Add-ons to Neural Networks

Activation function

ReLu function

Derivative:

Method to prevent overfitting

 $P(xi \rightarrow 0) = p$

Method to prevent overfitting

```
w111*x1 + w112*x2 + w113*x3 + w114*x4 = w111*x1 + w112*x2
w121*x1 + w122*x2 + w123*x3 + w124*x4 = w121*x1 + w122*x2
w131*x1 + w132*x2 + w133*x3 + w134*x4 = w131*x1 + w132*x2
w141*x1 + w142*x2 + w143*x3 + w144*x4 = w141*x1 + w142*x2
          w112*x2 + w113*x3 + w114*x4 = w112*x2 + w113*x3
w121*x1 + w122*x2 + w123*x3 + w124*x4 = w122*x2 + w123*x3
w131*x1 + w132*x2 + w133*x3 + w134*x4 = w132*x2 + w133*x3
w141*x1 + w142*x2 + w143*x3 + w144*x4 = w142*x2 + w143*x3
          w112*x2 + w113*x3 + w114*x4 = w112*x2 + w114*x4
```

ingil

w111*x1 + w112*x2 + w113*x3 + w114*x4 = w112*x2 + w114*x4 w121*x1 + w122*x2 + w123*x3 + w124*x4 = w122*x2 + w124*x4 w131*x1 + w132*x2 + w133*x3 + w134*x4 = w132*x2 + w134*x4 w141*x1 + w142*x2 + w143*x3 + w144*x4 = w142*x2 + w144*x4

Method to prevent overfitting

What happens with p if training is over and we use the model for prediction?

A We set p = 1 B We take same p as in training

C We set p = 0.5 D We set p = 0

Method to prevent overfitting

$$z1 = w1*x1 + w2*x2 + w3*x3 + w4*x4$$

$$z^2 = w_1 * x_2 + w_2 * x_3 + w_3 * x_4 + w_4 * x_5$$

$$z11 = w11*x1 + w12*x2 + w13*x3 + w14*x4$$

 $z12 = w21*x1 + w22*x2 + w23*x3 + w24*x4$

$$z21 = w11*x2 + w12*x3 + w13*x4 + w14*x5$$

 $z22 = w21*x2 + w22*x3 + w23*x4 + w24*x5$

For pictures with 10x10 pixel, you train a 3x3-convolution layer with depth 4. Your slider has size 1x1 and your padding is SAME.

How many weight do you need to train? How many nodes has the resulting layer?

Pooling

Shrinks large layers

Max pooling

Pooling

Shrinks large layers

Average pooling

A typical neural net

Image

Convolution

Max Pooling

Convolution

Max Pooling

Fully connected

Fully connected

Classifier