4 Nichtlineare Gleichungen

Sei $D \subset \mathbb{R}^N$ und $F: D \to \mathbb{R}^N$ beliebig. Gesucht wird $U \in \mathbb{R}^N$ mit

$$F(U) = 0$$

Speziell: $F(U) = AU - b, \ A \in \mathbb{R}^{N,N}, \ b \in \mathbb{R}^N$ lineares Problem

4.1 Fixpunkte (Ergänzung 5)

4.1.1 Fixpunkte und Nullstellen

U Fixpunkt von G: U = G(U)

U Nullstelle von F: F(U) = 0

U Fixpunkt von $G \Leftrightarrow U$ Nullstelle von F(X) := X - G(X)

4.1.2 Banachscher Fixpunktsatz

Sei V ein Banach-Raum, $D\subseteq V$ abgeschlossen, $f:D\longrightarrow D$ eine Kontraktion, d.h. $\exists q\in(0,1)$ mit

$$||f(x) - f(y)|| \le q||x - y|| \quad (x, y \in D)$$

Dann gilt:

- (i) f besitzt genau einen Fixpunkt x_* in D
- (ii) Zu jedem $x_0 \in D$ konvergiert die durch $x_{i+1} := f(x_i)$ definierte Folge gegen x_* und es gelten die Abschätzungen

$$||x_i - x_*|| \le q^i ||x_0 - u_*||$$
 (A priori Abschätzung)
$$||x_i - x_*|| \le \frac{q}{1-q} ||x_i - x_{i-1}||$$
 (A posteriori Abschätzung)

4.1.3 Beispiele

- 1.) $f:[a,b]\subseteq \mathbb{R} \to [a,b]$ differenzierbar mit $|f'(x)| \le q < 1 \ \forall x \in [a,b]$ für ein $q \in (0,1)$ $\Rightarrow \exists ! x_* \in [a,b] : f(x_*) = x_*$ und die Fixpunktiteration $x_{i+1} := f(x_i)$ konvergiert für die Startwerte $x_0 \in [a,b]$.
- 2.) Süche Lösung von $x = \cos(x)$:

$$x_0 \in \mathbb{R}, \ x_{i+1} = \cos(x_i)$$

Bildchen

Wende (1) an

$$\max_{x \in \mathbb{R}} |\cos'(x)| = \max_{x \in \mathbb{R}} |\sin(x)| = 1$$

So geht es noch nicht.

Aber: V = [0, 1]. Dann

$$\max_{x \in [0,1]} |\sin(x)| = \sin(1) < 1$$

$$\cos(V) \subset V$$
. Anwendung von (1) ist OK.
 $x_0 \in \mathbb{R} \Rightarrow x_1 = \cos(x_0) \in [-1,1] \Rightarrow x_2 = \cos(x_1) \in [0,1]$
Jetzt weiter wie eben. Konvergenz für alle $x_0 \in \mathbb{R}$

Satz 16. V Banach-Raum, $D \subset V$ abgeschlossen, $f: D \to D$ eine Kontraktion mit Rate q der Fixpunktiteration und Fixpunkt v_x . $g: D \to D$ sei eine Störung von f mit

$$||f(v) - g(v)||_V \le \varepsilon \quad \forall v \in D$$

Definiere $\{v_i\}_i, \{w_i\}$ durch $v_{i+1} := f(v_i), \ w_{i+1} := g(w_i)$ für $v_0, w_0 \in D$ und $\|v_0 - w_0\|_V \le \varepsilon$. Dann qilt:

$$||v_i - w_i||_V \le \frac{\varepsilon}{1 - q}$$

 $||v_* - w_i||_V \le \frac{1}{1 - q} (\varepsilon (1 + 3q^i) + q^i ||w_0 - g(w_0)||_V)$

