Ramsey Typed Theorems and Reverse Mathematics

Yang Yue

Department of Mathematics National University of Singapore

7 December, 2018

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey 1930)

Any $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

Loosely speaking: Every coloring problem has a homogeneous solution.

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey 1930)

Any $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

Loosely speaking: Every coloring problem has a homogeneous solution.

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey 1930)

Any $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

Loosely speaking: Every coloring problem has a homogeneous solution.

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey 1930)

Any $f: [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

Loosely speaking: Every coloring problem has a homogeneous solution.

- First step: Find an infinite subset $C \subseteq \mathbb{N}$ on which f is "stable", i.e., for all x, $\lim_{y \in C, y \to \infty} f(x, y)$ exists.
- ▶ We call such a set *C* cohesive for *f*.
- Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .
- ightharpoonup Obtain a solution from D^R .

- First step: Find an infinite subset $C \subseteq \mathbb{N}$ on which f is "stable", i.e., for all x, $\lim_{y \in C, y \to \infty} f(x, y)$ exists.
- ▶ We call such a set *C cohesive* for *f*.
- Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .
- \triangleright Obtain a solution from D^R .

- First step: Find an infinite subset $C \subseteq \mathbb{N}$ on which f is "stable", i.e., for all x, $\lim_{y \in C, y \to \infty} f(x, y)$ exists.
- ▶ We call such a set *C cohesive* for *f*.
- Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .
- \triangleright Obtain a solution from D^R .

- First step: Find an infinite subset $C \subseteq \mathbb{N}$ on which f is "stable", i.e., for all x, $\lim_{y \in C, y \to \infty} f(x, y)$ exists.
- ▶ We call such a set *C cohesive* for *f*.
- Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .
- \triangleright Obtain a solution from D^R .

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.
- ► SRT²₂ states that every *stable* coloring of pairs has a solution.
- ► (Cholak, Jockusch and Slaman, 2001)

$$RT_2^2 = COH + SRT_2^2$$

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.
- ► SRT₂² states that every *stable* coloring of pairs has a solution.
- ► (Cholak, Jockusch and Slaman, 2001)

$$RT_2^2 = COH + SRT_2^2$$

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.
- SRT²₂ states that every stable coloring of pairs has a solution.
- ► (Cholak, Jockusch and Slaman, 2001)

$$RT_2^2 = COH + SRT_2^2$$

- ▶ Let R be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- ► The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.
- SRT²₂ states that every stable coloring of pairs has a solution.
- ► (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

- How complicated is the homogeneous set H?
- Is COH or SRT² as strong as RT²?
- What are the logical consequences/strength of Ramsey's Theorem?
- ▶ We need to introduce "measures" of the strengths.

- How complicated is the homogeneous set H?
- ▶ Is COH or SRT²₂ as strong as RT²₂?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce "measures" of the strengths.

- ▶ How complicated is the homogeneous set *H*?
- ▶ Is COH or SRT²₂ as strong as RT²₂?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce "measures" of the strengths.

- How complicated is the homogeneous set H?
- Is COH or SRT² as strong as RT²?
- What are the logical consequences/strength of Ramsey's Theorem?
- ▶ We need to introduce "measures" of the strengths.

- The way to show that P ≠ Q is to "make" P true and Q false. But these combinatorial principles are all true.
- Thus we have to work in some weaker systems Γ, and demonstrate that "Γ proves P but not Q".
- Often we will have a hierarchy of systems Γ₀ < Γ₁ < ..., and Γ_i proves P but not Q (or better, Q proves Γ_j for some j > i).
- ► (notice the reverse direction.)

- The way to show that P ≠ Q is to "make" P true and Q false. But these combinatorial principles are all true.
- Thus we have to work in some weaker systems Γ, and demonstrate that "Γ proves P but not Q".
- Often we will have a hierarchy of systems Γ₀ < Γ₁ < ..., and Γ_i proves P but not Q (or better, Q proves Γ_j for some j > i).
- ► (notice the reverse direction.)

- The way to show that P ≠ Q is to "make" P true and Q false. But these combinatorial principles are all true.
- Thus we have to work in some weaker systems Γ, and demonstrate that "Γ proves P but not Q".
- Often we will have a hierarchy of systems Γ₀ < Γ₁ < ..., and Γ_i proves P but not Q (or better, Q proves Γ_j for some j > i).
- ► (notice the reverse direction.)

