

# Bayesian methods for the control-based continuation of multiple-timescale systems

Mark Blyth



# Plan de jour

- CBC maths
- Surrogate modelling
- Novel discretisations



# Plan de jour

- Surrogate modelling
- Novel discretisations



Dynamics are 'what something does'



#### A bifurcation is a change in dynamics





Bifurcation analysis:

1. Find a feature

#### Bifurcation analysis:

- 1. Find a feature
- 2. Change a parameter slightly



#### Bifurcation analysis:

- 1. Find a feature
- Change a parameter slightly
- 3. Find where the feature moved to



#### Bifurcation analysis:

- Find a feature
- Change a parameter slightly
- 3. Find where the feature moved to
- 4. Bifurcations occur when features change, appear, or disappear

- Numerical continuation:
  - Features x defined given by  $f(x, \lambda) = 0$
  - Change  $\lambda$ , see how x changes

#### George Box

All models are wrong, but some are useful

Control-based continuation; model-free bifurcation analysis:

1. Build a system controller

Control-based continuation; model-free bifurcation analysis:

- 1. Build a system controller
  - Put in target  $u^*(t)$

Control-based continuation; model-free bifurcation analysis:

- 1. Build a system controller
  - Put in target  $u^*(t)$
  - lacktriangle Controller makes system follow  $u^*(t)$



Control-based continuation; model-free bifurcation analysis:

- Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$

Control-based continuation; model-free bifurcation analysis:

- 1. Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$ 
  - Noninvasiveness := no control action applied



Control-based continuation; model-free bifurcation analysis:

- Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$ 
  - Noninvasiveness := no control action applied
  - No control action = system behaves naturally



Control-based continuation; model-free bifurcation analysis:

- Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$ 
  - Noninvasiveness := no control action applied
  - No control action = system behaves naturally
- Change a parameter



Control-based continuation; model-free bifurcation analysis:

- Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$ 
  - Noninvasiveness := no control action applied
  - No control action = system behaves naturally
- Change a parameter
- 4. Find how noninvasive  $u^*(t)$  changed

Control-based continuation; model-free bifurcation analysis:

- Build a system controller
  - Put in target  $u^*(t)$
  - ightharpoonup Controller makes system follow  $u^*(t)$
- 2. Find noninvasive  $u^*(t)$ 
  - Noninvasiveness := no control action applied
  - No control action = system behaves naturally
- Change a parameter
- 4. Find how noninvasive  $u^*(t)$  changed
  - Tracks system features, bifurcations without ever needing a model

#### CBC

#### Control-based continuation

A model-free bifurcation analysis method. Uses a controller to stabilise a system, and continuation to track features.

My project: use CBC to analyse the bifurcations that make neurons fire

Recent work: improving CBC discretisation

k Periodic orbits are functions satisfying f(t) = f(t+T)



Recent work: improving CBC discretisation

- $\bigvee$  Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I\left[u^{*}\right] = \int_{0}^{T} \left[u(u^{*},t)\right]^{2} \mathrm{d}t = 0$$
 for function  $u^{*}(t)$ 



Recent work: improving CBC discretisation

- $\bigvee$  Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T \left[ u(u^*, t) \right]^2 dt = 0$$
 for function  $u^*(t)$ 

Basically, trying to solve for a function



Recent work: improving CBC discretisation

- $\bigvee$  Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T [u(u^*, t)]^2 dt = 0$$
 for function  $u^*(t)$ 

- Basically, trying to solve for a function
- Discretisation lets us approximately solve the problem by solving a finite set of equations



Goal: solve  $I[u^*] = 0$ 

- Translate problem to system of vector-valued equations
- 2. Solve system numerically
- Translate solution back to a continuous function

Translation between continuous and vector-valued systems is discretisation



#### Definition (Discretisation)

The act of representing a continuous signal by a discrete counterpart

We want a discretisation that

Has minimal discretisation error

Is low-dimensional

 $\ensuremath{\mathbb{K}}$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 

- $\bigvee$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eg. Fourier: let our periodic target be

$$u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$$

# 🍇 😽 BRISTÓL

## How do we discretise?

- $\swarrow$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eq. Fourier: let our periodic target be  $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics  $\mathbf{u}^* = \{a_0, a_i, b_i\}$



- $\swarrow$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eq. Fourier: let our periodic target be  $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics  $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not k$   $u^*(t)$  can be represented by  $\mathbf{u}^*$  with minimal error

- $\swarrow$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eq. Fourier: let our periodic target be  $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics  $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not = u^*(t)$  can be represented by  $\mathbf{u}^*$  with minimal error
- The functional problem can be rewritten as  $I(\mathbf{u}^*) = 0$



- $\swarrow$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eq. Fourier: let our periodic target be  $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics  $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not = u^*(t)$  can be represented by  $\mathbf{u}^*$  with minimal error
- The functional problem can be rewritten as  $I(\mathbf{u}^*) = 0$ 
  - Finite-vector equation, solvable!



