## An Introduction to CUDA Programming

S7699 - Session 1 of 4





#### **About Acceleware**

#### **Programmer Training**

- CUDA and other HPC training classes
- Over 100 courses taught
- http://acceleware.com/training

#### **Consulting Services**

- Projects for Oil & Gas, Medical, Finance, Security and Defence, CAD, Media & Entertainment
- Mentoring, code review and complete project implementation
- http://acceleware.com/services

#### **GPU Accelerated Software**

- Seismic imaging & modeling
- Electromagnetics





## Seismic Imaging & Modeling

#### AxWAVE™

- Seismic forward modeling
- 2D, 3D, constant and variable density models
- High fidelity finite-difference modeling

#### AxRTM™

- High performance Reverse Time Migration application
- Isotropic, VTI and TTI media

#### AxFWI™

- Inversion of the full seismic data to provide an accurate subsurface velocity model
- Customizable for specific workflows

#### **HPC Implementation**

- Optimized for NVIDIA Tesla GPUs
- Efficient multi-GPU scaling





#### Electromagnetics

#### AxFDTD™

- Finite-Difference Time-Domain Electromagnetic Solver
- Optimized for NVIDIA GPUs
- Sub-gridding and large feature coverage
- Multi-GPU, GPU clusters, GPU targeting

Available from:















# **Consulting Services**

| Industry              | Application                      | Work Completed                                                                                                                                                                     | Results                                                                         |
|-----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Finance               | Option Pricing                   | Debugged & optimized existing CUDA code<br>Implemented the Leisen-Reimer version of the binomial model<br>for stock option pricing                                                 | 30-50x performance improvement compared to single-threaded CPU code             |
| Security &<br>Defense | Detection<br>System              | Replaced legacy Cell-based infrastructure with GPUs Implemented a GPU accelerated X-ray iterative image reconstruction and explosive detection algorithms                          | Surpassed the performance<br>targets Reduced hardware<br>cost by a factor of 10 |
| CAE                   | SIMULIA<br>Abaqus                | Developed a GPU accelerated version  Conducted a finite-element analysis and developed a library to offload LDLT factorization portion of the multi-frontal solver to GPUs         | Delivered an accelerated (2-3x) solution that supports NVIDIA and AMD GPUs      |
| Medical               | CT<br>Reconstruction<br>Software | Developed a GPU accelerated application for image reconstruction on CT scanners and implemented advanced features including job batch manager, filtering and bad pixel corrections | Accelerated back projection by 31x                                              |
| Oil & Gas             | Seismic<br>Application           | Converted MATLAB research code into a standalone application & improved performance via algorithmic optimizations                                                                  | 20-30x speedup                                                                  |



#### **Programmer Training**

- CUDA and other HPC training classes
- Public, private onsite, and online courses
- Teachers with real world experience
- Hands-on lab exercises
- Progressive lectures
- Small class sizes to maximize learning
- 90 days post training support

"The level of detail is fantastic. The course did not focus on syntax but rather on how to expertly program for the GPU. I loved the course and I hope that we can get more of our team to take it."

Jason Gauci, Software Engineer Lockheed Martin





#### **Outline**

**CUDA** overview

Data-parallelism

GPU programming model

- GPU kernels
- Host vs. device responsibilities
- CUDA syntax
- Thread hierarchy





## Why use GPUs? Performance!

GPU advances are outpacing CPU advances Continuing Moore's Law?





## Why use GPUs? Performance!

|                         | Intel Xeon E5-2699v4<br>(Broadwell-EP) | NVIDIA Tesla<br>K80 (Kepler) | NVIDIA Tesla<br>M60 (Kepler) | NVIDIA Tesla<br>P100 (Pascal) | NVIDIA Jetson<br>TX2 (Pascal) |
|-------------------------|----------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|
|                         | (intel <sup>*</sup> )                  | <b>W</b> INVIDIA.            | <b>@</b> NVIDIA.             | <b>@</b> NVIDIA,              | <b>@</b> NVIDIA.              |
| Processing<br>Cores     | 22                                     | 4992                         | 4096                         | 3584                          | 8 ARM + 256<br>Pascal         |
| Clock<br>Frequency      | 2.2-3.6GHz                             | 0.562-0.875GHz               | 0.900-1.180GHz               | 1.328-1.48GHz                 | 0.854 – 1.465GHz              |
| Memory<br>Bandwidth     | 76.8 GB/s / socket                     | 480GB/s                      | 320GB/s                      | 720GB/s                       | 58.4GB/s                      |
| Peak Tflops<br>(single) | 1.83 @ 2.6GHz                          | 8.74 @ 0.875GHz              | 9.68 @ 1.180GHz              | 10.6 @<br>1.48GHz             | 0.75@1.465GHz                 |
| Peak Tflops<br>(double) | 0.915 @ 2.6GHz                         | 2.91 @ 0.875GHz              | 0.30 @ 1.180GHz              | 5.3 @ 1.48GHz                 | 0.023@1.465GHz                |
| Gflops/Watt<br>(single) | 12.62                                  | 29.1                         | 32.2                         | 35.3                          | 50                            |
| Total Memory            | >>24GB                                 | 24GB                         | 16GB                         | 16GB                          | 8GB                           |



