Section 11/23

1 Question 12.3

Refer to the regression of active pulse rate on resting pulse rate in Section 12.2. Here are the estimated values again, along with some additional data.

```
active = pulse.column(0)
resting = pulse.column(1)
slope, intercept, r, p, se_slope = stats.linregress(x=resting, y=active)
slope, intercept, r, p, se_slope
(1.142879681904831,
 13.182572776013345,
 0.6041870881060092,
 1.7861044071652305e-24,
 0.09938884436389145)
mean_active, sd_active = np.mean(active), np.std(active)
mean_active, sd_active
(91.29741379310344, 18.779629284683832)
                                                                        þ
mean_resting, sd_resting = np.mean(resting), np.std(resting)
mean_resting, sd_resting
(68.34913793103448, 9.927912546587986)
```

a) Use the Data 8 formulas for the slope and intercept of the regression line (proved in the previous chapter) and confirm that you get the same values as reported by stats.linregress.
b) Find the regression estimate of the active pulse rate of a student whose resting pulse rate is 70.
c) Find the SD of the residuals. This is roughly the error in the estimation Part b.

2 Question 12.4

Restrict the population of students in the previous exercise just to the male smokers.

Below is a summary of the regression of the active pulse rate on the resting pulse rate for these data. Since the population consists just of male smokers, the parameters in the model might have different values from those in the previous exercise.

a) Find the correlation between the active and resting pulse rates for these data and compare it with the corresponding value for all students.

b) Show the calculation that leads to the displayed confidence interval for the true slope of Rest.

d) Show the calculation that leads to the displayed value of
$$P>|t|$$
 for the intercept. Is the value consistent with your answer to Part c?

e) Use the displayed results for the slope of Rest to provide the conclusion of a test of hypotheses $H_0:\beta_1=0$ versus $H_A:\beta_1\neq 0$ at the 1% level. Explain your reasoning.

OLS Regression Results

	_		
Dep. Variable:	ariable: Active R-s		0.645
Model:	OLS	Adj. R-squared:	0.622
Method:	Least Squares	F-statistic:	27.29
Date:	Sat, 07 Dec 2019	Prob (F-statistic):	0.000103
Time:	12:25:30	Log-Likelihood:	-61.906
No. Observations:	17	AIC:	127.8
Df Residuals:	15	BIC:	129.5
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	9.9360	16.345	0.608	0.552	-24.903	44.775
Rest	1.1591	0.222	5.224	0.000	0.686	1.632

Omnibus:	2.279	Durbin-Watson:	1.114
Prob(Omnibus):	0.320	Jarque-Bera (JB):	1.423
Skew:	0.456	Prob(JB):	0.491
Kurtosis:	1.915	Cond. No.	505.