Universidade Federal de Santa Catarina EEL7123/EEL510457 Solução Problema 8.1

Problema 8.1. Compacte a informação das seguintes expressões numa matriz de informação, onde A, B, C e D são de 4 bits. Projete um compressor para reduzir a dois vetores a matriz de informação e, finalmente, some eles com um somador completo.

- a) F1=33A+21B+387C+131D.
- b) F2=65A+43B+135C+278D+8.
 - a) Obtemos a matriz de informação:

F₁=33A+21B+387C+131D

		2 ¹¹	2 ¹⁰	29	28	2 ⁷	26	25	24	23	22	21	20
	V ₀	c3	c3	c2	a3	a2	a1	a0	c3	a3	a2	a1	a0
_	v ₁	0	c2	c1	c1	b3	b2	b3	b2	b3	b2	b1	b 0
	V ₂	0	d3	d2	c0	c0	0	b1	b0	b1	b0	c1	c0
	V ₃	0	0	0	d1	d0	0	0	d3	c3	c2	c0	d0
	V ₄	0	0	0	0	0	0	0	0	c2	c1	d1	0
	V ₅	0	0	0	0	0	0	0	0	d3	d2	d0	0
1	V ₆	0	0	0	0	0	0	0	0	d2	d1	0	0

Obtemos o valor máximo da soma final substituindo A=B=C=D=15 $_{10}$ F $_{1}$ = 8580 $_{10}$ (14 bits)

b) Obtemos a matriz de informação e reduzimos ela:

	2 ¹¹	2 ¹⁰	29	28	27	26	25	24	2 ³	22	21	20		ſ	2 ¹¹	2 ¹⁰	29	28	27	26	25	24	23	22	21	2
V_0	d3	c3	a3	a2	a1	a0	b2	b3	a3	a2	a1	a0	Γ	V ₀	d3	c3	a3	a2	a1	a0	b2	b3	a3	a2	a1	a
v_1	0	d2	c2	b3	b2	b3	b0	b1	b3	b2	b1	b0		v ₁	0	d2	c2	b3	b2	b3	b 0	b1	b3	b2	b1	b
v_2	0	0	d1	c1	c0	b1	c3	c3	b2	b1	b0	c0		$\mathbf{v_2}$	0	0	d1	c1	c0	b1	c3	c3	b2	b1	b0	c
V_3	0	0	0	d0	d3	d2	d3	c2	b0	c2	c1	0	[v_3	0	0	0	d0	d3	d2	d3	c2	b0	c2	c1	ď
V_4	0	0	0	0	0	0	d1	d3	c3	c1	c0	0	── [V_4	0	0	0	0	0	0	d1	d3	c3	c1	c0	ď
V_5	0	0	0	0	0	0	0	d2	c2	c0	d0	0		v_5	0	0	0	0	0	0	0	d2	c2	c0	d0	d.
V_6	0	0	0	0	0	0	0	d0	c1	d1	0	0		V ₆	0	0	0	0	0	0	0	d0	c1	d1	d2	ď
V ₇	0	0	0	0	0	0	0	0	d2	d0	0	0		V ₇	0	0	0	0	0	0	0	d1	d1'	d0	d2	0
V ₈	0	0	0	0	0	0	0	0		0	0	0	_													
V ₉	0	0	0	0	0	0	0	0	1	0	0	0		Obtemos o valor máximo da soma final substituindo A=B=C=D=15 ₁₀												

 $F_2 = 7815_{10} (13 \text{ bits})$

Para reduzir o número de vetores, aplico que d1+1=d1d1' e reorganizo d2 nas posições menos significativas

