Dernière édition : 23 avril 2020 Notes prises par Téofil Adamski

FONCTIONS HOLOMORPHES

(HOLO)

Anna Lenzhen

L3 maths recherche Université de Rennes 1

Chapitre 1 – Dérivabilité complexe		1	Chapitre 2 – Intégration et développement en série en-	
1.1	Définitions	1	TIÈRE	7
1.2	Fonctions harmoniques	2	2.1 Rappels et compléments sur les types de convergence	7
	Fonctions holomorphes		2.2 Intégrales et primitives	10
	•		2.3 Intégrales sur un chemin	11
1.4	Conservation des angles	4	2.4 Développement en séries entières	15
1.5	Applications biholomorphes	5	2.5 Sur le concept d'holomorphie	
1.6	Automorphismes	6	2.6 Théorie des résidus	19

Chapitre 1

DÉRIVABILITÉ COMPLEXE

1.1 Définitions	1	1.4 Conservation des angles	4
1.2 Fonctions harmoniques	2	1.5 Applications biholomorphes	5
1.3 Fonctions holomorphes	3	1.6 Automorphismes	6

1.1 DÉFINITIONS

RAPPEL. Une partie $D \subset \mathbf{C}$ est un ouvert de \mathbf{C} si

$$\forall z_0 \in \mathbb{C}, \ \exists \delta > 0, \quad \{z \in \mathbb{C} \mid |z - z_0| < \delta\} \subset D.$$

DÉFINITION 1.1. Soit D un ouvert de C. On dit qu'une fonction $f: D \to C$ admet $A \in C$ pour limite en $c \in \overline{D}$ si

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall z \in D, \ |z - c| < \delta \implies |f(z) - a| < \varepsilon.$$

On écrit alors $\lim_{z\to c} f(z) = A$ ou $f(z) \to A$ quand $z \to c$.

DÉFINITION 1.2. On dit qu'une fonction $f: D \to \mathbb{C}$ est dérivable ou \mathbb{C} -dérivable en $c \in D$ si

$$\frac{f(z) - f(c)}{z - c}$$

admet une limite quand $z \to c$. Dans ce cas, on note f'(c) cette limite.

 \triangleright EXEMPLES. 1. Les fonctions constantes sont dérivables en tout $c \in \mathbb{C}$.

2. On considère la fonction $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = \overline{z}$ pour tout $z \in \mathbb{C}$. Cette fonction n'est dérivable en aucun point. En effet, soient $z, c \in \mathbb{C}$. Si $z - c \in \mathbb{R}$, alors

$$\frac{f(z) - f(c)}{z - c} = \frac{\overline{z - c}}{z - c} = 1.$$

Si $z - c = ih \in i\mathbf{R}$, alors

$$\frac{f(z)-f(c)}{z-c}=\frac{\overline{z-c}}{z-c}=\frac{-ih}{ih}=-1.$$

Donc le quotient n'admet pas de limite quand $z \rightarrow c$, i. e. la fonction n'est pas dérivable en c.

- 3. Les fonctions $z \mapsto \operatorname{Re} z$, $z \mapsto \operatorname{Im} z$ et $z \mapsto |z|$ ne sont dérivables en aucun point.
- 4. Soit $n \in \mathbb{N}^*$. La fonction $f: z \in \mathbb{C} \longrightarrow z^n \in \mathbb{C}$ est dérivable. En effet, soient $z, c \in \mathbb{C}$. On pose h = z c. On a

$$\frac{f(z) - f(c)}{z - c} = \frac{(c + h)^n - c^n}{h}$$

$$= \frac{1}{h} \left(\sum_{k=0}^n \binom{n}{k} h^k c^{n-k} - c^n \right)$$

$$= \sum_{k=1}^n \binom{n}{k} h^{k-1} c^{n-k} \xrightarrow[z \to c]{} nc^{n-1},$$

donc $f'(c) = nc^{n-1}$.

THÉORÈME 1.3. Soient $f: D \to \mathbb{C}$ et $c \in D$. Si f est dérivable en c, alors f est continue en c.

CONVENTION. Soit $f: D \to \mathbb{C}$. On pose $u := \operatorname{Re} f$ et $v := \operatorname{Im} f$ de sorte que f = u + iv. On peut voir u et v comme des fonctions $\{(x, y) \in \mathbb{R}^2 \mid x + iy \in D\} \to \mathbb{C}$ en utilisant l'isomorphisme

$$\begin{vmatrix} \mathbf{R}^2 \longrightarrow \mathbf{C} \\ (x, y) \longmapsto x + i y \end{vmatrix}$$

PROPOSITION 1.4 *(équations de Cauchy-Riemann)*. Soient $c \in D$ et $f: D \to \mathbf{C}$ dérivable en c. Alors les dérivées partielles de u et v par rapport à x et y existent en c = (a,b) et elles vérifient

$$u_x(c) = v_y(c)$$
 et $u_y(c) = -v_x(c)$.

Preuve On note c = a + ib avec $a, b \in \mathbb{R}$. D'une part, on a

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{u(c+h) + iv(c+h) - u(c) - iv(c)}{h}$$

$$\begin{split} &=\lim_{\substack{h\to 0\\h\in\mathbf{R}}}\frac{u(c+h)-u(c)+i[v(c+h)+v(c)]}{h}\\ &=\lim_{\substack{h\to 0\\h\in\mathbf{R}}}\frac{u(c+h)-u(c)}{h}+i\lim_{\substack{h\to 0\\h\in\mathbf{R}}}\frac{v(c+h)+v(c)}{h}\\ &=u_x(c)+iv_x(c). \end{split}$$

D'autre part, on a

$$\begin{split} f'(c) &= \lim_{h \to 0} \frac{f(c+ih) - f(c)}{ih} = \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{u(c+ih) + iv(c+ih) - u(c) - iv(c)}{ih} \\ &= \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{u(c+ih) - u(c) + i[v(c+ih) + v(c)]}{ih} \\ &= \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{v(c+ih) - v(c)}{h} - i\lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{u(c+ih) + u(c)}{h} \\ &= v_v(c) - iu_v(c). \end{split}$$

LEMME 1.5 (lien avec la différentiabilité). Soit $A := (a_{i,j})_{1 \le i,j \le 2} \in \mathcal{M}_2(\mathbf{R})$. Alors cette matrice A définit une application \mathbf{R} -linéaire $T: \mathbf{C} \to \mathbf{C}$ telle que

$$\forall x, y \in \mathbf{R}, \quad T(x+iy) = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = a_{1,1}x + a_{1,2}y + i(a_{2,1}x + a_{2,2}y).$$

Alors l'application T est **C**-linéaire si et seulement si $a_{1,1} = a_{2,2}$ et $a_{1,2} = -a_{2,1}$.

Preuve On suppose que T est ${\bf C}$ -linéaire. Alors pour tous $c,z\in {\bf C}$, on a T(cz)=cT(z). En particulier, pour c=i et z=1, on a T(i)=iT(1), donc $a_{1,2}+ia_{2,2}=ia_{1,1}-a_{2,1}$, donc $a_{1,1}=a_{2,2}$ et $a_{1,2}=-a_{2,1}$.

Réciproquement, on suppose que $\alpha := a_{1,1} = a_{2,2}$ et $\beta := a_{1,2} = -a_{2,1}$. Pour tous $x, y \in \mathbf{R}$, on a

$$T(x+iy) = \alpha x - \beta y + i(\beta x + \alpha y) = (\alpha + i\beta)(x+iy),$$

i. e. l'application T est C-linéaire.

♦ REMARQUE. On rappel que, si f = (u, v): $D \rightarrow \mathbf{C}$ est différentiable en $c \in \mathbf{C}$, alors sa différentielle en c s'écrit

$$\forall h \in \mathbf{C}, \quad df(c)(h) = \begin{pmatrix} u_x(c) & u_y(c) \\ v_x(c) & v_y(x) \end{pmatrix} h$$

en identifiant matrice et application linéaire. En prenant $\mathbf{C} \simeq \mathbf{R}^2$, si f est dérivable en $c = a + ib \in \mathbf{C}$, alors

$$\lim_{h\to 0}\frac{f(c+h)-f(c)-f'(c)h}{h}=0,$$

alors la fonction f vue comme une fonction de deux variables est différentiable et sa différentielle est C-linéaire.

THÉORÈME 1.6. Soit $f: D \rightarrow \mathbb{C}$. Alors les propositions suivantes sont équivalentes :

- (i) la fonction f est **C**-dérivable en $c \in D$;
- (ii) la fonction f est différentiable en c et la différentielle df(c) est \mathbf{C} -linéaire;
- (iii) la fonction f est différentiable en c et satisfait les équations de CAUCHY-RIEMANN.

THÉORÈME 1.7. Soient $D \subset \mathbb{R}^2$ et $u, v \colon D \to \mathbb{R}$. Si les fonctions u et v possèdent des dérivées partielles continues et vérifient les équations $u_x = v_y$ et $u_y = -iv_x$, alors la fonction u + iv est \mathbb{C} -dérivable en tout point de $D \subset \mathbb{C}$.

- EXEMPLES. On note $f: z \in \mathbf{C} \longrightarrow x^5 y^2 + i x^2 y^2$. Soit $(x, y) \in \mathbf{R}^2$ tel que f soit \mathbf{C} -dérivable en (x, y). Alors l'équation $u_x(x, y) = v_y(x, y)$ est vérifiée. L'équation $u_y(x, y) = -v_x(x, y)$ donne $2x^3y = -2xy^3$, donc x = 0 ou y = 0. On en déduit que f est \mathbf{C} -dérivable sur $\{z \in \mathbf{C} \mid \text{Re } z = 0 \text{ ou Im } z = 0\}$.
 - La fonction z ∈ \mathbf{C} \longrightarrow e^z vérifie bien les équations de CAUCHY-RIEMANN, donc elle est \mathbf{C} -dérivable sur \mathbf{C} .

1.2 FONCTIONS HARMONIQUES

DÉFINITION 1.8. Une fonction $u: D \subset \mathbb{R}^2 \to \mathbb{R}$ est harmonique si elle satisfait l'équation de LAPLACE

$$u_{xx} + u_{yy} = 0.$$

♦ REMARQUE. Soit $f: D \to \mathbf{C}$ une fonction \mathbf{C} -dérivable. Alors $u_x = v_y$ et $u_y = -v_x$. On suppose que les dérivées partielles secondes de u et v existent et sont continues. Alors u et v sont harmoniques. En effet, il suffit de calculer les dérivées secondes et d'utiliser le théorème de SCHWARZ.

EXERCICE 1.1. Montrons qu'il existe une fonction C-dérivable $f: C \to C$ tel que u = Re f.

1.3 FONCTIONS HOLOMORPHES

DÉFINITION 1.9. Soit D un ouvert de C. Une fonction $f: D \to C$ est *holomorphe* en un point $c \in D$ si elle est C-dérivable sur un voisinage de c. Elle est holomorphe sur D si elle est holomorphe en tout point de D.

NOTATION. On note H(D) l'ensemble des fonctions holomorphes sur D.

► EXEMPLE. La fonction $f: z \in \mathbb{C} \longrightarrow x^3y^2 + ix^2y^3$ n'est holomorphe en aucun point.

PROPOSITION 1.10. Soient $f, g: D \rightarrow \mathbb{C}$ holomorphes et $\alpha \in \mathbb{C}$. Alors

- 1. la fonction $\alpha f + g$ est holomorphe et $(\alpha f + g)' = \alpha f' + g'$;
- 2. la fonction fg est holomorphe et (fg)' = f'g + fg';
- 3. si g ne s'annule pas, alors la fonction f/g est holomorphe et $(f/g)' = (f'g fg')/g^2$;
- 4. si $f(D) \subset D'$ avec $g: D' \to \mathbb{C}$ holomorphe, alors la fonction $g \circ f$ est holomorphe et $(g \circ f)' = (g' \circ f) \times f'$.

THÉORÈME 1.11. Soit $f: D \to \mathbb{C}$. Alors f est holomorphe et f' = 0 si et seulement si f est localement constante.

Preuve Le sens réciproque est évident. On suppose que f est holomorphe et f = 0. Alors $u_x = v_y = 0$ et $u_y = -v_x = 0$, donc $u_x = u_y = 0$ et $v_x = v_y = 0$, donc $u_x = v_y = 0$, donc $u_y =$

LEMME 1.12. On reprend l'application *T* de la page précédente, *i. e.*

$$T: \begin{vmatrix} \mathbf{C} \longrightarrow \mathbf{C}, \\ h \longmapsto \begin{pmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \end{pmatrix} \begin{pmatrix} \operatorname{Re} h \\ \operatorname{Im} h \end{pmatrix}.$$

Alors il existe $\lambda, \mu \in \mathbb{C}$ tel que $T(h) = \lambda h + \mu \overline{h}$ pour tout $h \in \mathbb{C}$.

Preuve On pose

$$\mu \coloneqq \frac{1}{2}[T(1) + i\,T(i)] \quad \text{et} \quad \lambda \coloneqq \frac{1}{2}[T(i) - i\,T(i)]$$

et on vérifie que ces deux complexes fonctionnent.

DÉFINITION 1.13. Soit $f: D \to \mathbb{C}$ différentiable en $c \in D$. Pour $h \in \mathbb{C}$, on pose

$$Tf(i)(h) := \begin{pmatrix} u_x(c) & u_y(c) \\ v_x(x) & v_y(c) \end{pmatrix} \begin{pmatrix} \operatorname{Re} h \\ \operatorname{Im} h \end{pmatrix}.$$

On définit

$$\begin{split} f_x(c) &\coloneqq Tf(c)(1) = u_x(c) + iv_x(c), \\ f_y(c) &\coloneqq Tf(c)(i) = u_y(c) + iv_y(c), \\ f_z(c) &\coloneqq \lambda = \frac{1}{2}[f_x(c) - if_y(c)], \\ f_{\overline{z}}(c) &\coloneqq \mu = \frac{1}{2}[f_x(c) + if_y(x)]. \end{split}$$

Avec ces nouvelles notations, les équations de CAUCHY-RIEMANN deviennent

$$i f_x = f_v$$
.

Théorème 1.14. Soit $f: D \to \mathbb{C}$ différentiable. Alors f est holomorphe si et seulement si

$$f_{\overline{z}}(c) = 0, \quad \forall c \in D.$$

 \diamond Remarque. La fonction $\overline{f} = u - iv$ est holomorphe si et seulement si $u_x = -v_y$ et $u_y = v_x$ si et seulement si

$$f_z = \frac{1}{2}(f_x - if_y)$$

$$= \frac{1}{2}(u_v + iv_x - i[u_y + iv_y])$$

= $\frac{1}{2}(u_x + v_y + i[v_y - u_y]) = 0.$

EXERCICE 1.2. Montrer que $\overline{f}'(c) = \overline{f_{\overline{z}}}(c)$.

