Department of Economics

STUDENT & UNIT DETAILS - TO BE COMPLETED BY THE STUDENT

Candidate Number	21856
Unit Name and Code	ES20069 and ES20159 (Introduction to) econometrics

DECLARATION – PLEASE READ CAREFULLY

When you enrolled as a student at the University of Bath, you agreed to abide by the University's rules and regulations and agreed that you would access and read your programme handbook. This handbook contains references to, and penalties for, unfair practices such as collusion, plagiarism, fabrication or falsification. The University's Quality Assurance Code of Practice, QA53 Examination and Assessment Offences, sets out the consequences of committing an offence and the penalties that might be applied.

By submitting this assessment, you confirm that:

- 1. You have not impersonated, or allowed yourself to be impersonated by, any person for the purposes of this assessment.
- 2. This assessment is your original work and no part of it has been copied from any other source except where due acknowledgement is made.
- 3. You have not previously submitted this work for any other unit/course.
- You give permission for your assessment response to be reproduced, communicated, compared and archived for plagiarism detection, benchmarking or educational purposes.
- 5. You understand that plagiarism is the presentation of the work, idea or creation of another person as though it is your own. It is a form of cheating and is a very serious academic offence that may lead to disciplinary action.
- 6. No part of this assessment has been produced for, or communicated to, you by any other person.

MARK AND COMMENTS – TO BE COMPLETED BY THE MARKER	
	MARK (%)

START YOUR ASSESSMENT HERE.

BEFORE YOUR ANSWERS, STATE EXPLICITLY WHICH PART / QUESTION / SUBQUESTION YOU ARE ATTEMPTING.

This is an AR(1) model where the stationary condition ($|\phi| < 1$) is not met as $\phi = 1$. Therefore it is not covariance stationary.

1b.

This is an ARMA(1,1) model where $\phi=0.7$, $\theta=1$. This model is covariance stationary if |z|>1. In this case $\theta+\phi*z=0$ therefore $z=-\frac{\theta}{\phi}=-\frac{10}{7}$ so this model is covariance stationary.

1c.

The first axiom of if something is covariance stationary is that $E(Y_t)$ is constant however in this case $E(Y_t) = \frac{t}{2}$ and is therefore time dependant and not constant. Thus it is not covariance stationary.

2.

 Y_t is an AR(1) model and the stationary condition is met, therefore it is covariance stationary. The expected value is calculated as follows.

$$E(Y_t) = E(\alpha) + \phi * E(Y_{(t-1)}) + \epsilon_t = \alpha + \phi * E(Y_{(t-1)}) = \alpha + \phi * (\alpha + \phi * E(Y_{(t-2)}))$$

We can see that this pattern will repeat infinitely and therefore,

$$\mathsf{E}(Y_t) = \lim_{n \to +\infty} \left(\left[\sum_{i=0}^n \varphi^i * \alpha \right] + \varphi^n * E(Y_{(t-n)}) \right) = \lim_{n \to +\infty} \left(\left[\sum_{i=0}^n \varphi^i * \alpha \right] \right) = \frac{\alpha}{1-\varphi}$$

Thus statement B is the only true statement.

3a.

The conditional mean of Y_t is the mean of Y_t given its previous terms. The previous terms are irrelevant however as $\mathsf{E}(Y_t \mid Y_{(t-1)}, Y_{(t-2)} \dots) = E(\sigma_t) * E(z_t)$ and $E(z_t) = 0$ thus the conditional mean, $\mathsf{E}(Y_t \mid Y_{(t-1)}, Y_{(t-2)} \dots) = 0$.

3b.

Since $E(Y_t) = 0$, the standardised residuals reduces down to,

$$\frac{Y_t}{\sqrt{Var(Y_t)}}$$

$$Var(Y_t) = Var(\sigma_t * z_t) = Var(z_t)Var(\sigma_t) + Var(z_t) (E(\sigma_t))^2 + Var(\sigma_t) (E(z_t))^2$$
$$= Var(\sigma_t) + E(\sigma_t)^2 = E(\sigma_t^2)$$

Thus the standardised residuals are only dependant on Y_t and 2 of its previous terms so this is an AR(2) model.

