

Automatic Machine Learning

Herman Wu

Sr. Software Engineer Microsoft

Machine Learning LiveCycle

https://rladiestaipei.github.io/R_DragonBall/

R_DragonBall

我們與R的距離 -- R-Ladies Taipei 七日馬拉松

View On GitHub

活動介紹

我們與 R. 並不遙遠! 只需要連續七天與著 R-Ladies Taipei 進入精神時光屋一起破任務拿龍珠, 七天後擁有七颗龍珠的妳就可以跟我們一起尋找神龍! 很適合「攻城師」不敵壞人時使用,在 精神時間屋中的七天,每天花1-2 小時的 Kaggle 實戰修煉,妳也能成為資料分析女賽亞人!

教學文件

Day 0:

- Introduction
- Github
- Azure Notebook
- Kaggle & Data Set
- TO BROKE BY AND DEADLE ON THE PART OF AN ARREST AND THE PART OF TH

Day 1 (8/18): Data Wrangling & Data Cleaning

Day 2 (8/19): Exploratory Data Analysis

Day 3 (8/20): Feature Engineering

Day 4 (8/21) : Models

Day 5 (8/22): Cross Validation & Hyperparameter Tuning

Day 6 (8/23): Performance Evaluation

Day 7 (8/24): Shiny

Make & model? Screen size?

Timeseries forecasting

Regression

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n_clusters (2, 3, 4,..?)
 - Equal sized bins
 - n_bins (2, 3, 4,..?)
 - Target encoding on bin-categories.
- Scaling
 - Normalization, percentile-based,

.

- Outlier removal

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n_clusters (2, 3, 4,..?)
 - Equal sized bins
 - n_bins (2, 3, 4,..?)
 - Target encoding on bin-categories.
- Scaling
 - Normalization, percentile-based,

...

Outlier removal

Categorical features

- one hot encoding
- Target encoding
 - Cross-validation
 - Regularization params
- Categoricals for trees

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n_clusters (2, 3, 4,..?)
 - Equal sized bins
 - n_bins (2, 3, 4,..?)
 - Target encoding on bincategories.
- Scaling
 - Normalization, percentile-based,

...

Outlier removal

Categorical features

- one hot encoding
- Target encoding
 - Cross-validation
 - Regularization params
- Categoricals for trees

Text features

- Word ngrams
 - unigrams
 - bigrams
 - trigrams ...
- Character ngrams
 - unigram ...
- vocabulary size, idf, stop-words, casing
- word embedding
 - pretrained word embeddings
 - language?
 - pretrained corpus?
 - dimension?
- text similarity
 - embedding-based
 - ngram-based

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n clusters (2, 3, 4,..?)
 - Equal sized bins
 - n bins (2, 3, 4,..?)
 - Target encoding on bincategories.
- Scaling
 - Normalization, percentile-based,

- Outlier removal

Categorical features

- one hot encoding
- Target encoding
 - Cross-validation
 - Regularization params
- Categoricals for trees

Text features

- Word ngrams
 - unigrams
 - bigrams
 - trigrams ...
 - Character ngrams
 - unigram ...
- vocabulary size, idf, stop-words, casing
- word embedding
 - pretrained word embeddings
 - language?
 - pretrained corpus?
 - dimension?
- text similarity
 - embedding-based
 - ngram-based

Time series forecasting features:

- lagged features
- Frequency detection

Timestamp features

- Day of week
- Day of month
- Day of year
- Month
- Hour
- Minute
- Holiday
- Quarter

Without automated ML: hard, combinatorial explosion

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n_clusters (2, 3, 4,..?)
 - Equal sized bins
 - n bins (2, 3, 4,..?)
 - Target encoding on bincategories.
- Scaling
 - Normalization, percentile-based,

- Outlier removal

Categorical features

- one hot encoding
- Target encoding
 - Cross-validation
 - Regularization params
- Categoricals for trees

