

B.G.Fernandes

Dept. of Electrical Engineering,
I.I.T. Bombay
bgf@ee.iitb.ac.in

Outline of the course

- ⇒ Introduction
- ⇒ Power semi-conductor devices
- ⇒ AC-DC converters
- ⇒ DC-DC converters
- ⇒ DC-AC converters
- ⇒ AC-AC converters

Reference Books:

- 1. M.H.Rashid,"Power Electronics: Circuits, Devices & Application" Prentice hall of India, (IIIrd Ed.),2004.
- Ned Mohan, "Power Electronics,
 Applications & Design", John Wiley &
 Sons., (IIIrd Ed.) 2002.
- 3. Cyril Lander, "Power Electronics", McGRAW Hill Co., (IIIrd Ed.), 1993.
- 4. B.K.Bose, "Modern Power Electronics & A.C. Drives", Pearson Education Inc., 2002.

Introduction:

Quotes from IEEE papers:

We now live in a truly global society.

In the highly automated industrial front with economic competitiveness of nations, in future two technologies will dominate:

Computers and power electronics - the former providing intelligence as to "what to do" and the latter - "the means to do it".

⇒ "Modern computers, communication and electronic systems get their life blood from power electronics"

⇒ "Solid state electronics brought in the first electronics revolution, whereas solid-state power electronics brought in the second electronics revolution"

Energy scenario:

- Globally | 87% of total energy from fossil fuel (coal, oil & natural gas)
 - ☐ 6% nuclear

Remaining from renewable

(hydro, wind, solar)

[In India | 70% coal]

⇒ World has limited fuel

Projected that natural uranium fuel is expected to last | 50 years

Oil for | 100 years

Natural Gas | 150 years and

Coal | 200 years

Will the wheels of civilization come to a halt at the end of the 22nd century?

How to solve / mitigate the problem?

If i/p is 100 KW of fuel energy, output is around 15-20 KW of useful work,

⇒ Why spend much effort on motors and their equipment when losses are the front end?

⇒ Answer: Every KW of loss saved in the process drive, 6KW of fuel energy gets saved on the front end.

Can power from renewables (wind, solar) be explored?

- Nuclear power plant \Rightarrow Safety
 - ⇒ Waste handling
- Burning fossil fuel \Rightarrow CO₂, NO₂, O₃, CO etc.
 - \Rightarrow Fly ash
 - ⇒ Global warming
 - ⇒ Climatic changes
- In 1997, conference at Kyoto, Japan
- Protocol: Developed countries agreed to specific
- targets for cutting their emissions of gases.
- [Mt. Everest losing height 10cm every year]
 - ⇒ Affects agriculture & vegetation
- Urban pollution \Rightarrow IC engine vehicles

- ⇒ Use electrical energy very efficiently
- ⇒ Increase the conversion efficiency
- ⇒ Estimated that 15-50% electricity consumption can be saved by extensive use of power electronics.

Bulk of the power is consumed by

- ⇒ Electric motors ⇒ majority are IM (constant speed m/c)
 - ⇒ Common loads (fans, pump)
- \Rightarrow Lighting

Fan:
$$T_1 \propto \omega^2$$
; $P \propto \omega^3$

If
$$\frac{\omega_1}{\omega_2} = \frac{1}{2}$$
; $\frac{P_1}{P_2} = \frac{1}{8}$

- ⇒ Frequency converter
- \Rightarrow :: Input 'F' can be \downarrow , $N_s N_r = N_s$ at s=1 \downarrow
- \Rightarrow : N_s is low, magnitude of inrush current \downarrow .
- ⇒ Voltage dip can be eliminated
- \Rightarrow Stress on cable \downarrow & life of m/c \uparrow .

⇒ Machine is being fed by constant V & F supply.

⇒ V is constant ⇒ Φ and ∴ core loss remains constant.

- ⇒ Assume that the load in the m/c is varying.
- ⇒ As the load \downarrow , variable loss \downarrow . $\eta = \eta_{max}$ when core loss = variable loss
- \Rightarrow 'V' should be \downarrow as load \downarrow .
- ⇒ Auto-transformer ⇒ Not a solution.
 Fan Regulator Old rugged Vs New
 Elegant and small in size
- ⇒ In Japan, 70% of air-conditioners use variable speed drives.
- ⇒ Smooth control.

