Cambridge University Engineering Department Engineering Tripos Part IIA PROJECTS: Interim and Final Papert Covershoot

PROJECTS: Interim and Final Report Coversheet

TO BE COMPLETED BY THE STUDENT(S)

Project:	SA1 - Aircraft Wing Analysis			
Title of report:	SA1 - Aircraft Wing Analysis First Interim Report			
	Group Report / Individual Report (delete as appropriate)			
Name(s): (capitals)		crsID(s):	College(s):	
SCHOEN CAO		zc282	Gonville & Caius	
KAI TAN		ykt25	Wolfson	
<u>Declaration</u> for: Interim Report 1 / Interim Report 2 / Final Report (delete as appropriate)				
I/we confirm that, except where indicated, the work contained in this report is my/our own original work.				

Instructions to markers of Part IIA project reports:

Grading scheme

Grade	A / A*	В	С	D	Е
Standard	Very Good / Excellent	Good	Acceptable	Minimum acceptable for Honours	Below Honours

Grade the reports on the scale A* to D by marking the appropriate Overall Assessment box, and provide feedback against as many of the criteria as are applicable (or add your own). Feedback is particularly important for work graded C-E. Students should be aware that different projects and reports will require different characteristics.

Penalties for lateness: Interim Reports: 3 marks per weekday; Final Reports: 0 marks awarded – late reports not accepted.

Overall assessment (circle grade)	A*	A	В	C	D	E
Guideline standard	> 80%	70-80%	60-70%	50-60%	40-50%	< 40%

Marker:	Date:	

Delete (1) or (2) as appropriate (for marking in hard copy – different arrangements apply for feedback on Moodle):

- (1) Feedback from the marker is provided on the report itself.
- (2) Feedback from the marker is provided on second page of cover sheet.

	Typical Criteria	Feedback comments
Project Skills, Initiative, Originality	Appreciation of problem, and development of ideas	
	Competence in planning and record-keeping	
	Practical skill, theoretical work, programming	
	Evidence of originality, innovation, wider reading (with full referencing), or additional research	
	Initiative, and level of supervision required	
Report	Overall planning and layout, within set page limit	
	Clarity of introductory overview and conclusions	
	Logical account of work, clarity in discussion of main issues	
	Technical understanding, competence and accuracy	
	Quality of language, readability, full referencing of papers and other sources	
	Clarity of figures, graphs and tables, with captions and full referencing in text	

Project SA1 - Aircraft Wing Analysis First Report

Schoen Cao (zc282), Kai Tan (ykt25)

May 15, 2019

1 Exercise 1

Listing 1: psipv.m

```
%To solve the psi values
function psixy = psipv(xc,yc,Gamma,x,y)

%Calculate value of r^2
rsq = (x - xc)^2 + (y - yc)^2;

&Calculate for psi
psixy = -Gamma / 4 / pi * log(rsq);
end
```

Listing 2: Script for Exercise 1

```
clear
close all
\% Constants
xmin = -2.5;
xmax = 2.5;
ymin = -2;
ymax = 2;
Gamma = 3.0;
%Point Vector Position
xc = 0.75;
yc = 0.5;
\%Discretisation Steps
nx = 51;
ny = 41;
%Iteration for x, y, and psi
for i = 1:nx;
    for j = 1:ny;
        xm(i, j) = xmin + (i-1)*(xmax-xmin)/(nx-1);
        ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
        psi(i,j) = psipv(xc,yc,Gamma,xm(i,j),ym(i,j));
    end
end
c = -.4:.2:1.2;
figure (1);
contour(xm,ym, psi, c);
title ('Contour_of_Psi')
```


