Blockchain-Based Control of Device Access in Cyber-Physical Systems

Péter Garamvölgyi

Advisor: Imre Kocsis

Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport

Blockchain: Overview

- Shared ledger with distributed consensus
 - E.g. Proof-of-Work
- Key enabler for cryptocurrencies
- Transparent, immutable
- Bitcoin, Ethereum

Blockchain: Smart Contracts

Bitcoin: basic scripting

- Ethereum: Turing complete
 - Ethereum Virtual Machine, EVM bytecode
 - Deterministic, redundantly parallel execution
 - High-level languages: Solidity, Serpent, etc.

Smart contract programming is hard

Cyber-Physical Systems

- Seamless intergration of algorithms and physical components
- Numerous applications for the blockchain
 - Security, immutability
 - Digital micropayments
 - Smart contracts

Image source: NIST. Cyber-Physical Systems Public Working Group, 2017. https://pages.nist.gov/cpspwg

Device Rental Platform: Overview

Device Rental Platform: Components

Device Rental Platform: Access Control

- Request and grant access through smart contract
 - New Request
 - Request Started
 - Request Finished
 - Request Failed
 - Cancel

- Key-exchange over blockchain
 - Diffie-Hellman

Device Rental Platform: Formal Modelling (1)

- Advantages of formal modelling
 - Formal verification
 - Automatic code generation

Few applications to smart contracts

- Limitations
 - Limited expressive power of UML state charts
 - Extra execution and deployment costs

Device Rental Platform: Formal Modelling (2)

Device Rental Platform: Evaluation

- Local testing with Raspberry Pi
- Public test network

Transaction	C_T	C_E	$C_{\$}$
request	153,992	132,016	\$0.671
access_started	$35,\!055$	$12,\!119$	\$0.111
access_finished	36,041	$50,\!617$	\$0.203
withdrawProfit	19,643	$13,\!371$	\$0.077

Table 5.1: Simple Cost Benchmarks (Remix)

- Cost/time overhead
 - Uncertainty of the Ethereum blockchain (e.g. ICOs)

Future work

- Device Rental Platform
 - Device Registry
 - Usability (UI)

- State modelling
 - Automatic code generation
 - Formal verification

Device Rental Platform

Question #1: Contracting external services

In principle, contracting external services can be problematic. Ethereum-based contracts are not exception. What are the best ways to overcome this issue?

Question #2: Hiding confidential data

With the coming GDPR regulation, any idea on compliance?

Question #3: Ethereum scalability and CPS real-time control

Does the proposed solution meet the real-time requirement challenges? In what scenarios?

Question #4: Enforcing on-chain payments

What could be the challenges with regard to enforcing on-chain payments?

Question #5: Comparison with existing solutions

What are the challenges and proposed solutions for access control methods in CPS?

What are the benefits of a blockchainbased approach compared to more lightweight solutions such as RSVP?

