Centre of Mass

- · Avg.position of all the parts of the system, weighted according to their mass
- ·For homogeneous object, centre of mass lie at their geometric centres

- ·Centre of mass, may or may not lies inside the object
- · Centre of mass, may change it's location

Centre of Mass For System of n Particles

General Equation

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3 + - - - - m_n \vec{r}_n}{m_1 + m_2 + m_3 + - - - + m_n}$$

In terms of Cartesian co-ordinates

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + - - - - m_n x_1}{m_1 + m_2 + m_3 + - - - + m_n}$$

$$y_{cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + - - - m_n y_1}{m_1 + m_2 + m_3 + - - - + m_n}$$

$$z_{cm} = \frac{m_1 z_1 + m_2 z_2 + m_3 z_3 + ---- m_1}{m_1 + m_2 + m_3 + ----+ m_2}$$

Centre Of Mass For

Non Point Mass

Centre of mass for various shapes

2) Square Lamina

3) Semicircular Ring

5) Solid circular cone

6) Solid hemispherical

Cavity in object

- 1) Mass distributed over length \Rightarrow dm= λ dl
- 2) Mass distributed over area ⇒ dm= σ dA
- 3) Mass distributed over volume \Rightarrow dm= ρ dV

Uniformly distributed mass

4) Hemispherical shell

If some mass is removed from a body C.M will shift towards

Assuming $\mathbf{r}_{c.\mathrm{M}}$ is at the origin

$$r_{\text{rem}} = \frac{-M_{\text{cav}} \times r_{\text{cav}}}{M_{\text{rem}}}$$

Motion centre of mass Moment of Inertia

i) For discrete system of particles

 $M_1r_1^2 + M_2r_2^2 + M_3r_3^2 + --- M_nr_n^2$

M₁+M₂+M₃+----M_n

 $r_i = \perp distance from axis of$

ii) For non-point mass

 $I = \int dI = \int r^2 dm$

Parallel Axis Theorm

1) Axis where considered to be parallel

2) One of the axis must pass through

to each other

= Jdm r2

velocity of centre of mass

$$\vec{V}_{cm} = \frac{\vec{M}_{1}\vec{V}_{1} + \vec{M}_{2}\vec{V}_{2} + \vec{M}_{3}\vec{V}_{3}}{\vec{M}_{1} + \vec{M}_{2} + \vec{M}_{3} + \cdots}$$

Acceleration of centre of mass

$$\vec{a}_{cm} = \frac{\vec{M}_1 \vec{a}_1 + \vec{M}_2 \vec{a}_2 + \vec{M}_3 \vec{a}_3 + \cdots}{\vec{M}_1 + \vec{M}_2 + \vec{M}_3 + \vec{M}_4 - \cdots}$$

Isolated System

- ·No external forces acting
- ·They can have mutual force

 $M_1 r_1 = M_2 r_2$ $a_{cm} = 0, v_{cm} = constant$

Moment of Inertia

- m= Mass of body
- r= Perpendicular distance from the axis of rotation

Two Point Mass

$$\mathbf{I}_{com} = \mathbf{m}_{red} , \mathbf{m}_{red} = \frac{\mathbf{m}_1 \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}$$

Factors Affecting Moment of Inertia Mass of Axis of Mass the body rotation distribution

ROTATIONAL MOTION 01

Theorm of Perpendicular axis

I_=I_ + I_ (Only valid for laminar bodies)

X and Y axis lie in the plane of body

I,= ml2

Moment Of Inertia For Various Objects

I=MR2

I=MR2

Hollow cylinder

I,= 2MR2

Hollow sphere

Thin Rod

I=Moment of Inertia along the center of mass

I.=Moment of Inertia along the tangent perpendicular to the plane I,1=Moment of Inertia along the tangent parallel to the plane

Moment of Inertia along the centre of Mass Perpendicular to the Plane Surface

1) Ring

2) Disc

3) Square sheet

4) Rectangular sheet

Radius of Gyration

Definition: The distance from the axis of a point mass whose mass is equal to the mass of whole body and whose moment of inertia is equal to moment of inertia of the body about the axis

k is the radius of gyration

Torque $T = r F \sin \theta$

= $F\sin\theta \times r = F_{\perp} r (1)$

= $F \times rsin \theta = F r_i$ (2)

 $\vec{\tau} = \vec{r} \times \vec{F}$ (Vector form)

If force is radial ie θ = 0° or 180°

Torque T= 0

If force is tangential and \bot^r to radius vector $\theta = 90^{\circ}$

Torque, $T = T_{max} = rF$

ROTATIONAL MOTION

Equilibrium

For translational equilibrium

 $F_{net} = 0$

T_{net} may or maynot be

Rotational Equillibrium

Static Equilibrium

Combination of both translational and rotational equilibrium

F_{not} = 0 ⇒ Forces are balanced

 $\tau_{\text{net}} = 0 \Rightarrow \tau_{\text{clockwise}} = \tau_{\text{anticlockwise}}$

