Datos Generales:

Equipo para determinar glicemia

Tipo de proyecto: en grupo. Responsable: Lcda. Lexa Manrique

Resumen

Problema a resolver: minimizar el costo de producción del equipo GOX/PO

Justificación: disminuir la importación de químicos con producción endógena.

Objetivo general: Producir endógenamente un equipo reactivo de GOX/PO de calidad

Metodología:

Se cuantificara proteínas, se separara con sulfato de amonio, se purificara por cromatografía y se comparara por electroforesis.

Resultados esperados: en desarrollo.

Proyecto extenso

Instituto/organización: Universidad de Oriente Núcleo de Bolívar, Instituto de Salud Pública del Estado Bolívar.

Personas que participaran en el proyecto:

Lcda. Lexa Manrique. Departamento de Ciencias Fisiológicas. UDO Bolívar

Dr. Pedro Parrilla. Departamento de Ciencias Fisiológicas de la UDO Bolívar/ Instituto de Salud Pública del Estado Bolívar, Dirección de Educación e Investigación.

Lcdo. Alberto Parrilla. Departamento de Genética. UDO Bolívar.

Lcda. Zulay Castillo. Departamento de Ciencias Fisiológicas. UDO Bolívar.

Br. Eurimar Salguera. Estudiante de Bioanálisis UDO

Br. Yannimar Spósito. Estudiante de Bioanálisis UDO.

Ubicación Geográfica:

1. Localidad: Municipio Heres, Ciudad Bolívar, Estado Bolívar.

2. Estados: Bolívar

Planteamiento del Problema: En la actualidad casi todos los consumibles que se usan en los laboratorios son importados, lo genera a veces la paralización del centro clínico.

Antecedentes: es una iniciativa nueva en el Estado Bolívar.

Justificación:

Se planea producir enzimas GOX/PO de uso común en los laboratorios clínicos, a menor costo y de calidad, lo que contribuirá positivamente los laboratorios públicos y privados.

Objetivo general:

Aplicar métodos biotecnológicos para extraer la glucosa oxidasa (GOX) a partir de caldos de cultivos con *Aspergillus niger* y de la peroxidasa (PO) del Rábano común

Objetivos específicos:

- 1. Obtener la glucosa oxidasa (GOX)
- 2. Extraer la peroxidasa (PO)
- 3. Purificar las enzimas GOX/PO
- 4. Determinar la cinética de la GOX
- 5. Evaluar la cinética de la PO
- 6. Comparar la GOX/PO con un comercial

Metodología:

Se trata de un estudio experimental, *in vitro*, transversal, descriptivo. El estudio posee varias etapas: el aislamiento e identificación del microorganismo con el uso de agar Saborarud y microscopia óptica (Pérez y Peris, 1997). Las obtenciones se harán a partir de caldo nutritivos y caldos con agroquímicos inoculados con el *Aspergillus niger*. La extracción de la peroxidasa se realizarán a partir de material vegetal Rábano común (*Raphanus sativus* var. *Sativus*). La primera parte de la purificación de ambas enzimas se utilizará sulfato de amonio al 80% en frio y la segunda parte de la purificación se realizará por cromatografía por exclusión molecular con sílica gel 40, 60-80 y sephadex G-200, respectivamente para cada enzima. La determinación de proteínas se realizara por el método de Biuret y la determinación de los parámetros cinéticos. El estudio comparativo se usará electroforesis de proteínas usando como patrón un kit comercial.

Cronograma de actividades

Mes	Actividad
Septiembre	Aislamiento del microorganismo
Octubre	Obtención peroxidasa (PO)
Noviembre	Obtención de glucosa oxidasa (GOX)
Diciembre	Determinación de parámetros cinéticos (GOX/PO)
Enero	Comparación de equipo reactivo
Febrero	Elaboración de los primeros de equipos reactivos

Resultados esperados:

Es un proyecto en desarrollo que permitirá la cuantificación en pequeña escala para realizar las proyecciones con el fin de ensamblar la primera línea de producción de enzimas del Estado o del país.

Bibliografía:

Pérez-Espinoza, M. y Brambila, E. 2005. Preparación y evaluación de un equipo de reactivos para la determinación de glucosa (glucosa oxidasa/peroxidasa). Graphimedic S.A de C.V. Pue. México. [Serie en línea] 30(4):110-117. Disponible: https://www.medigraphic.com/pdfs/bioquimia/bq-2005/bq054c.pdf [Agosto, 2019]

Plan de inversión:

Cantidad	Reactivos	Descripción	Costo
1	Kit comercial	Para determinar glucosa	10\$
1	Hidróxido de sodio	Grado analítico	0.80\$
1	4-aminoantipirina	500g	30\$
1	Guayacol	500g	30\$
1	Glucosa anhidra	500g	10\$
1	Sephadex G-200 y G-100	500g	100\$
1	Sílica gel 60-80	1 Kg	20\$
1	Nitrato de plata	100g	5\$
Sub total			205,8 \$
	Materiales	Descripción	Costo
200	Envases de plásticos	Envase con tapa	15\$
		rosca oscuro	
200	Cajas	20X20 cm	15\$
500	Tubos de sílice	(150X15) mm	0,1 x 500 \$
4	Micropipetas de volumen	(0-5)µl	7 \$ X4
	variable Marca: Globalroll	N°cat. 720005	
		(10-100) µl	
		N°Cat. 720050	
		(100-1000) μl	
		N°Cat.720060	
1000	Micro Tubos de centrifuga cónico	HX-B02 0,2 ml	40\$
	tapa cúpula		
Sub total			148 \$
	Equipos	Descripción	Costo
1	Aire acondicionado	De 18 btu	385\$
4	Bombillos redondos tipo LED 60W	Ahorro de energía	0,88X10
1	Microscopio óptico	Binocular	299 \$ X 2
		Modelo: MCLBN107	

5	Bombillos halógeno 6V/20W	Philps	2\$ x 10
1	Video microscopio		58\$
2	Baños de María con agitación marca FISATOM	De acero inoxidable para tubos de 100ml. Control digital con microprocesador PID, sensor PT100. Indicador de temperatura, pantalla tipo LED y protección contra falta de agua. N°Cat. DIDACTA. 27f040420	500\$
1	Analizador Químico uv-visible	Marca Metash	1500 \$
10	Cubetas para espectrofotómetro de cuarzo. Marca BB	10 mm paso de luz. Alto 45 mm. Capacidad 0,7 ml	3\$ X10
1	Laboratorio mini electroforesis	Mindwill	350\$
1	Bioreactor 5 I	BAILUN BIO	3000\$
Sub total			6.419,8 \$
Total			6.773,8 \$