Package 'MLAT'

May 30, 2018

Type Package

Title Machine Learning Automated Software
Date 2018-05-29
Version 0.1.0
Author Paulo Cirino Ribeiro Neto
Maintainer Paulo Cirino Ribeiro Neto <paulocirino.neto@gmail.com></paulocirino.neto@gmail.com>
Description The package was created to help R users automate the processes of benchmarking machine learning methods agains common methods in common datasets.
License GPL-3 + file LICENSE
Encoding UTF-8
LazyData false
RoxygenNote 6.0.1
Imports e1071, class
Suggests ggplot2
R topics documented:
Accuracy 2 AUC 2 BinClassMetrics 3 BinClassMetricsNames 3 CreateAlgo 4 CreateDataSet 4 GetAllMultClassAlgo 5 GetData 5 GetDataSetsNames 6 GetMetrics 6

MultClassMetrics8MultiClassMetricsNames9MultiLogLoss9RunTests10squareConfusionTable10

2 AUC

```
      svm_linear
      11

      svm_poli
      12

      svm_radial
      13
```

Index 14

Accuracy Accuracy

Description

Returns the Accuracy for a classification problem.

Usage

```
Accuracy(Y, Y_hat)
```

Arguments

Y Ground truth numeric vector.
Y_hat Predicted Labels numeric vector.

Value

A numeric value corresponding to the Accuracy of a classification problem

Examples

```
Y = sample(x = c(1,2), size = 10, replace = TRUE)

Y_hat = sample(x = c(1,2), size = 10, replace = TRUE)

Accuracy(Y = Y, Y_hat = Y_hat)
```

AUC AUC

Description

Returns the Area Under the Curve for a binarry classification problem.

Usage

```
AUC(Y, Y_hat)
```

Arguments

Y Ground truth numeric vector.
Y_hat Predicted Labels numeric vector.

Value

A numeric value corresponding to the AUC of binary classification problem

BinClassMetrics 3

Examples

```
Y = sample(x = c(1,2), size = 10, replace = TRUE)

Y_hat = sample(x = c(1,2), size = 10, replace = TRUE)

AUC(Y = Y, Y_hat = Y_hat)
```

BinClassMetrics

BinClassMetricsNames

Description

Returns a binaryResultList with binary classification metrics.

Usage

```
BinClassMetrics(Y, Y_hat, MetricsNames = BinClassMetricsNames())
```

Arguments

Y Ground truth numeric vector.
Y_hat Predicted Labels numeric vector.

MetricsNames can be found at BinClassMetricsNames()

Value

A binaryResultList with results

Examples

```
Y = sample(x = c(1,2), size = 10, replace = TRUE)

Y_hat = sample(x = c(1,2), size = 10, replace = TRUE)

BinClassMetrics(Y = Y, Y_hat = Y_hat, MetricsNames = BinClassMetricsNames())
```

BinClassMetricsNames

Binary Classification Metrics

Description

Returns a character string vector containing all binary classification metrics.

Usage

```
BinClassMetricsNames()
```

Value

character string vector with all possible binary classification metrics.

```
BinClassMetricsNames()
```

4 CreateDataSet

eAlgo Create Algorithm

Description

It is an auxiliary function to help creating new algorithms in the package standarts.

Usage

```
CreateAlgo(algoName, algoFun, task, paramList)
```

Arguments

algoName A character string that represents the algorithm name.

algoFun A function class object.

task A character string vector, cointaining 'MultClass' or/and 'BinClass' and/or 'Re-

gression'.

paramList A list of all parameters and their values to be tested.

Value

An object of class algorithm.

Examples

```
algoName <- 'myAlgo'
algoFun <- function(X_train, Y_train, X_test, param1){
  set.seed(param1)
  sample(Y_train, size = nrow(X_test), replace = TRUE)}
task <- c('MultClass', 'BinClass')
paramList = list(param1 = 1:3)
CreateAlgo(algoName = algoName, algoFun = algoFun, task = task, paramList = paramList)</pre>
```

CreateDataSet

Create DataSet

Description

Creates a DataSet object type, to be used with the models provided with this package

Usage

```
CreateDataSet(X, Y, Name, type, task)
```

Arguments

X A Matrix.

Y A numeric vector of classes or values.

Name A character string, as dataset name.

type A character string, the types of values for X (numeric or integer).

task A character string vector of task to be performed, check GetPossibleTasks().

GetAllMultClassAlgo 5

Value

A DataSet object type.

Examples

```
X <- as.matrix(cbind(runif(n = 100), runif(n = 100)))
Y <- sample(x = c(1, 2), size = 100, replace = TRUE)
Name <- 'randomData'
type <- 'numeric'
task <- 'BinClas'
newData <- CreateDataSet(X = X, Y = Y, Name = Name, type = type, task = task)</pre>
```

 ${\tt GetAllMultClassAlgo}$

Generates all MultClass Classification Alogrithms

Description

It is an auxiliary that allows to load all of the packages multclass classification alogrithms.

