

日本国特許庁 JAPAN PATENT OFFICE

30 7. 2004 REC'D 16 SEP 2004 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 1月30日

出 願 番 号 Application Number:

特願2004-023903

[ST. 10/C]:

[JP2004-023903]

出 願 人
Applicant(s):

日本曹達株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 9月 3日

【曹類名】 特許願 【整理番号】 03P00113

【あて先】 特許庁長官 殿

【国際特許分類】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

C07D211/26

【氏名】 梅田 信広

【発明者】

【発明者】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

【氏名】 坪倉 史朗

【発明者】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

【氏名】 高田 光正

【発明者】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

【氏名】 望月 信夫

【発明者】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

【氏名】 内田 誠一

【発明者】

【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所

内

【氏名】 池山 聖一

【特許出願人】

【識別番号】 000004307

【氏名又は名称】 日本曹達株式会社

【代表者】 井上 克信

【代理人】

【識別番号】 100113860

【弁理士】

【氏名又は名称】 松橋 泰典

【先の出願に基づく優先権主張】

【出願番号】 特願2003-285421 【出願日】 平成15年 8月 1日

【手数料の表示】

【予納台帳番号】 044347 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 要約書 1 【包括委任状番号】 0303064

【書類名】特許請求の範囲

【請求項1】

式(1)

【化1】

$$\begin{array}{c} A \\ X - B - Z \end{array} \tag{1}$$

Aは、下記式(2)

【化2】

(式中、R2及びR3は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルコキシ基、G1で置換されていてもよい C_{1-6} アルキルスルファニル基、ハロゲン原子を表し、R4は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルキルルガルボニル基、G1で置換されていてもよいベンゾイル基又はテトラヒドロピラニル基を表し、nは、0又は1~3の整数、pは、0、1又は2の整数を表す。n又はpが2以上のとき、R2又はR3において、R2又はR3はそれぞれ同一でも相異なっていてもよい。)で表されるイミダゾリル基又はピラゾリル基を示し、

Bは、下記式(3)

【化3】

[式中R5又はR6は、それぞれ独立して、水素原子、シアノ基、水酸基、ハロゲン原子 出証特2004-3079233

、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{2-6} アルケニルオキシ基、 C_{2-6} アルキニルオキシ基、 C_{1-6} アルオキシ基、 C_{2-6} アルキニルオキシ基、 C_{1-6} アルオキシ基、 C_{2-6} アルオキシ基、 C_{2-6} アルカキシ基、 C_{1-6} アルカキシ基、 C_{2-6} アルカキシ基、 C_{2-6} アルカルボニル基により置換されていてもよい) C_{3-6} シクロアルキル基又は(シアノ基、水酸基、 C_{1-6} アルカキシ基、 C_{1-6} アルカルボニル基により置換されていてもよい)フェニル基を表し、 C_{1-6} アルカルボニル基により置換されていてもよい)フェニル基を表し、 C_{1-6} アルカルボニル基により置換されていてもよい)フェニル基を表し、 C_{1-6} アルカルボニル基により置換されていてもよい。 C_{1-6} アルカルボニル基により置換されていてもよい)フェニル基を表し、 C_{1-6} アルカルボニル基により置換されていてもよい)

Zは、G2で置換されたクロマン-2ーイル基、G2で置換されたクロマン-4ーイル基、G2で置換された2、3-ジヒドロベンゾフラン-2ーイル基、G2で置換された2、3-ジヒドロベンゾフラン-3ーイル基、G2で置換されたチオクロマン-2ーイル基、G2で置換された2、3-ジヒドロベンゾチオフェン-2ーイル基又はG2で置換された1、3-ベンゾキサチオール-2ーイル基を表し、

G1は、シアノ基、ホルミル基、水酸基、アルコキシ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基又はハロゲン原子を表し、

で表されるフェニルアゾール誘導体又はその薬学的に許容される塩。

【請求項2】

Zが、下記式(A)、(B)、(C)、(D)又は(E) 【化4】

[式中、*は、不斉炭素原子を表し、 X_1 は、酸素原子又は硫黄原子を表し、 $R_9 \sim R_2$ 9は、それぞれ独立して、水素原子又は C_{1-6} アルキル基を表す。] で表される基を示すことを特徴とする請求項1記載のフェニルアゾール誘導体。

【請求項3】

Aが、ベンゼン環の3位又は4位に結合した1-イミダブリル、1-H-イミダブールー2-イル、1-H-イミダブールー4-イル、1-ピラブール、1-H-ピラブールー4-イル又は1-H-ピラブール-5-イルを示すことを特徴とする請求項1又は2記載の

フェニルアゾール誘導体。

【請求項4】

式(a)

【化5】

[式中、A、J、q及びR 1 は式(1) におけるA、J、q及びR 1 とそれぞれ同じものを表す。] で示されるアミンと、式(b)

$$OHC-B'-Z' \qquad (b)$$

【化6】

$$A \xrightarrow{\text{(J) q}} \text{NCH}_2 - B' - Z' \qquad \text{(1 a)}$$

[式中、A、J、q及びR 1 は式(a) におけるA、J、q及びR 1 とそれぞれ同じものを表し、B'及びZ'は式(b) におけるB'及びZ'とそれぞれ同じものを表す。]で表されるフェニルアゾール誘導体の製造法。

【請求項5】

式 (c)

【化7】

[式中、A、J、q及びXは式(1)におけるA、J、q及びXとそれぞれ同じものを表す。]で示される化合物と、式(d)

$$D-B-Z$$
' (d)

[式中、Bは式(1)におけるBと同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表し、Dはアルコールから誘導される脱離基でハロゲン原子、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。]で示される化合物とを、溶媒中で反応させることを特徴とする式(1b)

【化8】

[式中、A、J、q及びXは式(c)におけるA、J、q及びXとそれぞれ同じものを表し、B及びZ'は式(d)におけるB及びZ'とそれぞれ同じものを表す。]で表されるフェニルアゾール誘導体の製造法。

【請求項6】

式(e)

【化9】

[式中、A、J、q及びBは式(1)におけるA、J、q及びBとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表す。] で示される化合物と、式(f)

$$E-R1(f)$$

[式中、R1は式(1)におけるR1と同じものを表し、Eは脱離基でハロゲン原子、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。]で示される化合物とを、溶媒中で反応させることを特徴とする式(1 c)

【化10】

[式中、A、J、q、B及びZ'は式(e)におけるA、J、q、B及びZ'とそれぞれ同じものを表し、R1は式(f)におけるR1と同じものを表す。] で表されるフェニルアゾール誘導体の製造法。

【請求項7】

式(1b)

【化11】

[式中、A、J、q、B及びXは式(1)におけるA、J、q、B及びXとそれぞれ同じ出証特2004-3079233

ものを表し、2'は式(1)における2において、G2がニトロ基のときの2を表す。]で示される化合物を、触媒を用いて水素添加を行うか、又は還元剤を用いて溶媒中で還元させることを特徴とする式(1 d)

【化12】

[式中、A、J、q、B及びXは式(1b)におけるA、J、q、B及びXとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がアミノ基のときのZを表す。] で表されるフェニルアゾール誘導体の製造法。

【請求項8】

式(1)

【化13】

$$\begin{array}{c} (J) \ q \\ \hline \\ -X-B-Z \end{array} \tag{1}$$

[式中、A、J、q、B、X及びZは、前記と同じものを表す。] で表されるフェニルアゾール誘導体又はその薬学的に許容される塩の1種又は2種以上を有効成分とすることを特徴とする抗酸化薬。

【請求項9】

式 (1) において、Zが、前記式 (A)、(B)、(C)、(D) 又は(E) 【化14】

で表される基を示すことを特徴とする請求項8記載の抗酸化薬。

【請求項10】

請求項8記載の抗酸化薬を含有することを特徴とする腎疾患、脳血管又は循環器疾患治療 薬。

【請求項11】

請求項8記載の抗酸化薬を含有することを特徴とする脳梗塞治療薬。

【請求項12】

請求項8記載の抗酸化薬を含有することを特徴とする網膜の酸化障害抑制薬。

【請求項13】

加齢性黄斑変性症あるいは糖尿病性網膜症等に対する請求項12記載の網膜の障害抑制薬。

【請求項14】

請求項8記載の抗酸化薬を含有することを特徴とするリポキシゲナーゼ阻害薬。

【請求項15】

請求項8記載の抗酸化薬を含有することを特徴とする20-ヒドロキシエイコサテトラエン酸(20-HETE)シンターゼ阻害薬。

【書類名】明細書

【発明の名称】フェニルアゾール誘導体、製造法及び抗酸化薬

【技術分野】

[0001]

本発明は、新規なフェニルアゾール誘導体、その製造法、当該化合物を有効成分とする 抗酸化薬及びこれを用いた腎疾患治療薬、脳血管障害治療薬、網膜の酸化障害抑制薬、リ ポキシゲナーゼ阻害薬や、20-HETEシンターゼ阻害薬に関する。

【背景技術】

[0002]

近年、生体内での過酸化脂質の生成とそれに付随したラジカル反応が、膜障害や細胞障害等を介して、生体に種々の悪影響を及ぼすことが明らかになってきた。それに伴い、抗酸化薬及び過酸化脂質生成抑制薬の医薬への応用が種々試みられており、多種の抗酸化薬の研究がなされている(例えば、非特許文献 1)。かかる抗酸化薬として、特定のキノン誘導体を含有する炎症、感染等に基づくエンドトキシンショックの治療及び予防に用いる医薬組成物(例えば、特許文献 1)や、細胞増殖抑制作用、血管新生抑制作用を有する自己免疫疾患の治療及び予防に用いるヒドロキサム酸誘導体(例えば、特許文献 2)や、抗酸化剤、ラジカルスカベンジャーとして有用な 2,3ージヒドロベンゾフラン誘導体(例えば、特許文献 3、4、5)等が知られている。また、抗高脂血症作用を有し、動脈硬化症の治療及び予防に有用なイミダゾール系化合物(例えば、特許文献 6)や、抗関節炎活性を有する下記式で表されるベンゾチアジンカルボキサミド(例えば、特許文献 7)が知られている。

[0003] 【化1】

$$\begin{array}{c}
N \longrightarrow H & H0 \\
0 & N-S0_2
\end{array}$$

更に、カルボニルアミノフェニルイミダゾール誘導体(特許文献 8、9、10参照)や、動脈硬化、肝疾患、脳血管障害等の種々の疾患の予防・治療剤として有用な過酸化脂質生成抑制作用を有するアミノジヒドロベンゾフラン誘導体(特許文献 11)や、フェニルアゾール誘導体を含有する抗高脂血症薬(特許文献 12)や、抗酸化防御系が不十分なときに生じる酸化ストレスの結果生じる脂質、タンパク質、炭水化物およびDNAに損傷を有意に改善するジヒドロベンゾフラン誘導体(特許文献 13)や、脳卒中および頭部外傷に伴う脳機能障害の改善、治療及び予防に有効である光学活性アミノジヒドロベンゾフラン誘導体(特許文献 14)等が知られている。

[0004]

エネルギー需要が大きいにもかかわらず、その供給が循環血液に依存していることから、脳は虚血に対して極めて脆弱である。種々の原因により脳血流が途絶え脳虚血に陥るとミトコンドリア障害や神経細胞内のカルシウム上昇などが引き金となって活性酸素種が発生し、また、虚血後の血流再開時には酸素ラジカルが爆発的に発生することが知られている。これらの活性酸素種が最終的には脂質、タンパク質、核酸などに対して作用し、それぞれを酸化させ細胞死を引き起こすと言われている。このような病態に対する治療として抗酸化薬があり、日本ではエダラボンが脳保護薬として認可され、用いられている。

[0005]

アラキドン酸に代表される不飽和脂肪酸へ酸素を添加するリポキシゲナーゼ(LO)は、酸素添加部位により、5-LO、8-LO、12-LO及び15-LO等が知られている。このうち5-LOは強力な炎症メディエーターであるロイコトリエンを合成する初発

酵素である。ロイコトリエン類は、喘息、リュウマチ性関節炎、炎症性大腸炎、乾癬等種 々の炎症性疾患に関与しており、その制御は、これらの疾患の治療に有用である。12-LOや15-LOは、アラキドン酸以外にも、リノール酸やコレステロールエステル、リ ン脂質、低比重リポタンパク質(LDL)とも反応し、その不飽和脂肪酸に酸素添加を添 加することが知られている(非特許文献 2)。マクロファージは、スカベンジャー受容体 を介して、酸化修飾されたLDLを無制限に取りこんで泡沫細胞となり、これが、動脈硬 化巣形成の最初のステップとなることは広く知られている。12-LO及び15-LOは 、マクロファージに高レベルで発現しており、LDLの酸化修飾の引き金として必須であ ることも明らかにされている(非特許文献3)。これらの制御は、動脈硬化に起因する各 種疾患の治療に有用である(特許文献15)。

[0006]

前駆体脂肪酸のアラキドン酸は細胞膜のリン脂質から切り離されると、20-ヒドロキ シエイコサテトラエン酸(20-HETE)シンターゼを介して20-HETEとなる。 20-HETEは、腎臓、脳血管等の主要臓器において微小血管を収縮又は拡張させるこ とや細胞増殖を惹起することが知られており、生体内で重要な生理作用に関わり、腎疾患 、脳血管疾患、循環器疾患等の病態に深く関与していることが示唆されている(非特許文 献4、5、6)。

[0007]

更にフェニルアゾール誘導体(特許文献16、17、18)が、20-HETEシンタ ーゼの阻害作用を有することが報告されている。

[0008]

白内障や黄斑変性症など老化に伴って多発する眼疾患の多くは、フリーラジカル・活性 酸素が関連する酸化的ストレスがその発症要因の一つとして考えられている(例えば、非 特許文献 7 、 8 、 9)。眼組織中で、網膜は水晶体とともに老化の影響を受けやすい組織 として知られている(例えば、非特許文献10)。網膜は高級不飽和脂肪酸を多く含むこ と、網膜血管及び脈絡膜血管の両方から栄養を受けており、酸素消費が多いこと等から種 々のフリーラジカルの影響を受けやすく、例えば太陽光など生涯に亘って受ける光は網膜 にとっての酸化ストレスの代表的なものである。地上に到達する太陽光の大部分が可視光 線と赤外線とで占められ、そのうち数%含まれる紫外線は可視光線や赤外線に比べ生体と の相互作用が強く健康に与える影響が大きい。紫外線は波長の違いにより、UV-A (3 $20 \sim 400 \text{ nm}$), UV-B ($280 \sim 320 \text{ nm}$), UV-C ($190 \sim 280 \text{ nm}$)、に区分され、生体に対する作用や強さが異なっているが、これまで、細胞毒性が特に 強い290nm以下の紫外線は成層圏のオゾン層により吸収され、地上にははとんど到達 しないと考えられてきた。しかしながら、近年、環境破壊が原因と考えられるオゾンホー ルの出現により、地球に到達する紫外線量が増加し、南半球では紫外線が関連する皮膚障 害や皮膚がんが急増していることからも、網膜に到達するUV-Aの影響により、網膜障 害は非常に高くなると考えられている。

[0009]

眼疾患の中で加齢性黄斑変性症は失明度の高い網膜障害であり、アメリカでは1000 万人が軽度の症状を呈しており、45万人以上がこの疾病による視覚障害をもっていると されている(例えば、非特許文献11)。急激な老齢化社会に突入している日本において もこの疾病の増加が懸念される。黄斑変性症の発症のメカニズムは不明な点が多いが、こ の病変の進行には網膜での光吸収による過酸化反応が関与しているとの指摘がある(例え ば、非特許文献12、13)。また、その発症前期にはドルーゼと言われるリポフスチン 様蛍光物質の出現が認められており、リポフスチンは、過酸化脂質の二次的分解産物であ るアルデヒドとタンパク質の結合により生成することから、紫外線や可視光線による網膜 での脂質過酸化反応が、この網膜障害を誘起する可能性が考えられる。

[0010]

このような抗酸化作用による網膜疾患の予防、治療に有用な特定のジヒドロフラン誘導 体を含有する網膜疾患治療剤(例えば、特許文献19)や、プロピオニルL-カルニチン

又は薬理学上許容される塩と、カロテノイドを含有する網膜の黄斑変性を含む視力及び網膜変化の薬剤(例えば、特許文献 20)等が知られている。

【特許文献1】特開昭61-44840号公報

【特許文献2】特開平1-104033号公報

【特許文献3】特開平2-121975号公報

【特許文献4】欧州特許出願公開第345593号明細書

【特許文献 5】欧州特許出願公開第483772号明細書

【特許文献6】国際公開第95/29163号パンフレット

【特許文献7】独国特許出願公開第DE3,407,505号明細書

【特許文献8】特開昭55-69567号公報

【特許文献9】欧州特許出願公開第324377号明細書

【特許文献10】欧州特許出願公開第458037号明細書

【特許文献11】特開平5-140142号公報

【特許文献12】国際公開第00/006550号パンフレット

【特許文献13】国際公開第96/28437号パンフレット

【特許文献14】特開平6-228136号公報

【特許文献15】特開平2-76869号公報

【特許文献16】国際公開第00/0168610号パンフレット

【特許文献17】特開2004-010513号公報

【特許文献18】国際公開第03/022821号パンフレット

【特許文献19】特開平6-287139号公報

【特許文献20】国際公開第00/07581号パンフレット

【非特許文献1】 ジャーナル・オブ・アメリカン・オイル・ケミスト・ソサイアテイ

(J. Amer. Oil Chemists, Soc.),第51巻, 200項,1974年

【非特許文献 2】 Biochem. Biophys. Acta、第1304巻、第652項、1996

【非特許文献 3 】 J.Clin. Invest.、第 1 0 3 巻、第 1 5 9 7 2 項、 1 9 9 9 年

【非特許文献 4 】 J. Vascular Research,第 3 2 卷,第 7 9 項, 1 9 9 5 年

【非特許文献 5 】 Am. J. Phsiol. , 第 2 7 7 卷, 6 0 7 項, 1 9 9 9 年

【非特許文献 6】 Physiol. Rev. , 第 8 2 巻, 1 3 1 項, 2 0 0 2 年

【非特許文献7】アンダーソン(Anderson R. E.), クレツァー(Kretzer F.L.), ラブ(Rapp L. M.) 「フリーラジカルと眼の疾患」Adv. Exp. Med. Biol., 第366巻, 73項,1994年

【非特許文献 8】 ニシゴオリ (Nishigori H.), リー (Lee J. W), ヤマウチ (Yam auchi Y.), イワツル (Iwatsuru M.) 「発芽鶏胚のグルコチコイド誘発白内障における過酸化脂質変性とアスコルビン酸の効果」Curr. Eye Res., 第5巻, 37項,1986年

【非特許文献9】トルスコット (Truscott R. J. W), オーガスチン (Augusteyn R. C.) 「正常又は白内障のヒト水晶体におけるメルカプト基の作用」Exp. Eye Res., 第25巻, 139項, 1977年

【非特許文献10】ヒラミツ (Hiramitsu T.), アームストロング (Armstrong D.) 「網膜における脂質過酸化反応に対する抗酸化剤の予防効果」Ophthalmic Research, 第23巻, 196,1991年

【非特許文献11】ビタミン広報センター(東京) VICニュースレター No.105, 4項, 2002年

【非特許文献12】幸村定昭「白内障と活性酸素・フリーラジカル、活性酸素・フリーラジカル」,第3巻,402項,1992年

【非特許文献13】 ソルバッハ (Solbach U.), ケイハウワー (Keilhauer C.), クナーベン (Knabben H.), ウルフ (Wolf S.) 「加齢性黄斑変性症における網膜自己蛍光像」Retina, 第17巻, 385項,1997年

【発明の開示】

【発明が解決しようとする課題】

[0011]

本発明は、腎疾患の治療、動脈硬化症をはじめとする心筋梗塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾患の治療に有効な抗酸化薬を提供し、更に、酸化、特に光酸化による網膜障害を抑制する網膜の酸化障害抑制薬や、リポキシゲナーゼ阻害薬、20-HETEシンターゼ阻害薬を提供することを課題とする。

【課題を解決するための手段】

[0012]

本発明者らは、上記課題を解決すべく鋭意研究の結果、既存の抗酸化薬の効力が十分でない原因は、薬剤が標的部位に到達しないか、標的部位到達前に活性を失活してしまうためであると考え、より臓器移行性のよい、特に血液脳関門又は血液網膜関門を通過しやすい抗酸化薬の開発を目的として鋭意研究を重ねた結果、式(1)で示される化合物が所期の目的を達成した。さらに、投与経路によらず優れたin vivo抗酸化作用を持つことを見い出し、本発明を完成するに至った。

[0013]

更に、本発明者らは、一定線量のUV-Aをラット眼にスポット照射することにより網 膜への影響を検討した。黄斑変性症などの失明度の高い網膜疾患の発症前期にはしばしば 、過酸化脂質由来アルデヒドとタンパク質との反応生成物によるリポフスチン様の蛍光物 質が検出される。UV-A照射眼網膜組織の変化とよく比例する66kDa付近のタンパ ク質の増加が見られ、このタンパク質は機器分析や無アルブミンラットを使用した検討結 果から、アルブミン様物質であることが認められている。in vitro下、網膜組織の自動酸 化反応において、アルブミンを共存させることにより、リポスフチン様蛍光物質の有意な 増加が認められることから、UV-A照射による網膜組織での一部のタンパク質の異常な 増加は網膜での蛍光物質の増加と関係し、網膜障害の引き金となる可能性が高い。本発明 者らは、この網膜タンパク質の変化を第一の生化学的指標として、網膜障害抑制薬の検討 をこれまでおこなってきた。その過程で、強い抗酸化能を有する本特許化合物が、経口投 与により網膜に短時間で移行し、UV-Aスポット照射による66kDaタンパク質の増 加を顕著に抑制することが認められた。この結果は、本特許化合物が酸化による網膜障害 に対し有効であり、特に、老化に伴って増加する網膜の加齢性黄斑変性症の進行や症状の 軽減に有効であることの知見を得て、かかる知見に基づき本発明を完成するに至った。 すなわち本発明は、

1. 式(1)

[0014]

【化2】

$$\begin{array}{c} A \\ X - B - Z \end{array} \tag{1}$$

[式中、Xは酸素原子、式:SOm(式中、mは0、1又は2の整数を表す。)又は式:N-R1(式中、R1は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基又は G1で置換されていてもよいベンジル基を表す。)を表し、Jは水素原子、シアノ基、水 酸基、ハロゲン原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルコキシ基、ニトロ基又は(1つ又は2つの C_{1-6} アルキル基で置換されていてもよい)アミノ基を表し、Qは0又は $1\sim4$ の整数(Qが2以上のとき、Jにおいて、Jは同一でも相異なっていてもよい)を表し、

Aは、下記式(2)

[0015]

[123]

(式中、R2及びR3は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルコキシ基、G1で置換されていてもよい C_{1-6} アルキルスルファニル基、ハロゲン原子を表し、R4は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルキルカルボニル基、G1で置換されていてもよいベンゾイル基又はテトラヒドロピラニル基を表し、nは、0又は1~3の整数、pは、0、1又は2の整数を表す。n又はpが2以上のとき、R2又はR3において、R2又はR3はそれぞれ同一でも相異なっていてもよい。)で表されるイミダゾリル基又はピラゾリル基を示し、

(2)

