S 628.161 F5dru 1978

PLEASE FITUR Dillon Resource Area Resources Inventory:

Water Quality Survey Rochester Unit

BTATE DOCUMENTS COLLECTION

JAN 5 1983

MONTANA STATE LIBRARY
1515 E. 6th AVE.
HELENA, MONTANA 59620

1978

By

Montana Forest and Conservation
Experiment Station
University of Montana

For

Bureau of Land Management

2

MONTANA STATE LIBRARY \$ 628.161 F5dru 1978 c.1 Foggin Dillon Resource Area resources inventory

DILLON RESOURCE AREA RESOURCES INVENTORY:

WATER QUALITY SURVEY
Rochester Unit

Prepared by:
G. Thomas Foggin, III
Thomas D. Reid
Silas J. Gilbert

Montana Forest and Conservation Experiment Station University of Montana Missoula, Montana 59812

Prepared For:

Department of the Interior Bureau of Land Management Dillon Resource Area Dillon, Montana 59725 Digitized by the Internet Archive in 2017 with funding from Montana State Library

ACKNOWLEDGEMENTS

The authors of this report wish to acknowledge the following individuals who either technically or inspirationally contributed to the execution and completion of this project: Randy Swanson for assisting in the channel stability surveys and establishing the stream sampling stations; Dr. Kenneth Bandelier of Western Montana College for providing laboratory facilities and occasional floor space; Michael Nair for performing the bacterial analyses; Dr. John Taylor of the Micrbiology Department, Dr. Richard Juday of the Chemistry Department, and Dr. Nellie Stark of the School of Forestry for the use of their equipment and technical assistance; Ailean Graeme Macuilean for writing the computer programs and making them work; Bonnie Manley for graciously creating this report from its humble illegible beginnings; Daniel Tippy and Darrell Brown for helping; Pete for understanding the Problem; the cook at the Yesterday Calf-A in Dell for her hot coffee and our only good hot meal each week; Travis for knowing his "numbers" well enough to offer to help; the antelope herd up Basin Creek; and to Father Sky and Mother Earth for creating the beauty that is the Beaverhead County landscape. We thank you one and all.

TABLE OF CONTENTS

INTRO	DUCT I	о́и	 			٠		٠	р.	4
метно	D									
	Inven	tory Design	 						р.	6
	Field	Methods	 						р.	7
	Labor	atory Methods	 						р.	8
	Analy	tical Methods	 					٠	р.	13
STUDY	AREA									
	Beave	rhead County	 						р.	14
	Camp	Creek Watershed	 						р.	14
		Lower Camp Station	 						р.	17
		Upper Camp Station	 		٠				р.	17
	Moose	Creek Watershed	 						р.	19
		Lower Moose Station	 						р.	21
		Upper Moose Station	 						р.	21
		MacLean Station	 						р.	23
RESUL	TS AN	D DISCUSSION								
	Camp	Creek Basin	 						p.	24
		Channel Stability Ratings	 						р.	24
		Precipitation	 				•		р.	24
		Stream Discharge	 						р.	28
		Suspended Sediment	 						р.	38
		Hydrochemical Parameters	 						р.	38
		Bacteria Levels	 						р.	41
		Comments	 						p.	46

Moos	se Creek Basin	 			•	•		•		р.	47
1	Channel Stability Ratings	 								р.	47
	Precipitation	 		٠						р.	47
	Stream Discharge	 								р.	52
	Suspended Sediment	 								p.	62
	Hydrochemical Parameters	 							٠	р.	62
	Bacteria Levels	 	٠							р.	66
	Comments	 								p.	71
LITERATUR	E CITED	 							•	р.	73
APPENDIX -	- Tables										
- 1	Lower Camp Station	 					•			p.	75
	Upper Camp Station	 								р.	80
	Lower Moose Station	 								р.	84
	Upper Moose Station	 								р.	89
	MacLean Station	 								р.	93

FIGURES

Figure	1	Camp Creek Watershed Location
Figure	2	Camp Creek Station Locations
Figure	3	Moose Creek Watershed Location
Figure	4	Moose Creek Station Locations
Figure	5	Upper Camp Precipitation Data
Figure	6	Lower Camp Staff-Discharge Rating Curve p. 30
Figure	7	Upper Camp Staff-Discharge Rating Curve p. 31
Figure	8	Lower Camp Hydrograph - 1977 p. 32
Figure	9	Lower Camp Hydrograph - 1978 p. 33
Figure	10	Upper Camp Hydrograph - 1977 p. 34
Figure	11	Upper Camp Hydrograph - 1978
Figure	12	Lower Camp Sediment vs Discharge
Figure	13	Upper Camp Sediment vs Discharge
Figure	14	Lower Camp Conductivity vs Discharge
Figure	15	Upper Camp Conductivity vs Discharge
Figure	16	Upper Moose Precipitation Data
Figure	17	Lower Moose Staff-Discharge Rating Curve p. 53
Figure	18	Upper Moose Staff-Discharge Rating Curve p. 54
Figure	19	MacLean Staff-Discharge Rating Curve
Figure	20	Lower Moose Hydrograph - 1977
Figure	21	Lower Moose Hydrograph - 1978
Figure	22	Upper Moose Hydrograph - 1977
Figure	23	Upper Moose Hydrograph - 1978
Figure	24	MacLean Hydrograph - 1977
Figure	25	MacLean Hydrograph - 1978

Figure	26	Lower Moose Sediment vs Discharge	•				р.	63
Figure	27	Upper Moose Sediment vs Discharge					р.	64
Figure	28	MacLean Sediment vs Discharge					р.	65
Figure	29	Lower Moose Conductivity vs Discharge					р.	67
Figure	30	Upper Moose Conductivity vs Discharge					р.	68
Figure	31	MacLean Conductivity vs Discharge					n	69

TABLES

Table	1	Upper Camp Creek Channel Stability p. 25
Table	2	Little Camp Creek Channel Stability p. 26
Table	3	Wickiup Creek Channel Stability p. 27
Table	4	Camp and Moose Creek Water and Sediment Yields p. 37
Table	5	Camp Creek Hydrochemistry p. 44
Table	6	Camp Creek Bacteria Counts p. 45
Table	7	Lower Moose Channel Stability p. 48
Table	8	MacLean Channel Stability
Table	9	Upper Moose Channel Stability p. 50
Table	10	Moose Creek Hydrochemistry p. 70
Table	11	Moose Creek Bacteria Counts

INTRODUCTION

Watershed managers have traditionally been concerned with the quality of the waters that leave a watershed. As man modifies watersheds by various land use practices, disequilibrium in both the terrestrial and aquatic environments occurs. Problems result in controlling accelerated sediment and nutrient release from non-point sources within the basin. Stream water samples provide the investigator with insights into the general health of the patient. In an attempt to reduce watershed degradation, Congress recently mandated that local and regional agencies and authorities gather and assess environmental data for the lands and waters under their jurisdiction and authority. The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92M-500) was promulgated to require:

1) the assessment of the sources and extent of non-point pollution, and 2) the development of methods and procedures for controlling non-point pollution resulting from agricultural and silvicultural activities (FWPCAA, 1972).

In April, 1976, personnel from the Montana Forest and Conservation

Experiment Station began a resource inventory in southwest Montana for
the Bureau of Land Management. This integrated resources inventory was
designed by Bureau personnel to provide environmental data on watershed,
wildlife, and range resources within portions of Beaverhead, Deer Lodge,
Madison and Silver Bow counties near Dillon, Montana. More specifically,
the National Resource Lands in the Rochester, Blacktail, Tendoy Mountains,
Dillon West, and Centennial Planning Units were inventoried. The environmental data obtained is to be incorporated into the Bureau's Planning
System and into the Mountain Foothills Range Environmental Impact Statement.

The water quality study portion of the above resource inventory project included the monitoring of 42 temporary stream sampling stations located in 17 drainage basins within the inventory area. Stream discharge, suspended sediment, hydrochemical values and bacteria levels were monitored at each sampling station for the 1977 and 1978 hydrologic years. In addition, the macrobenthic invertebrate communities at each station were sampled, the results of which are reported elsewhere. This volume presents the results of the water quality study for Rochester Planning Unit which includes MacLean, Moose, and Camp Creeks.

METHOD

The basic experimental design of the water quality study, developed by Bureau personnel, includes the sampling scheme, field methods, and laboratory methods. Minor additions and modifications to the original design were subsequently incorporated into the study as field and laboratory conditions dictated or permitted. Specific comments on such alterations are included.

Inventory Design

The initial phase of the water quality study involved a stream reach inventory and channel stability evaluation of each designated stream reach. The method and procedures used during this evaluation are outlined in Pfankuch (1975). The stream reach ratings were completed during August and September, 1976.

The 42 stream sampling stations were established during September, 1976. The selection of each gaging station site was governed by criteria presented in Carter and Davidian (1968). Each stream sampling station included a staff gage, a crest-stage gage, and a max-min thermometer.

A standard 3.3ft. staff gage was mounted to a fence post driven into the stream bed. A crest-stage gage was constructed of 3/4" diameter clear acrylic tubing, using modifications of the plans set forth in Buchanan and Somers (1968). This gage was afixed to the staff gage and fence pest. The max-min thermometer was bolted within a piece of PVC pipe, laid on the stream bottom, and attached by a chain to a fence post.

In addition, a 15 unit precipitation gage network was established in the spring of 1977. A general purpose rain gage (forester type) was installed in a plywood frame at each designated sample location and placed in a clear, open site at a 12" height above ground level. This technique

conforms with that recommended by the World Meteorological Organization (World Meteorological Organization, 1969, as cited in Aldridge, 1976).

Such a placement minimizes the error caused by wind eddying (Stringer, 1972, p. 29; Aldridge, 1976), and reduces the probability of disturbance or damage by livestock or vandals.

The stream and precipitation gage networks were monitored during the 1977 and 1978 hydrologic years. The basic design called for all stations to be visited on a prescribed schedule of weekly during peak runoff and monthly during low flow. The field seasons included: October - November, 1976; February and April - November, 1977; and March - September, 1978. The following water quality parameters were monitored as applicable. During each visit; stream discharge, suspended sediment, specific conductance, air temperature, water temperature, max-min water temperature, and precipitation were determined. Once a month, a water quality sample was taken for the following analyses: pH, alkalinity, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, ammonia, nitrite-nitrate, and ortho-phosphate. A second stream water sample was obtained for bacterial analysis to determine levels of total and fecal coliform.

Macrobenthic invertebrate inventories were also conducted at each stream sampling station during May, July, and September of each hydrologic year. Four individual square foot samples for the smaller streams and 6 samples for the larger streams were obtained during 1977, while 2 and 4 samples respectively were obtained for the streams during 1978.

Field Methods

Discharge values were determined by standard techniques using procedures described in Buchanan and Somers (1968). Stream velocities

were taken with a Gurley Pygmy type model 625 current meter. Sediment samples were obtained with a US DH-48 sediment sampler in conformance with procedures in Guy and Norman (1970). Water temperatures were recorded from Taylor max-min thermometers. Precipitation was collected in standard 7" rain gage (forester type). Specific conductance was measured with a Delta Scientific Model 1914 conductivity meter. Hydrochemical samples were collected in acid washed polyethylene liter bottles, which were filled to exclude air, and stored in an ice chest during transport to the laboratory. Microbiological samples were collected in 250 ml sterilized glass bottles and also stored in the ice chest. The macrobenthic invertebrate samples were taken with a Kahlsico stream-bed fauna sampler.

Laboratory Methods

Immediately upon arrival at the Dillon laboratory, each sample bottle was opened and an unfiltered sample was analyzed for pH and alkalinity respectively. The values obtained closely represent the values at the time of collection in the field (Brown, Skougstad, and Fishman, 1970, p. 129), while minimizing the potential for instrument damage during transport or carriage over back country roads or trails. This method has been adopted by several USDA Forest Service personnel (Aubertin, 1974; Snyder, et al., 1975). PH was measured using an Orion pH probe and an Orion 407 ion analyser. Akalinity was then determined by potentiometric titration to a preselected end point with a standard acid, as outlined in Brown, et al., (1970).

A 100 milliliter aliquot for ammonia analysis was then acidified with 0.8 milliter concentrated sulfuric acid and refrigerated (American

Public Health Assoc., 1976, p.42). The remainder of each stream sample was subsequently filtered through a 0.45 µm (micrometer) membrane filter and frozen. Membrane filters were soaked for 24 hours before using to remove any traces of soluble phosphate or nitrate (A.P.H.A., 1976 p. 472). Ammonia samples were analyzed on an Orion Ammonia electrode, model 95-10 (Orion Research Incorp., 1974). This analysis was routinely preformed in the Dillon laboratory on the final day of field collection.

Upon return to the Missoula laboratory the frozen samples were defrosted for analysis in the following order; 1) filterable orthophosphate; 2) nitrite-nitrate; 3) sufate; and 4) common metals. Procedures followed were adapted from Standard Methods for the Examination of Water and Wastewaters (A.P.H.A, 1976), with the exception of nitrate which was taken from Methods for Chemical Analysis of Water and Wastes (Environmental Protection Agency, 1976). All colorimetric tests were preformed on a dual beam spectrophotometer (Beckmann ACTA model III). All glassware was acid washed.

The Asorbic Acid method, procedure 425F, (A.P.H.A., 1976) was used for dissolved orthophosphate. Results are expressed as PO₄-P. Nitrite and nitrate were determined collectively since nitrite usually occurs in insignificant amounts in uncontaminated surface waters. The sum of the two represents total oxidized nitrogen and is expresses as nitrite plus nitrate-nitrogen. The Cadmium Reduction Method (E.P.A., 1976) was selected because of its low detection limits (10 µg/1). Sulfate was measured using the turbidimetric method, procedure 427C, (A.P.H.A., 1976). During the 1977 field season measurements were made on a spectrophotometer, but during 1978 a nephelometer (Turner Designs, Inc., medel #40) was used. Both

methods are recommended in the procedure, although it was found the nephelometer increased the precision of the test. Sodium, potassium, magnesium and calcium were run in that order by atomic absorption spectroscopy (A.P.H.A., 1976) using a Varian Techtron AA-5 spectrophotometer. Lanthanum chloride solution was added to the samples for magnesium and calcium analyses to prevent anionic interferences (EPA, 1976). Total dissolved solids and bicarbonate concentrations were determined from specific conductance and alkalinity values using calculations presented in Brown, et al., (1970).

Nitrogen levels, ie. ammonia and nitrite-nitrate, are consistantly at the minimum detection limit of the analysis. Ammonia levels are particularly suspect owing to the limitations of the instrument and the technique for the analysis. In interpreting results of ammonia analysis; a presence or absence of detectable ammonia approach should be used. Thus high levels of ammonia indicate that a source of ammonia is present in addition to those which are naturally occurring. Such levels are usually transitory and may vary in order of magnitude. Nitrite - nitrate values are also near the minimum detection limit; however, the nature of this analysis yields more precise results. These values, as a whole, tend to be generally lower than those expected under the environmental conditions encountered. Low phosphate values are to be expected and were confirmed by this study. The method for phosphate analysis selected is the procedure generally used when working in this low range of values. The other ions, ie. sulfate and the common metals, tended to be present in sufficient quantities so that no problems were encountered owing to the sensitivity of the analyses.

