Structure and dynamics of complex networks

February 11, 2020

Adjacency matrix Definition

Introduction

Graphs
Adjacency matrix
Sparseness

Node properties

Degree

Clustering

Adjacency matrix

· each row and column corresponds to a node,

$$A_{ij} = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

Introduction

Graphs Adjacency matrix

Node properti Degree Clusterina • if the graph is undirected,

Introduction

Graphs Adjacency matrix

Node propertie

Degree

Clustering

• if the graph is undirected, A_{ij} is symmetric.

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie

- if the graph is undirected, A_{ij} is symmetric.
- · for weighted graphs,

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie

Degree

Chatering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.

Introduction

Graphs
Adjacency matrix
Sparseness

Node properties

Degree

Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

Introduction

Graphs

Adjacency matrix

Sparseness

Node properties

Degree

Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

Introduction

Graphs

Adjacency matrix

Sparseness

Node propertie Degree Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

Introduction

Graphs

Adjacency matrix

Sparseness

Node properties

Degree

Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij} :

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = ?$$

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie Degree Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij} :

Introduction

Graphs

Adjacency matrix

Sparseness

Node propertie Degree Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie Degree Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij} :

Introduction

Graphs

Adjacency matrix

Sparseness

Node properties
Degree
Clustering

- if the graph is undirected, A_{ij} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie Degree Clustering

- if the graph is undirected, A_{ii} is symmetric.
- for weighted graphs, A_{ij} can take real values.
- Multiplying a position vector with A_{ij}:

To proceed forward on the links, we need to multiply from the left.

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie Degree Clustering

The adjacency matrix can be very useful in a number of problems, however, storing a network on the computer via its adjacency matrix is usually not a good idea...

Introduction

Graphs
Adjacency matrix
Sparseness

Node properties

Degree

Clustering

• The A_{ij} for real networks contains mostly zeros...

Introduction

Graphs
Adjacency matr
Sparseness

Node properties

Degree

Clustering

• The A_{ij} for real networks contains mostly zeros...

• This is called sparseness.

Adjacency matrix Drawback

Introduction

Graphs
Adjacency matrix

Node properti

Degree

Clustering

Storing a lot of zeros does not seem to be a good idea...

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertie

Degree

Clustering

- Storing a lot of zeros does not seem to be a good idea...
- → What to do?

Adjacency matrix Drawback

Introduction

Graphs
Adjacency matrix
Sparseness

Node propertion

Degree

Clustering

- Storing a lot of zeros does not seem to be a good idea...
- → What to do?
 - · Use a link list instead.

Sparseness

Introduction

Graphs
Adjacency mate
Sparseness

Node propert

How would you give sparseness a mathematical definition?

Sparseness

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering

Sparseness

- A network (graph) is sparse in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N.
- A network (graph) is dense in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N².

What about the average number of connections per node?

7

Sparseness |

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering

Sparseness

- A network (graph) is sparse in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N.
- A network (graph) is dense in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N².

What about the average number of connections per node?

Sparseness

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering

Sparseness

- A network (graph) is sparse in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N.
- A network (graph) is dense in the N → ∞ limit (N denotes the number of nodes) if the number of links L ~ N².

What about the average number of connections per node?

- sparse case: $\langle k \rangle = \frac{2L}{N} \to \text{const.},$
- dense case: $\langle k \rangle = \frac{2L}{N} \sim N \rightarrow \infty!$

7

Sparseness In practice

Introduction

Graphs
Adjacency mate
Sparseness

Node properti
Degree
Clustering

What does this mean in practice?

(How would you decide whether a real network of finite size is sparse or not?)

Sparseness In practice

Introduction

Graphs Adjacency matr Sparseness

Node propertion

Degree

Clustering

What does this mean in practice?

(How would you decide whether a real network of finite size is sparse or not?)

If $\langle k \rangle << N$ by several orders of magnitude smaller, then the network is considered sparse.

Sparseness

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering

Most real networks are sparse!

Network	Size	$\langle k \rangle$	ℓ	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

Sparseness Implications

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie

Degree

Clustering

What are the consequences of sparseness?

- we use a link list instead of the adjacency matrix,
- $\langle k \rangle << N$

Sparseness Implications

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering What are the consequences of sparseness?

