Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Exercise Sheet: Bayesian Statistics

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part I

Matrix & vector calculus

The exercises about Matrix & vector calculus are optional and can be skipped.

Exercise 1. (\star) Let A, B be $K \times K$ invertible matrices. Show that

$$(A+B)^{-1} = A^{-1}(A^{-1} + B^{-1})^{-1}B^{-1}$$

Solution. It is

$$(A+B)^{-1} = A^{-1}(I+A^{-1}B)^{-1}$$

= $A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1}$

Exercise 2. $(\star\star)$ [Woodbury matrix identity] Verify that

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

if A and C are non-singular.

17 Solution.

By checking that $(A + UCV) (A + UCV)^{-1} = I$

$$\begin{split} (A+UCV) \times \left[A^{-1} - A^{-1}U\left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1}\right] \\ &= I + UCVA^{-1} - (U + UCVA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ &= I + UCVA^{-1} - UC(C^{-1} + VA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ &= I + UCVA^{-1} - UCVA^{-1} = I. \end{split}$$

o So

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Exercise 3. $(\star\star)$ [Sherman–Morrison formula] Let A be a $K\times K$ invertible matrix and u and v two $K\times 1$ column vectors. Verify that

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{1}{1 + v^{\top} A^{-1} u} A^{-1} uv^{\top} A^{-1}$$

if $1 + v^{\top} A^{-1} u \neq 0$, and if A is non-singular.

7 Solution.

 $(A + uv^{T})(A + uv^{T})^{-1} = (A + uv^{T}) \left(A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u} \right)$ $= AA^{-1} + uv^{T}A^{-1} - \frac{AA^{-1}uv^{T}A^{-1} + uv^{T}A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - \frac{uv^{T}A^{-1} + uv^{T}A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - \frac{u(1 + v^{T}A^{-1}u)v^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - uv^{T}A^{-1}$ = I

Exercise 4. $(\star\star\star)$ [Block partition matrix inversion] Let A be $K\times K$ invertible matrix, and let $B=A^{-1}$ its inverse.

Consider Partition

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}; B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Namely, $B_{11}=\left[A^{-1}\right]_{11}$ is the upper corner of the A^{-1} , etc...

Show that

$$A_{11}^{-1} = B_{11} = B_{12}B_{22}^{-1}B_{21}$$
$$A_{11}^{-1}A_{12} = -B_{12}B_{22}^{-1}$$

44 **Hint:** Start by noticing that

$$AB = I \iff \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \iff \begin{cases} A_{11}B_{11} + A_{12}B_{21} & = I \\ A_{11}B_{12} + A_{12}B_{22} & = 0 \end{cases}$$

6 **Solution.** It is

$$AB = I \iff \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \iff \begin{cases} A_{11}B_{11} + A_{12}B_{21} & = I \\ A_{11}B_{12} + A_{12}B_{22} & = 0 \end{cases}$$

48 **So**

$$A_{11}B_{12} + A_{12}B_{22} = 0 \iff$$

$$A_{11}^{-1} (A_{11}B_{12} + A_{12}B_{22}) B_{22}^{-1} = 0 \iff$$

$$B_{12}B_{22}^{-1} + A_{11}^{-1}A_{12} = 0$$

2 **So**

$$A_{11}^{-1}A_{12} = -B_{12}B_{22}^{-1}$$

4 Also

55
$$A_{11}B_{12} + A_{12}B_{22} = 0 \iff$$
56
$$(A_{11}B_{12} + A_{12}B_{22})B_{22}^{-1}B_{21} = 0 \iff$$
57
$$A_{11}B_{12}B_{22}^{-1}B_{21} + A_{12}B_{21} = 0$$
58
$$A_{12}B_{21} = -A_{11}B_{12}B_{22}^{-1}B_{21}$$

Then, we plug in the above in $A_{11}B_{11} + A_{12}B_{21} = I$ we get

$$A_{11}B_{11} + A_{12}B_{21} = I \iff$$

$$A_{11}B_{11} - A_{11}B_{12}B_{22}^{-1}B_{21} = I \iff$$

$$B_{11} - B_{12}B_{22}^{-1}B_{21} = A_{11}^{-1}$$

63 **So**

$$A_{11}^{-1} = B_{11} = B_{12}B_{22}^{-1}B_{21}$$

Part II

Random variables

Exercise 5. (*)Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with CDF $F_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z}$ with z = h(y), and h^{-1} its inverse. The PDF of z is

$$F_z(z) = \begin{cases} F_Y(h^{-1}(z)) & \text{if } h \uparrow \\ \\ 1 - F_Y(h^{-1}(z)) & \text{if } h \downarrow \end{cases}$$

71 **Solution.** It is $z = h(y) \Leftrightarrow y = h^{-1}(z)$

For if $h \uparrow$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \le h^{-1}(z)) = P(Y \le h^{-1}(z)) = F_Y(h^{-1}(z))$$

For if $h \setminus$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \ge h^{-1}(z)) = P(Y \ge h^{-1}(z)) = 1 - F_Y(h^{-1}(z))$$

Exercise 6. (*)Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with PDF $f_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z} \subseteq \mathbb{R}$ and let h^{-1} be the inverse function of h. Consider a univariate random variable such that z = h(y).

