Computer Vision

第15-2章 深度学习中的图像特征

计算机科学与技术学院

本次课程内容

1. 卷积神经网络知识回顾

3. 卷积神经网络中特征

2. 典型的网络结构

4. VGG Net

1. 卷积神经网络知识回顾

- ◆ 知识回顾
- ◆ 机器学习概念

$$\hat{y} = f(\phi(x), \theta),$$
 或者 $\hat{y} = f(x, \theta).$

发展历史

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image.

 $f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$

recognized letters of the alphabet

update rule:

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i},$$

 $\begin{array}{c} x_0 \\ \text{ which from a neuron } \\ w_1x_1 \\ \text{ which from a neuron } \\ w_2x_1 \\ \text{ which the expension } \\ w_2x_2 \\ \text{ which the expension } \\ w_3x_2 \\ \text{ which the expension } \\ w_3x_2 \\ \text{ which the expension } \\ w_3x_3 \\ \text{ which the expension } \\ w_3x_4 \\ \text{ which the expe$

Frank Rosenblatt, ~1957: Perceptron

Widrow and Hoff, ~1960: Adaline/Madaline

ImageNet Classification with Deep Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

"AlexNet"

激活函数Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

软件架构

Caffe Caffe2
(UC Berkeley) Facebook)

Paddle (Baidu)

Torch (NYU / Facebook) — PyTorch (Facebook)

CNTK (Microsoft)

Theano _____ T
(U Montreal) (0

TensorFlow (Google)

MXNet
(Amazon)

Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at AWS

计算图

计算图

计算图

计算图代码

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_a * y
grad_y = grad_a * x
```

TensorFlow

```
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
with tf.device('/gpu:0'):
    x = tf.placeholder(tf.float32)
   y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)
    a = x * y
    b = a + z
    c = tf.reduce sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values = {
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grad y val, grad z val = out
```

PyTorch

```
import torch
from torch.autograd import Variable
N, D = 3, 4
x = Variable(torch.randn(N, D).cuda(),
             requires grad=True)
y = Variable(torch.randn(N, D).cuda(),
             requires grad=True)
z = Variable(torch.randn(N, D).cuda(),
             requires grad=True)
a = x * y
b = a + z
c = torch.sum(b)
c.backward()
print(x.grad.data)
print(y.grad.data)
print(z.grad.data)
```


Tensorflow 代码

TensorFlow:

import numpy as np
import tensorflow as tf
 (Assume imports at the
 top of each snipppet)

First **define** computational graph

Then **run** the graph many times

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))
h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
```

2. 典型的网络结构

LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

典型的网络结构

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

典型的网络结构

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)

-> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv. 384
Pool
5x5 conv, 256
11x11 conv, 96
Input
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	Inpu	ıt	
116	ex	Net	

	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv. 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv. 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv. 256	3x3 conv. 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv. 128	3x3 conv. 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

VGG19

神经网络实例 NEURAL NETWORKS

◆ 简单的神经元结构

(**Before**) Linear score function: f=Wx (**Now**) 2-layer Neural Network $f=W_2\max(0,W_1x)$ or 3-layer Neural Network $f=W_3\max(0,W_2\max(0,W_1x))$

神经网络实例---全连接结构

◆ 全连接的神经元结构

神经网络实例---卷积神经网络

◆卷积神经网络: 有卷积也有全连接层

神经网络实例---全卷积神经网络

◆全卷积神经网络: 只有卷积和反卷积, 没有全连接

3. 卷积神经网络中特征

- ◆ 卷积层
- ◆ 全连接层

21

activation map

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

example 5x5 filters (32 total)

convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

参数个数

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

参数个数

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

全连接层

32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume

多层CNN

4. VGG Net

- ♦ K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in International Conference on Learning Representations, May 2015.
- ◆ VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和谷歌 DeepMind 一起研究出来的深度卷积神经网络,因而冠名为 VGG。
- ▶ VGGNet 结构中大量使用 3x3 的卷积核和 2x2 的池化核,首次将卷积神经网络的卷积深度推向更深,最为典型的 VGGNet 是 VGG16 和 VGG19
 - ▶ 16 的含义即网络中包含16个卷积层和全连接层
 - 19即即网络中包含19个卷积层和全连接层。

- ◆ VGGNet 的网络证明了卷积网络深度的重要性。
 - > 深度卷积网络能够提取图像低层次、中层次和高层次的特征
 - > 网络结构需要的一定的深度来提取图像不同层次的特征

◆ 作者使用了 A-E 五个不同深度水平的卷积网络进行试验, 从A到E网络深度不断加深:

◆ 其中 D 和 E 即我们常说的 VGG16 和 VGG19。可以看到 VGG16 网络需要训练的 参数数量达到了 1.38 亿个,这个数量是巨大的。以 VGG16 为例简单探究一下它的网络结构。

VGG16 各层的结构和参数如下:

C1-1 层是个卷积层, 其输入输出结构如下:

输入: 224 x 224 x 3 滤波器大小: 3 x 3 x 3 滤波器个数: 64

输出: 224 x 224 x 64

C1-2 层是个卷积层, 其输入输出结构如下:

输入: 224 x 224 x 3 滤波器大小: 3 x 3 x 3 滤波器个数: 64

输出: 224 x 224 x 64

P1 层是 C1-2 后面的池化层, 其输入输出结构如下:

输入: 224 x 224 x 64 滤波器大小: 2 x 2 滤波器个数: 64

输出: 112 x 112 x 64

C2-1 层是个卷积层, 其输入输出结构如下:

输入: 112 x 112 x 64 滤波器大小: 3 x 3 x 64 滤波器个数: 128

输出: 112 x 112 x 128

C2-2 层是个卷积层, 其输入输出结构如下:

输入: 112 x 112 x 64 滤波器大小: 3 x 3 x 64 滤波器个数: 128

输出: 112 x 112 x 128

