Amendments to the claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

1. (Currently amended): A compound of Formula I:

$$(R^3)_k$$
 R^{10}
 $(CR^1R^2)_p$
 Z
 $(CR^4R^5)_n$
 $(CR^8R^9)_q$
 Q

wherein:

Z is CH[[,]] or CR³ [[or N]]; wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is selected from C₃-C₈ cycloalkyl[[,]] or phenyl, and monocyclic Het; wherein said C₃-C₈ cycloalkyl, or phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl, $-C_0-C_6$ alkyl- $-C_0-C_6$ alkyl-CONR¹²R¹³, $-C_0-C_6$ alkyl-COR¹⁴, $-C_0-C_6$ alkyl-NR¹²R¹³, $-C_0-C_6$ alkyl-SR¹¹,

-C₀-C₆ alkyl-OR¹¹, -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹²R¹³, -C₀-C₆ alkyl-SO₂R¹¹,

-C₀-C₆ alkyl-SOR¹⁴, -C₀-C₆ alkyl-OCOR¹⁴, -C₀-C₆ alkyl-OC(O)NR¹²R¹³,

 $-C_0-C_6 \ alkyl-OC(O)OR^{14}, \ -C_0-C_6 \ alkyl-NR^{12}C(O)OR^{14}, \ -C_0-C_6 \ alkyl-NR^{12}C(O)NR^{12}R^{13}, \ and \ -C_0-C_0 \ alkyl-NR^{12}C(O)NR^{12$ -C₀-C₆ alkyl-NR¹²COR¹⁴, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^1 and W^2 are each independently C_3 - C_8 cycloalkyl or aryl;

each R¹ and R² is independently selected from H, C₁-C₆ alkyl, -OH, -O-C₁-C₆ alkyl, -SH, and -S- C_1 - C_6 alkyl;

Group Art Unit: 1625

each R³ is the same or different and is independently selected from halo, cyano, nitro,

 $C_1\text{-}C_6 \text{ alkyl}, C_3\text{-}C_6 \text{ alkenyl}, C_3\text{-}C_6 \text{ alkynyl}, \text{-}C_0\text{-}C_6 \text{ alkyl-Ar}, \text{-}\textcolor{red}{-C_6\text{-alkyl-Het}},$

 $-C_0-C_6 \text{ alkyl-} C_3-C_7 \text{ cycloalkyl, } -C_0-C_6 \text{ alkyl-} CO_2 R^{11}, \text{ } -C_0-C_6 \text{ alkyl-} C(O) SR^{11}, \\$

 $-C_0-C_6 \ alkyl-CONR^{12}R^{13}, \ -C_0-C_6 \ alkyl-COR^{14}, \ -C_0-C_6 \ alkyl-NR^{12}R^{13}, \ -C_0-C_6 \ alkyl-SR^{11}, \ -C_0-C_6 \ al$

 $-C_0-C_6 \text{ alkyl-OR}^{11}, -C_0-C_6 \text{ alkyl-SO}_3H, -C_0-C_6 \text{ alkyl-SO}_2NR^{12}R^{13}, -C_0-C_6 \text{ alkyl-SO}_2R^{11}, -C_0-C_6 \text{ alkyl-SO}_2R^{11},$

 $-C_0-C_6 \ alkyl-SOR^{14}, \ -C_0-C_6 \ alkyl-OC(O)NR^{12}R^{13}, \\$

 $-C_0-C_6 \ alkyl-OC(O)OR^{14}, \ -C_0-C_6 \ alkyl-NR^{12}C(O)OR^{14}, \ -C_0-C_6 \ alkyl-NR^{12}C(O)NR^{12}R^{13}, \ and \ -C_0-C_0 \ alkyl-NR^{12}C(O)NR^{12$

 $-C_0-C_6$ alkyl-NR¹²COR¹⁴, wherein said C_1-C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

 R^6 and R^7 are each independently H or $C_1\text{-}C_4$ alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is selected from H, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, - C_0 - C_6 alkyl-Ar, - C_0 - C_6 alkyl-Het and or - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl-Het and or - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl-Ar, $-C_0$ - C_6 -alkyl-Het and $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl, or R^{13} and R^{14} -together with the nitrogen to which they are attached form a 4–7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N. O. and S; and

 $R^{14} \text{ is } \frac{1}{\text{selected from }} C_1 - C_6 \text{ alkyl, } C_3 - C_6 \text{ alkenyl, } C_3 - C_6 \text{ alkynyl, } - C_0 - C_6 \text{ alkyl-Ar, } - C_0 - C_6 \text{ alkyl-Het and } \frac{\text{or}}{\text{or}} - C_0 - C_6 \text{ alkyl-C}_3 - C_7 \text{ cycloalkyl; }$

provided that R^{10} is not H or methyl when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or [[solvate]] hydrate thereof.

