Singularidades – Clasificación de puntos singulares aislados

Singularidades

Se dice que $z_0 \in \mathbb{C}$ es un punto singular o **singularidad** de la función f(z) si f no es analítica en z_0 pero en todo entorno de z_0 hay al menos un punto donde f es analítica. En palabras, una singularidad es un punto donde la función no es analítica pero hay puntos arbitrariamente cercanos a él donde sí lo es.

Es evidente que si una función posee un número finito de singularidades, todas ellas serán aisladas.

acá f es analítica

excepto en z_0

Ejemplo 1:

a) f(z) = Re(z) Aplicando Cauchy-Riemann: $D_{ana}(f) = \emptyset$. Ningún punto posee puntos arbitrariamente cercanos donde f sea analítica. Entonces f no posee puntos singulares.

aisladas.

b) $f(z) = \frac{e^{1/z}}{z^2+1}$ Singularidades: z = -i, z = 0, z = i. Son todas

acá f es analíticaexcepto en z = iacá f es analíticaexcepto en z = 0acá f es analíticaexcepto en z = z = -

Ejemplo 1:

c) $f(z) = \frac{z}{\operatorname{sen}(z)}$ Singularidades: $z_k = k\pi$, $k \in \mathbb{Z}$. Son todas aisladas.

d) $f(z) = \operatorname{Ln}(z)$ Singularidades: z = x + i0 donde $x \le 0$. Ninguna es aislada porque en todo entorno de cada punto del semieje real negativo siempre hay otros puntos de ese mismo semieje (en rojo), donde f no es analítica.

e)
$$f(z) = \frac{1}{sen(\pi/z)}$$

Singularidades:

$$z_0 = 0$$
 (no aislada)

$$z_k = \frac{1}{k} \operatorname{con} k \in \mathbb{Z} - \{0\}$$
 (aisladas).

Aunque en el gráfico no se llegue a apreciar, en todo entorno de $z_0=0$ de por pequeño que se escoja, siempre hay puntos z_k con $k \in \mathbb{Z}-\{0\}$, donde f no es analítica. En efecto:

$$\lim_{k\to\infty} \mathbf{z}_k = \lim_{k\to\infty} \frac{1}{k} = \mathbf{0} = \mathbf{z}_0$$

Clasificación de singularidades aisladas

Sea z_0 un punto singular aislado de la función f(z). Entonces $z_0 \notin D_{ana}(f)$ pero existe R > 0 tal que f(z) es analítica en el entorno reducido $E^*(z_0, R)$. Luego, f(z) admite una representación en serie de Laurent convergente en la corona $0 < |z - z_0| < R$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \quad \text{si } 0 < |z - z_0| < R$$

La parte (I) de este desarrollo que involucra potencias negativas de $(z-z_0)$ se denomina **parte principal** de la serie de Laurent de f(z) convergente en la corona $0 < |z-z_0| < R$ (notar que esta corona es un entorno reducido de z_0). En base a ella se define la siguiente clasificación del punto singular z_0 :

SINGULARIDADES EVITABLES: Si $b_n=0$ para todo $n\in\mathbb{N}$, se dice que z_0 es una **singularidad evitable** (o removible) de f(z). Esto ocurre cuando la serie de Laurent que converge en el entorno reducido de z_0 carece de potencias negativas de $(z-z_0)$, de modo que (I) no está presente y la serie es de la forma:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots \text{ si } 0 < |z - z_0| < R$$

<u>Caracterización de singularidades evitables</u>: Sea z_0 singularidad aislada de f(z). Son equivalentes:

- a) z_0 es singularidad evitable de f(z).
- b) Existe $\tilde{f}(z)$ analítica en z_0 tal que $f(z) = \tilde{f}(z)$ para los z de un entorno reducido de z_0 .
- c) $\lim_{z \to z_0} f(z)$ existe (es un número complejo).

