Algorithm Design and Analysis

David N. JANSEN, Bohua ZHAN 组

算法设计与分析

詹博华,杨大卫

This week's content

这周的内容

- Today Wednesday:
 - Chapter 26: Maximum Flow (only 26.1–26.3)
 - Exercises
- Tomorrow Thursday:
 - Exercise solutions
 - Chapter 34: NP-completeness
 (B. Zhan)

- 今天周三:
 - 第26章: 最大流 (仅26.1-26.3)
 - 练习
- 明天周四:
 - 练习题解答
 - 第34章: NP完全性 (詹老师)

Algorithm Design and Analysis

Maximum Flow

David N. JANSEN 组

算法设计与分析

最大流

杨大卫

Ch. 26 26章

Weighted Graphs 权重的图

Shortest Path 最短路径 Minimum Spanning Tree 最小生成树

weight = length or cost of edge 权重 = 边的长度或者代价

How far / how expensive is the trip from Beijing to Hangzhou?

What is the cheapest connected network?

Maximum Flow 最大流

weight = capacity or width of edge 权重 = 边的容量或者宽度

How many people can travel each day from Beijing to Guangzhou?

How many people can travel?

Flow Network

- weighted graph G = (V, E): every edge has a capacity, $c: E \to \mathbb{R}^{>0} \cup \{\infty\}$. (If there is no edge (u, v), then c(u, v) = 0.)
- source s and sink $t \in V$.
- simplifying technical assumptions:
 - no edge in both directions
 (u,v) ∈ E ⇒ (v,u) ∉ E
 (= no antiparallel edges)
 - no self-loops (*u*,*u*) ∉ *E*
 - every vertex v is on a path from source to sink s ---- v ---- t

流网络

- 权重的图 *G* = (*V*,*E*):
 每条边有个容量值, *c*: *E* → ℝ>0 ∪ {∞}.
 (如果没有变 (*u*,*v*), 定义 *c*(*u*,*v*) = 0。)
- 源点s和汇点 $t \in V$ 。
- 简化技术假设:
 - 没有两方向的边 (*u*,*v*) ∈ *E* → (*v*,*u*) ∉ *E* (= 没有反平行边)
 - 没有自环 (u,u) ∉ E
 - 所有的结点 v 有从源点到汇点的路径
 S → V → t

(Network) Flow

- A flow $f: V \times V \to \mathbb{R}^{\geq 0} \cup \{\infty\}$ is a function that indicates how much material can flow through the network.
- Capacity constraint: for all $u,v \in V$, we have $0 \le f(u,v) \le c(u,v)$.
- Flow conservation: For all $u \in V \setminus \{s,t\}$, we have $\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$.
- Value of the flow: $|f| = \sum_{v \in V} f(s,v) \sum_{v \in V} f(v,s)$.
- Q: What is the maximum possible value of |f|?

(网络的)流

流 f: V × V → ℝ≥0 ∪ {∞} 是一个表示多少物质可以流过网络的函数。

- 容量限制: 对于所有 $u,v \in V$,我们有 $0 \le f(u,v) \le c(u,v)$ 。
- 流量守恒: 对于所有 $u \in V \setminus \{s,t\}$,我们有 $\Sigma f(v,u) = \sum_{v \in V} f(u,v)$ 。
- 流的值: $|f| = \sum_{V \in V} f(s,v) \sum_{V \in V} f(v,s)$ 。
- 问: |f| 的最大可能值是多少?

Flow Example

Example: Simulation Relation 类似关系

- Simulation relations compare behaviour models. They answer the question "Can *Impl* do everything that *Spec* can do?"
- They are a way to describe whether an implementation satisfies the specification:
 If the implementation can do everything required by the specification, the system is correct.
- Probabilistic simulation relation

Zhang, Lijun; Jansen, David N.: **A space-efficient simulation algorithm on probabilistic automata.** *Information and computation* 249, 2016. pp. 138–159. http://dx.doi.org/10.1016/j.ic.2016.04.002

Reliable Coffee Machine

Unreliable Coffee Machines 摩卡墨彩

Coffee Machine Comparison

This network has a flow with value 1, so we have $u_2 \le m_2$.