To find the existence of a unit root we can use the Dicky Fuller test. When looking at an AR(1)

$$Y_t = \rho * Y_{(t-1)} + u_t$$

A unit root is present if $\rho = 1$

Using this test we can put Z_t and X_t in the form of an AR(1) and look at the ρ value.

$$Z_t = 2 * Y_t + w_t = 2 * (Y_{(t-1)} + \epsilon_t) + w_t = 2 * (Y_{(t-2)} + \epsilon_{(t-1)} + \epsilon_t) + w_t$$
$$Z_{(t-1)} = 2 * Y_{(t-1)} + w_{(t-1)} = 2 * (Y_{(t-2)} + \epsilon_{(t-1)}) + w_{(t-1)}$$

By substitution we get that

$$Z_t = Z_{(t-1)} + u_t$$
 where $u_t = 2 * \epsilon_t + w_t - w_{(t-1)}$

Thus $\rho = 1$ so Z_t has a unit root.

$$X_t = Y_t + v_t = Y_{(t-1)} + \epsilon_t + v_t$$
$$X_{(t-1)} = Y_{(t-1)} + v_{(t-1)}$$

By substitution we get that

$$X_t = X_{(t-1)} + u_t$$

where $u_t = \epsilon_t + v_t - v_{(t-1)}$

Thus $\rho = 1$ so X_t has a unit root.

4b.

Cointegration is the process of looking at a combination of non-stationary variables to see if it yields something stationary, this must be linear combination.

For Y_t and Z_t we can see that $Z_t - 2 * Y_t = w_t = N(0,1)$ which is covariance stationary so the cointegrating factors are 1 and -2.

For X_t and Z_t we can see that $Z_t - 2 * X_t = w_t - 2 * v_t = N(0,1) - 2 * N(0,1)$ which is also covariance stationary with cointegrating factors of 1 and -2.

4c.

An error correction model is a dynamic model where the change of the variable is related to the distance between its value in the pervious period and its value in the long-run equilibrium. The error correction model in this case can be written as,

$$\Delta Y_t = \alpha_1 (Z_{(t-1)} - \beta * Y_{(t-1)}) + \epsilon_t$$

$$\Delta Z_t = -\alpha_2 (Z_{(t-1)} - \beta * Y_{(t-1)}) + w_t$$

Since
$$\Delta Y_t=Y_t-Y_{(t-1)}=\epsilon_t$$
 it implies that $\alpha_1=0$ Similarly $\Delta Z_t=Z_t-Z_{(t-1)}=2\epsilon_t+w_t-w_{(t-1)}$ implies that $\alpha_2=1-\frac{2\epsilon_t}{w_{(t-1)}}$

5b.

Date: 04/22/21 Time: 01:10 Sample: 1947Q1 2007Q1 Included observations: 241

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.987	0.987	237.90	0.000
	1 1	2	0.974	-0.018	470.59	0.000
1	1 1/1	3	0.961	-0.014	698.02	0.000
ı	1 1	4	0.948	-0.006	920.25	0.000
		5	0.935	-0.004	1137.3	0.000
1		6	0.923	0.003	1349.4	0.000
1		7	0.910	-0.009	1556.6	0.000
1		8	0.897	-0.010	1758.7	0.000
1		9	0.884	-0.020	1955.8	0.000
1	()	10	0.870	-0.013	2147.8	0.000
		11	0.857	-0.006	2334.8	0.000
1	()	12	0.843	-0.017	2516.6	0.000
		13	0.830	0.010	2693.6	0.000
1	1 1	14	0.817	0.005	2866.0	0.000
1		15	0.805	0.010	3033.8	0.000
1	1 1	16	0.793	0.003	3197.4	0.000
1	1 1	17	0.781	-0.005	3356.8	0.000
1		18	0.769	-0.004	3511.9	0.000
1	1 1	19	0.757	-0.005	3662.9	0.000
1		20	0.745	-0.011	3809.8	0.000
1	1 1	21	0.732	-0.008	3952.6	0.000
1		22	0.720	-0.009	4091.3	0.000
		23	0.708	-0.009	4226.0	0.000
1	1 1	24	0.696	0.002	4356.8	0.000
1	1 1	25	0.684	-0.001	4483.7	0.000
ı	1(1	26	0.672	-0.012	4606.8	0.000
1	1(1	27	0.660	-0.015	4726.1	0.000
1	1(1	28	0.648	-0.022	4841.4	0.000
ı	1 1	29	0.635	-0.008	4952.8	0.000
ı	1 1	30	0.622	-0.013	5060.3	0.000
1	1 1	31	0.610	0.001	5164.0	0.000
1	1 1	32	0.598	0.002	5264.0	0.000
1	1 1	33	0.586	0.004	5360.6	0.000
1	1 1	34		-0.002	5453.7	0.000
·	1 1	35		-0.001	5543.6	0.000
·		36	0.551	-0.005	5630.2	0.000

