A DEEP LEARNING MODEL FOR MOLECULAR FINGERPRINTING

Mattia Cordioli

DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING

MASTER'S DEGREE IN BIOENGINEERING

Advisor:

PROF. RICCARDO BELLAZZI

Co-advisor:

PROF. BLAŽ ZUPAN

Univerza *v Ljubljani* Fakulteta *za računalništvo in informatik*o

BIO-MEDICAL INFORMATICS

"Mario Stefanelli"

Outline

- Introduction to Chemoinformatics
 - Molecule representation techniques
 - Fingerprints
- A novel approach: Deep Learning fingerprints
 - Convolutional Neural Networks
- Results on different datasets
- Software development
- Conclusions and future developments

Molecular Representations

number

of bonds

0.0000 C

0.0000 0

D 0000 O 0.0000 C

0.0000 0.0000 C

0999

Aspirin - C₉H₈O₄

Standard representations:

- not sig number
- 2D stri of atoms
- molecu
- Molecular
 - connec
 - encode
- Linear not
 - more o
 - useful molecul
 - **SMILE**

the first bond is between atoms 1 and 2 and has order 2

x, y and z coordinates of the atom

O 12

the first three numbers are the

the first atom is a carbon

(=0)0c1ccccc1C(=0)0

11 13 M END

Fingerprints

- SMILES are not enough in Chemoinformatics applications:
 - Similarity and substructure search
 - Virtual screening
 - QSAR and machine learning models
- Fingerprints: binary vectors of fixed length

Substructure keys-based

Topological / Hashed

Deep Learning for Fingerprinting

- Standard fingerprints limits:
 - Necessity of a fragments dictionary for substructure keys-based FPs
 - Topological FPs are usually really long (1024 2048 bits)
 - Binary, not real-valued
 - Not trainable for target-specific tasks
- Novel approach: molecular embedding through Deep Learning
 - Deep Neural Networks learn and abstract powerful representations of input data
- Literature approaches:
 - CNN for molecular graphs convolution
 - CNN applied directly to SMILES strings

Aims of the Thesis

- Development of a deep learning model for molecular fingerprinting:
 - Simple CNN architecture
 - SMILES strings as input

- Creation of a new Chemoinformatics Add-on for Orange:
 - To provide a tool for easily analyse and work with chemistry data
 - Implementation of the model in a tool for molecular embedding
 - Implementation of other useful tools, e.g. molecules visualization

Data Retrieval

- Open chemistry database at NIH
 - ~92 million compounds with information about structure, chemical/physical properties, identifiers, pharmacology, toxicity, patents, ...
- MeSH Ontology terms for pharmacological actions
- PubChemAPI Python library:
 - Programmatic access to PubChem to retrieve data
 - Linking to MeSH Ontology DB to retrieve associated pharmacological actions

Data Preprocessing

- 15 474 compounds retrieved, annotated with 489 terms
 - CID, SMILES, name, formula, MeSH terms + tree numbers
- Preprocessing:
 - Duplicate rows (same SMILES and terms, different names)
 - Terms appearing <20 times
 - Terms with tree number not starting with 'D27.505'
- Final dataset:
 - 9 174 records
 - 191 terms

Embedding Model: CNNs

Convolutional Neural Networks:

- Input data convoluted with kernels to obtain feature maps
- MAX Pooling layers to reduce dimensionality
- Fully connected layers on top
- Dropout to prevent overfitting

Embedding Model: Architecture

smiles

preprocess

input

integer sequence

embedding layer

[64 x 1021]

convolutional layer

filter size [64 x 3] | stride 1 32 filters | ReLU [32 x 1 x 1019]

max-pooling

window size [1 x 2] | stride 2 [32 x 1 x 509]

convolutional layer

filter size [1 x 3] | stride 1 32 filters | ReLU [32 x 1 x 507]

max-pooling

window size [1 x 2] | stride 2 [32 x 1 x 253]

dropout 25%

flatten layer

8 096 | ReLU

fully connected embedded molecule
512 | ReLU [0.28 0 1.2 0.4 .. 0.87]

dropout 50%

output 191 | sigmoid - multi-label

pharma actions
classification

- Keras to design and train the model
- Supervised learning
 - Pharmacological actions multilabel classification
- Penultimate layer activations
 - 512 bits real-valued fingerprint
- Training
 - on the entire dataset
 - GeForce GTX TITAN X GPU
- Model saved to be used as embedder

Validation: CNN Performance

- Assessing CNN performance:
 - 70/30 train/test split
- Metric:
 - Area Under ROC Curve (AUC) for each term separately

Minimum AUC	Maximum AUC	Mean AUC
0.62	0.99	0.87

Comparison: MeSH Terms Prediction

- Comparison with ECFP:
 - Circular/topological fingerprint
 - Standard in QSAR
 - 512-bits version
- Pharmacological Actions prediction:
 - Logistic Regression
 - One-Vs-All approach
 - 10-Fold Cross Validation
 - AUC

Fingerprint	Mean AUC
CNNFP	0.99
ECFP	0.92

- Non-Pharma terms prediction:
 - 1 091 compounds discarded in the preprocessing phase

Fingerprint	Mean AUC
CNNFP	0.83
ECFP	0.92

Comparison: Other QSAR Datasets

- Comparison on datasets obtained from MoleculeNet:
 - Logistic Regression and Random Forest
 - CNNFP, ECFP, CNNFP+ECFP
 - 10-Fold CV AUC

ClinTox:

- **1 491** compounds
- Clinical Trial toxicity
- FDA approval status

Task	Classifier	ECFP	CNNFP	CNNFP+ECFP
CT Toyloity	LR	0.72	0.93	0.95
CT Toxicity	RF	0.74	0.94	0.96
FDA Approval	LR	0.74	0.92	0.95
	RF	0.74	0.94	0.97

Comparison: Other QSAR Datasets - 2

BACE:

- 1 522 β-secretase-1 inhibitors
- Binding results

BBBP:

- **2 000** compounds
- Blood-brain barrier permeability

Dataset	Classifier	ECFP	CNNFP	CNNFP+ECFP
DACE	LR	0.85	0.72	0.81
BACE	RF	0.87	0.79	0.86
BBBP	LR	0.83	0.79	0.85
	RF	0.88	0.89	0.91

Comparison: t-SNE Visualization

Data:

- Compounds related to the 5 most frequent MeSH Terms
- ClinTox
- BACE
- BBBP

t-SNE:

- Non-linear dimensionality reduction
- PCA (100 components) applied before

	Explained Variance		
	ECFP	CNNFP	
MeSH Terms	52%	91%	
ClinTox	65%	90%	
BACE	84%	94%	
BBBP	67%	87%	

Comparison: t-SNE Visualization - 2

Comparison: t-SNE Visualization - 3

Orange

 Machine Learning and Data Mining suite developed by Bioinformatics Lab at University of Ljubljana

Chemoinformatics Add-on

Molecule Embedding Widget

Embedding on Orange server, using Keras and TITAN X GPU

Chemoinformatics Add-on - 2

Molecule Viewer Widget

Conclusions and Future Developments

Conclusions:

- Novel deep learning model for molecular fingerprinting
- Short real-valued fingerprint (512 bits) with high representative power
- Simple architecture, using simple input representation
- Good capability of generalitazion
- Trainable for target specific applications

Future Developments:

- Optimize a tool for pharmacological actions prediction
 - Drug repurposing
- Chemical interpretation of the learned features
- Extension of Chemoinformatics Add-on functionalities