1.4 Conservation des angles

Pour $w, z \in \mathbb{C}$, on pose

 $\langle w, z \rangle := \operatorname{Re} x \operatorname{Re} z + \operatorname{Im} w \operatorname{Im} z \leq |w||z|.$

Alors l'angle φ entre z et w vérifie

$$\cos \varphi = \frac{\langle w, z \rangle}{|z| |w|}.$$

Une application **R**-linéaire $T: C \rightarrow \mathbf{R}$ converse les angles si

$$\frac{\langle T(w), T(z) \rangle}{|T(w)||T(z)|} = \frac{\langle w, z \rangle}{|z||w|}, \quad \forall w, z \in \mathbf{C}.$$

On rappel que T peut s'écrire $T(z) = \lambda z + \mu \overline{z}$ pour tout $z \in \mathbb{C}$.

LEMME 1.15. Alors T conserve les angles si et seulement si $(\lambda \neq 0 \text{ et } \mu = 0)$ ou $(\lambda = 0 \text{ et } \mu \neq 0)$.

Preuve Pour tous $w, z \in \mathbb{C}$, on a

$$\begin{split} \langle T(z), T(w) \rangle &= \operatorname{Re}(T(z) \overline{T(w)}) \\ &= \operatorname{Re}((\lambda z + \mu \overline{z}) (\overline{\lambda} \overline{w} + \overline{\mu} w)) \\ &= (|\lambda|^2 + |\mu|^2) \operatorname{Re}(z\overline{w}) + 2 \operatorname{Re}(\lambda \overline{\mu} w z) \\ &= (|\lambda|^2 + |\mu|^2) \langle z, w \rangle + 2 \operatorname{Re}(\lambda \overline{\mu} w z). \end{split}$$

On suppose que T conserve les angles. Alors pour z = 1 et w = i, on a

$$\frac{\langle T(1), T(i) \rangle}{|T(1)||T(i)|} = 0,$$

donc $\langle T(1), T(i) \rangle = 0$, donc $\text{Re}(\lambda \overline{\mu} 1 i) = 0$, donc λ et $\overline{\mu}$ appartient à \mathbf{R} . De même, pour z = 1 + i et w = 1 - i, on a $\text{Re}(\lambda \overline{\mu} (1 + i) (1 - i)) = 0$, donc $\text{Re}(\lambda \overline{\mu}) = 0$, donc $\lambda \overline{\mu} \in i\mathbf{R}$. On en déduit que $\lambda \overline{\mu} = 0$, donc $\lambda = 0$ ou $\mu = 0$. Les deux complexes λ et μ ne peuvent être égaux à 0.

Réciproquement, on vérifie que T conserve bien les angles.

DÉFINITION 1.16. On dit qu'une fonction $f: D \to \mathbb{C}$ conserve les angles en un point $c \in D$ si elle est différentiable en c et si sa différentielle df(c) conserve les angles.

PROPOSITION 1.17. 1. Si f est C-dérivable et f' ne s'annule pas, alors f conserve les angles.

2. Si \overline{f} est C-dérivable et \overline{f}' ne s'annule pas, alors f conserve les angles.

DÉFINITION 1.18. On dit qu'une fonction $f: D \to C$ est *anti-holomorphe* si \overline{f} est holomorphe.

THÉORÈME 1.19. Soient D un ouvert connexe de \mathbf{C} et $f: D \to \mathbf{C}$. On suppose que u_x , u_y , v_x et v_y existent et sont continues. Alors les propositions suivantes sont équivalentes :

- (i) f est holomorphe sur D et f' ne s'annule pas ou f est anti-holomorphe sur D et \overline{f}' ne s'annule;
- (ii) f conserve les angles sur D.

Preuve Le sens direct vient de la proposition précédente. Réciproquement, on suppose que f conserve les angles. On considère

$$g(x) := \frac{f_z(c) - f_{\overline{z}}(c)}{f_z(c) + f_{\overline{z}}(c)} = \begin{cases} 1 & \text{si } f_{\overline{z}}(c) = 0, \\ 0 & \text{si } f_z(c) = 0. \end{cases}$$

Comme g est continue et D est un connexe, on a g = 1 ou g = -1. Donc f converge les angles.

Soient $f: D \to \mathbf{C}$ différentiable, $\gamma: [a,b] \to \mathbf{C}$ et $t_0 \in [a,b]$. On pose $c := \gamma(t_0)$ et on note $\gamma = x + iy$ où les fonctions x et y sont à valeurs réelles. Alors γ est différentiable en t_0 si et seulement si $x'(t_0)$ et $y'(t_0)$ existent. Dans ce cas, on a $\gamma'(t_0) = x'(t_0) + iy'(t_0)$. On considère la composée

$$f \circ \gamma$$
: $\begin{vmatrix} [a,b] \longrightarrow \mathbf{C}, \\ t \longmapsto u(x(t),y(t)) + i v(x(t),y(t)). \end{vmatrix}$

Alors

$$(f \circ \gamma)'(t_0) = u_x(c)x'(t_0) + u_y(x)y'(t_0) + i(v_x(c)x'(t_0) + v_y(c)y'(t_0))$$

$$= \begin{pmatrix} u_x(c) & u_y(c) \\ v_x(c) & v_y(c) \end{pmatrix} \begin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix} = Tf(c)(\gamma(t_0)).$$

Maintenant, on considère deux chemins différentiables γ_1 et γ_2 tel que $\gamma_1(t_0) = \gamma_2(t_0) = c$. On définit l'angle entre γ_1 et γ_2 comme la quantité $\langle \gamma_1'(t_0), \gamma_2'(t_0) \rangle$.

PROPOSITION 1.20. Si f est holomorphe en c et $f'(c) \neq 0$ ou \overline{f} est holomorphe en c avec $\overline{f}'(c) \neq 0$, alors l'angle entre γ_1 et γ_2 en c et l'angle entre $f(\gamma_1)$ et $f(\gamma_2)$ en c sont égaux.

1.5 APPLICATIONS BIHOLOMORPHES

DÉFINITION 1.21. Une application $f \in H(D)$ est dite *biholomorphe* de D dans D' := f(D) si D' est un ouvert et f est une bijection dont la bijection réciproque appartient à H(D').

Matrices de $\mathcal{M}_2(\mathbf{C})$ et applications biholomorphes. Soit

$$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbf{C})$$

avec $(c,d) \neq (0,0)$. Si $c \neq 0$, alors cette matrice définit une application

$$h_A: \begin{vmatrix} \mathbf{C} \setminus \{-d/c\} \longrightarrow \mathbf{C}, \\ z \longmapsto \frac{az+b}{cz+d}. \end{vmatrix}$$

Dans ce cas, la fonction h_A est holomorphe et, pour tout $z \in \mathbf{C}$, on a

$$h'_A(z) = \frac{ad - bc}{(cz + d)^2}.$$

Alors la fonction h_A est constante si et seulement si det A = 0.

- ♦ REMARQUES. On considère maintenant que $A \in GL_2(\mathbb{C})$. Alors $h_A = \operatorname{Id}$ si et seulement si $cz^2 + z(d-a) + b = 0$ si et seulement si c = b = 0 et d = a, i. e. la matrice A est un homothétie.
 - Soient A, B ∈ GL_2 (\mathbb{C}). Alors $h_{AB} = h_A \circ h_B$.
 - Si c = 0, alors

$$\forall z \in \mathbf{C}, \quad h_A(z) = \frac{a}{d}z + \frac{b}{d},$$

donc h_A est biholomorphe. On suppose que $c \neq 0$. On a

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

donc h_A : $\mathbb{C} \setminus \{-a/c\} \to \mathbb{C} \setminus \{a/c\}$ est biholomorphe.

► EXEMPLE. On note

$$H := \{z \in \mathbb{C} \mid \text{Im } z > 0\}$$
 et $E := \{z \in \mathbb{C} \mid |z| < 1\}$.

Montrons qu'il existe une application biholomorphe de H vers E. On considère la matrice

$$A := \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}.$$

Alors l'application $h_A: z \longmapsto (z-i)/(z+i)$ est holomorphe sur $\mathbb{C} \setminus \{-i\}$. Calculons $h_A(H)$. Soit $z := x+iy \in H$ avec $x, y \in \mathbb{R}$. Alors

$$h_A(z) = \frac{x + i(y - 1)}{x + i(y + 1)}, \quad \text{donc} \quad |h_A(z)|^2 = \frac{x^2 + (y - 1)^2}{x^2 + (y + 1)^2}.$$

Or y > 0, donc |y-1| < |y+1|. D'où $|h_A(z)|^2 < 1$ et $h_A(z) \in E$. Ainsi l'application h_A est holomorphe et bijective de H dans E. Comme

$$A^{-1} = \frac{1}{2i} \begin{pmatrix} i & i \\ -1 & 1 \end{pmatrix},$$

on a

$$h_{A^{-1}}\colon z\longmapsto \frac{iz+i}{-z+1}.$$

Alors l'application $h_{A^{-1}}$ est holomorphe sur $\mathbb{C} \setminus \{1\}$. Calculons $h_{A^{-1}}(E)$. Soit $z := x + iy \in E$ avec $x, y \in \mathbb{R}$. Alors

$$h_{A^{-1}}(y) = \frac{i(x+iy)+i}{-(x+iy)+1} = \frac{-2y-i(x^2+y^2-1)}{(x-1)^2+y^2},$$

donc $\operatorname{Im} h_{A^{-1}}(z) < 0$. D'où $h_{A^{-1}}(E) \subset H$. On a donc $\operatorname{Id}_E = h_A \circ h_{A^{-1}}$ et $\operatorname{Id}_H = h_{A^{-1}} \circ h_A$. On en déduit que l'application $h_A \colon H \to E$ est biholomorphe, appelée application de CAYLEY.

1.6 AUTOMORPHISMES

DÉFINITION 1.22. Soit D un ouvert de C. Une application biholomorphe $f: D \to D$ est appelée un *automorphisme* de D. On note Aut(D) l'ensemble des automorphismes de D. Alors $(Aut(D), \circ)$ est un groupe.

- ▶ EXEMPLES. Toute application de la forme $z \mapsto az + b$ avec $a \in \mathbb{C}^{\times}$ est un automorphisme de \mathbb{C} . Plus tard, on va même montrer que les automorphismes de \mathbb{C} sont exactement de cette forme.
 - Que vaut Aut(H)? On considère A ∈ $GL_2(\mathbf{R})$ telle que det A > 0. Soit z ∈ \mathbf{C} . Après calculs, on a

$$\operatorname{Im} h_A(z)=\operatorname{Im} \frac{az+b}{cz+d}=\frac{ady-bcy}{(cx+d)^2+(cy)^2}>0,$$

donc $h_A(z) \in H$. On en déduit que h_A est un automorphisme de H.

– Que vaut Aut(*E*)? On peut montrer que, si f: D → D' est biholomorphe, alors

$$\forall g \in \text{Aut}(D), \quad f \circ g \circ f^{-1} \in \text{Aut}(D).$$

On considère

$$h: \begin{vmatrix} H \longrightarrow E, \\ z \longmapsto (z-i)/(z+i). \end{vmatrix}$$

Soit $A \in GL_2(\mathbf{R})$ telle que det A > 0. D'après ce qui précède, on a $h_A \in Aut(H)$. Alors $g := h \circ h_A \circ h^{-1} \in Aut(E)$.

Chapitre 2

Intégration et développement en série entière

2.1 Rappels et compléments sur les types de convergence		7	2.5 Sur le concept d'holomorphie	17
2.1.1 Définitions et premières propriétés		7	2.5.1 Formule de GUTZMER, principe du maximum et un théo-	
2.1.2 Critères de convergence		7	rème de Liouville	17
2.1.3 Séries entières		7	2.5.2 Théorème de Weierstrass	18
2.1.4 Holomorphie des séries entières		8	2.5.3 Théorème de l'application ouverte	19
2.1.5 Exemples fondamentaux		9	2.6 Théorie des résidus	19
2.2 Intégrales et primitives		10	2.6.1 Notion de singularité et premiers théorèmes	19
2.3 Intégrales sur un chemin		11	2.6.2 Singularités essentielles	21
2.3.1 Définitions et premières propriétés		11	2.6.3 Théorème fondamental de l'algèbre	21
2.3.2 Théorème de CAUCHY		12	2.6.4 Logarithmes d'applications holomorphes	22
2.4 Développement en séries entières		15	2.6.5 Résidus	24
			2.6.6 Comptage des zéros et des pôles	25

2.1 RAPPELS ET COMPLÉMENTS SUR LES TYPES DE CONVERGENCE

2.1 Définitions et premières propriétés

DÉFINITION 2.1. Une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions de X dans \mathbb{C} converge localement uniformément sur X si, pour tout $x \in X$, il existe un voisinage U_x de x dans X tel que la suite converge uniformément sur U_x .

THÉORÈME 2.2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de $\mathscr{C}(X)$. Si elle converge localement uniformément dans X vers f, alors f est continue. Si $\sum f_n$ converge localement uniformément sur X vers f, alors sa somme est continue sur X

LEMME 2.3. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} qui converge localement uniformément dans X. Alors elle converge uniformément sur tout compact de X.

Preuve Il suffit d'appliquer la caractérisation de BOREL-LEBESGUE des compacts et d'étudier la convergence de la suite sur des boules bien choisies. □

DÉFINITION 2.4. Une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions de X dans \mathbb{C} converge compactement sur X si, pour tout compact K de X, elle converge uniformément sur K.

♦ REMARQUE. Le lemme assure alors que la convergence localement uniforme implique la converge compactement. On peut montrer que la réciproque est vraie si *X* est localement compact.

2.1 Critères de convergence

Théorème 2.5 *(critère de* Cauchy). Soient $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} et $A \subset X$ une partie non vide. Alors les propositions suivantes sont équivalentes :

- (i) la suite converge uniformément dans A,
- (ii) la suite est de CAUCHY dans A.

PROPOSITION 2.6 *(critère de* WEIERSTRASS). Soient $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} et $A \subset X$ une partie non vide. S'il existe une suite $(M_n)_{n \in \mathbb{N}}$ de réels positifs tel que $||f_n||_A \leq M_n$ pour tout $n \in \mathbb{N}$ et $\sum_{n=0}^{+\infty} M_n < +\infty$, alors la série $\sum f_n$ converge uniformément sur A.

