## CAPÍTULO 2: ESPACIOS VECTORIALES (1ERA. PARTE).

#### Facultad de Cs. Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario



### **OUTLINE**

- 1 Introducción
- ESPACIOS VECTORIALES
- 3 PROPIEDADES DE LOS ESPACIOS VECTORIALES
- SUBESPACIOS VECTORIALES
- 5 ESPACIOS VECTORIALES ASOCIADOS A MATRICES

### Introducción

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 9 & 2 & 5 \\ 8 & 4 & 0 \end{bmatrix} \qquad Ax = b$$

$$3u + v + w = 3u + v + w = 9u + 2v + 5w = 0u - v + 2w = 8u + 4v + 0w = 0u + 0v + 0w =$$

Caso 1: No hay solución factible

$$3u + v + w = 0u - v + 2w = 0u + 0v + 0w = 7$$

Caso 2: hay infinitas soluciones factibles

$$3u + v + w = 0u - v + 2w = 0u + 0v + 0w = 0$$

# Introducción

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 9 & 2 & 5 \\ 8 & 4 & 0 \end{bmatrix}$$
 matriz singular.

#### Geometría por columnas:

$$Ax = b \longrightarrow \begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix} u + \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} v + \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix} w = b$$

Los vectores 
$$\begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix}$$
,  $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$  y  $\begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$  subyacen en el mismo plano.

¿Cómo sabemos que subyacen en el mismo plano?

# Introducción

$$\begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$$

Esto es, 
$$\begin{bmatrix} 3 \\ 9 \\ 8 \end{bmatrix}$$
 se obtiene como combinación lineal de  $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$  y  $\begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$ .

Equivalentemente,

$$(-1)\begin{bmatrix} 3\\9\\8 \end{bmatrix} + 2\begin{bmatrix} 1\\2\\4 \end{bmatrix} + \begin{bmatrix} 1\\5\\0 \end{bmatrix} = \mathbf{0}.$$

Existe una combinación lineal no nula de los tres vectores que nos da el vector nulo. Los tres vectores NO son linealmente independientes.

### CASOS SINGULARES

#### En general:

El sistema es singular  $\leftrightarrow$  los n planos no tienen puntos en común o tienen infinitos puntos en común  $\leftrightarrow$  los n vectores columna subyacen en un mismo plano (n-1)-dimensional  $\leftrightarrow$  los n vectores columna no son linealmente independientes.

Nos interesa entonces estudiar, entre otros, el *espacio que generan* los vectores columna de una matriz.

### **ESPACIOS VECTORIALES**

espacios vectoriales $\longleftrightarrow$  combinaciones lineales $\longleftrightarrow$  conjunto de vectores que pueden ser sumados y multiplicados por escalares.

- escalares:  $\mathbb{R}$ ,  $\mathbb{C}$ , cualquier cuerpo  $\mathbb{K}$  (conjunto de escalares, con suma, producto, con elementos neutros, opuestos, recíproco, etc....)
- ¿vectores? cualquier tipo de elementos, siempre que podamos definir suma y producto por escalares.

### **ESPACIOS VECTORIALES**

**Definición:**  $(V,+,\cdot)$  es un *espacio vectorial sobre*  $\mathbb K$  si, para todo  $u,v,w\in V$  y todo  $\alpha,\beta\in\mathbb K$ , se verifica:

- (suma cerrada en V),  $u+v \in V$ ,
- (suma asociativa y conmutativa) u + (v + w) = (u + v) + w y u + v = v + u,
- **(**) (neutro de la suma) existe  $0 \in V$  tal que v + 0 = v
- (elemento opuesto para la suma) existe  $v^* \in V$  tal que  $v + v^* = 0$ ,
- $\bullet$   $\alpha \cdot v \in V$ ,
- $0 1 \in \mathbb{K}$  elemento neutro del producto en  $\mathbb{K}$ , entonces  $1 \cdot v = v$ ,

**Convenio:** cuando hablamos de un espacio vectorial V y no especificamos quién es  $\mathbb{K}$ , asumimos que  $\mathbb{K}=\mathbb{R}$  (espacio vectorial real). Cuando no especificamos las operaciones suma y producto es porque consideramos *las habituales*.

### ESPACIOS VECTORIALES REALES

### **Ejemplos:**

- $lackbox{0} \ \mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^n$  ¡también  $\mathbb{R}$  !
- **3** matrices reales  $m \times n \longleftrightarrow \mathbb{R}^{m \times n}$
- $\bullet$  funciones reales definidas en [a,b],
- funciones reales continuas
- $\odot$  funciones derivables en  $x_0$ ,

- **0** {0} ?

