20.1

The Percolation Model

Question 1

Proof of $\theta(p)$ being non-decreasing

First, let's prove that for all n,

$$\theta_n(p_1) \leqslant \theta_n(p_2)$$

if $p_1 \leq p_2$. We proceed by induction. For n=1, want to calculate $\theta_1(p)$. As we start from (0,0), we have two options: going up to (0,1) or stepping to the right to (1,0). We cannot make it to C_1 if and only if both of these routes are closed, hence we have $\theta_1(p) = 1 - (1-p) \cdot (1-p) = p \cdot (2-p)$ which is an increasing function on the interval [0,1].

Now suppose that our result holds for n-1, ie.:

$$\theta_{n-1}(p_1) \leqslant \theta_{n-1}(p_2)$$

The event $\{C_{n-1} \neq \emptyset\}$ consits of disjoint events A_i where A_i describes a possible set of points for C_{n-1} (For example we can take A_1 to be the event when $C_{n-1} = \{(0, n-1)\}$ etc.) When we are in $A_i = \{C_{n-1} = \{y_1, y_2, ..., y_m\}\}$, to achieve $\{C_n \neq \emptyset\}$ we need to have at least one of the edges starting from $y_1, y_2, ..., y_m$ to be open. This has probability $1 - (1-p)^{2m}$. This is a increasing function on [0, 1] once again, hence if $p_1 \leqslant p_2$ then

$$\mathbb{P}_{p_1}(C_n \neq \emptyset, A_i) \leqslant \mathbb{P}_{p_2}(C_n \neq \emptyset, A_i)$$

As we have this for all i, we will get that for

$$\mathbb{P}_p\big(C_n \neq \varnothing\big) = \sum_{i=1}^N \mathbb{P}_p\big(C_n \neq \varnothing, A_i\big)$$

we have

$$\mathbb{P}_{p_1}(C_n \neq \emptyset) \leqslant \mathbb{P}_{p_2}(C_n \neq \emptyset)$$

as required. As this is true for all n, by the Squeeze theorem we will have

$$\lim_{n\to\infty}\theta_n(p_1)\leqslant \lim_{n\to\infty}\theta_n(p_2)$$

which is the same as

$$\theta(p_1) \leqslant \theta(p_2)$$

Proof of $\theta_n(p)$ being decreasing in n

Let's fix $p \in (0,1)$. Using the same notation as above, we have that

$$\mathbb{P}_p(C_n \neq \varnothing | A_i) = \mu_i < 1$$

where μ_i is the probability of having the right edges open when we are under A_i . Then using Bayes' formula, we have

$$\mathbb{P}_p(C_n \neq \emptyset, A_i) = \mathbb{P}_p(C_n \neq \emptyset | A_i) \cdot \mathbb{P}_p(A_i) = \mu_i \cdot \mathbb{P}_p(A_i) < \mathbb{P}_p(A_i)$$

Now summing over all possible $A_i's$,

$$\sum_{i=1}^{N} \mathbb{P}_{p}(C_{n} \neq \emptyset, A_{i}) < \sum_{i=1}^{N} \mathbb{P}_{p}(A_{i})$$

As the events A_i are disjoint and as $\bigcup_{i=1}^N A_i = \{C_{n-1} \neq \emptyset\}$, we get

$$\mathbb{P}_p(C_n \neq \emptyset) < \mathbb{P}_p(C_{n-1} \neq \emptyset)$$

as required.

Error of estimation

We want to tell the likely size of the error $\hat{\theta}_{m,n}(p) - \theta_n(p)$. Let's denote the true parameter $\theta_n(p)$ by P_n . Then, we can think of the $I_n(j)'s$ as independent Bernoulli random variables with mean P_n . Taking

$$\hat{\theta}_{m,n}(p) = \frac{\sum_{j=1}^{m} I_n(j)}{m}$$

is the Maximum Likelihood Estimator of P_n . By the Central Limit theorem, we have

$$\sqrt{m}(\hat{\theta}_{m,n}(p) - P_n) \to N(0, \sigma^2)$$

where σ^2 is the variance of I_n . So have $\sigma^2 = P(1 - P)$. Then we can write

$$\sqrt{m} \frac{\left(\hat{\theta}_{m,n}(p) - P_n\right)}{\sqrt{P(1-P)}} \to N(0,1)$$

as $m \to \infty$. Then a 95% confidence interval for P_n would be

$$\left[\hat{\theta}_{m,n}(p) - z_{0.975}\sqrt{\frac{\hat{\theta}_{m,n}(p)\cdot(1-\hat{\theta}_{m,n}(p))}{m}}, \hat{\theta}_{m,n}(p) + z_{0.975}\sqrt{\frac{\hat{\theta}_{m,n}(p)\cdot(1-\hat{\theta}_{m,n}(p))}{m}}\right]$$

the size of the likely error being $z_{0.975}\sqrt{\frac{\hat{\theta}_{m,n}(p)\cdot(1-\hat{\theta}_{m,n}(p))}{m}}$. As $z_{0.975}\approx 1.96$ and $\hat{\theta}_{m,n}(p)\cdot(1-\hat{\theta}_{m,n}(p))\leqslant 1/2$, we have

$$\left|\hat{\theta}_{m,n}(p) - \theta_n(p)\right| < \frac{1.386}{\sqrt{m}}$$

So for example if we want to have a likely error less than 0.05, we would take $m \ge 770$.

