Project: ReSearch - Integrating Search and Reasoning with Reinforcement Learning for Large

Language Models

Technical Summary Report

1. Paper Summary

Title: ReSearch: Integrating Search and Reasoning with Reinforcement Learning for Large

Language Models

Link: https://arxiv.org/abs/2503.19470

ReSearch proposes a novel framework that integrates search and reasoning in large language

models (LLMs) using reinforcement learning (RL). The core innovation is GRPO (Generalized

Recurrent Policy Optimization), a new RL algorithm that enables better reasoning and

memory-aware decision making across multiple steps.

2. Key Contributions

- RL-based integration of search into reasoning workflows.

- GRPO algorithm enabling optimization over reasoning sequences.

Demonstrates significant improvements over SFT (Supervised Fine-Tuning) and RAG

(Retrieval-Augmented Generation).

3. Reinforcement Learning Setup

- Environment: Agents perform sequences of actions including search, reasoning, and answering.

- Actions: [search, read, reason, answer]

- Rewards:

- +1 for correct answer

- +0.2 for helpful search result

0.1 for redundant or irrelevant search
4. GRPO: Generalized Recurrent Policy Optimization
- Handles recurrent policy structures with memory.
- Suitable for partially observable and non-differentiable environments.
- Outperforms PPO, A2C in long-horizon reasoning tasks.
5. Results
Quantitative:
- Accuracy improved by 15-20% on complex QA datasets.
Qualitative:
- LLMs showed better evidence use and reduced hallucinations.
Working Implementation Overview
Repository:
GitHub - Agent-RL/ReSearch: https://github.com/Agent-RL/ReSearch
Installation:
git clone https://github.com/Agent-RL/ReSearch.git
cd ReSearch
pip install -r requirements.txt
Running Experiments:
python train.pyconfig configs/multihop_qa.yaml
Modules:

- env/: Search + reasoning environment
- models/: GRPO model + value nets
- train.py: GRPO training loop
- configs/: Task configurations

Evaluation:

- Metrics: Accuracy, avg. search steps, reasoning chain length
- Ablation: GRPO vs PPO, with vs without search

Presentation Slides Outline

Slide 1: Title Slide

- Project Title
- Team Members

Slide 2: Motivation

- Why integrate search and reasoning?
- Limitations of RAG and SFT

Slide 3: ReSearch Framework Overview

- Diagram of RL setup
- Action flow

Slide 4: What is GRPO?

- Definition
- Advantages over PPO/A2C

Slide 5: Experiments & Results - Accuracy improvements - Sample reasoning trace Slide 6: Technical Challenges - RL instability

- Latency from external search

Slide 7: Real-World Use Cases

- Al copilots
- Knowledge assistants
- Research tools

Slide 8: ReSearch vs RAG vs SFT

- Comparison table

Slide 9: Discussion Points

- Feasibility in production systems
- Future improvements

Discussion Points

1. ReSearch vs RAG vs SFT

- RAG retrieves but doesnt reason.
- SFT has static knowledge.
- ReSearch dynamically searches + reasons.

2. Challenges:

- Long episode credit assignment.
- RL convergence.
- Web API delays.

3. Future Potential:

- Can power reflective LLM agents.
- Fits well into tool-augmented pipelines.
- Enables adaptive, interactive AI systems.