

Obiettivo

L'obiettivo stabilito per questo progetto è lo sviluppo di due modelli di apprendimento che abbiano lo scopo di classificare la qualità del vino rosso.

I modelli di riferimento scelti:

- Macchine a vettori di supporto
- Algoritmo random forest

Descrizione dominio

Il dataset Red Wine Quality utilizzato contiene un elenco di 4898 istanze e 12 attributi di tipo reale. Gli attributi sono:

- Acidità fissa
- Acidità volatile
- Acido citrico
- Zuccheri residui
- Cloruri

- Anidride solforosa libera
- Anidride solforosa totale
- Densità
- pH
- Solfati
- Alcool

La variabile target è : qualità.

Distribuzione delle etichette

La qualità è rappresentata da un numero intero variabile da 1 a 10 (1=bassa, 10=alta)

Etichette e codifica

Convertiamo i valori di qualità in 3 etichette:

- Qualità bassa (punteggio < 5)
- Qualità media (punteggio di 6 o 7)
- Qualità alta (punteggio > 7)

Matrice di correlazione

Modeling process

Abbiamo deciso di effettuare la classificazione su due diverse varianti del dataset:

- Qualità suddivisa in alta, media, bassa
- Qualità suddivisa in alta (>=7) e bassa (<7)

In entrambi i casi il dataset è stato diviso casualmente in due sottoinsiemi : 70% delle istanze per il training del modello e 30% delle istanze per il test del modello

Confronto accuratezza

Confronto dei risultati

	Precision	Recall	F1
SVM	0.9573	0.8956	0.9254
RF	0.9025	0.9686	0.9344

Classe positiva : Bassa

Classe positiva: Alta

	Precision	Recall	F1
SVM	0.5733	0.77883	0.6603
RF	0.8265	0.6033	0.6975

Confronto curve ROC

SVM AUC: 0.8279 **Random Forest** AUC 0.909

Il valore di AUC 0.8279, indica che c'è una probabilità del 82.79% che il modello sarà in grado di distinguere tra classe positiva e classe negativa.

Confronto tra i due modelli - 1

Notiamo la stessa specificità, quindi non è un elemento discriminante di scelta tra un modello e l'altro. Possiamo notare delle differenze per quanto riguarda la ROC e la sensitività, ritenendole sufficientemente distinte.

Confronto tra i due modelli - 2

I modelli non presentano tempi computazionali molto differenti, dunque il tempo computazionale non influenza la scelta del modello da utilizzare.

(s)	Everything	FinalModel	
SVM	132.47	1.58	
RF	185.21	1.72	

- Accuratezza predizione dei modelli simile
- Differenze sulla precisione date dalla classe:
 - Classe "Bassa": entrambi i modelli presentano un buon livello di precisione
 - O Classe "Alta": notevole differenza di precisione
- Limitazioni
 - Dataset sbilanciato
 - Numero ridotto di attributi
- Soluzioni proposte
 - Aggiunta di ulteriori informazioni rilevanti al dataset

