Содержание

1	Посади дерево!	3
2	К чёрту условности!	3
3	Не комплексуй без комплексных чисел	5
4	Ноль без палочки	6
5	Ско и бка, бра и кет	8
6	Сферическая блоха. Ой, сфера Блоха	8
5	Ско и бка, бра и кет	9
6	Сферическая блоха. Ой, сфера Блоха	10
7	Действия с кубитами	11
7	Действия с кубитами	12
8	Алгоритм Дойча	13
9	Два кубита — два весёлых друга	13
10	Действия на паре кубитов	13
11	Алгоритм Гровера: 2 кубита	13
12	Алгоритм Гровера: 3 кубита	13
13	Алгоритм Саймона: 2 кубита	14
14	Лог	14
15	Набор сделай сам!	14
16	Решения	14
17	Источники мудрости	16

Цель

Рассказать про квантовые вычисления девятиклассникам. Дойти до алгоритма Гровера с нуля, включая рассказ про вероятности и комплексные числа.

Спорные моменты:

• полный отказ от матриц, только обозначения Дирака;

• что делать с экспонентой e?

1. Посади дерево!

Определение 1. A — событие, $\mathbb{P}(A)$ — вероятность события A.

X — случайная величина, $\mathbb{E}(X)$ — математическое ожидание величины X.

- 1.1 В вазе пять неотличимых с виду конфет. Две без ореха и три с орехом. Маша ест конфеты выбирая их наугад до тех пор, пока не съест первую конфету с орехом. Обозначим X число съеденных конфет. Найди вероятности $\mathbb{P}(X=2)$, $\mathbb{P}(X>1)$ и ожидание $\mathbb{E}(X)$.
- **1.2** В коробке находится четыре внешне одинаковые лампочки, две из них исправны. Лампочки извлекают из коробки по одной до тех пор, пока не будут извлечены обе исправные.
 - 1. Какова вероятность того, что опыт закончится извлечением трёх лампочек?
 - 2. Каково ожидаемое количество извлеченных лампочек?
- 1.3 Маша подкидывает монетку. Если она выпадает орлом, то Маша подкидывает монетку ещё один раз, если решкой то ещё два раза. После этого Маша идёт в кино! Пусть X количество выпавших орлов.

Найди вероятности $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$ и ожидание $\mathbb{E}(X)$.

1.4 Две команды равной силы играют в волейбол до трёх побед одной из них, не обязательно подряд. Ничья невозможна. Из-за равенства сил будем считать, что вероятность победы каждой равна 0.5. Величина N- количество сыгранных партий.

Составьте табличку возможных значений N с их вероятностями.

Найди вероятность $\mathbb{P}(N-$ чётное) и ожидание $\mathbb{E}(N)$.

1.5 Какова вероятность того, что у 13 человек не будет ни одного совпадения дней рождений?

2. К чёрту условности!

Определение 2. Условная вероятность события A при условии, что событие B произошло,

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- **2.1** В городе примерно 4% такси зелёного цвета и остальные жёлтые. Свидетель путает цвет на показаниях в суде с вероятностью 10%.
 - 1. Какова вероятность того, свидетель скажет, что видел зелёное такси?
 - 2. Какова вероятность того, свидетель ошибётся?
 - 3. Какова вероятность того, что такси было зелёным, если свидетель говорит, что оно было зелёным?
 - 4. Какова вероятность того, что такси было жёлтым, если свидетель говорит, что оно было жёлтым?

2.2 У тети Маши — двое детей, один старше другого. Предположим, что вероятности рождения мальчика и девочки равны и не зависят от дня недели, а пол первого и второго ребенка независимы. Для каждой из ситуаций найдите условную вероятность того, что у тёти Маши есть дети обоих полов.