Bは、下記式(3) 【0016】 【化4】

[式中R5又はR6は、それぞれ独立して、水素原子、シアノ基、水酸基、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{2-6} アルケニルオキシ基、 C_{2-6} アルキニルオキシ基、 C_{1-6} アルカキシ基、 C_{2-6} アルカキシ基、 C_{1-6} アルカキシ基、 C_{1-6} アルカトボニル基により置換されていてもよい) C_{3-6} シクロアルキル基又は(シアノ基、水酸基、 C_{1-6} アルコキシカルボニル基、 C_{1-6} アルコキシカルボニル基により置換されていてもよい)フェニル基を表し、 C_{1-6} アルコキシカルボニル基により置換されていてもよい。]で表される基を示し、

Zは、G2で置換されたクロマンー2ーイル基、G2で置換されたクロマンー4ーイル基、G2で置換された2,3ージヒドロベンゾフランー2ーイル基、G2で置換された2,3ージヒドロベンゾフランー3ーイル基、G2で置換されたチオクロマンー2ーイル基、G2で置換された2,3ージヒドロベンゾチオフェンー2ーイル基又はG2で置換された1.3ーベンゾキサチオールー2ーイル基を表し、

G1は、シアノ基、ホルミル基、水酸基、アルコキシ基、アミノ基、モノメチルアミノ 基、ジメチルアミノ基又はハロゲン原子を表し、

G2は、式:NHR7 |式中、R7は、水素原子、ホルミル基、 C_{1-6} アルキルカルボニル基又は(シアノ基、水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、

ニトロ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基、C1-6アルコキシカルボニル基により置換されていてもよい)ベンゾイル基を表す。| 又はOR8 |式中、R8は、水素原子、ホルミル基、C1-6アルキルカルボニル基又は(シアノ基、水酸基、C1-6アルキル基、C1-6アルコキシ基、ハロゲン原子、ニトロ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基、C1-6アルコキシカルボニル基により置換されてもよい)ベンゾイル基を表す。| を示す。]

で表されるフェニルアゾール誘導体又はその薬学的に許容される塩。

2. Zが、下記式(A)、(B)、(C)、(D) 又は(E)

【0017】 【化5】

[式中、*は、不斉炭素原子を表し、 X_1 は、酸素原子又は硫黄原子を表し、 $R_9 \sim R_2$ 9は、それぞれ独立して、水素原子又は C_{1-6} アルキル基を表す。]

で表される基を示すことを特徴とする請求項1記載のフェニルアゾール誘導体。

3. Aが、ベンゼン環の3位又は4位に結合した1ーイミダゾリル、1ーHーイミダゾールー2ーイル、1ーHーイミダゾールー4ーイル、1ーピラゾール、1ーHーピラゾールー4ーイル又は1ーHーピラゾールー5ーイルを示すことを特徴とする請求項1又は2記載のフェニルアゾール誘導体。

4. 式(a)

【0018】

[式中、A、J、q及びR1は式(1)におけるA、J、q及びR1とそれぞれ同じものを表す。] で示されるアミンと、式(b)

OHC-B'-Z' (b)

[式中、B'は式(1)におけるBに対し、Bと式 CH_2-B 'との間の等価が成り立ち、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表す。]で示されるアミンとを、溶媒中で反応させることを特徴とする式(1 a)

[0019]

【化7】

[式中、A、J、q及びR1は式(a)におけるA、J、q及びR1とそれぞれ同じものを表し、B'及びZ'は式(b)におけるB'及びZ'とそれぞれ同じものを表す。]で表されるフェニルアゾール誘導体の製造法。

5. 式(c)

[0020]

【化8】

[式中、A、J、q及びXは式(1)におけるA、J、q及びXとそれぞれ同じものを表す。] で示される化合物と、式(d)

$$D-B-Z' \qquad (d)$$

[式中、Bは式(1)におけるBと同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表し、Dはアルコールから誘導される脱離基でハロゲン原子、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。]で示される化合物とを、溶媒中で反応させることを特徴とする式(1b)

【0021】 【化9】

[式中、A、J、q及びXは式(c)におけるA、J、q及びXとそれぞれ同じものを表し、B及びZ'は式(d)におけるB及びZ'とそれぞれ同じものを表す。]で表されるフェニルアゾール誘導体の製造法。

6. 式(e)

[0022]

【化10】

[式中、A、J、q及びBは式(1)におけるA、J、q及びBとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表す。]で示される化合物と、式(f)

$$E-R1$$
 (f)

[式中、R1は式(1.) におけるR1と同じものを表し、Eは脱離基でハロゲン原子、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。] でで示される化合物とを、溶媒中で反応させることを特徴とする式(1 c)

[0023]

【化11】

[式中、A、J、q、B及びZ'は式(e)におけるA、J、q、B及びZ'とそれぞれ同じものを表し、R1は式(f)におけるR1と同じものを表す。] で表されるフェニルアゾール誘導体の製造法。

7. 式(1b)

[0024]

【化12】

[式中、A、J、q、B及びXは式(1)におけるA、J、q、B及びXとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基のときのZを表す。]で示される化合物を、触媒を用いて水素添加を行うか、Yは還元剤を用いて溶媒中で還元させることを特徴とする式(1 d)

[0025]

【化13】

$$\begin{array}{c} (J) \ q \\ \hline \\ X-B-Z \end{array} \qquad (1 \ d)$$

[式中、A、J、q、B及びXは式(1b)におけるA、J、q、B及びXとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がアミノ基のときのZを表す。]で表されるフェニルアゾール誘導体の製造法。

8. 式(1)

[0026]

【化14】

$$\begin{array}{c} A \\ \\ \end{array} \begin{array}{c} (J) q \\ \\ \end{array} \begin{array}{c} (T) \\ \end{array}$$

[式中、A、J、q、B、X及び2は、前記と同じものを表す。] で表されるフェニルアゾール誘導体又はその薬学的に許容される塩の1種又は2種以上を 有効成分とすることを特徴とする抗酸化薬。

9. 式(1) において、Zが、前記式(A)、(B)、(C)、(D) 又は(E)

【0027】

で表される基を示すことを特徴とする請求項8記載の抗酸化薬。

- 10. 請求項8記載の抗酸化薬を含有することを特徴とする腎疾患、脳血管又は循環器疾患治療薬。
- 11. 請求項8記載の抗酸化薬を含有することを特徴とする脳梗塞治療薬。
- 12. 請求項8記載の抗酸化薬を含有することを特徴とする網膜の酸化障害抑制薬。
- 13. 加齢性黄斑変性症あるいは糖尿病性網膜症等に対する請求項12記載の網膜の障害 抑制薬。
- 14. 請求項8記載の抗酸化薬を含有することを特徴とするリポキシゲナーゼ阻害薬。
- 15. 請求項8記載の抗酸化薬を含有することを特徴とする20-ヒドロキシエイコサテトラエン酸(20-HETE)シンターゼ阳害薬。

である。

【発明の効果】

[0028]

本発明のフェニルアゾール誘導体又はその薬学的に許容される塩は、動脈硬化症をはじめ心筋梗塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾病の治療に有効な抗酸化活性を有し、光等の酸化による網膜障害を有効に抑制することができ、本発明のフェニルアゾール誘導体を含有する優れた抗酸化薬とすることができ、副作用が少ない網膜の酸化障害抑制薬として有用である。

【発明を実施するための最良の形態】

[0029]

本発明の式(1)で表されるフェニルアゾール誘導体において、Xとしては酸素原子、硫黄原子、スルフィニル、スルホニルが挙げられる。R1としては、水素原子、G1で 置換されていてもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル等の C_{1-6} アルキル基又はG1で置換されていてもよいベンジル基が挙げられる。Jとしては、水素原子、シアノ基、水酸基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、G1で置換されていてもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル等の C_{1-6} アルキル基、G1で置換されていてもよいメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、g-ブトキシ、イソブトキシ、g-ブチル・g-ブチル・g-ブター・g-ブチル・g-ブター・g

[0030]

式(1)中、Aが示す式(2)

[0031]

【化16】

におけるイミダゾリル基又はピラゾリル基の置換基、R2及びR3としては、水素原子、G1で置換されていてもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-プチル等の C_{1-6} アルキル基、G1で置換されていてもよいメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、s-プトキシ、イソブトキシ、t-ブトキシ等の C_{1-6} アルコキシ基、G1で置換されていてもよいメチルスルファニル、エチルスルファニル、プロピルスルファニル、イソプロピルスルファニル、ブチルスルファニル、イソプチルスルファニル、s-ブチルスルファニル、t-ブチルスルファニル等の C_{1-6} アルキル基スルファニル基、又はフッ素、塩素、臭素、ヨウ素等のハロゲン原子が挙げられる。

[0032]

R4は、水素原子、G1で置換されていてもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、S-ブチル、t-ブチル等の C_{1-6} アルキル基、G1で置換されていてもよいアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロ

イル等の C_{1-6} アルキルカルボニル基、 G_{1} で置換されていてもよいベンゾイル基又はテトラヒドロピラニル基を表す。上記置換基における置換基 G_{1} としては、シアノ基、ホルミル基、水酸基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、 g_{1-6} といる。アルコキシ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基、又はフッ素、塩素、臭素、ヨウ素等のハロゲン原子を挙げることができる。また、 g_{1-6} とりうる。

【0033】 【化17】

かかるAとしては、1-イミダゾリル基、1-H-イミダゾール-2-イル基、1-H-イミダゾール-4-イル基、1-ピラゾール基、1-H-ピラゾール-5-イル基、1-メチルイミダゾール-2-イル基、1-メチルイミダゾール-5-イル基、1-メチルイミダゾール-5-イル基、1-メチルイミダゾール-4-イル基、1-メチルピラゾール-5-イル基、1-メチルピラゾール-5-イル基が好ましい。

[0034]

式(1)中、Bが示す式(3)におけるR5、R6は、それぞれ独立して、水素原子、 シアノ基、水酸基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、メチル、エチル、プ ロピル、イソプロピル、ブチル、 s ープチル、イソプチル、 t ーブチル等の C1-6 アルキ ル基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、sーブトキシ、イ ソブトキシ、 t ープトキシ等の C1-6アルコキシ基、エテニル、1 ープロペニル、 2 ープ ロペニル、1ープテニル、2ープテニル、3ープテニル、1ーメチルー2ープロペニル、 2-メチル-2-プロペニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-メチル-2-ブテニル、2-メチル-2-プテニル、1-ヘキセニル、 2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル等のC₂₋₆アルケニ ル基、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-プチニル、1ーメチルー2ープロピニル、1ーペンチニル、2ーペンチニル、3ーペンチ ニル、4-ペンチニル、1-メチル-2-ブチニル、2-メチル-3-プチニル、1-ヘ キシニル、2ーメチルー3ーペンチニル、1.1ージメチルー2ーブチニル等のC2-6ア ルキニル基、アリルオキシ、2ープロペニルオキシ、2ープテニルオキシ、2ーメチルー 3-プロペニルオキシ等のC2-6アルケニルオキシ基、2-プロピニルオキシ、2-ブチ ニルオキシ、1-メチル-2-プロピニルオキシ等のC2-6アルキニルオキシ基、アセト キシ基、プロピオニロキシ基、プチリロキシ基等のC1-6アシルオキシ基、(シアノ基、 水酸基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、sーブトキシ、 イソプトキシ、tープトキシ等のC1-6アルコキシ基、フッ素、塩素、臭素、ヨウ素等の ハロゲン原子、ニトロ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基、アセチル 、プロピオニル、プチリル、バレリル等のC₁₋₆アルコキシカルボニル基で置換されてい

てもよい) C₃₋₆シクロアルキル基、又は(シアノ基、水酸基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、sープトキシ、イソプトキシ、tープトキシ等の C₁₋₆アルコキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、ニトロ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基、アセチル、プロピオニル、ブチリル、バレリル等の C₁₋₆アルコキシカルボニル基で置換されていてもよい)フェニル基を表す。

[0035]

なお、kは、0又は $1\sim15$ の整数を表し、kが2以上のとき、R5及びR6はそれぞれ複数存在するが、これら複数のR5及びR6は、R5又はR6において、また、R5及びR6の相互間において、それぞれ同一でも相異なっていてもよい。

[0036]

これらのBにおいて、R5及びR6はそれぞれ独立して水素原子、メチル基又はフェニル基、kは0、1、2、3、4、5又は6が好ましい。

[0037]

式(1)におけることしては以下の環状基が挙げられる。

[0038]

Zは、G2で置換されたクロマンー2ーイル基、G2で置換されたクロマンー4ーイル基、G2で置換された2,3ージヒドロベンゾフランー2ーイル基、G2で置換された2,3ージヒドロベンゾフランー3ーイル基、G2で置換されたチオクロマンー2ーイル基、G2で置換された2,3ージヒドロベンゾチオフェンー2ーイル基又はG2で置換された1,3ーベンゾキサチオールー2ーイル基を表す。

[0039]

かかる乙としては、次の各構造式で表される基を挙げることができる。

[0040]

【化18】

上記式中、*、X1は、前記と同じ意味を表す。

[0041]

R9~R29は、それぞれ独立して、水素原子又はC1-6アルキル基を表す。

[0042]

(フェニルアゾール誘導体の製造方法)

製造法1

本発明の式(1)で表されるフェニルアゾール誘導体は、例えば、次の式(4)に示すように製造することができる。

【0043】 【化19】

式中、A、J、q及びR1は式(1)におけるA、J、q及びR1とそれぞれ同じものを表し、B'は式(1)におけるBに対し、Bと式 CH_2-B 'との間の等価が成り立ち、Z'は式(1)におけるZにおいて、G2がニトロ基Zはアシル基のときのZを表す。

[0044]

即ち、式(b)で示されるアルデヒドと式(a)で示されるアミンとを出発原料として、常法による還元的アミノ化反応により、本発明の式(1)で表されるフェニルアゾール誘導体(1 a)を得るものである。

[0045]

かかる還元的アミノ化反応は、適当な酸触媒の存在下、還元剤を添加することにより行うことができる。この場合、酸触媒としては、例えば、酢酸、pートルエンスルホン酸などの有機酸類、硫酸、塩酸等の無機酸類を挙げることができる。還元剤としては、例えば、水素化ホウ素ナトリウム、ナトリウムトリアセトキシボロハイドライド等を挙げることができる。

[0046]

反応溶媒としては、反応に不活性な溶媒であれば、特に限定はしないが、例えば、ジエチルエーテル、テトラヒドロフラン(以下THFと略記する)、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル、ジメチルホルムアミド(以下DMFと略記する)、ジメチルスルホキシド(以下DMSOと略記する)、ピリジン等を挙げることができる。

[0047]

反応は、-15℃~溶媒の沸点程度、好ましくは室温で行うことができる。 製造法2

本発明の式(1)で表されるフェニルアゾール誘導体は、例えば、次の式(5)に示すように製造することができる。

[0048]

【化20】

式中、A、J、q、B及びXは式(1)におけるA、J、q、B及びXとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表し、Dはアルコールから誘導される脱離基で塩素、臭素、ヨウ素等のハロゲン、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。

[0049]

即ち、式 (c) で表される化合物を式 (d) で表される化合物を用いてアルキル化を行い、本発明の式 (1) で表されるフェニルアゾール誘導体である化合物 (1b) を得るものである。

[0050]

[0051]

式(2)で表される4-(イミダゾールー1-イル)チオフェノールは、文献記載の既知の方法(例えば独国特許出願公開第2267101号明細書)などによって製造することができる。

製造法3

本発明の式(1)で表されるフェニルアゾール誘導体は、例えば、次の式(6)に示すように製造することができる。

【0052】 【化21】

式中、A、J、q、B及びR1は式(1)におけるA、J、q、B及びR1とそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基又はアシル基のときのZを表し、Eは脱離基で塩素、臭素、ヨウ素等のハロゲン、メタンスルホネート、トルエンスルホネート、トリフルオルメタンスルホネート等のスルホン酸エステルを表す。

[0053]

即ち、式 (e) で表される化合物を式 (f) で表される化合物を用いてアルキル化を行い、本発明の式 (1) で表されるフェニルアゾール誘導体である化合物 (1 c) を得るものである。

[0054]

かかる反応は、ジエチルエーテル、THF、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,

出証特2004-3079233

2 - ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル、DMF、DMSOの不活性溶媒中、トリエチルアミン、ピリジン、DBU等のアミン類、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム等の無機塩基類等の塩基存在下-15℃~溶媒の沸点程度、好ましくは0℃から100℃で行うことができる。製造法4

本発明の式(1)で表されるフェニルアゾール誘導体は、例えば、次の式(7)に示すように製造することができる。

【0055】 【化22】

式中、A、J、q、B、X及びZは式(1)におけるA、J、q、B、X及びZとそれぞれ同じものを表し、Z'は式(1)におけるZにおいて、G2がニトロ基のときのZを表す。

[0056]

この還元反応は式(1b)で表されるニトロ化合物を、触媒を用いて水素添加を行うか、あるいは還元剤を用いて還元することにより、本発明の式(1)で表されるフェニルアゾール誘導体のアニリン化合物(1d)を得るものである。

[0057]

かかる水素添加の触媒としては、パラジウム炭素、水酸化パラジウム、二酸化白金、ラネーニッケル等を挙げることができる。

[0058]

反応溶媒としては、メタノール、エタノール等のアルコール類、ジエチルエーテル、THF、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、シクロヘキサン等の炭化水素類、DMF等のアミド類、ギ酸、酢酸等の有機酸類、酢酸エチル等のエステル類等及びこれらの混合溶媒を用いることができる。

[0059]

かかる還元剤を用いる場合は、メタノール、エタノール等のアルコール中、塩酸と塩化 第一スズを用いるか、アセトン、メチルエチルケトン等と水の混合溶媒中、酢酸と鉄を用 いて還元を行うことができる。

[0060]

反応は、0℃~溶媒の沸点程度で行うことができる。

[0061]

本発明において、反応終了後は、通常の後処理を行うことにより目的物を得ることができる。

[0062]

本発明のフェニルアゾール誘導体の構造は、IR、NMR及びMS等から決定した。

[0063]

なお、本発明の式(1)で表されるフェニルアゾール誘導体には、いくつかの光学活性 体及び互変異性体が存在し得る。これらは、すべて本発明の範囲に含まれるものである。

[0064]

式(1)で表されるフェニルアゾール誘導体の薬学的に許容される塩としては、塩酸、硫酸、硝酸、燐酸等の無機酸の塩や、酢酸、プロピオン酸、乳酸、コハク酸、酒石酸、クエン酸、安息香酸、サリチル酸、ニコチン酸、ヘプタグルコン酸等の有機酸の塩を挙げることができる。これらは、通常の合成化学的手法により容易に製造することができる。

[0065]

(抗酸化薬)

本発明のフェニルアゾール誘導体は、抗酸化作用を有することから、低比重リボ蛋白(Low density lipoprotein、以下LDLと略記する。)の酸化的変性を防ぐことによって 動脈硬化病変の発生、進展を阻止することができ、動脈硬化の治療薬に適用することがで きると共に、酸化作用に基づく各種疾病、例えば、老化痴呆性疾患、心臓病、癌、糖尿病 、消化器疾患、熱傷、眼疾患、腎疾患等の治療薬としても有用である。更に、脳卒中や心 筋梗塞等の虚血性臓器疾患では、虚血部位の血液再潅流時に種々の活性酸素が発生し、脂 質過酸化反応による細胞膜破壊等により組織障害が増悪されるが、本発明のフェニルアゾ ール誘導体は、その抗酸化活性により種々の活性酸素や過酸化脂質を除去し、虚血病変部 の組織障害を防ぐことができ、虚血臓器障害の治療薬に適用することができる。また、本 発明のフェニルアゾール誘導体は、リポキシゲナーゼ阻害作用及び20-ヒドロキシエイ コサテトラエン酸(20-HETE)シンターゼ阻害作用を有し、リポキシゲナーゼの作 用を阻害することによりアラキドン酸をヒドロペルオキシエイコサテトラエン酸(HPE TE)に変換するのを抑制し、20-HETEシンターゼを阻害することにより20-H ETEが産生されるのを抑制することができる。また、本発明の化合物のなかには、ドー パミン放出抑制作用が少なくパーキンソン様等の副作用を伴う可能性が少ない化合物も含 まれる。

[0066]

更に、本発明のフェニルアゾール誘導体は、網膜の酸化障害に起因する疾病、糖尿病、高血圧症、動脈硬化症、貧血症、白血病、全身性エリテマトーデスや強皮症等の結合組織疾患、ティーザックス(Tay-Sacks)病やフォークトーシュピールマイヤー(Vogt-Spielmeyer)病等の先天代謝異常等の全身疾患に起因する網膜の血管障害や炎症性及び変性病変、また、未熟児網膜症、網膜静脈閉塞症、網膜動脈閉塞症、網膜静脈周囲炎等の網膜血管の障害、網膜剥離や外傷に由来する網膜の炎症や変性、加齢黄斑変性症等の加齢に伴う網膜の変性疾患、先天的な網膜変性疾患等の網膜局所の疾患の予防および治療に用いることができ、特に光酸化障害により発症する加齢黄斑変性症等の疾患の治療薬として有用である。

[0067]

本発明の抗酸化薬は、上記抗酸化作用を有する本発明のフェニルアゾール誘導体又はその薬学的に許容される塩の1種又は2種以上を有効成分として含有するものであれば、特に限定されるものではなく、上記疾病の医薬として、任意の様式で投与することができる。例えば、経口、経鼻、非経口、局所、経皮又は経直腸で投与することができ、その形態も、固体、半固体、凍結乾燥粉末又は液体の剤形、例えば、錠剤、坐薬、丸薬、軟質及び硬質カプセル、散薬、液剤、注射剤、懸濁剤、エアゾル剤、持続放出製剤等とすることができ、正確な投与量を処方でき、かつ、簡便に投与することができる適当な剤形とすることができる。

[0068]

また、本発明の抗酸化薬は、有効成分と、慣用の医薬用担体又は賦形剤の他、他の薬剤、アジュバント等を他の成分と反応しない範囲で含有する組成物とすることができる。かかる組成物は、投与様式に応じて、有効成分を1~99重量%、適当な医薬用担体又は賦形剤を99~1重量%含有するものとすることができ、好ましくは、有効成分を5~75重量%、残部を適当な医薬用担体又は賦形剤とするものである。

[0069]

本発明の抗酸化薬には、投与様式に拘わらず、所望により、少量の補助物質、例えば、 湿潤剤、乳化剤、pH緩衝剤、抗酸化剤等、他の成分と反応しない範囲で、例えば、クエン酸、ソルピタンモノラウレート、トリエタノールアミンオレエート、プチル化ヒドロキシトルエン等を添加することもできる。

[0070]

このような製剤は、通常の方法、例えば、レミントン・ファルマスーテイカル・サイエンス (Remington's Pharmaceutical Sciences) 第18版、マック・パブリシング・カン

パニー、イーストン、ペンシルバニア (Mack Publishing Company, Easton, Pennsylvan ia) 1990年刊等に教示される記載に従って製造することができる。

[0071]

本発明の抗酸化薬において、式(1)で表される化合物又はその薬学的に許容される塩の治療有効量は、個人及び処置される疾病の病状により変動される。通常、治療有効1日用量は、体重1kgあたり、式(1)で表される化合物又はその薬学的に許容される1種又は2種以上の塩0.14mg~14.3mg/日とすることができ、好ましくは、体重1kgあたり0.7mg~10mg/日、より好ましくは、体重1kgあたり1.4mg~7.2mg/日とすることができる。例えば、体重70kgのヒトに投与する場合、式(1)の化合物又はその薬学的に許容される塩の用量範囲は、1日10mg~1.0g、好ましくは、1日50mg~700mg、より好ましくは、1日100mg~500mgとなるが、これは飽く迄目安であって、処置の病状によってはこの範囲以外の用量とすることができる。

