

深圳市海凌科电子有限公司

HLK-LD6002-呼吸心率检测雷达模组通信协议

目 录

1.	数据通信链路约定	1
	1.1. 通信链路介绍	1
•		
2.	协议约定说明	2
	2.1. 协议结构框图	
	2.2. 协议结构简介	
	2.3. TF 帧解析流程	
	2.4. TF 示例帧解析详解	4
3.	通用消息类型	9
	3.1. 消息类型 : 查询固件状态(TYPE:0xFFFF)	9
	3.2. 消息类型 : 返回固件状态(TYPE:0xFFFF)	9
	3.3. 消息类型 : 进入 OTA 升级(TYPE:0x3000)	10
	3.4. 消息类型: OTA 升级(TYPE:0x3000)	10
4.	呼吸+心率检测项目	11
	4.1. 消息类型: 报告有无人检测项目测试结果 0x0F09	11
	4.2. 消息类型: 报告人员位置 0x0A04	11
	4.3. 消息类型: 报告相位测试结果 0x0A13	12
	4.4. 消息类型: 报告呼吸速率测试结果 0x0A14	13
	4.5. 消息类型: 报告心跳速率测试结果 0x0A15	13
	4.6. 消息类型: 报告检测目标距离 0x0A16	14
	4.7. 消息类型: 报告跟踪目标位置信息 0x0A17	14
5.	数据转换解析说明	15
6.	编程接口	15
	6.1. 编码 TF 消息	15
	6.2. 解码 TF 消息	
	6.3. 示例代码	16
跞	オ录 A 文档修订记录	17

1.数据通信链路约定

1.1. 通信链路介绍

服务端是指模组端 ,客户端是指上位机端 服务端的通信方式 : 主动上传和被动上传客户端的通信方式 : 主动下发。

图 1-1 通讯方式

2.协议约定说明

2.1.协议结构框图

2.2.协议结构简介

格式	字节数	存储方式	格式含义
SOF	1	大端序	代表一帧 TF 数据的起始位 ,通常固定为 0x01。
ID	2	大端序	代表发送的包序 , 可用于检测客户端和服务端数据帧是否连续。
LEN	2	大端序	程序中默认设置总数据帧长度不超过 1024 个字节。
ТҮРЕ	2	大端序	代表整个数据帧的消息类型 ,不同的消息类型 所代表的功能不同。
HEAD_CKSUM	1	大端序	代表头帧校验和 , 从 SOF 位到 TYPE 位先全部进行异或运算 , 再取反。
DATA	N	小端序	代表数据的有效载荷 , DATA 位数据长度与 LEN 位相关。例如 LEN 位值为 2 ,则 DATA 位由两个字节数据组成。
DATA_CKSUM	1	大端序	代表尾帧校验和 , 所有 DATA 位先全部进行 异或运算 , 再取反。

注:SOF 位~HEAD_CKSUM 位与 DATA_CKSUM 采用大端排序原因 , 方便查看指令的 TYPE 类型以及数据长度 , DATA 位采用小端的排序 , 符合计算器存储顺序 , 方便解析 DATA 数据 (可以强行转换数据类型)。

2.3.TF 帧解析流程

图 2-1 TF 帧解析流程

2.4.TF 示例帧解析详解

3.通用消息类型

3.1.消息类型 : 查询固件状态(TYPE:0xFFFF)

通信方式:	主动下发			
格式	字节数	基本类型	帧结构	
SOF	1 byte	uint8	起始帧	
ID	2 byte	uint16	帧 ID	
LEN	2 byte	uint16	数据帧长度	
TYPE	2 byte	uint16	帧类型	
HEAD_CKSUM	1 byte	uint8	头校验和	

示例 TF 帧: 01 00 01 00 00 FF FF FF

3.2.消息类型 : 返回固件状态(TYPE:0xFFFF)

通信方式:	被动上传				
格式	字节数	基本类型	帧结构		
SOF	1 byte	uint8	起始帧		
ID	2 byte	uint16	帧 ID		
LEN	2 byte	uint16	数据帧长度		
TYPE	2 byte	uint16	帧类型		
HEAD_CKSUM	1 byte	uint8	头校验和		
DATA (见下文)					
DATA_CKSUM	1 byte	uint8	数据校验和		

以下是 DATA 位对应的含义:

	DATA							
字节数	基本类型	帧结构	帧含义					
1 byte	uint8	[project_name]	表示雷达所运行的项目 0:表示存在感知项目 1:表示呼吸检测项目。 2:表示手势检测项目。 3:表示测距项目。 4:表示人员计数项目。 5:表示 3D 点云检测项目。					
1 byte	uint8	[major_version]	表示雷达主版本号					
1 byte	uint8	[sub_version]	表示雷达子版本号					
1 byte	uint8	[modified_version]	表示雷达修订版本号					