Bildchen

Beweis. $v_0 \in D \Rightarrow v_1 \in D \Rightarrow \dots$ $w_0 \in D \Rightarrow w_1 \in D \Rightarrow \dots$ Folgen sind wohldefiniert

$$||v_{i+1} - w_{i+1}||_{V} = ||f(v_{i}) - g(w_{i})||_{V}$$

$$\leq ||f(v_{i}) - f(w_{i})||_{V} + ||f(w_{i}) - g(w_{i})||_{V}$$

$$\leq q \cdot ||v_{i} - w_{i}||_{V} + \varepsilon$$

$$\leq q^{2} \cdot ||v_{i-1} - w_{i-1}||_{V} + (1+q)\varepsilon$$

$$\leq \dots \leq q^{i+1} \underbrace{||v_{0} - w_{0}||}_{\leq \varepsilon} + \sum_{j=0}^{i} q^{j} \varepsilon$$

$$\leq \sum_{j=0}^{i+1} q^{j} \varepsilon \leq \sum_{j=0}^{\infty} q^{j} \varepsilon = \frac{1}{1-q} \varepsilon.$$

Mit dem Fixpunktsatz von Banach:

$$\begin{split} \|v_* - w_i\|_V & \leq \|v_* - v_i\|_V + \|v_i - w_i\|_V \\ & = \frac{q^i}{1 - q} \|v_0 - f(v_0)\|_V + \frac{\varepsilon}{1 - q} \\ & \leq \frac{q^i}{1 - q} (\underbrace{\|v_0 - w_0\|_V}_{\leq \varepsilon} + \|w_0 - g(w_0)\|_V + \underbrace{\|g(w_0) - f(v_0)\|_V}_{\leq (1 + q)\varepsilon \leq 2\varepsilon} + \frac{\varepsilon}{1 - q}) \end{split}$$

Problem: Wie schnell sind Fixpunktverfahren?

4.1.4 Konvergenzordnung

V Banach-Raum, $\{v_i\}_i$ eine iterative erzeugte Folge mit $\lim_{i\to\infty}v_i=v_*$. Die Iteration hat Konvergenzordnung $p\geq 1$, falls für den Fehler $e_i:=v_i-v_*$ gilt:

$$\lim_{i \to \infty} \frac{\|e_i\|_V}{\|e_{i-1}\|_V^p} = c \in \mathbb{R}$$

Falls $c \neq 0$, so heißt p die genaue Konvergenzordnung und c heißt asymptotischer Fehlerkoeffizient.

Beispiele

p = 1: Geometrische oder lineare Konvergenz

p=2: Quadratische Konvergenz.

Satz 17. $I \subseteq \mathbb{R}, \Phi: I \longrightarrow \mathbb{R}$ habe einen Fixpunkt $x_* \in I$ und sei p-mal stetig db. mit

$$\Phi'(x_*) = \dots = \Phi^{(p-1)}(x_*) = 0$$
 falls $p > 1$

oder

$$|\Phi'(x_*)| < 1$$
 falls $p = 1$ ist

Dann konvergiert das Iterationsverfahren

$$x_{i+1} = \Phi(x_i)$$

für die Startwerte x_0 nahe x_* und hat bzgl. |.| die Konvergenzordnung p. Ist $\Phi^{(p)}(x_*) \neq 0$, so ist p die genaue Konvergenzordnung.

Beweis. Nach Voraussetzung gibt es für alle $p \ge 1$ eine Umgebung von x_* , in der $|\Phi'| < 1$ gilt. Nach 1.3(1) konvergiert die Fixpunktiteration für alle Startwerte dieser Umgebung gegen x_* .

