Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 19 pages. *Hierdie nasienriglyne bestaan uit* 19 *bladsye*.

DBE/2018

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1.1.1	(3x-1)(x+4)=0	
	$x = \frac{1}{3}$ or $x = -4$	$\checkmark x = \frac{1}{3}$ $\checkmark x = -4$ (2)
1.1.2	$2x^{2} + 9x - 14 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	
	$=\frac{-9\pm\sqrt{9^2-4(2)(-14)}}{2(2)}$	✓ substitution into correct formula
	$=\frac{-9\pm\sqrt{193}}{4}$	✓ simplification
	x = 1,22 or x = -5,72	$\checkmark x = 1,22$ $\checkmark x = -5,72$ (4)
	OR/OF	OR/OF
	$x^{2} + \frac{9}{2}x + \frac{81}{16} = 7 + \frac{81}{16}$	✓ for adding $\frac{81}{16}$ on both sides
	$\left(x + \frac{9}{4}\right)^2 = \frac{193}{16}$ $9 \qquad \sqrt{193}$	✓ simplification
	$x + \frac{9}{4} = \pm \frac{\sqrt{193}}{4}$ $x = \frac{-9 \pm \sqrt{193}}{4}$	
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\checkmark x = 1,22$ $\checkmark x = -5,72$ (4)
1.1.3	$\sqrt{3 - 26x} = 3x$ $3 - 26x = 9x^2$	$\checkmark 3 - 26x = 9x^2$
	$9x^{2} + 26x - 3 = 0$ $(9x - 1)(x + 3) = 0$	✓ standard form ✓ factors
	$x = \frac{1}{9} \text{ or } x = -3$ N/A	✓ answer with selection (4)

Mathem	natics P1/ <i>Wiskunde V1</i> SCE/SSE – Marking Guidelines/ <i>Nasienriglyne</i>		DBE/2018
1.3	x-2y-3=0		
	x = 2y + 3(1) xy = 9(2)	$\checkmark x = 2y + 3$	
	Substitute (1) into (2) $(2y+3)y = 9$	✓ substitution	
	$2y^2 + 3y = 9$		
	$2y^2 + 3y - 9 = 0$	✓ standard form	
	(2y-3)(y+3)=0		
	$y = \frac{3}{2}$ or $y = -3$	✓ y-values	
	x = 6 or x = -3	✓ x-values	(5)
	OR/OF	OR/OF	
	$y = \frac{x-3}{2} \dots (1)$	$\checkmark y = \frac{x-3}{2}$	
	xy = 9(2) Substitute (1) into (2)		
	$x\left(\frac{x-3}{2}\right) = 9$	✓ substitution	
	$x^{2} - 3x = 18$ $x^{2} - 3x - 18 = 0$ $(x - 6)(x + 3) = 0$	✓ standard form	
	(x-6)(x+3) = 0 x = 6 or x = -3		
	$y = \frac{3}{2}$ or $y = -3$	✓ x-values	
	OR/OF	✓ y-values OR/OF	(5)
	x - 2y - 3 = 0		
	x = 2y + 3(1)	o	
	$y = \frac{9}{x}$ (2)	$\checkmark y = \frac{9}{x}$	
	Substitute (2) into (1)		
	$x = 2\left(\frac{9}{x}\right) + 3$	✓ substitution	
	$x^2 - 2(9) - 3x = 0$		
	$x^2 - 3x - 18 = 0$	✓ standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$=\frac{-3\pm\sqrt{(-3)^2-4(1)(-18)}}{2(1)}$		
	$=\frac{-3\pm\sqrt{81}}{2}$	✓ <i>x</i> -values	
	x = 6 or x = -3		
	$y = \frac{9}{6} = 1.5$ or $y = \frac{9}{-3} = -3$	✓ y-values	(5)

Mathematics P1/Wiskunde V1

5 SCE/SSE – Marking Guidelines/Nasienriglyne

1.4	$x^2 + 2xy + 2y^2$	
	$= x^2 + 2xy + y^2 + y^2$	$\checkmark x^2 + 2xy + y^2 + y^2$
	$=(x+y)^2+y^2$	$\checkmark (x+y)^2$
	$(x+y)^2 \ge 0$ and $y^2 \ge 0$	$\checkmark (x+y)^2 \ge 0 \text{ and } y^2 \ge 0$
	Therefore $(x+y)^2 + y^2 \ge 0$	$\checkmark (x+y)^2 + y^2 \ge 0$
	(w · y) · y = 0	(4)
		[27]