2. (Original): The compound according to claim 1, wherein p is 0 or 1.

- 3. (Currently amended): The compound according to any of claims 1-2 claim 1, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is C_1 - C_4 alkyl or both R^1 and R^2 are C_1 - C_3 alkyl.
- 4. (Currently amended): The compound according to any of claims 1-2 claim 1, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is methyl, ethyl, propyl, butyl, or sec-butyl, or R^1 and R^2 are both methyl or ethyl.
- 5. (Currently amended): The compound according to any of claims 1-4 claim 1, wherein R^{10} is H or C_1 - C_4 alkyl.
- 6. (Currently amended): The compound according to any of claims 1-5 claim 1, wherein Z is CH.
- 7. (Currently amended): The compound according to any of claims 1-6 claim 1, wherein k is 0 or 1.
- 8. (Currently amended): The compound according to any of claims 1-7 claim 1, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
- 9. (Currently amended): The compound according to any of claims 1-8 claim 1, wherein n is 2-4.
- 10. (Currently amended): The compound according to any of claims 1-9 claim 1, wherein n is 3.
- 11. (Currently amended): The compound according to any of claims 1-10 claim 1, wherein q is 1.
- 12. (Currently amended): The compound according to any of claims 1-11 claim 1, wherein R^6 , R^7 , R^8 and R^9 are each H.

13. (Currently amended): The compound according to any of claims 1–12 claim 1, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from halo, C_1 - C_4 alkoxy and C_1 - C_4 alkyl or Q is substituted pyridyl group containing one C_1 - C_4 alkyl substituent.

- 14. (Currently amended): The compound according to any of claims 1-13 claim 1, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂, or Q is 6-methyl-pyridin-2-yl.
- 15. (Currently amended): The compound according to any of claims 1–14 claim 1, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.
- 16. (Currently amended): The compound according to any of claims 1-15 claim 1, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.
- 17. (Currently amended): The compound according to any of claims 1-16 claim 1, wherein W^1 and W^2 are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.
- 18. (Currently amended): The compound according to any of claims 1-17 claim 1, wherein W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chlorosubstituted phenyl.
 - 19. (Currently amended): A compound of Formula II:

$$(R^3)_k$$
 W^1
 W^2
 $(CR^1R^2)_p$
 $(CR^4R^5)_n$
 $(CR^8R^9)_q$
 Q
 II

Group Art Unit: 1625

wherein:

Z is CH or N;

Q is phenyl or monocyclic Het; wherein said phenyl and monocyclic Het are is optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- CO_2R^{11} , $-C_0$ - C_4 alkyl- $C(O)SR^{11}$, $-C_0$ - C_4 alkyl- $COR^{12}R^{13}$, $-C_0$ - C_4 alkyl- COR^{14} , $-C_0$ - C_4 alkyl- $COR^{12}R^{13}$, $-C_0$ - C_4 alkyl- COR^{14} , where said C_1 - C_0 - C_0 - C_0 - C_0 - C_0 - C_1 - C_1 - C_0 - C_1 -

p is 0-4;

k is 0, 1 or 2;

n is 2-4;

q is 0 or 1;

W¹ and W² are each independently C₃-C₆ cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_4 alkyl, -OH, -O- C_1 - C_4 alkyl, -SH, and -S- C_1 - C_4 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} , $-C_0$ - C_4 alkyl- $SO_2NR^{12}R^{13}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^4 and R^5 is independently H or C_1 - C_4 alkyl;

 R^6 and R^7 are each independently H or C_1 - C_4 alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 -alkyl-Het and or $-C_0$ - C_4 alkyl- C_3 - C_6 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 -alkyl-Het and or - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, $C_1\text{-}C_6$ alkyl,

- C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl, or R^{12} and R^{13} -together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{14} is selected from C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 -alkyl-Het and or $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R^{10} is not H or methyl when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or [[solvate]] hydrate thereof.

