Модуль №5. Инновации в технологии возведения бетонных и железобетонных конструкций. Показатели и критерии качества возведения бетонных и железобетонных конструкций

5.1 Устройство бетонных и железобетонных монолитных конструкций

Нормативные значения нагрузок и воздействий, значения коэффициентов надежности по нагрузке, а также коэффициентов надежности по назначению конструкций устанавливают соответствующими нормативными документами для строительных конструкций.

Расчетные значения нагрузок и воздействий принимают в зависимости от вида расчетного предельного состояния и расчетной ситуации.

Уровень надежности расчетных значений характеристик материалов устанавливают в зависимости от расчетной ситуации и от опасности достижения соответствующего предельного состояния и регулируют значением коэффициентов надежности по бетону и арматуре (или конструкционной стали).

Расчет бетонных и железобетонных конструкций можно производить по заданному значению надежности на основе полного вероятностного расчета при наличии достаточных данных об изменчивости основных факторов, входящих в расчетные зависимости.

Основными нормируемыми и контролируемыми показателями качества бетона являются:

- класс по прочности на сжатие В;
- класс по прочности на осевое растяжение В_t;
- марка по морозостойкости F;
- марка по водонепроницаемости W;
- марка по средней плотности D.

Класс бетона по прочности на сжатие В соответствует значению кубиковой прочности бетона на сжатие в МПа с обеспеченностью 0,95 (нормативная кубиковая прочность) и принимается в пределах от В 0,5 до В 120.

Класс бетона по прочности на осевое растяжение B_t соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 (нормативная прочность бетона) и принимается в пределах от B_t 0,4 до B_t 6.

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с требованиями нормативных документов для отдельных специальных видов сооружений (например, для массивных гидротехнических сооружений).

Марка бетона по морозостойкости F соответствует минимальному числу циклов попеременного замораживания и оттаивания, выдерживаемых образцом при стандартном испытании, и принимается в пределах от F 15 до F 1000.

Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (МПа $\cdot 10^{-1}$), выдерживаемому бетонным образцом при испытании, и принимается в пределах от W 2 до W 20.

Марка по средней плотности D соответствует среднему значению объемной массы бетона в $\kappa \Gamma/M^3$ и принимается в пределах от D 200 до D 5000.

Для напрягающих бетонов устанавливают марку по самонапряжению.

При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции (СНиП 23-02 «Тепловая защита зданий», СНиП 2.03.11 «Защита строительных конструкций от коррозии»).

Показатели качества бетона должны быть обеспечены соответствующим проектированием состава бетонной смеси (на основе характеристик материалов для бетона и требований к бетону), технологией приготовления бетона и производства работ. Показатели бетона контролируют в процессе производства и непосредственно в конструкции.

Необходимые показатели бетона следует устанавливать при проектировании бетонных и железобетонных конструкций в соответствии с расчетом и условиями эксплуатации с учетом

различных воздействий окружающей среды и защитных свойств бетона по отношению к принятому виду арматуры.

Подбор состава бетонной смеси производят с целью получения в конструкциях бетона, отвечающего техническим показателям, установленным в разделе принятым в проекте. За основу при подборе состава бетона следует принимать определяющий для данного вида бетона и назначения конструкции показатель бетона. При этом должны быть обеспечены и другие установленные проектом показатели качества бетона.

Свойства подобранной бетонной смеси должны соответствовать технологии производства бетонных работ, включающей сроки и условия твердения бетона, способы, режимы приготовления и транспортирования бетонной смеси и другие особенности технологического процесса (ГОСТ 7473, ГОСТ 10181).

При подборе состава бетонной смеси следует применять материалы с учетом их экологической чистоты (ограничение по содержанию радионуклидов, радона, токсичности и т.п.).

При приготовлении бетонной смеси должна быть обеспечена необходимая точность дозировки входящих в бетонную смесь материалов и последовательность их загружения (СНиП 3.03.01-87 «Несущие и ограждающие конструкции»).

В массивных монолитных конструкциях следует предусматривать мероприятия по уменьшению влияния температурно-влажностных полей напряжений, связанных с экзотермией при твердении бетона, на работу конструкций.

Готовые конструкции должны отвечать требованиям проекта и нормативных документов (<u>ГОСТ 13015</u> «Конструкции и изделия бетонные и железобетонные сборные», <u>ГОСТ 4.250</u> «Строительство. Бетонные и железобетонные изделия и конструкции»). Отклонения геометрических размеров должны укладываться в пределах допусков, установленных для данной конструкции.

В бетонных и железобетонных конструкциях к началу их эксплуатации фактическая прочность бетона должна быть не ниже требуемой прочности бетона, установленной в проекте.

В сборных бетонных и железобетонных конструкциях должна быть обеспечена установленная проектом отпускная прочность бетона (прочность бетона при отправке конструкции потребителю), а для преднапряженных конструкций - установленная проектом передаточная прочность (прочность бетона при отпуске натяжения арматуры).

В монолитных конструкциях должна быть обеспечена распалубочная прочность бетона в установленном проектом возрасте (при снятии несущей опалубки).

Бетонные и железобетонные конструкции всех типов должны удовлетворять требованиям:

- по безопасности;
- по эксплуатационной пригодности;
- по долговечности, а также дополнительным требованиям, указанным в задании на проектирование.

Для удовлетворения требованиям по безопасности конструкции должны иметь такие начальные характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях в процессе строительства и эксплуатации зданий и сооружений были исключены разрушения любого характера или нарушения эксплуатационной пригодности, связанные с причинением вреда жизни или здоровью граждан, имуществу и окружающей среде.

Для удовлетворения требованиям по эксплуатационной пригодности конструкция должна иметь такие начальные характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях не происходило образование или чрезмерное раскрытие трещин, а также не возникали чрезмерные перемещения, колебания и другие повреждения, затрудняющие нормальную эксплуатацию (нарушение требований к внешнему виду конструкции, технологических требований по нормальной работе оборудования, механизмов, конструктивных требований по совместной работе элементов и других требований, установленных при проектировании).

В необходимых случаях конструкции должны иметь характеристики, обеспечивающие требования по теплоизоляции, звукоизоляции, биологической защите и др.

Требования по отсутствию трещин предъявляют к железобетонным конструкциям, у которых при полностью растянутом сечении должна быть обеспечена непроницаемость (находящихся под давлением жидкости или газов, испытывающих воздействие радиации и т.п.), к уникальным конструкциям, к которым предъявляют повышенные требования по долговечности, а также к конструкциям, эксплуатируемым при воздействии сильноагрессивной среды.

В остальных железобетонных конструкциях образование трещин допускается и к ним предъявляют требования по ограничению ширины раскрытия трещин.

Для удовлетворения требованиям долговечности конструкция должна иметь такие начальные характеристики, чтобы в течение установленного длительного времени она удовлетворяла бы требованиям по безопасности и эксплуатационной пригодности с учетом влияния на геометрические характеристики конструкций и механические характеристики материалов различных расчетных воздействий (длительное действие нагрузки, неблагоприятные климатические, технологические, температурные и влажностные воздействия, попеременное замораживание и оттаивание, агрессивные воздействия и др.).

Безопасность, эксплуатационную пригодность, долговечность бетонных и железобетонных конструкций и другие устанавливаемые заданием на проектирование требования должны быть обеспечены выполнением:

- требований к бетону и его составляющим;
- требований к арматуре;
- требований к расчетам конструкций;
- конструктивных требований;
- технологических требований;
- требований по эксплуатации.

Требования по нагрузкам и воздействиям, по пределу огнестойкости, по непроницаемости, по морозостойкости, по предельным показателям деформаций (прогибам, перемещениям, амплитуде колебаний), по расчетным значениям температуры наружного воздуха и относительной влажности окружающей среды, по защите строительных конструкций от воздействия агрессивных сред и др. устанавливаются соответствующими нормативными документами (СНиП 2.01.07, СНиП 2.06.04, СНиП II-7, СНиП 2.03.11, СНиП 21-01, СНиП 2.02.01, СНиП 2.05.03, СНиП 33-01, СНиП 2.06.06, СНиП 23-01, СНиП 32-04).

Изготовление бетонных и железобетонных конструкций включает опалубочные, арматурные и бетонные работы.

Опалубочные работы

Опалубка (опалубочные формы) должна выполнять следующие основные функции: придать бетону проектную форму конструкции, обеспечить требуемый вид внешней поверхности бетона, поддерживать конструкцию пока она не наберет распалубочную прочность и, при необходимости, служить упором при натяжении арматуры.

Опалубку и ее крепления следует проектировать и изготавливать таким образом, чтобы они могли воспринять нагрузки, возникающие в процессе производства работ, позволяли конструкциям свободно деформироваться и обеспечивали соблюдение допусков в пределах, установленных для данной конструкции или сооружения. Опалубка и крепления должны соответствовать принятым способам укладки и уплотнения бетонной смеси, условиям преднапряжения, твердения бетона и тепловой обработки.

Съемную опалубку следует проектировать и изготавливать таким образом, чтобы была обеспечена распалубка конструкции без повреждения бетона.

Распалубку конструкций следует производить после набора бетоном распалубочной прочности.

Несъемную опалубку следует проектировать как составную часть конструкции.

Типы опалубки в зависимости от вида бетонируемых монолитных конструкций делятся на:

1. Опалубка вертикальных монолитных конструкций (в том числе наклонно-вертикальных) делится на:

- опалубка фундаментов;
- опалубка ростверков;
- опалубка стен;
- опалубка мостов, труб, градирен;
- опалубка колонн и т.п.
- 2. Опалубка горизонтальных монолитных конструкций (в том числе наклонногоризонтальных):
 - опалубка перекрытий (в том числе балочных и ребристых);
 - опалубка куполов (сфер, оболочек, сводов);
 - опалубка пролетных строений мостов (эстакад и других подобных сооружений).

Опалубка подразделяется на типы в зависимости от:

- вида бетонируемых монолитных и сборно-монолитных конструкций;
- конструкции;
- материалов несущих элементов;
- применяемости при различной температуре наружного воздуха и характера воздействия ее на бетон монолитных конструкций;
 - оборачиваемости.

Типы опалубки в зависимости от конструкции подразделяются на:

- 1. Мелкощитовая:
- модульная;
- разборная.
- 2. Крупнощитовая:
- модульная;
- разборная.
- 3. Блочная:
- внешнего контура (блок-форма) (разъемная, неразъемная, переналаживаемая);
- внутреннего контура (разъемная, неразъемная, переналаживаемая).
- 4. Объемно-переставная:
- П-образная;
- Г-образная;
- универсальная.
- 5. Скользящая.
- 6. Горизонтально-перемещаемая:
- катучая;
- туннельная.
- 7. Подъемно-переставная:
- с шахтным подъемником;
- с опиранием на сооружение.
- 8. Пневматическая:
- подъемная;
- стационарная.
- 9. Несъемная:
- включаемая в расчетное сечение конструкции;
- не включаемая в расчетное сечение конструкции;
- со специальными свойствами.

