

TOPIC: STATISTICS			
1) If the airthmetic mean	of the observations x_1	$x_1, x_2, x_3, \dots, x_n $ is 1	then airthmetic mean of $\frac{x_1}{k}, \frac{x_2}{k}, \frac{x_3}{k}, \dots, \frac{x_n}{k}$
(k>0) is			K K K
1) greater than 1	2) less than 1	3) equal to 1	4) none of these
			and that of girls is 73. The average score of to the number of girls appeared in the
1) 3:2	2) 3:4	3) 1:2	4) 2:1
3) A student obtain 75%,8	80% and 85% in three	subjects. If the man	ks of another subject is added, then his
average cannot be less tha	an		
1) 60%	2) 65%	3) 80%	4) 90%
4) The mean of 100 items	is 49. It is discovered	that three items wh	nich should have been 60,70,80 were
wrongly read as 40,20,50	respectively. The corr	ect mean is	
1) 48	2) 82.5	3) 50	4) 80
5) The median of a set of	nine distinct observati	ons is 20.5. If each	n of the last four observations of the set is
increased by 2, then the m	nedian of the new set is	S	
1) increased by 2		2) decreased by 2	
3) Two times the original	median	4) Remains same	
6) If in a moderately asyn	nmetrical distribution t	the mode and the m	nean of the data are 6λ and 9λ
respectively. Then the me	edian is		
1) 8 <i>λ</i>	2) 7 <i>λ</i>	3) 6 <i>λ</i>	4) 5 <i>λ</i>
7) If mode of a data exceed	eds its mean by 12 ther	n mode exceeds the	e median is
1) 4	2) 8	3) 6	4) 10
8) If the A.M between two	o numbers exceeds the	eir G.M by 2 and th	e G.M. exceeds their H.M by $\frac{8}{5}$ then the
numbers are			
1) 12,3	2) 9,16	3) 4,16	4) 5,14
9) Let a, b, c, d and e are the observations a+k, b+k		mean 'm' and stand	lard deviation 's'. The standard deviation of
1) ks	2) s	3) s + k	4) $\frac{s}{k}$
10) Let x_1, x_2, x_n be 'r	n' observations .Let ω_i	$= lx_i + k \text{ for } i = 1,2,$	n where l and k are constants .The mean
of x_i is 48and their S.D is	s 12. Also mean of ω_i ,	s is 55 and S.D of	ω_i 's is 15. The values of l and k should be
1) $l = 2.5$, $k = 5$ 3) $l = 2.5$, $k = -5$ 11) The mean of 100 obse	ervations is 50 and the	2) $l = -1.25$, k=4) $l = 1.25$, k=-5 ir S.D is 5. Then su	
1) 50000	2) 250000	3) 252500	4) 255000

26) In a discrete data $\frac{1}{4}$ of the observations are equal to 'a', another $\frac{1}{4}$ of the observations are equal to '-a

'. Out of the remaining half of them are equal to 'b' and the rest are equal to '-b'. If the variance of all the observations is "ab" then

1)
$$a^2 = 4b^2$$

4)
$$a = -3b$$

27) The mean and S.D of 100 observations x_1, x_2, \dots, x_{100} were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation . Then correct value of $\sum_{i=1}^{100} x_i^2$

1) 3990

2) 161701

3) 162601

4) 4000

28) In a data with 15 number of observations $x_1, x_2x_3...x_{15} \sum_{i=1}^{15} x_i^2 = 3600$ and $\sum_{i=1}^{15} x_i = 175$. If the value of one observation 20 was found wrong and was replaced by its correct value 40 then corrected variance of that data is—

1) 151

2) 149

3) 145

29) If the coefficient of variation and variance of a frequency distribution are 7.2 and 3.24 respectively then its mean is

1) 45

2) 25

3) 20

30) Two distributions A and B have the same mean. If their coefficients of variation are 6 and 2 respectively and σ_A , σ_B are their standard deviations then

1) $\sigma_A = 3\sigma_B$

2) $3\sigma_A = \sigma_B$

3) $\sigma_A = 2\sigma_B$ 4) $2\sigma_A = \sigma_B$

31) Let '0' is the mean deviation of first five odd natural numbers about their mean and p is the mean deviation of first five prime numbers about their mean then p-0 = ----

