Álgebra - Curso de Verão - UFV

$2^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Seja G um grupo. Defina $G' = \langle \{xyx^{-1}y^{-1} \mid x, y \in G\} \rangle$. Mostre que

- (a) G' é um subgrupo normal de G.
- (b) G/G' é abeliano.
- (c) G' é o menor subgrupo normal de G com esta propriedade, isto é, se $H \subseteq G$ é tal que G/H é abeliano, então $G' \subseteq H$.

O subgrupo G' é chamado de **subgrupo de comutadores**.

Exercício 2: Seja G um grupo e H um subgrupo de G. Mostre que se [G:H]=2, então $H \subseteq G$.

Exercício 3: Sejam G e H grupos e $\phi: G \to H$ um homomorfismo. Mostre que ker $\phi \subseteq G$.

Exercício 4: Seja G um grupo finito e sejam K < H < G. Mostre que

$$[G:K] = [G:H][H:K].$$

Exercício 5: Sejam G um grupo e $a, b \in G$. Mostre que $(a^{-1}ba)^n = a^{-1}b^na$ para todo $n \in \mathbb{Z}$.

Exercício 6: Seja G um grupo. Mostre que se $H \unlhd G$ e $K \subseteq G$, então

$$\frac{K}{H\cap K}\cong \frac{HK}{H}.$$

Exercício 7: Sem G um grupo. Mostre que se $K \leq H \leq G$ com $K \subseteq G$ e $H \subseteq G$, então

$$\frac{G/K}{H/K} \cong \frac{G}{H}.$$