Algebra SoSe 2010 Spickzettel

Aus Vorlesungs-Wiki

Dies ist der offizielle Spickzettel zur Vorlesung Algebra SoSe 2010. Alle sind herzlich eingeladen, an der Wiki-Seite mitz

Für die Richtigkeit der hier gemachten Angaben wird keinerlei Verantwortung übernommen.

Konstruktion mit Zirkel und Lineal

Definition: Aus einer Menge von Punkten lässt sich ein anderer Punkt mit Z & L konstruieren, wenn er Schnittpunkt ist von zwei Geraden, zwei Kreisen, oder einem Kreis und einer Gerade.

- 1. x lässt sich mit Z & L aus dem Teilkörper $K_0 \subset \mathbb{R}$ konstruieren
- 2. x liegt in einem Turm quadratischer Erweiterungen $K_0 \subset K_1 ... \subset K_n \ni x$ in \mathbb{R} , d.h. $K_{i+1} = K_i[\sqrt{c}]$

Beispiel: Das regelmäßige 9-Eck ist nicht konstruierbar

■ Zuerst wird gezeigt: $\kappa=2\cos(\frac{2\pi}{b})$ ist nicht rational. Beweis: κ erfüllt die Gleichung $P(\kappa)=\kappa^3-3\kappa+1=0$ (Additionstheoreme). Das Polynom hat keine rationalen Nullstellen. Gegenannahme: \exists NS $x=\frac{a}{b}\in\mathbb{Q}$ (gekürzter Bruch). Daraus folgt $a^3+3ab^2-b^3=0$ Man sieht a|b und b|a also $a=\pm 1,b=1$. Aber $x=\pm 1$ ist keine Nullstelle, also existiert keine. ■ Noch zu Zeigen: Wenn P eine NS hat in $K[\sqrt{c}]$, dann auch in K. Denn dann ist κ nicht durch einen Turm erreichbar. Sei $x=a+b\sqrt{c}\in K[\sqrt{c}]$. Einsetzen, wenn $\sqrt{c}\notin K$: $a^3+3ab^2c-3a+1=0 \text{ und } 3a^2b+b^3c-3b=0$ Zweite Gleichung nach c auflösen, in die erste einsetzen: $-8a^3+6a+1=0$, also ist $-2a\in K$ Nullstelle von P. ■ Zuerst wird gezeigt: $\kappa = 2\cos(\frac{2\pi}{\alpha})$ ist nicht rational. Beweis: κ erfüllt die Gleichung

Monoide und Gruppen

Definitionen Axiome: 0: Kommutativität, 1: Assoziativität, 2: Neutrales Element, 3: Inverses

	abg.	Verkn.	0	1	2	3	Beispiele
Magma		Х					$(\mathbb{Z},-)$
Halbgruppe		Х		Х			(N*,+)
Monoid		Х		Х	Х		$(\mathbb{N},+)$, (\mathbb{N},\cdot) , $(End(X),\circ)$, $\{e\}$
							$M^X = Abb(X,M)$, $M^{(X)}$: komp. Träger
Gruppe		Х		Х	Х	×	$(\mathbb{Z},+)$, $(Aut(X)=End(X)^{\times},\circ)$.
							$(\mathbb{Q},+),(\mathbb{Q}^*,\cdot), \{e\}$
Abelsch		Х	Х				

Homomorphismen

Definition

 $\begin{array}{l} \blacksquare \text{ Magmen, Gruppen: } h:(M,\cdot) \to (N,*) \text{ muss erfüllen } h(a \cdot b) = h(a) * h(b) \\ \text{Bei Gruppen folgt } h(e_M) = e_N \text{ automatisch, weil} \\ h\left(e_M\right) = h\left(e_M \cdot e_M\right) = h\left(e_M\right) * h\left(e_M\right) \Big| * h\left(e_M\right)^{-1} \\ \text{Außerdem} \, e_N = h(e_M) = h(a \cdot a^{-1}) = h(a) * h(a^{-1}), \text{ also } h(a^{-1}) = h(a)^{-1}. \\ \blacksquare \text{ Monoid: Magma} + h(e_M) = e_N \end{array}$

 $\textbf{Satz:} \ \ \text{Ein Gruppenhomomorphismus} \ f \ \text{ist injektiv dann, und nur dann, wenn } \ker(f) = \{e\} \ \text{gilt.} \ \ \text{Denn:} \ f(a) = f(b) \Leftrightarrow f(a) f(b)^{-1} \Leftrightarrow f(ab^{-1}) = 1 \Leftrightarrow ab^{-1} \in \ker(f)$

Zyklische Gruppen: \mathbb{Z} und $\mathbb{Z}/_n$ sind zyklisch

Ordnung: Die Ordnung einer Gruppe ist ihre Kardinalität: $ord(G){=}|G|$ Die Ordnung von $a \in G$ ist die Ordnung von $a \in G$

Satz von Cayley: Jede Gruppe (G,*) ist isomorph zu einer Untergruppe von Sym(X) für eine geeignete Menge X, wobei X=G gewählt werden kann. Die λ_m sind hier immer bijektiv.

Satz: Eine Gruppe G ist abelsch dann und nur dann wenn $T \mapsto T^n$ ein Endomorphismus ist. $T \mapsto T^{-1}$ ist dann sogar ein Automorphismus

 ${\bf Satz} \colon {\bf Sei} \ A$ eine abelsche Gruppe. Dann gilt

- (End(A),+) ist eine abelsche Gruppe $(End(A),\circ)$ ist ein Monoid

- 1. Für alle $a,b{\in}M$ mit $a{\equiv}b$ gilt $f(a){=}f(b)$ 2. Es existiert ein Homom $\bar{f}{:}M/{\equiv}{\rightarrow}N$ sodass $f{=}\bar{f}{\circ}\pi$

Kanonische Faktorisierung: Jeder Homom $f:M \to N$ zwischen zwei Magmen M,N faktorisiert gemäß

$$f: M \xrightarrow{\pi} M/_{\ker(f)} \xrightarrow{\bar{f}} f(M) \xrightarrow{\iota} N$$

 π : Projektion, ι : Inklusion, $\bar{\iota}$: Iso

Ringe und Körper

Axiome: 0: Kommutativität, 1: Assoziativität, 2: Neutrales Element, 3: Inverses Element, D: Distributivität

	ΑO	A1	A2	А3	D	МО	М1	М2	МЗ	$1\neq 0$	Beispiele
Ring		Х	Х	Х	Х		Х	Х			$\mathbb{Z}^{n \times n}$, $\{0\}$
Kommutativer Ring		Х	Х	Х	Х	Х	Х	Х			Z
Divisionsring /		Х	Х	Х	Х		Х	Х	Х	Х	H
Schiefkörper											
Körper	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Q, R, C
Halbring	Х	Х	Х		Х		Х	Х			$\mathbb{N}^{n \times n}$
Komm. Halbring	Х	Х	Х		Х	Х	Χ	Х			N

Bemerkung: 1=0 kann nur im Nullring $\{0\}$ gelten da a=1a=0a=0

Invertierbare Elemente: werden Einheiten genannt (geschrieben $R^{ imes}$)

- Ring: Gruppenhomomorphismus (+) und Monoidhomomorphismus (-)

- Körper: Def wie bei Ringen, jeder Körperhomomorphismus ist injektiv
 R-Moduln: Gruppenhomomorphismus + f(ax) = af(x) für $a \in R$
 Endomorphismus: Homomorphismus in sich selbst, Auto: Iso in sich selbst

■ $exp:(\mathbb{R}_++) \to (\mathbb{R}_{>0},\cdot)$ und $log:(\mathbb{R}_{>0},\cdot) \to (\mathbb{R}_++)$ sind inverse Gruppen- (also auch Monoid- und Magma-) isomorphismen

Kategorie ist sowas wie ein Monoid:

- 1. Für X ist id_X ein Homomorphismus
- 2. Sind f,g Homomorphismen (zwischen verschiedenen Objekten), so auch $g\circ f$ 3. o ist assoziativ

Magma

Untermagma: $U \subset M$ ist Untermagma, wenn $U * U \subset U$

Satz: Für einen Homomorphismus $f:M \rightarrow N$ gilt

- 1. Für $A \subset M$ Untermagma ist $f(A) \subset N$ Untermagma
- Beweis: Sei $x,y\in f^{-1}(B)$ also x=f(u) und y=f(v). Dann ist $x\cdot y=f(u*v)\in f(A)$ 2. Für $B\subset N$ Untermagma ist $f^{-1}(B)\subset M$ Untermagma Beweis: Sei $x,y\in f^{-1}(B)$ also $f(x),f(y)\in B$. Dann $f(x*y)=f(x)\cdot f(y)\in B$ also $x*y\in f^{-1}(B)$.

Untermonoid: $U \subset M$ ist Untermonoid, wenn $U * U \subset U$ und $e_M \in U$

Erzeugtes Untermonoid: Sei $X \subset M$, dann ist $< X >^+$ das kleinste Untermonoid von M das X enthält. Es gilt:

$$< X >^{+} = \{x_1^{e_1} \cdots x_n^{e_n}\}$$

Zum Beispiel: $<3,5>^+=3\mathbb{N}+5\mathbb{N}=\{0,3,5,6,8,9,10,11,12,\dots\}$

Zyklisches Monoid: bedeutet, das Monoid wird von einem Element erzeugt, zum Beispiel $(\mathbb{N},+)=<1>^+$.

Satz von Cayley: Jedes Monoid (M,*) ist isomorph zu einem Untermonoid von Abb(X) für eine geeignete Menge X, wobei X=M gewählt werden kann. Beweis: Man kann jedem $m\in M$ das Element $\lambda_m\in Abb(M), \lambda_m(x)=m*x$ zuordnen. Zu zeigen: Die Zuordnung $m \mapsto \lambda_m$ ist ein Isomorphismus, d.h.

- $m*n\mapsto \lambda_m \circ \lambda_n$ bzw $\lambda_{m*n} = \lambda_m \circ \lambda_n$
- $e \mapsto id$ Surjektiv nach Def., Injektiv: $\lambda_m \equiv 0 \Rightarrow m = 0$

Gruppe

Inverse Elemente Von einem Monoid M sind M^{\times} die invertierbaren Elemente. Die Assoziativität garantiert die Eindeutigkeit des Inversen: Angenommen, a*b=e und b'*a=e dann b=(b'*a)*b=b'*(a*b)=b'

Beispiel: Lineare Gruppen

- Allgemeine lin. Grp.: $GL_n(\mathbb{R}) = (\mathbb{R}^{n \times n})$

 $\label{eq:continuous} \begin{array}{l} \textbf{Untergruppe} \ \ U\subset G \ \text{ist} \ \ \text{Untergruppe} \ \ (\text{geschrieben} \ \ U< G), \ \text{wenn} \ \ U*U\subset U \ \text{und} \ \ e_G\in U \ \text{und} \ \ U^{-1}\subset U \ \\ \text{\"{Aquivalent:}} \ \ U \ \ \text{nicht leer und} \ \ U*U^{-1}\subset U \ \\ \text{Beispiele:} \ \ \{e\} \ \ \text{und} \ \ G \ \ \text{sind} \ \ \text{die trivialen} \ \ \text{Untergruppen}, \ \ \text{Bild} \ \ \text{und} \ \ \text{Kern von Homoms sind} \ \ \text{Untergruppen}. \end{array}$

Beispiel: $\mathbb{Z}^{\times} = \{\pm 1\}, \mathbb{Q}^{\times} = \mathbb{Q}^{*}$

Satz: R ist Divisionsring dann und nur dann wenn $R^{\times} = R^{*}$. Beweis:

- $R^* \subset R^{\times}$ genau dann wenn jedes Element $\neq 0$ invertierbar ist (M3)
- $R^{\times}\subset R^{\circ}$ genau dann wenn $1\neq 0$ Hinrichtung: GA $1=0\Rightarrow$ Nullring $\Rightarrow 0\in R^{\times}$ (Widerspruch) Rückrichtung: $0\notin R^{\times}$

Nullteiler: Gilt $a\neq 0, b\neq 0$, ab=a, b=0, dann ist a Linksnullteiler und b Rechtsnullteiler. Ist R kommutativ, sagt man einfach Nullteiler.

