### Московский физико-технический институт Физтех-школа прикладной математики и информатики

#### СЛУЧАЙНЫЕ ПРОЦЕССЫ

VI CEMECTP

Лектор: Шабанов Дмитрий Александрович



# КОНСПЕКТ НЕ ЗАКОНЧЕН ОБ ОШИБКАХ СООБЩАТЬ СЮДА

Автор: Хаймоненко Виктор Проект на Github

# Содержание

| 1 | Основные определения                            | 2  |
|---|-------------------------------------------------|----|
| 2 | Ветвящиеся процессы Гальтона-Ватсона            | 4  |
| 3 | Конечномерные распределения случайных процессов | 8  |
| 4 | Следствия из теоремы Колмогорова                | 10 |
| 5 | Процессы с независимыми приращениями            | 11 |
| 6 | Пуассоновский процесс                           | 12 |

## 1 Основные определения

**Определение 1.1.** Пусть T – произвольное множество. Тогда набор случайных величин  $X = (X_t, t \in T)$ , заданных на одном вероятностном пространстве  $(\Omega, \mathcal{F}, P)$ , называеется случайной функцией на T.

**Замечание.** Формально не требуется, чтобы все  $X_t$  принимали значения в одном пространстве.

**Замечание.** Множество T чаще всего интерпретируется как "время".

**Замечание.** На X можно смотреть как на функцию двух переменных, то есть  $X = X(t, \omega), \, \omega \in \Omega.$ 

**Определение 1.2.** Траекторией (реализацией) случайной функции  $X = (X_t, t \in T)$  называется функция на T вида  $\tilde{X}_{\omega_0}(t) = X_t(\omega_0), \, \omega_0 \in \Omega, \, t \in T.$ 

**Определение 1.3.** Если  $T \subseteq \mathbb{R}$ , то случайная функция на T называется *случайным процессом*.

**Определение 1.4.** Если T – интервал, полуинтервал, отрезок или луч в  $\mathbb{R}$ , то случайный процесс называется процессом c непрерывным временем.

**Определение 1.5.** Если  $T \subset \mathbb{N}$  ( $\mathbb{Z}$ ), то случайный процесс называется процессом c дискретным временем.

**Определение 1.6.** Если  $T \subset \mathbb{R}^d, \ d \geqslant 2$ , то случайный процесс называется *случайным полем*.

Замечание. Всюду далее будет использоваться термин "случайный процесс".

**Пример.** Пусть  $X = X(t, \omega) = f(t) + \xi(\omega)$ , где  $\xi$  – случайная величина, а f – неслучайная функция. Тогда траектория случайного процесса имеет вид



**Пример.** Пусть  $\{\xi_n, n \in \mathbb{N}\}$  – независимые случайные векторы из  $\mathbb{R}^m$ . Обозначим  $S_0 = 0, S_n = \xi_1 + \ldots + \xi_n, n \geqslant 1$ . Случайный процесс  $\{S_n, n \in \mathbb{Z}_+\}$  является процессом с дискретным временем и называется случайным блужданием.

**Пример.** Пусть  $\{\xi_n, n \in \mathbb{N}\}$  – невырожденные независимые одинаково распределенные случайные величины, причем  $\xi_n \geqslant 0 \ \forall n \in \mathbb{N}$ . Определим  $S_0 = 0, \ S_n = \xi_1 + \ldots + \xi_n$ . Тогда случайный процесс  $X = (X_t, t \geqslant 0)$ , где  $X_0 = 0, \ X_t = \sup_{n \in \mathbb{N}} \{n : S_n \leqslant t\}, \ t \neq 0$ 

называется *процессом восстановления*, построенным по случайным величинам  $\{\xi_n, n \in \mathbb{N}\}$ . Траектория случайного процесса имеет вид



Утверждение 1.1. Процесс восстановления конечен почти наверное.

Доказательство. Пусть  $E\xi_i=a<\infty$ . Зафиксируем t и рассмотрим событие  $\{X_t=+\infty\}$ :

$$\{X_t = +\infty\} = \{\forall n : S_n \leqslant t\} = \bigcap_{n=1}^{\infty} \{S_n \leqslant t\}.$$

Заметим, что  $\{S_{n+1} \leqslant t\} \subset \{S_n \leqslant t\}$ , то в силу непрерывности меры

$$P(X_t = +\infty) = \lim_{n \to \infty} P(S_n \leqslant t) = \lim_{n \to \infty} P\left(\frac{S_n}{n} \leqslant \frac{t}{n}\right).$$

Так как t фиксирован, то при достаточно большом n выполнится  $\frac{t}{n} \leqslant \frac{a}{2}$ . Тогда

$$\lim_{n \to \infty} P\left(\frac{S_n}{n} \leqslant \frac{t}{n}\right) \leqslant \lim_{n \to \infty} P\left(\frac{S_n}{n} \leqslant \frac{a}{2}\right).$$

В силу ЗБЧ  $\frac{S_n}{n} \xrightarrow{P} a \Rightarrow \frac{S_n}{n} \xrightarrow{d} a \Rightarrow \lim_{n \to \infty} P\left(\frac{S_n}{n} \leqslant \frac{a}{2}\right) = P\left(a \leqslant \frac{a}{2}\right) = 0$ . Значит,  $\forall t \hookrightarrow P(X_t = +\infty) = 0$ . В силу неубывания по t функции  $X_t$  при фиксированном  $\omega$  получаем

$$P(\exists t: X_t = +\infty) \leqslant P(\exists n \in \mathbb{N}: X_n = +\infty) = 0.$$

Если  $E\xi_i=\infty$ , то определим  $\tilde{\xi}_i=\min(\xi_i,\ 1)$ . Тогда  $\tilde{S}_n=\tilde{\xi}_1+\ldots+\tilde{\xi}_n\leqslant S_n$ . По уже доказанному  $0=\lim_{n\to\infty}P\left(\tilde{S}_n\leqslant t\right)\geqslant\lim_{n\to\infty}P(S_n\leqslant t)$ .