Usage

```
GetAllMultClassAlgo()
```

Value

Returns a list with all MultClass Classification Alogrithms

Examples

```
GetAllMultClassAlgo()
```

GetData

Get DataSet by name

Description

Get a dataset by name

Usage

```
GetData(datasetName, seed, splitPerc)
```

Arguments

datasetName A character string, as DataSet name.

seed For the traint and test split.

splitPerc Percentage for train of all dataSet, between 0 and 1.

GetMetrics 6

Value

A trainTestDataSet object type.

Examples

```
GetData(datasetName = 'Iris', seed = 123, splitPerc = 0.7)
```

GetDataSetsNames

Get Datasets Names

Description

Get all available datasets names

Usage

```
GetDataSetsNames(task)
```

Arguments

task

A character string with desired task, for possible tasks check GetPossibleTasks().

Value

A character string vector with all possible datasets names.

Examples

GetDataSetsNames()

GetMetrics

Get Metrics

Description

Get all possible task names

Usage

```
GetMetrics(task)
```

Arguments

Α

valid task, can be 'MultClass' or 'BinClass'.

Value

All metrics names for that taks

```
GetPossibleTasks()
```

GetPossibleTasks 7

GetPossibleTasks

Get Possible Tasks

Description

Get all possible task names

Usage

```
GetPossibleTasks()
```

Value

A character string vector with all possible task names.

Examples

```
GetPossibleTasks()
```

knn

K Nearest Neighbours

Description

It is the K Nearest Neighbours method

Usage

```
knn(X_train, Y_train, X_test, K)
```

Arguments

X_train A Matrix of training observations.

Y_train A numeric vector of classes or values of the training observations.

X_test A Matrix of testing observations.

K An integer as a parameter for the knn method.

Value

predicted labels

```
X <- as.matrix(cbind(runif(n = 100), runif(n = 100)))
pos <- sample(100, 70)
X_train <- X[pos, ]
X_test <- X[-pos, ]
Y_train <- as.numeric( X_train[, 1] ** 2 - X_train[, 2] > 0)
Y_test <- as.numeric(X_test[, 1] ** 2 - X_test[, 2] > 0)
K <- 5
Y_predicted <- knn(X_train = X_train, Y_train = Y_train, X_test = X_test, K = K)
print(table(Y_test, Y_predicted))</pre>
```

8 MultClassMetrics

LogLoss

LogLoss

Description

Returns the Logarithmic Loss for classification problem.

Usage

```
LogLoss(Y, Y_hat)
```

Arguments

Y Ground truth numeric vector.
Y_hat Predicted Labels numeric vector.

Value

A numeric value corresponding to the LogLoss of binary classification problem

Examples

```
Y = sample(x = c(1,2), size = 10, replace = TRUE)

Y_hat = sample(x = c(1,2), size = 10, replace = TRUE)

LogLoss(Y = Y, Y_hat = Y_hat)
```

MultClassMetrics

MultClassMetrics

Description

Returns a multiClassResultList with multi class classificaiton metrics.

Usage

```
MultClassMetrics(Y, Y_hat, MetricsNames)
```

Arguments

Y Ground truth numeric vector.
Y_hat Predicted Labels numeric vector.

Metrics Names Metrics names, avilable can be found with MultiClassMetricsNames().

Value

A multiClassResultList with results

```
Y = sample(x = c(1,2, 3), size = 20, replace = TRUE)

Y_hat = sample(x = c(1, 2, 3), size = 20, replace = TRUE)

MultClassMetrics(Y = Y, Y_hat = Y_hat, MetricsNames = MultiClassMetricsNames())
```

MultiClassMetricsNames 9

 ${\it MultiClassMetricsNames}$

Multi Class Classification Metrics

Description

Returns a character string vector containing all multi class classification metrics.

Usage

```
MultiClassMetricsNames()
```

Value

character string vector with all possible multi class classification metrics.

Examples

```
MultiClassMetricsNames()
```

MultiLogLoss

MultiLogLoss

Description

Returns the Logarithmic Loss for multi class classification problem.

Usage

```
MultiLogLoss(Y, Y_hat)
```

Arguments

Y Ground truth numeric vector.

Y_hat Predicted Labels numeric vector.

