Aplicação Conjunta de Métodos de Seleção

Relatório Final da Disciplina SSC5893-Projeto de Inovação com Algoritmos Genéticos

Aluno: Maurício Acconcia Dias

E-mail – macccdias@gmail.com

Professor: Alexandre Delbem

USP - São Carlos

Dezembro/2012

Sumário

1. Introdução	3
1.1. Objetivo	4
2. Método	4
2.1. Funções	4
2.2. Métodos de Seleção	5
3. Resultados	6
3.1. Análise de Aumento de Média e Desvio Padrão	22
3.2. Análise de Intensidade	24
4. Análise de Resultados	34
5. Conclusões	35
6. Bibliografia	36
Apêndice A: Testes de Execução	37
Anêndice R: Códigos	39

1. Introdução

Uma das discussões apresentadas durante o curso leva em consideração a influência do método de seleção na geração do modelo de um EDA. Observando a equação de Fisher:

$$\overline{f_{t+1}} - \overline{f_t} = \frac{\sigma_t^2}{\overline{f_t}}$$

é possível ver que a diferença entre o *fitness* médio no tempo t+1 e o *fitness* médio no tempo atual t está diretamente relacionado à variância da população e inversamente relacionado ao *fitness* médio no tempo atual.

Foi introduzida uma variável / cujo valor é obtido pela razão entre desvio padrão e o fitness médio da população.

$$I = \frac{\sigma_t}{\overline{f_t}}$$

Introduzindo a variável Intensidade (I) na equação de Fisher (Delbem, 2011) obtém-se:

$$\overline{f_{t+1}} - \overline{f_t} = I * \sigma_t$$

Ao analisar a média e o desvio padrão também é possível analisar como as duas medidas foram melhoradas com um método de seleção. Para isto será criada a medida proporção – Ψ definida por:

$$\Psi = \overline{f_t} * \sigma_t$$

A variância (σ_t) e o *fitness* médio $(\overline{f_t})$ em um tempo t são diretamente influenciados, no caso dos Algoritmos Genéticos e EDAs, pela seleção que é feita sobre a população. Esta seleção visa escolher os mais aptos, dentre um grupo de indivíduos, que irão influenciar na construção do modelo no caso dos EDAs.

Ao analisar a equação de Fisher é possível notar que uma média alta sem que haja variância na população não faz com que a diferença entre os fitness médios aconteça, e também é interessante um método de seleção que obtém uma variação alta média e no desvio padrão.

Basicamente nos algoritmos citados são utilizados três tipos de métodos de seleção:

- Seleção proporcional roleta
- Seleção por torneio
- Seleção por truncamento

A seleção por roleta teoricamente apresenta um resultado onde a variância é maior, a seleção por torneio e por truncamento apresentam resultados onde a média é maior e a variância é baixa.

1.1 Objetivo

O Objetivo principal deste relatório é analisar o efeito da combinação de métodos de seleção com relação ao impacto na média do fitness e no desvio padrão. Para atingir este objetivo serão implementados os algoritmos de seleção e serão aplicados em problemas diferentes para que possam ser analisados.

2. Método

Para avaliar os métodos de seleção foram implementados os três métodos citados, torneio, truncamento e roleta, que foram aplicados a três problemas ONEMAX, *BinInt* e *BinTrap*. As seções seguintes descrevem os problemas e a forma como foram implementados os métodos.

2.1 Funções

As funções de *fitness* utilizadas para avaliar os indivíduos, que são normalmente utilizadas para avaliar algoritmos evolutivos (Crocomo, 2012) foram:

a função que representa problema ONEMAX:

$$f(x) = \sum_{i=1}^{l} x_i$$

onde, para um dado indivíduo x de tamanho l composto por bits (0 e 1), o fitness é a soma de todos os seus bits. Esta função atinge seu valor máximo quando todos os bits do indivíduo estão em 1. A outra função utilizada representa o problema BinInt:

$$f(x) = \sum_{i=0}^{l-1} x_i * 2^i$$

onde novamente é considerada uma *string* de tamanho *I*, composta por bits (*O* e 1), cujo valor do fitness é a conversão direta para a base decimal multiplicando-se o valor do bit de cada posição pela base 2 elevada à posição do bit na *string*. A última função considerada é semelhante à função do problema *BinInt* porém ao invés de se multiplicar o valor do bit pela potência de dois, será multiplicado o resultado de uma função *Trap 5*. A função trap pode ser definida por:

$$fTrap_5(x) = \begin{cases} 4 - x, & x < 5 \\ 5, & x = 5 \end{cases}$$

onde caso soma de 5 bits for menor que cinco o valor da função é dado por quatro menos o valor da soma e caso contrário o valor da função é cinco. Desta forma podemos definir o problema *BinTrap* sendo:

$$f(x) = \sum_{i=0}^{l-1} fTrap_5(\sum_{i=1}^{t} x_i) * 2^i$$

Onde as variáveis possuem a mesma definição das variáveis do problema *BinInt* com exceção de *I* que agora representa o número de funções *Trap* presentes no cromossomo e também acrescentando-se a variável *t* que seria o tamanho da função *Trap* (no caso 5).

2.2 Métodos de Seleção

Os métodos de seleção escolhidos foram implementados em sua forma clássica. O método da roleta (Goldberg, 1989) foi implementado de forma que a proporção na roleta de cada indivíduo é proporcional ao seu fitness na forma:

$$p_i = \frac{f_i}{f_t}$$

ou seja, a porcentagem é igual ao *fitness* do indivíduo sobre a soma de todos os *fitness* da população.

A seleção por torneio (Goldberg, 1989) foi implementada de forma a selecionar um número n de indivíduos e selecionar o indivíduo de maior *fitness* entre eles. A seleção por truncamento simplesmente ordena o vetor da população de acordo com o *fitness*, selecionando os n% primeiros indivíduos de maiores *fitness*.

Um fator importante nos resultados que serão analisados a seguir é que todo o estudo foi feito sobre a primeira população gerada aleatoriamente, ou seja, no caso de *strings* binárias a probabilidade de geração de 0s ou 1s é de 0,5. Estes indivíduos gerados de forma aleatória foram avaliados pelas funções de *fitness* descritas e então foram submetidos aos três processos de seleção descritos, de forma simples ou combinada em pares. A avaliação do comportamento dos métodos isoladamente ou combinados, com relação a variável *Intensidade*, é apresentada a seguir.

3. Resultados

Os resultados apresentados são com relação à média do *fitness* e o desvio padrão apresentados para a população após a seleção de indivíduos da primeira geração. Os métodos de seleção escolhidos foram aplicados com os seguintes parâmetros:

- O truncamento considerou valores de 1, 5, 10, 20 e 40% dos indivíduos da população inicial. Para que o total de indivíduos gerado fosse sempre o mesmo, ou seja, o tamanho da população inicial, os indivíduos selecionados foram replicados.
- O torneio considerou 2, 4, 8, 16 e 32 indivíduos. Dentre eles foi selecionado o indivíduo de melhor fitness. O procedimento se repetiu para que a seleção resultasse no mesmo número de indivíduos da população inicial.
- A roleta foi girada para selecionar de forma a resultar em um número de indivíduos igual ao da população inicial assim como os outros métodos.

