# Телекоммуникационные системы и технологии

## Лабораторная работа №3

Мониторинг сетевого трафика на хосте на примере работы с утилитами диагностики и мониторинга сетевых соединений в Linux

Выполнил: Птицын Владислав

Группа: М3301

Преподаватель: Береснев А.Д.

**Цель работы:** получить практические навыки по работе с анализаторами сетевого трафика. На практике ознакомиться с различиями в принципах работы активного сетевого оборудования. Уяснить особенности взаимодействия сетевого и канального уровней на примере стека TCP/IP. Выяснить отличия форматов кадров Ethernet. Познакомиться с консольными утилитами диагностики и анализа сетевых соединений.

#### Часть 2

На машине c7-2 напишите команду ping, которая (!) интервалом 10 секунд отправляет 5 пакетов размером 1500 байт на машину c7-1

```
ping -i 10 -c 5 -s 1500 10.0.2.6 > 21.text
```

```
PING 10.0.2.6 (10.0.2.6) 1500(1528) bytes of data.

1508 bytes from 10.0.2.6: icmp_seq=1 ttl=64 time=0.037 ms

1508 bytes from 10.0.2.6: icmp_seq=2 ttl=64 time=0.047 ms

1508 bytes from 10.0.2.6: icmp_seq=3 ttl=64 time=0.077 ms

1508 bytes from 10.0.2.6: icmp_seq=4 ttl=64 time=0.093 ms

1508 bytes from 10.0.2.6: icmp_seq=5 ttl=64 time=0.080 ms

--- 10.0.2.6 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 40843ms

rtt min/avg/max/mdev = 0.037/0.066/0.093/0.021 ms
```

Напишите команду, которая сохранит в файл расширенную статистику работы mtr при отправке 40 пакетов (!).

mtr -c 40 -w www.itmo.ru > 2.text

```
Start: 2024-10-02T15:07:26+0300
HOST: d12
                              Loss%
                                          Last
                                                 Avg Best Wrst StDev
 1. -- 10.0.2.1
                                 0.0%
                                        40
                                             0.2
                                                  0.7
                                                        0.1
                                                             1.8
                                                                  0.3
 2. | -- 172.28.16.1
                                 2.5%
                                        40
                                             3.2 14.3
                                                        2.0 183.0
                                                                 34.8
 3. | -- 77.234.199.66
                                 0.0%
                                       40
                                           4.8 27.3 3.2 538.3 88.0
 4. -- 87.248.228.102.pool.sknt.ru 0.0%
                                       40
                                            11.4 23.2
                                                        3.7 479.1 76.2
 5. -- yacloud.spb.piter-ix.net
                                0.0%
                                           50.0 26.8 11.7 427.9 65.4
                                       40
 6. | -- ???
                                100.0
                                       40
                                           0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                  0.0
 7. |-- ???
                                100.0
                                       40
                                           0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                  0.0
 8. | -- ???
                                100.0
                                       40
                                             0.0
                                                  0.0
                                                        0.0
                                                            0.0 0.0
 9. | -- ???
                                                        0.0 0.0
                                100.0
                                      40
                                             0.0
                                                  0.0
                                                                  0.0
10. |-- ???
                                100.0
                                       40
                                             0.0
                                                  0.0
                                                        0.0
                                                            0.0
                                                                  0.0
11. | -- ???
                                100.0 40
                                             0.0
                                                        0.0
                                                            0.0
                                                                  0.0
                                                  0.0
12. | -- ???
                                100.0 40
                                             0.0
                                                  0.0
                                                        0.0 0.0
                                                                  0.0
13. |-- ???
                                      40
                                100.0
                                             0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                  0.0
14. |-- ???
                                100.0 40
                                             0.0
                                                  0.0
                                                        0.0 0.0
                                                                  0.0
15. -- ???
                                100.0 40 0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                  0.0
16. |-- ???
                                100.0
                                       40
                                           0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                  0.0
17. | -- 51.250.54.78
                                 2.5%
                                            21.3 33.8 19.9 318.2 49.9
                                       40
```