The PDF of z is

$$f_z(z) = f_y(y) |\det(\frac{dy}{dz})| = f_y(h^{-1}(z)) |\det(\frac{d}{dz}h^{-1}(z))|$$

Solution. It is $z = h(y) \Leftrightarrow y = h^{-1}(z)$

For if $h \nearrow it$ is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \le h^{-1}(z)) = P(Y \le h^{-1}(z)) = F_Y(h^{-1}(z))$$

and

$$f_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_Y(h^{-1}(z)) = \frac{\mathrm{d}}{\mathrm{d}h^{-1}} F_Y(h^{-1}) \det(\frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z))$$

For if $h \setminus$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \ge h^{-1}(z)) = P(Y \ge h^{-1}(z)) = 1 - F_Y(h^{-1}(z))$$

88 and

$$f_z(z) = \frac{d}{dz} F_z(z) = \frac{d}{dz} \left[1 - F_Y(h^{-1}(z)) \right] = -\frac{d}{dh^{-1}} F_Y(h^{-1}) \det(\frac{d}{dz} h^{-1}(z))$$

but $\det(\frac{d}{dz}h^{-1}(z)) < 0$ because $h \setminus$. So in both cases:

$$f_z(z) = f_y(h^{-1}(z)) |\det(\frac{d}{dz}h^{-1}(z))|$$

Exercise 7. (*)Let $y \sim \operatorname{Ex}(\lambda)$ r.v. with Exponential distribution with rate parameter $\lambda > 0$, and $f_{\operatorname{Ex}(\lambda)}(y) = \lambda \exp(-\lambda y) 1(y \ge 0)$. Let $z = 1 - \exp(-\lambda y)$. Calculate the PDF of z, and recognize its distribution.

Solution. It is $z=1-\exp(-\lambda y)\Longleftrightarrow y=-\frac{1}{\lambda}\log(1-z),$ and $z\in[0,1].$ So $h^{-1}(z)=-\frac{1}{\lambda}\log(1-z).$ Then

$$f_{z}(z) = f_{\operatorname{Ex}(\lambda)}(h^{-1}(z)) \times \left| \det \left(\frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z) \right) \right| = f_{\operatorname{Ex}(\lambda)} \left(-\frac{1}{\lambda} \log(1-z) \right) \times \left| \det \left(\frac{\mathrm{d}}{\mathrm{d}z} \frac{-1}{\lambda} \log(1-z) \right) \right|$$

$$= \exp\left(-\lambda \frac{-1}{\lambda} \log(1-z) \right) 1 \left(-\frac{1}{\lambda} \log(1-z) \ge 0 \right) \times \left| -\frac{1}{\lambda} \frac{1}{1-z} \right| = 1 (z \in [0,1])$$

From the density, we recognize that $z \sim U(0,1)$ follows a uniform distribution.

Exercise 8. (\star) Prove the following properties

1. Let matrix $A \in \mathbb{R}^{q \times d}$, $c \in \mathbb{R}^q$, and z = c + Ay then

$$E(z) = E(c + Ay) = c + AE(y)$$

2. Let random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$, and let functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} , then

$$E(\psi_1(z) + \psi_2(y)) = E(\psi_1(z)) + E(\psi_2(y))$$

3. If random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ are independent then

$$E(\psi_1(z)\psi_2(y)) = E(\psi_1(z))E(\psi_2(y))$$

for any functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} .

8 Solution.

1. It is

$$\mathbf{E}(z) = \mathbf{E}(c + Ay) = \int (c + Ay) \, \mathrm{d}F(y) = c + A \int y \, \mathrm{d}F(y) = c + A\mathbf{E}(y)$$

2. It is

$$\begin{split} \mathsf{E}(\psi_1(z) + \psi_2(y)) &= \int \left(\psi_1(z) + \psi_2(y) \right) \mathsf{d} F((z,y)) = \int \psi_1(z) \mathsf{d} F((z,y)) + \int \psi_1(z) \mathsf{d} F((z,y)) \\ &= \int \psi_1(z) \mathsf{d} F(z) + \int \psi_1(z) \mathsf{d} F(z) = \mathsf{E}(\psi_1(z)) + \mathsf{E}(\psi_2(y)) \end{split}$$

3. If random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ then

$$dF(z, y) = dF(z)dF(y)$$

It is

$$\mathrm{E}(\psi_1(z)\psi_2(y)) = \int \left(\psi_1(z)\psi_2(y)\right) \mathrm{d}F((z,y)) = \left(\int \psi_1(z)\mathrm{d}F(z)\right) \left(\int \psi_2(y)\mathrm{d}F(y)\right)$$

