[Previous Section | Next Section | Chapter Index | Main Index]

Section 5.6

this and super

Subsections

The Special Variable this
The Special Variable super
super and this As Constructors

ALTHOUGH THE BASIC IDEAS of object-oriented programming are reasonably simple and clear, they are subtle, and they take time to get used to. And unfortunately, beyond the basic ideas there are a lot of details. The rest of this chapter covers more of those annoying details. Remember that you don't need to master everything in this chapter the first time through. In this section, we'll look at two variables, this and super, that are automatically defined in any instance method.

5.6.1 The Special Variable this

What does it mean when you use a simple identifier such as amount or process() to refer to a variable or method? The answer depends on scope rules that tell where and how each declared variable and method can be accessed in a program. Inside the definition of a method, a simple variable name might refer to a local variable or parameter, if there is one "in scope," that is, one whose declaration is in effect at the point in the source code where the reference occurs. If not, it must refer to a member variable of the class in which the reference occurs. Similarly, a simple method name must refer to a method in the same class.

A **static** member of a class has a simple name that can only be used inside the class definition; for use outside the class, it has a full name of the form **class-name.simple-name**. For example, "Math.PI" is a static member variable with simple name "PI" in the class "Math". It's always legal to use the full name of a static member, even within the class where it's defined. Sometimes it's even necessary, as when the simple name of a static member variable is hidden by a local variable or parameter of the same name.

Instance variables and instance methods also have simple names. The simple name of such an instance member can be used in instance methods in the class where the instance member is defined (but not in static methods). Instance members also have full names -- but remember that an instance variable or instance method is actually contained in an object rather than in a class, and each object has its own version. A full name of an instance member starts with a reference to the object that contains the instance member. For example, if std is a variable that refers to an object of type Student, then std.test1 could be a full name for an instance variable named test1 that is contained in that object.

But when we are working inside a class and use a simple name to refer to an instance variable like test1, where is the object that contains the variable? The solution to this riddle is simple: Suppose that a reference to "test1" occurs in the definition of some instance method. The actual method that gets executed is part of some particular object of type Student. When that method gets executed, the occurrence of the name "test1" refers to the test1 variable in that same object. (This is why simple names of instance members cannot be used in static methods -- when a static method is executed, it is not part of an object, and hence there are no instance members in sight!)

This leaves open the question of full names for instance members inside the same class where they are defined. We need a way to refer to "the object that contains this method." Java defines a special variable named this for just this purpose. The variable this can be used in the source code of an instance method to refer to the object that contains the method. This intent of the name, "this," is to

refer to "this object," the one right here that this very method is in. If var is an instance variable in the same object as the method, then "this.var" is a full name for that variable. If otherMethod() is an instance method in the same object, then this.otherMethod() could be used to call that method. Whenever the computer executes an instance method, it automatically sets the variable this to refer to the object that contains the method.

(Some object oriented languages use the name "self" instead of "this." Here, an object is seen as an entity that receives messages and responds by performing some action. From the point of view of that entity, an instance variable such as self.name refers to the entity's own name, something that is part of the entity itself. Calling an instance method such as self.redraw() is like saying "message to self: redraw!")

One common use of this is in constructors. For example:

```
public class Student {
    private String name; // Name of the student.

public Student(String name) {
        // Constructor. Create a student with specified name.
        this.name = name;
    }
    .
        // More variables and methods.
    .
}
```

In the constructor, the instance variable called name is hidden by a formal parameter that is also called "name." However, the instance variable can still be referred to by its full name, which is this.name. In the assignment statement "this.name = name", the value of the formal parameter, name, is assigned to the instance variable, this.name. This is considered to be acceptable style: There is no need to dream up cute new names for formal parameters that are just used to initialize instance variables. You can use the same name for the parameter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method, you need to pass the object that contains the method to a subroutine, as an actual parameter. In that case, you can use this as the actual parameter. For example, if you wanted to print out a string representation of the object, you could say "System.out.println(this);". Or you could assign the value of this to another variable in an assignment statement. You can store it in an array. In fact, you can do anything with this that you could do with any other variable, except change its value. (Consider it to be a final variable.)

