lim_{t\to\infty} U(t) = b$, ainsi b = 1 et $\lim_{t\to\infty} u(x,t) = u_0(x)$.

Question 5: On écrit la solution sous la forme $u(x,t) = \sum_{n=0}^{\infty} a_n(t) u_n(x)$. En insérant dans l'équation (35), on trouve $a_n(t) = a_n(0) \exp(-D\pi^2 n^2 t)$. Le terme $a_0 u_0(x)$ correspond à la solution stationnaire, donc $v(x,t) = \sum_{n=1}^{\infty} a_n(t) u_n(x)$. Quand $t \to \infty$, $v(x,t) \sim u_1(x) a_1(0) \exp(-D\pi^2 t)$. $u_1(x) = \sqrt{2} \cos(\pi x)$ et $a_1(0) = \int_0^1 u_1(x) u(x,0) dx = \sqrt{2} \cos(\pi x_0)$, ainsi

$$v(x,t) \underset{t \to \infty}{\sim} 2\cos(\pi x_0)\cos(\pi x)e^{-D\pi^2 t}.$$
 (36)

1.9 Équation de Poisson sur un demi-espace (7 pts)

On considère l'équation de Poisson, $\nabla^2 u(\mathbf{r}) = 0$, sur $\Omega = \mathbb{R}^2 \times \mathbb{R}_+$. On veut résoudre cette équation avec les conditions aux limites u(x, y, 0) = U(x, y), $\lim_{z \to \infty} u(x, y, z) = 0$, où U(x, y) est de moyenne spatiale nulle.

Question 1 (1 pt) : Discutez l'unicité de la solution à ce problème.

Question 2 (1 pt): On introduit la transformée de Fourier de u(x, y, z) par rapport aux variables x et y, $\tilde{u}(k_x, k_y, z)$. Exprimez $\tilde{u}(k_x, k_y, z)$ et $\tilde{u}(k_x, k_y, 0)$ avec la condition aux limites.

Question 3 (1 pt) : Quelle équation vérifie $\tilde{u}(k_x, k_y, z)$?

Question 4 (2 pts): On introduit le vecteur $\mathbf{k} = (k_x, k_y)$ et on note sa norme $|\mathbf{k}| = k$. Montrez que la solution de l'équation peut s'écrire $\tilde{u}(\mathbf{k}, z) = f_z(k)\tilde{U}(\mathbf{k})$, où $\tilde{f}_z(k)$ est une fonction que vous exprimerez.

Question 5 (2 pts) : La transformée de Fourier inverse de $\tilde{f}_z(k)$ est

$$f_z(x,y) = \frac{1}{2\pi} \int e^{i(k_x x + k_y y)} \tilde{f}_z(\mathbf{k}) dk_x dk_y = \frac{z}{(r^2 + z^2)^{3/2}}.$$
 (37)

Exprimez la solution u(x, y, z) avec $f_z(x, y)$ et U(x, y). Que doit valoir $\lim_{z\to 0} f_z(x, y)$?

Corrigé

Question 1: Il s'agit de l'équation de Poisson avec des conditions au bord de Dirichlet, éventuellement à l'infini pour la variable z. Les conditions au bord « sur les côtés » dans les directions x et y ne sont pas définies. Les propriétés du cours ne permettent pas de conclure à l'unicité de la solution.

Question 2: Par définition,

$$\tilde{u}(k_x, k_y, z) = \frac{1}{2\pi} \int e^{-i(k_x x + k_y y)} u(x, y, z) dx dy.$$
(38)

En z=0, on a

$$\tilde{u}(k_x, k_y, 0) = \frac{1}{2\pi} \int e^{-i(k_x x + k_y y)} U(x, y) dx dy = \tilde{U}(k_x, k_y).$$
 (39)

Question 3 : En prenant la transformée de Fourier de l'équation de Poisson, $\tilde{u}(k_x, k_y, z)$ vérifie

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}\tilde{u}(\mathbf{k},z) = k^2\tilde{u}(\mathbf{k},z). \tag{40}$$

Question 4 : La solution générale est $\tilde{u}(\mathbf{k}, z) = e^{kz} f(\mathbf{k}) + e^{-kz} g(\mathbf{k})$. D'après la deuxième condition aux limites, seul le deuxième terme est acceptable et alors $g(\mathbf{k}) = \tilde{U}(\mathbf{k})$:

$$\tilde{u}(\mathbf{k}, z) = e^{-kz} \tilde{U}(\mathbf{k}). \tag{41}$$

On a donc $\tilde{f}_z(k) = e^{-kz}$.

D'une part, $\lim_{z\to\infty} \tilde{u}(0,z) = \tilde{U}(0)$. D'autre part, comme $\lim_{z\to\infty} u(x,y,z) = A$, $\lim_{z\to\infty} \tilde{u}(\boldsymbol{k},z) = \frac{A}{2\pi}\delta(\boldsymbol{k})$.

Question 5: Le produit $\tilde{u}(\mathbf{k},z) = \tilde{f}_z(k)\tilde{U}(\mathbf{k})$, ce qui donne en espace réel un produit de convolution

$$u(x,y,z) = \frac{1}{2\pi} (f_z * U)(x,y) = \frac{1}{2\pi} \int \frac{z}{[(x-x')^2 + (y-y')^2 + z^2]^{3/2}} U(x',y') dx' dy'.$$
(42)

Pour que la condition aux limites soit satisfaite, il faut que $\lim_{z\to 0} f_z(x,y) = 2\pi\delta(x)\delta(y)$.

1.10 Fonction de Green de ∇^4 (7 pts)

On cherche la fonction de Green de ∇^4 en dimension d'espace d, c'est à dire la solution de $\nabla^4 G_d = \delta$. On cherche la solution sous la forme d'une fonction isotrope $G_d(\mathbf{r}) = g_d(r)$, avec r la norme de \mathbf{r} . On utilisera les résultats du cours sur la fonction de Green de l'équation de Poisson, $\nabla^2 F_d = \delta$, et la méthode utilisée pour trouver ces fonctions de Green (on notera aussi $F_d(\mathbf{r}) = f_d(r)$).

Question 1 (2 pts): Reliez G_d à F_d . Écrivez cette relation pour les fonctions g_d et f_d .

Question 2 (2 pts) : En utilisant les résultats du cours pour $f_d(r)$, déterminez $g_d(r)$ pour $d \notin \{2, 4\}$. Quelle est la difficulté pour la dimension d = 4?

Question 3 (1 pt) : Déterminez $g_4(r)$.

Question 4 (2 pts) : Déterminez $g_2(r)$ (vous pourrez factoriser les termes en $g_2(r)$ et considérer $r \mapsto r^2 \log(r)$).

Corrigé

Question 1: Par définition $\nabla^2 G_d = F_d$. Pour les fonctions de r, on peut écrire

$$g_d''(r) + \frac{d-1}{r}g_d'(r) = f_d(r).$$
 (43)

Question 2: Pour $d \neq 2$, on peut écrire $f_d(r) = a_d r^{d-2}$. On cherche $g_d(r)$ sous la forme $g_d(r) = b_d r^{\gamma}$. Dans l'équation ci-dessus, on trouve

$$b_d \gamma (\gamma + d - 2) r^{\gamma - 2} = a_d r^{2 - d},\tag{44}$$

ce qui donne $\gamma = 4 - d$, puis $b_d = a_d/[2(4-d)]$, soit

$$g_d(r) = \frac{a_d}{2(4-d)} r^{4-d}. (45)$$

On donne dans le cours $a_1 = 1/2$ et $a_3 = -1/(4\pi)$.

Pour la dimension d=4, l'exposant devient $\gamma=0$ et le facteur b_d n'est pas défini.

Question 3: Pour la dimension d=4, on trouve une dépendance r^0 , c'est à dire une fonction qui ne dépend pas de r: elle ne peut pas satisfaire l'équation (43). En s'inspirant de la dimension d=2 du cours, on cherche une solution de la forme $g_4(r)=b\log(r)$, ce qui donne dans l'équation (43)

$$\frac{2b}{r^2} = -\frac{1}{4\pi^2 r^2}. (46)$$

On obtient donc

$$g_4(r) = -\frac{\log(r)}{8\pi^2}. (47)$$

Question 4 : En dimension d=2, $f_2(r)=\log(r)/(2\pi)$ et l'équation (43) devient, en factorisant le côté gauche

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left[rg_d'(r)\right] = \frac{\log(r)}{2\pi}.\tag{48}$$

En calculant la dérivée de $r \mapsto r^2 \log(r)$, on arrive rapidement à

$$g_2(r) = \frac{r^2}{8\pi} [\log(r) - 1]. \tag{49}$$

1.11 Diffusion d'un polluant émis pour t > 0 (7 pts)

On considère la concentration $u(\mathbf{r},t)$ d'un polluant dans \mathbb{R}^3 en fonction du temps. Le polluant est émis en $\mathbf{r}=0$ à partir de t=0 avec un taux 1, et il diffuse avec un coefficient de diffusion D. La concentration $u(\mathbf{r},t)$ vérifie donc

$$\partial_t u(\mathbf{r}, t) = D\nabla^2 u(\mathbf{r}, t) + H(t)\delta(\mathbf{r}), \tag{50}$$

avec la condition initiale $u(\mathbf{r},0)=0$ pour tout \mathbf{r} .