Mit Taylorentwicklung:

$$x_{i+1} = \Phi(x_i) = \sum_{l=0}^{p-1} \frac{1}{l!} \Phi^{(i)}(x_*) (x_i - x_*)^l + \frac{1}{p!} \Phi^{(p)}(\xi_i) (x_i - x_*)^p$$

 $(\xi_i \text{ zwischen } x_* \text{ und } x_i).$

Einsetzen der Voraussetzung:

$$x_{i+1} = x_* + \frac{1}{p!} \Phi^{(p)}(\xi_i) (x_i - x_*)^p$$

und somit

$$\lim_{i \to \infty} \frac{|x_{i+1} - x_*|}{|x_i - x_*|^p} = \lim_{i \to \infty} \frac{1}{p!} |\Phi^{(p)}(\xi_i)| = \frac{1}{p!} |\Phi^{(p)}(x_*)|$$

Bemerkung: Lineare vs. Quadratische Konvergenz.

$$e_0 = 10^{-1}$$

Lineare Konvergenz: q = 1/2, $e_k = \left(\frac{1}{\alpha}\right)^{\kappa} e_0 \approx 10^{-0.3\kappa} e_0$

1 Stelle \leadsto 3 Iterationen

8 Stellen \rightsquigarrow 24 Iterationen

Quadratische Konvergenz: c=1

$$e_0 = \frac{1}{10}, e_1 = e_0^2 = 10^{-2}, e_2 = 10^{-4}, e_3 = 10^{-8}$$

4.2 Berechnung von Nullstellen

4.2.1 Extrema (Ergänzung 7)

 x_* Extremum von f und f db $\Rightarrow f'(x_*) = 0$

 \leadsto Nullstellenproblem

4.2.2 Nullstellen reeller Funktionen

Im Folgenden sei $I = [a, b] \subset \mathbb{R}, a < b, f$ mindestens stetig.

Bisektionsverfahren Es gelte f(a)f(b) < 0 ("=0" $\Rightarrow f(a) = 0$ oder f(b) = 0).

Wir konstruieren Intervalle $\{I_k\}_k$ wie folgt:

Start:

 $a_0 := a, b_0 := b, I_0 := [a_0, b_0]$

Iteration: $L \ge 0$

1.)
$$\overline{x} := \frac{1}{2}(a_k + b_k)$$

2.) Stop:
$$f(\overline{x}) = 0$$

3.)
$$f(a_k) \cdot f(\overline{x}) \stackrel{?}{<} 0 : a_{k+1} = a_k, b_{k+1} = \overline{x}$$

sonst: $a_{k+1} = \overline{x}, b_{k+1} = b_k$

4.)
$$k \mapsto k+1$$
, $I_{k+1} = [a_{k+1}, b_{k+1}]$

Abbruch: Tol_X , $Tol_f \ge 0$ gegeben, $Tol_x + Tol_f > 0$

 $k_{\text{max}} \in \mathbb{N}$. Rückgabe x und f(x) mit

x Approximation der Nullstelle mit $|x-x*| \leq \mathrm{Tol}_x$ oder $|f(x)|\mathrm{Tol}_f \;\; f(x)$: Funktionswert in x

Modifikation der Iteration:

$$|f(\overline{x})| \leq \text{Tol}_f:$$

 $\text{return}(\overline{x}, f(\overline{x}));$
 $|b_k - a_k| \leq \text{Tol}_x:$
 $\text{falls } |f(a_k)| < |f(b_k)| \text{ return } (a_k, f(a_k)), \text{ sonst return}(b_k, f(b_k))$

Satz 18. $f:[a,b] \to \mathbb{R}$ stetig mit $f(a) \cdot f(b) < 0$. Tol_x, Tol_f, k_{max} wie oben gegeben. Dann bricht das Bisektionsverfahren nach endich vielen Schritten ab, auch falls $k_{max} = \infty$

Beweis. Das Verfahren ist wohldefiniert aufgrund des Zwischenwertsatzes.

