Game Project

Overview of Collaborative Filtering

Collaborative filtering looks for patterns in the user activity to produce user specific recommendations.

Input: depends only on usage data (e.g. ratings, purchases, downloads, user preferences).

Types:

- Neighbourhood-based CF (user-based, item-based)
- Model-based CF (matrix factorisation, restricted boltzmann machines, bayesian networks, etc)

Pros	Cons
 Minimal domain knowledge required User and item features are not required Produces good enough results in most cases 	 Cold start problem Needs standardised products Requires high user:item ratio (1:10) Popularity bias (doesn't play well with the long tail) Can be difficult to provide explanations

Item-based filtering

Refresher: Matrix Decomposition

X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆
X_{21}	X_{22}	X_{12}	X_{24}	X_{25}	X_{26}
X_{31}	X_{32}	X_{33}	X_{34}	X_{35}	X ₃₆
X_{41}	X_{42}	X_{43}	X ₄₄	X_{45}	X ₄₆
X_{51}	X_{52}	X_{53}	X ₅₄	X_{55}	X ₅₆

			q
5	x	3	matrix

a	b	c
2 0		
	a	a b

x		<i>x</i>	
y			
z			

proprietary material

$$X_{32} = (a, b, c) \cdot (x, y, z) = a * x + b * y + c * z$$

Rating Prediction

$$-\hat{r}_{ui} = q_i^T p_u$$
 User Preference Factor Vector

Movie Preference Factor Vector

Alternative Least Square

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} \left(r_{ij} - w^T f[j] \right)^2 + \lambda ||w||_2^2$$

Overview of Content-based Filtering

Content-based filtering recommends items with similar content (e.g. metadata, description, topics) to the items the user has liked in the past.

Input: depends only on the content/descriptions of the items and the users (but not usage data).

Types:

- Information Retrieval (e.g. tf-idf, Okapi BM25)
- Machine Learning (e.g. Naive Bayes, support vector machines, decision trees, etc)

Pros	Cons
 No cold start problem No need for usage data No popularity bias, can recommend items with rare features Can user content features to provide explanations 	 Item content needs to be machine readable and meaningful Easy to pigeonhole the user Difficult to implement serendipity Difficult to combine multiple item's features together

Overview of Hybrid Approaches

Hybrid Approaches combines collaborative filtering and content-based filtering in order to use the pros of one to address the cons of the other.

Input: uses user and item content features as well as usage data to benefit from both types of data.

Types:

- Weighted
- Switching
- Mixed
- Feature Combination
- Cascade
- Feature augmentation
- Meta-level

Pros	Cons
 Often outperforms CF and CB alone No cold start problem No popularity bias, can recommend items with rare features Can implement serendipity, diversity 	 Can be a lot of work to get the right balance

Overview of Popularity

Popularity is an approach where you recommend items that are popular (e.g. most downloaded, watched, high impact).

Input: uses usage data and item content (e.g. categories).

Pros	Cons	
 Relatively easy to implement Good baseline algorithm Helps with new user cold start problem 	 Needs standardised products Often needs some type of item categorisation Won't recommend new items (fewer opportunities to learn) Recommendation list tends not to change much 	

Overview of Non-traditional Approaches

Advanced or "Non-traditional" Approaches

- Deep learning
- Learning to rank
- Multi-armed bandits (explore/exploit)
- Context-aware recommendations
 - Tensor Factorisation
 - Factorisation Machines
- Social recommendations
-

Pros	Cons
 Good for eking out those final performance percentage points You can say you're working with cutting edge approaches;) 	 Less well understood Less supported in recommendation toolkits Not recommended approaches for your first recommender