Question 1 (1 pt) : Montrez que la solution au problème ci-dessus est unique.

Question 2 (2 pts) : Quelle est l'équation vérifiée par la concentration dans l'état stationnaire, $u_s(r) = \lim_{t\to\infty} u(r,t)$? Que vaut $u_s(r)$?

Question 3 (2 pts) : Quelle équation vérifie la quantité totale de polluant dans le milieu à l'instant t, $U(t) = \int u(\mathbf{r}, t) d\mathbf{r}$? Que vaut U(t)? Que vaut $U_s = \int u_s(\mathbf{r}) d\mathbf{r}$? Dans quel sens peut-on dire que $u_s(\mathbf{r}) = \lim_{t\to\infty} u(\mathbf{r}, t)$?

Question 4 (2 pts) : Donnez la fonction de Green associée à ce problème, $G(\mathbf{r},t)$. Utilisez-la pour écrire la solution $u(\mathbf{r},t)$. Tracez l'allure de $u(\mathbf{r},t)$ pour différentes valeurs de $r=|\mathbf{r}|$.

Corrigé

Question 1: C'est une équation de diffusion, avec une condition initiale. On peut de plus supposer que $u(\mathbf{r},t) \to 0$ quand $r \to \infty$. Alors la solution est unique.

Question 2 : Dans l'état stationnaire la dérivée disparaît et $D\nabla^2 u_s + \delta = 0$. La solution est donnée par la fonction de Green de l'équation de Poisson, $u_s(r) = 1/(4\pi Dr)$.

Question 3: En intégrant sur l'équation sur l'espace, l'intégrale de $\nabla^2 u$ est nulle donc $\dot{U}(t) = H(t)$. On en déduit que U(t) = t pour $t \geq 0$. On calcule que $U_s = \infty$. On peut avoir une convergence simple $u(\mathbf{r},t) \to u_s(\mathbf{r})$, qui n'implique pas la convergence de l'intégrale. En revanche la distance entre $u(\mathbf{r},t)$ et $u_s(\mathbf{r})$ en norme 1 est infinie pour tout t.

Question 4: $G(r,t) = (4\pi Dt)^{-3/2} \exp(-r^2/(4Dt))$, ainsi

$$u(\mathbf{r},t) = \frac{1}{(4\pi D)^{3/2}} \int_0^t (t-t')^{-3/2} \exp\left(-\frac{r^2}{4D(t-t')}\right) dt' = \frac{1}{(4\pi D)^{3/2}} \int_0^t t'^{-3/2} \exp\left(-\frac{r^2}{4Dt'}\right) dt'.$$
 (51)

On peut aussi poser $z^2 = r^2/(4Dt')$, alors

$$u(\mathbf{r},t) = \frac{1}{2\pi^{3/2}Dr} \int_{r/\sqrt{4Dt}}^{\infty} \exp(-z^2) dz.$$
 (52)

Ainsi $u(\mathbf{r},t)$ tend vers sa valeur limite $u_s(\mathbf{r})$ en un temps caractéristique $t \sim r^2/(4D)$.

1.12 Équation de Fokker-Planck (8 pts)

Soit $V: \mathbb{R}^d \to \mathbb{R}$ telle que l'intégrale $Z = \int \exp(-V(r)) dr$ soit finie. On considère l'équation de Fokker-Planck associée, pour u(r,t):

$$\partial_t u(\mathbf{r}, t) = \nabla^2 u(\mathbf{r}, t) + \nabla \cdot [u(\mathbf{r}, t) \nabla V(\mathbf{r})] = \mathcal{L}u(\mathbf{r}, t), \tag{53}$$

où nous avons défini l'opérateur différentiel ${\mathcal L}$:

$$\mathcal{L}f(\mathbf{r}) = \nabla^2 f(\mathbf{r}) + \nabla \cdot [f(\mathbf{r})\nabla V(\mathbf{r})] = \nabla \cdot \left(e^{-V(\mathbf{r})}\nabla \left[e^{V(\mathbf{r})}f(\mathbf{r})\right]\right). \tag{54}$$

Question 1 (2 pts): Montrez que \mathcal{L} est auto-adjoint pour le produit scalaire

$$\langle f, g \rangle = \int e^{V(\mathbf{r})} f(\mathbf{r}) g(\mathbf{r}) d\mathbf{r}.$$
 (55)

Vous pourrez utiliser des intégrations par parties.

Question 2 (1 pt) : Déterminez le signe des valeurs propres de \mathcal{L} .

Question 3 (1 pt) : Montrez que 0 est valeur propre de \mathcal{L} et déterminez le mode propre $\phi_0(\mathbf{r})$ associé.

Question 4 (2 pts): Montrez que la solution de l'équation de Fokker-Planck (127) avec une condition initiale $u(\mathbf{r},0)=u_0(\mathbf{r})$ est unique. Vous pouvez étudier l'évolution de la quantité $||v(\mathbf{r},t)||^2=\langle v(\mathbf{r},t),v(\mathbf{r},t)\rangle$ pour $v(\mathbf{r},t)$ solution avec une condition initiale nulle.

Question 5 (2 pts) : Pour la condition initiale $u_0(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_0)$, déterminez la limite $u_\infty(\mathbf{r}) = \lim_{t\to\infty} u(\mathbf{r},t)$.

Corrigé

Question 1 : Calculons

$$\langle f, \mathcal{L}g \rangle = \int e^{V(\mathbf{r})} f(\mathbf{r}) \nabla \cdot \left(e^{-V(\mathbf{r})} \nabla \left[e^{V(\mathbf{r})} g(\mathbf{r}) \right] \right) d\mathbf{r}$$
 (56)

$$= -\int e^{-V(\mathbf{r})} \nabla \left[e^{V(\mathbf{r})} f(\mathbf{r}) \right] \cdot \nabla \left[e^{V(\mathbf{r})} g(\mathbf{r}) \right] d\mathbf{r}, \tag{57}$$

après une intégration par parties. Une seconde intégration par parties permet de montrer que $\langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle$.

Question 2 : Le calcul précédent montre que

$$\langle f, \mathcal{L}f \rangle = -\int e^{-V(\mathbf{r})} \left(\nabla \left[e^{V(\mathbf{r})} f(\mathbf{r}) \right] \right)^2 d\mathbf{r} \le 0.$$
 (58)

Soit u_k un mode propre de \mathcal{L} pour la valeur propre λ_k , on a $\langle u_k, \mathcal{L}u_k \rangle = \lambda_k ||u_k||^2$.

Question 3 : La condition d'égalité à la question précédente correspond à la valeur propre nulle. Le mode propre associé est $\phi_0(\mathbf{r}) = \exp(-V(\mathbf{r}))$.

Question 4: Comme dans le cours, on considère la différence v entre deux solutions u_1 et u_2 . Ainsi $v(\mathbf{r},0)=0$ et $||v(\mathbf{r},0)||^2=0$. Calculons

$$\frac{\mathrm{d}}{\mathrm{d}t} \|v(\mathbf{r}, 0)\|^2 = 2\langle v(\mathbf{r}, t), \partial_t v(\mathbf{r}, t) \rangle$$
(59)

$$= 2\langle v(\mathbf{r}, t), \mathcal{L}v(\mathbf{r}, t)\rangle \tag{60}$$

$$< 0.$$
 (61)

Cette quantité est positive, nulle à t=0 et décroissante : elle est nulle pour tout t, donc $v(\mathbf{r},t)=0$ pour tout t. La solution est unique.

