Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №11

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Latency

Задание 3

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	5
3.	Скрипт	7
4.	Моделирование	8
5.	Решение 1a 5.1. Директивы 5.2. Синтез	9
6.	Решение 2a 6.1. Директивы 6.2. Синтез	
7.	Решение 3a 7.1. Директивы 7.2. Синтез	
8.	Решение 4a 8.1. Директивы	19 19 19
9.	Вывол	22

1. Задание

- 1. Создать проект lab11 3
- 2. Микросхема: xa7a12tcsg325-1q
- 3. Познакомиться с исходным кодом функции loop imperfect.c
- 4. Познакомиться с исходным кодом теста loop_imperfect_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- 5. Исследование:
- 6. Solution 1a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму

7. Solution 2a

- задать: clock period 10; clock uncertainty 0.1
- преобразовать функцию из формы Unperfect в форму Perfect
- установить реализацию ПО УМОЛЧАНИЮ
- осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)

- · На скриншоте показать Latency
- · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 8. Сравнить два решения (solution_1a и solution_2a) и сделать выводы; объяснить (посчитать) число циклов Latency, II...
- 9. Solution 3a
 - задать: clock period 10; clock uncertainty 0.1
 - использовать функцию преобразованную в форму Perfect
 - установить реализацию Flattend для внутреннего цикла
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 10. Сравнить два решения (solution_2a и solution_3a) и сделать выводы; объяснить (посчитать) число циклов Latency, II...
- 11. Solution 4a
 - задать: clock period 10; clock uncertainty 0.1
 - использовать функцию, преобразованную в форму Perfect
 - установить реализацию UNROLLED для внутреннего цикла
 - осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 12. Сравнить два решения (solution_3a и solution_4a) и сделать выводы; объяснить (посчитать) число циклов Latency, II...

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
1 #include "loop imperfect.h"
3
  void loop_imperfect(din_t A[N], dout_t B[N]) {
4
5
       int i , j ;
6
       dint_t acc;
7
8
       LOOP I: for (i=0; i < 20; i++)
9
10
           LOOP_J: for(j=0; j < 20; j++){
11
                acc += A[j] * j;
12
            if (i\%2 = 0)
13
14
                B[i] = acc / 20;
15
            _{
m else}
16
                B[i] = 0;
17
       }
18
19 }
```

Рис. 2.1. Исходный код устройства

```
1 #include "loop_imperfect.h"
3
  void loop_imperfect(din_t A[N], dout_t B[N]) {
4
5
       int i, j;
6
       dint_t acc;
7
8
       LOOP_I: for (i=0; i < 20; i++){
9
            LOOP J: for (j=0; j < 20; j++)
10
               if(j = 0)
11
12
                 acc = 0;
13
                 acc \,\, +\!\!= \, A[\,j\,] \ * \ j\;;
14
                 if(j == 19)
15
16
                    if (i\%2 = 0)
17
18
              B[i] = acc / 20;
19
            _{
m else}
20
              B[i] = 0;
21
22
            }
23
24
       }
25
26
```

Рис. 2.2. Исходный код устройства, форма PERFECT

```
1 #ifndef _LOOP_IMPERFECT_H_
2 #define LOOP IMPERFECT H
3
4 #include "ap_cint.h"
5 #define N 20
6
7
  typedef int5 din t;
8
  typedef int12 dint_t;
9
  typedef int6 dout t;
10
11 void loop_imperfect(din_t A[N], dout_t B[N]);
12
13 #endif
```

Рис. 2.3. Заголовочный файл

