TD 1: Linear regression model

Linear Models and Their Generalizations

K. Meziani

Exercise 1 [Proof of Cochran's theorem]

Let Z be a Gaussian random vector in \mathbb{R}^n with $Z \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbb{I}_n)$, where $\boldsymbol{\mu} \in \mathbb{R}^n$ and $\sigma > 0$. Let F_1, \ldots, F_m be subspaces of dimension d_i , orthogonal to each other such that $\mathbb{R}^n = F_1 \oplus \cdots \oplus F_m$. For $i = 1, \ldots, m$, let P_{F_i} denote the orthogonal projection matrix onto F_i . Prove that

- 1. The random vectors $P_{F_1}Z, \ldots, P_{F_m}Z$ have respective distributions $\mathcal{N}(P_{F_1}\boldsymbol{\mu}, \sigma^2 P_{F_1}), \ldots, \mathcal{N}(P_{F_m}\boldsymbol{\mu}, \sigma^2 P_{F_m})$.
- 2. The random vectors $P_{F_1}Z, \dots, P_{F_m}Z$ are pairwise independent.
- 3. The random variables $\frac{\|P_{F_1}(Z-\boldsymbol{\mu})\|^2}{\sigma^2}, \dots, \frac{\|P_{F_m}(Z-\boldsymbol{\mu})\|^2}{\sigma^2}$ have respective distributions $\chi^2(d_1), \dots, \chi^2(d_m)$.
- 4. The random variables $\frac{\|P_{F_1}(Z-\mu)\|^2}{\sigma^2}, \dots, \frac{\|P_{F_m}(Z-\mu)\|^2}{\sigma^2}$ are pairwise independent.

Exercise 2. [Proof of Proposition 1. of the chapter 1]

Let X be the design matrix of size $n \times (p+1)$. We assume X to be full rank (rank(X) = p+1). Let define the following linear model

$$Y = X\beta + \epsilon$$

with $\beta \in \mathbb{R}^{p+1}$. Let

$$\widehat{\beta} = \arg\min_{\beta \in \mathbb{R}^{p+1}} \|Y - X\beta\|^2$$

be the ordinary least square estimator (OLSE).

1. Show that OLSE exists and is unique such that

$$\widehat{\beta} = \widehat{\beta}(Y) = (X^{\top}X)^{-1}X^{\top}Y$$

2. **Application for** p=1: Let $(x_1,y_1),\ldots,(x_n,y_n)$ be n pairs of real numbers. Determine the real \widehat{a} and \widehat{b} that minimize RSS $(a,b)=\sum_{i=1}^n(y_i-a-bx_i)^2$. Interpret.

Exercise 3.

Let X be a $n \times p$ matrix of rank p. Let \widehat{Y} be the orthogonal project on the space [X] generated by the column vectors of X of a vector Y of \mathbb{R}^n . Show that $\sum_{i=1}^n (Y_i - \widehat{Y}_i) = 0$ if one of the column vectors of X is the vector $\mathbf{1}_n = (1, \dots, 1)$. Interpret.

Exercise 4.

We consider the following simple linear regression statistical model: $Y_i = \beta x_i + \varepsilon_i$, for i = 1, ..., n where the ε_i are independent, centered, of constant variance. We define two estimators of $\beta \in \mathbb{R}$:

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$$
 et $\beta^* = \frac{\sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} x_i}$

1. What is the logic of construction of these estimators?

- 2. Show that they are unbiased estimators of β .
- 3. Compare the variances of these two estimators.

Exercise 5. [An important result]

We consider the Gaussian linear regression model:

$$Y = X\beta + \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$$

where $\beta \in \mathbb{R}^r$, $Y \in \mathbb{R}^n$ and X matrix of size $n \times r$ of rank r.

- 1. Recall the matrix closed form of the OLSE and give an unbiased estimator of $\sigma^2 > 0$.
- 2. Compute the maximum likelihood estimators of β and σ^2 .
- 3. Conclude.

Exercise 6. [Unbiased estimator of σ^2 in the non-Gaussian model]

Consider the following non-Gaussian linear model:

$$Y = X\beta + \epsilon$$

with $\beta \in \mathbb{R}^p$, X of full rank, and the ϵ_i independent, centered and of variance σ^2 . We pose:

$$\widehat{\sigma}^2 = \frac{1}{n-n} ||Y - X\widehat{\beta}|^2.$$

We note $Tr(\cdot)$ the trace of a matrix.

1. Show that $(n-p)\widehat{\sigma}^2 = \text{Tr}(\epsilon^{\top} P_{X^{\perp}} \epsilon)$

2. Using the fact that Tr(AB) = Tr(BA) for A and B of respective size $(m \times n)$ and $(n \times m)$, show that

$$(n-p)\mathbb{E}_{\beta}[\widehat{\sigma}^2] = \sigma^2 \text{Tr}(P_{X^{\perp}}).$$

3. Deduce that $\mathbb{E}_{\beta}[\widehat{\sigma}^2] = \sigma^2$.

Exercise 7. [Proof of theorem 4 chapter 4]

Consider the following Gaussian linear model $Y = X\beta + \epsilon$ where $\beta \in \mathbb{R}^r$, X is a full rank matrix of size $n \times r$ (n > r). Let $C \in \mathcal{M}_{q,r}(\mathbb{R})$. We want to test

$$\mathcal{H}_0: C\beta = \mathbf{0}_q \quad \text{versus} \quad \mathcal{H}_1: C\beta \neq \mathbf{0}_q$$

We assume that $rg(C) = q \le r$. Therefore, you will note that $rg(C^{\top}) = q$ where C^{\top} is the transpose of C.

