Machine learning

"Field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel (1959)

Supervised learning

Learns from being given "right answers"

Regression
Predict a number
infinitely many possible outputs

Classification predict categories small number of possible outputs

Supervised learning Learn from data labeled with the "right answers" Unsupervised learning
Find something interesting
in unlabeled data.

Unsupervised learning

Data only comes with inputs x, but not output labels y. Algorithm has to find structure in the data.

<u>Clustering</u> Group similar data points together.

<u>Dimensionality reduction</u> Compress data using fewer numbers.

Anomaly detection Find unusual data points.

Training set

features size in feet $^2(x)$	targets	Model: $f_{w,b}(x) = wx + b$
2104 1416	460 232	w,b: parameters
1534	315	coefficients
852	178	weights

What do w, b do?

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)}) \leftarrow$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Cost function: Squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

m = number of training examples

$$\int_{a}^{b} (w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^{2}$$
intuition (next!)

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

Model

$$f_{w,b}(x) = wx + b$$

Parameters

Cost Function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective

$$\min_{w,b} \operatorname{minimize} J(w,b)$$

3D surface plot

Have some function
$$\underline{J(w,b)}$$
 for linear regression or any function $\min_{w,b} \underline{J(w,b)}$ $\min_{w_1,\dots,w_n,b} \underline{J(w_1,w_2,\dots,w_n,b)}$

Outline:

Start with some w, b (set w=0, b=0)

Keep changing w, b to reduce J(w, b)

Until we settle at or near a minimum

Gradient descent algorithm

Repeat until convergence

b = b-aff J(w,b) Simultaneously update w and b

 $b = tmp_b$

Learning rate Derivative

Code

Assignment | Truth assertion a=c

Math a==c

Correct: Simultaneous update

$$tmp_{-}w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$tmp_{-}b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w = tmp_{-}w$$

Incorrect

$$\overline{tmp_w = w} - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$\underline{tmp_b} = b - \alpha \frac{\partial}{\partial b} J(b), b$$

$$\underline{b} = tmp_b$$

$$w = w - \propto \frac{\frac{d}{dw} J(w)}{>0}$$

 $w = w - \alpha \cdot (positive number)$

$$\frac{d}{dw}J(w)$$

$$w = w - \alpha \cdot (negative number)$$

$$w = w - \frac{d}{dw} J(w)$$

If α is too small... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

Can reach local minimum with fixed learning rate

Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

Linear regression model

Cost function

$$f_{w,b}(x) = wx + b$$
 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {
$$w = w - \alpha \frac{\partial}{\partial w} J(w,b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w,b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$
 }

(Optional) $\frac{\partial}{\partial w} I(w,b) = \frac{1}{J_w} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^2 = \frac{1}{J_w} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i$

Gradient descent algorithm

repeat until convergence {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$
 Update
$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$
 Simultaneously
$$f_{w,b}(x^{(i)}) = w x^{(i)} + b$$

"Batch" gradient descent

"Batch": Each step of gradient descent uses all the training examples.

other gradient descent: subsets

x size in fee	price in \$1000's $m = 47$ m $\sum_{i=1}^{m} (f_{i+1})(x^{(i)})$	$(y^{(i)}) - y^{(i)})^2$
(1) 2104	$400 \qquad \qquad \sum_{i=1}^{\infty} (W,B)^{i}$, , ,
(2) 1416	232	
(3) 1534	315	
(4) 852	178	
(47) 3210	870	

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters}$$

$$b \text{ is a Number}$$

$$vector \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

$$(not \text{ multivariate regression})$$

Previous notation

Parameters

$$w_1, \cdots, w_n$$

Model

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 \underline{\mathbf{x}}_1 + \dots + w_n \underline{\mathbf{x}}_n + b$$

Cost function
$$J(w_1, \dots, w_n, b)$$

Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\underline{w_{1}, \cdots, w_{n}}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_{1}, \cdots, w_{n}}, b)$$
}

Vector notation

$$\overrightarrow{w} = [w_1 \cdots w_n]$$
 $b \text{ still a number}$
 $f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$
 $(\overrightarrow{w}b)$
 $dot \text{ product}$

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

Gradient descent

An alternative to gradient descent

-> Normal equation

- Only for linear regression
- Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b