Water samples for microbiological examination were analyzed within six hours of collection (Millipore, 1975a). Fecal coliform were cultured, identified, and enumerated throughout the study by the membrane filter method described by Millipore (1975b). Total coliform bacteria were cultured,

identified, and enumerated by the membrane filter method (Millipore, 1975a). but with the modifications outlined below.

Total coliform data for 1977 were determined by counting the number of wet colonies that exhibited a visible green metallic sheen, either to the naked eye or at 1.5x magnification. Millipore (1975a) recommends the use of a 10x magnification dissecting microscope and that the colonies be dry. Geldreich (1975), however, indicates that there is no significant advantage to drying the colonies before counting. Without the 10x magnification, however it is probable that colonies growing close together were mistaken as being one colony, and colonies having a weak metallic sheen were not counted at all. This procedure would result in data that would underestimate the number of total coliform colonies present.

A modification of the membrane filter method was adopted in 1978 to minimize the problem of underestimating the total coliform colonies. the previous year, only the wet colonies exhibiting a distinct green metallic sheen were designated as coliform bacteria (Millipore, 1975a), while those wet colonies having a "non-sheen" red color darker than the medium-permeated background had not been counted. The degree of pigmentation and sheen development of coliform colonies grown on M-Endo medium, however, is variable according to both species and biotype. Furthermore, the identification criteria, i.e. colonies having a green iridescence or metallic sheen, is highly subjective and may vary from technician to Thus, some authors admit that "questionable colonies" may technician. occur which need more technical procedures for verification. One such procedure is to inoculate questionable colonies into a lactose broth, incubate at 35°C. for 48 hours, and determine whether gas and acid have been produced (Geldreich, 1975).

Using the above technique, an estimate of the fraction of questionable colonies was determined for which the lactose test was positive. After testing a series of 26 non-sheen, red colonies representing a variety of recognizable colonial morphotypes from several different stations, 69 percent were found to be lactose positive within 48 hours. Additionally, 16 percent of all dark red colonies found on 369 membrane filter samples exhibited a characteristic green sheen. It was thus estimated that approximately 75 percent of all red colonies darker than their membrane filter background conformed to either the green-sheen or lactose-test definitions of coliform bacteria. During the 1978 field season, all red colonies, sheen and nonsheen darker than their membrane filter background that were detected with the use of 10x magnification dissecting microscope were counted as total coliform. This procedure had the potential of overestimating the bacterial count by approximately 30 percent. It should be emphasized, however, that bacterial counts are not absolute values, but only estimates of magnitudes. Geldreich (1966, p.35) evaluated the total coliform bacteria for 40 samples using both the membrane filter method and the "most probable number" method. The ratio of their results varied from a minimum of 0.42 to a maximum of 2.52 respectively.

Tabulated total and fecal coliform data for this study are expressed as arithmetic means of either two or three replicated subsamples. Although the total coliform levels for the 1977 field season, i.e. May through November, 1977, are underestimated, the fecal coliform data for the two years are commensurate.

Analytical Methods

Stream discharge values were determined from field data with the use of a computer program based upon the procedure outlined in Buchanan and Somers (1969). These measured discharge values were then used to generate a staff-discharge rating curve for each station using a linear regression program. In several instances, two rating curves were produced. Instant and crest stage discharge values for the two water years were then estimated from the respective staff-discharge rating curves.

The annual hydrograph and sediment loading graphs were plotted with a computer using field data. Missing data points, i.e. winter months, were estimated using available stream flow, precipitation, and sediment concentration data. Estimates of annual water yield and annual sediment yield were generated by a modification of the computer program used to determine stream discharge. In a few instances, unusually high or questionable sediment concentration values, apparently caused by cattle present within the stream environs at the time of sampling or by sampling or analytical error, represented long sampling periods, i.e. 30 days. Where such conditions occurred, an estimated "corrected" level was substituted inorder to generate a more approximate determination of the annual sediment yield. The relationships between measured values of suspended sediment vs stream discharge and specific conductance vs stream discharge were determined by linear regression and plotted using the computer programs.

STUDY AREA

Beaverhead County, Montana

), ,

Beaverhead County is located in the southwestern corner of Montana immediately southwest of Butte. Almost the entire county lies above 5,000 feet and is encircled on the north, west, and south by the Continental Divide. The area is characterized by broad grassland and sagebrush covered valley bottoms and river terraces, while the flanks of the numerous mountain ranges grade into forest lands. The westernmost headwaters of the Missouri River drain the county to the northeast via the Big Hole and Beaverhead rivers. The forested mountain areas are generally administered by the Beaverhead National Forest of the USDA, Forest Service; the lower mountain slopes and terrace lands are managed by the Department of Interior's Bureau of Land Management; while the valley bottoms are mainly in private holdings. The land resources of the county are primarily allocated to the raising of livestock, although lumbering, mining, and recreation constitute secondary, but significant land uses.

The Bureau of Land Management's district office is located in the county seat of Dillon. The Bureau administers a number of planning units within the county. The Rochester Planning Unit lies north of Dillon and includes the Camp Creek and Moose Creek sample watersheds.

Camp Creek Watershed

The Camp Creek sample basin (Figure 1) encompasses approximately 21,100 acres and includes the Lower Camp and Upper Camp sample stations.

FIGURE 1 Location of Camp Creek Watershed, Rochester Planning Unit, Beaverhead County, Montana

Local relief within this southwest oriented basin ranges from 5,500 feet to over 10,100 feet elevation. The upper basin includes a steeply walled open valley, while the middle and lower reaches of the basin are generally confined between moderate to steep slopes. The basin geology is primarily composed of sedimentary and metasedimentary materials. The soils are predominantly entisols and inceptisols in the steeper areas, while mollisols characterize the more gentle sections. Approximately 30 percent of the watershed is forested, the major portion being along the steep north facing slopes and on the slopes of the upper valley. Sagebrush and grassland communities dominate the remainder of the basin. About 50 percent of the basin is managed by the Bureau of Land Management, 30 percent by the Deer Lodge National Forest, 15 percent is in private holdings, and 5 percent is owned by the State of Montana. Portions of the basin were mined during the last centry, and there is currently some active lumbering in the upper reaches of Little Camp Creek, but livestock grazing is the dominant land use throughout the watershed.

		•
		*
		•
		•
		•

Lower Camp Station

The Lower Camp station No. I is located in the north central portion of Section 20, Township 2S, Range 8W (Figure 2), approximately 500 yards upstream from the reservoir. This location is found on the Wickiup Creek, Montana 7.5 Series U.S. Geological Survey Topographic Quandrangle. The station is depicted as site No. I on aerial photo No. 6-102-132 of this resource inventory report, and is shown on stream station photo no. 1A. The station is located at 5,540 ft. elevation. The watershed above the station contains approximately 21, 100 acres, has a local relief of 4,600 feet, and is oriented to the southwest. Approximately 30 percent of the watershed is forested.

Upper Camp Station

The Upper Camp station No. 2 is located on the north central portion of Section 1, Township 2S, Range 8W (Figure 2), approximately 200 yards downstream from the confluence of Camp and Wickiup creeks. This location is found on the Wickiup Creek, Montana 7.5 Series U.S. Geological Survey Topographic Quandrangle. The station is depicted as site No. 2 on aerial photo No. 13-100-57 of this resource inventory report, and is shown on stream station photo no. 2A. The station is located at 6,250 feet elevation. The watershed above the station contains approximately 11,400 acres, has a local relief of 3,900 feet, and is oriented to the south. Approximately 70 percent of the water shed is forested.

The Upper Camp precipitation station No. 2G is located in the north central portion of Section 1, Township 2S, Range 8W (Figure 2).

FIGURE 2 Location of the Lower Camp and Upper Camp Sampling Stations and the Upper Camp Precipitation Station.

The gage is on the lower slope of the left bank, approximately 75 yards upstream from where the road crosses Camp Creek. The site is depicted as site No. 2G on aerial photo No. 13-100-570 of this resource inventory report.

Moose Creek Watershed

The Moose Creek sample watershed (Figure 3) encompases approximately 23,300 acres and includes the Lower Moose, Upper Moose and MacLean sample stations. The basin has a generally southwest aspect and ranges in elevation from 4,400 feet to slightly over 10,000 feet elevation. The upper watershed contains several broad valleys with meandering streams and numerous beaver ponds. Moderate to steep and rocky slopes dominate the middle and lower reaches of the watershed, especially within and peripheral to the Humbug Spires Primative Area. The upper Moose Creek basin is underlain by granitic parent rock, while the lower basin includes sedimentary and metasedimentary parent materials. The dominant soils of the basin are entisols and inceptisols, although there are some mollisols in the lower reaches of the basin and in scattered areas. Approximately 90 percent of the basin is covered with forests, with the remainder in sagebrush and grassland communities. The Deerlodge National Forest administers about 50 percent of the basin, 35 percent is managed by the Bureau of Land Management, and 15 percent is private land. Portions of the upper basin were mined during the last century. Currently there is some logging in the upper valley, but livestock grazing and reacreation are common throughout the basin.

FIGURE 3 Location of Moose Creek Watershed, Rochester Planning Unit, Beaverhead County, Montana

Lower Moose Station

The Lower Moose station No. 5 is located in the southeastern portion of Section 23, Township 1S, Range 9W (Fig. 4), approximately 100 yards above the confluence of Moose Creek and Chicken Gulch. This location is found on the Melrose, Montana 7.5 Series U.S. Geological Survey Topographic Quadrangle. The station is depicted as site No. 5 on aerial photo No. 13-100-53 of this resource inventory report, and is shown on stream station photos no. 5A and no. 5B. The station is located at 5,660 feet elevation. The watershed above the station contains approximately 23,300 acres, has a local relief of 4,400 feet, and is oriented to the southwest. Approximately 70 percent of the watershed is forested.

Upper Moose Station

The Upper Moose station No. 3 is located in the west central portion of Section 9, Township 1S, Range 8W (Fig. 4), approximately 10 yards downstream from the confluence of Moose Creek and an unnamed stream entering from the south. This location is found on the South Butte, Montana 15 Series U.S. Geological Survey Topographic Quadrangle. The station is depicted as site No. 3 on aerial photo No. 14-99-4 of this resource inventory report, and is shown on stream station photo no. 3A. The station is located at 6,600 ft. elevation. The watershed above the station contains approximately 15,400 acres, has a local relief of 3,500 feet, and is oriented to the southwest. Approximately 80 percent of the watershed is forested.

The Upper Moose precipitation station No. 3G is located in the south central portion of Section 9, Township 1S, Range 18W (Fig. 4). The gage is approximately 50 yards upslope and slightly to the left of the junction of the MacLean Creek road and the ridge road leading down to the Upper Moose

FIGURE 4 Location of Lower Moose, Upper Moose, and MacLean Sampling Stations and Upper Moose Precipitation Station.

stream gaging station. The precipitation station is depicted as site No. 3G on aerial photo No. 14-99-4 of this resource inventory report.

MacLean Station

The MacLean station No. 4 is located in the northeastern portion of Section 23, Township 1S, Range 9W (Fig. 4), approximately 15 yards upstream from the confluence of MacLean and Moose creeks. This location is found on the Melrose, Montana 7.5 Series U.S. Geological Survey Topographic Quadrangle. The station is depicted as site No. 4 on aerial photo No. 13-100-53 of this resource inventory report, and is shown on stream station photo no. 4A. The station is located at 5,780 ft. elevation. The watershed above the station contains approximately 2,560 acres, has a local relief of 2,600 feet, and is oriented to the west. Approximately 90 percent of the watershed is forested.

RESULTS AND DISCUSSION

The results of the water quality survey of the Camp and Moose Creek sample basins of the Rochester Planning Unit are summarized and briefly discussed below. The basic data for each station is found in the Appendix of this volume.

Camp Creek Basin

The Camp Creek sample basin was visited a total of 16 and 20 times during the two hydrologic years. There were no specific accessibility or sampling problems. The Upper Camp station was monitored 15 and 18 times respectively.

Channel Stability Ratings

The Upper Camp Creek, Little Camp Creek, and Wickiup Creek stream sections were evaluated on August 12, 1976. The portion of Camp Creek between the reservoir and the confluence of Camp and Wickiup creeks was evaluated independently by Bureau personnel. The upper segment of Camp Creek was rated as 'good' (70) (Table 1), Little Camp Creek as 'good' (53) (Table 2), and Wickiup Creek as 'good' (75) (Table 3). Since the inventory, conditions along lower Wickiup Creek have deteriorated owing to the diversion of the creek down portions of the road by a large beaver dam.

