Sinusoidal Steady-State Response

- Deals with response of circuits under sinusoidal (sine or cosine functions) excitations (voltage or current)
- The signals are *periodic* function of time
- There is no *transient* disturbance (all *perturbations* have settled down)
- To discuss about: *phasors*, *impedance*, *admittance*, and *response* of RC and RL circuits to *sinusoidal excitation*

• Sinusoidal Signals and Phasors:

* Sinusoidal signals can be expressed as:

$$v(t) = V_{M} \sin(\omega t + \phi)$$

V_M: *Peak Value* (also known as *amplitude*)

ω: Angular Frequency (radians/second)

= $2\pi f$, f: *Cyclic Frequency* [per second or Hertz (Hz)]

 ϕ : *Phase Angle* (radians) (*Note*: π radians = 180°)

* Another important term: *Time Period* (T) (second)

$$T = 1/f = 2\pi/\omega$$

* *Note*: During one time period, the signal sweeps an angle of 2π

Concept of Lead/Lag:

 v_2 leads v_1 , or conversely, v_1 lags v_2 θ : Phase difference between v_2 and v_2

- * Going along the time scale, the first signal encountered having a *positive* going excursion is *leading* the rest of the signals
- * Ex: In the figure, v_2 is leading v_1 , or conversely, v_1 is lagging v_2
- * When $\theta = 0^{\circ}$, signals v_1 and v_2 overlap, and are known as *in-phase* signals
- * When $\theta \neq 0^{\circ}$, these signals are known as *out-of-phase* signals
- * When $\theta = 180^{\circ}$, they are *exactly* out-of-phase

- * *Note*: The algebraic sum of two exactly equal in-phase signals is *double* of either of them, whereas the algebraic sum of two exactly equal and exactly out-of-phase signals is *zero*
- * Note: Leading by θ also implies lagging by $(360^{\circ} \theta)$ \Rightarrow Depends on the Frame of Reference
- * Useful trigonometric identities:

$$\pm \sin(\omega t) = \cos\left(\omega t \mp \frac{\pi}{2}\right) \text{ and}$$

$$\pm \cos(\omega t) = \sin\left(\omega t \pm \frac{\pi}{2}\right)$$

Concept of Phasors:

- * While representing sinusoidal signals either in angular sweep domain or time domain (i.e., ωt or t respectively), confusion may arise regarding whether a given waveform is leading or lagging some other waveforms
- * This confusion can largely be eliminated by representing sinusoidal signals as *phasors*
- * Note: Sinusoidal signals can also be expressed as complex numbers by using Euler's identity:

$$\exp(j\theta) = \cos\theta + j\sin\theta$$

- * *Differential equations* that need to be solved to obtain the response of a circuit become pure algebraic equations \Rightarrow the advantage is obvious
- * Euler's identity draws out a unit circle in the complex plane, since

$$\left| \exp(j\theta) \right| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

 $\Rightarrow A \exp(j\theta) = A \cos \theta + jA \sin \theta = A \angle \theta$

 $A\angle\theta$: known as a *phasor*, expressed in *polar form*

* *Note*: Any complex number (a + jb) can be expressed as $A \angle \theta$, with $A = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}(b/a)$

Rotating Unit Phasor

* A sinusoidal function can be expressed in *polar* form, and thus can be represented as a *phasor* as:

$$A\cos(\omega t + \theta) = \mathbf{Re}\left[A\exp\{j(\omega t + \theta)\}\right]$$

* Thus, the *time domain* representation of a sinusoidal function of the form:

$$v(t) = V_{M} \cos(\omega t + \theta) = \mathbf{Re} \left[V_{M} \exp\{j(\omega t + \theta)\} \right]$$
$$= \mathbf{Re} \left[V_{M} \exp(j\theta) \exp(j\omega t) \right]$$

can be expressed in *polar form* (or in *phasor representation*) as:

$$\overline{V}(j\omega) = V_M \exp(j\theta) = V_M \angle \theta$$

- * Note the *bar sign* above V, implying that it is a *phasor*
- * This representation basically implies that the phasor \overline{V} is rotating *anti-clockwise* in the complex plane with an angular frequency ω , subtending an angle of θ (*referenced to a pure cosine signal*) at any given time t
- * *Note*: After conversion to the phasor notation, the information regarding the angular frequency ω gets *suppressed*

