This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(B) (11) KUULUTUSJULKAISU UTLAGGNINGSSKRIFT....

92837

C (45) Patentti myönnetty Patent meddelat 10 01 100 5

(51) Kv.1k.5 - Int.cl.5

C 08F 10/04, 2/34, 4/658

SUOMI-FINLAND

(FI)

(21) Patenttihakemus - Patentansökning

882323

(22) Hakemispäivä – Ansökningsdag

18.05.88

(24) Alkupäivä – Löpdag

18.05.88

(41) Tullut julkiseksi - Blivit offentlig

20.11.88

Patentti- ja rekisterihallitus Patent- och registerstyrelsen (44) Nähtäväksipanon ja kuul.julkaisun pvm. Ansökan utlagd och utl.skriften publicerad

30.09.94

(32) (33) (31) Etuoikeus - Prioritet

19.05.87 US 051853 P

(71) Hakija - Sökande

1. Union Carbide Corporation, New York, Old Ridgebury Road, Danbury, Conn. 06817, USA, (US)

(72) Keksijä – Uppfinnare

- Brady, III, Robert Converse, 8 Sunset Place, Morristown, N.J. 07960, USA, (US)
 Stakem, Francis Gregory, 804 Lynwood Street, Raritan, N.J. 08869, USA, (US)
 Liu, Han Tai, 5403 Bennett Drive, Cross Lanes, W.Va. 25313, USA, (US)
 Noshay, Allen, 66 Wellington Road, East Brunswick, N.J. 08816, USA, (US)

- (74) Asiamies Ombud: Oy Borenius & Co Ab
- (54) Keksinnön nimitys Uppfinningens benämning

Menetelmä stereosäännöllisten polymeerien valmistamiseksi, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma Förfarande för framställning av-stereoreguljära-polymerer med snäv molekylviktsfördelning

(56) Viitejulkaisut — Anförda publikationer

FI B 71325 (C 08F 4/64), FI B 85868 (C 08F 4/649), FI B 70028 (C 08F 4/64), GB A 2143834 (C 08F 4/64)

(57) Tiivistelmä – Sammandrag

meerien, joiden molekyylipainojakautuma on reguljära polymerer med en molekylviktsdispienempi kuin 5,0 ja isotaktisuusindeksi yli tribution under 5,0 och ett isotaktiskt index matalapainekaasufaasileijupetimenetelmässä lämpötilassa yli 80 °C käyttäen lämpöstabiikatalyyttisysteemiä, käsittää joka (a) . sisäisenä elektronidonorina katalyyttikomponentin, joka sisältää magnesipii-happi-hiili -sidoksen sisältävän pii- kol-bindning, som yttre elektrondonor. yhdisteen.

Keksintö kohdistuu stereosäännöllisten poly- Uppfinningen avser framställning av stereo-96 prosenttia, valmistukseen polymeroimalla över 96% genom polymerisation av en alfaolealfa-olefiini, jossa on 3...8 hiiliatomia, fin med 3...8 kolatomer i en fluidiserad bädd i gasfas vid lågt tryck vid en temperatur över 80°C under användande av ett värmestabilt katalysatorsystem som omfattar (a) en kiinteän fast katalysatorkomponent, som innehåller magnesium, titan, halogenid och en polykarumia, titaania, halogenidia ja polykarbok- boxylsyraester med två estergrupper i samma syylihappoesteriä, joka sisältää kaksi saman- plan bundna vid bredvid varandra liggande tasoista esteriryhmää liittyneenä viereisiin kolatomer, som inre elektrondonor, (b) en hiiliatomeihin, (b) orgaanisen alumiinikoka- organisk aluminiumkokatalysator, och (c) en talyytin, ja (c) ulkoisena elektronidonorina kiselförening, som innehåller en kisel-syre-

THIS PAGE BLANK (USPTO)

Menetelmä stereosäännöllisten polymeerien valmistamiseksi, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma. Förfarande för framställning av stereoreguljära polymerer med snäv molekylviktsfördelning.

Keksintö kohdistuu menetelmään ahtaissa rajoissa olevan molekyylipainojakautuman stereosäännöllisten polymeerien valmistamiseksi suurilla saannoilla ja suurilla tuotantonopeuksilla.

Olefiinipolymerointikatalyytit, jotka on valmistettu yhdistämällä orgaaninen alumiinikomponentti kiinteän toisen magnesiumia, titaania ja halogeenia sisältävän komponentin kanssa, ovat tekniikassa hyvin tunnettuja. Tiedetään myös hyvin, että tällaisten katalyyttien aktiivisuutta sekä niiden kykyä tuottaa stereosäännöllisiä polymeerejä, voidaan lisätä sisällyttämällä elektronidonori (Lewis-emäs) kiinteään toiseen kompokatalyyttisysteemiin lisäyksen Elektronidonorin riippumattomasti kiinteästä toisesta komponentista tiedetään myös lisäävän näiden katalyyttien stereospesifistä luonnetta. Kun elektronidonori lisätään erikseen kiinteästä toisesta komponentista, se saattaa kompleksoitua kokonaan tai osaksi Kun elektronidonori orgaanisen alumiinikomponentin kanssa. lisätään erikseen toisesta katalyyttikomponentista, siihen viitataan joskus selektiivisyydensäätöaineena tai ulkoisena elektronidonorina (engl. an outside electron donor). Toiseen katalyyttikomponenttiin sisällytettyyn elektronidonoriin viitataan sisäisenä elektronidonorina (engl. an inside electron donor).

:::

:

Erityisemmin US-patenttijulkaisussa 4 414 132 selitetään olefiinipolymerointikatalyytti suuren isotaktisuuden polymeerien valmistukseen, joka käsittää (1) orgaanisen alumiiniyhdisteen, (2) selektiivisyydensäätöaineen ja (3) kiinteän koostumuksen, joka on saatu halogenoimalla kaavan MgR R mukainen magnesiumyhdiste, jossa R on alkoksidi- tai aryylioksidiryhmä ja

R´ on alkoksidi- tai aryylioksidiryhmä tai halogeeni, halogekanssa noidun neliarvoisen titaaniyhdisteen halogenoidun hiilivedyn ja elektronidonorin läsnäollessa, ja seuraavaksi halogenoidun tuotteen saattamisen kosketukseen neliarvoista titaaniyhdistettä kanssa. Viitteen mukaisesti orgaanista alumiiniyhdistettä ja selektiivisyydensäätöainetta voidaan käyttää erikseen, tai osittain tai täysin kompleksoi-Magnesiumyhdistettä kanssa. halogenoidulla tuna toistensa titaaniyhdisteellä käsittelemällä saatuun kiinteään komponenttiin viitataan viitteessä "prokatalyyttinä", ja orgaaniseen alumiiniyhdisteeseen, käytettynä joko erikseen tai osaksi tai kompleksoituna selektiivisyydensäätöaineen täysin viitataan "kokatalyyttinä". Elektronidonoria käytetään "selektiivisyydensäätöaineena", ja tätä käsitettä käytetään tällaiseen elektronidonoriin, käytettiinpä sitä erikseen tai osittain tai täysin kompleksoituna orgaanisen alumiiniyhdisteen kanssa.

US-patenttijulkaisussa 4 535 068 selitetään, että US-patenttijulkaisun 4 414 132 mukaisesti valmistetun olefiinipolymerointikatalyytin tuottavuutta voidaan parantaa niin paljon kuin 20 prosenttia, mikäli tuotetta, joka on saatu halogenoimalla magnesiumyhdiste halogenoidun neliarvoisen titaaniyhdisteen kanssa tämän viitteen "prokatalyytin" valmistuksessa, käsitellään karboksyylihappohalogenidilla ennen tai samaan aikaan, kun sitä käsitellään lisämäärällä neliarvoista titaaniyhdistettä. Kuitenkin, kuten US-patenttijulkaisun 4 414 132 stereospesifisen katalyytin tapauksessa, selektiivisyydensäätöaineen konsentraation katalyytissä kasvaessa yrityksessä lisätä tuotetun stereosäännöllisen polymeerin määrää, katalyytti kokee kasvavan laskun aktiivisuudessa. Tämä lasku aktiivisuudessa painottuu, kun polymerointilämpötila kohoaa. Täten tämä katalyytti, kuten US-patenttijulkaisun 4 414 132 mukainen katalyytti, on osoittanut vähemmän kuin toivottavaa aktiivisuutta polymeerien tuottamisessa, joiden isotaktisuusind ksi on yli 96 prosenttia.

Sen vuoksi tyydyttävien katalyytin aktiivisuustasojen ylläpitämiseksi käyttäen US-patenttijulkaisujen 4 414 132 ja 4 535 068 mukaisia katalyyttisysteemejä, on välttämätöntä rajoittaa käytettyä selektiivisyydensäätöaineen (ulkoinen elektronidonori) suhdetta orgaaniseen alumiinikokatalyyttiin, sekä polymerointilämpötilaa. Yleensä käytetään suhteita, jotka eivät ole suurempia kuin 0,3:1 yhdessä korkeintaan 70°C lämpötilojen kanssa. Tällaisissa olosuhteissa valmistetuilla polymeereillä on havaittu olevan suhteellisen leveä molekyylipainojakautuma (M_W/M_D), se on yli n. 5,0.

Kuitenkin polymeerien valmistamiseksi, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma, se on alle 5,0, on välttämätöntä käyttää polymerointilämpötiloja yli 80 °C. Polymeerit, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma ja korkea stereosäännöllisyysaste, ovat käyttökelpoisia sovellutuksissa, joista mainittakoon kuitukehräys ja ruisku-Tähän päivään mennessä näitä polymeerejä ei ole. tuotettu suoraan polymerointireaktorissa, vaan mieluummin säädetyn reologian jälkipolymerointitekniikoilla, jotka käsittävät peroksidien käytön polymeerien vapaaradikaalipilkkoutuaikaansaamiseksi. Ollakseen sopivin taloudellisesti täytyy minkä tahansa prosessin tämän tyyppisten polymeerien tuottamiseksi olla kuitenkin kykenevä tuottamaan niitä suoraan polymerointireaktorissa ilman jälkipolymerointiprosessointitarvetta uuton kautta jäljelle jääneen katalyytin ja/tai tuotetun ataktisen polymeerin poistamiseksi, tai reologianmuuttamistekniikoilla.

