Modelling plant-nematode interactions to understand plant tolerance

Joseph Penlap, Suzanne Touzeau, Frédéric Grognard, Valentina Baldazzi

PhD student, Inria Centre at Université Côte d'Azur

MPDEE, 25 April 2023

Root-Knot Nematodes (RKN), Meloidogyne spp.

small soil worms,

Context •00000

- obligate root endoparasites,
- ubiquitous polyphagous pest
- 14% of global crop losses worldwide [1] [1] Djian-Caporalino, EPPO Bulletin, 2012

Main impacts

- stunted growth and wilting
- root deformation (galls)

RKN life cycle

Specific impacts

- clonal reproduction
- reduced water and nutrient uptake
- hijacking of plant resources (carbon)

Context

Strong variability in plant response to RKN parasitism among crop species

Plant variability

Strong variability in plant response to RKN parasitism among crop species

Which mechanisms underlie plant tolerance?

Project vision

Our approach

- ➤ Experimental data on 3 plant species
- ➤ Model coupling plant ecophysiology and pest population dynamics

¹Dewar, Functional Ecology, 1993

²Tankam et al., Mathematical Biosciences, 2020

Project vision

Our approach

- ➤ Experimental data on 3 plant species
- Model coupling plant ecophysiology and pest population dynamics

	Plant physiology	Pest population dynamics	
Ecological models ¹	yes	on	
Epidemiological models ²	no	yes	

¹Dewar, Functional Ecology, 1993

²Tankam et al., Mathematical Biosciences, 2020

Project vision

Our approach

- ➤ Experimental data on 3 plant species
- ➤ Model coupling plant ecophysiology and pest population dynamics

	Plant physiology	Pest population dynamics	
Ecological models ¹	yes	no	
Epidemiological models ²	no	yes	
Our model	yes	yes	

¹Dewar, Functional Ecology, 1993

²Tankam et al., Mathematical Biosciences, 2020

Outline

Context

Plant model

Plant model calibration

Ongoing work

Plant model

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \\ \end{cases}$$
Root
$$\begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \\ \end{cases}$$
Fruit
$$\begin{cases} \frac{dW_f}{dt} = \\ \frac{dC_f}{dt} = \\ \end{cases}$$

9

$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \frac{\sigma_c f(\psi_s)}{\text{Uptake}} \\ \begin{cases} \frac{dW_r}{dt} = \\ \\ \frac{dC_r}{dt} = \end{cases} - \underbrace{\frac{1}{W_s} \frac{dW_r}{dt}}_{\text{Dilution}} \\ \begin{cases} \frac{dW_f}{dt} = \\ \\ \frac{dC_f}{dt} = \end{cases} - \underbrace{\frac{1}{W_f} \frac{dW_r}{dt}}_{\text{Dilution}} \\ \begin{cases} \frac{dW_f}{dt} = \\ \\ \frac{dC_f}{dt} = \end{cases} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt}}_{\text{C}_f} \\ \end{cases}$$

9

Dilution

$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} \\ \\ \frac{dW_r}{dt} = \\ \\ \text{Root} \begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} \\ \\ \frac{dW_r}{dt} = \\ \\ \\ \frac{dW_r}{dt} = \\ \\ \frac{$$

$$\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + \mathsf{T}_a\right)}_{\mathsf{Transport}}$$

$$-\underbrace{\frac{1}{W_f}\frac{dW_f}{dt}C_f}_{\text{Dilution}}$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{Growth} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c \quad) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} \\ - \underbrace{\frac{dW_r}{dt}}_{Dilution} \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r}}_{Transport} - \underbrace{(f_c \quad) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Growth} \\ - \underbrace{\frac{1}{W_r}}_{Dilution} \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{1}{W_r}}_{Dilution} \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{1}{W_r}}_{Transport} \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{1}{W_r}}_{Transport} \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{1}{W_r}}_{Transport} \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{1}{W_r}}_{Dilution} \underbrace{\frac{1$$

9

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{Growth} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Respiration growth} \\ - \underbrace{\frac{dW_r}{dt}}_{Cr} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{Growth} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{\frac{T_r}{Transport}}_{Transport} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Respiration growth} \\ - \underbrace{\frac{dW_f}{dt} C_r}_{Cr} \underbrace{\frac{dW_f}{dt} C_r}_{Dilution} \\ - \underbrace{\frac{dW_f}{dt}}_{Transport} - \underbrace{\frac{dW_f}{K_f + C_f} W_f}_{Cr} \\ - \underbrace{\frac{dW_f}{dt}}_{Transport} - \underbrace{\frac{dW_f}{K_f + C_f}}_{Dilution} \\ - \underbrace{\frac{dW_f}{dt}}_{Dilution} - \underbrace{\frac{dW_f}{dt}}_{Dilution} C_f \\ - \underbrace{\frac{dW_f}{dt}}_{Dilution} - \underbrace{\frac{dW_f}{dt}}_{Dilution} C_f \\ - \underbrace{\frac{dW_f}{dt}}_{Dilution} - \underbrace{\frac{dW_f}{dt}}_{D$$

