高通BSP技术期刊 2015/10/20

Qualcomm Technologies, Inc.

Confidential and Proprietary – Qualcomm Technologies, Inc. 机密和专有信息——高通技术股份有限公司

内容介绍

- Linux Solution
- CoreBSP Solution
- Modem BSP Solution
- SSC培训内容

Linux Solution

Target	Solution	Description
ALL	00031142	介绍如何使能verified boot及生成OEM自己的key

CoreBSP Solution

Target	Solution	Description
MSM8952 MSM8976 MSM8996	00031161	使用sectool 生成efs tar包

Modem BSP Solution

Target	Solution	Description
8994	00029216	如果用JTAG调试MPSS
8994	00031098	如果用JTAG读取EMMC内容

Modem BSP Solution

Target	Solution	Description
8994	00029216	如果用JTAG调试MPSS
8994	00031098	如果用JTAG读取EMMC内容

SSC培训内容

- □ 培训视频
 - https://virtuallearning.qualcomm.com/p2hdvipyl49/
- □ 地磁传感器布局检查
- □ 目前那些平台支持SSC
- □ 软件设计检查
- □ 如何查询SSC驱动支持情况
- □ 低功耗SSC传感器驱动设计
- □ SSC相关开源代码目录和库文件
- □ ulmage 模式介绍
- □ 如何抓取SSC相关日志文件
- 如何配置传感器三轴的方向
- □ 传感器的校准
- □ 不同硬件和项目在同一代码基线上兼容
- □ 自动检测 (Auto-detect) 传感器

- □ 传感器在sensor_def_qcomdev.conf文件里的配置
- OTA更新sensor_def_qcomdev.conf文件
- □ SSC bring up调试步骤
- □ SSC 相关文档列表
- □ SSC客户支持

目前那些平台支持SSC

- MSM8996
- MSM8x94/MSM8992
- MSM8976/MSM8956
- MSM8952
- □ MSM8084
- □ MSM8x74
- MSM8x26
- □ MSM8064
- □ MSM8960

地磁传感器布局检查

□ 问题描述:

地磁传感器是敏感部件, 手机上含有很多对地磁传感器数据产生干扰的材料和器件, 如果在板子设计前期不完善(没有跟地磁干扰源保持足够安全距离), 项目后期将很难进行更改, 板子上常见的干扰源情况:

- 硬磁干扰,硬磁随距离增加而成指数级衰减,手机中典型硬磁干扰器件:扬声器,接收机,自动对焦相机,振动器,霍尔开关
- □ 软磁干扰,软磁对磁场影响呈各向异性,典型的软磁效应的零件: 铁质螺钉,屏蔽罩(根据材料),NFC的铁氧天线,Wacom sheet,无线充电磁板
- 动态干扰,主要是变化的电流导致的,大电流伴随着较大的变化量,电流导致的磁场干扰无规律可言, 不能通过软件消除,唯一避免的方式是保持安全距离

□ 解决办法:

在项目硬件初期就联系地磁传感器供应商,获取地磁传感器布局的标准文档,并与地磁传感器供应商一起检查地磁传感器周边的布局;在早期硬件版本回来后,及时联系供应商检查传感器数据,扫描地磁传感器周边的磁干扰情况,尽早发现地磁干扰问题;

地磁传感器布局检查 (续)

- 可以在第一版硬件回来后组装2台以上的完整机器(包含最终产品将要用到的磁性材料如NFC,无线充 电,各种卡槽屏蔽罩等)以便测试指南针的准确性和机器间的差异性;
- 常用测试用例:
 - 开关LCD
 - 插拔充电器
 - 开关WIFI
 - 开关外放SPEAKER
 - 固定手机方位,通过将CPU满载或者手机充电的方法使手机升温,观察方向漂移
 - 固定手机方位,手动使CPU满载/空载,观察方向抖动。地磁传感器是敏感部件,手机上含有很多对地 磁传感器数据产生

软件设计检查

软件设计Checklist文档

Target	DCN	Description
MSM8996	80-NV396-82	8996平台BSP软件设计检查
MSM8956/MSM8976	80-NU154-82	8956/8976平台BSP软件设计检查
MSM8952	80-NV610-82	8952平台BSP软件设计检查

