SBML Model Report

Model name: "Marhl2000_CaOscillations"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Harish Dharuri² at July 15th 2005 at 9:10 a. m. and last time modified at February twelveth 2014 at 2:17 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	5
events	0	constraints	0
reactions	7	function definitions	0
global parameters	0	unit definitions	1
rules	0	initial assignments	0

Model Notes

In order to reproduce the model, the volume of all compartment is set to 1, and the stoichiometry of CaER and CaM has been set to 0.25, corresponding to betaER/rhoER and betaM/rhoM described in the paper.

¹EMBL-EBI, lenov@ebi.ac.uk

 $^{^2}$ Keck Graduate Institute, Harish_Dharuri@kgi.edu

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole (default)

Definition µmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Cytosol			3	1	litre		
${\tt Endoplasmic_Reticulum}$			3	1	litre	$\overline{\mathbf{Z}}$	Cytosol
Mitochondria			3	1	litre	$ \overline{\mathbf{Z}} $	Cytosol

3.1 Compartment Cytosol

This is a three dimensional compartment with a constant size of one litre.

3.2 Compartment Endoplasmic_Reticulum

This is a three dimensional compartment with a constant size of one litre, which is surrounded by Cytosol.

3.3 Compartment Mitochondria

This is a three dimensional compartment with a constant size of one litre, which is surrounded by Cytosol.

4 Species

This model contains five species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
Ca_cyt		Cytosol	μ mol·l ⁻¹		\Box
CaER		${ t Endoplasmic_Reticulum}$	μ mol·l ⁻¹		\Box
CaM		Mitochondria	$\mu mol \cdot l^{-1}$		\Box
CaPr		Cytosol	$\mu mol \cdot l^{-1}$		\Box
Pr		Cytosol	$\mu mol \cdot l^{-1}$		\Box

5 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	v1	Jch	$0.25 \text{CaER} \xrightarrow{\text{Ca_cyt}} \text{Ca_cyt}$	
2	v3	Jleak	$0.25 \text{CaER} \longrightarrow \text{Ca_cyt}$	
3	v5	Jpump	$Ca_cyt \longrightarrow 0 \cdot 25 CaER$	
4	v7	Jout	$0.25 \text{CaM} \xrightarrow{\text{Ca_cyt}} \text{Ca_cyt}$	
5	v9	Jin	$Ca_cyt \xrightarrow{Ca_cyt} 0 \cdot 25 CaM$	
6	v11	dissociation of CaPr	$CaPr \longrightarrow Pr + Ca_cyt$	
7	v12	binding of Ca on Pr	$Pr + Ca_cyt \longrightarrow CaPr$	

5.1 Reaction v1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Jch

Reaction equation

$$0.25 \, \text{CaER} \xrightarrow{\text{Ca_cyt}} \text{Ca_cyt} \tag{1}$$

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
CaER		

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
Ca_cyt		

Product

Table 7: Properties of each product.

Id	Name	SBO
Ca_cyt		

Kinetic Law

$$v_1 = \text{vol}\left(\text{Cytosol}\right) \cdot \frac{\text{Kch} \cdot [\text{Ca_cyt}]^2 \cdot \left([\text{CaER}] - [\text{Ca_cyt}]\right)}{\text{K1}^2 + [\text{Ca_cyt}]^2} \tag{2}$$

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kch			4100.0		
K1			5.0		$\overline{\checkmark}$

5.2 Reaction v3

This is an irreversible reaction of one reactant forming one product.

Name Jleak

Reaction equation

$$0.25 \, \text{CaER} \longrightarrow \text{Ca_cyt}$$
 (3)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
CaER		

Product

Table 10: Properties of each product.

Id	Name	SBO
Ca_cyt		

Kinetic Law

$$v_2 = \text{vol}(\text{Cytosol}) \cdot \text{Kleak} \cdot ([\text{CaER}] - [\text{Ca_cyt}])$$
 (4)

Table 11: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kleak		0.05	

5.3 Reaction v5

This is an irreversible reaction of one reactant forming one product.

