Practicum 2: Monte Carlo simulation for SPECT

Practical information:

- Work in groups of two (same groups as last week)
- Hand in the notebook (in both .ipynb and .html format) via UFORA (UGent) or Canvas (VUB)
- Deadline: in two weeks (1 November at 23:59)
- For questions:
 - cathysse.thyssen@ugent.be
 - jens.maebe@ugent.be

Background: SPECT camera

Monte Carlo simulation: part 1: sampling of the source

Monte Carlo simulation: part 2: simulating uniform emission

• uniform (constant) PDF for θ :

$$PDF(\theta) = \frac{1}{\theta_{max}}$$

• PDF for ϕ should be proportional to the circumference of the circle defined by ϕ :

$$PDF(\phi) = \text{circumference}(\phi) = 2\pi r \cos(\phi)$$

Monte Carlo simulation: part 3a: intersection with detector and collimator

 $z_det = z + ((radius - x') tan(φ) / cos(θ-Θ))$

$$egin{aligned} y_{det} &= (radius - x') an(heta - \Theta) + y' \ & \ z_{det} &= (radius - x') rac{ an(\phi)}{\cos(heta - \Theta)} + z \end{aligned}$$

$$x' = x\cos(\Theta) + y\sin(\Theta)$$

$$y' = y \cos(\Theta) - x \sin(\Theta)$$

Monte Carlo simulation: part 3a: intersection with detector and collimator

 $z_{det} = z + ((radius - x') tan(φ) / cos(θ - Θ))$

Collimator:
$$egin{aligned} y_{coll} &= (radius - height - x') an(heta - \Theta) + y' \ z_{coll} &= (radius - height - x') rac{ an(\phi)}{\cos(heta - \Theta)} + z \end{aligned} \qquad egin{aligned} x' &= x \cos(\Theta) + y \sin(\Theta) \ y' &= y \cos(\Theta) - x \sin(\Theta) \end{aligned}$$

Monte Carlo simulation: part 3b: Check if the photon passed the collimator

For a parallel collimator: Simply check if (y_{det}, z_{det}) and (y_{coll}, z_{coll}) lie within the same hole

Practicum:

• Exercise 1:

 Sample a given source and see how the obtained distribution changes for different numbers of samples.

• Exercise 2:

• Sample the emission angles θ and ϕ and check the impact of this sampling on the unit sphere for different values of θ and ϕ .

• Exercise 3:

 Perform a full Monte Carlo simulation for SPECT from start (a voxelized source) to finish (a 3D SPECT sinogram).