QUES	STION/VRAAG 2	
2.1.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	37; 50	✓ 37 ✓ 50 (2)
2.1.2	$a = \frac{\text{second difference}}{2} = \frac{2}{2} = 1$	✓ second difference of 2 ✓ $a = 1$
	3a + b = 5 $3 + b = 5$	
	b = 2 $a + b + c = 5$	✓ b = 2
	1+2+c=5 $c=2$	
	$T_n = an^2 + bn + c$	$\checkmark c = 2$
	$= n^2 + 2n + 2$	(4)
2.1.3	$n^2 + 2n + 2 = 1765$	\checkmark equating T_n to 1765
	$n^2 + 2n - 1763 = 0$	✓ standard form ✓ factors
	(n+43)(n-41) = 0 n = -43 or $n = 41$	✓ answer with rejection
	n = -43 or $n = 41N/A$	(4)
	OR/OF	OR/OF
	$n^2 + 2n + 2 = 1765$	\checkmark equating T_n to 1765
	$n^2 + 2n - 1763 = 0$	✓ standard form
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-2\pm\sqrt{2^2-4(1)(-1763)}}{2(1)}$	✓ subt in correct formula
	$= \frac{-2 \pm \sqrt{7056}}{2}$	
	n = -43 or $n = 4$	✓ answer with rejection (4)
	N/A	(1)

Mathematics P1/Wiskunde V1

SCE/SSE – Marking Guidelines/Nasienriglyne

2.2	Sum of multiples of 7 from 35 to 196:	
	Som van meervoude van 7 vanaf 35 tot by 196:	
	a = 35; d = 7	
	$S_n = \frac{n}{2} [a + \ell]$	
	$=\frac{24}{2}[35+196]$	✓ correct <i>a</i> , <i>d</i> and <i>n</i> substitution into correct
	=12[231]	formula
	= 2772	✓ answer
	Sum of all natural numbers from 35 to 196:	
	Som van alle natuurlike getalle vanaf 35 tot by 196:	
	a = 35; d = 1; n = 162	
	$S_n = \frac{n}{2} [a + \ell]$	
	$=\frac{162}{2}[35+196]$	✓ 162
	=81[231]	
	= 18 711	✓ answer
	Sum of numbers not divisible by 7/	
	Som van getalle nie deelbaar deur 7	
	= 18 711 – 2772	✓ answer (5)
	= 15 939	[15]

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

3.1	r = 0.94; a = 100	$\checkmark r = 0.94$
	$T_3 = ar^2$	
	$=100(0.94)^2$	
	=88,36 km	✓ answer (2)
3.2	$S_n = \frac{a(r^n - 1)}{r - 1}$ $750 = \frac{100(0,94^n - 1)}{0,94 - 1}$	
		✓ substitution into correct formula
	$\frac{750(-0.06)}{100} = 0.94^n - 1$	
	$0.94^n = 1 - \frac{9}{20}$ or $\left(\frac{47}{50}\right)^n = \frac{11}{20}$	
	$0.94^n = 0.55$	$\checkmark 0.94^n = 0.55$
	$n = \frac{\log 0,55}{\log 0,94}$	✓ use of logarithms
	= 9,66 He will pass the halfway point on the 10 th day Hy sal die halfpadmerk verbysteek op die 10 ^{de} dag	✓ answer (4)
3.3	$S_{\infty} = \frac{a}{1 - r}$	✓ use of S_{∞} formula
	$1500 < \frac{100}{1-r}$	✓ substitution
	$1 - r < \frac{100}{1500}$	
	$r > \frac{14}{15}$ or 93,33%	✓ answer (3)
		[9]

