```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import gridspec
```

df = pd.read_csv('creditcard.csv')

df

€	Time	V1	V2	V3	V4	V 5	V6	V7	V8	V9	 V21	V22	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	- C
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0
284807 ro	ws × 31 col	umns											

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): # Column Non-Null Count Dtype 0 284807 non-null float64 Time 1 V1 284807 non-null float64 284807 non-null float64 3 V3 284807 non-null float64 V4 284807 non-null float64 4 5 V5 284807 non-null float64 ۷6 284807 non-null float64 6 284807 non-null float64 V7 8 ٧8 284807 non-null float64 V9 284807 non-null float64 284807 non-null float64 10 V10 11 V11 284807 non-null float64 12 V12 284807 non-null float64 284807 non-null float64 13 V13 284807 non-null float64 14 V14 15 V15 284807 non-null float64 284807 non-null float64 16 V16 17 V17 284807 non-null float64 284807 non-null float64 18 V18 19 V19 284807 non-null float64 20 V20 284807 non-null float64 284807 non-null float64 21 V21 22 V22 284807 non-null float64 23 V23 284807 non-null float64 24 V24 284807 non-null float64 25 V25 284807 non-null float64 26 V26 284807 non-null float64 284807 non-null float64 27 V27 284807 non-null float64 28 V28 29 Amount 284807 non-null float64 30 Class 284807 non-null int64 dtypes: float64(30), int64(1) memory usage: 67.4 MB

df.describe()

	Time	V1	V2	V3	V4	V 5	V6	V7	V8
count	284807.000000	2.848070e+05							
mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.213481e-16
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.194353e+00
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.321672e+01 -
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.086297e-01
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.235804e-02
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.273459e-01
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.000721e+01
8 rows × 31 columns									

```
df.isnull().sum()
     Time
               0
     ٧1
               0
     V2
               0
     V3
               0
     V4
               0
     V5
               0
     V6
               0
     V7
               0
     ٧8
               0
     V10
               0
     V11
               0
     V12
     V13
               0
     V14
               0
     V15
               0
     V16
               0
     V17
               0
     V18
               0
     V19
               0
     V20
               0
     V21
               0
     V22
               0
     V23
               0
     V24
               0
     V25
               0
     V26
     V27
               0
     V28
               0
     Amount
               0
     Class
               0
     dtype: int64
# Determine number of fraud cases in dataset
fraud = df[df['Class'] == 1]
valid = df[df['Class'] == 0]
outlierFraction = len(fraud)/float(len(valid))
print(outlierFraction)
print('Fraud Cases: {}'.format(len(df[df['Class'] == 1])))
print('Valid Transactions: {}'.format(len(df[df['Class'] == 0])))
     0.0017304750013189597
     Fraud Cases: 492
     Valid Transactions: 284315
print('Amount details of the fraudulent transaction')
fraud.Amount.describe()
     Amount details of the fraudulent transaction
     count
               492.000000
     mean
               122.211321
               256.683288
     std
                 0.000000
     25%
                 1.000000
     50%
                 9.250000
     75%
               105.890000
```

```
2125.870000
     max
    Name: Amount, dtype: float64
print('details of valid transaction')
valid.Amount.describe()
     details of valid transaction
     count
              284315.000000
                  88.291022
    mean
     std
                 250.105092
                   0.000000
    min
     25%
                   5.650000
     50%
                  22.000000
     75%
                  77.050000
               25691.160000
    max
     Name: Amount, dtype: float64
# Correlation matrix
corrmat = df.corr()
fig = plt.figure(figsize = (12, 9))
sns.heatmap(corrmat, vmax = .8, square = True)
plt.show()
```

```
- 0.8
                       Time
                                           V1
                                           V2
                                           V3
                                           V4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - 0.6
                                           V5
                                           V6
                                           V7
                                           V8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - 0.4
                                           V9
                                  V10
                                V11
                                V12
                                V13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - 0.2
                              V14
                              V15
                              V16
                                V17
                                V18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - 0.0
                                V19
                                  V20
                                V21
                                  V22
                                V23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - -0.2
                                  V24
                                  V25
                                  V26
                                  V27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - -0.4
                                  V28
Amount
                       Class
                                                                                                                                                                                                                                                                                                                                                          V10 - V11 - V11 - V11 - V11 - V12 - V13 - V13 - V13 - V14 - V15 -
```

```
X = df.drop(['Class'], axis = 1)
Y = df["Class"]
print(X.shape)
print(Y.shape)

x = X.values
y = Y.values
```

plt.show()

```
(284807, 30)
     (284807,)
from sklearn.model_selection import train_test_split
xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size = 0.2, random_state = 42)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(xTrain, yTrain)
yPred = rfc.predict(xTest)
from sklearn.metrics import classification report, accuracy score
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score, matthews_corrcoef
from sklearn.metrics import confusion_matrix
n_{outliers} = len(fraud)
n_errors = (yPred != yTest).sum()
print("The model used is Random Forest classifier")
acc = accuracy_score(yTest, yPred)
print("The accuracy is {}".format(acc))
prec = precision_score(yTest, yPred)
print("The precision is {}".format(prec))
rec = recall_score(yTest, yPred)
print("The recall is {}".format(rec))
f1 = f1_score(yTest, yPred)
print("The F1-Score is {}".format(f1))
MCC = matthews_corrcoef(yTest, yPred)
print("The Matthews correlation coefficient is{}".format(MCC))
     The model used is Random Forest classifier
     The accuracy is 0.9995962220427653
     The precision is 0.9746835443037974
     The recall is 0.7857142857142857
     The F1-Score is 0.8700564971751412
     The Matthews correlation coefficient is0.8749276812909632
LABELS = ['Normal', 'Fraud']
conf_matrix = confusion_matrix(yTest, yPred)
plt.figure(figsize =(12, 12))
sns.heatmap(conf_matrix, xticklabels = LABELS, yticklabels = LABELS, annot = True, fmt ="d");
plt.title("Confusion matrix")
plt.ylabel('True class')
plt.xlabel('Predicted class')
```

