

Machine Learning Algorithms

- Machine Learning algorithm: a procedure in developing computer programs that improve their performance with "experience."
- Types of machine learning: Naïve Bayes, Linear Regression, Support Vector Machine, Decision Tree, Neural Network, Deep Learning, and so on.
- Learning all algorithms are over the scope of this summer boot camp. We will focus on Naïve Bayes as an example of Machine Learning.

Outline

- Basic Probability and Notation
- Bayes Law and Naive Bayes Classification
- Smoothing
- Class Prior Probabilities
- Naive Bayes Classification
- Summary

Crash Course in Basic Probability

Discrete Random Variable

- A is a discrete random variable if:
 - A describes an event with a finite number of possible outcomes (discrete vs continuous)
 - A describes and event whose outcomes have some degree of uncertainty (random vs. predetermined)

Discrete Random Variables Examples

- A = the outcome of a coin-flip
 - outcomes: heads, tails
- A = it will rain tomorrow
 - outcomes: rain, no rain
- A = you have the flu
 - outcomes: flu, no flu

Discrete Random Variables Examples

- A = the color of a ball pulled out from this bag
 - outcomes: RED, BLUE, ORANGE

Probabilities

- Let P(A=X) denote the probability that the outcome of event A equals X
- For simplicity, we often express P(A=X) as P(X)
- Ex: P(RAIN), P(NO RAIN), P(FLU), P(NO FLU), ...

Probability Distribution

- A probability distribution gives the probability of each possible outcome of a random variable
- P(RED) = probability of pulling out a red ball
- P(BLUE) = probability of pulling out a blue ball
- P(ORANGE) = probability of pulling out an orange ball

Probability Distribution

- For it to be a probability distribution, two conditions must be satisfied:
 - the probability assigned to each possible outcome must be between 0 and 1 (inclusive)
 - the <u>sum</u> of probabilities assigned to all outcomes must equal 1

```
0 \le P(RED) \le 1

0 \le P(BLUE) \le 1

0 \le P(ORANGE) \le 1

P(RED) + P(BLUE) + P(ORANGE) = 1
```

Probability Distribution Estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = ?
- P(BLUE) = ?
- P(ORANGE) = ?

Probability Distribution estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = 10/20 = 0.5
- P(BLUE) = 5/20 = 0.25
- P(ORANGE) = 5/20 = 0.25
- P(RED) + P(BLUE) + P(ORANGE) = 1.0

Probability Distribution assigning probabilities to outcomes

- Given a probability distribution, we can assign probabilities to different outcomes
- I reach into the bag and pull out an orange ball. What is the probability of that happening?
- I reach into the bag and pull out two balls: one red, one blue. What is the probability of that happening?
- What about three orange balls?

```
P(RED) =
P(BLUE) =
P(ORANGE) =
```


What can we do with a probability distribution?

- If we assume that each outcome is independent of previous outcomes, then the probability of a <u>sequence</u> of outcomes is calculated by <u>multiplying</u> the individual probabilities
- Note: we're assuming that when you take out a ball, you put it back in the bag before taking another

P(RED) = 0.5 P(BLUE) = 0.25 P(ORANGE) = 0.25

What can we do with a probability distribution?

What can we do with a probability distribution?

- P() =

P(RED) = 0.5 P(BLUE) = 0.25 P(ORANGE) = 0.25

Joint and Conditional Probability

- P(A,B): the probability that event A and event B both occur
- P(A|B): the probability of event A occurring given prior knowledge that event B occurred

Conditional Probability

$$P(RED) = 0.50$$

$$P(BLUE) = 0.25$$

$$P(ORANGE) = 0.25$$

- | A) = 0.25
- | A = 0.5

$$P(RED) = 0.50$$

$$P(BLUE) = 0.00$$

$$P(ORANGE) = 0.50$$

Chain Rule

- $P(A, B) = P(A|B) \times P(B)$
- Example:
 - probability that it will rain today (B) <u>and</u> tomorrow
 (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)

- $P(A, B) = P(A|B) \times P(B) = P(A) \times P(B)$
- Example:
 - probability that it will rain today (B) <u>and</u> tomorrow
 (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)
 - probability that it will rain tomorrow (A)

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

B

B

$$P(\bigcirc | A) = P(\bigcirc)$$

Outline

- Basic Probability and Notation
- Bayes Law and Naive Bayes Classification
- Smoothing
- Class Prior Probabilities
- Naive Bayes Classification
- Summary

Bayes' Law

Bayes' Law

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Derivation of Bayes' Law

$$P(A,B) = P(A,B)$$

Always true!

$$P(A/B) \times P(B) = P(B/A) \times P(A)$$

Chain Rule!