- 1. Известно, что старший ребенок мальчик.
- 2. Тетя Маша наугад выбирает одного своего ребенка и посылает к тете Оле, вернуть метлу. Это оказывается мальчик.
- 3. На вопрос: «А правда ли тётя Маша, что у Вас есть хотя бы один сын?» тётя Маша ответила: «Да».
- 4. На вопрос: «А правда ли тётя Маша, что у Вас есть хотя бы один сын, родившийся в пятницу?» тётя Маша ответила: «Да».
- 2.3 Ты смертельно болен. Спасти тебя может только один вид целебной лягушки. Целебны у этого вида только самцы. Самцы и самки встречаются равновероятно. Ты на дороге и предельно ослаб и можешь проползти лишь 100 метров. Справа в 100 метров аж две лягушки целебного вида, издалека неясно кто. От двух лягушек в твою сторону дует ветер, поэтому ты можешь их слышать.

Каковы твои шансы на спасение в каждом из случаев?

- 1. Самцы и самки квакают одинаково, со стороны правых двух лягушек ты слышишь кваканье.
- 2. Самки квакают, самцы нет, со стороны правых двух лягушек ты слышишь кваканье, но не разобрать, одной лягушки или двух.
- 3. Самцы и самки квакают по разному, но одинаково часто. Ты слышишь отдельный квак одной из двух лягушек справа и это квак самки.

2.4 Monty-Hall

Есть три закрытых двери. За двумя из них — по козе, за третьей автомобиль. Ты выбираешь одну из дверей. Допустим, ты выбрал дверь A. Ведущий шоу открывает дверь B и за ней нет автомобиля. B этот момент ведущий предлагает тебе изменить выбор двери.

Имеет ли смысл изменить выбор в каждой из трёх ситуаций?

- 1. Ведущий выбирал одну из трёх дверей равновероятно.
- 2. Ведущий выбирал одну из двух дверей не выбранных тобой равновероятно.
- 3. Ведущий выбирал дверь без машины и не совпадающую с твоей.

3. Не комплексуй без комплексных чисел

Определение 3. Комплексное число — это вектор на плоскости.

- 1. Длина вектора модуль комплексного числа, |z|.
- 2. Угол между вектором и горизонатльной осью аргумента комплексного числа, $\operatorname{Arg} z$.
- 3. Горизонтальная составляющая вектора действительная часть, $\operatorname{Re} z$.
- 4. Вертикальная составляющая вектора мнимая часть, Im z.
- 3.1 Для комплексных чисел 1+i и 3+4i найди |z|, Arg z, Re z, Im z. Нарисуй числа 1+i и 3+4i.

Действия:

- 1. Сложение комплексных чисел сложение векторов.
- 2. Умножение комплексных чисел длины векторов умножаются, аргументы складываются.
- 3. Сопряжение z^* комплексного числа отражение относительно горизонтальной оси.
- 3.2 Базируясь на геометрическом определении умножения, ответь на вопросы:
 - 1. Чему равняется $(1+i)^2$? $(1+i)^{43}$?
 - 2. Почему $i^2 = -1$?
 - 3. Чему равняется произведение произвольного комплексного числа z = a + bi на i?
 - 4. Нарисуй процесс умножение произвольного z=a+bi на 3+4i. Почему (3+4i)z=3z+4iz?
- 3.3 1. У комплексного числа $w=\sqrt{11}+5i$ найди |w|, $|w|^2$, Arg w, Re w, Im w, w^* , ww^* .
 - 2. Найди $(3+5i) \cdot (3+3i)$, (1+i)/(1-i),
 - 3. Найди $(\sqrt{3}+i)^{43}$, $(1-i)^{2018}$;
 - 4. Найди $(\cos(20^\circ) + i\sin(20^\circ)) \cdot (\cos(10^\circ) + i\sin(10^\circ));$
 - 5. Найди $(\cos(20^\circ) + i\sin(20^\circ))/(\cos(10^\circ) + i\sin(10^\circ));$
- 3.4 Реши уравнения $z^2 + 6z + 10 = 0$, $z^6 = 64$, (z 1)/(z + 1) = 1 + 3i.
- 3.5 Бесконечно живущая черепаха за первый день проходит 10 км на север. Затем каждый день она поворачивает на 90° налево и снижает скорость на 20%. К какой точке она приближается?

