

Institut Mines-Télécom

RoCaWeb : Choix algorithmiques et Questions d'implémentation

Djibrilla Amadou Kountché

Agenda

- Introduction
- La version 3 de RoCaWeb
- Nouveaux algorithmes
- Les algorithmes
- Améliorations du Reverse Proxy
- Conclusions
- Bibliographie

Introduction

Version courante de RoCaWeb

- Alignement de séquences;
- Génération d'expressions régulières, Typage;
- Choix de l'algorithme par validation croisée;
- IHM, Reverse Proxy.

Vers la V3

- Sources de données : Outils Big Data ;
- Nouveaux algorithmes;
- Adaptation du Reverse Proxy (ModSecurity);
- Mise en place d'un environnement de test et autres améliorations.

Gestion des données

Sources

- Logs du serveur web (CLF);
- Logs du reverse proxy;
- D'autres entrées à prendre en compte?

Formats et Plate-formes

- Formats: XML, JSON, CSV, Tableurs, etc.
- Plate-formes: Apache Hadoop, Apache Sparks, SpringXD, etc. (technos en rapide évolution);
- Apache Mahout pour l'apprentissage.

Bases de données

- NoSQL : MongoDB, CouchDB?
- Choix de ELK.

Choix de ModSecurity

- Reverse proxy mature;
- Extension Lua;
- Livraison d'une distribution avec les librairies Lua.
 - librairies de calcul scientifique. Ex : Torch, SciLua

Environnement de test

- Mise en production de RoCaWeb;
- Récolter des données sur les performances des algorithmes et du reverse proxy;
 - Sur chaque méthode;
 - Sur la combinaison (série ou parallèle) des méthodes.
- Valider les hypothèses;
- Retenir les méthodes les plus efficaces ou émettre des recommandations.

Caractérisation de l'apprentissage

Définir et prendre en compte les caractéristiques d'un comportement sain (site et utilisateur);

- Application;
- Utilisateur:
- Requête ;
- Réponse ;
- Paramètre ;
- Réapprentissage.

Application

- Sous-applications;
- Architecture;
 - Cas de Siebel
 - Site d'une seule page
 - Traitement des cas particuliers
- Requêtes et Réponses;
- Utilisateurs:

FIGURE - Source msdn.microsoft.com

Requête/Réponse

- En-tête et corps;
- Nombre de paramètres (intervalle min/max);
- Noms des paramètres;
- Longueurs des paramètres (intervalle min/max);
- Types des paramètres;
- Pair requête/réponse;
- Payload?

Traitement des réponses

Prévu dans la version 4

Utilisateur

- Requête;
- Session;
- Adresse IP:
- etc.

FIGURE - Exemple de modélisation de comportements d'utilisateurs. Source[?]

Paramètre [?]

- Longueur;
- Type :
 - Drapeau
 - Digits
 - Alphabétique
 - Alphanumérique
 - Émail
 - Chemin
 - URL
 - SafeText
 - Énűmération

Sommaire

- 1 Introduction
- 2 La version 3 de RoCaWeh
- 3 Nouveaux algorithmes
- 4 Les algorithmes
- 5 Améliorations du Reverse Proxi
- 6 Conclusions
- 7 Bibliographi

Les algorithmes

FIGURE - Mindmap des algorithmes.

Les méthodes statistiques

Hypothèse

- Données ont été générées par un modèle stochastique;
- Données normales : zones de plus forte probabilité du modèle ;
- Données anormales : zones de faible probabilité.

Essaient d'estimer les paramètres du modèle.

Paramétriques

■ Font une hypothèse sur le modèle et estiment ses paramètres à partir des données ;

Non-paramétriques

Pas d'hypothèse sur les paramètres.

Méthode de Chebychev appliquée à la longueur

Hypothèses[?]

