Notes on Hecke Operators

Simon Burton

March 7, 2018

1 Introduction

Group representation theory concerns itself with homomorphisms from a group G to the general linear group over a field k:

$$G \to \operatorname{GL}(n,k)$$
.

The definition of the general linear group makes sense not just for a field k, but also for a ring, or even a semi-ring (a ring without additive inverses.) In particular, we consider the semi-ring of truth-values:

$$\mathbb{F}_1 = \{ \text{false, true} \}$$

with addition as disjunction and multiplication as conjunction. The notation \mathbb{F}_1 refers to the "field with one element", which however is not a field and doesn't have one element [5]. We have the following

<u>Theorem 1.</u> The group $GL(n, \mathbb{F}_1)$ consists of $n \times n$ permutation matrices, and is therefore isomorphic to the permutation group S_n .

Proof: Adapted from [6].

And so we find that group representation theory over the semi-ring of truth values is the theory of groups acting on sets.

2 Groups acting on sets

We say a group G acts on a set X when there is a group homomorphism:

$$G \to \operatorname{Aut}(X)$$
.

We choose not to name this homomorphism, and instead confuse the elements of G with their image in $\operatorname{Aut}(X)$. In this way we understood expressions such as gx for $g \in G, x \in X$. This is similar to how a field acts on a vector space: we don't usually write the homomorphism, and instead just let elements of the field act on the vectors (on the left.)

We also call this setup a G-set X.

A map of G-sets $X \to Y$ is a set function $f: X \to Y$ that commutes with the group action. That is, for every $g \in G$ we have the commuting square:

$$\begin{array}{ccc}
X & \xrightarrow{g} & X \\
\downarrow^f & & \downarrow^f \\
Y & \xrightarrow{g} & Y
\end{array}$$

Thinking of G as a one object category, a group action is then a set-valued functor and we see that a map of G-sets is the same as a natural transformation of functors. This gives the category of G-sets which we denote GSet.

For $x \in X$ the *stabilizer* is defined

$$Stab(x) := \{ g \in G \mid gx = x \}.$$

This is clearly a subgroup of G. Dually, the fixed point set of $g \in G$ is the subset of X given by

$$Fix(g) := \{ x \in X \mid gx = x \}.$$

{In what sense are these really dual?}

The *orbit* of $x \in X$ is the set

$$Orbit(x) := \{ gx \mid g \in G \}.$$

A simple calculation shows that the stabilizers of points in the same orbit are related by conjugation: given a G-set X, with $x \in X$, $g \in G$, we have

$$\operatorname{Stab}(gx) = g\operatorname{Stab}(x)g^{-1}.$$

Given an arbitrary group G, there are many ways to cook up a set that G acts on. The most important such recipe is the following. Let H be any subgroup of G, and let $X = \{gH\}_{g \in G}$ be the set of left cosets of H. Then G acts on X by left-multiplication, and this action is transitive. We get the *left regular action* when $H = \{1\}$ and we get the trivial action when H = G. But this recipe has a converse: any transitive G-set X is isomorphic to a G-set $\{gH\}_{g \in G}$ for some subgroup $H \in G$. The subgroup can be chosen to be the stabilizer of any point $X \in X$.

We now state the *orbit-stabilizer theorem*.

Theorem 2. Given a G-set X and a point $x \in X$ there is a bijection of sets:

$$\operatorname{Orbit}(x) \times \operatorname{Stab}(x) \cong G.$$

Proof: Let H be the subgroup

$$H = \operatorname{Stab}(x)$$
.

Then G is partitioned into cosets $\{gH \mid g \in G\}$. We claim that this set of cosets is in bijection with the orbit of x, with bijection given by the relation

$$Orbit(x) \to \{gH \mid g \in G\}$$
$$gx \mapsto gH.$$

To show that this relation is actually a function, let gx = hx for $g, h \in G$. Then $h^{-1}gx = x$ and so $h^{-1}g \in H$, and the cosets gH and hH are identical. {finish}

Example 3. The rank-nullity theorem says that given a linear map on finite-dimensional vector spaces $A: V \to V$,

$$Dim(Im(A)) + Dim(Ker(A)) = Dim(V).$$

Such a map gives a group action: it is the additive group of V acting on the set V by addition. That is, any $v \in V$ acts on $x \in V$ as $v : x \mapsto x + Av$. Now we see that given any $x \in V$ the stabilizer subgroup $\operatorname{Stab}(x)$ of this action is precisely the kernel of A. The orbit of x is x plus the image of A.