Dilution

$$\begin{aligned} & \text{Shoot} \left\{ \frac{dW_s}{dt} = \underbrace{\frac{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}{Growth}}}_{Growth} \right. \\ & \frac{dC_s}{dt} = \underbrace{\frac{\sigma_c f(\psi_s)}{U_{ptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,s}) \, k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} - \underbrace{\frac{C_s^n}{K_m^n + C_s^n}}_{Maintenance respiration} - \underbrace{\frac{dW_r}{K_m^n + C_s^n}}_{Dilution} - \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ & \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r} \underbrace{T_r}_{Transport} - \underbrace{(f_c + r_{g,r}) \, k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_r^n}}_{Maintenance respiration} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{Dilution} \\ & \frac{dW_f}{dt} = \underbrace{\frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth}}_{Transport} - \underbrace{\frac{C_r^n}{K_f + C_f}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_f^n}}_{Maintenance respiration} - \underbrace{\frac{dW_f}{dt} C_f}_{Dilution} \\ & \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) \, k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_f^n}}_{Maintenance respiration} - \underbrace{\frac{dW_f}{dt} C_f}_{Dilution} \\ & \underbrace{\frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) \, k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_r^n}}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f}_{Dilution} \\ & \underbrace{\frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{\frac{f_c + r_{g,f}}{K_f + C_f}}}_{Growth} \underbrace{\frac{C_f}{K_f + C_f}}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f}_{Dilution}}_{Dilution} \\ & \underbrace{\frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f}_{Dilution}}_{Dilution} - \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f}_{Dilution}}_{Dilution} \\ & \underbrace{\frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f}_{Dilution}}_{Dilution} - \underbrace{\frac{1}{W_f} \underbrace{\frac{dW_f}{dt} C_f$$

9

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_s}{k_s^n + C_s^n}}_{\text{Dilution}} - \underbrace{\frac{dW_s}{k_s^n + C_s^n}}_{\text{Dilution}} - \underbrace{\frac{dW_s}{k_s^n + C_s^n}}_{\text{Crowth}} - \underbrace{\frac{dC_r}{k_s^n + C_r}}_{\text{Transport}} - \underbrace{\frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{k_r^n + C_r}}_{\text{Crowth}} - \underbrace{\frac{1}{W_r^{1-\beta} C_r}}_{\text{Dilution}} - \underbrace{\frac{1}{W_r^{1-\beta} C_r}}_{\text{Dilution}} - \underbrace{\frac{1}{W_r^{1-\beta} C_r}}_{\text{Dilution}} - \underbrace{\frac{1}{W_r^n + C_r^n}}_{\text{Dilution}} -$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{Growth} - \underbrace{\gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n}\right) W_s}_{Mortality} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{\left(T_r + T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,s}\right) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{Maintenance respiration} - \underbrace{\frac{dW_s}{K_m^n + C_s^n}}_{Dilution} \\ \end{cases}$$

$$\begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{Growth} - \underbrace{\gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_r}_{Mortality} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{Transport} - \underbrace{\left(f_c + r_{g,r}\right) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{Maintenance respiration} - \underbrace{c_{rh} \frac{1}{W_r^{1-\beta}} C_r}_{Rhizodeposition} - \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ \end{cases}$$

$$\begin{cases} \frac{dW_f}{dt} = \underbrace{k_r f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth} - \underbrace{\gamma_f \left(\frac{K_m^n}{K_m^n + C_f^n}\right) W_f}_{Mortality} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,f}\right) k_r f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_f^n}{K_m^n + C_f^n}\right)}_{Maintenance respiration} - \underbrace{\frac{dW_f}{dt} C_f}_{Dilution} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,f}\right) k_r f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_f^n}{K_m^n + C_f^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,f}\right) k_r f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_f^n}{K_m^n + C_f^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,f}\right) k_r f(\psi_f) \frac{C_f}{K_f + C_f}}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\left(f_c + r_{g,f}\right) k_r f(\psi_f) \frac{C_f}{K_f + C_f}}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{Transport} - \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_f + T_a\right)}_{Transport} - \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_f + T_a\right)}_{Transport} - \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_f + T_f + T_$$