- Slip ring IM \Rightarrow High Power motor
 - \Rightarrow sP_{in} is rotor copper loss
 - ⇒ can this be fed back to the source?
 - ⇒ can the starting torque ↑ and starting current ↓ electronically?
- D.C. machine \Rightarrow superior control characteristics $T = kl_{\alpha}l_{F}$

I.M. machine = $I_s = I_m + I_r$ Is it possible to independently control T & Φ (similar to that of S.E. m/c)?

Sync motor \Rightarrow High power motor,

 \Rightarrow Speed depends of F_s

⇒ Not a self starting m/c

⇒ Stability problem

Is it possible to make $F_s \propto rotor speed?$

⇒ no stability problem?

Can the speed of the machine be ↓ faster & the power be fed back to the source?

$$\frac{d\omega}{dt} = \frac{T_e - T_L}{J}$$
 During motoring,

$$\frac{d\omega}{dt} = \frac{-(T_e + T_L)}{J}$$
 During regeneration

⇒ Power conservation & faster deceleration

Power supply:

50Hz step down transformer

⇒ can the size and weight of transformer be reduced?

Speed of PC ↑

 $IC's \Rightarrow TTL, CMOS$

As clock F \uparrow , biasing voltage \downarrow

- ⇒ 0.9V, 100A DC power supply will be required 2 years from now
- ⇒ Can this be designed?

Applications in Power Systems:

- \Rightarrow If lagging VAR, demand $\uparrow |V_R| \downarrow$.
- \Rightarrow Desired that $|V_R|$ should remain constant.
- ⇒ Provide reactive power support.

⇒ If 'C' is connected at the receiving end

$$\Rightarrow Q = \frac{V_R^2}{X_C} \downarrow as V_R \downarrow.$$

- ⇒ "Unreliable" friend.
- ⇒ Smooth control of Q is not possible.
- \Rightarrow Can a circuit be designed which supplies $\pm Q$ VARS & independent of $|V_R|$?

Case 1:

$$P = \frac{V_1 V_2}{X_S} \sin \delta = \frac{\sin \delta}{X_S}, \text{ assuming } V_1 = V_2 = 1 \text{ p.u.}$$

Is it possible to \(\bar{\text{ }}\) P through line securely?

Now provide Q support as at the mid-point such that

$$|V_{m}| = 1 \text{ p.u.}$$

$$V_{1}V_{m} \sin\left(\frac{\delta}{2}\right)$$

$$\left(\frac{X}{2}\right)$$

In long distnace AC power transmission

- 1) Voltage drop
- 2) Stability problem

Can the bulk power be transformed by converting it to <u>DC</u>?

Lighting:

- (lumen/watt) for incandescent lamp < (lumen/watt) for flourescent lamp
- ⇒ needs a ballast (lamp has -ve resistance characteristic once the arc has been struck)
- \Rightarrow operate at 50 Hz \Rightarrow size & noise
 - \Rightarrow lossy
 - \Rightarrow overall p.f. is poor
 - ⇒ stroboscopic effect

(lamp is turned off and ignited at 100 Hz)

- \Rightarrow Found that lumen output \uparrow if operating F is \uparrow
- ⇒ If F is high, size of energy storage element ↓
- \Rightarrow If F>20 Khz \Rightarrow > audible range
- ⇒ Source side p.f. can also be improved.

Energy from alternate source:

Clean Technology.

Today's energy source

Advanced technology using oil, coal, nuclear

Future energy source

High technology generator using renewable recourses like solar, wind power, biomass, hydro

Historic energy source

Simple technology using wind power, wood, hydro

- → Solar ⇒ o/p is DC
 ⇒ Expensive, but decreasing
- → Wind ⇒ cheapest, environmental clean
 Wind energy now provides more than 31,000 MW of power around the world. In India Installed capacity
 1900 MW
 (target = 6000 MW by 2012)

It is estimated that the wind could supply 12% of the world's electrical demand by 2020

- \Rightarrow O/p is AC
 - ⇒ Variable speed wind turbines with permanent magnet m/c are gaining popularity
- ⇒ O/P frequency of variable speed wind turbine is a function of speed.
- ⇒ If the power is to be fed to the grid, frequency should be constant
- ⇒ Frequency converter is required.

