Introduction

- Modeling dependencies in input; no longer independent
- Sequences:
 - Words in a sentence (syntax, semantics of the language)
 - Handwriting: pen movements
 - Speech; phonemes in a word (dictionary)

Patterns

Deterministic Patterns

- Traffic Light
- Each state dependent only on the previous state
- System is **Deterministic**

Patterns

Non-deterministic Patterns

• Weather

- States do not follow each other deterministically
- Model the system generating these states?
- Markov Assumption State of the model depends only upon the previous states of model

Markov Assumption

- Today's weather can always be predicted solely given knowledge of the weather of the past few days
- Unrealistic But simplifies the analysis

Weather Example

States: S_1 : rain; S_2 : cloudy; S_3 : sunny

Markov process is a process which moves from state to state depending (only) on the previous *n* states.

- Order n model
 - n is the number of states affecting the choice of next state

- Simplest Markov process
 - First order process where the choice of state is made purely on the basis of the previous state

How is it different from Deterministic???

Choice to be made probabalistically, not deterministically

- M states M² transitions between states
- State transition probability
 - Probability of moving from one state to another
- Collected in state transition matrix

		Today		
Ye sterday	sun cloud	sun 0.50 0.25	cloud 0.375 0.125 0.375	rain 0.125 0.625
	rain	$\lfloor 0.25 \rfloor$	0.375	0.375]

3-state Markov model

Transitional probabilities a_{i,j}

- Initialization
 - Vector of initial probabilities π

Sun	Cloud	Rain
1.0	0.0	0.0

Markov Model

- We have defined a first order Markov model comprising
 - States : Three states sunny, cloudy, rainy
 - π vector : Defining the probability of the system being in each of the states at time 0
 - State transition matrix: The probability of the weather given the previous day's weather

Markov Model

• Set of states:

$$\{s_1, s_2, ..., s_N\}$$

• Process moves from one state to another generating a sequence of states :

$$S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$$

Markov Model

• Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, ..., s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

- To define Markov model, the following probabilities have to be specified:
 - Transition probabilities

$$a_{ij} = P(s_j \mid s_i)$$

Initial probabilities

$$\pi_i = P(s_i)$$

Markov Model – Example

- Two states : 'Rain' and 'Dry'
- Transition probabilities:

- Initial probabilities:
- •P('Rain')=0.4 P('Dry')= 0.6

Calculation of Sequence Probability

• Problem:

 Calculate the probability of a sequence of states: {'Dry','Dry','Rain',Rain'}

```
P({'Dry','Dry','Rain',Rain'}) =
P('Rain'|'Rain') P('Rain'|'Dry') P('Dry'|'Dry') P('Dry') =
0.3*0.2*0.8*0.6
```

Calculation of Sequence Probability

Notation 1

Notation 2

Calculation of Sequence Probability

• On day t=1 the weather is sunny: $q_1=S_3$. What is the probability that the weather for the next 7 days will be "sun-sun-rain-rain-sun-cloudy-sun"?

Observation sequence: $O=S_3, S_3, S_3, S_1, S_1, S_1, S_2, S_3$;

Calculation of Sequence Probability

$$\begin{split} \mathsf{P}(O) &= \mathsf{P}\{S_3, \, S_{3,} S_3, \, S_1, \, S_1, \, S_3, \, S_2, \, S_3\} = \\ &= \mathsf{P}(q_1) \cdot \, \mathsf{P}(S_3 | S_3) \cdot \, \mathsf{P}(S_3 | S_3) \cdot \, \mathsf{P}(S_1 | S_3) \cdot \mathsf{P}(S_1 | S_1) \cdot \mathsf{P}(S_3 | S_1) \cdot \mathsf{P}(S_2 | S_3) \cdot \mathsf{P}(S_3 | S_2) = \\ &= 1 \cdot a_{3,3} \cdot a_{3,3} \cdot a_{3,1} \cdot a_{1,1} \cdot a_{1,3} \cdot a_{3,2} \cdot a_{2,3} = \\ &= 1 \cdot (0.8) \cdot (0.8) \cdot (0.1) \cdot (0.4) \cdot (0.3) \cdot (0.1) \cdot (0.2) = 1.54 \cdot 10^{-4} \end{split}$$

Example

- You are locked in a room for several days
- You are asked about the weather outside
- Only evidence:
 - Care taker is carrying an umbrella or not
 - Piece of seaweed
- Evidence is somehow linked to the weather

Observed States - Hidden States???

