Exercise 4.1. For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute the degree $[L:\mathbb{Q}]$

1. $t^4 + 7t^2 + 12$

Solution. We notice $f(t) = t^4 + 7t^2 + 12 = (t^2 + 3)(t^2 + 4)$, so let $g(t) = t^2 + 3$ and $h(t) = t^2 + 4$. We have that h = (t - 2i)(t + 2i), and by the rational root test h is irreducible over \mathbb{Q} . Then $h = \mu_{2i}^{\mathbb{Q}}$ and $\mathbb{Q}(i) = M : \mathbb{Q}$ is the splitting field extension for h with degree 2. Next, we have $g = (t - i\sqrt{3})(t + i\sqrt{3})$, and by Eisenstein's criterion with p = 3, g is irreducible. Let L : M be the splitting field extension for g. We already have that $i \in M$, so $L = M(\sqrt{3})$ and [L : M] = 2. Thus, $L = \mathbb{Q}(i, \sqrt{3}) : \mathbb{Q}$ is the splitting field extension for f and by the Tower Law, $[L : \mathbb{Q}] = [L : M][M : \mathbb{Q}] = 2 \cdot 2 = 4$.

2. $t^4 + t^2 + 12$

Solution. We notice $f(t) = t^4 + t^2 + 12 = (t^2 - 3)(t^2 + 4)$, so let $g(t) = t^2 - 3$ and $h(t) = t^2 + 4$. These are the same polynomials as in part 1, but this time the roots of g do not have an imaginary factor. However, we note that this did not have any impact on our argument in part 1, whence $L = \mathbb{Q}(i, \sqrt{3}) : \mathbb{Q}$ is again the splitting field extension for f and $[L : \mathbb{Q}] = 4$.

3. $t^{2n} - 2^n$, where n = 3, 4.

Solution. (n=3) We have that $f(t)=t^6-2^3$. Then, $t=(2^3)^{1/6}$ and $t=\sqrt{2}\cdot\varepsilon_6^k$, where $k\in\mathbb{Z}_6$ and $\varepsilon_6=\exp(i\frac{2\pi}{6})=\exp(i\frac{\pi}{3})$. We know the minimum polynomial of ε_6 over \mathbb{Q} is the sixth cyclotomic polynomial Φ_6 , which has degree $\phi(6)=\phi(2)\phi(3)=2$. Thus $[\mathbb{Q}(\varepsilon_6):\mathbb{Q}]=2$. Now, $\sqrt{2}\notin\mathbb{Q}(\varepsilon_6)$, so $L=\mathbb{Q}(\sqrt{2},\varepsilon_6)=\mathbb{Q}(\varepsilon_6)(\sqrt{2})$. Trivially, the minimum polynomial of $\sqrt{2}$ has degree 2, hence $[L:\mathbb{Q}(\varepsilon_6)]=2$ and by the Tower Law, $[L:\mathbb{Q}]=[L:\mathbb{Q}(\varepsilon_6)][\mathbb{Q}(\varepsilon_6):\mathbb{Q}]=2\cdot 2=4$.

(n=4) We have that $f(t)=t^8-2^4$. Then, $t=(2^4)^{1/8}$ and $t=\sqrt{2}\cdot\varepsilon_8^k$, where $k\in\mathbb{Z}_8$ and $\varepsilon_8=\exp(i\frac{2\pi}{8})=\exp(i\frac{\pi}{4})$. We know the minimum polynomial of ε_8 over \mathbb{Q} is the eighth cyclotomic polynomial Φ_8 , which has degree $\phi(8)=2^3-2^2=4$. Thus $[\mathbb{Q}(\varepsilon_8):\mathbb{Q}]=4$. Now, notice $\varepsilon_8=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}$ and $\varepsilon_8^{-1}=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}$. So, $\varepsilon_8+\varepsilon_8^{-1}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}\in\mathbb{Q}(\varepsilon_8)$. Thus $L=\mathbb{Q}(\varepsilon_8)$ is the splitting field for f over \mathbb{Q} and $[L:\mathbb{Q}]=4$.

4. $t^{14} - 1$

Solution. Obviously, $f(t) = t^{14} - 1$ has root ε_{14}^k for $k \in \mathbb{Z}_{14}$, so $L = \mathbb{Q}(\varepsilon_{14})$ The minimum polynomial for ε_{14} is Φ_{14} , whence $[L : \mathbb{Q}] = \phi(14) = \phi(7)\phi(2) = 6$.

Exercise 4.2. Let K - L - M be a field extension and K - L, L - M are algebraic extensions. Prove that K - M is also an algebraic extension.

Solution. Suppose $k \in K$ with $\mu_k^L = x^n + \ell_{n-1}x^{n-1} + \cdots + \ell_0$ for $\ell_i \in L$. Then by definition, k is algebraic over $M(\ell_0, \dots, \ell_{n-1})$. By theorem, we know that for some field extension $F_1 : F_2, \alpha \in F_1$ is algebraic over $F_2 \iff [F_2(\alpha) : F_2] < \infty$. Thus, we have that

$$[M(\ell_0,\ldots,\ell_{n-1})(k):M(\ell_0,\ldots,\ell_{n-1})] = [\underbrace{M(\ell_0,\ldots,\ell_{n-1},k)}_{M''}:\underbrace{M(\ell_0,\ldots,\ell_{n-1})}_{M'}] < \infty.$$

Using a corollary from lecture, we also know that $[M':M]<\infty$. Then by the Tower Law, we have $[M'':M]=[M'':M'][M':M]<\infty$. From a result in homework 2, any finite extension is necessarily algebraic. Thus, k is algebraic over M for arbitrary $k \in K \implies K-M$ is algebraic.

Exercise 4.3. Let α be transcendental over a field $K \subset \mathbb{C}$. Show that $K(\alpha)$ is not algebraically closed (hint: consider the polynomial $t^2 - \alpha$).

Solution. Consider the polynomial $t^2 - \alpha \in K(\alpha)$. Assume ad absurdum that f is reducible over $K(\alpha)$. Then, there is some $\beta \in K(\alpha)$ such that $\beta^2 = \alpha$. By definition of $K(\alpha)$, we have that $\beta = \frac{g(\alpha)}{h(\alpha)}$ for some $g(t), h(t) \in K[t]$ such that $h(\alpha) \neq 0$. Thus, $\beta^2 = \frac{g(\alpha)^2}{h(\alpha)^2} = \alpha$ and $g(\alpha)^2 - \alpha h(\alpha)^2 = 0$.

Claim 1. $g(x)^2 - xh(x)^2$ is a nontrivial polynomial in K[x]

Proof. Assume ad absurdum that $g(x)^2 - xh(x) \equiv 0$ (the trivial polynomial). Now, let $m = \deg(g)$ and $n = \deg(h)$. By definition, m and n must be integers. Obviously, $\deg(g^2) = 2m$ and $\deg(h^2) = 2n$, so $\deg(xh^2) = 2n+1$. If we let $g(x)^2 - xh(x)^2 = 0$, then $g(x)^2 = xh(x)^2$. However, $\deg(g(x)^2) = \deg(xh(x)^2) \iff 2m = 2n+1$, but 2m is even and 2n+1 is odd, an obvious contradiction. Thus $g(x)^2 - xh(x)^2 \in K[x]$ must be nontrivial.

Notice that the claim above contradicts that α is transcendental over K by definition. Thus $K(\alpha)$ is not algebraically closed.

Exercise 4.4. Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that [L:K] divides $(\deg f)!$ (hint: at the very end look at some binomial coefficients).

Solution. We prove this statement by induction on $\deg f = n$. The base case, $\deg f = n = 1$ is trivial, there is nothing to prove. Now assume we have shown $[L:K] \mid (\deg f)!$ for all $1 \leq \deg f < n$. We have two cases, one in which f is reducible and one in which it is not.

Case 1 (f is irreducible). Let α be a root of f. Then f factors as $(t-\alpha)g$ for some polynomial $g \in K(\alpha)[t]$ such that $\deg g = n-1$. Furthermore, we can see that $L:K(\alpha)$ is a splitting field extension for g. By our inductive hypothesis, $[L:K(\alpha)]$ divides (n-1)!. By lemma, the irreducibility of f implies $f = \lambda \mu_{\alpha}^{K}$ for some constant $\lambda \in K$, so $\deg f = \deg \mu_{\alpha}^{K} = n$ and $[K(\alpha):K] = n$. Then by using the Tower Law, we can see that $[L:K(\alpha)][K(\alpha):K] = [L:K]$ divides n(n-1)! = n!.

Case 2 (f is reducible). Let f = gh for polynomials $g, h \in K[t]$, M : K be a splitting field extension for g, and L : M be a splitting field extension for h. Then we can say $\deg g = d$ for some $1 \le d < n$ by def degree, hence $\deg h = n - d$. By our inductive hypothesis, [M : K] divides d! and [L : M] divides (n - d)!. Then by use of the Tower Law again, we can easily see that [L : M][M : K] = [L : K] divides d!(n - d)!. Notice that $\frac{n!}{d!(n-d)!}$ is exactly the binomial coefficient $\binom{n}{d}$, which we know to be an integer for integers n, d. Thus we can say that d!(n - d)! divides n! so finally we can conclude that, [L : M] divides n!.

Since our inductive hypothesis holds in both cases for reducible and irreducible f, we may conclude that it holds for all deg $f \ge 1$ and hence any non-constant polynomial $f \in K[t]$.