DÉFINITION 2.7. Une série $\sum f_n$ de fonctions de X dans \mathbf{C} converge normalement sur X si, pour tout $z \in X$, il existe un voisinage U_z de z dans X tel que $\sum_{n=0}^{+\infty} \|f_n\|_{U_z} < +\infty$.

PROPOSITION 2.8. La convergence normale d'une série de fonctions implique sa convergence localement uniforme.

THÉORÈME 2.9. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de $\mathscr{C}(X)$. Si $\sum f_n$ converge normalement, alors sa somme est continue sur X.

PROPOSITION 2.10. Soit $\sum f_n$ une série de fonctions de X dans \mathbf{C} qui converge normalement vers $f: X \to \mathbf{C}$. Alors pour toute extraction $\tau: \mathbf{N} \to \mathbf{N}$, la série $\sum f_{\tau(n)}$ converge normalement et sa somme est f.

2.1 Séries entières

LEMME 2.11 (ABEL). Soit $\sum a_n z^n$ une série entière. On suppose qu'il existe s, M > 0 tels que $|a_n| s^n \le M$ pour tout $n \in \mathbb{N}$. Alors la série $\sum a_n z^n$ converge normalement sur B(0, s).

Preuve Soit $r \in]0$, s[. Alors pour tout $n \in \mathbb{N}$, on a

$$\|a_n z^n\|_{\mathrm{B}(0,r)} \le |a_n| r^n = |a_n| s^n \left(\frac{r}{s}\right)^n \le M \left(\frac{r}{s}\right)^n.$$

Or la série $\sum (r/s)^n$ converge, donc la série $\sum a_n z^n$ converge normalement sur B(0, r) et ceci pour tout $r \in]0$, s[. On en déduit que la série $\sum a_n z^n$ converge normalement sur toute la boule B(0, s).

COROLLAIRE 2.12. Si une série entière $\sum a_n z^n$ converge en un point $c \in \mathbb{C}^{\times}$, alors elle converge normalement sur $\mathrm{B}(0,|c|)$.

DÉFINITION-PROPOSITION 2.13. Soit $\sum a_n z^n$ une série entière. On pose

$$R := \sup\{t \ge 0 \mid \sup_{n \in \mathbb{N}} |a_n t^n| < +\infty\}$$

son rayon de convergence. Alors

- 1. la série entière converge normalement sur B(0, R);
- 2. la série entière ne converge pas dans $\mathbf{C} \mathbf{B}_{\mathbf{f}}(0, R)$.

THÉORÈME 2.14 (CAUCHY-HADAMARD). Le rayon de convergence d'une série entière $\sum a_n z^n$ est

$$[\limsup_{n\to+\infty}|a_n|^{1/n}]^{-1}$$

THÉORÈME 2.15. Soit $\sum a_n(z-z_0)^n$ une série entière de rayon de convergence R. On suppose qu'il existe $N \in \mathbb{N}$ tel que $a_n \neq 0$ pour tout $n \geq N$. Alors

$$\liminf_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|} \le R \le \limsup_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}.$$

2.1 Holomorphie des séries entières

THÉORÈME 2.16. Soit $\sum a_n(z-z_0)^n$ une série entière de rayon de convergence R. Alors les séries

$$\sum_{n\geq 1} a_n n(z-z_0)^{n-1} \quad \text{et} \quad \sum_{n\geq 1} \frac{a_n}{n+1} (z-z_0)^{n+1}$$

ont un rayon de convergence égal à R.

Preuve On note $R_1 \ge 0$ le rayon de convergence de la série entière $\sum_{n\ge 1} a_n n(z-z_0)^{n-1}$. On a $R \ge R_1$. Montrons l'inégalité réciproque. Il suffit de montrer que, pour tout r < R, on a $r \le R_1$. Soit $r \in]0, R[$. On considère $s \in]r, R[$. Alors la suite $(|a_n|s^n)_{n \in \mathbb{N}}$ est bornée, donc la suite $(|a_n|nr^{n-1})_{n \in \mathbb{N}}$ est bornée car

$$\forall n \in \mathbb{N}, \quad |a_n| n r^{n-1} = |a_n| s^n \left(\frac{r}{s}\right)^n \frac{n}{r}.$$

Donc $r \le R_1$. On conclut alors que R = R'

THÉORÈME 2.17. Soit $\sum a_n(z-z_0)^n$ une série entière de rayon de convergence R>0. Alors la fonction

$$f: \begin{vmatrix} B(z_0, R) \longrightarrow \mathbf{C}, \\ z \longmapsto \sum_{n=0}^{+\infty} a_n (z - z_0)^n \end{vmatrix}$$

est infiniment C-dérivable. En particulier, elle est holomorphe. De plus, on a

$$\forall k \in \mathbb{N}, \ \forall z \in B(z_0, R), \quad f^{(k)}(z) = \sum_{n=k}^{+\infty} k! \binom{n}{k} a_n (z - z_0)^{n-k}.$$

Preuve Montrons le théorème dans le cas k = 1 et $z_0 = 0$. On considère la fonction

$$g: \begin{vmatrix} B(0,R) \longrightarrow \mathbf{C}, \\ z \longmapsto \sum_{n=1}^{+\infty} n a_n z^{n-1}. \end{vmatrix}$$

Cette fonction est bien définie d'après le théorème précédent. Montrons que g = f'. Soit $b \in B(0, R)$. Alors pour tout $z \in B(0, R)$, on a

$$f(z) - f(b) = \sum_{n=0}^{+\infty} a_n (z^n - b^n) = \sum_{n=0}^{+\infty} a_n (z - b) (z^{n-1} + z^{n-2}b + \dots + b^{n-1}),$$

donc

$$\frac{f(z) - f(b)}{z - b} = \sum_{n=0}^{+\infty} f_n(z) \quad \text{avec} \quad f_n(z) := a_n(z^{n-1} + z^{n-2}b + \dots + b^{n-1}),$$

Il suffit de montrer que le membre de droite est continue en b. Les fonctions f_n sont continues. Soit $r \in]0, R[$. De plus, pour tous $z \in B(0, r)$ et $n \in \mathbb{N}$, on a

$$|f_n(z)| \le |a_n| \sum_{k=0}^{n-1} |z^n b^{n-1-k}| \le n |a_n| r^{n-1}, \text{ donc } ||f_n||_{\mathcal{B}(0,r)} \le n |a_n| r^{n-1}.$$

La série $\sum n|a_n|r^{n-1}$ converge, donc la série $\sum f_n$ converge normalement. On en déduit que la fonction $\sum_{n=0}^{+\infty} f_n$ est continue. Par conséquent, on a

$$\sum_{n=0}^{+\infty} f_n(z) \xrightarrow[z \to b]{} \sum_{n=0}^{+\infty} f_n(b) = g(b) \quad \text{et} \quad \frac{f(a) - f(b)}{z - b} \xrightarrow[z \to b]{} f'(b).$$

Par unicité de la limite, on a f'(b) = g(b).

2.1 Exemples fondamentaux

(i) Exponentielle

La fonction exp: $\mathbf{C} \to \mathbf{C}$ est une somme de série entière de rayon de convergence infini. Par conséquent, elle est infiniment dérivable et holomorphe sur \mathbf{C} . En particulier, pour tout $z \in \mathbf{C}$, on a

$$\exp'(z) = \sum_{n=1}^{+\infty} \frac{nz^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = \exp(z).$$

Montrons que $h(z) := e^z e^{-z} = 1$ pour tout $z \in \mathbb{C}$. La fonction h est holomorphe et, pour tout $z \in \mathbb{C}$, on a

$$h'(z) = e^z e^{-z} - e^z e^{-z} = 0.$$

Donc elle est constante égale à h(0) = 1. De cette égalité, on trouve que $e^{-z} = 1/e^z$ pour tout $z \in \mathbb{C}$ et que la fonction exponentielle ne s'annule jamais.

PROPOSITION 2.18. Soient *G* un ouvert connexe de C, $f: G \to \mathbb{C}$ holomorphe et $b \in \mathbb{C}$. Alors

$$(\exists a \in \mathbb{C}, \ \forall z \in \mathbb{C}, \ f(z) = ae^{bz}) \iff (\forall z \in \mathbb{C}, \ f'(z) = bf(z)).$$

 \diamond REMARQUE. En particulier, on a $e^w e^z = e^{w+z}$ pour tous $w, z \in \mathbb{C}$. En effet, soit $w \in \mathbb{C}$. On pose

$$f: z \in \mathbf{C} \longrightarrow e^{w+z}$$
.

Comme f' = f, d'après le théorème précédent, il existe $a \in \mathbb{C}$ tel que $e^{w+z} = ae^z$ pour tout $z \in \mathbb{C}$. Pour z = 0, on obtient $a = e^w$. D'où l'égalité recherchée.

PROPOSITION 2.19. La fonction exp: $\mathbf{C} \to \mathbf{C}^*$ est surjective et périodique.

(ii) Logarithmes

DÉFINITION 2.20. Soit D un ouvert de C. Un logarithme sur D est une fonction holomorphe $\ell: D \to \mathbb{C}$ telle que

$$\forall z \in D$$
, $\exp(\ell(z)) = z$.

► EXEMPLE. La fonction

$$\ell : \begin{vmatrix} \mathbf{C} \setminus i\mathbf{R} \longrightarrow \mathbf{C}, \\ x + iy \longmapsto \ln \sqrt{x^2 + y^2} + i\operatorname{Arctan}(y/x) \end{vmatrix}$$

est un logarithme sur $\{z \in \mathbb{C} \mid \text{Re } z > 0\}$.

NOTATION. Pour $z \in \mathbb{C}^*$, on note Arg z l'unique argument de z dans $]-\pi,\pi]$.

DÉFINITION-PROPOSITION 2.21. La branche principale du logarithme est la fonction

Log:
$$C \setminus]-\infty,0] \longrightarrow C$$
, $z \longmapsto \log|z| + i \operatorname{Arg} z$.

C'est un logarithme.

THÉORÈME 2.22. Soit D un ouvert et $f: D \to \mathbb{C}^*$ continue telle que $\exp(f(z)) = z$ pour tout $z \in D$. Alors f est holomorphe sur D et f'(z) = 1/z pour tout $z \in D$.

Preuve Soit $z_0 \in D$. On a

$$\exp(f(z_0 + h) - f(z_0)) = \frac{z_0 + h}{z_0} = 1 + \frac{h}{z_0}.$$

Comme f est continue, on a $w(h) := f(z_0 + h) - f(z_0) \longrightarrow 0$. La fonction w ne qu'en 0 sur un voisinage de 0. Comme l'exponentielle est dérivable en 0, on a

$$\frac{\exp(w(h))-\exp(0)}{w(h)}\xrightarrow[h\to 0]{}1.$$

Il existe alors une fonction ε définie sur un voisinage V de 0 et tendant vers 0 en 0 telle que

$$\forall h \in V$$
, $\exp(w(h)) - 1 = w(h)[1 + \varepsilon(h)]$.

Alors pour tout $h \in V$, on a

$$w(h) = \frac{\exp(w(h)) - 1}{1 + \varepsilon(h)},$$

donc

$$f(z_0+h) - f(z_0) = \frac{1+h/z_0-1}{1+\varepsilon(h)} = \frac{h}{z_0(1+\varepsilon(h))},$$

donc

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{1}{z_0(1+\varepsilon(h))} \xrightarrow[h \to 0]{} \frac{1}{z_0}.$$

COROLLAIRE 2.23. La fonction Log est holomorphe sur $\mathbb{C} \setminus [-\infty, 0]$.

DÉFINITION-PROPOSITION 2.24. Soient $\alpha \in \mathbb{C}$ et $\ell : G \to \mathbb{C}$ un logarithme. Alors la fonction

$$p_{\alpha}: \begin{vmatrix} G \longrightarrow \mathbf{C}, \\ z \longmapsto z^{\alpha} := \exp[\alpha \ell(z)] \end{vmatrix}$$

est holomorphe sur G et $p'_{\alpha}(z) = \alpha z^{\alpha-1}$ pour tout $z \in G$

 \triangleright EXEMPLE. On prend $G := \mathbb{C} \setminus]-\infty, 0]$ et $\ell := \text{Log. Trouvons } i^i$. On a

$$i^i = \exp[i \operatorname{Log}(i)] = \exp\left[i\left(0 + i\frac{\pi}{2}\right)\right] = e^{-\pi/2}.$$

NOTATION. Pour $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$, on pose $n^z := e^{z \ln n}$

THÉORÈME 2.25. La série $\sum_{n \ge 1} 1/n^z$ converge uniformément sur $\{z \in \mathbb{C} \mid \operatorname{Re} z \ge 1 + \varepsilon\}$ avec $\varepsilon > 0$ et converge normalement sur $\{z \in \mathbb{C} \mid \operatorname{Re} z \ge 1\}$.

♦ REMARQUE. Il suffit de remarquer que $|n^z| = n^{\text{Re } z}$ pour tous $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

2.2 INTÉGRALES ET PRIMITIVES

DÉFINITION 2.26. Soit U un intervalle de \mathbf{R} . Une fonction $f: I \to \mathbf{C}$ est (continûment) dérivable si $u := \operatorname{Re} f$ et $v := \operatorname{Re} f$ sont (continûment) dérivables. Dans ce cas, on a f' = u' + iv'.

LEMME 2.27. Soient $\gamma: I \to D \subset \mathbf{C}$ dérivable et $f: D \to \mathbf{C}$ holomorphe. Alors $f \circ \gamma$ est dérivable et

$$(f \circ \gamma)'(t) = f' \circ \gamma(t) \cdot \gamma'(t), \quad t \in I.$$

DÉFINITION 2.28. Une fonction continue $F: I \to \mathbb{C}$ est une primitive d'une fonction $f: I \to \mathbb{C}$ si F est dérivable et F' = f.

Théorème 2.29. Soit $f: I \rightarrow \mathbb{C}$ continue. Alors

- 1. la fonction $x \mapsto \int_a^x f(t) dt$ est une primitive de f;
- 2. pour toute primitive F de f, alors

$$\forall r, s \in I, \quad \int_{r}^{s} f(t) dt = F(s) - F(r).$$

PROPOSITION 2.30 (changement de variables). Soient $J \subset \mathbf{R}$ un intervalle, $\varphi \colon J \to I$ de classe \mathscr{C}^1 et $f \colon I \to \mathbf{C}$ continue. Alors pour tous $r, s \in J$, on a

$$\int_{r}^{s} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(r)}^{\varphi(s)} f(u) du.$$

PROPOSITION 2.31. Soient $f, g: I \to \mathbb{C}$ de classe \mathscr{C}^1 . Alors pour tous $a, b \in I$, on a

$$\int_{a}^{b} f(t)g'(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt.$$

2.3 Intégrales sur un chemin

2.3 Définitions et premières propriétés

DÉFINITION 2.32. Soient $\gamma: I \to \mathbb{C}$ de classe \mathscr{C}^1 et $f: D \to \mathbb{C}$ continue telles que $D \supset \gamma(I)$. On pose

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

- \triangleright EXEMPLES. 1. Le chemin constant est la fonction $t \mapsto c$ avec $c \in \mathbb{R}$.
 - 2. Soient $z_1, z_2 \in \mathbb{C}$. Le chemin $\gamma(t) := tz_2 + (1-t)z_1$ décrit le segment $[z_1, z_2]$.
 - 3. Soient $z_0 \in \mathbb{C}$ et r > 0. Le chemin $\gamma(t) := z_0 + re^{it}$ avec $t \in [a, b]$ décrit un arc du cercle de centre z_0 et de rayon r.

