Equilibria in Health Exchanges: Adverse Selection vs. Reclassification Risk

Ben Handel - Berkeley

Igal Hendel - Northwestern

Michael Whinston - M.I.T

May 29, 2014

Introduction

- Great deal of interest has focused on the creation and regulation of health insurance exchanges
 - Affordable Care Act in United States (2010)
 - Netherlands (2006), Switzerland (1996)
 - Private employer exchanges (U.S.)
- This type of regulated insurance market, termed managed competition, characterized by:
 - Annual policies
 - "Free entry" of insurers
 - Pre-specified financial coverage levels plans can offer (60%, 70%, 80%, 90% in U.S.)
 - Restrictions on pricing pre-existing conditions, demographics
 - Individual mandate

Introduction

- Use equilibrium framework we develop to study the interplay between two potential sources of inefficiency: adverse selection and reclassification risk.
- Empirically study with individual-level data on insurance choices / health outcomes from large firm
- Adverse Selection: Under-provision of insurance because those who select more comprehensive insurance are more expensive, conditional on information that can be priced
- Reclassification Risk: Year to year risk in insurance premiums when health-related information can be included in up front contract pricing

Adverse Selection & Re-Classification Risk

- ACA aims to eliminate reclassification risk (RCR) through pricing regulation, but at possible cost of more adverse selection (within market / into market)
- Our primary focus: Study trade-off between these two inefficiencies within an equilibrium framework
 - -Ask: How would alternative pricing regulations (e.g. age, health status) affect market outcomes and welfare?
 - -Impact: As regulation allows more opportunities for insurers to price specific risks (i) reduced welfare loss from within-market adverse selection and (ii) increased welfare loss from RCR
 - -Additionally: Insurer risk-adjustment transfers, market participation, different long-run welfare notions, non-price contract regulation, multi-year contracts

Methodology Overview

- Use insurance choice and health outcomes data to estimate joint distribution of risk preferences and health risk for population of insured individuals [based on Handel(2013)]
- Develop equilibrium model of an exchange that provides and algorithm for identifying equilibria
 - -Multi-plan competition, free entry
- 3. Use estimated preferences, plus health / cost information to compute equilibria for this population of insured individuals (actually, a "pseudo-population") under various pricing rules
- 4. Evaluate welfare for this population under various pricing rules
 - -Short-run welfare and AS, long-run welfare and RCR
 - -Tradeoff between adverse selection and reclassification risk

Results

- 1. Baseline results for 90% and 60% contracts:
 - -- Substantial adverse selection in community rating
 - -- Substantial reclassification risk with full risk rating
 - -- Incrementally moving towards full risk-rating leads to incremental welfare losses
 - -- Average welfare loss AS with community rating \$619 relative to full risk-rating.
 - -- RCR in with health-quartile risk rating has relative avg. loss of \$3,082 relative to community rating.
- Long-run welfare results from reclassification risk are lower the steeper consumer income profile is over time (reflects imperfect credit markets
- 3. Age-based pricing does not lead to less adverse selection, but complementary to health status based pricing

Results

- 4. Minimum Creditable Coverage regulation
 - -- Lowering actuarial value of lowest coverage plan increases share of consumers ending up with high coverage
 - -- Net welfare impact still negative in static marketplace because though more with higher coverage, some with very low coverage
 - -- Losses from RCR still well exceed losses from AS
- 5. Participation
 - -- In main model, individual mandate enforced
 - -- If not, 26% of people opt out of baseline market (young)
 - -- Premiums 30% higher than with full participation
- 6. Risk-adjustment transfers reduce welfare loss AS by 45%
- 7. Results robust to using data reweighted by MEPS

Related Literature

Dynamic / Long-Run Risk in Insurance Markets:

Pauly et al. (1995), Hendel & Lizzeri (2003), Finkelstein et al. (2005), Hoffman et al. (2010) Dionne & Rothschild (2011), Koch (2011), Cochrane (1995), Bundorf et al. (2012)

Welfare Consequences of Adverse Selection:

Cutler & Reber (1998), Carlin & Town (2009), Lustig (2009), Einav et al. (2010), Cardon & Hendel (2001), Chiappori & Salanie (2001), Handel (2013), Einav et al. (2011), Bundorf et al. (2012)

