Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.2.1

Сдвиг фаз в цепи переменного тока

Студент: Павел СЕВЕРИЛОВ 671 группа

31 октября 2017 г.

1 Цель работы

Изучить влияние активного сопротивления, индуктивности и емкости на сдвиг фаз между током и напряжением в цепи переменного тока.

Экспериментальная установка

RC-цепь

Ток, текущий через RC цепочку, пропорционален напряжению на резисторе, и опережает напряжение на конденсаторе по фазе на $\pi/2$. В данном случае получаем теоретический результат для зависимости сдвига фаз от R:

$$\operatorname{tg}\varphi = \frac{1}{\Omega RC}$$

RL-цепь

Всё аналогично RC цепочке, только импеданс катушки теперь

$$Z_2 = j\omega L$$
,

поэтому ток отстаёт по фазе от напряжения, а рассчётная формула приобретает вид

$$\operatorname{tg}\varphi = \frac{\omega L}{R_{\Sigma}}$$

Теперь к споротивлению калибровочного резистора и резистора R добавится активное сопротивление катушки:

$$R_{\sum} = R + r + R_L,$$

где R_L – активное сопротивление катушки.

RCL-цепь

Комплексный импеданс RCL-цепочки:

$$Z = R + j\omega L - \frac{j}{\omega C}.$$

Сдвиг фаз между током и напряжением получим, взяв аргумент Z:

$$\operatorname{tg}\varphi = \frac{\omega L - \frac{1}{\omega C}}{R} = Q \frac{\left(\frac{\omega}{\omega_0}\right)^2 - 1}{\frac{\omega}{\omega_0}} = Q \frac{(1+x)^2 - 1}{1+x} \simeq 2xQ,$$

где $x = \Delta \omega/\omega_0 = \Delta \nu/\nu_0$, и в последнем переходе пренебрегаем квадратичными по x членами. Измерив ширину графика w = 2x на высоте $\varphi = \pi/4$ (tg $\varphi = 1$), можем непосредственно измерить добротность контура:

$$Q = \frac{1}{w}$$

Фазовращатель

Построим векторную диаграмму для фазовращателя:

2 Работа и измерения

Везде будем считать, что $\sigma_x = 0.1$. Запишем показания приборов:

$$C=0.5~{\rm mk\Phi}, L=50~{\rm m\Gamma h}, \nu=1~{\rm k\Gamma II}, R_L=31.5~{\rm Om}, r=12,4~{\rm Om}$$

RC-цепь

Измерим сдвиг фаз в RC-цепи в зависимости от сопротивления. Результаты занесем в таблицу 1.

$$X_1 = \frac{1}{2\pi\nu C} = 318.2 \text{ Om}; \ R_{\Sigma} = R + r$$

R, Om	x	x_0	ψ	$\operatorname{tg}\psi$	R_{Σ} , Om	$1/(R_{\Sigma}\Omega C)$	$\sigma_{tg\psi}$
0	1,2	2,5	1,51	15,89	12,4	25,661	0,14
100	1,1	2,4	1,44	7,60	112,4	2,831	0,14
200	0,8	2,4	1,05	1,73	212,4	1,498	0,14
300	0,65	2,4	0,85	1,14	312,4	1,019	0,14
400	0,55	2,4	0,72	0,88	412,4	0,772	0,14
500	0,45	2,4	0,59	0,67	512,4	0,621	0,13
700	0,35	2,4	0,46	0,49	712,4	0,447	0,13
900	0,3	2,4	0,39	0,41	912,4	0,349	0,13
1100	0,25	2,4	0,33	0,34	1112,4	0,286	0,13

Таблица 1: Полученные значения в RC-цепи

Рис. 1: График зависимости $\operatorname{tg} \psi = f[1/\Omega C R_{\Sigma}]$

RL-цепь

Проделаем аналогичные измерения для RL-цепи

$$X_2 = 2\pi\nu L = 314.16$$

R, Om	x	x_0	ψ	$tg \psi$	R_{Σ}	$\Omega L/R_{\Sigma}$	$\sigma_{ ext{tg}\psi}$
0	1,1	2,4	1,440	7,596	43,9	7,16	0,145
100	0,85	2,4	1,113	2,028	143,9	2,18	0,140
200	0,7	2,4	0,916	1,303	243,9	1,29	0,137
400	0,5	2,4	0,654	0,767	443,9	0,71	0,135
600	0,35	2,4	0,458	0,493	643,9	0,49	0,133
800	0,3	2,4	0,393	0,414	843,9	0,37	0,133
1000	0,25	2,4	0,327	0,339	1043,9	0,30	0,132

Таблица 2: Полученные значения в RL-цепи

Рис. 2: График зависимости $\operatorname{tg} \psi = f[\Omega L/R_{\Sigma}]$

RCL-цепь

Расчитаем резонансную частоту $\nu_0 = \frac{1}{2\pi\sqrt{LC}} = 1006.6$ Гц.