Dem

a) \Rightarrow b) Supongamos que z_0 es singularidad evitable. Entonces el DSL convergente en un entorno reducido de z_0 no contiene potencias negativas de $z-z_0$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 si $0 < |z - z_0| < R$

La serie del miembro de la derecha es de potencias no negativas con radio de convergencia $0 < R \le \infty$, así que su suma $\tilde{f}(z)$ es analítica en z_0 . Entonces, en el entorno reducido $0 < |z - z_0| < R$ es $f(z) = \tilde{f}(z)$.

b) \Rightarrow a) Supongamos que que $f(z) = \tilde{f}(z)$ para $0 < |z - z_0| < R$ (donde R > 0), siendo $\tilde{f}(z)$ analítica en z_0 . Entonces $\tilde{f}(z)$ posee un DST centrado en z_0 :

$$\tilde{f}(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ si } |z - z_0| < R$$

Luego,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ si } 0 < |z - z_0| < R$$

Por unicidad, este es el DSL de f(z) que converge en un entorno reducido $0 < |z - z_0| < R$. Como no contiene potencias negativas, entonces z_0 es singularidad esencial de f(z).

b) \Rightarrow c) Supongamos que $f(z) = \tilde{f}(z)$ para $0 < |z - z_0| < R$ (donde R > 0), siendo $\tilde{f}(z)$ analítica en z_0 . Entonces $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \tilde{f}(z) = \tilde{f}(z_0)$ existe.

c) \Rightarrow b) Supongamos $\lim_{z \to z_0} f(z) = L$ existe. Consideremos la función

$$h(z) = \begin{cases} (z - z_0)^2 f(z) & \text{si } 0 < |z - z_0| < R \\ 0 & \text{si } z = z_0 \end{cases}$$

Claramente es analítica si $0<|z-z_0|< R$, por ser producto de analíticas. Por otra parte,

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{(z - z_0)^2 f(z)}{z - z_0} = \lim_{z \to z_0} (z - z_0) f(z) = \underbrace{\lim_{z \to z_0} (z - z_0)}_{z \to z_0} \underbrace{\lim_{z$$

Entonces $h'(z_0) = 0$. Luego, h(z) es derivable en el entorno $|z - z_0| < R$. Por lo tanto, h(z) es analítica en z_0 . Su serie de Taylor es

$$h(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \underbrace{a_0}_{=h(z_0)=0} + \underbrace{a_1}_{=h'(z_0)=0} (z - z_0) + a_2 (z - z_0)^2 + \dots = \sum_{n=2}^{\infty} a_n (z - z_0)^n \text{ si } |z - z_0| < R$$

Así, para $|z - z_0| < R$ resulta:

$$f(z) = \frac{h(z)}{(z - z_0)^2} = \sum_{n=2}^{\infty} a_n (z - z_0)^{n-2} = a_2 + a_3 (z - z_0) + a_4 (z - z_0)^2 + \dots \quad \text{si } 0 < |z - z_0| < R$$

La función $\tilde{f}(z) = \sum_{n=2}^{\infty} a_n (z-z_0)^{n-2}$ es analítica en z_0 por ser suma de una serie de potencias no negativas con radio de convergencia R>0.

Ejemplo 2: $z_0 = 1$ es singularidad **evitable** de $f(z) = (z-1)^{-1} \operatorname{Ln}(z)$.

En efecto, $\text{Ln}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (z-1)^{n+1}$ si |z-1| < 1 así que

$$f(z) = \frac{\operatorname{Ln}(z)}{z - 1} = \frac{1}{z - 1} \sum_{n=0}^{\infty} \frac{(-1)^n}{n + 1} (z - 1)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n + 1} (z - 1)^n$$
$$= 1 - \frac{1}{2} (z - 1) + \frac{1}{3} (z - 1)^2 + \dots \text{ si } 0 < |z - 1| < 1$$

no contiene potencias negativas de (z-1). La parte principal (I) en este desarrollo es nula.

Notar:

Notar:
$$\lim_{z \to z_0} f(z) = \lim_{z \to 1} \frac{\ln(z)}{z-1} \stackrel{\text{"0/0"}}{=} \lim_{z \to 1} \frac{\frac{1}{z}}{1} = 1$$
 Luego, la función $\tilde{f}(z) = \begin{cases} \frac{\ln(z)}{z-1} & \text{si} \quad z \neq 0, z \neq 1 \\ 1 & \text{si} \quad z = 1 \end{cases}$ es analítica en $z_0 = 1$

Ejemplo 3: En base a un desarrollo en serie de potencias, clasificar las singularidades aisladas de $f(z) = \frac{2 \text{sen}^2 z}{z}$ Rta

 $D_A(f) = \mathbb{C} - \{0\}$. La única singularidad es $z_0 = 0$. Luego, es aislada.