Precipitation

Precipitation was measured at the Upper Camp precipitation station from April 30 through November 10, 1977 and from April 5 through September 12, 1978. The general precipitation patterns during these two fiscal years

(101)	Bank along and the Along		0000	FAIR	1 1	POOS
(141)	/30%/	7				The state of the s
(141)	>30%	3	Bank slope gradient 30-40%	(4) Bank slope gradient 40-607,	(9)	Bank slope gradient 60% + 18
	or mass	36	Infrequent and/or very small, sortly healed over. Low	Moderate frequency & size, (6), with some raw spots eroded by water during high flows	6	ing 0%
(Floatable Objects)	F	(2) P	Present but mostly small twigs and limbs.	(4) Present, volume and size are both increasing.	36	Moderate to heavy amounts, 00
Bank Protection from Vegetation	gor	0	70-90% density. Fewer plant species or lower vigor suggests a less dense or	(6) and still fewer species form a somewhat shallow and		<pre><507. density plus fewer species & less vigor indl= '/2 cate poor, discontinuous, </pre>
II. LOWER BANKS			בבה נסטר יומאס.	discontinuous toot mass.		and shallow room mass.
nannel Capacity	Ample for present plua some increases. Peak flows contained, W/D ratio <7.	(E)	Adequate. Overbank flows rare. Width to Depth (W/D) ratio 8-15.	Barely contains present peaks. Occasional overbank floods, W/D ratio 15-25,	6	Inadequate, Overbank flows common, W/D ratio >25.
Bank Rock Content	gular ous,	(2) 4	40 to 65%, mostly small boulders to cobble 6-12".	(4):20 to 40%, with most in the [3-6" didreter class.	(9) a	<pre>< 207 rock fragments of gravel sizes, 1-3" or less.</pre>
Obstructions	Rocks, old logs firmly embedded. Flow pattern	S a	Some present, causing erosive cross currents and	Moderately frequent, moder- ately unstable obstructions		
Plow Deflectors Sediment Trapa	of pool & riffles stable (without cutting or deposition.	(2)	minor pool filling. Obstruc- tions and deflectors newer and less firm.	(4) & deflectors move with high water causing bank cutting hand filling of pools.	9	sion yearlong. Sed. traps () full, channel migration occurrence.
Cutting	one evident. raw banks leas	(4) 0	Some, intermittently at outcurves & constrictions. Ray banks may be up to 12".	Stgniffcant, Cuts 12"-24" (B) high, Rot mat overhangs and sloughing evident.	(112)	Almost continuous cuts, some over 24, high, Fail- ure of overhans frequent.
	٥ لــا	(4)	Some new increas in bar formation, most from coarse gravels.	(2) gravel & coarse sand on Old and some new bars.	(112)	Extensive deposits of pre- dominately fine particles, y Accelerated bar development.
BOTTON		-		7		
Rock Angularity	Sharp edges and corners, plane surfaces roughened.	(1) ^{IR}	Rounded corners & edges, surfaces smooth & flat.	(2) Corners & edges well round-	6	Well rounded in all dimen-
Brightness	100	(1)	120 8	(2) Mixture, 50-50% dull and bricht, ± 15%, 4e 35-65%.	6	Prelominately bright, 655 +,
Consolidation or Particle Packing		(2) 4	Moderately packed with some overlapping.	(4) Mostly a loose assortment with no apparent overlap.	(9)	No packing evident, Loose assortment, easily moved.
Bottom Size Distribution No change in sizes eviden 6 Percent Stable Materials Stable materials 80-100%,	۲,	(4) D	Distribution shift slight. Stable materials 50-80%.	(8) Noderate change in sizes. Stable materials 20-50%.	(12)	Stable materials 0-200.
Scouring and Deposition	Less than 5% of the bottom affected by scouring and deposition.	(6)		12) & scour at obstructions, constructions, constructions, and bends.	(18)	More than 50° of the bottom in a state of flux or change 24 nearly yearlong.
Clinging Aquatic Vegetation	Abundant, Growth largely moss like, dark green, per-	(1) C	(1) velocity & pool areas. Mose here for and and free reform	(2) In backwater areas. Season-	0	Perennial types scarce or absent, Yellow-green, short
	COLUMN TOTALS 7			8	00	A STATE OF THE PROPERTY OF THE

Add the values in each column for a total reach score here. (E. Z + G. + P. 8 + P. Z - 70).

31-2500-5 (6

Lope gradient 40-60% (6) Bank slope gradient 60% + to frequency 6 size, or during high flows, the volume and size the volume and si	Item Rated		Stability Indicators by	licators by Classes			
Sand table retail control of Jank Slock gradient 30-47, (6) gank tope crue to control of Jank tope station of Jank tope gradient 20th Jank slock gradient country and/or very ability. Solve extended to control of Jank tope gradient 20th Jank slock gradient control of Jank tope gradient control of Jank to	I. UPPER BANKS	EXCELLENT	000D			POOR	
So evidence of past	Landform Slope	Bank slope gradient < 30%	(1) Bank slope gradient 30-40%	Bank slope gradient		slope gradient	α
potential potential dor future mass () Statis whealed over, low () with some twa spots are readed () Statisment carry yearlong OR detained to Control was a control of the		No evidence of past or	Infrequent and/or very small,	, Moderato frequency & size,	F	equent or large, causing	}
Content of State Content of	(Existing or Potential)	potential for future mass	Mystly healed over. Low	(6) with some raw spots eroded		rearly yearlong	7
1000 1000	Debris Jam Potential	Essentially absent from	-	- 4	riadione	derate to bear amounts	_ (
deep, dense root mass. 902-PDA density, lower and some cord mass. 20-207 density, lower plant 20-207 density	(Flostable Objects)	immediate channel area,	-	are both increasing.	-	edominantly larger sizes.	α
dark variety suggests a lover vigor G and still fever species O species b Leav vicor indicates the dark of the contract	Bank Protection	90% + plant density. Vigor		50-70% density, Lower vigor	7	50% density plus fewer	
deep, dense root mass, deep root and selection discontinuous root mass, deep root and selection discontinuous discontinuous discontinuous discontinuous discontinuous discontinuous deep root and selection deep discontinuous discontinuous deep root and selection deep discontinuous deep root and selection deep discontinuous deep root deep ro	from	land variety suggests a	2.4		Menter	ectes & less vigor indi-	1
Ample for present plus some Adequate to Voethank flows increases. Peak flows come and adequate to Voethank flows come and adequate to Voethank flows to the flow of the flow o	Vegetation	deep, dense root mass.	suggests a less dense or .	form a somewhat shallow and	Ü	ite poor, discontinuous,	1
Interested Plus some Adequate, Overbank flows Control Cont	- 11		deep root mass.	discontinuous root mass.	ar	id shallow root mass.	_
Interested, Peak flows con- (I) rate, Width to Depts, Occasional present () Indequate, Overbank flows () Indequate, Overbank flows () Interested, Peak flows con- (I) rate (Width to Depts, Overbank flows) () Interested, Peak flows con- (I) rate (Width to Depts, Overbank flows) () Interested, Peak flows con- (I) rate (Width to Depts, Overbank flows) () 20 to 40%, with most in the (6) < 20% rock fragments of Boulders to cobble 6-12" () 20 to 40%, with most in the (6) < 20% rock fragments of Boulders to cobble 6-12" () 20 to 40%, with most in the (6) < 20% rock fragments of Boulders to cobble 6-12" () 20 to 40%, with most in the (6) < 20% rock fragments of Frequent Abstracts) frequent Boulders () Some present, causing and deflectors never (with flows) (6) story washing and deflectors never (with flows) (1) flows)	-1						
treatess : reak flows con- (1) reatio 8915, and received the colors with a contractions of the contractions of the contractions of the color of colors with most in the (6) C20% reck frageners of boulders to cooble 6-12", and color of col		Ample for present plus some	"Adequate, Overbank flows		Director.	Overbank fl	A
Cook	Chaimet capacity	increases, reak tlows con-	ratio 8-15		The same of the same of	mmon, W/U ratio >25.	١.
Modesto 12" + numerous Some present, causing Moderater class, 1-1" or less Gridectors and deflectors and deflectors and Moderater class Gridectors and Gridectors Gridectors and Gridectors Gridector		165% + with large, angular		(4) 20 ro 40% with most in the	(9)	20% rock fragments of	6
Rocks, old logs firmly embedded. First properties are reconstructions and arely marable backsuctions. Grow present, course the properties are related arely marable backsuctions. Grow in the properties are related are causing bank cutting or throne cutting the cutting th	Bank Rock Content	boulders 12" + numerous.		3-6" diameter class.		avel sizes, 1-3" or less.	9
embedded, I for pattern reaps recoive coss currents and reposition to foot 6 riffles stable recoive pool filling obstructions respond to the cutting of pool 6 riffles stable respond to the cutting of pool 6 riffles stable respond to the cutting of pool 6 riffles and deflectors never respond to the cutting of pool 6 riffles stable recoiver stable st			Some present, causing	Moderately frequent, moder-	G.	equent obstructions and	1
tions and deflectors move with high (6) sion yearlong, Set, traps untrape cutting or pools. Traps deposition. Traps deposition. Trips deflectors move with high (6) sion yearlong, Set, traps and deflectors never causing bank cutting fools. Trips deposition. Trips deposition. Trips deflectors move with high (6) sion yearlong, Set, traps and leaflectors never causing bank cutting of pools. Trips deflected by according and deflectors never and significant, cuts 12"-24" Trips deflected by according to the content of the co	Obstructions	embedded. Flow pattern	7.7	ately unstable obstructions	P	flectors cause bank ero-	0
United partial parti	Plow Deflectors	of pool & riffles stable			-	on yearlong. Sed. traps	Ň
Capabition, and less film. Same, intermittently at and filling of pools.	Sediment Traps		tions and deflectors newer	water causing bank cutting	Į,	ill, channel migration	
Infrequent raw banks less		deposition.	and less firm.	iand filling of pools.	00	curing.	1
Infrequent raw banks less			Some, intermittently at		٧	most continuous cuts,	`
than 6" high generally, Some new increas in bar of channel or no enlargorent (a) Some new increas in bar of channel or no enlargorent (b) Cornation, most from (coarse gravels, coarse sand on (coarse gravels, coarse gravels	Cutting	Infrequent raw banks less	outcurves 6 constrictions		-	me over 24" high, Fail-	2
Little or no chargorent Some new increas in bar Cocrate deposition of new (12) deninately fine particles, of channel or point bars. (4) foundation, most from (6) gravel 6 coarse sand on (12) deninately fine particles, of channel or point bars. (1) Rounded corners 6 edges. (2) Graners 6 edges well recommended in all dimensions. Dilar surfaces smooth, 6 flat. (2) Mixture, 50-50% dull and (3) Perdominately bright, 65% + 15% is 35-65%. (3) Perdominately bright, 65% + 15% is 35-65%. (4) Perdominately bright, 65% + 15% is 35-65%. (5) Perdominately bright, 65% + 15% is 35-65%. (6) Perdominately bright, 65% + 15% is 35-65%. (7) Perdominately bright, 65% + 15% is 35-65%. (8) Perdominately bright, 65% + 15% is 35-65%. (8) Perdominately bright, 65% + 15% is 35-65%. (9) Perdominately bright, 65% + 15% is 35-65%. (10) Perdominately mayored. (10) Perdominately bright, 65% + 15% is 35-65%. (10) Perdominately perdominately bright, 65% + 15% is 35-65%. (10) Perdominately perdominately bright, 65% + 15% is 35-65%. (10) Perdominately perdominately bright, 65% + 15% + 15% is 35-65%. (10) Perdominately perdominately perdominately bright, 65% + 15% + 15% is 35-65%. (10) Perdominately bright, 65% + 15% +		than 6" high generally,		and sloughing evident.	, 3u	e of overhangs frequent,	_
of channel or point bars. (4) formation, most from G gravels. Coarse gravels. Sharp edges and corners. Sharp edges and corners. Sharp edges and corners. (1) Rounded corners & edges, C Corners & edges well round- (3) Well rounded in all dimenplants. Plane surfaces roughened. Surfaces dull, darkened, or L Gostly dull but may have (2) Wixture, 50-50% dull and (1) Predominately bright, 51% + 15%, ie 35-65%. Assorted sizes tightly acked with any have (2) Wixture, 50-50% dull and (1) Predominately bright, 50% + 10% attained, corners, 50-50% dull and (1) Predominately bright, cost of the bottom same overlapping. Tribution No change in sizes evident. (4) Distribution shift slight. (5) Subjected and/or overlapping. (6) Distribution shift slight. (7) Stable materials 20-50%. (8) Stable materials 20-50%. (9) Stable materials 20-50%. (18) In a state of flux or change affected bottom and where (1) & scour at obstructions, and bends. deposition. (5) Subjected by scouring and (6) Constrictions and where (1) & scour at obstructions, and bends. deposition. Abundent, Growth largely Common, Algal forms in low Present but apotty, mosely Course, where the short was short entails in largely course to any state of the bottom deposition mose like, dark green, per- (1) velocity 6 pool ereas. Hose (2) in backwater areas. Season- (2) absent. Yellow-green, short entails in largely course to and swifter wiers. Abundent, Growth largely course to and swifter wiers. Abundent, Brows short course to and swifter wiers. Abundent short course to and swifter wiers. Abundent short course to and swifter wiers.		Little or no enlargoment		"oderate deposition of	(E)	tensive deposits of pre-	-
Sharp edges and corners, Sharp edges, Shap	Deposition	lof channel or point bars.	formation, most from	gravel &	~	minately fine particles.	2
Sharp edges and corners, (1) Rounded corners & edges, plane surfaces roughened, strained, certificates froughened, strained, certificates froughened, or (1) Nostly dull but may have (2) Mixture, 50-50% dull and (3) Predominately bright, 50-50% strained, certificates froughened, or (1) Nostly dull but may have (2) Mixture, 50-50% dull and (3) Predominately bright, 60-80 from strained strained, certificates from strained strained strained, certificates from strained strain				old and some new bars.	V	celerated bar development,	
Sharp edges and corners, Sharp edges and corners, Surfaces smooth & flat, Dane surfaces roughened, Surfaces smooth & flat, Surfaces surfaces surfaces flat, Surfaces surfaces surfaces flat, Sur	BOTTOM						
Surfaces roughened, surfaces smooth & flat, ed in two dimensions, siems, surfaces smooth. Surfaces dul, darkened, or (1) Mostly dull but may have (2) Mixture, \$0-50% dull and (3) Predominately bright, \$0.55.4, attained, Cen, not "bright", ie 35-5%. Stable darked and/or overlapping, some overlappin	Rock Angularity	Sharp edges and corners,	(1) Rounded corners & edges,	F	(6)	: 11 rounded in all dimen-	4
or (1) Wostly dull but may have (2) %ixture, \$0-50% dull and (3) Predominately bright, \$5% + \$1.00 to 35% bright surfaces. (2) Wordcrately packed with (2) %obity a loose assortment (6) No packing evident. Loose some overlapping. (3) Wordcrately packed with (2) %obity a loose assortment (6) No packing evident. Loose (7) with no apparent overlap. (4) Distribution shift slight. (2) %obity a loose assortment, easily moved. (5) Eable materials 50-80%. (5) Stable materials 20-50%. (7) Warked distribution change. (6) Constrictions and where (12) 6 scour at obstructions, (18) in a state of flux or change grades strepen. Some (11) 6 scour at obstructions, (18) in a state of flux or change grades strepen. Some (11) 6 scour at obstructions, and bends. (6) Common, Algal forms in low Present but aporty, mostly Perennial types acerce or Common, Algal forms in low Present but aporty, mostly (6) absent. Yellow-green, short here too and swifter waters. (2) in backwater areas. Season- (1) absent. Yellow-green, short here too and swifter waters.		plane surfaces roughened.		. [S		
(2) Noderately packed with (2) Noterately packed with no apparent overlap. 1. (4) Distribution shift slight. (2) Noderate change in sizes. (12) Warked distribution change. (3) Stable materials 50-80%. (4) Distribution shift slight. (5) Stable materials 20-50%. (5) Stable materials 0-20%. (5) Stable materials 0-20%. (6) Constrictions and where (12) 6 scour at obstructions, (18) in a state of flux or change grades steepen. Some (11) 6 scour at obstructions, (18) in a state of flux or change deposition in pools. (7) Some (11) of Some	prignense	stained Con not "seight"	-		(J) P.	65%	
some overlapping. 1t. (4) Distribution shift slight. 2 Stable materials 30-807. 2 Stable materials 30-807. 3 Stable materials 0-907. 5 Stable materials 0-907. 6 Stable materials 0-907. 7 Stable materials 0-907. 8 Stable materials 0-907. 9 Stable materials 0-907. 10-907. affected. Deposits (6) constrictions and where (12) 6 scour at obstructions; (18) in a state of flux or change deposition in pools. 12 Some filling of pools. 13 Some filling of pools. 14 Some filling of pools. 15 Common, Algal forms in low Present but spotty, mostly Perennial types scarce or Present but spotty, mostly passent. Yellow-green, short here too and swifter waters. 2 Al blooms make rocks slick.	Consolidation or	Assorted sizes tightly	-	(4) Mostly a loose assortment	oka.	packing evident, loose	0
1t. (4) Distribution shift slight. Stable materials 20-50%. Stable materials 50-80%. Stable materials 50-80%. Stable materials 20-50%. Stable materials 50-80%. Stable materials 20-50%. Stable materials 50-20%. Stable materials 50-50%. About 50-50%. Stable materials 50-50	Particle Packing	packed and /or overlapping.	_		100	Sortment, easily moved.	0
Stable materials 50-807. Stable materials 20-507. Stable materials 9-20*. 5-30% affected. Scour at 10-50% affected. Deposits More than 50% of the bottom (6) constrictions and where [12] 6 scour at obstructions, (18) in a state of flux or change grades steepen. Some [12] constrictions, and bends. nearly yearlong. Common. Algal forms in low Present but spotty, mostly Perennial types scarce or Present but spotty, mostly [1] absent. Yellow-green, short there too and swifter waters. 31 blooms make rocks slick. Etem bloom may be prosent.	Bottom Size Distribution	No change in sizes evident.	5		(12) 46	irked distribution change.	-
Less than 5% of the bottom affected. Scour at affected. Deposits Hore than 5% of the bottom affected by acouting and constrictions and where [12] & scour at obstructions, and bends. as state of flux or change agrades steepen. Some [11] of constitutions, and bends. as steepen. Some affected by acouting nearly yearlong. Abundant. Growth largely (Common. Algal forms in low Present but apolty, mostly Perennial types acarce or present where the apolty, mostly (Common. Algal forms in low Present but apolty, mostly (Common. Algal forms in low Present but apolty, mostly (Common. Algal forms and sold for waters. Season- (Common. Yellow-green, short control to make tooks slick, and present, and bloom may be present.	6 Percent Stable Materials	Stable materials 80-100%.	Stable materials 50-80%.		S	able materials 0-20%.	9/
affected by acouring and (6) constrictions and where (12) & scour at obstructions, (18) in a state of flux or change deposition. Apposition Grades steepen. Some Constrictions, and bends. Grades steepen. Some deposition in pools.			5-30% affected, Scour at	-	Ĭ	are than 50% of the bottom	
deposition. deposition. deposition in pools. Common. Algal forms in low Present but apoct you set yearlong. Common. Algal forms in low Present but apoct you set y Perennial types scarce or Common. Perennial types scarce or Present but apoct you set y Perennial types scarce or Present areas. Season Description Perennial types scarce or Present areas. Season Perennial types scarce or Present areas. Season Description Perennial types scarce or Present areas. Season Perennial types scarce or Perennial types Perennial ty	Scouring and	affected by acouring and	constrictions and where	[12] 6 scour at obstructions,		flux	174
Abundent, Growth largely Common, Algal forms in low Present but spotty, mostly mostly most like, dark green, per- (1) velocity 6 pool areas, Mosa (2) in backwater areas. Season-contact in swift water too, here too and swifter waters, all blooms make rocks slick,	Deposition	deposition.		Diconstrictions, and bends.	Ľ	erly yearlong.	l
Addition moss like, dark green, per- (1) velocity 6 pool greas, Mosa (2) in backwater areas. Season- contab. In swift water too. Column rotate.				Some filling of pools.	-		_
tion moss like, dark green, per (1) velocity o pool ereas. Hosa (2) in backwater areas. Season- contast, in swift water too, here too and swifter waters. In blooms make rocks slick,	Cilnging Aquatic	Abundant, Growth Largely		Present but spotty, mostly	(rennial types scarce or	4
COLINA TOTAL CONTRACT	(Moss & Alose)	moss like, dark green, per-		(2) in backwater areas. Season-	9	sent, Yellow-green, short	_
	7440000	COLUMN TIME THE PROPERTY OF	THE COO WIND BATTER MARKETS	AL DAOMS MAKE FOCKS SLICK		The of took way be bles call	+

