```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pytho
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
from sklearn.model selection import train test split
from sklearn.preprocessing import OrdinalEncoder
from sklearn.metrics import accuracy_score
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
from sklearn.model_selection import KFold
from sklearn.model selection import RepeatedKFold
from sklearn import svm
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import mean absolute error
from sklearn.metrics import precision score
from sklearn import metrics
from sklearn.metrics import precision recall curve
from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make classification
import xgboost as xgb
from sklearn.neural network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files
under the input directory
import os
for dirname, , filenames in os.walk('/kaggle/input'):
    for filename in filenames:
       print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserve
d as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of
the current session
/kaggle/input/data-antibody/data antibody.csv
/kaggle/input/pcr-data/pcr data.csv
/kaggle/input/both-covid-data/both covid data.csv
/kaggle/input/covid-data-gender/data covid fe.csv
/kaggle/input/covid-data-gender/both covid data gender.csv
/kaggle/input/covid-data-gender/data covid ma.csv
```

Loading data_antibody!

```
In [2]:
```

In [1]:

```
data_antibody = pd.read_csv("/kaggle/input/data-antibody/data_antibody.csv")
data_antibody=data_antibody.astype(int)
data_antibody.head()
```

```
Out[2]:
```

S	Symptom- Throat Pain	Symptom- Dyspnea	Symptom- Fever	Symptom- Cough	Symptom- Headache	Symptom- Taste Disorders	Olidotoly	Symptom- Coryza	Gender	Are you a health professional?	Class
0	0	1	0	0	1	0	1	0	0	1	0

1	Symptom [‡] Throat Pain	Symptom- Dyspnea	Symptom- Fever	Symptom- Cough	Symptom- Headache	Symptom ¹ Taste Disorder ⁰	Symptoma Olfactory Disorders	Symptom- Coryza	1 Gender 0	Are you & health professional?	0 Class 0
3	0	1	0	0	1	1	0	1	1	0	0
4	1	1	0	0	1	1	1	0	0	1	0
4											

Loading data_pcr!

```
In [3]:
```

```
data_pcr= pd.read_csv("/kaggle/input/pcr-data/pcr_data.csv")
data_pcr=data_pcr.astype(int)
data_pcr.head()
```

Out[3]:

	Symptom- Throat Pain	Symptom- Dyspnea	Symptom- Fever	Symptom- Cough		Symptom- Taste Disorders		Symptom- Coryza	Gender	Are you a health professional?	Class
0	0	1	0	0	1	1	1	1	1	1	0
1	1	1	1	1	1	0	0	1	0	1	0
2	0	1	0	0	0	0	0	1	1	1	0
3	0	1	0	0	1	0	0	0	0	1	0
4	1	0	0	0	1	0	0	1	0	1	0
4) Þ

Loading both data!

```
In [4]:
```

```
data_both= pd.read_csv("/kaggle/input/both-covid-data/both_covid_data.csv")
#a.astype(float)
data_both=data_both.astype(int)
```

In [5]:

```
def RandomForest classif(x train, y train):
    #Classification
   clf= RandomForestClassifier()
   clf=clf.fit(x train, y train)
   return clf
def Kneighbors classif(x train, y train):
    #Classification
    clf= KNeighborsClassifier(n neighbors=3)
   clf= clf.fit(x train, y train)
   return clf
def DecisionTree_classif(x_train,y_train):
    #Classification
   clf = tree.DecisionTreeClassifier()
   clf = clf.fit(x_train,y_train)
   return clf
def mpl classif(x train, y train):
   clf = MLPClassifier(max iter=300, solver='lbfgs', alpha=1e-5, random state=42)
   clf=clf.fit(x_train,y_train)
   return clf
def gb_classif(x_train,y_train):
   param dist = {'n estimators':500,'max depth':5}
```

```
clf=GradientBoostingClassifier(**param_dist)
clf=clf.fit(x_train, y_train)
return clf

def xgb_classif(x_train, y_train):
    param_dist = {'n_estimators':300,'max_depth':9,'min_child_weight': 2}

    clf = xgb.XGBClassifier(**param_dist)
    return clf.fit(x_train, y_train)

def svc_classif(x_train, y_train):
    regr = svm.SVC()
    regr=regr.fit(x_train, y_train)
    return regr
```

