ISO 15765-2 (2004)

道路车辆——控制局域网络诊断——

第 2 部分:

网络层服务

ISO 15765 协议,定义了"道路车辆——局域网控制器(CAN)诊断",包含如下几个部分:

- ——第一部分:总论。
- ——第二部分:网络层服务。
- ——第三部分: 统一诊断服务具体的执行
- ——第四部分:排放相关系统的要求

概述

ISO15765-2 的协议, 定义车载诊断系统网络层要求, 提供在 CAN 数据链路层(ISO11898 定义)上运行。虽说它最初设计是用在诊断系统上的,它同样适用于其它需要网络层协议的 CAN 通信系统上。

为了达到诊断通信要求, IS015765 协议是基于 IS0/IEC 7498 和 IS0/IEC 10731 的开放互联系统基本参考模型建立的。该模型将通信系统分为七层, IS015765 协议映射到该模型上, 分层如下:

- ——统一的诊断服务 (第7层), 在 ISO 15765-3 中定义。
- ——网络层(第3层),在 ISO 15765-2 中定义。
- ——CAN 服务层(第1,2层),在 ISO 11898 中定义。

如表1所示,

表 1 一一对应 OSI 分层,扩展的及法规要求的 OBD 诊断规定

开放互联系统	汽车生产商扩展的诊断服务	法规要求的车载诊断系统
(OSI) 分层		(OBD)
诊断应用	用户定义	ISO 15031-5
应用层	ISO 15765-3	ISO 15031-5
表示层	N/A	N/A
会话层	ISO 15765-3	N/A
传输层	N/A	N/A
网络层	ISO 15765-2	ISO 15765-4
数据链路层	ISO 11898-1	ISO 15765-4
物理层	用户定义	ISO 15765-4

应用层服务是由 ISO 15765-3 按照 ISO 14229-1 和 ISO 15031-5 建立的诊断服务制定的,但 ISO 15765-3 协议不仅适用于上述的诊断服务项,也适用于大多数的国际标准及汽车生产商规定的诊断服务。

网络层服务由该部分的 ISO 15765 协议定义,并独立于物理层上的操作,物理层仅仅是在法规的 OBD 上有规定。

道路车辆——控制器局域网(CAN)的诊断——

第二部分:

网络层

1 范围

这部分 ISO 15765 协议描述了在 ISO 11898 定义的控制其局域网中裁剪的网络协议,用于满足基于 CAN 的车载网络系统。它是按照 ISO 14229-1 和 ISO 15031-5 建立的诊断服务制定的,但该部分协议不仅适用于上述的诊断服务项,还适用于车载内部其它的网络通信。该协议描述的是未经最后确认的的通信。

2 参考的标准

下述的参考文档对于该文档的应用是必不可少的。

ISO 11898-1, 道路车辆——控制器局域网(CAN)——第一部分——数据链路层及物理信号层

ISO/IEC 7498(所有部分),技术信息——开放互联系统——基本参考模型

3 术语,定义和缩略词

为编撰该文档目的,这些术语和定义已在 ISO 7498 中给出,以下缩略词术语同样适用。

BS 数据块大小

CF 连续帧 confirm 确认服务

ECU 电子控制单元

FC 流控制 FF 首帧

FF_DL 首帧数据长度

FS 流状态 indication 指示服务 信息类型

N_AE 网络地址扩展

N_AI 地址信息

 N_Ar
 网络层时间参数: Ar

 N_As
 网络层时间参数: As

 N_Br
 网络层时间参数: Br

 N_Bs
 网络层时间参数: Bs

 N_ChangeParameter
 网络层时间参数: Cr

 网络层时间参数: Cr

N_Cs 网络层时间参数: Cs

N Data 网络数据

N_PCI 网络协议控制信息

N_PCItype 网络协议控制信息类型

N_PDU 网络协议数据单元

N_SA 网络源地址

N_SDU 网络服务数据单元

N_TA 网络目标地址

N_TAtype 网络目标地址类型

N_USData 网络层无应答的数据段传输服务项名称

NWL 网络层

request 应答服务

r 接收者 s 发送者

SF 单帧

SF_DL 单帧数据长度

SN 顺序号

STmin 间隔最短时长

4 网络层总览

4.1 概述

该项主要描述网络层总体的功能。该部分的 ISO 15765 协议定义了未最后确认的网络层通信协议。该协议用于网络节点之间数据交互,例如从一个 ECU 到另一个 ECU,或外部诊断设备和一个 ECU 之间的通信。如果要传送的数据超过了单个的 CAN 帧长度,则需要提供拆分的方法。

为描述网络层的功能,它提供给高层的服务项及内部操作必须予以研究。

4.2 网络层提供给高层的服务项

该服务项接口定义了一些由网络层提供使用服务项,例如,数据发送、数据接收及协 议参数设置。

已定义了两种类型的服务:

a) 通信服务项

以下定义的服务项,使发送者最多能发送4095个字节的数据。

- 1) N_USData. request 该服务项用于请求发送数据。如果有必要的话,网络层拆分这些数据。
- 2) N_USData_FF. indication 该服务项用于通知上层被拆分的信息的首帧的接收。
- 3) N USData. Indication

该服务项用于提供接收的数据至上层。

4) N USData. comfirm

该服务项用于确认应答给上层,表示请求服务项已经被执行(成功执行或不成功执行)。

b) 协议参数设置服务项

以下定义的服务项,使之能够对协议参数动态设置。

- 1) N_ChangeParamter. request 该项服务用于对特定内部参数的动态设置的请求
- 2) N ChangeParameter.comfirm
- 3) 该服务项用于确认应答给上层,表示修改协议特定项的请求已经被执行(成功执行 或不成功执行)。

4.3 网络层的内部操作

网络层的内部操作为实现对等实体间的通信提供了分段、重组、数据传输流控制方法。 网络层主要的任务是传递一帧或大于一帧的数据信息。超过一帧的信息被分成多个部分, 每一个部分都以一个 CAN 帧的形式被发送。

- 图 1 显示的是未被拆分的信息的传送的例子。
- 图 2 显示的是被拆分的信息传送的例子

流控制用来使发送端适应接收端网络层的接收能力。该流控制策略同样适用于诊断网 关和通信子网。

5 网络层服务项

5.1总览

所有的网络层服务项有统一的结构。为了定义这些服务项,三类主要的服务项说明如下:

——请求服务,被更高的通信层或应用层使用,用于向网络层传递控制信息及要发送的数据;

- ——指示服务,被网络层使用,用于向更高通信层或应用层传递状态信息及接收到的数据;
- ——确认服务,被网络层使用,用于向更高通信层或应用层传递状态信息。

这些服务说明没有指定具体的应用程序接口,而只是一些独立于具体实施的主要服务项。

所有的网络层服务项有统一的结构形式,服务项写成如下的形式:

service_name.type (

parameter A,

parameter B,

parameter C,

•••

)

