What is Multicollinearity

- Multicollinearity occurs when two or more independent variables are highly correlated with one another in a regression model.
- There are two basic kinds of multicollinearity:
 - 1. Structural multicollinearity: This type occurs when we create a model term using other terms.
 - 1. Data multicollinearity: This type of multicollinearity is present in the data itself rather than being an artifact of our model.

What Problems Do Multicollinearity Cause?

- Multicollinearity reduces the precision of the estimate coefficients, which weakens the statistical power of your regression model.
- The coefficient becomes very sensitive to small changes in the model. It's a disconcerting feeling when slightly different models lead to very different conclusions.

Detecting Multicollinearity

- · Here i use two metthod to Detecting Multicollinearity
 - 1. Using OLS Ordinary Least Squares regression
 - 1. Using VIF Variable Inflation Factor

Data set where NO Multicollinearity

1. Detecting Multicollinearity using OLS Method

```
In [1]:
import pandas as pd
import statsmodels.api as sm
```

```
In [2]:

df = pd.read_csv('data/Advertising.csv', index_col=0)
```

In [3]:

```
df.head()
```

Out[3]:

	TV	radio	newspaper	sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9

In [4]:

```
X = df.drop(['sales'],axis=True)
y = df['sales']
```

- Now See is there any multicolinearity between TV,Radio,Newspaper using OLS
- formula y = b0 + b1(TV)+b2(Radio)+b3(newspaper)
- ##### In Ols we need to compute b0 value but in data set no b0 value so now i am create that b0 in data set. so i add constant as b0 value

In [5]:

```
X = sm.add_constant(X)
X.head()
```

Out[5]:

	const	TV	radio	newspaper
1	1.0	230.1	37.8	69.2
2	1.0	44.5	39.3	45.1
3	1.0	17.2	45.9	69.3
4	1.0	151.5	41.3	58.5
5	1.0	180.8	10.8	58.4

• Now i am created a const column which measure the b0 value

In [6]:

```
model= sm.OLS(y, X).fit()
```

In [7]:

model.summary()

Out[7]:

OLS Regression Results

Dep. Variable:		sales		R-squared:			0.897
Model:			OLS		Adj. R-squared:		
Method:		Least Squares		F-statistic:			570.3
	Date: T	Thu, 17 Sep 2020		Prob (F-statistic):			1.58e-96
	Time:	12:24:52		Log-Likelihood:			-386.18
No. Observa	itions:		200		Al	C:	780.4
Df Residuals:			196		ВІ	C:	793.6
Df N	Model:		3				
Covariance	Type:	no	nrobust				
coef		std err	t	P> t	[0.025	0.9	75]
const	2.9389	0.312	9.422	0.000	2.324	3.5	554
TV 0.0458 0.00		0.001	32.809	0.000	0.043	0.0	049
radio	0.1885	0.009	21.893	0.000	0.172	0.2	206
newspaper	-0.0010	0.006	-0.177	0.860	-0.013	0.0	011

Omnibus: 60.414 Durbin-Watson: 2.084

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 151.241

 Skew:
 -1.327
 Prob(JB):
 1.44e-33

Kurtosis: 6.332 **Cond. No.** 454.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- In model Summary we look only 4 things

- 1. coef 2. std err 3. p value 4. r-squared
 - mainly which have high std err these are Multicollinearity each other
 - As you see here std-err is low so here no Multicollinearity

2. Detecting Multicollinearity using VIF Method

In [8]:

```
# Import library for VIF
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(X):

    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    return(vif)
```

In [9]:

```
X = df.iloc[:,:-1]
calc_vif(X)
```

Out[9]:

	variables	VIF
0	TV	2.486772
1	radio	3.285462
2	newspaper	3.055245

- · VIF starts at 1 and has no upper limit
- VIF = 1, no correlation between the independent variable and the other variables
- VIF exceeding 5 or 10 indicates high multicollinearity between this independent variable and the others
- · Here all variable has low VIF Value so no Multicollinearity
- In the above i am use OLS and VIF method to find any Multicollinearity between Variables as a result i found there is no 1. Multicollinearity between any variables

Data set where Multicollinearity exist and How to Overcome

- · Here also i use this two method to find Multicollinearity
- but in project you can use any of these which is suitable for you .

1. Detecting Multicollinearity using OLS Method

In [10]:

```
df_salary = pd.read_csv('data/Salary_Data.csv')
df_salary.head()
```

Out[10]:

	YearsExperience	Age	Salary
0	1.1	21.0	39343
1	1.3	21.5	46205
2	1.5	21.7	37731
3	2.0	22.0	43525
4	2.2	22.2	39891

In [11]:

```
X = df_salary.drop(['Salary'],axis=True)
y = df_salary['Salary']
```

In [12]:

```
X = sm.add_constant(X)
X.head()
```

Out[12]:

	const	YearsExperience	Age
0	1.0	1.1	21.0
1	1.0	1.3	21.5
2	1.0	1.5	21.7
3	1.0	2.0	22.0
4	1.0	2.2	22.2

In [13]:

```
model= sm.OLS(y, X).fit()
```

In [14]:

model.summary()

Out[14]:

OLS Regression Results

Dep. Variable:		Salary	R-se	quared:	0.960	
Model:		OLS	Adj. R-so	quared:	0.957	
Method:	Least S	quares	F-statistic:		323.9	
Date:	Thu, 17 Se	p 2020	20 Prob (F-statistic):		1.35e-19	
Time:	12	2:24:52	Log-Like	lihood:	-300.35	
No. Observations:		30		AIC:	606.7	
Df Residuals:		27		BIC:	610.9	
Df Model:		2				
Covariance Type:	nor	robust				
	coef	std e	rr t	P> t	[0.025	0.975]
const	-6661.9872	2.28e+0	4 -0.292	0.773	-5.35e+04	4.02e+04
YearsExperience	6153.3533	2337.09	2 2.633	0.014	1358.037	1.09e+04
Age	1836.0136	1285.03	4 1.429	0.165	-800.659	4472.686
Omnibus:	2.695 D ui	rbin-Wats	son: 1.71	1		

Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.975

 Skew:
 0.456
 Prob(JB):
 0.372

 Kurtosis:
 2.135
 Cond. No.
 626.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- As You see YearsExperience and Age Has High std err so here Multicollinearity occure

- so to fix it we have to remove one variable which has high p value
 - Here Age Has High p value so just drop the age feature

2. Detecting Multicollinearity using VIF Method

```
In [15]:
```

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(X):

    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    return(vif)
```

In [16]:

```
X = df_salary.iloc[:,:-1]
calc_vif(X)
```

Out[16]:

	variables	VIF
0	YearsExperience	11.24047
1	Age	11.24047

• We can see here that the 'Age' and 'YearsExperience' have a high VIF value, meaning they can be predicted by other independent variables in the dataset.

Fixing Multicollinearity

- 1. Dropping one of the correlated features will help in bringing down the multicollinearity between correlated features.
- 1. combine the correlated variables into one and drop the others. This will reduce the multicollinearity:

Another Method To Know multicollinearity

· Use Correlation matrix

In [17]:

```
df_salary.corr()
```

Out[17]:

	YearsExperience	Age	Salary
YearsExperience	1.000000	0.987258	0.978242
Age	0.987258	1.000000	0.974530
Salary	0.978242	0.974530	1.000000

In [18]:

df.corr()

Out[18]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

• Here You Can Use Seaborn To plot this matrix

--- This All About multicollinearity If It Helpful to you Please Like Me ---