Normal CDF: $\Phi(\mathbf{x}) = \int_{-\infty}^{x} \phi(y) dy$ $\forall \mu \in \mathbb{M}, E_{\mu}g(\mathbf{y}, \theta_{\mu}) = \mathbf{0} \text{ or } E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ $X \text{ exogenous } \Longrightarrow E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \text{ and both } \hat{\beta}$ and estimating equations unbiased. Continuous: $m_k(X) \equiv \int_{-\infty}^{\infty} x^k f(x) dx$ Make exog assumpt in cross-sec not time. Central: regressors predetermined: $E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ $\mu_k \equiv E(X - E(X)^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$ **Stochastic Limits** Discrete Central: Converg in prob: $\lim Pr(|Y_n - Y_\infty| > \epsilon) =$ $\mu_k \equiv E(X - E(X)^k) = \sum_{i=1}^{m} p(x)(x_i - \mu)^k$ $0 \Rightarrow \text{p lim } Y_n = Y_{\infty} \implies \text{converg dist}$ Converg dist: $\lim F_n(x) = F(x) \equiv Y_n \to F$ Multivariate LLN: $\operatorname{plim} \overline{Y_n} = \operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} Y_t = \mu_Y$, $Y_t \operatorname{IID}$ Joint Density Func: $f(x_1, x_2) = \frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2}$ $\overline{Y_n}$ sample mean of Y_t , μ_T pop mean. Independence: LLN2: $\operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} Y_{t} = \lim_{t \to \infty} \frac{1}{n} \sum_{t=1}^{n} E(Y_{t})$ $F(x_1, x_2) = F(x_1, \infty)F(\infty, x_2)$ $p\lim Y_n Z_n = p\lim Y_n p\lim Z_n$ if converg or $f(x_1, x_2) = f(x_1)f(x_2)$ $\mathbf{X}^{\top}\mathbf{X}$ may not have plim so mult by $1 \setminus n$. Marginal Density: consistent: $\operatorname{plim}_{\mu}\hat{\beta} = \beta_{\mu}$, may be bias $f(x_1) \equiv F_1(x_1, \infty) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$ $E(\mu_t \mid \mathbf{X}_t) = 0 \implies \hat{\beta}$ consistent. Conditional Density: $f(x_1|x_2) = \frac{f(x_1,x_2)}{f(x_2)}$ **Covariance and Precision Matrices** Law Iterate Expec: $E(E(X_1|X_2)) = E(X_1)$ Any Deterministic Func h: $Cov(b_i, b_i) \equiv E((b_i - E(b_i))(b_i - E(b_i)))$ if i = j, $Cov(b_i, b_i) = Var(b_i)$ $E(X_1 h(X_2) | X_2) = h(X_2)E(X_1 | X_2)$ $Var(\mathbf{b}) \equiv E((\mathbf{b} - E(\mathbf{b}))(\mathbf{b} - E(\mathbf{b}))^{\top})$ when $E(\mathbf{b}) = \mathbf{0}$, $Var(\mathbf{b}) = E(\mathbf{b}\mathbf{b}^{\top}) b_i$, b_i Matrix Algebra indep: $Cov(b_i, b_i) = 0$, converse false Dot Product: $\mathbf{a}^{\top}\mathbf{b} = \sum_{i=1}^{n} a_i b_i$ correlation: $\rho(b_i, b_j) \equiv \frac{\text{Cov}(b_i, b_j)}{(\text{Var}(b_i)\text{Var}(b_j))^{1/2}}$ Matrix Multiplication: $C_{ij} = \sum_{k=1}^{m} A_{ik} B_{ki}$ Transpose: $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$ Var(b) positive semidefinite. cov and corr $\|\mathbf{x}\| = (\mathbf{x}^{\top}\mathbf{y})^{1/2} = (\sum_{i=1}^{n} x_i^2)^{1/2}$ matrix positive definite most of the time. $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| ||\mathbf{y}|| \cos(\theta)$ positive definite: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for $\mathbf{x} \in k \times 1$. Cauchy-Schwartz: $\langle x, y \rangle \le ||x||||y||$ Linear dep: Xb = 0, $b \ne 0$ $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} A_{ij}$. If $\geq 0 \Rightarrow$ semidef. Any $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ is pos semidef. If full col rank Singular: $\exists \mathbf{x} \neq 0 : \mathbf{A}\mathbf{x} = \mathbf{0}$ then pos def. pos def \Rightarrow diag > 0 & nonsingular. (pos def)⁻¹ \exists & is pos def. 2 Linear Regression Precision mtrx: invers of cov mtrx of estmatr. ∃ & pos def iff cov mtrx pos def. Estimator: $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ $E(x_{ti}u_t) = 0 \implies \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\dot{\beta}) = \mathbf{0}$ $SSR(\beta) := \sum_{t=1}^{n} (y_i - \mathbf{X}_t \beta)^2$ Ω = err cov mtrx. If diag of Ω differ, heteroskedastic. Homoskedastic: all u $\mathbf{y}^{\top}\mathbf{y} = \hat{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\beta} + (\mathbf{y} - \mathbf{X}\hat{\beta})^{\top}(\mathbf{y} - \mathbf{X}\hat{\beta})$ same Var. Autocorrelated: off-diag $\Omega \neq 0$. Projection: $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ $\hat{\beta}$ unbiased & $\Omega = \sigma^2 \mathbf{I}$ so no hetero or $\mathbf{M}_{\mathbf{X}} = \mathbf{I} - \mathbf{P}_{\mathbf{X}} = \mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ autocorr, then $Var(\hat{\beta}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$. $\mathbf{P}_{\mathbf{X}}\mathbf{y} = \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}); \mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$ $\mathbf{M}_{\mathbf{X}}\mathbf{y} = \hat{\mathbf{u}}; \mathbf{M}_{\mathbf{X}}\mathbf{X} = \mathbf{0}; \mathbf{M}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}} = \mathbf{M}_{\mathbf{X}}$ Precision affected by n, σ^2 , X. Collinearity: precision for β_1 dep on X_2 . $P_X + M_X = I; P_X M_X = 0; P_Y^{\perp} = P_X$ **Efficiency** $\|\mathbf{y}\|^2 = \|\mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2 + \|\mathbf{M}_{\mathbf{X}}\mathbf{y}\|^2; \|\mathbf{P}_{\mathbf{X}}\mathbf{y}\| \le \|\mathbf{y}\|$ $\tilde{\beta}$ more efficient than $\hat{\beta}$ iff $Var(\tilde{\beta})^{-1}$ – Centering: $\mathbf{M}_{\iota}\mathbf{x} = \mathbf{z} = \mathbf{x} - \overline{x}\iota$; $\iota^{\mathsf{T}}\mathbf{z} = 0$ $P_1 \equiv P_{X_1}$; $P_1 P_X = P_X P_1 = P_1$ $Var(\hat{\beta})^{-1}$ is nonzero pos semidef mtrx. FWL: β_2 from $\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \mathbf{u}$ and Gauss-Markov: If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0}$ and $\mathbf{M_1y} = \mathbf{M_1X_2\beta_2} + \text{res are the same.} (+ \text{res})$ $E(\mathbf{u}\mathbf{u}^{\top} \mid \mathbf{X}) = \sigma^2 \mathbf{I}$ then OLS $\hat{\beta}$ is BLUE Seasonal w const: $s'_{i} = s_{i} - s_{4}$, i = 1, 2, 3. (best linear unbiased estimator). Not Avg is const coeff. $M_{S}y$ is deseasonalized. necessary that *u* normally distributed.