**Пример.** Пусть  $\{\xi_n, n \in \mathbb{N}\}$  – невырожденные независимые одинаково распределенные случайные величины, причем  $\xi_i \geqslant 0$ . Пусть  $(X_t, t \geqslant 0)$  – процесс восстановления по  $\{\xi_n, n \in \mathbb{N}\}$ . Также, пусть  $\{\eta_n, n \in \mathbb{N}\}$  – независимые одинаково распределенные случайные величины, причем  $\eta_i \geqslant 0$  и независимы с  $\{\xi_n\}$ ,  $y_0$ , c > 0 – числа. Тогда моделью

страхования Спарре Андерсена называется процесс  $(Y_t, t \geqslant 0)$ , где  $Y_t = y_0 + ct - \sum_{k=1}^{X_t} \eta_k$ .

Траектория случайного процесса имеет следующий вид



**Замечание.** Параметры в модели страхования Спарре Андерсена имеют следующий смысл:  $y_0$  — начальный капитал, c — скорость поступления страховых взносов,  $\xi_n$  — время между (n-1)-ой и n-ой выплатами,  $\eta_n$  — размер n-ой выплаты,  $X_t$  — число выплат к моменту времени t.

# 2 Ветвящиеся процессы Гальтона-Ватсона

**Замечание.** Физическая модель случайного процесса состоит в том, что в дискретные моменты времени частицы распадаются на случайное количество таких же частиц.

Определение 2.1. Пусть  $\xi$  – случайная величина со значениями в  $\mathbb{Z}_+ = \{0, 1, 2, \dots\}$ . Пусть  $\left\{\xi_k^{(n)}, k, n \in \mathbb{N}\right\}$  – независимые одинаково распределенные случайные величины с

тем же распределением, что и у  $\xi$ . Положим  $X_0=1,\ X_n=\sum_{k=1}^{X_{n-1}}\xi_k^{(n)},\ n\geqslant 1.$  Тогда по-

следовательность  $(X_n, n \in \mathbb{Z}_+)$  называется ветвящимся процессом Гальтона-Ватсона с законом размножения частиц  $\xi$ .

**Замечание.** В модели ветвящегося процесса  $X_n$  – число потомков в момент времени n,  $\xi_k^{(n)}$  – число потомков k-ой частицы в (n-1)-ый момент времени.

**Определение 2.2.** Пусть  $\xi$  – случайная величина. Тогда ее *производящей функцией* называется  $\varphi_{\xi}(z) = Ez^{\xi}$ .

**Утверждение 2.1.** (Свойства производящей функции, б/д)

- 1.  $\varphi_{\xi}(1) = 1$ .
- 2.  $\varphi'_{\xi}(1) = E\xi$ .
- 3. Если  $\xi$ ,  $\eta$  независимы, то  $\varphi_{\xi+\eta}(z) = \varphi_{\xi}(z) \cdot \varphi_{\eta}(z)$ .

**Утверждение 2.2.** (Свойства производящей функции при  $\xi \in \mathbb{Z}_+, \, 6/\partial$ )

- 1.  $\varphi_{\xi}(z) = \sum_{k=0}^{\infty} z^k P(\xi = k)$  степенной ряд, который сходится на множестве  $\{|z| \leqslant 1\}$ .
- 2. В области  $\{|z|<1\}$  функция  $\varphi_{\xi}(z)$  является аналитической (т.е. совпадает со своим рядом Тейлора в окрестности любой точки области определения) и бесконечно дифференцируемой.

3. 
$$P(\xi = k) = \frac{1}{k!} \left( \frac{\partial^k}{\partial z^k} \varphi_{\xi}(z) \right) \Big|_{z=0}$$
.

**Утверждение 2.3.** Пусть  $(X_n, n \in \mathbb{Z}_+)$  – ветвящийся процесс с законом размножения (РАЗЛОЖЕНИЯ?) частиц  $\xi$ . Тогда, если  $z \in [0, 1]$ , то  $\varphi_{X_n}(z) = \varphi_{X_{n-1}}(\varphi_{\xi}(z))$ .

Доказательство. По определению  $\varphi_{X_n}(z) = Ez^{X_n} = E\left(E\left(z^{X_n} \mid X_{n-1}\right)\right)$ . Рассмотрим условное математическое ожидание

$$E\left(z^{X_n}|X_{n-1}=m\right) = E\left(z^{\sum_{k=1}^{X_{n-1}}\xi_n^{(k)}} \mid X_{n-1}=m\right) = E\left(z^{\sum_{k=1}^{m}\xi_n^{(k)}} \mid X_{n-1}=m\right) = \prod_{k=1}^{m} E\left(z^{\xi_k^{(n)}} \mid X_{n$$

Тогда  $E\left(z^{X_n}\mid X_{n-1}\right)=(\varphi_{\xi}(z))^{X_{n-1}},$  и

$$\varphi_{X_n}(z) = E\left((\varphi_{\xi}(z))^{X_{n-1}}\right) = \varphi_{X_{n-1}}(\varphi_{\xi}(z)).$$

Следствие.

1.  $\varphi_{X_n}(z) = \varphi_{\xi}(\varphi_{\xi}(\dots(\varphi_{\xi}(z))\dots))$  (n итераций)

2.  $\varphi_{X_n}(z) = \varphi_{\xi}(\varphi_{X_{n-1}}(z)).$ 

Доказательство.

