1 Basics

1.1 Mengen

Lemma 1. Sei H Teilmenge von K, dann ist $|H| \leq |K|$.

Lemma 2. Seien H und K Mengen. Falls $H \subseteq K$ und |H| = |K|, dann ist H = K.

1.2 Gruppen

Lemma 3. Seien H und K Untergruppen von G, dann ist $H \cap K$ Untergruppe von H (und K).

Lemma 4. Seien H und K Untergruppen von G. Falls $H \subseteq K$, dann ist H Untergruppe von K.

1.3 Produkt von Untergruppen

Definition 1. Seien H und K Untergruppen einer Gruppe G, dann ist das Produkt von H und K definiert als $HK := \{hk \mid h \in H, k \in K\}$.

Lemma 5. Seien U und P Untergruppen einer Gruppe G. Falls $u^{-1}Pu = P$ für alle $u \in U$, dann ist UP eine Untergruppe von G.

Lemma 6. Seien H und K Untergruppen einer Gruppe G, dann ist $K \subseteq HK$.

Lemma 7. Seien H und K Untergruppen einer Gruppe G. Falls HK = K (als Mengen), dann ist H Untergruppe von K.

Lemma 8. Seien H und K Untergruppen von G, dann ist $|HK| = \frac{|H||K|}{|H \cap K|}$.

Lemma 9. Seien H und K p-Untergruppen von G, dann ist $|HK| = p^l$ für ein $l \in \mathbb{N}$.

Proof. Nach Lemma 3 und dem Satz von Lagrange ist $H \cap K$ eine p-Untergruppe. Die Aussage folgt mit Lemma 8 und Rechnen mit Primzahlen.

1.4 Gruppenoperationen

Theorem 1. Bahnensatz

Theorem 2. Lagrange

Lemma 10. Sei $\rho: G \times M \to M$ eine Gruppenoperation. Dann ist $x \sim y \iff \exists g \in G: g \bullet_{\rho} x = y$ eine Äquivalenzrelation.

Lemma 11. Sei \sim eine Äquivalenzrelation auf einer endlichen Menge M. Dann gilt $|M| = \sum_{x \in R} |[x]|$ wobei R ein Repräsentantensystem und [x] die Äquivalenzklasse von x ist.

Für $g \in G$ definiere $\alpha_g : G \to G$, $(g,h) \mapsto g^{-1}hg$.

Lemma 12. $\alpha_g \circ \alpha_h = \alpha_{gh}$.

Lemma 13. $\alpha_1 = id$.

Lemma 14. $\alpha_g \circ \alpha_{g^{-1}} = id$.

Proof. Folgt aus Lemma 12 und 13.

Lemma 15. Für alle $g \in G$ ist α_g eine Bijektion.

Proof. Folgt aus Lemma 14.

Lemma 16. Sei $g \in G$ und Q eine Untergruppe von G, dann ist $\alpha_g(Q)$ eine Untergruppe von G.

Lemma 17. Sei U Untergruppe von G, dann ist $\alpha_u(U) = U$ für alle $u \in U$.

Lemma 18. Sei $\rho: G \times M \to M$ eine Gruppenoperation. Falls $|Orb_{\rho}(m)| = 1$ für ein $m \in M$, dann ist $g \bullet_{\rho} m = m$ für alle $g \in G$.

2 Hilfssätze für Sylow

Seien G eine endliche Gruppe und $p\in\mathbb{N}$ eine Primzahl. Seien $r,m\in\mathbb{N}$ sodass $|G|=p^rm$ und $p\not\mid m$. Wir schreiben $\mathrm{Syl}_p(G)=\{P\leq G\mid |P|=p^r\}$ für die Menge der p-Sylow-Untergruppen.

Lemma 19. $\alpha: G \times Syl_p(G) \to Syl_p(G), \quad (g,Q) \mapsto \alpha_g(Q)$ ist eine Gruppen-operation.

Proof. Beachte: α_g ist formal nicht dasselbe wie $\alpha(g,\cdot)$. Erstere ist die oben definierte Abbildung, die auf Elementen von G wirkt, letztere wirkt auf Teilmengen von G.

Wir zeigen zuerst, dass α wohldefiniert ist. Dazu sei $g \in G$ und $Q \in \operatorname{Syl}_p(G)$. Nach Lemma 16 ist $\alpha_g(Q)$ eine Untergruppe und nach Lemma 15 gilt $|Q| = |\alpha_g(Q)|$, also ist $Q \in \operatorname{Syl}_p(G)$.