In [6]:

```
def calculate metrics(x train, x test, y train, y test, data, k, clf):
        #prediction
        y_pred=clf.predict(x_test)
        #accuracy score
        acc=accuracy score(y test, y pred)*100
        #confusion matrix
        tn, fp, fn, tp = confusion matrix(y test, y pred).ravel()
        fpr, tpr, thresholds = metrics.roc curve(y test, y pred)
        #precision
        data.iloc[k:k+1,:1] = (tp/(tp+fp))*100
        data.iloc[k:k+1,1:2]=acc
        #recall
        data.iloc[k:k+1,2:3] = (tp/(tp+fn)) *100
        #mean absolute error
        data.iloc[k:k+1,3:4]=mean absolute error(y test, y pred)*100
        #AUC
        data.iloc[k:k+1,4:5] = metrics.roc auc score(y test,y pred)*100
        return data
```

In [7]:

```
def calculate_prediction(x,y):
    dt=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    rf=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    dmlp=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    dgbm=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    xgboost=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    dt_svm=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))
    dt_knn=pd.DataFrame(columns=['P','ACC','R','MAE','AUC'],index=range(50))

n=0
    for k in range(50):

        x_train, x_test, y_train, y_test = train_test_split(
        x, y, test_size=0.3, random_state=n, stratify=y)

        clf_svm=svc_classif(x_train,y_train)
        dt_svm=calculate_metrics(x_train, x_test,y_train, y_test, dt_svm,k,clf_svm)
```

Test Antibody prediction!

```
In [8]:
```

Out[8]:

	Р	ACC	R	MAE	AUC
Decision Tree	98.858201	99.416370	100.0	0.583630	99.415957
Random Forest	99.074348	99.530249	100.0	0.469751	99.529990
GBM	99.074348	99.530249	100.0	0.469751	99.529990
XGBoost	98.866996	99.423488	100.0	0.576512	99.423151
Mlp	98.853282	99.416370	100.0	0.583630	99.416109
SVM	99.074348	99.530249	100.0	0.469751	99.529990
KNN	99.007279	99.494662	100.0	0.505338	99.494529

Test pcr prediction!

```
In [9]:
```

Out[9]:

```
        P
        ACC
        R
        MAE
        AUC

        Decision Tree
        96.353979
        97.080460
        97.877395
        2.919540
        97.080460

        Pandom Forcet
        06.079473
        07.200905
        07.946742
        2.600405
        07.200905
```

naliuviii FVIESL		CUOUEC. 1 E			
GBM	P - 96.985010	ACC 97.402299	R 97.862069	MAE 2.597701	97.402299
XGBoost	96.706365	97.068966	97.478927	2.931034	97.068966
Mip	97.684158	97.858238	98.053640	2.141762	97.858238
SVM	95.211460	94.275862	93.287356	5.724138	94.275862
KNN	94.759589	95.141762	95.586207	4.858238	95.141762

Both test prediction!

In [10]:

Out[10]:

	P	ACC	R	MAE	AUC
Decision Tree	97.198459	97.628892	98.097617	2.371108	97.628758
Random Forest	98.504565	98.278954	98.052841	1.721046	98.279023
GBM	97.810649	98.009963	98.227106	1.990037	98.009950
XGBoost	98.192523	98.007472	97.823836	1.992528	98.007537
Mip	98.080166	98.226650	98.386521	1.773350	98.226622
SVM	97.917837	96.077210	94.168249	3.922790	96.077586
KNN	96.796596	96.774595	96.763167	3.225405	96.774755