

Maestría en Ingeniería Eléctrica especialización Telecomunicaciones

Comunicaciones Digitales

Tarea #3

Luis Emilio Tonix Gleason

Fernando Alberto Madera Torres

13/04/2022

Dr. Ramon Michel Parra

Tabla de contenido

Ejercicio 1	
Señal modulada ASK	3
Demodulacion ASK por envolvente	
Ejercicio 2	
Señal modulada BPSK	10
Filtro formador de Coseno Elevado	11
Demodulacion BPSK	13
Ejercicio 3	15
Ejercicio 4	19
Ejercicio 5	

Realice una simulación de una señal modulada en ASK con filtro formador cuadrado. Usted especifique los valores de la frecuencia de los bits y la frecuencia portadora; considere una desmodulación por envolvente (pase la señal por un circuito recortador seguido de un filtro pasa bajas), grafique la señal demodulada.

Señal modulada ASK

La señal por desplazamiento de amplitud tambien es conocida por cierre y apertura, consiste en activar y desacivar una señal portadora senoidal con una señal binaria unipolar.

Es una modulacion binaria unipolar en una DSB-SC.

La señal ASK esta dada por S(t)

```
s(t) = A_c m(t) \cos \omega_c t
% The number of bits to send - Frame Length
                    15;
time0
                    0:1:1514;
% Sampling rate - This will define the resoultion
                 100:
% Generate a random bit stream
bit stream = round(rand(1,N));
% Enter the two Amplitudes
% Amplitude for 0 bit
Α1
                     0;
% Amplitude for 1 bit Ac in the diagram is the A2 in the code
                     5; % esta es la amplitud total, por lo cual sera de -2.5v a 2.5v
% Frequency of Modulating Signal
         =
                    1;
% Time for one bit
% Cual es el tiempo de Signo 0.01 seg
         = 0: 1/fs : 1;
% This time variable is just for plot
time
         = [];
ASK signal = [];
Digital signal = [];
% Frecuency of Carry Signal es 100 Hz
carry_signal = cos(2*pi*f*t);
% Ciclo para rellenar la señal ASK acorde al tamaño del bit stream
for ii = 1: 1: length(bit_stream)
% The ASK Signal
ASK signal = [ASK signal (bit stream(ii)==0)*A1/2*carry signal+...
(bit_stream(ii)==1)*A2/2*carry_signal];
% The Original Digital Signal
Digital_signal = [Digital_signal (bit_stream(ii)==0)*...
zeros(1,length(t)) + (bit_stream(ii)==1)*ones(1,length(t))];
```

```
time = [time t];
t = t + 1;
end
%sorry for the incoveniente but time was define in the for loop
%freq axix
time_res = 100/(length(time)-1);
% Plot the m(t) Digital Signal
plot(time,Digital_signal);
xlabel('Time (bit period)');
ylabel('Amplitude');
title('m(t) Digital Signal');
axis([0 time(end) -0.5 1.5]);
grid on;
```


%FALTA LA VENTANA DE INTERFERENCUA SIMBOLICA

La señal ASK tendra un rango de valores de -2.5V a 2.5V

```
% Plot the ASK Signal
plot(time,ASK_signal);
xlabel('Time (bit period)');
ylabel('Amplitude');
title('s(t) ASK Signal Out');
axis([0 time(end) -3 3]);
grid on;
hold off;
```


Demodulacion ASK por envolvente

```
% Sacar el Valor Absoluto de I señal modulada
ask_signal_in = abs (ASK_signal);
plot(time,ask_signal_in);
title('s(t) ASK bit stream');
```



```
% convertir a frecuencia

freq0 = -fs/2:time_res:fs/2;

ask_signal_freq = real(ttof(ask_signal_in));

plot(freq0,ask_signal_freq);

title('s(t) Recover ASK ');

% Tiempos en espectro señal ASK recuperada
```

