네트워크 기초

네트워크

노드들이 데이터를 공유할 수 있게 하는 디지털 전기 통신망의 하나

즉, 분산 되어 있는 컴퓨터를 통신망으로 연결한 것을 말함

네트워크에서 여러 장치들이 노드 간 연결을 사용해서 서로 데이터를 교환함

장단점

장점

- 네트워크 데이터 통신을 통해 방대한 자료 공유가 가능함
- 사진, 음악, 영상 등의 디지털 미디어를 볼 수 있음
- 프로세스 분배를 통한 성능 향상

단점

- 바이러스나, 악성 코드로 인한 해킹으로 개인 정보 유출 피해, 보안상의 문제가 발생
- 데이터 변조가 가능함

인터넷

문서, 그림, 영상과 같은 여러 데이터를 공유하도록 구성된, 세상에서 가장 큰 규모의 네트워크

주요 용어

IP 주소

통신을 위해 인터넷 프로토콜을 사용하는 네트워크에 연결된 모든 디바이스에 할당된 고유 번호

노드

데이터를 송신, 수신, 작성, 지정할 수 있는 네트워크 내의 연결 지점. 예시로 컴퓨터, 프린터, 모뎀, 브릿지 및 스위치가 있음

라우터

네트워크 간에 데이터 패킷에 포함된 정보를 전송하는 물리적 또는 가상 디바이스. 패킷 교환기 라고도 함

라우팅

라우터가 패킷을 네트워크에서 목적지까지 보내는 최적의 경로를 선택하는 과정

스위치

다른 디바이스를 연결하고 네트워크 내의 노드 간 통신을 관리함으로써 데이터 패킷이 최종 목적지에 도달하도록 보장하는 디바이스

포트

네트워크 디바이스 간의 특정 연결 식별

프로토콜

컴퓨터가 다른 컴퓨터와 통신하는데 필요한 장비(네트워크 장비 등)가 서로 통신을 위해 정해 놓은 통신 규약

패킷 교환

데이터를 일괄적으로 한번에 보내지 않고 여럿을 분할해서 송신하는 것

네트워크 분류

크기에 따른 분류

- WAN (Wide Area Network) : 광대역 네트워크 지역 간 또는 대륙 간의 넓은 지역의 컴퓨터를 연결하는 네트워크 인터넷은 전 세계 수십억 대의 컴퓨터를 연결하는 가장 큰 WAN 이다.
- MAN (Metropolitan Area Network) : 대도시 영역 네트워크 일반적으로 도시 및 정부기관이 소유하고 관리하는 네트워크
- LAN (Local Area Network) : 근거리 영역 네트워크 상대적으로 짧은 거리에 있는 컴퓨터를 연결하는 네트워크 예를 들어 사무실, 학원, 병원 등의 모든 컴퓨터를 연결하는 것을 말함
- PAN (Personal Area Network) : 개인 네트워크 가장 작은 규모의 네트워크 약 5m 전후의 인접 통신을 함. 예를 들어 아이폰과 맥에서 정보를 공유하는 형태

연결 형태에 따른 분류

트리(Tree) 형

계층(Hierachial)형 으로도 불림

트리 형태로 배치한 형태

장점

• 노드의 추가, 삭제가 쉬움

단점

• 특정 노드에 트래픽이 집중 될 때, 하위 노드에 영향을 끼칠 수 있음

버스(Bus) 형

중앙 통신 회선 하나에 여러 개의 노드가 연결되어 공유하는 네트워크 구성 근거리 통신망(LAN) 에서 사용

장점

- 설치 비용이 적고 신뢰성이 우수함
- 중앙 통신 회선에 노드를 추가하거나 삭제하기 쉬움

단점

• 스푸핑 공격이 가능함

▼ 스푸핑

LAN 상에서 송신부의 패킷을 송신과 관련 없는 다른 호스트에 가지 않도록 하는 스위칭 기능을 마비시키거나 속여, 특정 노드에 해당 패킷이 오도록 처리하는 것 아래와 같이 올바르게 수신부로 들어가야 할 패킷이 악의적인 노드에 전달되게 되는 것을 말함

