$20241215 \ \mathrm{MATH3301} \ \mathrm{NOTE} \ 9[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Intr	roduction	3
2	Polynomial Ring $R[t]$		
3	2.1	Convolution	3
	2.2	The Evaluation Ring Homomorphism	5
3	Polynomial Ring $F[t]$		
	3.1	Division Algorithm	7
	3.2	Principal Ideal Property	9
	3.3	Root and Irreducibility	11
4	Finite Field		
	4.1	Characteristic and Order	16
	4.2	Field Extension	17
	4.3	Primitive Root	18

1 Introduction

This note intends to connect fields with polynomials.

2 Polynomial Ring R[t]

2.1 Convolution

Definition 2.1. (Convolution)

Let R be a nonzero commutative ring.

Define convolution * on the set of all R-valued sequences by:

$$a * b[n] = \sum_{i+j=n} a_i b_j$$

Lemma 2.2. Convolution is commutative.

Proof. For all R-valued sequences a, b:

$$a*b[n] = \sum_{i+j=n} a_i b_j = \sum_{j+i=n} b_j a_i = b*a[n]$$

Quod. Erat. Demonstrandum.

Lemma 2.3. Convolution is associative.

Proof. For all R-valued sequences a, b, c:

$$(a*b)*c[n] = \sum_{i+j+k=n} a_i b_j c_k = a*(b*c)[n]$$

Quod. Erat. Demonstrandum.

Lemma 2.4. If R has a unity 1, then * has an identity $1 = (1, 0, 0, \cdots)$.

Proof. For all R-valued sequence a:

$$1 * a[n] = \sum_{i+j=n} \delta_{0,i} a_j = a_n$$

Quod. Erat. Demonstrandum.

Lemma 2.5. If R has unity 1 and $a_0b_0 = 1$, then $(a_0, 0, 0, \cdots) * (b_0, 0, 0, \cdots) = 1$.

Proof.

$$a * b[n] = \sum_{i+j=n} a_i b_j = a_0 b_0 \sum_{i+j=n} \delta_{0,i} \delta_{0,j} = \delta_{0,n}$$

Quod. Erat. Demonstrandum.

Example 2.6. In \mathbb{Z}_4 , if $a_n = \delta_{0,n} + 2\delta_{1,n}$, then $a^2 = 1$. Hence, all invertible element a under * are not necessarily given by **Lemma 2.5.**.

Lemma 2.7. Convolution distributes over addition.

Proof. For all R-valued sequences λ, a, b :

$$\lambda*(a+b)[n] = \sum_{i+j=n} \lambda_i (a_j + b_j) = \sum_{i+j=n} \lambda_i a_j + \sum_{i+j=n} \lambda_i b_j = \lambda*a + \lambda*b[n]$$

Quod. Erat. Demonstrandum.

Definition 2.8. (The Formal Power Series Ring R[t])

Let R be a nonzero commutative ring. If we define an indeterminate $t=(0,1,0,\cdots)$ in the set $R[\![t]\!]$ of all R-valued sequences, and identify all expressions $a_0+a_1t+a_2t^2+\cdots$ with (a_0,a_1,a_2,\cdots) , then $R[\![t]\!]$ forms a commutative ring, namely, the formal power series ring, under + and *.

Remark: The elements of R[t] are called formal power series. We denote them by $f(t), g(t), h(t), \cdots$. If there is no ambiguity, we write them as f, g, h, \cdots , and omit *.

Example 2.9. As every integer n in R[t] is a constant, $\operatorname{Char}(R[t]) = \operatorname{Char}(R)$.

Theorem 2.10. R[t] has a zero divisor iff R has a zero divisor.

Proof. We may divide our proof into two parts.

"if" direction: If the product of some nonzero elements s, t of R is 0, then the product of some nonzero elements a = s, b = t of R[t] is 0. "only if" direction: If the product of some nonzero elements a, b of R[t] is 0, then take the minimal nonzero entries $s = a_i, t = b_j$ of a, b respectively,

the product of some nonzero elements s, t of R is $a_i b_j = a * b[i + j] = 0$. Hence, we've proven the logical equivalence. Quod. Erat. Demonstrandum.

Example 2.11. As the product of t, f(t) has no constant term, t is not a unit.

Example 2.12. In $\mathbb{Z}[\![t]\!]$, the ideal $\langle 2, t \rangle$ is not principal, because for all $f(t) \in \mathbb{Z}[\![t]\!]$, either the constant term of f(t) is even, and $\langle f(t) \rangle$ misses t, or the constant term of f(t) is odd, and $\langle f(t) \rangle$ misses 2. In both cases, $\langle f(t) \rangle \neq \langle 2, t \rangle$.

Theorem 2.13. (The Polynomial Ring R[t])

Let R be a nonzero commutative ring.

The following subset R[t], namely, the polynomial ring, forms a subring of R[t]:

$$R[t] = \{a(t) \in R[t] : \exists M \ge 0, \forall i \ge M, a_i = 0\}$$

Proof. We may divide our proof into four parts.