It is an AR(1) model where $Y_t = 0.987 * Y_{(t-1)} + u_t$. This is because of the high level of autocorrelation and the fact that each term is approximately 0.987^k where k is the index of the element.

5c.

We can follow the 7 step Box-Jenkins process to estimate and forecast the "best: ARMA model(s) STEP 1 – Apply data transformation if necessary. Test for stationarity/nonstationary. If the series is nonstationary, transform the data to achieve stationarity.

As shown by part a, log(gdp) is nonstationary so we may apply the transformation of the 1st difference.

This initially appears to be stationary so we can test it using ADF and KPSS

Null Hypothesis: D_LOG_GDP has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-10.59543 -3.459231 -2.874143 -2.573563	0.0000

ADF shows us that it is stationary as the absolute value of the test-statistic is greater than the absolute value of the critical value at a 5% level, therefore we reject the null hypothesis of it being non-stationary.

Null Hypothesis: D_LOG_GDP is stationary

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	in test statistic	0.107492
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction) HAC corrected variance (Bartlett k		0.000101 0.000159

KPSS also shows us that it is stationary as the absolute value of the LM-Statistic is less than the absolute value of the critical value at a 5% level, therefore we accept the null hypothesis that it is stationary.

STEP 2 – Determine possible lag orders p and q in the ARMA(p,q) using (PACF/ACF)

Date: 04/22/21 Time: 03:24 Sample: 1947Q1 2003Q4 Included observations: 227

1 0.334 0.334 25.729 2 0.181 0.078 33.276 3 -0.030 -0.126 33.479 4 -0.114 -0.096 36.496 5 -0.169 -0.094 43.197 6 -0.085 0.024 44.880 7 -0.070 -0.029 46.022 1	
3 -0.030 -0.126 33.479 4 -0.114 -0.096 36.496 5 -0.169 -0.094 43.197 6 -0.085 0.024 44.880 7 -0.070 -0.029 46.022 8 -0.040 -0.035 46.394 9 0.056 0.072 47.149 1 1 0.019 -0.041 48.081 1 1 0.019 -0.043 57.685	0.000
	0.000
	0.000
	0.000
	0.000
1	0.000
9 0.056 0.072 47.149 10 0.059 0.011 47.990 11 0.019 -0.041 48.081 12 -0.146 -0.189 53.231 11 13 -0.135 -0.043 57.685	0.000
10 0.059 0.011 47.990 11 0.019 -0.041 48.081 12 -0.146 -0.189 53.231 11 13 -0.135 -0.043 57.685	0.000
11 0.019 -0.041 48.081 12 -0.146 -0.189 53.231 11 13 -0.135 -0.043 57.685	0.000
12 -0.146 -0.189 53.231 1 1 13 -0.135 -0.043 57.685	0.000
13 -0.135 -0.043 57.685	0.000
	0.000
- I II I I I I I I I I I I I I I I I I	0.000
1 14 -0.100 0.027 60.129	0.000
1 15 -0.101 -0.072 62.648	0.000
16 0.041 0.075 63.053	0.000
17 0.052 -0.009 63.725	0.000
18 0.096 0.035 66.032	0.000
19 0.051 -0.032 66.684	0.000
20 0.068 0.009 67.838	0.000
21 -0.094 -0.112 70.062	0.000
22 -0.070 0.004 71.310	0.000
23 -0.118 -0.045 74.845 24 -0.051 -0.003 75.519	0.000
	0.000
25 0.013 0.031 75.577	0.000
27 0.060 0.015 76.509	0.000
28 0.053 0.019 77.235	0.000
29 0.025 -0.021 77.402	0.000
30 -0.158 -0.197 83.959	0.000
31 -0.095 0.021 86.330	0.000
32 -0.086 0.036 88.288	0.000
33 0.006 0.025 88.299	0.000
34 0.067 0.010 89.512	0.000
35 0.051 -0.061 90.224	0.000
36 0.046 -0.017 90.810	0.000

