Problems and Solutions

Ch. 56

 Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter.

- Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter.
- Hint JK flip-flop
 - Q(t+1) = JQ'+K'Q

 A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations (HDL—see Problem 5.35):

$$-A(t+1) = xy' + xB$$

 $-B(t+1) = xA + xB'$
 $-z = A$

- (a) Draw the logic diagram of the circuit.
- (b) List the state table for the sequential circuit.
- (c) Draw the corresponding state diagram.

(b)	A(t+1) = xy' + xB B(t+1) = xA + xB'
	z = A

Present	SmduJ	Next	Output
A E 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1	3 x y	A B 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0	2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0	0 0	0 0	0
0 0	0 1	0 0	0
0 0	1 0	1 1	0
0 0	1 1	0 1	0
0 1	0 0	0 0	0
0 1	0 1	0 0	0
0 1	1 0	1 0	0
0 1	1 1	1 0	0
1 0	0 0	0 0	1
1 0	0 1	0 0	1
1 0	1 0	1 1	1
1 0	1 1	1 1	1
A E 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1	8 x y 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1	A B 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1	1
1 1	0 1	0 0	1
1 1	1 0	1 1	1
1 1	1 1	1 1	1

(c)

• A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown in Fig. P5.7. Derive the state table and state diagram of the sequential circuit.

Present state	Imputs	Next state	Omput
ϱ	x y	Q	<u>s</u>
0	0 0	0	0
0	0 1	0	1
0	1 0	0	1
0	1 1	1	0
1	0 0	0	1
1	0 1	1	0
1	1 0	1	0
1	1 1	1	1

$$S = x \oplus y \oplus Q$$
$$Q(t+1) = xy + xQ + yQ$$

 Derive the state table and the state diagram of the sequential circuit shown in Fig. P5.8.
 Explain the function that the circuit performs

	Next State		Output	
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
а	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

- (a)* Tabulate the reduced state table.
- (c) Draw the state diagram corresponding to the reduced state table.

Present	Next state	Output	
state	0 1	0 1	
а	f b	0 0	
\boldsymbol{b}	d a	0 0	
d	g a	1 0	
f	f b	1 1	
g	g d	0 1	

Note: Equivalent states: b = e, a = c, h = d

 Draw the logic diagram for the sequential circuit described by the following HDL code:

```
always @ (posedge CLK) begin
```

end

 Draw the state diagram of the machine described by the HDL model given below.

Problems (needs update)

```
module Prob_5_51 (output reg y_out, input x_in, clk, reset_b);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
 req [1:0] state, next_state;
 always @ (posedge clk, negedge reset b) begin
  if (reset_b == 1'b0) state <= s0;
  else state <= next state:
 always @(state, x_in) begin
  v out = 0:
  next state = s0;
  case (state)
   s0: begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end;
   s1: begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end;
   s2: begin y_out = 1; if (x_in) next_state = s3; else next_state = s2; end;
   s3: begin y out = 1; if (x in) next state = s0; else next state = s3; end;
   default: next_state = s0;
  endcase
 end
endmodule
```

 Draw the logic diagram of a four-bit register with four D flip-flops and four 4 * 1 multiplexers with mode selection inputs s1 and s0. The register operates according to the following function table.

s 1	s ₀	Register Operation
0	0	No change
1	0	Complement the four outputs
0	1	Clear register to 0 (synchronous with the clock)
1	1	Load parallel data

Unit 1 17

- Draw the logic diagram of a four-bit binary ripple countdown counter using:
- (a) flip-flops that trigger on the positive-edge of the clock; and
- (b) flip-flops that trigger on the negative-edge of the clock.

With the bubbles in C removed (positive-edge). With complemented flip-flops connected to C.

 Design a four-bit binary synchronous counter with D flip-flops.

With E denoting $Count_enable$ in Fig. 6.12 and D-flip-flops replacing the J-K flip-flops, the toggling action of the bits of the counter is determined by: T0 = E, T1 = A0E, T2 = A0A1E, T3 = A0A1A2E. Since $DA = A \oplus TA$ the inputs of the flip-flops of the counter are determined by:

$$DA0 = A0 \oplus E;$$

 $DA1 = A1 \oplus (A0E)$
 $DA2 = A2 \oplus (A0A1E)$
 $DA3 = A3 \oplus (A0A1A2E)$

 Develop the state diagram for a Mealy state machine that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line.

Assumption: Synchronous active-low reset Mealy machine, links for reset on-the-fly are implicit and not shown


```
module Prob 5 55 (input x in, clk, reset b, output reg y);
   parameter s0 = 1'd0;
   parameter s1 = 1'd1;
   parameter s2 = 1'd2;
   parameter s3 = 1'd3;
   reg [1: 0] state, next-state;
   always @ (posedge clk, negedge reset b)
       if (reset b == 1'b0) state <= s0;
       else state <= next state;</pre>
   always @ (state, x in) begin
      y = 1'b0;
       next state = s0;
                        // Mealy machine
       case (state)
              if (x in) begin y = 1'b0; next state = s1; end
       s0:
              else begin y = 1'b0; next state = s0; end
              if (x in) begin y = 1'b0; next state = s2; end
       s1:
              else y = 1'b0; next_state = s0; end
       s2:
              if (x in) begin y = 1'b0; next state = s3; end
              else begin y = 1'b0; next state = s0; end
       s3:
              if (x in) begin y = 1'b1; next state = s3; end
              else begin y = 1'b0; next state = s0; end
       default: begin y = 1'b0; next state = s0; end
   endcase
```

A synchronous Moore machine has two inputs x1 and x2, and an output y_out. If both inputs have the same value, the output is asserted for one cycle; otherwise, the output is 0. Develop a state diagram