$$\begin{aligned} & \text{Shoot} \left\{ \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} - \underbrace{\gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n} \right) W_s}_{\text{Mortality}} \right. \\ & \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{\left(\frac{T_r + T_f + T_a}{T_r} \right) - \left(f_c + r_{g,s} \right) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n} \right) - \frac{1}{W_s} \frac{dW_s}{dt} C_s}_{\text{Maintenance respiration}} - \frac{1}{W_s} \underbrace{\frac{dW_r}{dt} - \frac{C_r}{K_r + C_r} W_r - \gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n} \right) W_r}_{\text{Mortality}} \right. \\ & \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r}}_{\text{Transport}} \underbrace{\frac{T_r}{T_r}}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,r} \right) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n} \right) - c_{rh} \frac{W_r}{W_r^{2-\beta}} C_r - \frac{1}{W_r} \frac{dW_r}{dt} C_r, \\ \underbrace{\frac{dW_f}{dt}}_{\text{Growth}} \underbrace{\frac{C_f}{K_r + C_f} W_f - \gamma_f \left(\frac{K_m^n}{K_m^n + C_f^n} \right) W_f, \\ \underbrace{\frac{dW_f}{dt}}_{\text{Growth}} \underbrace{\frac{C_f}{K_r + C_f} W_f - \gamma_f \left(\frac{K_m^n}{K_m^n + C_f^n} \right) W_f, \\ \underbrace{\frac{dC_f}{dt}}_{\text{Growth}} \underbrace{\frac{1}{W_f} \underbrace{\frac{C_f}{K_f + C_f}}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,f} \right) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Mortality}} - \underbrace{r_{m,f} \left(\frac{C_f^n}{K_m^n + C_f^n} \right) - \frac{1}{W_f} \frac{dW_f}{dt} C_f. \\ \underbrace{\frac{dW_f}{M_f} - C_f}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_f}{M_f} - C_f}_{\text{Maintenance respira$$

The carbon flow³ T in phloem vessels $T = q C_s$, with q the volume flow rate

Then,

$$\begin{cases} (q_r + q_f) R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f) R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases}$$

$$\begin{cases} T = \frac{(C_s - C_r)}{R_{ph}} C_s \\ R_{ph,...} = \frac{r_{ph,...}}{W^{\alpha}} \end{cases}$$

³Minchin et al., Journal of Experimental Botany, 1993

Therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases}$$

Therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases} \begin{cases} T_r = q_r C_s \\ T_f = \left(\frac{W_s^n}{I^n + W_s^n}\right) q_f C_s \end{cases}$$

Water transport

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s - \gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n}\right) W_s}_{\text{Mortality}}, \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{\left(T_r + T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,s}\right) k_s f(\psi_s)}_{\text{Growth}} \underbrace{\frac{C_s}{K_s + C_s}}_{\text{Maintenance respiration}} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right) - \frac{1}{W_s} \frac{dW_s}{dt} C_s}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{dt}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{dC_r}{dt}}_{\text{Rhizodeposition}} - \underbrace{\frac{dW_r}{V_r^{2-\beta}} C_r - \frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Rhizodeposition}} - \underbrace{\frac{dW_r}{dt} C_r}_{\text{Growth}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Mortality}} - \underbrace{\frac{dW_r}{K_m^n + C_r^n}}_{\text{Growth}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Mortality}} - \underbrace{\frac{dW_r}{K_m^n + C_r^n}}_{\text{Rhizodeposition}} - \underbrace{\frac{dW_r}{W_r^{2-\beta}} C_r - \frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Maintenance respiration}} - \underbrace{\frac{dC_r}{K_r^n + C_r^n}}_{\text{Transport}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Growth}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Mortality}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{W_r^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{K_r^n + C_r^n}}_{\text{Maintenance resp$$

Water transport

Transpiration process E guiding water flow, $E = \sigma_W W_s f(\psi_s)$,

$$\psi_r = \psi_{sol} - R_{sr}E$$
.

$$\psi_r = \psi_{sol} - R_{sr}E,$$
 $\psi_s = \psi_r - R_{xy}E,$ $\psi_f = \psi_s.$

$$\psi_f = \psi_s$$
.

where ψ_{sol} the soil water potential and R.. resistances.

$$R_{sr} = \frac{r_{sr}}{W_r^{\alpha_r}}, \quad R_{xy,..} = \frac{r_{xy,..}}{W^{\alpha_{..}}}.$$

