Chapter 2

Basic Topology

2.1 Notes

11/1: • Equivalence relationships are denoted $A \sim B$.

- These are...
 - Reflexive $(A \sim A)$.
 - Symmetric $(A \sim B \iff B \sim A)$.
 - Transitive $(A \sim B \& B \sim C \Longrightarrow A \sim C)$.
- Equivalence relations give rise to equivalence classes.
- Countable (set A): A set A such that $A \sim \mathbb{N}$, in the sense that there exists a one-to-one and onto map from $\mathbb{N} \to A$.
 - Alternatively, A can be written in the form $A = \{f(n) : n \in \mathbb{N}\}.$
- Finite countable vs. infinite countable (see Rudin (1976)).
- N denotes the natural numbers.
- \mathbb{N}_0 denotes the natural numbers including 0.
- \mathbb{Z} denotes the integers.
- We know that $\mathbb{N} \sim \mathbb{Z}$: Let $f: \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ \frac{n-1}{2} & n \text{ odd} \end{cases}$$

- More facts.
 - 1. Every subset of a countable set is countable.
 - 2. Unions of countable sets are countable.
 - If the sets E_n for some finite list of numbers are countable, then $\bigcup_n E_n$ is countable.
 - Soug goes over the diagonalization method of counting.
 - 3. n-fold Cartesian products of countable sets are countable (we induct on n).
 - If A is countable and B is countable, then $A \times B$ is countable.
 - If A is finite and to each $\alpha \in A$ we assign a countable set E_{α} , $\otimes_{\alpha \in A} E_{\alpha}$ is countable.
- Metric space: A space X along with a matrix $d: X \times X \to [0, \infty)$ such that

- $-d(x,y) > 0 \text{ iff } x \neq y, \text{ and } d(x,x) = 0 \text{ iff } x = 0.$
- d(x,y) = d(y,x).
- $d(x,y) \le d(x,z) + d(z,y).$
- Example (\mathbb{R}^n) :
 - We may define d by

$$d(x,y) = \sqrt{\sum (x_i - y_i)^2}$$

- We can also define the p-metrics (recall normed spaces) with p where 2 is.
- Example $(X_p = \{f : Y \to \mathbb{R} : 1 \le p < \infty, \int_Y |f|^p dy < \infty\})$:
 - This is ℓ_p .
 - Define

$$||f - g||_p = \left[\int_Y |f - g|^p \, \mathrm{d}y \right]^{1/p}$$

- Convergence: $x_n \to x \iff d(x_n, x) \to 0$.
- Neighborhood: The set $N_r(p) = \{q \in X : d(p,q) < r\}.$
- Limit point (of E): A point p such that every neighborhood of p intersects E at a point other than p.
 - Symbolically,

$$N_r(p) \cap (E \setminus \{p\}) \neq \emptyset$$

for all r > 0.

- Isolated point (of E): A point p such that $p \in E$ and p is not a limit point of E.
- Closed (set E): A set E that contains all of its limit points.
- Interior (point p): A point p such that there exists $N_r(p) \subset E$.
- Open (set E): A set E, all points of which are interior points.
- **Perfect** (set E): A set E that is closed and every point of E is a limit point of E.
- Bounded (set E): There exists a number M and a $y \in X$ such that $E \subset \{p : d(p,y) \leq M\}$.
- Dense (set E in X): A set E such that every point of X is a limit point of E or a point of E, itself.