University of Salzburg

Lecturer: Roland Kwitt

Machine Learning (911.236, 536.505, 911.936, Summer 2025)

Exercise sheet A

Exercise 1. 2P.

Show that for any set A, the power set $\mathcal{P}(A)$ (often also written as 2^A) is a σ -algebra on A. Remember that the power set is defined as the set of all subsets of A.

Exercise 2.

Show that for any set A, $\{\emptyset, A\}$ is a σ -algebra.

Exercise 3. 2 P.

Show that if (S_1, \mathcal{F}_1) , (S_2, \mathcal{F}_2) and (S_3, \mathcal{F}_3) are measurable spaces and $f: S_1 \to S_2$, $g: S_2 \to S_3$ are measurable functions (with respect to the respective σ -algebras), then $g \circ f: S_1 \to S_3$, $x \mapsto (g \circ f)(x) = g(f(x))$ is measurable.

Exercise 4.

Say you have $S = \{a, b\}$ with σ -algebra $F = \mathcal{P}(S)$. Take a look at the following functions $(\mu_i, i = 1, ..., 4)$ that assign to each element of F a value in $\mathbb{R} \cup \{\infty\}$:

- $\mu_1(\emptyset) = 0$, $\mu_1(\{a\}) = 5$, $\mu_1(\{b\}) = 6$ and $\mu_1(\{a,b\}) = 11$
- $\mu_2(\emptyset) = 0$, $\mu_2(\{a\}) = 0$, $\mu_2(\{b\}) = 0$ and $\mu_2(\{a,b\}) = 1$
- $\mu_3(\emptyset) = 0$, $\mu_3(\{a\}) = 0$, $\mu_3(\{b\}) = 1$ and $\mu_3(\{a,b\}) = 1$
- $\mu_4(\emptyset) = 0$, $\mu_4(\{a\}) = 0$, $\mu_4(\{b\}) = \infty$ and $\mu_4(\{a,b\}) = \infty$

Which of those μ_i is a *measure*, which is a *measure/probability measure* (or neither)? Provide an argument for each answer.

Exercise 5. 2P.

Say you have a dice which takes values in $\Omega = \{1, 2, 3, 4, 5, 6\}$. What is the *minimal* σ -algebra that contains the information if the value of the dice is either in $\{1, 2\}$, in $\{3, 4\}$, or in $\{5, 6\}$.