Die Existenz einer Nullstelle in I_k ist für jedes k gesichert.

$$\operatorname{Tol}_{x} > 0 : |I_{k}|| = \left(\frac{1}{2}\right)^{k} |b - a| \stackrel{!}{\leq} \operatorname{Tol}_{x} \Rightarrow k \leq \left\lceil \frac{\log_{2}(b - a)}{\operatorname{Tol}_{x}} \right\rceil$$
$$\operatorname{Tol}_{f} > 0 : b_{k} - a_{k} \to 0$$

Da f stetig ist und eine Nullstelle in $[a_k, b_k]$ hat, gilt $\lim_{k \to \infty} f(a_k) = \lim_{k \to \infty} f(b_k) = 0$

$$\Rightarrow \exists k_f \in \mathbb{N} : \min\{|f(a_{k_f})|, |f(b_{k_f})|\} \leq \operatorname{Tol}_f$$

$$(Gilt |f'(x)| \le C \forall x \in [a,b], \text{ so gilt } z.B.: |f(a_k)| = |f(a_k) - f(x_k)| \le |I_k| \max_{x \in [a,b]} |f'(x)| \le C \left(\frac{1}{2}\right)^k \stackrel{!}{\le} \operatorname{Tol}_f)$$

Probleme

- a,b zu finden mit $f(a)\cdot f(b)<0$ kann sehr schwierig sein.
- Die Konvergenz ist in der Praxis zu langsam. (Siehe 1.5: Konvergenzordnung ist 1 mit $c = \frac{1}{2}$)
- $\bullet\,$ Die Methode ist auf $\mathbb R$ beschränkt

Regula Falsi Wie in 2.2.1 aber mit \overline{x} wie folgt: Bildchen

$$\overline{x} = a_k - \frac{f(a_k)(b_k - a_k)}{f(b_k) - f(a_k)}$$

Keine Auslöschung im Nenner wegen $f(a_k) \cdot f(b_k) < 0$. Weiteres Vorgehen wie in 2.2.1 Konvergenz: Konvergert wie in 2.2.1 im Fall $\text{Tol}_f > 0$. Die Konvergenz kann beliebig langsam sein. Im "besten" Fall ist die Konvergenz linear (unter noch allgemeinen Voraussetzungen)

Das Sekantenverfahren Bildchen

 $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig. x_1, x_2 gegeben, $x_1 \neq x_2$ und $f(x_1) \neq f(x_2)$ x_3 ist dann die Nullstelle der Sekante

Initialisierung: $x_1 \neq x_2, f(x_1) \neq f(x_2)$

Iteration für $k \ge 0$:

1.) Falls $f(x_{k-1}) \neq f(x_k)$

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

2.) $k \curvearrowright k+1$

Abbruch: $Tol_x, Tol_f, Tol_{f'}, k_{max}$

Wie in 2.2.1 aber mit

$$\begin{array}{rcl} |x_k-x_{k-1}| & \leq & \operatorname{Tol}_x? \\ |f(x_k)| & \leq & \operatorname{Tol}_f? \\ k & \leq & k_{\max} \\ \\ \operatorname{und} |f(x_k)-f(x_{k-1})| & \leq & \operatorname{Tol}_{f'}? \end{array}$$

Die letzten beiden Bedingungen führen zu einem erfolglosen Abbruch.

Bemerkungen

- Keine Erfolgsgarantie für allgemeine Startwerte
- Kleine f-Differenzen erzeugen große Fehler

Aber:

- Günstiger Aufwand (1 f-Auswertung pro Schritt) bei schneller Konvegenz, falls es konvergiert.
- \bullet Gewisse Verallgemeinerung auf \mathbb{R}^N möglich

Satz 19. $f \in C^2(\mathbb{R}), f(x_*) = 0, f'(x_*) \neq 0, f''(x_*) \neq 0.$

Dann ex. eine Umgebung U von x_* , sodass das Sekantenverfahren für alle Startwerte aus U konvergiert und die Konvergenzordnung ist genau $\frac{1}{2}(1+\sqrt{5})\approx 1.6$

Newton-Verfahren $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig db.

