0 CAŁKA RIEMANNA

1. $f: \langle a, b \rangle \to \mathbb{R}$ - funkcja ograniczona

 $\Pi_n = (x_0^{(n)}, x_1^{(n)}, \dots, x_{kn}^{(n)})$ - ciąg podziałów odcinka < a, b >mówimy, że ten ciąg jest normalny, jeśli $\delta(\Pi_n) := \max_{i \in 1, \dots, kn} (x_i^{(n)}, -x_i^{(n)})$ $\omega_n=(\xi_1^{(n)},\dots,\xi_{kn}^{(n)})$ - ciąg wartościowań, tzn $\xi_i^{(n)}\in < x_{i-1}^{(n)},x_i^{(n)}>$

(a) Def. Jeśli istnieje $\sigma \in \mathbb{R}$ taka, że dla dowolnego normalnego ciągu podziałów $\{\Pi_n\}$ i dowolnego ciągu wartościowań

 $\lim_{n\to\infty}\sum_{i=1}^k f(\xi_i^{(n)})\cdot(x_i^{(n)}-x_{i-1}^{(n)})=\sigma$, (lewa strona równania - suma całkowa Riemanna))
to wtedy mówimy, że f jest całkowalna w sensie Riemanna na
 a,b>. W przypadku całkowalności σ nazywamy całką Riemanna funkcji fna < a, b > i oznaczamy $\int_a^b f(x) dx$

2. Twierdzenie 0.5 (Podstawowy wzór rachunku całkowego). Jeśli $f: < a, b> \in \mathbb{R}$ jest ciągła i F to dowolna funkcja pierwotna f, to (całka Riemanna) $\int_a^b f(x)dx = F(b) - F(a) = \int_a^b f(x)dx$ (całka oznaczona)

3. Własności całki Riemanna

- (a) Def: Jeśli $-\infty < a < b < \infty$, to $\int_a^a f(x)dx = 0$ i $\int_b^a f(x)dx = -\int_a^b f(x)dx$
- (b) Własność 0.2: Jeśli $f,g:< a,b> \to \mathbb{R}$ są całkowalne w sensie Riemanna na < a,b>i $\alpha,\beta\in\mathbb{R}$, to $\alpha f+\beta g$ też jest całkowalna w sensie Riemanna na < a, b >i $\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$
- (c) Własność 0.4: Jeśli $f: \langle a,b \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a,b \rangle$ i $\forall_{x \in \langle a,b \rangle} f(x) \geq 0$, to $\int_a^b f(x) dx \geq 0$
- (d) Własność 0.5: Jeśli $f,g:\langle a,b\rangle\to\mathbb{R}$ są całkowalne w sensie Riemanna i $\forall_{x\in\langle a,b\rangle}f(x)\leq g(x)$, to $\int_a^b f(x)dx \le \int_a^b g(x)dx$

D: Z założenia mamy $\forall_{x \in \langle a,b \rangle} g(x) - f(x) \ge 0 \implies \int_a^b (g(x) - f(x)) dx \ge 0 \implies \int_a^b g(x) dx - \int_a^b f(x) dx \ge 0 \iff \int_a^b g(x) dx - \int_a^b f(x) dx \ge 0$ $\int_a^b g(x)dx \ge \int_a^b f(x)dx$

- (e) Własność 0.6: Jeśli $f: \langle a, b \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a, b \rangle$, to |f| też jest całkowalna w sensie Riemanna na < a, b >
i $|\int_a^b f(x) dx| \leq \int_a^b f(x) dx$
- (f) Własnosć 0.7: Jeśli $f: \langle a,b \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a,b \rangle$ i $M=\sup_{x\in \langle a,b \rangle} f(x)$, to $\int_{a}^{b} f(x)dx \le M(b-a)$ D: $\forall_{x \in \langle a,b \rangle} f(x) \le M \implies \int_a^b f(x) dx \le \int_a^b M dx = M \int_a^b 1 dx = M(b-a)$
- (g) Własność 0.8: Jeśli $g: \langle a,b \rangle \to Y \subset \mathbb{R}$ jest klasy C^1 (ciągła pierwsza pochodna) i $f: Y \to \mathbb{R}$ jest ciągła, to

 $\int_{a}^{b} f(x)dx \cdot g'(x)dx = \begin{cases} c - g(x) \\ dt = g'(x)dx \\ a \to g(a) = \alpha \end{cases} = \int_{\alpha}^{\beta} f(t)dt$

D: Niech F będzie funkcją pierwotną f, tzn $\forall_{x \in Y} F'(x) = f(x)$. Używając podstawowego wzoru rachunku całkowego,