这里,"service_name"是指服务项名称,例如,N_SDU,"type"指示了服务项的类型,"parameter A, parameterB, parameter C,…"则是 N_SDU 服务项传递的值。

服务项定义了如何使服务的使用者(例如,诊断应用层)如何与服务的提供者(例如,网络层)协同运行。以下服务项已在国际标准中说明,请求,指示和确认。

- ——使用请求服务项(service_name.request),服务使用者向服务提供者请求一项服务。
- ——使用指示服务项(service_name.indication),服务提供者通知服务使用者网络层的一个内部事件或者一个对等实体的服务使用者的服务请求。
- ——通过确认服务项(service_name.confirm),服务提供者通知服务的使用者,之前服务使用者请求服务的结果。

5.2 网络层服务说明

5. 2. 1 N USData. request

该请求服务项是请求传递〈MessageData〉数据及〈Length〉字节数,从发送者到到对等实体接收者,通过在 N_SA, N_TA, N_TAtype 及 N_AE 中的地址信息确认。(参看 5.3 对参数的定义)。

N_USData.request 服务项每次被启动,网络层应当通过一条 N_USData.confirm 服务通知服务使用者信息传递的完成情况。(成功或失败)

N_USData.request (

Mtype

N_SA

N_TA

N_TAtype

N_AE(可选的)

<MessageData>

<Length>

)

5.2.2 N_USData.confirm

N_USData.confirm 服务项由网络层发送,该服务项用于确定 N_USData.request 服务的完成情况,通过在 N_SA, N_TA, N_TAtype 及 N_AE 中的地址信息确认。参数<N_Result>提供请求服务项的状态。(参看 5.3 对参数的定义)

N_USData.confirm (

Mtype

 N_SA

N TA

N_TAtype

N AE (可选的)

 $\langle N_Result \rangle$

)

5. 2. 3 N_USData_FF. indication

N_USData_FF. indication 服务项由网络层发送。该服务项用于通知相邻上层接收到对等实体首帧数据已经到了。通过在 N_SA, N_TA, N_TAtype 及 N_AE 中的地址信息确认。(参看5.3 对参数的定义) 这个指示项发生在接收到拆分数据首帧的时刻。

N_USData_FF. indication (
Mtype

N_SA

N_TA

N_TA

N_AE (可选的)

<Length>

N_USData_FF. indication 指示服务项发送完,网络层应当总是紧跟着发送一个N_UDSData. indication服务项,指示信息接收的完成情况。(成功或失败)

N_USData_FF. indication 指示服务项应当至友网络层发送指示信息段的首帧是否被正确接收。

如果网络层监测到首帧中任何类型的错误,该信息应当被网络层忽略,并且 N_USData_FF. indication 指示服务项不应当被发送至相邻的上层。

如果网络层接收到首帧中数据长度项的值(FF_DL)大于接收者缓冲区的数据,这应当被认为是一个错误的条件并且 N_USData_FF. indication 指示服务项不应当被发送至相邻的上层。

5. 2. 4 N_USData. indication

N_USData. indication 服务项由网络层发送。该服务项指示<N_Result>事件并传递 <Length>字节数的<MessageData>至相邻的上层。这些信息通过同等实体间通过存放于 N_SA, N_TA, N_TAtype 及 N_AE 中标识的地址信息接收过来的。

当<N_Result>值为 N_OK 时,<MessageDate>及<Length>参数信息才有效。

N_USData.indication (

Mtype

N_SA

 N_TA

N_TAtype

N_AE(可选的)

<MessageData>

<Length>

<N Result>

)

N_USData. indication 服务项是在接收到单帧(SF)信息或是指示拆分信息接收的完成时发送。

如果网络层检查到单帧中任何类型的错误,该条单帧信息应当被忽略并且 N_USData_FF. indication 指示服务项不应当被发送至相邻的上层。

5.2.5 N ChangeParameters. request

该服务项用于请求本地实体内部参数的修改。〈Parameter_Value〉参数值分配给〈Parameter〉参数(参看 5.3 对参数的定义)。

对参数总是可以修改的。特殊情况是在应用层接收到首帧的指示服务项(N_USData_FF. indication)到接收(N_USData. indication)服务项之间的时刻。

N_ChangeParameters.request (
Mtype

N_SA

 N_TA

N_TAtype

N_AE (可选的)

<Parameter>

<Parameter_Value>

)

这是一个可选服务项,可被固定的参数值实施代替。

5.2.6 N_ChangeParameters.confirm

该服务项用于确认 N_ChangeParameter. Confirmation 运用信息的完成情况,这信息通过在 N_SA, N_TA, N_TAtype 及 N_AE 中的地址信息标识。

N_ChangeParameter.confirm (
Mtype

N_SA

 N_TA

N_TAtype

N AE (可选的)

<Parameter>

<Result_ChangeParameter>

)

- 5.3 服务项数据单元说明
- 5.3.1 Mtype, Message type

类型: 枚举类型

范围: 诊断, 远程诊断

描述:参数 Mtype 用于确定服务相中信息参数的类型及范围。该部分的 ISO 15765 协议指定了两个值标识这个参数。文档使用者可通过指定其它的类型,也可通过文档中网络层使用的其它地址信息参数的组合来扩展这些值的范围。每新定义的一套地址信息,Mtype 应当赋予新值,标识新的地址信息。

- ——如果 Mtype = 诊断, N_AI 地址信息应当包含参数 N_SA, N_TA, 和 N_TAtype。
- ——如果 Mtype = 远程诊断, N_AI 地址信息应当包含参数 N_SA, N_TA, 和 N_TAtype, 和 N_AE。

5.3.2 N_AI, 地址信息

5.3.2.1 N AI 描述

该参数指的是地址信息。总的来说, N_AI 参数用于确定信息发送者和接收者的源地址(N_SA),目标地址(N_TA),也包含确定(N_TAtype)和可选择地址扩展(N_AE)的通信模式。

5.3.2.2 N_SA 网络源地址

类型: 1字节的无符号整数

范围: 00-FF 16 进制

描述: N_SA 参数代表发送者网络层实体

5.3.2.3 N_TA, 网络目标地址

类型: 1字节的无符号整数

范围: 00-FF 16 进制

描述: N_SA 参数代表接收者网络层实体

5. 3. 2. 4 N_TAtype, 网络目标地址类型

类型: 枚举类型

范围: 物理的, 功能的

描述: N_TAtype 参数是对 N_TA 参数的扩展。它被网络层对等实体使用,代表通信模式。两种通信模式说明如下: 1 对 1 的通信, 称为物理地址, 1 对多的通信称为功能地址。

——物理地址(1对1通信)网络层所有类型的信息都支持。

——功能地址(1对多通信)仅仅对单帧的通信支持。

5. 3. 2. 5 N AE, 网络地址扩展

类型: 1字节的无符号整数

范围: 00-FF 16 进制

描述: N_AE 参数用于在大的网络上扩展现行的地址范围,用于子网中发送与接收网络层实体而不是本地网的通信。若 Mtype 设置为远程诊断时, N_AE 仅仅是地址信息的一部分。

