Department of Applied Physics Entrance Examination Booklet

Specialized Subjects

(Choose 3 Problems among the 4 Problems in this Booklet)

September 1 (Tuesday) 13:00 - 16:00, 2009

REMARKS

- 1. Do not open this booklet before the start is announced.
- 2. Inform the staff when you find misprints in the booklet.
- 3. Choose three problems among the four problems in this booklet, and answer the three problems.
- 4. Use one answer sheet for each problem (three answer sheets are given). You may use the back side of each answer sheet if necessary.
- 5. Write down the number of the problem which you answer in the given space at the top of the corresponding answer sheet.
- 6. Do not take this booklet and the answer sheets with you after the end of the examination.

Applicant Number	No.
------------------	-----

write down your applicant number above

A magnetic moment under a magnetic field precesses around the field direction. To show this in quantum mechanics, let us calculate the time evolution of the expectation value of spin operator $S=(S_x, S_y, S_z)$ in the Heisenberg and Schrödinger pictures. Here, assume that the magnetic flux density given by $B_0=(0,0,B_0)$ is time-independent and the magnetic moment μ is given as $\mu=\gamma\hbar S$, where γ is the gyromagnetic ratio and \hbar is the Planck constant h divided by 2π .

- [1] Write down the Hamiltonian describing this system.
- [2] Answer the following questions, regarding S as a time-dependent operator (Heisenberg picture).
 - [2.1] Write down the Heisenberg equation of motion for S_x .
 - [2.2] Give the expression for the time dependence of $\langle S_x \rangle$, which is the expectation value of S_x . Here, assume $\langle S_x \rangle = 0$ at the time t=0.
 - [2.3] Give the expressions for the time dependences of $\langle S_z \rangle$ and $\langle S_x^2 + S_y^2 \rangle$ in the similar manner, and prove that $\langle \mathbf{S} \rangle$ precesses, using the results for $\langle S_x \rangle$, $\langle S_z \rangle$ and $\langle S_x^2 + S_y^2 \rangle$.
- [3] Answer the following questions, regarding S as a time-independent operator (Schrödinger picture).
 - [3.1] A spin state at a time t, $|t\rangle$, is given by operating the time evolution operator on an initial state $|0\rangle$. Calculate $\langle S_x \rangle$ for the state $|t\rangle$ and show that the resultant time dependence of $\langle S_x \rangle$ is the same as that obtained in [2.2]. Use the following equation, which holds for an arbitrary real number θ :

$$\exp(-i\theta S_z)S_x \exp(i\theta S_z) = S_x \cos\theta + S_y \sin\theta \tag{1}$$

- [3.2] Prove Eq.(1) in the following procedure.
 - i) Assuming $f(\theta) = \exp(-i\theta S_z)S_x \exp(i\theta S_z)$, give the expressions for $df(\theta)/d\theta$ and $d^2f(\theta)/d\theta^2$. In particular, the latter is expressed by f alone.
 - ii) By solving the differential equations obtained above, prove Eq.(1).

Temperature (T) dependence of the constant-volume specific heat C_V of a crystal is often shown by plotting C_V/T as a function of T^2 at low temperatures. Consider the reason for this plotting according to the following procedures.

Among the contributions to C_V from electrons and lattice vibrations, let us first consider the contribution from electrons. For simplicity, we neglect the electron-electron interaction and the coupling between electrons and lattice vibrations. Let V be the crystal volume, $\varepsilon_{\rm F}$ the chemical potential of electrons at T=0 (the Fermi energy), $k_{\rm B}$ the Boltzmann constant, and \hbar the Planck constant h divided by 2π .

