## $12n_{0007} \ (K12n_{0007})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle -9.22578 \times 10^{81} u^{32} + 2.64829 \times 10^{82} u^{31} + \dots + 1.74190 \times 10^{85} b + 7.65657 \times 10^{83}, \\ &\quad 1.64277 \times 10^{83} u^{32} - 4.01664 \times 10^{83} u^{31} + \dots + 6.96761 \times 10^{85} a - 2.63055 \times 10^{86}, \\ &\quad u^{33} - 2u^{32} + \dots - 1024u^2 + 1024 \rangle \\ I_2^u &= \langle b, \ -2u^3 - u^2 + a - 5u - 1, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_1^v &= \langle a, \ -152v^9 + 36v^8 - 216v^7 + 881v^6 - 468v^5 + 684v^4 - 1376v^3 + 252v^2 + 115b - 144v + 219, \\ &\quad v^{10} - v^9 + 2v^8 - 7v^7 + 8v^6 - 9v^5 + 14v^4 - 10v^3 + 5v^2 - 3v + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 47 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -9.23 \times 10^{81} u^{32} + 2.65 \times 10^{82} u^{31} + \dots + 1.74 \times 10^{85} b + 7.66 \times 10^{83}, \ 1.64 \times 10^{83} u^{32} - 4.02 \times 10^{83} u^{31} + \dots + 6.97 \times 10^{85} a - 2.63 \times 10^{86}, \ u^{33} - 2u^{32} + \dots - 1024 u^2 + 1024 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00235772u^{32} + 0.00576474u^{31} + \dots - 1.78671u + 3.77540 \\ 0.000529638u^{32} - 0.00152034u^{31} + \dots + 1.75463u - 0.0439552 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00161857u^{32} - 0.00336873u^{31} + \dots - 4.32267u + 2.88182 \\ -0.000754427u^{32} + 0.00172427u^{31} + \dots + 0.455492u - 1.26583 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.000947588u^{32} - 0.00205444u^{31} + \dots - 0.758148u + 2.00893 \\ 0.000267518u^{32} - 0.00205444u^{31} + \dots + 0.294022u + 0.443178 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00169931u^{32} + 0.00435099u^{31} + \dots + 0.294022u + 0.443178 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00169705u^{32} + 0.00435099u^{31} + \dots + 0.294022u + 0.443178 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.00169705u^{32} + 0.00482151u^{31} + \dots + 0.535570u - 2.78065 \\ -0.000159267u^{32} + 0.00482151u^{31} + \dots + 0.535570u - 2.78065 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.00169705u^{32} + 0.00482151u^{31} + \dots + 0.535570u - 2.78065 \\ 0.0000201791u^{32} - 0.000817233u^{31} + \dots + 3.74671u - 2.43201 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00167929u^{32} + 0.0042151u^{31} + \dots + 0.535570u - 2.78065 \\ 0.0000201791u^{32} - 0.000817233u^{31} + \dots + 0.535570u - 2.78065 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00168705u^{32} + 0.00482151u^{31} + \dots + 0.535570u - 2.78065 \\ 0.0000201791u^{32} - 0.000817233u^{31} + \dots + 0.535570u - 2.78065 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00168705u^{32} + 0.00482151u^{31} + \dots + 0.535570u - 2.78065 \\ 0.0000201791u^{32} - 0.000817233u^{31} + \dots + 2.11291u - 1.40057 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00168705u^{32} + 0.00424440u^{31} + \dots + 0.0320791u + 3.73144 \\ 0.000529638u^{32} - 0.00152034u^{31} + \dots + 1.75463u - 0.0439552 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-0.00699839u^{32} + 0.0259705u^{31} + \cdots 24.8101u + 1.26303$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing              |
|-----------------------|---------------------------------------------|
| $c_1$                 | $u^{33} + 5u^{32} + \dots + 3u - 1$         |
| $c_2, c_5$            | $u^{33} + 7u^{32} + \dots + 5u + 1$         |
| $c_3$                 | $u^{33} - 7u^{32} + \dots - 29960u + 14308$ |
| $c_4, c_7$            | $u^{33} - 2u^{32} + \dots - 1024u^2 + 1024$ |
| $c_6, c_{10}$         | $u^{33} + 3u^{32} + \dots + 56u - 16$       |
| c <sub>8</sub>        | $u^{33} + 4u^{32} + \dots + 2u + 1$         |
| $c_9, c_{11}, c_{12}$ | $u^{33} + 7u^{32} + \dots + 4u - 1$         |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                    |  |
|-----------------------|-------------------------------------------------------|--|
| $c_1$                 | $y^{33} + 53y^{32} + \dots + 3y - 1$                  |  |
| $c_2, c_5$            | $y^{33} + 5y^{32} + \dots + 3y - 1$                   |  |
| $c_3$                 | $y^{33} + 101y^{32} + \dots + 162370712y - 204718864$ |  |
| $c_4, c_7$            | $y^{33} + 60y^{32} + \dots + 2097152y - 1048576$      |  |
| $c_6,c_{10}$          | $y^{33} + 33y^{32} + \dots - 2496y - 256$             |  |
| $c_8$                 | $y^{33} - 62y^{32} + \dots - 26y - 1$                 |  |
| $c_9, c_{11}, c_{12}$ | $y^{33} - 39y^{32} + \dots - 124y - 1$                |  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.736102 + 0.542727I |                                       |                    |