Urban pollution \Rightarrow Can be \downarrow by wide spread use of electric vehicle

- ⇒ Use electric vehicles / hybrid EV
 - → I.C. engine + energy storage
 Gasoline based vehicles are efficient at particular speeds.

⇒ At other speeds, motor driving the wheels

Power Electronics:

Definition & Goal:

Power Electronics is the technology associated with efficient conversion and control of electric power by power semiconductor devices.

Goal of P.E.: To <u>control</u> the flow of energy from electric source to electric load.

- ⇒ η and reliability should be high
- ⇒ size, weight and cost should be low
- ⇒ η is a good measure of the success of any technology

As $\eta \uparrow$

- ⇒ Power loss & ∴ cooling requirement ↓
- ⇒ Packaging density can be increased
- \Rightarrow Size \downarrow .

How can the circuit change the voltage level, yet dissipate low power?

Circuit elements = $R,L,C \Rightarrow passive$ Transistors, MOSFETS \Rightarrow active

L & C → do not consume power

Power loss in the BJT = V_{CE} * I_{C} In the active region, V_{CE} is high In saturation, $V_{CE} = (V_{CE})_{SAT}$ \Rightarrow very low

Power loss

0

⇒ Resistor and active elements operated in the active region result in power dissipation

For high $\eta \Rightarrow$ active elements should be operated either in saturation region or cut-off.

In addition, use only L & C elements e.g.: Input is 30V DC, O/P is 5V DC

⇒ Use potential divider

⇒ operate transistor in active region

$$(V_{CF} \square 25V)$$

⇒ close to 1 for some time & then transfer it to 2

$$V_0 = V_{dc} \frac{T_1}{T_1 + T_2}$$

- \Rightarrow Power loss \Rightarrow 0
- ∵ Voltage drop acrossthe device during ONperiod □ 0

Power electronics is extensively used in

- ⇒ In motor drives
- ⇒ Power supplies (both AC & DC)
- ⇒ Lighting
- ⇒ High frequency induction heating
- ⇒ Electric welding
- ⇒ Active filters
- ⇒ Bulk power transmission
- ⇒ Electric vehicles
- ⇒ To process power from non-conventional sources

Progress in PE is primarily due to advances in power semiconductor devices.

Fast processors, dedicated chips, circuit configurations, control and estimation techniques.

Significant events in the past history of PE

1783: Concept of semiconductor (VOLTA)

1830: Rectification effect of copper oxide (OHM)

1876 : Selenium rectifier (SIEMENS)

1896 : Single phase rectifier bridge circuit (POLLAK)

1897: 3 phase bridge circuit

1901: Invention of glass bulb mercury arc rectifier

1948: Invention of the transistor

1953 : Germanium power diode

1954 : Silicon power diode

1957: Thyristor (SCR); blocking voltage capability

500V to 6.5KV

Power Semiconductor Devices:

- ⇒ Is the heart and soul of modern P.E. equipment
- ⇒ Used as switches.

Properties of ideal switches:

 \Rightarrow When switch is OFF (open), $I_s = 0$.

Should be able to withstand any V across it.

$$-\infty \leq V_{SW(OFF)} \leq +\infty$$

⇒ When ON, 'V' across it = $0 (V_{SW(ON)} = 0) \&$ it is capable of passing any I through it.

⇒ 'P' dissipated in the switch when ON or OFF = 0 (conduction & blocking loss)

⇒ Switch can be turned ON & OFF instantaneously.

$$t_{ON} = t_{OFF} = 0$$

⇒ turn-on and turn-off losses

(switching loss=0)

Characteristics of practical devices are very close to the ideal switches.