Principle of moments

When a body is in rotational equilibrium sum of clock wise moments about any point is equal to sum of anticlockwise moments about that point

 $F_1 \times d_1 = F_2 \times d_2$

Load x load arm = Effort x effort arm

Angular acceleration

 $\tau = \mathbf{I}\alpha$

 τ - torque

I moment of inertia

(1 angular acceleration

Initial angular acceleration when a rod is released

Initial angular acceleration when abody is released from an angle θ

Translatory - rotation combination

|L|=r p sin0 =rp

1)When 0 = 90°

Spin angular momentum

 $L_{\text{spin}} = I\omega$

 $L_{spin} = I_{AB} \omega$

Conservation of Angular momentum

If there is no external torque Angular momentum is conserved

• If $\tau = 0 \Rightarrow \frac{dL}{dt} = 0$

L=constant Iw=constant

• I, w, = I, w,

If moment of intertia increases angular velocity decreases and if moment of intertia decreases angular velocity increases

Moment of intertia when two discs joined:

same direction:-

$$\mathbf{w}_{f} = \frac{\mathbf{I}_{1}\mathbf{w}_{1} + \mathbf{I}_{2}\mathbf{w}_{2}}{\mathbf{I}_{1} + \mathbf{I}_{2}}$$

Angular momentum & its conservation

Angular momentum of a point mass:-

Angular momentum is minimum

Opposite direction: -

Rolling Motion

Translatory+Rotatory=Rolling

Velocity in rolling

- Condition for rolling without slipping: - V=Rw
- Velocity of any point on rolling object, V

Work, Energy & Power

- 1)Work done by a torque, W
- = τ_{θ} (if torque is uniform) = $\int T d\theta$ (if force is non uniform)
- 2) K.E= $\frac{1}{2}$ IW²(when W is constant) $=\frac{L^2}{2T}$ (when L is constant)
- = 1/2 LW
- 3) Work-Energy theorm $\Sigma W = \Delta K = \frac{1}{2} I(\mathbf{W}_2^2 - \mathbf{W}_1^2)$

Energy loss when 2 discs are joined:

1) same direction:-

$$\Delta K.E = \frac{\mathbf{I}_1 \mathbf{I}_2}{2[\mathbf{I}_1 + \mathbf{I}_2]} (\mathbf{W}_1 - \mathbf{W}_2)^2$$

2) Opposite direction:-

$$\Delta K.E = \frac{I_1I_2}{2[I_1+I_2]}(\mathbf{W}_1 + \mathbf{W}_2)^2$$

Energy in rolling motion

- 1) Translatory Motion
- $T_{K.E} = \frac{1}{2} mv^2$
- 2) Spinning motion/rotational motion

$$R_{K.E} = \frac{1}{2} I w^2 = \frac{1}{2} m k^2 \frac{V^2}{R^2} = \frac{1}{2} m v^2 \times \left(\frac{k^2}{R^2}\right)$$

$$T_{K,E} + R_{K,E} = \frac{1}{2} \, m v^2 + \frac{1}{2} \, m v^2 \times \frac{k^2}{R^2} \ = \frac{1}{2} \, m v^2 \left(1 + \frac{k^2}{R^2} \right)$$

$$\frac{k_{total}}{k_{trans}} = \left(1 + \frac{k^2}{R^2}\right)$$

Motion on an inclined plane

 $\frac{k^2}{D^2}$ $\uparrow \Rightarrow V \downarrow \Rightarrow Time 1$

Velocity:solid sphere>Disc>Hollow>Sphere>Ring Time to reach bottom:Ring>Hollow sphere

>Disc>solid sphere

Value of velocity:-

- 1) Ring/Hollow cylinder=√gh
- 2) Disc/Solid cylinder= $\sqrt{\frac{4}{3}gh}$
- 3) Hollow sphere= \(\frac{6}{5}gh\)
- 4) Solid sphere= $\sqrt{\frac{10}{7}gh}$

Acceleration

$$a = \frac{g\sin\theta}{1 + \frac{k^2}{R^2}} \qquad a \propto \frac{1}{1 + \frac{k^2}{R^2}}$$

$$t = \frac{1}{\sin \theta} \sqrt{\frac{2h}{g}} \left(1 + \frac{k^2}{R^2} \right)$$

$$t \propto \sqrt{1 + \frac{k^2}{R^2}}$$

Ring>Hollow sphere>Disc>solid sphere

