- Provera postojanja specijalnih vrednosti
- Oduzimanje x-y se realizuje kao sabiranje x+(-y)
- Ukoliko je jedan od sabiraka jednak nuli, vrednost drugog sabirka je rezultat sabiranja.
- Ako su brojevi su različitih znakova, znak rezultata odgovara znaku broja sa većim eksponentom.

- Svođenje sabiraka na jednake eksponente.
- Svođenje se vrši povećavanjem manjeg eksponenta.
- Istovremeno pomeranje cifara mantise udesno.
- Pomeranje udesno se vrši za onoliko mesta za koliko je povećana vrednost eksponenta.
- Ako pri pomeranju mantisa postane 0, tada vrednost drugog sabirka postaje rezultat sabiranja.

- Sabiraju se mantise sabiraka, pri čemu se uzimaju u obzir i njihovi znaci.
- Sabiranje se vrši po pravilima za sabiranje celih brojeva u ZA zapisu.
- Ako je pri sabiranju došlo do prekoračenja, dobijeni rezultat se pomera za jedno mesto udesno uz povećanje vrednosti eksponenta za jedan.
- Ako ovo povećanje vrednosti eksponenta dovede do prekoračenja vrednosti eksponenta, ukupan rezultat je $\pm\infty$.

- Ako se sabiranjem mantisa dobije normalizovan rezultat, on se zaokružuje.
- Rezultat ima znak i mantisu jednake znaku i zaokruženom zbiru mantisa, a eksponent jednak eksponentu sabiraka.
- Ako rezultat sabiranja mantisa nije normalizovan, cifre mantise se pomeraju ulevo i smanjuje se vrednost eksponenta.

• Brojeve 12.75 i 6.75 zapisati u IEEE 754 zapisu jednostruke tačnosti, sabrati i rezultat prevesti u dekadni brojevni sistem.

• Brojeve 12.75 i 6.75 zapisati u IEEE 754 zapisu jednostruke tačnosti, sabrati i rezultat prevesti u dekadni brojevni sistem.

$$12.75 = 8 + 4 + 0.5 + 0.25 = 2^3 + 2^2 + 2^{-1} + 2^{-2} = 1100.11$$

$$1100.11 = 1.10011 * 2^3$$

Eksponent:
$$3 + 127 = 128 + 2 = 2^7 + 2^1 = 10000010$$

Mantisa: 1001100 ... 0

• 12.75: 0 10000010 1001100...00

• Brojeve 12.75 i 6.75 zapisati u IEEE 754 zapisu jednostruke tačnosti, sabrati i rezultat prevesti u dekadni brojevni sistem.

$$6.75 = 4 + 2 + 0.5 + 0.25 = 2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 110.11$$

$$110.11 = 1.1011 * 2^{2}$$

Eksponent:
$$2 + 127 = 128 + 1 = 2^7 + 2^0 = 10000001$$

Mantisa: 101100 ... 0

• 6.75: 0 10000001 101100...00

- Brojeve 12.75 i 6.75 zapisati u IEEE 754 zapisu jednostruke tačnosti, sabrati i rezultat prevesti u dekadni brojevni sistem.
- 12.75: 0 10000010 10011<u>00...00</u>
- 6.75: 0 10000001 10110<u>00...00</u>
- Brojevi su istih znakova pa je to i znak rezultata

Brojeve svodimo na iste eksponente. Svođenje se vrši povećavanjem manjeg eksponenta.

Brojeve svodimo na iste eksponente:

$$12.75 = 1100.11 = 1.10011 \times 2^3$$

$$6.75 = 110.11 = 1.1011 \times 2^2 = 0.11011 \times 2^3$$

Mantisa:

Brojeve svodimo na iste eksponente:

$$12.75 = 1100.11 = 1.10011 \times 2^3$$

$$6.75 = 110.11 = 1.1011 \times 2^2 = 0.11011 \times 2^3$$

Vršimo sabiranje mantisa:

Mantisa:

Brojeve svodimo na iste eksponente:

$$12.75 = 1100.11 = 1.10011 \times 2^3$$

$$6.75 = 110.11 = 1.1011 \times 2^2 = 0.11011 \times 2^3$$

Vršimo sabiranje mantisa:

$$1.10011 + 0.11011 = 10.0111$$

Rezultat je:

$$10.0111 \times 2^3 = (10011.1)_2 = 19.5$$

Mantisa:

Brojeve svodimo na iste eksponente:

$$12.75 = 1100.11 = 1.10011 \times 2^3$$

$$6.75 = 110.11 = 1.1011 \times 2^2 = 0.11011 \times 2^3$$

Vršimo sabiranje mantisa:

$$1.10011 + 0.11011 = 10.0111$$

Rezultat je:

$$10.0111 \times 2^3 = (10011.1)_2 = 19.5$$

Rezultat u IEEE 754 zapisu:

Normalizacija mantise:

$$10.0111 \times 2^3 = 1.00111 \times 2^4$$

• Eksponent:

$$4+127=131=128+2+1=(10000011)_2$$

Konačno dobijamo:

ZAOKRUŽIVANJE

 Kada se vrše aritmetičke operacije u pokretnom zarezu često se dobija rezultat koji ne može biti sačuvan u predviđenom broju bitova, zato se vrši zaokruživanje.

ZAOKRUŽIVANJE U STANDARDU IEEE 754

- Zaokruživanje na najbližu vrednost (ovo je podrazumevani način zaokruživanja)
- Zaokruživanje prema 0
 (odbacivanje svih bitova desno
 od poslednje pozicije koja se
 čuva u zapisu)
- Zaokruživanje prema +∞.
 Zaokružuje se na prvu veću predstavljivu vrednost.
- Zaokruživanje prema -∞.
 Zaokružuje se na prvu manju predstavljivu vrednost.

Broj	Na najbližu vrednost	Zaokruživanje prema 0	Zaokruživanje prema +∞	Zaokruživanje prema -∞
1,33	1,3	1,3	1,4	1,3
-1,33	-1,3	-1,3	-1,3	-1,4
1,37	1,4	1,3	1,4	1,3
-1,37	-1,4	-1,3	-1,3	-1,4
1,35	1,4	1,3	1,4	1,3
-1,35	-1,4	-1,3	-1,3	-1,4

ZAOKRUŽIVANJE NA NAJBLIŽU VREDNOST (DEKADNO)

Primer u dekadnom sistemu – zaokruživanje na 2 decimale

7.8949999 7.8	39 (Deo k	oji se odbacuje je manji od 0.005)
7.89 50001 7.9	O (Deo k	oji se odbacuje je veći od 0.005)
7.8950000 7.9	00 (Deo ko neparr	oji se odbacuje je tačno 0.005, ali je prethodna cifra na, pa joj se mora dodati 1)
7.8850000 7.8	38 (Deo ko parna)	oji se odbacuje je tačno 0.005, a prethodna cifra je

- Zaokružuje se na najbližu predstavljivu vrednost.
- Kada je broj koji se zaokružuje na sredini intervala između dve predstavljjive vrednosti, vrši se zaokruživanje tako da cifra najmanje težine u zapisu bude parna.

ZAOKRUŽIVANJE NA NAJBLIŽU VREDNOST (BINARNO)

Primer u binarnom sistemu – zaokruživanje na 2-2

10.00 <mark>011</mark>	10.00	(Prva sledeća cifra je 0)
10.00110	10.01	(Prva sledeća cifra je 1)
10.11100	11.00	(Bitovi desno od pozicije za zaokruživanje su 1000, ali je cifra najmanje težine 1, pa joj se mora dodati jedinica)
10.10100	10.10	(Bitovi desno od pozicije za zaokruživanje su 1000)

- Zaokružuje se na najbližu predstavljivu vrednost.
- Kada je broj koji se zaokružuje na sredini intervala između dve predstavljive vrednosti (bitovi desno od pozicije za zaokruživanje su 1000...), vrši se zaokruživanje tako da cifra najmanje težine u zapisu bude parna jednaka 0.

Zaokružiti brojeve +12.6785 i -1.465555 na tri decimale na svaki od načina zaokruživanja u standardu IEEE 754.

- 12.678 Deo koji se odbacuje je tačno 0.005, a prethodna cifra je parna, pa ne treba da se menja.
- Deo koji se odbacuje je veći od 0.005, pa je broj bliži broju -1,466

Broi	Na najbližu vrednost	Zaokruživanje prema 0	Zaokruživanje prema +∞	Zaokruživanje prema -∞
+12.6785	12.678	12.678	12.679	12.678
-1.465555	-1,466	-1.465	-1.465	-1.466