Math 101 HW 12

Jeff Carney

February 20, 2017

1

Q: Suppose that $x_n \to l$. Prove that $\forall m \in \mathbb{N}, x_n^m \to l^m$.

Suppose $x_n \to l$. Let $p(m): x_n^m \to l^m$.

Base Case: m=2

Since $x_n \to l$, by the multiplication theorem, $x_n x_n \to (l)(l)$ i.e. $x_n^2 \to l^2$.

Inductive Step:

Suppose p(m) is true for some m.

WTS $x_n^{m+1} \rightarrow l^{m+1}$. We know $x_n^{m+1} = x_n^m x_n$. By the inductive hypothesis $x_n^m \to l^m$ and by our supposition in the problem $x_n \to l$. Thus, by the multiplication theorem $x_n^{m+1} = x_n^m x_n \to (l^m)(l) = l^{m+1}$. $\therefore x_n^{m+1} \to l^{m+1}.$

 $\therefore \forall m \in \mathbb{N}, x_n^m \to l^m.$

 \checkmark

 \checkmark

2

Q: Let S be a set of real numbers, and let $\{x_n\}$ be a sequence which converges to l. Suppose that $\forall n \in \mathbb{N}$, x_n is an upper bound for S. Prove that l is an upper bound for S.

Assume that l is not an upper bound for S. That is, $\exists s \in S$ s.t. s > l. Let $n \in \mathbb{N}$. Since x_n is an upper bound for S, $l < s \le x_n \Rightarrow l < x_n \Rightarrow 0 < x_n - l$. We know that $x_n - l$ and 0 are distinct real numbers, thus, by the density of the rationals, $\exists q \in \mathbb{Q}$ s.t. $0 < q < x_n - l \le |x_n - l|$. Thus $|x_n - l| > q$. But q > 0 and by the definition of convergence $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ s.t. if n > N then $|x_n - l| < \varepsilon \Rightarrow \Leftarrow$ because $|x_n - l| > q$.

4

Q: Prove that for all $a, b \in \mathbb{R}$, $||a| - |b|| \le |a - b|$, and use this inequality to prove that if $x_n \to x$ then $|x_n| \to |x|$.

Let $a, b \in \mathbb{R}$. Either $|a| - |b| \ge 0$ or |a| - |b| < 0.

Case 1: $|a| - |b| \ge 0$

Since $|a| - |b| \ge 0$, ||a| - |b|| = |a| - |b|. Note that $|a| = |(a - b) + b| \le |a - b| + |b|$ by the triangle inequality. Thus, $|a| \le |a - b| + |b| \Rightarrow |a| - |b| \le |a - b|$. Hence, $||a| - |b|| = |a| - |b| \le |a - b| \Rightarrow ||a| - |b|| \le |a - b|$.

 \checkmark

 \checkmark

Case 2: |a| - |b| < 0

Since |a| - |b| < 0, ||a| - |b|| = -(|a| - |b|) = |b| - |a|. Note that $|b| = |(b - a) + a| \le |b - a| + |a|$ by the triangle inequality. Thus, $|b| \le |b - a| + |a| \Rightarrow |b| - |a| \le |b - a| = |a - b| \Rightarrow |b| - |a| \le |a - b|$. Hence, $||a| - |b|| = |b| - |a| \le |a - b| \Rightarrow ||a| - |b|| \le |a - b|$.

$$\therefore \forall a, b \in \mathbb{R} ||a| - |b|| \le |a - b|$$

Now assume that $x_n \to x$. Thus, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N then $|x_n - x| < \varepsilon$. Let $\varepsilon > 0$ and n > N. By the above proof $||x_n| - |x|| \le |x_n - x| < \varepsilon \Rightarrow ||x_n| - |x|| < \varepsilon$. Thus, $|x_n| \to |x|$.