2021 级数学分析(II) 期终考试试题 A 卷

题 号	1	2	3	4	5	6	7	8	
得分									
签 名									

- 1. (23 分) 求下列函数的偏导数或全微分
- (1) 设 $z = e^{\cos xy}$,求 dz.
- (2) 设 z = z(x, y) 由方程 $x + y + z = e^z$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x^2}$.
- (3) 设 $z = \frac{1}{x} f(xy) + yg(x+y)$, 其中 f 和 g 在 R 上有连续的二阶导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和

$$\frac{\partial^2 z}{\partial y \partial x}$$

- 2. (15分)
- (1) 求二重积分 $I = \iint_{D} \frac{y^{2}}{x^{2}} dx dy$, 其中 D 为由 $y = \frac{1}{x}$, y = 2, y = x 所围的区域.
- (2) 求三重积分 $I = \iiint_{\Omega} x \, dx dy dz$, 其中 Ω 由 x = 0, y = 0, z = 0, x + 2y + z = 1 所围成.
- (3) 求第一型曲面积分 $I = \iint_M (x+y+z)dS$, 其中 M 为上半球面: $z = \sqrt{R^2 x^2 y^2}$, $x^2 + y^2 \le R^2$ (R > 0).
- 3. (8 分)设z = z(x, y)在 R^2 有连续偏导数,并且

$$dz = \left[axy^{3} + \cos(x+2y) \right] dx + \left[3x^{2}y^{2} + b\cos(x+2y) \right] dy$$

其中a,b是常数,求a,b的值和z=z(x,y)的表达式.

- 4. $(10 \, \beta)$ 求幂级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n n}{(2n+1)!} x^{2n-1}$ 的收敛域及和函数的表达式.
- 5. (10 分) 设 f(x) 是以 2π 为周期的函数,它在区间 $(-\pi,\pi]$ 上的表达式为

$$f(x) = \begin{cases} 0 & -\pi < x \le 0 \\ 2 & 0 < x \le \pi \end{cases}.$$

- (1)求 f(x)的 Fourier 级数;
- (2) 求 f(x) 的 Fourier 级数的和函数在区间[0,2 π]上的表达式;

(3)
$$\Re \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1}$$
.

6. (12分)

(1)判别下列广义积分的收敛性,若收敛,是绝对收敛还是条件收敛?

(a)
$$\int_0^{+\infty} \frac{1}{\sqrt{x} |x-1|^{\frac{3}{4}}} dx$$
 (b) $\int_0^{+\infty} \sin x^2 dx$

- (2) 设 $\int_a^{+\infty} f(x)dx$ 收敛, 并且 $\lim_{x\to+\infty} f(x) = L$. 证明: L=0.
- 7. (12分)
- (1)证明:函数项级数 $\sum_{n=1}^{+\infty} ne^{-nx}$ 在 $[\delta, +\infty)$ ($\delta > 0$) 一致收敛,但在 $(0, +\infty)$ 不一致收敛.
- (2) 证明: $f(x) = \sum_{n=1}^{+\infty} ne^{-nx}$ 在区间 $(0, +\infty)$ 上连续且可导.
- 8. (10 分) 设 $\alpha > 1$, $0 < a_n \le a_{n+1}$, $n = 0, 1, 2, \cdots$ 证明: $\sum_{n=1}^{+\infty} \frac{a_n a_{n-1}}{a_n a_{n-1}^{\alpha}}$ 收敛.