Part 1: $\exists 0 \ge 0, \forall i \ge 0, 0 = 0, \text{ so } 0 \in R[t].$

Part 2: For all $a(t), b(t) \in R[t]$:

$$\begin{split} a(t),b(t) \in R[t] &\implies \exists M \geq 0, \forall i \geq M, a_i = 0 \text{ and } \exists N \geq 0, \forall j \geq N, b_j = 0 \\ &\implies \exists \mathrm{Max}\{M,N\} \geq 0, \forall k \geq \mathrm{Max}\{M,N\}, a_k + b_k = 0 + 0 = 0 \\ &\implies a(t) + b(t) \in R[t] \end{split}$$

Part 3: For all $a(t) \in R[t]$:

$$a(t) \in R[t] \implies \exists M \ge 0, \forall i \ge M, a_i = 0$$

 $\implies \exists M \ge 0, \forall i \ge M, -a_i = -0 = 0$
 $\implies -a(t) \in R[t]$

Part 4: For all $a(t), b(t) \in R[t]$:

$$a(t), b(t) \in R[t] \implies \exists M \ge 0, \forall i \ge M, a_i = 0 \text{ and } \exists N \ge 0, \forall j \ge N, b_j = 0$$

$$\implies \exists M + N \ge 0, \forall k \ge M + N, \sum_{i+j=k} a_i b_j = \sum_{i+j=k} 0 = 0$$

$$\implies a(t)b(t) \in R[t]$$

R[t] contains unity if R does. Quod. Erat. Demonstrandum.

2.2 The Evaluation Ring Homomorphism

Theorem 2.14. (The Evaluation Ring Homomorphism)

Let R, S be two nonzero commutative rings, s be an element of S, and $\phi : R \to S$ be a ring homomorphism. The following map σ_s is a ring homomorphism:

$$\sigma_s: R[t] \to S, \sigma_s \left(\sum_{i=0}^{+\infty} a_i t^i\right) = \sum_{i=0}^{+\infty} \phi(a_i) s^i$$

Proof. We may divide our proof into four parts.

Part 1: As $\exists M \geq 0, \forall i \geq M, a_i = 0$, the summation $\sum_{i=0}^{+\infty} \phi(a_i) s^i$ contains finitely many nonzero terms, thus σ_s is well-defined.

Part 2: For all $\sum_{i=0}^{+\infty} a_i t^i, \sum_{j=0}^{+\infty} b_j t^j \in R[t]$:

$$\sigma_{s} \left(\sum_{i=0}^{+\infty} a_{i} t^{i} + \sum_{j=0}^{+\infty} b_{j} t^{j} \right) = \sigma_{s} \left(\sum_{k=0}^{+\infty} (a_{k} + b_{k}) t^{k} \right) = \sum_{k=0}^{+\infty} \phi(a_{k} + b_{k}) s^{k}$$

$$= \sum_{k=0}^{+\infty} (\phi(a_{k}) + \phi(b_{k})) s^{k} = \sum_{i=0}^{+\infty} \phi(a_{i}) s^{i} + \sum_{j=0}^{+\infty} \phi(b_{j}) s^{j}$$

$$= \sigma_{s} \left(\sum_{i=0}^{+\infty} a_{i} t^{i} \right) + \sigma_{s} \left(\sum_{j=0}^{+\infty} b_{j} t^{j} \right)$$

Part 3: For all $(a_0, a_1, a_2, \cdots), (b_0, b_1, b_2, \cdots) \in R[t]$:

$$\sigma_s \left(\sum_{i=0}^{+\infty} a_i t^i \sum_{j=0}^{+\infty} b_j t^j \right) = \sigma_s \left(\sum_{k=0}^{+\infty} \sum_{i+j=k} a_i b_j t^k \right) = \sum_{k=0}^{+\infty} \phi \left(\sum_{i+j=k} a_i b_j \right) s^k$$

$$= \sum_{k=0}^{+\infty} \sum_{i+j=k} \phi(a_i) \phi(b_j) s^k = \sum_{i=0}^{+\infty} \phi(a_i) s^i \sum_{j=0}^{+\infty} \phi(b_j) s^j$$

$$= \sigma_s \left(\sum_{i=0}^{+\infty} a_i t^i \right) \sigma_s \left(\sum_{j=0}^{+\infty} b_j t^j \right)$$

 σ_s preserves unity if R, S have. Quod. Erat. Demonstrandum.

Definition 2.15. (Circulant Matrix)

Let R be a nonzero commutative ring.

Define circulant matrix as a matrix in the following form:

$$C = \begin{pmatrix} c_0 & c_{n-1} & c_{n-2} & \cdots & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & \cdots & c_4 & c_3 & c_2 \\ c_2 & c_1 & c_0 & \cdots & c_5 & c_4 & c_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ c_{n-3} & c_{n-4} & c_{n-5} & \cdots & c_0 & c_{n-1} & c_{n-2} \\ c_{n-2} & c_{n-3} & c_{n-4} & \cdots & c_1 & c_0 & c_{n-1} \\ c_{n-1} & c_{n-2} & c_{n-3} & \cdots & c_2 & c_1 & c_0 \end{pmatrix}$$

We collect all n by n R-valued circulant matrices in the set $\mathbf{C}_n(R)$.

Example 2.16. Let R be a nonzero commutative ring with unity. If we define the following circulant matrix:

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

And define a ring homomorphism $\phi: R \to \mathbf{C}_n(R), r \mapsto rI$, then the evaluation ring homomorphism $\sigma_H: R[t] \to S$ is explicitly given by:

$$\sigma_H \left(\sum_{i=0}^{+\infty} a_i t^i \right) = \sum_{k=0}^{n-1} \sum_{i=0}^{+\infty} a_{6i+k} H^k$$

3 Polynomial Ring F[t]

3.1 Division Algorithm

Definition 3.1. (Degree Function Deg)

Let F be a field. Define degree function Deg : $F[t] \to \{-\infty\} \cup \mathbb{Z}_{\geq 0}$ by:

$$\operatorname{Deg}(f(t)) = \begin{cases} -\infty & \text{if} \quad f(t) = 0; \\ [\text{The minimal } i \geq 0 \text{ such that } a_i \neq 0] & \text{if} \quad f(t) \neq 0; \end{cases}$$

Remark: According to well-ordering principle, Deg is well-defined.

