

সাধারণ আলোচনা ও প্রয়োজনীয় সূত্রাবলী - সাধারণ দ্বিঘাত সমীকরণ ঃ

 $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ যেখানে , a, b, h, c হল ধ্রুবক

CASE- 1 : যদি a=b=h=0 হয় তবে, 2gx + 2fy + c = 0 o যা কোন সরলরেখার সমীকরণ.

CASE- 2 : যদি h=0, $a=b\neq 0$ হয় তবে, $a(x^2+y^2)+2gx+2fy+c=0$

$$\Rightarrow (x^2 + \frac{g}{a})^2 + (y^2 + \frac{f}{a})^2 = \frac{g^2 + f^2 - ac}{a^2} = \left\{ \frac{1}{a} \sqrt{g^2 + f^2 - ac} \right\}^2$$

এখানে বৃত্তটির কেন্দ্রঃ $\left(-\frac{g}{a},-\frac{f}{a}\right)$ এবং ব্যাসার্ধ $=\frac{1}{a}\sqrt{g^2+f^2-ac},\ g^2+f^2>ac,$ হলে উক্ত সমীকরনটি বৃত্তের সমীকরন নির্দেশ করে $g^2+f^2=ac$ হলে, উক্ত সমীকরটি বিন্দু বৃত্তের সমীকরন নির্দেশ করে ।

 $g^2 + f^2 < ac$ হলে, এমন কোন বিন্দু পাওয়া যাবে না যা উক্ত সমীকরনকে সিন্ধ করে । "কাল্পনিক বৃত্তের সমীকরন" অনেকই ব্যবহার করে কিন্তু এখানে বাস্তব অক্ষ নিয়ে কাজ করা হচ্ছে সুতরাং উক্ত কথাটা উহ্য করা হল। তাহলে আমরা বলতে পারি দ্বিঘাত রাশির সাধারণ সমীকরণ। বৃত্তের সমীকরনে পরিণত হবে যদি

(i) xy সম্বলিত পদ না থাকে. (ii) x^2 ও y^2 এর সহগ সমান হয়।

 $a=b=1\;;\;h=0,\;$ হলে উক্ত সমীকরনের আকার হয়, $x^2+y^2+2gx+2fy+c=0\;,\;$ যা বৃত্তের সাধারন সমীকরন।

যার কেন্দ্রঃ (-g,-f) এবং ব্যাসার্থ = $\sqrt{g^2+f^2-c}$,

বিশেষ ক্ষেত্র ঃ (i) কেন্দ্র মূল বিন্দুতে হলে -g=0, -f=0 হবে। এক্ষেত্রে বৃত্তের সমীকারনের আকার হবেঃ

 $x^2 + y^2 = r^2$ যেখানে r বৃত্তের ব্যাসার্ধ $r^2 = c$

(ii) বৃত্তটি x অক্ষকে যে দুই বিন্দুতে ছেদ করে তার দৈর্ঘ্য বা বর্তিত অংশের পরিমান নির্ণয় ঃ

$$y=0$$
 হলে,বৃত্তের সমীকরনটি দাড়ায় ៖ $x^2+2gx+c=0$: $x=\frac{-2g\pm\sqrt{4g^2-4c}}{2}=-g\pm\sqrt{g^2-c}$

 \therefore যে দুটি বিন্দুতে ছেদ করে তার স্থানাংক দুটি $(x_1,0)$ এবং $(x_2,0)$ হলে, $(x_1,0)$ $\equiv \left(-g-\sqrt{g^2-c},\ 0\right)$

এবং
$$(x_2, 0) \equiv \left(-g + \sqrt{g^2 - c}, 0\right)$$

∴ x অক্ষের কর্তিত অংশের পরিমাণ, $|\Delta x| = |x_2 - x_1| = \left|-g + \sqrt{g^2 - c} - (-g - \sqrt{g^2 - c})\right| = 2\sqrt{g^2 - c}$

অনুরূপভাবে, x=0 হলে বৃত্তিটি দ্বারা y- অক্ষের কর্তিত অংশের পরিমাণ পাওয়া যায়। $|\Delta y|=2\sqrt{f^2}-c$

 \therefore ম অক্ষের কর্তিত অংশের পরিমাণ শূন্য হলে বৃত্তটি শুধু x অক্ষকে স্পর্শ করবে, এক্ষেত্রে $g^2=c$ এবং কেন্দ্রের y স্থানাংক ব্যাসার্ধ সমান |y|=r হবে। $g^2< c$ হলে কোন বিন্দু পাওয়া যাবে না যা x অক্ষের উপর অবস্থিত । $\therefore x$ অক্ষের স্পর্শ করবে বা x অক্ষ হইতে কিছু অংশ বর্জন করবে তার শর্ত হলো ঃ $g^2\geq c$ এবং y=0.

- a) তাহলে y অক্ষ স্পর্শ করলে $f^2=c$ হবে এব কেন্দ্রের স্থানাংক হবে =ব্যাসার্ধ অর্থাৎ $|x|=r,\ f^2< c$ হলে y অক্ষকে স্পর্শ বা ছেদ করার শর্ত $f^2\geq c$ এবং x=0
- c) উভয় অক্ষকে স্পর্শ করলে $\mathbf{g}^2=\mathbf{f}^2=\mathbf{c}$ হবে এবং $|\mathbf{g}|=|\mathbf{f}|=\mathbf{r}$ হবে।
- (iii) (x_1,y_1) বিন্দু $ax^2+by^2+2hxy+2gx+2fy+c=0$ বৃত্তের উপর, ভিতরে,না বাইরে তার গানিতিক প্রকাশ ঃ

$$(\mathrm{x}_1+\mathrm{g})^2+(\mathrm{y}_1+\mathrm{f})^2=$$
 , $< or> \left(\sqrt{\mathrm{g}^2+\mathrm{f}^2-\mathrm{c}}\right)$ হলে কেবল পর্যায় ক্রমে উক্ত তিনটি শর্ত সিদ্ধ হবে।

$$x_1^2+y_1^2+2gx_1+2fy_1+c=0$$
 , হলে, (x_1,y_1) বৃত্তের উপরস্থ কোন বিন্দু হবে,

$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c < 0$$
 , হলে, (x_1,y_1) বৃত্তের ভিতরে কোন বিন্দু হবে,

$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > 0$$
 , হলে, (x_1, y_1) বৃত্তের বাইরে কোন বিন্দু হবে,

এক কথায়, বিন্দুটি হতে কেন্দ্রের দুরত্ব ব্যাসাধের সমান , ব্যাসার্ধ অপেক্ষা ক্ষুদ্র, ব্যাসার্ধ অপেক্ষা বৃহৎ হলে বিন্দুটি (x_1, y_1) বৃত্তের উপর, ভিতরে বা বাইরে (পর্যায়ক্রমে) অবস্থিতি কোন বিন্দু হবে।

- (iv) একটি বৃত্ত $x^2 + y^2 + 2gx + 2fy + c = 0$ এবং একটি রেখা $ax^2 + bx + c' = 0$ এর ছেদবিন্দু গামী বৃত্তের সমীকরন $x^2 + y^2 + 2gx + 2fy + c + k (ax^2 + bx + c') = 0$
- (v) দুটি বৃত্তের ছেদ বিন্দুগামী বৃত্তের সমীকরন ៖ $s_1+ks_2\,=0$ যেখানে s_1 ও s_2 দুটি $\,$ বৃত্ত $\,$ ।
- (vi)সিদ্ধ প্রক্রিয়ায়,

$$\begin{array}{l} x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0 \\ x_1^2 + y_1^2 + 2gx_2 + 2fy_2 + c = 0 \\ x_1^2 + y_1^2 + 2gx_3 + 2fy_3 + c = 0 \end{array} \hspace{0.5cm} \text{g, f, c } = ?$$

অথবা খলিফার সূত্র ব্যবহার করে $\mathfrak s$ দুটো বিন্দুকে ব্যাসের প্রান্ত বিন্দু ধরে বৃত্তের সমীকরন + k (উক্ত বিন্দু দুটি দিয়ে গমনকারী সরলরেখা) = 0 অর্থাৎ

$$(x - x_1)(x - x_2) + (y - y_1)(y - y_2) + k\{(x - x_1)(y - y_2) - (y - y_1)(x - x_2)\} = 0$$

বৃত্তটি $(x_3,\,y_3)$ বিন্দু দিয়ে অতিক্রম করলে, k এর মান পাওয়া যাবে ।

 $(x_1,y_1),$ ও (x_2,y_2) বিন্দু দুটি কোন বৃত্তের ব্যাসের প্রান্ত বিন্দু হলে উক্ত বৃত্তের সমীকরন হবে।

$$(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$$

(vii) দুটি বৃত্ত একটি অপরটিকে অন্তস্থঃভাবে স্পর্শ করলে ; বৃত্ত দুটির কেন্দ্রের মধ্যবর্তী দুরত্ব = ব্যাসার্ধদ্বয়ের পার্থক্য।

- (viii) দুটি বৃত্ত একটি অপরটিকে বহিস্থঃভাবে স্পর্শ কররে; বৃত্ত দুটির কেন্দ্রর দুরত্ব ব্যাসার্ধ দ্বয়ের সমষ্টি ।
- (ix) দুটি বৃত্ত পরস্পর সমাপতিত হলে বৃত্তদ্বয়ের কেন্দ্রের স্থানাংকের একই হবে।
- (x) একটি সরল রেখার উপরস্থ কেন্দ্র বিশিষ্ট এবং (x_1, y_1) বিন্দু হতে r দুরত্বে কোন বৃত্তের সমীকরন $\frac{x x_1}{\cos \theta} = \frac{y y_1}{\sin \theta} = \pm r$
- [ব্যাসের সমীকরন] অর্থাৎ, $(\mathbf{x}-\mathbf{x}_1)^2+(\mathbf{y}-\mathbf{y}_1)^2=\mathbf{r}^2$ স্থা একটি বৃত্তের সমীরকন।
- (xi) একটা বৃত্তের সাথে সমকেন্দ্রিক অন্য আর একটি বৃত্তের সমীকরন s+k=0
- (xii)y = mx + c সরল রেখা $x^2 + y^2 = r^2$ বৃত্তের স্পার্শক হবার শর্তঃ

আবার, নিশ্চয়ক,
$$D = 0$$
; $(4mc)^2 - 4(1 + m^2)(c^2 - r^2) = 0$

$$\Rightarrow$$
 $m^2c^2-c^2-m^2c^2+r^2+r^2m^2=0$ \Rightarrow $c=\pm r\sqrt{1+m^2}$ [ইহাই নির্ণেয় শর্ত]

স্পর্শ বিন্দু ঃ
$$\left(\frac{-mr}{\sqrt{1+m^2}}, \frac{r}{\sqrt{1+m^2}}\right)$$
 অথবা, $\left(\frac{mr}{\sqrt{1+m^2}}, \frac{-r}{\sqrt{1+m^2}}\right)$

$$x^{2} + m^{2}x^{2} + 2mc + c^{2} = r^{2}$$
, $(1 + m^{2})x^{2} + 2mcx + c^{2} - r^{2} = 0$

স্পর্শ বিন্দুর ভূজ ঃ [মূলদ্বয় সমান]

$$2x = \frac{-2mc}{1+m^2}$$
 তাহলে কোটি , $y = \frac{-mc}{1+m^2} + c = \left(\frac{-m^2+1+m^2}{1+m^2}\right)c = \frac{c}{1+m^2}$

স্পর্শকের সমীকরন নির্ণয় ঃ

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 বৃত্তের (x_1, y_1) বিন্দুতে স্পর্শকের সমীকরন $x_1 + y_2 + g(x + x_1) + f(y + y_1) + c = 0$

$$x^2$$
 এর পরিবর্তে xx_1, y^2 এর পরিবর্তে yy_1, x এর পরিবর্তে $\frac{1}{2}(x+x_1), y$ এর পরিবর্তে $\frac{1}{2}(y+y_1)$

অভিলম্বের সমীকরন ঃ

$$x^2+y^2=~a^2$$
 বৃত্তে $(x_1,~y_1)$ বিন্দুতে অভিলম্বের সমীকরন ঃ $y_1x-x_1y=0$ $\Rightarrow rac{y}{y_1}=rac{x}{x_1}$,