Beispiel: 2.3 ± 0 in $\mathbb{Z}/_6$

Nullteilerfrei Ein Ring ist nullteilerfrei, wenn gilt $R^* \cdot R^* \subset R^*$ Ein Ring mit $1 \neq 0$ ist genau dann nullteilerfrei, wenn R^* Untermonoid von (R,\cdot) ist.

Beispiel: Jeder Körper oder Divisionsring ist nullteilerfrei.

Integritätsring ist ein kommutativer, nullteilerfreier Ring mit $1 \neq 0$.

Satz: In nullteilerfreien Ringen kann man kürzen Satz: Jeder endliche Integritätsring ist ein Körper

 $\begin{array}{l} \textbf{Unterring: } S\subset (R,+,\cdot) \text{ ist Unterring wenn } S \text{ Untergruppe von } (R,+) \text{ und Untermonoid von } (R,\cdot) \text{ ist.} \\ \text{Alternativ wenn } 1\in S, S-S\subset S, S\cdot S\subset S \end{array}$

Beispiel: Z ist Unterring von Q.

Unterkörper: Ein Unterring ist ein Unterkörper, wenn er ein Körper ist. Alternativ: Wenn $_R$ schon ein Körper ist, ist ein Unterring ein Körper wenn $_a{}^{-1}{\in}S$.

Bruchkörper

 $\begin{array}{l} \textbf{Definition:} \ \text{Sei} \ R \ \text{ein} \ \text{Integritätsring.} \ \text{Ein} \ \text{Bruchkörper} \ \text{von} \ R \ \text{ist} \ \text{ein} \ \text{K\"orper} \ K \ \text{zusammen} \ \text{mit} \ \text{einem injektiven} \ \text{Ringhomomorphismus} \ \iota: R \rightarrow K \ \text{sodass} \ \text{f\"ur} \ x \in K \ \text{gilt} \ x = \iota(a) \cdot \iota(b)^{-1} \ \text{mit} \ a \in R \cdot b \in R^*. \end{array}$

Universelle Eigenschaft: Ist $f:R\to L$ ein injektiver Ringhomomorphismus in einen Körper L, dann existiert genau ein Körperhomomorphismus $\bar{f}:K\to L$ mit $f=\bar{f}\circ \nu$ \bar{f} ist gegeben durch $\bar{f}(\frac{a}{b}) = \frac{f(a)}{f(b)}$

Satz: Je zwei Bruchkörper sind kanonisch isomorph. Siehe Bild ((REFERENCE: fig:bruch)).

Konstruktion: Auf der Menge $\bar{K} = R \times R^*$ definiert man (a,b) + (c,d) = (ad + bc,bd) und $(a,b) \cdot (c,d) = (ac,bd)$ und die Äquivalenxelation $(a,b) \equiv (c,d) \Leftrightarrow ad = bc$. Der Bruchkörper ist dann $K = \bar{K}/\equiv (ac,bd) = (ac,bd)$

Ideal

Definition: $I \subset R$ heißt Ideal ($I \triangleleft R$) wenn gilt:

- 1. $0 \in I$, $I + I \subset I$ 2. $RI \subset I$ und $IR \subset I$ Beispiele: $\{0\}$, R: triviale Ideale. Kerne von Ringhomomomorphismen.

Bemerkung: Divisionsringe haben nur die trivialen Ideale

Satz: Ein kommutativer Ring ist genau dann ein Körper, wenn er nur die trivialen Ideale besitzt.

Satz: $I \triangleleft R$. R/I ist wieder ein Ring (eindeutige Struktur) und die Projektion ist ein

Satz: $\mathbb{Z}/_n$ ist ein Körper dann und nur dann wenn n eine Primzahl ist Falls n nicht prim, dann n=pq also $\bar{p}\bar{q}=0$. Falls n prim ist, ist $\mathbb{Z}/_n$ nullteilerfrei, also ein endlicher Integritätsring, also ein Körper.

Homomorphiesatz: Sei $I \triangleleft R$ und π die Projektion auf R/I. Für jeden Ringhomomorphismus $f:R\rightarrow S$ sind äquivalent:

I ⊂ ker(f)

2. \exists Ringhomom $\bar{f}:R/_{T}\rightarrow S$ mit $f=\bar{f}\circ\pi$

Kanonische Faktorisierung: Jeder Ringhomom $f{:}R{\to}S$ faktorisiert gemäß

$$f : R \xrightarrow{\pi} R/_{\ker(f)} \xrightarrow{\bar{f}} f(R) \xrightarrow{\iota} S$$

Isomorphiesatz: Sei $f:R \rightarrow S$ surjektiver Ringhomom

- 1. Das Bild eines Ideals $I \triangleleft R$ ist ein Ideal $f(I) \triangleleft S$. 2. Das Urbild eines Ideals $J \triangleleft S$ ist ein Ideal $f^{-1}(J) \triangleleft R$. 3. Das gibt eine Bijektion zwischen den Idealen $\ker(f) \triangleleft I \triangleleft R$ und den Idealen $J \triangleleft S$. 4. f induziert einen Ringhomomorphismus $R/I \cong S/I_{f(I)}$
- f induzert einen kingnomonorphismus R/I = S/f(I)Für jeden Quotientenring S = R/K und $K \subset I \triangleleft R$ gilt demnach $R/I \cong (R/K)/(I/K)$

Charakteristik: Es existiert genau ein Ringhomomorphismus $\varphi: \mathbb{Z} \to R$. Sei (*Anmerkung: Möglich, weil* \mathbb{Z} *HIR ist*) $\ker(\varphi) = (n), n \in \mathbb{N}$. Die Charakteristik des Rings R ist char(R)=n

Beispiel: $char(\mathbb{Z})=0$, $char(\mathbb{Z}/_n)=n$

 $\begin{tabular}{ll} \bf Satz: {\tt Für jeden nullteilerfreien Ring gilt: Entweder $char(R)$=0 $(R$ K\"{o}rper$$\Rightarrow {\tt Primk\"{o}rper}$ ist isomorph $zu \mathbb{Q}) oder $char(R)$ ist eine Primzahl $(R$ K\"{o}rper$$\Rightarrow {\tt Primk\"{o}rper}$ ist isomorph $zu $\mathbb{Z}/_p$).} \end{tabular}$

Frobenius-Homomorphismus: Sei R ein kommutativer Ring mit char = p (Primzahl). Dann ist $f: R \rightarrow R, x \mapsto x^p$ ein Ringhomomorphismus. Wenn R ein endlicher Körper ist, ist f ein Automorphismus (Anmerkung: Körperhomos sind injektiv).

Kleiner Satz von Fermat: Für alle $a\in\mathbb{Z}$ und Primzahlen p gilt $a^p\equiv a\pmod{\mathfrak{p}}$.

Teilerfremd: Zwei Ideale heißen Teilerfremd, wenn I+J=R gilt.

 $\textbf{Chinesischer Restsatz:} \ \mathsf{Seien} \ I_1, \dots, I_n \triangleleft R \ \mathsf{paarweise} \ \mathsf{teilerfremd}, \ R \ \mathsf{kommutativ}. \ \mathsf{Dann} \ \mathsf{haben} \ \mathsf{window} \ \mathsf{descended} \ \mathsf{descende$

$$R/_{I_1\cdots I_n} \longrightarrow R/_{I_1} \times \cdots \times R/_{I_n} : z + (I_1\cdots I_n) \mapsto (z + I_1, \dots, z + I_n)$$

Monoidring

 $\textbf{Definition:} \ \mathsf{Sei} \ (R,+,\cdot) \ \mathsf{ein} \ \mathsf{kommutativer} \ \mathsf{Ring} \ \mathsf{und} \ (M,\cdot) \ \mathsf{ein} \ \mathsf{Monoid.} \ \mathsf{Wir} \ \mathsf{nennen} \ (S,+,\cdot) \ \mathsf{Monoidring} \ \mathsf{von} \ M \ \mathsf{\ddot{u}ber} \ R \ \mathsf{wenn} \ \mathsf{gilt:}$

- 1. $\it R$ ist Unterring im Zentrum von $\it S$
- 2. M ist Untermonoid von (S,\cdot) 3. Jedes $s\in S$ schreibt sich eindeutig als Linearkombination $s=\sum_{m\in M}r_m\cdot m$ wobei $r:M \rightarrow R_* m \mapsto r_m$ endlichen Träger hat.

 $\label{eq:continuity} \begin{array}{l} \textbf{Universelle Eigenschaft:} \ \mbox{Sei S' ein Ring, $f{:}R{\rightarrow}S'$ ein Ringhomom in das Zentrum, $g{:}M{\rightarrow}S'$ ein Monoidhomom in (S',\cdot). Dann $\exists !h{:}S{\rightarrow}S'$ Ringhomomorphismus, sodass $h|_R{=}f$ und $h|_M{=}g$. Und zwar: $h(s){=}\sum_{m{\in}M} f(r_m){\cdot}g(m)$ \end{array}$

Satz: Je zwei Monoidringe von M über R sind kanonisch isomorph. Denn: Pfeile umdrehen.

Konstruktion: Betrachte $S=R^{(M)}$ (Abbildungen $M\to R$, gleichbedeutend mit Koeffizienten r_m) mit den Verknüpfungen $(r+r')_m=r_m+r'_m$ und $(r\cdot r')_m=\sum_{a.b\in M,a\cdot b=m}r_{a\cdot r'_b}$

Satz: Es gilt $R[X_1 \cdots X_{d-1}][X_d] = R[X_1 \cdots X_d]$.

Polynomringe

Definition: Sei K ein kommutativer Ring. Ein kommutativer Ring R heißt Polynomring in der Variablen X über K wenn gilt:

- \blacksquare R enthält K als Unterring, $X \in R$
- Jedes $P\in R$ schreibt sich eindeutig als $a_0+a_1X+...+a_nX^n$ $(a_n\neq 0)$ $a_n=lc(P)$ heißt Leitkoeffizient und n=deg(P) heißt Grad des Polynoms P $(deg(0)=-\infty)$

$$5 = (-X^2 + 2X + 1)(X^2 + 1) + (X - 2)(X^3 - 2)$$

Gleichung in \mathbb{Z}^2 löser

- Ausklammern, evtl sieht man: keine Lösung
 Erweiterter eukl. Algorithmus (ggf dann Gleichung erweitern) ⇒ Partikulärlösung
 Alle Lösungen = Homogene Lösungen + Partikulärlösung

 $\label{eq:definition:} \textbf{Definition:} \ \ \textbf{Ein Hauptideal} \ \ \textbf{in einem Ring} \ \ R \ \ \textbf{ist ein Ideal der Form} \\ (a) = aR \ \ \textbf{mit} \ \ a \in R. \ \ \textbf{Ein Integritätsring} \ \ R \ \ \textbf{heißt Hauptidealring} \ \ \textbf{wenn jedes Ideal in} \ \ R \ \ \textbf{ein Hauptideal ist}.$

Beispiel: Z.

