```
In [1]: import pandas as pd
        df = pd.read_csv("teste_indicium_precificacao.csv")
In [2]: #dando uma analise nos dados importados
        df.shape
        df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 48894 entries, 0 to 48893
       Data columns (total 16 columns):
           Column
                                          Non-Null Count Dtype
                                          -----
        0
           id
                                          48894 non-null int64
                                          48878 non-null object
        1
           nome
        2
           host id
                                          48894 non-null int64
                                          48873 non-null object
        3
          host_name
          bairro_group
                                          48894 non-null object
        5
           bairro
                                          48894 non-null object
           latitude
                                          48894 non-null float64
                                          48894 non-null float64
        7
           longitude
        8 room_type
                                         48894 non-null object
                                          48894 non-null int64
        9
           price
        10 minimo_noites
                                          48894 non-null int64
                                        48894 non-null int64
        11 numero_de_reviews
        12 ultima_review
                                         38842 non-null object
                                          38842 non-null float64
        13 reviews_por_mes
        14 calculado_host_listings_count 48894 non-null int64
        15 disponibilidade 365
                                          48894 non-null int64
       dtypes: float64(3), int64(7), object(6)
       memory usage: 6.0+ MB
In [3]: df.isnull().sum()
Out[3]: id
                                             0
                                            16
        nome
        host id
                                             0
        host_name
                                            21
        bairro_group
                                             0
                                             0
        bairro
        latitude
                                             0
                                             0
        longitude
                                             0
        room_type
        price
                                             0
                                             0
        minimo_noites
                                             0
        numero de reviews
                                         10052
        ultima_review
                                         10052
        reviews_por_mes
        calculado_host_listings_count
                                             0
        disponibilidade_365
                                             0
        dtype: int64
In [4]: df.head()
```

Out

[4]:		id	nome	host_id	host_name	bairro_group	bairro	latitude	longitu
	0	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.983
	1	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.941
	2	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.959
	3	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.943
	4	5099	Large Cozy 1 BR Apartment In Midtown East	7322	Chris	Manhattan	Murray Hill	40.74767	-73.975

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10,5))
sns.histplot(df["price"], bins=50, kde=True)
plt.title("Distribuição dos Preços")
plt.xlabel("Preços")
plt.ylabel("frequencia")
plt.show()
```



```
In [6]: df_por_bairro = df.groupby("bairro")["price"].mean().round(2).reset_index()

df_por_bairro = df_por_bairro.sort_values(by="price", ascending=False)
```

```
print(df_por_bairro.head(10))
print(df_por_bairro.tail(10))

#vendo a relação dos preços por bairros os mais caros e mais baratos
```

```
bairro
                        price
82
       Fort Wadsworth 800.00
219
              Woodrow
                       700.00
197
              Tribeca 490.64
174
             Sea Gate 487.86
             Riverdale 442.09
167
157
         Prince's Bay 409.50
     Battery Park City 367.56
     Flatiron District 341.92
75
         Randall Manor 336.00
161
144
                 NoHo 295.72
             bairro price
135
        Mount Eden 58.50
46
            Concord 58.19
88
         Grant City 57.67
142 New Dorp Beach 57.40
24
         Bronxdale 57.11
141
          New Dorp 57.00
179
         Soundview 53.47
196
            Tremont 51.55
102
       Hunts Point 50.50
27
       Bull's Head 47.33
```

