

EIXO TEMÁTICO: Ciências Computacionais

ALGORITMO AMDF PARA DETECÇÃO DE *PITCH* EM SINAIS DE VIBRAÇÃO DA PELE DO PESCOÇO

Lucas Souza, Igor Silva, Thyago Lima e Suzete Correia

Resumo

Neste trabalho o algoritmo AMDF é avaliado para extração do pitch de sinais de vibração da pele do pescoço. Resultados indicam que o método forneceu um erro percentual médio de 0,6%, em relação à valores obtidos pelo software PRAAT©.

Palavras-chave: Tecnologia vestível; pitch; frequência fundamental.

1 Introdução

Tecnologias vestíveis com foco no monitoramento vocal possuem grande impotância para auxílio ao diagnóstico, por permitir verificar o uso da voz durante um período contínuo de tempo, facilitando a identificação de patologias e tomada de decisão no tratamento do paciente (MEHTA *et al.*, 2017).

Estudos recentes têm empregado a análise das Vibrações da Pele do Pescoço (VPP), por causar o mínimo de desconforto ao paciente e ter grande utilidade no estudo da atividade glótica (SILVA *et al.*, 2019). Essa é uma análise não invasiva que apresenta diversas como: (i) robustez a ruídos ambientais; (ii) melhor detecção dos fonemas sonoros, por estarem sendo extraídos próximo à fonte glótica e (iii) possibilitar o desenvolvimento de dispositivos de monitoramento contínuo das atividades vocais de pacientes (ALZAMENDI, 2016).

Através do monitoramento da VPP é possível extrair parâmetros que podem quantificar a eficiência e a qualidade do sistema vocal do locutor. Um desses parâmetros é a frequência fundamental (*pitch*) do sinal de voz, que reflete o número de ciclos vibratórios das pregas vocais por segundo. Essa é uma medida essencial, pois a elevação do *pitch* acima do seu nível normal é um indicativo que o indivíduo entrou em fadiga vocal (TITZE, 2013).

Silva *et al.* (2019) propôs um colar, que se ajusta no pescoço, para capturar os sinais de VPP empregando um sensor piezoelétrico e placa ESP32. Os valores de pitch dos sinais capturados foram obtidos empregando-se o software PRAAT©. No entanto, para desenvolvimento de um sistema de

IoT que permita o monitoramento remoto e em tempo real das vibrações da pele do pescoço, tornase necessário que a detecção do *pitch* seja realizada no dispositivo embarcado. Para realizar essa tarefa há diversos algoritmos capazes de detectar o *pitch* de sinais de áudio. Os algoritmos que trabalham no domínio do tempo possuem a vantagem de serem simples de implementar, a exemplo do *Average Magnitude Difference Function* (AMDF), um método desenvolvido para extrair o *pitch* de sinais de áudio periódicos ou quase periódicos.

Neste trabalho são apresentados os resultados da detecção do *pitch* de sinais de VPP, pelo método AMDF.

2 Objetivo geral

Avaliar o desempenho do algoritmo AMDF na detecção de pitch de sinais de VPP.

3 Síntese metodológica

O AMDF foi avaliado em sinais de VPP oriundos da base de dados construída por Silva *et al.* (2019). Essa base possui 128 sinais de vibração da pele do pescoço, de 32 voluntárias, onde cada uma participou de quatro sessões de atividade de fala para a aquisição dos dados. Pra esse trabalho são considerados as emissões da vogal sutestanta /ε/ na intensidade normal. A frequência de amostragem foi de 8000 Hz.

Na Equação 1 é definido o AMDF, sendo x[i] as amostras do sinal de áudio, W o tamanho da janela que irá percorrer o sinal e τ o atraso. Esse método consiste na subtração do sinal original por sua versão deslocada de τ no tempo. Sabendo-se que o sinal x[i] é periódico com período T, quando $\tau = 0, \pm T, \pm 2T, ...$, o valor da Equação 1 será igual a zero. Portanto, basta encontrar o primeiro valor de τ ($\tau \neq 0$), que torna a Equação 1 nula e depois dividir a frequência de amostragem por τ , para obter a frequência fundamental desejada.

$$AMDF(\tau) = \frac{1}{W} \sum_{i=1}^{W} |x[i] - x[i - \tau]|, \ \tau = 0, 1, \dots, \tau_{max}$$
 (1)

O valor de $\tau_{m\acute{a}x}$ escolhido foi 500, permitindo frequências acima de 16 Hz serem detectadas. Já o valor de W foi variável, sendo definido como N - τ , em que N é a quantidade total de amostras do sinal. Para detectar o valor de τ que corresponde ao período do pitch, foi considerado o

procedimento apresentado por Prukkanon et al. (2009), que consistem em três etapas:

- 1. **Busca**: busque todos os vales contidos no AMDF do sinal;
- 2. Ordenação: ordene de modo crescente os vales;
- 3. **Seleção**: selecione os 10 (quantidade definida empiricamente) menores vales e escolha o que primeiro ocorre no AMDF. O vale escolhido corresponde ao período do *pitch*.