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

4.1	0 < x < 1 or $(0.1]$	✓✓ answer
4.1	$0 < x \le 1$ or $(0;1]$	
1.2	17	(2)
4.2	$p = \log_A \frac{16}{1}$	
	$p = \log_{\frac{4}{3}} \frac{16}{9}$	✓ substitution
	-	
	$\left(\frac{4}{3}\right)^p = \frac{16}{9}$	
	(3) 9	
	$(\Delta)^p$ $(\Delta)^2$	$\sqrt{\left(\frac{4}{3}\right)^2}$
	$\left(\frac{4}{3}\right)^p = \left(\frac{4}{3}\right)^2$	$\left \begin{array}{c} \sqrt{3} \end{array}\right $
		✓ answer
	p = 2	
4.2	0 1	(3)
4.3	$f: y = \log_{\frac{4}{3}} x$ $f^{-1}: x = \log_{\frac{4}{3}} y$	
	3	
	$f^{-1}: x = \log_4 y$	$\checkmark x = \log_{\frac{4}{3}} y$ $\checkmark y = \left(\frac{4}{3}\right)^{x}$
	$\overline{3}$	3
	$\left(4\right)^{x}$	$\left(4\right)^{x}$
	$y = \left(\frac{4}{3}\right)^x$	$y = (\frac{1}{3})$
	(3)	(2)
4.4	$y > 0$ or $y \in (0, \infty)$	✓ answer
7.4	$y > 0$ or $y \in (0, \infty)$	(2)
1.5	(16)	(2)
4.5	$\left(-2;\frac{16}{9}\right)$	$\checkmark -2$ $\checkmark \frac{16}{9}$
	(- ', 9)	√ 10
		(2)
		[11]

5 1	u ∈ D: u ≠ 1	1/ 11 5 D	
5.1	$x \in R$; $x \neq -1$	$\checkmark x \in R$	
		$\checkmark x \neq -1$	(2)
5.2	wintercent of f		(2)
5.2	x-intercept of f:	✓ equating to 0	
	$0 = \frac{2}{x+1} + 4$	• equating to 0	
	$\frac{2}{x+1} = -4$		
	2 = -4x - 4		
	4x = -6		
	$x = -\frac{3}{2}$	(
	$x = -\frac{1}{2}$	✓ answer	(2)
5.3	2		(2)
5.5	$y = \frac{2}{x+1} + 4$		
	$\frac{14}{3} = \frac{2}{k+1} + 4$	✓ substitution	
	$\frac{2}{k+1} = \frac{14}{3} - 4$		
	$\frac{2}{k+1} = \frac{2}{3}$	✓ simplification	
		· simpimication	
	2k + 2 = 6		
	k + 1 = 3		
	k = 2	✓ answer	(2)
<i>E</i> 1	G(2, 4)	✓ 2	(3)
5.4	C(2;4)	√ 2 √ 4	(2)
5.5	(, \2 ,	· 1	(2)
	$y = a(x+p)^2 + q$	$\sqrt{a(x-2)^2+4}$	
	$=a(x-2)^2+4$	$\checkmark a(x-2)^2+4$	
	Substitute (0; 0):	✓ Substitute (0; 0)	
	$0 = a(0-2)^2 + 4$	- Substitute (0,0)	
	0 = 4a + 4		
	a = -1	$\checkmark a = -1$	
	$y = -(x-2)^2 + 4$		(3)
. .	3	3	()
5.6	$x \le -\frac{3}{2}$ or $-1 < x < 0$ or $x > 4$	$\checkmark x \le -\frac{3}{2}$ $\checkmark \checkmark -1 < x < 0$ $\checkmark x > 4$	
		$\checkmark \checkmark -1 < x < 0$	
		$\checkmark x > 4$	
			(4)

Mathematics P1/Wiskunde V1

 $\frac{11}{\text{SCE/SSE}-\text{Marking Guidelines}/\textit{Nasienriglyne}}$

5.7	$\frac{2}{x}$ - 5: f shifted 1 unit to the right and 9 units down. f is 1 eenheid na regs en 9 eenhede afgeskuif.	✓ both shifted 1 unit to the right
	$-(x-3)^2 - 5$: g shifted 1 unit to the right and 9 units down. g is 1 eenheid na regs en 9 eenhede afgeskuif. Therefore the shift of both graphs took place relative to each	✓ both shifted 9 units down
	other/Dus het die skuif van die grafieke relatief tot mekaar plaasgevind.	✓ relative shift
	They only intersect in the third quadrant. Hulle sny mekaar slegs in die derde kwadrant. Therefore there is only one point of intersection. Daar is dus slegs een snypunt.	✓ one real root (4) [20]

