

Lecture 01:

Welcome to CS 111

"Introduction to Computational Science"

$$\begin{split} \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{1}{r} (\sigma_{rr} - \sigma_{\theta\theta}) + F_r &= \rho \frac{\partial^2 u_r}{\partial t^2} \\ \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{\thetaz}}{\partial z} + \frac{2}{r} \sigma_{r\theta} + F_{\theta} &= \rho \frac{\partial^2 u_{\theta}}{\partial t^2} \\ \frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\thetaz}}{\partial \theta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r} \sigma_{rz} + F_z &= \rho \frac{\partial^2 u_z}{\partial t^2} \end{split}$$

CS 111: Intro to Computational Science
Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Your Instructor

Ziad Matni, Ph.D.

(zee-ahd mat-knee)

Assistant Teaching Professor in Computer Science

About me...

What to Call Me?? Prof. Matni!

Teaching: CS, Data Science, Computational Social Science

Research: CS Education, Information Seeking Behavior, Social Networks

Other: CS Advisor to 1st year students and TikTok Influencers (no, not really that last thing...)

The CS 111 Instructional Team

Teaching Assistants (TAs)

Undergrad Learning Assistants (ULAs)

Anjie Chen

Kirill Aristarkhov

Zichen Chen

Guang Yang

Qiming Wu

How About You?!

Who are YOU?!?!?!

Also:

- 1. Trying to add the class?
- 2. Trying to switch labs?
- 3. Taking attendance

The Trifecta of Success in this Class!

Where is Everything? What Should I Get?

- You NOW have accounts ready on the following (i.e. I have registered you):
 - Canvas
 - Gradescope
 - Piazza

PLEASE CHECK THAT YOU HAVE ACCESS!!!

- Software for this course:
 - Python 3.9+ (recommend: Jupyter Notebook)
 - LaTeX editor / PDF creator (recommend: OverLeaf.com)
 - More on these in your first lab this week!

Main Class Website...

...will be on CANVAS

On there, I will keep:

- Latest syllabus (incl. schedule)
 - Class assignments
- Important handouts and articles
 - Exam prep material
 - Etc...

Lab/Discussion Sections

- T.As will be available for questions about the lab during the lab times
 - Thursdays 4 PM, 5 PM, and 6 PM in person!!
 - Attendance is <u>taken</u> (you can skip up to 2 labs w/o penalty)

• We <u>STRONGLY</u> encourage you to ask the TAs questions to help you understand what you may have missed in lecture or readings.

Quizzes and Exams

- Instead of a midterm, I will have weekly quizzes
 - Starting NEXT week
 - All quizzes are taken in the classroom every Wednesday at the <u>start of class</u>

- Cumulative Final Exam on Wed. June 14th at 8:00 AM
 - In person, in this classroom
- NO make up for missed quizzes or exams

Format of Assignments

- Given every Monday
- Discussed in lab on Thursday
- Due by Monday

- This class will have weekly assignments
 - Posted online via Canvas
 - You will turn them into Gradescope by the due date
- Process:
 - I give you a PDF <u>and</u> a LaTeX source code for it
 - You edit the LaTeX source code and insert your answers
 - You save your work as a PDF
 - You upload the PDF onto Gradescope
- Some of the labs will be programs (in Python) to submit on Gradescope

LaTeX

- A markup language used a lot in Engineering & Math
- Makes elegant formats for equations, matrices, code, etc...
- Many free apps out there for this.
 - We recommend overleaf.com
- The 1st Lab will go over LaTeX syntax/use

```
30 {\bf 1.}
31 A variation of the {\em Kermack-McKendrick model}

32 for the course of an epidemic in a population is given by the system of area

33 \begin{align}

34 \dot y_0 &= -cy_0y_1, \\
35 \dot y_1 &= cy_0y_1 - ry_1 - dy_1, \\
36 \dot y_2 &= ry_1, \\
37 \dot y_3 &= dy_1,

38 \end{align}
```

1. A variation of the *Kermack-McKendrick model* for the course of an epidemic in a population is given by the system of ODEs

$$\dot{y}_0 = -cy_0 y_1,\tag{1}$$

$$\dot{y}_1 = cy_0 y_1 - ry_1 - dy_1, \tag{2}$$

$$\dot{y}_2 = ry_1,\tag{3}$$

$$\dot{y}_3 = dy_1, \tag{4}$$

where y_0 represents susceptibles, y_1 represents infectives in circulation, y_2 represents infectives removed by recovery and immunity, and y_3 represents infectives removed by death. The parameters c, r, and d represent the infection rate, recovery rate, and death rate, respectively.