## Узел с максимальной активностью (по объему переданных данных)

| Address A         | Address B         | Packets | Bytes |
|-------------------|-------------------|---------|-------|
| dc:21:48:50:29:68 | c4:ad:34:22:f3:7e | 62,556  | 61 MB |
| d0:37:45:67:ce:28 | dc:21:48:50:29:68 | 1,942   | 2 MB  |
| 42:73:0b:42:dc:74 | dc:21:48:50:29:68 | 1,833   | 2 MB  |

### Используя инструментарий статистики, определите Узел, осуществивший наибольшее количество широковещательных рассылок

| Address A         | Address B      | Packets | Bytes  | Stream ID | Total Packets |
|-------------------|----------------|---------|--------|-----------|---------------|
| c4:ad:34:22:f3:7e | ff:ff:ff:ff:ff | 2,876   | 161 kB | 9         | 2,876         |
| d2:b6:13:81:38:43 | ff:ff:ff:ff:ff | 154     | 9 kB   | 67        | 154           |

# Самый активный ТСР-порт на хосте (по количеству переданных пакетов)

| Address A     | Port A | Address B      | Port B | Packets |
|---------------|--------|----------------|--------|---------|
| 172.28.94.172 | 50169  | 199.232.42.172 | 80     | 5,180   |

# Постройте на одной координатной сетке постройте графики интенсивности TCP и UDP трафика (пункт lo Graphs)



# Постройте диаграмму связей только для пакетов, содержащих сообщения протокола HTTPS (пункт Flow Graph)



```
Отбирающие сообщения протокола DNS (53 порт udp и tcp) относящиеся только к взаимодействию DNS клиента на хосте и внешних серверов. ((ip.dst == 192.168.1.1) && (_ws.col.info matches "Standard query response*")) || ((ip.dst == 192.168.1.1) && (_ws.col.info matches "Standard query 0x*"))

Все кадры Ethernet, отправленные с сетевого интерфейса хоста (агр ог icmp) && ip.host

Напишите фильтр, отбирающий только широковещательные сообщения. Определите назначение 3-х широковещательных рассылок разных протоколов (или тех, которые удалось обнаружить).

eth.dst == ff:ff:ff:ff:ff:ff:
```

## Определите назначение 3-х широковещательных рассылок разных протоколов



ARP – мапим ір адреса на тас

#### **DHCP**

```
6674 101.503774 0.0.0.0
                                        255.255.255.... DHCP
                                                                                  DHCP Request - Transaction ID 0x46732502
   6721 101.811070 0.0.0.0
6729 101.903032 172.28.94.70
6851 110.825052 0.0.0.0
                                       255.255.255.... DHCP
                                                                                  DHCP Request - Transaction ID 0x95e1ed2f
                                                                   352
342
                                         255.255.255.... DHCP
                                                                                   DHCP Request - Transaction ID 0x8da8e29c
                                         255.255.255.... DHCP
                                                                                   DHCP Request - Transaction ID 0xb1bc5b08
   6866 111.053135 172.28.94.62
                                        255.255.255... DHCP
                                                                                   DHCP Request - Transaction ID 0x174c6b6c
   6898 112.973926 0.0.0.0
7253 137.333223 0.0.0.0
                                                                   332
                                         255.255.255.... DHCP
                                                                                   DHCP Discover - Transaction ID 0xc65363e6
                                          255.255.255.... DHCP
                                                                    368
                                                                                   DHCP Request - Transaction ID 0x661d741d
   7423 140.490763 0.0.0.0
                                         255.255.255.... DHCP
                                                                                   DHCP Request - Transaction ID 0x9b3c09a2
                                                                   342
   7475 140.569639 0.0.0.0
7553 140.834175 0.0.0.0
                                         255.255.255.... DHCP
                                                                                   DHCP Request - Transaction ID 0x154d00eb
                                         255.255.255... DHCP
                                                                    348
                                                                                   DHCP Discover - Transaction ID 0x25c17e20
   7692 141.219249 0.0.0.0
                                         255.255.255.... DHCP
                                                                                   DHCP Request - Transaction ID 0x18b0620c
   0261 142 070152
                     0000
                                          חבב חבב חבב
    [Protocols in frame: eth:ethertype:ip:udp:dhcp]
                                                                                                        0000 ff ff ff ff ff ff 6
                                                                                                         0010 01 48 8b 73 00 00 f
     [Coloring Rule Name: Новое правило выделения цветом]
    [Coloring Rule String: (eth.dst==ff:ff:ff:ff:ff:ff)]
                                                                                                         0030
                                                                                                              a8 b6 00 00 00 00 0
v Ethernet II, Src: 6a:35:f3:6f:b9:90 (6a:35:f3:6f:b9:90), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
                                                                                                         0040 00 00 00 00 00 6
  v Destination: Broadcast (ff:ff:ff:ff:ff)
                                                                                                         0050 00 00 00 00 00 00 0
       \dots ..1. \dots = LG bit: Locally administered address (this is NOT the factory de
                                                                                                              00 00 00 00 00 00 0
                                                                                                         0070
        .... ...1 .... .... = IG bit: Group address (multicast/broadcast)
                                                                                                         0080
                                                                                                              00 00 00 00 00 00 0

√ Source: 6a:35:f3:6f:b9:90 (6a:35:f3:6f:b9:90)

                                                                                                         0090 00 00 00 00 00 0
       ......1. ..... = LG bit: Locally administered address (this is NOT the factory de
                                                                                                        00a0 00 00 00 00 00 0
                                    - IG hit: Individual address (unicast)
```

