Tut 4: Logistic Regression (cont)

May/June 2022

1. (Jan 2022 Final Q2(a)) Given the following results from the analysis of credit card applications approval dataset using logistic regression model.

```
glm(formula=Approved~., family=binomial, data=d.f.train)
Deviance Residuals:
    Min
              1 Q
                   Median
                                 3Q
                                         Max
-2.6796
                    0.2681
         -0.5477
                             0.3316
                                      2.4501
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept)
               3.1379649
                          0.5744168
                                       5.463 4.68e-08 ***
Maleb
              -0.1758676
                           0.3229541
                                     -0.545
                                                0.5861
Age
               0.0001318
                           0.0142338
                                       0.009
                                                0.9926
Debt
               0.0042129
                           0.0298740
                                       0.141
                                                0.8879
YearsEmployed -0.1023132
                           0.0582368
                                      -1.757
                                                0.0789
                                              < 2e-16
PriorDefaultt -3.6614227
                           0.3659226 -10.006
              -0.2500687
                           0.4013495
                                      -0.623
                                                0.5332
Employedt
              -0.1098142
                           0.0644360
CreditScore
                                                0.0883
                                      -1.704
ZipCode
               0.0011958
                           0.0009540
                                       1.253
                                                0.2100
              -0.0004544
                           0.0001966
                                      -2.311
                                                0.0209 *
Income
          0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 625.90
                            on 454
                                    degrees of freedom
Residual deviance: 294.33
                                    degrees of freedom
                            on 445
  (27 observations deleted due to missingness)
AIC: 314.33
```

where the output Approved is either positive (represented as 0) and negative (represented as 1) and the features

- Male is categorical with a=Female, b=Male;
- PriorDefault is categorical with f=false, t=true;
- Employed is categorical with f=false, t=true;
- Age, Debt, YearsEmployed, CreditScore, ZipCode, Income are continuous variables.
- (a) Write down the mathematical expression of the logistic model for the given data with the coefficient values rounded to 4 decimal places. (4 marks)

(b)	By calculating the probability of the credit card application being approved for a male of age 22.08 with a debt of 0.83 unit who has been employed for 2.165 years with no prior default and is currently unemployed, has a credit score 0 and a zip code 128 with income 0, find the probability of credit card applications approval and determine if the approval is positive or negative (using the cut-off of 0.5). (7 marks)					
(c)	Calculate the odds ratio for the approval being negative with the prior default to be true against the prior default to be false. Infer the likelihood of getting a negative approval based on the prior default. (6 marks					

2. (May 2020 Final Q2(a)) The testing dataset of an insurance claim is given in Table 2.1. The variables "gender", "bmi", "age_bracket" and "previous_claim" are the predictors and the "claim" is the response.

Table 2.1: The testing data of an insurance claim (randomly sampled with repeated entry).

gender	bmi	age_bracket	previous_claim	claim
female	$under_weight$	18-30	0	${ m no_claim}$
female	$under_{-}weight$	18-30	0	${ m no_claim}$
$_{\mathrm{male}}$	$over_weight$	31-50	0	${ m no_claim}$
female	$under_{-}weight$	50+	1	${ m no_claim}$
$_{\mathrm{male}}$	$normal_weight$	18-30	0	${ m no_claim}$
female	$under_{-}weight$	18-30	1	${ m no_claim}$
$_{\mathrm{male}}$	$over_weight$	18-30	1	$_{ m no_claim}$
$_{\mathrm{male}}$	$over_weight$	50+	1	claim
female	$normal_weight$	18-30	0	no_claim
female	obese	50+	0	claim

The "gender" is binary categorical data, the "bmi" is a four-value categorical data with values under_weight, normal_weight, over_weight and obese, the "age_bracket" is a three-value categorical data with value "18-30", "31-50" and "50+", the "previous_claim" is a binary categorical data with 0 indicating "no previous claim" and 1 indicating "having a previous claim". The "claim" is a binary response with values "no_claim" (negative class, with value 1) and "claim" (positive class, with value 0).

Suppose a logistic regression model is trained and the coefficients are stated in Figure 2.2.

Figure 2.2: The coefficients of the logistic regression based on an insurance claim data.

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.1361	0.2990	10.489	< 2e-16	***
gendermale	-0.3343	0.1753	-1.908	0.05644	
bmiobese	-1.9495	0.2821	-6.910	4.86e-12	***
bmiover_weight	-1.0563	0.2629	-4.017	5.89e-05	***
bmiunder_weight	-0.8424	0.2606	-3.232	0.00123	**
age_bracket31-50	-0.2875	0.2313	-1.243	0.21382	
age_bracket50+	-1.2133	0.2241	-5.414	6.18e-08	***
previous_claim1	-0.9505	0.1763	-5.392	6.96e-08	***
Signif.: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Write down the **mathematical formula** of the logistic regression model and then use it to **predict** the "claim" of the insurance data in Table 2.1 as well as **evaluating** the performance of the model by calculating the confusion matrix, accuracy, sensitivity, specificity, PPV, NPV of the logistic model. [**Note**: The default cut-off is 0.5] (4 marks)