From this we can drive values for p using Partial Correlation and q using Autocorrelation. Looking at the patterns in the ACF and PACF a model of ARMA(p,q) seems most suitable as all other models do not fit the shape of the functions.

STEP 3 – Estimate the tentative models identified in step 2

Using this model P = (0,1) and Q = (0,1,2) leading to 5 possible combinations shown in step 4

STEP 4 – Compare and estimate models using an information criterion.

My two information criterions being used is AIC and SBC, below is the table showing the possible models with the lower score being better.

ARMA(p,q)	AIC	SBC
ARMA(0,1)	-6.423458	-6.378195
ARMA(0,2)	-6.376201	-6.330937
ARMA(1,0)	-6.450735	-6.405471
ARMA(1,1)	-6.445264	-6.384913
ARMA(1,2)	-6.458009	-6.397658

Thus we have identified two possible models, AR(1) and ARMA(1,2)

STEP 5 – Test for autocorrelation in the error terms

As both models have p values of one we can use Durbin-Watson test. This test tell us that there is no autocorrelation when the statistic is close to 2.

For the AR(1) model we can use the Durbin-Watson statistic to test for autocorrelation. The DW statistics is 2.047677 which implies that there is no autocorrelation.

For the ARMA(1,2) we can also use the Durbin-Watson statistic to test for autocorrelation. The DW statistics is 1.975754 which implies that there is no autocorrelation.

STEP 6 – Test for heteroscedasticity (Testing for ARCH effects)

For AR(1):

Heteroskedasticity Test: ARCH

F-statistic	2.529485	Prob. F(1,224)	0.1131
Obs*R-squared	2.523573	Prob. Chi-Square(1)	0.1122

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/22/21 Time: 03:35

Sample (adjusted): 1947Q3 2003Q4

Included observations: 226 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	8.05E-05 0.105731	1.27E-05 0.066479	6.346576 1.590435	0.0000 0.1131
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011166 0.006752 0.000168 6.31E-06 1644.840 2.529485 0.113147	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	9.00E-05 0.000168 -14.53840 -14.50813 -14.52619 2.029710

We do not reject the null hypothesis as Prob.F and Prob.Chi-Square are greater than 5% and thus there is no conditional heteroscedasticity.

For ARMA(1,2)

Heteroskedasticity Test: ARCH

F-statistic		Prob. F(1,224)	0.0782
Obs*R-squared	3.114694	Prob. Chi-Square(1)	0.0776

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/22/21 Time: 03:36 Sample (adjusted): 1947Q3 2003Q4 Included observations: 226 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	7.81E-05 0.117462	1.25E-05 0.066391	6.258828 1.769257	0.0000 0.0782
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.013782 0.009379 0.000165 6.12E-06 1648.227 3.130271 0.078212	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	8.86E-05 0.000166 -14.56838 -14.53811 -14.55617 2.035892

We do not reject the null hypothesis as Prob.F and Prob.Chi-Square are greater than 5% and thus there is no conditional heteroscedasticity.