Serão apresentadas duas tabelas onde estão às médias, os desvios padrão e a constante de Intensidade para cada método de seleção individualmente e também suas combinações. Os valores que estão em 0 nas tabelas podem refletir resultados muito pequenos que foram aproximados. Estas tabelas não apresentam o parâmetro proporção (Ψ) por terem sido desenvolvidas antes de se notar sua importância, porém é importante lembrar que ele pode ser facilmente obtido pela multiplicação dos valores da coluna Media pelos respectivos valores da coluna DesvPad.

Tabela 1 – Resultados dos métodos de seleção para o problema ONEMAX de tamanho 30 e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos	Media	DesvPad	1
Simples			
Trunc1	23	0	0
Trunc5	21,8	17,49514	0,802529
Trunc 10	21	17,68219	0,842009
Trunc 20	20,1	17,15124	0,853295
Trunc 40	19,26	17,16436	0,891192
Tor2	17,9321	16,69716	0,931132
Tor4	19,1687	17,51031	0,913485
Tor8	20,16733	18,14798	0,89987
Tor 16	21,0462	18,66324	0,886775
Torn 32	21,7543	18,51606	0,851145
Rol	16,7671	15,81335	0,943117

Tabela 2 -Resultados dos métodos de seleção híbridos para o problema ONEMAX de tamanho 30. e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

MetodosHibridos	Media	DesvPad	1
Trunc 1 + tor2	20,46605	16,46925	0,804711

Trunc 1 + tor4	21,08435	16,97896	0,805287
Trunc 1 + tor8	21,58367	17,16407	0,795234
Trunc 1 + tor 16	22,0231	17,03622	0,773561
Trunc 1 + tor 32	22,37715	16,18674	0,72336
Trunc 5 + tor2	19,86605	18,20839	0,916558
Trunc 5 + tor4	20,48435	18,50848	0,903542
Trunc 5 + tor8	20,98367	18,62414	0,887554
Trunc 5 + tor 16	21,4231	18,4206	0,859847
Trunc 5 + tor 32	21,77715	18,18282	0,834949
Trunc 10 + tor2	19,46605	17,89709	0,9194
Trunc 10 + tor4	20,08435	18,1533	0,903853
Trunc 10 + tor8	20,58367	18,20944	0,884655
Trunc 10 + tor 16	21,0231	18,31046	0,870969
Trunc 10 + tor 32	21,37715	18,50325	0,865562
Trunc 20 + tor2	19,01605	17,2526	0,907265
Trunc 20 + tor4	19,63435	17,46584	0,889556
Trunc 20 + tor8	20,13367	17,73707	0,880965
Trunc 20 + tor 16	20,5731	18,27043	0,888074
Trunc 20 + tor 32	20,92715	18,69412	0,893295
Trunc 40 + tor2	18,59605	17,03765	0,916197
Trunc 40 + tor4	19,21435	17,37136	0,904083
Trunc 40 + tor8	19,71367	17,79326	0,902585
Trunc 40 + tor 16	20,1531	18,38563	0,912298
Trunc 40 + tor 32	20,50715	18,75119	0,914373
Trunc 1 + rol	19,88355	15,8983	0,799571
Trunc 5 + rol	19,28355	17,73248	0,919565
Trunc 10 + rol	18,88355	17,5173	0,927649
Trunc 20 + rol	18,43355	16,94701	0,919357
Trunc 40 + rol	18,01355	16,71738	0,928044
Torn 2 + rol	17,3496	16,28769	0,938794
Torn 4 + rol	17,9679	16,80971	0,935541
Torn 8 + rol	18,46722	17,28455	0,935959
Torn 16 + rol	18,90665	17,74737	0,938684
Torn 32 + rol	19,2607	17,96906	0,932939

Tabela 3 – Resultados dos métodos de seleção para o problema ONEMAX de tamanho 30 e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	ı
Trunc1	22,9	9,543584	0,41675
Trunc5	21,68	17,11932	0,789637
Trunc 10	20,82	17,73159	0,851662
Trunc 20	19,785	17,25485	0,872118
Trunc 40	18,867	16,97723	0,899837
Tor2	17,60392	16,42811	0,933207
Tor4	18,83792	17,37441	0,92231
Tor8	19,88865	18,15791	0,912978

Tor 16	20,79619	18,66927	0,897725
Torn 32	21,59728	18,6278	0,862507
Rol	16,54315	15,60355	0,943203

Tabela 4 -Resultados dos métodos de seleção híbridos para o problema ONEMAX de tamanho 30. e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

MetodosHibridos	Media	DesvPad	1
Trunc 1 + tor2	20,25196	16,93346	0,836139
Trunc 1 + tor4	20,86896	17,42687	0,835062
Trunc 1 + tor8	21,39433	17,69861	0,827257
Trunc 1 + tor 16	21,8481	17,64433	0,807591
Trunc 1 + tor 32	22,24864	17,03052	0,765463
Trunc 5 + tor2	19,64196	17,94677	0,913695
Trunc 5 + tor4	20,25896	18,30631	0,903615
Trunc 5 + tor8	20,78433	18,43257	0,88685
Trunc 5 + tor 16	21,2381	18,32611	0,862889
Trunc 5 + tor 32	21,63864	18,10374	0,83664
Trunc 10 + tor2	19,21196	17,78861	0,925913
Trunc 10 + tor4	19,82896	18,1016	0,912887
Trunc 10 + tor8	20,35433	18,25217	0,896722
Trunc 10 + tor 16	20,8081	18,35372	0,882047
Trunc 10 + tor 32	21,20864	18,55422	0,874842
Trunc 20 + tor2	18,69446	17,21382	0,920798
Trunc 20 + tor4	19,31146	17,49818	0,906103
Trunc 20 + tor8	19,83683	17,79896	0,897268
Trunc 20 + tor 16	20,2906	18,24919	0,899392
Trunc 20 + tor 32	20,69114	18,68538	0,903062
Trunc 40 + tor2	18,23546	16,80258	0,921423
Trunc 40 + tor4	18,85246	17,20362	0,91254
Trunc 40 + tor8	19,37783	17,70977	0,91392
Trunc 40 + tor 16	19,8316	18,25581	0,920542
Trunc 40 + tor 32	20,23214	18,62966	0,920795
Trunc 1 + rol	19,72157	16,43922	0,833566
Trunc 5 + rol	19,11157	17,52782	0,917131
Trunc 10 + rol	18,68157	17,4095	0,931908
Trunc 20 + rol	18,16407	16,87919	0,929262
Trunc 40 + rol	17,70507	16,48032	0,930825
Torn 2 + rol	17,07354	16,03827	0,939364
Torn 4 + rol	17,69053	16,61196	0,939031
Torn 8 + rol	18,2159	17,16179	0,942132
Torn 16 + rol	18,66967	17,62033	0,943795
Torn 32 + rol	19,07021	17,88197	0,937691

Tabela 5 – Resultados dos métodos de seleção para o problema ONEMAX de tamanho 30

e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	1
Trunc1	23,06	18,43722	0,799533
Trunc5	21,602	16,3883	0,758647
Trunc 10	20,817	16,90297	0,811979
Trunc 20	19,848	17,16136	0,864639
Trunc 40	18,8902	17,04738	0,902446
Tor2	17,86567	16,71101	0,93537
Tor4	19,14335	17,60628	0,919707
Tor8	20,17882	18,22085	0,902969
Tor 16	21,0337	18,64523	0,886446
Torn 32	21,76947	19,04288	0,874752
Rol	16,39711	15,48107	0,944134