- * Example: $2\cos(50t) \Leftrightarrow 2\angle 0^{\circ}$ $5\cos(100t + 30^{\circ}) \Leftrightarrow 5\angle 30^{\circ}$
- * *Note*: The two examples are for two different frequencies, however, the phasor representations *hide* this information
- * That's why the LHS has the term $(j\omega)$ associated with \overline{V}
- * With phasor representations, it becomes easy to visualize the *leading* or *lagging* phenomenon of various waveforms

Example: Consider two waveforms:

$$v_1 = V_{M1}cos(\omega t + 105^\circ)$$
 and $v_2 = V_{M2}cos(\omega t - 45^\circ)$ with $V_{M1} > V_{M2}$

- * *Caution*: For two phasors to be plotted on the same graph, they must have the *same* angular frequency ω
- * From the plot, it can be observed that v_1 *leads* v_2 by 150°, or, equivalently, v_2 *lags* v_1 by 150°
- * It can also be conversely stated as v_2 *leads* v_1 by 210°, or, equivalently, v_1 *lags* v_2 by 210°
- * Both are technically correct, however, in general, the angle of lead or lag is generally expressed as a number that is *less* than 180°

- * Therefore, the *first* representation is the *correct* one
- * *Caution*: To convert a *sine* function to a phasor, must transform it to a *cosine* function first, using the *trigonometrical identities* given earlier
- * Phasors can be treated as *algebraic variables*
 - ⇒ various *algebraic functions* can be performed on them

Phasor Algebra:

- * Let $v_1(t) = 5\cos(\omega t + \pi/6)$ and $v_2(t) = 10\cos(\omega t \pi/4)$
- * Both signals have *same frequency*, and both are in *cosine representation*
 - ⇒ *phasor algebra* can be performed on them

*
$$\overline{V}_1(j\omega) = 5\angle 30^\circ = 5\cos 30^\circ + j5\sin 30^\circ = 4.33 + j2.5$$

 $\overline{V}_2(j\omega) = 10\angle -45^\circ = 10\cos(-45^\circ) + j10\sin(-45^\circ)$
= 7.07 - j7.07

$$v_{1}(t) + v_{2}(t) = \overline{V}_{1}(j\omega) + \overline{V}_{2}(j\omega)$$

$$= 11.4 - j4.57 = 12.28 \angle -21.84^{\circ}$$

$$= 12.28 \cos(\omega t - 21.84^{\circ})$$

* Similarly,

$$v_{1}(t) - v_{2}(t) = \overline{V}_{1}(j\omega) - \overline{V}_{2}(j\omega)$$

$$= -2.74 + j9.57 = 9.95 \angle 105.98^{\circ}$$

$$= 9.95 \cos(\omega t + 105.98^{\circ})$$

* Be very careful while finding the angle (θ)

Observations:

- * If both cos and sin terms are *positive*
 - \Rightarrow first quadrant and θ will be between θ° and θ°
- * If sin term is *positive* but cos term is *negative*
 - \Rightarrow second quadrant and θ will be between 90° and 180°
- * If both terms are *negative*
 - \Rightarrow third quadrant and θ will be between -90° and -180°
- * If cos term is *positive* but sin term is *negative*
 - \Rightarrow fourth quadrant and θ will be between θ° and -90°

Note:

- * Phasor algebra can be done if and only if the sinusoids are of the *same frequency*
- * If the sinusoids have different frequencies, then phasor algebra will *not* be applicable
- * Under such a condition, the response of the circuit for each individual frequencies should be evaluated, and the net response will be given by a *superposition* of all these results
- * We will be showing this example later

Example:

Let
$$v_1(t) = 10\cos(\omega t - 60^\circ)$$
 and $v_2(t) = 5\sin(\omega t + 135^\circ)$

Both signals have same frequency, however, while v_1 is in cos form, v_2 is in sin form

In order to apply the phasor algebra, we need to convert v_2 to cos form as well, and then proceed

$$v_{1}(t) + v_{2}(t) = 10\cos(\omega t - 60^{\circ}) + 5\sin(\omega t + 135^{\circ})$$

$$= 10\cos(\omega t - 60^{\circ}) + 5\cos(\omega t + 45^{\circ})$$

$$= 10\angle -60^{\circ} + 5\angle 45^{\circ} = 8.54 - j5.12$$

$$= 9.96\angle -30.94^{\circ} = 9.96\cos(\omega t - 30.94^{\circ})$$
Aloke Dutta/EE/IIT Kanpur