5. 3. 3 \(Length \>

类型: 12 个 bit 位

范围: 1-4095

描述: 该参数包含要发送或接收的数据长度。

5. 3. 4 MessageData

类型:字符串

范围: 不固定

描述: 该参数包含与上层实体所有交互的数据

5.3.5 (Parameter)

类型: 枚举类型

范围: STmin, BS

描述: 该参数确定网络层的参数

5.3.6 < Parameter_Value >

类型: 1字节无符号整数

范围: 0-255

描述: 该参数分配给协议参数〈Parameter〉作为指示服务。

5.3.7 (N Result)

类型: 枚举类型

范围: N_OK, N_TIMEOUT_A, N_TIMEOUT_Bs, N_TIMEOUT_Cr, N_WRONG_SN, N_INVALID_FS, N_UNEXP_PDU, N_WFT_OVRN, N_BUFFER_OVFLW, N_ERROR

描述: 该参数包含服务项执行的结果状态。如果同时产生了两个或以上的错误,网络层应该使用下列错误指示中首先找到的参数值,发送给高层。

----N OK

该值表示服务执行完全正确;它可同时由发送者和接收者发送至服务的使用者。

----N TIMEOUT A

该值在定时器 N_Ar/N_As 超过了定时值 N_Asmax/N_Armax,发送给服务的使用者;它可同时由发送者和接收者发送至服务的使用者。

---N TIMEOUT Bs

该值在定时器 N_Bs 超过了定时值 N_Bsmax,发送给服务的使用者;它仅能由发送者发送至服务的使用者。

---N TIMEOUT Cr

该值在定时器 N_Bs 超过了定时值 N_Crmax,发送给服务的使用者;它仅能由接收者发送至服务的使用者。

----N WRONG SN

该值在接收到意外的连续的数值(PCI. SN)时被发送至服务使用者;它仅能由接收者发送至服务的使用者。

---N INVALID FS

该值在从流控(FC)N_PDU 接收到无效的或未知的流状态值时发送至服务的使用者; 它仅能由发送者发送至服务的使用者。

——N UNEXP PDU

该值在接收到未知协议数据单元时发送给服务使用者,它仅能由接收者发送至服务的使用者。

——N WFT OVRN

该值在接收到流控 WAIT 帧超过最大计数 N_WFTmax 时发送至服务使用者。

——N BUFFER OVFLW

该值在接收到流控(FC)N_PDU 状态 Flow = OVFLW 时发送给服务的使用者。它用于指示接收者缓冲区无法存储首帧中数据长度(FF_DL),因此,该拆分数据的传递被丢弃。它仅能由发送者发送至服务的使用者。

——N ERROR

这是一个默认的错误值。它是当检测到网络层错误并且没有其它更好的参数描述该项错误时使用发送到服务使用者。它可同时由发送者和接收者发送至服务的使用者。

5.3.8 < Result Change Parameter >

类型: 枚举类型

范围: N_OK, N_RX_ON, N_WRONG_PARAMETER, N_WRONG_VALUE

描述: 该参数包含服务执行的结果状态信息

----N_OK

该值表示服务执行完全正确;它可同时由发送者和接收者发送至服务的使用者。

——N RX ON

该值发送给服务使用者指示虽然〈AI〉标识的信息接收到了,但服务没有执行。它仅能由接收者发送至服务的使用者。

----N_WRONG_PARAMETER

该值发送给服务的使用者表示由于未定义的〈Parameter〉,服务没有执行;它可同时由发送者和接收者发送至服务的使用者。

----N_WRONG_VALUE

改制发送给服务的使用者表示由于〈Parameter_Value〉超出范围,服务没有执行, 它可同时由发送者和接收者发送至服务的使用者。

6 网络层协议

6.1 协议功能

网络层协议协议有如下功能:

- a) 发送/接收最多 4095 个字节的数据信息
- b) 报告发送/接收完成状态。

6.2 单帧发送

(扩展及混合地址情况下)最多发送 6 字节或(正常地址情况下)7 字节数据,按照 N_PDU 格式发送信息,称为单帧(SF)见图 3.

最多6或7字节的接收通过N PDU 制式,

图 3 未拆分数据的例子

6.3 多帧发送

长信息的发送通过拆分信息并通过多个 N_PDU 发送的形式。长信息的接收通过接受多个 N_PDU 并通过重组这些接受的数据。这多个 N_PDU 包括首帧(信息中第一个 N_PDU)及连续帧(剩下的所有 N PDU)。

多 N_PDU 信息接收者有条件按照它自己的接收能力通过使用流控协议数据单元 (FC N_PDU) 的流控机制调整传输流量。

——一个首帧协议数据单元(FF N_PDU),包括(扩展及混合地址情况下)5字节或(正常地址情况下)6字节数据。

——一个多更多连续帧协议数据单元(CF N_PDU),包括 6 或 7 字节数据。CF N_PDU 包括剩下的字节数据,因此可以少于 6 或 7 字节的长度。

图 4 显示的是发送端拆分及接收端重组信息的例子

说明:接收方发送的 FC N_PDU 用于应答 FF N_PDU,这在图中没有显示。图 4—拆分与重组

信息的长度在首帧(FF N_PDU)中被发送。所有的连续帧(CF N_PDU)都被发送方编号, 提供接收方以同样的顺序重组这些信息。

接收方通过流控机制(见图 5)通知发送方接收能力。由于不同的节点有不同的接收能力,发送方发送的流控通知接收方,接收方才能调整以适应发送方接收能力。

该接收能力如下定义:

——块大小(BS): 在授权继续发送其余的 N_PDU 之前,接收方允许发送方最大的 N_PDU 个数。

——间隔最短时长 (STmin): 发送方在发送两个连续帧间隔等待的最短时间。

图 5 流控机制

除了最后一个所有的块都包含 BS N_PDUs。最后一个块包含剩余的 N_PDUs (<=BS)。

每一个发送者/接收者等待对方的 N_PDU 时,一个超时机制可用来检查发送失败。

通过 FC N_PDUs,接收者有权控制 CF N_PDUs,用于延时对方的发送及当拆分数据超过接收者缓冲区的时候,拒绝接收。

- ——FC. CTS: 继续发送, 授权继续发送
- ——FC. WAIT: 请求继续等待
- ——FC. OVFLW: 缓冲溢出,用于指示拆分数据的首帧中字节个数信息超过了接收者可存储的信息总量。

FC. WAIT 的值有个最大限值: N_WFTmax。该参数是系统的常数,且不会在首个 FC N_PDU 中发送。

6.4 网络层协议数据单元

6.4.1 协议数据单元类型

不同节点的网络层实体通过交互 N_PDUs 实现通讯。

该协议说明了网络层协议数据单元四种类型——单帧(SF N_PDU),首帧(FF N_PDU),连续帧(FC N_PDU)——这些用于建立网络层对等实体通信,交互通信参数,传递通信数据及释放通信资源。

