PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification		(11) International Publication Number:	WO 00/46644
G03G 13/14, B32B 15/04, 7/12	A1 (*	(43) International Publication Date:	10 August 2000 (10.08.00)
(21) International Application Number:	PCT/US00/02416	PCT/US00/02416 (81) Designated States: CN, ID, IN, IP, KR, European patent (AT, BE CH CY DE, DK, ES FI FR GR GR IF IT 11	KR, European patent (AT, FR GB GR IF IT 111
(73) Intermedican Date: Date:	100 101 167 0000 :==::::21 16		

31 January 2000 (31.01.00) (22) International Filing Date:

4 February 1999 (04.02.99) (30) Priority Data: 09/244,631

Published
With international search report.

S

(72) Inventor: DE BASTIANI, Norman, P.; 120 Mosler Street, So. Hadley, MA 01075 (US). (71) Applicant: CHARTPAK, INC. [US/US]; One River Road, Leeds, MA 01053 (US).

(74) Agent: SCHWEITZER, Fritz, L., Jr.; Schweitzer Comman Gross & Bondell LLP, Suite 2200, 203 Park Avenue, New York, NY 10169 (US).

(54) Title: MANUFACTURE OF TRANSFER DECALCOMANIAS USING ULTRAVIOLET CURE INK AND ADHESIVE TECH-NOLOGY

(57) Abstract

Conventional methods of manufacture of transfer decalcomanias utilizing traditional solvent evaporative ink and adhesive technology are replaced by the present process utilizing ultraviolet (U.V.) cure inks and adhesive technology to produce a better product in a simpler, less costly manufacturing operation.

FOR THE PURPOSES OF INFORMATION ONLY

	Codes used to identify:	States pa	nty to the PCT on the front	pages of	pamphlets publishing inter	mational	Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
Ą.	Albania	S	Spain	ន	Letotho	35	Slovenia
¥	Armenia	E	Finland	7	Lithuania	ž	Slovakia
Υ	Austria	쯢	France	3	Luxembourg	8	Seneral
₹	Australia	ď	Gabon	2	Larvia	5	Swaziland
۸2	Azerbaijan	GB	United Kingdom	MC	Monaco	2	. Ond
ВА	Bosnia and Herzegovina	CE	Georgia	MD	Republic of Moldova	2	1000
88	Barbados	3	Ghana	MG	Madagascor	2	Talikisten
BE	Belgium	Š	Guinea	МЖ	The former Yugoslav	ξ	Tutmenistan
B.	Burkina Faso	ğ	Greece		Republic of Macedonia	Ę	Turkey
BG	Bulgaria	Ħ	Hungary		Mali	Þ	Trinidad and Tobaso
2	Benin	¥	Ireland		Mongolia	ž	Ukraine
BR	Brazil	=	Israel	MR	Mauritania	9	Ueanda
BY	Belarus	S	Iceland		Malawi	S	United States of America
ర	Canada	ㅂ	Italy		Mexico	27	Uzbekistan
Ċ	Central African Republic	4	Japan		Niger	×	Viet Nam
ဗ	Congo	KE	Kenya		Netherlands	A.	Yurostavia
5	Switzerland	KG	Kyrgyzstan		Norway	×	Zimbaban
5	Côte d'Ivoire	X	Democratic People's		New Zealand	i	
Ψ	Cameroon		Republic of Korea		Poland		
3	China	KR	Republic of Korea		Portugal		
2	Cuba	ΚZ	Kazakstan		Romania		
S	Czech Republic	2	Saint Lucia		Russian Pederation		
DE	Germany	3	Liechtenstein		Sudan		
ĎĶ	Denmark	Z,	Sri Lanka		Sweden		
EE	Estonia	3	Liberia	S	Singapore		

PCT/US00/02416

WO 00/46644

MANUFACTURE OF TRANSFER DECALCOMANIAS USING ULTRAVIOLET CURE INK AND ADHESIVE TECHNOLOGY BACKGROUND OF THE INVENTION

Dry transfer products (typically referred to as decalcomanias) are well known in the art. Such products are composed of a carrier film screen printed with graphic designs i.e., lettering, craft art, logos, tole painting, signage, symbols, etc., and subsequently adhesived and protected with a silicone coated release paper. The

surface by removing the protective silicone coated release paper and positioning the decalcomania with the adhesive side against the receiving surface and contacting the adhesive by burnishing the carrier film on the leaving only the screen ink formed decalcomania attached to the receiving surface.

