

www.vishay.com

Vishay Semiconductors

Optocoupler, Phototransistor Output, no Base Connection

FEATURES

- Isolation test voltage, 5300 V_{RMS}
- No base terminal connection for improved common mode interface immunity

- · Industry standard dual in line package
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS COMPLIANT

LINKS TO ADDITIONAL RESOURCES

cac

6 B

5 C

DESCRIPTION

The MOC8101, MOC8102, MOC8103, MOC8104 family optocoupler consisting of a gallium arsenide infrared emitting diode optically coupled to a silicon planar phototransistor detector in a plastic plug-in DIP-6 package.

The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled should not exceed the maximum permissible reference voltages.

The base terminal of the MOC8101, MOC8102, MOC8103, MOC8104 is not connected, resulting in a substantially improved common mode interference immunity.

AGENCY APPROVALS

- UL
- cUL
- DIN EN 60747-5-5 (VDE 0884), available with option 1
- BSI EN 62368-1
- CQC GB4943.1-2011
- CQC GB8898-2011

ORDERING INFORMATION DIP-# Option 6 0 С 8 X 0 # Т М 1 0 # # PART NUMBER CTR PACKAGE OPTION **TAPE** BIN AND REEL > 0.7 mm > 0.1 mm CTR (%) **AGENCY CERTIFIED / PACKAGE** 10 mA UL. cUL. BSI. CQC 50 to 80 73 to 117 108 to 173 160 to 256 DIP-6 MOC8101 MOC8102 MOC8103 MOC8104 DIP-6, 400 mil, option 6 MOC8102-X006 MOC8102-X009 (1) SMD-6, option 9 UL, cUL, BSI, CQC, VDE (Option 1) 50 to 80 73 to 117 108 to 173 160 to 256 DIP-6 MOC8103-X001 DIP-6, 400 mil MOC8102-X016 MOC8104-X016 SMD-6, option 7 MOC8101-X017T MOC8102-X017T (1) SMD-6, option 9 MOC8104-X019T

Notes

Rev. 1.8, 13-Apr-2023

- · Additional options may be possible, please contact sales office
- (1) Also available in tubes; do not put T on end

MOC8101, MOC8102, MOC8103, MOC8104

Vishay Semiconductors

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V _R	6.0	V
Forward continuous current		I _F	60	mA
Surge forward current	t ≤ 10 µs	I _{FSM}	2.5	А
Power dissipation		P _{diss}	100	mW
Derate linearly from 25°C			1.33	mW/°C
OUTPUT				
Collector emitter breakdown voltage		BV _{CEO}	30	V
Emitter collector breakdown voltage		BV _{ECO}	7.0	V
Collector current		Ic	50	mA
Derate linearly from 25°C			2.0	mW/°C
Power dissipation		P _{diss}	150	mW
COUPLER				
Derate linearly from 25 °C			3.33	mW/°C
Total power dissipation		P _{tot}	250	mW
Storage temperature		T _{stg}	-55 to +150	°C
Operating temperature		T _{amb}	-55 to +100	°C
Junction temperature		T _j	100	°C
Soldering temperature (1)	max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability
- (1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP)

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	I _F = 10 mA		V_{F}	-	1.25	1.5	V
Breakdown voltage	I _R = 10 μA		V_{BR}	6.0	-	-	V
Reverse current	V _R = 6.0 V		I _R	-	0.01	10	μA
Capacitance	V _R = 0 V, f = 1.0 MHz		Co	-	25	-	pF
Thermal resistance			R _{thja}	-	750	-	K/W
OUTPUT							
Collector emitter capacitance	V _{CE} = 5.0 V, f = 1.0 MHz		C _{CE}	-	5.2	-	pF
0	V _{CE} = 10 V, T _{amp} = 25 °C	MOC8101	I _{CEO1}	-	1.0	50	nA
Collector emitter dark current	V _{CE} = 10 V, T _{amp} = 100 °C	MOC8102	I _{CEO1}	-	1.0	-	μA
Collector emitter breakdown voltage	I _C = 1.0 mA		BV _{CEO}	30	-	-	V
Emitter collector breakdown voltage	$I_E = 100 \mu A$		BV _{ECO}	7.0	-	-	V
Thermal resistance			R _{thja}	-	500	-	K/W
COUPLER							
Saturation voltage collector emitter	I _F = 5.0 mA		V _{CEsat}	-	0.25	0.4	V
Coupling capacitance			C _C	-	0.6	-	pF

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements

MOC8101, MOC8102, MOC8103, MOC8104

Vishay Semiconductors

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Current transfer ratio	V _{CE} = 10 V, I _F = 10 mA	MOC8101	CTR	50	-	80	%
		MOC8102	CTR	73	-	117	%
		MOC8103	CTR	108	-	173	%
		MOCOIOA	CTD	160		256	0/

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$V_{CC} = 10 \text{ V}, I_{C} = 2.0 \text{ mA}, R_{L} = 100 \Omega$	t _{on}	-	3.0	-	μs
Turn-off time	$V_{CC} = 10 \text{ V}, I_{C} = 2.0 \text{ mA}, R_{L} = 100 \Omega$	t _{off}	-	2.3	-	μs
Rise time	$V_{CC} = 10 \text{ V}, I_{C} = 2.0 \text{ mA}, R_{L} = 100 \Omega$	t _r	-	2.0	-	μs
Fall time	$V_{CC} = 10 \text{ V}, I_{C} = 2.0 \text{ mA}, R_{L} = 100 \Omega$	t _f	-	2.0	-	μs
Cut off frequency		f _{co}	-	250	-	kHz

SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Climatic classification	According to IEC 68 part 1		55 / 100 / 21			
Comparative tracking index		CTI	175			
Maximum rated withstanding isolation voltage	t = 1 min	V _{ISO}	4420	V _{RMS}		
Maximum transient isolation voltage		V _{IOTM}	10 000	V		
Maximum repetitive peak isolation voltage		V _{IORM}	890	V		
Indiation unsistence	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω		
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω		
Output safety power		P _{SO}	400	mW		
Input safety current		I _{SI}	275	mA		
Input safety temperature		T _{SI}	175	°C		
Creepage distance	Standard DIP-6		≥ 7	mm		
Clearance distance	Standard DIP-6		≥ 7	mm		
Creepage distance	400 mil DIP-6		≥ 8	mm		
Clearance distance	400 mil DIP-6		≥ 8	mm		
Insulation thickness		DTI	≥ 0.4	mm		

Note

[•] As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Forward Voltage vs. Forward Current

Fig. 2 - Collector Current vs. LED Forward Current

Fig. 3 - Collector Current vs. Collector Emitter Voltage

Fig. 4 - Collector Current vs. Ambient Temperature

Fig. 5 - Collector Emitter Dark Current vs. Ambient Temperature

Fig. 6 - Capacitance vs. Voltage

Vishay Semiconductors

Fig. 7 - Switching Time Test Circuit and Waveforms

PACKAGE DIMENSIONS in millimeters

MOC8101, MOC8102, MOC8103, MOC8104

Vishay Semiconductors

PACKAGE MARKING (example)

Fig. 8 - Example of MOC8101-X017T

Notes

- XXXX = LMC (lot marking code)
- · VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.