DHCP – получаем конфигурацию
Discover – обнаруживаем dhcp серверы
Offer – получаем предложение конфигурации со всех dhcp
Request – выбираем 1 dhcp сервер
Acknowledgement – получаем подтверждение с
выбранного

#### **NBNS**



NBNS – разрешаем имена как DNS но внутри локалки

На основании анализа адресов отправителя и получателя в перехваченных пакетах, их вида и распределения, определите к какому типу коммутационного оборудования подключен используемый компьютер (концентратор, коммутатор или маршрутизатор).



#### Все характеристики

Wi-Fi poytep Zyxel Keenetic Extra II обеспечит вам качественный беспроводной интернет дома и в офисе.... Читать далее

На машине с7-1 напишите команды traceroute, которые (!): определяют маршрут до хоста 8.8.8.8 с помощью ICMP, UDP, TCP, а также позволяют определить используется ли по маршруту фрагментация IPv4

```
traceroute -I 8.8.8.8
traceroute -U 8.8.8.8
traceroute -I 8.8.8.8
traceroute -I 8.8.8.8
traceroute -I 8.8.8.8 -F
```

#### Часть 5

На хосте с7-1 последовательно с помощью утилиты bmon или ее аналогов получите данные о загрузке интерфейса, на который отправляет трафик хост с7-2

#### Скрипт на с7-2

```
ping -f 10.0.2.5
```

#### Скрипт на с7-1

```
bmon -p enp0s3 -o ascii >> 5.text
```

#### Форматирование файла на с7-1

```
cat 5.text | sed '/Interf/d' > 52.text
cat 52.text > 5.text
rm 52.text
```

| enp0s3 | 0         | 0     | 0         | 0     |
|--------|-----------|-------|-----------|-------|
| enp0s3 | 63.45KiB  | 662   | 63.45KiB  | 662   |
| enp0s3 | 269.21KiB | 2.81K | 269.21KiB | 2.81K |
| enp0s3 | 309.99KiB | 3.24K | 309.99KiB | 3.24K |
| enp0s3 | 337.84KiB | 3.53K | 337.84KiB | 3.53K |
| enp0s3 | 329.80KiB | 3.45K | 329.73KiB | 3.44K |
| enp0s3 | 340.03KiB | 3.55K | 340.01KiB | 3.55K |
| enp0s3 | 335.43KiB | 3.50K | 335.50KiB | 3.50K |
| enp0s3 | 331.76KiB | 3.47K | 331.78KiB | 3.47K |
| enp0s3 | 327.11KiB | 3.42K | 327.04KiB | 3.42K |
| enp0s3 | 332.25KiB | 3.47K | 332.30KiB | 3.47K |
| enp0s3 | 338.78KiB | 3.54K | 338.80KiB | 3.54K |
| enp0s3 | 341.55KiB | 3.57K | 341.48KiB | 3.57K |
| enp0s3 | 344.66KiB | 3.60K | 344.65KiB | 3.60K |
| enp0s3 | 344.66KiB | 3.60K | 343.98KiB | 3.59K |
| enp0s3 | 347.24KiB | 3.63K | 347.07KiB | 3.63K |
| enp0s3 | 343.18KiB | 3.58K | 343.14KiB | 3.58K |
| enp0s3 | 331.28KiB | 3.46K | 331.34KiB | 3.46K |
| enp0s3 | 343.77KiB | 3.59K | 343.78KiB | 3.59K |
| enp0s3 | 338.48KiB | 3.54K | 338.49KiB | 3.54K |
| enp0s3 | 342.39KiB | 3.58K | 342.39KiB | 3.58K |
| enp0s3 | 346.30KiB | 3.62K | 346.30KiB | 3.62K |
| enp0s3 | 344.31KiB | 3.60K | 344.24KiB | 3.60K |
|        |           |       |           |       |