注:软件设计检查是为了软件设计的要求而制定,硬件设计请尽量按照参考设计,如果有变动或者不了解的情况,请及时联系高通解决;

如何查询SSC驱动支持情况

- □ 首先查看SSC传感器兼容器件列表文档 (80-NB925-1)
 - 如果是PoR(Plan of Record)类型的,驱动文件会在代码发布的时候一起提供;
 驱动源文件代码目录: adsp_proc/Sensors/dd/qcom/src
 - 如果不是PoR(Plan of Record)类型的,驱动文件将由传感器供应商发布;
- □ 如果不在SSC传感器兼容器件列表里,查看是否在PVL(Preferred Vendor List)支持列表里
 - 查询网站地址: https://createpoint.qti.qualcomm.com/hwcomponents/#
 - 可以在网站上输入想要查询的传感器器件型号,查询相关平台的支持和验证情况,驱动程序和配置的发布还是由传感器供应商提供,网站上有厂商联系人
- □ 如果也不在PVL支持列表里,有以下几种方式:
 - 在项目初期就把需求加入PVL的传感器厂商,型号和release的时间提供给TAM,然后由TAM统一提交需求;
 - 传感器厂商根据文档在Dragon board开发好驱动直接发布给客户;
 - 由客户自己或者和厂商一起在客户板子上开发驱动;
- □ SSC驱动开发参考文档
 - 80-N4080-1 Sensors_Device_Dr_Framework_Design_Ref
 - 80-NM492-3 SSC Driver Acceptance Checklist
 - 80-N7635-1 Snapdragon_Sensors_Core_New_Sensor_Driver_Integration_LA

低功耗SSC传感器驱动设计

■ 使能DRI/FIFO模式:

DRI(data ready interrupt),需要检查传感器硬件是否支持FIFO,并且连接对应的中断GPIO脚到MSM芯片上,使能DRI/FIFO模式可能有效减少唤醒SSC处理数据的次数,以达到降低功耗的目的;加速度传感器,需要同时支持DRI/FIFO/MD(motion detect)中断;

□ 使用SPI接口连接传感器

SPI比I2C总线读写速度更快,目前加速度/陀螺仪/ 地磁传感器大部分支持一个相当大的硬件FIFO,快速的将数据从FIFO读取到SSC,可以有效减少SSC总线读取数据等待时间,更快进入低功耗模式。

8996 参考设计有两个SPI接口(加速度/陀螺仪/地磁), 8956/8976参考设计有一个SPI接口 (加速度/陀螺仪), 8994/8992/8952目前不支持SPI连接;

□ 使用支持ulmage模式的驱动

ulmage模式驱动,是指把驱动差分成两部分,ulmage部分是指在读写数据时,只需要运行在内存RAM里,不需要访问DDR内存,这样可以省去DDR内存运行所需的功耗,参考文档"80-N4080-1",如果不是参考设计里的传感器型号,请联系供应商获取最新支持ulmage的驱动;

注:推荐驱动调试步骤,轮询(flags:0x0)->中断(flags:0xd0)->使能ulmage模式

SSC相关开源代码目录和库文件

□ AP 侧源代码和库文件

vendor/qcom/proprietary/sensors/
vendor/qcom/proprietary/prebuilt_HY11/target/product/msmxxxx/obj/STATIC_LIBRARIES/libsensors_lib_i
ntermediates/libsensors_lib.a

- □ ADSP/SLPI 侧源代码和库文件
 - 以下平台是和Audio共享ADSP处理器
 MSM8994/MSM8992, MSM8976/MSM8956, MSM8952, MSM8084, MSM8974, MSM8926
 - 代码和库文件目录:
 adsp_proc/Sensors
 - 以下平台是单独使用SLPI(Sensor Low Power Island)处理器
 MSM8996
 - 代码和库文件目录:
 slpi_proc/Sensors

ulmage 模式介绍

□ 相关Solution

Target	Solution	Description
MSM8994/8992/8996/ 8952	00029397	介绍如何重构传感器驱动为支持ulmage功能
MSM8994/8992/8996/ 8952	00030351	介绍如何查看ulmage传感器算法和驱动占用内存 情况
MSM8994/8992/8996/ 8952	00030152	介绍如何去掉不需要的ulmage传感器算法

