

Recognizing Context-Free Languages

We need a device similar to an FSM except that it needs more power.

The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

Example: Bal (the balanced parentheses language)

(((()))

Definition of a Pushdown Automaton

 $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

K is a finite set of states

 Σ is the input alphabet

 $\boldsymbol{\Gamma}$ is the stack alphabet

 $s \in K$ is the initial state

 $A \subseteq K$ is the set of accepting states, and

 Δ is the transition relation. It is a finite subset of

 $(K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$

state input or ϵ string state string of

to pop to push from top on top of stack of stack

Definition of a Pushdown Automaton

A configuration of *M* is an element of $K \times \Sigma^* \times \Gamma^*$.

The initial configuration of M is (s, w, ε) .

Yields

Let $c \in \Sigma \cup \{\varepsilon\}$, $\gamma_1, \gamma_2, \gamma \in \Gamma^*$, and $w \in \Sigma^*$.

Then:

$$(q_1, cw, \gamma_1 \gamma) \mid_{-M} (q_2, w, \gamma_2 \gamma) \text{ iff } ((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta.$$

Let $|-_{M}^{*}$ be the reflexive, transitive closure of $|-_{M}$.

 C_1 **yields** configuration C_2 iff $C_1 \mid -M^* C_2$

• C

Computations

A **computation** by M is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and
- $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$.

Nondeterminism

If *M* is in some configuration (q_1, s, γ) it is possible that:

- \bullet Δ contains exactly one transition that matches.
- \bullet Δ contains more than one transition that matches.
- ullet Δ contains no transition that matches.

Accepting

A computation C of M is an accepting computation iff:

- $C = (s, w, \varepsilon) \mid -M^* (q, \varepsilon, \varepsilon)$, and
- $q \in A$.

M accepts a string *w* iff at least one of its computations accepts.

Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The *language accepted by M*, denoted L(M), is the set of all strings accepted by M.

Rejecting

A computation C of M is a **rejecting computation** iff:

- $C = (s, w, \varepsilon) |_{-M}^* (q, w', \alpha),$
- C is not an accepting computation, and
- *M* has no moves that it can make from (q, ε, α) .

M rejects a string w iff all of its computations reject.

So note that it is possible that, on input *w*, *M* neither accepts nor rejects.

A PDA for Balanced Parentheses

$$M = (K, \Sigma, \Gamma, \Delta, s, A), \text{ where:}$$

$$K = \{s\} \qquad \text{the states}$$

$$\Sigma = \{ (,) \} \qquad \text{the input alphabet}$$

$$\Gamma = \{ () \qquad \text{the stack alphabet}$$

$$A = \{s\}$$

$$\Delta \text{ contains:}$$

$$((s, (, \varepsilon^{\dagger}), (s, ())$$

$$((s,), (), (s, \varepsilon))$$

This does not mean that the stack is empty

A PDA for $A^nB^n = \{a^nb^n : n \ge 0\}$

A PDA for $\{w \in w^R : w \in \{a, b\}^*\}$

$$\begin{split} & M = (K, \Sigma, \Gamma, \Delta, s, A), \text{ where:} \\ & K = \{s, f\} & \text{the states} \\ & \Sigma = \{a, b, c\} & \text{the input alphabet} \\ & \Gamma = \{a, b\} & \text{the stack alphabet} \\ & A = \{f\} & \text{the accepting states} \\ & \Delta \text{ contains: } ((s, a, \epsilon), (s, a)) \\ & ((s, b, \epsilon), (s, b)) \\ & ((s, c, \epsilon), (f, \epsilon)) \\ & ((f, a, a), (f, \epsilon)) \\ & ((f, b, b), (f, \epsilon)) \end{split}$$

A PDA for $\{a^nb^{2n}: n \ge 0\}$

A PDA for PalEven = $\{ww^R: w \in \{a, b\}^*\}$

$$S \rightarrow \varepsilon$$

 $S \rightarrow aSa$
 $S \rightarrow bSb$

A PDA:

A PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

Accepting Mismatches

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

Start with the case where n = m:

- If stack and input are empty, halt and reject.
- If input is empty but stack is not (m > n) (accept):
- If stack is empty but input is not (m < n) (accept):

Accepting Mismatches

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

• If input is empty but stack is not (m > n) (accept):

Putting It Together

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

- Jumping to the input clearing state 4:
 Need to detect bottom of stack.
- Jumping to the stack clearing state 3: Need to detect end of input.

Accepting Mismatches

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

• If stack is empty but input is not (m < n) (accept):

AnBnCn vs ¬AnBnCn

Consider $A^nB^nC^n = \{a^nb^nc^n: n \ge 0\}.$

PDA for AⁿBⁿCⁿ?