```
import folium
from folium.plugins import HeatMap

mapa = folium.Map(location=[40.7128, -74.0060], zoom_start=11)

data_latitude = df[["latitude", "longitude", "price"]].values
HeatMap(data_latitude, radius=10).add_to(mapa)

mapa
```

Out[7]:

Out[8]:	room_type	Entire home/apt	Private room	Shared room
	bairro			
	bairro			

Fort Wadsworth	800.00	NaN	NaN
Woodrow	700.00	NaN	NaN
Randall Manor	651.00	56.89	13.0
Sea Gate	649.40	84.00	NaN
Tribeca	561.82	191.26	NaN
•••			
Breezy Point	NaN	213.33	NaN
Bull's Head	NaN	47.33	NaN
Co-op City	NaN	77.50	NaN
Holliswood	NaN	135.75	NaN
Olinville	NaN	102.50	25.5

221 rows × 3 columns

Out[9]:	room_type	Entire home/apt	Private room	Shared room
	bairro			
	Riverdale	141.50	803.50	800.00
	Midtown	301.27	244.43	98.13
	Jamaica Estates	172.27	223.00	NaN
	Breezy Point	NaN	213.33	NaN
	West Village	278.72	205.65	180.00
	•••			
	Bay Terrace, Staten Island	102.50	NaN	NaN
	Howland Hook	100.00	NaN	NaN
	Richmondtown	78.00	NaN	NaN
	Rossville	75.00	NaN	NaN

221 rows × 3 columns

In [10]:	<pre>df_pivot = df_pivot.sort_values(by="Shared room" , ascending=False)</pre>
	df_pivot

New Dorp 57.00 NaN NaN

0 1		
()	1 1 1/4 1	-

room_type	Entire home/apt	Private room	Shared room
bairro			
Riverdale	141.50	803.50	800.0
Vinegar Hill	224.04	96.10	250.0
Financial District	242.75	165.62	208.1
Little Italy	291.00	95.71	207.5
West Village	278.72	205.65	180.0
•••			
Bay Terrace, Staten Island	102.50	NaN	NaN
Howland Hook	100.00	NaN	NaN
Richmondtown	78.00	NaN	NaN
Rossville	75.00	NaN	NaN
New Dorp	57.00	NaN	NaN

221 rows × 3 columns

In [11]: #TRATAMENTO DOS DADOS

import numpy as np

```
df_filtrado = df[df["price"] > 0].copy()

df_sem_outliers = pd.DataFrame()

for bairro, sub_df in df_filtrado.groupby("bairro"):
    Q1 = sub_df["price"].quantile(0.25)
    Q3 = sub_df["price"].quantile(0.75)
    IQR = Q3 - Q1

    limite_inferior = Q1 - 1.5 * IQR
    limite_superior = Q3 + 1.5 * IQR

    df_bairro_filtrado = sub_df[(sub_df["price"] >= limite_inferior) & (sub_df["
        df_sem_outliers = pd.concat([df_sem_outliers, df_bairro_filtrado])

df_sem_outliers.reset_index(drop=True, inplace=True)

