Advanced Statistical Modeling

Part 2. Nonparametric Modeling

Session 2:

Nonparametric regression model II

Pedro Delicado

Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator
The bias-variance trade-off

The bias-variance trade-on

Linear smoothers

Effective number of parameters

Two estimators of σ^2

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator

Linear smoothers

Effective number of parameters

Examples of Kernel functions used in nonparametric estimation.

Kernel K	Expression	Efficiency
Epanechnikov (K^*)	$(3/4)(1-x^2)I_{[-1,1]}(x)$	1
Biweight	$(15/16)(1-x^2)^2I_{[-1,1]}(x)$	0.994
Triweight	$(35/32)(1-x^2)^3I_{[-1,1]}(x)$	0.987
Gaussian	$(1/\sqrt{2\pi})\exp(-x^2/2)$	0.951
Triangular	$(1- x)I_{[-1,1]}(x)$	0.986
Uniform	$(1/2)I_{[-1,1]}(x)$	0.930

	Original	Original	Rescaled
Kernel	expression	variance	expression
Epanechnikov	$(3/4)(1-x^2)I_{[-1,1]}(x)$	1/5	$(3/4\sqrt{5})(1-x^2/5)I_{[-\sqrt{5},\sqrt{5}]}(x)$
Biweight	$(15/16)(1-x^2)^2I_{[-1,1]}(x)$	1/7	$(15/16\sqrt{7})(1-x^2/7)^2I_{[-\sqrt{7},\sqrt{7}]}(x)$
Triweight	$(35/32)(1-x^2)^3I_{[-1,1]}(x)$	1/9	$(35/96)(1-x^2/9)^3I_{[-3,3]}(x)$
Gaussian	$(1/\sqrt{2\pi})\exp(-x^2/2)$	1	$(1/\sqrt{2\pi})\exp(-x^2/2)$
Triangular	$(1- x)I_{[-1,1]}(x)$	1/6	$(1/\sqrt{6})(1- x /\sqrt{6})I_{[-\sqrt{6},\sqrt{6}]}(x)$
Uniform	$(1/2)I_{[-1,1]}(x)$	1/3	$(1/2\sqrt{3})I_{[-\sqrt{3},\sqrt{3}]}(x)$

Examples of rescaled kernel functions.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 勿 へ ()

Kernel density estimation

- Let x_1, \ldots, x_n be independent observation of a random variable X having probability density function f.
- ▶ Let $t \in \mathbb{R}$. The goal is to estimate the density value at t: f(t).
- Observe that

$$f(t) = F'(t) = \lim_{h \to 0} \frac{F(t+h) - F(t-h)}{2h} = \lim_{h \to 0} \frac{\Pr(t-h \le X \le t+h)}{2h} \approx$$

$$\lim_{h\longrightarrow 0}\frac{\#\{x_i:t-h\le x_i\le t+h\}/n}{2h}\overset{h}{\approx} \overset{\mathsf{small}}{\approx} \frac{\#\{x_i:t-h\le x_i\le t+h\}/n}{2h} =$$

$$\frac{1}{2nh}\sum_{i=1}^{n}I_{[t-h,t+h]}(x_i) = \frac{1}{nh}\sum_{i=1}^{n}\frac{1}{2}I_{[-1,1]}\left(\frac{t-x_i}{h}\right) = \frac{1}{nh}\sum_{i=1}^{n}K_U\left(\frac{t-x_i}{h}\right)$$

being K_U the uniform kernel.

For a kernel K and a bandwidth h, the kernel density estimate of f(t) is

$$\hat{f}(t) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{t-x_i}{h}\right).$$

The weight 1/n, corresponding to each observed data x_i , is continuously spread around x_i .