Exercise 9. (\star) Prove the following properties of the covariance matrix

1.
$$\operatorname{Cov}(z, y) = \operatorname{E}(zy^{\top}) - \operatorname{E}(z) (\operatorname{E}(y))^{\top}$$

2.
$$Cov(z, y) = (Cov(y, z))^{\top}$$

3. $Cov_{\pi}(c_1 + A_1z, c_2 + A_2y) = A_1Cov_{\pi}(x, y)A_2^{\top}$, for fixed matrices A_1, A_2 , and vectors c_1, c_2 with suitable dimensions.

4. If z and y are independent random vectors then Cov(z, y) = 0

5 Solution.

1. It is

Cov
$$(z, y) = \mathrm{E}\left((z - \mathrm{E}(z))(y - \mathrm{E}(y))^{\top}\right)$$

$$\mathrm{E}\left(zy^{\top} - z\mathrm{E}(y)^{\top} - \mathrm{E}(z)y^{\top} + \mathrm{E}(z)\mathrm{E}(y)^{\top}\right)$$

$$= \mathrm{E}(zy^{\top}) - \mathrm{E}(z)\left(\mathrm{E}(y)\right)^{\top}$$

2. It is

$$(\operatorname{Cov}(y,z))^{\top} = \left(\operatorname{E} \left((z - \operatorname{E}(z))(y - \operatorname{E}(y))^{\top} \right) \right)^{\top} = \operatorname{E} \left(\left((z - \operatorname{E}(z))(y - \operatorname{E}(y))^{\top} \right) \right)^{\top}$$

$$= \operatorname{E} \left((y - \operatorname{E}(y))(z - \operatorname{E}(z))^{\top} \right) = \operatorname{Cov}(y,z)$$

3. It is

$$Cov(c_1 + A_1 z, c_2 + A_2 y) = E\left((c_1 + A_1 z)(c_2 + A_2 y)^{\top}\right) - E(c_1 + A_1 z)\left(E(c_2 + A_2 y)\right)^{\top}$$

$$= \dots = A_1 \left(E(zy^{\top}) - E(z)\left(E(y)\right)^{\top}\right) A_2^{\top} = A_1 Cov(z, y) A_2^{\top}$$

4. Obviously since

$$Cov(z, y) = 0 \iff Cov(z_i, y_j) = \begin{cases} i = j \\ i \neq j \end{cases}$$

Exercise 10. (*)Prove that the (i, j)-th element of the covariance matrix between vector z and y is the covariance between their elements z_i and y_j :

$$[Cov(z, y)]_{i,j} = Cov(z_i, y_j)$$

2 Solution.

43 It is

$$\begin{split} \left[\operatorname{Cov}(z,y) \right]_{i,j} &= \left[\operatorname{E}(zy^\top) - \operatorname{E}(z) \left(\operatorname{E}(y) \right)^\top \right]_{i,j} = \\ &= \left[\operatorname{E}(zy^\top) \right]_{i,j} - \left[\operatorname{E}(z) \left(\operatorname{E}(y) \right)^\top \right]_{i,j} \\ &= \operatorname{E}(z_i y_j^\top) - \operatorname{E}(z_i) \left(\operatorname{E}(y_j) \right)^\top = \operatorname{Cov}(z_i,y_j) \end{split}$$

Exercise 11. (*)Prove the following properties of Var(Y) for a random vector $y \in \mathcal{Y} \subseteq \mathbb{R}^d$

1.
$$Var(y) = E(yy^{\top}) - E(y) (E(y))^{\top}$$

2. $Var(c + Ay) = AVar(y)A^{T}$, for fixed matrix A, and vectors c with suitable dimensions.

3. $Var(y) \ge 0$; (semi-positive definite)

Solution.

1.
$$Var(y) = Cov(y, y) = E(yy^{\top}) - E(y)(E(y))^{\top}$$

2.
$$Var(c + Ay) = Cov(c + Ay, c + Ay) = ACov(y, y)A^{\top} = AVar(y)A^{\top}$$

3. For any vector $x \in \mathbb{R}^q$

$$\begin{split} t^\top \mathrm{Var}(y) t &= t^\top \mathrm{E} \left((y - \mathrm{E}(y)) (y - \mathrm{E}(y))^\top \right) t \\ &= \mathrm{E} \left(\left(t^\top (y - \mathrm{E}(y)) \right) \left(t^\top (y - \mathrm{E}(y)) \right)^\top \right) \\ &= \mathrm{E} \left(z z^\top \right) = \mathrm{E} \left(\sum_{j=1}^d z_j^2 \right) \geq 0 \end{split}$$

for $z = t^{\top}(y - \mathbf{E}(y))$.

