

# MATEMÁTICA – 1º MÉDIO AMS

2022 - S1

DESENVOLVIMENTO DE SISTEMAS

Professor Sérgio Saragioto

# Plano do componente de matemática



- Função:
- Atribuições e Responsabilidades
- Valores e Atitudes
- Competências / Habilidades
- Conhecimentos/Temas
- Critérios de avaliação

### Conteúdo



### Função:

Investigação e Compreensão

### Atribuições e Responsabilidades

Implementar algoritmos em linguagem de programação utilizando ambientes de desenvolvimento de acordo com as necessidades

### Valores e Atitudes

Socializar os saberes.

Estimular o interesse na resolução de situações-problema.

Responsabilizar-se pela utilização e divulgação de resultados

# Competências / Habilidades



| Competências                                                                                                                                                                    | Habilidades                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Interpretar, na forma oral e escrita, símbolos, códigos, nomenclaturas, instrumentos de medição e de cálculo para representar dados, fazer estimativas e elaborar hipóteses. | 1.1 Identificar e fazer uso de instrumentos apropriados para efetuar medidas e cálculos.                                                            |
|                                                                                                                                                                                 | 1.2 Construir escalas, expressões matemáticas, fórmulas, diagramas, tabelas, gráficos, entre outros.                                                |
|                                                                                                                                                                                 | 1.3 Identificar erros ou imprecisões nos dados obtidos na solução de uma dada situação-problema.                                                    |
|                                                                                                                                                                                 | 1.4 Selecionar e utilizar a representação simbólica da matemática para a construção de conhecimentos voltados a contextos diversos                  |
| 2. Avaliar o caráter ético do<br>conhecimento matemático e<br>aplicá-lo em situações reais.                                                                                     | 2.1 Utilizar ferramentas matemáticas para analisar situações do entorno.                                                                            |
|                                                                                                                                                                                 | 2.2 Aplicar o conhecimento matemático para resolver situações-problema.                                                                             |
|                                                                                                                                                                                 | 2.3 Selecionar o conhecimento matemático e aplicá-lo em áreas distintas considerando a responsabilidade social na divulgação de dados e resultados. |

# Conhecimentos/Temas



### **REVISÃO FUNDAMENTAL**

### **NÚMEROS E ÁLGEBRA**

- Noções de Lógica;
- Conjuntos Numéricos;
- Funções polinomial de 1º e 2º Graus;
- Função modular.

### **GEOMETRIA E MEDIDAS**

- Geometria Plana:
  - ✓ semelhança figuras geométricas planas;
  - ✓ relações métricas no triângulo retângulo;
  - ✓ polígonos regulares inscritos na circunferência e relações métricas;
  - √ áreas de figuras geométricas planas.

### **TRIGONOMETRIA**

- Conceitos básicos;
- Trigonometria no triângulo retângulo;
- Funções circulares.

### **ANÁLISE DE DADOS**

- Princípio fund. da Contagem;
- Análise Combinatória:
  - √ fatorial;
  - √ arranjo simples;
  - ✓ permutações simples;
  - √ combinações simples.

# Critérios de avaliação



### 1) LISTA DE EXERCÍCIOS

- Listas individuais
- Listas coletivas

### 2) **AVALIAÇÕES**

### 3) PARTICIPAÇÃO

- Frequência
- Comportamento
- Vistos no caderno
- Pontualidade de entrega
- Observação direta do aluno

### MEIOS DE AVALIAÇÃO

- Dissertativa
- Múltiplas escolhas
- Formulários Forms MS
- Aula invertida
- Aplicação de casos
- Questões de exames externos
- Meios ajustados a necessidade didática da turma

# Pr中réfisser grassioto

### Programa do Ano Letivo



### **OBJETIVO:**

Revisar os conceitos algébricos necessários para o conteúdo do ciclo do 1º médio

### **AGENDA DA AULA:**

Revisão de equação do primeiro grau

Revisão de sistema de duas incógnitas de primeiro grau

### RESULTADOS ESPERADOS

Ao final desta aula você obterá a revisão dos principais recursos para a execução do conteúdo de funções



# MATEMÁTICA – 1º MÉDIO

2022 - S1

Revisão de conteúdos fundamentais

MATEMÁTICA: 2022 -S1



# **REGRAS DE SINAIS**

# Revisão: Soma e subtração



Uma soma (do latim *summa*) é a junção de coisas. O termo faz referência à ação e ao efeito de somar ou juntar/acrescentar.

