Trabalho de Estatística Computacional II

Aluno: Hevans Vinicius Pereira

Introdução

Neste trabalho irei fazer simulações de Monte Carlo para verificar se há viés e avaliar a qualidade dos estimadores da distribuição Reflected Weibull apresentada no artigo intitulado "Modifications of the Weibull distribution: A review" dos autores Almalki, Saad J. e Nadarajah, Saralees, que foi publicado no "Reliability Engineering and System Safety" em 05 de dezembro de 2013 (http://dx.doi.org/10.1016/j.ress.2013.11.010).

Para muitas aplicações práticas é importante modelar o tempo de vida para um conjunto de dados, e muitas distribuições (Weibull, Pareto, Gompertz, etc) são usadas para este fim. Entretanto, para algumas aplicações as distribuições clássicas não são tão adequadas e, por isso, surge a necessidade de se generalizar tais distribuições a fim de encontrar ajustes melhores. Muitas generalizações foram propostas ao longo dos anos e o artigo em questão apresenta uma nova forma.

A distribuição Reflected Weibull (RefW)

Considerando uma variável aleatória X que segue uma distribuição de Weibull com parâmetros a e b temos que Y=-X tem distribuição reflected Weibull.

Com isto, a função de densidade de probabilidade de Y é $f(y) = \alpha \theta(-y)^{\theta-1} e^{-\alpha(-y)^{\theta}}$ para $-\infty < y < 0$ e $\alpha, \theta > 0$. A função de probabilidade acumulada é dada por $F(y) = e^{-\alpha(-y)^{\theta}}$ para $-\infty < y < 0$ e $\alpha, \theta > 0$.

Vamos implementar a função densidade de probabilidade conforme expressão acima.

```
drefw <- function(x, alpha, theta){
    # y deve ser negativo
    if (any(alpha <= 0))
        return(NA)
    if (any(theta <= 0))
        return(NA)
    if (any(x >= 0))
        stop(paste("x deve ser negativo", "\n", ""))
    if (!length(x)) {
        return(numeric(0))
    }

    pdf <- alpha * theta * ((-x) ** (theta-1)) * exp(-alpha * ((-x) ** theta))
    return(pdf)
}</pre>
```

Vamos plotar a função densidade de probabilidade para alguns valores de α e θ .

Gráfico de Densidade para a refw

Obtemos assim a figura 12 (pg 39) do artigo citado.

Vamos implementar a função probabilidade acumulada conforme expressão já apresentada.

```
prefw <- function(q, alpha, theta){
   if (any(alpha <= 0))
      stop(paste("alpha deve ser positivo", "\n", ""))
   if (any(theta <= 0))
      stop(paste("theta deve ser positivo", "\n", ""))
   if (any(q >= 0))
      stop(paste("q deve ser negativo", "\n", ""))

cdf <- exp(-alpha * ((-q) ** theta))</pre>
```

```
return(cdf)
}
```

Podemos plotar os gráficos das distribuições de probabilidade acumuladas para alguns valores de α e θ .

Gráfico de Prob. Acumulada para a refw

Agora, vamos implementar a função quantil.

Pela definição de quantil para uma variável contínua temos $\int_{-\infty}^{q_p} f(y) dy = p$, em que q_p é o valor do quantil e depende do p escolhido. No nosso caso, temos $\int_{-\infty}^{q_p} \alpha \theta(-y)^{\theta-1} e^{-\alpha(-y)^{\theta}} dy = p$. Fazendo a mudança de variável $x = -\alpha(-y)^{\theta}$ temos $dx = \alpha \theta(-y)^{\theta-1} dy$.

Assim, $\int_{\infty}^{-\alpha(-q_p)^{\theta}} e^x dx = p$, ou seja, $e^{-\alpha(-q_p)^{\theta}} = p$. Aplicando o logaritmo natural de ambos os lados temos $-\alpha(-q_p)^{\theta} = \ln(p)$ e isolando q, temos $q = -\left(-\frac{1}{\alpha}\ln(p)\right)^{\frac{1}{\theta}}$.

