CHI-SQUARE TESTS

Chi-Square Tests

➤ A Chi-Square Test for Independence

➤ Chi-Square Goodness-of-Fit Tests

Contingency Table Example

Left-Handed vs. Gender

Dominant Hand: Left vs. Right

Gender: Male vs. Female

Sample results organized in a contingency table:

sample size = n = 300:

120 Females, 12 were left handed

180 Males, 24 were left handed

		Hand Preference		
ı	Gender	Left	Right	
	Female	12	108	120
	Male	24	156	180
		36	264	300

Chi-square Test on Independence

Consider a contingency table with *r* rows and *c* columns, test

- H₀: The two categorical variables are independent, i.e., there is no relationship between them
- H₁: The two categorical variables are dependent.

The Chi-square test statistic is

$$\chi^2 = \sum_{\text{allcells}} \frac{(f_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

- where:
- f_{ij} = observed cell frequency for ith row and jth column
- $r_i = i^{th}$ row total, $c_j = j^{th}$ column total

$$\hat{E}_{ij} = \frac{r_i c_j}{n} = \frac{\text{expected cell frequency for i}^{\text{th}} \text{ row and j}^{\text{th}}}{\text{column under independence}}$$

(Assumed: each cell in the contingency table has expected frequency of at least 5)

Chi-square Test on Independence

Consider a contingency table with *r* rows and *c* columns,

The test statistic

$$\chi^2 = \sum_{\text{allcells}} \frac{(f_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

The null distribution is the chi-square distribution with (r-1)(c-1) degrees of freedom.

Reject H₀ if

 $\chi^2 > \chi_{\alpha}^2$ or if p-value < α

 χ_{α}^{2} and the p-value are based on (r-1)(c-1) degrees of freedom

Observed vs. Expected Frequencies

	Hand Preference		
Gender	Left	Right	
Female	Observed = 12	Observed = 108	120
Гептате	Expected = 14.4	Expected = 105.6	120
Molo	Observed = 24	Observed = 156	100
Male	Expected = 21.6	Expected = 158.4	180
	36	264	300

The Chi-Square Test Statistic

	Hand Preference		
Gender	Left	Right	
Female	Observed = 12	Observed = 108	120
Гептате	Expected = 14.4	Expected = 105.6	120
Male	Observed = 24	Observed = 156	180
IVIAIE	Expected = 21.6	Expected = 158.4	100
	36	264	300

The test statistic ls:

$$\chi^{2} = \sum_{\text{allcells}} \frac{(f_{ij} - \hat{E}_{ij})^{2}}{\hat{E}_{ij}}$$

$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

Decision Rule

R code for χ_{α}^2 : qchisq(0.95,1)

Example: The Client Satisfaction Case

Client Satisfaction

Fund	High	Low	Med	All
Bond	15	3	12	30
Stock	24	2	4	30
TaxDef	1	15	24	40
All	40	20	40	100

H₀: client satisfaction is independent of fund type

H_a: client satisfaction depends upon fund type

$$\chi^{2} = \sum_{\text{allcells}} \frac{(f_{ij} - \hat{E}_{ij})^{2}}{\hat{E}_{ij}}; \quad E_{BH} = \frac{r_{B}c_{H}}{n} = \frac{(30)(40)}{100} = 12, \dots, E_{TM} = \frac{r_{T}c_{M}}{n} = \frac{(40)(40)}{100} = 16$$

$$= \frac{(15 - 12)^{2}}{12} + \frac{(3 - 6)^{2}}{6} + \dots + \frac{(24 - 16)^{2}}{16}$$

$$= 0.7500 + 1.5000 + \dots + 4.0000 = 46.4375$$

$$\chi^{2} = 46.4375 > 9.4877 = \chi^{2}_{.05}$$

$$p - value = P(\chi^{2} > 46.4375) = 0.0000$$
Reject H0

R function: Chisq.test()