## **GPU Potential Advantages**

#### Tesla P100 vs. Xeon E5-2699 v4

- 5.8x more single-precision floating-point throughput
- 5.8x more double-precision floating-point throughput
- 9.4x higher memory bandwidth





### **GPU Disadvantages**

- Architecture not as flexible as CPU
- Must rewrite algorithms and maintain software in GPU languages
- Discrete GPUs attached to CPU via relatively slow PCIe
  - 32GB/s bi-directional for PCle 3.0 16x
  - 40GB/s bi-directional for NVLink
- Limited memory (though 8-24GB is reasonable for many applications)





#### Software Approaches for Acceleration

Programming Languages

- Maximum Flexibility
  - CUDA C/C++, CUDA Fortran
  - MATLAB, Mathematica, LabVIEW
  - Python: NumbaPro, PyCUDA

OpenACC Directives

Effort

- Simple programming for heterogeneous systems
  - Simple compiler hints/pragmas
  - Compiler parallelizes code
  - Target a variety of platforms

Libraries

- "Drop-in" Acceleration
  - In-depth GPU knowledge not required
  - Highly optimized by GPU experts
  - Provides functions used in a broad range of applications (eg. FFT, BLAS, RNG)



## **Compute Capability**

# Hardware architecture version number Defined by a major and minor version number

- Major version specifies core architecture type
- Minor version refers to incremental improvements and new features

| Architecture | Compute Capability | GPUs                               | Example Features                     |  |
|--------------|--------------------|------------------------------------|--------------------------------------|--|
| Tesla        | 1.0                | GeForce 8800, Tesla C870           | Base Functionality                   |  |
| Fermi        | 2.0                | GeForce GTX 480, Tesla C2050       | Fast Double Precision, Memory Caches |  |
|              | 3.0                | GeForce GTX 680, Tesla K10         | Warp Shuffle Functions               |  |
| Kepler       | 3.5                | GeForce GTX Titan Black, Tesla K40 | Dynamic Parallelism                  |  |
|              | 3.7                | Tesla K80                          | More Registers / Shared Memory       |  |
| Maxwell      | 5.0                | GeForce GTX 750 Ti, Tegra X1       | Power Efficient Architecture         |  |
| iviaxweii    | 5.2                | Tesla M40, Tesla M60               | More Shared Memory                   |  |
|              | 6.0                | Tesla P100                         | Half Precision (FP16)                |  |
| Pascal       | 6.1                | Titan Xp                           | Int8                                 |  |
|              | 6.2                | Tegra P1                           | Int8 + FP16                          |  |



#### **CUDA Overview**

 Compute Unified Device Architecture (CUDA) – Parallel computing platform and programming model architecture developed by NVIDIA



- Libraries, OpenACC, and programming languages built on top of CUDA
- CUDA C/C++ programming interface consists of:
  - C language extensions to target portions of source code for parallel execution on the device (GPU)
  - A library of C functions that execute on the host (CPU) to interact with the device



### **Data-Parallel Computing**

- Performs operations on a data set organized into a common structure (eg. an array)
- 2. A set of tasks work collectively and simultaneously on the same structure with each task operating on its own portion of the structure
- 3. Tasks perform identical operations on their portions of the structure. Operations on each portion must be data independent!



#### Data Dependence

 Data dependence occurs when a program statement refers to the data of a preceding statement

```
a = 2 * x;
b = 2 * y;
c = 3 * x;
```

These 3 statements are independent!

```
a = 2 * x;
b = 2 * a * a;
c = b * 9;
```

b depends on a, c depends on b and a!

Data dependence limits parallelism



## Data-Parallel Computing Example



- Data set consisting of arrays A,B, and C
- Same operations performed on each element

$$C_x = A_x + B_x$$

 Two tasks operating on a subset of the arrays. Tasks 0 and 1 are independent. Could have more tasks.



