dac-phase3-water-quality-analysis

October 18, 2023

1

2 DAC_Phase3: Water Quality Analysis Project

3

- 3.0.1 The goal of the "Water Quality Analysis Project" in Phase 3, is to perform preprocessing and Exploratory Data Analysis by plotting graphs and getting insights.
- 3.0.2 Our approach involves,
 - 1. finding correlation between the attributes of the dataset provided,
 - 2. Handling missing values,
 - 3. Getting comparative insights by using necessary plots for further processing and clear us

Python Libraries

```
[1]: #importing necessary libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# For visualizing Decision Tree
from sklearn import tree
```

3.1 Reading Dataset

```
[3]: # Creating DataFrame by using .csv file
df = pd.read_csv("archive/water_potability.csv")
```

```
[4]: df.head()
```

```
[4]:
                    Hardness
                                    Solids
                                             Chloramines
                                                             Sulfate
                                                                      Conductivity
              ph
             {\tt NaN}
                  204.890455
                              20791.318981
                                                7.300212
                                                          368.516441
                                                                         564.308654
     1 3.716080
                 129.422921
                              18630.057858
                                                6.635246
                                                                 NaN
                                                                         592.885359
     2 8.099124
                  224.236259
                             19909.541732
                                                9.275884
                                                                         418.606213
                                                                 NaN
     3 8.316766 214.373394 22018.417441
                                                8.059332 356.886136
                                                                         363.266516
```

4 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 Organic_carbon Trihalomethanes Turbidity Potability 0 10.379783 86.990970 2.963135 1 15.180013 56.329076 4.500656 0 2 16.868637 66.420093 3.055934 0 3 18.436524 100.341674 4.628771 0 4 11.558279 31.997993 4.075075 0

[7]: # Descriptive Statistics

df.describe()

25%

50%

75%

max

[7]:		ph	Hardness	Solids	Chloramin	es Su	ılfate \
	count	2785.000000	3276.000000	3276.000000	3276.0000	00 2495.0	00000
	mean	7.080795	196.369496	22014.092526	7.1222	77 333.7	75777
	std	1.594320	32.879761	8768.570828	1.5830	85 41.4	16840
	min	0.000000	47.432000	320.942611	0.3520	00 129.0	00000
	25%	6.093092	176.850538	15666.690297	6.1274	21 307.6	99498
	50%	7.036752	196.967627	20927.833607	7.1302	99 333.0	73546
	75%	8.062066	216.667456	27332.762127	8.1148	87 359.9	50170
	max	14.000000	323.124000	61227.196008	13.1270	000 481.0	30642
		Conductivity	Organic_car	bon Trihalom	ethanes	Turbidity	Potability
	count	3276.000000	3276.000	000 3114	.000000 32	76.000000	3276.000000
	mean	426.205111	14.284	970 66	.396293	3.966786	0.390110
	std	80.824064	3.308	162 16	.175008	0.780382	0.487849
	min	181.483754	2.200	000 0	0.738000		0.000000

55.844536

66.622485

77.337473

124.000000

3.439711

3.955028

4.500320

6.739000

0.000000

0.000000

1.000000

1.000000

12.065801

14.218338

16.557652

28.300000

[8]: # Information about dataframe df.info()

365.734414

421.884968

481.792304

753.342620

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic carbon	3276 non-null	float64

7 Trihalomethanes 3114 non-null float64 8 Turbidity 3276 non-null float64 9 Potability 3276 non-null int64

dtypes: float64(9), int64(1)

memory usage: 256.1 KB

Correlation Between Features

```
[10]: #correlation table
```

Potability

1.000000

df.corr()

