

Московский государственный технический университет имени Н.Э. Баумана

Методические указания

А.Ю. Попов

Проектирование радиоэлектронной аппаратуры на основе микроконтроллеров ARM7TDMI

Работа №2. Синхронизация микроконтроллера и управление таймерами

Цель работы – изучение системы синхронизации микроконтроллера NXP LPC2478 и принципов функционирования таймеров общего назначения.

В ходе работы студенту необходимо ознакомиться с теоретическим материалом, касающимся системы синхронизации и таймеров, разработать и отладить программу функционирования микроконтроллера NXP LPC2478 с использованием отладочной платы SK-LPC2478-S3E.

Синхронизация микроконтроллера NXP LPC2478

В микроконтроллере NXP LPC2478 могут использоваться три источника синхросигнала (рисунок 4): внешний осциллятор, внутренний осциллятор на основе RC-цепи и внешний осциллятор часов реального времени. При включении питания или сбросе микроконтроллера синхросигнал с частотой ~4 RC-осциллятора МΓц поступает C внутреннего (точность данного синхросигнала не позволяет использовать его ДЛЯ синхронизации высокоскоростных интерфейсов). Далее, возможно программно изменить источник синхросигнала и его частоту с помощью регистра выбора источника синхросигнала CLKSRCSEL.

Частота внешнего осциллятора должна находиться в диапазоне от 1 МГц до 24 МГц. Один из трех источников синхросигнала поступает в модуль фазовой автоподстройки частоты PLL, где частота синхросигнала (назовем ее Fin) может быть изменена с помощью схемы умножения и схемы деления частоты. Выходной синхросигнал модуля PLL с частотой Fcco поступает на дополнительные программно-управляемые делители частоты микропроцессора и USB-модуля. После деления частота сигнала синхронизации микропроцессора не должна превышать 72 МГц, а частота синхронизации модуля USB должна составлять 48 МГц.

Значения M и N, на которые происходит умножение и деление частоты в модуле PLL задаются в регистре PLLCFG. Описание разрядов регистра приведено в таблице 3.

Рисунок 4 — Подсистема синхронизация микроконтроллера.

Таблица 3 — Регистр PLLCFG.

Разрады	Назначение	Описание	По умолчанию
14:0	MSEL	Значение (M-1), где M – число (6≤M≤512), на которое умножается Fin.	0
15	-	Не используется	-
23:16	NSEL	Значение (N-1), где N — число (1≤N≤32), на которое делится Fin.	0
31:24	-	Не используется	-

На выходе модуля PLL частота синхросигнала будет определяться следующим соотношением:

$$Fcco = \frac{2 \cdot M \cdot Fin}{N} . \tag{1}$$

Дополнительное условие, заданное производителем, ограничивает выбор

параметров М и N таким образом, чтобы: $275 M\Gamma u \le Fcco \le 550 M\Gamma u$. (2)

Задать делитель частоты микропроцессора возможно с помощью регистра CCLKSEL, разряды 7:0 которого содержат значение делителя частоты микропроцессора:

$$Fcpu = \frac{Fcco}{CCLKSEL(7:0) + 1} . \tag{3}$$

При этом значение CCLKSEL(7:0) должно быть нечетным.

Для выбора частоты синхронизации Fpclk_xx для каждого периферийного модуля предусмотрены дополнительные мультиплексоры источника синхросигнала, управляемые с помощью регистров PCLKSEL0 и PCLKSEL1. Для каждого модуля в них отведено по 2 разряда, обеспечивающие следующий выбор:

- '00' Fpclk_xx = Fcpu,
- '01' Fpclk_xx = Fcpu/2,
- '10' Fpclk_xx = Fcpu/4,
- '11' Fpclk xx = Fcpu/8.

Назначение разрядов регистров PCLKSEL0 и PCLKSEL1 приведено в приложении 4.