Add the velues in each column for a total reach acora here, (2, 1/ + 6, 3/ + 7, 3 + P, 8 = 53).

M1-2500-5 (6

Item Rated		Stability In	Stability Indicators by Classes	
I. UPPER BANKS	EXCELLENT	0000	FAIR	POOR
Landform Slope	Bank slope gradient <30%	(2) Bank slope gradient 30-40%	(3) Bank slope gradient 40-60%	(6) Bank slope gradient 60% + 18
Mess Wasting (Existing or Potential)	No evidence of past or potential for future mass	Infrequent and/or very small		8 08
Debria Jam Potential	Easentielly absent from	(2) Present but mostly small	(4), Present, volume and size	Moderate to heavy amounts,
Bank Protection from Vegetation	907. + plant density. Vigor and variety suggests a deep, dense root masa.	70-90% density. Fever plant Species or lower vigor suggests a less dense or	(6) and still fever species form a somewhat shallow and	-
II. LOWER BANKS		deep root mass.	discontinuous root mass.	and shallow root mass,
-5	Ample for present plus some increases. Peak flows contained, W/D ratio <7,	Adequate. Overbank flows Trare. Width to Depth (W/D) ratio 8-15.	Barely contains present (2) peaks, Occasional overbank floods, W/D ratio 15-25.	Inadequate, Overbank flows 4 common, W/D ratio >25.
Bank Rock Content	65% + with large, angular boulders 12" + numerous.	(2) 40 to 65% mostly small boulders to cobble 6-12%	0% , with m preter clas	(6) <20% rock fragments of gravel sizes, 1-3" or less.
Obstructions Plow Deflectors Sediment Treps	Rocks, old logs firmly embedded. Flow pattern of poul & rifiles stable without cutting or	Some present, causing erosive cross currents and (2) minor pool filling. Obstructions and deflectors newer	3	ructio use ba Sed,
Cutting	deposition. Little or none evident. Infrequent raw banks less	and less firm. Some, intermittently at (4) outcurves & constrictions.	(8) high. Root mat overhangs	Almost continuous cuts, (12) scale over 24" high, Fail-
Deposition	Little or no enlargument of channel or point bars.	Some new increas in bar (4) formation, most from coarse pracels.	Woderate deposition of new 8 gravel 6 coarse sand on old and some new bare	(12) downated fine particles.
III. BOTTOM				
Rock Angularity	Sharp edges and corners,	(1) Rounded corners & edgea, surfaces smooth & flat.	Corners & edges well round-	(3) Well rounded in sil dimen-
Brightness	Surfaces dull, darkened, or stained, Gen. not "bright".		(2) Mixture, 50-50% dull and bright, + 15%, 4e 35-65%.	(3) Predominately bright, 65. +.
Consolidation or Particle Packing	Assorted sizes tightly packed and/or overlapping.	(2) Moderately packed with	loosc	No packing evident, coose
Bottom Size Distribution No change in siz	No change in sizes evident. Stable naterials 89-100%.	(4) Distribution shift slight. Stable materials 50-80%.	(8) Noderate change in sizes. Stable materials 20-507.	The state of the s
Scouring and Deposition	((6) constrictions and where grades steepen. Some deposition in nools.	(12) & scour at obstructions, constrictions, constrictions, and bends.	More than 50% of the bottom (18) in a state of flux or change 24 nearly yearlong.
Clinging Aquetic Vegetetion (Moss & Algae)	Abundant, Growth largely mose like, dark green, per- ennial. In swift water too	(1) velocity 6 pool areas. Mose here for and and effort waters	Present but spotty, mostly O in backwater areas, Seson-	Perennial types scence or (3) absent. Yellow-green, short
	COLUMN TOTALS		39	

Add the values in sech column for a total reach score here. (E. 8 + G. 39 + F. 24 + P. 7 - 75).

are compared to those of the Divide and Dillon weather stations (Figure 5).

Although 1977 was the wetter year for the two lowland weather stations, a heavier winter snow pack and more spring rain characterized the Upper Camp station for 1978.

Stream Discharge

The staff-discharge rating curves for the Lower Camp and Upper Camp sample stations are presented in Figures 6 and 7. The gauging sites remained nearly stable during the two sampling years, except for some minor sedimentation at the upper station and modest bank erosion at the lower station.

The 1977 and 1978 annual hydrographs for the Lower Camp and Upper Camp Creek sample stations are presented in Figures 8-11. Peak flow during 1977 at the Lower Camp station apparently occurred in early to mid-April during an unusually warm period. An estimated crest stage value of 19 cfs was recorded during mid-April, although a higher flow may have occurred prior to the first sampling visit. The lowest recorded flow during 1977 was only 2.4 cfs during mid-July. The 1978 year produced an early peak flow of 25 cfs in mid-April which preceeded the seasonal peak discharge of approximately 90 cfs in late May. The lowest recorded flow for 1978 was 5.4 cfs in mid-August. The Upper Camp station exhibited similar patterns. An estimated peak discharge of 18 cfs was noted in mid-April, 1977, although a higher flow may have occurred previously. The lowest recorded flow for the year was 3.6 cfs in mid-July. In the 1978, an annual peak flow of 70 cfs was measured in mid- to late May, while the lowest flow was recorded at 3.3 cfs in the previous October. The differences noted in flow patterns for the two hydrologic years are largely attributed to differences in the annual

Stream Discharge (CFS)

FIGURE 6 Staff-discharge rating curve for Lower Camp sampling station

Stream Discharge (cfs)

FIGURE 7 Staff-Discharge Rating Curve For Upper Camp Sampling Station

		k
		K
		es,
		•

	UPPER CAMP - 1977	\ \ 1
100.0000		125.0030
		112.5000
		100.0000
: :: :: :: ::		87.5000
· · · · · · · · · · · · · · · · · · ·		75.0000
		62.5000
**************************************		00000
· · · · · · · · · · · · · · · · · · ·		37.5000
		25.0000
10.0000		12.5000
*************************		0.0000

precipitation patterns.

The respective annual hydrograph data were used to estimate the annual water yields for each station (Table 4). In both water years, the estimated yield for the Upper Camp station was comparable to that of the Lower Camp station. These values approximated 4,000 acre feet and 7,000 acre feet respectively. This condition is partially attributed to differences in the influence that evapotranspirational stress within the riparian zone has on stream flow at these two stations in this southwesterly facing basin.

A 75 percent increase in water yield was noted for 1978 at each station.

Suspended Sediment

The annual pattern of sediment concentration for each station by hydrologic year is depicted in figures 8-11. Suspended sediment concentrations at the Lower Camp station ranged from <5 ppm at low flow to 107 ppm at high flow, while those for the upper station ranged from <5 ppm to 54 ppm. Higher suspended sediment values were recorded during the 1978 hydrologic year when there were higher discharge values. The relationships between suspended sediment and stream discharge for each station were statistically significant, and are presented in Figures 12 and 13. The variability in sediment concentration with stream flow is partially attributed to a seasonal effect, specific storm effects, and to the hysteresis effect, whereby peak concentrations of suspended sediment generally occur prior to peak runoff during the rising stage (Gregory and Walling, 1973, pp. 215-219). Annual sediment yields for the two sample stations were estimated from respective water yield and sediment concentration data (Table 4). The lower and upper stations produced approximately 95 tons and 75 tons of suspended sediment respectively during 1977. These yields were increased to 415 tons and 277 tons for the more active 1978 hydrologic year.

Hydrochemical Parameters

The concentration of dissolved solids is inversely related to stream discharge so that lower concentrations occur during periods of high runoff, while higher concentrations are found during periods of low summer base flow (Gunnerson, 1967; Gregory and Walling, 1973, pp. 219-225). Patterns for specific ions, especially the ecologically important ones, often vary from this generalization (Likens, et al., 1977, pp. 74-76).

AAA AAA AAAA AAAA AAAA AAAA AAAAA AAAAA AAAA	AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA		LOG SED =0.4585+3.8158(LOG DIS)	
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AMA	125.0000+		YYY
**************************************	**************************************	77.1292		X
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	47.5913+	AAA AAA	NA NA
ANA	AAA AAA AAA AAA AAA AAA AAA AAA AAA AA	••••	AAA * AAA	
ANA	AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA	29,3655	* AAA AAA	
AAA AAA AAA AAA AAA AAA AAA AAA AAA AA	AAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA		AAA	
AAA AAA AAA AAA AAA AAA AAA AAA AAA AA	AAAA AAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA	18,1195+		1
AAA AAA AAA AAAA AAAA AAAA AAAA AAAA AAAA	AAA AAA AAA AAA AAA AAA AAA AAA AAA AA			
AAA AAA AAA AAA AAA AAAA AAAA AAAA AAAA AAAA	AAA AAA AAA AAA AAAA AAAA AAAA AAAA AAAA	11.14004	AAA	a de la companya de l
AAA AAA AAA AAA AAA AAA AAA AAAA AAA A	AAA AAA AAA AAA AAA AAAA AAAA AAAA AAAA AAAA	6.8986	AAA	
AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAA AAA AAA AAA AAA AAA AAA AAA AAA AA		****	
*	**		A TANK TOTAL	
1.6207	1.6207	A A		
1.6207*	1.6207*		- Construence of the Construence	
		1.6207		
1.0000	1.0000	: : : : : : : :		

Specific conductance for the Lower Camp station ranged from a low of 108 umhos during high spring runoff to a high of 193 umhos during late summer base flow. The Upper Camp station exhibited a similar pattern, values ranging from 88 umhos to a high of 148 umhos. The relationships between specific conductance and stream discharge for each station were statistically significant and are presented in Figures 14 and 15. Variation in specific conductance with stream discharge is partially attributed to seasonal and storm hysteresis effects (Gregory and Walling, 1973, pp. 219-225). The ranges in ionic concentration for specific ions are presented in Table 5.

Bacteria Levels

The concentration of fecal and total coliform in streams draining rangeland watersheds is directly related to the number of cattle present, their access to the stream, the physical and hydrological characteristics of the basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 1978), and the time of day (Kunkle and Meiman, 1968). Seasonal patterns include a spring "flushing" effect during the rising state (Kunkle and Meiman, 1968), and with high counts during the low flow summer period, counts which often continue for some period after the cattle have been removed from the area (Stephensen and Street, 1978). This seasonal pattern may briefly be modified by local storms which produce their own "flushing" effect, and which may or may not be followed by a short term dilution period.