[0072]

本発明の抗酸化薬の経口用の抗酸化薬に適用される賦形剤としては、任意の通常用いられる賦形剤、例えば、医薬用のマニトール、乳糖、デンプン、ゼラチン化デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、タルク、セルロースエーテル誘導体、グルコース、ゼラチン、スクロース、クエン酸塩、没食子酸プロピル等を挙げることができる。また、経口用の抗酸化薬には、希釈剤として、例えば、乳糖、スクロース、リン酸二カルシウム等を、崩壊剤として、例えば、クロスカルメロースナトリウム又はその誘導体等を、結合剤として、例えば、ステアリン酸マグネシウム等を、滑沢剤として、例えば、デンプン、アラビアゴム、ポリビニルピロリドン、ゼラチン、セルロースエーテル誘導体等を含有させることができる。

[0073]

注射剤としては、無菌の水性または非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤の希釈剤としては、例えば注射剤用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤の希釈剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート(商品名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、可溶化ないし溶解補助剤のような添加剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる

[0074]

また、本発明の抗酸化薬を坐剤とする場合には、担体として体内で徐々に溶解する担体、例えば、ポリオキシエチレングリコール又はポリエチレングリコール(以下PEGと略記する)、具体的には、PEG1000(96%)又はPEG4000(4%)を使用し、かかる担体に式(1)の化合物又はその薬学的に許容される塩0.5~50重量%を分散したものを挙げることができる。

[0075]

本発明の抗酸化薬を液剤とする場合は、担体として水、食塩水、デキストロース水溶液、グリセロール、エタノール等を使用し、かかる担体に式(1)の化合物又はその薬学的に許容される塩を0.5~50重量%と共に、任意の医薬アジュバントを溶解、分散させる等の処理を行い、溶液又は懸濁液としたものが好ましい。

(網膜の光酸化障害抑制薬)

本発明の網膜の光酸化障害抑制薬は、上記抗酸化作用を有する本発明のフェニルアゾール誘導体又はその薬学的に許容される塩の1種又は2種以上を有効成分として含有する抗酸化薬を含有するものであれば、特に限定されるものではなく、投与様式、投与形態、投与量も上記抗酸化薬と同様の様式、形態、投与量とすることができ、また、上記抗酸化薬と同様の製剤用成分、担体、アジュバント等を包含させることができ、賦形剤、崩壊剤、

結合剤等や、有効成分と反応しない他の網膜酸化障害抑制薬の1種又は2種以上を適宜加えてもよく、また、上記の他に、他の薬効を有する成分を適宜含有させてもよい。また、投与形態としては、上記抗酸化薬における場合と同様の投与形態の他、点眼剤、眼軟膏剤とすることができる。

[0076]

本発明の網膜の光酸化障害抑制案を点眼剤とする場合は、本発明のフェニルアゾール誘導体を通常使用される基剤溶媒に加え水溶液又は懸濁液とし、pHe4~10、好ましくは5~9に調整することができる。点眼剤は無菌製品とするため滅菌処理を行なうことが好ましく、かかる滅菌処理は製造工程のいずれの段階においても行うことができる。点眼剤の本発明のフェニルアゾール誘導体の濃度は、0.01~3%(W/V)、好ましくは0.01~1%(W/V)であり、投与量も症状の程度、患者の体質等の種々の状態により11~4 回、各数滴等とすることができる。上記投与量は飽く迄目安であり、この範囲を超えて投与することもできる。

[0077]

上記点眼剤には、本発明のフェニルアゾール誘導体と反応しない範囲の緩衝剤、等張化剤、防腐剤、pH調整剤、増粘剤、キレート剤、可溶化剤等の各種添加剤を適宜、添加してもよい。かかる緩衝剤としては、例えば、クエン酸塩緩衝剤、酒石酸緩衝剤、酢酸塩緩衝剤、アミノ酸等を挙げることができ、等張化剤としては、例えば、ソルビトール、グルコース、マンニトール等の糖類、グリセリン、ポリエチレングリコール、プロピレングリコール等の多価アルコール類、塩化ナトリウム等の塩類等を挙げることができ、防腐剤としては、例えば、パラオキシ安息香酸エチル等のパラオキシ安息香酸エステル類、ベンジルアルコール、フェネチルアルコール、ソルピン酸又はその塩等を挙げることができ、pH調整剤としては、例えば、リン酸、水酸化ナトリウム等を挙げることができ、増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースやその塩等を挙げることができ、キレート剤としては、例えば、エデト酸ナトリウム、クエン酸ナトリウム、縮合リン酸ナトリウム等を挙げることができ、可溶化剤としては、例えば、エタノール、ポリオキシエチレン硬化ヒマシ油等を挙げることができる。

[0078]

また、本発明の網膜の光酸化障害抑制薬を眼軟膏剤とする場合、本発明のフェニルアゾール誘導体を通常使用される眼軟膏基剤、例えば、精製ラノリン、白色ワセリン、マクロゴール、プラスチベース、流動パラフィン等と混合したものとすることができ、無菌製品とするため滅菌処理をしたものが好ましい。眼軟膏剤における本発明のフェニルアゾール誘導体の濃度は、 $0.01\sim3\%$ (W/W)、好ましくは $0.01\sim1\%$ (W/W)であり、投与量も症状の程度、患者の体質等の種々の状態により1日 $1\sim4$ 回等とすることができる。上記投与量は飽く迄目安であり、この範囲を超えて投与することもできる。

[0079]

本発明の網膜の光酸化障害抑制薬は、優れた抗酸化作用を有するので、例えば、加齢黄斑変性症等の加齢に伴う網膜の変性疾患の予防および治療に有効である。

[0080]

以下、実施例により本発明のフェニルアゾール誘導体を詳細に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。

【実施例1】

[0081]

[0082]

【化23】

1-(4-r)フェニル)イミダゾール1. 7gと2, 4, 6, 7ーテトラメチルー5ーニトロジヒドロベンゾフランー2ーアルデヒド1. 09gを塩化メチレン53m1に溶解し、酢酸0.8m1を添加し、室温で10分攪拌した。得られた反応液にナトリウムトリアセトキシボロハイドライド2.91gを添加し、室温で一夜攪拌した。反応終了後、反応液を水にあけ、水酸化ナトリウム水溶液で中和した後、クロロホルムで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥させ、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:3)で精製し目的物1.2gを得た。

工程 $2:4-(\pm)-(5-r)$ -2,4,6,7-r -2+r -

【0083】 【化24】

【実施例2】

[0084]

【0085】 【化25】

5-(4-アミノフェニル)ピラゾール0.77gと2,4,6,7-テトラメチルー5-ニトロジヒドロベンゾフラン-2-アルデヒド1.00gを塩化メチレン33mlに溶解し、酢酸0.5mlを添加し、室温で30分攪拌した。得られた反応液にナトリウムトリアセトキシボロハイドライド1.70gを添加し、室温で20時間攪拌した。反応終了後、反応液を水にあけ、水酸化ナトリウム水溶液で中和した後、クロロホルムで抽出した。有機層を塩酸水で洗浄後、水酸化ナトリウム水溶液で中和し、有機層を飽和食塩水で

洗浄した。その後、無水硫酸マグネシウムで乾燥させ、溶媒を減圧濃縮し目的物 1.5 gを得た。

[0086]

【0087】 【化26】

[0088]

工程3:3(5)-(4-(±)-(5-ニトロ-2,4,6,7-テトラメチルジヒドロベンゾフラン-2-イルメチル)メチルアミノフェニル)-1-(テトラヒドロピラン-2-イル)ピラゾールの製造

[0089]

【化27】

[0090]

工程4:5-(4-(±)-(5-ニトロ-2,4,6,7-テトラメチルジヒドロベンゾフラン-2-イルメチル)メチルアミノフェニル)ピラゾールの製造

[0091]

【化28】

[0092]

工程 $5:5-(4-(\pm)-(5-r))$ - $2:5-(4-(\pm)-(5-r))$ - $4:5:5-(4-(\pm)-(5-r))$ - $4:5:5-(4-(\pm)-(5-r))$ - $4:5:5-(4-(\pm)-(5-r))$ - 4:5-(5-r) - 4:5-(

【0093】 【化29】

【実施例3】

[0094]

工程1:2,4,6,7ーテトラメチルー5ーニトロジヒドロベンゾフランー2ートリフルオロメタンスルホネートの製造

【0095】 【化30】

トリフルオロメタンスルホン酸無水物 6.7gをジクロロメタン50m1に溶解し、0 \mathbb{C} に冷却した。溶液中に、ジクロロメタン50m1に溶解した2-ヒドロキシメチルー2 , 4 , 6 , 7-テトラメチルジヒドロベンゾフラン5.0gとトリエチルアミン2.4g

出証特2004-3079233

を30分で滴下した。滴下後、0℃で1時間撹拌後、室温に昇温しさらに1.5時間撹拌した。反応後、水で洗浄し、無水硫酸マグネシウムで乾燥した後に溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:1)で精製し、目的物を7.3 g得た。

[0096]

工程 2 : 4 - (±) - (5-ニトロ-2, 4, 6, 7-テトラメチルジヒドロベンゾフラン-2-イルメトキシ) -フェニル-1-イミダゾールの製造

[0097]

【化31】

[0098]

工程 $3:4-(\pm)-(5-アミノ-2,4,6,7-テトラメチルジヒドロベンゾフラン-2-イルメトキシ)-フェニル-1-イミダゾールの製造$

[0099]

【化32】

【実施例4】

[0100]

 $4-(\pm)-(5-r)$ - 2, 4, 6, 7ーテトラメチルジヒドロベンゾフランー 2ーイルメチルアミノ)ーフェニルー 5-1 Hーピラゾール(化合物 5-1)を光学異性体分離用カラム C H I R A L C E L O D (ダイセル化学工業(株))を用いて分離し、最初に流出してくるフラクション 1 と後から流出してくるフラクション 2 を得た。それぞれ

のフラクションをエタノールー水から再結晶した。

フラクション1 保持時間 13.7min

(-) - (化合物 5-1) mp [107-110] [α]_D-16.6°(C 1.01, EtOH)

HPLC >99.9%ee

フラクション2 保持時間 27min

(+) - (化合物 5-1) mp [105-108]

 $[\alpha]_{D+16.9}^{\circ}$ (C 1.00, EtOH)

HPLC 99.8%ee

HPLC条件 カラム CHIRALCEL OD (4.6×250mm)

移動層 n-ヘキサン:i-プロパノール:ジエチルアミン

= 6 0 0 : 4 0 0 : 1

流速 1.0ml/min

UV 254 n m

カラム温度 40℃

[0101]

参考例1

2, 3, 5-トリメチルフェニル-2-メチル-2-プロペニルエーテルの製造

[0102]

【化33】

2,3,5ートリメチルフェノール91.1g、3ークロロー2ーメチルプロペン65.3g、炭酸カリウム99gをDMF700mlに加え、80℃で3時間撹拌した。冷却後、反応液を氷ー水中に注ぎ、酢酸エチルで抽出した。水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(ベンゼン:ヘキサン=1:1)で精製し、目的物を102g得た。

[0103]

参考例 2

[0104]

【化34】

2, 3, 5-トリメチルフェニル-2-メチル-2-プロペニルエーテル 26.6gをジエチルアニリン 131m1 に溶解し、アルゴン雰囲気下 200 で 2 時間撹拌した。冷却後、6N - 塩酸中に注ぎエーテル抽出した。希塩酸、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(ベンゼン: 0 、

[0105]

参考例3

2ーヒドロキシメチルー2, 4, 6, 7ーテトラメチルジヒドロベンゾフランの製造【0 1 0 6】【化3 5】

2-(2-メチル-2-プロペニル)-3, 5, 6-トリメチルフェノール31. 86 gを塩化メチレン600mlに溶解し、0℃を維持しながら徐々にメタクロロ過安息香酸47.5 gを投入した。0℃で2時間撹拌した後、炭酸水素ナトリウム水溶液中に注ぎ込んだ。有機層をクロロホルム抽出し、飽和炭酸水素ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製し、目的物を17 g得た。

[0107]

参考例 4

2-ヒドロキシメチルー2, 4, 6, 7-テトラメチルー5-ニトロジヒドロベンゾフランの製造

[0108]

【化36】

[0109]

参考例 5

2, 4, 6, 7ーテトラメチルー5ーニトロジヒドロベンゾフランー2ーアルデヒドの 製造

【0110】 【化37】

アルゴン雰囲気下、シュウ酸ジクロリド0.57mlを塩化メチレン12mlに溶解し、-78℃まで冷却した。この溶液中に塩化メチレン2mlに溶解したDMSO1.1mlを-65℃以下で滴下し、そのまま10分撹拌した。さらに、塩化メチレン4mlに溶

解した 2-ビドロキシメチルー 2, 4, 6, 7-テトラメチルー 5-ニトロジビドロベンゾフラン 1. 3 4 g を滴下し、<math>-7 8 $\mathbb C$ $\mathbb C$ 3 時間撹拌した。反応終了後、トリエチルアミン 4. 2 $\mathbf m$ $\mathbf l$ を滴下し、室温まで昇温し、1 $\mathbf N$ $\mathbf l$ $\mathbf m$ $\mathbf l$ $\mathbf m$ $\mathbf l$ $\mathbf m$ $\mathbf m$

[0111]

参考例 6

6-ニトロー2-メトキシメチルー2, 5, 7, 8-テトラメチルクロマンー4-オンの製造

[0112]

【化38】

5-ニトロー2ーヒドロキシー3, 4, 6-トリメチルアセトフェノン 66.5gとメトキシアセトン78.8gをトルエン500mlに溶解した反応液に、室温でピロリジン6.4gを加え、室温で24時間攪拌し、さらに3時間加熱還流した。反応液を減圧留去し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=7:1から 3:1)に付し、目的物29.2gを得た。

[0113]

参考例 7

6-ニトロー4-ヒドロキシー2-メトキシメチルー2, 5, 7, 8-テトラメチルクロマンの製造

[0114]

【化39】

6-ニトロー2-メトキシメチルー2, 5, 7, 8-テトラメチルクロマンー4-オン 1 0 g c、メタノール 1 0 0 m 1 e m 1 m 1 e m 1 m 1 e m 1 e m 1

参考例 8

6-ニトロ-2-メトキシメチル-2, 5, 7, 8-テトラメチル (2H) クロメンの製造

[0115]

【化40】

6-ニトロー4ーヒドロキシー2ーメトキシメチルー2, 5, 7, 8ーテトラメチルクロマン10.1gにベンゼン200mlを加え、pートルエンスルホン酸を1.0g添加し、ディーンスタークを用いて2時間加熱還流を行った。反応液を水にあけ、酢酸エチル抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、減圧濃縮し、オイル状の目的化合物9.4gを得た。

[0116]

参考例 9

6-二トロー2-メトキシメチルー2, 5, 7, 8-テトラメチルクロマンの製造

[0117]

【化41】

6-ニトロ-2-メトキシメチル-2, 5, 7, 8-テトラメチル (2H) クロメン 9. 4 gをエタノール 1 0 0 m 1 に溶解し、1 0 %パラジウム炭素触媒 1. 0 g を加え、次に水素を封入し、室温で常圧下、2 4 時間接触水素付加反応を行った。反応終了後、反応液を濾過し、減圧濃縮し、オイル状の目的化合物 9. 5 g を得た。

[0118]

参考例10

6-二トロー2-ヒドロキシメチルー2,5,7,8-テトラメチルクロマンの製造

[0119]

【化42】

6-ニトロ-2-メトキシメチル-2, 5, 7, 8-テトラメチルクロマン9. 5 g を 塩化メチレン8 0 m l に溶解し、0 $\mathbb C$ で窒素気流下、1 M = 臭化ホウ素塩化メチレン溶液 3 1. 4 m l を加え、0 $\mathbb C$ $\mathbb C$ 3 時間攪拌した。反応終了後、反応液を水にあけ、クロロホルムで抽出した。有機層は飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥させた。 硫酸マグネシウムを濾別後、減圧濃縮し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)に付し、目的物 4. 5 g を得た。

[0120]

参考例11

6-ニトロ-2-ホルミル-2, 5, 7, 8-テトラメチルクロマンの製造 【0121】 【化43】

-60℃で窒素気流下、シュウ酸ジクロリド1. 6m1を塩化メチレン40m1に溶解し、-60℃でDMSO3. 1m1を滴下した後、5分間攪拌した。次に6-ニトロ-2-ヒドロキシメチル-2, 5, 7, 8-テトラメチルクロマン3. 9 gを塩化メチレン10m1に溶解した液を、-60℃で窒素気流下滴下した後、-60℃で30分間攪拌した。次にトリエチルアミン12m1を-60℃で添加し、徐々に室温に上げ、反応を終了させる。反応終了後、反応液を水にあけ、クロロホルムで抽出した。有機層は飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥させた。 硫酸マグネシウムを濾別後、減圧濃縮し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)に付し、目的物 3.4 g の結晶を得た。

[0122]

本発明の式(1)で表されるフェニルアゾール誘導体の例を第1表~第16表に示す。表中の物理恒数に&NMRと記載された化合物については、表の最後にNMRデーターを示した。なお、表中の略号、記号は下記の基を表す。

[0123]

Me:メチル、Et:エチル、Bu:ブチル、Ph:フェニル

[0124]

$$\mathsf{h1}: \begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C} \\ \mathsf{CH_3} \end{array} \\ \mathsf{CH_3}$$

[0125]

【表1】

第1表

•							
化合物番号	R1	R2	R7	R8	В	Z	物理恒数
100 13 12 13						1	[]融点℃
		1	1	1			n,屈折率
1-1	H	H	H	H	CH ₂	h1	n _p ^{20.4} 1.5693
1-2	H	Ĥ	Ĥ		CH ₂	h2	[50-52]
1-2	H	Η̈́	Η̈́	H H	CH ₂	h3	[81-84]
1-3	H	H	H	H	CH ₂	h4	amorphous&NMR
1-4	п	H	Ĥ	H	CH ₂	h5	[158-160]
1-5	H H	n	H	H	CH ₂	- h6	$n_0^{20.1}1.5531$
1-6	n	H	n I	H	CH ₂ CH ₂	h7	$n_{\rm D}^{20.7}$ 1. 5472
1-7	H	H	H	n l	CH ₂ .	h8	[90-93]
1-8	<u>H</u>	H	H	H		hl	[30, 33]
1-9	H	H	H	H	CH ₂ CH ₂	111	1
1-10	H	H	H	H	CH ₂ CH ₂	h2	1
1-11	H	Н	H	H	CH ₂ CH ₂	h3	
1-12	H	H H H H	H	H	CH ₂ CH ₂	h4	\
1-13	H	H	H	H	CH ₂ CH ₂	h5	
1-14	H	H	H	H	CH ₂ CH ₂	h6	
1-15	H	H	H H H H	H	CH ₂ CH ₂	h7	1
1-16	H	H H	H	H	CH₂CH₂	h8	
1-17	H	l H	H	H	CH ₂ CH ₂ CH ₂	hi	
1-18	H	H	H H	H H	CH ₂ CH ₂ CH ₂ '	h2	
1-19	H	H	H	l H	CH ₂ CH ₂ CH ₂	h3	
1-20	H	H	H	H	CH ₂ CH ₂ CH ₂	h4	
1-21	H	H H H	H	H	CH ₂ CH ₂ CH ₂	h5	
1-22	H	H	Ĥ	H	CH ₂ CH ₂ CH ₂	h6	viscousoil &NMR
1-23	H	H	Ĥ	H	CH ₂ CH ₂ CH ₂	h7	
1-23	H	H	Н̈́	H	CH ₂ CH ₂ CH ₂	h8]
1-25	H	l ü	H	Η̈́	CH2CH2CH2CH2CH2CH2CH2	hl	i i
1-25	H	1 #	Н	Н	CH ₂	h2	
1-26	H	H H H	Н	H	CH ₂	h3	
1-27	I H	H	H	H	CH ₂	h4	
1-28	l H	п	H	H	CH CH CH CH CH CH CH	h5	
1-29	H	H	H	и Н		h6	n _D ^{21.4} 1. 5379
1-30	H	H	l H	l n	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	10 1.0010
1-31	H	H	H	H		h8	
1-32	Н	Н	<u> </u>	H	CH2CH2CH2CH2CH2CH2	1110	<u> </u>

[0126]

【表2】

第1表(つづき)

	- - -						
化合物番号	R1	R2	R7	R8	В	Z	物理恒数
			ļ	ł		1	【 】融点℃
		1				· •	n。屈折率
1-33	CH ₃	H	H	H	CH ₂	h1	
1-34	CH ₃	H	H I	H	CH ₂	h2	
1-35	CH ₃	H	H H H H	H H H	CH ₂	h3	
1-36	CH ₃	Ĥ	H l	H I	CH ₂	h4	
1-37	ČH₃	H H	H l	Η̈́I	CH ₂	h5.	
1-38	ŬH₃	Ĥ	Ĥ	Ĥ	ČH ₂	h6	
1-39	CH.	Ĥ	Ĥ	Ĥ	CH ₂	h7	
1-40	CH ₃ CH ₃	H	Η̈́	Ĥ	CH ₂	h8	
1-41	CH ₂ CH ₃	H	Η̈́	Ĥ	CH ₂	h1	
1-41	CH ₂ CH ₃	H	Ĥ	H	CH ₂	h2	
1-43			Ĥ	H	CH ₂	h3	
1-45	CH ₂ CH ₃	H	n m	n	UII2		
1-44	CH ₂ CH ₃	H	H	H	CH ₂	h4	
1-45	CH ₂ CH ₃	H	Ц	H	CH ₂	h5	
1-46	CH ₂ CH ₃	H H	H H H	H	CH ₂ CH ₂ CH ₂	h6	
1-47	CH₂CH₃	H	H H	H	UH ₂	h7	
1-48	CH ₂ CH ₃	H	H	H	CH ₂	h8	
1-49	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂	h1	
1-50	CH ₂ CH ₂ CH ₃	H	H	H	CH2 ,	h2	
1-51	CH ₂ CH ₂ CH ₃	Ĥ	H	H	CH ₂	h3	
1-52	CH ₂ CH ₂ CH ₃	H H	H	Н	CH ₂	h4	
1-53	CH ₂ CH ₂ CH ₃	H	H	Н	CH ₂	h5	
1-54	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂	h6	
1-55	CH ₂ CH ₂ CH ₃	H	H	H	l CH ₂	h7	Ì
1-56	CH ₂ CH ₂ CH ₃	H	H	Н	CH ₂	h8	
1-57	CH (CH ₃),	H H H H H	H	H H	CH ₂	h1	!
1-58	CH (CH ₃) ₂	H	H	H	l CH₃	h2	
1-59	CH (CH ₃) 2	H	H	H	CH,	h3	
1-60	CH (CH ₃) 2	H		H H H	CH ₂ CH ₂ CH ₂	h4	
1-61	CH (CH ₃) 2	H	l H	l H	CH,	h5	
1-62	CH (CH ₃) 2	Η̈́	l ä	H	CH ₂	h6	
1-63	CH (CH ₃) 2	Ё	Η̈́	Ĥ	CH ₂ CH ₂	h7	
1-64	CH (CH ₃) 2	Η̈́	Η̈́	Н	CH ₂	h8	
1 07	1 011 (0113/2	1 11	111	1 11		1 110	

[0127]