Overview

概述

Ford–Fulkerson

Idea: The method keeps a legal flow *f* and tries to improve it.

Augmenting path = path from s to t that can carry more flow than currently in f.

Edmonds–Karp

Idea: Choose shortest augmenting paths to improve running time.

Ford–Fulkerson

理念:方法保持法律流 f 并试改进它。

增广路径 = 从 s 到 t 的路径,可以承载比 f 中当前更多的流量。

Edmonds–Karp

理念: 选择最短的增加路径 改进运行时间。

Ford-Fulkerson

- Idea: Assume given always a legal flow *f*. This flow may not yet exhaust the capacity of the network.

 If possible, improve it.
- Try to find an augmenting path, i.e. a path from *s* to *t* that can carry more flow than currently in *f*.
- To find an augmenting path, use the residual network. This network indicates how *f* can be changed.

- 想法:假设总是有一个法律流 f。 这种流量可能还没有耗尽网络的容量。
 - 如果可能的话,改进它。
- 尝试找到一条增广路径, 即从 s 到 t 的路径,该路径可以承载 比当前f中更多的流量。
- 要找到增广路径,使用残存网络。 此网络指示如何更改 f。

Ford-Fulkerson

- Idea: Assume given always a legal flow *f*. This flow may not yet exhaust the capacity of the network.

 If possible, improve it.
- 想法: 假设总是有一个法律流 f。 这种流量可能还没有耗尽网络的容量。

如果可能的话,改进它。

FORD-FULKERSON(G,c,s,t)
initialize flow f to 0
while there exists an augmenting path p in the residual network G_f augment f by preturn f

Residual Network 残存网络

Residual Network 残存网络

Residual Network 残存网络

$$c(s,v_2) = 13$$

 $f(s,v_2) = 8$

The red path is an augmenting path with capacity 4. 红色的路径是容量4的增广路径。

Augmentation 递增

 $f(s,v_2)=12$

New Residual Network 残存网络

 $c(s,v_2) = 13$ $f(s,v_2) = 12$

No more augmenting paths 增广路径没有了

Residual Network

残存网络

- For flow network G = ((V,E),c) and network flow f, the residual network $G_f = ((V,E_f),c_f)$ contains the same vertices V as the flow network and all edges and antiparallel edges $E_f = E \cup \{(v,u) \mid (u,v) \in E\}$.
- The edges have capacity:

$$C_f(u,v) = c(u,v) - f(u,v)$$
 if $(u,v) \in E$; $c_f(u,v) = f(v,u)$ if $(v,u) \in E$.

A residual network is almost a flow network
 —only there can be antiparallel edges.

- 对于流网络 G = ((V,E),c) 和网络流 f,残存网络 $G_f = ((V,E_f),c_f)$ 包含与流网络相同的顶点 V,以及所有边和反平行边 $E_f = E \cup \{(v,u) \mid (u,v) \in E\}$ 。
- 边的容量定义:

$$C_f(u,v) = c(u,v) - f(u,v)$$
 如果 $(u,v) \in E$; $C_f(u,v) = f(v,u)$ 如果 $(v,u) \in E$ 。

• 残存网络几乎就是流网络一只有反平行边能存在。

Augmenting Path

增压给经

- A flow f' in the residual network G_f can be used to augment flow f. $(f \uparrow f')(u,v) = f(u,v) + f'(u,v) f'(v,u)$
- An augmenting path is a simple flow in G_f—all the flow is on one path from s to t.
- Why augmenting paths?
 Easy to find with breadth-first search or depth-first search.

- 残存网络 G_f 中的流 f' 可以用于 递增流 f。 $(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)$
- 增广路径是 G_f 中的一个简单流一完全的流动都在独一条从 s 到 t 的路径上。
- 为什么使用增广路径?容易找到用于广度优先搜索或者 深度优先搜索。

Questions

- Is every augmentation $f \uparrow f'$ a correct flow?
 - i.e., does it satisfy the capacity constraint and flow conservation?
- How can we find augmenting paths?
- Will the method terminate?
 Will the final result be a correct maximum flow?
- How efficient is the method?

- 所有的递增 f ↑ f' 都是否正确的流?
 - 即,是否满足容量限制和流量守恒?