Satz: Jeder euklidische Ring ist ein HIR. Beweis: Teilen mit Rest

Irreduzible Elemente: Ein Element $a{\in}R$ (Integritätsring) heißt irreduzibel wenn gilt: Aus $a{=}bc$ folgt entweder $b{\sim}1$ oder $c{\sim}1$. (Invertierbare Elemente und 0 sind nicht irreduzibel)

Definition: Ein Integritätsring R heißt faktoriell, wenn jedes $a \in R^*$ eine eindeutige Zerlegung in irreduzible Faktoren erlaubt

Beispiel: \mathbb{Z} , K[X] (K: Körper)

Satz: Wenn man ein Element aus einem faktoriellen Ring in seine irreduziblen Faktoren zerlegt, sind die Teiler des Elements genau die Produkte der Faktoren.

Definition: Ein Element $a \in R \setminus R^{\times}$ heißt prim, wenn gilt: Aus a|bc folgt a|b oder a|c.

Beispiel: In einem Integritätsring ist () immer prim

Satz: In einem Integritätsring ist jedes Primelement $\neq 0$ irreduzibel.

Satz (Lemma von Euklid): In einem HIR ist jedes irreduzible Element prim.

Satz: Sei in einem Integritätsring jedes irreduzible Element prim. Dann sind Zerlegungen in irreduzible Faktoren eindeutig.

Satz: Wenn $a_0 \in R$ keine Zerlegung in irred. Faktoren erlaubt, dann gibt es eine unendliche aufsteigende Kette von Idealen $(a_0) \subsetneq (a_1) \subsetneq \dots$ in R.

Definition: Ein Ring R heißt noethersch wenn jede aufsteigende Kette von Idealen in R stationär

Satz: Jeder HIR ist noethersch und damit auch faktoriell.

Teilerfremdheit und Invertierbarkeit

Definition: In einem Int.ring R heißen 2 Elemente teilerfremd wenn $ggT(a,b){=}R^{\times}$.

Satz: Ist R ein HIR, dann ist \bar{a} genau dann in $R/_{(b)}$ invertierbar, wenn a und b teilerfremd sind.

Beispiel: Invertieren Invertiere 5 in $\mathbb{Z}/7$, d.h. suche u,v sodass 5u+7v=1. Da 5,7 teilerfremd sind, ist 1 der ggT und man findet u,v mit dem erweiterten euklidischen Algorithmus.

Primideal

Saftinition: Für IdR sind äquivalent:

- 1. Der Quotient $R/_I$ ist ein Integritätsring 2. Es gilt $I\ne R$ und aus $ab\in I$ folgt $a\in I$ oder $b\in I$ Dann heißt I Primideal von R.

Beispiel (2) $\triangleleft \mathbb{Z}$ ist Primideal. Denn: $\mathbb{Z}/_2$ ist Int.ring und aus $ab \in (2)$ folgt $a \in (2)$ oder $b \in (2)$.

Satz: $p \in R$ ist Primelement wenn $(p) \triangleleft R$ Primideal ist.

 $\label{eq:continuity} \begin{tabular}{ll} \textbf{Universelle Eigenschaft:} Sei $\varphi:K \to R$ ein Homomorphismus und $x \in R$. Dann existiert genau ein Ringhomomorphismus $\tilde{\varphi}:K[X] \to R$ mit $\tilde{\varphi}|_K = \varphi$ und $\tilde{\varphi}(X) = x$, n\"{a}mlich: $\tilde{\varphi}(X) = x$, n\'{a}mlich: $\tilde{\varphi}(X) =$

$$\tilde{\varphi}(a_0 + a_1X + \ldots) = \varphi(a_0) + \varphi(a_1) \cdot x + \ldots$$

Für $\varphi = id$ ist das das Einsetzen von x in $P: \tilde{id}(P) = P(x) \in K$

Eigenschaften vom Grad Der Grad $deg:K[X] \rightarrow \mathbb{N} \cup \{-\infty\}$ hat folgende Eigenschaften:

- 1. Für $P,Q \in K[X]$ gilt: $deg(P+Q) \le \sup\{deg(P), deg(Q)\}$
- Gleichheit: $deg(P) \not= deg(Q)$ oder $tc(P) + tc(Q) \not= 0$ 2. $deg(PQ) \le deg(P) + deg(Q)$ Gleichheit: p = 0, Q = 0 oder $tc(P) \cdot tc(Q) \not= 0$. Dann: $tc(PQ) = tc(P) \cdot tc(Q)$ Zum Beispiel wenn K nullteilerfrei ist (genau dann wenn K[X] nt-frei)

Satz: Für jeden Integritätsring K gilt $K[X]^{\times} = K^{\times}$

Beispiel: Polynomdivision mit Rest:

```
(5X^2+ X- 1) : (X+2) = 5X - 9 Rest: 17
-(5X^2+ 10X)
      -9X- 1
-(-9X- 18)
```

Satz: Sei $P \in K[X]$ Polynom von Grad n und $lc(P) \in K^{\times}$. Dann: $K[X]_{\leq n} \cong K[X]/_{(P)}$

 $\textbf{Satz:} \ \ \text{In einem Integritätsring ist für jedes Polynom} \ P \in K[X]^* \ \ \text{die Zerlegung in Linearfaktoren eindeutig (bis auf Reihenfolge). D.h. ein Polynom von Grad } n \ \ \text{hat maximal } n \ \ \text{Nullstellen.}$

Satz: Ein Element $a \in K$ ist dann und nur dann mehrfache Nullstelle von P in $K[X]^*$ wenn a eine gemeinsame Nullstelle von P und der Ableitung P^\prime ist.

Beispiel: $X^p - X$ hat keine mehrfachen Nullstellen in $\mathbb{Z}/_p$

Teilbarkeitstheorie in Integritätsringen

Assoziierte Elemente: $ab{\in}R$ heißen assoziiert $(a{\sim}b)$ wenn es $u{\in}R^{\times}$ gibt sodass $au{=}b$. Es gilt $(a){=}(b)$ genau dann wenn $a{\sim}b$.

Teilbarkeit: b teilt a (geschrieben b|a) wenn es $c{\in}R$ gibt mit $a{=}bc$ Es gilt $(a){\subset}(b)$ genau dann wenn b|a.

GGT: Die Menge der gemeinsamen Teiler von $a_1,...,a_n \in R$ ist:

$$GT(a_1,\ldots,a_n) = \{t \in R : t|a_1,\ldots,t|a_n\}$$

$$GGT(a_1,\ldots,a_n) = \{t \in GT(a_1,\ldots,a_n) : \forall_{s \in GT} s|t\}$$

Wenn a ein ggT ist, dann auch alle Assoziierten von a. Wenn es 2 ggT gibt, sind sie assoziiert.

Definition: Eine euklidische Division ("Division mit Rest") auf dem Ring R ist gegeben durch eine Funktion $\nu:R\to\mathbb{N}$ mit $\nu(0)=0$ und eine Abbildung $\delta:R\times R^*\to R\times R$ mit $(a,b)\mapsto (q,r)$ sodass a=bq+r n $\nu(r)<\nu(b)$. Ein euklidischer Ring besteht aus einem Integritätsring mit einer euklidischen Division.

Bsp: Erweiterter Euklidischer Algorithmus ggT von X^2+1 und X^3-2 in $\mathbb{Q}[X]$:

- $\begin{array}{ll} \blacksquare & X^3-2=X(X^2+1)+(-X-2) \\ \blacksquare & X^2+1=(-X+2)(-X-2)+5 \\ \blacksquare & -X-2=5(-\frac{S}{\Delta}-\frac{5}{5})+0 \text{ Also ist der ggT 5 und: } 5=(X^2+1)-(-X+2)(-X-2) \text{ und mit } \\ & -(X-2)=(X^3-2)-X(X^2+1): \end{array}$

Maximales Ideal

Saftinition: Für $I \triangleleft R$ sind äquivalent:

- Der Quotient R/, ist ein K\u00f6rper
- 2. Für jedes Ideal $J \triangleleft R$, $I \subset J \subset R$ gilt entweder I = J oder J = R. Dann ist I maximales Ideal von R.

Satz: In einem HIR ist jedes Primideal maximal

 $\mathbf{Satz:} \; \mathsf{Sei} \; R \; \mathsf{ein} \; \mathsf{HIR}, \; p \in R^*. \; \mathsf{Dann} \; \mathsf{ist} \; R/_{(p)} \; \mathsf{genau} \; \mathsf{dann} \; \mathsf{ein} \; \mathsf{K\"{o}rper}, \; \mathsf{wenn} \; p \; \mathsf{irred.} \; \mathsf{ist}.$

Primfaktorzerlegung in Polynomringen

Man muss immer ein Repräsentantensystem irreduzibler Elemente \mathcal{P} wählen.

Definition: Die Primfaktorzerlegung von einem Element hat die Form

$$x = u \cdot \prod_{p \in P} p^{e_p}$$
 , $u \in R$

u=lu(x) heißt Leiteinheit, $e_p(x)$ ist die Exponentenbewertung.

Ein Integritätsring ist genau dann faktoriell, wenn die Zuordnung von x zu $\{u,e_p\}$ bijektiv ist.

Satz: Sei R ein Integritätsring. Ist R[X] faktoriell dann auch R.

Definition: $x \in R^*$ ist normiert bzgl \mathcal{P} wenn lu(x)=1 ist

Definition: Der Inhalt eines Polynoms $P=a_0+a_1X+...$ ist $cont(P)=ggT(a_0,a_1,...)$ $P \in R[X]^{\times}$ ist primitiv, wenn cont(P) = 1 ist. P/cont(P) ist immer primitive $P \in R[X]$ ist normiert, wenn lu(P) := lu(lc(P)) = 1

 $\textbf{Satz:} \ \mathsf{Zu} \ \mathsf{jedem} \ \mathsf{Polynom} \ P \in R[X]^{\times} \ \mathsf{existiert} \ \mathsf{genau} \ \mathsf{ein} \ a \in R^* \ \mathsf{und} \ P_1 \in R[X] \ \mathsf{sodass} \ P = a P_1 \ \mathsf{gilt} \ \mathsf{und}$ P_1 normiert und primitiv ist. Es ist a=lu(P)-cont(P).

