Page 2 09/651,717 Balachandran 13-18-18-40-1 Specification Amendments

Amend the following paragraph on page 3 of the specification as indicated:

"In accordance with anotheranethe aspect of the invention, the aforementioned problems are addressed and an advance in the art achieved by providing a frequency division duplex point-to-multipoint communications system that divides a frequency allocation into two bands, a downlink band that carries communications from a central station to multiple stations, and an uplink band that carries communications from multiple stations to the central station. The system also includes: a carrier generator generating a plurality of carriers within each of the bands, each of the carriers being in a spaced relationship to the other carriers such that each band is sub-divided into a plurality of sub-bands that are equal in number to the plurality of carriers and each of said plurality of sub-bands having a respective carrier of the plurality of carriers, a time multiplexer dividing each of the sub-bands by time-multiplexing into a plurality of frames, the time multiplexer also dividing each frame into N time-slots, and a switch assigning a series of time-slots that occur periodically, every N time-slots, once per frame, to form a channel. The switch being controlled by control logic such that a communication session between the central station and at least one of multiple stations is assigned channel resources only when there is data to be transmitted."

Amend the following paragraph starting on page 3 and continuing on page 4 of the specification as follows:

"In accordance with another aspect of the invention, the aforementioned problems are addressed and an advance in the art achieved by providing a frequency division duplex point-to-multipoint communications system that divides a frequency allocation into two bands, a downlink band that carries communications from a central station to multiple stations, and an uplink band that carries communications from multiple stations to the central station. The system also includes: a carrier generator generating a plurality of carriers within each of the bands, each of the carriers being in a spaced relationship to the other carriers such that each band is sub-divided into a plurality of sub-bands that are equal in number to the plurality of carriers and each of said plurality of sub-bands having a respective carrier of the plurality of carriers, a time multiplexer dividing each of the sub-bands by time-multiplexing into a plurality of frames, the time multiplexer also dividing each frame into N time-slots, and a switch assigning a series of

Page 3 09/651,717 Balachandran 13-18-18-40-1

time-slots that occur periodically, every N time-slots, once per frame, to form a channel. The switch being controlled by control logic such that a fast associated control channel message that has a higher priority pre-empts traffic on the traffic channel having a lower priority when higher priority data is <u>present.present.</u> The fast associated control channel message may be transmitted over one burst, or the fast associated control channel message may be transmitted over multiple bursts,"

Amend the below paragraph on page 20 of the specification as indicated:

"As shown in FIG. 3, half-rateHalf rate traffic channels comprise either even-numbered bursts (channel 1) or odd-numbered bursts (channel 2) of a time slot. This even or odd burst allocation of a half-rate traffic channel is not changed in a multiframe. It is worth noting that for current GSM traffic channels, the burst allocation alternates every 13 frames within a multiframe between odd bursts and even bursts. This change in burst allocation is necessary for maximum compatibility with half-duplex mobiles. "

Amend the below paragraph on page 27 of the specification as indicated:

"As shown in FIG. 4, an An established bi-directional TBF has the following 4 states: TBF Inactive, DL Active, UL Active, and DL and UL Active. The state transition diagram for a single bi-directional RT TBF is shown in FIG. 6. The state transitions for a unidirectional RT TBF and NRT TBF (as defined in EGPRS Phase 1) are a subset of the states and allowable transitions associated with bi-directional RT TBF."