Sorting (Lanjutan)

Selection Sort (Maksimum & Minimum)

&

Insertion Sort

Pengurutan Seleksi (Selection Sort)

- Yaitu memilih nilai yang maksimum/minimum dari suatu array yang akan diurutkan dan menempatkannya pada posisi awal atau akhir array; selanjutnya elemen tersebut diisolasi dan tidak disertakan pada proses berikutnya. Hal ini dilakukan secara terus menerus sampai sebanyak N-1
- Dibedakan menjadi :
 - Algoritma pengurutan maksimum
 Yaitu memilih elemen maksimum sebagai basis pengurutan
 - Algoritma pengurutan minimum
 Yaitu memilih elemen minimum sebagai basis pengurutan

Pengurutan Seleksi (Selection Sort)

Contoh: Diurutkan secara ascending dengan algoritma pengurutan minimum

Lokasi	1	2	3	4	5	6
Data	25	27	10	8	76	21

Langkah/ Lokasi	1	2	3	4	5	6
1	<u>8</u>	27	10	25*	76	21
2	<u>8</u>	<u>10</u>	27*	25	76	21
3	<u>8</u>	<u>10</u>	<u>21</u>	25	76	27*
4	<u>8</u>	<u>10</u>	<u>21</u>	<u>25*</u>	76	27
5	<u>8</u>	<u>10</u>	<u>21</u>	<u>25</u>	<u>27</u>	76*

Pengurutan Seleksi (Selection Sort)

```
Algoritma:
Deklarasi:
         : bilangan bulat {untuk langkah}
         : bilangan bulat {indek}
   Temp: bilangan bulat {untuk penampung sementara}
   L : Array [1..N]
   N : bilangan bulat {jumlah elemen array}
   K : Bilangan bulat {menampung indek nilai terkecil}
X : Bilangan bulat {menampung nilai terkecil}
Deskripsi:
   For I \leftarrow 1 to (N-1) do
      K \leftarrow I
      X \leftarrow L[I]
        For J \leftarrow (I+1) to N do
       If L[J] < X then
                  K \leftarrow J
                  X \leftarrow L[J]
       Endif
      Endfor
      Temp \leftarrow L[I]
      L[I] \leftarrow X
      L[K] \leftarrow temp
   Endfor
```

Pengurutan Menyisipkan (Insertion Sort)

- Yaitu metode pengurutan dengan cara menyisipkan elemen array pada posisi yang tepat
- Pada prinsipnya seperti permainan kartu: ambil kartu pertama & pegang, ambil kartu kedua dan letakkan pada posisi yang tepat / berurut, ambil kartu ketiga letakkan pada posisi yang berurut (biasa diawal, ditengah atau diakhir) dst

Pengurutan Menyisipkan (Insertion Sort)

Contoh:

Lokasi	1	2	3	4	5	6
Data	25	27	10	8	76	21

Langkah /Lokasi	1	2	3	4	5	6
1	25					
2	25	27				
3	10	25	27			
4	8	10	25	27		
5	8	10	25	27	76	
6	8	10	21	25	27	76

Pengurutan Menyisipkan (Insertion Sort)

```
Deklarasi
         : Bilangan bulat {untuk langkah}
         : Bilangan bulat {untuk penelusuran array}
                 : boolean {untuk menyatakan posisi penyisipan ditemukan}
  ketemu
        : Bilangan bulat {tempat sementara agar L[K] tidak ditimpa
                  selama pergeseran }
Deskripsi
  For I \leftarrow 2 to N do
     X \leftarrow L[I]
     J \leftarrow I - 1
     Ketemu ← False
     While (J \ge 1) and (not ketemu) do
                  If X < L[J] then
                              L[J+1] \leftarrow L[J]
                              J \leftarrow J-1
                  Else ketemu ← true
                  Endif
     Endwhile
     L[J+1] \leftarrow X
  Endfor
```