₩ Linuan Regrations® Introduction: > linuar sugrussion is a bosic machine learning model which draw a bust fit line butumen based on trained data. Projection of Test data point on bust fit line and make production according ewith that. CGIPA Type of Machine Courning Model: -- (1) Simple Circum Reguession -2(2) Multiple Linean Regulession 46) palynomial (invan sugaussion. # Simple linear suggession: - Andict Youget variable one the Bosis on one Crush variable How to find Bust fit line:there are two way Closed form None dosed form [Gradient Decont] [OLS] Eardinary least Yath for multi vaniable for single vaniable Solving Using andinary least Termique Ordinary Good technique used when one indipended variable present in own data. * input, * mean of x & input, & mean of y, & = mx + b 1=n (x:-x) (y:-9) det, assume that he line L, it = mx + b is the best fit line now we need to find out the funtion of m(stope) and b (interest) for every point i on L, ti=mxi+b $E = \sum_{i=1}^{n} d_i$ taking sum of square of distances from L (straight (ine) from all point. This is collect comon hundrion on cost functions di = (7,-9) - 9 is the producted value of Jy; on the stronght line Butting di = (ti-fi) in equation (1)

Paper

Page colour

🚠 Zoom to 100%

Butting
$$d_i = (t_i - y_i)$$
 in equation (1)
$$E = \frac{2}{3} \left(y - x_i \right)^2$$

$$E = \sum_{i=1}^{n} \left(y_i - y_i \right)^2$$

So,
$$E(m,b) = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Error function E(m,b) is a function of m,b, so it depends on m,b

Now we need to find $E(m,b)_{min} \rightarrow that is mean we need to find <math>m,b$ value for which E(m,b) will be minimum, to find follow below.

(it suppose
$$b=0$$
, then $E(m,b)=E(m)$
 $E(m)=\frac{1}{5}\left(y_i-mx_i\right)^{\frac{1}{2}}\Rightarrow \text{ Grouph of } E^{-1}x_i$

Mathematical methode of Calculating E(m, b)min.

at, min Slopa of dr = 0, so,

$$E(m,b) = \sum_{i=1}^{n} (y_i - mx_i - b)^2 = 0$$

taking derivative wrt b of this equations.

$$\frac{\partial E}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} (t_i - mx_i - b)^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} 2(\forall_i - mx_i - b) (0 + 0 - 1) = 0$$

$$\rightarrow \frac{3}{\sqrt{1-1}} - 2\left(\frac{1}{\sqrt{1-1}} - mx_i - b\right) = 0$$

$$\Rightarrow \qquad \underbrace{\sum_{i=1}^{n} \left(y_{i} - mx_{i} - b \right)}_{=0} = 0$$

Deviding by
$$\frac{1}{n}$$
 on both side $\frac{n}{n}$
 $\frac{1}{n}$
 $\frac{1}{n}$

$$\Rightarrow b = (\sqrt{y} - m x) \Rightarrow \text{Now we got the value b for } E min,$$

Now we need to find, the value of m for E(m,b) min

$$\mathcal{E}(m,b) = (y_i - mx_i - b)^2, \quad \text{putting } \mathbf{b} = (\overline{y} - m\overline{x})$$

$$\mathcal{E}(m) = (y_i - mx_i - \overline{y} + m\overline{x})^2$$

$$\mathcal{L}(m) \rightarrow minimum if \frac{d}{dm} \mathcal{L}(m) = 0$$

$$\frac{d}{dm} \mathcal{F}(m) = \frac{d}{dm} \mathcal{E}(y_i - mx_i - y + m\bar{x})^2 = 0$$

$$\Rightarrow \frac{\sum_{i=1}^{2} (y_i - mx_i - y + m\bar{x}) (0 - x_i + \bar{x})}{\sum_{i=1}^{2} (y_i - mx_i - y + m\bar{x}) (x_i - \bar{x})}$$