К какой точке стремится черепах, если она поворачивает на 60° ?

3.6 Найди сумму углов между векторами и горизонтальной осью.

3.7 На плоскости нарисована кошечка. Что прозойдет с кошечкой, если каждую точку кошечки домножить на комплексное число $1/\sqrt{2}+i/\sqrt{2}$?

4. Ноль без палочки

4.1 Составь таблицу истинности для следующих классических схем:

(тут от фонаря схема примерно пятью элементами)

- **4.2** С помощью классических логических элементов NOT, AND, OR реализуй схемы:
 - 1. OR с пятью входами: выдаёт на выходе 1, если хотя бы один из входов равен 1, и выдаёт 0 иначе.
 - 2. исключающее ИЛИ, XOR;
 - 3. сумматор для двух двухбитных чисел с трёхбитным выходом.

Определение 4. Кубит может находиться в бесконечном количестве состояний

$$|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

Амплитуды α_0 и α_1 — это комплексные числа удовлетворяющие соотношению $|\alpha_0|^2 + |\alpha_1|^2 = 1$. Также кубит можно записать в столбик:

$$|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$$

Если измерить кубит $|q\rangle = \alpha_0\,|0\rangle + \alpha_1\,|1\rangle$ в базисе $|0\rangle$ и $|1\rangle$, то он перейдёт в детерминистическое состояние $|0\rangle$ с вероятностью $|\alpha_0|^2$ и в детерминистическое состояние $|1\rangle$ с вероятностью $|\alpha_1|^2$.

- **4.3** Для каждого выражения определи, является ли оно честным и благородным кубитом. Для кубитов определи вероятности пронаблюдать их в состояниях $|0\rangle$ и $|1\rangle$:
 - 1. $\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle$;
 - 2. $\frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$;
 - 3. $|0\rangle + |1\rangle$;
 - 4. $\frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$;
 - 5. $|1\rangle$;
 - 6. $\cos 10^{\circ} |0\rangle + (\cos 12^{\circ} + i \sin 12^{\circ}) \sin 12^{\circ} |1\rangle;$
 - 7. $\cos 15^\circ \left| 0 \right\rangle + \left(\cos 12^\circ + i \sin 12^\circ \right) \sin 15^\circ \left| 1 \right\rangle;$
 - 8. $(\cos 35^{\circ} + i \sin 35^{\circ}) \cos 45^{\circ} |0\rangle + (\cos 22^{\circ} + i \sin 22^{\circ}) \sin 45^{\circ} |1\rangle;$

- 4.4 Два важных кубита, это $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ и $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$.
 - 1. У Дианы в одной коробке 1000 кубитов $|+\rangle$, а в другой 1000 кубитов $\frac{\sqrt{3}}{2}\,|0\rangle\,+\,\frac{1}{2}\,|1\rangle$. К сожалению, коробки не подписаны. Сможет ли Диана производя измерения в базисе $|0\rangle,\,|1\rangle$ отличить, в какой коробке лежат какие кубиты?
 - 2. У Дианы в одной коробке 1000 кубитов $|+\rangle$, а в другой 1000 кубитов $|-\rangle$. К сожалению, коробки не подписаны. Сможет ли Диана производя измерения отличить в базисе $|0\rangle$, $|1\rangle$, в какой коробке лежат какие кубиты?
 - 3. Вырази кубит $|0\rangle$ через кубиты $|+\rangle$ и $|-\rangle$, то есть найди комплексные числа β_+ и β_- , что $|0\rangle = \beta_+ \, |+\rangle + \beta_- \, |-\rangle$.
 - 4. Вырази кубит $|1\rangle$ через кубиты $|+\rangle$ и $|-\rangle$.
- **4.5** Для каждого кубита определи вероятности каждого состояния при измерении в базисе $|0\rangle$, $|1\rangle$ и в базисе $|+\rangle$, $|-\rangle$:
 - 1. $\frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$;
 - 2. $\frac{\sqrt{3}}{2} |+\rangle + \frac{1}{2} |-\rangle;$
 - 3. $|0\rangle$;
 - 4. $|+\rangle$;
- 4.6 Найди кубит $|\beta\rangle$ такой, что при измерении в базисе $|0\rangle$ и $|1\rangle$ оба результата измерения равновероятны, а при измерении в базисе $|+\rangle$ и $|-\rangle$ состояние $|+\rangle$ измеряется с вероятностью 3/4.
- 4.7 Чему равны $NOT(|0\rangle)$, $NOT(|1\rangle)$, $NOT(|+\rangle)$, $NOT(|-\rangle)$?