df_sem_outliers = df_sem_outliers.sort_values(by="price", ascending=False)
    df_sem_outliers.head()
```

Out[11]:		id	nome	host_id	host_name	bairro_group	bairro	latitude
	33981	2261367	brooklyn 14 bedroom gated community	10416706	Tzvi	Brooklyn	Sea Gate	40.57645
	33985	32740761	My place 4 u	181889371	David	Brooklyn	Sea Gate	40.57919
	36174	15140627	Stunning 4 Bed Tribeca Penthouse w/ Huge Terrace!	30283594	Kara	Manhattan	Tribeca	40.72125
	36194	21948560	Luxury Skyline Views! Best Panaromic Views Of	23001368	Sofia	Manhattan	Tribeca	40.71735
	36156	9857920	SWING FROM THE CHANDELIER	29941633	William	Manhattan	Tribeca	40.71454
	<							>
In [12]:	df_gro	uped2 = df	_sem_outlier	s.groupby(["bairro", "	room_type"])["price"].mean().r
	df_piv	ot2 = df_g	rouped2.pivo	t(index="ba	irro", colu	mns="room_typ	e", valı	ues="price
	df_piv	ot2 = df_p	ivot2.sort_va	alues(by="E	ntire home/	apt" , ascend	ling =Fal :	se)
	print(df_pivot2)						

room_type	Entire home/apt	Private room	Shared room
bairro			
Fort Wadsworth	800.00	NaN	NaN
Woodrow	700.00	NaN	NaN
Sea Gate	649.40	84.00	NaN
Tribeca	350.49	151.61	NaN
Flatiron District	287.63	142.27	NaN
• • •	• • •		• • •
Hunts Point	NaN	44.65	NaN
Mount Eden	NaN	40.20	NaN
New Brighton	NaN	65.00	NaN
Olinville	NaN	102.50	25.5
South Beach	NaN	69.83	20.0

[221 rows x 3 columns]

In [13]: #Supondo que uma pessoa esteja pensando em investir em um apartamento para aluga #o melhor bairro_group em geral é manhattan e os melhores bairros para investir df_sem_outliers["receita_estadia"] = df_sem_outliers["price"] * df_sem_outliers[df_sem_outliers["receita_estadia"] * df_sem_outliers["receita_estadia"] * df_sem_outliers["price"] * df_

Top	10	bairros	para	Entire	home/apt:
	1	•			In a 2

	bairro_group	bairro	room_type	receita_mensal
310	Manhattan	Stuyvesant Town	Entire home/apt	2773.275000
301	Manhattan	Nolita	Entire home/apt	2662.672097
483	Staten Island	Great Kills	Entire home/apt	2490.676000
262	Manhattan	Flatiron District	Entire home/apt	1754.218222
14	Bronx	Claremont Village	Entire home/apt	1687.910000
316	Manhattan	Tribeca	Entire home/apt	1664.720658
313	Manhattan	Theater District	Entire home/apt	1606.274697
279	Manhattan	Kips Bay	Entire home/apt	1502.790327
90	Bronx	Spuyten Duyvil	Entire home/apt	1468.860000
299	Manhattan	NoHo	Entire home/apt	1465.322037

Top 10 bairros para Private room:

·	bairro_group	bairro	room_type	receita_mensal
314	Manhattan	Theater District	Private room	1511.261831
516	Staten Island	Silver Lake	Private room	988.200000
302	Manhattan	Nolita	Private room	916.848333
494	Staten Island	New Brighton	Private room	715.250000
268	Manhattan	Greenwich Village	Private room	651.539733
168	Brooklyn	DUMBO	Private room	645.875000
260	Manhattan	Financial District	Private room	577.481695
155	Brooklyn	Cobble Hill	Private room	543.693158
319	Manhattan	Two Bridges	Private room	533.491316
211	Brooklyn	Navy Yard	Private room	495.825000

Top 10 bairros para Shared room:

	bairro_group	bairro	room_type	receita_mensal
23	B6 Brooklyn	Vinegar Hill	Shared room	545.000000
45	Queens	Woodside	Shared room	395.200000
32	22 Manhattan	Upper East Side	Shared room	349.114444
29	98 Manhattan	Murray Hill	Shared room	316.628571
25	8 Manhattan	East Village	Shared room	281.062667
31	.5 Manhattan	Theater District	Shared room	278.190000
25	0 Manhattan	Chinatown	Shared room	267.780000
39	97 Queens	Jamaica	Shared room	249.240000
43	Queens	Richmond Hill	Shared room	240.060000
27	75 Manhattan	Hell's Kitchen	Shared room	229.128824

```
In [14]: #O número mínimo de noites e a disponibilidade ao longo do ano interferem no pre
    #o grafico de crescimento indica qe sim, uma maior disponibilidade e minimo de n
    import seaborn as sns
```

```
# Configurar tema dos gráficos
sns.set_theme(style="whitegrid")
```

import matplotlib.pyplot as plt

```
# Gráfico 1: Mínimo de noites vs Preço
plt.figure(figsize=(12, 6))
sns.scatterplot(data=df_sem_outliers, x="minimo_noites", y="price", alpha=0.6)
plt.title("minimo_noites x price")
```

