

ABSTRACT

A retardation film comprised of a single oriented polymer film, characterized in that the retardation at wavelengths of 450 nm and 550 nm satisfies the following formulae (1) and/or (2), and the water absorption is no greater than 1%.

$$R(450)/R(550) < 1 \quad (1)$$

$$K(450)/K(550) < 1 \quad (2)$$

10 where R(450) and R(550) represent the in-plane
 retardation of the oriented polymer film at wavelengths
 of 450 nm and 550 nm, respectively, and K(450) and K(550)
 are the values calculated by $K = [n_z - (n_x + n_y)/2] \times d$
 (where n_x , n_y and n_z represent the three-dimensional
 refractive indexes of the oriented polymer film as the
 refractive indexes in the direction of the x-axis, y-axis
 and z-axis, respectively, and d represents the thickness
 of the film) for the oriented polymer film at a
 wavelength of 450 nm and 550 nm, respectively.⑤

20 There are provided laminated retardation films and liquid crystal display devices employing the retardation film.