12 SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

6.1	$A = P(1-i)^n$	✓ A = 0,5P	
	$0.5P = P(1 - 0.15)^n$	✓ substitution into correct	
	$(1-0.15)^n = 0.5$	formula	
	$(0.85)^n = 0.5$		
	$n = \frac{\log 0.5}{\log 0.85} \text{ or } \log_{0.85} 0.5$	✓ use of logs	
	= 4,27 years	✓ answer	
			(4)
6.2	In account one month before his 55 th birthday: In rekening een maand voor sy 55 ^{ste} verjaardag:		(.)
	$F = \frac{x[(1+i)^n - 1]}{i}$		
	$= \frac{1500 \left[\left(1 + \frac{0,092}{12} \right)^{384} - 1 \right]}{\frac{0,092}{12}}$	 ✓ value of <i>i</i> ✓ value of <i>n</i> ✓ substitution into correct formula 	
	= 3 478 620,49		
	In account on his 55 th birthday:		
	In rekening op sy 55 ^{ste} verjaardag:		
	$A = P(1+i)^n$		
	$=3478620,49\left(1+\frac{0,092}{12}\right)^{1}$	✓ adding last month's interest ✓ answer	
	= R3505289,91		(5)
	OR/OF $F = \frac{x(1+i)[(1+i)^n - 1]}{x^n}$	OR/OF	
	$= \frac{1500\left(1 + \frac{0,092}{12}\right)\left[\left(1 + \frac{0,092}{12}\right)^{384} - 1\right]}{\frac{0,092}{12}}$	 ✓ value of i ✓ value of n ✓ substitution into correct formula 	
	12 = R3505289,91	✓ adding last month's interest	
		✓ answer	(5)
			(5)

SCE/SSE – Marking Guidelines/Nasienriglyne

6.3 Invest Rx in account A paying 8,4% p.a. compounded quarterly./Belê Rx in rekening A wat 8,4% p.a rente betaal, kwartaalliks saamgestel.

$$A = P(1+i)^n$$

$$= x \left(1 + \frac{0,084}{4}\right)^{48}$$

$$= 2,711662406 x$$

$$\checkmark \left(1 + \frac{0,084}{4}\right)^{48}$$

Invest (R150 000 – x) in Account B paying 9.6%compounded monthly./Belê (R150 000 - x in rekening A wat 9,6% p.a rente betaal, maandeliks saamgestel.

After 12 years, the amounts are equal:

$$x\left(1 + \frac{0,084}{4}\right)^{48} = \left(150\,000 - x\right)\left(1 + \frac{0,096}{12}\right)^{144}$$

2,711662406x = 3,150044027(150000 - x)

2,711662406x = 472506,6041 - 3,150044027x

5,861706433 x = 472506,6041

x = R80609,05

 $(150000-x)\left(1+\frac{0{,}096}{12}\right)^{144}$

✓ equation

Invest R80 609 in Account A and $R150\ 000 - R80\ 609,05 = R69\ 390,95$ in Account B ✓ R80609,05

✓ R69 390,95 (6)

OR/OF

a = amount invested at 8,4% p.a. compounded quarterly bedrag belê teen 8,4% p.a. kwartaalliks saamgestel

b = amount invested at 9,6% p.a. compounded monthly bedrag belê teen 9,6% p.a. maandeliks saamgestel

OR/OF

$$a + b = 150\ 000$$

 $a = 150\ 000 - b$

$$(150000 - b)\left(1 + \frac{0,084}{4}\right)^{48} = b\left(1 + \frac{0,096}{12}\right)^{144}$$

$$150000 \left(1 + \frac{0,084}{4}\right)^{48} = b \left[\left(\left(1 + \frac{0,096}{12}\right)^{144} + \left(1 + \frac{0,084}{4}\right)^{48} \right) \right] \checkmark (150000 - b) \left(1 + \frac{0,084}{4}\right)^{48}$$
 \times equation

$$\checkmark \left(1 + \frac{0,096}{12}\right)^{144}$$

$$\checkmark \checkmark \left(150000 - b\right) \left(1 + \frac{0,084}{4}\right)^{48}$$
\(\text{equation} \)

$$b = R69 390,95$$

 $a = R80 609,05$

$$\begin{array}{c|c}
\checkmark b \\
\checkmark a
\end{array} (6)$$
[15]

QUESTION/VRAAG7

Penalize 1 mark for incorrect notation in the whole question.

