

- 14 -

C L A I M S

1. A percussion drill bit for drilling into a
subterranean earth formation, the drill bit having a
central longitudinal axis and being operable by applying
axial percussive motion along the axis and rotary motion
about the axis, the drill bit comprising:

5 - a plurality of blades protruding from the drill bit;
- a plurality of flow channels stretching along the
drill bit in a substantially radial direction whereby the
successive flow channels are formed between two adjacent
blades;

10 - shear cutters which are provided in a row on or close
to the leading edge of at least one of said blades with
respect to the direction of rotary motion trailing
adjacent to the flow channel that is associated with it,
15 for running a fluid through and thereby removing cutting
debris accumulating in front of the row of shear cutters;
and in addition to these shear cutters;
- axial cutters which are located, with respect to the
direction of rotary motion, in a trailing position with
respect to said row of shear cutters and its associated
20 flow channel.

25 2. The percussion drill bit of claim 1, wherein the
axial cutters are provided ahead of the subsequent
neighbouring flow channel with respect to the direction
of rotary motion.

3. The percussion drill bit of claim 2, wherein the
subsequent neighbouring flow channel is associated with a
second row of shear cutters provided on the leading edge
of the subsequent blade to the said at least one blade.

- 15 -

4. The percussion drill bit of claim 1, wherein the axial cutters are located on the same blade as the shear cutters.
5. The percussion drill bit of any one of the previous claims, wherein the axial cutters have dome shaped or essentially hemispherical shaped cutting surfaces.
6. The percussion drill bit of any one of the previous claims, wherein the axial cutters are formed essentially of tungsten carbide.
- 10 7. The percussion drill bit of claim 6, wherein the axial cutters are provided with an outer layer of polycrystalline carbon.
8. The percussion drill bit of any one of the previous claims, wherein there are more axial cutters provided than shearing cutters.
- 15 9. The percussion drill bit of any one of the previous claims, wherein the ratio between the number of axial cutters and the number of shearing cutters provided is at least 3:2.
- 20 10. The percussion drill bit of any one of the previous claims, wherein the shear cutters in a first said row of shear cutters are positioned at mutually different radial positions than the shear cutters in a second said row of shear cutters on another blade.
- 25 11. The percussion drill bit of any one of the previous claims, wherein the shear cutters have a rake surface facing the flow channel associated with it at a back-rake angle of less than 90° wherein the back-rake angle is defined as the included angle between the projection of a line perpendicular to said rake surface on a plane defined by said central longitudinal axis of the drill bit and the tangential direction of rotary motion, and a plane perpendicular to said longitudinal axis.
- 30 12. The percussion drill bit of any one of the previous claims, wherein one or more of the shear cutters is

- 16 -

provided with a pre-cut flat impact surface essentially parallel to the plane perpendicular to the central longitudinal axis.

13. Drilling system for drilling a borehole in an earth formation, comprising a drill string provided with a percussion drill bit in accordance with any one of the previous claims, the drilling system further comprising:

5 - first drive means for rotating the drill bit in the borehole so as to induce a scraping movement of the shear cutters along the borehole bottom; and

10 - second drive means for inducing a longitudinal reciprocal movement of the drill bit in the borehole so as to induce at least the axial cutters to exert a percussive force to the borehole bottom.

14. Method of drilling a bore hole into a subterranean earth formation, comprising the steps of providing a drilling system in accordance with claim 13, placing the drill bit against the subterranean earth formation that is to be drilled, exercising a rotary motion about the axis while maintaining a force on the drill bit against the earth formation in the axial direction, and intermittently providing percussive strikes on the drill bit.

15

20