

18/OCTUBRE

SELECCIÓN Y

EVALUACIÓN DE MODELOS

Selección de modelos

Supongamos que ya partimos los datos en train - test (¿Por qué hacíamos esto?)

⇒ ¿Qué hacemos durante el desarrollo de modelos para seleccionar modelos?

Train-Validation

Entrenamos en unos datos (train) y evaluamos en otros (validation/dev) (de acá en adelante, vamos a asumir que el conjunto de test ya fue separado)

k-Fold Cross-Validation

Cuando hay pocos datos, la estimación en único validation set puede ser muy variable ⇒ ¡Intentemos usar todos los datos!

Ejemplo: k-fold CV con k=5

- \rightarrow Para i=1,...,5:
 - Entrenamos en los datos restantes y predecimos en fold i
- \rightarrow Calculamos el **error Err**_{CVk} con la predicción de cada obs.

 $\mathrm{Err}_{\mathrm{CV}_k}$ ¿Es una estimación confiable del error de mi mejor modelo?

k-Fold Cross-Validation

Cuando hay pocos datos, la estimación en único validation set puede ser muy variable ⇒ ¡Intentemos usar todos los datos!

Ejemplo: k-fold CV con k=5

- \rightarrow Para i=1,...,5:
 - Entrenamos en los datos restantes y predecimos en fold i
- → Calculamos el **error Err_{CVk}** con la predicción de cada obs.

¿Es una estimación confiable del $\mathrm{Err}_{\mathrm{CV}_k}$ error de mi mejor modelo?

¡NO! solo nos interesa para encontrar el mínimo

Selección de modelos

IMPORTANTE: el criterio de partición es el mismo en (1) y en (2)

Optimización de Hiperparámetros (HPO)

Fuente: <u>Automated Machine Learning: State-of-The-Art and Open Challenges (Elshawi et al, 2019)</u>

Evaluación de modelos

OK pero... ¿qué es el error de un modelo...?

¿Cómo medimos el rendimiento / performance de un modelo? (ya sea en validation, CV, o en test)

$$y \in \{0, 1\} \quad \hat{y} \in \{0, 1\}$$

		True	class	
		– or Null	+ or Non-null	Total
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*
	Total	N	P	

Supuesto: nuestro sistema clasifica entre 0 y 1

Accuracy (tasa de aciertos)

$$Acc = \frac{TP + TN}{P + N} = 1 - Err = \frac{1}{n} \sum I(y_i = \hat{y}_i)$$

Ejemplo: clasificación de default (paga / no paga)

		Default obs.		
		0	1	Total
Default pred.	0	4 988	3 784	8 772
	1	12	1 216	1 228
	Total	5 000	5 000	10 000

Ejemplo: clasificación de default (paga / no paga)

		Default obs.		
		0	1	Total
Default pred.	0	4 988	3 784	8 772
	1	12	1 216	1 228
	Total	5 000	5 000	10 000

$$FPR = FP / N = 0.24\%$$

(tasa de falsos pos.)
 $FNR = FN / P = 75.7\%$
(tasa de falsos neg.)

Ejemplo: clasificación de default (paga / no paga) pero un poco más realista...

		Default obs.		
		0	1	
Default pred.	0	9 644	252	9 896
	1	23	81	104
		9 667	333	10 000

$$Acc = ...$$

Ejemplo: clasificación de default (paga / no paga) pero un poco más realista...

		Default obs.		
		0	1	
Default	0	9 644	252	9 896
Default	1	23	81	104
pred.		9 667	333	10 000

En problemas "desbalanceados" (con una clase mayoritaria) el accuracy es poco informativo ¿Cuánto es Acc si nuestro modelo siempre predice 0?

$$FN = 252$$

$$FPR = 0.24\%$$

Ejemplo: clasificación de default (paga / no paga) pero un poco más realista...

		Default obs.		
		0	1	
Default	0	9 644	252	9 896
Default	1	23	81	104
pred.		9 667	333	10 000

En problemas "desbalanceados" (con una clase mayoritaria) el accuracy es poco informativo ¿Cuánto es Acc si nuestro modelo siempre predice 0?

$$\rightarrow$$
 Acc = $(9644 + 23 + 0) / 1000 = 96.67%$

$$Acc = 97.3\%$$

$$FPR = 0.24\%$$

La mayor parte de las veces nos va a interesar evaluar **otras métricas** en lugar de la tasa de aciertos

⇒ hoy vamos ver algunas y más adelante vamos a ver cómo elegir

		Obs		
		0	1	
Desail	0	TN	FN	N*
Pred	1	FP	TP	P*
		N	P	

$$TPR = TP/P = 1 - FNR$$

Recall / Sensibilidad

$$TNR = TN/N = 1 - FPR$$

Especificidad

$$\mathrm{PPV} = \mathrm{TP}/\mathrm{P}^*$$

Precision

(Positive predictive value)

		Default obs.		
		0	1	
D-f14	0	9 644	252	9 896
Default pred.	1	23	81	104
		9 667	333	10 000

$$Acc = 97.3\%$$

Recall =
$$24.3\% = 1 - 0.757$$

		Obs		
		0	1	
D 1	0	TN	FN	N*
Pred	1	FP	TP	P*
		N	P	

$$TPR = TP/P = 1 - FNR$$

Recall / Sensibilidad

$$TNR = TN/N = 1 - FPR$$

Especificidad

$$PPV = TP/P^*$$

Precision

(Positive predictive value)

		Default obs.		
		0	1	
Default	0	9 644	252	9 896
	1	23	81	104
pred.		9 667	333	10 000

¿Qué modelo optimiza el recall?

¿Qué modelo optimiza la especificidad?