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 বৃত্তে (x_1, y_1) বিন্দুতে অভিলম্বের সমীকরন ঃ $\frac{y-y_1}{y_1+f} = \frac{x-x_1}{x_1+g}$

$${
m or,}\; (y_1+f)x-(x_1+g)y+gy_1-fx_1=0$$
,সুতরাং অভিলম্ব বৃত্তের কেন্দ্রগামী

বৃত্তের বহিস্থ কোন বিন্দু
$$(x_1,\,y_1)$$
 হতে $x^2+y^2+2gx+2fy+c=0$ বৃত্তে অংকিত

স্পর্শকের সমীকরন ঃ
$$y-y_1=m(x-x_1)$$
 তারপর $\mathbf{r}=\mathbf{d}$

ম্পর্শকের দৈর্ঘ্য ঃ (x_1, y_1) বিন্দু হতে $x^2 + y^2 + 2gx + 2fy + c = 0$ বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্য

 $=\sqrt{x_1^2+y_1^2+2gx_1+2fy_1+c}$ এবং (x_1,y_1) বিন্দু হতে $x^2+y^2=r^2$ বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্য

$$= \sqrt{x_1^2 + y_1^2 - r^2}$$

স্পর্শ জ্যা এর সমীকরন x (x_1, y_1) বিন্দু হতে $x^2 + y^2 + 2gx + 2fy + c = 0$ বৃত্তে অংকিত স্পর্শ জ্যা এর সমীকরন $x_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

সাধারন জ্যা এর সমীকরন ঃ $\, {
m S}_1 = 0 \,\, , \, {
m S}_2 = 0 \,\,$ বৃত্ত দুটির সাধারন জ্যা এর সমীকরন ঃ $\, {
m S}_1 - {
m S}_2 = 0 \,\,$

বৃত্ত S ও L রেখার ছেদবিন্দুগামী বৃত্তের সমীকরন ঃ S+K.L=0

বৃত্ত S_1 ও S_2 বৃত্তের ছেদবিন্দুগামী বৃত্তের সমীকরন ঃ $S_1+K(S_1-S_2)=0$ or, $S_2+K(S_1-S_2)=0$

 ${f Note}:$ বৃত্ত দুটি পরস্পরকে স্পর্শ করলে $S_1-S_2=0$ রেখাটি বৃত্তদুটির সাধারন স্পর্শক হবে।

TYPE- 1

তিন বিন্দুগামী বৃত্তের সমীকরন নির্ণয় ঃ

EXAMPLE - 01: একটি বৃত্ত (-6,5), (-3,-4) এবং (2,1) বিন্দু তিনটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ, কেন্দ্রের স্থানাঙ্ক এবং ব্যাসার্ধ নির্ণয় কর।

 ${f SOLVE}$: ধরি, নির্ণেয় বৃত্তের সমীকরণ, ${f x}^2+{f y}^2+2{f g}{f x}+2{f f}{f y}+{f c}=0\ldots\ldots({f i})$

শর্তানুসারে,(i) নং বৃত্তটি (-6,5) বিন্দুগামী সুতরাং, 36+25-12g+10f+c=0

$$\Rightarrow$$
 -12g + 10f + c + 61 = 0(ii)

(i)নং বৃত্তটি (-3,-4) বিন্দুগামী সুতরাং,9+16-6g-8f+c=0

$$\Rightarrow$$
 -6g - 8f + c + 25 = 0(iii)

(i) নং বৃত্তটি (2, 1) বিন্দুগামী সুতরাং, $4+1+4g+2f+c=0 \Rightarrow 4g+2f+c+5=0$ (iv)

(ii) নং সমীকরণ হতে (iii) নং সমীকরন বিয়োগ করে পাই,

$$-12g + 10f + c + 61 = 0$$

$$\mp 6g \mp 8f \pm c \pm 25 = 0$$

$$-6g + 18f + 36 = 0$$

$$\Rightarrow$$
 -g + 3f + 6 = 0 \Rightarrow g = 3f + 6(v)

(iii)নং সমীকরন হইতে (iv) নং সমীকরন বিয়োগ করে পাই,

$$-6g - 8f + c + 25 = 0$$

$$\pm 4g \pm 2f \pm c \pm 5 = 0$$

$$-10g - 10f + 20 = 0$$

$$\Rightarrow$$
 -g - f + 2 = 0 \Rightarrow g = -f + 2 (vi)

$$(v)$$
 ও (vi) নং সমীকরন হইতে, $3f+6=-f+2\Rightarrow 4f=-4\Rightarrow f=-1 \Rightarrow -f=1$

$$(v)$$
 নং সমীকরনে $f = -1$ বসিয়ে পাই, $g = 3(-1) + 6 = 3 \Rightarrow -g = -3$.

(iv) নং সমীকরনে
$$g = 3$$
, $f = -1$ বসিয়ে পাই, $4 \times 3 + 2(-1) + c + 5 = 0$

$$\Rightarrow 12 - 2 + c + 5 = 0 \Rightarrow c = -15$$

$$g = 3, f = -1$$
এবং $c = -15$ (i) নং সমীকরনে বসিয়ে পাই,

$$x^2 + y^2 + 6x - 2y - 15 = 0$$
 বৃত্তটির কেন্দ্র = $(-g, -f) = (-3, 1)$

এবং ব্যাসার্থ =
$$\sqrt{g^2 + f^2 - c} = \sqrt{(-3)^2 + 1^2 - (-15)} = \sqrt{9 + 1 + 15} = 5$$

∴বৃত্তটির সমীকরন,
$$x^2+y^2+6x-2y-15=0$$
 কেন্দ্র = $(-3,1)$ এবং ব্যসার্ধ= $5(Ans.)$

EXERCISE:

01. একটি বৃত্ত মূলবিন্দু দিয়ে যায় এবং $x \cdot g \cdot y$ অক্ষের ধনাত্মক দিক হতে যথাক্রমে $3 \cdot g \cdot 5 \cdot g$ একক অংশ ছেদ করে। বৃত্তিরি সমীকরণ নির্ণয় কর। $(Ans. x^2 + y^2 - 3x - 5y = 0)$

TYPE- 2

দুই বিন্দুগামী ও কেন্দ্র কোন রেখার উপর এরূপ বৃত্তের সমীকরন নির্ণয় .

EXAMPLE - 01: 2x - y = 3 রেখার উপর কেন্দ্র বিশিষ্ট একটি বৃত্ত (3, -2) ও (-2, 0) বিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তিরি সমীকরণ নির্ণয় কর।

B(-2,0)

centre

 ${f SOLVE}:$ ধরি, প্রদন্ত বিন্দু দুটি ${f A}$ (3,-2) এবং ${f B}(-2,0)$ তাহলে ${f AB}$ রেখাংশ নির্ণেয় বৃত্তের জ্যা।

আমরা জানি, জ্যা - এর লম্ব সমদ্বিখন্ডক উক্ত বৃত্তের কেন্দ্রগামী।

জ্যা এর মধ্যবিন্দু
$$C$$
 হলে, $C = \left(\frac{3-2}{2}, \frac{-2+0}{2}\right) = \left(\frac{1}{2}, -1\right)$

জ্যা এর ঢাল
$${
m m}_1$$
 হলে, ${
m m}_1={{-2-0}\over {3+2}}=-{2\over 5}$

জ্যা এর উপর লম্ব রেখার ঢাল m_2 হলে, $m_1 \times m_2 = -1 \Rightarrow -\frac{2}{5} \times m_2 = -1 \Rightarrow m_2 = \frac{5}{2}$

তাহলে জ্যা এর উপর লম্ব সমাদ্বিখন্ডকের সমীকরণ, $y+1=rac{5}{2}\Big(x-rac{1}{2}\Big)\Rightarrow 2y+2=5x-\left.rac{5}{2}\Big/2$

$$\Rightarrow 10x - 4y - 9 = 0$$

প্রদত্ত রেখা 2x-y=3 এবং রেখার 10x-4y-9=0 ছেদবিন্দুই হলো নির্ণেয় বৃত্তের কেন্দ্র ।

$$2x - y = 3 \dots (i) : 10x - 4y - 9 \dots (ii)$$

(i)নং সমীকরনকে 4 দ্ধরা গুণ করে (ii) হইতে বিয়োগ করে পাই,

$$8x - 4y = 12$$

$$\pm 10x \mp 4y = \pm 9$$

$$-2x = 3$$

$$x = -\frac{3}{2}$$

$$(i)$$
 নং সমীকরণে $x=-rac{3}{2}$ বসিয়ে পাই, $2\left(-rac{3}{2}\right)-y=3$ ∴নির্ণেয় বৃত্তের কেন্দ্রের স্থানাংক $\left(-rac{3}{2},-6\right)\Rightarrow y=-6$

ব্যাসার্ধ্য
$$=\left(-\frac{3}{2},-6\right)$$
 বিন্দু হতে $(3,-2)$ বিন্দুর দূরত্ব $=\sqrt{\left(-\frac{3}{2}-3\right)^2+(-6+2)^2}$

$$= \left(\frac{9}{2}\right)^2 + 16 = \sqrt{\frac{81}{4} + 16} = \sqrt{\frac{81 + 64}{4}} = \sqrt{\frac{145}{4}}$$

∴নির্ণেয় বৃত্তের সমীকরণ,
$$\left(x+\frac{3}{2}\right)^2+(y+6)^2=\left(\sqrt{\frac{145}{4}}\right)^2\Rightarrow x^2+3x+\frac{9}{4}+y^2+12y+36=\frac{145}{4}$$

$$\Rightarrow$$
 x² + y² + 3x + 12y + 2 = 0(**Ans**.)

EXAMPLE -02: y – অক্ষের উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত মূলবিন্দু এবং (p,q)বিন্দু দিয়ে অতিক্রম করে।বৃত্তটির সমীকরণ নির্ণয় কর।

SOLVE: নির্ণেয় বৃত্তের কেন্দ্র y অক্ষের উপর অবস্থিত সুতরাং, বৃত্তটির কেন্দ্রের ভূজ শূন্য

ধরি, বৃত্তটির সমীকরণ,
$$x^2 + y^2 + 2gx + 2fy + c = 0 \dots (i)$$

এখানে, কেন্দ্র (-g, -f)

শর্তানুযায়ী, -g=0, c=0 [মূল বিন্দুগামী বলে c=0]

(i) নং বৃত্তটি (p, q) বিন্দুগামী,
$$\therefore$$
 p² + q² + 2 × 0 × x + 2f × q + 0 = 0

$$\Rightarrow 2fq = -(p^2 + q^2) \Rightarrow 2f = -\frac{p^2 + q^2}{q}$$

$$\therefore$$
 নির্ণেয় বৃত্তের সমীকরণ, $x^2+y^2-rac{p^2+q^2}{q}\;y=0\Rightarrow q(x^2+y^2)=(p^2+q^2)y\;(Ans.)$

EXERCISE:

- 01. x + 2y 10 = 0 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3,5) ও (6,4) বিন্দু দুইটি দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর। $(\mathbf{Ans}. x^2 + y^2 8x 6y + 20 = 0)$
- **02.** (3, 5) ও (6, 4) বিন্দুগামী বৃত্তের সমীকরন নির্ণয় কর।
 - (i) যার কেন্দ্র x + 2y = 10 রেখার উপর অবস্থিত । $\underline{\mathbf{Ans:}}\ x^2 + y^2 8x 6y + 20 = 0$
 - (ii) যার কেন্দ্র x অক্ষের উপর অবস্থিত। [f=0], $Ans: x^2 + y^2 6x 16 = 0$
 - (iii) যার কেন্দ্র y অক্ষের উপর অবস্থিত।[g=0] $\underline{\mathbf{Ans:}}\ x^2+y^2+18y-124=0$

TYPE-3

দুই বিন্দুগামী এবং কোন অক্ষকে স্পর্শ করে এরূপ বৃত্তের সমীকরন নির্ণয় সংক্রান্ত সম্যাবলী ঃ

EXAMPLE -01: (1, 2) ও (3, 2) বিন্দুগামী এবং x অক্ষকে স্পর্শ করে এরূপ বৃত্তের সমীকরন নির্ণয় কর।

