

(2021) Aula 10

☐Transformações de Bases Numéricas

• Pode-se transformar qualquer número em qualquer base para a base 10: basta multiplicar o dígito pelo seu valor posicional na respectiva base (iniciando com o dígito menos significativo a direita).

A soma de todos os produtos resulta o valor desejado (no caso da base hexadecimal deve-se converter os dígitos alfabéticos para os correspondentes decimais).

Exemplos:
$$N = (431)_5 \Rightarrow N = 4 \times 5^2 + 3 \times 5^1 + 1 \times 5^0 = 100 + 15 + 1 = (116)_{10}$$

$$N = (2CF)_{16} \Rightarrow N = 2 \times 16^2 + 12 \times 16^1 + 15 \times 16^0 = 512 + 192 + 15 = (719)_{10}$$

• Pode-se transformar qualquer base em outra, basta dividir-se o número a ser transformado pela base desejada até o quociente ser 0.

Obs: Pode-se converter o número inicialmente para a base 10 e em seguida converter para a base desejada.

3

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

Bases Numéricas

Aula 10 4

Exemplo : Converter $N = (23)_{10}$ para a base 2:

□ Exercício 1: Preencher a tabela seguinte.

Base 10	Base 2	Base 8	Base 16
0			
2			
7			
12			
37			

4

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

Bases Numéricas

(2021) Aula 10

□Código BCD

Os sistemas digitais utilizam números binários para suas operações internas, mas no mundo real utilizamos números decimais, assim conversões entre binário e decimal são frequentes. Para simplificar essas conversões pode-se utilizar um código chamado decimal codificado em binário (**BCD**), onde cada dígito de um número decimal é representado por um agrupamento equivalente binário (*nibble*).

Exemplos:

Conversão entre Decimal ⇒ BCD:

Conversão entre BCD ⇒ Decimal:

5

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

Aritmética Binária

Aula 10

□Adição de Números Binários

A operação de adição de dois números binários é similar à adição de números decimais: começando pelo dígito menos significativo somam-se os dígitos dois a dois, se o valor da soma superou o valor da base existe um vai um (*carry*) que deve ser somado aos próximos dois dígitos.

No caso da base binária a soma de dois bits pode resultar em apenas quatro casos:

6

Aritmética Binária

Aritmética Binária

Exercício 2: Realizar as seguintes operações na base 2:

a) 011 (3)₁₀
+ 110 (6)₁₀

b) 1001 (9)₁₀
+ 1111 (15)₁₀

1 (vem um)

c) 1101 (13)₁₀
+ 1010 (10)₁₀

8

Aritmética Binária

(2021) Aula 10

☐Subtração de Números Binários

A operação de subtração de números binários em sistemas digitais é realizada de modo mais eficiente utilizando-se a operação de adição em que um dos números é negativo, representado pelo seu **complemento**.

□ Definição: O <u>complemento</u> de um número A de um dígito, em uma certa base numérica **B**, é o número que somado a A resulta no valor da base.

Exemplo:

Caso da base 10: A tabela ao lado apresenta os complementos dos números na base 1 a 9 (base 10).

Observe que a subtração de um número pode ser substituída pela soma de seu complemento, descartando-se o "vai um" resultante da soma.

Exemplos: $S=7-4 \Rightarrow 7+6=4-3 \Rightarrow S=3$

S = 9 - 1	\rightarrow	αт	0 - 1	$Q \rightarrow$	ς –	Ω
S= 9 - 1	\rightarrow	9 +	9 = +	-o →	S =	О

Número	Complemento		
1	9		
2	8		
3	7		
4	6		
5	5		
6	4		
7	3		
8	2		
9	1		

9

universitário

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021)

Aritmética Binária

Aula 10 10

□Representação em Complemento de 2

□ Definição: O complemento de 2 de um número binário é obtido substituindo-se cada dígito 0 por 1 e cada dígito 1 por 0 (seu complemento), e somando-se 1 na posição do bit menos significativo. O complemento do complemento utiliza o mesmo processo e retorna ao número original.

Exemplo: 1 0 1 1 0 1 representação binária de (45)₁₀

0 1 0 0 1 0 complemento da representação binária de (45)₁₀
+ ______1 adiciona-se 1 para obter o complemento de 2
0 1 0 0 1 1 complemento de 2 do número original

(o complemento de (010011) é: (101100+1) = (101101) → número original)

- □ Representação de Números Binários <u>com Sinal</u>: O sistema de **complemento de 2** permite representar números binários com sinal:
- Se o <u>número for positivo</u> a magnitude é representada na <u>forma binária</u>
 <u>direta</u> e um bit de <u>sinal 0</u> é colocado em frente ao <u>bit mais significativo</u> (MSB);
- Se o <u>número for negativo</u> a magnitude é representada na <u>forma de</u> <u>complemento de 2</u> e um bit de <u>sinal 1</u> é colocado em frente ao **MSB**.

12

14