НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет технологий искусственного интеллекта

Лабораторная работа №2 по дисциплине "Статистика для анализа данных"

Выполнили: Воронин Илья Андреевич, группа J3112 Вахменина Татьяна Михайловна, группа J3113

> Проверил: Свинцов М. В.

г. Санкт-Петербург 2025 г.

Содержание

1	Ген	ерация данных	2
	1.1	Гистограммы распределений	2
	1.2	Визуализация распределения Пуассона	3
		Визуализация нормального распределения	
	1.4	Анализ устойчивости характеристик	7
2		воды	
	2.1	Статистические характеристики	9
	2.2	Основные выволы	C

1 Генерация данных

1.1 Гистограммы распределений

Распределение Пуассона: Гистограмма показывает дискретное распределение с параметром =1. Наблюдается характерная асимметрия с пиком в районе 1 и постепенным убыванием частот при увеличении значений. Это соответствует теоретическим свойствам распределения Пуассона, где наиболее вероятны значения, близкие к параметру .

Нормальное распределение: Симметричная колоколообразная форма гистограммы соответствует стандартному нормальному распределению с =0 и =1. Большая часть данных (68

1.2 Визуализация распределения Пуассона

CDF сравнение:

- Ступенчатая синяя линия эмпирическая функция распределения
- Гладкая оранжевая теоретическая CDF Пуассона

- ullet Хорошее соответствие при малых значениях (x < 3)
- Заметное расхождение в хвосте распределения

PMF Пуассона:

- Максимум вероятности при х=1 (Р0.35)
- Быстрое убывание вероятности при х>3
- Столбцы хорошо соответствуют теоретической кривой

Гистограммы:

• 3 метода бинирования дают схожие результаты

- Автоматические бины (синий) самый гладкий вариант
- Ручные бины (зеленый) показывают больше деталей

Boxplot:

- Медиана смещена к низу ящика (асимметрия)
- Несколько выбросов в правом хвосте
- IQR охватывает основные 50

1.3 Визуализация нормального распределения

CDF сравнение:

- Альтернативное представление CDF
- Более четкие ступеньки эмпирической функции
- Теоретическая кривая проходит через середину ступенек

Гистограммы:

- Теоретическая PDF (черная линия) как эталон
- Метод Стёрджеса (10 бинов) дает оптимальную детализацию
- Ручной выбор (15 бинов) показывает избыточную изменчивость

Boxplot:

- Более детальное отображение выбросов
- Четко видны границы 1.5·IQR
- Асимметрия распределения становится еще заметнее

1.4 Анализ устойчивости характеристик

Распределение Пуассона:

- Среднее значение резко возрастает при добавлении выбросов (до +40% при 5% выбросов)
- \bullet Медиана остается стабильной (колебания <5%), подтверждая свою устойчивость
- Дисперсия и стандартное отклонение увеличиваются в 2-3 раза
- Интерквартильный размах (IQR) демонстрирует высокую стабильность (<10% изменений)
- Асимметрия распределения усиливается, коэффициент растет практически линейно

Нормальное распределение:

- Среднее и медиана практически не меняются (изменения <2%)
- Дисперсия увеличивается умеренно (+50% при 5% выбросов)
- IQR остается исключительно стабильным (изменения <5%)
- Асимметрия почти не изменяется, сохраняя симметричность распределения
- Все показатели демонстрируют высокую устойчивость к выбросам

Ключевые выводы:

- Для данных с выбросами предпочтительнее использовать медиану и IQR
- Нормальное распределение значительно устойчивее к выбросам, чем Пуассона
- При анализе распределения Пуассона следует учитывать сильную чувствительность среднего и дисперсии

2 Выводы

2.1 Статистические характеристики

Характеристика	Пуассона	Нормальное			
Квартили					
Q1	0.00	-0.64			
Q2 (медиана)	1.00	0.02			
Q3	2.00	0.67			
Меры центральной тенденции					
Среднее	1.02	0.01			
Медиана	1.00	0.02			
Мода	1.00	-3.34			
Меры вариабельности					
Размах	5.00	6.74			
IQR	2.00	1.31			
Дисперсия	0.98	0.99			
Ст. отклонение	0.99	0.99			
Коэф. вариации	96.59%	9006.67%			
Ср. абс. отклонение	0.73	0.79			
Меры формы					
Асимметрия	0.90	-0.07			
Эксцесс	0.51	0.06			

2.2 Основные выводы

• Для распределения Пуассона:

- Наблюдается положительная асимметрия (0.90)
- Эксцесс (0.51) указывает на островершинность распределения
- Мода, медиана и среднее близки друг к другу
- Высокая чувствительность к выбросам

• Для нормального распределения:

- Практически симметричное распределение (асимметрия -0.07)
- Эксцесс близок к нулю (0.06), что характерно для нормального распределения
- Среднее и медиана практически совпадают
- Относительная устойчивость к выбросам