1ACA RM 1,54109

757

NACA

RESEARCH MEMORANDUM

EFFECT OF A WING LEADING-EDGE FLAP AND CHORD-EXTENSION

ON THE HIGH SUBSONIC CONTROL CHARACTERISTICS OF A

SPOILER-SLOT-DEFLECTOR CONTROL LOCATED

AT TWO SPANWISE POSITIONS

By Robert F. Thompson and Robert T. Taylor

Langley Aeronautical Laboratory Langley Field, Va.

CLASSIFIED DOCUMENT

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

November 19, 1954

NACA RM L54I09

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS/

RESEARCH MEMORANDUM

EFFECT OF A WING LEADING-EDGE FLAP AND CHORD-EXTENSION
ON THE HIGH SUBSONIC CONTROL CHARACTERISTICS OF A

SPOILER-SLOT-DEFLECTOR CONTROL LOCATED

AT TWO SPANWISE POSITIONS

By Robert F. Thompson and Robert T. Taylor

SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of a wing leading-edge modification on the effectiveness of a spoiler-slot-deflector control. The control was tested on one semispan of a sting-mounted wing-fuselage model having a wing of aspect ratio 4, taper ratio 0.3, 450 sweepback, and NACA 65A006 airfoil sections. The wing leading-edge modification was the optimum configuration from a previous investigation and consisted of a chordextension over the outboard 35 percent of the semispan in combination with a full-span leading-edge flap deflected 60. The spoiler-slotdeflector control having equal spoiler and deflector projection was also chosen on the basis of a previous investigation. The control spanned 44 percent of wing semispan and was tested at two spanwise locations. A few comparative tests were made with the spoiler part of the control used as an unvented flap-type spoiler. Control projections up to 10 percent of the local wing chord were tested through an angle-of-attack range which varied with Mach number and a Mach number range from 0.40 to 0.94. Complete results are presented in tabular form as increments in aerodynamic coefficients due to control projection. A representative part of the data is presented graphically, and results are discussed on the basis of these data.

Modifying the wing leading edge generally had a beneficial effect on the static lateral control characteristics. On both the plain and modified wing, the spoiler-slot-deflector control was effective in producing rolling-moment coefficients over a greater angle-of-attack range than the plain flap-type spoiler and, in general, both types of controls were more effective when located at the inboard spanwise position. Except

for pitching moment, the increment in aerodynamic coefficient varied fairly regularly with control projection and the general shape of the curves was little affected by wing leading-edge modification.

INTRODUCTION

Detailed wind-tunnel investigations have shown that, for certain thin sweptback wings, leading-edge separation combines with a spanwise pressure gradient to create a vortex-type flow over most of the lift range. This flow can result in undesirable static longitudinal stability characteristics for certain aspect ratios and can lead to the objectionable characteristic termed "pitch-up" found in many current airplane designs having thin sweptback wings. A detailed discussion of this flow phenomenon is given in reference 1. Outboard leading-edge chord-extensions have been effective in improving the longitudinal-stability characteristics of wings of this type (ref. 2). In addition, appreciable improvement in the lift-drag ratio for thin sweptback wings up to Mach number of 0.90 was obtained with a deflected leading-edge flap (refs. 3 and 4). The investigation of reference 5, therefore, was made to determine to what extent these gains in longitudinal stability and lift-drag ratio could be combined at high subsonic speeds. For the model investigated, a leadingedge chord-extension over the outboard 35 percent of the semispan in combination with a full-span leading-edge flap deflected 60 gave best results from overall considerations of stability and performance. The purpose of the present investigation was to determine the effect of this Wing leading-edge modification on the control characteristics of a spoiler control.

The control tested was chosen on the basis of the investigation made in reference 6. Results of reference 6 indicated that for speeds up to a Mach number of 0.91, a flap-type spoiler-slot-deflector control was effective in producing rolling moments over a greater angle-of-attack range than an unvented spoiler alone. Since flap-type spoilers are desirable on thin wings from a physical standpoint, the present investigation was made primarily with this flap-type spoiler-slot-deflector control. A few comparative tests were made with the spoiler part of the control used as a plain flap-type spoiler.

The present investigation was made on the wing-fuselage model used in reference 5 to determine the effects of the optimum wing leading-edge modification obtained in reference 5 on the control characteristics of a flap-type spoiler-slot-deflector control located at two spanwise positions. The wing had an aspect ratio of 4, a taper ratio of 0.3, 45° of sweepback of the quarter-chord line, and streamwise NACA 65A006 airfoil sections. Tests were made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.40 to 0.94 and an angle-of-attack range from -2°

to 24° at the lower speeds and -2° to 10° at a Mach number of 0.94. Complete incremental force and moment coefficients due to control projection are listed in tabular form and a representative part of the data is presented graphically.

SYMBOLS

The forces and moments measured on the model are presented about the wind axes which, for the conditions of these tests (zero yaw), correspond to the stability axes. The origin of the axes was in the plane of symmetry at a longitudinal position corresponding to the projection of the quarter-chord point of the wing mean aerodynamic chord (fig. 1).

All force and moment coefficients presented are based on the plan form of the basic wing without chord-extensions. The area of the chord-extensions was 3.8 percent of the basic wing area. Incremental effects due to control projection were produced by a control on only the right semispan of the complete wing.

-	<u> </u>
$\mathtt{C}_{\mathbf{L}}$	lift coefficient, Lift/qS
$C_{\mathbb{D}}$	drag coefficient, Drag/qS
C_{m}	pitching-moment coefficient, Pitching moment/qSc
Cl	rolling-moment coefficient, Rolling moment/qSb
$\mathtt{C}_{\mathtt{n}}$	yawing-moment coefficient, Yawing moment/qSb
$\mathtt{C}_{\mathtt{Y}}$	lateral-force coefficient, Lateral force/qS (positive to right)
Δ	prefix signifying increment of coefficient due to control projection
q	free-stream dynamic pressure, $\frac{1}{2}\rho V^2$, lb/sq ft
S	wing area before leading-edge modification, 2.25 sq ft
ъ	wing span, 3 ft

mean aerodynamic chord of basic wing, 0.823 ft

c local wing chord of basic wing, ft

h local maximum height of control above wing surface, ft

- R Reynolds number based on c
- M free-stream Mach number
- V free-stream velocity, ft/sec
- ρ mass density of air, slugs/cu ft
- y_i spanwise location of inboard end of control, measured perpendicular to plane of symmetry, ft
- δ control projection, h/c
- angle of attack of fuselage center line and wing-chord line, deg

Subscripts:

- s spoiler, part of control deflected from upper surface
- d deflector, part of control deflected from lower surface
- avg average

MODEL AND APPARATUS

A drawing of the wing-fuselage model is given in figure 1 and a photograph of the model mounted in the tunnel is shown as figure 2. Ordinates of the fuselage are given in table 1.

The wing had 45° of sweepback referred to the quarter-chord line, an aspect ratio of 4, a taper ratio of 0.3, and NACA 65A006 airfoil sections parallel to the plane of symmetry. The wing was made of solid aluminum alloy and the stiffness was reduced in providing for the leading-edge flap and the slot for the control.

Provision for the wing leading-edge modification was made by cutting the wing along the 20-percent-chord line, and leading-edge flap angles of 0° and 6° were obtained with preset steel inserts. After setting a desired flap angle, the groove in the wing was filled and finished flush to the wing surface. The chord-extension was made by using a larger insert to extend the nose section forward 0.10c. The two segments of the airfoil (nose and trailing-edge sections) were joined by a smooth fairing. Angular distortion of the flap and chord-extension under load was checked analytically and found to be negligible.

The spoiler-slot-deflector control consisted of the following: a flap-type spoiler with the hinge line along the upper-surface 55-percentchord line and extending 15 percent of the wing chord rearward, a flaptype deflector with the hinge line along the lower-surface 70-percentchord line and extending 15 percent of the wing chord forward, and a chordwise opening (slot) between the two hinge lines equal to the spoiler and deflector in span except for a narrow stiffening web at the midpoint of the control. For the plain flap-type spoiler, the deflector was set at zero projection and effectively sealed the slot through the wing. The controls spanned 44 percent of the wing semispan and were tested on the right wing at spanwise stations of $\frac{y_1}{b/2} = 0.25$ and 0.47. Control projection was obtained with interchangeable plates preset to the desired spoiler or deflector projection. At zero projection, the spoiler and deflector maintained the original airfoil contour. The leading edge of the deflector was sharpened to facilitate flow through the control slot at low projections. Spoiler projection was approximately equal to deflector projection for all tests with the spoiler-slot-deflector control.

CORRECTIONS

Blockage corrections were determined by the method of reference 7 and were applied to the Mach numbers and dynamic pressures. Jet-boundary corrections, applied to the angle of attack and drag, were calculated by the method of reference 8. The angle of attack has been corrected for deflection of the sting support system under load. The basic model data (fig. 4) were obtained from reference 5 and therefore have the corrections of reference 5 applied.

Control projections were measured in the wind-off condition and were believed to be little affected by aerodynamic load.

TESTS

The sting-supported wing-fuselage model was tested in the Langley high-speed 7- by 10-foot tunnel. Data were obtained for each model configuration by setting the tunnel Mach number and then rotating the model through an angle-of-attack range. Tests were made through a Mach number range from 0.40 to 0.94. The angle-of-attack range varied from -20 to approximately 24° at the lower test speeds and from -20 to about 10° at M = 0.94. The angle of attack at the higher Mach numbers was limited by tunnel choking conditions.

The spoiler-slot-deflector controls were tested with essentially equal spoiler and deflector projections, through a projection range up to about 10 percent of the local wing chord. The plain flap-type spoiler was tested only at about 8-percent-chord projection.

The variation of average test Reynolds number with Mach number based on the wing mean aerodynamic chord is given in figure 3.

PRESENTATION OF DATA

Incremental aerodynamic coefficients due to control projection for the complete investigation are presented in tabular form as follows:

Table (*)	Type of control	Spanwise location of control, $\frac{y_i}{b/2}$	М	δ, h/c	æ
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Plain flap-type spoiler Spoiler-slot-deflector Plain flap-type spoiler Spoiler-slot-deflector	0.25	0.40 .60 .70 .81 .85 .90 .94 Range .40 .60 .70 .81 .85 .90 .94 Range	Range 0.08 Range	Range Range Range

*Parts (a) of the tables present data for the plain wing and parts (b) for the wing with the modified leading edge.

Lift, drag, and pitching-moment characteristics of the model with the control undeflected are presented in figure 4. These data were obtained from reference 5 to show the model characteristics with and without leading-edge modification since only incremental effects due to control projection were obtained in the present investigation and are presented without discussion.

A representative part of the test data is plotted in figures 5 to 11 to present graphically the general results of the investigation. The relative roll effectiveness of the spoiler-slot-deflector control is compared with the plain flap-type spoiler in figure 5.

The effect of modifying the wing leading edge on the spoiler-slot-deflector-control characteristics is presented in figures 6 to 9. Figures 10 and 11 present the effect of spanwise location on the aerodynamic effectiveness of the spoiler-slot-deflector control on the wing with the modified leading edge.

The values given for angle of attack $\alpha_{\rm avg}$ in figures 6, 7, and 10 are averages of the angles of attack at which the test points were obtained. The absolute magnitude in angle-of-attack difference between any two appropriate test points is small, as shown in the tables, and results from the jet-boundary and sting-deflection corrections.

RESULTS AND DISCUSSION

Results of this investigation are discussed on the basis of data presented graphically in figures 5 to 11. These data were arbitrarily chosen as being representative. It should be emphasized, however, that complete results are presented in tables 2 to 17.

Comparison Between Plain Flap-Type Spoiler

and Spoiler-Slot-Deflector Control

Results presented in figure 5 for 8-percent control projection at M = 0.85 indicate that on both the plain and modified wing and at both spanwise positions the spoiler-slot-deflector control was effective in producing rolling moments over a greater angle-of-attack range than the unvented spoiler alone. These results for the plain wing are in general agreement with reference 6. At both spanwise positions, the spoiler-slot-deflector control produced increments in rolling-moment coefficient throughout the test angle-of-attack range, whereas the plain flap-type spoiler was relatively ineffective above $\alpha \approx 10^{\circ}$. Modifying the wing leading edge increased the effectiveness of both types of controls, especially at angles of attack greater than about 4° . In general, both types of controls gave higher static roll effectiveness when located at the inboard spanwise position.

Effect of Wing Leading-Edge Modification on the

Variation of Control Characteristics With Control Projection

The effect of modifying the wing leading edge on the variation of incremental aerodynamic coefficients with spoiler-slot-deflector projection is given for the two spanwise control positions in figures 6 and 7. Modifying the wing leading edge had little effect on the general shape of the curves except for drag and pitching-moment coefficient at the higher test angles of attack.

Rolling-moment coefficient. The control produced increments in rolling-moment coefficient that were in the proper direction for all test conditions and, in general, ΔC_l increased fairly regularly with control projection (see figs. 6(a) and 7(a)). Control static roll effectiveness was generally increased by modifying the wing leading edge and, in general, the increment in ΔC_l due to leading-edge modification increased with increasing control projection within the test range. Mach number had little effect on the control rolling-moment coefficient.

Yawing-moment coefficient. Incremental yawing-moment coefficient due to control projection was generally in a favorable direction, and the variation with control projection was fairly regular for angles of attack less than about 16° (figs. 6(b) and 7(b)). Modifying the wing leading edge generally had little effect but in some cases caused a small increase in ΔC_n with control projection. Above $\alpha \approx 16^\circ$, results were somewhat erratic and, in general, there was little variation in ΔC_n with control projection. Mach number had little effect on the control yawing-moment coefficient.

Lift coefficient.- Incremental lift coefficient, in general, decreased fairly regularly with increasing control projection, and the magnitude of $\Delta C_{\rm L}$ for a given control projection was, in most cases, little affected by modifying the wing leading edge (figs. 6(c) and 7(c)). The increment in negative lift coefficient due to control projection was generally larger

for the inboard control
$$\left(\frac{y_{1}}{b/2} = 0.25\right)$$
.

Drag coefficient.- Incremental drag coefficient increased fairly regularly with increasing control projection for angles of attack up to about 12°, and above $\alpha\approx 12^\circ$ the variation was somewhat erratic (figs. 6(d) and 7(d)). Modifying the wing leading edge had little effect on ΔC_D due to control projection at zero angle of attack and generally increased the drag coefficient due to control projection at angles of attack greater than zero.

Pitching-moment coefficient.— Projecting the control generally gave a positive increase in pitching-moment coefficient, and $\Delta C_{\rm m}$ usually increased with increasing control projection although the variation was somewhat erratic throughout the test range (figs. 6(e) and 7(e)). Modifying the wing leading edge had a larger effect on the pitching-moment characteristics of the outboard control, and, in general, the effect was to increase the incremental pitching-moment coefficient due to control projection. Increasing the Mach number in the angle-of-attack range from about 4° to 8° resulted in a large positive increase in $\Delta C_{\rm m}$ for certain inboard control projections.

Effect of Wing Leading-Edge Modification on the Variation

of the Control Characteristics With Angle of Attack

The effect of modifying the wing leading edge on the variation of incremental rolling- and yawing-moment coefficients with angle of attack is presented for one control projection and the two spanwise control positions in figures 8 and 9. Modifying the wing leading edge did not change the general variation of ΔC_l and ΔC_n with angle of attack and had only a small effect on the absolute magnitude of incremental yawing-moment coefficient. Incremental rolling-moment coefficient was generally increased by leading-edge modification with the increase being larger in the angle-of-attack range from about $6^{\rm O}$ to $16^{\rm O}$. The variation of ΔC_l and ΔC_n with angle of attack was such that for both control spanwise positions the ratio of ΔC_l to ΔC_n was much larger at the higher angles of attack.