Beispiel: $P = -6X^3 + 15X + 12 \Rightarrow P = (-1) \cdot 3 \cdot (2X^3 - 5X - 4)$

 $\textbf{Satz:} \ \ \text{Zu jedem Polynom} \ P \in K[X]^{\times}(K \ \text{ist der Bruchkörper}) \ \text{existiert genau ein} \ c \in K^* \ \text{und} \ P_1 \in R[X] \ \text{sodass} \ P = cP_1 \ \text{gilt und} \ P_1 \ \text{normiert und primitiv ist.} \ c \in R^* \Leftrightarrow P \in R[X]^*$

Beispiel: $P = -\frac{3}{5}X^3 + \frac{3}{2}X + \frac{6}{5} \Rightarrow 10P = -6X^3 + 15X + 12 \Rightarrow P_1 = (-\frac{10}{3})P$

Definition: $red(P)=P_1$, scal(P)=c

 $\textbf{Satz:} \ \text{Seien} \ P,Q \in K[X] \ \text{mit} \ lc(P) = lc(Q) = 1. \ \text{Aus} \ PQ \in R[X] \ \text{folgt} \ P,Q \in R[X].$

Satz von Gauß: Ist R ein faktorieller Ring, so ist auch R[X] faktoriell.

Beispiel: Berechnung des ggT in $\mathbb{Z}[X]$ $P=24X^3-81$. $Q=24X^2-72X+54$

- $c {=} ggT(cont(P){,}cont(Q)) {=} 3$

- 1. $c=gg1 \cdot (cont(P'),cont(Q)) = 3$ $2 \cdot P, Q \cdot reduzieren \Rightarrow P'=8X^3-27, Q'=4X^2-12X+9$ 3. Euklidscher Algorithmus $\Rightarrow ggT_{\mathbb{Q}[X]}(P',Q') = 54X-81$ 4. Reduzieren: $54X-81=27\cdot(2X-3)$ 5. $ggT_{\mathbb{Z}[X]}(P,Q) = cred(ggT_{\mathbb{Q}[X]}(P',Q')) = 3\cdot(2X-3) = 6X-9$

Irreduzibilitätskriterien

Satz: Für $P \in R[X]$ über einem faktoriellen Ring R sind äquivalent:

- 1. P ist in R[X] irreduzibel und $deg(P) \ge 1$ 2. P ist in K[X] irreduzibel und cont(P) = 1

 ${\bf Satz}\colon {\bf Sei}\ P{\in}K[X]\ {\bf ein}\ {\bf Polynom}\ {\bf vom}\ {\bf Grad}\ 2\ {\bf oder}\ 3.\ {\bf Dann}\ {\bf ist}\ P\ {\bf genau}\ {\bf dann}\ {\bf irreduzibel}\ {\bf in}\ K[X]\ {\bf wenn}\ P\ {\bf keine}\ {\bf Nullstelle}\ {\bf in}\ K\ {\bf hat}.$

Beispiel: $P=X^2-2$ ist irred. über $\mathbb Q$, aber $P=(X-\sqrt{2})(X+\sqrt{2})$ über $\mathbb R$ zerlegbar Wenn $x=\frac{a}{b}\in K$ eine Nullstelle von $P=c_0+...+c_nX^n$ ist, dann gilt $a|c_0$ und $b|c_n$

 $\begin{array}{l} \textbf{Satz (Abbildungskriterium):} \ \ \text{Sei} \ \varphi:R \to S \ \text{ein Homom zwischen Integritätsringen, fortgeset} \ \ \text{\mathbb{Z}} \ \ \Phi:R[X] \to S[X]. \ \ \text{Sei} \ P \in R[X] \ \text{primitiv und} \ \ \varphi(lcP) \neq 0. \ \ \text{Falls} \ \ \Phi(P) \ \ \text{irred in} \ \ S[X], \ \ \text{dann auch} \ \ P \ \ \text{irred in} \ \ R[X]. \end{array}$

Beispiel: $P=3X^3+5X+7$ in $\mathbb{Z}[X]$ ist primitiv und Reduktion in $\mathbb{Z}/_2$ ist X^3+X+1 ist irreduzibel. Also ist auch P irreduzibel.

Satz (Eisenstein): Sei R ein Integritätsring und $P \in R[X]$ mit Grad ≥ 1 mit

- 2. Es gibt $p{\in}R$ prim sodass $p|a_0,...,p|a_{n-1}$ aber $p|d_n$ sowie $p^2|d_0$ (Eisenstein-Polynom) Dann ist P irreduzibel in R[X]. Beispiel: X^4-4X^3+6 mit $p{=}2$

Kreisteilungspolynome: \mathbf{x}^n – $\mathbf{1}$ = $(\mathbf{x}-1)(\mathbf{x}-\alpha)...(\mathbf{x}-\alpha^{n-1})$, wobei $\alpha=e^{\frac{2\pi i}{n}}$. In Q: (\mathbf{x}^n-1) = $(x-1)(x^{n-1}+...+1)$, falls n prim Klammern irred.

Matrizenringe, Elementarteilersatz

Definition: Eine Matrix $D \in K^{m \times n}$ ist in Elementarteilerform, wenn gilt:

- 1. D ist diagonal, d.h. $d_{ij}=0$ für $i\neq j$ 2. Auf der Diagonalen: $d_{11}|d_{22}|...|d_{ll}$ mit $l=\min\{m,n\}$, die d_{ii} heißen Elementarteiler

Inverse einer 2×2 -Matrix: Sei $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Dann folgt: $A^{-1}=\frac{1}{\det A}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Algorithmus von Gauß-Bézout

Zeilenoperationen: Sei d=ggT(x,y)=ux+vy. Dann:

$$A = \begin{pmatrix} x & * \\ y & * \end{pmatrix}, \ S = \begin{pmatrix} u & v \\ -y/d & x/d \end{pmatrix} \ \Rightarrow \ SA = \begin{pmatrix} d & * \\ 0 & * \end{pmatrix}$$

$$A = \begin{pmatrix} x & y \\ & * \end{pmatrix}, \ T = \begin{pmatrix} u & -y/d \\ v & x/d \end{pmatrix} \ \Rightarrow \ AT = \begin{pmatrix} d & 0 \\ & * \end{pmatrix}$$

 $\mbox{\bf Diagonal operationen: Sei } d{=}ggT(x{,}y){=}ux{+}vy. \mbox{ Dann}$

$$A = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}, \ S = \begin{pmatrix} u & v \\ -y/d & x/d \end{pmatrix}, \ T = \begin{pmatrix} 1 & -vy/d \\ 1 & ux/d \end{pmatrix} \ \Rightarrow \ SAT = \begin{pmatrix} d & 0 \\ 0 & xy/d \end{pmatrix}$$

 $\textbf{Satz:} \ \ \textbf{Sei} \ \ K \ \ \ \textbf{ein} \ \ \textbf{HIR.} \ \ \textbf{Zu} \ \ \textbf{jeder} \ \ \textbf{Matrix} \ \ A \in K^{m \times n} \ \ \textbf{existieren} \ \ \textbf{invertierbare} \ \ \textbf{Matrizen} \ \ S \in SL_m(K), T \in SL_n(K) \ \ \textbf{sodass} \ \ D = SAT \ \ \textbf{in} \ \ \textbf{Elementarteilerform} \ \ \textbf{ist.} \ \ \textbf{Die} \ \ \textbf{Elementarteiler} \ \ \textbf{sindeutig} \ \ \textbf{(bis auf Assozierte)}.$

Moduln

 $\begin{array}{l} \textbf{Definition (Modul): Sei} \ (R,+,\cdot) \ \text{ein kommutativer Ring. Ein} \ R\text{-Modul} \ (M,+,*) \ \text{besteht aus einer abelschen Gruppe} \ (M,+) \ \text{mit einer Operation} \ *:R\times M \rightarrow M, (a,x) \mapsto a*x \ \text{die folgenden Axiomen} \end{array}$ genügt:

- a*(x+y)=a*x+a*y
- (a+b)*x=a*x+b*x
- 3. (a·b)*x=a*(b*x)
- 4. 1*x=x Falls R nicht kommutativ ist, Unterscheidung von Rechts- und Linksmoduln.

Falls R ein Körper ist, ist M ein Vektorraum.

■ Für 5: 1=1 d.h. Z/₅ Die Gruppen mit 360 Elementen sind alle Kombinationen dieser Möglichkeiten, also gibt es $3\cdot 2\cdot 1=6$ Möglichkeiten, z.B. $\mathbb{Z}/_2\times \mathbb{Z}/_4\times \mathbb{Z}/_9\times \mathbb{Z}/_5$

Zerlegung in unzerlegbare Moduln Nach dem chinesischen Restsatz ist z.B. $\mathbb{Z}/_6 \cong \mathbb{Z}/_2 \times \mathbb{Z}/_3$. $\mathbb{Z}/_2$

Gruppentheorie

 $\label{eq:Satz:Fur} \textbf{Satz:} \ \text{Fur Gruppen} \ K < H < G \ \text{glit:} \ |G/K| = |G/H| \cdot |H/K| \\ \text{Spezialfall (S.v.Lagrange):} \ \text{European Gruppe} \ H < G \ \text{glit} \ |G| = |G/H| \cdot |H| \cdot |H|$ |G/H| heißt auch Index |G:H| von H in G

- Die Ordnung |H| jeder Untergruppe H < G teilt die Gruppenordnung |G|
- Die Ordnung ord(x) von $x{\in}G$ teilt die Gruppenordnung |G| Deshalb hat eine Gruppe von Primzahlordnung nur die trivialen Untergruppen und ist zyklisch.

 $\begin{array}{l} \textbf{Definition:} \ \ \text{Eine Untergruppe} \ K < G \ \ \text{heißt normal, wenn} \ \ _{K}a^{-1} = K \ \ \text{(d.h.} \ \ _{a}K = Ka. \\ \text{Rechtsnebenklassen} = \ \ \text{Linksnebenklassen)} \ \ \text{für alle} \ \ a \in G \ \ \text{gilt.} \ \ \text{Geschrieben:} \ \ K < G. \\ \end{array}$

Beispiel: Untergruppen von abelschen Gruppen sind normal. Kerne von Gruppenhom. sind normal.