Sabemos que:

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \text{ si } |z| < \infty$$

Luego,

$$\frac{2\operatorname{sen}^{2} z}{z} = \frac{2}{z} \left(\frac{1 - \cos(2z)}{2} \right) = \frac{1}{z} \left(1 - \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} (2z)^{2n} \right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2n-1}}{(2n)!} z^{2n-1}$$

$$= z - \frac{1}{3} z^{3} + \frac{2}{45} z^{5} + \dots \text{ si } 0 < |z| < \infty$$

Como la parte principal de este DSL es nula, $z_0=0$ es una **singularidad evitable** de f(z).

Observemos que

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{2 \text{sen}^2 z}{z} \stackrel{\text{l'Hôpital}}{=} \lim_{z \to 0} \frac{4 \text{sen}(z) \cos(z)}{1} = 0$$

Como este límite existe, esto confirma que la singularidad $z_0=0$ es evitable.

<u>**POLOS**</u>: Si $b_n = 0$ para todo n > k, pero $b_k \neq 0$, se dice que z_0 es un **polo de orden k** de f(z). Esto ocurre cuando la parte principal (I) de la serie de Laurent que converge en el entorno reducido de z_0 no es nula pero consta de una cantidad finita de términos no nulos, siendo -k la menor potencia de $(z-z_0)$ presente en (I) con coeficiente no nulo. La serie es de la forma:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \underbrace{\frac{\overleftarrow{b_k}}{\overleftarrow{b_k}}}_{(z - z_0)^k} + \underbrace{\frac{b_{k-1}}{(z - z_0)^{k-1}} + \dots + \frac{b_2}{(z - z_0)^2}}_{(I)} + \underbrace{\frac{b_1}{(z - z_0)}}_{(I)} \quad \text{si } 0 < |z - z_0| < R$$

Ejemplo 4: $z_0 = -1$ es un polo de orden k = 2 de $f(z) = \frac{1}{(z+1)^2 z}$

En efecto,

$$\frac{1}{z} = \frac{1}{(z+1)-1} = \frac{-1}{1-(z+1)} = \sum_{n=0}^{\infty} (-1)(z+1)^n \text{ si } |z-1| < 1$$

Entonces,

$$f(z) = \frac{1}{(z+1)^2} \frac{1}{z} = \frac{1}{(z+1)^2} \sum_{n=0}^{\infty} (-1)(z+1)^n = \sum_{n=0}^{\infty} (-1)(z+1)^{n-2}$$

$$= \underbrace{-\frac{1}{(z+1)^2} - \frac{1}{(z+1)}}_{\text{parte ppal.}} - 1 - (z+1) - (z+1)^2 - \dots \text{ si } 0 < |z+1| < 1$$

Ejemplo 5: $z_0 = 1$ es un polo de orden k = 2 de $f(z) = \frac{z}{(z-1)^2}$

En efecto,

$$f(z) = \frac{z}{(z-1)^2} = \frac{(z-1)+1}{(z-1)^2} = \frac{1}{(z-1)} + \frac{1}{(z-1)^2} \text{ si } 0 < |z-1| < \infty$$

La última es una serie de potencias de (z-1) que representa a f(z) en el entorno reducido $0 < |z-1| < \infty$. Por unicidad, es la serie de Laurent convergente en ese entorno. La menor potencia de (z-1) presente en ella es (-2), lo que de acuerdo con la definición indica que $z_0 = 1$ es un polo de orden k = 2 de f(z).

Ejemplo 6: $z_0 = \pi$ es un polo de orden k = 4 de $f(z) = (z - \pi)^{-5} \operatorname{sen}(z)$.

En efecto, $sen(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} si |z| < \infty$

Entonces,

$$\operatorname{sen}(z - \pi) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (z - \pi)^{2n+1} \text{ si } |z - \pi| < \infty$$

$$sen(z) = sen((z - \pi) + \pi) = sen(z - \pi) cos(\pi) + cos(z - \pi) sen(\pi) = -sen(z - \pi) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} (z - \pi)^{2n+1} si |z - \pi| < \infty$$

Luego,

$$f(z) = \frac{\operatorname{sen}(z)}{(z-\pi)^5} = -\frac{\operatorname{sen}(z-\pi)}{(z-\pi)^5} = -\frac{1}{(z-\pi)^5} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (z-\pi)^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} (z-\pi)^{2n-4} = \frac{1}{(z-\pi)^4} + \frac{1}{3!} \frac{1}{(z-\pi)^2} - \frac{1}{5!} + \frac{1}{7!} (z-\pi)^2 + \dots \text{ si } 0 < |z-\pi| < \infty$$

Vemos que la parte principal (I) tiene un número finito de términos no nulos, siendo $(z-1)^{-4}$ la potencia más negativa presente en ella.