DÉFINITION 2.33. Soient $\gamma_1, ..., \gamma$: $I \to \mathbb{C}$ de classe \mathscr{C}^1 . On pose $\gamma := \gamma_1 + \cdots + \gamma_n$ et

$$\int_{\gamma} f(z) dz := \sum_{i=1}^{n} \int_{\gamma_{i}} f(z) dz.$$

DÉFINITION 2.34. Deux chemins $\gamma: I \to \mathbb{C}$ et $\tilde{\gamma}: \tilde{I} \to \mathbb{C}$ continûment dérivables sont *équivalents* s'il existe une bijection $\varphi: \tilde{I} \to I$ continûment dérivable telle que $\varphi' > 0$ et $\tilde{\gamma} = \gamma \circ \varphi$.

THÉORÈME 2.35. Soient I := [a, b] et $I := [\tilde{a}, \tilde{b}]$. Si γ et $\tilde{\gamma}$ sont équivalents, alors

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{\tilde{\gamma}} f(z) \, \mathrm{d}z.$$

Preuve Cela résulte du changement de variables $u = \varphi(t)$.

VOCABULAIRE. On dit qu'une fonction γ : $[a,b] \to \mathbb{C}$ est continûment dérivable (ou lisse) si elle est continue sur [a,b], dérivable sur [a,b] et les limites de sa dérivée $\gamma'(t)$ quand $t \to b^-$ et $t \to a^+$ existent.

PROPOSITION 2.36. Soient $\gamma, \gamma_1, \gamma_2 : I \to \mathbb{C}$ des chemins lisses par morceaux et $f, g : D \to \mathbb{C}$ telles que $\gamma(I) \subset D$. Alors

- 1. $\int_{\gamma} (f+g)(z) dz = \int_{\gamma} f(z) dz + \int_{\gamma} g(z) dz$;
- 2. $\int_{\gamma} c f(z) dz = c \int_{\gamma} f(z) dz$ pour tout $c \in \mathbb{C}$;
- 3. $\int_{\gamma_1 + \gamma_2} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_1} f(z) dz$;
- 4. $\int_{\gamma^{-}} f(z) dz = -\int_{\gamma} f(z) dz \text{ avec } \gamma^{-} := \gamma \circ \varphi \text{ et } \varphi \colon t \in [a, b] \longmapsto b + a t \in [a, b].$

PROPOSITION 2.37. Soient \tilde{D} et D deux ouverts de C, $g: \tilde{D} \to D$ holomorphe telle que g' soit continue et $\tilde{\gamma}: I \to \tilde{D}$ un chemin lisse par morceaux. On pose $\gamma := g \circ \tilde{\gamma}$. Soit $f: D \to C$ continue sur $\gamma(I)$. Alors

$$\int_{\mathcal{X}} f(z) \, \mathrm{d}z = \int_{\tilde{\mathcal{X}}} f(g(\xi)) g'(\xi) \, \mathrm{d}\xi.$$

PROPOSITION 2.38. Soient I un segment fermé de \mathbb{R} , $\gamma \colon I \to \mathbb{C}$ un chemin lisse par morceaux et $f \colon D \to \mathbb{C}$ continue sur $\gamma(I) \subset D$. Alors

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \|f\|_{\infty, \gamma(I)} L(\gamma) \quad \text{avec} \quad L(\gamma) = \int_{I} \left| \gamma'(t) \right| \, \mathrm{d}t$$

THÉORÈME 2.39. Soient $\gamma: I \to \mathbb{C}$ un chemin lisse par morceaux et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues sur $\gamma(I)$

qui converge uniformément sur $\gamma(I)$ vers $f: \gamma(I) \to \mathbb{C}$. Alors

$$\lim_{n \to +\infty} \int_{\gamma} f_n(z) \, \mathrm{d}z = \int_{\gamma} f(z) \, \mathrm{d}z.$$

THÉORÈME 2.40. Soient $f: D \subset \mathbb{C} \to \mathbb{C}$ continue et $F: D \to \mathbb{C}$. Alors les propositions suivantes sont équivalentes :

- (i) la fonction F est holomorphe sur D et vérifie F' = f;
- (ii) pour tous $z_1, z_2 \in D$ et tout chemin lisse par morceaux γ : $[a, b] \to D$ tel que $\gamma(a) = z_1$ et $\gamma(b) = z_2$, on a

$$\int_{\gamma} f(z) \, \mathrm{d}z = F(z_2) - F(z_1).$$

Preuve \Rightarrow On suppose (i). Soient $z_1, z_2 \in \mathcal{D}$ et γ : $[a, b] \rightarrow D$ un chemin lisse par morceaux tel que $\gamma(a) = z_1$ et $\gamma(b) = z_2$. On suppose que γ est lisse. Alors

$$\int_{I} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

$$= \int_{a}^{b} F'(\gamma(t)) \gamma'(t) dt$$

$$= [F \circ \gamma(t)]_{a}^{b} = F(z_{2}) - F(z_{1}).$$

On procède de même si γ est lisse par morceaux.

 \Leftarrow On suppose (ii). Soit $c \in D$. Comme D est ouvert, il existe r > 0 tel que $\overline{B(c,r)} \subset D$. Soit $z \in B(c,r)$. On note $\gamma \colon t \in [0,1] \longmapsto (1-t)c + tz$. Alors

$$F(z) - F(c) = \int_{\gamma} f(z) \, \mathrm{d}z,$$

donc

$$\frac{F(z) - F(c)}{z - c} - f(c) = \frac{1}{z - c} \int_{\gamma} f(z) \, \mathrm{d}z - f(c)$$
$$= \frac{1}{z - c} \int_{\gamma} [f(z) - f(c)] \, \mathrm{d}z$$

donc

$$\left| \frac{F(z) - F(c)}{z - c} - f(c) \right| \le \frac{1}{|z - c|} \|f - f(c)\|_{[c, z]} L(\gamma)$$

$$= \|f - f(c)\|_{[c, z]} \xrightarrow[z \to c]{} 0.$$

Donc la fonction F est \mathbb{C} -dérivable en tout point $c \in D$ et vérifie F'(c) = f(c).

DÉFINITION 2.41. Une fonction $F: D \to \mathbb{C}$ est un primitive si une des propositions (i) et (ii) du théorème précédent est vérifiée.

PROPOSITION 2.42. 1. Si F' = 0, alors F est constante.

2. Si F et \tilde{F} sont deux primitives de f, alors $F - \tilde{F}$ est constante.

DÉFINITION 2.43. Une fonction $f: D \to \mathbf{C}$ est intégrable si elle admet une primitive sur D.

♦ REMARQUE. Si f est intégrable dans D, alors $\int_{\gamma} f(z) dz = 0$ pour tout chemin lisse par morceaux et fermé γ , i. e. tel que $\gamma(a) = \gamma(b)$.

THÉORÈME 2.44 *(critère d'intégrabilité).* Soient D un ouvert connexe de \mathbf{C} et $f: D \to \mathbf{C}$ continue. Alors les propositions suivantes sont équivalentes :

- (i) la fonction f est intégrable sur D;
- (ii) pour tout chemin lisse par morceaux et fermé γ , on a $\int_{\gamma} f(z) dz = 0$.

Preuve Montrons le sens réciproquement. On suppose (ii). Il suffit de montrer que $F: z \mapsto \int_{\gamma_z} f(\zeta) d\zeta$ est une primitive de f où un chemin lisse γ_z joint un point $z_0 \in D$ à z.

2.3 Théorème de CAUCHY

LEMME 2.45 (GOURSAT). Soit $f: D \to \mathbb{C}$ holomorphe. Alors pour tout triangle $T \subset D$, on a

$$\int_{\partial T} f(\zeta) \,\mathrm{d}\zeta = 0.$$

Preuve Soit $T \subset D$ un triangle. Remarquons d'abord que $\max_{z,w \in T} |w-z| \le L(\partial T)$. On le découpe en quatre triangles T_1, T_2, T_3 et T_4 . Soit $t_1 \in [1,4]$ tel que

$$\left| \int_{\partial T_{k_1}} f(\zeta) \, \mathrm{d}\zeta \right| = \max_{1 \le i \le k} \left| \int_{\partial T_i} f(\zeta) \, \mathrm{d}\zeta \right|.$$

Alors

$$\left| \int_{\partial T} f(\zeta) \, \mathrm{d} \zeta \right| \leq 4 \left| \int_{\partial T_{k_1}} f(\zeta) \, \mathrm{d} \zeta \right|.$$

De même, on découpe le triangle T_{k_1} en quatre triangle et on prend un sous-triangle T_{k_1,k_2} tel que

$$\left| \int_{\partial T} f(\zeta) \, \mathrm{d}\zeta \right| \le 4^2 \left| \int_{\partial T_{k_1,k_2}} f(\zeta) \, \mathrm{d}\zeta \right|.$$

Par récurrence immédiate, on construit une suite décroissante de triangles $(T_{k_1,\dots,k_n})_{n\in\mathbb{N}^*}$ telle que

$$\forall n \in \mathbf{N}^*, \quad \left| \int_{\partial T} f(\zeta) \, \mathrm{d}\zeta \right| \leq 4^n \left| \int_{\partial T_{k_1, \dots, k_n}} f(\zeta) \, \mathrm{d}\zeta \right|.$$

Par construction, l'intersection $\bigcap_{n\in\mathbb{N}^*} T_{k_1,\dots,k_n}$ est réduite à un point $c\in D$ par le théorème des compacts emboîtés car diam $T_{k_1,\dots,k_n}\longrightarrow 0$. Comme f est holomorphe, pour $z\in D$, on pose

$$g(z) := \begin{cases} \frac{f(z) - f(c)}{z - c} - f'(c) & \text{si } z \neq c, \\ 0 & \text{sinon.} \end{cases}$$

Alors la fonction g est continue et, pour tout $n \in \mathbb{N}^*$, on a

$$\int_{\partial T_{k_1,\dots,k_n}} f(\zeta) \, \mathrm{d}\zeta = \int_{\partial T_{k_1,\dots,k_n}} f(c) \, \mathrm{d}z + \int_{\partial T_{k_1,\dots,k_n}} f'(c)(z-c) \, \mathrm{d}z + \int_{\partial T_{k_1,\dots,k_n}} g(z)(z-c) \, \mathrm{d}z$$

$$= \int_{\partial T_{k_1,\dots,k_n}} g(z)(z-c) \, \mathrm{d}z$$

puisque les fonctions $z \mapsto f(c)$ et $z \mapsto f'(c)(z-c)$ sont intégrables, donc

$$\left| \int_{\partial T_{k_1,\dots,k_n}} f(\zeta) \, \mathrm{d}\zeta \right| \leq \|g\|_{\partial T_{k_1,\dots,k_n}} \|\cdot - c\|_{\partial T_{k_1,\dots,k_n}} L(\partial T_{k_1,\dots,k_n})$$

$$\leq \|g\|_{\partial T_{k_1,\dots,k_n}} L(\partial T_{k_1,\dots,k_n})^2$$

$$\leq \|g\|_{\partial T_{k_1,\dots,k_n}} \frac{L(\partial T)^2}{4^n},$$

$$\left| \int_{\partial T_{k_1,\dots,k_n}} f(\zeta) \, \mathrm{d}\zeta \right| \leq \|g\|_{\partial T_{k_1,\dots,k_n}} L(\partial T)^2.$$

Comme g est continue et g(c) = 0, on a $\|g\|_{\partial T_{k_1,\dots,k_n}} \longrightarrow 0$ ce qui montre le lemme.

Théorème 2.46 (Cauchy). Soient G un ouvert connexe étoilé de C centré en $c \in C$ et $f: G \to C$ holomorphe. Alors la fonnction f est intégrable dans G et la fonction

$$F: z \in G \longrightarrow \int_{[c,z]} f(\zeta) \,\mathrm{d}\zeta$$

est un primitive de f.

Preuve Soit $z_0 \in G$. Il existe r > 0 tel que $B(z_0, r) \subset G$. Pour tout $z \in B(z_0, r)$, on a

$$F(z) - F(z_0) = \int_{[c,z]} f(\zeta) \, \mathrm{d}\zeta - \int_{[c,z_0]} f(\zeta) \, \mathrm{d}\zeta$$
$$= -\int_{[z,c]} f(\zeta) \, \mathrm{d}\zeta - \int_{[c,z_0]} f(\zeta) \, \mathrm{d}\zeta$$
$$= \int_{[z_0,z]} f(\zeta) \, \mathrm{d}\zeta,$$

donc

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| = \left| \frac{1}{z - z_0} \int_{[z_0, z]} [f(\zeta) - f(z_0)] \, \mathrm{d}\zeta \right|$$

$$\leq \|f - f(z_0)\|_{[z_0, z]} \xrightarrow[z \to z_0]{} 0.$$

Finalement, la fonction F est \mathbb{C} -dérivable en F' = f.

LEMME 2.47 (GOURSAT *renforcé*). Soient D un ouvert de \mathbb{C} , $c \in D$ et $f : D \to \mathbb{C}$ holomorphe sur $D \setminus \{c\}$. Alors pour tout triangle $T \subset D$ tel que c soit un des sommets, on a

$$\int_{\partial T} f(\zeta) \, \mathrm{d}\zeta = 0.$$

Preuve Il suffit de considérer, pour tout $\varepsilon > 0$, un découpage du triangle T en trois triangles T_1 , T_2 et T_3 tels que $c \in T_3$ et $L(\partial T_3) < \varepsilon$ et d'appliquer le lemme de GOURSAT.

THÉORÈME 2.48 (CAUCHY *renforcé*). Soient G un ouvert connexe étoilé de \mathbb{C} centré en $c \in \mathbb{C}$ et $f: G \to \mathbb{C}$ holomorphe sur $G \setminus \{c\}$. Alors la fonnction f est intégrable dans G et la fonction

$$F: z \in G \longmapsto \int_{[c,z]} f(\zeta) \,\mathrm{d}\zeta$$

est un primitive de f.