xlim([-fs/2 fs/2]) ylim([-100 1600])


```
% para recortar la señal y solo agarrar DBLSC
time_filter = 0:1:300;
time_recover_signal = 0:1:1814;
% ask_rescaled = rescale(ask_signal_freq,-10,1);
% plot(freq0,ask_signal_freq);
% title('s(t) Recover ASK rescaled ');

% DEFINICION CIRCUITO RECORTADOR KAISER
%frec = -15:1/50:15;
frec = -fs/2:time_res:fs/2;
lenf = length(frec);
x = zeros(1,lenf);
x(201:1301) = 1;
plot(frec,x);
title('Ventana Recortadora');
```



```
% FILTRO KAISER CONVOLUCION
y = real(ftot(x));
x2=zeros(1,lenf);
x2=y;
ventanakaiser = zeros(1,lenf);
%ventanakaiser (301:400) = kaiser(100,8.85); %ventana kaiser 100 coeficioentes
ventanakaiser (401:800) = kaiser(400,1); %ventana kaiser 100 coeficioentes
filtrokaiser = x2.*ventanakaiser;
plot(frec,real(ttof(filtrokaiser)),'c');
title('Filtro Kaiser');
```



```
% convolucion con Filtro
ask_signal_filtered = filtrokaiser .* ask_signal_freq;
plot(frec,ask_signal_filtered,'r');
title('ASK Recortada con KAISER ');
```



```
ask_rescaled = find(ask_signal_filtered ~= 0);

time_X = -200:1:199;

plot(frec,ask_signal_filtered,'b');

title('ASK Recortada ');

xlim([-1 1])

xticks([-pi -pi*3/4 -pi/2 -pi/4 0 pi/4 pi/2 pi*3/4 pi])

xticklabels({'-10','10'})

xlabel('Freq')
```


Dada una señal modulada en BPSK a 1 símbolo por segundo con filtro cuadrado, multiplíquela por una portadora de 25Hz para tener una señal modulada de amplitud.

- a. Realice el mismo procedimiento considerando un filtro formador de Coseno elevado con facto de banda de exceso=.5.
- b. Hacer demodulación coherente por multiplicación y filtrado.
- c. Hacer demodulación coherente considerando que la portadora tiene:
 - i. un corrimiento de fase de pi/4, pi/2, 3pi/4 y pi
 - ii. Una desviación en frecuencia de .1Hz. Comente sus observaciones.

Señal modulada BPSK

transmision por desplazamiento de fase binaria, consiste endesplazar la fase de una portadora senoidal de 0 a 180° con una señal binaria unipolar, es una señalizacion PM con una forma de onda digital.

es una Señal DSB-SC con una forma de onda digital polar.

La señal BPSK esta dada por S(t)

$$s(t) = A_c \cos \left[\omega_c t + D_p m(t) \right]$$

```
% The number of bits to send - Frame Length

N = 10;
time0 = 1:1:1000;
% Sampling rate - This will define the resoultion
fs = 90;
% Generate a random bit stream
bit_stream = round(rand(1,N));
bpsk_signal = BPSK(bit_stream,2);
```


figure()
plot(time0, bpsk_signal);
title(['BPSK Signal']);

Filtro formador de Coseno Elevado

```
% para recortar la señal y solo agarrar DBLSC
time_filter = 0:1:500;
time_filter_2 = 0:1:300;
filtro_rsine = rcosine(1,50);
Warning: rcosine will be removed in a future release. Use rcosdesign instead.
Warning: rcosfir will be removed in a future release. Use rcosdesign instead.
```

%VENTANA FILTRO plot(time_filter_2, filtro_rsine); title('Ventana Filtro Cos^2');

% CONVOLUTION WITH THE WINDOW

time_recover_signal = 1:1:1300;
res = conv(bpsk_signal,filtro_rsine);
plot(time_recover_signal, res);
title('Señal Convolucionada con Filtro Cos^2');

% graficado en frecuencia

freq = -649 : 1 : 650;

bpsk_recover_sig = abs(real(ttof(res)));

plot(freq, bpsk_recover_sig);

title('Espectro BPSK');


```
% freq to time
bpsk_signal_time = abs(real(ftot(bpsk_recover_sig)));
plot(freq, bpsk_signal_time);
title('BPSK en tiempo');
```


Demodulacion BPSK

```
time_recover_signal_0 = -649:1:650;
stem(time_recover_signal_0, abs(real(ttof(bpsk_signal_time))));
title('Señal BPSK recuperada');
```


Genere una señal 4QAM con filtros formadores de coseno elevado con las condiciones señaladas en la pregunta 2 (Usted elija la constelación que prefiera, pero justifique su elección). Envíe al menos 100 símbolos.