Tabela 6 -Resultados dos métodos de seleção híbridos para o problema ONEMAX de tamanho 30. e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	I
Trunc 1 + tor2	20,46284	18,89777	0,923516
Trunc 1 + tor4	21,10168	19,39249	0,919002
Trunc 1 + tor8	21,61941	19,6677	0,909724
Trunc 1 + tor 16	22,04685	19,72618	0,894739
Trunc 1 + tor 32	22,41473	19,58206	0,873625
Trunc 5 + tor2	19,73384	17,82689	0,903367
Trunc 5 + tor4	20,37268	18,13549	0,890187
Trunc 5 + tor8	20,89041	18,16294	0,869439
Trunc 5 + tor 16	21,31785	17,99999	0,844363
Trunc 5 + tor 32	21,68573	18,05096	0,832389
Trunc 10 + tor2	19,34134	17,59133	0,90952
Trunc 10 + tor4	19,98018	17,82519	0,892144
Trunc 10 + tor8	20,49791	17,86865	0,87173
Trunc 10 + tor 16	20,92535	18,00296	0,860342
Trunc 10 + tor 32	21,29323	18,5239	0,869943
Trunc 20 + tor2	18,85684	17,25394	0,914996
Trunc 20 + tor4	19,49568	17,53099	0,899225
Trunc 20 + tor8	20,01341	17,81378	0,890092
Trunc 20 + tor 16	20,44085	18,29251	0,8949
Trunc 20 + tor 32	20,80873	18,87175	0,906915
Trunc 40 + tor2	18,37794	16,95462	0,922553
Trunc 40 + tor4	19,01678	17,37944	0,913901
Trunc 40 + tor8	19,53451	17,85383	0,913964
Trunc 40 + tor 16	19,96195	18,35554	0,919526
Trunc 40 + tor 32	20,32983	18,82568	0,926012
Trunc 1 + rol	19,72855	18,22048	0,923559
Trunc 5 + rol	18,99955	17,21908	0,906289
Trunc 10 + rol	18,60705	17,092	0,918577
Trunc 20 + rol	18,12255	16,79946	0,926992

Trunc 40 + rol	17,64365	16,46209	0,933032
Torn 2 + rol	17,13139	16,13652	0,941927
Torn 4 + rol	17,77023	16,71306	0,940509
Torn 8 + rol	18,28796	17,20317	0,940683
Torn 16 + rol	18,7154	17,60525	0,940682
Torn 32 + rol	19,08329	17,95979	0,941127
	•	•	

Tabela 7 – Resultados dos métodos de seleção para o problema ONEMAX de tamanho 7 e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos	Media	DesvPad	1
Simples			
Trunc 1	2,50426	0	0
Trunc 5	6,116503	0	0
Trunc 10	6,173378	4,226154	0,684577
Trunc 20	6,086592	4,003806	0,657808
Trunc 40	5,711312	4,499545	0,78783
Tor 2	5,265451	4,466447	0,848255
Tor 4	5,738593	4,59723	0,801108
Tor 8	5,973333	4,448201	0,744677
Tor 16	5,891445	3,799659	0,644945
Torn 32	5,396228	2,19824	0,407366
Rol	4,918263	4,266203	0,867421

Tabela 8 -Resultados dos métodos de seleção híbridos para o problema ONEMAX de tamanho 7. e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	1
Trunc 1 + tor 2	3,884856	3,215845	0,82779
Trunc 1 + tor 4	4,121426	3,206327	0,777965
Trunc 1 + tor 8	4,238796	2,960144	0,698345
Trunc 1 + tor 16	4,197852	2,371901	0,565027
Trunc 1 + tor 32	3,950244	1,287952	0,326044
Trunc 5 + tor 2	5,690977	4,280647	0,752181
Trunc 5 + tor 4	5,927548	4,214069	0,71093
Trunc 5 + tor 8	6,044918	3,815408	0,631176
Trunc 5 + tor 16	6,003974	2,97768	0,495952
Trunc 5 + tor 32	5,756365	1,647293	0,286169
Trunc 10 + tor 2	5,719414	4,649541	0,81294
Trunc 10 + tor 4	5,955985	4,586932	0,770138
Trunc 10 + tor 8	6,073355	4,377803	0,720821
Trunc 10 + tor 16	6,032411	4,031068	0,668235
Trunc 10 + tor 32	5,784803	3,506729	0,606197
Trunc 20 + tor 2	5,676022	4,465027	0,786647
Trunc 20 + tor 4	5,912592	4,400736	0,744299
Trunc 20 + tor 8	6,029962	4,313924	0,715415
Trunc 20 + tor 16	5,989018	4,242494	0,708379
Trunc 20 + tor 32	5,74141	3,984934	0,694069

Trunc 40 + tor 2	5,488382	4,511435	0,821997
Trunc 40 + tor 4	5,724952	4,565571	0,797486
Trunc 40 + tor 8	5,842323	4,599713	0,787309
Trunc 40 + tor 16	5,801379	4,543405	0,78316
Trunc 40 + tor 32	5,55377	4,258701	0,766813
Trunc 1 + rol	3,711261	3,132372	0,844018
Trunc 5 + rol	5,517383	4,201937	0,761582
Trunc 10 + rol	5,54582	4,614596	0,832085
Trunc 20 + rol	5,502427	4,46002	0,810555
Trunc 40 + rol	5,314788	4,45893	0,838967
Torn 2 + rol	5,091857	4,378902	0,859981
Torn 4 + rol	5,328428	4,520389	0,848353
Torn 8 + rol	5,445798	4,581217	0,841239
Torn 16 + rol	5,404854	4,480686	0,829011
Torn 32 + rol	5,157245	4,137499	0,802269

Tabela 9 – Resultados dos métodos de seleção para o problema BinInt de tamanho 10 e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	1
tr 1	1000	0	0
Tr 5	977	873,8317	0,894403
Tr 10	937	888,8162	0,948576
Tr 20	880,45	858,0292	0,974535
Tr 40	821,53	810,284	0,986311
Tor2	688,553	682,5637	0,991302
Tor4	807,5883	796,3571	0,986093
Tor8	883,4737	861,6291	0,975274
Tor 16	930,835	888,1188	0,95411
Tor 32	965,1997	880,6041	0,912354
Rol	679,6164	673,508	0,991012

Tabela 10 – Resultados dos métodos de seleção híbridos para o problema BinInt de tamanho 10 e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	1
Trunc 1 + torn2	844,2765	670,2576	0,793883939
Trunc 1 + torn4	903,7942	735,8574	0,814186967
Trunc 1 + torn8	941,7368	766,1409	0,813540325
Trunc 1 + torn 16	965,4175	764,6159	0,792005405
Trunc 1 + torn 32	982,5998	735,0247	0,748040678
Trunc 5 + torn2	832,7765	796,1594	0,956030075
Trunc 5 + torn4	892,2942	852,108	0,954963082
Trunc 5 + torn8	930,2368	880,8745	0,946935754
Trunc 5 + torn 16	953,9175	888,0926	0,930995208
Trunc 5 + torn 32	971,0998	882,3379	0,908596461

