(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出選公園番号

特開2000-114367 (P2000-114387A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int CL'		識別配号	PI			デーマコート*(参考)
H01L	21/768		HOIL	21/90	S	.5 F 0 3,3
	21/265			21/265	Y	
•	21/3205			21/88	M	

容空請求 未請求 請求項の数4 OL (全 6 頁)

(21) 出願番号	特額平10-282417	(71)出題人 000005843
		极下電子工業株式会社
(22)出顧日	平成10年10月5日(1998, 10.5)	大阪府高槻市幸町1番1号
		(72) 発明者 盆前 伸一 大阪府高橋市帝町1番1号 松下電子工業 株式会社内
		(74)代理人 100097445
•		弁理士 岩橋 文雄 (外2名)
		Fターム(参考) 5F033 BH11 RH12 HH18 HH21 10401
		1005 W12 PP06 PP28 QQ4B
		QQ60 QQ62 QQ64 QQ73 QQ74
		0090 0098 BR21 XX14
	•	

(54) [発明の名称] 半導体装置の製造方法

(57)【翌約】

(課題) Cuと8C8の密着性を改善することにより、パリアメタルを用いない低低抗な親配線を実現する。

「解決手段」 BCBで構成される屈間絶縁膜21の表面 にCu膜25を堆積する前に、Tiのイオン化プラズマから 引き出されたTiイオン23で、BCBで構成される層間絶 緑膜21表面にTiを注入する。その結果、BCB21表面 の酸化膜が除去される。さらにBCB設面近傍にTiが注入 され、BCBとTiの反応領域24が形成されることによ り、BCBとCLの密着性を高められる。その後CVI法によっ てCu膜25を堆積し、さらにCu膜25を研磨することに よって、Cu配線26を得る。TiイオンでBCBが窒化され た部分24の効果により、研磨中のCu膜25の剥離や、 後工程でのC配線26の剥離は発生しない。

(3)

10

特期2000~114367

【特許請求の範囲】

【論求項1】 BCBで構成される層間膜を堆積する工 程と、ルプラズマで前記層間膜表面を改賞する工程と、 前記改質された表面に銅を主成分とする材料を堆積する 工程とを備えた半導体装置の製造方法。

【設求項2】 BCBで構成される層面膜を堆積する工 程と、イオン化金属プラズマでTiまたはTaを前記層間膜 表面に注入する工程と、前配注入された表面に銅を主成 分とする材料を堆積する工程とを備えた半導体装置の製 数方法.

【請求項3】 BCBで構成される層間膜を堆積する工 程と、前記層間膜上にTiまたはTaを添加したOを推積す る工程と、前記BCB上のTiまたはTaを添加した心を、 300℃から500℃の温度で熱処理する工程を備えた半導体 装置の製造方法。

【請求項4】 BCBで構成される層間膜を堆積する工 程と、前紀層間膜上にTiまたはTaを添加したCuを堆積す る工程と、BCB上のTiを添加したOuを300℃から500℃の 温度で水素雰囲気で熱処理する工程と、その後大気暴露 備えた半導体装置の製造方法。

【発明の詳細な説明】

{00011

【発明の属する技術分野】本発明は半導体装置中の銅配 線に関するものである。

[0002]

【従来の技術】図5は従来の銅配線の断面図を示すもの であり、図5において、51は散化シリコンよりなる層 間絶様膜、52は、TaNよりなるパリアメタル、53はC U配線である。配線幅は200mm 配線高さは300mmであ

【0003】酸化シリコンよりなる層間絶縁膜51中へ のCAの拡散の防止を目的とするTaNよりなるパリアメタ ル52により、銅配線53は3方を囲まれている。 ひに 対するバリア性を保証するために必要なTak膜厚は30cm である。TaNの抵抗率は約250μΩcmであり、Cuの抵抗率 約2μQcmに比べて2桁以上大きいため、TaNは電気伝導 にほとんど寄与しない。このためバリアメタルの導入に より銅配線の抵抗は約1.7倍となる。よってパリアメタ ル膜厚はできるだけ薄い方が望ましい。