- The way to show that P ≠ Q is to "make" P true and Q false. But these combinatorial principles are all true.
- Thus we have to work in some weaker systems Γ, and demonstrate that "Γ proves P but not Q".
- Often we will have a hierarchy of systems Γ₀ < Γ₁ < ..., and Γ_i proves P but not Q (or better, Q proves Γ_j for some j > i).
- ► (notice the reverse direction.)

Fragments of First Order Peano Arithmetic

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- ▶ (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \cdots$
- ► (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

Fragments of First Order Peano Arithmetic

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- ▶ (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \cdots$
- ► (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

Fragments of First Order Peano Arithmetic

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- ▶ (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \cdots$
- ► (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

- Reverse mathematics uses fragments of Second Order Arithmetic.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ▶ WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ▶ ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ightharpoonup (ATR₀ and Π_1^1 -CA₀.)

- Reverse mathematics uses fragments of Second Order Arithmetic.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ▶ WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ▶ ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ightharpoonup (ATR₀ and Π_1^1 -CA₀.)

- Reverse mathematics uses fragments of Second Order Arithmetic.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ▶ ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ightharpoonup (ATR₀ and Π_1^1 -CA₀.)

- Reverse mathematics uses fragments of Second Order Arithmetic.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ▶ ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ightharpoonup (ATR₀ and Π_1^1 -CA₀.)

- Reverse mathematics uses fragments of Second Order Arithmetic.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ▶ ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ightharpoonup (ATR₀ and Π_1^1 -CA₀.)

Remarks on Goals of Reversion

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

Remarks on Goals of Reversion

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

Remarks on Goals of Reversion

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT² imply ACA₀?
- ► What are the first-order consequences of Ramsey's Theorem? E.g., does RT_2^2 imply $I\Sigma_2$?
- Does SRT² imply RT²? In other words, if X contains solutions for all stable colorings, how about for general colorings? (Here X is the second order part of the model.)

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT² imply ACA₀?
- ► What are the first-order consequences of Ramsey's Theorem? E.g., does RT_2^2 imply $I\Sigma_2$?
- Does SRT² imply RT²? In other words, if X contains solutions for all stable colorings, how about for general colorings? (Here X is the second order part of the model.)

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT₂ imply ACA₀?
- ▶ What are the first-order consequences of Ramsey's Theorem? E.g., does RT_2^2 imply $I\Sigma_2$?
- Does SRT² imply RT²? In other words, if X contains solutions for all stable colorings, how about for general colorings? (Here X is the second order part of the model.)

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT² imply ACA₀?
- ▶ What are the first-order consequences of Ramsey's Theorem? E.g., does RT_2^2 imply $I\Sigma_2$?
- Does SRT² imply RT²? In other words, if X contains solutions for all stable colorings, how about for general colorings? (Here X is the second order part of the model.)

Theorem (Jockusch 1972)
$$\begin{aligned} \textit{Over} \ \mathsf{RCA}_0, \\ \mathsf{ACA}_0 &\Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}_k^n. \\ \mathsf{ACA}_0 &\Rightarrow \mathsf{RT}_2^2 \quad \textit{and} \quad \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2. \end{aligned}$$

Theorem (Hirst 1987)

Over RCA₀,

(S)RT

$$(S)RT_2^2 \Rightarrow B\Sigma_2.$$

Theorem (Seetapun and Slaman 1995) Over RCA₀,

$$RT_2^2 \Rightarrow ACA_0$$
.

Theorem (Jockusch 1972)
$$\begin{aligned} \textit{Over} \ \mathsf{RCA}_0, \\ \mathsf{ACA}_0 &\Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}_k^n. \\ \mathsf{ACA}_0 &\Rightarrow \mathsf{RT}_2^2 \quad \textit{and} \quad \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2. \end{aligned}$$

Theorem (Hirst 1987)

Over RCA₀,

(S)PT

$$(S)RT_2^2 \Rightarrow B\Sigma_2.$$

Theorem (Seetapun and Slaman 1995)

Over RCA₀,

$$RT_2^2 \Rightarrow ACA_0$$
.

