An introduction to Machine Learning

A (very) gentle Introduction

artificial

Research Scientist, Telenor Research Adjunct Associate Professor, DART Group, NTNU

Outline

- ____
 - Introduction
- Supervised ML
- Unsupervised ML
- Reinforcement Learning
- Deep Learning
- Conclusion
- Exercise!

Introduction

What is Machine Learning

Definition

Taxonomy of Machine Learning

Arti	cial Intelligence	
	Machine Learning	

Taxonomy of Machine Learning

Artificial	Intell	igence
------------	--------	--------

Machine Learning		
Supervised Learning	Unsupervised Learning	Reinforcement Learning
- Classification - Regression	- Clustering	

Why Machine Learning

Machine Learning Examples

Retail	Marketing	Healthcare	Telco	Finance
Demand forecasting Supply chain optimization Pricing optimization Market segmentation and targeting Recommendations	Recommendation engines & targeting Customer 360 Click-stream analysis Social media analysis Ad optimization	Predicting Patient Disease Risk Diagnostics and Alerts Fraud	Customer churn System log analysis Anomaly detection Preventative maintenance Smart meter analysis	• Risk Analytics • Customer 360 • Fraud • Credit scoring

Supervised ML

Introduction

Regression: predict a continuous numerical value. How much will be the price of this stock?

Classification: assign a label to a given observation. Is this a picture of a car or a motorcycle?

$$X_2 = f(X_1, \beta)$$

Main Task: Estimating f, giving a set of training data X

Classification vs **Regression**: *Example*

Regression Algorithms

- Logistic Regression
- Linear Regression
- Support Vector Regression
- Regression Trees
- Least Angle Regression
- ...

Classification vs **Regression**: Linear Regression

$$Y = f(X)$$

Main Task: Estimating f, giving a set of training data X

Binary Classification

Multiclass Classification

Classification Algorithms

- Support Vector Machines (SVM)
- Neural Networks
- Naive Bayes Classifier
- Nearest Neighbors (kNN)
- . . .

Classification vs Regression: *Neural Network*

Classification vs Regression: Summary

Input - Continuous

Model - Best fit Line

Evaluation - Sum of squared error

Inference - Predict the value of X₂ given the value of X₁

Input - Discrete
Model - Decision Boundary
Evaluation - Accuracy
Inference - Predict the label of a given X

Overfitting and Underfitting

Overfitting and Underfitting

Which kind of function is better is better to use for approximating f?

- Assumption on the underlying function
- Fixed Number of Parameters to learn
- I.e.: Linear Regression

$$X_2 = \mathbf{b}X_1 + \mathbf{a}$$

Example

- Logistic Regression
- Linear Discriminant Analysis
- Perceptron
- Naive Bayes
- Simple Neural Network
- Linear SVM

Pros

- Faster
- Simpler
- Less data
- Easy on memory

Cons

- Constrained
- Limited Complexity
- Poor Fit

No Assumption on the underlying mapping function

Example

- k-NN
- Decision Trees
- RBF-Kernel SVM

Pros

- Flexibile
- Better Performance

Cons

- More Data
- Slower
- Overfitting

Linear vs Non-Linear

Linearly Separable Data

Non Linearly Separable Data

Applications

Unsupervised ML

Introduction

Introduction: *Example*

Clustering

Clustering

Clustering

Clustering: *Applications*

- **Biology:** find similar entities/organisms
- Information Retrieval: Search results grouping.
- Marketing: Grouping similar customers.
- Climate: Find pattern of weather behaviour
- Document/Text categorization
- Network security: anomaly detection (finds what is not similar, the outliers from clusters).

Clustering: *Methods*

- K-means Clustering
- Principal Component Analysis (PCA)
- Gaussian Mixture Model
- Self-Organizing Map (SOM)
- Hidden Markov Models (HMM)
- -

Clustering - *GMM demo*

Old Faithful Eruptions

Clustering - *GMM demo*

Reinforcement Learning

Introduction

Application: Facts on Alpha Go Zero

- Google Deep Mind AlphaGo Zero beated 100-0 the previous AlphaGo
- AlphaGo needed 100K go games to be trained
- AlphaGo Zero only programmed with the basic rules of Go
- AlphaGo beated 18 times the world champions Lee Se-dol
- **AlphaGo Zero** staerted beating (90%) the strongest Alpha Go after 40

days of training

Deep Learning

Introduction: AI vs ML vs DL

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Introduction: *Deep Network*

Introduction: Biological Inspiration

Introduction: *Motivation on Data Volume*

Introduction: *Main Architectures*

providing lift for classification and forecasting models

Deep Neural Networks

feature extraction and classification of images

Convolutional
Neural
Networks

for sequence of events, language models, time series, etc.