Agora, podemos implementar a função quantil.

```
qrefw <- function(p, alpha, theta, lower.tail=TRUE){
  if (any(theta <= 0))
    stop(paste("theta deve ser positivo", "\n", ""))</pre>
```

```
if (any(alpha <= 0))
    stop(paste("alpha deve ser positivo", "\n", ""))
if (any(p < 0) | any(p > 1))
    stop(paste("p deve estar entre 0 e 1", "\n", ""))

if (lower.tail){p <- p}
else{p <- 1 - p}

q <- -( ( (-1 / alpha) * log(p) ) ^ (1/theta) )
    return(q)
}</pre>
```

Podemos plotar os gráficos das funções quantílicas para alguns valores de α e θ .

Gráfico de Quantil para a refw

Por fim, vamos implementar uma função geradora de valores aleatórios conforme a distribuição que estamos considerando.

```
rrefw <- function(n, alpha, theta){
  if (any(alpha <= 0))
    stop(paste("alpha deve ser positivo", "\n", ""))
  if (any(theta <= 0))
    stop(paste("theta deve ser positivo", "\n", ""))

  qrefw(runif(n), alpha, theta)
}</pre>
```

Podemos plotar alguns gráficos para verificar se a função rrefw está de acordo com o esperado.

```
x <- seq(-5, -0.1, length.out = 1000)

vec <- rrefw(1000, 1, 1)
hist(vec, prob=TRUE, xlab='x', col='white', main='Gráfico de Ajuste para a refw')
lines(x, drefw(x, 1, 1), lwd = 2, col = "red")</pre>
```

Gráfico de Ajuste para a refw


```
vec2 <- rrefw(1000, 0.5, 1)
hist(vec2, prob=TRUE, xlab='x', col='white', main='Gráfico de Ajuste para a refw')
lines(x, drefw(x, 0.5, 1), lwd=2, col='red')</pre>
```

Gráfico de Ajuste para a refw


```
vec3 <- rrefw(1000, 1.5, 0.5)
hist(vec3, prob=TRUE, xlab='x', col='white', main='Gráfico de Ajuste para a refw')
lines(x, drefw(x, 1.5, 0.5), lwd=2, col='red')</pre>
```

Gráfico de Ajuste para a refw

Agora que temos as funções relacionadas à distribuição podemos fazer a simulação de Monte Carlo.

Simulação Monte Carlo

Para fazer essa simulação usaremos o pacote fitdistrplus. Vamos criar o estimador de máxima verossimilhança da forma como feito em aula.

Agora vamos definir uma semente e criar os objetos que receberam os valores gerados na simulação.

```
set.seed(666) # Definir a semente para resultados reprodutíveis
# Definir os valores paramétricos para o parâmetro alpha
alphas <- c(0.5, 1, 1.5, 2)
# Definir os valores paramétricos para o parâmetro theta
thetas <-c(0.5, 1, 1.5)
# Cenários
param <- expand.grid(alphas, thetas)</pre>
     <- 1000 # Número de simulações
nmax <- 100 # Tamanho de amostra máximo
enes <- seq(10, nmax, 10) # Tamanhos de amostras
# Viés do estimador do parâmetro alpha
vies.alpha <- matrix(nrow = length(enes), ncol = nrow(param))</pre>
# Viés do estimador do parâmetro theta
vies.theta <- vies.alpha</pre>
# Erro-quadrático-médio do estimador do parâmetro alpha
eqm.alpha <- matrix(nrow = length(enes), ncol = nrow(param))
# Erro-quadrático-médio do estimador do parâmetro theta
eqm.theta <- eqm.alpha
```

Agora que definimos todos os objetos que receberão os dados da simulação podemos realizar a simulação em si. Conforme feito em aula, para cada cenário vamos gerar valores baseado nos valores de α e θ para cada tamanho de amostra, para isso usaremos dois laços de repetição e a família apply.

```
set.seed(666)
colunas <- c()

for(i in 1:nrow(param))
{</pre>
```