$$\Rightarrow \sum_{i=1}^{n} \left(y_i - \overline{y} - m(x_i - \overline{x}) \right) (x_i - \overline{x}) = 0$$

$$\Rightarrow \sum_{i=1}^{n} \left(y_i - \bar{y} \right) \left(x_i - \bar{x} \right) - m \left(x_i - \bar{x} \right)^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} \left(y_i - \overline{y} \right) \left(x_i - \overline{x} \right) = m \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

$$\rightarrow \left\{ m = \frac{\sum_{i=1}^{n} \left(y_i - \overline{y} \right) \left(x_i - \overline{x} \right)}{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2} \right\}$$

after calculating m, b put the value of m, b on

Page colour Zoom to 100% Paper

after calculating m, b put the value of m, b on


```
#making my own class
import numpy as np
import pandas as pd
class MyLr:
  def __init__(self):
    self.m = 0
    self.b = 0
  def train(self, X_train, y_train):
    numa = 0
    deno = 0
    for i in range(len(X_train)):
       deno = deno + (y_train.iloc[i,:].values[0] -
y_train.mean().values[0])*(X_train.iloc[i,:].values[0] -
                                                X_train.mean().values[0])
       numa = numa + (X_train.iloc[i,:].values[0] -
X_train.mean().values[0])*(X_train.iloc[i,:].values[0] -
                                                X_train.mean().values[0])
    self.m = deno/numa
    self.b = y_train.mean().values[0] - self.m*X_train.mean().values[0]
    return print(f"model has been trained intercept = {self.b} and slope = {self.m} ")
  def predict(self, x_test:list)->list:
    x_test = pd.DataFrame(data= x_test)
    output = []
    for i in range(len(x_test)):
       res = m*x_test.iloc(i,:).values(0) + b
```

Paper 🔊 Page colour 🕞 Zoom to 100%
res = m*x_test.iloc[i,:].values[0] + b
output.append(res)
return np.array([output]).reshape(len(output),1)
Multiple linear Rightssions
In simple Cinnen veguesion we have only one input features. But enhal if if we have multiple input feature? The consumer is -> we need to colculate weights (like m) for
The answer is -> we need to colculate weights (like m) for each term.
Simple linnear Regression $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \hat{\mathbf{y}} = b + \mathbf{m}_{1} + \mathbf{m}_{2} + \mathbf{m}_{2} + \mathbf{m}_{3} - \cdots + \mathbf{m}_{n} + \mathbf$
'so, we need to only colculate the value of
(b, m1, m2 mn) with the hulp of Y that value (y)
9 = Opt O1 X1 t O2 X2 + On X3 + + On in
Dunivation is not muded at the point. And I knowing Blank for Dunivations
Data sample $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
for eah prudictions.
$ \hat{Y} = \beta_0 + \beta_1 \times_{11} + \beta_2 \times_{12} - \dots + \beta_n \times_{1n} $ $ \hat{Y} = \beta_0 + \beta_1 \times_{21} + \beta_2 \times_{22} - \dots + \beta_n \times_{2n} $ Consuming it into matrix $ \hat{Y} = \begin{bmatrix} \beta_0 & \beta_1 \times_{11} & \beta_2 \times_{12} \dots & \beta_n \times_{2n} \\ \beta_0 & \beta_1 \times_{21} & \beta_2 \times_{22} \dots & \beta_n \times_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_0 & \beta_1 \times_{m_1} + \beta_2 \times_{m_2} - \dots & \beta_n \times_{m_n} \end{bmatrix} $ $ \hat{Y} = \begin{bmatrix} \beta_0 & \beta_1 \times_{11} & \beta_2 \times_{12} \dots & \beta_n \times_{1n} \\ \beta_0 & \beta_1 \times_{21} & \beta_2 \times_{22} \dots & \beta_n \times_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_0 & \beta_1 \times_{m_1} + \beta_2 \times_{m_2} - \dots & \beta_n \times_{m_n} \end{bmatrix} $
$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1n} \\ 1 & X_{21} & X_{22} & X_{2n} \\ 1 & X_{n1} & X_{n2} & \dots & X_{nn} \end{bmatrix} \times \begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_1 \end{bmatrix}$