### ESPACIOS VECTORIALES REALES

 $V=(\{0\},+,\cdot)$  con suma y producto en  $\mathbb{R},$  ¿es un espacio vectorial? Verifiquemos:

- **③** ¿suma cerrada en V? 0+0=0 ∈ V ✓
- $oldsymbol{2}$  ¿suma asociativa y conmutativa? lo hereda de  $(\mathbb{R},+,\cdot)$ .
- 3 ¿neutro de la suma? Si, el propio 0.
- (a) ¿elemento opuesto? Si, 0 es su propio opuesto.
- ullet  $\alpha v \in V$  para todo  $\alpha \in \mathbb{R}$  y  $v \in V$ ?  $\alpha 0 = 0 \in V$  para todo  $\alpha \in \mathbb{R}$
- $0 1.0 = 0 \checkmark$

Es fácil ver que se verifican también las propiedades 7., 8. y 9..

**Observación**:  $\{0\} \subset \mathbb{R}$  y la suma y producto por escalares son las de  $(\mathbb{R},+,\cdot)$  que ya sabemos es un espacio vectorial. En estos casos diremos que  $(0,+,\cdot)$  es un subespacio de  $(\mathbb{R},+,\cdot)$  y veremos más adelante que no es necesario chequear las 9 condiciones.

### ESPACIOS VECTORIALES REALES

#### Verifiquemos algún otro ejemplo:

Funciones reales derivables en  $x_0 \in \mathbb{R} \longrightarrow \mathscr{F}$ 

- Suma: f + g tal que (f + g)(x) = f(x) + g(x) para todo  $x \in \mathbb{R}$
- Producto por escalares:  $\alpha f$  tal que  $(\alpha f)(x) = \alpha f(x)$  para todo  $x \in \mathbb{R}$ .
- **1**  $f + g \in \mathcal{F}$ ? ✓ Por qué?
- suma asociativa y conmutativa
- ¿Neutro de la suma? La función nula. ¿Está en F la función nula? ¿Por qué?
- **①** ¿Quién es el opuesto de  $f \in \mathscr{F}$ ? ¿Pertenece a  $\mathscr{F}$  su opuesto?
- **③**  $\lambda \alpha f \in \mathscr{F}$ ? ¿Por qué?
- 1f = f

#### ESPACIOS VECTORIALES SOBRE OTROS CUERPOS

El conjunto  $\mathbb C$  de números complejos es un cuerpo algebraico.

- $lacklowbreak \mathbb{C}$  es un espacio vectorial sobre  $\mathbb{K}=\mathbb{C}$  (ejercicio)
- ② Matrices  $m \times n$  con entradas complejas, también definen un espacio vectorial sobre  $\mathbb C$  (ejercicio).

Veamos un ejemplo de un cuerpo algebraico distinto de  $\mathbb{R}$  y  $\mathbb{C}$ :

Sea  $(\mathbb{Z}_2, \oplus, \odot)$  con  $\mathbb{Z}_2 = \{0, 1\}$ , 0 el elemento neutro de  $\oplus$ ,  $1 \oplus 1 = 0$ , 1 el elemento neutro de  $\odot$  y  $0 \odot 0 = 0$ .

Se puede verificar que  $\oplus$  y  $\odot$  son asociativas, que todo elemento de  $\mathbb{Z}_2$  tiene opuesto, que todo elemento distinto del neutro de  $\oplus$  tiene recíproco y que  $\odot$  es distributiva respecto de  $\oplus$  (ejercicio). Aceptamos que  $(\mathbb{Z}_2, \oplus, \odot)$  es un cuerpo algebraico.

**Ejercicio:** Probar que el conjunto de n-uplas con componentes en  $\mathbb{Z}_2$  es un espacio vectorial sobre  $\mathbb{Z}_2$  (con la suma y el producto de un escalar realizado componente a componente). ¿Es  $\mathbb{R}^n$  un espacio vectorial sobre  $\mathbb{Z}_2$ ?

#### PROPIEDADES DE LOS ESPACIOS VECTORIALES

Unicidad del neutro:

Sean  $\mathbf{0}$ ;  $\mathbf{0}' \in V$  tales que  $\mathbf{0} + v = \mathbf{0}' + v = v$  para todo  $v \in V$ . Entonces,  $\mathbf{0}' = \mathbf{0}$ .

