Claims:

1. A compound of the formula I,

$$R_2$$
 R_3
 R_4
 R_2
 R_3
 R_4
 R_5
 R_5
 R_7
 R_8
 R_7

where

 X_1 and X_2 are each, independently of one another, secondary phosphino;

R₁ and R₂ are each, independently of one another, hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl,

C₃-C₈-cycloalkyl-C₁-C₄-alkyl, C₆-C₁₀-aryl or C₇-C₁₁-aralkyl, or

 R_1 and R_2 together are C_4 – C_8 -alkylene, 3-oxapentyl-1,5-ene, -(CH_2)₂-NH-(CH_2)₂- or -(CH_2)₂-N(C_1 - C_4 alkyl)-(CH_2)₂-,

 R_3 is hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl, C_6 - C_{10} -aryl or C_7 - C_{11} -aralkyl, or

 R_1 is as defined above and R_2 and R_3 together are C_2 - C_8 -alkylidene, C_4 - C_8 -cycloalkylidene, C_1 - C_4 -alkylene, C_2 - C_8 -alk-1,2-enyl, -C(O)- or a group of the formula

$$R_{11}$$
— C

or

R₁R₂N and R₃O together are a group of the formula

 R_4 and R_7 are each, independently of one another, hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, F, CI or trifluoromethyl,

 R_5 is hydrogen, R_4 or an R_3 O- group, where R_3 O- groups in the two rings can be identical or different,

 R_6 is hydrogen, R_7 or an R_1R_2N - group, where R_1R_2N - groups in the two rings can be identical or different,

 R_{5} and R_{6} together are trimethylene, tetramethylene or –CH=CH-CH=CH-, and

 R_{11} is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl, C_6 - C_{10} -aryl or C_7 - C_{11} -aralkyl,

where R_1 , R_2 , R_3 , R_4 and R_7 are unsubstituted or substituted by C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, OH, F, CI, Br, trifluoromethyl, C_1 - C_4 -hydroxyalkyl, -COOH, -SO₃H, -C(O)O- C_1 - C_4 -alkyl, -SO₃- C_1 - C_4 -alkyl, -C(O)-NH₂, -CONHC₁- C_4 -alkyl, -CON(C_1 - C_4 -alkyl)₂, -SO₃-NH₂, -SO₂-NHC₁- C_4 -alkyl, -SO₃-N(C_1 - C_4 -alkyl)₂, -O₂C- R_8 , -O₃S- R_8 , -NH-(O)C- R_8 , -NH-O₃S- R_8 , -NH₂, -NHR₉ or -NR₉R₁₀, where R_8 is hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl, C_6 - C_{10} -aryl or C_7 - C_{11} -aralkyl, and R_9 and R_{10} are each, independently of one another, C_1 - C_4 -alkyl, phenyl or benzyl or R_9 and R_{10} together are tetramethylene, pentamethylene, 3-oxa-1,5-pentane or -(CH₂)₂-N(C_1 - C_4 -alkyl)-(CH₂)₂-

- 2. The compound as claimed in claim 1, characterized in that X_1 is a -P(R)₂ group and X_2 is a -P(R')₂ group, where R and R' are each, independently of one another, a hydrocarbon radical which has from 1 to 20 carbon atoms and is unsubstituted or substituted by halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, and/or C_1 - C_1 -alkyl)₃Si; or the radicals R and R' together are unsubstituted or C_1 - C_4 -alkyl- and/or C_1 - C_4 -alkoxy-substituted tetramethylene or pentamethylene.
- The compound as claimed in claim 1, characterized in that it corresponds to the formula lb,

where R_1 , R_2 and R_3 are each, independently of one another, C_1 - C_4 -alkyl, R_5 is hydrogen or an OR_3 group, R_6 is hydrogen or an $-NR_1R_2$ group, or R_5 and R_6 together are -CH=CH-CH=CH-, and X_1 and X_2 are secondary phosphino.

4. The compound as claimed in claim 1, characterized in that it corresponds to the formula lc,

$$R_{12}$$
 X_1
 R_{5}
 X_2
 R_{c}
 X_{12}
 X_{13}
 X_{14}
 X_{15}
 X_{15}
 X_{15}
 X_{15}
 X_{15}
 X_{15}
 X_{15}

where R_1 C_1 - C_4 -alkyl, R_5 and R_6 are each hydrogen or R_5 and R_6 together are an -NR₁-R₁₂-O- group, X_1 and X_2 are secondary phosphino and R_{12} is 1,2-ethylene, 1,2-ethenylene, -C(O)- or a group of the formula

where R₁₁ is branched C₃-C₈-alkyl, C₅-C₆-cycloalkyl, phenyl or benzyl.

