Joint Taxation of Income and Wealth

Mehmet Ayaz¹ Dominik Sachs²

¹LMU Munich

²University of St. Gallen

May 5, 2022 ZEW Public Finance Conference

Joint taxation of income and wealth

A tax system in which the marginal tax rate of income depends on wealth, or vice versa.

Joint taxation of income and wealth

A tax system in which the marginal tax rate of income depends on wealth, or vice versa.

ightarrow Analysis similar for joint taxation of labor income and capital income

Joint taxation of income and wealth

A tax system in which the marginal tax rate of income depends on wealth, or vice versa.

ightarrow Analysis similar for joint taxation of labor income and capital income

Examples:

- Abgeltungssteuer in Germany
- Cap on wealth tax liability as a proportion of income

Joint taxation of income and wealth

A tax system in which the marginal tax rate of income depends on wealth, or vice versa.

ightarrow Analysis similar for joint taxation of labor income and capital income

Examples:

- Abgeltungssteuer in Germany
- Cap on wealth tax liability as a proportion of income

There were 12 European countries who levied wealth taxes in 1990. 7 of them imposed some kind of cap on wealth tax liability.

Is this (in)efficient?

This project

- 1. A static simple framework to understand trade-offs.
- 2. A structural model to understand cross-effects. (Work in progress)

This project

- 1. A static simple framework to understand trade-offs.
- 2. A structural model to understand cross-effects. (Work in progress)
 - Pro Jointness: Wealth and income are positively correlated. This should
 - lower distortions
 - allow for more targeted redistribution
 - Contra Jointness: Jointness implies two distortions.
 - E.g. increasing wealth tax only for people with income > \$100k not only distorts wealth margin but also income margin

Reduced-form model

We consider

- A joint distribution of income and wealth, F(y, a)
 - Independent if $F(y, a) = F_Y(y) \cdot F_A(a)$
- A bivariate tax payment function, T(y, a)
 - Marginal income tax rate: $\frac{\partial T(y,a)}{\partial y} = T'_Y(y,a)$
 - Marginal wealth tax rate: $\frac{\partial T(y,a)}{\partial a} = T'_A(y,a)$
 - Separable if $\frac{\partial^2 T(y,a)}{\partial y \partial a} = 0 \implies T(y,a) = T_Y(y) + T_A(a)$

Model analysis

- Tax perturbation approach
 - Change in tax liability $\Delta T(y, a)$
- Rely on sufficient statistics
 - Elasticity of income, $\varepsilon_{\gamma,1-T_{\nu}'}$
 - Elasticity of wealth, $\varepsilon_{a,1-T_A'}$
 - Extension to cross-elasticities work in progress, main mechanisms very similar

Model analysis

- Tax perturbation approach
 - Change in tax liability $\Delta T(y, a)$
- Rely on sufficient statistics
 - Elasticity of income, $\varepsilon_{y,1-T_{\nu}'}$
 - Elasticity of wealth, $\varepsilon_{a,1-T_A'}$
 - Extension to cross-elasticities work in progress, main mechanisms very similar

We look at the revenue and welfare effects of ...

- separable income and wealth tax reforms
- joint tax reforms

Separable income tax reform

Figure: Simple income tax reform

Separable income tax reform

Figure: Simple income tax reform

Marginal excess burden – separable tax reforms

- Marginal excess burden for increasing $T'_{\nu}(y^*)$

$$MEB_{Y}(y^{*}) = \frac{T'_{Y}(y^{*})}{1 - T'_{Y}(y^{*})} \varepsilon_{y^{*}, 1 - T'_{Y}} \frac{f_{Y}(y^{*})y^{*}}{1 - F_{Y}(y^{*})}$$

- The term $\frac{f_Y(y^*)y^*}{1-F_Y(y^*)}$ plays a key role. (Saez, 2001)
- Similar analysis for $T_A'(a^*)$. (Saez and Stantcheva, 2018)

Joint reform

Figure: Joint tax reform

- Increases tax payment for people with $y > y^*$ and $a > a^*$.

