Math 395

Homework 1

Due: 2/1/2024

Name: Avinash Iyer

Collaborators: Nate Hall, Gianluca Crescenzo, Ling Chen

Problem 1

Let S be the subset of $\operatorname{Mat}_2(\mathbf{R})$ be the set consisting of matrices of the form $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$.

(a) To show that S is a ring, we will show that S is a subring of the ring $Mat_2(\mathbf{R})$, by showing that S is not empty, S is closed under subtraction, and S is closed under multiplication.

To show non-emptiness, we can see that the matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is an element of S by its definition.

To show S is closed under subtraction, let $a, b, c, d \in \mathbf{R}$, and let e = a - c and f = b - d. Then,

$$\begin{bmatrix} a & a \\ b & b \end{bmatrix} - \begin{bmatrix} c & c \\ d & d \end{bmatrix} = \begin{bmatrix} a & a \\ b & b \end{bmatrix} + \begin{bmatrix} -c & -c \\ -d & -d \end{bmatrix}$$
$$= \begin{bmatrix} a + (-c) & a + (-c) \\ b + (-d) & b + (-d) \end{bmatrix}$$
$$= \begin{bmatrix} a - c & a - c \\ b - d & b - d \end{bmatrix}$$
$$= \begin{bmatrix} e & e \\ f & f \end{bmatrix},$$

which is an element of S. Thus, S is closed under subtraction.

Next, we need to show that S is closed under multiplication. Letting $a, b, c, d \in \mathbf{R}$ as before, let g = ac + ad and h = bc + bd. Then,

$$\begin{bmatrix} a & a \\ b & b \end{bmatrix} \cdot \begin{bmatrix} c & c \\ d & d \end{bmatrix} = \begin{bmatrix} ac + ad & ac + ad \\ bc + bd & bc + bd \end{bmatrix}$$
$$= \begin{bmatrix} g & g \\ h & h \end{bmatrix},$$

which is an element of S. Thus, S is closed under multiplication.

Since S is non-empty, closed under subtraction, and closed under multiplication, S is a subring of $Mat_2(\mathbf{R})$, and so is a ring.

(b) To show that $J = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ is a right identity, we multiply an arbitrary matrix in S on the right by J.

$$AJ = \begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a & a \\ b & b \end{bmatrix}$$
$$= A.$$

1

(c) Let
$$B = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$$
. Then, since

$$JB = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & a \\ b & b \end{bmatrix}$$
$$= \begin{bmatrix} a+b & a+b \\ 0 & 0 \end{bmatrix}$$
$$\neq B,$$

J is not a left identity for S.

Problem 3

Let $a \oplus b = a + b - 1$ and $a \odot b = ab - (a + b) + 2$ be defined as such on **Z**. We will show that these operations under **Z** form an integral domain.

First, we will show that \mathbf{Z} under \oplus is an Abelian group. Since \mathbf{Z} is closed under ordinary addition and subtraction, \mathbf{Z} is closed under \oplus . We can exhibit the associative property as follows:

$$a \oplus (b \oplus c) = a + (b \oplus c) - 1$$

= $a + (b + c - 1) - 1$
= $(a + b - 1) + c - 1$
= $(a \oplus b) + c - 1$
= $(a \oplus b) \oplus c$.

Additionally, 1 is an additive identity for **Z** under \oplus , as $(a \oplus 1) = a + 1 - 1 = a$. Therefore, 2 - a is the additive inverse for **Z** under \oplus , exhibited as follows:

$$a \oplus (2 - a) = a + (2 - a) - 1$$

= 1.

Finally, since $a \oplus b = a + b - 1 = b + a - 1 = b \oplus a$, the \oplus operator is commutative.

Next, we will show that **Z** under ⊙ satisfies the necessary properties for a commutative ring with identity.

Since \odot consists of regular addition, subtraction, and multiplication under \mathbf{Z} , \odot is closed under \mathbf{Z} . We will show associativity as follows. Let $a, b, c \in \mathbf{Z}$; then,

$$a \odot (b \odot c) = a(b \odot c) - (a + (b \odot c)) + 2$$

$$= a(bc - (b + c) + 2) - (a + (bc - (b + c) + 2)) + 2$$

$$= abc - ab - ac + 2a - a - bc + b + c - 2 + 2$$

$$= abc - ab - ac - bc + a + b + c.$$

and

$$(a \odot b) \odot c = (ab - (a + b) + 2) \odot c$$

$$= (ab - (a + b) + 2)c - (ab - (a + b) + 2 + c) + 2$$

$$= abc - ac - bc + 2c - ab + a + b - 2 - c + 2$$

$$= abc - ab - ac - bc + a + b + c,$$

so

$$(a \odot b) \odot c = a \odot (b \odot c).$$

We will show that \odot is distributive over \oplus as follows:

$$a \odot (b \oplus c) = a \odot (b + c - 1)$$

$$= a(b + c - 1) - (a + (b + c - 1)) + 2$$

$$= ab + ac - a - a - b - c + 1 + 2$$

$$= (ab - (a + b) + 2) + (ac - (a + c) + 2) - 1$$

$$= (a \odot b) \oplus (a \odot c)$$

$$(a \oplus b) \odot c = (a + b - 1) \odot c$$

$$= (a + b - 1)c - (a + b - 1 + c) + 2$$

$$= ac + bc - c - a - b - c + 1 + 2$$

$$= (ac - (a + c) + 2) + (bc - (b + c) + 2) - 1$$

$$= (a \odot c) \oplus (b \odot c)$$

To show commutativity, we can see that $a \odot b = ab - (a+b) + 2 = ba - (b+a) + 2 = b \odot a$. Additionally, we can show that 2 is a multiplicative identity under \odot as follows:

$$a \odot 2 = (a)(2) - (a+2) + 2$$

= $2a - a - 2 + 2$
= a ,

meaning \odot is closed, associative, distributive, commutative, and has identity.

In order to show that $(\mathbf{Z}, \oplus, \odot)$ is an integral domain, we must show that this commutative ring with identity has no zero divisors (i.e., there is no number not equal to 1 that yields 1 when multiplied under \odot). Suppose toward contradiction that $a, b \neq 1$ and $a \odot b = 1$. Then,

$$1 = a \odot b$$

$$1 = ab - (a+b) + 2$$

$$1 = ab - a - b + 2$$

$$0 = ab - a - b + 1$$

$$0 = a(b-1) - (b-1)$$

$$0 = (b-1)(a-1),$$

meaning a = 1 or b = 1, and we have a contradiction.

Therefore, $(\mathbf{Z}, \oplus, \odot)$ is a commutative ring with identity without zero divisors, meaning it is an integral domain.

Problem 4

Let R be a ring, and $Z(R) = \{a \mid ar = ra, \text{ for all } r \in R\}$. We will prove that Z(R) is a subring of R.

To show Z(R) is a subring of R, we will show that Z(R) is non-empty, closed under subtraction, and closed under multiplication. To start, we can see that $0_R \in Z(R)$, as $(0_R)(r) = (r)(0_R) = 0_R$. Therefore, Z(R) is nonempty.

Let $a, b \in Z(R)$. We will show that $a - b \in Z(R)$. Since $a \in Z(R)$, for any $r \in R$, it is the case that ar = ra. Subtracting br from both sides, we have ar - br = ra - br. However, since $br \in Z(R)$, it is the case that br = rb, meaning we have ar - br = ra - rb. Using the distributive property of multiplication, we have (a - b)r = r(a - b), meaning $a - b \in Z(R)$, and Z(R) is closed under subtraction.

Let $a, b \in Z(R)$. We will show that $ab \in Z(R)$. Since $b \in Z(R)$, for any $r \in R$, it is the case that br = rb. Multiplying a, where $a \in Z(R)$, on the left, we have a(br) = a(rb). Using the associative property of multiplication, we have (ab)r = (ar)b. Finally, since $a \in Z(R)$, we have ar = ra, meaning (ab)r = (ra)b, and using the associative property once again, we have (ab)r = r(ab). Thus, $ab \in Z(R)$, and Z(R) is closed under multiplication.

Since Z(R) is non-empty, closed under subtraction, and closed under multiplication, Z(R) is a subring of R.

Problem 6

Let S and T be subrings of R.

(a) We will show that $S \cap T$ is a subring of R. We will show that $S \cap T$ is non-empty, closed under subtraction, and closed under multiplication. First, since the additive identity is an element of both S and T, the additive identity is in $S \cap T$, meaning $S \cap T$ is non-empty.

Let $a, b \in S \cap T$. Since S is a subring, S is closed under subtraction, meaning $a - b \in S$. Additionally, since T is a subring, $a - b \in T$. Therefore, since $a - b \in S$ and $a - b \in T$, it is the case that $a - b \in S \cap T$, meaning $S \cap T$ is closed under subtraction.

Let $a, b \in S \cap T$. Since S is a subring, S is closed under multiplication, meaning $ab \in S$. Additionally, since T is a subring, T is closed under multiplication, meaning $ab \in T$. Since $ab \in S$ and $ab \in T$, it is the case that $ab \in S \cap T$, meaning $S \cap T$ is closed under multiplication.

(b) Consider the subrings $S=2\mathbf{Z}$ and $T=5\mathbf{Z}$ of the ring $R=\mathbf{Z}$. The union, $S\cup T$, is not closed under addition, as for $a=2\in S\cup T$ and $b=5\in S\cup T$, $a+b=2+5=7\notin S\cup T$, meaning $S\cup T$ cannot be a subring of \mathbf{Z} .