【表3】

第1表(つづき)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	恒数 融点℃ 折率
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	折率
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$1-71$ $CH_2C_6H_5$ H H H CH ₂ h7	ŀ
I I T C I CHOCERE I H I H I H I CH. I hX I	
1-73 H CH ₃ H H CH ₇ h ₁ [78	-81]
1-74 H CH ₃ H H CH ₂ h2	•
1-75 H CH ₂ H H CH ₂ h3	
1-76 H CH ₃ H H CH ₂ h4	
1-77 H CH ₃ H H CH ₂ h5	
1-78 H CH ₃ H H CH ₅ h6	
1-79 H CH ₃ H H CH ₂ h7	
1 1-80 H CH ₂ H H CH ₂ h8	
1-81 H H CH ₃ H CH ₂ h1	
1-82 H H CH, H CH, h2	
1-83 H H CH ₃ H CH ₂ h3	
1-84 H CH ₃ H CH ₂ h4	
1-85 H H CH ₃ H CH ₂ h5	
1-86 H H CH ₃ H CH ₂ h6	
1-87 H H CH ₃ H CH ₂ h7	
1-88 H H CH ₃ H CH ₂ h8	
1-89 H H C1 H CH ₂ h1	
1-89 H H C1 H CH ₂ h1 h2 h2 h3	
1-91 H H C1 H CH ₂ h3	
1-92 H H Ci H CH ₂ h4	
1-93 H H Ci H CH ₂ h5	
1-92 H H C1 H CH ₂ h4 1-93 H H C1 H CH ₂ h5 h6	
1-95 Н Н СІ Н СТ Б7	
1-96 H H Ci H CH ₂ h8	

[0128]

【表4】

第1表 (つづき)

11. A 41 ed to							
化合物番号	R1	R2	R7	R8	В	Z	物理恒数
1						1 1	□ 】融点℃
							n,屈折率
1-97	H	H	F	H	CH ₂	h1	
1-98	! H	H	F	Ä	CH ₂	h2	
1-99	H	H	F	Ĥ	ČH ₂	h3	
1-100	Ĥ	Ĥ	F	ü	CH ₂	h4	
1-101	i ដ	Ĥ	F	#	CH ₂	h5	
1-102	H H H	Ĥ	표학학학학학학학	H H H H	CII	119	
1-103	<u>"</u>	H	F	n II	CH ₂ -	h6	
1-104	I II	H	L L	H	CH ₂	h7	
	H H	П	r r	H	CH ₂	h8	• • • • • • • •
1-105	n	H	H	CH₃	CH ₂	h1	[156-158]
1-106	H	H	H	CH ₃	CH ₂	h2	
1-107	H	H	H	CH ₃	CH ₂	h3	
1-108	H	H	Н	CH ₃	CH ₂	h4	
1-109	H	H	Н	CH ₃	CH ₂	h5	
1-110	H	H	H	CH ₃	CH ₂	h6	
1-111	H	H	H	CH ₃	CH ₂	h7	
1-112	Н	H	H	CH ₃	CH ₂	h8	1
1-113	H	H	H	Cľ	CH ₂	hl	
1-114	H	H	H	Ci	CH ₂	h2	
1-115	Н	H	H	ČÌ	CH ₂	h3	
1-116	H	H	Ĥ	či	CH ₂	h4	
1-117	H	H	H	či	CH ₂	h5	
1-118	НÄ	Ĥ	l ü	či	CH ₂	h6	
i-119	Н	Ĥ	H H	či	CH ₂	h7	1
1-120	НÄ	Ĥ	#		CH2	h8	
1-121	l ii	Н̈́	H H H H		CH ₂		
1-122	H H H H	H H	l tr	r D	CH ₂	hl	•
1-123	1 11	H	I II	I I	UH2	h2	
1-124	l n	I II	11	r r	CH ₂ CH ₂ CH ₂	h3	
	I I	H	l H	1 1	UH ₂	h4	
1-125	Н	H	H	F F	CH ₂	h5	
1-126	H	H	H	<u> </u>	CH ₂	h6	
1-127	H	H	H	CIFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	CH _z	h7	
1-128	H	Н	<u>H</u>	<u> </u>	CH ₂	h8	

[0129]

【表5】

第2表

11. A AL 30 17 1	<u>- </u>			77	ALS THE LET MILE
化合物番号	R1	R2	В	Z	物理恒数
				ĺ	3 □ 融点℃
					n。屈折率
2-1	H	H H	CH ₂	h1	[211-216]
2-2	H H H H H H	Н	CH ₂	h2	amorphous&NMR
2-3	Н	H	CH ₂	h3	[175-178]
2-4	H	Н	CH ₂	h4	
2-5	H	H	CH ₂	h5	[63-66]
2-6	Н	H	CH ₂	h6	n _p ^{20. 5} 1. 5529
2-7	H	Ĥ	CH ₂	h7	
2-8	H	Ĥ	CH ₂	h8	
2-9	H l	H H H H H	CH ₂ CH ₂	h l	
2-10	Ĥ l	Ĥ	CH ₂ CH ₂	h2	
2-11	ii l	Ĥ	CH ₂ CH ₂	h3	
2-12	ii l	Ħ	CH ₂ CH ₂	h4	
2-13	H H H H	й	CH ₂ CH ₂	h5	
2-14	ü l	H H H	CH ₂ CH ₂	h6	
2-15	II II	ü	CH ₂ CH ₂	h7	
2-16	H	H	CH ₂ CH ₂	h8	
2-10	H	H	CH CH CH	h1	
	n	П 17	CH ₂ CH ₂ CH ₂	h2	
2-18	H H	H H H	CH ₂ CH ₂ CH ₂	h3	Ì
2-19	II.	H TT	CH ₂ CH ₂ CH ₂		
2-20	H H	n "	CH ₂ CH ₂ CH ₂	h4	
2-21	H H	H	CH ₂ CH ₂ CH ₂	h5	
2-22	H H	H	CH ₂ CH ₂ CH ₂	h6	
2-23	H	H H H	CH ₂ CH ₂ CH ₂	h7	
2-24	H	H	CH ₂ CH ₂ CH ₂	h8	
2-25	Н	Н	CH ₂	h1	
2-26	Н	H	CH ₂	h2	
2-27	H H	H	CH2CH2CH2CH2CH2CH2	h3	1
2-28	H	H H H H	CH ₂	h4	
2-29	l H	H	I CH, CH, CH, CH, CH, CH,	h5	
2-30	H H	i H	CH2CH2CH2CH2CH2CH2CH2	h6	}
2-31	i H	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
2-32	H	H	CH2CH2CH2CH2CH2CH2	h8	1

[0130]

【表6】

第2表(つづき)

		R1			
化合物番号	R1	R2	В	Z	物理恒数
		1			2 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
					n。屈折率
2-33	CH ₃	Н	CH ₂	hl	
2-34	CH ₃	Н	CH ₂	h2	
2-35	CH ₃	H	CH ₂	h3	
2-36	CH ₃	H !	CH ₂	h4	
2-37	CH,	H	CH ₂	h5	
2-38	l CH.	H	CH ₂	h6	
2-39	CH.	H I	CH.	h7	
2-40	CH ₃ CH ₃	l Ĥ l	CH ₂ CH ₂	h8	
2-41	CH₂CH₃	Η̈́	CH ₂	hi	"
2-42	CH ₂ CH ₃	Ĥ	CH ₂	h2	
2-43	CH ₂ CH ₃	ii l	CH ₂	h3	
2-44	CH ₂ CH ₃	Ĥ	CH ₂	h4	
2-45	CH ₂ CH ₃	и и	CH ₂	h5	
2-46	CH ₂ CH ₃	n n	CH ₂	h6	
2-47	CH ₂ CH ₃	u u	CH ₂	h7	
2-48	CH ₂ CH ₃	IA U	CH ₂	11.4	
2-49	CI CI CI	Ω Π	CH ₂	h8	
2-50	CH ₂ CH ₂ CH ₃	II U	OHZ	h1	
2-51	CH ₂ CH ₂ CH ₃	П TT	CH ₂	h2	
2-51	CH ₂ CH ₂ CH ₃	<u>n</u>	CH ₂	h3	
2-32	CH ₂ CH ₂ CH ₃	H	CH ₂	h4	
2-53	CH ₂ CH ₂ CH ₃	H	CH ₂	h5	
2-54	CH ₂ CH ₂ CH ₃	H H	CH ₂	h6	i
2-55	CH ₂ CH ₂ CH ₃	H	CH ₂	h7	ļ
2-56	CH ₂ CH ₂ CH ₃ CH (CH ₃) ₂	H	CH ₂	h8	
2-57	CH (CH ₃) 2	H	CH ₂	h1	
2-58	CH (CH ₃) ₂	l H	CH ₂	h2	
2-59	CH (CH ₃) ₂	H	CH ₂	h3	
2-60	CH (CH ₃) 2	H	CH₂ CH₂	h4	
2-61	CH (CH ₃) ₂	j H	CH ₂	h5	
2-62	CH (CH ₃) 2	H	CH ₂	h6	
2-63	CH (CH ₃) ₂		CH ₂	h7	
2-64	CH (CH ₃) 2	H	CH ₂	h8	

[0131]

【表7】

第2表(つづき)

化合物番号	RI	R2	В	Z	物理恒数 [] 融点℃ n _n 屈折率
2-65	CH ₂ C ₆ H ₅	Н	CH ₂ CH ₂ CH ₂	hl	
2-66	CH ₂ C ₆ H ₅	H H H H H	CH ₂	h2	
2-67	CH ₂ C ₆ H ₅	Н	CH ₂	h3	
2-68	CH ₂ C ₆ H ₅	Н	CH ₂	h4	
2~69	CH ₂ C ₆ H ₅	Н	CH ₂	h5	
2-70	CH ₂ C ₆ H ₅	Н	CH ₂	h6	
2-71	CH ₂ C ₆ H ₅	Н	CH ₂	h7	
2-72	CH ₂ C ₆ H ₅	Н	CH ₂	h8	
2-73	H	CH ₃ CH ₃ CH ₃ CH ₃	CH ₂	h1	
2-74	H	CH ₃	CH ₂	h2	
2-75	H	CH ₃	CH ₂	h3	
2-76	H	CH ₃	CH ₂ CH ₂	h4	
2-77	H	CH ₃	CH ₂	h5	
2-78	H	CH ₃	CH ₂	h6	
2-79	H H H H	CH ₃ CH ₃ CH ₃	CH ₂	h7	
2-80	H	CH ₃	CH ₂	h8	

[0132]

【表 8】

第3表

			IN		R1		
化合物番号	R1	R4	R7	R8	В	Z	物理恒数
					_	_	プ点点で
	1						n。屈折率
3-1	Н	H	Н	H	CH ₂	h1	110 /111 1/1
3-2	Н	H	Ä	Ĥ	CH ₂	h2	
3-3	Ĥ	Ĥ	Ĥ	Η̈́	CH ₂	h3	
3-4	Ĥ	ü	ü	ü	CH ₂	h4	
3-5	l ü	H H H	H H H	ü	CII2	h5	
3-6	H H H	u u	Ĥ	A. II	CH ₂		
3-7	ü	H	H	n n	CH ₂	h6	
3-8	H H	Ĥ	П	n	CH ₂	h7	
3-9	п	П 77	H	H	CH ₂	h8	
3-9	п п	H	H	H	CH ₂ CH ₂	h1	•
3-10	H H H	H	H	H	CH ₂ CH ₂	h2	
3-11	H H	H	H		CH ₂ CH ₂	h3	
3-12	H	H	H	H	CH ₂ CH ₂	h4	
3-13	H	H	H	H	CH ₂ CH ₂	h5	
3-14	H H	H	H		CH ₂ CH ₂	h6	
3-15	H	Н	H	H	CH ₂ CH ₂	h7	
3-16	Н	H	H	H	CH ₂ CH ₂	h8	
3-17	Н	H	H H	H	CH ₂ CH ₂ CH ₂	h1	
3-18	H	H	H	H	CH ₂ CH ₂ CH ₂	h2	
3-19	H	H	H	H	CH ₂ CH ₂ CH ₂	h3	
3-20	H	Ħ	H	Н	CH ₂ CH ₂ CH ₂	h4	
3-21	H	H	H	H	CH ₂ CH ₂ CH ₂	h5	
3-22	H H H H	l H	H H H H	H	CH ₂ CH ₂ CH ₂	h6	
3-23	Н	H	H	Ĥ	CH ₂ CH ₂ CH ₂	h7	
3-24	l H	H H	H	Ĥ	CH ₂ CH ₂ CH ₂	h8	
3-25	l H	l ii	H	H	ויין עין עין עין עין עין עין עין עין עין	hl	
3-26	l ii	Ĥ	й	й	CH-CH-CH-CH-CH-CH-CH	h2	
3-27	l H	Ĥ	ii	i ii		h3	
3-28	H H H H	H	H H H	Ĥ	CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2	h4	
3-29	l H	Ĥ	H H	Н̈́		114 hc	
3-30	1 #	H	H	H		h5	
3-31	H	H	H	П 17		h6	
3-31	l H	H	H	H H	UN2UN2UN2UN2UN2UN2	h7	
J-04	<u> </u>	<u> </u>	<u> </u>	<u>n</u>	CH2CH2CH2CH2CH2CH2CH2	h8	

[0133]

【表 9】

第3表(つづき)

3-33				IN		R1		
Name	化合物番号	RI	R4	R7	R8	В	Z	物理恒数
3-33 CH ₃ H H H H CH ₂ h1 3-34 CH ₃ H H H H CH ₂ h2 3-35 CH ₃ H H H CH ₂ h3 3-36 CH ₃ H H H CH ₂ h5 3-37 CH ₃ H H H CH ₂ h5 3-38 CH ₃ H H H CH ₂ h6 3-39 CH ₃ H H H CH ₂ h7 3-40 CH ₃ H H H CH ₂ h8 3-41 CH ₂ CH ₃ H H H CH ₂ h1 3-42 CH ₂ CH ₃ H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h5 <								[]融点℃
3-34 CH3 H <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>il</td> <td>nn屈折率</td>							il	nn屈折率
3-34	3-33	CH ₃	H	H	Н	CH ₂		
3-36 CH ₃ H H<	3-34	CH ₃ .	H	H	H	CH ₂	h2	
3-36 CH ₃ H H<	3-35	CH ₃	H	H	H	CH ₂		
3-42 CH ₂ CH ₃ H H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h4 3-45 CH ₂ CH ₃ H H H CH ₂ h5 3-46 CH ₂ CH ₃ H H H CH ₂ h6 3-47 CH ₂ CH ₃ H H H CH ₂ h7 3-48 CH ₂ CH ₃ H H H CH ₂ h8 3-49 CH ₂ CH ₂ CH ₃ H H H CH ₂ h1 3-50 CH ₂ CH ₂ CH ₃ H H H CH ₂ h2 3-51 CH ₂ CH ₂ CH ₃ H H H CH ₂ h3 3-52 CH ₃ CH ₂ CH ₃ H H H H CH ₂ h4		CH ₃	H	H	H	CH ₂		
3-42 CH ₂ CH ₃ H H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h4 3-45 CH ₂ CH ₃ H H H CH ₂ h5 3-46 CH ₂ CH ₃ H H H CH ₂ h6 3-47 CH ₂ CH ₃ H H H CH ₂ h7 3-48 CH ₂ CH ₃ H H H CH ₂ h8 3-49 CH ₂ CH ₂ CH ₃ H H H CH ₂ h1 3-50 CH ₂ CH ₂ CH ₃ H H H CH ₂ h2 3-51 CH ₂ CH ₂ CH ₃ H H H CH ₂ h3 3-52 CH ₃ CH ₂ CH ₃ H H H H CH ₂ h4	3-37	CH ₃	H Ì	H	H	CH ₂	h5	
3-42 CH ₂ CH ₃ H H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h4 3-45 CH ₂ CH ₃ H H H CH ₂ h5 3-46 CH ₂ CH ₃ H H H CH ₂ h6 3-47 CH ₂ CH ₃ H H H CH ₂ h7 3-48 CH ₂ CH ₃ H H H CH ₂ h8 3-49 CH ₂ CH ₂ CH ₃ H H H CH ₂ h1 3-50 CH ₂ CH ₂ CH ₃ H H H CH ₂ h2 3-51 CH ₂ CH ₂ CH ₃ H H H CH ₂ h3 3-52 CH ₃ CH ₂ CH ₃ H H H H CH ₂ h4	3-38	CH ₃	H	H	H	CH ₂	h6	Ì
3-42 CH ₂ CH ₃ H H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h4 3-45 CH ₂ CH ₃ H H H CH ₂ h5 3-46 CH ₂ CH ₃ H H H CH ₂ h6 3-47 CH ₂ CH ₃ H H H CH ₂ h7 3-48 CH ₂ CH ₃ H H H CH ₂ h8 3-49 CH ₂ CH ₂ CH ₃ H H H CH ₂ h1 3-50 CH ₂ CH ₂ CH ₃ H H H CH ₂ h2 3-51 CH ₂ CH ₂ CH ₃ H H H CH ₂ h3 3-52 CH ₃ CH ₂ CH ₃ H H H H CH ₂ h4	3-39	CH ₃	H	H	H	CH ₂	h7	
3-42 CH ₂ CH ₃ H H H H CH ₂ h2 3-43 CH ₂ CH ₃ H H H H CH ₂ h3 3-44 CH ₂ CH ₃ H H H CH ₂ h4 3-45 CH ₂ CH ₃ H H H CH ₂ h5 3-46 CH ₂ CH ₃ H H H CH ₂ h6 3-47 CH ₂ CH ₃ H H H CH ₂ h7 3-48 CH ₂ CH ₃ H H H CH ₂ h8 3-49 CH ₂ CH ₂ CH ₃ H H H CH ₂ h1 3-50 CH ₂ CH ₂ CH ₃ H H H CH ₂ h2 3-51 CH ₂ CH ₂ CH ₃ H H H CH ₂ h3 3-52 CH ₃ CH ₂ CH ₃ H H H H CH ₂ h4	3-40	CH ₃	H	H	H	CH ₂	h8	;
3-42 CH2CH3 H H H H H CH2 h2 h3 3-43 CH2CH3 H H H H CH2 h3 3-44 CH2CH3 H H H CH2 h4 3-45 CH2CH3 H H H CH2 h5 3-46 CH2CH3 H H H CH2 h6 3-47 CH2CH3 H H H CH2 h7 3-48 CH2CH3 H H H CH2 h8 3-49 CH2CH2CH3 H H H CH2 h1 3-50 CH2CH2CH3 H H H CH2 h2 3-51 CH2CH2CH3 H H H CH2 h3 3-52 CH3CH3CH3 H H H H CH2 h4	3-41	CH ₂ CH ₃	H	H	H	CH ₂ -	h1	
3-46	3-42	CH,CH,	H	H	H	CH ₂		
3-46	3-43	CH ₂ CH ₃	H	H	H	CH ₂		}
3-46	3-44	CH ₂ CH ₃	H	H	H	CH ₂	h4	
3-46	3-45	CH,CH3	H	H	Н	CH ₂	h5	
3-47 CH ₂ CH ₃ H H H CH ₂ h7 18 18 H H CH ₂ h8 18 18 18 18 18 18 18	3-46	CH ₂ CH ₃	H	H	H	CH ₂		
3-52 CH3CH3CH3 H H H CH2 h4	3-47	CH ₂ CH ₃	Н	H	H	I CH.		
3-52 CH3CH3CH3 H H H CH2 h4	3-48	CH ₂ CH ₃	H	H	H	CH ₂		
3-52 CH3CH3CH3 H H H CH2 h4	3-49	CH ₂ CH ₂ CH ₃	H	Н	H	CH ₂	h1	
3-52 CH,CH,CH, H H H CH2 h4	3-50	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂ ·	h2	
3-52 CH ₂ CH ₃ CH ₃ H H H CH ₂ h4	3-51	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂		ļ
3-53 CH ₂ CH ₂ CH ₃ H H H CH ₂ h5 h6 3-55 CH ₂ CH ₂ CH ₃ H H H CH ₂ h7 h7 h7 h8 H H CH ₂ h8 h7 h8 h1 H H CH ₂ h8 h1 H H CH ₂ h1 h8 h1 H CH ₂ h1 h1 H CH ₂ h1 h1 CH ₂ h2 h1 h1 CH ₂ h3 h1 h1 CH ₂ h5 h6 h6 h6 h6 h6 h6 h6	3-52	CH ₂ CH ₂ CH ₃	H	Н	H	CH ₂		
3-54 CH ₂ CH ₂ CH ₃ H H H CH ₂ h6 h7 3-55 CH ₂ CH ₂ CH ₃ H H H CH ₂ h8 h8 3-57 CH (CH ₃) ₂ H H H CH ₂ h1 h1 CH ₂ h1 h1 CH ₂ h2 h1 h1 CH ₂ h1 h1 CH ₂ h2 h1 h1 CH ₂ h3 h1 h1 h1 CH ₂ h5 h1 h1 h1 h1 h1 h1 h1	3-53	CH ₂ CH ₂ CH ₃	Н	H	H	CH ₂		
3-55 CH ₂ CH ₂ CH ₃ H H H CH ₂ h7 h8 3-57 CH (CH ₃) ₂ H H H CH ₂ h1 h1 CH ₂ h2 h1 h1 CH ₂ h2 h2 h2 h2 h3 h3 h3 h3	3-54	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂		ļ
3-56 CH ₂ CH ₂ CH ₃ H H H CH ₂ h8 CH CH ₃ H H H CH ₂ h1 H CH ₂ H H CH ₂ CH CH ₃ CH C	3-55	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂		
3-57 CH (CH ₃) ₂ H H H CH ₂ h1	3-56	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂		
	3-57	CH (CH ₃) ₂	H	H	H	CH ₂		·
3-58 CH (CH ₃) ₂ H H H CH ₂ h2	3-58	CH (CH ₃),	H	H	H	CH ₂	h2	
3-59 CH (CH ₃) 2 H H CH ₂ h3		CH (CH ₃) ₂	l H	H	H	CH ₂	h3	
3-60 CH (CH ₃) 2 H H CH ₂ h4		CH (CH ₃) ₂	H	H	H	CH ₂	h4	
3-61 CH (CH ₃) 2 H H CH ₂ h5 3-62 CH (CH ₃) 2 H H H CH ₂ h6		CH (CH ₃) 2	H	H.	H	CH ₂		
3-62 CH (CH ₃) 2 H H CH ₂ h6		CH (CH ₃) ₂	H	H	H	CH ₂	h6	
3-63 CH (CH ₃) 2 H H CH ₂ h7		CH (CH ₃) ₂	H	H	H	CH ₂	h7	
3-64 CH (CH ₃) 2 H H H CH ₂ h8	3-64	$CH (CH_3)_2$	H	<u> </u>	<u> H</u>	CH ₂	<u> h8</u>	<u></u>

[0134]

【表10】

第3表(つづき)

