∽ Corrigé du baccalauréat Amérique du Nord ∾ Sujet 2 (secours) 22 mai 2025

A. P. M. E.

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

EXERCICE 1 5 points

Partie A : Étude de la fonction f

1. • Déterminons la limite quand x tend vers $-\infty$:

$$\forall x \in \mathbb{R}, \quad f(x) = x(e^{-x} + 2) - 1.$$

Avec
$$y = -x$$
, par composition, on a: $\lim_{x \to -\infty} e^{-x} = \lim_{y \to +\infty} e^y = +\infty$.

Donc, par limite de la somme :
$$\lim_{x \to -\infty} e^{-x} + 2 = +\infty$$
.

Par limite du produit, il vient :
$$\lim_{x \to -\infty} x(e^x + 2) = -\infty.$$

Enfin, par limite de la somme :
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x(e^{-x} + 2) - 1 = -\infty.$$

• Déterminons la limite quand x tend vers $+\infty$:

D'après la propriété des croissances comparées :
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
.

Par limite de l'inverse :
$$\lim_{x \to +\infty} \frac{x}{e^x} = 0$$
 donc $\lim_{x \to +\infty} xe^{-x} = 0$.
Par ailleurs, 2 étant positif : $\lim_{x \to +\infty} 2x - 1 = +\infty$.

Par ailleurs, 2 étant positif :
$$\lim_{x \to \infty} 2x - 1 = +\infty$$
.

Par limite de la somme on en déduit :
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x e^{-x} + 2x - 1 = +\infty$$
.

2. On a admis que la fonction est dérivable sur \mathbb{R} . f est la somme d'une fonction affine et d'un produit de deux fonctions dérivables sur \mathbb{R} .

Pour tout réel x, on a :

$$f'(x) = 1 \times e^{-x} + x \times (-e^{-x}) + 2 = (1-x)e^{-x} + 2.$$

3. On a admis que f' est dérivable :

Pour tout réel x, on a :

$$f''(x) = -1 \times e^{-x} + (1-x) \times \left(-e^{-x}\right) + 0 = \left(-1 - (1-x)\right)e^{-x} = (x-2)e^{-x}.$$

On arrive bien à l'expression annoncée.

- **4.** La fonction exponentielle est à valeurs strictement positives sur \mathbb{R} , donc f''(x) est du signe de (x-2).
 - Sur l'intervalle] $-\infty$; 2], $(x-2) \le 0$, donc f'' est à valeurs négatives et donc fest **concave** sur $]-\infty$; 2].
 - Sur l'intervalle [2; $+\infty$], $(x-2) \ge 0$, donc f'' est à valeurs positives et donc fest **convexe** sur $[2; +\infty[$.
- Sur l'intervalle] $-\infty$; 2], f est concave, donc f' est décroissante. 5.
 - Sur l'intervalle [2; $+\infty$ [, f est convexe, donc f' est croissante.

f' atteindra donc un minimum pour x = 2. On a :

$$f'(2) = (1-2)e^{-2} + 2 = 2 - e^{-2}$$

On peut donc établir le tableau de variations (sans limites, car non attendues ici) de f'.

x	$-\infty$	2		+∞
signe de $f''(x)$	_	0	+	
variations de f'	2-e ⁻²			

6. Comme on a -2 < 0, on en déduit, par croissance de la fonction exponentielle : $e^{-2} \le e^0$.

$$e^{-2} \leqslant e^{0} \implies e^{-2} \leqslant 1$$

$$\implies -e^{-2} \geqslant -1 \quad car - 1 < 0$$

$$\implies 2 - e^{-2} \geqslant 2 - 1$$

$$\implies 2 - e^{-2} \geqslant 1$$

Le minimum de f' est donc un réel supérieur à 1, donc strictement positif.

On en déduit que f' est donc une fonction à valeurs strictement positives sur \mathbb{R} , en conséquence, f est effectivement une fonction strictement croissante sur \mathbb{R} .