- \Rightarrow OFF state, I \neq 0 & V \neq ∞ in the OFF state.
- ⇒ V_{SW(ON)} ≠ 0, ON state current carrying capacity is limited.
- ⇒ 'P' loss in OFF state (blocking loss) & ON state (conduction loss) ≠ 0.
- $\Rightarrow t_{ON} \neq 0; t_{OFE} \neq 0$

- ⇒ Takes finite time to switch from one state to another
- ⇒ switching loss
- ⇒ operating point should lie within safe operating area (SOA)

Device characteristics are thermaly unstable

P dissipated ≠ 0

- ⇒ Heat and ∴ temperature rise
- ⇒ Cooling requirement

Power switching devices:

Uncontrolled switch \Rightarrow only two terminal device.

⇒ ON/OFF determined by state of the circuit in which the device is connected.

'D' is <u>ON</u>

i
$$\Box \frac{10 - 0.7}{10} A$$

Semicontrolled switch:

⇒ 3 terminal device Switch may be turned to ONE of its state (either ON/OFF)

⇒ Other state is reachable only through the circuit.

⇒ It is possible to turn-on silicon controlled rectifier (SCR) by +ve I_a

⇒ Cannot be turned OFF through GATE.

load

Controlled Switch:

Both the states On/OFF are reachable through appropriate control signals applied to the control terminal

BJT = Bipolar Junction Transistor

Diode = 2 Terminal Device

 \xrightarrow{A} \xrightarrow{K}

 $V_{AK} \rightarrow \text{should be } + \text{ve}$

 $\rightarrow 0.7V$

→ 1.5V for high power diodes
Current in ON mode is limited
by load.

'V' across diode when it is reverse biased < V_{RD}

- \Rightarrow ON state (conduction loss) = $V_F * I_A$
- $V_F \rightarrow V$ across the diode when it is ON
- ⇒ Heat sink is required as the loss ↑
- ⇒ Reaches ON state with some delay when forward biased.

⇒ Goes to OFF state after t_{rr} when forward current goes to zero.

The minority carriers require certain time to recombine with opposite charge and to get neutralized.

 \Rightarrow This is reverse recovery time (t_{rr})

- \Rightarrow t_{rr} \rightarrow time from Ist initial zero crossing of diode current to 25% of maximum reverse recovery current (I_{rr})
- \Rightarrow During t_{rr} , -ve I flows through the device.
- ⇒ Decides the maximum frequency

of operation.

Important specification: -

- Average forward current (to assess suitability with a power circuit)
- 2) Reverse blocking voltage (-----do----)
- 3) ON state voltage ⇒ to determine conduction loss
- 4) t_{rr} ⇒ to assess high frequency switching capability
- 5) I²t rating ⇒ short time surge energy that the diode can withstand.

Type of diode:

- Rectifier diode or slow diode: suitable for line frequency applications.
 Recovery time is not specified.
 KV, 4500A diodes are available.
- 2) Fast recovery diode: In high frequency switching application, 6 KV, 1.1KA diodes are available.

- 3) Schottky diode : They have low ON state voltage dropV rating

 100V, I = 300A
- 4) Silicon Carbide Diode:
- ⇒ Ultra low power loss
- ⇒ Ultra fast switching behaviour
- ⇒ Highly reliable (no temperature influence on the switching behaviour)

Thyristor or Silicon Controlled Rectifier (SCR)

- ⇒ Three element device
- ⇒ Anode (A), Cathode (K) & Gate (G)
- ⇒ A & K ⇒ power circuit terminals

 control signal is applied to the Gate w.r.t K.
- ⇒ 4 layers

N₂ → Layer is very thin & highly doped

P₂ → Layer is thicker & less highly doped

N₁ → (Blocking layer) is thickest & less doped

 $P_1 \rightarrow \text{is similar to } P_2$

Junction J₃ has low breakdown V in either direction

J₃ → cannot support high reverse voltage

When $V_{AK} > 0$ & device current = 0

⇒ forward blocking mode

J₁ & J₃ are Forward Biased (F.B)

J₂ is reverse biased (R.B)

When $V_{AK} < 0$, J_2 is <u>F.B.</u> & J_1 , J_3 are <u>R.B.</u>

 \Rightarrow J₁ should block the entire V when <u>R.B.</u>

- PQ (or PQ₁ or PQ₂) \rightarrow forward blocking mode.
- i_A 0 (mA) Forward leakage I
- QR (or Q_1R or Q_2R) \rightarrow negative resistance region
 - → unstable
- RS → forward conduction mode.
- When F.B., SCR goes into conduction mode
- when $V_{applied} > V_{B0}$ if $I_{G} = 0$.
- $V_{BO} \rightarrow$ forward breakover voltage
 - → forward blocking voltage capacity is determined by J₂

i) If $I_G \neq 0$, 'V' at which device goes into conduction mode \downarrow .

