1. Функция Грина задачи Дирихле.

0.1. Определение и свойства функции Грина.

Рассмотрим краевую задачу для уравнения Лапласа с краевыми условиями І-го рода. <u>Постановка задачи:</u> Пусть D – область евклидова пространства E^n , а $S = \partial D$ – гладкая (n-1)-мерная граница D. Найти функцию $u(x, t) \in C^2(D) \cap C(\overline{D})$, удовлетворяющую условиям

$$\Delta u \equiv \sum_{j=1}^{n} \frac{\partial^2 u}{\partial x_j^2} = 0, \qquad x \in D, \tag{0.1}$$

$$u(x)\Big|_{x\in S} = \varphi(x),$$
 $x\in S,$ (0.2)

где $\varphi(x) \in C(S)$ – заданная, непрерывная на S функция.

Такая задача называется **задачей Дирихле**. (Если бы краевые условия были условиями II-го рода, здача называлась бы задачей Неймана.)

<u>Опр.</u> 0.1. Фундаментальным (или элементарным) решением уравнения Лапласа называется функция $E(x,\,\xi),\quad x\neq\xi\in\overline{D}$ вида

$$E(x, \xi) = \begin{cases} \frac{1}{(n-2)|\xi-x|^{n-2}} & n > 2, \\ -\ln|\xi - x| & n = 2, \end{cases}$$
 (0.3)

где $|\xi - x| = \sqrt{\sum_{i=1}^{n} (\xi_i - x_i)^2}$ – расстояние между точками x и ξ .

Опр. 0.2. Функцией Грина $G(x, \xi)$ задачи Дирихле для уравнения Лапласа называется функция $G(x, \xi), \quad x \neq \xi \in \overline{D},$ обладающая сойствами:

1. Она имеет вид

$$G(x, \xi) = E(x, \xi) + g(x, \xi),$$

где $E(x, \xi)$ – Фундаментальное решение уравнения Лапласа, а функция $g(x, \xi)$ гармонична в D как по x, так и по ξ :

$$\Delta_x g(x, \xi) = \Delta_\xi g(x, \xi) = 0, \quad x, \xi \in D.$$

2.
$$G(x, \xi)\Big|_{x \in S} = G(x, \xi)\Big|_{\xi \in S} = 0.$$

Утверждение 0.1 (Свойства функции Грина).

<u>Усл.</u> $G(x, \xi)$ функция Грина задачи Дирихле для уравнения Лапласа в D.

Yme. 1°
$$G(x, \xi) \ge 0,$$
 $x \ne \xi \in D;$ 2^o $\Delta_x G(x, \xi) = \Delta_\xi G(\xi, x) = 0,$ $x \ne \xi \in D;$ $x \ne \xi \in \overline{D}.$

 ${\color{red}{
m Teopema}}\;0.1\;(\Pi$ редставление решения задачи Дирихле при помощи функции Гри-

Усл. $G(x, \xi)$ функция Грина задачи Дирихле (0.1) - (0.2).

Утв. Решение задачи (0.1) - (0.2) можно представить в виде:

$$u(x) = -\frac{1}{\omega_n} \int_{S} \frac{\partial G(x, \xi)}{\partial \nu_{\xi}} \varphi(\xi) dS_{\xi}, \qquad (0.4)$$

где $\omega_n=rac{2\left(\sqrt{\pi}\right)^n}{\Gamma\left(\frac{n}{2}\right)}$ – площадь единичной сферы в $E^n,$

 $\Gamma(t)$ – Гамма-функция Эйлера, $\Gamma\left(\frac{n}{2}\right)=\frac{(n-2)!!}{\left(\sqrt{2}\right)^{n-1}}\sqrt{\pi},$

 $\frac{\partial}{\partial \nu_{\xi}}$ — производная по внешней нормали к поверхности S в точке $\xi \in S$, dS_{ξ} — элемент площади поверхности S в точке ξ .