9/38

Nadaraya-Watson directly from density estimation

Given that

$$m(x) = E(Y|X=x) = \int_{\mathbb{R}} y f_Y(y|X=x) dy = \int_{\mathbb{R}} y \frac{f(x,y)}{f_X(x)} dy,$$

an estimator of m(x) can be obtained replacing the unknown densities f(x, y) and $f_X(x)$ by its kernel estimators

$$\hat{f}(x,y) = \frac{1}{nh_X h_Y} \sum_{i=1}^n K_X \left(\frac{x - x_i}{h_X} \right) K_Y \left(\frac{y - y_i}{h_Y} \right),$$

$$\hat{f}_X(x) = \frac{1}{nh_X} \sum_{i=1}^n K_X\left(\frac{x - x_i}{h_X}\right) = \int_R \hat{f}(x, y) dy.$$

Doing these replacements:

$$\hat{m}(x) = \int_{\mathbb{R}} y \frac{\hat{f}(x,y)}{\hat{f}_X(x)} dy = \int_{\mathbb{R}} y \frac{\frac{1}{nh_X h_Y} \sum_{i=1}^n K_X \left(\frac{x-x_i}{h_X}\right) K_Y \left(\frac{y-y_i}{h_Y}\right)}{\frac{1}{nh_X} \sum_{i=1}^n K_X \left(\frac{x-x_i}{h_X}\right)} dy = \frac{\sum_{i=1}^n K_X \left(\frac{x-x_i}{h_X}\right) \int_{\mathbb{R}} y \frac{1}{h_Y} K_Y \left(\frac{y-y_i}{h_Y}\right) dy}{\sum_{i=1}^n K_X \left(\frac{x-x_i}{h_X}\right)}.$$

Doing the change of variable $u=(y-y_i)/h_Y$ $(y=y_i+h_Yu)$ the numerator integral is equal to $\int_{\mathbb{R}}(y_i+h_Yu)K_Y(u)du=y_i$, because kernel K_Y integrates 1 and has first moment equal to zero.

Doing $h = h_X$ and $K = K_X$, we obtain this estimator of m(x),

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right) y_i}{\sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)},$$

that is precisely the Nadaraya-Watson estimator.

Practice:

Kernel functions

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator
The bias-variance trade-off

Linear smoothers

Effective number of parameters

Theoretical properties. The bias-variance trade-off Local properties of local polynomial estimator

The bias-variance trade-off

l inear smoothers

Effective number of parameters

Two estimators of σ

Local properties of local polynomial estimator

- ▶ The term *local behavior* refers to the statistical properties of a nonparametric estimate $\hat{m}(t)$ as estimator of the unknown value m(t), for a fixed value t.
- ▶ Is $\hat{m}(t)$ an unbiased estimator of m(t)? Is $E(\hat{m}(t)) = m(t)$?
- ▶ Is $\hat{m}(t)$ a consistent estimator of m(t)? Does $\hat{m}(t)$ converge to m(t) in some sense?
- ▶ We talk about global properties when our interest is on $\hat{m}(t)$ as estimator of m(t) for all $t \in [a, b]$, being [a, b] the interval where explanatory variable takes values.
- ▶ Global properties: Does the estimated function \hat{m} converge to the unknown function m in some sense appropriated for functions?

Bias and variance of $\hat{m}_0(t)$ and $\hat{m}_1(t)$

Theorem. Consider the nonparametric regression model

$$Y_i = m(X_i) + \varepsilon_i, i = 1 \dots n$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are independent r.v. with $E(\varepsilon_i) = 0$ and $V(\varepsilon_i) = \sigma^2(x_i)$, X_1, \ldots, X_n are independent r.v. with density f, with $\Pr(a \le X_i \le b) = 1$, for some $a, b \in \mathbb{R}$. Assume the following regularity conditions:

- 1. f(t) > 0.
- 2. f(t), m''(t) y $\sigma^2(t)$ are continuous in a neighborhood of t.
- 3. K is symmetric with support on [-1,1], $\int_R K(u)du = 1$, $\int_R uK(u)du = 0$.
- 4. $t \in (a, b)$.
- 5. $h \longrightarrow 0$ and $nh \longrightarrow \infty$ when $n \longrightarrow \infty$.

