Министерство образования и науки Российской Федерации Московский физико-технический институт (Государственный университет) Факультет общей и прикладной физики Кафедра биофизики

Пинина Юлия Михайловна

Изучение взаимодействия мембранных белков и липидов

Выпускная квалификационная работа бакалавра

Научный руководитель:

д.ф.-м.н. Гущин И.Ю.

Содержание

1	Вве	едение	3					
2	Литературный обзор							
	2.1	Мембранные белки	4					
	2.2	Липиды	5					
		2.2.1 Архейные и бактериальные липиды	5					
		2.2.2 Моноолеин	7					
	2.3	Взаимодействие мембранных белков и липидов	8					
	2.4	Бактериородопсин	8					
3	Материалы и методы							
	3.1	Молекулярная динамика	10					
	3.2	Начальные структуры	10					
		3.2.1 Белок	10					
		3.2.2 Мембранные системы	10					
	3.3	Параметры моделирования	10					
	3.4	Анализ	10					
4	Рез	ультаты и обсуждение	11					

1 Введение

Мембранные белки играют ключевую роль во многих клеточных процессах и занимают около трети кодирующей части генома. В силу своего расположения они постоянно взаимодействуют с окружающими липидами мембранного бислоя. Липиды регулируют как их расположение и активность, так и межбелковое взаимодействие. В свою очередь, белки оказывают влияние на конфигурацию и свойства липидов.

Бактериородопсин - интегральный мембранный белок, осуществляющий перенос протона через бислой [1]. Впервые бактериородопсин был открыт у архей, мембраны которых имеют некоторую специфичность: вместо обычных жирных кислот гидрофобные части их липидов состоят из изопреновых групп и являются разветвленными. Благодаря таким метильным «ответвлениям» мембраны становятся очень прочными, но при этом сохраняют гибкость. Это влияет и на характер взаимодействия с белком.

В данной работе будет проанализировано взаимодействие бактериородопсина с разветвленными и неразветвленными липидами при моделировании методом молекулярной динамики и проведено сравнение с экспериментальными данными.

2 Литературный обзор

Клетка — основной строительный блок всех организмов — отделена от окружающей среды клеточной мембраной, которая обладает не только барьерной, но также и транспортной, механической, рецепторной, ферментативной и другими функциями.

Такое разнообразие обусловлено строением. Мембрана главным образом состоит из трех классов липидов (фосфолипиды, гликолипиды и холестерол) и мембранных белков. Липиды при этом формируют бислой: их углеводородные «хвосты» образуют внутреннюю гидрофобную часть мембраны, а гидрофильные полярные головы обращены в сторону воды. Мембранные белки могут быть встроены в бислой только на одной стороне (интегральные монотопические), пронизывать мембрану наскозь (интегральные политопические, или трансмембранные) или быть связаны с бислоем, не встраиваясь в него (периферические), см. Рис. 1.

Рис. 1: Типы мембранных белков: А) трансмеммбранный; В) периферийный; с) интегральный монотопический.

Далее рассмотрим потробнее основные компоненты мембраны и их взаимодействие. Под мембранными белками будут иметься в виду только трансмембранные белки.

2.1 Мембранные белки

Большое количество функций клеточных мембран во многом обеспечивается разнообразием функций мембранных белков: различные белки участвуют в транспорте ионов и воды, передаче сигналов, ферментативных процессах, межклеточ-

ном узнавании и др. Важность этих процессоа для клеточной жизнедеятельности в сочетании с фактом, что около 25% белков являются мембранными [2], делает мембранные белки объектом огромного числа исследований.

Основопологающим этапом изучения белков является решение их пространственной структуры. Классический метод, применяемый для этого, – кристаллизация белков и рентгеноструктурный анализ кристаллических структур. Однако, если в случае растворимых белков этот метод не представляет сложности, то универсальных методов кристаллизации мембранных белков нет. Это связано с тем, что вне своего естественного окружение – липидного бислоя – мембранные белки нестабильны. Нестабильность можно избежать воспроизведением свойств исходно окружающих белок липидов. Поэтому для солюбилизации мембранных белков применяют детергенты - амфифильные молекулы, которые, замещая липиды бислоя и связываясь с гидрофобной частью белка, разрушают мембрану, сохраняя при этом нативное состояние белка. Выбор детергента представляет собой отдельную трудность: разные детергенты по-разному действуют на одни и те же белки, и теоретически предсказать взаимодействие между детергентами, липидами и белком нельзя. Более того, кристаллизация солюбилизировнного происходит вместе с детергентом, что также накладывает условия на его выбор.