Na matemática, a soma é uma operação que permite adicionar uma quantidade a outra tornando um valor homogéneo.

Diante a operação matemática, a soma consiste em juntar pelo menos dois números para obter uma quantidade total, ainda quando as parcelas possuírem valores com sinais diferentes.



Cálculo por Completude e Balanço de Muhammad (c. 820 d.C.)





### SOMA E SUBTRAÇÃO

O sinal acompanha o maior valor

a) 
$$-8 + 3 = -5$$

b) 
$$-2 - 1 = -3$$

c) 
$$6 - 2 = 4$$

e) 
$$2+6-7=+8-7=+1$$

f) 
$$-4+8-7=8-11=-3$$

### MULTIPLICAÇÃO E DIVISÃO

Sinais iguais é positivo

$$(+) \cdot (+) = (+) \quad (-) \cdot (-) = (+)$$

Sinais diferentes é negativo

$$(+) \cdot (-) = (-) \cdot (+) = (-)$$

a) 
$$-2 \cdot (-1) = 3$$

b) 
$$6.(-2) = -12$$

c) 
$$-2 \cdot 9 = -18$$

## ETEC zona leste

# Revisão: Regra de Sinal - exercícios

$$3 - 4 - 6 - 5(2 - 2 + 1): 2$$

$$3 - 4 - 6 + \frac{-5 \cdot 2 - 5 \cdot (-2) - 5 \cdot 1}{2}$$

$$3 - 4 - 6 + \frac{-10 + 10 - 5}{2}$$

$$3 - 10 - \frac{5}{2}$$

$$-7 - \frac{5}{2}$$

$$-7 - 2, 5$$

$$-9, 5$$

$$5(6:2+5)-3:2$$
 $5(3+5)-3:2$ 
 $5(8)-3:2$ 
 $40-1,5$ 

$$2[3-4:2(3+8-2):3]$$
 $2[3-4:2.9:3]$ 
 $2[3-2.3]$ 
 $2[3-6]$ 
 $2.[-3]$ 

# Revisão: Potenciação

Multiplicação

 $a^n$ ,  $a^m = a^{n+m}$ 

 $a^3$ ,  $a^7$ 

 $a^{3+7}$ 

 $a^{10}$ 

 $a^3. a^{-1}$ 

 $a^{3+(-1)}$ 

 $a^2$ 



$$a^0 = 1$$

$$a^1 = a$$

$$a^3 = a. a. a$$

$$a^0 = 1$$

$$2:2=1$$
  
 $2^1:2^1$ 

$$2^{1-1} = 2^0$$

$$1 = 2^{0}$$

### Inverso / Oposto

Inverso de 
$$2 = \frac{1}{2}$$

Oposto de 
$$2 = -2$$

### Divisão

$$\frac{a^n}{a^m}=a^{n-m}$$

$$\frac{a^{10}}{a^2} = a^{10-2} = a^8$$

### Potencia de Potencia

$$(a^m)^n = a^{m \cdot n} = a^{m \cdot n}$$
  
 $(a^3)^2 = a^{3 \cdot 2} = a^6$ 

### Expoente fracionário

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$a^{1,5}=a^{\frac{15}{10}}=\sqrt[10]{a^{15}}$$

$$\sqrt[10]{a^{20}} = a^{\frac{20}{10}} = a^2$$

### Expoente negativo

$$a^{-n}=\frac{1}{a^n}$$

$$a^{-7}=\frac{1}{a^7}$$

$$\frac{1}{a^{-4}} = a^4$$



# SUMÁRIO PROPRIEDADES DA POTENCIAÇÃO



$$a^m \cdot a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(a^m)^n = a^{m.n}$$

$$(a \cdot b)^m = a^m \cdot b^m$$

$$a^{-n} = \frac{1}{a^n}$$
 ou  $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$ 