## Data-Parallel Computing on GPUs

#### Data-parallel computing maps well to GPUs:

- Identical operations executed on many data elements in parallel
  - Simplified flow control allows increased ratio of compute logic (ALUs) to control logic





**CPU** 

**GPU** 



## The CUDA Programming Model

CUDA is a heterogeneous model, including provisions

for both host and device

Discrete GPU







## The CUDA Programming Model

- Data-parallel portions of an algorithm are executed on the device as kernels
  - Kernels are C/C++ functions with some restrictions, and a few language extensions
- Only one kernel is executed at a time
  - Newer GPU architectures relax this restriction
- Each kernel is executed by many threads



#### **CUDA Threads**

- CUDA threads are conceptually similar to data-parallel tasks
  - Each thread performs the same operations on a subset of a data structure
  - Threads execute independently
- CUDA threads are not CPU threads
  - CUDA threads are extremely lightweight
    - Little creation overhead
    - Instant context-switching
- CUDA threads must execute the same kernel



## **CUDA Thread Hierarchy**

- CUDA is designed to execute 1000s of threads
- Threads are grouped together into thread blocks
- Thread blocks are grouped together into a grid



Image courtesy of NVIDIA Corp.



### **CUDA Thread Hierarchy**

- Thread blocks and Grids can be 1D, 2D or 3D
- Dimensions set at launch time
- Thread blocks and grids do not need to have the same dimensionality
  - ie. 1D Grid of 2D Thread Blocks





## The CUDA Programming Model

- The host launches kernels
- The host executes serial code between device kernel launches
  - Memory management
  - Data exchange to/from device
  - Error handling



#### **CUDA APIs**

# Can use CUDA through CUDA C (Runtime API) and low-level Driver API

- The tutorial presentations use CUDA C
  - Uses host side C-extensions that greatly simplifies host code
- Driver API requires explicit resource management and more verbose syntax
- CUDA C is built on top of Driver API
  - Exposure of Driver API is for historical reasons
  - No reason to start new development using Driver API
- Don't confuse the two when referring to CUDA Documentation
  - cuFunctionName() Driver API
  - cudaFunctionName() Runtime API



### CUDA Kernel Launch Syntax

 CUDA kernels are launched by the host using a modified C function call syntax:

myKernel<<<dim3 dGrid, dim3 dBlock>>>(...)
dim3 is vector type with x, y, and z components (eg. dG.x)

Maximum Values For Each Dimension

|   |                         |          | Compute Capability |                               |                    |
|---|-------------------------|----------|--------------------|-------------------------------|--------------------|
|   |                         |          | 2.x (Fermi)        | 3.x (Kepler)<br>5.x (Maxwell) | 6.x (Pascal)       |
|   | Total Threads per Block |          | 1024               | 1024                          | 1024               |
| _ |                         | dGrid.x  | 65535              | 2 <sup>31</sup> -1            | 2 <sup>31</sup> -1 |
|   | Grid<br>Bize            | dGrid.y  | 65535              | 65535                         | 65535              |
|   |                         | dGrid.z  | 65535              | 65535                         | 65535              |
|   |                         | dBlock.x | 1024               | 1024                          | 1024               |
|   | ock<br>ize              | dBlock.y | 1024               | 1024                          | 1024               |
|   |                         | dBlock.z | 64                 | 64                            | 64                 |

Compute Capability

#### **CUDA Kernels**

- Denoted by \_\_global\_\_function qualifier
  - Eg. \_\_global\_\_void myKernel(float\* a)
- Called from host, executed on device
- A few noteworthy restrictions:
  - No access to host memory (in general!)
  - Must return void
  - No static variables
  - No access to host functions



## CUDA Syntax – Kernels (I)

Kernels can take arguments just like any C/C++ function

- Pointers to device memory
- Parameters passed by value

```
__global__ void SimpleKernel(float* a, float b)
{
   a[0] = b;
}
```



## CUDA Syntax – Kernels (II)

Kernels must be declared (but not necessarily defined) in source/header files before they are called

```
// Kernel declaration
__global__ void kernel(float* a);
int main()
{
    dim3 gridSize, blockSize;
    ...
    kernel<<<gridSize,blockSize>>>(a);
}

__global__ void kernel(float* a)
{
    ...
}
```



### CUDA Syntax - Kernels

#### Kernels have read-only built-in variables:

- gridDim: dimensions of the grid
  - Uniform for all threads
- blockldx: unique index of a block within grid
- blockDim: dimensions of the block
  - Uniform for all threads
- threadIdx: unique index of the thread within the thread block
- Cannot vary the size of blocks or grids during a kernel call



