# 特開平8-121845

(43)公開日 平成8年(1996)5月17日

| (51) Int.Cl.6 | 徽別記号 庁内整理番号 | FΙ | 技術表示箇所 |
|---------------|-------------|----|--------|
| E 0 4 E 11/00 | 100 D       |    |        |

## 審査請求 未請求 請求項の数3 OL (全 10 頁)

| (21)出願番号 | 特臘平6-263504      | (71) 出願人 000002299      |        |  |  |
|----------|------------------|-------------------------|--------|--|--|
|          |                  | 清水建設株式会社                |        |  |  |
| (22) 出顧日 | 平成6年(1994)10月27日 | 東京都港区芝浦一丁目2番3号          |        |  |  |
|          |                  | (72)発明者 竹林芳久            |        |  |  |
|          |                  | 東京都港区芝浦一丁目2番3号 清7       | 水建設    |  |  |
|          |                  | 株式会社内                   |        |  |  |
|          |                  | (72)発明者 二木鉱一            |        |  |  |
|          |                  | 東京都港区芝浦一丁目2番3号 清水       | 水建設    |  |  |
|          |                  | 株式会社内                   |        |  |  |
|          |                  | (72)発明者 岩橋基行            |        |  |  |
|          |                  | 東京都港区芝浦一丁目2番3号 清河       | 水建設    |  |  |
|          |                  | 株式会社内                   |        |  |  |
|          |                  | (74)代理人 弁理士 柳田 良徳 (外8名) |        |  |  |
|          |                  | 最終頁                     | 最終頁に続く |  |  |
|          |                  |                         |        |  |  |

## (54) 【発明の名称】 全面床吹出し方式空調装置における温度制御装置

### (57)【要約】

【目的】室内に温度センサを設けることなく居住域の温 度を制御可能にし、クリーンで快適な空調環境を実現す るとともに、省エネ性を向上させる。

【構成】室1の下部に配設され全面に多数の給気孔5a を有する床部材5と 該床部材の下部に形成される給気 チャンバー6と、前記室の上部に接続される排気通路7 と、前記給気チャンバーに接続される空間機12とから 構成された全面床吹出し方式空調装置において、前記空 調機の給気温度と還気温度を検出する手段16、17 と、前記給気温度と環気温度から室内の居住域の温度を 演算する手段と、前記演算された居住域の温度により給 気温度を制御する手段とを備えた構成。



【特許請求の範囲】

【請求項1】室の下部に配設され全面に多数の給気孔を 有する床部材と、該床部材の下部に形成される給気チャ ンバーと、前記室の上部に接続される排気通路と、前記 給気チャンバーに接続される空調機とから構成された全 面床吹出し方式空訓装置において、前記空測機の給気温 度と還気温度を検出する手段と、前記給気温度と還気温 度から室内の居住域の温度を演算する手段と、前記演算 された居住域の温度により給気温度を制御する手段とを 備えたことを特徴とする温度制御装置。

1

【請求項2】前記給気温度と還気温度から居住城上部と 下部の温度を演算する手段と、冷房運転モードにおいて は、居住城下部の温度を給気温度を変化させることによ り制御するとともに、居住域上部の温度を吹出し風量を 変化させることにより制御し、暖房運転モードにおいて は、居住城下部の温度を給気温度および吹出し風量を変 化させることにより制御する手段とを備えたことを特徴 とする請求項1記載の温度制御装置。

【請求項3】前記演算された温度をメンバーシップ関数 でファジィ化し、ファジィルールに基づいてファジィ推 20 している。 **論を行うことにより給気温度および吹出し風量の出力値** を得ることを特徴とする請求項2記載の温度制御装置。 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、空調用の冷温風を床全 而から室内へゆるやかに日つ均一に送り込むとともに 室内ではその冷温風を自然の空気の流れに乗せて効率良 く快適な空調を行う全面床吹出し方式空調装置における 温度制御装置に関する。

