天线编程作业

陈传升 2018 年 5 月 1 日

目录

1	Fini	Finite Length Dipole						
	1.1	要求	3					
	1.2	原理及推导	3					
		1.2.1 考虑电流分布	3					
		1.2.2 选做: 不考虑电流分布	4					
	1.3	结果与分析	4					
		1.3.1 方向图与 HPBW	4					
		1.3.2 选做: 不同尺寸电偶极子等效电长度	5					
		1.3.3 选做: 电流为均匀分布时的方向图	5					
	1.4	程序	6					
2	Circular Loop of Constant Current 1							
	2.1	要求	10					
	2.2	原理及推导	10					
	2.3	结果与分析	10					
		2.3.1 方向图与 HPBW	10					
	2.4	程序	10					

1 Finite Length Dipole

1.1 要求

画出不同长度的电偶极子方向图 $l = \frac{\lambda}{10}, \frac{\lambda}{4}, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}$ 选做:

- 1. 计算正弦电流分布的情况下, 不同物理长度偶极子的等效长度.
- 2. 画出任意长度偶极子沿线电流为均匀分布的时候的方向图, 并与教材比对.

1.2 原理及推导

1.2.1 考虑电流分布

有限长度且考虑电流分布电偶极子的远场解

$$E_{\theta} = \int_{-l/2}^{+l/2} dE_{\theta} \simeq j\eta \frac{ke^{-jkr}}{4\pi r} \sin\theta \left[\int_{-l/2}^{+l/2} I_{e}(x', y', z') e^{jkz'\cos\theta} dz' \right]$$
(1)

计算积分得到

$$E_{\theta} \simeq j\eta \frac{I_0 e^{-jkr}}{2\pi r} \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right]. \tag{2}$$

$$H_{\phi} \simeq \frac{E_{\theta}}{\eta} \simeq j \frac{I_0 e^{-jkr}}{2\pi r} \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right].$$
 (3)

由于, 最终需要得到归一化的功率方向图. 所以常数项可以直接忽略. 远场可以视为 TEM 波, 故

$$P = \frac{E^2}{\eta} \simeq \left[\frac{\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right)}{\sin\theta} \right]^2. \tag{4}$$

编程时亦只关注这一部分.

1.2.2 选做:不考虑电流分布

不考虑电流分布的时候, 电偶极子的远场解简化为

$$E_{\theta} = \int_{-l/2}^{+l/2} dE_{\theta} \simeq j\eta \frac{ke^{-jkr}}{4\pi r} \sin\theta \left[\int_{-l/2}^{+l/2} I_0 e^{jkz'\cos\theta} dz' \right]$$
 (5)

计算积分得到

$$E_{\theta} \simeq \sin \theta \left[\int_{-l/2}^{+l/2} e^{jkz'\cos \theta} dz' \right] = \frac{2\sin \theta \sin \left(\frac{kl}{2}\cos \theta\right)}{k\cos \theta}$$
(6)

$$P \simeq \left[\tan \theta \sin \left(\frac{kl}{2} \cos \theta \right) \right]^2 \tag{7}$$

1.3 结果与分析

1.3.1 方向图与 HPBW

根据图 1分析, 随着电偶极子尺寸的增大, 方向图越来越瘦, 半功率波束宽度也逐渐减小, 其定向性越来越好. 半功率波束宽度具体见图 2.

图 1: DipolePattern

图 2: HalfPowerBeamWidth

1.3.2 选做: 不同尺寸电偶极子等效电长度

结果如表 1, 图 3.

实际电长度	0.1	0.2	0.5	1	1.5
等效电长度	0.0078	0.0304	0.1592	0.3183	0.4775

表 1: 等效电长度

1.3.3 选做: 电流为均匀分布时的方向图

结果如图 4,同图 1对比容易发现, 在 $L \le \lambda$ 时, 方向图相差不多, 当 $L > \lambda$ 方向图出现了明显差异, 不考虑电流分布的方向图不会出现旁瓣. 结果也恰好和教材上提到的, 随着尺寸的增大, 电流分布的影响会显得越来越重要.