- 怎么样找到增广路径?
- 这种方法终止吗? 最终结果是正确的最大流吗?

• 这种方法的效率有多高?

Is augmentation f † f' correct?

Lemma 26.1: Given a flow network G = ((V,E),c) and a flow f in G; let f' be a flow in the residual network G_f . Then $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Proof of capacity constraints:

Assume that (u,v) is in E.

Then
$$f(u,v) = c_f(v,u) \ge f'(v,u)$$
, and so $(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)$ $\ge f(u,v) + f'(u,v) - f(u,v)$ ≥ 0 .

递增fff是否正确的?

引理 26.1: 设 G = ((V,E),c) 为一个流网络,设 f 为 G 中的一个流; 设 f' 为残存网络 G_f 中一个流。那么 $f \uparrow f'$ 是 G 的一个流,其值为 $|f \uparrow f'| = |f| + |f'|$ 。

• 证明容量限制:

假设
$$(u,v) \in E_o$$

 $(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)$
 $\leq f(u,v) + f'(u,v)$
 $\leq f(u,v) + c_f(u,v)$
 $= f(u,v) + c(u,v) - f(u,v).$

Is augmentation f 1 f' correct?

递增fff是否正确的?

Lemma 26.1: Given a flow network G = ((V,E),c) and a flow f in G; let f' be a flow in the residual network G_f . Then $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

引理 26.1: 设 G = ((V,E),c) 为一个流网络,设 f 为 G 中的一个流; 设 f' 为残存网络 G_f 中一个流。那么 $f \uparrow f' \in G$ 的一个流,其值为 $|f \uparrow f'| = |f| + |f'|$ 。

Proof of flow conservation:

Assume given any vertex $u \in V$.

$$\sum_{v \in V} (f \uparrow f')(u,v) - \sum_{v \in V} (f \uparrow f')(v,u) = \sum_{v \in V} f(u,v) - \sum_{v \in V} f(v,u) + \sum_{v \in V} f'(u,v) - \sum_{v \in V} f'(v,u)$$

because of

因为

• 证明流量守恒:

设给结点 $u \in V$ 。

$$\sum_{v \in V_{out}(u)} (f \uparrow f')(u,v) - \sum_{v \in V_{in}(u)} (f \uparrow f')(v,u) = \sum_{v \in V_{out}(u)} f(u,v) - \sum_{v \in V_{in}(u)} f(v,u) + \sum_{v \in V_{in}(u)} f'(u,v) - \sum_{v \in V_{in}(u)} f'(v,u) + \sum_{v \in V_{in}(u)} f'(u,v) - \sum_{v \in V_{in}(u)} f'(v,u) + \sum_{v \in V_{in}(u)$$

Is augmentation f 1 f' correct?

Lemma 26.1: Given a flow network G = ((V,E),c) and a flow f in G; let f' be a flow in the residual network G_f . Then $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Proof of flow conservation:

Assume given any vertex $u \in V \setminus \{s,t\}$.

$$\sum_{v \in V} (f \uparrow f')(u,v) - \sum_{v \in V} (f \uparrow f')(v,u) = \sum_{v \in V} f(u,v) - \sum_{v \in V} f(v,u) + \sum_{v \in V} f'(u,v) - \sum_{v \in V} f'(v,u)$$

flow conservation of $f \uparrow f'$

递增fff是否正确的?

引理 26.1: 设 G = ((V,E),c) 为一个流网络,设 f 为 G 中的一个流; 设 f' 为残存网络 G_f 中一个流。那么 $f \uparrow f'$ 是 G 的一个流,其值为 $|f \uparrow f'| = |f| + |f'|$ 。

• 证明流量守恒:

设给结点 $u \in V \setminus \{s,t\}$ 。

= 0 (if
$$u \neq s,t$$
)
because of flow
conservation of f'

Is augmentation f † f' correct?

Lemma 26.1: Given a flow network *G* = ((V,E),c) and a flow f in G; let f' be a flow in the residual network G_f . Then $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

 Proof of the flow value equation: Specialize this equation with u = s.

$$\sum_{v \in V} (f \uparrow f')(s,v) - \sum_{v \in V} (f \uparrow f')(v,s)$$

$$= |f \uparrow f'|$$

递增 f f f 是否正确的?