5. Ско и бка, бра и кет

Определение 5. Каждому кубиту (кет-вектору) соответствует бра-вектор. Кет-вектору $|a\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$ сопоставляется бра-вектор

 $\langle a| = |a\rangle^{\dagger} = \alpha_0^* |0\rangle + \alpha_1^* |1\rangle$

Бра-вектор — это не кубит. Бра-вектор можно также записать в строку

$$\langle a| = \begin{pmatrix} \alpha_0^* & \alpha_1^* \end{pmatrix}$$

Бра-векторы нужны, чтобы превращать кубиты в числа, $\langle a|\cdot|b\rangle$ — это число!

Таблица умножения бра-векторов на кубиты (кет-вектора) соответствует школьному скалярному произведению.

- 5.1 Задан кубит $|q\rangle=\frac{3+4i}{6}\,|0\rangle+\frac{\sqrt{11}}{6}\,|1\rangle$. Найди значения $\langle 0|+\rangle,\,\langle -|1\rangle,\,\langle +|q\rangle,\,\langle q|0\rangle,\,\langle 0|q\rangle,\,\langle q|q\rangle$.
- 5.2 Задан кубит $|q\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$. Найди значения $\langle 0|q\rangle,\,\langle q|0\rangle,\,\langle 1|q\rangle,\,\langle q|1\rangle.$
- 5.3 Составь таблицу умножения $\langle + |$ и $\langle |$ на $| + \rangle$ и $| \rangle$.

Определение 6. Набор кубитов $|a\rangle$ и $|b\rangle$ называется ортонормальным базисом, если $\langle a|a\rangle=\langle b|b\rangle=1$, $\langle a|b\rangle=\langle b|a\rangle=0$.

- 5.4 Задан кубит $|q\rangle = \frac{3+4i}{6}\,|0\rangle + \frac{\sqrt{11}}{6}\,|1\rangle.$
 - 1. Является ли пара $|q\rangle$ и $|0\rangle$ базисом, в котором можно проводить измерения?
 - 2. Является ли пара $|+\rangle$ и $|-\rangle$ базисом, в котором можно проводить измерения?
 - 3. Дополни кубит $|q\rangle$ ещё одним кубитом так, чтобы получился ортонормальный базис.
- 5.5 Известно, что комплексное число r_{γ} при умножении на другие комплексные числа поворачивает их на угол γ против часовой стрелки. Также известно, что $|q\rangle$ это некоторый кубит.
 - 1. Явно выпиши $r_{90^{\circ}}$ и $r_{-45^{\circ}}$.
 - 2. Будут ли кубитами $2|q\rangle$ и $r_{\gamma}|q\rangle$?
 - 3. После измерения кубит $|q\rangle$ оказывается в состоянии $|0\rangle$ с вероятностью 0.75. Каковы вероятности состояний $|0\rangle$ и $|1\rangle$ при измерении кубита $r_{\gamma}|q\rangle$?
- 5.6 Известно, что комплексное число r_{γ} при умножении на другие комплексные числа поворачивает их на угол γ против часовой стрелки. Существует ли базис в котором вероятности измерения для кубитов $|x\rangle$ и r_{γ} $|x\rangle$ отличаются?

