EXERCISES

Exercise 1

(a) Prove the triangle inequality

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

at least for $a, b \in \mathbb{R}$. (Hint: Start with obvious facts like $-|a| \le a \le |a|$.)

(b) What is true about \vec{u} and \vec{v} in the case that the triangle inequality for vectors is actually an equality?

Exercise 2 Let $\vec{u} = \langle 3, 2, 1 \rangle$ and $\vec{v} = \langle 4, 5, 6 \rangle$.

- (a) Compute $\vec{u} \cdot \vec{v}$.
- (b) Compute $\vec{u} \times \vec{v}$.
- (c) Compute $|\vec{u}|$, $|\vec{v}|$, $|\vec{u} \vec{v}|$, and $|\vec{u} + \vec{v}|$, and then compare these four quantities (lengths) in light of the triangle inequality.

Exercise 3 Confirm that the vector $\vec{u} \times \vec{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$ is perpendicular to both vectors $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$, by computing the two appropriate dot products.

Exercise 4 Verify that for any two three-dimensional vectors \vec{u} and \vec{v} ,

$$(|\vec{u} \times \vec{v}|)^2 + (\vec{u} \cdot \vec{v})^2 = (|\vec{u}| |\vec{v}|)^2,$$

i.e.,

$$\left(\frac{|\vec{u}\times\vec{v}|}{|\vec{u}|\,|\vec{v}|}\right)^2 + \left(\frac{\vec{u}\cdot\vec{v}}{|\vec{u}|\,|\vec{v}|}\right)^2 = 1.$$

What is the trigonometric relevance of this fact?

Exercise 5 At least in three dimensions, the angle θ between two vectors \vec{u} and \vec{v} can be computed using either $\theta = \sin^{-1}\left(\frac{|\vec{u}\times\vec{v}|}{|\vec{u}||\vec{v}|}\right)$ or $\theta = \cos^{-1}\left(\frac{|\vec{u}\cdot\vec{v}|}{|\vec{u}||\vec{v}|}\right)$. Why is the second preferable to the first?

Exercise 6 Determining that two vectors are perpendicular is simply a matter of confirming that their dot product is 0, because that is when the angle between them is $\theta = 90^{\circ}$. Determining that two vectors are parallel is almost as easy, because that is when the angle between them is either $\theta = 0^{\circ}$ or $\theta = 180^{\circ}$.