5.6.2 The Special Variable super

Java also defines another special variable, named "super", for use in the definitions of instance methods. The variable super is for use in a subclass. Like this, super refers to the object that contains the method. But it's forgetful. It forgets that the object belongs to the class you are writing, and it remembers only that it belongs to the superclass of that class. The point is that the class can contain additions and modifications to the superclass. super doesn't know about any of those additions and modifications; it can only be used to refer to methods and variables in the superclass.

Let's say that the class that you are writing contains an instance method named doSomething(). Consider the subroutine call statement super.doSomething(). Now, super doesn't know anything about the doSomething() method in the subclass. It only knows about things in the superclass, so it tries to

execute a method named doSomething() from the superclass. If there is none -- if the doSomething() method was an addition rather than a modification -- you'll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are **hidden** by things in the subclass. For example, super.var always refers to an instance variable named var in the superclass. This can be useful for the following reason: If a class contains an instance variable with the same name as an instance variable in its superclass, then an object of that class will actually contain two variables with the same name: one defined as part of the class itself and one defined as part of the superclass. The variable in the subclass does not **replace** the variable of the same name in the superclass; it merely **hides** it. The variable from the superclass can still be accessed, using super.

When a subclass contains an instance method that has the same signature as a method in its superclass, the method from the superclass is hidden in the same way. We say that the method in the subclass overrides the method from the superclass. Again, however, super can be used to access the method from the superclass.

The major use of super is to override a method with a new method that **extends** the behavior of the inherited method, instead of **replacing** that behavior entirely. The new method can use super to call the method from the superclass, and then it can add additional code to provide additional behavior. As an example, suppose you have a PairOfDice class that includes a roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of dice drawn on the computer screen. The roll() method in the GraphicalDice class should do everything that the roll() method in the PairOfDice class does. We can express this with a call to super.roll(), which calls the method in the superclass. But in addition to that, the roll() method for a GraphicalDice object has to redraw the dice to show the new values. The GraphicalDice class might look something like this:

Note that this allows you to extend the behavior of the roll() method even if you don't know how the method is implemented in the superclass!

5.6.3 super and this As Constructors

Constructors are not inherited. That is, if you extend an existing class to make a subclass, the constructors in the superclass do not become part of the subclass. If you want constructors in the subclass, you have to define new ones from scratch. If you don't define any constructors in the subclass, then the computer will make up a default constructor, with no parameters, for you.

This could be a problem, if there is a constructor in the superclass that does a lot of necessary work. It looks like you might have to repeat all that work in the subclass! This could be a **real** problem if you don't have the source code to the superclass, and don't even know how it is implemented. It might look like an impossible problem, if the constructor in the superclass uses private member variables that you don't even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special variable, super. As the very first statement in a constructor, you can use super to call a constructor from the superclass. The notation for this is a bit ugly and misleading, and it can only be used in this one particular circumstance: It looks like you are calling super as a subroutine (even though super is not a subroutine and you can't call constructors the same way you call other subroutines anyway). As an example, assume that the PairOfDice class has a constructor that takes two integers as parameters. Consider a subclass:

The statement "super(3,4);" calls the constructor from the superclass. This call must be the first line of the constructor in the subclass. Note that if you don't explicitly call a constructor from the superclass in this way, then the default constructor from the superclass, the one with no parameters, will be called automatically. (And if no such constructor exists in the superclass, the compiler will consider it to be a syntax error.)

You can use the special variable this in exactly the same way to call another constructor in the same class. That is, the very first line of a constructor can look like a subroutine call with "this" as the name of the subroutine. The result is that the body of another constructor in the same class is executed. This can be very useful since it can save you from repeating the same code in several different constructors. As an example, consider <u>MosaicPanel.java</u>, which was used indirectly in <u>Section 4.6</u>. A <u>MosaicPanel</u> represents a grid of colored rectangles. It has a constructor with many parameters:

This constructor provides a lot of options and does a lot of initialization. I wanted to provide easier-to-use constructors with fewer options, but all the initialization still has to be done. The class also contains these constructors:

Each of these constructors exists just to call another constructor, while providing constant values for some of the parameters. For example, this(42,42,16,16) calls the last constructor listed here, while

that constructor in turn calls the main, six-parameter constructor. That main constructor is eventually called in all cases, so that all the essential initialization gets done in every case.

[Previous Section | Next Section | Chapter Index | Main Index]