#### [0002]

【従来の技術】近年のオフィスビルの空調においては、 吹出口近傍の局部的な温度分布或いは逼在するOA機器 等からの発熱による不均一な温度分布の問題や、パーテ ィション、家具等の存在による気流の乱れの問題や、床 とくにカーペットを敷いた床面から巻上がる摩検、ダ ニ カビ或いはタバコの煙 休息 呼気等の汚染物質の 問題等を解決し、クリーンで快適な空間環境を実現する ことが重要な課題となっている。

【0003】ところが、従来の一般の空調方式は、天井 吹出し方式にしても床吹出し方式にしても、室内の空気 40 を吹出口から給気の勢いで積極的に掲拝する完全混合型 の方式であり、室内で発生或いは流入した熱を伴う汚染 物質を給気によって希釈、拡散を行うため、汚染物質を 完全に除去することは困難である。汚染物質をある程度 除去するには換気回数を増加させれば可能ではあるが、 所望とする室内温度を維持するためには、吹出し風量を 多くしたり、給気温度を冷房の場合にはかなり低く、暖 房の場合にはかなり高くしなければならず、設備の大型 化やエネルギー消費の増加を招く。

【0004】この問題を解決するために、本出願人は、 50 【作用および発明の効果】本発明においては、給気温度

特開平6-229584号公報において、空調スニット から給気通路を経て、空気を床部材の給気孔から室内に 供給し、室内で発生或いは流入した熱を伴う汚染質を、 天井部材の排気孔から排気通路に向けて押し出すように 排気し、居住者を常に新しい給気で包み込むようにした 空調方式を提案した。

2

## [0005]

【発明が解決しようとする課題】 図3は、上記空調方式 において本発明者が行った実験結果を示し、熱負荷をA 10 ~Fに増加させた場合の室内の高さ方向の温度分布を示 している。これによれば、熱負荷が増加するにつれて居 住者の上部と下部の温度差が大きくなることが判明し た。このように、上記空調方式においては、汚染物質を 除去できるという利点を有する反面、給気が床から天井 に向けて低速で流れるため室の上下で温度勾配が発生 し、居住者は、例えば分布のある環境に対して不快感を 与えたり、足首が寒いというような不快感を感じるとき があり、給気温度を室内設定温度に制御しようとする と、無駄なエネルギーを消費してしまうという問題を有

【0006】この問題を解決するために、本出願人は、 特願平6-22466号において、居住域下部の空気温 度によって空調機からの給気温度を、また、居住域上部 の空気温度によって空調機からの給気風量を制御する方 式を提案している。しかしながら、この方式においては 温度センサを居住域に設ける必要があるが、実際には、 間仕切りや各種OA機器の配置と干渉してまた意匠上受 け容れられないときも多く、温度センサの取付位置の選 定が困難である場合が多いという問題を有している。

30 【0007】本発明は、空調用の冷温風を床全面から室 内へゆるやかに日つ均一に送り込むとともに、室内では その冷温風を自然の空気の流れに乗せて効率良く快適な 空調を行う全面床吹出し方式空調装置において、室内に 温度センサを設けることなく居住域の温度を制御可能に し、クリーンで快適な空調環境を実現するとともに、省 エネ性を向上させることができる温度制御装置を提供す ることを目的とする。 180001

【課題を解決するための手段】そのために本発明は、室 の下部に配設され全面に多数の給気孔を有する床部材 と、該床部材の下部に形成される給気チャンバーと、前 記室の上部に接続される排気通路と、前記給気チャンバ 一に接続される空調機とから構成された全面床吹出し方 式空調装置において、前記空調機の給気温度と還気温度 を検出する手段と、前記給気温度と還気温度から室内の 居住域の温度を演算する手段と、前記演算された居住域 の温度により給気温度を制御する手段とを備えたことを

## [0009]

特徴とするものである。

と選気温度から室内の居住域の温度を演算することによ り、室内に温度センサを設けることなく居住域の温度を 制御可能にし、クリーンで快適な空洞環境を実現すると ともに、省エ本性を向上させることができる。

