

IIC1253 — Matemáticas Discretas — 1'2020

Examen

Indicaciones

- La duración del examen es 3 horas pero puede tomarse más tiempo si estima necesario.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital de cada pregunta por el buzón del curso, antes de las 23:59 horas del día del examen.
- Debe preocuparse que la copia digital y su calidad sea legible. Se recomienda usar hojas blancas y un lápiz oscuro que sea visible en la versión digital. En caso de no ser legible, no podrá ser evaluada su solución.
- Durante la evaluación puede hacer uso de sus apuntes o slides del curso.
- Esta es una evaluación estrictamente individual y, por lo tanto, no puede compartir información con sus compañeros o usar material fuera de sus apuntes o slides del curso. En caso de hacerlo, el examen no reflejará su progreso en el curso, viéndose perjudicada su formación personal y profesional.
- Al comienzo de cada pregunta debe escribir la siguiente oración y firmarla:

"Doy mi palabra que la siguiente solución de la pregunta X fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad."

En caso de no escribir esto al comienzo de cada pregunta, su solución no será evaluada.

Pregunta 1

Sea α y β dos formulas en lógica proposicional con variables p_1, \ldots, p_k .

Demuestre que $\alpha \models \beta$ si, y solo si, $\alpha \equiv \alpha \land \beta$.

Pregunta 2

Sea S un conjunto infinito y $M=A_0,A_1,A_2,\ldots$ una secuencia tal que $\emptyset \neq A_i \subseteq S$. Decimos que M es una cobertura de S si $\bigcup_{i=0}^{\infty} A_i = S$ y $A_i \subset A_{i+1}$ para todo $i \in \mathbb{N}$. Dada una cobertura $M=A_0,A_1,\ldots$ de S se define la secuencia de conjuntos B_0,B_1,B_2,\ldots tal que $B_0=A_0$ y $B_i=A_i\cap (A_{i-1})^c$ para todo $i\geq 1$.

En esta pregunta demostraremos que el conjunto $R = \{B_i \mid i \in \mathbb{N}\}$ es una partición de S.

- 1. Demuestre que $B_i \neq \emptyset$ para todo $i \in \mathbb{N}$.
- 2. Demuestre que $B_i \cap B_j = \emptyset$ para todo $i \neq j$.
- 3. Demuestre que $\bigcup_{i=0}^n B_i = A_n$ para todo $n \in \mathbb{N}$ y utilice este resultado para concluir que $\bigcup_{i=1}^{\infty} B_i = S$.

Pregunta 3

Considere la notación \mathcal{O} sobre funciones $f: \mathbb{N} \to \mathbb{N}$ como:

$$\mathcal{O}(f) = \{ g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{N}. \exists n_0 \in \mathbb{N}. \forall n \ge n_0. g(n) \le c \cdot f(n) \}$$

- 1. Para $a \in \mathbb{N}/\{0\}$ se define la función constante $f_a(n) = a$ para todo $n \in \mathbb{N}$. Demuestre que el conjunto $\mathcal{O}(f_a)$ es no-numerable.
 - **Hint:** Considere el conjunto de funciones $B = \{g : \mathbb{N} \to \{0,1\}\}.$
- 2. Considere el conjunto de funciones crecientes sobre \mathbb{N} como $\mathcal{C} = \{g : \mathbb{N} \to \mathbb{N} \mid \forall n \in \mathbb{N}. \ g(n) \leq g(n+1)\}$. Sea $a \in \mathbb{N}/\{0\}$. Demuestre que el conjunto $\mathcal{O}(a) \cap \mathcal{C}$ es numerable.

Pregunta 4

Se define el conjunto \mathcal{T} de árboles binarios como $\bullet \in \mathcal{T}$ y, si $t_1, t_2 \in \mathcal{T}$, entonces $\bullet(t_1, t_2) \in \mathcal{T}$. Recuerde que para todo árbol $t \in \mathcal{T}$ se define la función #nodes : $\mathcal{T} \to \mathbb{N}$ que cuenta el número de nodos recursivamente como #nodes(\bullet) = 1 y, si $t = \bullet(t_1, t_2)$, entonces #nodes(t_1) = #nodes(t_2) + #nodes(t_3) + #nodes(t_4) + 1.

- 1. Considere la función $f: \mathcal{T} \to \mathbb{N}$ definida recursivamente como: $f(\bullet) = 0$ y, si $t = \bullet(t_1, t_2)$, entonces $f(t) = \min\{f(t_1), f(t_2)\} + 1$. Explique en sus propias palabras lo que representa el valor f(t) para todo $t \in \mathcal{T}$.
- 2. Considere la secuencia $t_0, t_1, \ldots \in \mathcal{T}$ definida inductivamente como $t_0 = \bullet$ y $t_{n+1} = \bullet(t_n, t_n)$ para todo $n \geq 0$. Demuestre que $f(t_n) = |\log_2(\# \text{nodes}(t_n))|$.
- 3. Demuestre usando inducción que $f(t) \leq \log_2(\# \text{nodes}(t))$ para todo $t \in \mathcal{T}$.