《概率论与数理统计》习题

第十九讲 点估计的评价方法 1

1. 设 $\hat{\theta}$ 是参数 θ 的无偏估计,且有 $Var(\hat{\theta}) > 0$,试证 $(\hat{\theta})^2$ 不是 θ^2 的无偏估计。

证明:

由方差的定义可知:

$$Var(\hat{\theta}) = E(\hat{\theta}^2) - E^2(\hat{\theta}) > 0.$$

且 $\hat{\theta}$ 是参数 θ 的无偏估计, 即 $E(\hat{\theta}) = \theta$. 可得:

$$E(\hat{\theta}^2) = E^2(\hat{\theta}) + Var(\hat{\theta}) = Var(\hat{\theta}) + \theta^2 > \theta^2.$$

所以, $(\hat{\theta})^2$ 不是 θ^2 的无偏估计。

2. 设 x_1, x_2, \dots, x_n 是来自于下列总体的简单样本

$$p(x;\theta) = \begin{cases} 1, \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}, \\ 0, 其他, \end{cases}$$

证明样本均值 \bar{x} 及 $\frac{1}{2}(x_{(1)}) + x_{(n)}$) 都是 θ 的无偏估计,问哪一个更为有效?

解:

由题意可知: $X \sim U(\theta - \frac{1}{2}, \theta + \frac{1}{2}), E(X) = \theta, Var(X) = \frac{1}{12}.$

可得 $E(\bar{x}) = \theta$,所以样本均值 \bar{x} 是 θ 的无偏估计,且 $Var(\bar{x}) = \frac{1}{12n}$.

接下来计算 $\frac{1}{2}(x_{(1)} + x_{(n)})$ 的均值和方差:

$$\Rightarrow Y = X - (\theta - \frac{1}{2}) \sim U(0, 1),$$

$$\exists \exists i : y_i = x_i - (\theta - \frac{1}{2}), \ i = 1, 2, \dots, n.$$

则:

$$\frac{1}{2}(x_{(1)} + x_{(n)}) = \frac{1}{2}(y_{(1)} + y_{(n)}) + \theta - \frac{1}{2}$$

又因为 $y_{(i)} \sim Be(i, n-i+1)$,所以, $E(y_{(1)}) = \frac{1}{n+1}$, $E(y_{(n)}) = \frac{n}{n+1}$.

可得:

$$E(\frac{1}{2}(x_{(1)} + x_{(n)})) = \frac{1}{2}E(y_{(1)} + y_{(n)}) + \theta - \frac{1}{2} = \theta.$$

所以 $\frac{1}{2}(x_{(1)}+x_{(n)})$ 是 θ 的无偏估计。

又因为 $y_{(n)} - y_{(1)} \sim Be(n-1,2)$,可得:

$$Var(y_{(1)}) = Var(y_{(n)}) = \frac{n}{(n+1)^2(n+2)}.$$

$$Var(y_{(n)} - y_{(1)}) = \frac{2(n-1)}{(n+1)^2(n+2)}.$$

$$Cov(y_{(1)}, y_{(n)}) = \frac{1}{2} \left(Var(y_{(1)}) + Var(y_{(n)}) - Var(y_{(n)} - y_{(1)}) \right)$$

$$= \frac{1}{(n+1)^2(n+2)}.$$

于是,

$$Var\left(\frac{1}{2}(x_{(1)} + x_{(n)})\right) = \frac{1}{4}\left(Var(y_{(1)}) + Var(y_{(n)}) + 2Cov(y_{(1)}, y_{(n)})\right)$$
$$= \frac{1}{4}\left(\frac{2n}{(n+1)^2(n+2)} + \frac{2}{(n+1)^2(n+2)}\right)$$
$$= \frac{1}{2(n+1)(n+2)}.$$

当 n>2 时,有 $\frac{1}{12n}>\frac{1}{2(n+1)(n+2)}$. 说明在此情况下, $\frac{1}{2}(x_{(1)}+x_{(n)})$ 比 \bar{x} 更有效。

3. 设从均值为 μ ,方差为 $\sigma^2 > 0$ 的总体中分布抽取容量为 n_1 和 n_2 的两独立样本, \bar{x}_1 和 \bar{x}_2 是这两个样本的均值。试证,对于任意常数 a,b(a+b=1), $Y = a\bar{x}_1 + b\bar{x}_2$ 都是 μ 的无偏估计,并确定常数 a,b 使得 Var(Y) 达到最小。

证明:

由于 $\bar{x_1}$ 和 $\bar{x_2}$ 分别为样本量 n_1 和 n_2 对应的均值,

則:
$$E(\bar{x}_1) = \mu$$
, $E(\bar{x}_2) = \mu$, $Var(\bar{x}_1) = \frac{\sigma^2}{n_1}$, $Var(\bar{x}_2) = \frac{\sigma^2}{n_2}$.

所以,

$$E(Y) = E(a\bar{x_1} + b\bar{x_2})$$

$$= aE(\bar{x_1}) + bE(\bar{x_2})$$

$$= (a+b)\mu$$

$$= \mu.$$

即 Y 是 μ 的无偏估计。

由于 a+b=1, Y 又可写成: $Y=a\bar{x_1}+(1-a)\bar{x_2}$.

$$Var(Y) = \frac{a^2 \sigma^2}{n_1} + \frac{(1-a)^2 \sigma^2}{n_2}$$
$$= \sigma^2 \left(\left(\frac{1}{n_1} + \frac{1}{n_2} \right) a^2 + \frac{1-2a}{n_2} \right).$$

对其求导,当 $a=\frac{n_1}{n_1+n_2}$ 时,Var(Y) 可达到最小值,此时 $b=\frac{n_2}{n_1+n_2}$.

