Supplementary Material of

Predicting drug resistance in *M. tuberculosis* using a Long-term Recurrent Convolutional Networks architecture

1 Related works

Title, Author, Short description

- 1. Predicting antimicrobial resistance using conserved genes, Marcus Nguyen, AMR via conserved genes
- 2. Genomic prediction of tuberculosis drugresistance: benchmarking existing databases and prediction algorithms, Tra-My Ngo, Benchmarking TB databases
- 3. DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis, Yang Yang, DeepAMR paper
- 4. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value, Maha R. Farhat, DecisionTreesForTB.
- 5. Deciphering drug resistance in Mycobacterium tuberculosis using wholegenome sequencing: progress, promise, and challenges, Keira A. Cohen, Deciphering drug resistance in Mycobacterium tuberculosis
- 6. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing, , CRyPTiC susceptibility predictions
- 7. Combining Structure and Genomics to Understand Antimicrobial Resistance, Tanushree Tunstall, Combining Structure and Genomics to Understand Antimicrobial Resistance
- 8. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction, Michael L. Chen,
- 9. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data, Danesh Moradigaravand, E coli resistance prediction
- 10. Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks, Aytan-Aktug, Drug resistance via DNN
- 11. Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China, Xinchang Chen, Drug resistance prediction tools

- 12. Deciphering drug resistance in Mycobacterium tuberculosis using wholegenome sequencing: progress, promise, and challenges, Keira A. Cohen, DR-TB via WGS
- 13. Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches, Stephanie Portelli, DR via structure-based machine learning
- 14. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing, Karel Břinda, DR by genomic neighbour typing
- 15. Detection of low-frequency resistance-mediating SNPs in next-generation sequencing data of Mycobacterium tuberculosis complex strains with binoSN, Viola Dreyer, Detection of low-level TB resistance
- 16. Interpreting k-mer-based signatures for antibiotic resistance prediction, Magali Jaillard, K-mer interpretation
- 17. Interpretable Model for Antibiotic Resistance Prediction In Bacteria Using Deep Learning, MANOJ JHA, Interpretable Model for Antibiotic Resistance Prediction In Bacteria Using Deep Learning
- 18. Improved Resistance Prediction in Mycobacterium tuberculosis by Better Handling of Insertions and Deletions, Premature Stop Codons, and Filtering of Non-informative Sites, Camilla Hundahl Johnsen, Improved Resistance Prediction in Mycobacterium tuberculosis
- 19. GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions, Maha R. Farhat, GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes
- 20. Genetics and roadblocks of drug resistant tuberculosis, João Perdigão, Genetics-and-roadblocks-of-drug-resistant-tu-2019-Infection—Genetics-and-Ev
- 21. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee, M.J. Ellington, EUCAST report
- 22. Rapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex®-MycTB, Silke Feuerriegel, ERJ paper on rapid DR prediction
- 23. pncA gene mutations in reporting pyrazinamide resistance among the MDRTB suspects, Xiaoyuan Wu, pncA-gene-mutations-in-reporting-pyrazinamide-resi-2019-Infection-Genetics
- 24. Next-Generation Sequencing Approaches to Predicting Antimicrobial Susceptibility Testing Results, Rebecca Yee, NGS for DR prediction
- 25. WGS to predict antibiotic MICs for Neisseria gonorrhoeae, David W. Eyre, Neisseria dataset with MICs
- 26. Using machine learning to predict antimicrobial minimum inhibitory concentrations and associated genomic features for nontyphoidal Salmonella, Marcus Nguyen, MIC prediction in Salmonella

- 27. Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking, Samaneh Kouchaki,
- 28. A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in Mycobacterium tuberculosis, Pierre Mahé, Mahe Tournoud comparison of TB tools
- 29. Application of machine learning techniques to tuberculosis drug resistance analysis, Samaneh Kouchaki, LogisticRegressonForTB
- 30. Large scale modeling of antimicrobial resistance with interpretable classifiers, Alexandre Drouin, Kover latest paper
- 31. Interpretable genotype-tophenotype classifers with performance guarantees, Alexandre Drouin, Kover paper
- 32. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae, Marcus Nguyen, Klebsiella MICs
- 33. Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers, Julian Libiseller-Egger, Robust detection of point mutations involved in MDR-TB
- 34. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid, Suha Kadura, Resistance to new TB drugs
- 35. Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens, Jason C. HyunI, Random subspace ensembles for AMR
- 36. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases, Hee Jae Huh, Recent-advances-in-molecular-diagnostics-and-understandi-2019-Infection—Gen
- 37. Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine learning approaches., Joshua J Carter, Pyrazinamide resistance in TB
- 38. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics, Ariane Khaledi, Pseudomonas genomics + transcriptomics of DR
- 39. Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data, Nenad Macesic, Predicting resistance in Klebsiella
- 40. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuber-culosis, Sebastian M. Gygli, WGS for MTB DR
- 41. Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data, Allison L. Hicks,
- 42. Structure guided prediction of Pyrazinamide resistance mutations in pncA, Malancha Karmakar, Structure-guided PZA resistance prediction

