

IonSat

CHAKRANI Jaafar HUROT Thomas LEQUETTE Nicolas MAGDA Geoffrey PELLOUIN Clément TOMMASINI Augustin TOUSSAINT Arthur YANG Clément SOLOVYEVA Lilia MARMUSE Florian

IonSat

Challenging the atmospheric drag with a 6U nanosatellite

CONTEXT: PROPULSION FOR CUBESATS

X-CubeSat

Colorado State University's <u>TEMPEST-D</u>

90 days

CONTEXT: PROPULSION FOR CUBESATS

NPT-30i thruster by ThrustMe:

- 0,7mN thrust
- 1U
- Technoloy based on iodine ions

MISSION ANALYSIS

Key issues:

- Power needs (>50W)
- Integration (6U)
- Payload (the thruster)
- Autonomous altitude keeping
- 1h thrust phases

ORBIT CHOICE

HELIOSYNCHRONOUS 6H-18H ORBIT

ORBIT CHOICE

HELIOSYNCHRONOUS 6H-18H ORBIT → ISS-LIKE ORBIT

• Average : 30-min eclipses

Orbit transfers less costly (Aerobreaking)

ORBIT CHOICE

HOW TO GET MAXIMUM POWER?

Goal: Reach altitudes where drag ∈ [0,1*Thrust, 0,2*Thrust]

→ Trade-off: multiplying by 7 the drag area?

ATTITUDE CONTROL

POWER INCOME

Exact (0.3 day)

ÉCOLE POLYTECHNIQUE - IONSAT - 11

POWER INCOME

- Averaged (100 days)

WHICH ALTITUDE CAN WE REACH?

WHICH ALTITUDE CAN WE REACH?

POSSIBLE MISSION SCENARIO

Time (months)

ADCS SIZING

Disruptive torques

Origin	Torque (Nm)
Solar Flux	2.10 ⁻⁷
Electromagnetic torque	3.10 ⁻⁷
Gravity gradient	4.10 ⁻⁷
Displaced center of mass	7.10 ⁻⁷
Atmospheric drag	2.10 ⁻⁶

ÉCOLE POLYTECHNIQUE - IONSAT

ADCS SIZING

Origin	Torque (Nm)
Solar Flux	2.10 ⁻⁷
Electromagnetic torque	3.10 ⁻⁷
Gravity gradient	4.10 ⁻⁷
Displaced center of mass	7.10 ⁻⁷
Atmospheric drag	2.10-6

How to resist aerodynamic disturbancies?

Phase A sizing: $C_{ACT} > 10 \times C_{PERT}$

+ advanced center of mass

ADCS SIZING

Operation	Torque needed (Nm)
Autonomous stabilisation	2.10 ⁻⁵
Detumbling	2.10 ⁻⁵
Orienting solar panels	10-4

→ Powerful reaction wheels + Magnetorquers

POWER SUPPLY

PRELIMINARY SIZING

Consequences:

- 200 Wh batteries
- 42 W solar generator

Li-lon energy density: 130 Wh/kg

Panels surface power: 270 W/m²

1,5 kg of batteries

0,15 m² of panels

BATTERY CYCLES

THERMAL ANALYSIS

Subsystem	Limit temperatures
Batteries	10°C 35°C
Solar Panels	-105°C 135°C
Structure	-30°C 50°C
Electronics	-30°C 60°C

ÉCOLE POLYTECHNIQUE - IONSAT

THERMAL ANALYSIS

Subsystem	Limit temperatures
Batteries	10°C 35°C
Solar Panels	-105°C 135°C
Structure	-30°C 50°C
Electronics	-30°C 60°C

ÉCOLE POLYTECHNIQUE - IONSAT

GROUND SEGMENT COMMUNICATION

- → Available at École polytechnique
- → UHF/VHF

GROUND STATION CAPACITY

IonSat visibility time

Parametres	Values
Minimum elevation	10°
Orbit altitude	300 km
Orbit trace gap	22,5°

- 7/16 visible passings each day
- 1932s = 32 min daily visible time

ONE COMMUNICATION SUBSYSTEM DESIGN

Hybrid VHF uplink + S-Band downlink

Patch antennas + Rigid antennas

ÉCOLE POLYTECHNIQUE – IONSAT

INTEGRATION

P-Pod constraints

Dimension = 100*226,3*363 mm³

weight < 12 kg

1st vibration mode > 100Hz

4 ejecting rails

STRUCTURE CHOICE

STRUCTURE CHOICE

- Very few pieces: vibration resistant
- Good access to components
- Drawback:
 - Not available on the shelf