• Impedance:

- The value of a pure resistance does not change with frequency (neglecting *skin effect*)
- However, for inductors and capacitors under sinusoidal excitation, the *resistance* offered by them to the current flow is *frequency dependent*
- These are *complex resistances*, and are known as *impedance* (impediment to current flow)
- Impedances are of two types: capacitive and inductive (note that both are imaginary)
- Both have unit of *ohm* (Ω)
- Resistors have *real* impedance, which is equal to their resistance

Resistors, Resistance, and Resistive Impedance:

Let
$$v_s(t) = V_M cos(\omega t) = v_R(t)$$

Phasor: $\overline{V}_{R}(j\omega) = V_{M} \angle 0^{\circ}$

$$i(t) = v_R(t)/R = (V_M/R)\cos(\omega t)$$

Phasor: $\overline{I}(j\omega) = (V_M/R) \angle 0^{\circ}$

Inference: The current through a resistor and the voltage across it are *in-phase*

Voltage dropped across R $\left[v_{R}(t)\right]$ in phasor form:

$$\overline{V}_{R}(j\omega) = \overline{I}(j\omega)R$$

Resistive Impedance:

$$Z_{R} = \overline{V}_{R} (j\omega) / \overline{I} (j\omega) = R$$

Note: Both the phasors I and V_R are *in-phase*Also, both of them lie on the *real* axis on the complex plane
The ratio of \overline{V}_R and \overline{I} is the *resistive impedance*,
which is *real* and is equal to the value of the resistance (R)

Inductors, Inductive Impedance, and Inductive Reactance:

Let
$$v_s(t) = V_M \cos(\omega t)$$

$$v_L(t) = v_s(t) = L \frac{di(t)}{dt}$$

$$\Rightarrow i(t) = \frac{1}{L} \int v_L(t) dt = \frac{V_M}{\omega L} \sin(\omega t)$$

$$= \frac{V_M}{\omega L} \cos(\omega t - \frac{\pi}{2})$$

In *phasor* notation:

$$\overline{V}_{L}(j\omega) = V_{M} \angle 0^{\circ} \text{ and } \overline{I}(j\omega) = \left[V_{M}/(\omega L)\right] \angle -90^{\circ}$$

Thus, the inductor current *lags* the inductor voltage by 90°

Note: The phasors \bar{I} and \bar{V}_L are *out-of-phase*, with \bar{I} *lagging* \bar{V}_L by 90°

Inductive Impedance =
$$Z_L(j\omega) = \frac{\overline{V}_L(j\omega)}{\overline{I}(j\omega)} = \omega L \angle 90^\circ = j\omega L$$

where j implies a rotation of $+90^{\circ}$

Important Observations:

- * Inductive impedance Z_L is a *complex* number
- * It is a purely imaginary number, with no real part
- * It is a *direct* function of the angular frequency ω
- * For very low frequency, as $\omega \to 0$, $Z_L \to 0$
 - \Rightarrow Thus, for dc, inductors behave as *short-circuits*

- * For very high frequency, as $\omega \to \infty$, $Z_L \to \infty$
 - ⇒ Implies that inductors behave like *open-circuits* for *very high frequencies*
- * Z_L is also expressed as: $Z_L = jX_L$
 - $X_1 = \omega L \Rightarrow \text{ known as } inductive reactance$
- * *Note*: While Z_L is imaginary, X_L is real

Capacitors, Capacitive Impedance, and Capacitive Reactance:

Let
$$v_s(t) = v_C(t) = V_M \cos(\omega t)$$

$$i(t) = C \frac{dv_C(t)}{dt} = -V_M \omega C \sin(\omega t)$$

$$= V_M \omega C \cos(\omega t + \frac{\pi}{2})$$

$$v_s(t) = \frac{i(t)}{c} + \frac{i$$

In *phasor* notation:

$$\overline{V}_{C}(j\omega) = V_{M} \angle 0^{\circ} \text{ and } \overline{I}(j\omega) = V_{M} \omega C \angle 90^{\circ}$$

Thus, the capacitor current *leads* the capacitor voltage by 90°

Note: The phasors \bar{I} and \bar{V}_C are *out-of-phase*, with \bar{I} *leading* \bar{V}_C by 90°