# REVISÃO DE POTENCIA



### COMO EM NOTAÇÃO CIENTÍFICA UTILIZAREMOS APENAS PROPRIEDADES 1 E 2, VEJAMOS EXEMPLOS

1) 
$$3^4 \cdot 3^5 = 3^{4+5} = 3^9$$

2) 
$$5^{6} \cdot 5^{-2} = 5^{6+(-2)} = 5^{6-2} = 5^{4}$$

3) 
$$\frac{3^8}{3^6} = 3^{8-6} = 3^2$$

4) 
$$\frac{6^5}{6^{-2}} = 6^{5-(-2)} = 6^{5+2} = 6^7$$

5) 
$$\frac{10^5 \cdot 10^2 \cdot 10^3}{10^6 \cdot 10^3} = \frac{10^{10}}{10^9} = 10^1 = 10$$

### SUMÁRIO PROPRIEDADES DA POTENCIAÇÃO

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \cdot n}$$

$$(a \cdot b)^{m} = a^{m} \cdot b^{m}$$



$$_{1)}$$
  $3^4 \cdot 3^{-5} = 3^{4-5} = 3^{-1} = \frac{1}{3}$ 

$$5^{-6} \cdot 5^{-2} = 5^{-6+(-2)} = 5^{-8} = \frac{1}{5^8}$$

$$\frac{3^{-8}}{3^{-6}} = 3^{-8} \cdot 3^6 = \frac{1}{3^2} = 1/9$$

4) 
$$\frac{6^{-5}}{6^2} = 6^{-5} \cdot \frac{1}{6^2} = 6^{-5} \cdot 6^{-2} = 6^{-7}$$

$$\frac{10^5 \cdot 10^2 \cdot 10^0}{10^7 \cdot 10^2} = \frac{10^7}{10^9} = \frac{1}{3^2} = \frac{1}{9}$$



# NOTAÇÃO CIENTIFICA

# Prof. Sérgio Saragioto

# NOTAÇÃO CIENTÍFICA



Você já ouviu falar na <u>distância entre o Sol e Terra</u>? Essa distância é de <u>aproximadamente 150 milhões de quilômetros</u> (150.000.000 Km). E o tamanho de um grão de areia? Você sabe? Ele tem aproximadamente 0,00063 m de diâmetro. Esses são números muito grandes ou muito pequenos e a Notação Científica serve para facilitar a representação desses números, expressando-os através de uma forma mais fácil de se trabalhar, <u>diminuindo seu tamanho através de uma multiplicação por uma potência de 10.</u>

→ Para números grandes, a ordem de grandeza terá sempre expoente positivo;

→ Para números pequenos, a ordem de grandeza terá sempre expoente negativo;

$$0.0000008 =$$

### **OUTROS EXEMPLOS:**

- 1)12.500.000.000 = 1,25 .  $10^{10}$   $\rightarrow$  Devemos contar as casas que ficariam após a vírgula para encontrarmos o expoente
- 2)  $0.000.000.3 = 3 \cdot 10^{-7}$   $\rightarrow$  Devemos contar quantas casas deslocaríamos a vírgula, para encontrarmos o expoente
- **3)**  $2.356 = 2,356 \cdot 10^3$
- **4)**  $0.000.000.000.045 = 4.5 \cdot 10^{-11}$

# NOTAÇÃO CIENTIFICA - Exemplos



### **EXEMPLO 1**

27.10.2013. Adaptado)

(IFSP 2014) Leia as notícias: "A NGC 4151 está localizada a cerca de 43 milhões de anos-luz da Terra e se enquadra entre as galáxias jovens que possui um buraco negro em intensa atividade. Mas ela não é só lembrada por esses quesitos. A NGC 4151 é conhecida por astrônomos como o 'olho de Sauron', uma referência ao vilão do filme 'O Senhor dos Anéis'". (http://www1.folha.uol.com.br/ciencia/887260-galaxia-herda-nome-de-vilao-do-filme-o-senhordos-aneis.shtml Acesso em: 27.10.2013.)

