Today

- Neural networks and deep learning
 - Single layer neural networks
 - using keras package
 - architectures for different questions
 - regression, classification, multifunction
 - Multi-layer neural networks
 - Convolutional neural networks
 - Recurrent neural networks

deep

Reminder

- Data science framework
 - model algorithm
 - training algorithm
 - inference algorithm

Model algorithm: architecture

- How many units and how they are connected
- What activation functions are applied to each unit

Architecture: regression

Architecture: binary classification (opt 1)

Architecture: binary classification (opt 2)

Architecture: multicategory classification

Architecture: multicategory classification

Could have any number of categories

Could be quite complex with different g(z) for many different output variables

Deep learning

- Multilayer neural networks
 - aka deep feedforward networks
 - aka multilayer perceptrons (MLP)
- Model algorithm
 - expressiveness
 - ability to approximate complex nonlinearity
 - architecture: width versus depth

Expressiveness

Universal approximation theorem (1989)

A feedforward neural network with at least one hidden layer can approximate any mapping

$$X \to f(X)$$

with arbitrarily low error provided it has enough units

Can be wide or deep

Wide: 25 hidden units

Deep: 25 hidden units

Ants data: wide

Ants data: deep

Deep: expressiveness

Deeper networks (more layers) allow more folds, which can represent complex patterns more efficiently by finding symmetries