Question 5 : En décomposant la solution sur les modes propres, on obtient

$$u(\mathbf{r},t) = \sum_{k} a_k(0) e^{\lambda_k t} \phi_k(\mathbf{r}), \tag{62}$$

où les coefficients sont donnés par

$$a_k(0) = \frac{\langle u_0, \phi_k \rangle}{\|\phi_k\|^2}.$$
 (63)

Dans la limite $t \to \infty$, seule le terme associé à la valeur propre nulle survit et il reste

$$u_{\infty}(\mathbf{r}) = a_0(0)\phi_0(\mathbf{r}) = \frac{1}{Z}\phi_0(\mathbf{r}). \tag{64}$$

1.13 Équation d'un ménisque sous pression (8 pts)

On considère une interface liquide-air sous pression P, en négligeant l'effet de la gravité. Elle est décrite par sa hauteur $h(\mathbf{r})$, $\mathbf{r} \in \Omega \subset \mathbb{R}^2$ et son énergie est donnée par (en variables adimensionnées),

$$\int \left[\sqrt{1 + (\nabla h(\mathbf{r}))^2} - Ph(\mathbf{r}) \right] d\mathbf{r}.$$
 (65)

Question 1 (2 pts) : Quelle équation aux dérivées partielles vérifie la hauteur h(r)? Déterminez la limite dans laquelle on peut se ramener à l'équation aux dérivées partielles suivante :

$$\nabla^2 h(\mathbf{r}) = -P. \tag{66}$$

On considère maintenant l'équation (66) sur le disque de rayon R, avec la condition au bord $h(R, \theta) = K \cos(2\theta)$. On donne l'expression du laplacien en coordonnées polaires :

$$\nabla^2 f(r,\theta) = \partial_r^2 f(r,\theta) + \frac{1}{r} \partial_r f(r,\theta) + \frac{1}{r^2} \partial_\theta^2 f(r,\theta). \tag{67}$$

Question 2 (1 pt): Montrez que la solution à ce problème est unique.

Question 3 (1 pt) : Montrez que la solution à ce problème peut s'écrire $h(\mathbf{r}) = h_P(\mathbf{r}) + h_K(\mathbf{r})$ où $h_P(\mathbf{r})$ et $h_K(\mathbf{r})$ sont les solutions du même problème avec K = 0 et P = 0, respectivement.

Question 4 (2 pts): On suppose que $h_P(r)$ ne dépend que de la distance à l'origine, r = |r|. Quelle équation vérifie $h_P(r)$? Déterminez $h_P(r)$ en cherchant une solution de la forme ar^{α} (vous pourrez additioner deux solutions de cette forme).

Question 5 (2 pts) : Cherchez $h_K(r)$ avec la méthode de séparation des variables : $h_K(r,\theta) = p(r)q(\theta)$. D'après la condition au bord, que vaut $q(\theta)$? Déterminez p(r) en le cherchant sous la forme ar^{α} .

Corrigé

Question 1: Il suffit d'écrire l'équation d'Euler-Lagrange associée au lagrangien $L(\mathbf{r}, h, \nabla h) = \gamma \sqrt{1 + (\nabla h)^2} - Ph$, qui est

$$\partial_h L = \nabla \cdot \nabla_{\nabla h} L \tag{68}$$

avec

$$\partial_h L = -P, (69)$$

$$\nabla_{\nabla h} L = \frac{\nabla h}{\sqrt{1 + (\nabla h)^2}}. (70)$$

Ainsi

$$\nabla \cdot \left(\frac{\nabla h}{\sqrt{1 + (\nabla h)^2}}\right) = -P. \tag{71}$$

Dans la limite $|\nabla h| \ll 1$, on se ramène à $\nabla^2 h(\mathbf{r}) = -P$.

Question 2: D'après le cours, il s'agit d'une équation de la forme $\nabla^2 u(\mathbf{r}) = f(\mathbf{r})$ avec une condition au bord de Dirichlet, la solution est donc unique.

Question 3: Si $h_P(r)$ et $h_K(r)$ sont les solutions en question, on a bien

$$\nabla^2 h(\mathbf{r}) = \nabla^2 h_P(\mathbf{r}) + \nabla^2 h_K(\mathbf{r}) = -P + 0 = -P, \tag{72}$$

$$h(r,\theta) = h_P(r,\theta) + h_K(r,\theta) = 0 + K\cos(2\theta) = K\cos(2\theta). \tag{73}$$

Comme la solution est unique, on peut bien décomposer la solution sous cette forme.

Question 4: $h_P(r)$ vérifie

$$h_P''(r) + \frac{h_P'(r)}{r} = -P. (74)$$

En insérant la forme $h_P(r) = ar^{\alpha}$, on obtient $a\alpha^2 r^{\alpha-2} = -P$, dont la solution est $\alpha = 2$, a = -P/4. Pour satisfaire la condition au bord, il faut ajouter une constante ($\alpha = 0$) dont le laplacien est nul. Finalement, la solution est

$$h_P(r) = \frac{P}{4} \left(R^2 - r^2 \right).$$
 (75)

Question 5: La condition au bord s'écrit $h_K(R,\theta) = p(R)q(\theta) = K\cos(2\theta)$. Il faut donc prendre $q(\theta) \propto \cos(2\theta)$, par exemple $q(\theta) = \cos(2\theta)$. Avec ce choix, p(r) admet la condition au bord p(R) = K et satisfait l'équation

$$p''(r) + \frac{p'(r)}{r} - \frac{4p(r)}{r^2} = 0. (76)$$

En cherchant une solution sous la forme ar^{α} , on aboutit à $(\alpha^2 - 4)r^{\alpha - 2} = 0$. On en déduit $\alpha = \pm 2$, et par continuité $\alpha = 2$. La condition au bord impose $aR^2 = K$, donc

$$h_K(r,\theta) = K \frac{r^2}{R^2} \cos(2\theta). \tag{77}$$

2 Calcul variationnel

2.1 Trajectoire optimale sur la sphère

On cherche à relier deux points d'une sphère par le chemin le plus court restant sur la sphère. On utilise les coordonnées sphériques θ et ϕ pour la lattitude et la longitude, respectivement; on utilise la convention $\theta \in [-\pi/2, \pi/2]$, $\theta = 0$ correspondant à l'équateur. On paramètre une trajectoire sur la sphère par une fonction $\theta(\phi)$.

Question 1: Montrez que pour trouver le chemin le plus court il faut minimiser la fonctionnelle

$$I[\theta] = \int_{\phi_1}^{\phi_2} \sqrt{\cos(\theta(\phi))^2 + \theta'(\phi)^2} d\phi.$$
 (78)

Question 2 : Quel est le lagrangien associé à cette fonctionnelle? Montrer qu'il existe une intégrale du mouvement et la déterminer.

Question 3: On pose $\theta = \arctan(\alpha)$, où α est une autre fonction de ϕ . On a donc $\theta' = \alpha'/(1 + \alpha^2)$ et $\cos(\theta) = 1/\sqrt{1 + \alpha^2}$. Montrer que

$$\alpha'(\phi)^2 + \alpha(\phi)^2 = A,\tag{79}$$

où A est une constante.

Question 4: En dérivant la relation (79), déterminer la forme de $\theta(\phi)$.

Corrigé

Question 1: La longueur δs associée à un déplacement $(\delta \phi, \delta \theta)$ est

$$\delta s = \sqrt{\cos(\theta)^2 \delta \phi^2 + \delta \theta^2}.$$
 (80)

En factorisant $\delta \phi$ et en écrivant $\frac{\delta \theta}{\delta \phi} = \theta'$, on obtient la forme recherchée.

Question 2: Le lagrangien est $L(\phi, \theta, \theta') = \sqrt{\cos(\theta)^2 + \theta'^2}$. Ce lagrangien ne dépend pas explicitement de ϕ donc il existe une intégrale du mouvement qui est donnée par $L - \theta' \partial_{\theta'} L$. Il faut calculer

$$\partial_{\theta}' L = \frac{\theta'}{\sqrt{\cos(\theta)^2 + \theta'^2}},\tag{81}$$

donc

$$L - \theta' \partial_{\theta'} L = \frac{\cos(\theta)^2}{\sqrt{\cos(\theta)^2 + \theta'^2}} = A. \tag{82}$$

Question 3 : Dans l'intégrale du mouvement, on obtient

$$A = \frac{\frac{1}{1+\alpha^2}}{\sqrt{\frac{1}{1+\alpha^2} + \frac{{\alpha'}^2}{(1+\alpha^2)^2}}} = \frac{1}{\sqrt{1+\alpha^2 + {\alpha'}^2}},$$
(83)

donc $\alpha^2 + {\alpha'}^2$ est une constante.