SOLVE: মনে করি, বৃত্তটির সমীকরন : $x^2 + y^2 + 2gx + 2fy + c = 0 (i)$ কেন্দ্র ঃ (-g, -f)

বৃত্তটি (1, 2) ও (3, 2) বিন্দুগামী বলে,

$$2g + 4f + c + 5 = 0$$

$$6g + 4f + c + 13 = 0$$

$$4g + 8 = 0$$

$$2g = -4 = g = -2 \Rightarrow g^2 = 4 = c$$
 [কারণ x অক্ষকে স্পর্শ করে]

$$-4 + 4f + 4 + 5 = 0 \Rightarrow 2f = -\frac{5}{2}$$

$$\therefore x^2+y^2-4x-rac{5}{2}y+4=0 \Rightarrow 2(x^2+y^2)-8x-5y+8=0 o$$
 ইহাই নির্ণেয় বৃত্তের সমীকরন।

EXAMPLE -02: একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র (4,5) এবং যা $x^2 + y^2 + 4x - 6x - 12 = 0$ বৃত্তের কেন্দ্র দিয়ে যায় ।

SOLVE:
$$x^2 + y^2 + 4x - 6x - 12 = 0$$
 বৃত্তের কেন্দ্রের স্থানান্ধ $\left(-\frac{4}{2}, -\frac{-6}{2}\right) = (-2, 3)$

$$\div$$
 (-2, 3) বিন্দুগামী এবং (4,5) কেন্দ্রবিশিষ্ট বৃত্তেরসমীকরণ, $(x-4)^2+(y-5)^2=(-2-4)^2+(3-5)^2$

$$\Rightarrow$$
 x² - 8x + 16 + y² - 10y + 25 = 36 + 4 \Rightarrow x² + y² - 8x - 10y + 1 = 0(Ans.)

EXAMPLE - 03: (1,2) কেন্দ্রবিশিষ্ট একটি বৃত্ত x — অক্ষকে স্পর্শ করে। এর সমীকরণ ও y — অক্ষ থেকে তা কি পরিমাণ অংশ ছেদ করে তাও নির্ণয় কর।

SOLVE: বৃত্তটির কেন্দ্র (1,2) এবং তা x — অক্ষকে স্পর্শ করে।

∴বুত্তটির ব্যাসার্ধ,
$$r=|2|=2$$
 ; ∴বুত্তটির সমীকরণ, $(x+1)^2+(y-2)^2=2^2$

$$\Rightarrow x^2 - 2x + 1 + y^2 - 4y + 4 = 4 \Rightarrow x^2 + y^2 - 2x - 4y + 1 = 0(Ans.)$$

২য় অংশ :এখানে বৃত্তটির কেন্দ্র, $(h,k)=(1\ ,2)$ এবং ব্যাসার্ধ, r=2

$$\therefore y -$$
 অক্ষের ছেদাংশের দৈর্ঘ্য = $2\sqrt{r^2 - h^2} = 2\sqrt{4 - 1} = 2\sqrt{3}$ একক (Ans.)

EXERCISE – 01: এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা $x^2 + y^2 - 4x + 5y + 9 = 0$ বৃত্তের সাথে এককেন্দ্রিক এবং (2,-1) বিন্দু দিয়ে অতিক্রম করে। $(\mathbf{Ans}.\,x^2 + y^2 - 4x + 5y + 8 = 0)$

EXAMPLE - 04: একটি বৃত্তের কেন্দ্র (4, -8) এবং তা y- অক্ষকে স্পর্শ করে। তার সমীকরণ নির্ণয় কর ।

SOLVE: দেওয়াআছে , নির্ণেয় বৃত্তের কেন্দ্র (4, -8)

যেহেতু বৃত্তটি $y-\sqrt{2}$ ক্ষকে স্পর্শ করে সুতরাং কেন্দ্রের ভূজ বৃত্তটির ব্যাসার্ধের সমান ।:নির্ণেয় বৃত্তের ব্যসার্ধ =4

নির্ণেয় বৃত্তের সমীকরণ, $(x-4)^2 + (y+8)^2 = 4^2 \Rightarrow x^2 - 8x + 16 + y^2 + 16y + 64 = 16$

 \Rightarrow x² + y² - 8x + 16y + 64 = 0(Ans.)

EXERCISE – 02: (−5, 7) কেন্দ্রবিশিষ্ট এবং x – অক্ষকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।

 $(\mathbf{Ans}. \, \mathbf{x}^2 + \mathbf{y}^2 + 10\mathbf{x} - 14\mathbf{y} + 25 = 0)$

EXAMPLE -05: (3,0) ও (7,0) বিন্দুগামী এবং y — অক্ষকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।

SOLVE : ধরি, প্রদত্ত বিন্দু দুইটি A(3,0)ও B(7,0) খেয়াল কর A ও B বিন্দু দুটির কোটি 0 সুতরাং বৃত্ত কর্তৃক কর্তিত জ্যা AB এর দৈর্ঘ্য =7-3=4 একক।

D'

AB এর মধ্যবিন্দু C হলে, AC = BC = 2

$$OC = OA + AC = 3 + 2 = 5 : C$$
 বিন্দুর স্থানাঙ্ক (5,0)

কেন্দ্রের অবস্থান হবে প্রথম চতুর্ভাগে ও চতুর্থ চতুর্ভাগে।

অর্থাৎ, মোট দুটি বৃত্ত পাওয়া যাবে। যেহেতু, নির্ণেয়বৃত্ত y অক্ষকে স্পর্শ করে

সুতরাং কেন্দ্রের ভূজ হবে ব্যাসার্ধের সমান। কেন্দ্রের ভূজ= 5 = নির্ণেয় বৃত্তের ব্যাসার্ধ।

ধরি, নির্ণেয় বৃত্তের কেন্দ্র D(5.k)

তাহলে,
$$2^2+k^2=5^2\Rightarrow k=\pm\sqrt{21}$$
 [চিত্র হতে ΔACD এ $< C=90^\circ, AC=2, AD=5$]

k(+)ve প্রথম চতুর্থভাগের জন্য,k(-)ve চতুর্থ চতুর্থভাগের জন্য। তাহলে নির্ণেয় বৃত্তেরসমীকরণ, $(x-5)^2+\left(y\pm\sqrt{21}\right)^2=5^2$

$$\Rightarrow x^2 - 10x + 25 + y^2 \pm 2\sqrt{21}y + 21 = 25 \Rightarrow x^2 + y^2 - 10x \pm 2\sqrt{21}y + 21 = 0$$

EXAMPLE - 06: এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা x — অক্ষকে (2,0) বিন্দুতে স্পর্শ করে এবং (3,-1) বিন্দু দিয়ে অতিক্রম করে।

SOLVE: ধরি, নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 + 2gx + 2fy + c = 0 \dots (i)$

যেহেতু বৃত্তটি x অক্ষকে (2,0) বিন্দুতে স্পর্শ করে সুতরাং, বৃত্তটি দ্বারা x অক্ষের কর্তিত অংশের পরিমাণ শুণ্য।

অর্থাৎ,
$$2\sqrt{g^2-c}=0 \Rightarrow g^2-c=0 \therefore g^2=c$$

(i)নং বৃত্তটি (2,0) বিন্দুগামী, 4+0+4g+0+c=0

$$\Rightarrow 4g + g^2 + 4 = 0 \Rightarrow g^2 + 4g + 4 = 0 \Rightarrow (g+2)^2 = 0 \Rightarrow g = -2, -2 : c = g^2 = (-2)^2 = 4$$

(i) নং বৃত্তটি (3,-1) বিন্দুগামী বলে, $9+1+6g-2f+c=0 \Rightarrow 10+6(-2)-2f+4=0 \Rightarrow f=1$

∴নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 + 2(-2)x + 2.1y + 4 = 0$

$$\Rightarrow$$
 x² + y² - 4x + 2y + 4 = 0

EXERCISE – 03 : এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা x —অক্ষকে (2,0) বিন্দুতে স্পর্শ করে এবং (-1,9) বিন্দু দিয়ে অতিক্রম করে ৷ $(\mathbf{Ans}. \, \mathbf{x}^2 + \mathbf{y}^2 - 4\mathbf{x} - 10\mathbf{y} + 4 = 0)$

TYPE-4

ব্যাসের প্রাপ্ত বিন্দু দেয়া আছে বৃত্তের সমীকরন নির্ণয় ঃ

EXAMPLE - 01:প্রমাণ কর যে, (-2, 3) ও (3.-4) বিন্দু দুইটির সংযোজক রেখাকে ব্যাস ধরে অংকিত বৃত্তের সমীকরন (x+2)(x-3)+(y-3)(y+4)=0। বৃত্তিটি দ্বারা $x \le y$ অক্ষের বর্তিত অংশের পরিমান নির্ণয় কর।

 ${f SOLVE:}\ m_{PA} imes m_{PB}=-1$, $m_{PA}{
ightarrow}$ PA রেখার ঢাল, $m_{PB}{
ightarrow}$ PB রেখার ঢাল

$$\frac{x+y}{x-3} \times \frac{y-3}{x+2} = -1 = (x-3)(x+2) + (y-3)(y+4) = 0$$
 (প্রমাণিত)

$$\Rightarrow x^2 - x - 6 + y^2 + y - 12 = 0 \Rightarrow x^2 + y^2 - x + y - 18 = 0 \; , \; -2 \; g = -1, \; -2f = 1, \; c = 18,$$

$$x$$
 অক্ষ হইতে বৃত্ত কর্তৃক বর্তিত অংশের পরিমাণ = $2\sqrt{g^2-c}$ = $2\sqrt{\left(-\frac{1}{2}\right)^2-(-18)}$ = $2\sqrt{\frac{1}{4}+18}=\sqrt{73}$

এবং y অক্ষ হইতে বৃত্ত কর্তৃক কর্তিত অংশের পরিমাণ = $2\sqrt{f^2-c}$ = $\sqrt{73}$ একক

EXAMPLE -02: দেখাও যে, A(1,1) বিন্দুটি $x^2 + y^2 + 4x + 6y - 12 = 0$ বৃত্তের উপর অবস্থিত। A(1,1) বিন্দুগামী ব্যাসের অপর প্রান্তবিন্দুর স্থানাঙ্ক নির্ণয় কর।

SOLVE: প্রদত্ত বৃত্ত, $x^2 + y^2 + 4x + 6y - 12 = 0$

A(1,1)বিন্দু দারা প্রদত্ত বৃত্তটিকে সিদ্ধ করি, $1+1+4\times 1+6\times 1-12=0$

 \therefore A (1,1) বিন্দুটি প্রদত্ত বৃত্তটির উপরস্থ বিন্দু।

প্রদত্ত বৃত্তের পরিবতির্ত আকার, $(x+2)^2 + (y+3)^2 = 5^2$

∴বুত্তটির কেন্দ্র C(-2, -3) এবং ব্যাসার্ধ, r = 5

ধরি, A(1,1) বিন্দু ও কেন্দ্র C(-2,-3) গামী ব্যাসের অপর প্রান্তের বিন্দুর স্থানাঙ্ক $B(\alpha,\beta)$

AB ব্যাসটি কেন্দ্র C(-2, -3) দ্বারা সমদ্বিখন্ডিত হয়।

$$\therefore \frac{\alpha+1}{2} = -2 \Rightarrow \alpha+1 = -4 \Rightarrow \alpha = -5, \frac{\beta+1}{2} = -3 \Rightarrow \beta+1 = -6 \Rightarrow \beta = -7$$

∴প্রদত্ত বৃত্তের ব্যাসের অপর প্রান্তের স্থানাঙ্ক (-5, -7)(Ans.)