- $\swarrow$  Let  $\mathbf{u}^*$  be some vector 'representing' the signal  $u^*(t)$ 
  - Eq. Fourier: let our periodic target be  $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics  $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not = u^*(t)$  can be represented by  $\mathbf{u}^*$  with minimal error
- The functional problem can be rewritten as  $I(\mathbf{u}^*) = 0$ 
  - Finite-vector equation, solvable!
- This is how we track dynamical features

#### Issues with discretisation

₭ Solving the discretised system takes a long time when it is high-dimensional

Neuron signals require lots of Fourier harmonics to discretise

Higher-order harmonics are harder to get [Nyquist cap] and less accurate [SNR]



# Plan de jour

CBC maths

Surrogate modelling

Novel discretisations

# The need for surrogates

Recent work: local surrogate models for experimental data

University of Bayesian methods for the control-based continuation of multiple-timescale systems BRISTOL

### The need for surrogates

Recent work: local surrogate models for experimental data

### Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

bristol ac uk

# The need for surrogates

Recent work: local surrogate models for experimental data

### Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

Record experimental data

bristol ac uk

# The need for surrogates

Recent work: local surrogate models for experimental data

### Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

- Record experimental data
- Fit a surrogate model

### The need for surrogates

Recent work: local surrogate models for experimental data

### Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

- Record experimental data
- Fit a surrogate model
- Perform analysis on model



#### Real data are noisy





Real data are 'fast'



[Thanks to KTA for the data]

We want to get rid of noise to get the best possible discretisation

- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise

- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy

- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
  - High signal-to-noise ratio on the harmonics that give sharp spikes



- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
  - High signal-to-noise ratio on the harmonics that give sharp spikes
  - Simple low-pass filters would remove both noise and signal



- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
  - High signal-to-noise ratio on the harmonics that give sharp spikes
  - Simple low-pass filters would remove both noise and signal
- A good surrogate lets us remove noise in a statistically optimal way

bristol ac uk

- We want to get rid of noise to get the best possible discretisation
  - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
  - High signal-to-noise ratio on the harmonics that give sharp spikes
  - Simple low-pass filters would remove both noise and signal
- A good surrogate lets us remove noise in a statistically optimal way
  - Less noise = better discretisation

We have a 'true' signal 
$$f(t)$$
, but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 



- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes

bristol ac uk

- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
  - Assume  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

# 🧔 😽 BRISTOL

# Bayesian surrogates

- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
  - Assume  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- $\bigvee$  Let's estimate  $y^* = f(t^*)$  at unseen data  $t^*$



- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
  - Assume  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- $\bigvee$  Let's estimate  $y^* = f(t^*)$  at unseen data  $t^*$ 
  - ▶ Joint distribution:  $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_k^2)$

🧔 😽 BRISTOL

- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
  - Assume  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- $\bigvee$  Let's estimate  $y^* = f(t^*)$  at unseen data  $t^*$ 
  - ▶ Joint distribution:  $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_h^2)$
  - ightharpoonup Conditional distribution:  $p(f(t^*)|t^*,y,t)$

- We have a 'true' signal f(t), but we can only see noise-corrupted samples  $y_i = f(t_i) + \varepsilon$ 
  - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
  - Assume  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- $\bigvee$  Let's estimate  $y^* = f(t^*)$  at unseen data  $t^*$ 
  - ▶ Joint distribution:  $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_k^2)$
  - ightharpoonup Conditional distribution:  $p(f(t^*)|t^*,y,t)$
- This is Gaussian process regression!