Capacitive Impedance =
$$Z_{C}(j\omega) = \frac{\overline{V}_{C}(j\omega)}{\overline{I}(j\omega)} = \frac{1}{\omega C} \angle -90^{\circ}$$

= $-\frac{j}{\omega C} = \frac{1}{j\omega C}$

Important Observations:

- * Capacitive impedance Z_C also is a *complex* number
- * It is also a purely *imaginary* number, with no real part
- * It is an *inverse* function of the angular frequency ω
- * For very low frequency, as $\omega \to 0$, $Z_C \to \infty$
 - \Rightarrow Thus, for dc, capacitors behave as *open-circuits*

- * For very high frequency, as $\omega \to \infty$, $Z_C \to 0$
 - ⇒ Implies that capacitors behave like *short-circuits* for *very high frequencies*
- * Z_C is also expressed as: $Z_C = -jX_C$ $X_C = 1/(\omega C) \Rightarrow$ known as *capacitive reactance*
- * *Note*: While Z_C is imaginary, X_C is real

Complex Impedance Plane:

- * Resistive impedance Z_R is along the *positive* real axis
- * Inductive and capacitive impedances Z_L and Z_C are along the positive and negative imaginary axes, respectively
- * For a pure resistance, the impedance is *real*

- * For circuits having inductors and capacitors along with resistors, the impedance would be *complex*, having both real and imaginary parts
- * If $Z_L > |Z_C|$, then the net impedance of the circuit would be *inductive*
- * On the other hand, if $|Z_C| > Z_L$, then the net impedance of the circuit would be *capacitive*
- * If $Z_L = |Z_C|$, then the net impedance of the circuit would be purely *resistive*

* The *general form* of the impedance Z:

$$Z = Z_{R} + (Z_{L} - |Z_{C}|) = R + (j\omega L - \frac{j}{\omega C})$$
$$= R + j(X_{L} - X_{C})$$

- * Note: Z is not a phasor, but just a complex number
- * Thus, it can be represented in the complex impedance plane by both *magnitude* and *direction*

* In general, impedances are expressed in the *polar* form: $|Z| \angle Z$

with
$$|Z| = \sqrt{R^2 + (X_L - X_C)^2}$$

and
$$\angle Z = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

- * For *inductive* circuits, $X_L > X_C$ and $\angle Z$ positive
- * For *capacitive* circuits, $X_C > X_L$ and $\angle Z$ negative
- * For $X_L = X_C$, circuit becomes purely *resistive* and $\angle Z = 0^{\circ}$

Series - Parallel Combination of Impedances:

Example: To find Z ($\omega = 20$ krad/sec)

$$5\mu$$
F: $Z_C = -j/(ωC)$
= $-j10 Ω$

1 mH: $Z_L = j\omega L$ = $j20 \Omega$

 10μ F: - j5 Ω

$$Z_{1} = 10 \| (-j5) = \frac{10 \times (-j5)}{10 - j5} = \frac{50 \angle -90^{\circ}}{11.18 \angle -26.57^{\circ}}$$

$$= 4.47 \angle -63.43^{\circ} = 2 - j4$$

$$Z_{2} = -j10 + j20 + 2 - j4 = 2 + j6 = 6.32 \angle 71.57^{\circ}$$

$$Z = 5 \| (6.32 \angle 71.57^{\circ}) = \frac{5 \times (6.32 \angle 71.57^{\circ})}{5 + 2 + j6} = \frac{31.6 \angle 71.57^{\circ}}{7 + j6}$$

$$= \frac{31.6 \angle 71.57^{\circ}}{9.22 \angle 40.6^{\circ}} = 3.43 \angle 30.97^{\circ} = 2.94 + j1.77 \Omega$$

Since the imaginary component of Z is *positive*, hence, the net impedance of the circuit is *inductive* in nature

Admittance (Y):

