Parallelrechner und Parallelprogrammierung am Karlsruher Institut für Technologie

Maximilian Heß

September 2017

Inhaltsverzeichnis

1	Para	Illelrechner und Parallelprogrammierung	5
	1.1	Einführung	5

Inhaltsverzeichnis

1 Parallelrechner und Parallelprogrammierung

Zusammenfassung der Vorlesung "Parallelrechner und Parallelprogrammierung" aus dem Sommersemester $2017.^1$

1.1 Einführung

• Klassifikation nach Flynn

Single Instruction Single Data (SISD): von-Neumann-Architektur (Einprozessorrechner)

Single Instruction Multiple Data (SIMD): Vektorrechner

Multiple Instruction Single Data (MISD): In der Praxis irrelevant. Ausnahme: Mehrere Geräte, die zur Berechnungsverifikation das selbe Datum mehrfach parallel berechnen

Multiple Instruction Multiple Data (MIMD): Multiprozessorsystem

• Multiprozessorsysteme

Speichergekoppelter: Gemeinsamer Adresseraum; Kommunikation über gemeinsame Variablen; skalieren mit > 1000 Prozessoren

Uniform Memory Access Model (UMA): Alle Prozessoren greifen gleichermaßen mit gleicher Zugriffszeit auf einen gemeinsamen Speicher zu (symmetrische Multiprozessoren)

Non-uniform Memory Access Modell (NUMA): Speicherzugriffszeiten variieren, da Speicher physikalisch auf verschiedene Prozessoren verteilt ist (Distributed Shared Memory System (DSM))

Nachrichtengekoppelt: Lokale Adresseräume; Kommunikation über Nachrichten (No-remote Memory Access Model); theoretisch unbegrenzte Skalierung

Uniform Communication Architecture Model (UCA): Einheitliche Nachrichtenübertragungszeit

Nin-uniform Communication Architecture Model (NUCA): Unterschiedliche Nachrichtenübertragungszeiten in Abhängigkeit der beteiligten Prozessoren

 $^{^{1} \}verb|https://www.scc.kit.edu/personen/11185.php|$