•

EP-patenttijulkaisussa 0 045 977 Bl selitetään katalyytti alfa-olefiinien polymerointiin, joka käsittää a) alkyylialumiiniyhdisteen, b) piiyhdisteen ja c) kiinteän katalyyttikomponentin välisen reaktiotuotteen, joka kiinteä katalyyttikomponentti käsittää magnesiumdihalogenidin olennaisena kantoaineena, ja kannatettuna mainitulla dihalogenidilla titaanihalogenidin tai titaanihalogeenialkoholaatin sekä elektronidonorin, joka on valittu määrätyistä estereistä.

Julkaisussa Die Angewandte Makromolekulare Chemie, 120 (1984) 73...90 (Nr. 1935), "High Yield Catalysts in Olefin Polymerization", joka on Paolo Gallin, Pier Camillo Barben ja Luciano Noristin nimissä, selitetään edelleen, että polymeerien, jotka on valmistettu tiettyjen stereospesifisten katalyyttien avulla, jotka sisältävät magnesiumdikloridia ja titaanitetrakloridia, sekä saantoa että isotaktisuutta voidaan parantaa kohottamalla polymerointilämpötila 50 °C:sta 80 °C:een (Kuviot 13 ja 14). Kuitenkaan katalyytin tarkkaa luonnetta ja kuinka se valmistetaan, ei esitetä viitteessä, eikä myöskään ulkoisen elektronidonorin (tai Lewis-emäksen) suhdetta alkyylialumiinijota täytyy käyttää tällaisen katalyytin kokatalyyttiin, kanssa polymeerien, joilla on korkea isotaktisuus, saamiseksi suurella saannolla.

GB-patenttihakemuksessa 2 lll 066 A selitetään, että katalyyttejä, jotka ovat samanlaisia kuin ne EP-patenttijulkaisussa 0 045 977 Bl, voidaan käyttää propyleenin polymeroimiseksi lämpötiloissa 80...90 °C käyttäen ulkoisen elektronidonorin (selektiivisyydensäätöaine) suhteita alkyylialumiiniyhdisteeseen 0,05:l...0,l:l (katso esimerkit 7...14) polymeerin, jolla on korkea stereosäännöllisyysaste, tuottamiseksi suurilla saannoilla. Näiden katalyyttien käyttäytyminen asettaa terävästi vastakkain US-patenttijulkaisujen 4 414 132 ja 4 535 068 katalyyttisysteemien käyttäytymisen, jotka kokevat aktiivisuuden laskun, kun polymerointilämpötila kohoaa, ja stereospesifisyyden laskun, kun ulkoisen elektronidonorin suhde alkyylialumiinikokatalyyttiin alenee.

Täten tunnetusta tekniikasta on selvää, että annetussa katalyyttisysteemissä läsnäoleva ulkoisen elektronidonorin (selektiivisyydensäätöaine) suhde alkyylialumiinikokatalyyttiin, sekä polymerointilämpötila, jossa katalyyttisysteemiä käytetään, vaikuttavat merkittävästi sekä katalyytin aktiivisuuteen että tuotettujen polymeerien isotaktisuuteen. Näiden tekijöiden vaikutus katalyytin aktiivisuuteen ja polymeerin isotakti-

suuteen vaihtelee laajasti systeemistä toiseen, ja näyttää tuottavan erisuuntaisia ja ristiriitaisia tuloksia riippuen käytetyn katalyytin luonteesta ja tavasta, jolla se valmistetaan. Määrätyn katalyyttisysteemin riippuvuus tämän luonteen tekijöistä rajoittaa systeemin monipuolisuutta ja rajaa olosuhteet, joissa sitä voidaan käyttää, ja täten systeemin kykyä tuottaa polymeerejä, joilla on suuri joukko erilaisia ominaisuuksia hyväksyttävillä katalyytin aktiivisuustasoilla. Esimerkiksi tähän päivään mennessä ei ole ehdotettu menetelmää, joka kykenee tuottamaan polymeerejä, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma sekä korkea isotaktisuusaste tyydyttävillä katalyytin aktiivisuustasoilla matalapaineisessa ekaasufaasileijupetiprosessissa.

Tämän keksinnön mukaisesti on havaittu, että polymeerejä, joiden molekyylipainojakautuma (M_{w}/M_{m}) on pienempi kuin 5,0 ja isotaktisuusindeksi yli 96 prosenttia, voidaan valmistaa suurella saannolla suurilla tuotantonopeuksilla polymeroimalla alfa-olefiinia, jossa on 3...8 hiiliatomia, matalapaineisessa. kaasufaasileijupetiprosessissa lämpötilassa yli 80 °C käyttämällä lämpöstabiilia katalyyttisysteemiä, joka käsittää kiinteän katalyyttikomponentin, joka sisältää ja polykarboksyylihappoesteriä, titaania, halogenidia sisältää kaksi samassa tasossa olevaa esteriryhmää liittyneenä sisäisenä elektronidonorina, (b) viereisiin hiiliatomeihin, ja (c) piiyhdisteen, orgaanisen alumiinikokatalyytin, sisältää pii-happi-hiili -sidoksen, selektiivisyydensäätöaineena tai ulkoisena elektronidonorina.

Keksintö määritellään täsmällisesti oheisissa patenttivaatimuksissa.

Katalyytti, joka on sopiva haluttujen polymeerien valmistamiseksi korkeilla aktiivisuustasoilla, käsittää:

(a) kiinteän ainekoostumuksen, joka on saatu halogenoimalla kaavan MgR'R'' mukainen magnesiumyhdiste, jossa R' on alkoksidi- tai aryylioksidiryhmä ja R'' on alkoksidi- tai aryyli-

oksidiryhmä tai halogeeni, halogenoidun neliarvoisen titaaniyhdisteen kanssa halogenoidun hiilivedyn ja polykarboksyylihappoesterin, joka sisältää kaksi samassa tasossa olevaa esteriryhmää liittyneenä viereisiin hiiliatomeihin, läsnäollessa;
käsittelemällä halogenoitua tuotetta lisämäärällä halogenoitua
neliarvoista titaaniyhdistettä; pesemällä käsitelty tuote
reagoimattomien titaaniyhdisteiden poistamiseksi; ja talteenottamalla kiinteä tuote,

(b) orgaanisen alumiiniyhdisteen, ja

. .

(c) piiyhdisteen, joka sisältää pii-happi-hiili -sidoksen,

mainitun katalyytin orgaanisen alumiiniyhdisteen alumiinin atomisuhteen piiyhdisteen piihin ollessa 0,5:1...100:1, ja orgaanisen alumiiniyhdisteen alumiinin atomisuhteen kiinteän koostumuksen titaaniin ollessa 5:1...300:1.

Tällaiset katalyytit on havaittu kykeneviksi polymeroimaan alfa-olefiineja kaasufaasissa matalissa paineissa pitkiä ajan-jaksoja riittävän korotetuissa lämpötiloissa polymeerien tuottamiseksi, joilla on ahtaissa rajoissa oleva molekyylipainojakautuma sekä korkea isotaktisuustaso ilman merkittävää aktiivisuudenmenetystä. Katalyytin kyky ylläpitää korkea aktiivisuustaso pitkiä ajanjaksoja sallii sen käytön prosesseissa, joissa vaaditaan pidennettyjä polymerointiaikoja yhdessä korkean polymeerintuottavuustason kanssa, kuten monivaiheisissa jatkuvissa prosesseissa suuren iskulujuuden omaavien kopolymeerien valmistamiseksi.

Polymeerien, jotka on valmistettu tämän keksinnön mukaisella menetelmällä, molekyylipainojakautuma (M_w/M_n) on pienempi kuin 5,0 ja isotaktisuusindeksi yli 96 prosenttia. Tavallisesti näiden polymeerien molekyylipainojakautuma (M_w/M_n) on 2,0...5,0, edullisesti 3,0...4,5, ja isotaktisuusindeksi 96...99 prosenttia, edullisesti 97...99 prosenttia.

Keksinnön yksityiskohtainen selitys

. . .

Keksinnön mukaisessa menetelmässä käytetty katalyyttisysteemin kiinteä katalyyttikomponentti valmistetaan halogenoimalla kaavan MgR'R' mukainen magnesiumyhdiste, jossa R' on alkoksidi- tai aryylioksidiryhmä ja R' on alkoksidi- tai aryylioksidiryhmä ja R' on alkoksidi- tai aryylioksidiryhmä tai halogeeni, halogenoidun neliarvoisen titaani-yhdisteen kanssa kun läsnä on halogenoitua hiilivetyä tai polykarboksyylihappoesteriä, joka sisältää kaksi samantasoista esteriryhmää liittyneenä viereisiin hiiliatomeihin.

Kiinteän katalyyttikomponentin valmistuksessa käytetty magnesiumyhdiste on edullisesti magnesiumdialkoksidi tai magnesiumdiaryylioksidi, edullisimmin magnesiumdialkoksidi. Voidaan käyttää myös magnesiumyhdisteitä, jotka sisältävät yhden alkoksidi- ja yhden aryylioksidiryhmän, sekä magnesiumyhdisteitä, jotka sisältävät yhden alkoksidi- tai aryylioksidiryhmän lisäksi halogeenin. Alkoksidiryhmät, silloin kun niitä on läsnä, sisältävät sopivimmin l...8 hiiliatomia, edullisesti 2...6 hiiliatomia. Aryylioksidiryhmät, silloin kun niitä on läsnä, sisältävät sopivimmin 6...10 hiiliatomia. Kun halogeenia on läsnä, se on edullisesti läsnä kloorina.

Magnesiumdialkoksidien ja -diaryylioksidien joukossa, joita voidaan käyttää, magnesiumdi-isopropoksidi, magnesiumdi-n-butoksidi, magnesiumdifenoksidi, magnesiumdinaftoksidi ja etoksimagnesiumisobutoksidi. Magnesiumdietoksidi on erityisen edullinen.

Valaisevia magnesiumyhdisteistä, jotka sisältävät yhden alkoksidi- ja yhden aryylioksidiryhmän, joita voidaan käyttää, ovat etoksimagnesiumfenoksidi ja naftoksimagnesiumisoamyylioksidi.

