LIENT CHERTEN

1.3.1 凸集

定义1.3.1 给定非空集合 $F \subseteq R^n$,如果 $\forall x, y \in F, \alpha \in [0,1]$ 都有 $\alpha x + (1-\alpha)y \in F$ 称为x与y的凸组合

那么称F为 R^n 中的一个凸集。

如果凸集为开集,则称为开凸集;若凸集为闭集,则称为闭凸集。

规定: 空集为凸集;

注: 单点集与Rⁿ为凸集

例1.3.1 假设 $\omega \in R^n \setminus \{0\}, \beta \in R$,证明下面的集合为凸集.

- 1).超平面 $H = \{x \in R^n \mid \omega^T x = \beta\};$
- 2).闭半空间 $\{x \in R^n | \omega^T x \ge \beta\}$ 和 $\{x \in R^n | \omega^T x \le \beta\}$;
- 3). 开半空间 $\{x \in R^n \mid \omega^T x > \beta\}$ 和 $\{x \in R^n \mid \omega^T x < \beta\}$;
- 4). 超球 $B = \{x \in R^n \mid ||x|| \le \beta\}$, 其中 $\beta \ge 0$.

证1)
$$\forall x, y \in H,$$
有 $\omega^T x = \beta, \ \omega^T x = \beta.$ 对 $\forall \alpha \in [0,1],$ 有
$$\omega^T (\alpha x + (1-\alpha)y) = \alpha \omega^T x + (1-\alpha)\omega^T y$$

$$=\alpha\beta+(1-\alpha)\beta=\beta,$$

从而 $\alpha x + (1-\alpha)y \in H$,故超平面H为凸集.

命题1.3.1

假设 $F_i \subseteq R^n$ 为凸集且 $\beta_i \in R$ (其中 $i \in \{1, 2, \dots, p\}$),则下列集合均为凸集

1)交集
$$F := F_1 \cap F_2 \cap \cdots \cap F_p$$

2) 集合
$$\beta_i F_i := \{\beta_i x \mid x \in F_i\};$$

3)和集
$$F_1 + F_2 := \{x + y \mid x \in F_1, y \in F_2\};$$

4)集合
$$\sum_{i=1}^{p} \beta_i F_i$$
.

证明: 1) 任取 $x, y \in F$,则 $x, y \in F_i$ $(i = 1, 2, \dots, p)$. 对 $\forall \alpha \in [0,1]$,因为 F_i 是凸集,因此有 $\alpha x + (1-\alpha)y \in F_i$ $(i = 1, 2, \dots, p)$ 故 $\alpha x + (1-\alpha)y \in F_1 \cap F_2 \cap \dots \cap F_p = F$, 所以F为凸集. 定理1.3.1 非空集合 $F \subseteq R^n$ 为凸集 \Leftrightarrow 对 $\forall x_i \in F$ 及任意满足 $\sum_{i=1}^{p} \alpha_i = 1$ 的非负

实数 $\alpha_i (i \in \{1, 2, \dots p\}, \ \mathbb{1} p \ge 2$ 的正整数),都有 $\sum_{i=1}^p \alpha_i x_i \in F$.

证明:由凸集定义得定理的充分性。下用归纳法证明必要性。

p=2时由定义知结论成立;

假设 p = k时结论成立,下证 p = k + 1时结论成立。

对 $\forall x^i \in F$,以及满足 $\sum_{i=1}^{k+1} \alpha_i = 1$ 的非负实数 $\alpha_i (i \in \{1, 2, \dots, k, k+1\})$,有

$$\sum_{i=1}^{k+1} \alpha_i x^i = \left(\sum_{i=1}^k \alpha_i x^i\right) + \alpha_{k+1} x^{k+1}$$

$$= (1 - \alpha_{k+1}) \left(\sum_{i=1}^k \frac{\alpha_i}{1 - \alpha_{k+1}} x^i\right) + \alpha_{k+1} x^{k+1}.$$

曲
$$\sum_{i=1}^{k} \frac{\alpha_i}{1-\alpha_{k+1}} = 1, \frac{\alpha_i}{1-\alpha_{k+1}} \ge 0$$
及归纳假设知 $\sum_{i=1}^{k} \frac{\alpha_i}{1-\alpha_{k+1}} x^i \in F,$

再根据凸集的定义有
$$(1-\alpha_{k+1})(\sum_{i=1}^k \frac{\alpha_i}{1-\alpha_{k+1}} x^i) + \alpha_{k+1} x^{k+1} \in F$$
,

即
$$\sum_{i=1}^{k+1} \alpha_i x^i \in F$$
. 由归纳法原理知结论成立.