1) 0.3

2) 0.32

3) 0.23

PAPER SETTER -HYD-CHINTAL

1-10	4	1	1	3	4	1	2	3	2	4
11-20	3	1	1	3	1	2	3	2	3	3
21-30	1	1	3	2	1	3	2	1	2	1
31	2									

Hints:

1)
$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = 1 \Rightarrow x_1 + x_2 + x_3 + \dots + x_n = n$$

Require A.M =
$$\frac{\frac{x_1}{k} + \frac{x_2}{k} + \frac{x_3}{k} + \dots + \frac{x_n}{k}}{n} = \frac{1}{k} \left(\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \right) = \frac{1}{k}$$

2) Let there be n_1 boys and n_2 girls

Let $\overline{X_1}$ and $\overline{X_2}$ are average scores of boys and girls.

Let \overline{X} is average of both boys and girls.

$$\overline{X_1} = 71, \ \overline{X_2} = 63, \ \overline{X} = 71.8$$

$$\overline{X} = \frac{n_1 \overline{X_1} + n_2 \overline{X_2}}{n_1 + n_2} \Rightarrow 71.8 = \frac{n_1 (71) + n_2 (73)}{n_1 + n_2}$$

$$(71.8) n_1 + (71.8) n_2 = n_1(71) + n_2(73)$$

$$0.8 \ n_1 = 1.2 \ n_2 \Rightarrow \frac{n_1}{n_2} = \frac{12}{8} = \frac{3}{2}$$

3) Marks from 3 subjects out of 300 = 75+80+85=240

If the marks of another subject is added then the marks will be \geq 240 out of 400

Minimum average marks =
$$\frac{240}{4}$$
 = 60%

4) Sum of 100 items =
$$49 \times 100 = 4900$$

Sum of items added
$$= 60+70+80=210$$

New sum =4900+210-110=5000

Correct mean =
$$\frac{5000}{100} = 50$$

5) n=9,median term =
$$\left(\frac{9+1}{2}\right)^{th}$$
 term = 5th term

Now the last four observations are increased by 2. since the median is 5th observation, which remains unchanged, there will be no change in median

6) Mode=3 Median-2Mean

$$6\lambda = 3 \text{ Median} - 18\lambda \Rightarrow \text{Median} = 8\lambda$$

7)
$$Mode - Mean = 12$$

$$12 = 3(Median - Mean) \Rightarrow Median - Mean = 4$$

Again

$$Mode - Mean = 2(Median - Mean) = 2 \times 4 = 8$$

8)
$$A - G = 2 \rightarrow (1)$$

$$G - H = \frac{8}{5} \rightarrow (2)$$

$$G^2 = A.H = (G+2)(G - \frac{8}{5})$$

$$(or)G=8 (or) ab = 64 \rightarrow (3)$$

From (1) we get
$$A=10$$

$$a + b = 20 \rightarrow (4)$$

solving (3) and (4) we get a=4 and b=16 (or) a=16 and b=4

9) Mean =m=
$$\frac{a+b+c+d+e}{5}$$

$$\sum x_i = a + b + c + d + e = 5m$$

New mean =
$$\frac{a+k+b+k+c+k+d+k+e+k}{5} = \frac{(a+b+c+d+e)+5k}{5} = m+k$$

S.D= $\sqrt{\frac{\sum (x_i^2 + k^2 + 2kx_i)}{n}} - (m^2 + k^2 + 2mk)$

S.D=
$$\sqrt{\frac{\sum (x_i^2 + k^2 + 2kx_i)}{n}} - (m^2 + k^2 + 2mk)$$

= $\sqrt{\frac{\sum x_i^2}{n}} - m^2 + \frac{2k\sum x_i}{n} - 2mk$
= $\sqrt{\frac{\sum x_i^2}{n}} - m^2 + 2mk - 2mk$

$$=\sqrt{\frac{\sum x_i^2}{n}-m^2}=S$$

10) Given $\omega_i = lx_i + k$,

$$\bar{x}_{i} = 48$$

S.D of x_i 's =12, $\overline{\omega_i}$ = 55 and S.D of ω_i 's = 15

Then $\overline{\omega_i} = l\overline{x_i} + k$

$$55 = 48 l + k \rightarrow (1)$$

Now S.D of ω_i 's = l (S.D of x_i 's)

