25.3 习题 3

习题 25.3.1 若 E_1 为 \mathbb{R}^m 的可测集, E_2 为 \mathbb{R}^n 的可测集. 那么 $E_1 \times E_2$ 为 \mathbb{R}^{m+n} 的可测集, 且有 $m(E_1 \times E_2) = m(E_1) m(E_2)$. 约定 $0 \cdot \infty = 0$.

习题 25.3.2 设 $E \subset \mathbb{R}^n$. 定义 E 的**内测度**如下

$$m_{st}\left(E
ight) =\sup \left\{ m\left(F
ight) :F$$
 闭, $F\subset E
ight\}$.

证明: (1) $m_*(E) \leq m^*(E)$. (2) 若 $m^*(E) < \infty$, 那么 E 可测当 且仅当 $m_*(E) = m^*(E)$.

习题 25.3.3 设 $E \subset \mathbb{R}^n$. 若 $m^*(E) < \infty$, 那么存在 F_σ 集 K 和 G_δ 集 H 满足

$$K \subset E \subset H$$
, $m(K) = m^*(E) = m(H)$.

7

习题 25.3.4 严格单调的连续函数存在连续逆函数.

习题 25.3.5 设 f 为 $E \subset \mathbb{R}^n$ 上的连续函数, $E \in \mathcal{B}(\mathbb{R}^n)$, 那么 $\forall B \in \mathcal{B}(\mathbb{R})$, $f^{-1}(B) \in \mathcal{B}(\mathbb{R}^n)$.

习题 25.3.6 存在可测集 $E \in \mathcal{L}(\mathbb{R}^n)$, 它不是 Borel 集, 即 $\mathcal{B}(\mathbb{R}^n) \subsetneq \mathcal{L}(\mathbb{R}^n)$.

习题 25.3.7 教材第二版 2.2 节思考题 4,6,8,9.