CE 221 ENGINEERING MECHANICS I (FALL 2014 – 2015)

Home Exercise V - Equilibrium

(http://www2.ce.metu.edu.tr/~ce221)

Q1.

The forces act on the shaft shown. Determine the internal normal force at points A, B, and C.

ANS: $N_A=5.0$ kN, $N_C=4.0$ kN, $N_B=3.0$ kN O2.

Determine the internal normal force and shear force, and the bending moment in the beam at points C and D. Assume the support at B is a roller. Point C is located just to the right of the 8-kN load.

ANS:Nc=0, Vc=-4.0 kN, Mc=8 kNm, Np=0, Vp=-4.0 kN, Mp=48 kNm

Q3.

Determine the shear force and moment at points C and D.

ANS= $N_{\rm C}{=}0$ kN, $V_{\rm C}{=}{-}386$ kN, $M_{\rm C}{=}{-}428.6$ kN.m, $N_{\rm D}{=}0$ kN, $V_{\rm D}{=}300$ kN, $M_{\rm D}{=}{-}300$ kN.m Q4.

Determine the normal force, shear force, and moment at a section passing through point D of the two-member frame.

 $ANS:N_D=1.92 \text{ kN}, V_D=100 \text{ N}, M_D=900 \text{ Nm}$

Q5.

Determine the internal normal force, shear force, and bending moment in the beam at point B.

ANS: $N_B=0$ kN, $V_B=9.6$ kN, $M_B=-12.8$ kN.m

Q6.

Determine the internal normal force, shear force, and the moment at points C and D.

ANS: N_C=2.49 kN, V_C=2.49 kN, M_C=4.97 kN.m N_D= 0 kN, V_D=-2.49 kN, M_D=16.5 kN.m

O7.

Determine the internal normal force, shear force, and bending moment in the beam at points D and E. Point E is just to the right of the 20-kN load. Assume A is a roller support, the splice at B is a pin, and C is a fixed support,

ANS: N_D = 0 kN, V_D =0 kN, M_D =45 kN.m N_E = 0 kN, V_E =-50 kN, M_E =-60 kN.m

Determine the internal normal force, shear force, and bending moment at points E and F of the frame.

ANS: N_E= 894 kN, V_E=0 kN, M_E=0 kN.m, N_F= 224 kN, V_F=447 kN, M_F=224 kN.m

Q9.

The semicircular arch is subjected to a uniform distributed load along its axis of w_0 per unit length. Determine the internal normal force, shear force, and moment in the arch at $\theta = 120^{\circ}$.

ANS: $N = -0.866 \text{ rw}_0$, $V = -1.5 \text{ rw}_0$, $M = 1.23 \text{ r}^2 \text{w}_0$

Q10.

Draw the shear and bending-moment diagrams for each of the two segments of the compound beam.

ANS: Member AB: V={875 -150x} N, M={875x -75x²} N.m, V={2100 -150x} N, M={-75x² +2100x-1400} N.m, Member CBD: V=919 N, M={919x} N.m,

Q11.

Draw the shear and moment diagrams for the beam.

ANS: $V=\{4.8-x^2/6\}$ kN, $M=\{4.8x-x^3/18-5.76\}$ kN.m $V=\{1/6(2.4-x^2)\}$ kN, $M=\{1/18(2.4x-x)^3\}$ kN.m Q12.

Draw the shear and bending-moment diagrams for the beam.

ANS: -

Q13.

Express the internal shear and moment components acting in the rod as a function of y, where $0 \le y \le 4$ m.

ANS: $V_x=0$ kN, $V_z=\{24-4y\}$ kN, $M_x=\{2y^2-24y+64\}$ kN.m, $M_y=8$ kN.m, $M_z=0$ kN.m Q14.

Draw the shear and moment diagrams for the beam ABCDE. All pulleys have a radius of 0.1 m. Neglect the weight of the beam and pulley arrangement. The load weighs 500 N.

ANS: E_y=333.33 N, A_y=166.67 N

Q15.

Draw the shear and moment diagrams for the beam.

ANS: $B_y=10.5 \text{ kN}, A_y=9.50 \text{ kN},$

Q16.

Draw the shear and moment diagrams for th beam.

ANS: D_y =32.167 kN, A_y =1.167 kN Q17.

The beam consists of two segments pin connected at B. Draw the shear and moment diagrams for the beam.

ANS: -

Q18.

Draw the shear and moment diagrams for the beam.

ANS: $B_y=40 \text{ kN}$, $A_y=40 \text{ kN}$, M=-45 kN.m