\$2.2 Fundamental Theorem of Arithmetics.

Theorem (FTA). Every positive integer can be written as a product of primes in the unique way (up to order) order).

Proof. Existence: by induction.

1 is an empty product (2°=1)

2 is prime (product of one prime number)

Assume every number between 1 and n is a product of primes. Consider n+1. (a) n+1 is prime V

(b) $n+1=d_1d_2$, $1< d_1, d_2 \le n$

Then by assumption, d,, dz are products of primes

=> so is d, dz \(\)

Uniqueness: Assume P1B-Pd=9,92-95 where P1, ---, Pd, 91, ---, 95 are prime and des

P1 | P, P2...Pd = 9,92...9s => P4 divides one of qi's (by Lemme).
After reordering Palq, => pa=q, => P2--- Pol = 92--- 95 => P3... Pd=93... 95 $=> ... => 1 = 9_{d+1}...95$ This is only possible if d=s (empty product on the right hand side) Remark: In some other number systems & FTA may be false. $\left(\mathcal{H}[F5] = \left\{ 0.76 F5 : 0, 6 \in \mathcal{H} \right\}$ $6 = 2.3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ \$2.3 Factorisation. Q1: Given positive integer n how to check that it is prime? The how to Q2: How to factorize it! For large n they non-trivial.
One can check primality for up to 50000 70000 digit numbers and factorize

up to 220-230 digit numbers. Naive factorization method (trial division): try small divisors of of n. · We can consider prime d. · Check values dup to m (If n=d,dz then one of d,,dz is 4 In). Example: n=2191 Try d=2 3 5 7 X X X X2191=7.313 For 313 try d = 211131719 $X \times X \times X$ shop here. $19^2 = 361 > 313$ Final factorization: 2191 = 7.313. termat factoring method.

Assume n is odd. I dea: write n as a difference of two squares

 $n = m^2 k^2 = (m - k)(m + k)$

- · We start with m = m. smallest
- · We go up until m²n becomes a square

Example: n=2183

We start with m=47.

 $47^{2} - 2183 = 26 \times$ $48^{2} - 2183 = 121 = 11^{2} \sqrt{$

Then 2183 = 482-112 = 37-59

Remark: Fermat method is efficient in finding n=d;dz where d, and dz are close to each other.

§ 2.4. Distribution of primes.

First primes: 2,3,5,2,11,13,17,19,23,...

Q: Are there infinitely many primes?

A: Yesl

Theorem (Euclid): There are inf. many primes.
primes.
Proof. Assume there are finitely many
P1, P21, Pd
Consider N=P1P2Pa+1
By FTA. we have prime of IN.
gcd (9, N, Pi) for kild
=> god(q, pi) = 1 => 9 is not on the list — contradiction.
list — contradiction.
By analogy of
By analogy one can prove that there are inf. many primes of the form 3n+2 or 4n+3.
3n+2 or 4n+3
$(E \times *)$