1.1. Grupos

- Se llama **Grupo** a un par (G,*), donde G es un conjunto no vacío y * es una operación interna en G que verifica las siguientes propiedades:
 - g_1 Propiedad **asociativa**: (a*b)*c = a*(b*c) para todos $a,b,c \in G$
 - g_2 Existencia de **elemento neutro**: $\exists e \in G$ tal que e * a = a para todo $a \in G$.
 - g_3 Existencia de **inverso u opuesto** de cada elemento: $\forall a \in G$ existe $a' \in G$ tal que a' * a = e.
- Se dice que (G,*) es un **grupo abeliano** si además se verifica la siguiente propiedad:
 - g_4 Propiedad **conmutativa**: a*b=b*a para todos $a,b\in G$

Si el conjunto G es finito, se llama **orden** del grupo (G,*) al cardinal de G, y se nota por |G|. Si el conjunto G es infinito se dice que el **orden** de (G,*) es infinito. Si (G,*) es un grupo finito, la operación * se puede describir mediante una tabla, denominada **Tabla de Cayley** del grupo.

Lemas

- 1. Si * es operación interna asociativa en G, entonces $\forall a, b, c, d \in G$, (a*b)*(c*d) = (a*(b*c))*d
- 2. Si (G,*) es grupo con neutro $e \in G$, entonces $\forall a \in G$ tal que a*a=a se verifica que a=e.

Teorema 1: Inverso y neutro por la derecha

Sea (G,*) grupo con elemento neutro $e \in G$, entonces:

- 1. Para todos $a, a' \in G$ tales que a' * a = e se verifica que a * a' = e.
- 2. Para todo $a \in G$ se verifica que a * e = a.

Teorema 2: Unicidad del neutro y del inverso

- 1. En todo grupo (G,*) el elemento neutro es único
- 2. En todo grupo (G,*) el inverso de cada elemento es único.

Notaciones

Si no existe ambigüedad en la operación, el grupo (G,*) se notará simplemente G. Sean $a,b\in G$:

G	en un grupo general	en un grupo abeliano	
operar $a con b$	$a*b, a\cdot b, a\odot b, a\otimes b, ab, \cdots$	a+b	
elemento neutro	$e, e_G, 1, 1_G, z, z_G$	$0, 0_G$	
inverso u opuesto de a	$a', a^{-1} $ (inverso)	$-a ext{ (opuesto)}$	
potencia $0 \in \mathbb{Z}$ del elemento $a \in G$	$a^0 = e$	0a = z	
potencia $1 \in \mathbb{Z}$ del elemento $a \in G$	$a^1 = a$	1a = a	
potencia $n \in \mathbb{Z}$ para $n \geq 2$	$a^n = a * a^{n-1}$	na = a + (n-1)a	
potencia $-1 \in \mathbb{Z}$ del elemento $a \in G$	a^{-1}	-a	
potencia $-n \in \mathbb{Z}$ para $n \geq 2$	$a^{-n} = (a^{-1})^n$	(-n)a = n(-a)	

Propiedades cancelativas

Sea (G, *) un grupo, $\forall a, b, x \in G$

- Si x * a = x * b entonces a = b
- Si a * x = b * x entonces a = b

Grupo de congruencias y grupo de unidades, módulo $n: (\mathbb{Z}_n, +_n)$ y (\mathbb{U}_n, \cdot_n)

Dado $n \in \mathbb{N}$, se define en \mathbb{Z} la relación de equivalencia congruencia módulo n:

$$a \equiv_n b \Leftrightarrow n|(b-a)$$

El conjunto cociente \mathbb{Z}/\equiv_n se nota \mathbb{Z}_n y para cada $a\in\mathbb{Z}$ su clase es $[a]_n=\{x\in\mathbb{Z}:x\equiv_n a\}\in\mathbb{Z}_n$.

- 1. En \mathbb{Z}_n se define $[a]_n +_n [b]_n = [a+b]_n$. Se verifica que $(\mathbb{Z}_n, +_n)$ es un grupo abeliano.
- 2. Sea $\mathbb{U}_n = \{[r]_n \in \mathbb{Z}_n : \operatorname{mcd}(r,n) = 1\}$. En \mathbb{U}_n se define $[a]_n \cdot_n [b]_n = [ab]_n$. Se verifica que (\mathbb{U}_n, \cdot_n) es un grupo abeliano, que se denomina **grupo de unidades** módulo n

Grupos $(\mathbb{Q}, +)$ **y** (\mathbb{Q}^*, \cdot)

En el conjunto $\mathbb{Z} \times \mathbb{N}$ se define la relación de equivalencia R_q : $(a,n) \sim_{\mathbb{Q}} (b,m) \Leftrightarrow am = bn$. El conjunto cociente es: $\mathbb{Q} = (\mathbb{Z} \times \mathbb{N}) / \sim_{\mathbb{Q}}$. Cada clase $[(a,n)] = \{(b,m) \in \mathbb{Z} \times \mathbb{N} : am = bn\} \in \mathbb{Q}$ se escribe: $[(a,n)] = \frac{a}{n} \in \mathbb{Q}$; si n = 1 se suele escribir simplemente: $[(a,1)] = \frac{a}{1} = a \in \mathbb{Q}$.

