* Configuración de NIC Bonding y Link Aggregation

Aitor Lázaro Sánchez

- * 1. Máquinas y SO.
- * 2. Red.
- * 3. NIC Bonding.
- * 4. Modos de NIC Bonding en Linux.
- * 5. Link Aggregation
- * 6. Configuración del NIC Bonding en Debian Squeeze
- * 7. Parametros de ifenslave-2.6
- * 8. Configuración de bond1
- * 9. Comprobación de la configuración
- * 10. Link Aggregation en el Switch
- * 11. Pruebas de rendimiento
- * 12. Intentos de configuración

- *Europa e lo: 16 cores y 32 GB de RAM
- *Ganimedes y Calisto: 24 cores y 64 GB de RAM
- *Dos HDD de 300GB a 15000 rpm en RAID 0
- *SO utilizado: Debian Squeeze de 64 bits.
- *Particiones: 1GB para /boot, 2GB para swap y 544 para /

*Máguinas y SO

*Objetivo:

- *Bonding mediante tres NIC's para lograr 3 Gbps en la comunicación entre las cuatro máquinas.
- *Bonding en modo 802.3ad
- *Link Aggregation en el switch mediante LACP

*Logrado:

- *Bonding en modo 0 que funciona a una velocidad que ronda desde los 2'15 hasta los 2'3 Gbps
- *Switch desconfigurado.

- *Creación de una interfaz de red virtual que controla a varias físicas.
- *Los objetivos del NIC Bonding son el aumento de ancho de banda y la tolerancia a fallos de las interfaces.

*NIC Bonding

- *Modo 0 o balance rr: Usa el alogoritmo Round Robin y es el modo por defecto. Ofrece balanceo de carga y tolerancia a fallos.
- *Modo 1 o Active backup: Su funcionamiento consiste en tener activa una interfaz y el resto como backup. Ofrece tolerancia a fallos.
- *Modo 2 o Balance XOR: Todo lo que vaya para una MAC en concreto se envía por la misma interfaz. Ofrece balanceo y tolerancia a fallos.
- *Modo 3 o Broadcast: Envía todo por todas las interfaces. Ofrece tolerancia a fallos.

*Modos de NIC Bonding en Linux

- *Modo 4 o 802.3ad: Estandar. Permite agregar varios enlaces para aumentar el ancho de banda. Todos los interfaces deben ser de la misma velocidad y el Switch compatible con el protocolo. Ofrece balanceo y tolerancia a fallos.
- *Modo 5 o Balance-TLB: Balancea el envío según la carga de las interfaces. Necesita compatibilidad con ethtool. Ofrece balanceo y tolerancia.
- *Modo 6 o Balance-ALB: Similar al modo 5 pero con el añadido de balancear la recepción. Tolerancia a fallos y balanceo.

*Modos de NIC Bonding en Linux

*El objetivo de esta técnica es la configuración de varios puertos para que virtualmente actúen como uno solo.

*Con esto se logra la redundancia de conexión para evitar fallos y la mejora del ancho de banda.

*Link Aggregation

- *Configuración final:
 - *Bonding en modo 0
 - *Interfaces usadas: eth1, eth2, eth3
- *Para la configuración del bonding en Debian es necesaria la instalación del paquete ifenslave-2.6.

aptitude install ifenslave-2.6

*Configuración del NIC Bonding en Debian Squeeze

- *arp_interval: Indica cada cuántos milisegundos se envía un ARP reply. Por defecto = 0.
- *arp_ip_target: Indica cual será la IP destino. Hasta 16 destinos.
- *downdelay: Especifica los milisegundos que tardará en bajar la interfaz cuando se detecte un error. El valor por defecto es 0.
- *updelay: Indica cuantos milisegundos se tardará en activar una tarjeta de red esclava cuando se detecte un error en una interfaz. El valor por defecto es 0

*Parametros de ifenslave-2.6

- *max_bonds: Indica cuantas interfaces virtuales se crearán al iniciar el móduclo. Por defecto es 1.
- *miimon: Indica cada cuantos milisegundos se va a comprobar el estado de los enlaces, por defecto es 0.
- *mode: Indica el modo de bonding.
- *primary: Solo se utiliza en el modo 1 y sirve para indicar que interfaz va a estar como activa y cual o cuales como esclavas.

*Parametros de ifenslave-2.6

- *use_carrier: Su valor puede ser 0 o 1, si es 1 indica que usará una llamada netif_carrier_ok() del módulo de la tarjeta de red para la detección por MII.
- *xmit_hash_policy: Especifica la politica de transmisión para los modos 2 y 4, pueden ser:
 - * Layer 2: Similar al modo 2: todo lo que vaya para una IP lo mandará por la misma interfaz.
 - * Layer 3+4: Usa niveles superiores al de enlace y actúa según el tipo de tráfico. No es completamente compatible con el 802.3ad
- *slaves: Indica que interfaces actúan como esclavas en el bonding.