Изменяйте размер пакета, передаваемой утилитой ping пакета от 100 до 60100 с шагом 10000. Определите, как меняется загрузка на сетевом интерфейсе

```
i=100
while [[ $i -lt 60100 ]];
do
    let i=$i+10000
    timeout 5s ping -f 10.0.2.5 -s "$i"
done
```

| enp0s3 | 0         | 0      | 0         | 0      |
|--------|-----------|--------|-----------|--------|
| enp0s3 | 0         | 0      | 0         | 0      |
| enp0s3 | 13,96MiB  | 9.90K  | 13.96MiB  | 9.90K  |
| enp0s3 | 14.83MiB  | 10.52K | 14.83MiB  | 10.52K |
| enp0s3 | 15.37MiB  | 10.90K | 15.36MiB  | 10.90K |
| enp0s3 | 15.50MiB  | 11.00K | 15.50MiB  | 11.00K |
| enp0s3 | 15.91MiB  | 11.28K | 15.91MiB  | 11.28K |
| enp0s3 | 19.29MiB  | 13.74K | 19.28MiB  | 13.73K |
| enp0s3 | 20.32MiB  | 14.49K | 20.33MiB  | 14.49K |
| enp0s3 | 20.40MiB  | 14.55K | 20.39MiB  | 14.54K |
| enp0s3 | 20.74MiB  | 14.79K | 20.74MiB  | 14.79K |
| enp0s3 | 20.14MiB  | 14.36K | 20.14MiB  | 14.36K |
| enp0s3 | 22.80MiB  | 16.28K | 22.79MiB  | 16.28K |
| enp0s3 | 23.79MiB  | 17.00K | 23.81MiB  | 17.01K |
| enp0s3 | 24.50MiB  | 17.50K | 24.49MiB  | 17.50K |
| enp0s3 | 23.86MiB  | 17.04K | 23.85MiB  | 17.04K |
| enp0s3 | 23.83MiB  | 17.03K | 23.84MiB  | 17.03K |
| enp0s3 | 25.91MiB  | 18.52K | 25.89MiB  | 18.51K |
| enp0s3 | 27.59MiB  | 19.73K | 27.61MiB  | 19.74K |
| enp0s3 | 27.74MiB  | 19.83K | 27.72MiB  | 19.82K |
| enp0s3 | 26.87MiB  | 19.21K | 26.87MiB  | 19.21K |
| enp0s3 | 26.87MiB  | 19.21K | 26.87MiB  | 19.21K |
| enp0s3 | 26.17MiB  | 18.37K | 26.20MiB  | 18.39K |
| enp0s3 | 26.71MiB  | 18.62K | 26.68MiB  | 18.59K |
| enp0s3 | 26.02MiB  | 18.11K | 26.04MiB  | 18.12K |
| enp0s3 | 26.93MiB  | 18.73K | 26.94MiB  | 18.74K |
| enp0s3 | 26.64MiB  | 18.53K | 26.62MiB  | 18.51K |
| enp0s3 | 27.66MiB  | 19.30K | 27.64MiB  | 19.29K |
| enp0s3 | 27.39MiB  | 19.14K | 27.40MiB  | 19.14K |
| enp0s3 | 28.72MiB  | 20.07K | 28.75MiB  | 20.09K |
| enp0s3 | 28.84MiB  | 20.16K | 28.85MiB  | 20.17K |
| enp0s3 | 28.53MiB  | 19.94K | 28.48MiB  | 19.91K |
| enp0s3 | 9.64MiB   | 6.74K  | 9.67MiB   | 6.76K  |
| enp0s3 | 2.41MiB   | 1.68K  | 2.42MiB   | 1.69K  |
| enp0s3 | 616.90KiB | 421    | 619.04KiB | 422    |
|        |           |        |           |        |

