

Teoria da Decisão

Trabalho Computacional

Professor: Lucas S. Batista

MONITORAMENTO DE ATIVOS

Especificação do Problema

A partir de 2010 foram definidas leis a serem aplicadas no contexto de barragens de mineração. A evolução desse contexto histórico é ilustrada na Figura 1.

Figura 1: Evolução de leis e portarias aplicadas às barragens de mineração.

De forma geral, essas barragens devem possuir um Plano de Ação de Emergência para Barragens de Mineração (PAEBM). Esse plano deve contar com sistemas automatizados de acionamento de sirenes instalados fora da mancha de inundação e outros mecanismos adequados ao eficiente alerta na zona de autossalvamento (ZAS), instalados em lugar seguro, e dotados de modo contra falhas em caso de rompimento da estrutura, complementando os sistemas de acionamento manual no empreendimento e remoto. A Figura 2 ilustra postes para transmissão e recepção de sinais (à esquerda) e sirenes (à direita).

Figura 2: Exemplos de equipamentos aplicados no monitoramento de barragens.

Com a instalação de inúmeras sirenes, sensores, medidores, painéis elétricos e outros ativos, tornou-se necessário a definição de áreas dedicadas à manutenção preventiva e corretiva desses equipamentos. O propósito deste trabalho envolve a alocação otimizada de equipes às bases de manutenção e a atribuição dos ativos às respectivas equipes instaladas nessas bases.

Seguem informações sobre esse problema:

Dados de localização dos ativos e das bases de manutenção

As coordenadas (latitude e longitude) dos ativos e das bases de manutenção estão disponíveis no arquivo *probdata.csv*. Esse arquivo apresenta também a distância estimada entre bases e ativos (essas distâncias foram calculadas usando Python, por meio das bibliotecas *osmnx* e *geopy*). O arquivo *probdata.csv* está organizado conforme a Figura 3. Apenas a título de caracterização, as bases consideradas neste trabalho são apresentadas na Figura 4.

Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
Latitude	Longitude	Latitude	Longitude	Distância entre
da Base	da Base	do Ativo	do Ativo	Base e Ativo

Figura 3: Organização dos dados do problema.

_	_	Coordenadas
Item	Base	(Latitude e Longitude
		em Graus)
1	Mina de Segredo	-20.42356922351763
	Mina de Segredo	-43.85662128864406
2	Mina de Fábrica	-20.41984991094628
	Willia de l'abrica	-43.87807289747346
3	Mina do Pico	-20.21903360119097
	Willia do Fico	-43.86799823383877
4	Mina Abóboras	-20.15430320989316
	Mina Aboboras	-43.87736509890982
5	Mine Verson George	-20.17524384792724
	Mina Vargem Grande	-43.8776334175356
6	Mina Canitža da Mata	-20.1176047615157
	Mina Capitão do Mato	-43.92474303044277
7	Mina de Mar Azul	-20.0552230890194
/	Ivillia de Iviai Azui	-43.95878782530629
8	Mina da Mutuca	-20.0266764103878
	ivillia da iviutuca	-43.95792896914806
9	Mina Capão Xavier	-20.05089955414092
	Ivilla Capao Aaviei	-43.97170154845308
10	Mina de Jangada	-20.09607975875567
	Mina de Jangada	-44.09515109222237
11	Mina de Águas Claras	-19.96289872248546
	Milia de Aguas Ciaras	-43.90611994799001
12	Mina Córrago da Mais	-19.86222243086092
	Mina Córrego do Meio	-43.79440046882095
13	Mina de Córrego do Feijão	-20.12490857385939
	willia de Corrego do Feljao	-44.12537961904606
14	Mina Tamanduá	-20.08768706286346
	ivinia I amandua	-43.94249431874169

Figura 4: Coordenadas das bases de manutenção.

- O que se deseja conhecer
- 1. Bases onde serão alocadas as equipes de manutenção;
- 2. Os ativos sob responsabilidade de cada equipe.
- Restrições de projeto
- 1. Cada equipe deve ser alocada a exatamente uma base de manutenção;
- 2. Cada ativo deve ser atribuído a exatamente uma base de manutenção;
- 3. Cada ativo só pode ser atribuído a uma base se esta estiver ocupada por pelo menos uma equipe de manutenção;
- 4. Cada ativo deve ser atribuído a exatamente uma equipe de manutenção;

- Cada ativo só pode ser atribuído a uma equipe se esta estiver ocupando a base na qual o ativo estiver alocado;
- 6. Considerando a existência de n ativos, m bases e s equipes, cada equipe deve ser responsável por pelo menos $\eta n/s$ ativos, em que $\eta=0.2$ é um percentual definido pela empresa.
- 7. Considere que podem ser contratadas no máximo s=8 equipes.

Assuma a seguinte definição das variáveis de otimização:

 $x_{ij} \in \{0,1\}$: 1 se o ativo *i* for atribuído à base *j*; 0, caso contrário;

 $y_{jk} \in \{0,1\}$: 1 se a base j for ocupada pela equipe k; 0, caso contrário;

 $h_{ik} \in \{0,1\}$: 1 se o ativo *i* for mantido pela equipe k; 0, caso contrário.

-

- Considere uma função objetivo $f_1(\cdot)$ para minimização da distância total entre os ativos e suas respectivas equipes de manutenção.
- Considere uma função objetivo $f_2(\cdot)$ para minimização do número de equipes empregadas.