| a = -0.637804 - 0.145676I | 4.58725 + 2.79647I                    | 1.21032 - 3.36441I |
| b = -0.263754 + 1.251930I |                                       |                    |
| u = -0.736102 - 0.542727I |                                       |                    |
| a = -0.637804 + 0.145676I | 4.58725 - 2.79647I                    | 1.21032 + 3.36441I |
| b = -0.263754 - 1.251930I |                                       |                    |
| u = 0.624216 + 0.614071I  |                                       |                    |
| a = -0.451815 - 0.151872I | 6.44848 + 5.59696I                    | 6.32857 - 1.76937I |
| b = -0.581770 + 1.231250I |                                       |                    |
| u = 0.624216 - 0.614071I  |                                       |                    |
| a = -0.451815 + 0.151872I | 6.44848 - 5.59696I                    | 6.32857 + 1.76937I |
| b = -0.581770 - 1.231250I |                                       |                    |
| u = 0.296890 + 0.749665I  |                                       |                    |
| a = -0.46200 - 1.54808I   | 2.07164 - 0.96578I                    | 7.05787 - 0.04324I |
| b = -0.396918 + 0.657378I |                                       |                    |
| u = 0.296890 - 0.749665I  |                                       |                    |
| a = -0.46200 + 1.54808I   | 2.07164 + 0.96578I                    | 7.05787 + 0.04324I |
| b = -0.396918 - 0.657378I |                                       |                    |
| u = -0.479019 + 0.528772I |                                       |                    |
| a = 2.34330 + 1.85274I    | 1.16540 - 2.90676I                    | 5.52935 + 0.45206I |
| b =  0.056157 - 0.749682I |                                       |                    |
| u = -0.479019 - 0.528772I |                                       |                    |
| a = 2.34330 - 1.85274I    | 1.16540 + 2.90676I                    | 5.52935 - 0.45206I |
| b = 0.056157 + 0.749682I  |                                       |                    |
| u = 0.639723 + 0.300028I  |                                       |                    |
| a = 0.463444 + 0.633798I  | 0.62465 + 2.03384I                    | 1.49443 - 2.77231I |
| b = 0.345995 - 0.989797I  |                                       |                    |
| u = 0.639723 - 0.300028I  |                                       |                    |
| a = 0.463444 - 0.633798I  | 0.62465 - 2.03384I                    | 1.49443 + 2.77231I |
| b = 0.345995 + 0.989797I  |                                       |                    |

| Solutions to $I_1^u$        | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-----------------------------|---------------------------------------|---------------------|
| u = -0.680743               |                                       |                     |
| a = -1.22755                | 2.80941                               | 2.91480             |
| b = -0.999659               |                                       |                     |
| u = -0.445593 + 0.510958I   |                                       |                     |
| a = 0.788593 + 0.405247I    | -0.634147 + 1.259730I                 | -4.30303 - 4.77679I |
| b = 0.389650 - 0.507994I    |                                       |                     |
| u = -0.445593 - 0.510958I   |                                       |                     |
| a = 0.788593 - 0.405247I    | -0.634147 - 1.259730I                 | -4.30303 + 4.77679I |
| b = 0.389650 + 0.507994I    |                                       |                     |
| u = -0.304293 + 0.498677I   |                                       |                     |
| a = 1.074760 - 0.330459I    | -0.29538 + 1.55166I                   | -2.33060 - 5.33546I |
| b = -0.237073 - 0.267230I   |                                       |                     |
| u = -0.304293 - 0.498677I   |                                       |                     |
| a = 1.074760 + 0.330459I    | -0.29538 - 1.55166I                   | -2.33060 + 5.33546I |
| b = -0.237073 + 0.267230I   |                                       |                     |
| u = 0.529499 + 0.187441I    |                                       |                     |
| a = 4.29355 - 1.67102I      | 1.84801 - 1.60722I                    | 0.8190 + 15.0118I   |
| b = 0.312701 + 0.419841I    |                                       |                     |
| u = 0.529499 - 0.187441I    |                                       |                     |