<u>Пример</u> **0.1.** В случае, когда $D = \{|x| < 1\}$ – единичный шар в E^n для задачи Дирихле (0.1) – (0.2) функция Грина имеет вид:

$$G(x, \xi) = E(x, \xi) - E\left(|x|\xi, \frac{x}{|x|}\right),$$

а решение задачи представляется формулой Пуассона:

$$u(x) = \frac{1}{\omega_n} \int_{|\xi|=1} \frac{1 - |x|^2}{|\xi - x|^n} \varphi(\xi) dS_{\xi}.$$

0.2. Метод электростатических изображений (метод отражений)

0.2.1. Физическая интерпретация для E^3 .

В трёхмерном пространстве функцию Грина задачи Дирихле можно интерпретировать физически как потенциал поля, созданного единичным точечным зарядом, помещенным внутри заземлённой проводящей замкнутой поверхности.

Фиксируем две точки: x и y в области D. В точку x мы поместим единичный положительный заряд, а в точке у будем наблюдать результирующий потенциал.

Пусть в точке $x \in D$ расположен единичный положительный элекрический заряд. Он индуцирует на заземлённой S некоторе распределение зарядов.

Тогда потенциал электростатического поля в точке $y \in D$ есть сумма потенциала, созданного единичным зарядом, и потенциала, созданного индуцированными на S зарядами:

$$G(x, y) = \frac{1}{|x - y|} + g(x, y).$$

При этом функция g(x, y), соответствующая потенциалу, созданному индуцированными на S зарядами, является гармонической как по $x \in D$, так и по $y \in D$.

При такой интерпретации, свойство симметричности функции Грина G(x, y) = G(y, x)является математическим выражением принципа взаимности в физике: источник, помещённый в точке x производит в точке y такое же действие, какое производит в точке x такой же источник, помещённый в точке у. Заметим, что функцию Грина называют также функцией точечного источника. Заметим также, что в некоторых книгах, например, в книге Тихонов А.Н., Самарский А.А. "Уравнения математической физики" (Гл. 4, §4), коэффициент $\frac{1}{\omega_n}$ ставится не в формуле представления решения (0.4), а в определении функции источника. Таким образом, чтобы научиться решать задачу Дирихле, надо уметь находить функцию G = E + g, а поскольку E – известная функция ((0.3),стр. 1), вся задача сводится к построению функции $g(x, \xi)$. По опеределению функции Грина, от g требуется, чтобы

$$\Delta_x g(x, \xi) = \Delta_\xi g(x, \xi) = 0, \qquad x, \xi \in D; \tag{0.5}$$

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}.$$
 (0.6)

Эти условия, фактически, представляют собой также задачу Дирихле, только уже для функции g. Однако, эта задача во многих случаях существенно проще исходной, так как в ней граничная функция имеет очень специальный вид, а в исходной задаче она совершенно произвольна. Кроме того, найдя функцию Грина для задачи Дирихле в области D, мы сразу получаем решения всех задач Дирихле в этой области.

Наиболее распространённым способом построения функции Грина являеся **метод отражений (электростатических изображений)**. Его идея состоит в том, что функция g, представляющая собой поле индуцированных на S зарядов, строится как поле зарядов, расположенных вне области D, и таких, чтобы

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}.$$

 ${\rm E}\ddot{\rm e}$ можно найти, располагая заряды подходящей величины в точках, симметричных относительно S точкам, в которых расположены заряды внутри D.

0.2.2. Алгоритм

Шаг 1. Строим фундаментальное решение уравнения Лапласа по формуле (0.3).

<u>Шаг 2.</u> Помещаем в точку $\xi \in D$ единичный положительный заряд. Обозначаем через ξ^* точку, симметричную точке ξ относительно поверхности S, и помещаем в ξ^* заряд $q(\xi)$.