#### vnstat -i enp0s3 -l >> 6.text

Используя утилиту netstat или lsof на с7-1 вывести все активные (прослушиваемые) порты

```
netstat -ltun
```

```
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 00.0.0:22 0.0.0.0:* LISTEN

tcp6 0 0:::22 :::* LISTEN
```

Используя утилиту netstat или ss все установленные соединения

```
ss -ntl
```

```
      State Recv-Q Send-Q Local Address:Port Peer Address:Port Process

      ESTAB 0
      0
      10.0.2.5:ssh
      10.0.2.7:41964

      ESTAB 0
      0
      10.0.2.5:ssh
      10.0.2.7:45946

      ESTAB 0
      0
      10.0.2.5:ssh
      10.0.2.7:57448
```

Напишите скрипт, которой выводит список IP-адресов и количество подключений с них к нашему хосту через порт, задаваемый параметрами скрипта (значение по умолчанию 22). Список упорядочить по количеству соединений с IP адреса

```
1 10.0.2.15
1 10.0.2.2
3 10.0.2.7
```

На хосте c7-1 с помощью утилиты nethogs определите: Среднюю скорость передачи данных до sshd и PID процесса sshd.

```
timeout 5s nethogs -t | tail -3 > temp.txt
echo -e pid "\t\t" send "\t\t" recieved
cat temp.txt | tr "\/" " | grep sshd | awk '{print $4, "\t\t", $6, "\t", $7}'
```

| pid  | send    | recieved |
|------|---------|----------|
| 2711 | 2.40352 | 0.445312 |

На машине с7-1 на отдельной консоли запустите tcpdump для сбора всего трафика с портов 9999 и 4444, так, чтобы на консоль выводилось содержимое сообщения, а не только информация из служебных заголовков

```
tcpdump -i any -vv port 9999 or port 4444 -w tcpdumpfile.pcap
```

Используя утилиту пс на обоих машинах передайте текстовый файл с произвольным текстовым содержимым (не мнее 20 слов) принимая файл на порту tcp 9999

```
nc -v 10.0.2.15 9999 < file_for_netcat_test.txt
nc -lvp 9999 > file test for netcat.txt
```

Используя утилиту пс на обоих машинах организовать текстовый чат между машинами через порт udp 4444.

```
nc -uv 10.0.2.15 4444
nc -luvp 4444
```

Остановите работу tcpdump, проанализируйте перехваченные сообщения. Какие выводы можно сделать?

