Solution 1: VC Dimension

Consider a binary classification learning problem with feature space $\mathcal{X} = \mathbb{R}^p$ and label space $\mathcal{Y} = \{-1, 1\}$.

(a) Let $x_1 \in \mathbb{R}$ be an arbitrary point. Then, $h_{x_1}(x_1) = +1$ and $h_{x_1-1}(x_1) = -1$. Thus, \mathcal{H} shatters $\{x_1\}$ and we infer that $VC_1(\mathcal{H}) \geq 1$.

Now, let $x_2 \in \mathbb{R}$ be another arbitrary point such that (w.l.o.g.^1) $x_1 < x_2$. Note that $h_r(x_2) = +1$ implies $h_r(x_1) = +1$. Thus, there is no $h_r \in \mathcal{H}$ such that $(h_r(x_1), h_r(x_2))^{\top} = (-1, 1)^{\top}$ (or $(h_r(x_2), h_r(x_1))^{\top} = (1, -1)^{\top}$) holds. We infer that $VC_1(\mathcal{H}) < 2$, as two points cannot be shattered by \mathcal{H} . With this, we conclude that $VC_1(\mathcal{H}) = 1$.

(b) Let $x_1, x_2 \in \mathbb{R}$ be some arbitrary points such that (w.l.o.g.¹) $x_1 < x_2$. Note that $\tilde{h}_l(x_1) = +1$ implies $\tilde{h}_l(x_2) = +1$. We can generate every possible assignment $(y_1, y_2)^{\top} \in \mathcal{Y}^2$ for x_1, x_2 :

$$(-1,-1)^{\top} = (h_{x_1-1}(x_1), h_{x_1-1}(x_2))^{\top},$$

$$(-1,1)^{\top} = \left(\tilde{h}_{\frac{x_1+x_2}{2}}(x_1), \tilde{h}_{\frac{x_1+x_2}{2}}(x_2)\right)^{\top},$$

$$(1,-1)^{\top} = (h_{x_1}(x_1), h_{x_1}(x_2))^{\top},$$

$$(1,1)^{\top} = (h_{x_2}(x_1), h_{x_2}(x_2))^{\top}.$$

Thus, $\mathcal{H} \cup \mathcal{H}'$ shatters $\{x_1, x_2\}$ and we infer that $VC_1(\mathcal{H} \cup \mathcal{H}') \geq 2$.

Now, let $x_3 \in \mathbb{R}$ be another arbitrary point such that (w.l.o.g.¹) $x_2 < x_3$. There is no $h \in \mathcal{H} \cup \mathcal{H}'$ such that $(h(x_1), h(x_2), h(x_3))^{\top} = (1, -1, 1)^{\top}$ holds. Indeed, h is either a

- left-open classifier, i.e. $h = h_r$ for some $r \in \mathbb{R}$, so that $h(x_3) = +1$ implies $h(x_2) = +1$,
- right-open classifier, i.e. $h = \tilde{h}_l$ for some $l \in \mathbb{R}$, so that $h(x_1) = +1$ implies $h(x_2) = +1$.

Therefore, we infer that $VC_1(\mathcal{H} \cup \mathcal{H}') < 3$, as three points cannot be shattered by $\mathcal{H} \cup \mathcal{H}'$. With this, we conclude that $VC_1(\mathcal{H} \cup \mathcal{H}') = 2$.

(c) One arbitrary point $\mathbf{x} \in \mathcal{X}$ can be shattered since $h_{p+1} \equiv -1$ and $h_0 \equiv 1$. Therefore, $VC_p(\mathcal{H}) \geq 1$.

Now define $N_1(\mathbf{x}) = \#\{x_j = 1 \mid \mathbf{x} = (x_1, \dots, x_n)\}$, which denotes the number of ones in $\mathbf{x} \in \mathcal{X}$. If $N_1(\mathbf{x}) = N_1(\mathbf{x}')$, then $h_t(\mathbf{x}) = h_t(\mathbf{x}'), \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, t \in \{0, \dots, p+1\}$, i.e., the ordering of the zeros resp. ones is not relevant, but only their total number. Thus, the "interesting" candidate points are

$$X_{cand} = \left\{ \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \right\}.$$

But for each $\mathbf{x}, \mathbf{x}' \in X_{cand}$ it holds that $\exists t : (h_t(\mathbf{x}), h_t(\mathbf{x}')) = (-1, 1)$, then $\forall t' \in \{0, \dots, p + 1\}$ $(h_{t'}(\mathbf{x}), h_{t'}(\mathbf{x}')) \neq (1, -1)$. We can show this indirectly, by assuming such a t' exists and distinguish two cases:

- (i) t' < t, then $h_t(\mathbf{x}') = 1 \implies h_{t'}(\mathbf{x}') = 1$
- (ii) t' > t, then $h_t(\mathbf{x}) = -1 \implies h_{t'}(\mathbf{x}) = -1$

Both implications are contradictions. It can be shown similarly: if for each $\mathbf{x}, \mathbf{x}' \in X_{cand}$ it holds that $\exists t : (h_t(\mathbf{x}) = h_t(\mathbf{x}')) = (1, -1)$, then $\forall t' \in \{0, \dots, p+1\}$ $(h'_t(\mathbf{x}) = h'_t(\mathbf{x}')) \neq (-1, 1)$. Hence, $VC_p(\mathcal{H}) < 2$ as two points cannot be shattered by \mathcal{H} . In summary, we conclude that $VC_p(\mathcal{H}) = 1$.

 $^{^{1}}$ Otherwise, relabel the points.

(d) Let $B := \log_2(|\mathcal{H}|) + 1$ and consider B many arbitrary points $\mathbf{x}_1, \dots, \mathbf{x}_B$. Note that there are 2^B many possible assignments for these points, as each point can be assigned either a +1 or a -1. This corresponds to $2^B = 2^{\log_2(|\mathcal{H}|)+1} = 2|\mathcal{H}|$ many possible assignments. In other words, \mathcal{H} should be able to provide all $2|\mathcal{H}|$ many possible assignments in order to shatter the points $\mathbf{x}_1, \dots, \mathbf{x}_B$.

However, each $h \in \mathcal{H}$ can provide only one assignment $(h(\mathbf{x}_1), \dots, h(\mathbf{x}_B))^{\top} \in \mathcal{Y}^B$, which means that **at most** $|\mathcal{H}|$ many different assignments are possible. Thus, $|\mathcal{H}|$ cannot shatter B many points, so that $VC_p(\mathcal{H}) \leq B - 1 = \log_2(|\mathcal{H}|)$.