Distributed Stock Price Forecasting

Leonardo Emili (1802989)

Alessio Luciani (1797637)

Introduction

- Stock price forecasting aims at predicting the value of a stock in the future
- Stock trend affected by multiple factors (e.g. context, sudden events)
- Fundamental analysis vs technical analysis

Fundamental Analysis

Technical Analysis

Source: https://fxcomfort.com/

Our approach

- Forecast adjusted close price of the following day based on past days
- Ticker-agnostic formulation
- Enrich historical prices with fundamental data

Our setting

- Apache Spark as distributed computing framework (i.e. PySpark)
- Data wrangling operations through high-level interfaces (e.g. Spark SQL)
- Design and implementation of recurrent neural networks using deep learning framework (i.e. PyTorch)
- Petastorm as a bridge between PySpark DataFrames and PyTorch Dataloaders

Dataset

- Huge dataset with stock price data from 2003 to 2013
- Daily stock market prices from S&P 500 (~10GB of size, available <u>here</u>)
- S&P 500 companies fundamental data from Yahoo Finance (available here)
- Dataset splitting according to temporal windows: training from 2003 to 2011,
 validation from 2011 to 2012, test from 2012 to 2013

(smaller) Dataset

- To speed up the computation on few nodes, only consider a subset of the available data (less than 10%)
- Consider the following stocks for training: AAPL, MSFT, GE, PFE, T
- The final dataset consists of more than 13.000 rows and 35 features

Data preprocessing

- The original dataset was not perfect
- Perform dataset preprocessing (i.e. presence of NaNs, missing value imputation, missing weekdays, trailing noisy data)
- Scale numerical features for faster convergence (e.g. SGD may benefit from it)

Noisy data removal

Stock price dataset before preprocessing (only columns with missing values are displayed)

Stock price dataset after preprocessing (only columns with missing values are displayed)

Feature engineering

- Align daily prices with the latest available financial report
- Add technical indicators to boost model performances (i.e. SMA and RSI)
- Within each dataset split, create overlapping windows of size n (the size of the lag)

Sliding window technique

Model training

- Use a Long Short Term Memory (LSTM) for interpreting sequences
- Train on the entire group of stocks in the dataset and minimize the MSE
- Use shuffled windows from all the stocks and predict the respective n+1th day

Evaluation framework

- Evaluate the models using R² and MSE
- Develop a trading strategy and evaluate its real performances on test data (i.e.
 1-year profit and operation accuracy)
- Benchmark our model against PySpark regressors (i.e. DecisionTreeRegressor, RandomForestRegressor)

Trading strategy algorithm

```
cnt <- 0
correct <- 0
pnl <- .0
for each currentPrice, real, prediction in samples do
    if shouldBuy(real, prediction) then
        ret <- (real - currentPrice) / currentPrice
        pnl <- pnl + ret
        cnt <- cnt + 1
        if ret >= 0 then
            correct <- correct + 1
accuracy <- correct / cnt
return pnl, accuracy
```

Experiments (1/2)

- For reproducibility, all the experiments have been logged and available <u>here</u>
- Use the best performing model after hyperparameter tuning
- Competitive performance of the ensemble technique

Experiments (2/2)

	MSE	R2	Adjusted R2	Operation accuracy	Profit
DecisionTreeRegressor	0.078	0.852	-	55.45%	35.97%
RandomForestRegressor	0.104	0.803	-	57.01%	51.61%
LSTM	0.021	0.939	0.897	56.52%	58.35%

Conclusions

- Recurrent neural networks effectiveness on the task
- Good performances of the regressors on the downstream task (i.e. a binary classification task)
- Not straightforward evaluation of the best approach (i.e. multiple metrics are required)

Future work

- Train the models on all the available data using more nodes
- Use a distributed deep learning training framework (e.g. <u>Horovod</u>)
- More feature engineering (e.g. sentiment analysis on financial data, experiment different strategies for missing values imputation)

Thanks