Trunc 10 + torn2	812,7765	792,5851	0,975157488
Trunc 10 + torn4	872,2942	848,1009	0,972264801
Trunc 10 + torn8	910,2368	878,1558	0,964755298
Trunc 10 + torn 16	933,9175	891,0675	0,954118069
Trunc 10 + torn 32	951,0998	893,4042	0,939337983
Trunc 20 + torn2	784,5015	772,2958	0,984441451
Trunc 20 + torn4	844,0192	828,2116	0,981271059
Trunc 20 + torn8	881,9618	860,8268	0,976036368
Trunc 20 + torn 16	905,6425	877,3186	0,9687251
Trunc 20 + torn 32	922,8248	882,8918	0,956727367
Trunc 40 + torn2	755,0415	746,7774	0,989054744
Trunc 40 + torn4	814,5592	803,5334	0,986464113
Trunc 40 + torn8	852,5018	837,4362	0,982327741
Trunc 40 + torn 16	876,1825	854,8168	0,975614975
Trunc 40 + torn 32	893,3648	860,5105	0,963224095
Trunc 1 + rol	839,8082	668,6911	0,796242634
Trunc 5 + rol	828,3082	792,1533	0,956350925
Trunc 10 + rol	808,3082	788,4689	0,975455832
Trunc 20 + rol	780,0332	768,2756	0,984926839
Trunc 40 + rol	750,5732	742,5023	0,989247019
torn 2 + rol	684,0847	678,2111	0,991413999
torn 4 + rol	743,6023	735,5481	0,989168646
torn 8 + rol	781,545	769,8169	0,984993677
torn 16 + rol	805,2257	787,0362	0,977410674
torn 32 + rol	822,408	791,9661	0,962984381

Tabela 11 – Resultados dos métodos de seleção para o problema BinInt de tamanho 10 e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	ı
tr 1	1017,5	965,2844	0,948683
Tr 5	994,4	984,4035	0,989947
Tr 10	967,52	962,6653	0,994982
Tr 20	915,135	912,8342	0,997486
Tr 40	834,823	833,6693	0,998618
Tor2	685,8488	685,2165	0,999078
Tor4	816,919	815,7671	0,99859
Tor8	905,6992	903,5116	0,997585
Tor 16	959,4433	955,1411	0,995516
Tor 32	988,3931	980,1156	0,991625
Rol	680,6129	676,7473	0,99432

Tabela 12 – Resultados dos métodos de seleção híbridos para o problema BinInt de tamanho 10 e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

MetodosHibridos	Media	DesvPad	I
Trunc 1 + torn2	851,6744	835,614	0,981143
Trunc 1 + torn4	917,2095	901,5653	0,982944

	-		
Trunc 1 + torn8	961,5996	945,3606	0,983113
Trunc 1 + torn 16	988,4716	970,2372	0,981553
Trunc 1 + torn 32	1002,947	980,6978	0,977817
Trunc 5 + torn2	840,1244	836,4564	0,995634
Trunc 5 + torn4	905,6595	901,6443	0,995567
Trunc 5 + torn8	950,0496	945,158	0,994851
Trunc 5 + torn 16	976,9216	970,427	0,993352
Trunc 5 + torn 32	991,3966	982,7375	0,991266
Trunc 10 + torn2	826,6844	824,5827	0,997458
Trunc 10 + torn4	892,2195	889,7249	0,997204
Trunc 10 + torn8	936,6096	933,3826	0,996555
Trunc 10 + torn 16	963,4816	959,1395	0,995493
Trunc 10 + torn 32	977,9566	972,2303	0,994145
Trunc 20 + torn2	800,4919	799,2153	0,998405
Trunc 20 + torn4	866,027	864,4087	0,998131
Trunc 20 + torn8	910,4171	908,2735	0,997646
Trunc 20 + torn 16	937,2891	934,4142	0,996933
Trunc 20 + torn 32	951,7641	947,7794	0,995813
Trunc 40 + torn2	760,3359	759,4747	0,998867
Trunc 40 + torn4	825,871	824,7388	0,998629
Trunc 40 + torn8	870,2611	868,7271	0,998237
Trunc 40 + torn 16	897,1331	894,9467	0,997563
Trunc 40 + torn 32	911,6081	908,2993	0,99637
Trunc 1 + rol	849,0565	832,5763	0,98059
Trunc 5 + rol	837,5065	833,2107	0,994871
Trunc 10 + rol	824,0665	821,3272	0,996676
Trunc 20 + rol	797,874	795,9226	0,997554
Trunc 40 + rol	757,718	756,1399	0,997917
torn 2 + rol	683,2309	681,8053	0,997913
torn 4 + rol	748,766	747,1853	0,997889
torn 8 + rol	793,156	791,2521	0,9976
torn 16 + rol	820,0281	817,4573	0,996865
torn 32 + rol	834,503	830,7326	0,995482

Tabela 13 – Resultados dos métodos de seleção para o problema BinInt de tamanho 10 e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	I
tr 1	1016,77	968,4315	0,952459
Tr 5	997	985,9227	0,988889
Tr 10	972,528	967,1752	0,994496
Tr 20	922,9185	920,3835	0,997253
Tr 40	842,3432	841,0708	0,998489
Tor2	721,6055	720,7956	0,998878
Tor4	851,2839	849,7618	0,998212

Tor8	930,767	927,8678	0,996885
Tor 16	974,1294	968,5553	0,994278
Tor 32	997,1561	986,4808	0,989294
Rol	686,9334	683,0342	0,994324

Tabela 14 – Resultados dos métodos de seleção híbridos para o problema BinInt de tamanho 10 e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

MetodosHibridos	Media	DesvPad	ı
Trunc 1 + torn2	869,1878	854,4041	0,982991
Trunc 1 + torn4	934,0269	919,4526	0,984396
Trunc 1 + torn8	973,7685	958,2524	0,984066
Trunc 1 + torn 16	995,4497	977,457	0,981925
Trunc 1 + torn 32	1006,963	984,2176	0,977412
Trunc 5 + torn2	859,3028	855,1718	0,995193
Trunc 5 + torn4	924,1419	919,4865	0,994962
Trunc 5 + torn8	963,8835	958,0643	0,993963
Trunc 5 + torn 16	985,5647	977,847	0,992169
Trunc 5 + torn 32	997,0781	986,887	0,989779
Trunc 10 + torn2	847,0668	844,6532	0,997151
Trunc 10 + torn4	911,9059	908,9596	0,996769
Trunc 10 + torn8	951,6475	947,7765	0,995932
Trunc 10 + torn 16	973,3287	968,1901	0,994721
Trunc 10 + torn 32	984,8421	978,1181	0,993173
Trunc 20 + torn2	822,262	820,7578	0,998171
Trunc 20 + torn4	887,1012	885,1615	0,997813
Trunc 20 + torn8	926,8428	924,2803	0,997235
Trunc 20 + torn 16	948,524	945,1154	0,996406
Trunc 20 + torn 32	960,0373	955,2595	0,995023
Trunc 40 + torn2	781,9744	780,9541	0,998695
Trunc 40 + torn4	846,8136	845,4548	0,998395
Trunc 40 + torn8	886,5551	884,7021	0,99791
Trunc 40 + torn 16	908,2363	905,5912	0,997088
Trunc 40 + torn 32	919,7497	915,6946	0,995591
Trunc 1 + rol	851,8517	836,5158	0,981997
Trunc 5 + rol	841,9667	837,2928	0,994449
Trunc 10 + rol	829,7307	826,7727	0,996435
Trunc 20 + rol	804,926	802,8487	0,997419
Trunc 40 + rol	764,6383	762,983	0,997835
torn 2 + rol	704,2695	702,7489	0,997841
torn 4 + rol	769,1087	767,3556	0,997721
torn 8 + rol	808,8502	806,6481	0,997277
torn 16 + rol	830,5314	827,5087	0,996361
torn 32 + rol	842,0448	837,5066	0,994611