Name Jpump

Reaction equation

$$Ca_cyt \longrightarrow 0.25 CaER \tag{5}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Ca_cyt		·

Product

Table 13: Properties of each product.

Id	Name	SBO
CaER		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{Endoplasmic_Reticulum}\right) \cdot \text{Kpump} \cdot \left[\text{Ca_cyt}\right]$$
 (6)

Table 14: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kpump		20.0	

5.4 Reaction v7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Jout

Reaction equation

$$0.25 \text{ CaM} \xrightarrow{\text{Ca_cyt}} \text{Ca_cyt}$$
 (7)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
CaM		

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
Ca_cyt		

Product

Table 17: Properties of each product.

Id	Name	SBO
Ca_cyt		

Kinetic Law

$$v_{4} = \text{vol}\left(\text{Cytosol}\right) \cdot \left[\text{CaM}\right] \cdot \left(\frac{\text{Kout} \cdot \left[\text{Ca_cyt}\right]^{2}}{\text{K3}^{2} + \left[\text{Ca_cyt}\right]^{2}} + \text{Km}\right) \tag{8}$$

Table 18: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kout			125.000		\square
КЗ			5.000		\mathbf{Z}
Km			0.006		

5.5 Reaction v9

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Jin

Reaction equation

$$Ca_cyt \xrightarrow{Ca_cyt} 0.25 CaM$$
 (9)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
Ca_cyt		

Modifier

Table 20: Properties of each modifier.

Id	Name	SBO
Ca_cyt		

Product

Table 21: Properties of each product.

Id	Name	SBO
CaM		

Kinetic Law

$$v_5 = \text{vol}\left(\text{Mitochondria}\right) \cdot \frac{\text{Kin} \cdot [\text{Ca_cyt}]^8}{\text{K2}^8 + [\text{Ca_cyt}]^8}$$
 (10)

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kin		300.0	
K2		0.8	

5.6 Reaction v11

This is an irreversible reaction of one reactant forming two products.

Name dissociation of CaPr

Reaction equation

$$CaPr \longrightarrow Pr + Ca_cyt \tag{11}$$

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
CaPr		

Products

Table 24: Properties of each product.

Id	Name	SBO
Pr		
${\tt Ca_cyt}$		

Kinetic Law

$$v_6 = \text{vol}(\text{Cytosol}) \cdot \text{Kminus} \cdot [\text{CaPr}]$$
 (12)

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kminus		0.01	

5.7 Reaction v12

This is an irreversible reaction of two reactants forming one product.

Name binding of Ca on Pr

Reaction equation

$$Pr + Ca_cyt \longrightarrow CaPr$$
 (13)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
Pr		
${\tt Ca_cyt}$		

Product

Table 27: Properties of each product.

Id	Name	SBO
CaPr		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{Cytosol}) \cdot \text{Kplus} \cdot [\text{Ca_cyt}] \cdot [\text{Pr}]$$
 (14)

Table 28: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kplus		0.1	Ø

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of

SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

6.1 Species Ca_cyt

Initial concentration $0.35 \ \mu mol \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in v5, v9, v12 and as a product in v1, v3, v7, v11 and as a modifier in v1, v7, v9).

$$\frac{d}{dt}Ca_{-}cyt = v_1 + v_2 + v_4 + v_6 - v_3 - v_5 - v_7$$
 (15)

6.2 Species CaER

Initial concentration $0.76 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v1, v3 and as a product in v5).

$$\frac{d}{dt}\text{CaER} = 0.25 \ v_3 \ -0.25 \ v_1 \ -0.25 \ v_2 \tag{16}$$

6.3 Species CaM

Initial concentration $0.29 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v7 and as a product in v9).

$$\frac{d}{dt}CaM = 0.25 v_5 - 0.25 v_4 \tag{17}$$

6.4 Species CaPr

Initial concentration 85.45 µmol·l⁻¹

This species takes part in two reactions (as a reactant in v11 and as a product in v12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaPr} = v_7 - v_6 \tag{18}$$

6.5 Species Pr

Initial concentration $34.55 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v12 and as a product in v11).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pr} = |v_6| - |v_7| \tag{19}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany