In [1]:

from dsc80 utils import *

Lecture 4 - Simpson's Paradox, Joining, and **Transforming**

DSC 80, Fall 2025

Announcements 🧁

- Project 1 checkpoint due this Thursday.
- Lab 2 is due on Monday.
- Project 1 is due next Thursday.

Agenda

- Transforming and filtration
- Distributions.
- Simpson's paradox.
- Merging.
 - Many-to-one & many-to-many joins.
- Transforming.
 - The price of apply.
- Other data representations.

Other DataFrameGroupBy methods

Split-apply-combine, revisited

When we introduced the split-apply-combine pattern, the "apply" step involved **aggregation** – our final DataFrame had one row for each group.

Instead of aggregating during the apply step, we could instead perform a:

- Transformation, in which we perform operations to every value within each group.
- Filtration, in which we keep only the groups that satisfy some condition.

Transformations

Suppose we want to convert the 'body_mass_g' column to to z-scores (i.e. standard units):

$$z(x_i) = rac{x_i - ext{mean of } x}{ ext{SD of } x}$$

```
In [2]: import seaborn as sns
        penguins = sns.load dataset('penguins').dropna()
In [3]: def z score(x):
            return (x - x.mean()) / x.std(ddof=0)
In [4]: z_score(penguins['body_mass_g'])
Out[4]: 0
              -0.57
              -0.51
         1
        2
              -1.19
        341
               1.92
        342
                1.23
        343
                1.48
        Name: body_mass_g, Length: 333, dtype: float64
```

Transformations within groups

- Now, what if we wanted the z-score within each group?
- To do so, we can use the transform method on a DataFrameGroupBy object.

 The transform method takes in a function, which itself takes in a Series and returns a new Series.
- A transformation produces a DataFrame or Series of the same size it is not an aggregation!

Out[5]: 0 0.10 1 0.21 2 -1.00 ... 341 1.32 342 0.22 343 0.62

Name: body_mass_g, Length: 333, dtype: float64

In [6]: penguins.assign(z_mass=z_mass)

Out[6]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••			•••			
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 8 columns

In [7]: display_df(penguins.assign(z_mass=z_mass), rows=8)

		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mas
	0	Adelie	Torgersen	39.1	18.7	181.0	375
	1	Adelie	Torgersen	39.5	17.4	186.0	380
	2	Adelie	Torgersen	40.3	18.0	195.0	325
	4	Adelie	Torgersen	36.7	19.3	193.0	345
	•••	•••					
	340	Gentoo	Biscoe	46.8	14.3	215.0	485
	341	Gentoo	Biscoe	50.4	15.7	222.0	57ξ
3	342	Gentoo	Biscoe	45.2	14.8	212.0	520
	343	Gentoo	Biscoe	49.9	16.1	213.0	54(

333 rows × 8 columns

Note that above, penguin 340 has a larger 'body_mass_g' than penguin 0, but a lower 'z_mass'.

In [8]: penguins.assign(z_mass=z_mass).loc[[0, 340], ['body_mass_g', 'z_mass', 'spec

```
        Out [8]:
        body_mass_g
        z_mass
        species

        0
        3750.0
        0.10
        Adelie

        340
        4850.0
        -0.49
        Gentoo
```

- Penguin O has an above average 'body_mass_g' among 'Adelie' penguins.
- Penguin 340 has a below average 'body_mass_g' among 'Gentoo' penguins.
 Remember from earlier that the average 'body_mass_g' of 'Gentoo' penguins is much higher than for other species.

Filtering groups

- To keep only the groups that satisfy a particular condition, use the filter method on a DataFrameGroupBy object.
- The filter method takes in a function, which itself takes in a DataFrame/Series and return a single Boolean. The result is a new DataFrame/Series with only the groups for which the filter function returned True.

For example, suppose we want only the 'species' whose average 'bill_length_mm' is above 39.

Out[10]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mas
	152	Chinstrap	Dream	46.5	17.9	192.0	35(
	153	Chinstrap	Dream	50.0	19.5	196.0	39(
	154	Chinstrap	Dream	51.3	19.2	193.0	36
	•••						
	341	Gentoo	Biscoe	50.4	15.7	222.0	57{
	342	Gentoo	Biscoe	45.2	14.8	212.0	520
	343	Gentoo	Biscoe	49.9	16.1	213.0	54(

187 rows × 7 columns

No more 'Adelie' s!

Or, as another example, suppose we only want 'species' with at least 100 penguins:

\cap		+	Γ	1	1	1	ı
U	u	L	L	Т	Т	Ш	i

:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••				•••		
34	11	Gentoo	Biscoe	50.4	15.7	222.0	5
34	12	Gentoo	Biscoe	45.2	14.8	212.0	5
34	13	Gentoo	Biscoe	49.9	16.1	213.0	5

265 rows \times 7 columns

No more 'Chinstrap' s!

Grouping with multiple columns

When we group with multiple columns, one group is created for **every unique combination** of elements in the specified columns.

```
In [12]: penguins
```

Out[12]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••						
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 7 columns

Out[13]:

bill_length_mm body_mass_g	bill	length	mm	body	mass	q
----------------------------	------	--------	----	------	------	---

species	island		
Adelie	Biscoe	38.98	3709.66
	Dream	38.52	3701.36
	Torgersen	39.04	3708.51
Chinstrap	Dream	48.83	3733.09
Gentoo	Biscoe	47.57	5092.44

Grouping and indexes

- The groupby method creates an index based on the specified columns.
- When grouping by multiple columns, the resulting DataFrame has a MultiIndex.
- Advice: When working with a MultiIndex , use reset_index or set as_index=False in groupby .

```
In [14]: species_and_island
```

Out[14]: bill_length_mm body_mass_g

species	island		
Adelie	Biscoe	38.98	3709.66
	Dream	38.52	3701.36
	Torgersen	39.04	3708.51
Chinstrap	Dream	48.83	3733.09
Gentoo	Biscoe	47.57	5092.44

In [15]: species_and_island['body_mass_g']

Out[15]: species island

Adelie Biscoe 3709.66
Dream 3701.36
Torgersen 3708.51
Chinstrap Dream 3733.09
Gentoo Biscoe 5092.44
Name: body_mass_g, dtype: float64

In [16]: species_and_island.loc['Adelie']

Out [16]: bill_length_mm body_mass_g

island

Biscoe	38.98	3709.66
Dream	38.52	3701.36
Torgersen	39.04	3708.51

In [17]: species_and_island.loc[('Adelie', 'Torgersen')]

Out[17]: bill_length_mm 39.04 body_mass_g 3708.51

Name: (Adelie, Torgersen), dtype: float64

In [18]: species_and_island.reset_index()

Out [18]: species island bill_length_mm body_mass_g

	species	isiand	biii_iengtn_mm	body_mass_g
0	Adelie	Biscoe	38.98	3709.66
1	Adelie	Dream	38.52	3701.36
2	Adelie	Torgersen	39.04	3708.51
3	Chinstrap	Dream	48.83	3733.09
4	Gentoo	Biscoe	47.57	5092.44

```
In [19]: (penguins
    .groupby(['species', 'island'], as_index=False)
    [['bill_length_mm', 'body_mass_g']]
    .mean()
)
```

Out[19]:

	species	island	bill_length_mm	body_mass_g
0	Adelie	Biscoe	38.98	3709.66
1	Adelie	Dream	38.52	3701.36
2	Adelie	Torgersen	39.04	3708.51
3	Chinstrap	Dream	48.83	3733.09
4	Gentoo	Biscoe	47.57	5092.44

Question ⁽²⁾

Find the most popular Male and Female baby Name for each Year in baby.

Exclude Year s where there were fewer than 1 million births recorded.

```
In [20]: baby_path = Path('data') / 'baby.csv'
baby = pd.read_csv(baby_path)
baby
```

Out[20]:

	Name	Sex	Count	Year
0	Liam	М	20456	2022
1	Noah	М	18621	2022
2	Olivia	F	16573	2022
•••			•••	
2085155	Wright	М	5	1880
2085156	York	М	5	1880
2085157	Zachariah	М	5	1880

2085158 rows × 4 columns

In [21]: # your code here...

Pivot tables using the pivot_table method

Pivot tables: an extension of grouping

Pivot tables are a compact way to display tables for humans to read:

Sex	F	М
Year		
2018	1698373	1813377
2019	1675139	1790682
2020	1612393	1721588
2021	1635800	1743913
2022	1628730	1733166

- Notice that each value in the table is a sum over the counts, split by year and sex.
- You can think of pivot tables as grouping using two columns, then "pivoting" one of the group labels into columns.

pivot_table

The pivot_table (not pivot!) DataFrame method aggregates a DataFrame using two columns. To use it:

The resulting DataFrame will have:

- One row for every unique value in index_col.
- One column for every unique value in columns_col .
- Values determined by applying func on values in values_col.

```
In [22]: last_5_years = baby.query('Year >= 2018')
last_5_years
```

```
Out[22]:
                  Name Sex Count Year
                  Liam
                             20456 2022
               0
                  Noah
                             18621 2022
                  Olivia
                             16573 2022
         159444
                  Zyrie
                          М
                                 5 2018
                                 5 2018
         159445
                  Zyron
                                 5 2018
         159446 Zzyzx
                          М
         159447 rows × 4 columns
In [23]: last_5_years.pivot_table(
             index='Year',
             columns='Sex',
             values='Count',
             aggfunc='sum',
Out[23]:
           Sex
                      F
                              М
          Year
          2018 1698373 1813377
          2019 1675139 1790682
         2020 1612393 1721588
          2021 1635800 1743913
          2022 1628730 1733166
In [24]: # compare to the top-left element of the table
         last_5_years[
             (last_5_years['Year'] == 2018)
             (last_5_years['Sex'] == 'F')
         ]['Count'].sum()
Out[24]: np.int64(1698373)
In [25]: # compare to the top-right element of the table
         last_5_years[
             (last_5_years['Year'] == 2018)
             (last_5_years['Sex'] == 'M')
         ['Count'].sum()
Out[25]: np.int64(1813377)
```