Preuve On procède de même que dans la preuve du théorème de CAUCHY.

THÉORÈME 2.49 (*formule de* CAUCHY). Soient D un ouvert de \mathbf{C} et $f: D \to \mathbf{C}$ holomorphe. Soient r > 0 et $c \in D$ tels que $B := B(c, r) \subset D$ et $\overline{B} \subset D$. Alors pour tout $z \in B$, on a

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \,d\zeta.$$

Preuve Soit $z_0 \in B$. Pour $z \in D$, on pose

$$g(z) := \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{si } z \neq z_0, \\ 0 & \text{sinon.} \end{cases}$$

Alors la fonction g est continue sur D et holomorphe sur $D \setminus \{c\}$. Soit s > r tel que $B' := B(c, s) \subset D$. Le lemme de CAUCHY renforcé assure que la fonction g est intégrable sur B'. En particulier, pour tout chemin lisse et fermé $\gamma : B' \to C$, on a $\int_{\gamma} g(z) \, dz = 0$. On paramètre la frontière ∂B par un chemin γ . Comme $B \subset B'$, on a

$$\int_{\partial B} \frac{f(\zeta) - f(z_0)}{\zeta - z_0} \, \mathrm{d}\zeta = 0,$$

donc

$$f(z_0) \int_{\partial B} \frac{\mathrm{d}\zeta}{\zeta - z_0} = \int_{\partial B} \frac{f(\zeta)}{\zeta - z_0} \quad \text{avec} \quad \int_{\partial B} \frac{\mathrm{d}\zeta}{\zeta - z_0} = 2\pi i.$$

COROLLAIRE 2.50 *(formule du maximum).* Soient D un ouvert de C et $f: D \to C$. Soient r > 0 et $c \in D$ tels que $B := B(c,r) \in D$. Alors pour tout $\zeta \in B$, on a $|f(\zeta)| \le ||f||_{\partial B}$.

Preuve On paramètre ∂B par le chemin γ : $t \in [0, 2\pi] \mapsto c + re^{it} \in \partial B$. Alors

$$|f(c)| = \left| \frac{1}{2\pi} \int_{\gamma} \frac{f(z)}{z - c} dz \right|$$

$$= \frac{1}{2\pi} \left| \int_{0}^{2\pi} \frac{f(c + re^{it})}{re^{it}} i re^{it} dt \right|$$

$$= \frac{1}{2\pi} \left| \int_{0}^{2\pi} f(c + re^{it}) dt \right|$$

$$\leq ||f||_{\partial B}.$$

De plus, soit $\zeta \in B$. Alors

$$|f(\zeta)| \leq \frac{1}{2\pi} \left| \int_{\partial B} \frac{f(z)}{z - \zeta} \, \mathrm{d}z \right|$$

$$\leq ||f||_{\partial B} \sup_{z \in \partial B} \left| \frac{r}{z - \zeta} \right|$$

$$\leq \|f\|_{\partial B} \frac{r}{r - |\zeta|}.$$

Soit $k \in \mathbb{N}$. On peut remplacer f par f^k et on obtient

$$|f^k(\zeta)| \le ||f^k||_{\partial B} \frac{r}{r - |\zeta|},$$

donc

$$\left|f(\zeta)\right| \leq \|f\|_{\partial B} \left(\frac{r}{r-|\zeta|}\right)^{1/k}.$$

En laissant tendre k vers $+\infty$, on obtient que $|f(\zeta)| \le ||f||_{\partial B}$.

2.4 DÉVELOPPEMENT EN SÉRIES ENTIÈRES

DÉFINITION 2.51. Soie D un ouvert. On dit qu'une fonction $f: D \to \mathbb{C}$ est développable en série entière au voisinage d'un point $c \in D$ s'il existe r > 0 et une suite $(a_n)_{n \in \mathbb{N}}$ de complexes tels que $B(c, r) \subset D$ et

$$\forall z \in B(c,r), \quad f(z) = \sum_{k=0}^{+\infty} a_n (z-c)^n.$$

LEMME 2.52. Soient $\gamma: I \to \mathbb{C}$ un chemin lisse par morceaux et $f: \gamma(I) \to \mathbb{C}$ continue. On pose

$$F: \begin{vmatrix} \mathbf{C} \setminus \gamma(I) \longrightarrow \mathbf{C}, \\ z \longmapsto \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta. \end{vmatrix}$$

Alors la fonction F est holomorphe sur $\mathbb{C} \setminus \gamma(I)$ et, pour tout $c \in \mathbb{C} \setminus \gamma(I)$, elle est développable en série entière au voisinage de c où les coefficients a_n sont données par

$$\forall\,n\in\mathbf{N},\quad a_n=\frac{1}{2\pi\,i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-c)^{n+1}}\,\mathrm{d}\zeta.$$

De plus, la fonction F est infiniment \mathbb{C} -dérivable sur $\mathbb{C} \setminus \gamma(I)$ et, pour tous $k \in \mathbb{N}$ et $z \in \mathbb{C} \setminus \gamma(I)$, on a

$$F^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} \,\mathrm{d}\zeta.$$

Preuve Soient $c \in \mathbb{C} \setminus \gamma(I)$. Il existe r > 0 tel que $B(c, r) \subset \mathbb{C} \setminus \gamma(I)$. Soient $\zeta \in \gamma(I)$ et $z \in B(c, r)$. Alors

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - c} \frac{1}{1 - w} \quad \text{avec} \quad w := \frac{z - c}{\zeta - c}.$$

Comme |w| < 1, on a

$$\frac{1}{\zeta - z} = \sum_{n=0}^{+\infty} \frac{(z - c)^n}{(\zeta - c)^{n+1}}.$$

On obtient alors

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \sum_{b=0}^{+\infty} \frac{f(\zeta)}{(\zeta - c)^{n+1}} (z - c)^n \,\mathrm{d}\zeta.$$

Or pour tous $\zeta \in \gamma(I)$ et $n \in \mathbb{N}$, on a

$$\left| \frac{f(\zeta)}{(\zeta - c)^{n+1}} (z - c)^n \right| \le \frac{\|f\|_{\gamma(I)}}{r} \left| \frac{z - c}{\zeta - c} \right|^n.$$

La série $\sum f(\zeta)(\zeta-c)^{-(n+1)}(z-c)^n$ converge alors normalement. Cela permet d'intervertir l'intégrale et la somme, on a

$$F(z) = \sum_{n=0}^{+\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - c)^{n+1}} \, \mathrm{d}\zeta \right) (z - c)^n.$$

THÉORÈME 2.53. Soient D un ouvert de C, $c \in D$ et $f: D \to \mathbf{C}$ holomorphe. Alors f est développable en série entière au voisinage de c.

Preuve Soit r > 0 tel que $B := B(c, r) \subset D$. Le formule de CAUCHY donne

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta.$$

Le critère précédent assure alors que la fonction f est développable en série entière au voisinage de c.

♦ REMARQUE. Ceci montre que les fonctions holomorphes sur un ouvert *D* sont infiniment **C**-dérivable sur *D*.

THÉORÈME 2.54 (de prolongement de RIEMANN). Soient D un ouvert de \mathbb{C} , $c \in D$ et $f: D \setminus \{c\} \to \mathbb{C}$ holomorphe. Alors les propositions suivantes sont équivalentes :

- (i) la fonction *f* se prolonge en une fonction holomorphe de *D* dans **C**;
- (ii) la fonction *f* se prolonge en une fonction continue de *D* dans **C**;
- (iii) la fonction f est bornée au voisinage de c;
- (iv) quand $z \to c$, on a $(z c) f(z) \longrightarrow 0$.

Preuve Comme l'holomorphie implique la continuité, les implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) sont vraies. Montrons la dernière implications. On suppose (iv). Quitte à considérer la fonction $z \mapsto f(z-c)$, on peut supposer que c=0. On pose $g: D \to \mathbb{C}$ la fonction définie par

$$\forall z \in D$$
, $g(z) = \begin{cases} zf(z) & \text{si } z \neq 0, \\ 0 & \text{sinon.} \end{cases}$

Alors la fonction g est continue en 0. On considère la fonction $h: z \in D \longmapsto zg(z)$. Alors

$$\frac{h(z)-h(0)}{z}=g(z)\xrightarrow[z\to 0]{}0,$$

donc la fonction h est \mathbb{C} -dérivable en 0. Comme elle est holomorphe sur $D \setminus \{0\}$, elle est holomorphe sur D. Au voisinage de 0, on peut donc la développer en série entière et l'écrire comme

$$h(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

Or h(0) = h'(0) = 0, donc $a_0 = a_1 = 0$ et

$$f(z) = \frac{h(z)}{z^2} = \sum_{n=0}^{+\infty} a_{n+2} z^n, \quad z \neq 0.$$

Alors les fonctions f et $z \mapsto \sum_{n=0}^{+\infty} a_{n+2} z^n$ coïncident sur un ensemble $V \setminus \{0\}$ où V est un voisinage de 0, donc la fonction f se prolonge en une fonction holomorphe sur D. D'où (i).

Théorème 2.55 (*d'égalité*). Soient D un ouvert connexe de \mathbf{C} et $f,g\colon D\to\mathbf{C}$ holomorphes. Alors les propositions suivantes sont équivalentes :

- (i) les fonctions f et g sont égales sur D;
- (ii) I'ensemble $S := \{z \in D \mid f(z) = g(z)\}$ admet un point d'accumulation dans D;
- (iii) il existe $c \in D$ tel que $f^{(k)}(c) = g^{(k)}(c)$ pour tout $k \in \mathbb{N}$.

Preuve L'implication (i) ⇒ (ii) est clairement vraie. On suppose (i). La fonction h := f - g est holomorphe sur D. Soit $c \in D$ un point d'accumulation de S. Par l'absurde, supposons qu'il existe $m \in \mathbb{N}$ tel que $h^{(m)}(c) \neq 0$. On considère le plus petit tel entier $m \in \mathbb{N}$. Alors, au voisinage de c, on a

$$h(z) = \sum_{k=m}^{+\infty} \frac{h^{(k)}(c)}{k!} (z-c)^k = (z-c)^m h_m(z) \quad \text{avec} \quad h_m(z) := \sum_{k=m}^{+\infty} \frac{h^{(k)}(c)}{k!} (z-c)^{k-m}.$$

La fonction h_m est holomorphe sur une boule B := B(c, r) et elle est nulle sur $B \cap \mathbb{C} \setminus \{c\}$ et non nulle en c, donc elle n'est pas continue en c. Finalement, on a $f^{(k)}(c) = g^{(k)}(c)$ pour tout $k \in \mathbb{N}$. D'où (iii).

On suppose (iii), *i. e.* il existe $c \in D$ tel que $f^{(k)}(c) = g^{(k)}(c)$ pour tout $k \in \mathbb{N}$. Montrons que la fonction h := f - g est nulle sur D. Pour $k \in \mathbb{N}$, on pose $S_k := \{w \in D \mid h^{(k)}(w) = 0\}$ qui est un fermé de D. On pose $S := \bigcap_{k \in \mathbb{N}} S_k$ qui est un fermé non vide. Montrons qu'il est ouvert dans D. Soit $z_0 \in S$. Il existe r > 0 tel que $B(z_0, r) \subset D$. Montrons que $B(z_0, r) \subset S$. Sur $B(z_0, r)$, on peut écrire

$$h(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n.$$

Comme $z_0 \in S$, on a $a_n = 0$ pour tout $n \in \mathbb{N}$. Donc h = 0 sur $B(z_0, r)$, donc $B(z_0, r) \subset S$. Finalement, l'ensemble S est à la fois ouvert et fermé dans D. Comme D est connexe et $S \neq \emptyset$, on en déduit que S = D, i. e. la fonction h est nulle sur D. D'où (i).

COROLLAIRE 2.56. Soient D un ouvert de C et $f: D \to C$ holomorphe non localement constante. Alors pour tout $a \in C$, l'ensemble $f^{-1}(\{a\})$ est discret, i. e. ne contient pas de point d'accumulation.

COROLLAIRE 2.57. Soient φ : $]a,b[\to \mathbb{R}$ et D un ouvert connexe de \mathbb{C} tels que $]a,b[\subset D$. Alors il existe une unique fonction holomorphe $f:D\to\mathbb{C}$ tel que $f|_{]a,b[}=\varphi$.

2.5 SUR LE CONCEPT D'HOLOMORPHIE

DÉFINITION 2.58. Soit D un ouvert de \mathbf{C} . On dit qu'une fonction continue $f: D \to \mathbf{C}$ est localement intégrable sur D s'il existe une famille d'ouverts $(U_{\alpha})_{\alpha \in A}$ de \mathbf{C} telle que $D = \bigcup_{\alpha \in A} U_{\alpha}$ et la fonction f soit intégrable sur U_{α} pour tout $\alpha \in A$.

Théorème 2.59. Soit $f: D \to \mathbb{C}$ continue. Alors les propositions suivantes sont équivalentes :

- (i) la fonction *f* est holomorphe sur *D*;
- (ii) pour tout triangle $T \subset D$, on a $\int_{\partial T} f(z) dz = 0$;
- (iii) la fonction f est localement intégrable sur D;
- (iv) pour toute boule ouverte B de C telle que $\overline{B} \subset D$ et tout $z \in D$, on a

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \, d\zeta ;$$

(v) la fonction f est développable en série entière au voisinage de tout point de D.

Preuve On utilise les différents théorèmes et lemmes pour montrer chaque implication.

COROLLAIRE 2.60 (holomorphie des intégrales). Soient $\gamma: I \to \mathbb{C}$ un chemin lisse par morceaux et D un ouvert de \mathbb{C} . Soit $g: \gamma(I) \times D \to \mathbb{C}$ continue telle que, pour tout $w \in \gamma(I)$, la fonction $g(w,\cdot)$ soit holomorphe sur D. Alors la fonction

$$h: \begin{bmatrix} D \longrightarrow \mathbf{C}, \\ z \longmapsto \int_{\gamma} g(\zeta, z) \, \mathrm{d}\zeta \end{bmatrix}$$

est holomorphe sur D.

Preuve Pour cela, il suffit de vérifier le point (ii) du théorème précédent. Soit $T \subset D$ un triangle. Le théorème de Fubini donne

$$\int_{\partial T} h(z) dz = \int_{\partial T} \int_{\gamma} g(\zeta, z) d\zeta dz = \int_{\gamma} \int_{\partial T} g(\zeta, z) dz d\zeta = \int_{\gamma} 0 dz = 0.$$

car la fonction $g(\zeta, \cdot)$ est holomorphe pour tout $\zeta \in \gamma(I)$. On en déduit que la fonction h est holomorphe.

