Lemma 2.1.6. Suppose that V has a dual V^* . Then there exist canonical isomorphisms

PROOF. To $\psi \in \text{Hom}(U \otimes V, W)$ we associate the composition

$$U \xrightarrow{\mathrm{id} \otimes i_V} U \otimes V \otimes V^* \xrightarrow{\psi \otimes \mathrm{id}} W \otimes V^*$$

which is an element of $\operatorname{Hom}(U, W \otimes V^*)$.

Similarly, to $\varphi \in \text{Hom}(U, W \otimes V^*)$ we assign

$$U \otimes V \xrightarrow{\varphi \otimes \mathrm{id}} W \otimes V^* \otimes V \xrightarrow{\mathrm{id} \otimes e_V} W.$$

One can easily check that these two maps are inverse to each other, establishing (2.1.13). The proof of (2.1.14) is similar.

In particular, if both U and V have duals, then by Lemma 2.1.6

(2.1.15)
$$\operatorname{Hom}(U, V) = \operatorname{Hom}(V^*, U^*) = \operatorname{Hom}(\mathbf{1}, V \otimes U^*).$$

(In the language of abstract nonsense, this means that the category \mathcal{C} has internal Hom's when it has duals.) For $f \in \text{Hom}(U,V)$ its image in $\text{Hom}(V^*,U^*)$ via the isomorphism (2.1.15) will be denoted by f^* .

If the right dual * exists for all objects in \mathcal{C} , then by (2.1.15) it is a contravariant functor, i.e., a functor $\mathcal{C} \to \mathcal{C}^{op}$ where \mathcal{C}^{op} is the opposite (or dual) category to \mathcal{C} . (Recall that \mathcal{C}^{op} has the same objects as \mathcal{C} but with all arrows reversed.)

EXERCISE 2.1.7. Show that, in a rigid category, * is an equivalence of categories $\mathcal{C} \to \mathcal{C}^{\mathrm{op}}$.

Rigidity is a very restrictive requirement. As an illustration, let us prove the following proposition.

Proposition 2.1.8. In an abelian rigid monoidal category the tensor product functor \otimes is exact, i.e., for any short exact sequence $0 \to U \to V \to W \to 0$ and an object X, the sequences

$$0 \to U \otimes X \to V \otimes X \to W \otimes X \to 0$$

and

$$0 \to X \otimes U \to X \otimes V \to X \otimes W \to 0$$

are exact.

Proof. The sequence

$$0 \to U \otimes X \to V \otimes X \to W \otimes X$$

is exact iff

$$0 \to \operatorname{Hom}(Y, U \otimes X) \to \operatorname{Hom}(Y, V \otimes X) \to \operatorname{Hom}(Y, W \otimes X)$$

is exact for any object Y. But by (2.1.12, 2.1.13), $\operatorname{Hom}(Y, U \otimes X) = \operatorname{Hom}(Y \otimes {}^*X, U)$. Since the functor $\operatorname{Hom}(Y, -)$ is left exact, it follows that $- \otimes X$ is left exact. Using Exercise 2.1.7 (or repeating the same argument with duals), we see that it is also right exact.