$$4 \ 3 \ . \ 0 \ 0 \ 0 \ . \ 0 \ 0 \ 0 \ 0 \ = 4, 3 \ . \ 10^{7}$$

**EXEMPLO 2** "Cientistas britânicos conseguiram fazer com que um microscópio ótico conseguisse enxergar objetos de cerca de 0,00000005 m, oferecendo um olhar inédito sobre o mundo 'nanoscópico'". (http://noticias.uol.com.br/ultnot/cienciaesaude/ultimas-noticias/bbc/2011/03/02/com-metodo-inovador-cientistas-criam-microscopio-mais-potente-do-mundo.jhtm Acesso em:

Assinale a alternativa que apresenta os números em destaque no texto, escritos em notação científica.





# NOTAÇÃO CIENTÍFICA



**EXEMPLO 3** A massa do planeta Júpiter é de 1,9.10<sup>27</sup> kg, e a massa do Sol é de 1,9891 x 10<sup>30</sup> kg. Calcule, aproximadamente, quantas vezes o Sol é mais massivo que Júpiter.

Para saber quantas vezes o sol é mais massivo que Júpiter, devemos calcular quantas vezes Júpiter cabe na massa do Sol, assim:

Massa do Sol Massa de Júpiter

 $\frac{1,9891 \cdot 10^{30}}{1,9 \cdot 10^{27}}$ 

 $1,04 \cdot 10^{30-2}$ 

 $1.04 \cdot 10^3 = 1040 \ vezes$ 

RESPOSTA: O Sol é 1040 vezes mais massivo que Júpiter.

## **NOTAÇÃO CIENTÍFICA**



**EXEMPLO 4**: A velocidade da luz é de 300.000 Km por segundo. Quantos quilômetros a luz percorre em uma hora. Lembre se 1h = 60. 60 = 3600s

$$3.600 \text{ s} = 3.6 \cdot 10^3 \text{ (em notação científica)}$$
 
$$300.000 = 3 \cdot 10^5 \text{ (em notação científica)}$$

Então: 
$$3,6.10^3$$
 .  $3.10^5$ 

$$10,8 . 10^5 . 10^3$$

$$1,08.10^1 . 10^8$$

$$1,08.10^9$$

**RESPOSTA:** A luz percorre  $1,08.10^9$  Km em uma hora



# Prof. Sérgio Saragioto

# NOTAÇÃO CIENTÍFICA



EXEMPLO 5: A nossa galáxia, a Via Láctea, contém cerca de 400 bilhões de estrelas. Suponha que 0,05% dessas estrelas possuam um sistema planetário onde exista um planeta semelhante à Terra. O número de planetas semelhantes à Terra, na Via Láctea é?

# NOTAÇÃO CIENTÍFICA



**EXEMPLO 5:** A nossa galáxia, a Via Láctea, contém cerca de **400 bilhões de estrelas**. Suponha que 0,05% dessas estrelas possuam um sistema planetário onde exista um planeta semelhante à Terra. O número de planetas semelhantes à Terra, na Via Láctea é?

Vamos resolver em notação científica:

 $400 \text{ bilhões} = 400.000.000.000 = 4.10^{11}$ 

$$0.05\% = \frac{0.05}{100} = 0.0005 = 5.10^{-4}$$

Assim, 0,05% de 400 bilhões:

$$5.10^{-4}$$
 .  $4.10^{11}$ 

 $20.10^7$ 

$$2. 10^{1}.10^{7}$$

 $2.10^{8}$ 

**RESPOSTA:** O número de planetas semelhantes à Terra, na Via Láctea é de 2.108, ou seja, há 200.000.000 planetas semelhantes à Terra na Via Láctea.

Prof. Sérgio Saragioto



# NOTAÇÃO CIENTIFICA Exercícios Adicionais

# NOTAÇÃO CIENTÍFICA



**EXEMPLO 6** A massa de uma planeta A é de 6,4.10<sup>27</sup> kg, e a massa do satélite B é de 1,606 x 10<sup>24</sup> kg. Calcule, aproximadamente, quantas vezes o planeta A é mais massivo que satélite B.