Конструкция опалубки должна обеспечивать:

- прочность, жесткость и геометрическую неизменяемость формы и размеров под воздействием монтажных, транспортных и технологических нагрузок;
- проектную точность геометрических размеров монолитных конструкций и заданное качество их поверхностей в зависимости от класса опалубки;
 - максимальную оборачиваемость и минимальную стоимость в расчете на один оборот;
 - минимальную адгезию к схватившемуся бетону (кроме несъемной);

- минимальное число типоразмеров элементов в зависимости от характера монолитных конструкций;
- возможность укрупнительной сборки и переналадки (изменения габаритных размеров или конфигурации) в условиях строительной площадки;
- возможность фиксации закладных деталей в проектном положении и с проектной точностью;
- технологичность при изготовлении и возможность применения средств механизации, автоматизации при монтаже;
- быстроразъемность соединительных элементов и возможность устранения зазоров, появляющихся в процессе длительной эксплуатации;
 - минимизацию материальных, трудовых и энергетических затрат при монтаже и демонтаже;
 - удобство ремонта и замены элементов, вышедших из строя;
 - герметичность формообразующих поверхностей (кроме специальных);
- температурно-влажностный режим, необходимый для твердения и набора бетоном проектной прочности;
- химическую нейтральность формообразующих поверхностей к бетонной смеси, кроме специальных случаев;
- быструю установку и разборку опалубки без повреждения монолитных конструкций и элементов опалубки.

Несъемные опалубки, входящие в сечение возводимой конструкции, должны соответствовать требованиям нормативных документов на строительные конструкции.

Люфт в шарнирных соединениях элементов опалубки 1-го и 2-го классов не должен превышать 1 мм.

Палуба конструкций опалубки (крупнощитовая, объемно-переставная, блочная), применяемая для получения поверхностей, готовых под окраску или оклейку обоями, должна изготавливаться из целых листов. При изготовлении из двух или нескольких листов стыковые соединения палубы должны опираться на несущие элементы каркаса щита; сварные швы и герметизирующая обмазка должны быть зачищены заподлицо с основной поверхностью.

Прогиб формообразующей поверхности и несущих элементов опалубки под действием воспринимаемых нагрузок при пролете l не должен превышать:

- l/400 (l/300) для вертикальных элементов, для классов 1 (2);
- -l/500 (l/400) для горизонтальных элементов, для классов 1 (2).

Панели и блоки, собранные из элементов мелкощитовой, крупнощитовой, блочной и объемно-переставной опалубки, должны обеспечивать или иметь устройства для предварительного отделения их от поверхности забетонированных конструкций. Не допускается применение подъемных механизмов для срыва опалубки с бетона.

Хранение опалубки должно осуществляться в соответствии с условиями хранения 4 Ж2, 3 Ж3, 50 Ж4.

При сроке хранения до 12 мес элементы опалубки 1-го и 2-го классов должны быть рассортированы по маркам и размерам, уложены на деревянные подкладки в штабеля и храниться в закрытых помещениях или укрытиях.

Металлические рабочие поверхности при необходимости длительного хранения должны подвергаться консервации по ГОСТ 9.014, группа 2, вариант ВЗ-1.

При сроке хранения более 12 мес элементы опалубки должны быть подвергнуты повторной консервации.

Указания по эксплуатации

Опалубочные работы должны производиться в соответствии со СНиП 3.01.01 и проектом производства работ (ППР).

Требования безопасности при эксплуатации по СНиП 12-03-2001 «Безопасность труда в строительстве».

Монтаж и демонтаж опалубки может производиться только при наличии технологической карты или проекта производства работ.

К работам по монтажу и демонтажу опалубки на высоте допускаются рабочие, прошедшие инструктаж.

Каждый раз перед установкой греющей опалубки проверяются сохранность утеплителя, крепления токоприемников, соответствие омического сопротивления нагревателей паспортным данным, целостность изоляции нагревателей, работоспособность систем электроснабжения и регулирования режима прогрева, безопасность работ.

Требования к материалам

Элементы опалубки должны изготавливаться из материалов, которые по качеству должны удовлетворять требованиям нормативных документов, указанных в конструкторской документации изделия.

Для несущих и поддерживающих элементов опалубки (каркасы, схватки, рамы, стойки, фермы и пр.) должна применяться сталь марки Ст.3 по ГОСТ 380 также могут применяться другие марки металла, технические характеристики которых не ниже указанной марки.

Устройства для подъема опалубки (петли, штыри и др.) должны изготавливаться из стали марки Ст.3пс любой категории по ГОСТ 380 или стали марки 20 по ГОСТ 1050.

Детали, подвергающиеся износу (пальцы, замки, втулки, шарниры и т.д.), должны изготавливаться из стали не ниже марки 45 по ГОСТ 1050 и подвергаться термической обработке.

Несущие элементы алюминиевой опалубки (каркасы, рамы, балки и др.) должны изготавливаться из алюминиевых сплавов не ниже марки и состояния АД 31Т1 по ГОСТ 4784, ГОСТ 8617, ГОСТ 22233.

Для металлических палуб должна применяться листовая сталь марки Ст.3 по ГОСТ 380, ГОСТ 14637, ГОСТ 16523. Для деревянных несущих и поддерживающих элементов должны применяться лесоматериалы круглые хвойных пород I-II сорта по ГОСТ 9463, пиломатериалы хвойных пород I-II сорта по ГОСТ 8486.

Для палубы опалубки 1-го и 2-го классов должна применятся облицованная (ламинированная) березовая фанера; для 2-го класса может применяться также комбинированная облицованная фанера; для 3-го класса - пиломатериалы хвойных пород по ГОСТ 8486 и лиственных пород по ГОСТ 2695 не ниже II сорта, древесностружечные плиты по ГОСТ 10632, древесноволокнистые плиты по ГОСТ 4598, фанера бакелизированная по ГОСТ 11539, фанера марки ФСФ по ГОСТ 3916.1, ГОСТ 3916.2 и другие материалы.

Пластмассовые палубы должны изготавливаться из материалов, удовлетворяющих требованиям стандартов или технических условий на эти материалы и требованиям, предъявляемым к конкретной опалубке.

В качестве формообразующих и несущих элементов опалубки могут использоваться клееные деревянные конструкции по ГОСТ 20850.

Клееные зубчатые соединения деревянных конструкций должны соответствовать ГОСТ 19414. Могут применяться другие соединения древесины, в том числе специальные на металлических и других пластинах.

В качестве утеплителя греющей и утепленной опалубки должны применяться теплоизоляционные материалы плотностью до $200~{\rm kr/m}^3$. Фактическая плотность утеплителя не должна превышать паспортную более чем на 15%, а влажность - на 6%.

Металлическая сетка по ГОСТ 3826, применяемая для несъемной опалубки, должна иметь ячейки размером не более $5^{\times}5$ мм.

Требования к покрытиям

Опалубка должна быть защищена от внешних воздействий.

Металлические поверхности элементов опалубки 1-го и 2-го классов, не соприкасающиеся с бетоном, должны иметь защитные покрытия по ГОСТ 9.032, ГОСТ 9.303 или иметь антикоррозионные свойства, обеспечивающие заданную оборачиваемость в условиях эксплуатации.

Фанера, применяемая в качестве палубы опалубок 1-го и 2-го классов, должна иметь водостойкое покрытие, пропитку или другую обработку рабочих поверхностей. Торцы ламинированной фанеры и древесные материалы формообразующих элементов (палуба) опалубки

1-го и 2-го классов должны быть защищены от механических повреждений и проникновения влаги герметиком.

Требования к сварке

Виды сварных швов, их форма и размеры принимают по рабочим чертежам.

Сварка стальных конструкций осуществляется в соответствии с требованиями ГОСТ 5264; ГОСТ 8713; ГОСТ 11533; ГОСТ 11534; ГОСТ 14771; ГОСТ 23518; алюминиевых конструкций - с требованиями ГОСТ 7871, ГОСТ 14806.

Комплектность

Опалубка должна поставляться предприятием-изготовителем комплектно в состоянии, пригодном для эксплуатации, без дополнительных доработок и исправлений (или поэлементно по требованию заказчика).

Состав комплекта и наличие запасных частей определяются заказом потребителя.

При необходимости, по согласованию с потребителем, в комплект опалубки включаются инструмент и приспособления для монтажа, демонтажа, перемещения.

Комплекты опалубки должны быть снабжены эксплуатационными документами по ГОСТ 2.601:

- паспорт на опалубку;
- инструкция по эксплуатации (со схемами монтажа и допустимыми нагрузками).

Арматурные работы

Арматура, используемая для армирования конструкций, должна соответствовать проекту и требованиям соответствующих стандартов. Арматура должна иметь маркировку и соответствующие сертификаты, удостоверяющие ее качество.

Условия хранения арматуры и ее перевозки должны исключать механические повреждения или пластические деформации, ухудшающее сцепление с бетоном загрязнение, коррозионные поражения.

Требования к арматуре

При проектировании железобетонных зданий и сооружений в соответствии с требованиями, предъявляемыми к бетонным и железобетонным конструкциям, должны быть установлены вид арматуры, ее нормируемые и контролируемые показатели качества.

Для железобетонных конструкций следует применять следующие виды арматуры, установленные соответствующими стандартами:

- горячекатаную гладкую и периодического профиля диаметром 3-80 мм;
- термомеханически упрочненную периодического профиля диаметром 6-40 мм;
- механически упрочненную в холодном состоянии (холоднодеформированная) периодического профиля или гладкая, диаметром 3-12 мм;
 - арматурные канаты диаметром 6-15 мм;
 - неметаллическую композитную арматуру.

Кроме того, в большепролетных конструкциях могут быть применены стальные канаты (спиральные, двойной свивки, закрытые).

Для дисперсного армирования бетона следует применять фибру или частые сетки.

Для сталежелезобетонных конструкций (конструкций, состоящих из стальных и железобетонных элементов) применяют листовую и профильную сталь по соответствующим нормам и стандартам (СНиП II-23).

Вид арматуры следует принимать в зависимости от назначения конструкции, конструктивного решения, характера нагрузок и воздействий окружающей среды.

Основным нормируемым и контролируемым показателем качества стальной арматуры является класс арматуры по прочности на растяжение, обозначаемый:

- А для горячекатаной и термомеханически упрочненной арматуры;
- В для холоднодеформированной арматуры;
- K для арматурных канатов.

Класс арматуры соответствует гарантированному значению предела текучести (физического

или условного) в МПа, устанавливаемому в соответствии с требованиями стандартов и технических условий, и принимается в пределах от \mathbb{A} 240 до \mathbb{A} 1500, от \mathbb{B} 500 до \mathbb{B} 2000 и от \mathbb{K} 1400 до \mathbb{K} 2500.

Классы арматуры следует назначать в соответствии с их параметрическими рядами, установленными нормативными документами.