6. 4. 2 SF N_PDU

SF N_PDU 通过单帧协议控制信息(SF N_PCI)来标识,SF N_PDU 应当由发送网络实体发送至一个或多个接收网络实体。它应当通过单个的服务请求,传递服务数据及未拆分信息。

6.4.3 FF N PDU

FF N_PDU 通过首帧协议控制信息(FF N_PCI)来标识,FF N_PDU 应当由发送网络实体在拆分数据发送期间,发送至特定的接收网络实体。它用于标识拆分数据首帧。接收网络实体在接收到 FF N PDU 时,需重组这些拆分的信息。

6. 4. 4 CF N PDU

CF N_PDU 由连续帧协议控制信息标识(CF N_PCI)。CF N_PDU 传递服务数据〈MessageData〉的每个段(N_Data)。发送实体发送所有的 N_PDUs 时,FF N_PDU 之后编码成 CF N_PDUs。接收实体在接收到最后一个 CF N_PDU 时,重组这些信息并传递至服务的使用者。CF N_PDU 应当由发送网络实体在拆分数据发送期间,发送至特定的接收网络实体。

6. 4. 5 FC N_PDU

FC N_PDU 由流控协议控制信息(FC N_PCI)标识。FC N_PDU 指示发送网络实体对 CF N_PDUs 的开始,停止或重传。它应当由接收网络层实体在准备好接收更多数据时,发送至发送网

络层实体, 在接收到如下情况的帧时

- a) FF N PDU,或者
- b) 一组连续帧的最后一个 FF N_PDU, 如果另外的一组连续帧需要被发送的话。

FC N_PDU 也能在拆分数据发送期间,通知发送网络层实体暂停 CF N_PDUs 的发送或者在检测到首帧中数据 (FF_DL) 字长超过接收实体的缓冲区时,中止发送。

6.4.6 协议数据单元域描述

6.4.6.1 N PDU 格式

协议数据单元(N_PDU)使数据在两个或多个对等网络节点之间传递。所有的 N_PDUs 包含了3个域,如下表2所示。

表 2 N PDU 格式

地址信息	协议控制信息	数据域
N_AI	N_PCI	N_Data

6.4.6.2 地址信息(N AI)

N_AI 用于标识对等网络实体间的通信。N_AI 信息在 N_SDU—N_SA, N_TA, N_TAtype, N_AE—中接收,应当复制包含在 P_PDU 中。如果接收到的 N_SDU 中<MessageData>及<Length>信息很长,需要网络层拆分这些数据以发送完整的信息,N_AI 应当被复制并包含在每一个要发送的 N_PDU 中。

该域包含地址信息标识交互信息类型,数据交互的接收方和发送方。地址信息包含信息地址。

注意: 更详细的地址信息的描述,看 5.3.2

6.4.6.3 协议控制信息(N_PCI)

该域标识交互的 N_PDUs 的类型。它也用来交互在网络层对等实体通信的其它控制参数。

注意: 所有 N_PCI 参数更详细的说明见 6.5

6.4.6.4 数据域(N_Data)

N_PDU 中的 N_Data 用于发送在<MessageData>参数中从服务使用者使用 N_USData. request 服务接收的数据。如果必要的话,会在网络发送之前拆分为更小的部分,以适应 N_PDU 数据域。

N_Data 的大小依赖 N_PDU 的类型及地址格式的选取。

6.5 协议控制信息说明

6. 5. 1 N PCI

所有的 N_PDU 通过 N_PCI 来标识,见表 3 及图 4

表 3 ----N_PCI 字节概要

	4 1 1902								
		N_PC	I 字节						
N_PDU 名	字节1		字节 2	字节 3					
	7 - 4位	3 - 0 位							
单帧 (SF)	N_PCItype = 0	SF_DL	N/A	N/A					
首帧 (FF)	N_PCItype = 1	FF_DL		N/A					
连续帧 (CF)	N_PCItype = 2	SN	N/A	N/A					
流控 (FC)	N_PCItype = 3	FS	BS	STmin					

表 4—N PCI type 值的定义

10 H_10	Ttype Enic X
16 进制值	描述
0	单帧
	对于未拆分的信息,网络层提供了一个优化的网络协议,即将信息长度值仅放
	置在 PCI 字节里。单帧(SF)应当能支持在单个 CAN 帧中的信息传输。
1	首帧
	首帧只支持一条信息无法在单个 CAN 帧中发送时使用。例如,拆分的信息。拆
	分信息的第一帧编码为 FF, 在接收到 FF 时, 接受网络层实体应重组这些信息。
2	连续帧
	当发送拆分数据时,所有的连续帧跟着 FF 编码为连续帧 (CF)。在接收到一个
	连续帧,接受网络层实体应当重组接收到的数据字节直到整个信息被接收到。
	接收实体在接收最后一帧信息并无接收错误之后,应传递这些信息到相邻的上
	层。
3	流控帧
	流控制的目的是调整 CF N_PDUs 发送的速率。流控协议数据单元的 3 种类型用
	于支持这些功能。这些类型由协议控制信息的流状态(FS)域指示。
4 - F	保留
	该范围的值为该协议保留。

6.5.2 单帧 N_PCI 参数定义

6.5.2.1 SF N_PCI 字节

表 5 给出了 SF N_PCI 字节总览

表 5SF N_PCI 字节总览

N_PDU 名字	SF N_	SF N_PCI byte							
	Byte	1							
	7	6	5	4	3	2	1	0	
单帧	0	0	0	0	SF_DL				

单帧数据长度(SF_DL)参数在 SF N_PDU 中用于指明服务使用者的字节数。看表 6

表 6 SF DL 值的定义

16 进制值	说明
0	保留
	该范围的值为该协议保留。
1 - 6	单帧数据长度值(SF_DL)
	SF_DL 应编码在 N_PCI 字节低位,并分配服务参数 <length>的值。</length>
7	单帧数据长度(SF_DL)中标准地址
	SF_DL = 7 时,只允许标准地址
8 - F	无效的
	该范围值无效

6.5.2.2 SF_DL 出错处理

如果网络层接收到一个 SF_DL=0 的单帧 (SF), 网络层应当忽略接收 SF N_PDU。

如果网络层接收到使用标准地址且一个 SF_DL 大于 7 的单帧,或大于 6 且使用扩展或混合地址时,网络层应当忽略该 SF N_PDU。

- 6.5.3 首帧 N_PCI 参数定义
- 6.5.3.1 FF N_PCI 字节

表 7 给出了一个 FF N_PCI 字节总览

表 7 FF N_PCI 字节总览

N_PDU 名字	FF N_PCI byte								
	Byte 1					Byte 2			
	7	6	5	4	3	2	1	0	
首帧	0	0	0	1	FF_	DL			

