Colisiones

No se encuentra la imagen: 2018-12-13 16.48.08.jpg

Pulsa dos veces para buscarla

El propósito de esta práctica es estudiar el teorema del impulso-momento y la conservación del momento lineal mediante colisiones de diferentes objetos.

a la imagen:

s para busca

Materiales parte 1

DURANTE TODA LA PRÁCTICA TODOS LOS SENSORES DEBEN PERMANECER CONECTADOS A LA INTERFAZ

> No se encuentra la imagen: materiales1.jpg Pulsa dos veces para buscarla

- 1. Interfaz.
- 2. Carro verde.
- 3. Sensor de fuerza.
- 4. Tornillo.
- 5. Sensor motion encoder.
- 6. Soporte universal.
- 7. Resorte circular.

a la imagen

s para busca

Toma de Datos 1

Teorema impulso-momento

Mida la masa del carro y regístrela en el parámetro Masa_Carro.

Programe la toma de datos en modo basado en tiempo. Tiempo máximo de 3 segundos con 400 muestras por segundo.

No olvide inicializar los sensores a cero.

Masa_Carro 517,7 gr

a la imagen: s para busc

Materiales partes 2 y 3

DURANTE TODA LA PRÁCTICA TODOS LOS SENSORES DEBEN PERMANECER

No se encuentra la imagen: materiales3.jpg

Pulsa dos veces para buscarla

) se encuentra la imagen: topes.pn

- 1. Interfaz.
- 2. Carros.
- 3. Sensor motion detector.
- 4. Brazo extensible.
- 5. Sensor motion encoder.
- 6. Panel reflector.

a la imagen: s para busca

Toma de Datos 2

Colisión elástica

Realice los ajustes necesarios en el montaje descritos en la guía: quite el soporte universal con el sensor de fuerza. Coloque los 6 topes magnéticos a los carros.

Mida las masas de los carros

Ambos móviles, se deben mover uno hacia el otro.

Antes de tomar datos, inicie a cero los sensores de posición. Verifique que ambos estén midiendo correctamente. Ajuste el motion detector de ser necesario.

Mida las posiciones de ambos carros y regístrelas en los parámetros Masa_Carro_Verde y Masa_Carro_Gris .

DURANTE TODA LA PRÁCTICA TODOS LOS SENSORES DEBEN PERMANECER

Masa_Carro_Verde 571,7 gr

Masa_Carro_Gris 548,7 gr

Toma de Datos 3

Colisión inelástica

El carro gris se deja en reposo.

No altere las masas de los carros.

Antes de tomar datos, inicie a cero los sensores de posición.

a la imagen: s para busca DURANTE TODA LA PRÁCTICA TODOS LOS SENSORES DEBEN PERMANECER CONECTADOS A LA INTERFAZ

Análisis cualitativo - Resalte las características principales de la fuerza de impacto en la medida relacionada con el teorema del impulso-momento. ¿Es esta fuerza de corta duración (determine cuánto tie dura)?	la imager para busc empo
- Suponiendo que en el impacto no se disipa energía alguna, ¿qué le pasa al carro en términos de la velocidad?	
- ¿Qué se conserva en la colisión elástica? ¿Qué tan elástica o inelástica es esta colisión? (Puede contestarla después del análisis cuantitativo)	
- En el caso de no tener conservación de la energía, explique a dónde iría el resto de la energía que había antes de las colisiones.	
- Aplique lo aprendido y relate qué pasaría si fuesen vehículos reales y no los que usó en este experimento.	

Teorema impulso-momento

Haga una gráfica de fuerza contra tiempo. Luego, calcule el impulso como el área bajo la curva en la región en donde la fuerza sea diferente de cero.

¿Qué indica el signo de ésta área?

Impulso -0,4545 kg m/s

a la imagen: s para busc

Teorema impulso-momento
En una gráfica de posición contra tiempo, identifique el antes
y el después del impacto contra el soporte universal. Mida la
velocidad del móvil antes y después de la colisión.

Inserte estos valores de velocidad en la tabla de abajo, el software calculará el cambio en momento lineal automáticamente de acuerdo a la expresión dada en la guía.

Compare el valor obtenido para el cambio de momento lineal con el impulso.

	Parte 1					
	Vi	Vf	Δp (kg m/s) -0,354	Impulso		
	(m/s)	(m/s)	(kg m/s)	(kg m/s)		
1	0,3025	-0,3817	-0,354	-0,455		
2						
3						
4						
5						
6						

a la imagen: s para busc

Colisión elástica.

Haga una gráfica de posición contra tiempo de ambos móviles y mida las velocidades de cada móvil antes y después de la colisión.

Tenga en cuenta el signo de las velocidades (según su marco de referencia) cuando las coloque en los parámetros de abajo.

Velocidad_inicial_carro_verde 0,1722 m/s	A
Velocidad_inicial_carro_gris 0,0440 m/s	A
Velocidad_final_carro_verde -0,1584 m/s	A
Velocidad_final_carro_gris -0,0550 m/s	A V

Colisión elástica

- El software calculará el momento inicial y final de acuerdo a las ecuaciones de la guía.

Verifique que estos cálculos son correctos haciendo doble clic sobre el título de cada columna.

- Insertando columnas calculadas, calcule la diferencia porcentual entre el momento inicial y final. Haga lo mismo para la energía cinética inicial y final. Discuta sus resultados ¿Se conserva el momento lineal? ¿Se verifica que la colisión es elástica?

	Parte 2						
	Momento inicial	Momento final	Energía inicial	Energía final	%DifM	%K	
	(g m/s)	(g m/s)	(J)	(J)			
1	122,590	-120,736	0,009	0,008	1,985	0,112	
2							
3							
4							
5							
6							
7							
8						,	
	-	-					

Discusión:

El momento lineal si se conserva, solo que la diferencia es tan pequena que se puede explcar por fuentes de error en el experimento como la fuerza de los imanes.

La colision es elastica porque no hay perdida de energia cinetica. La diferencia da muy poquito y eso tambien se puede explicar por fuentes de error.

a la imagen: s para busca

La vel final serial a velocidad final del carro verde.

- El software calcula el momento lineal antes y después de la colisión. Verifique cómo lo hace haciendo doble clic sobre el nombre de la columna correspondiente.

-Insertando columnas calculadas, calcule la diferencia porcentual entre e momento inicial y final. Haga lo mismo para la energía cinética inicial y final. Discuta sus resultados ¿Se conserva el momento lineal? ¿Se verifica que la cotisión es elástica?

	Velocidad inicial	Velocidad final	Momento inicial	Momento final	Energia inicial	Energía final	Dif %mom	Dif energia
	(m/s)	(m/s)	(kg m/s)	(kg m/s)	(J)	(J)		
1	0,3045	-0,3845	0,1741	-0,4308	0,0265	0,0828	3,475	-2,125
2 3 4 5		— Discusión: La d — lineal no se con —		debido a que se ve la	perdida de energia c	inetica en la colisc	on. El mome	ento

Conclusiones	
Aca pude ver en evidencia los conceptos de conservacion de energia y pude evidenciar de primera mano la diferencia entre colisiones elasticas e inelasticas. Ademas de eso pude evidenciar el teorema del impulso-momento lineal	
	ıa ımageı
	nara hus