The problem can be viewed as a special kind of cases for Metric-TSP with "terminals" when all vertexes in a graph are "terminals. "The result should accord with greedy Steiner algorithm that gives $O(\log n)$.

Let $i_1, i_2, ..., i_{|V|}$ be the order in which the solution produced by approximation visits all vertexes in G. Let p_i be the ith edge chosen that connects to a nearest vertex and c(i) the cost of p_i . Then it must be the case that, for all $1 \le j \le |V|$,

$$c(i_j) \le \frac{2 * OPT}{i}$$

where *OPT* denotes the minimal possible cost. We prove this by contradiction as shown below.

Suppose $c(i_j) > \frac{2*OPT}{j}$ for some j. Let $i'_1, i'_2, ..., i'_{|V|}$ be same vertexes in the new order. We pick any two vertexes i'_a and i'_b such that each is either $i_{|V|}$ or in S'. Assume $1 \le a < b \le |V|$ and then $c(i'_b) \le \frac{2*OPT}{j}$ according to ???, which leads to contradiction.

Adding up costs of individual vertexes, we have a total cost

$$\sum_{j=1}^{|V|} \frac{2*OPT}{j} = 2*OPT*\sum_{j=1}^{|V|} \frac{1}{j}.$$

In this case we view 2*OPT as constant and notice that $\sum_{j=1}^{|V|} \frac{1}{j}$ is bounded by $O(\log |V|)$. Therefore, this algorithm gives a $O(\log n)$ -approximation for the Metric-TSP problem where n = |V|.