

计算机网络

3-4 性能对比实验报告

姓名: 高祎珂

学号:2011743

专业:计算机科学与技术

目录 计网 3-4 实验报告

目录

1	实验简介	2
	停等机制与滑动窗口机制性能对比 2.1 分析	2
3	滑动窗口机制中不同窗口大小对性能的影响 3.1 分析	4
4	有拥塞控制和无拥塞控制的性能比较 4.1 分析	5 7

1 实验简介

本次实验在 Windows 系统 X86 平台进行实验,使用编译器为 VS2022 使用的 MSVC, 丢包使用 所给的路由器程序。在实验设计过程中,对于不同的策略,保证每次传输的数据包最大都为 8160byte, 设置超时时间均为 100ms, 通过控制相同时延改变丢包率, 和控制相同丢包率改变时延进行实验, 进行三方面的结果对比。

- 1. 停等机制与滑动窗口机制性能对比
- 2. 滑动窗口机制中不同窗口大小对性能的影响
- 3. 有拥塞控制和无拥塞控制的性能比较

2 停等机制与滑动窗口机制性能对比

设置延迟时间为 0, 改变丢包率

延迟时间为 0,不同丢包率不同机制的吞吐量,单位 Kbps							
机制	0%(不丢包)	1%	2%	3%	4%	5%	
停等	906.56	453.4555	382.7815	339.78	257.71	211.155	
滑动窗口 (GBN)	978.266	470.25	395.28	346.1295	262.3545	202.269	

设置丢包率为 0, 改变延迟时间

丢包率为 0,不同延迟时间不同机制的吞吐量,单位 Kbps						
机制	$0 \mathrm{ms}$	$50 \mathrm{ms}$	$100 \mathrm{ms}$	$150 \mathrm{ms}$	200ms	250ms
停等	906.825	122.832	47.02	36.1274	28.8211	25.0782
滑动窗口 (GBN)	978.26	126.833	70.5729	49.8144	38.5412	31.393

2.1 分析

- 总体上滑动窗口机制比停等机制的效率更高
 - 滑动窗口机制允许发送多条消息,同时等待对方回复的 ACK,减少 RTT 的影响
- 在有延时的情况下, GBN 表现更好
 - 原因同上,停等机制需要每条消息单独等待时延和 RTT,而窗口可以同时等待多条
- 丢包率大时 GBN 效率比停低
 - 更大的窗口意味着更高的重传代价, 大大降低性能

3 滑动窗口机制中不同窗口大小对性能的影响

设置延迟时间为 0, 改变丢包率

延迟时间为 0,不同丢包率不同窗口的吞吐量,单位 Kbps								
窗口大小	0%(不丢包)	1%	2%	3%	4%	5%		
6	1022.322	264.897	168.695	140.271	114.535	90.6781		
10	1044.26	343.323	198.482	136.259	93.7098	69.5384		

设置丢包率为 0, 改变延迟时间

	丢包率为 0,不同延迟时间不同机制的吞吐量,单位 Kbps								
Í	窗口大小	$0 \mathrm{ms}$	$50 \mathrm{ms}$	100ms	$150 \mathrm{ms}$	200ms	250ms		
(3	1022.32	125.453	65.6478	45.2397	35.629	29.7989		
1	10	1044.26	126.833	70.5729	49.8144	38.5412	31.393		

3.1 分析

- 不同窗口大小在不同网络环境下的效率变化总体上区域一致
- 在网络情况较好的时候窗口大的效率更高
 - 因为更大的窗口可以允许同时发送更多条消息并同时等待对方的 ACK,即减少等待的周期数,更好的应对时延问题。
- 对于丢包问题, 当丢包率较高时由于大的窗口会增加重传代价, 效率降低

4 有拥塞控制和无拥塞控制的性能比较

设置延迟时间为 0, 改变丢包率

延迟时间为 0,不同丢包率有无拥塞控制的吞吐量,单位 Kbps								
拥塞控制	0%(不丢包)	1%	2%	3%	4%	5%		
有	1200.11	402.673	201.129	129.408	99.187	80.806		
无	1044.26	343.323	198.482	136.259	93.7098	69.5384		

设置丢包率为 0, 改变延迟时间

丢包率为 0,不同延迟时间有无拥塞控制的吞吐量,单位 Kbps							
拥塞控制	0ms(不延迟)	$50 \mathrm{ms}$	100ms	150ms	200ms	250ms	
有	1021.178	109.642	69.5348	46.711	40.013	36.909	
无	1044.26	126.833	70.5729	49.8144	38.5412	31.393	

4.1 分析

- 在网络情况良好时,有拥塞控制相对于没有拥塞控制效率更高
 - 因为拥塞控制可以允许有更大的窗口
- 当网络情况逐渐变差时, 拥塞控制机制表现可能并不比没有拥塞控制好
 - 频繁缩小窗口导致窗口较小, 小于没有拥塞控制机制的设定值, 导致受时延的影响较大
- 实验过程中也发现,当网络情况变得更差时,拥塞控制机制可能使窗口由几百突然降至1,并进入重传,使得重传代价飞速增加。