Out[26]:

Count

Year	Sex	
2018	F	1698373
	М	1813377
2019	F	1675139
•••	•••	
2021	М	1743913
2022	F	1628730
	М	1733166

10 rows × 1 columns

Example

Find the number of penguins per 'island' and 'species'.

In [27]: penguins

Out[27]:

:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
4	342	Gentoo	Biscoe	45.2	14.8	212.0	5
;	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 7 columns

```
In [28]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm', # Choice of column here doesn't actually matter
```

```
aggfunc='count',
)
```

Out[28]: island Biscoe Dream Torgersen

species			
Adelie	44.0	55.0	47.0
Chinstrap	NaN	68.0	NaN
Gentoo	119.0	NaN	NaN

Note that there is a NaN at the intersection of 'Biscoe' and 'Chinstrap', because there were no Chinstrap penguins on Biscoe Island.

We can either use the fillna method afterwards or the fill_value argument to fill in NaN s.

```
In [29]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm',
    aggfunc='count',
    fill_value=0,
)
```

Out [29]: island Biscoe Dream Torgersen

species			
Adelie	44	55	47
Chinstrap	0	68	0
Gentoo	119	0	0

Granularity, revisited

Take another look at the pivot table from the previous slide. Each row of the original penguins DataFrame represented a single penguin, and each column represented features of the penguins.

What is the granularity of the DataFrame below?

```
In [30]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm',
    aggfunc='count',
    fill_value=0,
)
```

 Out [30]:
 island
 Biscoe
 Dream
 Torgersen

 species

 Adelie
 44
 55
 47

 Chinstrap
 0
 68
 0

 Gentoo
 119
 0
 0

Reshaping

- pivot_table reshapes DataFrames from "long" to "wide".
- Other DataFrame reshaping methods:
 - melt: Un-pivots a DataFrame. Very useful in data cleaning.
 - pivot : Like pivot_table , but doesn't do aggregation.
 - stack: Pivots multi-level columns to multi-indices.
 - unstack: Pivots multi-indices to columns.
 - Google and the documentation are your friends!

Distributions

Let's compute probabilities using an easier way.

We'll start by using the pivot_table method to recreate the DataFrame shown below.

sex	Female	Male
species		
Adelie	73	73
Chinstrap	34	34
Gentoo	58	61

Joint distribution

When using aggfunc='count', a pivot table describes the **joint distribution** of two categorical variables. This is also called a **contingency table**.

```
In [31]: counts = penguins.pivot_table(
    index='species',
    columns='sex',
    values='body_mass_g',
    aggfunc='count',
    fill_value=0,
)
counts
```

Out[31]:	sex	Female	Male
	species		
	Adelie	73	73
	Chinstrap	34	34
	Gentoo	58	61

We can normalize the DataFrame by dividing by the total number of penguins. The resulting numbers can be interpreted as **probabilities** that a randomly selected penguin from the dataset belongs to a given combination of species and sex.

```
In [32]: joint = counts / counts.sum().sum()

Out[32]: sex Female Male

species

Adelie 0.22 0.22

Chinstrap 0.10 0.10

Gentoo 0.17 0.18
```

Marginal probabilities

If we sum over one of the axes, we can compute **marginal probabilities**, i.e. unconditional probabilities.

```
In [33]:
          joint
Out[33]:
               sex Female Male
            species
             Adelie
                       0.22
                           0.22
          Chinstrap
                       0.10
                             0.10
            Gentoo
                       0.17
                             0.18
In [34]: # Recall, joint.sum(axis=0) sums across the rows,
          # which computes the sum of the **columns**.
          joint.sum(axis=0)
Out[34]: sex
          Female
                     0.5
```

Male

0.5

dtype: float64

In [35]: joint.sum(axis=1)

Out[35]: species

Adelie 0.44
Chinstrap 0.20
Gentoo 0.36
dtype: float64

For instance, the second Series tells us that a randomly selected penguin has a 0.36 chance of being of species 'Gentoo'.

