Random access and massive wireless networks

Philippe Jacquet Nokia Bell Labs

Terminal network interface model

Traffic Poisson model

- Finite population model

$$- \text{ Poisson model traffic } \lambda_i \text{ per slot for node i} \\ - \lambda = \sum_i \lambda_i \text{ eg } \lambda_i = \frac{\lambda}{N} \\ - \text{ Infinite buffer}$$

- Infinite buffer
- Maximum stable capacity
- Infinite population model
 - N=∞
 - Buffer limited to 1 unit.
 - A Poisson generation of node with one packet
 - Maximum stable capacity $\lambda_{max}^{I} \leq \lambda_{max}^{F}$

Why infinite population model is interesting

- When $\lambda < \lambda_{\max}^I$
 - Average delivery delay is finite
 Independent of N

$$E(W) < \infty$$

- When $\lambda_{\max}^{I} \leq \lambda < \lambda_{\max}^{F}$
 - We expect E(W) = O(N)
 - $-\lambda_{\max}^F$ may vary with input repartition
 - Starvation effects
 - Problem when N increases
 - Eg N=10⁶ or larger

ALOHA Performance

- Packet generation over all nodes
 - Poisson process, cumulated rate λ packet per slot
- ALOHA Packet transmission attempt process: Two model cases:
 - infinite population: nodes transmit only one packet and die;
 - Finite population nodes are permanent and manage a queue of packets

$$P(\text{slot is empty}) = e^{-\rho}$$

 $P(\text{slot is success}) = \rho e^{-\rho}$
 $P(\text{slot is collision}) = 1 - (1 + \rho)e^{-\rho}$

— Poisson process, cumulated rate ρ packet per slot

Aloha and infinite population

- Is unstable for all $\lambda > 0$: $\lambda_{\max}^{I} = 0$
 - Take B large number of waiting packets: $P(\text{slot is success}) = (1-p)^{B} \lambda e^{-\lambda} + Bp(1-p)^{B-1} e^{-\lambda} < \lambda$
 - System diverges: B(t) at time t $E(B(t+1) B(t) | B(t) = B) = \lambda P(\text{slot is success})$
 - $-\lambda_{\text{max}}^{I} = 0$ for binary exponential backoff (Ethernet, Wifi)

Aloha and finite population

- N nodes
 - In this case max{B(t)}=N
 - System is stable when B=N and

$$P(\text{slot is success}) = Np(1-p)^{N-1} > \lambda$$

- When $p = O(\frac{1}{N})$

$$P(\text{slot is success}) \approx Np \exp(-Np)$$

And max throughput

$$\lambda_{\text{max}}^F = e^{-1} \approx 0.36787 \cdots$$

Stack collision resolution in infinite population

 Stack algorithm local procedure

```
C←0;
While packet to transmit{
   if (C=0) then {
        transmit;
        if collision then C←rand(0,1)}
   else {
        if listen=collision then C←C+1;
        else C←C-1
}
```

Stack algorithm stability condition

ABC	АВ	-	AB	Α	В	С
	С	AB	С	В	С	
		С		С		

$$\lambda_{\text{max}} \approx 0.360177 \cdots$$

Ternary Stack collision resolution

 Ternary Stack algorithm local procedure

```
C←0;
While packet to transmit{
   if (C=0) then {
        transmit;
        if collision then C←rand(0,1,2)}
   else {
        if listen=collision then C←C+1;
        else C←C-1
}
```

$$\lambda_{\text{max}} \approx 0.401599 \cdots$$

Upper bound on colision resolution algorithms stability

$$p_0 = P(\text{algo returns } 0)$$

$$p_1 = P(\text{algo returns 1})$$

$$\begin{cases} p_0 \lambda e^{-\lambda} + p_1 e^{-\lambda} = \lambda \\ p_0 + p_1 \le 1 \end{cases}$$

$$\lambda_{\text{max}}^{I} \le e^{-\lambda_{\text{max}}^{I}} : \lambda_{\text{max}}^{I} \le 0.56714 \cdots$$
largest known 0.487...

Aloha under small load

- Infinite population with $\lambda << e^{-1}$
- Transmission and retransmission is a Poisson process
 - cumulated rate ρ packet per slot

$$P(\text{slot is empty}) = e^{-\rho}$$

 $P(\text{slot is success}) = \rho e^{-\rho}$
 $P(\text{slot is collision}) = 1 - (1 + \rho)e^{-\rho}$

– Equilibrium equation:

$$\lambda = \rho e^{-\rho}$$

ALOHA in finite population

NOKIA Bell Labs

Protocol CSMA (Wifi)

Mini-slots

Performances of stationary CSMA

- Poisson model:
 - ρ: per mini-slot load
 - L: packet length (in mini-slots)
- Net throughput

$$\frac{L\rho}{1+(e^{\rho}-1)L}$$

$$\max \approx 1 - \sqrt{\frac{2}{L}}$$

RTS-CTS

CSMA/CA performances

 Net throughput with RTS-CTS

$$C_{\text{max}} = \frac{\rho L}{1 + \rho L + (e^{\rho} - 1)R}$$

$$C_{\text{max}} = \frac{1}{1 + \frac{\beta(R)}{L}} \approx 1 - \frac{\beta(R)}{L}$$

Green contention

- Hypothesis: we know an upper bound of the population.
- Quasi channel transparency
 - Delay are sublinear function of N.