Theorem (Jockusch 1972)

Over RCA₀,

$$ACA_0 \Leftrightarrow RT_2^3 \Leftrightarrow RT_k^n$$
.

$$\mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \quad \textit{and} \quad \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2.$$

Theorem (Hirst 1987)

Over RCA₀,

$$(S)RT_2^2 \Rightarrow B\Sigma_2.$$

Theorem (Seetapun and Slaman 1995)

Over RCA₀,

$$RT_2^2 \not\Rightarrow ACA_0$$
.

Conservation Results

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman 2001) RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2^0$, Hence,

$$RT_2^2 \Rightarrow B\Sigma_3^0$$

Conservation Results

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman 2001) RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2^0$, Hence,

$$RT_2^2 \not\Rightarrow B\Sigma_3^0$$

Conservation Results

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman 2001)

 RT_2^2 is Π_1^1 -conservative over $\mathsf{RCA}_0 + \mathit{I}\Sigma_2^0$, Hence,

$$RT_2^2 \not\Rightarrow B\Sigma_3^0$$
.

Combinatorics below RT₂²

Hirschfeldt and Shore [2007], Combinatorial principles weaker than Ramsey's theorem for pairs.

In particular, COH does not imply RT₂².

From Big Five to The Zoo


```
Theorem (Jiayi Liu 2011) 
 Over RCA_0, RT_2^2 \Rightarrow WKL_0.
```

Theorem (Chong, Slaman and Yang 2012) Over RCA₀, COH is Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0$.

```
Theorem (Jiayi Liu 2011) 
 Over RCA_0, RT_2^2 \not\Rightarrow WKL_0.
```

Theorem (Chong, Slaman and Yang 2012) Over RCA₀, COH is Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0$.

Theorem (Chong, Slaman and Yang) *Over* RCA₀,

- (a) (2014) $SRT_2^2 \Rightarrow RT_2^2$.
- (b) (2017) $RT_2^2 \Rightarrow I\Sigma_2^0$.

Theorem (Patey and Yokoyama 2018) RT_2^2 is Π_3^0 -conservative over RCA_0 .

Theorem (Chong, Slaman and Yang) *Over* RCA₀,

- (a) (2014) $SRT_2^2 \neq RT_2^2$.
- (b) (2017) $RT_2^2 \Rightarrow I\Sigma_2^0$.

Theorem (Patey and Yokoyama 2018) RT_2^2 is Π_3^0 -conservative over RCA_0 .

Theorem (Chong, Slaman and Yang) *Over* RCA₀.

- (a) (2014) $SRT_2^2 \Rightarrow RT_2^2$.
- (b) (2017) $RT_2^2 \Rightarrow I\Sigma_2^0$.

Theorem (Patey and Yokoyama 2018) RT_2^2 is Π_3^0 -conservative over RCA_0 .

- ▶ One approach to show $SRT_2^2 \neq RT_2^2$: Show that stable colorings always have a low solution. Or equivalently, every Δ_2^0 -set contains or is disjoint from an infinite low set.
- ▶ Downey, Hirschfeldt, Lempp and Solomon (2001): There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.
- Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:
 - ▶ DHLS theorem is done on ω , whose proof involves infinite injury method thus requires $I\Sigma_2^0$.
 - There is a model of BΣ⁰₂ but not IΣ⁰₂ in which every incomplete Δ⁰₂ set is low.

- ▶ One approach to show $SRT_2^2 \neq RT_2^2$: Show that stable colorings always have a low solution. Or equivalently, every Δ_2^0 -set contains or is disjoint from an infinite low set.
- ▶ Downey, Hirschfeldt, Lempp and Solomon (2001): There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.
- Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:
 - ▶ DHLS theorem is done on ω , whose proof involves infinite injury method thus requires $I\Sigma_2^0$.
 - There is a model of BΣ⁰₂ but not IΣ⁰₂ in which every incomplete Δ⁰₂ set is low.

- ▶ One approach to show $SRT_2^2 \neq RT_2^2$: Show that stable colorings always have a low solution. Or equivalently, every Δ_2^0 -set contains or is disjoint from an infinite low set.
- ▶ Downey, Hirschfeldt, Lempp and Solomon (2001): There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.
- Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:
 - ▶ DHLS theorem is done on ω , whose proof involves infinite injury method thus requires $I\Sigma_2^0$.
 - There is a model of BΣ⁰₂ but not IΣ⁰₂ in which every incomplete Δ⁰₂ set is low.