TYPE-5

কোন বিন্দুতে একটি অক্ষকে স্পর্শ করে এবং একটি বিন্দু দিয়ে যায়

EXAMPLE-01: একটি বৃত্তের সমীকরন নির্ণয় কর যা y অক্ষকে $\left(0,\sqrt{3}\right)$ বিন্দুতে স্পর্শ করে এবং (-1,0) বিন্দুর দিয়ে যায় । এর কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর ।

SOLVE : ধরি , বৃত্তটির সমীকরন ঃ $x^2 + y^2 + 2gx + 2fy + c = 0$

যেহেতু বৃত্তটি y অক্ষকে স্পর্শ করে \therefore $f^2=c$, $\left(0,\sqrt{3}\right)$ বিন্দু গামী বলে,

$$3 + 2\sqrt{3} f + c = 0 \Rightarrow 2\sqrt{3} f = -(3 + c) \Rightarrow 4 \times 3f^2 = (3 + c)^2 \Rightarrow 12c = 9 + 6c + c^2$$

$$\Rightarrow$$
c² = 6c + 9 = 0 \Rightarrow (c - 3)² = 0, c = 3 \therefore f = $\pm\sqrt{3}$ এখানে,

 ${
m f}=-\sqrt{3}$ হবে কারণ দ্বিতীয় চতুর্ভাগে কেন্দ্র।

আবার বৃত্তটি (-1,0) গামীবলে, $1-2g+c=0 \Rightarrow 2g=4$, কেন্দ্র: $(-2,\sqrt{3})$, ব্যাসার্ধ: 2

নির্ণয়ে সমীকরন : $x^2 + y^2 + 4x - 2\sqrt{3}y + 3 = 0$

EXERCISE – 01 : একটি বৃত্তের সমীকরন নির্ণয় কর যা ও x অক্ষকে $(\sqrt{3},0)$ বিন্দুতে স্পর্শ করে এবং (0,-1) বিন্দু দিয়ে যায়। এর কেন্দ্র ও ব্যসার্ধ কত ? Ans: $x^2 + y^2 - 2\sqrt{3}x + 4y + 3 = 0$; $(\sqrt{3},-2)$; 2

EXERCISE – 02 : x=0, y=0 x=a রেখাদ্বয়কে স্পর্শ করে এরূপ বৃত্তের সমীকরন নির্ণয় কর । $x^2+y^2-ax\pm ay+\frac{a^2}{4}=0$

TYPE-6

নির্দিষ্ট দুরত্বে একটি অক্ষকে স্পর্শ করে এবং অপর অক্ষ হইতে নির্দিষ্ট পরিমাণের অংশ কর্তনকারী বৃত্তের সমীকরন ঃ

EXAMPLE -01: এরপ বৃত্তের সমীকরণ নির্ণয় কর যা মূলবিন্দু থেকে -4 একক দূরত্বে y-অক্ষকে স্পর্শ করে এবং x-অক্ষ থেকে 6 একক দীর্ঘ একটি জ্যা কর্তন করে।

SOLVE: নির্ণেয় বৃত্ত x অক্ষ হইতে 6 একক দীর্ঘ জ্যা কর্তন করে।

 \therefore AB = 6 C, ABএর মধ্যবিন্দু C \therefore AC = 3; CD||OP এবং OP = CD = 4

ACD সমকোণী ত্রিভূজ , $AC^2+CD^2=AD^2\Rightarrow AD^2=3^2+4^2=25=5^2$

$$\Rightarrow$$
 AD = 5 একক OC = PD = AD = 5

∴ Dবিন্দুর স্থানান্ধ (5, -4)

D'বিন্দুর স্থানান্ধ (-5, -4)[শর্তমতে]এবংব্যাসার্ধ, AD = AD' = 5 একক

∴নির্ণেয় বৃত্ত দুটির সমীকরণ, $(x \pm 5)^2 + (y + 4)^2 = 5^2$

$$\Rightarrow x^2 \pm 10x + 25 + y^2 + 8y + 16 = 25 \ x^2 + y^2 \pm 10x + 8y + 16 = 0$$

Process : (2).

(i)ধর, বৃত্তের সমীকরণ,
$$x^2 + y^2 + 29x + 2fy + c = 0$$

(ii) কেন্দ্রের কোটি
$$= -4 = -f$$
 বৃত্তের ব্যাসার্ধ $= |$ কেন্দ্রের ভূজ $| = | -g|$

$$(iii)\sqrt{g^2 + f^2 - c} = |-g| \Rightarrow f^2 - c = 0 \Rightarrow f^2 = c \Rightarrow c = 16$$

(iv)
$$2\sqrt{g^2-c}=6 \ \Rightarrow g^2-c=9 \ \Rightarrow g=\pm 5 \ \$$
্নবৃত্তের সমীকরণ, $x^2+y^2\pm 10x+8y+16=0$

EXERCISE – 01 : এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা x- অক্ষকে (4,0) বিন্দুতে স্পর্শ করে এবং y-অক্ষ থেকে 6 একক দীর্ঘ একটি জ্যা কর্তন করে ৷ $(Ans. x^2 + y^2 - 8x \pm 10y + 16 = 0)$

EXERCISE – 02 : (4,3) কেন্দ্র বিশিষ্ট এমন একটি বৃত্তের সমীকরন নির্ণয় কর যা $x^2 + y^2 = 4$ হবে বৃত্তকে বহিস্থ:ভাবে স্পর্শ করে। Ans: $x^2 + y^2 - 8x - 6y + 16 = 0$

TYPE-7

বর্গের পরিবৃত্তের সমীকরন নির্ণয় ঃ

EXAMPLE - 01: $4\sqrt{2}$ বাহুবিশিষ্ট বর্গের একটি শীর্ষ মূলবিন্দুতে এবং বিপরীত শীর্ষটি y অক্ষের উপর অবস্থিত । ঐ বর্গের কর্ণকে ব্যাস ধরে অংকিত বৃত্তের সমীকরন নির্ণয় কর ।

SOLVE : ব্যাসার্ধ = $4\sqrt{2} \cos 45^0 = 4$, কেন্দ্র = $(0, \pm 4)$

নির্ণেয় বৃত্তের সমীকরন ; $(x-0)^2+(y\pm 4)^2=4^2 \Rightarrow x^2+y^2\pm 8y=0$

EXERCISE – 01 : b বহুবিশিষ্ট OABC একটি বর্গক্ষেত্রে। OA ও OC কে অক্ষ ধরে প্রমাণ কর যে, বর্গটির পারিবৃত্তের সমীকরন হবে $x^2+y^2-b\ (x+y)=0$

TYPE-8

ব্যাসার্ধ দেয়া আছে, কেন্দ্র কেনো সরলরেখার উপর ও একটি বিন্দুগামী এরূপ বৃত্তের সমীকরন নির্ণয়।

 $\mathbf{EXAMPLE}$ -01: $\frac{1}{2}\sqrt{10}$ একক ব্যাসার্ধ বিশিষ্ট একটি বৃত্ত (1,1) বিন্দুগামী এবং এর কেন্দ্র $\mathbf{y}=3\mathbf{x}-7$ রেখার উপর অবস্থিত বৃত্তটির সমীকরন নির্ণয় কর।

 ${f SOLVE}:$ বৃত্তটির সমীকরন, ${f x}^2+{f y}^2+2{f g}{f x}+2{f f}{f y}+c=0$, (1,1) বিন্দুগামী বলে

$$1 + 1 + 2g + 2f + c = 0 \Rightarrow 2g + 2f + c + 2 = 0 \dots \dots \dots \dots (i),$$

কেন্দ্র (-g,-f), y=3x-7 রেখার উপর অবস্থিত বলে,-f=3g-7(ii)

$$(-g-1)^2 + (-f-1)^2 = \left(\frac{1}{2}\sqrt{10}\right)^2 \Rightarrow g^2 + 2g + 1 + f^2 + 2f + 1 = \frac{1}{4} \times 10$$

$$\Rightarrow$$
 $g^2+f^2+2g+2f+2=rac{5}{2}$(ii) , সমাধান করে, $2g=$ -5, $2f=$ -1, $c=4$

∴নির্ণেয় সমীকরন ៖ $\mathbf{x}^2 + \mathbf{y}^2 - 5\mathbf{x} - \mathbf{y} + 4 = 0$

অথবা, ধরি, নির্ণেয় বৃত্তের কেন্দ্র (h, k)

শর্তানুসারে, (h,k) বিন্দুটি y=3x-7 রেখার উপর অবস্থিত : $k=3h-7\ldots$ (i)

$$(h,k)$$
বিন্দু হতে, $(1,1)$ বিন্দুর দূরত্ব $=\frac{1}{2}\sqrt{10} \Rightarrow \sqrt{(h-1)^2+(k-1)^2}=\frac{1}{2}\sqrt{10}$

$$\Rightarrow$$
 h² - 2h + 1 + k² - 2k + 1 = $\frac{10}{4}$ \Rightarrow h² - 2h + 1 + (3h - 7)² - 2 (3h - 7) + 1 = $\frac{10}{4}$

$$\Rightarrow$$
 h² - 2h + 1 + 9h² - 42h + 49 - 6h + 14 + 1 = $\frac{10}{4}$ \Rightarrow 10h² - 50h + 65 = $\frac{5}{2}$

$$\Rightarrow 2h^2 - 10h + 13 = \frac{1}{2} \Rightarrow 4h^2 - 20h + 26 = 1 \Rightarrow 4h^2 - 20h + 25 = 0$$

$$\Rightarrow (2h-5)^2 = 0 : h = \frac{5}{2}, \frac{5}{2}$$

(i)নং সমীকরণে
$$h=\frac{5}{2}$$
 বসিয়ে পাই, $k=3\times\frac{5}{2}-7=\frac{1}{2}$ ∴নির্ণেয় বৃত্তের কেন্দ্র $\left(\frac{5}{2},\frac{1}{2}\right)$ এবং ব্যাসার্ধ $=\frac{1}{2}\sqrt{10}$

$$\therefore$$
বৃত্তটিরসমীকরণ, $\left(x-\frac{5}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\left(\frac{1}{2}\sqrt{10}\right)^2\Rightarrow x^2-5x+\frac{25}{4}+y^2-y+\frac{1}{4}=\frac{10}{4}$

$$\Rightarrow x^2 + y^2 - 5x - y + 4 = 0$$
 (Ans.)

EXERCISE – 01 : এরপ একটি বৃত্তের সমকিরন নির্ণয় কর যা মূল বিন্দু হতে 2 একক দুরে x অক্ষকে দুটি বিন্দুতে ছেদ করে এবং যার ব্যাসার্ধ 5 একক । $\mathbf{Ans}: x^2 + y^2 \pm 2\sqrt{21}y - 4 = 0$

EXERCISE – 02 : এরূপ একটি বৃত্তের সমীকরন নির্ণয় কর যার কেন্দ্র y অক্ষর উপর এবং যা মূল বিন্দু ও (p,q) বিন্দু দিয়ে যায । $\mathbf{Ans}: q(x^2+y^2)-y(p^2+q^2)=0$

TYPE-9

বৃত্ত ও রেখার ছেদ বিন্দুগামী বৃত্তের সমীকরন নির্ণয়:

EXAMPLE -01: একটি বৃত্তের সমীকরন নির্ণয় কর যা মূলবিন্দু এবং $x^2 + y^2 - 2x - 4y - 4 = 0$ বৃত্ত এবং 2x + 3y + 1 = 0 রেখার ছেদবিন্দু দিয়ে যায়।

 ${f SOLVE}:$ বৃত্তটির সমীকরন $\,x^2+y^2-2x-4y-4+k\,(2x+3y+1)=0\,$ বৃত্তটি মূলবিন্দুগামী

$$\therefore 0 + 0 - 2 \times 0 - 4 \times 0 - 4 + k (2 \times 0 + 3 \times 0 + 1) = 0 \Rightarrow k = 4$$

$$\therefore$$
 বৃত্তিবি সমীকরন : $x^2+y^2-2x-4y-4+4$ $(2x+3y+1)=0 \Rightarrow x^2+y^2+6x+8y=0$

EXAMPLE -02: একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র (6,0) এবং যা $x^2 + y^2 - 4x = 0$ বৃত্ত ও x = 3 রেখার ছেদবিন্দু দিয়ে যায়।

SOLVE : প্রদত্ত বৃত্ত, $x^2 + y^2 - 4x = 0$

এবং রেখা,
$$x = 3$$
, $\Rightarrow x - 3 = 0$

প্রদত্ত বৃত্ত ও রেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ, $x^2 + y^2 - 4x + k(x-3) = 0$

$$\Rightarrow x^2 + y^2 - 4x + kx - 3k = 0 \Rightarrow x^2 + y^2 - (4 - k)x - 3k = 0 \dots (i)$$

(i) নং বৃত্তের কেন্দ্র
$$\left(\frac{4-k}{2},0\right)$$

দেওয়া আছে, নির্ণেয় বৃত্তের কেন্দ্র (6,0)

তাহলে,
$$\frac{4-k}{2} = 6 \Rightarrow 4 - x = 12 \Rightarrow k = -8$$

k এর মান (i)নং সমীকরণে বসিয়ে পাই, $x^2 + y^2 - (4+8)x - 3(-8) = 0$

$$\Rightarrow x^2 + y^2 - 12x + 24 = 0$$
 (Ans.)