示例 TF 帧: 01 04 AF 00 04 FF FF 51 06 03 0A 00 F0

3.3.消息类型 : 进入 OTA 升级(TYPE:0x3000)

通信方式:	主动下发			
格式	字节数	帧结构		
SOF	1 byte	uint8	起始帧	
ID	2 byte	uint16	帧 ID	
LEN	2 byte	uint16	数据帧长度	
TYPE	2 byte	uint16	帧类型	
HEAD_CKSUM	1 byte	uint8	头校验和	

示例 TF 帧: 01 00 01 00 00 30 00 CF

3.4. 消息类型 : OTA 升级(TYPE:0x3000)

通信方式:	被动上传					
格式	字节数	基本类型	帧结构			
SOF	1 byte	uint8	起始帧			
ID	2 byte	uint16	帧 ID			
LEN	2 byte	uint16	数据帧长度			
TYPE	2 byte	uint16	帧类型			
HEAD_CKSUM	1 byte	头校验和				
DATA (见下文)						
DATA_CKSUM	1 byte	uint8	数据校验和			

以下是 DATA 位对应的含义:

DATA							
字节数	基本类型	帧结构	帧含义				
1 byte	uint8	[tmpCodeInfo]	FF:待升级				

示例 TF 帧: 01 00 03 00 01 30 00 CC FF 00

4.呼吸+心率检测项目

4.1.消息类型 : 报告有无人检测项目测试结果 0x0F09

消息类型为 0x0F09 , 仅支持单向数据传输模式。

	雷达发送数据给上位机: MSG_IND_FALL_STATUS							
格式	字节数	基本类型	帧结构	示例帧	帧含义			
SOF	1 byte	uint8	起始帧	01				
ID	2 byte	uint16	帧 ID	00 00				
LEN	2 byte	uint16	数据帧长度	00 02	 用于报告有无人测试结			
TYPE	2 byte	uint16	帧类型	0F 09	果。			
HEAD_CKSU	1 byte	uint8	头校验和	F9				
DATA	2 byte	uint8	[is_human]	01 00				
DATA_CKSU	1 byte	uint8	数据校验和	FE				

以下是每个 DATA 位对应的含义:

● [is human]: 判断是否有人。

● 值为 00 00 : 无人。

● 值为 01 00 : 有人。

4.2.消息类型 : 报告人员位置 0x0A04

消息类型为 0x0A04 ,仅支持单向数据传输模式。0x0A04 为目标数据 , 0x0A08 为点云数据。

	雷达发送数据给上位机: MSG_IND_HUMAN_DETECTION_3D_TGT_RES					
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧 ID	00 00		
LEN	2 byte	uint16	数据帧长度	/		
TYPE	2 byte	uint16	帧类型	0A 04		
HEAD_CKSU	1 byte	uint8	头校验和	/		
DATA	4 byte	int32	[target_num]	/	用于报告人员位置。	
DATA	4 byte	float	[x]	/		
DATA	4 byte	float	[y]	/		
DATA	4 byte	float	[z]	/		
DATA	4 byte	int32	[dop_idx]	/		
DATA	4 byte	Int32	[cluster_id]	/		
DATA_CKSU	1 byte	uint8	数据校验和	/		

以下是每个 DATA 位对应的含义:

• [target_num]: 目标个数。

[x]:x 坐标,数据类型 float,单位: 米(m)。

[y]: y 坐标,数据类型 float,单位:米(m)。

[z]: z 坐标,数据类型 float,单位:米(m)。

• [dop_idx]:数据类型 int32,速度 dop_idx。 [cluster_id]:数据类型 int32,聚类目标 ID。

注: 当目标存在 N 个的时候 , x、y、z、dop_idx、 cluster_id 也存在 N 个。

注: 此条协议 Z 轴输出为 0。

4.3.消息类型 : 报告相位测试结果 0x0A13

消息类型为 0x0A13 , 仅支持单向数据传输模式。

雷达发送数据给上位机						
格式	字节数	基本类型	帧结构	示例帧	帧含义	
SOF	1 byte	uint8	起始帧	01		
ID	2 byte	uint16	帧 ID	00 00		
LEN	2 byte	uint16	数据帧长度	00 04		
TYPE	2 byte	uint16	帧类型	0A 13		
HEAD_CK SUM	1 byte	uint8	头校验和	\		
DATA	4 byte	float	[total phase]	\	用于输出总相位、心	
DATA	4 byte	float	[breath phase]	\	跳相位、呼吸相位 结果。	
DATA	4 byte	float	[heart phase]	\	扫 术。	
DATA_CK SUM	1 byte	uint8	数据校验和	\		