	[10]:		ph	Har	dness	Solids	chl	oramines	Su	lfate \	
	ph		1.000000	0.0	82096	-0.089288	3 –	0.034350	0.0	18203	
	Ha	rdness	0.082096	1.0	00000	-0.046899) –	0.030054	-0.1	06923	
	Solids		-0.089288	-0.0	46899	1.000000) –	0.070148	-0.1	71804	
	Ch.	loramines	-0.034350	-0.0	30054	-0.070148	3	1.000000	0.0	27244	
	Sulfate		0.018203	-0.1	06923	-0.171804	ļ	0.027244	1.0	00000	
	Cor	nductivity	0.018614	-0.0	23915	0.013831	_	0.020486	-0.0	16121	
	Organic_carbon Trihalomethanes		0.043503	0.0	03610	0.010242	2 –	0.012653	0.0	30831	
			0.003354	-0.0	13013	-0.009143	3	0.017084	-0.0	30274	
	Tu	rbidity	-0.039057	-0.0	14449	0.019546	3	0.002363	-0.0	11187	
	Po	tability	-0.003556	-0.0	13837	0.033743	3	0.023779	-0.0	23577	
			Conducti	vity	Organ	nic_carbor	n Tri	halometha	anes	Turbidity	\
	ph		0.01	8614		0.043503	3	0.003	3354	-0.039057	
	Ha	rdness	-0.02	3915		0.003610)	-0.013	3013	-0.014449	
	So	lids	0.01	.3831		0.010242	2	-0.009	9143	0.019546	
	Ch.	loramines	-0.02	0486		-0.012653	3	0.01	7084	0.002363	
	Su	lfate	-0.01	6121		0.030831	L	-0.030	0274	-0.011187	
	Cor	nductivity	1.00	0000		0.020966	5	0.00	1285	0.005798	
	Org	ganic_carbon	0.02	0966		1.000000)	-0.013	3274	-0.027308	
	Trihalomethanes Turbidity		0.00	1285		-0.013274	Ļ	1.000	0000	-0.022145	
			0.00	5798		-0.027308	3	-0.022	2145	1.000000	
	Potability		-0.00	8128		-0.030001	_	0.00	7130	0.001581	
ph			Potabili	•							
		-0.0035	556								
		rdness	-0.0138								
		lids	0.0337								
		loramines	0.0237	79							
	Su	lfate	-0.0235	577							
		${\tt nductivity}$	-0.0081								
	,	ganic_carbon	-0.0300								
		ihalomethanes	0.0071								
	Tu	rbidity	0.0015	81							

```
[64]: #correlation by using clustermap
    #sns.heatmap(df.corr(), cmap='flag')

fig, ax = plt.subplots(figsize=(16, 12))
    sns.heatmap(df.corr(), cmap='tab20b',annot=True,linewidths='0.8',ax=ax)
```

[64]: <Axes: >

Preprocessing: Missing Value

[65]: #missing value counts
df.isnull().sum()

[65]: ph 491

Hardness 0

Solids 0

Chloramines 0

Sulfate 781

```
Conductivity
                           0
      Organic_carbon
                           0
      Trihalomethanes
                         162
      Turbidity
                           0
      Potability
                           0
      dtype: int64
[67]: df['ph'].fillna(value = df['ph'].mean(), inplace = True)
[69]: df['Sulfate'].fillna(value = df['Sulfate'].mean(), inplace = True)
      df['Trihalomethanes'].fillna(value = df['Trihalomethanes'].mean(), inplace =
       →True)
[70]: # Check again the missing values
      df.isnull().sum()
[70]: ph
                         0
     Hardness
                         0
      Solids
      Chloramines
                         0
      Sulfate
                         0
      Conductivity
      Organic_carbon
                         0
      Trihalomethanes
                         0
      Turbidity
                         0
     Potability
                         0
      dtype: int64
```

3.2 Checking for outliers using boxplot

```
[106]: for col in df.columns:
    plt.boxplot(df[col], vert=False)
    plt.title(col)
    plt.show()
```


3.2.1

3.3 Checking for other relations

```
[91]: fig,ax = plt.subplots(figsize = (12,5))
sns.boxplot(data =df, x = 'ph', y = 'Potability', orient = 'h').set(title = 'Ph_U
distribution');
```



```
[93]: fig,ax = plt.subplots(figsize = (12,5))
sns.boxplot(data =df, x = 'Conductivity', y = 'Potability', orient = 'h').

→set(title = 'Ph distribution');
```


4 Conclusions

- 4.0.1 -> From the correlation heatmap plotted earlier, its clear that the pf level of the water and the hardness of the water are highly correlated.
- 4.0.2 -> The Outliers of each attribute in the dataset is properly visualized using boxplot,
- 4.0.3 -> Sulfate has so many outliers as well as less correlated with most other attributes, thus it can be deleted if not needed.
- 4.0.4 -> ph, Chloramine, solids also have many outliers
- 4.0.5 -> From other three comparative boxplot using ph and probability, it is clear that water which harmful for drinking and water which safe for drinking are almost slightly equally distributed in this samples