§ 3.3 二维随机变量的函数的分布

一、问题的引入

有一大群人,令 X 和 Y 分别表示一个人的年龄和体重,Z 表示该人的血压,并且已知 Z 与 X, Y 的函数关系 Z = g(X,Y),如何通过 X, Y 的分布确定 Z 的分布.

为了解决类似的问题下面 我们讨论随机变量函数的分布.

二、二维离散型随机变量函数的分布

例3.3.1 设随机变量 (X,Y) 的分布律为

XY	-1	0	1
0	0.2	0.1	0.1
1	0.1	0.2	0.3

求 $(1)Z_1 = X + Y$, $(2)Z_2 = \max(X,Y)$ 的分布律.

解

解

max(X,Y)

XY	-1	0	1	XY	-1	0	1	
0	0.2	0.1	0.1	0	0	0	1	
1	0.1	0.2	0.3	1	1	1	1	

$\max(X,Y)$	0	1
P	0.2 + 0.1	0.1 + 0.1 + 0.2 + 0.3
	0.3	0.7

结论

若二维离散型随机变量的联合分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots,$$

则随机变量函数 Z = g(X,Y) 的分布律为

$$P\{Z = z_k\} = P\{g(X,Y) = z_k\}$$

$$= \sum_{z_k = g(x_i, y_i)} p_{ij}, \qquad k = 1, 2, \dots.$$

补例1 设两个独立的随机变量 X 与 Y 的分布律为

X	1	3	Y	2	4	
P_{X}	0.3	0.7	P_{Y}	0.6	0.4	

求随机变量 Z=X+Y 的分布律.

 $mathbb{m}$ 因为x与y相互独立,所以

$$P{X = x_i, Y = y_j} = P{X = x_i}P{Y = y_j},$$

得 X 2 4 1 0.18 0.12 3 0.42 0.28

XY	2	4
1	0.18	0.12
3	0.42	0.28

所以	Z = X + Y	3	5	7		
	P	0.18	0.54	0.28		

补例2 设相互独立的两个随机变量 X, Y 具有同一分布律,且 X 的分布律为

试求: $Z = \max(X,Y)$ 的分布律.

解 因为X与Y相互独立,

所以
$$P{X = i, Y = j} = P{X = i}P{Y = j}$$
,

于是

X	0	1
0	1/22	1/2 ²
1	1/2 ²	1/2 ²

$Z = \max($	X,Y)
-------------	-----	---

X^{Y}	0	1	XY	0	1	
0	1/2 ²	1/22	0	0	1	
1	1/2 ²	1/2 ²	1	1	1	

于是
$$P{Z=0}=P{X=0,Y=0}=1/4$$

$$P{Z=1}=P{X=0,Y=1}+P{X=1,Y=0}+P{X=1,Y=1}=3/4$$

故 $Z = \max(X, Y)$	Z	0	
的分布律为	P	1	

3

例3.3.2 独立的泊松分布对参数具有可加性

 $r.v.X \sim \pi(\lambda_1), Y \sim \pi(\lambda_2),$ 且独立,则 $X + Y \sim \pi(\lambda_1 + \lambda_2).$

证明 由题意知, X,Y的所有可能取值均为 $0,1,2,\cdots$, 因此, Z的所有可能取值也是 $0,1,2,\cdots$, 故Z为离散型随机变量, 且对任意 $n \geq 0$ 有

$$P(Z = n) = P(X + Y = n) = P\left(\bigcup_{k=0}^{n} \{X = k, Y = n - k\}\right)$$

$$= \sum_{k=0}^{n} P(X = k, Y = n - k)$$

$$= \sum_{k=0}^{n} P(X = k)P(Y = n - k)$$

$$= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{n!} \sum_{k=0}^{n} C_{n}^{k} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{(\lambda_{1} + \lambda_{2})^{n}}{n!} e^{-(\lambda_{1} + \lambda_{2})}.$$

此即 $Z = X + Y \sim \pi(\lambda_1 + \lambda_2)$.

结论 设X 和Y 是相互独立的随机变量, 且 $X \sim b(n_1, p)$, $Y \sim b(n_2, p)$, 则随机变量 $Z = X + Y \sim b(n_1 + n_2, p)$.(该性质称为二项分布对第一参数具有可加性)

练习册P15

9. 网站有两台服务器*A*和*B*,每分钟的访问次数都服从泊松分布且相互独立,平均每分钟的访问次数分别为360次和240次,则一秒钟内两台服务器总共接到至少2次访问的概率是_____.

例3.3.3 设X和Y的分布律分别为

且
$$P(XY=0)=1$$

- (1) 求X和Y的联合分布律;
- (2) 问X与Y是否相互独立? 为什么?