- ▶ One approach to show $SRT_2^2 \neq RT_2^2$: Show that stable colorings always have a low solution. Or equivalently, every Δ_2^0 -set contains or is disjoint from an infinite low set.
- ▶ Downey, Hirschfeldt, Lempp and Solomon (2001): There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.
- Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:
 - ▶ DHLS theorem is done on ω , whose proof involves infinite injury method thus requires $I\Sigma_2^0$.
 - There is a model of BΣ⁰₂ but not IΣ⁰₂ in which every incomplete Δ⁰₂ set is low.

- ▶ One approach to show $SRT_2^2 \neq RT_2^2$: Show that stable colorings always have a low solution. Or equivalently, every Δ_2^0 -set contains or is disjoint from an infinite low set.
- ▶ Downey, Hirschfeldt, Lempp and Solomon (2001): There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.
- Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:
 - ▶ DHLS theorem is done on ω , whose proof involves infinite injury method thus requires $I\Sigma_2^0$.
 - There is a model of BΣ⁰₂ but not IΣ⁰₂ in which every incomplete Δ⁰₂ set is low.

- ▶ What happens in ω -model? (Kind of "provability vs. truth" question.)
- ► How about conservation results? E.g., Is RT₂ or SRT₂² Π¹-conservative over RCA₀?
- ▶ (Downey and Ng) Can we improve DHLS Theorem to low_2 and Δ_2^0 sets?
- ▶ Is there a model of $B\Sigma_3^0 + \neg I\Sigma_3^0$ in which every recursive stable coloring has a low₂ and Δ_2^0 solution?

- ▶ What happens in ω -model? (Kind of "provability vs. truth" question.)
- How about conservation results? E.g., Is RT₂² or SRT₂² Π₁¹-conservative over RCA₀?
- ▶ (Downey and Ng) Can we improve DHLS Theorem to low_2 and Δ_2^0 sets?
- ▶ Is there a model of $B\Sigma_3^0 + \neg I\Sigma_3^0$ in which every recursive stable coloring has a low₂ and Δ_2^0 solution?

- ▶ What happens in ω -model? (Kind of "provability vs. truth" question.)
- How about conservation results? E.g., Is RT₂² or SRT₂² Π₁¹-conservative over RCA₀?
- (Downey and Ng) Can we improve DHLS Theorem to low₂ and Δ₂⁰ sets?
- ▶ Is there a model of $B\Sigma_3^0 + \neg I\Sigma_3^0$ in which every recursive stable coloring has a low₂ and Δ_2^0 solution?

- ▶ What happens in ω -model? (Kind of "provability vs. truth" question.)
- How about conservation results? E.g., Is RT₂² or SRT₂² Π₁¹-conservative over RCA₀?
- (Downey and Ng) Can we improve DHLS Theorem to low₂ and Δ₂⁰ sets?
- Is there a model of $B\Sigma_3^0 + \neg I\Sigma_3^0$ in which every recursive stable coloring has a low₂ and Δ_2^0 solution?

- Let $T = 2^{<\omega}$ be the full binary tree.
- ▶ Let [T]ⁿ be the set of all linearly ordered n-tuples of nodes of T.
- ► TT_k^n : Suppose that $[T]^n$ is colored in k colors, then there is a subtree $S \cong T$ which is homogenous.
- ▶ Combinatorists studied TT_k^1 , but (seem) not TT_k^n .

- Let $T = 2^{<\omega}$ be the full binary tree.
- ▶ Let [T]ⁿ be the set of all linearly ordered n-tuples of nodes of T.
- ► TT_k^n : Suppose that $[T]^n$ is colored in k colors, then there is a subtree $S \cong T$ which is homogenous.
- ► Combinatorists studied TT_k^1 , but (seem) not TT_k^n .

- Let $T = 2^{<\omega}$ be the full binary tree.
- ▶ Let [T]ⁿ be the set of all linearly ordered n-tuples of nodes of T.
- ▶ TT_k^n : Suppose that $[T]^n$ is colored in k colors, then there is a subtree $S \cong T$ which is homogenous.
- ► Combinatorists studied TT_k^1 , but (seem) not TT_k^n .