Podemos obter a matriz com o resultado dos valores de viés para cada valor de α e θ em cada simulação. A seguir podemos ver os números nessa matriz.

```
rownames(vies.alpha) <- paste("amostra=", enes, sep="")
colnames(vies.alpha) <- colunas
vies.alpha</pre>
```

```
##
              a=0.5 t=0.5 a=1 t=0.5 a=1.5 t=0.5 a=2 t=0.5
                                                               a=0.5 t=1
              0.006440390 \ 0.13634404 \ 0.33857008 \ 0.54102026 \ 0.0022892210
## amostra=10
## amostra=20 0.004192266 0.04585127 0.11834257 0.20285146 0.0020922742
## amostra=30 0.005290555 0.02798600 0.07715491 0.14070592 0.0041427698
## amostra=40 0.002394635 0.02591884 0.06336648 0.10303475 0.0018079970
## amostra=50 0.004642947 0.01698415 0.04671049 0.06970107 0.0043005926
## amostra=60 0.003605686 0.01479337 0.03608794 0.05939805 0.0032228883
## amostra=70 0.002392111 0.01304471 0.02684960 0.05186717 0.0025825455
## amostra=80 0.002185899 0.01264669 0.02152669 0.04466082 0.0017303809
## amostra=90 0.002059039 0.01194747 0.01945214 0.03589930 0.0013448239
## amostra=100 0.001883443 0.01036278 0.01633580 0.03151880 0.0005623674
##
                   a=1 t=1 a=1.5 t=1
                                         a=2 t=1
                                                   a=0.5 t=1.5
                                                                 a=1 t=1.5
## amostra=10 0.1094849972 0.31075194 0.50502569 0.0107436675 0.109547888
## amostra=20 0.0279695918 0.09234310 0.20995297 0.0062523955 0.042662741
## amostra=30 0.0104510604 0.06686679 0.13637675 0.0020840270 0.023985990
## amostra=40 0.0061242542 0.04686508 0.09571842 0.0011499100 0.020462182
## amostra=50 0.0024123663 0.04145977 0.07635548 0.0002779487 0.016478887
## amostra=60 0.0013298378 0.03516161 0.05942295 -0.0013224312 0.013875628
## amostra=70 0.0007096614 0.03206247 0.04471208 -0.0008522574 0.010420352
## amostra=80 0.0018682624 0.02706743 0.03998366 0.0003718691 0.008458457
              0.0018547122 0.02452253 0.03324611 -0.0003053167 0.008007588
## amostra=90
## amostra=100 0.0006658815 0.02263828 0.02914939 -0.0003917278 0.006190870
              a=1.5 t=1.5 a=2 t=1.5
## amostra=10 0.297194652 0.48933083
```

```
## amostra=20
               0.106359103 0.21287882
## amostra=30
               0.058098970 0.13097270
  amostra=40
               0.038217113 0.08456386
               0.029206532 0.06919311
## amostra=50
##
  amostra=60
               0.017239574 0.05580643
               0.012400376 0.04749452
  amostra=70
               0.006410777 0.04215811
  amostra=80
               0.005262748 0.03648486
## amostra=90
## amostra=100 0.005933306 0.03237207
```

Vamos plotar os gráficos do viés de cada simulação para as variáveis α e θ , bem como os gráficos dos erros quadráticos médios para cada parâmetro.

Começando pelo gráfico do viés para o parâmetro α .