7. f est une fonction **continue** (car dérivable) et **strictement croissante** sur \mathbb{R} . De plus 0 est une **valeur intermédiaire** entre $\lim_{t\to\infty} f = -\infty$ et $\lim_{t\to\infty} f = +\infty$.

En vertu du corollaire au théorème des valeurs intermédiaires appliqué aux fonctions strictement monotones, on en déduit qu'il existe un unique réel α tel que $f(\alpha)=0$.

Par exploration à la calculatrice, on peut donner pour α l'encadrement au centième près suivant : $0.37 < \alpha < 0.38$.

8. Pour tout *x* réel, on a :

$$f(x) - (2x - 1) = xe^{-x}$$
.

Comme la fonction exponentielle est à valeurs strictement positives sur \mathbb{R} , on en déduit que cette différence entre l'ordonnée f(x) d'un point sur C_f et celle 2x-1 du point partageant la même abscisse sur Δ est du signe de x.

Sur \mathbb{R}^- , la différence est donc négative, et on en déduit que la courbe C_f est **audessous** de la droite Δ .

Sur \mathbb{R}^+ , au contraire, la différence est positive, et donc la courbe C_f est **au-dessus** de la droite Δ .

Partie B: Calcul d'aire

1. Pour tout x réel, on pose : $u'(x) = e^{-x}$ et v(x) = x. On a donc, pour tout x réel : v'(x) = 1 et, par exemple : $u(x) = -e^{-x}$.

$$I_n = \int_1^n x e^x dx$$

$$= \int_1^n v(x) \times u'(x) dx$$

$$= \left[u(x) \times v(x) \right]_1^n - \int_1^n v'(x) \times u(x) dx \quad \text{c'est la formule d'intégration par parties}$$

$$= \left[-e^{-x} \times x \right]_1^n - \int_1^n 1 \times (-e^{-x}) dx$$

$$= \left(-ne^{-n} \right) - \left(-e^{-1} \right) + \int_1^n e^{-x} dx \quad \text{par linéarité de l'intégrale.}$$

$$= e^{-1} - ne^{-n} + \left[-e^{-x} \right]_1^n$$

$$= e^{-1} - ne^{-n} + \left(-e^{-n} - (-e^{-1}) \right)$$

$$= 2e^{-1} - (n+1)e^{-n}$$

On arrive donc à l'expression : $I_n = 2e^{-1} - (n+1)e^{-n}$.

2. **a.** Le domaine décrit est donc situé entre la courbe C_f et la droite Δ , pour les abscisses comprises entre 1 et n. Le nombre n étant choisi entier naturel non nul, l'ensemble des abscisses concernées est donc inclus dans \mathbb{R}^+ , où la courbe C_f est au-dessus de la droite Δ , d'après la question **A. 8.**, c'est-à-dire que:

$$\forall x \in [1; n], \quad 2x - 1 \leqslant f(x).$$

Pour obtenir l'aire de D_n , il faut donc intégrer la différence f(x) - (2x - 1), entre 1 et n (car $1 \le n$).

Comme, pour tout x réel, on a : $f(x) - (2x - 1) = xe^{-x}$, l'aire de D_n (exprimée en unité d'aire) est donc bien égale à I_n .

b. On a, pour tout *n* entier naturel: $I_n = 2e^{-1} - (n+1)e^{-n} = 2e^{-1} - ne^{-n} - e^{-n}$. Avec le même raisonnement que celui tenu à la question A. 1., on a : $\lim_{n\to+\infty} n\mathrm{e}^{-n} = 0.$

On a également :
$$\lim_{n \to +\infty} e^{-n} = \lim_{n \to +\infty} \frac{1}{e^n} = 0$$
.
On a donc, par limite de la somme : $\lim_{n \to +\infty} I_n = 2e^{-1}$.

On est donc dans la situation d'un domaine dont le périmètre tend vers $+\infty$, puisqu'il s'étend sur une amplitude en abscisse qui tend vers $+\infty$, mais dont la surface reste majorée.