Now consider $L = \neg A^nB^nC^n$. L is the union of two languages:

- 1. $\{w \in \{a, b, c\}^* : \text{the letters are out of order}\}$, and
- 2. $\{a^ib^jc^k: i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}$ (in other words, unequal numbers of a's, b's, and c's).

A PDA for $L = \neg A^n B^n C^n$

Are the Context-Free Languages Closed Under Complement?

¬AnBnCn is context free.

If the CF languages were closed under complement, then

$$\neg \neg A^n B^n C^n = A^n B^n C^n$$

would also be context-free.

But we will prove that it is not.

$L = \{a^n b^m c^p : n, m, p \ge 0 \text{ and } n \ne m \text{ or } m \ne p\}$

/* n . m than arbitrary -!

$S \rightarrow NC$	l^{n} $m \neq m$, then arbitrary c's		
$S \rightarrow QP$	/* arbitrary a's, then $p \neq m$		
$N \rightarrow A$	/* more a's than b's		
$N \rightarrow B$	/* more b's than a's		
$A \rightarrow a$			
$A \rightarrow aA$			
$A \rightarrow aAb$			
$B \rightarrow b$			
$B \rightarrow B$ b			
<i>B</i> → a <i>B</i> b			
$C \rightarrow \varepsilon \mid cC$	/* add any number of c's		
$P \rightarrow B'$	/* more b's than c's		
$P \rightarrow C'$	/* more c's than b's		
$B' \rightarrow b$			
$B' \rightarrow bB'$			
$B' \rightarrow bB'c$			
C' → c C'c			
C' → C'c			
$C' \rightarrow bC'$ c			
$Q \rightarrow \epsilon \mid aQ$	/* prefix with any number of a's		

PDAs and Context-Free Grammars

Theorem 12.3: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Theorem 12.1: Each context-free language is accepted by some PDA.

Proof (by construction) (not required for midterm !!)

The idea: Let the stack do the work.

Two approaches:

- Top down
- · Bottom up

A Top-Down Parser

The construction in general:

 $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$

- The start-up transition $((p, \varepsilon, \varepsilon), (q, S))$.
- For each rule $X \to s_1 s_2 ... s_n$. in R, the transition: $((q, \varepsilon, X), (q, s_1 s_2 ... s_n))$.
- For each character $c \in \Sigma$, the transition: $((q, c, c), (q, \varepsilon))$.

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

$$E \to E + T$$

$$E \to T$$

$$T \to T^* F$$

$$T \to F$$

$$F \to (E)$$

$$F \to id$$

$$\varepsilon / \varepsilon / E$$

- (1) $(q, \varepsilon, E), (q, E+T)$
- (7) $(q, id, id), (q, \varepsilon)$
- (2) $(q, \varepsilon, E), (q, T)$
- (8) $(q, (, (), (q, \varepsilon))$
- (3) $(q, \varepsilon, T), (q, T^*F)$
- (9) $(q,),), (q, \varepsilon)$
- (4) $(q, \varepsilon, T), (q, F)$ (5) $(q, \varepsilon, F), (q, (E))$
- $(10) (q, +, +), (q, \varepsilon)$
- (6) $(q, \varepsilon, F), (q, id)$
- $(11) (q, *, *), (q, \varepsilon)$

Example: $L = \{a^nb^*a^n\}$

input = a a b b a a

Trans	state	unread input	stack
	р	aabbaa	ε
0	q	aabbaa	S
3	q	aabbaa	a S a
6	q	abbaa	Sa
3	q	abbaa	a S aa
6	q	bbaa	Saa
2	q	bbaa	Baa
5	q	bbaa	b B aa
7	q	baa	Baa
5	q	baa	b B aa
7	q	a a	Baa
4	q	a a	aa
6	q	a	a
6	q	ε	ε

ALA CONTRACTOR OF STATE OF STA

Going The Other Way

Theorem 12.2: If a language is accepted by a pushdown automaton *M*, it is context-free (i.e., it can be described by a context-free grammar).

The proof is by construction - very complicated, not required !!

Nondeterminism, minimality

A PDA *M* is **deterministic** iff:

- \bullet Δ_M contains no pairs of transitions that compete with each other
- Whenever *M* is in an accepting configuration it has no available moves.
- 1. Determinism is strictly less powerful: There are context-free languages for which no deterministic PDA exists.
- 2. It is possible that a PDA may
 - not halt,
 - not ever finish reading its input.
- 3. There exists no algorithm to minimize a PDA. It is undecidable whether a PDA is minimal.