### CUDA Syntax - Kernels

# Built-in variables are typically used to compute unique thread identifiers

Map local thread ID to a global array index

myKernel<<<3,5>>>(...)



blockldx.x\*blockDim.x + threadIdx.x



#### CUDA Syntax – Index & Size Calculations

- Global index calculation
  - idx = blockldx.x \* blockDim.x + threadldx.x
- Grid size calculation

$$GridSize = \frac{Size + BlkDim - 1}{BlkDim} \leftarrow Integer\ Division$$

- Where
  - Size: Total size of the array
  - BlkDim: Size of the block (max 1024)
  - GridSize: Number of blocks in the grid



### CUDA Syntax – Thread Identifiers

Result for each kernel launched with the following execution configuration:

MyKernel<<<3,4>>>(a);

```
__global__ void MyKernel(int* a)
{
    int idx = blockIdx.x*blockDim.x+threadIdx.x;
    a[idx] = 7;
}

__global__ void MyKernel(int* a)
{
    int idx = blockIdx.x*blockDim.x+threadIdx.x;
    a[idx] = blockIdx.x;
}

__global__ void MyKernel(int* a)
{
    int idx = blockIdx.x*blockDim.x+threadIdx.x;
    a[idx] = threadIdx.x;
}
```



## CUDA Syntax - Kernels

- All C operators are supported
  - eg. +, \*, /, ^, >, >>
- All functions from the standard math library
  - eg. sinf(), cosf(), ceilf(), fabsf()
- Control flow statements too!
  - eg. if(), while(), for()



### CUDA Kernel C++ Support

- Supported
  - Classes
    - Including inheritance and virtual functions
    - Need to add \_\_device\_\_ qualifiers to member functions!
  - Templates
  - C++11 features including auto and lambda functions
- Not supported
  - C++ Standard Library
  - Run time type information (RTTI)
  - Exception handling
  - Classes with virtual functions are not binary compatible between host and device



#### **User-defined Device Functions**

- Can write/call your own device functions
  - \_\_device\_\_ float myDeviceFunction()
  - Device functions cannot be called by host

```
__device__ float myDeviceFunction(int i)
{
    ...
}

__global__ void myKernel(float* a)
{
    int idx = blockIdx.x*blockDim.x+threadIdx.x;
    a[idx] = myDeviceFunction(idx);
}
```

 Functions declared with both \_\_device\_\_ and \_\_host\_\_ will be compiled for both the CPU and GPU



#### CUDA Syntax - Memory Management

- Typically, host code manages device memory:
  - cudaMalloc(void\*\* pointer, size\_t nbytes)
  - cudaMemset(void\* pointer, int value, size\_t count)
  - cudaFree(void\* pointer)

```
// Memory allocation example
int n = 1024;
int nBytes = 1024*sizeof(int);
int* a = 0;
cudaMalloc((void**)&a, nbytes);
cudaMemset( a, 0, nbytes);
cudaFree(a);
```



## CUDA Syntax – Memory Spaces

- Host and device have separate memory spaces
  - For discrete GPUs data is moved between them via PCIe/NVLink bus
- Pointers are just addresses
  - Can't tell from the pointer value whether the address is on device or host
  - Must exercise caution when dereferencing pointers
    - Dereferencing host pointers on device likely crashed, and vice versa





#### CUDA Syntax – Data Transfers

- Host code manages data transfers to and from the device:
  - cudaMemcpy(void\* dst, void\* src, size\_t nbytes, enum cudaMemcpyKind direction);
  - Direction is one of:
    - cudaMemcpyHostToDevice
    - cudaMemcpyDeviceToHost
    - cudaMemcpyDeviceToDevice
    - cudaMemcpyHostToHost
    - cudaMemcpyDefault
  - Blocking call returns once copy is complete
  - Waits for all outstanding CUDA calls to complete before starting transfer
  - With cudaMemcpyDefault, runtime determines which way to copy data



### **CUDA Syntax - Synchronization**

- Kernel launches are asynchronous
  - Control returns to CPU immediately
  - Kernel starts executing once all outstanding CUDA calls are complete
- cudaMemcpy() is synchronous
  - Blocks until copy is complete
  - Copy starts once all outstanding CUDA calls are complete
- cudaDeviceSynchronize()
  - Blocks until all outstanding CUDA calls are complete

```
cudaMemcpy(...,cudaMemcpyHostToDevice);

// Data is on the GPU at this point

MyKernel<<<<...>>>(...);

// Kernel is launched but
// not necessarily complete

cudaMemcpy(...,cudaMemcpyDeviceToHost);
// CPU waits until kernel is complete
// and then transfers data

// Data is on the CPU at this point
```