**Prueba:** Como  $\mathbf{0}' + v = \mathbf{0} + v = v$  para todo  $v \in V$ , en particular,  $\mathbf{0}' + \mathbf{0} = \mathbf{0}$  y  $\mathbf{0} + \mathbf{0}' = \mathbf{0}'$ .

Por conmutatividad de la suma,  $\mathbf{0} = \mathbf{0}' + \mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$ .

**Observación:** La unicidad del neutro nos permite definir un símbolo para referirnos a él. Usamos **0** para identificar el neutro de la suma en cualquier espacio vectorial.

•  $0v = \mathbf{0}$  para todo  $v \in V$ .

**Prueba:** Sea  $v \in V$  y w = 0v. Usando la distributiva del producto respecto a la suma de escalares (prop. 9.) tenemos

$$w = 0v = (0+0)v = 0v + 0v = w + w.$$

Como w tiene un opuesto  $w^*$ , tenemos

$$\mathbf{0} = w^* + w = w^* + (w + w) = (w^* + w) + w = \mathbf{0} + w = w.$$

#### Propiedades de los espacios vectoriales

• *Unicidad del opuesto*: sean  $x, \bar{x} \in V$ , tal que  $x^* + \bar{x} = x + \bar{x} = \mathbf{0}$ , entonces  $\bar{x} = x^*$ .

Prueba: En práctica.

**Observación:** La unicidad del opuesto nos permite definir un símbolo para indicarlo. En función de la propiedad anterior, a partir de ahora notamos con -v al opuesto de v.

- (-1)v = -v para todo  $v \in V$ . (Ejercicio)
- $\alpha \cdot \mathbf{0} = \mathbf{0} \ \forall \alpha \in \mathbb{K}$ . (Ejercicio)
- Si  $\alpha \cdot v = \mathbf{0}$  entonces  $\alpha = 0$  o  $v = \mathbf{0}$ .

**Prueba:** Observar que es suficiente probar que si  $\alpha \neq 0$  entonces  $\nu = \mathbf{0}$ . Sean  $\alpha \neq 0 \in \mathbb{K}$  y  $\nu \in V$  tal que  $\alpha \cdot \nu = \mathbf{0}$ . Como  $\alpha \neq 0$ , existe  $\alpha^{-1} \in \mathbb{K}$  tal que  $\alpha \alpha^{-1} = 1 \in \mathbb{K}$ . Tenemos entonces:

$$\boldsymbol{\alpha} \cdot \boldsymbol{v} = \mathbf{0} \Longrightarrow \boldsymbol{\alpha}^{-1}(\boldsymbol{\alpha} \cdot \boldsymbol{v}) = \boldsymbol{\alpha}^{-1}\mathbf{0} \Longrightarrow (\boldsymbol{\alpha}^{-1}\boldsymbol{\alpha}) \cdot \boldsymbol{v} = \mathbf{0} \Longrightarrow 1 \cdot \boldsymbol{v} = \boldsymbol{v} = \mathbf{0}$$

• Propiedad cancelativa de la suma: si z + x = z + y entonces x = y. Prueba: Eiercicio

#### ESPACIOS VECTORIALES

#### Otro ejemplo de espacio vectorial:

Sea  $\Pi = \{x \in \mathbb{R}^3 : 3x_1 + 2x_2 + x_3 = 0\}$ . Entonces  $(\Pi, +, \cdot)$ , con  $+ \mathbf{y} \cdot \text{las}$  operaciones del espacio vectorial  $\mathbb{R}^3$ , es un espacio vectorial.

**Prueba:** para todo  $u, v, w \in \Pi$  y todo  $\alpha, \beta \in \mathbb{R}$  debemos verificar:

•  $\lambda u + v \in \Pi$ ?  $\lambda 3(u_1 + v_1) + 2(u_2 + v_2) + (u_3 + v_3) = 0$ ?

$$3(u_1 + v_1) + 2(u_2 + v_2) + (u_3 + v_3) = (3u_1 + 2u_2 + u_3) + (3v_1 + 2v_2 + v_3) = 0 + 0 = 0$$

- $oldsymbol{0}$  ¿suma asociativa y conmutativa? Se hereda del espacio vectorial  $\mathbb{R}^3$ .
- **3** ¿existe  $0 \in \Pi$  tal que v + 0 = v, para todo  $v \in \Pi$ ?  $\mathbf{0} = (0,0,0) \in \mathbb{R}^3$ , ¿ $\mathbf{0} \in \Pi$ ? Claramente si.
- **③** ¿-v ∈  $\Pi$ ? Verificar que si.
- **5**  $\lambda \alpha \cdot v \in \Pi$ ? Verificar que si.