- 1. Show that if $Z \sim \mathcal{N}_q(\mathbf{0}_q, \Sigma)$ then $Z^{\top} \Sigma^{-1} Z \sim \chi_q^2$.
- 2. Show that $C(X^{\top}X)^{-1}C^{\top}$ is a symmetric and invertible matrix.
- 3. Recall the ordinary least squares expression $\hat{\beta}$.
- 4. What is the law of $\widehat{\beta}$?
- 5. Deduce the law of $C\widehat{\beta}$ under the hypothesis \mathcal{H}_0 .
- 6. Deduce that, under \mathcal{H}_0 ,

$$R = \frac{(C\widehat{\beta})^{\top} (C(X^{\top}X)^{-1}C^{\top})^{-1} (C\widehat{\beta})}{\sigma^2} \sim \chi_q^2.$$

7. Conclude that, under \mathcal{H}_0 ,

$$F = \frac{\widehat{\beta}^{\top} C^{\top} (C(X^{\top} X)^{-1} C^{\top})^{-1} C \widehat{\beta}}{q \widehat{\sigma}^2}$$

is distributed according to a Fisher distribution with (q, n - r) degrees of freedom. Each step of the reasoning must be carefully justified.

8. Justify and construct a test of \mathcal{H}_0 against \mathcal{H}_1 of level α .

Exercise 8. [MCQ]

We have observations $(x_i, y_i) \in \mathbb{R}^2$, $\forall i = 1, ..., n$. We consider the following classical Gaussian linear model:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \forall i = 1, \dots, n$$

where $(\beta_0, \beta_1) \in \mathbb{R}^2$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ are *i.i.d.*

Let $X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$. Assume X is a full rank mlatrix and note $\widehat{\beta}_0$ and $\widehat{\beta}_1$ the least squares estimators of β_0 and β_1 .

For each of the following questions, give the answer.

1. Are the variables Y_i independent and identically distributed?

2. Does the regression line calculated on the observations pass through the mean point (\bar{x}, \bar{y}) ?

3. Is it possible to find estimators of β_0 and β_1 with smaller variance than the ordinary least squares estimators?

4. Are $\widehat{\beta}_0$ and $\widehat{\beta}_1$ independent?

a) Yes b) No c) It depends on the matrix
$$X$$

5. If the coefficient of determination \mathbb{R}^2 calculated on the observations is equal to 1, are the points $(x_i, y_i)_{i=1,\dots,n}$ aligned?

6. Are \widehat{Y} and $Y - \widehat{Y}$ independent?

a) Yes b) No c) It depends on the matrix
$$X$$

7. Are $\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$ and $Y - \widehat{Y}$ independent?

a) Yes b) No c) It depends on the matrix
$$X$$

8. Is the maximum likelihood estimator of σ^2 unbiased?

Exercise 9. [This exercise will be solved without the tools of linear algebra]

Let $(x_1, y_1), (x_n, y_n)$ be n pairs of real numbers. We suppose that y_i are the realization of Y_i whose law is given by the following equation:

$$Y_i = a + bx_i + \varepsilon_i, \quad \varepsilon_i \sim_{i.i.d.} \mathcal{N}(0, \sigma^2)$$

- 1. Determine \widehat{A} and \widehat{B} the maximum likelihood estimators of a and b. Interpret the estimators.
- 2. Show that these estimators are unbiased.
- 3. Calculate the variance of the estimators $\mathbb{V}ar_{\beta}(\widehat{A})$ and $\mathbb{V}ar_{\beta}(\widehat{B})$. How do these variances vary as a function of σ^2 and the experimental design x_1, \ldots, x_n
- 4. Compute the covariance of \widehat{A} and \widehat{B} . Comment.
- 5. Let $\widehat{Y}_i = \widehat{A} + \widehat{B}x_i$ and $\widehat{\varepsilon}_i = Y_i \widehat{Y}_i$. Show that $\sum_{i=1}^n \widehat{\varepsilon}_i = 0$.
- 6. Show that $\frac{\sum_{i=1}^{n} \widehat{\epsilon}_{i}^{2}}{n-2}$ is an unbiased estimator of σ^{2} .
- 7. Let x_{n+1} be another value. We define $\widehat{Y}_{n+1} = \widehat{A} + \widehat{B}x_{n+1}$. Compute the variance of this prediction.
- 8. Furthermore, let $Y_{n+1} = A + Bx_{n+1} + \varepsilon_{n+1}$. Calculate the variance of $\widehat{\varepsilon}_{n+1} = Y_{n+1} \widehat{Y}_{n+1}$. Compare it to the variance of ε_i (for i = 1, ..., n).
- 9. Gauss-Markov Theorem:
 - a. Show that \widehat{B} is written as a linear combination of the observations (we will explain the weights).
 - b. Consider $\widetilde{B} = \sum_{i=1}^{n} \lambda_i Y_i$ another unbiased estimator of B, written as a linear combination of Y_i . Show that $\sum_{i=1}^{n} \lambda_i = 0$ and $\sum_{i=1}^{n} \lambda_i x_i = 0$.
 - c. Deduce that $\operatorname{Var}_{\beta}(\widetilde{B}) \geq \operatorname{Var}_{\beta}(\widehat{B})$