



### **Unidad II**

# Tema: Elicitación de Requerimientos del Software

**UNTDF - 2020** 

## Dónde estamos? Disciplinas RUP

|       | _                            |   |     |  |
|-------|------------------------------|---|-----|--|
| Requ  | IOKI                         | m | OD: |  |
| RHIII |                              |   | -   |  |
| 1704  | $\mathbf{A} \cup \mathbf{I}$ |   |     |  |

Análisis

Diseño

Implementación

Prueba

#### Obtención de requerimientos

- Entender los requerimientos
- Obtención de Requerimientos funcionales del Sistema
- Obtención de Requerimientos no funcionales del Sistema

## Conceptos básicos ER

- Concepto: Es el proceso de adquirir ("eliciting")
   [sonsacar] todo el conocimiento relevante necesario
   para producir un modelo de los requerimientos de
   un dominio de problema
- Objetivo: entender el dominio del problema en particular

#### Problemas:

- Información esparcida en distintas fuentes
- Forma no utilizable del conocimiento
- Dificultad cuando se trata de un experto humano
- Problemas de comunicación

## La brecha de comunicación

| Según <u>desarrolladores</u> ,<br>los <u>usuarios</u>            | Según <u>usuarios</u> , los<br><u>desarrolladores</u>                              |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| no saben lo que quieren                                          | no captan las necesidades operativas                                               |  |  |
| no pueden articular lo que quieren                               | ponen excesivo énfasis en aspectos meramente técnicos                              |  |  |
| muchas necesidades por<br>motivos políticos                      | pretenden indicarnos cómo hacer<br>nuestro trabajo                                 |  |  |
| quieren todo ya                                                  | no son capaces de traducir<br>necesidades claramente<br>establecidas en un sistema |  |  |
| son incapaces de definir<br>prioridades entre sus<br>necesidades | siempre dicen que no                                                               |  |  |

## La brecha de comunicación

| Según <u>desarrolladores</u> ,<br>los <u>usuarios</u>             | Según <u>usuarios</u> , los <u>desarrolladores</u>                            |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| rehúsan asumir<br>responsabilidades por el<br>sistema             | siempre están pasados del<br>presupuesto                                      |  |  |
| incapaces de dar un<br>enunciado utilizable de sus<br>necesidades | siempre están atrasados                                                       |  |  |
| no están comprometidos con<br>los proyectos de desarrollo         | nos exigen tiempo y esfuerzo aún<br>a costa de las obligaciones<br>esenciales |  |  |
| no aceptan soluciones de compromiso                               | establecen estándares no realistas<br>para la definición de<br>requerimientos |  |  |
| no pueden mantener el<br>cronograma                               | son incapaces de responder<br>rápidamente a cambios en las<br>necesidades     |  |  |

## Origen de los requerimientos. Stakeholders

- Personas interesadas en que se implemente el nuevo sistema
- Tres grupos primarios de stakeholders:
- ⇒ Usuarios (utilizan el sistema)
- ⇒ Clientes (pagan y son los dueños del sistema)
- ⇒ Staff técnico (aseguran la operatividad del sistema).

## Para obtener requerimientos....

#### Fuentes:

- ⇒Documentación.
- ⇒Personas con puntos de vista necesarios.

#### Técnicas

- ⇒Cuestionarios
- ⇒ Entrevistas
- **⇒**Talleres
- ⇒ Prototipos
- ⇒Otras...

#### Fuentes ER. Documentación

Análisis de Documentación.

#### Es imprescindible cuando:

- ⇒Introducción del sistema en infraestructuras existentes.
- ⇒Suplemento de funcionalidad ya disponible.