Satz: Für jeden Gruppenhom $f:G \rightarrow H$ gilt: $G = |ker(f)| \cdot |im(f)|$

Satz: Homomorphiesatz und erster Isomorphiesatz gelten wie sonst immer

- $\textbf{2. Isomorphiesatz:} \ \mathsf{Sei} \ \textit{G} \ \mathsf{eine} \ \mathsf{Gruppe} \ \mathsf{und} \ \mathsf{seien} \ \textit{H,K} < \!\! \textit{G} \ \mathsf{zwei} \ \mathsf{Untergruppen}.$
- 1. Aus H < G und $K \triangleleft G$ folgt HK = KH2. Aus HK = KH folgt $HK = KH = \langle H \cup K \rangle$

Satz: Sei G eine Gruppe, H < G und $K \triangleleft G$. Dann gilt $H \cap K \triangleleft H$ und $H/(H \cap K) \cong HK/K$

3. Isomorphiesatz: Sei K < U < G und $(K \triangleleft G)$ oder $U \triangleleft G$, dann ist $(G/K)/(U/K) \cong G/U$

Definition: Der Kommutator von $a,b \in G$ ist $[a,b] = aba^{-1}b^{-1}$. Die von allen Kommutatoren in G erzeugte Untegruppe $[G,G]=\langle [a,b]:a,b\in G\rangle$ heißt Kommutatorgruppe von ${\it G}$

Abelschmachung: G/[G,G] ist abelsch

 $\textbf{Lemma:} \ \text{Seien} \ H,\! K \leq \! G \ \text{endliche Gruppen.} \ \text{Dann ist} \ |H| \cdot |K| \! = \! |HK| \cdot |H \cap K|.$

 $\label{eq:discrete_produkt} \mbox{\bf Direkte Produkte: } G \mbox{ ist das innere direkte Produkt von } H,K \mbox{ wenn } f:H\times K \rightarrow G, (a,b) \mapsto ab \mbox{ ein Isomorphismus ist. Dann identifizieren wir } H\times K \cong HK = G$

Satz: Für H,K < G sind äquivalent

- 1. G ist das innere direkte Produkt von H und K
- 2. HK=G und $H \cap G=\{1\}$ und $[H,K]=\{1\}$ 3. HK=G und $H \cap G=\{1\}$ und $H,K \triangleleft G$

Zyklische Gruppen

Satz: Die Gruppe G wird genau dann von $g \in G$ erzeugt, wenn der der $\mathrm{Hom}\,\mathbb{Z} \to G, k \mapsto g^k$ surjektiv ist. (Additive Schreibweise: $k \mapsto k \cdot g$)

Satz: Jede Untergruppe $H < \mathbb{Z}$ ist zyklisch. Jede zyklische Gruppe G ist isomorph zu $\mathbb{Z}/_n$. Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Die Untergruppen von $\mathbb{Z}/_n$ sind genau

Satz: Jede zyklische Gruppe der Ordnung n hat für jeden Teiler m von n genau eine Untergruppe vom Index m

Restsatz: Falls $m,n\in\mathbb{Z}$ teilerfremd sind, existiert ein Gruppeniso $\mathbb{Z}/_{mn}\cong\mathbb{Z}/_m\times\mathbb{Z}/_n$

 $\textbf{Beispiel:} \ (\mathbb{Z}/_n, +) \ \text{ist ein} \ \mathbb{Z} \text{-Modul.} \ \text{Der Polynomring} \ R[X] \ \text{ist ein} \ R \text{-Modul.} \ \text{Jedes Linksideal ist ein}$

Definition: Sei M ein R-Modul. $U \subset M$ heißt Untermodul über R falls U eine Untergruppe von (M,+) ist und RU=U gilt.

Beispiel: Jeder kommutative Ring ist Modul über sich selbst. Die Untermoduln sind genau die Ideale.

Torsion: Sei K ein Integritätsring und M ein K-Modul. $x \in M$ heißt Torsionselement wenn $\exists a \in K^*$

Beispiel: $1 \in \mathbb{Z}/_2$ ist ein Torsionselement im \mathbb{Z} -Modul $\mathbb{Z}/_2$ da $2 \cdot 1 = 0$

Definition: Ein R-Modul M heißt einfach, wenn für jeden Untermodul U entweder $U = \{0\}$ oder U=M gilt

Beispiel: \mathbb{Z}/n ist genau dann einfach, wenn n eine Primzahl ist. (Gilt allg in HIR) Ein Modul heißt unzerlegbar, wenn für jede direkte Summe (Anmerkung: A+B=M und $A\cap B=\{0\}$) $M=A\oplus B$ entweder A=0 oder B=0 gilt.

 $\text{Beispiel: } \mathbb{Z}_/p^k \text{ ist unzerlegbar für } p \text{ prim, aber } \mathbb{Z}/_{ab} = \mathbb{Z}/_a \times \mathbb{Z}/_b \text{ wenn } ggT(a,b) = 1 \text{ (Restsatz)}.$

Satz: Homo- und Isomorphiesätze gelten wie in Ringen mit Idealen (da Untermodul = Ideal)

 $\textbf{Definition:} \ X \subset M \ \text{heißt Basis des} \ R\text{-Moduls} \ M, \ \text{wenn} \ X \ \text{ein Erzeugendensystem und linear} \\ \text{unabhängig ist. Wenn} \ M \ \text{eine Basis hat, heißt} \ M \ \text{frei } \ddot{\text{u}} \text{ber} \ R.$

Beispiel: \mathbb{Z}^n ist frei, $\mathbb{Z}/_n$ ist nicht frei (als \mathbb{Z} -Modul), allgemein: \mathbb{R}^n ist frei über \mathbb{R}

Matrizen: Homomorphismen zwischen freien Moduln können als Matrix geschrieben werden.

Definition: Bei Moduln über Hauptidealringen sind alle Basen gleich groß, die Größe heißt Rang des Moduls (bei Vektorräumen: Dimension).

 $\textbf{Satz:} \ \mathsf{Sei} \ K \ \mathsf{ein} \ \mathsf{HIR.} \ \mathsf{Jeder} \ K \text{-} \mathsf{Untermodul} \ U {<} K^m \ \mathsf{ist} \ \mathsf{frei} \ \mathsf{und} \ \mathsf{erfüllt} \ rang_K(U) {\leq} m \\ \mathsf{Bei} \ \mathsf{beliebigen} \ \mathsf{Ringen} \ \mathsf{gelten} \ \mathsf{beide} \ \mathsf{Eigenschaften} \ \mathsf{nicht} \ \mathsf{notwendigerweise}.$

Satz: Sei M ein endlich erzeugter K-Modul. Dann ist auch ieder Untermodul über K endlich

Elementarteilersatz: Sei K ein HIR und sei M ein freier K-Modul vom Rang m. Für jeden

- $\begin{array}{lll} 1. & \text{eine Basis } b_1,...,b_m \text{ von } M \\ 2. & \text{Elemente } a_1,...,a_n \in K^* \text{ mit } a_1|...|a_n \text{ sodass } a_1b_1,...,a_nb_n \text{ eine Basis von } U \text{ ist. Die } a_i \text{ sind eindeutig durch } U \text{ bestimmt und heißen Elementarteiler von } U. \end{array}$

Das heißt auch, wenn U,U^\prime zwei Untermoduln sind, existiert genau dann ein Automorphismus $f:M \rightarrow M$ mit $f|_U = U'$ wenn die Elementarteiler übereinstimmen

 ${f Satz}\colon {f Sei}\ K$ ein HIR. Zu jedem endlich erzeugten K-Modul M existiert ein K-Isomorphismus

$$M \cong K/_{(a_1)} \times \cdots \times K/_{(a_n)} \times K^r$$

wobei $r \in \mathbb{N}$ (Rang des freien Anteils) und $a_1,...,a_n \in K^* \setminus K^\times$ mit $a_1 | ... | a_n$ (Elementarteiler) eindeutig.

 $\textbf{Satz:} \ \text{Über einem HIR} \ K \ \text{zerlegt sich jeder endlich erzeugte} \ K\text{-Modul} \ M \ \text{gemäß} \ M = T \oplus F \ \text{in den} \ \text{Torsionsmodul} \ T < M \ \text{(eindeutig)} \ \text{und einen freien Modul} \ F < M.$

Endliche abelsche Gruppen

Um eine Liste der verschiedenen abelschen Gruppen der Ordnung n zu finden, zerlegt man n in Primfaktoren und betrachtet wie man die Exponenten als Summe schreiben kann.

Beispiel: abelsche Gruppen mit $360 = 2^3 \cdot 3^2 \cdot 5$ Elementen.

- $\begin{array}{l} \blacksquare \ \ \text{Für 2: } 3 = 1 + 1 + 1 = 1 + 2 = 3 \ \text{d.h.} \ \mathbb{Z}/_2 \times \mathbb{Z}/_2 \times \mathbb{Z}/_2 \ \text{oder} \ \mathbb{Z}/_2 \times \mathbb{Z}/_{2^2} \ \text{oder} \ \mathbb{Z}/_{2^3} \\ \blacksquare \ \ \text{Für 3: } 2 = 1 + 1 = 2 \ \text{d.h.} \ \mathbb{Z}/_3 \times \mathbb{Z}/_3 \ \text{oder} \ \mathbb{Z}/_{3^2} \\ \end{array}$

Satz: \bar{a} erzeugt $\mathbb{Z}/_n$ wenn $ggT(a,n){=}1$ gilt

Beispiel: 3 erzeugt $\mathbb{Z}/_4$ weil 3+3=2, 3+3+3=1, 3+3+3+3=0 alle Elemente sind

Satz: Wenn p eine Primzahl ist, hat $(\mathbb{Z}/_p)^{ imes}$ Ordnung p-1 und ist zyklisch.

Konjugation

 $\textbf{Definition:} \ \mathsf{Das} \ \mathsf{Zentrum} \ \mathsf{einer} \ \mathsf{Gruppe} \ \textit{G} \ \mathsf{ist} \ \mathsf{das} \ \mathsf{was} \ \mathsf{mit} \ \mathsf{allem} \ \mathsf{kommutiert:}$

$$Z(G) = \{ z \in G : za = az \ \forall a \in G \} \triangleleft G$$

Der Zentralisator eines Elements a sind alle Elemente, die mit a kommutieren:

$$Z(G) < Z_G(a) = \{b \in G : ab = ba\} < G$$

Der Zentralisator existiert auch für Untergruppen (nicht nur einzelne Elemente)

Definition: Für $c \in G$ definieren wir die Linkskonjugation $\gamma_c : G \to G, g \mapsto cgc^{-1} = : {}^cg$ und Rechtskonjugation $\delta_c : G \rightarrow G, g \mapsto c^{-1}gc = : g^c$

Satz: Es gilt $\gamma_c \in Aut(G)$, $\gamma: c \mapsto \gamma_c$ ist ein Gruppenhom mit $ker(\gamma) = Z(G)$

 $\textbf{Definition: } Inn(G) = \gamma(G) \triangleleft Aut(G), \ Out(G) = Aut(G)/Inn(G)$

Definition: Der Normalisator einer Untergruppe U < G ist das was U unter Konjugation invariant lässt:

$$U \triangleleft N_G(U) = \{g \in G : U^g = U\}$$

Bemerkung: $Z_G(U) < N_G(U)$

Definition: U < G heißt charakteristisch, wenn für alle $\alpha \in Aut(G)$ gilt dass $\alpha(U) = U$.

 $\textbf{Definition:} \ \mathsf{Sei} \ \textit{G} \ \mathsf{eine} \ \mathsf{Gruppe} \ \mathsf{und} \ \textit{X} \ \mathsf{eine} \ \mathsf{Menge}. \ \mathsf{Eine} \ \mathsf{Operation} \ \mathsf{von} \ \textit{G} \ \mathsf{auf} \ \textit{X} \ \mathsf{ist} \ \mathsf{eine} \ \mathsf{Abbildung}$

$$(a \cdot b) * x = a * (b * x)$$
 und $1 * x = x$

Es gibt auch Rechtsoperationen

Satz: (Bahnengleichung) Für jedes $x \in X$ ist $Gx = |G:G_x|$. Wenn $|G| < \infty$ dann gilt demnach $|G| = |Gx| \cdot |G_x|$, insbesondere |Gx| teilt |G|.

Beispiel: G operiert auf sich selbst mit Konjugation, $(x,g)\mapsto g^{-1}xg$. Die Bahn von x ist die Konjugationsklasse x^G und die Standgruppe ist der Zentralisator $Z_G(x)$. Die Anzahl der zu x konjugierten Elemente ist $|x^G|=|G:Z_G(x)|$.

Satz (Bahnengleichung): Es gilt

$$X=Fix(G)\sqcup\bigsqcup_{k\in K}Gx_k$$
 wobei die $_k$ die nicht trivialen Bahnen repräsentieren. Es folgt:
$$|X|=|Fix(G)|+\sum_{k\in K}|G:G_{x_k}|$$

$$|X| = |Fix(G)| + \sum_{k \in K} |G: G_{x_k}|$$

Definition: Eine p-Gruppe ist eine Gruppe mit Ordnung p^e für ein $e \in \mathbb{N}$.

