Power Electronics and Electrical Drives

Prof. Dr.-Ing. Joachim Böcker

MMC-Topology for High Current and Low Voltage Applications with Minimal Number of Submodules, Reduced Switching and Capacitor Losses

Introduction / Motivation

High Current and Low Voltage Applications

- Electrolysis and plasma arc welding require high currents
- State of the art: large medium voltage transformer
- High THD and low power factor
- YY-MMC with LLC-Converter as submodules
- > LLCs provide galvanic isolation
- \succ Load connected to $\hat{v}_{dcl} = 220 \text{ V}$ and $\hat{\iota}_{dcl} = 4550 \text{ A}$

Design Idea

- Medium voltage rail v_{dcmv} not required
- Same functionality with half the number of submodules
 - > 50% savings in sensors, controllers and communication
 - No arm inductors
 - Larger and more efficient LLCs

Simulation Results

- Arm voltages control grid currents
- Novel control proposed
- Minimal losses for:
- $\succ \min(v_{\text{pa}}, v_{\text{pb}}, v_{\text{pc}}) = 0$
- Reduced power fluctuations
- Minimal capacitor losses
- ➤ 33% less switching actions

Voltage Balancing Algorithm

- Transient load: unbalanced voltages
- Goal:
 - Balance submodule voltage
- Combined output power constant
- Solution:
 - Submodule output power proportional to capacitor energy
- Local DSP control on each submodule
- No real time feedback to master processor required

Conclusion

- Largely simplified topology of Y-MMC
- Half the number of submodules and higher efficiency
- Voltage Balancing Algorithm is stable and efficient
- Prototype of LLC $\eta_{\rm LLC} = 98.4\%$ at 60% load
- Overall efficiency similar to transformer based solutions

Roland Unruh, M.Sc. unruh@lea.upb.de Tel.: +49 (0) 5251 60 – 3492 Paderborn University
Power Electronics and Electrical Drives
Prof. Dr.-Ing. Joachim Böcker