7.1	$f(x+h) = 2 - 3(x+h)^2$		
	$= 2 - 3(x^2 + 2xh + h^2)$		
	$= 2 - 3x^2 - 6xh - 3h^2$	$\checkmark 2-3x^2-6xh-3h^2$	
	$f(x+h) - f(x) = 2 - 3x^2 - 6xh - 3h^2 - (2 - 3x^2)$		
	$=-6xh-3h^2$	$\checkmark -6xh-3h^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$=\lim_{h\to 0}\frac{-6xh-3h^2}{h}$	✓subst. into formula	
	$=\lim_{h\to 0}\frac{h(-6x-3h)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} \left(-6x-3h\right)$		
	=-6x	✓answer	(5)
	OR/OF	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\therefore 2 - 3(x+h)^2 - (2 - 3x^2)$		
	$= \lim_{h \to 0} \frac{2 - 3(x + h)^2 - (2 - 3x^2)}{h}$		
	$= \lim_{h \to 0} \frac{2 - 3x^2 - 6xh - 3h^2 - (2 - 3x^2)}{h}$		
	$=\lim_{h\to 0}\frac{-6xh-3h^2}{h}$		
	$=\lim_{h\to 0}\frac{h(-6x-3h)}{h}$		
	$=\lim_{h\to 0} (-6x-3h)$	✓ subst. into formula	
	=-6x	✓simplification	
		$\checkmark -6xh - 3h^2$	
		✓ common factor	
		✓ answer	(5)

Mathematics P1/Wiskunde V1

 ${15\atop SCE/SSE-Marking~Guidelines/Nasienriglyne}$

7.2.1	$D_x [(4x+5)^2]$ = $D_x (16x^2 + 40x + 25)$ = $32x + 40$	$ \checkmark 16x^2 + 40x + 25 $ $ \checkmark 32x $ $ \checkmark + 40 $ (3)
	$y = \sqrt[4]{x} + \frac{x^2 - 8}{x^2}$ $y = x^{\frac{1}{4}} + 1 - 8x^{-2}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}} + 16x^{-3}$	$\sqrt{x^{\frac{1}{4}}} $ $\sqrt{1-8x^{-2}} $ $\sqrt{\frac{1}{4}x^{-\frac{3}{4}}} $ $\sqrt{16x^{-3}} $ (4) [12]

8.1	C(0;12)	✓ C(0;12)	(1)
8.2	$-x^3 + 13x + 12 = 0$	$\checkmark f(x) = 0$	
	$x^3 - 13x - 12 = 0$	(. 1)	
	$(x+1)(x^2-x-12)=0$	$\checkmark (x+1)$ $\checkmark (x^2 - x - 12)$	
	(x+1)(x-4)(x+3) = 0	(x - x - 12)	
	A(-3;0)	$\checkmark x = -3 \text{ or } 4$	
	B(4;0)	✓ clearly indicating A and B	`
8.3	$f'(x) = -3x^2 + 13$	$\checkmark f'(x) = -3x^2 + 13$	<u>) </u>
	f''(x) = -6x	$\int \int f''(x) = -6x$	
	-6x = 0		
	x = 0	✓ equating to zero	
	For $f(x)$, point of inflection will be at $(0; 12)$. Vir $f(x)$, sal buigpunt wees by $(0; 12)$		
	For $g(x)$, satisfied by $g(0, 12)$.		
	Vir $g(x)$, sal buigpunt wees by $(0; -12)$.	√ (0;-12)	(4)
	OR/OF	OF/OR	
	$g(x) = x^3 - 13x - 12$		
	$g'(x) = 3x^2 - 13$	$\checkmark g'(x) = 3x^2 - 13$	
	g''(x) = 6x	$\checkmark g''(x) = 6x$	
	6x = 0	✓ equating to zero	
	x = 0		
	(0;-12)	√ (0;-12)	(4)
	OR/OF	OR/OF	
	$f'(x) = -3x^2 + 13$	$f'(x) = -3x^2 + 13$ $f'(x) = -3x^2 + 13 = 0$	
	TP's where		
	$-3x^2 + 13 = 0$	$\sqrt{-3x^2+13}=0$	
	$x^2 = \frac{13}{3}$		
	$x = \pm \sqrt{\frac{13}{3}}$		
	= ±2,08	\checkmark x-values of TPs	
	x-value of point of inflection: $\frac{-2,08+2,08}{2} = 0$		
	For $f(x)$, point of inflection will be at $(0; 12)$.		
	Vir $f(x)$, sal buigpunt wees by $(0; 12)$	√ (0;-12)	(4)
	For $g(x)$, point of inflection will be at $(0; -12)$. Vir $g(x)$, sal buigpunt wees by $(0; -12)$.		

