Linear Algebra

Sets of Vectors

Michael Ruddy

Overview

- Vector Spans
- Linear In/dependence
- Orthonormal Basis

Vector Span
$$\{(1), (1), (2)\}$$
 $\{(1), (2), (2)\}$ $\{(1), (2), (2)\}$ $\{(1), (2), (2), (2)\}$ $\{(1), (2), (2), (2)\}$ We say that a (1) is a linear combination of these linear combination of these scalar values (1) (1) (2) (2) (3) (3) (4) (4) (4) (4) (5) (5) (5) (6) (7) (7) (7) (8) (7) (8) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (8) (1) (8) (1) (1) (1) (1) (1) (2) (3) (4) (1) (4) (4) (5) (5) (6) (6) (7) (7) (8) (7) (8) (7) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (5) (6) (6) (6) (6) (7) (7) (7) (8) (7) (8) (7) (8) (8) (8) (9) (9) (9) (1) $($

Vector Span {
$$\vec{v}_1, \vec{v}_2, ..., \vec{v}_N$$
 }

Span(\vec{v}) = The collection of all

linear combinations of these rectors.

= { $\vec{c}_1 \vec{v}_1 + \vec{c}_2 \vec{v}_2 + ... + \vec{c}_N \vec{v}_N | \vec{c}_1 \vec{c}_2, ..., \vec{c}_N \in \mathbb{R}$ }

= { $\vec{v}_i \vec{v}_i | \vec{c}_i \in \mathbb{R}$ }

Vector Span

(1) (1) (2)

Span
$$\{(1), (1), (2)\} = \text{Span } \{(1), (1)\}$$
 $\vec{v} = (v_1, v_2) = v_1(1) + v_2(1)$

redeement

Vector Span

Vector Span

A set of rectors is linearly independent if no rector in the set can be written as a linear combination of the others - If this is NOT true then

- If this is Not the the set is linearly dependent.

Who are two rectors linearly Vector Independence dependnt? {v1, v2} $S_0 = CV_2$ $S_0 = W_1$ true, then 34, v23 is lineally dependent Vector Independence 5pon(41,45) { CV1 + C2 V2 \ C1, C2 ER} 10, $\sqrt{3}$ = All 3D rectors

Vector Independence six, is, in way

A set of vectors is linearly independent If the following equation $C_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_N\vec{v}_N = 0$

$$C_1 \vec{v}_1 + C_2 \vec{v}_2 + \cdots + C_N \vec{v}_N = 0$$
Only has ONE solution $c_1 = c_2 = \cdots = c_N = 0$

 $C_{1}V_{1} + + C_{N-1}V_{N-1} = - C_{N}V_{N}$

A set of rectors is a bosis Basis for a vector space of they linearly independent and their span is equal to the space.

Basis
$$\left\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$
Basis $\left\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$

$$\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

$$= \begin{pmatrix} v_1\\v_1+v_2-v_1 \end{pmatrix} = \overrightarrow{v}$$

Basis A set of reckers forms an orthonormal basis for anater Space if they are a hosis and the reeters are all nutually orthogonal and have norm = 1.

N-dimesiand rector space { (3) (1) } ... (2) }

