Chapter 1

Sets and Classes

Let there be *classes*.

Given two classes A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f=gf:A\to C$, the *composite* of f and g.

Axiom 1.1 (Empty Class). There exists a class \emptyset such that, for any class A, there exists a unique function $\emptyset \to A$.

Axiom 1.2 (Terminal Class). There exists a class 1 such that, for any class A, there exists a unique function $A \to 1$.

Axiom 1.3 (Disjoint Union). For any classes A and B, there exists a class A+B, the disjoint union of A and B, and functions $\kappa_1:A\to A+B$, $\kappa_2:B\to A+B$, the injections, such that, for any class X and functions $f:A\to X$, $g:B\to X$, there exists a unique function $[f,g]:A+B\to X$ such that

$$[f,g]\kappa_1 = f,$$
 $[f,g]\kappa_2 = g.$

Axiom 1.4 (Pullback). For any classes A, B and C, and any functions $f: A \to C$ and $g: B \to C$, there exists a set $A \times_C B$, the pullback of f and g, and functions $\pi_1: A \times_C B \to A$, $\pi_2: A \times_C B \to B$, such that:

- $\bullet \ f\pi_1 = g\pi_2$
- for any set X and functions $x: X \to A$, $y: X \to B$ such that fx = gy, there exists a unique function $(x, y): X \to A \times_C B$ such that $\pi_1 \circ (x, y) = x$ and $\pi_2 \circ (x, y) = y$.