(n+1, n+1) (n+1,m) (m,1)
= (n+1,n+1) (n+1,1)
Shape(B) = (n+1,1)

 $\Rightarrow \left(\beta = \left(x x^{\intercal} \right)^{-1} \left(x^{\intercal} y \right) \right)$

Polynomial Functions

cue have seen in Cimean Regression that if the substitute of dependent and indipendent variables is Cinnean then we are using Cimean Regressions are multiple Cimean Regressions. But what if? If eve do not Cimean substitution if we have partially substitution of partial partial conditions of the peloco.

need to use polynomial function to find the best lit owner.

Polynomial functions are tous types

Page colour

Zoom to 100%

SK-learn have a methods to convert inputs into a polynomia equations.

from sklearn preprocessing import polynomial features.

polinomial object = Polynomial teatures fit transform i 🕏 it vatuun om standandriise form A

- python code :-

input data and then comment int an polynomial functions with degree which you specified

polyno_x_data = polynomial_object.til_transform (x_data)
Standard_Ydata = polynomial_object.transform (Y_data)

⊕ Conversation of single input column into polynomial function.

X	y	l-put_	
7	_	1	Conveting
*2	-	4	
73	(-	*	
	۸. ،		al .

if $y = f(x) \rightarrow is$ polynomial of digrae 2

innut			autent	1
θ ₀ χ' ₀	0, 2,	0, x,2	y	
θ, χ,	01x12	Q2 1/2	-	
Фхз	0,23	02 x3	-	
0x3	P123	102 x3	-	
	θ ₀ χ ₁ ⁰ Θ ₀ χ ₂ ⁰ Θχ ₃ ⁰	0, x2 0, x2 0, x3	$\begin{array}{c cccc} \theta_0 x_1^0 & \theta_1 x_1^1 & \theta_2 x_1^2 \\ \theta_0 x_2^0 & \theta_1 x_2^1 & \theta_2 x_2^2 \\ \theta x_3^0 & \theta_1 x_3^2 & \theta_2 x_3^2 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

I am creating my own Linear Regression model

```
In [419]: import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    import warnings
    warnings.filterwarnings("ignore")
    import matplotlib as plt
    import seaborn as sns

In [420]: from sklearn.datasets import load_boston
    boston_data = load_boston()
    values = boston_data.data
    columnss = boston_data.feature_names
    boston_df = pd.DataFrame(data= values, columns=columnss)

In [421]: target = pd.DataFrame(boston_data.target)
    target.set axis(['price'], axis=1,inplace=True)
```

Simple Linear regressions

```
In [422]: #Average room per house as x data fpr linear regression.
   X = boston_df['RM']
   y = target

In [423]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size)

In [424]: SkLr = LinearRegression()

In [425]: X_train = pd.DataFrame(X_train)
   X_test = pd.DataFrame(X_test)
```

```
In [426]: SkLr.fit(X_train,y_train)
    y_predict = SkLr.predict(X_test)
    from sklearn.metrics import r2_score
    r2_score(y_test, y_predict)
    print(SkLr.intercept_, SkLr.coef_)
```

[-32.55158437] [[8.74934434]]