EXERCICE 2 5 points

1. Affirmation: Vraie

Par simple lecture des systèmes de représentation paramétrique, on peut dire que

D est dirigée par
$$\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$
 et D' par $\overrightarrow{u'} \begin{pmatrix} 2 \\ -6 \\ -8 \end{pmatrix}$.

On remarque que : $\overrightarrow{u}' = -2\overrightarrow{u}$ donc les vecteurs directeurs sont colinéaires, et donc les deux droites sont parallèles entre elles.

2. Affirmation: Fausse

De façon générale, si A, B et C définissent un plan, alors D sera orthogonale au plan (ABC) si et seulement si son vecteur directeur \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires du plan, classiquement \overrightarrow{AB} et \overrightarrow{AC} .

La **méthode classique** serait donc de déterminer les coordonnées de ces vecteurs, et d'en faire le produit scalaires avec \overrightarrow{u} .

Cela donne:
$$\overrightarrow{AB} \begin{pmatrix} 1 - (-2) \\ 3 - 3 \\ -4 - 1 \end{pmatrix}$$
 donc $\overrightarrow{AB} \begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix}$.

On a (avec les coordonnées de \overrightarrow{u} déterminées à la question 1.) le produit scalaire qui se calcule au moyen des coordonnées (on suppose que le repère est orthonormé).

$$\overrightarrow{AB} \cdot \overrightarrow{u} = 3 \times (-1) + 0 \times 3 + (-5) \times 4 = -23 \neq 0.$$

Comme ce produit scalaire n'est pas nul, pas besoin de calculer le second : on peut affirmer que D n'est pas orthogonale à (ABC), car elle n'est pas orthogonale à (AB) qui est une droite du plan (ABC).

Ici, on peut cependant adopter une **méthode différente** : on repère que les trois points A, B et C partagent la même ordonnée : 3, et sont réputés non alignés, donc le plan ABC est le plan d'équation y = 3, et un vecteur normal à (ABC) est le vecteur \overrightarrow{j} . Comme \overrightarrow{j} est clairement non colinéaire à \overrightarrow{u} , alors on peut en déduire que D n'est pas orthogonale à (ABC).

3. Affirmation: Fausse

D est dirigée par
$$\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$
 et Δ est dirigée par $\overrightarrow{u''} \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$, qui est clairement non coli-

néaire à \vec{u} : les droites ne sont donc pas parallèles. Elles peuvent être soit sécantes, soit non coplanaires.

Pour trancher, cherchons s'il existe un couple de paramètres (t;t') tel que le point de paramètre t sur D serait confondu avec le point de paramètre t' sur Δ , autrement dit : s'il existe un point commun aux deux droites.

On résout le système :

$$\begin{cases} 3 - t = -4 + 2t' \\ -2 + 3t = 1 - 3t' \\ 1 + 4t = 2 + t' \end{cases} \iff \begin{cases} -t = -7 + 2t' \\ -3 + 3t + 3t' = 0 \\ -1 + 4t - t' = 0 \end{cases}$$

$$\begin{cases} t = 7 - 2t' \\ -3 + 3(7 - 2t') + 3t' = 0 \\ -1 + 4(7 - 2t') - t' = 0 \end{cases} \iff \begin{cases} t = 7 - 2t' \\ -3 + 21 - 6t' + 3t' = 0 \\ -1 + 28 - 8t' - t' = 0 \end{cases}$$

$$\begin{cases} t = 7 - 2t' \\ 3t' = 18 \\ 9t' = 27 \end{cases} \iff \begin{cases} t = 7 - 2t' \\ t' = 6 \\ t' = 3 \end{cases}$$

Les équations du système sont incompatibles, donc le système n'a pas de solution, et les droites D et Δ n'ont aucun point commun : elle ne sont donc pas sécantes.

4. Affirmation: Vraie

Le point F(-3; -3; 3) appartient au plan P car ses coordonnées vérifient l'équation du plan, en effet :

$$2x_F - 3y_F + z_F - 6 = 2 \times (-3) - 3 \times (-3) + 3 - 6 = -6 + 9 + 3 - 6 = 0.$$

De plus,
$$\overrightarrow{EF}$$
 a pour coordonnées $\begin{pmatrix} -3 - (-5) \\ -3 - 0 \\ 3 - 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$. Ce vecteur a les même coor-

données que le vecteur normal du plan que l'on peut obtenir par lecture de l'équation de P.