(00041

(発明が解決しようとする課題)しかしながら従来の構 成では、バリアメタルが薄膜化するとCuの層間絶縁膜へ の拡散を防止できなかったり、強度不足によってバリア メタルが割れるという問題を有していた。

【0005】一方、層間絶録膜としてBenzocyclobutene (以下KBと称す)を用いるものが知られている(特別 平8-284982号公報)。 しかしながらBCBを用 いた場合、Cuの拡散は防止できるが、CuとBCBの密着性 が悪いという問題がある。

【0006】本発明は、銅を主成分とする材料とBCBと の密着性を改善するととにより、バリアメタルを用いな い低抵抗な規配線を実現することを目的とする。 [0007]

【課題を解決するための手段】この課題を解決するため に本発明の銅配線は、8CBで構成される層間膜とOUまた はCu合金度が密着性を改善された界面で接する構成を有 している。とれにより、バリアメタルを用いないでもの の拡散を避けることができるので、低抵抗な類配線が得 られる.

【0008】本発明は、 Cuを堆積する前にN ブラズマ で、BCBで構成される層間膜表面を改質するものであ り、BCB表面の酸化膜を除去すると共に表面近傍のBCBを 室化することによりBCBとCLの密着性を高めるという作 用を有する。``

【0009】本発明は、〇を堆積する前にイオン化金属 プラズマで、BCBで構成される層間顔表面にTiイオンま たはTaイオンを打ち込むものであり、BCB表面の酸化酶 を除去すると共に表面近傍の8CBとTiまたはTaを反応さ することなく連続してCVD法によりCuを堆積する工程を 20 せることにより、BCBとCuの密着性を高めるという作用 を有する。

> 【0010】本発明は、TiまたはTaを添加したCuを堆積 したものであり、表面近傍のBCBとTiまたはTaを反応さ せることにより、BCBとCuの密着性を高めるという作用 を有する。

【0011】本発明は、水素雰囲気で加熱することによ り、表面近傍のBCBとCukk添加したTiまたはTaを反応さ せ、8CBとCuの密替性を高めるとともに、Cu表面の自然 酸化膜を返元し、大気暴露することなく連続して堆積す 30 るCVD-Cu膜の膜質を改善するという作用を有する。

[0012]

【発明の実施の形態】(実施形態1)以下本発明の第1 の実施の形態について、図面を参照しながら説明する。 【0013】図1は本発明の請求項1に記載の銀配線の 製造方法を示すものであり、図1において、11はBCB で排成される層間絶縁膜、12は層間絶縁膜11の表面 に形成された幅200nm 深さ300nmの深パタン、13はN イオン、14はN-イオン13によってBCBが窒化された 部分、15はCVO法によって堆積された膜厚600mのCu 膜、18はGU膜15の研磨によって形成したCU配線であ

【0014】本実施形態の類配線の形成方法は、BCBで 構成される層間絶縁膜11を堆積して、この絶縁膜11 に凹部を形成し、その後、凹部を含む層間絶縁膜 11全 体に、4、プラズマを照射することにより、層間絶縁膜1 1の表面(特に凹部の表面)を改質する。その後、凹部 を含む膜11全体に銀を主成分とする膜を堆積する工程 から様成されている。

(0015)以上のように構成された銅配線の形成工程 50 を含む半導体装置の製造方法について詳しく説明する。

(3)

【0018】まず、8CBで構成される層面絶縁膜11の 表面にCul 5を堆積する前に、N プラズマから引き出さ れたM.イオン13で、BCBで様成される層間絶縁膜11 表面に窒素を注入する。N. イオンのエネルギーは300e V. そのドーズ量は1x10'cm'である。その結果、BCB1 1表面の酸化膜が除去される。さらに表面近傍のBCBが 窒化され、BCBとCuの密着性を高められる。エネルギー が100ek以下の場合、BCB表面酸化酸が完全に除去できな い。エネルギーが1keV以上の場合、BCB表面が局所的に 加熱されて350℃以上となり、BCBが分解する。 Fーズ量 10 が1x10°cm以下の場合、BCB表面酸化膜が完全に除去で きない。Fーズ量が1x10° of 以上の場合、8CB表面がや はり局所的に加熱されて350°C以上となり、8CBが分解す る。その後の心法によって心瞑15を堆積し、さらに心 膜15を研磨するととによって、Cu配線16を得る。N イオンでBCBが窒化された部分14の効果により、研磨 中のCu頭 15の剥離や、後工程でのCu配線 18の剥離は 発生しない。

