第四章 应用题参考答案

5 给定主存空闲分区,按地址从小到大为: 100K、500K、200K、300K和600K。现有用户进程依次分别为212K、417K、112K和426K,(1)分别用 first-fit、best-fit和 worst-fit 算法将它们装入到主存的哪个分区?(2)哪个算法能最有效利用主存?

答: 按题意地址从小到大进行分区如图所示。

分区号	分区长
1	100KB
2	500KB
3	200KB
4	300KB
5	600KB

(1) 1)first-fit 212KB 选中分区 2, 这时分区 2 还剩 288KB。417KB 选中分区 5, 这时分区 5 还剩 183KB。112KB 选中分区 2, 这时分区 2 还剩 176KB。426KB 无分区能满足,应该等待。

2)best-fit 212KB 选中分区 4, 这时分区 4 还剩 88KB。417KB 选中分区 2, 这时分区 2 还剩 83KB。112KB 选中分区 3, 这时分区 3 还剩 88KB。426KB 选中分区 5, 这时分区 5 还剩 174KB。

3)worst-fit 212KB 选中分区 5, 这时分区 5 还剩 388KB。417KB 选中分区 2, 这时分区 2 还剩 83KB。112KB 选中分区 5, 这时分区 5 还剩 176KB。426KB 无分区能满足,应该等待。

- (2) 对于该作业序列, best-fit 算法能最有效利用主存
- 7 一进程以下列次序访问 5 个页: A、B、C、D、A、B、E、A、B、C、D、E; 假定使用 FIFO 替换算法,在主存有 3 个和 4 个空闲页框的情况下,分别给出页面替换次数。

答: 主存有 3 个和 4 个空闲页框的情况下,页面替换次数为 9 次和 10 次。出现了 Belady 现象,增加分给作业的主存块数,反使缺页中断率上升。

8 某计算机有缓存、主存、辅存来实现虚拟存储器。如果数据在缓存中,访问它需要 Ans;如果在主存但不在缓存,需要 Bns 将其装入缓存,然后才能访问;如果不在主 存而在辅存,需要 Cns 将其读入主存,然后,用 Bns 再读入缓存,然后才能访问。假设缓存命中率为(n-1)/n,主存命中率为(m-1)/m,则数据平均访问时间是多少?

答:

数据在缓存中的比率为: (n-1)/n

数据在主存中的比率为: $(1-(n-1)/n)\times(m-1)/m=(m-1)/nm$

数据在辅存中的比率为: $(1-(n-1)/n)\times(1-(m-1)/m)=1/nm$

故数据平均访问时间是= $((n-1)/n) \times A+((1-(n-1)/n) \times (m-1)/m) \times (A+B)+((1-(n-1)/n) \times (1-(m-1)/m)) \times (A+B+C)=A+B/n+C/nm$

17 一台机器有 48 位虚地址和 32 位物理地址, 若页长为 8KB, 问页表共有多少个

页表项?如果设计一个反置页表,则有多少个页表项?

- 答: 因为页长 8KB 占用 13 位, 所以, 页表项有 2³⁵ 个。反置页表项有 2¹⁹ 个。
- 19 有一个分页虚存系统,测得 CPU 和磁盘的利用率如下,试指出每种情况下的存在问题和可采取的措施: (1) CPU 利用率为 13%,磁盘利用率为 97% (2) CPU 利用率为 87%,磁盘利用率为 3% (3) CPU 利用率为 13%,磁盘利用率为 3%。
- 答: (1)系统可能出现抖动,可把暂停部分进程运行。(2)系统运行正常,可增加运行进程数以进一步提高资源利用率。(3)处理器和设备和利用率均很低,可增加并发运行的进程数。
- 22 一个进程已分配到 4 个页框,每页的装入时间、最后访问时间、访问位 R、修改位 D 如表所示(所有数字为十进制,且从 0 开始),当进程访问第 4 页时,产生缺页中断。请分别用 FIFO、LRU 和 NRU 算法,决定缺页中断服务程序选择换出的页面。

page	Page frame	loaded	last reference	R	D
2	0	60	161	0	1
1	1	130	160	0	0
0	2	26	162	/I	0
3	3	20	163	1	1

解答: (更新)