Idee: Verwende Tangende statt Sekante

Bildchen

Initialisierung: $x_1 \min f'(x_1) \neq 0$

Iteration: für $k \ge 0$

1.) Falls $f'(x_k) \neq 0$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

2.) $k \curvearrowright k+1$

Abbruch: $Tol_x, Tol_f, k_{max}, Tol_{f'}$

$$|x_k - x_{k-1}| \leq \operatorname{Tol}_x$$

$$|f(x_k)| \leq \operatorname{Tol}_f$$

$$k \leq k_{\max}$$

$$|f'(x_k)| \leq \operatorname{Tol}_{f'}$$

In den letzten beiden Fällen ist der Abbruch erfolglos

Bemerkungen

- Keine Garantie eines erfolgreichen Abbruchs (im Allgemeinen)
- \bullet Kleine Werte von f' führen zu großen Fehlern

Aber:

- sehr schnell, falls konvergent
- ullet Verallgemeinerung auf \mathbb{R}^N bzw. Banachräume möglich

Konvergenzordnung des Newton-Verfahrens

$$f \in C^3$$
, $f(x_*) = 0$, $f'(x_*) \neq 0$

Die Iterationsfunktion des Newton-Verfahrens ist

$$\Phi(x) := x - \frac{f(x)}{f'(x)}$$

Nach 1.5 bilden wir $\Phi'(x_*), \Phi''(x_*)$

$$\Phi'(x) = 1 - \left(1 - \frac{f(x)f''(x)}{f'(x)^2}\right) = \frac{f(x)f''(x)}{f'(x)^2} \stackrel{x=x^*}{=} 0$$

$$\Phi''(x) = \frac{f''(x)}{f'(x)} + f(x)(\dots) \stackrel{x=x^*}{=} \frac{f''(x_*)}{f'(x_*)} + 0$$

Die Konvergenz ist quadratisch und sie ist genau quadratisch, falls $f''(x_*) \neq 0$

4.2.3 Lokale Konvergenz des Newtonverfahrens

Es sei $(V, \|.\|_V)$ ein Banachraum, $\emptyset \neq U \subset V$, $f: U \longrightarrow V$ eine stetig db. Funktion mit $f'(v)^{-1} \in \mathbb{L}(V, V)$ für alle $v \in U$ sowie

$$\sup_{v \in U} \|f'(v)^{-1}\|_{\mathbb{L}(V,V)} \le K < \infty$$

und

$$||f'(v) - f'(w)||_{\mathbb{L}(V,V)} \to 0 \ (||v - w||_V \to 0) \text{ glm. für } v, w \in U.$$

Weiter sei $u_* \in U$ eine Nullstelle von f. Dann gibt es zu jedem $g \in (0,1)$ ein $\delta > 0$, so dass für jeden Startwert $u_0 \in B_{\delta}(u_*)$ die Newton-Iteration $u_{i+1} = u_i - f'(u_i)^{-1} f(u_i)$ wohldefiniert ist und für $i \geq 0$ gilt

$$||u_i - u_*||_V \le q||u_0 - u_*||_V$$

Ist f zweimal stetig db, so ist die Konvergenz quadratisch:

$$||u_{i+1} - u_*||_V \le C||u_i - u_*||_V^2$$

für $i \ge 0$ und ein C > 0. C hängt von f ab.

Insbesondere bricht das Verfahren nach endlich vielen Schritten bzgl. der Kriterien

$$||u_i - u_{i-1}||_V \stackrel{!}{\leq} \operatorname{Tol}_x \text{ oder}$$

 $||f(u_i)||_V \leq \operatorname{Tol}_f$

für $Tol_x, Tol_f \ge 0$, $Tol_x + Tol_f > 0$ ab

Bemerkung $T: V \longrightarrow V$ linear, stetig (: $\Leftrightarrow T \in \mathbb{L}(V, V)$),

$$||T||_{\mathbb{L}(V,V)} := \sup_{v \in V} \frac{||Tv||_V}{||v||_V}$$

Beweis. Sei $r_0 > 0$ mit $\overline{B_{r_0}(u_*)} \subset U$. Dann gilt für $u \in B_r(u_*)(0 < r < r_0)$