Effects of a joint reform

There are three effects of a joint reform

- 1. Increase in tax revenue
- 2. Distortion on income generation
- 3. Distortion on wealth accumulation

Effects of a joint reform

There are three effects of a joint reform

- 1. Increase in tax revenue
- 2. Distortion on income generation
- 3. Distortion on wealth accumulation

 $\mbox{Marginal excess burden} = \frac{\mbox{Distortion on income} + \mbox{Distortion on wealth}}{\mbox{Increased tax revenue}}$

8/20

Marginal excess burden I

Proposition 1

If the initial tax schedule is separable, it can be shown that

$$\begin{aligned} \textit{MEB}_{joint}(\textit{y}^*,\textit{a}^*) &= \textit{w}_{\textit{Y}}(\textit{y}^*,\textit{a}^*) \cdot \textit{MEB}_{\textit{Y}}(\textit{y}^*) \cdot \frac{\varepsilon_{\textit{y},1-\textit{T}_{\textit{Y}}^{\prime}}|\textit{a}>\textit{a}^*}{\varepsilon_{\textit{y},1-\textit{T}_{\textit{Y}}^{\prime}}} \\ &+ \textit{w}_{\textit{A}}(\textit{y}^*,\textit{a}^*) \cdot \textit{MEB}_{\textit{A}}(\textit{a}^*) \cdot \frac{\varepsilon_{\textit{a},1-\textit{T}_{\textit{A}}^{\prime}}|\textit{y}>\textit{y}^*}{\overline{\varepsilon_{\textit{a},1-\textit{T}_{\textit{A}}^{\prime}}}} \end{aligned}$$

where $w_Y(y, a)$ and $w_A(y, a)$ are the weights that depend on the joint distribution of income and wealth. They are given by

$$w_{Y}(y^{*}, a^{*}) = \frac{Pr(a > a^{*}|y = y^{*})}{Pr(a > a^{*}|y > y^{*})} \qquad w_{A}(y^{*}, a^{*}) = \frac{Pr(y > y^{*}|a = a^{*})}{Pr(y > y^{*}|a > a^{*})}$$

Graphical intuition

Figure: Graphical intuition of Proposition 1

$$w_A(y^*, a^*) = \frac{Pr(y > y^* | a = a^*)}{Pr(y > y^* | a > a^*)}$$

Graphical intuition

Figure: Graphical intuition of Proposition 1

$$w_A(y^*, a^*) = \frac{Pr(y > y^* | a = a^*)}{Pr(y > y^* | a > a^*)}$$

Graphical intuition

Figure: Graphical intuition of Proposition 1

$$w_A(y^*, a^*) = \frac{Pr(y > y^* | a = a^*)}{Pr(y > y^* | a > a^*)}$$

Marginal excess burden II

Proposition 2

If income and wealth are independently distributed, elasticites are cross-independent, and the initial tax schedule is separable, then the marginal excess burden of a joint reform is given by

$$\textit{MEB}_{\mbox{joint}}(\textit{y}^*, \textit{a}^*) = \textit{MEB}_{\mbox{\scriptsize Y}}(\textit{y}^*) + \textit{MEB}_{\mbox{\scriptsize A}}(\textit{a}^*)$$

What if wealth and income not independent...

- The sum of the weights is above two for a negative correlation.
 - ightarrow only of theoretical interest

What if wealth and income not independent...

- The sum of the weights is above two for a negative correlation.
 - \rightarrow only of theoretical interest
- For the empirically plausible case of positive correlation
 - \rightarrow sum of weights is between 1 and 2

What if wealth and income not independent...

- The sum of the weights is above two for a negative correlation.
 - \rightarrow only of theoretical interest
- For the empirically plausible case of positive correlation
 - \rightarrow sum of weights is between 1 and 2
- Let's look at some data!

Data

Survey of Consumer Finances

- Representative household survey
- Data from 2016
- 5000+ households

Variable definitions:

- Income
 - Wages, salaries and self-employment income
- Wealth
 - Assets (financial and non-financial) net of liabilities

Data

Survey of Consumer Finances

- Representative household survey
- Data from 2016
- 5000+ households

Variable definitions:

- Income
 - Wages, salaries and self-employment income
- Wealth
 - Assets (financial and non-financial) net of liabilities

Non-parametric estimation of the joint distribution Data fit

High correlation between income and wealth.

Conditional hazard rates

- Hazards ratios of wealth distribution is smaller for higher income groups.

Conditional hazard rates

- Hazards ratios of wealth distribution is smaller for higher income groups.

Tagging!