Sopivat alkoksi- ja aryylioksimagnesiumhalogenidit käsittävät etoksimagnesiumbromidin, isobutoksimagnesiumkloridin, fenoksi-magnesiumjodidin, kumyylioksimagnesiumbromidin ja naftoksi-magnesiumkloridin.

Magnesiumyhdisteen halogenoimiseksi käytetyn halogenoidun neliarvoisen titaaniyhdisteen täytyy sisältää vähintään kaksi halogeeniatomia, ja se sisältää edullisesti neljä halogeeniatomia. Edullisimmin nämä halogeeniatomit ovat klooriatomeja. Voidaan kuitenkin käyttää myös titaaniyhdisteitä, jotka sisältävät enintään kaksi alkoksi- ja/tai aryylioksiryhmää. Alkoksisältävät läsnä, on kun niitä siryhmät, 1...8 hiiliatomia, edullisesti 2...6 hiiliatomia. Aryylioksisopivimmin sisältävät läsnä, on niitä kun ryhmät, 6...12 hiiliatomia, edullisesti 6...10 hiiliatomia. Esimerkkejä sopivista alkoksi- ja aryylioksititaanihalogenideista isopropoksititaanitrijodidi, dietoksititaanidibromidi, ovat diheksoksititaanidikloridi ja fenoksititaanitrikloridi.

Magnesiumyhdisteen halogenointi halogenoidulla neliarvoisella titaaniyhdisteellä, kuten on pantu merkille, suoritetaan halogenoidun hiilivedyn ja polykarboksyylihappoesterin, joka sisältää kaksi samantasoista esteriryhmää liittyneenä viereisiin hiiliatomeihin, läsnäollessa. Mikäli halutaan, läsnä voi olla myös inertti hiilivetylaimennin tai -liuotin, vaikkakaan tämä ei ole välttämätöntä.

Käytetty halogenoitu hiilivety voi olla aromaattinen, alifaattinen tai alisyklinen.

Aromaattiset halogenoidut hiilivedyt ovat edullisia, erityisesti ne, jotka sisältävät 6...12 hiiliatomia, ja varsinkin ne, jotka sisältävät 6...10 hiiliatomia. Edullisesti tällaiset halogenoidut hiilivedyt sisältävät 1...2 halogeeniatomia, vaikka haluttaessa voi olla läsnä useampia. Edullisimmin halogeni on läsnä kloorina. Sopivia aromaattisia halogenoituja hiilivetyjä ovat klooribentseeni, bromibentseeni, diklooribentseeni, diklooritolueeni, diklooritolueeni, kloorinaftaleeni ja vastaavanlaiset. Klooribentseeni ja diklooribentseeni ovat edullisia, erityisesti ensin mainittu.

Alifaattiset halogenoidut hiilivedyt, joita voidaan käyttää, sisältävät sopivasti l...12 hiiliatomia. Edullisesti tällaiset halogenoidut hiilivedyt sisältävät l...9 hiiliatomia ja vähintään 2 halogeeniatomia. Edullisimmin halogeeni on läsnä kloorina. Sopivia alifaattisia halogenoituja hiilivetyjä ovat dibromimetaani, trikloorimetaani, 1,2-dikloorietaani, trikloorietaani, dikloorietaani, triklooripropaani, klooributaani, heksakloorietaani, triklooripropaani, klooributaani, diklooributaani, klooripentaani, trikloorifluorioktaani, tetrakloori-iso-oktaani, dibromidifluoridekaani ja vastaavanlaiset. Hiilitetrakloridi ja trikloorietaani ovat edullisia.

Alisykliset halogenoidut hiilivedyt, joita voidaan käyttää, sisältävät sopivasti 3...12 hiiliatomia. Edullisesti tällaiset halogenoidut hiilivedyt sisältävät 3...9 hiiliatomia ja vähintään 2 halogeeniatomia. Edullisimmin halogeeni on läsnä kloorina. Sopivia alisyklisiä halogenoituja hiilivetyjä ovat dibromisyklobutaani ja trikloorisykloheksaani.

Kiinteän katalyyttikomponentin valmistuksessa käytetty polykarboksyylihappoesteri toimii sisäisenä elektronidonorina ja on läsnä lopputuotteessa sekä sen valmistuksen aikana. Sopiville estereille on tunnusomaista molekyläärisesti jäykkä rakenne, jossa kaksi esteriryhmää on liittyneenä molekyylin viereisiin hiiliatomeihin ja ne sijaitsevat yhdessä tasossa. Tällaiset esterit käsittävät:

(a) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyneet monosyklisen tai polysyklisen aromaattisen renkaan orto-hiiliatomeihin, kummankin mainituista esteriryhmistä ollessa edelleen kytkeytynyt haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin,

:

(b) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyneet ei-aromaattisen monosyklis n tai polysyklisen renkaan vierushiiliatomeihin, ja jotka si-

jaitsevat syn-konfiguraatiossa suhteessa toisiinsa, kummankin mainituista esteriryhmistä ollessa ed lleen kytkeytynyt haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin, ja

(c) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyneet tyydyttymättömän alifaattisen yhdisteen kaksoissidoksellisiin vierushiiliatomeihin, ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa, kummankin mainituista esteriryhmistä ollessa sitoutunut haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin.

Kiinteän katalyyttikomponentin valmistuksessa käytetyt polykarboksyylihappoesterit johdetaan sopivasta polykarboksyylihaposta ja yksiarvoisesta alkoholista, jossa on lineaarinen hiilivetyosanen, joka voi olla haarautunut tai haarautumaton. Sopivat polykarboksyylihapot käsittävät:

- (a) monosykliset tai polysykliset aromaattiset yhdisteet, jotka sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen orto-hiiliatomeihin,
- (b) monosykliset tai polysykliset ei-aromaattiyhdisteet, jotka sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen vierushiiliatomeihin, ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa, tai
- (c) tyydyttymättömät alifaattiset yhdisteet, jotka sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet kaksoissidoksellisiin vierushiiliatomeihin, ja jotka sijaitsevat synkonfiguraatiossa suhteessa toisiinsa.

. :

:•. .

Polykarboksyylisten happojen esterien joukosta, joita voidaan käyttää sisäisinä elektronidonoreina, voidaan mainita dimetyyliftalaatti, dietyyliftalaatti, di-n-propyyliftalaatti, diisopropyyliftalaatti, di-n-butyyliftalaatti, di-isobutyyliftalaatti, di-tert-butyyliftalaatti, di-isoamyyliftalaatti,

di-tert-amyyliftalaatti, dineopentyyliftalaatti, di-2-etyyliheksyyliftalaatti, di-2-etyylidekyyliftalaatti, dietyyli-1,2fluoreenidikarboksylaatti, di-isopropyyli-1,2-ferroseenidikarboksylaatti, cis-di-isobutyylisyklobutaani-1,2-dikarboksylaatti, endo-di-isobutyyli-5-norborneeni-2,3-dikarboksylaatti
ja endo-di-isobutyylibisyklo [2,2,2] okt-5-eeni-2,3-dikarboksylaatti, di-isobutyylimaleaatti, di-isoamyylisitrakonaatti ja
vastaavanlaiset. Di-isobutyyliftalaatti on edullisin.

Sisäisinä elektronidonoreina kiinteässä katalyyttikomponentissa käytettyjen polykarboksyylihappoestereiden valmistamiseksi käytetyt alkoholit sisältävät 1...12 hiiliatomia, tavallisesti 3...12 hiiliatomia, ja edullisesti 4...12 hiiliatomia. Haluttaessa käytetty alkoholi voi olla substituoitu yhdellä tai useammalla substituentilla, jotka ovat inerttejä esteröinnin sekä kiinteän katalyyttikomponentin valmistuksen ja polymeroinnin tällaisella katalyyttikomponentilla aikana käytetyissä reaktio-olosuhteissa. Sopivia alkoholeja ovat etyylialkoholi, n-propyylialkoholi, isopropyylialkoholi, isobutyylialkoholi, tert-butyylialkoholi, isoamyylialkoholi, tert-amyylialkoholi, 2-etyylidekyylialkoholi ja vastaavanlaiset. Isobutyylialkoholi on edullisin.

Sisäisinä elektronidonoreina kiinteässä katalyyttikomponentissa käytettyjen polykarboksyylihappoestereiden valmistamiseksi käytetyt aromaattiset yhdisteet sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen orto-hiiliatomeihin. Nämä yhdisteet sisältävät vähintään 8 hiiliatomia, tavallisesti 8...20 hiiliatomia, ja edullisesti 8...16 hiiliatomia. Vaikka ne ovat edullisesti monosyklisiä, ne voivat sisältää useampia kuin yhden aromaattisen renkaan. Haluttaessa ne voivat olla substituoituja yhdellä tai useammalla substituentilla, jotka ovat inerttejä esteröinnin sekä kiinteän katalyyttikomponentin valmistuksen ja polymeroinnin tällaisella katalyyttikomponentilla aikana käytetyissä reaktio-olosuhteissa. Sopivia aromaattisia yhdisteitä ovat ftaalihappo (1,2-bentseenidikarboksyylihappo), 2,3-naftaleenidikarbok-

syylihappo, 1,2-antraseenidikarboksyylihappo, 1,2-fluoreenidikarboksyylihappo, 3,4-fluoreenidikarboksyylihappo, 1,2-f rroseenidikarboksyylihappo ja vastaavanlaiset.

Sisäisinä elektronidonoreina kiinteässä katalyyttikomponentissa käytettyjen polykarboksyylihappoestereiden valmistamiseksi käytetyt ei-aromaattiset sykliset yhdisteet sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen vierushiiliatomeihin ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa. Sekä monosykliset että polysykliset yhdisteet ovat sopivia. Nämä yhdisteet sisältävät vähintään 6 hiiliatomia, tavallisesti 6...20 hiiliatomia, ja edullisesti 6...10 hiiliatomia. Haluttaessa ne voivat olla substituoituja yhdellä tai useammalla substituentilla, jotka ovat inerttejä esteröinnin sekä kiinteän katalyyttikomponentin valmistuksen ja polymeroinnin mainitulla katalyyttikomponentilla aikana käytetyissä reaktio-olosuhteissa. Sopivia syklisiä yhdisteitä ovat cis-syklobutaani-1,2-dikarboksyylihappo, endo-5-norborneeni-2,3-dikarboksyylihappo, endo-disyklopentadieeni-2,3endo-bisyklo [2,2,2] okt-5-eeni-2,3-dikardikarboksyylihappo, endo-bisyklo[3,2,1]okt-2-eeni-6,7-dikarbokboksyylihappo, syylihappo ja vastaavanlaiset.