- 43. Survey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial species, AbhirupaGhosh, SurveyOfMutations
- 44. Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data, Wouter Deelder, Taane Clark's latest paper on ML for DR
- 45. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica, Saskia Neuert,
- 46. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study, Timothy M Walker, Tim Walker's heuristic paper
- 47. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning, Jiwoong Kim, VAMPr paper
- 48. Use of whole genome sequencing for detection of antimicrobial resistance: Mycobacterium tuberculosis, a model organism., Vincent Escuyer, WGS for AMR TB as a case study

2 Data

Figure 1: The pairwise correlation of the status vectors for each pair of drugs.

	Sheptomycin	Rifampicin	P_{N} azinamide	Oforacin	Moxidoracin	Kanamycin	I_{SOni} ezi d	Ethionemide	$E_{thembutool}$	Ciprogoxacin	$C_{d}p$ reo m y c i n	^{an} ikacin
Streptomycin	2104	1860	601	597	91	552	1989	342	1158	16	462	449
Rifampicin	1860	2968	667	750	117	654	2840	432	1342	35	522	542
Pyrazinamide	601	667	754	255	81	247	684	196	492	24	277	242
Ofloxacin	597	750	255	800	122	487	747	303	457	25	331	333
Moxifloxacin	91	117	81	122	129	85	113	67	51	18	66	74
Kanamycin	552	654	247	487	85	697	641	318	472	21	402	440
Isoniazid	1989	2840	684	747	113	641	3445	448	1378	31	512	530
Ethionamide	342	432	196	303	67	318	448	498	323	13	235	226
Ethambutol	1158	1342	492	457	51	472	1378	323	1407	22	402	399
Ciprofloxacin	16	35	24	25	18	21	31	13	22	37	12	8
Capreomycin	462	522	277	331	66	402	512	235	402	12	552	431
amikacin	449	542	242	333	74	440	530	226	399	8	431	573

Table 1: The pairwise similarity of the resistant status for each pair of drugs. Each cell represents the number of same samples between resistant isolates of that two drugs.

	Streptomycin	Rif _{am} pic _{in}	Pyrazinamide	OAOracin	Moxifloxacin	Kananycin	Isoniazid	$E_{thionemide}$	$E_{thembutool}$	Ciprodoxacin	Capreomycin	^{amil} acin
Streptomycin	3021	2410	1525	1101	643	1104	2225	500	2651	85	657	726
Rifampicin	2410	4747	2651	893	506	844	4141	387	3608	212	545	614
Pyrazinamide	1525	2651	3104	708	401	509	2343	182	2820	214	673	594
Ofloxacin	1101	893	708	2111	731	1350	821	649	1321	48	1198	1237
Moxifloxacin	643	506	401	731	832	639	490	233	629	35	455	689
Kanamycin	1104	844	509	1350	639	1739	778	574	1206	187	915	970
Isoniazid	2225	4141	2343	821	490	778	4289	348	3208	59	512	554
Ethionamide	500	387	182	649	233	574	348	1018	605	26	454	481
Ethambutol	2651	3608	2820	1321	629	1206	3208	605	4689	354	872	893
Ciprofloxacin	85	212	214	48	35	187	59	26	354	406	89	60
Capreomycin	657	545	673	1198	455	915	512	454	872	89	1439	1113
amikacin	726	614	594	1237	689	970	554	481	893	60	1113	1460

Table 2: The pairwise similarity of the susceptible status for each pair of drugs. Each cell represents the number of same samples between susceptible isolates of that two drugs.

