CENG-232 Logic Design

Lecture 6 Sequential Circuit Design

Spring 2015 - Uluç Saranlı saranlı@ceng.metu.edu.tr

Acknowledgment: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA.

Sequential Circuit Design

- In sequential circuit design, we turn some description into a working circuit.
 - We first make a state table or diagram to express the computation.
 - Then we can turn that table or diagram into a sequential circuit.

Sequence Recognizers

- A sequence recognizer is a special kind of sequential circuit that looks for a special bit pattern in some input.
- ▶ The recognizer circuit has only one input, X.
 - One bit of input is supplied on every clock cycle. For example, it would take 20 cycles to scan a 20-bit input.
 - This is an easy way to permit arbitrarily long input sequences.
- There is one output, Z, which is 1 when the desired pattern is found.
- Our example will detect the bit pattern "1001":

Input: 11100110100100110...

Output: 0000010000100100...

Sequence Recognizers (Cont'd.)

Inputs: 11100110100100110...

Outputs: 0000010000100100...

- This requires a sequential circuit because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found.
- Here, one input and one output bit appear every clock cycle.
- Note that overlapping bit patterns are also detected.

A basic state diagram

- What state do we need for the sequence recognizer?
 - We have to "remember" inputs from previous clock cycles.
 - For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1.
 - In general, we will have to remember occurrences of parts of the desired pattern in this case, 1, 10, and 100.
- We'll start with a basic state diagram:

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	None of the desired pattern (1001) has been input yet. We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Overlapping pattern occurrences

- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern.
 - ▶ But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001.
 - To detect overlapping occurrences of the pattern, the next state should be B.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	None of the desired pattern (1001) has been input yet. We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Filling in the other arrows

- ▶ Remember that we need two outgoing arrows for each node, to account for the possibilities of X=0 and X=1.
- The remaining arrows are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

State	Meaning
	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
	We've already seen the first three bits (100) of the desired pattern.

Finally, making the state table

Remember how the state diagram arrows correspond to rows of the state table:

Present		Next	
State	Input	State	Output
A	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Sequential Circuit Design Procedure

Step 1:

Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert that to a table.)

▶ Step 2:

Assign binary codes to the states in the state table, if you haven't already. If you have n states, your binary codes will have at least log2 n digits, and your circuit will have at least log2 n flip-flops.

Sequential circuit design procedure

Step 3:

For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state. You can use flip-flop excitation tables here.

Step 4:

Find simplified equations for the flip-flop inputs and the outputs.

Step 5:

Build the circuit!

Step 2: Assigning binary codes

- We have four states ABCD, so we need at least two flip-flops Q1Q0.
- The easiest thing to do is represent state A with Q1Q0 = 00, B with 01, C with 10, and D with 11 (intuiative).
- The state assignment can have a big impact on circuit complexity, but we won't worry about that too much in this class.

Present		Next	
State	Input	State	Output
Α	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
C C	0	D	0
С	1	В	0
D	0	Α	0
D	1	В	1

Present			Next		
Sto	ate	Input	Sto	ate	Output
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Step 3: Finding flip-flop inputs

- Next we have to figure out how to actually make the flip-flops change from their present state into the desired next state.
- This depends on what kind of flip-flops you use!
- We'll use two JKs. For each flip-flip Qi, look at its present and next states, and determine what the inputs Ji and Ki should be in order to make that state change.

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	FI	ip flop	o input	·s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	Jo	Ko	Z
0	0	0	0	0				-	0
0	0	1	0	1					0
0	1	0	1	0			•		0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Finding JK flip-flop input values

▶ For JK flip-flops, this is a little tricky. Recall the characteristic table:

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

- If the present state of a JK flip-flop is 0 and we want the next state to be 1, then we have two choices for the JK inputs:
 - ▶ We can use JK=10, to explicitly set the flip-flop's next state to 1.
 - ▶ We can also use JK=11, to complement the current state 0.
- So to change from 0 to 1, we must set J=1, but K could be either 0 or 1.
- Similarly, the other possible state transitions can all be done in two different ways as well.

JK excitation table

An excitation table shows what flip-flop inputs are required in order to make a desired state change.

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	X	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

This is the same information that's given in the characteristic table, but presented "backwards."

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Excitation Tables for all flip-flops

Q(†)	Q(†+1)	٥	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	X	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(†+1)	T	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change

Back to the Example

We can now use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states.