Для управления начальной настройкой микроконтроллера в среде Keil uVision предусмотрен специальный файл Startup.s, содержащий инициализирующий код на языке ассемблера. Данный код выполняется при включении питания или сбросе микроконтроллера и содержит следующие основные процедуры инициализации:

- Конфигурация системы синхронизации микропроцессорного ядра и модулей системы.
- Копирование векторов прерываний из FLASH памяти в статическое ОЗУ (для некоторых моделей микроконтроллеров)
- Инициализация внешней шины микроконтроллера и вызов функции REMAP.
- Инициализация периферийных модулей, влияющих на работоспособность системы.
- Выделение и инициализация стека для всех режимов работы микроконтроллера.
- Инициализация данных в ОЗУ.
- Передача управления в main() функцию приложения.

Для упрощения процедуры создания стартового кода системы в среде Keil uVision предусмотрен диалог (рисунок 5), позволяющий пользователю указать основные настроечные параметры модуля PLL, делителей частоты, модуля доступа в память, контроллера внешней памяти, настроит стек для всех режимов работы.

Рисунок 5 — Диалог настройки стартового кода системы.

Таймеры общего назначения

Микроконтроллер NXP LPC2478 содержит четыре 32-х таймера общего назначения, каждый из которых обладает следующими функциональными возможностями:

- дополнительный 32-разрядный делитель частоты;
- функция счетчика событий или таймера;
- функция захвата значений таймера при поступлении внешнего сигнала с возможностью генерации прерывания;
- четыре регистра совпадения с возможностью остановки, сброса таймера, генерации прерываний при совпадении;
- функция управления внешними сигналами (до 4-х) при совпадении.

```
Пример №2. Использование таймера 0 для реализации задержки.
#include <LPC22xx.H> /* Описание LPC22xx */
```

```
void delay(void) {
//Сбросить таймер
ТОТС = 0х000000000;
//Запустить таймер
```

```
TOTCR = 0 \times 000000001;
//Ожидаем окончания счета
      while (TOTCR&0x1) {};
}
void Timer0_Init(void){
//Предделитель таймера = 15000
      TOPR = 15000;
//Сбросить счетчик и делитель
      TOTCR = 0 \times 000000002;
//При совпадении останавливаем, сбрасываем таймер
      TOMCR = 0 \times 000000006;
//Регистр совпадения = 1000 (1 Гц)
      TOMRO = 1000;
}
int main (void) {
  unsigned int n;
//Конфигурировать функции входов/выходов порта 0 на модуль GPIO
           = 0 \times 000000000;
//IODIRO - Регистр направления ввода вывода (1 - вывод; 0 - ввод)
  IODIRO = 0x00038000; /* P0.15..17 программируем на вывод, остальные на ввод */
//IOSETO - Регистр установки порта (1 - установка; 0 - нет изменений)
   IOSETO = 0x00038000; /* Устанавливаем высокий уровень на выходах (гасим
светодиоды)*/
 Timer0_Init(); /* Настроить таймер */
                       /* Бесконечный цикл */
    for (n = 0x00008000; n \le 0x00020000; n \le 1) {
//Бегущая единица
//IOCLRO - Регистр сброса порта (1 - сброс; 0 - нет изменения)
      IOCLR0 = n;
                            /* Установить состояние порта */
                            /* Задержка 1 секунда */
      delay();
      IOSETO = 0x00038000; /* Установить порт */
    }
 }
}
```

Практическая часть

Задание 1. Ознакомиться с теоретическим материалом на стр. 2-5.

Задание 2. Создать проект С программы в среде Keil uVision для микроконтроллера NXP LPC2478 с частотой генератора, указанной в индивидуальным вариантом задания.

Задание 3. Определить параметры M, N, CLKSEL(7:0), PCLKSEL0, PCLKSEL1, обеспечивающие указанные в задании значения частот: Fcpu и Fpclk_timer0.

Задание 4. Разработать и отладить в симуляторе программу функционирования микроконтроллера в соответствии с индивидуальным вариантом. В программе задействовать порт 0 модуля GPIO.

Задание 5. Получить осциллограмму работы микроконтроллера для задействованных в проекте сигналов порта 0. Осциллограмму занести в отчет.

Задание 6. Выполнить настройку проекта на работу с отладочной платой SK-LPC2478-S3E. Выполнить запись информации *.elf файла проекта в статическую память микроконтроллера.