Die Eigenschaften $\alpha(1,\cdot)$ = id und $\alpha(gh,\cdot)$ = $\alpha(g,\cdot) \circ \alpha(h,\cdot)$ folgen aus Lemma 13 und Lemma 12.

Theorem 3. Es gilt $Syl_n(G) \neq \emptyset$.

Von hier an fixiere ein $Q \in \text{Syl}_n(G)$.

Lemma 20. $p^r \mid |Stab_{\alpha}(Q)|$

Proof. Es gilt $Q \subseteq \operatorname{Stab}_{\alpha}(G)$ nach Lemma 17, also $Q \subseteq \operatorname{Stab}_{\alpha}(G)$ nach Lemma 4. Mit Lagrange folgt dann $p^r = |Q| \mid |\operatorname{Stab}_{\alpha}(G)|$.

Lemma 21. Seien $a, b, c, d \in \mathbb{N}$. Angenommen $a \mid c$ und ab = cd, dann folgt $d \mid b$.

Theorem 4. $|Orb_{\alpha}(Q)| \mid m$

Proof. Gemäß des Bahnensatzes gilt $p^r m = |G| = |\operatorname{Orb}_{\alpha}(Q)| \cdot |\operatorname{Stab}_{\alpha}(Q)|$. Weiterhin gilt $p^r \mid |\operatorname{Stab}_{\alpha}(Q)|$ nach Lemma 20. Also können wir Lemma 21 anwenden mit $a = p^r, b = m, d = |\operatorname{Orb}_{\alpha}(Q)|, c = |\operatorname{Stab}_{\alpha}(Q)|$, was die zu zeigende Aussage liefert.

Lemma 22. $\beta: U \times Orb_{\alpha}(Q) \rightarrow Orb_{\alpha}(Q), \quad (u, P) \mapsto \alpha_{u}(P)$ ist eine Gruppenoperation.

Proof. β ist wohldefiniert da $\alpha_u(\alpha_g(Q)) = \alpha_{ug}(Q)$ nach Lemma 12. Die Axiome der Gruppenoperation werden wie bei α gezeigt.

Lemma 23. $F\ddot{u}r\ P \in Orb_{\alpha}(Q)\ gilt\ |Orb_{\beta}(P)| = 1\ oder\ p\ |\ |Orb_{\beta}(P)|$

Proof. Nach dem Bahnensatz ist $p^l = |U| = |\operatorname{Orb}_{\beta}(P)| \cdot |\operatorname{Stab}_{\beta}(P)|$, und die Aussage folgt aus Eigenschaften von Primzahlen.

Sei R ein Repräsentantensystem der Bahnen von β .

Lemma 24. Es existiert ein $P \in Orb_{\alpha}(Q)$ mit $|Orb_{\beta}(P)| = 1$.

Proof. Angenommen $p \mid |\operatorname{Orb}_{\beta}(P)|$ für alle $P \in R$, dann folgt

$$p \mid \sum_{P \in R} |\operatorname{Orb}_{\beta}(P)|$$

nach (?). Gleichzeitig ist

$$|\operatorname{Orb}_{\alpha}(Q)| = \sum_{P \in R} |\operatorname{Orb}_{\beta}(P)|$$

nach Lemma 10 und Lemma 11, also folgt $p \mid |\operatorname{Orb}_{\alpha}(Q)|$. Andererseits haben wir aber $|\operatorname{Orb}_{\alpha}(Q)| \mid m$ nach Theorem 4. Das bedeutet $p \mid m$ nach (?), Widerspruch zur Voraussetzung. Also muss unsere anfängliche Annahme falsch gewesen sein, woraus mittels Lemma 23 die Existenz eines $P \in \operatorname{Orb}_{\alpha}(Q)$ mit $|\operatorname{Orb}_{\beta}(P)| = 1$ folgt.

Theorem 5. Sei U eine p-Untergruppe und $P \in Syl_p(G)$. Falls $|Orb_{\beta}(P)| = 1$, dann folgt $U \leq P$.

Proof. Nach Lemma 18 und der Definition von β ist $u^{-1}Pu=P$ für alle $u\in U$. Nach Lemma 5 ist dann UP eine Untergruppe von G.

Nach Lemma 9 ist außerdem |UP| eine Potenz von p, also ist UP eine p-Untergruppe. Nach Definition ist dann $|UP| \leq p^r$.