Exercise 12. (\star) Prove the following properties of characteristic functions

1.
$$\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$$
 if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants

2.
$$\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$$
 if and only if x and y are independent

3. if
$$M_x(t) = \mathrm{E}(e^{t^T x})$$
 is the moment generating function, then $M_x(t) = \varphi_x(-it)$

Solution.

1. It is

$$\varphi_{A+Bx}(t) = \mathsf{E}(e^{it^T(A+Bx)}) = \mathsf{E}(e^{A+it^TBx}) = \mathsf{E}(e^{it^TA}e^{iB^Ttx}) = e^{it^TA}\mathsf{E}(e^{i(B^Tt)x}) = e^{it^TA}\varphi_x(B^Tt)$$

- straightforward
 - straightforward

Exercise 13. (*)Show that if $X \sim \operatorname{Ex}(\lambda)$ then $\varphi_X(t) = \frac{\lambda}{\lambda - it}$.

72 **Solution.** It is

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itX} \underbrace{\lambda e^{-\lambda x} \mathbf{1}(X > 0)}_{=f_{\mathbf{F}_{\mathbf{F}}}(x|\lambda)} dx = \lambda \int_{-\infty}^{\infty} e^{-x(\lambda - itX)} dx = \frac{\lambda}{\lambda - it}$$

Exercise 14. (\star)

- 1. Find $\varphi_X(t)$ if $X \sim \text{Br}(p)$.
- 2. Find $\varphi_Y(t)$ if $Y \sim \text{Bin}(n, p)$

78 Solution.

1. It is

$$\varphi_X(t) = \sum_{x=0,1} e^{itX} P(X=x) = e^{it0} (1-p) + e^{it1} p = (1-p) + pe^{it}$$

2. Because Binomial r.v. results as a summation of n IID Bernoulli r.v., it is $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Br}(p)$ i = 1, ..., n and IID. Then

$$\varphi_Y(t) = \varphi_{\sum X_i}(t) = \prod_{i=1}^n \varphi_{X_i}(t) = ((1-p) + pe^{it})^n$$

Exercise 15. $(\star\star\star)$ Prove the following statement related to the Bayesian theorem:

Assume a probability space (Ω, \mathscr{F}, P) . Let a random variable $y : \Omega \to \mathcal{Y}$ with distribution $F(\cdot)$. Consider a partition $y = (x, \theta)$ with $x \in \mathcal{X}$ and $\theta \in \Theta$. Then the probability density function (PDF), or the probability mass function (PMF) of $\theta | x$ is

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)dF(\theta)}$$
(1)

Hint Consider cases where x is discrete and continuous. In the later case use the mean value theorem:

$$\int_{A} f(x)g(x)dx = f(\xi) \int_{A} g(x)dx$$

where $\xi \in A$ if A is connected, and $g(x) \ge 0$ for $x \in A$.

Solution. We consider separately two cases.

x is discrete:

Let $\Theta_0 \subseteq \Theta$ be any sub-set of Θ ; I need to show that

$$P(\theta \in \Theta_0|x) = \frac{\int_{\Theta_0} f(x|\theta) \mathrm{d}F(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} = \begin{cases} \int_{\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} \mathrm{d}\theta &, \theta \text{ cont.} \\ \\ \sum_{\theta \in \Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} &, \theta \text{ discr.} \end{cases}$$

By Bayes theorem it is

$$P(\theta \in \Theta_0|x) = \frac{P(\Theta_0, x)}{P(x)}$$

where $P(x) = \int_{\Theta} f(x|\theta) dF(\theta)$ and $P(\Theta_0, x) = \int_{\Theta_0} f(x|\theta) dF(\theta)$.

x is continuous:

Let $\Theta_0 \subseteq \Theta$ be any sub-set of Θ ; because the probability P(x) = 0, I need to show that

$$\lim_{r\to 0} P(\theta\in\Theta_0|B_r(x)) = \frac{\int_{\Theta_0} f(x|\theta) \mathrm{d}F(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} = \begin{cases} \int_{\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} \mathrm{d}\theta &, \theta \text{ cont.} \\ \sum_{\theta\in\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} &, \theta \text{ discr.} \end{cases}$$

for an open ball $B_r(x) = \{x' \in \mathcal{X} : |x' - x| < r\}$. By Bayes theorem

$$P(\theta \in \Theta_0 | B_r(x)) = \frac{P(\Theta_0, B_r(x))}{P(B_r(x))}$$

where

$$P(\Theta_0, B_r(x)) = \int_{\Theta_0} \left[\int_{B_r(x)} f(\zeta|\theta) d\zeta \right] dF(\theta)$$
$$P(B_r(x)) = \int_{\Theta} \left[\int_{B_r(x)} f(\zeta|\theta) d\zeta \right] dF(\theta)$$

