Standardization of biological sample information database

Tazro Ohta1*, Shuya Ikeda1, Takatomo Fujisawa2, Shuichi Kawashima1

1 Database Center for Life Science (DBCLS), ROIS-DS

2 DNA Data Bank of Japan (DDBJ), National Institute of Genetics, ROIS

Email: t.ohta@dbcls.rois.ac.jp

International Symposium "Global Collaboration on Data beyond Disciplines" Early Career Researcher (ECR) session
25 September 2020

Me

1. Name: Tazro Ohta @inutano

2. Affiliation: DBCLS, ROIS-DS

3. Position: Project Assistant Professor

4. Years from Ph.D. received: 1.5y (March 2019)

5. What kind of data you are handling now:

Genomics (Genes, Genomes, Cells, etc.)

6. Category of your research: Data and

Database research and development

7. Research, or job, position you would like to

do or become in the future: Open source

community researcher

8. Your photo: :D

Agenda

- Background:
 - Sharing genomic data across the biomedical community
 - Building knowledge upon the public database
- Problem:
 - Describing biological sample metadata
- Solution: 2 approaches
 - a. Ontology mapping
 - b. Data modeling with RDF

Background

Sharing genomic data across the biomedical community

- The Bermuda Principles (1996)
 - Rules for publishing DNA sequence data
 - Publish DNA sequence data before publishing paper
 - Public domain license to research usage
- International Nucleotide Sequence Database Collaboration (INSDC)
 - NCBI (US), EBI (EU), DDBJ (Japan)
 - Exchange submissions (mirroring)
 - Archiving over 44P bases

Publish DNA sequence data BEFORE publishing paper

Building knowledge upon the public database

- Public domain: free to use for research purpose
- International consortiums provide comprehensive data for a specific domain
 - 1000 genomes project
 - ENCODE project
- Researchers build secondary databases based on public data
 - ChIP-Atlas

ChIP-Atlas: process all the public ChIP-seq data

https://doi.org/10.15252/embr.201846255

Problem

Describing biological sample metadata

- BioSample
 - Public database archiving information of biological material used in experiments
 - Submitters describe key-value pairs to explain single biological material
 - over 8M samples and growing
- Problem: inconsistent sample description
 - Different keys for the same concept
 - Different form of same values
 - Synonyms
 - typos
- How can we handle those variations?

BioSample record examples

tissue: blood

age: 45

sex: male

tissue: Blood

age: 45 years old

biological_sex: M

cell type: HeLa

cell_line: HeLa

cell type: adipocyte

cell type: fat cell

Solution: 2 approaches

1. Ontology mapping

- MetaSRA: an existing software/database to map ontology to sample description
 - Only for a specific type of experiment
- Improved MetaSRA implementation for
 - faster execution (6h to 1h for 5000 samples)
 - ontology term optimization

2. Data modeling with RDF

- RDF: Resource Description Framework
 - A W3C standard for data description
 - Using URI to identify resources, linking things
- Why RDF?
 - Interoperability: suitable for biological data: many different small domains
 - genes, proteins, diseases, etc.
 - Many biological databases are now provided in RDF form
 - https://integbio.jp/rdf

Provide BioSample RDF data to the community

- ftp://ftp.ddbj.nig.ac.jp/rdf/biosample/
- Mapped ontology aligned same concepts to a single value
- RDFized BioSample data can link to the external database records with no extra effort

Summary

- Sharing genomic data has advanced the whole biomedical research
- Describing explicit biological sample metadata is essential for data reuse
- Graph-based data model with mapped ontology terms helps better data sharing