| a = 4.29355 + 1.67102I      | 1.84801 + 1.60722I                    | 0.8190 - 15.0118I   |
| b = 0.312701 - 0.419841I    |                                       |                     |
| u = -0.10031 + 1.67720I     |                                       |                     |
| a = -0.0503517 - 0.0297636I | 7.91587 + 3.25842I                    | 0                   |
| b = -0.604916 + 0.020460I   |                                       |                     |
| u = -0.10031 - 1.67720I     |                                       |                     |
| a = -0.0503517 + 0.0297636I | 7.91587 - 3.25842I                    | 0                   |
| b = -0.604916 - 0.020460I   |                                       |                     |
| u = -0.85403 + 1.58938I     |                                       |                     |
| a = -0.454673 - 0.911109I   | 9.42003 - 4.56175I                    | 0                   |
| b = 0.21829 + 1.69561I      |                                       |                     |

| Solutions to $I_1^u$       | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------------|---------------------------------------|------------|
| u = -0.85403 - 1.58938I    |                                       |            |
| a = -0.454673 + 0.911109I  | 9.42003 + 4.56175I                    | 0          |
| b = 0.21829 - 1.69561I     |                                       |            |
| u = 1.61914 + 1.36310I     |                                       |            |
| a = -0.415764 + 0.566639I  | 11.88220 - 1.87850I                   | 0          |
| b = -0.06793 - 1.82415I    |                                       |            |
| u = 1.61914 - 1.36310I     |                                       |            |
| a = -0.415764 - 0.566639I  | 11.88220 + 1.87850I                   | 0          |
| b = -0.06793 + 1.82415I    |                                       |            |
| u = 0.47200 + 2.29182I     |                                       |            |
| a = -0.313254 + 1.103940I  | 13.8782 - 7.1833I                     | 0          |
| b = -0.34561 - 1.60946I    |                                       |            |
| u = 0.47200 - 2.29182I     |                                       |            |
| a = -0.313254 - 1.103940I  | 13.8782 + 7.1833I                     | 0          |
| b = -0.34561 + 1.60946I    |                                       |            |
| u = 0.91656 + 2.15918I     |                                       |            |
| a = 0.567229 - 0.874265I   | -18.3854 - 12.6657I                   | 0          |
| b = 0.84459 + 1.62798I     |                                       |            |
| u = 0.91656 - 2.15918I     |                                       |            |
| a = 0.567229 + 0.874265I   | -18.3854 + 12.6657I                   | 0          |
| b = 0.84459 - 1.62798I     |                                       |            |
| u = 0.01301 + 2.40418I     |                                       |            |
| a = -0.078585 - 1.110070I  | 14.1748 - 0.2842I                     | 0          |
| b = -0.18185 + 1.65385I    |                                       |            |
| u = 0.01301 - 2.40418I     |                                       |            |
| a = -0.078585 + 1.110070I  | 14.1748 + 0.2842I                     | 0          |
| b = -0.18185 - 1.65385I    |                                       |            |
| u = -0.27091 + 2.43864I    |                                       |            |
| a = 0.0842297 + 0.0547107I | 16.4290 + 3.7881I                     | 0          |
| b = 1.72368 + 0.09458I     |                                       |            |

| Solutions to $I_1^u$       | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------------|---------------------------------------|------------|
| u = -0.27091 - 2.43864I    |                                       |            |
| a = 0.0842297 - 0.0547107I | 16.4290 - 3.7881I                     | 0          |
| b = 1.72368 - 0.09458I     |                                       |            |
| u = -0.58040 + 2.51179I    |                                       |            |
| a = 0.362910 + 0.854969I   | -17.4300 + 5.1499I                    | 0          |
| b = 0.78859 - 1.76638I     |                                       |            |
| u = -0.58040 - 2.51179I    |                                       |            |
| a = 0.362910 - 0.854969I   | -17.4300 - 5.1499I                    | 0          |
| b = 0.78859 + 1.76638I     |                                       |            |

II. 