三、二维连续型随机变量函数的分布

1. Z=X+Y 的分布

设(X,Y)的概率密度为f(x,y),则Z = X + Y的分布函数为

$$F_{Z}(z) = P\{Z \le z\} = P\{X + Y \le z\} = \iint_{x+y \le z} f(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z-x} f(x,y) \, dy \right] dx$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z} f(x,u-x) \, du \right] \, dx$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} f(x,u-x) \, dx \right] du.$$

由此可得概率密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx.$$

由于 X 与 Y 对称, $f_Z(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy$.

当 X, Y 独立时, $f_z(z)$ 也可表示为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$
.

卷积公式

或
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$
,

例3.3.4 设两个独立的随机变量 X 与Y 都服从标准 正态分布,求 Z=X+Y 的概率密度.

解 由于
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty,$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, -\infty < y < +\infty,$$

由公式
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$
,

得
$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{(z-x)^2}{2}} dx$$

$$=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infty}^{+\infty}e^{-\left(x-\frac{z}{2}\right)^2}dx$$

$$\frac{t = x - \frac{z}{2}}{2\pi} \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}.$$

即 Z 服从 N(0,2) 分布.

$$=\frac{1}{\sqrt{2\pi}\sqrt{2}}e^{-\frac{z^2}{2(\sqrt{2})^2}}.$$

注3.3.2

一般,设
$$X$$
, Y 相互独立且 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$.则 $Z = X + Y$ 仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

有限个相互独立的正态随机变量的线性组合仍然服从正态分布.

若 $X_i \sim N(\mu_i, \sigma_i^2)$, $i = 1, 2, \dots, n$, 且它们相互独立,

则
$$\sum_{i=1}^{n} k_i X_i + \mathbf{b} \sim N(\sum_{i=1}^{n} k_i \mu_i + \mathbf{b}, \sum_{i=1}^{n} k_i^2 \sigma_i^2), (k_i$$
不全为零)

练习册P15

1. 设二维随机变量 $(X,Y) \sim N(0,\mathbf{0},\mathbf{0},1,0)$,则 $P\{|X-Y| \leq \sqrt{2}\} = ($)

A. 0.5

B. 0.6826

C. 0.8413

D. 0.9332

结论:
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
,

(1) X与Y的边缘密度函数是一元正态分布;

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

(2) X与Y相互独立的充要条件是 $\rho = 0$.

例3.3.5 设随机变量 X 与 Y 相互独立,密度函数分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{ i.e.} \end{cases} \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

求随机变量 Z=X+Y 的概率密度.

解 由于X与Y相互独立,

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx.$$

 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$ 的被积函数不为零

此时
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$

$$= \begin{cases} \int_0^z e^{-(z-x)} dx, & 0 < z < 1, \\ \int_0^1 e^{-(z-x)} dx, & z \ge 1, \\ 0, & \sharp \text{ th.} \end{cases} = \begin{cases} 1 - e^{-z}, & 0 < z < 1, \\ (e-1)e^{-z}, & z \ge 1, \\ 0, & \sharp \text{ th.} \end{cases}$$

练习册P16

- 4. 设二维随机变量(X,Y)的概率密度函数f(x,y) = $\begin{cases} 0.25xy, & 0 \le x,y \le 2 \\ 0, & \text{其他} \end{cases}$
- (3) 当 $0 \le z \le 2$ 时, 求随机变量 Z = X + Y 的概率密度函数 $f_Z(z)$.

练习 设X,Y的联合概率密度函数为

$$f(x,y) = \begin{cases} 6x, & 0 \le x \le 1, y > 0, x + y \le 1 \\ 0, & \text{ 其他.} \end{cases}$$

求 Z = X + Y 概率密度.

解
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx$$
.

$$= \begin{cases} \int_0^z 6x \, dx, & 0 < z < 1, \\ 0, & \text{ 其他.} \end{cases} = \begin{cases} 3z^2, & 0 < z < 1, \\ 0, & \text{ 其他.} \end{cases}$$

 $2.M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的 分 布

设随机变量X,Y的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,

则有
$$F_{\text{max}}(z) = P\{M \le z\} = P\{X \le z, Y \le z\}$$

X, Y独立 $= P\{X \le z\}P\{Y \le z\} = F_X(z)F_Y(z) = [F(z)]^2$

$$F_{\min}(z) = P\{N \le z\} = 1 - P\{N > z\} = 1 - P\{X > z, Y > z\}$$

X, Y独立

$$= 1 - P\{X > z\} \cdot P\{Y > z\}$$
 且同分布
= 1 - [1 - F_X(z)][1 - F_Y(z)] = 1 - [1 - F(z)]²

推广

设 $X_1, X_2, ..., X_n$ 是 n 个相互独立的随机变量,它们的分布函数分别为 $F_{X_i}(x_i)$ (i = 1, 2, ..., n)

