Statistical Process Control

Outline

- Basics of Statistical Process Control
- Control Charts
- Control Charts for Attributes
- Control Charts for Variables
- Control Chart Patterns
- SPC with Excel
- Process Capability

Basics of Statistical Process Control

- Statistical Process Control (SPC)
 - monitoring production process to detect and prevent poor quality
- Sample
 - subset of items produced to use for inspection
- Control Charts
 - process is within statistical control limits

Variability

- Random
 - common causes
 - inherent in a process
 - can be eliminated only through improvements in the system

- Non-Random
 - special causes
 - due to identifiable factors
 - can be modified through operator or management action

SPC in TQM

- * SPC
 - tool for identifying problems and make improvements
 - contributes to the TQM goal of continuous improvements

Quality Measures

Attribute

- a product characteristic that can be evaluated with a discrete response
- good bad; yes no

Variable

- a product characteristic that is continuous and can be measured
- weight length

Applying SPC to Service

- Nature of defect is different in services
- Service defect is a failure to meet customer requirements
- Monitor times, customer satisfaction

Applying SPC to Service (cont.)

Hospitals

 timeliness and quickness of care, staff responses to requests, accuracy of lab tests, cleanliness, courtesy, accuracy of paperwork, speed of admittance and checkouts

Grocery Stores

 waiting time to check out, frequency of out-of-stock items, quality of food items, cleanliness, customer complaints, checkout register errors

Airlines

 flight delays, lost luggage and luggage handling, waiting time at ticket counters and check-in, agent and flight attendant courtesy, accurate flight information, passenger cabin cleanliness and maintenance

Applying SPC to Service (cont.)

- Fast-Food Restaurants
 - waiting time for service, customer complaints, cleanliness, food quality, order accuracy, employee courtesy
- Catalogue-Order Companies
 - order accuracy, operator knowledge and courtesy, packaging, delivery time, phone order waiting time
- Insurance Companies
 - billing accuracy, timeliness of claims processing, agent availability and response time

Where to Use Control Charts

- Process has a tendency to go out of control
- Process is particularly harmful and costly if it goes out of control
- Examples
 - at the beginning of a process because it is a waste of time and money to begin production process with bad supplies
 - before a costly or irreversible point, after which product is difficult to rework or correct
 - before and after assembly or painting operations that might cover defects
 - before the outgoing final product or service is delivered

Control Charts

- A graph that establishes control limits of a process
- Control limits
 - upper and lower bands of a control chart

- Types of charts
 - Attributes
 - p-chart
 - c-chart
 - Variables
 - range (R-chart)
 - mean (x bar chart)

Process Control Chart

Normal Distribution

A Process Is in Control If ...

- 1. ... no sample points outside limits
- 2. ... most points near process average
- 3. ... about equal number of points above and below centerline
- 4. ... points appear randomly distributed

Control Charts for Attributes

- p-charts
 - uses portion defective in a sample
- c-charts
 - uses number of defects in an item

p-Chart

$$UCL = p + z\sigma_p$$

$$LCL = p - z\sigma_p$$

z = number of standard deviations from process average p = sample proportion defective; an estimate of process average σ_{p} = standard deviation of sample proportion

$$= \sqrt{\frac{p(1-p)}{n}}$$

p-Chart Example

SAMPLE	NUMBER OF DEFECTIVES	PROPORTION DEFECTIVE				
1	6	.06				
2	0	.00				
3	4	.04				
:	:	:				
:	:	:				
20	<u> 18</u>	.18				
	200					
20 samples of 100 pairs of jeans						

p-Chart Example (cont.)

$$\overline{p} = \frac{\text{total defectives}}{\text{total sample observations}} = 200 / 20(100) = 0.10$$

$$UCL = \overline{p} + z \sqrt{\frac{\overline{p}(1 - \overline{p})}{n}} = 0.10 + 3\sqrt{\frac{0.10(1 - 0.10)}{100}}$$

$$UCL = 0.190$$

$$LCL = \overline{p} - z \sqrt{\frac{\overline{p}(1 - \overline{p})}{n}} = 0.10 - 3\sqrt{\frac{0.10(1 - 0.10)}{100}}$$

$$LCL = 0.010$$

p-Chart Example (cont.)

c-Chart

$$UCL = \overline{c} + z\sigma_c$$

$$LCL = \overline{c} - z\sigma_c$$

$$\sigma_c = \sqrt{\overline{c}}$$

where

c = number of defects per sample

c-Chart (cont.)