#### Documentación a analizar:

- ⇒Sobre las prácticas existentes de los usuarios.
- ⇒Sobre procedimientos de soporte.
- ⇒Sobre componentes técnicos.
- ⇒Sobre el modelo lógico
- ⇒Sobre los modelos de procesos y datos
- ⇒Sobre requisitos existente

#### **Fuentes ER. Personas**

- Personas. Identificar stakeholders con puntos de vista precisos para representar el conjunto de los requerimientos:
- 1. Dirección general
- 2. Usuarios finales y dirección
- 3. Clientes
- 4. Proveedores
- 5. El equipo operativo
- 6. El equipo de mantenimiento
- 7. Asesoría jurídica u otros expertos.
- Importante contar con más de una persona por cada punto de vista!!!

## Técnicas de elicitación

- Partiendo del usuario
- Lectura de Información
- Escenarios
- Análisis de formularios
- Lenguaje natural
- Reuso de requerimientos
- Casos de uso
- Otros....

## Técnicas (P.U.). Aprendiz

- El desarrollador se convierte en aprendiz de usuario, aprende su trabajo por observación y preguntando.
- La gente no siempre está consciente de todas las tareas que realiza "Nadie describe mejor lo que hace y por qué lo hace, que cuando lo esta haciendo." [Beyer&Holtzblatt]
- El aprendiz demuestra lo aprendido haciéndolo bajo la supervisión del usuario.
- El usuario a veces no tiene tiempo para entrevistas
- El aprendiz ve la misma tarea repetidamente
- Tiene retroalimentación inmediata
- Establece una relación fluida con los usuarios y clientes

## Técnicas (P.U.) Cuestionarios

- Recomendable como base para la posterior entrevista personal.
- Crea un marco para el análisis de resultados. (visión clara de cómo utilizar la información)
- Comprobar que existe información suficiente en el personal "cuestionado".
- Garantizar que es comprensible (no utiliza argot técnico).
- Probarlo antes de comenzar
- Verificar la comprensión.

## Técnicas (P.U.). Cuestionarios

#### **Tipos de cuestionarios**

- 1. Para recopilar información abierta.
- Se formula una pregunta abierta.
  - ¿Cuál son para usted los factores principales en la selección de proveedor de servicios de Internet?
- Útiles para obtener una información inicial sobre el área.
- Importante evitar sesgos.

## Técnicas (P.U.). Cuestionarios

#### **Tipos de cuestionarios**

- 1. Para recopilar datos estructurados.
- Modalidades:
  - Mediante Lista de cuestiones concretas y de respuesta cerrada.
    - ¿Cuánto lleva operando el actual sistema de facturación (en años)?.
  - Mediante índices.
    - ¿Importancia de estos factores para adquirir un Sistema operativo?

|              | Baja |   |   |   | Alta |
|--------------|------|---|---|---|------|
| Velocidad    | 1    | 2 | 3 | 4 | 5    |
| Usabilidad   | 1    | 2 | 3 | 4 | 5    |
| Flexibilidad | 1    | 2 | 3 | 4 | 5    |

- Objetivo: Obtener toda la información posible de la visión que el entrevistado tiene de los requerimientos.
- Depende de la habilidad del entrevistador para crear un clima de confianza.
- Resulta útil planificar las entrevistas para evitar sesgos (evitar que un grupo incline a un lado el proceso).
  - Preparar un marco para la entrevista (mediante un cuestionario)
  - Confirmar detalles del entrevistado
  - Establecer la finalidad de la entrevista con el entrevistado
  - Organizar una lugar adecuado.
  - Confirmar los detalles por escrito.

#### Entrevistas de comienzo y final abierto

- Forma más simple de interacción analista-usuario
- El analista deja que el usuario hable de su tarea
- Ambiente informal
- Útiles para obtener visiones generales
- No son útiles para obtener información detallada

#### **Entrevistas estructuradas**

- Direcciona al usuario hacia aspectos específicos de requerimientos a elicitar
- Son útiles para información detallada
- Preguntas cerradas, abiertas, de sondeo y de guía
- Información para obstáculos y soporte

