Wi-Fi Could Be Much More

Sunghyun Choi, Ph.D., Professor, FIEEE
Multimedia & Wireless Networking Lab. (MWNL)
Dept. of Electrical and Computer Engineering
Seoul National University

http://mwnl.snu.ac.kr

Email: schoi@snu.ac.kr

Weiping Sun, Okhwan Lee, Yeonchul Shin, Seongwon Kim, Changmok Yang, Hyoil Kim, and Sunghyun Choi, "Wi-Fi Could Be Much More," to appear in IEEE Communications Magazine, Special Issue on The Future of Wi-Fi, Nov. 2014.

Agenda

- Introduction
- Wi-Fi Evolution
 - Throughput Enhancements
 - Long-Range Extensions
 - Greater Ease of Use
- Forward Looking
 - Needs for more spectrum
 - Envisioning Future of Wi-Fi
- Conclusion

Wi-Fi Market

• Wi-Fi data traffic in smartphone is more than 2X of cellular

Wi-Fi Is Becoming Ubiquitous

Expanding device support

Wi-Fi Enabled Devices Shipped	2012 MU	2015 MU
Phones/Accessories	685	1,459
Tablets, E-Readers, Media Players, etc	199	360
Laptops, Desktops, Peripherals, etc.	392	717
Connected Home	107	287
Others	39	338
TOTAL	1,422	3,161

Source: ABI Research Forecast 2012

Wi-Fi Connects More Than the Internet

- Wi-Fi has connected ever-expanding range of user-centric devices last 10 years
- By 2013, Wi-Fi was installed in more than 4 billion devices
 [ABI Research, Nov. 2013]
- By 2015, more than 725 million households around the world will have Wi-Fi connection [HIS iSuppli, May 2013]

Evolution of Wi-Fi

11

Wi-Fi Evolution: Up to Now (1)

- IEEE 802.11 a/b/g/n
 - Defining PHY/MAC at 2.4 & 5 GHz ISM bands

Wi-Fi Evolution: Up to Now (2)

Wi-Fi Evolution: From Now On

Throughput Enhancements

- IEEE 802.11ac-2013
- IEEE 802.11ad-2012
- IEEE 802.11ax

IEEE 802.11ac: Very High Throughput

- Wider channel bandwidth
 - 5 GHz-only successor to 802.11n
 - 20/40/80/160/80+80 MHz channels
- Downlink Multi-User MIMO (MU-MIMO)
 - Transmit multiple independent spatial streams
 to multiple users with few antennas simultaneously
- Higher order modulation
 - 256-Quadrature Amplitude Modulation (256-QAM)

IEEE 802.11ac Modulation and Coding Schemes (MCSs)

			Data rate (Mbps)	
MCS index	Modulation	Code rate	20 MHz <i>N_{ss}</i> =1	160 MHz <i>N_{ss}</i> =8
0	BPSK	1/2	7.2	520
1	QPSK	1/2	14.4	1040
2	QPSK	3/4	21.7	1560
3	16-QAM	1/2	28.9	2080
4	16-QAM	3/4	43.3	3120
5	64-QAM	2/3	57.8	4160
6	64-QAM	3/4	65	4680
7	64-QAM	5/6	72.2	5200
8	256-QAM	3/4	86.7	6240
9	256-QAM	5/6	N/A	6933.3

Evolution of Wi-Fi for Smartphones (1)

- More optional features are being added into new models
- Samsung Galaxy S family
 - 802.11n: 2.4 GHz band (S) → 5 GHz band (S2) → 40 MHz channel (S3)
 - 802.11ac: VHT80 (S4) → 2x2 MIMO (S5) & download booster →
 MU-MIMO (S6?)

Models	S	S2	S 3	S4	S5	S6
Release date	June 2010	May 2011	May 2012	April 2013	April 2014	April 2015?
Standards	802.11b/g/n SISO	802.11 <mark>a</mark> /b/g /n, HT20 SISO	802.11a/b/g /n, <mark>HT40</mark> SISO	802.11a/b/g /n/ac, VHT80 SISO	802.11a/b/g /n/ac, VHT80 MIMO (2x2)	?
Max. Rate	72(?)	72(?)	150	433	867	?
New features	802.11n 2.4 GHz	5 GHz support	40 MHz channel bonding	802.11ac VHT80	MIMO (2x2) Download Booster	MU-MIMO?

Evolution of Wi-Fi for Smartphones (2)

- LG Optimus family
 - 802.11n: 2.4 GHz band (Optimus 2x) → 5 GHz band & 40 MHz channel (Optimus LTE)
 - 802.11ac: VHT80 (G pro/G2/G3) → 2x2 MIMO & MU-MIMO (G4?)

Models	Optimus	2x	LTE	G Pro/G2/G3	G4
Release date	Jan. 2010	Dec. 2010	Oct. 2011	Feb. 2013 Aug. 2013 May 2014	Aug. 2015?
Standards	802.11b/g SISO	802.11b/g/n SISO	802.11a/b/g/n, HT40 SISO	802.11a/b/g/n/ ac, VHT80 SISO	?
Max. Rate	54	72(?)	150	433	?
New features	2.4 GHz	802.11n 2.4 GHz	5 GHz Support Channel bonding	802.11ac VHT80	MIMO? MU-MIMO?