Sisäisinä elektronidonoreina kiinteässä katalyyttikomponentissa käytettyjen polykarboksyylihappoestereiden valmistamiseksi käytetyt tyydyttymättömät alifaattiset yhdisteet sisältävät kaksi karboksyyliryhmää, jotka ovat liittyneet kaksoissidoksellisiin vierushiiliatomeihin, ja jotka sijaitsevat synkonfiguraatiossa suhteessa toisiinsa. Nämä yhdisteet sisältävät vähintään 6 hiiliatomia, tavallisesti 6...20 hiiliatomia, ja edullisesti 6...10 hiiliatomia. Haluttaessa ne voivat olla substituoituja yhdellä tai useammalla substituentilla, jotka ovat inerttejä esteröinnin sekä kiinteän katalyyttikomponentin valmistuksen ja mainitun katalyyttikomponentin polymeroinnin aikana käytetyissä reaktio-olosuhteissa. Sopivia yhdisteitä ovat maleiinihappo, sitrakonihappo ja vastaavanlaiset.

:

:•.

Magnesiumyhdisteen halogenointi halogenoidulla neliarvoisella titaaniyhdisteellä suoritetaan käyttämällä ylimäärää titaaniyhdistettä. Tavallisesti pitäisi käyttää vähintään 2 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti. Edullisesti käytetään 4...100 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti, ja edullisimmin käytetään 4...20 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti.

Magnesiumyhdisteen halogenointi halogenoidulla neliarvoisella titaaniyhdisteellä, kuten on pantu merkille, suoritetaan halogenoidun hiilivedyn ja polykarboksyylihappoesterin, joka sisältää kaksi samantasoista esteriryhmää liittyneenä viereisiin hiiliatomeihin, läsnäollessa. Halogenoitua hiilivetyä käytetään määränä, joka on riittävä liuottamaan titaaniyhdisteen ja esterin, ja kiinteän, liukenemattoman magnesiumyhdisteen dispergoimiseksi riittävästi. Tavallisesti dispersio sisältää 0,005...2,0 moolia kiinteää magnesiumyhdistettä moolia halogenoitua hiilivetyä kohti, edullisesti 0,01...1,0 moolia kiinteää magnesiumyhdistettä moolia halogenoitua hiilivetyä kohti. Polykarboksyylihappoesteriä, joka kuten aiemmin on pantu merkille, toimii sisäisenä elektronidonorina, käytetään määränä, joka on riittävä aikaansaamaan mainitun yhdisteen moolisuhteen titaaniyhdisteeseen 0,0005:1...2,0:1, edullisesti 0,1:1.

Magnesiumyhdisteen halogenointi halogenoidulla neliarvoisella titaaniyhdisteellä voidaan suorittaa lämpötilassa 60...150 °C, edullisesti 70...120 °C. Tavallisesti reaktion annetaan edetä ajanjakson 0,1...6 tuntia, edullisesti välillä 0,5...3,5 tuntia. Mukavuussyistä halogenointi suoritetaan tavallisesti ilmakehän paineessa, vaikka haluttaessa voidaan käyttää korkeampia tai alempia paineita. Halogenoitu tuote, kuten lähtömagnesiumyhdiste, on kiinteää ainetta, joka voidaan eristää nestemäisestä reaktioväliaineesta suodatuksella, dekantoimalla tai sopivalla menetelmällä.

:

· . .

Sen jälkeen, kun halogenoitu tuote on erotettu nestemäisestä reaktioväliaineesta, se käsitellään yhden tai useampia kertoja lisämäärällä halogenoitua neliarvoista titaaniyhdistettä jäljelle jääneiden alkoksi- ja/tai aryylioksiryhmien poistamiseksi ja katalyytin aktiivisuuden maksimoimiseksi. Edullisesti halogenoitu tuote käsitellään vähintään kahdesti erillisillä annoksilla halogenoitua neliarvoista titaaniyhdistettä. Kuten alkuhalogenoinnissa, pitäisi tavallisesti käyttää vähintään 2 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti, ja edullisesti käytetään 4...100 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti, edullisimmin 4...20 moolia titaaniyhdistettä moolia magnesiumyhdistettä kohti.

Yleensä kiinteän halogenoidun tuotteen titaaniyhdisteellä käsittelemiseksi käytetyt reaktio-olosuhteet ovat samat kuin ne, joita käytettiin magnesiumyhdisteen alkuhalogenoinnin aikana, vaikka ei ole välttämätöntä, että polykarboksyylihappoesteriä on läsnä tämän käsittelyn aikana. Halogenoitua hiilivetyä käytetään tavallisesti kuitenkin titaaniyhdisteen liuottamiseksi ja kiinteän halogenoidun tuotteen dispergoimiseksi. Tavallisesti dispersio sisältää 0,005...2,0 grammaatomia magnesiumia moolia halogenoitua hiilivetyä kohti, edullisesti 0,01...1,0 gramma-atomia magnesiumia moolia halogenoitua hiilivetyä kohti.

Kuten edellä on mainittu, halogenoitu tuote käsitellään edullisesti vähintään kahdesti erillisillä annoksilla halogenoitua neliarvoista titaaniyhdistettä. Jäljelle jääneen alkoksija/tai aryylioksilajin poistossa halogenoidusta tuotteesta avustamiseksi toinen tällainen käsittely suoritetaan edullisesti polykarboksyylihappohalogenidin, joka sisältää kaksi samantasoista happohalogenidiryhmää liittyneenä viereisiin hiiliatomeihin, läsnäollessa. Vaikka on mahdollista käyttää happohalogenidia erikseen, mukavuussyistä on edullista käyttää sitä yhdessä halogenoituun hiilivetyyn liuotetun titaaniyhdisteen kanssa. Mikäli olosuhteet sitä edellyttävät halogenoitu tuote voidaan kuitenkin käsitellä happohalogenidilla ennen

tai jälkeen sen käsittelemistä toiseen kertaan titaaniyhdisteellä. Joka tapauksessa yleensä käytetään 5...200 mmol happohalogenidia gramma-atomia halogenoidun tuotteen magnesiumia kohti.

Käytetyt polykarboksyylihappohalogenidit voidaan valmistaa saattamalla vetyhalogenidi reagoimaan minkä tahansa kiinteässä katalyyttikomponentissa sisäisinä elektronidonoreina käytettyjen polykarboksyylihappoestereiden valmistamiseksi käytettyjen polykarboksyylihappojen kanssa. Edullisesti, tällaisten happohalogenidien halogenidiosanen on kloridi tai bromidi, edullisimmin kloridi, ja polykarboksyylihappo-osanen vastaa kiinteän katalyyttikomponentin valmistuksessa käytetyn sisäipolykarboksyylihappo-osasta. elektronidonorin happohalogenideja ovat ftaloyylidikloridi, 2,3-naftaleenidikarboksyylihappodikloridi, endo-5-norborneeni-2,3-dikarboksyylihappodikloridi, maleiinihappodiloridi, sitrakonihappodikloridi ja vastaavanlaiset.

Sen jälkeen, kun kiinteä halogenoitu tuote on käsitelty yhden tai useampia kertoja lisämäärällä halogenoitua neliarvoista titaaniyhdistettä, se erotetaan nestemäisestä reaktioväliaineesta, pestään inertillä hiilivedyllä reagoimattomien titaaniyhdisteiden poistamiseksi, ja kuivataan. Pestyn lopputuotteen titaanipitoisuus on sopivasti 0,5...6,0 paino-%, edullisesti 2,0...4,0 paino-%. Titaanin atomisuhde magnesiumiin lopputuotteessa on sopivasti välillä 0,01:1...0,2:1, edullisesti välillä 0,02:1...0,1:1. Polykarboksyylihappoesteriä on läsnä esterin suhteessa magnesiumiin 0,005:1...

•

:

Keksinnön mukaisessa menetelmässä käytetyssä katalyyttisysteemissä kokatalyyttinä käytetty orgaaninen alumiiniyhdiste voi olla valittu mistä tahansa tunnetuista titaanihalogenidia käyttävien olefiinipolymerointikatalyyttisysteemien aktivaattoreista. Trialkyylialumiiniyhdisteet ovat kuitenkin edullisia, erityisesti ne, joissa kukin alkyyliryhmistä sisältää

1...6 hiiliatomia. Sopivat orgaaniset alumiinikokatalyytit käsittävät yhdisteet, joiden kaava on

$Al(R''')_dX_eH_f$

jossa:

X on F, Cl, Br, I tai OR''',

R'' ja R''' ovat tyydyttyneitä hiilivetyradikaaleja, jotka sisältävät l...l4 hiiliatomia, jotka radikaalit voivat olla samoja tai erilaisia, ja haluttaessa substituoitu millä tahansa substituentilla, joka on inertti polymeroinnin aikana käytetyissä reaktio-olosuhteissa,

d on 1...3,

e on 0...2,

f on 0 tai 1, ja

d + e + f = 3.

Tällaisia aktivaattoriyhdisteitä voidaan käyttää itsenäisesti tai niiden yhdistelminä ja ne käsittävät yhdisteet, joista mainittakoon Al(C₂H₅)₃, Al(C₂H₅)₂Cl, Al₂(C₂H₅)₃Cl₃, Al(C₂H₅)₂H, Al(C₂H₅)₂(OC₂H₅), Al(i-C₄H₉)₃, Al(i-C₄H₉)₂H, Al(C₆H₁₃)₃ ja Al(C₈H₁₇)₃.

Keksinnön mukaisessa menetelmässä käytetyssä katalyyttisysteemissä selektiivisyydensäätöaineena tai ulkoisena elektronidonorina käytetyt piiyhdisteet sisältävät vähintään yhden pii-happi-hiili -sidoksen. Sopivat piiyhdisteet käsittävät yhdisteet, joiden kaava on

$$R''''_m SiY_n X_p$$

jossa:

. . .

