Matemáticas discretas II: Teoría de Grafos III

Abril 2022

1 Isomorfismos

- 2 Algoritmos sobre grafos
 - Coloreo de grafos
 - Algoritmo de Dijkstra

Contenido

1 Isomorfismos

- 2 Algoritmos sobre grafos
 - Coloreo de grafos
 - Algoritmo de Dijkstra

Isomorfismos de Grafos

Los grafos simples $G_1=(V_1,E_1)$ y $G_2=(V_2,E_2)$ son <code>isomorfos</code> si hay una función biyectiva f de V_1 en V_2 con la propiedad de que, para cada par de vértices $u,v\in V_1,\,u$ y v son adyacentes en G_1 si, y sólo si, f(u) y f(v) son adyacentes en G_2 . Se dice que esta función f es un isomorfismo.

Ejemplo. Los grafos G=(V,E) y H=(W,F) en la siguiente figura son isomorfos.

La función f con $f(v_1) = w_1, f(v_2) = w_4, f(v_3) = w_3, f(v_4) = w_2$

Isomorfismos

Definición 2.

Sean $G_1=(V_1,E_1)$ y $G_2=(V_2,E_2)$ dos grafos. Una función $f:V_1\longrightarrow V_2$ es un isomorfismo de grafos si:

- 1 f es inyectiva y sobreyectiva.
- $\forall a, b \in V_1, \{a, b\} \in E_1 \text{ si y s\'olo si } \{f(a), f(b)\} \in E_2.$

Cuando existe tal función f se dice que G_1 y G_2 son isomorfos.

Ejemplo. Sean los grafos G y H son isomorfos?

No son isomorfos por varias razones:

- \blacksquare *H* tiene el vértice *e* de grado 1, mientras que *G* no tiene.
- Si cualquiera de estas cantidades toma valores diferentes en dos grafos simples, dichos grafos simples no pueden ser isomorfos.
- Ahora el que estas cantidades sean iguales no garantiza que los grafos G y H sean isomorfos.

Ejemplo. Determinar si H y G son isomorfos.

$$\mathbf{A}_G = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & u_5 & u_6 \\ u_1 & 0 & 1 & 0 & 1 & 0 & 0 \\ u_2 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ u_4 & 1 & 0 & 1 & 0 & 1 & 0 \\ u_5 & 0 & 0 & 0 & 1 & 0 & 1 \\ u_6 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{3} & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ v_{5} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{1} & 0 & 1 & 0 & 1 & 0 & 1 \\ v_{2} & 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Ejemplo. Sean los grafos G y H son isomorfos?

- No son isomorfos por que por ejemplo $\delta(a)=2$ en G y si observamos a debería corresponder con los vértices t,u,x, o y de H, ya que estos son los vértices de grado dos de H. Sin embargo, cada uno de estos cuatro vértices de H son adyacentes a otros de grado dos, lo que no es cierto en a. Pasa lo mismo con c,q,e en G
- Los mejores algoritmos para determinar si dos grafos son isomorfos tienen complejidad exponencial en el peor caso.
- El mejor algoritmmo capaz de determinar si dos grafos son isomormos con 100 vértices es el NAUTY y se consigue en internet.

Isomorfismos

Determine si los siguientes par de grafos son isomorfismos, si lo son encuentre una función de correspondencia entre los vértices de cada uno de los grafos.

Contenido

1 Isomorfismos

- 2 Algoritmos sobre grafos
 - Coloreo de grafos
 - Algoritmo de Dijkstra

Coloreado de grafos

Dado un mapa,¿ cual es el **menor numero** de colores que deben utilizarse para colorearlo, de modo que dos regiones adyacentes no tengan nunca el mismo color ?.

Coloreado de grafos

El **grafo dual** de un mapa corresponde a su representación como un grafo, en la cual:

- Cada región del mapa es un vértice
- Si existe una frontera entre cada par de regiones (vértices), existirá una arista entre ellos.

Dos regiones que se tocan en un solo punto no se consideran adyacentes

Coloreado de grafos

Ejemplo de mapa y grafo dual

Figure: Mapa

Figure: Grafo dual

Coloración de un grafo

Una coloración de un grafo simple consiste en asignarle un color a cada vértice del grafo de manera que a cada dos vértices adyacentes se les asignan colores distintos.