Proposition 3.2. Let F be a field, and f(t), g(t) be two polynomials in F[t].

- $(1) \operatorname{Deg}(f(t) + g(t)) \le \operatorname{Max}\{\operatorname{Deg}(f(t)), \operatorname{Deg}(g(t))\}.$
- (2) $\operatorname{Deg}(f(t)g(t)) = \operatorname{Deg}(f(t)) + \operatorname{Deg}(g(t)).$

Proof. We may divide our proof into two cases.

Case 1: If f(t) = 0 or g(t) = 0, then we may assume f(t) = 0:

$$\begin{split} \operatorname{Deg}(f(t)+g(t)) &= \operatorname{Deg}(0+g(t)) = \operatorname{Deg}(g(t)) = \operatorname{Max}\{-\infty,\operatorname{Deg}(g(t))\} \\ &= \operatorname{Max}\{\operatorname{Deg}(0),\operatorname{Deg}(g(t))\} = \operatorname{Max}\{\operatorname{Deg}(f(t)),\operatorname{Deg}(g(t))\} \\ \operatorname{Deg}(f(t)g(t)) &= \operatorname{Deg}(0g(t)) = \operatorname{Deg}(0) = -\infty = -\infty + \operatorname{Deg}(g(t)) \\ &= \operatorname{Deg}(0) + \operatorname{Deg}(g(t)) = \operatorname{Deg}(f(t)) + \operatorname{Deg}(g(t)) \end{split}$$

Case 2: If $f(t) \neq 0$ and $g(t) \neq 0$, then:

$$\operatorname{Deg}(f(t)) = i \text{ and } \operatorname{Deg}(g(t)) = j \implies f(t) \text{ has no term after } t^i$$
 and $g(t)$ has no term after t^j
$$\implies f(t) + g(t) \text{ has no term after } t^{\operatorname{Max}\{i,j\}}$$

$$\implies \operatorname{Deg}(f(t) + g(t)) \leq \operatorname{Max}\{i,j\}$$

$$\operatorname{Deg}(f(t)) = i \text{ and } \operatorname{Deg}(g(t)) = j \implies f(t) = \dots + a_i t^i \text{ and } a_i \neq 0$$
 and $g(t) = \dots + b_j t^j \text{ and } b_j \neq 0$
$$\implies f(t)g(t) = \dots + a_i b_j t^{i+j} \text{ and } a_i b_j \neq 0$$

$$\implies \operatorname{Deg}(f(t)g(t)) = i + j$$

Quod. Erat. Demonstrandum.

Example 3.3. Let R be a commutative ring, and f(t), g(t) be two polynomials in R[t]. The property $Deg(f(t) + g(t)) \leq Max\{Deg(f(t)), Deg(g(t))\}$ still holds.

Example 3.4. In $\mathbb{Z}_4[t]$, if f(t) = g(t) = 2, then f(t)g(t) = 0. The property Deg(f(t)g(t)) = Deg(f(t)) + Deg(g(t)) is violated.

Theorem 3.5. (Division Algorithm)

Let F be a field, and a(t), b(t) be two polynomials in F[t]. If $b(t) \neq 0$, then for some unique $q(t), r(t) \in F[t]$:

$$a(t) = q(t)b(t) + r(t)$$
 and $Deg(r(t)) < Deg(b(t))$

Proof. Assume that $Deg(g(t)) = m \ge 0$, the uniqueness is clear as below:

$$a(t) = q_1(t)b(t) + r_1(t) = q_2(t)b(t) + r_2(t) \implies b(t)|r_2(t) - r_1(t)$$

 $\implies q_1(t) = q_2(t) \text{ and } r_1(t) = r_2(t)$

We prove the existence by mathematical induction.

(1) When Deg(a(t)) < Deg(b(t)), there exist $0, a(t) \in F[t]$, such that:

$$a(t) = 0b(t) + a(t)$$
 and $Deg(a(t)) < Deg(b(t))$

- (2) For all $n \geq \text{Deg}(b(t))$, when Deg(a(t)) < n, assume the existence of $q(t), r(t) \in F[t]$.
- (3) When Deg(a(t)) = n, $a(t) = \cdots + a_n t^n$, $b(t) = \cdots + b_m t^m$, where $a_n, b_m \neq 0$.

Define $A(t) = a(t) - \frac{a_n t^n}{b_m t^m} b(t)$, as Deg(A(t)) < n,

we may apply the inductive hypothesis to find $Q(t), R(t) \in F[t]$, such that:

$$A(t) = Q(t)b(t) + R(t)$$
 and $Deg(R(t)) < Deg(b(t))$

Now, for some $q(t) = Q(t) + \frac{a_n t^n}{b_m t^m}$, $r(t) = R(t) \in F[t]$:

$$a(t) = q(t)b(t) + r(t)$$
 and $Deg(r(t)) < Deg(b(t))$

Hence, we've proven the existence. Quod. Erat. Demonstrandum.

