EEL 5764 Computer Architecture

Lecture 37: Warehouse Scale Computing

Sandip Ray

Department of Electrical and Computer Engineering
University of Florida

Introduction

- Warehouse-scale computer (WSC)
 - Provides Internet services
 - Search, social networking, online maps, video sharing, online shopping, email, cloud computing, etc.
 - Differences with HPC "clusters":
 - Clusters have higher performance processors and network
 - Clusters emphasize thread-level parallelism, WSCs emphasize request-level parallelism
 - Differences with datacenters:
 - Datacenters consolidate different machines and software into one location
 - Datacenters emphasize virtual machines and hardware heterogeneity in order to serve varied customers

Introduction

- Important design factors for WSC:
 - Cost-performance
 - Small savings add up
 - Energy efficiency
 - Affects power distribution and cooling
 - Work per joule
 - Dependability via redundancy
 - Network I/O
 - Interactive and batch processing workloads
 - Ample computational parallelism is not important
 - Most jobs are totally independent
 - "Request-level parallelism"
 - Operational costs count
 - Power consumption is a primary, not secondary, constraint when designing system
 - Scale and its opportunities and problems
 - Can afford to build customized systems since WSC require volume purchase

Programming Models and Workloads

- Batch processing framework: MapReduce
 - Map: applies a programmer-supplied function to each logical input record
 - Runs on thousands of computers
 - Provides new set of key-value pairs as intermediate values
 - Reduce: collapses values using another programmer-supplied function

Programming Models and Workloads

- Example:
 - map (String key, String value):
 - // key: document name
 - // value: document contents
 - for each word w in value
 - EmitIntermediate(w,"1"); // Produce list of all words
 - reduce (String key, Iterator values):
 - // key: a word
 - // value: a list of counts
 - int result = 0;
 - for each v in values:
 - result += ParseInt(v); // get integer from key-value pair
 - Emit(AsString(result));

Programming Models and Workloads

 MapReduce runtime environment schedules map and reduce task to WSC nodes

Availability:

- Use replicas of data across different servers
- Use relaxed consistency:
 - No need for all replicas to always agree

Workload demands

Often vary considerably

Computer Architecture of WSC

- WSC often use a hierarchy of networks for interconnection
- Each 19" rack holds 48 1U servers connected to a rack switch
- Rack switches are uplinked to switch higher in hierarchy
 - Uplink has 48 / n times lower bandwidth, where n = # of uplink ports
 - "Oversubscription"
 - Goal is to maximize locality of communication relative to the rack

Storage

- Storage options:
 - Use disks inside the servers, or
 - Network attached storage through Infiniband
 - WSCs generally rely on local disks
 - Google File System (GFS) uses local disks and maintains at least three replicas

Array Switch

- Switch that connects an array of racks
 - Array switch should have 10 X the bisection bandwidth of rack switch
 - Cost of n-port switch grows as n^2
 - Often utilize content addressable memory chips and FPGAs

WSC Memory Hierarchy

 Servers can access DRAM and disks on other servers using a NUMA-style interface

	Local	Rack	Array
DRAM latency (microseconds)	0.1	100	300
Disk latency (microseconds)	10,000	11,000	12,000
DRAM bandwidth (MB/sec)	20,000	100	10
Disk bandwidth (MB/sec)	200	100	10
DRAM capacity (GB)	16	1,040	31,200
Disk capacity (GB)	2000	160,000	4,800,000

- Location of WSC
 - Proximity to Internet backbones, electricity cost, property tax rates, low risk from earthquakes, floods, and hurricanes
- Power distribution

- Cooling
 - Air conditioning used to cool server room
 - 64 F 71 F
 - Keep temperature higher (closer to 71 F)
 - Cooling towers can also be used
 - Minimum temperature is "wet bulb temperature"

- Cooling system also uses water (evaporation and spills)
 - E.g. 70,000 to 200,000 gallons per day for an 8 MW facility
- Power cost breakdown:
 - Chillers: 30-50% of the power used by the IT equipment
 - Air conditioning: 10-20% of the IT power, mostly due to fans
- How many servers can a WSC support?
 - Each server:
 - "Nameplate power rating" gives maximum power consumption
 - Must consider actual, measured power under actual workloads
 - Oversubscribe cumulative server power by 40%, but monitor power closely

Measuring Efficiency of a WSC

- Power Utilization Effectiveness (PEU)
 - = Total facility power / IT equipment power
 - Median PUE on 2006 study was 1.69

Performance

- Latency is important metric because it is seen by users
- Bing study: users will use search less as response time increases
- Service Level Objectives (SLOs)/Service Level Agreements (SLAs)
 - E.g. 99% of requests be below 100 ms

Cost of a WSC

- Capital expenditures (CAPEX)
 - Cost to build a WSC
- Operational expenditures (OPEX)
 - Cost to operate a WSC

Cloud Computing

- WSCs offer economies of scale that cannot be achieved with a datacenter:
 - 5.7 times reduction in storage costs
 - 7.1 times reduction in administrative costs
 - 7.3 times reduction in networking costs
 - This has given rise to cloud services such as Amazon Web Services
 - "Utility Computing"
 - Based on using open source virtual machine and operating system software

- Location of WSC
 - Proximity to Internet backbones, electricity cost, property tax rates, low risk from earthquakes, floods, and hurricanes
- Power distribution

- Cooling
 - Air conditioning used to cool server room
 - 64 F 71 F
 - Keep temperature higher (closer to 71 F)
 - Cooling towers can also be used
 - Minimum temperature is "wet bulb temperature"

- Cooling system also uses water (evaporation and spills)
 - E.g. 70,000 to 200,000 gallons per day for an 8 MW facility
- Power cost breakdown:
 - Chillers: 30-50% of the power used by the IT equipment
 - Air conditioning: 10-20% of the IT power, mostly due to fans
- How many servers can a WSC support?
 - Each server:
 - "Nameplate power rating" gives maximum power consumption
 - Must consider actual, measured power under actual workloads
 - Oversubscribe cumulative server power by 40%, but monitor power closely

Measuring Efficiency of a WSC

Power Utilization Effectiveness (PUE)

- = Total facility power / IT equipment power
- Median PUE on 2006 study was 1.69

Performance

- Latency is important metric because it is seen by users
- Bing study: users will use search less as response time increases
- Service Level Objectives (SLOs)/Service Level Agreements (SLAs)
 - E.g. 99% of requests be below 100 ms

Cost of a WSC

- Capital expenditures (CAPEX)
 - Cost to build a WSC
- Operational expenditures (OPEX)
 - Cost to operate a WSC

Cloud Computing

- WSCs offer economies of scale that cannot be achieved with a datacenter:
 - 5.7 times reduction in storage costs
 - 7.1 times reduction in administrative costs
 - 7.3 times reduction in networking costs
 - This has given rise to cloud services such as Amazon Web Services
 - "Utility Computing"
 - Based on using open source virtual machine and operating system software