Working with a vector space over a finite field, we can take the cardinality of these sets as in the formula $|\operatorname{Orbit}(x)||\operatorname{Stab}(x)| = |G|$ and take the logarithm of this where the base is the size of the field and we get exactly the rank-nullity equation.

Over an infinite field this doesn't work and we need to think more along the lines of a categorified orbit-stabilizer theorem. {Does this really work?} In this case, for each $x \in V$ we can find a bijection:

$$Orbit(x) \cong G/Stab(x)$$

and this bijection gives us the First Isomorphism Theorem:

$$\operatorname{Im}(A) \cong V/\operatorname{Ker}(A)$$
.

{Question: Can we bootstrap this one more time in order to say something about the size of the homology groups in a chain complex? Perhaps thinking of a (length 2) chain complex as a 2-category?} ■

For a G-set X, the *orbit space* is defined as the set of orbits:

$$G \setminus X := \{ \operatorname{Orbit}(x) \}_{x \in X}.$$

The following is known as "Burnside's lemma".

Theorem 4. Given a G-set X,

$$|G\backslash X| = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|.$$

Proof: {todo}

An action is *faithful* when for each $g \in G$ with $g \neq 1$ we have $Fix(g) \neq X$. An action is free when for each $g \in G$ with $g \neq 1$ we have $Fix(g) = \phi$.

{define a torsor}

A G-set with only one orbit is called *simple* (or *transitive*, or *indecomposable*).

Given two G-sets X and Y, we define the sum X + Y {...} and the product $X \times Y$ {...} The following theorem shows that G-sets are semi-simple.

Theorem 5. For a G-set X, we have

$$X = \sum_{i=1}^{n} X_i$$

with X_i simple, and the summation is unique up to reordering.

Proof: Easy.

The next theorem is a kind of "Schur's lemma for G-sets".

Theorem 6. Given G-sets X and Y:

- (a) For $f: X \to Y$, we have f(X) is a G-set, $f(X) \subseteq Y$.
- (b) For $f: X \to Y$, and $X \neq \phi$, if Y is simple then f is surjective.
- (c) For $f: X \to X$ with X simple, f is an automorpism.

Proof: Easy.

2.1 The category of canonical orbits

Taken from [1, 4].

2.2 Double cosets

Given a map of sets $f: X \to Y$, that is *G-invariant* ie., f(x) = f(gx) for all $g \in G, x \in X$, we can *lift* to a unique map $\tilde{f}: G \setminus X \to Y$ such that

$$X \xrightarrow{f} Y$$

$$\downarrow p \qquad \tilde{f} \uparrow \qquad \qquad G \backslash X$$

where p is the projection map $p: X \to G\backslash X$. We use this observation in the proof of the following.

Proposition 7. Given a group G with subgroups H and K, the orbit-space of the G-set $G/H \times G/K$ is in bijection with the H, K double cosets:

$$G\backslash (G/H\times G/K)\cong \{HgK\}_{g\in G}.$$

Proof: We will show that the following relation

$$f: G/H \times G/K \to \{HgK\}_{g \in G}$$
$$f(aH, bK) := Ha^{-1}bK,$$

defines a G-invariant function that lifts to the required bijection on the orbits.

- (i) That f defines a function: for any $h \in H, k \in K, f(aH, bK) = Ha^{-1}bK = H(h^{-1}a^{-1})(bk)K = f(ahH, bkK)$.
 - (ii) That f is G-invariant: $f(gaH, gbK) = Ha^{-1}g^{-1}gbK = f(aH, bK)$.
 - (iii) f is surjective, and so the lift f,

is also surjective.

(iv) That \tilde{f} is injective,

$$f(aH,bK) = f(cH,dK) \text{ iff}$$

$$Ha^{-1}bK = Hc^{-1}dK \text{ iff}$$

$$\exists h,k \in G, \ a^{-1}b = hc^{-1}dk \text{ iff}$$

$$b = (ahc^{-1})dk \text{ iff}$$

$$bK = gdK, \ aH = gcH, \text{ where } g = ahc^{-1}$$

And so (aH, bK) and (cH, dK) are in the same orbit.