6.5.3.2 首帧数据长度(SF_DL)参数定义

FF N_PDU 中的参数 FF_DL 用于说明服务使用者数据字节数。如表 8 所示,

16 进制数	说明
0 - 6	无效的
	该范围值无效
7	首帧数据字节(FF_DL)支持扩展地址及混合地址
	FF_DL = 7 只允许扩展地址及混合地址
8 - FFF	首帧数据字节 (FF_DL)
	拆分信息在 12 个位的长度(FF_DL)上编码,并 N_PCI 字节 2 中最低位置位"0",
	N_PCI 字节 1 中最高位置为"3"。拆分信息最大数据长度支持 4095 个用户数据。
	该数据当被分配到服务参数 <length>中。</length>

6.5.3.3 FF_DL 出错处理

如果网络层接收到 FF_DL 大于接收方缓冲区的首帧时,应当被认为是错误情况。网络层应当放弃该信息的接收,并且发送包含参数 FlowStatus = Overflow 的 FC N_PDU。

如果网络层接收到 FF_DL 小于 8 并且使用标准地址,或小于 7 并且使用扩展地址或混合地址时,网络层应当忽略该首帧并且不必发送一个 FC N_PDU。

- 6.5.4 连续帧 N_PCI 参数定义
- 6.5.4.1 CF N_PCI 字节
- 表 9 给出了一个 CF N PCI 字节总览

表 9 CF N PCI 字节总览

N_PDU 名字	CF N_	CF N_PCI byte							
	Byte 1								
	7	6	5	4	3	2	1	0	
连续帧	0	0	1	0	SN				

- 6.5.4.2 连续帧参数(SN)定义
- CF N_PDU 中参数 SN 用以说明连续帧的顺序。
- ——对于所有拆分信息, SN 开始于 0。FF 应当分配值 0, 它不是明确地包含在 N_PCI 域中, 但应当按拆分信息顺序号为 0。
- ——第一个流控帧编号(SN)后的连续帧设置为1;
- ——在同一个拆分信息上,每一个新增的连续帧编号(SN)增1;
- ——连续帧编号(SN)的值不受流控帧的影响。
- ——当连续帧编号(SN)到达值 15 时,它在下一个连续帧中重置为 0;

顺序编号如下表 10 所示

表 11 所示 SN 值

表 10——SN 定义总结

N_PDU	FF	CF						
SN(hex)	0	1		Е	F	0	1	

表 11---SN 值定义

16 进制值	描述
0 - F	连续号 (SN)
	连续号应当在 N_PCI 字节 1 的低字位编码。SN 设置值范围在 0 到 15.

6.5.4.3 SN 出错处理

如果接收到一个连续号错误的 CF N_PDU 信息,网络层则进行出错处理。信息的接收被终止,并且网络层发送一个<N_Result>参数=N_WRONG_SN 的 N_USData. indication 指示服务至相邻上层。

- 6.5.5 流控参数 N PCI 定义
- 6.5.5.1 流控参数 N_PCI 类型

表 12 给出了一个 FC N_PCI 字节总览

表 12 FC N_PCI 字节总览

N_PDU 名字	FC	FC N_PCI byte								
	Byt	te 1							Byte 2	Byte 3
	7	6	5	4	3	2	1	0		
流控帧	0	0	1	1	FS			BS	STmin	

6.5.5.2 流状态参数 (FS) 定义

流状态参数(FS)指示发送网络实体是否继续信息的发送。

发送网络层实体应当支持所有 FS 参数规定(不是保留的)的值。

表 13----FS 值定义

	,,,
16 进制值	说明
0	继续发送 (CTS)
	流控帧继续发送参数,通过编码 N_PCI 第 1 字节为 "0",表示继续发送。它会
	促使发送方重新发送连续帧,该值意味着接收者准备好接收最大 BS 个连续帧。
1	等待 (WT)
	流控帧等待参数通过编码 N_PCI 第 1 字节为 "1"。它会促使发送方继续等待新
	的流控帧(N_PDU)的到来,并重新设置 N_BS 定时器。
2	溢出 (OVFLW)
	流控真溢出参数通过编码 N_PCI 第 1 字节为 "2"。它会促使发送方中止拆分信
	息的发送并且做传递参数 <n_result>=N_BUFFER_OVFLW的N_USData.confirm指</n_result>
	示服务。该 N_PCI 流控参数值仅能在跟在首帧 N_PDU 的流控帧中使用,并且仅
	能在首帧中 FF_DL 信息的长度超过了接收实体缓冲区大小时使用。
3 - F	保留
	该范围的值为该协议保留

6.5.5.3 FS 出错处理

如果接收到的 FC N_PDU 信息参数出错,网络层进行出错处理。信息的发送被中止,并且网络层传递一个参数<N_Result>=N_INVALID_FS 的 N_USData. confirm 指示服务至相邻的上层。6.5.5.4 块大小(BS)参数定义

BS 参数应当编码在 FC N PCI 字节 2 中。

BS 单元存储了 每一块中 CF N_PDU 的绝对个数。

例如 如果块大小=20(十进制)该块应当包含 20 个 CF N_PDU。

拆分数据中最后一块连续帧也可能少于 BS 个帧。

表 14 提供了 FC N_PCI 字节总览

表 14 BS 值定义

16 进制值	说明
00	块大小 (BS)
	BS 参数为 0 用于指示发送者在拆分数据的发送期间流控制帧不再发送流控制帧
	了。发送网络层实体应当不停的发送剩下的连续帧以便接收网络层实体另外的
	流控帧。
01 - FF	块大小 (BS)
	该范围的 BS 参数值用于指示发送方在没有接收网络实体的流控帧期间能发送
	的最大数目的连续帧。

6.5.5.5 间隔时间(STmin)参数定义

间隔时间(STmin)参数应当编码在FC N_PCI 字节 3.

该时间在拆分数据发送过程中,由接收实体指定,并且由发送网络实体遵守。

STmin 参数值指定了连续帧协议数据单元发送的最小时间间隔。表 15 所示。

表 15---STmin 值定义

16 进制值	说明
00 - 7F	间隔时间 (STmin) 范围: 0ms - 127ms
	该 STmin 单元的范围 00 - 7F 为绝对单位毫秒 (ms)
80 - F0	保留
	该范围值为该协议保留
F1 - F9	间隔时间(STmin)范围 100us - 900us
	该 STmin 单元的范围 F1 - F9 最小分编为 100 微秒(us),参数值 F1 代表 100us,
	参数值 F9 代表 900us。
FA - FF	保留
	该范围值为该协议保留

STmin 的度量是在一个连续帧发送完开始到请求下一个连续帧时的间隔时长。

例如 如果 STmin=10 (十进制),则连续帧网络协议数据单元最小时间间隔=10ms。

6.5.5.6 ST 出错处理

在拆分数据发送期间,如果 FC N_PDU 信息接收到 ST 参数值为保留值,发送网络实体则使用最长的 ST 值,即(7F-127ms),而不使用从接收网络实体接收到的值。