6. Сферическая блоха. Ой, сфера Блоха

Определение 7. Любой кубит можно представить в виде

$$|q\rangle = r_{\gamma}\cos\frac{\theta}{2}|0\rangle + r_{\phi}\sin\frac{\theta}{2}|1\rangle$$

Множитель r_{γ} не влияет на вероятности измерения, поэтому разумно рисовать только углы θ и ϕ . На сфере Блоха угол θ откладывается от вертикальной оси z вниз, а угол ϕ от оси x против часовой.

- **6.1** 1. Изобрази на сфере Блоха $|0\rangle, |1\rangle, |+\rangle, |-\rangle;$
 - 2. Изобрази на сфере Блоха $NOT(|0\rangle),$ $NOT(|1\rangle),$ $NOT(|+\rangle),$ $NOT(|-\rangle);$
 - 3. Какое преобразование делает NOT на сфере Блоха?

5. Ско и бка, бра и кет

Определение 8. Каждому кубиту (кет-вектору) соответствует бра-вектор. Кет-вектору $|a\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$ сопоставляется бра-вектор

$$\langle a| = |a\rangle^{\dagger} = \alpha_0^* |0\rangle + \alpha_1^* |1\rangle$$

Бра-вектор — это не кубит. Бра-вектор можно также записать в строку

$$\langle a| = \begin{pmatrix} \alpha_0^* & \alpha_1^* \end{pmatrix}$$

Бра-векторы нужны, чтобы превращать кубиты в числа, $\langle a|\cdot|b\rangle$ — это число!

Таблица умножения бра-векторов на кубиты (кет-вектора) соответствует школьному скалярному произведению.

- 5.1 Задан кубит $|q\rangle=\frac{3+4i}{6}\,|0\rangle+\frac{\sqrt{11}}{6}\,|1\rangle$. Найди значения $\langle 0|+\rangle,\,\langle -|1\rangle,\,\langle +|q\rangle,\,\langle q|0\rangle,\,\langle 0|q\rangle,\,\langle q|q\rangle$.
- 5.2 Задан кубит $|q\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$. Найди значения $\langle 0|q\rangle,\,\langle q|0\rangle,\,\langle 1|q\rangle,\,\langle q|1\rangle.$
- 5.3 Составь таблицу умножения $\langle +|$ и $\langle -|$ на $|+\rangle$ и $|-\rangle$.
- 5.4 Как для произвольных кубитов связаны результаты умножения $\langle a|b\rangle$ и $\langle b|a\rangle$?

Определение 9. Набор кубитов $|a\rangle$ и $|b\rangle$ называется ортонормальным базисом, если $\langle a|a\rangle=\langle b|b\rangle=1$, $\langle a|b\rangle=\langle b|a\rangle=0$.

- 5.5 Задан кубит $|q
 angle = rac{3+4i}{6}\,|0
 angle + rac{\sqrt{11}}{6}\,|1
 angle.$
 - 1. Является ли пара $|q\rangle$ и $|0\rangle$ базисом, в котором можно проводить измерения?
 - 2. Является ли пара $|+\rangle$ и $|-\rangle$ базисом, в котором можно проводить измерения?
 - 3. Дополни кубит $|q\rangle$ ещё одним кубитом так, чтобы получился ортонормальный базис.
- 5.6 Известно, что комплексное число r_{γ} при умножении на другие комплексные числа поворачивает их на угол γ против часовой стрелки. Также известно, что $|q\rangle$ это некоторый кубит.
 - 1. Явно выпиши $r_{90^{\circ}}$ и $r_{-45^{\circ}}$.
 - 2. Будут ли кубитами $2\left|q\right\rangle$ и $r_{\gamma}\left|q\right\rangle$?
 - 3. После измерения кубит $|q\rangle$ оказывается в состоянии $|0\rangle$ с вероятностью 0.75. Каковы вероятности состояний $|0\rangle$ и $|1\rangle$ при измерении кубита $r_{\gamma}\,|q\rangle$?
 - 4. Сколькими способами можно дополнить кубит $|q\rangle$ до ортонормального базиса?
- 5.7 Известно, что комплексное число r_{γ} при умножении на другие комплексные числа поворачивает их на угол γ против часовой стрелки. Существует ли базис в котором вероятности измерения для кубитов $|x\rangle$ и r_{γ} $|x\rangle$ отличаются?