5. A process for preparing compounds of the formulae I and Ia,

where R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X_1 and X_2 are as defined in claim I, which comprises the steps:

a) halogenation of a compound of the formula VI

where R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 are as defined above, or R_1 is a protective group which can be split off and R_2 is hydrogen or is as defined above, or R_3 is a protective group which can be split off, or R_1 and R_3 together form a protective group which can be split off and R_2 is hydrogen or is as defined above, by means of chlorine, bromine or iodine to form a compound of the formula VII

$$R_{2}$$
 R_{3}
 R_{6}
 R_{7}
 R_{7}
 R_{1}
 R_{4}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}

where X is chlorine, bromine or iodine,

b) if appropriate to introduce the radicals R_2 and R_3 , removal of the protective groups to form OH-functional and NH-functional groups and replacement of the H atoms in the OH-functional and NH-functional groups by means of a reagent R_2 - X_2 , R_3 - X_2 or X_2 - R_{13} - X_2 , where X_2 is a leaving group and R_{13} is 1,2-alkylene or 1,2-cycloalkylene, to produce compounds of the formula VII, and

if appropriate resolution of the racemates of the formula VII to give the enantiomers of the formulae VIIa and VIIb

$$R_2$$
 R_3
 R_4
 R_2
 R_3
 R_5
 R_7
 R_8
 R_8
 R_9
 R_9

c) metalation of the compounds of the formula VII, for example by means of a lithium alkyl, and subsequent reaction with a halophosphine of the formula X_3 -PRR (X_3 is halogen) in the presence of a lithium alkyl to give diphosphines of the formula VIII, or with a halophosphine oxide of the formula X_3 -P(O)RR to give diphosphine oxides of the formula IX, or with a phosphonate of the formula X_3 -P(O)(OR°)₂ to give phosphonates of the formula IXa:

d) oxidation of the phosphine groups in compounds of the formula VIII by means of an oxidant to form compounds of the formula IX,

$$R_2$$
 R_3
 R_5
 R_7
 R_8
 R_7
 R_8

- 48 -

e) if a recemic starting material of the formula VII is used resolution of the racemates of the formula VIII to give the enantiomers Ia and Ib, or resolution of the racemates of the formula IX to give the enantiomers of the formulae X and Xa, or resolution of the racemates of the formula IXa to give the enantiomers of the formulae Xb and Xc, and reaction of Xb and Xc with R-Mg-X to form phosphine oxides of the formula X and Xa,

f) and reduction of the phosphine oxide group in the compounds of the formulae Xa and Xb to produce compounds of the formulae I and Ia.

Ŗ,

6. A compound of the formula VII in the form of the racemate, optically enriched or optically pure form,

$$R_2$$
 R_3
 R_5
 R_6
 R_7
 R_7
 $(VII),$

where R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 are as defined in claim 1, or R_2 is a protective group which can be split off or R_2 and R_3 together form a protective group which can be split off and R_1 , R_3 , R_4 , R_5 , R_6 and R_7 or R_1 , R_4 , R_5 , R_6 and R_7 are as defined in claim 1, and

X is chlorine, bromine or iodine.

7. A compound of the formula IX in the form of racemates

$$R_2$$
 R_3
 R_5
 R_7
 R_8
 R_7

or an enantiomer of the formulae X, Xa, Xb and Xc,

where R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 and R have the meanings indicated for the compounds of the formulae I and Ia, and R° is C_1 - C_6 -alkyl or phenyl.

- 8. A complex of a metal selected from the group of the TM8 metals with a compound of the formula I or Ia as claimed in claim 1 as ligand.
- 9. The metal complex as claimed in claim 8 which corresponds to the general formula XI or XII,

$$A_1 MeL_n \qquad \qquad (XI), \qquad \qquad (A_1 MeL_n)^{(z+)} (E^{\scriptscriptstyle -})_z \qquad (XII),$$

where A₁ is a compound of the formula I or Ia as claimed in claim 1;

L represents identical or different monodentate, anionic or nonionic ligands, or two L form identical or different bidentate, anionic or nonionic ligands;

n is 2, 3 or 4 when L is a monodentate ligand or n is 1 or 2 when L is a bidentate ligand; z is 1, 2 or 3;