Ainsi, la droite (EF) est une droite orthogonale au plan P, telle que $F \in P$, donc F est bien le projeté orthogonal du point E(-5;0;2) sur le plan P.

5. Affirmation: Fausse

Par lecture de l'équation de P', celui-ci admet comme vecteur normal le vecteur

$$\overrightarrow{n}$$
 $\begin{pmatrix} -3\\1\\-a^2 \end{pmatrix}$. La droite D est toujours dirigée par \overrightarrow{u} $\begin{pmatrix} -1\\3\\4 \end{pmatrix}$.

Le produit scalaire
$$\overrightarrow{n} \cdot \overrightarrow{u}$$
 vaut : $\overrightarrow{n} \cdot \overrightarrow{u} = -3 \times (-1) + 1 \times 3 + (-a^2) \times 4 = 6 - 4a^2$.

D est parallèle à P' si et seulement si le vecteur directeur de D est un vecteur directeur de P', c'est-à-dire si et seulement si le vecteur directeur de D est orthogonal à un vecteur normal à P'.

Autrement dit, D est parallèle à P' si et seulement si $\overrightarrow{n} \cdot \overrightarrow{u} = 0$ donc si et seulement si $6 - 4a^2 = 0$ c'est à dire $a^2 = \frac{6}{4}$ soit $a = \frac{\sqrt{6}}{2}$ ou $a = -\frac{\sqrt{6}}{2}$

Il existe donc deux valeurs du paramètre réel a telle que le plan P' d'équation $-3x+y-a^2z+3=0$ soit parallèle à la droite D.

EXERCICE 3 5 points

- 1. Ici, on interroge une personne au hasard, donc toutes les personnes qui constituent la population du pays ont la même probabilité d'être choisis : c'est une situation d'équiprobabilité et donc les proportions sont assimilables à des probabilités.
 - On a donc:
 - P(C) = 0.02, car 2 % de la population du pays a été contaminée;
 - P(V) = 0,9, car 90 % de la population a été vaccinée;
 - $P_C(V) = 0,62$, car 62 % des personnes contaminées ont été vaccinées.
- **2. a.** On a: $P(C \cap V) = P(C) \times P_C(V) = 0.02 \times 0.62 = 0.0124$.
 - **b.** Les évènements C et \overline{C} partitionnent l'univers, donc, d'après la formule des probabilités totales :

$$P(V) = P(C \cap V) + P(\overline{C} \cap V) \iff P(\overline{C} \cap V) = P(V) - P(C \cap V)$$

On a donc : $P(\overline{C} \cap V) = P(V) - P(C \cap V) = 0,9 - 0,0124 = 0,8876$

3. Pour compléter l'arbre de probabilité, il nous faut $P_{\overline{C}}(V)$.

Par définition :
$$P_{\overline{C}}(V) = \frac{P(\overline{C} \cap V)}{P(\overline{C})} = \frac{0.8876}{1 - P(C)} = \frac{0.8876}{0.98} \approx 0.9057$$
 au dix-millième près.

4. Par définition :
$$P_V(C) = \frac{P(V \cap C)}{P(V)} = \frac{0.0124}{0.9} \approx 0.0138.$$

Dans le contexte de l'exercice, cela signifie qu'environ 1,38 % des personnes vaccinées ont été contaminées par le virus.

- **5. a.** « Parmi les personnes non contaminées, il y a dix fois plus de personnes vaccinées que de personnes non vaccinées. ».
 - Cette affirmation est **fausse**, car un peu exagérée, parmi les personnes non contaminées, environ 90,57 % d'entre elles sont vaccinées, quand 9,43 % d'entre elles ne le sont pas, mais le décuple de 9,43 % est 94,3 %, qui est donc supérieur à 90,57 %.