$$f(u) = f(u_*) + \int_0^1 f'(u_* + t(u - u_*))(u - u_*) dt$$

Die Iterationsfunktion des Newton-Verfahrens ist

$$G(u) := u - f'(u)^{-1} \cdot f(u)$$

G ist auf $B_{r_0}(u_*)$ wohldefiniert und mit $u(t) := u_* + t(u - u_*)$ gilt

$$G(u) - u_* = u - u_* - f'(u)^{-1} \int_0^1 f'(u(t))(u - u_*) dt$$
$$= \int_0^1 f'(u)^{-1} (f'(u) - f'(u(t)))(u - u_*) dt$$

Daher:

$$||G(u) - u_*||_V \le \sup_{v \in B_r(u_*)} ||f'(v)^{-1}||_{\mathbb{L}(V,V)} \cdot \sup_{t \in (0,1)} ||f'(u) - f'(u(t))||_{\mathbb{L}(V,V)} \cdot ||u - u_*||_V$$

 $Zu \ q \in (0,1)$ wähle also δ , so dass

$$||G(u) - u_*||_V \le q \cdot ||u - u_*||_V$$
 für alle $u \in B_\delta(u_*)$

 $F\ddot{u}r\ u_0 \in B_{\delta}(u_*)\ folgt\ also\ induktiv$

$$||u_{i+1} - u_*||_V = ||G(u_i) - u_*||_V \le q \cdot ||u_i - u_*||_V \le \delta$$

d.h. $\{u_i\}_i \in B_{\delta}(u_*)$ und $\lim_{i \to \infty} u_i = u_*$. Insbesondere

$$||u_i - u_*||_V \le q^i ||u_0 - u_*||_V$$

Ist f zweimal stetiq db, so gilt:

$$\sup_{t \in (0,1)} \|f'(u) - f'(u(t))\|_{\mathbb{L}(V,V)} \le C' \|u - u(t)\|_{V}$$

$$\le C' \|u - u_*\|_{V} \quad \text{mit } C' = C'(f'')$$

Also

$$||G(u) - u_*||_V \le KC' ||u - u_*||_V^2 = C||u - u_*||_V^2$$

$$\Rightarrow ||u_{i+1} - u_*||_V \le C||u_i - u_*||_V^2$$

 $Mit \|u_{i+1} - u_i\|_V \le \|u_{i+1} - u_*\|_V + \|u_i - u_*\|_V \le 2 \cdot \|u_i - u_*\|_V.$

Also $||u_{i+1} - u_i||_V \to 0$ und mit Stetigkeit $||f(u_i)||_V \to 0$ für $i \to \infty$. Daraus folgt der Abbruch nach endlich vielen Schritten.

Bemerkungen:

- f' invertierbar heißt, dass u_* eine einfache Nullstelle ist
- u Nullstelle von f. Dann sei $\varepsilon(u)$ der Einzugsbereich von u, d.h. $u_0 \in \varepsilon(u) \Rightarrow$ das Newton-Verfahren ist wohldefiniert für u_0 und die Folge $\{u_i\}_{i\geq 0}$ konvergiert gegen u.

Der vorherige Satz sagt: $B_{\delta}(u) \subseteq \varepsilon(u)$ für δ klein (unter genannten Voraussetzungen)

Beispiel $V = \mathbb{R}, f(x) = \arctan(x)$ Bildchen

$$f(0) = 0$$

$$|x_0| < X_0 \quad \Rightarrow \quad x_i \to 0$$

$$|x_0| > X_0 \quad \Rightarrow \quad |x_i| \to \infty$$

$$x_0 = X_0 \quad \Rightarrow \quad x_i = (-1)^i \cdot x_0$$

Für $V = \mathbb{R}^n$, $n \ge 2$ ist $\varepsilon(u)$ sehr kompliziert.