(I_{G} reduces the deplection layer around J_{2})

For any transistor

$$I_{\rm C} = \alpha I_{\rm E} + I_{\rm CBO}$$

 $\alpha \rightarrow$ common base current gain

 $I_{CBO} \rightarrow Ieakage current of the C-B junction.$

$$\therefore \text{ for } \mathsf{T}_1, \; \mathsf{I}_\mathsf{E} = \mathsf{I}_\mathsf{A} \qquad \mathsf{I}_\mathsf{C1} = \alpha_1 \mathsf{I}_\mathsf{A} \; + \mathsf{I}_\mathsf{CBO1}$$

$$\text{for } \mathsf{T}_2, \; \mathsf{I}_\mathsf{E} = \mathsf{I}_\mathsf{K} \qquad \therefore \; \mathsf{I}_\mathsf{C2} = \alpha_2 \mathsf{I}_\mathsf{K} \; + \mathsf{I}_\mathsf{CBO2}$$

Now,
$$I_E = I_C + I_B$$

 $I_{E1} = I_A$ and $I_{B1} = I_{C2}$

$$\therefore \mathbf{I}_{C1} + \mathbf{I}_{C2} = \mathbf{I}_{A} = \alpha_{1}\mathbf{I}_{A} + \mathbf{I}_{CBO1} + \alpha_{2}\mathbf{I}_{K} + \mathbf{I}_{CBO2}$$

$$I_K = I_{B2} + I_{C2}$$

for finite I_G,

$$I_{K} = I_{C1} + I_{G} + I_{C2}$$
$$= I_{A} + I_{G}$$

$$\therefore I_A = \frac{\alpha_2 I_G + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$$

$$\alpha \uparrow \text{ with } I_{E}$$

Re view:

- 1) $t_{rr} \rightarrow reverse recovery time$
- 2) Reverse recovery charge, $Q_{rr} = \frac{1}{2} t_{rr} I_{rr}$

3) S.C.R \Rightarrow minority carrier device

 $J_3 \rightarrow$ cannot block high reverse voltage When forward blocking mode $\rightarrow J_1$, $J_3 = F.B.$ and $J_2 = R.B.$

Entire 'V' appears across J₂.

 \Rightarrow Breakdown 'V' of J_2 can be \downarrow by $+I_G$.

When R.B.: entire reverse 'V' is blocked by J₁

∴ J₂ is F.B. & J₃ cannot block high 'V'.

$$I_A = \frac{\alpha_2 I_G + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$$

I_{CBO} → reverse current flowing from collector to base with emitter open circuited.

↑ with temperature

- α increases with I_F
- $\therefore \alpha_1$ also increases with $I_A : I_{E_1} = I_A$
- Similarly α_2 varies with $I_K : I_{E2} = I_K = I_A + I_G$

If
$$I_G$$
 is suddenly \uparrow , $I_A \uparrow \because I_A = \frac{\alpha_2 I_G + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$

- As $I_A \uparrow$, $\alpha_1 \uparrow$ and $\alpha_2 \uparrow$.
- \Rightarrow \uparrow in α_1 and α_2 further increases I_{Δ}
- ⇒ +ve feedback.

If $(\alpha_1 + \alpha_2) \rightarrow 1$, I_A is large (determined by load)

⇒ Requires a small I_G

If $\frac{dV}{dt}$ is large, i_{j2} would be

large and this may increase I_{CBO1} and I_{CBO2}.

- ⇒ gets amplified by transistor action
- \Rightarrow ($\alpha_1 + \alpha_2$) may $\rightarrow 1$
 - ☐ device may turn ON.

- ... When F.B., device goes into conduction mode.
 - 1) if $V_{\text{applied}} > V_{\text{B0}}$
 - 2) by +ve $I_G \Rightarrow I_G$ should be present till $I_A \geq I_{LATCHING}$
- ⇒ Having gone into conduction mode, device cannot be turned OFF through Gate.