* Y is the *dual* (or *inverse*) of Z:

$$Y = \frac{1}{Z} = \frac{\overline{I}}{\overline{V}} = G + jB$$

- * Has unit of inverse ohm, known as *mho* (℧)
- * G: Conductance (inverse of resistance)
- * B: Susceptance (inverse of reactance)
- * Inductor: Inductive Admittance:

$$jB_L = 1/Z_L = 1/(j\omega L) = -j/(\omega L)$$

 \Rightarrow Inductive Susceptance $B_L = -1/(\omega L)$

- * *Note*: While the inductive reactance (X_L) is *positive*, the inductive susceptance (B_L) is *negative*
- * Capacitor: Capacitive Admittance:

$$jB_C = 1/Z_C = j\omega C$$

- \Rightarrow Capacitive Susceptance $B_C = \omega C$
- * Again note that while the capacitive impedance (Z_C) is *negative*, the capacitive susceptance (B_C) is *positive*

* The *general form* of admittance:

$$Y = G + j(B_C - |B_L|) = G + j(\omega C - \frac{1}{\omega L})$$

- * *Caution*: If some impedance is expressed as Z = (R + jX), and its equivalent admittance representation is Y = (G + jB), then $G \neq 1/R$, and $B \neq 1/X$
- * Example: Let Z = (8-j6)Then, Y = 1/(8-j6) = (8+j6)/10 = 0.8+j0.6

Advantage of Admittance Representation:

- * For impedances in *parallel*, their respective admittances add in *series*
- * This makes the analysis of parallel circuits using the admittance technique quite easy and straightforward

Example: Find Y ($\omega = 1 \text{ krad/sec}$)

$$G = 1/R = 1/10 = 0.1 \, \text{\ref{G}}$$

$$\omega L = 5 \Omega, \omega C = 0.05 \mho$$

$$Y = G + j\left(\omega C - \frac{1}{\omega L}\right)$$

$$Y = \frac{1}{\omega L} + \frac{1}{$$

$$=0.1+j\left(0.05-\frac{1}{5}\right)=0.1-j0.15$$
 \mho

$$Z = \frac{1}{Y} = \frac{1}{0.1 - j0.15} = \frac{0.1 + j0.15}{0.18} = 0.56 + j0.83 \Omega$$

RL Circuit:

$$\overline{V}_{S} = V_{M} \angle 0^{\circ}, \ Z_{L} = jX_{L} = j\omega L$$

$$Z = R + jX_{L} = |Z| \angle Z$$

$$V_{M} cos(\omega t)$$

$$V_{M} cos(\omega t)$$

$$V_{s}(t) = V_{M}\cos(\omega t) - U_{s}(t) + V_{L}(t)$$

$$V_{s}(t) = V_{L}(t)$$

$$V_{s}(t) = V_{L}(t)$$

$$|Z| = \sqrt{R^2 + X_L^2}, \ \angle Z = \tan^{-1}(X_L / R)$$

$$\overline{I} = \frac{\overline{V}_{S}}{Z} = \frac{V_{M} \angle 0^{\circ}}{|Z| \angle Z} = I_{M} \angle - \tan^{-1}(X_{L}/R) \text{ (phasor)}$$

$$I_{M} = V_{M} / |Z|$$

$$i(t) = I_{M} \cos \left[\omega t - \tan^{-1} \left(\frac{\omega L}{R} \right) \right]$$
 (sinusoidal)

* *Caution*: Sinusoidal and phasor representations should *never* be mixed up

[Ex.: $10\sin(50t)/3\angle 30^{\circ} \rightarrow Invalid$]

Observations:

- * For an inductive circuit, the current *lags* the excitation voltage
- * If L = 0, then the circuit becomes purely resistive, the phase angle of the current becomes zero, which makes \overline{V}_S and \overline{I} in-phase

- * If R = 0, then the circuit turns purely *inductive*, and the phase angle of the current becomes exactly equal to -90° , which implies that the current *lags* \overline{V}_{S} exactly by 90°
- * For other values of R, the phase angle ranges between 0° and -90°

Another Interesting Observation:

* The voltage appearing across the inductor:

$$\overline{V}_{L} = \overline{I}Z_{L} = \left[I_{M} \angle - \tan^{-1}\left(\frac{\omega L}{R}\right)\right](\omega L) \angle 90^{\circ}$$

$$= \omega LI_{M} \angle \left[90^{\circ} - \tan^{-1}\left(\frac{\omega L}{R}\right)\right]$$

* Thus, the inductor voltage always *leads* the inductor current by 90°

Example: Find i_L , and express it in both **phasor** and **sinuosidal** representations:

First, apply Thevenin's technique by opening the inductor from the circuit and finding the open-circuit (or Thevenin)

voltage V_T and the Thevenin resistance R_T appearing between these two terminals