### Gaussian process regression surrogates

Build a statistically optimal regression model from noisy observations



**★** GPR is Bayesian

- K GPR is Bayesian
  - Covariance function specifies our initial belief about the data

- K GPR is Bayesian
  - Covariance function specifies our initial belief about the data
- Covariance functions generally assume stationarity



- GPR is Bayesian
  - Covariance function specifies our initial belief about the data
- Covariance functions generally assume stationarity
  - Assume smooth, nice signals

bristol ac uk

# BRISTOL

### GPR results

- GPR is Bayesian
  - Covariance function specifies our initial belief about the data
- Covariance functions generally assume stationarity
  - Assume smooth, nice signals
- Stationary covariance = poorly encoded beliefs = low belief in posterior

bristol ac uk

BRISTOL

- GPR is Bayesian
  - Covariance function specifies our initial belief about the data
- Covariance functions generally assume stationarity
  - Assume smooth, nice signals
- Stationary covariance = poorly encoded beliefs = low belief in posterior
  - Bayes with bad priors = bad results!





Stationary GPR, non-stationary data = overly flexible models

Non-stationary would fix this

Non-stationary GPR is hard!

Less flexible alternative: splines

- Less flexible alternative: splines
- Choose some representative points



- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point

bristol ac uk

- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point
- Choose polynomials so that the function is smooth



- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point
- Choose polynomials so that the function is smooth
- Finite, low degree-of-freedom, forcibly averages out noise

# Bayesian splines

Choosing representative points is hard

Choosing representative points is hard

Alternative: don't!

- Choosing representative points is hard
- Alternative: don't!
  - Let  $\xi$  be a vector of representative points

- Choosing representative points is hard
- Alternative: don't!
  - Let  $\xi$  be a vector of representative points
  - ightharpoonup Find  $p(\xi|x,y)$



- Choosing representative points is hard
- Alternative: don't!
  - Let  $\xi$  be a vector of representative points
  - ightharpoonup Find  $p(\xi|x,y)$
  - Use that to estimate  $p(f|\xi, x, y)$



- Choosing representative points is hard
- Alternative: don't!
  - Let  $\mathcal{E}$  be a vector of representative points
  - Find  $p(\xi|x,y)$
  - Use that to estimate  $p(f|\xi, x, y)$
- This is Bayesian free-knot splines



#### Splines as a surrogate

#### Result 1: splines outperform stationary GPR as neuronal data surrogate





#### Plan de jour

- CBC maths
- Surrogate modelling
- Novel discretisations

My current work...

₭ Bayesian free-knot splines gives a good noise-free surrogate model



My current work. . .

- ₩ Bayesian free-knot splines gives a good noise-free surrogate model
  - More accurate discretisations



My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
  - More accurate discretisations
- Issue: too many coefficients are needed to discretise the signal



My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
  - More accurate discretisations
- Issue: too many coefficients are needed to discretise the signal
  - Too many = too slow



My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
  - More accurate discretisations
- Issue: too many coefficients are needed to discretise the signal
  - Too many = too slow
- We can reconstruct signal from splines models



My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
  - More accurate discretisations
- Issue: too many coefficients are needed to discretise the signal
  - Too many = too slow
- We can reconstruct signal from splines models
  - Is this a discretisation?



**K** Splines models are of form 
$$\hat{f}(x) = \sum \beta_i b_i(x)$$



- & Splines models are of form  $\hat{f}(x) = \sum \beta_i b_i(x)$ 
  - $\blacktriangleright$   $b_i(x)$  form a set of basis functions over splines models



- $\checkmark$  Splines models are of form  $\hat{f}(x) = \sum \beta_i b_i(x)$ 
  - $ightharpoonup b_i(x)$  form a set of basis functions over splines models

For a basis set  $b_i$ , can the associated  $\beta_i$  discretise a signal?



- $\bigvee$  Splines models are of form  $\hat{f}(x) = \sum \beta_i b_i(x)$ 
  - $\blacktriangleright$   $b_i(x)$  form a set of basis functions over splines models

- For a basis set  $b_i$ , can the associated  $\beta_i$  discretise a signal?
  - Result 2: probably...



#### Spline discretisation

8-dimensional discretisation; but does it work with continuation?





#### Splines vs Fourier

Hodgkin-Huxley neuron; error decays *significantly* faster with splines





#### Splines vs Fourier

Hodgkin-Huxley neuron; error decays *significantly* faster with splines



# 🎑 🛂 BRISTÓL

#### Where next?

- Test the robustness
- See if the discretisation breaks down with stochastic models
  - It probably will
- Test the discretisation with continuation
  - Splines discretisation is still only a local model
  - Need to ensure it can predict signals at other parameter values