Conditional probabilities

Using counts, how might we compute conditional probabilities like

$$P(\text{species} = \text{``Adelie''} \mid \text{sex} = \text{``Female''})?$$

In [36]: counts

Out[36]: sex Female Male

species		
Adelie	73	73
Chinstrap	34	34
Gentoo	58	61

$$P(\text{species} = c \mid \text{sex} = x) = \frac{\# (\text{species} = c \text{ and sex} = x)}{\# (\text{sex} = x)}$$

▶ ☐ Click **here** to see more of a derivation.

Answer: To find conditional probabilities of 'species' given 'sex', divide by column sums. To find conditional probabilities of 'sex' given 'species', divide by row sums.

Conditional probabilities

To find conditional probabilities of 'species' given 'sex', divide by column sums.

To find conditional probabilities of 'sex' given 'species', divide by row sums.

In [37]: counts

 Out [37]:
 sex
 Female
 Male

 species
 Adelie
 73
 73

 Chinstrap
 34
 34

 Gentoo
 58
 61

In [38]: counts.sum(axis=0)

Out[38]: sex

Female 165 Male 168 dtype: int64

The conditional distribution of 'species' given 'sex' is below. Note that in this new DataFrame, the 'Female' and 'Male' columns each sum to 1.

In [39]: counts / counts.sum(axis=0)

Out[39]: sex Female Male

species

 Adelie
 0.44
 0.43

 Chinstrap
 0.21
 0.20

 Gentoo
 0.35
 0.36

For instance, the above DataFrame tells us that the probability that a randomly selected penguin is of 'species' 'Adelie' given that they are of 'sex' 'Female' is 0.442424.

Question [©]

Find the conditional distribution of 'sex' given 'species'.

Hint: Use .T.

In [40]: # Your code goes here.

Simpson's paradox

Example: Grades

- Two students, Lisa and Bart, just finished their first year at UCSD. They both took a different number of classes in Fall, Winter, and Spring.
- Each quarter, Lisa had a higher GPA than Bart.
- But Bart has a higher overall GPA.
- How is this possible?

Run this cell to create DataFrames that contain each students' grades.

Quarter-specific vs. overall GPAs

Note: The number of "grade points" earned for a course is

```
number of units · grade (out of 4)
```

For instance, an A- in a 4 unit course earns $3.7 \cdot 4 = 14.8$ grade points.

```
In [42]: dfs_side_by_side(lisa, bart)
```

Lisa	Units	Grade Points Earned	Bart	Units	Grade Points Earned
Fal	l 20	46	Fall	5	10.0
Winte	r 18	54	Winter	5	13.5
Spring	5	20	Spring	22	81.4

Lisa had a higher GPA in all three quarters.

```
In [43]: quarterly_gpas = pd.DataFrame({
    "Lisa's Quarter GPA": lisa['Grade Points Earned'] / lisa['Units'],
    "Bart's Quarter GPA": bart['Grade Points Earned'] / bart['Units'],
})
quarterly_gpas
```

Out[43]:

	Lisa's Quarter GPA	Bart's Quarter GPA
Fall	2.3	2.0
Winter	3.0	2.7
Spring	4.0	3.7

Question ⁹

Use the DataFrame lisa to compute Lisa's overall GPA, and use the DataFrame bart to compute Bart's overall GPA.

In [44]: # Helper function to show lisa and bart side-by-side to save screen space
dfs_side_by_side(lisa, bart)

Lisa	Units	Grade Points Earned	Bart	Units	Grade Points Earned
Fall	20	46	Fall	5	10.0
Winter	18	54	Winter	5	13.5
Spring	5	20	Spring	22	81.4

In [45]: # Your code goes here.

What happened?

```
.iloc[:, [0, 2, 1, 3]]
)
```

Out[46]:

	Lisa's Quarter GPA	Lisa_Units	Bart's Quarter GPA	Bart_Units
Fall	2.3	20	2.0	5
Winter	3.0	18	2.7	5
Spring	4.0	5	3.7	22

- When Lisa and Bart both performed poorly, Lisa took more units than Bart. This brought down ☐ Lisa's overall average.

Simpson's paradox

- Simpson's paradox occurs when grouped data and ungrouped data show opposing trends.
 - It is named after Edward H. Simpson, not Lisa or Bart Simpson.
- It often happens because there is a hidden factor (i.e. a **confounder**) within the data that influences results.
- Question: What is the "correct" way to summarize your data? What if you had to act on these results?

Example: How Berkeley was *almost* sued for gender discrimination (1973)

What do you notice?

Department	Al	I	Ме	n	Women		
Department	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted	
Α	933	64%	825	62%	108	82%	
В	585	63%	560	63%	25	68%	
С	918	35%	325	37%	593	34%	
D	792	34%	417	33%	375	35%	
E	584	25%	191	28%	393	24%	
F	714	6%	373	6%	341	7%	
Total	4526	39%	2691	45%	1835	30%	

What happened?

• The overall acceptance rate for women (30%) was lower than it was for men (45%).