Задание 7. Протестировать правильность функционирования программы с помощью отладочной платы SK-LPC2478-S3E. Назначить точку останова. Выполнить пошаговую трассировку программы. Результаты работы программы занести в отчет.

Требования к отчету

Отчет по работе должен содержать: задание, листинг программы функционирования микроконтроллера, текст функции управления, осциллограмму, результаты тестирования программы, выводы о работоспособности программы.

Контрольные вопросы

- Какие источники синхросигнала могут быть использованы в микроконтроллере LPC2478.
- Перечислите изменяемые пользователем параметры, определяющие частоту синхронизации микропроцессорного ядра микроконтроллера LPC2478.
- Перечислите функциональные возможности таймера общего назначения микроконтроллера LPC2478.

Приложение 1. Карта памяти периферийных модулей, подключенных к шине АРВ

Номер модуля	Базовый адрес	Название модуля
0	0xE000 0000	Watchdog Timer
1	0xE000 4000	Timer 0
2	0xE000 8000	Timer 1
3	0xE000 C000	UART0
4	0xE001 0000	UART1
5	0xE001 4000	PWM0
6	0xE001 8000	PWM1
7	0xE001 C000	I2C0
8	0xE002 0000	SPI
9	0xE002 4000	RTC
10	0xE002 8000	GPIO
11	0xE002 C000	Pin Connect Block
12	0xE003 0000	SSP1
13	0xE003 4000	ADC
14	0xE003 8000	CAN Acceptance Filter RAM
15	0xE003 C000	CAN Acceptance Filter Registers
16	0xE004 0000	CAN Common Registers
17	0xE004 4000	CAN Controller 1
18	0xE004 8000	CAN Controller 2
19 - 22	0xE004 C000 - 0xE005 8000	Не используется
23	0xE005 C000	I2C1
24	0xE006 0000	Не используется
25	0xE006 4000	Не используется
26	0xE006 8000	SSP0
27	0xE006 C000	DAC
28	0xE007 0000	Timer 2
29	0xE007 4000	Timer 3
30	0xE007 8000	UART2
31	0xE007 C000	UART3
32	0xE008 0000	I2C2
33	0xE008 4000	Battery RAM
34	0xE008 8000	I2S
35	0xE008 C000	SD/MMC Card Interface

Попов А.Ю. Проектирование радиоэлектронной аппаратуры на основе микроконтроллеров ARM7TDMI

36 - 126	0xE009 0000 - 0xE01F BFFF	Не используется
127	0xE01F C000	System Control Block

Приложение 2. Карта памяти периферийных модулей, подключенных к шине АНВ

Номер модуля	Базовый адрес	Название модуля
0	0xFFE0 0000	Ethernet
1	0xFFE0 4000	GP DMA
2	0xFFE0 8000	Externel Memory Controller
3	0xFFE0 C000	USB Controller
4	0xFFE1 0000	LCD Controller
5	0xFFFF F000	Vectored Interrupt Controller

Приложение 3. Регистры PCLKSEL0 и PCLKSEL1.

	PCLKSEL0	
Разряды	Описание модуля	По умолчанию
1:0	WDT	00
3:2	TIMER	00
5:4	TIMER	00
7:6	UART0	00
9:8	UART1	00
11:10	PWM0	00
13:12	PWM1	00
15:14	I2C0	00
17:16	SPI	00
19:18	RTC	00
21:20	SSP1	00
23:22	DAC	00
25:24	ADC	00
27:26	CAN1	00
29:28	CAN2	00
31:30	CAN фильтр	00
	PCLKSEL1	
1:0	BAT_RAM	00
3:2	GPIO	00
5:4	Pin Connect block	00
7:6	I2C1	00
9:8	Не используется	00
11:10	SSP0	00
13:12	TIMER3	00
17:16	UART2	00
19:18	UART3	00
21:20	I2C2	00
23:22	I2S	00
25:24	MCI	00
27:26	Не используется	00

Попов А.Ю. Проектирование радиоэлектронной аппаратуры на основе микроконтроллеров ARM7TDMI

29:28 System Control block 00 31:30 Не используется 00