

Projet de Géophysique BUNEL Félix et VERGNET Hadrien M2 Physique 2015-2016

Master Sciences de la matière École Normale Supérieure de Lyon Université Claude Bernard Lyon 1

Titre

Sous-titre

Résumé:

 $\bf Mots$ $\bf clefs$: cailloux, galet de référence

Remerciements

Table des matières

In	troduction	1
1	Premiere partie 1.1 Première sous partie	2 2
2	Quelques formules 2.1 discretisation	2 2 2
3	Modèles 3.1 Modèle 1 <td< td=""><td>3</td></td<>	3
\mathbf{C}	onclusion	3
Δ	Première annexe	4

Introduction

Premiere partie 1

Première sous partie

2 Quelques formules

Remarque : $\frac{\partial F}{\partial x}$ sera noté $\partial_x F$ Équation de la chaleur avec terme de production :

$$\rho C_p \partial_t T = \operatorname{div}(\lambda \operatorname{grad}(T)) + P \tag{2.1}$$

À 1d ca devient

$$\rho C_p \partial_t T = \partial_x (\lambda \partial_x T) + P \tag{2.2}$$

À 3D en symétrie sphérique ça devient :

$$\rho C_p \partial_{t'} T = \frac{1}{r'^2} \partial_{r'} (\lambda r'^2 \partial_{r'} T) + P \tag{2.3}$$

En unités adimensionnées 3D en symétrie sphérique ça devient :

$$r = r'/R_T \tag{2.4}$$

$$t = t' \frac{\lambda}{\rho C_p R_T^2} \tag{2.5}$$

$$p = \frac{PR_T^2}{\lambda} \tag{2.6}$$

$$\partial_t T = \frac{1}{r^2} \partial_r (r^2 \partial_r T) + p \tag{2.7}$$

2.1discretisation

On note $T(t, r_i) : T_i^t$

$$\partial_t T \to \frac{T_r^{t+1} - T_r^{t+1}}{\Delta t} \tag{2.8}$$

$$\partial_r T \to \frac{T_{i+1/2}^t - T_{i-1/2}^t}{\Delta r}$$
 (2.9)

$$\frac{1}{r^2}\partial_r(r^2\partial_r T) \to \frac{1}{r_i^2\Delta r} \left[r_{i+1/2}^2 \frac{T_{i+1}^t - T_i^t}{\Delta r} + r_{i-1/2}^2 \frac{T_{i-1}^t - T_i^t}{\Delta r} \right]$$
 (2.10)

équation implicite 2.2

$$\begin{split} \frac{T_i^{t+1} - T_i^t}{\Delta t} &= \frac{1}{r_i^2 \Delta r} \Big[r_{i+1/2}^2 \frac{T_{i+1}^{t+1} - T_i^{t+1}}{\Delta r} + r_{i-1/2}^2 \frac{T_{i-1}^{t+1} - T_i^{t+1}}{\Delta r} \Big] + p_i^t \\ &\qquad \qquad T_i^{t+1} - \frac{\Delta t}{r_i^2 \Delta r^2} \Big[r_{i+1/2}^2 (T_{i+1}^{t+1} - T_i^{t+1}) + r_{i-1/2}^2 (T_{i-1}^{t+1} - T_i^{t+1}) \Big] = T_r^t + \Delta t \ p_i^t \quad (2.11) \end{split}$$

On a ainsi l'équation matricielle implicite suivante :
$$MT^{t+1} = T^t$$
 Où : $M = \left[Id + \frac{\Delta t \ r_{i+1/2}^2}{r_i^2 \Delta r^2} \ b1 + \frac{\Delta t \ r_{i-1/2}^2}{r_i^2 \Delta r^2} \ b2\right]$

$$d1 = \begin{bmatrix} 2 & -1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 & -1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix} d2 = \begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ -1 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & -1 & 1 & 0 \\ 0 & \dots & 0 & -1 & -1 & 2 \end{bmatrix}$$
(2.12)

 $\rho L \frac{\partial \phi}{\partial t} = \rho L \frac{d\phi}{dT} \frac{\partial T}{\partial t}$ avec ϕ qui est une marche, on peut l'approximer par une fonction un peu plus dérivable par ex : $\phi \simeq \arctan(T - T_{fusion})$

$$\rho C p_{eff} = \rho C p(\phi) + \rho L \frac{d\phi}{dT}
R_T = a t^b, T = T(t, r/R_T(t))
\Rightarrow \frac{\partial T(t, r/R_T(t))}{\partial t} = \frac{\partial T}{\partial t} + \frac{\partial \frac{r}{R_T(t)}}{\partial t} \frac{\partial T}{\partial r} = \frac{\partial T}{\partial t} + \frac{\partial \frac{r}{R_T(t)}}{\partial t} \frac{\partial T}{\partial r}$$

3 Modèles

Note pour tous les modèles suivants on supposera que la Terre est composée d'un mélange homogène de $\phi = 18\%$ de métal et 82% de silicates. Et que les propriétés de ces matériaux ne changent pas avec la température ou le changement d'état.

Les constantes respectives et moyennes du mélange sont les suivantes :

moyenne	$_{ m metal}$	silicate	unité
4028	7800	3200	${\rm kgm^{-3}}$
1065	450	1200	$ m JK^{-1}kg^{-1}$
11.48	50	3	$ m WK^{-1}m^{-1}$
	250	500	${ m kJkg^{-1}}$
	1261	1408	K
	4028 1065	4028 7800 1065 450 11.48 50 250	4028 7800 3200 1065 450 1200 11.48 50 3 250 500

3.1 Modèle 1

Fichier: sim1.py

3.1.1 Description

On fait une première simulation la plus simple possible. Hypothèses :

- 1. Rayon de la Terre constant
- 2. Chauffage causé par la désintégration du ²⁶Al et par le rayonnement de corps noir.

3.1.2 Données initiales et constantes

Rayon de la Terre	$500\mathrm{km}$
Température initiale	300 K
Température de la nébuleuse	300 K
Demi-vie du ²⁶ Al	$0.74\mathrm{My}$

3.1.3 Équations

On considère les variables adimentionnées suivantes :

$$t = \frac{t'}{\tau_{1/2}^{Al}}$$
 , $r = \frac{r'}{\pi} \sqrt{\frac{\rho C_p}{k_T \tau_{1/2}}}$ et $T = \frac{T'}{T_0}$ (3.1)

Il en résulte les équations suivantes

$$\frac{\rho C_p T_0}{\tau_{1/2}} \partial_t T = \frac{T_0}{?} \frac{1}{r'^2} \partial_{r'} (\lambda r'^2 \partial_{r'} T) + P + S + Q_L$$
(3.2)

$$P = \rho H_0 e^{-ln(2)t} \tag{3.3}$$

$$S = 4\pi R^2 \sigma (T_{neb}^4 - (TT_0)^4) \quad \text{à la surface uniquement}$$
 (3.4)

Conclusion

A Première annexe