Лабораторная работа №6

Модель «хищник-жертва»

Ибатулина Дарья Эдуардовна, НФИбд-01-22

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Реализация модели в хсоз	7 7 11 13
5	Выводы по графикам	17
6	Выводы	19
Сп	Писок литературы	

Список иллюстраций

4.1	Задание переменных окружения в хсоз для модели	7
4.2	Модель «хищник-жертва» в хсоз	8
4.3	Задание начальных значений в верхнем блоке интегрирования .	8
4.4	Задание начальных значений в нижнем блоке интегрирования	9
4.5	Задание параметров моделирования	9
4.6	Динамика изменения численности хищников и жертв модели	
	Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$	
	$2, y(0) = 1 \dots \dots$	10
4.7		
	0.3, d = 1, x(0) = 2, y(0) = 1	10
4.8	Модель «хищник–жертва» в xcos с применением блока Modelica .	11
4.9	Параметры блока Modelica для модели "хищник–жертва" (1)	12
4.10	Параметры блока Modelica для модели "хищник–жертва" (2)	13
4.11	Код в OpenModelica	14
4.12	Задание параметров моделирования	15
4.13	Динамика изменения численности хищников и жертв модели	
	Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$	
	$2, y(0) = 1 \dots \dots$	15
4.14	Фазовый портрет модели Лотки-Вольтерры при $a=2,b=1,c=$	
	0.3, d = 1, x(0) = 2, y(0) = 1	16

1 Цель работы

Реализовать модель "хищник-жертва" в *xcos*, в *xcos* с использованием блока Modelica, и в *OpenModelica*.

2 Задание

- 1. Реализовать модель "хищник-жертва" в хсоз;
- 2. Реализовать модель "хищник-жертва" с помощью блока Modelica в xcos;
- 3. Реализовать модель "хищник-жертва" в OpenModelica.

3 Теоретическое введение

Модель «хищник–жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\begin{cases} \dot{x} = ax - bxy; \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоз

Зафиксируем начальные данные: $a=2,\,b=1,\,c=0.3,\,d=1,\,x(0)=2,\,y(0)=1.$ В меню Моделирование -> Задать переменные окружения зададим значения коэффициентов $a,\,b,\,c,\,d$ (рис. [4.1]).

Рис. 4.1: Задание переменных окружения в хсоз для модели

Для реализации модели "хищник-жертва" в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY - регистрирующее устройство для построения фазового портрета. Готовая модель «хищник-жертва» представлена на рис. [4.2].

Рис. 4.2: Модель «хищник-жертва» в хсоѕ

В параметрах блоков интегрирования необходимо задать начальные значения x(0)=2,y(0)=1 (рис. [4.3], [4.4]). В меню *Моделирование -> Установка* необходимо задать конечное время интегрирования, равным времени моделирования: 30 (рис. [4.5]).

Рис. 4.3: Задание начальных значений в верхнем блоке интегрирования

Рис. 4.4: Задание начальных значений в нижнем блоке интегрирования

Рис. 4.5: Задание параметров моделирования

Результат моделирования представлен на рис. [4.6]. Черной линией обозначен график x(t) (динамика численности жертв), зеленая линия определяет y(t) — динамику численности хищников.

Рис. 4.6: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

На рис. [4.7] приведён фазовый портрет модели Лотки-Вольтерры.

Рис. 4.7: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3, d=1, x(0)=2, y(0)=1

4.2 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica потребуются следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica generic). Как и ранее, задаём значения коэффициентов a,b,c,d (см. рис. [4.1]).

Готовая модель «хищник-жертва» представлена на рис.[4.8]. Параметры блока Modelica представлены на рис. [4.9], [4.10] Переменные на входе ("a", "b", "c", "d") и выходе ("x", "y") блока заданы как внешние ("E").

Рис. 4.8: Модель «хищник-жертва» в хсоз с применением блока Modelica

Рис. 4.9: Параметры блока Modelica для модели "хищник-жертва" (1)

```
ввот значении
Function definition in Modelica
Here is a skeleton of the functions which you should edit
class generic
////automatically generated ////
   //input variables
   Real a,b,c,d;
   //output variables
   // Real x,y;
 ///do not modif above this line ////
   Real x(start=2), y(start=1);
equation
   // exemple
   der(x)=a*x-b*x*y;
   der(y)=c*x*y-d*y;
end generic;
                                        ОК Отменить
```

Рис. 4.10: Параметры блока Modelica для модели "хищник-жертва" (2)

В результате моделирования получаем графики, идентичные построенным без блока Modelica(см. рис. [4.6], [4.7]).

4.3 Упражнение

Реализуем модель «хищник – жертва» в OpenModelica. Построим графики изменения численности популяций и фазовый портрет. За построение отвечает код (рис. [4.11]).

```
model lab6

parameter Real a = 2;

parameter Real b = 1;

parameter Real c = 0.3;

parameter Real d = 1;
```

```
parameter Real x0 = 2;
parameter Real y0 = 1;

Real x(start=x0);
Real y(start=y0);
equation
    der(x) = a*x - b*x*y;
    der(y) = c*x*y - d*y;
end lab6;
```


Рис. 4.11: Код в OpenModelica

Выполним симуляцию, поставим конечное время 30с (рис. [4.12]). Получим график изменения численности хищников и жертв (рис. [4.13]), а также фазовый портрет (рис. [4.14]).

Рис. 4.12: Задание параметров моделирования

Рис. 4.13: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

Рис. 4.14: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

5 Выводы по графикам

1. Колебания численности

- Численность жертв (зелёная линия) колеблется с определённой периодичностью: при увеличении популяции жертв численность хищников возрастает с некоторым запаздыванием.
- Когда численность хищников становится высокой, они "выедают" жертв, из-за чего численность последних падает, а затем и численность хищников тоже снижается из-за нехватки еды.

2. Затухающие колебания (возможно)

Если амплитуда колебаний со временем уменьшается, это может указывать на стремление системы к устойчивому состоянию — возможно, к некоторому стационарному значению численности обоих видов.

3. Периодичность и устойчивость

Если амплитуда сохраняется, мы наблюдаем устойчивый цикл — численность хищников и жертв будет бесконечно колебаться вокруг равновесной точки.

4. Влияние параметров

Параметры модели определяют поведение системы:

- (а) скорость размножения жертв.
- (b) интенсивность хищничества.
- (с) скорость размножения хищников за счёт поедания жертв.

• (d) — естественная смертность хищников.

Например:

- Увеличение (b) приведёт к более быстрому сокращению популяции жертв при росте хищников.
- Увеличение (d) ускорит вымирание хищников при нехватке пищи.

Что касается фазового портрета, он показывает замкнутые траектории — это типично для системы Лотки-Вольтерры. Такая картина иллюстрирует циклическое поведение: система возвращается в исходное состояние со временем.

6 Выводы

В процессе выполнения данной лабораторной реализована модель "хищникжертва" в *xcos*, в *xcos* с использованием блока Modelica, и в *OpenModelica*.

Список литературы

 Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №6. Моделирование информационных процессов. Модель «хищник–жертва» - 2025.
 5 с.