Normalisoitu	pakkausetäisyys
Timo Sand	

Kandidaatintutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Helsinki, 21. syyskuuta 2013

Kolmogorov kompleksisuus Lyhimmän binääriohjelman pituus, joka palauttaa x syötteellä y, on kolmogorov kompleksisuus x:stä syötteellä y; tämä merkitään K(x|y). Pohjimmillaan kolmogorov kompleksisuus tiedostosta on sen äärimmäisesti pakatun version pituus.

Normalisoitu Informaatioetäisyys Artikkelissa [CV05] on esitelty informaatioetäisyys E(x, y), joka on määritelty lyhimpänä binääriohjelmana, joka syötteellä x laskee y:n ja syötteellä y laskee x:n.

$$E(x,y) = \max\{K(x|y), K(y|x)\}$$

Normalisoitu versio E(x,y):stä, jota kutsutaan normalisoiduksi informaatioetäisyydeksi on määritelty seuraavasti,

$$NID(x,y) = \frac{\max\{K(x|y),K(y|x)\}}{\max\{K(x),K(y)\}}$$

NID:iä kutsutaan samankaltaisuuden metriikaksi, koska tämän on osoitettu [CV05] täyttävän vaatimukset etäisyyden metriikaksi. NID ei kuitenkaan ole laskettavissa tai edes semi-laskettavissa, koska Turingin määritelmän mukaan Kolmogorv kompleksisuus ei ole laskettavissa. Nimittäjän approksimointi annetulla kompressorilla C on trviaalia, se on $max\{C(x),C(y)\}$. Numeraattori on hankalampi ja sen paras approksimaatio on $max\{C(xy),C(yx)\}$ — $min\{C(x),C(y)\}$ [CV05]. Kun NID approksimoidaan oikealla kompressorilla, saadaa tulos jota kutsutaan normalisoiduksi pakkausetäisyydeksi, tämä esitellään formaalisti myöhemmin.

Normaali Kompressori Esitämme aksioomia jotka määrittelevät laajan joukon kompressoreita joihin kuuluvat moni tosielämän kompressori ja samalla varmistavat *NCD*:ssä halutut ominaisuudet.

Kompressori C on normaali jos se täyttää seuraavat aksioomat, O(logn) termiin saakka

- 1. Idempotency: C(xx) == C(x) ja $C(\lambda) = 0$, jossa λ on tyhjä merkkijono.
- 2. Monotonisuus: $C(xy) \ge C(x)$
- 3. Symmetrisuus: C(xy) == C(yx)

4. Distributivity: $C(xy) + C(z) \le C(xz) + C(yz)$

Normalisoitu Pakkausetäisyys Normalisoitua versio hyväksyttävästä etäisyydestä $E_c(x,y)$, joka on kompressoriin C pohjautuva approksimaatio Normalisoidusta Informaatioetäisyydestä (NID), kutsutaan nimellä Normalisoitu Pakkausetäisyys (NCD) [CV05]

$$NCD(x,y) = \frac{C(xy) - min\{C(x),C(y)\}}{max\{C(x),C(y)\}}$$

NCD on funktioden perhe jotka ottavat argumenteiksi kaksi objektia (esim. tiedostoja, Googlen haku sanoja) ja tiivistävät nämä, erillisinä ja yhdistettyinä. Tämä funktioden perhe on parametrisoitu käytetyn kompressorin mukaan.

Käytännössä NCD:n tulos on $\leq r \leq 1 + \epsilon$ joka vastaa kahden tiedoston eroa toisistaan; pienempi luku tarkoittaa että tiedostot ovat samankaltaisia. Tosielämässä pakkausalgoritmit eivät ole yhtä tehokkaita kuin teoreettiset mallit, joten virhemarginaali ϵ on lisätty ylärajaan, suurimmalle osalle näistä algoritmeistä $\epsilon > 0.1$ on epätodennäköistä.

Luonnollinen tulkinta NCD:stä, jos oletetaan $C(y) \geq C(x)$, on

$$NCD(x,y) = \frac{C(xy) - C(x)}{C(y)}$$

Eli etäisyys x:n ja y:n välillä on suhde y:n parannuksesta kun y pakataan käyttäen x:ää ja y:n pakkauksesta yksinään; suhde ilmaistaan pituutena bitteinä kummankin pakatun version välillä.

Kun kompressori on normaali, sitten *NCD* on normalisoitu hyväksyttävä etäisyys joka täyttää metriikan (epä)yhtälöt, eli samankaltaisuuden metriikka.

Lähteet

[CV05] Cilibrasi, Rudi ja Vitanyi, Paul M. B.: Clustering by Compression. IEEE Transactions on Information Theory, 51(4):1523–1545, Huhtikuu 2005.