

	INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO		Campus São Paulo
Aluno: Igor Domingos da Silva Mozetic		Prontuário: SP3027422	Nota
Curso: Informática 213	Ano/Semestre: 2020 / 3º Bimestre.	Data: 08.12.2020	
Avaliação: 3ª Lista de Exercícios - Ql	JI Professores: Gouveia/Matsumoto	Código Disciplina: QUI	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

Partes por milhão – ppm, diluição de soluções, titulação

1. A água potável não pode conter mais do que 5,0 . 10⁻⁴ mg de mercúrio (Hg) por grama de água. Para evitar o inconveniente de usar números tão pequenos, o químico utiliza um recurso matemático, surgindo assim uma nova unidade de concentração: ppm (partes por milhão).

$$\mathbf{ppm} = \frac{\text{massa do soluto em mg}}{\text{massa do solvente em kg}}$$

A quantidade máxima permitida de mercúrio na água potável corresponde a: a) 0,005 ppm. b) 0,05 ppm. c) 0,5 ppm. d) 5 ppm. e) 50 ppm

Resposta:

Dados:

Massa do soluto: 5,0 . 10⁻⁴ ou 0,0005mg

Massa da água: 1g ou 0,001kg

$$ppm = \frac{0,0005mg}{0,001kg}$$
 ou $ppm = \frac{5,0.10^{-4}mg}{1.10^{-3}kg} \rightarrow ppm = 5.10^{-1}$ ou $ppm = 0,5$. A alternatica correta é a letra C.

2. Um químico, ao desenvolver um perfume, decidiu incluir entre os componentes um aroma de frutas com concentração máxima de 10⁻⁴ mol/L. Ele dispõe de um frasco da substância aromatizante, em solução hidroalcoólica, com concentração de 0,01 mol/L.

Determine o volume, em mL, da solução hidroalcoólica que o químico deverá utilizar para a preparação de uma amostra de 0,50 L do novo perfume contendo o aroma de frutas na concentração

desejada.

Resposta:

Dados:

Concetração inicial = 0,01 mol/L

Volume inicial = ?

Concetração final = 10⁻⁴ mol/L

Volume final = 0.50L

Ci . Vi = Cf . Vf
$$\rightarrow$$
 Vi = $\frac{Cf \cdot Vf}{Ci} \rightarrow$ Vi = $\frac{10^{-4} \, mol/L \cdot 0,50L}{0,01 mol/L} \rightarrow$ Vi = $\frac{0,50 \cdot 10^{-4}L}{0,01} \rightarrow$ Vi = $\frac{5 \cdot 10^{-5}L}{1 \cdot 10^{-2}} \rightarrow$ Vi = 5 . $10^{-3}L \rightarrow 0,005L \rightarrow$ Vi = $5mL$.

3. A 20ª edição da Copa do Mundo de Futebol teve o Brasil como país convidado para sediar o evento. Como todo evento esportivo desse porte, o seguinte aspecto merece especial preocupação: a fiscalização de doping em atletas. O uso de substâncias anabolizantes para aumentar a força física, a resistência ou ainda a tolerância à dor tem aumentado nos últimos anos em várias modalidades esportivas.

Um dos anabolizantes derivados da testosterona, conhecido como dianabol (C₂₀H₂₈O₂), causa um aumento da pressão arterial e queima de gorduras. Suponha que um atleta ingeriu uma dose de dianabol cuja concentração detectada em uma amostra de 5,0 mL de sangue tenha sido de 6,0 mg L-1. Que volume de água seria necessário adicionar a esta amostra para levar esta concentração a 4,0 . 10⁻⁶ mol . L⁻¹ ?

Dados (q . mol $^{-1}$): H = 1; C = 12; O = 16.

- a) 0,025 L
- b) 0,066 L c) 0,015 L d) 0,030 L
- e) 0,020 L

Resposta:

$$\begin{array}{l} C_{20} \rightarrow 20 \;.\; 12 = 240 \mu \; /\!/\; H_{28} \rightarrow 28 \;.\; 1 = 28 \mu \; /\!/\; O_2 \rightarrow 16 \;.\; 2 = 32 \mu \rightarrow MM = 300 g/mol \\ 300 g \rightarrow 1 mol \rightarrow 300 x = 0,006 \rightarrow x = \frac{0,006 g/mol}{300 g} \rightarrow x = 0,00002 mol \end{array}$$

$$0,006g \rightarrow x$$

Ci . Vi = Cf . Vf
$$\rightarrow$$
 Vf = $\frac{Ci \cdot Vi}{Cf}$ \rightarrow Vf = $\frac{0,00002mol.L^{-1} \cdot 5mL}{4 \cdot 10^{-6}mol.L^{-1}}$ \rightarrow Vf = $\frac{0,00002 \cdot 5mL}{4 \cdot 10^{-6}}$ \rightarrow Vf = $\frac{1 \cdot 10^{-4}mL}{0,4 \cdot 10^{-6}}$ \rightarrow Vf = 2,5 . 10^{-2} \rightarrow Vf = 0,025L.

Como ja tinhamos 0,005L, basta apenas acrescentarmos 0,020L, ou seja, alternativa correta é a

Letra E

4. Em um experimento, uma amostra de 10 mL de um produto químico comercial que contém hidróxido de cálcio foi completamente neutralizada por 5 mL de solução aguosa de ácido clorídrico com concentração igual a 0,01 mol . L-1.

Elabore a equação química completa e balanceada dessa reação de neutralização.

Em seguida, calcule a concentração, em g . L-1, de hidróxido de cálcio presente na amostra do produto comercial.

Observação: Utilize a tabela periódica para pesquisar as massas atômicas dos elementos

Resposta:

Equação balaceada = Ca(OH)₂ + 2HCl → 2H₂O + CaCl₂

Dados:

 $Ca(OH)_2 = 10mL$

HCI = 5mL com concentração 0,01mol.L⁻¹

0,01mol.L⁻¹
$$\to$$
 1000mL \to 1000x = 0,05 \to x = $\frac{0,05}{1000}$ \to x = 0,00005 ou 5 . 10⁻⁵ mol de HCl x \to 5mL

$$Ca(OH)_2 + 2HCI \rightarrow 2H_2O + CaCl_2$$

1 mol Ca(OH)
$$\rightarrow$$
 2 mol HCl \rightarrow 5 . 10⁻⁵ = 2x \rightarrow $\frac{5 \cdot 10^{-5} mol}{2}$ = x \rightarrow x = 2,5 . 10⁻⁵ mol de Ca(OH)₂ x \rightarrow 5 . 10⁻⁵ mol HCl

Ca = 40 u

$$O = 16 . 2 = 32 u$$

$$H = 1.2 = 2 u$$

$$Mm = 40 + 32 + 2 = 74g/mol$$

2,5 .
$$10^{-5}$$
 mol de Ca(OH)₂ . 74 g/mol = 185 . $10^{-5} \rightarrow 1,85$. 10^{-3} g

$$\frac{1,85.10^{-3}g}{10.10^{-3}L} \rightarrow 0,185g \cdot L^{-1} \text{ ou } 1,85 \cdot 10^{-1}g \cdot L^{-1}$$