Observar:

$$\lim_{z \to \pi} f(z) = \lim_{z \to \pi} \frac{\operatorname{sen}(z)}{(z - \pi)^5} \stackrel{\text{"0/0"}}{=} \lim_{z \to \pi} \frac{\cos(z)}{5(z - \pi)^4} = \infty$$

Teorema de caracterización de polos: Sea z_0 singularidad aislada de f(z). Son equivalentes:

- a) z_0 es un polo de orden k de f(z).
- b) Existe $\tilde{f}(z)$ analítica en z_0 con $\tilde{f}(z_0) \neq 0$ tal que $f(z) = \frac{\tilde{f}(z)}{(z-z_0)^k}$ para los z de un entorno reducido de z_0 .

Ejemplo 7: $z_0 = 1$ es un polo de orden k = 3 de $f(z) = \frac{e^{z-1}}{(z-1)^3 \cos(\pi z)}$

En efecto, la función $f_1(z) = \frac{e^{z-1}}{\cos(\pi z)}$ es analítica en $z_0 = 1$ (cociente de analíticas con denominador no nulo).

Además
$$f_1(z_0) = f_1(1) = \frac{e^0}{\cos(\pi)} = -1 \neq 0$$

Se tiene:

$$f(z) = (z - 1)^{-3} f_1(z)$$

Corolario: Sea z_0 un polo de f(z). Entonces $\lim_{z\to z_0} f(z) = \infty$.

<u>Dem</u> Supongamos que z_0 es un polo de orden k de f(z). Entonces por el teorema anterior sea $\tilde{f}(z)$ analítica en z_0 con $\tilde{f}(z_0) \neq 0$ tal que $f(z) = \frac{f(z)}{(z-z_0)^k}$ para los z de un entorno reducido de z_0 .

Luego,

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{\tilde{f}(z)}{(z - z_0)^k} = \infty$$

puesto que $\lim_{z\to z_0} \tilde{f}(z) = \tilde{f}(z_0) \neq 0$ mientras que $\lim_{z\to z_0} (z-z_0)^k = 0$.

Nota: puede probarse que la recíproca de este corolario también se cumple, es decir que si z_0 es una singularidad aislada de f(z) tal que $\lim_{z \to z_0} f(z) = \infty$, entonces z_0 un polo de f(z).

Dem del teorema de caracterización de polos

a) \Rightarrow b) Supongamos que z_0 es un polo de orden k de f(z). Entonces el DSL convergente en un entorno reducido de z_0 es de la forma:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{k} b_n (z - z_0)^{-n} \text{ si } 0 < |z - z_0| < R$$

donde $b_k \neq 0$. Es decir,

$$f(z) = (z - z_0)^{-k} \left(\sum_{n=0}^{\infty} a_n (z - z_0)^{n+k} + \sum_{n=1}^{k} b_n (z - z_0)^{k-n} \right) = (z - z_0)^{-k} \left(\sum_{n=0}^{\infty} a_n (z - z_0)^{n+k} + b_1 (z - z_0)^{k-1} + b_2 (z - z_0)^{k-2} + \dots + b_k \right)$$

La serie entre paréntesis es de potencias no negativas y converge si $|z-z_0| < R$ con R>0. Luego, representa una función $\tilde{f}(z)$ analítica en z_0 . Entonces $f(z)=(z-z_0)^{-k}\tilde{f}(z)$ en el entorno reducido $0<|z-z_0|< R$. Además,

$$\tilde{f}(z_0) = b_k \neq 0$$

b) \Rightarrow a) Supongamos que que $f(z) = \frac{\tilde{f}(z)}{(z-z_0)^k}$ para $0 < |z-z_0| < R$ (donde R > 0), siendo $\tilde{f}(z)$ analítica en z_0 . Entonces $\tilde{f}(z)$ posee un DST centrado en z_0 :

$$\tilde{f}(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ si } |z - z_0| < R$$

Notemos que $a_0 = \tilde{f}(z_0) \neq 0$.