则 $M = \max(X_1, X_2, \dots, X_n)$ 及 $N = \min(X_1, X_2, \dots, X_n)$ 的分布函数分别为

$$F_{\text{max}}(z) = F_{X_1}(z) \cdot F_{X_2}(z) \cdots F_{X_n}(z),$$

 $F_{\min}(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)] \cdots [1 - F_{X_n}(z)].$ 若 X_1, X_2, \cdots, X_n 相互独立且具有相同的分布函数 F(x),则

$$F_{\text{max}}(z) = [F(z)]^n, F_{\text{min}}(z) = 1 - [1 - F(z)]^n.$$

补例3 设系统 L由两个相互独立的子系统 L_1 , L_2 联接而成,连接的方式分别为 (i) 串联,(ii) 并联,(iii) 备用 (当系统 L_1 损坏时,系统 L_2 开始工作),如图所示.

设 L_1, L_2 的寿命分别为 X, Y,已知它们的概率密度分别为

$$f_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0, \end{cases} \quad f_Y(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

其中 $\alpha > 0$, $\beta > 0$ 且 $\alpha \neq \beta$. 试分别就以上三种联接方式写出 L 的寿命 Z 的概率密度.

解 (i)串联情况

由于当 L_1, L_2 中有一个损坏时,系统L就停止工作, 所以这时L的寿命为 $Z = \min(X, Y)$.

$$F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

$$= \begin{cases} 1 - e^{-(\alpha+\beta)z}, z > 0, \\ 0, & z \le 0. \end{cases}$$

$$\Rightarrow f_{\min}(z) = \begin{cases} (\alpha + \beta)e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

(ii)并联情况

由于当且仅当 L_1 , L_2 都损坏时,系统 L 才停止工作, 所以这时 L 的寿命为 $Z = \max(X,Y)$.

 $Z = \max(X, Y)$ 的分布函数为

$$F_{\max}(z) = F_X(z) \cdot F_Y(z) = \begin{cases} (1 - e^{-\alpha z})(1 - e^{-\beta z}), z > 0, \\ 0, & z \le 0. \end{cases}$$

$$f_{\max}(z) = \begin{cases} \alpha e^{-\alpha z} + \beta e^{-\beta z} - (\alpha + \beta) e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

(iii)备用的情况

由于这时当系统 L_1 损坏时,系统 L_2 才开始工作, 因此整个系统 L 的寿命 Z 是 L_1 , L_2 两者之和,即

$$Z = X + Y$$

Z = X + Y 的概率密度为

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \begin{cases} \int_{0}^{z} \alpha e^{-\alpha x} \beta e^{-\beta(z - x)} dx = \frac{\alpha \beta}{\alpha - \beta} (e^{-\beta z} - e^{-\alpha z}), & z > 0 \\ 0, & z \le 0 \end{cases}$$

补例4 $X_1, X_2, \dots, X_n \sim U(0, \theta)$ 独立同分布

$$\Leftrightarrow X_{(n)} = \max\{X_1, X_2, \dots, X_n\},$$

$$X_{(n)}$$
的分布函数为 $F_{X_{(n)}}(x) = [F(x)]^n$

$$X_{(n)}$$
的概率密度为 $f_{X_{(n)}}(x) = n[F(x)]^{n-1} f(x)$

$$f_{X_{(n)}}(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \le x \le \theta, \\ 0, & 其他. \end{cases}$$

补例4 $X_1, X_2, \dots, X_n \sim U(0, \theta)$ 独立同分布

$$\Leftrightarrow X_{(1)} = \min\{X_1, X_2, \dots, X_n\},$$

$$X_{(1)}$$
的分布函数为 $F_{X_{(1)}}(x) = 1 - [1 - F(x)]^n$

$$X_{(1)}$$
的概率密度为 $f_{X_{(1)}}(x) = n[1-F(x)]^{n-1} f(x)$

$$f_{X_{(1)}}(x) = \begin{cases} \frac{n(\theta - x)^{n-1}}{\theta^n}, & 0 \le x \le \theta, \\ 0, & \text{ 其他.} \end{cases}$$

练习册P17

9. 随机变量 X_1, X_2 相互独立且都服从U(0,1),求以下随机变量的概率密度函数和数学期望

(1) X_1+X_2 ; (2) $\text{Max}(X_1,X_2)$; (3) $\text{Min}(X_1,X_2)$; (4) $|X_1-X_2|$

 $\frac{$ 补例5 设随机变量 X 与 Y 相互独立,且其分布密度分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{ 其他.} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & \text{ 其他.} \end{cases}$

求随机变量 Z=2X+Y 的概率密度.