Шаг 3. Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(qx, q\xi^*) = \begin{cases} -\frac{1}{(n-2)q|\xi^* - x|^{n-2}} & n > 2, \\ \ln(q|\xi^* - x|) & n = 2, \end{cases}$$

подбирая подходящим образом заряд q. Так определённая функция g будет гармонической (то есть удовлетворяющей уравнению Лапласа), поскольку E – гармоническая. По этому находить q надо из условия (0.6). При этом удобно считать, что точка $x \in S$, — тогда q находится из краевого условия $g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}$. (Поскольку в формуле (0.4) интеграл берётся по $\xi \in S$, а функции E, g и G обладают свойством симметричности, полученная функция G = E + g будет удовлетворять определению функции Грина.)

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$. (В ответе надо избавиться, по возможности от выражений, зависящих от ξ^* , выразив координаты ξ^* через координаты ξ . Это делается потому, что в формуле (0.4) $\xi \in S$, и $\xi^* = \xi$, а не $x \in S$, как на Шаге 3.)

Задача 1.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в полуплоскости $x_2 > 0$.

<u>Шаг 1.</u> Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=2, и по формуле (0.3) имеем:

$$E(x, \xi) = -\ln|\xi - x|, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$
 (1.1)

<u>Шаг 2.</u> Помещаем в точку $\xi=(\xi_1,\ \xi_2),\ \xi_2>0,$ единичный положительный заряд. Обозначаем через ξ^* точку, симметричную точке ξ относительно прямой $S=\{\xi_2=0\}.$

$$\xi^* = (\xi_1, -\xi_2). \tag{1.2}$$

<u>Шаг 3.</u> Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(qx, q\xi^*) = \ln\left(q|\xi^* - x|\right) = \ln q + \frac{1}{2}\ln\left((\xi_1 - x_1)^2 + (-\xi_2 - x_2)^2\right) =$$

$$= \ln q + \frac{1}{2}\ln\left((\xi_1 - x_1)^2 + (\xi_2 + x_2)^2\right).$$

Чтобы выпонялось краевое условие $g(x,\,\xi)\Big|_{x\in S}=-E(x,\,\xi)\Big|_{x\in S}$, очевидно, необходимо взять $q(\xi)\equiv 1$. При таком выборе, безусловно, будет выполнятся и уравнение Лапласа $\Delta_{\xi}g(x,\,\xi)=0$ (поскольку оно выполняется для $E(x,\,\xi)$). Таким образом,

$$g = \ln ((\xi_1 - x_1)^2 + (\xi_2 + x_2)^2).$$

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x, \xi) = \ln|\xi^* - x| - \ln|\xi - x| = \ln\frac{|\xi^* - x|}{|\xi - x|} = \ln\frac{(\xi_1 - x_1)^2 + (\xi_2 + x_2)^2}{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$

Other: $G(x, \xi) = \ln \frac{|\xi^* - x|}{|\xi - x|} = \ln \frac{(\xi_1 - x_1)^2 + (\xi_2 + x_2)^2}{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$

Задача 2.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в полупространстве $x_3 > 0$.

<u>Шаг 1.</u> Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=3, и по формуле (0.3) имеем:

$$E(x, \xi) = \frac{1}{|\xi - x|}, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 - x_3)^2}.$$
 (2.1)

<u>Шаг 2.</u> Помещаем в точку $\xi = (\xi_1, \ \xi_2, \ \xi_3), \ \xi_3 > 0$, единичный положительный заряд. Обозначаем через ξ^* точку, симметричную точке ξ относительно плоскости $S = \{\xi_3 = 0\}$.

$$\xi^* = (\xi_1, \ \xi_2, \ -\xi_3). \tag{2.2}$$

<u>Шаг 3.</u> Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(qx, q\xi^*) = -\frac{1}{q|\xi^* - x|} = -\frac{1}{q\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (-\xi_3 - x_3)^2}} = \frac{1}{q\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 + x_3)^2}} = \frac{1}{q\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 + x_3)^2}}$$

Чтобы выпонялось краевое условие $g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}$, очевидно, необходимо взять $q \equiv 1$. При таком выборе, безусловно, будет выполнятся и уравнение Лапласа $\Delta_{\xi}g(x, \xi) = 0$ (поскольку оно выполняется для $E(x, \xi)$). Таким образом,

$$g = -\frac{1}{\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 + x_3)^2}}.$$

Шаг 4. Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x, \xi) = \frac{1}{|\xi - x|} - \frac{1}{|\xi^* - x|}.$$

Otbet: $G(x, \xi) = \frac{1}{\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 - x_3)^2}} - \frac{1}{\sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 + x_3)^2}}.$

Задача 3.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в круге $|x-x^0| < R$.