Кроме требований по прочности на растяжение к арматуре предъявляют требования по дополнительным показателям, определяемым по соответствующим стандартам: свариваемость, выносливость, пластичность, стойкость против коррозионного растрескивания, релаксационная стойкость, хладостойкость, стойкость при высоких температурах, относительное удлинение при разрыве и др.

К неметаллической арматуре (в том числе фибре) предъявляют также требования по щелочестойкости и адгезии к бетону.

Необходимые показатели принимают при проектировании железобетонных конструкций в соответствии с требованиями расчетов и изготовления, а также в соответствии с условиями эксплуатации конструкций с учетом различных воздействий окружающей среды.

Арматурные изделия должны быть изготовлены в соответствии с проектной документацией из горячекатаной гладкой и периодического профиля арматурной стали диаметром от 3 до 80 мм по ГОСТ 5781, термомеханически упрочненной гладкой и периодического профиля арматурной стали диаметром от 6 до 40 мм по ГОСТ 10884, проката арматурного свариваемого периодического профиля по ГОСТ Р 52544, проволоки из низкоуглеродистой стали холоднотянутой класса Вр I по ГОСТ 6727.

В соответствии с СП 70.13330 монтаж арматурных конструкций следует производить преимущественно из крупноразмерных блоков или унифицированных сеток заводского изготовления.

Арматурные изделия следует применять в виде арматурных сеток по ГОСТ 8478 и арматурных каркасов плоских или пространственных. Допускается армирование отдельными стержнями. Соединения стержней в арматурные конструкции в этом случае рекомендуется выполнять вязкой. Строповка арматурных изделий должна производиться по схемам строповки (паспортам), предоставленным их изготовителями (поставщиками), или по схемам, разработанным специализированными организациями.

Строповка арматурных изделий должна производиться за петли, цапфы, рымы.

Строповку арматурного изделия следует производить с использованием стропов или траверс, соответствующих массе и характеру поднимаемого груза, с учетом числа ветвей и угла их наклона. Угол между ветвями стропов общего назначения не должен превышать 90° по диагонали. При габаритах стропуемых грузов, не позволяющих выполнить указанное требование, следует использовать траверсы.

Монтаж арматурных изделий следует производить в соответствии с рабочими чертежами, проектом производства работ, СП 63.13330, ГОСТ 10922.

С бетонной подготовки и опалубки в местах установки арматурных изделий должны быть удалены мусор, грязь, снег и лед. Стержни установленной в конструкции арматуры должны быть обезжирены, очищены от грязи, льда и снега, налета ржавчины.

Порядок установки арматуры должен быть увязан с технологической схемой бетонирования конструкции. Установка арматуры должна опережать бетонирование не менее чем на одну захватку.

Арматурные изделия массой до 100 кг допускается ставить вручную, подавая краном сразу по несколько штук. Изделия массой более 100 кг следует устанавливать с помощью крана.

Загибку выпусков поперечной арматуры следует выполнять снизу вверх. Работу до отметки 1,5 м следует вести с перекрытия, а выше - с площадок монтажника.

Арматурные каркасы в процессе монтажа для предохранения от смещения следует временно закреплять схватками или расчалками. Крепления снимают по мере укладки бетонной смеси. Схватки устанавливают в двух направлениях для обеспечения устойчивости.

Соединение арматурных изделий следует производить в соответствии с ГОСТ 14098 и с

учетом следующих требований:

- а) При крестообразном соединении арматуры контактной точечной сваркой в соединениях типа К1-Кт из арматуры классов Aт-IVK и At-V (по ГОСТ 5781) диаметрами d_{n} и d_{n} от 10 до 32 мм стержни меньшего диаметра d_{n} должны быть из арматуры классов Bp-I, A-I, A-II и A-III.
- б) В стыковых соединениях арматуры сваркой способами Мф, Мп, Рв (по ГОСТ 14098) с вертикальным расположением стержней при сварке одноэлектродной и порошковой проволокой разделку стержней со скосом нижнего стержня производить не следует. Разделку с обратным скосом нижнего стержня при сварке стержней диаметрами $\frac{d_n}{d_n} = \frac{1}{2} \frac{1}{2$
- в) В стыковых соединениях арматуры сваркой способами Мф, Мп, Рв (по ГОСТ 14098) с горизонтальным расположением спаренных стержней типа С13 разделку под углом α_2 допускается не производить.
- г) При стыковом соединении арматуры дуговой ручной сваркой швами с накладками из стержней:
- соединения арматуры классов A-IV, A-V, A-VI, AT-VCK, AT-V (по ГОСТ 5781) следует выполнять со смещенными накладками, накладывая швы в шахматном порядке;
- допускается применять сварку самозащитными порошковыми проволоками и в углекислом газе (CO 2);
- допускаются двусторонние швы длиной $4^{\mathcal{A}_{\mathcal{H}}}$ для соединений арматуры классов A-I, A-II, A-III.
- д) При стыковом или нахлесточном соединении арматуры дуговой ручной сваркой швами арматуру классов A-II и AT-IIIC (из стали марки Cт5 по ГОСТ 380) варить в CO 2 запрещается.
- е) При стыковом или нахлесточном соединении арматуры дуговой ручной сваркой швами соединения арматуры класса АТ-V допускаются только из стали марки 20ГС по ГОСТ 380.
- ж) Стыковое соединение арматуры сваркой способами Мп, Мф, Рс (по ГОСТ 14098) с горизонтальным и вертикальным расположением в комбинированных несущих и формующих элементах для арматуры диаметром $d_{\rm H}$ от 20 до 25 мм принимать s=8 мм, а для $d_{\rm H}$ от 28 до 40 мм принимать s=10 мм.
- 3) При тавровом вертикальном соединении арматуры сваркой способами Мф и Рф (по ГОСТ 14098) соединения типа Т2 из арматуры класса АТ-IIIС допускается выполнять до диаметра d и 14 мм.
- и) При тавровом вертикальном соединении арматуры дуговой механизированной сваркой способами Мс и Мц по ГОСТ 14098:
 - арматура класса AT-IIIC может применяться диаметром $d_{\rm H}$ до 18 мм;
 - для арматуры классов A-III и AT-IIIC значение $s/d_{\rm H} \ge 0.55$.

Размещение арматуры в сечении следует принимать по проектной документации с учетом требований СП 52-101-2003.

Минимальные расстояния в свету между стержнями арматуры должны обеспечить совместную работу арматуры с бетоном и качественное изготовление конструкций, связанное с укладкой и уплотнением бетонной смеси, и должны составлять, не менее:

- наибольшего диаметра стержня;
- 25 мм при горизонтальном или наклонном положении стержней при бетонировании для нижней арматуры, расположенной в один или два ряда;
 - 30 мм то же, для верхней арматуры;
- 50 мм то же, при расположении нижней арматуры более чем в два ряда (кроме стержней двух нижних рядов), а также при вертикальном положении стержней при бетонировании.

При отклонении от указанных требований следует провести согласование с проектной организацией.

Наибольшие расстояния между осями стержней продольной арматуры, определяемые эффективностью работы бетонного сечения, усиленного арматурой, должны быть:

- в изгибаемых элементах не более 400 мм;
- в линейных внецентренно сжатых элементах не более 500 мм в плоскости изгиба и не более 400 мм в плоскости, перпендикулярной к плоскости изгиба.

Количество стержней, доводимых до опоры, и максимально допустимые расстояния между ними должны соответствовать следующим требованиям:

- в балках шириной менее 150 мм до опоры должно доводиться не менее одного стержня;
- в балках шириной более 150 мм до опоры должны доводиться не менее двух стержней общей площадью сечения не менее 50% от площади расчетного сечения арматуры;
- в плитах до опоры следует доводить стержни общей площадью сечения не менее 30% от площади сечения арматуры, подобранной из расчета на 1 м ширины сечения в зоне действия наибольшего изгибающего момента, выдерживая расстояние между стержнями не более 400 мм;
- в неразрезных плитах, армированных рулонными сетками, все продольные стержни у промежуточных опор допускается переводить в верхнюю зону;
- в неразрезных плитах расстояния между осями рабочих стержней в середине пролета и над опорами должны быть не более $200\,$ мм при толщине плиты до $150\,$ мм и не более $1,5\,$ при толщине плиты более $150\,$ мм.

Любая продольная арматура, установленная у поверхности железобетонной конструкции, должна охватываться поперечной арматурой, устанавливаемой с шагом не более 500 мм и не более удвоенной ширины грани элемента. В плитах высотой менее 300 мм и балках высотой менее 150 мм при обеспечении прочности на поперечную силу допускается поперечную арматуру не устанавливать.

Толщину защитного слоя бетона рабочей арматуры следует обеспечивать в соответствии с проектной документацией. При несоответствии следует провести согласование с проектной организацией.

Устройство монолитных бетонных и железобетонных конструкций

Конструкции монолитные бетонные и железобетонные (далее также - конструкции) в промышленном и гражданском строительстве используются при возведении фундаментов, подземных частей зданий и сооружений, стен, колонн, перекрытий и ядер жесткости зданий, в том числе повышенной этажности, и других конструкций.

Конструкции всех типов должны исключать возможность:

- разрушения отдельных несущих строительных конструкций или их частей;
- разрушения всего здания, сооружения или их части;
- деформации недопустимой величины строительных конструкций;
- повреждения части здания или сооружения, сетей инженерно-технического обеспечения или систем инженерно-технического обеспечения в результате деформации, перемещений либо потери устойчивости несущих строительных конструкций, в том числе отклонений от вертикальности в процессе строительства и эксплуатации.

В необходимых случаях конструкции должны иметь характеристики, обеспечивающие требования по теплоизоляции, звукоизоляции, биологической защите и другие, а также дополнительным требованиям заказчика, указанным в рабочих чертежах. Для удовлетворения требованиям по безопасности законченные конструкции должны иметь такие характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях в процессе строительства и эксплуатации зданий и сооружений были исключены разрушения любого характера или нарушения эксплуатационной пригодности, связанные с причинением вреда жизни или здоровью граждан, имуществу и окружающей среде.

Для удовлетворения требованиям по эксплуатационной пригодности законченные конструкции должны иметь такие характеристики, чтобы с надлежащей степенью надежности при различных расчетных воздействиях не происходило образование или раскрытие трещин и не возникали перемещения сверх допустимых значений, установленных сводами правил СП 63.13330 и СП 52-103-2007, а также образовывались колебания и другие повреждения, затрудняющие их нормальную эксплуатацию.

Примечание - Могут происходить нарушения требований к внешнему виду конструкции, технологических требований по нормальной работе оборудования, механизмов, конструктивных требований по совместной работе элементов и других требований, установленных при проектировании.

Требования по отсутствию трещин должны предъявляться к:

- железобетонным конструкциям, у которых при полностью растянутом сечении должна быть обеспечена непроницаемость;

Примечание - Обычно это железобетонные конструкции, которые должны находиться под давлением жидкости (газов) или под воздействием радиации и т.п.

- уникальным конструкциям, к которым предъявляют повышенные требования по долговечности;
 - конструкциям, эксплуатируемым при воздействии агрессивной среды.