【0017】以上のように本実施の形態によれば、ひを 堆積する前にN.プラズマで、8CBで構成される層間絶縁 膜表面を改質する工程を設けることにより、パリアメタ ルを用いないでもBCBとCLの密着性を高め、配線抵抗の 低い領配線を実現することができる。なお本実施例では Cu膜の堆積方法としてCVD法を用いたが、無電解メッキ 法を用いても同様の効果が得られる。

【0018】(実施形盤2)以下本発明の第2の実施の 形態について、図面を参照しながら説明する。

【0019】図2は第2の実施形態の銅配線の形成方法 を示すものであり、図2において、21はBCBで構成さ・・ れる層間絶縁膜、22は層間絶縁膜21の表面に形成さ 30 れた幅200mm、深さ300mmの沸パタン、23は、Tiイオ -ン、24はTiイオン23によって形成されたBCBとTiの 反応領域、25はCVD法によって堆積された膜厚600mmの Cu頭、26はCu頭25の研磨によって形成したCu配線で ある。

【0020】との銅配線の製造方法は、BCBで構成され る層間絶縁膜を堆積した後、絶縁膜をイオン化金属プラ ズマでTiを層間絶縁膜表面に注入し、最後に注入した部 分にCuを堆積する工程とから構成されている。

【0021】この銅配線の製造方法について、さらに詳 40 しく説明する。まず、BC8で構成される層間絶縁膜21 の表面にCu25を堆積する前に、Tiのイオン化プラズマ から引き出されたTiイオン23で、8CBで構成される層 間絶縁膜21表面にTiを注入する。Tiイオンのエネルギ ーは300eV、そのドーズ量は1x101 cm である。その枯 果、6CB2 1表面の酸化膜が除去される。さらに8CB表面 近傍にTiが注入され、BCBとTiの反応領域24が形成さ れることにより、BCBとCuの在着性を高められる。Tiイ オンのエネルギーが100eV以下の場合、BCB表面酸化膜が

の場合、BCB表面が局所的に加熱されて350°C以上とな り、BCBが分解する。Tiイオンのドーズ量が1x10'つ」以 下の場合、KB表面散化膜が完全化除去できない。ガイ オンのドーズ量が1x10°cm以上の場合、8CB表面に堆積 するTiの関厚が約20mmとなり、Cu配線抵抗が上昇する。 その後CVD法化よってQI競25を堆積し、さらにCU膜2 5を研磨することによって、Cu配数26を得る。Tiイオ ンでBCBが全化された部分24の効果により、研磨中のC u関25の剥離や、後工程でのCu配線26の剝離は発生

【0022】以上のように本実施の形態によれば、口を 堆積する前にTiのイオン化プラズマで、8CBで構成され る層間絶縁顕表面を改質する工程を設けるととにより、 バリアメタルを用いないでもBCBとCuの密着性を高め、 配線抵抗の低い銅配線を実現することができる。なお本 実施例ではイオン化プラズマから引き出されたTiイオン により8CB表面を改質したが、Taのイオン化プラズマか ら引き出されたTaイオンを用いてBCB表面を改質して も、同様の効果が得られる。またCu間の堆積方法として 20 CVD法を用いたが、無電解メッキ法を用いても同様の効 果が得られる。

【0023】(実施形態3)以下本発明の第3の実施の 形態について、図面を参照しながら説明する。

【0024】図3は本実施形態の銅配線の製造方法を示 すものであり、図3において、31はBCBで構成される 層間絶縁膜、32は層間絶縁膜31の表面に形成された 幅200mm、深さ300mmの滯バタン、33は5atmeのTiを添 加した膜厚30nmのCu膜、34はCu膜33中に含まれたTi とBCBの反応領域、35はCVO法によって堆積された膜厚 600nmのCu膜、36はCu膜35の研磨によって形成したC 心配線である。