Il y a $\frac{90,57}{9,43}\approx 9,6$ fois plus de personnes vaccinées que non vaccinées parmi les personnes non contaminées.

- **b.** « Plus de 98 % de la population vaccinée n'a pas été contaminée. » Cette affirmation est **vraie**, car on a calculé qu'environ 1,38 % des personnes vaccinées ont été contaminées par le virus, donc, par complémentaire, cela implique qu'environ 98,62 % des personnes vaccinées n'ont pas été contaminées. Il est donc correct de dire que c'est plus de 98 %.
- **6. a.** On a une épreuve aléatoire à deux issues. On qualifie de succès l'évènement C, de probabilité p=0,02;
 - Cette épreuve est répétée n=20 fois pour constituer l'échantillon de 20 personnes. La répétition étant assimilable à des tirages successifs avec remise, on peut dire que les répétitions sont identiques et indépendantes;
 - La variable aléatoire *X* compte le nombres de personnes contaminées, donc le nombre de succès, dans l'échantillon.

Ces trois éléments garantissent que X suit la loi binomiale, de paramètres n=20 et p=0,02.

b. La probabilité que 4 personnes exactement soient contaminées dans ce groupe de 20 personnes est :

$$P(X = 4) = {20 \choose 4} \times 0,02^4 \times 0,98^{20-4} = 4845 \times 0,02^4 \times 0,98^{16} \approx 5,6 \times 10^{-4}$$

Finalement, avec les consignes d'arrondi : $P(X = 4) \approx 0,0006$

EXERCICE 4 5 points

L'objectif de cet exercice est d'étudier la suite (u_n) définie pour tout entier naturel n par :

$$\left\{ \begin{array}{l} u_0 = 0 \\ u_1 = \frac{1}{2} \\ u_{n+2} = u_{n+1} - \frac{1}{4}u_n \end{array} \right.$$

Partie A: Conjecture

1. Voici le tableau complété (on peut calculer rapidement les termes à la main, puis vérifier à la calculatrice) :

n	0	1	2	3	4	5
u_n	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{5}{32}$

2. Par exploration à la calculatrice, les termes de la suite semblent décroitrent, tout en restant strictement positifs, on a $u_{100} \approx 8 \times 10^{-29}$, et $u_{1000} \approx 9 \times 10^{-299}$.

On suppose que la suite converge vers 0.

Partie B: Étude d'une suite auxiliaire

1. On a:
$$w_0 = u_1 - \frac{1}{2}u_0 = \frac{1}{2} - \frac{1}{2} \times 0 = \frac{1}{2}$$
.

2. On va établir la relation de récurrence de (w_n) . Soit n un entier naturel.

$$w_{n+1} = u_{(n+1)+1} - \frac{1}{2}u_{(n+1)} \quad \text{en appliquant la définition de } w \text{ au rang } (n+1)$$

$$= u_{n+2} - \frac{1}{2}u_{n+1}$$

$$= \left(u_{n+1} - \frac{1}{4}u_n\right) - \frac{1}{2}u_{n+1} \quad \text{en appliquant la relation de récurrence de } u.$$

$$= \frac{1}{2}u_{n+1} - \frac{1}{4}u_n$$

$$= \frac{1}{2}\left(u_{n+1} - \frac{1}{2}u_n\right)$$

$$= \frac{1}{2}w_n \quad \text{en appliquant la définition de } w \text{ au rang } n$$

Ainsi, on a:
$$\forall n \in \mathbb{N}$$
, $w_{n+1} = \frac{1}{2}w_n$.

Cette relation de récurrence établit que (w_n) est une suite géométrique, de raison $q=\frac{1}{2}$, et de premier terme $w_0=\frac{1}{2}$.

3. Puisque la suite est géométrique, on a la propriété classique :

$$\forall n \in \mathbb{N}, \quad w_n = w_0 \times q^n = \frac{1}{2} \times \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{n+1}.$$

4. Soit n un entier naturel. On reprend la définition de (w_n) :

$$w_n = u_{n+1} - \frac{1}{2}u_n \iff \left(\frac{1}{2}\right)^{n+1} = u_{n+1} - \frac{1}{2}u_n$$
 d'après l'expression explicite de w_n

$$\iff u_{n+1} = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n$$

On arrive bien à la relation de récurrence demandée.