Drug	Number of labelled isolates	Number of resistant isolates
Streptomycin	1,136	87 (7.65%)
Rifampicin	1,138	26 (2.28%)
Pyrazinamide	134	13~(9.7%)
Isoniazid	1,138	157 (13.79%)
Ethambutol	1,138	$22\ (1.96\%)$

Table 3: Summary of the number of isolates and the label distribution in BCCDC data.

3 Model parameters

Layer \ Model	LRCN1	LRCN2	LRCN3	LRCN4	LRCN5	LRCN6	LRCN7	LRCN8	LRCN9	LRCN10
CNN1 (kernel, filter, pool)	(4, 5, 4)	(6, 8, 6)	(3, 8, 3)	(3, 8, 3)	(6, 8, 4)	(6, 8, 6)	(3, 8, 3)	(3, 8, 3)	(6, 8, 4)	(5, 7, 5)
CNN2 (kernel, filter, pool)	(5, 4, 4)	(3, 8, 3)	(6, 8, 6)	(4, 4, 4)	(3, 7, 3)	(6, 4, 4)	(6, 8, 6)	(6, 8, 4)	(6, 8, 6)	(4, 5, 4)
CNN3 (kernel, filter, pool)	(5, 7, 4)	-	(3, 7, 3)	-	-	(3, 4, 3)	(3, 4, 3)	(6, 4, 4)	(3, 8, 3)	(5, 7, 4)
CNN4 (kernel, filter, pool)	(4, 6, 4)	-	(3, 4, 3)	-	-	-	(3, 8, 3)	-	(3, 4, 3)	(6, 4, 4)
CNN5 (kernel, filter, pool)	-	-	(6, 8, 4)	-	-	-	(6, 4, 4)	-	(6, 8, 4)	-
LSTM1	478	64	64	439	478	457	64	413	518	518
LSTM2	466	518	71	86	451	227	518	497	64	446
LSTM3	350	518	518	518	460	350	454	518	-	-
LSTM4	444	303	64	309	518	-	-	456	-	-
LSTM5	-	518	64	518	518	-	-	518	-	-
Dense1	306	518	518	159	356	518	64	515	518	277
Dense2	293	64	64	518	416	518	95	362	467	76
Dense3	325	64	-	518	286	-	-	518	-	348
Dense4	-	64	-	64	-	-	-	77	-	-
Dense5	-	64	-	317		-		415	-	-

Table 4: Parameters of LRCN models. Each row represents a layer and each column represents a model. The layers order in the table is the same of their order in the model.

$\operatorname{Layer} \setminus \operatorname{Model}$	LSTM1	LSTM2	LSTM3	LSTM4	LSTM5	LSTM6	LSTM7	LSTM8	LSTM9	LSTM10
layer LSTM1	518	361	311	355	353	353	265	478	404	478
layer LSTM2	64	142	401	453	237	237	116	466	482	237
layer LSTM3	-	247	365	343	281	281	135	350	-	291
layer LSTM4	-	291	-	-	-	-	313	444	-	444
layer LSTM5	-	-	-	-	-	-	-	-	-	365
Dense1	518	467	228	359	484	484	252	306	69	306
Dense2	64	470	347	219	480	480	395	293	70	480
Dense3	64	132	154	230	239	239	442	325	171	-
Dense4	518	488	404	147	-	-	390	-	453	-
Dense5	64	-	88	244	-	-	-	-	305	-

Table 5: Parameters of LSTM models. Each row represents a layer and each column represents a model. The layers order in the table is the same of their order in the model.

$\operatorname{Layer} \setminus \operatorname{Model}$	WnD1	WnD2	WnD3	WnD4	WnD5	WnD6	WnD7	WnD8	WnD9	WnD10
Dense1	64	64	64	64	518	64	198	362	64	64
Dense2	518	132	244	518	64	306	518	64	518	444
Dense3	64	64	518	-	-	293	518	286	-	481
Dense4	518	518	64	-	-	-	518	171	-	518
Dense5	488	488	64	-	-	-	518	518	-	317
kernel regularizer	0.1	0.1	0.1	0.01	0.1	0.01	0.1	0.01	0.1	0.01

Table 6: Parameters of WnD models. Each row represents a layer and each column represents a model. The layers order in the table is the same of their order in the model.