```
plt.xlabel("minimo_noites")
plt.ylabel("Preço")
plt.show()
# Gráfico 2: Disponibilidade vs Preço
plt.figure(figsize=(12, 6))
sns.scatterplot(data=df_sem_outliers, x="disponibilidade_365", y="price", alpha=
plt.title("Disponibilidade_365 x price")
plt.xlabel("Disponibilidade_365")
plt.ylabel("price)")
plt.show()
sns.lmplot(data=df_sem_outliers, x="minimo_noites", y="price", line_kws={'color'
sns.lmplot(data=df_sem_outliers, x="disponibilidade_365", y="price", line_kws={'
                                       minimo_noites x price
1400
1200
1000
800
600
400
 200
  0
       0
                                                                    1000
                   200
                               400
                                           600
                                                                                1200
                                         minimo_noites
                                     Disponibilidade_365 x price
1400
1200
1000
800
600
400
200
  0
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x2924d6dfc10>

50

100

300

250

Disponibilidade_365

350

In [15]: #Existe algum padrão no texto do nome do local para lugares de mais alto valor?

```
#existe um certo padrão para as palavras sim
# palavras como luxury aparecem mais em imoveis mais caros
#e palavras como cozy em imoveis mais baratos
from collections import Counter
import re
df_luxo = df_sem_outliers[df_sem_outliers["price"] >= 400].copy()
df_luxo["nome"] = df_luxo["nome"].fillna("").astype(str)
palavras = " ".join(df_luxo["nome"]).lower()
palavras = re.findall(r'\b[a-zA-Z]+\b', palavras)
contagem_palavras = Counter(palavras)
print(contagem_palavras.most_common(20))
#contado repetições das palavras em imoveis mais caros definidos como com preço
print("\n###############\n")
df_barato = df_sem_outliers[df_sem_outliers["price"] <= 40].copy()</pre>
df_barato["nome"] = df_barato["nome"].fillna("").astype(str)
palavras_barato = " ".join(df_barato["nome"]).lower()
palavras_barato = re.findall(r'\b[a-zA-Z]+\b', palavras_barato)
contagem_palavras_barato = Counter(palavras_barato)
print(contagem_palavras_barato.most_common(20))
#contado repetições das palavras em imoveis mais baratos definidos como com preç
print("\n###############\n")
df palavras = pd.DataFrame(contagem palavras.most common(20), columns=["Palavra"
df palavras barato = pd.DataFrame(contagem palavras barato.most common(20), colu
df comparacao = pd.merge(df palavras, df palavras barato, on="Palavra", how="out
print(df_comparacao)
```

```
[('loft', 80), ('in', 73), ('luxury', 60), ('bedroom', 58), ('soho', 48), ('midto
wn', 43), ('apartment', 36), ('manhattan', 35), ('west', 35), ('the', 34), ('trib
eca', 32), ('w', 28), ('of', 28), ('apt', 28), ('nyc', 27), ('park', 26), ('new',
25), ('with', 24), ('village', 24), ('central', 23)]
```


[('room', 1352), ('in', 1040), ('private', 549), ('cozy', 443), ('bedroom', 369),
('to', 328), ('brooklyn', 317), ('apartment', 213), ('and', 201), ('manhattan', 1
97), ('bushwick', 193), ('bed', 193), ('near', 193), ('a', 190), ('for', 181),
('spacious', 179), ('shared', 167), ('sunny', 155), ('the', 152), ('with', 151)]