Decalcomanias are presently manufactured using solvent based screen inks and adhesives.

An example of the above described prior art process is exemplified by U.S. Patent 3,847,725 wherein use of a carrier film, solvent base ink and adhesives are taught. This patent describes a single color decalcomania whereas it also applies to spot and halftone screen printing.

20

U.S. Patent 3,847,725 describes a carrier film coated with a non-extensible highly cross-linked polymeric coating that is insoluble to organic solvents; a solvent/resin evaporative ink and a solvent/elastomeric low

tack solvent evaporative pressure sensitive adhesive.

In summary all previously described art teaches a carrier film with a no-stick surface coating, a solvent evaporative ink that will release from the no-stick surface and a solvent evaporative pressure sensitive adhe10 sive that will aid transfer and bond the indica to the receiving surface.

Such processes necessarily require special efforts and compliance to OSHA and DEP regulations when handling solvent base inks and adhesives. For example, OSHA requires proper labeling and handling for employee health

- and accident safety and DEP requires special permitting and annual reporting of the solvent emissions, called volatile organic compounds or (VOC's). If emissions exceed "low quantity generator status" an expensive sol-
 - 20 vent oxidizer installation will be required to process the VOC's before discharging them to the atmosphere.

The present invention eliminates the following disadvantages of using solvent evaporative inks:

- Atmosphere pollution from solvent VOC's. 4
- Time consuming and complicated solvent emission reporting to the DEP,
- Implementing and auditing OSHA required safety procedures for solvent inks and adhesives.

വ

- screens and require washing out every 100 500 sheets Solvent evaporative ink tend to dry in the resulting in costly loss in production efficiency.
- Cost of expensive drying ovens needed to evap-
- orate the solvents out of the printed screen ink. 10
- Drying ovens require valuable manufacturing floor space. ٠.
- Inability to efficiently halftone screen print above 75 lines per inch resolution.
- Cost of expensive oxidizer to treat the VOC emissions prior to discharge into the atmosphere. 12

BRIEF DESCRIPTION OF THE PRESENT INVENTION

vent base screen inks and adhesives in the manufacture of let (U.V.) cure inks and adhesives in the manufacture of The present invention eliminates the need for soldecalcomanias. Rather, this invention employs ultraviodecalcomanias. U.V. curable inks produce decalcomanias with tougher ink films resulting in improved scuff and abrasion resistance. U.V. cure systems also increase

20

4

process speed and improve ability to print finer halftone screens (100-150 lines per inch resolution) because U.V. ink and adhesive will not dry in the screen.

U.V. screen inks and adhesives will also allow the

free work place while protecting the environment by elimproduction of decalcomania in a less hazardous solvent inating VOC's.

The decalcomania dry transfer product of the present invention comprises (see Fig. 1):

- a carrier film; (٦) 10
- a non-stick coating applied to the carrier (2) film;
- a U.V. curable ink for producing the desired indicia which is ap-3
- plied to the non-stick coating;

12

- a U.V. curable pressure-sensitive adhesive applied over the indicia formed in feature (3); and (4)
- a protective release paper or plas-(2)
- tic coating. 20

The key inventive features of the present invention reside primarily in features (3) and (4), and the elimination of the prior art solvent steps.

PCT/US00/02416

ķ

while eliminating the disadvantages of using solvent evacombination of the above screen printing decalcomania, produce a single color, spot color, halftone color or The present process is particularly suitable to porating ink previously described.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is a cross-section of a dry transfer sheet embodying the present invention and the foregoing elements (1) - (5) described above.