Figure 1: Contour of Psi

2 Exercise 2

Listing 3: refpaninf.m

```
%Function for exact values of infa and infb
function [infa infb] = refpaninf(del, X, Yin);
    &Condition for Y value to prevent Matlab Error
    if abs(Yin) < 1e-19
         Y = 1e - 19;
    else
         Y = Yin;
    end
    &Calculation for IO and I1
    I0 = -1/4/\mathbf{pi} * (X*\log(X^2+Y^2) - (X-del)*\log((X-del)^2+Y^2) \dots
    -2*del + 2*Y*(\,\mathbf{atan}\,(X/Y) - \mathbf{atan}\,(\,(X\!\!-\!del\,)/Y\,)\,)\,)\,;
    I1 = 1/8/\mathbf{pi} * ((X^2+Y^2)*\log(X^2+Y^2) - ((X-del)^2+Y^2)*\log((X-del)^2+Y^2) \dots
    -2*X*del+del^2);
    %Calculation for infa and infb
    infa = (1-(X/del))*I0 - I1/del;
    infb = X/del*I0 + I1/del;
end
```

Listing 4: Script for Exercise 2

```
clear
close all
%Constants
xmin = -2.5:
xmax = 2.5;
ymin = -2;
ymax = 2;
del = 1.5;
xc = .75;
yc = 0.5;
\%Discretisation\ steps
nx = 51;
ny = 41;
nv = 100:
%Solving for exact values of infa and infb
for i = 1:nx;
    for j = 1:ny;
         xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nx-1);
         ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
         [\inf a(i,j) \inf b(i,j)] = \operatorname{refpaninf}(\operatorname{del},\operatorname{xm}(i,j),\operatorname{ym}(i,j));
    end
end
c = -.15:.05:.15;
%Plot for exact value of infa
figure (1)
contour (xm, ym, infa, c)
title ('Contour_of_exact_value_of_infa')
%Plot for exact value of infb
figure (2)
contour (xm, ym, infb, c)
```

```
title ('Contour_of_exact_value_of_infb')
%Solving for estimated value of infa by assuming gamma_a=1, gamma_b=0
gammaa = 1;
gammab = 0;
nv = 100;
\mathbf{for} \quad \mathbf{i} = 1 : \mathbf{nv};
    for j = 1:ny;
        xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nv-1);
        ym(i, j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
         for k = 1:nv;
             Gamma(k) = (2*gammaa+(gammab-gammaa)/nv*(2*k-1))*del/nv/2;
             xc(k) = (del/nv*(k-.5));
             yc(k) = 0;
             psik(k) = psipv(xc(k), yc(k), Gamma(k), xm(i, j), ym(i, j));
         infa_est(i,j) = sum(psik);
    end
end
%Plot for estimated value of infa
figure (3)
contour (xm, ym, infa_est, c)
title ('Contour_of_estimated_value_of_infa')
%Solving for estimated value of inbf by assuming gamma_a=0, gamma_b=1
gammaa = 0;
gammab = 1;
for i = 1:nv;
    for j = 1:ny;
         xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nv-1);
        ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
         %Loop for every single discretised vortex on sheet
         \mathbf{for} \ \mathbf{k} = 1 : \mathbf{nv};
             Gamma(k) = (2*gammaa+(gammab-gammaa)/nv*(2*k-1))*del/nv/2;
             xc(k) = (del/nv*(k-.5));
             yc(k) = 0;
             psik(k) = psipv(xc(k), yc(k), Gamma(k), xm(i, j), ym(i, j));
         end
         %Sum up every vortex
         infb_est(i,j) = sum(psik);
    end
end
%Plot for estimated value of infb
figure (4)
contour (xm, ym, infb_est, c)
title ('Contour_of_exact_value_of_infb')
```


