X = Y | Y ~ Unif [-1, 1]. $\frac{1}{b-c} \sim \frac{1}{1-(-1)} \sim \frac{1}{2} = \frac{1}{[-1,1]}$ 1605 Tà ~ f RIPARTZIONS VF $= \frac{1}{2} \left[\frac{X^2}{2} \right] = \frac{1}{2} \cdot \left(\frac{1}{2} - \frac{1}{2} \right) = 0.$

$$= \frac{1}{2} \left[\frac{x^{2}}{2} \right]^{1} = \frac{1}{2} \cdot \left(\frac{1}{2} - \frac{1}{2} \right) = 0.$$

$$= \frac{1}{2} \left[\frac{x^{2}}{2} \right]^{1} = \frac{1}{2} \cdot \left(\frac{1}{2} - \frac{1}{2} \right) = 0.$$

$$= \frac{1}{2} \left[\frac{x^{3}}{3} \right]^{1} = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3} \right) = \frac{1}{3}.$$

$$\Rightarrow v_{x}(X) = E[x^{2}] - E[x]^{2} = \frac{1}{3}.$$

(ii) X con funzione di ripartizione F_X data da $F_X(x) \doteq (x^2/4) \cdot \mathbf{1}_{(0,2)}(x) + \mathbf{1}_{(2,\infty)}(x), x \in \mathbb{R}$;

$$F(x) = \frac{x^2}{4} \cdot L_{(0,2)} + L_{(2,\infty)} \times eth$$

$$\frac{1}{2} \times \frac{2}{2} + C$$

$$\frac{1}{5} \left(\times \right) = \frac{1}{2} \left(\times \cdot 4 \times 0 \right) d \times$$

$$=\frac{2}{10} \times 2 = \frac{1}{2} \left(\frac{\times^3}{3} \right)^2$$

$$S(x^2) = 1 \int_{2}^{\infty} x^2 \cdot f_{x}(x) dx$$

$$var(x) = 5(x^2) - 6(x^2)$$

(iii) $X \doteq e^Y$ per una variabile aleatoria Y esponenziale di parametro quattro.

$$= 4 \int_{-\infty}^{\infty} e^{x} \cdot f_{Y}(x) dx = \int_{0}^{\infty} e^{x} \cdot (4 \cdot e^{-4x}) dx$$

$$= 4 \int_{0}^{\infty} e^{-3x} dx = 4 \cdot \left[-\frac{1}{3} \cdot e^{-3x} \right]_{0}^{\infty}$$

$$= 0 + \frac{4}{3} = \frac{4}{3}.$$

$$= E[X^{2}] = \int_{0}^{\infty} e^{2x} \cdot f_{Y}(x) dx = 4 \cdot \int_{0}^{\infty} e^{-2x} dx$$

$$= 4 \cdot \left[-\frac{1}{2} e^{-2x} \right]_{0}^{\infty} = \frac{4}{2} = 2.$$

~>
$$var(X) = E[X^2] - E[X]^2 = 2 - \frac{16}{9} = \frac{2}{9}$$
.

Esercizio 3. Siano $X_1, X_2, \ldots, X_{1000}$ variabili aleatorie indipendenti ed identicamente distribuite su $(\Omega, \mathcal{F}, \mathbf{P})$ con comune distribuzione di Bernoulli di parametro 1/400. Poniamo

$$S(\omega) \doteq \sum_{i=1}^{1000} X_i(\omega), \ \omega \in \Omega, \quad M \doteq \min \{ m \in \mathbb{N} : \mathbf{P} (S \le m) \ge 0.99 \}.$$

Sia dia una stima per M in tre modi diversi, usando

- a) la disuguaglianza di Chebyshev;
- b) l'approssimazione di Poisson (legge dei piccoli numeri);
- c) l'approssimazione normale.

$$\times$$
 in or $\frac{1}{100}$ -3 $5=1000$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{$

$$\frac{1}{400} \frac{1}{400} = \frac{1}{400} \left(\frac{238}{400}\right) \\
= \frac{1}{400} \frac{1}{400} = \frac{1}{400} \left(\frac{238}{400}\right) \\
= \frac{1}{400} \frac{1}{400} = \frac{1}{400} \left(\frac{238}{400}\right) \\
= \frac{1}{400} \frac{1}{400} = \frac{328}{400} \\
= \frac{1}{400} \frac{1}{400} = \frac{328}{400} \\
= \frac{1}{400} \frac{1}{400} = \frac{328}{400} \\
= \frac{1}{400} \frac{1}{400} = \frac{1}{400} = \frac{1}{400} \\
= \frac{1}{400} \frac{1}{400} = \frac{1}{400} =$$

POISSON BEEN (M V 1000)

S N BIM (1000, 1)

$$\lambda = 1000. \frac{1}{400} = \frac{5}{2}$$
 $\xi_{0155}(512) = \frac{5}{2}$

NOUVAUS

 $\xi_{0155}(512) = \frac{5}{2}$

Par KeNi

$$P(S \leq K) = P(S - E[S] \leq K - E[S])$$

$$= P\left(\frac{1}{\sqrt{v_0/s_3}}\left(S - E[S]\right) \leq \frac{K - E[S]}{\sqrt{v_0/s_3}}\right)$$

$$= \overline{S}$$

$$\approx \Phi\left(\frac{K-E[s]}{V_{Var}(s)}\right)$$

I tursione d'i ripartisione delle normale standard

GER 1 <u>□</u> (y) ≥0.89

2 KGN | K-5(5) > 2.33 Pero > 0.39

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
(2.3)	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
									0.0074	0.0070