【0010】そして、床部材の吹出孔を介して点状に通 過した空気は、室内へは床面全面からの均一な吹き出し となり、過大な気流感がなくなり、快適で空間的偏りの ない空調が実現できる。また、人体やOA機器等の発熱 体の上部ではその発熱に起因する熱上昇流が生じてお り、給気された空気はこの流れに誘引されて発熱体に集 10 まり、熱負荷およびタバコの煙等の汚染物質を含む汚染 空気Cは速やかに上部空間に移動し、居住者Mの周辺は 床全面から渗み出した新鮮空気で常に包み込まれた状態 となる。さらに、室内に温度成層を形成するため、必要 換気回数を低減させることができ、その結果、空調機と 排気用ファンの動力の低減と小型化を図ることができ、 また、空調機の装置熱負荷を低減させることができる。 また、火災発生源の直上でこれを感知でき火災の早期感 知ができる。また、絵気は超微国連で室内へ滲み出すた め、床面に付着した塵挨が舞い上がることがなく、ま た、タイルカーペットの通気性によりクリーニングが容 易になるとともに、定期的な通気によってダニやカビの **繁殖を抑制することができる。また、給気が床全面から** 渤み出すため、○A機器や家具のレイアウトを自由に設 計することができ、OA機器が遍在する場合であっても 給気された空気が自律的に発熱体に向けて流れ、平面的 にムラのない空調環境を実現することができる。さら に、給気側および排気側にダクトを設置する必要がな く、低床でも給気することができるため、建築コストを 低減させることができるという効果を有する。

低級させることか 【0011】

【実施例】以下、本発明の実施例を図面を参照しつつ説 明する。図1は本発明の全面床吹出し方式空調装置にお ける温度制御装置の1実施例を示す構成図である。 【0012】図1において、室1は、上下のスラブ3、 4の間に形成されている。室1の下部には全面に多数の 吹出孔5aを有する床部材5が設けられ二重床が構成さ れている。二重床内即ち床部材5の下部には給気チャン バー6が形成されている。吹出孔5aの直径は10mm 程度で、吹出孔5aの面積の合計は床部材5全体の面積 の1.5%以上を確保する必要がある。1.5%未満で あると空気抵抗が急増し極端な圧力損失が生じるからで ある。従来の床吹出し空調のように吹出し口を床面に埋 め込む必要がないので、二重床の高さは単純に空気の流 通具合によってのみ規定される。従って、従来のOAフ ロアの高さを200~300mmも確保する必要がなく なり、通常の事務所であれば100mm程度で充分とい える。

【0013】室1の上部には複数の排気孔7 aを有する る。そして、ステップS4で、演算された居住域温度T 天井部材7が配設され、天井部材7の上部に排気チャン 50 Pと初期設定温度TSとの偏差(TP-TS)に逆比例

バー8が形成されている。排気チャンバー8には集気フ アン9が整装されている。なお、本例においては、天井 部材7に複数の排気孔7ヵを設けているが、一つないし 複数の排気11を設けてもよく、また、整の上部に非気コ を設けたり、天井部材7と壁の双方に排気コを設けても よく、要するに、格気限および排気側にダフトを設ける ことなく室内への給排気をできるように構成する。さら に、床部材5の全面には、温気性のカーペット10が 設されている。

4

10 【0014】第1に開稼した機械室11には空制機12 分階級されている。空刺機12は、送風機13、熱交機 第14、フィルタ15、結気温度センサ16、選気温度 センサ17を有し、送風機13の吐出側は締気チャンパー 一らに接続されるともと吸り側は排気チャンパー8に 接続されるより構成されている。温度センサ16、17 の根は信号は、制即接置18に入力され、削時返置18 において後途する演算処理が行われ、給気温度信号が熱 交機器14に出力されるとともに、取出し風振信号が送 気機器14に出力されるとともに、取出し風振信号が送 気機14に出力されるとともに、取出し風振信号が送 大コイルカズの場合には近進開整弁の制御は、冷温 木コイルカズの場合には近進開整弁の制御である。冷 方式の場合には治療温度の制御である。冷 第