Número cromático

El número cromático de un grafo es el número mínimo de colores que se requieren para su coloración.

¿Cual es el número cromático de este grafo?

Teorema de los cuatro colores

El número cromático de un grafo plano es menor o igual que 4.

Número cromático

El número cromático de un grafo es el número mínimo de colores que se requieren para su coloración.

Propuesto inicialmente en 1850 y finalmente demostrado por los matemáticos estadounidenses Kenneth Appel y Wolfgang Haken en 1976.

Demostración

Si el teorema era falso, debería existir un contraejemplo, en una lista de aproximadamente 2000 candidatos. Empleando mas de 1000 horas de tiempo de calculo de un ordenador, no encontraron dicho contraejemplo. Haken en 1976.

Indicar los números cromáticos de:

- **11** K_n : Grafo completo. R/ n
- \mathbf{Z} $K_{m.n}$ Grafo bipartito completo. R/ 2
- C_n Ciclo: R/ 2 si n es par, 3 si n es impar.

Problema computacionalmente difícil

Los mejores algoritmos conocidos para calcular el número cromático de un grafo tienen **complejidad exponencial** (en base al número de vértices)

Aplicaciones

- Programación de asignaturas: Programar las asignaturas sin que ningún estudiante tenga dos asignaturas al mismo tiempo. Idea: Los vértices son asignaturas y existe una arista entre un par de vértices, si hay un estudiante matriculado en ambas.
- Asignación de frecuencias: Evitar interferencias en sistemas de comunicaciones móviles.
 - **Idea:** Los vértices son operadores de comunicaciones y hay un par de vértices entre ellos si prestan el mismo servicio

Grafo ponderado

- 1 A los grafos se les puede asignar un peso a sus aristas
- A estos grafos se les conoce como grafos ponderados
- La longitud de un camino de un grafo ponderado corresponde a la suma de los pesos en ese camino

Algoritmo de Dijkstra

- Algoritmo descubierto por el matemático holandés Edsger Dijkstra en 1959.
- Describe como solucionar el problema de camino de longitud mínima desde a hasta z en grafos ponderados no dirigidos, donde todos los pesos son positivos.
- Es fácil adaptarlo para solucionar el problema de camino de longitud mínima en grafos dirigidos.

```
Procedimiento Dijkstra ( G: grafo ponderado conexo
                               y todos los pesos positivos)
   Para i = 1 Hasta n
        L(v_i) = \infty
   L(a) = 0
   S = \emptyset
   Mientras z \notin S
   Inicio
          u = vertice con L(u) minima entre los vertices
              que no estan en S
          S = S \bigcup \{u\}
          Para todos los vertices v que no estan en S
          Inicio
               Si L(u) + w(u, v) < L(v)
                  L(v) = L(u) + w(u, v)
          Fin
```

Fin (L(z)= longitud del camino mas corto entre a y z)

4D > 4@ > 4 = > 4 = > 9 Q (~

Algoritmo de Dijkstra

Aplica el algoritmo de Dijkstra para encontrar el camino más corto entre Bogotá y Buenos Aires:

Algoritmo de Dijkstra

Bogotá	Lima	Quito	Paz	Asunción	B. Aires
0	∞	∞	∞	∞	∞
0	4^{Bog}	2^{Bog}	∞	∞	∞
0	3^{Quito}	2^{Bog}	10^{Quito}	12^{Quito}	∞
0	3^{Quito}	2^{Bog}	8^{Lima}	10^{Lima}	14^{Paz}
0	3^{Quito}	2^{Bog}	8^{Lima}	10^{Lima}	13^{Asunc}

El camino más corto está dado por:

Bogota
ightarrow Quito
ightarrow Lima
ightarrow Asunc
ightarrow B.Aires y tiene longitud 13

Teoremas

- El algoritmo de Dijkstra determina la longitud del camino más corto entre dos vértices, en un grafo ponderado simple, conexo y no dirigido
- ${\bf Z}$ El algoritmo tiene complejidad $O(v^2+e)$ donde v es el número de vértices y e de aristas

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011. Chapter 10. Graphs.

Próximo tema: Árboles