FIFO: 换出进入主存时间最久的页面,第 3 页(Page 3)装入主存最久,所以被替换。

LRU: 换出最近最长时间没有使用的页面,第 1 页(Page 1)的最近访问时间较少, 所以换出第 1 页(Page3)。

NRU: 选择在最近一段时间内未使用过的一页换出。表中第 1 页(Page 1)的访问位为 0,修改位为 0,最近访问最少,所以被换出。

24 在某页式虚存系统中,假定访问主存的时间是 2ms, 平均缺页中断处理时间为 25ms,,均缺页中断率为 5%,试计算在该虚存系统中,平均有效访问时间是多少? 答:若被访问的页面在主存中,则一次访问的时间为,2ms+2ms=4ms;如果不在主存,所花的时间是 2ms(访问主存页表)+25ms(中断处理)+2ms(访问主存页表)+2ms (访问主存)=31ms。

根据上述分析,平均有效访问时间是:

 $4\text{ms} \times (1-5\%) + 31\text{ms} \times 5\% = 5.35\text{ms}$

- 32 假设计算机有 2M 主存,其中,操作系统占用 512K,每个用户程序也使用 512K 主存。如果所有程序都有 70%的 I/O 等待时间,那么,再增加 1M 主存,吞吐率增加 多少?
- 答:由题意可知,主存中可以存放 3 个用户进程,而 CPU 的利用率为: $1-(70\%)^3 = 1-(0.7)^3 = 65.7\%$ 。再增加 1M 主存,可增加 2 个用户进程,这时 CPU 的利用率为: $1-(70\%)^5 = 1-(0.7)^5 = 83.2\%$ 。故再增加 1M 主存,吞吐率增加了: $83.2\% \div 65.7\% 100\% = 27\%$ 。

- 42 在请求分页虚存管理系统中,若驻留集为 m 个页框,页框初始为空,在长为 p 的 引用串中具有 n 个不同页面(n>m),对于 FIFO、LRU 两种页面替换算法,试给出缺页中断的上限和下限,并举例说明。
- 答:对于FIFO、LRU两种页面替换算法,缺页中断的上限和下限:为 p 和 n。因为有 n 个不同页面,无论怎样安排,不同页面进入主存至少要产生一次缺页中断,故下限为 n 次。由于 m<n,引用串中有些页可能进入主存后又被调出,而多次发生缺页中断。极端情况,访问的页都不在主存,这样共发生了 p 次缺页中断。例如,当 m=3, p=12, n=4 时,有如下访问中:1,1,1,2,2,3,4,1。缺页中断为下限 4 次。而访问串:2,3,4,1,2,3,4,1。缺页中断为上限 12 次。
- 45 有两台计算机 P1 和 P2,它们各有一个硬件高速缓冲存储器 C1 和 C2,且各有一个 主存储器 M1 和 M2。其性能为:

	C1	C2	M1	M2
存储容量	4KB	4KB	2MB	2MB
存取周期	60ns	80ns	1 μ s	0.9 µ s

若两台机器指令系统相同,它们的指令执行时间与存储器的平均存取周期成正比。如果在执行某个程序时,所需指令或数据在高速缓冲存储器中存取到的概率 P 是 0.7,试问:这两台计算机哪个速度快?当 P=0.9时,处理器哪个速度快?

- 答: CPU 平均存取时间为: T=p×T1+(1-p)×T2, T1 为高速缓冲存储器存取周期, T2 为主存储器存取周期, p 为高速缓冲存储器命中率。
- (1) 当 p=0.7 时,
 - P1 平均存取时间为: 0.7×60+(1-0.7)×1 μ s=342ns
 - P2 平均存取时间为: 0.7×80+(1-0.7)×0.9 μ s=326ns

故计算机 P2 比 P1 处理速度快。

- (2) 当 p=0.9 时,
- P1 平均存取时间为: $0.9 \times 60 + (1-0.9) \times 1 \mu s = 154 ns$ P2 平均存取时间为: $0.9 \times 80 + (1-0.9) \times 0.9 \mu s = 162 ns$ 故计算机 P1 比 P2 处理速度快。
- 47 假设一个物理存储器,有4个页框,对下面每种策略,给出引用串:
- P1、p2、p3、p1、p4、p5、p1、p2、p1、p4、p5、p3、p4、p5的缺页数目(所有页框最初都是空的)。试用下列算法求出缺页中断次数,(a)OPT,(b)FIFO,(c)SCR,(d)改进的CLOCK,(e)LRU,(f)MIN,(g)WS。解:
 - (a) 最优置换算法 OPT