STEP 7 – Test for normality (Jarque – Bera test)

To test normality we can use the Jarque-Bera test statistic and check is the P-Value is less than 5% For AR(1)

As shown by the distribution and P-Value below 5%, the errors are normally distributed. For ARMA(1,2)

This model also has its errors normally distributed as the P-Value is below 5%. FORCASTING AR(1)

ARMA(1,2)

Both the AR(1) and ARMA(1,2) have very low MSE and MAE therefore we can conclude that they fit the data to a sufficient extent and is therefore a good model. However AR(1) appears to be slightly more accurate and therefore is the "best" ARMA model.

Dependent Variable: D_LOG_GDP

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/22/21 Time: 04:24 Sample: 1947Q2 2003Q4 Included observations: 227

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) SIGMASQ	0.008421 0.334434 9.00E-05	0.000962 0.055834 6.45E-06	8.754657 5.989739 13.94813	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.112345 0.104420 0.009551 0.020433 735.1584 14.17517 0.000002	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.008442 0.010092 -6.450735 -6.405471 -6.432471 2.047677
Inverted AR Roots	.33			

This is a summary of the model and therefore we can calculate the growth from the first difference. Growth = $e^{0.008421+0.334434*(first difference)}$ = 0.40879. Therefore, the growth per quarter is 0.40879

To access stationarity for growth in log consumption and log income we will use an ADF test.

Null Hypothesis: D_CON has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level		-2.837276 -3.488585 -2.886959	0.0563
	10% level	-2.580402	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(D_CON)

Method: Least Squares Date: 04/22/21 Time: 05:34 Sample (adjusted): 1987Q1 2015Q2

Included observations: 114 after adjustments

D_CON(-1)	-0.281437	0.099193	-2.837276	0.0054
D(D_CON(-1))	-0.517427	0.103673	-4.990939	0.0000
D(D_CON(-2))	-0.346554	0.087543	-3.958656	0.0001
C	0.001890	0.000800	2.363015	0.0199
R-squared	0.430694	Mean depend		2.10E-05
Adjusted R-squared S.E. of regression	0.415168 0.004335 0.002067	S.D. depende Akaike info cr Schwarz crite	iterion	0.005668 -8.009823 -7.913816
Log likelihood	460.5599	Hannan-Quin	n criter.	-7.970859
F-statistic	27.73925	Durbin-Watso		1.885390
Adjusted R-squared	0.415168	S.D. depende	ent var	
S.E. of regression	0.004335	Akaike info cr	iterion	
Sum squared resid	0.002067	Schwarz crite	rion	
Log likelihood	460.5599	Hannan-Quin	in criter.	

Null Hypothesis: D_CON has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-2.837276 -3.488585 -2.886959 -2.580402	0.0563

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(D_CON)

Method: Least Squares Date: 04/22/21 Time: 05:28

Sample (adjusted): 1987Q1 2015Q2

Included observations: 114 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D_CON(-1) D(D_CON(-1)) D(D_CON(-2)) C	-0.281437 -0.517427 -0.346554 0.001890	0.099193 0.103673 0.087543 0.000800	-2.837276 -4.990939 -3.958656 2.363015	0.0054 0.0000 0.0001 0.0199
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.430694 0.415168 0.004335 0.002067 460.5599 27.73925 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	2.10E-05 0.005668 -8.009823 -7.913816 -7.970859 1.885390

We can see that the null hypothesis is rejected both times so both are stationary.

We then build the model and determine the optimal number of lags which turns out to be 4 as seen in the chart below.

VAR Lag Order Selection Criteria Endogenous variables: D_CON D_INC

Exogenous variables: C Date: 04/22/21 Time: 05:26 Sample: 1986Q1 2015Q2 Included observations: 109

