Tarea 1.5 Probabilidad Condicional, Independencia Y Regla Del Producto

CONCEPTOS

PROBABILIDAD CONDICIONAL

La probabilidad condicional se basa en la probabilidad de que ocurra un evento dado que ya a pasado uno como condición, un ejemplo en la programación seria la estructura if donde el usuario solo puede acceder a este si y solo si ya se cumplió una condición previa.

EVENTOS INDEPENDIENTES

La independencia se da cunado la probabilidad de un evento no afecta a que se efectué otra, un ejemplo en programación podría ser una un menú ciclado pues sin importar que se haga hecho en el primer ciclo esto no afectara al siguiente.

REGLA DEL PRODUCTO

La regla del producto dice que la intelección de un evento A con un evento B es igual a la multiplicación de la probabilidad de A (o B) por la probabilidad de B dado que A (o A dado que B). un ejemplo en programación podría ser como condición para que acabe un ciclo donde solo acabaría si solo está la intersección de A y B para ello podríamos poner como condición que se cumpla las condiciones de la probabilidad de A y la probabilidad de B dado que A.

EJERCICIOS

2.75 La siguiente es una clasificación, según el género y el nivel de escolaridad, de una muestra aleatoria de 200 adultos.

Escolaridad	Hombre	Mujer
Primaria	38	45
Secundaria	28	50
Universidad	22	17

Si se elige una persona al azar de este grupo, ¿cuál es la probabilidad de que...

a) la persona sea hombre, dado que su escolaridad es de secundaria?

$$P(H|S) = \frac{28}{88} = 0.31818$$

b) la persona no tenga un grado universitario, dado que es mujer?

$$P(U'|M) = \frac{45}{112} + \frac{50}{112} = \mathbf{0.848214}$$

- 2.77 En un grupo de 100 estudiantes de bachillerato que están cursando el último año, 42 cursaron matemáticas, 68 psicología, 54 historia, 22 matemáticas e historia, 25 matemáticas y psicología, 7 historia pero ni matemáticas ni psicología, 10 las tres materias y 8 no cursaron ninguna de las tres. Seleccione al azar a un estudiante de este grupo y calcule la probabilidad de los siguientes eventos:
- a) Una persona inscrita en psicología y cursa las tres materias;

$$P(P) = \frac{10}{68} = 0.147058$$

b) Una persona que no está inscrita en psicología y esté cursando historia y matemáticas.

$$P('P) = \frac{12}{32} = \mathbf{0.375}$$

- 2.83 La probabilidad de que un vehículo que entra a las Cavernas Luray tenga matrícula de Canadá es 0.12, la probabilidad de que sea una casa rodante es 0.28 y la probabilidad de que sea una casa rodante con matrícula de Canadá es 0.09. ¿Cuál es la probabilidad de que...
- a) una casa rodante que entra a las Cavernas Luray tenga matrícula de Canadá?

$$P(A|B) = \frac{0.09}{0.28} = 0.321428$$

b) un vehículo con matrícula de Canadá que entra a las Cavernas Luray sea una casa rodante?

$$P(B|A) = \frac{0.09}{0.12} = \mathbf{0.75}$$

c) un vehículo que entra a las Cavernas Luray no tenga matrícula de Canadá o no sea una casa rodante?

$$P(A \cap B)' = 1 - 0.09 = 0.91$$

2.87 Un agente de bienes raíces tiene 8 llaves maestras para abrir varias casas nuevas. Sólo 1 llave maestra abrirá cualquiera de las casas. Si 40% de estas casas por lo general se dejan abiertas, ¿cuál es la probabilidad de que el agente de bienes raíces pueda entrar en una casa específica, si selecciona 3 llaves maestras al azar antes de salir de la oficina?

$$P(E) = P(A) \cup (P(C) \cap P(L))$$

$$P(E) = 0.4 + 0.225 = 0.625$$

2.91 Encuentre la posibilidad de seleccionar aleatoriamente 4 litros de leche en buenas condiciones sucesivamente de un refrigerador que contiene 20 litros, de los cuales 5 están echados a perder, utilizando

a) la primera fórmula del teorema 2.12 de la página 68;

$$P(A \cap B \cap C \cap D) = \frac{15}{20} * \frac{14}{19} * \frac{13}{18} * \frac{12}{17} = \mathbf{0.281733}$$

b) las fórmulas del teorema 2.6 y la regla 2.3 de las páginas 50 y 54, respectivamente.

$$P = \frac{15!}{4! (15 - 4)!} = 1.365$$
$$P = \frac{4}{15} = 0.26$$

2.93 En la fi gura 2.11 se muestra un sistema de circuitos. Suponga que los componentes fallan de manera independiente.

Figura 2.11: Diagrama para el ejercicio 2.93.

a) ¿Cuál es la probabilidad de que el sistema completo funcione?

$$P(F) = P((A \cap B) \cup (C \cap D \cap E))$$

$$= P((A \cap B) + (C \cap D \cap E)) - P((A \cap B) \cap (C \cap D \cap E))$$

$$= (0.49) + (0.512) - ((0.49) * (0.512)) = \mathbf{0.75112}$$

b) Dado que el sistema funciona, ¿cuál es la probabilidad de que el componente A no funcione?

$$P(A'|F) = \frac{P(A' \cap F)}{P(F)} = \frac{0.1536}{0.75112} = \mathbf{0.204494}$$