ECON 468 Cheat Sheet

Zachary Probst Page:1

Normal: $\phi(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2)$

1 Basics

Distributions

 $\beta^{(t)} - \hat{\beta} = -1 \setminus 1 - h_t(\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}_t^{\top} \hat{u_t}$ where h_t

denotes the t^{th} diagonal element of P_X .

estimating eq: $g(\mathbf{y}, \theta) = 0$ unbiased iff

vector of (true) model params: θ

Bias: $E(\hat{\theta}) - \theta_0$, $E((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{u}) = 0$

Residuals & Disturbances

 $\hat{\mathbf{u}} = \mathbf{M}_{\mathbf{X}}\mathbf{u}$ (hat resid, u dist).

 $\operatorname{Var}(\hat{u_t}) < \sigma^2$; $\hat{\sigma}^2 \equiv \frac{1}{n} \sum_{t=1}^{n} \hat{u_t}^2$

 s^2 unbiased and consistent.

 $E(\hat{\sigma}^2) = \frac{n-k}{n} \sigma^2$

If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \Rightarrow E(||\hat{\mathbf{u}}||^2) \le E(||\mathbf{u}||^2)$

 $E(\mathbf{u}^{\top}\mathbf{M}_{\mathbf{X}}\mathbf{u}) = E(SSR(\hat{\beta})) = (n-k)\sigma^{2}$

unbiased: $s^2 \equiv \frac{1}{n-k} \sum_{t=0}^{n} \hat{u}_t^2$; s = std err.

unbias est of $Var(\hat{\beta})$: $\widehat{Var}(\hat{\beta}) = s^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$