Water regulation function

$$f(\psi) = \frac{\psi^n}{K^n + \psi^n}$$

Plant model calibration

Plant model calibration •00000

Experimental data

- > 3 plant species: tomato, pepper, cucurbit
- 2 plant categories:
 - control
 - inoculated by nematodes

- ➤ destructive measures, 3 points in time:
 - plant: fresh and dry masses for shoot, root and fruit
 - nematodes: number of galls, egg masses and nematode/gall
- ➤ 6 replicates (90 plants)

Plant model calibration

Plant model calibration

Experimental data

- ➤ 3 plant species: tomato, pepper, cucurbit
- ➤ 2 plant categories:
 - control
 - inoculated by nematodes

- destructive measures, 3 points in time:
 - plant: fresh and dry masses for shoot, root and fruit
 - nematodes: number of galls, egg masses and nematode/gall
- ➤ 6 replicates (90 plants)

Strategy

- ➤ Plant model calibration on control data
- Full model calibration on inoculated data [ongoing work]

Model dynamics

Tomato plant biomass

carbon transport

Plant model calibration 000000

TABLE 1 - Standard values for sensitivity analysis

Parameters	Description	Value	Interval
σ_C	Specific carbon fixation rate by the aerial part	0.4	± 30%
σ_W	Specific transpiration rate of aerial part	1.2	± 30%
$r_{ph,s}, r_{ph,r}, r_{ph,f}$	Xylem resistance coefficients to water flow	0.5, 0.5, 0.005	± 30%
$r_{xy,s}$, $r_{xy,r}$, $r_{xy,f}$	Phloem resistance coefficients to sap flow	5, 5, 0.1	± 30%
r_{sr}	Coefficient of resistance to water absorption by the roots	1	± 30%
k_s, k_r, k_f	Specific growth rates	0.14, 0.12, 0.6	± 30%
K_s, K_r, K_f	Half-saturation constants related to growth rate	0.1, 0.05, 0.01	± 30%
$\gamma_s, \gamma_r, \gamma_f,$	Mortality and leaf fall coefficients	0.1, 0.01, 0.001	± 30%
n, n_c, n_p, n_{hill}	Hill coefficients for transition, growth, photosynthesis and water regulation	10, 10, 10, 10	± 30%
W_{limit}	Transition coefficient from vegetative to reproductive phase	15	± 30%
K_c, K_p	Half-saturation constants related to the effect of water on growth and photosynthesis	-1400, -1600	3 fixed values
$\alpha_s, \alpha_r, \alpha_f$	Allometric coefficients	2/3, 2/3, 2/3	± 30%
$r_{s,m}, r_{r,m}, r_{f,m}$	Maintenance respiration coefficients for aerial, root and fruit compartments	0.001, 0.001, 0.001	± 30%
$r_{s,g}$, $r_{r,g}$, $r_{f,g}$	Growth respiration coefficients of aerial, root and fruit compartments	0.01, 0.01, 0.01	± 30%
C_{rh}	Rhizodeposition coefficient	0.1	± 30%
ta	concentration rate of carbon related to active transport	0.5	± 30%

- 26 parameters
- 3 levels for each parameter (reference value and $\pm 30\%$ of reference value)
- some reference values from literature

Global sensitivity analysis

Plant model calibration

000000

Goal: Identifying the most influential parameters

inputs: 26 parameters, **outputs**: dry masses along time (vector)

Method

- 1. fractional factorial design to explore parameter space
- 2. PCA to reduce output and capture its variability
- 3. ANOVA to compute sensitivity indices (SI)

$$SI_{..} = \frac{SS_{..}}{TSS}, \qquad GSI = \sum_{k=1}^{components} SI_k \times inertia_k$$

SS = sum of squares, TSS = total sum of squares

Plant model used to screen plant traits that most affect the **total** biomass (shoot + root + fruit) dynamics

Generalised sensitivity indices

Global sensitivity analysis

Plant model used to screen plant traits that most affect **root** biomass (W_r) dynamics