引理 26.1: 设 G = ((V,E),c) 为一个流网络, 设 f 为 G 中的一个流; 设 f' 为残存网络 G_f 中一个流。那么 $f \uparrow f'$ 是 G 的一个流, 其值为 $|f\uparrow f'|=|f|+|f'|$ 。

• 证明流值等价: 使用 u = s 专门化这个等价。

$$\sum_{V \in V} (f \uparrow f')(s, v) - \sum_{V \in V} (f \uparrow f')(v, s) = \sum_{V \in V} f(s, v) - \sum_{V \in V} f(v, s) + \sum_{V \in V} f'(s, v) - \sum_{V \in V} f'(v, s)$$

$$= |f \uparrow f'| = |f'|$$

How to find augmenting paths

- Ford and Fulkerson (1962) did not prescribe a specific method. One can use depth-first search or breadth-first search, or any other suitable method to find a path.
- Augmenting paths instead of general augmenting flows – are used because they are easier to find.
- Many practical implementations use breadth-first search anyway. Edmonds and Karp (1972) proved that this is efficient.

怎么样找到增广路径

- Ford 和 Fulkerson (1962) 没有规定 具体的方法。可以使用 深度优先搜索或广度优先搜索, 或任何其他合适的方法来找到路径。
- 使用增广路径,而不是一般的增广流,因为它们更容易找到。

• 无论如何,许多实际实现使用 广度优先搜索。Edmonds 和 Karp (1972)证明了这是有效的。

Partial Correctness

部分正确性

- When the algorithm terminates, is the returned flow a maximum flow?
- Proof idea: When there is no augmenting path in G_f , then |f| is the capacity of a minimum cut, and then f is a maximum flow.
- 当算法终止时, 返回的流是最大流吗?
- 证明思想: 当*G_f*中没有增广路径时, *f* 是最小切割的容量, *f* 是最大流。

- uses the max-flow min-cut theorem:
 The value of a maximum flow is equal to the capacity of a minimum cut.
- 使用最大流最小割定理: 最大流的值等于最小切割的容量。

- A cut separates the vertices into $S (\ni s)$ and $T = V \setminus S (\ni t)$.
- Net flow across the cut: $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - f(v,u)$
- Capacity of the cut: $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$
- Difference is intended: capacity = possible maximum net flow (if we neglect other restrictions)

$$f(S,T) = 12 - 4 + 11 = 19$$

 $c(S,T) = 12 + 14 = 26$

- A cut separates the vertices into $S (\ni s)$ and $T = V \setminus S (\ni t)$.
- Net flow across the cut: $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - f(v,u)$
- Capacity of the cut: $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$
- Difference is intended: capacity = possible maximum net flow (if we neglect other restrictions)

$$f(S,T) = 15 + 4 = 19$$

 $c(S,T) = 20 + 4 = 24$

- A cut separates the vertices into $S (\ni s)$ and $T = V \setminus S (\ni t)$.
- Net flow across the cut: $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - f(v,u)$
- Capacity of the cut: $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$
- Difference is intended: capacity = possible maximum net flow (if we neglect other restrictions)

$$f(S,T) = 12 - 4 + 7 + 4 = 19$$

 $c(S,T) = 12 + 7 + 4 = 23$

- A cut separates the vertices into $S (\ni s)$ and $T = V \setminus S (\ni t)$.
- Net flow across the cut: $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - f(v,u)$
- Capacity of the cut: $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$
- Difference is intended: capacity = possible maximum net flow (if we neglect other restrictions)

$$f(S,T) = 12 + 7 + 4 = 23$$

 $c(S,T) = 12 + 7 + 4 = 23$

All Net Flows Are Equal

Lemma 26.4: Let (G = (V,E),c) be a flow network and f a flow in it. Let $(S, V \setminus S)$ be a cut of the flow network. Then $f(S,V \setminus S) = |f|$.

Proof: By induction on the number of vertices in S.