- Les longueurs des valeurs du paramètre n'évoluent pas énormément entre les requêtes.
- Exemple : certains champs d'un formulaire ou token à taille fixe (identifiant de session)

Théorème

Soit une variable aléatoire X avec $Var[X]<+\infty$. Alors, pour tout t>0, l'inégalité suivante tiens [?] :

$$p(|X - E[X]| \ge t \times \sigma_X) \le \frac{1}{t^2} \tag{1}$$

L'inégalité de Chebychev ne requiert que la connaissance de la moyenne et la variance.

Méthode de Chebychev appliquée à la longueur

Phase d'apprentissage

Soient .

- A un attribut d'une requête;
- $A = \{a_i, i = 1...n\}$ valeurs collectées

Déterminer :

- μ : la moyenne des longueurs des a_i ;
- σ : la variance;

Méthode de Chebychev appliquée à la longueur

Phase de détection

Soient .

a_k une valeur à évaluer;

 μ, σ : les valeurs déterminées précédemment.

Variante :

$$p(|X - \mu| > |l - \mu|) < p(l) = \begin{cases} \frac{\sigma^2}{(l - \mu)^2} & \text{Si } l \ge \mu\\ 1 & \text{Sinon} \end{cases}$$
 (2)

l est la longueur courante. Retourne p(l)

Exemples

- Données pour le paramètre action : {login, edit_event, delete_event, add_event, users, logs, logout };
- longueurs : $\{5, 10, 12, 9, 5, 4, 6\}$;
- $\mu = 7.28$
- $\sigma = 2.81$

Méthode de Chebychev : Avantages et Inconvénients

Avantages

- Efficace dans la détection des valeurs abbérantes;
- Simplicité d'implémentation;
- Complexité linéaire.

Inconvénients

Ne rend pas compte la structure;

D'autres méthodes liées à la longueur

Détection de valeurs abbérantes

Contrôle de qualité : $|length - mean| \le 3 \times std$;

Blox Plot

Hypothèses

- Les attributs ont une structure régulière;
- Les attributs peuvent être lues par des humains;
- Contiennent presque toujours des caractères imprimables;

Phase d'apprentissage

Déterminer la distribution de référence ou ICD;

Soient:

$$A = \{a_1, a_2, ..., a_n\};$$

$$\Sigma$$
 un alphabet;

$$a_i$$
 sont définis sur Σ^* .

Une distribution de caractères est définie par :

$$CD = \{n_i, i = 1..k\}$$
 (3)

Distribution de référence

- Pour chaque paramètre déterminer le CD
- Trier décroissant CD
- $ICD = \{ f_i = n_i/k, i = 1...k \}$
- Pour k = 256, tous les caractères possibles [?].

Phase de détection

Soient:

- le CD d'une valeur d'un paramètre
- et l'ICD de toutes les valeurs observées

Déterminer la probabilité en utilisant un test de χ^2

Test de χ^2

: La distribution de caractères provient de l'ICD

: La distribution ne provient pas de l'ICD.

- 1. Fixer le nombre de "bins". Six "bins": 0, 1-3, 4-6, 7-11, 12-15, 16-255
- 2 Calculer :

$$\chi^2 = \sum_{i=1} \frac{(O_i - E_i)^2}{E_i} \tag{4}$$

Où ·

- O_i les valeurs observés :
- $E_i = f_i \times length(a_k)$.
- 3. Retourner la p-value, en fonction du nombre de degrés de liberté.

Distribution des caractères de l'attribut : Exemple

Données

 $\{login, edit_event, delete_event, add_event, users, logs, logout\}$

$$login = \{1, 1, 1, 1, 1\} \rightarrow \{0.2, 0.2, 0.2, 0.2, 0.2\}$$

$$\blacksquare$$
 edit_event = $\{3, 1, 1, 2, 1, 1, 1\} \rightarrow \{0.3, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1\}$

etc.

Modèle apprise

Démonstration.

Avantages

détection des très longues valeurs ;

Inconvénients

- lacksquare Choix du nombre de bins influence la p-value
- lacksquare D'autres problèmes liés à la pertinence du test de χ^2

Inférence de la structure

Hypothèses

- Grammaire régulière (inconnue) utilisée pour générer les valeurs ;
- Grammaire probabiliste : assigne une probabilité à chaque production.