定义1.3.2

假设 $F_1, F_2 \subseteq R^n$ 为两个非空凸集. 如果存在非零向量 $\omega \in R^n$ 和实数t, 使得

- 1)对 $\forall x \in F_1, y \in F_2$ 都有 $\omega^T x \ge t$ 且 $\omega^T y \le t$,则称超平面 $\pi := \{x \in R^n | \omega^T x = t\} \text{ 分离凸集 } F_1 \pi F_2;$
- 2)对 $\forall x \in F_1, y \in F_2$ 都有 $\omega^T x > t$ 且 $\omega^T y < t$,则称超平面 $\pi := \{x \in R^n | \omega^T x = t\} \text{严格分离凸集} F_1 \pi F_2;$

定理1.3.2 (点与凸集分离定理)

设F为 R^n 中的非空闭凸集, $x^0 \in R^n$ 且 $x^0 \notin F$,则存在 R^n 中的超平面严格分离集合F和点 $\{x^0\}$.

证明:记 Ω :={ $y | y = x - x^0, x \in F$ }. 显然 $0 \notin \Omega$. 对任意 $y^1, y^2 \in \Omega$,存在 $x^1, x^2 \in F$,使得 $y^1 = x^1 - x^0, y^2 = x^2 - x^0$. 从而对 $\forall \alpha \in [0,1], \alpha y^1 + (1-\alpha)y^2 = \alpha x^1 + (1-\alpha)x^2 - x^0$ 由F为凸集知 $\alpha x^1 + (1-\alpha)x^2 \in F$,因而 $\alpha y^1 + (1-\alpha)y^2 \in \Omega$,故 Ω 为凸集.

对 $\forall \delta > 0$,记 $N_{\delta}(0)$:= $\{y \in R^n | ||y||_2 \leq \delta\}$.

选取适当的 $\delta > 0$,使得 $N_{\delta}(0) \cap \Omega$ 为非空有界闭集,

所以连续函数 $\|y\|$, 在 $N_{\delta}(0) \cap \Omega$ 可达到最小值, 记其为 \hat{y} ($\in \Omega$),

则对任意 $y \in \Omega$ 都有 $\|\hat{y}\|_2 \le \|y\|_2$.

因此对 $\forall \varepsilon \in [0,1], \forall y \in \Omega, \|\hat{y}\|_{2} \leq \|\varepsilon y + (1-\varepsilon)\hat{y}\|_{2}$,即

$$\hat{y}^T \hat{y} \leq (\varepsilon y + (1 - \varepsilon)\hat{y})^T (\varepsilon y + (1 - \varepsilon)\hat{y}) = \varepsilon^2 y^T y + 2\varepsilon (1 - \varepsilon)\hat{y}^T y + (1 - \varepsilon)^2 \hat{y}^T \hat{y}$$

$$= \varepsilon^2 (y^T y - 2\hat{y}^T y + \hat{y}^T \hat{y}) + 2\varepsilon \hat{y}^T y + \hat{y}^T \hat{y} - 2\varepsilon \hat{y}^T \hat{y}$$

$$= \varepsilon^2 \|y - \hat{y}\|^2 + 2\varepsilon (y - \hat{y})^T \hat{y} + \hat{y}^T \hat{y}.$$

从丽 $\varepsilon^2 \|y - \hat{y}\|_2^2 + 2\varepsilon (y - \hat{y})^T \hat{y} \ge 0.$

由 $\varepsilon \in [0,1]$ 的任意性可得 $(y-\hat{y})^T \hat{y} \ge 0$,即 $y^T \hat{y} \ge ||\hat{y}||_2^2$.

対 $\forall x \in F$, 记 $y := x - x^0 (\in \Omega)$, 则 対 $\forall x \in F$, 都 有 $(x - x^0)^T \hat{y} \ge \|\hat{y}\|_2^2$,

 $\mathbb{E}[x^T \hat{y} \ge (x^0)^T \hat{y} + \|\hat{y}\|_2^2.$

因此超平面 π := $\{\mathbf{x} \in R^n : \omega^T \mathbf{x} = t\}$ 可严格分离凸集F与点 \mathbf{x}^0 .

引理1.3.1 (Farkas引理)

设 $A \in R^{m \times n}, b \in R^n$,则不等式组 $Ax \le 0, b^T x > 0$, (1)

与不等式组 $A^T y = b, y \ge 0$ (2)

有且仅有一组有解.