- However, most departments (A, B, D, F) had a higher acceptance rate for women.
- Department A had a 62% acceptance rate for men and an 82% acceptance rate for women!
 - 31% of men applied to Department A.
 - 6% of women applied to Department A.
- Department F had a 6% acceptance rate for men and a 7% acceptance rate for women!
 - 14% of men applied to Department F.
 - 19% of women applied to Department F.
- **Conclusion**: Women tended to apply to departments with a lower acceptance rate; the data don't support the hypothesis that there was major gender discrimination against women.

Example: changes over time

- In 2020, you surveyed CS and DSC students: "Do you use VSCode?". 70% said yes.
- In 2025, you repeat the survey and find that 66% said yes.
- Should you conclude that VSCode is declining in popularity?
- Not necessarily! It can be true that VSCode has increased in popularity within each group.
 - Suppose VSCode is not popular among DSC majors.
 - More people are DSC majors now than in 2020.

```
In [47]: vscoders = pd.DataFrame({
             "DSC": [15, 175],
             "CSE": [300, 350]
         }, index=[2020, 2025])
In [48]:
         n_majors = pd.DataFrame({
             "DSC": [50, 400],
             "CSE": [400, 400]
         }, index=[2020, 2025])
In [49]:
         vscoders
Out[49]:
                DSC CSE
          2020
                     300
                 15
          2025
                175 350
In [50]:
         n_majors
```

DSC CSE

Out[50]:

```
2020
                     400
                 50
         2025
                400 400
In [51]: overall_popularity = vscoders.sum(axis=1) / n_majors.sum(axis=1)
         overall_popularity
Out[51]:
         2020
                  0.70
         2025
                  0.66
         dtype: float64
In [52]: within_major_popularity = vscoders / n_majors
         within_major_popularity
Out[52]:
               DSC CSE
         2020 0.30 0.75
         2025 0.44 0.88
```

Takeaways

Be skeptical of...

- Aggregate statistics.
- People misusing statistics to "prove" that discrimination doesn't exist.
- Drawing conclusions from individual publications (p-hacking, publication bias, narrow focus, etc.).
- Everything!

We need to apply domain knowledge and human judgement calls to decide what to do when Simpson's paradox is present.

Really?

To handle Simpson's paradox with rigor, we need some ideas from causal inference which we don't have time to cover in DSC 80. This video has a good example of how to approach Simpson's paradox using a minimal amount of causal inference, if you're curious (not required for DSC 80).

Out[53]:

1.2 - Motivating Example: Simpson's Paradox

Further reading

- Gender Bias in Admission Statistics?
 - Contains a **great** visualization, but seems to be paywalled now.
- What is Simpson's Paradox?
- Understanding Simpson's Paradox
 - Requires more statistics background, but gives a rigorous understanding of when to use aggregated vs. unaggregated data.

Merging

Example: Name categories

The New York Times article from Lecture 1 claims that certain categories of names are becoming more popular. For example:

- Forbidden names like Lucifer, Lilith, Kali, and Danger.
- Evangelical names like Amen, Savior, Canaan, and Creed.
- · Mythological names.

• It also claims that baby boomer names are becoming less popular.

Let's see if we can verify these claims using data!

Loading in the data

Our first DataFrame, baby, is the same as we saw in Lecture 1. It has one row for every combination of 'Name', 'Sex', and 'Year'.

```
In [54]: baby_path = Path('data') / 'baby.csv'
baby = pd.read_csv(baby_path)
baby
```

Out[54]:		Name	Sex	Count	Year
	0	Liam	М	20456	2022
	1	Noah	М	18621	2022
	2	Olivia	F	16573	2022
	•••			•••	•••
	2085155	Wright	М	5	1880
	2085156	York	М	5	1880
	2085157	Zachariah	М	5	1880

2085158 rows × 4 columns

Our second DataFrame, nyt, contains the New York Times' categorization of each of several names, based on the aforementioned article.

```
In [55]: nyt_path = Path('data') / 'nyt_names.csv'
    nyt = pd.read_csv(nyt_path)
    nyt
```

Out[55]:		nyt_name	category
	0	Lucifer	forbidden
	1	Lilith	forbidden
	2	Danger	forbidden
	•••		•••
	20	Venus	celestial
	21	Celestia	celestial
	22	Skye	celestial

23 rows × 2 columns

Issue: To find the number of babies born with (for example) forbidden names each year, we need to combine information from both baby and nyt.

Merging

- We want to link rows from baby and nyt together whenever the names match up.
- This is a **merge** (pandas term), i.e. a **join** (SQL term).
- A merge is appropriate when we have two sources of information about the same individuals that is linked by a common column(s).
- The common column(s) are called the join key.

