Communicating with Data – Understanding Data

Dr. Ab Mosca (they/them)

Plan for today

- Recap/Last bits from last class
- Power structures in data science
- Importance of context & documentation

Discussion

What is the origin of data science?

Where does it come from?

When did it start?

Who started it?

- Hmmm.... Seems like data science is born from white cis males
 - Fun fact: this is not actually true if you dig deeper! But that's for another class

Data Capitalism (Meyers West 2019)

- History is full of examples of data being used to control
- West argues, data as a commodity "enables an asymmetric redistribution of power that is weighted toward the actors who have access and the capability to make sense of information."

Data as Power

- In South American Andean cultures, Khipus are elaborate assemblages of knotted string used for millennia to record extracted numerical data such as tax records and military obligations of the populace (Medrano & Urton, 2018).
- From 2500BC the ancient Egyptian cultures were creating census datasets in order to determine how much labor force could be conscripted into the construction of pyramids for their pharaohs (Census-Taking in the Ancient World, 2016)

- The "Big Data" revolution argues that with enough data we can make unbiased decisions
- However, data science:
 - Lacks transparency
 - Employs extractive collection
 - Leverages technological complexity
 - Controls impact

Example: Search Engines

Dr. Safiya Noble

https://youtu.be/iRVZozEEWIE?si=qzRtPmQzxlgKDxR2

Example: Search Engines

- Search engine algorithms are largely based on:
 - Profit
 - Historical data
 - Predictive analytics

What are downstream real-life impacts of this data bias?

Example: Facial Recognition

Dr. Joy Buolamwini

https://youtu.be/UG_X_7g63rY?si=qDMmUX5VjpaJYURe

Example: Facial Recognition

Example: Facial Recognition

- Training dataset used for most facial recognition systems contains
 - 78% male faces
 - 84% white faces
 - Only 4% were women and dark-skinned

What are downstream real-life impacts of this data bias?

Example: Research Funding

- 2022 prostate cancer research funding: 280.5 million
- 2022 uterine cancer research funding: 15.0 million

How does this monetary breakdown perpetuate systems of power?

https://www.cancer.gov/about-nci/budget/fact-book/data/research-funding

https://data-feminism.mitpress.mit.edu/

Example: Research Funding

In U.S. dollars per 100 incident cases, **prostate cancer received an average of \$1,821,000** per person-years of life lost, while **ovarian cancer received \$97,000**, **cervical cancer \$87,000**, and **uterine cancer \$57,000**.

Ovarian and cervical cancers had lower average Funding to Lethality scores compared to nine other cancers, while uterine cancer was lower than 13 other cancers (p<0.01 for all comparisons).

Spencer et al. Disparities in the allocation of research funding to gynecologic cancers by Funding to Lethality scores

"What gets counted counts"

- Data is often used to inform policy and allocate resources
- What is not counted in that data collection can become invisible
 - Ex. Expansive gender

https://data-feminism.mitpress.mit.edu/

"What gets counted counts"

- Data is often used to inform policy and allocate resources
- What is not counted in that data collection can become invisible
 - Ex. US Census

"What gets counted counts"

- Data is often used to inform policy and allocate resources
- What is counted is considered important
 - Ex. US Census & Race
 - https://www.pewresearch.org/social-trends/feature/what-census-calls-us/

https://www.pewresearch.org/wp-

Subvert norms

Highlight missing categories

Educate

Rethink data collection

Woman (including trans woman) Man (including trans man)		Non-binary
		In another way
		Prefer not to say

Table 5.1: Features of "data for good" versus data for co-liberation			
	"Data for good"	Data for co-liberation	
Leadership by members of minoritized groups working in community		√	
Money and resources managed by members of minoritized groups		√	
Data owned and governed by the community		√	
Quantitative data analysis "ground truthed" through a participatory, community-centered data analysis process		√	
Data scientists are not rock stars and wizards, but rather facilitators and guides		√	
Data education and knowledge transfer are part of the project design		√	
Building social infrastructure— community solidarity and shared understanding—is part of the project design		√	

Add transparency

Avoid extractive approaches

Follow the lead of the community

https://data-feminism.mitpress.mit.edu/

Acknowledge context

https://www.responsible-datasets-in-context.com/datasets.html

- What is the historical context of the data?
- Where did the data come from? Who collected it?
- Why was the data collected?
- How was the data collected?
- How is the data used?
- What's in the data?
- What "counts" as a data point?
- What data is missing?
- How is uncertainty handled?

What biases or ethical issues could the answers to these questions reveal that would otherwise be hidden?

Lab 1

Go to the course website to find instructions for today's lab

• Be prepared to share your findings!