В остальных железобетонных конструкциях образование трещин допускается, и к ним предъявляются требования по ограничению ширины раскрытия трещин.

Для удовлетворения требованиям долговечности законченные конструкции должны иметь такие начальные характеристики, чтобы в течение установленного длительного времени они удовлетворяли требования по безопасности и эксплуатационной пригодности, с учетом влияния на геометрические характеристики конструкций и механические характеристики материалов различных расчетных воздействий.

Безопасность, эксплуатационная пригодность, долговечность конструкций и другие, устанавливаемые заданием на проектирование, требования должны быть обеспечены выполнением:

- требований к бетону и его составляющим;
- требований к арматуре;
- требований к расчетам конструкций;
- конструктивных требований;
- технологических требований;
- требований по эксплуатации.

Укладку и уплотнение бетона следует выполнять таким образом, чтобы можно было гарантировать в конструкциях достаточную однородность и плотность бетона, отвечающих требованиям, предусмотренным для рассматриваемой строительной конструкции (СНиП 3.03.01-87 «Несущие и ограждающие конструкции»).

Применяемые способы и режимы формования должны обеспечивать заданную плотность и однородность и устанавливаются с учетом показателей качества бетонной смеси, вида конструкции и изделия и конкретных инженерно-геологических и производственных условий.

Порядок бетонирования следует устанавливать, предусматривая расположение швов бетонирования с учетом технологии возведения сооружения и его конструктивных особенностей. При этом должна быть обеспечена необходимая прочность контакта поверхностей бетона в шве бетонирования, а также прочность конструкции с учетом наличия швов бетонирования.

При укладке бетонной смеси при пониженных положительных и отрицательных или повышенных положительных температурах должны быть предусмотрены специальные мероприятия, обеспечивающие требуемое качество бетона.

Твердение бетона следует обеспечивать без применения или с применением ускоряющих технологических воздействий (с помощью тепловлажностной обработки при нормальном или повышенном давлении).

Подъем конструкций следует осуществлять с помощью специальных устройств (монтажных петель и других приспособлений), предусмотренных проектом. При этом должны быть обеспечены условия подъема, исключающие разрушение, потерю устойчивости, опрокидывание, раскачивание и вращение конструкции.

Условия транспортировки, складирования и хранения конструкций должны отвечать указаниям, приведенным в проекте. При этом должна быть обеспечена сохранность конструкции, поверхностей бетона, выпусков арматуры и монтажных петель от повреждений.

Возведение зданий и сооружений из сборных элементов следует производить в соответствии с проектом производства работ, в котором должны быть предусмотрены последовательность установки конструкций и мероприятия, обеспечивающие требуемую точность установки, пространственную неизменяемость конструкций в процессе их укрупнительной сборки и установки в проектное положение, устойчивость конструкций и частей здания или сооружения в процессе возведения, безопасные условия труда.

При возведении зданий и сооружений из монолитного бетона следует предусматривать последовательность бетонирования конструкций, снятия и перестановки опалубки, обеспечивающие прочность, трещиностойкость и жесткость конструкций в процессе возведения. Кроме этого, следует предусматривать мероприятия (конструктивные и технологические, а при необходимости - выполнение расчета), ограничивающие образование и развитие технологических трещин.

Отклонения конструкций от проектного положения не должны превышать допустимых значений, установленных для соответствующих конструкций (колонн, балок, плит) зданий и сооружений (СНиП 3.03.01-87 «Несущие и ограждающие конструкции»).

Конструкции следует содержать таким образом, чтобы они выполняли свое назначение, предусмотренное в проекте, за весь установленный срок службы здания или сооружения. Необходимо соблюдать режим эксплуатации бетонных и железобетонных конструкций зданий и сооружений, исключающий снижение их несущей способности, эксплуатационной пригодности и долговечности вследствие грубых нарушений нормируемых условий эксплуатации (перегрузка конструкций, несоблюдение сроков проведения планово-предупредительных ремонтов, повышение агрессивности среды и т.п.). Если в процессе эксплуатации обнаружены повреждения конструкции, которые могут вызвать снижение ее безопасности и препятствовать ее нормальному функционированию, следует выполнить мероприятия, предусмотренные в разделе 9 СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

Железобетонные конструкции должны быть сконструированы таким образом, чтобы с достаточной надежностью предотвратить возникновение всех видов предельных состояний. Это выбором показателей качества достигается материалов, назначением размеров конструированием. При этом должны быть выполнены технологические требования при изготовлении конструкций, соблюдены требования по эксплуатации зданий, а также требования противопожарной экологии, энергосбережению, безопасности долговечности, устанавливаемые соответствующими нормативными документами, и учтены неравномерные осадки основания.

При проектировании железобетонных конструкций их надежность должна быть установлена расчетом по предельным состояниям первой и второй групп путем использования расчетных значений нагрузок, характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий.

Нормативные значения нагрузок, коэффициентов сочетаний нагрузок и коэффициентов надежности ответственности конструкций, а также разделение нагрузок на постоянные и временные (длительные и кратковременные) следует принимать согласно СНиП 2.01.07.

Порядок приложения постоянных и длительно действующих нагрузок должен определяться графиком производства работ или по факту.

Наряду с контролем прочности бетона по образцам рекомендуется контроль прочности бетона в готовой конструкции проводить с использованием неразрушающих методов по ГОСТ 22690.

При применении арматуры класса A500C с эффективным профилем, разработанным в НИИЖБ, следует пользоваться рекомендациями СТО 36554501-005. Стыковку арматуры в торец на стройплощадке следует осуществлять с помощью ванной сварки, а также винтовых и опресованных механических соединений.

Рекомендуется применение арматуры малого диаметра расширенного сортамента: 5,5; 6; 6,5; 7; 8; 9; 10; 11; 12 мм нового периодического профиля с сердечником в форме квадрата со

скругленными углами в соответствии с ТУ 14-1-5500, ТУ 14-1-5501.

СНиП 52-01-2003 «Бетонные и железобетонные конструкции», п.4.1 - 4.6, п.5.1.3, п.8.1.5., п.8.4., п.8.1.3-8.4.6., п.8.2.1, п.8.3.1 применяется на обязательной основе (Распоряжение Правительства РФ от 21 июня 2010 г. №1047-р).

ГОСТ Р 52085-2003 «Опалубка. Общие технические условия», п.4.1 - 4.1.1.2, п. 4.1.2.1 - 4.1.2.9, п.6.1.4, 6.1.5, 6.1.7, п.6.1.10 - 6.1.12, п.6.2 - 6.5, п. 10 применяется на добровольной основе (Федеральный закон от 30 декабря 2009г №384-ФЗ).

СТО НОСТРОЙ 2.6.54-2011 «Конструкции монолитные бетонные и железобетонные» п. 4.1-4.7, п. 10.2.

СП 52-103-2007 «Железобетонные монолитные конструкции зданий» п.4.8 - 4.11.

5.2. Монтаж сборных бетонных и железобетонных конструкций

Предварительное складирование конструкций на приобъектных складах допускается только при соответствующем обосновании. Приобъектный склад должен быть расположен в зоне действия монтажного крана.

Монтаж конструкций каждого вышележащего этажа (яруса) многоэтажного здания следует производить после проектного закрепления всех монтажных элементов и достижения бетоном (раствором) замоноличенных стыков несущих конструкций прочности, указанной в ППР.

В случаях, когда прочность и устойчивость конструкций в процессе сборки обеспечиваются сваркой монтажных соединений, допускается, при соответствующем указании в проекте, монтировать конструкции нескольких этажей (ярусов) зданий без замоноличивания стыков. При этом в проекте должны быть приведены необходимые указания о порядке монтажа конструкций, сварке соединений и замоноличивании стыков.

В случаях, когда постоянные связи не обеспечивают устойчивость конструкций в процессе их сборки, необходимо применять временные монтажные связи. Конструкция и число связей, а также порядок их установки и снятия должны быть указаны в ППР.

Марки растворов, применяемых при монтаже конструкций для устройства постели, должны быть указаны в проекте. Подвижность раствора должна составлять 5-7 см по глубине погружения стандартного конуса, за исключением случаев, специально оговоренных в проекте.

Применение раствора, процесс схватывания которого уже начался, а также восстановление его пластичности путем добавления воды не допускаются.

Монтаж фундаментов и конструкций подземной части зданий и сооружений

Фундаменты подразделяют на следующие типы:

- 1Ф фундаменты под колонны с поперечным сечением размерами 300*300 мм;
- -2Φ то же, под колонны с поперечным сечением размерами 400*400 мм.

Несущую способность фундаментов в зависимости от действующих усилий принимают по рабочим чертежам.

Фундаменты изготовляют с монтажными петлями. Изготовление фундаментов без монтажных петель и применение для их подъема и монтажа захватных устройств допускается по согласованию между изготовителем, потребителем и проектной организацией - автором проекта.

Фундаменты следует обозначать марками в соответствии с ГОСТ 23009-78. Марка фундаментов состоит из одной или двух буквенно-цифровых групп, разделенных тире. Первая группа содержит обозначение типа фундамента, длину (ширину) подошвы и высоту фундамента в дециметрах (значение высоты округляют до целого числа). Вторая группа содержит обозначение несущей способности фундамента, а для фундаментов, предназначенных для эксплуатации в агрессивной среде, дополнительно содержит показатель проницаемости бетона, обозначаемый буквой:

- Н нормальной проницаемости;
- Π пониженной проницаемости.

Технические требования, предъявляемые к фундаментам:

- 1. Фундаменты следует изготовлять в соответствии с требованиями ГОСТ 24476-80 и технологической документации, утвержденной в установленном порядке, по рабочим чертежам.
- 2. Фундаменты следует изготовлять в стальных формах, удовлетворяющих требованиям ГОСТ 25781-83.

Допускается изготовлять фундаменты в неметаллических формах, обеспечивающих соблюдение требований к качеству и точности изготовления фундаментов.

Фактическая прочность бетона (в проектном возрасте и отпускная) должна соответствовать требуемой, назначаемой по ГОСТ 18105-86 в зависимости от нормируемой прочности бетона и от показателя фактической однородности прочности бетона. Поставку фундаментов потребителю следует производить после достижения бетоном требуемой отпускной прочности.

Значение нормируемой отпускной прочности бетона фундаментов следует принимать равным 70 % марки бетона по прочности на сжатие. При поставке фундаментов в холодный период года значение нормируемой отпускной прочности бетона может быть повышено, но не

более 90 % марки по прочности на сжатие. Значение нормируемой отпускной прочности бетона должно соответствовать указанному в проектной документации на конкретное здание и в заказе на изготовление фундаментов согласно требованиям ГОСТ 13015.0-83.

Поставку фундаментов с отпускной прочностью бетона ниже прочности, соответствующей его марке по прочности на сжатие, производят при условии, если изготовитель гарантирует достижение бетоном фундамента требуемой прочности в проектном возрасте, определяемой по результатам испытания контрольных образцов, изготовленных из бетонной смеси рабочего состава и хранившихся в условиях согласно ГОСТ 18105-86.