Example merge

Let's demonstrate on a small subset of baby and nyt.

```
In [56]: nyt_small = nyt.iloc[[11, 12, 14]].reset_index(drop=True)

names_to_keep = ['Julius', 'Karen', 'Noah']
baby_small = (baby
    .query("Year == 2020 and Name in @names_to_keep")
    .reset_index(drop=True)
)

dfs_side_by_side(baby_small, nyt_small)
```

	Name	Sex	Count	Year		nyt_name	category
0	Noah	М	18407	2020	0	Karen	boomer
1	Julius	М	966	2020			
2	Karen	F	330	2020	1	Julius	mythology
3	Noah	F	306	2020			
4	Karen	М	6	2020	2	Freya	mythology

```
In [57]:
         baby_small.merge(nyt_small, left_on='Name', right_on='nyt_name')
Out[57]:
             Name Sex Count Year nyt_name
                                                category
             Julius
                          966 2020
                                         Julius mythology
                     М
            Karen
                          330 2020
                                                 boomer
                                         Karen
          2 Karen
                            6 2020
                     Μ
                                         Karen
                                                 boomer
```

The merge method

- The merge DataFrame method joins two DataFrames by columns or indexes.
 - As mentioned before, "merge" is just the pandas word for "join."
- When using the merge method, the DataFrame before merge is the "left" DataFrame, and the DataFrame passed into merge is the "right" DataFrame.
 - In baby_small.merge(nyt_small), baby_small is considered the "left" DataFrame and nyt_small is the "right" DataFrame; the columns from the left DataFrame appear to the left of the columns from right DataFrame.
- By default:
 - If join keys are not specified, all shared columns between the two DataFrames are used.
 - The "type" of join performed is an inner join. This is the only type of join you saw in DSC 10, but there are more, as we'll now see!

Join types: inner joins

```
In [58]: baby_small.merge(nyt_small, left_on='Name', right_on='nyt_name')
```

Out[58]:		Name	Sex	Count	Year	nyt_name	category
	0	Julius	М	966	2020	Julius	mythology
	1	Karen	F	330	2020	Karen	boomer
	2	Karen	М	6	2020	Karen	boomer

- Note that 'Noah' and 'Freya' do not appear in the merged DataFrame.
- This is because there is:
 - no 'Noah' in the right DataFrame (nyt small), and
 - no 'Freya' in the left DataFrame (baby small).
- The default type of join that merge performs is an **inner join**, which keeps the **intersection** of the join keys.

Different join types

We can change the type of join performed by changing the **how** argument in **merge** . Let's experiment!

```
In [59]: # Note the NaNs!
         baby_small.merge(nyt_small, left_on='Name', right_on='nyt_name', how='left')
Out[591:
            Name Sex Count Year nyt_name
                                                category
             Noah
                        18407 2020
                                                    NaN
         0
                                          NaN
            Julius
                          966 2020
                                         Julius
                                               mythology
          2 Karen
                          330 2020
                                         Karen
                                                 boomer
             Noah
                     F
                          306 2020
                                          NaN
                                                    NaN
                    М
                            6 2020
            Karen
                                         Karen
                                                 boomer
```

In [60]: baby_small.merge(nyt_small, left_on='Name', right_on='nyt_name', how='right'

Out[60]:		Name	Sex	Count	Year	nyt_name	category
	0	Karen	F	330.0	2020.0	Karen	boomer
	1	Karen	М	6.0	2020.0	Karen	boomer
	2	Julius	М	966.0	2020.0	Julius	mythology
	3	NaN	NaN	NaN	NaN	Freya	mythology
In [61]:	ba	by_smal	ll.mer	rge(nyt_	small,	left_on='N	lame', rigl
Out[61]:		Name	Sex	Count	Year	nyt_name	category
Out[61]:	0	Name NaN	Sex NaN	Count NaN			category mythology
Out[61]:				NaN		Freya	
Out[61]:		NaN	NaN	NaN 966.0	NaN	Freya Julius	mythology mythology
Out[61]:	1 2	NaN Julius	NaN M	NaN 966.0 330.0	NaN 2020.0	Freya Julius Karen	mythology mythology boomer
Out[61]:	1 2	NaN Julius Karen	NaN M F M	NaN 966.0 330.0	NaN 2020.0 2020.0 2020.0	Freya Julius Karen Karen	mythology mythology boomer boomer

Different join types handle mismatches differently

There are four types of joins.

- Inner: keep only matching keys (intersection).
- Outer: keep all keys in both DataFrames (union).
- **Left**: keep all keys in the left DataFrame, whether or not they are in the right DataFrame.
- **Right**: keep all keys in the right DataFrame, whether or not they are in the left DataFrame.
 - Note that a.merge(b, how='left') contains the same information as b.merge(a, how='right'), just in a different order.

Notes on the merge method

- merge is flexible you can merge using a combination of columns, or the index of the DataFrame.
- If the two DataFrames have the same column names, pandas will add _x and
 _y to the duplicated column names to avoid having columns with the same name (change these the suffixes argument).
- There is, in fact, a join method, but it's actually a wrapper around merge with fewer options.
- As always, the documentation is your friend!