Health Exchange Regulation

 Ericson and Starc (2012), Kolstad and Kowalski (2013), Aizawa and Fang (2013)

New: Multi-plan competition and exchange equilibria, long-run welfare analysis of price regulation, empirics

Empirical Methodology

Data

- Individual-level panel dataset: provided by large employer (10,000 emp. / 25,000 covered lives) from 2004-2009
 - Plan choices, plan characteristics and consumer demographics
 - Detailed claims data, medical and financial, for every person covered in PPO (65%)
 - Derived predictive medical risk measures from ACG program
- What do we get from the data?
 - Ex ante health risk of each individual
 - Risk preference estimates (distribution) for population
 - Joint distribution, risk prefs. conditional on health risk, age, income, gender, job type

Summary Stats

Full sample Variable	Value
N (families)	11,253
N (individuals)	20,963
Mean Age	40.1
% Male	46.7
% Income Tier 1 (0-41K)	33.9%
% Income Tier 2 (41K-74K)	39.5%
% Income Tier 3 (74K-122K)	17.9%
% Income Tier 4 (122K-176K)	5.2%
% Income Tier 5 (>176K)	3.5%
Family Size:	
1	58.0%
2	16.9%
3	11.0%
4+	14.1%
Manager	23.2%
White collar	47.9%
Blue collar	28.9%

PPO ever Sample	
Variable	Value
N (families)	5,667
N (individuals)	10,713
Mean Age	40.0
% Male	46.3
% Income Tier 1 (0-41K)	31.9%
% Income Tier 2 (41K-74K)	39.7%
% Income Tier 3 (74K-122K)	18.6%
% Income Tier 4 (122K-176K)	5.4%
% Income Tier 5 (>176K)	4.4%
Family Size:	
1	56.1%
2	18.8%
3	11.0%
4+	14.1%
Manager	25.1%
White collar	47.5%
Blue collar	27.3%

Estimation Sample	
Variable	Value
N (families)	2,033
N (individuals)	4,544
Mean Age	42.3
% Male	46.7
0/ Incomo Tior 1 (0 /11/)	10.00/
% Income Tier 1 (0-41K)	19.0%
% Income Tier 2 (41K-74K)	40.5%
% Income Tier 3 (74K-122K)	25.0%
% Income Tier 4 (122K-176K)	7.8%
% Income Tier 5 (>176K)	7.7%
Family Size:	
1	41.3%
2	22.3%
3	14.1%
4+	22.3%
Manager	37.5%
White collar	41.3%
Blue collar	21.1%

Preference Estimation: Similar to Handel (2013)

- Each family k faces uncertainty about future health expenditures
- Cost model estimates distribution of *plan-specific out-of-pocket* expenditures $H_k(X_{jt} \mid \lambda_t, Z_{jt})$ conditional on health status (derived Johns Hopkins ACG software using past health outcomes / medical information.
- Consumers choose best plan with knowledge of H_k allows estimation of risk preferences
 - -- Plans have same provider network (3 PPO options)
 - -- "Active" choice year in data avoids confounding with inertia
- Estimate structural "realized" expected-utility model with constant absolute risk aversion (CARA) (controls for inertia, other prefs.)

$$\gamma_k \sim N(\mu(\text{age, health, mngr, ability}), \sigma^2)$$

Health Risk in Estimation Sample

- Mean expected health expenses per individual
- 1 = \$4,878, or population average of mean expected expenditures

Health Risk in Simulation Sample

R is ratio of variance of total expenditures to mean φ captures how much health status info known at contracting

	Fi	nal Sample	Total Health Ex	penditure Statistics		
Δ	Maria	d D	C. D. of waren	C. D	\	
Ages	Mean	S. D.	S. D. of mean	S. D. around mean	R	φ
All	6,099	13,859	6,798	9,228	31,369	0.24
25-30	3,112	9,069	4,918	5,017	26,429	0.29
30-35	3,766	10,186	5,473	5,806	$27,\!550$	0.29
35-40	4,219	10,753	5,304	6,751	$27,\!407$	0.24
40-45	5,076	12,008	5,942	7,789	28,407	0.25
45-50	6,370	14,095	6,874	9,670	31,149	0.24
50-55	7,394	15,315	7,116	11,092	31,722	0.22
55-60	9,175	17,165	7,414	13,393	32,113	0.19
60-65	10,236	18,057	7,619	14,366	31,854	0.18

