Introduction to machine learning

Andrea Massari - 07/26/2017

Vocabulary

(by the end of the lecture you'll know what these words mean)

- (cross/k-fold)validation
- hyperparameter
- algorithm
- parameter
- classification
- regression
- likelihood
- feature
- loss/cost function
- model
- performance
- testing
- overfitting
- underfitting
- class
- label
- ...

Why Machine Learning?

- teach a machine to do a human task
 e.g. everyone can distinguish a cat from a dog, can we teach a computer to do it?
- 2. teach a machine to do "super"-human tasks e.g. distinguish two people from the way they walk

data → model → outcome

data

- cleaning
- feature engineering

data

- cleaning
- feature engineering

model

- algorithm
- parameters
- hyperparameters

data

- cleaning
- feature engineering

model

- algorithm
- parameters
- hyperparameters

outcome

- supervised: classification/regression?
- unsupervised: clustering/ anomaly detection?

What are we "learning"?

data

- cleaning
- feature engineering

model

- algorithm
- parameters
- hyperparameters

outcome

- supervised: classification/regression?
- unsupervised: clustering/ anomaly detection?

What are we "learning"?

data

- cleaning
- feature engineering

- algorithm
- parameters
- hyperparameters

outcome

- supervised: classification/regression?
- unsupervised: clustering/ anomaly detection?

How do we "learn" it?

data training parameters data algorithm

How do we "learn" it?

Are we happy with it?

success
metric
testing
performance
data
model

Suppose you want to predict occupation based on physical features (which is silly;))

Suppose you want to <u>predict occupation</u> based on <u>physical features</u> but only a few data points have labels

Suppose you want to <u>understand relationship</u> between <u>occupation</u> and <u>physical features</u>

test

test

success metric

test!

accuracy = 100%

training in progress...

Outcome

Ok! I

there

Outcome

success metric

????

Some vocabulary

Types of features/label:

- continuous: e.g. height, temperature, ...
- categorical: e.g. F/M, 0/1, teacher/journalist/ doctor (these are called classes)
- ordinal: categorical but with an order between classes (e.g. star ratings)

Liked it

Liked it

Liked it

Liked it

Liked it

Hated it

Supervised tasks:

- label is continuous -> regression
- label is categorical/ordinal -> classification
- more than one label: multi-task

Training

(best)

remember:

data training parameters data algorithm

How do we define "best"??

Loss/cost function

introduce a function Loss of the parameters

Loss(bad parameters) = very high

Loss(best parameters) = lowest

Overfitting

Problem: what will happen if I try my model on new data never used in training?

Overfitting

Problem: what will happen if I try my model on new data never used in training?

Overfitting

Problem: what will happen if I try my model on new data never used in training?

data

don't
use this
data for
training
!
use for
testing

use this data for training

data

don't
use this
data for
training

!

use this
data for
training
!

use for
testing

data

use this data for training
!
use this data for training
!
use for testing

...k-fold validation

take an average of the testing performance over the k times

choose the hyper parameters that make this average best!