Evolution of Wi-Fi for Smartphones (3)

Apple iPhone family

 802.11n: 2.4 GHz band (4/4s) → 5 GHz band & 40 MHz channel (5/5c/5s)

• 802.11ac: VHT80 (6) → MIMO and MU-MIMO (7?)

Models	iPhone	3G/3GS	4/4S	5/5c/5s	6
Release date	June. 2007	Jul. 2008, Jul.2009	Jun. 2010, Oct. 2011	Sep. 2012 Sep. 2013	Sept. 2014
Standards	802.11b/g SISO	802.11b/g SISO	802.11b/g/n SISO	802.11a/b/g/n, HT40 SISO	802.11a/b/g/n/ ac, VHT80 SISO
Max. Rate	54	54	72(?)	150	433
New features	802.11b/g 2.4 GHz		802.11n 2.4 GHz	5 GHz support Channel bonding	802.11ac VHT80 Wi-Fi Calling

IEEE 802.11ad: Very High Throughput

- 60 GHz Wi-Fi (or WiGig)
 - Broader channel bandwidth (2.16 GHz)
 - Severe propagation loss and signal attenuation (~10 m)
 - Short wavelength
 - Highly-directional beams enabled by large # embedded antennas
- MAC feature
 - Time Division Multiple Access (TDMA) above CSMA/CA for Quality of Service (QoS) provisioning
- PHY feature
 - Single Carrier (SC) PHY
 - Low power consumption
 - OFDM PHY
 - Long range with large delay spread

Large # of on-chip antennas

MWN

(source: Panasonic)

IEEE 802.11ax: High Efficiency WLAN (HEW)

- So far, focus on theoretical peak throughput (802.11n/ac/ad)
- Start to consider "real-world" performance
 - Dense deployment followed by inter-WLAN interference
- Enhance 802.11 PHY and MAC in 2.4 GHz and 5 GHz
 - For improving spectrum efficiency and areal throughput in real world densely deployed (indoor & outdoor) environment

IEEE 802.11ax Scope

- Scope defined in Project Authorization Request (PAR)
 - At least 4X improvements in the average throughput per STA
 - Throughput is measured at MAC data service access point
 - 5-10X improvements are expected depending on technology and scenario
 - Improving power efficiency per STA
 - Indoor and outdoor operations in frequency bands between 1
 GHz and 6 GHz
 - Enabling backward compatibility and coexistence with legacy IEEE 802.11 devices operating at same band

IEEE 802.11ax Candidate Approaches

Long-Range Extensions

- IEEE 802.11af-2013
- IEEE 802.11ah

IEEE 802.11af: TV White Space (TVWS)

Motivation

- Superior propagation characteristic of low frequency band
- Legacy spectrum bands are under-utilized
- Super WiFi (or 802.11af) defines TVWS spectrum sharing
 - Among unlicensed devices 802.11af devices and licensed services (TV broadcast, wireless microphone)

• PHY

- Based on 802.11ac PHY
- MAC
 - Geo-location Database (GDB)-based channel access

IEEE 802.11ah: Sub 1 GHz

- Motivation
 - Superior propagation characteristic of low frequency band
 - 802.11af's drawback of regulation constraints
- Operation at sub 1 GHz excluding TVWS
- Large-scale low-rate application (e.g., smart grid)
 - Support of more stations (~8,191 stations)
 - Deep power saving
- Scarcity of available bandwidth
 - 10 times down-clocking
 802.11ac's PHY

Greater Ease of Use

- IEEE 802.11ai
- IEEE 802.11aq
- Wi-Fi Direct & Wi-Fi Display
- Passpoint

IEEE 802.11ai: Fast Initial Link Setup

- Motivation
 - Initial link setup is slow and burdensome to users
- Aims at Fast Initial Link Setup (FILS) (< 100 ms)
- Approach
 - Optimizations in AP/network discovery, concurrent cross-layer configuration
 - Passive scanning
 - FILS Discovery frame delivers partial information of beacon more frequently
 - Active scanning
 - Adaptively omit or delay probe frames

IEEE 802.11aq: Pre-Association Discovery

Motivation

- Diversified service categories of Wi-Fi
 - Internet access, 3D printer, video streaming, free or not
- Find "right" AP become more complex
- 802.11aq enables pre-association service discovery
 - By delivering more considerate information to users before association
- Consider how to utilize existing service discovery/description schemes
 - UPnP, Bonjour, ANQP

Wi-Fi Alliance Certification Programs

- Connectivity
 - Interoperable connectivity: Wi-Fi CERTIFIED a/b/g/n/ac
 - Wi-Fi Direct: Connect Wi-Fi devices without AP
- Security
 - WPA2 (government-grade security mechanism), EAP (for enterprise)
- Access
 - Passpoint
 - Wi-Fi Protected Setup (PIN, pushbutton, etc.)
- Applications and Services
 - Miracast
 - Voice-Enterprise, Voice-Personal
- Optimization
 - TDLS