#### Algunos consejos

- Ir a entrevistar a los usuarios en su lugar de trabajo
- Explicar la razón de la entrevista
- Entrevistar primero al usuario más experimentado
- Comienzo "inocuo", permiso para grabar, inicio pregunta fáciles, preguntas abiertas hacia el final
- Preguntar, escuchar la respuesta y retroalimentar lo entendido
- Dibujar modelos, utilizar la terminología del usuario
- Guardar ejemplares de documentos/artefactos
- Agradecer al usuario su tiempo
- Búsqueda de fallas potenciales

- Aconsejable: 2 entrevistadores (una conduce la entrevista el otro supervisa la interacción y toma notas)
  - Mejora la gestión del tiempo.
  - Beneficia la supervisión.
- Emplear tanto preguntas abiertas como cerradas:
  - Abiertas: Suelen comenzar por "qué", por qué" y "como" y exigen respuesta detallada por el entrevistado.
  - Cerradas: Aquellas con un Intervalo específico de respuesta.
- El entrevistador debe centrar la entrevista cuando esta se desvía.
- El entrevistador debe evitar emitir juicios de valor para no influir.
  Ingeniería de Software I, 2020

#### Documentación de resultados

- Análisis de resultados de la entrevista:
  - Si se ha utilizado como marco un cuestionario, este se utilizará como contexto en el análisis.
  - Si la entrevista no es estructurada, el resultado se detallará como informe.

Esquema de resumen de entrevista

Nombre entrevistado.

Puesto de trabajo y breve descripción.

Punto de vista que representa.

Fecha, hora y lugar de la entrevista

Resumen de puntos principales

Doc's, de referencia

Otros contactos.

## Técnicas (P.U.). Grupales: reuniones

- Extensiones de entrevistas. Muy activas. De corta duración e intensas con un determinado foco
  - Braisntorming: lluvia de ideas
  - Workshop de requisitos: existe un moderador
  - JAD (Join application design): se avanza en un principio de construcción, más organizado y racional con generación de documentos, compromisos, fechas.
- Favorecen la aparición de múltiples opiniones, creación, y consenso colectivo.
- Problemas; Puede haber dispersión, incomodidad en el grupo, pensamiento generado a nivel de grupo.

## Técnicas (P.U.). Grupales: brainstorming

- Se utiliza para resolver la falta de consenso entre usuarios
- Ayuda a entender el dominio del problema
- Encara la dificultad del usuario para transmitir
- Reduce la falta de consenso
- Ayuda a entender: al usuario y al analista



- El grupo de desarrolladores se reúne para una lluvia de ideas
- Muchas ideas, ideas nuevas, toda idea es buena, sin censuras
- No deben evaluarse, debatir ni criticar
- No limitarse por lo posible
- Luego la lista de ideas es evaluada, ordenada (votación)
   -> 60 ideas locas pueden contener 5 ideas geniales.

#### Técnicas ER: Lectura del Información

- Abarca la lectura de todos los documentos disponibles en la organización, intenta identificar estructuras, hechos y vocabulario similares.
- Tipo de lectura: diagramas organizacionales, standards, modelos de procesos o manuales de sistemas existentes.
- Fácil de obtener si hay documentación, permite manejar gran volumen.
- Provee información muy dispersa. Gran trabajo para procesarlo.

#### Técnicas ER: Escenarios

#### **Conceptos básicos**

- Escenario = historia que ilustra cómo un sistema puede satisfacer necesidades del usuario
- Descripción idealizada pero detallada de una instancia específica de interacción hombre-máquina
- Medios diversos (texto, dibujos, diagramas)
- Estructurados en diálogos o narrativas
- Similitud con los prototipos

#### **Ventajas**

- Los usuarios encuentran más fácil transmitir su experticia a través de "contar una historia"
- Es una solución prometedora al problema de la comunicación

#### Técnicas ER: Análisis de Formularios

- Formulario = colección estructurada de variables que está formateada para soportar ingreso de datos y su recuperación
- Es una fuente importante:
  - es un modelo formal
  - es un modelo de datos
  - a menudo contienen información sobre la organización
  - sus instrucciones de uso encierran conocimiento sobre el dominio
  - su análisis puede automatizarse