Use integrate.solve_ivp() to solve this system numerically, with the parameter values c = 1, r = 5, and d = 1, and initial values $u_0(0) = 95$, $u_1(0) = 5$, and $u_2(0) = u_2(0) = 0$. Solve for times t = 0 to t = 1.

Do I HAVE to use LaTeX????

Can I use Something Else???

Google Docs is just as good!

- Not for this class... (for consistency and learning outcomes)
 - You ARE expected to graduate knowing LaTeX and will use it in other courses in CS
- LaTeX is a very useful tool for Engineers in both academia AND industry. This is a good skill for you to acquire and put on your resumes!

Getting Help from Us

Office Hours!

- Are listed in syllabus and on Canvas
- There's the instructor (me!), the TAs (3 of them!) and the ULAs (2 of them!) to help you out!

• Piazza!

- We will check-in daily to help there
- Students should help each other out too!!

• Email!

- But only if you have to, e.g. if it's personal.
- If you are emailing us, **PLEASE** say it's CS111-related in the subject field

About This Course

This is an introductory course in Computational Science

 Methods/algorithms to solve various scientific and data problems via cool computations!

Very useful for future classes in Advanced Data Science and Machine Learning

Not a theory course per se, but we'll bring it up once in a while

About This Course: What We'll Cover

• Optimizing complex calculations and scientific sims of models that require MATH!

Linear Algebra, Ordinary and Partial Differential Equations (ODEs + PDEs)

 Methods to make "heavy" computations more efficient through certain techniques, like:

Fast matrix factorizations (Cholesky, Jacobi, Conjugate Gradient, Q-R)

Singular Value Decomposition (SVD)

Principal Component Analysis (PCA)

PageRank and Graphs

About This Course

- This course can sometimes be "heavy" on new concepts and on stuff from older
 Math classes you've taken
 - Be SURE you keep up with the LECTURES, READINGS, LABS, and OFFICE HOURS!
- I do expect you to be very comfortable with Linear Algebra (and math, in general)
- I do expect you to get comfortable with the Python language rather quickly
 - Luckily it's not hard... AND I will give you TONS of examples/demos
 - You SHOULD "play around" with the code at home
 - Experimentation is GOOD for learning!!! Making mistakes is GOOD for learning!!!

Applications Of Computational Science

- Data Science
- Applied Math and Statistics
- Modeling Physical Phenomena in Engineering
- Machine Learning Algorithms
- Computational finance
- Computational biology

Just in Case...

This message brought to you by every instructor that ever lived.

WWW.PHDCOMICS.COM

My Policies (Details in Syllabus)

Grading

• Assignments: 35% Quizzes: 30% Final: 35%

Late Policy

Assignments turned in after due, within 24 hrs:

No late assignments accepted after 24 hrs: zero grade

Make-up Policy

No make-ups given on any quizzes or final exam

What Happens in a Typical Week in CS 111?

MONDAY Come to lecture 1

We release the week's assignment

WEDNESDAY Come to lecture 2

Take the weekly quiz at the start of class (10-15 mins)

(again, note: there is NO quiz <u>THIS</u> 1st week...)

• THURSDAY Go to lab/section – discussions are often about assignments!

WEEKEND Finish your assignment (start early, though!!)

Assignments are typically due every Monday by 11:59 PM

(on Gradescope)

Textbook?

- This course does not have a textbook
- BUT, I will give you PDF readings that I EXPECT you to do!
- Mostly from
 - Numerical Computing with Matlab by Cleve Moler
 - Other sources

Need a Refresher on Linear Algebra Concepts?

- We'll cover some things this week...
- You can also check out Prof. Gilbert Strang's videos from MIT Coursera
 - Link is on Canvas and also in Syllabus
- Review your MATH 4A and MATH 4B class notes, especially for:
 - Matrix multiplication
 - Matrix factorization
 - Eigenvalues and Eigenvectors
 - Solving Ax = b via Gaussian Elimination

Python Crash Course

get to know how to do these basic things...

