Universidade Federal do Ceará – Campus Russas Algoritmos em Grafos

Professor: Pablo Soares Lista 2

1. Dados os grafos abaixo, mostre o resultado da busca em largura e em profundidade. A busca deve iniciar no vértice 9.

2. Seja G um grafo orientando cujos vértices são os inteiros de 1 a 8 e os vértices adjacentes a cada vértice dados pela tabela abaixo:

Vértice	Vértices Adjacentes	
1	2 3 4	
2	1 3 4	
3	1 2 4	
4	1236	
5	678	
6	457	
7	568	
8	57	

- \bullet Desenhe o Grafo G
- Represente o grafo por meio de uma matriz de adjacência
- Represente o grafo por meio de uma lista de adjacência
- 3. Fazer a questão anterior considerando que G é um grafo não orientando.
- 4. Dada a matriz de adjacência de um grafo com N vértices, faça um algoritmo que determina se esse grafo é orientando ou não-orientado.
- 5. Considere a seguinte representação de uma grafo com 8 vértices e 9 arestas usando listas de adjacência.

A: E F B

B: A

C: G D F

D: H G C

E: A

F: A G C

G: D F C

H: D

Mostre o resultado da busca em largura (distância e pai) e em profundidade (tempo inicial e final) a partir do vértice A.

6. Considere a seguinte representação de um grafo usando listas de adjacência:

Obtenha as componentes conectadas do grafo usando o algoritmo de busca em profundidade.

A: F B
B: A F
C: D I
D: E C I
E: D J I
F: A B
G: H
H: G
I: J E C D
J: I E

- 7. Obtenha a ordenação topológica dos grafos da questão 1. Comece a busca pelo vértice 5.
- 8. Quantas e quais são as componentes conexas do grafo abaixo.

9. Encontre o caminho mínimo do vértice A para todos os outros vértices.

- 10. Classifique as arestas do grafo da questão 8 de acordo com o algoritmo de busca em profundidade. Identifique a quantidade de ciclos que o grafo possui.
- 11. Qual problema o algoritmo de **Dijkstra** resolve?
- 12. Seja G = (V, E) o grafo ponderado direcionado abaixo, mostre o menor caminho do vértice 0 a todos os outros vértices do grafo.

$$0 \rightarrow 1: 1 \quad 1 \rightarrow 2: 2 \quad 2 \rightarrow 3: 5$$

 $3 \rightarrow 4: 1 \quad 1 \rightarrow 3: 8 \quad 4 \rightarrow 5: 3$
 $0 \rightarrow 2: 3 \quad 0 \rightarrow 5: 6$

13.	Seja $G = (V, E)$ o grafo ponderado direcionado abaixo, mostre o menor caminho do vértice 0 a todos os outros vértices do grafo.				
	$0 \to 1 : 1 0 \to 4 5 \to 0 : 4 5 \to 2 6 \to 4 : 2 4 \to 3 2 \to 0$	$: 4 5 \to 6 : 3$ $: 7 2 \to 3 : 6$			
14.	. Uma pessoa quer visitar alguns lugares. Ela começa a partir de um vértice e quer visitar to- vértices até que ela não possa mais visitar vértices, retroceda e continue o processo de explora partir de outro vértice. Qual algoritmo ela deveria usar?				
	a) DFS b) BFS	c) Prim	d) Ordenação Topológica		
15.	Quando a busca em profundidade de um grafo é única?				
	a) Quando o grafo é uma árvore binária	b) Quando o grafo é uma lista encadeada			
	c) Quando o grafo é uma árvore $n-$ ária	d) Nenhuma das alternativas			
16.	Em um DFS, quantas vezes um vértices v é visitad	o?			
	a) $ V $ vezes b) $ E $ vezes	c) $ \delta(v) $ vezes	d) Uma vez		
17.	Em relação à implementação de um BFS usando filas, qual é a distância máxima entre dois vértices presentes na fila? (Considere cada aresta como 1 unidade de tamanho).				
	a) 0	b) No máximo 1			
	c) Informações Insuficientes	d) Pode ser qualquer distância			
18.	O que pode ser considerado como uma aplicação do DFS?				
	a) Detecção de Ciclo e Árvore Geradora Mínima	b) Ordenação Topoló	gica e Caminho Mínimo		
	c) Caminho Mínimo e Detecção de Ciclo	d) Caminho Mínimo e Árvore Geradora Mínima			
	e) Detecção de Ciclo e Ordenação Topológica				
	" 7	Tudo Seria Fácil se não	fossem as dificuldades. " Barão de Itararé		