M=as.table(rbind(c(15,3,12),c(24,2,4),c(1,15,24)))

```
dimnames(M)=list(Fund= c("Bond", "Stock", 'TaxDef'),
                             Satisfaction=c("High","Low", "Med"))
Xsq <- chisq.test(M)) # Prints test summary
Xsq$observed # observed counts (same as M)
Xsq$expected # expected counts under the null
 > Xsq$observed # observed counts (same as M)
        Satisfaction
 Fund High Low Med
  Bond 15 3 12
  Stock 24 2 4
  TaxDef 1 15 24
 > Xsq$expected # expected counts under the null
        Satisfaction
 Fund High Low Med
  Bond 12 6 12
   Stock 12 6 12
                           > Xsq
   TaxDef 16 8 16
                                  Pearson's Chi-squared test
                           data: M
                           X-squared = 46.4375, df = 4, p-value = 1.997e-09
```

Chi-Square Goodness-of-Fit Test

 Does sample data conform to a hypothesized distribution?

Examples:

 Are technical support calls equal across all days of the week? (i.e., do calls follow a uniform distribution?)

 Do measurements from a production process follow a normal distribution?

Chi-Square Goodness-of-Fit Test

- Are technical support calls equal across all days of the week? (i.e., do calls follow a uniform distribution?)
 - Sample data for 10 days per day of week:

Sum of calls for this day:				
Monday	290			
Tuesday	250			
Wednesday	238			
Thursday	257			
Friday	265			
Saturday	230			
Sunday	192			
	$\Sigma = 1722$			

Logic of Goodness-of-Fit Test

• If calls **are** uniformly distributed, the 1722 calls would be expected to be equally divided across the 7 days:

$$\frac{1722}{7}$$
 = 246 expected calls per day if uniform

Observed vs. Expected Frequencies

	Observed f _o	Expected f _e
Monday	290	246
Tuesday	250	246
Wednesday	238	246
Thursday	257	246
Friday	265	246
Saturday	230	246
Sunday	192	246
TOTAL	1722	1722

Chi-Square Test Statistic

H₀: The distribution of calls is uniform over days of the week

H₁: The distribution of calls is not uniform

The test statistic is

$$\chi^{2} = \sum_{k} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$
 (where df = k-1)

where:

k = number of categories

f_o = observed frequency

f_e = expected frequency

The Rejection Region

H₀: The distribution of calls is uniform over days of the week

H₁: The distribution of calls is not uniform

$$\chi^2 = \sum_{k} \frac{(f_o - f_e)^2}{f_e}$$

• Reject H_0 if $\chi^2 > \chi_{\alpha}^2$

Chi-Square Test Statistic

H₀: The distribution of calls is uniform over days of the week

H₁: The distribution of calls is not uniform

$$\chi^2 = \frac{(290 - 246)^2}{246} + \frac{(250 - 246)^2}{246} + \dots + \frac{(192 - 246)^2}{246} = 23.05$$

k - 1 = 6 (k = 7 days of the week) so use 6 degrees of freedom:

$$\chi^2_{.05} = 12.5916$$

Conclusion:

$$\chi^2 = 23.05 > \chi^2_{\alpha} = 12.5916$$

so **reject H₀** and conclude that the distribution is not uniform

R function: Chisq.test()

- x<-c(290,250,238,257,265,230,192)
- prob=rep(1/length(x),length(x))
- chisq.test(x, p = prob)

Normal Distribution Example

• Do measurements from a production process follow a normal distribution with μ = 50 and σ = 15?

Process:

- Get sample data
- Group sample results into classes (cells) (Expected cell frequency must be at least 5 for each cell)
- Compare actual cell frequencies with expected cell frequencies

Normal Distribution Example

(continued)

Sample data and values grouped into classes:

150 Sample Measurements
80
65
36
66
50
38
57
77
59
etc

Class	Frequency
less than 30	10
30 but < 40	21
40 but < 50	33
50 but < 60	41
60 but < 70	26
70 but < 80	10
80 but < 90	7
90 or over	2
TOTAL	150

Normal Distribution Example

(continued)

• What are the expected frequencies for these classes for a normal distribution with μ = 50 and σ = 15?