- Let $T = 2^{<\omega}$ be the full binary tree.
- ▶ Let [T]ⁿ be the set of all linearly ordered n-tuples of nodes of T.
- ▶ TT_k^n : Suppose that $[T]^n$ is colored in k colors, then there is a subtree $S \cong T$ which is homogenous.
- ▶ Combinatorists studied TT_k^1 , but (seem) not TT_k^n .

- ► CHM (2009): $RCA_0 + I\Sigma_2^0$ implies $TT^1 := \forall kTT_k^1$. (Just find the color which is dense.)
- ► (Thus TT^1 is only interesting without $I\Sigma_2^0$.)
- ▶ Observation: $TT^1 \Rightarrow RT^1 \Rightarrow B\Sigma_2^0$.
- ► CHM (2009): $ACA_0 \Rightarrow TT^n$.
- ▶ CHM (2009): For $n \ge 3$ and $k \ge 2$, ACA₀ \Leftarrow TTⁿ_k.

- ► CHM (2009): $RCA_0 + I\Sigma_2^0$ implies $TT^1 := \forall kTT_k^1$. (Just find the color which is dense.)
- ► (Thus TT^1 is only interesting without $I\Sigma_2^0$.)
- ▶ Observation: $TT^1 \Rightarrow RT^1 \Rightarrow B\Sigma_2^0$.
- ► CHM (2009): $ACA_0 \Rightarrow TT^n$.
- ▶ CHM (2009): For $n \ge 3$ and $k \ge 2$, ACA₀ \Leftarrow TTⁿ_k.

- ► CHM (2009): $RCA_0 + I\Sigma_2^0$ implies $TT^1 := \forall kTT_k^1$. (Just find the color which is dense.)
- ► (Thus TT^1 is only interesting without $I\Sigma_2^0$.)
- ▶ Observation: $TT^1 \Rightarrow RT^1 \Rightarrow B\Sigma_2^0$.
- ► CHM (2009): $ACA_0 \Rightarrow TT^n$.
- ► CHM (2009): For $n \ge 3$ and $k \ge 2$, ACA₀ \Leftarrow TTⁿ_k.

- ► CHM (2009): $RCA_0 + I\Sigma_2^0$ implies $TT^1 := \forall kTT_k^1$. (Just find the color which is dense.)
- ► (Thus TT^1 is only interesting without $I\Sigma_2^0$.)
- ▶ Observation: $TT^1 \Rightarrow RT^1 \Rightarrow B\Sigma_2^0$.
- ► CHM (2009): $ACA_0 \Rightarrow TT^n$.
- ► CHM (2009): For $n \ge 3$ and $k \ge 2$, ACA₀ \Leftarrow TT_kⁿ.

- ► CHM (2009): $RCA_0 + I\Sigma_2^0$ implies $TT^1 := \forall kTT_k^1$. (Just find the color which is dense.)
- ► (Thus TT^1 is only interesting without $I\Sigma_2^0$.)
- ▶ Observation: $TT^1 \Rightarrow RT^1 \Rightarrow B\Sigma_2^0$.
- ► CHM (2009): $ACA_0 \Rightarrow TT^n$.
- ▶ CHM (2009): For $n \ge 3$ and $k \ge 2$, ACA₀ \Leftarrow TT_kⁿ.

- ► Corduan, Groszek and Mileti (2010): If \mathcal{T} is any extension of RCA₀ by Π_1^1 -axioms then \mathcal{T} proves TT^1 iff \mathcal{T} proves $I\Sigma_2^0$. In particular, RCA₀ + $B\Sigma_2^0$ does not prove TT^1 .
- ▶ CGM (2010): If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive homogenous tree isomorphic to T.
- ▶ Both CHM and CGM asked: Does TT^1 imply $I\Sigma_2^0$?

- ► Corduan, Groszek and Mileti (2010): If \mathcal{T} is any extension of RCA₀ by Π_1^1 -axioms then \mathcal{T} proves TT^1 iff \mathcal{T} proves $I\Sigma_2^0$. In particular, RCA₀ + $B\Sigma_2^0$ does not prove TT^1 .
- ▶ CGM (2010): If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive homogenous tree isomorphic to T.
- ▶ Both CHM and CGM asked: Does TT^1 imply $I\Sigma_2^0$?

