Hadronenspektroskopie

Invariante Masse, Histogramme, Filter

Liste der Referent*innen¹

¹Rheinische Friedrich-Wilhelms-Universität Bonn

Datums angabe

Was ist eigentlich Masse?

Masse

- Hart
- Zum Anfassen
- Langlebig
- Ausgedehnt
- "Da", Isolierbar
- ⇒ Leicht nachweisbar

[2]

Masse

Schwere Baryonen [1]

- Instabil, zerfallen
- Kurzlebig $(\Delta E \Delta t \geq \hbar \Rightarrow \tau \gtrsim 10^{-24} \, \text{s})$
- Kurzreichweitig $(\tau \cdot c \sim 10^{-15} \, \mathrm{m})$
- Klein ($\sim 10^{-14} \, \text{m}$)
- Müssen erzeugt werden
- \Rightarrow Nicht direkt nachweisbar

☞ Ideen?

Strategie: Rekonstruktion über (hinreichend) stabile Zerfallsprodukte

"Physiker*innen gehen nun den umgekehrten Weg".

Man betrachte *Teilchen 1*. Es ruht und besitzt die Ruhemasse = Ruheenergie M_{inv}

Teilchen 1

Die Energie/Masse des *Teilchens 1* teilt sich vollständig in Impuls und Energie/Masse der drei Produkte auf.

⇒ Addiere Energie und Impuls-Vektoren und erhalte so die Masse des *Teilchens 1*!

Eine einfache Aufgabe?

- Man muss exakt die Produkte des Zerfalls treffen! Je nach Zerfall gibt es viele nachgelagerte Zerfälle, sodass es viele Kombinationsmöglichkeiten gibt.
- Daten müssen aufwändig gefiltert werden.

Indizien zur Kombinatorik:

- Ladungserhaltung
- @ Gemeinsamer Schnittpunkt der Spur

Typisches Eventdisplay [3]

Wie sieht das Ergebnis aus?

Ergebnis

$$\Xi_b^- o \Xi_c^0 \ \pi^- \ [4]$$

Erwartung:

Muffällig viele
Kombinationen
"tummeln" sich und
weisen auf Masse eines
pot. unentdeckten
Mutterteilchens ist.

 \Rightarrow Sog. Resonanzen

Wie stelle ich Ergebnisse dar?

Histogramme & Filter

- Gibt Häufigkeitsverteilung an
- Einteilung in Klassen, mit vorgegebener Breite

Beispiel: Klick

Reinheit

Aufgabenstellung

Eure Aufgabe: Entdeckung von Teilchen

Sucht mittels Eures hier gewonnenen Wissens und Anwendung von Filtern ein möglichst reines Signal des bisher noch unentdeckten Teilchens Ω_c^0 .

⇒ Wie sehen aber Filter beim LHCb aus?

Motivation

Wir wollen ein neues Teilchen finden!

 \Rightarrow Wie können wir das Ω_c^0 suchen?

Suche nach Ω_c^0

- Überlegen uns einen möglichen Zerfall
- Suchen nach den Zerfallsprodukten in den LHCb Daten
- Kombinieren die Zerfallsprodukte und schauen uns das Massenspektrum an

⇒Finden wir einen Peak, haben wir eine neue Resonanz entdeckt!

Ω_c^0 Zerfall

Quark Inhalt : $\Omega_c^0(css)$

Das Ξ_c^+ ist allerdings nicht stabil und zerfällt weiter in $\Xi_c^+ o p K^- \pi^+$

Datenanalyse

Wir wollen aus den riesigen Mengen an Daten, nur die Ereignisse auswählen, die für unsere Analyse interessant sind

 \Rightarrow Wir müssen uns Kriterien überlegen, anhand deren wir den Signalzerfall $\Omega_c^0 \to \Xi_c^+ K^-$ gegenüber Untergrund erkennen können Potenzielle

Untergründe:

- ein Ξ_c^+ und ein K^- werden in der Kollision erzeugt, stammen aber **nicht** aus dem Zerfall eines neuen Teilchens
- Wir haben ein Teilchen falsch identifiziert, z.B. ein π^- für ein K^- gehalten

Teilchenidentifikation

Um ein Teilchen zu identifizieren spielen mehrere Komponenten des Detektors zusammen

- Tracking : Impuls und Ladung von geladenen Teilchen
- Kalorimeter : Energie
- RICH: Winkel der Cherenkov Strahlung

Teilchenidentifikation

Um den Physiker*innen die Arbeit zu erleichtern, werden die einzelnen Messdaten (Krümmungsradius, Cherenkov-Winkel, etc.) zu einer Variablen verarbeitet

Variable "ProbNNp": Wie wahrscheinlich, handelt es sich um ein Proton

Der Ξ_c^+ Zerfall

Wir suchen nach:

$$\Omega_c^0 o \Xi_c^+ (o p K^- \pi^+) K^-$$

Wir kennen das Ξ_c^+ und seine Lebensdauer $au_{\Xi_c^+} pprox 4.5 imes 10^{-13} ext{s}$

Dank der sehr präzisen Vertex-Rekonstruktion, können wir die **Flugdistanz** des Ξ_c^+ (im mm bis cm Bereich) als Filter verwenden!