3.2 Principal Ideal Property

Definition 3.6. (Greatest Common Divisor)

Let F be a field, $(a_{\lambda}(t))_{\lambda \in I}$ be an indexed family in F[t], and b(t) be a polynomial in F[t]. If b(t) is a common divisor of $(a_{\lambda}(t))_{\lambda \in I}$, and every common divisor of $(a_{\lambda}(t))_{\lambda \in I}$ divides b(t), then b(t) is a greatest common divisor of $(a_{\lambda}(t))_{\lambda \in I}$.

Definition 3.7. (Least Common Multiple)

Let F be a field, $(a_k(t))_{k=1}^m$ be a finite list in F[t], and b(t) be a polynomial in F[t]. If b(t) is a common multiple of $(a_k(t))_{k=1}^m$, and b(t) divides every common multiple of $(a_k(t))_{k=1}^m$, then b(t) is a least common multiple of $(a_k(t))_{k=1}^m$.

Remark: To prove the existence of greatest common divisor and least common multiple, we need to apply principal ideal property.

Example 3.8. Let F be a field, $(a_k(t))_{k=1}^m$ be a nonempty finite list in $F[t]\setminus\{0\}$, $A(t) = \prod_{k=1}^m a_k(t)$ be their product, and $(A_k(t) = \prod_{l\neq k} a_l(t))_{k=1}^m$ be their dual. For all $b(t), B(t) \in F[t]$ with b(t)B(t) = A(t), the followings are equivalent:

- (1) b(t) is a common multiple of $(a_k(t))_{k=1}^m$.
- (2) B(t) is a common divisor of $(A_k(t))_{k=1}^m$.

Hence, the followings are equivalent:

- (1) b(t) is a least common multiple of $(a_k(t))_{k=1}^m$.
- (2) B(t) is a greatest common divisor of $(A_k(t))_{k=1}^m$.

Example 3.9. In $\mathbb{Z}[\sqrt{5}i]$, $6, 2 + 2\sqrt{5}i$ have common divisors $\pm 1, \pm 2, \pm (1 + \sqrt{5}i)$, where the maximal divisors $\pm 2, \pm (1 + \sqrt{5}i)$ are not associated, so greatest common divisor of $6, 2 + 2\sqrt{5}i$ fails to exist.[2]

Proposition 3.10. Let F be a field. F[t] is a principal ideal domain.

Proof. As F is an integral domain, F[t] is an integral domain.

For all nonzero ideal \mathfrak{a} of F[t], well-ordering principal suggests that \mathfrak{a} contains a nontrivial element b(t) where Deg(b(t)) is minimal. Assume to the contrary that b(t) doesn't divide some $a(t) \in \mathfrak{a}$. Apply division algorithm, and we get the remainder r(t) of a(t) modulo b(t), which is a nontrivial element in \mathfrak{a} , and this contradicts with the minimality of Deg(b(t)). Hence, $\mathfrak{a} = \langle a(t) \rangle$ is principal. Quod. Erat. Demonstrandum.

Remark: To keep principal ideal property, we construct polynomial ring over a field.

Theorem 3.11. Let F be a field, $(a_{\lambda}(t))_{\lambda \in I}$ be a nonempty indexed family in F[t], and b(t) be a greatest common divisor of $(a_{\lambda}(t))_{\lambda \in I}$.

$$\sum_{\lambda \in I} \langle a_{\lambda}(t) \rangle = \langle b(t) \rangle$$

Proof. We may divide our proof into two parts.

" \subseteq inclusion": For all $\lambda \in I$, $b(t)|a_{\lambda}(t)$ iff $\langle b(t)\rangle \supseteq \langle a_{\lambda}(t)\rangle$, so:

$$\sum_{\lambda \in I} \langle a_{\lambda}(t) \rangle \subseteq \langle b(t) \rangle$$

" \supseteq inclusion": As F[t] is a principal ideal domain, for some $B(t) \in F[t]$:

$$\sum_{\lambda \in I} \langle a_{\lambda}(t) \rangle = \langle B(t) \rangle$$

For all $\lambda \in I$, $\langle B(t) \rangle \supseteq \langle a_{\lambda}(t) \rangle$ iff $B(t)|a_{\lambda}(t)$, so:

B(t) is a common divisor of $(a_{\lambda}(t))_{\lambda \in I}$

As b(t) is greatest, B(t)|b(t), and it follows that:

$$\sum_{\lambda \in I} \langle a_{\lambda}(t) \rangle \supseteq \langle b(t) \rangle$$

To conclude, we've proven the equality. Quod. Erat. Demonstrandum.

Remark: This simultaneously proves the existence of greatest common divisor.

Theorem 3.12. Let F be a field, $(a_k(t))_{k=1}^m$ be a nonempty finite list in F[t], and b(t) be a least common multiple of $(a_k(t))_{k=1}^m$.

$$\bigcap_{k=1}^{m} \langle a_k(t) \rangle = \langle b(t) \rangle$$

Proof. We may divide our proof into two parts.

