

AlignDet: Aligning Pre-training and Fine-tuning in Object Detection

Ming Li^{1*}, Jie Wu^{1*†}, Xionghui Wang¹, Chen Chen^{2†}, Jie Qin¹, Xuefeng Xiao¹, Rui Wang¹, Min Zheng¹, Xin Pan¹

¹ TikTok, ByteDance Inc, ² Center for Research in Computer Vision, University of Central Florida

Project

arXiv

Code

A General Self-supervised Pre-training for All Detection Models

Motivation

There are data, model, and task discrepancies between the pre-training and fine-tuning. Aligning these discrepancies achieves significant improvements across various settings and detectors.

Advantages

Comparison with other self-supervised pre-training methods on data, models and tasks aspects. AlignDet achieves more efficient, adequate and detection-oriented pre-training.

Contributions

- New Insight: We point out that existing detection algorithms are constrained by the data, model, and task discrepancies between pre-training and fine-tuning.
- > <u>Novel Method</u>: We propose AlignDet to align these discrepancies, which constructs **detection-oriented pre-training** by learning classification and regression knowledge.
- Efficiency and Pioneering: AlignDet makes the first attempt to fully pre-train all kinds of detectors using a completely unsupervised paradigm, by integrating pre-trained backbones.

Pipeline

Learns Good Classification and Regression Priors

Figure 4. t-SNE visualization of ground truth annotations. AlignDet pre-training results in better class separation.

Figure 5. Visualization of predictions on COCO Val2017.