Lots of pandas operations do an implicit outer join!

- pandas will almost always try to match up index values using an outer join.
- It won't tell you that it's doing an outer join, it'll just throw NaN s in your result!

```
In [63]: df1['a'] + df2['b']

Out[63]: awesome    NaN
    dsc80    12.0
    hello    NaN
    is    NaN
    students    NaN
    dtype: float64
```

Many-to-one & many-to-many joins

One-to-one joins

- So far in this lecture, the joins we have worked with are called one-to-one joins.
- Neither the left DataFrame (baby_small) nor the right DataFrame (nyt_small) contained any duplicates in the join key.
- What if there are duplicated join keys, in one or both of the DataFrames we are merging?

```
In [64]: # Run this cell to set up the next example.
profs = pd.DataFrame(
```

Many-to-one joins

- Many-to-one joins are joins where one of the DataFrames contains duplicate values in the join key.
- The resulting DataFrame will preserve those duplicate entries as appropriate.

In [65]:	<pre>dfs_side_by_side(profs,</pre>	schools)
----------	------------------------------------	----------

	Name	School	Years		Abr	Full			
0	Sam	UCB	5	0	UCSD	University of California San Diego			
1	Sam	UCSD	5		0002	Oniversity of Camorria Can Diego			
2	Janine	UCSD	8	1	UCLA	University of California, Los Angeles			
3	Marina	UIC	7						
4	Justin	OSU	5	2	UCB	University of California, Berkeley			
5	Soohyun	UCSD	2						
6	Suraj	UCB	2	3	UIC	University of Illinois Chicago			

Note that when merging profs and schools, the information from schools is duplicated.

- 'University of California, San Diego' appears three times.
- 'University of California, Berkeley' appears twice.

```
In [66]: profs.merge(schools, left_on='School', right_on='Abr', how='left')
```

Out[66]:		Name	School	Years	Abr	Full
	0	Sam	UCB	5	UCB	University of California, Berkeley
	1	Sam	UCSD	5	UCSD	University of California San Diego
	2	Janine	UCSD	8	UCSD	University of California San Diego
	3	Marina	UIC	7	UIC	University of Illinois Chicago
	4	Justin	OSU	5	NaN	NaN
	5	Soohyun	UCSD	2	UCSD	University of California San Diego
	6	Suraj	UCB	2	UCB	University of California, Berkeley

Many-to-many joins

Many-to-many joins are joins where both DataFrames have duplicate values in the join key.

In [67]: dfs_side_by_side(profs, programs)

	Name	School	Years		uni	dept	grad_students
0	Sam	UCB	5	0	UCSD	Math	205
1	Sam	UCSD	5	1	UCSD	HDSI	54
2	Janine	UCSD	8	2	UCSD	COGS	281
3	Marina	UIC	7	0	LIOD	00	400
4	Justin	OSU	5	3	UCB	CS	439
5	Soohyun	UCSD	2	4	OSU	Math	304
6	Suraj	UCB	2	5	OSU	CS	193

Before running the following cell, try predicting the number of rows in the output.

In [68]: profs.merge(programs, left_on='School', right_on='uni')

Out[68]:		Name	School	Years	uni	dept	grad_students
	0	Sam	UCB	5	UCB	CS	439
	1	Sam	UCSD	5	UCSD	Math	205
	2	Sam	UCSD	5	UCSD	HDSI	54
	•••	•••	•••	•••	•••	•••	
	10	Soohyun	UCSD	2	UCSD	HDSI	54
	11	Soohyun	UCSD	2	UCSD	cogs	281
	12	Suraj	UCB	2	UCB	CS	439

13 rows × 6 columns

- merge stitched together every UCSD row in profs with every UCSD row in programs .
- Since there were 3 UCSD rows in profs and 3 in programs , there are $3\cdot 3=9$ UCSD rows in the output. The same applies for all other schools.

Question [©]

Fill in the blank so that the last statement evaluates to True.

```
df = profs.merge(programs, left_on='School', right_on='uni')
df.shape[0] == (____).sum()
Don't use merge (or join ) in your solution!
```

In [69]: dfs_side_by_side(profs, programs)

	Name	School	Years		uni	dept	grad_students
0	Sam	UCB	5	0	UCSD	Math	205
1	Sam	UCSD	5	1	UCSD	HDSI	54
2	Janine	UCSD	8	2	UCSD	COGS	281
3	Marina	UIC	7	0	LIOD	00	400
4	Justin	OSU	5	3	UCB	CS	439
5	Soohyun	UCSD	2	4	OSU	Math	304
6	Suraj	UCB	2	5	OSU	CS	193

In [70]: # Your code goes here.