	Palavra	Frequência Luxo	Frequência_Barato
0	a	0.0	190.0
1	and	0.0	201.0
2	apartment	36.0	213.0
3	apt	28.0	0.0
4	bed	0.0	193.0
5	bedroom	58.0	369.0
6	brooklyn	0.0	317.0
7	bushwick	0.0	193.0
8	central	23.0	0.0
9	cozy	0.0	443.0
10	for	0.0	181.0
11	in	73.0	1040.0
12	loft	80.0	0.0
13	luxury	60.0	0.0
14	manhattan	35.0	197.0
15	midtown	43.0	0.0
16	near	0.0	193.0
17	new	25.0	0.0
18	nyc	27.0	0.0
19	of	28.0	0.0
20	park	26.0	0.0
21	private	0.0	549.0
22	room	0.0	1352.0
23	shared	0.0	167.0
24	soho	48.0	0.0
25	spacious	0.0	179.0
26	sunny	0.0	155.0
27	the	34.0	152.0
28	to	0.0	328.0
29	tribeca	32.0	0.0
30	village	24.0	0.0
31	W	28.0	0.0
32	west with	35.0	0.0
33	with	24.0	151.0

Explique como você faria a previsão do preço a partir dos dados. Quais variáveis e/ou suas transformações você utilizou e por quê? Qual tipo de problema estamos resolvendo (regressão, classificação)? Qual modelo melhor se aproxima dos dados e quais seus prós e contras? Qual medida de performance do modelo foi escolhida e por quê?

Explicação do Modelo de Previsão de Preços

Tipo de Problema

Estou lidando com um **problema de regressão**, onde o objetivo é prever um valor contínuo—neste caso, o preço. A variável alvo é price, que representa o valor que desejo prever.

Variáveis Utilizadas

Dividi as variáveis em dois grupos principais:

Colunas Categóricas:

- bairro
- room_type

Essas variáveis são qualitativas e não possuem uma ordem natural. Por isso, utilizei o **OneHotEncoder** para transformá-las em variáveis binárias, criando uma coluna para cada categoria.

• Colunas Numéricas:

- minimo_noites
- disponibilidade_365
- reviews_por_mes
- latitude
- longitude

Essas variáveis são quantitativas e utilizadas diretamente no modelo. Para lidar com valores ausentes, utilizei o **SimpleImputer** com estratégia de mediana.

Pipeline de Pré-processamento

Criei um pipeline para automatizar a preparação dos dados antes de alimentar o modelo:

- 1. **OneHotEncoder:** Converte variáveis categóricas em formato numérico.
- 2. **SimpleImputer:** Trata valores ausentes nas variáveis numéricas, utilizando a mediana para substituição.

Modelo Escolhido

Utilizei o **RandomForestRegressor**, um modelo de ensemble baseado em árvores de decisão.

Prós:

- Robusto contra overfitting, especialmente com ajustes como max_depth e min_samples_split .
- Capaz de capturar relações complexas entre as variáveis.
- Suporta tanto variáveis categóricas (após transformação) quanto numéricas.

Contras:

- Pode ser computacionalmente caro, especialmente com muitos estimadores (neste caso, 200 árvores).
- Menos interpretável do que modelos lineares.

Medidas de Performance

Para avaliar o modelo, utilizei as seguintes métricas:

 Mean Absolute Error (MAE): Medesoluto médio. Fácil de interpretar, masMAE: 33.73MAE: 33.86

não penaliza grandes erros tanto quanto o MSE.

• MError (MSE): Penaliza mais os erros RMSE: 50.92

RMSE: 50.37 grandes, sendo útil para evitar grandes desvios.

 R² Score: Indica o quanto da variabilidade dos dados é explvalelo. O valor varia entre 0 e 1, onde v:R²: 0.59

59R²: 0.60 oes mais próximos de 1 indicam um melhor ajuste.

Processo de Previsão

A função prever_precos realiza a previsão dos preços a partir dos dados de entrada:

- Converte os dados para um DataFrame, caso necessário.
- Verifica se todas as colunas necessárias estão presentes.
- Aplica o pipeline de pré-processamento.
- Utiliza o modelo para gerar as previsões e retorna um DataFrame com o preço previsto.