Tabela 15 – Resultados dos métodos de seleção para o problema BinTrap de tamanho 20

e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	I
tr 1	56	0	0
Tr 5	43,2	38,52791	0,89185
Tr 10	39,8	37,71366	0,947579
Tr 20	36,7	35,75199	0,974169
Tr 40	33,9	33,42773	0,986069
Tor 2	29,57289	29,32509	0,991621
Tor 4	33,53343	33,06478	0,986024
Tor 8	37,28526	36,28471	0,973165
Tor 16	40,50525	38,38899	0,947753
Tor 32	44,06001	39,42097	0,894711
Rol	27,71635	27,49807	0,992124

Tabela 16 – Resultados dos métodos de seleção híbridos para o problema BinTrap de tamanho 20 e população de 100 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	I
Trunc 1 + torn 2	42,78644	31,78962	0,742983479
Trunc 1 + torn 4	44,76672	33,78256	0,754635585
Trunc 1 + torn 8	46,64263	35,21116	0,754913628
Trunc 1 + torn 16	48,25263	35,52578	0,736245516
Trunc 1 + torn 32	50,03	34,32091	0,686006466
Trunc 5 + torn 2	36,38644	34,72605	0,95436771
Trunc 5 + torn 4	38,36672	36,50085	0,951367505
Trunc 5 + torn 8	40,24263	37,92889	0,942505202
Trunc 5 + torn 16	41,85263	38,72258	0,925212711
Trunc 5 + torn 32	43,63	39,19468	0,898342348
Trunc 10 + torn 2	34,68644	33,81639	0,974916743
Trunc 10 + torn 4	36,66672	35,61366	0,971280238
Trunc 10 + torn 8	38,54263	37,11583	0,962981278
Trunc 10 + torn 16	40,15263	38,14899	0,950099375
Trunc 10 + torn 32	41,93	39,02569	0,930734245
Trunc 20 + torn 2	33,13644	32,62601	0,984596115
Trunc 20 + torn 4	35,11672	34,45956	0,98128654
Trunc 20 + torn 8	36,99263	36,06614	0,974954669
Trunc 20 + torn 16	38,60263	37,27719	0,965664718
Trunc 20 + torn 32	40,38	38,2954	0,948375485
Trunc 40 + torn 2	31,73644	31,39343	0,98919189
Trunc 40 + torn 4	33,71672	33,25597	0,986334804
Trunc 40 + torn 8	35,59263	34,92555	0,981257882
Trunc 40 + torn 16	37,20263	36,18145	0,972550899
Trunc 40 + torn 32	38,98	37,21093	0,954615774
Trunc 1 + rol	41,85818	30,51793	0,729079438
Trunc 5 + rol	35,45818	33,80049	0,953249646
Trunc 10 + rol	33,75818	32,90917	0,9748504
Trunc 20 + rol	32,20818	31,73036	0,985164863

Trunc 40 + rol	30,80818	30,49226	0,989745601
torn 2 + rol	28,64462	28,41927	0,99213284
torn 4 + rol	30,62489	30,30794	0,989650492
torn 8 + rol	32,5008	31,99465	0,984426429
torn 16 + rol	34,1108	33,23931	0,974451215
torn 32 + rol	35,88818	34,21222	0,953300449

Tabela 17 – Resultados dos métodos de seleção para o problema BinTrap de tamanho 20 e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	I
tr 1	57,9	54,9214	0,948556
Tr 5	50,72	50,20601	0,989866
Tr 10	45,97	45,73581	0,994906
Tr 20	41,19	41,0844	0,997436
Tr 40	36,99	36,93746	0,99858
Tor 2	31,52393	31,49605	0,999116
Tor 4	36,88511	36,83059	0,998522
Tor 8	41,81997	41,70723	0,997304
Tor 16	46,30256	46,07146	0,995009
Tor 32	50,54784	50,06769	0,990501
Rol	29,86897	29,6997	0,994333

Tabela 18 – Resultados dos métodos de seleção híbridos para o problema BinTrap de tamanho 20 e população de 1000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	1
Trunc 1 + torn 2	44,71196	43,71719	0,977751
Trunc 1 + torn 4	47,39256	46,41409	0,979354
Trunc 1 + torn 8	49,85999	48,85065	0,979757
Trunc 1 + torn 16	52,10128	50,99368	0,978741
Trunc 1 + torn 32	54,22392	52,88778	0,975359
Trunc 5 + torn 2	41,12196	40,92796	0,995282
Trunc 5 + torn 4	43,80256	43,58694	0,995078
Trunc 5 + torn 8	46,26999	46,00653	0,994306
Trunc 5 + torn 16	48,51128	48,16574	0,992877
Trunc 5 + torn 32	50,63392	50,16043	0,990649
Trunc 10 + torn 2	38,74696	38,64533	0,997377
Trunc 10 + torn 4	41,42756	41,30495	0,99704
Trunc 10 + torn 8	43,89499	43,73286	0,996306
Trunc 10 + torn 16	46,13628	45,91396	0,995181
Trunc 10 + torn 32	48,25892	47,94507	0,993497
Trunc 20 + torn 2	36,35696	36,29898	0,998405
Trunc 20 + torn 4	39,03756	38,96199	0,998064
Trunc 20 + torn 8	41,50499	41,40056	0,997484
Trunc 20 + torn 16	43,74628	43,59825	0,996616
Trunc 20 + torn 32	45,86892	45,64231	0,99506