$MSE(\tilde{\beta}) \equiv E((\tilde{\beta} - \beta_0)(\tilde{\beta} - \beta_0)^{\top})$ $\mathbf{M_1 y} = \mathbf{M_1 u} \Rightarrow F_{\beta_2} = \frac{e^{\top} \mathbf{P_{M_1 X_2}} e/r}{e^{\top} \mathbf{M_X} e/(n-k)}$, where I $\tilde{\beta}$ unbiased $MSE(\tilde{\beta}) = Var(\tilde{\beta})$. $\epsilon \equiv \mathbf{u}/\sigma$, $\mathbf{P_{M_1X_2}} = \mathbf{P_x} - \mathbf{P_1}$. P-value for F is **Measures of Goodness of Fit** $1 - F_{r,n-k}(F_{\beta_2})$. When only 1 restriction, $R_u^2 = \frac{\text{ESS}}{\text{TSS}} = \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2}{\|\mathbf{y}\|^2} = \cos^2\theta$, where θ F and 2-tailed t test are the same. If angle between **y** and P_X **y**. $0 \le R_y^2 \le 1$. testing all $\beta = 0$, $F = \frac{n-k}{k-1} \times \frac{R_c^2}{1-R_c^2}$. If R_c^2 : center all vars first. Invalid if $\iota \notin \mathcal{S}(\mathbf{X})$. testing $\beta_1 = \beta_2$, let $\gamma = \beta_2 - \beta_1$ then $F_{\gamma} = \frac{(RSSR - SSR_1 - SSR_2)/k}{(SSR_1 + SSR_2)/(n-2k)}$ $R_c^2 = 1 - \sum_t^n \hat{u}_t^2 \setminus \sum_t^n (y_t - \overline{y})^2.$ Adj R^2 : unbiased estimators. maybe < 0. $\overline{R}^2 \equiv 1 - \frac{\frac{1}{n-k} \sum_t^n \hat{u_t}^2}{\frac{1}{n-1} \sum_t^n (y_t - \overline{y})^2} = 1 - \frac{(n-1)\mathbf{y}^\top \mathbf{M_X y}}{(n-k)\mathbf{y}^\top \mathbf{M_t y}}$ **Asymptotic Theory** EDF: $\hat{F}(x) \equiv \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(x_t \leq x)$. FTS: $\operatorname{plim} \hat{F}(x) = F(x)$. CLT: $z_n \equiv \frac{1}{\sqrt{n}} \sum_{t=0}^{n} \frac{x_t - \mu}{\sigma}$ \overline{R}^2 does not always \uparrow in regressors. **Hypothesis Testing** asymptotically $\sim N(0,1)$ if x_t IID. If u_t normal, and σ known, test $\beta = \beta_0$ w Uncorrelated x_t with $E(x_t) = 0 \Rightarrow$ $z = \frac{\hat{\beta} - \beta_0}{(\operatorname{Var}(\hat{\beta}))^{1/2}} = \frac{n^{1/2}}{\sigma}(\hat{\beta} - \beta_0), z \sim N(0, 1)$ $n^{-1/2} \sum_{t=1}^{n} x_t$ goes to $N(0, \lim_{t=1}^{n} \sum_{t=1}^{n} \operatorname{Var}(x_t))$. If $\mathbf{u} \sim IID(\mathbf{0}, \sigma^2 \mathbf{I}), E(u_t \mid \mathbf{X}_t) = 0,$ NCP: $\lambda = \frac{n^{1/2}}{\sigma} (\beta_1 - \beta_0), \, \beta_1 \neq \beta_0$ $E(u_t^2 \mid \mathbf{X_t} = \sigma^2)$, $p\lim_{n \to \infty} \mathbf{X}^{\top} \mathbf{X} = S_{X^{\top} X}$ $0 < \lambda < 1$. Reject null if z large enough. 2-tail: |z|. where S finite, deterministic, pos def **Bootstrap** Type 1: reject true null, 2: accept false left-tail $\Phi(-c_{\alpha}) = \alpha \setminus 2$, $c_{\alpha} = \Phi^{-1}(\alpha \setminus 2)$. mtrx, then $n^{1/2}(\hat{\beta} - \beta_0) \xrightarrow{d} N(\mathbf{0}, \sigma^2 \mathbf{S}_{\mathbf{Y}^{\top}\mathbf{Y}}^{-1})$ $\Phi^{-1}(.975) = 1.96$. Power: prob test rejects and plim $s^2(n^{-1}X^{\top}X)^{-1} = \sigma^2 S_{Y^{\top}Y}^{-1}$. the null. Prob of Type 2 = 1 - P(power). An estimator for cov mtrx is consistent Power \uparrow with $(\beta_1 - \beta_0) \uparrow$ or $\sigma \downarrow$ or $n \uparrow$. if $plim(nVar(\hat{\theta})) = V(\theta)$, where $V(\theta)$ is $p(z) = 2(1 - \Phi(|z|))$ limiting cov mtrx of $n^{1/2}(\hat{\theta} - \theta_0)$ $x \sim N(\mu, \sigma^2) \Rightarrow z = (x - \mu) \setminus \sigma, z \sim N(0, 1)$ If u IID and testing $\beta_2 = \beta_2^0$, Lin comb of rand vars that are jointly multivariate normal must be $\sim N$. If \mathbf{x} $t_{\beta_2} = \frac{\beta_2 - \beta_2^0}{\sqrt{s^2 (\mathbf{X}^\top \mathbf{X})_{22}^{-1}}} \text{ and } t_{\beta_2} \stackrel{a}{\sim} N(0,1) \Rightarrow$ multivar norm with 0 cov, componenets of \mathbf{x} are mutually indep. $t_{\beta_2} = O_p(1)$. Under null $\beta_2 = 0$, w χ^2 : $y = ||\mathbf{z}||^2 = \mathbf{z}^{\top}\mathbf{z} = \sum_{i=1}^{m} z_i^2$., $y \sim \chi^2(m)$ If u IID w Var σ^2 and cov of any pair with $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$; E(y) = m. Var(y) = 2m. predetermined regressors $rF_{\beta_2} \stackrel{a}{\sim} \chi^2(r)$ simultaneous eq. Assume, $E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$ and at least one = 0: $Var(\mathbf{u}) = E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$. If false, $v_1 \sim \chi^2(m_1) \& v_2 \sim \chi^2(m_2)$ indep where $r = k_2$ is dim of β_2 . in **X** not predetermined wrt disturb. $n \times k$ $\Rightarrow y_1 + y_2 \sim \chi^2(m_1 + m_2)$ $W(\hat{\beta}) = (\mathbf{R}\hat{\beta} - r)^{\top} (\mathbf{R}\widehat{\mathrm{Var}}(\hat{\beta})\mathbf{R}^{\top})^{-1} (\mathbf{R}\hat{\beta} - r)$ mtrx **W** with $W_t \in \Omega_t$. Col of **W** are IV. is Wald where cov mtrx consistent. $m \times 1 \mathbf{x} \sim N(\mathbf{0}, \mathbf{\Omega})$, then $\mathbf{x}^{\top} \mathbf{\Omega}^{-1} \mathbf{x} \sim \chi^{2}(m)$ $E(u_t \mid \mathbf{W}_t) = 0$, $\mathbf{W}^{\top}(\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}$ are $W(\hat{\beta}) \stackrel{a}{\sim} \chi^2(r)$ under null where r is If $P n \times n$ w rank r < n and $z \sim N(0, I)$ unbiased est eq. $\hat{\beta}_{IV} \equiv (\mathbf{W}^{\top}\mathbf{X})^{-1}\mathbf{W}^{\top}\mathbf{y}$. r-vector. then $\mathbf{z}^{\top}\mathbf{P}\mathbf{z} \sim \chi^2(r)$. $\mathbf{W}^{\mathsf{T}}\mathbf{X}$ must be non-sing. $\hat{\beta}_{IV}$ generally **Multiple Testing** $z \sim N(0,1) \& y \sim \chi^{2}(m)$, z, y indep, then biased but consistent. Assume $S_{W^TX} \equiv$ FWER: $\alpha_m = 1 - (1 - \alpha)^m$. $t \equiv z \setminus (v \setminus m)^{1/2}$. Or $t \sim t(m)$. Only Bonferroni: $Pr(\bigcup_{i=1}^{m} P_i \leq \alpha/m) \leq \alpha$. $p\lim_{n} \frac{1}{n} \mathbf{W}^{\mathsf{T}} \mathbf{X}$ is deterministic and nonfirst m-1 moments exist. Cauchy: t(1). Simes: $P_{(i)} \leq j\alpha/m$ for increasing P. Bonf sing. Same for S_{W^TW} . β_{IV} consistent iff $Var(t) = m \setminus (m-2)$. t(m) tends to std more conservative than Simes. $\operatorname{plim} \frac{1}{n} \mathbf{W}' \mathbf{u} = 0$. Asym cov mtrx of IV est: y_1 , y_2 indep rand var $\sim \chi^2(m_1)$ & $\sigma_0^2 \operatorname{plim}(n^{-1} \mathbf{X}^{\top} \mathbf{P_W} \mathbf{X})^{-1}$. J: full col rank, If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then $\mathbf{z}^{\top}\mathbf{z} \sim \text{non-central}$ $\chi^{2}(m_{2})$, then $F \equiv \frac{y_{1} \setminus m_{1}}{y_{2} \setminus m_{2}}$. $F \sim F(m_{1}, m_{2})$. asym deterministic, min asym cov mtrx $\chi^2(m, \Lambda = \mu^{\top} \mu)$ If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then $\mathbf{z}^{\top} \mathbf{z} \sim$ As $m_2 \to \infty$, $F \sim 1 \setminus m_1$ times $\chi^2(m_1)$. non-central $\chi^2(m, \Lambda = \mu^T \mu)$. Under null GIVE: $\hat{\beta}_{IV} = (\mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{y}$ IV est: $t \sim t(m_2) \Rightarrow t^2 \sim F(1, m_2).$ $\beta_2 = \mathbf{0} \Rightarrow \Lambda = 0.$ Col of $P_W X$ should be lin indep.