Q(†)	Q(†+1)	J	K	
0	0	0	X	
0	1	1	×	
1	0	×	1	
1	1	×	0	

Pres	ent		Next						
Sto	ate	Input	State		Fl	ip flop	S	Output	
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	X	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1		×	X	0	0
1	0	0	1	1	X	0	1	×	0
1	0	1	0	1	X	1	1	X	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	×	1	X	0	1

Step 4: Find FF in/out equations

- Now you can make K-maps and find equations for each of the four flip-flop inputs, as well as for the output Z.
- These equations are in terms of the present state and the inputs.
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler equations.

$$J1 = X' Q0$$

 $K1 = X + Q0$

$$J0 = X + Q1$$
$$K0 = X'$$

$$Z = Q1Q0X$$

Pres	sent		Next						
Sto	ate	Input	Sto	ate	Fl	lip flop	p input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	X	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	×	1	X	0	1

Step 5: Build the Circuit

Lastly, we use these simplified equations to build the completed circuit.

$$J_1 = X' Q_0$$

$$K_1 = X + Q_0$$

$$J_0 = X + Q_1$$

$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Timing Diagram

- Here is one example timing diagram for our sequence detector.
 - ▶ The flip-flops Q1Q0 start in the initial state, 00.
 - On the first three positive clock edges, X is 1, 0, and 0. These inputs cause Q1Q0 to change, so after the third edge Q1Q0 = 11.
 - ▶ Then when X=1, Z becomes 1 also, meaning that 1001 was found.
- The output Z does not have to change at positive clock edges. Instead, it may change whenever X changes, since Z = Q1Q0X.

Using D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can just start from Step 3, finding the flip-flop input values.
- D flip-flops have only one input, so our table only needs two columns for D1 and D0.

Pres	sent		Ne	ext	Flip-	flop	
Sto	ate	Input	Sto	ate		uts	Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0			0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

D flip-flop input values (Step 3)

The D excitation table is pretty boring; set the D input to whatever the next state should be.

Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

You don't even need to show separate columns for D1 and D0; you can just use the Next State columns.

	sent ate	Input	Next State		Flip flop inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

The same

Finding Equations (Step 4)

You can do K-maps again, to find:

$$D1 = Q1 Q0' X' + Q1' Q0 X'$$

$$D0 = X + Q1 Q0'$$

$$Z = Q1 Q0 X$$

Pres	sent		Next		Flip flop		
Sto	ate	Input	State		inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Building the Circuit (Step 5)

Flip-flop comparison

JK flip-flops are good because there are many don't care values in the flip-flop inputs, which can lead to a simpler circuit.

D flip-flops have the advantage that you don't have to set up flip-flop inputs at all, since Q(t+1) = D. However, the D input equations are usually more complex than JK input equations

In practice, D flip-flops are used more often.

There is only one input for each flip-flop, not two.

There are no excitation tables to worry about.

D flip-flops can be implemented with slightly less hardware than JK flip-flops.

Summary

- The basic sequential circuit design procedure:
 - Make a state table and, if desired, a state diagram. This step is usually the hardest.
 - Assign binary codes to the states if you didn't already.
 - Unused states can be treated as don't care conditions.
 - Use the present states, next states, and flip-flop excitation tables to find the flip-flop input values.
 - Write simplified equations for the flip-flop inputs and outputs and build the circuit.
- Next; how do we minimize the states to be used?
 - Do we need that?

Work ...

Design a sequential circuit that detects 01 patterns coming through an input line X. The circuit's output Z should be set 1 when a 01 pattern occurs and to 0 otherwise.

- Draw the state diagram of the circuit
- Derive the state table
- Implement using D-FF's
 - Extend the state table for D-FF inputs
 - Derive the expressions for D-FF inputs
 - Draw the full circuit

State Reduction and Assignment

- Goal: Reduce the number of states while keeping the external input-output requirements.
- ▶ 2^m states need m flip-flops, so reducing the states may reduce flip-flops.
- If two states are equal, one can be removed but what are "equal states"?
 - State Equivalence

As an example consider the input sequence below:

"010101110100" applied and start from state a.

```
        State
        a
        a
        b
        c
        d
        e
        f
        g
        f
        g
        a

        Input
        0
        1
        0
        1
        0
        1
        0
        1
        0
        0

        Output
        0
        0
        0
        0
        1
        1
        0
        1
        0
        0
```


Fig. 5-22 State Diagram

Fig. 5-22 State Diagram

Present State	Next State		Output	
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

States e and g are <u>equal</u> since for each member of the set of inputs, they give the same output and send the circuit either to the same state or an equivalent state.

Fig. 5-22 State Diagram

Present State	Next	Next State		ıt
	x=0	x=1	x=0	x=1
a	a	b	0	0
b	С	d	0	0
С	a	d	0	0
d	е	f	0	1
е	a	f	0	1
f	ø e	f	0	1
g	а	f	0	1

Table and state diagram after the first reduction: state g is removed and replaced by state e.

Present State	Next State		Output		
	x=0	x=1	x=0	x=1	
a	a	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	
g	а	f	0	1	

Table and state diagram after the first reduction: g is removed and replaced by state e.

However, we now have NEW equal states: d and f

Fig. 5-23 Reduced State Diagram

Table and state diagram after If we apply the same input sequence: the second reduction: f is removed and replaced by state d.

State	a	a	b	C	d	е	d	d	е	d	е	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