Question 4: En dérivant on a $2\alpha'\alpha'' + 2\alpha\alpha' = 0$, donc $\alpha'' = -\alpha$, donc $\alpha(\phi) = B\cos(\phi + \phi_0)$ et $\theta(\phi) = \arctan(B\cos(\phi + \phi_0))$.

2.2 Inégalité de Poincaré (4 pts)

On considère le segment [0, L]. La norme d'une fonction f sur ce segment est définie par $||f||^2 = \int_0^L f(x)^2 dx$. On veut montrer l'inégalité de Poincaré : « il existe une constante c_L telle que pour toute fonction f telle que f(0) = f(L) = 0, $||f|| \le c_L ||f'||$. »

Soit f telle que f(0) = f(L) = 0, montrons que $||f|| \le c_L ||f'||$ pour une constante c_L . On introduit la fonction $g = \frac{f}{||f'||}$, alors g(0) = g(L) = 0 et ||g'|| = 1; il faut donc montrer que $||g|| \le c_L$. Si on cherche la constante c_L optimale (la plus petite possible), on aboutit au problème suivant:

Question 1 (4 pts) : Déterminez la fonction g sur [0, L] telle que g(0) = g(L) = 0 et ||g'|| = 1 et de norme maximale. Que vaut la constante c_L ? Notez que maximiser ||g|| revient au même que maximiser $||g||^2$ et que $||g'||^2 = 1$.

Corrigé

Question 1 : On cherche donc à maximiser $||g||^2 = \int_0^L g(x)^2 dx$ sous la contrainte $\int_0^L g'(x)^2 dx = 1$: c'est un problème de maximisation sous contrainte facile à traiter en calcul variationnel. On maximise donc $||g||^2 - \lambda ||g'||^2$; le lagrangien s'écrit donc

$$L(x, g, g') = g^2 - \lambda g'^2.$$
(84)

Avec $\partial_g L(x,g,g') = 2g$ et $\partial_{g'} L(x,g,g') = -2\lambda g'$, l'équation d'Euler-Lagrange donne $g = -\lambda g''$. Il n'existe pas de solution pour $\lambda \leq 0$. Pour $\lambda > 0$, la solution $A\sin(x/\sqrt{\lambda})$ est compatible avec la condition en L seulement si $\lambda = \left(\frac{L}{\pi n}\right)^2$, avec $n \in \mathbb{N}^*$. La constante de normalisation A est choisie pour que ||g'|| = 1; on obtient finalement la famille de solutions

$$g_n(x) = \frac{\sqrt{2L}}{\pi n} \sin\left(\frac{\pi nx}{L}\right). \tag{85}$$

Or $||g_n|| = L/(\pi n)$: la solution correspondant à n=1 a la norme maximale, et

$$c_L = ||g_1|| = \frac{L}{\pi}. (86)$$

2.3 Problème de Didon (5 pts)

On considère l'aire \mathcal{A} délimitée par un segment AB de longueur a et une corde de longueur ℓ fixée aux extrémités de ce segment. On suppose $a \leq \ell \leq \pi a$. On choisit les axes tels que les coordonnées de A et B soient respectivement (-a/2,0) et (a/2,0). Le problème de Didon consiste à trouver la courbe y(x) suivie par la corde qui maximise l'aire \mathcal{A} .

Question 1 (3 pts) : Écrire la fonctionnelle et le lagrangien associés à ce problème. Montrer que ce problème est invariant par translation et donner l'intégrale du mouvement associée. On notera λ le multiplicateur de Lagrange et C la valeur de l'intégrale du mouvement.

Question 2 (2 pts): Montrer que $y(x) = \sqrt{\lambda^2 - x^2} - C$ est solution. Que vaut C? Quelle est la forme décrite par cette fonction? Que vaut λ quand $\ell = \pi a/2$?

Corrigé

Question 1: y(x) est définie sur [-a/2, a/2] et les conditions au bord sont y(-a/2) = y(a/2) = 0. Il faut maximiser l'aire $\mathcal{A} = \int_{-a/2}^{a/2} y(x) dx$ sous la contrainte $\ell = \int_{-a/2}^{a/2} \sqrt{1 + y'(x)^2} dx$; il faut donc considérer la fonctionnelle $I[y] = \int_{-a/2}^{a/2} L(x, y(x), y'(x)) dx$ avec le lagrangien

$$L(x, y, y') = y - \lambda \sqrt{1 + y'^2}.$$
 (87)

Le lagrangien ne dépend pas explicitement de x, donc $y'\partial_{y'}L-L$ est une intégrale du mouvement. Comme $\partial_{y'}L=-\lambda y'/\sqrt{1+y'^2},\ y'\partial_{y'}L-L=\frac{\lambda}{\sqrt{1+y'^2}}-y$:

$$C = \frac{\lambda}{\sqrt{1 + y'(x)^2}} - y(x). \tag{88}$$

On aurait aussi pu utiliser l'équation d'Euler-Lagrange mais on aurait obtenu une équation plus difficile à intégrer. Comme les conditions au bord sont des conditions de Dirichlet, la minimisation ne donne pas d'équation supplémentaire au bord.

Question 2 : On montre facilement que la forme proposée est solution en utilisant $1 + y'(x)^2 = \frac{\lambda^2}{\lambda^2 - x^2}$. Les conditions aux bords imposent $C = \sqrt{\lambda^2 - \frac{a^2}{4}}$. L'équation proposée décrit un cercle de rayon λ . Quand $a = \pi \ell$, la solution est un demi-cercle : $\lambda = a$.

2.4 Lois de Snell-Descartes (3 pts)

On considère un rayon lumineux se propageant dans le plan (x, y) dans un milieu d'indice n(x); la trajectoire du rayon lumineux est donnée par l'équation y = h(x).

Question 1 (2 pts) : Écrire la fonctionnelle et le lagrangien associés à ce problème. Donner l'équation d'Euler-Lagrange satisfaite par le rayon lumineux.

Question 2 (1 pt): Retrouver la loi de Snell-Descartes : à une interface plane entre un milieu d'indice n_1 et un milieu d'indice n_2 , en notant θ_i l'angle entre le rayon et la normale au plan dans le milieu i, $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$.

Corrigé

Question 1: La fonctionnelle est

$$I[h] = \int n(x)\sqrt{1 + h'(x)^2} dx,$$
 (89)

le lagrangien est donc $L(x,y,y')=n(x)\sqrt{1+y'^2}$. L'équation d'Euler Lagrange est donc

$$0 = \frac{\mathrm{d}}{\mathrm{d}x} \left[\partial_{y'} L(x, h(x), h'(x)) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[n(x) \frac{h'(x)}{\sqrt{1 + h'(x)^2}} \right]$$
(90)

Question 2 : L'angle $\theta(x)$ entre le rayon et l'horizontale est donné par $\sin(\theta(x)) = h'(x)/\sqrt{1 + h'(x)^2}$, donc l'équation précédente donne $n(x)\sin(\theta(x)) = \text{constante}$: c'est la loi de Snell-Descartes.

2.5 Trajectoire dans une fibre optique à gradient d'indice (5 pts)

On considère une fibre optique à gradient d'indice. On note z la coordonnée le long de l'axe de la fibre et x et y les coordonnées transverses. L'indice optique dans la fibre est donné par $n(r) = n_0 \left(1 - \frac{r^2}{2r_0^2}\right)$, où $r = \sqrt{x^2 + y^2}$ et n_0 et r_0 sont des paramètres de la fibre. On cherche à déterminer la trajectoire y(z) d'un rayon lumineux dans le plan (y, z).

Question 1 (5 pts) : Montrez que sous certaines approximations que vous déterminerez, la trajectoire du rayon lumineux est une sinusoïde dont vous déterminerez les paramètres.

Corrigé

Question 1: Il faut minimiser la longueur optique

$$I[y] = \int n(y(z))\sqrt{1 + y'(z)^2} dz.$$
 (91)

Le lagrangien associé est $L(y,y')=n(y)\sqrt{1+y'^2}$; il ne dépend pas explicitement de z, il y a donc une intégrale du mouvement, $y'\partial_{y'}L-L=-\frac{n(y)}{\sqrt{1+y'^2}}=-A$, où A est une constante. On obtient alors

$$y'^{2} = \left(\frac{n(y)}{A}\right)^{2} - 1 = \left(\frac{n_{0}}{A}\right)^{2} \left(1 - \frac{y^{2}}{2r_{0}^{2}}\right)^{2} - 1.$$
 (92)

En faisant l'approximation de déviation faible par rapport à l'axe, $|y| \ll r_0$, on peut développer le carré à droite :

$$y^{2} = \left(\frac{n_0}{A}\right)^2 - 1 - \left(\frac{n_0}{A}\right)^2 \frac{y^2}{r_0^2} = \ell^{-2} \left[y_{\text{max}}^2 - y(z)^2\right], \tag{93}$$

où on a posé $\ell = Ar_0/n_0$ et $y_{\text{max}} = r_0\sqrt{1-\left(\frac{A}{n_0}\right)^2}$. Il s'agit d'un oscillateur harmonique où y' correspond à l'énergie cinétique et y^2 à l'énergie potentielle, alors que y_{max} donne l'énergie totale. La solution est de la forme

$$y(z) = y_{\text{max}} \cos\left(\frac{z}{\ell}\right). \tag{94}$$

On note que la période ℓ dépend de l'amplitude du mouvement :

$$\ell = r_0 \sqrt{1 - \left(\frac{y_{\text{max}}}{r_0}\right)^2}.\tag{95}$$

Toutefois la dépendance est faible car $y_{\text{max}} \ll r_0$.

