Groundwater Withdrawal Authorization Process: The Use of Indicators to Evaluate Cumulative Impacts

- Work in progress -National Dialogue on Ground Water April 19, 2023

Martin Stapinsky, P. Geo., M. Sc., Ph. D.

MELCCFP - DGPE - Direction de l'eau potable, des eaux souterraines et de surface

Summary

- 1. Groundwater Withdrawal Authorization Process
- 2. Decision-Making Framework
- 3. Groundwater Sustainability Indicators
- 4. Future Work
- 5. Conclusions

1. GROUNDWATER WITHDRAWAL AUTHORIZATION PROCESS

REQUEST FOR A
GROUNDWATER
WITHDRAWAL
AUTHORIZATION
(Environmental
Quality Act (EQA),
section 22)

- Location and distances with specific types of infrastructures;
- Water requirements;
- Aquifer characteristics;
- Well characteristics;
- Well head protection area (DRASTIC); etc.

Section 31.76

Will the groundwater withdrawal meet EQA requirements, including article 31.76?

Decision-making tools

Indicators

DECISION

GROUNDWATER WITHDRAWAL AUTHORIZATION PROCESS – EQA, section 31.76

Water Resource Protection

- Sustainable, equitable and efficient management
- Precautionary principle
- Climate change

Reconcile Uses Environmental Quality Act

(EQA, section 31.76)

Stakeholder Dialogue

- Priority given to public needs (health, sanitation, civil security an drinking water)
- Reconciliation of uses (ecosystems, agriculture, industry, etc.)

- Water Master Plan
- Water availability and distribution
- Foreseeable changes in water needs

Preliminary results

2. DECISION-MAKING FRAMEWORK

GW: Groundwater

GDE: Groundwater-dependent ecosystems

Data sources:

Regional Hydrogeological Mapping Projects (PACES)

Quebec's Groundwater Monitoring Network (RSESQ)

Indicator: Total groundwater withdrawal/recharge (municipal scale)

No: < 20%: Low pressure

Yes: ≥ 20 % : Under pressure

Indicator: Groundwater level

Statistical hydrograms

No: Water levels over the 5 last years: +/- stationary or

no trend (decrease) and/or ≥ 3 years > median

Yes: Water levels over the 5 last years: trend

(decrease) and/or ≥ 3 years < median

Indicator: Surface-water availability

Source: MELCCFP, 2023

No: "Medium to high" or "High"

availability

Yes: "Low" or "Medium" availability

Indicator: Groundwater-dependent ecosystems (GDE)

Source: adapted from INRS-ÉTÉ et al., 2013

No: Confined aquifer and upgradient GDE

Yes: Water table or semi-confined aquifer and

downgradient GDE

Advantages

- Available data
- Easy-to-understand
- Conservative results

Limitations

- Different approaches were used to prepare the indicators
- Still requires an expertise for adequate interpretation

4. FUTURE WORK

Objectives

- Standardize approach
- Simplify indicators
- Develop new indicators (surface and ground water)

Preliminary results

Groundwater withdrawal/Recharge

Municipal scale

Sub-watershed scale

Groundwater Level (trends)

BULLETIN SUR L'ETAT DES NAPPES

Long-term trends

Source: Huchet et al., 2021

Hydroclimatic regions with representative monitoring wells

Preliminary results

Intra-municipal Indicators

73°30'0"W 73°0'0"W 72°30'0"W Indicateur intramunicipal Grand préleveur Agricole · ICI Municipal Autre captage Municipal Usage annuel moyen (m³/an) 10000 - 25000 25000 - 100000 > 100000 Usage résidentiel hors-réseau de l'eau souterraine (m³/an/km²) 500 - 10000 > 10000 Usage agricole total hors-réseau de l'eau souterraine (m³/an/km²) 500 - 2 500 2 500 - 5 000 5 000 - 10 000 10 000 - 20 000 > 20 000 Notes: Les grands préleveurs agricoles n'ont pas été inclus dans les calculs d'usage. Les secteurs avec un usage inférieur à 500 m3/an/km2 ne sont pas affichés. 1:700 000 Source: Huchet et al., 2021 Coordonnées géographiques en degrés (°) minutes (') secondes (")