Морозостойкость бетона фундаментов должна соответствовать марке по морозостойкости, установленной рабочими чертежами проекта конкретного здания согласно требованиям СНиП 2.03.01-84 в зависимости от климатических условий района строительства и указанной в заказе на изготовление фундаментов.

Бетон, а также материалы для приготовления бетона фундаментов, применяемых в условиях воздействия агрессивной среды, должны удовлетворять требованиям, установленным проектом здания согласно требованиям СНиП 2.03.11-85 и оговоренным в заказе на изготовление фундаментов. Материалы, применяемые для приготовления бетона, должны удовлетворять требованиям государственных стандартов или утвержденных в установленном порядке технических условий и обеспечивать выполнение технических требований к бетону.

Форма и размеры арматурных изделий, и их положение в фундаментах должны соответствовать указанным в рабочих чертежах. Для армирования фундаментов следует применять горячекатаную арматурную сталь класса A-III по ГОСТ 5781-82 или термомеханически упрочненную арматурную сталь класса Aт-IIIC по ГОСТ 10884-81. Для изготовления монтажных петель фундаментов следует применять гладкую стержневую горячекатаную арматуру класса A-I марок ВСтЗпс2 и ВСтЗсп2 или периодического профиля класса Aс-II марки 10 ГТ по ГОСТ 5781-82. Сталь марки ВСтЗпс2 не допускается применять для монтажных петель, предназначенных для подъема и монтажа фундаментов при температуре ниже минус 40 □С.

Сварные арматурные изделия должны соответствовать требованиям ГОСТ 10922-75.

Сварные соединения арматурных сеток следует осуществлять контактной сваркой. Сварке подлежат все пересечения стержней.

Точность изготовления фундаментов

- 1. Отклонения фактических размеров фундаментов от номинальных, приведенных в рабочих чертежах, не должны превышать, следующие показатели, мм:
 - по длине (ширине) \pm 16
 - по высоте ± 10
- 2. Отклонения от номинальных размеров стакана под колонну и выступов фундамента не должны превышать \pm 5 мм.
 - 3. Отклонение от плоскостности подошвы фундаментов не должно превышать \pm 5 мм.
- 4. Отклонения от номинальной толщины защитного слоя бетона до арматуры не должны превышать +10; 5 мм.

Качество поверхностей фундаментов

Требования к качеству поверхностей и внешнему виду фундаментов (в том числе требования к допустимой ширине раскрытия технологических трещин) - по ГОСТ 13015.0-83.

Устанавливается категория бетонных поверхностей фундамента A7. При возведении нового объекта на застроенной территории необходимо учитывать его воздействие на существующие сооружения окружающей застройки с целью предотвращения их недопустимых дополнительных деформаций.

При возведении нового объекта на застроенной территории необходимо учитывать его воздействие на существующие сооружения окружающей застройки с целью предотвращения их недопустимых дополнительных деформаций.

Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01.

При проектировании и устройстве оснований и фундаментов сооружений следует соблюдать

требования нормативных документов по организации строительного производства, геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительномонтажных работ.

Применяемые при строительстве материалы, изделия и конструкции должны удовлетворять требованиям проекта соответствующих стандартов и технических условий. Замена предусмотренных проектом материалов, изделий и конструкций допускается только по согласованию с проектной организацией и заказчиком.

При строительстве в сложных грунтовых условиях в составе проекта сооружения рекомендуется предусматривать паспорт сооружения, в котором приводят: описание подземных конструкций и водонесущих сетей, указания о необходимых наблюдениях, данные о предусматриваемых мерах защиты, осуществляемых в период строительства и эксплуатации, указания о способах подъема и выравнивания сооружения и др. После сдачи объекта в паспорт вносят данные, полученные в процессе строительства.

При производстве земляных работ, устройстве оснований и фундаментов следует выполнять входной, операционный и приемочный контроль, руководствуясь СНиП 12-01.

На участках, где по данным инженерно-экологических изысканий имеются выделения почвенных газов (радона, метана, торина), должны быть приняты меры по изоляции соприкасающихся с грунтом конструкций или другие меры, способствующие снижению концентрации газов в соответствии с требованиями санитарных норм.

Установку блоков фундаментов стаканного типа и их элементов в плане следует производить относительно разбивочных осей по двум взаимно перпендикулярным направлениям, совмещая осевые риски фундаментов с ориентирами, закрепленными на основании, или контролируя правильность установки геодезическими приборами.

Установку блоков ленточных фундаментов и стен подвала следует производить, начиная с установки маячных блоков в углах здания и на пересечении осей. Маячные блоки устанавливают, совмещая их осевые риски с рисками разбивочных осей, по двум взаимно перпендикулярным направлениям. К установке рядовых блоков следует приступать после выверки положения маячных блоков в плане и по высоте.

Фундаментные блоки следует устанавливать на выровненный до проектной отметки слой песка. Предельное отклонение отметки выравнивающего слоя песка от проектной не должно превышать минус 15 мм.

Установка блоков фундаментов на покрытые водой или снегом основания не допускается.

Стаканы фундаментов и опорные поверхности должны быть защищены от загрязнения.

Установку блоков стен подвала следует выполнять с соблюдением перевязки. Рядовые блоки следует устанавливать, ориентируя низ по обрезу блоков нижнего ряда, верх - по разбивочной оси. Блоки наружных стен, устанавливаемые ниже уровня грунта, необходимо выравнивать по внутренней стороне стены, а выше - по наружной. Вертикальные и горизонтальные швы между блоками должны быть заполнены раствором и расшиты с двух сторон.

Монтаж элементов конструкций надземной части зданий и сооружений, в том числе колонн, рам, ригелей, ферм, балок, плит, поясов, панелей стен и перегородок

Проектное положение колонн и рам следует выверять по двум взаимно перпендикулярным направлениям.

Низ колонн следует выверять, совмещая риски, обозначающие их геометрические оси в нижнем сечении, с рисками разбивочных осей или геометрических осей нижеустановленных колонн.

Способ опирания колонн на дно стакана должен обеспечивать закрепление низа колонны от горизонтального перемещения на период до замоноличивания узла.

Верх колонн многоэтажных зданий следует выверять, совмещая геометрические оси колонн в верхнем сечении с рисками разбивочных осей, а колонн одноэтажных зданий - совмещая геометрические оси колонн в верхнем сечении с геометрическими осями в нижнем сечении.

Выверку низа рам в продольном и поперечном направлениях следует производить путем

совмещения рисок геометрических осей с рисками разбивочных осей или осей стоек в верхнем сечении нижестоящей рамы.

Выверку верха рам надлежит производить: из плоскости рам - путем совмещения рисок осей стоек рам в верхнем сечении относительно разбивочных осей, в плоскости рам - путем соблюдения отметок опорных поверхностей стоек рам.

Применение непредусмотренных проектом прокладок в стыках колонн и стоек рам для выравнивания высотных отметок и приведения их в вертикальное положение без согласования с проектной организацией не допускается.

Ориентиры для выверки верха и низа колонн и рам должны быть указаны в ППР.

Укладку элементов в направлении перекрываемого пролета надлежит выполнять с соблюдением установленных проектом размеров глубины опирания их на опорные конструкции или зазоров между сопрягаемыми элементами.

Установку элементов в поперечном направлении перекрываемого пролета следует выполнять:

- ригелей и межколонных (связевых) плит совмещая риски продольных осей устанавливаемых элементов с рисками осей колонн на опорах;
- подкрановых балок совмещая риски, фиксирующие геометрические оси верхних поясов балок, с разбивочной осью;
- подстропильных и стропильных ферм (балок) при опирании на колонны, а также стропильных ферм при опирании на подстропильные фермы совмещая риски, фиксирующие геометрические оси нижних поясов ферм (балок), с рисками осей колонн в верхнем сечении или с ориентирными рисками в опорном узле подстропильной фермы;
- стропильных ферм (балок), опирающихся на стены, совмещая риски, фиксирующие геометрические оси нижних поясов ферм (балок), с рисками разбивочных осей на опорах.

Во всех случаях стропильные фермы (балки) следует устанавливать с соблюдением односторонней направленности отклонений от прямолинейности их верхних поясов:

- плит перекрытий по разметке, определяющей их проектное положение на опорах и выполняемой после установки в проектное положение конструкций, на которые они опираются (балки, ригели, стропильные фермы и т. п.);
- плит покрытий по фермам (стропильным балкам) симметрично относительно центров узлов ферм (закладных изделий) вдоль их верхних поясов.

Ригели, межколонные (связевые) плиты, фермы (стропильные балки), плиты покрытий по фермам (балкам) укладывают насухо на опорные поверхности несущих конструкций.

Плиты перекрытий необходимо укладывать на слой раствора толщиной не более 20 мм, совмещая поверхности смежных плит вдоль шва со стороны потолка.

Применение не предусмотренных проектом подкладок для выравнивания положения укладываемых элементов по отметкам без согласования с проектной организацией не допускается.

Выверку подкрановых балок по высоте следует производить по наибольшей отметке в пролете или на опоре с применением прокладок из стального листа. В случае применения пакета прокладок они должны быть сварены между собой, пакет приварен к опорной пластине.

Установку ферм и стропильных балок в вертикальной плоскости следует выполнять путем выверки их геометрических осей на опорах относительно вертикали.

Установку панелей наружных и внутренних стен следует производить, опирая их на выверенные относительно монтажного горизонта маяки. Прочность материала, из которого изготовляют маяки, не должна быть выше установленной проектом прочности на сжатие раствора, применяемого для устройства постели.

Отклонения отметок маяков относительно монтажного горизонта не должны превышать \pm 5 мм. При отсутствии в проекте специальных указаний толщина маяков должна составлять 10-30 мм. Между торцом панели после ее выверки и растворной постелью не должно быть щелей.

Выверку панелей наружных стен однорядной разрезки следует производить:

- в плоскости стены - совмещая осевую риску панели в уровне низа с ориентирной риской на перекрытии, вынесенной от разбивочной оси. При наличии в стыках панелей зон компенсации

накопленных погрешностей (при стыковании панелей внахлест в местах устройства лоджий, эркеров и других выступающих или западающих частей здания) выверку можно производить по шаблонам, фиксирующим проектный размер шва между панелями;

- из плоскости стены совмещая нижнюю грань панели с установочными рисками на перекрытии, вынесенными от разбивочных осей;
 - в вертикальной плоскости выверяя внутреннюю грань панели относительно вертикали.

Установку поясных панелей наружных стен каркасных зданий следует производить:

- в плоскости стены симметрично относительно оси пролета между колоннами путем выравнивания расстояний между торцами панели и рисками осей колонн в уровне установки панели;
- из плоскости стены: в уровне низа панели совмещая нижнюю внутреннюю грань устанавливаемой панели с гранью нижестоящей панели; в уровне верха панели совмещая (с помощью шаблона) грань панели с риской оси или гранью колонны.