6. Сферическая блоха. Ой, сфера Блоха

Определение 10. Любой кубит можно представить в виде

$$|q\rangle = r_{\gamma}\cos\frac{\theta}{2}\left|0\right\rangle + r_{\phi}\sin\frac{\theta}{2}\left|1\right\rangle$$

Множитель r_{γ} не влияет на вероятности измерения, поэтому разумно рисовать только углы θ и ϕ . На сфере Блоха угол θ откладывается от вертикальной оси z вниз, а угол ϕ от оси x против часовой.

- **6.1** 1. Изобрази на сфере Блоха $|0\rangle, |1\rangle, |+\rangle, |-\rangle;$
 - 2. Изобрази на сфере Блоха $NOT(|0\rangle)$, $NOT(|1\rangle)$, $NOT(|+\rangle)$, $NOT(|-\rangle)$;
 - 3. Какое преобразование делает NOT на сфере Блоха?

7. Действия с кубитами

Определение 11. Любое действие с кубитами можно записать с помощью кет-бра:

$$U = \beta_{00} |0\rangle\langle 0| + \beta_{01} |0\rangle\langle 1| + \beta_{10} |1\rangle\langle 0| + \beta_{11} |1\rangle\langle 1|$$

Умножаем кет-бра на кубит по принципу: $|0\rangle\langle 1|\cdot |1\rangle = |0\rangle\cdot\langle 1|1\rangle = |0\rangle$. Не все действия возможны.

Определение 12. Стандартные обозначения действий:

$$I = |0\rangle\langle 0| + |1\rangle\langle 1|$$

$$X = |0\rangle\langle 1| + |1\rangle\langle 0|$$

$$Y = -i |0\rangle\langle 1| + i |1\rangle\langle 0|$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

Вентиль Адамара:

$$H = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1| \right)$$

- 7.1 Рассмотрим кубит $|q\rangle = \frac{\sqrt{3}}{2} |0\rangle + \frac{i}{2} |1\rangle$.
 - 1. Найди $I \cdot |0\rangle$, $I \cdot |+\rangle$, $I \cdot |q\rangle$. Что делает действие I?
 - 2. Найди $X \cdot |0\rangle$, $X \cdot |+\rangle$, $X \cdot |q\rangle$. Что делает действие X?
 - 3. Найди $H\cdot |0\rangle, H\cdot |+\rangle, H^2\cdot |1\rangle$. Что делает действие H^2 ?
 - 4. Найди $Y \cdot |1\rangle$, $XZ \cdot |1\rangle$, $Y \cdot |q\rangle$. В чём разница между XZ и Y?
 - 5. Найдит $Z \cdot |+\rangle$, $Z \cdot |-\rangle$, $Z \cdot |0\rangle$.
 - 6. Правда ли, что XZ = ZX?

Определение 13. У любого действия A есть сопряжённое A^{\dagger} . Сопряжение выполняется по принципу:

$$(\beta \cdot |a\rangle\langle b|)^{\dagger} = \beta^{\dagger} |b\rangle\langle a|$$

Действие A является разрёшенным, если $A^\dagger A = I.$

- 7.2 Является разрешённым действие $\frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |0\rangle\langle 0|$? Являются разрешёнными действия I, X, Y, Z, H?
- 7.3 Является разрешённым домножение кубита на поворот r_{γ} ? Как записать поворот с помощью $|\cdot\rangle\!\langle\cdot|$?
- 7.4 1. Как записать действия I, X, Y, Z, H в базисе $|+\rangle, |-\rangle$?
 - 2. Что делают действия I, X, Y, Z на сфере Блоха?
 - 3. Как записать действие $|+\rangle\langle+|-|-\rangle\langle-|$ в базисе $|0\rangle, |1\rangle$?
- 7.5 1. Как выглядит действие, отменяющее действие Z?
 - 2. У любого ли разрешённого действия есть обратное?

