

Лекция 1

Аксиоматика множеств

Содержание лекции:

Данная вводная лекция посвящена одному из фундаментальных понятий математики - множеству. Здесь мы обсудим современное представление о множествах и коротко обсудим наиболее известную систему аксиом, которая описывает данную математическую структуру.

Ключевые слова:

Понятие множества по Кантору, аксиома Фреге, парадоксы теории множеств, элемент, отношение принадлежности, подмножество, система аксиом ZF, аксиома выбора, другие системы аксиом.

Авторы курса:

Трифанов Александр

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

1.1 Интуиция и примеры

Nota bene Ввиду того, что существует несколько систем аксиом, описывающих множество как объект, мы, перед тем как сформулировать некоторые из них, дадим определение, принадлежащее автору теории множеств - Георгу Кантору:

Множеством называется любое соединение определенных различных (различимых) объектов нашего умозрения или нашей мысли (которые будут называться элементами множетва) в единое целое.

Nota bene Задать множество можно одним следущих способов:

1. табличная запись:

$${a, b, a, b, a, c}$$
.

- 2. задание предиката (правила)
 - перечисление элементов (достаточное для понимания правила):

$$\omega = \{1, 2, 3, \dots, n, \dots\},\,$$

• задание элемента общего вида:

$$2 \cdot \mathbb{Z}, \quad a_n = 2^n, \quad a + 2\sqrt{2}.$$

Задача 1.1. Сколько элементов содержится в множестве зеленых яблок?

Пример 1.1. Примеры множеств:

1. Множество арабских цифр:

$$Dig = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

2. Числовые множества:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{A} , \mathbb{C} , \mathbb{H}_4

3. Отрезки и интервалы:

$$[a,b], \quad [0,\infty), \quad (-\infty,\infty).$$

Nota bene Следует отметить, что не любое мыслимое правило может быть использовано задания множества. Принятие следующей **аксиомы Фреге** привело к внешней "дискредитации" теории множеств и ряду парадоксов:

Для любого свойства \mathcal{P} существует множество $\{x \mid \mathcal{P}(x)\}$ всех объектов x, обладающих свойством \mathcal{P} .

Пример 1.2. Для примера приведем известные падоксы Эвбулида, Эпименида, Рассела, парадокс лжеца и парадокс самоприменимости.

1.2 Принадлежность и включение

Nota bene Введем понятие, которое является исходным в теории множеств (Set):

Объект x теории Set называется **элементом** объекта y этой теории, если x находится в отношении \in с объектом y.

Nota bene Обычно используют запись $x \in y$ и говорят, что x принадлежит y.

Nota bene Принадлежность, вообще говоря, не обладает *свойством транзитив- ности*, то есть:

$$x \in y$$
, $y \in z \implies x \in z$.

Пример 1.3. Рассмотрим два множества:

$$A = \{x, \{x\}\}\ B = \{\{x\}\}\ ,$$

и $x \in \{x\}$, однако $x \in A$ и при этом $x \notin B$.

Nota bene Позже мы введем аксиому, запрещающую конструкции вида $x \in x$.

Объект u теории Set называется **подмножеством** объекта w этой теории если

$$\forall x \in u \implies x \in w$$

Nota bene Обычно используется запись $u \subseteq w$ и говорят, что u содержится в w. Если при этом $w \not\subset v$, то говорят, что u содержится в w строго и записывают $u \subset w$.

Лемма 1.1. Отношение ⊆ обладает следующими свойствами:

- рефлексивность: $u \subseteq u$;
- анстисимметричность: $v \subseteq w$, $w \subseteq v \Rightarrow v = w$;
- транзитивность: $u \subseteq v$, $v \subseteq w \Rightarrow u \subseteq w$.

Nota bene Свойство антисимметричности в теории Set является, по существу, определением равенства его объектов.

Пример 1.4. Примеры подмножеств:

$$\mathbb{Q} \subseteq \mathbb{R}$$
, $\mathbb{R} \subseteq \mathbb{C}$, $\{1, 3, 5, 7\} \subseteq \text{Dig}$, $B \subseteq A$.

1.3 Система аксиом ZF+C

Nota bene Наиболее известная система аксиом теории Set была предложена Э. Цермелло и А. Френкелем. В этой системе есть единственный тип объектов - множество и единственный предикат ∈. Множества и отношение принадлежности подчинены следующим требованиям:

ZF-1. (Аксиома экстенсиональности) Два множества x и y равны, если они содержат одни и те же элементы:

$$x = y \Leftrightarrow (z \in x \Leftrightarrow z \in y).$$

ZF-2. (Аксиома существования) Существует пустое множество (утверждение $x \in \varnothing$ ложно для любого x):

$$x \in \varnothing \quad \Rightarrow \quad \forall \mathcal{P} \quad \mathcal{P}(x).$$

ZF-3. (Аксиома неупорядоченных пар) Для любых двух объектов x и y существует множество $\{x,y\}$:

$$\{x,y\} = \{y,x\}, \quad \{x,x\} = \{x\}.$$

ZF-4. (Аксиома объединения) Для любого множества x множеств y_{α} существует их объединение $z = \bigcup y_{\alpha}$:

$$u \in z = \bigcup_{y \in x} y \quad \Leftrightarrow \quad \exists \, y \in x : \quad u \in y.$$

ZF-5. (Аксиома бесконечности) Существует такое множество ω , что

$$\varnothing \in \omega, \quad \forall x \in \omega \quad \{x, \{x\}\} \in \omega.$$

- **ZF-6.** (Аксиома подмножеств) Для любого множества x и любого свойства \mathcal{P} существует множество всех $y \in x$, обладающих свойством \mathcal{P} .
- **ZF-7.** (Аксиома степени) Для любого множества x существует множество ω такое, что

$$y \in \omega \quad \Leftrightarrow \quad y \subseteq x.$$

- **ZF-8.** (Аксиома выбора) Если x объединение неперескающихся непустых множеств x_{α} , то существует по крайней мере одно подмножество $y \subseteq x$, которое пересекается с каждым из x_{α} ровно по одному элементу.
- **ZF-9.** (Аксиома регулярности) Принадлежности вида $x \in x$ запрещены:

$$\exists \, x \in y: \quad \forall z \in y \quad z \notin x.$$

Nota bene Кроме представленной выше системы аксиом **ZF**, дополненной аксиомой выбора **C**, существуют и другие системы: Гёделя-Бернайса (**GB**), теории типов (**PM**, **NF**, **ML**), система Гротендика (**ZFG**), теория гипермножеств (**ZF** $^-$).