Notes on Algebra

Author: 秦宇轩(Qin Yuxuan) Last complied at 2025-07-09

Contents

1.	The algebraic closure of finite field		. 1
----	---------------------------------------	--	-----

1. The algebraic closure of finite field

Fix a prime p, we claim that the algebraic closure of finite field \mathbb{F}_{p^n} (for all $n \geq 1$) is:

$$\overline{\mathbb{F}}_p := \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^{k!}}.$$

Reasons:

- 1. We know that \mathbb{F}_{p^k} is the splitting field of $x^{p^k} x$ on \mathbb{F}_p for all naturals $k \ge 1$; 2. For $k \mid m$ we have $\left(x^{p^k} x\right) \mid \left(x^{p^m} x\right)$, since if $x^{p^k} = x$ then $x^{p^m} = \left(x^{p^n}\right)^{p^{m-n}} = x^{p^{m-n}}$ and so on, terminates at $x^{p^0} = x$ since $k \mid m$. So we always have $\mathbb{F}_{p^{k!}} \subset \mathbb{F}_{p^{(k+1)!}}$;
- 3. For any non-constant polynomial $f \in \overline{\mathbb{F}}_p$, there exist a natural number k such that all coefficients of it are in $\mathbb{F}_{p^{k!}}$, then the splitting field of f is a finite extension of $\mathbb{F}_{p^{k!}}$ and thus is also finite with characteristic p in form \mathbb{F}_{p^m} for some naturals m, so its splitting field is contained in $(\mathbb{F})_{p^{m!}}$ by point 2, thus finally its splitting field is contained in \mathbb{F}_p .

Ref. algebraic closure of a finite field. Planetmath. Ver. 2025-07-09.