Шаг 1. Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=2, и по формуле (0.3) имеем:

$$E(x, \xi) = -\ln|\xi - x|, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$
 (3.1)

<u>Шаг 2.</u> Помещаем в точку $\xi=(\xi_1,\ \xi_2),\ (\xi_1-x_1^0)^2+(\xi_2-x_1^0)^2< R^2,$ единичный положительный заряд. Обозначаем через ξ^* точку, симметричную точке ξ относительно окружности

$$S = \{|x - x^0| = R\},\$$

то есть точку, лежащую на луче $[x^0,\,\xi)$ на таком расстоянии $|\xi^*-x^0|$ от центра окружности, чтобы $|\xi-x^0|\cdot|\xi^*-x^0|=R^2$. Или в векторном виде:

$$\overrightarrow{x^0 \xi^*} = \frac{R^2}{|\xi - x^0|^2} \overrightarrow{x^0 \xi},$$

-5-

откуда

$$\xi^* = x^0 + \frac{R^2}{|\xi - x^0|^2} \left(\xi - x^0\right). \tag{3.2}$$

<u>Шаг 3.</u> Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(qx, q\xi^*) = \ln(q|\xi^* - x|) = \ln q + \ln|\xi^* - x|.$$
(3.3)

Чтобы правильно подобрать величину заряда q, положим $x \in S$, то есть $|x-x^0|=R$ (см. рис. 1). Тогда треугольники $\Delta x^0 \xi x$ и $\Delta x^0 x \xi^*$ подобны, так как угол при вершине x^0 у них общий, а прилегающие к нему стороны пропорциональны:

$$\frac{|\xi - x^0|}{|x - x^0|} = \frac{|x - x^0|}{|\xi^* - x^0|}$$

в силу свойства симметричных точек ξ и ξ^* :

$$|\xi - x^0| \cdot |\xi^* - x^0| = R^2.$$

Рис. 1: Симметричные точки и подобные треугольники

Величина q должна быть такой, чтобы для функции g вида (3.3) выполнялось краевое условие

 $g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}.$

В нашем случае это означает, что

$$q = \frac{|\xi - x|}{|\xi^* - x|}.$$

И из подобия треугольников $\Delta x^0 \xi x$ и $\Delta x^0 x \xi^*$ окончательно получаем

$$q = \frac{|\xi - x^0|}{R}.\tag{3.4}$$

Итак,

$$g(x, \xi) = \ln \frac{|\xi - x^0|}{R} + \ln |\xi^* - x| = \ln \frac{|\xi - x^0| \cdot |\xi^* - x|}{R}$$

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x,\ \xi) = \ln \frac{|\xi - x^0| \cdot |\xi^* - x|}{R} - \ln |\xi - x| = \ln \frac{|\xi - x^0| \cdot |\xi^* - x|}{R \, |\xi - x|}.$$

Чтобы избавиться в ответе от ξ^* , ещё раз воспользуемся симметричностью точек ξ и ξ^* :

$$|\xi - x^0| \cdot |\xi^* - x^0| = R^2$$

и векторным соотношением:

$$\xi^* - x \equiv \overrightarrow{x\xi^*} = \overrightarrow{x^0\xi^*} - \overrightarrow{x^0x} = \frac{R^2}{|\xi - x^0|^2} \cdot \overrightarrow{x^0\xi} - \overrightarrow{x^0x},$$

откуда

$$\frac{|\xi^* - x|}{R} = R \left| \frac{x - x^0}{R^2} - \frac{\xi - x^0}{|\xi - x^0|^2} \right|$$

Окончательно получаем:

 $\underline{\mathbf{OTBET:}} \qquad G(x, \ \xi) = \ln \frac{R|\xi - x^0| \cdot \left| \frac{x - x^0}{R^2} - \frac{\xi - x^0}{|\xi - x^0|^2} \right|}{|\xi - x|}.$

Задача 4.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в шаре $|x-x^0| < R$.

