Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 2

Consigna

Determinar si las siguientes series son convergentes o divergentes aplicando el **criterio** de **comparación**:

1.
$$\sum_{n=1}^{+\infty} \frac{1}{n^n}$$

2. $\sum_{n=1}^{+\infty} e^{-\sqrt{n+1}}$

Resolución

Serie #1

•
$$\sum_{n=1}^{+\infty} \frac{1}{n^n}$$

Se tiene que $\sum \frac{1}{n^2}$ es convergente, y además, a partir de un cierto n_0 (por ejemplo 3) se cumple que:

$$\bullet \quad \frac{1}{n^2} \ge \frac{1}{n^n}$$

Entonces por el criterio de comparación, $\sum \frac{1}{n^n}$ converge.

Serie #2

•
$$\sum_{n=1}^{+\infty} e^{-\sqrt{n+1}}$$

La solución a este ejercicio es un poco compleja, requiere el estudio de una función que está hecho en las soluciones el práctico.

La cosa es que converge, y la comparación se realiza con la serie $\sum \frac{1}{n^2}$