Exact Tests ($\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$)

 $\frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{s(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}} = \left(\frac{\mathbf{y}^{\top}\mathbf{M}_{X}\mathbf{y}}{n-k}\right)^{-\frac{1}{2}} \frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}}$

is t-stat $t_{\beta_2} \sim t(n-k)$ for testing $\beta_2 = 0$.

 $\beta_2 \in \mathbb{R} \Rightarrow \text{test for } \beta_2 = \beta_{20} : (\hat{\beta_2} - \beta_{20})/s_2.$

 $F_{\beta_2} \equiv \frac{(\text{RSSR - USSR})/r}{\text{USSR}/(n-k)} = \frac{\mathbf{y}^{\top} \mathbf{P_{M_1 X_2} y}/r}{\mathbf{y}^{\top} \mathbf{M_X y}/(n-k)}$

is F-stat $\sim F(r, n - k)$, used for

multiple hyp on β_2 . Under null,

stat: $(\hat{\theta} - \theta)/s_{\theta}$. Pivot: same distribution \forall DGP. CI exact only if τ pivot. If no stat with known finite sample dist, use Wald with k_2 vector $\hat{\theta}_2$ asym normal: $(\hat{\theta}_2 - \theta_{20})^{\top} (\widehat{\text{Var}}(\hat{\theta}_2))^{-1} (\hat{\theta}_2 - \theta_{20}) \leq c_{\alpha}.$ $\operatorname{Var}(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ $\hat{\Omega}$: $\frac{1}{n} \sum_{t=1}^{n} \hat{u}_{t}^{2} x_{ti} x_{ti}$ $\widehat{\operatorname{Var}}(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\hat{\mathbf{\Omega}}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ HC_0 : Use \hat{u}_t^2 in diag of $\hat{\Omega}$ and 0 else. HC_1 : Use \hat{u}_t^2 in $\hat{\Omega}$ then mult by n/(n-k) HC_2 : $\hat{u}_t^2/(1-h_t)$ with $h_t \equiv \mathbf{X_t}(\mathbf{X}^\top \mathbf{X})^{-1}\mathbf{X_t}^\top$. HC_3 : $\hat{u}_t^2/(1-h_t)$ jackknife, for big Ignore hetero for std err of sample mean. HAC for when u_t hetero and/or autocorr. $\hat{\Sigma} = (1/n)\mathbf{X}^{\top}\hat{\mathbf{\Omega}}\mathbf{X}$ (Newey-West/H. White) $f(a+h) = f(a) + hf'(a+\lambda h), h = b-a,$ $\hat{p}^*(\hat{\tau}) = \frac{1}{B} \sum_{h}^{B} \mathbb{I}(\tau_h^* > \hat{\tau})$ $\hat{p}_{et}^*(\hat{\tau}) = 2\min\left(\frac{1}{B}\sum_{h}^{B}\mathbb{I}(\tau_h^* \leq \hat{\tau}), \frac{1}{B}\sum_{h}^{B}\mathbb{I}(\tau_h^* > \hat{\tau})\right)$ when biased param est and 2-tailed. $\hat{p}^*(\hat{\tau}) \to p(\hat{\tau}) \text{ as } B \to \infty. \ \tau \text{ pivotal.}$ **Instrumental Variables** Can define $E(u_t \mid \Omega_t) = 0$. Err in variables: indep vars in regr model measured with err. $E(u_t \mid x_t) \neq$ 0, $Cov(x_t.u_t) \neq 0$. OLS est biased and inconsist. Simultaneity: two or more endog vars jointly determined by sys of

 $t(n-k,\lambda) \sim \frac{N(\lambda,1)}{(\chi^2(n-k)/(n-k))^{1/2}}, \ \lambda^2 = \Lambda.$

Pretest estimator: $\hat{\beta} = \mathbb{I}(F_{\gamma=0} > c_{\alpha})\hat{\beta} +$

 $\mathbb{I}(F_{\nu=0} \le c_{\alpha})\tilde{\beta}$ where c_{α} is critical value

for F test with r and n - k - r df at α .

 $\hat{\beta} = \hat{\beta}$ when pretest rejects and $\hat{\beta} = \hat{\beta}$

 $\theta_0 \in \text{confidence set iff } \tau(\mathbf{y}, \theta_0) \leq c_{\alpha}$, if θ_0 true then prob is $1 - \alpha$. Asymp t-

Confidence & Sandwich Cov Matrices

when reject.

ECON 468 Cheat Sheet Zachary Probst Page:2

IV asym normal like all est. $\widehat{\operatorname{Var}}(\hat{\beta}_{IV}) = \hat{\sigma}^2 (\mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{X})^{-1}.$ $\hat{\sigma}^2 = ||\mathbf{y} - \mathbf{X}\hat{\beta_{IV}}||^2/n.$

Generalized Least Squares

Consider $E(\mathbf{u}\mathbf{u}^{\top}) = \mathbf{\Omega}$, $\mathbf{\Omega}^{-1} = \mathbf{\Psi}\mathbf{\Psi}^{\top}$ $\hat{\beta}_{GLS} = (\mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{y}$ $E(\mathbf{\Psi}^{\top}\mathbf{u}\mathbf{u}^{\top}\mathbf{\Psi}) = \mathbf{I}.$ $Var(\hat{\beta}_{GLS}^{\top}) = (\mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{X})^{-1}$ autocovariance of AR(1): $\Omega(p) = \frac{\sigma_{\epsilon}^2}{1-\rho^2} \times \text{ mtrx with } 1$ diag and ho^i increasing away from diag.