By inspection:

$$\begin{split} V_T &= \left(10/15\right) \times 3\cos\left(5 \times 10^3 t\right) \\ &= 2\cos\left(5 \times 10^3 t\right) \\ R_T &= 5 \, \| \, 10 \, = \, 3.33 \, \Omega \\ X_L &= \omega L \, = \, 5 \times 10^3 \times 10^{-3} \, = \, 5 \, \Omega \\ |Z| &= \sqrt{R^2 + X_L^2} \, = \sqrt{3.33^2 + 5^2} \, = 6 \, \Omega \\ \angle Z &= \tan^{-1}\left(X_L \, / \, R\right) \, = \, \tan^{-1}\left(5/3.33\right) \, = \, 56.34^\circ \\ &\Rightarrow \, \overline{I}_L \, = \left(2/6\right) \angle - \, 56.34^\circ \, = \, 0.33 \angle - \, 56.34^\circ \, A \, (\textit{phasor}) \\ i_L \left(t\right) \, = \, 0.33 \cos\left(5 \times 10^3 t \, - \, 56.34^\circ\right) \, A \, (\textit{sinusoidal}) \end{split}$$

RC Circuit:

$$\overline{V}_{S} = V_{M} \angle 0^{\circ}, \ Z_{C} = -jX_{C} = -j/(\omega C)$$

$$Z = R - jX_{C} = |Z| \angle Z$$

$$V_{M}\cos(\omega t)$$

$$V_{S}(t) = V_{C}(t)$$

$$V_{M}\cos(\omega t)$$

$$V_{C}(t) = V_{C}(t)$$

$$V_{C}(t) = V_{C}(t)$$

$$V_{C}(t) = V_{C}(t)$$

$$V_{C}(t) = V_{C}(t)$$

$$\overline{I} = \frac{V_S}{Z} = \frac{V_M \angle 0^{\circ}}{|Z| \angle Z} = I_M \angle \tan^{-1}(X_C/R) \ (\textbf{phasor})$$

$$I_{M} = V_{M} / |Z|$$

$$i(t) = I_{M} \cos \left[\omega t + \tan^{-1} \left(\frac{1}{\omega RC} \right) \right]$$
 (sinusoidal)

Observations:

- * For a *capacitive* circuit, the current *leads* the excitation voltage
- * If $C \to \infty$, consequently $Z_C \to 0$, then the circuit becomes purely *resistive*, the phase angle of the current becomes *zero*, which makes \overline{V}_S and \overline{I} *in-phase*
- * If R = 0, then the circuit turns purely *capacitive*, and the phase angle of the current becomes *exactly* equal to 90°, which implies that the current *leads* \overline{V}_8 exactly by 90°

- * For other values of R, the phase angle ranges between 0° and 90°
- * The voltage appearing across the capacitor:

$$\begin{aligned} \overline{V}_{C} &= \overline{I}Z_{C} = \left[I_{M} \angle \tan^{-1} \left(\frac{1}{\omega RC}\right)\right] \left(\frac{1}{\omega C}\right) \angle -90^{\circ} \\ &= \left(\frac{I_{M}}{\omega C}\right) \angle \left[\tan^{-1} \left(\frac{1}{\omega RC}\right) -90^{\circ}\right] \end{aligned}$$

* Thus, the capacitor voltage always *lags* the capacitor current by 90°

Phasor Analysis of AC Circuits:

All the circuit analysis techniques discussed earlier, viz. the *node voltage method*, the *mesh current method*, the *superposition principle*, and the *Thevenin and Norton techniques*, are applicable for ac circuits as well

Example: Using phasor analysis, find I_1 , I_2 , and I_3 , and plot them.

and plot them.
$$Z_{2} = \frac{10 \times (-j10)}{10 - j10} = \frac{100 \angle -90^{\circ}}{14.14 \angle -45^{\circ}}$$

$$= 7.07 \angle -45^{\circ} = 5 - j5 \Omega$$

$$Z_{1} = j10 + Z_{2} = 5 + j5$$

$$= 7.07 \angle 45^{\circ} \Omega$$

$$\overline{I}_{1} = \frac{10 \angle 0^{\circ}}{7.07 \angle 45^{\circ}} = 1.41 \angle -45^{\circ} \Lambda$$

