TEOREMA DE CANTOR-BERNSTEIN.

Sean X y Y conjuntos. Entonces $X \sim Y$ si ysilo si $X \sim X$, X < Y y $Y \sim X$, X < X.

Dem:

 $f(\overline{\chi}) = \overline{\chi} \quad y \quad g(\overline{\chi}) = \overline{\chi}$

Por ser f y g injectivus, $g \circ f: X \to X$ y $f \circ g: Y \to Y$ tombién loson. Seun X_2 y Y_2 dados por:

 $\overline{X}_{2} = g \cdot f(\overline{X}), \overline{Y}_{2} = f \cdot g(\overline{Y})$ $\Rightarrow \overline{X}_{2} = g(\overline{Y}_{1}) c g(\overline{Y}_{1}) = \overline{X}_{1}, \overline{Y}_{2} = f(\overline{X}_{1}) c f(\overline{X}_{1}) = \overline{Y}_{1}$

en general, para nell, n > 3, defina

 $\overline{X}_{n} = g \circ f(\overline{X}_{n-2}) \quad y \quad \overline{Y}_{n} = f \circ g(\overline{Y}_{n-2})$

Probaremos que $\overline{X}_{n-1} \subset \overline{X}_{n-2}$ (resp. con \overline{Y}). Procediendo por inducción sobre n.

· Para n=3 se cumple, pues:

$$X_3 = g \circ f(\overline{X}_1) = g(Y_2) \subset g(\overline{Y}_1) = \overline{X}_2$$

 $X_3 = f \circ g(\overline{Y}_1) = f(\overline{X}_2) \subset f(\overline{X}_1) = \overline{Y}_2$

portunto, $\overline{X}_3 \subset \overline{X}_2 \subset \overline{X}$, y $\overline{Y}_3 \subset \overline{Y}_2 \subset \overline{Y}_1$.

Suponga el resultado válido para n=K (K≥3).

Probaremos que se cumple para n=K+1. En efecto, sean:

$$\overline{X}_{K+1} = g \circ f(\overline{X}_{K-1}) , \overline{Y}_{K+1} = f \circ g(\overline{Y}_{K-1})$$

Claro que:

$$\overline{X}_{K+1} = g(\overline{Y}_{K}) \subset g(\overline{Y}_{K-1}) = \overline{X}_{K}$$

$$\overline{Y}_{K+1} = f(\overline{X}_{K}) \subset f(\overline{X}_{K-1}) = \overline{Y}_{K}$$

portunto: $X_{K+1} \subset \overline{X}_K \subset X_{K-1}$ (al igual con \overline{Y})

Aplicando el resultado, se cumple Y nell. Lo anterior muestra que

 $\frac{\overline{X}_{2n+1} \subset \overline{X}_{2n} \subset ... \subset \overline{X}_{2} \subset \overline{X}_{1} \subset \overline{X}_{0} = \overline{X}}{\overline{Y}_{2n+1} \subset \overline{Y}_{2n} \subset ... \subset \overline{Y}_{2} \subset \overline{Y}_{1} \subset \overline{Y}_{0} = \overline{Y}}, \forall n \in \mathbb{N}$

Probaremos que $\chi_{2n} \sim ... \sim \overline{\chi}_{2n} \sim \overline{\chi}_{2n+1} \sim ... \sim \overline{\chi}_{3n} \sim \overline{\chi}_{1n}$ (al igual con $\overline{\chi}$) $\forall n \in \mathbb{N}$.

Procederemos por inducción sobre n:

'n=1. $X_3 \sim \overline{X}_1$. En efecto. Sea h, $\overline{X}_1 \to \overline{X}_3$, $h(x) = g \circ f(x) \ \forall x \in \overline{X}_1$. h es biyección, en efecto, go f es inye diva (huego, h lo es). Sea ahora x'e \overline{X}_3 . Como gl $_{\overline{X}_2} : \overline{Y}_2 \to \overline{X}_3$ es biyectiva, \overline{J} ue \overline{Y}_2 tal que $g|_{\overline{Y}_2}(u) = x'$. Como $f|_{\overline{X}_1} : \overline{X}_1 \to \overline{Y}_2$ es biyectiva, \overline{J} ze \overline{X}_1 , tal que $f|_{\overline{X}_2}(z) = u$. Luego, \overline{J} ze \overline{X}_1 , tal que $g \circ f(z) = x'$.

Por lo anterior, hes biyección (para mostrar que $X_2 \sim X_1$, se hace un proceso análogo), us: $X_3 \sim X_1$.

Suponya que el resultado se cumple para n=K.

Probaremos que se cumple para n=K+1.

Def. Sean X y Y dos conjuntos. Se dice que Card X & Card Y

si X es equipotente a un subconjunto de Y.

Proposición aux. 2.

" ≤" es un orden total en ¿?, \ un conjunto arbitrario.

Dem:

i) Seu A∈P(X). Como A~ACA, entonces CardA « CardA.

ii) Seun A, B, $C \in P(\bar{X})$ tales que (und $A \leq Cand B \leq Cand C$. Entonces $f:A \rightarrow B$, $g:B \neq C$, $G:C \in A$, $G:C \in A$) unciones bijectivus. Sea $g:B \mapsto C_2 = g(B_1)$, $g:B \in A$, $g:B \in B$

ma de Cantor-Bernstein, ANB, asi CandA = CandB.

in) Sean A, B∈ P(X). Por una prop. anterior, CardA < CardB o CardB < CardA

Por i), ii), iii) y iv), < es un orden total.

