ATIVIDADE 2

RA:

1ª Questão (3,5 pontos): A aceleração de um ponto P é dada por $a(v) = 1 + \frac{1}{2}v^2$
com a em [m/s²] v em [m/s] e, a posição s em [m]. Sabe-se que quando s =0, v =0. Pede-se determinar a expressão da velocidade em função de s.

Nome:

v =

2ª Questão (6,5 pontos): O pino P é movido pelo par de guias A e B que se movem perpendicularmente, respectivamente sobre o eixo x e o eixo y. No instante

representado, a guia A e a guia B tem as seguintes coordenadas
$$\begin{cases} \textbf{x} = \textbf{4} + \textbf{t} - \frac{\textbf{t}^3}{\textbf{3}} \\ \textbf{y} = \textbf{2} - \frac{\textbf{t}^2}{\textbf{2}} \end{cases}.$$
 Sendo que \textbf{x} e \textbf{y} são expressos em [m] e \textbf{t} em [s]. Determine as componentes da

Sendo que \mathbf{x} e \mathbf{y} são expressos em [m] e \mathbf{t} em [s]. Determine as componentes da aceleração normal e tangencial quando \mathbf{t} = 1. Neste mesmo instante, determine o módulo da aceleração total.

 $|\vec{a}_n| =$

 $|\vec{a}_{\tau}| =$

 $|\vec{a}| =$