7. Действия с кубитами

Определение 14. Любое действие с кубитами можно записать с помощью кет-бра:

$$U = \beta_{00} |0\rangle\langle 0| + \beta_{01} |0\rangle\langle 1| + \beta_{10} |1\rangle\langle 0| + \beta_{11} |1\rangle\langle 1|$$

Умножаем кет-бра на кубит по принципу: $|0\rangle\langle 1|\cdot|1\rangle=|0\rangle\cdot\langle 1|1\rangle=|0\rangle$. Не все действия возможны.

Определение 15. Стандартные обозначения действий:

$$I = |0\rangle\langle 0| + |1\rangle\langle 1|$$

$$X = |0\rangle\langle 1| + |1\rangle\langle 0|$$

$$Y = -i |0\rangle\langle 1| + i |1\rangle\langle 0|$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

Вентиль Адамара:

$$H = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1| \right)$$

- 7.1 Рассмотрим кубит $|q\rangle = \frac{\sqrt{3}}{2}\,|0\rangle + \frac{i}{2}\,|1\rangle.$
 - 1. Найди $I \cdot |0\rangle$, $I \cdot |+\rangle$, $I \cdot |q\rangle$. Что делает действие I?
 - 2. Найди $X \cdot |0\rangle$, $X \cdot |+\rangle$, $X \cdot |q\rangle$. Что делает действие X?
 - 3. Найди $H\cdot |0\rangle, H\cdot |+\rangle, H^2\cdot |1\rangle$. Что делает действие H^2 ?
 - 4. Найди $Y \cdot |1\rangle$, $XZ \cdot |1\rangle$, $Y \cdot |q\rangle$. В чём разница между XZ и Y?
 - 5. Найдит $Z \cdot |+\rangle$, $Z \cdot |-\rangle$, $Z \cdot |0\rangle$.
 - 6. Правда ли, что XZ = ZX?

Определение 16. У любого действия A есть сопряжённое A^{\dagger} . Сопряжение выполняется по принципу:

$$(\beta \cdot |a\rangle\langle b|)^{\dagger} = \beta^{\dagger} |b\rangle\langle a|$$

Действие A является разрёшенным, если $A^\dagger A = I.$

- 7.2 Является разрешённым действие $\frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |0\rangle\langle 0|$? Являются разрешёнными действия I, X, Y, Z, H?
- 7.3 Является разрешённым домножение кубита на поворот r_{γ} ? Как записать поворот с помощью $|\cdot\rangle\!\langle\cdot|$?
- 7.4 1. Как записать действия I, X, Y, Z, H в базисе $|+\rangle, |-\rangle$?
 - 2. Что делают действия I, X, Y, Z на сфере Блоха?
 - 3. Как записать действие $|+\rangle\langle+|-|-\rangle\langle-|$ в базисе $|0\rangle, |1\rangle$?
- 7.5 1. Как выглядит действие, отменяющее действие Z?
 - 2. У любого ли разрешённого действия есть обратное?

8. Алгоритм Дойча

$$|0\rangle$$
 — H — D — H — \rightarrow

9. Два кубита — два весёлых друга

9.1 Алиса посылает Бобу пару кубитов в состоянии¹

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

- 1. Если Боб измерит сразу оба кубита, то каковы будут вероятности каждого состояния?
- 2. Боб решил измерить только первый кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется второй кубит?
- 3. Боб решил измерить только второй кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется первый кубит?

10. Действия на паре кубитов

10.1 Что получит Алиса, если применит действие $H^{\otimes 2}$ к паре кубит

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

10.2 Приведи пример действия A на паре кубит, которое невозможно представить в виде тензорного произведения действий. То есть невозможно придумать такие однокубитные действия B и C, что $A=B\otimes C$.