## Técnicas ER: Lenguaje natural

- Forma más habitual de representación del conocimiento
- La mayoría de lo que vale la pena conocer sobre el dominio del problema puede formularse en LN
- Categorías de elicitación en LN:
  - enfoques que interactúan con el usuario
  - enfoques que elicitan desde un texto en LN
- Su atractivo reside en:
  - vocabulario preexistente
  - informalidad
  - Sintaxis
- Problemas
  - Es complejo y suele ser ambiguo

## Técnicas ER: Reuso de requerimientos

- Idea de base: los requerimientos capturados para alguna aplicación pueden usarse en otra similar
- Razones que la hacen interesante:
  - mejora global del proceso
  - similitud en sistemas

#### Problemas de aplicación:

- acceso a los documentos de los requerimientos
- "adecuabilidad" de un viejo requerimiento

#### • Prerequisitos de aplicación:

- acceso a los requerimientos de los sistemas existentes
- facilidades para seleccionar, testear y modificar viejos requerimientos
- más barato que obtener los requerimientos desde cero Ingeniería de Software I, 2020

#### Técnicas ER: Casos de uso





#### Técnicas ER: Casos de uso

- La técnica de Casos de Uso fue propuesta por Jacobson e incorporada a UML posteriormente
- Los CU se utilizan para modelar requerimientos funcionales del sistema o procesos del negocio.
- La técnica no pertenece estrictamente al enfoque OO, sino a modelado de requerimientos
- Objetivos:
- Describir lo que hará el sistema
- Servir de guía para todo el proceso de desarrollo
- Servir de base para las pruebas del SW

## **UML.** Elementos del Diagrama de CU

Casos de Uso

Nombre del caso de uso

Actores



<< actor >> Nombre\_Actor

Relaciones



## UML. Elementos del Diagrama de CU.



#### Casos de uso. Qué describen?

- Los Casos de Uso:
  - ➤ son descripciones de la funcionalidad del sistema independientes de la implementación
  - describen qué hace el sistema, no cómo lo hace



describen bajo la forma de acciones y reacciones el comportamiento de un sistema desde el p.d.v. del usuario

## Casos de uso. Qué permiten?

- Los Casos de Uso:
  - ofrecen un modo sistemático de capturar los verdaderos requerimientos funcionales, focalizado en el valor agregado a cada individuo o sistema externo, por el sistema a desarrollar.
  - permiten definir los límites del sistema y las relaciones entre el sistema y el entorno
  - particionan el conjunto de necesidades atendiendo a la categoría de usuarios que participan en el mismo
  - > están basado en el lenguaje natural, es decir, es accesible por los usuarios

#### Casos de uso. Pieza de funcionalidad

 Casos de uso: "pieza de funcionalidad" que el sistema ofrece para agregar resultados de valor a sus actores



#### Casos de uso. Límites del sistema



Actores >>> externos al sistema Casos de uso >>>> dentro del sistema

## Casos de Uso. Actores y Ambiente

- ▶ Ambiente del Sistema: El conjunto de actores constituye el ambiente externo del sistema.
- Los actores se comunican con el sistema enviándole y recibiendo mensajes mientras ejecutan el caso de uso. Así definimos claramente las responsabilidades de los actores y las responsabilidades del sistema.
- Una instancia de un actor es un usuario específico interactuando con el sistema.

### Qué es un Caso de uso: Definiciones

"Un caso de uso especifica una secuencia de acciones, incluyendo variantes, que el sistema puede ejecutar y que produce un resultado observable de valor para un particular actor"

#### **Otras definiciones:**

- "Describe un conjunto de interacciones entre actores externos y el sistema en consideración orientadas a satisfacer un objetivo de un actor".
   [D. Bredemeyer]
- "Es una colección de posibles secuencias de interacciones entre el sistema en discusión y sus actores externos, relacionado con un objetivo particular". [A. Cockburn]

#### Casos de uso y Actores

- Normalmente un sistema tiene varios tipos de usuarios.
- Cada tipo de usuario se representa en UML como un actor.



