数据科学与工程算法基础 习题8

10195501436 龚敬洋

1

由于主特征值 $2 \in \mathbb{R}$ 且不是重根,因此可以使用幂法求出。

收敛速度正相关于 $\lambda_2/\lambda_1=1.7/2=0.85$

2

(1) A 的特征多项式

$$|\lambda I - A| = egin{vmatrix} \lambda - 2 & -1 \ -4 & \lambda - 5 \end{bmatrix} = (\lambda - 6)(\lambda - 1)$$

因此其特征值 $\lambda_1=6, \lambda_2=1$

对于 $\lambda_1 = 6$,

$$\lambda I - A = egin{pmatrix} 4 & -1 \ -4 & 1 \end{pmatrix}
ightarrow egin{pmatrix} 1 & -rac{1}{4} \ 0 & 0 \end{pmatrix}$$

因此其对应的特征向量 $\alpha_1=(1,4)^T$

对于 $\lambda_2 = 1$,

$$\lambda I - A = egin{pmatrix} -1 & -1 \ -4 & -4 \end{pmatrix}
ightarrow egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}$$

因此其对应的特征向量 $\alpha_2=(1,-1)^T$

(2)

k	v^T	$ v _2$	u^T
1	(3,9)	9.4868	(0.3162, 0.9487)
2	(1.5811, 6.0083)	6.2129	(0.2545, 0.9671)
3	(1.4761, 5.8535)	6.0368	(0.2445, 0.9696)
4	(1.4586, 5.8260)	6.0058	(0.2429, 0.9701)
5	(1.4559, 5.8221)	6.0014	(0.2426, 0.9701)
6	(1.4553, 5.8209)	6.0001	(0.2425, 0.9701)
7	(1.4551, 5.8205)	5.9996	(0.2425, 0.9701)

因此主特征值 $\lambda_1 pprox 6$,对应的特征向量为 $lpha_1 = (0.2425, 0.9701)^T$

(1) 设
$$v_0 = (1,1)^T$$
, 因此

$$u_0 = rac{v_0}{||v_0||_2} pprox (0.7071, 0.7071)^T, \mu_0 = \langle Au_0, u_0
angle = 5.5$$

u	μ
(0.5145, 0.8575)	5.8530
(0.5257, 0.8506)	5.8541
(0.5257, 0.8507)	5.8541
(0.5257, 0.8507)	5.8541

因此矩阵 A 的一个特征值为 5.8541,其对应的特征向量为 $(0.5257,0.8507)^T$

(2) 使用反幂法,取 $\mu=1$

设
$$v_0 = (1,1)^T$$
, 因此

$$u_0 = rac{v_0}{||v_0||_2} pprox (0.7071, 0.7071)^T$$

迭代求解方程 $(A-I)v_i=u_{i-1}$ 并归一化得到 u_i

i	u_i^T
1	(0,1)
2	(1,0)
3	(-0.7071, 0.7071)
4	(0.8944, -0.4472)
16	(0.8507, -0.5257)
17	(-0.8507, 0.5257)
18	(0.8507, -0.5257)

此时已收敛

因此 A 的第二大特征值 $\lambda_2=u_{18}^TAu_{18}pprox-0.8541$,其对应的特征向量为 $lpha_2pprox(0.8507,-0.5257)^T$

6

$$|\lambda I - A| = egin{array}{ccc} |\lambda - 1 & -1 & -1 \ -1 & \lambda - 2 & -3 \ -1 & -3 & \lambda - 6 \ \end{bmatrix} = (\lambda - 1)(\lambda - 4 + \sqrt{15})(\lambda - 4 - \sqrt{15})$$

因此其特征值 $\lambda_1=1, \lambda_2=4-\sqrt{15}, \lambda_3=4+\sqrt{15}$

对于 $\lambda_1 = 1$,

$$\lambda I - A = egin{pmatrix} 0 & -1 & -1 \ -1 & -1 & -3 \ -1 & -3 & -5 \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & 2 \ 0 & 1 & 1 \ 0 & 0 & 0 \end{pmatrix}$$

因此其对应的特征向量 $\alpha_1=(-2,-1,1)^T$

对于 $\lambda_2 = 4 - \sqrt{15}$,

$$\lambda I - A = egin{pmatrix} 3 - \sqrt{15} & -1 & -1 \ -1 & 2 - \sqrt{15} & -3 \ -1 & -3 & -2 - \sqrt{15} \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & rac{2}{\sqrt{15} - 5} \ 0 & 1 & rac{1 - \sqrt{15}}{\sqrt{15} - 5} \ 0 & 0 & 0 \end{pmatrix}$$

因此其对应的特征向量 $lpha_2=\left(rac{2}{5-\sqrt{15}},rac{\sqrt{15}-1}{\sqrt{15}-5},1
ight)^T$

对于 $\lambda_3 = 4 + \sqrt{15}$,

$$\lambda I - A = egin{pmatrix} 3 + \sqrt{15} & -1 & -1 \ -1 & 2 + \sqrt{15} & -3 \ -1 & -3 & -2 + \sqrt{15} \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & -rac{2}{5 + \sqrt{15}} \ 0 & 1 & -rac{1 + \sqrt{15}}{5 + \sqrt{15}} \ 0 & 0 & 0 \end{pmatrix}$$

因此其对应的特征向量 $lpha_3=\left(rac{2}{5+\sqrt{15}},rac{1+\sqrt{15}}{5+\sqrt{15}},1
ight)^T$