Note: \overline{I}_1 *lags* the excitation voltage \Rightarrow net impedance is *inductive* \Rightarrow corroborated by the expression of Z_1

$$\overline{I}_2 = \frac{-j10}{10-j10} \times \overline{I}_1 = \frac{10\angle -90^{\circ}}{14.14\angle -45^{\circ}} \times 1.41\angle -45^{\circ} = 1\angle -90^{\circ} \text{ A}$$

$$\overline{I}_{3} = \frac{10}{10 - j10} \times \overline{I}_{1} = \frac{10 \angle 0^{\circ}}{14.14 \angle -45^{\circ}} \times 1.41 \angle -45^{\circ} = 1 \angle 0^{\circ} \text{ A}$$

Note: $\overline{I_1}$ is somewhat like a vector sum of $\overline{I_2}$ and $\overline{I_3}$

Example: Using node voltage method, find V_1 and V_2 .

KCL at node A:

$$10 \angle 0^{\circ} = \frac{\overline{V}_{1}}{j5} + \frac{\overline{V}_{1}}{10} + \frac{\overline{V}_{1} - \overline{V}_{2}}{-j10}$$

$$\Rightarrow (0.1 - j0.1)\overline{V}_{1} - j0.1\overline{V}_{2} = 10 \qquad (1)$$

KCL at node B:

$$\frac{\overline{V}_{1} - \overline{V}_{2}}{-j10} = \frac{\overline{V}_{2}}{5} + \frac{\overline{V}_{2}}{j5} + 5 \angle -90^{\circ}$$

$$\Rightarrow j0.1\overline{V}_{1} - (0.2 - j0.1)\overline{V}_{2} = -j5$$

Simultaneous solution of (1) and (2) gives:

$$\overline{V}_1 = 50.3 \angle 22.58^\circ = (46.44 + j19.31) V$$

 $\overline{V}_2 = 43.9 \angle 127.87^\circ = (-26.94 + j34.65) V$

Example: Using mesh current method, find the phasor representations of i_1 and i_2 ($\omega = 5$ krad/sec).

KVL in loop 1:

$$5 \angle 0 = 5\overline{I}_1 - j4(\overline{I}_1 - \overline{I}_2) = (5 - j4)\overline{I}_1 + j4\overline{I}_2$$
 (1)

KVL in loop 2:

$$0 = -j4\left(\overline{I}_2 - \overline{I}_1\right) + j5\overline{I}_2 + 5\overline{I}_1 = \left(5 + j4\right)\overline{I}_1 + j\overline{I}_2 \qquad (2)$$

Simultaneous solution of (1) and (2) gives:

$$\bar{I}_1 = 0.2 \angle -143.13^{\circ} \text{ A}$$
 and $\bar{I}_2 = 1.28 \angle -104.47^{\circ} \text{ A}$

Example: Using superposition principle, find V_1 and \overline{V}_2 .

$$Z_{1} = \frac{10 \times (j5)}{10 + j5} = \frac{50 \angle 90^{\circ}}{11.18 \angle 26.57^{\circ}} = 4.47 \angle 63.43^{\circ} \Omega$$
$$= 2 + j4 \Omega$$
$$Z_{2} = -j10 \Omega$$

$$Z_3 = \frac{5 \times (j5)}{5 + j5} = \frac{25 \angle 90^{\circ}}{7.07 \angle 45^{\circ}} = 3.54 \angle 45^{\circ} \ \Omega = 2.5 + j2.5 \ \Omega$$

First, consider the $10\angle0^{\circ}$ source and null (open) the $5\angle-90^{\circ}$ source:

$$\overline{V}_{1} = \frac{Z_{2} + Z_{3}}{Z_{1} + Z_{2} + Z_{3}} \times 10 \angle 0^{\circ} \times Z_{1} = 62.03 \angle 29.73^{\circ}$$
$$= 53.87 + j30.76 \text{ V}$$

$$\overline{V}_2 = \frac{Z_1}{Z_1 + Z_2 + Z_3} \times 10 \angle 0^{\circ} \times Z_3 = 27.76 \angle 146.3^{\circ}$$
$$= -23.1 + i15.4 \text{ V}$$