11. Алгоритм Гровера: 2 кубита

$$|00\rangle - H^{\otimes 2} - G - 2|++\rangle \langle ++|-I| - A \rightarrow 0$$

12. Алгоритм Гровера: 3 кубита

$$|000\rangle$$
 $H^{\otimes 3}$ G $2|+++\lambda++-I$

¹Конечно, это состояние кубитов, а не Алисы!

13. Алгоритм Саймона: 2 кубита

14. Лог

- 1. Было 11 школьников, 8-10 класс. Умножение вероятностей на дереве и расчёт ожидания на примере 1.1, 1.2. Задача про метание маркера в доску, школьники сами предлагают формулу $\mathbb{P}(A|B) = S(A \cap B)/S(B)$. Задача 2.1. Школьники прочли и начали предлагать ответы на 2.2.
- 2. Решили 2.2. Влад предложил решение без дерева. Решали 2.3. Перешли к комплексным числам. Школьники посчитали модуль и аргумент. Дали геометрическое определение умножения. Умножили исходя из геометрического определения (1+i)(1-i) и $(1+i)^{43}$.
- 3. Геометрически умножили: $i \cdot i$, $i \cdot (3+5i)$, $(2+3i) \cdot (3+5i)$. На примере тем самым доказали, что можно умножать алгебраически, заменяя i^2 на -1. Решили 3.3, 3.5, 3.6.
- 4. Не было одной Ани. Сделали пару делений комплексных чисел: одно алгебраическое через сопряжение, другое геометрическое. Решили задачу про черепаху и угол 60° . Далее школьники решили задачу на нахождение таблицы истинности и создание XOR с помощью NOT, OR и AND. Указали два разных способа создания XOR. Определил кубит перед самым концом занятия.
- 5. Повторно определил кубит, решили 4.3-4.7. NOT идёт очень легко, можно было также рассмотреть поворот кубита на угол γ . Начал рассказывать про бра-векторы.
- 6. Не было Ильи. Аккуратнее рассказал про бра-векторы. Решили 5.1, 5.2, 5.3, 5.5, 5.6.

15. Набор сделай сам!

[Sta]

16. Решения

- **1.1.** $\mathbb{P}(X=1) = 3/5$, $\mathbb{P}(X=2) = 3/10$, $\mathbb{P}(X=3) = 1/10$, $\mathbb{E}(X) = 1.5$
- 1.2.
- 1.3.
- 1.4. N 3 4 5
- 2/8 3/8 3/8
- 1.5.
- 3.1.
- 3.2.

- 3.3.
- 3.4.
- 3.5.
- **3.6.** $(4+2i)(3+i) = 10+10i, \pi/4.$
- 3.7. Кошка повернётся на $\pi/4$ против часовой стрелки относительно начала координат
- 4.1.
- 4.2.
- 4.3.
- 4.4.
- 4.5.
- 4.6. Записываем уравнения, получаем что α_0 , α_1 и $\alpha_0-\alpha_1$ образуют равносторонний треугольник. Например, одно из решений $\alpha_0=1/\sqrt{2}$, а $\alpha_1=\alpha_0\cdot(\cos 60^\circ+i\sin 60^\circ)$.
 - 4.7.
 - 5.1.
 - 5.2.
 - 5.3.
 - 5.4.
 - 5.5.
 - 5.6.

- 6.1.
- 5.1.
- 5.2.
- 5.3.
- 5.4.
- 5.5.
- 5.6.
- 5.7.
- 6.1.
- 7.1.
- 7.2.
- 7.3.
- 7.4.
- 7.5.
- 7.1.
- 7.2.
- 7.3.
- 7.4.
- 7.5.
- 9.1.
- 10.1.
- **10.2**. Например, $CNOT = |00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 11| + |11\rangle\langle 10|$.

17. Источники мудрости

[Sta] Mark Stay. Deutch's algorithm with a pair of sunglasses and some mirrors. URL: https://www.classe.cornell. edu/spr/2004-04/msg0060395.html. Инструкция по сборке квантового компьютера для алгоритма Дойча.