Viés do Parâmetro alpha

Agora vamos obter a matriz com o resultado dos valores de viés de θ para cada valor de α e θ em cada simulação. A seguir podemos ver os números nessa matriz.

```
a=1 t=0.5 a=1.5 t=0.5
                                                    a=2 t=0.5 a=0.5 t=1
## amostra=10 0.082112755 0.101304064 0.083316007 0.078534187 0.16742849
## amostra=20 0.039135444 0.041103974 0.036277940 0.039008123 0.07596260
## amostra=30 0.025487789 0.024860273 0.025706982 0.024307930 0.04729335
## amostra=40 0.020131173 0.015891785 0.018449893 0.018455623 0.03764418
## amostra=50 0.014048435 0.013146908 0.014868521 0.014771355 0.02877789
## amostra=60 0.011583308 0.009530731 0.011792913 0.013465347 0.02282244
              0.010008033 0.007508468 0.010917667 0.010998247 0.01864145
## amostra=70
## amostra=80 0.008831833 0.005594926 0.009183702 0.009946885 0.01727206
              0.007943965 0.004982258 0.007752574 0.009604757 0.01547429
## amostra=90
## amostra=100 0.007859227 0.005139470 0.006673308 0.008515288 0.01435301
##
                 a=1 t=1 a=1.5 t=1
                                       a=2 t=1 a=0.5 t=1.5 a=1 t=1.5 a=1.5 t=1.5
##
  amostra=10 0.17432406 0.15125987 0.16573425 0.23492109 0.28127740 0.25206160
## amostra=20 0.07615328 0.06423750 0.07622903
                                                0.10807311 0.11645808
                                                                       0.11042629
## amostra=30 0.04901186 0.03954955 0.05420227
                                                0.06825961 0.07347948
                                                                       0.07214299
## amostra=40 0.03532560 0.02777458 0.03687690
                                                0.04671250 0.05659085
                                                                       0.05432023
## amostra=50 0.02508260 0.02527923 0.03148623
                                                0.03977347 0.04435395
                                                                       0.04298434
## amostra=60 0.02163500 0.02240642 0.02608441
                                                0.03227501 0.03836287
                                                                       0.03775014
## amostra=70 0.01879332 0.01900006 0.02265638
                                                0.02826924 0.03213446
                                                                       0.02955731
                                                                       0.02667646
## amostra=80 0.01564843 0.01854623 0.02070325
                                                0.02344139 0.02846964
## amostra=90 0.01295306 0.01612941 0.01666062 0.02154929 0.02776619 0.02534741
## amostra=100 0.01239917 0.01509515 0.01541005 0.01793022 0.02650892 0.02426869
##
               a=2 t=1.5
## amostra=10 0.25201397
## amostra=20 0.11780081
## amostra=30 0.07922077
## amostra=40
              0.05329234
## amostra=50 0.03967222
## amostra=60
              0.03564448
## amostra=70
              0.03097805
## amostra=80
              0.02700295
## amostra=90 0.02295082
## amostra=100 0.01951474
```

Agora vamos plotar o viés para o parâmetro θ .

Viés do Parâmetro theta

Podemos observar, do estudo de simulação, que o viés para os parâmetros α e θ é relativamente alto para tamanho amostral menor que 30, o que nos impõe muita cautela quando pretendemos afirmar, em dados reais, que uma distribuição segue o modelo Reflected Weibull se houver poucas observações. Também podemos ver que o viés diminui, tendendo para zero, com o aumento do tamanho amostral e acaba estabilizando próximo de zero.