2.6 Forme d'une poutre pesante encastrée (5 pts)

On considère une poutre de longueur L, de module de courbure B et de masse linéique ρ encastrée horizontalement dans un mur rigide. On cherche à déterminer la forme de la poutre. On note y(x) sa hauteur à l'abscisse x. L'énergie de la poutre est donnée par

$$U[y] = \int_0^L \left[\frac{B}{2} y''(x)^2 + \rho g y(x) \right] dx,$$
 (96)

et l'encastrement impose y(0) = y'(0) = 0.

Question 1 (3 pts): Donnez l'équation différentielle satisfaite par la hauteur et les conditions aux limites.

Question 2 (2 pts) : Déterminez la forme de la poutre. Donnez y(L).

Corrigé

Question 1: Calculons l'énergie de $x \mapsto y(x) + \epsilon(x)$ au premier ordre en $\epsilon(x)$. Après deux intégrations par parties, on trouve

$$U[y+\epsilon] - U[y] = \int_0^L \left[By^{(4)}(x) + \rho g \right] \epsilon(x) dx + B \left[y''(x)\epsilon'(x) \right]_0^L - B \left[y^{(3)}(x)\epsilon(x) \right]_0^L. \tag{97}$$

Pour y solution, tous ces termes doivent être nuls. L'intégrale donne l'équation différentielle satisfaite par y:

$$y^{(4)}(x) = -\frac{\rho g}{B}. (98)$$

En x=0, les conditions aux limites imposent $\epsilon(0)=\epsilon'(0)=0$. En x=L, il n'y a pas cette contrainte et il faut alors avoir $y''(L)=y^{(3)}(L)=0$.

Question 2: Par intégrations successives, on trouve

$$y(x) = -\frac{\rho g}{24B} \left(x^4 - 4x^3 L + 6x^2 L^2 \right). \tag{99}$$

En particulier, $y(L) = -\rho g L^4/(8B)$.

2.7 Équation d'un ménisque (3 pts)

On considère une interface liquide-air décrite par sa hauteur h(r), $r \in \Omega \subset \mathbb{R}^2$; son énergie est donnée par

$$\int \left[\frac{\rho g}{2} h(\mathbf{r})^2 + \gamma \sqrt{1 + (\nabla h(\mathbf{r}))^2} \right] d\mathbf{r}, \tag{100}$$

où ρ est la densité du fluide, g est l'accélération de la pesanteur et γ est la tension de surface.

Question 1 (1 pt) : Quelle équation aux dérivées partielles vérifie la hauteur h(r)? On introduira la longueur gravito-capillaire $\ell = \sqrt{\gamma/(\rho g)}$.

Question 2 (2 pts) : En supposant que l'interface a une symétrie cylindrique, h(r) = h(r), quelle est l'équation vérifiée par h(r)? On donne $\nabla \cdot e_r = 1/r$ en dimension 2. Linéarisez cette équation en supposant que $|h'(r)| \ll 1$.

Corrigé

Question 1 : Il suffit d'écrire l'équation d'Euler-Lagrange associée au lagrangien $L(\mathbf{r}, h, \nabla h) = \frac{\rho g}{2}h^2 + \gamma \sqrt{1 + (\nabla h)^2}$, qui est

$$\partial_h L = \nabla \cdot \nabla_{\nabla h} L \tag{101}$$

avec

$$\partial_h L = \rho g h, \tag{102}$$

$$\nabla_{\nabla h} L = \gamma \frac{\nabla h}{\sqrt{1 + (\nabla h)^2}}.$$
(103)

Ainsi

$$\nabla \cdot \left(\frac{\nabla h}{\sqrt{1 + (\nabla h)^2}}\right) = \frac{h}{\ell^2}.$$
 (104)

Question 2: $\nabla h(\mathbf{r}) = h'(r)\mathbf{e}_r$, donc

$$\nabla \cdot \left(\frac{\nabla h}{\sqrt{1 + (\nabla h)^2}}\right) = \left(\frac{h'}{\sqrt{1 + h'^2}}\right)' + \frac{h'}{r\sqrt{1 + h'^2}} = \frac{h''}{(1 + h'^2)^{3/2}} + \frac{h'}{r\sqrt{1 + h'^2}}.$$
 (105)

après un court calcul. L'équation est donc

$$\frac{h''}{(1+h'^2)^{3/2}} + \frac{h'}{r\sqrt{1+h'^2}} = \frac{h}{\ell^2}.$$
 (106)

Quand $|h'| \ll 1$ on obtient

$$h'' + \frac{h'}{r} = \frac{h}{\ell^2}. (107)$$

3 Probabilités

3.1 Durée de vie d'un circuit électronique (3 pts)

On considère un circuit électronique constitué de N composants. La durée de vie du composant n, X_n , est une variable aléatoire exponentielle de paramètre λ_n ; les durées de vie des différents composants sont indépendantes. La durée de vie du circuit Y est égale au minimum des durées de vie des composants : $Y = \min_n(X_n)$.

Question 1 (1 pt) : Quelle est l'espérance de la durée de vie du composant $n, t_n = E(X_n)$ (faîtes le calcul)?

Question 2 (2 pts) : Montrez que la durée de vie du circuit est une variable aléatoire exponentielle et donnez son paramètre. Exprimez l'espérance de la durée de vie du circuit, $t_c = E(Y)$, en fonction des durées de vie des différents composants.

Corrigé

Question 1: $t_n = 1/\lambda_n$.

Question 2: La loi exponentielle est définie par $P(X_n \ge x) = e^{-\lambda_n x}$. Donc

$$P(Y \ge x) = P(\bigcap_{i=1}^{N} [X_i \ge x]) = \prod_{i=1}^{N} P(X_i \ge x) = \prod_{i=1}^{N} e^{-\lambda_i x} = \exp\left(-\left[\sum_{i=1}^{N} \lambda_i\right] x\right).$$
 (108)

Y suit donc une loi exponentielle de paramètre $\lambda = \sum_{i=1}^{N} \lambda_i$ et la durée de vie du circuit est

$$t_{\rm c} = \left(\frac{1}{t_1} + \dots + \frac{1}{t_n}\right)^{-1}.$$
 (109)

3.2 Maximum de variables aléatoires uniformes (4 pts)

On considère des variables aléatoires uniformes sur l'intervalle [0,1] et indépendantes $(X_i)_{i\in\mathbb{N}_+^*}$. On pose $Y_n=\max_{1\leq i\leq n}X_i$.

Question 1 (4 pts) : Déterminez l'espérance $E[Y_n]$ et commentez le résultat obtenu.

Corrigé

Question 1: La fonction de répartition de X_i vaut $F_X(x) = x$ sur l'intervalle [0, 1]. La fonction de répartition du maximum vaut $F_{Y_n}(x) = F_X(x)^n = x^n$, sa loi est donc $f_{Y_n}(x) = nx^{n-1}$ sur l'intervalle [0, 1], et elle est nulle en-dehors. L'espérance vaut

$$E[Y_n] = \int_0^1 x f_{Y_n}(x) dx = \frac{n}{n+1} = 1 - \frac{1}{n+1}.$$
 (110)

On a $E[Y_n] \underset{n\to\infty}{\to} 1$, comme attendu.

3.3 Maximum de variables aléatoires uniformes : convergence et tirage aléatoire (6 pts)

On considère des variables aléatoires uniformes sur l'intervalle [0,1] et indépendantes $(X_i)_{i\in\mathbb{N}_+^*}$. On pose $Y_n=\max_{1\leq i\leq n}X_i$.

Question 1 (3 pts) : Déterminez la loi de Y_n .

