ML Algorithms NEURAL NETWORKS

ClassA Detailed Look At Neural Networks

Topic

Multiple Neurons & Neural Network Architecture

The average human brain has 100 billion neurons

- Interconnections between neurons are extremely complicated
- Complicated network within the neurons helps brain learn and process information effectively

The average human brain has 100 billion neurons

Allowing the brain to make extremely complicated decisions

Each neuron is connected to 10,000 neurons

Which together create a complicated network of about 1000 trillion connections

One of the ways we solve complicated problems...

...is by breaking them down into simpler manageable pieces

...is by breaking them down into simpler manageable pieces

We solve each simple piece...

...then somehow bring these solutions together

...then somehow bring these solutions together

- Artificial neural networks connect individual decision making neurons by arranging them in a connected network
- A single neuron is essentially a linear classifier
- In a binary classification problem all it does is finds the line that separates the 2 classes

Neural Network

- Task: separate red dots from green
- Single neuron cannot solve this classification problem

Neuron 1
Separates the top right green dot from rest of the 3 points

Neuron 2
Separates the bottom left green dot from rest of the 3 points

© Jigsaw Academy Educat

Connecting 2 Neural Networks

Connecting 2 Neural Networks

Connecting 2 Neural Networks

Decisions from 2 simple neurons can be combined to construct a complicated decision boundary

	Output from Neuron 1	Output from Neuron 2	Response
Α	0	1	Red
В	1	1	Green
С	0	1	Red
D	0	0	Green

- These 2 neurons have created another set of features from the data
- This feature transformation property, which uses multiple neurons, is fairly complex

This allows the machine learning algorithm to look at different complicated transformations on the data, without introducing mathematical complexity

- Try plotting the data using this transformed set of features from the 2 neurons
- You should be able to solve this classification problem using a single neuron

The Architecture of a Neural Network

The Architecture of a Neural Network

- Forward direction
- Feed-forward

Recap

- Decision Making With Multiple Neurons
- Neuron 1
- Neuron 2
- Connecting 2 neural networks
- Combining Outputs From Multiple Neurons
- Combining Outputs From Multiple Neurons: Neuron 1
- Combining Outputs From Multiple Neurons: Neuron 2
- The Architecture of a Neural Network

JIGSAW ACADEMY

THE ONLINE SCHOOL OF ANALYTICS