Next, consider the $5\angle -90^{\circ}$ source and null (open) the $10\angle 0^{\circ}$ source:

$$\overline{V}_{1} = \frac{Z_{3}}{Z_{1} + Z_{2} + Z_{3}} \times (-5\angle -90^{\circ}) \times Z_{1} = -13.88\angle 56.3^{\circ}$$

$$= -7.7 - j11.55 \text{ V}$$

$$\overline{V}_{2} = \frac{Z_{1} + Z_{2}}{Z_{1} + Z_{2} + Z_{3}} \times (-5\angle -90^{\circ}) \times Z_{3}$$

$$= -19.63\angle -78.7^{\circ} = -3.85 + j19.25 \text{ V}$$

Hence, by superposition:

$$\overline{V}_1 = 53.87 + j30.76 - 7.7 - j11.55 = 46.17 + j19.21$$

= 50\(\angle 22.6\circ\) V

$$\overline{V}_2 = -23.1 + j15.4 - 3.85 + j19.25 = -26.95 + j34.65$$

= 43.9\(\angle 127.88\circ\) V

Note the exact match of the results with the previous example

Expected, since the outcome is independent of the method used

Example: Construct Thevenin and Norton Equivalents, as seen from terminals A and B:

5∠60° (

j 10Ω

Open the independent current source 5∠60° A:

Thevenin Impedance:

$$Z_{\rm T} = (j10) || (5 - j10)$$

= 22.36\(\angle 26.57^\circ = 20 + j10 \Omega)

$$V_T = (5\angle 60^\circ) \times Z_T = (5\angle 60^\circ) \times (22.36\angle 26.57^\circ)$$

= 111.8\angle 86.87\circ V

Note: Norton Current
$$I_N = \frac{V_T}{Z_T} = 5 \angle 60^\circ$$

Example: Sources having different frequencies.

Determine the expression for the current i.

Caution: Phasor analysis can be done for individual frequencies, but the final result can **never** be expressed in phasor form

Perform phasor analysis for each frequency, and then apply *superposition* to get the net result, which can only be expressed in *time domain*

First consider the $5\cos(8t)$ source, with $\omega = 8 \text{ rad/sec}$, and short-circuit the other independent voltage source

$$Z_{1} = \frac{5 \times (j8)}{5 + j8} = \frac{40 \angle 90^{\circ}}{9.43 \angle 58^{\circ}}$$

$$= 4.24 \angle 32^{\circ} = 3.6 + j2.25 \Omega$$

$$Z_{3} = Z_{1} - j0.625 = 3.6 + j1.625$$

$$= 3.95 \angle 24.3^{\circ} \Omega$$

$$\Rightarrow \overline{I}_3 = (5\angle 0^\circ)/(3.95\angle 24.3^\circ) = 1.27\angle -24.3^\circ A$$

$$\Rightarrow \overline{I}_{1} = \frac{5}{5 + i8} \times \overline{I}_{3} = \frac{5}{9.43 \angle 58^{\circ}} \times 1.27 \angle -24.3^{\circ} = 0.67 \angle -82.3^{\circ} \text{ A}$$

In *time domain* representation, $i_1 = 0.67 \cos(8t - 82.3^{\circ})$ A

Next, consider the $8\cos(5t)$ source, with $\omega = 5$ rad/sec, and short-circuit the other independent voltage source

$$Z_{2} = \frac{-j \times (j5)}{-j + j5} = \frac{5}{4 \angle 90^{\circ}}$$

$$= 1.25 \angle -90^{\circ} = -j1.25 \Omega$$

$$\Rightarrow Z_{4} = 5 + Z_{2} = 5 - j1.25$$

$$= 5.15 \angle -14.04^{\circ} \Omega$$

$$\Rightarrow \overline{I}_4 = (8\angle 0^\circ)/(5.15\angle -14.04^\circ) = 1.55\angle 14.04^\circ A$$

$$\Rightarrow \overline{I}_2 = \frac{-j}{-j+j5} \times \overline{I}_4 = \frac{1\angle -90^{\circ}}{4\angle 90^{\circ}} \times 1.55\angle 14.04^{\circ}$$
$$= 0.39\angle -165.96^{\circ} \text{ A}$$

In *time domain*, $i_2 = 0.39\cos(5t-165.96^\circ)$ A

Hence, the net current i flowing through the 1 H inductance (by *superposition*):

$$i = i_1 + i_2 = 0.67\cos(8t - 82.3^\circ) + 0.39\cos(5t - 165.96^\circ)$$
 A