$$I_2^u = \langle b, -2u^3 - u^2 + a - 5u - 1, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{3} + u^{2} + 5u + 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{3} + 5u \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{3} + u^{2} + 5u + 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-8u^3 11u^2 22u 11$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_4$            | $u^4 - u^3 + 3u^2 - 2u + 1$    |
| $c_2$                 | $u^4 - u^3 + u^2 + 1$          |
| $c_3$                 | $u^4 + u^3 + 5u^2 - u + 2$     |
| <i>C</i> <sub>5</sub> | $u^4 + u^3 + u^2 + 1$          |
| $c_6, c_{10}$         | $u^4$                          |
|                       | $u^4 + u^3 + 3u^2 + 2u + 1$    |
| <i>c</i> <sub>8</sub> | $u^4 - 5u^3 + 7u^2 - 2u + 1$   |
| <i>c</i> <sub>9</sub> | $(u+1)^4$                      |
| $c_{11}, c_{12}$      | $(u-1)^4$                      |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing |
|-----------------------|------------------------------------|
| $c_1, c_4, c_7$       | $y^4 + 5y^3 + 7y^2 + 2y + 1$       |
| $c_2, c_5$            | $y^4 + y^3 + 3y^2 + 2y + 1$        |
| <i>c</i> <sub>3</sub> | $y^4 + 9y^3 + 31y^2 + 19y + 4$     |
| $c_6,c_{10}$          | $y^4$                              |
| c <sub>8</sub>        | $y^4 - 11y^3 + 31y^2 + 10y + 1$    |
| $c_9, c_{11}, c_{12}$ | $(y-1)^4$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.395123 + 0.506844I |                                       |                     |
| a = -0.59074 + 2.34806I   | 1.43393 + 1.41510I                    | -3.14142 - 7.60220I |
| b = 0                     |                                       |                     |
| u = -0.395123 - 0.506844I |                                       |                     |
| a = -0.59074 - 2.34806I   | 1.43393 - 1.41510I                    | -3.14142 + 7.60220I |
| b = 0                     |                                       |                     |
| u = -0.10488 + 1.55249I   |                                       |                     |
| a = -0.409261 + 0.055548I | 8.43568 + 3.16396I                    | 11.64142 - 1.04769I |
| b = 0                     |                                       |                     |
| u = -0.10488 - 1.55249I   |                                       |                     |
| a = -0.409261 - 0.055548I | 8.43568 - 3.16396I                    | 11.64142 + 1.04769I |
| b = 0                     |                                       |                     |

III. 