			IN		K1		
化合物番号	R1	R4	R7	R8	В	Z	物理恒数
						l	【 】融点℃
							nn屈折率
3-65	CH ₂ C ₆ H ₅	H	Н	H	CH ₂	h1	
3-66	CH.C.H.	Н		H	CH ₂	h2	
3-67	CH ₂ C ₆ H ₅	Ĥ	Ĥ	H	CH.	h3	
3-68	CH ₂ C ₆ H ₅	ü	Ĥ	ü	CH ₂ CH ₂ CH ₂	h4	
3-69	CH ₂ C ₆ H ₅	ü	ü	H H H	CH ₂	h5	
3-70	CUCCELLE	H H H H H	Ü	H	CH ₂	h6	
3-71	CH ₂ C ₆ H ₅	11	п П	H	CH ₂	h7	
3-11	CH ₂ C ₆ H ₅	<u>п</u>	П	H	CH ₂		
3-72	Un ₂ U ₆ n ₅	Н	п	п	CH ₂ CH ₂	h8	
3-73	CH ₂ C ₆ H ₅ H H	CH ₃	H	H	CH ₂	hl	•
3-74	ļ <u>H</u>	CH ₃	l H	H	CH ₂	h2	
3-75	<u> </u>	CH ₃	<u>H</u>	H	CH ₂	h3	
3-76	H H H	CH ₃	H	H H	CH₂	h4	
3-77) H	CH ₃	H	H	CH ₂	h5	
3-78	H	CH ₃		Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h6	
3-79	H	CH ₃	Н	l H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
3-80	H	CH ₃	l H	H	CH ₂	h8	
3-81	H	l H	CH ₃	Н	CH.	h1	
3-82	H	Н	CH ₃	H H H	CH ₂	h2	
3-83	H	H	CH ₃	Ĥ	CH ₂	h3	
3-84	l H	H	CH ₃	H	CH ₂	h4	
3-85	Й	Η̈́	CH ₃	Н	CH-	h5	1
3-86	ü	H	CH ₃	H	CH.	h6	
3-87	ļ ji	Ϊ́́	CH ₃	H	CH ₂ CH ₂ CH ₂	h7	
3-88	l ü	l ii	CH ₃	H	CH ₂	h8	j
3-89	"	ü	Cl	Н	CII2	hl	
3-90	H H H H H H	H H H H H	Ci	H	CH ₂ CH ₂ CH ₂		1
	H	ת ו	CI	П		h2	
3-91	l H	H	CI	H	CH ₂	h3	
3-92	H	H		H	CH ₂	h4	
3-93	H	H	C1	H	CH ₂	h5	1
3-94	H	H	Cl	H	CH ₂	h6	
3-95	H	H	Cl	H	CH ₂ CH ₂ CH ₂ CH ₂	h7	
3-96	H	<u>H</u>	Cl	H	CH ₂	h8	

[0135]

【表11】

第3表(つづき)

化合物番号	R1	R4	R7	R8	В	Z	物理恒数 []融点℃ n ₀ 屈折率
化合物番号 3-97 3-98 3-99 3-100 3-101 3-102 3-103 3-104 3-105 3-106 3-107 3-108 3-110 3-111 3-112 3-113 3-114 3-115 3-116 3-117 3-118 3-120 3-121 3-122	R1 H H H H H H H H H H H H H	R4 H H H H H H H H H H H H H	R7 FFFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	H H H H H H H H H H H H H H	CH ₂	1 h1 h2 h3 h4 h5 h6 h7 h8 h1 h2 h3 h4 h5 h6 h7 h8 h1 h2 h3 h4 h5 h6 h7 h8 h1 h2	[]融点℃
3-122 3-123 3-124 3-125 3-126 3-127 3-128	H H H H H	H H H H H H	H H H H H	CF FF FF FF FF FF	CH ₂	h3 h4 h5 h6 h7	

[0136]

【表12】

第4表

1 A 44 mm mm								
化合物番号	R1	R4a	R4b	R7	R8	В	Z	物理恒数
			l i					℃点癌[]
								n _p 屈折率
4-1	H H	Н	_	Н	H	CH ₂	hl	[98-102]
4-2	H	Н	_	H	H.	CH ₂	h2	
4-3	Н	H	_	H	H	CH ₂	h3	
4-4	H	Н	- 1	H	H	CH ₂	h4	
4-5	H	H H H	-	H	H	CH ₂ -	h5	
4-6	H H H	H	-	H	Ĥ	CH ₂	h6	
4-7	H	H	·_	Ĥ	Ĥ	CH ₂	h7	
4-8	Ĥ	H	_	Ĥ	Ĥ	CH ₂	h8	-
4-9	H H H	H	_	Ĥ	Ĥ	CH ₂ CH ₂	h1	
4-10	Ĥ	НÄ	_	Ĥ	Η̈́	CH ₂ CH ₂	h2	
4-11	Ĥ	H	! _	H	H	CH ₂ CH ₂	h3	
4-12	Ĥ	H	_	H	H	CH ₂ CH ₂ CH ₂ CH ₂	h4	
4-13	Ĥ	l H	! <u> </u>	H	Η̈́		h5	
4-14	Ĥ	H		H	H	CH ₂ CH ₂		
4-15	H	H		H	H	CH ₂ CH ₂	h6	
4-16	H	H	_	H	H	CH ₂ CH ₂	h7	
4-17	u u	H	-	H	H	CH ₂ CH ₂ ,	h8	
4-18	H H	Н	-	H	l H	CH ₂ CH ₂ CH ₂	hl	
4-18	П TI	1 11	-	H	H	CH2CH2CH2	h2	
	H H H	H	-	H	H	CH ₂ CH ₂ CH ₂	h3	
4-20	l H	H	-	H	H	CH ₂ CH ₂ CH ₂	h4	
4-21	H H	H	_	H	H	CH2CH2CH2	h5	
4-22	H	H	~	H	H	CH ₂ CH ₂ CH ₂	h6	
4-23	H	H	-	H	H	CH ₂ CH ₂ CH ₂	h7	
4-24	H	H	-	H	H	CH ₂ CH ₂ CH ₂	h8	
4-25	H	H	-	H	H	CH2CH2CH2CH2CH2CH2CH2	h1	
4-26	H	Н	-	H	Н	CH2CH2CH2CH2CH2CH2	h2	
4-27	H	Н	-	H	Н	CH ₂	h3	
4-28	H	Н	-	H	H	CH2CH2CH2CH2CH2CH2CH2	h4	
4-29	Н	H	-	H	H	CH2CH2CH2CH2CH2CH2CH2	h5	
4-30	Н	H	-	H	H	CH2CH2CH2CH2CH2CH2CH2	h6	
4-31	Н	H	-	Н	Н	CH ₂	h7	
4-32	H	H		H	H	CH2CH2CH2CH2CH2CH2CH2	h8	

[0137]

【表13】

第4表(つづき)

化合物番号	R1	R4a	R4b	R7	R8	В	Z	物理恒数
								【 】 融点℃ 】
		ĺ						n, 屈折率
4-33	CH ₃	H	_	Н	Н	CH ₂	h1	
4-34	CH ₃	Ä	_	Ĥ	Ĥ	CH ₂	h2	
4-35	CH ₃	Ĥ	_	H	Ĥ	CH ₂	h3	
4-36	CH ₃	Ĥ	_	Ĥ	H	CH ₂	h4	1
4-37	CH ₃	H	_	H	H	CH ₂	h5	
4-38	CH ₃	11	_	H	H	CH ₂	h6	
4-38	CH CH3	H		H	H	CH ₂	h7	
	CH ₃	П	-		H	CII	h8	
4-40	CH ₃	H	_	H	<u>n</u>	CH ₂		
4-41	CH ₂ CH ₃	H	_	H	H	CH ₂	hl	
4-42	CH ₂ CH ₃	H	-	H	H	CH ₂	h2	
4-43	CH ₂ CH ₃	H	_	H	H	CH ₂	h3	
4-44	CH ₂ CH ₃	H	-	H	H	CH ₂	h4	
4-45	CH ₂ CH ₃	Н	-	H	H	CH ₂	h5	;
4-46	CH ₂ CH ₃	H	-	H	H	CH ₂	h6	
4-47	CH ₂ CH ₃	H	-	H	H	CH ₂	h7	
4-48	CH ₂ CH ₃	H	-	H	Н	CH ₂	h8	
4-49	CH ₂ CH ₂ CH ₃	H	-	H	H	CH ₂	h1	
4-50	CH ₂ CH ₂ CH ₃	H	-	H	Н	CH ₂	h2	
4-51	CH ₂ CH ₂ CH ₃	H	-	H	H	CH ₂	h3	
4-52	CH ₂ CH ₂ CH ₃	H	-	H	H	CH ₂	h4	
4-53	CH ₂ CH ₂ CH ₃	H	_	H	H	CH ₂	h5	
4-54	CH ₂ CH ₂ CH ₃	H	l _	H	H	CH ₂	h6	
4-55	CH ₂ CH ₂ CH ₃	Ĥ	_	Η̈́	H	CH ₂	h7	
4-56	CH ₂ CH ₂ CH ₃	H	-	Η̈́	Ϊ́́́́́́́́́́́	CH ₂	h8	
4-57	CH (CH ₃) 2	H	_	Η̈́	H	CH ₂	hl	
4-58	CH (CH ₃) 2	H	1 _	H	Ìй	ČH ₂	h2	
4-59	CH (CH ₃) 2	H	I _	H	H H	CH ₂	h3	
4-60	CH (CH ₃) 2	H	1 _	H	H	CH ₂	h4	
	CH (CH)	H	1 -	H	H	CH ₂	h5	
4-61	CH (CH ₃) ₂	n	1 -		H	CU CU	h6	•
4-62	CH (CH ₃) ₂	H	-	H		CH ₂	110	
4-63	CH (CH ₃) ₂	H	-	H	H	CH ₂	h7	
4-64	CH (CH ₃) ₂	Н		H	H	CH ₂	h8	<u> </u>

[0138]

【表14】

第4表(つづき)

化合物番号	R1	R4a	R4b	R7	R8	В	Z	物理恒数
								3 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
							1	n _D 屈折率
4-65	CH ₂ C ₆ H ₅	Н	_	H	H	CH ₂	h1	
4-66	CH ₂ C ₆ H ₅	H	-	H	H	CH ₂	h2	
4-67	CH,C,H,	H	- 1	H	H	CH ₂	h3	
4-68	CH ₂ C ₆ H ₅	H	- 1	H	H	CH ₂	h4	
4-69	CH ₂ C ₆ H ₅	H H H	-	H	H	CH ₂	h5	
4-70	CH ₂ C ₆ H ₅	H	- 1	H	H	CH ₂	h6	
4-71	CH ₂ C ₆ H ₅	H ·	- 1	Ĥ	H	CH ₂ -	h7	
4-72	CH ₂ C ₆ H ₅	H	_	H	Ĥ	CH ₂	h8	•
4-73	H H	CH ₃	l – I	Ĥ	Ĥ	CH ₂	hl	[80-85]
4-74	H H	CH ₂	_	Ĥ	Ĥ	CH ₂	h2	(00 00,
4-75	Ä	CH ₃ CH ₃	_	Ĥ	H	CH ₂	h3	
4-76	Ä	CH ₃	_	Ä	Ĥ	ČH.	h4	
4-77	Η̈́	CH ₃	_	Ĥ	H	CH ₂ CH ₂ CH ₂	h5	•
4-78	НÄ	CH ₃		Ĥ	Ĥ	CH ₂	h6	
4-79	Η̈́	CH ₃		Ä	Ĥ	CH ₂	h7	
4-80	Η̈́	CH ₃	_	Ĥ	H	CH ₂ .	h8	
4-81	l Ä	-	CH ₃	Ĥ	Ĥ	CH ₂	h1	[>300]
4-82	Н	_	CH ₃	Ĥ	H	CH ₂	h2	[[] []
4-83	Н		CH ₃	Ĥ	Ĥ	CH ₂	h3	
4-84	l μ	_	CH ₃	Ĥ	Ĥ	CH ₂	h4	
4-85	ļ й	۱ ـ	CH ₃	H	НÄ	CH ₂	h5	
4-86	l й	۱ _	CH ₃	H	H	CH ₂	h6	
4-87	l ü		CH ₃	H	Η̈́	CH ₂	h7	
4-88	l й	_	CH ₃	H	НÄ	CH ₂	h8	ļ
4-89	l #i	н	-	CH,	Н̈́	CH ₂	hi	ĺ
4-90	H H H H H H H	H H H H	_	CH ₃	H	CH ₂	h2	
4-91	l й	I й	_	CH ₃	НÄ	CH ₂	h3	
4-92	l #	lй	_	CH ₃	Н̈́	CH-	h4	1
4-93	l H	H	_	CH ₃	Η̈́	CH ₂ CH ₂	h5	
4-94	H H	H	_	CH ₃	H	CH.	h6]
4-95	H H	H	l _	CH ₃	H	CH ₂ CH ₂	h7	
4-96	H	H	1 -	CH ₃	H	CH ₂ CH ₂	h8	
4-30	11	11		Un ₃	п	UII2	1 110	<u> </u>

[0139]

【表15】

第4表(つづき)

化合物番号	R1	R4a	R4b	R7	R8	В	Z	物理恒数
								3 ☆ □ 3 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1
								n _n 屈折率
4-97	H	H	-	Cl	H	CH ₂	hl	
4-98	H	H	-	CI	H	CH,	h2	
4-99	H	H	_	Cl	H	CH ₂	h3	
4-100	H H	H	- !	Cl	H	CH ₂	h4	
4-101	H	H H H	-	Cl	H	CH ₂	h5	
4-102	H	H	-	Cl	H	CH ₂	h6	
4-103	Н	Н	_	ČĪ	H	CH ₂ -	h7	
4-104	H	H	_	ČÌ	H	CH.	h8	
4-105	H H	H H H	_	F	H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h1	
4-106	H	H	_	F	Ĥ	ČH.	h2	
4-107	Ħ	Й	l _ i	F	Ĥ	CH ₂	h3	
4-108	Ĥ	H H H	l _ i	F	H	CH.	h4	
4-109	Ĥ	H	l _ '	F	Ĥ	CH ₂ CH ₂	h5	
4-110	Ħ	Ĥ	l _	F	H	ČH ₂	h6	
4-111	Ĥ	Ĥ	l _	F	Ĥ	CH ₂	h7	
4-112	Ä	Η̈́	_	F	H	CH ₂ .	h8	
4-113	Ĥ	H	_	Ĥ	CH ₃	CH ₂	h1	
4-114	Ĥ	H	l _	H	CH ₃	CH ₂	h2	
4-115	H H	Н		H	CH ₃	CH CH3	h3	
4-116	1 11	1 11		H	CH ₃	CH ₂		
4-117	H H	111	_	n U	CII	CH ₂	h4	
4-118	1 11	1 11	_	H H	CH ₃	CH ₂	h5	
4-119	l ü	1 11	_	H	CH3	CII CII	h6	
4-119	H H H	H H H H	-	I II	CH ₃	CH ₂	h7	
4-121] <u>n</u>	n	-	H	CH ₃	LH3	h8	
	l n	H	_	H	CI	CH ₂	hl	
4-122	H H	H	_	H	Cl	CH ₂	h2	
4-123	l H	H	-	H	Cl	CH ₂	h3	
4-124	H	H	-	H	Cl	CH ₂	h4	Į
4-125	H	H	-	H	CI.	CH ₂	h5	
4-126	H	H	-	H	CI	CH ₂	h6	
4-127	H H	H	-	H	Cl	CH ₂	h7	
4-128	<u>H</u>	H	<u> - </u>	Н	Cl	CH ₂	h8	1

[0140]

【表16】

第4表(つづき)

化合物番号	R1	R4a	R4b	R7	R8	В	Z	物理恒数 [] 融点℃ n _b 屈折率
4-129	H	H	_	H	F	CH ₂	h1	
4-130	H.	H	-	H	F	CH ₂	h2	
4-131	H	Н	-	H	F	CH ₂	h3	
4-132	H	H	-	H	F	CH ₂	h4	
4-133	H	H	_	H	F	CH ₂	h5	
4-134	H	H	-	H	F	CH ₂	h6	
4-135	H	H	-	H	F	CH ₂ -	h7	_
4-136	H	H		H	F	CH ₂	h8	_

[0141]

【表17】

第5表

			_						
化合物番号	R1	R3	R4a	R4b	R7	R8	В	Z	物理恒数
									プ点蛹[]
									np屈折率
5-1	Н	Н	Н	-	Н	H	CH ₂	h1	[103-108]
5-2	H	H	H	-	H	H	CH ₂	h I	[176-180] 2HCl 塩
5-3	H	H	H	_	Ĥ	Ĥ	ČH ₂	h2	[80-82]
5-4	H	Ĥ	Ä	_	H	H	CH ₂	h3	[132-135]
5-5	Ĥ	H	H	_	H	Ĥ	CH ₂	- h4	(102 100)
5-6	H	Ħ	H	_	Ĥ	H I	ČH ₂	h5	[110-115]
5-7	H	Ĥ	Ĥ	_	H	H	CH ₂	h6	amorphous&NMR
5-8	H	H	H	-	Ĥ	H	CH ₂	h7	amot biton 2 sturit
5-9	H	H	H		H	H	CH ₂	h8	
5-10	H	H	H	_	Н	H			
5-10 5-11		Н		_	П		CH ₂ CH ₂	h1	
	H		H	_	H	H	CH ₂ CH ₂	h2	
5-12	H	H	H	_	H	H	CH ₂ CH ₂	h3	
5-13	H	H	H	-	H	H	CH ₂ CH ₂	h4	
5-14	H	H	H	-	H	H	CH ₂ CH ₂	h5	
5-15	H	H	H	-	H	H	CH ₂ CH ₂	h6	
5-16	H	Н	H	-	H	H	CH ₂ CH ₂	h7	·
5-17	H	H	H	-	H	Н	CH ₂ CH ₂	h8	
5-18	H	H	H	-	H	H	CH2CH2CH2	h l	
5-19	H	H	H	-	H	Н	CH ₂ CH ₂ CH ₂	h2	
5-20	H	H	H	-	H	H	CH ₂ CH ₂ CH ₂	h3	
5-21	H	H	H	-	H	H	CH ₂ CH ₂ CH ₂	h4	\
5-22	H	H	H	-	H	H	CH ₂ CH ₂ CH ₂	h5	
5-23	H	H	H		Н	Н	CH ₂ CH ₂ CH ₂	h6	
5-24	H	H	H	_	H	H	CH ₂ CH ₂ CH ₂	h7	
5-25	H	H	H	_	H	H	CH, CH, CH,	h8	
5-26	H	Η̈́	Н	-	H	H	CH2CH2CH2CH2CH2CH2	hi	
5-27	H	Н	Ĥ		H	H	CH ₂	h2	
5-28	H	H	Η̈́	_	Ĥ	H	CH ₂	h3	
5-29	H	H	H	_	Η̈́	Ϊ́́	CH ₂	h4	
5-30	H	H H	H	_	H	H	CH'CH'CH'CH CH CH CH	h5	1
5-31	H	H	H	1 [H	H	CH2CH2CH2CH2CH2CH2	h6	
5-32	H	l H	H H	-		H	CH2CH2CH2CH2CH2CH2	110	1
	H		l u	-	H		CH,	h7	
5-33	l H	H	H		Н	H	CH2CH2CH2CH2CH2CH2	h8	

[0142]

【表18】

第5表(つづき)

(1. A H. 37. D	7.	70.0							
化合物番号	R1	R3	R4a	R4b	R7	R8	В	Z	物理恒数
									□ 】融点℃
									n。屈折率
5-34	CH ₃	H	Н	-	Н	H	CH ₂	h1	[113-117]
5-35	CH ₃	H	H	-	H	H	CH ₂	h2	
5-36	CH ₃	H	H	- 1	H	H	CH ₂	h3	
5-37	CH ₃	H	H	-	H	Н	CH ₂	h4	
5-38	CH ₃	H	Н	_	Н	H	CH ₂ -	h5	
5-39	CH ₃	H	Н	_	H	Н	CH ₂	h6	
5-40	CH ₃	H	Н	_	H	H	CH ₂	h7	
5-41	CH ₃	H	H	_	H	Ĥ	CH ₂	h8	
5-42	CH₂CH₃	H	Н	_	H	Ĥ	CH ₂	hi	[95-99]
5-43	CH ₂ CH ₃	H	H	_	Ĥ	Ĥ	CH ₂	h2	[00 00]
5-44	CH ₂ CH ₃	H	H	_	Ĥ	Ĥ	CH ₂	h3	
5-45	CH ₂ CH ₃	H	H	_	Ĥ	Ĥ	CH ₂	h4	
5-46	CH ₂ CH ₃	H	H	_	Ĥ	H	ČH ₂	h5	
5-47	CH ₂ CH ₃	H	H		Ĥ	Ĥ	CH ₂	h6	
5-48	CH ₂ CH ₃	H	H	_	Ĥ	Ĥ	CH ₂	h7	
5-49	CH ₂ CH ₃	H	Н	_	Ĥ	Ĥ	ČH ₂	h8	
5-50	CH ₂ CH ₂ CH ₃	H	Ĥ	_	Ĥ	НÜ	ČH ₂ '	h1	
5-51	CH ₂ CH ₂ CH ₃	H	ΙË	_	Ĥ	H	ČH ₂	h2	
5-52	CH ₂ CH ₂ CH ₃	H	НĤ	_	Ĥ	Ĥ	ČH ₂	h3	
5-53	CH ₂ CH ₂ CH ₃	H	Н	_	Ĥ	Η̈́	ČH ₂	h4	
5-54	CH ₂ CH ₂ CH ₃	Ĥ	H	_	H	H	CH ₂	h5	
5-55	CH ₂ CH ₂ CH ₃	Ĥ	H		H	H	CH ₂	h6	
5-56	CH ₂ CH ₂ CH ₃	Ĥ	Η̈́	_	H	H	CH ₂	h7	
5-57	CH ₂ CH ₂ CH ₃	H	H	_	H	H	CH ₂	h8	
5-58	CH (CH ₃) 2	H	Н	_	H	H	CII2	hl	[89-92]
5-59	CH (CH ₃) 2	H	H		H	H	CH ₂	h2	[09-92]
5-60	CH (CH ₃) 2	H	H	_	H	H	CH ₂		
5-61	CH (CH ₃) 2	H	H	_	H	H	CH ₂	h3	
5-62	CH (CH ₃) 2	H	H	_	H	H	CH ₂	h4	
5-63	CH (CH ₃) 2	H	H	_	H	H	CH ₂	h5	
5-64	CH (CH ₃) 2	H	H	-	[] 		CH ₂	h6	
5-65		H		-	H	H	CH ₂	h7	
0-00	CH (CH ₃) ₂	п	H	<u> </u>	H	H	CH ₂	h8	<u></u>

[0143]

【表19】

第5表(つづき)