 $\int_a^b f(x)dx = F(b) - F(a), \int_\alpha^\beta f(t)dt = F(\alpha) - F(\beta), (*) \text{ ponadto } (F(g(x))' = F'(g(x)) \cdot g'(x) = f(g(x) \cdot g'(x), \text{ co oznacza, } \text{że } F(g(x)) \text{ to funkcja pierwotna } f(g(x))g'(x). \text{ Z podstawowego wzoru rachunku całkowego otrzymujemy } \int_a^b f(g(x)) \cdot g'(x)dx = F(g(b)) - F(g(a)) = F(\beta) - F(\alpha). \text{ Z tego i z (*) otrzymujemy tezę}$

- (h) Własność 0.9: (całkowanie przez części): Jeśli $f,g:\langle a,b\rangle\to\mathbb{R}$ są klasy C^1 , to $\int_a^b f(x)g'(x)dx=[f(x)g(x)]_a^b-$
 - $\int_a^b f'(x)g(x)dx \text{ gdzie } [f(x)g'(x)]_a^b = f(b)g(b) f(a)g(a)$ D: Wzór ten wnynika ze wzoru na pochodną iloczynu. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \text{ więc } [f(x)g(x)]_a^b = \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx \text{ skąd}$ $\int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b \int_a^b f'(x)g(x)dx$

(i) Własność 0.10: (twierdzenie o wartości śreniej rachunku całkowego).

Jeśli $f,g: \langle a,b \rangle \to \mathbb{R}$ są ciągłe i g jest nieujemna lub niedodatnia, to $\exists_{\xi \in \langle a,b \rangle} \int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x)dx$ Dowód: (na ćwiczeniach)

Wniosek: $f: \langle a,b \rangle \to \mathbb{R}$ - funkcja ciągła $\stackrel{g(x)\equiv 1}{\Longrightarrow} \exists_{\xi \in \langle a,b \rangle} \int_a^b f(x) dx = f(\xi) \int_a^b 1 dx \implies \exists_{\xi \in \langle a,b \rangle} f(\xi) = \frac{\int_a^b f(x) dx}{b-a}$

1 CAŁKI NIEWŁAŚCIWE

- 1. Całki niewłaściwe pierwszego rodzaju: $\int_a^\infty f(x)dx, \int_{-\infty}^b f(x)dx, \int_{-\infty}^\infty f(x)dx$
 - (a) Def: Jeśli $f: \langle a, \infty \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a, \beta \rangle$ dla każdego $\beta > a$ i istnieje granica $\lim_{\beta \to \infty} \int_a^\beta f(x) dx$, to granicę tą nazywamy całką niewłaściwą pierwszego rodzaju i oznaczamy $\int_a^\infty f(x) dx$. $\int_a^\infty f(x) dx = \lim_{\beta \to \infty} \int_a^\beta f(x) dx$. Ponadto jeśli powyższa granica istnieje i jest skończona, to całkę niewłaściwą nazywamy zbieżna; w pozostałych przypadkach nazywamy ją rozbieżną.
 - (b) Całkę $\int_{-\infty}^b f(x)dx$ definiujemy analogicznie, tzn $\int_{-\infty}^b f(x)dx = \lim_{\alpha \to -\infty} \int_{\alpha}^b f(x)dx$ jeśli tylko $f: (-\infty, b > \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $<\alpha, b>$ dla dowolnego $\alpha < b$ i powyższa granica istnieje.
 - (c) Def.: Jeśli $f:(-\infty,\infty)\to\mathbb{R}$ jest całkowalna w sensie Riemanna na $<\alpha,\beta>$ dla wszystkich $-\infty<\alpha<\beta<\infty$ i istnieje $c\in\mathbb{R}$ takie, że istnieje granica $\lim_{a\to-\infty}\int_{\alpha}^{c}f(x)dx$ oraz $\int_{c}^{\beta}f(x)dx$, to $\int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{c}f(x)dx+\int_{c}^{\infty}f(x)dx$ o ile wyrażenie po prawej stronie ma sens, tzn nie otrzymujemy $[\infty-\infty]$ lub $[-\infty+\infty]$. Ponadto o ile te granice istnieją i są skończone, to całkę nazywamy zbieżną; w pozostałych przypadkach rozbieżną.