## CUDA Syntax – Error Management

- Host code manages errors
- Most CUDA function calls return cudaError t
  - Enumeration type
    - cudaSuccess (value 0) indicates no errors
- char\* cudaGetErrorString(cudaError\_t err)
  - Returns a string describing the error condition

```
cudaError_t e;
e = cudaMemcpy(...);
if(e)
  printf("Error: %s\n", cudaGetErrorString(err));
```



### CUDA Syntax – Error Management

- Kernel launches have no return value!
- cudaError\_t cudaGetLastError()
  - Returns error code for last CUDA runtime function (including kernel launches)
    - Resets global error state to cudaSuccess
  - In case of multiple errors, only the last one is reported
  - For kernels:
    - Asynchronous, must call cudaDeviceSynchronize() first, then cudaGetLastError()

```
MyKernel<<< ... >>> (...);

cudaDeviceSynchronize();
e = cudaGetLastError();
```



#### Putting It All Together



One Thread per Output

$$C_x = A_x + B_x$$
 Operation

This kernel assumes that the size of the array fits evenly into the block size.
What happens if does not?



#### Vector Add – Host Code

```
void VectorAdd(float* aH, float* bH, float* cH, int N)
                                                                   This code assumes N
    float* aD, *bD, *cD;
                                                                    is a multiple of 512
    int N BYTES = N * sizeof(float);
    dim3 blockSize, gridSize;
    cudaMalloc((void**)&aD, N BYTES);
                                               Allocate memory on
    cudaMalloc((void**)&bD, N BYTES);
                                                      GPU
    cudaMalloc((void**)&cD, N BYTES);
                                                                       Transfer input
    cudaMemcpy(aD, aH, N BYTES, cudaMemcpyHostToDevice);
    cudaMemcpy(bD, bH, N BYTES, cudaMemcpyHostToDevice);
                                                                       arrays to GPU
    blockSize.x = 512;
    gridSize.x = N / blockSize.x;
                                                                        Launch kernel
    VectorAddKernel<<<gridSize, blockSize>>>(aD, bD, cD);
                                                                   Transfer output
    cudaMemcpy(cH, cD, N BYTES, cudaMemcpyDeviceToHost);
                                                                   array to CPU
```



### CUDA Syntax – Unified Memory

 Instead of explicitly declaring memory for the host and the device, use managed memory

```
cudaMallocManaged(void **devPtr, size_t size)
```

```
// Memory allocation example
int n = 1024;
int nBytes = 1024*sizeof(int);
int* a = 0;
cudaMallocManaged((void**)&a, nbytes);
cudaFree(a);
```



### Putting It All Together... Again!

```
int* a, *b, *c;
int N_BYTES = 2 * sizeof(int);

cudaMallocManaged((void**)&a, N_BYTES);
cudaMallocManaged((void**)&b, N_BYTES);
cudaMallocManaged((void**)&c, N_BYTES);

a[0] = 5; b[0] = 7;
a[1] = 3; b[1] = 4;

VectorAddKernel<<<<1,2>>>(a, b, c);
cudaDeviceSynchronize();

printf("%d %d\n", c[0], c[1]);
Allocate managed
memory

Launch kernel and
synchronize device
```

#### Summary

#### GPUs are data-parallel architectures

#### CUDA provides a heterogeneous compute model:

- Host:
  - Memory management (usually)
  - Data transfers
  - Data-parallel kernel launches on device as a grid of thread blocks
  - Error management
- Device (GPU):
  - Executes data-parallel kernels in threads
  - Implemented in C/C++ with a few important extensions, and a few restrictions

# Unified memory simplifies transfers and memory management





## **Acceleware CUDA Training**

#### Scheduled CUDA Courses (also available online)

- June 13 16: Calgary, Alberta
  - 35% Discount using code: **AXECUDAGTC17**
- September 12 15: Calgary, Alberta
- December 5 8: Calgary, Alberta

#### Private training courses

- Courses held onsite at your company
- Delivered anywhere in the world

http://acceleware.com/cuda-training





#### Questions?

#### Visit us at booth #520

Acceleware Ltd.

Tel: +1 403.249.9099

Email: services@acceleware.com

CUDA Blog: http://acceleware.com/blog

Website: http://acceleware.com









Chris Mason chris.mason@acceleware.com