Justificativa das Escolhas

- Transformações: O uso de OneHotEncoder para variáveis categóricas facilita a interpretação do modelo, enquanto o SimpleImputer garante que não haja problemas com valores ausentes.
- RandomForest: Escolhi este modelo pela sua capacidade de capturar relações nãolineares e sua robustez.
- **Métricas:** Utilizei o R² Score para avaliar a qualidade do ajuste e o MAE/MSE para analisar os erros médios.

In [16]: # bibliotecas necessárias

```
import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.compose import ColumnTransformer
         from sklearn.impute import SimpleImputer
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.pipeline import Pipeline
         from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
         # COlunas relevantes para a nalise
         colunas_categoricas = ['bairro', 'room_type']
         colunas_numericas = ['minimo_noites', 'disponibilidade_365', 'reviews_por_mes',
         coluna_alvo = "price"
         # Definição do pipeline de pré-processamento de dados
         preprocessador = ColumnTransformer(
             transformers=[
                  ('encoder_categorico', OneHotEncoder(handle_unknown='ignore', sparse out
                  ('imputador_numerico', SimpleImputer(strategy='median'), colunas_numeric
             ],
             remainder='drop' # Remove colunas não especificadas
         # Criando o pipeline com RandomForest
         pipeline = Pipeline(steps=[
             ('pre_processamento', preprocessador),
             ('regressor', RandomForestRegressor(n_estimators=200, max_depth=25, min_samp
         1)
         # Divisão dos dados
         X = df sem outliers[colunas categoricas + colunas numericas]
         y = df_sem_outliers[coluna_alvo]
         train, test = train_test_split(df_sem_outliers, test_size=0.2, random_state=42)
         X_train, y_train = train[colunas_categoricas + colunas_numericas], train[coluna_
         X_test, y_test = test[colunas_categoricas + colunas_numericas], test[coluna_alvolunas_numericas]
         print(f"Tamanho do conjunto de treino: {X train.shape[0]} amostras")
         print(f"Tamanho do conjunto de teste: {X_test.shape[0]} amostras")
        Tamanho do conjunto de treino: 36616 amostras
        Tamanho do conjunto de teste: 9155 amostras
In [20]: #Avaliação
         # Treinamento
         pipeline.fit(X train, y train)
         # Previsões
         y_pred = pipeline.predict(X_test)
```

```
# Métricas
         print("\nperformance:")
         print(f"MAE: {mean_absolute_error(y_test, y_pred):.2f}")
         print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred)):.2f}")
         print(f"R2: {r2_score(y_test, y_pred):.2f}")
        performance:
        MAE: 33.86
        RMSE: 50.37
        R^2: 0.60
In [21]: import joblib
         joblib.dump(pipeline, 'modelo_precos.pkl')
         #salvando em .pkl
Out[21]: ['modelo_precos.pkl']
In [22]: #Supondo um apartamento com as seguintes características:
         #carregando o modelo .pkl
         import joblib
         import pandas as pd
         pipeline_carregado = joblib.load('modelo_precos.pkl')
         nova_entrada = pd.DataFrame([{
             'id': 2595,
             'nome': 'Skylit Midtown Castle',
              'host_id': 2845,
              'host_name': 'Jennifer',
             'bairro_group': 'Manhattan',
             'bairro': 'Midtown',
              'latitude': 40.75362,
              'longitude': -73.98377,
              'room type': 'Entire home/apt',
              'minimo_noites': 1,
              'numero_de_reviews': 45,
              'ultima_review': '2019-05-21',
              'reviews por mes': 0.38,
              'calculado_host_listings_count': 2,
              'disponibilidade_365': 355
         }])
         previsao = pipeline_carregado.predict(nova_entrada)
         print(f"Preço previsto: {previsao[0]:.2f}")
         #Qual seria a sua sugestão de preço?
         #Um valor de 246.10$
        Preço previsto: 246.10
 In [ ]:
```