Question 2

For plotting the function $\hat{\theta}_{m,n}(p)$, I have made two algorithms, one which creates an instance of the model for given n and calculates the values of Z(y) for $y \in Q_n$ (instance.m), and one which then plots it the function between 0.5 and 0.75 (plotmyfn.m) Let's calculate the complexity of the first algorithm. Firstly, it is known, that generating a pseudo-random number has complexity O(1). Let's say that it takes k basic operations. In each step of the for loop, we have to generate

2i random numbers, this taking $2i \cdot k$ operations. Then, we will find the values Z(y) for the i+1 points in Q_i . Finding the value for one new point takes approximately 4 operations, so this gives $4 \cdot (i+1)$ in total. As we run from i=1 to n, the total complexity is

$$\sum_{i=1}^n 4(i+1) + 2ik = 4n + (4+2k)\frac{n(n+1)}{2} = O(n^2)$$

Now, to plot the actual function, we will need m insances, and need to calculate $\hat{\theta}_{m,n}$ for l points between 0.5 and 0.75.

- Checking that Q_n has a point with Z(y) < p has complexity O(n). This is contained in haselement.m
- For each instance, we need to generate the numbers Z(y), which has complexity $O(n^2)$.
- Then, for each point p, haselement.m is calculated, that has complexity O(pn).
- If we have m instances, that gives $O(n^2m + pnm)$ for the complexity.

Hence we can see that the running time depends greately on n but it also does on m as a linear factor. As we have calculated in Question 1, using m large enough, we can guarantee that the error is less than 0.05. So let's use m = 800, and n = 1000. The graph we get can be seen in Figure 1.

Figure 1: Approximation of the function $\theta(p)$ with m = 800, n = 1000

Question 3

To investigate the relationship between the estimate \hat{p}_c and n for fixed m we will calculate the estimate for the ciritical value for different n and draw a graph. To make the program a little bit

faster, we can use the same instance to calculate all the values $I_1, I_2, ..., I_n$. To do this we just have to store all random numbers assigned to the vertices, instead of storing only the values in Q_n (as in Question 2). This is done in 'instance2.m'. The algorithm used to do the plotting can be found in 'criticalpointplot.m'.

Figure 2: The value of \hat{p}_c for n between 50 an 500 and for m=100 and 1000

We can see on Figure that for fixed m, \hat{p}_c is an increasing function of n. The reason for this is that as we have shown before that $\hat{\theta}_{n,m}(p)$ is a decreasing function of n for fixed p (the is a very similar proof to showing that $\theta_n(p)$ is decreasing). This means that for $n_1 < n_2$,

$$\hat{\theta}_{n_1,m}(p) \geqslant \hat{\theta}_{n_2,m}$$

for all $p \in (0,1)$. Then,

$$\hat{\theta}_{n_1,m}(p) = 0 \Rightarrow \hat{\theta}_{n_2,m}(p) = 0$$

then this implies

$$\hat{p}_c(n_1) \leqslant \hat{p}_c(n_2)$$

which is what we wanted.

If we fix n and vary m, we will see that the estimated critical value will decrease slightly with m. Also, it will fluctuate less. The reason for this is that when m is larger, the error of estimation is less, and it is more likely that we have found the right value of p_c .

Figure 3: The value of \hat{p}_c for m between 50 and 200 and for fixed m=500

Figure 4: The value of \hat{p}_c for m between 50 and 500 and for fixed n=100

Question 4

When we are estimating a limit, the first idea that comes to mind is to choose n as big as possible as to reach smaller errors in the estimation. But this in not entirely the right approach. We can see from Figure 2, that for n=60 and m=1000, the estimated value of p_c is already larger

than 0.5. Hence it follows that choosing p=0.3 or 0.4, it is not advisable to choose large n, as by precision error, we would already get $\hat{\theta}_{n,m}=0$. To get the precise answer, it is sensible to choose m as large as possible, as we are more likely to get the true value for $\hat{\theta}_{n,m}$ and not 0. From Question 2, we have seen that the complexity of the algorithm that estimates $\theta_n(p)$ is $O(n^2m + pnm) = O(n^2m)$ (we are taking one value for the probability, so p=1). Therefore, for p=0.3, I have chosen n=20 and m=400000. For bigger n, we would also need a much larger m, but that would raise the computational time immensely. The estimation is $\gamma=0.5251$

Figure 5: Estimating γ for p = 0.3, 0.4, 0.5, 0.6

As we raise the value of p, we can also raise n. But in return, we need to lower m to get sensible computational times. The estimations we get for γ can be seen on the Figure above. We can notice that choosing p closer to p_c , γ gets closer to 0.