

FIG.1

FIG.2a

FIG.2b

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG.13

FIG.14

FIG.15a

FIG.15b

FIG.16

FIG.17

FIG.18a

FIG.18b

FIG.19a

Fig. 19a shows a cross-sectional view of a memory stack. It consists of three layers: a top layer containing a hatched 'NON VOLATILE MEMORY ARRAY (ON AN INSULATOR FILM)', a middle 'WIRING LAYER', and a bottom layer containing a hatched 'VOLATILE MEMORY ARRAY (ON A SUBSTRATE SURFACE)'. The layers are represented by parallel lines.

FIG.19b

Fig. 19b shows functional blocks. On the 'INSULATOR FILM', there is a 'NON VOLATILE MEMORY ARRAY' and a 'WORD LINE DRIVER'. On the 'SUBSTRATE SURFACE', there is a 'LOGIC CIRCUIT' and a 'SENSE AMPLIFIER AND DATA LINE DRIVER OF NON VOLATILE MEMORY'. The blocks are represented by rectangles with internal hatching.

FIG.20

FIG.21

FIG.22

