Les ions calcium et magnésium présent dans de l'eau dure sont peu solubles et réagissent avec les carbonates de l'eau pour former du calcaire. L'adoucissement de l'eau consiste à échanger ces ions calcium et magnésium contre des ions sodium qui sont parfaitement solubles dans l'eau. On parle d'échange ionique.

Vidéo 1

Voir la vidéo ci-contre qui présente le principe de fonctionnement d'une résine échangeuse d'ions.

https://youtu.be/fBKpZpe1rf8

Afin d'étudier la performance d'une résine échangeuse d'ions l'expérience a consisté à faire passer de l'eau dure (chargée en ions calcium Ca^{++}) dans un tube qui contient une telle résine (billes poreuses de 1 mm environ). On précise que la concentration en ions calcium de l'eau dure utilisée ici est de 5,1 $mmol.L^{-1}$.

On a relevé la concentration en ions calcium Ca^{++} en sortie de résine toutes les 5 minutes pendant 1h30. Les données sont présentées dans le tableur ci-dessous.

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S
1	Temps (en minutes)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
2	Concentration en Ca++ (en mmol.L ₁)	0,16	0,16	0,16	0,32	0,48	0,68	1,2	2,6	4,2	4,4	4,52	4,6	4,68	4,8	4,9	5	5	5

1 Étude des données à l'aide d'un tableur.

1. On a ajouté ci-dessous une ligne Taux d'évolution en pourcentage à la feuille de calcul précédente. Quelle formule faut-il entrer dans la cellule C3 afin de compléter cette ligne par une recopie vers la droite ?

A B C D E F G H I J K L M N O P Q R S

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	R	S
1	Temps (en minutes)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
2	Concentration en Ca++ (en mmol.L-1)	0,16	0,16	0,16	0,32	0,48	0,68	1,2	2,6	4,2	4,4	4,52	4,6	4,68	4,8	4,9	5	5	5
3	Taux d'évolution en %																		

- 2. Compléter la ligne Taux d'évolution en pourcentage, on arrondira les pourcentage à l'unité.
- 3. Compte tenu de vos observations, peut-on envisager un modèle d'ajustement linéaire ou exponentiel ?

2 Recherche d'un modèle adapté.

Nous avons vu précédemment que les modèles linéaires ou exponentiels ne sont pas adaptés à cette situation. L'objectif de cette partie est de déterminer un modèle pertinent ; nous allons pour cela utiliser le logiciel *Geogebra*.

1. Reproduire la feuille de calcul ci-dessous avec Geogebra.

2. La feuille de calcul *Geogebra* va nous permettre d'analyser les données précédentes. Pour cela sélectionner les données (cellules B1 à S2 du tableur) puis utiliser le menu *Statistiques à deux variables* comme l'indique la capture d'écran ci-dessous.

3. Le nuage de point s'est affiché dans une fenêtre à droite. Utiliser le menu déroulant *Modèle d'ajustement* comme l'indique la capture d'écran ci-dessous afin de choisir le modèle d'ajustement qui semble le plus adapté à notre situation.

4.	Préciser le nom du modèle et donner l'expression de la fonction qui semble modéliser au mieux notre situation.
5.	En observant la courbe, émettre une conjecture concernant le sens de variation de cette fonction. On pourra présenter cette conjecture dans un tableau.
6.	En observant la courbe, émettre une conjecture concernant la convexité de cette fonction. On pourra présenter cette conjecture dans un tableau.

3 Étude théorique du modèle

Nous allons dans cette partie étudier la fonction logistique f proposée par le logiciel et en particulier démontrer les deux conjectures précédentes.

Culture mathématique

Le modèle logistique est un modèle à restriction de croissance, il a été proposé en 1895 par Pierre François VERHULST comme une alternative au modèle exponentielle à croissance infini et sans contrainte.

Une fonction logistique est solution d'une équation différentielle de la forme $A' = r\left(1 - \frac{A}{K}\right) A$ où r et K sont deux constantes.

Les solutions de cette équation différentielle sont de la forme $A(t) = \frac{K}{1 + \left(\frac{K}{A(0)} - 1\right) e^{-rt}}$.

Nous allons par la suite démontrer certains résultats ci-dessous :

- Si A est petit alors $A' \simeq r A$;
- la limite en $+\infty$ de A est K;
- ullet si A augmente alors le taux d'accroissement diminue.

Dans toute cette partie f est définie sur $[0; +\infty[$ par $f(x) = \frac{4,8569}{1 + 5186,624 e^{-0.2195 x}}$.

1.	Déterminer la	a limite de f	en $+\infty$.	Interpréter	votre réponse	dans le cadre	du problème.

2. On utilise un logiciel de calcul formel permettant d'obtenir l'écran suivant.

$$f(x) := \frac{4,8569}{1 + 5186,624 e^{-0.2195 x}}$$

$$x \to \frac{4,8569}{1 + 5186,624 e^{-0.2195 x}}$$

 $x \to 1 + 5186,624 \, e^{-0.2195 \, x}$

factoriser(deriver(f(x)))

 $\frac{5529,405646 \, e^{-0,2195 \, x}}{\left(5186,624 \, e^{-0,2195 \, x}+1\right)^2}$

factoriser (deriver(deriver(f(x))))

$$\frac{1213,704539 e^{-0,2195 x} \left(5186,624 e^{-0,2195 x}-1\right)}{\left(5186,624 e^{-0,2195 x}+1\right)^3}$$

(a) Utiliser les informations données par le logiciel afin de déterminer les variations de f.

(b)	Utiliser les informations données par le logiciel afin de déterminer la convexité de f .

3. On considère l'algorithme ci-dessous programmé sous Python.

```
from math import*

def f2(x):
    return 1213.704539*exp(-0.2195*x)*(5186.624*exp(-0.2195*x)-1)/(5186.624*exp(-0.2195*x)+1)**3

x=...
while ...:
    x=...
print(x)
```

- (a) Reproduire cet algorithme avec un logiciel adapté et compléter les pointillés afin que celui-ci détermine un arrondi à l'unité par excès de l'abscisse du point d'inflexion de f.
- (b) Quelle est la valeur de x à la fin de l'exécution de cet algorithme ? Interpréter votre réponse dans le cadre du problème.