- we use a link list instead of the adjacency matrix,
- $\langle k \rangle \ll N$
- the probability for a connection between a randomly chosen pair?

Sparseness Implications

Introduction

Graphs
Adjacency matr
Sparseness

Node propertie Degree Clustering What are the consequences of sparseness?

- we use a link list instead of the adjacency matrix,
- $\langle k \rangle \ll N$
- for a randomly chosen pair of nodes, the probability of being linked is negligible! (I.e., the probability converges to 0 if N→∞).

Basic network characteristics

Graphs
Adjacency matri

Adjacency matrix Sparseness

Node propertie Degree Clustering

Basic network characteristics

Basic network characteristics

Graphs
Adjacency matrix

Node properties

Degree

BASIC NODE PROPERTIES

Node degree

Basic network characteristics

Graphs Adjacency mate

Node properties

Degree

Node degree

• Number of connections, denoted by k_i or d_i .

$$k_i=4,\,k_j=1.$$

• Directed networks $\longrightarrow k_i^{\text{in}}$ and k_i^{out} .

$$k_i^{\text{in}} = 2, k_j^{\text{out}} = 1.$$

Node degree

Basic network characteristics

Adjacency ma

Node properties

Degree

Clustering

Node degree

Weighted networks?

Node degree

Basic network characteristics

Grapns
Adjacency mates
Sparseness

Node propertie:
Degree
Clustering

Node degree

• Weighted networks: node strength, s_i

$$s_i = 0.9, s_j = 0.3.$$

Node degree Examples

Basic network characteristics What is the degree of node i in the following examples?

Sparseness
Node properti

Node degree Examples

Basic network characteristics What is the degree of node *i* in the following examples?

• a 1d chain of nodes? • • •

Degree

Node degree Examples

Basic network characteristics What is the degree of node *i* in the following examples?

Degree

• a 1d chain of nodes?

Node degree Examples

Basic network characteristics

What is the degree of node i in the following examples?

- a 1d chain of nodes? • • • $k_i = 2$
- a 2d square lattice?

Sparseness

Node propert

Degree

 $\overline{\mathbb{A}}$

Node degree Examples

Basic network characteristics

What is the degree of node i in the following examples?

- a 1d chain of nodes? • • • $k_i = 2$
- a 2d square lattice?

Node propertion

Node degree Examples

Basic network characteristics What is the degree of node *i* in the following examples?

Degree

- a 1d chain of nodes? $k_i = 2$
- · a 2d square lattice?

• a random graph of N nodes, where the uniform linking probability is p? (Erdős-Rényi model)

Node degree

Basic network characteristics What is the degree of node i in the following examples?

- Graphs Adjacency matri
- Sparseness

 Vode propert

Degree

- a 1d chain of nodes? • • • $k_i = 2$
- a 2d square lattice?

• a random graph of N nodes, where the uniform linking probability is p ? (Erdős-Rényi model)

Basic network characteristics

Graphs
Adjacency mate

$$k_{\rm n} = ?$$

Basic network characteristics

Graphs
Adjacency mate

$$k_{\rm n} = \sum_{j} A_{jn}$$

$$= \sum_{j} A_{nj}$$

Basic network characteristics

Graphs
Adjacency mate

$$k_{\rm n}^{\rm in} = 1$$

$$k_{\rm n}^{\rm out} = 1$$

Basic network characteristics

Graphs
Adjacency mate

$$k_{\rm n}^{\rm in} = \sum_{j} A_{jn}$$
 $k_{\rm n}^{\rm out} = \sum_{j} A_{nj}$

Average degree

Basic network characteristics

Graphs Adjacency matr

Average degree

Basic network characteristics

Graphs
Adjacency matr
Sparseness

Node propertie

Degree

Clustering

Average degree

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N},$$

- · a sort of density.
- · directed networks:

$$\langle k_{\rm in} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_{i,\rm in} = \frac{L}{N} = \langle k_{\rm out} \rangle$$

Ā

Basic network characteristics

Graphs
Adjacency ma
Sparseness

- Is the friend of your friend a friend of yours as well?
- Do two of your friends know each other as well? (Are they friends?)