Effect of Control Spanwise Position on the Variation of Control Characteristics With Control Projection

The effect of control spanwise position on the variation of incremental aerodynamic coefficients with control projection on the wing with the modified leading edge is shown in figure 10. The general shape of the curves of Ω_l and Ω_n with control projection was little affected by spanwise position, but there were erratic effects on the variation of Ω_n with control projection. Generally speaking, at zero angle of attack the effectiveness of the control in producing increments in rolling-moment coefficient was not affected by control spanwise position, whereas in the angle-of-attack range from approximately 4° to 12° the inboard control

$$\left(\frac{y_1}{b/2} = 0.25\right)$$
 was more effective. The outboard control $\left(\frac{y_1}{b/2} = 0.47\right)$

gave larger increments in yawing-moment coefficient for a given control projection throughout the test range. In general, the outboard control also produced larger increments in pitching-moment coefficient although an increase in Mach number tended to reverse this effect in the angle-of-attack range from about 4° to 8° .

Effect of Control Spanwise Position on the Variation

of Control Characteristics With Angle of Attack

The effect of control spanwise position on the variation of ΔC_l and ΔC_n with angle of attack for one control projection on the wing with the modified leading edge is presented in figure 11. The general variation of ΔC_l and ΔC_n with angle of attack was unaffected by control spanwise location. The largest effect of control spanwise location on control rolling effectiveness was in the angle-of-attack range from approximately 4^O to 14^O where the inboard control was more effective. The outboard control produced higher increments of yawing-moment coefficient throughout the test range.

CONCLUSIONS

A wind-tunnel investigation of a wing-fuselage model was made through an angle-of-attack range to a Mach number of 0.94. The purpose was to determine the effects of a wing leading-edge modification on the incremental aerodynamic coefficients due to control projection of a spoiler-slot-deflector control located at two spanwise positions. A comparison was also made with the spoiler part of the control used as a plain flap-type spoiler. Results indicate the following conclusions:

- 1. Modifying the wing leading edge generally had a beneficial effect on the static lateral control characteristics of both the spoiler-slotdeflector and the plain flap-type spoiler controls.
- 2. On both the plain and modified wing, the spoiler-slot-deflector control was effective in producing rolling-moment coefficients over a greater angle-of-attack range than the plain flap-type spoiler and, in general, both types of control gave higher roll effectiveness when located at the inboard spanwise position.
- 3. The incremental yawing-moment coefficient due to spoiler-slot-deflector projection was generally in a favorable direction and higher for the outboard control.

- 4. For the spoiler-slot-deflector control, there were some fairly large erratic changes in incremental pitching-moment coefficient with either wing leading-edge modification or control projection.
- 5. With the exception of pitching moment, the increment in aerodynamic force and moment coefficients varied fairly regularly with control projection, and the general shape of the curves was little affected by wing leading-edge modification.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 27, 1954.

REFERENCES

- 1. Furlong, G. Chester, and McHugh, James G.: A Summary and Analysis of the Low-Speed Longitudinal Characteristics of Swept Wings at High Reynolds Number. NACA RM L52D16, 1952.
- 2. Goodson, Kenneth W., and Few, Albert G., Jr.: Effect of Leading-Edge Chord-Extensions on Subsonic and Transonic Aerodynamic Characteristics of Three Models Having 45° Sweptback Wings of Aspect Ratio 4. NACA RM L52K21, 1953.
- 3. Spreemann, Kenneth P., and Alford, William J., Jr.: Small-Scale Transonic Investigation of the Effects of Full-Span and Partial-Span Leading-Edge Flaps on the Aerodynamic Characteristics of a 50° 38' Sweptback Wing of Aspect Ratio 2.98. NACA RM L52E12, 1952.
- 4. Alford, William J., Jr., and Spreemann, Kenneth P.: Small-Scale Transonic Investigation of a 45° Sweptback Wing of Aspect Ratio 4 With Combinations of Nose-Flap Deflections and Wing Twist. NACA RM L52Kl3, 1953.
- 5. Spreemann, Kenneth P., and Alford, William J., Jr.: Investigation of the Effects of Leading-Edge Chord-Extensions and Fences in Combination With Leading-Edge Flaps on the Aerodynamic Characteristics at Mach Numbers From 0.40 to 0.93 of a 45° Sweptback Wing of Aspect Ratio 4. NACA RM L53A09a, 1953.
- 6. Vogler, Raymond D.: Wind-Tunnel Investigation at High Subsonic Speeds of a Spoiler-Slot-Deflector Combination on an NACA 65A006 Wing With Quarter-Chord Line Swept Back 32.6°. NACA RM L53D17, 1953.
- 7. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM A7B28.)
- 8. Gillis, Clarence L., Polhamus, Edward C., and Gray, Joseph L., Jr.: Charts for Determining Jet-Boundary Corrections for Complete Models in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. (Formerly NACA ARR L5G31.)

TABLE 1 .- FUSELAGE ORDINATES

Basic fineness ratio 12, actual fineness ratio 9.8 achieved by cutting off rear portion of body

Ordinates, pe	rcent length
Station	Radius
0 .61 .91 1.52 3.05 6.10 9.15 12.20 18.29 24.39 30.49 36.59 42.68 48.78 54.88 60.98 67.07 73.17 79.27 85.37 91.46 100.00	0 .28 .36 .52 .847 1.97 2.40 3.16 3.25 4.90 4.90 4.34 4.31 3.35
Leading-edge re	dius = 0.00061

(a) Plain leading edge.

Table 2. Incremental aerodynamic coefficients. $y_{i/b/2}$ = .25 M = .40

δ_s	δ_d	α	ΔC_L	ΔC_D	ΔCm	ΔC_{z}	ΔC_n	ΔC_{Y}
00000000000000000000000000000000000000	.031 .031 .031 .031 .031 .031 .031 .031	- 2.06 2.040 4.115 80.238 124.339 146.442 180.45	0436 0482 0477 0613 05635 0635 01445 0021 0526 0183 0084	.0131 .0112 .0097 .0057 .0024 00051 0041 00042 0148 0037	.0054 .0078 .0114 .0114 .0064 .0142 .0148 .0089 .0028 .0028	.0035 .0053 .0071 .0083 .0175 .0187 .00760 .0046	.0036 .0034 .0039 .0028 .0018 .0013 0004 0015 0020 0021	.0030 0031 0030 0019 00030 .00030 .00040 .00040 .00041
049 049 049 049 049 049 049 049 049	. 0 4 4 9 . 0 4	- 3.06 - 0.04 4.10 6.11 10.28 12.35 14.35 16.45 18.45 23.50	0541 0726 0726 0812 0759 0792 0792 0360 0041 0395 037	.0227 .0312 .0190 .0154 .0113 .0033 -0004 .0009 -0008 .0244 -0086 -0049 -0030	.0068 .0107 .0146 .0175 .0199 .0107 .0138 .0107 .0107 .0086 .0039 .0068	.0083 .0111 .0135 .0169 .0150 .0157 .0126 .0126 .0126 .0074 .0074	.0067 .0069 .0048 .0035 .0026 .0006 00014 0021 0023	0098 0098 0075 0038 0038 0038 0035 0035
800 800 800 800 800 800 800 800 800	.079 .079 .079 .079 .079 .079 .079 .079	2.07 2.03 4.03 6.14 8.20 10.33 14.36 16.45 20.47 23.46	U9 24 10 73 12 32 13 15 7 13 5 9 13 59 10 60 07 68 04 78 01 34 01 34	.0491 .0479 .0448 .0406 .0325 .0231 .0114 .0094 .0094 .0044 0098 .0039	.0253 .0292 .0339 .0375 .0406 .0357 .0295 .0278 .0242 .0171 .0128 .0175	0176 02349 02349 02399 02399 02281 02239 0158 00158 00086	.0126 .0123 .0116 .0103 .0080 .0062 .0031 -0002 -0014 0018	03389 03399 03599 03599 02669 02395 01382 001382 00315
9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.103 .103 .103 .103 .103 .103 .103 .103	- 2.08 - 2.00 6.11 8.11 10.23 12.25 14.34 16.40 18.43 20.47	1327 1482 1730 1962 1954 1900 1703 1359 0840 1053 0876	.0691 .0677 .0652 .0482 .0342 .0218 .0135 .0086 .0116 0033 0118	.0338 .0299 .0268 .0214 .0314	.0219 .03629 .03991 .033867 .033123 .023763 .02188 .01511	.0182 .0178 .0171 .0131 .0099 .0043 .0043 .00028 0001	0275 0336 0357 0348 0245 0214 0169 00066 .0088

(b) Modified leading edge.

Table 2. Concluded.

Table 2.	Concludea.					
δ_s δ_d	a /	C_L ΔC		ΔC_z	ΔC_n	$\Delta C_{\mathbf{y}}$
.011 .011 .011 .011	16.39 .0 18.44 .0 20.460	335 .00 323 .00 413 .00 49300 52700	33 .0017 12 .0008 12 .0008 12 .00017 13 .00017 15 .00011 15 .00011 16 .00011 17 .00011 18	.0023 .0013 .0014 .0010	.0009 .0010 .0008 .0007 .0005 .0001 .0001 -0010 -0010 -0014 -0021	00 8 5 00 9 6 00 7 3 00 6 4 8 00 4 9 00 3 7 00 00 2 00 00 3 7 00 00 3 7
.029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031	2 02 -0 2.04 -0 4.07 -0 6.15 -0 10.26 -0 12.30 -0 14.36 -0 16.39 -0 18.43 -0 20.45 -0	022 .01 582 .01 577 .01 670 .00 678 .00 678 .00 678 .00 6721 .00 6777 .00 6777 .00 6773 .00 675 .00 675 .00 676 .00	17 .0007 77 .00071 56 .00093 1 .00053 47 .00044 8300032 76600032 310015	.0045 .0051 .0036 .0024	.0031 .0037 .0037 .0022 .0016 .0010 -0003 -0003 -00017 -0019 -0020	0074 0096 0096 0083 0073 0065 0069 0049 0025 0001
.049 .049 .049 .049 .049 .049 .049 .049	020 2.040 4.100 6.130 10.260 12.300 14.360 16.42 .0 18.450	0646 .02 0397 .02 0585 .02 0536 .03 0776 .01 0776 .01 0776 .00 0746 .00 0746 .00 0746 .00 0746 .00 0746 .00 0746 .00 0746 .00 0746 .00	34 .0072 09 .01173 63 .01175 0126 00 .0080 0056 00056 00069	.0054 .0123 .0156 .0175 .0200 .0205 .0183 .0165 .0099 .00965 .0069	.0064 .0058 .0058 .0046 .0034 .0014 .0008 0008 0032 0032	0249 0241 0237 0240 02198 01198 0119 0061 0060
.080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079	05	1325 .05 1470 .04 1698 .04 1981 .03 1703 .03 1703 .03 1399 .00 0864 -00 03171 -00 0962 -02	184 .0238 181 .0338 184 .0353 182 .0371 100 .0270 1009 .0167 1047 .0132 10174	.0215 .02339 .0313 .03457 .03552 .0215 .01166 .01118	.0128 .0120 .0105 .0091 .0069 .0045 .0007 0029 0037	0349 0373 0388 0348 0318 0318 00118 00118
.096 .103 .096 .103	071 4.033 6.093 10.201 12.271 14.311 16.371 18.403	16,46 .07 1720 .06 1996 .06 2387 .04 2250 .03 1771 .02 1412 .01 1002 .00 10952 .01 0729 .03	.0383 .0465 .0494 .25 .0494 .25 .0484 .25 .0480 .27 .0351 .0351 .0352 .0352 .0352 .0352	.0264 .0288 .0374 .0407 .0440 .0435 .0376 .0293 .0294 .0173	.0182 .0179 .0166 .0148 .0120 .0096 .00069 .0007 0008	0467 0450 0461 0474 04436 0320 0211 0161 0065

Table 3. Incremental aerodynamic coefficients $V_{b/2} = .25 \text{ M} = .60$

δ_s	δ_d	a	ΔC_L	roaynam.				
US		. <i>u</i>	2162	ΔC_D	$\triangle C_m$	ΔC_{z}	ΔC_n	1 Cy
. 029 . 029 . 029 . 029 . 029 . 029 . 029 . 029 . 029 . 029	.031 .031 .031 .031 .031 .031 .031 .031	- 2.08 01 2.07 4.16 6.25 8.35 10.45 14.59 16.64 20.64 23.69	0377 0485 0485 0554 0452 0452 0335 0335 0335 0336 0236	.0136 .0126 .0104 .0049 .0038 .0010 0021 0055 0074 0029	.0031 .0067 .0097 .0136 .0110 .0172 .0131 .0115 .0071 .0027 .0049	.0028 .0049 .0049 .0071 .0086 .0075 .0115 .0079 .0057 .0053 .0024	.0036 .0034 .0022 .0012 .0011 0010 0015 0015 0020 0052	003; 004; 004; 003; 000; 000; .003; .003; .005; .014;
049 049 049 049 049 049 049 049 049	. 0 4 9 . 0 4 9	2.09 2.026 4.14 6.23 8.43 10.59 16.63 18.65 20.69	0503 0670 0964 0892 0712 0575 0374 02374 0237	.0236 .0228 .0204 .0151 .0109 .0249 .0007 00028 0056 0057	.0043 .0095 .0147 .0213 .0212 .0130 .0118 .0109 .0036 .0051	.0074 .0100 .0136 .0171 .0174 .0145 .0169 .0181 .0098 .0081 .0034 .0063	.0065 .0063 .0054 .0031 .0021 0001 0007 0021 0016 0016	0090 0114 0112 0061 0033 0004 .0039 .0076 .0119
080 080 080 080 080 080 080 080 080	.079 .079 .079 .079 .079 .079 .079 .079	2.10 2.04 4.12 6.32 8.30 10.50 14.56 16.63 20.65 23.70	0963 1158 1307 1518 1417 1178 0862 0731 0490 0237 0237	.0477 .0472 .0442 .0381 .0304 .0201 .0127 .0126 .0025 .0027 0024	.0241 .0302 .0352 .0420 .0425 .0329 .0123 .0163 .0142 .0192	.0169 .0214 .0252 .0295 .0319 .0354 .0254 .0160 .0127 .0091	.0124 .0115 .0099 .0079 .0054 .0013 .0001 0005 0004 0017	0260 0284 0301 0305 0279 0199 0198 0091 0045 0007
096 096 096 096 096 096 096 096 096 096	.103 .103 .103 .103 .103 .103 .103 .103	- 2.12 - 2.05 2.05 4.10 6.19 10.38 12.45 16.61 18.63 23.69	1211 1434 1637 1877 2037 1022 11389 1116 0739 0629 0654	. 0673 . 0654 . 0652 . 0569 . 0469 . 0328 . 0236 . 0167 . 0100 . 0007 . 00045	.0268 .0331 .0392 .0476 .0528 .0421 .0276 .0313 .0281 .0237 .0334 .0334	.0188 .0238 .02391 .0348 .03565 .0374 .0239 .0169 .0169	.0176 .0171 .0167 .0126 .0091 .0094 .00041 .0023 .00015 0008	0350 0348 0356 0373 0273 0230 0156 0041 .0029 .0035

(b) Modified leading edge.

