

Please turn off your webcam

If you are joining from a mobile phone be sure to click on Join via Device Audio

We are waiting for other participants to join We will begin at 5:30 PM IST

Gradient Descent For Machine Learning

Mihir Thakkar

Founder and Instructor hello@codeheroku.com

SESSION OBJECTIVES

- Quick Recap
- Why do we need GD?
- Revise Some Math
- Implement in Python

Highschool Math

Machine Learning

Let's Revisit Some Basics

Linear Regression

E.g. Predict the score of a student based on number of hours studied

QUIZ

Calculate the Total Error, Mean Error and Mean Squared Error for the following set of predicted and actual results

Predicted Score	Actual Score
30	32
25	25
22	20
20	18

$$= (32 - 30) + (25-25) + (22-20) + (20-18)$$

$$= 2 + 0 + 2 + 2$$

Mean Error

= 6/4

= 1.5

Mean Squared Error

$$= (30 - 32)^2 + (25 - 25)^2 + (22 - 20)^2 + (20 - 18)^2$$

Our Objective

Solution

Step 1: Start with a random line

Step 2: Adjust m & b such that error reduces

Step 3: Repeat until converge to best approximation

QUIZ

Which of the following statement is TRUE?

- 1. Gradient Descent can be applied only to Regression problems
- 2. Gradient Descent is an optimization algorithm which can be applied to any problem in general

Let's Build It

http://www.codeheroku.com/static/workshop/datasets/gd.zip

$$MSE = \frac{1}{N} \sum_{\text{Estimate}} - \frac{1}{\text{Actual}}^2$$

$$Cost function \qquad mx+b-yi$$

$$J_{O(m,b)} = \frac{1}{N} \sum_{\text{Exxor}} \frac{2}{N}$$

$$\frac{1}{N} \sum_{\text{Exxor}} \frac{2}{N} \sum_{\text{Exxor}} \frac{1}{N} \sum_{$$

= 1 gm Essor

 $m = m + \Delta m$ $b = b + \Delta b$

Error (m, b)

 $\frac{d}{dx}x^n = nx^{n-1}$

$$= \frac{1}{N} \cdot \frac{\partial}{\partial b} \times \frac{\partial}$$

CODE HEROKU

 $m = m + \Delta m$ $b = b + \Delta b$

Error (m, b)

QUIZ

How do we adjust m & b to reduce error?

- 1. We take the gradient of Error Function w.r.t. m & b this gives us direction we should adjust(i.e. +ve or -ve)
- 2. We use a constant learning rate to reduce error
- 3. We take gradient of all our data points (X,Y) w.r.t. m & b and multiply it by learning rate

Thank you!

Programming Languages Computer Programming

Add Question or Link

Quora uses cookies to improve your experience. Read more

What is your review of Code Heroku?

Survey Question

No Answers Yet

https://gr.ae/TUry32

Related Questions

What programming languages are used in robotics?

How difficult is it for the average person to become a computer programmer?

What do you think about code reviews?

What are the strengths and weaknesses of Golang?

Where can I find someone to help review my code?

Can someone give a review of Free Code Camp?

Why is C not yet replaced with another language which has same advantages of C and has better developer productivity like Java?

Alternative Links:
DataSet: https://drive.google.com/file/d/17MkZ6vzmZPEq9OTCM6tIgEPF5DYe_1Gm/view?usp=sharing

Machine Learning (ML)

 $\begin{array}{c} 01101100\ 01100101\ 01110110\ 01100101\ 01110010\ 01100000\ 01100011\ 01101110\ 01100101\ 01100011\ 01100111\ 01100101\ 011001001\ 01100000\ 01100010\ 01100010\ 01100010\ 01100010\ 01100010\ 01100010\ 01100010\ 01100010\ 01100010\ 01100100\ 01100101\ 01101011\ 001100000\ 01100010\ 01110010\ 01101010\ 01100111\ 001100000\ 01100010\ 01100010\ 0110010000\ 01100100\ 0110010000\ 0110010000\ 0110010000\ 0110010000\ 0110010000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 01100100000\ 011001000000\ 011001000000\ 011001000000\ 011001000000\ 011001000000\ 011001000000\ 01100100000\ 011001000000\ 011$

Data