Wi-Fi Direct & Miracast

- Direct Wi-Fi (based on Wi-Fi P2P spec) communication without infrastructure (AP)
- Mimic former 802.11 WLAN BSS architecture
 - P2P Group Owner (GO): AP-like device
 - P2P Client: station-like device
- GO power saving
 - Opportunistic power saving
 - Notice of Absence (NoA)
- Wi-Fi Direct Services
 - Platform interface to encourage more
 Wi-Fi Direct applications
- Miracast (based on Wi-Fi Display spec)
 on top of Wi-Fi Direct

Galaxy's S-Beam

Galaxy's Screen Mirroring (or All Share Cast)

Wi-Fi Direct Services (WFDS)

- Define architecture, protocol and functionality for interoperability of Wi-Fi Direct Services
- Address solution requirement areas
 - Send, play, print, display, enable, application service platform

Passpoint

- Motivation
 - Network access in hotspot area is complicated
 - Search and choose a network
 - Request connection
 - (Re)enter authentication credentials
- Passpoint automates entire network access process
 - By enabling a seamless connection between hotspot networks and mobile devices
 - Implemented based on IEEE 802.11u and Hotspot 2.0 specs

Forward Looking

- Capacity vs. Coverage
- Needs for more spectrum
- Future of Wi-Fi
- Wi-Fi vs. LTE?

Capacity vs. Coverage

- Various rates and coverage due to different spectrum
 - Low frequency spectrum → long range
 - High frequency spectrum → high rate

Augmented Spectrum Heterogeneity

Region-dependent spectrum availability

IEEE 802.11ac @5 GHz

IEEE 802.11af @TVWS

IEEE 802.11ad @60 GHz

Wi-Fi Forward

Motivation

Ever-increasing demand for data and overloaded spectrum

Wi-Fi Forward

- A group of companies, organizations and public sector institutions
- For protecting existing unlicensed spectrum designations
- For freeing up new unlicensed spectrum, including low, medium, and high frequency bands
- For establishing (investment) friendly, transparent and predictable rules that encourage growth and deployment

Envisioning Future of Wi-Fi

• Will all Wi-Fi ecosystem be possible in the future?!?

Wi-Fi vs. LTE-A

- Competitive or complementary?
- Competition with LTE-U
 - Carrier aggregation of LTE-A aggregating licensed spectrum and unlicensed spectrum @5 GHz
- Interworking between Wi-Fi and LTE
 - e.g., Galaxy S5's download booster using Wi-Fi and LTE-A simultaneously

Download booster 45 Mbps

Wi-Fi

17 Mbps

28 Mbps

NOTIFICATIONS

Smash Hit 3:30 AM

42%

Conclusion

- Wi-Fi is still evolving today!
- Three main directions of evolution
 - Throughput enhancements
 - Long-range extensions
 - Greater ease of user
- Future vision
 - More diversified services with spectrum heterogeneity and greater ease of user
 - Performance enhancement in dense environment will be key challenge
 - Close interworking with cellular and coexistence/interworking with other unlicensed band-based connectivity technologies

References

- Weiping Sun, Okhwan Lee, Yeonchul Shin, Seongwon Kim, Changmok Yang, Hyoil Kim, and Sunghyun Choi, "Wi-Fi Could Be Much More," accepted to IEEE Communications Magazine, Special Issue on The Future of Wi-Fi, Aug. 2014.
- IEEE 802.11-2012, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE std., Mar. 2012.
- IEEE 802.11ac, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Very High Throughput for Operation in Bands Below 6 GHz, IEEE std., Dec. 2013.
- IEEE 802.11ad, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Very High Throughput in the 60 GHz Band, IEEE std., Dec. 2012.
- L. Verma, M. Fakharzadeh, and S. Choi, "Wi-Fi on steroids: 802.11ac and 802.11ad," IEEE Wireless Communications, vol. 20, no. 6, pp.30–35, 2013.
- IEEE 802.11af, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Television White Spaces (TVWS) Operation, IEEE std., Dec. 2013.
- IEEE P802.11ah/D1.2, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Sub 1 GHz License Exempt Operation, IEEE std., Feb. 2014.
- W. Sun, M. Choi, and S. Choi, "IEEE 802.11 ah: A long range 802.11 WLAN at sub 1 GHz," Journal of ICT Standardization, vol. 1, no. 1,pp. 83–108, 2013.
- IEEE P802.11ai/D1.3, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications: Fast Initial Link Setup, IEEE std., Feb. 2014.
- Y. Yang and D. Gal, "Proposed specification framework for TGaq," IEEE 802.11-13/0300r1, Mar. 2013.
- Wi-Fi Peer-to-Peer (P2P) Technical Specification, ver. 1.1, Wi-Fi Alliance, P2P Technical Group, Oct. 2010.
- "Wi-Fi Certified Passpoint," http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint.
- H. Kim, K. Shin, and C. Joo, "Downlink capacity of super Wi-Fi coexisting with conventional Wi-Fi," in Proceedings of IEEE GLOBECOM, 2013.

