Local Extrema

Pre-lecture for 6/23

Types of Extrema

In Calc 1, we saw 2 types of extrema

- Local minimum
- Local maximum

Definition for multivariable functions:

- If $f(\mathbf{x}) \ge f(\mathbf{x}_0)$ for \mathbf{x} around \mathbf{x}_0 , f has a local minimum at \mathbf{x}_0
- If $f(\mathbf{x}) \le f(\mathbf{x}_0)$ for \mathbf{x} around \mathbf{x}_0 , f has a local maximum at \mathbf{x}_0

Critical Points

Calc 1 definition:

• c is a critical point if f'(c) = 0 or f' not defined at x = c

New definition:

• v is a critical point if $\nabla f(\mathbf{v}) = \mathbf{0}$ or ∇f not defined at v

Just like Calc 1:

• If v is an extrema and ∇ f is defined at v, then ∇ f(v) = 0

Saddle Points

In Calc 1, critical points are almost always extrema

• If function continuously differentiable, "neither" is rare

Now, they are much more common

- If \mathbf{x}_0 is a critical point but not an extrema, call it a saddle point
- Will have $f(x) > f(x_0)$ for some x near x_0 and $f(x) < f(x_0)$ for others

2nd Derivative Test

How can we tell between local min, local max, or saddle?

- Define D = f_{xx}f_{yy} (f_{xy})²
 If D(v) > 0 and f_{xx}(v) > 0, then v is a local min
- If $D(\mathbf{v}) > 0$ and $f_{\mathbf{v}\mathbf{v}}(\mathbf{v}) < 0$, then \mathbf{v} is a local max
- If D(v) < 0, v is a saddle point
- If $D(\mathbf{v}) = 0$, test inconclusive; try other methods

We shall see explanation of test and "other methods" in lecture

Practice Problems

Find and classify all critical points

- $f(x, y) = x^2 + xy + y^2 + x + y + 1$
- $f(x, y) = x^3 + y^3 3xy + 06232025$
- $f(x, y) = y^3 3y^2 + 3x^2y 3x^2 + 1$

Find and classify the critical points of f(x, y) = |x-2| + |y-3|

Scratchwork