- a. Presente el diagrama esquemático del modulador y del demodulador.
- b. Presente las formas de onda obtenidas en puntos relevantes del sistema descrito.
- c. Realice demodulación coherente y después del muestreo y normalización de los símbolos recibidos (muestreados a los instantes óptimos), grafique el diagrama de constelación de la señal recibida (todos los puntos sobrepuestos mediante scatterplot.m) y compárela con la constelación de la señal transmitida (multiplique la señal en cuadratura por j y súmela a la señal en fase antes de usar scatterplot.m).

Señal modulada 4QAM

```
%% Manejo de Bits (Q & I)
figure(1)
S = 100;
BpS = 2;
Bits = 2*(round(rand(1, BpS*S)) - 0.5);
stem(Bits)
title('Bits');
I = zeros(1, S);
Q = zeros(1, S);
j = 1;
for i = 1 : S*BpS
  if(mod(i,2))
     I(j) = Bits(i);
  else
     Q(j) = Bits(i);
    j = j + 1;
  end
end
f = 10;
tc = -5 : 1/(2*f) : 5;
Idis = zeros(1, length(tc));
Qdis = zeros(1, length(tc));
cero = find(tc == 0);
Idis(cero - 10*f + 1 : 2 : cero + 10*f - 1) = I;
Qdis(cero - 10*f + 1 : 2 : cero + 10*f - 1) = Q;
stem(tc, Idis)
title('I');
stem(tc, Qdis)
title('Q');
```


Filtro formador Coseno Elevado

plot(Qfilfor);

title('Q * Filtro Formador');

```
% 1 simbolo por segundo
% Multiplicacion señal modulada amplitud
% portadora 25 Hz
%% Filtro Formador
figure(2)
filfor = rcosine(1,5);
Warning: rcosine will be removed in a future release. Use rcosdesign instead.
Warning: rcosfir will be removed in a future release. Use rcosdesign instead.
plot(filfor);
title('Filtro Formador');
Ifilfor = conv(I, filfor);
Qfilfor = conv(Q, filfor);
plot(Ifilfor);
title('I * Filtro Formador');
```



```
%% Modulación
figure(3)
tr = (length(Qfilfor)/2)/f;
t = -tr : 1/f : tr - 1/f;
A = 1;
portI = A*cos(2*pi*f*t);
portQ = A*-cos(2*pi*f*t);
Imod = Ifilfor.*portI;
Qmod = Qfilfor.*portQ;
plot(t, Imod);
title('Portadora X I*F');
plot(t, Qmod);
title('Portadora X Q*F');
mod4QAM = Imod + Qmod;
plot(t, mod4QAM);
title('4QAM');
```

Demodulacion Coherente 4QAM

```
% multiplicacion y filtrado
% corrimiento de pase portadora pi/4, pi/2, 3pi/4 y pi
% desviacion frecuencia .1Hz
% observaciones
%% Demodulación
filpb = zeros(1, length(mod4QAM));
filpb(find(filpb <= f) : find(filpb >= -f)) = 1;
Ires = mod4QAM.*portI;
Qres = mod4QAM.*portQ;
Iresf = ifftshift(Ires);
Iresf = fft(Iresf);
Iresf = fftshift(Iresf);
Iresf = Iresf.*filpb;
```

```
Ifilpb = ifftshift(Ifilpbf);
Ifilpb = fftshift(Ifilpb);
Ifilpb = fftshift(Ifilpb);
Qresf = ifftshift(Qres);
Qresf = fft(Qresf);
Qresf = fftshift(Qresf);
Qfilpbf = Qresf.*filpb;
Qfilpb = ifftshift(Qfilpbf);
Qfilpb = fftshift(Qfilpbf);
Qfilpb = fftshift(Qfilpb);
```

Considere para la señal QAM generada en la pregunta anterior e introduzca:

- a. Corrimientos de fase (error de sincronización de fase de portadora) de 0, 45, 90, 135 y 180 grados.
- b. Corrimientos de frecuencia de portadora de .01Hz, .1Hz, 1Hz.
- c. Para cada uno de los casos anteriores grafique el diagrama de constelación de la señal recibida (todos los puntos sobrepuestos) y compárela con la constelación de la señal transmitida.

Ejercicio 5

Considere para la señal QAM generada en la pregunta 3 y repítala agregando ruido con al menos dos diferentes relaciones señal a ruido (SNR) dentro de 0<SNR<10dB. Grafique las formas de onda obtenida y comente los resultados.