```
1 #include < stdio.h>
   #include "loop_imperfect.h"
 3
   int main() {
 4
 5
        din t A[N];
 6
        dout_t B[N];
 7
 8
        int i, retval = 0;
 9
        FILE *fp;
10
        \quad \  \  \mathbf{for} \  \, (\, i \ = \ 0\,; \  \, i \ < \, N\,; \, +\!\!\!+\!\! i\,) \  \, \{\,
11
12
             A[i] = i;
13
14
        // Save the results to a file
        fp = fopen("result.dat", "w");
15
16
        // Call the function
17
18
        loop imperfect (A, B);
        for (i = 0; i < N; ++i)  { fprintf(fp, "%d_\n", B[i]);
19
20
21
22
        fclose (fp);
23
24
        // Compare the results file with the golden results
        retval = system("diff_--brief_-w_result.dat_result.golden.dat");
25
26
        if (retval != 0) {
27
              printf("Test_failed__!!!\n");
28
              retval = 1;
29
        } else {
30
              printf("Test_passed_!\n");
31
32
33
        // Return 0 if the test passed
34
        return retval;
35
```

Рис. 2.4. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab11 3 imperfect
3 add_files loop_imperfect.c
4 add_files -tb loop_imperfect_test.c
  add_files_t result.golden.dat
  set_top loop_imperfect
6
7
8
  open_solution_solution_la -reset
9 set part \{xa7a12tcsg325-1q\}
10 create clock -period 10 ns
11 set clock uncertainty 0.1
12
13 csim design
14 csynth_design
15 # cosim_design -trace_level all
16
17
  open_project -reset lab11_3_perfect
18
19 add_files loop_perfect.c
  add_files -tb loop_imperfect_test.c
20
  add files -tb result.golden.dat
21
  {\tt set\_top\ loop\_imperfect}
22
23
24
  set solutions [list 2a 3a 4a]
25
26 foreach sol $solutions {
     open_solution solution_$sol -reset
27
28
     set part \{xa7a12tcsg325-1q\}
29
     create_clock -period 10ns
30
     set clock uncertainty 0.1
31
32
     if {$sol == "3a"} {
       \verb|set_directive_loop_flatten| "loop_imperfect/LOOP J" \\
33
34
35
     if \{\$sol = "4a"\}
       {\tt set\_directive\_unroll "loop\_imperfect/LOOP\_J"}
36
37
38
39
    csim_design
40
    csynth design
    # cosim design -trace level all
41
42
43
  exit
```

Рис. 3.1. Скрипт

4. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5. Решение 1а

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Cloc	k	Target	Estimated	Uncertainty
ap_c	lk	10.00	9.332	0.10

□ Latency (clock cycles)

□ Summary

Late	ency	Inte	rval	
min	max	min	max	Туре
861	861	861	861	none

Рис. 5.2. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18k	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	118
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	90
Register	-	-	72	-
Total	(2	72	208
Available	40	40	16000	8000
Utilization (%)	(5	~0	2

Рис. 5.3. Utilization estimates

Рис. 5.4. Performance profile

Рис. 5.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	B(p0)			write		write
3	A(p0)			re	ad	
4	⊡Memory Ports					
5	B(p0)			write		write
6	A(p0)			re	ad	
7	⊡Expressions					
8	i_1_fu_135		+			
9	i_phi_fu_93		phi_mux			
10	exitcondl_fu_129		icmp			
11	j_1_fu_147			+		
12	acc_phi_fu_117			phi_mux		
13	j_phi_fu_105			phi_mux		
14	mu1_fu_253			*		
15	exitcond_fu_141			icmp		
16	grp_fu_261				+	
17	neg_mul_fu_187					-
18	neg_ti_fu_229					-
19	p_v_fu_217					select
20	tmp_s_fu_239					select

Рис. 5.6. Resource viewer

Выполнение одного внутреннего цикла Loop ј зависит от скорости чтения значения и нескольких небольших операций, т.е. пропускная способность =2 откуда Latency J=20*2=40. Для внешнего цикла значение Latency I=20*2=40. Для внешнего цикла значение Latency I=20*2=40. Так как число итераций такт для цикла I=20*2=40. Так как число итераций I=20, то Latency I=20*2=40. Подготовительный такт I=40*2=40. Так как число итераций I=20*2=40.