Number of defects in 15 sample rooms

SAMPLE	NUMBER OF DEFECTS	100
1	12	$\frac{-}{c} = \frac{190}{15} = 12.67$
2	8	
3	16	$UCL = c + z\sigma_c$ = 12.67 + 3 $\sqrt{12.67}$
:	;	= 12.67 + 37 12.67 = 23.35
:	:	$LCL = c + z\sigma_{c} $
1 5	<u>15</u>	$LCL = c + z\sigma_c$ = 12.67 - 3 $\sqrt{12.67}$
	190	= 1.99

c-Chart (cont.)

Control Charts for Variables

- Mean chart (x -Chart)
 - uses average of a sample
- Range chart (R-Chart)
 - uses amount of dispersion in a sample

x-bar Chart

$$\bar{\bar{x}} = \frac{\bar{X}_1 + \bar{X}_2 + \dots \bar{X}_k}{k}$$

$$UCL = \bar{\bar{x}} + A_2 \bar{R} \qquad LCL = \bar{\bar{x}} - A_2 \bar{R}$$

where

x-bar Chart Example

	OBSERVATIONS (SLIP- RING DIAMETER, CM)						
SAMPLE k	1	2	3	4	5	X	R
1	5.02	5.01	4.94	4.99	4.96	4.98	0.08
2	5.01	5.03	5.07	4.95	4.96	5.00	0.12
3	4.99	5.00	4.93	4.92	4.99	4.97	0.08
4	5.03	4.91	5.01	4.98	4.89	4.96	0.14
5	4.95	4.92	5.03	5.05	5.01	4.99	0.13
6	4.97	5.06	5.06	4.96	5.03	5.01	0.10
7	5.05	5.01	5.10	4.96	4.99	5.02	0.14
8	5.09	5.10	5.00	4.99	5.08	5.05	0.11
9	5.14	5.10	4.99	5.08	5.09	5.08	0.15
10	5.01	4.98	5.08	5.07	4.99	5.03	0.10
						50.09	1.15

x- bar Chart Example (cont.)

$$\bar{\bar{x}} = \frac{\sum \bar{x}}{k} = \frac{50.09}{10} = 5.01 \text{ cm}$$

UCL =
$$x + A_2R = 5.01 + (0.58)(0.115) = 5.08$$

= -
LCL = $x - A_2R = 5.01 - (0.58)(0.115) = 4.94$

Retrieve Factor Value A₂

R- Chart

$$UCL = D_4 \overline{R} \qquad LCL = D_3 \overline{R}$$

$$\overline{R} = \frac{\sum R}{k}$$

where

 \overline{R} = range of each sample k = number of samples

R-Chart Example

	OBSE	OBSERVATIONS (SLIP-RING DIAMETER, CM)					
SAMPLE k	1	2	3	4	5	X	R
1	5.02	5.01	4.94	4.99	4.96	4.98	80.0
2	5.01	5.03	5.07	4.95	4.96	5.00	0.12
3	4.99	5.00	4.93	4.92	4.99	4.97	80.0
4	5.03	4.91	5.01	4.98	4.89	4.96	0.14
5	4.95	4.92	5.03	5.05	5.01	4.99	0.13
6	4.97	5.06	5.06	4.96	5.03	5.01	0.10
7	5.05	5.01	5.10	4.96	4.99	5.02	0.14
8	5.09	5.10	5.00	4.99	5.08	5.05	0.11
9	5.14	5.10	4.99	5.08	5.09	5.08	0.15
10	5.01	4.98	5.08	5.07	4.99	5.03	0.10
						50.09	1.15

R-Chart Example (cont.)

$$\overline{R} = \frac{\sum R}{k} = \frac{1.15}{10} = 0.115$$

UCL = $D_4 \overline{R} = 2.11(0.115) = 0.243$

LCL = $D_3 R = 0(0.115) = 0$

Retrieve Factor Values D₃ and D₄

R-Chart Example (cont.)