EXERCISE – 01 : একটি বৃত্তের সমীকরণ নির্ণয় কর যা মূলবিন্দু এবং ${f x}^2 + {f y}^2 - 2{f x} - 4{f y} - 4 = 0$ বৃত্ত

ও 2x + 3y + 1 = 0 রেখার ছেদ বিন্দু দিয়ে যায়। (Ans. $x^2 + y^2 + 6x + 8y = 0$)

EXERCISE – 02 : একটি বৃত্তের সমীকরন নির্ণয় কর যার কেন্দ্র (6,0) এবং $x^2+y^2=4x$ বৃত্ত ও x=0 রেখার ছেদ বিন্দু দিয়ে যায় । \mathbf{Ans} : $x^2+y^2-12x+2y=0$

TYPE- 10

স্পর্শক, অভিলম্ব ও সাধারণ জ্যা সম্পর্কিত গাণিতিক সমস্যা।

EXAMPLE -01: মূলবিন্দু হতে (1, 2) কেন্দ্রবিশিষ্ট বৃত্তে অঙ্কিত স্পর্শকের দৈর্ঘ্য 2; বৃত্তটির সমীকরণ নির্ণয় কর।

SOLVE: মনেকরি, (1, 2) কেন্দ্রবিশিষ্ট বৃত্তের সমীকরণ, $x^2 + y^2 - 2x - 4y + c = 0...$ (1)

মূলবিন্দু হতে(1) বৃত্তের স্পর্শকের দৈর্ঘ্য $=\sqrt{c}$

প্রামতে, $\sqrt{c}=2 \Rightarrow c=4$.

∴নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 - 2x - 4y + 4 = 0$

EXAMPLE - 02: $x^2 + y^2 = 81$ বৃত্তের একটি জ্যা (-2,3) বিন্দুতে সমদ্বিখন্ডিত হয়। ঐ জ্যা এর সমীকরণ নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত বৃত্তের কেন্দ্র (0,0) ও জ্যা এর মধ্যবিন্দু (-2,3) এর সংযোগ সরলরেখা উক্ত জ্যা এর উপর লম্ব ।

 \div (-2,3) বিন্দুগামী এবং (0,0) ও (-2,3) বিন্দুদ্বয়ের সংযোগ রেখার উপর লম্ব এরূপ সরলরেখার সমীকরণ,

$$y-3=-rac{-2}{3}(x+2)\Rightarrow 3y-9=2x+4\div 2x-3y+13=0$$
; এটিই নির্ণেয় জ্যা এর সমীকরণ।

বিকল্পপদ্ধতি : প্রদন্ত বৃত্তের যে জ্যাটি (-2,3) বিন্দুতে সমদ্বিখভিত হয় তার সমীকরণ, $x.(-2)+y.3=(-2)^2+3^2 \Rightarrow -2x+3y=4+9\left[xx_1+yy_1=x_1^2+y_1^2$ সূত্রের সাহায্যে] :নির্ণেয় জ্যা এর সমীকরণ, 2x-3y+13=0

EXERCISE – 01: $x^2 + y^2 = 144$ বুত্তের একটি জ্যা এর সমীকরণ নির্ণয় কর যার মধ্যবিন্দু (-2,3) বিন্দুতে অবস্থিত।

নির্ণেয় জ্যা এর সমীকরণ, 2x - 3y + 13 = 0

EXAMPLE –03: $x^2 + y^2 + 2x + 3y + 1 = 0$ ও $x^2 + y^2 + 4x + 3y + 2 = 0$ বৃত্ত দুইটির সাধারণ জ্যা যে বৃত্তের ব্যাস তার সমীকরণ নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত বৃত্তদ্বয়ের সাধারণ জ্যা এর সমীকরণ, $(x^2+y^2+2x+3y+1)-(x^2+y^2+4x+3y+2)$

$$= 0 \Rightarrow 2x + 1 = 0 \dots (1)$$

 $x^2 + y^2 + 2x + 3y + 1 = 0$ বৃত্ত ও (1) নং রেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ,

$$x^2 + y^2 + 2x + 3y + 1 + k(2x + 1) = 0$$

$$\Rightarrow x^2 + y^2 + 2(k+1)x + 3y + 1 + k = 0 \dots \dots \dots \dots (2)$$

(1) নং রেখা (2) নং বৃত্তের একটি ব্যাস হলে, বৃত্তটির কেন্দ্র $(-k-1,-\frac{3}{2})$ রেখাটির উপর অবস্থিত।

$$\therefore 2(-k-1) + 1 = 0 \Rightarrow -2k-2+1 = 0 \Rightarrow k = -\frac{1}{2}$$

∴নির্ণেয় বৃত্তের সমীকরণ, $x^2 + y^2 + 2\left(-\frac{1}{2} + 1\right)x + 3y + 1 - \frac{1}{2} = 0$

$$\Rightarrow$$
 x² + y² + x + 3y + $\frac{1}{2}$ = 0 \Rightarrow 2x² + 2y² + 2x + 6y + 1 = 0 (Ans.)

 $EXAMPLE-04: x^2+y^2-4x-6y+c=0$ বৃত্তটি x- অক্ষকে স্পর্শ করে। c এর মান ও স্পর্শবিন্দুর স্থানাঙ্ক নির্ণয় কর।

SOLVE: প্রদত্ত বৃত্তের সমীকরণ, $x^2 + y^2 - 4x - 6y + c = 0 ...$ (i)

(i) কে (ii)নং বৃত্তের তুলনা করে পাই, $2g=-4 \Rightarrow g=-2$

যেহেতু(i)নং বৃত্ত x অক্ষকে স্পর্শ করে সুতরাং বৃত্তটি কর্তৃক x অক্ষের কর্তিত অংশর পরিমাণ শূণ্য

$$2\sqrt{g^2-c} = 0 \Rightarrow \sqrt{g^2-c} = 0 \Rightarrow g^2-c = 0 \Rightarrow c = g^2 \Rightarrow c = (-2)^2 \quad \therefore c = 4$$

স্পর্শবিন্দু, (-g,0)=(2,0)

 $\mathbf{EXAMPLE}$ $\mathbf{-05}$: দেখাও যে, lx+my=1 রেখাটি $x^2+y^2-2ax=0$ বৃত্তকে স্পর্শ করবে যদি $a^2m^2+2al=1$ হয়।

SOLVE : প্ৰদত্ত বৃত্ত, $x^2 + y^2 - 2ax = 0 \Rightarrow x^2 - 2ax + a^2 + y^2 - a^2 = 0 \Rightarrow (x - a)^2 + y^2 = a^2$

কেন্দ্ৰ (a, o) ও ব্যাসার্ধ= a

প্রদত্ত রেখা, lx+my=1 প্রদত্ত বৃত্তের স্পর্শক হলে কেন্দ্র হতে রেখাটির লম্ব দূরত্ব ব্যাসার্ধের সমান হবে।

অর্থাৎ,
$$\left| \frac{al+m \times o-1}{\sqrt{l^2+m^2}} \right| = a \Rightarrow (al-1)^2 = \left(\pm a \sqrt{l^2+m^2} \right)^2 \Rightarrow a^2 l^2 - 2al + 1 = a^2 l^2 + a^2 m^2$$

 \Rightarrow $a^2m^2 + 2al = 1$:নির্ণেয় শর্ত, $a^2m^2 + 2al = 1$ (Showed)

EXAMPLE -06: px + qy = 1 রেখাটি $x^2 + y^2 = a^2$ বৃত্তকে স্পর্শ করে। দেখাও যে, (p,q) বিন্দুটি একটি বৃত্তের উপর অবস্থিত।

SOLVE : প্রদত্ত বৃত্ত, $x^2 + y^2 = a^2$ এর কেন্দ্র (0,0) ও ব্যাসার্থ=a

প্রদত্ত রেখা px+qy=1 উক্ত বৃত্তের স্পর্শক হলে কেন্দ্র হতে রেখাটির উপর লম্ব দূরত্ব উক্ত বৃত্তের ব্যাসার্ধের সমান হবে।

$$\left| \frac{p \times 0 + q \times o - 1}{\sqrt{p^2 + q^2}} \right| = a \Rightarrow -1 = \pm a \sqrt{p^2 + q^2} \Rightarrow (-1)^2 = \left(\pm a \sqrt{p^2 + q^2} \right)^2 \Rightarrow a^2(p^2 + q^2) = \frac{1}{a^2}$$

 $\therefore p^2 + q^2 = r^2$ [যেখানে, $r^2 = \frac{1}{a^2}$ এবং r ও a ধনাতৃক]

ইহা একটি বৃত্তের সমীকরণ যার কেন্দ্র (0,0) এবং ব্যাসার্ধ r.

সুতরাং,(p,q) বিন্দুটি একটি বৃত্তের উপরস্থ চলমান কোন বিন্দু । (দেখানো হল)

 $\mathbf{EXAMPLE}$ $\mathbf{-07:}\ 3x + by - 1 = 0$ রেখাটি $x^2 + y^2 - 8x - 2y + 4 = 0$ বৃত্তকে স্পর্শ করে । b এর মান নির্ণয় কর ।

SOLVE: প্রদত্ত বৃত, $x^2 + y^2 - 8x - 2y + 4 = 0$ এর সাথে

বৃত্তের প্রমিত সমীকরণ, $\mathrm{x}^2+\mathrm{y}^2+2\mathrm{g}\mathrm{x}+2\mathrm{f}\mathrm{y}+\mathrm{c}=0$ তুলনা করে। $2\mathrm{g}=-8\Rightarrow\mathrm{g}=-4\Rightarrow -\mathrm{g}=4$

এবং, $2f = -2 \Rightarrow f = -1 \Rightarrow -f = 1$:বৃত্তটির কেন্দ্র (4,1); c = 4

ব্যাসার্থ =
$$\sqrt{g^2 + f^2 - c} = \sqrt{(-4)^2 + (-1)^2 - 4} = \sqrt{16 + 1 - 4} = \sqrt{13}$$

প্রদত্ত রেখা 3x+by-1=0 প্রদত্ত বৃত্তের স্পর্শক হলে,বৃত্তটির কেন্দ্র হতে উক্ত রেখার লম্ব দূরত্ব ব্যাসার্ধের সমান হবে।

$$\left| \frac{3 \times 4 + b \times 1 - 1}{\sqrt{3^2 + b^2}} \right| = \sqrt{13} \Rightarrow 11 + b = \pm \sqrt{13} \sqrt{3^2 + b^2} \Rightarrow (11 + b)^2 = \left(\pm \sqrt{13} \sqrt{9 + b^2} \right)^2$$

$$\Rightarrow 121 + 22b + b^2 = 13(9 + b^2) \Rightarrow 121 + 22b + b^2 = 117 + 13b^2$$

$$\Rightarrow 12b^2 - 22b - 4 = 0 \Rightarrow 6b^2 - 11b - 2 = 0 \Rightarrow 6b^2 - 12b + b - 2 = 0$$

$$\Rightarrow$$
 6b(b-2) + 1 (b-2) = 0 \Rightarrow (b-2)(6b+1) = 0

হয়,
$$b-2=0 \Rightarrow b=2$$
 অথবা, $6b+1=0 \Rightarrow 6b=-1 \Rightarrow b=-\frac{1}{6}$

 \therefore b এর নির্ণেয় মানগুলো ঃ 2 বা $-\frac{1}{6}$ (Ans.)