Wir berechnen für große Raumdimension $n f(u_i)^{-1}$ nicht explizit. Stattdessen lösen wir

$$f'(u_i)d_i = -f(u_i)$$

$$u_{i+1} = u_i + d_i$$

Newton-Kantorovich-Theorem $F: D \subset V \longrightarrow V, V$ Banachraum, D offen und konvex, F stetig db, $x_0 \in D$ und $F'(x_0)$ invertierbar sowie

$$||F'(x_0)^{-1}F(x_0)|| \leq \alpha$$

$$||F'(x_0)^{-1}(F'(y) - F'(x))||_{\mathbb{L}(V,V)} \leq \omega_0 \cdot ||x - y||_V \quad \forall x, y \in D$$

$$h_0 := \alpha\omega_0 < 1/2$$

$$B_{\delta}(x_0) \subset D, \ \delta := \frac{1}{\omega_0}(1 - (1 - 2h_0)^{1/2})$$

Dann ist die Folge $\{x_k\}_k$ der Newton-Iteration wohldefiniert, sie bleibt in $B_{\delta}(x_0)$ und konvergiert gegen ein x_* mit $F(x_*) = 0$. Die Konvergenz ist quadratisch.

Bemerkung

- Die Existenz der Nullstelle wird garantiert. Daher sind solche Theoreme auch in der Analysis interessant.
- Man kann (wie bei Banach) a priori Schranken oder a posteriori Schranken betrachten
- Beachte: $F(u)=0 \Leftrightarrow AF(u)=0$, falls A invertierbar ist. Wie in 2.4.1, 2.4.2 hängen die Konstanten von A ab. Die Größe $F'^{-1}F$ ist invariant gegenüber der Transformation $F\mapsto AF$

4.2.4 Globale Konvergenz

Idee: Definiere eine "Energie", die in jedem Schritt verkleinert wird: für ein $E:V=\mathbb{R}^n\longrightarrow\mathbb{R}$ gelte

$$|u_{i+1}| = |u_i - f'(u_i)^{-1} f(u_i)| = E(u_{i+1}) < E(u_i)$$

Problem: u_{i+1} sollte nicht zu weit weg sein von u_i . Ausweg (siehe Jakobi- oder SOR-Verfahren): Dämpfung.

Für $\tau_i > 0$ ist $u_{i+1} = u_i - \tau_i f'(u_i)^{-1} f(u_i)$ das gedämpfte Newton-Verfahren. "i klein": $\tau_i \in (0,1)$ klein

"i groß": $\tau_i \to 1$ um von der quadratischen Konvergenz zu profitieren. ($\tau \neq 1$: gedämpftes Newton-Verfahren konvergiert nur linear)

Lemma 4. $\emptyset \neq D \subset \mathbb{R}^n$ abgeschlossen und beschränkt. $f \in C^1(D, \mathbb{R}^n)$ und $f'(u)^{-1}$ existiere für alle $u \in D$. |.| eine Vektornorm.

Definiere $E: D \longrightarrow \mathbb{R}$, $u \mapsto E(u) = |f(u)|$ mit $d(u) := -f'(u)^{-1} \cdot f(u)$. Dann gilt: Für alle $\varepsilon > 0$ existiert ein $\delta > 0$ mit

$$E(u + \tau d(u)) \le (1 - \tau + \varepsilon \tau)E(u)$$
 für alle $u \in D, \ \tau \in (0, \delta)$