Using x- bar and R-Charts Together

- Process average and process variability must be in control.
- It is possible for samples to have very narrow ranges, but their averages is beyond control limits.
- It is possible for sample averages to be in control, but ranges might be very large.

Control Chart Patterns

Control Chart Patterns (cont.)

Zones for Pattern Tests

Control Chart Patterns

- 8 consecutive points on one side of the center line
- 8 consecutive points up or down across zones
- 14 points alternating up or down
- 2 out of 3 consecutive points in zone A but still inside the control limits
- 4 out of 5 consecutive points in zone A or B

Performing a Pattern Test

SAMPLE	X	ABOVE/BELOW	UP/DOWN	ZONE
1	4.98	В	_	В
2	5.00	В	U	C
3	4.95	В	D	A
4	4.96	В	D	A
5	4.99	В	U	C
6	5.01	_	U	C
7	5.02	A	U	C
8	5.05	A	U	В
9	5.08	A	U	A
10	5.03	A	D	В

Sample Size

- Attribute charts require larger sample sizes
 - 50 to 100 parts in a sample
- Variable charts require smaller samples
 - 2 to 10 parts in a sample

SPC with Excel

SPC with Excel: Formulas

Process Capability

- Tolerances
 - design specifications reflecting product requirements
- Process capability
 - range of natural variability in a process what we measure with control charts

Process Capability

Process Capability (cont.)

Process Capability Measures

Process Capability Ratio

$$C_p = \frac{\text{tolerance range}}{\text{process range}}$$

upper specification limit - lower specification limit

6σ

Computing C_p

Net weight specification = $9.0 \text{ oz} \pm 0.5 \text{ oz}$ Process mean = 8.80 ozProcess standard deviation = 0.12 oz

$$C_{p} = \frac{\text{upper specification limit - lower specification limit}}{6\sigma}$$

$$= \frac{9.5 - 8.5}{6(0.12)} = 1.39$$

Process Capability Measures

Process Capability Index

 C_{pk} = minimum $C_{pk} = minimum$ $C_{pk} = mi$

Computing C_{pk}

```
Net weight specification = 9.0 \text{ oz} \pm 0.5 \text{ oz}
Process mean = 8.80 \text{ oz}
Process standard deviation = 0.12 \text{ oz}
```

$$C_{pk} = minimum$$

$$= minimum$$

$$= minimum$$

$$= \frac{3\sigma}{upper specification limit - x} = \frac{upper specification limit - x}{3\sigma}$$

$$= minimum$$

$$= \frac{8.80 - 8.50}{3(0.12)}, \frac{9.50 - 8.80}{3(0.12)} = 0.83$$

Appendix:

Determining Control Limits for *x*-bar and *R*-Charts

SAMPLE SIZE n	FACTOR FOR \overline{x} -CHART A_2	FACTORS FOR R-CHAP	RT
2	1.88	0.00 3.27	
3	1.02	0.00 2.57	
4	0.73	0.00 2.28	
5	0.58	0.00 2.11	
6	0.48	0.00 2.00	J
7	0.42	0.08 1.92	
8	0.37	0.14 1.86	
9	0.44	0.18 1.82	
10	0.11	0.22 1.78	
11	0.99	0.26 1.74	
12	0.77	0.28 1.72	
13	0.55	0.31 1.69	
14	0.44	0.33 1.67	
15	0.22	0.35 1.65	
16	0.11	0.36 1.64	
17	0.00	0.38 1.62	
18	0.99	0.39 1.61	
19	0.99 Retur	n 0.40 1.61	
20	0.88	0.41 1.59	