TOT4171 Artificial Intelligence Methods Exercise 2 Tobias Carcary Nygaard

Part A

Re-1 P(Rt) t = 0.7The "Umbrella domain" f = 0.3Rain t = 0.3Rain t = 0.3Rain t = 0.3

The "Umbrella domain" as a Hidden Markov Model:

Unobserved variables: X = R (Rain)

Umbrella (Umbrella) t

Observable variables: Et = Ut (Umbrella)

Dynamic model:

$$T = P(X_{t-1} | X_{t-1}) = P(R_{t} | R_{t-1}) = \begin{pmatrix} P(R_{t} = t | R_{t-1} = t) & P(R_{t} = f | R_{t-1} = t) \\ P(R_{t} = t | R_{t-1} = f) & P(R_{t} = f | R_{t-1} = f) \end{pmatrix}$$

$$\Rightarrow T = \begin{pmatrix} 0, 7 & 0, 3 \\ 0, 3 & 0, 7 \end{pmatrix}$$

Observation model:

$$O = P(E_{t} | X_{t}) = P(U_{t} | R_{t}) = \begin{pmatrix} P(U_{t} = t | R_{t} = t) & P(U_{t} = f | R_{t} = t) \\ P(U_{t} = t | R_{t} = f) & P(U_{t} = f | R_{t} = f) \end{pmatrix}$$

$$=) O = \begin{pmatrix} 0,9 & 0,1 \\ 0,2 & 0,8 \end{pmatrix}$$

For mathematical convenience, we want 0 to be a square diagonal matrix. This can be achieved by constructing a matrix for both scenarios where E_t = true and E_t = false

$$\underbrace{E_{t} = \text{ true } }^{\text{E}}$$

$$\underbrace{C_{true} = \begin{pmatrix} 0, 9 & 6 \\ 0 & 0, 2 \end{pmatrix}}$$

$$\underbrace{E_{t} = \text{ fulse } }^{\text{O}, 1}$$

$$\underbrace{O_{\text{false}} = \begin{pmatrix} 0, 1 & 0 \\ 0 & 0, 8 \end{pmatrix}}$$

· Assumptions encoded in this model

Markov assumption made about the dynamic model.

This assumption states that the current state only depends on a finite fixed number of previous steps; in this case only the previous step.

Making it a first-order Markov process, That is

P(X₆ | X₆: e-1) = P(X₆ | X₆-1). The process is assumed to be stationary, which means the conditional probabilities are constant Y to. The validity of this assumptes may depend on variables such as geographical location and current season

- Sensor Markov assumption: states that the evidence variables Ex only depends on the current state variables Xx. That is

P(E, | Xoit, Eoit-1) = P(E, | Xt)

In reality the probability of bringing an umbrillar would increase a long with an increasing set

Part B

Results using forward-algorithm as discribed in Russel and Norvig:

E1:2 = { Umbrellay = true, Umbrella z = true}

P(Xz|e1:2) = 0.883

C1:5 = { Umbrella; = fine, Umbrella; = hrue, Umbrella; = false, Umbrella; = true, Umbrella; = true}

	Kain	Not Rain
Pay 1 P(X, 1e,, 5)	0,8182	0,1818
Day 2 P(X2/ens)	0,8834	0,1166
Day 3 PCX3 len: 5)	0,1907	0,8093
Pay 4 P(X, 1e1:5)	0,7308	0,2692
Day 5 P(Xs)C1:5	0,8673	0,1327

Part &C

Results using forward-backward-algorithm as described in Russel and Norvig:

C1:5= {V1=true, V2=true, V3=false, Vy=true, Vg=true}

	Rain	Not Rain!
Day 1 Plx, lens)	0,8673	0,1327
Day 2 P(X2/8,:5)	0,8204	0,1796
Day 3 P(X31e125)	0,3075	0,6925
Day 4 PCxilen:s)	0,8204	0,1796
Day 5 P(Xslens)		0,1327

Backward messages				
		Rain 1	Not rown	
Day 5	b5	0,69	0,41	
Duy 4	64	0,4593	0,2437	
Day 3		0,090639	0,150251	
Day 2	1	0,0661176	0,04550767	
Day 1	1	0,0443845	70,02422283	