Luego,

$$f(z) = \frac{\tilde{f}(z)}{(z - z_0)^k} = \frac{1}{(z - z_0)^k} \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^{n-k} =$$

$$= \frac{\tilde{a_0}}{(z - z_0)^k} + \frac{a_1}{(z - z_0)^{k-1}} + \dots + \frac{a_{k-1}}{(z - z_0)} + a_k + a_{k+1} (z - z_0) + \dots \text{ si } 0 < |z - z_0| < R$$

Por unicidad, este es el DSL de f(z) que converge en un entorno reducido $0 < |z - z_0| < R$. Es claro que z_0 resulta ser polo de orden k de f(z).

SINGULARIDADES ESENCIALES: Si $b_n \neq 0$ para infinitos índices $n \in \mathbb{N}$ se dice que z_0 es una **singularidad esencial** de f(z). Esto ocurre cuando la parte principal (I) contiene infinitos términos no nulos. La serie de Laurent convergente en un entorno reducido de z_0 es de la forma:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \quad \text{si } 0 < |z - z_0| < R$$

con infinitas potencias negativas $(z-z_0)^{-n}$ presentes.

Teorema de Picard: Si f(z) tiene una singularidad esencial en el punto z_0 entonces encada entorno reducido de z_0 la función toma todos los valores complejos infinitas veces con la posible excepción de un único valor.

Ejemplo 8: $f(z) = e^{1/z}$ tiene una singularidad aislada en el origen. En efecto:

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n \text{ si } |z| < \infty$$

Entonces,

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} = 1 + \underbrace{\frac{1}{z} + \frac{1}{2!} \frac{1}{z^2} + \frac{1}{3!} \frac{1}{z^3} + \cdots}_{(I)} \quad \text{si } 0 < |z| < \infty$$

Este es el DSL de la función en un entorno reducido del origen y contiene infinitas potencias negativas de z. Luego, $z_0 = 0$ es singularidad esencial de f(z).

Notar: $f(z) = e^{1/z}$ no toma el valor $w^* = 0$ pues la exponencial compleja nunca se anula. Pero si $w \neq 0$, $f(z) = w \Leftrightarrow e^{1/z} = w \Leftrightarrow \frac{1}{z} \in \ln(w) \Leftrightarrow z \in \frac{1}{\ln(w)}$

$$f(z) = w \Leftrightarrow e^{1/z} = w \Leftrightarrow \frac{1}{z} \in \ln(w) \Leftrightarrow z \in \frac{1}{\ln(w)}$$

Es decir que para todo $w \neq 0$ hay infinitos valores $z \neq 0$ tales que $e^{1/z} = w$.

Ejemplo 9: $z_0 = 0$ es singularidad aislada de $f(z) = z \cos\left(\frac{1}{z}\right)$ En efecto,

$$f(z) = z \cos\left(\frac{1}{z}\right) = z \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{1}{z}\right)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \frac{1}{z^{2n-1}} =$$

$$= z - \underbrace{\frac{1}{2!} \frac{1}{z} + \frac{1}{4!} \frac{1}{z^3} - \frac{1}{6!} \frac{1}{z^5} + \dots}_{(I)} \text{ si } 0 < |z| < \infty$$

La parte principal (I) contiene infinitos términos no nulos. Entonces $z_0 = 0$ es singularidad esencial de f(z).

<u>Atención</u>: $\cos\left(\frac{1}{z}\right)$ no está acotada! Así que no podemos argumentar que f(z) tiende a cero cuando z tiende a cero aplicando "cero por acotada", porque ese no es el caso.

Ejercicio: En base a un desarrollo adecuado en serie de potencias, clasificar las singularidades aisladas de f(z)

$$a) f(z) = \frac{2 \operatorname{sen}^2 z}{z}$$

b)
$$f(z) = \frac{\text{Ln}(z)}{(z-1)^3}$$

a)
$$f(z) = \frac{2 \text{sen}^2 z}{z}$$

b) $f(z) = \frac{\text{Ln}(z)}{(z-1)^3}$
c) $f(z) = \frac{(z-1)e^{2/z}}{z}$

Rta

a) $D_A(f) = \mathbb{C} - \{0\}$. La única singularidad es $z_0 = 0$. Luego, es aislada.