Figure 2: Contour of Exact Value of infa

Figure 3: Contour of Exact Value of infb

Figure 4: Contour of Estimated Value of infa

Figure 5: Contour of Estimated Value of infb

3 Exercise 3

Listing 5: panelinf.m

Listing 6: Script for Exercise 3

```
clear
close all
% Constants
xmin = 0;
xmax = 5;
ymin = 0;
ymax = 4;
\%Discretisation Steps
nx = 51;
ny = 41;
nv = 100;
%Vector Points
xa = 4.1;
ya = 1.3;
xb = 2.2;
yb = 2.9;
\%Exact solution of infa and infb
\mathbf{for} \quad \mathbf{i} = 1 : \mathbf{nx};
    for j = 1:ny;
         xm(i, j) = xmin + (i-1)*(xmax-xmin)/(nx-1);
         ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
         [\inf(i,j) \inf(i,j)] = \operatorname{panelinf}(xa,xb,ya,yb,xm(i,j),ym(i,j));
    end
end
figure (1);
contour (xm, ym, infa);
title ('Contour_of_exact_value_of_infa')
figure (2);
contour (xm, ym, infb);
title('Contour_of_exact_value_of_infb')
%Estimated solution for infa
gammaa = 1;
gammab = 0;
```

```
del = norm([xb-xa yb-ya]);
for i = 1:nv;
    for j = 1:ny;
        xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nv-1);
        ym(i, j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
        %loop for every single discretised vortex on sheet
         for k = 1:nv;
             Gamma(k) = (2*gammaa+(gammab-gammaa)/nv*(2*k-1))*del/nv/2;
             xc(k) = xa + (xb-xa)/nv*(k-.5);
             yc(k) = ya + (yb-ya)/nv*(k-.5);
             psik(k) = psipv(xc(k), yc(k), Gamma(k), xm(i, j), ym(i, j));
         end
        %sum up every vortex
         infb_est(i,j) = sum(psik);
    end
end
figure (3)
contour (xm, ym, infb_est)
title ('Contour_of_estimated_value_of_infa')
%Estimated solution for infb
gammaa = 0;
gammab = 1;
del = norm([xb-xa yb-ya]);
\mathbf{for} \quad \mathbf{i} = 1 : \mathbf{nv};
    \mathbf{for} \ j = 1 : ny;
        xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nv-1);
        ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
        %loop for every single discretised vortex on sheet
         \mathbf{for} \ \mathbf{k} = 1 : \mathbf{nv};
             Gamma(k) = (2*gammaa+(gammab-gammaa)/nv*(2*k-1))*del/nv/2;
             xc(k) = xa + (xb-xa)/nv*(k-.5);
             yc(k) = ya + (yb-ya)/nv*(k-.5);
             psik(k) = psipv(xc(k), yc(k), Gamma(k), xm(i,j), ym(i,j));
         end
        %sum up every vortex
         infb_est(i,j) = sum(psik);
    end
end
figure (4)
contour (xm, ym, infb_est)
title ('Contour_of_estimated_value_of_infb')
```


Figure 6: Contour of Exact Value of infa

Figure 7: Contour of Exact Value of infb

Figure 8: Contour of Estimated Value of infa

Figure 9: Contour of Estimated Value of infb

4 Exercise 4

Listing 7: Script for Exercise 4

```
clear
close all
%Constants
xmin = -2.5;
xmax = 2.5;
ymin = -2;
ymax = 2;
\%Discretisation Steps
nx = 51:
ny = 41;
np = 100;
%Declaration of theta
theta = (0:np)*2*pi/np;
%Iteration for positions and circulation on sphere
for i = 1:np+1;
    xs(i) = cos(theta(i));
    ys(i) = sin (theta (i));
    \mathbf{gamma}(i) = -2*\mathbf{sin}(theta(i));
end
%Iteration for stream functions
\mathbf{for} \quad \mathbf{i} = 1 : \mathbf{nx};
    \mathbf{for} \ j = 1 : ny;
         xm(i,j) = xmin + (i-1)*(xmax-xmin)/(nx-1);
         ym(i,j) = ymin + (j-1)*(ymax-ymin)/(ny-1);
         \%Uniform\ flow\ stream\ function
         psi(i,j) = ym(i,j);
         %Iterate for infa and infb using panelinf
         for k = 1:np;
              [\inf a(i,j) \inf b(i,j)] = \operatorname{panelinf}(xs(k),xs(k+1),ys(k),ys(k+1),xm(i,j), \dots)
             ym(i,j);
             \%Sum\ of\ uniform\ flow\ ,\ gamma\_a*infa\ ,\ and\ gamma\_b*infb
              psi(i,j) = psi(i,j) + gamma(k)*infa(i,j) + gamma(k+1)*infb(i,j);
         end
    end
end
c = -1.75:0.25:1.75;
contour(xm,ym, psi, c)
title('Cylinder_Flow_Streamlines')
hold on
plot (xs, ys)
hold off
```