R''' on hiilivetyradikaali, joka sisältää 1...20 hiili-atomia,

Y on -OR'''' tai -OCOR'''', jossa R'''' on hillivety-radikaali, joka sisältää 1...20 hilliatomia,

```
X on vety tai halogeeni,
m on kokonaisluku, jonka arvo on 0...3,
n on kokonaisluku, jonka arvo on 1...4,
p on kokonaisluku, jonka arvo on 0...1, ja
m + n + p on 4.
```

. **:** .

:

•••

Kukin R'''' ja R''''' voi olla sama tai erilainen, ja haluttaessa substituoitu millä tahansa substituentilla, joka on inertti polymeroinnin aikana käytetyissä reaktio-olosuhteissa. Edullisesti R'''' ja R'''' sisältää l...l0 hiiliatomia, kun ne ovat alifaattisia tai sykloalifaattisia, ja 6...l0 hiiliatomia, kun ne ovat aromaattisia.

Voidaan käyttää myös piiyhdisteitä, joissa kaksi tai useampia piiatomeja on kytkeytynyt toisiinsa happiatomilla edellyttäen, että läsnä on myös tarpeellinen pii-happi-hiili -sidos.

Polymeerien, joiden molekyylipainojakautuma $(M_W/M_{
m D})$ on pienempi kuin 5,0 ja isotaktisuusindeksi yli 96 prosenttia, valmistus suoritetaan tämän keksinnön mukaisesti leijupetipolymerointireaktorissa saattamalla alfa-olefiini, jossa on 3...8 hiiliatomia, jatkuvasti kosketukseen katalyyttisysteemin kolmen komponentin kanssa, se on kiinteän katalyyttikomponentin, kokatalyytin ja selektiivisyydensäätöaineen. Menetelmän mukaisesti erillisiä annoksia katalyyttikomponentteja syötetään reaktoriin jatkuvasti katalyyttisesti vaikuttavina määrinä yhdessä alfa-olefiinin kanssa samalla kun polymeerituotetta poistetaan jatkuvasti jatkuvan prosessin aikana. Leijupetireaktorit, jotka ovat sopivia jatkuvaan alfa-olefiinien polymerointiin, on selitetty aiemmin ja ne ovat tekniikassa hyvin tunnettuja. Leijupetireaktorit, jotka ovat käyttökelpoisia tähän tarkoitukseen, selitetään esim. US-patenttijulkaisuissa 4 302 565, 4 302 566 ja 4 303 771, joiden selitykset on sisällytetty selitykseen tällä viittauksella.

Kiinteä katalyyttikomponentti, kokatalyytti ja selektiivisyydensäätöaine voidaan johtaa polymerointireaktoriin erillisten syöttölinjojen kautta tai haluttaessa kaksi tai kaikki komponenteista voidaan osittain tai täysin sekoittaa toistensa kanssa ennen niiden johtamista reaktoriin. Kummassakin tapauksessa kokatalyyttiä ja selektiivisyydensäätöainetta käytetään sellaisina määrinä, että aikaansaadaan kokatalyytin alumiinin atomisuhde selektiivisyydensäätöaineen piihin 0,5:1...100:1, edullisesti 2:1...50:1, ja kokatalyyttiä ja kiinteää katalyyttikomponenttia käytetään sellaisina määrinä, että aikaansaadaan kokatalyytin alumiinin atomisuhde kiinteän katalyyttikomponentin titaaniin 5:1...300:1, edullisesti 10:1...200:1.

Sekä kokatalyytti että selektiivisyydensäätöaine voidaan johtaa reaktoriin liuotettuna inerttiin nestemäiseen liuottimeen, se on liuottimeen, joka ei reagoi minkään katalyyttiseoksen komponenteista eikä minkään muun reaktiosysteemin aktiivisista komponenteista kanssa. Hiilivedyt, joista mainittakoon isopentaani, heksaani, heptaani, tolueeni, ksyleeni, teollisuusbensiini ja mineraaliöljy, ovat edullisia tähän tarkoitukseen. Yleensä tällaiset liuokset sisältävät 1...75 paino-% kokatalyyttiä selektiivisyydensäätöainetta. ja/tai Haluttaessa voidaan käyttää vähemmän konsentroituja tai enemmän konsentroituja liuoksia, tai vaihtoehtoisesti kokatalyytti ja selektiivisyydensäätöaine voidaan lisätä ilman liuotinta, tai haluttaessa suspendoituna nesteytetyn monomeerin virtaan. Kun käytetään liuotinta, reaktoriin johdettavan liuottimen määrää täytyy kuitenkin huolellisesti tarkkailla ylimäärien nestettä käytön välttämiseksi, mikä häiritsisi leijupetin toimintaa.

. ::

Kokatalyytin ja selektiivisyydensäätöaineen liuottamiseksi käytettyjä liuottimia voidaan käyttää myös kiinteän katalyyttikomponentin johtamiseksi reaktoriin. Vaikka kiinteä katalyyttikomponentti voidaan johtaa reaktoriin myös ilman liuotinta tai suspendoituna nesteytettyyn monomeeriin, tällaisia liuottimia käytetään edullisesti kiinteän katalyyttikomponentin dispergoimiseksi ja sen virtauksen reaktoriin helpottamiseksi. Tällaiset dispersiot sisältävät yleensä l...75 paino-% kiinteää komponenttia.

Polymeerien, joiden molekyylipainojakautuma (M_W/M_{Π}) on pienempi kuin 5,0 ja isotaktisuusindeksi yli 96 prosenttia, valmistuksessa käyttökelpoiset alfa-olefiinit sisältävät 3...8 hiiliatomia molekyyliä kohti. Näiden alfa-olefiinien ei pitäisi sisältää mitään haarautumista missään niiden hiiliatomeissa, jotka ovat lähempänä kuin kahden hiiliatomin etäisyydellä kaksoissidoksesta. Sopivia alfa-olefiineja ovat propyleeni, l-buteeni, l-penteeni, l-hekseeni, 4-metyyli-l-penteeni, l-hepteeni ja l-okteeni.

menetelmässä käyttökelpoisia alfamukaisessa Keksinnön olefiineja voidaan käyttää haluttaessa myös kopolymeerien tuottamiseksi kopolymeroimalla niitä enintään 20 mol-% etyleenin ja/tai muun alfa-olefiinin, joka sisältää 3...8 atomia molekyyliä kohti, kanssa. Tällaiset kopolymeroinnit ovat erityisen käyttökelpoisia prosesseissa, joissa käytetään peräkkäisiä polymerointisyklejä polymeerien tuottamiseksi, joilla on parannetut iskuominaisuudet, esim. homopolymeroimalla alfa-olefiini yhdessä reaktorissa ja tämän jälkeen kopolymeroimalla se toisessa reaktorissa ensimmäisen reaktorin tuotteen läsnäollessa. Tätä tekniikkaa on käytetty suuren iskulujuuden omaavan polypropyleenin valmistamiseksi monivaihemenetelmällä, jossa propyleeni homopolymeroidaan yhdessä reaktiovyöhykkeessä ja sen jälkeen kopolymeroidaan etyleenin kanssa erillisessä reaktiovyöhykkeessä, joka on järjestetty sarjaan ensimmäisen reaktiovyöhykkeen kanssa, ensimmäisessä reaktiovyöhykkeessä tuotetun homopolymeerin läsnäollessa. Kun käytetään monia reaktoreita tällä tavalla, on joskus välttämätöntä lisätä lisämääriä kokatalyyttiä toiseen reaktoriin aktiivisen katalyytin ylläpitämiseksi. Yleensä ei lisämääriä kiinteää katalyyttikomponenttia ja selektiivisyydensäätöainetta.

Haluttaessa kaasumainen reaktioseos voidaan laimentaa inertillä kaasulla, se on kaasulla, joka ei reagoi minkään katalyyttiseoksen komponenteista eikä minkään muun reaktiosysteemin aktiivisista komponenteista kanssa. Kaasumaisen reaktioseoksen pitäisi tietenkin olla olennaisesti vapaa katalyyttimyrkyistä, joista mainittakoon kosteus, happi, hiilimonoksidi, hiilidioksidi, asetyleeni ja vastaavanlaiset.

Myös vetyä voidaan lisätä reaktioseokseen ketjunsiirtoaineena molekyylipainon säätämiseksi. Yleensä vetyä lisätään reaktioseokseen riittävänä määränä vedyn moolisuhteen alfa-olefiiniin n. 0,0000l:l...0,5:l aikaansaamiseksi. Vedyn lisäksi voidaan käyttää muita ketjunsiirtoaineita polymeerien molekyylipainon säätämiseksi.

Liikkuvan leijupetin ylläpitämiseksi kaasumaisen reaktioseoksen kaasun pintanopeuden petin läpi täytyy ylittää leijutuksen vaadittava minimivirtaus, ja edullisesti se on vähintään 0,06 m/s yli minimivirtauksen. Tavallisesti kaasun pintanopeus ei ylitä 1,5 m/s, ja tavallisimmin enintään 0,75 m/s on riittävä.

Menetelmässä voidaan käyttää paineita n. 7000 kPa asti, vaik-kakin paineet n. 70...3500 kPa ovat edullisia. Käytetyn alfa-olefiinin osapaine pidetään tavallisesti välillä n. 56...2800 kPa.

Polymeerien valmistamiseksi, joiden molekyylipainojakautuma $(M_{\omega}/M_{\rm n})$ on pienempi kuin 5,0 ja isotaktisuusindeksi yli 96 prosenttia, on välttämätöntä käyttää polymerointilämpötiloja vähintään 80 °C. Mitä korkeampi on käytetty lämpötila, sitä kapeampi on tuotettujen polymeerien molekyylipainojakautuma. Tästä syystä, lämpötilat vähintään 100 °C ovat edullisia, lämpötilat johtavat polymeereihin, tällaiset molekyylipainojakautuma on pienempi kuin 4,5. Kuitenkin pitäisi välttää lämpötiloja yli 160 °C polymeerituotteen agglomeroitumisen estämiseksi.

:

Tämän keksinnön mukaisella menetelmällä tuotettujen polymeerien sulamisindeksi on 0,1:stä n. 1000:een g/10 minuuttia,

edullisesti n. l...50 g/l0 minuuttia. Polymeerien sulamisindeksi vaihtelee käänteisesti sen molekyylipainoon nähden.

