Corrigé exercice 47:

 y_0 est une fonction affine, donc elle est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $y'_0(x) = 3$. D'où, pour tout $x \in \mathbb{R}$, $y'_0(x) + 3y_0(x) = 3 + 9x - 3 = 9x$, et y_0 est donc bien solution de (E). Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} y'(x) + 3y(x) = 9x \\ y'_0(x) + 3y_0(x) = 9x \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y_0'(x)$ et $\varphi'(x) + 3\varphi(x) = 0 \Leftrightarrow \varphi'(x) = -3\varphi(x)$

 $\varphi(x) = ke^{-3x}$ avec k réel

Ainsi les solutions de (E) sont les fonctions définies sur \mathbb{R} par $y(x) = \varphi(x) + y_0(x) = ke^{-3x} + 3x - 1$, avec k réel.

Corrigé exercice 48:

Soit y_0 une fonction définie sur \mathbb{R} par $y_0(x) = mx + p$, avec m et p deux réels. Alors y_0 est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $y_0'(x) = m$.

 y_0 est solution de $(E) \Leftrightarrow \text{Pour tout } x \in \mathbb{R}, \ 2y_0'(x) - y_0(x) = 2x \Leftrightarrow 2m - mx - p = 2x$. On identifie les coefficients de cette équation, ce qui nous donne le système suivant

$$\begin{cases} -m = 2 \\ 2m - p = 0 \end{cases} \Leftrightarrow \begin{cases} m = -2 \\ p = 2m = -4 \end{cases}$$

On en déduit que la fonction y_0 définie sur \mathbb{R} par $y_0(x) = -2x - 4$ est solution de l'équation (E).

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} 2y'(x) - y(x) = 2x \\ 2y'_0(x) - y_0(x) = 2x \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y'_0(x)$ et $2\varphi'(x) - \varphi(x) = 0 \Leftrightarrow \varphi'(x) = \frac{1}{2}\varphi(x)$

 $\varphi(x) = k e^{\frac{1}{2}x}$ avec k réel

On en déduit que les solutions de (E) sont définies sur \mathbb{R} par $y(x) = \varphi(x) + y_0(x) = ke^{\frac{x}{2}} - 2x - 4$, où k est un réel. Enfin, on détermine k tel que $F(0) = -2 \Leftrightarrow k - 4 = -2 \Leftrightarrow k = 2$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = 2e^{\frac{x}{2}} - 2x - 4$.

Corrigé exercice 49:

 y_0 est une fonction polynôme du second degré donc y_0 est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $y_0'(x) = -2x - 1$. Donc, pour tout $x \in \mathbb{R}$, $y_0'(x) - 3y_0(x) = -2x - 1 + 3x^2 + 3x + 3 = 3x^2 + x + 2$ et donc y_0 est bien solution de l'équation différentielle.

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} y'(x) - 3y(x) = 3x^2 + x + 2 \\ y'_0(x) - 3y_0(x) = 3x^2 + x + 2 \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y'_0(x)$ et $\varphi'(x) - 3\varphi(x) = 0 \Leftrightarrow \varphi'(x) = 3\varphi(x)$

 $\varphi(x) = ke^{3x} \text{ avec } k \text{ r\'eel}$

On en déduit que les solutions de l'équation $y'-3y=x^2+x+2$ sont définies sur \mathbb{R} par $y(x)=\varphi(x)+y_0(x)=ke^{3x}-x^2-x-1$, où k est un réel.

Corrigé exercice 50 :

Soit y_0 une fonction définie sur \mathbb{R} par $y_0(x) = ax^2 + bx + c$, où a, b et c sont des réels. Alors y_0 est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $y_0'(x) = 2ax + b$. Donc y_0 est solution de (E) si, et seulement si, pour tout $x \in \mathbb{R}$, $y_0'(x) + 2y_0(x) = 4x^2 - 2x + 1 \Leftrightarrow 2ax + b + 2ax^2 + 2bx + 2c = 4x^2 - 2x + 1$. On résout alors le système

$$x \in \mathbb{R}, y_0'(x) + 2y_0(x) = 4x^2 - 2x + 1 \Leftrightarrow 2ax + b + 2ax^2 + 2bx + 2c = 4x^2 - 2x + 1$$
. On résout alors le système
$$\begin{cases} 2a = 4 \\ 2a + 2b = -2 \\ b + 2c = 1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = -3 \\ c = 2 \end{cases}$$
, et on en déduit que la fonction y_0 définie sur \mathbb{R} par $y_0(x) = 2x^2 - 3x + 2$ est solution de (E) .

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} y'(x) + 2y(x) = 4x^2 - 2x + 1 \\ y'_0(x) + 2y_0(x) = 4x^2 - 2x + 1 \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y_0'(x)$ et $\varphi'(x) + 2\varphi(x) = 0 \Leftrightarrow \varphi'(x) = -2\varphi(x)$

 $\varphi(x) = ke^{-2x}$ avec k réel.

Les solutions de (E) sont donc les fonctions définies sur \mathbb{R} par $y(x) = \varphi(x) + y_0(x) = ke^{-2x} + 2x^2 - 3x + 2$, où k est un réel. Enfin, on détermine k tel que $F(0) = 4 \Leftrightarrow k + 2 = 4 \Leftrightarrow k = 2$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = 2e^{-2x} + 2x^2 - 3x + 2$.

