

Program Outline

- History Java
- Object Oriented Programming concepts
- Primitive Data Types
- Wrapper Classes
- Inheritance

History

	Toolkits / Frameworks	/ Object Al	PIs (1990s-Up)	
Java 2 SDK	AWT / J.F.C./Swing	Jini™	JavaBeans TM	JDBC TM

	Ol	oject-Oriented Languages (19	80s-Up)		
SELF	Smalltalk	Common Lisp Object System	Eiffel	C++	Java

	Libraries / Func	tional APIs (19	60s-Early 1980s)	
NASTRAN	TCP/IP	ISAM	X-Windows	OpenLook

High-Lev	el Langu	ages (1950s-Up)	OI	perating	System	s (1960s–Up)
Fortran	LISP	C	COBOL	OS/360	UNIX	MacOS	Microsoft Windows

Machine Code (Late 1940s-Up)

About Java

- Java programming language was originally developed by Sun Microsystems
 - by James Gosling
 - released in 1995 as core <u>component</u> of Sun Microsystems
 - Java platform (Java 1.0 [J2SE]).
 - Latest release
 - Java Standard Edition 7 Update 25 (1.7.25) (June 18, 2013; 52 days ago)
- Multiple Editions
 - Java Card for smartcards.
 - Java Platform, Micro Edition (Java ME) targeting environments with limited resources.
 - Java Platform, Standard Edition (Java SE) targeting workstation environments.
 - Java Platform, Enterprise Edition (Java EE) targeting large distributed enterprise or Internet environments.
- Sun Microsystems has renamed the new J2 versions as Java SE, Java EE and Java ME respectively.

"Write Once, Run Anywhere"

Features of Java

Object Oriented :

- In java everything is an Object.
- Java can be easily extended since it is based on the Object model.

Platform independent:

Unlike many other programming languages including C and C++ when Java is compiled, it is compiled into
platform independent byte code.

Simple:

Java is designed to be easy to learn.

Secure

Compiler , Class loader , Byte code verifier , Sandbox

Architectural - neutral :

 Java compiler generates an architecture-neutral object file format executable on many processors, with the presence Java runtime system.

Portable :

 being architectural neutral and having no implementation dependent aspects of the specification makes Java portable.

Contd...

Robust :

 Java makes an effort to eliminate error prone situations by emphasizing mainly on compile time error checking and runtime checking.

Multi-threaded :

 With Java's multi-threaded feature it is possible to write programs that can do many tasks simultaneously.

Interpreted :

 Java byte code is translated on the fly to native machine instructions and is not stored anywhere.

High Performance:

With the use of Just-In-Time compilers Java enables high performance.

Distributed :

Java is designed for the distributed environment of the internet.

Dynamic :

 Java programs can carry extensive amount of run-time information that can be used to verify and resolve accesses to objects on run-time.

Java Program Lifecycle

- Java programs normally undergo four phases
 - Edit
 - Programmer writes program (and stores program on disk)
 - Compile
 - Compiler creates *byte codes* from program (.class)
 - Load
 - Class loader stores byte codes in memory
 - Execute
 - Interpreter: translates byte codes into machine language

Java Program Lifecycle

JVM - Portability

Object Oriented Programming

- Encapsulation
- Abstraction
- Polymorphism
- Inheritance

Encapsulation

- Hiding the irrelevant information
 - Class
 - State & Behavior
 - Access Specifiers
 - Private
 - Hides the implementation details of a class
 - Forces the user to use an interface to access data
 - Makes the code more maintainable

Abstraction

- Abstraction means to show only the necessary details to the client of the object.
 - Public methods
 - Perspective based

Access Specifiers

Modifier	Same Class	Same Package	Subclass	Universe
private	Yes			
default	Yes	Yes		
protected	Yes	Yes	Yes	
public	Yes	Yes	Yes	Yes

Inheritance

Relationship

- Is-a
 - Mammal IS-A Animal
 - Reptile IS-A Animal
 - Dog IS-A Mammal

Has-a

Polymorphism

- Taking multiple forms
 - Compile time Polymorphism
 - Over Loading
 - Runtime Polymorphism
 - Overriding

Primitive Data Types

The Java programming language defines eight primitive types:

- Logical boolean
- Textual char
- Integral byte, short, int, and long
- Floating double and float

Logical -boolean

The boolean primitive has the following characteristics:

- The boolean data type has two literals, true andfalse.
- For example, the statement:

boolean truth = true;

declares the variable truth as boolean type and assigns it a value of true.