$$15 = l(12) \Rightarrow l = \frac{15}{12} = 1.25$$

From equ (1) we get

$$K=55-1.25 \times 48=-5$$

11)
$$\bar{x} = 50$$
, n=100 and $\sigma = 5$

$$50 = \frac{\sum x_i}{100} \Rightarrow \sum x_i = 5000$$

Now
$$S^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 \Rightarrow 25 = \frac{\sum x_i^2}{100} - (50)^2 \Rightarrow 2525 = \frac{\sum x_i^2}{100} \Rightarrow \sum x_i^2 = 252500$$

12)
$$\sum x = 170$$
, $\sum x^2 = 2830$

The increase in $\sum x$ is 10 then

$$\sum x^1 = 170 + 10 = 180$$

The increase in $\sum x^2$ is 900-400=500 then

$$\sum x^2 = 2830 + 500 = 3330$$

Variance =
$$\frac{1}{n} \sum x^2 - \left(\frac{1}{n} \sum x^1\right)^2 = \frac{1}{15} \times 3330 - \left(\frac{1}{15} \times 180\right)^2 = 222 - 144 = 78$$

13) Given $\sigma_c = 5$

Relation between ${}^{0}C$ and ${}^{0}F$ is given by

$$F = \frac{9C}{5} + 32$$

$$\therefore \sigma_F = \frac{9}{5} \cdot \sigma_c = \frac{9}{5} \times 5 = 9$$

14) Given numbers are 1,2,3,4,5

If '2' is added to each number

New Observations are

$$\sum x_i = 3+4+5+6+7=25$$

$$\sum x_i^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = (1^2 + 2^2 + \dots + 7^2) - (1^2 + 2^2) = \frac{7x8x15}{6} - 5 = 135$$

Var =
$$\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{135}{5} - \left(\frac{25}{5}\right)^2 = 27-25=2$$

15) The first 6 positive integers are

1,2,3,4,5,6

On multiplying each number by -2 we get

On adding '2' in each number we get

$$0, -2, -4, -6, -8, -10$$

$$\sum x_i = 0\text{-}2\text{-}4\text{-}6\text{-}8\text{-}10 = -30$$

$$\sum x_i^2 = 220$$

$$\text{Var} = \frac{\sum x_i^2}{n} - (\bar{x})^2 = \frac{220}{6} - (\frac{-30}{6})^2 = \frac{35}{3} = 11.6$$

$$16) \text{ Mean } (\bar{x}) = \frac{12+3+18+8+2+10+a+b}{8} = 8$$

$$53+a+b=64$$

$$a+b=11----(1)$$

$$\sum x_i^2 = 12^2 + 3^2 + 18^2 + 8^2 + 2^2 + 110^2 + a^2 + b^2 = a^2 + b^2 + 645$$

$$\text{Variance } (\sigma^2) = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = 24.25$$