A Busca foi realizada através de uma simples varredura na lista de valores do AMDF, onde cada elemento era considerado um vale caso ele fosse menor do que sua vizinhança à esquerda e à direita. Para a realização eficiente da Ordenação, o algoritmo utilizado foi o *heapsort* devido o seu tempo computacional relativamente baixo. Após a Ordenação, a Seleção foi realizada ao percorrer a lista dos 10 selecionados. A linguagem de programação C foi utilizada.

4 Principais resultados

A Figura 1 exemplifica o processo de identificação do *pitch* para um sinal de VPP. No gráfico do AMDF, as circunferências em vermelho indicam os vales detectados pelo algoritmo. O vale correspondente ao *pitch* não é necessariamente o primeiro vale, nem também o vale mais profundo do gráfico, porém, é apenas o segundo vale dentre os 10 menores.

Sinal de VPP

AMDF do sinal

2400

2300

2200

2000

2000

2000

3000

4000

4000

500

Figura 1 - Sinal de VPP de uma locutora (esquerda) e o AMDF desse sinal (direita).

Fonte: Elaborado pelos autores (2024).

Na Tabela 1 é mostrado um comparativo entre os resultados de *pitch* do PRAAT© e do AMDF referente aos sinais de VPP, de uma única sessão, das 32 participantes. Observando os valores percebe-se que a maioria dos resultados obtidos pelo AMDF obtiveram uma certa proximidade dos

resultados do PRAAT©, apresentando um erro relativo percentual médio de 0,6%. Todavia, é importante observar que o algoritmo ainda detectou erroneamente o *pitch* de alguns sinais, como pode ser visto nos valores em destaque.

5 Considerações finais

O método AMDF mostrou-se adequado na detecção de *pitch* de sinais de vibração da pele do pescoço. Os seus resultados obtiveram proximidade em comparação aos resultados do software PRAAT©, apresentando um erro relativo percentual médio de 0,6%. Em trabalhos futuros pode-se avaliar o desempenho do AMDF após um pré-processamento no sinal de VPP como, por exemplo, um filtro passa-baixa de 60 Hz ou um filtro passa-faixa de 60 Hz a 900 Hz.

Referências

ALZAMENDI, G. A. Modelado Estocástico de la Fonación y Señales Biomédicas Relacionadas: Métodos en Espacio de Estados Aplicados al Análisis Estructural, al Modelado de la Fonación y al Filtrado Inverso. 2016, 214 f. Dissertação (Mestrado em Engenharia Elétrica). Universidad Nacional Del Litoral, Santa Fé, Argentina, 2016.

MEHTA, D. D.; CHWALEK, P. C.; QUATIERI, T. F; BRATTAIN, L. J. Wireless Neck-Surface Accelerometer and Microphone on Flex Circuit with Application to Noise-Robust Monitoring of Lombard Speech. In: INTERSPEECH. p. 684-688, 2017.

PRUKKANON, N.; CHAMNONGTHAI, K.; MIYANAGA, Y. e HIGUCHI, K. VT-AMDF, a pitch detection algorithm. In: 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2009.

SILVA, I. F.; LIMA, F. S.; GUIMARAES, A. M.; CORREIA, S. E. N.; COSTA, S. L. Proposta de um sistema embarcado para análise da saúde vocal pela vibração da pele do pescoço. In: XII SIMPÓSIO DE ENGENHARIA BIOMÉDICA, 2019.

TITZE, Ingo. Princípios da produção vocal. Salt Lake City: National Center of Voice and Speech, 2013.

Campus Ioão Pessoa

Tabela 1 - Comparativo entre os resultados de f_0 do PRAAT© e do AMDF.

Frequência (Hz)		Erro relativo percentual (%)
PRAAT©	AMDF	
258,1	258,1	0,0
236,4	235,3	0,5
227,3	228,6	0,6
220,0	222,2	1,0
206,0	205,1	0,4
206,0	205,1	0,4
207,6	210,5	1,4
196,7	195,1	0,8
219,6	222,2	1,2
170,4	170,2	0,1
211,8	210,5	0,6
221,5	222,2	0,3
300,4	296,3	1,4
184,8	186,0	0,6
212,9	210,5	1,1
233,0	533,3	128,9
215,7	216,2	0,2
185,8	186,0	0,1
202,4	205,1	1,3
199,6	200,0	0,2
254,8	258,1	1,3
183,4	186,0	1,4
236,8	235,3	0,6
202,0	200,0	1,0
208,6	210,5	0,9
170,4	363,6	113,4
186,8	195,1	4,4
201,8	200,0	0,9
181,3	181,8	0,3
215,0	216,2	0,6
199,2	200,0	0,4
210,0	210,5	0,2

Fonte: Elaborado pelos autores (2024).