	Table	3. Conclu	uded.				4.0	4.0
δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔCz	ΔC_n	△C _Y
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.11 002 2.07 4.15 6.24 8.33 10.41 12.54 16.59 18.68 20.68 23.66	0345 0366 0352 0342 03817 03551 01531 0123 0123 00123	.0052 .0040 .0028 .0016 .00164 0062 0062	.0047 .00341 .00352 .00078 .00066 .000635 -000437 .00064	.0031 .0027 .0045 .0045 .0043 .0032 .0015 .0014 -00013	.0012 .0008 .0006 .0004 00006 00005 00014 0019 0019	0066 0053 0040 0033 0021 0010 .0022 .0026 .0045
	.031 .031 .031 .031 .031 .031 .031 .031	2 . 103 2 . 103 4 . 122 8 . 443 1124 . 55 116 . 65 18 . 69	052 y 051 y 053 8 0630 0720 0438 03381 03384 03691	.0137 .0119 .01087 .0068 .0018 .0029 0018 0079 0026	.0050 .0042 .0082 .0120 .0134 .0102 .0801 .0097 .0099 .0094 .0101	.0048 .0044 .0093 .0107 .0079 .0079 .0079 .0042 .0037 .0016	.0033 .0038 .0028 .0023 .0016 .0001 0008 0017 0015	0039 0080 0078 0073 0053 0053 0044 0020 00201
. 049 . 049 . 049 . 049 . 049 . 049 . 049 . 049 . 049	. 0 4 4 9 . 0 4 4 9	- 2.11 04 2.05 4.13 6.23 8.31 10.40 12.47 14.54 16.59 18.66 20.66 23.68	0004 0043 0794 0873 0953 0910 0310 0336 0345 0300	. 0254 . 0227 . 0215 . 0205 . 0109 . 0109 . 0068 . 0082 - 0087 - 0087 - 0112	.0091 .0080 .0157 .0192 .0213 .0251 .0150 .0163 .0148 .0131 .0293 .0085	.0098 .0108 .0142 .0177 .0199 .0200 .0165 .0118 .0091 .0068 .0119	.0065 .0060 .0058 .0038 .0024 .0006 0019 0029 0032	0160 0188 0166 0162 0149 0139 01052 0032 0016
.080 .080 .080 .080 .080 .080 .080 .080	.079	- 2.147 - 2.019 - 6.125 - 10.35 - 12.45 - 14.56 - 16.56 - 18.66 - 23.66	0449 0425 0662	.0003	.0308 .0295 .0366 .0414 .0413 .0439 .03748 -00332 .0397 .0181	.02129 .02329 .02341 .03341 .03352 .03573 .00173 .00128 .00166	.0130 .01132 .01108 .00108 .0009 .00041 .00047 .00059 00031	0253 0194 0151 0025 0025
. 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6	1033 1033 1033 1033 1033 1033 1033 1033	4.06 6.16 8.25 10.34 12.44 14.45 16.56 18.66	1588 2159 2159 2321 1974 10391 1038	.0661 .06192 .0542 .04251 .0351 .00222 .00978 .00103	.0590	. 0247 . 0258 . 0368 . 0393 . 0437 . 0340 . 0245 . 0277 . 0237 . 0135	.0175 .0174 .0162 .0140 .0111 .0084 .0061 .0001 0000	0416 0438 0438 0405 0376 0326 01376

			V.	
Table 4.	Incremental	aerodynamic	coefficients. 1/b/2 = .25	M = 70
	morente	gerodynanine	-0001110101113, 7p/220	1017 0

δ_s	spi <u>e</u> 4.			odynamic				
05	δ_d	a	ΔC_L	ΔC_D	ΔC_m	△ Cz	ΔC_n	ΔC_{Y}
999999999999999999999999999999999999999	.031 .031 .031 .031 .031 .031 .031 .031	- 2.10 00 2.10 4.19 6.30 8.41 10.53 12.60 14.65 16.71 18.71 20.73 23.78	0363 0455 0485 0572 0572 05437 0433 0087 0087 00186	.0135 .0127 .0107 .0067 .0040 .00042 0046 0081 0023 0017	.0034 .0068 .0121 .0154 .0130 .0107 .01067 .0067 .00041	.0023 .0047 .0070 .0079 .0079 .0073 .0073 .0042 .0019	.0034 .0034 .0032 .0023 .0013 .0007 0006 0011 0018 0005	00 4 4 8 00 5 5 2 00 5 4 5 00 0 1 8 00 0 0 6 00 0 3 7 00 8 4 1
. 0499 . 0499 . 0499 . 0499 . 0499 . 0499 . 0499	. 0 4 9 9 . 0 4 4 9 9 . 0 4 4 9 9 . 0 4 4 9 9 . 0 4 4 9 9 . 0 4 4 9 9 . 0 4 9 . 0 4 9 9 . 0 4 9	2.11 2.08 4.17 6.29 8.40 10.59 14.59 14.71 18.71 20.73 23.79	0564 0891 09861 09861 09747 08019 0495 0288 01475	.0239 .0239 .02201 .0150 .01059 00141 0030 00303 .00058	.0042 .0091 .0159 .0226 .0226 .0178 .0178 .0178 .0088 .0036 .00662	.0068 .0099 .0136 .01169 .01145 .01154 .00183 .0067 .0028 .0028	.0064 .0056 .0044 .0033 .0015 .0004 0014 0020 0011 0010	0108 0111 01110 00743 0028 0028 0016 .0044 .0057 .0067
. 08 0 . 08 0	.079 .079 .079 .079 .079 .079 .079 .079	- 2.13 04 2.05 4.14 6.25 8.36 10.47 12.58 14.65 16.70 18.72 20.73	0990 1184 1374 1579 1458 1275 0885 0885 0269 0269	.0459 .0459 .0429 .0367 .0175 .0072 .0022 .0014 .00427 -00048	.0219 .0298 .0374 .0447 .04469 .0317 .0218 .0218 .01145 .01785	.0156 .0205 .0255 .03014 .0314 .0219 .0188 .0137 .0079 .0079	.0119 .0112 .00976 .00976 .00050 .00016 -00001	02884 02884 02891 022014 01058 00035 00035
. 09 6 . 09 6	.103 .103 .103 .103 .103 .103 .103 .103	2 . 13 2 . 05 2 . 03 4 . 12 6 . 23 10 . 45 12 . 55 14 . 64 16 . 69 18 . 71 23 . 78	1139 1321 1641 1841 2024 1919 1601 1409 0920 0709 0633	.0656 .0648 .06130 .05330 .0439 .0301 .0134 .0059 .0059	.0291 -0291 -0362 .0432 .0524 .0300 .0309 .0275 .0313 .0317	.0166 .0218 .0265 .0366 .03766 .03272 .02221 .0187 .0150	.0169 .0167 .0160 .0140 .0118 .0087 .0059 .0041 .0009 .0007	0337 0343 0348 0358 03592 01367 0022 00023 .00112

(b) Modified leading edge.

Table 4. Concluded.

	lapie	4. CONC.	uueu.					
δ_{s}	\mathcal{S}_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.12 2.037 4.538 6.38 10.49 12.55 16.79 20.77 23.79	0341 0273 0376 3542 0424 0246 0179 0285 0007	.0050 .00435 .003331 .0076 00522 0037 .0095 .0019	.0036 .00342 .0356 .0156 .0073 .0084 .0053 .0084 .0053	.0023 .0023 .00233 .00444 .00419 .00305 .00183 .00099 0068	.0012 .00109 .0008 .0001 0009 0009 0015 0018 .00038	0031 0058 0016 0039 0006 .0023 .0023 .0040 .0023 .0039
	.031 .031 .031 .031 .031 .031 .031 .031	2.13 2.06 4.16 8.37 10.45 14.63 16.68 20.75 23.79	0619 0569 0687 0729 0830 0768 0211 0303 00373 00373 0245	.0139 .0121 .0104 .0085 .0064 .0096 0020 0020 0009 .0041 0063 0026	.0037 .0045 .0077 .01151 .0165 .0099 .0103 .0099 .0198	.0039 .0054 .0076 .0108 .0108 .0093 .0054 .0046 .0038 .0092	.0034 .0031 .0028 .0024 .0017 .0009 0002 0010 0016 0033 0001	0039 0080 00755 00556 00520 00123 0006 .00023
.0499 .04499 .04499 .04499 .04499 .04499	049 049 049 049 049 049 049 049 049	- 2.15 04 4.16 6.25 8.37 10.47 12.55 14.68 18.84 23.80	0760 0636 07930 0930 1067 100741 0347 0347 0075 0671 0006	.0258 .0235 .0223 .0160 .0185 .0051 .0026 .0067 .0007	.0090 .0084 .01497 .0262 .0295 .0152 .01152 .0168 .0244	.0089 .0104 .01473 .0200 .0197 .0168 .0104 .0088 .0074 .0082	.0064 .0059 .0055 .0048 .0037 .0007 .0007 -00020 -00208 0035	0159 0180 0168 0158 0146 0100 0000 0032 0005 00018
. 08 0 . 08 0		2.176 2.01 4.11 6.31 12.59 14.57 16.73 20.79	- 13318 - 123155 - 118406 - 119818 - 111044 - 003716 - 003716 - 00487	.0495 .0441 .0440 .0347 .0319 .0114 .0049 .00088 0026	.0307 .0237 .03730 .0477 .05445 .0342 .0342 .0348 .0146	.0199 .0225 .0263 .03133 .03514 .0237 .01127 .01132 .0171	.0126 .0131 .01147 .0087 .0065 .0036 .0027 0008 0015	0284 0317 0292 0285 0198 0198 0198 0076
. 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6	.103 .103 .103 .103 .103 .103 .103 .103	- 2.18 08 4.09 6.19 8.30 10.41 14.57 16.63 18.73 23.79	1548 1448 2084 2194 2422 1972 1331 0806 0910 06-8	.0672 .0650 .0525 .0480 .0247 .0098 .0127 .0067	.0361 .0337 .0458 .0515 .0679 .05427 .0378 .0341 .0460 .0527	.0229 .0243 .0343 .0369 .0424 .03823 .0226 .0192 .0192 .0139	.0169 .0168 .0156 .0133 .0105 .0073 .0053 .0023 .0002	0394 0394 0396 0396 0396 0396 0341 01097 0097

7		• •	
Table =	1	aerodynamic coefficients. 1/b/2 = 25	
10018 5	Incremental	nerodynamic coetticiente 1/ 25	M ~ O I
. 42.0 0.	morenterial	deroughanne coerricients, yh /2 -20 h	יעי = מי

δ_{s}	δ_d	a	ΔCL	ΔC_D	ΔC_m	ΔC_z	ΔC_n	IVI =.81 ΔC _Y
					,			
999999999999999999999999999999999999999	.031 .031 .031 .031 .031 .031 .031	2.10 2.113 4.23 6.349 102.673 14.73 118.80 20.81	02291 0425 0583 0544 04101 0267 0267 0103	.0139 .0139 .0109 .0080 .0041 00052 00032 00019	.0040 .0086 .0133 .0177 .0146 .0234 .0147 .0143 .0048	.0018 .00476 .00951 .01902 .000861 .00049 .00018 .00029	.0036 .0028 .0028 .0013 .0001 0001 0014 0014 0004	004 005 005 003 003 001 003 003
049 049 0449 0449 0449 0449 0449 0449	.049 .049 .049 .049 .049 .049 .049 .049	23.91 - 2.13 - 2.03 2.09 4.20 6.33 8.46 10.57 12.68 14.74 16.78 18.79 20.83 23.90	.0013053807060793095409520849045603000017440121	.0020 .0249 .0236 .0236 .0118 .0051 .0051 .00019 00140 0025 0025	.0014 .0058 .0111 .0178 .0259 .0240 .0239 .0164 .0164 .0067 .0060 .0070	.0029 .00699 .01353 .01181 .01528 .0100 .0073 .0044 .0044	0021 .0065 .0062 .0056 .0045 .0010400070013001020039	0 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
080 080 080 080 080 080 080 080 080 080	.079 .079 .079 .079 .079 .079 .079 .079	2.14 - 0.06 2.07 6.30 10.55 12.66 14.74 16.78 18.78 12.90	09 40 11799 1564 1515 1983 0763 0469 0489 0489 0489 0489	.0465 .0455 .0456 .0387 .0284 .0128 .0063 .0077 .00015	.0220 .0183 .0391 .0472 .0440 .0349 .0249 .0244 .0174 .0217	.0143 .0199 .0294 .0294 .0293 .0157 .0157 .0188 .0077 .0088	.0118 .0116 .01193 .0070 .0039 .0031 .0015 .0014 .0014 .0002	023647 023647 021381 0010381 000381
096 096 096 096 096 096 096 096 096 096	.103 .103 .103 .103 .103 .103 .103 .103	2.15 - 2.04 4.15 6.29 8.40 10.53 12.63 14.72 16.76 18.77 20.51 23.88	09.79 1236 1525 1853 18760 1206 1206 12092 00917 0794 0794 0728	.0650 .0640 .0608 .0529 .04267 .0227 .0139 .0133 .0026 .0026	. 0197 . 0277 . 0378 . 0456 . 0456 . 0404 . 0257 . 0357 . 0329 . 0329 . 0379	. 01402 . 02456 . 03566 . 03028 . 03033 . 0237 . 021961 . 01146 . 01154	.0163 .0155 .01356 .01064 .0064 .00352 .0021 .0021	0339 03343 03244 0269 0166 0108 0019 0009 0014

(b) Modified leading edge.