- 20. (Currently amended): The compound according to claim 1 or 19, wherein R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are each H; at least one of R^1 or R^2 is methyl, ethyl, propyl butyl or secbutyl or both of R^1 and R^2 are methyl or ethyl; R^{10} is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluorosubstituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl; Z is CH; P is 0, 1 or 2; P is 3; P is 0 or 1 and P is P or methyl; or a pharmaceutically acceptable salt or [[solvate]] hydrate thereof.
- 21. (Currently amended): The compound according to claim 1 or 19, wherein R⁶, R⁷, R⁸ and R⁹ are each H; R¹ and R² are each independently H or methyl; at least one R⁴ or R⁵ is methyl; R¹⁰ is H or methyl; Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W¹ and W² are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt or [[solvate]] hydrate thereof.
- 22. (Currently amended): [[The]] \underline{A} compound according to claims 1 or 19, selected from:
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid methyl ester;
- $(R)-2-(3-\{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy\}-phenyl)acetic acid;$
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;

Group Art Unit: 1625

- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester;
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R) 2-(3-[3-[[6-methyl-pyridin-2-ylmethyl](2,2-diphenylethyl)amino] 2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2,4-dimethoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- $(R)-2-(3-\{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy\}-phenyl)acetic acid;$
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2- $(3-\{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;$

Group Art Unit: 1625

- (*R*)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chlorobenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino}-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-(3-trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-trifluoromethyl-4-fluoro-benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2- $(3-\{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;$
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-chloro-3,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)-amino]-methyl-propoxy}-phenyl)-acetic acid;
- 3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-methyl-benzoic acid;
- (3-{3-[[2,2-(bis-(4-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- (3-{3-[[2,2-(bis-(3-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;

Group Art Unit: 1625

rac-(3-{3-[[2-phenyl-2-(*o*-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-butyric acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-pentanoic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-hexanoic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-4-methyl-pentanoic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid methyl ester;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid;

2-(3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-butoxy}-phenyl)-2-methyl-propionic acid;

3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid methyl ester;

3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;

2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;

(2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;

N-(2-phenyl-2-cyclopentylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxy)propylamine;

N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxyphenoxy)propylamine;

N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-2,2-dimethyl-3-(3-aminopropoxy)phenylpropionic acid;

(3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid methyl ester;

(3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methyl-propionic acid; and

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-propionic acid;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and <u>or</u> a pharmaceutically acceptable salt or [[solvate]] <u>hydrate</u> thereof.

23. (Currently amended): A pharmaceutical composition comprising a compound according to any one of claims 1-22 claim 1 and a pharmaceutically acceptable carrier or diluent.

24-45. (Cancelled).

46. (Withdrawn): A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of [[a]] the compound according to claim 1.

Claims 47-55. (Cancelled).

56. (Withdrawn): A compound according to claim 1 wherein at least one of R^4 , R^5 , R^6 , R^7 , R^8 or R^9 is defined as follows:

wherein at least one R^4 or R^5 is C_1 - C_4 alkyl; or at least one of R^6 of R^7 is C_1 - C_4 alkyl; or both of R^8 or R^9 are independently C_1 - C_4 alkyl.

- 57. (Withdrawn): A compound according to claim 1 wherein at least one R^4 or R^5 is methyl.
 - 58. (Currently amended, Withdrawn): A compound according to claim 1 wherein: any one of R^4 or R^5 is not H or any one of R^6 or R^7 is not H or

Group Art Unit: 1625

R⁸ and R⁹ are each C₁-C₄ alkyl when

Z is CH or CR³ and k is 0-4 or Z is N and k is 0-3;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is selected from optionally unsubstituted or substituted C_3 - C_8 cycloalkyl[[,]] or phenyl and mono-cyclic Het;

 W^1 and W^2 are each independently optionally unsubstituted or substituted C_3 - C_8 cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_6 alkyl, -OH, -O- C_1 - C_6 alkyl, -SH, and -S- C_1 - C_6 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, $-CONR^{12}R^{13}$, $-COR^{14}$, $-SR^{11}$, $-SO_2R^{11}$, $-SO_2R^{14}$, $-OCOR^{14}$ and optionally unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl, $\frac{5-6}{100}$ membered-Het, $-C_0$ - C_6 alkyl- $-CO_2R^{11}$, or $-C_0$ - $-C_6$ alkyl- $-R^{12}R^{13}$.