Text features

- Word ngrams
 - unigrams
 - bigrams
 - trigrams ...
 - Character ngrams
 - unigram ...
- vocabulary size, idf, stop-words, casing
- word embedding
 - pretrained word embeddings
 - language?
 - pretrained corpus?
 - dimension?
- text similarity
 - embedding-based
 - ngram-based

Time series forecasting features:

- y- lagged features
- Frequency detection

Timestamp features

- Day of week
- Day of month
- Day of year
- Month
- Hour
- Minute
- Holiday
- Quarter

Without automated ML: hard, combinatorial explosion With automated ML: easy, tailored to your dataset

user_id	user_device	user_os	user_age	zipcode	last_message	time	target
23433	ios	ios_11	30	92505	what ligtweight options do you have?	2018-12-15	13.5in
5223423	android	android_7	65	75240	How do increase default fntsize	2019-01-15	15in
343433	android	android_9		98004		2018-08-01	15in

Numerical features

- Discretization:
 - k-means clustering
 - n_clusters (2, 3, 4,..?)
 - Equal sized bins
 - n_bins (2, 3, 4,..?)
 - Target encoding on bincategories.
- Scaling
 - Normalization, percentile-based,
- Outlier removal

Categorical features

- one hot encoding
- Target encoding
 - Cross-validation
 - Regularization params
- Categoricals for trees

Text features

- Word ngrams
 - unigrams
 - bigrams
 - trigrams ...
 - Character ngrams
 - unigram ...
- vocabulary size, idf, stop-words, casing
- word embedding
 - pretrained word embeddings
 - language?
 - pretrained corpus?
 - dimension?
- text similarity
 - embedding-based
 - ngram-based

Time series forecasting features:

- y- lagged features
- Frequency detection

Timestamp features

- Day of week
- Day of month
- Day of year
- Month
- Hour
- Minute
- Holiday
- Quarter

What Machine Learning algorithm will best separate 13.5in users from 15in users?

xgboost alone: ~ 10^10 possible parameter configurations Compute cost > 10^5 years

Machine Learning Problem Example

How much is this car worth?

Model Creation Is Typically Time-Consuming

Model Creation Is Typically Time-Consuming

Which features?

Mileage

Condition

Car brand

Year of make

Regulations

. . .

Which algorithm?

Gradient Boosted

Nearest Neighbors

SVM

Bayesian Regression

LGBM

...

Which parameters?

30%

Model Creation Is Typically Time-Consuming

Automated ML Accelerates Model Development

Automated ML

1.

2.

3.

1.

.

6.

Data Preprocessing

Automated ML currently supports automated data

cleaning

Feature Engineering

Most timeconsuming part when done manually can now be done within minutes. Algorithm Selection

Testing many different algorithms at once.

Hyper-parameter Tuning

Hyperparameter tuning what to include what to leave out

Model Recommendation

Having an overview of the best performing models based on accuracy & speed.

Interpretability & Explaining

Being able to
explain what
created an
outcome and
what features had
the most
significant impact

© Microsoft Corporation Azure

What are hyperparameters?

- Adjustable parameters that govern model training
- · Chosen prior to training, stay constant during training

E.g.

Common Approach

- Grid / random search
 - · Run configurations with equal chance and predefined length
 - Unable to terminate poor configurations early → wasted resources
 - Unable to identify good configurations early → ineffective exhaustive search
- Human expert
 - · Rely on human expert to iteratively experiment and refine hyperparameters
 - · Not scalable to help many models
 - · Not scalable to help models with many hyperparameters

Hyperparameter exploration

- Search across various hyperparameter configurations
- · Find the configuration that results in best performance

Challenges

- Huge search space to explore
- Sparsity of good configurations
- Expensive evaluation
- Limited time and resources

How it works

Launch multiple parallel training runs

(A) Generate new runs

• Which parameter configuration to explore?

- (B) Manage resource usage of active runs
 - How long to execute a run?