Comments (typically use #)

import statements

Basic variable types: int, str, float, bool (True/False)

• Other variable types: list, tuples

Converting from one data type to another int("360") string(360.77)

Standard output/input: print() input() # prints string; gets input as str

Importance of tabbed spaces (to define a block – instead of { ... } like in C++)

Conditionals: if a > 5:

• For-loops for k in range(10): for k in ("cs111"):

While loops while a > 5:

• Defining Functions def funcX(m, n): # you don't need to say if it's a void/int/etc... type of function

File I/O

Useful Python Modules

We usually **import** these at the start of the program (similar to **#include** in C++)

•	math	# common mat	n & trig functions
---	------	--------------	--------------------

- numpy # fundamental package for scientific computing We will be using this A LOT!
- Matplotlib # plotting package for 2D + 3D plots
- scipy # contains the above + other important algos/stats mods

What the !@#* is a LaTeX???

- A very popular markup language/system with high-quality typesetting
- Used to produce technical and scientific documentation.
- Allows you to consistently produce this sort of output:

$$E_{i}[\eta_{n}^{k} - \eta]^{2} \leqslant K_{i} \frac{1}{\left|T_{k}\left(-\frac{M+m}{M-m}\right)\right|^{2n}} \|f_{0} - f\|^{2}, \tag{1}$$

$$K_{i} = E_{i}\left(\int_{a}^{b} x^{2}(t)dt\right); \frac{1}{\left|T_{k}\left(-\frac{M+m}{M-m}\right)\right|} = \max_{m \leqslant \lambda \leqslant M} |R_{k}(\lambda)|.$$

Using LaTeX in this Course...

... will be straight-forward because I will give you templates to work with

BUT you still need to become familiar with its use by the time you turn in your 1st homework assignment!

I will now answer your questions!

Review of Some Linear Algebra

It's a good idea to re-acquaint yourselves with:

- Solving N equations, N unknowns (Ax = b setup)
- Matrix view vs. Column view
- The different ways to multiply matrices
- How to find inverse, transpose matrices
- Special matrices: identity (I), upper-triangle (U), lower-triange (L)
- The determinant of a matrix
- The eigenvalues and eigenvectors of a matrix

Matrix Multiplication

BTW, is this a **Matrix**?

Or a **Vector**?

• Recall:

 You can only multiply 2 matrices if the no. of columns of the multiplier = the no. of rows of the multiplicand

- That is, if the dimensions are axm and mxb
 - Which results in a matrix of dimensions **a**x**b**

N Linear Equations in N Unknowns

Example: How can we solve:

$$\begin{cases} 2x - y = 0 \\ -x + 2y = 3 \end{cases}$$

Using classical algebra?

Using matrix algebra?

Using Column view (vector analysis)

Regular Algebra

$$\begin{cases} 2x - y = 0 & (1) \\ -x + 2y = 3 & (2) \end{cases}$$

From (2):
$$x = 2y - 3$$
 (3)

Use (3) in (1):
$$2(2y-3)-y=0 \Rightarrow 3y-6=0 \Rightarrow y=2$$

Substitute result in either (1) or (2) and get: x = 1

Is this a unique solution to this system?

Using Matrix Algebra

• In the form of
$$Ax = b$$

orm of
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
equivalent to $-\mathbf{x} + 2\mathbf{y} = 3$

$$2x - y = 0$$
$$-x+2y = 3$$

Multiplying an equation in a system with a scalar gives you a new equation that is also "true" about the system.

Adding 2 equations together in a system does the same also!

Using Gaussian Elimination, we take advantage of certain Algebra rules:

• So, this means that our system can be re-written as: $\begin{vmatrix} 1 & 0 & | & x & | & 1 & | & x & | & 1 & | & x & | &$

Your TO DOs!

- Make sure you are on Gradescope and Piazza <u>TODAY!!</u>
- Do the readings
 - Read the syllabus
 - See Canvas under "Modules" → "Week 1" for what to go over...
- Come to class on Wednesday!
- Go to lab/section on Thursday!
- Start on your 1st assignment that's due by SUNDAY