Value

A numeric value corresponding to the LogLoss of binary classification problem

```
Y = sample(x = c(1,2), size = 10, replace = TRUE)

Y_hat = sample(x = c(1,2), size = 10, replace = TRUE)

MultiLogLoss(Y = Y, Y_hat = Y_hat)
```

10 squareConfusionTable

RunTests	Run Tests
Runiests	Run Iests

Description

Runs the tests given the methods and datasets

Usage

```
RunTests(cmpTestsFuncsList = cmpTestsFuncsList, task = task,
  dataSetNames = dataSetNames, metrics = NA, nTestsPerParam = 1,
  splitPerc = 0.7, verbose = TRUE)
```

Arguments

cmpTestsFuncsList

is a list of

task A character string with 'MultClass' or 'BinClas'

dataSetNames A character string vector with valid dataset names, for options check

metrics character string vector with all testing metrics or NA for all available metrics

nTestsPerParam FOOO splitPerc TODO

verbose TRUE/FALSE value for printing partial test

Value

TODO

Examples

squareConfusionTable Square Confusion Matrix

Description

Returns a square confusion matrix

Usage

```
squareConfusionTable(Y, Y_hat)
```

svm_linear 11

Arguments

Y A numeric vector for the ground truth labels
Y_hat A numeric vector for the predicted Labels

Value

A confusion table

Examples

```
squareConfusionTable(Y = sample(1:2, size = 10, replace = TRUE), Y\_hat = rep(1, 10))
```

svm_linear

Linear Support Vector Machines

Description

It is the Support Vector Machines without a kernel

Usage

```
svm_linear(X_train, Y_train, X_test, C)
```

Arguments

X_train A Matrix of training observations.
 Y_train A numeric vector of classes or values of the training observations.
 X_test A Matrix of testing observations.
 C A numeric value that represents the cost of constraints violation of the regularization term in the Lagrange formulation.

Value

predicted labels

```
X <- as.matrix(cbind(runif(n = 100), runif(n = 100)))
pos <- sample(100, 70)
X_train <- X[pos, ]
X_test <- X[-pos, ]
Y_train <- as.numeric( X_train[, 1] ** 2 - X_train[, 2] > 0)
Y_test <- as.numeric(X_test[, 1] ** 2 - X_test[, 2] > 0)
C <- 5
Y_predicted <- svm_linear(X_train = X_train, Y_train = Y_train, X_test = X_test, C = C)
print(table(Y_test, Y_predicted))</pre>
```

12 svm_poli

	-	
SVM	no	Ιi

Support Vector Machines with Polinomial Kernel

Description

It is the Support Vector Machines with a polinomial kernel

Usage

```
svm_poli(X_train, Y_train, X_test, degree, gamma, coef0, C)
```

Arguments

X_train	A Matrix of trainning observations.
Y_train	A numeric vector of classes or values of the trainning observations.
X_test	A Matrix of testing observations.
degree	A integer that represents the kernel polynomial degree
gamma	A numeric value as the kernel coefficient.
coef0	A numeric value for kernel independent term.
С	A numeric value that represents the cost of constraints violation of the regularization term in the Lagrange formulation.

Value

predicted labels

```
X <- as.matrix(cbind(runif(n = 100), runif(n = 100)))
pos <- sample(100, 70)
X_train <- X[pos, ]
X_test <- X[-pos, ]
Y_train <- as.numeric( X_train[, 1] ** 2 - X_train[, 2] > 0)
Y_test <- as.numeric(X_test[, 1] ** 2 - X_test[, 2] > 0)
C <- 5
coef0 <- 0
degree <- 5
gamma <- 0.5
Y_predicted <- svm_poli(X_train = X_train, Y_train = Y_train, X_test = X_test, C = C, coef0 = coef0, degree = deg
print(table(Y_test, Y_predicted))</pre>
```

svm_radial 13

svm_radial Support Vector Machines with Radial Kernel	
---	--

Description

It is the Support Vector Machines with a radial kernel

Usage

```
svm_radial(X_train, Y_train, X_test, gamma, C)
```

Arguments

X_train	A Matrix of trainning observations.
Y_train	A numeric vector of classes or values of the trainning observations.
X_test	A Matrix of testing observations.
gamma	A numeric value as the kernel coefficient.
С	A numeric value that represents the cost of constraints violation of the regularization term in the Lagrange formulation.

Value

predicted labels

```
X <- as.matrix(cbind(runif(n = 100), runif(n = 100)))
pos <- sample(100, 70)
X_train <- X[pos, ]
X_test <- X[-pos, ]
Y_train <- as.numeric( X_train[, 1] ** 2 - X_train[, 2] > 0)
Y_test <- as.numeric(X_test[, 1] ** 2 - X_test[, 2] > 0)
C <- 5
gamma <- 0.5
Y_predicted <- svm_radial(X_train = X_train, Y_train = Y_train, X_test = X_test, C = C, gamma = gamma)
print(table(Y_test, Y_predicted))</pre>
```

Index

```
Accuracy, 2
AUC, 2
BinClassMetrics, 3
BinClassMetricsNames, 3
CreateAlgo, 4
CreateDataSet, 4
{\tt GetAllMultClassAlgo, 5}
GetData, 5
GetDataSetsNames, 6
GetMetrics, 6
GetPossibleTasks, 7
knn, 7
LogLoss, 8
MultClassMetrics, 8
{\it MultiClassMetricsNames}, 9
{\it MultiLogLoss}, 9
{\sf RunTests}, \textcolor{red}{10}
{\it squareConfusionTable}, \\ 10
svm_linear, 11
svm_poli, 12
svm_radial, 13
```