Question 2 (2 pts) : Montrez que Y_n converge en moyenne vers une variable aléatoire certaine.

Question 3 (1 pt) : On peut générer numériquement des tirages de la variable aléatoire uniforme sur [0,1], que l'on note R. Quelle fonction g appliquer à R pour que g(R) suive la loi de Y_n ? Tracez l'allure de la fonction g pour différentes valeurs de n et commentez-les.

Corrigé

Question 1: La fonction de répartition de X_i vaut $F_X(x) = x$ sur l'intervalle [0, 1]. La fonction de répartition du maximum vaut $F_{Y_n}(x) = F_X(x)^n = x^n$, sa loi est donc $f_{Y_n}(x) = nx^{n-1}$ sur l'intervalle [0, 1], et elle est nulle en-dehors.

Question 2: On calcule $E[Y_n] = 1 - \frac{1}{n+1}$. On a donc $E[|Y_n - 1|] = E[1 - Y_n] = 1 - E[Y_n] = \frac{1}{n+1} \underset{n \to \infty}{\to} 0$: Y_n converge en moyenne vers 1.

Question 3: D'après le cours g est la fonction réciproque de la fonction de répartition de Y_n , $F_X(x) = x^n$. Il faut donc prendre $g(x) = x^{1/n}$. On voit que g(x) s'approche de 1 quand n augmente.

3.4 Distribution du maximum de variable aléatoires exponentielles (6 pts)

On considère n variables aléatoires exponentielles de paramètre λ indépendantes, $(X_i)_{1 \leq i \leq n}$. On pose $Y_n = \max_{1 \leq i \leq n} X_i$.

Question 1 (3 pts) : Montrez que la loi de Y_n est donnée par

$$f_{Y_n}(x) = n\lambda e^{-\lambda x} \left(1 - e^{-\lambda x}\right)^{n-1}.$$
(111)

Représentez graphiquement cette loi.

Question 2 (1 pt): Montrez que f_{Y_n} atteint son maximum en $x_n^* = \log(n)/\lambda$.

Question 3 (2 pts) : Déterminez la distribution du maximum par rapport à sa valeur la plus probable, $g_n(x) = f_{Y_n}(x + x_n^*)$, dans la limite $n \to \infty$.

Corrigé

Question 1: La fonction de répartition d'une variable X_i est donnée par $F_X(x) = 1 - \exp(-\lambda x)$. La fonction de répartition du maximum est donc $F_{Y_n}(x) = F_X(x)^n$. La loi de Y_n s'obtient en dérivant cette fonction de répartition, ce qui conduit au résultat demandé.

Question 2 : Calculons la dérivée de la loi de Y_n :

$$f'_{Y_n}(x) = n\lambda^2 e^{-\lambda x} \left(1 - e^{-\lambda x}\right)^{n-2} \left(ne^{-\lambda x} - 1\right).$$
 (112)

La dérivée s'annule en $x_n^* = \log(n)/\lambda$.

Question 3 : D'après la définition donnée, on a

$$g_n(x) = \lambda e^{-\lambda x} \left(1 - \frac{e^{-\lambda x}}{n} \right)^{n-1} \xrightarrow[n \to \infty]{} \lambda e^{-\lambda x} e^{-e^{-\lambda x}}.$$
 (113)

3.5 Ordre de deux variables aléatoires uniformes (3 pts)

X est une variable aléatoire uniforme sur [0,1] et Y est une variable aléatoire uniforme sur $[0,\alpha]$, $\alpha \in [0,1]$; X et Y sont indépendantes.

Question 1 (3 pts) : Quelle est la probabilité $P(X \ge Y)$?

Corrigé

Question 1 : Le plus simple est de le faire avec les probabilités conditionnelles :

$$P(X \ge Y) = P(X \ge Y | X > \alpha) P(X > \alpha) + P(X \ge Y | X \le \alpha) P(X \le \alpha) = 1 \times (1 - \alpha) + \frac{1}{2} \times \alpha = 1 - \frac{\alpha}{2}.$$
(114)

3.6 Suite de variables aléatoires de Bernouilli (6 pts)

On considère des variables aléatoires $(X_n)_{n\in\mathbb{N}}$ de Bernouilli, indépendantes et de même paramètre $p=P(X_n=1)$.

Question 1 (2 pts) : Calculez la fonction caractéristique $G_{X_n}(s)$ d'une variable aléatoire X_n et la fonction caractéristique d'une variable aléatoire A de Poisson de paramètre λ , en utilisant la fonction caractéristique adaptée aux variables aléatoires à valeurs entières.

Question 2 (2 pts) : On considère la variable aléatoire $Y_N = \sum_{n=1}^N X_n$. Quelle est sa fonction caractéristique? Quelle est la loi de Y_N dans la limite $N \to \infty$ avec $p = \alpha/N$?

Question 3 (2 pts) : On considère cette fois que p ne dépend pas de N. On introduit $W_N = a_N Y_N + b_N$. Comment choisir a_N et b_N pour que W_N tende en loi vers une loi normale centrée réduite quand $N \to \infty$?

Corrigé

Question 1: $G_{X_n}(s) = \sum_{k=0}^{\infty} P(X_n = k) s^k = 1 - p + ps. \ G_A(s) = \exp(\lambda(s-1)).$

Question 2: $G_Y(s) = (1 - p + ps)^N$. $[1 + \alpha(s-1)/N]^N \to \exp(\alpha(s-1))$: c'est une loi de Poisson de paramètre α .

Question 3 : D'après le théorème de la limite centrale il faut considérer

$$W_N = \frac{Y_N - E(Y_N)}{\sqrt{\text{Var}(Y_N)}} = \frac{Y_N - NE(X_1)}{\sqrt{N \, \text{Var}(X_1)}} = \frac{Y_N - Np}{\sqrt{Np(1-p)}} = \frac{Y_N}{\sqrt{Np(1-p)}} - \sqrt{\frac{Np}{1-p}}, \tag{115}$$

soit $a_N = 1/\sqrt{Np(1-p)}$ et $b_N = -\sqrt{\frac{Np}{1-p}}$.

3.7 Loi de la médiane de variables aléatoires continues (7 pts)

On considère 2N+1 variables aléatoires continues indépendantes et identiquement distribuées, $(X_i)_{0 \le i \le 2N}$; on note F_X la fonction de répartion de X_0 et $f_X = F_X'$ la densité associée. On note Y_i la i-ème variable quand elles sont classées par ordre croissant : Y_0 est le minimum, Y_{2N} le maximum et Y_N est la médiane.

Question 1 (2 pts) : Quelle est la probabilité $P(Y_k \in [x, x + \epsilon])$ pour un petit ϵ ? En déduire la densité de probabilité de Y_k , f_{Y_k} .

Question 2 (2 pts) : On s'intéresse maintenant à des variables aléatoires uniformes sur l'intervalle [0,1]. Déterminer les lois de Y_0 , Y_1 et Y_2 pour N=1. Donner leur espérance et leur variance.

Question 3 (3 pts) : Donner un équivalent de $Var(Y_N)$ dans la limite $N \to \infty$. Vous pouvez développer la densité de Y_N autour de son maximum et montrer que Y_N suit approximativement une loi Gaussienne. Comparez avec la variance de $M_N = (\sum_{i=0}^{2N} X_i)/(2N+1)$.

Corrigé

Question 1 : Il faut qu'un X_i corresponde à Y_k , que k soient en dessous et 2N-k au-dessus. On trouve donc

$$f_{Y_k}(x) = \frac{(2N+1)!}{(2N-k)!k!} f_X(x) F_X(x)^k [1 - F_X(x)]^{2N-k}.$$
 (116)

Question 2: Pour des variables aléatoires uniformes sur l'intervalle [0,1], $f_X(x)=1$ et $F_X(x)=x$ pour $x\in[0,1]$, ainsi $f_{Y_0}(x)=3(1-x)^2$, $f_{Y_1}=6x(1-x)$, $f_{Y_2}=3x^2$ (on vérifie que ces densités sont normalisées). On trouve ensuite $\mathrm{E}(Y_2)=3/4$, $\mathrm{Var}(Y_2)=\frac{3}{5}-\left(\frac{3}{4}\right)^2=3/80$, par symétrie $\mathrm{E}(Y_0)=1/4$ et $\mathrm{Var}(Y_0)=3/80$, et enfin $\mathrm{E}(Y_1)=1/2$ (par symétrie) et $\mathrm{Var}(Y_1)=1/20$.