6.6 FC. Wait 帧传递的最大值(N WFTmax)

该变量用于避免在通信发送方出现潜在错误挂起的时候,后者可能会持续等待。该参数用于对等通信并不被传递,因此不包含在 FC 的协议数据单元里。

- ——N WFTmax 参数应当指示一组能有多少个 FC N PDU WT 能被接收者接收。
- ——N WFTmax 参数的上限由用户根据系统时钟定义。
- ——N_WFTmax 参数仅由接收网络实体在接收信息的时候使用。
- ——如果 N_WFTmax 参数值设置为 0,流控应当继续仅使用 FC N_PDU CTS。流控等待(FC N_PDU WT)不应再该网络实体中使用。

6.7 网络层定时

6.7.1 定时参数

图 6 显示了网络层定时参数,表 16 定义了网络层定时参数值及它们相应的给予数据链路服务的开始及结束时间。

运行要求的数值是是对对等通信的约束,以符合该协议。某个应用应指明规定的运行需求,该范围在表 16 中定义。

定义超时的值应比运行要求的值大保证系统工作且使克服运行需求值在(高总线负载)时, 绝对不会满足。指定的超时的值认为是执行的最低限。实际超时的发生不应长于指定超时 值+50%。

网络层在检测到错误的时候应传递合适的服务项至服务的使用者。

图 6 网络层定制参数置位

表 16——网络层定时参数值

表 16-	——网络层定	可多效阻			
定时	描述	数据链路服务		超时	运行需求
参数		Start	End	(ms)	(ms)
N_As	发送方 CAN	L_Data.request	L_Data.confirm	1000	N/A
	帧发送时				
	间(任何				
	N_PDU)				
N_Ar	接收方 CAN	L_Data.request	L_Data.confirm	1000	N/A
	帧发送时				
	间(任何				
	N_PDU)				
N_Bs	直至下一	L_Data.confirm(FF)	L_Data.indicate(FC)	1000	N/A
	个流控帧	L_Data.confirm(FC)			
	接收的时	L_Data.indicate(FC)			
	间				
N_Br	直至下一	L_Data.indicate(FF)	L_Data.request(FC)	N/A	(N_Br+
	个流控帧	L_Data.confirm(FC)			N_Ar) <
	发送的时				(0.9*N_Bs)
	间				
N_Cs	直到下一	L_Data.confirm(FC)	L_Data.request(CF)	N/A	(N_Cs+
	个连续帧	L_Data.indication			N_As) <
	发送的时	(CF)			(0.9*N_Cr)
	间				
N_Cr	直到下一	L_Data.confirm(FC)	L_Data.indication	1000	
	个连续帧	L_Data.indication	(CF)		
	接收的时	(CF)			
	间				
S	发送者				
R	接收者				

6.7.2 网络层超时

表 17 定义了网络层超时的触发和动作

表 17 网络层超时出错处理

超时	触发	动作
N_As	发送方没有及时发送 N_PDU	放弃信息的接收并传递 <n_result>=</n_result>
		N_TIMEOUT_A的 N_USData.confirm 指示
N_Ar	接收方没有及时发送 N_PDU	放弃信息的接收并传递 <n_result>=</n_result>
		N_TIMEOUT_A的N_USData.confirm指示
N_Bs	发送方没有接收到流控帧(丢失,	放弃信息的发送并传递 <n_result>=</n_result>
	覆盖)或在首帧前收到,或连续	N_TIMEOUT_Bs 的 N_USData.confirm 指示
	帧没有被接收方接收到。	
N_Cr	接收方没有收到连续帧或之前流	放弃信息的接收并传递 <n_result>=</n_result>
	控帧未被发送方收到。	N_TIMEOUT_Cr 的 N_USData.confirm 指示

6.7.3 接收到突如其来的 N PDU

意外的 N_PDU 定义为接收到一个节点规则之外的 N_PDU。它可能是该协议定义的某条帧 (N_PDU) (SF N_PUD, FF N_PDU, CF N_PDU 或者 FC N_PDU), 但它接收的却不是按正常的顺序,或者它是一个在本协议中无法解释未知的 N_PDU。

根据网络层支持全双向的或半双向通信的不同,对"意外的"说明也不同:

- a) 半双向的,两个节点之间点对点通信在同一个时刻只能是一个方向。
- b) 全双向的,两个节点之间点对点通信在同一个时刻支持双向的通信。

除网络层设计决定,使用同一个地址信息(N_AI)接收或发送到一个节点,认为意外的 N_PDU。作为一个统一规则,从任何节点过来的意外的 N_PDU 应当被忽略,这意味着网络层对该信息的到来无需通知上层。

表 18 定义了在接收到意外 N_PDU 时,网络层动作。考虑到网络层内部状态(NWL 状态)及支持半双向或全双向通信。并应知道在 N_PDU 接收时候,作为发送者或接收者接收到的 N_PDU 包含同一个 N_AI 。

表 18 ——意外的 N PDU 处理

12.10 心/	小的 N_PDU 处理				
NWL 状态	接收到。。。				
	SF N_PDU	FF N_PDU	CF N_PDU	FC N_PDU	Unknown
					N_PDU
拆分信息发	全双向通信:	全双向通信:	全双向通信:	如果等待,则	忽略
送过程中	当接受过程	当接受过程	当接受过程	处理该帧, 否	
	中,看该表中	中,看该表中	中,看该表中	则忽略	
	相邻下面部	相邻下面部	相邻下面部		
	分,否则将 SF	分,否则将FF	分		
	N_PDU 设为新	N_PDU 设为新			
	接收的开始	接收的开始			
	半双向的:	半双向的:	半双向的:		
	忽略	忽略	忽略		
拆分信息接	中止当前接	中止当前接	如果等待,则	全双向的	忽略
收过程	收, 传递	收, 传递	处理该帧,并	如果正在发	
	$\langle N_Result \rangle =$	$\langle N_Result \rangle =$	运行必须的	送过程,看相	
	N_UNEXP_PDU	N_UNEXP_PDU	检测(例如 SN	应表上一单	
	的指示信号	的指示信号	是否顺序正	元	
	至上层,并且	至上层,并且	确) 否则忽略		
	将 SF N_PDU	将 FF N_PDU		半双向的:	
	为新的接收	为新的接收		忽略	
	开始	开始			
空闲	将 SF N_PDU	将 FF N_PDU	忽略		
	为新的接收	为新的接收			
	开始	开始			

6.7.4 等待帧出错处理

当接收者发送了 N_WFTmax 等待流控制帧网络协议数据单元(FC N_PDU WT)发送方无法通过发送网络协议数据单元(FC N_PDU CTS)完成流控清除。接收方中止信息的接收,并发送<N_Result>置位 N_WFT_OVRN 的 N_USData. indication 至相邻上层。

信息的发送者通过接收到<N_Result>=N_TIMEOUT_Bs 的 N_USData.confirm 确认服务中止信息的接收。(由于丢失了接收方的流控制帧 N_PDU,在发送端产生了一个 N_Bs 的超时信号)

6.8 交错的信息

网络层应当能够实现映射不在一个地址 N_AI 的不同信息的传输。这能保证接收者接收网络协议数据单元能持续的重组信息。该策略使网关具有在同时在不同子网处理不同信息传递的功能。