$$I_1^v = \langle a, -152v^9 + 36v^8 + \dots + 115b + 219, \ v^{10} - v^9 + \dots - 3v + 1 \rangle$$

#### (i) Arc colorings

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.32174v^{9} - 0.313043v^{8} + \dots + 1.25217v - 1.90435 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.35652v^{9} - 0.373913v^{8} + \dots + 1.49565v - 0.191304 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.35652v^{9} + 0.373913v^{8} + \dots - 1.49565v + 1.19130 \\ -3.19130v^{9} + 0.834783v^{8} + \dots - 3.33913v + 3.07826 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.83478v^{9} + 0.460870v^{8} + \dots - 1.84348v + 1.88696 \\ -3.19130v^{9} + 0.834783v^{8} + \dots - 3.33913v + 3.07826 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.982609v^{9} + 0.469565v^{8} + \dots - 2.87826v + 1.35652 \\ -2.35652v^{9} + 1.37391v^{8} + \dots - 6.49565v + 3.19130 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.469565v^{9} + 0.321739v^{8} + \dots - 2.28696v + 0.373913 \\ -2.35652v^{9} + 1.37391v^{8} + \dots - 6.49565v + 3.19130 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.35652v^{9} + 0.373913v^{8} + \dots - 1.49565v + 0.191304 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.32174v^{9} - 0.313043v^{8} + \dots + 1.25217v - 1.90435 \\ 1.32174v^{9} - 0.313043v^{8} + \dots + 1.25217v - 1.90435 \end{pmatrix}$$

#### (ii) Obstruction class = 1

(iii) Cusp Shapes 
$$= -\frac{281}{115}v^9 + \frac{118}{115}v^8 - \frac{363}{115}v^7 + \frac{1693}{115}v^6 - \frac{959}{115}v^5 + \frac{977}{115}v^4 - \frac{2683}{115}v^3 + \frac{251}{115}v^2 + \frac{793}{115}v + \frac{622}{115}v^3 + \frac{118}{115}v^3 + \frac{251}{115}v^2 + \frac{793}{115}v + \frac{622}{115}v^3 + \frac{118}{115}v^3 + \frac{$$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing        |
|-----------------------|---------------------------------------|
| $c_1,c_3,c_5$         | $(u^2 - u + 1)^5$                     |
| $c_2$                 | $(u^2 + u + 1)^5$                     |
| $c_4, c_7$            | $u^{10}$                              |
| $c_6$                 | $(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$  |
| <i>c</i> <sub>8</sub> | $(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$ |
| <i>C</i> 9            | $(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$  |
| $c_{10}$              | $(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$  |
| $c_{11}, c_{12}$      | $(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$  |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing     |
|-----------------------|----------------------------------------|
| $c_1, c_2, c_3$ $c_5$ | $(y^2+y+1)^5$                          |
| $c_4, c_7$            | $y^{10}$                               |
| $c_6, c_{10}$         | $(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$  |
| <i>c</i> <sub>8</sub> | $(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$ |
| $c_9, c_{11}, c_{12}$ | $(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| v = 1.219640 + 0.330957I  |                                       |                     |
| a = 0                     | 0.329100 - 0.499304I                  | 2.43337 - 0.47576I  |
| b = 0.339110 - 0.822375I  |                                       |                     |
| v = 1.219640 - 0.330957I  |                                       |                     |
| a = 0                     | 0.329100 + 0.499304I                  | 2.43337 + 0.47576I  |
| b = 0.339110 + 0.822375I  |                                       |                     |
| v = -0.323203 + 1.221720I |                                       |                     |
| a = 0                     | 0.32910 - 3.56046I                    | -1.41726 + 7.41465I |
| b = 0.339110 + 0.822375I  |                                       |                     |
| v = -0.323203 - 1.221720I |                                       |                     |
| a = 0                     | 0.32910 + 3.56046I                    | -1.41726 - 7.41465I |
| b = 0.339110 - 0.822375I  |                                       |                     |
| v = 0.575710 + 0.191698I  |                                       |                     |
| a = 0                     | 5.87256 + 2.37095I                    | 7.21285 - 1.44195I  |