Tämän keksinnön mukaisen menetelmän mukaisesti tuotetut polymeerit ovat rakeisia aineita, joiden keskimääräinen hiukkaskoko on halkaisijaltaan n. 0,01...0,20 cm, tavallisesti n. 0,02...0,13 cm. Hiukkaskoko on tärkeä tarkoituksessa leijuttaa polymeerihiukkasia helposti leijupetireaktorissa.

Tämän keksinnön mukaisen menetelmän mukaisesti tuotettujen polymeerien irtotiheys on n. 200...513 kg/m^3 .

Seuraavat esimerkit on suunniteltu tämän keksinnön mukaisen menetelmän valaisemiseksi ja niitä ei tarkoiteta rajoituksena sen ulottuvuudesta.

Esimerkeissä tuotettujen polymeerien ominaisuudet määritettiin seuraavilla koestusmenetelmillä:

Sulamisindeksi (MFR)

ASTM D-1238, olosuhteet L. Mitattuna 230 °C:ssa 2160 g:n kuor-malla ja ilmoitettuna grammoina 10 minuuttia kohti.

Tuottavuus

።

Punnittu näyte polymeerituotetta tuhkitetaan ja määritetään spektrofotometrisesti tuhkan titaanipitoisuus. Tuottavuus ilmoitetaan kilogrammoina tuotettua polymeeriä grammaa polymeerissä olevaa titaania kohti.

Kun käytetään panospolymerointia, tuottavuus määritetään tunnetusta määrästä reaktoriin johdettua titaania.

Isotaktisuusindeksi

Näyte punnitaan ja sitä uutetaan heptaanilla refluksoiden

vähintään 4 tuntia. Liukenematon polymeeri kuivataan läpikotaisin ja punnitaan. Uutto-olosuhteissa liukenemattoman polymeerin prosenttiosuus ilmoitetaan isotaktisuusindeksinä (II).

Polymeerin isotaktisuusindeksiä (II) voidaan käyttää polymeerin ksyleeniliukoisen pitoisuuden arvioimiseksi. Propyleenihomopolymeerin tapauksessa ksyleeniliukoiset ovat suunnilleen 63,2 - (0,629 x II).

Ksyleeniliukoiset

Näyte punnitaan ja liuotetaan täysin ksyleeniin kolvissa kuumentamalla 120 °C:ssa palautus jäähdyttäen ja sekoittaen. Kolvi upotetaan vesihauteeseen 25 °C:ssa yhden tunnin ajaksi, minkä aikana liukenematon polymeeri saostuu. Sakka suodatetaan pois ja suodoksessa läsnäoleva liukoisen polymeerin määrä määritetään haihduttamalla 100 ml:n näyte suodosta, kuivaamalla jäännös alipaineessa ja punnitsemalla jäännös. Ksyleeniliukoinen pitoisuus koostuu amorfisesta aineesta vähän alhaisen molekyylipainon kiteistä ainetta kanssa.

Polymeerin ksyleeniliukoista pitoisuutta (XS) voidaan käyttää polymeerin isotaktisuusindeksin arvioimiseksi. Propyleenihomopolymeerin tapauksessa isotaktisuusindeksi on suunnilleen (63,2-XS)/0,629.

Molekyylipainojakautuma, Mw/Mn

: :

:

Määritettynä kokoekskluusiokromatografialla.

Menetelmä A: Verkkopolystyreenikolonnin huokoskokojärjestys: pienempi kuin 1000 Å (1000 x 10^{-10} m), sekoitettu 500... 10^6 Å (500... 10^6 x 10^{-10} m), sekoitettu 500... 10^6 Å (500... 10^6 x 10^{-10} m), 10^7 Å (10^7 x 10^{-10} m). 1,2,4-triklooribentseeniliuotin 140 °C:ssa taitekerroinilmaisimella.

Menetelmä B: Kaksi verkkopolystyreenikolonnia $100...10^7$ Å:n $(100...10^7 \times 10^{-10} \text{ m})$ huokoskoon sekapeteillä. 1,2,4-tri-klooribentseeniliuotin 145 °C:ssa taitekerroinilmaisimella.

Esimerkit 1...3

:

Kiinteän katalyyttikomponentin valmistus

Titaanitetrakloridin 70 ml:n (120 g, 0,64 mol) liuokseen 3,7 l:ssa klooribentseeniä lisättiin perättäin 180 ml diisobutyyliftalaattia (187 g, 0,67 mol), 590 g (5,2 mol) magnesiumdietoksidia ja 4,7 l:n titaanitetrakloridia (8100 g, 43 mol) liuos 1,2 l:ssa klooribentseeniä. Näiden lisäysten aikana pidettiin lämpötila 20...25 °C. Tuloksena oleva seos kuumennettiin 110 °C:een sekoittaen, jossa lämpötila pidettiin 1 tunnin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine lietettiin sen jälkeen huoneenlämpötilassa 4,7 l:n titaanitetrakloridia (8100 g, 43 mol) liuokseen 1,2 l:ssa klooribentseeniä. Ftaloyylikloridin 45 g:n (0,22 mol) liuos 3,7 l:ssa klooribentseeniä lisättiin lietteeseen huoneenlämpötilassa ja tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine uudelleenlietettiin huoneenlämpötilassa titaanitetrakloridin 4,7 l:n (8100 g, 43 mol) liuokseen 1,2 l:ssa klooribentseeniä. Sen jälkeen lietteeseen lisättiin huoneenlämpötilassa 3,7 l:n lisämäärä klooribentseeniä ja tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Kiinteä aine uudelleenlietettiin vielä kerran huoneenlämpö-

tilassa titaanitetrakloridin 4,7 1:n (8100 g, 43 mol) liuokseen liuokseen 1,2 1:ssa klooribentseeniä. Sen jälkeen lietteeseen lisättiin huoneenlämpötilassa 3,2 1:n lisämäärä klooribentseeniä ja tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Jäännös pestiin 6 kertaa 500 ml:n annoksilla heksaania 25 °C:ssa, ja sen jälkeen kuivattiin typpihuuhtelussa. Tuote painoi n. 500 g.

Polymerointi

:

Tällä tavalla valmistettua kiinteää katalyyttikomponenttia käytettiin yhdessä trietyylialumiinin kokatalyyttinä ja difenyylidimetoksisilaanin selektiivisyydensäätöaineena tai ulkoisena elektronidonorina kanssa propyleenin polymeroimiseksi vaihtelevissa reaktio-olosuhteissa leijupetireaktorisysteemissä, joka on samanlainen kuin se, joka on selitetty ja valaistu US-patenttijulkaisuissa 4 302 565, 4 302 566 ja 4 303 771.

Kussakin polymeroinnissa edellä selitetyllä tavalla valmistettua kiinteää katalyyttikomponenttia syötettiin jatkuvasti polymerointireaktoriin 30 prosenttisena dispersiona mineraaliöljyssä. Trietyylialumiinikokatalyyttiä käytettiin 2,5-prosenttisena liuoksena isopentaanissa, ja difenyylidimetoksisilaaniselektiivisyydensäätöainetta käytettiin 1-prosenttisena liuoksena isopentaanissa.

Reaktoriin lisättiin vetyä ketjunsiirtoaineena tuotetun polymeerin molekyylipainon säätämiseksi. Läsnä oli myös pieni määrä typpeä.

Alla oleva taulukko I esittää näiden polymerointien yksityiskohdat sekä tällaisilla polymeroinneilla valmistettujen polymeerien ominaisuudet ja kunkin katalyyttisysteemin tuottavuuden.

Vertailuesimerkit A...D

Vertailutarkoituksissa propyleeni polymeroitiin kuten esimer-keissä 1...3 lukuun ottamatta, että käytettiin polymerointilämpötiloja 60 °C, 65 °C ja 80 °C. Näiden polymerointien yksityiskohdat esitetään alla olevassa taulukossa I yhdessä esimerkkien 1...3 yksityiskohtien kanssa.

	Ē	Taulukko	_		-		
Es imerkki	-1	~!	m)	Vert.	Vert esim. B	Vert.	Vert.
Resktio-olosubteet Ai/Ti -subde	30	23	75	99	35	88	83
AI/selektilvisyden- sastosine -suhde	3, 5	4, 2	5, 1	1. 5	63	0 · 0	27 08
Vilpymbelke, b	8.8	6.1	9 . 6	3, 2	2, 2	1, 5	3, 1
Kotonelspelne, kpe	2500	2600	2700	2300	2400	2400	2500
Vaty/propyleeni -moolisubde	0,0014	0,0014 0,017	0,00083	0,00083 0,0045	0,0040	0,0028	0,0026
Polymeer lomine Is cudet							
CIE CIVE Letters and Communication	4, 30		609 '7	96 '9	5, 90	4,60	6, 80
M	97.2	97,3	97,6	95, 4	97,8	97, 1	93, 2
30	2.03		1, 80	3, 15	4.80	2, 10	4.60
	4, 43		•	96 '9	8, 69	5, 15	5, 01
	•		3, 50		•	•	
. O	162	109	176	367	216	183	111
Tuottavuus kg polymerik/g Ti	630	8	069	340	230	1200	1300

:

• Laskettuna ksyloeniliukoisuusmittauksista

Esimerkit 4...6

Kiinteän katalyyttikomponentin valmistus

Titaaniterakloridin 75 ml:n (139 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä lisättiin perättäin 5,72 g (50 mmol) magnesiumdietoksidia ja tipoittain 3,0 ml di-isobutyyliftalaattia (3,1 g, 11,0 mmol). Näiden lisäysten aikana pidettiin lämpötila 20...25 °C:ssa. Tuloksena oleva seos kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 1 tunnin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine lietettiin sen jälkeen huoneenlämpötilassa titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä. Tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine uudelleenlietettiin huoneenlämpötilassa titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä. Tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine uudelleenlietettiin huoneenlämpötilassa vielä uudelleen titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä. Tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Jäännös pestiin 6 kertaa 150 ml:n annoksilla isopentaania 25 °C:ssa ja kuivattiin sen jälkeen alipaineessa. Tuote painoi 5,6 g.