- 1. En \mathbb{Q} se define la operación suma $\frac{a}{n} + \frac{b}{m} = \frac{ma+nb}{mn}$. Se verifica que $(\mathbb{Q}, +)$ es grupo abeliano
- 2. Sea $\mathbb{Q}^* = \mathbb{Q} \{0\}$. En \mathbb{Q}^* se define $\frac{a}{n} \cdot \frac{b}{m} = \frac{ab}{mn}$. Se verifica que (\mathbb{Q}^*, \cdot) es grupo abeliano

Grupos $(\mathbb{R},+)$ y (\mathbb{R}^*,\cdot)

En el conjunto de todas las sucesiones de Cauchy con coeficientes racionales:

 $S = \{(a_n)_{n \in \mathbb{N}} : (a_n)_{n \in \mathbb{N}} \text{ es sucesión de Cauchy y } \forall n \in \mathbb{N} \ a_n \in \mathbb{Q}\}$ se define la relación de equivalencia: $(a_n)_{n \in \mathbb{N}} \sim_{\mathbb{R}} (b_n)_{n \in \mathbb{N}} \Leftrightarrow \lim_{n \to \infty} (a_n - b_n) = 0.$

El conjunto cociente se denomina conjunto de números reales: $\mathbb{R} = S/\sim_{\mathbb{R}}$.

- 1. En \mathbb{R} se define $[(a_n)_{n\in\mathbb{N}}] + [(b_n)_{n\in\mathbb{N}}] = [(a_n + b_n)_{n\in\mathbb{N}}].$ Se verifica que $(\mathbb{R}, +)$ es un grupo abeliano.
- 2. Sea $\mathbb{R}^* = \mathbb{R} \{0\}$. En \mathbb{R}^* se define $[(a_n)_{n \in \mathbb{N}}] \cdot [(b_n)_{n \in \mathbb{N}}] = [(a_n \cdot b_n)_{n \in \mathbb{N}}]$. Se verifica que (\mathbb{R}^*, \cdot) es un grupo abeliano.

Producto directo de grupos

Sean (G_1, \oplus) y (G_2, \odot) grupos. En el producto cartesiano $G_1 \times G_2$ se define la operación interna coordenada a coordenada: $\forall (a, b), (c, d) \in G_1 \times G_2, (a, b) * (c, d) = (a \oplus c, b \odot d)$. Entonces $(G_1 \times G_2, *)$ es un grupo, y se denomina **producto directo** de (G_1, \oplus) y (G_2, \odot) . Si (G_1, \oplus) y (G_2, \odot) son grupos abelianos, entonces su producto directo también es un grupo abeliano.

Grupos $(\mathbb{C},+)$ **y** (\mathbb{C}^*,\cdot)

- 1. En $\mathbb{R} \times \mathbb{R}$ se define (a,b) + (c,d) = (a+c,b+d). Se verifica que $(\mathbb{R} \times \mathbb{R}, +)$ es un grupo abeliano.
- 2. Sea $\mathbb{C} = \mathbb{R} \times \mathbb{R}$ y $\mathbb{C}^* = \mathbb{C} \{(0,0)\}$. En \mathbb{C}^* se define $(a,b) \cdot (c,d) = (ac bd, ad + bc)$. Se verifica que (\mathbb{C}^*,\cdot) es un grupo abeliano.

Notación para los elementos de $\mathbb{C} = \mathbb{R} \times \mathbb{R}$, cuando en dicho conjunto se consideran las operaciones dadas: $(a,b) = a + bi \in \mathbb{C}$

Subgrupos

Sea (G,*) un grupo y $H \subseteq G$. Se dice que H es **subgrupo** de (G,*) si y sólo si (H,*) es un grupo. Para indicar que H es un subgrupo de (G,*) se escribe $H \subseteq G$.

Un subgrupo $H \leq G$ se dice que es **subgrupo propio** de (G,*) si $H \subset G$ y $H \neq G$. Se escribe H < G. Sea e_G el elemento neutro de (G,*), entonces $H_0 = \{e_G\} \leq G$ y se denomina **subgrupo trivial**.

Definición equivalente de subgrupo

Sea (G,*) un grupo y $H\subseteq G$, entonces H es **subgrupo** de (G,*) si y sólo si:

- $e_G \in H$, siendo $e_G \in G$ el elemento neutro del grupo (G, *).
- La operación * es interna en H: Para todos $a, b \in H$ se verifica que $a * b \in H$.
- Para todo $a \in H$ se verifica que $a^{-1} \in H$, siendo $a^{-1} \in G$ el inverso de a en G.

Caracterización 1 de subgrupo

Si (G,*) es un grupo y $\emptyset \neq H \subseteq G$ entonces $H \leq G \Leftrightarrow \forall a,b \in H$ se verifica que $a*b^{-1} \in H$.