By mean value theorem¹ there exists $\zeta' \in B_r(y)$ such as

$$\int_{B_r(x)} f(\zeta|\theta) \mathrm{d}\zeta = f(\zeta'|\theta) \int_{B_r(x)} \mathrm{d}\zeta = f(\zeta'|\theta) \ \|B_r(x)\|$$

Then

$$P(\theta \in \Theta_0|B_r(x)) = \frac{\int_{\Theta_0} \left[f(\zeta'|\theta) \|B_r(x)\| \right] \mathrm{d}F(\theta)}{\int_{\Theta} \left[f(\zeta'|\theta) \|B_r(x)\| \right] \mathrm{d}F(\theta)} \xrightarrow{r \to 0} \frac{\int_{\Theta_0} f(\zeta|\theta) \mathrm{d}F(\theta)}{\int_{\Theta} f(\zeta|\theta) \mathrm{d}F(\theta)}$$

Exercise 16. (\star) Prove that:

1. if
$$Z \sim N(0, I)$$
 then $\varphi_Z(t) = \exp(-\frac{1}{2}t^Tt)$, where $Z \in \mathbb{R}^d$

2. if
$$X \sim N(\mu, \Sigma)$$
 then $\varphi_X(t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$, where $X \in \mathbb{R}^d$

Hint: Assume as known that if $Z \sim N(0,1)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^2)$, where $Z \in \mathbb{R}$

Solution.

1. It is

$$\begin{split} \varphi_Z(t) &= \mathsf{E}(\exp(it^T Z)) = \mathsf{E}(\exp(i\sum_{j=1}^d (t_j Z_j))) = \mathsf{E}(\prod_{j=1}^d \exp(it_j Z_j)) = \prod_{j=1}^d \mathsf{E}(\exp(it_j Z_j)) \\ &= \prod_{j=1}^d \varphi_{Z_j}(t) = \prod_{j=1}^d \exp(-\frac{1}{2}t_j^2) = \exp(-\frac{1}{2}\sum_{j=1}^d t_j^2) = \exp(-\frac{1}{2}t^T t) \end{split}$$

2. Assume a matrix L such as $\Sigma = LL^T$. It is $X = \mu + LZ$. Then

$$\varphi_X(t) = \varphi_{\mu+LZ}(t) = e^{it^T \mu} \varphi_Z(L^T t) = e^{it^T \mu} \exp(-\frac{1}{2} (L^T t)^T L^T t)$$
$$= e^{it^T \mu} \exp(-\frac{1}{2} t^T L L^T t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$$

Exercise 17. (*) Show the following properties of the Characteristic Function

1.
$$\varphi_x(0) = 1$$
 and $|\varphi_x(t)| \leq 1$ for all $t \in \mathbb{R}^d$

2.
$$\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$$
 if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants

3. x and y are independent then $\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$ (we do not proov the other way around)

4. if
$$M_x(t) = \mathrm{E}(e^{t^T x})$$
 is the moment generating function, then $M_x(t) = \varphi_x(-it)$

Solution.

1. It is
$$\varphi_x(0) = E(e^{i0^T x}) = E(1) = 1$$
. Also

$$|\varphi_x(t)| = \left| \mathsf{E}(e^{it^Tx}) \right| = \left| \int \left(\cos(t^Tx) + i\sin(t^Tx) \right) \mathsf{d}F(x) \right| \leq \int \left| \cos(t^Tx) + i\sin(t^Tx) \right| \mathsf{d}F(x) \leq \int \mathsf{1}\mathsf{d}F(x) = 1$$

2. It is

$$\frac{\varphi_{A+Bx}(t) = \operatorname{E}(e^{it^T(A+Bx)}) = \operatorname{E}(e^{it^TA+Bit^Tx}) = \operatorname{E}(e^{Ai}e^{i(B^Tt)^Tx}) = e^{it^TA}\varphi_x(B^Tt)}{{}^1\int_A f(x)g(x)\mathrm{d}x = f(\xi)\int_A g(x)\mathrm{d}x} \text{ where } \xi \in A \text{ if } A \text{ is connected, and } g(x) \geq 0 \text{ for } x \in A.$$

3. It is
$$\varphi_{x+y}(t) = \mathrm{E}(e^{it^T(x+y)}) = \mathrm{E}(e^{it^Tx}e^{it^Ty}) = \mathrm{E}(e^{it^Tx})\mathrm{E}(e^{it^Ty}) = \varphi_x(t)\varphi_y(t)$$

Part III

Probability calculus

Exercise 18. (*)Let a random variable $x \sim \mathrm{IG}(a,b)$, a fixed value c > 0, and y = cx then $y \sim \mathrm{IG}(a,cb)$.