Polymerointi

:

•••

Tällä tavalla valmistettua kiinteää katalyyttikomponenttia käytettiin yhdessä trietyylialumiinin kokatalyyttinä ja difenyylidimetoksisilaanin selektiivisyydensäätöaineena tai ulkoisena elektronidonorina kanssa propyleenin polymeroimiseksi vaihtelevissa kaasufaasipolymerointiolosuhteissa yhden litran suolapetireaktorisysteemissä.

Kussakin polymeroinnissa trietyylialumiinikokatalyytti ja difenyylidimetoksisilaaniselektiivisyydensäätöaine esisekoitettiin ja lisättiin yhdessä sekoitettuun reaktoripetiin, joka koostui 200 g:sta natriumkloridia. Kiinteä katalyyttikomponentti lisättiin 5 prosenttisena dispersiona mineraaliöljyssä. Lisäysten aikana petin lämpötila pidettiin 55 °C:ssa.

Sen jälkeen, kun katalyyttikomponenttien lisäys päättyi, reaktori paineistettiin 210 kPa:iin seoksella, jossa oli 10 % vetyä ja 90 % typpeä, ja sen jälkeen ilmastettiin ilmakehän paineeseen. Menettely toistettiin vielä kaksi kertaa. Kolmannen ilmastuksen jälkeen reaktori paineistettiin haluttuun polymerointipaineeseen propyleenillä ja samanaikaisesti kuumennettiin haluttuun polymerointilämpötilaan. Polymeroinnin annettiin jatkua 2 tunnin ajan, minä aikana propyleeniä lisättiin jatkuvasti reaktoriin paineen pitämiseksi vakiona. Tämän ajanjakson aikana pidettiin myös vakiolämpötila.

2 tunnin lopussa reaktori ilmastettiin ja avattiin. Suolapetiä ja polymeerituotetta sekoitettiin voimakkaasti sekoittimessa 600 ml:n metanolia, 400 ml:n isopropanolia ja 0,1 g:n anti-oksidanttia kanssa. Sen jälkeen seos suodatettiin ja talteen-otettu kiinteä polymeerituote pestiin kahdesti 1 l:n annoksilla vettä, ja sen jälkeen kuivattiin yön yli 70 °C:ssa alipaineessa.

Alla oleva taulukko II esittää näiden polymerointien yksityiskohdat sekä tällaisilla polymeroinneilla valmistettujen polymeerien ominaisuudet ja kunkin katalyyttisysteemin tuottavuuden.

Vertailuesimerkit E...G

Vertailutarkoituksissa propyleeniä polymeroitiin kuten esimerkeissä 4...6 lukuun ottamatta, että käytettiin polymerointilämpötiloja 55 °C, 67 °C ja 80 °C. Näiden polymerointien yksityiskohdat esitetään alla olevassa taulukossa II yhdessä esimerkkien 4...6 yksityiskohtien kanssa.

Käytetty katalyytti valmistettiin olennaisesti samalla tavalla kuin esimerkeissä 4...6 lukuun ottamatta, että sen jälkeen, kun magnesiumdietoksidi oli halogenoitu titaanitetrakloridilla ja uudelleenlietetty titaanitetrakloridiin ja klooribentseeniin ensimmäistä kertaa, lietteeseen lisättiin huoneenlämpötilassa tipoittain 0,25 ml ftaloyylidikloridia (1,7 mmol) ennen kuin se kuumennettiin 110 °C:een.

Vertailuesimerkit H...K

Kiinteän katalyyttikomponentin valmistus

Kiinteä katalyyttikomponentti valmistettiin kuten on selitetty US-patenttijulkaisussa 4 414 132.

Titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä lisättiin perättäin 5,72 g (50 mmol) magnesiumdietoksidia ja tipoittain 2,4 ml etyylibentsoaattia (2,5 g, 17 mmol). Näiden lisäysten aikana pidettiin lämpötila 20...25 °C. Tuloksena oleva seos kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 1 tunnin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine lietettiin huoneenlämpötilassa titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen

75 ml:ssa klooribentseeniä. Lietteese n lisättiin huoneenlämpötilassa ja tipoittain 0,40 ml bentsoyylikloridia (3,4 mmol). Tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötilassa se pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Kiinteä aine talteenotettiin.

Talteenotettu kiinteä aine uudelleenlietettiin huoneenlämpötilassa titaanitetrakloridin 75 ml:n (130 g, 0,68 mol) liuokseen 75 ml:ssa klooribentseeniä. Tuloksena oleva liete kuumennettiin sekoittaen 110 °C:een, jossa lämpötila pidettiin 30 minuutin ajan. Tämän ajan lopussa seos suodatettiin sen ollessa vielä kuuma. Jäännös pestiin 6 kertaa 150 ml:n annoksilla isopentaania 25 °C:ssa, ja sen jälkeen kuivattiin 40 °C:ssa typpi-ilmakehässä. Tuote painoi 5,9 g.

Polymerointi

Vertailutarkoituksia varten propyleeniä polymeroitiin kuten esimerkeissä 4...6 käyttäen kuten edellä US-patenttijulkaisun 4 414 132 mukaisesti valmistettua kiinteää katalyyttikomponenttia yhdessä trietyylialumiinin kokatalyyttinä ja p-etoksietyylibentsoaatin selektiivisyydensäätöaineena kanssa. Näiden polymerointien yksityiskohdat esitetään alla olevassa taulukossa II yhdessä esimerkkien 4...6 yksityiskohtien kanssa.

-			2	leulukko II						
Es imerkk i	⊸ I	νI	9 1	Vert.	Vort.	Vert.	Vert.	Vert.	Vert.	Vert.
Reaktio-olosubteet	6									:
	70	2, 22). 2.	20 oc	70	0. 0198 20 98	0, 01 /5 70	0, 0175 70	0, 145 70	0, 116 70
Al/selektiivisyyden.								:		•
shatosine - sunde	2,0			4,0	0. +	0	3, 4	3,4		2.0
Lâmpôtila, °C	100			55	67	08	67	100		90
Polymerointialka, h	2,0			2,0	2,0	2,0	2,0	0:		2.0
Kokonalspaine, kPa	1900			1600	1900	1900	1900	1900		1900
Vety/propyleen! -mooilsunde	0,005		900'0	0,004	0,005	0, 005	•	0,005		0,001
Palymeerlominelsuudet										
fsotaktisuusindeks!, X	98,0	97,9	98, 5	95, 8	1 186	84.8	2.36	e-		y 76
* Ksyleenlilukolset, %	1, 51	1, 61	1, 23	2, 94	1, 50	3, 57	3, 32	55.6		3 2
Mw/Mn. menetelma A	•	4, 46		5, 95	5.83	5. 20	5 22	5		
Mw/Mn. menetetmä B	3,87	•	3, 56	•		; ;	: .	; .		, ,
H _W x 10 ⁻³	178	802	128	113	332	253	508	257		413
Tuottavuus	;	;	,							
	310	365	153	192	877	416	215	53	=	3, 5

· Leskettune Isotaktisuusindeksimitteuksiste

ì.

Patenttivaatimukset

- 1. Menetelmä polymeerien tuottamiseksi, joiden molekyylipainojakautuma on 3,0...4,5 ja isotaktisuusindeksi on 97...99%,
 t u n n e t t u siitä, että se käsittää alfa-olefiinin, jossa
 on 3...8 hiiliatomia, saattamisen kosketukseen leijupetireaktorissa paineessa, joka ei ole suurempi kuin 7000 kPa ja lämpötilassa vähintään 100 °C, katalyyttisesti vaikuttavan määrän
 katalyyttisysteemiä kanssa, joka käsittää
- kiinteän katalyyttikomponentin, joka sisältää magnesiumia, ja polykarboksyylihappoesteriä, titaania, halogenidia sisältää kaksi samantasoista esteriryhmää liittyneenä viereisiin hiiliatomeihin, joka katalyyttikomponentti saadaan halogenoimalla kaavan MgR'R'' mukainen magnesiumyhdiste, jossa R' on alkoksidi- tai aryylioksidiryhmä ja R'' on alkoksidi- tai aryylioksidiryhmä tai halogeeni, halogenoidun neliarvoisen titaaniyhdisteen ylimäärän kanssa, joka sisältää vähintään kaksi halogeeniatomia, halogenoidun hiilivedyn ja polykarboksyylihappoesterin läsnäollessa, joka sisältää kaksi samantasoista esteriryhmää liittyneenä viereisiin hiiliatomeihin; käsittelemällä halogenoitua tuotetta lisämäärällä halogenoitua neliarvoista titaaniyhdistettä; pesemällä käsitelty tuote inertillä hiilivedyllä reagoimattomien titaaniyhdisteiden poistamiseksi; ja ottamalla talteen kiinteä tuote,
 - (b) orgaanisen alumiinikokatalyytin, ja
 - (c) pii-happi-hiili -sidoksen sisältävän elektronidonorin

mainitun katalyytin sisältäessä orgaanisen alumiinikokatalyytin alumiinin atomisuhteen elektronidonorin piihin 0,5:1...100:1, ja orgaanisen alumiinikokatalyytin alumiinin atomisuhteen kiinteän katalyyttikomponentin titaaniin 5:1...300:1.

2. Patenttivaatimuksen 1 mukainen menet lmä, tunnettu siitä, että magnesiumyhdiste on magnesiumdialkoksidi, jossa

kukin alkoksidiryhmä sisältää 1...8 hiiliatomia.