Improvement to CSMA: Bursty Preamble transmission

 Each primary transmits sequence of burst before packet transmission

Bursts used to resolve contentions

Access keys

- Divide preamble in mini-slots
 - Binary access pattern of a primary contender
 - « 1 »: contender transmits a burst
 - « 0 »: contender listens the slot
 - Let integer k be the ratio frame/mini-slot (eg k=10)
 - Access keys are constrained (0,k-1) sequences
 - Run of zeros should not exceeds k-1
 - to avoid desynchronisation
 - Sequence of super-alphabet $A_k = \{1,01,001,...,0^{k-1}1\}$

Contention resolution (leader election)

- Contenders set their access keys before slot 1
- On i-th slot
 - surviving contenders with a « 1 » as i-th bit
 - Transmit a burst
 - Surviving contenders with a « 0 » as i-th bit
 - Listen to the slot
 - If burst detected, the contender aborts contention
 - Defer for the next election.

Contention resolution (leader election)

Access keys management

Deterministic:

- The access keys are derived from node ID and are unique (over N nodes)
 - In fact optimal packing with $\log_{\frac{1}{\rho}} N$ super-symbols with $\sum_{i=1}^k \rho^i = 1$
 - P. Jacquet, P. Mu'hlethaler, "Cognitive networks: anew access scheme which introduces a Darwinian approach" Wireless Days, 2012
 Fairness obtained by round robin-like protocol.

Probabilistic:

- The access keys can be probabilistic
- Eg super-symbols are drawn uniformly on A_k
- Residual collision may exist
 - Rate can be made negligible
 - Add to radio loss rate.

Part and try algorithm

Case k=2 is the part and try algorithm

 BS Tsybakov, VA Mikhailov "Random multiple packet access: part-and-try algorithm"
 Problemy Peredachi Informatsii, 1980.

 The winners are those with the largest binary sequence

– Average election duration $\log_k n$

losers

losers

Energy cost issue

- Take the first burst.
 - In average n/2 transmit & collide
 - If n is of order the million (urban area)
 - The flash of the first burst can create of 100 km interference radius
- Further bursts
 - n/4, n/8, etc.
 - Average global energy cost per election is n

Energy cost

- A global energy cost of one million bursts per packet transmission is unacceptable
 - Would run-down batteries in seconds

Energy cost saving (green) leader election algorithm

- Algorithm performs election for n≤N
 - Average duration $k \log_k \log N$ minislot
 - Average global energy cost in $O(\sqrt[k]{N})$
 - N is a maximum network size.
 - Residual collision rate bounded
 - Can be made arbitrary small
 - Example with k=10, N=1,000,000
 - Duration 30 minislots
 - Energy cost 5.5
 - Collision rate less than 1%

green leader election algorithm

Energy cost saving (green) leader election algorithm

- Contender access key computation
 - Access key is made of $L_N = \log_k \log N + O(1)$ super-symbols
 - Say $L_N = 3$
 - Scalar p shared by all nodes
 - Say p = 0.02
 - Every contender selects a random integer X
 - X is geometric with probability rate 1-p

$$P(X \ge m) = (1 - p)^m$$

- The access key is k-ary translation of $\max\{k^{L_N}-X-1.0\}$

Green leader election algorithm

$$X = 372 = 999 - 627$$

access key: $0^6 10^2 10^7 1 = 000000100100000001$

Parameters of the algorithm

Residual collision rate, N=1,000,000

Parameters of the algorithm

Energy cost per election, N=1,000,000

Parameters of the algorithm

Energy cost per successful election,

Extensibility of the Algorithm

Energy cost per successful election for $L_N = 3$, $N = 10^6$, 10^{12} , 10^{18}

Conclusion

- Random access
 - Infinite population model
 - channel transparency
 - Finite population model
 - Packet Delay proportional to N
 - Queues form on node,
 - unfairness and starvation may occur.
- Green collision resolution and leader election
 - Need a known upper bound N of population size
 - Intermediate with channel transparency

 - Packet Delay proportional to loglog N
 Energy per packet proportional to $O(\sqrt[10]{N})$