Выверку простеночных панелей наружных стен каркасных зданий следует производить:

- в плоскости стены совмещая риску оси низа устанавливаемой панели с ориентирной риской, нанесенной на поясной панели;
- из плоскости стены совмещая внутреннюю грань устанавливаемой панели с гранью нижестоящей панели;
- в вертикальной плоскости выверяя внутреннюю и торцевую грани панели относительно вертикали.

Монтаж объемных блоков, в том числе вентиляционных блоков, шахт, лифтов, мусоропроводов, санитарно-технических кабин

При установке вентиляционных блоков необходимо следить за совмещением каналов и тщательностью заполнения горизонтальных швов раствором. Выверку вентиляционных блоков следует выполнять, совмещая оси двух взаимно перпендикулярных граней устанавливаемых блоков в уровне нижнего сечения с рисками осей нижестоящего блока. Относительно вертикальной плоскости блоки следует устанавливать, выверяя плоскости двух взаимно перпендикулярных граней. Стыки вентиляционных каналов блоков следует тщательно очищать от раствора и не допускать попадания его и других посторонних предметов в каналы.

Воздуховоды должны монтироваться вне зависимости от наличия технологического оборудования в соответствии с проектными привязками и отметками. Присоединение воздуховодов к технологическому оборудованию должно производиться после его установки.

Воздуховоды, предназначенные для транспортирования увлажненного воздуха, следует монтировать так, чтобы в нижней части воздуховодов не было продольных швов. Участки воздуховодов, в которых возможно выпадение росы из транспортируемого влажного воздуха, следует прокладывать с уклоном 0,01-0,015 в сторону дренирующих устройств. Прокладки между фланцами воздуховодов не должны выступать внутрь воздуховодов.

Прокладки должны быть изготовлены из следующих материалов:

- поролона, ленточной пористой или монолитной резины толщиной 4-5 мм или полимерного мастичного жгута (ПМЖ) для воздуховодов, по которым перемещаются воздух, пыль или отходы материалов с температурой до 343 К (70 °C);
 - асбестового шнура или асбестового картона с температурой выше 343 К (70 °C);
- кислотостойкой резины или кислотостойкого прокладочного пластика для воздуховодов, по которым перемещается воздух с парами кислот.

Для герметизации бесфланцевых соединений воздуховодов следует применять:

- герметизирующую ленту «Герлен» для воздуховодов, по которым перемещается воздух с температурой до 313 К (40 °C);
 - мастику «Бутепрол» для воздуховодов круглого сечения с температурой до 343 К (70 °C);
- термоусаживающиеся манжеты или ленты для воздуховодов круглого сечения с температурой до 333 K (60 °C) и другие герметизирующие материалы, согласованные в установленном порядке.

Болты во фланцевых соединениях должны быть затянуты, все гайки болтов должны располагаться с одной стороны фланца. При установке болтов вертикально гайки, как правило, должны располагаться с нижней стороны соединения. Крепление воздуховодов следует выполнять в соответствии с рабочей документацией.

Крепления горизонтальных металлических неизолированных воздуховодов (хомуты, подвески, опоры и др.) на бесфланцевом соединении следует устанавливать на расстоянии не более 4 м одно от другого при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения менее 400 мм и на расстоянии не более 3 м одно от другого - при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения 400 мм и более.

Крепления горизонтальных металлических неизолированных воздуховодов на фланцевом соединении круглого сечения диаметром до 2000 мм или прямоугольного сечения при размерах его большей стороны до 2000 мм включительно следует устанавливать на расстоянии не более 6 м одно от другого. Расстояния между креплениями изолированных металлических воздуховодов любых размеров поперечных сечений, а также неизолированных воздуховодов круглого сечения диаметром более 2000 мм или прямоугольного сечения при размерах его большей стороны более 2000 мм должны назначаться рабочей документацией. Хомуты должны плотно охватывать металлические воздуховоды.

Крепления вертикальных металлических воздуховодов следует устанавливать на расстоянии не более 4 м одно от другого.

Чертежи нетиповых креплений должны входить в комплект рабочей документации.

Крепление вертикальных металлических воздуховодов внутри помещений многоэтажных корпусов с высотой этажа до 4 м следует выполнять в междуэтажных перекрытиях.

Крепление вертикальных металлических воздуховодов внутри помещений с высотой этажа более 4 мм на кровле здания должно назначаться проектом (рабочим проектом).

Крепление растяжек и подвесок непосредственно к фланцам воздуховода не допускается. Натяжение регулируемых подвесок должно быть равномерным.

Отклонение воздуховодов от вертикали не должно превышать 2 мм на 1 м длины воздуховода.

Свободно подвешиваемые воздуховоды должны быть расчалены путем установки двойных подвесок через каждые две одинарные подвески при длине подвески от 0,5 до 1,5 м.

При длине подвесок более 1,5 м двойные подвески следует устанавливать через каждую одинарную подвеску.

Воздуховоды должны быть укреплены так, чтобы их вес не передавался на вентиляционное оборудование.

Воздуховоды, как правило, должны присоединяться к вентиляторам через виброизолирующие гибкие вставки из стеклоткани или другого материала, обеспечивающего гибкость, плотность и долговечность.

Виброизолирующие гибкие вставки следует устанавливать непосредственно перед индивидуальными испытаниями.

При монтаже вертикальных воздуховодов из асбестоцементных коробов крепления следует устанавливать через 3-4 м. При монтаже горизонтальных воздуховодов следует устанавливать по два крепления на каждую секцию при муфтовых соединениях и по одному креплению - при раструбных соединениях. Крепление следует выполнять у раструба.

В вертикальных воздуховодах из раструбных коробов верхний короб должен вставляться в раструб нижнего.

Раструбные и муфтовые соединения в соответствии с типовыми технологическими картами следует уплотнять жгутами из пеньковой пряди, смоченными в асбестоцементном растворе с добавкой казеинового клея.

Свободное пространство раструба или муфты следует заполнить асбестоцементной мастикой.

Места соединения после отвердения мастики должны быть оклеены тканью. Ткань должна

плотно прилегать к коробу по всему периметру и должна быть окрашена масляной краской.

Транспортирование и складирование в монтажной зоне асбестоцементных коробов, соединяемых на муфтах, должно производиться в горизонтальном положении, а раструбных - в вертикальном. Фасонные части при перевозке не должны свободно перемещаться, для чего их следует закреплять распорками. При переноске, укладке, погрузке и разгрузке коробов и фасонных частей запрещается бросать их и подвергать ударам.

При изготовлении прямых участков воздуховодов из полимерной пленки допускаются изгибы воздуховодов не более 15°.

Для прохода через ограждающие конструкции воздуховод из полимерной пленки должен иметь металлические вставки.

Воздуховоды из полимерной пленки должны подвешиваться на стальных кольцах из проволоки диаметром 3-4 мм, расположенных на расстоянии не более 2 м одно от другого. Диаметр колец должен быть на 10 % больше диаметра воздуховода. Стальные кольца следует крепить с помощью проволоки или пластины с вырезом к несущему тросу (проволоке) диаметром 4-5 мм, натянутому вдоль оси воздуховода и закрепленному к конструкциям здания через каждые 20-30 м. Для исключения продольных перемещений воздуховода при его наполнении воздухом полимерную пленку следует натянуть до исчезновения провисов между кольцами.

Вентиляторы радиальные на виброоснованиях и на жестком основании, устанавливаемые на фундаменты, должны закрепляться анкерными болтами.

При установке вентиляторов на пружинные виброизоляторы последние должны иметь равномерную осадку. Виброизоляторы к полу крепить не требуется.

При установке вентиляторов на металлоконструкции виброизоляторы следует крепить к ним. Элементы металлоконструкций, к которым крепятся виброизоляторы, должны совпадать в плане с соответствующими элементами рамы вентиляторного агрегата.

При установке на жесткое основание станина вентилятора должна плотно прилегать к звукоизолирующим прокладкам.

Зазоры между кромкой переднего диска рабочего колеса и кромкой входного патрубка радиального вентилятора как в осевом, так и в радиальном направлении не должны превышать 1 % диаметра рабочего колеса.

Валы радиальных вентиляторов должны быть установлены горизонтально (валы крышных вентиляторов - вертикально), вертикальные стенки кожухов центробежных вентиляторов не должны иметь перекосов и наклона.

Прокладки для составных кожухов вентиляторов следует применять из того же материала, что и прокладки для воздуховодов этой системы.

Электродвигатели должны быть точно выверены с установленными вентиляторами и закреплены. Оси шкивов электродвигателей и вентиляторов при ременной передаче должны быть параллельными, а средние линии шкивов должны совпадать. Салазки электродвигателей должны быть взаимно параллельны и установлены по уровню. Опорная поверхность салазок должна соприкасаться по всей плоскости с фундаментом.

Соединительные муфты и ременные передачи следует ограждать.

Всасывающее отверстие вентилятора, не присоединенное к воздуховоду, необходимо защищать металлической сеткой с размером ячейки не более $70 \square 70$ мм.

Фильтрующий материал матерчатых фильтров должен быть натянут без провисов и морщин, а также плотно прилегать к боковым стенкам. При наличии на фильтрующем материале начеса последний должен быть расположен со стороны поступления воздуха.

Воздухонагреватели кондиционеров следует собирать на прокладках из листового и шнурового асбеста. Остальные блоки, камеры и узлы кондиционеров должны собираться на прокладках из ленточной резины толщиной 3-4 мм, поставляемой в комплекте с оборудованием.

Кондиционеры должны быть установлены горизонтально. Стенки камер и блоков не должны иметь вмятин, перекосов и наклонов.

Лопатки клапанов должны свободно (от руки) поворачиваться. При положении «Закрыто» должна быть обеспечена плотность прилегания лопаток к упорам и между собой.

Опоры блоков камер и узлов кондиционеров должны устанавливаться вертикально.

Гибкие воздуховоды следует применять в соответствии с проектом (рабочим проектом) в качестве фасонных частей сложной геометрической формы, а также для присоединения вентиляционного оборудования, воздухораспределителей, шумоглушителей и другихустройств, расположенных в подшивных потолках, камерах.

Завершающей стадией монтажа систем вентиляции и кондиционирования воздуха являются их индивидуальные испытания.

К началу индивидуальных испытаний систем следует закончить общестроительные и отделочные работы по вентиляционным камерам и шахтам, а также закончить монтаж и индивидуальные испытания средств обеспечения (электроснабжения, теплохолодоснабжения и др.). При отсутствии электроснабжения вентиляционных установок и кондиционирования воздуха по постоянной схеме подключение электроэнергии по временной схеме и проверку исправности пусковых устройств осуществляет генеральный подрядчик.

Монтажные и строительные организации при индивидуальных испытаниях должны выполнить следующие работы:

- проверить соответствие фактического исполнения систем вентиляции и кондиционирования воздуха проекту (рабочему проекту) и требованиям настоящего раздела;
- проверить на герметичность участки воздуховода, скрываемые строительными конструкциями, методом аэродинамических испытаний по <u>ГОСТ 12.3.018-79</u>, по результатам проверки на герметичность составить акт освидетельствования скрытых работ по форме обязательного приложения 6 СНиП 3.01.01-85;
- испытать (обкатать) на холостом ходу вентиляционное оборудование, имеющее привод, клапаны и заслонки, с соблюдением требований, предусмотренных техническими условиями заводов-изготовителей.