*Parametros de ifenslave-2.6

- * Lo primero es bajar todas las interfaces que funcionarán como esclavas: ifdown ethx
- * Modificamos el fichero /etc/network/interfaces y añadimos las siguientes lineas:

iface bond1 inet static address 192.168.222.13 netmask 255.255.255.0 bond-slaves eth1 eth2 eth3 bond-mode 0 mtu 9000 bond-miimon 100

Y reiniciamos networking /etc/init.d/networking restart

- *Otra forma de configurarlo: Mediante comandos.
- *Activamos el módulo indicandole el modo de bonding y el valor de miimon:

modprobe bonding mode=0 (o el nombre) miimon=100

*Levantamos bond1:

ifconfig bond1 192.168.222.13 netmask 255.255.255.0 mtu 9000 up

*Añadimos los esclavos:

ifenslave bond1 eth1 eth2 eth3

*Configuración de bond1

- *Para bajar y desconfigurar el bond hay que realizar los siguientes pasos:
- *Bajar las interfaces
 ifdown eth1 eth2 eth3
- *Bajar el bond1 ifconfig bond1 down
- *Quitar el módulo modprobe -r bonding

*Configuración de bond1

* Con ifconfig:

bond1 Link encap:Ethernet HWaddr 00:25:90:69:f8:a9

inet addr:192.168.222.13 Bcast:192.168.222.255 Mask:255.255.255.0

inet6 addr: fe80::225:90ff:fe69:f8a9/64 Scope:Link

UP BROADCAST RUNNING MASTER MULTICAST MTU:9000 Metric:1

RX packets:1847300 errors:0 dropped:0 overruns:0 frame:0 TX packets:1428607 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:1732704907 (1.6 GiB) TX bytes:6066067471 (5.6 GiB)

eth1 Link encap:Ethernet HWaddr 00:25:90:69:f8:a9

UP BROADCAST RUNNING SLAVE MULTICAST MTU:9000 Metric:1

RX packets:796589 errors:0 dropped:0 overruns:0 frame:0 TX packets:476431 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:1412769379 (1.3 GiB) TX bytes:2023694953 (1.8 GiB)

Memory:fe7e0000-fe800000

*Comprobación de la configuración

*Para comprobar la correcta configuración del bonding podemos echar mano de los siguientes ficheros:

/proc/net/bonding/bond1
/sys/class/net/bond1/bonding/mode

*Otros ficheros donde se muestran los parámetros están en:

/sys/class/net/bond1
/sys/class/net/bond1/bonding/

*Comprobación de la configuración

*Tras muchos intentos no se logró configurar el Link Aggregation en el switch SMC8028L2 ni en modo LACP ni en modo estático.

*Se decidió dejarlo sin configurar y en modo 0 ya que así se lograba el aumento de ancho de banda.

*Link Aggregation en el Switch

- *Mediante iperf se han hecho pruebas con 50 clientes de forma simultanea, estos son los resultados de algunas pruebas:
 - * Io como servidor, Ganimedes como cliente: [SUM] 0.0-10.0 sec 2.51 GBytes 2.16 Gbits/sec
 - *Ganimedes como servidor, Calisto como cliente:

[SUM] 0.0-10.6 sec 2.66 GBytes 2.27 Gbits/sec

*Calisto como servidor, lo como cliente:
[SUM] 0.0-10.4 sec 2.64 GBytes 2.18 Gbits/sec

*Pruebas de rendimiento

- *Lograr que funcione ha sido más complicado de lo esperado.
- *Se han probado todos los tipos de bonding.
- *Los modos 1 y 3 son los que primero se obviaron.
- *Los modos 2, 5 y 6 tampoco mostraban mejora alguna
- *El modo 4, seguramente por error a la hora de configurar el switch, no dio el resultado deseado.
- *Especial mención a la casi nula (por no decir nula) documentación acerca de bonding con Gigabit Ethernet, que es algo bastante común.

