(E_p) وطاقة وضع الجاذبية (ϕ) وطاقة وضع الجاذبية

إذا كان الشغل المبذول لنقل جسم كتلته $(m=1\ \mathrm{kg})$ من اللانهاية إلى نقطة ما يساوي جمد الجاذبية (ϕ) عند تلك النقطة.

فإن الشغل المبذول لنقل جسم كتلته $(m=5~{
m kg})$ من اللانهاية إلى تلك النقطة يساوي (5ϕ) وهذه هي طاقة وضع الجاذبية (E_p) لهذا الجسم عند تلك النقطة.

• وعليه يمكننا استنتاج العلاقتين التاليتين:

$$E_p = m\phi$$

$$E_p = -\frac{GMm}{r}$$

ومن هذين القانونين نلاحظ أن طاقة وضع الجاذبية لجسم بالنسبة لكوكب ما:

- عند اللانهاية تساوي الصفر.
- وتقل كلما اقترب الجسم من الكوكب لأنه ينتقل إلى نقطة ذات جمد جاذبية أقل (القوة المسببة للشغل هنا هي قوة الجاذبية).
- وتزداد عندما يبتعد الجسم عن الكوكب لأنه ينتقل إلى نقطة ذات جمد جاذبية أعلى (لذا لابد أن يبذل الجسم شغلا ضد الجاذبية).
 - وتزداد بزيادة كتلة الجسم وكتلة الكوكب.
- ولجعل جسم يفلت من مجال جاذبية هذا الكوكب، فعليه أن يبذل شغلا مساويا لطاقة وضع ذلك الجسم على سطح هذا الكوكب (تذكر أن: اللانهاية يصح أن تكون المسافة من مركز كتلة الكوكب إلى أي نقطة تقع على حافة مجال الجاذبية له).