Solution. It is y = cx and $x = \frac{1}{c}y$

$$f(y) = f_{IG(a,b)}(x) \left| \frac{dx}{dy} \right| \propto (\frac{1}{c}y)^{-a-1} \exp(-\frac{b}{\frac{1}{c}y}) 1_{(0,+\infty)} (\frac{1}{c}y) \frac{1}{c}$$
$$\propto y^{-a-1} \exp(-\frac{cb}{y}) 1_{(0,+\infty)}(y) = f_{IG(a,cb)}(y)$$

Exercise 19. $(\star\star\star\star)$ Consider that x given z is distributed according to $Ga(\frac{n}{2},\frac{nz}{2})$, and that z is distributed according to $Ga(\frac{m}{2},\frac{m}{2})$; i.e.

$$\begin{cases} x|z & \sim \operatorname{Ga}(\frac{n}{2}, \frac{nz}{2}) \\ z & \sim \operatorname{Ga}(\frac{m}{2}, \frac{m}{2}) \end{cases}$$

Here, $Ga(\alpha, \beta)$ is the Gamma distribution with shape and rate parameters α and β , and PDF

$$f_{Ga(\alpha,\beta)}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbb{1}(x > 0)$$

1. Show that the compound distribution of x is F $x \sim F(n, m)$, where F(n, m) is F distribution with numerator and denumerator degrees of freedom n and m, and PDF

$$f_{\mathsf{F}(n,m)}(x) = \frac{1}{x \,\mathsf{B}(\frac{n}{2}, \frac{m}{2})} \sqrt{\frac{(n \,x)^n \,m^m}{(n \,x + m)^{n+m}}} 1(x > 0)$$

2. Show that

$$E_{F(n,m)}(x) = \frac{m}{m-2}$$

3. Show that

$$Var_{F(n,m)}(x) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$$

Hint: If $\xi \sim \text{IG}(a,b)$ then $E_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b}{a-1}$, and $\text{Var}_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b^2}{(a-1)^2(a-2)}$

Solution.

1. It is

$$f_{\mathrm{Ga}(\frac{n}{2},\frac{nz}{2})}(x|z) = \frac{\left(\frac{nz}{2}\right)^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{nz}{2}x} \mathbf{1}(x>0) \; ; \qquad f_{\mathrm{Ga}(\frac{m}{2},\frac{m}{2})}(z) = \frac{\left(\frac{m}{2}\right)^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} z^{\frac{m}{2}-1} e^{-\frac{m}{2}z} \mathbf{1}(z>0)$$

So:

$$f(x) = \int f_{\text{Ga}(\frac{n}{2}, \frac{nz}{2})}(x|z) f_{\text{Ga}(\frac{m}{2}, \frac{m}{2})}(z) dz$$

$$= f_{\text{Ga}(\frac{n}{2}, \frac{nz}{2})}(x|z) \qquad = f_{\text{Ga}(\frac{m}{2}, \frac{mz}{2})}(z)$$

$$= \int \frac{(\frac{nz}{2})^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{nz}{2}x} 1(x > 0) \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} z^{\frac{m}{2} - 1} e^{-\frac{mz}{2}z} 1(z > 0) dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \int_{0}^{\infty} z^{\frac{n}{2}} e^{-\frac{nx}{2}z} z^{\frac{m}{2} - 1} e^{-\frac{mz}{2}z} dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \int_{0}^{\infty} z^{\frac{n}{2} + \frac{m}{2} - 1} e^{-(\frac{m}{2} + \frac{nx}{2})z} dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}} (\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \left(\frac{m}{2} + \frac{nx}{2}\right)^{-(\frac{n}{2} + \frac{mz}{2})}$$

$$= \frac{(n)^{\frac{n}{2}} (m)^{\frac{m}{2}}}{B(\frac{n}{2}, \frac{m}{2})} 1 \sqrt{\frac{x^{n}}{(m + nx)^{n+m}}} 1(x > 0)$$

$$= \frac{1}{x B(\frac{n}{2}, \frac{m}{2})} \sqrt{\frac{(nx)^{n} m^{m}}{(nx + m)^{n+m}}} 1(x > 0)$$

2. It is

$$E(x) = E_{Ga(\frac{m}{2}, \frac{m}{2})} \left(E_{Ga(\frac{n}{2}, \frac{nz}{2})}(x|z) \right) = E_{z \sim Ga(\frac{m}{2}, \frac{m}{2})} \left(\frac{1}{z} \right)$$

$$= E_{\xi \sim IG(\frac{m}{2}, \frac{m}{2})} \left(\xi \right) = \frac{\frac{m}{2}}{\frac{m}{2} - 1} = \frac{m}{m - 2}$$

