Introdução à Pesquisa em Informática O Processo de Pesquisa Científica

Lesandro Ponciano

Departamento de Engenharia de Software e Sistemas de Informação (DES)

Pesquisa Científica

A pesquisa científica é um processo sistemático de coleta, análise e interpretação de informação (dados) no sentido de aumentar nosso conhecimento de um fenômeno

Características da Pesquisa Científica

Problema

- A pesquisa inicia com um problema
- Resolver o problema? Estudar o problema? Caracterizar melhor o problema? "Research question"!

Objetivo

- A pesquisa requer um objetivo claro
- Qual é a meta?

Plano/Método

- Pesquisa requer um plano/método
- Como atingir o objetivo?

Subproblemas

A pesquisa quebra um problema grande em subproblemas

Exemplo de Pesquisa Científica

Problema

 Estudantes que programam todos os dias se tornam melhores programadores ao término do curso de Engenharia de Software do que estudantes que programam apenas uma vez por semana?

Objetivo

 Comparar a qualidade do código produzido por concluintes que programaram diariamente ao longo do curso com os que programaram semanalmente.

Plano

 Escolha de hipóteses; design de experimento; execução e coleta de dados; análise de dados

Subproblemas

Se houver muitas hipóteses, cada uma é um subproblema

Inferências pelo Método Científico

- Inferência é o processo de se chegar a conclusões a partir de premissas
- Tipos de inferência (ou de raciocínio)
 - o Inferência dedutiva
 - Inferência indutiva
 - Inferência abdutiva
- Todos esses tipos de inferência são utilizados no método científico

Raciocínio Dedutivo

- 1. Inicia com premissas que são dadas como verdadeiras
- 2. Deriva uma conclusão como consequência lógica das premissas
- 3. A veracidade da conclusão é garantida se as premissas forem verdadeiras

Exemplo

- Tulipas são plantas (premissa 1)
- Plantas produzem energia com fotossíntese (premissa 2)
- Então tulipas produzem energia com fotossíntese (conclusão)

Raciocínio Indutivo

- 1. Inicia com várias observações, que são experiências sensoriais
- Usam-se instâncias ou ocorrências específicas para chegar a conclusões sobre classes de objetos ou eventos
 - De alguns dados para conclusões genéricas

- Sempre requer evidência empírica
- A experiência dá suporte à conclusão mas não há garantia de sua veracidade

Exemplo de Raciocínio Indutivo

- Você vê o sol se levantando pela primeira vez uma certa manhã
- 2. Você vê o sol se levantando novamente no dia seguinte
- 3. No terceiro dia, você vê a mesma coisa
- Você formula uma hipótese: "O sol se levanta todas as manhãs"
- 5. O que vai acontecer no quarto dia?
 - Você tem certeza? :(

Raciocínio Abdutivo

- Como a indução pode ser um método lento, usa-se às vezes o "chute" para acelerar as coisas
 - Isto é Raciocínio Abdutivo

Exemplo:

- Se chover, a grama está molhada. Se a grama está molhada, então deve ter chovido.
- Isso está formalmente errado pois estamos concluindo a partir do consequente (Se P então Q; Q, então P)
- Apesar de estruturalmente errado, às vezes o "chute" leva análises interessantes

Por que o método importa?

- Como posso acreditar em alguma afirmação?
 - O Pela autoridade de uma pessoa, de um grupo?
 - O Pela autoridade de um livro sagrado?
 - Pelo senso comum?
 - Pelo processo democrático? (vote!)
- Precisamos de algo melhor, que permita
 - Minimizar o viés do pesquisador
 - Admitir e corrigir erros (não há nada indiscutível)
 - O Permitir verificação por terceiros de conhecimento

O Método Científico

- O método científico é um método pelo qual novo conhecimento é obtido a partir de observações
- As observações ...
 - o levam a uma sequência de hipóteses que ...
 - o permitem fazer predições que ...
 - o podem ser verificadas experimentalmente, ...
 - o refutando ou não as hipóteses
 - As hipóteses bem sucedidas levam a teorias
 - o as quais podem um dia ser refutadas

Método Científico (Simplificado)

Método Científico (Detalhado)

Características Importantes

- Hipóteses devem ser testáveis
- Teorias podem ser refutadas por experimentos
 - o Isso diferencia a ciência daquilo que é apenas crença
- Teorias não são "ideias sem comprovação"
- Experimentos podem ser reproduzidos por outros para verificar resultados
 - Isso mantém os pesquisadores honestos e permite uma sólida apropriação e evolução do conhecimento científico