Assumptions on elasticities & current taxes

- Elasticities
 - $\varepsilon_{y,1-T_Y'}=0.3$
 - $\varepsilon_{a,1-T'_{A}} = 10$ (Jakobsen et al., 2020)
- Taxes: we assume separable tax
 - Income tax schedule is estimated using TAXSIM calculator. Then polynomial fit for marginal labor income tax rate.

 Estimation
 - For wealth tax: assume that it is currently $1\% \leftrightarrow 5\%$ capital return and 20% capital income tax rate.

MEB of joint reforms

Figure: Revenue effect of joint tax reforms

Takeaways

- Excess burden of increasing high income taxes is lower if conditional on high wealth
- Excess burden of wealth tax is higher if conditional on high income
- Main reason: Distortions on the wealth margin very low in the benchmark

▶ Alternative calibration

Welfare analysis

- So far we only talked about distortions but **distributional gains** also change.

Welfare analysis

- So far we only talked about distortions but distributional gains also change.

Assume that the initial, separable tax schedules are optimal.

- 1. Estimate welfare weights for income and wealth. (Inverse-optimum approach)
- 2. Combine two separate welfare weights to obtain a joint welfare weight.

▶ Welfare weights

Welfare effects of joint reforms

Figure: Marginal effects of a joint tax reform

Conclusion

- Joint reforms introduce another front of distortion.
- This needs to be traded off against the welfare gain of tagging.
- Future work:
 - More careful calibration
 - Distinguishing different concepts of wealth
 - Structural model approach

Any questions?

mehmet.ayaz@econ.lmu.de sites.google.com/view/mehmetayaz

Proof of Proposition 1

$$\begin{split} \textit{MEB}_{1} &= y^{*} \varepsilon_{y} \frac{\int\limits_{a^{*}}^{\infty} \frac{T_{1}(y^{*}, a)}{1 - T_{1}(y^{*}, a)} f(y^{*}, a) \, da}{\int\limits_{y^{*}}^{\infty} \int\limits_{a^{*}}^{\infty} f(y, a) \, da \, dy} + a^{*} \varepsilon_{a} \frac{\int\limits_{y^{*}}^{\infty} \frac{T_{2}(y, a^{*})}{1 - T_{2}(y, a^{*})} f(y, a^{*}) \, dy}{\int\limits_{y^{*}}^{\infty} \int\limits_{a^{*}}^{\infty} f(y, a) \, da \, dy} \\ \textit{MEB}_{1} &= y^{*} \varepsilon_{y} \frac{\tau_{y}}{1 - \tau_{y}} \frac{f_{Y}(y^{*}) \int\limits_{a^{*}}^{\infty} f_{A}(a) \, da}{\int\limits_{y^{*}}^{\infty} f_{Y}(y) \int\limits_{a^{*}}^{\infty} f_{A}(a) \, da \, dy} + a^{*} \varepsilon_{a} \frac{\tau_{a}}{1 - \tau_{a}} \frac{f_{A}(a^{*}) \int\limits_{y^{*}}^{\infty} f_{Y}(y) \, dy}{\int\limits_{a^{*}}^{\infty} f_{Y}(y) \int\limits_{a^{*}}^{\infty} f_{A}(a) \, da \, dy} \\ \textit{MEB}_{1} &= y^{*} \varepsilon_{y} \frac{\tau_{y}}{1 - \tau_{y}} \frac{f_{Y}(y^{*})(1 - F_{A}(a^{*}))}{(1 - F_{Y}(y^{*}))(1 - F_{A}(a^{*}))} + a^{*} \varepsilon_{a} \frac{\tau_{a}}{1 - \tau_{a}} \frac{f_{A}(a^{*})(1 - F_{Y}(y^{*}))}{(1 - F_{Y}(y^{*}))(1 - F_{A}(a^{*}))} \\ \textit{MEB}_{1} &= \textit{MEB}_{Y} + \textit{MEB}_{A} \end{split}$$

Estimation Fit

Figure: Estimation fit

Income Tax Rate Estimation

Figure: Polynomial fit for marginal income tax rate

MEB of joint reforms

Alternative calibration

Figure: Revenue effect of joint tax reforms (Alternative calibration)

Welfare Weights for Income and Wealth

Figure: Welfare weights

Welfare effects of joint reforms

Alternative Calibration

Figure: Marginal effects of a joint tax reform (Alternative)

Income Tax Reform

Figure: Income tax reform conditional on wealth

Wealth Tax Reform

Figure: Wealth tax reform conditional on income