注:

ulmage模式是ADSP所有软件完全运行在ADSP的L2高速缓存(而不需要访问DDR内存)。该模式因为不需要访问DDR内存,所以功耗会比正常模式(big image)更省电,对功耗敏感的功能比较有用,比如AMD/RMD和计步器等功能。常用的加速度传感器一般需要改写成支持ulmage的驱动,陀螺仪传感器和地磁传感器如果是L2Cache较大的平台(msm8996/8994 512KB)也需要改写成支持ulmage的驱动。

参考文档: 80-N4080-1 和 80-NM328-74

如何抓取SSC相关日志文件

□ 相关Solutions

Target	Solution	Description
8952/8956/8976/8992/ 8994	00031049	如何获取ADSP侧传感器的初始化日志
8994/8992/8996/8952/ 8976	00031051	如何使能AP侧的传感器日志
8952/8956/8976/8992/ 8994/8996	00031056	如何在QXDM工具里使能SSC日志开关
8994/8992/8952/8976	00031052	如何使能ADSP sensor SMGR相关日志

□ 文档:

- 80-NM328-74 Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952
 - 章节"Sensors Logging and Debugging"

如何配置传感器三轴的方向

- □ 相关Solution:
 - □ 00031060 --- 如何映射加速度, 陀螺仪和地磁传感器的三轴布局方向
- □ 文档:
 - 80-NM961-3 Axis_Mapping_Sensors_SAE_LA_Coordination_Systems
 - □ 80-NM328-74 "Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952" 章节 "Customizing Axes" 和 "Steps for Basic Sensors Axis Mapping for Android"

传感器的校准

□ 文档:

- 80-N7859-1_G_Snapdragon_Sensors_Core_Factory_Test_Framework
- □ 80-NM328-74 "Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952" 章节 "Calibration for Different Sensors" 和 "Factory Calibration and Self Test"

□ 注:

- □ 校准包括工厂校准和动态校准,动态校准目前支持陀螺仪和地磁传感器校准;
- 测试动态校准之前,需要先把三轴的方向配置正确;
- □ 地磁传感器的动态校准依靠MD(motion detect)来触发,所以先要把加速度的MD中断调试好;
 - Solution <u>00030205</u> -- How to verify Qualcomm Motion Detect Algorithms (AMD, RMD)?

不同硬件和项目在同一代码基线上兼容

- □ 在sensor_def_qcomdev.conf文件里提供了":hardware"、":platform"和 ":soc_id" 几个关键字来区分不同的 硬件、平台和芯片ID,以便达到相同软件基线兼容不同硬件和项目的要求;
- :hardware 8952
 - □ 读取属性: ro.board.platform
- :platform MTP
 - □ 读取节点:sys/devices/soc0/hw_platform
- :soc_id 264
 - □ 读取节点:/sys/devices/soc0/soc_id

自动检测(Auto-detect)传感器

🗅 SSC支持自动检测(Auto-detect)板子上的传感器器件;

□ 使能方法:

Solution <u>00031168</u> -- steps to enable boot time SSI auto-detect

□ 如果产线第一次启动有没有贴传感器器件的情况,可以改成每次启动都做自动检测:

Solution <u>00029607</u> -- Change sensor core to auto-detect for every time boot up

□ 注意事项:

Auto-detect会在板子第一次启动时读取"sensor_def_qcomdev.conf"里配置的多组同类型传感器配置,逐个调用驱动里的"probe"函数,如果该执行成功,将把检测成功的传感器配置写到"sns.reg"文件,再次启动过程将使用检测成功的这组配置,而不会再次做"probe"检测;所以在做测试的时候需要要把机器里的"sns.reg"删除,并重启才能生效;