$$= \frac{a^2 + b^2 + 645}{8} - (8)^2 = 24.25$$

$$= a^2 + b^2 + 645 = 706 \implies a^2 + b^2 = 61 - -----(2)$$

$$\text{From } (1) \& (2) \text{ ab} = 30$$

$$(a-b)^2 = a^2 + b^2 - 2ab = 1 \implies a - b = 1 - -----(3)$$

$$a = 6, b = 5$$

$$17) \ \overline{x} = \frac{6+7+a+12}{4} = \frac{25+a}{4}$$

$$\sigma = \sqrt{\frac{\sum x_i^2}{n} - (\overline{x})^2}$$

17)
$$\bar{x} = \frac{6+7+a+12}{4} = \frac{25+a}{4}$$

$$\sigma = \sqrt{\frac{\sum x_i^2}{n} - (\bar{x})^2}$$

$$\frac{\sqrt{91}}{4} = \sqrt{\frac{36+49+a^2+144}{4} - (\frac{25+a}{4})^2}$$

S.o. b. s

$$\frac{91}{16} = \frac{229 + a^2}{4} - \frac{\left(25 + a\right)^2}{16}$$

$$91 = 4(229 + a^2) - (25 + a)^2$$

$$91 = 916 + 4a^2 - 625 - a^2 - 50a$$

$$3a^2 - 50a + 200 = 0$$

18) Mean =43

$$\frac{x_1 + x_2 + \dots + x_9}{9} = 43$$

$$x_1 + x_2 + \dots + x_9 = 387 - \dots - (1)$$
S. D=5

$$5^2 = \frac{x_1^2 + x_2^2 + \dots + x_9^2}{9} - (43)^2$$

$$x_1^2 + x_2^2 + \dots + x_9^2 = 9(5^2 + 43^2)$$

$$= 9(25 + 1849) = 9 (1874) = 16,866$$

Required Mean =
$$\frac{(x_1 - 3)^2 + (x_2 - 3)^2 + \dots + (x_9 - 3)^2}{9}$$

$$= \frac{(x_1^2 + x_2^2 + \dots + x_9^2) + 9x9 - 6(x_1 + x_2 + \dots + x_9)}{9}$$

$$= \frac{16,886 + 81 - 6(387)}{9} = \frac{16947 - 2322}{9} = \frac{14625}{9} = 1625$$
19) Mean =
$$\frac{4 + 7 + 2 + 8 + 6 + a}{6} = 7 \implies a = 15$$

Mean deviation about mean
$$= \frac{\sum_{i=1}^{6} |x_i - 7|}{6}$$
$$= \frac{|4 - 7| + |7 - 7| + |2 - 7| + |8 - 7| + |6 - 7| + |15 - 7|}{6}$$
$$= \frac{3 + 0 + 5 + 1 + 1 + 8}{6} = 3$$

20) Variance of first n odd

Natural numbers =
$$\frac{n^2 - 1}{3}$$

Required variance =
$$\frac{(50)^2 - 1}{3} = \frac{2499}{3} = 833$$

21) Ascending order of data is

34,38,42,44,46,48,54,55,63,70

Median (M) =
$$\frac{46+48}{32}$$
=47

Mean deviation about median =
$$\frac{\sum |x_i - M|}{n} = \frac{\sum |x_i - 47|}{10} = \frac{13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 16 + 23}{10} = 8.6$$

22)
$$CV_A = \frac{\sigma_x}{\bar{x}} \times 100 = \frac{2}{\bar{x}} \times 100, \ CV_B = \frac{\sigma_y}{\bar{y}} \times 100 = \frac{3}{\bar{y}} \times 100$$

A is more consistent than B

$$CV_A < CV_B \Rightarrow \frac{2}{x} \times 100 < \frac{3}{y} \times 100 \Rightarrow \frac{2}{x} < \frac{3}{y} \Rightarrow \frac{y}{x} < \frac{3}{2}$$

23) Mean of first five prime numbers =
$$\frac{2+3+5+7+11}{5} = \frac{28}{5} = 5.6$$

Mean deviation about mean
$$= \frac{|2-5.6| + |3-5.6| + |5-5.6| + |7-5.6| + |11-5.6|}{5}$$
$$= \frac{3.6 + 2.6 + 0.6 + 1.4 + 5.4}{5} = \frac{13.6}{5} = 2.72$$

Variance=
$$\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{4+9+25+49+121}{5} - (5.6)^2 = 41.6-31.36=10.24$$

24) Variance of 2k natural numbers =
$$S_1 = \frac{2k(2k+1)(4k+1)}{6(2k)} - \left(\frac{2k(2k+1)^2}{2 \times 2k}\right)$$

= $(2k+1) \left[\frac{4k+1}{6} - \frac{2k+1}{4}\right]$
= $(2k+1) \left[8k+2-6k-3\right] = \frac{4k^2-1}{12}$

Variance of first k natural numbers =
$$S_2 = \frac{k(k+1)(2k+1)}{6 \times k} - \left(\frac{k(k+1)}{2 \times k}\right)^2 = (k+1)\left[\frac{2k+1}{6} - \frac{k+1}{4}\right]$$
$$= \frac{k+1}{12}[4k+2-3k-3] = \frac{k+1}{12}(k-1) = \frac{k^2-1}{12}$$

$$\frac{S_1}{S_2} = \frac{4k^2 - 1}{k^2 - 1} = 4 + \frac{3}{k^2 - 1}, (k > 1)$$

$$\frac{S_1}{S_2} \in (1, 4]$$

25)
$$\bar{x} = \frac{2+3+5+7+11}{5} = \frac{28}{5}$$

$$\sum x_i^2 = 4 + 9 + 25 + 49 + 121 = 208$$

$$\sigma = \sqrt{\frac{\sum x_i^2}{5} - (\bar{x})^2} = \sqrt{\frac{208}{5} - (\frac{28}{5})^2} = \sqrt{\frac{1040 - 784}{25}} = \frac{16}{5}$$