Assumption: Hidden states (the true weather) are modeled by a simple first order Markov process

Matrix of observation probabilities

• Contains the probabilities of the observable states given a particular hidden state

		Seaweed				
		Dry	Dryish	Damp	Soggy	\
weather	Sun Cloud	0.60	0.20 0.25	0.15 0.25	0.05 0.25	}
weather	Rain	0.05	0.10	0.35	0.50	-
		/				1

• Set of states:

$$\{s_1, s_2, \dots, s_N\}$$

• Process moves from one state to another generating a sequence of states :

$$S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$$

 Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

 States are not visible, but each state randomly generates one of M observations (or visible states)

$$\{v_1, v_2, \dots, v_M\}$$

Defining HMM

- To define hidden Markov model, the following probabilities have to be specified:
 - Matrix of transition probabilities A=(a_{ii})
 - Matrix of observation probabilities $B=(b_i (v_m)),$ $b_i(v_m) = P(v_m | s_i)$
 - Vector of initial probabilities $\pi = (\pi_i)$, $\pi_i = P(s_i)$.
 - Model is represented by M=(A, B, π)

HMM – Three Problems

Question # 1 – Evaluation

GIVEN

A sequence of observations:

Dry Dry Rainy Rainy Rainy Dry Rainy

QUESTION

How likely is this sequence, given our model

This is the **EVALUATION** problem in HMMs

HMM – Three Problems

• Evaluation Problem

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the probability that model M has generated sequence O

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

HMM – Forward Algorithm Example

Model Description

- Hidden States
 - Sunny, Cloudy, Rainy
- Observable States
 - Dry, Dryish, Damp, Soggy
- Initial State Probabilities

	Sunny	Cloudy	Rainy
π	0.63	0.17	0.20

HMM – Forward Algorithm Example

State Transition Matrix A

	weather today				
		Sunny	Cloudy	Rainy	
weather yesterday	Sunny	0.500	0.375	0.125	
	Cloudy	0.250	0.375 0.125	0.625	
	Rainy	and the same of th		0.375	

Observational Probability Matrix B

		ates			
		Dry	Dryish	Damp	Soggy
hidden states	Sunny	0.60	0.20	0.15	0.05
	Cloudy	0.25	0.25	0.25	0.25
	Rainy	0.05	0.10	0.35	0.50

Sunny Cloudy Rainy 0.63 0.17 0.20

 π

	weather today					
weather yesterday			Cloudy	Rainy		
	Sunny	0.500	0.375	0.125		
yesierday	Cloudy	0.250	0.125	0.625		
	Rainy	100		0.375		

	observed states						
hidden states		Dry	Dryish	Damp	Soggy		
	Sunny	0.60	0.20	0.15	0.05		
	Cloudy	0.25	0.25	0.25	0.25		
	Rainy	0.05	0.10	0.35	0.50		

0.15 0.05

0.35 0.50

0.25

0.25

	weather today					
weather yesterday			Cloudy	Rainy		
	Sunny	0.500	0.375	0.125		
yesierday	Cloudy	0.250	0.125	0.625		
	Rainy	100		0.375		

		observed states					
100 30 80 CO.		Dry	Dryish	Damp	Soggy		
	Sunny	0.60	0.20	0.15	0.05		
	Cloudy	0.25	0.25	0.25	0.25		
	Rainy	0.05	0.10	0.35	0.50		

	weather today				
weather yesterday		Sunny	Cloudy	Rainy	
	Sunny	0.500	0.375	0.125	
	Cloudy	0.250	0.375 0.125	0.625	
	Rainy	-2		0.375	

		ob:	observed states		
100000000000000000000000000000000000000		Dry	Dryish	Damp	Soggy
	Sunny	0.60	0.20	0.15	0.05
	Cloudy	0.25	0.25	0.25	0.25
	Rainy	0.05).10	0.35	0.50

