Weekly Assignment 1

Munia Humaira Student ID: 21116435 Algorithm Design and Analysis

September 11, 2024

Solution 2:

To prove an undirected graph $G = \langle V, E \rangle$ for vertices n > 2, with $|E| > \frac{(n-1)(n-2)}{2}$, we will follow the 'proof by contradiction method'.

Assume for contradiction, G is not connected and |E| has more than $\frac{(n-1)(n-2)}{2}$ edges. Let's define C of size k is the smallest connected component of G where $k \geq 1$. Other vertices forms the set $V \setminus C$, hence, |C| = k and $|V \setminus C| = n - k$. Suppose, $k = \min|C|, |V \setminus C|$ such that, $k \in [1, [n/2]]$.

- Case 1: For k = 1, C is just an isolated vertex. The maximum number of edges in this case is within the $V \setminus C$ component, which is $|E| = \frac{(n-1)(n-2)}{2}$. But if G has more edges than $\frac{(n-1)(n-2)}{2}$, then there cannot be an isolated vertex since that violates our assumption, hence k > 1.
- Case 2: For k > 1, G has two partitions, one with k vertices and another with n k vertices. The maximum no. of edges for $E_C = \frac{k(k-1)}{2}$ and for $E_{V\setminus C} = \frac{(n-k)(n-k-1)}{2}$. Since, it is assumed that G is disconnected, the total no. edges would be $|E| = |E_C| + |E_{V\setminus C}|$. Simplifying the inequality that G cannot have more edges than $\frac{(n-1)(n-2)}{2}$ we get,

$$k(k-1) + (n-k)(n-k-1) \le (n-1)(n-2)$$

Further simplifying,

$$2k^2 - 2nk + n^2 - n \le n^2 - 3n + 2$$

Finally,

$$2k^2 - 2nk + 2n \le 0 \tag{1}$$

• Case - 3: Now, for a value of $k \leq \frac{n}{2}$, the inequality becomes, $k(n-k) \leq \frac{n^2}{4}$, so eqn.(1) holds as k being small enough keeps the maximum number of edges below $\frac{(n-1)(n-2)}{2}$.

Thus by proof of contradiction and using the case analysis, we can say that $G = \langle V, E \rangle$ can have at most $|E| = \frac{(n-1)(n-2)}{2}$. Therefore, if G has more than that many edges, then it becomes connected.