Lab #3

A. Shawn Bandy

February 18, 2013

Abstract

This report presents our introdution to the oscilloscope and function generator.

1 Data and Data Tables

DATA SHEET #1

1. From procedure, part C.

Amplitude value for square wave from DMM = 8.96

Frequency value for square wave from function generator = 1.789 kHz

2. Square wave one: from part E, measurement using oscilloscope

Peak-topeak: # of Divisions (vertical, to nearest $10^{\rm th}$ of a division) = 3.7

VOLTS/DIV setting = 5

Amplitude of square wave = (0.5 * peak-to-peak voltage) = 9.85 V

Frequency from Oscilloscope:

of divisions (horizontal to nearest 10th) = 5.7

SEC/DIV setting = 0.1 ms

Period of square wave calculated from above measurements = 0.00057 seconds

Frequency (calculated from period) = 1.754.4 kHz

% difference in frequency value = 0.019396

3. Square wave two: from part G, measurement on oscilloscope

Amplitude value of square wave from DMM = 2.0093 V

Frequency value for square wave from function generator = 8.99 kHz

Peak-to-peak: # of Divisions (vertical, to the neartest 10^{th} of a division = 4.3

VOLTS/DIV setting = 1 Amplitude of square wave = (0.5 * peak-to-peak voltage) = 2.15V

Frequency from Oscilloscope: # of Divisions (horizontal to the nearest $^{\mathrm{th}}$ = 5.6

SEC/DIV setting = $20 \mu s$

Period of square wave (calculated) = 8.929 kHz

% difference in frequency value = 0.006832

4. Which signal generator are you using? Unknown Signal Generator

DATA SHEEET #2

Signal #	# of DIV	Volts per DIV	Volts	DIV per period	SEC/DIV	Period	Frequency (kHz)
6	6	2	6	4.9	.5 ms	0.00245	408.163
8	4.2	5	10.5	5.1	1 ms	0.0051	196.078
14	7.1	0.5	1.775	5.0	$0.2 \mathrm{\ ms}$	0.01	100

- 2 Graphs
- 3 Results
- 4 Discussion
- 5 Answers to Questions