Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3114	К работе допущен	
Студент_	Гиниятуллин Ар	ан Рафаилович Работа выполнена	
Пре	подавательКу	ва Полина Алексеевна Отчет принят	

Рабочий протокол и отчёт по лабораторной работе №1

Исследование распределения случайной величины

1. Цель работы.

- 1) Провести измерения конкретного интервала времени
- 2) Построить гистограмму результатов измерения
- 3) Вычислить среднее значение и дисперсию
- 4) Сравнить гистограмму с графиком функции Гаусса с таким же распределением средним значением и дисперсией

2. Задачи, решаемые при выполнении работы.

- 1) Провести 50 измерений времени выполнения программы на языке программирования C++.
- 2) Построить гистограмму распределения времени исполнения программ;
- 3) По данным таблицы вычислить выборное значение среднего $\langle t \rangle_N$ и выборочное среднеквадратичное отклонение σ_N ;
 - 4) Записать результаты в таблицу;
- 5) По формуле вычислить максимальное значение плотности распределения $\rho_m ax$ соответствующее $t = \langle t \rangle$, занести его в таблицу;
- 6) Найти значение t, соответствующие серединам выбранных ранее интервалов, занести их в столбец новой таблицы номер 2. Для этих значений, используя параметры $\langle t \rangle_N$ и σ_N в качестве $\langle t \rangle$ и σ , вычислить значение плотности распределения $\rho(t)$, занести их в новую таблицу номер 2. Нанести все расчетные точки на график, на котором изображена гистограмма и провести через них плавную кривую;
- 7) Проверить, насколько точно выполняется в наших опытах соотношение между вероятностями и долями $\frac{\Delta N_{\sigma}}{N}$, $\frac{\Delta N_{2\sigma}}{N}$, $\frac{\Delta N_{3\sigma}}{N}$. Для этого вычислить границы интервалов для найденных нами значений $\langle t \rangle_N$ и σ_N , занести их в таблицу номер 3;
- 8) По данным первой таблицы подсчитать и занести в таблицу номер 3 количество ΔN измерений, попадающих в каждый их этих интервалов, и отношение $\frac{\Delta N}{N}$ этого количества к общему числу измерений. Сравнить их с соответствующими нормальному распределению значениями P вероятности;
 - 9) Рассчитать среднеквадратичное отклонение среднего значения

10) Найди табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0,95$. Записать доверительный интервал для измеряемого в работе промежутка времени

3. Объект исследования.

Время исполнения программы.

4. Метод Экспериментального исследования

Пользуясь встроенными функциями языка программирования, определить время исполнения программы.

5. Рабочие формулы и исходные данные

$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^{N} t_i$	$\langle t \rangle_N$ - выборочное значение
$ ho(t) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{(t-\langle t angle)^2}{2\sigma^2} ight)$	ho(t) - плотность вероятности или закон распределения
	исследуемой величины
$\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(t_i - \langle t \rangle_N)^2}$	σ_N - выборочное среднеквадратичное отклонение
	$ ho_{ m max}$ - максимальная высота гистограммы
$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}$ $[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N],$	Р - вероятность попадания результата каждого
$[\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma_N],$	измерения в интервал $[t_1, t_2]$
$[\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N]$	
$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$	σ - среднеквадратичное отклонение среднего значения
	$t_{\alpha,N}$ - коэффициент Стьюдента,
$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}, \ \alpha = 0,95$	
	α - доверительная вероятность

6. Результаты измерений и их обработки

$N_{\overline{0}}$	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2$, c ²
1	0.076	0.0171	0.0003
2	0.066	0.0071	0.0000
3	0.056	-0.0029	0.0000
4	0.055	-0.0039	0.0002
5	0.057	-0.0019	0.0001
6	0.056	-0.0029	0.0001
7	0.055	-0.0039	0.0002
8	0.054	-0.0049	0.0000
9	0.084	0.084	0.0006
10	0.06	0.0011	0.0002
11	0.056	-0.0029	0.0002
12	0.063	0.0041	0.0001
13	0.055	-0.0039	0.0000
14	0.055	-0.0039	0.0000
15	0.055	-0.0039	0.0000
16	0.055	-0.0039	0.0000
17	0.061	0.0033	0.0000
18	0.056	-0.0029	0.0000
19	0.055	-0.0039	0.0000
20	0.057	-0.0039	0.0000
21	0.068	0.0019	0.0001
22	0.008	0.0091	0.0001
23	0.071	-0.0029	0.0001
$\frac{23}{24}$	0.055	-0.0029	0.0000
25	0.055	-0.0039	0.0000
$\frac{25}{26}$	0.056	-0.0039	0.0000
$\frac{20}{27}$			0.0000
	0.055	-0.0039	
28	0.056	-0.0029	0.0000
29	0.055	-0.0039	0.0000
30	0.055	-0.0039	0.0000
31	0.056	-0.0029	0.0000
32	0.055	-0.0039	0.0000
33	0.056	-0.0029	0.0000
34	0.07	0.0111	0.0001
35	0.087	0.0281	0.0008
36	0.064	0.0051	0.0000
37	0.055	-0.0039	0.0000
38	0.055	-0.0039	0.0000
39	0.061	0.0021	0.0000
40	0.057	-0.0019	0.0000
41	0.063	0.0041	0.0000
42	0.056	-0.0029	0.0000
43	0.055	-0.0039	0.0000
44	0.055	-0.0039	0.0000
45	0.056	-0.0029	0.0000
46	0.055	-0.0039	0.0000
47	0.056	-0.0029	0.0000
48	0.055	-0.0039	0.0000
49	0.056	-0.0029	0.0000
50	0.055	-0.0039	0.0000
	$\langle t \rangle_N = 0.0589$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 7.56$ e-16	$\sigma_N = 7.33 e - 3 \ ho_{max} = 54.425$
		-	

Таблица 1: Результаты прямых измерений.

7. Расчет результатов косвенных измерений.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	$\rho(t), c^{-1}$
[0.054; 0.0587]	37	158.5633	0.0563	43.3684
[0.0587; 0.0633]	5	21.4275	0.061	54.3871
[0.0633; 0.068]	3	12.8565	0.0657	45.475
[0.068; 0.0727]	2	8.571	0.0703	25.352
[0.0727; 0.0773]	1	4.2855	0.075	9.423
[0.0773; 0.082]	0	0.0	0.0797	2.335
[0.082; 0.0867]	1	4.2855	0.0843	0.386
[0.0867; 0.087]	1	4.2855	0.0868	0.0425

Таблица 2: Данные для построения гистограммы.

8. Расчет погрешностей измерений

$\mathcal{N}_{\overline{0}}$	Интервал, с	ΔN	$\frac{\Delta N}{N}$	P
1	[0.0516; 0.0663]	44	0.88	0.683
2	[0.0443; 0.0736]	47	0.94	0.954
3	[0.0369; 0.0809]	48	0.96	0.997

Таблица 3: Стандартные доверительные интервалы.

9. Выводы и анализ результатов работы.

Во время эксперимента было исследовано распределение случайной величины. Были вычислены среднее значение и дисперсия полученной выборки. С помощью гистограммы распределения результатов мной был наглядно изучен закон распределения случайной величины. У гистрограммы и графика совпадают динамики возрастания и убывания, однако из-за довольно малого числа опытов гистограмма и график соответствуют друг другу не до конца.