Sunny Cloudy Rainy π 0.63 0.17 0.20

	weather today			
weather yesterday		Sunny	Cloudy	Rainy
	Sunny	0.500	0.375	0.125
	Cloudy	0.250	0.125	0.625
	Rainy	0.250	0.375	0.375

	observed states				
100000000000000000000000000000000000000		Dry	Dryish	Damp	Soggy
	Sunny	0.60	0.20	0.15	0.05
	Cloudy	0.25	0.25	0.25	0.25
	Rainy	0.05	0.10	0.35	0.50

 $Alpha_2(Sunny) = [Alpha_1(Sunny)* a_{ss} + Alpha_1(Cloudy)* a_{cs} + Alpha_1(Rainy)* a_{rs}]* b_{s,damp}$

Alpha2(Sunny) = (((0.37800002*0.5) + (0.0425*0.25) + (0.010000001*0.25)) * 0.15) = \$

Sunny Cloudy Rainy 0.63 0.17 0.20

 π

	weather today			
weather yesterday		Sunny	Cloudy	Rainy
	Sunny	0.500	0.375	0.125
	Cloudy	0.250	0.125	0.625
	Rainy	0.250	0.375	0.375

	observed states				
hidden states		Dry	Dryish	Damp	Soggy
	Sunny	0.60	0.20	0.15	0.05
	Cloudy	0.25	0.25	0.25	0.25
	Rainy	0.05	0.10	0.35	0.50

 π

weather yesterday	weather today					
		Sunny	Cloudy	Rainy		
	Sunny	0.500	0.375	0.125		
	Cloudy	0.250	0.375 0.125	0.625		
	Rainy			0.375		

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 π

	weather today				
weather yesterday		Sunny	Cloudy	Rainy	
	Sunny	0.500	0.375	0.125	
	Cloudy	0.250	0.125	0.625	
	Rainy			0.375	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

Probability of the model = \$\$\$+£££+€€€

HMM – Three Problems

Question # 2 – Decoding

GIVEN

A sequence of observations:

Dry Dry Rainy Rainy Rainy Dry Rainy

QUESTION

Which portion of the sequence was generated by 'low' atmospheric pressure and what portion corresponds to 'high' atmospheric pressure

This is the **DECODING** problem in HMMs

HMM – Three Problems

Decoding Problem

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the most likely sequence of hidden states s_i that produced this observation sequence O.

HMM – Viterbi Algorithm

• Finding the most probable sequence of hidden states

α

For each intermediate and terminating state in the trellis there is a most probable path to that state

HMM – Viterbi Alogrithm

Partial best paths each having a probability δ

Unlike the partial probabilities in the forward algorithm, δ is the probability of the one (most probable) path to the state.

 $\begin{array}{cccc} Sunny & Cloudy & Rainy \\ \pi & 0.63 & 0.17 & 0.20 \end{array}$

		weathe		
weather yesterday		Sunny	Cloudy	Rainy
	Sunny	0.500	0.250	0.250
	Cloudy	0.375	0.125	0.375
	Rainy	0.125	0.675	0.375

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 π

		weather today		
		Sunny	Cloudy	Rainy
weather yesterday	Sunny	0.500	0.250 0.125	0.250
	Cloudy	0.375	0.125	0.375
	Rainy	0.125	0.675	0.375

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 δ_1 (Sunny)=0.63 * 0.6 = 0.37800002

 π

		weather today				
weather yesterday		Sunny	Cloudy	Rainy		
	Sunny	0.500	0.250	0.250		
	Cloudy	0.375	0.125	0.375		
	Rainy	0.125	0.675	0.375		

		observed states				
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 δ_1 (Cloudy)=0.17 * 0.25 = 0.0425

 π

		weather today				
weather yesterday		Sunny	Cloudy	Rainy		
	Sunny	0.500	0.250	0.250		
	Cloudy	0.375	0.125	0.375		
	Rainy	0.125	0.675	0.375		

		observed states				
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 δ_1 (Rainy)=0.2 * 0.05 = 0.010000001