ÉCOLE POLYTECHNIQUE – IONSAT

INTEGRATION OF THE COMPONENTS

ÉCOLE POLYTECHNIQUE - IONSAT

INTEGRATION OF THE SUBSYSTEMS

lonSat

- Autonomous altitude keeping
- Displaced center of mass (aerodynamic stablilty)
 - Deployable solar panels
 - 3 axes attitude control
 - Low budget / Fast development
- Aims to be the lowest operating mission ever launched

Thanks for your attention Question time

L'ORBITE HELIOSYNCHRONE

 Elle présentait un énorme avantage au niveau de l'ensoleillement

Ci-joint, sur 2 années, la puissance moyenne reçue par orbite, à 300km d'altitude*

*en tenant compte de la contrainte d'aérodynamisme décrite plus bas

Orbite héliosynchrone

Orbite ISS

L'ORBITE HELIOSYNCHRONE

- L'orbite héliosynchrone impose cependant :
 - Soit un changement d'inclinaison, long et coûteux
 - Soit une dérive progressive :

- Elle n'a pas été retenue à ce stade, surtout sur le critère de l'accessibilité / fréquence de lancement
- Retirer l'orbite héliosynchrone, c'est se fixer déjà une catégorie d'orbites très similaires, ce qui permet de poursuivre le développement.

ET SI TOUT FONCTIONNE PARFAITEMENT...

On peut mettre à profit les fenêtres d'ensoleillement pour confronter le satellite à un environnement encore plus dense en fin de mission

ÉCOLE POLYTECHNIQUE - IONSAT

Direction du Soleil dans le repère du satellite

$$\vec{s}_{local}(t) = \Omega_{\phi}(t).\Omega_{i}.\Omega_{\alpha_{R}}(t).\Omega_{\delta_{r}}.\Omega_{\alpha_{T}}(t).\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

On ajoute les éclipses :

→ Sur quelle distance (angulaire) le satellite est-il dans le cône d'ombre?

Earth Sun

Absence d'éclipses =

conjonction peu fréquente

- Exacte, sur 0.3 jours

PUISSANCE RECUE

- Moyennée, sur 100 jours

CONTRAINTE D'AERODYNAMISME

 Au cours du maintien à poste, le satellite va devoir maintenir une orientation « aérodynamique » = limiter sa surface de traînée à 2U, soit 2,5 dm², soit environ ¼ de sa surface aléatoire.

• Dès lors, le satellite n'a plus qu'un degré de liberté de rotation pour orienter ses panneaux. On trace l'orientation optimale en fonction du temps :

PERTES LIEES A LA MOBILITE

- Le manque de mobilité affecte justement les périodes les plus critiques en énergie, qui se reproduisent tous les 30 jours
- Le choix d'une petite roue à inertie (cf SCAO) permet de ne pas perdre plus de10% de la puissance disponible a priori, et ce pendant une journée au plus (tous les 30 jours).

PERTES LIEES A LA PRECISION

Erreur de pointage	Perte en puissance*
5°	10%
10°	20%

*dans les pires cas

AUTRE PERTE

- Courbe de Rauschenbach : La réflectance augmente avec l'angle d'incidence
- Réduit encore la puissance reçue dans les pires cas
- Cumul des 3 pertes dans les pires cas : 34% -> 28% de puissance moyenne reçue

STABILITY DURING THRUST

- Lors des phases de poussée, si l'axe du propulseur n'est pas aligné parfaitement avec le centre de gravité du satellite, il y a apparition de couples
- Le couple « aéro » assure partiellement la stabilité du satellite sur les 2 axes
- Valeurs:
 - Offset z: 2 cm
 - Offsets x et y : 1 mm

INTERNAL POWER SUPPLY BREAKDOWN

THERMAL ANALYSIS

ÉVOLUTION DE TEMPÉRATURE DES SOUS-SYSTÈMES

- Structure en aluminium : revêtement radiatif « froid » → peinture blanche

ÉVOLUTION DE TEMPÉRATURE DES BATTERIES

ÉVOLUTION DE TEMPÉRATURE DES BATTERIES

Utilisation de réchauffeurs autonomes de batteries (~1W) + Couches MLI

DEVELOPMENT PLAN