4.4.消息类型 : 报告呼吸速率测试结果 0x0A14

消息类型为 0x0A14 , 仅支持单向数据传输模式。

	雷达发送数据给上位机							
格式	字节数	基本类型	帧结构	示例帧	帧含义			
SOF	1 byte	uint8	起始帧	01				
ID	2 byte	uint16	帧 ID	00 00				
LEN	2 byte	uint16	数据帧长度	00 04				
TYPE	2 byte	uint16	帧类型	0A 14	用于报告呼吸速率测试			
HEAD_CK SUM	1 byte	uint8	头校验和	\	结果。			
DATA	4 byte	float	[rate]	\				
DATA_CK SUM	1 byte	uint8	数据校验和	\				

4.5.消息类型: 报告心跳速率测试结果 0x0A15

消息类型为 0x0A15 , 仅支持单向数据传输模式。

雷达发送数据给上位机					
格式	字节数	基本类型	帧结构	示例帧	帧含义
SOF	1 byte	uint8	起始帧	01	
ID	2 byte	uint16	帧 ID	00 00	
LEN	2 byte	uint16	数据帧长度	00 04	
TYPE	2 byte	uint16	帧类型	0A 15	用于报告心跳相位测试
HEAD_CK SUM	1 byte	uint8	头校验和	\	结果。
DATA	4 byte	float	[rate]	\	
DATA_CK SUM	1 byte	uint8	数据校验和	\	

4.6.消息类型 : 报告检测目标距离 0x0A16

消息类型为 0x0A16 , 仅支持单向数据传输模式。

雷达发送数据给上位机					
格式	字节数	基本类型	帧结构	示例帧	帧含义
SOF	1 byte	uint8	起始帧	01	
ID	2 byte	uint16	帧 ID	00 00	
LEN	2 byte	uint16	数据帧长度	00 04	
TYPE	2 byte	uint16	帧类型	0A 16	
HEAD_CK SUM	1 byte	uint8	头校验和	\	用于报告检测距离。
DATA	4 byte	uint 32	[flag]	\	
DATA	4 byte	float	[range]	\	
DATA_CK SUM	1 byte	uint8	数据校验和	\	

注:标志为1时,输出距 离(单位:cm)标志 为0时,不输出距离

4.7.消息类型 : 报告跟踪目标位置信息 0x0A17

消息类型为 0x0A17 , 仅支持单向数据传输模式。

雷达发送数据给上位机					
格式	字节数	基本类型	帧结构	示例帧	帧含义
SOF	1 byte	uint8	起始帧	01	
ID	2 byte	uint16	帧 ID	00 00	
LEN	2 byte	uint16	数据帧长度	00 04	
TYPE	2 byte	uint16	帧类型	0A 17	
HEAD_CK SUM	1 byte	uint8	头校验和	\	用于报告检测距离。
DATA	4 byte	float	[x]	\	
DATA	4 byte	float	[y]	\	
DATA	4 byte	float	[z]	\	
DATA_CK SUM	1 byte	uint8	数据校验和	\	

注:输出距离(单位: m)

5.数据转换解析说明

A、以下是 DATA 位的数据转换:

转换成 float: 例如[rate]位为 0x66、0x66、0xA2、0x41 , 先拼成 uint32 位整形 , 由于 TF 帧 Data 位小端序, 所以值为 0x41A26666 , 然后进行 float 类型强转 , 最终结果为: 20.3。

```
    int main(void)
    {
    unsigned int param =
    printf("data: %f\n", res);
    return 0;
```

B、以下是每个 CKSUM 的解析:

HEAD_CKSUM: TF 帧头校验和 【从第一个字节开始到 HEAD_CKSUM 位的上一个字节】 DATA_CKSUM: TF 数据验和 【 DATA 的第一个到 DATA_CKSUM 位的上一个字节】其中计算 CKSUM 的方法 c 代码如下所示:

```
    unsigned char getCksum(unsigned char *data, unsigned char len)
    {

            for (int i = 0; i < len; i++)</li>
            ret = ret ^ data[i];

    return ret;
    return ret;
```

6. 编程接口

6.1. 编码 TF 消息

void tinyFramefTx(TF_TYPE type, uint8 * data, TF_LEN len);

其中 type 为发送数据类型 , uint16 类型 Uint8* data 是发送数据的地址。

Len 为发送数据的长度, uint16 类型。

6.2.解码 TF 消息

TinyFrameRx tinyFramefRx(void);

成功接收消息后 ,接收的数据返回到一个 TinyFrameRx 类型的变量。

6.3.示例代码

如果想要解析 TF 帧数据的 demo(包含 Linux 环境与 $Keil\,\mu Vision5$ 环境下的 C 语言 demo、 Python 语 言 demo),可以直接与销售沟通获得,或直接从资料下载 里下载《 $TF_Demo.rar$ 》文件即可。

附录 A 文档修订记录

版本号	修订范围	日期
V1.0	初始文档	2023年10月18日
V1.1	修改文档	2024年7月29日
V1.2	增加协议内容及修改格式	2025年6月7日