Podemos obter a matriz com o resultado dos valores de erro quadrático médio para o parâmetro α para cada valor de α e θ em cada simulação. A seguir podemos ver os números nessa matriz.

```
rownames(eqm.alpha) <- paste("amostra=", enes, sep="")
colnames(eqm.alpha) <- colunas
eqm.alpha</pre>
```

```
##
               a=0.5 t=0.5 a=1 t=0.5 a=1.5 t=0.5
                                                   a=2 t=0.5
               0.049931020 0.33442367
                                       1.60805100 2.39394575 0.050706486
##
  amostra=10
   amostra=20
               0.023831798 0.07464995
                                       0.18931909 0.43057827 0.025056624
   amostra=30
               0.014484010 0.04085591
                                       0.10476641 0.23782846 0.016728736
               0.011011996 0.03024543
                                       0.07529278 0.15014270 0.011663946
   amostra=40
   amostra=50
               0.009075435 0.02483575
                                       0.05593547 0.09887503 0.009162846
               0.007621721 0.01999222
                                       0.04590707 0.07799003 0.007416679
   amostra=60
               0.006337257 0.01658749
                                       0.03861183 0.06649178 0.006231237
   amostra=70
  amostra=80
                                       0.03088278 0.05894823 0.005135947
               0.005434867 0.01423622
   amostra=90
               0.004913957 0.01238161
                                       0.02680848 0.04922036 0.004810861
##
  amostra=100 0.004449805 0.01099388
                                       0.02325629 0.04643684 0.004256257
##
                  a=1 t=1 a=1.5 t=1
                                        a=2 t=1 a=0.5 t=1.5 a=1 t=1.5 a=1.5 t=1.5
## amostra=10 0.25426979 1.76567988 1.72843553 0.053700677 0.23806420 1.27953099
```

```
## amostra=20 0.07339807 0.16818241 0.44174990 0.024671450 0.07189478 0.21532939
## amostra=30 0.04634263 0.10054287 0.22655815 0.015495101 0.04085787 0.10272413
## amostra=40 0.03085458 0.06823090 0.15811886 0.010811964 0.03296405 0.07071823
## amostra=50 0.02292021 0.05384244 0.11603243 0.008332386 0.02516723 0.05650542
## amostra=60 0.01920821 0.04406896 0.09439642 0.006992863 0.02098095 0.04275931
## amostra=70 0.01624945 0.03689474 0.07598087 0.006125847 0.01750085 0.03587489
## amostra=80 0.01419681 0.03160681 0.06318998 0.005484251 0.01508390 0.03047147
## amostra=90 0.01262616 0.02816994 0.05334002 0.004673056 0.01340732 0.02715467
## amostra=100 0.01134604 0.02474951 0.04651053 0.004091322 0.01124812 0.02452012
##
              a=2 t=1.5
## amostra=10 2.12592271
## amostra=20 0.56072945
## amostra=30 0.24003613
## amostra=40 0.13788323
## amostra=50 0.10628255
## amostra=60 0.08500898
## amostra=70 0.06775077
## amostra=80 0.05987723
## amostra=90 0.05064505
## amostra=100 0.04433300
```

Podemos também plotar o erro quadrático médio para o parâmetro α .

EQM do Parâmetro alpha

Podemos obter a matriz com o resultado dos valores de erro quadrático médio para o parâmetro θ para cada valor de α e θ em cada simulação. A seguir podemos ver os números nessa matriz.

```
rownames(eqm.theta) <- paste("amostra=", enes, sep="")
colnames(eqm.theta) <- colunas
eqm.theta</pre>
```

```
a=1 t=0.5 a=1.5 t=0.5
##
               a=0.5 t=0.5
                                                      a=2 t=0.5
                                                                  a=0.5 t=1
               0.034121377 0.047388215 0.039213699 0.034200441 0.131825214
  amostra=10
               0.011524445 0.013421892 0.012138866 0.011840667 0.045997879
  amostra=20
               0.006769023 0.007324823 0.007231345 0.007370951 0.026058957
   amostra=30
##
   amostra=40
               0.004766521 0.004643426 0.004713514 0.005501058 0.018620754
   amostra=50
               0.003476804 0.003647334 0.003820871 0.004074111 0.014555175
               0.002721607 0.002820345 0.002999974 0.003243840 0.010976541
   amostra=60
               0.002429901 0.002278739 0.002598152 0.002622769 0.009169936
##
   amostra=70
               0.002120972 0.001863155 0.002243676 0.002219394 0.007663335
   amostra=80
               0.001925399 0.001627431 0.001898992 0.001980064 0.006788608
   amostra=90
##
   amostra=100 0.001711269 0.001448518 0.001654334 0.001722050 0.006129833
                             a=1.5 t=1
##
                                            a=2 t=1 a=0.5 t=1.5
                   a=1 t=1
                                                                 a=1 t=1.5
               0.151619253 0.132328723 0.143160309
                                                     0.31741506 0.35785208
  amostra=10
  amostra=20
               0.049954333 0.043954171 0.048829889
                                                     0.10764910 0.11118938
               0.029285212 0.026831985 0.028650189
                                                    0.06204603 0.06352437
  amostra=30
  amostra=40
               0.019258501 \ 0.017401304 \ 0.018977332
                                                    0.04312153 0.04592774
               0.014924704 0.014282257 0.015064211
                                                    0.03394178 0.03369533
  amostra=50
               0.011979133 0.011503215 0.012073043
                                                    0.02725107 0.02816922
  amostra=60
```

```
## amostra=70  0.009747924 0.009586115 0.010379690  0.02260322 0.02266926
## amostra=80  0.008357709 0.008867768 0.009349996  0.02044458 0.01997638
## amostra=90  0.007438530  0.007642014  0.008009726  0.01764157  0.01860694
## amostra=100  0.006523252  0.006933795  0.006931457  0.01582952  0.01664797
## amostra=10  0.36142157  0.32464529
## amostra=20  0.10473340  0.11107056
## amostra=30  0.06238095  0.06499814
## amostra=40  0.04173161  0.04315880
## amostra=60  0.02668643  0.02675611
## amostra=70  0.02064687  0.02154493
## amostra=80  0.01801416  0.01897017
## amostra=90  0.01438208  0.01421296
```