Trunc 40 + torn 234,2569634,218460,998876Trunc 40 + torn 436,9375636,8850,998577Trunc 40 + torn 839,4049939,329350,998081Trunc 40 + torn 1641,6462841,530980,997231Trunc 40 + torn 3243,7689243,574950,995568Trunc 1 + rol43,8844842,850480,976438Trunc 5 + rol40,2944840,072810,994499Trunc 10 + rol37,9194837,789880,996582Trunc 20 + rol35,5294835,443170,997571Trunc 40 + rol33,4294833,36090,997948torn 2 + rol30,6964530,635750,998023torn 4 + rol33,3770433,307440,997915torn 8 + rol35,8444735,755490,997518torn 16 + rol38,0857637,956810,996614torn 32 + rol40,208439,997050,994743		-		
Trunc 40 + torn 839,4049939,329350,998081Trunc 40 + torn 1641,6462841,530980,997231Trunc 40 + torn 3243,7689243,574950,995568Trunc 1 + rol43,8844842,850480,976438Trunc 5 + rol40,2944840,072810,994499Trunc 10 + rol37,9194837,789880,996582Trunc 20 + rol35,5294835,443170,997571Trunc 40 + rol33,4294833,36090,997948torn 2 + rol30,6964530,635750,998023torn 4 + rol33,3770433,307440,997915torn 8 + rol35,8444735,755490,997518torn 16 + rol38,0857637,956810,996614	Trunc 40 + torn 2	34,25696	34,21846	0,998876
Trunc 40 + torn 1641,6462841,530980,997231Trunc 40 + torn 3243,7689243,574950,995568Trunc 1 + rol43,8844842,850480,976438Trunc 5 + rol40,2944840,072810,994499Trunc 10 + rol37,9194837,789880,996582Trunc 20 + rol35,5294835,443170,997571Trunc 40 + rol33,4294833,36090,997948torn 2 + rol30,6964530,635750,998023torn 4 + rol33,3770433,307440,997915torn 8 + rol35,8444735,755490,997518torn 16 + rol38,0857637,956810,996614	Trunc 40 + torn 4	36,93756	36,885	0,998577
Trunc 40 + torn 32 43,76892 43,57495 0,995568 Trunc 1 + rol 43,88448 42,85048 0,976438 Trunc 5 + rol 40,29448 40,07281 0,994499 Trunc 10 + rol 37,91948 37,78988 0,996582 Trunc 20 + rol 35,52948 35,44317 0,997571 Trunc 40 + rol 33,42948 33,3609 0,997948 torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 40 + torn 8	39,40499	39,32935	0,998081
Trunc 1+rol 43,88448 42,85048 0,976438 Trunc 5+rol 40,29448 40,07281 0,994499 Trunc 10+rol 37,91948 37,78988 0,996582 Trunc 20+rol 35,52948 35,44317 0,997571 Trunc 40+rol 33,42948 33,3609 0,997948 torn 2+rol 30,69645 30,63575 0,998023 torn 4+rol 33,37704 33,30744 0,997915 torn 8+rol 35,84447 35,75549 0,997518 torn 16+rol 38,08576 37,95681 0,996614	Trunc 40 + torn 16	41,64628	41,64628 41,53098	
Trunc 5 + rol 40,29448 40,07281 0,994499 Trunc 10 + rol 37,91948 37,78988 0,996582 Trunc 20 + rol 35,52948 35,44317 0,997571 Trunc 40 + rol 33,42948 33,3609 0,997948 torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 40 + torn 32	43,76892	43,57495	0,995568
Trunc 10 + rol 37,91948 37,78988 0,996582 Trunc 20 + rol 35,52948 35,44317 0,997571 Trunc 40 + rol 33,42948 33,3609 0,997948 torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 1 + rol	43,88448	42,85048	0,976438
Trunc 20 + rol 35,52948 35,44317 0,997571 Trunc 40 + rol 33,42948 33,3609 0,997948 torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 5 + rol	40,29448	40,07281	0,994499
Trunc 40 + rol 33,42948 33,3609 0,997948 torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 10 + rol	37,91948	37,78988	0,996582
torn 2 + rol 30,69645 30,63575 0,998023 torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 20 + rol	35,52948	35,44317	0,997571
torn 4 + rol 33,37704 33,30744 0,997915 torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	Trunc 40 + rol	33,42948	33,3609	0,997948
torn 8 + rol 35,84447 35,75549 0,997518 torn 16 + rol 38,08576 37,95681 0,996614	torn 2 + rol	30,69645	30,63575	0,998023
torn 16 + rol 38,08576 37,95681 0,996614	torn 4 + rol	33,37704	33,30744	0,997915
· · · · · · · · · · · · · · · · · · ·	torn 8 + rol	35,84447	35,75549	0,997518
torn 32 + rol 40,2084 39,99705 0,994743	torn 16 + rol	38,08576	37,95681	0,996614
	torn 32 + rol	40,2084	39,99705	0,994743

Tabela 19 – Resultados dos métodos de seleção para o problema BinTrap de tamanho 20 e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Simples	Media	DesvPad	I	
tr 1	57,4	53,59992	0,933797	
Tr 5	49,956	48,20686	0,964986	
Tr 10	45,468	44,07995	0,969472	
Tr 20	40,4715	39,40661	0,973688	
Tr 40	36,0369	35,3135	0,979926	
Tor 2	31,80934	31,34898	0,985527	
Tor 4	37,47003	36,86611	0,983882	
Tor 8	42,47369	41,72378	0,982344	
Tor 16	46,94345	45,99638	0,979825	
Tor 32	50,97936	49,72046	0,975306	
Rol	28,96052	28,55803	0,986102	

Tabela 20 – Resultados dos métodos de seleção híbridos para o problema BinTrap de tamanho 20 e população de 10000 indivíduos. Todos os experimentos foram executados 30 vezes.

Metodos Hibridos	Media	DesvPad	1
Trunc 1 + torn 2	44,60467	43,26156	0,969889
Trunc 1 + torn 4	47,43502	46,07334	0,971294
Trunc 1 + torn 8	49,93684	48,49332	0,971093
Trunc 1 + torn 16	52,17173	50,55458	0,969003
Trunc 1 + torn 32	54,18968	52,25377	0,964275
Trunc 5 + torn 2	40,88267	40,13279	0,981658
Trunc 5 + torn 4	43,71302	42,86038	0,980495
Trunc 5 + torn 8	46,21484	45,19967	0,978034
Trunc 5 + torn 16	48,44973	47,2267	0,974757
Trunc 5 + torn 32	50,46768	49,06706	0,972247
Trunc 10 + torn 2	38,63867	37,95091	0,9822
Trunc 10 + torn 4	41,46902	40,65249	0,98031

Trunc 10 + torn 8	43,97084	43,00224	0,977972
Trunc 10 + torn 16	46,20573	45,13006	0,97672
Trunc 10 + torn 32	48,22368	47,13014	0,977324
Trunc 20 + torn 2	36,14042	35,48276	0,981803
Trunc 20 + torn 4	38,97077	38,19448	0,98008
Trunc 20 + torn 8	41,47259	40,62827	0,979642
Trunc 20 + torn 16	43,70748	42,87601	0,980976
Trunc 20 + torn 32	45,72543	44,90322	0,982019
Trunc 40 + torn 2	33,92312	33,3547	0,983244
Trunc 40 + torn 4	36,75347	36,11258	0,982563
Trunc 40 + torn 8	39,25529	38,60501	0,983435
Trunc 40 + torn 16	41,49018	40,85315	0,984646
Trunc 40 + torn 32	43,50813	42,84184	0,984686
Trunc 1 + rol	43,18026	41,81268	0,968329
Trunc 5 + rol	39,45826	38,72211	0,981344
Trunc 10 + rol	37,21426	36,56117	0,982451
Trunc 20 + rol	34,71601	34,11744	0,982758
Trunc 40 + rol	32,49871	31,98272	0,984123
torn 2 + rol	30,38493	29,96392	0,986144
torn 4 + rol	33,21528	32,75221	0,986059
torn 8 + rol	35,7171	35,2359	0,986527
torn 16 + rol	37,95199	37,44432	0,986623
torn 32 + rol	39,96994	39,39215	0,985544

As tabelas apresentadas contêm a média do *fitness* e o desvio padrão (Desvpad) de cada seleção. Para melhor visualização serão apresentados gráficos, gerados pelos dados das seleções para o problema *ONEMAX* de indivíduos de tamanho 30 com população de 10000 indivíduos. Estes gráficos foram escolhidos por apresentar uma visualização melhor da distribuição.

O fato de utilizar a soma das seleções para selecionar indivíduos visa obter uma melhora na média e no desvio padrão das populações selecionadas. Porque ainda que *I* permaneça constante, é interessante que estes dois valores apresentem melhoras para que o algoritmo obtenha melhor resultado mais rapidamente, e também para que o modelo gerado possa mapear realmente indivíduos melhores.

Figura 1 – Gráfico da combinação das técnicas de truncamento de 1% e torneio de 32.

Figura 2 – Gráfico da combinação das técnicas de truncamento de 1% e torneio de 16.

Figura 3 – Gráfico da combinação das técnicas de truncamento de 10% e torneio de 32.