Textual -char

The textual char primitive has the following characteristics:

- Represents a 16-bit Unicode character
- Must have its literal enclosed in single quotes (' ')
- Uses the following notations:

'a' The letter a

'\t' The tab character

'\u????' A specific Unicode character, ????, is replaced

with exactly four hexadecimal digits.

For example, ' $\u03A6$ ' is the Greek letter phi [$\u03A6$].

Integral -byte, short, int, and long

The integral primitives have the following characteristics:

- Integral primates use three forms: Decimal, octal, or hexadecimal
- Literals have a default type of int.
- Literals with the suffix L or I are of type long.

Integer Length	Name or Type	Range
8 bits	byte	-27 to 27-1
16 bits	short	-215 to 215 -1
32 bits	int	-231 to 231 -1
64 bits	long	-263 to 263 -1

Floating Point –floatanddouble

The floating point primitives have the following characteristics:

- Floating-point literal includes either a decimal point or one of the following:
- E or e (add exponential value)
- F or f (float)
- D or d (double)

Examples:

3.14 A simple floating-point value (a double)	3.14	A simple floating-point value (a double)
---	------	--

2.718F A simple float size value

123.4E+306D A large double value with redundant D

Float Length	Name or Type	
32 bits	float	
64 bits	double	

Primitive Data Types contd..

byte:

- Byte data type is a 8-bit signed two's complement integer.
- Minimum value is -128 (-2^7)
- Maximum value is 127 (inclusive)(2^7 -1)
- Default value is 0
- Byte data type is used to save space in large arrays, mainly in place of integers, since a byte is four times smaller than an int.
- Example : byte a = 100, byte b = -50

short:

- Short data type is a 16-bit signed two's complement integer.
- Minimum value is -32,768 (-2^15)
- Maximum value is 32,767(inclusive) (2^15 -1)
- Short data type can also be used to save memory as byte data type. A short is 2 times smaller than an int
- Default value is 0.
- Example : short s= 10000 , short r = -20000

• int:

- Int data type is a 32-bit signed two's complement integer.
- Minimum value is 2,147,483,648.(-2^31)
- Maximum value is 2,147,483,647(inclusive).(2^31 -1)
- Int is generally used as the default data type for integral values unless there is a concern about memory.
- The default value is 0.
- Example : int a = 100000, int b = -200000

long:

- Long data type is a 64-bit signed two's complement integer.
- Minimum value is -9,223,372,036,854,775,808.(-2^63)
- Maximum value is 9,223,372,036,854,775,807 (inclusive). (2^63 1)
- This type is used when a wider range than int is needed.
- Default value is 0L.
- Example : long a = 100000L, int b = -200000L

float:

- Float data type is a single-precision 32-bit IEEE 754 floating point.
- Float is mainly used to save memory in large arrays of floating point numbers.
- Default value is 0.0f.
- Float data type is never used for precise values such as currency.
- Example : float f1 = 234.5f

double:

- double data type is a double-precision 64-bit IEEE 754 floating point.
- This data type is generally used as the default data type for decimal values. generally the default choice.
- Default value is 0.0d.
- Example : double d1 = 123.4

boolean:

- boolean data type represents one bit of information.
- There are only two possible values: true and false.
- This data type is used for simple flags that track true/false conditions.
- Default value is false.
- Example : boolean one = true

char:

- char data type is a single 16-bit Unicode character.
- Minimum value is '\u0000' (or 0).
- Maximum value is '\uffff' (or 65,535 inclusive).
- Char data type is used to store any character.
- Example . char letterA ='A'

Reference Data Types

- Reference variables are created using defined constructors of the classes.
- Class objects, and various type of array variables come under reference data type.
- Default value of any reference variable is null.
- A reference variable can be used to refer to any object of the declared type or any compatible type.
 - Example : Animal animal = new Animal("giraffe");

Inheritance

- extends keyword
- Single , Multilevel, Hierarchical supported

Thank You © CSS Corp

their respective owners.

The information contained herein is subject to change without notice. All other trademarks mentioned herein are the property of