CS 577: Introduction to Algorithms		Homework 3		
Out: 02/16/21		Due: 02/23/21		
Name:	Wisc ID:			

Ground Rules

- Answer the questions in the boxes provided on the question sheets. If you run out of room for an answer, add a page to the end of the document. Since students have had issues fitting their answers into the boxes, we are increasing the size of the boxes for this problem set. However, do NOT feel obligated to fill the entire solution box. The size of the box does NOT correspond to the intended solution length.
- The homework is to be done and submitted individually. You may discuss the homework with others in either section but you must write up the solution *on your own*.
- You are not allowed to consult any material outside of assigned textbooks and material the instructors post on the course websites. In particular, consulting the internet will be considered plagiarism and penalized appropriately.
- The homework is due at 11:59 PM CST on the due date. No extensions to the due date will be given under any circumstances.
- Homework must be submitted electronically on Gradescope.

Problem 1:

Problem 2:

۷.	or "right". You're only allowed to step on squares labeled "left" with your left foot, and likewise for your right foot. Of course, you can decide which foot to take your first step with. Is it possible for you to run from your starting location to a target location while obeying the course constraints?
	You are given an undirected graph $G=(V,E)$ in the form of an adjacency list, a start node s , a target node t , and a partition of E into two sets L and R . Call a path "feasible" if it alternates between edges in L and edges in R .
	(a) Give a linear time (i.e. $O(n+m)$) algorithm to compute the shortest feasible path from s to t or determine that no such path exists. Show your algorithm is correct and achieves the desired runtime.

	You've decided that you'd be willing to hop, stepping with the same foot twice in a row, if it shortens you path. However, you aren't very coordinated so you can only hop once during the run. Call a path "1-feasible if it alternates between edges in L and R , with the possible exception of a single pair of consecutive edge in either L or R . Note that feasible paths are necessarily 1-feasible. Give a linear time (i.e. $O(n+m)$ algorithm to compute the shortest 1-feasible $s-t$ path in G or determine that none exists. Show you algorithm is correct and achieves the desired runtime.
1	Suppose there are also some edges that you are allowed to step on with either foot. Give a one senter explanation of how to modify your algorithms to work with these new edges.