Coefficient of variation = $\frac{\sigma}{x}$ (200) = $\frac{16}{28}$ (100) = $\frac{400}{7}$

26) Given
$$\frac{1}{4}^{th}$$
 observation = a

Another
$$\frac{1}{4}^{th}$$
 observation = - a

$$\frac{1}{4}^{th}$$
 observation =b, $\frac{1}{4}^{th}$ observation = -b

$$\overline{x} = \frac{a-a+b-b}{n} = 0$$

Variance = ab =
$$\frac{\sum x_i^2}{n} - (x)^2 = \frac{\sum x_i^2}{n}$$

$$ab = \frac{\frac{n}{4}(a^2 + b^2) + \frac{n}{4}(b^2 + b^2)}{n} \Rightarrow ab = \frac{a^2 + b^2}{2} = a^2 + b^2 - 2ab = 0 \Rightarrow (a - b)^2 = 0 \Rightarrow a = b$$

27)
$$\sigma^2 = \frac{\sum x_i^2}{100} - (\bar{x})^2$$

$$(5.1)^2 = \frac{\sum x_i^2}{100} - (40)^2$$

$$\Rightarrow \sum x_i^2 = 26.01 + 1600) \times 100$$

$$= 2601 + 16000 - (50)^2 + (40)^2$$

= 161701

28)
$$\sum_{i=1}^{15} x_i^2 = 3600$$
, $\sum_{i=1}^{15} x_i = 175$ and n=15

Replacing observation 20 by 40

$$\sum_{i=1}^{15} x_i = 175 - 20 + 40 = 195$$

$$\sum_{i=1}^{15} x_i^2 = 3600 - (20)^2 + (40)^2 = 4800$$

Corrected variance =
$$\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{4800}{15} - \left(\frac{195}{15}\right)^2 = 320 - 169 = 151$$

29) Coefficient of variation =7.2

Variance =3.24

$$\sigma^2 = 3.24 \Rightarrow \sigma = \sqrt{3.24} = 1.8$$

 $\text{C.V} = \frac{\sigma}{x} \times 100 \Rightarrow 7.2 = \frac{1.8}{x} \times 100 \Rightarrow x = \frac{1.8}{7.2} \times 100 = 25$

30) C.V is the ratio of S.D and mean

Given mean of both distribution is same

Given mean of both distribution is same
$$CV_{A} = \frac{\sigma_{A}}{\mu_{A}}, CV_{B} = \frac{\sigma_{B}}{\mu_{B}}$$

$$\frac{CV_{A}}{CV_{B}} = \frac{\sigma_{A}}{\mu_{A}} \times \frac{\sigma_{B}}{\mu_{B}} \Rightarrow \frac{CV_{A}}{CV_{B}} = \frac{\sigma_{A}}{\sigma_{B}} \ [\because \mu_{A} = \mu_{B}]$$

$$\frac{6}{2} = \frac{\sigma_{A}}{\sigma_{B}} \Rightarrow \sigma_{A} = 3. \ \sigma_{B}$$

$$31) \ \overline{x_{1}} = \frac{1+3+5+7+9}{5} = 5, \ \overline{x_{2}} = \frac{2+3+5+7+11}{5} = \frac{28}{5}$$

$$O = \frac{\left|1-5\right| + \left|3-5\right| + \left|5-5\right| + \left|7-5\right| + \left|9-5\right|}{5} = \frac{12}{5}$$

$$P = \frac{\left|2-\frac{28}{5}\right| + \left|3-\frac{28}{5}\right| + \left|5-\frac{28}{5}\right| + \left|7-\frac{28}{5}\right| + \left|11-\frac{28}{5}\right|}{5} = \frac{68}{25}$$

$$P - O = \frac{68}{25} - \frac{12}{5} = \frac{8}{25} = 0.32$$