"\geq \text{inclusion}": For all $1 \le k \le m$, $a_k(t)|b(t)$ iff $\langle a_k(t)\rangle \supseteq \langle b(t)\rangle$, so:

$$\bigcap_{k=1}^{m} \langle a_k(t) \rangle \supseteq \langle b(t) \rangle$$

" \subseteq inclusion": As F[t] is a principal ideal domain, for some $B(t) \in F[t]$:

$$\bigcap_{k=1}^{m} \langle a_k(t) \rangle = \langle B(t) \rangle$$

For all $1 \le k \le m$, $\langle a_{\lambda}(t) \rangle \supseteq \langle B(t) \rangle$ iff $a_k(t)|B(t)$, so:

B(t) is a common multiple of $(a_k(t))_{k=1}^m$

As b(t) is least, b(t)|B(t), and it follows that:

$$\bigcap_{k=1}^{m} \langle a_k(t) \rangle \subseteq \langle b(t) \rangle$$

To conclude, we've proven the equality. Quod. Erat. Demonstrandum.

Remark: This simultaneously proves the existence of least common multiple.

3.3 Root and Irreducibility

Definition 3.13. (Maximal Ideal)

Let R be a commutative ring with unity, and \mathfrak{p} be a proper ideal of R. If $\forall a \in \mathfrak{p}^c, \langle a \rangle + \mathfrak{p} = R$, then \mathfrak{p} is maximal.

Definition 3.14. (Prime Ideal)

Let R be a commutative ring with unity, and \mathfrak{p} be a proper ideal of R. If $\forall \mathfrak{p}^c \ni a, \forall \mathfrak{p}^c \ni ab$, then \mathfrak{p} is prime.

Proposition 3.15. Let R be a commutative ring with unity, and \mathfrak{p} be a proper ideal of R. If \mathfrak{p} is maximal, then \mathfrak{p} is prime.

Proof. We may divide our proof into three steps.

Step 1: We prove that \mathfrak{p} is maximal iff R/\mathfrak{p} is a field.

$$\mathfrak{p}$$
 is maximal $\iff \mathfrak{p} \neq R$ and $\forall a \in \mathfrak{p}^c, \langle a \rangle + \mathfrak{p} = R$
 $\iff R/\mathfrak{p} \neq \{\mathfrak{p}\} \text{ and } \forall a + \mathfrak{p} \neq \mathfrak{p}, \exists x + \mathfrak{p} \in R/\mathfrak{p}, (a + \mathfrak{p})(x + \mathfrak{p}) = 1 + \mathfrak{p}$
 $\iff R/\mathfrak{p} \text{ is a field}$

Step 2: We prove that \mathfrak{p} is prime iff R/\mathfrak{p} is an integral domain.

$$\mathfrak{p} \text{ is prime } \iff \mathfrak{p} \neq R \text{ and } \forall a,b \in \mathfrak{p}^c, ab \in \mathfrak{p}^c$$

$$\iff R/\mathfrak{p} \neq \{\mathfrak{p}\} \text{ and } \forall a+\mathfrak{p},b+\mathfrak{p} \neq \mathfrak{p}, (a+\mathfrak{p})(b+\mathfrak{p}) \neq \mathfrak{p}$$

$$\iff R/\mathfrak{p} \text{ is an integral domain}$$

Step 3: As every field is an integral domain, every maximal ideal is a prime ideal. Quod. Erat. Demonstrandum. □

Definition 3.16. (Prime Element)

Let R be a commutative ring with unity, and p be a nonunit element of R. If $p \neq 0$ and $\forall p \nmid a, p \nmid b, p \nmid ab$, then p is prime.

Example 3.17. Let R be a commutative ring with unity. As $p \nmid a$ iff $\langle p \rangle \not\ni a$, a nonzero principal ideal \mathfrak{p} is prime iff it is generated by a prime element p.

Definition 3.18. (Irreducible Element)

Let R be a commutative ring with unity, and p be a nonunit element of R. If $p \neq 0$ and $\forall a, b \in (R^{\times})^c, p \neq ab$, then p is irreducible.

Proposition 3.19. Let R be an integral domain, and p be a nonunit element of R. If p is prime, then p is irreducible.

Proof. Assume that p is prime.

- (1) p is nonunit and nonzero.
- (2) For all elements a, b of R:

$$p = ab \implies p|ab$$

 $\implies p|a \text{ or } p|b$
 $\implies 1 = (a/p)b \text{ or } 1 = a(b/p)$
 $\implies a \text{ or } b \text{ is a unit}$

Hence, p is irreducible. Quod. Erat. Demonstrandum.

Proposition 3.20. Let R be a principal ideal ring, and p be an element of R. If p is irreducible, then $\mathfrak{p} = \langle p \rangle$ is maximal.

Proof. Assume that p is irreducible.

- (1) p is nonunit implies $\mathfrak{p} = \langle p \rangle$ is proper.
- (2) For all ideal $\mathfrak{a} = \langle a \rangle$ of the principal ideal ring R:

$$\mathfrak{p} = \langle p \rangle \subseteq \mathfrak{a} = \langle a \rangle \implies \exists x \in R, p = xa$$

$$\implies x \text{ or } a \text{ is a unit}$$

$$\implies \mathfrak{a} = \mathfrak{p} \text{ or } \mathfrak{a} = R$$

Hence, $\mathfrak{p} = \langle p \rangle$ is maximal. Quod. Erat. Demonstrandum.

Remark: Now we have the following results:

- (1) In a commutative ring with unity, $\mathfrak{p} = \langle p \rangle$ is maximal implies $\mathfrak{p} = \langle p \rangle$ is prime.
- (2) In a commutative ring with unity, $\mathfrak{p} = \langle p \rangle$ is nonzero and prime iff p is prime.

- (3) In an integral domain, p is prime implies p is irreducible.
- (4) In a principal ideal ring, p is irreducible implies $\mathfrak{p} = \langle p \rangle$ is maximal.

