Nature of Light

Nature of Light: particles?

Crookes radiometer (erroneous explanation in terms of particles)

Pierre Gassendi

Isaac Newton (Hyphotesis of Light, Opticks)

Images: Wikimedia Commons

Nature of Light: waves?

dispersion

Huygens principle

Augustin-Jean Fresnel, Robert Hooke, Simeon Denis Poisson, Christian Huygens

interference

diffraction

Quantitative Approach: particles...

Image: Wikimedia Commons

photoelectric effect

Compton effect

...or electromagnetic waves?

Propagation of an Electromagnetic Wave

Answer: dual nature (particles & waves)

Max Planck, Davisson and Germer, Louis de Broglie

Quantum Electrodynamics (QED) Richard Feynman, Freeman Dyson, Julian Schwinger, Shin-Ichiro Tomonaga

Vocabulary

Wave front – set of points (in 3D – a surface) having the same phase

Ray – line along the direction of propagation of the wave

In isotropic and homogeneous materials rays are straight lines perpendicular to wave fronts

Reflection and Refraction

Fermat's principle: Light follows the path of least travel time.

Law of refraction (Snell's law)

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \qquad n_i = \frac{c}{v_i}$$

Law of reflection

$$\theta_1 = \theta_2$$

NB. All rays and the line normal to the boundary lie in the same plane.

Discussion

Snell's law

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

$$n_i = \frac{c}{v_i}$$

refracted ray bends toward the normal

NB. For normal incidence, all angles are zero.

Index of Refraction (also called Refractive Index)

Table 18 INDEX OF REFRACTION

(λ = 5893 Å; Temperature Material	= 20 °C except as note Refractive inde
air, dry (STP)	1.00029
alcohol, ethyl	1.360
benzene	1.501
calcite	1.6583
	1.4864
canada balsam	1.530
carbon dioxide (STP)	1.00045
carbon disulfide	1.625
carbon tetrachloride	1.459
diamond	2.4195
glass, crown	1.5172
flint	1.6270
glycerol	1.475
íce	1.310
lucite	1.50
quartz.	1.544
	1.553
quartz, fused	1.45845
sapphire (Al ₂ O ₃)	1.7686
	1.7604
water, distilled	1.333
water vapor (STP)	1.00025

Index of Refraction

- (1)The frequency *f* of the wave does not change when passing from one material to another. $v = \lambda f$
- The wavelength λ is different in different materials. (2)

$$\frac{c}{\lambda_0} = \frac{v}{\lambda} \Rightarrow \lambda = \frac{\lambda_0}{n}$$

phys.utk.edu

wave longer and faster

here

In general, the index of refraction depends on the wavelength – dispersion.

Dispersion

In most materials, *n* decreases with increasing wavelength.

Discussion: Total Internal Reflection

Consider light incident upon a medium of smaller index of refraction.

Snell's law
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

total internal reflection for

$$\theta_1 \ge \theta_{\rm cr}$$

applications: fiber optics

$$\sin \theta_{\rm cr} = \frac{n_2}{n_1}$$

Polarization of Light: Linear Polarization

Recall that, polarization of the electromagnetic wave is determined by the direction of the **electric field** vector.

$$\mathbf{E}(\mathbf{r},t) = E_0 \hat{n}_y \cos(kx - \omega t)$$

$$\mathbf{B}(\mathbf{r},t) = -B_0 \hat{n}_z \cos(kx - \omega t)$$
 e-m wave polarized in the y direction

Polarization and Malus' Law

single polarizer

polarizer + analyzer

Malus' law

$$I = I_0 \cos^2 \phi$$

NB. I_0 is the intensity of the linearly polarized light incident on the analyzer

Polarizers and Malus' Law Unpolarized (Natural) Light

Polarization of Light Waves

$$I_{\text{polarized}} = \frac{1}{2}I_{\text{unpolarized}}$$

linear polarization

unpolarized light = statistical mixture of waves polarized in all possible, equally-probable, directions

$$I_{\text{pol}} = \lim_{N \to \infty} \left(\frac{I_{\text{unp}}}{N} \cos^2 \phi_1 + \frac{I_{\text{unp}}}{N} \cos^2 \phi_2 + \dots + \frac{I_{\text{unp}}}{N} \cos^2 \phi_N \right)$$

$$I_{\text{pol}} = I_{\text{unp}} \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \cos^2 \phi_i = I_{\text{unp}} \langle \cos^2 \phi \rangle = \frac{I_{\text{unp}}}{2}$$

Images: rfid.net

Polarization by Reflection

© 2012 Pearson Education, Inc.

Snell's law
$$\frac{\sin \theta_p}{\sin \theta_b} = \frac{n_b}{n_a}$$

for light incident at polarizing angle

$$\theta_b + \theta_p = \frac{\pi}{2}$$

Brewster's law

$$\theta_p = \arctan \frac{n_b}{n_a}$$

Note: This is a side view of the situation shown in Fig. 33.27.

When light strikes a surface at the polarizing angle, the reflected and refracted rays are perpendicular to each other and

$$\tan \theta_{\rm p} = \frac{n_b}{n_a}$$

© 2012 Pearson Education, Inc

Applications in Photography

eliminates reflexes

photography101.org

photography.ca

Circular Polarization

Superposition of two e-m waves

$$\mathbf{E}_1(\mathbf{r},t) = E_0 \hat{n}_y \cos(kx - \omega t)$$

$$\mathbf{E}_2(\mathbf{r},t) = E_0 \hat{n}_z \cos\left(kx - \omega t\right)$$

Circular Polarization

Practical implementations of quarter-cycle phase shift.

radio frequencies

Use two perpendicular antennas with a phase-shifting module.

light

Use a *birefringent* crystal (e.g. calcite or quartz); refractive index different for different polarizations of incident light.

phases differ!

Circular Polarization

birefringent crystal with a thickness corresponding to the quarter-cycle phase shift

* Theoretical description of birefringence: consider dielectric permittivity as a 2nd order tensor (matrix) rather than a scalar (consequently, the refractive index also has a tensor structure).

Elliptical Polarization

Elliptically polarized light is a superposition of two e-m waves of *unequal* amplitude, linearly polarized in perpendicular directions, differing in phase by 90°.

Huygens' (or Huygens-Fresnel) Principle

Every point of the wavefront may be considered as a source of secondary wavelets that propagate out in all directions with speed equal to speed of propagation of the wave.

Huygens' principle: Reflection

(a) Successive positions of a plane wave AA' as it is reflected from a plane surface

Huygens' Principle: Refraction

(a) Successive positions of a plane wave AA' as it is refracted by a plane surface