In this context, and conditioning on X_1, \ldots, X_n , we have the following:

► The Nadaraya-Watson estimator and the local linear estimator both have variance

$$\frac{\sigma^2(t)}{nhf(t)}\int_{-1}^1 K^2(u)du + o\left(\frac{1}{nh}\right).$$

The Nadaraya-Watson estimator has bias

$$\left(\frac{m'(t)f'(t)}{f(t)} + \frac{m''(t)}{2}\right)h^2\int_{-1}^1 u^2K(u)du + o(h^2).$$

► The local linear regression estimator has bias

$$\frac{m''(t)}{2}h^2\int_{-1}^1 u^2K(u)du + o(h^2).$$

▶ The Mean Squared Error (MSE) of $\hat{m}(t)$ as an estimator of m(t),

$$E[(\hat{m}(t) - m(t))^2] = Bias(\hat{m}(t))^2 + V(\hat{m}(t))$$

is $O(h^4) + O(1/(nh))$ for both estimators. Then both converge to m(t) in quadratic mean and in probability.

Bias and variance of $\hat{m}_q(t)$

▶ Local polynomial estimators with degrees p = 2k and p = 2k + 1 give similar asymptotic results:

$$\mathsf{MSE}(\hat{m}_p(t)) = O(h^{4k+4}) + O(1/(nh)).$$

- ► The bias asymptotic expression is simpler for p odd. They do not depend on the density function of X_i.
- A general recommendation is to use the degree p = 2k + 1 instead of using p = 2k.

Asymptotic Mean Squared Error (I)

- ► The Asymptotic Mean Squared Error (AMSE) is the main part of the MSE (ignoring the infinitesimal terms).
- ▶ The AMSE can be interpreted as a function of bandwidth *h*.
- For the local linear estimator:

$$\mathsf{AMSE}(h) = \frac{(m''(t))^2}{4} h^4 \left(\int_{-1}^1 u^2 K(u) du \right)^2 + \frac{\sigma^2(t)}{n h f(t)} \int_{-1}^1 K^2(u) du$$

 \blacktriangleright Minimizing AMSE(h) in h, the optimal value is

$$h_{\mathsf{AMSE}} = O\left(n^{-\frac{1}{5}}\right), \ \mathsf{AMSE}^* = \mathsf{AMSE}(h_{\mathsf{AMSE}}) = O\left(n^{-\frac{4}{5}}\right).$$

The same applies for the Nadaraya-Watson estimator.

Asymptotic Mean Squared Error (II)

▶ For local polynomials with degree p = 2k or p = 2k + 1,

$$V(\hat{m}_p(t)) = O\left(\frac{1}{nh}\right)$$
, (the same order for all p),

$$Bias(\hat{m}_p(t)) = E(\hat{m}_p(t)) - m(t) = O(h^{2k+2}).$$

► The optimal bandwidth and the corresponding AMSE are

$$h_{\mathsf{AMSE}} = O\left(n^{-\frac{1}{4k+5}}\right), \; \mathsf{AMSE}^* = O\left(n^{-\frac{4k+4}{4k+5}}\right), \; \mathsf{for} \; p = 2k \; \mathsf{or} \; p = 2k+1.$$

▶ Observe that the bias decreases when the local polynomial degree increases. But this is at the cost of an increasing in the constants appearing in the variance term.

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator

The bias-variance trade-off

Linear smoothers

Effective number of parameters

Two estimators of σ

The bias-variance trade-off

▶ Let us consider the AMSE for the local linear estimator:

AMSE(h) =
$$\frac{(m''(t))^2}{4}h^4\left(\int_{-1}^1 u^2K(u)du\right)^2 + \frac{\sigma^2(t)}{nhf(t)}\int_{-1}^1 K^2(u)du$$

- ▶ The first term, the squared bias, increases with h.
- ▶ The second term, the variance, decreases with *h*.
- ► The optimal value *h*_{AMSE} represents a compromise between bias and variance.

