Advanced Game Thoerie

Prof. Dr. Clemens Puppe

(inoffizielles Skript)

Wintersemester 2016/17

Karlsruher Institut für Technologie

Contents

1	Noncooperative Games				
	1.1	Basic Elements of Noncooperative Games	2		
	1.2	Rationalisable Strategies	7		
	1.3	Nash Equilibrium	12		
	1.4	Subgame Perfection in Dynamic Games	12		
	1.5	Excercises	12		
2	Koo	Kooperative Spiele 1			
	2.1	Der Kern	13		
	2.2	Der Shapley-Wert	13		
	2.3	Einfache Spiele	13		
	2.4	Konvexe Spiele	13		
	2.5	Übungen	13		
3	Evo	lutionäre Spieltheorie	14		

Chapter 1

Noncooperative Games

1.1 Basic Elements of Noncooperative Games

Definition: A game is a formal representation of a situation in which a number of individuals interact in a setting of strategic interdependence.

- The players: Who is involved?
- The rules: Who moves when? What do they know when they move? What can they do?
- The outcomes: For each possible set of actions by the players, what is the outcome of the game?
- The payoffs: What are the players' preferences over the possible outcomes?

Example 1.1 (of simultaneous move games):

a) Matching Pennies

$$\begin{array}{c|cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

b) Meeting in New York

Player 2

		Empire State	Grand Central
Player 1	Empire State	100, 100	0,0
1 layer 1	Grand Central	0,0	100, 100

c) Examples of (simple) dynamic games

Prisoner's Dilemma in Extensive-form

d) Matching Pennies Version C

Definition (Information):

- a) Information Set: A player doesn't know which of the nodes in the information set she is actually at. Therefore, at any decision node in a player's information set, there must be the same possible actions.
- b) **Perfect Information:** A game is said to be of perfect information if each information set contains a single decision node. Otherwise, it is a game of **imperfect** information.

Definition (Extensive Form Game): A game in **extensive form** consists of:

- (i) A finite set of nodes \mathcal{X} , a finite set of possible actions \mathcal{A} , and a finite set of players $\{1,\ldots,l\}$.
- (ii) A funktion p: X → {X∪∅} specifying a single immediate predecessor of each node x;
 p(x) ∈ X expect for one element x₀, the initial node. The immediate successor node of x are s(x) = p⁻¹(x).
 To have a tree structure, a predecessor can never be a successor and vice versa.
 The set of terminal nodes T = {x ∈ X: s(x) = ∅}. All other nodes X \ T are decision nodes.
- (iii) A function $\alpha \colon \mathcal{X} \setminus \{x_0\} \to \mathcal{A}$ giving the action that leads to any non-initial node x from its immediate predecessor p(x) with $x', x'' \in s(x); x' \neq x'' \Rightarrow \alpha(x') \neq \alpha(x'')$. The set of choices at decision node x is $c(x) = \{a \in \mathcal{A} \colon a = \alpha(x') \text{ for some } x' \in s(x)\}$.
- (iv) A collection of information sets \mathcal{H} , and a function $H: \mathcal{X} \to \mathcal{H}$ assigning each decision node x to an information set $H(x) \in \mathcal{H}$ with c(x) = c(x') if H(x) = H(x').

The choices available at information set H can be written as

$$C(H) = \{ a \in \mathcal{A} : a \in c(x) \text{ for } x \in H \}.$$

(v) A function $\iota: \mathcal{H} \to \{0, 1, \dots, l\}$ assigning a player to each information set (i = 0) 'nature').

The collection of player i's information set is denoted by

$$\mathcal{H}_i = \{ H \in \mathcal{H} : i = \iota(H) \}.$$

- (vi) A function $\rho: \mathcal{H}_0 \times \mathcal{A} \to [0,1]$ assigning a probability to each action of nature with $\rho(H,a) = 0$ if $a \notin C(H)$ und $\sum_{a \in C(H)} \rho(H,a) = 1$ for all $H \in \mathcal{H}_0$.
- (vii) A collection of payoff function $u = \{u_1(\cdot), \ldots, u_l(\cdot)\}$, where $u_i : T \to \mathbb{R}$.

A game in extensive form: $\Gamma_E = \{\mathcal{X}, \mathcal{A}, I, p(\cdot), \alpha(\cdot), \mathcal{H}, H(\cdot), \iota(\cdot), \rho(\cdot), u\}.$

Comment: Restrictions of this definition:

- a) Finite set of actions
- b) Finite number of moves
- c) Finite number of players

Definition (Strategy): Let \mathcal{H}_i denote the collection of player i's information sets, \mathcal{A} the set of possible actions in the game, and $C(H) \subset \mathcal{A}$ the set of actions possible at information set H. A **strategy** for player i is a function $s_i : \mathcal{H}_i \to \mathcal{A}$ such that $s_i(H) \in C(H)$ for all $H \in \mathcal{H}_i$.

Definition (Normal Form Representation): For a game with I players, the **normal** form representation Γ_N specifies for each player i a set of strategies S_i (with $s_i \in S_i$) and a payoff function $u_i(s_1, \ldots, s_l)$, formally

$$\Gamma_N = [I, \{S_i\}, \{u_i(\cdot)\}].$$

Definition:

- a) $s_i \colon \mathcal{H}_i \to \mathcal{A}$ describes deterministic choices at each $H \in \mathcal{H}_i$ and is called a **pure**strategy
- b) a **mixed strategy** is a probability distribution over all pure strategies $\sigma_i : \mathcal{S}_i \to [0, 1]$, with $\sigma_i(s_i) \geq 0$ and $\sum_{s_i \in \mathcal{S}_i} \sigma_i(s_i) = 1$.
- c) player i's set of possible mixed strategies can be associated with the points of the simplex $\Delta(S_i)$, called the **mixed extension** of S_i .
- d) since we assume that individuals are expected utility maximisers, player i's utility of a profile of mixed strategies $\sigma = (\sigma_i, \dots, \sigma_l)$ is given by

$$u_i(\sigma) = \sum_{s \in S} [\sigma_1(s_1) \cdot \sigma_2(s_2) \cdot \ldots \cdot \sigma_l(s_l)] \cdot u_i(s),$$

where $s = (s_1, ..., s_l)$.

Definition (Behaviour Strategy): Given an extensive form game Γ_E , a **behaviour** strategy for player i specifies for every information set $h \in \mathcal{H}_i$ and action $a \in C(H)$, a probability $\lambda_i(a, H) \geq 0$, with

$$\sum_{a \in C(H)} \lambda_i(a, H) = 1 \text{ for all } H \in \mathcal{H}_i.$$

Definition (Perfect Recall): A player has **perfect recall** if he doesn't "forget" what she once knew, including her own actions.

Theorem 1.2: If Γ_E is an extensive form game with perfect recall, then for any mixed strategy there is an outcome equivalent behaviour strategy and vice versa.

1.2 Rationalisable Strategies

Central question of Game Theory: What should we expect to observe in a game played by rational players? Or more precisely: What should we expect to observe in a game played by rational players who are fully knowledgeable about the structure of the game and each others' rationality?

We first address the above question for simultaneous-move games, which we study using their normal form representation. We use the following notation:

- $\Gamma_N = [I, \{S_i\}, \{u_i(\cdot)\}]$ if we consider pure strategies only, $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$ if we allow for mixed strategies
- $s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_l) \in \mathcal{S}_{-i}$ where $\mathcal{S}_{-i} = S_1 \times \dots \times S_{i-1} \times S_{i+1} \times \dots \times S_l$
- $s = (s_i, s_{-i})$

Example 1.3 (Prisoners' Dilemma):

What should we expect to observe in the Prisoners' Dilemma?

Definition (Strictly Dominant Strategy): A strategy $s_i \in \mathcal{S}_i$ is strictly dominant for player i in game $\Gamma_N =]I, \{\mathcal{S}_i\}, \{u_i(\cdot)\}]$ if for all $s_i' \neq s_i$:

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$$

for all $s_i \in \mathcal{S}_{-i}$.