1. 
$$\varphi_{X_n}(z) = \varphi_{X_{n-1}}(\varphi_{\xi}(z)) = \varphi_{X_{n-2}}(\varphi_{\xi}(\varphi_{\xi}(z))) = \dots = \varphi_{\xi}(\varphi_{\xi}(\dots(\varphi_{\xi}(z))\dots)).$$

2. 
$$\varphi_{X_n}(z) = \varphi_{\xi}(\varphi_{\xi}(\dots(\varphi_{\xi}(z))\dots)) = \varphi_{\xi}(\varphi_{X_2}(\varphi_{\xi}(\dots(\varphi_{\xi}(z))\dots))) = \dots = \varphi_{\xi}(\varphi_{X_{n-1}}(z)).$$

**Определение 2.3.** Пусть  $q_n = P(X_n = 0), q = P(\exists n : X_n = 0),$  где q называется вероятностью вырождения.

Лемма 2.1.  $q_n \leqslant q_{n+1}, q = \lim_{n \to \infty} q_n$ 

Доказательство. Заметим, что  $\{X_n=0\}\subset \{X_{n+1}=0\}$ . Значит,  $q_n=P(X_n=0)\leqslant P(X_{n+1}=0)=q_{n+1}$ . Тогда  $\{\exists n: X_n=0\}=\bigcup_{n=1}^\infty \{X_n=0\}$  — возрастающая последовательность вложенных множеств. Следовательно, по непрерывности вероятностной меры

$$q = P(\exists n : X_n = 0) = P\left(\bigcup_{n=1}^{\infty} \{X_n = 0\}\right) = \lim_{n \to \infty} P(X_n = 0) = \lim_{n \to \infty} q_n.$$

**Лемма 2.2.** Вероятность вырождения q удовлетворяет равенству  $q = \varphi_{\xi}(q)$ .

Доказательство. 
$$q_n = P(X_n = 0) = \varphi_{X_n}(0) = \varphi_{\xi}(\varphi_{X_{n-1}}(0)) = \varphi_{\xi}(q_{n-1})$$
. Тогда  $q = \lim_{n \to \infty} \varphi_{\xi}(q_{n-1}) = \varphi_{\xi}\left(\lim_{n \to \infty} q_n\right) = \varphi_{\xi}(q)$ , так как функция  $\varphi_{\xi}(z)$  непрерывна.

**Теорема 2.1.** (О вероятности вырождения) Пусть  $P(\xi = 1) < 1$ . Обозначим  $\mu := E\xi \in \overline{R}$ . Тогда

- 1. Если  $\mu \leq 1$ , то уравнение  $z = \varphi_{\xi}(z)$  имеет единственное решение  $z_0 = 1$  на [0, 1], и вероятность вырождения q равняется  $z_0$ .
- 2. Если  $\mu > 1$ , то уравнение  $z = \varphi_{\xi}(z)$  имеет ровно одно решение  $z_0$  на [0, 1), и  $q = z_0$ .

Доказательство. 1. Если  $\xi \equiv 0$ , то q = 1. Иначе,  $\varphi'_{\xi}(z) = \sum_{k=1}^{\infty} k z^{k-1} P(\xi = k)$ . Заметим,

если  $\varphi'(z) \equiv const$ , то  $\varphi'_{\xi}(z) = P(\xi = 1) = \mu < 1$ . Иначе,  $\varphi'_{\xi}(z)$  строго возрастает на [0, 1]. Значит,  $\forall z \in [0,1) \hookrightarrow \varphi'_{\xi}(z) < \varphi'_{\xi}(1) = \mu \leqslant 1$ . Также, по теореме Лагранжа о среднем  $\forall z \in [0, 1) \hookrightarrow \varphi_{\xi}(1) - \varphi_{\xi}(z) = \varphi'_{\xi}(\theta)(1-z)$ , где  $\theta \in (z,1)$ . Следовательно,  $0 < \varphi'_{\xi}(z) < 1$ , и

$$\forall z \in [0,1) \hookrightarrow 1 - z > \varphi_{\xi}(1) - \varphi_{\xi}(z) = 1 - \varphi_{\xi}(z) \Leftrightarrow \varphi_{\xi}(z) > z.$$

Следовательно, других корней, кроме  $z_0 = 1$  на отрезке [0, 1] нет.

2. Заметим, что  $\exists k\geqslant 2:\ P(\xi=k)>0.$  Иначе,  $\xi\leqslant 1$  почти наверное, и  $\mu\leqslant 1$ , что приводит к противоречию.

Рассмотрим  $\varphi_{\xi}^{''}(z) = \sum_{k=2}^{\infty} k(k-1)z^{k-2}P(\xi=k)$ . Тогда  $\forall z>0 \hookrightarrow \varphi_{\xi}^{''}(z)>0$ . Значит,

 $\varphi'_{\xi}(z)$  строго возрастает на [0, 1]. Обозначим  $f(z) := z - \varphi_{\xi}(z)$ . Тогда  $f'(z) = 1 - \varphi'_{\xi}(z) -$  строго убывающая функция на [0, 1]. Заметим, что  $f'(0) = 1 - \varphi'_{\xi}(0) = 1 - P(\xi = 1) > 0$ ,  $f'(1) = 1 - \varphi'_{\xi}(1) = 1 - \mu < 0$ . Значит, график функции f'(z) имеет вид



Следовательно,  $\exists !\ z_1\in (0,\ 1):\ f'(z_1)=0,$  которая является единственной точкой максимума функции f(z), график которой имеет вид



Пусть сначала  $f(0) = 0 - \varphi_{\xi}(0) = 0 \Rightarrow P(\xi = 0) = 0 \Rightarrow q = 0$ , и существует единственный корень  $z_0 = 0$  на [0, 1]. Теперь пусть  $f(0) < 0 \Rightarrow P(\xi = 0) > 0 \Rightarrow \exists ! \ z_0 \in (0, z_1) : \ f(z_0) = 0$ . Заметим, что  $f(z) < 0 \Leftrightarrow z < z_0$ .

Покажем, что  $q=z_0$ . Для этого докажем, что  $\forall n \in \mathbb{N} \hookrightarrow q_n < z_0$ .

$$q_n = P(X_n = 0) = P(X_{n-1} = 0) + P(X_n = 0, X_{n-1} \neq 0) =$$

$$= q_{n-1} + \sum_{k=1}^{\infty} P(X_{n-1} = k) \cdot P(X_n = 0 \mid X_{n-k} = k) =$$

$$= q_{n-1} + \sum_{k=1}^{\infty} P(X_{n-1} = k) \cdot (P(\xi_k = 0))^k > q_{n-1},$$

т.к.  $\exists k : P(X_{n-1} = k) \neq 0$ . Далее,

$$q_n = P(X_n = 0) = \varphi_{X_n}(0) = \varphi_{\xi}(\varphi_{X_{n-1}}(0)) = \varphi_{\xi}(q_{n-1}) < \varphi_{\xi}(q_n),$$

т.к.  $\varphi_{\xi}$  строго возрастает. Получили, что

$$f(q_n) = q_n - \varphi_{\xi}(q_n) < 0 \Rightarrow q_n < z_0 \Rightarrow q = \lim_{n \to \infty} q_n \leqslant z_0 \Rightarrow q = z_0.$$

**Следствие.** Вероятность вырождения – наименьший корень уравнения  $z = \varphi_{\xi}(z)$  на [0, 1].

**Пример.** Пусть  $(X_n, n \in \mathbb{Z}_+)$  – ветвящийся процесс с законом размножения частиц Pois(c), c > 0. Найдем вероятность вырождения.

$$q = \varphi_{\xi}(q) = \sum_{k=0}^{\infty} q^k \frac{c^k}{k!} e^{-c} = e^{qc} e^{-c} = e^{c(q-1)}.$$

Обозначим  $\beta = 1 - q$  – вероятность невырождения. Тогда

$$q = e^{-\beta c} \Leftrightarrow 1 - \beta = e^{-\beta c} \Leftrightarrow \beta + e^{-\beta c} = 1.$$

Если  $c \le 1$ , то q = 1, а при c > 1 есть нетривиальное решение  $q \in (0, 1)$ .

**Пример.** Пусть G(n, p) – биномиальная модель случайного графа. Пусть  $p = \frac{c}{n}, c > 0$ . Обозначим  $X_n$  – максимальный размер компоненты в  $G\left(n, \frac{c}{n}\right)$ . Тогда

1. 
$$c < 1 \Rightarrow \frac{X_n}{\ln n} \xrightarrow{P} \alpha(c) > 0$$
.

2. 
$$c=1\Rightarrow \frac{X_n}{n^{2/3}}\xrightarrow{d}\xi$$
 – случайная величина.

3. 
$$c>1\Rightarrow \frac{X_n}{n}\xrightarrow{P}\beta$$
, где  $\beta$  – решение уравнения  $\beta+e^{-\beta c}=1$ .

**Замечание.** Если рассмотреть фиксированную вершину v из множества вершин G(n, p), то количество ее соседей имеет распределение Bin(n-1, p), то есть в третьем случае при  $n \to \infty$  это распределение стремится к Pois(c).

Пусть  $(X_n, n \in \mathbb{Z}_+)$  – ветвящийся процесс с законом размножения частиц  $\xi$  с  $\mu = E\xi$ .

**Определение 2.4.** Процесс  $(X_n, n \in \mathbb{Z}_+)$  называется

- 1.  $\partial o \kappa p u m u u e c \kappa u M$ , если  $\mu < 1$ ,
- 2. критическим, если  $\mu = 1$ ,
- 3.  $надкритическим, если <math>\mu > 1.$

**Следствие.** Если  $\mu \leqslant 1$ , то  $X_n \xrightarrow{a.s.} 0$ ,  $\xi \not\equiv 1$ .

**Теорема 2.2.** (Предельная теорема для надкритического случая,  $\delta/\partial$ ) Пусть  $(X_n, n \in \mathbb{Z}_+)$  – ветвящийся процесс с законом размножения частиц  $\xi$ ,  $\mu = E\xi > 1$ ,  $\sigma^2 = D\xi < \infty$ . Тогда существует случайная величина W, что

$$\frac{X_n}{u^n} \xrightarrow{a.s.} W,$$

причем

1. 
$$\frac{X_n}{\mu^n} \xrightarrow{L_2} W$$
,

2. 
$$EW = 1$$
,  $DW = \frac{\sigma^2}{\mu(\mu - 1)}$ ,

3. P(W = 0) = q – вероятность вырождения.s

**Замечание.** Смысл теоремы в том, что ветвящийся процесс либо растет экспоненциально, либо вырождается.

## 3 Конечномерные распределения случайных процессов

Пусть  $X=(X_t,\,t\in T)$  – случайный процесс. Пусть  $\forall t\in T\ X_t$  является случайной величиной.

**Определение 3.1.** Пространством траекторий процесса  $X_t$  называется  $\mathbb{R}^T = \{y = (y(t), t \in T) : y(t) \in \mathbb{R}\}$  – вещественнозначные функции на T.

**Определение 3.2.** Для любого  $t \in T$  и  $B \in \mathcal{B}(\mathbb{R})$  введем  $c(t, B) = \{y \in \mathbb{R}^T : y(t) \in B\}$  - элементарный цилиндр.

**Определение 3.3.** Цилиндрической  $\sigma$ -алгеброй на  $\mathbb{R}^T$  называется минимальная  $\sigma$ -алгебра, содержащая все элементрые цилиндры. Обозначение  $\mathcal{B}_T = \sigma(c(t, B): t \in T, B \in \mathcal{B}(\mathbb{R}))$ .

**Замечание.** Таким образом, задав  $\sigma$ -алгебру, построили измеримое пространство  $(\mathbb{R}^T, \mathcal{B}_T)$ . Встает вопрос об измеримости отображения  $X: \Omega \to \mathbb{R}^T$ .

**Лемма 3.1.** (Эквивалентность определений случайного процесса).  $X = (X_t, t \in T)$  – случайный процесс тогда и только тогда, когда  $X : \Omega \to \mathbb{R}^T$  измеримо, т.е.  $\forall E \in \mathcal{B}_T \hookrightarrow X^{-1}(E) = \{\omega : X(\omega) \in E\} \in \mathcal{F}$ , где  $(\Omega, \mathcal{F}, P)$  – вероятностное пространство.

Доказательство. Пусть  $(X_t, t \in T)$  – случайный процесс, и c(t, B) – элементарный цилиндр. Тогда  $X^{-1}(c(t, B)) = \{\omega : X \in c(t, B)\} = \{X_t \in B\} \in \mathcal{F}$ , так как  $X_t$  – случайная величина. Из критерия измеримости следует, что X – измеримо относительно  $\mathcal{B}_T$ .

Пусть  $t \in T$  и  $B \in \mathcal{B}(\mathbb{R})$ . Тогда  $\{X_t \in B\} = \{X \in c(t, B)\} \in \mathcal{F}$ , так как  $c(t, B) \in \mathcal{B}_T$ . Следовательно,  $X_t$  – случайная величина, и X – случайный процесс.

Замечание. Таким образом, можно рассматривать случайный процесс, как единый случайный элемент со значениями в  $\mathbb{R}^T$ . Поэтому, можно определить его распределение.

**Определение 3.4.** Распределением случайного процесса  $X = (X_t, t \in T)$  называется вероятностная мера  $P_X$  на  $(\mathbb{R}^T, \mathcal{B}_T)$ , заданная по правилу:

$$\forall c \in \mathcal{B}_T \hookrightarrow P_X(c) = P(X \in c).$$

**Определение 3.5.** Пусть  $n \in \mathbb{N}, t_1, \ldots, t_n \in T$ . Обозначим через  $P_{t_1, \ldots, t_n}$  – распределение случайного вектора  $(X_{t_1}, \ldots, X_{t_n})$ , т.е.  $P_{t_1, \ldots, t_n}$  – вероятностная мера на  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ ,  $P_{t_1, \dots, t_n}(B) = P((X_{t_1}, \dots, X_{t_n}) \in B)$ . Тогда набор вероятностных мер  $\{P_{t_1, \dots, t_n}, n \in A_{t_n}\}$  $\mathbb{N}, t_1, \ldots, t_n \in T$ } называется конечномерным распределением случайного процесса X = $(X_t, t \in T).$ 

Лемма 3.2. Пусть  $(X_t, t \in T)$  и  $(Y_t, t \in T)$  – случайные процессы. Тогда  $P_X = P_Y$  тогда и только тогда, когда все их конечномерные распределения одинаковы.

Доказательство. Пусть  $t_1, \ldots, t_n \in T, \underline{B_1}, \ldots, B_n \in \mathcal{B}(\mathbb{R})$ . Введем цилиндр  $c(t_1, \ldots, t_n, B_1, \ldots, B_n) = \left\{ y \in \mathbb{R}^T : \forall i = \overline{1,n} \hookrightarrow y(t_i) \in B_i \right\}$  – пересечение элементарных цилиндров  $c(t_1, B_1), \ldots, c(t_n, B_n)$ . Заметим, что цилиндры образуют  $\pi$ -систему M (т.е. систему, замкнутую относительно конечного непустого пересечения множеств), и  $\sigma(M) = \mathcal{B}_T$ . Тогда для проверки равенства мер на  $\mathcal{B}_T$  достаточно доказать, что меры совпадают на всех множествах из M.

Пусть  $\forall t_1, \ldots, t_n \hookrightarrow P_{t_1, \ldots, t_n}^X = P_{t_1, \ldots, t_n}^Y$ . Рассмотрим цилиндр  $c(t_1, \ldots, t_n, B_1, \ldots, B_n)$ . Тогда

$$P_X(c(t_1, \ldots, t_n; B_1, \ldots, B_n)) = P(X_{t_1} \in B_1, \ldots, X_{t_n} \in B_n) =$$

$$= P_{t_1, \ldots, t_n}^X(B_1 \times \ldots \times B_n) = P_{t_1, \ldots, t_n}^Y(B_1 \times \ldots \times B_n) =$$

$$= P_Y(c(t_1, \ldots, t_n; B_1, \ldots, B_n)).$$

 $P_X$  и  $P_Y$  совпадают на цилиндрах, а значит, совпадают и на всей  $\mathcal{B}_T$ . Пусть  $P_X = P_Y$ . Тогда  $P_{t_1, \dots, t_n}^X$  и  $P_{t_1, \dots, t_n}^Y$  совпадают на прямоугольниках  $B_1 \times \dots \times B_n$ . Система таких прямоугольников является  $\pi$ -системой с наименьшей  $\sigma$ -алгеброй  $\mathcal{B}(\mathbb{R}^n)$ . Следовательно,  $P_{t_1, \dots, t_n}^X = P_{t_1, \dots, t_n}^Y$ . 

**Лемма 3.3.** (Условия симметрии и согласованности) Пусть  $\{P_{t_1, \dots, t_n}, n\}$  $\mathbb{N}, t_1, \ldots, t_n \in T$ } – конечномерные распределения процесса  $(X_t, t \in T)$ . Тогда выполняются условия симметрии и согласованности:

1. 
$$P_{t_1, \dots, t_n}(B_1 \times \dots \times B_n) = P_{t_{\tau(1)}, \dots, t_{\tau(n)}}(B_{\tau(1)} \times \dots \times B_{\tau(n)}), \forall \tau \in S_n.$$

2. 
$$P_{t_1, \ldots, t_n}(B_1 \times \ldots \times B_{n-1} \times \mathbb{R}) = P_{t_1, \ldots, t_{n-1}}(B_1 \times \ldots \times B_{n-1}).$$

Доказательство.

- 1. очевидно.
- 2. тривиально.

Замечание. Оказывается, что условия симметрии и согласованности являются достаточными условиями для существования случайного процесса.

**Теорема 3.1.** (Колмогорова, о существовании случайных процессов,  $6/\partial$ ). Пусть T- произвольное множество,  $\forall n \in \mathbb{N}, \forall t_1, \ldots, t_n \in T$  задана вероятностная мера  $P_{t_1, \ldots, t_n}$  на  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ , причем набор мер  $\{P_{t_1, \ldots, t_n}, \forall n \in \mathbb{N}, \forall t_1, \ldots, t_n \in T\}$  удовлетворяет условиям симметрии и согласованности. Тогда существует вероятностное пространство  $(\Omega, \mathcal{F}, P)$  и случайный процесс  $(X_t, t \in T)$  на нем, что  $\{P_{t_1, \ldots, t_n}\}$  являются его конечномерными распределениями.

## 4 Следствия из теоремы Колмогорова

Перепишем условия симметрии и согласованности в терминах характеристических функций.

**Теорема 4.1.** (Условия симметрии и согласованности для характеристических функций,  $6/\partial$ ). Пусть T – непустое множество,  $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n$  задана вероятностная мера  $P_{t_1, \ldots, t_n}$  на  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ . Пусть также  $\varphi_{t_1, \ldots, t_n}$  – характеристическая функция распределения  $P_{t_1, \ldots, t_n}$ . Тогда меры  $P_{t_1, \ldots, t_n}$  удовлетворяют условиям симметрии и согласованности тогда и только тогда, когда характеристические функции  $\varphi_{t_1, \ldots, t_n}$  удовлетворяют условиям симметрии и согласованности, т.е. выполняется

1. 
$$\varphi_{t_1, \dots, t_n}(\lambda_1, \dots, \lambda_n) = \varphi_{t_{\sigma(1)}, \dots, t_{\sigma(2)}}(\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(n)}), \forall \sigma \in S_n$$
.

2. 
$$\varphi_{t_1, \ldots, t_{n-1}, t_n}(\lambda_1, \ldots, \lambda_{n-1}, 0) = \varphi_{t_1, \ldots, t_{n-1}}(\lambda_1, \ldots, \lambda_{n-1}).$$

**Следствие.** Пусть  $T \subset \mathbb{R}$ ,  $\forall n \in \mathbb{N}$ ,  $\forall t_1, \ldots, t_n \in T : t_1 < \ldots < t_n$  задана вероятностная мера  $P_{t_1, \ldots, t_n}$  на  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$  с характеристической функцией  $\varphi_{t_1, \ldots, t_n}$ . Если функции  $\varphi_{t_1, \ldots, t_n}$  удовлетворяют условию

$$\forall m \in \{1, \ldots, n\} \hookrightarrow \varphi_{t_1, \ldots, t_n}(\lambda_1, \ldots, \lambda_n) \big|_{\lambda_m = 0} =$$

$$= \varphi_{t_1, \ldots, t_{m-1}, t_{m+1}, \ldots, t_n}(\lambda_1, \ldots, \lambda_{m-1}, \lambda_{m+1}, \ldots, \lambda_n),$$

$$(4.1)$$

то существует такое вероятностное пространство  $(\Omega, \mathcal{F}, P)$  и случайный процесс  $(X_t, t \in T)$  на нем, что  $P_{t_1, \dots, t_n}$  будет распределением вектора  $(X_{t_1, \dots, t_n})$ .

Доказательство. TODO – доказать, что выполняется первое условие. □

## 5 Процессы с независимыми приращениями

**Определение 5.1.** Случайный процесс  $(X_t, t \ge 0)$  является процессом с независимыми приращениями, если  $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n$  случайные величины  $X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}, X_{t_1}$  независимы в совокупности.

**Замечание.** Случайный процесс с независимыми приращениями является непрерывным аналогом случайного блуждания.

**Теорема 5.1.** (О существовании процессов с независимыми приращениями). Пусть  $\forall s,t: 0 \leq s \leq t$  задана вероятностная мера  $Q_{s,t}$  на  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  с характеристической функцией  $\varphi_{s,t}$ . Пусть также задана вероятностная мера  $Q_0$  на  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ . Пусть также случайный процесс  $(X_t, t \geq 0)$  является случайным процессом с независимыми приращениями и распределениями приращений

$$X_t - X_s \stackrel{d}{=} Q_{s,t}, \ 0 \leqslant s < t,$$
$$X_0 \stackrel{d}{=} Q_0.$$

Такой процесс существует тогда и только тогда, когда

$$\forall s, u, t: \ 0 \leqslant s < u < t \hookrightarrow \varphi_{s,t}(\tau) = \varphi_{s,u}(\tau) \cdot \varphi_{u,s}(\tau). \tag{5.1}$$

Доказательство. Пусть такой процесс существует. Тогда в силу независимости приращений  $(X_t, t \geqslant 0)$  выполняется

$$\varphi_{s,t}(\tau) = \varphi_{X_t - X_s}(\tau) = \varphi_{X_t - X_u + X_u - X_s}(\tau) = \varphi_{X_t - X_u}(\tau) \cdot \varphi_{X_u - X_s}(\tau) = \varphi_{s,u}(\tau) \cdot \varphi_{u,t}(\tau).$$

Пусть выполняется условие (2), и предположим, что процесс существует. Пусть также $0=t_0< t_1<\ldots< t_n$ . Рассмотрим вектор  $\xi=(X_{t_n},\,X_{t_{n-1}},\,\ldots,\,X_{t_1},\,X_{t_0})$ . Найдем его характеристическую функцию. Для этого рассмотрим вектор приращений  $\xi'=(X_{t_n}-X_{t_{n-1}},\,\ldots,\,X_{t_1}-X_{t_0},\,X_{t_0})$ . Компоненты  $\xi'$  независимы, следовательно, характеристическая функция  $\xi'$  имеет вид

$$\varphi_{\xi'}(\lambda_n, \ldots, \lambda_0) = \varphi_{X_{t_n} - X_{t_{n-1}}}(\lambda_n) \cdot \ldots \cdot \varphi_{X_{t_1} - X_0}(\lambda_1) \cdot \varphi_{X_0}(\lambda_0) =$$

$$= \varphi_{t_{n-1}, t_n}(\lambda_n) \cdot \ldots \cdot \varphi_{0, t_1}(\lambda_1) \cdot \varphi_0(\lambda_0).$$

Далее, заметим, что

$$\xi = A\xi', A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Тогда

$$\varphi_{\xi}(\overline{\lambda}) = \mathbb{E}e^{i\langle\overline{\lambda}, \xi\rangle} = \mathbb{E}e^{i\langle\overline{\lambda}, A\xi'\rangle} = \mathbb{E}e^{i\langle\overline{A^T\overline{\lambda}}, \xi'\rangle} = \varphi_{\xi'}(A^T\overline{\lambda}) =$$

$$= \varphi_{t_{n-1},t_n}(\lambda_n) \cdot \varphi_{t_{n-2},t_{n-1}}(\lambda_n + \lambda_{n-1}) \cdot \ldots \cdot \varphi_0(\lambda_n + \ldots + \lambda_0) =: \varphi_{0,t_1, \ldots, t_n}(\lambda_0, \ldots, \lambda_n).$$

Положим  $\varphi_{t_1, \ldots, t_n}(\lambda_1, \ldots, \lambda_n) := \varphi_{0,t_1, \ldots, t_n}(0, \lambda_1, \ldots, \lambda_n).$ 

Проверим, что выполняется условие (1) из следствия для характеристических функций  $\varphi_{t_1, \ldots, t_n}$ ,  $0 \leq t_1 < \ldots < t_n$ . Без ограничения общности проверим только ситуацию, когда есть нулевой момент времени  $t_0 = 0$ . Если m = 0, то по определению  $\varphi_{t_0, \ldots, t_n}(\lambda_0, \ldots, \lambda_n)\big|_{\lambda_0=0} = \varphi_{t_1, \ldots, t_n}(\lambda_1, \ldots, \lambda_n)$ . Ели m > 0, то по условию теоремы выполняется

$$\varphi_{0, t_{1}, \dots, t_{n}}(\lambda_{0}, \lambda_{1}, \dots, \lambda_{n})\big|_{\lambda_{m}=0} =$$

$$= \varphi_{t_{n-1},t_{n}}(\lambda_{n}) \cdot \dots \cdot \varphi_{t_{m},t_{m+1}}(\lambda_{n} + \dots + \lambda_{m+1}) \cdot \varphi_{t_{m-1},t_{m}}(\lambda_{n} + \dots + \lambda_{m+1} + 0) \cdot \dots \cdot$$

$$\cdot \varphi_{0,t_{1}}(\lambda_{n} + \dots + \lambda_{m+1} + \lambda_{m-1} + \dots + \lambda_{0}) =$$

$$= \varphi_{t_{n-1},t_{n}}(\lambda_{n}) \cdot \dots \cdot \varphi_{t_{m-1},t_{m+1}}(\lambda_{n} + \dots + \lambda_{m+1}) \cdot \dots \cdot$$

$$\cdot \varphi_{0,t_{1}}(\lambda_{n} + \dots + \lambda_{m+1} + \lambda_{m-1} + \dots + \lambda_{0}) =$$

$$= \varphi_{0,t_{1},\dots,t_{m-1},t_{m+1},\dots,t_{n}}(\lambda_{0},\dots,\lambda_{m-1},\lambda_{m+1},\dots,\lambda_{n}).$$

Таким образом, выполняется условие (1) следствия. Следовательно, по следствию существует вероятностное пространство и случайный процесс  $(X_t, t \ge 0)$  на нем, что  $\varphi_{t_1, \dots, t_n}$  является характеристической функцией вектора  $(X_{t_1}, \dots, X_{t_n}), \ 0 \le t_1 < \dots < t_n$ . По построению такой процесс ялвяется процессом с независимыми приращениями, и выполняется  $X_{t_j} - X_{t_i} \stackrel{d}{=} Q_{t_{j-1}, t_i}$ .

## 6 Пуассоновский процесс

**Определение 6.1.** Процесс  $(N_t, t \ge 0)$  называется *пуассоновским процессом интенсивности*  $\lambda$ , если

- 1.  $N_0 = 0$  почти наверное,
- 2.  $N_t$  имеет независимые приращения,
- 3.  $N_t N_s \sim Pois(\lambda(t-s)), 0 \leq s < t$ .

Утверждение 6.1. Пуассоновский процесс существует.

Доказательство. Пусть  $\varphi_{s,t}$  – характеристическая функция  $Pois(\lambda(t-s))$ . Тогда

$$\varphi_{s,t}(\tau) = \sum_{k=0}^{\infty} e^{i\tau k} \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)} = e^{-\lambda(t-s)} e^{\lambda(t-s)e^{i\tau}} = e^{\lambda(t-s)\left(e^{i\tau}-1\right)}.$$

Следовательно,  $\varphi_{s,u}(\tau)\cdot \varphi_{u,t}(\tau)=e^{\lambda(u-s)\left(e^{i\tau}-1\right)}e^{\lambda(t-u)\left(e^{i\tau}-1\right)}=e^{\lambda(t-s)\left(e^{i\tau}-1\right)},$  и по теореме о существовании найдется такой процесс  $(X_t,\,t\geqslant 0)$  с независимыми приращениями, что  $X_t-X_s$  имеет характеристическую функцию  $\varphi_{s,t}$  для  $0\leqslant s< t.$ 

**Утверждение 6.2.** (Свойства траекторий  $N_t$ ).

- 1.  $N_t \sim Pois(\lambda t) \in \mathbb{Z}_+$  целочисленные траектории,
- 2.  $N_t N_s \sim Pois(\lambda(t-s)) \geqslant 0$  неубывают по t.

**Теорема 6.1.** (Явная конструкция пуассоновского процесса). Пусть  $(X_t, t \ge 0)$  – процесс восстановления, построенный по случайным величинам  $\{\xi_n\}_{n=1}^{\infty}, \ \xi_i \sim Exp(\lambda) \ \forall i \in \mathbb{N}$ . Тогда  $X_t$  – пуассоновский процесс интенсивности  $\lambda$ .

Доказательство. Рассмотрим вектор  $(S_1, S_2, \ldots, S_n)$ . Тогда его плотность имеет вид

$$p_{S_1, \dots, S_n}(x_1, \dots, x_n) = p_{\xi_1}(x_1) \cdot p_{\xi_2}(x_2 - x_1) \cdot \dots \cdot p_{\xi_n}(x_n - x_{n-1}) =$$

$$= \lambda e^{-\lambda x_1} \cdot \lambda e^{-\lambda (x_2 - x_1)} \cdot \dots \cdot \lambda e^{-\lambda (x_n - x_{n-1})} = \lambda^n e^{-\lambda x_n} \cdot I(0 < x_1 < \dots < x_n).$$

Пусть  $0 < t_1 < \ldots < t_n$  и  $0 \leqslant k_1 \leqslant \ldots \leqslant k_n, \ k_j \in \mathbb{Z} \ \forall j = \overline{1,n}$ . Тогда

$$P(X_{t_n} - X_{t_{n-1}} = k_n - k_{n-1}, \dots, X_{t_2} - X_{t_1} = k_2 - k_1, X_{t_1} = k_1) =$$

$$= P(S_1, \dots, S_{k_1} \in (0, t_1], \dots, S_{k_{n-1}+1}, \dots, S_{k_n} \in (t_{n-1}, t_n], S_{k_{n+1}} > t_n) =$$

$$\int \dots \int_A p_{S_1, \dots, S_{k_{n+1}}}(x_1, \dots, x_{k_{n+1}}) dx_1 \dots dx_{k_{n+1}} =: I,$$

где  $A = \{(x_1, \ldots, x_{k_1}) \in (0, t_1], \ldots, (x_{k_{n-1}+1}, \ldots, x_{k_n}) \in (t_{n-1}, t_n], x_{k_{n+1}} > t_n\}.$  Тогда

$$I = \int_{t_n}^{+\infty} \lambda^{k_{n+1}} e^{-\lambda x_{k_n+1}} dx_{k_n+1}.$$

$$\prod_{j=1}^n \int \cdots \int \underset{x_{k_{j-1}+1}, \dots, x_{k_j} \in (t_{j-1}, t_j]}{\mathbb{I}(x_{k_{j-1}+1} < \dots < x_{k_j}) dx_{k_{j-1}+1} \dots dx_{k_j}.$$

Каждый интеграл в произведении равен объему симплекса. Куб в k-мерном пространстве полностью покрывается k! непересекающимися равными по объему симплексами, каждый из которых порождается соответствующей перестановкой переменных. Поэтому, объем одного симплекса в k-мерном пространстве внутри куба со стороной m будет равняться  $\frac{m^k}{k!}$ . Из этого получаем, что

$$I = \lambda^{k_{n+1}} e^{-\lambda t_n} \cdot \prod_{j=1}^n \frac{(t_j - t_{j-1})^{k_j - k_{j-1}}}{(k_j - k_{j-1})!} = \prod_{j=1}^n \frac{(\lambda(t_j - t_{j-1}))^{k_j - k_{j-1}}}{(k_j - k_{j-1})!} e^{-\lambda(t_j - t_{j-1})}.$$

Из этого получается, что приращения случайного процесса  $(X_t, t \ge 0)$  независимы и приращения  $X_t - X_s \sim Pois(\lambda(t-s)), 0 \le s < t$ .