ISEL - DEETC - LERCM

Processamento Digital de Sinais

 1^a Chamada - Semestre Verão 2012/13 - 21/06/2013

- Rep. 1 Repetição do 1.º teste, duração de 1H30m, grupos 1 a 4.
- Rep. 2 Repetição do 2.º teste, duração de 1H30m, grupos 5 a 7.
- Global Teste global, duração de 2H30m, grupos 1,2,4,5 e 7. Cotações no verso da folha.
- 1. Considere os sinais contínuos e periódicos: $x(t)=-2+\cos(2\pi 15t)$ e $y(t)=\cos(2\pi 5t-\frac{\pi}{4})+\sin(2\pi 30t)$.
 - (a) Represente graficamente x(t). Quais as frequências fundamentais de x(t) e y(t)?
 - (b) Calcule os coeficientes Y_k , da séries de Fourier do sinal y(t). Represente graficamente o espectro de amplitude, |Y(f)| e de fase $\angle Y(f)$ do sinal y(t).
 - (c) Utilizando o teorema de Parseval, calcule a potência de x(t).
- 2. Considere que Z_k representa os coeficientes da série de Fourier do sinal z(t):

$$Z_k = \begin{cases} -10 & , & k = 0\\ 2e^{-j\frac{\pi}{3}} & , & k = 2\\ 2e^{j\frac{\pi}{3}} & , & k = -2\\ 5 & , & k = 4 \text{ e} - 4 \end{cases}$$

- (a) Represente graficamente em função de k, $|Z_k|$ e $arg(Z_k)$.
- (b) Considerando que a frequência fundamental, f_0 , é 5Hz, determine a expressão analítica de z(t).
- 3. Considere o sinal contínuo e periódico, a(t), do qual se representa um troço na Figura.
 - (a) Determine A_k , a série de Fourier de a(t).
 - (b) Represente graficamente o espectro de amplitude e de fase.
 - (c) Seja b(t) = 3a(t + 0.5) + 1. Represente graficamente b(t). Calcule B_k .

- 4. Considere que x(t) representa um sinal de uma música, e cujo contéudo espectral está contido no intervalo $f \in [100, 2000]Hz$.
 - (a) Descreva como se realiza o processo de digitalização deste sinal.
 - (b) Qual é a menor frequência de amostragem que é necessária para digitalizar o sinal x(t).
 - (c) Se cada amostra for codificada usando n=16bits qual o tamanho do ficheiro produzido quando x(t) tem uma duranção de 2 minutos e 30 segundos.

5. Considere os SLITs discretos S_1 e S_2 dados pelas equações às diferenças:

$$S_1: y_1[n] = x[n+1] + 2x[n-2]$$

 $S_2: y_2[n] = x[n] - x[n-1]$

- (a) Calcule a resposta impulsional, $h_1[n]$, do sistema S_1 .
- (b) Calcule a resposta em frequência do sistema S_2 , $H_2(\hat{w})$. Que tipo de filtragem realiza este sistema.
- (c) Considerando que se coloca os sistemas S_1 e S_2 em série determine a resposta impulsional equivalente.
- (d) Caracterize, justificando, os sistemas quanto às seguintes propriedades: tipo(FIR/IIR), linearidade, causalidade e estabilidade.
- 6. Considere o SLIT discreto IIR dado pela equação às diferenças:

$$y[n] = 2x[n] - 0.5y[n-1]$$

- (a) Desenhe o diagrama de blocos que implemente o sistema.
- (b) Determine a função de transferência, H(z). Quais os pólos e zeros deste sistema.
- (c) Represente graficamente o módulo da resposta em frequência. Qual é o tipo de filtragem que é realizada por este sistema?
- (d) Qual a saída do sistema, y[n], quando na entrada esta presente o sinal $x[n] = 1 + 3\cos[\frac{\pi}{2}n]$?
- 7. Considere um SLIT S, cuja função de transferência é dada por:

$$H(z) = \frac{1}{(1 - 0.5z^{-1})(1 - 0.9z^{-1})}, z \neq 0.5, z \neq 0.9$$

- (a) Qual a equação às diferenças que caracteriza este sistema?
- (b) Determine a resposta impulsional do sistema.
- (c) Esboce a saída do sistema, y[n], quando na entrada está presente o sinal $x[n] = -\delta[n] + 2\delta[n-1]$.

Cotações:

Questão	Repetição T1	Teste Global	Questão	Repetição T2	Teste Global
1 a)	1	1	5 a)	1	1
1 b)	2	2	5 b)	2	1
1 c)	2	2	5 c)	2	1
2 a)	2	2	5 d)	2	1
2 b)	2	1	6 a)	1	
3 a)	2		6 b)	2	
3 b)	2		6 c)	2	
3 c)	2		6 d)	2	
4 a)	1	1	7 a)	2	2
4 b)	2	1	7 b)	2	2
4 c)	2	1	7 c)	2	1