Uwaga: Jeśli w powyższej definicji wstawimy $-\alpha = \beta = T$, to po prawej stronie otrzymamy $\lim_{T \to \infty} \int_{-T}^{c} f(x) dx + \lim_{T \to \infty} \int_{c}^{T} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx$ - tzn wartośc główna całki, to NIE to samo co $\int_{-\infty}^{\infty} f(x) dx$ Przykład: $\int_{-\infty}^{\infty} \frac{x^3 dx}{x^4 + 2} = \int_{-\infty}^{0} \frac{x^3 dx}{x^4 + 2} + \int_{0}^{\infty} \frac{x^3 dx}{x^4 + 2} = \lim_{\alpha \to -\infty} \int_{\alpha}^{0} \frac{x^3 dx}{x^4 + 2} + \lim_{\beta \to \infty} \int_{0}^{\beta} \frac{x^3 dx}{x^4 + 2} = (\text{kilka prostych kroków}) = [-\infty + \infty] \text{ całka rozbieżna}$

wartość głowna całki = $\lim_{T\to\infty} \int_{-T}^{T} \frac{x^3 dx}{x^4+2} dx$ = (znowu) = 0

2. Całki niewłaściwe drugiego rodzaju:

 $f : \langle a, b \rangle \to \mathbb{R}$

Def: Jeśli $f:(a,b)\to\mathbb{R}$ jest calkowalna w sensie Riemanna na (a,β) dla każdej $a<\beta< b$ i istnieje granica $\lim_{\beta\to b^-}\int_a^\beta f(x)dx$, to granicę tą nazywamy całką niewłaściwą drugiego rodzaju i oznaczamy $\int_a^b f(x)dx$: $\int_a^b f(x)dx=\lim_{\beta\to b^-}\int_a^\beta f(x)dx$

Dla $f:(a,b)\to\mathbb{R}$ definiujemy analogicznie $\int_a^b f(x)dx:\int_a^b f(x)dx=\lim_{\alpha\to a^+}\int_\alpha^b f(x)dx$ jeśli f jest całkowalna w sensie Riemanna na $<\alpha,b>$ dla każdej $a<\alpha< b$ i granica istnieje

3.

KRYTERIA ZBIEŻNOŚCI CAŁEK NIEWŁAŚCIWYCH

Niech $b = \infty$ lub $b \in \mathbb{R}$ i a < b

- 1. Twierdzenie 1.1: Niech $f,g:< a,b) \to \mathbb{R}$ będą całkowalne w sensie Riemanna na $< a,\beta>$ dla każdego $a<\beta< b$ i $\forall_{x\in < a,b},0 \le f(x) \le g(x)$. Wtedy:
 - (a) Jeśli $\int_a^b g(x)dx$ jest zbieżna, to $\int_a^b f(x)dx$ też jest zbieżna.
 - (b) Jeśli $\int_a^b f(x)dx$ jest rozbieżna, to $\int_a^b g(x)dx$ też jest rozbieżna
- 2. Twierdzenie 1.2: Jeśli $f: \langle a,b \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a,\beta \rangle$ dla każdego $a < \beta < b$ i $\int_a^b |f(x)| dx$ jest zbieżna, to $\int_a^b f(x) dx$ też jest zbieżna. W przypadku zbieżności mamy $|\int_a^b f(x) dx| \leq \int_a^b |f(x)| dx$ Analogiczne twierdzenia są prawdziwe także dla funkcji $f,g: (a,b) \to \mathbb{R}$ gdzie $a=-\infty$ lub $a \in \mathbb{R}$ i a < b

3.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ jest zbieżna } \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx \text{ jest zbieżna } \iff p < 1$$

Z czego $\int_0^\infty \frac{1}{x^p}$ jest rozbieżna

- 4. Przykłady:
 - (a) $\int_1^\infty \frac{dx}{\sqrt[4]{5x^5+1}}$ jest zbieżna, bo $\int_1^\infty \frac{dx}{x^{5/4}}$ jest zbieżna (bo $p=\frac{5}{4}>1$) z twierdzenia 1.1(a)
 - (b) $\int_0^1 \frac{e^{2x}}{\sqrt{x^3}} dx$ jest rozbieżna, bo $\int_0^1 \frac{1}{x^{3/2}}$ jest rozbieżna (bo $p = \frac{3}{2} \le 1$) z twierdzenia 1.1(b)
 - (c) $\int_{2}^{\infty} \frac{x \cdot \sin x}{(x^2 + 4)^2} dx : \forall_{x \in \langle 2, \infty \rangle} |\frac{x \cdot \sin x}{(x^2 + 4)^2}| = \frac{x \cdot |\sin x|}{(x^2 + 4)^2} \le \frac{x}{(x^2 + 4)^2} \le \frac{x}{x^4} = \frac{1}{x^3}$