<u>Шаг 1.</u> Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=3, и по формуле (0.3) имеем:

$$E(x, \xi) = -\frac{1}{|\xi - x|}, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2 + (\xi_3 - x_3)^2}.$$
 (4.1)

<u>Шаг 2.</u> Помещаем в точку $\xi = (\xi_1, \ \xi_2), \ (\xi_1 - x_1^0)^2 + (\xi_2 - x_1^0)^2 < R^2$, единичный положительный заряд. Обозначаем через ξ^* точку, симметричную точке ξ относительно сферы

$$S = \{|x - x^0| = R\},\$$

то есть точку, лежащую на луче $[x^0, \xi)$ на таком расстоянии $|\xi^* - x^0|$ от центра окружности, чтобы $|\xi - x^0| \cdot |\xi^* - x^0| = R^2$. Или в векторном виде:

$$\overrightarrow{x^0 \xi^*} = \frac{R^2}{|\xi - x^0|^2} \overrightarrow{x^0 \xi},$$

откуда

$$\xi^* = x^0 + \frac{R^2}{|\xi - x^0|^2} \left(\xi - x^0\right). \tag{4.2}$$

<u>Шаг 3.</u> Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(qx, q\xi^*) = -\frac{1}{q|\xi^* - x|}.$$
 (4.3)

Чтобы правильно подобрать величину заряда q, положим $x \in S$, то есть $|x-x^0| = R$ (см. рис. 1). Тогда треугольники $\Delta x^0 \xi x$ и $\Delta x^0 x \xi^*$ подобны, так как угол при вершине x^0 у них общий, а прилегающие к нему стороны пропорциональны:

$$\frac{|\xi - x^0|}{|x - x^0|} = \frac{|x - x^0|}{|\xi^* - x^0|}$$

в силу свойства симметричных точек ξ и ξ^* :

$$|\xi - x^0| \cdot |\xi^* - x^0| = R^2.$$

Величина q должна быть такой, чтобы для функции g вида (3.3) выполнялось краевое условие

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}.$$

В нашем случае это означает, что

$$q = \frac{|\xi - x|}{|\xi^* - x|}.$$

И из подобия треугольников $\Delta x^0 \xi x$ и $\Delta x^0 x \xi^*$ окончательно получаем

$$q = \frac{|\xi - x^0|}{R}.$$

Итак,

$$g(x, \xi) = -\frac{R}{|\xi - x^0| \cdot |\xi^* - x|}.$$

Шаг 4. Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x, \xi) = \frac{1}{|\xi - x|} - \frac{R}{|\xi - x^0| \cdot |\xi^* - x|}.$$

Чтобы избавиться в ответе от ξ^* , ещё раз воспользуемся симметричностью точек ξ и ξ^* :

$$|\xi - x^0| \cdot |\xi^* - x^0| = R^2$$

и векторным соотношением:

$$\xi^* - x \equiv \overrightarrow{x\xi^*} = \overrightarrow{x^0\xi^*} - \overrightarrow{x^0x} = \frac{R^2}{|\xi - x^0|^2} \cdot \overrightarrow{x^0\xi} - \overrightarrow{x^0x},$$

откуда

$$\frac{|\xi^* - x|}{R} = R \left| \frac{x - x^0}{R^2} - \frac{\xi - x^0}{|\xi - x^0|^2} \right|$$

Окончательно получаем:

Other:
$$G(x, \xi) = \frac{1}{|\xi - x|} - \frac{1}{R|\xi - x^0| \cdot \left| \frac{x - x^0}{R^2} - \frac{\xi - x^0}{|\xi - x^0|^2} \right|}.$$

Задача 5.