FIGURE - Exemple de grammaire probabiliste

Inférence de la structure : Modèle de Markov

Hypothèses de Markov

Soient:

- $Y_i, i = 1, \cdots, T$ les observations séquentielles
- $S_i, i = 1, \cdots, T$ les états cachés

Hypothèses:

- 1. Observations Y_i générées à l'instant t par un processus aux états cachés à l'observateur
- États cachés satisfont à la propriété de Markov : à l'instant t, il suffit de connaître l'état à t - 1*.

FIGURE - HMM du prisonnier en confinement

Inférence de la structure

Phase d'apprentissage

Utilisant un réseau bayésien :

$$p(Modele|Donnees) = \frac{p(Donnees|Modele) \times p(Modele)}{p(Donnees)} \tag{5}$$

Où:

- ullet p(Donnees|Modele) est calculée suivant l'équation 6;
- L'apprentissage des probabilités est faite par la méthode de Stolcke et Omohundro[?, ?].
- Illustrations

Inférence de la structure

Phase de détection

Soient .

- M : le modèle de Markov appris précédemment ;
- $w = \{w_1, w_2, \cdots, w_n\}$: une valeur du paramètres.

Déterminer la probabilité p(w) selon :

$$p(w) = p(w_1, w_2, \cdots, w_n) = \sum_{\substack{(chemin) \ (etats)}} p_{q_i}(w_i) \times p(t_i)$$
 (6)

Retourne:

$$p(w) = \begin{cases} 1 & \text{Si le mot est une sortie valide de modèle} \\ 0 & \text{Sinon} \end{cases}$$
 (7)

Construction d'énumération

Hypothèses

- Les données proviennent d'un ensemble discret et fini (dictionnaire ou énumération);
- Il est possible d'apprendre l'ensemble à partir des valeurs observées.

Phase d'apprentissage

Consiste à déterminer si les valeurs sont liées par un seuil t. Si c'est le cas, on admet qu'elles sont une énumération.

Soient deux fonctions :

■
$$f(x) = x$$

■ $g(x) = \begin{cases} g(x-1) + 1 & \text{Si la valeur est nouvelle} \\ g(x-1) - 1 & \text{Si la valeur a déjà été observée} \\ 0 & \text{Si } x = 0 \end{cases}$

 \mathbf{x} défini sur N_0

Construction d'énumération

Phase d'apprentissage

Déterminer le coefficient de corrélation :

$$\rho = \frac{covar(f,g)}{\sqrt{var(f) \times var(g)}} \tag{8}$$

 $\mathsf{Si}: \left\{ \begin{array}{ll} \rho < 0 & \mathsf{Consid\acute{e}rer} \ \mathsf{une} \ \mathsf{\acute{e}num\acute{e}ration} \\ \rho \geq 0 & \mathsf{Al\acute{e}atoire} \end{array} \right.$ Construire l'énumération E

Phase de détection

Soient .

- l'énumération et une valeur w

Construction d'énumération : Exemple

- Pays = {France, Allemagne, Autriche, Allemagne, Niger, France, France, Chili, Allemagne, Niger, France}
- Dérouler.

Construction d'énumération

- Avantages : facilité d'implémentation et automatisation de la définition de dictionnaire.
- Inconvénients : nécessite un grand nombre de données
- Effectuer un test statistiques (souvent biais d'échantillonnage);

Présence ou Absence d'un attribut

Hypothèse

- Absence ou la présence d'un ou de plusieurs paramètres (mutuellement exclusifs) dans une requêtes indiquerait une anomalie
- Détection des comportement anormaux consistant à envoyer des requêtes au hasard

Phase d'apprentissage

Pour chaque requête enregistrer toutes les attributs. $A = \{a_1, a_2, \cdots, a_n\}$ $S = \{A_{q_1}, A_{q_n}, \cdots, A_{q_n}\}$

Phase de détection

Soient .

