Key ID: 017

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3
sample 1:	13.9	9.8	7.9
sample 2:	23.3	22.7	21.3

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.

(i) no

- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

(b) 9 . 9 2 0 (c) 1 . 8 7 0 (d) - 6 . 6 5 0 (e) 3 0 . 4 5 0 (f) 6 . 3 6 5 (g) 0 . 0 2 0 (h) 0 . 0 4 0	1.	(a)				2	•	0	0	0	
(d)		(b)				9	.[9	2	0	
(e) 3 0 . 4 5 0 (f) 6 . 3 6 5 (g) 0 . 0 2 0		(c)				1	.[8	7	0	
(f) 6 . 3 6 5 (g) 0 . 0 2 0		(d)			-	6	- [6	5	0	
(g) 0 . 0 2 0		(e)			3	0		4	5	0	
		(f)				6	.[3	6	5	
(h) 0 . 0 4 0		(g)				0	.[0	2	0	
		(h)				0	.[0	4	0	

Key ID: 017

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.5$$

$$\overline{X_2} = 22.4$$

$$s_1 = 3.07$$

$$s_2 = 1.03$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.07)^2}{3} + \frac{(1.03)^2}{3}} = 1.87$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-6.65, 30.45)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(22.4 - 10.5) - 0}{1.87} = 6.37$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 6.37$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 2
- (b) 9.92
- (c) 1.87
- (d) -6.65
- (e) 30.45
- (f) 6.365
- (g) 0.02
- (h) 0.04
- (i) no