Preference Estimation:

 Choice model has consumers k making choices under uncertainty with discrete utility for each of j plans

$$U_{jkt} = \int_0^\infty u_j(M_{jkt}(X_{jt}, \mathbf{Z}_{jt})) dH_k(X_{jt} | \boldsymbol{\lambda}_{jt}, \mathbf{Z}_{jt})$$

$$M_{jkt} = W_j - P_{jkt} - X_{jt} + \eta(\mathbf{Z}_j^B)\mathbf{1}_{jk,t-1} + \delta_j(A_j)\mathbf{1}_{1200} + \alpha HTC_{j,t-1}\mathbf{1}_{250} + \varepsilon_{jkt}(A_j)$$

Constant Absolute Risk Aversion (CARA) sets:

$$u_j(M_{jkt}) = -\frac{1}{\gamma_j} e^{-\gamma_j M_{jkt}}$$

 Mean of risk preference distribution in population depends flexibly on demographics:

$$\mu_{\gamma}(\mathbf{Z}_{j}^{A}, \lambda_{j}) = \beta_{0} + \beta_{1} \log(\Sigma_{i \in j} \lambda_{i}) + \beta_{2} age_{j} + \beta_{3} \log(\Sigma_{i \in j} \lambda_{i}) * age_{j} + \beta_{4} 1_{mj} + \beta_{5} 1_{mj} \widehat{v}_{mj} + \beta_{6} 1_{nmj} \widehat{v}_{nmj}$$

Summary Stats / Estimates

Mean CARA risk aversion coefficient ~ 0.0004

$$\frac{1}{2} \circ 1000 + \frac{1}{2} \circ (-693) \sim 0$$

- Risk aversion:
 - -- Increases with age
 - -- Negatively correlated with health risk
 - -- Increases with age more slowly for healthy
 - -- Greater for managers and those w/ high ability
 - -- Population std. dev. of observable risk pref. heterogeneity 6 * 10⁻⁵
- Unobserved heterogeneity in risk preferences normally distributed with standard deviation = 0.0001
- Joint distribution of risk preferences, ex ante health status, ex post health outcomes taken to exchange model (w/ demographics)

- Two policy types: 60% and 90% for main analysis
- We construct a standard policy of each type:

Plan:	Deductible	Coinsurance %	OOP Max
60	\$3,000	20%	\$5,950
90	\$0	20%	\$1,500

Premium changes move a policy along its green line (so restricted policies relative to RS)

- Assume mandate enforced, free entry of insurers for both policies
- Use empirical joint distribution of H, λ, and γ to find each individual's CE₉₀ and CE₆₀ (gross of premiums)
- Define individual's WTP "type": $\theta = CE_{90} CE_{60}$
- Costs of type θ are $C_{90}(\theta)$ and $C_{60}(\theta)$
- Define $\Delta P = P_{90} P_{60}$
- Define: $AC_{90}(\Delta P) = E[C_{90}(\theta) \mid \theta \ge \Delta P]$ $AC_{60}(\Delta P) = E[C_{60}(\theta) \mid \theta < \Delta P]$

Adverse Selection Property:

 $C_{90}(\theta)$, $C_{60}(\theta)$ are continuous and increasing

- -- Implies that $AC_{90}(\Delta P), AC_{60}(\Delta P)$ are increasing
- -- Define $\underline{AC}_{90}, \underline{AC}_{60}, AC_{90}, AC_{60}$

 θ has atomless distribution F on $[\underline{\theta}, \overline{\theta}]$

$$\theta > C_{90}(\theta) - C_{60}(\theta)$$
 for all $\theta \in [\underline{\theta}, \overline{\theta}]$

Relative to Rothschild-Stiglitz: restricted policies, continuum of types, many states