Lag	LogL	LR	FPE	AIC	SC	HQ
0	787.4265	NA	1.89e-09	-14.41150	-14.36211	-14.39147
1	813.0058	49.75054	1.27e-09	-14.80745	-14.65930*	-14.74737*
2	818.6724	10.81333	1.23e-09	-14.83803	-14.59111	-14.73789
3	825.0099	11.86102*	1.18e-09	-14.88092	-14.53524	-14.74073
4	829.3434	7.951369	1.17e-09*	-14.88704*	-14.44259	-14.70680
5	829.8570	0.923596	1.25e-09	-14.82307	-14.27986	-14.60277
6	830.8932	1.825149	1.32e-09	-14.76868	-14.12671	-14.50834
7	833.7180	4.872188	1.36e-09	-14.74712	-14.00638	-14.44672
8	836.2297	4.239870	1.39e-09	-14.71981	-13.88031	-14.37936

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

Now that we have re-estimated the VAR model we have to perform the necessary diagnostic tests. The three tables below outline tests for autocorrelation, heteroskedasticity and normality and show us that there us no autocorrelation, no heteroskedasticity and no normality.

VAR Residual Serial Correlation LM Tests

Date: 04/22/21 Time: 05:39 Sample: 1986Q1 2015Q2 Included observations: 113

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1 2	4.959442 6.506540	4	0.2915 0.1644	1.248947 1.644841	(4, 202.0) (4, 202.0)	0.2915 0.1644
3	6.928773 1.294464	4	0.1397 0.8623	1.753414	(4, 202.0) (4, 202.0)	0.1397 0.8623

Null hypothesis: No serial correlation at lags 1 to h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	4.959442	4	0.2915	1.248947	(4, 202.0)	0.2915
2	9.396821	8	0.3099	1.184544	(8, 198.0)	0.3100
3	11.86761	12	0.4564	0.993447	(12, 194.0)	0.4566
4	15.17276	16	0.5120	0.950744	(16, 190.0)	0.5126

^{*}Edgeworth expansion corrected likelihood ratio statistic.

VAR Residual Heteroskedasticity Tests (Levels and Squares)

Date: 04/22/21 Time: 05:40 Sample: 1986Q1 2015Q2 Included observations: 113

Joint test:

Chi-sq	df	Prob.
77.27782	48	0.0047

Individual components:

Dependent	R-squared	F(16,96)	Prob.	Chi-sq(16)	Prob.
res1*res1	0.169069	1.220814	0.2667	19.10477	0.2633
res2*res2	0.267193	2.187689	0.0102	30.19276	0.0170
res2*res1	0.168375	1.214790	0.2712	19.02637	0.2673

VAR Residual Normality Tests

Orthogonalization: Cholesky (Lutkepohl)

Null Hypothesis: Residuals are multivariate normal

Date: 04/22/21 Time: 05:41 Sample: 1986Q1 2015Q2 Included observations: 113

Component	Skewness	Chi-sq	df	Prob.*
1 2	-0.046765 -0.733088	0.041187 10.12137	1	0.8392 0.0015
Joint		10.16256	2	0.0062
Component	Kurtosis	Chi-sq	df	Prob.
1 2	3.953530 7.515836	4.280904 96.01597	1	0.0385 0.0000
Joint		100.2969	2	0.0000
Component	Jarque-Bera	df	Prob.	
1 2	4.322091 106.1373	2 2	0.1152 0.0000	
Joint	110.4594	4	0.0000	

^{*}Approximate p-values do not account for coefficient estimation

These following graphs show changes due to the log difference in income having a positive initial shock. With regards to consumption, there is an initial increase in period 2, then a larger drop in period 3 and 4 in which consumption never recovers to its original state. Income has an initial decline in period 2 and then fluctuates around and tends towards its original state.

Response to Nonfactorized One S.D. Innovations ± 2 S.E.

Response of D_CON to D_INC

Response of D_INC to D_INC

6c.

Performing a Granger Causality test on the growth of log income and log consumption yielded this table

Pairwise Granger Causality Tests Date: 04/22/21 Time: 06:21 Sample: 1986Q1 2015Q2

Lags: 4

Null Hypothesis:	Obs	F-Statistic	Prob.
D_INC does not Granger Cause D_CON	113	1.94465	0.1085
D_CON does not Granger Cause D_INC		5.79399	0.0003

We are only interested if D_INC granger causes growth on D_CON however since the P-Value is greater than 5% we accept the null hypothesis that it does not cause growth.