Proposition 8. {Not sure how this goes exactly...} Let G be a group, with subgroups H and K. Considered as an equivelence relation on the elements of G, the set of double cosets $\{HgK\}_{g\in G}$ is the finest mutual coarsening of the equivelence relations given by the right and left cosets, $\{Hg\}_{g\in G}$ and $\{gK\}_{g\in G}$. In other words, as equivelence relations we have

$$\{HgK\}_{g \in G} = \{Hg\}_{g \in G} \lor \{gK\}_{g \in G}.$$

Proof: {todo}

2.3 Hecke operators

Let $\mathbb{C}[X]$ denote the complex vector space with basis X. Evidently, when X is a G-set, we get a \mathbb{C} -linear representation of G on $\mathbb{C}[X]$. A \mathbb{C} -linear representation of G obtained in this way we call a *permutation representation*.

Given a point $x \in X$ we denote the corresponding basis vector in $\mathbb{C}[X]$ as $|x\rangle$, and corresponding dual vector as $\langle x|$. We also denote generic vectors in $\mathbb{C}[X]$ by $|v\rangle$, $|u\rangle$, etc.

Given G-sets X and Y, and points $x \in X, y \in Y$ we define the *Hecke operator* as the linear operator

$$\mathbb{C}[X] \stackrel{r_{x,y}}{\longrightarrow} \mathbb{C}[Y]$$

given by

$$r_{x,y} := \frac{1}{|\operatorname{Stab}(x)||\operatorname{Stab}(y)|} \sum_{g \in G} |gy\rangle\langle gx|.$$

Lemma 9. The Hecke operators are G-rep homomorphisms:

$$r_{x,y} \in \operatorname{Hom}_{\mathbf{GRep}}(\mathbb{C}[X], \mathbb{C}[Y]).$$

Proof: We need to show that $gr_{x,y}|v\rangle = r_{x,y}g|v\rangle$ for $|v\rangle \in \mathbb{C}[X], g \in G$. By linearity we need only consider this equation on basis vectors: $gr_{x,y}|x'\rangle = r_{x,y}g|x'\rangle$ for $x' \in X, g \in G$. Computing:

$$\begin{split} \text{LHS} &= g \sum_{h \in H} |hy\rangle \\ &= \sum_{h \in H} gh|y\rangle \\ \text{RHS} &= \sum_{h \in G} |hy\rangle\langle hx|gx\rangle \\ &= \sum_{h \in G, hx = gx} |hy\rangle \\ &= \sum_{h \in H} gh|y\rangle. \end{split}$$

 $\{\text{what is } H?\}$

Theorem 10. Given two permutation representation $\mathbb{C}[X]$ and $\mathbb{C}[Y]$ of a group G, the Hecke operators

$$\{r_{x,y} \mid x \in X, y \in Y\}$$

form a basis for the linear space

$$\operatorname{Hom}_{\mathbf{GRep}}(\mathbb{C}[X],\mathbb{C}[Y]).$$

Proof: Let $f \in \operatorname{Hom}_{\mathbf{GRep}}(\mathbb{C}[X], \mathbb{C}[Y])$. Then for any $g \in G, x \in X, y \in Y$ we have:

$$gf|x\rangle = fg|x\rangle$$

$$f|x\rangle = g^{-1}fg|x\rangle$$

$$\langle y|f|x\rangle = \langle y|g^{-1}fg|x\rangle$$

$$= \langle gy|f|gx\rangle.$$

ie., the matrix for f is constant on the orbits of $X \times Y$ and so f is a sum of Hecke operators.

Corollary 11. Given a doubly transitive action $G \to \operatorname{Aut}(X)$ the permutation representation $\mathbb{C}[X]$ breaks into exactly two irreducible representations.

Proof: There are two Hecke operators corresponding to the diagonal matrix, and the off-diagonal matrix. The result follows by the previous theorem and Schur's lemma.

3 Kleinien geometry

Given a homogeneous "space" X the idea is to refer to, or define, geometric figures (a "line" or "point", etc.) by the subgroup that fixes that figure.

3.1 Example: S_3

We consider the group $G = S_3$ the permutation group on three things. Enumerating these three things, we write the elements of S_3 according to their action:

$$S_3 = \{(1)(2)(3), (1)(23), (13)(2), (12)(3), (123), (132)\}.$$

This group acts on the triangle:

but we can only see this action if we add some *structure*. For example, we can number the points (vertices) of the triangle:

We call this kind of structure a *frame* because it allows us to see everything that is going on. Here we do the same, but instead of numbering the points we shade a portion of the interior. This is a more geometric kind of frame.

By shading a different portion we find the structure corresponding to a *point*:

There is one other structure that we haven't found yet:

This structure we call an *orientation*.

