1. Predicting Depression in Mental Health Data Using Supervised Learning

Work done by Group_A2_77:

- Francisco Miguel Pires Afonso (up202208115)
- Miguel Moita Caseira (up202207678)
- Pedro Trindade Gonçalves Cadilhe Santos (up202205900)

2. Problem Definition and Context

- This project addresses a **binary classification problem**, aiming to detect the presence of depressive symptoms in individuals based on various personal, academic, and lifestyle factors.
- The target variable is **Depression**:
 - 0 = No symptoms of depression
 - 1 = Signs of depression present
- We apply **Supervised Learning techniques** to learn patterns from labeled data and predict the mental health status of individuals.
- The problem is aligned with the IART assignment goals: to build and evaluate ML models following a complete pipeline - from exploratory data analysis to model selection, training, and performance comparison.
- Dataset source: <u>Kaggle Playground Series S4E11</u> (<u>train.csv</u> and <u>test.csv</u>)

3. Dataset Overview and Preprocessing

- Dataset contains ~140k samples, with diverse features (personal, academic, lifestyle).
- The target variable **Depression** is binary and class-imbalanced:
 ~82% class 0 (no symptoms), ~18% class 1 (symptoms present).
- Removed irrelevant columns: id, Name, etc.
- Imputed missing values:
 - Numerical: median
 - Categorical: most frequent
- Encoded categorical variables with LabelEncoder.
- Normalized numeric features using StandardScaler.
- Final dataset: cleaned, numeric and ready for model training.

4. Exploratory Data Analysis (EDA)

- Analyzed distribution of key features across the dataset:
- Observed strong class imbalance (confirmed previously).
- Correlation heatmap used to identify relationships between numeric features.
- Boxplots revealed potential associations between:
 - Financial Stress, CGPA, Work/Study Hours and Depression.
- Some features (e.g. Family History, Suicidal Thoughts) showed clear association with Depression.

5. Initial Models and Performance

- Tested three supervised learning models with default parameters:
 - Decision Tree
 - k-Nearest Neighbors (k-NN)
 - Multilayer Perceptron (MLP)
- Evaluated with **Accuracy** and **F1 Score** on test data.
- Performance varied, especially on class 1 (minority class).
- MLP showed best balance between accuracy and recall.

6. Hyperparameter Tuning

- Applied GridSearchCV to tune parameters for:
 - Decision Tree
 - k-Nearest Neighbors (k-NN)
 - Multilayer Perceptron (MLP)
- Used F1 Score as the scoring metric (focus on minority class performance).
- **Cross-validation** (cv=3) used to ensure reliable evaluation.
- Tuned parameters included:
 - Tree depth, splitting criteria (for **Decision Tree**): {'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'min_samples_split': 10}
 - Number of neighbors, distance metric (for k-NN): {'metric': 'manhattan', 'n_neighbors': 9, 'weights': 'distance'}
 - Hidden layer size, activation, learning rate (for MLP): {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (50,), 'learning_rate': 'constant'}
- Best parameters were selected and used for final evaluation.

7. Performance after Tuning

- All three models were re-evaluated using their best parameters from tuning.
- Performance was compared using Accuracy and F1 Score.
- Improvements observed, especially in k-NN and Decision Tree.
- MLPClassifier remained the best overall, showing both high accuracy and good sensitivity to the minority class.

8. Learning Curve and Generalization

- Learning curve shows model performance on both training and validation sets as training size increases.
- The validation accuracy increases and approaches training accuracy, indicating good generalization.
- Small gap between curves suggests no overfitting.
- Model performance stabilizes after ~80,000 samples — additional data brings diminishing returns.
- Complementary error plot confirms low and converging error rates.

9. Class-by-Class Performance

- Used classification_report to assess precision, recall and F1 Score per class.
- Focus on class 1 (Depression = Yes), which is the minority and most critical.
- MLPClassifier (Tuned) achieved:

o Precision: 0.94

Recall: 0.94

o F1 Score: 0.94

- Decision Tree and k-NN showed lower recall and F1 for class 1.
- MLP generalizes best without sacrificing sensitivity to positive cases.

Relatório de Classificação - Decision Tree (Tuned)					
	precision	recall	f1-score	support	
0	0.95	0.96	0.96	23027	
1	0.81	0.79	0.80	5113	
accuracy			0.93	28140	
macro avg	0.88	0.87	0.88	28140	
weighted avg	0.93	0.93	0.93	28140	
Relatório de	Classificação	- k-NN	(Tuned)		
	precision	recall	f1-score	support	
0	0.92	0.96	0.94	23027	
1	0.78	0.64	0.70	5113	
accuracy			0.90	28140	
macro avg	0.85	0.80	0.82	28140	
weighted avg	0.90	0.90	0.90	28140	
, ,					
Relatório de	Classificação	- Multi	ilayer Perc	eptron (Tune	d)
	precision	recall	f1-score	support	
0	0.96	0.96	0.96	23027	
1	0.83	0.82	0.82	5113	
accuracy			0.94	28140	
macro avq	0.89	0.89	0.89	28140	
weighted avg	0.94	0.94	0.94	28140	
	3101		0.01		

10. Conclusions and Results

- MLPClassifier (Tuned) was the best-performing model:
 - Accuracy: 0.94 | F1 Score: 0.94
- Parameter tuning improved performance, especially for **k-NN** and **Decision Tree**.
- Learning curves showed **no overfitting** and good generalization.
- Classification reports confirmed strong performance for class 1 (Depression = Yes).
- The final model was successfully applied to the **unseen test set** (<u>test.csv</u>), using the same pipeline for preprocessing and encoding (including handling of previously unseen categorical values).