Question 3: On a pour la médiane $f_{Y_N}(x) = \frac{(2N+1)!}{N!^2} [x(1-x)]^N$. Or $x(1-x) = \frac{1}{4} \left[1 - 4\left(x - \frac{1}{2}\right)^2\right]$, donc

$$f_{Y_N}(x) \propto \exp\left(N\log\left(1 - 4\left[x - \frac{1}{2}\right]^2\right)\right) \simeq \exp\left(-4N\left[x - \frac{1}{2}\right]^2\right).$$
 (117)

On reconnaît une gaussienne de variance 1/(8N). La variance de M_N suit $Var(M_N) \sim 1/(24N)$: il y a la même décroissance en 1/N.

3.8 Nombre de photons détectés derrière un miroir semi-réfléchissant (6 pts)

Un laser envoie N photons sur un miroir réfléchissant, où N est une variable aléatoire suivant une loi de Poisson de paramètre λ . À chaque photon n est associé une variable aléatoire de Bernouilli X_n valant 1 si le

photon est transmis $(P(X_n = 1) = p)$ et 0 s'il est réfléchi par le miroir. Les photons sont indépendants les uns des autres. Le nombre de photons transmis est $T = \sum_{n=1}^{N} X_n$.

Question 1 (2 pts) : Calculez la fonction caractéristique du nombre de photons envoyés, $G_N(s) = E(s^N)$, et la fonction caractéristique de la variable X_n , $g(s) = E(s^{X_n})$.

Question 2 (4 pts) : Exprimez la fonction caractéristique du nombre de photons transmis $G_T(s)$ en fonction de $G_N(s)$ et g(s). Quelle loi suit la variable aléatoire T?

Corrigé

Question 1: $g(s) = E(s^{X_n}) = ps + 1 - p = 1 + p(s-1)$ et

$$G(s) = \mathcal{E}(s^N) = \sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^n}{n!} s^n = e^{\lambda(s-1)}.$$
 (118)

Question 2 : Calculons

$$G_T(s) = \mathcal{E}(s^T) = \mathcal{E}\left(s^{\sum_{n=1}^N X_n}\right)$$
(119)

$$= \mathbf{E}\left(\sum_{k=0}^{\infty} \delta_{k,N} s^{\sum_{n=1}^{N} X_n}\right)$$
 (120)

$$= \sum_{k=0}^{\infty} E\left(\delta_{k,N} s^{\sum_{n=1}^{k} X_n}\right)$$
 (121)

$$= \sum_{k=0}^{\infty} E(\delta_{k,N}) E\left(s^{\sum_{n=1}^{k} X_n}\right)$$
 (122)

$$=\sum_{k=0}^{\infty} P(N=k)g(s)^k$$
(123)

$$= E(g(s)^N) \tag{124}$$

$$=G_N(g(s)). (125)$$

On a utilisé l'indépendance de N et des (X_n) . Ainsi

$$G_T(s) = \exp(\lambda[1 + p(s-1) - 1]) = \exp(\lambda p[s-1]),$$
 (126)

c'est la fonction caractéristique d'une loi de Poisson de paramètre $p\lambda$.

4 Translations

4.1 Fokker-Planck equation (8 pts)

Let $V : \mathbb{R}^d \to \mathbb{R}$ be a function such that the integral $Z = \int \exp(-V(r)) dr$ is finite. We consider the associated Fokker-Planck equation for u(r,t),

$$\partial_t u(\mathbf{r}, t) = \nabla^2 u(\mathbf{r}, t) + \nabla \cdot [u(\mathbf{r}, t) \nabla V(\mathbf{r})] = \mathcal{L}u(\mathbf{r}, t), \tag{127}$$

where we have defined the differential operator \mathcal{L} :

$$\mathcal{L}f(\mathbf{r}) = \nabla^2 f(\mathbf{r}) + \nabla \cdot [f(\mathbf{r})\nabla V(\mathbf{r})] = \nabla \cdot \left(e^{-V(\mathbf{r})}\nabla \left[e^{V(\mathbf{r})}f(\mathbf{r})\right]\right). \tag{128}$$

Question 1 (2 pts): Show that \mathcal{L} is self-adjoint for the scalar product

$$\langle f, g \rangle = \int e^{V(\mathbf{r})} f(\mathbf{r}) g(\mathbf{r}) d\mathbf{r}.$$
 (129)

You can integrate by parts.

Question 2 (1 pt): Determine the sign of the eigenvalues of \mathcal{L} .

Question 3 (1 pt): Show that 0 is an eigenvalue of \mathcal{L} and determine the associated eigenmode $\phi_0(\mathbf{r})$.

Question 4 (2 pts): Show that the solution to the Fokker-Planck equation (127) with initial condition $u(\mathbf{r},0) = u_0(\mathbf{r})$ is unique. You can study the evolution of the quantity $||v(\mathbf{r},t)||^2 = \langle v(\mathbf{r},t), v(\mathbf{r},t) \rangle$ for $v(\mathbf{r},t)$ solution corresponding to the initial condition $v(\mathbf{r},0) = 0$.

Question 5 (2 pts): For the initial condition $u_0(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_0)$, determine the limit $u_{\infty}(\mathbf{r}) = \lim_{t \to \infty} u(\mathbf{r}, t)$.

4.2 Diffusion of a pollutant emitted from t > 0 (7 pts)

We consider the concentration $u(\mathbf{r},t)$ of a pollutant in \mathbb{R}^3 as a function of time. The pollutant is emitted at $\mathbf{r}=0$ with a rate 1, and it diffuses with a diffusion coefficient D. The concentration $u(\mathbf{r},t)$ satisfies

$$\partial_t u(\mathbf{r}, t) = D\nabla^2 u(\mathbf{r}, t) + H(t)\delta(\mathbf{r}), \tag{130}$$

with the initial condition $u(\mathbf{r},0) = 0$ for all \mathbf{r} .

Question 1 (1 pt): Show that the solution to this problem is unique.

Question 2 (2 pts): What is the equation satisfied by the concentration in the stationnary state, $u_s(\mathbf{r}) = \lim_{t \to \infty} u(\mathbf{r}, t)$? Determine $u_s(\mathbf{r})$?

Question 3 (2 pts): What equation does the total amount of pollutant in the medium at time t, $U(t) = \int u(\mathbf{r}, t) d\mathbf{r}$, satisfies? Determine U(t)? What is $U_s = \int u_s(\mathbf{r}) d\mathbf{r}$? In what sense can we write that $u_s(\mathbf{r}) = \lim_{t \to \infty} u(\mathbf{r}, t)$?

Question 4 (2 pts): Give the Green function $G(\mathbf{r},t)$ associated to this problem. Use it to write down the solution $u(\mathbf{r},t)$. Sketch the behavior of $u(\mathbf{r},t)$ for different values of $r=|\mathbf{r}|$.

4.3 Green function of ∇^4 (7 pts)

We look for the Green function of $\nabla^4 = (\nabla^2)^2 = (\sum_{i=1}^d \partial_i^2)^2$ in dimension d, that is, the solution of $\nabla^4 G_d = \delta$. We look for an isotropic solution: $G_d(\mathbf{r}) = g_d(r)$, with r the norm of \mathbf{r} . we will use the results of the course for the Green function of the Poisson's equation, $\nabla^2 F_d = \delta$, and the method used to determine these Green functions (we will also use $F_d(\mathbf{r}) = f_d(r)$).

Question 1 (2 pts): Relate G_d to F_d . Write down this relation for the functions g_d and f_d .

Question 2 (2 pts): Using the results of the course for $f_d(r)$, determine $g_d(r)$ for $d \notin \{2, 4\}$. What is the problem with the dimension d = 4?

Question 3 (1 pt) : Determine $g_4(r)$.

Question 4 (2 pts): Determine $g_2(r)$ (you can factorize the terms containing $g_2(r)$ and consider $r \mapsto r^2 \log(r)$).

4.4 The Dido problem (5 pts)

We consider the area \mathcal{A} delimited by a segment AB of length a and a string of length ℓ attached to the ends of the segment. We assume that $a \leq \ell \leq \pi a$. We choose the axis so that the coordinates of the points A and

B are (-a/2,0) and (a/2,0), respectively. The Dido problem consists in finding the shape of the string y(x) that maximizes the area A.

Question 1 (3 pts): Write the functional and the Lagrangian associated to this problem. Show that this problem is translation invariation and give the associated integral of motion. We denote λ the Lagrange multiplier and C the value of the integral of motion.

Question 2 (2 pts): Show that $y(x) = \sqrt{\lambda^2 - x^2} - C$ is solution. Determine the value of C. What shape does this function describe? What is the value of λ when $\ell = \pi a/2$?