- 7 数据链路层的使用
- 7.1 数据链路层接口服务

7.1.1 L_Data.request

该请求服务需要通过〈Idetifier〉标识,将〈Data〉数据映射到指定的数据链路层单元。 〈Idetifier〉标识需提供参照指定的访问格式发送〈Data〉数据:

```
L_Data.request(
```

<Identifier>

<DLC>

<Data>

)

7.1.2 L Data.confirm

该确认服务用于确认 L_Data.request 请求指定的<Identifier>服务的完成,参数<TransferStatus>提供服务请求的状态。

L_Data.confirm(

<Identifier>

<TransferStatus>

)

7.1.3 L_Data.indication

该指示服务指示数据链路层到相邻上层的事件并通过<Identifier>标识发送<Data>数据。

L_Data.indication (

<Identifier>

<DLC>

<Data>

)

7.2 数据链路层服务参数

下列所示数据链路层服务参数在 ISO 11898-1 中定义。

<Identifier>: CAN 标识

<DLC>: 数据长度码

<Data>: CAN 帧数据

〈TransferStatus〉: 发送状态

7.3 映射到 N_PDU 域

7.3.1 地址格式

网络层数据交互有三种地址格式的支持:标准,扩展和混合。不同的地址格式需要不同数据长度的 CAN 帧对包含数据的地址信息进行打包。因此,选择单个 CAN 帧的数据长度依赖于地址格式类型的选取。

以下(7.3.2到7.3.5)说明了地址格式的映射机制,基于数据链路层服务及11898-1定义的服务参数。

7.3.2 标准地址

对于 N_SA, N_TA, N_TAtype, 一个特定的 CAN 标识符被分配。 N_PCI 和 N_Data 安置在 CAN 帧的数据域。如表 19.

表 19 —— N_PDU 参数到 CAN 帧的映射——标准地址

N_PDU 类型	CAN 标识	CAN 帧娄)据域									
		字节1	节1 字节2 字节3 字节4 字节5 字节6 字节7 字节									
单帧 (SF)	N_AI	N_PCI	N_Data									
首帧 (FF)	N_AI	N_PCI		N_Data								
连续帧 (CF)	N_AI	N_PCI	N_Data									
流控帧 (FC)	N_AI	N_PCI				N/A						

7.3.3 标准混合地址

标准混合地址是标准地址的子格式,也就是映射到 CAN 标识的地址信息更多一层定义。在上述标准通信, N_AI 和 CAN 标识之间打开。

对于标准混合通信只允许有 29bit 的 CAN 标识。表 20 和 21 定义了射到 CAN 标识的目标地址类型 (N_TAtype)。N_PCI 和 N_Data 放在 CAN 帧数据域。

表 20——标准混合地址, N_TAtype = 物理的

N_PDU 类型	29bitCAN	29bitCAN 标识,位地址										CAN 数据域位地址							
	28…26	25	24	23…16	1	2	3	4	5	6	7	8							
单帧(SF)	110(bin)	0	0	218 (dec)	N_PCI	N_	Data	a											
首帧(FF)	110(bin)	0	0	218 (dec)	N_T	A	N_SA		N_Data										
连续帧(CF)	110(bin)	0	0	218 (dec)	N_T	N_TA		N_PCI	N_Data										
流控帧(FC)	110(bin)	0	0	218 (dec)	N_TA N_		N_SA	N_PCI	N/A										

表 21 ——标准混合地址, N_TAtype = 功能的

N_PDU 类型	29bitCAN	29bitCAN 标识,位地址										CAN 数据域位地址							
	28…26	25	24	23…16	1	2	3	4	5	6	7	8							
单帧(SF)	110(bin)	0	0	219 (dec)	N_T	N_TA N_SA		N_PCI	N_	Data	a								
首帧(FF)	110(bin)	0	0	219 (dec)	N_T	A	N_SA		N_Data										
连续帧(CF)	110(bin)	0	0	219 (dec)	N_TA		N_SA	N_PCI	N_Data										
流控帧(FC)	110(bin)	0	0	219 (dec)	N_T	A	N_SA	N_PCI	N/A										

7.3.4 扩展的地址

对于 N_SA, N_TA, N_TAtype, 一个特定的 CAN 标识符被分配。N_TA 安置在 CAN 帧数据域第一个字节, N_PCI 和 N_Data 安置在 CAN 帧数据域剩下的字节。

表 22 ——N_PDU 参数到 CAN 帧的映射——扩展地址

N_PDU 类型	CAN 标识	CAN 帧数	效据域						
		字节1	字节 2	字节3	字节4	字节 5	字节6	字节7	字节8
单帧 (SF)	N_AI, 无 N_TA	N_TA	N_PCI	N_Data					
首帧 (FF)	N_AI, 无 N_TA	N_TA	N_PCI		N_Data				
连续帧 (CF)	N_AI, 无 N_TA	N_TA	N_PCI	N_Data					
流控帧 (FC)	N_AI, 无 N_TA	N_TA	N_PCI			N/A			

7.3.5 混合地址

7.3.5.1 29 位 CAN 标识

混合地址是将 Mtype 设置为远程诊断的地址格式。

表 23 和 24 定义了地址信息(N_AI)到 29 位 CAN 标识符的映射机制。主要是目标地址类型(N_TAtype), N_PCI和 N_Data安置在 CAN 帧数据域剩余字节。

表 23---29 位 CAN 标识符的混合地址, N_TAtype=物理的

N_PDU 类型	29bitCAN 标识,位地址								CAN 数据域位地址						
	28…26	25	24	23…16	15	8	7•••0	1	2	3	4	5	6	7	8
单帧(SF)	110(bin)	0	0	206 (dec)	N_T	A	N_SA	N_AE	N_PCI	N_Data					
首帧(FF)	110(bin)	0	0	206 (dec)	N_T	A	N_SA	N_AE	N_PCI		N_Da	ıta			
连续帧(CF)	110(bin)	0	0	206 (dec)	N_T	A	N_SA	N_AE	N_PCI	N_Data					
流控帧 (FC)	110(bin)	0	0	206 (dec)	N_T	A	N_SA	N_AE	N_PCI		N/A				

表 23——29 位 CAN 标识符的混合地址, N_TAtype=功能的

N_PDU 类型	29bitCAN 标识,位地址								CAN 数据域位地址							
	28…26	25	24	23…16	15	8	70	1	2	3	4	5	6	7	8	
单帧(SF)	110(bin)	0	0	205 (dec)	205 (dec) N_TA N_SA N					N_Data						
首帧(FF)	110(bin)	0	0	205 (dec)	N_T	A	N_SA	N_AE	N_PCI	N_Data						
连续帧(CF)	110(bin)	0	0	205 (dec)	N_TA N_SA			N_AE	N_PCI	N_Data						
流控帧 (FC)	110(bin)	0	0	205 (dec)	N_T	A	N_SA	N_AE N_PCI N/A								