Andererseits ist $P\subseteq UP$ nach Lemma 6 und damit $|P|\leq |UP|$ nach Lemma 1. Da $|P|=p^r$ folgt $p^r\leq |UP|$.

Insgesamt haben wir also $p^r \leq |UP|$ und $|UP| \leq p^r$, was nach Antisymmetrie $|UP| = p^r$ bedeutet.

Aus Lemma 2 folgt nun UP = P.

Nach Lemma 7 ist dann U Untergruppe von P, was zu zeigen war.

Proof. Wähle P nach Lemma 24, d.h. $P \in \text{Orb}_{\alpha}(Q)$ mit $|\text{Orb}_{\beta}(P)| = 1$. Die Aussage folgt mit Theorem 5.

3 Sylowsätze

Theorem 7. Seien G eine endliche Gruppe und $p \in \mathbb{N}$ eine Primzahl. Seien $r, m \in \mathbb{N}$ sodass $|G| = p^r m$ und $p \nmid m$. Wir schreiben $Syl_p(G) = \{P \leq G \mid |P| = p^r\}$ für die Menge der p-Sylow-Untergruppen und $s_P(G) = |Syl_p(G)|$ für deren Anzahl.

- (a) Es gilt $Syl_n(G) \neq \emptyset$.
- (b) Für alle p-Untergruppen U existiert ein $P \in Syl_p(G)$ mit $U \leq P$.
- (c) Durch Konjugation operiert G transitiv auf $Syl_p(G)$.
- (d) $s_p \mid m$
- (e) $s_p \equiv 1 \mod p$.

Proof. (a) Das ist Theorem 3.

- (b) Nach Theorem 6 existiert ein $P \in \mathrm{Orb}_{\alpha}(Q)$ mit $U \leq P$, und nach Lemma 19 ist die Konjugation eine Operation auf $\mathrm{Syl}_p(G)$, d.h. $P \in \mathrm{Syl}_p(G)$.
- (c) Nach Lemma 19 ist Konjugation eine Operation auf $\mathrm{Syl}_p(G).$ Sei $U \in \mathrm{Syl}_p(G)$ beliebig, dann existiert nach Theorem 6 ein $P \in \mathrm{Orb}_\alpha(Q)$ mit U < P.

Da $U \subseteq P$ und U, P Sylowgruppen sind, folgt nach Lemma 2 dass U = P. Also existiert eine surjektive Abbildung von $\operatorname{Orb}_{\alpha}(Q)$ nach $\operatorname{Syl}_p(G)$, und mit $\operatorname{Orb}_{\alpha}(Q) \subseteq \operatorname{Syl}_p(G)$ folgt mittels Lemma 2 dass $\operatorname{Orb}_{\alpha}(Q) = \operatorname{Syl}_p(G)$, d.h. die Operation α ist transitiv.

- (d) Nach c) ist $\operatorname{Orb}_{\alpha}(Q) = \operatorname{Syl}_{p}(G)$ und nach Theorem 4 gilt $|\operatorname{Orb}_{\alpha}(Q)| \mid m$.
- (e) Nach c) und

$$s_p = |\operatorname{Orb}_{\alpha}(Q)| = \sum_{P \in R} |\operatorname{Orb}_{\beta}(P)|$$

Nun gilt $|\operatorname{Orb}_{\beta}(U)| = 1$ nach Lemma 17, also insbesondere $U \in R$.

Wir behaupten, dass $p \mid |\operatorname{Orb}_{\beta}(P)|$ für $P \in R \setminus \{U\}$ gilt.

Angenommen nicht, dann gilt $|\operatorname{Orb}_{\beta}(P)| = 1$ nach Lemma 23.

Aber dann folgt $U \leq P$ nach Theorem 5.

4

Da $U\subseteq P$ und U,P Sylowgruppen sind, folgt nach Lemma 2 dass U=P, Widerspruch zu $U\neq P.$

Damit folgt $p \mid \; \sum_{P \in R \backslash \{U\}} |\mathrm{Orb}_{\beta}(P)|,$ also existiert ein k sodass

$$s_p = |\operatorname{Orb}_{\beta}(U)| + \sum_{P \in R \setminus \{U\}} |\operatorname{Orb}_{\beta}(P)| = 1 + p \cdot k.$$

Schließlich ist $s_p = 1 + p \cdot k \ \equiv \ 1 \mod p,$ was zu zeigen war.