- 3. Patenttivaatimuksen 2 mukainen menetelmä, tunnettu siitä, että magnesiumyhdiste on magnesiumdietoksidi ja halogenoitu neliarvoinen titaaniyhdiste on titaanitetrakloridi.
- 4. Jonkin patenttivaatimuksista 1...3 mukainen menetelmä, tunnettu siitä, että halogenoitu hiilivety on aromaattinen halogenoitu hiilivety, joka sisältää 6...12 hiiliatomia ja 1...2 halogeeniatomia.
- 5. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että halogenoitu hiilivety on klooribentseeni.
- 6. Jonkin patenttivaatimuksista 1...5 mukainen menetelmä, tunnettu siitä, että halogenoitu tuote käsitellään kahdesti lisämäärällä halogenoitua neliarvoista titaaniyhdistettä ja toinen käsittely suoritetaan polykarboksyylihappohalogenidin läsnäollessa, joka sisältää kaksi samantasoista happohalogenidiryhmää liittyneenä viereisiin hiiliatomeihin.
- 7. Patenttivaatimuksen 6 mukainen menetelmä, tunnettu siitä, että polykarboksyylihappohalogenidi on ftaloyylidikloridi.
- 8. Jonkin patenttivaatimuksista 1...7 mukainen menetelmä, tunnettu siitä, että polykarboksyylihappoesteri on valittu ryhmästä, joka käsittää
- (a) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyneet monosyklisen tai polysyklisen aromaattisen renkaan orto-hiiliatomeihin, kummankin mainituista esteriryhmistä ollessa edelleen kytkeytynyt haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin,
- (b) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyne t ei-aromaattisen monosyklisen tai polysyklisen renkaan vierushiiliatomeihin ja jotka sijait-

sevat syn-konfiguraatiossa suhteessa toisiinsa, kummankin mainituista esteriryhmistä ollessa edelleen kytkeytynyt haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin, ja

- (c) polykarboksyylihappoesterit, jotka sisältävät kaksi esteriryhmää, jotka ovat liittyneet tyydyttymättömän alifaattisen yhdisteen kaksoissitoutuneisiin vierushiiliatomeihin ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa, kummankin mainituista esteriryhmistä ollessa edelleen kytkeytynyt haarautuneeseen tai haarautumattomaan ketjuhiilivetyradikaaliin.
- 9. Patenttivaatimuksen 8 mukainen menetelmä, tunnettu siitä, että polykarboksyylihappoesteri on johdettu yksiarvoisesta alkoholista, joka sisältää 1...12 hiiliatomia, ja polykarboksyylihappo on valittu ryhmästä, joka koostuu
- (a) monosyklisistä tai polysyklisistä aromaattisista yhdisteistä, jotka sisältävät 8...20 hiiliatomia ja kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen orto-hiiliatomeihin,
- (b) monosyklisistä tai polysyklisistä ei-aromaattisista yhdisteistä, jotka sisältävät 6...20 hiiliatomia ja kaksi karboksyyliryhmää, jotka ovat liittyneet rengasrakenteen vierushiiliatomeihin ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa, tai
- (c) tyydyttymättömistä alifaattisista yhdisteistä, jotka sisältävät 6...20 hiiliatomia ja kaksi karboksyyliryhmää, jotka ovat liittyneet viereisiin kaksoissidoksellisiin hiiliatomeihin ja jotka sijaitsevat syn-konfiguraatiossa suhteessa toisiinsa.
- 10. Patenttivaatimuksen 9 mukainen m netelmä, t u n n e t t u siitä, että polykarboksyylihappoesteri on di-isobutyy-liftalaatti.

11. Jonkin patenttivaatimuksista 1...10 mukainen menetelmä, tunnettu siitä, että pii-happi-hiili -sidoksen sisältävän elektronidonorin kaava on

R'''' mSiYnXp

jossa:

TR'''' on hiilivetyradikaali, joka sisältää 1...20 hiiliatomia,

Y on -OR''''' tai -OCOR''''', jossa R''''' on hiilivety-radikaali, joka sisältää 1...20 hiiliatomia,

X on vety tai halogeeni,

m on kokonaisluku, jonka arvo on 0...3,

n on kokonaisluku, jonka arvo on 1...4,

p on kokonaisluku, jonka arvo on 0...1, ja

m + n + p on 4.

- 12. Jonkin patenttivaatimuksista 1...11 mukainen menetelmä, tunnettu siitä, että alfa-olefiini on propyleeni.
- 13. Jonkin patenttivaatimuksista 1...12 mukainen menetelmä, tunnettu siitä, että alfa-olefiini, jossa on 3...8 hiiliatomia, kopolymeroidaan korkeintaan 20 mol-%:n etyleeniä kanssa toisessa polymerointireaktorissa ensimmäisen polymerointireaktorin tuotteen läsnäollessa.

Patentkrav

- 1. Förfarande för framställning av polymerer med en molekylviktsdistribution mellan 3,0 och 4,5 och ett isotaktiskt index mellan 97 och 99 %, kännet ecknatavatt förfarandet innefattar bringande av en alfa-olefin med 3...8 kolatomer i kontakt med en katalytiskt effektiv mängd av ett katalysatorsystem i en reaktor med fluidiserad bädd vid ett tryck om högst 7000 kPa och en temperatur om minst 100 °C, varvid katalysatorsystemet innefattar
- (a) en fast katalysatorkomponent, som innehåller magnesium, titan, halogenid och en polykarboxylsyraester med två estergrupper i samma plan bundna vid närliggande kolatomer, vilken katalysatorkomponent erhålls genom halogenering av en magnesiumförening med formeln MgR'R", där R' är en alkoxid- eller aryloxidgrupp och R" är en alkoxid- eller aryloxidgrupp eller halogen, med ett överskott av en halogenerad tetravalent titanförening med minst två halogenatomer i närvaro av ett halogenkolväte och en polykarboxylsyraester med två estergrupper i samma plan bundna vid närliggande kolatomer; behandling av den halogenerade produkten med ytterligare halogenerad tetravalent titanförening; tvättning av den behandlade produkten med ett inert kolväte för att avlägsna oreagerad titanförening; och tillvaratagande av den fasta produkten,
- (b) en organisk aluminiumsamkatalysator, och
- (c) en elektrondonor innehållande en kisel-syre-kol-bindning,
- vilken katalysator innehåller ett atomförhållande mellan aluminium i den organiska aluminiumsamkatalysatorn och kisel i elektrondonorn mellan 0,5:1 och 100:1, och ett atomförhållande mellan aluminium i den organiska aluminiumsamkatalysatorn och titan i den fasta katalysatorkomponenten mellan 5:1 och 300:1.
 - 2. Förfarande enligt patentkravet 1, k ä n n e t e c k n a t av att magnesiumförening n är magnesiumdialkoxid där varj

alkoxidgrupp innehåller 1...8 kolatomer.

- 3. Förfarande enligt patentkravet 2, kännetecknatav at magnesiumföreningen är magnesiumdietoxid och den halogenerade tetravalenta titanföreningen är titantetraklorid.
- 4. Förfarande enligt något av patentkraven 1...3, k ä n n e t e c k n a t av att det halogenerade kolvätet är ett aromatiskt halogenerat kolväte som innehåller 6...12 kolatomer och 1...2 halogenatomer.
- 5. Förfarande enligt patentkravet 4, k ä n n e t e c k n a t av att det halogenerade kolvätet är klorbensen.
- 6. Förfarande enligt något av patentkraven 1...5, k ä n n e t e c k n a t av att den halogenerade produkten behandlas två gånger med ytterligare halogenerad tetravalent titanförening och att den andra behandlingen utförs i närvaro av en polykarboxylsyrahalogenid, som innehåller två syrahalogenidgrupper i samma plan bundna vid närliggande kolatomer.
- 7. Förfarande enligt patentkravet 6, k ä n n e t e c k n a t av att polykarboxylsyrahalogeniden är ftaloyldiklorid.
- 8. Förfarande enligt något av patentkraven 1...7, k ä n n e t e c k n a t av att polykarboxylsyraestern är vald ur gruppen som innefattar
- (a) karboxylsyraestrar med två estergrupper som är bundna vid orto-kolatomerna i en monocyklisk eller polycyklisk aromatisk ring, varvid vardera estergrupperna ytterligare är bundna vid en kolväteradikal med förgrenad eller oförgrenad ked,
- (b) polykarboxylsyraestrar med två estergrupper som är bundna vid vicinala kolatomer i en ick -aromatisk monocyklisk eller polycyklisk ring och som ligger i syn-konfiguration i förhållande till varandra, varvid vardera estergrupperna ytterligare är bundna till en kolvät radikal med förgrenad eller

oförgrenad ked, och

- (c) polykarboxylsyraestrar med två estergrupper som är bundna vid vicinala dubbelbundna kolatomer i en omättad alifatisk förening och som ligger i syn-konfiguration i förhållande till varandra, varvid vardera estergrupperna är ytterligar bundna vid en kolväteradikal med förgrenad eller oförgrenad ked.
- 9. Förfarande enligt patentkravet 8, k ä n n e t e c k n a t av att polykarboxylsyraestern är härledd ur en monohydrisk alkohol med 1...12 kolatomer och en polykarboxylsyra vald ur gruppen som består av
- (a) monocykliska eller polysykliska aromatiska föreningar med 8...20 kolatomer och två karboxylgrupper som är bundna vid orto-kolatomer i ringstrukturen,
- (b) monocykliska eller polysykliska icke-aromatiska föreningar med 6...20 kolatomer och två karboxylgrupper som är bundna vid vicinala kolatomer i ringstrukturen och som ligger i syn-konfiguration i förhållande till varandra,
- (c) omättade alifatiska föreningar med 6...20 kolatomer och två karboxylgrupper som är bundna vid vicinala dubbelbundna kolatomer och som ligger i syn-konfiguration i förhållande till varandra.
- 10. Förfarande enligt patentkravet 9, kännetecknat av att polykarboxylsyraestern är diisobutylftalat.
- 11. Förfarande enligt något av patentkraven 1...10, k ä n n e t e c k n a t av att elektrondonorn innehåller en kisel-syre-kol-bindning med formeln

R'''' mSiYnXp

där:

R'''' är en kolvät radikal med 1...20 kolatomer, Y är -OR''''' eller -OCOR'''', där R'''' är en kolväte-

```
radikal med 1...20 kolatomer,
X är väte eller halogen,
m är ett helt tal med värdet 0...3,
n är ett helt tal med värdet 1...4,
.p är ett helt tal med värdet 0...1, och
m + n + p är 4.
```

- 12. Förfarande enligt något av patentkraven 1...12, kän netecknatavat av att alfa-olefinen är propylen.
 - 13. Förfarande enligt något av patentkraven 1...12, k ä n n e t e c k n a t av att en alfa-olefin med 3...8 kolatomer sampolymeriseras med upp till 20 mol-% etylen i en andra polymerisationsreaktor i närvaro av produkten ur den första polymerisationsreaktorn.

THIS PAGE BLANK (USPTO)