6. Решение 2а

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 6.1. Директивы

6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 6.2. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	2	-	-
Expression	-	-	0	152
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	68
Register	-	-	98	-
Total	0	2	98	220
Available	40	40	16000	8000
Utilization (%)	0	5	~0	2

Рис. 6.3. Utilization estimates

Рис. 6.4. Performance profile

Рис. 6.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	∃I/O Ports							
2	A(p0)			re	ad			
3	B(p0)							write
4	⊡Memory Ports							
5	A(p0)			re	ad			
6	B(p0)							write
7	∃Expressions							
8	i_phi_fu_91		phi_mux					
9	i_1_fu_132		+					
10	exitcondl_fu_126		icmp					
11	j_phi_fu_102			phi_mux				
12	j_1_fu_149			+				
13	exitcond_fu_143			icmp				
14	p_acc_1_fu_169				select			
15	grp_fu_269				+			
16	tmp_4_fu_163				icmp			
17	tmp_s_fu_185				icmp			
18	mu1_fu_277					*		
19	neg_mul_fu_206						-	
20	neg_ti_fu_247						-	
21	tmp_12_fu_257						select	
22	p_v_fu_235						select	
23	storemerge_phi_fu_114							phi_mux

Рис. 6.6. Resource viewer

Как видно по полученным результатам, после преобразования в форму PERFECT, производительность значительно ухудшилась.

7. Решение 3а

7.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 7.1. Директивы

7.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 7.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM	18K	DSP4	BE	FF	LUT
DSP	-			2	-	-
Expression	-		-		0	180
FIFO	-		-		-	-
Instance	-		-		-	-
Memory	-		-		-	-
Multiplexer	-		-		-	74
Register	-		-		116	-
Total		0		2	116	254
Available		40		40	16000	8000
Utilization (%)		0		5	~0	3

Рис. 7.3. Utilization estimates

Рис. 7.4. Performance profile

Рис. 7.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5
1							
2	A(p0)		re	ad			
3	B(p0)						write
4	⊡Memory Ports						
5	A(p0)		re	ad			
6	B(p0)						write
7	⊡Expressions						
8	indvar_flatten_next_fu_138		+				
9	indvar_flatten_phi_fu_90		phi_mux				
10	j_phi_fu_113		phi_mux				
11	i_phi_fu_101		phi_mux				
12	j_mid2_fu_150		select				
13	exitcond5_fu_144		icmp				
14	exitcond_flatten_fu_132		icmp				
15	i_s_fu_166			+			
16	i_cast3_mid2_v_fu_172			select			
17	p_acc_1_fu_192			select			
18	grp_fu_293			+			
19	tmp_s_fu_207			icmp			
20	tmp_4_fu_187			icmp			
21	mul_fu_302				*		
22	neg_ti_fu_271					-	
23	neg_mul_fu_238					-	
24	tmp_10_fu_281					select	
25	p_v_fu_260					select	
26	j_1_fu_288						+
27	storemerge_phi_fu_124						phi_mux

Рис. 7.6. Resource viewer

Видно, что два вложенных цикла превратились в один, с числом итераций 400, но так как длительность одной итерации составляет от 3 до 5 тактов, то общая производительность хуже, чем у первого решения.

По сравнению с предыдущим решением, производительность повысилась, т.к. были убраны задержки на инициализацию внутреннего цикла (3 такта на каждой итерации).

8. Решение 4а

8.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 8.1. Директивы

8.2. Синтез

По оценке производительности видно, что устройство соответствует ${\bf HE}$ заданным критериям.

Puc. 8.2. Performance estimates

Рис. 8.3. Utilization estimates

Рис. 8.4. Performance profile

Рис. 8.5. Scheduler viewer

На рисунке выше видны элементы, задержка в которых превышает допустимую.

Рис. 8.6. Resource viewer

За счёт разворачивания внутреннего цикла, данное решение имеет лучшую оценочную производительность, хоть и не укладывается в отведённый временной интервал.

9. Вывод

Как видим, с помощью директивы UNROLL можно «развернуть» цикл для получения конвейера, однако, чем больше «глубина» такого конвейера, тем больше количество затраченных ресурсов. Для управления глубиной конвейера используется параметр factor что позволяет получить «золотую середину» между пропускной способностью и требуемыми ресурсами. Для объединения циклов и оптимизации проекта при написании кода стоит учитывать что цикли лучше писать в виде PERFECT для максимальной оптимизации результата.