Para saber quantas vezes o sol é mais massivo que Júpiter, devemos calcular quantas vezes Júpiter cabe na massa do Sol, assim:

Massa do planeta A
Massa de satélite B

$$\frac{6,424 \cdot 10^{27}}{1,606 \cdot 10^{24}}$$

$$4 \cdot 10^{27-24}$$

$$4 \cdot 10^3 = 4000 \ vezes$$

RESPOSTA: O Sol é 1040 vezes mais massivo que Júpiter.



# NOTAÇÃO CIENTÍFICA



**EXEMPLO 5:** Um galáxia contém cerca de **2 bilhões de estrelas possuam com planetário** . Suponha que **0,04% dessas estrelas possuam um sistema planetário com mais de um satélite natural**. O número de planetas com mais de um satélite natural nesta galáxia é?

Vamos resolver em notação científica:

2 bilhões =  $2.000.000.000 = 2.10^9$ 

$$0.04\% = \frac{0.04}{100} = 0.0004 = 4.10^{-4}$$

Assim, 0,05% de 400 bilhões:

$$4.10^{-4}$$
 .  $2.10^{9}$ 

$$8.10^{-4+9}$$

$$8.10^{5}$$

**RESPOSTA:** O número de planetas com mais de um satélite natural nesta galáxia é 8.10<sup>5</sup>



# Prof. Sérgio Saragioto

# NOTAÇÃO CIENTÍFICA



EXEMPLO 5: Um galáxia contém cerca de 2 bilhões de estrelas possuam com planetário. Suponha que 0,04% dessas estrelas possuam um sistema planetário com mais de um satélite natural. O número de planetas com mais de um satélite natural nesta galáxia é?



# Revisão: Soma e subtração - Propriedades

**Comutatividade**: A ordem das parcelas não altera o resultado da operação.

Assim, se 2 + 3 = 5, logo 3 + 2 = 5.

Associatividade: O agrupamento das parcelas não altera o resultado.

Assim, se (2 + 3) + 1 = 6, logo 2 + (3 + 1) = 6.

**Elemento neutro:** 

A parcela 0 (zero) não altera o resultado das demais parcelas. O zero é chamado "elemento neutro" da adição. Assim, se 2 + 3 = 5,  $\log 0 \ 2 + 3 + 0 = 5$ .

**Anulação:** 

A soma de qualquer número e o seu oposto é zero.

Assim: 0 + (-2) = 0, ou ainda se: (-999) + 999 = 0

**Fechamento:** 

A soma de dois números reais será sempre um número real.





N = conjunto de números naturais $N = \{0, 1, 2, 3, 4, 5 \dots\}$ 

∪ = união

 $A = \{1, 2, 3\}$ 

 $B = \{2, 3, 4\}$ 

 $A \cup B = \{1, 2, 3, 4\}$ 

 $A \cap B = \{2, 3\}$ 

### REPRESENTAÇÃO DE CONJUNTOS POR DIAGRAMA:









# Revisão: Teoria dos Conjuntos

### **EXERC**ÍCIO

- a) A ∪ B
- b) C ∪ B
- c)  $(A \cup C) \cap B$
- d) (C  $\cap$  A)
- e)  $(A \cap B \cap C)$

- $= \{ 0, 1, 2, 3, 5 \}$
- $= \{ 0, 2, 3, 5, 7 \}$
- $= \{ 0, 1, 2, 3, 5, 7 \} \rightarrow \{0, 2, 3, 5\}$
- = {2}
- $= \{2\}$