- Base case: $S = \{s\}$. By the definition of |f|, we have $|f| = f(\{s\}, V \setminus \{s\})$.
- Induction step: Let $S' = S \cup \{x\}$. We already know that $|f| = f(S, V \setminus S)$.

$$f(S',V \setminus S') = \sum_{u \in S'} \sum_{v \in V \setminus S'} f(u,v) - f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in V \setminus S} f(u,v) - f(v,u) + \sum_{v \in V \setminus S'} f(x,v) - f(v,x) - \sum_{u \in S} f(u,x) - f(x,u)$$

$$= f(S,V \setminus S) = |f|.$$

Max-Flow Min-Cut Theorem 最大流最小切割定理

- Based on the Lemma, we can conclude that the maximum flow must be ≤ the minimum cut.
- Theorem 26.6: Assume given a flow network (G = (V,E),c) and a flow f in it. Then, the following are equivalent:
 - (1) f is a maximum flow in G.
 - (2) The residual network G_f contains no augmenting paths.
 - (3) There exists a cut (S,T) in G such that |f| = c(S,T).
- So, by this theorem, we have that the maximum flow = the minimum cut.

Proof of Max-Flow Min-Cut

- (1) \Rightarrow (2). If f is a maximum flow but G_f contains an augmenting path p, then $f \uparrow p$ would be an even larger flow. Contradiction!
- (2) \Longrightarrow (3). Let $S = \{v \in V \mid \text{ there exists a path } s \leadsto v \text{ in } G_f\}$. This cut satisfies the conditions of (3) (see next slide).
- (3) \Rightarrow (1). As the value of flow f cannot be larger than any cut, being equal is the highest value that can be achieved, so f is maximal.

Example (2) \Longrightarrow (3)

Termination and Running Time

• If the edge capacities are incommensurable (irrational), Ford–Fulkerson may not terminate.

Zwick, Uri: The smallest networks on which the Ford–Fukerson maximum flow procedure may fail to terminate. *Theoretical Computer Science* 148(1995)165–170.

(constructs a network where augmenting paths have value 1, ϕ , ϕ^2 , ϕ^3 , ..., for $\phi = (\sqrt{5}-1)/2 \approx 0.618$.)

• If the edge capacities are integers, Ford–Fulkerson will terminate with an integer maximum flow *f* after at most | *f* | iterations.

Integer Capacities

- Assume that all capacities in the flow network are integers $c: E \to \mathbb{N} \cup \{\infty\}$.
- Then, every intermediary flow and augmenting path will have integer value. The value of every augmenting path is at least 1.
- Therefore, if f^* is a maximum flow, it is constructed using at most $|f^*|$ augmenting paths.

- The same sequence of augmenting paths can be applied again, but every augment will be by factor ϕ^2 smaller.
- In the limit, the left flow is reached.

• Value =
$$3 + 2\phi^2 + 2\phi^4 + \cdots$$

= $3 + 2\phi \approx 4.236$

$$\phi = (\sqrt{5}-1)/2 \approx 0.618$$

$$1 - \phi = \phi^2$$

Running Time (integer capacities)

- Assume that all capacities are integers. Then, we already know there will be $\leq |f^*|$ augmenting paths, i.e. $\leq |f^*|$ iterations.
- How long does an iteration take?
 - Finding a path is in O(|E|) (also finds the capacity of the path)
 - Adapting the capacities of the residual network is in O(|E|)
- So, overall the running time is in $O(|E| \cdot |f^*|)$.

运行时间 (整数的容量)

- 假设所有的容量是整数。 已经知道最多有 |f*| 增广路径, 算法最多进行 |f*| 迭代。
- 一个迭代需要多少时间?
 - 找到一条路径为 O(|E|) (包括计算路径的容量)
 - 改变残存网络的容量在 O(|E|) 中

• 总的来说,运行时间是 O(|F|·|f*|)。

Edmonds-Karp

- Edmonds and Karp proposed to use only breadth-first search for finding augmenting paths. They proved a better time bound.
- Proof idea: Given any vertex v, the distance $\delta(s,v)$ in G_f never decreases. If edge (u,v) is critical two times, then $\delta(s,v)$ increases by at least 2.

