

Lagrangian density	$\frac{2}{3}t_2 \omega_{\kappa\lambda}^{\ \kappa\lambda} \omega_{\kappa\lambda}^{\ \prime} + \frac{1}{3}t_2 \omega_{\kappa\lambda}^{\ \prime} \omega_{\kappa\lambda}^{\ \kappa\lambda} + \frac{2}{3}$	$\frac{1}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{} \partial_{\kappa} C$	$2r_4\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\eta}$
	Unitarit		

Added source term: $\left|f^{\alpha\beta} \, \, \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \, \sigma_{\alpha\beta\chi} \right|$

$f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$f_{1}^{\#1} \alpha f$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}$ t	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{lpha}$ ι	0	0	0	0	0	0	0
$f_{1}^{\#1}{}_{\alpha\beta} = \epsilon$	$\frac{1}{3}\overline{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2}t_2}{3}$	2 2 3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$\omega_{1+}^{#1} + \alpha^{\beta} k^{2} (2 r_{3} - r_{4}) + \frac{2t_{2}}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} \dag^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	$-2k^2(r_3-2r_4)$	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0^{ ext{-}}}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

Source constraints

$f_{2}^{\#1}$	0	0	0				
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2+}^{#1} +^{\alpha\beta} k^2 (-2 r_3 + r_4)$	0	0				
	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$				
		#	σ_0^{-1}	0	0	0	,

0

0

0

†		0		0	0	()								^t 2
+		0		0	0	$k^2 r_2$	+ t ₂				$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
#	1-] [ا ص	\sim	3	m	8	2	2	27	$\tau_0^{\#2}$	0	0	0	0
<u> </u>			(.,	1.,	(1)	(. ,	0	Δ,	Δ,		$\tau_0^{\#1}$	0	0	0	0
irreps	0	0	0 ==	0 ==	0 ==	0 ==	$+ik \sigma_{1+}^{\#2\alpha\beta} ==$	0 == _{Xi}	0 ==	:#	$\sigma_{0}^{\#1}$	$\frac{1}{-2 k^2 r_3 + 4 k^2 r_4}$	0	0	0
50(3)	$\tau_0^{\#2} ==$	$\tau_0^{\#1} ==$	$t_1^{\#2\alpha}$:	$ au_1^{\#1}\alpha$:	$\sigma_{1^{\bar{-}}}^{\#_2\alpha}$	$\sigma_{1^{\bar{-}}}^{\#_1\alpha}$	$\tau_1^{\#1}^{\alpha\beta}$	$\sigma_{2}^{#1}\alphaeta\chi$	$\tau_2^{\#1}\alpha\beta$	Total		$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}\dagger$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} \dagger$

 $\omega_{2}^{\#1}$ $\alpha eta \chi$

	Massive partic	le
? $I^P = 0$	Pole residue:	$-\frac{1}{r_2} > 0$
2	Polarisations:	1
$\overline{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)