	RF1	RF2	RF3	RF4	RF5	RF6	RF7	RF8	RF9	RF10
n_estimators	110	130	140	60	130	140	130	110	120	110
$min_samples_split$	4	4	4	4	4	3	4	4	4	3
bootstrap	FALSE									
\max_{-depth}	50	50	None	50	70	50	30	50	None	80

Table 7: Parameters of RF models. Each row represents a layer and each column represents a model.

	LR1	LR2	LR3	LR4	LR5	LR6	LR7	LR8	LR9	LR10
С	1	0.1	1	1	0.1	1	1	1	1	1
\max_{\cdot} iter	657.7915	1000	657.7915	79.43	955.89	657.791473	657.791473	1000	1000	657.791473
penalty	12	11	11	11	12	l1	11	12	11	11
solver	newton-cg	liblinear	liblinear	liblinear	sag	liblinear	liblinear	newton-cg	liblinear	liblinear

Table 8: Parameters of LR models. Each row represents a layer and each column represents a model.

The possible values for penalty were: l1 (solver = liblinear), l2 (solver = newton-cg, lbfgs, sag), elasticnet (solver = saga), none. The possible values for C were: (0.01, 0.1, 1, 10, 100)

	SVM1	SVM2	SVM3	SVM4	SVM5	SVM6	SVM7	SVM8	SVM9	SVM10	
С	0.1	1	0.1	0.1	0.1	1	0.1	0.1	0.01	0.1	
kernel	linear										
gamma	-	-	-	-	-	-	-	-	-	-	
$_{ m degree}$	_	-	-	-	-	-	-	-	-	-	

Table 9: Parameters of SVM models. Each row represents a layer and each column represents a model.

The possible values for kernel were: linear, poly, rbf. The possible values for C were: (0.01, 0.1, 1, 10, 100)

	GBT1	GBT2	GBT3	GBT4	GBT5	GBT6	GBT7	GBT8	GBT9	GBT10
max_depth	130	140	90	60	70	90	50	60	50	70
$min_samples_split$	4	4	3	2	2	3	2	2	4	2
$n_{\text{-}}$ estimators	30	30	20	20	50	20	90	20	10	50
$random_state$	1	1	-	0	-	-	1	0	-	-

Table 10: Parameters of GBT models. Each row represents a layer and each column represents a model.

3.1 KOVER

As mentioned before, KOVER produces discrete classifiers and therefore AUC-ROC and AUC-PR of this method can not be achieved at least in a traditional way. In this study, we calculated AUC-ROC using one point, and we were not able to calculate the sensitivity at 95% specificity and AUC-PR. To train KOVER models we used 10-fold cross-validation for hyper-parameter selection. We also set maximum number of rules in the model to 100 as opposed to 10 the default value in

KOVER (none of the trained models reached this limitation, since we tested other values as well to get the highest accuracy). Also the possible values for p were: 0.1, 1, 10, 100, 1000 and the chosen values by model were: 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1

KOVER operates on the presence/absence of k-mers, therefore, we were not able to run it on non-binary gene burden features. Therefore, for training and evaluation of this method, we used SNP features that contain the presence/absence of each SNP in each isolate. As for other steps, we exactly applied them for KOVER as well.

4 Results

	AUC-ROC	AUC-PR	sensitivity at 95% specificity	AUC-ROC on BCCDC
Streptomycin	0.001	0.001	0.008	0.011
Rifampicin	0.001	0.001	0.001	0.009
Pyrazinamide	0.011	0.001	0.001	0.149
Ofloxacin	0.026	0.002	0.003	-
Moxifloxacin	0.058	0.189	0.001	-
Kanamycin	0.005	0.001	0.001	-
Isoniazid	0.001	0.001 (RF)	0.001	0.002
Ethionamide	0.001	0.001	0.001 (WnD)	-
Ethambutol	0.001	0.001	0.001	0.033
Ciprofloxacin	0.056 (GBT)	$0.006 \; (GBT)$	0.290	-
Capreomycin	0.001	0.001	0.005	-
amikacin	0.001	0.001	0.029 (WnD)	-

Table 11: The p-values of experiments of Section 3.1 and 3.5. The names in parentheses shows the method which performs better than LRCN on that metric.

