ME4524 – Robotics and Automation

Exercise # 5

- 1. The three wrist joints of a PUMA 600 are shown in the Figure below. The robot is grinding a work-surface, using the grinding tool grasped in its hand.
 - (a) The kinematic configuration of the wrist is defined in the table below, with reference to the coordinate frames shown in the Figure. The grinding tool is in contact with the surface at point A, whose coordinates with reference to frame $\{O_3\}$ are $x_3 = 10$ cms, $y_3 = 0$, and $z_3 = 5$ cms. Derive the 6×3 Jacobian matrix associated with the relationship between joint displacements and the position and orientation of the tool at point A.
 - (b) During the grinding operation, reaction forces and moments act on the tool-tip A. Representing the forces and moments by a 6 × 1 vector \mathbf{F} . Derive the corresponding joint torques. Also, compute the joint torques for the following case. The work surface is parallel to the x_0 and y_0 axes, and the normal force f_N and the tangential f_t along the z_0 and x_0 are -10 N and -8 N respectively. The moment about the x_3 axis is 0.04 Nm, in the right-hand sense. The joint angles are $\theta_1 = 90 \text{ deg}$, $\theta_2 = 45 \text{ deg}$, and $\theta_3 = 0 \text{ deg}$.
 - (c) The robot has a force sensor attached to the origin of the coordinate frame $\{O_3\}$. The sensor measures three linear forces along the x_3 , y_3 , and z_3 axes, and three moments all denoted by f_{mx} , f_{my} , f_{mz} , N_{mx} , N_{my} , N_{mz} , respectively. Find the forces and moments at the tool tip,

$$\underline{F} = \begin{bmatrix} f_{tx} & f_{ty} & f_{tz} & N_{tx} & N_{ty} & N_{tz} \end{bmatrix}^T$$

with respect to $\{O_0\}$.

TABLE

LINK#	Twist Angle	a_{i}	d_{i}
1	-90°	0	40 cm
2	90^{0}	0	0
3	0	0	10 cm

Due date: Thursday, April 7, 2016 (Before lecture starts)

2. Consider the 3-d.o.f manipulator shown in the Figure below. The joint servo stiffness is measured at individual joints. They are 4×10^5 Nm/rad, 2×10^5 Nm/rad, and 1×10^5 Nm/rad for joints 1, 2, and 3 respectively. The link lengths are 1m, 1m, and 1.5 m respectively. Compute the end-point compliance for the given configuration, where θ_I = 90 deg, θ_2 = 135 deg, and θ_3 = -90 deg. Also for the given configurations, find the maximum and minimum compliance.