### **ESPACIOS VECTORIALES**

- 7.  $\lambda(\alpha\beta) \cdot v = \alpha(\beta \cdot v)$ ?
- 8.  $\lambda \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$ ?
- 9.  $\lambda(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$ ?

Todas estas se heredan de  $\mathbb{R}^3$ 

**Observación:** Tenemos  $\Pi \subset \mathbb{R}^3$ , lo dotamos de las mismas operaciones del espacio vectorial real  $\mathbb{R}^3$  y resultó ser también un espacio vectorial. Además, para probarlo, no fue necesario verificar muchas de las propiedades ya que se heredan naturalmente de  $\mathbb{R}^3$ .

#### SUBESPACIOS VECTORIALES

**Definición**: Sea  $(V,+,\cdot)$  un espacio vectorial y  $U \neq \emptyset \subset V$ . Entonces, U es un *subespacio vectorial de* V si  $(U,+,\cdot)$  es un espacio vectorial.

**Lema**: Sea  $(V,+,\cdot)$  un espacio vectorial y  $U\subset V$ . Entonces, U es un *subespacio (vectorial) de V* si y solo si toda combinación lineal de elementos de U pertenece a U; i.e. para todo  $u_1,u_2\in U,\,\alpha,\beta\in\mathbb{K}$ , resulta  $\alpha u_1+\beta u_2\in U$ .

Prueba: Ejercicio.

### SUBESPACIOS VECTORIALES

**Ejercicio:** Determinar cuales de estos subconjuntos definen subespacios vectoriales.

- $\bullet$   $\mathbb{R}^2_+ \subset \mathbb{R}^2$
- $\bullet \ \mathbb{Z} \subset \mathbb{R}$
- $\Gamma = \{x \in \mathbb{R}^3 : 4x_1 6x_2 + x_3 = 5\} \subset \mathbb{R}^3$
- matrices triangulares  $n \times n \subset$  matrices  $n \times n$ .
- matrices simétricas  $n \times n \subset$  matrices  $n \times n$ .

**Definición:** Dado un espacio vectorial V y un subconjunto de vectores  $U \subset V$ , llamamos *subespacio generado por U* y lo notamos  $\langle U \rangle$  al subespacio de V determinado por todas las combinaciones lineales de elementos de U. Esto es,

$$\langle U \rangle = \{ \alpha u + \beta v : u, v \in U, \alpha, \beta \in \mathbb{K} \}.$$

**Pregunta:** ¿Por qué  $\langle U \rangle$  es un subespacio vectorial?

### **ESPACIOS GENERADOS**

### **Ejemplos:**

 $lackbox{0}\ U=\{(1,-1)\}\subset\mathbb{R}^2.$  ¿Quién es  $\langle U
angle$ ?

②  $U = \{(1,0,0),(0,1,0)\} \subset \mathbb{R}^3$ . ¿Quién es  $\langle U \rangle$ ?

 $U = \{(1,0,0), (0,1,0), (7,3,0)\} \subset \mathbb{R}^3$ . ¿Quién es  $\langle U \rangle$ ?

• Sean f, g y h las funciones reales tales que, para todo  $x \in \mathbb{R}$ , f(x) = 1, g(x) = x y  $h(x) = x^2$ . Sea  $U = \{f, g, h\} \subset \{\text{funciones reales}\}$ . ¿Quién es  $\langle U \rangle$ ?

### ESPACIO COLUMNA Y ESPACIO NULO DE UNA MATRIZ

Dada una matriz A,  $m \times n$ , definimos:

- Espacio columna de A: es el subespacio de  $\mathbb{R}^m$  generado por los vectores columna de A. Lo notamos C(A).
- Espacio nulo de A: es el subespacio de  $\mathbb{R}^n$  definido por  $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$

**Ejercicio:** Probar la correcta definición de N(A), o sea, probar que N(A) es un espacio vectorial.

**Pregunta:** Si A es una matriz  $1 \times 3$ , ¿qué interpretación geométrica tiene su espacio nulo? ¿Y su espacio columna? ¿Qué relación geométrica hay entre ambos espacios?

#### ESPACIO COLUMNA

Dada una matriz A y un vector b, ¿cómo sabemos si  $b \in C(A)$  ?