Define profits:

$$\Pi_{90}(P_{90}, P_{60}) = [P_{90} - AC_{90}(\Delta P)][1 - F(\Delta P)]$$

$$\Pi_{60}(P_{90}, P_{60}) = [P_{60} - AC_{60}(\Delta P)]F(\Delta P)$$

$$\Pi(P_{90}, P_{60}) = \Pi_{90}(P_{90}, P_{60}) + \Pi_{60}(P_{90}, P_{60})$$

- Single-policy Nash equilibria:
 - Both policies break even: $\triangle P = \triangle AC$
 - "All-in-90" is the (unique) sp-NE iff $P_{90} = \underline{AC}_{90}$ leaves no room for a profitable deviation in 60; i.e., if

$$\Pi_{60}(\underline{AC}_{90},\underline{AC}_{90}-\Delta P) \le 0$$
 for all ΔP

- If "all-in-90" is not a sp-NE: Then a sp-NE must involve the lowest "break-even" ΔP (i.e., satisfying $\Delta P = \Delta AC$ for interior ΔP) that has positive sales of the 60 policy
- This ΔP , say ΔP^* , is a sp-NE iff no deviation in P_{90} is profitable: $\Pi_{90}(P_{60}^* + \Delta P, P_{60}^*) \leq 0$ for all $\Delta P \leq P_{90}^* P_{60}^*$

Multi-policy Nash Equilibria:

In addition to sp-NE results:

•The lowest break-even ΔP , ΔP *, is a mp-NE iff a multipolicy deviation that slightly undercuts P_{60} is not profitable; that is, iff:

$$\Pi(P_{60}^* + \Delta P, P_{60}^*) \le 0 \text{ for all } \Delta P \le P_{90}^* - P_{60}^*$$

- •Equilibrium does not exist in many cases
- •All-in 60 cannot be a mp-NE with risk averse consumers

Riley Equilibria (RE):

- (P₉₀,P₆₀) is a Riley equilibrium if there is no profitable deviation that remains profitable after any "safe" profitable reaction
 - RE exist and are unique
 - It is "all-in-90" when Nash is also "all-in-90"
 - Otherwise, it is the lowest break-even DP that has positive sales of the 60 policy
- Also consider Wilson equilibrium concept in additional analysis

Model: Comparison to Literature

Einav-Finkelstein-Cullen (2010): pricing of one "add-on" policy given fixed price of base policy. Always get existence of NE. Never get full unraveling with strict risk aversion and Pr(loss)>0.

Here: pricing of two policies allows cream skimming, which undermines existence Can get complete unraveling with strict risk aversion and Pr(loss)>0 (Intuition: high WTP consumers now benefit from pooling with low WTP consumers at low coverage)

Hendren (2013): Sufficient condition for no incentive-feasible insurance contract in two-state model with asymmetric info about prob(loss). Can't hold with strict risk-aversion and strictly positive Pr(loss).

Here: Can't get complete unraveling if low coverage is no coverage. **C**an get complete unraveling in RE (which is incentive feasible) if low coverage has some coverage.

Empirical Equilibrium Results

Simulation Sample

Estimation Sample	
Variable	Value
N (families)	2033
N (individuals)	4544
Mean Age	42.3
% Male	46.7
% Income Tier 1 (0-41K)	19.0%
% Income Tier 2 (41K-74K)	40.5%
% Income Tier 3 (74K-122K)	25.0%
% Income Tier 4 (122K-176K)	7.8%
% Income Tier 5 (>176K)	7.7%
Family Size:	
1	41.3%
2	22.3%
3	14.1%
4+	22.3%
Manager	37.5%
White collar	41.3%
Blue collar	21.1%

Simulation Sample	
Variable	Value
N (families)	NA
N (individuals)	10372
Mean Age	44.5
% Male	44.6
% Income Tier 1 (0-41K)	20.2%
% Income Tier 2 (41K-74K)	40.4%
% Income Tier 3 (74K-122K)	24.5%
% Income Tier 4 (122K-176K)	7.9%
% Income Tier 5 (>176K)	7.1%
Family Size:	
1	NA
3	NA
3	NA
4+	NA
Manager	35.9%
White collar	44.3%
Blue collar	19.8%

Quantile	e .	Age	
	0.05		26
	0.1		28
	0.2		33
	0.3		37
	0.4		41
	0.5		45
	0.6		49
	0.7		52
	0.8		56
	0.9		60
	0.95		62

- Simulation sample is used in equilibrium counterfactuals
- Preferences fit with estimates of family choice model (coming up)
- Individuals 25 to 65, including individuals from families
- Similar to market where everyone priced independently, even if in family
- Counterfactual simulations: private exchange, or regulated exchange

Pure Community Rating:

Equilibrium Determination Steps

- First, static equilibrium, then re-classification risk
- Step 1: check if 'all-in' 90 survives single policy 60 deviation
 - If it does, it is sp-NE, mp-NE, and RE, if not......
- **Step 2:** find lowest break-even ΔP* with positive sales of the 60 policy...
 -this is the Riley Equilibrium
 -these are candidates for sp-NE and mp-NE
- Step 3: check if ΔP* is sp-NE or mp-NE

Pure Community Rating:

Equilibrium Determination Steps

Step 1: check if 'all-in' 90 survives single policy 60 deviation

Pure Community Rating

- Step 2: there is no interior break-even DP, so "all-in-60" is RE (and may be sp-NE and mp-NE) if equilibrium exists, market has to completely unravel
- Step 3: check deviations: all-in-60 is sp-NE, but not mp-NE

Equilibrium Concept	P ₆₀	P ₉₀	s ₆₀	s ₉₀	AC ₆₀	AC ₉₀
Single policy-NE	4051		100	0	4051	
Multi-policy NE	No equilibrium					
Riley	4051		100	0	4051	

Health-Status Pricing: ACG Quartiles

- Now, as example of limited health-status based pricing, suppose pricing can be based on ACG-quartiles.
 - --Creates 4 separate sub-markets.
 - --Follow the same steps for each sub-market
- Increases re-classification risk, decreases adverse selection
- Summary for pricing by health-status quartiles:
 - --For every quartile, a 60 deviation is profitable against "all-in 90"
 - --Reduced unraveling in healthiest quartile, still full unraveling in other 3
 - --At risk of moving to one of four premiums next year (RCR)

Equilibria with Health Pricing: Health Status Quartiles

Market	Equilibrium Type	P ₆₀	P ₉₀	s ₆₀	S ₉₀	AC ₆₀	AC ₉₀
Quartile 1	RE/sp-NE/mp-NE	289	1550	64.8	35.2	289	1,550
Quartile 2	RE/sp-NE	1467	1467	100	0	1467	
Quartile 3	RE/sp-NE	4577	4577	100	0	4577	
Quartile 4	RE/sp-NE	9802	9802	100	0	9802	

Equilibria with Health Pricing: Health Status Quartiles

Market	Equilibrium Type	P ₆₀	P_{90}	s ₆₀	s ₉₀	AC ₆₀	AC_{90}
Quartile 1	RE/sp-NE/mp-NE	289	1550	64.8	35.2	289	1,550
Quartile 2	RE/sp-NE	1467	1467	100	0	1467	
Quartile 3	RE/sp-NE	4577	4577	100	0	4577	
Quartile 4	RE/sp-NE	9802	9802	100	0	9802	

Reclassification risk

Equilibria with Health Pricing: Adverse Selection

Welfare Results (AS-RCR)

Welfare Analysis: AS and RCR

- Goal: Evaluate the ex ante utility of an unborn individual
 - Uncertainty about health status transitions in lifetime
 - Within-year uncertainty after purchasing insurance contract
- Lifetime welfare calculation depends on pricing regime x and equilibrium notion e
- **Step 1:** compute certainty equivalent of equilibrium choice in one-year market for each individual in data, characterized by (λ, γ) :

$$CE_{e,x}(\lambda,\gamma)$$

• Also compute CE if all are in 90 policy at $P_{90}^{e,x} = \underline{AC}_{90}$:

$$CE_{all90}(\lambda_t, \gamma)$$

Welfare Analysis: AS and RCR

Integrate one-year at a time market outcomes into lifetime analysis

Step 2: Compute the **fixed annual payment** $y_{x,x',e}(\gamma)$ that would make ex ante lifetime expected utility in pricing regime x equal to that in pricing regime x':

$$\sum_{t} \delta^{t} E_{x_{t}} \left[-e^{-\gamma \{I_{t} - CE_{x}(\lambda_{t}, \gamma) + y_{x, x'}(\gamma)\}} \mid \gamma \right] = \sum_{t} \delta^{t} E_{x_{t}} \left[-e^{-\gamma \{I_{t} - CE_{x'}(\lambda_{t}, \gamma)\}} \mid \gamma \right]$$

Key Assumptions for computing $y_{x,x',e}(\gamma)$:

- Discount factor = 0.975
- Steady state population, represented by our sample
- γ is age 25 risk aversion (individual assumes no change in risk aversion, but true evolution of health conditional on γ)
- Get distribution of health at each age t conditional on γ by pulling all individuals of age t whose (acg, γ) lies in a band around the relation we estimated (Idea: γ at birth determines health process and also evolves with age).
- I_t either fixed or follows manager/non-manager age profile

Welfare Comparisons

Example: Compare relative long-run welfare under case of pure community rating to case of pricing on health status quartiles.

