ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Активные фильтры

Работу выполнили:

Шурыгин Антон Алексеевич, группа Б01-909 Тяжкороб Ульяна Владимировна, группа Б01-909 Широкова Ксения Михайловна, группа Б01-909

Долгопрудный, 2021

Содержание

1 Звенья первого порядка.

1.1

Рис. 1 Пропорционально дифференцирующее звено.

Рис. 2 Пропорционально интегрирующее звено.

Измерим уровни подавления на частоте f_0 и в полосах задержания для пропорционально интегрирующей и дифференцирующей цепей с полюсом в точке $s=\frac{p}{\omega_0}=-1,\ f_0=\frac{\omega_0}{2\pi}=10 k$ и нулями в точках $s=-2, s=-\frac{1}{2}.$ Измерим уровни подавления на частоте f_0 и в полосах задержания.

$$\delta = \dfrac{\beta}{\beta + \alpha} = \dfrac{1}{2}$$
-- уровень подавления в полосе задержания

Подавление на частоте $f_0 = 10k$:

 $\frac{4}{5}$ -интегрирующее звено, $\frac{1}{5}$ -дифференцирующее звено.

Изменим номиналы резисторов в схемах так, чтобы сохранив положения полюсов, переместить нули в точки s=-4, $s=-\frac{1}{4}$.

 $\delta=\frac{1}{4}$ - уровень подавления в полосе задержания. Уровень подавления на частоте $f_0\colon \frac{1}{2}$ - интегрирующая, $\frac{3}{20}$ - дифференцирующая.

1.3

Откроем модель реального интегратора с частотой единичного усиления $f_0=\frac{1}{2\pi RC}=10k$ и усилением $K=\frac{R_k}{R}$, $R_k=[20k,640k|\log2]$.

f ₁ , Гц	10k	10k	10k	10k	10k	10k
K	2	4	8	16	32	64
f_0 , Гц	5k	2.5k	1.25k	0.62k	0.31k	0.16k

Рис. 3

Рис. 4 Реальный интегратор.

 $f_1 = f_0 \, K$ - соотношение выполняется

Подключим источник step единичного перепада. Изучим переходные характеристики интегратора $h_{\tau_1}^{\tau}$), $\tau_1=RC=15.92\mu$.

Варьируем $R_k = [20k, 640k|log2]$ и оцениваем значения ошибок интегрирования в точках $\frac{\tau}{\tau_1} = \frac{K}{2}$

Подключим источник pulse. Изучим переходные характеристики интегратора $h(\frac{t}{\tau_1})$, $\tau_1=RC=15.92\mu.$

Варьируем $R_k=[20k,640k|log2]$ и оцениваем значения ошибок интегрирования в точках $\frac{\tau}{t\alpha u_1}=\frac{K}{2}.$

Результат занесен в таблицу.

$\frac{\tau}{\tau_1}$	R_k, k	error
1	20	0.185
2	40	0.384
4	80	0.781
8	160	1.578
16	320	3.177
32	640	6.4

Таблица 1 Ошибка интегрирования при варьировании R_k (step)

$\frac{\tau}{\tau_1}$	R_k, k	error
1	20	0.582
2	40	1.178
4	80	2.356
8	160	4.722
16	320	9.456
32	640	18.927

Таблица 2 Ошибка интегрирования при варьировании R_k (pulse)

2 Активные звенья с двойным Т-мостом

Рис. 5 Полосовой фильтр с двойным Т - мостом.

2.1

Откроем модель полосового фильтра с $f_0=10k,~K_0=20.$ Измерим усиление на частоте f_0 и полосу Δf по уровню -3dB. Получаем $K_0=20.92,~\Delta f=1.93~(R_2=20k).$

R_2 , Om	40k	60k	80k	100k
K_0	41.02	61.12	81.11	101.24
R_2 , Ом K_0 Δf , Гц	979	643	495	397

Рис. 6 Зависимость пикового усиления и ширины полосы от R_2 .

2.2

Изучим поведение фильтра при разбалансировании моста варьированием R_5 . Снимем зависимость от R_5 пикового усиления.

R_5 , Om	1.5	2	2.5	3	3.5	4	4.5	5	5.5
R_5 , Om K_0	32.45	43.76	79.67	956.78	90.57	42.88	28.11	20.97	16.88

Рис. 7 * Зависимость пикового усиления от R_5 .

