Solution de l'exercice 1

Formalisation du problème

$$\begin{cases} \textit{Maximiser} \quad z = 1700X_1 + 3200X_2 \\ \textit{Avec} \quad & 3X_2 \leq 39 \\ 1,5X_1 + 4X_2 \leq 60 \\ 2X_1 + 3X_2 \leq 57 \\ 3X_1 + 2X_2 \leq 70 \\ 3X_1 & \leq 57 \end{cases}$$

$$X_1 \geq 0 \quad , \quad X_2 \geq 0$$

Le nouveau programme linéaire s'écrit:

La contrainte (1) entraine $X_2 \le 13$ et la contrainte (6) $X_2 \le 11$.

La contrainte (1) est donc redondante. De mème (5) entraine $X_1 \le 19$, mais (8) entraine $X_1 \le 17$.

Donc la contrainte (5) est redondante.

(2) s'écrit $3X_1 + 8X_2 \le 120$. (7) s'écrit $3X_1 + 9X_2 \le 108$.

La contrainte (2) est donc redondante.

(7) s'écrit (7'):
$$X_1 + 3X_2 \le 36$$
. (8) s'écrit $X_1 \le 17$.

En les additionnant, on obtient $2X_1 + 3X_2 \le 53$. La contrainte (3) est donc redondante. (6) et (8) s'écrivent (6'): $X_2 \le 11$ et (8'): $X_1 \le 17$. Additionnons à (7') l'inégalité (6') et 5 fois l'inégalité (8'). On obtient $6X_1 + 4X_2 \le 132$ $3X_1 + 2X_2 \le 66$ La contrainte (4) est donc redondante.

Le problème devient donc:

$$Maximiser \quad z = 1700X_1 + 3200X_2$$
 $Avec \quad X_1 \quad \leq 11$ $X_2 \leq 17$ $X_1 + 3X_2 \leq 36$ $X_1 \geq 0$, $X_2 \geq 0$

que le lecteur résoudra aisément: $X_1=11$, $X_2=25/3$ et z=45367F