스타(Star) 형

중앙 장비에 모든 노드가 연결된 형태

장점

- 노드를 추가하거나 에러를 탐지하기 쉬움
- 패킷의 충돌 발생 가능성이 적음

- 어떠한 노드에 장애가 발생하더라도 쉽게 에러를 발견할 수 있음
- 장애 노드가 중앙 노드가 아닐 경우. 다른 노드에 영향을 끼치는 것이 적음

단점

• 중앙 노드에 장애 발생 시 전체 네트워크를 사용할 수 없으며, 설치 비용이 높음

링 (Ring) 형

각각의 노드가 양 옆의 두 노드와 연결하여 전체적으로 고리처럼 하나의 연속된 길을 통해 통신을 하는 방식

데이터는 노드에서 노드로 이동하며, 각각의 노드를 고리 모양의 길을 통해 패킷을 처리함

장점

- 노드의 수가 증가되어도 네트워크 상의 손실이 거의 없고 충돌 가능성이 적음
- 노드의 고장 발견을 쉽게 찾을 수 있음

단점

- 네트워크 구성 변경이 어려움
- 회선에 장애가 발생하면 전체 네트워크에 영향을 크게 끼침

망(Mesh) 형

그물망처럼 연결되어 있는 구조

장점

- 한 단말 장치에 장애가 발생해도, 여러 개의 경로가 존재하므로 네트워크를 계속 사용할수 있음
- 트래픽의 분산 처리가 가능함

단점

• 노드의 추가가 어려우며, 구축 비용과 운용 비용이 높음

네트워크의 회선 구성 방식

회선 구성이란, 2대 이상의 노드가 하나의 링크에 연결되는 방식을 말함 링크란, 하나의 장치로부터 다른 장치로 데이터를 보내는 물리적인 통신 경로를 말함 회선 구정 방법은 점 대 점, 다중점 방식 등이 있음

점 대 점 (Point-To-Point) 방식

중앙 컴퓨터와 단말기를 일대일로 연결한 것. 두 장치 간의 전용 링크를 제공하는 것 두 장치만이 링크를 독점하기 때문에 채널의 전체 용량은 두 기기 간의 전송을 위해서만 사 용됨

언제든지 데이터 전송이 가능함

케이블과 전선뿐만 아니라, 극 초단파나 인공위성 연결 방식도 점대점 방식

다중점 (Multi-Point) 방식

2개 이상의 노드들이 하나의 링크를 공유하는 방식

모든 기기가 하나의 링크를 공유하기 때문에 채널의 용량은 공간적으로 혹은 시간적으로 공 유된다

네트워크 전송 방식

연결된 두 장치간의 신호 흐름의 방향을 정의할 때 사용됨 단방향, 반이중, 전이중 방식이 있음

단방향 (Simplex) 방식

통신이 일방 통행하는 것을 단방향 방식이라고 함

하나의 링크에 연결되어 있는 두 장치는 한쪽이 전송만 할 수 있고, 다른 한쪽은 수신만 가능함

TV, 라디오가 그 예시

반이중 (Half-Duplex) 방식

각 장치는 송신과 수신이 가능하지만, 동시에 할 수 없어 한쪽이 송신이 끝나면 수신할 수 있음

예시로 무전기가 있음

전이중 (Full-Duplex) 방식

두 장치 모두 동시에 수신과 송신이 가능한 방식 에시로 전화기가 있음

네트워크의 통신 방식

유니캐스트

특정 대상과 일대일 통신을 하는 방식

통신 방법

- 전송되는 프레임에 자신의 MAC Address IP와 목적지 MAC Address IP를 넣고 네트 워크에 전송
- 네트워크 내 모든 시스템은 자신의 MAC Address IP와 프레임의 목적지 MAC Address IP를 비교
- 주소가 같다면 프레임을 받아서 처리하고 다르면 프레임을 버림

특징

자신의 MAC Address IP가 아니라고 판단하면 랜카드에서 해당 프레임을 버리기 때문에 CPU까지 도착하지 않음 → **네트워크 상의 다른 컴퓨터의 CPU 성능을 저하시키지 않음**

멀티캐스트

특정 집단과 일대다 통신

통신방법

- 그룹 주소 D Class IP 사용
- 그룹 주소를 갖는 멀티 캐스트 패킷을 네트워크에 전송
- 수신자는 자신이 패킷의 그룹에 속하는 지를 판단하고 패킷의 수용 여부 결정

특징

- 데이터를 받을 특정 호스트들에게만 데이터 전송이 가능
- 스위치나 라우터가 멀티 캐스트를 지원해야함
- 유니캐스트는 다수의 수신자에게 데이터를 보낼 때 동일한 패킷을 중복 통신해야 하지
 만, 멀티캐스트는 다수의 수신자에게 한번에 데이터를 보냄 → 유니 캐스트보다 네트워크 효율이 높음