Sabemos que:

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \text{ si } |z| < \infty$$

Luego,

$$\frac{2\operatorname{sen}^{2} z}{z} = \frac{2}{z} \left(\frac{1 - \cos(2z)}{2} \right) = \frac{1}{z} \left(1 - \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} (2z)^{2n} \right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2n-1}}{(2n)!} z^{2n-1}$$

$$= z - \frac{1}{3} z^{3} + \frac{2}{45} z^{5} + \dots \text{ si } 0 < |z| < \infty$$

Como la parte principal de este DSL es nula, $z_0 = 0$ es una **singularidad evitable** de f(z).

Observemos que

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{2\operatorname{sen}^2 z}{z} \stackrel{\text{L'Hôpital}}{=} \lim_{z \to 0} \frac{4\operatorname{sen}(z)\cos(z)}{1} = 0$$

Como este límite existe, esto confirma que la singularidad $z_0=0$ es evitable.

b)
$$f(z) = \frac{\text{Ln}(z)}{(z-1)^3}$$

 $D_A(f) = \mathbb{C} - (\{1\} \cup \{x + iy : y = 0, x \le 0\})$. Las singularidades son z = 1 y z = x + i0 con $x \le 0$. La primera z = 1 es aislada. Las demás no lo son.

Anteriormente hemos visto que:

$$\operatorname{Ln}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (z-1)^{n+1} \text{ si } |z-1| < 1$$

Luego,

$$\frac{\operatorname{Ln}(z)}{(z-1)^3} = \frac{1}{(z-1)^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} (z-1)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (z-1)^{n-2} =$$

$$= \underbrace{\frac{1}{(z-1)^2} - \frac{1}{2} \frac{1}{(z-1)}}_{(I)} + \underbrace{\frac{1}{3} - \frac{1}{4} (z-1)}_{(I)} + \underbrace{\frac{1}{5} (z-1)^2 + \dots \text{ si } 0 < |z-1| < 1}_{(I)}$$

Como la parte principal (I) de este DSL contiene finitos términos no nulos, siendo (-2) la potencia más negativa presente, entonces $z_0 = 1$ es un **polo de orden** k = 2 de f(z).

Observemos que

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \frac{\text{Ln}(z)}{(z-1)^3} = \stackrel{\text{"0/0"}}{=} \lim_{z \to 1} \frac{\frac{1}{z}}{3(z-1)^2} = \infty$$

Esto confirma que la singularidad $z_0 = 1$ es un polo.

c)
$$f(z) = \frac{(z-1)e^{2/z}}{z}$$

c) $f(z) = \frac{(z-1)e^{z/z}}{z}$ $D_A(f) = \mathbb{C} - \{0\}$. El único punto singular es z = 0. Evidentemente es aislado.

Sabemos que

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n \text{ si } |z| < \infty$$

Reemplazando:

$$e^{2/z} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} \frac{2^n}{n!} \frac{1}{z^n}$$
 si $0 < |z| < \infty$

Luego,

$$f(z) = \frac{(z-1)e^{2/z}}{z} = \left(1 - \frac{1}{z}\right)e^{2/z} = \left(1 - \frac{1}{z}\right)\sum_{n=0}^{\infty} \frac{2^n}{n!} \frac{1}{z^n} = \sum_{n=0}^{\infty} \frac{2^n}{n!} \frac{1}{z^n} - \sum_{n=0}^{\infty} \frac{2^n}{n!} \frac{1}{z^{n+1}} = \sum_{n=0}^{\infty} \frac{2^n}{n!} \frac{1}{z^n} - \sum_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} \frac{1}{z^n} = 1 - \sum_{n=1}^{\infty} \frac{(n-2)2^{n-1}}{n!} \frac{1}{z^n} = 1 + \underbrace{\frac{1}{z} - \frac{2}{3} \frac{1}{(z-1)^3} + \cdots}_{(l)} \text{ si } 0 < |z-1| < 1$$

Como la parte principal (I) de este DSL contiene infinitos términos no nulos, entonces $z_0 = 1$ es una **singularidad esencial** de f(z).

Teorema de caracterización de singularidades de cocientes de funciones analíticas

Sea $f(z) = \frac{N(z)}{D(z)} \operatorname{con} N(z)$ y D(z) funciones analíticas en el punto z_0 . Si z_0 es cero de orden $p \geq 0$ de N(z) y cero de orden $q \geq 1$ de D(z), se verifica:

(SE) si $p \ge q$ entonces z_0 es una singularidad evitable de f(z).

