INGENIERÍA INFORMÁTICA OPERATING SYSTEMS

Goals

□ Practice with process scheduling concepts

1. Statement

Given the next set of processes:

Process	Arrival	CPU Time	Priority
P1	0	10	3
P2	1	1	1
Р3	3	4	3
P4	4	2	4
P5	5	5	2

- a) Write a diagram that illustrates the execution of these processes using:
 - □ 1. FIFO.
 - 2. Scheduling with preemptive (or expulsive) priorities
 - \square 3. Scheduling with preemptive priorities and with Round Robin (q = 2) for the processes of the same priority.
- b) Calculate the waiting time for each scheduling process and algorithm

1. Solution. FIFO

1. Solution. Preemptive

1. Solution. Preemptive and RR(q=2)

Operating Systems-Lab. process scheduling

1. Solution. Waiting time

	P1	P2	Р3	P4	P5
Fifo	0	9	8	11	12
Priorities	10	0	7	16	0
Priorities and Round Robin	10	0	10	16	0

2. Statement

- Scheduling using priority queues (1 being the highest).
- □ When several processes have the same priority, a round robin scheduling policy is used, with a 100 ms slice.
- □ For the next table of processes:

PROCESSES	PRIORITY	ARRIVAL	EXECUTION TIME
P1	3	0	250 CPU + 100 E/S + 200 CPU
P2	2	200	300 CPU
P3	1	400	100 CPU + 250 E/S + 50 CPU
P4	1	500	400 CPU
P5	2	400	100 CPU + 100 E/S + 100 CPU

- □ For scheduling without and with preemption:
 - 1. Make a cronogram of the execution of the processes.
 - 2. Calculate the time that each process is kept on hold from its arrival in the system until it ends.
 - 3. Calculate the return time of each process (time elapsed since the process arrives until the end of its execution).
 - 4. Average waiting time and average return time.
 Operating Systems— Lab. process scheduling

2. Solution. Non preemptive

2. Solution. Preemptive

3. Statement proposed

- An operating system uses a cyclic (round-robin) scheduler. At a given moment there are no jobs running and you want to run jobs whose arrival times to the system are as follows:
- Priorities are inverse of their value. Thus, a process with priority 1 is prioritized over another with priority 2 or 3.
- □ You are asked to fill in the following tables in the following cases:
 - a) Round-robin scheduling policy with slice of 1
 - b) Round-robin scheduling policy with slice of 4
 - □ c) SJF (Shortest Job First) scheduling Policy (Non-Expulsive)
- NOTE: If the execution slice of a process ends at the same instant that a new process arrives on the system, then the new process is placed in the ready-to-run queue before the process that expires the slice.

3. Statement proposed

Draw the cronogram of the following processes.

PROCESSES	ARRIVAL		EXECUTION	
P1		0		1 ms CPU + 6 ms E/S + 1 ms CPU
P2		1		3 ms CPU
Р3		3		5 ms CPU + 3 ms E/S + 1 ms CPU
P4		3		3 ms CPU

- b) Indicate for each process their time of stay in the system and the penalty time suffered by each one of them.
- □ c) What is the worst treated process?

3. Solution.

	Proces	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	P1	CPU	E/S	E/S	E/S	E/S	E/S	E/S	CPU								
A)	P2		CPU	CPU						CPU							
	P3				CPU	CPU					CPLI	CPU	CPLI	E/S	F/S	F/S	CPLI
	10				CIO	Ci U					Ci U	Ci U	CIO	L/ 3	L/ 3	L/ 3	CIO
	P4						CPU	CPU						CPU			

	Process	Stay	Penalty
В)	P1	8	0
	P2	8	5
	Р3	13	4
	P4	10	7

c) The worst treated process is process 4 since it takes 10 periods to finish its execution, when it only has 3 execution periods, it suffers 7 penalty periods.