Продолжительность обкатки принимается по техническим условиям или паспорту испытываемого оборудования. По результатам испытаний (обкатки) вентиляционного оборудования составляется акт.

При регулировке систем вентиляции и кондиционирования воздуха до проектных параметров с учетом требований <u>ГОСТ 12.4.021-75</u>следует выполнить:

- испытание вентиляторов при работе их в сети (определение соответствия фактических характеристик паспортным данным: подачи и давления воздуха, частоты вращения и т. д.);
- проверку равномерности прогрева (охлаждения) теплообменных аппаратов и проверку отсутствия выноса влаги через каплеуловители камер орошения;
- испытание и регулировку систем с целью достижения проектных показателей по расходу воздуха в воздуховодах, местных отсосах, по воздухообмену в помещениях и определение в системах подсосов или потерь воздуха, допустимая величина которых через неплотности в воздуховодах и других элементах систем не должна превышать проектных значений в соответствии со СНиП 2.04.05-85;
 - проверку действия вытяжных устройств естественной вентиляции.

На каждую систему вентиляции и кондиционирования воздуха оформляется паспорт в двух экземплярах.

Отклонения показателей по расходу воздуха от предусмотренных проектом после регулировки и испытания систем вентиляции и кондиционирования воздуха допускаются:

- $\pm~10~\%$ по расходу воздуха, проходящего через воздухораспределительные и воздухоприемные устройства общеобменных установок вентиляции и кондиционирования воздуха при условии обеспечения требуемого подпора (разрежения) воздуха в помещении;
- +10~% по расходу воздуха, удаляемого через местные отсосы и подаваемого через душирующие патрубки.

При комплексном опробовании систем вентиляции и кондиционирования воздуха в состав пусконаладочных работ входят:

- опробование одновременно работающих систем;
- проверка работоспособности систем вентиляции, кондиционирования воздуха и

теплохолодоснабжения при проектных режимах работы с определением соответствия фактических параметров проектным;

- выявление причин, по которым не обеспечиваются проектные режимы работы систем, и принятие мер по их устранению;
 - опробование устройств защиты, блокировки, сигнализации и управления оборудования;
 - замеры уровней звукового давления в расчетных точках.

Комплексное опробование систем осуществляется по программе и графику, разработанным заказчиком или по его поручению наладочной организацией и согласованным с генеральным подрядчиком и монтажной организацией.

Порядок проведения комплексного опробования систем и устранения выявленных дефектов должен соответствовать СНиП III-3-81.

Конструкции шахт лифтов в зависимости от назначения и расположения по высоте шахты подразделяются на следующие типы:

ШЛН - объемные блоки шахт лифтов нижние;

ШЛС - блоки средние;

ШЛВ - блоки верхние;

ПЛ - плиты перекрытия над шахтами лифтов;

ПП - плиты пола приямка шахт лифтов;

ТЛ - тумбы под буферы кабин лифтов.

Объемные блоки шахт лифтов следует монтировать, как правило, с установленными в них кронштейнами для закрепления направляющих кабин и противовесов. Низ объемных блоков необходимо устанавливать по ориентирным рискам, вынесенным на перекрытие от разбивочных осей и соответствующим проектному положению двух взаимно перпендикулярных стен блока (передней и одной из боковых). Относительно вертикальной плоскости блоки следует устанавливать, выверяя грани двух взаимно перпендикулярных стен блока.

Рисунок 1. Схема шахты лифта

1 - плита перекрытия над шахтой лифта; 2 - верхний блок; 3 - чердачное перекрытие; 4 -

средние блоки; 5 - лестничные площадки; 6 - междуэтажные перекрытия; 7 - нижний блок; 8 - тумба под буфер кабины; 9 - плита пола приямка; $H_{\text{эт}}$ - высота этажа здания

Размеры плиты перекрытия по длине и ширине приведены для случая их опирания на верхние блоки со стенками толщиной 100 мм. При другой толщине стенок блоков длина и ширина плиты перекрытия должны быть соответственно изменены. Справочная масса конструкций подсчитана для блоков со стенками толщиной 100 мм и средней плотности железобетона 2500 кг/м 3

На действующем оборудовании, предназначенном для изготовления блоков шахт лифтов грузоподъемностью 320 кг с противовесом сзади кабины, допускается изготовлять до 01.01.91 блоки шахт шириной 1730 мм и глубиной 1580 мм для лифтов грузоподъемностью 400 кг. При этом дверной проем в среднем блоке следует устраивать на одной из длинных сторон блока.

Толщина стенок блоков устанавливается рабочими чертежами на эти блоки. Конструкция плит приямка устанавливается рабочими чертежами конкретных зданий с учетом обязательного опирания этих плит на конструкции нулевого цикла. Допускается устройство плит приямка из монолитного железобетона одновременно с возведением конструкций нулевого цикла, а также предусматривать плиту приямка, объединенную с нижним блоком. В зависимости от принятой конструкции приямка высоту нижнего блока шахт лифтов со скоростью движения 1,6 м/с, допускается изменять.

Верхние блоки могут быть объединены с плитами перекрытий над шахтами.

Номинальную толщину стенок блоков принимают кратной 20 мм.

Конструкция блоков должна предусматривать возможность их фиксации и установки в проектное положение в процессе монтажа, в том числе с помощью инвентарных монтажных приспособлений.

При необходимости устройства технологических уклонов стенок блоков следует предусматривать их только на глухих стенках (без дверного проема). Уклоны следует обеспечивать за счет утолщения стенок в верхнем сечении вовнутрь на величину до 10 мм.

Примечание - В блоках шириной 1730 мм и глубиной 1580 мм для шахт лифтов грузоподъемностью 400 кг, изготовляемых на действующем оборудовании для выпуска блоков шахт лифтов грузоподъемностью 320 кг с противовесом сзади кабины, допускается устройство технологического уклона стенок, где расположены дверные проемы.

Конструкции шахт лифтов следует обозначать в соответствии с требованиями ГОСТ 23009.

Марка конструкций состоит из буквенно-цифровых групп, разделенных дефисами. Первая группа содержит обозначение типа конструкции и ее номинальные размеры в дециметрах (значения которых округляют до целого числа): для блоков - высоту, для плит перекрытий и приямков - длину и ширину, для тумб - высоту. Первую группу, при необходимости, дополняют строчными буквами «пр» - при расположении противовеса с правой стороны кабины. Во второй группе приводят:

- грузоподъемность лифта (в десятках килограммов) для блоков, плит перекрытий, приямков и тумб; блоки, плиты перекрытий и приямков для шахт лифтов грузоподъемностью 400 и 630 кг, имеющие ограниченный срок применения дополнительно обозначают строчной буквой «а»;
 - прописную букву «Л» для конструкций, изготовляемых из легкого бетона.

Примечание - Допускается принимать обозначения марок конструкций шахт в соответствии с рабочими чертежами конструкций до их пересмотра.

Технические требования

- 1. Конструкции шахт лифтов следует изготовлять в соответствии с рабочими чертежами, утвержденным в установленном порядке.
 - 2. Блоки должны быть цельноформованными.
- 3. Конструкции шахт должны удовлетворять установленным при проектировании требованиям по прочности, жесткости и трещиностойкости.

В случаях, предусмотренных рабочими чертежами, блоки должны иметь:

- элементы для фиксации и установки блоков в проектное положение;

- закладные изделия для крепления кронштейнов направляющих кабин и противовесов, а также для крепления дверей шахты; по согласованию с организацией, осуществляющей монтаж лифтов, блоки могут изготовляться без закладных изделий в случае выполнения указанных креплений с помощью болтовых соединений или с применением других решений;
- проемы и отверстия для установки сигнальной и вызывной электроаппаратуры, для аварийного отпирания дверей шахты, а также ниши (или закладные изделия) для установки брусьев под настилы, с которых выполняется монтаж оборудования лифта, и для других устройств.

Нижние блоки должны иметь металлические скобы (под дверным проемом среднего блока первого этажа) для спуска в приямок шахты.

Верхние блоки, предназначаемые для зданий высотой 10 этажей и более, должны иметь проем для воздуховода вентиляционной системы подпора воздуха согласно проекту конкретного здания.

В плитах перекрытия должны быть предусмотрены проемы для пропуска тяговых канатов, канатов ограничителя скорости и электропроводки внутри шахты, закладные изделия для крепления приводных механизмов, а также каналы для скрытой прокладки электропроводки по машинному помещению, закрываемые металлическими крышками, а в плитах приямка закладные изделия для крепления тумб. Тумбы следует изготовлять с закладными изделиями для крепления к плите приямка и установки стаканов буферов.

Для строительства в сейсмических районах и в случаях, требующих усиления монолитности узловых соединений элементов шахт лифтов и зданий, блоки и плиты могут изготовляться с дополнительными закладными изделиями, с выпусками арматуры, шпонками и другими конструктивными деталями для увеличения связи между элементами.

Фактическая прочность бетона конструкций (в проектном возрасте и отпускная) должна соответствовать требуемой, назначаемой по ГОСТ 18105 в зависимости от нормируемой прочности бетона, указанной в рабочих чертежах, и от показателя фактической однородности прочности бетона.

Конструкции шахт следует изготовлять из тяжелого бетона по ГОСТ 26633 или легкого бетона плотной структуры по ГОСТ 25820.

Требования к морозостойкости бетона и к средней плотности легкого бетона конструкций - по ГОСТ 13015.0.

Качество материалов, применяемых для приготовления бетона, должно обеспечивать выполнение технических требований к бетону, установленных настоящим стандартом.

Арматурные и закладные изделия, используемые при строительстве шахт лифтов:

- 1. Форма и размеры арматурных и закладных изделий должны соответствовать указанным в рабочих чертежах конструкций шахт лифтов.
- 2. Сварные арматурные и закладные изделия должны удовлетворять требованиям ГОСТ 10922, а сварные сетки требованиям ГОСТ 23279.
- 3. Арматурные стали должны удовлетворять требованиям государственных стандартов или технических условий на эти стали, утвержденных в установленном порядке.

Для изготовления монтажных петель конструкций следует применять стержневую гладкую горячекатаную арматуру класса A-I марок BCт3пc2 и BCт3сп2 или периодического профиля класса Ac-II марки 10ГТ по ГОСТ 5781.

Сталь марки ВСт3пс2 не допускается применять для монтажных петель, предназначенных для подъема и монтажа конструкций шахт лифтов при температуре ниже минус 40 °C.

Поставку конструкций потребителю следует производить после достижения бетоном требуемой отпускной прочности.