,	Table	5. Concl	uded.				4.0	10
δ_{s}	δ_d	a	ACL	ΔC_D	ΔC_m			ΔCY
011 011 011 011 011 011 011 011 011 011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.14 03 2.10 4.21 6.34 8.46 10.53 12.64 14.71 16,77 18.82 20.84 23.92	0283 0320 0406 0408 0420 0183 0011 0000 .0011 0049 .0028 .0302	.0048 .0045 .0039 .0030 .0038 .0010 .0041 .0041 .0045 .0013	.0040 .0048 .0057 .0069 .0145 -0208 .0042 .0042 .0057 .0190 .0103	.0021 .0031 .0040 .0054 .0054 .0054 .0022 .0022 .0020 .0020 .0023	.0012 .00109 .0006 .0006 0011 0013 0013 0013	0029 0059 0033 0026 0015 .0031 .0035 .0035 .0036
000000000000000000000000000000000000000	.0311 .0331 .0331 .0331 .0331 .0331 .0331	2.05 2.07 4.133 80.446 12.63 14.69 116.74 18.82 23.90	0558 0602 07616 0816 0814 0816 01192 0356 0192 03562 0362	.0139 .0129 .0111 .0087 .0086 .0030 .0023 -00012 -00051 -00994 .0034	.0045 .0061 .0161 .0141 .01699 .0062 .0185 .0083 .0093	.0041 .0053 .0104 .0114 .0096 .0067 .0048 .0048 .0049	.0033 .0033 .0030 .0024 .0018 .0009 0004 0011 0013 0008	0042 00666 00658 0058 0016 00116 .00116 .00117 .00267
049 049 049 049 049 049 049 049	.049 .049 .049 .049 .049 .049 .049	18.82 20.83	0657 0707 0937 1064 1123 0763 0369 0357 0247 0476 0094 0013	.0261 .0237 .0224 .01972 .0108 .0069 .0069 .0042 .0048 0044	.0113 .0110 .0168 .0344 .0330 .0338 .0177 .0165 .0098	.0091 .0102 .0138 .0183 .0211 .0194 .0153 .0111 .0083 .0128 .0038 .0038	.0063 .0061 .0055 .0058 .0028 .0001 0010 0012 0013	0158 0168 0155 0155 01122 0052 0007 0007 .0007
.080	0 .079 0 .079 0 .079 0 .079 0 .079 0 .079 0 .079	09 2.02 4.14 6.23 10.47 10.47 112.56 114.66 116.73 120.82	0618 0781 0402	.0479 .0468 .0445 .0443 .0231 .0114 .0115 .0104 .0037 -0017	.0319 .0392 .04697 .0586 .03795 .0249 .0248 .0308	.0096 .0111 .0140 .0171 .0185 .0196 .01734 .0094 .00762	.0094 .0062 .0046 .0020 .0013 .0013	- 0296 - 0262 - 0157 - 0101 - 0008 - 0008
099999999999999999999999999999999999999	6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10	3 - 2.19 309 309 3 4.11 3 6.24 3 10.45 14.69 3 16.79 18.80	1425 17440 22440 23401 21163 11138 071608	.0649 .0645 .0682 .0582 .05187 .0373 .0329 .0168 .00114	.0343 .03195 .0486 .0537 .0533 .0476 .0576 .0576	.0206 .0227 .0375 .0375 .0375 .0376 .0376 .0376 .0376 .0376 .0376	.0166 .0158 .0137 .0107 .0107 .0048 .0048 .0048	037 038 037 037 036 032 032 018 011 7007 006

Table 6. Incremental aerodynamic coefficients. 1/b/2 = 25 M = 85.

δ_s	δ_d	a	ΔC_L	$\triangle C_D$	ΔC_m	$\Delta C_i \Delta C$	$C_n \triangle C_Y$
	.031 .031 .031	- 2.12 00 2.12 4.36	0353 0463 0753 0652	.0150 .0139 .0111 .0082	.0041 .0104 .0152 .0200	.0013 .00 .0048 .00 .0084 .00 .0106 .00	350077 310066 230056
.029	.031 .031 .031 .031 .031	8.53 10.63 12.70 14.76 16.82 18.85 20.89	0480 0433 0308 0349 0279 0273	.0026 0007 0036 0056 0071 0184	.0171 .0155 .0116 .0104 .0074 .0050	.0088 .00 .007800 .005300 .004800 .003500	020015 030006 10 .0010 14 .0024 11 .0029 17 .0050
.049 .049 .049 .049 .049 .049 .049 .049	049 049 049 049 049 049 049 049 049	- 2.13 - 02 2.13 6.36 8.563 12.70 14.76 16.83 18.85 20.89	0509 0699 1077 1131 08495 04358 04282 0352	.0256 .0248 .02166 .0161 .0061 .00032 00059 00051 0078	.0073 .0144 .0198 .0293 .0150 .0182 .0150 .0157 .0097 .0058 .0138	.0061 .00 .0097 .00 .0148 .00 .0186 .00 .0167 .00 .0122 .00 .009400 .007100 .005800 .004600	640139 580132 450115 320081 100035 060035 11 .0031 13 .0047 15 .0057
. 08 0 . 08 0	.079 .079 .079 .079 .079 .079 .079 .079	- 2.15 - 04 2.08 4.19 6.33 8.46 10.59 12.68 14.77 16.82 18.64 20.87	0897 1162 1038 1669 1823 1435 1144 0754 0754 0801 0801 0801	.0479 .0470 .0437 .0377 .0366 .0233 .0108 .0068 .0036 .0007	.0222 .0322 .0394 .0498 .0495 .0499 .0253 .0253 .02259 .0253	.0131 .01 .0191 .01 .0245 .01 .0304 .00 .0308 .00 .0244 .00 .0160 .00 .0161 .00 .0121 .00 .0194 .00 .0069 .00 .0079 .00	170271 100277 240264 550151 310133 150072 110036 140019
. 096 . 096 . 096 . 096 . 096 . 096 . 096 . 096 . 096 . 096	.103 .103 .103 .103 .103 .103 .103 .103	- 2.15 05 - 2.05 4.17 6.30 8.45 10.45 14.75 16.82 18.84 20.86	0907 1285 1829 20164 17359 12828 12828 09795 0857	.0664 .0661 .0626 .0541 .0298 .0229 .0112 .0117 .0010	.0174 .0288 .0390 .0398 .0348 .02484 .0370 .0367 .0367 .0404	.0128 .016 .0105 .016 .0145 .016 .0180 .015 .0353 .016 .0295 .006 .0217 .006 .0230 .003 .0198 .002 .0174 .002 .0147 .002	740370 590374 560338 550275 500184 540156 520099 230044 330019

(b) Modified leading edge.

Table 6. Concluded.

	Judie	יוטווט. כטווטוו	uucu.				4.0	4.0
8	8	a	ΔC_{L}	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{γ}
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.15 - 2.03 2.11 4.24 6.38 8.49 10.67 14.73 16.81 18.87 20.88	0314 0379 0425 0575 0494 0329 0085 0094 0036 0119 0063	.0052 .0045 .0040 .0019 .0040 .0012 .0060 .0040 .0108 .0170	.0046 .0056 .0080 .0117 .0137 .0138 .0054 .0066 .0070 .0073	.0026 .0032 .0045 .0059 .0065 .0033 .0014 .0021 .0008	.0013 .0010 .0010 .0007 0008 0011 0009 0015 0008	0037 0059 0039 0026 0022 .0023 .0034 .0036 .0033
000000000000000000000000000000000000000	.031	- 2.17 - 0.5 2.10 4.22 6.34 10.5 12.5 12.5 14.74 16.80 18.80	0453 0615 0601 0938 0938 0399 03997 0198 03944 0352	.0138 .0131 .0123 .0085 .0081 .0045 .0028 .0035 .0020 .0053 .0004	.0044 .0068 .0146 .0201 .0169 .0169 .0101 .0065 .0087	.0039 .0056 .0086 .0119 .0127 .0108 .0073 .0042 .0038 .0048 .0018	.0034 .0035 .0031 .0026 .0016 0006 0007 0011 0000	.0025
. 04 9 . 04 9	0 449 0 0499 0 0499 0 0499 0 0499 0 0499 0 0499	- 2.16 - 2.06 4.19 6.336 10.57 12.66 14.74 16.87 20.93	0854 0585 0342 0340 0471 0079	.0257 .0247 .0229 .0188 .0179 .0132 .0116 .0120 .0053 .0084 .0148	.0109 .0120 .0200 .0304 .0309 .0266 .0153 .0153 .0153 .0208	.0092 .0107 .0158 .0236 .0218 .0094 .0097 .0109	.0066 .0063 .0052 .0054 .0001 .0001	0167 0154 0124 0087 0025 0025 0018
.08	0 .079 0 .079 0 .079 0 .079 0 .079 0 .079 0 .0779 0 .0779	- 2.19 - 2.02 4.15 6.29 8.40 10.56 14.79 16.79 18.86	1406 1774 2092 2113 1902 1481 1169 0754	.0130	.0317 .0322 .0419 .0526 .0570 .0581 .0449 .0281 .0083	.0177 .0207 .0320 .0350 .0372 .0219 .0153 .0157	.010 .010 .005 .005 .002 .001	90303 50293 50290 20189 40186 60085 60085 60016 0 .0024
.09	6 .1033 6 .1033 6 .1033 6 .1033 6 .1033 6 .1033 1033 1033	2.21 2.00 4.12 8.3 10.5 112.6 114.7 118.8 20.9	01439 112359 422460 01847 01999 110996 0761	06393 06383 005888 003999 003469 002235	.0463	.0373 .0347 .0347 .0434 .0359 .0277	0 016 016 017 012 009 0005 0003 0003 0001	603879 103879 203890 503290 600148 600059 60048

Table 7. Incremental aerodynamic coefficients. 1/b/2=25 M=90

δ_{s}	δ_d	a	ΔC_L	ΔC_{D}	ΔC_m	ΔC_{i}	ΔC_n	ΔC_{Y}
.02999999999999999999999999999999999999	.031 .031 .031 .031 .031	- 2.13 2.13 4.27 6.41 8.54 10.66	0307 0507 07031 0658 05318 0338	.0160 .0146 .0177 .0077 .0035 0060	.0051 .0116 .0245 .0258 .0237 .0262	.0008 .0048 .0021 .0110 .0083 .0038	.0041 .0037 .0038 .0038 .0018 00007	0064 0079 0075 0061 0035 0016
. 029 . 049 . 049 . 049 . 049 . 049 . 049 . 049	.031 .049 .049 .049 .049 .049 .049	14.80 - 2.14 - 0.2 2.11 4.24 6.39 8.51 10.64 12.73 14.81	0126 0597 0797 1062 1328 1217 0890 0212 0212 0263	0000 .0275 .0258 .0229 .0159 .0077 0023 0050 0010	.0090 .0172 .0315 .0409 .0451 .0296 .0334	.0037 .0051 .0105 .0163 .0207 .0162 .0162 .0134 .0062	0008 .0070 .0066 .0061 .0048 .0031 .0001	0122 0139 0135 0135 0092 0048 0002
.080 .080 .080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079 .079	- 2.15 04 2.08 4.21 6.34 8.46 10.61 12.71	0893 1022 1097 1938 1189 1189 0778	.0495 .0486 .0452 .0376 .0107 .0061 .0097	.0216 .0333 .0478 .0632 .0671 .0444 .0467 .0387	.0116 .0184 .0247 .0578 .0339 .0256 .0199 .0174	.0130 .0117 .0111 .0061 .0069 .0037 .0018	0363 0275 0285 0220 0119 0073
. 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6	.103 .103 .103 .103 .103 .103 .103 .103	- 2.16 - 04 2.06 4.19 6.32 8.47 10.59 12.69 14.78	0865 1282 1824 2243 2260 1738 1438 1098 1021	.0684 .0687 .0637 .0559 .0359 .0312 .0148 .0180	.0162 .0311 .0481 .0635 .0728 .0523 .0429 .0427 .0482	.0110 .0196 .0265 .0345 .0377 .0225 .0232	.0168 .0159 .0139 .0104 .0060 .0046 .0039	0354 0370 0378 0338 0280 0126 0126 0093

(b) Modified leading edge,

Table 7. Concluded.

δ_{s}	δ_d	α	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{Y}
.011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011	- 2.17 04 2.11 4.26 6.39 8.49 10.80 12.70 14.80	0383 0453 0544 0531 0514 0314 0214 .0045	.0061 .0049 .0032 .0010 .0053 .0057 .0037 .0041		.0024 .0040 .0056 .0073 .0074 .0046 .0017 .0013	.0012 .0012 .0010 .0010 -0007 0011 0007 0025	- 0040 - 0058 - 0047 - 0005 - 0009 - 0003 - 0003
.029	.031 .031 .031 .031 .031 .031 .031	- 2.19 - 0.6 2.07 4.22 6.35 6.35 10.58 12.69	0568 0692 1003 1174 1146 0703 0494 0171	.0140 .0253 .0096 .0035 .0045 .0046 .0054	.0074 .0097 .0182 .0371 .0427 .0064 0067	.0034 .0057 .0097 .0135 .0144 .0107 .0041	.0036 .0037 .0033 .0025 .0008 0007 .0002	0045 0070' 0069 0066 0001 0013 .0013
.049 .049 .049 .049 .049 .049	.049 .049 .049 .049 .049 .049 .049	- 2.18 - 0.07 2.07 4.21 6.35 10.59 12,70 14.75	0842 1249 1491 1473 1102 0763 0342	.0278 .0262 .0227 .0163 .01532 .0092 .0069	.0155 .0163 .0318 .0506 .0565 .0365 .0257 .0040	.0077 .0105 .0163 .0224 .0234 .0234 .0115 .0024	.0067 .0066 .0061 .0051 0005 0001 0000	0151 0157 0157 0144 0095 0026 .0004
.080 .080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079 .079	- 2.21 09 4.17 6.30 8.43 10.53 12.63	1110 1406 1938 2344 2400 2043 1587 1587	.0508 .0494 .0463 .0402 .0331 .0249 .0033	.0316 .0355 .0524 .0746 .0864 .0714 .0483 .0142	.0153 .0201 .0258 .0351 .0386 .0375 .0259 .0200	.0119 .0113 .0104 .0072 .0035 .0033 .0015	0290 0296 0291 02139 0139 0109
966 0996 09966 099999999999999999999999	.103 .103 .103 .103 .103 .103 .103	2.21 2.01 4.15 6.27 8.40 10.52 12.63	1107 1423 2094 2543 2807 2419 2034 1495 1208	.0678 .0678 .0636 .0536 .0499 .0271 .0150	.0300 .0317 .0507 .0770 .0914 .0759 .0622 .0284	.0165 .0206 .0274 .0368 .0482 .0460 .0337 .0247	.0163 .0168 .0160 .0150 .0116 .0077 .0052 .0043	0367 0382 0379 03250 03144 008

Table 8. Incremental aerodynamic coefficients, $y_{i/b/2} = .25 M = .94$

δ_s	δ_d	a	ΔCL	$\triangle C_D$	∆ C _m	ΔCn	ΔCz	△C _Y
029 029 029 029 029	.031 .031 .031 .031 .031	- 2.12 .01 2.13 4.27 6.40 8.52 10.63	0222 0554 0800 0754 0623 0453	.0166 .0156 .0124 .0065 .0053	.0024 .0159 .0293 .0372 .0358 .0169	0008 .0047 .0109 .0137 .0116 .0066	.0042 .0040 .0033 .0021 .0004 0003	0 0 5 0 0 8 0 0 5 0 0 2 0 0 2
049 049 049 049 049	.049 .049 .049 .049 .049	- 2.11 02 2.11 4.25 6.38 8.52 10.65	0200 0856 11256 1256 1090 0723	.0273 .0268 .0226 .0151 .0099 .0073	.0088 .0235 .0419 .0538 .0452 .0333	.0035 .0106 .0173 .0216 .0230 .0163	.0071 .0068 .0061 .0044 .0025 .0010	012 014 014 010 006 004
080 080 080 080 080 080	.079 .079 .079 .079 .079	- 2.15 03 2.06 4.21 6.36 , 8.48 10.62	0734 1188 1643 1887 1802 1282 1067	.0523 .0505 .0447 .0370 .0355 .0205	.0178 .0362 .0557 .0759 .0760 .0431	.0097 .0176 .0247 .0329 .0358 .0271	.0125 .0119 .0110 .0095 .0066 .0036	026 026 026 026 081
096 096 096 096 096	.103 .103 .103 .103 .103 .103	- 2.16 - 04 2.07 4.19 6.34 8.47 10.58	0727 1323 1854 2080 2099 1579 1757	.0699 .0702 .0674 .0607 .0405 .0291	.0140 .0346 .0561 .0732 .0786 .0537	.0105 .0193 .0277 .0366 .0384 .0314	.0168 .0167 .0163 .0143 .0143 .0100	036 037 036 036 018

(b) Modified leading edge.

Table 8. Concluded.