DETAILED DESCRIPTION 10

The present invention may be readily understood by referring to Figure 1 and amplifying each of the component elements of the present dry transfer sheet.

As depicted in Figure 1:

The carrier film can be polyester, polyethylene, polysty-3,847,725 which description is incorporated by reference. (1) is the base carrier film similar to those conrene, polypropylene, a vinyl polymer or the like. The ventionally used, such as described in U.S. Patent 15

PCT/US00/02416 WO 00/46644

þ

carrier paper can be densified Kraft paper, parchment, transparent paper, etc.

- (2) denotes a polymeric coating applied to the carrier film.
- The polymeric coating may be a polymer as described by reference. Thermosetting polymers and especially therin col. 2 of U.S. Patent 3,847,725 which is incorporated mosetting acrylics are particularly useful. Such polymers must be substantially non-extensible. A modified വ
- silicone polymer coating may also be used next to the polymeric coating. 10
- In either case to be useful, the ink release values low the U.V. cure screen ink to be printed to high printsitive tape council's test method number PSTC#-1 and alper inch when measured as described by the pressure senfrom the polymeric coating should be between 2-5 grams

15

ing standards and quality.

- (3) denotes the decalcomania formed by use of U.V. inks according to the present invention. Such inks are
 - 20 formulated from a blend of monomers, oligomers, photoinitiators, pigments, additives, modifiers and synergist.

Ļ

range for a fraction of a second, the photoinitiator will oligomer and monomer until it is completely cross linked changing the U.V. ink from a liquid to a 100% cured sol-When exposed to U.V. energy, in the 200 - 400 nanometer absorb U.V. energy, and start the polymerization of the id.

Ŋ

properties such as hardness, flexibility, clarity, color, etc. will give the cured U.v. ink the desired physical The proper selection of monomers and oligomers, and releaseability from the carrier film. 10

- #6700 is an acrylated aromatic urethane oligomer featur-Oligomers are the resin backbone part of the Ebecryl formula. Ebecryl #1755 is an acrylic oligomer blended ing toughness and abrasion resistance. They are both manufactured by UCB Chemicals Corp., Smyra, Georgia. with TRPGDA-DEO monomer featuring flexibility. 15
- They also act as diluents and contrib-Monomers crosslink with the oligomer resins ute to the physical properties of the solid ink film. to form a solid. ۲,
- It contributes flexibility, water resistance, low viscos-Ebecryl TRPGDA is a tripropylene glycol diacrylate. 20

WO 00/46644

ity, good cure speed, and good solvency for acrylated oligomers without imparting brittleness. Ebecryl TRPGDA-DEO is a purified grade of tripropylene glycol diacrylate. It has the same physical properties as TRPGDA but exhibits low odor.

- monomer. When radiated with U.V. light the photoinitiat-Photoinitiator can be called a catalyst. It starts the polymerization between the oligomer and the or will absorb U.V. energy and generate free radicals
- 1700 are manufactured by Ciba Specialties Chemical Co., which cause the oligomer and monomer to crosslink into solid polymerized ink film. Irgacure 907 and Irgacure Tarrytown, NY. 10
- Pigment is used to impart color to the U.V.
- crosslinked polymer ink film. Pennco #981 black and Pennco #9R52 red are pigment paste manufactured by Penn Col-Inc., Doylestown, PA. 15
- Various Additives FL 430 is a surfactant manu-It reduces the surfactured by 3M Corp., St. Paul, MN. 5.
- pigments and receiving surfaces. L405 is a defoamer manface tension of the ink and facilitates wetting of 20

PCT/US00/02416

٩

ufactured by Drew Chemical Company (Division of Ashland Chemical Co.), Boonton, NJ. L405 is added to the ink to control fisheyes, cratering, etc. Cabosil #M-5 is a fumed silica added to flatten the gloss and improve viscosity. It is manufactured by the Cabot Corporation, Tuslola, IL. Ebecryl P115 is an amine synergist. It is an additive used to increase the cure speed of the U.V. ink and imparts low odor.