传感器在sensor_def_qcomdev.conf文件里的配置

- Solution:
 - □ 00031169 -- 传感器在conf文件里的配置说明
- □ 文档:
 - 80-NM492-2 Snapdragon_Sensors_Tool_DragonBoard_APQ8074_APQ8094
 - □ 80-NM328-74 "Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952" 章节 "Driver Registry Items Required for Each Sensor"

□ 注:

- □ 在修改conf文件并push到设备后,需要删除"sns.reg",并重新启动设备才能生效;
- □ 默认release的驱动,可以在代码里找到参考的配置:
 vendor/qcom/proprietary/sensors/dsps/test/src/Sns_regedit_ssi.c
- 新增驱动,需要在从供应商获取驱动的同时,拿到这些相应的配置;

OTA更新sensor_def_qcomdev.conf文件

Description :

□ 因为"sns.reg"文件里包含工厂校准数据,在做设备OTA的时候不能简单删除该文件,但又有需求在OTA 更新时做部分配置的修改;SSC使用版本号来更新指定的配置项;

□ 解决方案说明文档:

- 80-N7635-1 Snapdragon_Sensors_Core_New_Sensor_Driver_Integration_LA
 - □ 章节3.4.2.2 Using version numbers to update specific registry items
 - □ 章节 3.4.2.3 Using version numbers to reapply a registry item after every reboot80-NM328-74

SSC bring up调试步骤

- Solution:
 - 00031170 steps for SSC bring up for 8996/8994/8992/8996/8952/8976
- □ 文档:
 - 80-N6957-1 SSC_Debugging_Tools
 - 80-NM328-74 Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952
- □ 注:
 - □ 在从供应商获取驱动和配置后,进入驱动bring up阶段;
 - □ 首先需要做的是配置sensor_def_qcomdev.conf和集成供应商驱动;
 - Android Logcat日志和QXDM ADSP sensor的日志都是必不可少的调试手段,请提前安装好USB驱动和QXDM工具;

SSC 相关文档列表

- □ SSC支持功能描述:
 - 80-NH058-1 QTI_Snapdragon_Sensor_Core_Features_LA
- □ 深入浅出培训文档
 - 80-NV396-43 MSM8996_Sensors_Deep_Dive
 - 80-NM328-74 Sensors_Deep_Dive_MSM8994_MSM8992_MSM8952
 - 80-NA157-92 MSM8974_Snapdragon_Sensors_Core_Deep_Dive
 - 80-ND928-68 MSM8x26_Snapdragon_Sensors_Core_Deep_Dive
- □ 驱动开发
 - 80-N4080-1 Sensors_Device_Dr_Framework_Design_Ref
 - 80-NB925-1 Snapdragon_Sensors_Core_Compatible_Sensor_Drivers_List
 - 80-NM492-3_C_SSC_Driver_Acceptance_Checklist.xlsm
 - 80-N7635-1 Snapdragon_Sensors_Core_New_Sensor_Driver_Integration_LA

SSC 相关文档列表(续)

- 工厂测试
 - 80-N7859-1 Snapdragon_Sensors_Core_Factory_Test_Framework
- □ 算法相关
 - 80-NA811-2 Adding_Custom_Sensors_Algorithm_Using_SAM_20
 - 80-N6890-2 Sensors_Algorithm_Mgr_2_0_Interface_Spec
- QSensorTest 应用
 - 80-N8485-1 QSensorTest_Android_App
- □ 其他相关文档
 - 80-NV610-70 Sensors_Quick_Start_MSM8952
 - 80-NM328-44 ADSP_BF_26_Sensors_Overview
 - 80-NA354-4 Hexagon_ADSP_BF2x_Debug_Guide
 - 80-P0951-1 Sensors_Multi-HAL_Overview_Usage

SSC 客户支持

- □ 工厂测试
- □ 客户支持是通过QTI Salesforce网站: https://support.cdmatech.com
- □ 请选择正确的问题领域,以便能把您的case直接转给传感器客户支持的工程处理
 - Problem Area 1
 - Board Support Package (BSP)
 - Problem Area 2
 - Drivers –Peripheral
 - Problem Area 3
 - Sensors: Sensor Core for SSC side issues
 - Sensors: AP for AP side issues