- ► Corduan, Groszek and Mileti (2010): If \mathcal{T} is any extension of RCA₀ by Π_1^1 -axioms then \mathcal{T} proves TT^1 iff \mathcal{T} proves $I\Sigma_2^0$. In particular, RCA₀ + $B\Sigma_2^0$ does not prove TT^1 .
- ▶ CGM (2010): If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive homogenous tree isomorphic to T.
- ▶ Both CHM and CGM asked: Does TT^1 imply $I\Sigma_2^0$?

Some Results on TT¹

Joint work with Chitat Chong, Wei Li and Wei Wang, we showed

- ▶ If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive in \emptyset'' homogenous tree isomorphic to T.
- ► TT¹ is Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0 + P\Sigma_1^0$, where $P\Sigma_1^0$ is another first order axiom and $B\Sigma_2^0 + P\Sigma_1^0 < I\Sigma_2^0$.
- ▶ Thus, TT^1 does not imply $I\Sigma_2^0$.

Some Results on TT¹

Joint work with Chitat Chong, Wei Li and Wei Wang, we showed

- ▶ If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive in \emptyset'' homogenous tree isomorphic to T.
- TT¹ is Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0$ + $P\Sigma_1^0$, where $P\Sigma_1^0$ is another first order axiom and $B\Sigma_2^0$ + $P\Sigma_1^0$ < $I\Sigma_2^0$.
- ▶ Thus, TT^1 does not imply $I\Sigma_2^0$.

Some Results on TT¹

Joint work with Chitat Chong, Wei Li and Wei Wang, we showed

- ▶ If $I\Sigma_2^0$ fails, then there is a recursive $f: T \to k$ for some k such that there is no recursive in \emptyset'' homogenous tree isomorphic to T.
- TT¹ is Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0$ + $P\Sigma_1^0$, where $P\Sigma_1^0$ is another first order axiom and $B\Sigma_2^0$ + $P\Sigma_1^0$ < $I\Sigma_2^0$.
- ▶ Thus, TT^1 does not imply $I\Sigma_2^0$.

Open Questions and Remarks (I)

Question 1: Is $TT^1 \Pi_1^1$ -conservative over $RCA_0 + B\Sigma_2$?

- ▶ If $RCA_0 + TT^1$ implies $P\Sigma_1^0$, then the answer is yes.
- If not, what is the first-order strength of TT¹? For example, is TT¹ a Π₃⁰-conservative extension of RCA₀, as is the case of RT₂² proved by Patey and Yokoyama?

Open Questions and Remarks (I)

Question 1: Is $TT^1 \Pi_1^1$ -conservative over $RCA_0 + B\Sigma_2$?

- ▶ If $RCA_0 + TT^1$ implies $P\Sigma_1^0$, then the answer is yes.
- If not, what is the first-order strength of TT¹? For example, is TT¹ a Π₃⁰-conservative extension of RCA₀, as is the case of RT₂² proved by Patey and Yokoyama?

Open Questions and Remarks (I)

Question 1: Is $TT^1 \Pi_1^1$ -conservative over $RCA_0 + B\Sigma_2$?

- ▶ If $RCA_0 + TT^1$ implies $P\Sigma_1^0$, then the answer is yes.
- If not, what is the first-order strength of TT¹? For example, is TT¹ a Π₃⁰-conservative extension of RCA₀, as is the case of RT₂² proved by Patey and Yokoyama?

Open Questions and Remarks (II)

Question 2: Let $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, does every recursive k-coloring have a definable over \mathcal{M} solution?

- No \emptyset'' -recursive solutions and the solutions we built have used the countability of the model, thus not definable over \mathcal{M} .
- ▶ Diagonalizing against all Σ_n -definable solution seems challenging.

Open Questions and Remarks (II)

Question 2: Let $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, does every recursive k-coloring have a definable over \mathcal{M} solution?

- ► Known: No 0"-recursive solutions and the solutions we built have used the countability of the model, thus not definable over M.
- ▶ Diagonalizing against all Σ_n -definable solution seems challenging.

Open Questions and Remarks (II)

Question 2: Let $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, does every recursive k-coloring have a definable over \mathcal{M} solution?