Component (4) of Figure 1 are U.V. pressure sensitive adhesives. Such adhesives can be purchased from various manufacturers. Two manufacturers are: RAD-CURE Corp., Fairfield, NJ (their product is #UV12FS-8K) and Acheson Colloids, Port Huron, MI (their product #ML2525-1).

2

used to protective release paper denoted as (5) is
used to protect the adhesive and to prevent the indicia
from pre-release or pre-transfer to an unwanted surface.
This is a conventional feature. A paper such as vegetable parchment, tissue, or densified Kraft paper, is sili20 cone coated to provide the protection.

The components making up the U.V. inks are exemplified as follows:

-10

Oligomers and Additives - supplied
 by UCB Chemicals Corp., Smyrna, GA
 30080

EB 220, EB 745, EB 1701, EB 1710, EB 1755, EB 4827 and EB 1755.

ß

 Monomers - supplied by UCB Chemical Corp. EB CL1039, HDODA, TRPGDA, TRPGDA-DEO PETA.K.

3. <u>Photoinitiators</u> - supplied by UCB Chemical Corp. EB P37, Irgacure 1700*, Irgacure 907*, Benzophenone, EB P115, DVROCUR 1173*, supplied by Ciba Corp.

10

4. <u>Synergist</u> - supplied by UCB Chemical Corp., EB P115, EB P104.

5. Pigments -

15

Pennco 981 Black Pigment paste*
Pennco 9R52 Red pigment paste*
Pennco 9579 blue pigment paste*
Pennco 9W7 White pigment paste *
* supplied by Penn Color Inc.

20

6. Additives -

FC-430 fluorocarbon surfactant, supplied by 3M

Carnavba Wax, Slip Agent, supplied

by F.B. Ross Co., Inc.

L-405 Defoamer, supplied by Drew Chemical Co.

വ

Cabosil M-5 Fumed Silica, supplied by Cabot

Corp.

DC-193 Silicone Wetting Agent, sup-

plied by Dow Corning.

A typical formula for a black U.V. cure ink is

as follows:

10

100 Parts by Weight

EB 175547.0 Oligomer

TRPGPA-DE019.0 Monomer

Photoinitiator IRGACURE 1700 6.0

PENNCO 98121.0

Pigment

15

FC430 0.5 Surfactant

L405 0.5 Defoamer

Cabosil/M-5 1.0 Silica

P115 5.0 Synergist

20

A typical red U.V. Cure Ink is as follows:

6700 30.0 01igomer

TRPG-DA 26.0 Monomer

-12-

9R52 31.0 Pigment

Photoinitiator IRGACURE 907 6.0

same as to nature and quantity as the above U.V. cure ink Surfactant, defoamer, silica and synergist are the

composition. വ

and adhesives to provide flow, slip, hold out, viscosity, Additives and modifiers can be added to the inks flexibility adjustments as deemed necessary.

U.V. cure ink and adhesive printing conditions are

the same as used for standard solvent base ink and adhesive printing which is in itself generally well known. 10

An illustrative description of the present process is as follows:

ink in either stainless steel or polyester material stre-Printing Screen: Mesh for ink, 300-400 threads per tched to a minimum tension of 20-24 newtons. 15

phics to be printed is firmly adhered and anchored to the A direct photo emulsion stencil depicting the gramesh.

PCT/US00/02416

WO 00/46644

PCT/US00/02416

÷

<u>Press</u>: Any standard flatbed or cylinder or web press capable of controlling registration, and squeegee speed and pressure.

U.V. Cure Process: A standard U.V. cure unit equi5 pped with one or two 300 watt per inch mercury vapor
lamps fitted with a standard elliptical reflector. Cure
speed is normally in the range of 50 to 75 feet per minute with exposure to 200-400 monometers for a fraction of
a second. For either U.V. cure ink and/or U.V. cure ad-

Various modifications may suggest themselves to those skilled in the art.

10 hesive.

Having described the present invention, that which is sought to be protected is set forth in the following claims.