Методом отражений найти функцию Γ рина задачи Дирихле (0.1) – (0.2) в четверть-плоскости $D = \{x_1 > 0, x_2 > 0\}.$

Шаг 1. Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=2, и по формуле (0.3) имеем:

$$E(x, \xi) = -\ln|\xi - x|, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$
 (5.1)

Шаг 2.

Помещаем в точку $\xi = (\xi_1, \xi_2) \in D$ единичный положительный заряд. Обозначаем через ξ^* , ξ^- точки, симметричную точке ξ относительно прямых $\{\xi_1 = 0\}$ и $\{\xi_2 = 0\}$, а через ξ^+ – точку, симметричную точкам $\xi^*,\ \xi^-$ относительно прямых $\{\xi_2 = 0\}$ и $\{\xi_1 = 0\}$, соответственно.

$$\xi^* = (-\xi_1, \ \xi_2),$$

$$\xi^- = (\xi_1, \ -\xi_2),$$

$$\xi^+ = (-\xi_1, \ -\xi_2).$$

Шаг 3. Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(q_1x, q_1\xi^*) - E(q_2x, q_2\xi^-) + E(q_3x, q_3\xi^+) =$$

$$= \ln \frac{q_1q_2}{q_3} + \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|}.$$
 Рис. 2: Отражения точки ξ от границ угла

 χ_1

Чтобы выпонялось краевое условие

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S}$$

возьмём $q_1 = q_2 = q_3 = 1$. Таким образом,

$$g = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|}.$$

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x, \xi) = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|} - \ln |\xi - x| = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi - x|}.$$

Здесь легко заметить, что выбор $q_1=q_2=q_3=1$ был удачен: в самом деле, тогда, как и требует определение функции Грина,

$$G(x, \xi)\Big|_{x \in S} = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi - x|} = \ln(1 \cdot 1) = 0.$$

Приводить полученную функцию Грина к виду, где нет $\xi^*,\ \xi^-,\ \xi^+,$ не станем (это громоздко, но несложно).

Other:
$$G(x, \xi) = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi^- x|}.$$

Задача 6.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в полукруге $D = \{x_1^2 + x_2^2 \leq R, x_2 > 0\}.$

<u>Шаг 1.</u> Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=2, и по формуле (0.3) имеем:

$$E(x, \xi) = -\ln|\xi - x|, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$
 (5.1)

Шаг 2.

Помещаем в точку $\xi=(\xi_1,\ \xi_2)\in D$ единичный положительный заряд. Обозначаем через ξ^* — точку, симметричную точке ξ относительно окружности, через ξ^- — точку, симметричную точке ξ , относительно прямой $\{\xi_2=0\}$, а через ξ^+ — точку, симметричную точке ξ^* относительно прямой $\{\xi_2=0\}$, а точке ξ^- относительно окружности.

$$\xi^* = \frac{R^2}{|\xi|^2} \, \xi,$$

$$\xi^- = (\xi_1, -\xi_2),$$

$$\xi^+ = \frac{R^2}{|\xi|^2} \, \xi^-.$$

 $ext{Шаг 3.}$ Ищем решение задачи (0.5) – (0.6) в виде

Рис. 3: Отражения точки ξ от границ полукруга

$$g = -E(q_1 x, q_1 \xi^*) - E(q_2 x, q_2 \xi^-) + E(q_3 x, q_3 \xi^+) =$$

$$= \ln \frac{q_1 q_2}{q_3} + \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|}.$$

Чтобы выпонялось краевое условие

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S} = \ln|\xi - x|\Big|_{x \in S},$$

возьмём заряд внутри полной окружности $q_2=1$, а симметричные ему и заряду в точке ξ относительно окружности $q_1=q_3=\frac{|\xi|}{R}$ (по аналогии с формулой (3.4), стр. 6). Таким образом,

$$g = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|}.$$

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x, \ \xi) = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x|} - \ln |\xi - x| = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi - x|}.$$

Здесь легко заметить, что выбор $q_1 = q_2 = q_3 = 1$ был удачен: в самом деле, тогда, как и требует определение функции Грина,

$$G(x, \xi)\Big|_{x \in S} = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi - x|} = \ln(1) = 0.$$

Приводить полученную функцию Грина к виду, где нет ξ^* , ξ^- , ξ^+ , не станем (это несложно, но громоздко).