Creating My own LR Class

```
In [427]: #making my own class
          import numpy as np
          import pandas as pd
          class MyLr:
              def __init__(self):
                  self.m = 0
                  self.b = 0
              def train(self, X_train, y_train):
                  numa = 0
                  deno = 0
                  for i in range(len(X_train)):
                      deno = deno + (y_train.iloc[i,:].values[0] - y_train.me
                      numa = numa + (X_train.iloc[i,:].values[0] - X_train.me
                  self.m = deno/numa
                  self.b = y_train.mean().values[0] - self.m*X_train.mean().v
                  return print(f"model has been trained intercept = {self.b}
              def predict(self, x_test:list)->list:
                  x_test = pd.DataFrame(data= x_test)
                  output = []
                  for i in range(len(x_test)):
                      res = self.m*x_test.iloc[i,:].values[0] + self.b
                      output.append(res)
                  return np.array([output]).reshape(len(output),1)
```

```
In [428]: myobj = MyLr()
```

```
In [429]: myobj.train(X_train, y_train)
```

model has been trained intercept = -32.5515843678096 and slope = 8 .749344338735002

In [430]: print(f"Intercept and cofficent from sk learn model {SkLr.intercept
print(f"Intercept and cofficent from my own created model {myobj.b}

Intercept and cofficent from sk learn model [-32.55158437] [[8.74
934434]]

Intercept and cofficent from my own created model -32.551584367809 6 8.749344338735002

See both the value is same. Hurray I have made my own LR algorithm!

```
In [431]: print(f"r_2 score of Scikit Learn model = {r2_score(y_test, SkLr.pr
print(f"r_2 score of my own created model = {r2_score(y_test, myob)}
r_2 score of Scikit Learn model = 0.6335439948424493
```

r 2 score of my own created model = 0.6335439948424488

See both the value is same. Hurray I have made my own LR algorithm!

Multiple Linear Regressions.

I can create my own MLR model but in sk learn it already available

```
In [432]: X_train,X_test,y_train, y_test = train_test_split(boston_df, target
In [433]: mlr = LinearRegression()
    mlr.fit(X_train, y_train)
    y_predict = mlr.predict(X_test)
    print(f" The r2 score is {r2_score(y_test, y_predict)}")
```

Ploynomial Linear Regressions.

The r2 score is 0.7789207451814428

Makung a polynomially related X and Y Data Point.

```
In [476]:
          a = np.random.randint(2,10)
          b = np.random.randint(2,10)
          c = np.random.randint(2,10)
          X = []
          Y = []
          for i in range(100):
              x = np.random.randint(-3,3) + np.random.random(1)
              x_noise1 = x[0] - np.random.random(1)[0]
              x_{noise2} = x[0] + np.random.random(1)[0]
              X.append(x[0])
              X.append(x_noise1)
              X.append(x_noise2)
              y = a*x*x + b*x + c
              y_noise1 = y[0] + np.random.randint(-6,5)
              y_noise2 = y[0] + np.random.randint(-6,5)
              Y.append(y[0])
              Y.append(y_noise1)
              Y.append(y_noise1)
          sns.scatterplot(X,Y)
          # Ploynomyal Functions is created you can see in graph
```

Out[476]: <AxesSubplot:>


```
In [477]: X = pd.DataFrame(X)
Y = pd.DataFrame(Y)
```

```
In [478]: X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size=
```

We will use 1st linear regression then calculate the r2_score and then Polynomial Regressions then Calculate r_score then we compare

```
In [479]: Linear_model = LinearRegression()
Linear_model.fit(X_train, y_train)
y_predict = Linear_model.predict(X_test)
r2_score(y_test, y_predict)
```

Out [479]: 0.6766514586288175

Can see very low accuracy

Now we will use polynomial linear regressions.

```
In [480]: from sklearn.preprocessing import PolynomialFeatures
In [481]: polynomial_object = PolynomialFeatures(degree=2)

X_train = polynomial_object.fit_transform(X_train)

X_test = polynomial_object.transform(X_test)

X_train = pd.DataFrame(X_train)

X_test = pd.DataFrame(X_test)
```

```
In [482]: Lin_model = LinearRegression()
    Lin_model.fit(X_train, y_train)
    y_predict = Lin_model.predict(X_test)
    r2_score(y_test, y_predict)
```

Out[482]: 0.8513585489807223

```
In [ ]: # See very good score
```