Inferência e o método científico (Bacon, Descartes, Popper, Khun)

O Método: Francis Bacon (1561-1626)

Escreveu "Novum Organum"

- o "Novo Método" ou "Novo Instrumento"
- Resposta ao "Organon" de Aristóteles sobre lógica e silogismo (inferência)

A proposta de Bacon

- Enquanto no silogismo busca-se conclusão certa a partir de premissas
- O método baconiano é indutivo parte de observações e formula conclusões genéricas tentativas
 - As conclusões iniciais podem estar erradas
 - A "verdade" vem de erros
- Requer um procedimento planejado para investigar fenômenos naturais

A Análise: René Descartes (1596-1650)

- Escreveu "Discurso sobre o Método"
- Quatro preceitos (regras de proceder)
 - 1. Duvide de tudo
 - Exceto: "Cogito, ergo sum"
 - Portanto, analise sem noção preconcebida
 - Só aceita aquilo de que tem *certeza*
 - 2. Divida as dificuldades em partes menores (análise)
 - 3. Inicia com objetos mais simples e chega, passo a passo, a idéias mais complexas
 - 4. A cada passo, enumere tudo de forma a ter certeza de que não esqueceu nada

A Falseabilidade: Karl Popper (1902-1994)

- Insatisfação com inducionismo
 - Fatos estão sendo usados para explicar qualquer conjunto de fatos
- Introduziu o conceito de

Falseabilidade

- Nenhum número de experimentos positivos pode provar uma teoria
- Tem que haver fatos que levem a declarar a teoria falsa
- Uma teoria pode ser refutada se um experimento resultar em "falso"
- Popper: Algo só é científico se pode ser falseado

Falseabilidade - Exemplos

 Uma teoria só pode existir se houver algum experimento possível que, sendo realizado e dando errado, provará que a teoria está errada

- Exemplo: Crítica à "teoria" de multi-universos
 - Não há experimentos possível (até agora) para a teoria, então ela não merece sequer ser chamada de "teoria" ou mesmo de "hipótese"

Exemplo: "Wason card puzzle"

- Cada carta tem um número numa face e uma letra na outra
- Qual é o número mínimo de cartas que devemos virar para verificar a regra: "cartas com vogal de um lado têm número par do outro"?

Resposta para o "Wason card puzzle"

- A regra é do tipo "se p então q"
- Você deve testar a teoria tentando falseá-la, não tentando confirmá-la
- O falseamento significa testar "se p então não-q"
 - op (vogal) só ocorre com E
 - o não-q (ímpar) só ocorre com 7
- Testar a carta 4 não adianta pois, se houver uma consoante do outro lado, isso não invalida a regra, que nada diz sobre consoantes
- Deve-se virar duas cartas: E e 7

A Mudança de Paradigma: Thomas Khun (1922-1996)

- Escreveu o livro The Structure of Scientific Revolutions
- A ciência não avança com acumulação linear de novo conhecimento
- Há avanços revolucionários (paradigm shifts) com transformação abrupta
 - Frequentemente não são baseados em observação
 - Ex.: Einstein usou "thought experiments"
 - Ex.: Dirac previu a anti-matéria apenas através de equações, sem dicas experimentais prévias

Três Estágios do Avanço Científico

Pré-ciência

não há paradigma central

Ciência normal

- resolve problemas dentro de um paradigma central.
- Se não conseguir, não é o paradigma que está errado mas o cientista que errou

Ciência revolucionária

 quando muitas anomalias já ocorreram, uma crise ocorre e um novo paradigma aparece para substituir o antigo

Referências

ARAÚJO, M. A. et al. Métodos estatísticos aplicados em engenharia de software experimental. XXI SBBD-XX SBES, 2006.

FIELD, Andy; HOLE, Graham. How to design and report experiments. Sage, 2002.

KUHN, Thomas S. The structure of scientific revolutions. University of Chicago press, 2012.

MALHOTRA, Ruchika. Empirical research in software engineering: concepts, analysis, and applications. CRC Press, 2016.

Esta aula é muito baseada nas notas de aula dos professores Jacques Philippe Sauvé da UFCG e Virgílio Almeida da UFMG, aos quais agradeço.