Basic network characteristics

Graphs
Adjacency ma

- Is the friend of your friend a friend of yours as well?
- Do two of your friends know each other as well? (Are they friends?)
 In many cases yes.

Basic network characteristics

Graphs
Adjacency ma
Sparseness

- Is the friend of your friend a friend of yours as well?
- Do two of your friends know each other as well? (Are they friends?)
 In many cases yes.
- → lot of **triangles** in the network of acquaintances.

Basic network characteristics

Graphs
Adjacency ma
Sparseness

Node propertion

Degree

Clustering

- Is the friend of your friend a friend of yours as well?
- Do two of your friends know each other as well? (Are they friends?)
 In many cases yes.
- → lot of **triangles** in the network of acquaintances.

Quantifying local transitivity: clustering coefficient.

Basic network characteristics

Adjacency mat

Node properties

Degree

Clustering

Clustering coefficient

• The clustering coefficient of node *i*:

$$C_i \equiv \frac{2e_i}{k_i(k_i-1)},$$

where e_i stands for the number of links between its neighbors. (Thus, $C_i \in [0, 1]$).

• If $k_i < 2$, then $C_i = 0$ by definition

Basic network characteristics

Adjacency ma

Node properties

Degree

Clustering

Clustering coefficient

• The clustering coefficient of node *i*:

$$C_i \equiv \frac{2e_i}{k_i(k_i-1)},$$

where e_i stands for the number of links between its neighbors. (Thus, $C_i \in [0, 1]$). Example:

• If $k_i < 2$, then $C_i = 0$ by definition

Basic network characteristics

Clustering

Clustering coefficient

• The clustering coefficient of node *i*:

$$C_i \equiv \frac{2e_i}{k_i(k_i-1)},$$

where e_i stands for the number of links between its neighbors. (Thus, $C_i \in [0, 1]$). Example:

$$C_i = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \cdot 3}{4 \cdot 3} = \frac{2}{4} = \frac{1}{2}$$

Basic network characteristics

Graphs
Adjacency mat

Node properties

Degree

Clustering

Clustering coefficient

• The clustering coefficient of node *i*:

$$C_i \equiv \frac{2e_i}{k_i(k_i-1)},$$

where e_i stands for the number of links between its neighbors. (Thus, $C_i \in [0, 1]$). Example:

$$C_i = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \cdot 3}{4 \cdot 3} = \frac{2}{4} = \frac{1}{2}$$

• If $k_i < 2$, then $C_i = 0$ by definition.

Ā

Basic network characteristics

Graphs
Adjacency ma

Node properties

Degree

Clustering

Clustering coefficient in directed networks

 In a directed network twice as many links are possible between the neighbors of a given node, thus,

$$C_i \equiv \frac{e_i}{k_i(k_i-1)}.$$

7

Average clustering and transitivity coefficient

Basic network characteristics

Graphs
Adjacency mat

Node propertie

Degree

Clustering

Average clustering coefficient

The average clustering coefficient of the network is

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i,$$

where *N* denotes the number of nodes in the network.

7

Basic network characteristics

Graphs
Adjacency mat
Sparseness

Node propertie

Degree

Clustering

If \(\lambda \rangle \) is a measure of the **global** density of a network, what does \(\lambda C \rangle \) measure?

Basic network characteristics

Adjacency mate Sparseness

Node propertie

Degree

Clustering

If \(\lambda \rangle \) is a measure of the **global** density of a network, what does \(\lambda C \rangle \) measure?

 \longrightarrow Local density!

Basic network characteristics

Graphs
Adjacency mate
Sparseness

- If \(\lambda \rangle \) is a measure of the **global** density of a network, what does \(\lambda C \rangle \) measure?
 - → Local density!

C in real networks

Basic network characteristics

Graphs
Adjacency matr

Node propertie

Degree

Clustering

The $\langle C \rangle$ in real networks and their randomized counterparts (with the same N and L):

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209, 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22, 311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

C in real networks

Basic network characteristics

Graphs
Adjacency matr

Node propertie

Degree

Clustering

The $\langle C \rangle$ in real networks and their randomized counterparts (with the same N and L):

Network	Size	$\langle k \rangle$	ℓ	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209, 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22, 311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

MOST REAL NETWORKS ARE HIGHLY CLUSTERED!