F	F	F		F	F(3)						F(1)		
1	1	1	1	1	1	1	1	1	1	1	3	3	3
	2	2	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	5	5	5	5	5	5	5	5	5
				4	4	4	4	4	4	4	4	4	4

缺页6次。

(b) 先进先出算法 FIFO

F	F	F	F	F(1)	F(2)	F(3)		F(4)	F(5)	F(1)

1	1	1	1	1	2	3	4	4	4	4	5	1	2
	2	2	2	2	3	4	5	5	5	5	1	2	3
		3	3	3	4	5	1	1	1	1	2	3	4
				4	5	1	2	2	2	2	3	4	5

缺页 10 次。

(c) 第二次机会算法 SCR

图中()中为引用位

F	F	F		F	F(1)	F(2)	F(3)				F(4)	F(5)	F(1)
1(1)	1(1)	1(1)	1(1)	1(1)	2(0)	3(0)	4(0)	4(0)	4(1)	4(1)	5(0)	1(0)	2(0)
	2(1)	2(1)	2(1)	2(1)	3(0)	4(0)	5(1)	5(1)	5(1)	5(1)	1(0)	2(0)	3(1)
		3(1)	3(1)	3(1)	4(0)	5(1)	1(1)	1(1)	1(1)	1(1)	2(0)	3(1)	4(1)
				4(1)	5(1)	1(1)	2(1)	2(1)	2(1)	2(1)	3(1)	4(1)	5(1)
	缺页 10 次。												

(d) 改进的时钟算法 clock (假设所有对页面 p2 的访问都是写请求)

图中(r, m)为(引用位, 修改位)

,		`								40. 41			
F	F	F		F	F(1)	F(3)			V		F(4)	F(5)	F(1)
				\rightarrow						3	\rightarrow		
1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	5(1,0)	5(1,0)	5(1,0)	5(1,0)	5(1,0)	5(1,0)	5(0,0)	4(1,0)	4(1,0)
\rightarrow					\rightarrow							\rightarrow	
	2(1,1)	2(1,1)	2(1,1)	2(1,1)	2(0,1)	2(0,1)	2(1,1)	2(1,1)	2(1,1)	2(1,1)	2(0,1)	2(0,1)	2(0,1)
	\rightarrow							5					
		3(1,0)	3(1,0)	3(1,0)	3(0,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(0,0)	1(0,0)	5(1,0)
		\rightarrow	\rightarrow		X		→	\rightarrow	\rightarrow	\rightarrow			\rightarrow
				4(1,0)	4(0,0)	4(0,0)	4(0,0)	4(0,0)	4(1,0)	4(1,0)	3(1,0)	3(1,0)	3(1,0)

缺页9次。

(e) 最近最少使用算法(LRU)

F	F	F	AI	F	F(2)		F(3)				F(2)		
1	2	3	11//	4	5	1	2	1	4	5	3	4	5
	1	2	3	1	4	5	1	2	1	4	5	3	4
	-	1	2	3	1	4	5	5	2	1	4	5	3
	A .	The same of		2	3	3	4	4	5	2	1	1	1

缺页7次。

(f) 局部最优页面置换算法 (MIN)

设滑动窗口τ=3

	11 - 22 151	• •													
时刻t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
引用串		P1	P2	Р3	P1	P4	P5	P1	P2	P1	P4	P5	P3	P4	P5
P1		V	V	V	√	√	V	√	√	√					
P2			V						√						
Р3				V									V		
P4						√					V	V	V	√	
P5							V					V	V	√	V
IN		P1	P2	Р3		P4	P5		P2		P4	P5	Р3		
OUT				P2	Р3		P4	P5		P2	P1			Р3	P4

缺页9次。

(g) 工作集算法 (WS), △=2

时刻 t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
引用串		P1	P2	Р3	P1	P4	P5	P1	P2	P1	P4	P5	Р3	P4	P5
P1		$\sqrt{}$	√	√	√	V	√	V	V	V	√	√			
P2			√	√	√				V	V	√				
Р3				√	\checkmark	√							V	√	√
P4						V	V	V			V	V	V	V	V
P5							V	V	1			V	V	V	V
IN		P1	P2	Р3			P5		P2		P4	P5	Р3 _	Harana and American	
OUT						P2	Р3		P4	P5		P2	P1		

缺页8次。