第二十讲 点估计的评价方法 2

1. 设总体密度函数为 $p(x;\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0, x_1, x_2, \cdots, x_n$ 是样本. 求 $g(\theta) = 1/\theta$ 的最大似然估计. 解:

$$\begin{split} L(\theta) &= \prod_{i=1}^n \theta x_i^{\theta-1}. \\ lnL(\theta) &= nln\theta + (\theta-1) \sum_{i=1}^n lnx_i \\ &= -nlng(\theta) + \left(\frac{1}{g(\theta)} - 1\right) \sum_{i=1}^n lnx_i. \\ \frac{\partial lnL(\theta)}{\partial g(\theta)} &= -\frac{\theta}{g(\theta)} - \frac{1}{g^2(\theta)} \sum_{i=1}^n lnx_i = 0. \\ g(\hat{\theta}) &= -\frac{1}{n} \sum_{i=1}^n lnx_i. \end{split}$$

(此题也可以先求关于 θ 的 MLE, 再代入到 $g(\theta)$ 函数里)

2. 设总体 $X \sim Exp(1/\theta), x_1, x_2, \cdots, x_n$ 是样本。

- (a) 验证 θ 的矩估计和最大似然估计都是 \bar{x} ;
- (b) 验证 \bar{x} 也是 θ 的相合估计和无偏估计;
- (c) 试证明在均方误差准则下存在优于 \bar{x} 的估计。(提示:考虑 $\hat{\theta}_n = a\bar{x}$, 找均方误差最小者)

解:

(a)

因为 $X \sim Exp(1/\theta), f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}.$

 $E(X) = \theta = \bar{x}$, 所以 θ 的矩估计为 \bar{x} ;

 $lnL(\theta) = -nln\theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i$,令 $\frac{\partial lnL(\theta)}{\partial \theta} = 0$,得 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$,所以 θ 的 MLE 为 \bar{x} 。

(b)

因为 $E(\bar{x}) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \theta$,所以 \bar{x} 也是 θ 的无偏估计;

 $Var(\bar{x}) = \frac{1}{n^2} \sum_{i=1}^n Var(x_i) = \frac{\theta^2}{n}$, 当 n 趋向于正无穷时, $Var(\bar{x})$ 趋向于 0,所以 \bar{x} 也是 θ 的相合估计。

(c)

 $\diamondsuit \hat{\theta}_a = a\bar{x}$,则:

$$\begin{split} MSE(\hat{\theta}_a) &= Var(\hat{\theta}_a) + (E\hat{\theta}_a - \theta)^2 \\ &= a^2 Var(\bar{x}) + (aE(\bar{x})_a - \theta)^2 \\ &= \frac{a^2\theta^2}{n} + \theta^2(a-1)^2. \end{split}$$

 $MSE(\hat{\theta}_a)$ 关于 a 求导,当 $a=\frac{n}{n+1}$ 时, $MSE(\hat{\theta}_a)$ 达到最小,最小值为 $\frac{\theta^2}{n+1} < MSE(\bar{x})$.

- 3. 设 $x_1, x_2, ..., x_n$ 是来自正态总体 $N(\mu_1, \sigma^2)$ 的样本, $y_1, y_2, ..., y_m$ 是来自正态总体 $N(\mu_2, \sigma^2)$ 的样本.
 - (a) 利用样本 x_1, x_2, \ldots, x_n 求 σ^2 的估计;
 - (b) 利用样本 $x_1, x_2, ..., x_n, y_1, y_2, ..., y_m$ 求 σ^2 的估计;
 - (c) 请从充分性原则的角度评价这两个估计.

解:

(a)

$$L(\sigma^{2}) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} e^{-\left(\frac{\sum_{i=1}^{n} (x_{i} - \mu_{1})^{2}}{2\sigma^{2}}\right)}$$

$$lnL(\sigma^2) = -\frac{n}{2}ln2\pi - \frac{n}{2}ln\sigma^2 - \frac{\sum_{i=1}^{n} (x_i - \mu_1)^2}{2\sigma^2}$$
解得 $\hat{\sigma^2} = \frac{\sum_{i=1}^{n} (x_i - \mu_1)^2}{n}$

(b)

$$L(\sigma^2) = \frac{1}{(\sqrt{2\pi})^{n+m} (\sigma^2)^{\frac{n+m}{2}}} e^{-\left(\frac{\sum_{i=1}^n (x_i - \mu_1)^2 + \sum_{i=1}^m (y_i - \mu_2)^2}{2\sigma^2}\right)}$$

$$lnL(\sigma^{2}) = -\frac{n+m}{2}ln2\pi - \frac{n+m}{2}ln\sigma^{2} - \frac{\sum_{i=1}^{n}(x_{i} - \mu_{1})^{2} + \sum_{i=1}^{m}(y_{i} - \mu_{2})^{2}}{2\sigma^{2}}$$

解得
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \mu_1)^2 + \sum_{i=1}^m (y_i - \mu_2)^2}{n+m}$$

(c)

(b) 所得估计为充分统计量的函数, 而 (a) 所得估计不是充分统计量的函数。故从充分性原则角度评价, (b) 所得估计更优.