Hyperparameter Tuning runs in Azure ML

Generate new runs

```
{
    "learning_rate": uniform(0, 1),
    "num_layers": choice(2, 4, 8)
    ...
}
```

Sampling algorithm

Define hyperparameter search space

Supported sampling algorithms –

- Grid Sampling
- Random Sampling
- Bayesian Optimization

```
Config1= {"learning_rate": 0.2,
"num_layers": 2, ...}

Config2= {"learning_rate": 0.5,
"num_layers": 4, ...}

Config3= {"learning_rate": 0.9,
"num_layers": 8, ...}
...
```

Manage Active Jobs

- Evaluate training runs for specified primary metric
- Early terminate poor performing training runs
- Use resources to explore new configurations

Supported early termination algorithms –

- Bandit policy
- Median Stopping policy
- Truncation Selection policy

Tool	Platform	Input data sourc	es	Data pre- processing	Data	a type:	s dete	cted		Featu	re engi	ineerii	ng	ML Ta	asks	Mode Hyper	- CALL 17 / COLD		and optimiz	zation	1	k star v stop		/ Res		luation alysis/ on
		Spreadsheet datasets	Image, text		Numerical	Categorical	Datetime	Time-series	Other (Hierarchical types) (7")	Datetime, categorical processing	Imbalance, missing values	Feature selection, reduction	Advanced feature extraction (8*)	Supervised learning (9")	Unsupervised learning (10*)	Ensemble	Genetic algorithm	Random search	Bayesian search	Neural architecture search	Quick finding of starting model	Allow maximum limit search time	Restrict time consuming combination of components	Model dashboard	Feature importance	Model explainability and interpretation, and reason code (11")
TransmogrifAl	Apache Spark	Y	N	Y(*)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	N	Υ	N	Υ	Υ	N	N			Υ	Υ	
H2O-AutoML	H2O clusters	Υ	N	Y	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	N	Υ	N	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ
Darwin (+)	GCP	Y	N	Y	Υ	Υ	Υ	Υ	N	Υ	Y	Y	Υ	Y	Υ	Y	Y	N	N	Y	Υ	Y	N	Y	Υ	Y
DataRobot (+)	Datarobot & AWS	Y	Υ	Y	Υ	Υ	N	Y	N	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	N	N	Υ		Υ	Υ	Y
Google AutoML (+)	Google Cloud	N	Υ	Y						N	Υ	Υ	Υ	Υ	Υ		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
Auto-skleam		Υ	N	N	N	N	N	N	N	Y(2*)	Υ	Υ	Υ	Y	N	Υ	N	Υ	Y	N	Υ	Υ	Υ	Υ	Υ	Y
MLjar (+)	MLJAR Cloud	Y(3*)	N	Υ	Υ	Υ	N	N	N	Υ	Y(4*)	N	N	Y(5*)	N	Υ	N	Υ	N	N	N	N	N	Υ	Υ	N
Auto_ml		Υ	N	N	N	N	N	N	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	N	N	N	N	Υ	Υ	Υ
TPOT		Y	N	N	N	N	N	N	N	N	Υ	N	Υ	Y	N	Υ	Υ	N	N	N	N	Υ	N	Υ	Υ	N
Auto-keras		Υ	Υ	N	N	N	N	N	N	N	Υ	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Y
Ludwig		Υ	Υ	Y(*)	Υ	Υ	N	Υ	Υ	N	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	Υ	Υ	N	N	Υ	Υ	N
Auto-Weka		Y	N	N	Υ	Y	N	N	N	N	Υ	Υ	N	Υ	N	Υ	N	Υ	Υ	N	N	Υ	Υ	Υ	N	N
Azure ML (+)	Azure	Υ	Υ	Y(6*)	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	N		Υ	Υ	Υ	Υ	
Sagemaker (+)	AWS	Υ	Υ	Y	Υ	Υ	Υ	Υ	N	Υ	Y	Y	Υ	Y	Υ	N	Υ	Υ	Y	N		Y	N	Υ	Υ	Y
H2O-Driverless AI (+)	H2O clusters	Y(3")	Y	Y	Υ	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Y	Υ	Y	N	N	N	Υ	Υ	Y	Y