解 由于X与Y相互独立,

所以(X,Y)的概率密度函数为

$$f(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} e^{-y}, & 0 \le x \le 1, y > 0, \\ 0, & 其他. \end{cases}$$

随机变量Z的分布函数为

$$F_Z(z) = P\{Z \le z\} = P\{2X + Y \le z\}$$

$$= \iint_{2X+Y \le z} f(x,y) \, \mathrm{d} x \, \mathrm{d} y$$

$$= \begin{cases} 0, & z \le 0, \\ \int_0^{\frac{z}{2}} dx \int_0^{z-2x} e^{-y} dy, & 0 < z \le 2, \\ \int_0^1 dx \int_0^{z-2x} e^{-y} dx, & z > 2. \end{cases}$$

$$F_{Z}(z) = \begin{cases} 0, & z \le 0, \\ \int_{0}^{\frac{z}{2}} (1 - e^{2x - z}) dx = (z + e^{-z} - 1)/2, & 0 < z \le 2, \\ \int_{0}^{1} (1 - e^{2x - z}) dx = 1 - (e^{2} - 1)e^{-z}/2, & z > 2. \end{cases}$$

所以随机变量 Z 的概率密度为

$$f_{z}(z) = F'_{z}(z) = \begin{cases} 0, & z \le 0, \\ (1 - e^{-z})/2, & 0 < z \le 2, \\ (e^{2} - 1)e^{-z}/2, & z \ge 2. \end{cases}$$

补例6 设 X 和 Y 的联合概率密度为

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

求 Z = X - Y 概率密度.

解 先求 Z = X - Y 的分布函数 $F_z(z)$.

$$F_{Z}(z) = P\{Z \le z\} = P\{X - Y \le z\}$$

$$= \iint_{x-y \le z} f(x,y) dxdy$$

$$z \le 0$$
, $F_Z(z) = \int_0^{+\infty} dx \int_{x-z}^{+\infty} e^{-(x+y)} dy$

$$z \le 0$$
, $F_Z(z) = \int_0^{+\infty} dx \int_{x-z}^{+\infty} e^{-(x+y)} dy$

$$= \int_0^{+\infty} e^{-x} \left[-e^{-y} \right]_{y=x-z}^{y=+\infty} dx$$

$$=\int_0^{+\infty} e^{-2x} e^z dx = \frac{1}{2} e^z.$$

当z > 0时,如图有

$$F_Z(z) = \iint_{x-y \le z} f(x,y) dxdy = \int_0^{+\infty} dy \int_0^{y+z} e^{-(x+y)} dx$$

或 =
$$\int_0^z dx \int_0^{+\infty} e^{-(x+y)} dy + \int_z^{+\infty} dx \int_{x-z}^{+\infty} e^{-(x+y)} dy$$

$$= \int_0^z e^{-x} [-e^{-y}]_{y=0}^{y=+\infty} dx + \int_z^{+\infty} e^{-x} [-e^{-y}]_{y=x-z}^{y=+\infty} dx$$

$$= \int_0^z e^{-x} dx + \int_z^{+\infty} e^{-2x+z} dx = 1 - e^{-z} + \frac{1}{2}e^{-z} = 1 - \frac{1}{2}e^{-z}.$$

将 $F_z(z)$ 关于求导数, 得到 Z 的概率密度为

$$f_{Z}(z) = \begin{cases} \frac{1}{2}e^{z}, & z \leq 0, \\ \frac{1}{2}e^{-z}, & z > 0. \end{cases} \qquad \mathbb{P} \quad f_{Z}(z) = \frac{1}{2}e^{-|z|}.$$

例3.3.6 设随机变量 (X,Y) 在矩形

$$G = \{(x, y) | 0 \le x \le 2, 0 \le y \le 1\}$$

上服从均匀分布,试求边长为X和Y的矩形面积S的概率密度 f(s).

解 由题设知二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{2}, & \text{若}(x,y) \in G, \\ 0, & \text{若}(x,y) \notin G. \end{cases}$$

 $S = X \cdot Y$, 设 $F(s) = P\{S \le s\}$ 为 S 的分布函数,

则当s < 0时, $F(s) = P\{XY \le s\} = 0$,

当
$$s \ge 2$$
 时, $F(s) = P\{XY \le s\} = 1$, 当 $0 \le s < 2$ 时,

$$F(s) = P\{S \le s\} = P\{XY \le s\} = 1 - P\{XY > s\}$$

$$= 1 - \iint_{xy>s} f(x,y) dx dy = 1 - \int_{s}^{2} dx \int_{\frac{s}{x}}^{1} \frac{1}{2} dy$$

$$= \frac{s}{2} (1 + \ln 2 - \ln s).$$

故
$$f(s) = \begin{cases} \frac{1}{2}(\ln 2 - \ln s), & 0 \le s < 2, \\ 0, & 其他. \end{cases}$$