Class	Frequency	Expected Frequency
less than 30	10	
30 but < 40	21	
40 but < 50	33	?
50 but < 60	41	
60 but < 70	26	
70 but < 80	10	
80 but < 90	7	
90 or over	2	
TOTAL	150	

Expected Frequencies

Value	P(X < value)	Expected frequency
less than 30	0.09121-	13.68
30 but < 40	0.16128	24.19
40 but < 50	0.24751	37.13
50 but < 60	0.24751	37.13
60 but < 70	0.16128	24.19
70 but < 80	0.06846	10.27
80 but < 90	0.01892	2.84
90 or over	0.00383	0.57
TOTAL	1.00000	150.00

Expected frequencies in a sample of size n=150, from a normal distribution with $\mu=50$, $\sigma=15$

Example:

$$P(x < 30) = P\left(z < \frac{30 - 50}{15}\right)$$
$$= P(z < -1.3333)$$
$$= .0912$$

(.0912)(150) = 13.68

Combine class groups so no class has expected frequency <1

The Test Statistic

Class	Frequency (observed, f _o)	Expected Frequency, f _e
less than 30	10	13.68
30 but < 40	21	24.19
40 but < 50	33	37.13
50 but < 60	41	37.13
60 but < 70	26	24.19
70 but < 80	10	10.27
80 or over	9	3.41
TOTAL	150	150.00

The test statistic is

$$\chi^2 = \sum_{k} \frac{(f_o - f_e)^2}{f_e}$$

• Reject
$$H_0$$
 if
$$\chi^2 > \chi_\alpha^2$$

(with k-1 degrees of freedom)

The Rejection Region

 H_0 : The distribution of values is normal with $\mu = 50$ and $\sigma = 15$

H₁: The distribution of calls does not have this distribution

$$\chi^2 = \sum_{k} \frac{(f_o - f_e)^2}{f_e} = \frac{(10 - 13.68)^2}{13.68} + ... + \frac{(9 - 3.41)^2}{3.41} = \boxed{11.580}$$

7 classes so use 7-1=6 d.f.:

$$\chi^2_{.05} = 12.5916$$

Conclusion:

 χ^2 = 11.580 < χ^2_{α} = 11.0705 so not **reject H₀.** There is no sufficient evidence that the data are not normal with μ = 50 and σ = 15

Exercise

• Write a program to perform a test: Whether the following measurements from a production process follow a normal distribution with μ = 50 and σ = 15?

```
43
                       48
                           28
                               37
                                  53
                                      50
                                              24
                                                  51
                                                          53
                                                                 29
                                                                     46
                                                                         46
               52
                       62
                          51
                              84
                                  32
27
           42
                   45
                                      60
                                          61
                                              33
                                                  50
                                                      36
                                                          73
                                                             41
                                                                 64
                                                                     59
                                                                         40
59
                          44
                                 72
   77
       56
           49
               66
                   29 74
                              20
                                      38
                                          73
                                              41
                                                  27
                                                     55
                                                          24
                                                             43
                                                                 47
                                                                     49
                                                                        52
75
      76
                   32
                              39 78
   36
           59 43
                      44
                          29
                                      72
                                          38
                                             42
                                                  51
                                                     39
                                                          53 41
                                                                     32
                                                                        62
      32
                              60 63
72 42
           53 35
                  55 42 107
                                      46 68
                                                     37
                                                                     33
                                             55
                                                  51
                                                          50 50
                                                                        53
                                      60 17
38
   30
      28
           55 40
                  39 38 69 57 36
                                                  62
                                                     39
                                                          32 39
                                                                     51
                                                                        88
                         42 33 63
           43
                  56 47
                                      49 59
                                                             31
                                                                     14
33 74
              33
                                              26
                                                  40
                                                      50
                                                          48
                                                                         57
82
   52
               58
                       35
                          36
                              57
                                  42
```

The data is assigned to 7 classes:

```
x < -c(57,66,54,55,...)
```

less than 30 30 but < 40 40 but < 50 50 but < 60 60 but < 70 70 but < 80 80 or over