δ_s	δ_d	a	△ C _L	△ Co	$\triangle C_m$	ΔC_n	ΔC_z	ΔC_{Y}
.011 .011 .011 .011 .011	.011 .011 .011 .011 .011	- 2.16 03 2.10 4.24 6.36 8.46 10.57	0359 0467 0518 0496 0404 0286 0121	.0057 .0045 0011 .0010 .0003 .0009	.0080 .0169 .0243 .0244 .0162 0006	.0022 .0055 .0076 .0084 .0077 .0053	.0016 .0014 .0007 0003 0010 0011	- 0036 - 0064 - 0052 - 00019 - 00027
0299	.031 .031 .031 .031 .031	- 2.19 05 2.08 4.21 6.34 8.45 10.54	0470 0617 0919 0962 1009 0913	.0141 .0123 .0051 .0027 .0013 0054	.0047 .0145 .0330 .0437 .0348 .0280	.0024 .0067 .0104 .0146 .0147 .0117	.0039 .0039 .0033 .0020 0001 0005	0053 0073 0073 0047 0018 .0006
.049 .049 .049 .049 .049	.049 .049 .049 .049 .049	- 2.18 06 2.07 4.22 6.34 8.45 10.57	0505 0833 1157 1291 1271 1202 0769	.0262 .0277 .0189 .0135 .0078 .0004	.0087 .0220 .0448 .0597 .0566 .0524	.0068 .0110 .0170 .0238 .0251 .0330	.0070 .0070 .0061 .0046 .0019 0007	- · · · · · · · · · · · · · · · · · · ·
.080 .080 .080 .080 .080	.079 .079 .079 .079 .079	- 2.20 09 2.03 4.17 6.30 8.42 10.51	0904 1261 1797 2103 2009 1924 1592	.0537 .0536 .0488 .0408 .0327 .0136	.0230 .0368 .0608 .0840 .0772 .0839	.0140 .0191 .0263 .0345 .0377 .0369	.0128 .0125 .0121 .0105 .0065 .0038	0298 0329 0313 0283 0197 0115
. 096 . 096 . 096 . 096 . 096	.103 .103 .103 .103 .103	- 2.21 10 2.02 4.14 6.27 8.39	0953 1367 1979 2398 2378	.0717 .0716 .0664 .0628 .0494	.0220 .0356 .0609 .0848 .0817	.0156 .0208 .0284 .0376 .0424	.0172 .0173 .0166 .0154 .0111	0374 0400 0415 0425 0325 0229

Table	9.	Incremental	aerodynamic	coefficients. 1/b/2	=.25
-------	----	-------------	-------------	---------------------	------

								·
δ_s	δ_d	a	ΔCL	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
				M=.40				
.080 .080 .080 .080 .080 .080 .080 .080	.000	2.06 2.004 4.107 6.124 10.294 10.35 14.42 16.44 1203	06 78 02 54 04 49 04 169 01 169 02 41 01 183 01 22 00 19 04 69 08 46	.0214 .0188 .0188 .0156 .0155 .0089 .0026 .001430208	.0006 .0068 .01139 .0139 .01005 00025 00021 .00080 00089 0044	.0087 .0126 .0145 .0184 .0179 .00190 .0074 .0048 .0043 .0013	.0063 .0064 .0054 .0031 .0022 .0008 0005 0010 0021	0076 0082 0091 00544 0014 0014 00146 .0106 .0157 .0184
				M=.60	<u>, , , , , , , , , , , , , , , , , , , </u>			<u> </u>
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.08 01 2.07 4.15 6.25 8.34 10.52 14.60 16.63 20.70	04 72 05 99 07 01 08 40 05 06 03 94 02 74 02 47 01 36 01 36 03 6	.0198 .0197 .0185 .0135 .0059 .0059 .00016 .00071 00052 0068	.0097 .0138 .0160 .0204 .0150 .00038 00032 00032 00032 00032	.0136 .0158 .01815 .0299 .01435 .0054 .0034 .00034	.0058 .0058 .0054 .0054 .0017 .0002 0007 0017 0023 0034	0087 0092 0102 0100 0077 0031 0033 .00665 .0145 .0133
				M=.70				
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.11 - 02 2.07 4.17 6.29 10.50 12.60 14.67 16.71 18.70 20.72 23.78	0618 0740 09801 09990 0816 0569 0569 0153 01049 0101 0202	.0195 .0189 .0173 .0138 .01034 .00035 .0012 .00026 .00026 .00026 .00013	.0127 .0148 .01487 .0229 .01626 0082 0031 00517 00753	.0149 .0173 .01991 .0230 .0198 .0161 .00653 .00026 .00031	.0056 .0055 .0055 .0039 .0039 .0006 0006 0010 0019 0038	099750099500000000000000000000000000000

(a) Concluded.

Table	9.	Continued.
Jupic	<i>一</i>	OUIIIIIIuu <u>u</u> .

	l'able	9.	Continue	? <u>a. </u>		`		
δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{i}	ΔC_n	ΔC_{γ}
				M=81				
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.12 - 2.02 2.02 4.20 6.33 8.46 10.56 14.75 16.80 14.75 20.82 23.90	0722085509491094209472024702570056	.0200 .0191 .0135 .00918 .0025 0023 0026 00277	.0205 .02467 .0321 .0321 .0170 00597 00008 00004 00103	.0167 .0188 .0233 .02048 .0032 .0032 .0031 .0003 .0007	.0057 .00552 .0059 .0039 .0026 .0001 00017 0013 0017 0022 0043	0098 0115 00985 0038 0038 0038 0098 0096
 -				M=.85				
. 08 0 . 08 0	.000	- 2.15 - 2.09 4.21 6.35 10.60 12.77 16.82 18.85 20.8	0111	.0205 .0196 .0171 .0127 .0065 00125 0023 0072 0047 0120	.0232 .0264 .0284 .0384 .0157 .0202 .0015 .00017 .00012 0061	.0178 .0197 .0222 .0247 .0222 .0139 .0027 .00318 .0010	.0059 .0056 .0053 .0040 .0021 0004 0004 0015 0016	0104 0116 0106 005 .0003 .0013 .008 .009 .0106
	 			M = .90			<u></u>	
.080 .080 .080 .080 .080 .080	.000	- 2.15 04 2.10 4.23 6.37 8.51 10.63 12.72 14.79	1422 1378 0778 0550 0171	.0217 .0204 .0184 .0134 .0036 0042 0088 0020	.0292 .0303 .0303 .0430 .0438 .0137 .0137 .0080	.0194 .02143 .0276 .0246 .0157 .0046 .0027	.0061 .0055 .0042 .0023 0004 0003	011 011 011 009 006 .000 .003
	 			M=.94				
.080 .080 .080 .080 .080	.000	- 2.13 - 0.3 2.10 4.24 6.37 8.49	1147 1303 1363 1218 0364	.0280 .0250 .0225 .0187 .0062 .0125	.0364 .0381 .0415 .0450 .0479 0086	.0191 .0226 .0248 .0269 .0271 .0167	.0071 .0065 .0061 .0049 .0022 .0013	011 013 013 012 009 003

(b) Modified leading edge.

Table 9. Continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>	<u>9</u> . C	ontinued.					
M = .40	8	δ_{s}	δ_d			ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
. 080 . 000						M = .40)			
.080 .000 - 2.110528 .0234 .0116 .0135 .0068 .080 .000040029 .0209 .0116 .0151 .005 .080 .000 2.050732 .0206 .0160 .0179 .005 .080 .000 4.120979 .0188 .0200 .0204 .025 .080 .000 8.291026 .0092 .0237 .0225 .002 .080 .000 10.400616 .0099 .0143 .0150 .001 .080 .000 12.460358 .0029 .0064 .0071 .000 .080 .000 12.460358 .0029 .0064 .0071 .000 .080 .000 14.550002 .0358 .0029 .0064 .0071 .000 .080 .000 18.6301180039 .0051 .0034000 .080 .000 18.6301180039 .0019 .0010002 .080 .000 20.6801010020 .0026 .0023001 .080 .000 22.6800610068 .01090007002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 2.041060 .0188 .0190 .0194 .0057 .0080 .000 4.131163 .0168 .0230 .0223 .0049 .0080 .000 6.251118 .0048 .0230 .0223 .0049 .0069 .000 .000 6.251118 .0048 .0228 .0223 .0049 .0069 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .00000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .0000 .00000 .00000 .00000 .00000 .00000 .00	.08	80 80 80 80 80 80 80 80 80 80 80 80 80 8	.000	2.04 4.09 6.13 8.19 10.26 12.32 14.38 16.43	0493 0453 0853 0839 0830 0451 0213 0137	.0242 .0221 .0225 .0157 .0157 .0103 .0061 .0061 .0058	.0064 .0050 .0068 .0093 .0133 .0151 .0073 .0009	.0115 .0138 .0161 .0196 .0211 .0166 .0016 .0037 .0032	.0062 .0058 .0056 .0056 .0045 .0038 .0014 .00015 00217 0027	0165 0191 0188 0197 0174 0168 00181 00025 00025 00039
.080 .000 - 2.110528 .0234 .0116 .0135 .0068 .080 .000040629 .0209 .0116 .0151 .005 .080 .000 2.050732 .0206 .0160 .0179 .005 .080 .000 4.120979 .0188 .0200 .0204 .025 .080 .000 8.291026 .0155 .0185 .0218 .003 .080 .000 10.400616 .0099 .0143 .0150 .001 .080 .000 12.460358 .0029 .0043 .0150 .001 .080 .000 14.550002 .0039 .0064 .0071 .000 .080 .000 14.550002 .0036 .0051 .0034000 .080 .000 18.6301180039 .0066 .0023001 .080 .000 18.6301180039 .0019 .0010002 .080 .000 20.6801180039 .0019 .0010002 .080 .000 23.70 .01660019 .0019 .0010002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 23.70 .01060019 .0031 .0003002 .080 .000 2.041060 .0188 .0190 .0194 .0057 .0080 .000 4.131163 .0168 .0230 .0223 .0049 .0080 .000 6.251118 .00147 .0248 .0228 .0039 .0019			·.			M=.60				
.080 .000 - 2.150000 .0242 .0153 .0153 .0068 .080 .000050708 .0208 .0159 .0172 .0057 .080 .000 2.041060 .0186 .0190 .0194 .0052 .080 .000 4.131163 .0168 .0230 .0223 .0049 .080 .000 6.251118 .0147 .0248 .0228	08 0 08 0 08 0 08 0 08 0 08 0	000000000000000000000000000000000000000	.000 .000 .000 .000 .000 .000 .000	04 2.05 4.12 6.21 8.29 10.40 12.46 14.55 16.60 18.63	0528 0629 0733 0979 0862 10616 0358 0002 0101 0118	.0234 .0209 .0188 .0155 .0099 .0099 .0029 -0029	.0116 .0160 .02800 .0185 .0237 .0143 .0064 .0051 .0026	.0151 .0179 .0274 .0218 .0225 .0150 .0071 .0034 .0023	.0067 .0057 .0056 .0052 .0037 .0023 .0008 0007 0017 0023 0024	0130 0179 0149 0166 0154 0158 0086 0008 0029 .0029 .0052
.080 .000050708 .0208 .0159 .0173 .0057 .080 .000 2.041060 .0188 .0190 .0194 .0052 .080 .000 4.131163 .0168 .0230 .0223 .0049 .080 .000 6.251118 .0147 .0248 .0228					Λ	1=.70				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	080 080 080 080 080 080 080 080	00000000000	.000 - .000 .000 .000 .000 .000	.05 2.04 4.13 6.25 8.35 10.47 12.54 14.62 16.67 18.71	0708 1060 1163 1118 1177 0735 0302 0320 0008	.0208 .0188 .0168 .0147 .0154 .0047 .0049	.0159 .0190 .0230 .0248 .0301 .0140 .0076 .0049 .0010 .0065	.0172 .0194 .0223 .0231 .0166 .0091 .0037	.0057 .0052 .0049 .0034 .0020 .0008 0001	0140 0174 0154 0143 0144 0094 0094 00039 .00039 .00039

(b) Concluded.

71		
Table	9.	Concluded.

δ_s	δ_d	9. Coi	ΔC_L	ΔC_D	ΔC_m	△ Cz	ΔC_n	ΔC_{Y}
05				M =.81				
080 080 080 080 080 080 080 080 080	.000	- 2.18 - 06 2.06 4.16 6.20 10.52 12.61 14.67 18.82 20.82 23.90	1308 13-8 128 09-1 04-2 0169 0210 0210	.0219 .0191 .0171 .0153 .0052 .0052 .0030 .00015 0043 0014	.0209 .0218 .0266 .0288 .0286 .0334 .0155 .0079 01074 0054 .01089	.0174 .0190 .0208 .0247 .0245 .0182 .00945 .0019 .00018 0006	.0066 .0059 .0051 .0047 .0033 .0018 0003 0019 0021 0021	0136 0150 0141 0137 0061 0034 .0034 .0043 .0053
				M = .85	<u> </u>		0.06.9	-1.0148
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.2 0 2.0 4.1 6.3 8.4 10.5 12.6 14.7 18.8 20.8	00354 71301 71603 01603 011036 00333 10088 00088 00088	.0224 .0198 .0175 .0143 .0379 .0048 .0048 .0058 .0049 .0072	.0221 .0313 .02343 .0348 .02631 .0002 00591 .0039	.0186 .0210 .0228 .0261 .0271 .0170 .0077 .0039 .0009	.0061 .0052 .0048 .0031 .0006 0008 0018 0018	0161 0158 0130 0063 0037 .00035
				M = .90	2			127 7
. 080 . 080 . 080 . 080 . 080 . 080 . 080	.000	- 2.2 - 2.0 4.1 6.4 10.5 14.6	1292 1637 18637 1786 1786 1346 0739	.0259 .0215 .0182 .0114 .0070 .0095	.03414 .0414 .05793 .0384 .0169	.0209 .0229 .0251 .0288 .0300 .0279 .0131 .0061	- 000 - 000 - 000	- 017 - 016 - 010 - 010 - 002
				M=.9			0.02	5014
.080 .080 .080	0000	2. 3. 4. 6. 8.	081286 05152 18161 32140 45126	021 7 .014 1 .011 2 .009	9 .0405 7 .0561 9 .0632 4 .0471 8 .0555	025 025 028 028	1 .006 6 .005 8 .004 1 .002 6000	3017 5016 9014 1009

048 048 048 048 048 048 048 048 048 048
3 .050 3 .050 3 .050 3 .050 3 .050 3 .050 3 .050 3 .077 7 .077 .077 .077
6.15 8.23 10.27 14.337 16.41 18.44 23.48 - 2.003 4.003 4.015 10.34 14.34 14.34
0445 04490 03490 03405 05398 05328 06664 00778 09465 09945 09968
0073 0017 00217 0022 0114 01310 0196 03336 .03328 .00328 .0058 .0133 .0058 .00133
.0117 .0062 .0062 .00629 .0029 .00108 0007 .0327 .0335 .0410 .0384 .0374 .0244
.0137 .0118 .0101 .00057 .00053 .00040 .00352 .00193 .0246 .0246 .0257 .01138
.0056 .0037 .00016 .00095 .00003 .00003 .00018 .0168 .0162 .0149 .0129 .0153 .0030
01693 010646 000646 000655 00055 004448 0044485 0044485 00197

(b) Modified leading edge.

Table 10. Concluded.