- *Diferencia entre Ubuntu y Debian Wheezy:
 - *En la configuración de la interfaz:

auto eth1 inet manual bond-master bond1

*En la configuración del bond:

bond-slaves none

*En Debian no hace falta la configuración de la interfaz, con indicar los slaves en la configuración del bond ya vale.

bond-slaves eth1 eth2 eth3

*A la hora de intentar configurar el bond en modo 4 (802.3ad) los siguientes parámetros eran prácticamente invariables:

auto bond1 iface bond0 inet static address 192.168.222.13 netmask 255.255.255.0 bond-mode 4 bond-miimon 100 bond-slaves none

auto eth1 iface eth1 inet manual bond-master bond0

*Desde un principio se añadieron las siguientes líneas que fueron eliminadas por no ser necesarias:

bond downdelay 200 bond-updelay 200

*Otro parametro, al final eliminado debido a que se ha usado el modo 0, pero que era correcto es el siguiente:

bond-lacp-rate 1

*Otra línea que también estuvo, pero que se quitó debido a que solo es compatible con el modo 1 es la siguiente:

bond-primary eth1 eth2 eth3

*Por último se añadió al final, tal y como ponía en alguna página de internet, la siguiente línea, que al final se quedó en la configuración final:

mtu 9000

*Última configuración probada en modo 4:

auto bond1
iface bond0 inet static
address 192.168.222.13
netmask 255.255.255.0
bond-mode 4
bond-miimon 100
bond-slaves eth1 eth2 eth3
bond-lacp-rate 1
mtu 9000

*En el switch:

Importante
desconectar los
puertos a la hora de
modificar la
configuración y
reiniciar el switch
tras las
modificaciones

LACP Port Configuration

Port	LACP Enabled	Key	Role
1	✓	Specific ▼ 1	Active ▼
2	\blacksquare	Specific ▼ 20	Active ▼
3	✓	Specific ▼ 1	Active ▼
4	\blacksquare	Specific ▼ 20	Active ▼
5	\blacksquare	Specific ▼ 1	Active ▼
6		Specific ▼ 20	Active ▼
7		Auto ▼	Active ▼
8		Auto ▼	Active ▼
9		Specific ▼ 30	Active ▼
10		Specific ▼ 40	Active ▼
11	\checkmark	Specific ▼ 30	Active ▼
12	\checkmark	Specific ▼ 4	Active ▼
13	\checkmark	Specific ▼ 30	Active ▼
14	$ \mathbf{Z} $	Specific ▼ 4	Active ▼

- *Una vez configurados los nodos y el switch NO pasaba de los 980Mbps (sus mu...)
- *Para asegurar que no era un problema de que no cogiesen la configuración se comprobaron los siguientes ficheros:

/sys/class/net/bond1/bonding/ad_partner_key
/sys/class/net/bond1/bonding/ad_actor_key

- *Se realizaron otros intentos en otros modos:
 - *El modo 1 se descartó ya que solo funciona una interfaz a la vez.
 - *El modo 3, Broadcast, al enviar la misma información por todos los nodos a la vez no solo no aumentaba sino que diminuía a unos 400Mbps.
 - *Los modos 2 tampoco era muy aconsejable por el balanceo mediante la MAC destino.
 - *Los modos 5 y 6 no mejoraron el rendimiento.

*No hubo ningún cambio importante a la hora de cambiar los modos:

iface bond1 inet static address 192.168.222.13 netmask 255.255.255.0 bond-slaves eth1 eth2 eth3 bond-mode <número de modo> mtu 9000 bond-miimon 100

- * Durante estas pruebas en otros modos el switch se configuró tanto en LACP como en estático.
- *Configuración en estático: Ningún hash.

Aggregation Mode Configuration

Hash Code Contributors								
Source MAC Address								
Destination MAC Address								
<u>I</u> P Address								
TCP/UDP Port Number								

Aggregation Group Configuration

	Port Members																											
Group ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Normal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0
3		0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0
4		0	0	0	0	0	0		0	(0)	0	0		0	0	0	0	0	0	0	0	0			0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- * Seguía sin mejorar el rendimiento.
- * Aitor se empieza a plantear la opción de pegarse un tiro.
- * Jesús encuentra la página por la que se obra el milagro. Alberto ejecuta.
- * Se realizan las siguientes modificaciones:
 - * Se vuelve al modo 0.
 - * Se desconfigura el Switch completamente.

echo "3000" > /proc/sys/net/core/netdev_max_backlog ifconfig bond1 txqueuelen 10000 ethtool -G eth1 rx 3072 tx 3072

* ¡FUNCIONÓ!

- *Caso para Iker Jimenez:
- * Cómo se hicieron varios cambios a la vez hay que hacer pruebas para documentar que provocó el cambio.
- *Se desconfigura todo (máquinas y switch) y se reincian tanto los nodos como el switch.
- *Se prueba sin añadir los cambios finales...
- *Y FUNCIONA
- * Posiblemente el error fuese una mala configuración guardada en el switch...

*Fin.