EXAMPLE -08: $x^2 + y^2 - 2x - 4y - 4 = 0$ বৃত্তে অঙ্কিত স্পর্শক 3x - 4y - 1 = 0 রেখার সমান্তরাল। স্পর্শকের সমীকরণ নির্ণয় কর।

 ${f SOLVE}:$ প্রদত্ত বৃত্ত, ${f 3}({f b})$. ${f x}^2+{f y}^2-2{f x}-4{f y}-4=0$ এর সাথে বৃত্তের প্রমিতসমীকরণ

$$x^2+y^2+2gx+2fy+c=0$$
 এর তুলনা করে পাই, $2g=-2 \Rightarrow g=-1 \div -g=1$, $c=-4$

এবং
$$.2f = -4 \Rightarrow f = -2 \therefore -f = 2$$

$$\therefore$$
 ব্যাসার্থ = $\sqrt{g^2 + f^2 - c} = \sqrt{1^2 + 2^2 - (-4)} = \sqrt{1 + 4 + 4} = 3$

প্রদত্ত রেখা
$$3x - 4y + 5 = 0$$
 এর সমান্তরালে যে কোন রেখার সমীকরণ $3x - 4y + k = 0$ (i)

(i)নং রেখাটি প্রদত্ত বৃত্তের স্পর্শক হলে বৃত্তের কেন্দ্র (1, 2) হতে রেখাটির লম্ব দূরত্ব ব্যাসাধের সমান হবে

$$\therefore \left| \frac{3 \times 1 - 4 \times 2 + k}{\sqrt{3^2 + (-4)^2}} \right| = 3 \Rightarrow \left| \frac{k - 5}{5} \right| = 3 \Rightarrow \frac{k - 5}{5} = \pm 3$$

$$(+)$$
ve এরজন্য $k-5=15 \Rightarrow k=20$; $(+)$ ve এরজন্য $k-5=-15 \Rightarrow k=-10$

$$\div$$
 (i)নং সমীকরণে $k=20$ বসিয়ে পাই, $3x-4y+20=0$

আবার, (i)নং সমীকরণে ${
m k}=-10$ বসিয়ে পাই ${
m ,}3{
m x}-4{
m y}-10=0$

্রানির্ণেয় স্পর্শক
$$3x - 4y + 20 = 0$$
 এবং $3x - 4y - 10 = 0$ (Ans.)

EXAMPLE -09: $x^2 + y^2 + 4x - 8y + 2 = 0$ বৃত্তের স্পর্শক অক্ষ দুইটি হতে একই চিহ্ন বিশিষ্ট সমমানের অংশ ছেদ করে। স্পর্শকের সমীকরণ নির্ণয় কর।

SOLVE: প্রদত্ত বৃত্ত, $x^2 + y^2 + 4x - 8y + 2 = 0$ এর সাথে বৃত্তের প্রামিতসমীকরণ

$$x^2+y^2+2gx+2fy+c=0$$
 এর তুলনা করে পাই, $2g=4\Rightarrow g=2\Rightarrow -g=-2$; $2f=-8\Rightarrow -f=4$; $c=2$ সুতরাং, প্রদন্ত ব্তের কেন্দ্র $(-2,4)$

এবং ব্যাসার্ধ=
$$\sqrt{g^2 + f^2 - c} = \sqrt{2^2 + (-4)^2 - 2} = \sqrt{4 + 16 - 2} = \sqrt{18} = 3\sqrt{2}$$

নির্ণেয় রেখাটির ছেদ আকার,
$$\frac{x}{a} + \frac{y}{b} = 1$$

যেহেতু, রেখাটি x ও y অক্ষ হতে একই চিহ্ন বিশিষ্ট সমমানের অংশ কর্তন করে।

সুতরাং,
$$a = b = k$$
 এবং $-a = -b = -k$

$$\therefore$$
 রেখাটির পরিবর্তিত আকার, $rac{x}{k}+rac{y}{k}=1\Rightarrow x+y=k \ \Rightarrow x+y-k=0 \ .$ \ldots (i)

(i) নং রেখাটি প্রদত্ত বৃত্তের স্পর্শক হলে বৃত্তটির কেন্দ্র (-2,4) হতে রেখাটির লম্ব দূরত্ব উক্ত বৃত্তের ব্যাসার্ধের সমান হবে।

$$\Rightarrow \left| \frac{-2+4-k}{1^2+1^2} \right| = 3\sqrt{2} \Rightarrow \frac{2-k}{\sqrt{2}} = \pm 3\sqrt{2} \Rightarrow 2-k = \pm 3 \times 2 = \pm 6$$

(+)ve নিয়ে, k = -4, (-)ve নিয়ে, k = 8

(i)সমীকরণে
$$k=-4$$
 বসিয়ে পাই, $x+y-(-4)=0 \Rightarrow x+y+4=0$

আবার, (i)নংসমীকরনে k = 8 বসিয়ে পাই, x + y - 8 = 0

∴নির্ণেয় স্পর্শকের সমীকরণ, x + y + 4 = 0, x + y - 8 = 0

বি.দ্র ঃ $-\mathbf{k}$ এর জন্য আরো দুটি স্পর্শক পাওয়া যাবে তা হলো ঃ $\mathbf{x}+\mathbf{y}-4=0$, $\mathbf{x}+\mathbf{y}+8=0$

 $EXAMPLE - 10: x^2 + y^2 = b(5x - 12y)$ বৃত্তের ব্যাস মূলবিন্দু দিয়ে অতিক্রম করে। ব্যাসটির সমীকরণ এবং মূলবিন্দুগামী স্পর্শকের সমীকরণ নির্ণয় কর।

SOLVE : প্ৰদত্ত বৃত্ত,
$$x^2 + y^2 = b (5x - 12y) \Rightarrow x^2 + y^2 = 5bx - 12by \Rightarrow x^2 - 5bx + y^2 + 12by = 0 \Rightarrow x^2 - 2.x. \frac{5b}{2} + \left(\frac{5b}{2}\right)^2 + y^2 + 2.y. 6b + (6b)^2 - \left(\frac{5b}{2}\right)^2 - (6b)^2 = 0$$

$$\Rightarrow \left(x - \frac{5b}{2}\right)^2 + (y + 6b)^2 = \frac{25b^2}{4} - 36b^2 \Rightarrow \left(x - \frac{5b}{2}\right)^2 + (y + 6b)^2 = \left(\frac{13b}{2}\right)^2$$

∴বৃত্তটির কেন্দ্র $\left(\frac{5b}{2}, -6b\right)$ এবং ব্যাসার্ধ $\frac{3b}{2}$

অথবা, বৃত্তের প্রমিত সমীকরণ $x^2 + y^2 + 2gx + 2fy + c = 0$ এর সাথে তুলনা করে,

$$2g=-5b \Rightarrow -g=rac{5b}{2}$$
 এবং, $2f=12b \Rightarrow -f=-6b$ এক্ষেত্রে কেন্দ্র $\left(rac{5b}{2},-6b
ight)$

প্রদত্ত বৃত্তের ব্যাস মূলবিন্দুগামী ও উক্ত বৃত্তের কেন্দ্রগামী

∴ব্যাসের সমীকরণ,
$$\frac{y-0}{0+6b} = \frac{x-0}{0-\frac{5b}{2}} \Rightarrow \frac{y}{6b} = \frac{x}{-\frac{5b}{2}} \Rightarrow \frac{y}{12} = \frac{x}{-5} \Rightarrow -5y = 12x \Rightarrow 12x + 5y = 0$$

স্পর্শক ব্যাসের উপর লম্ব বলে স্পর্শকটির সমীকরণ, 5x-12y+k=0 যা মূলবিন্দু (0,0) দিয়ে যায়,

সুতরাং,
$$5 \times 0 - 12 \times 0 + k = 0 \implies k = 0$$
 ∴নির্ণেয় স্পর্শকের সমীকরণ ঃ $5x - 12y = 0$

Observations: $x^2+y^2+k(5x-12y)=0$ যা $x^2+y^2=0$ বিন্দুবৃত্ত ও 5x-12y=0 রেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ । k=-b

সরাসরি বলা যায় 5x - 12y = 0 যা মূলবিন্দুগামী রেখা বলে বৃত্তটির স্পর্শক।

EXAMPLE-11: দেখাও যে x+2y=17 রেখাটি $x^2+y^2-2x-6y-10=0$ বৃত্তের একটি স্পর্শক । এ বৃত্তের যে ব্যাসটি স্পর্শবিন্দু দিয়ে যায় তার সমীকরণ নির্ণয় কর ।

SOLVE : প্রদত্ত বৃত্ত, $x^2+y^2-2x-6y-10=0$ এর সাথে বৃত্তের প্রমিত সমীকরণ , $x^2+y^2+2gx+2fy+c=0$ এর তুলনা করে পাই, $2g=-2 \Rightarrow g=-1 \Rightarrow -g=1; 2f=-6 \Rightarrow f=-3 \Rightarrow -f=3$

এবং c=-10 \therefore বৃত্তটির কেন্দ্র (1,3) ও ব্যসার্থ = $\sqrt{g^2+f^2-c}=\sqrt{1^2+3^2-(-10)}=\sqrt{1+9+10}=\sqrt{20}=2\sqrt{5}$

প্রদত্ত রেখা,
$$x + 2y = 17$$
 or, $x + 2y - 17 = 0 \dots$ (i)

(i)নং রেখাটি উক্ত বৃত্তের স্পর্শক হলে কেন্দ্র হতে (i) নং রেখাটি লম্ব দূরত্ব উক্ত বৃত্তের ব্যাসার্ধের সমান হবে।

$$\left|\frac{1+2\times 3-17}{\sqrt{1+2^2}}\right|=\frac{10}{\sqrt{5}}=\frac{2.\sqrt{5}.\sqrt{5}}{\sqrt{5}}=2\sqrt{5}=$$
 উক্ত বৃত্তের ব্যাসার্ধ

∴ x + 2y = 17 রেখাটি প্রদত্ত বৃত্তের একটি স্পর্শক (দেখানো হল)

দ্বিতীয় অংশ ঃ প্রদন্ত রেখা, x+2y=17 এর উপর লম্ব হয় এরূপ রেখার সমীকরণ , 2x-y+k=0 যা কেন্দ্র (1,3) গামী সুতরাং $2\times 1-3+k=0 \Rightarrow k=1$

স্পর্শবিন্দু দিয়ে যায় এবং কেন্দ্র (1,3) গামী ব্যাসের সমীকরণ , 2x-y+1=0

প্রদত্ত রেখা,
$$x + 2y = 17 \Rightarrow y = \frac{17-x}{2}$$

প্রদান্ত বৃত্ত,
$$x^2 + \left(\frac{17-x}{2}\right)^2 - 2x - 6\left(\frac{17-x}{2}\right) - 10 = 0 \Rightarrow 5x^2 - 6x + 9 = 0 \Rightarrow (x-3)^2 = 0$$

∴ x = 3,3 (সমাপতিত বিন্দু সুতরাং একটাই সমীকরণ পাওয়া যাবে)

 $y = \frac{17-x}{2} = \frac{17-3}{2} = 7$ স্পর্শবিন্দু =(3, 7) স্পর্শবিন্দু দিয়ে যায় এবং কেন্দ্র (1, 3) গামী ব্যাসের সমীকরণ ,

$$y-7 = \frac{7-3}{3-1}(x-3) \Rightarrow 2x-y+1 = 0$$

 $EXAMPLE - 12: x^2 + y^2 + 4x - 10y + 28 = 0$ বৃত্তের (-2,4) বিন্দুতে স্পর্শক ও অভিলম্বের সমীকরণনির্ণয় কর।

SOLVE: প্রদত্ত বৃত্ত,
$$x^2 + y^2 + 4x - 10y + 28 = 0$$

(-2,4) বিন্দুগামী যে কোন রেখার সমীকরণ, $y-4=m(x+2) \Rightarrow y-4=mx+2m$

$$\Rightarrow$$
 mx - y + 2m + 4 = 0 ... (i)

প্রদত্ত বৃত্তের সাথে বৃত্তের প্রমিত সমীকরণ $x^2 + y^2 + 2gx + 2fy + c = 0$ এর সাথে তুলনা করে পাই,

$$2g = 4 \Rightarrow g = 2 \Rightarrow -9 = -2$$
; $2f = -10 \Rightarrow f = -5 \Rightarrow -f = 5$; $c = 28$