δ_s	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{ℓ}	ΔC_n	ΔC_{γ}
. 0228 . 0288 . 0288 . 0288 . 0288 . 0288 . 0288	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 2.08 - 2.03 4.099 6.150 10.27 12.338 16.40 18.46 20.51	0142 .00980 00175 00523 01195 .0154 0074 .0054 .0054	.0081 .0074 .0082 .0080 .0090 .0070 .0037 .0065 .0072 .0003 .0112	.0283 .02853 .022853 .013102 .033066 .02552 .03256	.0063 .0067 .0089 .0092 .0086 .0068 .0039 .0043 .0044	.0038 .0035 .0031 .0030 .0020 .0013 0005 0005 0011	.0024 .0026 .0016 .0018 .0041 .0023 0020 0124 0049 0049
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	00000000000000000000000000000000000000	2 . 21 2 . 04 4 . 16 8 . 22 10 . 23 14 . 38 16 . 43 20 . 49 23 . 51	0431 03467 03119 0295 03014 0112 .0072 .0078 0078 .0003	. 0194 . 0181 . 0106 . 0108 . 0157 . 0141 . 0094 . 0094 . 0094 . 0064 . 0375	2739 27456 .03576 .04567 .05424 .05514 .05388 .03373 .0381	.0113 .0139 .0156 .0168 .0166 .0132 .0087 .0074 .0086 .0063	.0072 .0071 .0066 .0065 .0053 .0045 .0014 0000 0005 0013	.012399 .01214 .02314 .02314 .0248 .00048 .00062 .00024
. U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81	. 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077	2 . 11 2 . 03 4 . 07 6 . 14 8 . 20 10 . 26 12 . 337 16 . 41 18 . 44 23 . 49	0940 0648 0933 09312 08122 07827 03164 09545 09545	.0381 .0361 .0347 .0323 .0306 .0250 .0176 .0176 .0089 .0113 -0034 -00037	.0474 .0583 .0524 .0642 .0569 .0780 .0573 .0553 .0550 .0560 .0560 .0414	.0205 .0219 .02270 .0293 .0393 .0375 .0179 .0178 .0178	.0161 .0161 .0153 .0151 .0135 .0118 .0094 .0056 .0031 .0018	.0363 .0443 .04451 .04561 .04562 .01582 .01158 .01108
.100 .100 .100 .100 .100 .100 .100 .100	0.000000000000000000000000000000000000	- 2.10 2.005 4.006 6.11 10.24 12.35 16.38 18.44 23.46	1021 0939 11327 1261 1264 1231 0425 0905 1011 0433	.0488 .0484 .0499 .0397 .0232 .0177 .0173 .0004	.0561 .05373 .05898 .07820 .075507 .06586 .06680 .033	.0236 .0267 .0325 .0358 .0358 .0346 .0265 .0265 .0267 .0267	.0226 .0233 .0224 .0227 .0184 .0154 .01068 .0053 .0029	.054427 .06695422 .06695222 .0656281 .0556281 .05322761 .03218

(a) Plain leading edge.

Table II. Incremental aerodynamic coefficients. $y_{b/2} = .47 M = .60$

$\delta_{\!\scriptscriptstyle S}$	\mathcal{S}_{d}	a	△ C _L	ΔC_D	ΔC_m	$\triangle C_z$	ΔC_n	ΔC_{Y}
. 028 . 028		- 2.10 2.08 4.17 6.25 8.34 10.44 12.51 14.56 16.66 20.62 23.69	02612 0262 0282 0424 03125 0326 0430 0274 0313 0154 0546	.0098 .0090 .0077 .0051 .00319 .00162 .00644 .00744 .00744	0030 .0027 .0071 .0106 .0106 .0053 0018 0023 0009 0162	.0035 .0052 .0057 .0083 .00676 .0073 .0023 .0028 .0008	.0044 .0045 .0041 .0036 .0031 .0015 .0005 .0011 .0004 .0007	.001330 .011339 .011389 .0110883 .000884 .000895 .0108
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	050 050 050 050 050 0550 0550 0550 055	2.09 2.027 2.15 6.35 10.43 114.58 116.63 18.64 23.66	0270 0440 0462 0572 0481 0417 0417 0352 0256 0267	.0174 .0166 .01418 .0090 .0035 0007 0034 0038 0039	.0058 .0090 .01193 .0193 .0175 .0075 .0075 .0076 .0042	.0079 .0101 .0128 .0155 .0132 .0100 .0050 .0049 .0041	.0081 .0080 .0066 .0055 .0027 .0013 .0010 .0010	.0151 .0193 .0183 .0162 .0170 .0054 .0054 .0063
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.10 2.027 4.15 6.25 8.34 10.43 12.59 16.64 18.65 23.70	0717 0754 08348 09348 0983 0583 0504 03504 03502 03444 0317	.0354 .0339 .03277 .0220 .0122 .0063 .0024 .0043 .0013 -00559	.0328 .0296 .03663 .03689 .03622 .0218 .0203 .0166	.0161 .0192 .03261 .0258 .02156 .01121 .0193 .00778 .0092	.0166 .0164 .0164 .0146 .0124 .0077 .0048 .0038 .0038 .0028 .0037	.0424 .0436 .04434 .0397 .0200 .0166 .0146 .0162 .0163
.100 .100 .100 .100 .100 .100 .100 .100	0999	- 2.10 03 4.14 6.23 8.34 10.43 12.51 14.60 16.64 18.67 20.65 23.69	0759 0898 1128 1128 0687 0604 0725 0444 0490 0314 0491	.0489 .0492 .0417 .0317 .0191 .0153 .0075 .0100 .0061 .0086 .0037	.0343 .0409 .0449 .0394 .0364 .0363 .0226 .0226	.0196 .0231 .0304 .0314 .0349 .0197 .0141 .0141 .0141 .0141	.0237 .0238 .0218 .0188 .0183 .0086 .0074 .0068 .0061 .0067	.0589 .0625 .0625 .05268 .03897 .0229 .02246 .02442 .0243

(b) Modified leading edge.

Table II. Concluded.

	UDIL III.							40
δ_s	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_r		ΔC_{Y}
02288888888888888888888888888888888888	0 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 2.11 - 033 2.06 4.16 6.24 8.33 10.49 14.57 16.61 18.65 23.71	0140 0223 0189 0169 0257 0155 0015 0056 0100.	.0087 .00887 .0087 .0077 .0073 .0028 .0012 .0053 .0053 .0062	.0219 .01099 .0199 .0261 .02081 .00181 .00132 .02144 .0169 .01188	.0060 .0063 .0092 .01086 .0064 .0064 .00639 .00639	.0041 .0039 .0035 .0035 .0024 .0016 .0001 0019 0014 0021	.0107 .0104 .0083 .0081 .0066 .0046 .0014 .0014 .00011 0024
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.00500 .00500 .00500 .005500 .005500 .005500 .005500	- 2.12 - 2.05 4.14 6.24 8.33 10.42 12.50 14.66 16.62 18.66 20.69	0388 0470 0489 0505 0499 0552 05120 01306 01476 0250 0290	.0181 .0170 .0160 .0145 .0123 .0092 .00572 -0002 .0047 .0047 .0023	.0308 .0241 .0330 .0405 .0421 .0371 .01339 .0267 .0267 .0267	.0108 .0115 .0137 .0161 .0159 .0137 .0108 .0066 .0077 .0066	.0076 .0074 .0072 .0067 .0057 .0047 .0014 .0006 0011 0021	.02133 .02338 .023087 .02105 .02105 .001148 .000428 .000428 .000118
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	- 2.14 - 2.04 4.14 6.22 8.30 10.41 12.49 14.561 18.61 18.67 20.67	0801 0884 0908 1045 1045 0979 0481 0508 0945 0485	.0355 .0347 .0333 .0311 .02807 .0138 .01326 .0032 .0041 0010	.0478 .0441 .05333 .05592 .05581 .03544 .04464 104644 10546	.0201 .0223 .0248 .0274 .0304 .0297 .0224 .0167 .0170 .0170	.0160 .0162 .0155 .0157 .0137 .0189 .0089 .0034 .0034 .0004	,0079
.100 .100 .100 .100 .100 .100 .100 .100	.099	- 2.14 - 2.02 4.11 6.29 10.40 12.46 14.53 16.56 23.66	1228 1291 1194 0835 10928 0914 0562	.0494 .0488 .0468 .0435 .0383 .0307 .0225 .0174 .0235 .0044 002	. 0 5 2 3 5 . 0 5 2 3 0 . 0 5 2 3 0 . 0 5 2 0 5 2 0 5 2 0 5 2 6 7 . 0 5 5 6 7 . 0 5 6	. 0253 . 0266 . 0295 . 0357 . 0364 . 03102 . 0246 . 0244 . 0224 . 0249	.0230 .0236 .0235 .0205 .0178 .0102 .0102 .0075	.0645 .0645 .0568 .0478 .0386 .0301

(a) Plain leading edge.

Table 12. Incremental aerodynamic coefficients. $y_{i/b/2} = .47 \text{ M} = .70$

	C.							<u> </u>	W70
į	δς .028	δ _d	. a	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{Y}
	. 028 . 028	.0229 .0229 .0229 .0229 .0229 .0229 .0229 .0229	- 2.10 2.08 4.19 6.29 8.41 10.59 14.66 16.71 18.72 20.72 23.78	0195 0328 0324 0398 04473 0391 0447 0219 0219 0434	. 0096 .0095 .0075 .0057 -0037 -0032 -0032 -0037 -0037 -0037 -0037 -0042 -0047	0014 .0037 .0096 .0129 .0093 .0111 .0047 0021 0021 0015 0014	.0027 .0049 .0069 .0084 .0084 .0067 .0067 .0044 .0029 .0029 .0025	.0046 .0046 .0046 .0036 .0036 .0008 .0008 .0007 .0005 .0005	.0127 .0127 .0132 .0132 .0132 .0103 .0078 .0078 .0076 .0076
	048 048 048 048 048 048 048 048 048 048	.050 .050 .0550 .0550 .0550 .0550 .0550 .0550 .0550	2.11 2.016 4.18 6.29 8.43 10.53 12.60 14.67 16.72 20.76	0300 0453 0459 0598 0518 02973 02973 0289 0296 0296 0296	.0174 .0165 .0145 .00185 .0080 .0018 .0036 -0043 -0035 .0005	.0064 .0126 .0171 .0236 .0183 .0183 .0089 .0057 -0001 .00057	.0072 .0100 .0127 .0123 .0122 .0123 .0077 .00652 .0049 .0049	.0083 .0082 .0077 .0065 .0054 .0017 .0011 .0008 .0008	.01194 .01194 .01163 .01163 .00152 .00052 .00053 .00033
	081 081 081 081 081 081 081 081 081	.077 .077 .077 .077 .077 .077 .077 .077	- 2.12 - 2.02 4.20 6.29 6.29 10.52 12.62 14.69 16.74 20.73 23.80	0700 0807 0883 0966 0955 0530 02449 0268 03505	.0349 .0340 .0316 .0280 .0209 .0107 .0069 .0088 .0039 .0044 -0007	.0314 .0320 .03466 .0448 .0315 .0219 .0229 .0160 .0158 .0146	.0153 .0187 .0226 .02263 .02469 .0138 .0111 .0094 .0087 .0084 .0112	.0166 .0164 .0160 .0149 .0070 .0038 .0034 .0038	.04439 .04439 .04439 .04435 .02488 .011544 .01164 .01613 .00195
	100 100 100 100 100 100 100 100 100 100	. 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 03 4.17 6.29 8.41 10.51 14.68 16.73 18.74	0737 0948 1037 1150 1151 0885 0315 0489 0316 0316 0400 0827	.0484 .0480 .0453 .0400 .0328 .0182 .0164 .0086 .0106 .0108 .0108	.0350 .0361 .0415 .0468 .0469 .0377 .0211 .0203 .0189 .0224 .0229 .0246	.0192 .0324 .0265 .0303 .0304 .0240 .0178 .0123 .0123 .0123 .0151	. 0235 . 0234 . 0231 . 0209 . 0179 . 0107 . 0084 . 0077 . 0068 . 0071 . 0048 . 0027	.0593 .06625 .05593 .05593 .03823 .03824 .03211 .0327 .03203

Table 12. Concluded.

δ_{s}	δ_d	α Δ	C_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
	00000000000000000000000000000000000000	03 2.07 4.16 6.28 5.39 10.51 12.57 14.65 16.70 18.75 20.75	0173 0182 02370 02370 0105 0105 0105 0105 0105	.0098 .010097 .00997 .0099 .0059 .0055 .0048 .0099 .0059	.0171 .0105 .0105 .0166 .0199 .0115 .0074 .0074 .0047	.0058 .00683 .00959 .00977 .00673 .0030 .00471 .00155	.0040 .0041 .0039 .0035 .0024 .0012 .0005 .0005	.0098 .0088 .0090 .0088 .0074 .0034 .0006 0006 0019 0003
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .050 .050 .050 .050 .050	03	03994 03494 0544 0542 00410 00456 00122 00123 00153	.0187 .0182 .0174 .0174 .0128 .01163 .0021 .0054 .0054 .0009	.0278 .0265 .0275 .0377 .0324 .0238 .0248 .0235 .0119 .0261	.0103 .0111 .01464 .0176 .0149 .01084 .0055 .0090 .0087	.0075 .0075 .0077 .0056 .0047 .0014 .0010 0003 0014 0023	.0185 .0204 .0204 .0185 .0153 .0061 .0039 .0034 .0018
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	.03 4.16 6.26 10.349 12.56 14.56 16.70 20.75	07839 07839 1028 10598 0765 0765 0455 0456	.0354 .0354 .0349 .0270 .0227 .00157 .00193 .0093 .0042 0052	.0435 .1109 .04338 .0597 .0533 .04105 .04401 .04283 .0311	.0198 .0214 .02277 .0302 .0224 .0155 .0176 .0184 .0091	.0156 .0159 .0146 .0131 .0111 .0081 .0037 .00037 .0003	.0392 .04415 .04216 .0398 .0351 .0260 .0181 .0106 .0079 .0084
.100 .100 .100 .100 .100 .100 .100 .100	099999999999999999999999999999999999999	06 2.06 4.16 6.26 8.37 10.46 12.56 14.53 16.69 18.75	0969 11141 11197 11183 11105 60819 60539 6055	.0476 .0485 .0460 .0380 .0327 .0226 .0164 .00119 .00119	.0547 .05498 .044991 .06445 .06445 .05381 .05483 .05483 .0538	.0244 .0262 .03826 .0358 .0358 .03502 .02422 .02230 .02247 .0148	.0220 .0233 .02218 .0198 .0172 .0131 .00976 .0056 .0036	.0571 .0604 .0613 .0587 .0587 .0416 .03249 .0221 .0180 .0180

(a) Plain leading edge.