	6(17	32	14	30	98	15	15	14	82	22	22	6(30	98	0	0(0(<u>-</u>	34	2(12	17		6(01	
amikacin	0.883 ± 0.009	0.744 ± 0.017	0.275 ± 0.032	0.783 ± 0.014	0.588 ± 0.020	0.311 ± 0.036	0.703 ± 0.015	0.404 ± 0.015	0.068 ± 0.014	0.764 ± 0.028	0.595 ± 0.022	0.194 ± 0.022	0.852 ± 0.009	0.717 ± 0.020	0.171 ± 0.036	0.854 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.796 ± 0.011	0.608 ± 0.024	0.188 ± 0.097	0.840 ± 0.012	0.687 ± 0.017	0.0 ± 0.0	0.823 ± 0.009	0.672 ± 0.010	0.0 ± 0.0
Capreomycin	0.865 ± 0.010	0.736 ± 0.018	0.284 ± 0.029	0.743 ± 0.011	0.527 ± 0.021	0.245 ± 0.025	0.684 ± 0.014	0.382 ± 0.015	0.059 ± 0.014	0.745 ± 0.031	0.567 ± 0.026	0.197 ± 0.019	0.837 ± 0.012	0.701 ± 0.018	0.147 ± 0.055	0.817 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.780 ± 0.009	0.587 ± 0.023	0.227 ± 0.094	0.823 ± 0.007	0.669 ± 0.013	0.0 ± 0.0	0.817 ± 0.008	0.669 ± 0.015	0.0 ± 0.0
	0.856 ± 0.026	0.574 ± 0.029	0.2 ± 0.076	0.631 ± 0.062	0.186 ± 0.049	0.168 ± 0.057	0.602 ± 0.070	0.200 ± 0.082	0.035 ± 0.035	0.684 ± 0.092	0.205 ± 0.016	0.083 ± 0.083	0.886 ± 0.040	0.654 ± 0.076	0.083 ± 0.112	0.780 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.660 ± 0.083	0.359 ± 0.095	0.0 ± 0.0	0.762 ± 0.051	0.309 ± 0.112	0.1 ± 0.1	0.818 ± 0.043	0.369 ± 0.071	0.05 ± 0.05
Ethambutol	0.911 ± 0.005	0.746 ± 0.010	0.543 ± 0.025	0.852 ± 0.006	0.655 ± 0.024	0.473 ± 0.024	0.888 ± 0.003	0.707 ± 0.012	0.489 ± 0.023	0.828 ± 0.007	0.620 ± 0.022	0.304 ± 0.014	0.892 ± 0.006	0.722 ± 0.015	0.360 ± 0.021	0.708 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.885 ± 0.003	0.670 ± 0.019	0.236 ± 0.096	0.877 ± 0.004	0.709 ± 0.009	0.064 ± 0.064	0.869 ± 0.005	0.712 ± 0.010	0.0 ± 0.0
Ethionamide	0.802 ± 0.014	0.713 ± 0.021	0.095 ± 0.007	0.668 ± 0.019	0.520 ± 0.034	0.186 ± 0.024	0.639 ± 0.012	0.396 ± 0.016	0.052 ± 0.014	0.671 ± 0.026	0.505 ± 0.029	0.114 ± 0.017	0.763 ± 0.013	0.650 ± 0.026	0.201 ± 0.026	0.777 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.675 ± 0.008	0.451 ± 0.016	0.095 ± 0.064	0.754 ± 0.016	0.654 ± 0.022	0.0 ± 0.0	0.750 ± 0.013	0.644 ± 0.023	0.0 ± 0.0
Isoniazid	0.931 ± 0.002	0.892 ± 0.004	0.629 ± 0.063	0.864 ± 0.003	0.845 ± 0.007	0.548 ± 0.019	0.885 ± 0.003	0.887 ± 0.003	0.541 ± 0.059	0.825 ± 0.004	0.824 ± 0.008	0.320 ± 0.006	0.909 ± 0.003	0.881 ± 0.004	0.513 ± 0.006	0.908 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.895 ± 0.004	0.895 ± 0.003	0.313 ± 0.128	0.898 ± 0.005	0.857 ± 0.005	0.0 ± 0.0	0.886 ± 0.003	0.841 ± 0.004	0.0 ± 0.0