化合物番号	RI	R3	R4a	R4b	R7	R8	В	Z	物理恒数
								l	[] 融点℃
									n _D 屈折率
5-66	CH ₂ C ₆ H ₅	Н	Н	_	H	Н	CH ₂	hì	
5-67	CH ₂ C ₆ H ₅	H	Ħ	_	H	Ĥ	CH ₂	h2	
5-68	CH ₂ C ₆ H ₅	Ĥ	H H		Ĥ	H	CH.	h3	
5-69	CH ₂ C ₆ H ₅	Ĥ	Η̈́	_	Ĥ	H	CH ₂ CH ₂	h4	
5-70	CII2CGII5	Ĥ	Η̈́	_	H	Η̈́	CH ₂ -	h5	}
5-71	CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅	H	Η̈́	_	H	H		h6	
		ת ו	n i	_			CH ₂		
5-72	CH ₂ C ₆ H ₅	H	H	-	H	H	-CH ₂	h7	
5-73	CH ₂ C ₆ H ₅	H	H	-	H	H	CH ₂	h8	
5-74	Н	CH ₃	H		H	Н	CH ₂	h1	[115-119]
5-75	H	CH ₃	Н	_	H	H	CH ₂	h2	
5-76	H	CH ₃	H	-	H	H	CH ₂	h3	
5-77	H H	CH ₃	H H	-	H	H	CH ₂	h4	
5-78	H	CH ₃	Ĥ	_	H	H	CH.	h5	
5-79	H	CH ₃	Ħ	-	H	H	CH ₂ CH ₂	h6	
5-80	Ĥ	CH ₃	Ĥ	_	H	H	CH ₂ CH ₂ CH ₂ CH ₂	h7	
5-81	Ĥ	CH ₃	H	_	ΙĤ	H	CH	h8	
5-82	H	H			H	H	CH2	hl	[73-76]
5-83	H	H	CH ₃	_	H		CII		[19-10]
	<u>п</u>	n l	CH ₃	-		H	CH ₂	h2	
5-84	H	H ,	CH ₃	_	H	H	CH ₂ CH ₂	h3	
5-85	<u> </u>	H	CH ₃	-	H	H	CH ₂	h4	
5-86	H H	H	CH₃	-	H	H	CH ₂	h5	
5-87	H	H	CH ₃	-	H	H	CH ₂	h6	
5-88	H	H	CH ₃	-	H	H	CH ₂	h7	
5-89	H	H	CH ₃	-	l H	H	l CH.	h8	
5-90	H H H	H	_	CH ₃	H	H	CH ₂ CH ₂	hl	[49-54]
5-91	Ϊ́Η	H	_	CH ₃	H	H	CH.	h2	(10 01)
5-92	H	НÄ	_	CH ₃	H	H	CH ₂	h3	
5-93	l ii	H	_	CH ₃	H	H	CH ₂	h4	
5-94	"	H	_		l H	H	CII CII2	h5	
5-95	l u	l H	} ~	CH ₃	l H		CH ₂ CH ₂ CH ₂		
	п	П	_	CH ₃		H	CH2	h6	
5-96	H H H H H	H	-	CH ₃	H	H	1 CH ₂	h7	
5-97	l H	H	-	CH ₃	H	H	CH ₂	h8	i
	_		~ 0	1					
5-98	H	H	⟨	-	H	H	CH ₂	h1	[126-130]
		<u> </u>		<u> </u>		<u>L</u>			

[0144]

【表20】

第5表(つづき)

16 A 46 40 FT				5					
化合物番号	R1	R3	R4a	R4b	R7	R8	В	Z	物理恒数
									[]融点℃
									np屈折率
5-99	H	H	H	_	CH ₃	Н	CH ₂	hl	
5-100	Н	H	H	_	CH ₃	H	CH,	h2	
5-101	H	H	H	_	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₂ -	h3	
5-102	H	Ĥ	H	_	CH ₃	Ĥ	CH.	h4	
5-103	Ĥ	H	Ĥ	_	CH ₃	Ĥ	CH	h5	
5-104	Ĥ	Ĥ	Ĥ		CH ₃	Ĥ	CH ₂	h6	
5-105	H	Η̈́	n n	_	CH ₃	H	CIIS	h7	
5-106	H	H	H H		CII	H	CH ₂ -		
5-107	H	H	П	_	CH ₃	п	CH ₂	h8	
	П		H	_	CI	H	CH ₂	h1	
5-108	H	H	H	-	CI	H	CH ₂	h2	
5-109	H	H	H	-	Cl	H	CH ₂	h3	
5-110	H	H	H	-	Cl	H	CH ₂	h4	
5-111	H	H	H	-	CI	H	CH ₂	h5	· '
5-112	Н	H	H	-	CI	H	CH ₂	h6	
5-113	H	H	H	-	CI	H	CH ₂ - CH ₂	h7	
5-114	H	H	H	-	CI	Н	CH ₂	h8	
5-115	H	H	H	-	F	Н	CH ² '	h1	
5-116	H	H	H	_	F	Ĥ	CH ₂	h2	
5-117	H	H	H	_	F	H	CH ₂	h3	
5-118	H	H	H		F	H	CH.	h4	
5-119	Η̈́	H	H		F	Ĥ	CH CH2	h5	
5-120	Ìй	Ĥ	Η̈́	_	F	H	CII2	h6	
5-121	H	H	й		F	H	CH	h7	
5-122	H	H	H	_	F	H	CII		
5-123			11 11	_	1 1		CH ₂	h8	
5-120	H	H	H	_	H	CH ₃	CH ₂	h1	
5-124	H	H	H	-	H	CH ₃	CH2	h2	
5-125	H	H	H	_	H	CH ₃	CH ₂	h3	
5-126	H	H	H	-	H	CH ₃	CH ₂	h4	
5-127	H	H	H	-	H	CH ₃	CH ₂	h5	
5-128	H	H	H	-	H	CH ₃	CH ₂	h6	
5-129	H	H	H	-	H	CH ₃	CH ₂	h7	
5-130	H	H	Н		Н	CH ₃	CH ₂	h8	

[0145]

【表21】

第5表(つづき)

化合物番号	R1	R3	R4a	R4b	R7	R8	В	Z	物理恒数
									[] 融点℃ _n。屈折率
5-131	Н	H	Н	_	Н	Cl	CH ₂	h1	пулитут-
5-132	H	Н	H	_	H	či	CH ₂	h2	
5-133	H	H	H	-	H	či	CH ₂	h3	
5-134	H	H	H	_	Ĥ	ČÌ	CH ₂	h4	
5-135	H	Η̈́	Ĥ	_	Ĥ	či	CH ₂	h5	
5-136	Ĥ	H	Ĥ	_	Ĥ	či	CH ₂	h6	
5-137	H	ΙÄΙ	H	_	H	či	CH ₂ -	h7	
5-138	Ĥ	Ĥ	Ĥ	_	H	ci l	CII ₂ .		
5-139	Ĥ	Ĥ	H	_	H	F	CH ₂ CH ₂ CH ₂	h8	
5-140	Ĥ	H	H	_	H	F	CII	h1	
5-141	H	H	H		H	F	CH ₂	h2	
5-142	Ĥ	H	Ĥ	_			CH ₂	h3	
5-143	H	H	H	_	H	F	CH ₂ CH ₂	h4	
5-144	H	H		_	H	F	CH ₂	h5	
5-144	n H		H	_	H	F	CH ₂	h6	
		H	H	_	H	F	CH ₂	h7	
5-146	H	H	H		H	F	CH ₂	h8	

[0146]

【表22】

第6表

化合物番号	R1	R3	R4a	R4b	В	Z	物理恒数
	IX I	Νυ	N4a	140	ע	L	[] 融点℃
							n,屈折率
6-1	Н	Н	Н		CH ₂	h1	[96-99]
6-2	H	H	H	-	CH ₂	h2	[75-80]
6-3	H	H	H]	-	CH ₂	h3	
6-4	H	Н	H	-	CH ₂	h4	
6-5	H H	Н	H	-	CH ₂ -	h5	[188-190]
6-6	H	H	H	- 1	CH ₂	h6	[89-92]
6-7	H H H H	H	H	- !	CH ₂	h7	
6-8	H	H	H	-	CH ₂	h8	
6-9	H	H H	H	-	CH ₂ CH ₂	h1	
6-10	H	H	H	-	CH ₂ CH ₂	h2	
6-11	H	H	H	_	CH ₂ CH ₂	h3	
6-12	H	H	H	_	CH ₂ CH ₂	h4	
6-13 6-14	H H	H	H H	_	CH ₂ CH ₂	h5	
6-15	H	H	H	_	CH ₂ CH ₂	h6	
6-16	H	l H	H	_	CH2CH2	h7 h8	
6-17	H	H	H	_	CH2CH2 CH2CH2CH2	h1	
6-18	H	H	H	_	CH ₂ CH ₂ CH ₂	h2	
6-19	H	H	H	_	CH ₂ CH ₂ CH ₂	h3	
6-20	H	H	H	_	CH ₂ CH ₂ CH ₂	h4	
6-21	Ĥ	Ĥ	НÄ	_	CH ₂ CH ₂ CH ₂	h5	
6-22	H	Ĥ	H	_	CH ₂ CH ₂ CH ₂	h6	
6-23	Ĥ	H	H	 	CH ₂ CH ₂ CH ₂	\bar{h} 7	
6-24	H H H H H	H	Н	_	CH ₂ CH ₂ CH ₂	h8	
6-25	i H	H	H H	_	CH2CH2CH2CH2CH2CH2	h1	
6-26	H	H	H		CH,CH,CH,CH,CH,CH,	h2	
6-27	H	H	l H	-	CH,CH,CH,CH,CH,CH,	h3	
6-28	H	Н	H	_	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h4	
6-29	Н	H	H	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h5	[
6-30	H	H	H	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h6	
6-31	H	H	H	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
6-32	· H	H	H		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h8	

[0147]

【表23】

第6表(つづき)

ル ム粉 平 ロ	D1	<u> </u>	D./	D 41			
化合物番号	R1	R3	R4a	R4b	В	Z	物理恒数
							□ 】融点℃
0.00	0.00						n _D 屈折率
6-33	CH ₃	H	H	-	CH ₂	hl	
6-34	CH ₃	H	H	-	CH ₂	h2	
6-35	CH ₃	H	H	-	CH ₂ ~	h3	
6-36	CH ₃	H	Н	-	CH ₂	h4	
6-37	CH ₃	H	Н	-	CH ₂	h5	
6-38	CH ₃	H	H H H	-	CH ₂	h6	•
6-39	CH ₃	H	H	-	CH ₂	h7	
6-40	CH ₃	H	Н	-	CH ₂	h8	
6-41	CH₂CH ₃	H	H	_	CH ₂	hi	
6-42	CH ₂ CH ₃	H	H	_	CH ₂	h2	
6-43	CH ₂ CH ₃	H	H	-	CH ₂	h3	
6-44	CH ₂ CH ₃	H	H	_	CH ₂	h4	
6-45	CH ₂ CH ₃	H	H	-	CH ₂	h5	
6-46	CH ₂ CH ₃	H	Н	_	CH ₂	h6	
6-47	CH ₂ CH ₃	H	H	_	CH ₂	h7	
6-48	CH ₂ CH ₃	H	H	_	CH ₂	h8	
6-49	CH ₂ CH ₂ CH ₃	H	H	_	CH ₂	h1	
6-50	CH ₂ CH ₂ CH ₃	H	H	-	CH ₂	h2	
6-51	CH ₂ CH ₂ CH ₃	H	Ĥ	_	CH ₂	h3	
6-52	CH ₂ CH ₂ CH ₃	H	Ĥ	_	CH ₂	h4	
6-53	CH ₂ CH ₂ CH ₃	Ĥ	H H H		CH ₂	h5	
6-54	CH2CH2CH3	Ĥ	Ĥ	_	CH ₂	h6	
6-55	CH2CH2CH3	H	Ĥ	_	CH ₂	h7	
6-56	CH ₂ CH ₂ CH ₃	Ĥ	Ĥ	_	CH ₂	h8	
6-57	CH (CH ₃) 2	Ĥ	Ĥ	_	CH ₂	hl	
6-58	CH (CH ₃) 2	Ĥ	Ĥ	_	CH ₂	h2	
6-59	CH (CH ₃) 2	Ĥ	Ĥ	_	CH ₂	h3	
6-60	CH (CH ₃) 2	H	H	_	CH ₂	h4	•
6-61	CH (CH ₃) 2	Ĥ	H	_	CH ₂		
6-62	CH (CH ₃) 2	Ĥ	H	_	Cn Cn	h5	
6-63	CH (CH ₃) 2	Ĥ	H		CH ₂	h6	
6-64	CH (CH ₃) 2	H	H		CH ₂	h7	
	CII (CII3/ 2	- 11	П		CH ₂	h8	

[0148]

【表24】

第6表(つづき)

化合物番号	R1	R3	R4a	R4b	В	Z	物理恒数 []融点℃
						ll	nn屈折率
6-65	CH ₂ C ₆ H ₅	H	Н	-	CH ₂	hl	
6-66	CH ₂ C ₆ H ₅	H	Н	-	CH ₂	h2	
6-67	CH ₂ C ₆ H ₅	H	H H H H H	-	CH ₂	h3	
6-68	CH ₂ C ₆ H ₅	Ĥ	Ĥ	_	CH ₂	h4	
6-69	CH ₂ C ₆ H ₅	H	H I	_	CH ₂ -	h5	
6-70	CH ₂ C ₆ H ₅	Ĥ	Ĥ	_	CH ₂	h6	•
6-71	CH ₂ C ₆ H ₅	H	H H		CH ₂	h7	
6-72	CH ₂ C ₆ H ₅	Ĥ	ü	_	CH ₂	h8	
6-73	H H	CH ₃	T T	_	CH ₂	h1	
6-74	H	CH ₃	11	_	CII	h2	
6-75	H	CH 2	H H H H H	_	CH ₂		
	n	CH ₃	П		CH ₂	h3	
6-76	H H H H H	CH ₃	п	~	CH ₂	h4	
6-77] #	CH ₃	H	_	CH ₂	h5	
6-78	l H	CH ₃	H.	-	CH ₂ CH ₂	h6	
6-79	i ii	CH ₃	H	-	CH ₂	h7	
6-80	<u> H</u>	CH ₃	H	_	CH ₂	h8	
6-81	H	H	CH ₃	-	CH ₂	hl	
6-82	H	Н	CH ₃	-	CH ₂ CH ₂	h2	
6-83	Н	H	CH ₃	-	CH ₂	h3	
6-84	H	H	CH ₃	-	CH ₂	h4	
6-85	H	H	CH ₃	-	CH ₂	h5	
6-86	H	H	CH ₃	_	CH ₂	h6	
6-87	H	H	CH ₃	-	CH ₂	h7	
6-88	H	H	CH₃	-	CH ₂	h8	
6-89	H	H		CH ₃	CH ₂	h1	
6-90	H	l Ĥ	l _	CH ₃	CH ₂	h2	
6-91	Ĥ	ΙÜ	l _	CH ₃	ČH ₂	h3	Ì
6-92	H	H H H	_	CH ₃	CH ₂	h4	1
6-93	l ü	H	_	CH ₃	CH ₂	h5	
6-94	l ü	H	_	CH ₃	Cu Cu	h6	
6-95	"	H	I _	CH ₃	CH ₂ CH ₂	h7	
6-96	H H H	H		CH ₃	CH ₂ CH ₂	h8	
0-30	1 11	<u> </u>	L	I CD3	L CII2	1110	

[0149]

【表25】

第7表

			14	KI		
化合物番号	R1	R7	R8	В	Z	物理恒数
						[]融点℃
<u> </u>						n,屈折率
7-1	H	H	H	CH ₂	h1	[57-62]
7-2	H	<u>H</u>	H	CH ₂	h2	
7-3	H	H	H	CH ₂	h3	
7-4	H H	Н	Н	CH ₂	h4	
7-5	H	H	H	CH ₂	h5	
7-6	H	H	H	CH ₂	h6	
7-7	H	H	H H H	CH ₂	h7	
7-8	Ĥ	H	H	CH ₂	h8	
7-9	H	H H H H H	H	CH ₂ CH ₂	hi	
7-10	H	Н	H	CH ₂ CH ₂	h2	
7-11	H	Н	H	CH ₂ CH ₂	h3	
7-12	H	H	H	CH ₂ CH ₂	h4	
7-13	H	H	H	CH ₂ CH ₂	h5	
7-14	H	Ĥ	Ħ	CH ₂ CH ₂	h6	
7-15	H	H H H	Ĥ	CH ₂ CH ₂	h7	
7-16	H	Ä	Ħ	CH ₂ CH ₂	h8	
7-17	Η̈́	Ĥ	Ĥ	CH ₂ CH ₂ CH ₂	hi	
7-18	Η̈́	НÄ	Ĥ	CH ₂ CH ₂ CH ₂	h2	
7-19	Ä	Η̈́	Ĥ	CH2CH2CH2	h3	
7-20	Η̈́	НÜ	Ä	CH ₂ CH ₂ CH ₂	h4	
7-21	Η̈́	Ħ	Η̈́	CH ₂ CH ₂ CH ₂	h5	
7-22	l H	Н	H	CH ₂ CH ₂ CH ₂	h6	
7-23	Η̈́	H H	Η̈́	CH ₂ CH ₂ CH ₂	h7	
7-24	Н	Ĥ	l ü	CH ₂ CH ₂ CH ₂	h8	
7-25	l ii	Ħ	l ü	CH ₂	hl	
7-26	H H H H	H H	H H H H	CH ₂	h2	
7-27	1 11	l H	#	CH ₂	h3	
7-28	1 #	l H	#	CH ₂	h4	
7-29	H	H	H		h5	
7-29	H	H	H	CH ₂	h6	
7-31	l H] II	H	CH ₂	h7	
7-32	l H	H H	H	CH2CH2CH2CH2CH2CH2	h8	
1-34	П	Г п	<u> </u>	CH2CH2CH2CH2CH2CH2	<u> </u>	<u> </u>

[0150]

【表26】

第7表(つづき)

化合物番号	R1	R7	R8	В	Z	物理恒数
					1	【 】融点℃
1					i i	np屈折率
7-33	CH ₃	Н	H	CH ₂	hl	- 111/141/1 T
	CII3	Π 11	11	CII2		
7-34	CH ₃	H	Н	CH ₂	h2	
7-35	CH ₃	. н	H	CH ₂	h3	
7-36	CH ₃	H	H	CH ₂	h4	
7-37	CH ₃	H I	H	CH ₂	h5	
7-38	CH ₃	. Н Н Н	H (CH ₂	h6	
7-39	CH ₃	l ü i	ii l	CH ₂	h7	
7-40	CH ₃	H H	H H	CH ₂	h8	
		Π	Ω.	CH2-		
7-41	CH₂CH₃	H	H	CH ₂	hl	•
7-42	CH ₂ CH ₃	Н	H	CH ₂	h2	
7-43	CH ₂ CH ₃	Н	H	CH ₂	h3	
7-44	CH ₂ CH ₃	. н	H	CH ₂	h4	
7-45	CH ₂ CH ₃	H	H	CH ₂	h5	
7-46	CH ₂ CH ₃	Ĥ	Ĥ	CH ₂	h6	
7-47	CH ₂ CH ₃	Ĥ	Ĥ	CH ₂	h7	
	CII CII	n 11	п	CH ₂		
7-48	CH ₂ CH ₃	l ü	H	CH ₂	h8	
7-49	CH ₂ CH ₂ CH ₃	l H	H	CH ₂	h1	
7-50	CH ₂ CH ₂ CH ₃	į H	H	CH2 ,	h2	
7-51	CH ₂ CH ₂ CH ₃	H	H	CH ₂	h3	
7-52	CH ₂ CH ₂ CH ₃	l H	H	CH ₂	h4	
7-53	CH ₂ CH ₂ CH ₃	l Ĥ	H	CH ₂	h5	
7-54	CH ₂ CH ₂ CH ₃	l ü	Ϊ	CH ₂	h6	
7-55	CH ₂ CH ₂ CH ₃	'	🛱	CH ₂	h7	
7 56	CH CH CH	1 11	H H H H	CII	h8	
7-56	CH ₂ CH ₂ CH ₃	<u>п</u>	n n	CH ₂		
7-57	CH (CH ₃) ₂	ł H	H H	CH ₂ CH ₂	hl	
7-58	CH (CH ₃) 2	H	H	CH ₂	h2	
7-59	CH (CH ₃) ₂	H	1 H	CH ₂	h3	
7-60	CH (CH ₃) 2	H H H H H H H H H H H H H H H H H H H	H H	CH ₂	h4	
7-61	CH (CH ₃) 2	H	Ϋ́Ħ	CH ₂	h5	
7-62	CH (CH ₃) 2	l H	НÄ	CH ₂	h6	
7-63	CH (CH ₃) 2	H	H	CH ₂	h7	
		11	1 11	CH CH		·
7-64	CH (CH ₃) ₂	H	H	CH ₂	h8_	

[0151]

【表27】

第7表(つづき)

化合物番号	R1	R7	R8	В	Z	物理恒数
						3○元点 []
						n _p 屈折率
7-65	CH ₂ C ₆ H ₅	Н	Н	CH ₂	h1	11) /111 17 1 —
7-66	CH ₂ C ₆ H ₅		H	Cn		
7-67	CH C B	11 11	п	CH ₂ CH ₂	h2	
7 00	CH ₂ C ₆ H ₅	n	H H	CH ₂	h3	
7-68	CH ₂ C ₆ H ₅	Н	Н	CH ₂	h4	
7-69	UH ₂ C ₆ H ₅	Н	H H H	CH ₂	h5	
7-70	CH ₂ C ₆ H ₅	H	H	CH ₂	h6	
7-71	CH ₂ C ₅ H ₅	H H H	H	CH ₂ CH ₂	h7	
7-72	CH ₂ C ₆ H ₅	Ĥ	H	CH.	h8	
7-73	H H	CH₃	H H	Cn -	h1	_
7-74	Ĥ	Cu	H	CH ₂ CH ₂		•
	n i	CH ₃	H	CH ₂	h2	
7-75	H	CH ₃	H	CH ₂	h3	
7-76	Н	CH ₃	Ĥ	CH ₂	h4	
7-77	H	CH ₃ CH ₃	Н	CH,	h5	
7-78	H	CH ₃	H	CH ₂	h6	
7-79	H H	CH ₃	H	CH ₂	h7	:
7-80	Н	CH ₃	H	CH ₂	h8	
7-81	Ĥ	Či ³	й	CH ₂	h1	
7-82	i ü	či	Ü	CH ₂	h2	
7-83	111	01	U II	CII ₂		
7 04		CI	i ii	CH ₂	h3	
7-84	l ü	Cl	H	CH ₂	h4	
7-85	l H	CI	H	CH ₂	h5	
7-86	l H	C1	H	CH ₂	h6	
7-87	H	Cl	H	CH ₂	h7	
7-88	H H	l C1	H H H H H H H	CH.	h8	
7-89	H H H H H H	F	Ĥ	čii.	h1	
7-90	l й	l r	Ĥ	Ch Ch	h2	
7-91	l ü	F F	H	CH ₂	114	
7-92	H H H H H	l r	П TT	СП ₂	h3	
	П	r	H	CH ₂	h4	
7-93	l H	l Ĕ	H	CH ₂	h5	
7-94	<u>H</u>	F	H	CH ₂	h6	
7-95	l H	C1 FF FF FF FF	H	CH ₂	h7	
7-96	Н	j F	H	CH ₂	h8	

[0152]

【表28】

[0148]

第7表(つづき)

化合物番号	RI	R7	R8	В	Z	物理恒数 [] 融点℃ n _n 屈折率
7-97	H	H	CH ₃	CH ₂	h1	23) 724 27 7
7-98	H H	H H	CH ₃	CH ₂	h2	
7-99	Н	H l	CH ₃	CH,	h3	
7-100	H	Н	CH ₃	CH ₂	h4	
7-101	H H H	H H	CH ₃	CH ₂	h5	
7-102	Н	H	CH ₃	CH ₂ -	h6	
7-103	H H H	H	CH ₃ CH ₃	CH ₂	h7	
7-104		H	CH ₃	CH ₂	h8	
7-105	H H H H H	Н	Cl	CH ₂	h1	•
7-106	H	H	Cl	CH ₂	h2	
7-107	H	H	Cl	CH ₂	h3	
7-108	H	H	C1	CH ₂	h4	
7-109	H	H	C1	CH ₂	h5	i
7-110	H	H	Cl	CH ₂	h6	
7-111	H	H	Cl	CH ₂	h7	
7-112	Н	H	C1	CH ₂	h8	
7-113	H	<u>H</u>	F	CH ₂	h1	
7-114	H H	H	F	CH ₂ '	h2	
7-115	<u> </u>	H	<u>F</u>	CH ₂	h3	
7-116	H H H H H	H H H H H H H H H H H H H H H H H H H	C1	CH ₂	h4	
7-117	l H	<u>H</u>	F	CH ₂	h5	
7-118	l H	ł H	Į <u>F</u>	CH ₂	h6	
7-119	l H	#	Į Ę	CH ₂	h7	
7-120	<u>Н</u>	<u>H</u>	F	CH ₂	<u>h8</u>	1