Figura 4 – Gráfico da combinação das técnicas de truncamento de 40% e torneio de 16.

Figura 5 — Gráfico da combinação das técnicas de truncamento de 1% e roleta.

Figura 6 – Gráfico da combinação das técnicas de torneio de 32 e roleta.

Figura 7 – Gráfico da combinação das técnicas de torneio de 2 e roleta.

Figura 8 – Gráfico de todos os torneios.

Figura 9 – Gráfico da roleta.

Figura 10 – Gráfico dos truncamentos.

3.1 Análise da Proporção (Ψ)

Considerando as tabelas apresentadas, é possível ordenar os métodos de seleção pelo cálculo de Ψ . Para este fim foram construídos gráficos com tal ordenação apenas para 10000 indivíduos já que a mudança entre os métodos para 100 e 1000 indivíduos não é significante. O eixo X dos gráficos representa a média multiplicada pelo desvio padrão, sendo que os maiores resultados desta operação irão indicar as maiores mudanças.

Figura 11 – Proporção (Ψ) para o problema BinTrap.

Figura 12 – Proporção (Ψ) para o problema BinInt.

Figura 13 – Proporção (Ψ) para o problema ONEMAX.

3.2 Análise de Intensidade

A análise de qual o maior aumento de média e desvio padrão alcançados pela junção de métodos pode ser feita juntamente com a análise de aumento de intensidade. A seguir são apresentados os gráficos das intensidades de cada junção de métodos ordenados em ordem

crescente. Os problemas seguiram os tamanhos já mencionados anteriormente. Está analise permite verificar quais métodos irão apresentar uma convergência mais rápida.

Figura 14 – Gráfico da Intensidade para o problema BinInt com 100 indivíduos.

Figura 15 – Gráfico da Intensidade para o problema BinInt com 1000 indivíduos.

Figura 16 – Gráfico da Intensidade para o problema BinInt com 10000 indivíduos.

Figura 17 – Gráfico da Intensidade para o problema ONEMAX com 100 indivíduos.

Figura 18 – Gráfico da Intensidade para o problema ONEMAX com 1000 indivíduos.

Figura 19 – Gráfico da Intensidade para o problema ONEMAX com 10000 indivíduos.

Figura 20 – Gráfico da Intensidade para o problema BinTrap com 100 indivíduos.

Figura 21 – Gráfico da Intensidade para o problema Bin Trap com 1000 indivíduos.

Figura 22 – Gráfico da Intensidade para o problema BinTrap com 10000 indivíduos.

4. Análise de Resultados

Os gráficos das figuras 1 a 7, do problema *ONEMAX*, foram apresentados em ordem de mudança de desvio padrão e média de forma significativa. A melhor mudança ocorreu no caso do gráfico da figura 1 onde a média ficou próxima à média do truncamento de 1% que é alta e o desvio padrão superou os desvios padrão dos dois métodos. O pior caso ocorreu com a junção dos métodos do torneio de 2 e da roleta, gráfico da figura 7. Este fator ocorre pois as duas seleções apresentam uma média já baixa e um desvio padrão muito parecido. Sendo que um método não compensa o outro em nenhum caso.

Ao analisar os resultados é possível notar que a junção de técnicas apenas melhora os resultados quando realmente uma técnica irá compensar uma deficiência de outra. Como pode ser visto nos gráficos 8,9 e 10 as técnicas utilizadas sem combinação possuem características próprias (alto desvio padrão no caso da roleta e uma média alta no caso do truncamento e dos torneios), porém quando ocorre a junção de truncamentos com torneios são obtidos os melhores resultados porque a média se mantém sempre alta e o torneio apresenta uma desvio padrão significativo sem prejudicar a média em alguns casos. A roleta sempre apresenta um desvio padrão significativo, porém com a média muito baixa.

Analisando as soluções das tabelas para todos os problemas, os resultados são semelhantes, com as combinações de truncamento e torneio atingindo maiores médias e aumento significativo no desvio padrão. A principal mudança é que, enquanto no caso do problema *ONEMAX* as técnicas combinadas com a roleta ainda se mostravam competitivas, no caso do *BinInt* e do *BinTrap* a combinação com a roleta não apresentou bons resultados e apenas aumentava o desvio padrão em alguns casos e piorava muito a média. Este fato ocorre devido à ampla faixa de valores de *fitness* que são possíveis para o problema. A roleta neste apresenta sempre a pior média e o pior desvio padrão de todas as distribuições, porém a diferença entre a roleta e os melhores métodos no caso do *ONEMAX* é pequena.

No caso dos três problemas a mudança no tamanho da população de 100 até 10000 indivíduos mantém os resultados das melhores técnicas, com algumas pequenas mudanças de posição provavelmente devido às mudanças na própria população. A diferença principal é que os valores de média e desvio padrão para populações maiores são também maiores, mas a relação de quais técnicas em conjunto são as melhores não muda.

Considerando os três problemas abordados, a modificação no tamanho do problema afeta apenas a faixa de fitness possíveis e também para problemas maiores, as técnicas que apresentam melhores resultados se mantém. Esta questão afeta diretamente a seleção proporcional que irá apresentar resultados semelhantes ou ainda menos satisfatórios. No caso de problemas com tamanho de indivíduos menor, a roleta começa a ganhar dos truncamentos de menor porcentagem e dos torneios maiores em alguns casos, porém este resultado é muito particular de problemas muito simples sendo que os resultados válidos são os apresentados até aqui. Este resultado também faz com que as técnicas híbridas que utilizam a roleta obtenham melhores resultados para problemas de tamanho menor.

5. Conclusões

Após testar as técnicas de seleção básicas e suas combinações para três problemas diferentes, *ONEMAX*, *BinInt* e *BinTrap*, é possível concluir com base em experimentos que:

- A junção de técnicas de seleção pode melhorar o resultado da média do fitness e do desvio padrão da população selecionada.
- A Intensidade também pode melhorar dependendo das técnicas escolhidas.
- Os melhores resultados das técnicas híbridas apareceram com as junções de truncamentos de porcentagem baixa e torneios de número alto de indivíduos.
- A seleção proporcional apresenta índices baixos de média de fitness e desvio padrão ao ser comparada com outras técnicas básicas de seleção e também ao ser avaliada em conjunto com outras técnicas.
- Também é importante notar que estes resultados podem se apresentar diferentes caso a característica de um problema seja muito peculiar e diferente também dos problemas avaliados neste relatório.
- Portanto é importante analisar o problema a ser resolvido e escolher as técnicas após a análise. Os resultados deste relatório podem ser utilizados como guia para os testes de outros problemas.
- Comparando as execuções presentes no Apêndice A, foi possível notar que é
 mais importante analisar os métodos que apresentam um aumento na média
 e no desvio padrão do que simplesmente os métodos de intensidade mais alta.
- A medida proporção (Ψ) proposta neste documento se mostrou mais confiável para a escolha dos métodos em comparação com a medida intensidade (I).

6. Bibliografia

CROCOMO, M. Algoritmo de otimização bayesiano com detecção de comunidades. Setembro de 2012. 174 p. Tese — Universidade de São Paulo Campus São Carlos, Instituto de Ciências Matemáticas e de Computação. 2012.

DELBEM, A.C.B. Introdução a Modelos Teóricos de Algoritmos Genéticos. II Escola Luso-Brasileira de Computação Evolutiva (Elbece). 61 p. Minicurso. Universidade de São Paulo Campus São Carlos, Instituto de Ciências Matemáticas e de Computação. 2011.

