Department of Computer Science and Engineering

University of Asia Pacific (UAP)

Program: B.Sc. in Computer Science and Engineering

	Final Examination			F	all 2020	4 th Year, 1 st Semester		
	Course	Code: CS	SE 427	Cours	se Title: Mac	chine Learning	Credits: 3.00	
	Full Ma	arks: 120*	(Written))			Duration: 2 Hours	
	* Total I	Marks of Fi	nal Examina	tion: 150 (W	Vritten: 120 + V	Viva: 30)		
	1. 2.	There are	n in the ma	rgins.	Answer all of s are allowed.	them. All questions are	e of equal value. Partial marks	
1.	a)		nd define o		activation fur	nctions in an artificial	neuron with necessary	[10]
	b)		the schement to implement			a perceptron. Design	a two-layer network of	[20]
2.	a) b)	What is backpro hidden l	the basic pagation a ayer. Assu	idea of th algorithm, ume that t	e backpropa , using a sm here are two		works. distrate the various steps in the principal in inputs, two outputs and one	[10] [20]
3.	a)	State the		atical form	nulation of th	ne SVM problem. Giv	e the solution of the SVM	[10]
	b)	Give an the SVN	outline of		thm to find to ollowing dat Class +1 -1		sing the SVM algorithm, find	[20]
4.	a) b)							[10] [20]
		Person male	height (fe	eet) weig 180		ot size (inches)		

male	6.00	180	10
male	5.50	170	8
male	6.00	170	10
female	5.00	130	8
female	5.50	150	6
female	5.00	130	6
female	6.00	150	8

Or,

- **4. a)** Explain briefly the terms: Norm; Inner product; Angle between two vectors; Perpendicularity using following data: n=4; x=(-1, 2, 0, 3); y=(2, 3, 1, -4).
 - **b**) Consider the following set of training examples: [20]

Instance	Classification	a1	a2
1	+	T	T
2	+	T	T
3	_	T	F
4	+	F	F
5	_	F	T
6	_	F	T

- (i) What is the entropy of this collection of training examples with respect to the target function "classification"?
- (ii) What is the information gain of a2 relative to these training examples?