Figure 10: Contour of Estimated Value of infb

Listing 8: build_lhs.m

```
function lhsmat = build_lhs(xs, ys)
    %Construct matrix
    np = length(xs) - 1;
    psip = zeros (np, np+1);
    %Filling up psip
    for i = 1:np;
        %psip\ given\ that\ j=1
        [psip(i,1) infb(i,1)] = panelinf(xs(1),xs(2),ys(1),ys(2),xs(i),ys(i));
        \%psip\ given\ that\ j=np+1\ i.e.=infb(j-1)=infb(np)
        [ , psip(i, np+1) ] = panelinf(xs(np-1), xs(np+1), ys(np), ys(np+1), xs(i), ys(i));
        %psip for the rest
        for j = 2:np;
             [\inf a(i,j) \inf b(i,j)] = \operatorname{panelinf}(xs(j),xs(j+1),ys(j),ys(j+1),xs(i), \ldots)
             ys(i));
             psip(i,j) = infa(i,j) + infb(i,j-1);
        end
    end
    %Construct LHS matrix
    lhsmat = zeros(np+1);
    \%Loop around nodes 1->np-1 as 1->2=0, 2->3=0... np-1->np=0 row will be
    \%Rows: eliminated by summing up 1->np-1 instead (i.e. only np-1 equations)
    for i = 1:np-1;
        \% Columns: contribution of jth panel 1->np+1
        for j = 1:np+1;
             lhsmat(i,j) = psip(i+1,j)-psip(i,j);
        end
    end
    \%Kutta\ condition:\ gamma\_1\ and\ gamma\_np+1=0\ so\ these\ two\ allow\ two\ rows
    \%Specifyinging these conditions i.e 1st or np+1th term=1, rest=0. N.B.
    MRHS Kutta matches this accordingly
    lhsmat(np,1) = 1;
    lhsmat(np+1,np+1) = 1;
end
```

Listing 9: build_rhs.m

```
function rhsvec = build_rhs(xs,ys,alpha);

%Determine size and construct matrix
np = length(xs)-1;
psifs = zeros(np+1,1);
rhsvec = zeros(np+1,1);

for i = 1:np+1
    psifs(i) = ys(i)*cos(alpha) - xs(i)*sin(alpha);
end

for k = 1:np
    rhsvec (k) = psifs(k) - psifs(k+1);
end

%Imposing Kutta Condition as specified in LHS file
rhsvec(np) = 0;
```

```
r \operatorname{hsvec} (\operatorname{np}+1) = 0; end
```

Listing 10: Script for Exercise 5

```
clear
close all
\% Constants
xmin = -2.5;
xmax = 2.5;
ymin = -2;
ymax = 2;
\%Discretisation\ Steps
nx = 51;
ny = 41;
np = 100;
%Declaration of theta
theta = (0:np)*2*pi/np;
%Declaration of alpha
alpha = 0;
%Iteration for positions and circulation on sphere
for i = 1:np+1;
    xs(i) = cos(theta(i));
    ys(i) = sin(theta(i));
end
% Calculate\ gam\ at\ alpha=0
A = build_lhs(xs, ys);
b = build_rhs(xs, ys, alpha);
gam = A \setminus b;
hold on
plot(theta/pi,gam);
%Calculate\ gam\ at\ alpha=0.1
alpha = 0.1;
b = build_rhs(xs,ys,alpha);
gam = A \setminus b;
%Integrate over surface circulation i.e. sum of gamma times panel length
%Assume panel length is radius times the change in theta
Gamma = sum(gam)*(theta(2)-theta(1))
plot(theta/pi,gam);
hold off
legend('alpha=0', 'alpha=0.1', 'Location', 'southeast');
xlabel('theta/pi');
ylabel('gamma');
axis ([0 \ 2 \ -2.5 \ 2.5]);
title ('Plot_of_gammas_against_pi/theta')
```


Figure 11: Plot of Gamma Against Pi/Theta for Different Alpha

Using the approximation that $Panel\ Length = r \times \theta$, it was found that $\alpha = -1.2552$