[0153]

【表29】

第8表

			R4		R1		
化合物番号	R1	R4	R7	R8	В	Z	物理恒数
		1					3点点[]
							n。屈折率
8-1	H	H	Н	Н	CH ₂	hl	amorphous&NMR
8-2	H	H	H H H	H H H	CH ₂	h2	
8-3	H	H	H	H	CH ₂	h3	
8-4	H	H	H	H	CH ₂	h4	
8-5	H	H	H	H	CH ₂	h5	
8-6	H	Н	H	H	CH ₂	h6	
8-7	H H	H H	H	H	CH ₂	h7	
8-8	H	H H	H	H	CH₂ CH₂	h8	
8-9	H	H	H	Ĥ	CH ₂ CH ₂	hl	•
8-10	H	H	H	H	CH ₂ CH ₂	h2	
8-11	H	#	H	H	CH ₂ CH ₂	h3	1
8-12	H	H H	H	H	CH ₂ CH ₂	h4	
8-13	H	H H H H H H H H	H H	H	CH ₂ CH ₂	h5 h6	
8-14	H	#	H H	H H	CH ₂ CH ₂ CH ₂ CH ₂	h7	
8-15	H H	# 1	H	H	CH ₂ CH ₂ CH ₂ CH ₂	h8	
8-16	h H	n n	H H	u u	CH ₂ CH ₂ CH ₂	h1	
8-17	l n	n u	H	H H H	CH ₂ CH ₂ CH ₂	h2	
8-18 8-19	H H	#	H	ü	CH ₂ CH ₂ CH ₂	h3	
8-19	H	1 #	H	H	CH ₂ CH ₂ CH ₂	h4	
8-21	H	l ii	Η̈́	Н̈́	CH ₂ CH ₂ CH ₂	h5	
8-22	H	l #	НĤ	Н̈́	CH ₂ CH ₂ CH ₂	h6	
8-23	H	Ĥ	Η̈́	Н̈́	CH ₂ CH ₂ CH ₂	h7	
8-24	Н	Η̈́	Н	H	CH ₂ CH ₂ CH ₂	h8	
8-25	H	НÜ	Н	Н	CH-CH-CH-CH-CH-CH-	h1	
8-26	Η̈́	НÄ	Η̈́	Ĥ	CH, CH, CH, CH, CH, CH,	h2	
8-27	H	H H H H H	Н	H	CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2	h3	Ì
8-28	l H	l H	H	H	CH2CH2CH2CH2CH2CH2CH2	h4	
8-29	H	H	H	H	CH2CH2CH2CH2CH2CH2CH2	h5	1
8-30	H	H	H	H		1 110	
8-31	H	H H H	l H	H	CH ₂	h7	
8-32	H	H	H	Н	CH2CH2CH2CH2CH2CH2	<u>h8</u>	

[0154]

【表30】

第8表(つづき)

			H4		n i		
化合物番号	R1	R4	R7	R8	В	Z	物理恒数 []融点℃
		Ì				1 1	np屈折率
8-33	CH ₃	Н	Н	Н	CH ₂	h1	
8-34	CH ₃	H H		H	CH ₂	h2	
8-35	CH ₃	H	H H H H	H H H H H H H H H H H H H H H H H H H	CH ₂	h3	
8-36	CH₃ ·	H	H	H	CH ₂	h4	
8-37	CH ₃	H	H	H	CH ₂	h5	
8-38	CH ₃	H	H	H H	CH ₂	h6	
8-39	CH ₃	H H	H H	п	CH ₂	h7	
8-40 8-41	CH ₃ CH ₂ CH ₃	H H	H	I II	CH₂ CH₂ -	h8 h1	amorphous&NMR
8-41	CH ₂ CH ₃	H	H	n u	CH ₂	h2	amor briogs grank
8-43	CH ₂ CH ₃	H	H	H	CH ₂	h3	
8-44	CH ₂ CH ₃	Ĥ	H,	ਸਿੰ	CH ₂	h4	
8-45	CH ₂ CH ₃	H	l H	H	CH ₂	h5	
8-46	CH ₂ CH ₃	H	l H	H H H	CH ₂	h6	
8-47	CH ₂ CH ₃	H	H H	H	CH ₂	h7	
8-48	CH ₂ CH ₃	Н	H	H	CH ₂	h8	
8-49	CH ₂ CH ₂ CH ₃	H	H	H	CH ₂	h1	
8-50	CH ₂ CH ₂ CH ₃	Н	H	H	CH ₂	h2	
8-51	CH ₂ CH ₂ CH ₃	H	H H H	H	CH ₂	h3	
8-52	CH2CH2CH3	H	H	H	CH ₂	h4	
8-53	CH2CH2CH3	H	l H	H	CH ₂ CH ₂	h5 h6	
8-54 8-55	CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃	п	l n	H H H H	CH ₂	h7	
8-56	CH ₂ CH ₂ CH ₃	H H H	H	H H	CH ₂	h8	
8-57	CH (CH ₃) 2	l й	Н	H	CH ₂	hì	1
8-58	CH (CH ₃) 2	l H	H	Ĥ	CH ₂	h2	
8-59	CH (CH ₃) ₂	H	H	Н	CH,	h3	1
8-60	CH (CH ₃) ₂	H	H H H H H H	H	CH ₂	h4	
8-61	CH (CH ₃) ₂	H	H	H	CH,	h5	
8-62	CH (CH ₃) ₂	H	H	H	CH ₂	h6	
8-63	CH (CH ₃) ₂	H	H	H	CH ₂	h7	
8-64	CH (CH ₃) ₂	H	H	H	CH ₂	h8_	<u> </u>

[0155]

【表31】

第8表(つづき)

			H4		W.I		
化合物番号	R1	R4	R7	R8	В	Z	物理恒数
						1	】 ☆点点[]
							n _D 屈折率
8-65	CH ₂ C ₆ H ₅	Н	H	Н	CH ₂	h1	
8-66	CH ₂ C ₆ H ₅	H	H	H	CH ₂	h2	
8-67	CH ₂ C ₆ H ₅	H	Н Н	Н	CH ₂	h3	
8-68	CH ₂ C ₆ H ₅	H	H H H	Н	CH ₂	h4	
8-69	CH ₂ C ₆ H ₅	H	H	H H H H	CH ₂	h5	
8-70	CH ₂ C ₆ H ₅	H	H H	H	CH ₂	h6	
8-71	CH ₂ C ₆ H ₅	H	Ĥ	й	CH ₂	h7	
8-72	CH ₂ C ₆ H ₅	H	Ĥ	ü	CH ₂	h8	
8-73	H	CH,	H	H I	CH-	h1	[157-159]
8-74	Ĥ	CH ₃	H	#	CH ₂ CH ₂ CH ₂	h2	[[[0.0109]
8-75	H	CH ₃	H	#	CH CH	h3	
8-76	H	CH ₃	1 14	п	CII		
8-77	H	CH ₃	<u>n</u>	п	CH ₂	h4	
8-78	H	CH ₃	17	n m	CH ₂	h5	
8-79	H	CH ₃	H H H	n H	CH ₂	h6	
8-80	П U	CH ₃	H	H	CH ₂	h7	
0-00	H	CH ₃	H H	H	CH ₂	h8	
8-81	H	H	CH ₃	H	CH ₂	hl	
8-82	H H H H H	H	CH ₃	H	CH ₂	h2	
8-83	#	H	CH ₃	H	CH ₂	h3	
8-84	H	H	CH ₃	H	CH ₂	h4	
8-85	<u>H</u>	H	CH ₃	<u>H</u>	CH ₂	h5	
8-86	l H	H	CH ₃	H H	CH ₂	h6	
8-87	H H H	H	CH ₃	Н	CH ₂	h7	ļ i
8-88	l H	H	CH ₃	Н	CH ₂	h8	
8-89	H	H	Cl	H	CH ₂	h1	
8-90	H	H	CI		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h2	
8-91	H	H	Cl	H	CH ₂	h3	
8-92	Н	Н	Cl	H	CH ₂	h4	
8-93	Н	H	Cl	H	CH ₂	h5	
8-94	Н	H	Cl	H	CH ₂	h6	
8-95	Н	H	CI	H	CH ₂	h7	
8-96	H	Н	Cl	H H	CH ₂	h8	

[0156]

【表32】

第8表(つづき)

化合物番号	R1	R4	R7	R8	В .	Z	物理恒数
				1			3 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
							np屈折率
8-97	Н	Н	F	H	CH ₂	h1	
8-98	l ii l	H l	F I	H I	CH.	h2	•
8-99	ннннннн	H H H	Î Î	H H H H H	CH ₂ CH ₂ CH ₂ CH ₂	h3	
8-100	ü	#	r l	ü	CH.	h4	
8-101	ü	ü	<u> </u>	ü	្ត ការ	h5	
8-102	<u>'</u>	H H H	r l	111 U	CH ₂ -	h6	
	11	11	r P	n 1	CH -		
8-103	<u>n</u>	п	r	n l	CH ₂	h7	
8-104	H H	H H	r	H	CH ₂ _	h8	
8-105	H H	H H	H H	CH ₃	CH ₂	h1	•
8-106	H	H	Щ	CH ₃	CH ₂	h2	
8-107	H	H	н	CH ₃	CH ₂	h3	
8-108	H H H	H H	H	CH ₃	CH ₂	h4	1
8-109	i H	H	H	CH ₃	CH ₂	h5	
8-110	H	H	H	CH ₃	CH ₂	h6	
8-111	H	H	H	CH ₃	CH ₂	h7	
8-112	H	H	H	CH ₃	CH.	h8	
8-113	H	H	H	Cl	CH ₂	h1	
8-114	l H	H	H	CI	CH ² ,	h2	
8-115	l H	H	H	Ci	CH ₂	h3	
8-116	H	l ii	Й	ci	CH.	h4	
8-117	l ii	Ä	н	či	CH.	h5	
8-118	l ü	Н	l ii	Či	CH.	h6	
8-119	H H H H H H H	H H H H H H H H H	Ìй	Či .	CH ₂	h7	
8-120	l ii	l й	#		CH.	h8	
8-121	l ti	#	ii	F .	CH CH	h1	
8-122	H	H	l "	T T	U CII2	h2	
8-123	H	H	l n	T P	Cu Cu	h3	
0-140	ן ח	, n	[]	T T	Un ₂		
8-124	H	H	l n	r	LH ₂	h4	
8-125	l H	H H	H	CI F F F F	CH ₂	h5	
8-126	H] H	l H	F	CH ₂	h6	
8-127	H	H		F	CH ₂	h7	
8-128	Н	H	I H	F	CH ₂	h8	

[0157]

【表33】

第9表

化合物番号	В	Z	物理恒数
			2点蛹[]
1			n,屈折率
9-1	CH ₂	h1	[190 191]
9-2	Un ₂		[129-131]
9-2	CH ₂	h2	
9-3	CH ₂	h3	
9-4	CH ₂	h4	
9-5	CH ₂	h5	:
9-6	CH ₂	h6	
9-7	CH ₂	h7	
9-8	CH ₂	h8	~
9-9	CA CA	llo Li	
9-10	CH ₂ CH ₂	h1	
	CH ₂ CH ₂	h2	
9-11	CH ₂ CH ₂	h3	
9-12	CH ₂ CH ₂	h4	
9-13	CH ₂ CH ₂	h5	
9-14	CH ₂ CH ₂	h6	
9-15	CH ₂ CH ₂	h7	
9-16	CH ₂ CH ₂	h8	
9-17	CH ₂ CH ₂ CH ₂	h1	
9-18		h2	
9-19	CH ₂ CH ₂ CH ₂	112	
9-13	CH ₂ CH ₂ CH ₂	h3	•
9-20	CH ₂ CH ₂ CH ₂	h4	
9-21	CH ₂ CH ₂ CH ₂	h5	
9-22	CH ₂ CH ₂ CH ₂	h6	
9-23	CH ₂ CH ₂ CH ₂	h7	
9-24	CH ₂ CH ₂ CH ₂	h8	
9-25	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h1	
9-26	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h2	
9-27	CH ₂	h3	
9-28	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h4	i
9-29	CH ₂	h5	
9-30	CH ₂	h6	
9-31		110 h7	
	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
9-32	CH ₂	h8	L

[0158]

【表34】

第10表

(
化合物番号	В	Z	物理恒数
			3 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
		Į	n _o 屈折率
10-1	CH ₂	h1	
10-2	CH ₂	h2	
10-3	CII		
	CH ₂	h3	
10-4	CH₂	h4	
10-5	CH ₂	h5	•
10-6	CH ₂	h6	
10-7	CH ₂	h7	-
10-8	CH ₂	h8	-
10-9	CH ₂ CH ₂	h1	
10-10	CH ₂ CH ₂	h2	
10-11	CH ₂ CH ₂	h3	
10-12	CH ₂ CH ₂	h4	
10-13	CH CH	h5	
10-13	CH ₂ CH ₂	110	
	CH ₂ CH ₂	h6	·
10-15	CH ₂ CH ₂	h7	
10-16	CH ₂ CH ₂	h8	l .
10-17	CH ₂ CH ₂ CH ₂	h1	
10-18	CH ₂ CH ₂ CH ₂	h2	
10-19	CH ₂ CH ₂ CH ₂	h3	
10-20	CH ₂ CH ₂ CH ₂	h4	
10-21	CH ₂ CH ₂ CH ₂	h5	
10-22	CH ₂ CH ₂ CH ₂	h6	
10-23	CH ₂ CH ₂ CH ₂	h7	
10-24	CH ₂ CH ₂ CH ₂	h8	
10-25	CH ₂	h1	
10-25		1 111	
	CH ₂	h2	
10-27	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h3	
10-28	CH2CH2CH2CH2CH2CH2	h4	
10-29	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h5	
10-30	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h6	1
10-31		h7	
10-32	CH ₂	h8	1

[0159]

【表35】

第11表

11. A 44. 47 FT	200					
化合物番号	R3	R4a	R4b	В	Z	物理恒数
						3 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
						n。屈折率
11-1	H	H	_	CH ₂	h1	[180-184]
11-2	Н	H	_	CH ₂	h2	
11-3	H	H	-	CH ₂	h3	
11-4	H	H	_	CH ₂	h4	
11-5	H	H H H H H H H	_	CH ₂	h5	
11-6	H	H	_	CH ₂ -	h6	
11-7	H	Ĥ	_	CH ₂	h7	
11-8	H	H	_	CH ₂ -	h8	
11-9	Ĥ	Ĥ	_	CH ₂ CH ₂	h1	٠.
11-10	Ĥ	Ĥ	_	CH ₂ CH ₂	h2	
11-11	Ĥ	Ĥ	_	CH ₂ CH ₂	h3	
11-12	H	H	_	CH ₂ CH ₂	h4	
11-13	H	H	_	CH ₂ CH ₂ CH ₂ CH ₂	h5	
11-14	Ĥ	II II			h6	
11-15	H	#	_	CH ₂ CH ₂	h7	
11-16	H	H H H	_	CH ₂ CH ₂		
11-17	H	H		CH ₂ CH ₂	h8	
11-18	H	H	_	CH ₂ CH ₂ CH ₂ ,	hl	
11-19	n H	1 11	_	CH ₂ CH ₂ CH ₂	h2	
11-19	H	H H	_	CH ₂ CH ₂ CH ₂	h3	
11-20	n H	H	_	CH ₂ CH ₂ CH ₂	h4	
11-21	H	H	-	CH ₂ CH ₂ CH ₂	h5	
11-22	H	H	-	CH ₂ CH ₂ CH ₂	h6	
11-23	H	H	-	CH ₂ CH ₂ CH ₂	h7	
11-24	H	H	-	CH ₂ CH ₂ CH ₂	h8	
11-25	H	H H H	-	CH2CH2CH2CH2CH2CH2CH2	h1	
11-26	H H	H	-	CH2CH2CH2CH2CH2CH2	h2	
11-27	H	H	-	CH2CH2CH2CH2CH2CH2	h3	
11-28	Н	H H	-	CH,CH,CH,CH,CH,CH,	h4	
11-29	H	H	_	CH,CH,CH,CH,CH,CH,	h5	
11-30	H	l H	-	CH2CH2CH2CH2CH2CH2	h6	
11-31	Н	H	_	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
11-32	H	H	-	CH2CH2CH2CH2CH2CH2	h8	

[0160]

【表36】

第11表(つづき)

化合物番号	R3	R4a	R4b	В	Z	物理恒数 [] 融点℃ n _p 屈折率
11-33	CH ₃	H	_	CH ₂	hl	
11-34	CH ₃	<u>H</u>	-	CH ₂	h2	
11-35	CH ₃ CH ₃	<u> </u>	-	CH ₂	h3	
11-36	CH ₃	H H H	-	CH ₂ CH ₂ CH ₂	h4	
11-37	CH ₃	H	-	CH ₂	h5	
11-38	CH ₃ CH ₃	H H H	-	CH ₂	h6	
11-39	CH ₃	H	_	CH ₂	h7	
11-40	CH ₃	H	-	CH ₂ -	h8	_
11-41	H H H	CH ₃	-	CH ₂	h1	
11-42	H	CH ₃	- 1	CH ₂	h2	
11-43	H	CH ₃	-	CH ₂	h3	
11-44	H	CH ₃	_	CH ₂	h4	
11-45	H H H	CH ₃ CH ₃	_	CH ₂	h5	
11-46	H	CH ₃	-	CH ₂	h6	
11-47	H	CH ₃	-	CH ₂	h7	
11-48	H	CH ₃	-	CH ₂	h8	
11-49	H	-	CH ₃	CH ₂ CH ₂	h1	
11-50	H	_	CH ₃	CH ₂	h2	
11-51	H	_	CH ₃	CH ₂	h3	ļ
11-52	H	-	CH ₃	CH ₂	h4	!
11-53	H H H H H H	_	CH ₃	CH ₂	h5	
11-54	H	-	CH ₃	CH ₂	h6	
11-55	H	-	CH ₃	CH ₂	h7	
11-56	H	<u> </u>	CH ₃	CH ₂	h8_	

[0161]

【表37】

第12表

Be A HL ST. E	T 50					·
化合物番号	R3	R4a	R4b	В	Z	物理恒数
						3点点 □
	<u> </u>					n ₀ 屈折率
12-1	H	H H H H H H	-	CH ₂	h1	
12-2	H ·	H	-	CH ₂	h2	
12-3	Н	H	_	CH,	h3	
12-4	Ĥ	j H	-	CH ₂	h4	
12-5	Н	H	-	CH ₂ CH ₂	h5	
12-6	Н	H	-	CH,	h6	•
12-7	H	H	_	CH ₂	h7	
12-8	H	H H	_	CH ₂	h8	
12-9	H H H H	H	-	CH ₂ CH ₂	h1	
12-10	H		_	CH ₂ CH ₂	h2	
12-11	Н	H	_	CH ₂ CH ₂	h3	
12-12	H H	l H	-	CH ₂ CH ₂	h4	
12-13	Н	H H H H H	_	CH ₂ CH ₂	h5	
12-14	H H	H		CH ₂ CH ₂	h6	
12-15	H	Н		CH ₂ CH ₂	h7	
12-16	Н	H H H	_	CH ₂ CH ₂	h8	
12-17	Н	Н	-	CH ₂ CH ₂ CH ₂	hI	
12-18	Н	Н	-	CH ₂ CH ₂ CH ₂	h2	
12-19	H	H		CH ₂ CH ₂ CH ₂	h3	
12-20	H	Н	i –	CH ₂ CH ₂ CH ₂	h4	
12-21	Н	H	_	CH ₂ CH ₂ CH ₂	ĥ5	
12-22	H	H	_	CH ₂ CH ₂ CH ₂	h6	
12-23	H	H	_	CH ₂ CH ₂ CH ₂	h7	
12-24	H	H	_	CH ₂ CH ₂ CH ₂	h8	
12-25	Н	H	_	CH2CH2CH2CH2CH2CH2	hi	
12-26	H	Н	_	CH ₂	h2	
12-27	H	H	_	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h3	
12-28	H	H H H H H	_	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h4	
12-29	H	H	_	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h5	
12-30	H	l Ĥ	_	CH.CH.CH.CH.CH.CH.	h6	
12-31	H	Ħ	_	CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2	h7	
12-32	Η̈́	H H	_	CH ₂	h8	
	L*^_			OHIZOHIZOHIZOHIZOHIZOHIZ	110	

[0162]

【表38】

第12表 (つづき)

化合物番号	R3	R4a	R4b	В	Z	物理恒数 []融点℃
						n, 屈折率
12-33	CH ₃	H	-	CH ₂	h1	
12-34	CH ₃	Н	-	CH ₂ CH ₂	h2	
12-35	CH ₃	Н	-	CH ₂ -	h3	
12-36	CH ₃	H	-	CH ₂	h4	
12-37	CH ₃	H	-	CH ₂	h5	
12-38	CH ₃	H	~	CH ₂	h6	•
12-39	CH ₃	H H H H	-	CH ₂	h7	
12-40	CH ₃ H H H H H H H	H	-	CH ₂	h8	
12-41	H	CH ₃	-	CH ₂	h1	
12-42	H	CH ₃	-	CH ₂	h2	
12-43	H	CH ₃	-	CH ₂	h3	
12-44	H	CH ₃	-	CH ₂ CH ₂	h4	
12-45	H	CH ₃	- 1	CH ₂	h5	
12-46	H	CH ₃ CH ₃	-	CH,	h6	
12-47	H	CH ₃	-	CH ² ,	h7	
12-48	H	CH ₃	_	CH ₂	h8	
12-49	H	-	CH ₃	CH ₂	h1	
12-50	H	-	CH ₃	CH ₂	h2	
12-51	H	_	CH ₃	CH ₂ CH ₂	h3	;
12-52	H	- :	CH ₃	CH ₂	h4	
12-53	H H H H	-	CH ₃	CH ₂ CH ₂	h5	
12-54	H	-	CH ₃	CH ₂	h6	
12-55	ļ H	-	CH ₃	CH ₂	h7	
12-56	Н		CH ₃	CH ₂	h8	

[0163]

【表39】

第13表

- 1			
化合物番号	В	Z	物理恒数
			[]融点℃
			n, 屈折率
13-1	CH ₂	h1	amorphou&NMR
13-2	CH ₂	h2	
13-3	CH ₂	h3	
13-4		110	
13-4	CH ₂	h4	
	CH ₂	h5	
13-6	CH ₂ .	h6	
13-7	CH ₂	h7	
13-8	CH ₂	h8	-
13-9	CH ₂ CH ₂	h1	
13-10	CH ₂ CH ₂	h2	-
13-11	CH ₂ CH ₂	h3	· ·
13-12	CH ₂ CH ₂	h4	
13-13	CH ₂ CH ₂	h5	
13-14	CH ₂ CH ₂	h6	
13-15	CH ₂ CH ₂	h7	
13-16	CH ₂ CH ₂	h8	
13-17	CH ₂ CH ₂ CH ₂	h1	
13-18		h2	
13-19	CH ₂ CH ₂ CH ₂	IIZ	
13-19	CH ₂ CH ₂ CH ₂	h3	1
10-20	CH ₂ CH ₂ CH ₂	h4	
13-21	CH ₂ CH ₂ CH ₂	h5	
13-22	CH ₂ CH ₂ CH ₂	h6	
13-23	CH ₂ CH ₂ CH ₂	h7	
13-24	CH ₂ CH ₂ CH ₂	h8	
13-25	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h i	
13-26	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h2	
13-27	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h3	
13-28	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h4	
13-29	CH ₂	h5	
13-30	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h6	
13-31	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h7	
13-32	CH ₂	h8	
10 04		110	

