

IN THE CLAIMS

1 1. (Currently Amended) A method for forming an implant having an inner core and an
2 outer layer which comprises:

3 fabricating a preform with an open pore network, the network having an outer layer
4 and an inner core;

5 coating at least a portion of the outer layer of the preform with a fugitive material to
6 form an inhibition layer and leaving selected portions of the outer layer uncoated to thereby
7 create at least one infusion channel;

8 infusing selected regions of the inner core with at least one infusing media;

9 forming an interpenetrating phase composite in the inner core; and

10 forming a porous outer layer by removing the fugitive material from the outer layer
11 [thereby forming a porous outer layer].

1 2. (Original) The method of claim 1 wherein the preform is fabricated by sintering.

1 3. (Original) The method of claim 2 wherein the preform comprises a material
2 selected from the group consisting of hydroxyapatite, bioactive glass, calcium phosphates,
3 xenografts, allografts, autografts, isografts, ultrahigh density zirconia, zirconia toughened
4 alumina, alumina, sapphire, titanium and gold/palladium alloys.

1 4. (Original) The method of claim 1 wherein the fugitive material is selected from the
2 group consisting of polyethylene glycol, waxes, hydrogels, acrylic latexes, and other water-
3 soluble or water-dispersible materials.

1 5. (Original) The method of claim 1 wherein the infusion media is selected from the
2 group consisting of acrylates including TEGDMA, MMA, Bis GMA; thermoplastics including
3 styrene, vinyl acetate, vinyl chloride, polyethylene, PTFE, polypropylene); epoxies
4 (polyetherketone, polyetheretherketone, polyphenylene oxide); resorbable polymers including
5 polylactic acid, polyglycolic acid, polycaprolactone, polytrimethylene carbonate,
6 polydioxanone, polyiminocarbonates, polyamides, polyorthoesters, polyanhydrides,
7 polyhydroxyalkanoates, polyhydroxybutyrate); water soluble/hydrophilics including polyvinyl
8 alcohol, PVA-based mixtures, collagen gel/poly(alpha hydroxyacids, cellulose and waxes.

1 6. (Original) The method of claim 5 which comprises:
2 infusing the inner core with at least two infusion media.

1 7. (Original) The method of claim 5 which comprises:
2 infusing the inner core with an inorganic material selected from the group consisting of
3 resorbable glasses and silica.

1 8. (Original) The method of claim 5 which comprises:
2 infusing the inner core with a material selected from the group consisting of drug
3 molecules, growth factors, adhesion peptides, promotors and activators.

1 9. (Original) The method of claim 5 which comprises:

2 infusing the inner core with inorganic precursors selected from the group consisting of
3 alkoxides, metal alkoxides, silicon alkoxides, non-silicate tetravalent metal alkoxides and sol-
4 gel organic-inorganic hybrids.

1 10. (Original) The method of claim 11 which comprises:
2 removing the fugitive material.

1 11. (Original) An implant which comprises:
2 a preform with an open pore network, the preform having an inner core and an outer
3 layer, the inner core infused with a polymer which forms an interpenetrating phase composite
4 in the inner core, the preform characterized by a flexural strength, a modulus and a fracture
5 toughness which generally matches that of a target bone host, and at least a portion of the outer
6 layer characterized by a defined porosity.

1 12. (Original) The implant of claim 11 wherein the preform is comprised of a material
2 selected from the group consisting of hydroxyapatite, bioactive glass, calcium phosphates,
3 xenografts, allografts, autografts, isografts, ultrahigh density zirconia, zirconia toughened
4 alumina, alumina, sapphire, titanium and gold/palladium alloys.

1 13. (Original) The implant of claim 11 wherein the fugitive material is selected from
2 the group consisting of polyethylene glycol, waxes, hydrogels, acrylic latexes, and other
3 water-soluble or water-dispersible materials.

1 14. (Original) The implant of claim 11 wherein the infusion media is selected from the
2 group consisting of acrylates including TEGDMA, MMA, Bis GMA; thermoplastics including
3 styrene, vinyl acetate, vinyl chloride, polyethylene, PTFE, polypropylene); epoxies
4 (polyetherketone, polyetheretherketone, polyphenylene oxide); resorbable polymers including
5 polylactic acid, polyglycolic acid, polycaprolactone, polytrimethylene carbonate,
6 polydioxanone, polyiminocarbonates, polyamides, polyorthoesters, polyanhydrides,
7 polyhydroxyalkanoates, polyhydroxybutyrate); water soluble/hydrophilics including polyvinyl
8 alcohol, PVA-based mixtures, collagen gel/poly(alpha hydroxyacids, cellulose and waxes.

1 15. (Original) The implant of claim 11 wherein the inner core is infused with at least
2 two infusion media.

1 16. (Original) The implant of claim 14 wherein the inner core is infused with an
2 inorganic material selected from the group consisting of resolvable glasses and silica.

1 17. (Original) The implant of claim 14 wherein the inner core is infused with a material
2 selected from the group consisting of drug molecules, growth factors, adhesion peptides,
3 promotors and activators.

1 18. (Original) The implant of claim 14 wherein the inner core is infused with inorganic
2 precursors selected from the group consisting of alkoxides, metal alkoxides, silicon alkoxides,
3 non-silicate tetravalent metal alkoxides and sol-gel organic-inorganic hybrids.