Satz: Jede nicht-triviale p-Gruppe hat nicht-triviales Zentrum

Satz: Für jede Gruppe der Ordnung p^e existiert eine Kette

$$\{1\} = K_0 < \ldots < K_e = G$$

wobei $K_i \triangleleft G$ die Ordnung p^i hat, d.h. K_i/K_{i+1} ist zyklisch von Primzahlordnung.

Satz: Eine endliche Gruppe G ist genau dann eine p-Gruppe, wenn jedes $x \in G$ ein p-Element ist (d.h. $ord(x) = p^k$)

Symmetrische / Alternierende Gruppen

 $\textbf{Definition:} \ \ \text{Die Fixpunkte einer Permutation} \ \ \sigma \in S_X \ \text{sind} \ \ Fix(\sigma) = \{x \in X : \sigma(x) = x\}. \ \ \text{Der Träger ist}$ $supp(\sigma)=\{x\in X:\sigma(x)\neq x\}.$ Permutationen heißen disjunkt, wenn $supp(\sigma)\cap supp(\tau)=\emptyset$, disjunkte Perm. kommutieren

Schreibweise: Eine Permutation in S_n kann zum Beispiel so geschrieben werden:

oder in Zykelschreibweise $\sigma = (1,4,3,8,7)(2,6)$ (disjunkte Zykel immer eindeutig möglich).

 $\label{eq:Definition:} \textbf{ Definition:} \ \ \text{Eine Transposition ist ein 2er-Zykel} \ (i,j).$ Die symmetrische Gruppe wird von ihren Transpositionen erzeugt. Sogar schon von den Transpositionen benachbarter Elemente.

Satz: Für n > 3 hat S_n triviales Zentrum

Satz: Für alle n gilt $|S_n|=n!$

Zykel

 $\textbf{Definition:} \ \ \text{Ein Zykel der Länge} \ \ l \ \ \text{ist eine Permutation} \ \ \sigma(i_1,...,i_l) \ \ \text{mit} \ \ \sigma(i_k) = i_{k+1} \ \ \text{und alle anderen}$ Elemente sind fix. Die Ordnung des Zykels ist $\it l$

 $\textbf{Satz:} \ \mathsf{Jeder} \ \mathit{I-} \mathsf{Zykel} \ \mathsf{schreibt} \ \mathsf{sich} \ \mathsf{als} \ \mathsf{Produkt} \ \mathsf{von} \ \mathit{I-} \mathsf{1} \ \mathsf{Transpositionen:} \\ (i_1, \dots, i_l) = (i_1, i_2) \cdots (i_{l-1}, i_l)$

Definition: Sei σ ein Produkt disjunkter Zykel der Längen $l_1 \ge l_2 \ge ... \ge l_r \ge 2$. Dann ist $(l_1,...,l_r) \in \mathbb{N}^r$ die Zykelstruktur von σ . Verlängert um die Fixpunkte $l_{r+1} = ... = l_{\sigma} = 1$ erhält man die Bahnenstruktur. die Zykelstruktur von σ . Verlängert um die Fixpunkte l_{r+1} = Dies ist eine Partition von n: $\sum l_k = n$

Bemerkung: Die Ordnung von σ ist $ord(\sigma)=kgV(l_1,...,l_r)$.

Satz: Für jeden Zykel $c{=}(i_1,...,i_l){\in}S_n$ und $\tau{\in}S_n$ gilt:

$$\tau \circ c \circ \tau^{-1} = (\tau(i_1), \ldots, \tau(i_l))$$

Daraus folgt: Zwei Permutationen sind genau dann konjugiert, wenn sie die selbe Zykelstruktur haben.

Satz: Sie $\sigma \in S_n$. In der Bahnenzerlegung von σ treten m_l Bahnen der Länge \underline{l} auf. Dann hat der Zentralisator von σ die Ordnung:

$$|Z_{S_n}(\sigma)| = m_1! \cdot 1^{m_1} \cdot m_2! \cdot 2^{m_2} \cdot m_3! \cdots m_n! \cdots n^{m_n}$$

Die Konjugationsklasse von σ hat die Ordnung $|\sigma^{S_n}| = |S_n|/|Z_{S_n}|$.

Signatur

 $\begin{array}{l} \textbf{Definition:} \\ \text{Für } n \geq 2 \text{ existiert genau ein nicht-trivialer Gruppenhom } S_n \rightarrow \pm 1. \text{ Diesen nennen wir die Signatur, geschrieben } sign: \\ S_n \rightarrow \pm 1. \\ \text{Permutationen mit } sign=+1 \text{ heißen gerade, die mit } sign=-1 \text{ heißen ungerade.} \end{array}$

Satz: Für einen $\emph{l}\text{-}\mathit{Zykel}$ ist $sign = (-1)^{l-1}$.

Definition: Sei p prim. Sei G eine Gruppe der Ordnung $|G|=p^e \cdot a$ mit $e,a \in \mathbb{N}$ und $p|\underline{b}$. Eine p-Sylow-Untergruppe von G ist eine Untergruppe P < G der Ordnung $|P|=p^e$. Die Menge der p-Sylow-Untergruppen bezeichnen wir mit $Syl_p(G)$.

Satz (Sylow): Sei p prim und $|G| = p^e \cdot a$ wie oben. Dann gilt:

- Jede p-Untergruppe von G liegt in einer p-Sylow-Untergruppe von G. D.h. es existiert mindestens eine p-Sylow-Untergruppe in G.
 Je zwei p-Sylow-Untergruppen sind in G konjugiert.
- 3. Ihre Anzahl $m_p\!=\!|Syl_p(G)|$ erfüllt $m_p|a$ und $m_p\!=\!1\!+\!kp$, $k\!\in\!\mathbb{N}$

Satz: Eine p-Sylow-Gruppe $P \in Syl_p(G)$ ist einzig genau dann, wenn P normal ist in G.

Satz: Sei G eine endliche Gruppe und T die Anzahl der T-Sylowgruppen. Dann gibt es einen Homomorphismus $\varphi(G \to S_r)$. (Konjugation (Anmerkung: Ein $g \in G$ permutiert die Sylowgruppen durch Konjugation, φ ist die Abbildung von g auf diese Permutation) ist G einfact trivial (nicht $g \mapsto id$ für alle g), so ist φ sogar injektiv, also ist |G| ein Teiler von $r! = |S_r|$.

 $\textbf{Satz: Sind } K,H < G \text{ Untergruppen mit } ggT([K],|H|) = 1. \text{ Dann ist } K \cap H = \{1\}. \text{ Gilt andererseits } |K| = |H| = p. \text{ so ist entweder } K \cap H = \{1\} \text{ oder } K = H.$

Satz: Sind $K, H \triangleleft G$ Normalteiler mit $K \cap H = \{1\}$, dann ist $KH \cong K \times H$

Satz: Wenn $K < S_n$ eine Unterruppe von Index 2 ist, dann gilt $K = A_n$

Satz: Wenn es nur eine p-Sylowgruppe in einer Gruppe H gibt, dann ist P \triangleleft G

 $\textbf{Satz: 1.} \ \ \text{Sei Geine endliche Gruppe und r die Anzahl der p-Sylowgruppen.} \ \ \text{Dann gibt es einen Homomorphismus phi:G nach S_{Γ}.}$

2. Ist G einfach und phi nicht trivial, so isr phi sogar injektiv, also |G| ein Teiler von r!=|S_r|.

Beispiel: Sei G eine einfache Gruppe der Ordnung |G|=60. Zeigen Sie, dass es in G genau zehn

3-Sylowgruppen gibt. 60=31-20. Care specified in the specific property of the specified in the specified in

(Widerspruch) Also gibt es 10 3-Sylowgruppen.

Auflösbare Gruppen

 $\textbf{Definition:} \ \ \text{Eine endliche Gruppe heißt auflösbar, wenn es eine Folge} \ \{1\} = G_n \triangleleft \ldots \triangleleft G_1 \triangleleft G_0 = G \ \text{von Untergruppen gibt sodass jeweils} \ G_{i+1} \triangleleft G_i \ \text{normal ist vom Primindex.}$

 $\text{Beispiel: Jede zyklische Gruppe } \mathbb{Z}/_n \text{ ist auflösbar: } \{0\} = p_1 \cdots p_r \mathbb{Z}/_n \triangleleft \cdots \triangleleft p_1 \mathbb{Z}/_n \triangleleft \mathbb{Z}/_n \square \mathbb{Z}/_$

Satz: Sei G eine endliche Gruppe

- 1. Ist G auflösbar, dann sind auch alle Untergruppen H < G und Quotienten G/K auflösbar.

Definition: Aus einer Gruppe G leiten wir die Kommutatorgruppe ab: D(G)=[G,G] Die abgeleiteten Gruppen sind $D^0(G)=G$ und $D^{k+1}(G)=D(D^k(G))$.

Satz: Für jede endliche Gruppe sind äquivalent:

- $\begin{array}{ll} 1. \ \ G \ \text{ist auflösbar} \\ 2. \ \ \text{Es existiert eine Kette} \ \{1\} = G_n \triangleleft ... \triangleleft G_1 \triangleleft G_0 = G \ \text{mit} \ G_i/G_{i+1} \ \text{zyklisch} \\ 3. \ \ \ \text{Es existiert eine Kette} \ \{1\} = G_n \triangleleft ... \triangleleft G_1 \triangleleft G_0 = G \ \text{mit} \ G_i/G_{i+1} \ \text{abelsch} \end{array}$
- 4. Die Kette $G=D^0(G)|>D^1(G)|>\dots$ endet mit $D^n(G)=\{1\}$

Alternierende Gruppe

Definition: Die Menge der geraden Permutationen ist die alternierende Gruppe $A_n = ker sign(S_n)$. Für n=1 ist A_n trivial, für $n \ge 2$ ist $A_n \triangleleft S_n$ vom Index 2, also $|A_n| = \frac{n!}{2}$

 A_n ist die Kommutatorgruppe von S_n

Satz: Die alternierende Gruppe wird von ihren 3-Zykeln erzeugt.

Satz: Für jedes $\sigma \in A_n$ gilt

- $\begin{array}{ll} \text{1.} & \text{Wenn } Z_{S_n}(\sigma) \subset A_n \text{ dann gilt } Z_{S_n}(\sigma) = Z_{A_n}(\sigma) \text{ und } \sigma^{S_n} = \sigma^{A_n} \sqcup \sigma^{A_n}(1,2) \\ \text{2.} & \text{Wenn } Z_{S_n}(\sigma) \not \subset A_n \text{ dann gilt } |Z_{S_n}(\sigma) : Z_{A_n}(\sigma)| = 2 \text{ und } \sigma^{A_n} = \sigma^{S_n}. \end{array}$

 $\textbf{Satz:} \ \text{Für} \ n {\geq} 5 \ \text{sind in} \ A_n \ \text{alle 3-Zykel konjugiert}.$

Finfache Gruppen

Definition: Eine Gruppe heißt einfach wenn sie nur die 2 trivialen normalen Untergruppen hat. Äquivalent: G ist einfach, wenn jeder Gruppenhom $f:G \to H$ trivial oder injektiv ist.