Значение нормируемой отпускной прочности бетона конструкций принимают равным 70% класса или марки бетона по прочности на сжатие. При поставке конструкций в холодный период года значение нормируемой отпускной прочности бетона может быть повышено, но не более 85% класса или марки по прочности на сжатие. Значение нормируемой отпускной прочности бетона следует принимать по проектной документации на конкретное здание в соответствии с

требованиями ГОСТ 13015.0. Поставку конструкций с отпускной прочностью бетона ниже прочности, соответствующей его классу или марке по прочности на сжатие, производят при условии, что изготовитель гарантирует достижение бетоном конструкций требуемой прочности в проектном возрасте, определяемой по результатам испытаний контрольных образцов, изготовленных из бетонной смеси рабочего состава и хранившихся в условиях согласно ГОСТ 18105.

Точность изготовления конструкций

1.Допускается по согласованию с проектной организацией - автором проекта или привязки проекта здания на основе расчета точности по ГОСТ 21780 и учета конкретного конструктивного решения здания и условий его строительства назначать предельные значения отклонений размеров конструкций, отличные от вышеуказанных, в случаях, если эти конструкции изготовляют на предприятиях, входящих в состав комбинатов или объединений, осуществляющих производство конструкций и строительство зданий из них.

- 2. Отклонение положения дверного проема и других проемов, отверстий и ниш в конструкциях от номинального, указанного в рабочих чертежах, не должно превышать 8 мм.
- 3. Отклонение положения фиксирующих монтажных устройств в плоскости верхней и нижней (опорной) граней блоков от номинального не должно превышать 2 мм.
- 4. Отклонение от плоскостности опорной (нижней) грани блока в угловой точке (относительно плоскости, проведенной через три другие угловые точки) не должно превышать 6 мм.
- 5. Отклонение от прямолинейности профиля наружной поверхности блока в любом сечении на всю его длину, ширину и высоту, а также профиля верхней поверхности блока на всю длину каждой его стороны не должно превышать 5 мм.

Требования к толщине защитного слоя бетона, а также предельные отклонения толщины защитного слоя бетона до арматуры - по ГОСТ 13015.0.

Требования к качеству поверхностей и внешнему виду конструкций шахт - по ГОСТ 13015.0. При этом качество бетонных конструкций должно удовлетворять требованиям, установленным для категорий:

- А2 наружных поверхностей блоков, подготовленных под окраску;
- A6 внутренних и торцовых поверхностей блоков, верхних и нижних поверхностей плит перекрытий, верхних и боковых поверхностей тумб, к которым не предъявляют требований по качеству отделки;
 - А7 нелицевых поверхностей конструкций, невидимых в условиях эксплуатации.

По согласованию изготовителя с потребителем подготовленные под окраску наружные поверхности блоков могут быть категории А3.

Открытые поверхности стальных закладных изделий, монтажные петли, а также кромки отверстий, ниш и проемов должны быть очищены от наплывов бетона или раствора.

Требования к защите от коррозии стальных закладных изделий - по ГОСТ 13015.0.

Комплектность поставки конструкций шахт устанавливают по согласованию предприятия-изготовителя с потребителем.

Санитарно-технические кабины надлежит устанавливать на прокладки. При установке кабин канализационный и водопроводный стояки необходимо тщательно совмещать с соответствующими стояками нижерасположенных кабин. Отверстия в панелях перекрытий для пропуска стояков кабин после установки кабин, монтажа стояков и проведения гидравлических испытаний должны быть тщательно заделаны раствором.

Кабины подразделяют на следующие типы:

- СК раздельный санитарный узел (ванная комната и уборная);
- 2CK то же, при длине уборной меньшей ширины кабины (в случае расположения вентиляционных каналов в пределах габаритов кабины);
- 3СК совмещенный санитарный узел (ванна, умывальник и унитаз) с входом в передней стене кабины;
 - 4СК то же, с входом в боковой стене кабины;

5СК - совмещенный санитарный узел (ванна, умывальник, унитаз и трап) с входом в передней стене;

6СК - совмещенный санитарный узел (душевой поддон, умывальник, унитаз и трап) с входом в передней стене;

7СК - уборная с рукомойником;

8СК - то же, без рукомойника.

Кабины всех типов изготовляют в двух вариантах исполнения:

правом - при расположении в санитарных узлах ванны (душевого поддона) справа от унитаза, а в уборных - канализационного стояка справа от унитаза;

левом - при расположении в санитарных узлах ванны (душевого поддона) слева от унитаза, а в уборных - канализационного стояка слева от унитаза.

В кабинах предусматривают устройства, обеспечивающие вентиляцию воздуха. Вентиляцию организуют одним из следующих способов:

- через короб и патрубок, установленный на верхней грани кабины и соединенный с отверстием в вентиляционном блоке (панели);
- через вентиляционные отверстия в стенах кабин, соединенные с отверстиями в вентиляционных блоках (панелях);
- через вентиляционные отверстия в стенах кабин, соединенные с вентиляционным блоком, отформованным совместно с объемным блоком кабины.

Санитарно-техническое и электротехническое оборудование и приборы, устанавливаемые в кабинах, должны соответствовать требованиям государственных стандартов или НТД:

- ванны чугунные эмалированные ГОСТ 18297;
- поддоны душевые чугунные эмалированные ГОСТ 18297;
- умывальники ГОСТ 30493;
- унитазы ГОСТ 30493;
- бачки смывные и арматура к ним ГОСТ 21485, ГОСТ 21485.4, ГОСТ 21485.5;
- трапы чугунные эмалированные ГОСТ 1811;
- рукомойники НТД;
- смесители водоразборные ГОСТ 25809;
- вентили запорные муфтовые;
- полотенцесушители латунные НТД (допускается применение полотенцесушителей из газопроводных труб);
 - патроны резьбовые для электрических ламп;
 - розетки штепсельные двухполюсные ГОСТ 7396.0, 7396.1.

Допускается применять оборудование и приборы других типов, выпускаемые промышленностью по стандартам и техническим условиям.

Корпус ванны должен быть соединен уравнителем электрических потенциалов (электропроводником) с трубами водопровода.

Установка ванн, душевых поддонов, умывальников, рукомойников, унитазов и смывных бачков с поврежденной эмалью и глазурью не допускается.

Узлы трубопроводов горячей и холодной воды должны быть собраны из стальных водогазопроводных оцинкованных труб по ГОСТ 3262 и соединительных фасонных частей из ковкого чугуна по ГОСТ 8943.

Узлы системы канализации должны быть собраны из чугунных труб и соединительных частей к ним по ГОСТ 6942 или пластмассовых труб и соединительных частей к ним по ГОСТ 22689.0 - ГОСТ 22689.2.

Смонтированные трубопроводы холодного и горячего водоснабжения с установленной на них запорной арматурой, а также канализационные трубопроводы без установленных приборов должны быть подвергнуты гидравлическому испытанию до выполнения отделочных работ.

Двери кабин должны удовлетворять требованиям ГОСТ 475 и быть укомплектованы приборами в соответствии со спецификацией в проекте.

Между полотном двери и полом кабины должен быть зазор для вентиляции. В зависимости

от назначения в кабине должны быть установлены присоединенные к трубопроводам ванна, душевой поддон, умывальник, унитаз и смывной бачок, рукомойник, трап, запорная и регулирующая арматура, а также электропатрон, вентиляционная решетка, двери, дверные пружинные защелки, завертки и задвижки.

Допускается по согласованию изготовителя с потребителем кабин включать отдельные виды приборов в состав комплектующих деталей. Комплектующие детали должны быть тщательно подогнаны для установки их в кабины на стройплощадке, упакованы и отгружены вместе с кабиной по приложенной спецификации.

Мусоропровод должен обеспечивать удаление ТБО их жилых и общественных зданий и сооружений, а его противопожарное оборудование должно обеспечивать автоматическое пожаротушение в стволе и мусоросборной камере.

Мусоропроводом оснащаются жилые здания с отметкой пола верхнего этажа от уровня планировочной отметки земли 11,2 м и более, а в жилых домах для престарелых и семей инвалидов соответственно 8,0 м и более. Наличие мусоропровода в общественных зданиях и сооружениях определяется заданием на проектирование исходя из условий образования ТБО. Имеющуюся систему мусороудаления допускается сохранять при надстройке зданий мансардным этажом.

В жилых зданиях ствол мусоропровода, как правило, следует располагать в отапливаемых лестнично-лифтовых узлах. В IV и III Б климатических районах стволы допускается располагаться в неотапливаемых лестничных клетках и соединительных переходах. При этом расположение ствола мусоропровода не должно сужать нормативные значения путей эвакуации людей и препятствовать открыванию и очистке окон, дверей переходных лоджий и др.

Мусоропроводы для зданий, сооружаемых в северной климатической зоне, следует размещать в глубине здания, а мусоросборные камеры - оснащать шлюзовыми входами. При этом шлюз должен иметь габариты, позволяющие разместить в нем расчетное число контейнеров и вытяжную вентиляцию. Двери шлюза в этом случае выполняются: внутренняя - согласно требованиям СП 31-108-2002; внешняя - в соответствии с проектом фасада здания.

Мусоропровод включает ствол, загрузочные клапаны, шибер, противопожарный клапан, очистное устройство со средством автоматического тушения возможного пожара в стволе, вентиляционный узел и мусоросборную камеру, укомплектованную контейнерами и санитарнотехническим оборудованием.

При расположении мусоропровода на промежуточных площадках лестничной клетки загрузочные клапаны допускается размещать через этаж.

В общественных зданиях мусоропроводы должны располагаться в специально выделенных либо подсобных помещениях, имеющих ограниченный доступ.

Расстояние от двери квартиры или комнаты общежития до ближайшего загрузочного клапана мусоропровода не должно превышать 25 м, а в общественных зданиях (от рабочих помещений) - 50 м.

Сбор и удаление отходов в жилых зданиях (с размещением на нижних этажах помещений общественного назначения, через которые мусоропровод проходит транзитом) можно осуществлять с применением компакторов, устанавливаемых на одном или нескольких офисных этажах в специальных помещениях. Брикеты отходов удаляются в этом случае на тележках через грузовые лифты в мусоросборную камеру.

СНиП 3.03.01-87 «Несущие и ограждающие конструкции» п.3.1-3.6, п.3.8-3.31

 $C\Pi$ -50-101-2000 «Проектирование и устройство оснований и фундаментов зданий и сооружений» п.4.11, п. 4.13 – 4.16, п.4.18.

ГОСТ 24476-80 «Фундаменты железобетонные сборные под колоны каркаса межвидового применения для многоэтажных зданий» п.1 - 2.

СП 31-108-2002 «Мусоропроводы жилых и общественных зданий и сооружений» п.4.1 – 4.6, п.4.8 – 4.10.

СНиП 3.05.01-85 «Санитарно-технические системы» п. 3.34-3.56, п. 4.16-4.20.

ГОСТ 1758-82 «Конструкции и изделия железобетонные для шахт лифтов жилых зданий» п.1.1, п.1.3 – п.3.

ГОСТ 18048-80 «Кабины санитарно-технические железобетонные» п.1.1 – 1.2, п.2.13.1 – 2.13.6, п.3.