If we define principal ideal domain as the conjunction of principal ideal ring and integral domain, then the four lines are equivalent.

Example 3.21. As F[t] is a principal ideal domain, the followings are equivalent:

- (1) An ideal \mathfrak{p} is nonzero and maximal in F[t].
- (2) An ideal \mathfrak{p} is nonzero and prime in F[t].
- (3) An ideal \mathfrak{p} is generated by a prime polynomial $f(t) \in F[t]$.
- (4) An ideal \mathfrak{p} is generated by an irreducible polynomial $f(t) \in F[t]$.

Remark: Hence, we would like to test the irreducibility of $f(t) \in F[t]$.

Definition 3.22. (Root)

Let F be a field, τ be an element of F, and f(t) be a polynomial in F[t]. If the evaluation ring homomorphism σ_{τ} maps f(t) to 0, then τ is a root of f(t).

Proposition 3.23. Let F be a field, τ be an element of F, and f(t) be a polynomial in F[t]. τ is a root of f(t) iff $t - \tau | f(t)$.

Proof. As $t - \tau \neq 0$, we apply division algorithm to find a unique quotient polynomial $q(t) \in F[t]$ and a unique constant remainder $t \in F$, such that:

$$f(t) = q(t)(t - \tau) + r$$

As σ_{τ} is a ring homomorphism, we have:

$$\tau$$
 is a root of $f(t) \iff f(\tau) = \sigma_{\tau}(f(t)) = \sigma_{\tau}(r) = r = 0 \iff r = 0 \iff t - \tau | f(t)$

Quod. Erat. Demonstrandum.

Remark: As a corollary, if $Deg(f(t)) \ge 2$ and f(t) is irreducible, then f(t) has no root. However, the reversed implication is true only when n = 2 or n = 3.

Definition 3.24. (Algebraic Multiplicity)

Let F be a field, τ be an element of F, and f(t) be a polynomial in F[t]. Define the algebraic multiplicity $AM_f(\tau)$ of τ as $Max\{\alpha \geq 0 : (t-\tau)^{\alpha}|f(t)\}$.

Proposition 3.25. Let F be a field, and f(t) be a nonzero polynomial in F[t].

$$\sum_{\tau \in F} \mathrm{AM}_f(\tau) \le \mathrm{Deg}(f(t))$$

Proof. We prove this statement by mathematical induction.

(1) When Deg(f(t)) = 0, f(t) is a nonzero constant, f(t) has no root, so:

$$\sum_{\tau \in F} \mathrm{AM}_f(\tau) = 0$$

- (2) For all $n \ge 0$, when Deg(f(t)) = n, assume the statement.
- (3) When Deg(f(t)) = n + 1, we wish to prove the statement by inductive hypothesis. **Case 1:** If f(t) has no root, then:

$$\sum_{\tau \in F} \mathrm{AM}_f(\tau) = 0 \le n + 1$$

Case 2: If f(t) has a root ω , then $\exists ! q(t) \in F[t], f(t) = (t - \omega)q(t)$ and $\mathrm{Deg}(q(t)) = n$:

$$\sum_{\tau \in F} AM_f(\tau) = \sum_{\tau \neq \omega} AM_f(\tau) + AM_f(\omega)$$
$$= \sum_{\tau \neq \omega} AM_q(\tau) + AM_q(\omega) + 1$$
$$= \sum_{\tau \in F} AM_q(\tau) + 1 \le n + 1$$

Hence, we've proven the statement. Quod. Erat. Demonstrandum.

Theorem 3.26. (Fundamental Theorem of Algebra)

Let a(t) be a polynomial in $\mathbb{C}[t]$. If $\operatorname{Deg}(a(t)) \geq 1$, then a(t) has a root $\tau \in \mathbb{C}$.

Proof. Assume to the contrary that a(t) has no root. WLOG, assume that:

$$a(t) = t^n + a_{n-1}t^{n-1} + \cdots$$
, where $n > 1$

Define the following function from $\mathbb{S} \times [0, +\infty]$ to \mathbb{S} by:

$$H(z,s) = \begin{cases} a(sz)/|a(sz)| & \text{if } 0 \le s < +\infty; \\ z^n/|z^n| & \text{if } s = +\infty; \end{cases}$$

As a(t) has no root, $\forall (z,s) \in \mathbb{S} \times [0,+\infty), |f(st)| \neq 0$, so H(z,s) is well-defined. The following limit suggests that H(z,s) is continuous:

$$\lim_{(z,s)\to(z_0,+\infty)} \frac{a(sz)}{|a(sz)|} = \lim_{(z,s)\to(z_0,+\infty)} \frac{s^n z^n + a_{n-1} s^{n-1} z^{n-1} + \cdots}{|s^n z^n + a_{n-1} s^{n-1} z^{n-1} + \cdots|}$$

$$= \lim_{(z,s)\to(z_0,+\infty)} \frac{z^n + a_{n-1} s^{-1} z^{n-1} + \cdots}{|z^n + a_{n-1} s^{-1} z^{n-1} + \cdots|} = \frac{z^n}{|z^n|}$$

This implies H(z,s) is an inverted deformation retraction from $\{1\}$ to \mathbb{S} , contradicting to $\pi_1(\{1\}) \cong \{e\} \not\cong \pi_1(\mathbb{S}) \cong \mathbb{Z}$. Quod. Erat. Demonstrandum.

