Homework-7

November 1, 2024

- 1. Prove that if G is a simple group with order 60, then $G \simeq A_5$.
- 2. (1). Prove there exists no such group G satisfying $G' \simeq S_3$;
- (2). Prove there exists no such group G satisfying $G' \simeq S_4$.
- 3. Prove that all 3-cycles in group $A_n (n \ge 5)$ can be represented by a commutator in A_n . Then prove $A'_n = A_n$.
- 4. Let p be a prime number, $F = \mathbb{Z}/p\mathbb{Z}$, $G = GL_n(F)$. Write a specific Sylow p-subgroup of G.
- 5. Let G be a group, $H \subseteq G$, $K \subseteq G$ and $H \cap K = 1$, prove that $\forall h \in H$ and $k \in K$, hk = kh.
- 6. Let G be a finite group. Prove the minimal normal subgroup of G is a direct product of several (maybe 1) isomorphic simple groups.
- 7. Prove for any prime p, there exists exact 2 different types of non-abelian groups up to isomorphic.
- 8. Let G be of order p^3q with p < q, p, q are different primes. Prove G is not simple.
- 9. Let $G = A_4$. Write G into a semidirect product of 2 subgroups.
- 10. Let $G = S_4$. Write G into a semidirect product of 2 subgroups.