Beispiel: S2

Satz: Jede Gruppe von Primzahlordnung ist einfach (isomorph zu \mathbb{Z}/p). Eine abelsche Gruppe ist genau dann einfach, wenn sie von Primzahlordnung ist.

Satz: Für n > 5 ist A_n einfach. (außerdem für n = 3, A_n ist abelsch)

 $\textbf{Satz:} \ \text{Jede einfache Gruppe} \ G \ \text{mit einer Untergruppe} \ H < G \ \text{vom Index} \ n \ge 2 \ \text{kann in} \ S_n \ \text{eingebettet} \ \text{werden.} \ \text{Für} \ G \not\cong \mathbb{Z}/2 \ \text{gilt dann} \ |G| \le \frac{n!}{2}$

Satz: Für $n \ge 5$ enthält A_n keine Untergruppe vom Index 2,3,...,n-1.

Semidirektes Produkt

Definition: G ist das interne semidirekte Produkt von $K \triangleleft G$ und $H \triangleleft G$ wenn KH = G und $K \cap H = \{1\}$, geschrieben $G = K \bowtie H$

Beispiel: $S_n=A_n\rtimes\langle(1,2)\rangle$

 $\textbf{Internes und externes Produkt:} \ \text{Wir wollen die Verknüpfung von} \ (k_1,h_1) \ \text{und} \ (k_2,h_2) \ \text{definieren}.$ Sind $K,H\!<\!G$ dann geht das wie folgt durch Einfügen von $h_1^{-1}\check{h}_1$:

$$(k_1, h_1) \cdot (k_2, h_2) = (k_1 \underbrace{h_1 k_2 h_1^{-1}}_{\in K}, h_1 h_2)$$

Das heißt internes semidirektes Produkt. Steht die Operation durch Konjugation nicht zur Verfügung, weil nicht $K,H\!<\!G$ ist, kann man das ersetzen durch einen beliebigen Gruppenhomomorphismus $\alpha: H \rightarrow Aut(K)$ und definieren:

$$(k_1, h_1) \cdot (k_2, h_2) = (k_1 \alpha(h_1)(k_2))(h_1 h_2)$$

Das heißt dann externes semidirektes Produkt ${}_{K}\overset{\alpha}{\rtimes} H$. Das interne semidirekte Produkt ist also das externe mit der Operation $\bar{\alpha}(h)(k) = hkh^{-1}$. Für $\alpha = id$ ergibt sich das direkte Produkt.

Beispiel: Die Diedergruppe $D_n = \mathbb{Z}/n \stackrel{\alpha}{\rtimes} \mathbb{Z}/2 \text{ mit } \alpha: \mathbb{Z}/2 \rightarrow Aut(\mathbb{Z}/n), \bar{n} \mapsto (-1)^n$

Satz: Seien p < q zwei Primzahlen. Wenn p|/(q-1) dann existiert nur ein semidirektes Produkt der Form $\mathbb{Z}|_q \rtimes \mathbb{Z}/_p$, afmilich das direkte Produkt $\mathbb{Z}|_q \rtimes \mathbb{Z}/_p$. Gilt hingegen p|(q-1) dann existiert außerdem ein nicht-triviales semidirektes Produkt. Dieses ist bis auf Isomorphie eindeutig.

Sylow-Sätze

 $\textbf{Satz (Cauchy)} \text{: Teilt eine Primzahl } p \text{ die Ordnung der Gruppe } G \text{ dann existiert ein Element } x \in G \text{ der Ordnung } p \text{ und damit eine Untergruppe } \langle x \rangle < G \text{ der Ordnung } p.$

Körpererweiterungen

dieser eine Körpererweiterung von K

Beispiel: Zu jedem Körper K enthält der Polynomring K[X] den Körper K als Unterkörper. Dies gilt auch für den Bruchkörper $K(X) = \{P/Q: P, Q \in K[X], Q \neq 0\}$ der rationalen Funktionen, also ist

Notation: $\sigma \in Hom(E|K,F|K)$ ist eine Homomorphismus zwischen den Körpererweiterungen E,F

von K sodass $\sigma|_{K}=id_{K}$ ist. (Geht auch zB mit End(E|K) oder Aut(E|K)**Definition:** Die Dimension von E als K-Vektorraum $|E:K| = dim_K(E)$ heißt Grad der Erweiterung.

Beispiel: Ist $P\in K[X]$ irreduzibel (über K), dann ist E=K[X]/(P) wieder ein Körper vom Grad |E:K|=deg(P), zum Beispiel hat $\mathbb{Z}/_2[X]/(X^2+X+1)$ Grad 2 über $\mathbb{Z}/_2$ (Basis: 1,X).

Satz (Gradformel): Für Körpererweiterungen $K {<} F {<} E$ gilt:

$$[M:K] = [M:L] \cdot [L:K]$$

Algebraische Erweiterungen

Definition: E|K heißt einfache Erweiterung, wenn es $a{\in}E$ gibt mit $E{=}K(a)$. Dann heißt aprimitives Element der Körpererweiterung

Definition: Sei E|K Körpererweiterung. $a \in E$ heißt algebraisch über K wenn es ein Polynom $P{\in}K[X]^*$ gibt mit $P(a){=}0$. Sonst heißt a transzendent über K. Wenn jedes $a{\in}E$ algebraisch ist, heißt E algebraische Körpererweiterung

Saftinition: Sei E|K eine Körpererweiterung. Für jedes $a \in E$ sind äquivalent:

- Das Element a ist algebraisch über k
- 2. Die Erweiterung K[a] ist endlich über K3. Der erzeugte Teilring K[a] ist ein Körper: K[a] = K(a) Dann existiert genau ein normiertes Polynom $P \in K[x]^*$ minimalen Grades mit P(a) = 0. Dieses heißt Minimalpolynom von a: $Irr_K^{\times}(a)=P$

Die Dimension von a über K ist $deg_K(a)=|K(a):K|$

Zerfällungskörper

 $\textbf{Satz (Kronecker):} \ \text{Sei} \ \underline{K} \ \text{ein K\"{o}rper.} \ \text{Zu jedem} \ P \in \!\! K[X] \ \text{vom Grad} \ deg(P) \!\! \geq \!\! 1 \ \text{existiert ein algebraischer Erweiterungsk\"{o}rper} \ E|K \ \text{in dem } P \ \text{eine Nullstelle hat.}$

 $\textbf{Satz:} \ \mathsf{Ein} \ \mathsf{K\"{o}rperhom} \ \sigma : E \to F \ \mathsf{\"{u}ber} \ K \ (\mathsf{d.h.} \ Hom(E|K,F|K)) \ \mathsf{bildet} \ \mathsf{Nullstellen} \ \mathsf{von} \ P \in K[X] \ \mathsf{in} \ E \ \mathsf{auf}$ Nullstellen von ${\cal P}$ in ${\cal F}$ ab. Insbesondere: Körperautomorphismen permutieren Nullstellen.

Satz: Seien K(a) und $K(a^\prime)$ einfache algebraische Erweiterungen. Genau dann existiert ein Körperiso $\sigma:K(a)\stackrel{\sim}{\to} K(a')$ mit $\sigma|_K=id_K$ und $\sigma(a)=a'$ wenn $Irr_K^{\times}(a)=Irr_K^{\times}(a')$ ist.

Definition: Sei E|K eine Körpererweiterung und $P\in K[X]^*$. Wir sagen P zerfällt über E, wenn es $a_1,...,a_n\in E$ gibt sodass $P=lc(P)\cdot (X-a_1)\cdots (X-a_n)$ gilt. Gilt zudem $E=K(a_1,...,a_n)$ dann nennen wir E einen Zerfällungskörper von P über K (so wenig wie möglich und so viel wie nötig).

Satz: Zu jedem Polynom $P{\in}K[X]^*$ existiert ein Zerfällungskörper E über K. Je

Zerfällungskörper sind isomorph. Allgemeiner: Sei $\varphi\colon K \to K'$ ein Körperiso. Sei $P\in K[X]$ und E Zerfällungskörper. Sei $P'=\varphi(P)$ das entsprechende Polynom in K' und E' der Zerfällungskörper davon. Dann existiert ein Körperiso $\sigma: E \tilde{\rightarrow} E' \text{ mit } \sigma|_K = \varphi$

 $\begin{tabular}{ll} \textbf{Definition:} Ein K\"{o}rper C heißt algebraisch abgeschlossen wenn jedes $P \in C[X]$^* \"{u}ber C zerf\"{a}llt. $C|K$ heißt algebraischer Abschluss wenn $C|K$ algebraisch und C abgeschlossen C abgesc$

Satz: Für jeden Körper C sind äquivalent:

- 1. Jedes $P{\in}C[X]$ mit $deg(P){\geq}1$ hat eine Nullstelle in C
- C ist alg. abg
- 2. C ist arg. ang. 3. Jedes irred. Polynom in C[X] hat Grad 1 4. Für jede algebraische Erweiterung E|C gilt E=C

Satz: Sei C|K algebraische Erweiterung. Dann sind äquivalent:

- 1. Jedes $P{\in}C[X]^*$ zerfällt über C2. Jedes $P{\in}K[X]^*$ zerfällt über C

 ${f Satz:}\ {f Zu}\ {f jedem}\ {f K\"orper}\ {f K}\ {f existiert}\ {f ein}\ {f algebraischer}\ {f Abschlüsse}\ {f sind}$ isomorph über K.

 $\textbf{Satz: } \text{Sei } \varphi: K \rightarrow K' \text{ ein K\"orperiso. } \text{Sei } E|K \text{ eine algebraische Erweiterung und } C|K' \text{ ein alg.}$ Abschluss. Dann ex. ein K\"orperhom $\sigma: E \rightarrow C \text{ mit } \sigma|_K = \varphi.$ Ist zudem E algebraisch abgeschlossen und C|K'| algebraisch, dann ist jeder K\"orperhom $\sigma: E \rightarrow C$ über K ein Isomorphismus

Endliche Körper

Klassifikation

Satz: Endliche Körper erlauben folgende Klassifikation:

- Jeder endliche K\(\tilde{o}\)rper hat \(p^n\) Elemente wobei \(p=char(F)\) und \(n\in \mathbb{N}_{\geq 1}\)
 Denn: \(K\) enth\(\tilde{a}\)litt\(\mathbb{R}\) \(p^n\) mit \(n\in \mathbb{N}_{\geq 1}\) existieren K\(\tilde{o}\)rper mit \(p^n\) \(\mathbb{R}\) existieren K\(\tilde{o}\)rper mit \(p^n\) \(\mathbb{R}\) ben: \(D\)rper Zerf\(\tilde{a}\)little und sk\(\tilde{o}\)rper mit \(p^n\) \(\mathbb{R}\) ben: \(D\)rper Zerf\(\tilde{a}\)little und sk\(\tilde{o}\)rper mit \(p^n\) \(\mathbb{R}\) ben: \(\mathbb{P}\)rper zerf\(\tilde{a}\) hat \(\mathbb{P}\)rper zerf\(\mathbb{R}\)rper mit \(p^n\)rper mit \(p^n\)rper mit \(p^n\)rper mit \(p^n\)rper mit \(\mathbb{R}\)rper mit \(\mathbb{R

Teilkörper: Sei F ein Körper der Ordnung p^n mit $p\in \mathbb{N}$ prim und $n\in \mathbb{N}_{\geq 1}$. Dann hat jeder Teilkörper K < F Ordnung p^m mit m|n. Umgekehrt existiert für jeden Teiler m|n in \mathbb{N} genau ein Teilkörper K < F der Ordnung p^m .