Definition 3.27. (Primitive Formal Power Series)

Let f(t) be a formal power series in $\mathbb{Z}[t]$.

If the coefficients of f(t) are coprime, then f(t) is primitive.

Lemma 3.28. (Gauss's Lemma)

Let a(t), b(t) be two formal power series in $\mathbb{Z}[\![t]\!]$.

If a(t), b(t) are primitive, then a(t)b(t) is primitive.

Proof. Assume to the contrary that a(t)b(t) is not primitive, then:

 \exists prime $p \geq 2, p|a_0b_0$ and $p|a_0b_1 + a_1b_0$ and $p|a_0b_2 + a_1b_1 + a_2b_0$ and \cdots

As a(t), b(t) are primitive, there exist minimal $r, s \ge 0$, such that $p \nmid a_r, b_s$. Now we arrive at the following contradiction:

$$p \nmid a_0 b_{r+s} + \dots + a_{r-1} b_{s+1} + a_r b_s + a_{r+1} b_{s-1} + \dots + a_{r+s} b_0$$

Quod. Erat. Demonstrandum.

Proposition 3.29. Let f(t) be a primitive polynomial in $\mathbb{Z}[t]$.

f(t) is irreducible in $\mathbb{Q}[t]$ iff f(t) is irreducible in $\mathbb{Z}[t]$.

Proof. We may divide our proof into two parts.

"if" direction: Assume that f(t) is irreducible in $\mathbb{Z}[t]$.

For all factorization f(t) = p(t)q(t) in $\mathbb{Q}[t]$, we take out common factor and get f(t) = cP(t)Q(t), where c is a rational number and P(t), Q(t) are primitive in $\mathbb{Z}[t]$.

As both f(t) and P(t)Q(t) are primitive in $\mathbb{Z}[t]$, $c=\pm 1$. WLOG, assume that c=1.

As f(t) is irreducible in $\mathbb{Z}[t]$, $P(t) \in \mathbb{Z}[t]^{\times}$ or $Q(t) \in \mathbb{Z}[t]^{\times}$.

It follows that $p(t) \in \mathbb{Q}[t]^{\times}$ or $q(t) \in \mathbb{Q}[t]^{\times}$, so f(t) is irreducible in $\mathbb{Q}[t]$.

"only if" direction: Assume that f(t) is irreducible in $\mathbb{Q}[t]$.

As $\mathbb{Z}[t]$ is a subring of $\mathbb{Q}[t]$, f(t) is irreducible in $\mathbb{Z}[t]$. Quod. Erat. Demonstrandum. \square

Theorem 3.30. (Eisenstein's Criterion[3])

Let p be a prime number, and a(t) be a polynomial in $\mathbb{Z}[t]$ with degree n.

If $p \nmid a_n, p \mid a_{n-1}, p \mid a_{n-2}, \dots, p \mid a_1, p \mid a_0, p^2 \nmid a_0$, then a(t) is irreducible in $\mathbb{Z}[t]$.

Proof. Assume to the contrary that f(t) has a nontrivial factorization b(t)c(t) in $\mathbb{Z}[t]$:

$$p|a_0 = b_0 c_0 \implies p|b_0 \text{ or } p|c_0$$

$$p^2 \nmid a_0 = b_0 c_0 \implies p \nmid b_0 \text{ or } p \nmid c_0$$

WLOG, assume that $p|b_0$ and $p \nmid c_0$ and Deg(b(t)) = r, where $1 \leq r \leq n-1$, then:

$$p|a_1 = b_0c_1 + b_1c_0 \implies p|b_1c_0 \implies p|b_1$$

$$p|a_2 = b_0c_2 + b_1c_1 + b_2c_0 \implies p|b_2c_0 \implies p|b_2$$

$$\vdots$$

$$p|a_r = b_0c_r + b_1c_{r-1} + \dots + b_{r-1}c_1 + b_rc_0 \implies p|b_rc_0 \implies p|b_r$$

Now we arrive at a contradiction:

$$p|b_r \text{ and } b_r|a_n \implies p|a_n$$

Quod. Erat. Demonstrandum.

Example 3.31. For all prime number p, **Theorem 3.30.** suggests that the following polynomial is irreducible in $\mathbb{Z}[t]$:

$$\frac{(1+t)^p - 1}{t} = \frac{1}{0!}t^{p-1} + \frac{p}{1!}t^{p-2} + \frac{p(p-1)}{2!}t^{p-3} + \dots + \frac{p(p-1)\cdots 2}{(p-1)!}$$

Shift this polynomial, and we get a family of irreducible polynomials in $\mathbb{Z}[t]$:

$$\frac{t^p - 1}{t - 1} = t^{p - 1} + t^{p - 2} + t^{p - 3} + \dots + 1$$

As a result, for all prime number p and integer q:

$$\cos \frac{2q\pi}{p} \in \mathbb{Q} \iff p|q \text{ or } p=2 \text{ or } p=3$$

4 Finite Field

4.1 Characteristic and Order

Proposition 4.1. If F is a finite field, then $n = \operatorname{Char}(F)$ is a prime number.

Proof. Assume to the contrary that n = pq is a composite number, where $p, q \ge 2$. As there is a natural ring homomorphism from \mathbb{Z} to F, the followings hold in F:

$$0 = n = pq$$
 and $p \neq 0$ and $q \neq 0$

This contradicts to F is a field. Quod. Erat. Demonstrandum.

Remark: As a result, a smaller field \mathbb{Z}_p is embedded in the larger field F.