Table 13. Incremental aerodynamic coefficients. $y_{b/2} = .47 M = .81$

							/2	
δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{Y}
000000000000000000000000000000000000000	8 .0239 .0239 .0239 .0239 .0239 .0239 .0239 .0239	- 2.12 2.11 4.24 6.37 8.48 10.59 14.76 16.79 20.82 23.90	0149 03293 03031 02418 0453 0171 0130 0130 0130 0130	. 0097 . 0093 . 0064 . 0049 - 0037 - 0004 - 0037 - 0004 - 0099	.0041 .0054 .0128 .0128 .0121 .0187 .0087 .0042 .0036 0003	.0028 .00519 .0091 .0083 .0081 .0051 .0028 .0028 .0029 .0037	.0048 .0048 .0048 .0038 .0031 .0016 .0010 .0009 .0009 .0007 0037 0013	.0122 .0133 .0134 .0133 .0126 .0078 .0078 .0073 .0003 .0003
. 04 8 . 04 8	.050 .050 .050 .050 .050 .050	- 2.13 01 4.23 6.36 8.48 10.58 12.68 14.76 16.77 18.80 20.82 23.88	0321 0353 0453 0565 0587 0587 0186 0186 04078 0341 0335	.0176 .0167 .0150 .0122 .0093 .0013 0048 .0014 ~.0096 0076 0076	.0099 .0106 .0166 .0211 .0190 .0192 .0097 .0139 .0059 .0060 .0070	.0066 .0097 .0125 .0150 .0138 .0116 .0061 .0047 .0049 .0084 .0051	.0085 .0083 .0078 .0078 .0053 .0018 .0015 .0015 .0015	.0185 .0185 .0185 .0153 .0099 .0047 .00047 .00041 00041
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.14 2.02 2.09 4.22 6.35 8.10.58 12.68 16.81 18.83 23.90	0608 0699 0840 09944 0852 0858 0798 0317 0304 0556 0195	.0341 .0333 .03166 .0201 .0072 .0002 .0069 .0074 0043	.0311 .0304 .0394 .0433 .0363 .0364 .0224 .0230 .0222 .0221 .0211	.0143 .0178 .0223 .0228 .0228 .0174 .0087 .0087 .00127 .0113	.0162 .0162 .0158 .0159 .0109 .00649 .0042 .0042 .00042	.04435 .04436 .04436 .04137 .02154 .01137 .01448 .00997
.100 .100 .100 .100 .100 .100 .100 .100	. 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999	- 2.13 - 2.09 4.22 6.34 10.60 12.69 14.78 16.87 20.83 23.92	U925 U925 1065 10894 0686 001227 00223 0633 0633	.0477 .0472 .04746 .0395 .0318 .0112 .0114 .0115 .0149 .0184 .0155 .0003 .0005	.0356 .0328 .0328 .0462 .0456 .0326 .0326 .0237 .0237 .0237	.0172 .0208 .0254 .0254 .0254 .0210 .0114 .0115 .0117 .0149 .0166	. 0233 . 0231 . 0223 . 0205 . 0166 . 0100 . 0084 . 0077 . 0077 . 0048 . 0048	.0597 .0596 .0596 .0596 .0228 .0220 .02217 .0118 .0118

Table 13	3. Cong	cluded
----------	---------	--------

	Table_	13. Co.	ncluaea					
δ_{s}	δ_d	α	ΔC_{l}	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{γ}
.0288 .02288 .02288 .02288 .02288 .02288 .02388 .02388	. 023999999999999999999999999999999999999	- 2.16 04 2.08 4.21 6.35 8.46 10.57 12.65 14.71 18.82 20.83 23.91	0176 0250 0228 0165 0097 0122 0122 0129 0279 0279 0056 .0057	.0098 .0098 .0097 .0091 .0088 .0072 .0032 .0032 .0047 -0035 .0047	.0170 .01034 .0176 .0166 .0569 .0122 .0030 .0100 .0100 .0027	.0056 .00685 .0098 .0198 .01076 .0063 .0041 .0059 0013	.0041 .0041 .0039 .0037 .0007 .0006 .0002 -0004 -00024 -00024	.0077 .0087 .0088 .0088 .0066 .0006 0007 00045 0045
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050	- 2.17 - 2.09 4.22 6.346 10.58 12.65 14.73 16.75 16.85 20.85	0404 0448 0461 0483 0559 0270 0195 0071 0280 0259 .0011	.0181 .0179 .0174 .0159 .0133 .0127 .0046 .0078 .0032 .0070	.0295 .0252 .02770 .0395 .06395 .06397 .02197 .02245 .00105	.0108 .0105 .0165 .0166 .0134 .0170 .0070 .0072 .0083 .0096	.0075 .0075 .0072 .0068 .0056 .0049 .0017 .0013 .0005 0002	.0175 .0198 .0199 .0199 .0176 .0153 .0064 .0044 .0018 0019
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.17 2.07 4.15 6.36 10.6 12.6 14.79 16.79 18.8 23.9	0818 0912 0952 10894 08541 04598 0398 0398	.0264 .0220 .0150 .0108 .0095 .0046 .0036	.0465 .0430 .0474 .05681 .0489 .0822 .0388 .0412 .0284	.0188 .0195 .02377 .0300 .0250 .0250 .0166 .0163 .0176 .0095	.0153 .0158 .0158 .0146 .0147 .0106 .0048 .0033 .0021 0002	.0370 .0417 .0414 .0383 .03203 .0115 .0094 .0073
.100 .100 .100 .100 .100 .100	09999999999999999999999999999999999999	- 2.14 00 2.03 4.11 6.30 8.4 10.5 11.6 14.7 16.7 18.8 20.8 23.9	61023 51107 61107 71127 81127 80819 9051 9052 905	04777 04570 04570 0370 040313 0243 0243 0243 0243 0263 0363 0363 0363 0363 0363 0363 036	.0517 .0469 .0483 .0580 .0621 .0520 .0956 .0479 .0420 .0450 .0418 .0375	.0223	.0072	.0039 .0466 .0329 .0257 .0311 .0184

(a) Plain leading edge.

Table 14. Incremental aerodynamic coefficients. \$\frac{y}{b/2} = .47 M = .85\$

δ_{s}	δ_d	a	△ C _L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
.028 .028 .028 .028 .028 .028 .028 .028	0 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 2.14 - 00 3.12 4.20 6.39 8.53 10.64 12.70 14.76 16.84 18.85	0164 0231 0404 0396 0396 0395 0417 0197 0072	.0103 .0100 .0086 .0084 .0039 0003 0024 0013	.0009 .0079 .0132 .0161 .0161 .0189 .0082 .0066 0004	.0026 .0056 .0079 .0091 .0086 .0061 .0063 .0033	.0050 .0051 .0048 .0040 .0031 .0015 .0009 .0010 .0009	.0139 .0135 .0140 .0136 .0135 .0077 .0077
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	. 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 0 5 0	- 2.13 - 2.10 4.26 6.39 8.52 10.62 13.71 14.80 16.84 18.83	0391 0365 05735 05835 0588 0588 0145 0145 0178	.0180 .0177 .0154 .0092 .0008 -00040 .0027 .0036 .0001	.0095 .0137 .02247 .02242 .02341 .00991 .00956	.0070 .0099 .0124 .0140 .0147 .0047 .0047	.0088 .0086 .00871 .0052 .0026 .0017 .0016 .0017	.0192 .0191 .0191 .0180 .0148 .0087 .0047 .0044 .0046
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.11 4.23 6.37 8.537 8.565 12.71 14.80 16.86	0597 0691 09016 0876 08420 02478 03222 0185 0539	.0348 .0344 .0319 .0200 .0084 .0082 .0082 .0090	.0283 .0493 .0495 .0395 .0396 .0302 .0302 .0302 .0302	.0138 .0224 .0224 .0237 .0189 .0078 .0099 .0091	.0164 .0164 .0169 .0141 .0105 .00647 .0044 .0043 .0039	.0440 .0431 .0442 .0328 .0208 .0139 .0139 .0134
.100 .100 .100 .100 .100 .100 .100 .100	. 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999	2 . 13 2 . 03 2 . 03 4 . 23 6 . 37 8 . 565 12 . 72 14 . 78 16 . 85 18 . 87	0610 0791 1032 1070 08193 0250 0481 0293 0599	.0486 .0484 .0460 .0399 .0199 .0191 .0170 .0079 .0148	.0314 .0329 .03495 .0455 .04594 .0396 .0208 .0208 .0235	.0165 .0206 .02502 .0284 .0165 .0130 .0097 .01129 .0180	.0236 .0237 .02206 .0158 .0115 .0085 .0081 .0076	.0603 .0605 .0606 .0451 .0297 .0208 .0208 .0208 .0208

Table 14. Concluded.

δ_s	$\delta_{ec{ec{\sigma}}}$	α	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{Y}
. 028 . 028 . 028 . 028 . 028 . 028 . 028 . 028 . 028	029902990299029999999999999999999999999	2.18 - 0.04 2.11 4.24 6.38 8.51 10.60 12.75 16.81 18.87	0155 0161 0233 02361 0306 0098 0097 00133 0189 .0038	.0096 .0103 .0104 .0085 .0068 .0057 .0029 .0018	.0143 .0133 .0175 .0172 .0169 .0070 .0102 .0151 .0134 .0129	.0052 .0064 .0099 .0109 .0105 .0069 .0047 .0051	.0041 .0045 .0049 .0039 .0031 .0018 .0008 .0007	.0106 .0101 .0105 .0092 .0097 .0045 .0010 0004 0004
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .050 .050 .050 .050 .050	- 2.17 2.104 2.104 6.38 8.43 10.62 12.70 14.92 16.82 18.89	0343 0343 04562 05589 0184 02041 00046	.0181 .0188 .0183 .0131 .0072 .0084 .0031 .0074 .0014	.0282 .0743 .0370 .0370 .0371 .0263 .0283 .02970 .0283	.0101 .0105 .0138 .0170 .0180 .0150 .0150 .0077 .0082 .0091	.0076 .0079 .0077 .0069 .0058 .0040 .0012 .0005	.0207 .0215 .0176 .0179 .0163 .00047 .00047
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.18 2.04 2.08 4.23 6.36 8.49 10.69 14.78 16.83	0775 0759 0904 1013 1109 0816 0546 0445 0445	.0343 .0343 .0325? .0209? .01495 .0106	.0447 .0447 .0512 .05789 .0514 .0471 .04466	.0191 .0203 .0242 .0287 .0315 .0275 .0275 .0176	.0153 .0160 .0155 .01425 .0099 .0059 .0042 .0030	.0414 .0435 .0435 .0375 .03702 .0186 .0086
.100 .100 .100 .100 .100 .100 .100	09999 09999 09999 0999 0999 0999 0999	- 2.20 07 2.06 4.20 6.34 8.49 10.58 12.69 14.76 16.81	0918 0930 1141 1351 1361 0978 08030 0540 0706	.0408 .04486 .0457 .0427 .0365 .0288 .02150 .0154	.0496 .0466 .0498 .0592 .0571 .0488 .0488	.0234 .0234 .0269 .0359 .0321 .0224 .0304	.0217 .0231 .0220 .0213 .0188 -0008 .0114 .0086 .0072	1850048446 55885568416 00005588416 000000000000000000000000000000000000

Table 15. Incremental aerodynamic coefficients. \$\frac{y_{b/2}}{b/2} = .47 \ M = \frac{9}{2}

δ_{s}	\mathcal{S}_d	а	ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{r}
.028 .028 .028 .028 .028 .028	.029	- 2.14 - 000 2.14 4.29 6.42 8.55 10.66 12.73	0088 0206 03475 0375 0209 02379	.0099 .0101 .0091 .0061 .0021 .0023	0005 .0076 .0152 .0219 .0240 .0127 .0117	.0023 .0052 .0087 .0087 .0069 .0040	.0051 .0053 .0049 .0043 .0028 .0015	.0127 .0139 .0145 .0139 .0106 .0080 .0076
.048 .048 .048 .048 .048 .048	.050 .050 .050 .050 .050 .050	- 2.14 01 2.13 4.27 6.42 8.56 10.81 12.68	0310 0376 0620 06596 0376 0124 0773	.0193 .0189 .0163 .0130 .0056 .0043 .0032	.0114 .0154 .0250 .0310 .0341 .0285 .1029	.0067 .0100 .0135 .0162 .0136 .0120 .0046	.0093 .0091 .0085 .0075 .0028 .0028	.0205 .0206 .0202 .0190 .0134 .0082 .0045
.081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077	- 2.14 01 2.12 4.28 6.41 8.55 10.66 12.76	0542 0672 0963 1102 0979 0823 0248	.0355 .0356 .0324 .0269 .0171 .0079 .0120	.0276 .0339 .0468 .0592 .0538 .0486 .0166	.0129 .0179 .0227 .0286 .0249 .0198 .0071	.0169 .0169 .0162 .0143 .0105 .0065	.0445 .0445 .0443 .0409 .0305 .0201 .0141
.100 .100 .100 .100 .100 .100	.099 .099 .099 .099 .099	- 2.15 03 2.12 4.27 6.41 8.53 10.66 12.76	0644 0769 1062 1232 1075 0907 0375	.0490 .0491 .0455 .0395 .0289 .0157 .0177	.0272 .0309 .0447 .0587 .0586 .0465 .0203	.0152 .0195 .0248 .0311 .0297 .0233 .0124	.0237 .0237 .0228 .0208 .0164 .0164 .0086	.0604 .0608 .0605 .0568 .0450 .0290 .0212

Table 15. Concluded.

δ_s	δ_d	α	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{Y}
.028 .028 .028 .028 .0228 .0228	.029	- 2.16 04 2.11 4.25 6.40 8.52 10.63	0172 0182 02822 0302 0192 0053 .0155 0011	.0097 .0108 .0103 .0080 .0066 .0062 .0142	.0122 .0123 .0123 .0232 .0168 .01167 .0107	.0059 .0066 .0092 .0112 .0092 .0074 .0052	.0043 .0047 .0047 .0038 .0023 .0010	.0108 .0105 .0104 .0086 .0053 .0019 .0009
.048 .048 .048 .048 .048 .048	.050 .050 .050 .050 .050 .050	- 2.19 12 2.12 4.26 6.40 8.52 10.62	0340 1107 0508 0480 0512 .0040 .0153	.0182 .0191 .0182 .0175 .0108 .0144	.0247 .0234 .0378 .0407 .0429 .0280 .0289	.0104 .0108 .0145 .0185 .0172 .0131 .0066	.0078 .0082 .0082 .0068 .0050 .0028 .0019	.0219 .0221 .0221 .0198 .0198 .0090 .0052
.081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077	- 2.19 05 2.09 4.35 6.52 10.62 12.71	0704 0760 0979 1061 1030 0800 0274 0283	.0349 .0365 .0342 .0295 .0226 .0171 .0219	.0448 .0472 .0580 .0690 .0717 .0642 .0386	.0189 .0203 .0246 .0300 .0317 .0286 .0174	.0156 .0164 .0158 .0143 .0118 .0079 .0056	.0421 .0435 .0424 .0397 .0325 .0221 .0145
.100 .100 .100 .100 .100 .100	.099 .099 .099 .099 .099 .099	- 2.20 06 2.08 4.23 6.37 8.49 10.61 12.70	0813 0909 1162 1301 1229 1072 0598 0472	.0474 .0497 .0467 .0420 .0348 .0264 .0247	.0470 .0483 .0579 .0731 .0724 .0671 .0501	.0214 .0232 .0278 .0349 .0370 .0348 .0237	.0219 .0233 .0226 .0312 .0179 .0140 .0108	.00796 .0593 .0593 .0575 .04985 .0285

							0/2 11	m -,5 -1
δ_s	δ_d	a	ΔCL	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔCY
.028	.029 .029 .029 .029 .029	- 2.13 00 2.14 4.26 6.40 8.53	0107 0231 0327 0332 0289 0235	.0106 .0106 .0091 .0073 .0048	0023 .0071 .0130 .0147 .0150	.0009 .0046 .0082 .0092 .0067	.0053 .0055 .0050 .0038 .0035	.0133 .0141 .0146 .0116 .0087
.048 .048 .048 .048 .048	.050 .050 .050 .050 .050	- 3.15 01 2.13 4.27 6.41 8.52	0252 0404 0579 0474 0460 0265	.0190 .0185 .0158 .0142 .0098	.0053 .0170 .0375 .0267 .0241	.0060 .0096 .0140 .0136 .0131	.0093 .0093 .0085 .0076 .0048	.0204 .0208 .0204 .0173 .0116
.081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077	- 2.14 01 2.13 4.27 6.40 8.53 10.66	0502 0704 0896 0913 0781 0693 0486	.0354 .0352 .0327 .0381 .0335 .0140	.0249 .0338 .0460 .0536 .0461 .0425	.0118 .0173 .0240 .0277 .0244 .0190	.0170 .0170 .0161 .0164 .0107 .0078	.0437 .0443 .0440 .0387 .0295 .0328
.100 .100 .100 .100 .100 .100	.099 .099 .099 .099 .099	- 2.15 - 02 2.12 4.26 6.40 8.53 10.66	0549 0782 1019 0984 0915 0696	.0486 .0487 .0466 .0420 .0301 .0322 .0184	.0224 .0336 .0472 .0518 .0496 .0427	.0133 .0190 .0265 .0315 .0289 .0254	.0235 .0237 .0230 .0204 .0157 .0110	.0594 .0601 .0611 .0552 .0425 .0302

Table 16. Concluded.