2.5 Formule de GUTZMER, principe du maximum et un théorème de LIOUVILLE

PROPOSITION 2.61 *(formule de* GUTZMER). Soit $\sum a_n(z-c)^n$ une série entière de rayon de convergence R > 0 dont on note $f: B(c,R) \to \mathbb{C}$ la somme. Soit $r \in]0,R[$. On note

$$M(r) := \max_{z \in \partial B(c,r)} |f(z)|.$$

Alors

$$\sum_{n=0}^{+\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(c + re^{i\varphi})|^2 \,\mathrm{d}\varphi \le M(r)^2.$$

Preuve Soit $z := c + re^{i\varphi} \in \partial B(c, r)$. Alors

$$\overline{f(z)} = \sum_{n=0}^{+\infty} \overline{a_n} (\overline{z-c})^n = \sum_{n=0}^{+\infty} \overline{a_n} r^n e^{-i\varphi n},$$

donc

$$|f(z)|^2 = f(z)\overline{f(z)} = \sum_{n=0}^{+\infty} \overline{a_n} r^n f(c + re^{i\varphi}) e^{-i\varphi n}.$$

On obtient donc

$$\frac{1}{2\pi} \int_0^{2\pi} |f(c+re^{i\varphi})|^2 d\varphi = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^{+\infty} \overline{a_n} r^n f(c+re^{i\varphi}) e^{-i\varphi n} d\varphi.$$

Comme la série $\sum |a_n| r^n f(c + re^{i\varphi}) e^{-i\varphi n}$ converge normalement, on a

$$\frac{1}{2\pi} \int_0^{2\pi} |f(c+re^{i\varphi})|^2 d\varphi = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \overline{a_n} r^n \int_0^{2\pi} f(c+re^{i\varphi}) e^{-i\varphi n} d\varphi.$$

Or pour tout $n \in \mathbb{N}$, on a

$$a_n = \frac{1}{2\pi i} \int_{\partial B(c,r)} \frac{f(\zeta)}{(\zeta - c)^{n+1}} dz$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(c + re^{i\varphi})}{(re^{i\varphi})^{n+1}} rie^{i\varphi} d\varphi$$

$$=\frac{1}{2\pi r^n}\int_0^{2\pi}f(c+re^{i\varphi})e^{-i\varphi n}\,\mathrm{d}\varphi.$$

On en déduit que

$$\frac{1}{2\pi} \int_0^{2\pi} |f(c + re^{i\varphi})|^2 d\varphi = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \overline{a_n} r^n 2\pi a_n r^n$$

$$= \sum_{n=0}^{+\infty} |a_n|^2 r^{2n}.$$

COROLLAIRE 2.62. En reprenant les mêmes notations que précédemment, pour tout $n \in \mathbb{N}$ et $r \in]0, R[$, on a

$$|a_n| \le \frac{M(r)}{r^n}.$$

Preuve Il suffit de remarquer que, pour tous $n \in \mathbb{N}$, on a

$$|a_n|^2 r^{2n} \le \sum_{k=0}^{+\infty} |a_k|^2 r^{2k} \le M(r)^2.$$

COROLLAIRE 2.63. On suppose qu'il existe $m \in \mathbb{N}$ et $r \in]0, R[$ tels que $|a_m|r^m = M(r)$. Alors

$$\forall z \in B(c,R), \quad f(z) = a_m(z-c)^m.$$

Preuve La formule de GUTZMER donne alors

$$M(r)^2 = |a_m|r^{2m} \le \sum_{n=0}^{+\infty} |a_n|r^{2n} \le M(r)^2$$

ce qui implique que $|a_m|r^{2m} = \sum_{n=0}^{+\infty} |a_n|r^{2n}$. D'où $a_n = 0$ pour tout $n \in \mathbb{N} \setminus \{m\}$.

THÉORÈME 2.64 (*principe du maximum*). Soient G un ouvert connexe de \mathbb{C} et $f: G \to \mathbb{C}$ holomorphe. On suppose qu'il existe $c \in G$ tel que $|f(c)| = ||f||_U$ avec un voisinage U de c dans G. Alors f est constante sur G.

Preuve Sur une boule B(c,r), on peut écrire $f(z) = \sum_{n=0}^{+\infty} a_n (z-c)^n$. Quitte à réduire cette boule, on peut supposer que $B(c,r) \subset U$. Alors comme $|f(c)| = ||f||_U$, on a $|a_0| \ge M(r)$. Le corollaire précédent donne alors $f = a_0$ sur B(c,r). Le théorème d'égalité conclut donc que $f = a_0$ sur G.

VOCABULAIRE. Rappelons qu'une fonction $f: \mathbf{C} \to \mathbf{C}$ est dite *entière* si elle est holomorphe sur \mathbf{C} et qu'elle est dite bornée si $||f||_D < +\infty$.

THÉORÈME 2.65 (LIOUVILLE). Toute fonction entière et bornée est constante.

Preuve Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière et bornée. Au voisinage de 0 et en tout point $z \in \mathbb{C}$, la fonction f se développe en série entière $f(z) = \sum_{n=0}^{+\infty} a_n z^n$. Pour tous $n \in \mathbb{N}$ et r > 0, on a $|a_n| \le M(r)/r^n \le ||f||_{\mathbb{C}}/r^n$. En laissant tendre r vers $+\infty$, on en déduit que $a_n = 0$ pour tout $n \in \mathbb{N}^*$. D'où $f = a_0 \operatorname{sur} \mathbb{C}$. □

COROLLAIRE 2.66. On note $\Delta := B(0,1) \subset \mathbb{C}$ et $H := \{z \in \mathbb{C} \mid \operatorname{Im} z > 0\} \subset \mathbb{C}$. Toute fonction holomorphe de \mathbb{C} dans Δ est constante. En particulier, il n'existe pas de biholomorphisme de Δ dans \mathbb{C} ou de H dans \mathbb{C} .

2.5 Théorème de WEIERSTRASS

THÉORÈME 2.67. Soient D un ouvert de \mathbf{C} et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions holomorphes de D dans \mathbf{C} qui converge localement uniformément vers une fonction $f: D \to \mathbf{C}$ sur D. Alors

- 1. la fonction f est holomorphe;
- 2. pour tout $k \in \mathbb{N}$, la suite $(f_n^{(k)})_{n \in \mathbb{N}}$ converge localement uniformément vers $f^{(k)}$ sur D.

Preuve 1. Comme la suite $(f_n)_{n \in \mathbb{N}}$ converge localement uniformément vers f, la fonction f est continue. Pour tout triangle $T \subset D$, le théorème 2.39 et le lemme de GOURSAT

$$\int_{\partial T} f(z) dz = \int_{\partial T} \lim_{n \to +\infty} f_n(z) dz = \lim_{n \to +\infty} \int_{\partial T} f_n(z) dz = 0$$

ce qui assure l'holomorphie de f.

2. Il suffit de montrer la convergence pour k=1. Soit $c \in D$. Il existe r>0 tel que $B:=\mathrm{B}(c,2r)\subset D$. Pour tout $z\in\mathrm{B}(c,r)$ et tout $n\in\mathrm{N}$, on a

$$f'_n(z) - f'(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(\zeta) - f(\zeta)}{(\zeta - z)^2} d\zeta$$

ce qui permet d'écrire

$$|f'_n(z) - f'(z)| \le ||f_n - f||_{\partial B} \frac{2r}{\min_{\zeta \in \partial B} |\zeta - z|^2} \le ||f_n - f||_{\partial B} \frac{2}{r},$$

donc

$$||f'_n - f'||_{\partial B} \le ||f_n - f||_{\partial B} \frac{2}{r}.$$

Cela montre la convergence locale uniforme de la suite $(f'_n)_{n \in \mathbb{N}}$.

2.5 Théorème de l'application ouverte

DÉFINITION 2.68. Une application $f: X \to Y$ entre deux espaces topologiques X et Y est dite *ouverte* si l'image f(U) de tout ouvert U de X est un ouvert de Y.

THÉORÈME 2.69 (*d'existence de zéros*). Soient D un ouvert de \mathbb{C} , $c \in D$ et r > 0 tels que $B := \mathbb{B}(c, r) \subset D$ et $\overline{B} \subset D$. Soit $f: D \to \mathbb{C}$ holomorphe telle que $\min_{z \in \partial B} |f(z)| > |f(c)|$. Alors f admet un zéro sur B.

Preuve Raisonnons par l'absurde et supposons que f ne s'annule pas sur B. Par hypothèse, elle ne s'annule pas sur \overline{B} . Par continuité, elle ne s'annule par sur un voisinage U de \overline{B} . On considère $g:U\to \mathbb{C}$ définie par g(z)=1/f(z) pour tout $z\in U$. Dans ce cas, on a

$$|g(c)| > \max_{z \in \partial B} |g(z)|.$$

Or la formule de CAUCHYdonne

$$g(c) = \frac{1}{2\pi i} \int_{\partial B} \frac{g(z)}{z - c} dz = \frac{1}{2\pi} \int_0^{2\pi} g(c + re^{it}) dt \le \max_{z \in \partial B} |g(z)|$$

ce qui est contradictoire. Donc la fonction f admet un zéro sur B.

THÉORÈME 2.70 (de l'application ouverte). Soient D un ouvert connexe de \mathbf{C} et $f: D \to \mathbf{C}$ holomorphe et non constante. Alors f est une application ouverte.

Preuve Soient U un ouvert de D et $c \in U$. Comme f n'est pas constante, il existe une boule $V \subset U$ centrée en c telle que $f(c) \neq f(\zeta)$ pour tout $\zeta \in \partial V$. On pose

$$\delta := \frac{1}{2} \min_{\zeta \in \partial V} |f(c) - f(\zeta)| > 0.$$

Montrons que $B := B(f(c), \delta) \subset f(U)$. Soit $b \in B$. Il suffit de montrer que la fonction g := f - b admet un zéro dans V. Pour cela, remarquons que, pour tout $\zeta \in \partial V$, on a

$$|g(\zeta)| = |f(\zeta) - f(c) + f(c) - b|$$

$$\geqslant |f(\zeta) - f(c)| - |f(c) - b|$$

$$\geqslant 2\delta - \delta = \delta > |f(c) - b| = |g(c)|.$$

Le théorème d'existence de zéros assure alors que la fonction g admet un zéro dans V, i. e. il existe $z \in V$ tel que b = f(z), donc $b \in f(V) \subset f(U)$. D'où $B \subset f(U)$. On en déduit que l'image f(U) est un ouvert de C. Donc f est ouverte.

2.6 THÉORIE DES RÉSIDUS

2.6 Notion de singularité et premiers théorèmes

DÉFINITION 2.71. Soient D un ouvert de \mathbf{C} et $c \in D$. Soit $f : D \setminus \{c\} \to \mathbf{C}$ une fonction holomorphe sur $D \setminus \{c\}$. On dit que le point c est une *singularité isolée* de f. De plus, on dit que cette singularité est

- effaçable (ou apparente) si f peut être prolongée en une fonction holomorphe $\tilde{f}: D \to \mathbf{C}$;
- un *pôle* si *c* n'est pas une singularité effaçable et s'il existe $n \in \mathbb{N}^*$ tel que la fonction $g: z \in D \setminus \{c\} \mapsto (z-c)^n f(z)$ puisse être prolongée en une fonction holomorphe $\tilde{g}: D \to \mathbb{C}$;
- essentielle si c n'est ni effaçable ni un pôle.

PROPOSITION 2.72. Soient D un ouvert de \mathbb{C} , $c \in D$ et $f : D \setminus \{c\} \to \mathbb{C}$ holomorphe. Si f est bornée sur $U \setminus \{c\}$ pour un voisinage U de c dans D, alors c est une singularité effaçable de f.

Preuve Il suffit d'appliquer le théorème de prolongement de RIEMANN

♦ Remarque. Si f n'est pas bornée au voisinage de c, alors c n'est pas une singularité effaçable. Si c est un pôle, l'entier $m := \min \{n \in \mathbb{N}^* \mid z \longmapsto (z-c)^n f(z) \text{ est bornée sur } U \setminus \{c\} \text{ pour un voisinage } U \text{ de } c \text{ dans } D\}$

est appelée l'ordre du pôle c. Si m = 1, le pôle c est dit simple

THÉORÈME 2.73. Soient $m \in \mathbb{N}^*$ et $f: D \setminus \{c\} \to \mathbb{C}$ holomorphe. Alors les propositions suivantes sont équivalentes :

- (i) la singularité c est un pôle d'ordre m de f;
- (ii) il existe une fonction holomorphe $g: D \to \mathbb{C}$ telle que $g(c) \neq 0$ et

$$\forall z \in D \setminus \{c\}, \quad f(z) = \frac{g(z)}{(z-c)^m};$$

(iii) il existe un voisinage U de c dans D et une fonction holomorphe $h: U \to \mathbb{C}$ qui ne s'annule pas sur $U \setminus \{c\}$ et dont c est un zéro d'ordre m tels que

$$\forall z \in U \setminus \{c\}, \quad f(z) = 1/h(z);$$

(iv) il existe un voisinage U de c dans D et $M_*, M^* > 0$ tels que

$$\forall z \in U \setminus \{c\}, \quad \frac{M_*}{|z-c|^m} \leq |f(z)| \leq \frac{M^*}{|z-c|^m}.$$

Preuve • (*i*) ⇒ (*ii*). On suppose (i). La fonction $g: z \in D \setminus \{c\} \longmapsto (z-c)^m f(z)$ est holomorphe sur $D \setminus \{c\}$ et bornée au voisinage de c. Par la proposition précédente, la singularité c est alors effaçable, donc on peut prolonger la fonction g en une fonction holomorphe sur D, notée encore $g: D \to \mathbb{C}$. Montrons que $g(c) \neq 0$. Si g(c) = 0, alors on peut écrire

$$g(z) = (z - c)\tilde{g}(z), \quad \forall z \in D$$

avec une fonction \tilde{g} holomorphe sur D et, dans ce cas, la fonction $z \mapsto \tilde{g}(z) = (z-c)^{m-1} f(z)$ est bornée au voisinage de c ce qui contredit la minimalité de m.

