Machine Learning

Lecture 6

Autoencoders

Deep Autoencoders

Latent Representation

Sampling Distribution

Autoencoders

Better Alternative

Sampling Distribution

Better Alternative

Sampling Distribution

Autoencoders

Variational Autoencoders (VAEs)

Generating with VAEs

Few Definitions

Gaussian Distribution

$$\circ~z~\sim~N(\mu,~\sigma)$$

- μ mean
- \bullet σ standard deviation

Few Definitions

- Gaussian Distribution
 - $\circ~z \sim N(\mu,\,\sigma)$
 - μ mean
 - \bullet σ standard deviation

Few Definitions

- Gaussian Distribution
 - $\circ~z \sim N(\mu,\,\sigma)$
 - μ mean
 - \bullet σ standard deviation

Reparameterization Trick

- We want to use gradient descent to learn the model's parameters.
- Given z drawn from $q_{\theta}(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$
- ullet $\epsilon \sim N(0,1)$
- Now we can take derivatives of (functions of) z w.r.t. μ and σ .
- Output of $q_{\theta}(z|x)$ is vector of μ 's and vector of σ 's.

Reparameterization Trick

If
$$(\mu,\sigma)$$
 are known, $g_{\mu,\,\sigma}(\epsilon)=\mu+\sigma\odot\epsilon$ $\epsilon\sim N(0,1)$ $z=g_{\mu,\,\sigma\,(\epsilon)}$

Random/Stochastic Node

Deterministic Node

Loss Functions

Reconstruction Loss → Binary Cross Entropy Loss

$$-rac{1}{N} \sum_{i=1}^N y_i. \log{(p(y_i))} \, + \, (1-y_i). \log{(1-p(y_i))}$$

Latent Loss → **KL Divergence Loss**

$$D_{KL}(P||Q) \ = \ \int P(x) \log rac{P(x)}{Q(x)} dx$$