 $I_A < I_{HOLDING}$

- 3) If $\frac{dV}{dt}$ is above a certain rate
- 4) Temperature effect ⇒ At high temperature, leakage I of transistor ↑.
- 5) By direct light radiation.

Switching characteristics:

In forward blocking mode, when I_G starts flowing, there is a finite delay time (t_d) before device current builds up

After t_d, device current builds up attains a value determined by <u>load</u>

If $\frac{di}{dt}$ is very high \Rightarrow device may fail.

Initially turn ON of the device occurs near the gate-cathode periphery & then it spreads across the entire junction with a finite velocity

If $\frac{di}{dt}$ is high

- ⇒ Current is confined to small area of the device
- ⇒ Overheating of the junction ⇒ destruction of the device

- \Rightarrow Durning turn-ON, $\frac{di}{dt}$ has to be controlled
- ⇒ In conduction mode J₂ is highly saturated with minority carriers
- ⇒ Gate has no further control
- ⇒ 'V' across the device □ 1.5 V

SCR can be turned OFF by temperorily applying a -ve voltage across it

⇒ When reverse voltage is applied, I_A becomes zero & then reverses.

- \Rightarrow V_{AK} is still <u>+ve</u> untill J₁ & J₃ starts to become R.B.
- ⇒ When this reverse current reaches maximum junctions begin to block.
- J₁ blocks just before J₃
- (: N_1 is less heavily doped than N_2)
- ⇒ Reverse I starts decaying
- ⇒ Fast decay of recovery current causes a voltage overshoot across the device due to leakage L effect.

Reverse recovery current sabilizes to very low value

- \Rightarrow J₂ is still F.B.
- ⇒ There are still residual charge carriers trapped in P₂ & N₁ layer
- ⇒ Charge carriers must be given time

for recombination

⇒ Takes considerable time

- ⇒ Reapplied dv/dt should be within a safe limit else it may turn ON
- t_q → Minimum time interval between ON state
 (I_A) current becomes zero & the instant when thyristor is capable of withstanding forward

voltage without turning ON

Important parameters

- ⇒ Average forward current (to assess suitability with a power ckt)
- ⇒ Reverse blocking voltage
- ⇒ ON state voltage drop
- ⇒ OFF state current
- $\Rightarrow \frac{di}{dt} \text{ during turn-ON \& }$ during turn-OFF
- \Rightarrow Reapplied $\frac{dv}{dt}$

To design protection ckt (snubber ckt)

- \Rightarrow I²R rating
- \Rightarrow Device turn-OFF time 't_q' \rightarrow to assess high frequency switching capability

How to limit
$$\frac{di}{dt}$$
 & $\frac{dv}{dt}$?

High $\frac{dv}{dt}$ \rightarrow Device may turn ON with

$$I_G = 0 \& V_{AK} < V_{BO}$$

Also protection against voltage spike due

to stray inductance
$$\left(L\frac{di}{dt}\right)$$

- ⇒ Connect RC ckt (snubber) across the thyristor
- R → Rated such that discharge current is controlled during turn ON

Gating requirement

- \Rightarrow I_G should be present till $I_A > I_{Latching}$
- ⇒ One of the requirements is control ckt should be isolated from power ckt
- ⇒ Use a pulse transformer

→ One pulse may not be sufficient to turn ON the SCR

Review:

- 1) During turn OFF
 When $J_1 \& J_3$ have recovered blocking capability
- ⇒ -ve 'V' is applied across thyristor.
 In addition 'V' spike due to
- $\frac{di}{dt}$ in 'L' in series with thyristor
- ⇒ Use RC snubber
- 2) If $\frac{di}{dt} > \frac{di}{dt}$ device will get damaged
- 3) High frequency pulses are used to trigger the thyristor

Types of SCR:-

- 1) Converter grade $SCR \Rightarrow slow$
- 2) Inverter grade SCR \Rightarrow fast
 - ⇒ suitable for high frequency application