Agora vamos plotar o erro quadrático médio para o parâmetro θ .

EQM do Parâmetro theta

Podemos observar, do estudo de simulação, que o erro quadrático médio para os parâmetros α e θ é relativamente alto para tamanho amostral menor que 20, o que nos impõe muita cautela quando pretendemos afirmar, em dados reais, que uma distribuição segue o modelo Reflected Weibull se houver poucas observações. Também podemos ver o viés diminui com o aumento do tamanho amostral e acaba estabilizando, próximo de zero.

Embora tenham sido realizados apenas 1000 simulações, pode-se notar que os vieses e EQM baixos indicam um bom ajuste, não necessitando o aumento do número de simulações. Ainda assim, se aumentassemos o números de simulações obteríamos valores mais precisos de viés e EQM.

O comportamento do viés e do EQM nos mostral que temos um bom estimador da distribuição.

Aplicação

Vamos usar essa distribuição para ver o ajuste ao conjunto de dados Leukocyte_Profiles.xlsx disponibilizado.

```
library(readxl)
dados <- as.data.frame(read_excel("Leukocyte_Profiles.xlsx"))</pre>
```

Para estimar o melhores valores de α e θ que ajustam os dados da coluna H/L ratio vamos usar a função de máxima verossimilhança criada anteriormente. Neste caso todos os valores são positivos e a distribuição Reflected Weibull não tem como cobrir estes dados, por isso vamos multiplicá-los por (-1) para verificar o ajuste.

```
x <- dados$`H/L ratio`
par.hat <- emv.reflected.weibull(-x, list(1,2))
par.hat</pre>
```

```
## alpha theta
## 0.9400173 1.0215260
```

Obtemos assim uma α de aproximadamente 0.94 e um θ de aproximadamente 1.02.

Também podemos plotar a estimativa das função de densidade de probabilidade para os dados.

Densidade de Probabilidade Estimada

Bem como a função de probabilidade acumulada para os dados.

Probabilidade Acumulada Estimada

Conclusão

Embora muitas funções de probabilidade conhecidas cumpram um bom papel para modelar adequadamente diversos conjuntos de dados, pode ser preciso obter uma nova distribuição a fim de obter um melhor ajuste.

Referências

- Almalki, Saad J. & Nadarajah, Saralees: Modifications of the Weibull distribution: A review. Reliability Engineering and System Safety. (2013)
- Aulas de Estatística Computacional II do prof. Ricardo Puziol de Oliveira