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Divide both sides by P(B)!

example: positive/negative movie reviews

Bayes Rule

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Confidence of POS prediction given instance D

$$P(POS|D) = \frac{P(D|POS) \times P(POS)}{P(D)}$$

Confidence of NEG prediction given instance D

$$P(NEG|D) = \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$\frac{P(D|POS) \times P(POS)}{P(D)} \ge \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

$$P(POS|D) \qquad P(NEG|D)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$\frac{P(D|POS) \times P(POS)}{P(D)} \ge \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

Otherwise, predict negative (NEG)

Are these necessary?

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

 Our next goal is to estimate these parameters from the training data!

P(D|POS) = ??

example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- P(NEG) = % of training set documents that are NEG
- P(POS) = % of training set documents that are POS
- P(D|NEG) = ??
- P(D|POS) = ??

Remember Conditional Probability?

Α

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

B

Training Instances

Positive Training Instances

Negative Training Instances

$$P(D|POS) = ??$$

$$P(D|NEG) = ??$$

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	 w_n	sentiment
1	0	1	0	1	0	0	1	 0	positive
0	1	0	1	1	0	1	1	 0	positive
0	1	0	1	1	0	1	0	 0	positive
0	0	1	0	1	1	0	1	 1	positive
						••••		 	i
1	1	0	1	1	0	0	1	 1	positive

example: positive/negative movie reviews

• We have a problem! What is it?

Training Instances

Positive Training Instances

$$P(D|POS) = ??$$

Negative Training Instances

$$P(D|NEG) = ??$$

- We have a problem! What is it?
- Assuming n binary features, the number of possible combinations is 2ⁿ
- $2^{1000} = 1.071509e + 301$
- And in order to estimate the probability of each combination, we would require multiple occurrences of each combination in the training data!
- We could never have enough training data to reliably estimate P(D|NEG) or P(D|POS)!
- The document for the prediction in test data would not appear in training data

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- In other words, the value of a particular feature is only dependent on the class value
- This is what Naïve means

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	 w_n	sentiment
1	0	1	0	1	0	0	1	 0	positive
0	1	0	1	1	0	1	1	 0	positive
0	1	0	1	1	0	1	0	 0	positive
0	0	1	0	1	1	0	1	 1	positive
								 	:
1	1	0	1	1	0	0	1	 1	positive

example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- Example: we have <u>seven</u> features and D = 1011011
- P(1011011 | POS) =

```
P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS)
```

• P(1011011 | NEG) =

```
P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG)
```

example: positive/negative movie reviews

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	 w_n	sentiment
1	0	1	0	1	0	0	1	 0	positive
0	1	0	1	1	0	1	1	 0	negative
0	1	0	1	1	0	1	0	 0	negative
0	0	1	0	1	1	0	1	 1	positive
i	:	••••						 	:
1	1	0	1	1	0	0	1	 1	negative

example: positive/negative movie reviews

	POS	NEG	P(w ₁ =1 POS) = ??
$w_1 = 1$	а	b	
$w_1 = 0$	С	d	

example: positive/negative movie reviews

	POS	NEG	$P(w_1=1 POS) = a / (a + c)$
$w_1 = 1$	а	b	
$w_1 = 0$	С	d	

example: positive/negative movie reviews

	POS	NEG	$P(w_1=1 POS) = a / (a + c)$
$w_1 = 1$	а	b	$P(w_1=0 POS) = ??$
$w_1 = 0$		4	$P(w_1=1 NEG) = ??$
vv 1 – U		d	$P(w_1=0 NEG) = ??$

example: positive/negative movie reviews

Question: How do we estimate P(w₂=1/0 | POS/NEG) ?