$\delta_{\mathcal{S}}$	δ_d	a	△CL	ΔC_D	ΔC_m	ΔC_{I}	ΔC_n	ΔC_{Y}
.028 .028 .028 .028 .028	.029 .029 .029 .029 .029	- 2.33 04 2.12 4.24 6.37 8.48	0179 0202 0077 0236 0139 0077	.0105 .0105 .0115 .0095 .0056	0721 .0141 .0187 .0183 .0130	.0052 .0062 .0089 .0106 .0089	.0045 .0048 .0045 .0033 .0016	.0114 .0112 .0100 .0074 .0028
.048 .048 .048 .048 .048	.050 .050 .050 .050	- 2.17 04 2.12 4.25 6.38 8.50	0269 0373 0405 0473 0392 0254	.0206 .0200 .0192 .0182 .0140	.0337 .0303 .0361 .0379 .0358	.0097 .0110 .0147 .0176 .0171	.0084 .0085 .0080 .0063 .0038	.0233 .0233 .0222 .0186 .0119
.081 .081 .081 .081 .081	.077 .077 .077 .077 .077	- 2.19 04 2.10 4.24 6.37 8.50	0041 0760 0868 0922 0827 0716	.0359 .0353 .0339 .0302 .0370	.0451 .0486 .0547 .0644 .0606	.0130 .0144 .0175 .0209 .0214	.0160 .0165 .0163 .0149 .0119	.0420 .0429 .0416 .0374 .0289
.100 .100 .100 .100 .100	.099	- 2.21 06 2.08 4.22 6.36 8.46	0721 0879 1034 1094 1034 0916	.0475 .0497 .0470 .0414 .0352	.0447 .0480 .0579 .0667 .0661	.0194 .0220 .0285 .0342 .0365	.0219 .0233 .0226 .0201 .0163	.0575 .0599 .0593 .0549 .0455

(a) Plain leading edge.

		• •		•				
Tal	ile 17.	Incr	emental	aerodyn	amic co	efficien	ts. 1/b/2	=.47
δ_{s}	Sd	a	ΔC_L	ΔC_D	ΔC_m		ΔC_n	1CY
				M=.40				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.04 2.006 4.10 6.17 8.23 10.29 14.38 14.38 16.43 18.46 20.47 23.45	0035 00374 025768 01379 025768 002576 007576 007576 007576 007576	. 0141 . 0144 . 01134 . 01102 - 00065 . 00063 - 00020 - 00041 - 0003 . 01112	.0084 .0089 .0049 .0128 .0118 .0050 .00137 0034 0002 .0017	.0049 .0061 .0085 .0109 .0053 .0020 .0005 0006 0016 0018	.0065 .0066 .0069 .0058 .0041 00007 0007 0004 0004 0002 0012	0026 01096 01175 00175 00146 .0046 .0130 .0161 .0161
 	· 			M=.60				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.08 2.01 2.01 4.17 6.26 8.36 10.53 14.58 16.65 18.65 20.69	0076015002920209012101180159010700590062	.0148 .0151 .0132 .0105 .0096 .0048 .0020 0045 0051 0008 0020	.0107 .0070 .0139 .0093 .0054 .00054 .00015 0010 0197 0068	.0075 .0095 .01143 .0119 .0052 .0009 0000 0010 00112 0041	.0065 .0067 .0066 .0055 .0037 .0013 0003 0004 0004 0007	0073 0102 0087 0087 0039 .00086 .01137 .0137 .02315 .02370
				M=70				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.08 .01 2.10 4.21 6.32 10.52 12.59 16.71 180.71 23.77	0095 01963 02887 02863 021603 020032 00537 01146	.0150 .0148 .0127 .0108 .0088 .0026 0029 0013 0015 0055	.0153 .0138 .0176 .0201 .0137 .0031 .0031 0034 0029 0129 0082	.0091 .01133 .0153 .0156 .0052 0015 0011 0012 0020 .0008	.0065 .0066 .0052 .0035 .0013 0000 0003 0003 0004 0023	0075 01082 0008297 000823 0011533 .011531 .0226

(a) Concluded.

Table 17. Continued.

δ_{s}	δ_d	а	ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
				M=.81				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.10 00 2.13 4.73 6.37 8.51 10.60 12.69 14.75 16.79 18.79 23.69	0167 0252 0339 .4424 0180 0244 0224 00379 0036 00375 .0110	.0150 .0128 .0128 .0487 .0096 .0003 0039 0019 0023 0089 0047	.0225 .01733 .02584 .01525 .00063 00254 00142 0084	.0115 .0132 .0157 .0178 .0117 -00017 0009 00011 0008 0003	.0067 .0065 .0054 .00307 0003 0004 0007 0012	0193 01044 000643 00077 00137 00137 00137 00139 0294
				M=.85			-,	
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.11 2.13 4.27 6.37 8.53 10.64 12.71 14.77 16.82 18.85	0161 0294 0420 0421 0531 0176 0126 0206 0209	.0155 .0153 .0130 .0109 .0059 .0046 0032 .0010 0071 8011	.0226 .0219 .0267 .0277 .0176 .0137 .0040 0013 .0002 0080	.0123 .0147 .0178 .0125 .0041 0013 0007 0006	.0068 .0068 .0067 .0055 .0027 .0004 0005 0005	0101 0137 0137 0079 0079 0062 .0062 .0082 .01082 .0127 .0823
				M=90				
.081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000	- 3.11 .15 .2.15 4.29 6.43 8.56 10.67 12.72	0195 .0859 0486 0607 0011 0056 0093	.0162 .0163 .0135 .0101 .0052 .0044 0029	.0270 .0350 .0330 .0386 .0329 .0107 .0075	.0167 .0159 .0186 .0208 .0139 .0061 0014	.0070 .0072 .0068 .0057 .0031 .0007 .0002	0136 0144 0128 0022 0023 .0047 .0061
				M =.94				
.081 .081 .081 .081 .081 .081	.000	- 2.09 .02 2.15 4.30 6.42 8.54 10.65	0245 0301 0462 0324 0373 0282	.0176 .0160 .0136 .0124 .0035 0010	.0340 .0284 .0336 .0310 .0339 .0288	.0153 .0163 .0199 .0202 .0133 .0054	.0075 .0073 .0068 .0050 .0026 .0008	0147 0160 0140 9083 0025 .0027

Table 17. Continued.

	apie i i	. 00111	rinuea.					
δ_{s}	δ_d	α	ΔC_L	ΔC_D	ΔC_m	ΔC_{I}	ΔC_n	ΔC_{Y}
				M =.40				
.081 .081 .081 .081 .081 .081 .081 .081	.000	2.02 2.006 4.10 6.123 10.28 12.34 14.34 14.35 16.41 18.45	.0884 .03092 .00132 0062 .00150 .0274 .0274 .02725 0142	.0115 .01163 .01146 .01146 .01156 .0135 .00089 .00087 .00084	.0275 .0230 .0319 .0310 .0464 .0229 .0426 .0335 .0265 .0305 .0305	.0067 .0072 .0097 .0122 .0128 .0110 .0060 .0046 .0029 .0017	.0071 .0068 .0068 .0065 .0052 .0035 .0014 0000 0003 0013	0046 00445 00445 000375 000375 000197 000445 0198 0198
				M = .60				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.10 02 2.07 4.16 6.25 8.33 10.43 12.49 14.55 16.61 20.67	.0013 0138 0194 0229 0330 01319 01319 0224 0282	.0152 .0151 .0152 .0113 .0113 .0051 .0056 0006 00048 0063	.0229 .01612 .02233 .05246 .0299 .0248 .01748 .02045 .02045	.0080 .0104 .0129 .0157 .0172 .0142 .0101 .0025 .0025 .0021 -0016	.0072 .0065 .0065 .0063 .0058 .0029 .0011 .00013 .00014 0008	0061 0069 00597 0034 0034 01124 01124 0203
		·		M = .70				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.11 - 02 2.07 4.20 6.29 8.40 10.51 12.57 14.63 16.70 18.74 20.74 23.78	.00180202028302240403023301410054005403580186	.0158 .0162 .0155 .0140 .0113 .0023 -00022 -00022 -00085 -0098	.0251 .0216 .0311 .0320 .0216 .0171 .0196 .0027 .0090 .0076 .0252	.0104 .0122 .0151 .0175 .0183 .0140 .0103 .0029 .0029	.0071 .0065 .0065 .0058 .0058 .0021 .0005 0005 0001	0074 0096 0063 00741 0019 0108 0108 0115 0135 0350

(b) Concluded.

Table 17. Concluded.

δ_{s}	δ_d	a	△CL	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
M=.81								
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.14 02 2.09 4.19 6.33 8.46 10.58 12.64 14.77 18.82 20.80	0138 0290 0372 0728 0477 0229 0054 0276 0081 0096 0054 0054	. 0141 . 0141 . 0131 . 0086 . 0089 . 0083 . 0013 - 00248 - 0025 - 00074	.0299 .02493 .02293 .0324 .0180 .01602 .01760 .01601 .001328 0019	0126 0143 0170 0194 0195 00128 00065 00030 00018 00019	.0071 .0066 .0062 .0052 .0025 .0008 .0003 0001 0012 0014	0123 0028 0098 0096 0075 0035 .0052 .0073 .0102 .0118 .0193 .0368
			•	M=.85				
.081 .081 .081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000 .000 .000 .00	- 2.16 03 2.10 4.24 6.37 8.48 10.59 12.68 14.74 16.83 18.89	0144 0257 0498 0516 0619 0073 0155 0284 0047 .0129	.0138 .0142 .0132 .0110 .0092 .0091 .0003 -0003 -00057 .0016	. 0279 .0278 .0371 .0371 .0064 .0097 .0185 .0145 .00427	.0134 .0148 0003 .0213 .02142 .0057 .0057 .0020 .0089 0084	.0072 .0068 .0084 .0063 .0119 .00029 .0006 .0001 0012 0013	0137 0138 0122 0099 0064 .0004 .0052 .0074 .0124 .0210
	·			M =.90				
.081 .081 .081 .081 .081 .081	.000	- 2.16 03 2.13 4.26 6.36 8.51 .10.60 12.71	0170 0350 0509 0487 0453 .0019 .0102 0526	.0146 .0153 .0138 .0121 .0074 .0002 .0062 .0067	.0297 .0318 .0415 .0326 .0394 .0074	.0156 .0167 .0196 .0224 .0206 .0147 .0054 .0069	.0076 .0072 .0079 .0061 .0039 .0018 .0006	.0051
				M=.94	7			
.081 .081 .081 .081 .081	.000	- 2.15 02 2.12 4.25 6.36 8.46	0356 0392 0475 0475	.0157 .0167 .0106 .0119	.0399 .0356 .0369 .0405 .0411 .0238	.0172 .0182 .0207 .0220 .0302 .0158	.0077 .0073 .0068 .0057 .0036	0154 0125 0088 0036

Figure 1.- General arrangement of model and controls.

Figure 2.- Photograph of the model mounted in the Langley high-speed L-74562 7- by 10-foot tunnel.

NACA RM 154109

Figure 3 .- Variation of average test Reynolds number with Mach number.

Figure 4.- Effect of wing leading-edge modification on the lift, drag, and pitching-moment characteristics of the model without controls. (Data taken from ref. 5.)

Flagged symbols modified leading edge

M = .85

Figure 5.- Comparison of the static roll effectiveness of the spoiler-slot-deflector control with the plain flap-type spoiler. Control span, 0.44b/2.

NACA RM 154109

(a) Rolling-moment coefficient.

Figure 6.- Effect of wing leading-edge modification on the variation of incremental aerodynamic coefficients with inboard spoiler-slot-deflector projection.

1 is

(b) Yawing-moment coefficient.

Figure 6.- Continued.

(c) Lift coefficient.

Figure 6.- Continued.

(d) Drag coefficient.

Figure 6.- Continued.

(e) Pitching-moment coefficient.

Figure 6.- Concluded.

(a) Rolling-moment coefficient.

Figure 7.- Effect of wing leading-edge modification on the variation of incremental aerodynamic coefficients with outboard spoiler-slot-deflector projection.

(b) Yawing-moment coefficient.

Figure 7.- Continued.

(c) Lift coefficient.

Figure 7.- Continued.

(d) Drag coefficient.

Figure 7.- Continued.

(e) Pitching-moment coefficient.

Figure 7.- Concluded.

Flagged symbols denote modified leading edge.

(a) Rolling-moment coefficient.

Figure 8.- Effect of wing leading-edge modification on the variation of incremental aerodynamic moment coefficients with angle of attack for the inboard spoiler-slot-deflector control.

Flagged symbols denote modified leading edge

(b) Yawing-moment coefficient.

Figure 8.- Concluded.

Flagged symbols denotes modified leading edge

(a) Rolling-moment coefficient.

Figure 9.- Effect of wing leading-edge modification on the variation of incremental aerodynamic moment coefficients with angle of attack for the outboard spoiler-slot-deflector control.

Flagged symbols denote modified leading edge

(b) Yawing-moment coefficient.

Figure 9.- Concluded.

(a) Rolling-moment coefficient.

Figure 10.- Effect of control spanwise location on the variation of incremental aerodynamic moment coefficients with spoiler-slot-deflector projection on the wing with the modified leading edge.

(b) Yawing-moment coefficient.

Figure 10.- Continued.

(c) Pitching-moment coefficient.

Figure 10.- Concluded.

$$y_{i/b/2} = .25 \quad \delta_s = .096 \quad \delta_d = .103$$
 \circ $y_{i/b/2} = .47 \quad \delta_s = .100 \quad \delta_d = .099$ \circ

(a) Rolling-moment coefficient.

Figure 11.- Effect of control spanwise location on the variation of incremental aerodynamic moment coefficients with angle of attack on the wing with the modified leading edge.

$$y_{i/b/2} = .25$$
 $\delta_s = .096$ $\delta_d = .103$ 0
 $y_{i/b/2} = .47$ $\delta_s = .100$ $\delta_d = .099$ 0

(b) Yawing-moment coefficient.

Figure 11.- Concluded.

