	Lecture 10: Expectation
Gene	ral trick: PMF/PPF trick
Offe	n I can recognize some part of a calculation
	$\frac{\sum_{x} f(x)}{x} \text{or} \int_{\mathbb{R}^{2}} f(x) dx$ $= \frac{1}{2}$
	tions of RVS I fund a RV is another RV
	es if X is a RV then so is X ² , los X, JX etc
	eun: Law of the Unconscious Statistician
1f	$g: \mathbb{R} \to \mathbb{R}$ and X is a $\mathbb{R}V$ then $\mathbb{E}[g(X)] = \begin{cases} \sum_{\chi} g(\chi)f(\chi) \\ \chi \end{cases}$ discrete
	$\int g(x) f(x) dx \qquad cts$

Ex let
$$x \sim \text{Exp}(x)$$

$$f(x) = \lambda e^{-\lambda x} \text{ for } x > 0$$

$$E[x] = /x$$

$$E[x] = /x$$

$$E[x] = /x$$

$$U = -e^{-\lambda x} dx$$

$$U = -e^{-\lambda$$

Ex. Cauchy Distribution $f(\chi) = \frac{1}{\pi} \frac{1}{1+\chi^2}$ for XEIR fix, $= \int_{-\infty}^{\infty} \frac{1}{\sqrt{1+x^2}} dx$ ∞ / $\frac{1}{x}$

Has no (finite) expected valve.

Theorem: Proporties of Expectation Expectation 1s linear $\mathbb{E}[\alpha X + b] = \alpha \mathbb{E}[X] + b$ E[ax+b] = (ax+b)f(x)dx= $\left(\alpha x f(x) dx + \left(b f(x) dx\right)\right)$ $= a \int x f(x) dx + b$) then E[X > 0 - Support is positive (70)

(3) If
$$g_1$$
 and g_2 are functions then

(i) $E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$

(ii) If
$$g_1(x) \leq g_2(x)$$

then $E[g_1(x)] \leq E[g_2(x)]$

(4) If
$$a \leq x \leq b$$
 then $a \leq Ex \leq b$.

Defn: Variance

$$\mu = EX = loc.$$
 of dist.

highar

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

$$= \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]$$

$$\begin{cases} \xi_{1}, & \chi = \chi_{2} \\ \xi_{1}, & \chi = \chi_{2} \\ \chi = \chi_{2$$

$$Sd(X) = \sqrt{Var(X)}$$

Theorem: Short-cot formulater Variance

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Pf

$$Var(\chi) = E[(\chi - \mu)^2]$$

$$= \mathbb{E}\left[\chi^2 - 2\mu\chi + \mu^2\right]$$

$$= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2$$

$$= \mathbb{E}[\chi^2] - 2\mathbb{E}[\chi]^2 + \mathbb{E}[\chi]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]$$

EX X~Exp(x)

$$\mathbb{E} X = 1/2 \qquad \mathbb{E} \left[X^2 \right] = \frac{2}{2}$$

$$Var(X) = \mathbb{E}[X]^2 - \mathbb{E}[X]^2 = \frac{2}{\lambda^2} - (\frac{1}{\lambda}) = \frac{1}{\lambda^2}$$

$$E[X] = np$$

$$\mathbb{E}[\chi^2] = np(np-p+1)$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$= np(np-p+1) - (np)^2$$

$$= np(1-p)$$

$$Sd(X) = \sqrt{Var(X)} = \sqrt{np(1-p)}$$

Theorem:

$$Var(a X + b) = a^2 Var(X)$$

two rules:

- 1) multiply X by a: Var gets mult. by a
- 2) Ignore additue consts b

$$\begin{aligned}
& = \mathbb{E}[(a \times +b)^{2}] - \mathbb{E}[a \times +b]^{2} \\
& = \mathbb{E}[a^{2} \times^{2} + 2a \times b + b^{2}] - (a \times +b)^{2} \\
& = a^{2} \mathbb{E}[x^{2}] + 2ab \times x + b^{2} - (a^{2} \times x)^{2} + 2ab \times x + b^{2}) \\
& = a^{2} (\mathbb{E}[x^{2}] - \mathbb{E}[x]^{2}) \\
& = a^{2} \sqrt{ar(x)}.
\end{aligned}$$