The concentrations of fecal coliform for the Lower and Upper Camp stations for the study period are presented in Table 6. Higher values occurred during the grazing season, especially with the known presence of livestock. Maximum fecal coliform levels were 340 and 523 colonies/100mls respectively for each station. Approximately 8 percent and 17 percent of

330.0303. 320.0303. 2250.7877. 229.6464.4444	
-7877* -6484*AAAAA* -2572* -2572* -4445* -4445*	
5484 * AAAAA *	
AAAAA 2 AAAAA 4 AAAAAA 4 AAAAA 4 AAAAAA 4 AAAAAA 4 AAAAAA 4 AAAAAA 4 AAAAA 4 A	
4444 * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * *	

2.4145	AAAAA **
). ARAK+	* * ***********************************
	AAAA
85.5885.	
71.5485+	
59.8116+	
50.0000+	

อดา	COND =2.2	
300.000		
250.7877.		• •• •• • ••
239.6481+		••••••
C : :		
I 146.5078+ AAAAAA	AA AAAAA	• •• ••
Y 122.4745*	A+AAA+* ** AAAAA AAAAA AAAA+A	•• •• ••
H	AAAAA AAAAAA AAAAAA AAAAAA AAAAAA AAAAAA	
85.5885*	AAAAAA	AAAAA AAAAA AAAAA AAAAA A AAAAA A
71.5485		
59.8116+		
*0000°05) ee ee 4

Table 5 Ranges of Hydrochemical Characteristics for the Camp Creek Sample Stations for 1977 - 1978

	Lower Camp	Upper Camp
pH Alkalinity (CaCo ₃) (mg/1)	6.85 - 8.00 28 - 107	6.73 - 7.82 28 - 57
Specific Conductance (µmhos) Total Dissolved Solids (mg/l)	108 - 193 70 - 125	88 - 148 57 - 96
Ca (mg/1) Mg (mg/1) Na (mg/1) K (mg/1) HCO ₃ (mg/1) SO ₄	13 - 28 3.9 - 10 4.4 - 8.3 1.3 - 3.2 42 - 131 12 - 36	9.8 - 28 2.9 - 6.3 3.5 - 6.9 1.3 - 2.7 33 - 69 12 - 26
$NO_2^4 + NO_3 - N \text{ (mg/1)}$		<.0105 <.0110 .006048

Table 6 Fecal Coliform Concentrations (Colonies/100 mls) for the Camp Creek Sample Stations for 1977 and 1978.

	Lower Camp 1977 1978	Upper Camp 1977 1978
April		and the same
May	98(?) < 2	3(?) < 2
June	34(?) 10*	249* 19
July	124* 19(?)	29* 147(?)
August	42* 19(?)	58* 83(?)
September	16* 340*	7* 523*
October	3*	25*
November	7*	23(?)

^{*}Stock visually present

^(?) Stock presence uncertain

the sample coliform counts exceeded the 200 colony/100 ml limit of the Montana Water Quality Criteria. Low values were associated with the spring season. A spring "flush" may be in evidence in Lower Camp during May, 1977.

Comments

The Camp Creek basin is prone to wide ranges in its flow regime owing to its configuration, aspect, and position relation to local storm paths.

Because of the limited number of samples taken and the nature of the hydrochemical parameters evaluated, relationships between the water quality characteristics of Camp Creek and the Montana Water Quality critera cannot be addressed.

Moose Creek Basin

The Moose Creek sample basin was visited a total of 16 and 19 times during the two hydrologic years. The Lower Moose and MacLean stations presented no appreciable accessibility problems. The Upper Moose station was inaccessible from late October, 1977 until early May, 1978. This station was monitored 13 and 12 times respectively.

Channel Stability Ratings

The lower Moose Creek stream section from Chicken Gulch to MacLean Creek, and the MacLean Creek stream section were evaluated on September 23, 1976. The upper Moose Creek segment from the eastern boundary of the Humbug Spires Palmative Area to Moosetown was evaluated on August 12, 1976. The lower Moose Creek segment was rated as 'good' (44) (Table 7), MacLean Creek as 'good' (48) (Table 8), and the upper Moose Creek portion as 'good' (66) (Table 9).

Precipitation

Precipitation was measured at the Upper Moose precipitation station from April 30, 1977 through October 15, 1977 and from April 25 through September 12, 1978. The general precipitation patterns during these two fiscal years are compared to those of the Divide and Dillon weather stations (Figure 16). On several occassions the tops of the guages had been removed, therefore the data presented is the minimum amount recorded. Precipitation patterns for the two hydrologic years appear comparable, indicating peaks in May and September.

RJ-2500-5 (6

Table 7

UIDA-FOREST REBVICE

Lower Moose Creek 9/23/76

	Item Rated		Stabilit	y Indic	Stability Indicators by Classes			
	UPPER BANKS	EXCELLENT		9	FAIR		POOR	1
Lan	andform Slope	Bank slope gradient < 30%	(2) Bank slope gradient 30-40%	.07.	Bank slope gradient 40-607,	9	(6) Bank slope gradient 60% +	φ
_ ;		No evidence of past or	Infrequent and/or very smgl	ims 11,	"Moderate frequency & size,		Frequent or large, causing	}
E E	(Existing or Potential)	potential for future mass wasting into channels.	(3) Mostly healed over. Low	Ð.	by water during high flows.	6	sediment rearly yearlong OR imminent danger of same.	7
Sep Per	Debris Jam Potential	Essentially absent from	(2) Present but mostly small		Present, volume and size	(9)	Moderate to heavy amounts,	$^{\perp}\alpha$
	a - 1. D	90% + plant done it. Vicor	70-00% door in Door alone		solve both increasing.	I	predominantly larger sizes.	١,
9	r rotection	and varioty enoposes a	(3) epecies or loner vicor	(4)		6	Above density plus reper	
>	Vegetation	deep, dense root mass.			64.71 NY	}	cate poor, discontinuous,	7
].	LOWER BANKS		(deep root mass.		discontinuous root mass.	I	and shallow root mass.	7
Ch	Channel Capacity	Ample for present plus some increases. Peak flows con-	Adequate, Overbank flows	(2)	Barely contains present peaks, Occasional overbank	Ĉ	Inadequate, Overbank flows common, W/D ratio >25,	4
S B D	Bank Rock Content	65% + with large, angular boulders 12" + numerous.	2 40 to 65%, mostly small boulders to cobble 6-12"	(4)	de la compa	9)	<pre>< 20% rock fragments of gravel sizes, 1-3" or less.</pre>	ω
		Rocks, old logs firmly	Some present, causing	1	Moderately frequent, moder-		Frequent obstructions and	_
3	Plow Deflectors	of pool & riffles stable	2) minor pool filling, Obstruc-	(4)		(9)	sion yearlong, Sed, traps	oĆ
	Sediment Traps	without cutting or deposition.		ag L	water causing bank cutting		full, channel migration)
		Little or none evident.	+-	-	Significant, Cuts 12"-24"		Almost continuous cuts,	-
CEE	Cutting	Infrequent raw banks less	G outcurves & constrictions.		(8) high. Root mat overhangs	(112)	some over 24" high, Fail-	2
L		il terio or so solutioner	Cambridge Cambri	9 9	Valoreto Proprietor		The or overlinaings at evaluation	+
Dep	Deposition	of channel or point bars.	formation, most from	(8)		(12)	dominately fine particles.	19
-	SOTTOM		1		0			.1
Roc	Rock Angularity	Sharp edges and cornera, plane surfaces roughened.	(1) Rounded corners & edges,	0	Corners & edges well round-	6	(3) Well rounded in all dimen-	4
Bri	Brightness		(1)	© :	-	6	Predominately bright, 65% +, exposed or scoured surfaces.	4
00	Consolidation or	Assorted sizes tightly	(2) Moderately packed with	-		(9)	No packing evident, Loose	- 0< †⁻
	Particle Packing	packed and/or overlapping.			with no apparent overlap.		assortment, easily moved.	-1
Bot & P	Bottom Size Distribution 5 Percent Stable Materials	Bottom Size Distribution No change in sizes evident. A Percent Stable Materials Stable materials B0-1007.	(4) Distribution shift slight. Stable materials 50-80%.	14. (8)	Moderate change in sizes.	(12)	Marked distribution change. Stable materials 0-20%.	16
		Less than 5% of the bottom	=				More than 50% of the bottom	-
0	ocouring and Deposition	affected by acouring and deposition.	(b) constrictions and where grades steepen. Some deposition in pools.	0	constrictions, and bends,	(18)	in a state of flux or change; nearly yearlong.	74
C11	Clinging Aquatic	Abundant, Growth largely moss like, dark green, per-	3	200	4000 ai a	3	Perennial types scarce or	4
	(Hoss & Algae)				al blooms make rock		term bloom may be present.	- 1
]	(HOSS & ALKSE)		here too and swifter wa	22 -	9 19	ooms make rocks slick.		
]		3	

Add the values in each column for a total reach scora here, (E. 18 + 6.26 + F. - + P. - 44).

R1-2500-5 (6

œ

Table

USDA-FOREST SERVICE

Item Rated		Staullity Ir	Staullity Indicators by Classes	
I. UPPER BANKS	EXCELLENT	COOD	FAIR	POOR
Landform Slope	Bank slope gradient <30%	(2) Bank slope gradient 30-407	(4) Bank slope gradient 40-607, (6)	(6) Bank slope gradient 607.+ 18
To the state of th	No evidence of past or		. Moderate frequency & size,	
(Existing or Potential)	potential for future mass wasting into channels.	Missely healed over, Low	(6) with some raw spots eroded (9)	sedument nearly yearlong OR /2
Debris Jam Potential	Essentially absent from	(2) Present but mostly small	(4) Present, volume and size (6)	Moderate to heavy amounts
(Floatable Objects)	Immediate channel area.		are both increasing.	_
Bank Protection	90% + plant density. Vigor	per 11	50-70% density. Louer vigor	< 50% density plus fewer
from	and variety suggests a	(3) species or lower vigor	(6) and still fewer species (9)	species & less vigor indi- 1,7
Vegetation	deep, dense root mass.	3 suggests a less dense or	form a somewhat shallow and	, 'sno
II. LOWER BANKS		deep root mass.	discontinuous root mass.	and shallow root mass,
	Ampla for present plus some	Adequate, Overbank flows	Barely contains prescut	Inadequate, Overbank flows
Channel Capacity	increases. Peak flows con-	(1) rare, Width to Depth (W/D)	(2) peaks. Occasional overbank (3)	
	tained, W/D ratio 4/,	- 1	Licods, W/D ratio 15-25.	
Bank Rock Content	boulders 12" + numerous.	(2) 40 to 65%, mostly small boulders to cobble 6-12".	(4) 20 to 407, with most in the (6)	<pre></pre> <pre>< 207 rock fragments of gravel sizes -3" or leve.</pre>
	Rocks, old logs firmly	Some present, causing	Moderately frequent, moder-	ructio
Obstructions	embedded. Flow pattern	-	_	,
Flow Deflectors	of pool & riffles stable	(2) minor pool filling. Obstruc-	3	sion yearlong. Sed. traps
Sediment Traps	without cutting or	tions and deflectors never	water causing bank cutting	nnel migration
	ceposition.	and less firm.	and filling of pools.	occuring.
5	Little or none evident.	Some, intermittently at	Significant, Cuts 12"-24"	Almost continuous cuts,
Cutting	Infrequent raw banks less	Outcurves 6 constrictions.	(8) high. Root mat overhangs (12)	-
	than o ligh generally.	Kaw banks may be up to 14.	and stoughtne evident.	Ture of overhangs treduent,
	Little or no enlargement		"Soderate deposition of new	-
Deposition	of channel or point bars.	(4) formation, most from	c	(12) dominately fine particles. Yo
III. BOTTON		COMISE SINVELS.	ord and some new pars.	Accelerated bar development.
Rock Angularity	Sharp edges and corners.	(1) Rounded corners & edops	(2) Corners & edose unil reinde	(3) Well remoded in all dimens
,	. Nu	surfaces smooth	ed in two dimensions.	
Brightness	Surfaces dull, darkened, or	(1) Mostly dull but may have	O Mixture, 50-50% dull and (3)	ul .a
Consol (dartice or	Associated of the stoke !!	(2) Wed out 11.	bright, ± 15%, 1e 35-65%.	exposed or scoured surfaces.
Particle Partice	nacked and /or gentlanding	(1) Constately packed with	Columnation of the column of t	No packing evident.
Bottom Size Distribution	No chance in stree evident	(A) Distribution of fr altoh	F	assortment, east to movee.
& Percent Stable Materials	6 Percent Stable Materials Stable materials 80-100%.		_	-
	Less than 5% of the bottom	5-30% affected, Scour at	-	More than 50% of the bottom
Scouring and	affected by scouring and	(6) constrictions and where	[12] 6 scour at obstructions, (18)	_
Deposition	deposition.	gradas steepen. Some	Some filling of pools.	nearly yearlong.
Clinging Aquatic	Abundant. Growth largely	Common. Algal forms in low	-	Perennial types scarce or
Vegatation	green,	(1) velocity & pool areas. Moss	(2) in backwater areas. Season-	(3) absent, Yellow-green, short
COST O CINE	COLUMN TOTALS	here too and swifter waters	al blooms make rocks slick	term blocm may be present.
				יו
			27.	

Add the values in each column for a total reach scora hera. (E. 16 + G.32 + F. - + P. - 48).

Item Rated		Staullity Indicators by	dicators by Classes	
1. UPPER BANKS	EXCELLENT	0000	FAIR	2. 800d
Landform Slope	Bank slope gradient < 30%	Bank slope gradient 30-40%	ent 40-60%	(6) Bank slope gradient 50% + 18
000	No evidence of past or	3ma 11	" Noderate frequency & size,	causing
(Existing or Potential)	potential for future mass	Minostly healed over. Low		
Debris Jam Potential	Essentially absent from	(2) Present but mostly small	Present volume and a see	(A) Moderate to heart and the
(Flostable Objects)	immediate channel ares.			_
Bank Protection	90% + plant density. Vigor	70-90% density. Fewer plant	50-70% density. Lower vigor	< 50% density plus fewer
from	and variety suggests a	(3) species or lower vigor		(9) species & less vigor indi- 1,7
Vegetation	deep, dense root mass.	(2) suggests a less dense or	form a somewhat shallow and	• snc
II. LOWER BANKS		deep root mass.	discontinuous root mass.	land shallow root mass,
		_	Barely contains present	Inadequate. Overbank flows
Channel Capacity	increases. Peak flows con- tained. W/D ratio < 7.	(1) rare. Width to Depth (W/D)	(2) peaks. Occasional overbank floods. W/D ratio 15-25.	(3) common, W/D ratio >25.
Bank Rock Content	65% + with large, angular boulders 12" + numerous	(2) 40 to 65%, mostly small boulders to cobble 6-12"	n the	(6) < 20% rock fragments of
		Some present, causing	Moderately frequent, moder-	
Obstructions	embedded. Flow pattern			ero-
Flow Deflectors	a	(2) minor pool filling. Obstruc-	(4) & deflectors move with high	(6) sion yearlong. Sed. traps
Sediment Traps	without cutting or deposition.	tions and deflectors newer and less firm.	(3) water causing bank cutting	full, channel migration
	Little or none evident.			Almost continuous curs.
Cutting	Infrequent raw banks less	(4) outcurves & constrictions.	sg.	(12) scme over 24" high, Fail- 1/6
	than b. high generally.	Raw banks may be up to 12".	and sloughing evident.	* lure of overhangs frequent,
	Little or no enlargement	Some new increas in bar	Voderate deposition of new	Extensive depos.
nothing and an	of channel or point dars.	(4) lormation, most from coarse gravels.	garavel & coarse sand on	(12) dominately fine particles. Ve.
I. BOTTOM				
Rock Angularity		(1) Rounded corners & edges,	-punoa	(3) Well rounded in all dimen- 4
R. r. c. r. c.	plane surfaces roughened.	Surfaces smooth & flat.	ed in two dimensions.	sions, surfaces smooth.
0	stained, Gen, not "bright",	up to 35% bright surfaces.	bright, ± 157, te 35-65%.	(J) redominately bright, 654 + 1/2
Consolidation or	Assorted sizes tightly			(6) No packing evident. Loose
Particle Packing	packed and or overlapping.	some overlapping.		assortment, easily moved.
Sottom Size Distribution	Sottom Size Distribution No change in sizes evident,	4 Distribution shift alight.		12) Marked distribution change. 1/
2007127812781278127812781278127812781278127	Less than 5% of the bottom	5-30% affected. Scour at	30-50% affected, Deposits	More than 50% of the bottom
Scouring and	affected by scouring and	(6) constrictions and where		(18) in a state of flux or change 74
Deposition	deposition.	grades steepen. Some	Some filling of nools	nearly yearlong.
Clinging Aquatic	Abundant. Growth largely	Common. Algal forms in low	Present but spotty, mostly	Perennial types scarca or
(Moss & Algae)	moss like, dark green, per-	(1) velocity & pool areas. Hosa	-	O absent. Yellowerem, short
	TOTALS	State 13176 Blie 601 avail 9	Common marke 1966 34168	The state of the s
				נ

Add the values in each column for a total reach score here. (E. 6 + 6.50+ F. 3 + F. 7 - 66).

