Lecture 23 Active Shape Model (ASM)

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

- ➤ Algorithm 1: Ordinary Procrustes Analysis
- ➤ Algorithm 2: Statistical Shape Analysis
- ➤ Algorithm 3: Matching model to target

Tim Cootes: Selected Publications by Subject

https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/refs_by_subject.html

Building models

Bounding box

Initial shape

Final shape

Algo1: Ordinary Procrustes Analysis

Translation

Take k points in two dimensions,

$$((x_1, y_1), (x_2, y_2), \cdots, (x_k, y_k))$$

• The mean of these points is (\bar{x}, \bar{y}) where

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_k}{k}, \ \bar{y} = \frac{y_1 + y_2 + \dots + y_k}{k}$$

• Now translate these points so that their mean is translated to the origin $(x,y) \to (x-\bar{x},y-\bar{y})$, giving the point $(x_1-\bar{x},y_1-\bar{y})$,

Uniform scaling

• The scale component can be removed by scaling the object so that the <u>root</u> mean square distance (*RMSD*) from the points to the translated origin is 1,

$$S = \sqrt{\frac{(\bar{x}_1 - x_1)^2 + (\bar{y}_1 - y_1)^2 + \cdots}{k}}$$

• The scale becomes 1 when the point coordinates are divided by the object's initial scale

$$((\bar{x}_1 - x_1)/s, (\bar{y}_1 - y_1)/s)$$

 Notice that other methods for defining and removing the scale are sometimes used in the literature.

Rotation

• A rotation by angle θ gives

$$(u_1, v_1) = (\cos\theta x_1 - \sin\theta y_1, \sin\theta x_1 + \cos\theta y_1)$$

• Where (u,v) are the coordinate of a rotated point. Taking the derivative of $(u_1 - \bar{x}_1)^2 + (v_1 - \bar{y}_1)^2 + \cdots$ with respect to θ and solving for θ when the derivative is zeros gives

$$\theta = tan^{-1} \left(\frac{\sum_{i=1}^{k} (x_i \bar{y}_i - y_i \bar{x}_i)}{\sum_{i=1}^{k} (x_i \bar{x}_i - y_i \bar{y}_i)} \right)$$

Training points before and after procrustes

analysis

Algo2: Statistical Shape Analysis

- Now we have a set of aligned training shapes. Each is described by a 2k-vector of feature point.
- We want to remove the dimensionality of this set to a number n
 << k.
- The full hand shape model is then built by computing PCA on all model points collectively, which captures correlations of motion between points.

Perform PCA

- Compute mean of data
- Compute covariance of data
- Compute eigenvalues and eigenvector
- Each eigenvalue gives variance of data in the direction of the related eigenvector.
- Choose the largest eigenvalues to account for p% of the total variance.

Shape modes

• For shape synthesis, we will use a linear model.

$$\chi^{k} = V + b_1 V_1 + b_2 V_2 + \cdots b_n V_n$$

$$\chi^{k} = V + b_1 V_1 + b_2 V_2 + \cdots b_n V_n$$

First 3 modes of variation Varying b₁ Varying b₂ Varying b₃

Sample face training image

1st mode of variation

Fitting the curve to new data

• Assume we have a 2k-vector Y, we want to fit the model: i.e. best translation, rotation, scaling (t, s, θ) and model parameter b.

$$min||Y - M(\mu + Pb)||^2$$

$$M(x) = s \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} x + t$$

Algo3: Matching model to target $\min_{\min ||Y - M(\mu + Pb)||^2}$

- 1. Initialize b = 0;
- 2. Generate model points $x = \mu + Pb$;
- 3. Find (t, s, θ) to best fit Y to X (like in Procrustes analysis) gives a new Y;
- 4. Project Y into X space $y = M^{-1}Y$;
- 5. Update model parameter $b = P^T(y \mu)$
- 6. Go to step 2, iterate until convergence.

ASM Search Overview

How do we know what image point Y should belong to the model?

Matching model to target

- Initialize b = 0, $x = \mu + Pb$;
- Search around each x_i for best nearby image point y_i .
- Algo 3: Fit new parameters (t, s, θ, b) to y_i .
- Enforce constraint $|b_i| < 3\sqrt{\lambda_i}$, so that shapes are "reasonable".
- Iterate until convergence.