Corrigé exercice 51:

 y_0 est le produit de $x \mapsto x$, fonction affine dérivable sur \mathbb{R} , avec la composée de la fonction affine $x \mapsto -x$, dérivable sur \mathbb{R} , avec la fonction exponentielle dérivable sur \mathbb{R} , donc y_0 est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $y'_0(x) = e^{-x} + x \times (-1) \times e^{-x} = (1-x) e^{-x}$. Donc, pour tout $x \in \mathbb{R}$, $y'_0(x) + y_0(x) = (1-x+x) e^{-x} = e^{-x}$. y_0 est donc bien solution de (E).

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} y'(x) + y(x) = e^{-x} \\ y'_0(x) + y_0(x) = e^{-x} \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y'_0(x)$ et $\varphi'(x) + \varphi(x) = 0 \Leftrightarrow \varphi'(x) = -\varphi(x)$ $\varphi(x) = ke^{-x}$ avec k réel.

On en déduit que les solutions de (E) sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{-x} + xe^{-x} = (x+k)e^{-x}$, où k est un réel.

Corrigé exercice 52:

Soit y_0 la fonction définie sur \mathbb{R} par $y_0(x) = mxe^{2x}$, avec m un réel à déterminer. y_0 est le produit de $x \mapsto mx$, fonction affine, dérivable sur \mathbb{R} , avec la composée de la fonction affine $x \mapsto 2x$ dérivable sur \mathbb{R} avec la fonction exponentielle dérivable sur \mathbb{R} , donc y_0 est dérivable sur \mathbb{R} , et, pour tout $x \in \mathbb{R}$, $y'_0(x) = me^{2x} + mx \times 2 \times e^{2x} = (2mx + m) e^{2x}$. Ainsi, y_0 est solution de (E) si, et seulement si, $y'_0(x) - 2y_0(x) = 2e^{2x}$ $\Leftrightarrow (2mx + m) e^{2x} - 2mxe^{2x} = 2e^{2x} \Leftrightarrow me^{2x} = 2e^{2x} \Leftrightarrow m = 2$. Ainsi, y_0 est solution de (E) si, et seulement si, pour tout $x \in \mathbb{R}$, $y_0(x) = 2xe^{2x}$.

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} y'(x) - 2y(x) = 2e^{2x} \\ y'_0(x) - 2y_0(x) = 2e^{2x} \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y'_0(x)$ et $\varphi'(x) - 2\varphi(x) = 0 \Leftrightarrow \varphi'(x) = 2\varphi(x)$

 $\varphi(x) = ke^{2x}$ avec k réel.

On en déduit que les solutions de (E) sont les fonctions définies sur \mathbb{R} par $y(x) = \varphi(x) + y_0(x) = \varphi(x)$ $(2x+k)e^{2x}$, où k est un réel. Enfin, on détermine k tel que $F(0)=-1 \Leftrightarrow (2\times 0+k)e^0=-1 \Leftrightarrow k=-1$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = (2x - 1)e^{2x}$.

Corrigé exercice 53:

Soit y_0 la fonction définie sur \mathbb{R} par $y_0(x)=(ax^2+bx+c)\mathrm{e}^{2x}$, où a, b et c sont des réels à déterminer. y_0 est le produit d'une fonction trinôme, dérivable sur \mathbb{R} , avec la composée de la fonction affine $x\mapsto 2x$ dérivable sur \mathbb{R} par la fonction exponentielle dérivable sur \mathbb{R} donc $\mathcal{D}_{y_0'} = \mathbb{R}$ et, pour tout $x \in \mathbb{R}$, $y_0'(x) = (2ax + b)e^{2x} + 2(ax^2 + bx + c)e^{2x} = (2ax^2 + (2a + 2b)x + b + 2c)e^{2x}$. Donc y_0 est solution de (E) si, et seulement si, $2y_0'(x) - 3y_0(x) = (x^2 + 5x + 3)e^{2x} \Leftrightarrow (ax^2 + (4a + b)x + 2b + c)e^{2x} = (x^2 + 5x + 3)e^{2x}$. On

résout le système suivant $\begin{cases} a=1\\ 4a+b=5\\ 2b+c=3 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=5-4a=1\\ 2b+c=3-2b=1 \end{cases}$. Ainsi, y_0 est solution de (E) si, et seulement si, pour tout $x\in\mathbb{R},\ y_0(x)=(x^2+x+1)\,\mathrm{e}^{2x}.$

seulement si, pour tout $x \in \mathbb{R}$, $y_0(x) =$

Soit y(x) solution de (E), on a donc le système :

$$\begin{cases} 2y'(x) - 3y(x) = (x^2 + 5x + 3)e^{2x} \\ 2y'_0(x) - 3y_0(x) = (x^2 + 5x + 3)e^{2x} \end{cases}$$

En posant
$$\varphi(x) = y(x) - y_0(x)$$
, on a $\varphi'(x) = y'(x) - y_0'(x)$ et $2\varphi'(x) - 3\varphi(x) = 0 \Leftrightarrow \varphi'(x) = \frac{3}{2}\varphi(x)$

 $\varphi(x) = ke^{\frac{3}{2}x}$ avec k réel.

On en déduit que les solutions de (E) sont les fonctions définies sur \mathbb{R} par $y(x) = \varphi(x) + y_0(x) = \varphi(x)$ $ke^{\frac{3x}{2}} + (x^2 + x + 1)e^{2x}$, où k est un réel.