Router 1x3 Project:

INTRODUCTION:

- A router is a networking device that forwards data packets between computer LANs.
- It follows TCP/IP layer 3 network layer protocol and does routing of te packets.

Routers connecting different LANs

Centre of Excellence in VL

TOP BLOCK:

Interface:

Busy: if all FIFOs are full then no new data will be accepted Valid_out: indicates weather destination is ready to accept data

read_enb: if valid out is high, it indicates there is data available to read then read_enb can be made high, then data can be read by the destination.

If readenb is not made high for 30 clocks CLKs after valid_out is made high then a soft reset is triggered which will wipe out the entire FIFO.

error:

If destination is not active but data is continously read then it will be stored in FIFO blocks indicated ny data_out_0, data_out_1, data_out_2.

When valid_out is enabled, read_enb for particular FIFO will be high and the data stored in the FIFO is read by the destination.

pkt_valid: pkt_valid will be high from header to payload

Busy: if busy is high, it stops receiving new bytes and continues till the it is high

Router input protocol

Router output protocol

Centre of Excellence

Various Blocks inside the Router:

- 1) Loadable Register: Data goes to register from source. If destination is accepting th data it will be sent to FIFO to store.
- 2) FIFOs: Acts as buffer between source and destination
- 3) Synchronizer: two imporant jobs i) to generate soft reset if read_enb is not made high after 30 clock clks of valid_out high.
- ii) to make valid_out high once data is transfered from register to FIFO
- 4) FSM: Controls all the blocks as a controller

ROUTER PACKET STRUTURE:

• Packet Format: The Packet consists of 3 parts i.e Header, payload and parity.

Payload Length Address Payload [0] (first byte in payload) Payload [1] Payload [2] Payload [3]

Payload [n-1] (last byte in payload)

Parity

Parity

Centre of Excellence in

Header: Destination Address,

Address

2-bit address,

00 - D0

01 --> D1

10 --> D2

Payload length: 6-bits Range of Payload 0 to 2^6

Parity: Calculate Packet Parity and internal parity (bit parity)

FIFO Block:

lfd_state: is used to identify the header byte. It will be high for header byte and low for remaining payload. lfd_state is generated by FSM.

soft_reset: Clears the FIFO contents, similar to reset

full: when FIFO is full, a full signal is sent to Synchronizer, when in return send a fifo_full signal to FSM and FSM will send the busy signal to source.

When busy is high no new data is accepted from source