Algorithm 4.4: Randomized Subspace Iteration Given an $m \times n$ matrix **A** and integers ℓ and q, this algorithm computes an $m \times \ell$ orthonormal matrix Q whose range approximates the range of A. Draw an $n \times \ell$ standard Gaussian matrix Ω . Form $Y_0 = A\Omega$ and compute its QR factorization $Y_0 = Q_0 R_0$.

for
$$j=1,\,2,\,\ldots,\,q$$

Form $\widetilde{Y}_j=A^*Q_{j-1}$ and compute its QR factorization $\widetilde{Y}_j=\widetilde{Q}_j\widetilde{R}_j$.

Form $Y_j = A^*Q_{j-1}$ and compute its QR factorization $\widetilde{Y}_i = \widetilde{Q}_i \widetilde{R}_i$.

Form $Y_i = AQ_i$ and compute its QR factorization $Y_i = Q_iR_i$.

end

 $Q = Q_a$.