- \blacksquare l'ensemble S
- lacksquare une requête q.
- Retourner : $p(q) = \begin{cases} 1 & \text{Si tous les attributs sont présents} \\ 0 & \text{Sinon} \end{cases}$

Ordre des attributs

Hypothèses

- Les requêtes légitimes contiennent souvent les mêmes attributs dans le même ordre:
- L'ordre relatif des attributs est préservé même si certains sont omis dans la reauête.

Phase d'apprentissage

- Déterminer les contraintes d'ordre entre tous les k attributs
- Un attribut a_i précède un autre a_i si :
 - a_i et a_i apparaissent dans la même requête;
 - et a_i vient avant a_i dans la liste ordonnées des attributs de toutes les requêtes où ils apparaissent ensemble.
- L'ensemble O des contraintes est défini par :

$$O = \{(a_i, a_j) : a_i \text{ précède } a_j \text{ et } a_i, a_j \in (S_{q_j} : j = 1, \dots, n)\}$$

Ordre des attributs

Phase d'apprentissage

- lacksquare O_i est défini comme un graphe G(V,E)
- $V = \{a_i, i = 1, \dots, n\}$
- lacksquare E pour chaque requête q_j avec un ensemble ordonnée de requêtes, pour chaque pair (a_i,a_j) un chemin orienté est introduit du nœud n_i vers n_j .
- Le graphe contient, à la fin, toutes les contraintes d'ordre imposées par les données.
- Utiliser l'algorithme de Tarjan [?] pour supprimer les cycles.

Ordre des attributs

Phase de détection

Soient:

- \blacksquare Le graphe G
- une requêtes q

Analyser toutes les paires (a_i,a_j) avec $i\neq j, 1\leq j\leq i$ pour détecter de potentielles violations survenues.

Une violation correspond à une paire (a_i, a_i) avec $(a_i, a_i) \in O$

 $\text{Retourner}: p(q) = \left\{ \begin{array}{ll} 1 & \text{Si les contraintes sont respectées} \\ 0 & \text{Si les attributs ont été alterné} \end{array} \right.$

Illustrations:

- p,q,r,s
- p,q,s,t

Fréquence d'accès

Hypothèse

Les patterns de fréquence d'accès à un site sont relativement constant.

Phase d'apprentissage

- Deux types de fréquences :
 - La fréquence d'accès à partir d'une adresse IP;
 - La fréquence totale pour toutes les adresses IP.
- Enregistrer:
 - Les temps de la première et de la dernière requête;
 - Diviser ce temps en intervalle de 10s;
 - Déterminer les deux types de fréquences;
 - Les deux fréquences sont modélisés comme variable aléatoire ;
 - Déterminer (μ, σ) pour X et Y .

Fréquence d'accès

Phase de détection

Soient:

- Les variables aléatoires X, Y;
- \blacksquare Et les deux types de fréquences (x, y) pour une requête.

Déterminer la probabilité de Chebychev pour chacune.

Retoruner
$$p = \frac{p_x + p_y}{2}$$

Délais entre requête

Hypothèse

Les délais entre requêtes d'un utilisateur normal ont une grande variance.

Phase d'apprentissage

- Déterminer la distribution des temps entre les requêtes au niveau de l'application;
- Pour chaque client, sauvegarder ce temps;
- Regrouper ces temps en bins.

Phase de détection

Appliquer un test de χ^2

Ordre d'invocation

Hypothèse

L'ordre d'accès aux sous-application d'un site peut être modélisé par un modèle de Markov.

Phase de détection

Voir Inference de la structure.

Ordre d'invocation

Phase d'apprentissage

- Regrouper toutes les invocations des programmes selon l'adresse IP source de la requête:
- Identifier les sessions (s) (liste d'invocation de programmes) : $s = \langle chemin_1, \cdots, chemin_n \rangle$
- Les invocations d'une même session sont déterminées par une contrainte (inter-arrival time) (les invocation proches dans le temps sont considérés comme de la même session)
- La session est ensuite traduite en chaîne de caractères :
- Apprendre le modèle de Markov comme pour l'inférence.

Méthodes de classification

Hypothèse

 Un classifieur pouvant distinguer entre comportement normal et anormal peut être apprise à partir des données.