Меняя частоту в обе стороны от резонансного значения, полученного подбором на установке, снимем зависимость сдвига фаз от частоты. Проделаем измерения для двух сопротивлений: R=0 Ом; R=100 Ом. Результаты заносим в таблицу.

Сонрожирномио	т. Гт	~	- m	7./7.	[2/1]	-	-
Сопротивление	ν, Гц	x	x_0	ν/ν_0	$ \psi $	σ_{ν/ν_0}	σ_{ψ}
	1020	0	4,9	1,013	0,000	0,010	0,000
	1000	0,4	4,9	0,993	0,256	0,010	0,064
	980	0,9	5,2	0,974	0,544	0,010	0,061
	960	1,2	5,2	0,954	0,725	0,010	0,062
	940	1,5	5,3	0,934	0,889	0,011	0,062
R = 0 Om	930	1,7	5,4	0,924	0,989	0,011	0,061
	1040	0,8	4,9	1,033	0,513	0,010	0,065
	1060	1,1	4,9	1,053	0,705	0,009	0,066
	1080	1,3	4,7	1,073	0,869	0,009	0,069
	1100	1,5	4,8	1,093	0,982	0,009	0,069
	1120	1,6	4,5	1,113	1,117	0,009	0,074
	1020	0	4,8	1,013	0,000	0,010	0,000
	1000	0,1	5,0	0,993	0,063	0,010	0,063
	980	0,2	5,2	0,974	0,121	0,010	0,060
	960	0,4	5,3	0,954	0,237	0,010	0,059
	940	0,5	5,3	0,934	0,296	0,010	0,060
	930	0,6	5,4	0,924	0,349	0,010	0,059
R = 100 Om	1040	0,2	4,9	1,033	0,128	0,010	0,064
	1060	0,3	4,7	1,053	0,201	0,010	0,067
	1080	0,4	4,6	1,073	0,273	0,010	0,069
	1100	0,5	4,6	1,093	0,341	0,010	0,069
	1120	0,6	4,5	1,113	0,419	0,010	0,070

Таблица 3: Полученные значения при изучении зависимости фазы от $\frac{\nu}{\nu_0}$

Рис. 3: График зависимости $\psi=f[\nu/\nu_0]$ для R=0 Ом и R=100 Ом

Рис. 4: Вспомогательный график для RCL-цепи для определения добротности

Определим по графику добротность контура: $Q = \nu_0/(2\Delta\nu)$, где $2\Delta\nu/\nu_0$ – ширина графика при сдвиге фаз $\psi = \pi/4$.

Из графика R=0 Ом добротность равна: $Q_0=1/(1.07-0.94)=7.7\pm0.6$ Из графика R=100 Ом добротность равна: $Q_{100}=2.5\pm1.0$ Можно рассчитать её, выразив через параметры цепочки:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q_{\text{Teop, 0}} = 7.2; \ Q_{\text{Teop, 100}} = 2.2$$

3 Вывод

В данной лабораторной работе была изучена зависимость сдвига фаз между током и напряжением от сопротивления в RC- и RL-цепи. Была определена добротность колебательного контура, снята зависимость сдвига фаз от частоты вблизи резонанса.

Для RC и RL контуров практический график довольно точно совпадает с теоретическим в пределах погрешностей, что подтверждает теоретические рассуждения. При измерении добротности колебательного контура при R=0 Ом получились значения, практически совпадающие с теоретическими расчетами (с учетом погрешности). При измерении добротности в случае R=100 Ом получили достаточно большую погрешность, вследствии того, что напрямую точки не доходили до прямой $\pi/4$ – построили предположительное продолжение кривой (см. рис.4). Но в итоге само значение добротности практически совпало с расчитанным теоретически.