4.5 Method of characteristics (5 pts)

Consider the partial differential equation defined on \mathbb{R}^2 by

$$\partial_x u(x,y) + xy \partial_y u(x,y) = 0. (131)$$

Question 1 (3 pts): Using the method of characteristics, give the general solution to this equation.

Question 2 (2 pts): What are the solutions satisfying each of the following conditions:

- (i) $\forall y \in \mathbb{R}, u(0,y) = y^2;$
- (ii) $\forall x \in \mathbb{R}, u(x,0) = x^2$?

4.6 Method of characteristics (5 pts)

We consider the partial differential equation for the function u,

$$y\partial_x u(x,y) + x\partial_y u(x,y) = 0, (132)$$

defined over $\{(x,y) \in \mathbb{R}^2 | x \ge 0, |y| \le x\}$.

Question 1 (2 pts): Determine the equations satisfied by the characteristics $(\hat{x}(s), \hat{y}(s))$ along which the function u is constant. Show that $\hat{x}(s)^2 - \hat{y}(s)^2$ is constant along a characteristic.

Question 2 (1 pt): Sketch a few characteristics.

Question 3 (2 pts): Give the solution that satisfies the condition u(x,0) = f(x) for $x \in \mathbb{R}_+$. It is possible, but not mandatory, to use the functions cosh and sinh to parametrize the characteristics.

4.7 Method of characteristics (5 pts)

Consider the partial differential equation defined on $\mathbb{R}^2 \setminus \{0,0\}$ by

$$x\partial_x u(x,y) + y\partial_y u(x,y) + 2u(x,y) = 0. (133)$$

Question 1 (2 pts): Determine the equations satisfied by the characteristics $(\hat{x}(s), \hat{y}(s))$. determine the characteristic that passes through the point $(\cos(\theta_0), \sin(\theta_0))$. Sketch a few characteristics.

Question 2 (3 pts): What is the differential equation satisfied by $\hat{u}(s) = u(\hat{x}(s), \hat{y}(s))$? What is the solution which satisfies $u(\cos(\theta_0), \sin(\theta_0)) = \cos(\theta_0)^3$. You can use the polar coordinates (r, θ) and write the solution for $u(r, \theta)$.

4.8 Snell-Descartes law (3 pts)

We consider a light ray propagating in the (x, y) plane of optical index n(x); the trajectory of the light ray is given by the equation y = h(x).

Question 1 (2 pts): Write down the functional and the Lagrangian associated to this problem. Give the Euler-Lagrange equation satisfied by this light ray.

Question 2 (1 pt): Recover the Snell-Descartes law: at a planar interface separation a medium of index n_1 and a medium of index n_2 , denoting θ_i the angle between the light ray and the normal to the interface in the medium i, $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$.

4.9 Shape of a heavy embedded beam (5 pts)

We consider a beam of length L, bending modulus B and linear mass ρ , embedded horizontally in a rigid wall. We look for the shape of the beam. We denote y(x) its height at a distance x from the wall. The energy of the beam is given by

$$U[y] = \int_0^L \left[\frac{B}{2} y''(x)^2 + \rho g y(x) \right] dx, \tag{134}$$

and the embedding imposes y(0) = y'(0) = 0.

Question 1 (3 pts): Give the differential equation satisfied by the height and the boundary conditions.

Question 2 (2 pts): Determine the shape of the beam. What is y(L)?

4.10 Poincaré inequality (4 pts)

We consider the segment [0, L]. The norm of a function f on this segment is defined by $||f||^2 = \int_0^L f(x)^2 dx$. We want to prove the Poincaré inequality: "there exists a constant c_L such that for any function f such that f(0) = f(L) = 0, $||f|| \le c_L ||f'||$."

Let f be a function such that f(0) = f(L) = 0, let us prove that $||f|| \le c_L ||f'||$ for a constant c_L . We introduce the function $g = \frac{f}{||f'||}$, then g(0) = g(L) = 0 and ||g'|| = 1; we thus have to show that $||g|| \le c_L$. If we are looking for the optimal constant c_L (the smallest possible), we obtain the following problem:

Question 1 (4 pts): Determine the function g on [0, L] such that g(0) = g(L) = 0 and ||g'|| = 1 and with maximal norm. What is the constant c_L ? Note that maximizing ||g|| is equivalent to maximize $||g||^2$ and that $||g'||^2 = 1$.

4.11 The Dido problem (5 pts)

We consider the area \mathcal{A} delimited by a segment AB of length a and a string of length ℓ attached to the ends of the segment. We assume that $a \leq \ell \leq \pi a$. We choose the axis so that the coordinates of the points A and B are (-a/2,0) and (a/2,0), respectively. The Dido problem consists in finding the shape of the string y(x) that maximizes the area \mathcal{A} .

Question 1 (3 pts): Write the functional and the Lagrangian associated to this problem. Show that this problem is translation invariation and give the associated integral of motion. We denote λ the Lagrange multiplier and C the value of the integral of motion.

Question 2 (2 pts): Show that $y(x) = \sqrt{\lambda^2 - x^2} - C$ is solution. Determine the value of C. What shape does this function describe? What is the value of λ when $\ell = \pi a/2$?

4.12 Lifetime of an electronic circuit (3 pts)

We consider an electronic circuit consisting of N components. The lifetime of the component n, X_n , is an exponential random variable with parameter λ_n ; the lifetimes of the different components are independent. The lifetime Y of the circuit is equal to the minimum of the lifetimes of the components: $Y = \min_n(X_n)$.

Question 1 (1 pt): What is the expected value of the lifetime of the component n, $t_n = E(X_n)$ (perform the calculation)?

Question 2 (2 pts): Show that the lifetime of the circuit is an exponential random variable and give its parameter. Express the lifetime of the circuit, $t_c = E(Y)$, as a function of the lifetimes of the components.

4.13 Order of two uniform random variables (3 pts)

X is a uniform random variable on [0,1] and Y is a uniform random variable on $[0,\alpha]$, $\alpha \in [0,1]$; X and Y are independent.

Question 1 (3 pts): What is the probability $P(X \ge Y)$?

4.14 Law of the median of continuous random variables (7 pts)

We consider 2N+1 continuous random variables independent and identically distributed, $(X_i)_{0 \le i \le 2N}$; we denote F_X the cumulative distribution function of X_0 and $f_X = F_X'$ the associated density. We denote Y_i the *i*-th variable when they are ordered by increasing values: Y_0 is the minimum, Y_{2N} is the maximum and Y_N is the median.

Question 1 (2 pts): What is the probability $P(Y_k \in [x, x + \epsilon])$ for a small ϵ ? Deduce the probability density of Y_k , f_{Y_k} .

Question 2 (2 pts): We now focus on random variables uniformly distributed over the interval [0,1]. Determine the laws of Y_0 , Y_1 and Y_2 for N=1. Compute their expectation and their variance.

Question 3 (3 pts): Give an equivalent of $Var(Y_N)$ in the limit $N \to \infty$. You can develop the density of Y_N around its maximum and show that Y_N follows approximately a Gaussian law. Compare with the variance of $M_N = (\sum_{i=0}^{2N} X_i)/(2N+1)$.

4.15 Maximum of uniform random variables: convergence and random drawing (6 pts)

We consider independent random variables $(X_i)_{i \in \mathbb{N}_+^*}$, uniform over the interval [0,1]. We define $Y_n = \max_{1 \le i \le n} X_i$.

Question 1 (3 pts): Determine the probability distribution of Y_n .

Question 2 (2 pts): Show that Y_n converges in mean towards a constant.

Question 3 (1 pt): Numerically, we can draw a random variable R uniformly distributed over [0,1]. What function g should we apply to R such that g(R) and Y_n have the same probability distribution? Plot the behavior of g for different values of n and comment them.

4.16 Distribution of the maximum of exponential random variables (6 pts)

We consider n independent exponential random variables with parameter $\lambda_i(X_i)_{1 \leq i \leq n}$. We define $Y_n = \max_{1 \leq i \leq n} X_i$.

Question 1 (3 pts): Show that the law of Y_n is given by

$$f_{Y_n}(x) = n\lambda e^{-\lambda x} \left(1 - e^{-\lambda x}\right)^{n-1}.$$
(135)

Graph this law.

Question 2 (1 pt) : Show that f_{Y_n} reaches its maximum at $x_n^* = \log(n)/\lambda$.

Question 3 (2 pts): Determine the distribution of the maximum with respect to its most probable value, $g_n(x) = f_{Y_n}(x + x_n^*)$, in the limit $n \to \infty$.