 π

		weather today			
weather yesterday		Sunny	Cloudy	Rainy	
	Sunny	0.500	0.250	0.250	
	Cloudy	0.375	0.250 0.125	0.375	
			0.675	-	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

$$\delta_2(Sunny) = ?$$

π

		weather today			
weather yesterday			Cloudy		
	Sunny	0.500	0.250 0.125	0.250	
	Cloudy	0.375	0.125	0.375	
		-	0.675	-	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 $\delta_2(\text{Sunny}) = \max \left((0.37800002*0.5), \, (0.0425*0.375), \, (0.010000001*0.125) \right) * 0.15 = 0.028350003$

 $\Phi_2(Sunny) = Sunny$

π

		weather today			
weather yesterday		Sunny	Cloudy	Rainy	
	Sunny	0.500	0.250	0.250	
	Cloudy	0.375	0.250 0.125	0.375	
		-	0.675	-	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 $\delta_2(\mathsf{Cloudy}) = \mathsf{Delta} = \max\left((0.37800002*0.25), (0.0425*0.125), (0.010000001*0.675)\right)*0.25 = 0.023625001$ $\Phi_2(\mathsf{Cloudy}) = \mathsf{Sunny}$

π

		weather today			
		Sunny	Cloudy	Rainy	
weather yesterday	Sunny	0.500	0.250	0.250	
	Sunny Cloudy	0.375	0.125	0.375	
		-	0.675	-	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 $\delta_2(\mathsf{Cloudy}) = \max \left((0.37800002*0.25), (0.0425*0.375), (0.010000001*0.375) \right) * 0.35 = 0.033075$ $\Phi_2(Rainy) = Sunny$

 π

		weather today			
weather yesterday		Sunny	Cloudy	Rainy	
	Sunny	0.500	0.250 0.125	0.250	
	Cloudy	0.375	0.125	0.375	
	Rainy	0.125	0.675	0.375	

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

 π

		weather today		
		Sunny	Cloudy	Rainy
weather yesterday	Sunny	0.500	0.250	0.250
	Cloudy	0.375	0.250 0.125	0.375
			0.675	-

	observed states					
hidden states		Dry	Dryish	Damp	Soggy	
	Sunny	0.60	0.20	0.15	0.05	
	Cloudy	0.25	0.25	0.25	0.25	
	Rainy	0.05	0.10	0.35	0.50	

HMM – Three Problems

Question # 3 – Learning

GIVEN

Sequence(s) of observations:

Dry Dry Rainy Rainy Rainy Dry Rainy

And possible hidden states

Low Pressure, High Pressure

QUESTION

How the hidden states are linked to the observable states? How often pressure changes from low to high etc.

This is the **LEARNING** problem in HMMs

HMM – Three Problems

Learning Problem

Given some training observation sequences $O=o_1 o_2 ... o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data

Supervised Training

If training data has information about sequence of hidden states then use maximum likelihood estimation of parameters:

$$a_{ji} = P(s_i \mid s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m \mid s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}$$

Supervised Training

- Count transition frequencies
 - Start _____ Fair = 4
 - $\pi_{fair} = 4/8 = 0.5$
 - Fair ____Biased = 7
 - $a(Fair, Biased) = 7/(4+3+4+4+3+3+4+3) = \frac{1}{4}$

 $\{F\Rightarrow B\}$ transitions occur at 7 locations $(1_3,2_3,3_2,4_4,5_4,6_3,8_2)$ where k_i denotes location i of sequence k

Supervised Training

- Observation/Emission Frequencies
 - E(Biased, Head) = 8
 - e(Biased, Head) = 8/12

The material in these slides is based on the following resources

References

- •A tutorial on Hidden Markov Models by Roger Boyle, University of Leeds
- •Chapter 13, Introduction to Machine Learning, E. Alpyadin, MIT Press
- •Hidden Markov Models by V. Govindaraju
- •Hidden Markov Models by Y. Yemini, Columbia University