证明: 假设(2)有解, 即存在 $y \in R^m$ 使得 $A^T y = b, y \ge 0$.

若(1)有解,即存在 $x \in R^n$ 使得 $Ax \le 0$,则

 $b^{T}x = (A^{T}y)^{T}x = y^{T}Ax \le 0.$

从而若(2)有解,则(1)必无解.

若(2)无解,下证(1)有解.

若(2)无解,下证(1)有解.

由定理1.3.2知,存在 $\omega \in R^n$, $t \in R$ 使得

 $\omega^T b > t, \omega^T z < t, \forall z \in \Omega. \pm 0 \in \Omega \pm 1 t > 0.$

 $t > \omega^T z = \omega^T (A^T y) = y^T A \omega, y \ge 0.$

由y中分量可以任意大可知, $A\omega \leq 0$;又 $b^Tw > t > 0$,从而 ω 为(1)的解.

定理1.3.3

设p和q是两个非负整数, $u^0,u^1,\cdots,u^p,v^1,\cdots,v^q \in R^n$,则等式与不等式组 $d^Tu^0<0,\ d^Tu^i=0 (i\in\{1,2,\cdots,p\}),\ d^Tv^i\geq 0 (i\in\{1,2,\cdots,q\})(1)$ 无解

⇔ 存在实数 α_i ($i \in \{1, 2, \dots, p\}$)和非负实数 β_i ($i \in \{1, 2, \dots, \}$)使得;

$$u^{0} = \sum_{i=1}^{p} \alpha_{i} u^{i} + \sum_{i=1}^{q} \beta_{i} v^{i}(2)$$

证明: $d^T u^i = 0 \Leftrightarrow d^T u^i \ge 0, (-d)^T u^i \ge 0, (i = 1, 2, \dots, p);$ $\diamondsuit A = (-u^1, \dots, -u^p, u^1, \dots, u^p, -v^1, \dots, -v^q)^T, 则 (1) 可写成$ $Ad \le 0, (-u^0)^T d > 0.$

由Farkas引理,(1)无解 \Leftrightarrow 存在 $(x, y, z) \in R_+^p \times R_+^p \times R_+^q$ 使得

$$-u^{0} = A^{T} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sum_{i=1}^{p} x_{i} (-u^{i}) + \sum_{i=1}^{p} y_{i} u^{i} + \sum_{i=1}^{q} z_{i} (-v^{i}).$$

$$\alpha_i := x_i - y_i (i = 1, 2, \dots, p),$$
 $\beta_i := z_i \ge 0 (i = 1, \dots, q)$ 则

$$u^{0} = \sum_{i=1}^{p} \alpha_{i} u^{i} + \sum_{i=1}^{q} \beta_{i} v^{i}.$$

1.3.2 凸函数

- 1、定义: 设 $F \subseteq R^n$ 为非空凸集,给定函数 $f: F \to R$,
 - (1) 若对任意的 $x, y \in F$ 及任意的 $\alpha \in [0,1]$,有 $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$ 则称函数f为凸集F上的凸函数。

若对任意的 $x, y \in F$ 及任意的 $\alpha \in [0,1]$,有 $f(\alpha x + (1-\alpha)y) \ge \alpha f(x) + (1-\alpha)f(y)$ 则称函数f为凸集F上的凹函数.

例. 给定向量 $c \in R^n$.证明线性函数 $f(x) = c^T x$ 既是凸函数又是凹函数.

- (2) 若对任意的 $x, y \in F$ 且 $x \neq y$,及任意的 $\alpha \in (0,1)$ 有: $f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$ 则称函数f为凸集F上的严格凸函数。
- (3) 若存在常数c > 0,使得对任意的 $x, y \in F$ 及任意的 $\alpha \in (0,1)$ 有: $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) c\alpha(1-\alpha)\|x y\|^2$ 则称函数f为凸集F上的强凸函数(一致凸函数).

凸函数的性质

命题1.3.2

设 $F \subseteq R^n$ 是凸集,则:

- (1) 函数f是F上的(严格)凸函数 ⇔ -f是F上的(严格)凹函数;
- (2) 设函数 f_1 , f_2 是F上的凸函数, 实数 α_1 , $\alpha_2 \ge 0$,则函数 $\alpha_1 f_1 + \alpha_2 f_2$ 是F上的凸函数;
- (3) 设函数f是F上的凸函数, t为实数,则水平集 $L_{t}(f) = \{x \in F : f(x) \leq t\}$ 是凸集.

证明:

(2) 由
$$f_1, f_2$$
是凸集 F 上的凸函数知,对 $\forall x, y \in F, \forall \alpha \in [0,1]$,有
$$f_1(\alpha x + (1-\alpha)y) \leq \alpha f_1(x) + (1-\alpha)f_1(y);$$
$$f_2(\alpha x + (1-\alpha)y) \leq \alpha f_2(x) + (1-\alpha)f_2(y);$$
$$由(\alpha_1 f_1 + \alpha_2 f_2)(z) = \alpha_1 f_1(z) + \alpha_2 f_2(z)$$
得
$$(\alpha_1 f_1 + \alpha_2 f_2)(\alpha x + (1-\alpha)y)$$
$$= \alpha_1 f_1(\alpha x + (1-\alpha)y) + \alpha_2 f_2(\alpha x + (1-\alpha)y)$$
$$\leq \alpha_1 \alpha f_1(x) + \alpha_1 (1-\alpha) f_1(y) + \alpha_2 \alpha f_2(x) + \alpha_2 (1-\alpha) f(y)$$
$$= \alpha(\alpha_1 f_1 + \alpha_2 f_2)(x) + (1-\alpha)(\alpha_1 f_1 + \alpha_2 f_2)(y)$$

证明:

(3) $\forall x, y \in L_t(f)$, $\forall \alpha \in [0,1]$, $f(x) \leq t$, $f(y) \leq t$. 由F为凸集, $\alpha x + (1-\alpha)y \in F$ $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) \leq t$ 所以 $L_t(f)$ 为凸集。

可微凸函数的两个判别准则

定理1.3.4 (一阶判别定理)

设函数f在凸集 $F \subseteq R^n$ 上可微,则

(1) f在F上为凸函数 ⇔ 对任意的 $x, y \in F$,有

$$f(y) - f(x) \ge \nabla f(x)^T (y - x).$$

(2) f在F上为严格凸函数 ⇔ 对任意不同的 $x, y \in F$,有

$$f(y) - f(x) > \nabla f(x)^T (y - x)$$
.

证明: (定理 1.3.4)

$$(1)$$
 ⇒ $\forall x, y \in F, \forall \alpha \in [0,1]$
一方面, $f(\alpha y + (1-\alpha)x) \leq \alpha f(y) + (1-\alpha)f(x)$,即
 $f(x+\alpha(y-x)) \leq f(x) + \alpha[f(y)-f(x)]$.
另一方面,由一阶泰勒展开式,得
 $f(x+\alpha(y-x))=f(x)+\alpha\nabla f(x)^T(y-x)+o(\|\alpha(y-x)\|)$.
所以 $f(y)-f(x) \geq \nabla f(x)^T(y-x)+\frac{o(\|\alpha(y-x)\|)}{\alpha}$.
令 $\alpha \to 0$,得 $f(y)-f(x) \geq \nabla f(x)^T(y-x)$.

充分性:

$$\Leftrightarrow \forall x, y \in F, \forall \alpha \in [0,1], \ f z := \alpha x + (1-\alpha)y \in F.$$

$$f(x) - f(z) \geq \nabla f(z)^T (x-z);$$

$$f(y) - f(z) \geq \nabla f(z)^T (y-z);$$
两式分別乘 α , $(1-\alpha)$ 并相加得: $\alpha f(x) + (1-\alpha)f(y) - f(z) \geq 0$, 即 $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$.
因此 $f \in F$ 上是凸函数.

(2) 充分性的证明类似于(1)的证明,下面只证明必要性。

" \Rightarrow " f(x)为严格凸函数则f(x)必为凸函数,从而

$$\forall x, y \in F$$
且 $x \neq y, \diamondsuit z = \frac{1}{2}(x+y), 则z \in F, 且$

$$f(z)-f(x) \ge \nabla f(x)^T(z-x)$$
; (由(1)的结论)

$$f(z) = f(\frac{1}{2}x + \frac{1}{2}y) < \frac{1}{2}f(x) + \frac{1}{2}f(y)$$
. (由*f* 严格凸)

所以
$$\frac{1}{2}f(x)+\frac{1}{2}f(y) > f(x)+\nabla f(x)^T(z-x).$$

整理得
$$f(y) - f(x) > \nabla f(x)^T (y - x)$$
.

定理1.3.5 (二阶判别定理)

设函数 f在开凸集 $F \subseteq R^n$ 内二阶可微,则

- (1) f在F内为凸函数 ⇔ 任意的 $x \in F$, $\nabla^2 f(x)$ 半正定.
- (2) 若 $\forall x \in F$, $\nabla^2 f(x)$ 正定,则f在F内为严格凸函数.

证明: 定理1.3.5

(1) $\Rightarrow \forall x \in F, 0 \neq y \in R^n$,由F是开集可知存在 $\varepsilon > 0$,使得 $\forall \alpha \in (-\varepsilon, \varepsilon), x + \alpha y \in F$.

由定理1.3.4, $f(x+\alpha y) \ge f(x) + \alpha \nabla f(x)^T y$.

由Taylor展式得,

$$f(x + \alpha y) = f(x) + \alpha \nabla f(x)^T y + \frac{1}{2} \alpha^2 y^T \nabla^2 f(x) y + o(\|\alpha y\|^2).$$

所以
$$y^T \nabla^2 f(x) y + \frac{o(\|\alpha y\|^2)}{2\alpha^2} \ge 0.$$

证明: 定理1.3.5

 $(1) \leftarrow \forall x, y \in F$,由Taloy展开式

$$\geq f(x) + \nabla f(x)^{T} (y-x), (由 \nabla^{2} f(x)$$
对称半正定)

因此 f 在F上是凸函数. (由定理1.3.4一阶判定条件)

定理1.3.6 (强凸函数的判定定理)

设 $f: \mathbb{R}^n \to \mathbb{R}$ 二次连续可微,则 f 是强凸函数 $\Leftrightarrow \nabla^2 f(x)$ 一致正定.

注: $\nabla^2 f(x)$ 一致正定:

即存在常数c > 0,使得 $d^T \nabla^2 f(x) d \ge c \|d\|^2$, $(\forall x, d \in R^n)$

备注:设A为n阶实对称矩阵,则

 $\lambda_{\max} d^T d \ge d^T A d \ge \lambda_{\min} d^T d, \ (\forall d \ne 0, d \in R^n)$

其中 λ_{max} , λ_{min} 分别是A的最大、最小特征值.

1.3.3 凸规划

- 1. 定义: 设 $F \subseteq R^n$ 为凸集, $f: F \to R$ 为凸函数,则称 $\min_{x \in F} f(x)$ 为凸规划问题.
 - 2 凸规划的性质:
- 定理 1.3.7
 - (1) 凸规划问题的任一局部最优解 x^* 为其全局最优解;
 - (2) 凸规划问题的最优解集S为凸集;
- (3) 若函数 f 为非空凸集 F 上的严格凸函数,且凸规划问题 存在全局最优解,则其全局最优解唯一.

证明:

(1)(反证法) 假设 x^* 是凸规划问题的局部但非全局最优解,则至少存在一个 $y^* \in F$ 使得 $f(y^*) < f(x^*)$.

因为函数f为凸函数,F为凸集,则对 $\forall \alpha \in [0,1]$,有

$$\begin{cases} \alpha y^* + (1 - \alpha)x^* \in F; \\ f(\alpha y^* + (1 - \alpha)x^*) \le \alpha f(y^*) + (1 - \alpha)f(x^*) < f(x^*). \end{cases}$$

因此在充分靠近 x^* 时, $f(\alpha y^* + (1-\alpha)x^*) < f(x^*)$,

这与x*为局部最优解矛盾,故假设不成立.

证明:

(2)由于空集与单元素集合为凸集,不妨设凸规划问题的最优解集*S*至少含两个元素.

假设 $x^*, y^* \in S$,则 $x^*, y^* \in F$, 且 $f(y^*) = f(x^*)$.

对 \forall α ∈ [0,1],有

$$f(x^*) \le f(\alpha x^* + (1-\alpha)y^*) \le \alpha f(x^*) + (1-\alpha)f(y^*) = f(x^*) = \min_{x \in F} f(x).$$

因此 $f(\alpha x^* + (1-\alpha)y^*) = f(x^*) = \min_{x \in F} f(x),$

从而 $\alpha x^* + (1-\alpha)y^* \in S$, 故S是凸集.

(3)(反证法)假设全局最优点不唯一,则 $\exists x^*, y^* \in S \perp x^* \neq y^*$.

显然
$$x^*, y^* \in F \coprod f(x^*) = f(y^*).$$

$$\forall \alpha \in [0,1], \alpha x^* + (1-\alpha)y^* \in S \perp$$

$$f(\alpha x^* + (1-\alpha)y^*) < \alpha f(x^*) + (1-\alpha)f(y^*) = f(x^*)$$

这与x*为全局最优点矛盾,所以凸规划问题有唯一最优解。