| 1 0.000000   | 0 16   | 0.0.2.7  |    | 10.0 | .2.15 | TCP |          | 80  | 5599 | 14 → 9999             | [SYN]   | Seq=0 Wi       | n=64240  | Len=0 MS | S=1460 S | ACK_PERM T | TSval=3735142393 TSecr=0 WS=128                    |
|--------------|--------|----------|----|------|-------|-----|----------|-----|------|-----------------------|---------|----------------|----------|----------|----------|------------|----------------------------------------------------|
| 2 0.000048   | 8 16   | 0.0.2.15 |    | 10.0 | 2.7   | TCP | 3        | 80  | 9999 | → 55994               | I [SYN, | ACK] Seq       | =0 Ack=1 | Win=651  | 60 Len=0 | MSS=1460   | SACK_PERM TSval=3378852328 TSecr=3735142393 WS=128 |
| 3 0.000965   | 5 16   | 0.0.2.7  |    | 10.0 | .2.15 | TCP |          | 72  | 5599 | 4 + 9999              | [ACK]   | Seq=1 Ac       | k=1 Win= | 64256 Le | n=0 TSva | 1=37351423 | 394 TSecr=3378852328                               |
| 4 0.002302   | 2 16   | 0.0.2.7  |    | 10.0 | .2.15 | TCP |          | 370 | 5599 | 14 → 9999             | PSH,    | ACK] Seq       | =1 Ack=1 | Win=642  | 56 Len=2 | 98 TSval=  | 3735142396 TSecr=3378852328                        |
| 5 0.002345   | 5 16   | 0.0.2.15 |    | 10.0 | .2.7  | TCP |          | 72  | 9999 | → 55994               | [ACK]   | Seq=1 Ac       | k=299 Wi | n=64896  | Len=0 TS | val=337885 | 52331 TSecr=3735142396                             |
| 6 60.41145   | 32 16  | 0.0.2.15 |    | 10.0 | 2.7   | TCP |          | 72  | 9999 | → 55994               | FIN,    | ACK] Seq       | =1 Ack=2 | 99 Win=6 | 4896 Len | =0 TSval=3 | 3378912740 TSecr=3735142396                        |
| 7 60.41198   | 37 16  | 0.0.2.7  |    | 10.0 | 2.15  | TCP |          | 72  |      |                       |         |                |          |          |          |            | 3735202805 TSecr=3378912740                        |
| 8 60.41201   | 15 16  | 0.0.2.15 |    | 10.0 | .2.7  | TCP |          | 72  | 9999 | → 55994               | [ACK]   | Seq=2 Ac       | k=300 Wi | n=64896  | Len=0 TS | val=337893 | 12740 TSecr=3735202805                             |
| 9 102.9348   | 384 16 | 0.0.2.7  |    | 10.0 | .2.15 | UDP |          | 66  | 4414 | 7 + 4444              | Len=6   |                |          |          |          |            |                                                    |
| 10 120.8804  | 163 16 | 0.0.2.15 |    | 10.0 | .2.7  | UDP | 3        | 53  | 4444 | + 44147               | 7 Len≃5 |                |          |          |          |            |                                                    |
| 11 126.3016  | 598 16 | 0.0.2.7  |    | 10.0 | .2.15 | UDP | - 30     | 66  | 4414 | 7 + 4444              | Len=5   |                |          |          |          |            |                                                    |
| 0000         | 08     | 00       | 00 | 00   | 00    | 00  | 00       | 02  | 00   | 01                    | 04      | 96             | 08       | 00       | 27       | 32         | '2                                                 |
|              |        |          |    |      |       |     |          |     |      |                       |         |                |          |          |          |            |                                                    |
|              |        |          |    |      |       |     | $\alpha$ |     | 0 /  | $\alpha_{\mathbf{h}}$ | 40      | $\alpha\alpha$ | 10       | 11       | 90       | ah         | #3 E I @ @                                         |
| 0010         | 23     | 33       | 99 | 99   | 45    | 99  | 99       | 21  | 04   | ØD                    | 40      | 90             | 40       | 11       | 26       | au         | #3 - · E - · ! - · · @ · @ - · ·                   |
| 0010<br>0020 |        |          |    |      |       |     |          | 97  |      |                       |         |                |          |          |          |            | #3E!@.@                                            |

### Ответы на вопросы и задания

1) По какому протоколу работает утилита mtr? Как это можно определить?

По умолчанию – ICMP, возможна работа с UDP и TCP Чтобы определить текущий рабочий протокол – можно посмотреть на трафик в tcpdump или Wireshark

2) Опишите значения столбцов статистики, выводимой утилитой mtr. Какие еще статистики доступны в mtr кроме основных?

**Host** — Имя или IP-адрес узла (хоста) на маршруте.

**Loss**% — Процент потерянных пакетов.

**Snt** — Общее количество отправленных пакетов.

**Last** — Время отклика последнего пакета

**Avg** — Среднее время отклика

**Best** — Минимальное время отклика

Wrst — Максимальное время отклика

**StDev** — Стандартное отклонение времени отклика.

- **-е** детализация пакетов
- -Т использовать ТСР
- -u host:port трассировка до конкретного порта с UDP
- **-4 -6** ipv4 или ipv6
- **-n** показывать ір адрес
- **-s** размер пакета
- **-m** максимальное число переходов

3) Какие типы кадров Ethernet бывают, в чем их отличия?

#### Формат Ethernet II

Еthernet II является наиболее распространенным и широко поддерживаемым форматом ethernet frame. Он был определен стандартом IEEE 802.3 и также известен как DIX или Ethernet SNAP. Фреймы Ethernet II имеют фиксированный размер заголовка в 14 байт и переменный размер полезной нагрузки до 1500 байт. Заголовок состоит из шести байт для адреса назначения, шести байт для адреса источника и двух байт для поля типа. Поле "Тип" определяет протокол полезной нагрузки, такой как IPv4, IPv6 или ARP.