critical: augmenting path value = $c_f(u,v)$

Edmonds-Karp

• Edmonds 和 Karp 建议总是使用广度优先搜索再找到增广路径。 这样可以证明更好的运行时间的上界。

证明思想: 给定任何结点 *v*,
 G_f 中的距离 δ(s,*v*) 都不会减小。
 如果边 (*u*,*v*) 是关键边两次,
 则 δ(s,*v*) 至少增加 2。

天链辺: 增广路径的值 = Cf(U,V)

edge (u,v) is critical / 边 (u,v) 是关键边 G_f G_f edge (u,v) is critical / 边 (u,v) 是关键边 Gf 50

edge (u,v) is critical / 边 (u,v) 是关键边 Gf Gf $\delta_1 := \delta(s, v)$ $\delta(s, v) \geq \delta_1$ edge (u,v) is critical / 边 (u,v) 是关键边 Gf Gf $\delta(s,u) = \delta(s,v) + 1 \ge \delta_1 + 1$ $\delta(s,v) = \delta(s,u) + 1 \ge \delta_1 + 2$ 51

Edmonds-Karp

• Lemma 26.7: For all vertices $v \in V \setminus \{s,t\}$, the distance $\delta_f(s,v)$ in the residual network G_f increases monotonically over time.

- Theorem 26.8: The total number of flow augmentations performed is in $O(|V| \cdot |E|)$.
- Corollary: The total running time of Edmonds–Karp is in $O(|V| \cdot |E|^2)$.

Edmonds-Karp

• 引理26.7: 对于所有的结点 $v \in V \setminus \{s,t\}$, 残存网络 G_t 中的做短路径距离 $\delta_t(s,v)$ 随着单调递增。

- 定理26.8: 所执行的流量递增操作的 总次数为 O(|V|·|E|)。
- 推论: Edmonds–Karp的总运行时间 为O(|V|·|E|²)。

Example: bad choices

Example: bad choices

Example: bad choices

- one application of maximum flow
- illustration that maximum flow problems appear where one may not expect them.

- Example: We have a group of students and a number of apartments. Every student is allowed to indicate which apartment(s) s/he likes. The housing agency assigns as many students to apartments they like as possible.
- Bipartite graph 二分图 G = (V,E) where $V = L \cup R$. Edges $E \subseteq L \times R$. A matching 匹配 M is a subset of E that contains at most one edge for every vertex.
- The problem to find a maximum matching can be solved using maximum flow.

Lemma 26.9: Let G = (V,E) be a bipartite graph (where V = L ∪ R and E ⊆ L × R).

Let G' = (V',E') be its corresponding flow network (V' = V ∪ {s,t} and E' = E ∪ {s} × L ∪ R × {t}).

If there is a matching M ⊆ E in G,

then there is an integer-valued flow f in G' with |M| = |f|.

If there is an integer-valued flow f in G',

then there is a matching M ⊆ E in G with |M| = |f|.

Note: "integer-valued"—required for a matching to exist.
 The Ford–Fulkerson method would normally produce an integer solution (see the discussion about running time).

Maximum Bipartite Matching

Summary

台结

- Maximum flow problems pose the question "How much material/people/ liquid/... can be transported from the source to the sink?"
- 最大流问题提出了问题: "有多少材料/人/液体/...可以从源点 运输到汇点?"

- Ford–Fulkerson uses augmenting paths to approach the maximum flow.
- Ford-Fulkerson 使用增广路径来接近最大流。
- Edmonds–Karp improve timing by requiring the shortest augmenting paths to be selected.
- Edmonds-Karp 选择最短的增广路径, 来改进运行时间。

Exercise 29.5-6

Solve the following linear program using SIMPLEX:

maximize 最大化 subject to 满足约束

用SIMPLEX求解下面的线性规划:

$$x_1 - 2x_2$$

$$x_1 + 2x_2 \le 4$$

$$-2x_1 - 6x_2 \le -12$$

$$x_2 \le 1$$

$$X_1 \ge 0$$

$$X_2 \ge 0$$

Exercise 26.2-3

Show the execution of the Edmonds–Karp algorithm on the flow network of Figure 26.1(a).

在图 26.1(a) 所示的流网络上演示 Edmonds-Karp 算法的执行过程。