【0015】この空間方式においては、室1内における 給気速度は、毎秒0.1mm~100mm程度(新まし くは毎秒5mm~10mm)という超微風速(人間の几 次では多ない速度)で居室1内へ添み出すように給気して 原室1内に温度使用を形成するようにしている。しか し、室1内の高さ方向の温度分布は、図3に示すよう

30 に、室1の上下で温度勾配がつくことが避けられず、室 1の下部は低温でクリーンな状態、室1の上部は比較的 高温で汚染物質の多い状態となる。

【0016】図2および図3は、本発明における温度制 御装置の1実施例を示し、図2は空間制御の処理の流れ を示すフロー図、図3は室の高さ方向の温度分布曲線を 示す図である。

(0017] 発す、ステッアS1で居住域のある高さの 温度TSを所望温度に初期設定し、ステッアS2で給気 温度および運気温度を入力し、ステッアS2で給気温度 と還気温度から居住域のある高さの温度TPを演算す る。この演算短到3に示す温度分価曲線を用いる。図3 は、本売明者が行った実験組を示し、熱質を2へ下に増加させた場合の室内の高さ方向の温度分布を示し、 分価曲線がある高さ(1000mm付近)で屈曲し、居 旭点の上部と下部で温度の配が、12下で開催になっている。 従って、図3に示す関係をマップやテーブルの形式 で記憶するか、演算式によって、給気温度と最気温度から 局柱域のある高さの温度TPを演算することができ る。そして、ステップS4で、演算された居住域温度T するように給気温度を設定し、ステップS5で給気温度 設定を出力する。なお、本実施例においては、吹出し風 量は一定にする。

【0018】図4および図5は、本発明における温度制 御装置の他の実施例を示し、処理の流れを示すフロー図 である。図中、TP+100は居住域下部(床から100m mの高さ)の温度、TS+100は居住城下部の設定温度、 TP+1700は居住域上部(床から1700mmの高さ) の温度、TS+1700は居住域上部の設定温度を示し、居 (TP+100) -居住域下部の設定温度(TS+100)、居 住域上部温度の偏差(△T+1700)は、居住域上部の温 度(TP+1700)-居住域上部の設定温度(TS+1700) である.

【0019】本実施例における制御の基本的考え方は、 冷房運転モードにおいては、居住城下部(足元部)の温 度を給気温度を変化させることにより制御し、居住域上 部 (頭部) の温度を吹出し風量を変化させることにより 制御し、暖房運転モードにおいては、居住域下部(足元 部)の温度を給気温度および吹出し風量を変化させるこ とにより制御することである。そのために、先ず、図4 に示すように、給気温度と還気温度から、居住域下部の 温度(TP+100)と居住域上部の温度(TP+1700)を 演覧する。 演覧方法は前記実施例と同様である。

【0020】そして、図5に示すように、先ずステップ S1で、居住域下部の設定温度(TS+100)および居住 域上部の設定温度 (TS+1700) の初期設定が行われ ステップS2で図4で演算された居住域下部温度(TP +100)および居住城上部温度(TP+1700)が入力され。 +100)と予め設定された設定値-α′とを比較し、居住 域下部温度の偏差 (ΔT+100)が設定値-α′より低い ときには、ステップS4~S7の暖房運転モードで、足 元の温度が暖まるまで、風量および給気温度ともに居住 域下部温度の偏差(△T+100)に比例して調整する。 【0021】居住城下部温度(TP+100)が暖まったら (ΔT+100>-α′)、ステップS8~S11の冷房運 転モードに入り、居住域 L部温度 (TP+1700) の制御 は、居住城上部温度の偏差(△T+1700)の大きさに比

【0022】図6~図10は本発明における温度制御装 置の他の実施例を示している。図6は、本発明の他の実 施例を示す制御系の構成図である。本実施例は、図5の 多入力、多出力の制御ロジックを効率的にプログラミン グすることができるファジィ理論を適用している。ファ ジィ制御装置21は、入力・演算部22、ファジィ化部 23、ファジィ推論部24、非ファジィ化部25で構成 されている。