#### Формат IEEE 802.3

IEEE 802.3 - это оригинальный формат фрейма Ethernet, который был определен стандартом IEEE 802.3. Он также известен как Ethernet RAW или Ethernet 802.3. Фреймы стандарта IEEE 802.3 имеют фиксированный размер заголовка в 14 байт и переменный размер полезной нагрузки до 1492 байт. Заголовок состоит из шести байт для адреса источника и двух байт для поля длины. В поле длина указывается размер полезной нагрузки в байтах. За полезной нагрузкой следует четырехбайтовый трейлер, содержащий циклическую проверку избыточности (CRC) для обнаружения ошибок.

#### Формат IEEE 802.2

IEEE 802.2 является расширением формата IEEE 802.3, которое добавляет заголовок подуровня к полезной нагрузке. Он был определен стандартом IEEE 802.2 и также известен как Ethernet LLC или Ethernet 802.2. Фреймы стандарта IEEE 802.2 имеют фиксированный размер заголовка в 16 байт и переменный размер полезной нагрузки до 1490 байт. Заголовок состоит из шести байт для адреса назначения, шести байт для адреса источника, двух байт для поля длины, одного байта для точки доступа к службе назначения (DSAP) и одного байта для точки доступа к службе источника (SSAP). Поля DSAP и SSAP указывают на протокол верхнего уровня или службу, использующую фрейм Ethernet, например IPX или NetBIOS.

#### Формат IEEE 802.2 SNAP

IEEE 802.2 SNAP - это вариация формата IEEE 802.2, которая добавляет к полезной нагрузке трейлер подуровня. Он был определен стандартом IEEE 802.2 и также известен как Ethernet SNAP или Ethernet 802.2 SNAP. Фреймы привязки по стандарту IEEE 802.2 имеют фиксированный размер заголовка в 22 байта и переменный размер полезной нагрузки до 1484 байт. Заголовок состоит из шести байт для адреса назначения, шести байт для адреса источника, двух байт для поля длины, одного байта для DSAP, одного байта для SSAP, двух байт для поля управления и трех байт для

уникального идентификатора организации (OUI). Поле control всегда имеет значение 0x03, что указывает на то, что в кадре используется привязка. Поле OUI указывает поставщика или организацию, которые определяют поле type, которое следует за полем OUI в трейлере. В поле тип указывается протокол полезной нагрузки, такой как IPv4, IPv6 или ARP.

4) Какой тип кадров Ethernet используется в анализируемой сети? Почему именно его применение позволяет сети функционировать?

```
> Frame 20: 56
> Ethernet II,
> Address Resol
```

- Скорость
- Надежность
- Безопасность: Ethernet включает встроенные функции безопасности, включая шифрование и аутентификацию, для защиты данных от несанкционированного доступа.
- Стандартизация
- Масштабируемость
- Низкие накладные расходы
  - 5) Как можно определить тип используемого коммутационного оборудования, используя сетевую статистику?

Захват трафика, анализ кадров и используемых протоколов, таблиц маршрутизации

6) На какие адреса сетевого уровня осуществляются широковещательные рассылки?

255.255.255

Или последние адреса в сети, по используемой маске

7) На какой канальный адрес осуществляются широковещательные рассылки?

ff:ff:ff:ff:ff

8) Для чего применяются перехваченные широковещательные рассылки в Части 3?

Ответ был дан

9) В Части 4 при разном использовании утилиты traceroute вы получили разные данные. Почему?

В некоторых сетях маршрутизаторы могут обрабатывать разные типы трафика по-разному. Это может привести к тому, что пакеты ICMP, UDP и TCP могут следовать по разным маршрутам, что повлияет на время отклика и количество хопов, некоторые протоколы могут быть просто проигнорированы

10) Как изменяется загрузка интерфейса в Части 5. п. 3? Почему?

Нетрудно заметить как возрастает объем принятых данных в секунду, пока не упирается в пропускную способность сетевой карты

11) Какие выводы вы сделали в Части 7, п.4?

Всё очевидно, новые подключения с внешних консолей ведут к появлению новых соединений в таблице ss

12) На каком уровне модели OSI работает vnstat?

На канальном