### Revisão: Teoria dos Conjuntos

### **EXERC**ÍCIO



a) 
$$A \cup B = \{1, 2, 3, 4, 6, 7, 9\}$$

b) 
$$A \cap C = \{ 2, 4 \}$$

c) 
$$A \cup C = \{1, 2, 3, 4, 5, 6, 8, 9\}$$

d) 
$$B \cap C = \{ 2, 6 \}$$

e) B 
$$\cup$$
 C = { 2, 4, 5, 6, 7, 8, 9}

f) 
$$A \cap B \cap C = \{2\}$$

g) 
$$A \cup B \cap C = \{1, 2, 3, 4, 6, 7, 9\} \rightarrow \{2, 4, 6\}$$



# Revisão: Teoria dos Conjuntos

### **EXERCÍCIO**



a) 
$$A \cup B = \{1, 2, 3, 4, 6, 9\}$$

- b)  $A \cap C = \{ 2, 3 \}$
- c)  $A \cup C = \{1, 2, 3, 4, 8, 9\}$
- d)  $B \cap C = \{ 2, 6 \}$
- e) B  $\cup$  C = { 2, 4, 5, 6, 7, 8, 9}
- f)  $A \cap B \cap C = \{2\}$
- g)  $A \cup B \cap C = \{1, 2, 3, 4, 6, 9\} \rightarrow \{3\}$



### Diferença de conjuntos

A diferença entre dois conjuntos, A e B, é dada pelos elementos que pertencem a A e **não** pertencem a B.

No diagrama de Venn-Euler, a diferença entre os conjuntos A e B é:



### **Exemplo**

Considere os conjuntos A = {0, 1, 2, 3, 4, 5, 6, 7}, B = {0, 1, 2, 3, 4, 6, 7} e C = { }. Vamos determinar as seguintes diferenças.

$$A - B = \{5\}$$
  
 $A - C = \{0, 1, 2, 3, 4, 5, 6, 7\}$ 

 $C - A = \{ \}$ 

Observe que, no conjunto A – B, tomamos inicialmente o conjunto A e "tiramos" os elementos do conjunto B. No conjunto A - C, tomamos o A e "tiramos" o vazio, ou seja, nenhum elemento. Por último, em C - A, tomamos o conjunto vazio e "tiramos" os elementos de A, que, por sua vez, já não estavam lá.



# Conjuntos complementares

Considere os conjuntos A e B, em que o conjunto A está contido no conjunto B, isto é, todo elemento de A também é elemento de B. A diferença entre os conjuntos, B – A, é chamada de complementar de A em relação a B. Em outras palavras, o complementar é formado por todo elemento que não pertence ao conjunto A em relação ao conjunto B, em que ele está contido.  $C_a^2 = B - A$ 



### **Exemplo**

Considere os conjuntos A = {0, 1, 2, 3, 4, 5} e B ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. O complementar de A em relação a B é:

$$C_B^A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} - \{0, 1, 2, 3, 4, 5\}$$

$$C_B^A = \{6, 7, 8, 9, 10\}$$



# **Questão 1 – Considere os conjuntos**

 $A = \{a, b, c, d, e, f\}$ 

 $B = \{d, e, f, g, h, i\}.$ 

Determine (A - B) U (B - A).

**Solução:?** Inicialmente determinaremos os conjuntos A – B e B – A e, em seguida, realizaremos a união entre eles.

$$A - B = \{a, b, c, d, e, f\} - \{d, e, f, g, h, i\} \rightarrow A - B = \{a, b, c\}$$

$$B - A = \{d, e, f, g, h, i\} - \{a, b, c, d, e, f\} \rightarrow B - A = \{g, h, i\}$$

Logo, 
$$(A - B) U (B - A) \acute{e}$$
:

 $\{a, b, c\} \cup \{g, h, i\} \rightarrow \{a, b, c, g, h, i\}$ 



### Questão 2 – (Vunesp) Suponhamos que

A U B =  $\{a, b, c, d, e, f, g, h\}$ , A  $\cap$  B =  $\{d, e\}$  e A – B =  $\{a, b, c\}$ , então:

a) 
$$B = \{f, g, h\}$$

b) 
$$B = \{d, e, f, g, h\}$$

c) 
$$B = \{ \}$$

d) 
$$B = \{d, e\}$$

e) 
$$B = \{a, b, c, d, e\}$$



### Solução

Alternativa b.

Dispondo os elementos no diagrama de Venn-Euler, segundo o enunciado, temos: Portanto, o conjunto B = {d, e, f, g, h}.