Reach acors of: <38=Excallant, 39-76 =Good, 77-114= Fair, 1154=Poor.

Stream Discharge

The staff - discharge rating curves for the Lower Moose, Upper Moose, and MacLean sample stations are presented in Fugures 17 - 19. The gauging sites at the Lower Moose and Upper Moose stations remained relatively stable during the two sample years. Some bank erosion is believed to have occurred immediately downstream from the MacLean station and may have affected the staff discharge relationships for the 1977 season.

The 1977 and 1978 annual hydrographs for the Lower Moose, Upper Moose and MacLean sample stations are presented in Figures 20 - 25. Peak flow at the Lower Moose station during 1977 apparently occurred in early to mid-April during an unusually warm period. An estimated crest stage value of 103 cfs was recorded during mid-April, although a higher flow may have occurred prior to the first sampling visit. A secondary peak flow of 50 cfs followed in early June. The lowest recorded flow during 1977 was only 5.3 cfs during mid-July. The 1978 year produced an early peak flow of 80 cfs in early April which preceded the seasonal peak discharge of approximately 122 cfs in mid-May. The lowest recorded flow for the 1978 hydrologic year was 8.6 cfs for the previous Fall months. An estimated peak flow of 35 cfs was noted for the Upper Moose station in mid-May, 1977, although a higher value may have passed previously. Low flow for the year was 3 cfs during the late summer. In 1978, a peak flow of 53 cfs was recorded in mid- to late May, while the lowest flow was again 3 cfs for the previous October.

MacLean Creek station exhibited a modest peak of 1.2 cfs in mid-April, 1977; although a higher flow may have occurred earlier that month. Flow remained relatively constant the remainder of the year with a recorded

Stream Discharge (cfs)

FIGURE 18 Staff-discharge rating curve for Upper Moose sampling station

FIGURE 17 Staff-discharge rating curve for Lower Moose sampling station

FIGURE 19 Staff-discharge rating curve for MacLean camp sampling station

Stream Discharge (cfs)

15.0000 0.000.0 150.0060 0000.09 45.0000 30.000 135.0000 75.0000 120.0000 102.001 90.0000 SEP 30 : AUG : NOC : FIGURE 20, ANNUAL HYDRJGRAPH AND SEDIMENT LOADINGS : 4PA : LOWER MOOSE - 1977 : FEB : DFC 0.0000+ 125.0005+ 62.5000+ 25.6360+ 12.5000 37.50rc+ 100.000 75.00004 112,5000 97.5JDJ1 50.0000

60 100.000 90.000 70.0000 50.0000 80.0000 60.0000 40.0000 30.000 20.000 0.000.0 10.0000 SEP 30 : AUG : JUN : FIGURE 24. ANNUAL HYDROGRAPH AND SEDIMENT LOADINGS APR MACLEAN - 1977 08C *+.CJU.V 1.0000+ £*0000+ 4.5000+ 3.50rs+ 0.5000 3.500C+ 4.00624 1.5005.1 4.000 ,,,,,,,,,,,,,,,,

seasonal low of 0.72 cfs in late September. The discharge values for the Fall and Winter of 1976 - 1977 may be slightly overestimated owing to suggested changes in the channel reach immediately below the station. The 1978 year exhibited a modest peak of 1.3 cfs in late May and a seasonal low of 0.51 in August. The differences noted between the two hydrologic years at the sample stations are largely attributed to differences in the annual precipitation patterns.

The respective annual hydrograph data were used to estimate annual water yields for each station (Table 4). Water yields for Lower Moose were approximately 9,500 acre feet and 11,000 acre feet for the two sample years. The upper station averaged about two-thirds of that volume, 6,500 acre feet and 7,100 acre respectively. The 1978 figure for the upper station was calculated using estimates for the long mid-October 1977 through late April, 1978 period when the station was inaccessable.

Suspended Sediment

The annual pattern of sediment concentration for each station by hydrologic year is depicted in figures 20 - 25. Suspended sediment concentrations at the Lower Moose station ranged from <5 at low flow to 81 ppm at high flow, while those for the upper station ranged from <5 ppm to 147 ppm, the latter a questionable value that was recorded in the Fall of 1976. The next highest sediment concentration was 69 ppm. In MacLean Creek, sediment concentrations ranged from <5 ppm to 51 ppm. The relationships between suspended sediment and stream discharge for the Lower and Upper Moose stations were statistically significant, and are presented in Figures 26 and 27. There is no apparent relationship for the MacLean station (Figure 28). The variability in sediment concentration with stream flow is partially attributed to a seasonal effect, specific storm effects, and to the hysteresis effect whereby peak concentrations of suspended sediment generally occur prior to peak runoff during the rising stage (Gregory and Walling, 1973, pp. 215-219). Annual sediment yields for the two sample stations were estimated from respective water yield and sediment concentration data (Table 4). The lower and upper stations of Moose Creek produced approximately 304 tons and 73 tons of suspended sediment respectively during 1977. These yields were increased to 405 tons and 176 tons for the 1978 hydrologic year. Sediment production in MacLean Creek was estimated at 12 and 14 tons respectively.

Hydrochemical Parameters

The concentration of dissolved solids is inversely related to stream discharge so that lowest concentrations occur during periods of high runoff, while highest concentrations are found during periods of low summer base flow (Gunnerson, 1967; Gregory and Walling, 1973, pp. 219-225). Patterns for

			* AAA:	AAAA		•		• •• •• ••	** ** * ** **		1 63.090 100.000
	0 0 0 0 0 0 0 0 0 0 0	•		AAAA	444==						25.119 39.811
				ų.	AAA		1				
WER MOOSE	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				AAAA	AA			,		0 15.849
ARGE -LO				i i i i i i i i i i i i i i i i i i i	• !	* AAAA AAAA		•			10.000
SAM DISCH	18				!	AA	AAAA			2	6.310
THENT VS STREAM DISCHAR. =0.5395+3.5622(LDG DIS)	•						***				3.961
SUSPENDED SEDIMENT VS STREAM DISCHARGE -LOWER MOOSE LOG SED =0.5395+1.5622(LOG DIS)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						AAAA	AAAA			7.512
							1	AAA			1.585
FIGIRE 26.	*						;	AAAA AAAA	⋖		10
	150.0000+	90.8829+	55.0047	33.3629	20.2141+	12.2474	7.4206	4.4963	2.7241+	1.6030	1.0000.I
			o c o		0 000	» ≥ ы ≥	H •• 0⊾ 0	LI			

STREAM DISCHARGE : CFS:

	ļ
64	
S	
2	1
I	
	L
O.	
2	I
۵,	
\Rightarrow	t
	t
	i
67	
2	1
=	
щ	
ပ	
2	
Ξ	
- 5	
2	
F -4	
S	
S	
-	-
_	ì
=	
ũ	
Σ	
=	i
63	i
S	The same of the sa
_	:
0.5	f
9	1
Z	
(43	1
-	1
Š	
S	ì
	1
-	1
7	
FIGURE 27. SUSPENDED SEDIMENT VS STREAM DISCHARGE - UPPER MOOSE	-
5	
U	
FI	1
	1
	1

AMA	63.090 100.000
ED =0.3993+3.7048(LOG DIS) **AAA **AAAA **AAA **AAA **AAA **AAA **AAAA **AAA **AAA **AAA **AAA	39.811
ED =0.3993+1.7048(LDG DIS) AAA AAA AAA AAA AAA AAA AAA	25.119
ED =0.3993+3.7048(LOG DIS) AAA AAA AAA AAA AAA AAA AAA	15.849
AAA AAA AAA AAA AAA AAA AAA AAA AAA AA	10.000
SED =0.3993+3.76 AAA AAA AAA AAA AAA AAA AAA	6.310
H A A A A A A A A A A A A A A A A A A A	3.981
LOG S	2.512
PANA AAA AAA AAA AAAA AAAA AAAA AAAA AA	1.585
	000
150.00000 150.00000 55.064// 55.064// 55.064// 55.064// 55.064// 56.064// 57.4206 7.4206 8 4.4960	

FIGURE 28. SUSPENDED SEDIMENT VS STREAM DISCHARGE - MACLEAN

specific ions, especially the ecologically important ones, often vary from this generalization (Likens, et al., 1977, pp. 74-76).

Specific conductance for the Lower Moose Creek station ranged from a low of 128 umhos during high spring runoff to a high of 248 umhos during late summer base flow. The Upper Moose station exhibited a similar pattern, values ranging from 123 umhos to a high of 238 umhos. A low range, 287 umhos to 348 umhos, was noted in MacLean Creek. The relationships between specific conductance and stream discharge for both Moose Creek stations (Figures 29 and 30) significant, MacLean Creek (Figure 31) was not. Variation in specific conductance with stream discharge is partially attributed to seasonal and storm hysteresis effects (Gregory and Walling, 1973, pp. 219-225). The ranges in ionic concentration for specific ions are present in Tabel 10.

Bacteria Levels

The concentration of fecal and total coliform in streams draining rangeland watersheds is directly related to the number of cattle present, their access to the stream, the physical and hydrological characteristics of the basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 1978), and the time of day (Kunkle and Meiman, 1968). Seasonal patterns include a spring "flushing" effect during the rising state (Kunkle and Meiman, 1968), with high counts during the low flow summer period, counts which often continue for some period after the cattle have been removed from the area (Stephensen and Street, 1978). This seasonal pattern may briefly be modified by local storms which produce their one "flushing" effect, and which may or may not be followed by a short term dilution period.

		AA AAA AAA AAA		2 AA	AAA AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAA AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
--	--	----------------	--	--	--	--	--	--

FIGURE 30 CONDUCTIVITY VS STREAM DISCHARGE - UPPER MOOSE

	• • • • •	## ## # ** **			•• •• • •• •		• • • • •		··· • • ·· ··	69
					1		!			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				de de					-	0 0 0 0 0 0 0 0 0 0
					Z.	* * *				
									-	
	381.5348	364.1128*	347.3953+	331.4454	316.2278*	331.7383+	787.8565.	274.6401*	262.0336+	

FIGHE 31 CONDUCTIVITY VS STREAM DISCHARGE - MACLEAN

Table 10 Ranges of Hydrochemical Characteristics for the Moose Greek Sample Stations for 1977 - 1978.

	Lower	MacLean	Upper
-	Moose		Moose
пН	7 20 = 8 25	7.45 - 8.16	6.95 - 7.90
pH Alkalinity (CaCo ₃) (mg/l)	57 - 141		56 - 131
3, 3, 3,			
Specific Conductance (µmhos)	128 - 248	287 - 348	123 - 238
Total Dissolved Solids (mg/l)	83 - 162	187 - 226	80 - 155
2 ((1)	17		
Ca (mg/1)	16 - 39	30 - 44	15 - 38
$Mg \qquad (mg/1)$	5.6 - 14	6.9 - 19	4.8 - 13
$Na \pmod{1}$	3.2 - 6.1	7.0 - 9.0	2.9 - 5.9
$K \qquad (mg/1)$	1.3 - 3.2	1.8 - 3.7	1.3 - 2.9
$HCO_{2} (mg/1)$	68 - 172	158 - 193	96 - 159
HCO ₃ (mg/1) SO ₄ (mg/1)	2 - 17	13 - 26	5 - 16
4			
		1.0	
NH ₄	< .0110	< .0112	< .0110
$NO_2^7 + NO_2 - N \pmod{1}$	< .0111	.0181	< .0109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.007075	.016044	.004087

The concentrations of fecal coliform for the Lower Moose, Upper Moose, and MacLean stations for the study period are presented in Table 11. Higher values generally occurred during the grazing season, especially during periods when cattle were known to the present. Maximum recorded levels were 317 colonies/100 mls for Lower Moose, 670 for the Upper station, and 14 for the MacLean station. Low values were associated with the spring season.

Approximately 17 percent and 8 percent of sample coliform counts for Lower and Upper Moose Creek exceeded the 200 colony/100 mls—limit of the Montana Water Quality Criteria. MacLean Creek samples had no exceptions.

Comments

Because of the limited number of samples taken and the nature of the hydrochemical parameters evaluated, relationships between the water quality characteristics within the Moose Creek basin and the Montana Water Quality Criteria cannot be addressed.