Using the Kleinien perspective, we associate each of these structures with the subgroup of G that stabilizes the structure. And vice-versa: every subgroup of G corresponds to some kind of structure.

structure	stabilizer subgroup $H \leq G$	cosets $\{gH\}_{g\in G}$
nothing	$\{(),(23),(13),(12),(123),(132)\}$	$\{(),(23),(13),(12),(123),(132)\}$
orientation	$\{(),(123),(132)\}$	$\{(), (123), (132)\}, \{(23), (13), (12)\}$
point	$\big\{(),(23)\big\}$	$\{(),(23)\}, \{(13),(123)\}, \{(12),(132)\}$
"	$\{(),(13)\}$	$\{(),(13)\}, \{(23),(132)\}, \{(12),(123)\}$
27	$\{(),(12)\}$	$\{(),(12)\},\ \{(13),(132)\},\ \{(23),(123)\}$
frame	{()}	$\{(1), \{(23)\}, \{(13)\}, \{(12)\}, \{(123)\}, \{(132)\}$

Each of the three subgroups that stabilize a point are conjugate to each other, and so the corresponding G-sets G/H are isomorphic. So in calculations we just pick one of these

subgroups to stand for the point structure. We label each of these subgroups (structures) with the letters A, B, C and D.

structure	stabilizer subgroup	order	#cosets	#conjugates
nothing	A = G	6	1	1
orientation	В	3	2	1
point	C	2	3	3
frame	$D = \{1\}$	1	6	1

The same table in picture form:

structure	subgroup	orbit
nothing	A	\triangle
orientation	В	$\triangle \triangle$
point	C	$\triangle \triangle \triangle$
frame	D	

3.2 Example: D_8

The dihedral group of order 8.

*	A	B	C	D	E	F	G	H
\overline{A}	A	B	C	D	E	F		
B	B	2B	G	G	2E	H	2G	2H
C	C	G	2C	G	H	2F	2G	2H
D	D	G	G	2D	$H \\ 2E + H$	H	2G	2H
E	E	2E	H	H	$2E\!+\!H$	2H	2H	4H
F	F	H	2F	H	2H	2F+H	2H	4H
G	G	2G	2G	2G	2H	2H	4G	4H
H	H	2H	2H	2H	4H	4H	4H	8H

3.3 Example: S_4

*	A	B	C	D	E	F	G	H	I	J	K
\overline{A}	A	B	C	D	E	F	G	H	I	J	K
B	B	2B	F	H	J	2F	J	2H	K	2J	2K
C	C	F	C+F	I	$E\!+\!J$	3F	G+J	K	$I\!+\!K$	3J	3K
D	D	H	I	D+I	2I	K	K	$H\!+\!K$	$2I\!+\!K$	2K	4K
E	E	J	E+J	2I	$2E\!+\!K$	3J	J+K	2K	$2I\!+\!2K$	$2J\!+\!2K$	6K
F	F	2F	3F	K	3J	6F	3J	2K	3K	6J	6K
G	G	J	G+J	K	J+K	3J	2G+K	2K	3K	$2J\!+\!2K$	6K
H	H	2H	K	$H\!+\!K$	2K	2K	2K	$2H\!+\!2K$	4K	4K	8K
I	I	K	$I\!+\!K$	2I + K	$2I\!+\!2K$	3K	3K	4K	$2I\!+\!5K$	6K	12K
J	J	2J	3J	2K	$2J\!+\!2K$	6J	$2J\!+\!2K$	4K	6K	$4J\!+\!4K$	12K
K	K	2K	3K	4K	6K	6K	6K	8K	12K	12K	24K

3.4 Example: GL(3, 2)

4 Bibliographic notes

Group actions with applications to group theory: [2, 3]. See [4].

References

- [1] G. E. Bredon. Equivariant cohomology theories, volume 34. Springer, 2006.
- [2] K. Conrad. Group actions. http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/gpaction.pdf.
- [3] K. Conrad. Transitive group actions. http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/transitive.pdf.
- [4] A. Dress. Notes on the theory of representations of finite groups, Part I: The Burnside ring of a finite group and some AGN-applications. 1971.
- [5] O. Lorscheid. F1 for everyone. arXiv preprint arXiv:1801.05337, 2018.
- [6] D. Speyer. Invertible matrices of natural numbers are permutations. https://mathoverflow.net/a/62126/39775, 2011.