Заметим, что, хотя вид ответа точно такой же, что и в задаче №5, функция G здесь иная, поскольку совершенно иначе вычисляются координаты точек ξ^* и ξ^+ .

Other:
$$G(x, \xi) = \ln \frac{|\xi^* - x| \cdot |\xi^- - x|}{|\xi^+ - x| \cdot |\xi^- x|}$$

Задача 7.

Методом отражений найти функцию Грина задачи Дирихле (0.1) – (0.2) в четверти круга $D = \{x_1^2 + x_2^2 \leqslant R, \ x_{1,2} > 0\}.$

<u>Шаг 1.</u> Строим фундаментальное решение уравнения Лапласа по формуле (0.3). Для данного двумерного случая n=2, и по формуле (0.3) имеем:

$$E(x, \xi) = -\ln|\xi - x|, \qquad |\xi - x| = \sqrt{(\xi_1 - x_1)^2 + (\xi_2 - x_2)^2}.$$
 (5.1)

<u>Шаг 2.</u>

Помещаем в точку $\xi=(\xi_1,\ \xi_2)\in D$ единичный положительный заряд. Строим точки $\xi_1^*,\ \xi_2^*,\ \xi_3^*$ — точки, симметричные точке ξ относительно сторон четверти круга. Далее строим точки $\xi_4^*,\ \xi_5^*,\ \xi_6^*,\ \xi_7^*,$ симметричные построенным точкам относительно продолжений сторон четверти круга (то есть относительно окружности и прямых $\{\xi_1=0\},\ \{\xi_2=0\}$) (см. рисунок 4).

Рис. 4: Отражения точки ξ от границ четверти круга

<u>Шаг 3.</u> Ищем решение задачи (0.5) - (0.6) в виде

$$g = -E(q_1x, q_1\xi_1^*) + E(q_2x, q_2\xi_2^*) - E(q_3x, q_3\xi_3^*) + E(q_4x, q_4\xi_4^*) - E(q_5x, q_5\xi_5^*) + E(q_6x, q_6\xi_6^*) - E(q_7x, q_7\xi_7^*) = \ln \frac{q_1q_3q_5q_7}{q_2q_4q_6} + \ln \frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x|}.$$

Чтобы выпонялось краевое условие

$$g(x, \xi)\Big|_{x \in S} = -E(x, \xi)\Big|_{x \in S} = \ln|\xi - x|\Big|_{x \in S}$$

возьмём заряды внутри полной окружности $q_3=q_5=q_6=1$, а симметричные им и заряду в точке ξ относительно окружности $q_1=q_2=q_4=q_7=\frac{|\xi|}{R}$ (по аналогии с формулой (3.4), стр. 6). Таким образом,

$$g = \ln \frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x|}.$$

<u>Шаг 4.</u> Строим функцию Грина по формуле $G(x, \xi) = E(x, \xi) + g(x, \xi)$.

$$G(x,\ \xi) = \ln\frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x|} - \ln|\xi - x| = \ln\frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x| \cdot |\xi - x|}.$$

Здесь легко заметить, что выбор q_1, \ldots, q_7 был удачен: в самом деле, тогда, как и требует определение функции Грина,

$$G(x, \xi)\Big|_{x \in S} = \ln \frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x| \cdot |\xi - x|}\Big|_{x \in S} = \ln(1) = 0.$$

Приводить полученную функцию Грина к виду, где нет ξ_1^*, \ldots, ξ_7^* , не станем (это не очень сложно, но очень громоздко).

Other:
$$G(x, \xi) = \ln \frac{|\xi_1^* - x| \cdot |\xi_3^* - x| \cdot |\xi_5^* - x| \cdot |\xi_7^* - x|}{|\xi_2^* - x| \cdot |\xi_4^* - x| \cdot |\xi_6^* - x| \cdot |\xi_7^* - x|}.$$