#### **Actores**

Los actores usan el sistema a medida que interactúan con casos de uso.

El nombre del caso de , uso debe reflejar la tarea específica que el actor desea llevar a cabo usando el sistema



#### **Actores**

#### **Actores:**

- > Principales: personas que usan el sistema
- Secundarios: personas que mantienen o administran el sistema
- > Otros sistemas: sistemas con los que el sistema interactúa
- La misma persona física puede interpretar varios papeles como actores distintos
- El nombre del actor describe el papel desempeñado
- Los actores no forman parte del sistema
- Encontramos los actores buscando quiénes usarán el sistema y qué otros sistemas interactuarán con él.

### Casos de Uso. Relaciones

- UML define cuatro tipos de relación en los Diagramas de Casos de Uso:
  - Comunicación



### Casos de Uso. Relaciones - Include

 Inclusión: una instancia del Caso de Uso origen incluye también el comportamiento descrito por el Caso de Uso destino



<<include>> reemplazó al denominado <<uses>>

# Casos de Uso. Ejemplo Include



Ingeniería de Software I, 2020

## Casos de Uso. Ejemplo Include

 Permite factorizar un comportamiento en un caso de uso aparte y evitar repetir un mismo flujo en diferentes casos de uso.

#### Ejemplo:

- Hacer Pedido:
  - Obtener y verificar el número de pedido;
  - Incluir "Validar usuario";
  - Recoger los ítem del pedido del usuario;
  - •

## Casos de Uso. Relación Extend

 Extensión : un Caso de Uso extiende el comportamiento de otro Caso de Uso



Ingeniería de Software I, 2020

#### Casos de Uso. Extend

- Se entiende que se agregan pasos a un CU existente. Se hace creando un nuevo CU que enriquece al existente pero no lo modifica
- El caso de uso base incluye una serie de puntos de extensión, pero está completo sin las extensiones.
- Sirve para modelar:
  - la parte opcional del sistema, o
  - un subflujo que sólo se ejecuta bajo ciertas condiciones.



## Casos de Uso. Ejemplo include y extend



Ingeniería de Software I, 2020

## Casos de Uso. Propiedades

- Son iniciados por un Actor con un Objetivo en mente y es completado con éxito cuando el sistema lo satisface
- El sistema se considera una caja negra y las interacciones se perciben desde afuera
- Puede incluir secuencias alternativas que llevan al éxito o fracaso en la consecución del objetivo.



Escenarios alternativos

#### Casos de Uso. Escenarios

- Un caso de uso describe un conjunto de escenarios (diferentes secuencias de interacciones) entre actores y el sistema, que determinan:
  - flujo principal
  - flujos alternativos o excepcionales.
- Un escenario es una instancia de un caso de uso.
- Un escenario es una historia particular de uso de un sistema.
- Escenarios principales vs. Escenarios secundarios

# Construcción del Diagrama de CU

- Identificar los usuarios del sistema.
- Encontrar todos los roles que juegan los usuarios y que son relevantes al sistema (Actores).
- Para cada actor identificar todas las formas (objetivos) de interactuar con el sistema.
- Crear un caso de uso por cada objetivo.
- Estructurar los casos de uso.
- Revisar y validar con el usuario.
- ▶ Guía útil: Primero buscar los objetivos del usuario y luego cubrir cada objetivo con interacciones del sistema
  Ingeniería de Software I, 2020

# Ejemplo de Diagrama de CU



## Identificación de Actores

- ¿Quién y qué utiliza el sistema?
- ¿Qué roles desempeñan en la interacción?
- ¿Quién mantiene el sistema?
- ¿Quién o que inicia y cierra el sistema?
- ¿Qué otros sistemas interactúan con el sistema?
- ¿Quién o qué consigue o proporciona información al sistema?
- ¿Sucede algo en un momento dado de forma automática?