∴বৃত্তের কেন্দ্র
$$(-2,5)$$
এবং ব্যাসার্ধ= $\sqrt{(-2)^2+5^2-28}=1$

(i)নং রেখাটি প্রদত্ত বৃত্তের স্পর্শক হলে বৃত্তটির কেন্দ্র(-2,5) হতে উক্ত রেখাটির লম্ব দূরত্ব প্রদত্ত বৃত্তেরব্যাসার্ধেরসমানহবে।

অপ্প্,
$$\left| \frac{m \times (-2) - 5 + 2m + 4}{\sqrt{m^2 + (-1)^2}} \right| = 1 \Rightarrow \left| \frac{-2m - 5 + 2m + 4}{\sqrt{m^2 + 1}} \right| = 1 \Rightarrow \left| \frac{-1}{\sqrt{m^2 + 1}} \right| = 1$$

$$\Rightarrow$$
 m² + 1 = 1 \Rightarrow m² = 0 \Rightarrow m = 0

$$\therefore$$
 (i)নংসমীকরণে, $m=0$ বসিয়ে পাই, $-y+4=0 \Rightarrow y-4=0$

আমরা জানি, স্পর্শকের উপর লম্ব রেখাই অভিলম্ব তাহলে,অভিলম্বের সমীকরণ, x=k যা (-2,4) বিন্দুগামী

$$\therefore -2 = k$$
 :নির্ণেয় অভিলম্বের সমীকরণ, $x = -2$ বা, $x + 2 = 0$

্রনির্ণেয় স্পর্শক ও অভিলম্বের সমীকরণ যথাক্রমে y-4=0 এবং x+2=0

EXERCISE – 01: (1,-3) কেন্দ্রবিশিষ্ট একটি বৃত্ত 2x-y-4=0 রেখাকে স্পর্শ করে ৷ তার সমীকরণ নির্ণয় কর ৷ Ans: $5x^2+5y^2-10x+30y+49=0$

EXERCISE – 02: $x^2+y^2-8x-10y=8$ বৃত্তে অন্ধিত স্পর্শক 5x-12y-9=0 রেখার সমান্তরাল। স্পর্শকের সমীকরণ নির্ণয় কর। Ans. 5x-12y+131=0 এবং 5x-12y-51=0

EXERCISE – 03: ax + 2y - 1 = 0 রেখাটি $x^2 + y^2 - 8x - 2y + 4 = 0$ বৃত্তকে স্পর্শ করলে a এর মান নির্ণয় কর । Ans. 3 বা -17/3

EXERCISE – 04: $x^2 + y^2 - 2x - 4y - 4 = 0$ বৃত্তে অঙ্কিত স্পর্শক 3x - 4y + 5 = 0 রেখার উপর লম । স্পর্শকের সমীকরণ নির্ণয় কর । (Ans. 4x + 3y - 25 = 0, 4x + 3y + 5 = 0)

EXERCISE – 05: px+qy=1 রেখাটি $x^2+y^2=a^2$ বৃত্তকে স্পর্শ করে। দেখাও যে, (p,q) বিন্দুটি একটি বৃত্তের উপর অবস্থিত।

EXERCISE – 06: $x^2 + y^2 = 16$ বৃত্তে অঙ্কিত স্পর্শকx- অক্ষের ধনাত্মক দিকের সাথে 30° কোণ উৎপন্ন করে। স্পর্শকের সমীকরণ নির্ণয় কর। $\left(\text{Ans.} \sqrt{3} y = x \pm 8 \right)$

EXERCISE – 07: $x^2 + y^2 - 10x - 10y = 0$ বৃত্তের উপর দুটি স্পর্শকের সমীকরন নির্ণয় কর যারা y = x রেখার সমান্তরাল হবে।

EXAMPLE −13: y = 2x রেখাটি x² + y² = 10x বৃত্তের একটি জ্যা। উক্ত জ্যাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর।

SOLVE : প্রদন্ত বৃত্ত $x^2+y^2=10x$ এ y=2x বসিয়ে পাই, $\Rightarrow x^2+(2x)^2=10x \Rightarrow x^2+4x^2-10x=0 \Rightarrow 5x^2-10x=0 \Rightarrow 5x(x-2)=0$

হয়, $5x = 0 \Rightarrow x = 0$ অথবা, $x - 2 = 0 \Rightarrow x = 2$

x = 0 হলে y = 0; x = 2 হলে $y = 2 \times 2 = 4[: y = 2x]$

্ৰজ্যা বৃত্তকে(0,0) ও (2,4) বিন্দুতে ছেদ করে, এখন (0,0) ও (2,4) কোন বৃত্তের ব্যাসের প্রান্তবিন্দু হলে ঐ বৃত্তের সমীকরণ : $(x-0)(x-2)+(y-0)(y-4)=0 \Rightarrow x^2-2x+y^2-4y=0$

 $\Rightarrow x^2 + y^2 - 2x - 4y = 0$ (Ans.)

EXAMPLE -14: $x^2 + y^2 + 4x - 2y + 3 = 0$ ও $x^2 + y^2 - 4x + 6y - 21 = 0$ বৃত দুইটির সাধারণ জ্যা এর সমীকরণ এবং দৈর্ঘ্য নির্ণয় কর।

SOLVE: প্রদত্ত বৃত্ত দুটি, $s_1: x^2 + y^2 + 4x - 2y + 3 = 0$; $s_2: x^2 + y^2 - 4x + 6y - 21 = 0$

 s_1 বৃত্তের কেন্দ্র (-2,1) ও ব্যাসার্থ = $\sqrt{(-2)^2+1^2-3}=\sqrt{2}$

 s_2 বৃত্তের কেন্দ্র (2,-3) ও ব্যাসার্থ = $\sqrt{2^2+(-3)^2-(-21)}=\sqrt{4+9+21}=\sqrt{34}$

 \mathbf{s}_1 ও \mathbf{s}_2 বৃত্তের সাধারণ জ্যা এর সমীকরণ, $\mathbf{s}_1 - \mathbf{s}_2 = \mathbf{0}$

 $\Rightarrow x^2 + y^2 + 4x - 2y + 3 - x^2 - y^2 + 4x - 6y + 21 = 0 \Rightarrow 8x - 8y + 24 = 0$

 \Rightarrow x - y + 3 = 0

 s_2 বৃত্তের কেন্দ্র (2,-3) হতে জ্যা এর লম্ব দূরত্ব, $d=\frac{2+3+3}{\sqrt{1^2+(-1)^2}}=\frac{8}{\sqrt{2}}$

 $AC = \sqrt{34}$, $AB = \frac{8}{\sqrt{2}}$; $BC^2 = AC^2 - AB^2 = (\sqrt{34})^2 - (\frac{8}{12})^2 = 34 - \frac{64}{2} = \frac{68 - 64}{2} = \frac{4}{2} = 2$

 \therefore BC $=\sqrt{2}$ জ্যা CD এর দৈর্ঘ্য=2 imes BC $=2\sqrt{2}$ একক

EXAMPLE -15: $x^2 + y^2 + 6x + 2y + 6 = 0$ এবং $x^2 + y^2 + 8x + y + 10 = 0$ বৃতদ্বয়ের সাধারণ জ্যা যে বৃত্তের ব্যাস তার সমীকরন নির্ণয় কর।

 $\mathbf{SOLVE}:$ সাধারণ জ্যা এর সামীকরন ঃ $S_1-S_2=0$, $-2\mathbf{x}+\mathbf{y}-4=0\Rightarrow \mathbf{y}=2\mathbf{x}+4$

 $x^{2} + (2x + 4)^{2} + 6x + 2(2x + 4) + 6 = 0 \Rightarrow x^{2} + 4x^{2} + 16x + 16 + 6x + 4x + 8 + 6 = 0$

 $\Rightarrow 5x^2 + 26x + 30 = 0$

$$x = \frac{-26 \pm \sqrt{(-26)^2 - 4 \times 30}}{2 \times 5} = \frac{-26 \pm \sqrt{676 - 600}}{10} = \frac{-26 \pm \sqrt{76}}{10} = \frac{-13 \pm \sqrt{19}}{5}$$

$$x_1 = \frac{-13 + \sqrt{19}}{5}$$
, $x_2 = \frac{-13 - \sqrt{19}}{5}$, $y_1 = \frac{-26 + 2\sqrt{19}}{5} + 4 = \frac{-6 + 2\sqrt{19}}{5}$, $y_2 = \frac{-6 - 2\sqrt{19}}{5}$

বৃত্তের সমীকরন : $(x - x_1)(x + x_2) + (y - y_1)(y - y_2) = 0$

$$\Rightarrow x^2 - (x_1 + x_2)x + x_1x_2 + y^2 - (y_1 + y_2)y + y_1y_2 = 0$$

$$\Rightarrow x^2 + \frac{26}{5}x + \frac{\left(-13 + \sqrt{19}\right)\left(-13 - \sqrt{19}\right)}{25} + y^2 + \frac{12}{5}y + \frac{\left(6 + 2\sqrt{19}\right)\left(-6 - 2\sqrt{19}\right)}{25} = 0$$

$$\Rightarrow x^2 + \frac{26}{5}x + \frac{169 - 19}{25} + y^2 + \frac{12}{5}y + \frac{36 - 76}{25} = 0$$

$$\Rightarrow 5(x^2 + y^2) + 26x + 12y + 22 = 0$$

EXAMPLE-16: দেখাও যে, y-3x=10 রেখাটি $x^2+y^2=10$ বৃত্তটিকে সমপতিত বিন্দুতে ছেদ করে। বিন্দুটির স্থানাংক নির্ণয় কর।

SOLVE: y = 10 + 3x थमल বृख्ति সমীকরণে বসাই,

$$x^{2} + (3x + 10)^{2} = 10 \Rightarrow 10x^{2} + 60x + 90 = 0 \Rightarrow x^{2} + 6x + 9 = 0$$
 $x^{2} \Rightarrow (x + 3)^{2} = 0$

x=-3,-3,y=1,1 , x এর মানদ্বয় একই সুতরাং y=3x+10 রেখা $x^2+y^2=10$ বৃত্তকে সমাপতিত বিন্দুতে ছেদ করে। বিন্দুটির স্থানাংক (-3,1)

EXERCISE – 01: $(x-p)^2+(y-q)^2=r^2$ ও $(x-q)^2+(y-p)^2=r^2$ বৃত্ত দুইটির সাধারণ জ্যা এর দৈর্ঘ্য নির্ণয় কর । $\sqrt{4r^2-2(p-q)^2}$ (Ans.)

EXERCISE – 02 : $x^2 + y^2 - 4x + 6y - 36 = 0$ প্ত $x^2 + y^2 - 5x + 8y - 43 = 0$ বৃত্ত দুইটির সাধারণ জ্যা এর সমীকরণ নির্ণয় কর। x - 2y + 7 = 0 (Ans.)