Total groundwater withdrawal density

Groundwater uses and intensity

5. CONCLUSIONS

- The decision-making framework and indicators are useful for the purposes of section 31.76 of the LQE, in particular, regional water issues and potential cumulative impacts and user conflicts
- However, it is incomplete, because it does not efficiently address land development and long-term issues (i.e., climate change)
- The key parameter for all indicator development is:
 - Withdrawal sites (location and yield)
- More work needs to be done to simplify current indicators and develop new ones:
 - Ex: land use evolution, GDE mapping, surface and ground water)

•••••

Thank you!

Questions?

REFERENCES

- Huchet, F., Gosselin, J., Raynauld, M., Domaine, J., Lefebvre, R., 2021. Outil de support à l'analyse des demandes d'autorisation de prélèvement d'eau – développement d'une méthodologie pour déterminer les pressions sur les ressources en eau souterraine et les zones de gestion particulière. Institut National de la Recherche Scientifique, Québec, Août 2021, 344 p.
- INRS-ÉTÉ, CGC, IRDA et OBV Yamaska, 2013. *Portrait des ressources en eau souterraine en Montérégie Est, Québec, Canada*. Rapport de recherche R-1433 préparé dans le cadre du PACES, juin 2013, 283 p.
- Larocque, M., Gagné, S., Dubois, E., Vu, T.A. 2021. Recharge des aquifères et contribution des eaux souterraines aux débits de base des cours d'eau - conditions passées, actuelles et futures en présence de changements climatiques – Rapport final. Rapport déposé au Ministère de l'Environnement et de la Lutte contre les changements climatiques. Université du Québec à Montréal, Montréal, Québec. 154 p.
- MELCCFP, 2023. Atlas de l'eau. Consulté le 18 avril 2023. https://services-mddelcc.maps.arcgis.com/apps/webappviewer/index.html?id=371faa9786634167a7bdefdead35e43e

Flood Hazard Identification and Mapping Program (FHIMP)

Updates and Looking Ahead

Juno Garrah, Policy Analyst (GeoBase/CCMEO/NRCan)

National Dialogue on Groundwater hosted by the Geological Survey of Canada April 19, 2023

Plan

Providing context: FHIMP Overview

FHIMP Updates: Engagement

Next Steps for FHIMP

Groundwater Flooding and FHIMP

FHIMP Updates: Program Implementation

Protect homes and communities from the impacts of climate change by:

Completing work with provinces and territories to develop flood maps for higher-risk areas

Advancing work to complete flood mapping nation-wide

Supporting the development of a portal to provide centralized access to information on flood risks

- Minister of Natural Resources Mandate Letter, December 2021

State of Flood Mapping

Numerous flood mapping initiatives at the local, provincial, and territorial level

- 586 studies now compiled in CCMEO's National Flood Hazard Data Layer (NFHDL): flood hazard information storage
- Many maps from FDRP era still in use across Canada (1976-1996)
- Significant leadership will help address existing flood mapping gaps and renew them when required

Flood Hazard Identification and Mapping Program (FHIMP) Overview

- \$63.8M total (2021-22 2023-24)
- NRCan lead, with support from Environment & Climate Change Canada and Public Safety Canada
- Complementary to the Emergency Management Strategy, National Risk Profile
- FHIMP projects align with the Federal Flood Mapping Guidelines and will be added to the NFHDL
- Builds on shared expertise, including support in Indigenous engagement from CIRNAC
- \$30.1M flood mapping projects in higher-risk areas, cost-shared with PTs
 - 50-50 with provinces, 75-25 with territories

Federal Flood Mapping Guidelines FHIMP alignment highlighted

FHIMP Partners

Today's presentation

Natural Resources Canada	Development and implementation of flood hazard mapping program with provinces and territories;
	Engage with jurisdictions to identify and implement priority projects;
	Cost-share flood mapping activities; and
	Ensure flood mapping information dissemination.
Environment and Climate Change Canada (ECCC)	Atmospheric and water data, modelling, water resources engineering, and further develop and advise on science and climate change knowledge; and
	Engage academia, provide expertise, inform flood mapping engineering methods.
Public Safety Canada (PS)	Governance, policy and alignment with initiatives under Canada's Flood Risk Plan
	Ensure no overlap with National Disaster Mitigation Program; and
	Preliminary scoping towards a Canada-Wide Flood Risk Portal.