- Let g(h) = AMSE(h). It has the expression $g(h) = ah^4 + b/h$. Doing g'(h) = 0 it follows that the minimum of g is at $h^* = (b/4a)^{1/5}$ and $g(h^*) = 5a(h^*)^4$.
- Therefore,

$$h_{\text{AMSE}} = \left(\frac{\sigma^{2}(t)}{nf(t)(m''(t))^{2}}\right)^{1/5} \left(\frac{\int_{-1}^{1} K^{2}(u)du}{\left(\int_{-1}^{1} u^{2}K(u)du\right)^{2}}\right)^{1/5} n^{-1/5},$$

$$AMSE(h_{\text{AMSE}}) = \frac{5}{4^{4/5}} \frac{(\sigma^{2}(t))^{4/5}((m''(t))^{2})^{1/5}}{f(t)^{4/5}}$$

$$\left(\int_{-1}^{1} K^{2}(u)du\right)^{4/5} \left(\int_{-1}^{1} u^{2}K(u)du\right)^{2/5} n^{-4/5}.$$

Effect of bandwidth h and degree p on a single sample

Effect of bandwidth h on many samples

Global Variance, Bias and IMSE as a function of h

IntBias2, IntVar and IMSE for local polynomial; p=1

Practice:

Bias-variance trade-off

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator

Linear smoothers

Effective number of parameters

Two estimators of σ^2

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator

Linear smoothers

Effective number of parameters

Two estimators of σ^2

Linear smoothers

A nonparametric regression estimator $\hat{m}(\cdot)$ is said to be a linear estimator when for any fix t, $\hat{m}(t)$ is a linear function of y_1, \ldots, y_n :

$$\hat{m}(t) = \sum_{i=1}^{n} w(t, x_i) y_i.$$

for some weight function $w(\cdot, \cdot)$.

► Let

$$\hat{y}_i = \hat{m}(x_i) = \sum_{j=1}^n w(x_i, x_j) y_j$$

be the fitted values for the n observed values x_i of the explanatory variable.

In matrix format,

$$\hat{Y} = SY$$
,

where the column vectors Y and \hat{Y} have elements y_i and \hat{y}_i , respectively, and the matrix S has generic (i,j) element

$$s_{ij} = w(x_i, x_j).$$

- Matrix S is called the smoothing matrix, because its effect on the observed data (x_i, y_i) , i = 1, ..., n, is to transform them into (x_i, \hat{y}_i) , i = 1, ..., n, that is a much smoother data configuration.
- ► The smoothing matrix S is analogous to the hat matrix $H = X(X^TX)^{-1}X^T$ in multiple linear regression:

$$\hat{Y}_L = X(X^\mathsf{T} X)^{-1} X^\mathsf{T} Y = HY.$$

► Consider the multiple linear regression with *k* regressors, including the constant term:

$$Y = X\beta + \varepsilon,$$

X being a $n \times k$ matrix.

▶ It is known that

$$\mathsf{Trace}(H) = \mathsf{Trace}(X(X^\mathsf{T}X)^{-1}X^\mathsf{T}) = \mathsf{Trace}((X^\mathsf{T}X)^{-1}X^\mathsf{T}X) = \mathsf{Trace}(I_k) = k,$$

that is the number of parameters in the model.

▶ For a linear smoother with smoothing matrix $S(\hat{Y} = SY)$ we define

$$u = \operatorname{Trace}(S) = \sum_{i=1}^{n} s_{ii},$$

the sum of diagonal elements of S.

ν = Trace(S) is called the effective number of parameters of the nonparametric estimator corresponding to smoothing matrix S.

- ▶ In the case of local polynomial regression $\nu = \nu(h)$ is a decreasing function of smoothing parameter h:
 - Small values of h correspond to large numbers ν of effective parameters, that is, to highly complex and very flexible nonparametric models.
 - Large values of h correspond to small numbers ν of effective parameters, that is, to nonparametric models with low complexity and flexibility.
- ▶ The interpretation of ν as the effective number of parameters is valid for any linear nonparametric estimator.
- ► Then we can compare the degree of smoothing of two linear nonparametric estimators just comparing their effective numbers of parameters.

