

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ

ОТЧЕТ

по лабораторной работе № 3

Гема: Ключевой режим работы транзистора (Вариант 13)								
	Электроника							
Студент	<u>ИУ6-42Б</u>		А. П. Плютто					
	(Группа)	(Подпись, дата)	(И. О. Фамилия)					
Преподаватель		13.05.24	Н. В. Аксенов					

(Подпись, дата)

(И. О. Фамилия)

Содержание

1. Задание	3
1.1. Цель работы	
1.2. Параметры схемы	3
2. Часть 1	
3. Часть 2	
4. Часть 3	
5. Вывод	

1. Задание

1.1. Цель работы

Исследовать статические режимы и переходные процессы в схеме простого транзисторного ключа.

1.2. Параметры схемы

N	R_6 , Om	$B \mid B_r$	I_s , A	$C_{6\kappa}, \Phi$	C_{63}, Φ	τ_r , c	$r_{\rm f}$, Ом	F_{α} , Гц	R_{κ} , Om	$E_{\rm cm}$, B	$R_{\rm cm}$, Om	U_{6a} , B	$E_{\rm rx}$, B	E_{κ} , B
1.	3 40000	120 0,95	1,00E-12	1,50E-11	7,50E-12	2,40E-05	30	2,50E+06	2200	1,4	32500	0,75	11	11

2. Часть 1

Схема транзисторного ключа показана на рисунке 1:

Рисунок 1 — Схема 1

Приведённая схема расчёта тока базы показана на рисунке 2:

Рисунок 2 — Схема 2

По этой схеме найдем ток базы методом контурных токов:

$$\begin{cases} I_{11}(R_b+R_{\rm cm})-I_{22}R_{\rm cm}=E_{\in}+E_{\rm cm}\\ -I_{11}R_{\rm cm}+I_{22}R_{\rm cm}=-E_{\rm cm}-U_{\rm 69} \end{cases}$$

$$R_{11}=R_{\rm 9}+R_{\rm cm}\\ E_{11}=E_{\rm cm}+E_{\rm cm}\\ E_{22}=-E_{\rm cm}-U_{\rm 69}\\ I_{11}(R_{\rm 6}+R_{\rm cm})-I_{\rm 6}R_{\rm cm}=E_{\rm bx}+E_{\rm cm}\\ -I_{11}R_{\rm cm}+I_{\rm 6}R_{\rm cm}=-E_{\rm cm}-U_{\rm 69}\\ I_{22}=I_{\rm 6}=\frac{E_{\rm bx}+E_{\rm cm}}{R_{\rm 6}}-\frac{(R_{\rm 6}+R_{\rm cm})(E_{\rm cm}+U_{\rm 69})}{R_{\rm cm}R_{\rm 6}}=0.00019 {\rm A} \end{cases}$$

Находим $R_{\mbox{\tiny K}}$ и подставляем в схему: $R_{\mbox{\tiny K}}=\frac{E_{\mbox{\tiny K}}}{BI_{\mbox{\tiny S}}}=480$ Ом

Схема с $R_{\rm \tiny K}$ границы режима насыщения показана на рисунке 3:

Рисунок 3 — Схема 3

Построим график DC анализа для схемы 3, показанный на рисунке 4:

Рисунок 4 — DC анализ

Схема для расчёт статического коэффициента усиления по току базы В в активном режиме транзистора показана на рисунке 5:

Рисунок 5 — Схема 4

$$\frac{23.6 * 10^{-3}}{197.1 * 10^{-6}} = 117 \simeq 120$$

Построим DC sweep для тока на базе и коллекторе, что видно на рисунке 6:

Рисунок 6 — DC анализ

$$\frac{14.1 * 10^{-3}}{118.2 * 10^{-6}} = 118 \simeq 120$$

Схема для исследования статического коэффициента усиления по току В при различных $R_{\rm k}$ показана на рисунке 7:

Рисунок 7 — Схема 5

Показатели, полученные при изменении R_1 на схеме 5:

R_1 , Om	10	100	300	600	900	1500	5000
I_{6} , A	0,000197	0,000197	0,000197	0,000197	0,000198	0,000198	0,0002
$I_{\scriptscriptstyle m K}$, A	0,0236	0,0236	0,0236	0,018	0,012	0,0072	0,0021

U, B	10,7	8,6	3,9	0,155	0,126	0,105	0,07
b	119,79695	119,79695	119,79695	91,370558	60,606061	36,363636	10,5

3. Часть 2

Схема для исследования динамических характеристик при различном уровне входного сигнала показана на рисунке 8:

Рисунок 8 — Схема 6

Графики Transient analyses для 5 В показаны на рисунках 9-11:

Рисунок 9 — Transient analyses для схемы 6

Рисунок 10 — Начало фронта

Рисунок 11 — Конец фронта

E_r , B	$ au_{ m \varphi}$, мкс	$ au_{ m pac}$, MKC	$ au_{ m c}$, MKC
5	4,8	0,12	2,42
7,5	2,47	0,33	3,4
11	1,81	4,8	3,8
12,5	1,6	5,5	5,1

Время формирования фронта для 11 В: $au_{\Phi} = au_{\text{\tiny B}} \ln \frac{S-0.1}{S-0.9} = 1,9*10^{\text{-}6}$ — погрешность 5%, где

$$\begin{split} \tau_{_{\rm B}} &= 12\pi f_{_{\rm B}} = 9,6*10^{\text{-6}}\mathrm{c} \\ f_{_{\rm B}} &= \frac{f_{_{\alpha}}}{B+1} = 16528~\mathrm{Гц} \\ J_{61} &= \frac{E_{_{\rm BX}} + \mathrm{E}_{_{\mathrm{CM}}}}{R_{_{6}}} - \frac{(R_{_{6}} + R_{_{\mathrm{CM}}})(\mathrm{E}_{_{\mathrm{CM}}} + U_{_{69}})}{R_{_{\mathrm{CM}}}R_{_{6}}} = 1,9*10^{\text{-4}}\mathrm{A} \\ J_{62} &= \frac{U_{_{69}}}{R_{_{\mathrm{CM}}}} + \frac{\mathrm{E}_{_{\mathrm{CM}}}}{R_{_{\mathrm{CM}}}} = 6,6*10^{\text{-5}}\mathrm{A} \\ J_{6\mathrm{H}} &= \frac{\mathrm{E}_{_{\mathrm{K}}}}{BR_{_{\mathrm{K}}}} = 4,1*10^{\text{-5}}\mathrm{A} \\ S &= \frac{J_{61}}{J_{6\mathrm{H}}} = 4,562 \end{split}$$

Время рассеивания для 9 В:

$$au_{
m pac} = au_{
m H} \ln rac{SJ_{
m 6H} + J_{
m 62}}{J_{
m 6H} + J_{
m 62}} = 5*10^{\text{-}6}
ightarrow {
m norpe}$$
шность 4%

Время среза для 9 В:

$$au_{
m c} = au_{
m B} \ln rac{J_{61}}{S} + J_{62} \ = 4,7*10^{\text{-}6}
ightarrow {
m norpeшность} \ 19\%$$

4. Часть 3

Исследование влияния форсирующего конденсатора показана на рисунке 12:

Рисунок 12 — Исследование влияния форсирующего конденсатора

График влияния форсирующего конденсатора с величиной $0,75\pi\Phi$, по-казан на рисунке 13:

Рисунок 13 — График влияния форсирующего конденсатора с величиной $0.75 \pi \Phi$

График влияния форсирующего конденсатора с величиной $20 \pi \Phi$, показан на рисунке 14:

Рисунок 14 — График влияния форсирующего конденсатора с величиной 20пФ График влияния форсирующего конденсатора с величиной 40пФ, показан на рисунке 15:

Рисунок 15 — График влияния форсирующего конденсатора с величиной 40пФ По графикам видно, что ток базы увеличивается и перезарядка емкостей проходит быстрее.

Исследование влияния конденсатора нагрузки показана на рисунке 16:

Рисунок 16 — Схема 8

График влияния конденсатора нагрузки с величиной 0,5 п Φ , показан на рисунке 17:

Рисунок 17 — График влияния конденсатора нагрузки с величиной 0,5пФ

График влияния конденсатора нагрузки с величиной $2\pi\Phi$, показан на рисунке 18:

Рисунок 18 — График влияния конденсатора нагрузки с величиной 2пФ

График влияния конденсатора нагрузки с величиной 10пФ, показан на рисунке 19:

Рисунок 19 — График влияния конденсатора нагрузки с величиной 10пФ

По графикам видно, что ёмкостная нагрузка не влияет на время рассеивания и делает значение остальных параметров при увеличении ёмкости в цепи нагрузки. Работа ключа с инверсным запиранием показана на рисунке 20:

Рисунок 20 — Работа ключа с инверсным запиранием

Рисунок 21 — График работы ключа с инверсным запиранием

По графику видно, что рассеивание заряда сначала проходит у эмиттерного перехода. А также, что ток коллектора увеличивается, эмиттера уменьшается, а базы не меняется.

5. Вывод

В ходе выполнения работы были исследованы статические режимы и переходные процессы в схеме простого транзисторного ключа.