FHIMP Update: Engagement

- Successful National Information Session, CWRA webinars & conference, Atlantic Flood Mapping Conference, Industry Day, and more!
 - Over ~ 500 flood mapping stakeholders engaged in these sessions
- FHIMP social media and webpage campaigns
- Met with every PT, 100+ bilats
- Drafted 22 agreements supporting a mixture of 200+ flood mapping related projects in 175+ locations across Canada

Flood Hazard Identification and Mapping Program (FHIMP) Types of Activities Conducted

Data Acquisition

All forms of data or information required for flood hazard mapping

Flood Hazard Mapping

All steps of an engineering assessment for flood hazard mapping

Information Dissemination

Distribution of flood hazard information to the public

FHIMP Update: Program Implementation

Types of projects

Groundwater and Flooding

- Groundwater flooding can occur in the absence of surface water flooding and extend to areas beyond overland flooding
- A survey of homes flooded during the 2013
 Calgary floods showed 88% reporting
 experiencing groundwater flooding first, with
 12% only experiencing groundwater flooding

- City of Calgary estimates 30-40% of flood damages are caused by groundwater, yet often excluded from flood insurance coverage and flood hazard mitigation strategies
- Can be improved through monitoring (adapting existing groundwater well sampling sites), as well
 as adaptation strategies (building codes, especially surrounding appropriate basement depth)

Groundwater Flood Mapping

- Groundwater flood maps, where they exist, have far less detail than fluvial and surface water flooding
 - Do **not** assign probabilities to flows or provide information on depth or extent
 - Simply delineate a broad area of possible emergence
 - For use by risk management authorities, need to estimate groundwater emergence and flow, coupling hydrogeological models with hydraulic surface flow models
 - "No cost-effective and rapidly applicable tool exists for accurate simulation of the spatial and temporal extent of groundwater flooding" (Morris et al., 2018)
 - Private options exist for groundwater flooding maps (e.g. JBA), especially in the UK, but no maps for Canada
 - No guidance in federal flood mapping guidelines

Morris, S.E., Cobby, D., Zaidman, M. and Fisher, K. (2018), Modelling and mapping groundwater flooding. J. Flood

Risk Manage, 11: S251-S268, https://doi.org/10.1111/ifr3.12201

Groundwater and FHIMP

- FHIMP is focused on creating regulatory flood maps for high-risk flood plain areas
- 95% of floods reported in Toronto beyond regulated area
 - No regulations on groundwater, storm water, sewer backup flooding in Canada
 - Managed at municipal level
 - Data (where is exists) available from insurance industry, municipalities
- Ideas? Advice? FHIMP wants to hear about your work on groundwater flooding

Next steps for FHIMP

• Public release of data dissemination environment and research by 2023-24

- NRCan continuing to activities advancing flood hazard mapping in Canada:
 - NFHDL; National Elevation Strategy; Federal Guidelines Series; Emergency Flood Mapping Support; Innovation (AI); Data & Products; etc.
 - Advancing FHIMP announced under National Adaptation Strategy
 - **Funding extension to 2027-2028** with implementation details to come
 - Additional G&C funding will be available through NRCan and ECCC for research related to flood mapping and modelling

Upcoming NRCan Webinars and Events

Participation in upcoming conferences:

- Association of State Floodplain Managers Annual Conference (May 2023)
- Canada Water Summit (June 2023)
- CWRA National Conference (June 2023)
- Canadian Institute of Planners National Conference (June 2023)
- Coastal Zone Canada Annual Conference (June 2023)
- o And more

Thank you

For any questions:

geoinfo@nrcan-rncan.gc.ca