7.3.5.2 11 位 CAN 标识符

混合地址是将 Mtype 设置为远程诊断的地址格式。

表 25 定义了地址信息(N_AI)到 11 位 CAN 标识的映射机制。对于 N_SA, N_TA, N_TAtype,一个特定的 CAN 标识符被分配。N_AE 安置在 CAN 帧数据域的第一个字节。N_PCI 和 N_Data 安置在 CAN 帧数据域的剩余字节。

表 25——混合地址(11 位 CAN 标识符)

12 12 12 12 12 12 13 14 V 14 V										
N_PDU 类型	CAN 标识	CAN 帧数	CAN 帧数据域							
		字节1	字节 2	字节3	字节4	字节 5	字节 6	字节7	字节8	
单帧(SF)	N_AI	N_AE	N_PCI	N_Data						
首帧 (FF)	N_AI	N_AE	N_PCI		N_Data					
连续帧 (CF)	N_AI	N_AE	N_PCI	N_Data						
流控帧 (FC)	N_AI	N_AE	N_PCI			N/A				

7.4 CAN 帧数据长度码 (DLC)

7.4.1 DLC 参数

DLC 参数指定了某一个 CAN 帧中数据字节长度。本文档不指明数据域中长度的任何要求,而只是在网络层协议数据单元的大小给出暗示。

应用网络层要么将所有 CAN 帧打包成完整、全部的长度,要么优化 DLC 以适合网络协议数据单元。

7.4.2 CAN 帧数据打包

DLC 总是设置为 8. 如果发送的 N_PDU 比 8 短,那么发送方将 DLC 设置为最大值为 8 (打包了一些不使用的数据字节)。这些会在 SF,FC 帧或拆分信息的最后一个 CF 帧中会出现。

DLC 参数由发送方设置并由接收方决定网络层处理的每一 CAN 帧的数据字节个数。DLC 参数 无法用于决定信息长度;该信息应该在信息的开始从 N PCI 的信息中提取。

7.4.3 CAN 帧数据优化

DLC 不总是为 8. 如果发送的 N_PDU 比 8 短,那么发送方会通过缩减 CAN 帧到只包含 N_PDU 占有的字节数(不对无用的数据字节打包)来优化 CAN 总线负载。CAN 帧的优化只能针对 SF,FC 帧或拆分信息的最后一个 CF 帧。

DLC 参数由发送方设置并由接收方决定网络层处理的每一 CAN 帧的数据字节个数。DLC 参数无法用于决定信息长度;该信息应该在信息的开始从 N PCI 的信息中提取。

7.4.4 数据长度码出错处理

依赖于 N PCI 的值, 网络层可计算一个接收到的 CAN 帧中 CAN DLC 最小期待的值。

接收到的 CAN 帧中 DLC 的值比期待的值要小,(使用打包 CAN 帧时比 8 要小或者比网络协议数据单元优化后指示的值要小)网络层应该忽略并不做任何更多的操作。

附件A

(非正式)

按照 SAE J1939 协议,使用标准与混合地址数据链路层

A. 1 总览

该附件描述如何映射地址信息参数,按照 SAE J1939 协议,N_AI 到 CAN 帧数据链路层 A. 2 规则

A. 2. 1 标准地址

表 A.1 显示了地址信息参数的映射,当网络目标地址类型 N_TAtype 使用物理地址,N_AI 到 CAN 帧的映射。

Table A.1 ——标准地址,物理地址信息

Tenano in I								
J1939 协议	P	R	DP	PF	PS	SA	数据域	
位	3	1	1	8	8	8	64	
内容	默认 110	0	0	218 (dec)	N_TA	N_SA	N_PCI,	
	(bin)						N_Data	
CAN 标识位	28 - 26	25	24	23 - 16	15 - 8	7 - 0		
数据域							1 - 8	
CAN 域	标识符	Data						

表 A. 2 显示了地址信息参数的映射,当网络目标地址类型 N_TAtype 使用功能地址,N_AI 到 CAN 帧的映射。

Table A.2 ——标准地址,功能地址信息

				ı	1	1	
J1939 协议	P	R	DP	PF	PS	SA	数据域
位	3	1	1	8	8	8	64
内容	默认 110	0	0	219 (dec)	N_TA	N_SA	N_PCI,
	(bin)						N_Data
CAN 标识位	28 - 26	25	24	23 - 16	15 - 8	7 - 0	
数据域							1 - 8
CAN 域	标识符	Data					

A. 2. 2 混合地址

表 A.3 显示了地址信息参数的映射,当网络目标地址类型 N_TAtype 使用物理地址,N_AI 到 CAN 帧的映射。

Table A.3 ——混合地址, 物理地址信息

10010 III 0 100 postal post post post post post post post post									
J1939 协议	P	R	DP	PF	PS	SA	数据域		
位	3	1	1	8	8	8	8	56	
内容	默认 110	0	0	206 (dec)	N_TA	N_SA	N_AE	N_PCI,	
	(bin)							N_Data	
CAN 标识位	28 - 26	25	24	23 - 16	15 - 8	7 - 0			
数据域							1	2 - 8	
CAN 域	标识符						Data		

表 A.4 显示了地址信息参数的映射,当网络目标地址类型 N_TAtype 使用功能地址, N_AI

到 CAN 帧的映射。

Table A.4 ——混合地址,功能地址信息

J1939 协议	P	R	DP	PF	PS	SA	数据域			
位	3	1	1	8	8	8	8	56		
内容	默认 110	0	0	205 (dec)	N_TA	N_SA	N_AE	N_PCI,		
	(bin)							N_Data		
CAN 标识位	28 - 26	25	24	23 - 16	15 - 8	7 - 0				
数据域							1	2 - 8		
CAN 域	标识符						Data			

A. 2. 3 优先级 (P)

优先级由用户自定义,默认为6。

三个位优先级域用于优化 CAN 总线信息等待时间。优先级域应当接收者屏蔽(忽略)。CAN 总线优先级可设置为最高 0 (000bin), 到最低 7 (111bin)。

A. 2. 4 保留位 (R)

应当设置为"0"。

A. 2. 5 数据页 (DP)

应当设置为"0"。

A. 2. 6 协议数据单元格式 (PF)

格式为 PDU1 格式,"指明目标地址"

诊断信息应当使用如下参数组 (PGN)

- ——混合地址: 52480 (dec) 即 N_TAtype=功能的, PF=205 (dec)。
- ——混合地址: 52736 (dec) 即 N_TAtype=物理的, PF=206 (dec)。
- ——物理地址: 55808 (dec) 即 N_TAtype=功能的, PF=218 (dec)。
- ——物理地址: 56064 (dec) 即 N_TAtype=物理的, PF=219 (dec)。

A. 2.7 PDU 指定域 (PS)

PDU 特定域应当包含目标地址, N_TA

A. 2. 8 源地址 (SA)

SA 域应当包含源地址, N_SA

A. 2. 9 更新速率

按照用户的需求

A. 2. 10 数据长度

数据长度应当为8字节。