-14

WHAT IS CLAIMED IS:

- 1. A dry transfer product comprising a carrier sheet, a coating applied to said sheet, an ink composition capable to form desired indicia and which is being
- 5 received by said coating in a solvent-free carrier, and which has been cured by the application of ultraviolet (U.V.) energy to fix the desired indicia in place, and a pressure sensitive adhesive applied to said U.V. cured indicia.
- sensitive adhesive is U.V. curable and thus does not require solvent to apply.
- 3. The product of claim 1, wherein said coating is selected from the group consisting of a thermosetting polymer and a silicone coated polymer adapted to receive

said U.V. curable ink composition.

15

- 4. The product of claim 1, wherein said ink composition contains a member of the group consisting of a monomer, oligomer, photoinitiator, additives, and pig-
- 20 ment.

- 5. The product of claim 4, wherein said ink composition comprises a monomer, oligomer and photoinitiator.
- The dry transfer product of claim 1, which
 - 5 contains on its outer surface a protective paper coated with a low friction medium to be readily removed therefrom.
- 7. The pressure sensitive adhesive of claim 2 which contains members of the group consisting of mono-
 - 10 mers, oligomers, photoinitiators and modifiers.
- 8. The fixed desired indicia of claim 1 resulting from subjecting said ink composition to a wavelength of 200-400 nanometers of ultraviolet exposure.
- 9. The dry transfer product of claim 1, wherein 15 said ink composition comprises an acrylic oligomer and a tripropylene glycol diacrylate monomer.
- 10. The dry transfer product of claim 9, wherein said ink composition further comprises a photoinitiator for catalyzing the polymerization between said oligomer
 - 20 and said monomer.

<u>.</u>16

- uherein a coating is applied to a carrier sheet and an ink composition capable of forming desired indicia is applied to said coating, the improvement which comprises employing a solvent-free carrier and ink composition capable of being cured by the application of ultra violet
 - pable of being cured by the application of ultra violet (U.V.) energy to fix the desired indicia in place, exposing the resultant product to sufficient U.V. energy to effect curing, and then applying a pressure sensitive
- 12. The process of claim 11 wherein the indicia and carrier are exposed to 200-400 monometers of U.V. energy to effect curing.

adhesive to said U.V. cured indicia.

10

- 13. The process of claim 11 wherein the ink compo-15 sition to be cured comprises an oligomer, monomer, photoinitiator and a pigment.
- 14. The process of claim 13 wherein said oligomer is an acrylic and said monomer is a tripropylene glycol diacrylate.

PCT/US00/02416

1/1

F16.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/02416

l		
A. CLA IPC(7) US CL	CLASSIFICATION OF SUBJECT MATTER (7) :G03G 13/14: B22B 15/04, 7/12 CL : 430/126: 428/32, 354	
B. FIEI	B. FIELDS SEARCHED	
Minimum	Minimum documentation searched (classification system followed by classification symbols)	
U.S. :	430/126: 428/352, 354	
Documenta	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched	the fields searched
Electronic (Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)	uch terms used)
С. DOC	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
>	US 5,560,796 A (YOSHIMURA) 01 October 1996, col. 2, lines 20- 125 and col. 3, lines 5-15.	1-14
٨	US 4,786,537 A (SASAKI) 22 November 1988, entire document.	1-14
-		
[
Fund	Further documents are listed in the continuation of Box C.	

later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on prnority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed document defining the general state of the art which is not considered to be of particular relevance earlier document published on or after the international filing date Special categories of cated documents;

document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other study documents, such combination being obvious to a person skilled in the art Date of mailing of the international search report document member of the same patent family 02 MAY 2000 Autholized officer į

Date of the actual completion of the international search

12 APRIL 2000

MARK A. CHAPMAN

Telephone No. (703) 308-0661

Form PCT/ISA/210 (second sheet) (July 1998)+ Facsimile No. (703) 305-3230

Name and mailing address of the ISA/US Commissioner of Patens and Trademarks Box PCT Washington, D.C. 20231