Adaptive Telemetry Systems for Monitoring Neonatal Neurodevelopment

Shanaya I. Malik

Department of Computer Science and Engineering, University of California, Santa Cruz

Introduction

Significance of Monitoring

Neonatal brain injuries require continuous monitoring

Technological Integration

Advanced technologies improved neonatal neurodevelopment

Effective for infants with suspected seizures

INIKO

Continuous monitoring of cerebral oxygenation

Innovations

Portable, low-cost EEG systems for sonification and visualization

Figure 1. Neonatal Brain Stethoscope: EEG Sonification and Monitoring using Android Device.

Technological Overview

Amplitude-Integrated EEG (aEEG): Monitoring for seizure detection and prognostic evaluation

Near Infrared Spectroscopy (NIRS): Non-invasive technology measuring cerebral oxygenation

Portable EEG Monitoring and Sonification: Low-cost, portable EEG systems

Figure 4. The Android app demo.

Methodology

Integration of aEEG in Neonatal Care

- Electrodes placed on scalp
- Signal processing is amplified and displayed

Implementation of Portable EEG Monitoring

- Portable EEG devices transmit signals
- Visualized on smartphone

Data Collection and Analysis

- Detection of abnormalities
- Algorithms identify neurological patterns

Studies	Time hours	N	Sensitivity (%)	Specificity (%)	Positive predictive value (%)	Negative predictive value (%)
Hellström- Westas et al. [3]	6	47	95	89	86	96
Eken et al. [4]	6	34	94	79	84	92
Al Naqeeb et al.	6	56	93	70	77	90
Toet et al. [6]	6	68	91	86	86	96
Shalak et al. [7]	12	15	79	89	73	91
Van Rooij et al. [8]	6	161	83	85	88	91
Shany et al. [9]	6	39	100	87	69	100

Clinical Implications and Outcomes

Improved Early Diagnosis

aEEG and NIRS in NICUs enhances early diagnosis

Enhanced Safety

Improve patient safety

Reduced Infant Mortality Rates

Monitoring technologies in NICUs reduce death

Broader Accessibility and Cost-Effectiveness

Portable EEG systems using smartphone technology

Clinical Training and Awareness

Proper training essential for effective use of aEEG and NIRS

Case Studies

Case Study 1: Use of aEEG in Full-Term Infants with Hypoxia-Ischemia

- Study with 68 infants monitored using aEEG
- Resulted in detecting seizures and abnormal aEEG patterns

Case Study 2: Portable EEG Monitoring in Resource-Limited Settings

- Portable EEG monitoring in rural area
- Resulted in increased access to and affordable monitoring

Predicting Neurodevelopment Patterns

Predictive Values of aEEG Patterns

- Studies assessed first 3-12 hours of life to predict brain outcomes
- Sensitivity: 79% 100%
- Specificity: 70% 89%
- Positive Predictive Value
 - Likelihood from 69% to 88% that infant will have health issue
- Negative Predictive Value
 - 90% to 100% successful prediction for infant's health

Future Developments

Improving Sensor Technology

- Develop algorithms to reduce noise
- Use infection-resistant materials

Advanced Data Analysis

Use AI to predict adverse events

Cost Reduction and Accessibility

- Develop portable monitoring systems
- Improve affordability

Standardization of Protocols

• Implement standardized guidelines

Conclusion

Technological Integration

aEEG, NIRS, and portable EEG systems

Benefits

- Continuous, non-invasive assessments
- Early diagnosis and timely intervention

Accessibility

Portable, low-cost EEG systems

Challenges

Address signal interference, data integration, cost

References

Toet, M. C., & Lemmers, P. M. A. (2024). Brain Monitoring in Neonates. *Web of Science*. Retrieved from https://www.webofscience.com/wos/woscc/full-record/WOS:000263512700003.

Nicklin, S., Wickramasinghe, Y. A., & Spencer, S. A. (2024). Neonatal Intensive Care Monitoring. *Current Paediatrics*. Retrieved from https://www.sciencedirect.com/science/article/pii/S0957583903001283.

Poveda, J., O'Sullivan, M., Popovici, E., & Temko, A. (2017). Portable neonatal EEG monitoring and sonification on an Android device. In *Proc. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)* (pp. 2018-2021). Jeju, Korea (South). doi: 10.1109/EMBC.2017.8037248