(PO) si p < q entonces z_0 es un polo de orden k = q - p de f(z).

Dem del teorema

Bajo las hipótesis y aplicando el teorema de caracterización de ceros de analíticas, existen funciones $N_1(z)$ y $D_1(z)$ analíticas en z_0 tales que en un entorno de z_0 se tiene:

$$N(z) = (z - z_0)^p N_1(z) \text{ con } N_1(z_0) \neq 0$$

 $D(z) = (z - z_0)^q D_1(z) \text{ con } D_1(z_0) \neq 0$

Luego, en un entorno reducido de z_0 es:

$$f(z) = \frac{N(z)}{D(z)} = \frac{(z - z_0)^p N_1(z)}{(z - z_0)^q D_1(z)} = (z - z_0)^{p - q} f_1(z)$$

$$\text{donde } f_1(z) = \frac{N_1(z)}{D_1(z)} \text{ es analítica en } z_0 \text{ y } f_1(z_0) = \frac{N_1(z_0)}{D_1(z_0)} \neq 0$$

Caso (SE): Si $p \ge q$, entonces $p-q \ge 0$ así que $(z-z_0)^{p-q}$ es analítica en z_0 . La función f(z) coincide en un entorno reducido de z_0 con la función analítica $(z-z_0)^{p-q}f_1(z)$. Por lo tanto, la serie de Taylor centrada en z_0 de esta función, representará a f(z) en un entorno reducido de ese punto. Por unicidad será la serie de Laurent de f(z) convergente en un entorno reducido de z_0 . Y dado que su parte principal es nula, se deduce que z_0 es singularidad aislada de f(z).

Caso (PO): Si
$$p < q$$
, sea $k=q-p>0$. En un entorno reducido de z_0 es
$$f(z)=\frac{N(z)}{D(z)}=(z-z_0)^{p-q}f_1(z)=(z-z_0)^{-k}f_1(z)$$

Luego, por el teorema de caracterización de polos podemos afirmar que z_0 es un polo de orden k de f(z).

Ejemplo 10: Aplicando el teorema anterior clasificar la singularidad z_0 de la función f(z).

a)
$$f(z) = \frac{z \ln(z+1)}{\sin(3z)(e^z-1)^2}$$
; $z_0 = 0$ b) $f(z) = \frac{1-e^{z-1}}{\sin(\pi z)}$; $z_0 = 1$

<u>Rta</u>

a) Las funciones $N(z) = z \operatorname{Ln}(z+1)$, $D(z) = \operatorname{sen}(3z)(e^z-1)^2$ son analíticas en $z_0 = 0$.

•
$$N(z) = z \operatorname{Ln}(z+1)$$
 $N(0) = 0$
 $N'(z) = \operatorname{Ln}(z+1) + \frac{z}{z+1}$ $N'(0) = 0$
 $N''(z) = \frac{1}{z+1} + \frac{1}{(z+1)^2}$ $N''(0) = 2 \neq 0$

Entonces $z_0 = 0$ es un cero de orden p = 2 de N(z).

- $z_0 = 0$ es cero de orden $q_1 = 1$ de $D_1(z) = \text{sen}(3z)$ pues $D_1(0) = 0$ pero $D_1'(z) = 3\cos(3z)$ así que $D_1'(0) = 3 \neq 0$.
- $z_0 = 0$ es cero de orden $q_2 = 1$ de $D_2(z) = e^z 1$ pues $D_2(0) = 0$ pero $D_2'(z) = e^z$ así que $D_2'(0) = 1 \neq 0$.
- $z_0 = 0$ es cero de orden $q_3 = 2q_2 = 2$ de $D_3(z) = (e^z 1)^2 = (D_2(z))^2$ ¿Porqué?
- $z_0 = 0$ es cero de orden $q = q_1 + q_3 = 3$ de $D(z) = \text{sen}(3z)(e^z 1)^2 = D_1(z)D_3(z)$ ¿Porqué?

Como p=2<3=q, el teorema anterior permite afirmar que $z_0=0$ es polo de orden k=q-p=3-2=1 de f(z).

b) Ejercicio! Mostrar que $z_0 = 1$ es una singularidad evitable de f(z).