Mathematics P1/Wiskunde V1

 $17 \\ SCE/\textit{SSE}-Marking Guidelines/Nasienriglyne$

8.4	$f'(x) = -3x^2 + 13$	
	$-3x^2 + 13 = -14$	✓ equating derivative to – 14
	$-3x^2 = -27$	✓ simplification
	$x^2 = 9$	
	x = 3 or $x = -3$	$\checkmark \checkmark$ answers (4)
		[14]

DBE/2018

QUE	STION/ <i>VRAAG</i> 9		
9.1.1	AC = t - 30	✓answer	(1)
9.1.2	$30^2 = (t - 30)^2 + p^2$ [Pythagoras]		
	$p^2 = 900 - (t - 30)^2$	$p^2 = 900 - (t - 30)^2$	
	$p^2 = 900 - \left(t^2 - 60t + 900\right)$	$\checkmark \left(t^2 - 60t + 900\right)$	
	$p^2 = 900 - t^2 + 60t - 900$	$\checkmark p^2 = 60t - t^2$	
	$p^2 = 60t - t^2$	$\checkmark p^2 = 60t - t^2$	(3)
9.2	$V(t) = \frac{1}{3}\pi r^2 t$		
	$=\frac{1}{3}\pi(60t-t^2)t$	✓ substitution	
	$=20\pi t^2 - \frac{1}{3}\pi t^3$		(1)
9.3	$V(t) = 20\pi t^2 - \frac{1}{3}\pi t^3$		
	$V'(t) = 40\pi t - \pi t^2$	✓ 40πt	
	$40\pi t - \pi t^2 = 0$	$\checkmark -\pi t^2$	
	$t(40\pi - t\pi) = 0$		
	t = 0 OR $t = 40$ cm	✓ answer with selection	(3)
0.4	N/A		
9.4	Volume of cone/keël		
	$=20(\pi)(40)^2-\frac{1}{3}\pi(40)^3$		
	$=10\ 666,67\pi$ or $33510,33211$	✓ volume of cone	
	Volume of sphere/sfeer		
	$= \frac{4}{3}\pi r^3$		
	$=\frac{4}{3}\pi(30)^3$		
	$=36000\pi$ or $113097,3355$	✓ volume of sphere	
	$10666,67\pi$	1066667-	
	36000π	$\checkmark \frac{10666,67\pi}{36000\pi}$	
	= 0,296296 ≈ 29,63%		
	27,0070	✓ % cut out	(4) [12]

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION/VRAAG 10

10.1	10!	√ 10!
	=3 628 800	✓ answer
		(2)
10.2	4! × 7!	√ 4!
	= 120 960	√ 7!
		✓ 4! × 7! or 120 960
		(3)
	OR/OF	OR/OF
	$4! \times 6! \times 7$	√ 4!
	= 120 960	✓ 6!×7
	120 700	✓ $4! \times 6! \times 7$ or 120 960
		(3)
10.3	6!	✓ 6!
	$\overline{10!}$	
	$=\frac{1}{5040}$ or 0,000198	$\checkmark \frac{6!}{10!}$ or $\frac{1}{5040}$ or 0,000198
		(2)
		[7]

QUESTION/VRAAG 11

11.1	$P(\text{tennis}) \times P(\le 35 \text{ years}) = P(\text{tennis and } \le 35 \text{ years})$	✓ statement
	$\frac{21}{140} \times \frac{80}{140} = \frac{a}{140}$	✓ substitution
	a = 12	✓ answer (3)
11.2	$P(\text{gym or } \le 35 \text{ years})$	✓ statement
	$= P(gym) + P(\le 35 \ years) - P(gym \ and \le 35 \ years)$ $= \frac{70}{140} + \frac{80}{140} - \frac{40}{140}$ $= \frac{110}{140}$ $= \frac{11}{14} \text{or} 0.79$	$ √ \frac{70}{140} $ $ √ \frac{80}{140} $ $ √ \frac{40}{140} $ $ √ \frac{110}{140} \text{ or } \frac{11}{14} \text{ or } 0,79 $
		(5) [8]

TOTAL/TOTAAL: 150