Example 4.2. If F is a finite field, then F is a vector space over \mathbb{Z}_p .

Remark: By taking a basis, we may further show that $|F| = p^n$.

Proposition 4.3. If f(t) is an irreducible polynomial in $\mathbb{Z}_p[t]$ with degree n, then $\mathbb{Z}_p[t]/\langle f(t) \rangle$ is a finite field with basis $1, u, u^2, \dots, u^{n-1}$, where $u = t + \langle f(t) \rangle$.

Proof. We may divide our proof into three parts.

Part 1: f(t) is irreducible in the principal ideal domain $\mathbb{Z}_p[t]$ implies $\mathbb{Z}_p[t]$ is a field.

Part 2: For all $c_0, c_1, c_2, \cdots, c_{n-1} \in \mathbb{Z}_p$:

$$c_0 + c_1 u + c_2 u^2 + \dots + c_{n-1} u^{n-1} = 0 \implies f(t)|c_0 + c_1 t + c_2 t^2 + \dots + c_{n-1} t^{n-1}$$

$$\implies c_0 + c_1 t + c_2 t^2 + \dots + c_{n-1} t^{n-1} = 0$$

$$\implies c_0 = c_1 = c_2 = \dots = c_{n-1} = 0$$

Part 3: For all $g(u) \in \mathbb{Z}_p[t]/\langle f(t) \rangle$, as $f(t) \neq 0$, we may apply division algorithm to find $q(t) \in \mathbb{Z}_p[t]$ and $c_0, c_1, c_2, \dots, c_{n-1} \in \mathbb{Z}_p$, such that:

$$g(t) = q(t)f(t) + c_0 + c_1t + c_2t^2 + \dots + c_{n-1}t^{n-1}$$

$$g(u) = q(u)f(u) + c_0 + c_1u + c_2u^2 + \dots + c_{n-1}u^{n-1}$$

$$= c_0 + c_1u + c_2u^2 + \dots + c_{n-1}u^{n-1}$$

Hence, $\mathbb{Z}_p[t]/\langle f(t)\rangle$ is a finite field with basis $1, u, u^2, \dots, u^{n-1}$. Quod. Erat. Demonstrandum.

4.2 Field Extension

Example 4.4. Every quotient map $\pi_n : \mathbb{Z} \to \mathbb{Z}_n$ fails to preserve characteristic.

Proposition 4.5. Let F, F' be two fields.

Every ring homomorphism $\sigma: F \to F'$ is injective.

Proof. Assume to the contrary that $Ker(\sigma) \neq \{0\}$. As F is a field, the ideal $Ker(\sigma) = F$. This implies $0' = \sigma(1) = 1'$, contradicting to $F' \neq \{0'\}$. Quod. Erat. Demonstrandum.

Remark: As a result, every ring homomorphism $\sigma: F \to F'$ preserves characteristic.

Definition 4.6. (Field Extension)

Let F, F' be two fields.

If there exists a ring homomorphism $\sigma: F \to F'$, then F' is an extension of F.

Example 4.7. Let F be a field, and f(t) be an irreducible polynomial in F[t]. $F[t]/\langle f(t) \rangle$ is an extension of F.

4.3 Primitive Root

Definition 4.8. (Primitive Root)

Let R be a commutative ring with unity, and g be an element of R. If g generates the group R^{\times} of units, then g is a primitive root of R.

Example 4.9. In \mathbb{Z}_8 , \mathbb{Z}_8^{\times} is isomorphic to K_4 , so \mathbb{Z}_8 has no primitive root.

Theorem 4.10. Every finite field F has a primitive root g.

Proof. Assume to the contrary that some finite field F has order $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} + 1$, where p_1, p_2, \cdots, p_m are distinct prime numbers, $\alpha_1, \alpha_2, \cdots, \alpha_m$ are positive integers, and the p_1 -part P_1 of F^{\times} has at least two cyclic components. Assume that:

$$P_1 \cong P_{1,1} \times P_{1,2} \times \cdots$$

 $|P_{1,1}| = p_1^{n_{1,1}} \text{ and } |P_{1,2}| = p_1^{n_{1,2}} \text{ and } \cdots$
 $n_{1,1} \ge 1 \text{ and } n_{1,2} \ge 1 \text{ and } \cdots$

Consider the following polynomial in F[t]:

$$f(t) = t^{|P_{1,1}|} - 1$$

As the multiplicative order $Ord(\tau)$ of all $\tau \in P_{1,1}$ divides $|P_{1,1}|$, τ is a root of f(t). As $P_{1,2}$ is a p_1 -group, $P_{1,2}$ has an element ξ of order p_1 , which is also a root of f(t). Now we arrive at the following contradiction:

$$\sum_{\tau \in F} \mathrm{AM}_f(\tau) > |P_{1,1}| = \mathrm{Deg}(f(t))$$

Hence, |F| must be in the form $p_1p_2\cdots p_m+1$, and F^{\times} is cyclic. Quod. Erat. Demonstrandum.

Remark: However, it is hard to find this primitive root, so we stop here.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] M. user, "Intersection of principal ideals is not principal," https://mathoverflow.net/questions/443334/intersection-of-principal-ideals-is-not-principal, 2023, accessed: 2023-10-17.
- [3] Wikipedia contributors, "Eisenstein's criterion Wikipedia, the free encyclopedia," 2024, [Online; accessed 19-December-2024]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Eisenstein%27s_criterion&oldid=1247464065