Homework 7

Due date: 8th December

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

- 1. For the circuit below, please find:
 - (a) The complex power released by the source.
 - (b) The average power delivered to the 18Ω resistor.

- 2. For the following circuit, please find:
 - (1) The complex power released by the independent voltage source.
 - (2) The average power absorbed by the 20Ω resistor.
 - (3) The current I_{θ}

3. Generate Bode **magnitude and phase** plots for the following voltage transfer functions in (1) and (2).

(1) H(
$$\omega$$
) = $\frac{4*10^4(60+j6\omega)}{(j2\omega+4)(j2\omega+100)(j4\omega+400)}$

(2) H(
$$\omega$$
) = $\frac{8*10^{-2}(10+j10\omega)}{j\omega(16-\omega^2+j4\omega)}$

(3) Determine the voltage transfer function $H(\omega)$ corresponding to the Bode magnitude plot shown below. Note that the phase of $H(\omega)$ is 0° at $\omega=0$.

4. For the circuit below, please find the transfer function $H(\omega)=V_2/V_1$, Also sketch the magnitude and phase frequency relation of bode plot.