3. It is

$$Var(x) = E_{Ga(\frac{m}{2}, \frac{m}{2})} \left(Var_{Ga(\frac{n}{2}, \frac{nz}{2})}(x|z) \right) + Var_{Ga(\frac{m}{2}, \frac{m}{2})} \left(E_{Ga(\frac{n}{2}, \frac{nz}{2})}(x|z) \right)$$

$$= E_{Ga(\frac{m}{2}, \frac{m}{2})} \left(\frac{2}{nz^2} \right) + Var_{Ga(\frac{m}{2}, \frac{m}{2})} \left(\frac{1}{z} \right)$$

$$= \frac{2}{n} E_{Ga(\frac{m}{2}, \frac{m}{2})} \left(\frac{1}{z^2} \right) + Var_{Ga(\frac{m}{2}, \frac{m}{2})} \left(\frac{1}{z} \right)$$

$$= \frac{2}{n} E_{\xi \sim IG(\frac{m}{2}, \frac{m}{2})} \left(\xi^2 \right) + Var_{\xi \sim IG(\frac{m}{2}, \frac{m}{2})} (\xi)$$

$$= \frac{2}{n} \left(\frac{\left(\frac{m}{2} \right)^2}{\left(\frac{m}{2} - 1 \right) \left(\frac{m}{2} - 2 \right)} \right) + \left(\frac{\frac{m}{2}}{\frac{m}{2} - 1} \right)$$

$$= \dots = \frac{2m^2(n + m - 2)}{n(m - 2)^2(m - 4)}$$

Exercise 20. $(\star\star)$ Prove the following statement:

Let
$$x \sim N_d(\mu, \Sigma), x \in \mathbb{R}^d$$
, and $y = (x - \mu)^T \Sigma^{-1}(x - \mu)$. Then

$$y \sim \chi_d^2$$

82 **Solution.** It is

$$y = (x - \mu)^{\top} \Sigma^{-1} (x - \mu) = \left(\Sigma^{-1/2} (x - \mu) \right)^{\top} \left(\Sigma^{-1/2} (x - \mu) \right) = z^{\top} z = \sum_{i=1}^{d} z_i^2$$

where $z = \Sigma^{-1/2}(x - \mu)$, and $z \sim N_d(0, I)$. Because $z_i \sim N(0, 1)$, it is $\sum_{i=1}^d z_i^2 \sim \chi_d^2$ (from stats concepts 2).

Exercise 21. $(\star\star)$ Let

$$\begin{cases} x|\xi & \sim \mathbf{N}_d(\mu, \Sigma \xi) \\ \xi & \sim \mathbf{IG}(a, b) \end{cases}$$

288 with PDF

$$f_{N_d(\mu,\Sigma\xi)}(x|\xi) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$
$$f_{IG(a,b)}(\xi) = \frac{b^a}{\Gamma(a)} \xi^{-a-1} \exp\left(-\frac{b}{\xi}\right) 1_{(0,\infty)}(\xi)$$

Show that the marginal PDF of x is

$$f(x) = \int f_{N_d(\mu,\Sigma\xi)}(x|\xi) f_{IG(a,b)}(\xi) d\xi$$

$$= \frac{2a^{-\frac{d}{2}}}{\pi^{\frac{n}{2}} \sqrt{\det(\frac{b}{a}\Sigma)}} \frac{\Gamma\left(a + \frac{d}{2}\right)}{\Gamma(a)} \left[1 + \frac{1}{2a}(x - \mu)^{\top} \left(\frac{b}{a}\Sigma\right)^{-1} (x - \mu)\right]^{-\frac{(2a+d)}{2}}$$
(2)

FYI: For $a=b=\frac{v}{2}$, the marginal PDF is the PDF of the d-dimensional Student T distribution.

295 **Solution.** It is

$$\int f_{N_{d}(\mu,\Sigma\xi)}(x|\xi) f_{IG(a,b)}(\xi) d\xi = \\
= \int \underbrace{\left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma\xi)}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \frac{\Sigma^{-1}}{\xi}(x-\mu)\right)}_{=N_{d}(x|\mu,\Sigma\xi)} \underbrace{\frac{b^{a}}{\Gamma(a)} \xi^{-a-1} \exp\left(-\frac{b}{\xi}\right) 1_{(0,\infty)}(\xi) d\xi}_{=IG(\xi|a,b)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma)}} \frac{b^{a}}{\Gamma(a)} \int \xi^{-a-1-\frac{d}{2}} \exp\left(-\frac{1}{\xi}\left[\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu) + b\right]\right) d\xi$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma)}} \frac{b^{a}}{\Gamma(a)} \Gamma\left(a + \frac{d}{2}\right) \left[\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu) + b\right]^{-\left(a + \frac{d}{2}\right)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\frac{b}{a}\Sigma)}} \frac{b^{-\frac{d}{2}}}{\Gamma(a)} \Gamma\left(a + \frac{d}{2}\right) \left[\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu) + b\right]^{-\frac{(2a+d)}{2}}$$

$$= \frac{2a^{-\frac{d}{2}}}{\pi^{\frac{n}{2}}\sqrt{\det(\frac{b}{a}\Sigma)}} \frac{\Gamma\left(a + \frac{d}{2}\right)}{\Gamma(a)} \left[1 + \frac{1}{2a}(x-\mu)^{\top} \left(\frac{b}{a}\Sigma\right)^{-1}(x-\mu)\right]^{-\frac{(2a+d)}{2}}$$