브로드캐스트

모든 대상들과 통신

통신 방법

- Local LAN 상에 MAC Address IP 전송
- 시스템에 MAC Address IP가 도착하면 랜카드는 자신의 MAC Address IP와 같지 않아도 브로드 캐스트 패킷을 CPU에 전송
- CPU가 브로드 캐스트 패킷 처리

특징

- Local LAN에 연결된 모든 시스템에게 데이터를 보내는 방식
- 모든 시스템에게 데이터가 전송되므로 불필요한 Interrupt 발생
- 자신이 속한 네트워크에서만 한정
- 라우터를 경유하지 못함
- 네트워크 안의 모든 시스템과 통신하기 위한 방식

네트워크의 데이터 교환 방식

대표적으로 **회선 교환 방식 (Circuit Switching)** 과 **패킷 교환 방식 (Packet Switching)** 을 사용함

회선 교환 방식

데이터 전송 시 통신 경로(회선)를 사전에 수립하여 전송하는 교환 방식

동작 원리

• 데이터 전송 전 : 데이터가 전송되기 전 두 노드 간 회선을 수립함

- 데이터 전송 중 : 수립된 회선을 독점적으로 사용하여 데이터를 전송함
- 데이터 전송 후 : 전송할 데이터를 모두 전송한 후 사용한 회선 자원을 회수함

패킷 교환 방식

전송할 데이터를 일정한 크기의 블록(패킷)으로 분리하여 패킷별 통신 경로를 수립하여 전송 하는 교환 방식

동작 원리

- 경로 수립 : 중계 노드에서 패킷별 최적 경로를 수립하여 다음 노드로 전송함
- 트래픽 제어: 데이터를 효율적으로 안정적으로 전송하기 위해 트래픽을 통제함
- 에러 제어 : 패킷 유실 최소화 및 유실된 패킷 복구를 위한 에러 제어함

회선 교환 방식과 패킷 교환 방식 비교

항목	회선 교환 방식	패킷 교환 방식
효율성	회선 독점으로 효율성 저하	회선 다중화로 효율성 증대

항목	회선 교환 방식	패킷 교환 방식
신뢰성	네트워크 자원 독점, 신뢰성 높음	네트워크 자원 공유로 신뢰성 저하
보안성	전송망 단독 사용, 보안성 높음	전송망 공유로 인해 보안성 저하
혼잡 시	Busy 신호 발생	전달 불가 시 메시지 저장
메시지 저장	메시지 저장 불가	전달 시 까지 메시지 저장
데이터 크기	데이터 크기 관계없이 전송 가능	한 번에 전송되는 데이터 크기 제한
세부 방식	공간 분할 방식, 시분할 방식	데이터그램, 가상회선 방식
장점	대용량+고속 데이터 처리 우수	회선 효율성 증대
단점	대역폭 낭비, 통신 비용 높음	지연 발생 가능, 패킷헤더 오버헤드
사례	전화망	인터넷망

실시간 서비스에 패킷 교환 적용 시 문제점 및 해결 방안

구분	문제점	상세 설명
	지연 발생	패킷 전송량 증가에 따른 지연율 상승
성능측면	패킷 손실	패킷이 목적지까지 도달하지 못하는 현상
	지연 변이	패킷 지연 간격이 일정하지 않는 현상
	연결성 확보 어려움	다수 노드의 실시간 서비스 연결성 확보 어려 움
서비스측면	신뢰성 확보 어려움	실시간성 확보를 위한 저지연 품질 확보 어려 움
	가용성 확보 어려움	노드나 네트워크 장애 시 실시간 성 보장 어 려움

실시간 서비스에 패킷 교환 적용 시 해결 방안

문제점	해결 방안	방안 설명
지연 발생	패킷 스케줄링	동기화, 타임스탬프, PQ, CQ, <u>WFQ</u> , LLQ 등
패킷 손실	<u>혼잡 제어</u>	ACK 수신 여부로 상황 판단, 데이터 크기 조절
지연 변이	<u>QoS</u>	IntServ, DiffServ, Classifier, Metering, Conditioning
연결성 확보 어려 움	버퍼 사용	Session과 Connection 유지 버퍼

문제점	해결 방안	방안 설명
신뢰성 확보 어려 움	MPLS	4 Byte 헤더 라벨링, 실시간 고속 스위칭
가용성 확보 어려 움	CDN	<u>지역성(Locality)</u> 을 이용, GSLB, 부하분산, 캐싱