Table II Fecal Coliform Concentrations (colonies/mls) for the Moose Creek Sample Stations, 1977 - 1978

	1977	1978	MacLe	an 1978	Upper 19-7	Moose 1978
	1 ///	(/ / ()	1 // /	1 770	1 / /	1770
April		gen com		gave gave		
May	60	48*	2	< 2	10	26
June	2	123*	2(?)	3(?)	17(?)	22
July	2(?)	10(?)	12*	1(?)	4 %	50*
August	224*	40(?)	12*	4(?)	68*	127*
September	30(?)	317(?)	14*	2(?)	20*	670*
October	2(?)	317(17	2*	2(1)	13	3,0
November	< 2		2			

^{*} Stock visually present

^(?) Stock presence uncertain

LITERATURE CITED

- Aldridge, R. 1976. The Measurement of Rainfall at Ground Level. Journal of Hydrology (N.Z.) 15(1):35-40.
- American Public Health Association and others. 1976. Standard Methods for the Examination of Water and Wastewater. 14th Edition. American Public Health Association; Washington, D.C. 1193pp.
- Aubertin, G.M. 1974. Problems and Techniques in Sampling Water for Analysis, pp. 1-9. In: White, E.H. (Ed.) The Use of Small Watersheds in Determining Effects of Forest Land Use on Water Quality. Department of Forestry, University of Kentucky, 106pp.
- Brown, E., M.W. Skougstad, and M.J. Fishman. 1970. Methods for Collection and Analysis of Water Samples for Dissolved Materials and Gases. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 5, Chapter Al. 160pp.
- Buchanan, T.J. and W.P. Somers. 1968. Stage Measurements at Gaging Stations. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 3, Chapter A7, 28pp.
- Carter, R.W. and J. Davidian. 1968. General Procedure for Gaging Streams. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 3, Chapter A6. 13pp.
- Environmental Protection Agency. 1976. Methods for Chemical Analysis of Waters and Wastes. EPA-625-/6-74-003a 298pp.
- Federal Water Pollution Control Act Ammendments of 1972. 1972. 70 Stat. 498; 84 Stat. 91, 33 USC 1151.
- Geldreich, E.E. 1966. Sanitary Significance of Fecal Coliforms in the Environment. Federal Water Pollution Control Ad. Cincinnati. 122pp.
- Geldreich, Edwin E. 1975. Handbook for Evaluating Water Bacteriological Laboratories, 2nd ed. U.S. Environmental Protection Agency. Cincinnati. 196pp.
- Gregory, K.S. and D.E. Walling. 1973. Drainage Basin: Form and Process. John Wiley and Sons, New York. 456 pp.
- Gunnerson, C.G. 1967. Streamflow and Quality in the Columbia River Basin. Proceedings: American Society Civil Engineers, Journal of Sanitary Engineering Division. 39:1-16.
- Guy, H.P. and V.W. Norman. 1970. Field Methods for Measurement of Fluvial Sediment. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 3, Chapter C2. 59pp.

- Kunkle, S.H. 1970. Sources and Transport of Bacterial Indicators in Rural Streams. Proceedings: Interdisciplinary Aspects of Watershed Management. Bozeman, Montana. pp. 105-132.
- Kunkle, S.H. and J.R. Meiman. 1968. Sampling Bacteria in a Mountain Stream. Hydrology Papers No. 28. Colorado State University. 27pp.
- Likens, G.E., F.H. Bormann, R.S. Pierce, J.S. Eaton, and N.M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York. 146pp.
- Millipore Corp. 1975a. Total Coliform Analysis. Application Bulletin AB311. Bedford, Mass. 8pp.
- Millipore Corp. 1975b. Fedal Coliform Analysis. Application Bulletin AB313. Bedford, Mass. 8pp.
- Orion Research Inc. 1974. Instruction Manual. Ammonia Electrode Model 95-10. Orion Research Inc., Cambridge, Mass. 24pp.
- Pfankuch, D.H. 1975. Stream Reach Inventory and Channel Stability Evaluation. USDA Forest Service/Northern Region. 26pp.
- Snyder, G.G., H.F. Haupt, and G.H. Bilt, Jr. 1975. Clearcutting and Burning Slash Alter Quality of Stream Water in Northern Idaho. USDA Forest Service Research Paper INT-168, 34pp.
- Stephenson, G.R. and L.V. Street. 1978. Bacterial Variations in Streams from a Southwest Idaho Rangeland Watershed. J. Environ. Qual. 7:1 pp. 150-157.
- Stringer, E.T. 1972. Techniques of Climatology, W.H. Freeman and Company, San Francisco. 539pp.
- World Meteorological Organization. 1969. Guide to Meteorological Instrument and Observing Practices. 3rd ed. WMO-No. 8. T.P. 3. World Meteorological Organization, Geneva.

APPENDIX BASIC DATA RECORD

				•		Ser	Green Reach Core.	(NIS)	
Station: Lower Camp Location: S 20 T 2S R 8W	A					Ins	Survey Date:		
1	1976 9/23	10/28 1030	11/19 1630	1977 2/27 1415	4/13 1500	4/20 1700	4/30 1115	5/10 1345	5/18
Temperature (F°) alr water water (max) water (min)	inst	36 32 32 32	43 33 40 32	32 32 1ce 1ce	47 37 41 32	50 41 54 32	57 43 45 39	63 48 53	96 94 36
Precipitation (in)									
Discharge (cfs) instant crest stage	6.1	4.3	9.7	4.3	11 set	9.5	11 13	7.0	7.9
Suspended sediment (ppm)		28	7	14	87	6	6	< >	< >
Chemical Character PH ALK (CaCO ₃) (mg/l) SC (muhos) TDS (mg/l)		178 116	178 116	186 121	142 92	7.69 49 147 96	135 88	162 105	162
Ca M8 Na NA HCO SO ₄						13 5.4 5.0 2.6 59			
NO4 6 NO -N " PO2 (Ortho)-P "									
Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present		8et - II inst - II T - T Moved - Si ice - S	Initial settings of instruu Installation of instrument Trace or Trickle Station was moved to a bet Station was iced so that s	Initial settings of instrument Installation of instrument Trace or Trickle Station was moved to a better location Station was iced so that sample variable was not obtainable	location e variable w	() - Value q TNTC - To nume u - Unknown y - Yes as not obtainabl	Value questionable To numerous to count Unknown Yes tainable	i c	~~~~ °Z

А
œ
0
Ü
ū
α
⋖
\vdash
~
DA
C
-
S
4
αã

Lower Camp		İ				S	Stream Reach Score:	re: (BLM)	
Location: S 20 T 25 R Water Year: 1977	M.O.					Š	Survey Date:		
Date Time	5/27 0845	6/11 0930	6/24 0930	7/16	7/28 1800	8/31 1000	9/21 0830	9/29	.
Temperature (F°) air water water (max) water (min)	6 6 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 48 63 41	6 5 5 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	61 55 61 50	72 59 63 54	40 45 62 45	34 4 5 9 4 3 9	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Precipitation (in)	}	!							
Discharge (cfs) instant crest stage	==	13 16	5.6	2.4	3.4	٠, ٠, 8, 8,	4.1	2.1	
Suspended sediment (ppm)	22	23	14	< 5	11	15	>	< 5	
Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	7.62 47 152 99	145 94	7.32 56 163 106	152 99	7.85 65 158 103	7.80 72 158 103	169 110	8.00 107 193 125	
Cos of the cost of	17 5.1 4.9 2.0 58 21		17 5.8 5.2 1.8 68 20		19 6.8 5.5 2.1 80 20	22 7.9 6.6 2.6 88 17		28 10 8.3 3.2 131 22 .04	
$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}$	<.01		.035		.050	.14		.034	
Biological Character Total Collform (colonies/100 mls) Fecal Collform (colonies/100 mls) Stock present	120	>	12 34 u	*	117 124 y	82 4 42 7	>	31 7 8	

_
Ω
COR
=
$\mathbf{\mathcal{C}}$
u
ш
×
Þ
H
7
_
0
O
\sim
_
BAS
K
ഹ്

Lower Camp 20 T 2S R 8	84					0.	Stream Reach Score:	re: (BLM)	
	1977	11/10	1978	3/29	4/5	6/11	Survey Date:	4/25	5/3
	0945	0945	1000	0830	1400	0830	1700		
	36 38	36 33	35 45	41 36	07 77	47	52	79	777
	49 35	45 32		inst inst	42	33	37	48 36	57 57
	3.4	3.0	4.9 set	9.3 11	9.7	6.6	4.8	8.4 6.6	8.2
	< >	9	13	07	10	25	9	9	00
	7.95 73 191 124	7.93 60 178 116	168 109	142 92	145 94	157	155 101	6.85 57 153 99	135
	26 9.1 7.6 2.4 88	24 7.7 6.6 2.0 73						17 6.3 5.1 1.3 68	
	.01 .09 .021	<.01 .14 .027						.08	
	e	63						259	
	у 3	, ,	c	c	c	c	ч		c

~
0
ဗ
낊
α
A
\vdash
DA
α
C
$\overline{}$
S
V.
BA

(81%)	6/30	69 59 54	14 27	22	145 94			>
Stream Reach Score: Survey Date:	6/20 1045	55 46 57 44	27 38	27	7.40 40 118 77	14 4.4 5.1 1.6 48 16	.01	1200 10
	6/14	55 48 57 66	32 39	37	112			>
	6/7	74 56 58 44	33 42	51	107			*
	5/30 1830	75 74 74	31 90	37	128 83			>
	5/23 0930	48 44 set	76 76	107	121 79			>
	5/15 1230	69 77 77 77 77 77	32 35	106	7.05 28 108 70	14 3.9 4.4 2.2 42 12	.05 <.01 .025	1340 4.2
8W	5/9 1400	63 44 49 37	11	18	135 88			c
Station: Lower Camp Location: S 20 T 2S R Water Year: 1978	Date Time	Temperature (F°) air water water (max) water (min)	Precipitation (in) Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (umhos) TDS (mg/1)	Ca Mg Na K HCO SO ₄	NH, NO, 6 NO, -N " PO, (Ortho) -P "	Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present

1

Stream Reach Score: (BLM)

Survey Date:

	9/12 1630	38 58 58		17	35	7.05 66 171 111	18 5.8 5.7 2.8	81 34 .06	.038	4210	340	у
3	7/17 8/17 1800 2115	69 44 59 47 63 45		7.6 5.4 22 20	16 23.	7.15 7.78 56 58 162 178 105 116	17 6.2 4.8 2.1	22 22 2	.043 .053	1830 183	19 19	ח
Station: Lower Camp Location: S 20 T 2S R 8W Water Year: 1978	Date Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (mg/1) TDS (mg/1)		HCO ₃ :: SO ₄ :: NH	NO 6 NO -N " PO (Ortho) -P "	Biological Character Total Coliform (colonies/100 mls)	Fecal Coliform (colonfes/100 mls)	Stock present

				<u>e</u>			=		70	80
75 70	p 53	5/27	41 41 53 36	1.23	9.8	10	7.51 35 127 83	14 3.8 4.3 1.7 20	0.07	3 3
Wickiup Camp			45 41 37	1.01	6.0	σ.	132 86			
	Stream Reach Score: Survey Date: 8/1	5/10	64 47 52 35	0.70	5.8 12	9	132 86			
	3 0 00	4/30 1215	64 41 . 47 . 33	0.09	7.7	10	112 73			
		4/20 1615	34 38 34 44	inst	7.0	31	7.43 37 112 73	10 3.8 4.3 2.3 45	0.07	
BASIC DATA RECORD		1977 4/13 1630	46 34 inst inst		9.8 set	87	117			,
BAS		11/19	36 34 34 34		8.4	V 2	133 86			
		10/28	32		6.4	12	130 84			
	8W	1976 9/23	inst inst		4.6					
	Station: Upper Camp		Temperature (F°) air air water water (max) water (min)	Precipitation (in)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)	Ca MB Na K K HCO ₃	NH, NO ₂ 6 NO ₃ -N " PO ₄ (Ortho) -P "	Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present

75										
Wickiup Camp	Lictie camp	X								
	Stream Reach Score:Survey Date:8/12/76	9/29 1045	50 46 50 37	0.42	3.0	< > <	7.60 57 148 96	21 6.3 6.9 2.7 69 17	.05	9 _K
	Sta	9/21 1015	37 43 41	1.26	4.0	۸ د	133 86			^
		8/31 1045	77 77 77	1.45	7·7 7·7	۸ د	7.70 53 128 83	28 5.1 5.2 2.1 65	.04.028	8 5 8 y
BASIC DATA RECORD		7/28 1715	71 63 65 50	1.07	3.6 8.3	v	7.67 45 121 79	15 4.4 4.6 1.9 55 18	<.01.045	43 29 y
BASIC		7/16	72 54 65 45	0.81	4.2	12	118			Þ
		6/24 1030	59 63 45	1.27	· 6.3 15	22	7.30 45 125 82	14 4.2 4.3 1.5 54 14	.04 < .01 .013	262 249 y
	M8	6/11	50 47 68 36	1.18	10 16	42	128 83			*
	Station: Upper Camp Location: S 1 T 2S R Water Year: 1977	Date Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) Instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	Ca Mg Na K K HCO SO ₄	NO4 6 NO -N " PO2 (Ortho) "	Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present

			BAS	BASIC DAIA RECOKD				Wickiup Camp	75
Station: Upper Camp Location: S 1 T 2S R Water Year: 1978	8M						Stream Reach Score: Survey Date:	8/12/76	53
Date Time	1977 10/15 1030	11/10	1978 4/5 1530	4/11	4/18 1600	4/25	5/3 1130	5/9	5/15
Temperature (F°) air water water (max) water (min)	36 36 50 36	29 33 33	36 41 inst inst	46 37 32	45 45 32	67 47 48 32	77 77 77 36	53 46 54 32	61 61 61 61
Precipitation (in)	0.52	0.38	inst	0.24	0.16	0.47	0.71	1.21	0.31
Discharge (cfs) instant crest stage	3.3	ice ice	7.4 set	6.2	5.3	5.5	7.2	9.5	26 26
Suspended sediment (ppm)	5	14	7	7	16	10	14	25	90
Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	7.82 52 142 92	7.70 42 136 88	121 79	125 81	122 79	6.73 42 122 79	112	74	7.25 28 92 60
Ca NB Na K HCO SO ₄	19 5.7 6.1 2.0 63	18 5.1 5.0 1.6 51				15 4.4 4.9 1.8 50			9.8 2.9 3.5 1.3
NH4 NO2 6 NO3 -N " PO2 (Ortho) -P"	.05	<.01 .10 .006				.03			.03
Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present	47 25	54 23	c	c	c	393 	c	c	405 c 2

water

Date

	3880	523	۶
	633	83	ח
	2980	147	ס
			n
	790	19	u
			ч
			c
			c
			c
Biological Character	(colonies/100 mls)	Fecal Coliform (colonies/100 mls)	Stock present

83

<.01 <.01 .034

<.01<.01<.048

.05

.030

Ca Mg Na K K HCO₃

75 70 53

re: 44	9/23/76	5/18 5/27 1615 1215	46 40 43 54 47 37 37		19 37 41 42	10 11	7.84 65 178 155 116 101	21 5.6 4.0 1.6 80 80	.02	96
Stream Reach Score:	Survey Date:	5/10 1700	59 47 51 36		22 33	10	172			
		4/30	38 38 35		26	11	142			
		4/20 1415	41 39 41 32		17	10	7.80 83 169 110	19 6.3 3.6 3.2 101 12		
		4/13	54 35 inst inst		41 set	59	138 90			
		1977 2/27 1515	34		ice ice	< 5	272			
		11/19	46 32 41 32		9.3 15	< 5	225 146			
M6		1976 10/28 1515	59 36 48 32		10 set	(45)	235 153			
Station: Lower Moose	1977	Date Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	Ca Mg " Na " K HCO "	NH_4 NO_4^4 6 NO_3 $-N$ PO_4^2 (Ortho)-P	Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present