- (ii) \Rightarrow (iii). On suppose (i). Comme g ne s'annule par sur un voisinage U de c, on prend h: $z \in U \mapsto (z-c)^m/g(z)$.
- (iii) \Rightarrow (iv). On suppose (iii). On peut choisir un voisinage U de c dans D tel que

$$h(z) = (z - c)^m \tilde{h}(z), \quad z \in U$$

où la fonction \tilde{h} est holomorphe sur U, ne s'annule pas sur U et vérifie

$$M_* := \inf_{z \in U} \frac{1}{|\tilde{h}(z)|} > 0 \quad \text{et} \quad M^* := \sup_{z \in U} \frac{1}{|\tilde{h}(z)|} < +\infty.$$

Pour $z \in U \setminus \{c\}$, on a

$$|f(z)| = \frac{1}{|z - c|^m} \frac{1}{|\tilde{h}(z)|},$$

ce qui implique la relation voulue.

• $(iv) \Rightarrow (i)$. On suppose (iv). Alors la fonction $z \mapsto (z-c)^m f(z)$ est bornée sur un voisinage de c, donc la singularité c est un pôle d'ordre inférieur ou égal à m. Raisonnons par l'absurde et supposons que le pôle est d'ordre n < m. Alors la fonction $z \mapsto (z-c)^n f(z)$ est bornée sur $V \setminus \{c\}$ pour un voisinage V de c dans D. Quitte à le réduire, on peut supposer que $V \subset D$. Or pour tout $z \in V \setminus \{c\}$, on a

$$|z-c|^{n-m}M_* \le |z-c|^n|f(z)|.$$

Comme n-m < 0, le terme $|z-c|^{n-m}$ n'est pas borné au voisinage de c alors que la relation précédente assure sa bornitude ce qui est absurde. Donc le pôle c est d'ordre m.

DÉFINITION 2.74. Soit D un ouvert de C. On dit qu'une fonction $D \setminus \{c\} \to C$ tend vers l'infini en un point $c \in C$ si

$$|f(z)| \xrightarrow[z \to c]{} +\infty.$$

On note alors $\lim_{z\to c} f(z) = \infty$.

PROPOSITION 2.75. Soit $f \setminus D \setminus \{c\} \to \mathbb{C}$ holomorphe. Alors c est un pôle si et seulement si f tend vers l'infini en c.

Preuve ⇒ On suppose que c est un pôle. Par le théorème 2.73, il existe $m \in \mathbb{N}^*$ et une fonction holomorphe $g: D \to \mathbb{C}$ telle que $g(c) \neq 0$ et

$$\forall z \in D \setminus \{c\}, \quad f(z) = \frac{g(z)}{(z-c)^m}.$$

Comme g est continue et vérifie $g(c) \neq 0$, il existe r, M > 0 tel que |g(z)| > M pour tout $z \in B(c, r)$. Alors pour $z \in B(c, r)$, on a

$$|f(z)| > \frac{M}{|z-c|^m} \xrightarrow{z \to c} +\infty.$$

 \Leftarrow On suppose que f tend vers l'infini en c. Il existe r > 0 tel que $f(z) \neq 0$ pour tout $z \in B \setminus \{c\}$ avec $B \coloneqq B(c, r)$. Alors la fonction

$$h: \begin{vmatrix} B \setminus \{c\} \longrightarrow \mathbf{C}, \\ z \longmapsto 1/f(z) \end{vmatrix}$$

est holomorphe sur $B \setminus \{c\}$. Comme $h(z) \to 0$ quand $z \to c$, la fonction h est bornée sur un voisinage de c, donc elle se prolonge en une fonction holomorphe $h \colon B \to \mathbf{C}$ sur B en posant h(c) = 0. Par le même théorème, la singularité c est un pôle.

- ightharpoonup EXEMPLES. La fonction $z \mapsto 1/z$ admet un pôle simple en 0.
 - La fonction z → $\sin(1/z)$ admet une singularité essentielle en 0.

THÉORÈME 2.76. Soient $c \in D$ et $f: D \setminus \{c\} \to \mathbb{C}$ une fonction holomorphe. On suppose que c est un pôle d'ordre $m \in \mathbb{N}^*$ de f. Alors il existe $b_1, \ldots, b_m \in \mathbb{C}$ avec $b_m \neq 0$ et une fonction holomorphe $\overline{f}: D \to \mathbb{C}$ tels que

$$\forall z \in D \setminus \{c\}, \quad f(z) = \sum_{j=1}^{m} \frac{b_j}{(z-c)^j} + \overline{f}(z). \tag{*}$$

Les nombres b_i et la fonction \overline{f} sont uniquement déterminés par f.

Preuve Il existe une fonction holomorphe $g: D \to \mathbb{C}$ telle que $g(c) \neq 0$ et

$$\forall z \in D \setminus \{c\}, \quad f(z) = \frac{g(z)}{(z-c)^m}.$$

Comme g se développe en série entière au voisinage de 0, il existe r > 0 vérifiant $B(c, r) \subset D$, des complexes $b_1, \ldots, b_m \in \mathbb{C}$ et une fonction holomorphe $\overline{f} \colon B(c, r) \to \mathbb{C}$ tels que

$$\forall z \in B(c, r), \quad g(z) = b_m + b_{m-1}(z-c) + \dots + b_1(z-c)^{m-1} + \overline{f}(z)(z-c)^m.$$

On en déduit la relation voulue sur $B(c, r) \setminus \{c\}$. Grâce à la relation (*), on définit la fonction \tilde{f} sur $D \setminus B(c, r)$ et elle est bien holomorphe sur D. Comme g est unique, les coefficients b_j et la fonction \overline{f} sont aussi uniques.

2.6 Singularités essentielles

Une conséquence du théorème précédent est la suivante : pour tout ouvert D de \mathbf{C} , une singularité isolée $c \in D$ d'une fonction holomorphe $f : D \setminus \{c\} \to \mathbf{C}$ est essentielle si f n'est pas bornée au voisinage de c et f ne tend pas vers l'infini en c. Mais on peut en dire beaucoup plus.

THÉORÈME 2.77 (sur les singularités essentielles). Soient $c \in D$ et $f: D \setminus \{c\} \to \mathbb{C}$ une fonction holomorphe. Alors les propositions suivantes sont équivalentes :

- (i) la singularité *c* est essentielle;
- (ii) pour tout voisinage U de c dans D, l'image $f(U \setminus \{c\})$ est dense dans C.

Preuve Le sens réciproque vient de la remarque précédente. Directement, raisonnons par contraposée et supposons qu'il existe un voisinage U de c dans D telle que l'image $f(U \setminus \{c\})$ ne soit pas dense dans C. Alors il existe $a \in C$ et r > 0 tels que $B(a, r) \cap f(U \setminus \{c\}) = \emptyset$ ce qui revient à dire |f(z) - a| > r pour tout $z \in U \setminus \{c\}$. La fonction

$$g: \begin{vmatrix} U \setminus \{c\} \longrightarrow \mathbf{C}, \\ z \longmapsto 1/(f(z) - a) \end{vmatrix}$$

est holomorphe sur $U \setminus \{c\}$ et elle est bornée au voisinage de c. On en déduit que c est une singularité effaçable de g. Mais alors, la fonction f = 1/g + c admet une singularité effaçable en c si $g(c) \neq 0$ ou un pôle en c si $g(c) \neq 0$. Dans tous les cas, la singularité c n'est pas essentielle.

D'après ce théorème et le théorème de l'application ouverte, si c est une singularité essentielle de f, alors $f(U \setminus \{c\})$ est à la fois ouverte et dense dans C. En fait, on verra même que cette image est soit C tout entier soit C privé d'un point.

2.6 Théorème fondamental de l'algèbre

THÉORÈME 2.78 (D'ALEMBERT-GAUSS). Tout polynôme non constant à coefficients complexes admet au moins une racine complexe.

Ce théorème est équivalent au théorème suivant.

THÉORÈME 2.79 (factorisation des polynômes). Tout polynôme $P(z) := a_0 + \cdots + a_n z^n \in \mathbb{C}[z]$ de degré $n \ge 1$ s'écrit comme un produit

$$P(z) = a_n(z - c_1) \dots (z - c_n).$$

Cette factorisation est unique à l'ordre des facteurs près.

Pour montrer ces théorèmes, on va s'appuyer sur le lemme suivant.

LEMME 2.80 (*de croissance*). Soit $P(z) := a_0 + \dots + a_n z^n \in \mathbb{C}[z]$ un polynôme de degré $n \ge 0$. Alors il existe R > 0 tel que $\forall z \in \mathbb{C} \setminus B(0,R), \quad 2^{-1} |a_n| |z|^n \le |P(z)| \le 2 |a_n| |z|^n$.

Preuve Le résultat est trivial pour n = 0. On suppose $n \ge 1$. On pose

$$R(z) := \sum_{k=0}^{n-1} |a_k| |z|^k.$$

Alors pour tout $z \in \mathbb{C}$, on a $|a_n| |z|^n - R(z) \le |P(z)| \le |a_n| |z|^n + R(z)$. Pour $z \in \mathbb{C} \setminus B(0,1)$, on a $|z|^k \le |z|^{n-1}$ pour $k \in [0, n-1]$, donc $R(z) \le |z|^{n-1} \sum_{k=0}^{n-1} |a_k|$. Il suffit alors de prendre

$$R := \max \left\{ 1, \frac{2}{|a_n|} \sum_{k=0}^{n-1} |a_k| \right\}.$$

On vérifie alors que ce réel R > 0 fonctionne.

Preuve du théorème Par l'absurde, supposons que P n'admet par de racine dans C. Alors la fonction

$$f: z \in \mathbb{C} \longrightarrow 1/P(z) \in \mathbb{C}$$

est holomorphe sur ${\bf C}$. D'après le lemme de croissance, on a $|P(z)| \to +\infty$ quand $|z| \to +\infty$. On en déduit que f est bornée. Le théorème de LIOUVILLE affirme que f est constante ce qui est impossible car $n \ge 1$. Donc P admet une racine dans ${\bf C}$.

2.6 Logarithmes d'applications holomorphes

DÉFINITION 2.81. Soient D un ouvert de \mathbf{C} et $f: D \to \mathbf{C}^*$ une fonction holomorphe. Un *logarithme* de f est une fonction holomorphe $g: D \to \mathbf{C}$ telle que

$$\forall z \in D$$
, $\exp(g(z)) = f(z)$.

Une telle fonction g vérifie

$$\forall z \in D, \quad g'(z) = \frac{f'(z)}{f(z)}.$$

THÉORÈME 2.82. Soient D un ouvert étoilé par rapport à un point $c \in D$ et $f: D \to \mathbb{C}$ une fonction holomorphe ne s'annulant pas. Alors la fonction

$$g: D \longrightarrow \mathbf{C},$$

$$z \longmapsto b + \int_{[c,z]} \frac{f'(\zeta)}{f(\zeta)} d\zeta$$

où $b \in \mathbb{C}$ vérifie $\exp b = f(c)$ est un logarithme de f.

Preuve La fonction f'/f est holomorphe sur l'ouvert étoilé D par rapport à c, donc elle admet des primitives dans D de la forme

$$z \longmapsto \int_{[c,z]} \frac{f'(\zeta)}{f(\zeta)} d\zeta, \qquad b \in \mathbb{C}.$$

Comme exp: $\mathbf{C} \to \mathbf{C}^*$ est surjective, il existe $b \in \mathbf{C}$ tel que exp b = f(c). On définit alors la fonction $g: D \to \mathbf{C}$ comme dans l'énoncé. Vérifions que g est un logarithme de f. La fonction $h: z \in D \longmapsto f(z) \exp(-g(z))$ est holomorphe sur D et, pour tout $z \in D$, on a

$$h'(z) = f'(z) \exp(-g(z)) - f(z)g'(z) \exp(-g(z)) = \left(f'(z) - f(z)\frac{f'(z)}{f(z)}\right) \exp(-g(z)) = 0.$$

On en déduit que h est constante, i. e. il existe $C \in \mathbb{C}$ tel que $\exp(g(z)) = Cf(z)$ pour tout $z \in D$. Or g(c) = b et $\exp b = f(c)$, donc C = 1. Cela montre que g est un logarithme de f.

 \diamond REMARQUE. Au lieu de prendre le segment [c, z], on peut prendre n'importe quel chemin reliant c à z dans D.

THÉORÈME 2.83. Soient $\gamma: I \to \mathbb{C}$ un chemin lisse par morceaux et $c \in \mathbb{C} \setminus \gamma(I)$. Alors

$$\int_{\gamma} \frac{\mathrm{d}\zeta}{\zeta - c} \in 2\pi i \mathbf{Z}.$$

Preuve On note I = [a, b] avec $a, b \in \mathbf{R}$ tels que a < b. Comme $\gamma(I)$ est compact, il existe des points $a = t_0 < \cdots < t_n = b$ et des boules $U_1, \dots, U_n \in \mathbf{C}$ avec $n \ge 2$ tels que

$$\begin{cases} \forall i \in [0, n], & c \notin \overline{U_i}, \\ \forall i \in [1, n], & \gamma_i \coloneqq \gamma([t_{i-1}, t_i]) \subset U_i. \end{cases}$$

Pour $i \in [0, n]$, on pose $z_i := \gamma(t_i)$. Sur chaque ouvert U_i , la fonction $z \mapsto z - c$ ne s'annule pas. Soit $b_0 \in \mathbb{C}$ tel que $\exp b_0 = z_0 - c$. On définit la fonction

$$g_1: \begin{vmatrix} U_1 \longrightarrow \mathbf{C}, \\ z \longmapsto b_0 + \int_{[z_0, z]} \frac{\mathrm{d}\zeta}{\zeta - c}. \end{vmatrix}$$

Par une récurrence, pour tout $i \in [1, n-1]$, on définit une fonction $g_{i+1} \colon U_{i+1} \to \mathbb{C}$ telle que

$$\forall z \in U_{i+1}, \quad g_{i+1}(z) = g_i(z_i) + \int_{[z_i,z]} \frac{\mathrm{d}\zeta}{\zeta - c}.$$

Pour tout $i \in [1, n]$, le théorème précédent assure $\exp g_i(z_i) = z_i - c$. De plus, pour tout $i \in [1, n-1]$, comme $\zeta \longmapsto 1/(\zeta - c)$ est holomorphe sur $U_i \cup U_{i+1}$ et la concaténation des chemins $[z_{i+1}, z_i]$ et γ_{i+1} est un chemin fermé lisse par morceaux, on a

$$\frac{\exp g_{i+1}(z_{i+1})}{\exp g_i(z_i)} = \exp\left(\int_{[z_i,z_{i+1}]} \frac{\mathrm{d}\zeta}{\zeta - c}\right) = \exp\left(\int_{\gamma_{i+1}} \frac{\mathrm{d}\zeta}{\zeta - c}\right).$$

Comme le chemin γ est fermé, on a $z_0 = z_n$, donc

$$\exp\left(\int_{\gamma} \frac{\mathrm{d}\zeta}{\zeta - c}\right) = \exp\left(\sum_{i=0}^{n-1} \int_{\gamma_{i+1}} \frac{\mathrm{d}\zeta}{\zeta - c}\right) = \prod_{i=0}^{n-1} \frac{\exp g_{i+1}(z_{i+1})}{\exp g_{i}(z_{i})} = \prod_{i=0}^{n-1} \frac{z_{i+1} - c}{z_{-c}} = 1.$$

ce qui assure la conclusion

DÉFINITION 2.84. Soit $\gamma I \to \mathbf{C}$ un chemin fermé lisse par morceaux. Pour $c \in \mathbf{C} \setminus \gamma(I)$, l'*indice* de c par rapport à γ est l'entier

$$\operatorname{Ind}_{\gamma}(c) := \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}\zeta}{\zeta - c} \in \mathbf{Z}.$$

L'*intérieur* de γ est l'ensemble

$$\operatorname{Int}(\gamma) := \{ a \in \mathbb{C} \setminus \gamma(I) \mid \operatorname{Ind}_{\gamma}(a) \neq 0 \}.$$

Le chemin γ est dit *fermé simple* si $\operatorname{Ind}_{\gamma}(a) = 1$ pour tout $a \in \operatorname{Int}(\gamma)$.