Neural Architecture Search: State-of-the-art Overview

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	=		8.81
All-CNN (Springenberg et al., 2014)	-	-	7.25
Deeply Supervised Net (Lee et al., 2015)	-	_	7.97
Highway Network (Srivastava et al., 2015)	-	=	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	=	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
70 A00107 C004 10	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

Efficient Neural Architecture Search via Parameter Sharing (Pham et al, 2018)

Figure 7. ENAS's discovered network from the macro search space for image classification.

Progressive Neural Architecture Search (Liu et al. 2018) DARTS: Differentiable Architecture Search (Liu et al. 2018)

NNI (Neural Network Intelligence) toolkit

	Frameworks & Libraries	Tuning Algorithms	Training Services
Built-in	Supported Frameworks PyTorch Keras TensorFlow MXNet Caffe2 More Supported Libraries Scikit-learn XGBoost LightGBM More Examples MNIST-pytorch MNIST-tensorflow MNIST-keras Auto-gbdt Cifar10-pytorch Scikit-learn More	Tuner • General Tuner • Random Search • Naïve Evolution • Tuner for HPO • TPE • Anneal • SMAC • Batch • Grid Search • Hyperband • Metis Tuner • BOHB • GP Tuner • Tuner for NAS • Network Morphism • ENAS Assessor • Median Stop • Curve Fitting	Local Machine Remote Servers Kubernetes based services OpenPAI Kubeflow FrameworkController on K8S (AKS etc.)
References	Python API NNI Annotation Supported OS	CustomizeTuner CustomizeAssessor	Support TrainingService Implement TrainingService

Failed Trial

Experiment

Name example_mnist

ID

KCiBytKB

Start Time

10/31/2018, 8:16:15 PM

End Time

none

LogPath

/home/quzha/nni/experiments/KCiBytKB/log

TrainingPlatform

local

Status

Status **EXPERIMENT_RUNNING**

Overview

Best Accuracy

0.992200

Time Spent Remaining Time Duration 32h 40min 67h 19min 100h

0

Stopped Trial

Succeed Trial

403

Search Space

Trial Profile

```
"revision": 11768,
"authorName": "default",
"trialConcurrency": 1,
"clusterMetaData": [
    "key": "codeDir",
    "value": "/home/quzha/nni/nni/examples/trials/mnist-hyperband/."
    "key": "command",
    "value": "python3 mnist.py"
```

Optimization Progress

☐ Top10 Trials

	Trial No.	ld	Duration	Status	Default Metric
+	159	t0I7T	13min 37s	SUCCEEDED	0.992200
+	161	ITVup	23min 27s	SUCCEEDED	0.991800
+	156	SPNVb	13min 17s	SUCCEEDED	0.991500
+	159	BLy3T	13min 58s	SUCCEEDED	0.991000
+	162	Yel3O	23min 34s	SUCCEEDED	0.986100
+	154	FnDZH	4min 15s	SUCCEEDED	0.984000
+	162	sEzTu	14min 17s	SUCCEEDED	0.983000
+	160	Uvk7y	14min 49s	SUCCEEDED	0.982600
+	157	gL2JW	6min 30s	SUCCEEDED	0.981800
+	152	g1WQs	6min 56s	SUCCEEDED	0.981000

Q&A

Deployment Options

- Microservice deployment (AKS)
- IOT Edge
- Different run-time: ONNX
 - How do you deploy inferencing/prediction code in different run times?
 - With ONNX you can
 - scikit-learn/tensorflow trained model → prediction code directly in C# or Java applications
 - AutoML can generate ONNX formatted models
 - For more info, go to the ONNX session (code: BRK3012, today@12:30pm)

Auto-SKLearn