Caracterización 2 de subgrupo

Si (G,*) es un grupo y $\emptyset \neq H \subseteq G$ entonces $H \leq G \Leftrightarrow \forall \ a,b \in H$ se verifica que $a^{-1} * b \in H$.

1.1. Problemas

1. Demostrar que sólo hay dos grupos esencialmente distintos de orden 4 y estudiar si existe algún grupo de orden 4 no abeliano. (No corroborar la asociatividad). Proceder del siguiente modo:

Si $G=\{e,a,b,c\}$ es grupo y e es su elemento neutro, la tabla de Cayley será como la tabla que aparece anexa.

rá	*	e	a	b	c
ıa	e	e	a	b	c
	a	a	z		
	b	b			
	c	c			

Dar la razón por la que $z \neq a \in G$.

- a) Si z=e la tabla puede completarse de dos maneras para dar grupo. Encontrar estas dos tablas.
- b) Si z = b entonces se puede completar la tabla de un solo modo para dar grupo. Encontrar dicha tabla.
- c) Si z=c entonces se puede completar la tabla de un solo modo para dar grupo. Encontrar dicha tabla.

- d) De las tablas obtenidas, sólo hay dos estructuras de grupo distintas. Determinar cuáles son y mostrar la manera de cambiar los nombres de los elementos para ver la coincidencia de tablas.
- 2. Sean a y b elementos de un grupo (G, \cdot) . Demostrar que $ab^n a^{-1} = (aba^{-1})^n$.
- 3. Demostrar que si (G,\cdot) es un grupo con elemento neutro $e\in G$ y tal que para todo $a\in G$ se verifica que $a^2 = e$, entonces (G, \cdot) es abeliano.
- 4. Demostrar que si (G,\cdot) es un grupo en el que para todo par de elementos $a,b\in G$ se verifica que $(ab)^2 = a^2b^2$ entonces (G, \cdot) es abeliano.
- 5. Demostrar que si (G,\cdot) es un grupo finito de orden par entonces existe un elemento $a\in G$ distinto del neutro, que verifica que $a^2 = e$.
- 6. Estudiar en cada caso si la operación * dota al conjunto correspondiente de estructura de grupo. En caso afirmativo obtener el elemento neutro, el inverso de cada elemento e indicar si es abeliano.
 - a) En \mathbb{Z} , a * b = a b.
 - b) En $G = \{2n+1 : n \in \mathbb{Z}\}$ se define * por: a * b = a + b
 - c) En $G = \mathbb{R} \{-1\}, a * b = a + b + ab.$
 - $d)\ \ H=\{\left(\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right): x,y,z\in \mathbb{R}\}$ con la operación: $\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & y' \\ 0 & 1 & z' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+x' & y+y'+xz' \\ 0 & 1 & z+z' \\ 0 & 0 & 1 \end{pmatrix}$ (Grupo de Heisenberg).
- 7. Determinar cuales de los siguientes subconjuntos de \mathbb{R} son subgrupos de $(\mathbb{R},+)$:
 - a) $\mathbb{Q}^+ = \left\{ \frac{p}{q} \in \mathbb{Q} : \frac{p}{q} > 0 \right\}$ b) $7\mathbb{Z} = \left\{ 7n : n \in \mathbb{Z} \right\}$

 $c) \ \pi \mathbb{Q} = \{ \pi q : q \in \mathbb{Q} \}$

- $d) \{\pi^n : n \in \mathbb{Z}\}$
- 8. Demostrar que si H y K son subgrupos de un grupo abeliano (G, *) entonces también es subgrupo $HK = \{h * k : h \in H, k \in K\}$ de(G,*) el conjunto
- 9. Sea (G,*) un grupo y $a \in G$, se llama **centralizador de** a al subconjunto $C(a) = \{g \in G : g * a = a * g\}$ (elementos de G que conmutan con a). Demostrar que C(a) es un subgrupo de G.
- 10. Sea (G,*) un grupo, el conjunto $Z(G) = \{g \in G : x*g = g*x \text{ para todo } x \in G\}$ se denomina centro de G. Demostrar las siguientes proposiciones:
 - a) Z(G) < G.
- b) $Z(G) = \bigcap_{a \in G} C(a)$.
- c) $a \in Z(G) \Leftrightarrow C(a) = G$
- 11. Sea $G = \{T_{a,b} : \mathbb{R} \to \mathbb{R}, a, b \in \mathbb{R} \text{ con } a \neq 0, \text{ aplicaciones definidas por } T_{a,b}(r) = ar + b\}.$ Se considera en G la operación composición de funciones.
 - a) Demostrar que (G, \circ) es un grupo. ¿Es grupo abeliano?
 - b) Demostrar que $H = \{T_{a,b} \in G : a \in \mathbb{Q}\}$ es un subgrupo de G, ¿es (H, \circ) abeliano?
 - c) Demostrar que $K = \{T_{a,b} \in G : a = 1\}$ es un subgrupo de G, ¿es (K, \circ) abeliano?
 - d) Sea $T_{a,b} \in G$ con $a \neq 1$, calcular el subgrupo $C(T_{a,b}) = \{U \in G : U * T_{a,b} = T_{a,b} * U\}$.