> EXEMPLE. Soient $z_0 \in \mathbb{C}$ et r > 0. On considère le chemin γ : $t \in [0, 2\pi] \longrightarrow z_0 + re^{it}$ paramétrisant le cercle de centre z_0 et de rayon r. Alors pour tout $z \in \mathbb{C} \setminus \partial B(z_0, r)$, on a

$$\operatorname{Ind}_{\gamma}(a) = \begin{cases} 1 & \text{si } a \in \operatorname{B}(z_0, r), \\ 0 & \text{si } a \in \operatorname{C} \setminus \overline{\operatorname{B}}(z_0, r). \end{cases}$$

On en déduit que $Int(\gamma) = B(z_0, r)$.

THÉORÈME 2.85. Soient D un ouvert connexe de \mathbb{C} et $\gamma: I \to D$ un chemin fermé lisse tel que $\mathrm{Int}(\gamma) \subset D$. Alors

- 1. pour toute fonction holomorphe $f: D \to \mathbb{C}$, on a $\int_{\mathcal{X}} f(z) dz = 0$;
- 2. pour toute fonction holomorphe $f: D \to \mathbb{C}$ et tout $a \in D \setminus \gamma(I)$, on a

$$f(a)\operatorname{Ind}_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz.$$

Preuve On se place dans le cas où l'ouvert D est étoilé. On a déjà vu le point 1. Montrons le point 2. Soient $f: D \to \mathbb{C}$ une fonction holomorphe et $a \in D \setminus \gamma(I)$. On considère la fonction

$$f_1: \begin{vmatrix} D \setminus \{a\} \longrightarrow \mathbf{C}, \\ z \longmapsto \frac{f(z) - f(a)}{z - a}. \end{vmatrix}$$

Comme f est holomorphe sur D, la fonction f_1 est holomorphe sur $D \setminus \{a\}$ et bornée au voisinage de a, donc elle se prolonge en une fonction holomorphe sur $\tilde{f}_1 : D \to \mathbf{C}$. On en déduit que

$$\int_{\gamma} \frac{f(z) - f(a)}{z - a} \, \mathrm{d}z = \int_{\gamma} \tilde{f}_1(z) \, \mathrm{d}z = 0.$$

La linéarité de l'intégrale donne alors la relation voulue.

2.6 Résidus

(i) Définition et théorème des résidus

DÉFINITION 2.86. Soient D un ouvert de C, $c \in D$ et $f: D \setminus \{c\} \to C$ une fonction holomorphe. Le *résidu* de f en c est le complexe

$$\operatorname{Res}_{c} f := \frac{1}{2\pi i} \int_{\partial B(c,r)} f(z) dz$$

où r > 0 est un réel tel que $B(c, r) \subset D$. Cette définition ne dépend pas d'un tel réel r.

► EXEMPLE. Soit $f: D \setminus \{c\} \to \mathbb{C}$ une fonction holomorphe admettant un pôle c d'ordre $m \in \mathbb{N}^*$. On peut l'écrire sous la forme

$$f(z) = \frac{a_{-m}}{(z-c)^m} + \dots + \frac{a_{-1}}{z-c} + \overline{f}(z)$$

sur D où la fonction \overline{f} est holomorphe sur D. Alors

$$\int_{\partial B(c,r)} \overline{f}(z) \, \mathrm{d}z = 0.$$

De plus, on a déjà vu que, pour tout $k \in \mathbb{Z}$, on a

$$\int_{\partial B(c,r)} (z-c)^k dz = \begin{cases} 0 & \text{si } k \neq 1, \\ 2\pi i & \text{sinon.} \end{cases}$$

On en déduit Res_c $f = a_{-1}$.

THÉORÈME 2.87 (*des résidus*). Soient D un ouvert connexe de \mathbb{C} et $\gamma: I \to D$ un chemin fermé lisse par morceaux. Soit $S \subset D \setminus \gamma(I)$ une partie finie. Soit $f: D \setminus S \to \mathbb{C}$ une fonction holomorphe. Alors

$$\sum_{c \in S \cap \operatorname{Int}(\gamma)} \operatorname{Ind}_{\gamma}(c) \operatorname{Res}_c f = \frac{1}{2\pi i} \int_{\gamma} f(z) \, \mathrm{d}z.$$

Preuve On note $S = \{c_1, ..., c_n\}$. On suppose que f n'a pas de singularité essentielle. Alors pour tout $i \in [1, n]$, la singularité c_i est un pôle ou une singularité apparente de f, donc on peut écrire

$$f(z) = \frac{a_{i,-m_i}}{(z-c_i)^{m_i}} + \dots + \frac{a_{i,-1}}{z-c} + \overline{f_i}(z)$$

où les entiers $m_i \in \mathbb{N}$ sont les ordres des singularités c_i (valant 0 si c_i est apparente) et on pose

$$h: D \setminus \{c_i\} \longrightarrow \mathbf{C},$$

$$z \longmapsto \sum_{k=-m_i}^{-1} a_{i,k} (z - c_i)^k.$$

On remarque que la fonction $f - \sum_{i=1}^{n} h_i$ est holomorphe sur $D \setminus S$ et se prolonge donc en une fonction holomorphe sur D. On a donc

$$\int_{\gamma} (f - \sum_{i=1}^{n} h_i)(z) \, \mathrm{d}z = 0. \tag{*}$$

Comme dans l'exemple précédent et avec le théorème de CAUCHY, pour $i \in [1, n]$, comme les fonctions $z \mapsto a_{i,k}(z-c_i)^k$ sont intégrable sur $D \setminus \{c_i\}$ pour $k \in [-m_i, -1]$, on a

$$\int_{\gamma} h_i(z) \, dz = \int_{\gamma} a_{i,-1} (z - c_i)^{-1} \, dz = a_{i,-1} \cdot 2\pi i \operatorname{Ind}_{\gamma}(c_i) = 2\pi i \operatorname{Res}_{c_i} f \operatorname{Ind}_{\gamma}(c_i).$$

Grâce à la relation (*), cela montre que

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{i=1}^{n} \operatorname{Res}_{c_i} f \operatorname{Ind}_{\gamma}(c_i).$$

(ii) Règles de calculs

PROPOSITION 2.88. Soient $f,g: D \setminus \{c\} \to \mathbb{C}$ deux fonctions holomorphes et $a,b \in \mathbb{C}$. Alors

$$\operatorname{Res}_c(af + bg) = a\operatorname{Res}_c f + b\operatorname{Res}_c g.$$

PROPOSITION 2.89. Soit $f: D \setminus \{c\} \to \mathbb{C}$ une fonction holomorphe. On suppose que c est un pôle simple d'ordre $m \in \mathbb{N}^*$ de f. Par conséquent, on peut l'écrire sous la forme

$$f(z) = \frac{a_{-m}}{(z-c)^m} + \dots + \frac{a_{-1}}{z-c} + \overline{f}(z)$$

sur S où la fonction \overline{f} est holomorphe sur un voisinage de c. Alors

$$\operatorname{Res}_{c} f = a_{-1} = \lim_{z \to c} f(z)(z - c).$$

Preuve On procède comme dans l'exemple précédent.

PROPOSITION 2.90. Soient h et h deux fonctions holomorphes sur un voisinage de c telles que $g(c) \neq 0$, h(c) = 0 et $h'(c) \neq 0$. Alors la fonction f := g/h admet un pôle en simple en c et

$$\operatorname{Res}_{c} f = g(c)/h'(c)$$
.

Preuve La fonction h se développe en série entière au voisinage de 0 et, sur ce voisinage, on a

$$h(z) = h'(c)(z-c) + \frac{h''(c)}{2}(z-c)^2 + \cdots,$$

donc

$$\lim_{z \to c} (z - c) f(z) = \frac{g(c)}{h'(c)} \neq 0.$$

Donc *c* est un pôle simple de *f* et la proposition précédent donne Res_c f = g(c)/h'(c).

PROPOSITION 2.91. Soient g et h deux fonctions holomorphes sur un voisinage de c. On suppose que c est un zéro d'ordre $m \in \mathbb{N}^*$ de g. On note $f \coloneqq hg'/g$. Alors

$$\operatorname{Res}_{c} f = m \cdot h(c)$$
.

Preuve Sur un voisinage V de c, on peut écrire $g(z) = (z-c)^m \tilde{g}(z)$ où la fonction \tilde{g} est holomorphe sur V et ne s'annule pas en c. Alors pour tout $z \in V$, on a

$$\frac{g'(z)}{g(z)} = \frac{m(z-c)^{m-1}\tilde{g}(z) + (z-c)^{m}\tilde{g}'(z)}{(z-c)^{m}\tilde{g}(z)} = \frac{m}{z-c} + \frac{\tilde{g}'(z)}{\tilde{g}(z)}.$$

Avec les propositions précédentes et comme la fonction $h\tilde{g}'/\tilde{g}$ est holomorphe sur V, on a

$$\operatorname{Res}_{c} f = m \cdot \operatorname{Res}_{c} \left(\frac{h(\cdot)}{\cdot - c} \right) + \operatorname{Res}_{c} \left(\frac{h\tilde{g}'}{\tilde{g}} \right) = m \cdot h(c).$$

PROPOSITION 2.92. Soient g et h deux fonctions holomorphes sur un voisinage de c. On suppose que c est un pôle d'ordre $m \in \mathbb{N}^*$ de g. On note $f \coloneqq hg'/g$. Alors

$$\operatorname{Res}_c f = -m \cdot h(c).$$

Preuve Il existe une fonction holomorphe \tilde{g} sur un voisinage U de c telle que $g(z) = \tilde{g}(z)/(z-c)^m$ pour tout $z \in U \setminus \{c\}$ et $\tilde{g}(c) \neq 0$. On procède alors de même que dans la preuve précédente.

EXEMPLE. On note $S := \{e^{i\pi/4}, e^{3i\pi/4}, e^{5i\pi/4}, e^{7i\pi/4}\}$ l'ensemble des racines du polynôme $X^4 + 1$ et on considère la fonction $f: z \in \mathbb{C} \setminus S \longrightarrow z^2/(1+z^4)$. Le complexe $c := e^{i\pi/4}$ est un pôle simple de f. Cette fonction est le quotient des deux fonctions définies par $g(z) = z^2$ et $h(z) = 1 + z^4$ qui sont holomorphes et vérifie $g(c) \neq 0$, h(c) = 0 et $h'(c) \neq 0$. Alors

$$\operatorname{Res}_{c} f = \frac{g(c)}{h'(c)} = \frac{c^{2}}{4c^{3}} = \frac{e^{-i\pi/4}}{4}.$$

2.6 Comptage des zéros et des pôles

DÉFINITION 2.93. Soit D un ouvert de C. Une fonction f est dite $m\acute{e}romorphe$ sur D si elle est holomorphe sur $D \setminus S$ où l'ensemble $S \subset D$ est discret tel que tout point de S soit une singularité apparente ou un pôle de f.

♦ REMARQUE. Quitter à prolonger f en une fonction holomorphe, on peut considérer que les fonctions méromorphes f n'ont pas de singularités apparentes.

Théorème 2.94 (*de comptage*). Soient D un ouvert étoilé de \mathbf{C} et f une fonction méromorphe sur D ayant un nombre fini $N \in \mathbf{N}$ de zéros et un nombre fini $M \in \mathbf{N}$ de pôles. Soit $\gamma \colon I \to D$ un chemin lisse par morceaux, fermé et simple qui

ne passe par aucun zéro ou pôle de f. Alors

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = N - M.$$

Preuve On note $P \subset D$ l'ensemble des pôles de f'/f. La simplicité du chemin γ et le théorème des résidus donnent

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, \mathrm{d}z = \sum_{c \in P \cap \mathrm{Int}(\gamma)} \mathrm{Ind}_{\gamma}(c) \, \mathrm{Res}_c(f'/f) = \sum_{c \in P \cap \mathrm{Int}(\gamma)} \mathrm{Res}_c(f'/f).$$

Soit $c \in P$. Alors la singularité c est soit un zéro soit un pôle. Si c est un zéro d'ordre $m \in \mathbb{N}^*$, on a $\mathrm{Res}_c(f'/f) = m$ et, si c est un pôle d'ordre $m \in \mathbb{N}^*$, on a $\mathrm{Res}_c(f'/f) = -m$. Cela montre le résultat.

Théorème 2.95 (Rouché). Soient D un ouvert connexe de C, f, g: $D \rightarrow C$ deux fonctions holomorphes et γ : $I \rightarrow D$ un chemin lisse par morceaux, fermé et simple. On suppose

$$\forall z \in \gamma(I), \quad |f(z) - g(z)| < |g(z)|.$$

Alors f et g ont le même nombre de zéros à l'intérieur de $\gamma(I)$.

Preuve Pour tout $z \in \gamma(I)$, on a $f(z) \neq 0$ et $g(z) \neq 0$, donc |f(z)/g(z) - 1| < 1. Soit $z \in \gamma(I)$. Alors il existe donc un voisinage U_z de z dans $\gamma(I)$ tel que $f/g(U) \subset \mathbb{C} \setminus \mathbb{R}_-$. Alors l'application $\text{Log} \circ (f/g)$ est une primitive de f'/f - g'/g dans U_z . Ceci étant vrai pour tout $z \in \gamma(I)$, avec les théorème 2.59 et de CAUCHY, on a

$$\int_{\gamma} \left(\frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)} \right) dz = 0.$$

On conclut alors en utilisant la linéarité de l'intégrale et le théorème de comptage.