EXAMPLE-17: মূলবিন্দু থেকে $x^2+y^2-6x-4y+9=0$ বৃত্তে অঙ্কিত স্পর্শক দুইটির অন্তর্ভুক্ত কোণ নির্ণয় কর।

SOLVE: প্রদত্ত বৃত্তের সমীকরণ, $x^2 + y^2 - 6x - 4y + 9 = 0 \dots$ (i)

বৃত্তটি আকব যেভাবে ?

$$x^2+y^2+2gx+2fy+c=0$$
এর সাথে প্রদন্ত বৃত্ত মিলিয়ে, $2g=-6\Rightarrow g=-3\Rightarrow -g=3$,

$$2f = -4 \Rightarrow f = -2 \Rightarrow -f = 2$$
 এবং $c = 9$

x অক্ষকে স্পর্শ করে কারণ $g^2=9=c$, y অক্ষ হতে কোন অংশ কর্তন করে না কারণ $\Rightarrow f^2=(2)^2=4< c$

ব্যাসার্থ = 2 [কারণ $g^2 - c = 0$]

ধরি,<
$$AOC = \theta$$
 তাহলে, $tan\theta = \frac{2}{3}$, $\theta = tan^{-1}\frac{2}{3}$ OC

রেখা< AOB এর সমদ্বিখন্ডক কারণ OAওOB রেখা দুটি স্পর্শক।

OAC ও OBC ত্রিভূজে

AC = BC =বৃত্তেরব্যাসার্ধ ; < AOC = < BOC এবং OC সাধারন বহু

: OAC ও OBC ত্রিভূজ দুটি সর্বসম।

∴নির্ণেয় সূক্ষকোণ $tan^{-1}\left(\frac{12}{5}\right)$

TYPE-11

উপরস্থ বিন্দুতে ও বহিঃস্থ বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় ঃ

উপরস্থ স্পর্শকের সমীকরন নির্ণয় ঃ

 $x^2+y^2+2gx+2fy+c=0$ বৃত্তের (x_1,y_1) বিন্দুতে স্পর্শকের সমীকরন ঃ xx_1+yy_1+g $(x+x_1)+f(y+y_1)+c=0$ x^2 এর পরিবর্তে xx_1,y^2 এর পরিবর্তে yy_1,x এর পরিবর্তে $\frac{1}{2}(x+x_1),y$ এর পরিবর্তে $\frac{1}{2}(y+y_1)$

C(3,2)

 $\mathbf{EXAMPLE} - \mathbf{01}: \ \mathbf{x}^2 + \mathbf{y}^2 - 3\mathbf{x} + 10\mathbf{y} - 15 = 0$ বৃত্তের (4, -11)বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর।

 ${f SOLVE:}\ x^2+y^2-3x+10y-15=0$ বৃত্তের (4,-11)বিন্দুতে স্পর্শকের সমীকরণ ঃ

$$x. (4) + y(-11) - 3.\frac{x+4}{2} + 10.\frac{y-11}{2} - 15 = 0 \Rightarrow 5x - 12y - 152 = 0$$

বৃত্তের বহিস্থ কোন বিন্দু $(x_1,\ y_1)$ হতে $x^2+y^2+2gx+2fy+c=0$ বৃত্তে অংকিত

স্পর্শকের সমীকরন ঃ $y-y_1=m(x-x_1)$ তারপর r=d

EXAMPLE-02: (-5,4) বহিঃস্থ বিন্দুতে থেকে $x^2+y^2-2x-4y+1=0$ বৃত্তে অঙ্কিত স্পর্শকের ও অভিলম্বের সমীকরন ও দৈর্ঘ্য এবং স্পর্শ বিন্দু দুটি নির্ণয় কর।

SOLVE: m ঢাল বিশিষ্ট (-5, 4) বিন্দুগামী রেখার সমীরকন,

$$y - 4 = m (x + 5) \Rightarrow y - 4 = mx + 5m \Rightarrow mx - y + 5m + 4 = 0 \dots (i)$$

প্রদত্ত বৃত্তের কেন্দ্র : $(1\ ,2)$ ব্যাসার্ধ = $\sqrt{1^2+2^2-1}=2$

$$(1\ ,2)$$
 বিন্দু হতে (i) নং রেখার দুরত্ব $=$ ব্যাসার্ধ, $\therefore \left| \frac{m-2+5m+4}{\sqrt{1+m^2}} \right| = 2$

$$\Rightarrow 6m + 2 = 2\sqrt{1 + m^2} \Rightarrow 3m + 1 = \sqrt{1 + m^2} \Rightarrow 9m^2 + 6m + 1 = 1 + m^2$$
 [বর্গ করে]

$$\Rightarrow 8m^2 + 6m = 0 \Rightarrow m = 0, -\frac{3}{4}$$

নির্ণেয় স্পর্শক দুটিঃ
$$y=4$$
 এবং $y-4=-rac{3}{4}\left(x+5
ight)\Rightarrow 3x+4y-1=0$

অভিলম্ব কেন্দ্রগামী এবং স্পর্শকের উপর লম্ব সুতরাং অভিলম্বের সমীকরন ঃ y=4 এর জন্য x=k

এবং
$$3x + 4y - 1 = 0$$
 এর জন্য $4x - 3y + k = 0$ যারা কেন্দ্র $(1,2)$ গামী,

অভিলম্বের সমীকরন x = 1 এবং 4x - 3y + 2 = 0

স্পর্শকের দৈর্ঘ্য =
$$\sqrt{(-5)^2 + 4^2 - 2(-5) - 4.4 + 1} = 6$$
 unit

$$y=4$$
 রেখার ঢাল = $an \theta=0$ $\therefore \sin \theta=0$, $\cos \theta=1$, $\frac{x+5}{\cos \theta}=\frac{y-4}{\sin \theta}=6$ হতে পাই , $x=1,y=4$

$$3x+4y-1=0$$
 রেখার ঢাল = $\tan\theta=\frac{-3}{4}$, $\sin\theta=\frac{-3}{5}$, $\cos\theta=\frac{4}{5}$ or, $\sin\theta=\frac{+3}{5}$, $\cos\theta=\frac{-4}{5}$

$$\frac{x+5}{\cos\theta} = \frac{y-4}{\sin\theta} = 6$$
 হতে পাই , $x = \frac{-1}{5}$, $\frac{-49}{5}$; $y = \frac{2}{5}$, $\frac{38}{5}$.: নির্ণেয় স্পর্শ বিন্দু দুটি ঃ $(1,4)$ এবং $(\frac{-1}{5},\frac{2}{5})$

EXAMPLE $-03: x^2+y^2=3^2$ ও $x^2+y^2-16x+2y+49=0$ বৃত্ত দুটির সাধারন স্পর্শকের সমীককরন নির্ণয় কর।

সমাধান ঃ $x^2 + y^2 = 3^2$ বৃত্তের কেন্দ্র (0,0)ও ব্যাসার্থ =3

 $x^2 + y^2 - 16x + 2y + 49 = 0$ বৃত্তের কেন্দ্র (8,-1)ও ব্যাসার্থ = $\sqrt{8^2 + (-1)^2 - 49} = 4$

 T_1 , $T_1 \mathcal{C}_1 \mathcal{C}_2$ রেখাকে বহিস্থঃভাবে বিভক্ত করে।

$$\frac{T_1C_2}{T_1C_1} = \frac{-4}{3}$$
, $x_1 = \frac{4 \times 0 - 3 \times 8}{4 - 3} = -24$, $y_1 = \frac{4 \times 0 - 3 \times (-1)}{4 - 3} = 3$

$$T_1(x_1,y_1)=(-24,3)$$
 T_1 স্পর্শকের সমীকরন ៖ $y-3=m(x+24) \Rightarrow mx-y+3+24m$

$$C_1(0,0)$$
 বিন্দু হতে T_1 স্পর্শকের লম্ব দূরত্ব ব্যসার্ধের সমান $+:: \frac{m \times 0 - 0 + 3 + 24m}{\sqrt{m^2 + (-1)^2}} = 3 \Longrightarrow m = 0, \frac{-16}{63}$

$$T_1$$
 স্পর্শকের সমীকরন ঃ $y = 3$, $16x + 63y + 195 = 0$

$$T_2$$
, $T_1C_1C_2$ রেখাকে অন্তস্থঃভাবে বিভক্ত করে। $\frac{T_2C_2}{T_2C_1}=rac{4}{3}$, $\chi_1=rac{4 imes0+3 imes8}{4+3}=rac{24}{7}$, $y_1=rac{4 imes0+3 imes(-1)}{4+3}=rac{-3}{7}$

$$\therefore T_2(x_2,y_2)=\left(rac{24}{7},rac{-3}{7}
ight)$$
 $\therefore T_2$ স্পর্শকের সমীকরন ঃ $y-rac{-3}{7}=m\left(x-rac{24}{7}
ight)$

$$\Rightarrow 7mx - 7y - (3 + 24m) = 0$$

$$C_1(0,0)$$
 বিন্দু হতে T_2 স্পর্শকের লম্ব দূরত্ব ব্যসার্ধের সমান । $\therefore \frac{7m \times 0 - 7 \times 0 - 3 - 24m}{\sqrt{(7m)^2 + (-7)^2}} = 3 \Rightarrow m = \frac{4}{3}, \frac{-12}{5}$

$$T_2$$
 স্পর্শকের সমীকরন ঃ $84x+35y-273=0$, $4x-3y-15=0$

নিজে চেষ্টা কর ঃ (i) $x^2+y^2=b(5x-12y)$ বৃত্তের ব্যাস মূলবিন্দু দিয়ে অতিক্রম করে।এই ব্যাসের সমীকরন ও মূলবিন্দুতে স্পর্শকের সমীকরন নির্ণয় কর। Ans: 12x+5y=0, 5x-12y=0

(ii)
$$x^2 + y^2 = 16$$
 বৃত্তের স্পর্শক অক্ষের সাথে কোণ উৎপন্ন করে।স্পর্শকের সমীকরন নির্ণয় কর। ${
m Ans}: \sqrt{3}y = x \pm 8$

(iii) (b,0) বিন্দু হতে $x^2 + y^2 = a^2$ স্পর্শকের উপর অংকিত লম্বের পাদবিন্দুর সঞ্চারপথের সমীকরন নির্ণয় কর।

$$Ans: x^2 + y^2 - bx = 0$$

(iv) $x^2 + y^2 = 13$ বৃত্তের যে বিন্দুতে কোটি 2 সেই বিন্দুতে স্পর্শকের সমীকরন নির্ণয় কর।

Ans: 3x + 2y = 13, 2y - 3x = 13

- (v) $x^2 + y^2 + 4x 8y + 2 = 0$ বৃত্তের স্পর্শক অক্ষদ্বয় হতে সমমানের একই চিহ্নবিশিষ্ট অংশ কর্তন করে। স্পর্শকের সমীকরন নির্ণয় কর। $\operatorname{Ans}: x + y = 8, x + y = -4$
- (vi) মূলবিন্দু হতে $x^2 + y^2 10x + 20 = 0$ বৃত্তে অংকিত স্পশ্কের সমীকরন নির্ণয় কর।

Ans : x = 2y, x = -2y

- (vii) একটি ত্রিভূজের তিনটি বাহু 2x-3y+21=0, 3x-2y-6=0 এবং 2x+3y+9=0 । ত্রিভূজটির অন্তবৃত্তের সমীকরন নির্ণয় কর । $\mathrm{Ans}:\ x^2+y^2+2x-4y-8=0$
- (viii) দেখাও যে ,(-9,3)ও (3,-1) বিন্দুদয়ের সংযোজক রেখাকে $x^2+y^2-12x-6y=0$ বৃত্ত 3ঃ1 অনুপাতে অন্তঃস্থ ও বহিস্থঃভাবে বিভক্ত করে।
- (ix) একটি বুত্তের সমীকরন নির্ণয় কর যা (1,2)ও (3,4) বিন্দুগামী এবং যার একটি স্পর্শক 3x+y-3=0

Ans: $x^2 + y^2 - 3x - 7y + 12 = 0$

- (x) (h,k) বিন্দু থেকে $x^2+y^2=12$ বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্য $x^2+y^2+5x+5y=0$ বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্যের দিন্তের ।(h,k) বিন্দুটির সঞ্চারপথের সমীকরন নিণুয় কর। $Ans:\ 3x^2+3y^2+20x+20y+12=0$
- $(\mathrm{xi})\ 3x+y-1=0$ সরলরেখা $(x-2)^2+y^2=5$ বৃত্তকে যে সৃক্ষকোণে ছেদ করে তা নির্ণয় কর। $\mathrm{Ans}:45^\circ$
- (xii) দেখাও যে , P(h,k) বিন্দু থেকে মূলবিন্দু দিয়ে অতিক্রমকারী সরলরেখার উপর অংকিত লম্বের পাদবিন্দুর সঞ্চারপথ একটি বৃত্ত ।

$$(xiii) \ x^2 + y^2 = 3^2$$
ও $x^2 + y^2 - 16x + 2y + 49 = 0$ বৃত্ত দুটির সাধারন স্পর্শকের সমীককরন নির্ণয়

কর। Ans:
$$y = 3$$
, $16x + 63y + 195 = 0$, $84x + 35y - 273 = 0$, $4x - 3y - 15 = 0$