Туре

- 1. Une classe;
- 2. Plusieurs classes.

Mise en œuvre prévue des algorithmes :

- Réseau de neurones :
- SVM:

Méthode de voisinage

Hypothèse

Les données normales sont dans des zones de fortes densités;

- $\blacksquare KNN$:
- Local outlier Factor : ratio de la densité de kpv et de la densité autour de la données.
- Connexity-based Local Factor;

Clustering

Hypothèse

Les données normales peuvent être regroupé en cluster.

- DBSCAN;
- K-means;
- etc.

Théorie de l'information

Hypothèse

L'anomalie induit des irrégularités dans la quantité d'information dans les données.

Apprentissage

Soient:

- D une base de données;
- $lue{}$ C(D) la complexité de D.

Consiste à déterminer le sous-ensemble, I, de D tel que :

$$\max(C(D) - C(D - I)) \tag{9}$$

Mesure de la complexité :

- Complexité de Kolmogorov (ex. taille de la base compressé);
- Entropie, incertitude relative;

Récapitulatif

Algorithmes	Implémentation	Règle MS
Chebychev		
χ^2		
Inférence Gram.	En cours	×
Construction enum.	\checkmark	X
Présence Absence	X	X
Fréquence d'accès	\checkmark	X
Ordre Invocation	En cours	X
Méthode de Classification	X	×
Autres	X	×

Sommaire

- 1 Introduction
- 2 La version 3 de RoCaWeb
- 3 Nouveaux algorithmes
- 4 Les algorithmes
- 5 Améliorations du Reverse Proxy
- 6 Conclusions
- 7 Bibliographic

Implémentation de la validation en Lua

- Phase 1 : Implémentation des algorithmes d'apprentissage en Java
- Phase 2 : Formatage des règles au format ModSecurity ;
- Phase 3 : Implémentation de validateur en Lua.

Cas de figures pour les modèles :

- Exporter directement les paramètres du modèle dans la règle;
- Sérialiser le modèle en XML, JSON, etc. Puis reconstruire le modèle en Lua.

Les modes de validation

Constat

- Pas de classifieurs universelles:
- Classifieur peut ne pas discriminer des classes;
- Réglage est difficile;
- Importance des choix initiaux:

Pourquoi combiner?

- **Efficacité**
- Précision
- Architecture :
 - Série ;
 - Parallèle (Score);
 - Hybride;
- Implémentation.

- Distribuer les caractéristiques ;
- Exploiter la complémentarité;
- Prendre en compte les performances divers ;

Validation en parallèle

Description

- Classifieurs opèrent indépendamment;
- Recherche de consensus;
- Facile à mettre en œuvre;
- Activation de tous les classifieurs

Validation en parallèle : Score

Définition

Utilisée par Kruegel et al [?]. Soient :

- lacksquare w_m le poids du modèle ou algorithme m;
- p_m : la probabilité retournée par le modèle.

Le score d'anomalie est calculé par :

$$score = \sum_{m \in Models} w_m * (1 - p_m) \tag{10}$$

Disponible dans ModSecurity avec la variable TX_ANOMALY_SCORE

Validation en série

Description

- Niveaux successif de décision réduisant progressivement le nombre de classes;
- Un classifieur par niveau prenant en compte (rejets et décision précédents);
- Filtrage progressif des décisions (réduction de l'ambiguïté)
- Sensible à l'ordre;
- Connaissance a priori;
- Dépend de l'application.

Sommaire

- 6 Conclusions

Conclusions

- Dans la V3, un algorithme ou plusieurs de chaque catégorie;
- Implémenter des critères d'évaluer des méthodes et lien avec la détection ;
- Intégrer plusieurs technos (ModSecurity, ELK, apprentissage);
- Travaux vers la V4.

Questions

Vos questions???

Sommaire

- 1 Introduction
- 2 La version 3 de RoCaWel
- 3 Nouveaux algorithmes
- 4 Les algorithmes
- 5 Améliorations du Reverse Proxy
- 6 Conclusions
- 7 Bibliographie

Bibliographie I

