

Progetto di Reti Logiche

William Zeni matricola 10613915 Cristina Urso matricola 10599689

7 maggio 2021

Progetto sostenuto presso il Politecnico di Milano dipartimento di Elettronica, Informazione e Bioingegneria, diretto dal professor Gianluca Palermo nell'anno 2020/21.

Indice

1	Intr	$\operatorname{roduzio}$	one	,																					
	1.1	Scopo	de	l pr	oge	ette	э.																		
	1.2	Specifi	iche	e ge	ene	rali	i.																		
	1.3	Interfa	acci	a d	lel (con	npc	one	nt	э.															
	1.4	Dati e																							
2	Desing Pattern 2.1 Scelte Progettuali																								
	2.1	Scelte				ıali																			
	2.2	Elenco	o St	ati																					
		2.2.1																							
		2.2.2	IN	NΙΤ	١.												 								
		2.2.3					EΑ																		
		2.2.4	Α	BII	LIT	`_W	/RI	TE	Ξ.								 								
		2.2.5	W	'ΑΙ΄	TN	ИE	^{2}M										 								
		2.2.6																							
		2.2.7	G	ET	'_D	IM											 								
		2.2.8	\mathbf{R}	EA	D_{-}	PΙΣ	ΧEΙ	L									 								
		2.2.9	G	ET	'_M	IN.	MA	lΧ									 								
		2.2.10																							
		2.2.11	\mathbf{C}	AL	C_{-}	SHI	ΙFΊ	Γ.									 								
		2.2.12	G	ET	'_P]	IXF	${f E}{f L}$										 								
		2.2.13																							
		2.2.14																							
		2.2.15	D	ON	ΙE												 								
		2.2.16																							
3	Ris	ultati d	dei	Te	est																				
4	Cor	clusior	ni																						

1 Introduzione

1.1 Scopo del progetto

Write somenthing here

1.2 Specifiche generali

Write somenthing here

1.3 Interfaccia del componente

Write somenthing here

1.4 Dati e Descrizione memoria

Write somenthing here

2 Desing Pattern

2.1 Scelte Progettuali

Write somenthing here

2.2 Elenco Stati

2.2.1 START

Lo stato di START è stato pensato come stato di attesa iniziale. Questo stato viene invocato in due situazioni differenti: se il segnale di i_rst viene portato alto, oppure quando il segnale i_start viene riportato basso dopo la computazione di un immagine. Lo stato START non cambia fino a quando il segnale i_start non viene portato alto. In quel momento lo stato successivo viene impostato INIT.

2.2.2 INIT

Lo stato INIT è uno stato di transizione nel quale il processore si assicura che i segnali siano inizializzati con i valori opportuni. Successivamente imposta lo stato prossimo a ABILIT_READ.

2.2.3 ABILIT_READ

Lo stato ABILIT_READ è lo stato attraverso il quale abilitiamo la memoria alla sola lettura. Viene richiamato in momenti diversi del progetto e, in base allo stato chiamante, instrada lo stato prossimo a quello opportuno.

2.2.4 ABILIT_WRITE

Lo stato ABILIT_WRITE abilita la memoria alla lettura e alla scrittura. Viene invocato subito dopo aver computato il valore del nuovo pixel e in nessun altro momento. Instrada poi lo stato prossimo a WRITE_PIXEL.

2.2.5 **WAIT_MEM**

Lo stato WAIT_MEM è uno stato centrale durante la gestione del flusso di dati. Sostanzialmente "spreca" un ciclo di clock. Questo ci assicura sia in caso di scrittura, sia in caso di lettura, che i segnali in ingresso e in uscita siano letti o scritti correttamente. Nel caso specifico alla quale ci rifacciamo, alcune chiamate a questo stato potevano essere evitate. Questa informazione è emersa durante lo stress test a cui il processore è stato sottoposto. Tuttavia, abbiamo preferito lasciarle per mantenere la stuttura del processore. Ciò, a nostro avviso, permette una maggior robustezza, sebbene un aumento nella latenza della computazione.

2.2.6 GET RC

Lo stato GET_RC è uno stato in preparazione al calcolo della dimensione dell'immagine e dei punti in cui bisognerà scrivere all'interno della memoria. Lo stato GET_RC viene invocato dopo l'abilitazione della memoria alla lettura. Questo stato si occupa del recuperare i valori dalla memoria e aggiornare i segnali n_col e n_row.

2.2.7 GET_DIM

Lo stato GET_DIM è lo stato che si preoccupa di aggiornare il segnale dim_address con il valore opportuno. Il calcolo $n_col \cdot n_row + 2$ aggiorna il segnale al primo bit libero per la scrittura.

2.2.8 READ_PIXEL

Lo stato READ_PIXEL è uno stato strettamente accopiato con lo stato GET_MINMAX. Richiede alla memoria il valore del pixel e aggiorna il segnale curr_address a quello successivo. In questo modo il valore del pixel sarà disponibile sul segnale i_data al rising_edge successivo.

2.2.9 GET_MINMAX

Write somenthing here.

2.2.10 **GET DELTA**

Write somenthing here

2.2.11 CALC_SHIFT

Write somenthing here

2.2.12 GET_PIXEL

Write somenthing here

2.2.13 CALC_NEWPIXEL

Write somenthing here

2.2.14 WRITE_PIXEL

Write somenthing here.

2.2.15 DONE

Write somenthing here

2.2.16 WAITINGPIC

Write somenthing here

3 Risultati dei Test

Write somenthing here!

4 Conclusioni

Write somenthing here