- [1] Write down the occupation probability for a quantum state of electrons with energy ε , $f(\varepsilon)$, and illustrate its form at T. Here, let μ be the chemical potential of electrons at T.
- [2] Suppose that the number of states for electrons per volume, energy, and spin is a constant D_0 near $\varepsilon = \varepsilon_F$. Show that the chemical potential μ is independent of T at low T. You may use the low-T expansion valid for $f(\varepsilon)$ in [1] and an arbitrary function $g(\varepsilon)$;

$$\int_{-\infty}^{\infty} f(\varepsilon)g(\varepsilon)d\varepsilon = \int_{-\infty}^{\mu} g(\varepsilon)d\varepsilon + \frac{\pi^2}{6}(k_{\rm B}T)^2 \frac{dg}{d\varepsilon}\Big|_{\varepsilon=\mu} + \frac{7\pi^4}{360}(k_{\rm B}T)^4 \frac{d^3g}{d\varepsilon^3}\Big|_{\varepsilon=\mu} + \cdots.$$

[3] From T dependence of the internal energy of electrons at low T, calculate the contribution to C_V from electrons.

Next, consider the contribution from lattice vibrations. The quantum of the lattice vibrations is called phonon in the quantum theory, and the phonons obey the Bose-Einstein statistics with zero chemical potential. It is known that the contribution to C_V from phonons is dominated by acoustic modes at low T. Suppose that a unit cell contains a single atom.

- [4] Write down the occupation probability for a quantum state of phonons with angular frequency ω , $n(\omega)$, and illustrate its form at T.
- [5] Assuming that the acoustic mode has a linear dispersion relation $\omega = vk$ for simplicity (v is the sound velocity, $k = |\mathbf{k}|$, \mathbf{k} is the wave vector), calculate the number of states for phonons per angular frequency and mode.
- [6] Under the assumption in [5], from T dependence of the internal energy of phonons at low T, calculate the contribution to C_V from phonons. Here, suppose that there are three acoustic modes and all of the three have the same linear dispersion relation $\omega = vk$. You may use the relations $\int_0^\infty \frac{x^3}{e^x-1} dx = \frac{\pi^4}{15}$ and $\int_0^\infty \frac{x^4 e^x}{(e^x-1)^2} dx = \frac{4\pi^4}{15}$.
- [7] Based on the results in [3] and [6], explain why the specific heat of a crystal is shown by plotting C_V/T as a function of T^2 , and describe what physical quantities can be read from the plot. In the case that C_V/T becomes zero in the limit of $T \to 0$, describe the property of the crystal.

There is an optical cavity consisting of two parallel mirrors, as shown in the figure. c, L, ω , and n denote the speed of light, the geometrical round-trip cavity length, the angular frequency of light, and the refractive index inside the cavity, respectively. There is no dispersion outside the cavity.

- [1] Show the phase change θ of the optical electric field after one round trip by using c, ω , L, and n. Neglect the phase slip by the reflection for simplicity.
- [2] ω_m is defined as the angular frequency of the longitudinal mode of the cavity which satisfies $\theta = 2\pi m$, where m is a natural number. Show ω_m by using c, L, n, and m.

The cavity outputs a part of the internal field through a mirror. The superposition of some longitudinal modes with a suitable phase relation makes an amplitude modulation of the electric field, which looks like a pulse train. Let us consider the electric field made by superposition of three neighboring longitudinal modes.