Applied to Prisoner's Dilemma: Confess is a strictly dominant strategy for each player.

Definition (Strictly Dominated Strategy): $s_i \in \mathcal{S}_i$ is **strictly dominated** for player i in game Γ_N if there exists another strategy $s_i' \in \mathcal{S}_i$ such that:

$$u_i(s_i', s_{-i}) \ge u_i(s_i, s_{-i})$$

for all $s_{-i} \in \mathcal{S}_{-i}$. In this case we say that s'_i strictly dominates s_i .

Definition (Weakly Dominated Strategy): $s_i S_i$ is weakly dominated for player i in game Γ_N if there exists another strategy $s_i' \in S_i$ such that:

$$u_i(s_i', s_{-i}) \ge u_i(s_i, s_{-i})$$

for all $s_{-i} \in \mathcal{S}_{-i}$, with strict inequality for at least one s_{-i} .

Example 1.4:

Example 1.5 (Prisoners' Dilemma – A Variation): Assume Prisoner 1 is the district attorney's brother: If neither player confesses, player 1 is free

Player 2

		don't confess	confess
Player 1	don't confess	0, -2	-10, -1
1 layer 1	confess	-1, -10	-5, -5

 $\Rightarrow D$ is strictly dominated by U and M.

 \Rightarrow Player 1 has no dominant strategy anymore.

In this game, the iterated elimination of strictly dominated strategies still leads to a unique prediction. In general, the order of elimination of strictly dominated strategies does not matter! How about iterated elimination of weakly dominated strategies?

Definition: A strategy $\sigma_i \in \Delta(S_i)$ is strictly dominated for i in game $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$ if there exists another strategy $\sigma'_i \in \Delta(S_i)$ such that for all $\sigma_{-i} \in \Pi_{j \neq i} \Delta(S_j)$:

$$u_i(\sigma'_i, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i}).$$

Proposition 1.6: Player *i*'s pure strategy $s_i \in \mathcal{S}_i$ is strictly dominated in a game $\Gamma_N = [I, \{\Delta(\mathcal{S}_i)\}, \{u_i(\cdot)\}]$ if and only if there exists another strategy $\sigma'_i \in \Delta(\mathcal{S}_i)$ such that

$$u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$$
 for all $s_{-i} \in \mathcal{S}_{-i}$.

Proof: This follows because we can write

$$u_i(\sigma'_i, \sigma_{-i}) - u_i(s_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \left[\prod_{k \neq i} \sigma_k(s_k) \right] \left[u_i(\sigma'_i, s_{-i}) - u_i(s_i, s_{-i}) \right].$$

And this expression is positive for all σ_{-i} if and only if $u_i(\sigma'_i, s_{-i}) - u_i(s_i, s_{-i})$ is positive for all s_{-i} .

Example 1.7:

$$\Rightarrow \frac{1}{2}U + \frac{1}{2}D$$
 strictly dominates M .

Definition (Best response): The strategy σ_i is a **best response** for player i to her rivals' strategies σ_{-i} if:

$$u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i})$$

for all $\sigma'_i \in \Delta(S_i)$. Strategy σ_i is never a best response if there is no σ_{-i} for which σ_i is a best response.

Definition (Rationalisable Strategies): In game $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$, the strategies in $\Delta(S_i)$ that survive the iterated elimination of strategies that are never a best response are known as player i's **rationalisable strategies**.

Example 1.8:

 $\Rightarrow \frac{1}{2}U + \frac{1}{2}D$ strictly dominates M.

 $[\]Rightarrow$ b_4 is never best response for player 2 and then a_4 is never best response for player 1.

 $[\]Rightarrow$ $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ are the rationalisable strategies in this game.

- 1.3 Nash Equilibrium
- 1.4 Subgame Perfection in Dynamic Games
- 1.5 Excercises

Chapter 2

Kooperative Spiele

- 2.1 Der Kern
- 2.2 Der Shapley-Wert
- 2.3 Einfache Spiele
- 2.4 Konvexe Spiele
- 2.5 Übungen

Chapter 3

Evolutionäre Spieltheorie