制御は、居住城下部温度の偏差(AT+100)の大きさに

比例させて給気温度を調整する。

【0023】ファジィ化部23は、入力・演算部22で 演算された居住域温度と、人間のもつ「高い」、「ちょ うどよい」、「低い」等のあいまいな自然言語との受渡 しを行う部分であり、以下にそれぞれのメンバーシップ 関数を示し、ファジィ化について説明する。

【0024】図7 (A)は、居住城下部の温度 (TP +100)のメンバーシップ関数を示し、入力される温度に 応じて、「低い」、「ちょうどよい」、「高い」という あいまいな言葉に0~1の程度の確信度 μで変換されフ 住城下部温度の偏差(AT+100)は、居住域下部の温度 10 ァジィ化される。例えば、設定温度TS+100に対して、 TS+100 - αは「低い」という言葉に確信度1で変換さ れ、 $TS_{+100} + α$ は、「高い」という言葉に確信度1で 変換され、T'は「高い」という言葉に確信度0.7程 度或いは「ちょうどよい」という言葉に確信度0.3程 度で変換される。

> 【0025】図7(B)は、居住城下部の温度(TP +100)の時間的な変化率のメンバーシップ関数を示し、 変化率に応じて、「減少中」、「増加中」というあいま いな言葉に0~1の程度の確信度 4で変換されファジィ 化される。同様に、図8(A)は居住域上部の温度(T) P+1700)のメンバーシップ関数を示し、図8(B)は 居住域上部の温度 (TP+1700) の変化率のメンバーシ

ップ関数を示している。

【0026】上記のように、メンバーシップ関数は、オ ペレータの経験や勘により主観的に決められるものであ るので、メンバーシップ関数の設定、修正は、オペレー ターがCRT上で感覚的に自由に行うことができ、人間 のあいまいな評価軸をそのままコンピュータに取り込む ことができる。そのため、知識ベースの条件を数値では る。次にステップS3で、居住域下部温度の偏差(AT30 なく、あいまいな自然言語で記述することができ、オペ レーターとのインターフェースの占で優れたものを提供

することができる。 【0027】次に、ファジィ推論部24においてファジ ィルールに基づきファジィ推論が行われる。風量を調整 することにより、上下温度差を変更させ、TP+1700温 度をコントロールする場合 風量を増加すれば、上下温 度差が小となり、従ってTP+1700温度は低くなり、逆 に風量を減少すれば、上下温度差が大となり、従ってT P+1700温度は高くなる。これに基づくファジィルール 例させて風量を調整し、居住域下部温度(TP+100)の 40 化では、IF;温度=高いTHEN;風量=かなり多く するという I F~THEN~形式で表現される。つま 条件部IF~に制御対象の状態が記述され、結論部 THEN~にその状態に応じた操作の内容が記述された ものとなる。実際のファジィルールの例を下記に記載す