- [3] First, consider the superposition of three plane waves that have three neighboring longitudinal-mode frequencies in a non-dispersive medium with n=1. Time dependences of the electric field component at a certain position outside the cavity are given by $E_{m-1}(t) = \frac{1}{2}E_0\cos\omega_{m-1}t$, $E_m(t) = E_0\cos\omega_m t$, and $E_{m+1}(t) = \frac{1}{2}E_0\cos\omega_{m+1}t$. Show that the superposed field $E(t) = E_{m-1}(t) + E_m(t) + E_{m+1}(t)$ can be described by the product of an envelope function A(t) and a carrier wave $\cos\omega_m t$, and illustrate the shape of A(t). Derive the time interval between neighboring peaks of A(t).
- [4] Suppose that n depends on ω and the group velocity $v_g = \frac{d\omega}{dk}$ is constant in the wavelength region considered here. Then the wave number can be written as $k = k_0 + \frac{\omega}{v_g}$ (k_0 is a constant). Express n in terms of c, k_0 , ω , and v_g .
- [5] Under this condition, show that ω_m can be written as $\omega_m = \omega_0 + m \omega_{rep}$, where m is a natural number.
- [6] Consider the superposed electric field of $E_{m-1}(t) = (1/2)E_0 \cos \omega_{m-1}t$, $E_m(t) = E_0 \cos \omega_m t$, and $E_{m+1}(t) = (1/2)E_0 \cos \omega_{m+1}t$ when the optical angular frequency can be written as $\omega_m = \omega_0 + m \omega_{rep}$. Calculate the time interval of successive peaks of the superposed field, and describe the physical meaning of this quantity.
- [7] The phase of the carrier wave at *i*-th peak of the envelope function is defined as ϕ_i . Express the phase difference between successive peaks $\Delta \phi = |\phi_{i+1} \phi_i|$ in terms of ω_0 and ω_{rep} , ignoring integer multiple of 2π . Show that $\Delta \phi$ is caused by the difference between the groupand phase-velocity.

Answer the following questions on the X-ray diffraction (wavelength 1.5 Å from a silicon crystal. Numerical values must have an accuracy of two significant digits. The following physical constants can be used if necessary.

Planck's constant $6.63\times10^{-34}~\mathrm{J\cdot s}$ speed of light $3.0\times10^8~\mathrm{m/s}$ Boltzmann's constant $1.38\times10^{-23}~\mathrm{J/K}$ elementary charge $1.60\times10^{-19}~\mathrm{C}$ mass of neutron $1.67\times10^{-27}~\mathrm{kg}$

- [1] Calculate the energy of the used X-ray in eV.
- [2] If we perform diffraction experiments using neutron beams with the same wavelength, how much is the kinetic energy of the neutron in Kelvin?
- [3] Let us consider a diffraction from a set of lattice planes, which are equidistant and parallel to each other, in a crystal lattice defined by mutually orthogonal primitive translation vectors a_1 , a_2 , a_3 ($|a_1| = |a_2| = |a_3| = a$). When one plane contains the origin and the neighboring plane intersects each axis as shown in Fig. 1, h, k, ℓ are called Miller indices of the lattice plane and the corresponding plane is called $(hk\ell)$ -plane. Calculate the distance between neighboring $(hk\ell)$ -planes, $d(hk\ell)$. Orthogonality of the $(hk\ell)$ -plane and the reciprocal lattice vector $G = hb_1 + kb_2 + \ell b_3$ may be used if necessary. Here, b_1 , b_2 , and b_3 are primitive translation vectors of the reciprocal lattice.

Figure 1: Crystal plane and Miller index

[4] A silicon crystal has the diamond structure, which is constructed by placing two silicon atoms on each lattice point of a face-centered-cubic lattice as shown in Fig. 2. Calculate the relative diffraction intensity from the $(hk\ell)$ -planes of the silicon crystal using h, k, ℓ . The structure factor F(K) of the crystal consisting of n silicon atoms in the unit cell can be expressed as follows:

$$F(K) = \sum_{j=1}^{n} f e^{-iK \cdot r_j}.$$
 (1)

Here, K is the scattering vector, r_j is the coordinate of j-th atom, and f is the atomic scattering factor of the silicon atom neglecting the scattering vector dependence.

Figure 2: Diamond structure

- [5] What determines the atomic scattering factor f?
- [6] With the lattice parameter of silicon a=5.43 Å, calculate the second smallest diffraction angle (angle between incident and diffracted X-rays) with a non-zero diffraction intensity, and the corresponding Miller indices. If necessary, you can use Fig. 3.

Figure 3: Sine curve

[7] Show the Ewald construction for the situation described in [6]. Care must be taken to keep the directions of incident and diffracted X-rays and the reciprocal lattice semi-quantitatively correct.