4.e.d.

Proposición.

Seun X y X conjuntos no vacios. Entonces:

i) Card X & Card X (>>) una función inyectiva de X en Y.

ii) Card X (Curd Y =>] una función suprayectiva de Y sobre X.

Dem:

De i):

 \Rightarrow) Suponya que Card $X \leq C$ ard Y, entonces $X \sim Y$, $Y \in Y$, lueyo, $\exists f: X \to Y$.

bivectiva. Sea $g:X\to X$, g(x)=f(x) \forall $x\in X$. Claramente g es invectiva, como se deseaba.

F) Supongu que $\exists f: X \rightarrow Y$ invectivu. Seu $g: X \rightarrow f(X)$, $g(x) = f(x) \forall x \in X$. Claramente g es bivectivu (pues f es invectivu, y altomur la restricción del dominio, g se hace suprayectiva). Luego, como $J(X) \subset Y$, se tiene que $CardX \in CardY$. (pues $X \sim f(X)$).

De ii)

=>) Suponga que Card $X \leq C$ and Y. Por i) $\exists f: X \rightarrow Y$ injectiva. Sea $g: X \rightarrow J(X)$ $g(x) = f(x) \ \forall x \in X$. Claramente g es bijectiva, por tanto, $g': f(X) \rightarrow X$ está bien definida. Sea $x \in X$. Tome $h: Y \rightarrow X$ como sigue:

$$h(y) := \begin{cases} g'(y) & \text{s.i. } y \in f(\overline{X}) \\ \chi_0 & \text{s.i. } y \notin f(\overline{x}) \end{cases}$$

h es suprayectiva. En efecto, sea $x \in \bar{X}$. Como \bar{y} es biyectiva, $\bar{\beta}$ $y_o \in f(\bar{X})$ tal que $\bar{y}'(y_o) = x$, esto es $h(y_o) = x$ (pues $y_o \in f(\bar{X})$).

♦ Suponya que $\exists f: Y \to X$ suprayectiva. Como $Y = \bigcup_{x \in X} f'(x)$, donde $\forall x \in X$, $f(\{x\})$ es disjunto a $f(\{x\})$ $\forall x \in X$, $x \neq x_0$ y no vacio (son disjuntos, pues de otra forma \exists no seria función, y son no vacios, pues \exists es supra-yectiva).

De estu formu, $\forall x \in \overline{X}$, tome $y_x \in f(\{x\})$ y defina $g: \overline{X} \rightarrow \overline{Y}$, $g(x) = y_x \ \forall x \in \overline{X}$. Como $y_x, \neq y_x \ \forall x, x \in \overline{X}$, $x \neq x'$, entonces g es inyectiva. As:, usando i) se sigue que $Card \overline{X} \leqslant Curd \overline{Y}$.

Ejemplos:

1) Q es numerable.

En efecto, como IN ~ IN y IN < Q, entonces CardIN & Carda Para pro-

borr que Card Q Card N, basta con encontrar f: Z > Q suprayectiva.

$$\frac{2}{4} - \frac{2}{3} - \frac{2}{2} - \frac{2}{1}$$

$$-\frac{1}{4} - \frac{1}{3} - \frac{1}{2} - \frac{1}{1} = \frac{5(-1)}{5(0)}$$

$$\frac{1}{1} = \frac{2}{3} + \frac{3}{1} + \frac{4}{1}$$

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{1}$$

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{1}$$

vemos que f es suprayectiva, luego Card Q < Card Z = Card IN. Por tanto, Card Q = Card IN => QNN.

Lema:

Un conjunto \overline{X} no vacío es a lo sumo numerable si y sólo si existe una función suprayectiva de IN sobre \overline{X} .

Dem:

=>) Sea X un conjunto no vacio a la sumo numerable.

· Si X es finito, entonces f nell\ tal\ que $X \sim Jn$, entonces $f: J_n \to X$ biyectiva. Sea $g: N \to X$ y $x_0 \in X$, g dada como sigue:

$$g(m) := \begin{cases} f(m) & s; m \leq n \\ x_0 & s; m \leq m \end{cases}$$

claramente g es bi ye tiva, con lo que se comple la aseveración.

Si X es numerable, entonces X~IN, usi, 3 f:N->X biyectiva, en particular, suprayectiva, por tanto, se numple la aseveración.

€) Suponya que $\exists f: N \rightarrow X$ suprayectiva. Por la prop. anterior, CandX \leq CardN, as: X, al ser no vacto, o $X \sim N$ (numerable), δ CandX < CardN (X es finito). G.e.d.

En el caso de la proposición anterior si $x: \mathbb{N} \to \overline{X}$ estal función, y $x_n = x(n) \ \forall \ n \in \mathbb{N}$, entonces \overline{X} puede ser escrito en la sorma:

$$\overline{X} = \{ \chi_n \mid_{n \in \mathbb{N}} \}$$