GOLDBERG, D. Genetic Algorithms in Search, Optimization, and Machine Learning. 1 Edição. Addison-Wesley Professional. 432 p. 1989.

Apêndice A - Testes de Execução

Os resultados apresentados no documento demonstram que alguns métodos apresentam a maior variação na média e no desvio padrão e outros apresentam maior intensidade. Portanto foram selecionadas as melhores combinações considerando estes dois fatores com objetivo de medir a convergência com relação aos métodos básicos. A tabela abaixo apresenta os resultados de conversão de um algoritmo genético seleto-recombinativo utilizando alguns dos métodos apresentados.

Tabela a1 – Resultado da aplicação dos métodos de seleção em um algoritmo genético seleto-recombinativo, apresentando o número de gerações necessárias para convergência (número de indivíduos -1 com o valor do melhor *fitness*), o melhor *fitness* obtido, a constante de intensidade e a proporção calculada previamente para cada método.

Problema	Seleção	Convergência	Fitness	ı	Ψ
ONEMAX - 30 Bits	rol	418	27	0,943117	253,8447
	tr 1	2	22	0,799533	425,1624
	tr 5	4	27	0,802529	354,0201
	tr 10	5	29	0,842009	351,8692
	tr 20	7	29	0,853295	340,6187
	tr 40	12	30	0,891192	322,0285
	to 2	18	30	0,931132	298,5535
	to 4	10	29	0,913485	337,0431
	to 8	9	29	0,89987	367,6753
	to 16	5	28	0,886775	392,1782
	to 32	5	28	0,851145	414,5533
	Tr1 - Ψ	1	22	0,799533	425,1624
	Rol - I	418	27	0,943117	253,8447
BinInt - 10 Bits	rol	100	1023	0,99432	469199,0
20 210	tr 1	2	1023	0,948683	984672,1
	tr 5	3	1023	0,989947	982965,0
	tr 10	3	1023	0,994982	940605,0
	tr 20	4	1023	0,997486	849438,9
	tr 40	5	1023	0,998618	708470,3
	to 2	9	1023	0,999078	520130,1
	to 4	7	1023	0,99859	723388,5
	to 8	5	1023	0,997585	863628,7
	to 16	4	1023	0,995516	943498,2
	to 32	4	1023	0,991625	983675,3
	Tr1 + to 32 - Ψ	3	1023	0,977817	991070,8
	tor2+ Rol - I	Not (1000)	768	0,997913	494924,6
DinTron 20 hit-	rol .	101	CO	0.004222	927.055
BinTrap - 20 bits	rol	101		0,994333	827,055
	tr 1	4	72	0,948556	3076,636
	tr 5	6	75 75	0,989866	2408,222
	tr 10	6	75 75	0,994906	2004,227
	tr 20	8	75	0,997436	1594,845

tr 40	13	75	0,99858	1272,589
to 2	47	75	0,999116	997,190
to 4	13	75	0,998522	1381,374
to 8	7	75	0,997304	1772,163
to 16	5	74	0,995009	2159,229
to 32	5	75	0,990501	2534,717
tr 1 - Ψ	4	72	0,948556	3076,636
Tr1 + to 32 - Ψ	4	75	0,975359	2831,615
tor2+ Rol - I	10	60	0,998023	910,451

Os resultados das execuções permitem verificar que para problemas diferentes há uma pequena mudança nos resultados, porém os torneios de muitos indivíduos e os truncamentos fortes apresentaram sempre bons resultados. Ao analisar os problemas *BinInt* e *BinTrap* é possível notar uma diferença nos resultados de convergência e valores, porém os métodos são os mesmos. Este fato permite concluir que a teoria continua válida para problemas com dificuldade um pouco elevada. Para outros problemas mais complexos mais testes devem ser feitos.

No caso do problema *BinTrap* foram executados os dois melhores métodos e o próprio resultado justifica a execução. A junção dos métodos proporcionou um fitness final mais alto o que justificaria sua utilização.

Apêndice B - Códigos

Este documento acompanha quatro arquivos de implementação em linguagem C que foram utilizados para os experimentos. Os códigos executam os experimentos necessários não sendo, portanto, robustos e tolerantes à várias mudanças de parâmetros. Além disso, como eram códigos para teste, não estão programados segundo as boas práticas de programação. O autor aconselha fortemente que estes arquivos sejam utilizados para referência de construção de novos algoritmos e não para testes exaustivos. Caso seja necessário verificar as tabelas e os dados brutos de execução o autor pode ser contatado por e-mail (que se encontra na capa do documento) e disponibilizar os dados. É também importante salientar que as tabelas que geraram os dados são extensas e organizadas minimamente de forma que o autor pudesse trabalhar os experimentos. A parte importante dos dados, o que realmente interessa deles, está presente neste documento.

A descrição rápida de utilização e feita a seguir:

- binint.c -> este arquivo implementa a seleção para uma população inicial para o problema BinInt. O código está comentado e as variáveis possuem nomes intuitivos. As definições no inicio do código são os parâmetros do algoritmo. Cada método é chamado pela função main() que passa os parâmetros desejados para cada método de seleção de forma fixa, ou seja, devem ser alterados neste local. As assinaturas das funções também possuem comentários. A saída do algoritmo é um arquivo texto com os resultados segundo os parâmetros escolhidos, por exemplo, para um número de experimentos igual a 30, serão feitas 30 execuções e o resultado será a média.
- bintrap.c -> este arquivo implementa a seleção para uma população inicial para o problema BinTrap. O código está comentado e as variáveis possuem nomes intuitivos. As definições no inicio do código são os parâmetros do algoritmo. Cada método é chamado pela função main() que passa os parâmetros desejados para cada método de seleção de forma fixa, ou seja, devem ser alterados neste local. As assinaturas das funções também possuem comentários. A saída do algoritmo é um arquivo texto com os resultados segundo os parâmetros escolhidos, por exemplo, para um número de experimentos igual a 30, serão feitas 30 execuções e o resultado será a média.
- onemax.c -> este arquivo implementa a seleção para uma população inicial para o problema ONEMAX. O código está comentado e as variáveis possuem nomes intuitivos. As definições no inicio do código são os parâmetros do algoritmo. Cada método é chamado pela função main() que passa os parâmetros desejados para cada método de seleção de forma fixa, ou seja, devem ser alterados neste local. As assinaturas das funções também possuem comentários. A saída do algoritmo é um arquivo texto com os resultados segundo os parâmetros escolhidos, por exemplo, para um número de experimentos igual a 30, serão feitas 30 execuções e o resultado será a média.

• testesexecucao.c -> este arquivo executa o um algoritmo genético seletorecombinativo que resolve os três problemas abordados no relatório utilizando as técnicas de seleção. A principal ideia deste algoritmo é criar, no método selection(), dois vetores de seleção um com o resultado de cada método e depois somar os vetores. A linha 120 diz quantos indivíduos serão gerados pelo torneio, assim como a linha 179 para o truncamento. A roleta recebe como parâmetro este número. É importante que a soma dos indivíduos gerados seja igual ao tamanho da população. A mudança principal é esta, as demais operações são básicas de qualquer algoritmo genético simples. O crossover implementado é de um ponto de corte. Para selecionar o método a ser resolvido ele precisa ser "descomentado" na função de fitness e os outros comentados.