5. Pour tout *n* entier naturel, on pose : P_n l'affirmation : « $u_n = n \left(\frac{1}{2}\right)^n$ ».

Initialisation : On a d'une part $u_0 = 0$ et, d'autre part : $0 \times \left(\frac{1}{2}\right)^0 = 0 \times 1 = 0$.

L'affirmation est donc vraie au rang 0.

Hérédité: Pour un entier naturel n donné, on suppose que la propriété P_n est vraie, c'est-à-dire : $u_n = n \left(\frac{1}{2}\right)^n$.

On a:
$$u_{n+1} = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n$$
 d'après la relation de récurrence de la question **B. 4**

$$= \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2} \times n \left(\frac{1}{2}\right)^n \quad \text{par hypothèse de récurrence}$$

$$= \left(\frac{1}{2}\right)^{n+1} + n \left(\frac{1}{2}\right)^{n+1}$$

$$= \left(\frac{1}{2}\right)^{n+1} \times (1+n)$$

$$u_{n+1} = (n+1) \left(\frac{1}{2}\right)^{n+1} \quad \text{c'est l'affirmation } P_{n+1}$$

Conclusion : L'affirmation P_0 est vraie, et, pour tout entier naturel n, la véracité de l'affirmation P_n est héréditaire, donc, par principe de récurrence :

$$\forall n \in \mathbb{N}, \quad u_n = n \left(\frac{1}{2}\right)^n.$$

Partie C : Étude de la suite (u_n)

1. Soit *n* un entier naturel non nul, donc supérieur ou égal à 1 :

$$u_{n+1} - u_n = (n+1) \left(\frac{1}{2}\right)^{n+1} - n\left(\frac{1}{2}\right)^n \quad \text{d'après la question } \mathbf{B.5.}$$

$$= (n+1) \left(\frac{1}{2}\right)^{n+1} - n\left(\frac{1}{2}\right)^{n+1} \times 2$$

$$= \left(\frac{1}{2}\right)^{n+1} \times \left((n+1) - 2n\right)$$

$$= \left(\frac{1}{2}\right)^{n+1} \times \left(1 - n\right)$$

La différence $u_{n+1} - u_n$ est égale au produit de deux nombres de signe contraire, car, pour n entier naturel supérieur ou égal à 1 :

•
$$\left(\frac{1}{2}\right)^{n+1}$$
 est positif strictement;

• (1-n) est négatif ou nul

La différence $u_{n+1} - u_n$ est donc négative ou nulle pour tout n supérieur ou égal à 1, on en déduit donc que la suite (u_n) est décroissante à partir du rang n = 1.

2. L'expression du terme général de la suite (u_n) permet d'affirmer que la suite est minorée par 0, car chaque terme est le produit de n, entier naturel, donc positif et $de\left(\frac{1}{2}\right)^n$, strictement positif, car $\frac{1}{2}$ est strictement positif.

De plus, la suite est décroissante, à partir du rang n = 1.

La suite est donc décroissante (à partir du rang n=1) et minorée par 0 : on en déduit qu'elle converge, vers une limite ℓ dont on sait que $\ell\geqslant 0$.

3. On admet que la limite de la suite (u_n) est solution de l'équation : $\ell = \ell - \frac{1}{4}\ell$.

Résolvons cette équation :
$$\ell = \ell - \frac{1}{4}\ell \iff \ell = \frac{3}{4}\ell$$

$$\iff \ell - \frac{3}{4}\ell = 0$$

$$\iff \frac{1}{4}\ell = 0$$

$$\iff \ell = 0 \quad \operatorname{car} \frac{1}{4} \neq 0$$

L'équation ayant une unique solution, puisque la limite doit être une solution de l'équation, on a donc la limite de la suite (u_n) qui est 0, l'unique solution de l'équation.

Cela vient confirmer notre conjecture de la partie A.