Beweis. $F\ddot{u}r\ u\in D$:

$$f(u + \tau d(u)) = f(u) + \int_{0}^{\tau} f'(u + sd(u))d(u) ds$$

$$= \left(Id - \int_{0}^{\tau} f'(u + sd(u))f'(u)^{-1} ds\right)f(u)$$

$$= \left((1 - \tau)Id - \int_{0}^{\tau} (f'(u + sd(u)) - f'(u))f'(u)^{-1} ds\right)f(u)$$

au genügend klein:

$$|f(u + \tau d(u))| \le (1 - \tau + \underbrace{\tau \sup_{s \in (0,\tau)} ||f'(u + sd(u)) - f'(u)||_2}_{\leq C - 1 \cdot \varepsilon. \text{ falls } \tau < \delta} \underbrace{||f'(u)^{-1}||_2}_{\leq C}) \cdot |f(u)|$$

$$\Rightarrow E(u + \tau d(u)) \le (1 - \tau + \varepsilon \tau)E(u)$$

Schrittweitensteuerung f wie in 2.3, E wie oben. Wähle ein $\sigma \in (0,1)$ und $u_0 \in D$. Newton-Verfahren mit Schrittweitensteuerung

Initialisierung: $u_0 \in D$

Iteration: für $k \ge 0$

- 1.) Löse $f'(u_k)d_k = -f(u_k)$ für d_k
- 2.) Bestimme $\tau_k = 2^{-q_k}$ und $q_k \in \mathbb{N}$ minimal mit $B_{\tau|d_k|}(u_k) \subset D$ und $E(u_k + \tau_k d_k) \leq (1 \sigma \tau_k) E(u_k)$
- 3.) $u_{k+1} = u_k + \tau_k d_k$, gehe zu (1)

Wahl des Wertes q_k

k=0: $q=0,1,\ldots$ bist die Bedingung in (2) für ein q_0 zum ersten Mal erfüllt ist. k>0: Probiere $q=q_{k-1}-1,q_{k-1},\ldots$ bist (2) für ein q_K zum ersten Mal erfüllt ist.

Globale Konvergenz

Satz 20. f wie im Lemma in 2.4.1 bzgl. eines D_{α} .

Zu $\alpha > 0$ sei $D_{\alpha} := \{v \in D : |f(v)| \leq \alpha\}$ nichtleer und kompakt. (f darf nur eine Nullstelle haben und muss glm konvergieren)

Dann konvergiert das Verfahren aus 2.4.1 für alle Startwerte $u_0 \in D_\alpha$ gegen eine Nullstelle von f in D_α .

Insbesondere folgt der Abbruch nach endlich vielen Schritten bzgl. des Kriteriums $E(u_k) \le \operatorname{Tol}_f f \ddot{u} r \ ein \ \operatorname{Tol}_f > 0$

Beweis. Nach Konstruktion gilt:

$$E(u_{[k+1}) \le E(u_k) \le \ldots \le E(u_0) = \alpha$$

und $\{u_k\}_k \subseteq D_\alpha$.

Die Folge konvergiert daher, weil D_{α} kompakt ist, etwa $u_k \to u_*(k \to \infty)$ für eine Teilfolge. Nach dem Lemma gibt es zu jedem $\varepsilon > 0$ ein $\delta > 0$, so dass

$$|f(u_k + \tau d(u_k))| \le (1 - (1 - \varepsilon)\tau)|f(u_k)|$$

 $f\ddot{u}r \ 0 \le \tau \le \delta$, gleichmäßig in D_{α} .

Nun sei $\varepsilon := 1 - \sigma$, d.h.

$$|f(u_k + \tau d(u_k))| \le (1 - \sigma \tau)|f(u_k)|$$

Diese Ungleichung gilt für $\tau = \delta$, d.h. nach Konstruktion gilt $\tau_k \geq \delta/2$. Insbesondere erhalten wir nach endl. vielen Schritten

$$|f(u_{k+1})| = |f(u_k + \tau_k d_k)| \le (1 - \frac{1}{2}\delta\sigma)|f(u_k)|,$$

also $E(u_{k+1}) \leq \kappa E(u_k)$ für ein $\kappa \in (0,1)$, so dass $\lim_{k \to \infty} E(u_k) = 0$. Insbesondere wird

$$E(u_k) = |f(u_k)| \stackrel{!}{\leq} \operatorname{Tol}_f \ nach \ endlich \ vielen \ Schritten \ erreicht.$$