На данный момент 40% кристаллов мембранных белков получены при кристаллизации в липидной кубической фазе (кристаллизация in meso, [3]) — особой трехмерной структуре, которые образуют некоторые липиды при определенных температурах и концентрациях. В липидной мезофазе белки способны свободно передвигаться по двумерной мембранной поверхности и таким образом добираться до формирующегося кристалла, не покидая при этом липидный бислой.

Трудности кристаллизации мембранных белков объясняют малое количество решенных структур высокого разрешения по сравнению с растворимыми белками. Тем не менее, число решаемых с высоким разрешением структур мембранных белков растет с экспоненциальной зависимостью [4], и к 2020 году число уникальных структур должно достигнуть $\sim 2,800$ единиц.

2.2 Липиды

Липиды - следующий важнейший компонент, составляющий основу мембраны.

2.2.1 Архейные и бактериальные липиды

Несмотря на то, что археи и бактерии могут казаться похожими, они относятся к разным доменам живым организмов, и имееют большое число отличий. Одно

из них – строение клеточной мембраны.

Рис. 2: Адаптировано из [5]. Строение бактериальных и архейных липидов: а) бактриальный липид; b) архейный биполярный липид; c) архейный монополярный липид.

Археи, большинство которых обитают в экстремальных условиях, губительных для других органзмов – например, большие температуры, низкий или высокий рН, высокие концентрации ионов – имеют мембраны, липиды в котрых обладают следующими характерными свойствами [5,6]:

- 1. Связь липидных остатков с глицерином является эфирной, тогда как в бактериях в основном сложноэфирной. Эфирная связь более прочная, чем сложноэфирная, что позволяет археям выживать в экстремальных условиях.
- 2. Углеводородные остатки архей связаны с sn-2,3 атомами углерода глицерина (L-глицерин), а не с sn-1,2 как в случае остальных организмов (D-глицерин). Это

связано с тем, что для синтеза липидов в археях используются другие ферменты, нежели в бактериях и эукариотах.

- 3. Основу углеводородных «хвостов» составляют изопреновые группы, поэтому архейные липиды разветвленные и насыщенные, в отличие от неразветвленных и зачастую ненасыщенных бактрериальных. Такое строение также расширяет диапазон температур, подходящих для жизнедеятельности архей.
- 4. Архейные липиды могут быть как монополярными (одна полярная голова), формирующими бислои, так и биполярными (две полярные головы, фактически два соединившихся «хвостами» монополярных липида), формирующими монослои.

Сравнение строения бактериальных и архейных липидов представлено на Рис. 2

2.2.2 Моноолеин

Моноолеин (MO) — 1-моно [цис-9-октадеценоил]-рац-глицерол — представляет собой углеводородный остаток C_{18} с двойной связью между C_9 и C_{10} , присоединенный к глицерину сложноэфирной связью (Рис. 3). Две оставшиеся гидроксильные гриппы глицерина составляют полярную часть и могут участвовать в формировании водородных связей. Таким образом, моноолеин — амфифильная молекула с гидрофильно-липофильным балансом (HLB) 3.8.

Рис. 3: Строение молекулы моноолеина

Развернутый обзор свойств и применения МО можно найти в [7].

Интерес к моноолеину неуклонно растет последние десятилетия, что отражено в постоянном росте количества научных публикаций и промышленных патентов. Это на первый взгляд может показаться стрвнным из-за простого строения МО, но объясняется амфифильными свойствами, благодаря которым МО способен формировать разнообразные жидкокристаллические структуры. Варьируя

температуру и состав смеси, получают термотропные и лиотроаные фазы, соотвественно.