Solution concept is Riley equilibrium

Compare to:

- \$6559 average annual total expenses
- Fixed income, mean risk aversion, willing to pay \$619 for 90 at pop. AC

Welfare Loss from ACG-quartile Pricing in Riley/sp-NE (\$/year)			
Risk Parameter	Fixed income	Non-manager Income Path	Manager Income Path
0.0002	2200	1499	-384
0.0003	2693	1688	-613
0.0004	3082	1821	-886
0.0005	3399	1764	-973
0.0006	3626	2115	-891

Varying the Extent of Health-Based Pricing: Adverse Selection vs. RCR

Health Status Groups Priced

Regulated Contract Variation

Alternative Market Contracts

- Baseline analysis looks at insurers with free entry into 90% and 60% actuarial value contracts
- Interesting to think about how adverse selection and reclassification risk change as market regulator or firm setting up private exchange changes minimum coverage allowed
- Look at alternatives:
 - -- 90% and 80%
 - -- 90% and 40%
 - -- 90% and 20%
- As minimum coverage becomes lower, market share in the 90% plan increases, but welfare is lower because proportion of people who enroll in lower coverage plans are much worse off

Alternative Contracts: Share in Comprehensive Coverage

Extensions & Next Steps

Extensions I

- Age-based pricing + community rating:
 - Full unraveling for all 5 yr age groups
 - 3:1 ratio binding for two youngest age groups 25-29, 30-34 (60 premiums 1784, 2215) relative to 60-64 (premium 7259)
- Insurer risk-adjustment transfers:
 - Use HHS transfer formula
 - RE prices now have lowest break-even ΔP given HHS transfers
 - Pure community rating: $\Delta P = 2050$, P = (4139, 6189), share in 60 = 51.0%
- MEPS 'reweighting' of population (income, age, gender)
 - Reweight population using common demographics from MEPS
 - Nationally representative panel, individual in panel for 2 years
 - We use data from years 2004-2008
 - Use full 25-64 sample as well as uninsured / unemployed / without insurance
 - Find equilibrium results similar to our earlier results, our sample not too far off

Risk Adjustment

HHS transfer formula (per member):

$$T_{i} = \left\{ \left(\frac{R_{i}}{\sum_{i} s_{i} R_{i}} \right) - \left(\frac{AV_{i}}{\sum_{i} s_{i} AV_{i}} \right) \right\} \overline{P}$$
where
$$R_{i} \text{ is plan's "risk score"} = AC_{i}(\Delta P)$$

$$AV_{i} \text{ is plan's "actuarial value"} = 0.i$$

$$\overline{P} \text{ is market avg premium} = s_{90}(\Delta P)AC_{90}(\Delta P) + s_{60}(\Delta P)AC_{60}(\Delta P)$$

• RE prices have lowest break-even ΔP given HHS transfers, while transfer depend on ΔP :

$$\Delta P^{RA} \text{ is fixed point: } \Delta P^{RA} = (0.3) \left(\frac{s_{90}(\Delta P^{RA}) A C_{90}(\Delta P^{RA}) + s_{60}(\Delta P^{RA}) A C_{60}(\Delta P^{RA})}{s_{90}(\Delta P^{RA}) \cdot 0.9 + s_{60}(\Delta P^{RA}) \cdot 0.6} \right)$$

• Find $\Delta P = 2050$ and $s_{60} = 51.0\%$ with no pre-existing conditions. Prices are $(P_{60}, P_{90}) = (4139,6189)$, compared to (4051,--) before

Extensions II

Alternative solution concept (Wilson equilibrium)

- Participation and subsidies
 - 25% would opt-out in our population and market setup with no subsidies (premium in market ~25% higher)
 - Subsidy of \$3,000 per person get's opt-out share down to 12%, \$4,000 gets up to 97%.
- Different long-run versus short-run risk preferences (implying lower aversion to reclassification risk)