Generalised sensitivity indices

Integrated plant-pest model

$$\text{Root} \left\{ \begin{array}{l} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} - \underbrace{\gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n} \right) W_r}_{\text{Mortality}} - \underbrace{\epsilon \beta J_2 W_r}_{\text{Infected roots}} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n} \right)}_{\text{Maintenance respiration}} - \underbrace{c_{rh} \frac{W_r}{W_r^{2-\beta}} C_r}_{\text{Rhizodeposition}} \\ - \frac{1}{W_r} \frac{dW_r}{dt} C_r - \underbrace{\gamma F}_{\text{RKN feeding}} - \underbrace{\kappa \epsilon \beta J_2 W_r}_{\text{Gall formation}} \right.$$

$$\mathsf{RKN} \begin{cases} \frac{dJ}{dt} = \underbrace{\Omega \, \beta \, J_2 \, W_r}_{\mathsf{RKN \, entry}} - \underbrace{\eta \, J}_{\mathsf{Maturation}} - \underbrace{(\mu_j + \mu_r) \, J}_{\mathsf{Mortality}} \\ \frac{dF}{dt} = \underbrace{(1 - \theta) \, \eta \, J}_{\mathsf{Maturation}} - \underbrace{(\mu_F + \mu_r) \, F}_{\mathsf{Mortality}} \end{cases} \\ \mathsf{Free} \begin{cases} \frac{dE}{dt} = \underbrace{r \, F}_{\mathsf{Egg \, laying}} - \underbrace{h \, E}_{\mathsf{Egg \, hatching}} - \underbrace{\mu_e \, E}_{\mathsf{Mortality}} \\ \frac{dJ_2}{dt} = \underbrace{h \, E}_{\mathsf{Egg \, hatching}} - \underbrace{\beta \, J_2 \, W_r}_{\mathsf{Larvae \, infection}} - \underbrace{\mu_J_2 \, J_2}_{\mathsf{Mortality}} \end{cases}$$

Future work

- Identification of key physiological and architectural traits underlying tolerance plant to RKN infestation
- Multi-seasonal² effect of plant tolerance: crop rotations (tolerant, susceptible and resistant plants).

²Nilusmas et al., Evolutionary Applications, 2020

Control measures

Resistant varieties

Nematicide treatments

Solarisation

Water potential & hydraulic resistance

The **presence of galls** lowers the water and carbon transport along the xylem and phloem resp.

$$\psi_r = \psi_{sol} - R_{sr}E,$$
 $\psi_s = \psi_r - R_{xv}E = \psi_f.$

where ψ_{sol} the soil water potential and $E = \sigma_W W_s f(\psi_s)$ leaf transpiration.

without nematodes

$R_{sr} = \frac{r_{sr}}{W_r^{\alpha_r}},$ $R_{xy} = \frac{r_{xy,r}}{W_r^{\alpha_r}} + \frac{r_{xy,s}}{W_s^{\alpha_s}},$ $R_{ph} = \frac{r_{ph,r}}{W_r^{\alpha_r}} + \frac{r_{ph,s}}{W_s^{\alpha_s}} + \frac{r_{ph,f}}{W_f^{\alpha_f}}.$

with nematodes

$$R_{sr} = \frac{r_{sr}}{(W_r + G)^{\alpha_r}},$$

$$R_{xy} = \frac{r_{xy,r}}{(W_r + G)^{\alpha_r}} + \frac{r_{xy,s}}{W_s^{\alpha_s}}$$

$$R_{ph} = \frac{r_{ph,r}}{(W_r + G)^{\alpha_r}} + \frac{r_{ph,s}}{W_s^{\alpha_s}} + \frac{r_{ph,f}}{W_f^{\alpha_f}}.$$

26

Carbon transport

The circulation flux³ T of carbon in the phloem between the source and the sink is described by: $T = q C_s$

and therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f), \\ (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r). \end{cases}$$

³Minchin et al., Journal of Experimental Botany, 1993

Active transport (T_a)

It requires energy from cells ATP (Adenosine Triphosphate) to occur

$$T_a = ta \times C_s \times W_f$$

Nematodes dynamics

$$\mathsf{Free} \left\{ \begin{aligned} \frac{dE}{dt} &= \underbrace{r\,F}_{\mathsf{Egg\ laying}} - \underbrace{h\,E}_{\mathsf{Egg\ hatching}} - \underbrace{\mu_e\,E}_{\mathsf{Mortality}}, \\ \frac{dJ_2}{dt} &= \underbrace{h\,E}_{\mathsf{Egg\ hatching}} - \underbrace{\beta\,J_2\,W_r}_{\mathsf{Larvae\ infection}} - \underbrace{\mu_{J_2}\,J_2}_{\mathsf{Mortality}}. \end{aligned} \right.$$

In the root
$$\begin{cases} \frac{dJ}{dt} = \underbrace{\Omega\beta J_2 W_r}_{\text{Nematode entry}} - \underbrace{\eta J}_{\text{Larvae maturation}} - \underbrace{\mu_j J}_{\text{Mortality}}, \\ \frac{dF}{dt} = \underbrace{(1-\theta)\eta J}_{\text{Maturation}} - \underbrace{\mu_F F}_{\text{Female mortality}} \end{cases}$$