Analysis 1: Chapter 3 Set Theory Exercises

Problem (Exercise 3.4.6). Let X be a set. Show that the collection of all subsets of X is a set.

Proof. Appealing to the Axiom of Infinity and the Pair Set Axiom we have that $\{0,1\}$ is a set. By the Power Set Axiom there exists a set containing all functions from X to $\{0,1\}$ which we shall denote as $\{0,1\}^X$. Define the property P(f,S) pertaining to each $f \in \{0,1\}^X$ and any object S to be the statement S is a set and $S = f^{-1}(\{1\})$. There is at most one set S such that P(f,S) is true for each $f \in \{0,1\}^X$. Thus by the Axiom of Replacement $Q := \{S : S = f^{-1}(\{1\}) \text{ for some } f \in \{0,1\}^X \}$ exists and is a set. All that remains to show is that every element of Q is a subset of X and every subset of X is contained in Q. Let Z be an arbitrary element of Q, then there exists some function $f \in \{0,1\}^X$ such that $Z = f^{-1}(\{1\})$ which is indeed a subset of X. Conversely let Z be a subset of X. We shall show that there exists some function $f \in \{0,1\}^X$ such that $Z = f^{-1}(\{1\})$. For each $X \in X$ define $X \in X$ define X

Problem (Exercise 3.4.7). Let X and Y be sets. A function $f: X' \to Y'$ from a subset X' of X to a subset Y' of Y is said to be a partial function from X to Y. If X and Y are sets show that the collection of all partial functions from X to Y is a set.

Remark. The idea for the proof we shall give is analogous to a sort of double looping construct procedure in a computer programming language. In particular let 2^X and 2^Y be the collections of all subsets of X and Y respectively which are sets by the previous exercise. Informally, or each element of 2^X we loop through each element of 2^Y creating a set containing all sets of function spaces where a function space is just the set of all functions from some particular element of 2^X to some particular element of 2^Y . Then we use the Axiom of Union to unbox all these sets of function spaces to get the set of all function spaces. Unboxing these sets in the same manner we get the set of all partial functions from X to Y

Proof. Since X and Y are sets by the previous exercise asserts that the collection of all subsets of X is a set and also that the collection of all subsets of Y is set. Let 2^X and 2^Y denote these sets respectively. For each $X' \in 2^X$ and any object S define the property P(X', S) to be the statement S is a set such that for all objects z, we have

$$z \in S \iff z = Y'^{X'} \text{ for some } Y' \in 2^Y.$$

There is at most one set S such that P(X',S) is true for each $X' \in 2^X$. Thus by the Axiom of Replacement there exists a set $Q \coloneqq \{S : P(X',S) \text{ is true for some } X' \in 2^X\}$. We observe that Q is a family of sets thus by the axiom of the union the set $\bigcup Q$ exists. This set like Q is also a family of sets. Thus applying the Axiom of Union once again we have that the set $\bigcup (\bigcup Q)$ exists. We claim that every element of $\bigcup (\bigcup Q)$ is a partial function from X to Y and that every partial function from X to Y is contained in $\bigcup (\bigcup Q)$. Let Y be an arbitrary element of $\bigcup (\bigcup Q)$ then $Y \in T$ for some $Y \in Q$. But then any such $Y \in Y$ will be contained in $Y \in Y$ for some set $Y \in Q$. However if $Y \in Y$ then for some $Y \in Q$ we have for every object $Y \in Q$ that if $Y \in Y$ then $Y \in Q$ then for some $Y \in Q$ we have $Y \in Q$ to some $Y \in Q$ to some $Y \in Q$ that if $Y \in Y$ then $Y \in Q$ then for $Y \in Q$ then for some $Y \in Q$ that if $Y \in Q$ then $Y \in Q$ then for some $Y \in Q$ therefore see that every element of $Y \in Q$ is a partial function from $Y \in Q$ to $Y \in Q$ then for $Y \in Q$ the apartial function from $Y \in Q$ to $Y \in Q$ then for $Y \in Q$ the apartial function from $Y \in Q$ to $Y \in Q$ then for $Y \in Q$ the apartial function from $Y \in Q$ to $Y \in Q$ then for $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ the apartial function from $Y \in Q$ to $Y \in Q$ be apartial function from $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ then for some $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ the form $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ then for some $Y \in Q$ to $Y \in Q$ th

2

Remark. Exercise 3.5.1 in the third edition of the text consists of three parts even though all are listed as a single exercise.

Problem (Exercise 3.5.1). Let x and y be any two objects (possibly the same). We define $(x,y) := \{\{x\}, \{x,y\}\}\}$. Which can be shown to be a set that exists using Axiom 3.4 and the Axiom of Union. Show that (x,y) obeys the usual property we would expect of an ordered pair (i.e two ordered pairs are equal if and only if all their components are equal)

Proof. We shall show that for any objects a, a', b and b' that $(a, b) = (a', b') \iff (a = a' \text{ and } b = b')$. (\Longrightarrow) Suppose that (a, b) = (a', b') then by definition we have that $\{\{a\}, \{a, b\}\} = \{\{a'\}, \{a', b'\}\}$. We will first show that a = a'. Since $\{a\} \in \{\{a\}, \{a, b\}\}$ we have $\{a\} = \{a'\}$ or $\{a\} = \{a', b'\}$. If $\{a\} = \{a'\}$ then we are done. On the other hand if $\{a\} \neq \{a'\}$ then we must have $\{a\} = \{a', b'\}$ which implies that $\{a\} = \{a'\}$. Therefore in either case $\{a\} = \{a'\}$. Now we show that $\{b\} = \{b'\}$. From our hypothesis we have that $\{a, b\} \in \{\{a'\}, \{a', b'\}\}$ and thus that $\{a, b\} = \{a'\}$ or $\{a, b\} = \{a', b'\}$. If $\{a, b\} = \{a'\}$ then a = b = a'. However $\{a', b'\} \in \{\{a\}, \{a, b\}\}$ by our hypothesis so that $\{a', b'\} = \{a\}$ or $\{a', b'\} = \{a, b\}$ and in either case we have that b' = a or b = b'. If on the other hand we have $\{a, b\} \neq \{a'\}$ then we must have $\{a, b\} = \{a', b'\}$ which implies that b' = a or b = b'. If b = b' we are done so we consider the case when b' = a. Since $\{a, b\} \in \{\{a'\}, \{a', b'\}\}$ we have that $\{a, b\} = \{a'\}$ or $\{a, b\} = \{a', b'\}$ and in either case we have b = b' since a = a' = b'.

(\Longleftarrow) The converse is trivial