Как и большинство известных имфифильных молекул, в воде МО формирует одномерные, двумерные и трехмерные структуры, что отвечает ламеллярной, гексагональной и биконтинуальной кубическим фазам соответвенно. Другие фазы, как правило, формируются в присутсвие дополнительных компонентов и большей энергии (Рис. 4)

Рис. 4: Фазы, формируемые МО. В присутствии воды (верхний ряд): ламеллярная, биконтинуальные кубические фазы Рп3m и Ia3d, гексагональная H₂, жидкая изотропная L₂; дополнительные фазы, в в присутвие воды и других компонентов, например, (глико)липидов, детергентов, солей (нижний ряд): биконтинуальныя кубическая фаза Im3m, мицеллярная кубическая Fd3m, губчатая, везикулы, бипеллы.

2.3 Взаимодействие мембранных белков и липидов

2.4 Бактериородопсин

В качестве модельного белка для данной работы был выбран бактериородопсин – наиболее изученный на сегодняшний день мембранный белок. Именно бактериородопсин был первым мембранным белком, который удалось закристаллизовать (1980 г., [8]) и последовательность аминокислот которого была установлена [9].

Бактериородопсин (bR) — 7- α -спиральный белок, впервые выделенный из галофильной археи $Halobacterium\ salinarium\$ в виде пурпурной фракции, назван-

ной пурпурным мембранами.

Рис. 5: Структура бактериоропсина, код PDB - 1C3W, [1].

Таблица 1: Среднее число пар, рождённых одиночным (слева) и двумя сталкивающимися (справа) циркулярно-поляризованными импульсами e-типа из вакуума, $\Delta=0.1$

$I \cdot 10^{-28},$ BT/CM ²	E_0/E_S	N	$I \cdot 10^{-26},$ BT/CM ²	E_0/E_S	N
0.6	0.203	1.94(-5)	1.0	0.0262	2.36(-8)
0.8	0.234	5.57(-2)	1.5	0.0321	3.12(-3)
1.0	0.262	13.4	2.0	0.0371	3.85
1.5	0.321	7.57(4)	2.5	0.0414	5.20(2)
2.0	0.371	1.42(7)	3.0	0.0454	2.01(4)
2.5	0.414	5.29(8)	4.0	0.0524	3.59(6)
3.0	0.454	7.89(9)	5.0	0.0586	1.33(8)
4.0	0.524	3.70(11)	6.0	0.0642	1.95(9)
5.0	0.586	5.35(12)	7.0	0.0693	1.61(10)
6.0	0.642	4.05(13)	8.0	0.0741	8.94(10)
8.0	0.741	7.17(14)	9.0	0.0786	3.75(11)
10.0	0.829	5.33(15)	10.0	0.0829	1.28(12)

3 Материалы и методы

3.1 Молекулярная динамика

3.2 Начальные структуры

- 3.2.1 Белок
- 3.2.2 Мембранные системы

3.3 Параметры моделирования

3.4 Анализ

4 Результаты и обсуждение

Список литературы

- [1] Lanyi J. K. Bacteriorhodopsin // Annual Review of Physiology. 2004. Vol. 66. P. 665–668. 3, 9
- [2] Stevens T. J., Arkin I. T. Do More Complex Organisms Have a Greater Proportion of Membrane Proteins in Their Genomes? // Proteins. 2000. Vol. 39, no. 4. P. 417–420. 5
- [3] Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. P. 14532—14535. 5
- [4] White S. H. Biophysical dissection of membrane proteins // Nature. 2009. Vol. 459. P. 344--346. 5
- [5] Albers S.-V., Meyer B. H. The archaeal cell envelope // Nat. Rev. Microbiol. 2011. June. Vol. 9. P. 414-426. 6
- [6] Patel G. B., Sprott. Archaeal Membrane Lipids // eLS. 2006. 6
- [7] Monoolein: a magic lipid? / C. V. Kulkarni, W. Wachter, G. Iglesias-Salto et al. // Phys. Chem. Chem. Phys. -2011.-Vol. 13.-P. 3004-3021. 7
- [8] Michel H., Osterhelt D. Three-dimensional crystalsofmembrane proteins: Bacteriorhodopsin // Proc. Natl. Acad. Sci. USA. 1980. Vol. 77, no. 3. P. 1283–1285. 8
- [9] Amino acid sequence of bacteriorhodopsin / H. G. Khorama, G. E. Gerber, W. C. Herlihy et al. // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, no. 10. P. 5046-5050. 8