- ► Known: No 0"-recursive solutions and the solutions we built have used the countability of the model, thus not definable over M.
- ▶ Diagonalizing against all Σ_n -definable solution seems challenging.

Open Questions and Remarks (III)

Question 3: Does RT₂ imply TT¹ over RCA₀?

- Since if $\mathcal{M} \models I\Sigma_2^0$ then every recursive coloring has a recursive solution, the question is relevant only when Σ_2^0 -induction fails. We conjecture that the answer is No.
- ► Patey: RT₂² does not imply TT₂².

Open Questions and Remarks (III)

Question 3: Does RT₂ imply TT¹ over RCA₀?

- Since if $\mathcal{M} \models I\Sigma_2^0$ then every recursive coloring has a recursive solution, the question is relevant only when Σ_2^0 -induction fails. We conjecture that the answer is No.
- ► Patey: RT₂ does not imply TT₂.

Open Questions and Remarks (III)

Question 3: Does RT₂ imply TT¹ over RCA₀?

- Since if $\mathcal{M} \models I\Sigma_2^0$ then every recursive coloring has a recursive solution, the question is relevant only when Σ_2^0 -induction fails. We conjecture that the answer is No.
- Patey: RT² does not imply TT².

Open Questions and Remarks (IV)

Question 4: (CHM 2009): To what degree can trees be replaced with other partial orders? Is there a Ramsey theorem on some class of partial orders where the theorem for pairs is equivalent to ACA_0 ?

▶ How about other structures?

Open Questions and Remarks (IV)

Question 4: (CHM 2009): To what degree can trees be replaced with other partial orders? Is there a Ramsey theorem on some class of partial orders where the theorem for pairs is equivalent to ACA_0 ?

How about other structures?

- ▶ Dzhafarov and Patey: TT₂² does not imply ACA₀.
- ► There are versions of STT₂² and TCoh; also the decomposition of

$$\mathsf{TT}_2^2 = \mathsf{STT}_2^2 + \mathsf{TCoh}.$$

- ► We conjecture that both STT₂ and TCoh are strictly weaker than TT₂.
- ► Conjecture: TT_2^2 implies neither $I\Sigma_2^0$ nor WKL₀.
- ► Conjecture: STT₂ does not imply TT₂.

- Dzhafarov and Patey: TT₂ does not imply ACA₀.
- ► There are versions of STT₂ and TCoh; also the decomposition of

$$\mathsf{TT}_2^2 = \mathsf{STT}_2^2 + \mathsf{TCoh}.$$

- ► We conjecture that both STT₂ and TCoh are strictly weaker than TT₂.
- ► Conjecture: TT_2^2 implies neither $I\Sigma_2^0$ nor WKL₀.
- ► Conjecture: STT₂ does not imply TT₂.

- Dzhafarov and Patey: TT₂ does not imply ACA₀.
- There are versions of STT₂² and TCoh; also the decomposition of

$$\mathsf{TT}_2^2 = \mathsf{STT}_2^2 + \mathsf{TCoh}.$$

- We conjecture that both STT₂² and TCoh are strictly weaker than TT₂².
- ► Conjecture: TT_2^2 implies neither $I\Sigma_2^0$ nor WKL₀.
- ► Conjecture: STT₂ does not imply TT₂.

- Dzhafarov and Patey: TT₂² does not imply ACA₀.
- ► There are versions of STT₂² and TCoh; also the decomposition of

$$\mathsf{TT}_2^2 = \mathsf{STT}_2^2 + \mathsf{TCoh}.$$

- We conjecture that both STT₂² and TCoh are strictly weaker than TT₂².
- ► Conjecture: TT_2^2 implies neither $I\Sigma_2^0$ nor WKL₀.
- ► Conjecture: STT₂ does not imply TT₂.

- Dzhafarov and Patey: TT₂ does not imply ACA₀.
- ► There are versions of STT₂² and TCoh; also the decomposition of

$$\mathsf{TT}_2^2 = \mathsf{STT}_2^2 + \mathsf{TCoh}.$$

- We conjecture that both STT₂² and TCoh are strictly weaker than TT₂².
- ► Conjecture: TT_2^2 implies neither $I\Sigma_2^0$ nor WKL₀.
- ► Conjecture: STT₂ does not imply TT₂.