> (1) I F : TP+100温度=低い AND ATP +100温度=減少中

THEN:給気温度=かなり上げる AND 吹出し風 量=かなり上げる

50 (2) IF : TP+100温度=低い AND ΔTP

+100温度=増加中 THEN: 給気温度=そのまま AND 吹出し風量=

少し上げる

(3) IF : TP+100温度=高い AND ΔTP +100温度=減少中

THEN:給気温度=そのまま

(4) IF : TP+100温度=高い AND ΔTP +100温度=増加中

THEN: 給気温度=かなり下げる

(5) IF : TP+100温度=ちょうどよい AND △TP+100温度=減少中

THEN:給気温度=少し上げる

(6) IF : TP+100温度=ちょうどよい AND

△TP+100温度=増加中

THEN: 給気温度=少し下げる

(7) IF : TP+1700温度=高い AND ΔTP +1700温度=増加中

THEN:吹出し風量=かなり上げる

(8) IF : TP+1700温度=高い AND ΔTP +1700温度=減少中

THEN:吹出し風量=少し上げる

(9) IF : TP+1700温度=ちょうどよい AND △TP+1700温度=増加中

THEN:吹出し風量=少し上げる

(10) I F : TP+100温度=ちょうどよい AND TP+1700温度=ちょうどよい AND ΔTP+1700温

度三減少中

THEN:吹出し風量=少し下げる

(11) I F : TP+100温度=ちょうどよい AND TP+1700温度=低い 度=増加中

THEN: 吹出し風量=少し下げる

(12) I F : TP+100 温度=ちょうどよい AND

TP+1700温度=低い AND ΔTP+1700温 度=減少中

THEN: 吹出! 風景=かなり下げる

(13) I F : TP+100温度=高い AND TP+1700温度=ちょうどよい AND ΔTP+1700温 度=減少中

THEN:吹出し風量=少し下げる

(14) IF : TP+100温度=高い AND

TP+1700温度=低い AND ΔTP+1700温度 =増加中

THEN:吹出し風量=少し下げる

(15) I F : TP+100温度=高い AND TP+1700温度=低い AND ATP+1700温度

=減少中

THEN:吹出し風量=かなり下げる

なおここで、ΔTP+100温度あるいはΔTP+1700温度

間的な変化率を示している。

8 【0028】そして、非ファジィ化部25において、図 9 (A)に示す給気温度のメンバーシップ関数によりそ の操作量が決定され、図9(B)に示す吹出し風量のメ ンバーシップ関数によりその操作量が決定される。

【0029】図10は上記ファジィ制御の具体例を説明 するための図である。ファジィルールとして、 ルール (a)

IF: TP+100温度=高い AND ΔTP+100温度= 10 上がっている

THEN:給気温度=かなり下げる

ルール(b)

IF: TP+100温度=高い AND ΔTP+100温度= 下がっている

THEN:給気温度=そのまま

により、入力をTP+100=A、ΔTP+100=Bとしてフ rジィ推論を行わせると、○ ルールの各条件部各要素 において各入力値A、Bにおける確信度を求め、

② 得られた確信度のうち最小値(Min)を条件部の 20 確信度とし、

③ 条件部の確信度で結論部のメンバーシップ関数にリ ミッタをかけ

各ルールごとに①~③の処理を行い。

⑤ それらの処理により得た各ルール結論部のメンバー シップ関数の論理和(重ね合わせ)の重心をとる

ことによって、図10に示す出力値Cを得る。 【図面の簡単な説明】

【図1】本発明の全面床吹出し方式空調装置における温 度制御装置の1実施例を示す構成図である。

AND ΔTP+1700温 30 【図2】本発明における温度制御装置の1実施例を示 処理の流れを示すフロー図である。

> 【図3】室の高さ方向の温度分布曲線を示す図である。 【図4】本発明における温度制御装置の他の実施例を示

> し、処理の流れを示すフロー図である。 【図5】図4に続く処理の流れを示すフロー図である。 【図6】本発明の他の実施例を示す制御系の構成図であ

【図7】図7(A)は居住城下部の温度のメンバーシッ プ関数を示す図、図7 (B) は居住城下部の温度の変化 40 率のメンバーシップ関数を示す図である。

【図8】図8(A)は居住城上部の温度のメンバーシッ プ関数を示す図、図8(B)は居住城上部の温度の変化 率のメンバーシップ関数を示す図である。

【図9】図9(A)は給気温度のメンバーシップ関数を 示す図、図9(B)は吹出し風量のメンバーシップ関数 を示す図である。

【図10】本発明におけるファジィ制御の具体例を説明 するための図である。

【符号の説明】

は、それぞれTP+100温度あるいはTP+1700温度の時 50 1…室、3、4…スラブ、5…床部材、5 a…吹出孔、



12/9/09, EAST Version: 2.4.1.1







フロントページの続き

(72) 発明者 野部達夫 東京都港区芝浦一丁目 2番 3 号 清水建設 株式会社内 (72)発明者 管谷善昌 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 芳賀陽一

東京都港区芝浦一丁目2番3号 清水建設

株式会社内