
Exercise 13c. Implement the program 'exercise_13a_minima' that computes, respectively, the regional minima of an input image.

exercise_13c_minima exercise_13c_input_01.pgm exercise_13c_output_01.pgm

In the output image 'exercise_13c_output_01.pgm', the regional minima will appear with value 255, and the rest of the image with value 0.

(Note: regional minimum: flat zone whose neighboring regions all have greater intensity values.)

Note: 8-connectivity can be assumed.

To check this program:

-immed_gray_inv_20051218_frgr4.pgm (input image)

-immed_gray_inv_20051218_frgr4_min.pgm (regional minima, with 8-connectivity)

Exercise 13d. Similarly, implement a program 'exercise_13b_output_01.pgm' for the computation of the regional maxima of an input image:

exercise_13d_maxima exercise_13d_input_01.pgm exercise_13d_output_01.pgm

In the output image 'exercise_13d_output_01.pgm', the regional maxima will appear with value 255, and the rest of the image with value 0.

(Note: regional maximum: flat zone whose neighboring regions all have lesser intensity values.)

Note: 8-connectivity can be assumed.

To check this program:

-immed_gray_inv_20051218_frgr4.pgm (input image)

-immed_gray_inv_20051218_frgr4_max.pgm (regional maxima, with 8-connectivity)