 $b\in C(A)$  si existe una combinación lineal de las columnas de A que nos dé b. O sea, si existen  $x_1,\ldots,x_n\in\mathbb{R}$  tales que

$$\sum_{i=1}^n A^i x_i = b.$$

Equivalentemente, si existe  $x \in \mathbb{R}^n$  tal que Ax = b.

**Observación**: El espacio columna está definido para todas las matrices, no necesariamente cuadradas. Con lo cual, el sistema Ax=b no necesariamente tiene mismo número de ecuaciones e incógnitas.

**Lema**: Si A es una matriz no singular  $n \times n$ ,  $C(A) = \mathbb{R}^n$ .

**Prueba**: De acuerdo a lo anteriormente observado,  $C(A) = \mathbb{R}^n$  si y solo si, para todo  $b \in \mathbb{R}^n$ , el sistema Ax = b tiene solución. Si A es no singular, Gauss encuentra siempre la solución del sistema Ax = b, para todo b.

#### ESPACIO COLUMNA

**Pregunta**: Si A es la matriz nula  $m \times n$ , ¿quién es C(A)?

Veamos algunos casos donde C(A) no es todo  $\mathbb{R}^m$  ni el vector nulo.

$$A = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right].$$

$$C(A) = \{x_1(1,0,0) + x_2(0,1,0) : x_1, x_2 \in \mathbb{R}\} = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{R}\} = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$$

C(A) es el plano xy de  $\mathbb{R}^3$ .

### ESPACIO COLUMNA

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

$$C(A) = \left\{ x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} + x_4 \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} : x_1, x_2, x_3, x_4 \in \mathbb{R} \right\} =$$

$$= \left\{ \begin{bmatrix} x_1 + 2x_2 + 3x_3 + 4x_4 \\ x_1 + 2x_2 + 3x_3 + 4x_4 \\ x_1 + 2x_2 + 3x_3 + 4x_4 \end{bmatrix} : x_1, x_2, x_3, x_4 \in \mathbb{R} \right\} = \left\{ (x, y, z) \in \mathbb{R}^3 : x = y = z \right\}$$

C(A) es el la recta en  $\mathbb{R}^3$  que pasa por el origen y tiene vector dirección (1,1,1).

**Observación**: Si A es una matriz  $m \times n$ , C(A) es un subespacio de  $\mathbb{R}^m$ . Veremos que este subespacio puede ser de cualquier *dimensión*, entre 0 (A matriz nula) y m (Ejemplo: m=n y A matriz no singular).

#### ESPACIO NULO

Recordemos que, dada una matriz  $m \times n$  A,  $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}$  es un espacio vectorial.

**Observación 1**: N(A) es un subespacio de  $\mathbb{R}^n$ .

**Observación 2**: Si A es una matriz cuadrada no singular,  $N(A)=\{0\}\subset\mathbb{R}^n$ . ¿Por qué?

**Observación 3**: Si A es la matriz nula  $m \times n$ ,  $N(A) = \mathbb{R}^n$ . ¿Por qué?

Veremos que el espacio nulo de una matriz  $m \times n$  es un subespacio de  $\mathbb{R}^n$  que puede tener cualquier *dimensión* entre 0 (A matriz singular) y n (A matriz nula).

#### ESPACIO COLUMNA Y ESPACIO NULO

**Ejercicio**: Dada A una matriz  $m \times n$ , sea A' la matriz que se obtiene de agregar una columna  $A^{n+1}$  a A, donde  $A^{n+1}$  es una combinación lineal de las columnas de A. Probar que C(A) = C(A').

**Pregunta**: ¿Puede ser N(A)=N(A')? Claramente no,  $N(A)\subseteq\mathbb{R}^n$  mientras que  $N(A')\subseteq\mathbb{R}^{n+1}$ . ¿Puede ser  $N(A)=\{0\}\subset\mathbb{R}^n$  y  $N(A')\neq\{0\}\subset\mathbb{R}^{n+1}$ ? Veamos que si con un ejemplo.

#### ESPACIO COLUMNA Y ESPACIO NULO

Sean

$$A = \begin{bmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix}.$$

Observar que B se obtiene agregando a A una columna que es la suma de sus columnas. Por lo tanto C(A) = C(B).

Es fácil ver que  $N(A)=\{(0,0)\}$ . (Verificar)

¿Cómo sabemos que  $N(B) \neq \{(0,0,0)\}$ ? Es fácil ver que  $(1,1,-1) \in N(B)$ . (Verificar)

¿Puede ser éste el único elemento no nulo de N(B)? Justificar.

Queremos poder describir C(A) y N(A) para cualquier matrix  $m \times n$ . En ese camino vamos...