	POS	NEG	$P(w_2=1 POS) = a / (a + c)$
$w_2 = 1$	а	b	$P(w_2=0 POS) = c / (a + c)$
$w_2 = 0$		-l	$P(w_2=1 NEG) = b / (b + d)$
	С	d	$P(w_2=0 NEG) = d / (b + d)$

• The value of a, b, c, and d would be different for different features w₁, w₂, w₃, w₄, w₅,, w_n

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

P(1011011 | POS) P(1011011 | NEG)

example: positive/negative movie reviews

• Given instance D = 1011011, predict positive (POS) if:

```
P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS) \times P(POS)
```

$$\geq$$

$$P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG) \times P(NEG)$$

example: positive/negative movie reviews

We still have a problem! What is it?

example: positive/negative movie reviews

• Given instance D = 1011011, predict positive (POS) if:

$$P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS) \times P(POS)$$

 \geq

$$P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG) \times P(NEG)$$

Otherwise, predict negative (NEG)

ENABLE

What if this never happens in the training data?

Smoothing Probability Estimates

- When estimating probabilities, we tend to ...
 - Over-estimate the probability of observed outcomes
 - Under-estimate the probability of unobserved outcomes
- The goal of smoothing is to ...
 - Decrease the probability of observed outcomes
 - Increase the probability of unobserved outcomes
- It's usually a good idea
- You probably already know this concept!

Add-One Smoothing

	POS	NEG	$P(w_1=1 POS) = a / (a + c)$
$w_1 = 1$	а	b	$P(w_1=0 POS) = c / (a + c)$
w. - 0		4	$P(w_1=1 NEG) = b / (b + d)$
$\mathbf{W}_1 = 0$	C	u	$P(w_1=0 NEG) = d / (b + d)$

Add-One Smoothing

	POS	NEG	$P(w_1=1 POS) = ??$
$w_1 = 1$	a + 1	b + 1	$P(w_1=0 POS) = ??$
0	c + 1	d + 1	P(w ₁ =1 NEG) = ??
$W_1 = 0$	CII	u · ı	P(w ₁ = <mark>0 NEG</mark>) = ??

Add-One Smoothing

	POS	NEG	$P(w_1=1 POS) = (a + 1) / (a + c + 2)$
w ₁ = 1	a + 1	b + 1	$P(w_1=0 POS) = (c + 1) / (a + c + 2)$
$w_1 = 0$	c + 1	d + 1	$P(w_1=1 NEG) = (b + 1) / (b + d + 2)$
vv1 – U	C 1 I		$P(w_1=0 NEG) = (d+1) / (b+d+2)$

how to emphasize important features?

• Given instance D = 1011011, predict positive (POS) if:

```
P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS) \times P(POS)
```

$$\geq$$

$$P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG) \times P(NEG)$$

Otherwise, predict negative (NEG)

ENABLE

What if this word seems to be really important in the training data?

- How can we emphasize important words (features)?
- Hint: it's very simple!
- Add the features redundantly!

how to emphasize important features?

Given instance D = 1011011, predict positive (POS) if:

```
P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS) \times P(w_
```

 \geq

W₇ are repeated five times.

```
P(w_1=1 \mid NEG) \times P(w_2=0 \mid NEG) \times P(w_3=1 \mid NEG) \times P(w_4=1 \mid NEG) \times P(w_5=0 \mid NEG) \times P(w_6=1 \mid NEG) \times P(w_7=1 \mid NEG) \times P(w_
```

What does it mean?

how to emphasize important features?

```
If P(w_7=1 | POS) = 0.4 and P(w_7=1 | NEG) = 0.1
P(w_1=1 | POS) \times P(w_2=0 | POS) \times P(w_3=1 | POS) \times P(w_4=1 | POS) \times P(w_
P(w_5=0 | POS) \times P(w_6=1 | POS) \times P(w_7=1 | POS) \times P(w_
 P(w_7=1 | POS) \times P(w_7=1 | POS) \times P(w_7=1 | POS) \times P(POS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.01024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.00001
P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_
 P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG) \times P(w_
 P(w_7=1 | NEG) \times P(w_7=1 | NEG) \times P(w_7=1 | NEG) \times P(NEG)
```

P(w₇=1 | POS) used to 4 times bigger than P(w₇=1 | NEG), but it becomes about one thousand times bigger by being used five times.

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

- Naive Bayes Classifiers are simple, effective, robust, and very popular – "Simplicity-first"
- Assumes that feature values are conditionally independent given the target class value
- This assumption does not hold in natural language
- Even so, NB classifiers are very powerful
- It works very well particularly when combined with some of the attribute selection procedures
- Smoothing is necessary in order to avoid zero probabilities
- Important terms can be used redundantly

Any Questions?

Instance-Based Learning

Next Class