Returning back to our original question

Let's find the popularity of baby name categories over time. To start, we'll define a DataFrame that has one row for every combination of 'category' and 'Year'.

Out[71]:

	category	Year	Count
0	boomer	1880	292
1	boomer	1881	298
2	boomer	1882	326
•••			
659	mythology	2020	3516
660	mythology	2021	3895
661	mythology	2022	4049

662 rows × 3 columns

Questions? 99

Transforming

Transforming values

- A transformation results from performing some operation on every element in a sequence, e.g. a Series.
- While we haven't discussed it yet in DSC 80, you learned how to transform Series in DSC 10, using the apply method. apply is very flexible – it takes in a function, which itself takes in a single value as input and returns a single value.

baby In [73]:

```
Out[73]:
                      Name Sex Count Year
                0
                                 20456 2022
                       Liam
                1
                      Noah
                                  18621 2022
                2
                      Olivia
                              F
                                  16573 2022
          2085155
                     Wright
                                        1880
                              М
         2085156
                       York
                                     5 1880
          2085157 Zachariah
                                     5 1880
```

2085158 rows × 4 columns

```
In [74]: def number_of_vowels(string):
              return sum(c in 'aeiou' for c in string.lower())
         baby['Name'].apply(number_of_vowels)
Out[74]: 0
                     2
                     2
          1
          2
                     4
          2085155
                     1
          2085156
                     1
          2085157
          Name: Name, Length: 2085158, dtype: int64
In [75]: # Built-in functions work with apply, too.
         baby['Name'].apply(len)
Out[75]:
                     4
                     4
          1
          2
                     6
          2085155
                     6
                     4
          2085156
          2085157
          Name: Name, Length: 2085158, dtype: int64
```

The price of apply

Unfortunately, apply runs really slowly!

```
In [76]: %timeit
baby['Name'].apply(number_of_vowels)

953 ms ± 7.79 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [77]: %timeit
res = []
```

```
for name in baby['Name']:
    res.append(number_of_vowels(name))

796 ms ± 9.74 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Internally, apply actually just runs a for -loop!
```

So, when possible – say, when applying arithmetic operations – we should work on Series objects directly and avoid apply!

The price of apply

```
In [78]: %%timeit
baby['Year'] // 10 * 10 # Rounds down to the nearest multiple of 10.

3.54 ms ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [79]: %%timeit
baby['Year'].apply(lambda y: y // 10 * 10)

361 ms ± 36.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

100x slower!
```

The str accessor

For string operations, pandas provides a convenient .str accessor.

```
In [80]: %timeit
baby['Name'].str.len()

251 ms ± 2.47 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [81]: %timeit
baby['Name'].apply(len)

262 ms ± 1.36 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

It's very convenient and runs about the same speed as apply!

Other data representations

Representations of tabular data

- In DSC 80, we work with DataFrames in pandas .
 - When we say pandas DataFrame, we're talking about the pandas API for its DataFrame objects.
 - API stands for "application programming interface." We'll learn about these more soon.

- When we say "DataFrame", we're referring to a general way to represent data (rows and columns, with labels for both rows and columns).
- There many other ways to work with data tables!
 - Examples: R data frames, SQL databases, spreadsheets, or even matrices from linear algebra.
 - When you learn SQL in DSC 100, you'll find many similaries (e.g. slicing columns, filtering rows, grouping, joining, etc.).
 - Relational algebra captures common data operations between many data table systems.
- Why use DataFrames over something else?

DataFrames vs. spreadsheets

- DataFrames give us a **data lineage**: the code records down data changes. Not so in spreadsheets!
- Using a general-purpose programming language gives us the ability to handle much larger datasets, and we can use distributed computing systems to handle massive datasets.

DataFrames vs. matrices

$$\mathbf{X} = egin{bmatrix} 1 & 0 \ 0 & 4 \ 0 & 0 \end{bmatrix}$$

- Matrices are mathematical objects. They only hold numbers, but have many useful properties (which you've learned about in your linear algebra class, Math 18).
- Often, we process data from a DataFrame into matrix format for machine learning models. You saw this a bit in DSC 40A, and we'll see this more in DSC 80 in a few weeks.

DataFrames vs. relations

- Relations are the data representation for relational database systems (e.g. MySQL, PostgreSQL, etc.).
- You'll learn all about these in DSC 100.
- Database systems are much better than DataFrames at storing many large data tables and handling concurrency (many people reading and writing data at the same time).
- Common workflow: load a subset of data in from a database system into **pandas**, then make a plot.

• Or: load and clean data in pandas , then store it in a database system for others to use.

Summary

- There is no "formula" to automatically resolve Simpson's paradox! Domain knowledge is important.
- We've covered most of the primary DataFrame operations: subsetting, aggregating, joining, and transforming.

Next time

Data cleaning: applying what we've already learned to real-world, messy data!