[0164]

【表40】

第14表

(1. A N. of D		 	AL TO I WIL
化合物番号	В	Z	物理恒数
	İ		7点点[]
			n,屈折率
14-1	CH ₂	h1	
14-2	CH ₂	h2	
14-3	CH ₂	h3	
14-4	CH ₂	h4	
14-5	CH ₂	h5	•
14-6	CH ₂	h6	
14-7	CH ₂	h7	_
14-8	. CH ₂	h8	•
14-9	CH ₂ CH ₂	h1	
14-10		h2	
	CH ₂ CH ₂	h3	
14-11	CH ₂ CH ₂		
14-12	CH ₂ CH ₂	h4	
14-13	CH ₂ CH ₂	h5	
14-14	CH ₂ CH ₂	h6	
14-15	CH ₂ CH ₂	h7	
14-16	CH ₂ CH ₂	h8	•
14-17	CH ₂ CH ₂ CH ₂	h1	
14-18	CH ₂ CH ₂ CH ₂	h2	•
14-19	CH ₂ CH ₂ CH ₂	h3	
14-20	CH ₂ CH ₂ CH ₂	h4	
14-21	CH ₂ CH ₂ CH ₂	h5	
14-22	CH ₂ CH ₂ CH ₂	h6	
14-23	CH ₂ CH ₂ CH ₂	h7	
14-24	CH ₂ CH ₂ CH ₂	h8	
14-25	CH2CH2CH2CH2CH2CH2	h1	
14-26	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h2	
14-27	CH ₂	h3	1
14-28	CH ₂	h4	
14-29	CH ₂	h5	
14-29		h6	l
14-30	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂		
		h?	
14-32	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h8	L

[0165]

【表41】

第15表

化合物番号	R3	R4a	R4b	В	Z	物理恒数 [] 融点℃ n。屈折率
15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 15-12 15-13 15-14 15-15 15-16 15-17 15-18 15-19 15-20 15-21 15-22 15-23 15-24 15-25 15-24 15-25 15-27 15-28 15-29 15-30 15-31 15-32				CH ₂	h1 h2 h3 h4 h5 h6 h7 h8	L Mi

[0166]

【表42】

第15表(つづき)

11. A H-50. 17	70	· · · · ·		· · · · · · · · · · · · · · · · · · ·		
化合物番号	R3	R4a	R4b	В	Z	物理恒数
			i			3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 →
						np屈折率
15-33	CH ₃	Н	_	CH ₂	hl	
15-34	CH ₃	H	i –	CH ₂	h2	
15-35	CH ₃	H	_	CH ₂ CH ₂	h3	
15-36	CH ₃	H H H H H H	_	CH ₂	h4	×
15-37	CH ₃	Н	_	ČH ₂	h5	
15-38	CH ₃	ļ ü	_	CH ₂		
15-39	ČH ₃	l ü	_	CII2	h6	
15-40	CH ₃	<u>"</u>	_	CH ₂	h7	
15-41	LII3	CH ₃	_	CH ₂ -	h8	
15-42	11	CII	_	CH ₂	hl	
15-43	n tr	CH ₃	_	CH ₂	h2	
	l ü	CH ₃	_	CH ₂	h3	
15-44	H .	CH ₃	-	CH ₂	h4	
15-45	H	CH ₃	-	CH ₂	h5	
15-46	H	CH ₃	_	CH ₂	h6	
15-47	Н	CH ₃	-	CH ₂	h7	
15-48	H	CH ₃	_	CH ₂	h8	
15-49	H H H H H H H H H H H H H H H H H H H		CH ₃	CH ₂	hì	•
15-50	H		CH ₂	CH ₂ '	h2	
15-51	H	_	CH ₃ CH ₃	CH ₂	h3	
15-52	H	_	CH ₃	CH ₂	h4	
15-53	H	_	ČH ₃	CH ₂	h5	
15-54	H H H	_	CH ₃	CH ₂		
15-55	ii i		CH ₃	CU	h6	
15-56	H H	_	CH CH3	CH ₂	h7	
10 00	14		CH ₃	CH ₂	_h8_	

[0167]

【表43】

第16表

				_		
化合物番号	R3	R4a	R4b	В	Z	物理恒数
						[]融点℃
10.1	- 11			O.V.		n _b 屈折率
16-1	H	H	-	CH ₂	hl	
16-2	H	H	_	CH ₂	h2	
16-3	H	H	-	CH ₂	h3	
16-4	Н	H	_	CH ₂	h4	
16-5	H	Н		CH,	h5	
16-6	H	Н	-	CH ₂	h6	
16-7	Н	H	_	CH ₂ -	h7	
16-8	H	H	_	CH ₂	h8	
16-9	H H H	H	_	CH₂CH₂	h1	
16-10	H	Н	_	CH ₂ CH ₂	h2	
16-11	H	l H	_	CH ₂ CH ₂	h3	
16-12	Н	H	_	CH ₂ CH ₂	h4	
16-13	H	l Ĥ	_	CH ₂ CH ₂	h5	
16-14	Ĥ	нннннн	_	CH ₂ CH ₂	h6	
16-15	Ĥ	l ä	_	CH ₂ CH ₂	h7	
16-16	Ĥ	Ĥ	_	CH ₂ CH ₂	h8	
16-17	H H H H	Ĥ	_	CH ₂ CH ₂ CH ₂	hì	
16-18	l ii	l H	_	CH ₂ CH ₂ CH ₂	h2	
16-19	l ii	H	_	CH ₂ CH ₂ CH ₂	h3	
16-20	H	ü	_	CH ₂ CH ₂ CH ₂	h4	
16-21	Н	ü	_	CH ₂ CH ₂ CH ₂	h5	
16-22	#	#				
16-23	l n	l II	_	CH ₂ CH ₂ CH ₂	h6	
16-24	H H H H H	H H H H H H	-	CH ₂ CH ₂ CH ₂	h7	
16-25	<u>п</u>	l n	_	CH ₂ CH ₂ CH ₂	h8	
10-25	П П	П П	_	CH ₂	h1	
16-26	i ii	n n	-	CH2CH2CH2CH2CH2CH2	h2	
16-27	i ii	l H	-	CH2CH2CH2CH2CH2CH2	h3	
16-28	H	#	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h4	
16-29	H H	H	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h5	
16-30	<u>H</u>	H	-	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	h6	
16-31	H	H	-	CH2CH2CH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2	h7	
16-32	H	H		CH2CH2CH2CH2CH2CH2	h8	

[0168]

【表44】

第16表(つづき)

化合物番号	R3	R4a	R4b	В	Z	物理恒数 []融点℃
	•					n _n 屈折率
16-33	CH ₃	H	-	CH ₂	hl	
16-34	CH ₃	H H H	-	CH ₂	h2	
16-35	CH ₃	H	-	CH ₂	h3	
16-36	CH ₃	H	- 1	CH ₂	h4	
16-37	CH ₃	H	-	CH ₂	h5	
16-38	CH ₃	H		CH ₂ -	h6	
16-39	CH ₃	H H H	-	CH ₂	h7	
16-40	CH ₃		-	CH,	h8	
16-41	H H	CH ₃	-	CH ₂ CH ₂	h1	
16-42	H	CH ₃	-	CH ₂	h2	
16-43	H H H	CH ₃	- 1	CH ₂	h3	
16-44	H	CH ₃	-	CH ₂	h4	
16-45	H	CH ₃	- 1	CH ₂	h5	
16-46	H	CH ₃	-	CH ₂	h6	
16-47	H	CH ₃	_	CH ₂ ·	h7	
16-48	H	CH ₃	-	CH ₂ · CH ₂	h8	
16-49	H	-	CH₃	CH,	h1	
16-50	H	-	CH ₃	CH ₂ CH ₂	h2	
16-51	H	-	CH ₃	CH ₂	h3	
16-52	H H H H H H	-	CH ₃	CH ₂	h4	
16-53	H	-	CH,	CH,	h5	
16-54	H	-	CH ₃	CH ₂	h6	
16-55	H	_	CH ₃	CH ₂	h7	
16-56	H		CH ₃	CH,	h8	

フェニル基への置換位置を合わせて示した。

1 H-NMRデータ (重クロロ溶媒、内部標準TMS)

単位は δ 、なお括弧内の数値はプロトン比を表し、記号はs:シングレット、d:ダブレット、t:トリプレット、q:カルテット、m:マルチプレット、b r:ブロード、b r s:プロードシングレットを表す。

[0169]

【表45】

第17表

NMRデータ

化合物番号	¹ H-NMR (CDCl ₃ , δppm)
	1. 3 (s, 3H), 1. 8 (m, 1H), 2. 0 (m, 1H), 2. 1 (s, 6H), 2. 15 (s, 3H), 2. 7 (t, 2H),
1 - 4	
	3. 3 (d, 2H), 4. 2 (t, 1H), 4. 7 (br, 1H), 6. 7 (d, 2H), 7. 2 (m, 4H), 7. 7 (s, 1H)
$1 - 2 \ 2$	1. 4 (s, 3H), 1. 4-1. 8 (m, 10H), 2. 0 (s, 3H), 2. 05 (s, 3H), 2. 1 (s, 3H),
	2. 3 (s, 3H), 2. 8 (d, 1H), 3. 0 (d, 1H), 3. 1 (t, 2H), 3. 8 (br, 1H), 6. 6 (d, 2H),
	7. 2 (m, 4H), 7. 7 (s, 1H)
2-2	1. 3 (s, 3H), 1. 8 (m, 1H), 1. 9 (m, 1H), 2. 0 (s, 3H), 2. 1 (s, 3H), 2. 2 (s, 3H),
	2. 7 (m, 2H), 3. 3 (m, 2H), 4. 3 (m, 1H), 6. 5—
	6. 7 (m, 3H), 7. 1 (s, 1H), 7. 2 (s, 1H),
	7. 2 (m, 1H), 7. 8 (s, 1H)
5 – 7	1. 5 (s, 3H), 1. 9 (s, 3H), 2. 0 (s, 3H), 2. 1 (s, 3H), 2. 3 (s, 3H), 3. 3 (s, 2H),
	4. 0 (br, 1H), 6. 4 (d, 1H), 6. 7 (d, 2H), 7. 5 (d, 2H), 7. 55 (d, 1H)
8-1	1. 5 (s, 3H), 2. 0 (s, 3H), 2. 05 (s, 3H), 2. 1 (s, 3H), 2. 8 (d, 1H), 3. 2 (d, 1H),
	3. 3 (s, 2H), 4. 3 (br, 2H), 6. 6 (d, 2H), 7. 3 (d, 2H), 7. 7 (s, 2H)
8-41	1. 0 (t, 3h), 1. 4 (s, 3H), 2. 0 (s, 3H), 2. 05 (s, 3H), 2. 1 (s, 3H), 2. 8 (d, 1H),
	3. 0 (d, 1H), 3. 5 (m, 4H), 6. 7 (d, 2H), 7. 3 (d, 2H), 7. 7 (s, 2H)
13-1	1. 6 (s, 3H), 2. 0 (s, 3H), 2. 0 (s, 3H), 2. 1 (s, 3H), 2. 5 (br, 2H), 3. 0 (d, 1H).
	3. 2 (d, 1H), 3. 3 (s, 2H), 7. 2 (s, 1H), 7. 3 (d, 2H), 7. 3 (s, 1H), 7. 4 (d, 2H).
	7. 8 (s, 1H)

【実施例5】

[0170]

[製剤の調製]

本発明化合物を含有する製剤を以下の方法により調製した。

[0171]

経口剤(有効成分10mg錠)

乳糖81.4mgコーンスターチ20mgヒドロキシプロピルセルロース4mg	
ヒドロキシプロピルセルロース 4 m g	
カルボキシメチルセルロースカルシウム 4mg	
ステアリン酸マグネシウム 0.6 mg	

合計

1 2 0 m g

上記のような組成となるように、本発明化合物 5 0 g、乳糖 4 0 7 g及びコーンスターチ 1 0 0 gを、流動造粒コーティング装置(大川原製作所(株)製)を使用して、均一に混合した。これに、1 0 %ヒドロキシプロピルセルロース水溶液 2 0 0 gを噴霧して造粒した。乾燥後、2 0 メッシュの篩を通し、これに、カルボキシメチルセルロースカルシウム 2 0 g、ステアリン酸マグネシウム 3 gを加え、ロータリー打錠機(畑鉄工所(株)製)で 7 mm×8. 4 Rの臼杵を使用して、一錠当たり 1 2 0 m gの錠剤を得た。

【実施例6】

[0172]

[in vitro抗酸化脂質作用]

本発明化合物のin vitro抗酸化脂質作用を、Malvyらの方法(Malvy, c., et al.,) バイオケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーションズ (Biochemical and Biophysical Research Communications、1980年、第95巻、p. 734-737

出証特2004-3079233

)に準じて、ラット脳ホモジネートでの過酸化脂質活性の測定により評価した。即ち、ラット脳を摘出し、水冷下、脳に5倍量のリン酸緩衝一生理食塩水溶液(p H 7. 4)(以下PBSと略記する。)を加え、テフロンホモジナイザーでホモジナイズし、10,000gで20分間遠心分離し、上清の脳ホモジネートを調製した。調製した脳ホモジネートに500μMシステイン及び5μM硫酸第一鉄及び100mM KCIを加え、37℃で30分間インキュベートし、過酸化脂質の分解で生じたマロンジアルデヒドをチオバルビツール酸法で測定した。測定値から本発明化合物の50%阻害濃度(以下IC50と略記する。)を求めた。結果を第18表に示す。本発明化合物はin vitro抗酸化脂質作用を有していることが分かった。

【0173】 【表46】

第18表

化合物番号	in vitro 抗過酸化脂質作用
	50%阻害濃度 (IC ₅₀ μM)
1 - 1	0. 35
2 - 1	0. 47
5 - 1	0. 42
5 - 3	0. 21
5 - 8 2	0. 40
9 - 1	0. 43
対照-1	0. 23
対照-2	0. 23

【実施例7】

[0174]

[組織移行性]

本発明化合物の組織移行性は、ex vivo抗過酸化脂質作用を測定することにより評価した。生理食塩水溶液或いは1%ポリエチレン硬化ヒマシ油(日光ケミカルズ社製:NIK KOL HCO-60)生理食塩水溶液に溶解又は懸濁した試験化合物を、一群3匹のSD系雄性ラット(6週齢)(日本SLC株式会社より入手)に100mg/kgの割合で腹腔内投与した。投与30分後に頚動脈を切断して放血死させ、脳、心臓、腎臓を摘出した。実施例6に記載した方法で、各組織ホモジネートの過酸化脂質活性を測定した。本発明化合物の各組織における阻害率は対照群(生理食塩水投与群)と試験化合物投与群の過酸化脂質生成量から求めた。結果を第19表に示す。結果から、本発明化合物は組織移行性が高いことが明かである。

[0175]

【表47】

第19表

化合物番号	ex	vivo 抗過酸化脂質作 阻害率(%)	F 用
	脳	心臓	腎臓
1-1	96	88	91
2 - 1	97	81	86
5 – 1	96	88	88
5 – 3	95	83	91
5-82	99	86	92
9 - 1	95	95	91
対照一1	68	59	75
対照-2	45	57	84

【実施例8】

[0176]

[in vivo抗酸化作用]

本発明化合物のin vivo抗酸化作用をジャーナル・オブ・メディシナル・ケミスリー(J. Med. Chem. 、1997年、第40巻、P. 559-573)記載の方法に準じて、塩化第一鉄のマウス脊髄くも膜下腔内投与による異常行動や死亡率の抑制効果から評価した。S1c:ICR系雄性マウス(5週)(日本SLC株式会社より入手)、一群3~7匹を用い、50mM塩化第一鉄の生理食塩水溶液をマウスの第5一第6腰椎間より脊柱管に5μ1投与した。症状観察は、塩化第一鉄投与20分から60分行い、第20表に示す症状から60分後のスコアを求めた。試験化合物は生理食塩水溶液又は1%ポリエチレン硬化ヒマシ油(日光ケミカルズ社製NIKKOL HCO-60)生理食塩水溶液に溶解又は懸濁し、塩化第一鉄投与30分前に腹腔内或いは経口投与した。本発明化合物の50%阻害用量(以下ID50と略記する)は対照群(生理食塩水投与群)のスコアと試験化合物投与群のスコアから求めた。結果を第21表に示す。結果から、本発明化合物はin vivo抗酸化作用を有することが分かった。

【0177】 【表48】

第20表

スコア	症状
0	正常
_ 1	下腹部または後躯端を頻繁に噛む
2	以下の変化が少なくとも1つ認められる ① 回転しつつ後躯を頻繁に噛む ② 外部刺激に対する過敏反応および攻撃反 応 ③ 振戦
3	間代性痙攣
4	強直性痙攣または後躯麻痺
5	死亡

[0178]

【表49】

第21表

化合物番号	in vivo 抗酸化作用 50%阻害用量(ID ₅₀ mg/kg)	
	腹腔内投与	経口投与
1-1	4. 5	11,
2 - 1	12	13
5 – 1	16	17
5∙3	6. 2	19
5 - 8 2	15	14
9 - 1	4. 1	7. 4
対照一1	>30	>30
対照-2	20	53

対照として国際公開第00/00650号に記載された化合物を用いた。 対照薬-1は下記化合物である。

[0179]

【化45】

対照薬-2は下記化合物である。

【0180】 【化46】

【実施例9】

[0181]

[網膜移行性]

本発明化合物の網膜移行性を評価した。一群 3 匹のSD系雄性ラット(6 適齢)に、0.1 N 塩酸溶液或いは 1%ポリエチレン硬化ヒマシ油(N I K K O L H C O -60)溶液に溶解或いは懸濁した試験化合物を経口投与し、30分後に両眼を摘出し、氷冷下で網膜を分離した。網膜を氷冷下、0.1 M トリス一塩酸緩衝液(p H 7.4)中、ポリトロン微量ホモジナイザー(N S -310 E:日音医理科器機社製)で、5%ホモジネート液を調製し、37%で、1 時間自動酸化させ、生成した過酸化脂質量をチオバルビツール酸法(真杉ら、ビタミン51、21-29、1977)で定量した。各投与量における阻害率から 30%阻害する投与量(I D 30)を求めた。その結果を第 22 表に示す。結果から、本発明化合物はex vivo網膜過酸化脂質生成抑制作用を有し、網膜移行性が高いことが分かった。

[0182]

【表50】

第22表

化合物番号	ex vivo 網膜における抗過酸化脂質作用 30%阻害濃度 (ID ₃₀ mg/kg,経口投 与.)
2 - 1	7. 9

【実施例10】

[0183]

[5-リポキシゲナーゼ(5-LO)及び15-リポキシゲナーゼ(15-LO)阻害作用]

5-L O阻害活性は Carter G. W, et al, J. Pharmacol. Exp. Ther . :256, 929-37、1991)の方法を一部改変して測定した。即ち、ハンクス溶液中でヒト末梢血単核細胞と DMSO(最終濃度は 1%)に溶解した試験化合物をプレインキュベーション(37℃、15分)した後、さらに 30 μ M A 23187 を加えインキュベーション(37 $\mathbb C$ 、30分)した。その結果生成するロイコトリエンB 4 をエンザイムイムノアッセイによって定量し、その値から試験化合物の5-L Oに対する 50 %生成抑制濃度(μ M)を算出した。結果を第 23 表に示す。

[0184]

15-LO阻害活性はAuerbach B. J, et al, Anal. Biochem. : 201, 375-80、1992)の方法を一部改変して測定した。即ち、ウサギ網状赤血球より得た 15-LOとDMSO(最終濃度は 1%)に溶解した試験化合物をリン酸緩衝液(pH7. 4)中でプレインキュベーション(4%、15%)した後、 256μ Mリノレイン酸を加えさらにインキュベーション(4%、10%)した。その結果生成する 15-HETEを分光測光法(OD_{660nm})によって定量し、その値から試験化合物の 15-LOに対する 50%生成抑制濃度(μ M)を算出した。結果を第 23表に示す。結果から、本発明化合物は 5-リポキシゲナーゼ(5-LO)及び 15-リポキシゲナーゼ(15-LO)阻害作用を有することが分かった。対照薬 -3は下記化合物であり、

【0185】 【化47】

対照薬-4は下記化合物 (edaravone) である。

【0186】 【化48】

[0187]

【表51】

第23表

化合物番号	リポキシゲナーゼ阻害作用 50%阻害用量 (IC ₅₀ μM)	
	5-L0	15-L0
5-1	0. 16	1. 40
対照薬-3	>10 (34%)	3. 26
対照薬-4	>10 (32%)	5. 57

【実施例11】

[0188]

[急性経口毒性]

雄性マウスに本発明化合物の一回用量を経口投与した後、7日間観察し死亡率 を求めた。結果を第24表に示す。結果から本発明化合物は急性経口毒性が低いことが分 かった。

[0189]

【表52】

第24表

化合物番号	マウス急性経口毒性 (LD ₅₀ mg/kg)
5 - 1	>2000
対照薬-3	<300

【曹類名】要約曹

【要約】

【課題】 動脈硬化症をはじめ心筋梗塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾患の治療に有効な抗酸化薬を提供することである。

【解決手段】 式(1)

【化1】

$$\begin{array}{c} A \\ X - B - Z \end{array} \tag{1}$$

[式中、Xは酸素原子、式:SOm(式中、mは0、1又は2の整数を表す。)又は式:N-R1(式中、R1は、水素原子、G1で置換されていてもよい C_{1-6} アルキル基又は G1で置換されていてもよいベンジル基を表す。)を表し、Jは水素原子、シアノ基、水酸基、ハロゲン原子、G1で置換されていてもよい C_{1-6} アルキル基、G1で置換されていてもよい C_{1-6} アルコキシ基、ニトロ基又は(1つ又は2つの C_{1-6} アルキル基で置換されていてもよい)アミノ基を表し、Qは0又は $1\sim4$ の整数(Qが2以上のとき、Jにおいて、Jは同一でも相異なっていてもよい)を表し、Aは、特定の置換基を有していてもよいイミダゾリル基またはピラゾリル基を表し、Bは、特定の置換基を有していてもよい炭素鎖を表し、Zは、置換されたクロマン-Z-イル基、Z0ロマン-Z1の本と、Z1ので、Z2ので、Z3ので、Z3ので、Z3ので、Z3ので、Z3ので、Z4ので、Z5ので表されたクロマン-Z4ので、Z5ので表されたクロマン-Z7のである。Z6ので表される塩であり、Z7ので表されるフェニルアゾール誘導体またはその薬学的に許容される塩であり、このに該化合物を有効成分として含有してなる抗酸化薬及びこれを用いた腎疾患治療薬、脳血管障害治療薬、網膜の酸化障害抑制薬、リポキシゲナーゼ阻害薬や、Z1の一HETEシンターゼ阻害薬である。

認定・付加情報

特許出願の番号

特願2004-023903

受付番号

5 0 4 0 0 1 5 9 7 5 2

曹類名

特許願

担当官

田丸 三喜男

9079

作成日

平成16年 2月19日

<認定情報・付加情報>

【提出日】

平成16年 1月30日

特願2004-023903

出願人履歴情報

識別番号

[000004307]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都千代田区大手町2丁目2番1号

氏 名

日本曹達株式会社