## **Preguntas útiles**

¿Cuáles son sus responsabilidades, de qué tareas se encargan: Crear/Modificar/Eliminar elementos, Introducir/Obtener datos, Mantenimiento/Soporte del sistema?.

¿Deberán informar al sistema sobre algún evento externo que se produzca (ej. Llegada de ficheros de datos a su destino, listos para ser procesados)?

¿Deben ser informados por el sistema sobre algún evento que se produzca (ej.: Error en la ejecución de un proceso desatendido)?.

¿Necesitan indicar al sistema que efectúe algún proceso concreto en un momento determinado (ej.: Realizar una copia de seguridad de los datos del período)?.

Otros procesos en los que los actores participen como estimuladores del sistema, como receptores de información procedente del sistema, o como colaboradores del mismo en la ejecución de tareas

## Descripción de un caso de uso

- Para cada caso de uso se realiza:
  - Descripción breve (Un párrafo en lenguaje natural)
  - Descripción informal (Múltiples Párrafos en lenguaje natural de escenario principal y alternativos).
  - Especificación completa (usando plantilla).
  - ➤ Alternativo: Diagrama de actividades del caso de uso (UML).

# Especificación completa

- Se elige un camino posible de ejecución básico completo, desde principio a fin >> Escenario de éxito
- Se describen el resto de los caminos como alternativas o desviaciones del básico, cada uno en secciones separadas >> Escenarios alternativos
- Caminos alternativos.
  - No se incluyen en la secuencia normal de ejecución, sino invocando el caso de uso que los ejecute

# Plantilla de Especificación completa

- Resumen
- Actores Principales y Secundarios
- Personas involucradas e Intereses
- Precondiciones
- Postcondiciones
- Escenario Principal (Flujo Básico)
- Extensiones (Flujos Alternativos)
- Requisitos de Interfaz de Usuario
- Requisitos No-Funcionales
- Cuestiones Pendientes

# Esquema de Plantilla

| Nombre                          |  |
|---------------------------------|--|
| Iniciador                       |  |
| Objetivo                        |  |
| Precondición                    |  |
| Escenario<br>Principal de Exito |  |
| Postcondición                   |  |

**Extensiones** 

# **Ejemplo Cadena de Hoteles CU: Hacer reserva**



## **Ejemplo Cadena de Hoteles**

| Nombre             | Hacer una reserva                                  |
|--------------------|----------------------------------------------------|
| Iniciador          | Telefonista                                        |
| Objetivo           | Reservar una habitación el hotel                   |
| Escenario          | 1. Telefonista solicita hacer reserva              |
| Principal de Exito | 2. Telefonista selecciona hotel, fecha, tipoHab    |
|                    | 3. Sistema provee disponibilidad y precio          |
|                    | 4. Telefonista acuerda continuar                   |
|                    | 5. Telefonista provee identificación y detalles    |
|                    | 6. Telefonista provee detalles de pago             |
|                    | 7. Sistema hace la reserva y genera código         |
|                    | 8. Sistema informa código de reserva a telefonista |
|                    | 9. Sistema crea y envía confirmación de reserva    |

## **Ejemplo Cadena de Hoteles**

#### **Extensiones**

- 3. Habitación no disponible
- a) Sistema ofrece fechas y tipos de habitaciones alternativos
- b) Telefonista selecciona una de las distintas alternativas
- 4. Telefonista rehaza oferta

......

# Casos de Uso. Especificación de extensiones



Nombre: **Devolver libro** 

Actor principal: Bibliotecario

Precondición: Bibliotecario está autenticado

Flujo:

1. El bibliotecario introduce id del prestatario.

- 2. El sistema muestra datos del prestatario y los libros que tiene prestados.
- 3. El bibliotecario selecciona libro a devolver.

Punto de extensión: libro retrasado

- 4. El sistema registra la devolución.
- 5. ... Ingeniería de Software I , 2020

Nombre: Poner multa

Precondición: Libro devuelto fuera de plazo

Flujo:

- 1. El bibliotecario introduce detalles multa
- 2. El sistema registra e imprime la multa