STA 561: Homeworks 7 & 8 (Due April 17 at midnight)

Reminder: work together! Share ideas, brainstorm, explain/verify your answers but write up your own work. Your homework should be submitted as pdf file generated using either latex or an python notebook.

- 1. (A simple decision model.) Consider the following generative model for (X, A, Y)
 - $X^{(1/5)} \sim \text{Normal}(0,1)$
 - $\bullet \ \ A = 1_{|X| \le \tau}$
 - $Y = \beta_0 + \beta_1 A + \beta_2 X + \beta_3 AX + \epsilon$, where $\epsilon \sim \text{Normal}(0, 1)$.

Suppose that $\beta_0 = \beta_1 = \beta_2 = 1$ and $\beta_3 =$. What is the optimal decision rule? I.e., mapping $\pi : \mathbb{R} \to \{0,1\}$ such that if decisions are assigned according to π the value $V(\pi)$ is maximized. Generate 1000 data sets of size n = 500 from this model for $\tau = 0.01$ and $\tau = 0.025$ and use OLS to estimate β_0, \ldots, β_3 . In what proportion of your data sets was the p-value for β_3 significant? What's happening here? Are the standard causal assumptions verified?

- 2. (Run on sentence, run on.) Suppose that we have a black-box regression model that inputs data of the form $\{(\boldsymbol{X}_i,Y_i)\}_{i=1}^n$ and outputs an estimator $\widehat{f}_n(\boldsymbol{x})$ of $\mathbb{E}(Y|\boldsymbol{X}=\boldsymbol{x})$. Our goal in this problem to explore approximating \widehat{f}_n with a kernel. For this problem you'll be exploring two approaches for constructing kernels: (i) born-again random forests in which you will generate many inputs $\boldsymbol{Z}_1,\ldots,\boldsymbol{Z}_B$ (where B is large) from the convex hull of the support of $\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n$, create outputs $\widehat{f}_n(\boldsymbol{Z}_1),\ldots,\widehat{f}_n(\boldsymbol{Z}_B)$, then fit $\left\{(\boldsymbol{Z}_b,\widehat{f}_n(\boldsymbol{Z}_b))\right\}_{b=1}^B$ using a random forest from which you can extract the random forest kernel; (ii) ad-hoc kernels in which you will repeat the following steps for $b=1,\ldots,B$
 - bootstrap the data
 - randomly select a subset of the predictors (columns of X) by drawing M entries without replacement from $\{1, \ldots, p\}$
 - apply the black box to the bootstrapped and column-subset data to obtain $\widehat{f}_n^{(b)}$
 - draw random seeds y_1, \ldots, y_L uniformly from Y_1, \ldots, Y_n and corresponding Voronoi partition of \mathbb{R}

then for any $\boldsymbol{x} \in \mathbb{R}^p$ define $A_n^{(b)}(\boldsymbol{x})$ to the partition to which $\widehat{f}_n^{(b)}(\boldsymbol{x})$ belongs and define the kernel distance between two points $\boldsymbol{x}, \boldsymbol{z}$ to be

$$K(\boldsymbol{x}, \boldsymbol{z}) \triangleq rac{1}{B} \sum_{b=1}^{B} 1_{\boldsymbol{x} \in A_n^{(b)}(\boldsymbol{z})}.$$

Note that the ad hoc kernel depends on L, K, and B which you will need to tune/adjust.

Implement the two kernel methods and conduct a simulation study comparing local linear models fit using these kernel functions when the black box model is random forests and boosting (implemented in xgboost).