Exercise 22. $(\star\star\star)$

Let $x \sim T_d(\mu, \Sigma, \nu)$. Recall that $x \sim T_d(\mu, \Sigma, \nu)$ is the marginal distribution $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi$ of (x, ξ) where

$$x|\xi \sim N_d(\mu, \Sigma \xi v)$$

 $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$

Op Consider partition such that

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}; \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix},$$

where $x_1 \in \mathbb{R}^{d_1}$ and $x_2 \in \mathbb{R}^{d_2}$.

Address the following:

1. Show that the marginal distribution of x_1 is such that

$$x_1 \sim T_{d_1}(\mu_1, \Sigma_1, \nu)$$

Hint: Try to use the form $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi$.

2. Show that

$$\xi | x_1 \sim \text{IG}(\frac{1}{2}(d_1 + v), \frac{1}{2}\frac{Q + v}{v})$$

where $Q = (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)$.

Hint: The PDF of $y \sim N_d(\mu, \Sigma)$ is

$$f(y) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\right)$$

Hint: The PDF of $y \sim IG(a, b)$ is

$$f_{\text{IG}(a,b)}(y) = \frac{b^a}{\Gamma(a)} y^{-a-1} \exp(-\frac{b}{y}) 1_{(0,+\infty)}(y)$$

3. Let $\xi' = \xi \frac{v}{Q+v}$, with $Q = (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)$, show that

$$\xi'|x_1 \sim \text{IG}(\frac{v+d_1}{2}, \frac{1}{2})$$

4. Show that the conditional distribution of $x_2|x_1$ is such that

$$x_2|x_1 \sim T_{d_2}(\mu_{2|1}, \dot{\Sigma}_{2|1}, \nu_{2|1})$$

where

$$\begin{split} &\mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1) \\ &\dot{\Sigma}_{2|1} = \frac{\nu + (\mu_1 - x_1)^{\top} \Sigma_{1}^{-1} (\mu_1 - x_1)}{\nu + d_1} \Sigma_{2|1} \\ &\Sigma_{2|1} = \Sigma_{22} - \Sigma_{21} \Sigma_{1}^{-1} \Sigma_{21}^{\top} \\ &\nu_{2|1} = \nu + d_1 \end{split}$$

Hint: You can use the Example [Marginalization & conditioning] from the Lecture Handout

Solution.

Exercise 23. $(\star\star\star)$ Show that

1. If $x_i \sim N_d(\mu_i, \Sigma_i)$ for i = 1, ..., n and $y = c + \sum_{i=1}^n B_i x_i$, then

$$y \sim \mathrm{N}_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^{ op})$$

2. If $x_i \sim T_d(\mu_i, \Sigma_i, v)$ for i = 1, ..., n and $z = c + \sum_{i=1}^n B_i x_i$, then

$$z \sim T_d(c + \sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} B_i \Sigma_i B_i^{\top}, v)$$

340 Solution.

1. For any $a \in \mathbb{R}^d$

$$a^{\top}y = a^{\top}\left(c + \sum_{i=1}^{n} B_{i}x_{i}\right) = a^{\top}c + \sum_{i=1}^{n} a^{\top}B_{i}x_{i} = a^{\top}c + \sum_{i=1}^{n} \left(B_{i}^{\top}a\right)^{\top}x_{i}$$

follows a univariate Normal distribution. So y follows a d-dimensional Normal by definition. Also

$$E(y) = E(c + \sum_{i=1}^{n} B_i x_i) = c + \sum_{i=1}^{n} \mu_i$$

and

$$Var(y) = Var(c + \sum_{i=1}^{n} B_i x_i) = \sum_{i=1}^{n} B_i Var(x_i) B_i^{\top} = \sum_{i=1}^{n} B_i \Sigma_i B_i^{\top}$$

So by definition $y \sim N_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^\top)$.

48 2. It is

$$z = c + \sum_{i=1}^{n} B_i x_i = c + \sum_{i=1}^{n} B_i \left(\mu_i + y_i \sqrt{v\xi} \right) = \left(c + \sum_{i=1}^{n} B_i \mu_i \right) + \left(\sum_{i=1}^{n} B_i y_i \right) \sqrt{v\xi}$$

for $y_i \sim N_d(0, \Sigma_i)$ and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$, and hence

$$z = \left(c + \sum_{i=1}^{n} B_{i} \mu_{i}\right) + \tilde{y} \sqrt{v \xi}$$

where $\tilde{y} \sim N_d(0, \sum_{i=1}^n B_i \Sigma_i B_i^{\top})$. Hence, $z \sim T_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^{\top}, v)$ by definition.