【0025】との銅配線の製造方法は、BCBで構成されーー る層間絶縁膜を堆積し、Tiを添加したCuを堆積し、BCB 上のTiを添加したCuを300℃から500℃の温度で熱処理す る工程から様成されている。

【0028】以上のように構成された本発明の銅配線の 製造方法について、さらに詳しく説明する。

【0027】まず、溝バタン32を形成した8C8で構成 される層間絶縁膜3 1 に、SaturbのTiを添加したCu膜3 3を堆積する。その後水紫雰囲気でウェハを330℃で10 分間アニールし、BCBとCu中に添加されたTiを反応させ る。アニール温度が300°C以下の場合、8CBとTiの反応が 進行しない、アニール温度が500℃以上の場合、BCBが分 解する。よってアニールは300~500°Cが好ましい。さら **に好ましくは300~350℃である。**

【0028】また水素雰囲気中でアニールするのは心臓 33の表面の自然酸化膜を還元するためである。とのア ニール処理によって形成されたTiとBCBの反応領域34 の存在により、BCBとCLの密着性が高まる。その後CVD法 完全に除去できない。Tiイオンのエネルギーが1keV以上 SD によってCu膜35を堆積し、さらにCu膜35を研磨する

ことによって、Ca配線36を得る。Tiと8C8の反応領域 34の効果により、研磨中のCu膜35の剝離や、後工程 でのQ配線36の制盤は発生しない。

【0028】以上のように本実施の形態によれば、Tiを 添加したOJを用いるととにより、パリアメタルを用いな いでもBCBとCAの密着性を高め、配象抵抗の低い銅配線 を実現することができる。

【0030】なお、以上の免明において、33は下を添 知したGuとしたが、33はTaを認加したGuとしてもよ い。また本実施形態ではCu膜の堆積方法としてCVD法を 用いたが、無電解メッキ法を用いても同様の効果が得ら

【0031】(実施形態4)以下本発明の第4の実施の 形態について、図面を参照しながら説明する。

(0032)図4は第4の実施形態の網配線の製造方法 を示すものであり、図4において、41はBCBで構成さ れる層間絶縁頤、42は層間絶縁膜41の表面に形成さ れた何200mm、深さ300mmの挿バタン、43はSatmbのTi を添加した膜厚30mのOu膜、44はCu膜43表面に形成 8の反応領域、46はCVD法によって堆積された膜厚600n のOU膜、47はCU膜48の研磨によって形成したCu配 袋である。

【0033】との銅配線の製造方法は、BCBで構成され る層間膜を堆積し、TiまたはTaを添加したCuを堆積し、 BCB上のTiを添加したCuを300°Cから350°Cの温度で水素 雰囲気で熱処理し、大気暴露することなく連続してCVD 法によりCuを堆積する工程とから構成されている。

【0034】以上のように構成された本条明の掲配線の 製造方法について、さらに詳しく説明する。

【0035】まず、溝バタン42を形成した8C8で構成 される層間格縁膜4.1 化、SatureのYiを添加したCu膜4 3を堆積する。ことまでは図3の場合と同様である。こ の膜を大気中に放置するとCA膜43表面に膜厚約10mの 自然酸化膜44が成長する。その後水紫雰囲気でウェハ を330℃で10分間アニールし、8CBとCu中に添加されたTi を反応させるとともに、自然酸化膜44を還元する。ア ニール温度が300°C以下の場合、BCBとTiの反応が進行し ない。アニール温度が350℃以上の場合、8CBが分解す る。 とのアニール処理によって形成されたTiとBCBの反 応領域45の存在により、BCBとCLの密着性が高まる。 また自然酸化膜44を除去した後、大気開放しないでCV O法によってCu膜46を堆積することにより、酸紫含有 量が2atmが以下の純度の高いCD膜を形成することができ る。Cu模46は酸菜濃度が低いため、平均結晶粒径が約 0.5µmと大きく、(111)方向の配向性も良い。さらにCu 膜46を研磨することによって、Q配線47を得る。Ti と8C8の反応領域45の効果により、研磨中のCu腹46 の剥離や、後工程でのの記線47の剥離は発生しない。 【0038】以上のように本実施の形態によれば、Tiを 50 2.1 8CBで構成される層面絶縁膜。