Kanamycin	0.900 ± 0.006	0.790 ± 0.009	0.450 ± 0.033	0.812 ± 0.009	0.643 ± 0.021	0.359 ± 0.028	0.790 ± 0.013	0.579 ± 0.036	0.274 ± 0.031	0.797 ± 0.018	0.638 ± 0.025	0.251 ± 0.021	0.899 ± 0.007	0.771 ± 0.013	0.340 ± 0.023	0.829 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.851 ± 0.010	0.714 ± 0.023	0.129 ± 0.086	0.876 ± 0.008	0.759 ± 0.010	0.055 ± 0.055	0.864 ± 0.006	0.738 ± 0.010	0.0 ± 0.0
Moxifloxacin	0.880 ± 0.022	0.633 ± 0.045	0.484 ± 0.033	0.766 ± 0.018	0.444 ± 0.054	0.316 ± 0.046	0.773 ± 0.022	0.322 ± 0.040	0.165 ± 0.038	0.827 ± 0.028	0.525 ± 0.051	0.314 ± 0.037	0.860 ± 0.023	0.601 ± 0.040	0.401 ± 0.053	0.796 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.854 ± 0.013	0.562 ± 0.036	0.0 ± 0.0	0.839 ± 0.012	0.590 ± 0.040	0.086 ± 0.058	0.830 ± 0.016	0.547 ± 0.033	0.078 + -0.053
Ofloxacin	0.896 ± 0.008	0.779 ± 0.012	0.282 ± 0.033	0.779 ± 0.010	0.537 ± 0.023	0.238 ± 0.023	0.662 ± 0.011	0.342 ± 0.018 (0.017 ± 0.005	0.723 ± 0.011	0.516 ± 0.014 (0.171 ± 0.017	0.889 ± 0.007	0.753 ± 0.019 (0.192 ± 0.019	0.890 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.797 ± 0.008	0.586 ± 0.029 (0.117 ± 0.078	0.887 ± 0.004	0.752 ± 0.011	0.0 ± 0.0	0.881 ± 0.006	0.759 ± 0.012 (0.0 ± 0.0
Pyrazinamide	0.911 ± 0.006	0.749 ± 0.015	0.544 ± 0.021	0.858 ± 0.007	0.647 ± 0.020	0.445 ± 0.032	0.873 ± 0.008	0.610 ± 0.022	0.391 ± 0.031	0.872 ± 0.013	0.669 ± 0.022	0.308 ± 0.016	0.895 ± 0.006	0.721 ± 0.015	0.469 ± 0.052	0.748 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.896 ± 0.008	0.711 ± 0.015	0.258 ± 0.106	0.904 ± 0.004	0.720 ± 0.009	0.257 ± 0.105	0.888 ± 0.006	0.705 ± 0.013	0.137 ± 0.091
Rifampicin	0.961 ± 0.002	0.942 ± 0.003	0.783 ± 0.014	0.902 ± 0.005	0.853 ± 0.009	0.613 ± 0.025	0.927 ± 0.003	0.898 ± 0.004	0.659 ± 0.016	0.918 ± 0.003	0.861 ± 0.006	0.353 ± 0.007	0.953 ± 0.003	0.872 ± 0.002	0.535 ± 0.006	0.928 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.947 ± 0.002	0.925 ± 0.003	0.489 ± 0.133	0.943 ± 0.003	0.879 ± 0.003	0.0 ± 0.0	0.932 ± 0.002	0.867 ± 0.003	0.0 ± 0.0
Streptomycin Rifampicin	0.918 ± 0.003	0.861 ± 0.004	0.508 ± 0.050	0.832 ± 0.007	0.801 ± 0.008	0.430 ± 0.043	0.883 ± 0.004	0.824 ± 0.005	0.465 ± 0.017	0.830 ± 0.010	0.797 ± 0.010	0.301 ± 0.027	0.898 ± 0.004	0.800 ± 0.005	0.460 ± 0.011	0.850 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.884 ± 0.004	0.831 ± 0.006	0.069 ± 0.069	0.882 ± 0.004	0.825 ± 0.006	0.0 ± 0.0	0.865 ± 0.006	0.815 ± 0.007	0.0 ± 0.0
	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S	AUC-ROC	AUC-PR	R-95%-S
	LRCN	LRCN	LRCN	WnD	WnD	WnD	DeepAMR	DeepAMR	DeepAMR	LSTM	$_{ m LSTM}$	$_{ m LSTM}$	GBT	$_{ m GBT}$	$_{ m GBT}$	KOVER	KOVER	KOVER	RF	RF	RF	LR	LR	LR	$_{ m SVM}$	$_{ m SVM}$	$_{ m SVM}$

Table 12: The performance and confidence intervals of all models in Figure 3.