Bayes Risk Lower Bounds

• Decision rule $\mathfrak{d}: x \mapsto a$ and loss function $L: \theta \times a \mapsto \{0, 1\}$

• Decision rule sees x and outputs some action a

Loss function evaluates how good a is on θ

• Risk = $E_{\theta \sim w}[E_{x \sim \mathcal{P}_{\theta}}L(\theta, \mathfrak{d}(x))]$

Bayes risk is the minimum possible risk

• Null-risk is $\inf E_{\theta \sim w}[L(\theta, a)]$

Bayes Risk Lower Bounds

- Decision rule $\mathfrak{d}: x \mapsto a$ and loss function $L: \theta \times a \mapsto \{0, 1\}$
 - Decision rule sees x and outputs some action a
 - Loss function evaluates how good a is on θ
- Risk = $E_{\theta \sim w}[E_{x \sim \mathcal{P}_{\theta}}L(\theta, \mathfrak{d}(x))]$
- Bayes risk is the minimum possible risk
- . Null-risk is $\inf E_{\theta \sim \mathcal{W}}[L(\theta,a)]$

Bayes Risk Lower Bounds

• Intuitively, if $I(\mathcal{P}, w)$ is small, then Bayes risk should be close to Null risk

Bayes Risk
$$\geq 1 + \frac{I(\mathcal{P}, w) + \log(1 + R_0)}{\log(1 - R_0)}$$