		Obs		
		0	1	
David	0	TN	FN	N*
Pred	1	FP	TP	P*
		N	P	

$$TPR = TP/P = 1 - FNR$$

$$Sensibilidad$$

$$TNR = TN/N = 1 - FPR$$

$$Especificidad$$

$$PPV = TP/P^*$$

$$Precision$$

$$PRecision$$

$$PRecision$$

$$Precision$$

$$Precision$$

$$Precision$$

$$Precision$$

$$Precision$$

(Positive predictive value)

		Default obs.		
		0	1	
5 6 4	0	9 644	252	9 896
Default	1	23	81	104
pred.		9 667	333	10 000

¿Qué modelo optimiza el recall? Predigo siempre 1 \rightarrow (252+81)/333 = 1 ¿Qué modelo optimiza la especificidad? Predigo siempre $0 \rightarrow (9644+23)/9667 = 1$

⇒ hay un **trade-off** entre *capturar 1s* (recall) y capturar Os (especificidad)

Métricas de la matriz de confusión que pueden reemplazar a accuracy (más adelante vamos a ver cómo elegir)

F-score (combinación entre precision y recall)

$$F_{eta} = rac{(eta^2+1)PR}{eta^2P+R}$$
 $F_1 = rac{2PR}{P+R}$ $eta=2$ + recall $eta=0.5$ + precision

$$F_1 = \frac{2PR}{P+R}$$

$$\beta = 2$$
 + recall

$$\beta = 0.5$$
 + precision

Función de costos

(a veces podemos definir los costo relativos/absolutos de acertar y/o errar)

$$C = C_{\text{TN}}\text{TN} + C_{\text{TP}}\text{TP} + C_{\text{FN}}\text{FN} + C_{\text{FP}}\text{FP}$$

En general los modelos nos devuelven un puntaje o score, no una clase

$$\hat{p} \in [0,1]$$

$$\hat{y} = \underset{y}{\operatorname{argmax}} \widehat{p(y|x)}$$

$$(\hat{y} = 1 \iff \hat{p} > 0.5)$$

Esto no necesariamente es óptimo!

- porque el score puede estar descalibrado, y/o
- porque ese umbral puede no optimizar nuestra métrica
- ⇒ Tenemos que elegir un **umbral** que optimice la métrica que nos interesa

$$\hat{y} = \begin{cases} 1 & \text{si } \hat{p} \ge \theta \\ 0 & \text{si } \hat{p} < \theta \end{cases}$$

 $\hat{y} = egin{cases} 1 & ext{si } \hat{p} \geq \theta \\ 0 & ext{si } \hat{p} < \theta \end{cases}$ Por ejemplo, bajar el umbral puede reducir Accuracy pero mejorar Recall \rightarrow y entonces, quizás, la métrica que nos interese

$$\hat{y} = \begin{cases} 1 & \text{si } \hat{p} \ge \theta \\ 0 & \text{si } \hat{p} < \theta \end{cases}$$

Por ejemplo, bajar el umbral puede reducir Accuracy pero mejorar Recall → y entonces, quizás, la métrica que nos interese

$$y \in \{0, 1\} \quad \hat{p} \in [0, 1]$$

A veces nos interesa evaluar globalmente los scores i.e. para cualquier umbral posible

AUROC (Area Under the ROC Curve)

- Mide la capacidad global de discriminar entre 0s y 1s
- Se puede interpretar como la probabilidad de que el score de una obs. positiva seleccionada al azar sea más alto que el de una negativa

Fuente: Probabilistic Machine Learning (Murphy, 2021)

$$y \in \{0, 1\} \quad \hat{p} \in [0, 1]$$

A veces nos interesa evaluar globalmente los scores i.e. para cualquier umbral posible

AUROC (Area Under the ROC Curve)

¿A qué valor tiende el AUROC de un score random?

Fuente: Probabilistic Machine Learning (Murphy, 2021)

$$y \in \{0, 1\} \quad \hat{p} \in [0, 1]$$

A veces nos interesa evaluar globalmente los scores i.e. para cualquier umbral posible

AUROC (Area Under the ROC Curve)

¿A qué valor tiende el AUROC de un score random?

0.5 (para cualquier punto de corte, me equivoco igual → FPR ≈ FNR → diagonal imaginaria en el gráfico)

Fuente: Probabilistic Machine Learning (Murphy, 2021)

Gráfico de residuos

Gráfico de correlación

RMSE
$$(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Root mean squared error (error cuadrático)

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

Mean absolute error (error absoluto)

$$MAPE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{\max(\epsilon, |y_i|)}$$

Mean absolute percentage error (error porcentual)

¿Cómo nos darían las métricas anteriores en este ejemplo? (bien / mal / regular / kcyo)

¿Cómo nos darían las métricas anteriores en este ejemplo? (bien / mal / regular / kcyo)

¿Y si usamos el viejo y querido R cuadrado? Veamos... →

R cuadrado

(A)
$$R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

(B)
$$R^2(y, \hat{y}) = \operatorname{pearson}(y, \hat{y})^2$$

- Podemos interpretar R² (A) como la comparación entre nuestro modelo (y_hat) y un modelo baseline (y_mean)
- R² está basado en MSE

"(A) y (B) son iguales ..." " $0 < R^2(A) < 1$..."

R cuadrado

(A)
$$R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

(B)
$$R^2(y, \hat{y}) = \operatorname{pearson}(y, \hat{y})^2$$

- Podemos interpretar R² (A) como la comparación entre nuestro modelo (y_hat) y un modelo baseline (y_mean)
- R² está basado en MSE

"(A) y (B) son iguales ..." " $0 < R^2(A) < 1$..."

en los datos de entrenamiento de MCO!

$$R^2(B) = 0.80$$

 $R^2(A) = -108$