添加したCuを用い、Tiを添加したCuを300℃から350℃の 温度で水梁雰囲気でアニールし、大気暴露するととなく 連続してCVD法によりCuを堆積することにより、パリア メタルを用いないでもBCBとOLの密着性を高め、配線抵 抗の低い銅配線を実現することができる。さらに銅の膜 質も良好なためエレクトロマイグレーションに対する長 い安命が得られる。

【0037】なお、以上の免明において、43はTIを添 加したCuとしたが、43はTaを添加したCuとしてもよ 10 6

[0038]

【発明の効果】以上説明したように本発明では以下の効 果が得られる。

- (1) Cuを堆積する前にM.プラズマで、BCBで様成され る層質絶縁膜表面を改質する工程を設けることにより、 パリアメタルを用いない低抵抗銅配線を実現することが できる優れた銅配線の製造方法を実現できるものであ る.
- (2) Ouを堆積する前にイオン化金属プラズマで、BCB された自然酸化膜、45はG膜43中に含まれたTiとBC 20 で構成される層関絶線膜表面にTiイオンまたはTaイオン を打ち込む工程を設けることにより、バリアメタルを用 いない低抵抗銅配線を実現することができる優れた銅配 線の製造方法を実現できるものである。
 - (3) TiまたはTaを添加したCuを用いることにより、バ リアメタルを用いない低抵抗銅配線を実現することがで きる優れた顕配線の製造方法を実現できるものである。
 - (4) TiまたはTaを添加したCuを用い、水素雰囲気で加 熱し、大気暴露することなく連続してCVD-Cu膜を堆積す ることにより、パリアメタルを用いない低抵抗観配線
 - 30 と、酸素含有量の低い高信賴性銅配線を実現するととが できる優れた銅配線の製造方法を実現できるものであ

【図面の簡単な説明】

- 【図1】本発明の第1の実施の形態における綱配線の製 造方法を示す工程断面図
- 【図2】本発明の第2の実施の形態における銅配線の製 造方法を示す工程断面図
- 【図3】本発明の第3の実施の形態における銅配線の製 治方法を示す工程断面図
- 40 【図4】本発明の第4の実施の形態における銅配線の製 造方法を示す工程断面図
 - (図5)従来の銀配線の断面図 (符号の説明)
 - 11 808で構成される層面絶縁膜
 - 12 周間絶縁膜11の表面に形成された溝バタン
 - 13 ルイオン
 - 14 ルイオン13によって8C8が窒化された部分
 - 15 CVD法化よって堆積されたCA膜
 - 16 の頃15の研磨によって形成したの配線

(5)

*10

特開2000-114387

- 22 層間絶録膜21の表面に形成された清パタン
- 23 ガイオン
- 24 Tiイオン23によって形成されたBCBとTiの反応
- 領域
- 25 CVO法によって堆積されたOLIQ
- 26 Cu膜25の研磨によって形成したCu配線
- 31 BCBで構成される層間絶縁膜
- 32 層間絶縁膜31の表面に形成された滞パタン
- 33 SaturbのTiを添加したQ.腹
- 34 Cu膜33中に含まれたTiとBCBの反応領域

*35 CVD法によって堆積されたCu段

- 36 CL膜35の研磨によって形成したCL配線
- 41 BCBで構成される層間絶縁膜
- 42 層間絶縁膜41の表面に形成された溝バタン
- 43 SatmtsのTiを添加したQu酸
- 44 Cu膜43表面に形成された自然酸化膜
- 45 の膜43中に含まれたTIとBCBの反応領域
- 48 CVD法によって堆積されたCu段
- 47 の膜46の研磨によって形成したの配線

- order to the state of

【図2】

【図5】

(6)

特開2000-114367