 $\sigma_u^2 = \equiv \sigma_e^2/(1-\rho^2)$

 $u_t = \rho u_{t-1} + \epsilon_t$, $\epsilon_t \sim IID(0, \sigma_{\epsilon}^2)$

3 Questions

 $\mathbf{Q}: X \sim N(0,1), Z \equiv \mu + \sigma X$ mean and var? **A**:Mean: μ , Var: σ^2 .

 $Cov(u_t, u_{t-1}) = \rho \sigma_u^2.$

Q:If X_1 , X_2 indep, show $E(X_1 \mid$ X_2) = 0. **A**: $f(x_1|x_2) = f(x_1,x_2)f(x_2) =$ $f(x_1)f(x_2)f(x_2) = f(x_1).$ **Q**:Prove

 $P_X M_X = 0.$ $\mathbf{A}: \mathbf{P}_{\mathbf{X}} + \mathbf{M}_{\mathbf{X}} = \mathbf{I} \Rightarrow \mathbf{P}_{\mathbf{X}} + \mathbf{P}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}} \Rightarrow \mathbf{P}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}} = \mathbf{0}$ $\mathbf{Q}: \mathcal{S}(W) \neq \mathcal{S}(X)$, show $P \equiv \mathbf{X}(\mathbf{W}^{\top}\mathbf{X})^{-1}\mathbf{W}^{\top}$

idempotent but not sym. A:idem easy. Find P^{\top} . P projects onto S(X). Py = Xb. Image of P is all S(X) but image of P^{\top} is S(W). I-P projects to $S^{\perp}(W)$. $P_W(I-P)=0.$

 $\mathbf{Q}: y = \beta_1 i + X_2 beta_2 + u$ show using FWL that β_i can be written as ... with M_i . A:OLS resid orthog to regressors $\Rightarrow X_2^{\top}(M_i y - M_i X_2 \beta_2) = 0.$ OLS

of β_1 must be resid have mean 0, $\iota^{\top}(y-\beta_1\,\iota-X_2\,\beta_2)=0.$

Q:Show that $P_X - P_1 = P_{M_1 X_2}$. **A**:vector $\gamma \in s(M_1, X_2)$ is $M_1 X_2 \gamma$. Pre-multiply by $P_{\alpha} - P_1$ and get $M_1 X_2 \gamma$. So invariant under projection. Now consider z orthog to $S(M_1, X_2), X_2^{\top} M_1 z = 0$. Show

 $P_X z = P_1 z$. Q:What about $M_t X$ and $P_t X$ when $n \times 3$? A:First col of $M_t X$ is 0. Other two are centered X. Each col of P_tX has n copies of mean from col in X. First col is ι , 2nd: $\overline{x_2}\iota$. Know $P_tP_X = P_t$ show that $M_tM_X = M_X$. Finally show $P_tM_X = 0$. **Q**:Show that leverage h_t is square of cos of angle bt e_t and its proj. **A**:proj: $P_X e_t$. $\cos^2\theta$: $e_t^{\top}P_Xe_t$.

Q:What is $Tr(P_X)$? **A**: $Tr(P_X) = k$ if full rank or r if less. $Tr(M_X) = n - r$.

Q:Show $(Cov(b_1, b_2))^2 \le Var(b_1)Var(b_2)$. A:determinant of pos semi def matrix is nonnegative. Find det of $Var(b) = Var(b_1)Var(b_2) - (Cov(b_1, b_2))^2.$

Q:If A pos def matrix, show that A^{-1} is pos def. A:non-zero x: $x^{\top}A^{-1}x =$ $(A^{-1}x)^{\top}A(A^{-1}x)$. quad form must be pos, and so is this.