Participation and Subsidies

% of Individuals Opting Out

Conclusions

- Develop framework for modeling equilibrium and longrun welfare in health insurance exchanges
- Use framework to investigate trade-off between adverse selection (shot-run risk exposure) and reclassification risk (long-run risk exposure) as a function of healthstatus pricing regulation
- Empirical calibration / study using detailed health claims / insurance choice data from population at a large firm, reweighted to nationally representative on some demographics in MEPS robustness exercise
- Counterfactual private exchange at firm, or public exchange with similar population

Conclusions

- Empirical analysis of this sample with market regulations reminiscent of ``typical'' exchange environment reveals:
 - Substantial adverse selection, no reclassification risk (by design),
 \$619 welfare loss per person from AS
 - Age-based pricing does not substantially reduce adverse selection despite differences in mean expenses across age brackets.
 Essentially just redistributes across ages.
- Analysis of health-status pricing regulation reveals:
 - Lower adverse selection, but benefit outweighed by higher reclassification risk (unless substantial borrowing frictions)
 - \$3,082 per person welfare loss from health status quartile pricing
- Proposed risk-adjustment would substantially reduce unraveling (by 49% market share for 90 plan)

Next Steps

- Other pricing regimes:
 - Pre-Existing Conditions (individual market)
 - Multi-year contracts / long-term contracts
 - Price Bands

- Product differentiation (providers, branding)
- Consumer choice frictions

Moral hazard adjustment

Appendix

Preference Estimation: Model

Consumers have CARA preferences:

$$u_k(m_j, OOP_j) = -\frac{1}{r_k} e^{-\gamma_k(m_j - OOP_j)}$$

where:

$$\gamma_k \sim N(\mu(X_k), \sigma_r)$$

$$m_{j} = W_{kt} - P_{kjt} + \underbrace{\eta(X_{k})1_{j=j-1}}_{\text{switch cost}} + \underbrace{\delta_{k}(Y_{k})1_{PPO_{1200}}}_{\text{CDHP dummy}} + \underbrace{aH_{jk}}_{\text{high-cost}} + \underbrace{\varepsilon_{kjt}(Y_{k})}_{\text{family status}}$$

Results in Handel (2011), Mean risk aversion:

$$\frac{1}{2} \circ 100 + \frac{1}{2} \circ (-93.6) \sim 0$$

Health Exchange Model

Wilson Equilibria (WE): (P_{90}, P_{60}) is a Wilson equilibrium if there is no profitable deviation that remains profitable after any firm that is made unprofitable by the deviation drops its policies.

• (P_{90}^{w}, P_{60}^{w}) with $\Delta P \in [\underline{\theta}, \overline{\theta}]$ is a WE iff it solves:

$$\min_{\substack{(P_{90}, P_{60}) \\ s.t.}} P_{60}$$

$$s.t. \qquad (i) \quad \Pi_{90}(P_{90}, P_{60}) \le 0$$

$$(ii) \quad \Pi(P_{90}, P_{60}) = 0$$

$$(iii) \quad \Delta P \in [\underline{\theta}, \overline{\theta}]$$

Any Wilson Equilibrium ΔP is at or below the lowest break-even ΔP , if such a ΔP exists.

- RE exists and is the same as sp-NE
- Finally: if a mp-NE exists, it is also sp-NE, RE, and WE.

A single-policy deviation in policy 90 is profitable

No single-policy deviation is profitable

A multi-policy deviation is profitable

No multi-policy deviation is profitable

Considerations for Exchange Regulators

- Formal setup for regulators to confront key welfare tradeoffs across spectrum of possible regulations
 - States face different multi-dimensional exchange design problems
- Even with substantial adverse selection, exchange regulations may be close to optimal due to reclassification risk
- What are the consequences of an un-enforceable mandate?
- What are consequences if exchange not set up leaving reclassification risk / individual market?

MEPS Population Calibration

- Difficult to use MEPS data to measure risk preferences (and health risk to some extent)
- We 'weight' our data according to income, age, and gender in order to match MEPS sample
 - Can't get around fact that most data from one state, specific employer
 - Weighting is (i) robustness check and (ii) check on representativeness
 - Currently not weighting by health expenditures, but will going forward
- Results:
 - Equilibrium and welfare results have slight changes, but altogether quite close to our results, similar in spirit
 - Not a big surprise: direct comparison show age /gender/income mixture for 25-65 quite representative