Fundamentação teórica

Explorando a *centralidade dos caminhos mínimos* em grafos.

Ricardo Norio Miyata

Universidade Federal do Paraná rnm16@inf.ufpr.br

2021

Conteúdo da apresentação

- Objetivo
- Fundamentação teórica
 - Caminhos mínimos (algoritmo de *Dijkstra*)
 - Centralidade de intermediação (betweenness centrality)
 - Centralidade de caminhos mínimos

Fundamentação teórica

- Método e Resultados
 - Arquitetura dos grafos de entrada
 - Fluxo da computação
 - Resultados
- Referências

Objetivo

O objetivo deste trabalho é o estudo da medida de centralidade dos caminhos mínimos.

Caminhos mínimos (algoritmo de Dijkstra)

O que são caminhos mínimos

- É o problema de encontrar um caminho entre dois vértices em um grafo de forma que a soma dos pesos de suas arestas constituintes seja minimizada.
- Algoritmo concebido pelo cientista da computação Edsger W.
 Dijkstra em 1956 e publicado três anos depois. Existem muitas variantes do algoritmo.

Árvore de caminhos mínimos

- Uma árvore de caminhos mínimos de um vértice u é uma árvore geradora T_u de G.
- Um caminho mínimo que começa na raiz de uma árvore de Dijsktra é chamado de ramo de G.
- Dado T_u , para cada $v \neq u$, o caminho mínimo de u a v é um ramo, denotado por $\mathcal{B}_u(v)$.

Caminhos mínimos entre todos os pares de vértices (APSP)

 O APSP, do inglês, all pairs shortest paths é o problema de calcular o comprimento mínimo entre cada par de vértices em um grafo ponderado.

Centralidade de intermediação (betweenness centrality)

O que é centralidade de intermediação (betweenness centrality)

- Uma maneira de detectar a quantidade de influência que um nó (vértice) tem sobre o fluxo de informações em um grafo.
- Em outras palavras, usa-se para localizar os nós que inferem ser mais "importantes".

Ilustração: centralidade de intermediação

Figure: Coloração de um grafo com base na centralidade da intermediação de cada vértice, do menor (vermelho) ao maior (azul).

Dito isto, o que é a centralidade de caminhos mínimos

- No mesmo raciocínio, agora estamos interessados em computar a centralidade de caminhos mínimos.
- Em outras palavras, buscar a quantidade de influência que um caminho mínimo entre um par de vértices tem sobre o fluxo de informações em um grafo.
- Resumindo, caminhos mínimos com maiores valores de centralidade inferem que são mais centrais, isto é, mais "importantes".

Centralidade de caminhos mínimos

Centralidade de caminhos mínimos - computação

- Calculam-se todos os caminhos mínimos possíveis entre todos os pares de vértices de um grafo.
- Dado um caminho mínimo, realiza-se a combinação deste com todos os demais caminhos mínimos do grafo, verificando se ele está contido como subcaminho mínimo em outro.
- Esta etapa é repetida para todas as combinações possíveis entre todos os pares de caminhos mínimos.

Centralidade de caminhos mínimos - definição

A centralidade do caminho mínimo de um par (u, v) é definida como

$$c(u,v)=\frac{t_{uv}}{n(n-1)}$$

onde

$$t_{\scriptscriptstyle UV} = \sum_{(a,b) \in V^2: a
eq b} \mathbb{1}_{ au_{\scriptscriptstyle UV}(\mathcal{B}_a(b))}$$

Centralidade de caminhos mínimos

Centralidade de caminhos mínimos - definição

Explicando: A função $\mathbb{1}_{\tau_{uv}(\mathcal{B}_a(b))}$ retorna 1 se houver algum caminho mínimo de u a v como subcaminho do ramo $\mathcal{B}_a(b) \in S(T_a)$ (e 0 caso contrário). Intuitivamente falando, um par (u,v) tem alta centralidade de caminho mínimo se o caminho mínimo canônico $p_{uv} \in S(T_u)$ (e $S(T_v)$) é um subcaminho de um grande número de caminhos canônicos mínimos em S(G).

Método e Resultados ●0000 Referências o

Arquitetura dos grafos de entrada

Relembrando o objetivo

O objetivo deste trabalho é o estudo da medida de centralidade dos caminhos mínimos.

Método e Resultados

00000

Grafos de entrada

Para a computação e análise dos valores de centralidade dos caminhos mínimos, foram usados 3 tipos de grafos:

- Implementado manualmente, um grafo simples, com 5 vértices;
- Representação do clube de karate de Zachary;
- Uma rede de jogos de futebol americano.

Arquitetura dos grafos de entrada

Grafo simples

Figure: Grafo simples, implementado manualmente, é conexo e possui 5 vértices.

Clube de karate de Zachary

Figure: Grafo fortemente subdivido em duas partes.

Rede de jogos de futebol americano

Figure: Rede de jogos de futebol americano entre faculdades da Divisão IA durante a temporada regular, outono de 2000.

Método e Resultados

Fluxo da computação

Fluxo da computação

Figure: As caixas amarelas representam computação matemática, enquanto que as azuis representam computações de leitura, escrita e refinamento (sem cálculos).

Tabela com os valores de centralidade dos caminhos minimos

Figure: Grafo simples, com 5 vértices.

Path	Centrality
[1, 2]	[0.050]
[1, 3]	[0.075]
[1, 5]	[0.075]
[1, 3, 4]	[0.016]
[2, 1]	[0.050]
[2, 3]	[0.050]
[2, 1, 5]	[0.016]
[2, 3, 4]	[0.016]
[3, 1]	[0.075]
[3, 2]	[0.050]
[3, 4]	[0.075]
[3, 1, 5]	[0.016]
[5, 1]	[0.075]
[5, 4]	[0.025]
[5, 1, 2]	[0.016]
[5, 1, 3]	[0.016]
[4, 3]	[0.075]
[4, 5]	[0.025]
[4, 3, 1]	[0.016]
[4, 3, 2]	[0.016]

Table: Centralidade dos caminhos mínimos do grafo simples.

Distribuição dos valores de centralidade, normalizados, dos caminhos mínimos.

Figure: Clube de karatê de Zachary.

Figure: Representação gráfica.

Distribuição dos valores de centralidade, não normalizados e na escala logarítmica, dos caminhos mínimos.

Figure: Clube de karatê de Zachary.

Figure: Representação gráfica.

Distribuição dos valores de centralidade, normalizados, dos caminhos mínimos.

Figure: Clube de karatê de Zachary.

Figure: Representação gráfica.

Distribuição dos valores de centralidade, não normalizados e na escala logarítmica, dos caminhos mínimos.

Figure: Clube de karatê de Zachary.

Figure: Representação gráfica.

T. H. Cormen and C. E. Leiserson and R. L. Rivest and C. Stein (2009). Introduction to Algorithms.

D. Easley and J. Kleinberg (2010).

Networks, Crowds, and Markets: Reasoning About a Highly Connected World

https://www.cs.cornell.edu/home/kleinber/networks-book/networksbook.pdf.

Alane de Lima, Murilo da Silva and André Vignatti (2021).

Shortest Path Centrality and the APSP problem via VC-dimension and Rademacher Averages.

https://www.inf.ufpr.br/murilo/public/apsp-alg.pdf.