Измерим уровни скачка в нуле и первого выброса: уровень скачка - 1В при $R_5=5 k$ Ом. Оценим значение R_5 , при котором фильтр теряет устойчивость.

R ₅ , Om	5k	4.5k	4k	3.5k	3k	2.5k
R ₅ , Ом выброс	4.29	4.49	4.72	5.0	5.36	5.82

2.4

Откроем модель режекторного фильтра с $f_0 = 10k$, $\gamma = 0.1$.

Рис. 8 Режекторный фильтр с двойным Т - мостом.

Измерим ширину полосы режекции Δf по уровню 0.7=-3dB. Получим: $\Delta f=4.07$ кГц.

Измерим уровни скачка в нуле и первого выброса. Получим: уровень скачка - 1В, первый выброс - 697.5 мВ.

3 Звенья Саллена-Ки.

Рис. 9 * Звенья Саллена-Ки.

3.1

Откроем модель звеньев Саллена-Ки с частотой $f_0=10k$ и добротностью Q=1. Измерим значения коэффициентов передачи при $f=f_0$. Получим:

$$K_0 = 2, k_{lp} = 29.44, K_{hp} = 28.485, K_{bp} = 28.898$$

3.2

Откроем модель с фильтрами Ваттерворта верхних и нижних частот порядка n=3 на частоту среза $f_0=10k$. Измерим скорости спада в dB на октаву и затухания на частотах $f_0/2$, $2f_0$:

ВЧ: затухание на $f_0/2:-18$ dB, скорость спада $-15~\frac{\mathrm{dB}}{\mathrm{дек}}$ дек

HЧ: затухание на $2f_0:-18~dB$, скорость спада $15~\frac{dB}{\Delta e \kappa}$ дек .

Измерим уровни затухания фильтров Чебышева на частотах $f_0/2,$ $2f_0$:

ВЧ: затухание на $f_0/2:-30~dB$, скорость спада $-18~\frac{db}{\text{деб}}$ дек

НЧ: затухание на $2f_0:-30$ dB, скорость спада $18 \, \frac{\mathrm{d} \, b}{\Delta \, \mathrm{e} \, \mathrm{f}}$ дек .

3.3

Откроем прототип , реализуем 4-полюсной полосовой фильтр Чебышева с $f_0=10k,~\varepsilon=1,~Q=\frac{f_0}{\Delta f}=6.$ Измерим затухания на частотах $f_0/2,~2f_0,~f_0/10,~10f_0.$

f	$f_0/2$	$2f_0$	$f_0/10$	10f_0
f затухание	1.83	1.75	-27.9	-27.9

4 Звенья с двойной обратной связью.

4.1

Полосовое звено с $f_0 = 5k$, $K_0 = 5$, Q = 15

pic12.png

 $f_{max}=4.980$ k, $\Delta f=338$ - ширина полосы по уровню 0.7. $Q=\frac{f_{max}}{\Delta f}=14.7,~Q$ K $_0=73.5$ - пиковое усиление.

Построим график зависимости частоты пика от R_2 На практике:

	pic13.png	
pic	c14.png	

$$f_{max} = 5.05k, K_0 = 5.77$$

5 Полосовое звено на сдвоенном усилителе.

Рис. 10 *

Полосовой фильтр на сдвоенном операционном усилителе.

По частотной характеристике звена оценим его параметры: $f_0=10k,\ Q=9.7.$ Измерим значение добротности при $R_2=6400k.$

5.2

Измерим частоту и уровень пика при $R_5=1.11k$ ($\gamma=\frac{R_5}{R_4+R_5}=0.1$): f=31.415k, уровень пика - 24.079

Рис. 11

Рис. 12 Варьирование $R_l = [11K, 19K|2K]$

Рис. 13 Варьирование $R_H = [11K, 19K|2K]$

Рис. 14 Варьирование $R_{B}=11K,19K|2K]$

Рис. 15 Варьирование $R_{B}=11K,19K|2K]$

Рис. 16 Варьирование $R_{B}=11K,19K|2K]$

Рис. 17 Варьирование $R_B=11K,19K|2K]$

Рис. 18 Варьирование $R_{B}=11K,19K|2K]$

Рис. 19 Варьирование $R_{\rm B}=11K,19K|2K]$