Recurrent
Neural
Networks

Recurrent Neural Network: Intro

- RNN: family of NN for processing sequential data
- **Example:** predicting the next word of a sentence
- Recurrent: performing the same task for every element of the sequence
- Output: dependent on previous computation
- RNN have memory

Recurrent Neural Network: Intro

- Unfolding RNN

Recurrent Neural Network: Intro

- xt : input at timestamp t
- st : hidden state

$$s_t = f(Ux_t + Ws_{t-1})$$

- ot : output at timestamp t

$$o_t = \operatorname{softmax}(Vs_t)$$

Recurrent Neural Network: Training

- Learning the parameters: U, V, W
- SGD: Stochastic Gradient Descent
 - Minimizing the total loss of the training data
 - **Iterative** process
 - Nudge the parameters in the directions of the gradients

$$\frac{\partial L}{\partial U}, \frac{\partial L}{\partial V}, \frac{\partial L}{\partial W}$$

- **BPTT:** Backpropagation Through Time
 - Modified version of backpropagation algorithm for computing the gradients

Long-Term Dependency Problem

- **Example:** Prediction of next word
 - "The <u>clouds</u> are in the" \rightarrow ? ["Sky"]

- "I grew up in Italy (...) I speak fluent" \rightarrow ? ["Italian"]

- Vanishing Gradient Problem
 - Gradients become too large or too small during the iterative process of parameter learning

LSTM - Long Short-Term Model

- Designed to handle long-term dependency
- Memory cell unit
 - Forget Gate: information to throw away (in the cell state)
 - Input Gate: information to store (in the cell state)
 - Output Gate: what to output

RNN vs CNN

 CNN: Neural network able to recognize patterns across the space (i.e.: component of an image)

- CNN + RNN in joint architectures!

Recurrent Neural Network: Applications

- Sentence Modelling
- Click Prediction
- Location Prediction
- Language Translation
- Sentiment Analysis
- Image Captioning and Description
- Speech Recognition
- Question/Answering Systems
- Text Generation

RNN Applications: Machine Translation

- Sequence to Sequence Model* [Sutskever, Vinyals, Le, 2014]
 - LSTM based model

RNN Applications: Conversational Systems

- Neural Conversational Model* [Sutskever, Vinyals, Le, 2014]
 - LSTM based model

Machine: hi
Human: hello

Machine: could you please let me know what are

the operating systems you are using?

Human: i am using linux

Machine: ok it was in the ssl vpn on which you

stated it was broken

Machine: please check if you are logged in to

corp network

Machine: what is the error that you are running

please

Human: i am seeing an error related to vpn Machine: what is the error message that you are

getting when connecting to vpn using network connect?

connect?

Human: connection refused or something like

that

Machine: may i know the version of network

connect you connect?

Human: i am not sure i know that

Machine: is the network connect prompting for

any user certificate

Machine: ? Human: yes

Machine: are you at home or at work at the mo-

ment?

Machine: office?
Human: i am at home

RNN Applications: Speech Recognition

- End to End Speech Recognition*
 [Graves, Jaitly, 2014]
 - Bi-LSTM based model

RNN Applications: Image Captioning

- Generating Captions describing an Image [O.Vinyals et al, 2015]
 - RNN + CNN based model

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

A person on a beach flying a kite.

A person skiing down a snow covered slope.

A black and white photo of a train on a train track.

A group of giraffe standing

RNN Applications: Demo

- <u>Generating Polyphonic Music</u>
- Sentence Generation from Picture
- Handwriting Generation Demo
- <u>Sentiment Analysis</u>

Conclusion

- Recurrent Neural are able to model sequences
- Training RNN is hard because the vanishing problem
- LSTM tackle the Long-Term Dependency Problem
- Mostly useful in NLP related problems

Useful Resources

ML Cheat-Sheet

scikit-learn classification kernel approximation algorithm cheat-sheet NOT WORKING SVC START Ensemble Classifiers more SGD KNeighbors Classifier Classifier data >50 regression Bayes <100K Lasso Data SVC Regressor category do you have labeled NOT WORKING Spectral Clustering <100K few features NOT WORKING should be data **KMeans** important GMM RidgeRegression quantity number of SVR(kernel='linear') categories clustering known <10K Randomized Isomap PCA looking <10K Spectral Embedding LLE MiniBatch KMeans MeanShift <10K dimensionality VBGMM approximation tough reduction structure luck

SVR(kernel='rbf')

EnsembleRegressors

ML Mind Map

Naive Bayes

The Neural NW Zoo

Thanks for the Attention

Massimiliano Ruocco, PhD

Research Scientist, Telenor Research Adjunct Associate Professor, DART Group, NTNU

Exercises

Exercise

https://github.com/ruoccoma/ml_talk_hioa