Theoretical properties. The bias-variance trade-off

Local properties of local polynomial estimator

Linear smoothers

Effective number of parameters

Two estimators of σ^2

Two estimators of σ^2

- ▶ The analogy with multiple linear regression suggests how the residual variance, $\sigma^2 = V(\varepsilon_i)$, can be estimated.
- ▶ In linear regression with *k* regressors,

$$Y = X\beta + \varepsilon$$
, $\hat{Y}_L = HY$, $\hat{\varepsilon} = Y - \hat{Y}_L = (I - H)Y$.

If
$$\varepsilon \sim N(0, \sigma^2 I)$$
 then $\frac{1}{\sigma^2} \hat{\varepsilon}^\mathsf{T} \hat{\varepsilon} = \varepsilon^\mathsf{T} (I - H)^\mathsf{T} (I - H) \varepsilon \sim \chi^2_{n-k}$.

- ▶ The value (n k) is called degrees of freedom of the model.
- ightharpoonup Given that the expected value of a χ^2 is its degrees of freedom,

$$\hat{\sigma}^2 = \frac{1}{n-k} \hat{\varepsilon}^\mathsf{T} \hat{\varepsilon} = \frac{1}{n-k} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

is an unbiased estimator of σ^2 , the residual variance.

▶ A first estimator of σ^2 in nonparametric estimation:

$$\hat{\sigma}^2 = \frac{1}{n - \nu} \sum_{i=1}^{n} (y_i - \hat{m}(x_i))^2.$$

▶ Observe that (n - k) is the trace of $(I - H)^T(I - H)$, the matrix that defines the above quadratic form on ε :

$$\mathsf{Trace}((I-H)^\mathsf{T}(I-H)) = \mathsf{Trace}((I-H)(I-H)) =$$
$$\mathsf{Trace}(I-H) = \mathsf{Trace}(I) - \mathsf{Trace}(H) = n-k.$$

- ▶ It has been used that H is a symmetric and idempotent matrix: $H = H^{\mathsf{T}}$ and $H^2 = H$. This is also true for matrix (I - H).
- \triangleright In linear nonparametric estimators, the smoothing matrix S plays a similar role to hat matrix H in multiple regression.
- ▶ The effective degrees of freedom of a linear smoother is defined as

$$\eta = \operatorname{Trace}((I - S)^{\mathsf{T}}(I - S)) = \operatorname{Trace}(I - S^{\mathsf{T}} - S + S^{\mathsf{T}}S) =$$

$$n - 2 \operatorname{Trace}(S) + \operatorname{Trace}(S^{\mathsf{T}}S).$$

▶ Observe that *S* is not necessarily symmetric neither idempotent. Then $Trace(S) \neq Trace(S^TS)$ in general.

- We have defined $\nu = \text{Trace}(S)$, the effective number of parameters.
- ▶ Similarly, we define $\tilde{\nu} = \text{Trace}(S^T S)$.
- ▶ Then the effective degrees of freedom is

$$\eta = n - 2\nu + \tilde{\nu}.$$

An alternative estimator of σ^2 , the residual variance in the nonparametric regression model, is defined as

$$\hat{\sigma}^2 = \frac{1}{n - 2\nu + \tilde{\nu}} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

- ▶ It can be proved that $\hat{\sigma}^2$ is unbiased when the regression function m(x) is linear.
- ▶ Moreover, $\hat{\sigma}^2$ is a consistent estimator of σ^2 under certain regularity conditions on m(x).

Practice:

Linear smoothers

Alternative residual variance estimators

Fan, J. and I. Gijbels (1996).

Local polynomial modelling and its applications.

London: Chapman & Hall.

Hastie, T. J. and R. J. Tibshirani (1990).

Generalized additive models.

Monographs on Statistics and Applied Probability. London: Chapman and Hall Ltd.

Wand, M. P. and M. C. Jones (1995).

Kernel smoothing.

London: Chapman and Hall.

Wasserman, L. (2006).

All of Nonparametric Statistics.

New York: Springer.