Datenanalyse | Folie 22

Der Ξ_c^+ Zerfall

Wir betrachten hier den Zerfall

$$\Xi_c^+ o p K^- \pi^+$$

⇒Warum gerade dieser Zerfall? Andere Optionen wären z.B.

- \bullet $\Xi_c^+ \to \Xi^0 \pi^+$
- $\Xi_c^+ \to pK^0$

Problem: Wir kennen das Ω_c^0 noch nicht

⇒Können aber trotzdem Kriterien durch unser Wissen über Hadronen und das Standard Modell aufstellen!

Frame Title

Wir suchen:

 \rightarrow Starke Wechselwirkung!

Typische Lebensdauer für einen starken Zerfall: $au pprox 10^{-24}\,\mathrm{s}$

- ullet Nochmal um einen Faktor 10^{11} kleiner als die Lebensdauer des $\Xi_c^+!$
- ullet Das Ω_c^0 sollte sofort noch im pp-Kollisionspunkt zerfallen

 \Rightarrow Die Tochterteilchen des Ω_c^0 sollen direkt aus dem pp-Kollisionspunkt kommen!

Impact Parameter: Minimaler Abstand zwischen Kollisionspunkt und rekonstruiertem Teilchen

 \Rightarrow Kleiner IP = große Wahrscheinlichkeit, dass das Teilchen aus dem Kollisionspunkt kommt

Wissen aus der Theorie, dass schwere Teilchen, meistens mit einem hohen transversalen Impuls erzeugt werden

Zusammenfassung

Wir suchen nach:

- 3 Tracks, als p, K^-, π^+ identifiziert
- ullet Diese Tracks stammen aus einem sekundären Vertex, da das Ξ_c^+ ein kurze Strecke im Detektor fliegt
- ullet Das gesuchte Ω^0_c zerfällt noch im pp-Kollisionspunkt (kleiner IP)
- ullet Das gesuchte Ω_c^0 hat einen hohen transversalen Impuls

Referenzen

The Quark Structure of Hadrons: An Introduction to the Phenomenology and Spectroscopy.

Lecture Notes in Physics ; 949. Springer International Publishing, Cham, 2018.

https://www.wohnholzdesign.de/regalbrett-wildeiche-massiv-nach-mass/ .

LHCb Collaboration.

The LHCb detector at the LHC. *Journal of instrumentation*, 2008.

LHCb Collaboration.

Measurement of the properties of the Ξ_b^{*0} baryon.

Journal of high energy physics, 2016.

Befund LHCb

Was sagt uns jetzt das Ergebnis?

Befund LHCb

 $\Omega_c^0\text{-Resonanzen, rekonstruiert vom LHCb}$ [1]

Ergebnisse

Befund LHCb

 $\Omega_c^0\text{-Resonanzen, rekonstruiert vom LHCb}$ [2]

Ergebnisse | Folie 4

Befund LHCb [2]

Zustand	Signifikanz	Masse in MeV/ c^2
$\Omega_c(3000)^0$	6.2σ	$2999.2 \pm 0.9 \pm 0.9^{+0.19}_{-0.22}$
$\Omega_c(3050)^0$	9.9σ	$3050.1{\pm}0.3{\pm}0.2^{+0.19}_{-0.22}$
$\Omega_c(3065)^0$	11.9σ	$3065.9 \pm 0.4 \pm 0.4^{+0.19}_{-0.22}$
$\Omega_c(3090)^0$	7.8σ	$3091.0 \pm\! 1.1 \pm\! 1.0^{+0.19}_{-0.22}$

Sigma-Umgebungen

Damit ein physikalischer Befund als Entdeckung gilt, muss er eine Standardabweichung von min. 5σ besitzen, i.e. innerhalb 0.00003% oder $1:3.3\cdot 10^6$.

Ergebnisse

Fazit

- Der Natur ein Stück näher gekommen
- Wir erwarten noch mehr Resonanzen!
- ⇒ Die Suche geht weiter!
- Wir brauchen Nachwuchs

Vielen Dank!

Es gibt noch einen Evaluationsbogen!

Referenzen

LHCb Collaboration.

Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+ K^-$. *Phys. Rev. Lett.*, 2017.

LHCb Collaboration.

Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays. *Physical review. D*, 2021.