

TEMA: GEOMETRIA NO PLANO E NO ESPAÇO. OPERAÇÕES COM RADICAIS. POLINÓMIOS.

TIPO: FICHAS DE REVISÕES N°2 – 2° PERÍODO

LR MAT EXPLICAÇÕES

- 1. Num referencial o.n. Oxyz considera a reta r definida pela condição $x=4 \land z=2$.
 - Qual das seguintes proposições é verdadeira?
 - (A) A reta r é paralela ao plano xOy.
 - **(B)** A reta r é perpendicular ao plano xOy.
 - (C) A reta r é paralela ao eixo Ox.
 - **(D)** A reta r é paralela ao eixo Oz.
- **2.** Considera a condição $x^2 + y^2 + z^2 + 4x 6y + 2z \le 0$.
 - O conjunto de pontos do espaço definido pela condição dada é uma:
 - (A) Esfera de centro (2, -3, 1) e raio $\sqrt{14}$.
 - **(B)** Esfera de centro (-2,3,-1) e raio 14.
 - (C) Superfície esférica de centro (-2,3,-1) e raio $\sqrt{14}$.
 - **(D)** Esfera de centro (-2,3-1) e raio $\sqrt{14}$.
- 3. Consider os vetores $\vec{a}(\sqrt{12}, -4.6)$ e $\vec{b}(2, -\sqrt{3}, 3)$.
 - 3.1) Relativamente aos vetores \vec{a} e \vec{b} considera as proposições seguintes:
 - I. \vec{a} e \vec{b} são vetores colineares.
 - II. $\|\vec{a}\| = 2 \|\vec{b}\|$
 - Quanto ao valor lógico das proposições, podemos dizer que:
 - (A) I é falsa e II é verdadeira.
 - (B) I é verdadeira e II é falsa.
 - (C) São ambas falsas.
 - (D) São ambas verdadeiras.
 - 3.2) Determina as coordenadas de um vetor \vec{c} , colinear com \vec{b} , com o mesmo sentido mas de norma 10.

Considera o polinómio $P(x) = 2x^4 - 5x^3 - 2x^2 - 4x + k$.

Sabendo que $\frac{1}{2}$ é zero de P(x), qual é o valor de k?

(B)
$$-\frac{9}{4}$$

5. Num referencial o.n. Oxy, os pontos A(0,1) e B(2,0) são extremos de um diâmetro de um círculo.

Uma condição que define esse círculo é:

(A)
$$(x-1)^2 + (y-1)^2 \le \frac{5}{4}$$

(B)
$$(x+1)^2 + (y+\frac{1}{2})^2 \le 5$$

(C)
$$(x-1)^2 + \left(y - \frac{1}{2}\right)^2 \le \frac{5}{4}$$

(D)
$$(x-1)^2 + \left(y - \frac{1}{2}\right)^2 = 5$$

Simplificando a expressão $\frac{x\sqrt{y}\cdot \sqrt[4]{xy}}{\sqrt{xy^3}}$, com $x,y\in\mathbb{R}^+$, obtém-se:

(A)
$$\left(\frac{x}{y}\right)^{\frac{3}{4}}$$

(B)
$$\sqrt[4]{x^3 \cdot y^3}$$

(C)
$$(x \cdot y^3)^{-\frac{1}{4}}$$

(D)
$$\sqrt[8]{\frac{x^2}{y}}$$

- Sem efetuar a divisão, determina o valor de b de forma que o polinómio $-x^3 + 2bx^2 3x + 1$ dividido por x 1tenha o mesmo resto que na divisão por x + 2.
- Considera os polinómios $A(x) = -8x^4 + 2x^3 + x + 1$ e $B(x) = 8x^4 2x^2 1$.
 - Os graus dos polinómios $A(x) \times B(x)$ e A(x) + B(x) são, respetivamente: 8.1)
 - **(A)** 16 e 8
- **(B)** 16 e 3
- **(C)** 8 e 4
- **(D)** 8 e 3

Sabe-se que $A(x) = (2x^2 - 1)Q(x) + R(x)$. 8.2)

Determina Q(x) e R(x).

Considera o polinómio $P(x) = x^n + 1$ de grau $n \in \mathbb{N}$ na variável x.

Qual das seguintes proposições é verdadeira?

- (A) $\exists n \text{ impar} : P(x) \text{ \'e divis\'ivel por } x 1$
- **(B)** \forall *n* impar, P(x) é divisível por x + 1
- (C) $\exists n \text{ par} : P(x) \text{ \'e divis\'ivel por } x 1$
- **(D)** \forall *n* par, P(x) é divisível por x + 1

2

- 10. Na figura está representado, num referencial o.n. do espaço com unidade de comprimento igual ao centímetro, um sólido formado por um cubo e uma pirâmide justapostos pela base comum.
 - As bases comuns ao cubo e à pirâmide estão contidas no plano x0y.

Sabe-se ainda que:

- os vértices V e A pertencem ao eixo Oz;
- o volume do sólido é igual a 288 cm³;
- E é um ponto de Ox e G é um ponto de Oy;
- a medida da altura da pirâmide é igual à medida da aresta do cubo.
- 10.1) Justifique que V tem de coordenadas (0,0,6) e indica as dos restantes vértices do sólido.
- 10.2) Escreve uma equação vetorial da reta CV.
- **10.3)** Determina uma equação do plano mediador de [CV] na forma ax + by + cz + d = 0, com $a, b, c, d \in \mathbb{R}$.
- 10.4) Escreve a equação reduzida da superfície esférica de centro no ponto B e que contém o ponto V.