 $\begin{array}{l} \textbf{Automorphismen:} \ \text{Sei} \ F \ \text{ein} \ \text{K\"orper} \ \text{der} \ \text{Ordnung} \ p^n \ \text{mit} \ p \in \mathbb{N} \ \text{prim} \ \text{und} \ n \in \mathbb{N}_{\geq 1}. \ \text{Dann} \ \text{ist} \ Aut(F) = \langle f_p \rangle \ \text{eine} \ \text{zyklische} \ \text{Gruppe} \ \text{der} \ \text{Ordnung} \ n. \ f_p \ \text{ist} \ \text{der} \ \text{Frobenius-Homomorphismus}. \end{array}$

Galois-Korrespondenz: Gilt hier genauso wie allgemeiner in Kapitel 14

Galois-Theorie

Definition: Eine algebraische Körpererweiterung E|K heißt galoissch wenn Fix(Aut(E|K))=K. Trivialerweise gilt $K \subset Fix(Aut(E|K))$, die Bedingung besagt dass jedes Element aus $E \setminus K$ von einem Automorphismus bewegt wird

Satz: Für jede endliche Körpererweiterung E|K gilt $|Aut(E|K)| \le |E:K|$ und E|K ist genau dann galoissch wenn Gleichheit gilt.

Satz (Galois-Korrespondenz): Sei E|K galoissch. Die Zwischenkörper der Erweiterung korrespondieren mit den Untergruppen von Aut(E|K):

- Zu einem Zwischenkörper K < F < E haben wir G = Aut(E|F)

- entsprechen sich: $|F_2:F_1|=|G_1:G_2|$ $F_2|F_1$ ist galoissch genau dann wenn $G_2 \triangleleft G_1$ ist, dann gilt $g(F_2)=F_2$ für $g \in Aut(E|F_1)$

Separable Erweiterungen

 $\begin{array}{l} \textbf{Definition:} \ \mathsf{Sei} \ K \ \mathsf{ein} \ \mathsf{K\"{o}rper} \ \mathsf{und} \ C \ \mathsf{ein} \ \mathsf{alg}. \ \mathsf{Abschluss.} \ P \in K[X] \ \mathsf{heißt} \ \mathsf{separabel}, \ \mathsf{wenn} \ \mathsf{es} \ \mathsf{in} \ C \ \mathsf{lauter} \ \mathsf{verschiedene} \ \mathsf{Nullstellen} \ \mathsf{hat.} \ \mathsf{Gleichbedeutend} \ \mathsf{mit} \ ggT(P,P') = 1, \ \mathsf{irreduzible} \ \mathsf{Polynome} \ \mathsf{sind} \ \mathsf{separabel} \ \mathsf{genau} \ \mathsf{dann} \ \mathsf{wenn} \ P' \neq 0. \end{array}$

Ein algebraisches Element $a{\in}E|K$ heißt separabel über K wenn sein Minimalpolynom $Irr_K^{ imes}(a)$

Satz: Seien $z,z_1,...,z_r \in \mathbb{C}$ komplexe Zahlen. Dann sind äquivalent:

- 1. Der Punkt z ist mit Zirkel und Lineal konstruierbar ausgehend von $1,z_1,...,z_r$.
 2. Ausgehend vom Grundkörper $K = Q(z_1,...,z_r)$ gibt es einen Turm quadratischer Erweiterungen $K = E_0 < E_1 < ... < E_n$ mit $z \in E_n$.
 3. Die Zahl z ist algebraisch über $K = Q(z_1,...,z_r)$ und die normale Hülle (Anmerkung: Die Erweiterung von K mit $S = \{b \in C: b \text{ ist } zu \text{ einem } a \in E \text{ über } K \text{ konjugiert} \}$ (C ist der alg. Abschluss)) E von K(z) über K hat als Grad eine Zweierpotenz, also $|E:K| = 2^n$ für ein $n \in \mathbb{N}$.

Satz: Das regelmäßige n-Eck ist genau dann mit Zirkel und Lineal konstruierbar, wenn $n=2^{e}\cdot p_1\cdots p_l$ gilt mit $e \in \mathbb{N}$ und Fermat-Primzahlen (Anmerkung: Primzahlen $2^{2^n} + 1$) $p_1 < ... < p_k$

Auflösbare Erweiterungen

 $\textbf{Satz:} \ \, \text{Sei} \ \, p \in \mathbb{N} \ \, \text{prim.} \ \, \text{Sei} \ \, K \ \, \text{K\"orper mit } char(K) = 0, \ \, \text{der eine primitive} \, p \text{-te Einheitswurzel enth\"{a}lt.} \ \, \text{F\"ur} \, E | K \ \, \text{sind \"aquivalent:}$

- 1. $\exists a{\in}E, a{\notin}K$ mit $E{=}K(a)$ und $a^p{\in}K$ 2. Die Erweiterung E|K ist galoissch vom Grad $|E{:}K|{=}p$

Definition: Eine endliche Erweiterung E|K heißt Radikalerweiterung wenn es $a{\in}E$ gibt mit E=K(a) und $a^n \in K$.

Eine Körpererweiterung F|K heißt durch Radikale auflösbar wenn es eine Erweiterung E|F und einen Turm von Radikalerweiterungen K<...< E gibt.

 $\textbf{Satz:} \ \text{Sei} \ P \ \text{ein} \ P \text{olynom} \ \text{\"{u}} \text{ber} \ \text{einem} \ \text{K\"{o}} \text{rper} \ \text{der} \ \text{Charakteristik} \ 0. \ \text{Dann} \ \text{ist} \ P \ \text{genau} \ \text{dann} \ \text{\"{u}} \text{ber} \ K \ \text{durch} \ \text{Radikale} \ \text{aufl\"{o}} \text{sbar}, \ \text{wenn die Galois-Gruppe} \ Gal(P|K) \ \text{aufl\"{o}} \text{sbar} \ \text{ist}.$

Beispiel: Jedes Polynom mit Grad <4 ist durch Radikale auflösbar, weil sich die Galois-Gruppe in die S_4 einbetten lässt, die auflösbar ist

Von "http://www.igt.uni-stuttgart.de/wiki/Algebra SoSe 2010 Spickzettel"

■ Diese Seite wurde zuletzt am 16. September 2010 um 13:49 Uhr geändert.

separabel über K ist. Eine algebraische Erweiterung heißt separabel wenn jedes $a{\in}E$ separabel über K ist.

 $\begin{tabular}{ll} \textbf{Definition:} Ein K\"{o}rper heißt vollkommen, wenn jede alg. Erweiterung $E|K$ separabel ist. Zum Beispiel ist jeder K\"{o}rper mit Charakteristik 0 vollkommen (da P' $\ne 0). \end{tabular}$

Satz: Ein Körper der Charakteristik p>0 ist genau dann vollkommen, wenn der Frobenius-Homomorphismus ein Automorphismus ist.

Satz (Steinitz): Sei E|K eine endliche Erweiterung. Genau dann existiert ein primitives Element $a \in E$ wenn E|K nur endlich viele Zwischenkörper besitzt.

Satz: Ist E|K endlich und separabel, dann existiert ein primitives Element $a{\in}E$.

Saftinition: Sei E|K eine alg. Erweiterung und C|K alg. Abschluss. Wir nennen $a{\in}E$ und $b{\in}C$ konjugiert über K wenn die folgenden äguivalenten Bedingungen gelten:

- $\begin{array}{ll} \text{1. Es gibt einen Hom} \ \sigma:E\to C \ \text{\"{u}ber} \ K \ \text{mit} \ \sigma(a)=b \\ \text{2. Es gibt einen Hom} \ \sigma:K(a)\to K(b) \ \text{\"{u}ber} \ K \ \text{mit} \ \sigma(a)=b \\ \text{3. F\"{u}r die Minimalpolynome} \ \text{\"{u}ber} \ K \ \text{gilt} \ Irr_{K}^{\ K}(a)=Irr_{K}^{\ K}(b) \end{array}$

Saftinition: Sei C|K alg. Abschluss und $K{<}E{<}C$. Dann sind äquivalent:

- 1. Für jeden Hom $\sigma \in Hom(E|K,C|K)$ gilt $\sigma(E)=E$
- Zu jedem Element a∈E enthält E auch alle Konjugierten von a in C über K
 Hat ein irred Polynom P∈K[X] eine Nullstelle in E, so zerfällt es über E
 E ist der Zerfällungskörper einer Menge P⊂K[X] von Polynomen über K Dann heißt E|K

Satz: Für jede algebraische Körpererweiterung E|K gilt: E|K ist galoissch genau dann wenn E|K normal und separabel ist. Dann ist für jeden Zwischenkörper K < F < E die Erweiterung E|F auch galoissch

Galois-Gruppe einer Gleichung

 $\begin{tabular}{ll} \textbf{Definition:} Sei $P \in K[X]$ separabel. Sei E der Zerfällungskörper von P über K. Die Galois-Gruppe $Aut(E|K)$ nennt man dann auch die Galois-Gruppe von P über K, geschrieben K. The separation of the properties of the properties$ Aut(E|K) nennt man of Gal(P|K) = Aut(E|K)

 $\textbf{Satz:} \ \textbf{F\"ur} \ \textbf{jedes} \ \textbf{separable} \ P \in K[X] \ \textbf{operiert} \ \textbf{seine} \ \textbf{Galois-Gruppe} \ \textbf{auf} \ \textbf{der} \ \textbf{Nullstellenmenge}.$ Dadurch erhalten wir einen injektiven (nicht unbedingt bijektiven) Gruppenhomomorphismus $Gal(P|K) \rightarrow S_N$ wobei N die Nullstellenmenge von P ist. Insbesondere gilt für den Zerfällungskörper E|K dass $|E:K| \leq n!$ mit n = |N| = deg(P).

Beispiel: $Aut(\mathbb{C}|\mathbb{R})=Gal(X^2+1|\mathbb{O})\cong S+A$

Satz: Sei $P \in \mathbb{Q}[X]$ irreduzibel mit Grad degP = p prim, und mit p-2 reellen und zwei komplex konjugierten Nullstellen. Dann ist $Gal(P|\mathbb{Q}) \simeq S_p$ (Symmetrische Gruppe der NS von P)

Anwendungen der Galois-Theorie

Konstruktion mit Z & L

Definition: Das n-te Kreisteilungspolynom ist

$$\Phi_n = \prod_{\xi \in \mathbb{C}, ord(\xi) = n} (X - \xi)$$

Beispiel für n=6: Sei $\zeta=e^{2\pi i/6}$. Dann ist $\Phi_6=(X-\zeta)(X-\zeta^5)=X^2-X+1$ (alle anderen haben Ordnung <6, ζ^k hat Ordnung n wenn ggT(n,k)=1) $\deg \Phi_n = \varphi(n) = |(\mathbb{Z}/n)^\times|$

Satz: Für jedes $n \in \mathbb{N}$ ist Φ_m irreduzibel in $\mathbb{Z}[X]$ und $\mathbb{Q}[X]$