Atomic Structure

 Q.1. The increasing order (lowest first) for the values of e/m (charge/mass) for a) e, p, n, α b) n, p, e, α c) n, p, α, e d) n, α, p, e
 Q.2. A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emissions is at 680 nm, the other is at: a) 518 nm b) 1035 nm c) 325 nm d) 743 nm
Q.3. In the Bohr's model of the hydrogen atom, the ratio of the kinetic energy to the total energy of the electron in a quantum state n is:
a) 1 b) 2 c) -1 d) -2
 Q.4. In hydrogen atom the ratio of (E₂-E₁) and (E₄-E₃) is a) 9 b) 12 c) 18 d) 15
Q.5. Which of the following radiations has highest energy? a) λ =30 nm b) λ =300nm c) v =3×10 ¹² s ⁻¹ d) v =3×10 ¹⁰ s ⁻¹
Q.6. If radius of first orbit of Hydrogen atom is 0.53 A° then radius of second orbit will be a) 1.06 A° b) 0.26 A° c) 0.53 A° d) 2.12 A°

- Q.7. Uncertainty in position of a minute particle of mass 25 g in space is 10^{-5} m. What is the uncertainty in its velocity (in ms⁻¹)? (h = 6.6×10^{-34} Js)
 - a) 2.1×10^{-34}
 - b) 0.5×10^{-34}
 - C) 2.1×10^{-28}
 - d) 0.5×10^{-24}
- Q.8. A 0.66 kg ball is moving with a speed of 100 m/s. The associated wavelength will be $(h = 6.6 \times 10^{-34} \text{ Js})$
 - a) 1.0×10^{-32} m
 - b) 6.6×10^{-32} m
 - C) 6.6×10^{-34} m
 - d) 1.0×10^{-35} m
- Q.9. In a hydrogen atom, if energy of an electron in ground state is 13.6. eV, then that in the 2nd excited state is
 - a) 1.51 eV
 - b) 3.4 eV
 - c) 6.04 eV
 - d) 13.6 eV
- Q.10. The ionization enthalpy of hydrogen atom is 1.312×10^6 J mol-1. The energy required to excite the electron in the atom from n = 1 to n = 2 is
 - a) $9.84 \times 10^5 \text{ J mol}^{-1}$
 - b) 6.56 × 10⁵ J mol⁻¹
 - c) $7.56 \times 10^5 \text{ J mol}^{-1}$
 - d) 8.51 × 10⁵ J mol⁻¹
- Q.11. Which of the following statements is not correct?
 - a) The shape of an atomic orbital depends on the azimuthal quantum number.
 - b) The orientation of an atomic orbital depends on the magnetic quantum number.
 - C) The energy of an electron in an atomic orbital of multi-electron atom depends on principal quantum number.
 - d) The number of degenerate atomic orbitals of one type depends on the values of azimuthal and magnetic quantum numbers.
- Q.12. Few electrons have following quantum numbers,
- (i) n = 4, l = 1 (ii) n = 4, l = 0
- (iii) n = 3, l = 2 (iv) n = 3, l = 1

Arrange them in the order of increasing energy from lowest to highest.

- a) (iv) < (ii) < (iii) < (i)
- b) (ii) < (iv) < (i) < (iii)
- c) (i) < (iii) < (ii) < (iv)
- d) (iii) < (i) < (iv) < (ii)

Q.13. What is the maximum number of emission lines obtained when the excited electron of a H atom in n = 5 drops to the ground state? a) 12 b) 15 c) 21 d) 10
Q.14. Photoelectric emission is observed from a surface for frequencies v_1 and v_2 of incident radiations($v_1 > v_2$) If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 1 : 2, then threshold frequency v_0 is given by a) $v_2 - v_1$ b) $2v_2 - v_1$ c) $2v_1 - v_2$ d) $(v_2 - v_1)/2$
Q.15. The number of electrons having n = 3 and m ₁ = 0, in chromium atom is a) 2 b) 5 c) 4 d) 1
Q.16. Which orbital of carbon can absorb photon but not emit it? a) 1S b) 2S c) 3P d) 2P
Q.17. In hydrogen spectrum which of the following lies in the wavelength range 350–700 nm? a) Balmer series b) Lyman series c) Brackett series d) paschen series
Q.18. The ratio of ionization energy of H and Be ³⁺ is a) 1:1 b) 1:3 c) 1:9 d) 1:16
 Q.19. Azimuthal quantum number determines the a) size b) spin c) orientation d) orbital angular momentum

 Q.20. The total number of orbitals in a shell with principal quantum number 'n' is a) 2 n b) 2n² c) n² d) n
Q.21.The number of nodal planes 'd' orbital has a) 0 b) 1 c) 2 d) 3
Q.22. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon? a) $n = 6$ to $n = 1$ b) $n = 5$ to $n = 4$ c) $n = 6$ to $n = 5$ d) $n = 5$ to $n = 3$
Q.23. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen $ \begin{array}{c} a) & 5 \rightarrow 2 \\ b) & 4 \rightarrow 1 \\ c) & 2 \rightarrow 5 \\ d) & 3 \rightarrow 2 \\ \end{array} $
 Q.24.The photoelectric current decreases if a) the intensity of the source of light is decreased b) the frequency of incident radiation decreases below threshold frequency c) the exposure time decreases d) None of these
 Q.25. The number of concentric spherical surfaces for 3s orbital at which the probability of finding electrons is zero, are a) 3 b) 2 c) 1 d) 0