| b = -0.455697 + 1.200150I |                                       |                     |
| v = 0.575710 - 0.191698I  |                                       |                     |
| a = 0                     | 5.87256 - 2.37095I                    | 7.21285 + 1.44195I  |
| b = -0.455697 - 1.200150I |                                       |                     |
| v = -0.121840 + 0.594429I |                                       |                     |
| a = 0                     | 5.87256 - 6.43072I                    | 1.90884 + 7.88634I  |
| b = -0.455697 - 1.200150I |                                       |                     |
| v = -0.121840 - 0.594429I |                                       |                     |
| a = 0                     | 5.87256 + 6.43072I                    | 1.90884 - 7.88634I  |
| b = -0.455697 + 1.200150I |                                       |                     |
| v = -0.85031 + 1.47278I   |                                       |                     |
| a = 0                     | 2.40108 + 2.02988I                    | -0.13779 - 5.66929I |
| b = -0.766826             |                                       |                     |
| v = -0.85031 - 1.47278I   |                                       |                     |
| a = 0                     | 2.40108 - 2.02988I                    | -0.13779 + 5.66929I |
| b = -0.766826             |                                       |                     |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $((u^{2}-u+1)^{5})(u^{4}-u^{3}+3u^{2}-2u+1)(u^{33}+5u^{32}+\cdots+3u-1)$                                      |
| $c_2$                 | $((u^{2}+u+1)^{5})(u^{4}-u^{3}+u^{2}+1)(u^{33}+7u^{32}+\cdots+5u+1)$                                          |
| <i>c</i> <sub>3</sub> | $(u^{2} - u + 1)^{5}(u^{4} + u^{3} + 5u^{2} - u + 2)$ $\cdot (u^{33} - 7u^{32} + \dots - 29960u + 14308)$     |
| $c_4$                 | $u^{10}(u^4 - u^3 + 3u^2 - 2u + 1)(u^{33} - 2u^{32} + \dots - 1024u^2 + 1024)$                                |
| <i>C</i> <sub>5</sub> | $((u^{2}-u+1)^{5})(u^{4}+u^{3}+u^{2}+1)(u^{33}+7u^{32}+\cdots+5u+1)$                                          |
| <i>C</i> <sub>6</sub> | $u^{4}(u^{5} + u^{4} + \dots + u + 1)^{2}(u^{33} + 3u^{32} + \dots + 56u - 16)$                               |
| C <sub>7</sub>        | $u^{10}(u^4 + u^3 + 3u^2 + 2u + 1)(u^{33} - 2u^{32} + \dots - 1024u^2 + 1024)$                                |
| c <sub>8</sub>        | $(u^4 - 5u^3 + 7u^2 - 2u + 1)(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$ $\cdot (u^{33} + 4u^{32} + \dots + 2u + 1)$ |
| <i>c</i> 9            | $((u+1)^4)(u^5 - u^4 + \dots + u + 1)^2(u^{33} + 7u^{32} + \dots + 4u - 1)$                                   |
| $c_{10}$              | $u^{4}(u^{5} - u^{4} + \dots + u - 1)^{2}(u^{33} + 3u^{32} + \dots + 56u - 16)$                               |
| $c_{11}, c_{12}$      | $((u-1)^4)(u^5+u^4+\cdots+u-1)^2(u^{33}+7u^{32}+\cdots+4u-1)$                                                 |

## V. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                                                                  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $((y^2 + y + 1)^5)(y^4 + 5y^3 + \dots + 2y + 1)(y^{33} + 53y^{32} + \dots + 3y - 1)$                                |
| $c_2, c_5$            | $((y^2 + y + 1)^5)(y^4 + y^3 + 3y^2 + 2y + 1)(y^{33} + 5y^{32} + \dots + 3y - 1)$                                   |
| $c_3$                 | $(y^2 + y + 1)^5 (y^4 + 9y^3 + 31y^2 + 19y + 4)$ $\cdot (y^{33} + 101y^{32} + \dots + 162370712y - 204718864)$      |
| $c_4, c_7$            | $y^{10}(y^4 + 5y^3 + \dots + 2y + 1)(y^{33} + 60y^{32} + \dots + 2097152y - 1048576)$                               |
| $c_6, c_{10}$         | $y^{4}(y^{5} + 3y^{4} + \dots - y - 1)^{2}(y^{33} + 33y^{32} + \dots - 2496y - 256)$                                |
| c <sub>8</sub>        | $(y^4 - 11y^3 + 31y^2 + 10y + 1)(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$ $\cdot (y^{33} - 62y^{32} + \dots - 26y - 1)$ |
| $c_9, c_{11}, c_{12}$ | $(y-1)^4(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ $\cdot (y^{33} - 39y^{32} + \dots - 124y - 1)$                        |