图 3: 等效电长度

图 4: DipolePattern_I₀

1.4 程序

绘制方向图主程序

```
clear
close all
L = [.1, .25, .5, 1, 1.25, 1.5];
BeamWidth = [];
temp=',';
for i=1:length(L)
    BeamWidth(i)=Fun_DipolePattern(L(i));
    temp=num2str(L(i));
    legend(temp)
    hold on
end
legend('0.1','0.25','0.5','1','1.25','1.5')
view(90, -90)
figure
%当L=1.5时候,编写的BeamWidth计算没有参考意义
BeamWidth(1,5)
plot(L, BeamWidth, 'or')
```

子程序

```
function BeamWidth_3dB=Fun_DipolePattern(L,StepNum)%归一化非dB的结果%L是偶极子的电长度 略去lambda%StepNum绘图精度,缺省时候为400%返回值为BeamWidth_3dB%lambda对方向图没有影响if nargin<2
    StepNum=400; end

theta=linspace(0,2*pi,StepNum); fenzi=cos(pi*L*cos(theta))-cos(pi*L); U=(fenzi./sin(theta)).^2;
```

```
U1=U/max(U);
polar (theta, U1)
%solve 3dB BandWidth
dB3=find (U1(1:StepNum/2)>=0.5);
BeamWidth_3dB=(max(dB3)-min(dB3))/StepNum*360;
end
```

选做: 计算等效电长度

```
%计算电长度
clear
close all
for j=1:150
    L=1/10*j;
syms z
% I=I0*sin(k*L/2-k*z),
%k 1/2=pi*L
% k z= 2*pi/lamad * lamada*L;
I=abs(sin(pi*L-2*pi*z));
vpa(int(I,z,0,L/2),6);
plot(L,vpa(int(I,z,0,L/2),6), 'b.');
hold on
end
```

选做: 电流均匀分布

```
%主程序
clear
close all
L=[.1,.25,.5,1,1.25,1.5];
BeamWidth=[];
temp='';
for i=1:length(L)
BeamWidth(i)=Fun_DipolePattern_i0(L(i));
temp=num2str(L(i));
```

```
legend (temp)
hold on
end
legend('0.1 \land lambda', '0.25 \land lambda', '0.5 \land lambda',
'\lambda', '1.25\lambda', '1.5\lambda')
view(90, -90)
%子函数
function BeamWidth_3dB=Fun_DipolePattern_i0(L,StepNum)
if nargin <2
StepNum = 2000;
end
theta=linspace(0,2*pi,StepNum);
\%\sin(pi*L*\cos(theta))*tan(theta);
U=(\sin(pi*L*\cos(theta)).*\tan(theta)).^2;
U1=U/\max(U);
polar (theta, U1)
end
```

2 Circular Loop of Constant Current

2.1 要求

画出不同半径均匀电流环方向图 $l=\frac{\lambda}{20},\frac{\lambda}{6.28},\frac{\lambda}{2},0.61\lambda,\lambda,4\lambda$

2.2 原理及推导

均匀电流环的远场解

$$E_{\phi} \simeq \frac{ak\eta I_0 e^{-jkr}}{2r} J_1 \left(ka \sin \theta \right) \tag{8}$$

$$H_{\theta} \simeq -\frac{E_{\phi}}{\eta} \simeq -\frac{akI_0e^{-jkr}}{2r}J_1\left(ka\sin\theta\right) \tag{9}$$

由于, 最终需要得到归一化的功率方向图. 所以常数项可以直接忽略. 远场可以视为 TEM 波, 故

$$P = \frac{E^2}{\eta} \simeq \left[J_1 \left(ka \sin \theta \right) \right]^2 \tag{10}$$

编程时亦只关注这一部分.

2.3 结果与分析

2.3.1 方向图

2.4 程序

绘制方向图主程序