CS6462 Probabilistic and Explainable AI

Lesson 14 Bayesian Generalized Linear Models *

Generalized Linear Model Theory

LM Generalization

Generalization of the linear regression model*:

general linear regression model:

$$Y = \{y_1, y_2, \dots, y_k\}$$
 - dependent variable values (observations or realizations)

$$X = \{x_1, x_2, \dots, x_n\}$$
 – independent (explanatory) variable (predictor) and sample set

$$Y = N(\mu, \sigma^2) - Y$$
 has a normal distribution with mean μ and variance σ^2

• expected value μ is a linear function of a predictor that takes values $X = \{x_1, x_2, ..., x_n\}$:

$$\mu = X\beta = \beta_0 + x_i\beta_1$$

$$\beta = \{\beta_0, \beta_1\}$$
 – scale factors (unknown parameters)

- Extends the linear regression model in two steps:
 - Generalization based on the Exponential Family of Distributions
 - Generalization based on the link function

LM Generalization - Exponential Family of Distribution

Mathematical Definition of EFD: formal canonical model

- meta-exponential model: different distribution models are generalized
 - one exponential model that unifies Poisson, Normal, Bernoulli, etc.
- random sample $X = \{X_1, X_2, ..., X_n\}$ with assumed probability distribution P(X) that depends on some unknown parameter θ
- $f(X_i; \theta)$ the probability density (or mass) function of each $X_i \in X$ with θ has an exponential form

Exponential meta-model for $f(X_i; \theta)$: general exponential forms (canonical forms)

$$f(X_i; \theta) = \exp[a(X_i) * b(\theta) + c(\theta) + d(X_i)]$$

$$f(X_i; \theta) = e^{a(X_i)*b(\theta)} + c(\theta) + d(X_i)$$

 $a(X_i)$, $b(\theta)$, $c(\theta)$, $d(X_i)$ - arbitrary functions

LM Generalization – Link Function

LM models the mean:

$$\mu = X\beta = \beta_0 + x_i\beta_1$$

Generalization that shifts the focus from modeling the mean μ :

• introduced one-to-one continuous differentiable transformation $g(\mu)$

$$\eta = g(\mu)$$

 $g(\mu)$ - link function (identity, log, inverse, logit, etc.)

$$\eta = X\beta$$
 – linear model

 η - linear predictor

A link function maps a non-linear relationship to a linear one and we can fit a linear model to the data.

• the inverse version of g is used to calculate μ :

$$\mu = g^{-1}(X\beta)$$

Note that we do not transform the observation μ , but rather its expected value μ .

LM Generalization – Canonical Link

Simple generalized linear model:

• relies on the simplest link function - the identity link function :

$$\eta = g(\mu) = \mu$$

• the model -the standard linear model with identity link function:

$$\eta = \mu$$

Exponential canonical form:

$$f(X_i; \theta) = \exp[a(X_i) * b(\theta) + c(\theta) + d(X_i)]$$

Canonical link:

• case when μ is the same as θ

$$\mu = \theta$$

• the link function makes the linear predictor η the same as the canonical parameter θ

$$g(\mu) = \mu$$

$$\eta = g(\mu) = \mu = \theta$$

The Generalized Linear Model

...

Components of GLM:

$$F(Y) = \mu = g^{-1}(X\beta)$$

 μ – expected value of the dependent variable (response variable)

 $Y = \{y_1, y_2, ..., y_k\}$ - dependent variable values (observations)

$$X = \{X_1, X_2, ..., X_n\}, X_i = \{x_1, x_2, ..., x_k\}$$
 – independent (explanatory) variables and sample sets $\beta = \{\beta_0, \beta_1, \beta_2, ..., \beta_n\}$ – scale factors

- random component F(Y) (conditional distribution of the dependable variable)
 - member of the exponential family of distributions: e.g., Binary, Binomial, Poisson, Normal, etc.
- linear predictor $X\beta$ (a linear function of regressors)

$$\eta = X\beta = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 \dots \beta_n * x_n$$

- link function $g \to g^{-1}(X\beta) = g^{-1}(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 \dots \beta_n * x_n)$
 - transforms the expectation of the dependent variable $\mu \equiv F(Y)$ to the linear predictor
 - $g^{-1}(\eta)$ inverse link function (mean function) maps the linear predictor to the mean

The Generalized Linear Model (cont.)

Common Link Functions and Their Inverses:

- link function $g \to g^{-1}(X\beta) = g^{-1}(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 \dots \beta_n * x_n)$
- μ is the expected value of the response; η is the linear predictor; and $\Phi(\cdot)$ is the cumulative distribution function of the standard-normal distribution

Link

$$\eta_i = g(\mu_i)$$

$$\mu_i = g^{-1}(\eta_i)$$

Identity

Log

Inverse

Inverse-square

Square-root

Logit

Probit

Log-log

Complementary log-log

 μ_i $\log_e \mu_i$ μ_i^{-1} μ_i^{-2} $\sqrt{\mu_i}$ $\log_e \frac{\mu_i}{1}$

 $-\log_e[-\log_e(\mu_i)]$

 $\log_{e}[-\log_{e}(1-\mu_{i})]$

 η_{i} $e^{\eta_{i}}$ η_{i}^{-1} $\eta_{i}^{-1/2}$ η_{i}^{2} 1 $1 + e^{-\eta_{i}}$ $\Phi(\eta_{i})$ $\exp[-\exp(-\eta_{i})]$ $1 - \exp[-\exp(\eta_{i})]$

Normal - Identity Binomial - Logit Poisson - Log

Summary

Bayesian Generalized Linear Models – Generalized Linear Model Theory

Linear Model Generalization (Nelder and Wedderburn):

- Exponential Family of Distribution
- Link Function
- Canonical Link

Generalized Linear Model:

$$F(Y) = \mu = g^{-1}(X\beta)$$

Next Lesson:

• Bayesian Nonparametric Models - Gaussian Process Regression Model

Thank You!

Questions?