BASIC DATA RECORD

777	776	X .										
0,1	Survey Date: 9/23/76	9/29 1345	60 47 47 39		8.3 13	9	8.05 109 235 153	32 . 11 6.0 2.4 132 16	.10 .07	30	30	Þ
•	.	9/21 1530	51 47 41		10	7	218 142					5
		8/31 1400	24 44 63		8.5	10	8.25 141 248 162	39 14 6.1 2.4 172	7.01 .11. .016	225	224	*
		7/28 1700	81 61 50		8.0 15	18	8.19 112 210 136	29 9.6 5.1 1.9 137	.03	107	~ 2	J
		7/16 1330	82 46 61		5.3 11	16	218 142					5
1	-	6/24 1330	73 61 70 48		11 30	15	7.99 96 203 132	27 7.9 4.7 1.6 117	.025	14	< 2	3
536		6/12 1215	57 50 53 46		30	65	170					
Station: Lower Moose Location: S 23 T 1S R 9W	1977	Date Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	Ca M8 Na K HCO SO ₄	NH, "NO4 6 NO -N " PO2 (Ortho) -P "	Biological Character Total Coliform (colonies/100 mls)	F 00	Stock present

c	3	١
9	ć	i
	-	
	٠,	:
١,		•
L	Ľ	ı
c	ď	•
_		
4	4	ė
6	-	٠
٩	1	•
٥	-	ì
۰	•	۰
C	٠)
		d
t.	r	
ĭ	1	
4	4	į
٢	Ľ	å

BASIC DATA RECORD

Station: Lower Moose			,			•	Stream Reach Score:	re: 44	
S 23 T 1S R	M6						Survey Date:	9/23/76	į
i	5/15 1545	5/23 1530	5/30 1530	6/7	6/14 1515	6/20 1230	6/30 1745	7/17	7 8/15 1730
Temperature (F°) air water (max) water (min)	4 4 4 4 4 4 4 4 4 1 1 3 1 4 1 1	61 50 set	52 46 set set	74 55 59 41	71 55 59 44	64 50 56 46	72 61 63 47	63 57 65 50	8 5 5 8 8 9 9 9 9
Precipitation (in)									
Discharge (cfs) instant crest stage	35 71	84 122	34 101	31 46	24 31	19	12 20	10	8.6
Suspended sediment (ppm)	25	45	24	22	19	25	26	22	28
Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	7.40 57 138 90	128 83	153 99	143 93	152	7.81 86 178 116	218 142	7.97 106 235 153	8.12 120 238 155
Ca Mg Na Na K HCO	16 5.6 3.2 1.4 68					21 6.8 4.1 1.3 104		28 9.3 4.8 1.9 129	30 9.2 4.9 146 14
NH, 6 NO -N " NO2 (Ortho) -P "	.05					.01		.02	4.01 .02 .045
Biological Character Total Collform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present	415 48 y	>	*	5	2	2900 123 y	c	2630 10	0521 07

R 9W	9/12 0915	36 45 60 45	30 20	81	7.55 87 218 142 24 8.3 5.2 2.6 108 17 <.01
Station: Lower Moose Location: S 23 T IS Water Year: 1978	Date Time	Temperature (F°) air water water (max) water (min)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (Jumhos) TDS (mg/1) Ca "" Mg "" Na "" K "" HCO ₃ "" NH NO ⁴ & NO ₃ -N "" NO ⁴ & NO ₄ -N ""

	10300	317	n
Biological Character	Total Coliform (colonies/100 mls)	Fecal Collform (colonies/100 mls)	Stock present

77

Survey Date: 9/23/76 Stream Reach Score:

Upper Moose						St	Stream Reach Score: 66	e: 66	
z	,					Sui	Survey Date:	8/12/76	
1	1976			1977					
Dare	9/22	10/28	11/19	4/30	5/10	5/18	5/27	6/12	~ 6/24
Time		1300	1400	1400	1545	1445	1045	1045	1200
Temperature (F°)		0	67	77	7	4,	07	52	7.0
alr		0 6	.	000	3 5	7.7	7		5.7
water		8 :	20	74	77	1 0	7.7	8 %	. 4
water (max)	Inst	74		Tust	0 0	3 3	4 6	3 7	9 7
water (min)	inst	36		inst	34	36	65	15	0
Precipitation (in)				inst	0.72	0.98	1.92	1.62	1.02
Discharge (cfs) instant crest stage	7.5	7.3 8et	7.5	20 set	16 26	14 27	28 35	23	4.2
Suspended sediment (ppm)		(147)	2 5	\$	69	\$	Ÿ	9	\$
Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)		223 145	220 143	7.32 64 138 90	158 103	172 112	7.62 63 148 96	156	7.59 96 200 130
L C C C C C C C C C C C C C C C C C C C				16 5.4 2.8 2.0 79			19 5.4 3.5 1.4		25 8.0 3.8 11.5
s NO ₃ -N (Ortho) -P				s			 \$.01		. 10
Biological Character Total Coliform (colonies/100 mis) Fecal Coliform (colonies/100 mis) Stock present							6 01		13 u

Station: Upper Moose	3W					Stream Reach Score: 66
1977						Survey Date: 8/12/76
	7/16	7/28 1400	8/31 1215	9/21 1230	9/29 1215	
Temperature (F°) air water water (max) water (min)	75 55 68 45	77 61 66 50	51 61 62	44 57 49	26 50 36 36	
Precipitation (in)	1.33	> 0.47	1.06	1.86	0.61	
Discharge (cfs) instant crest stage	5.2	₹ 3.0 5.2	≤3.0 ≤4.0	8.2 16	≤ 3.0	
Suspended sediment (ppm)	17	7	9	2 5	<>	
Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	222 144	7.84 115 218 142	7.65 131 238 155	204	7.85 78 228 148	
		30 10 4.0 1.8 140 11	38 13 4.9 2.3 159		37 113 5.9 2.9 95	
6 NO -N " (Ortho) -P "		 <.01	<.01.06.004		.01 .06 .013	
Biological Character Total Coliform (colonies/100 mls) Fecal Coliform		30	88 (15	
(colonies/100 mls) Stock present	>	⁷ ^	89 ×	۸	70 y	

Jpper Moose						St	Stream Reach Score:	re: -66	
æ'	84					Su	Survey Date:	8/12/76	
Date	1977	1978	5/3	5/15	5/30	6/7	6/14	6/20	6/30
Time	1215	1045	1315	1545	1330	1630	6161	0071	
Temperature (F°)	ŭ	0.4	3 7	y.	ας	7.2	œ	65	67
water	0 80	42	n 00 t 4	94	45	54	5.5	51	61
vater (max)	949	205	52	59	54	63	19	57	65
water (min)	34	32	38	34	36	39	42	43	24
Precipitation (in)	0.62	inst	0.52	0.67	2.29	0.16	0.36	0.53	0.55
Discharge (cfs) instant crest stage	★ 3.0	14 8et	16 24	28 43	26 53	24 37	19 25	17 20	11
<u>Suspended</u> <u>sediment</u> (ppm)	^	23	14	20	21	21	12	20	25
Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)	7.90 108 215 140	6.95 80 162 105	142 92	7.15 56 123 80	143 93	123 80	141 92	7.68 82 164 107	208 135
Ca MB Na Na HCO SO ₄	30 11 4.6 1.9 132	22 7.3 3.7 1.4 96 8		15 4.8 2.9 1.3 67 8				22 7.3 4.2 1.5 98	
NH ₄ NO ₃ -N NO ₄ OrtKo)-P NO ₄ (OrtKo)-P N	.04	.03		.05				< .01< .01.050	
Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present	8 13	2560 	c	700 26 n	د	د	د	4100 22 n	э

4330

> 40000

4400

Blological Character
Total Colliform
(colonies/100 mls)
Fecal Coliform
(colonies/100 mls)
Stock present

670 y

127 y

≤ 50

99

Stream Reach Score: Survey Date: 8/12/76

	9/12 1200	33e 	3.29	27 27	25	7.10 75 202 131	23 7.8 4.6 2.8 91 16	<.01 <.01 .024
	8/17 9 1630 1:	77 79 79 79	> 0.66	12 > 12	18	7.82 102 235 153	29 8.9 4.8 1.9 124	< .01.05.029
R 8W	7/17 1315	65 57 64 47	1.89	9.8	21	7.70 108 230 150	27 9.6 4.1 1.8 132 10	.03
Station: Upper Moose Location: S 9 T 1S Water Year: 1978	<u>Date</u> Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)	Ca Mg Na K HCO SO ₄	$^{NH}_{O}^{4}$ 6 $^{NO}_{O}^{-N}$ 11 12 12 12 13 12 13 12 13 12 13

Starfon: MacLean						Š	Stream Reach Score: 48	re: 48	
	3					ัง	Survey Date:	9/23/76	
Mater real . 1717	1976		,	1977				0.7	
Date Time	9/23	10/28 1415	11/19	4/13 1300	4/20 1330	4/30 0945	5/10 1645	3/16 1545	, 1145
									٠
Temperature (F°)		57	41	50	97	67	59	97	97
water		36	34	36	36	39	77	39	41
water (max)	inst	41	41	inst	43	77	97	94	5 7
water (min)	inst	32	32	Inst	32	36	36	36	36
Precipitation (in)									
Discharge (cfs) instant crest stage	. 95	.92 set	.90	.82 set	.87	98. 88.	. 83	86. 89	.89
Suspended sediment (ppm)		23	18	45	18	æ	~ 5	9	Š
Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)		330 214	325 211	287 187	7.76 144 301 196	300 195	325 211	325 211	7.97 149 328 213
Ca M8 Na K HCO SO ₄					30 6.9 9.0 2.8 175				35 14 7.0 2.5 182 21
$^{NH}_{NO_4}^{4}$ 6 NO $^{-N}_{4}^{1}$ $^{11}_{7}$ $^{12}_{7}$.40				63
Biological Character Total Collform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present									7 7 V

Ω
吾
0
C
SEC0
α
A
\vdash
×
10
-
S
BA

ore: 48									
Stream Reach Score: Survey Date: 9/23/	9/29 1330	57 46 39		.72	\$ >	8.16 153 314 204	44 19 9.0 3.3 187	.05	15 14 y
St.	9/21 1430	50 44 50 41		.74	< 5	304 198			5
	8/31 1345	48 45 52 43		.74 .77.	2 S	8.01 149 298 194	40 17 7.8 2.6 182 20	.01	41 12 7
	7/28 1530	77 50 52 45		.81	6	8.05 152 302 196	32 15 7.1 2.3 185	. 54	67 12 y
	7/16	79 48 56 41		.74	80	292 190			5
	6/24 1300	77 52 64 44		. 82	œ	7.89 158 340 221	38 15 7.0 2.0 193	.042	18 n
. М6	6/12 1145	52 46 50 37	n/a	.82	6	345 224			
Station: MacLean Location: S 23 T 15 R Water Year: 1977	<u>Date</u> Time	Temperature (F°) air water water (max) water (min)	Precipitation (in)	Discharge (cfs) Instant crest stage	Suspended sedIment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	Ca Mg Na K HCO SO ₄	NH, NO4 6 NO -N " PO2 (Ortho)-P "	Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present

	5/9		æ) red 	28	299				c
e: 48	9/23/76 5/3 1430		9	. 92	17	289 188				E
Stream Reach Score:	Survey Date: 9 4/25 1115	57 40 34	9	66.	91	7.45 145 298 194	34 16 6.8 1.8 175	.03	249	ļ c
St	Su 4/18 1330	50 39 33	¥	36.	24	290 188				c
	4/11	44 38 40 35	4	. 92	14	303 197				g
	4/5	43 36 34 34	ā	1.1	14	298 194				e
	1978 3/29 0945	45 35 Inst	ā	set.	19	298 194				c
1	11/10	41 43 33	ř	.80	σ	8.03 136 304 198	44 17 8.2 2.2 166 20	<.01 .17 .016	7	n 2
M6	1977	55 39 47 36	ř	.80	2 5	8.05 151 320 208	36 17 7.9 2.4 184	(.12) .60 .020	2 2	x 2
Station: MacLean	.: 1978	Temperature (F°) air water water (max) water (min)	Precipitation (in) <u>Discharge</u> (cfs)	instant crest stage	Suspended sediment (ppm)	Chemical Character PH ALK (CaCO ₃) (mg/1) SC (µmhos) TDS (mg/1)	Ca Mg Na K K HCO	NH, NO, 6 NO, -N " PO, (Ortho)-P "	Biological Character Total Collform (colonies/100 mls)	(colonies/100 mls) Stock present

BASIC DATA RECORD

			rig
			X
			*/
			τ
			1)
			•

Station: MacLean	3					Stı	Stream Reach Score:	.e.	
1978						Sul	Survey Date:	9/23/76	
Date Time	5/15 1715	5/23 1500	5/30 1500	6/7	6/14	6/20 1200	6/30 1715	7/17	8/15 1830
Temperature (F°) air water water (max) water (min)	53 44 37	57 46 46 37	49 43 37	72 49 50 41	64 47 51 41	61 44 49 41	70 50 51 43	64 49 45 45	, 66 , 49 , 51 , 51
Precipitation (in)									
Discharge (cfs) instant crest stage	.74	.95	.92	.77	.92	.74	. 70	. 58 . 95	. 51
Suspended sediment (ppm)	27	32	31	27	26	31	32	30	28
Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)	7.95 154 312 203	321 209	322 209	316 205	315 205	7.93 152 314 204	348 226	8.02 149 352 229	8.16 154 339 220
Ca Mg Na K HCO SO ₄	33 16 7.2 2.4 185 13					33 17 7.2 7.2 2.0 183 19		38 17 7.6 2.5 182 26	40 15 6.0 2.3 25
NH_{0}^{4} 6 NO_{0}^{-1} " PO_{4}^{2} (Ortho) -P "	.02					.01		. 23	4 .01 .15 .042
Biological Character Total Coliform (colonies/100 mls) Fecal Coliform (colonies/100 mls) Stock present	50 n	c	c	c	>	327 3	>	703 u	2500

Stream Reach Score: 48 Survey Date: 9/23/76

	R 9W	
c	T 15	8
MacLea	s 23	r: 197
Station:	Location:	Water Year

R 9W 9/12	0945 36 43 52 43	.99	51 7.83 130 348 226	36 17 8.6 3.7 158 26 < .01 .11
Station: MacLean Location: S 23 T 1S Water Year: 1978 Date	Time Temperature (F°) air water water (max) water (min)	Precipitation (in) Discharge (cfs) Instant crest stage	Chemical Character PH ALK (CaCO ₃) (mg/l) SC (µmhos) TDS (mg/l)	Ca Mg "" Na K HCO

	2800	2
Biological Character	(colonfes/100 mls)	(colonies/100 mls)