TT 46 F 08...13

Electrical properties			
Maximum rated values	.,	000 4000 4400	4)
repetitive peak forward off-state	V _{DRM} ,	800, 1000, 1100	V 1)
and reverse voltages	V_{RRM}	1200, 1300	
non-repetitive peak forward off-	V_{DSM}	800, 1000, 1100	V
state voltage		1200, 1300	
non-repetitive peak reverse	V_{RSM}	900, 1100, 1200	V
voltage		1300, 1400	
RMS on-state current	I _{TRMSM}	120	Α
average on-state current	I _{TAVM}	45	Α
, and the second		76	Α
surge current	I _{TSM}	1300	Α
_		1150	Α
l ² t-value	l ² t	8450	A^2s
		6600	A²s

critical rate of rise of on-state	(di _T /dt) _{cr}	120	A/µs
current			-
gate trigger current	I _{GT}	max. 150	mΑ
gate trigger voltage	V_{GT}	max. 1,4	٧
holding current	l _H	max. 250	mΑ
latching current	I _L	max. 1000	mΑ

TRIAC: (1964-General Electric)

- ⇒ TRIAC has a complicated structure
- ⇒ Functionally equivalent to two thyristors connected antiparallel

- ⇒ Bidirectional device
- \Rightarrow Can be triggered when MT₂ is +ve w.r.t. MT₁ & +ve I_G w.r.t. to MT₁
- \Rightarrow Can also be triggered when MT₂ is -ve w.r.t. MT₁ & -ve I_G w.r.t. to MT₁

⇒ Used in fan regulators, Light intensity controller, Temperature controller

V-I characteristics

Limitations:

In the case of thyristor,

 $\frac{dv}{dt}$ during OFF state is as shown.

 \Rightarrow Device may go to conduction mode due to $\frac{dv}{dt}$ during turn-OFF

- ⇒ When i=0, 'V' across is very different from zero
- ⇒ Has less time than thyristor to recover its blocking power
- $\Rightarrow \frac{dv}{dt}$ rating is lower

SCR is nearly an ideal switch

- → Requires a sharp pulse to turn-ON (No continuous gate drive)
- \rightarrow Block +ve as well as -ve 'V'
- → High V & high I devices are available
- \rightarrow Rugged
- \Rightarrow Inability to turn -OFF by application of a control signal at the thyristor gate.
- ⇒ Inclusion of turn-OFF capability in thyristor requires device modification with some compromise in operational capability

Gate Turn-OFF Thyristor (GTO)

(1961-Small power GTO -GE) (1981-2.5kV, 1kA - Hitachi, Toshiba)

 \Rightarrow can be turned-ON by +ve I_G , can be turned-OFF by -ve I_G

Description:

Four layer structure ⇒ similar to SCR

- \Rightarrow Thickness of P₂ < that in SCR
- \Rightarrow N₂ layer is removed by itching in place where gate contacts are situated
- ⇒ These cells are surrounded by gate, they are brought together by a cathode plate
- ⇒ GTO can be seen as a large number of GTO's in parallel

Vertical cross section & perspective view of a GTO.

ii) At regular intervals n⁺ region penetrates P₁ layer to make contact with n⁻ region (N₁ base layer)

- ⇒ Used to speed up the turn-OFF process
- \Rightarrow No reverse blocking capability (only J_3 can now block -ve V. It is very low)
- ⇒ GTO without anode short can block -ve V

Vertical cross section & perspective view of a GTO.

High level of gate interdigitation results in

- ⇒ Even a remote part of cathode region is very near to a gate edge since
- ⇒ Fast turn-ON speed
- ⇒ Like SCR only the area of cathode adjacent to gate electrode is turned ON initially & then it spreads
- ⇒ Turn-ON area is large
- \Rightarrow High $\frac{di}{dt}$

\Rightarrow : GTO can be brought into conduction very rapidly

ON-state characteristics:

- ⇒ They are similar to SCR
- ⇒ Gate signal can be removed if

$$I_{A} > I_{latching}$$

- \Rightarrow Recommanded that +ve I_c is not removed.
- \Rightarrow $I_{Holding}$ for GTO > $I_{Holding}$ of SCR
- \Rightarrow Under transient condition if $i_A \downarrow$ below $I_{Holding}$ some regions may turn off.
- \Rightarrow Anode I now \uparrow at a high rate
- ⇒ Could be destructive.

During turn ON, $\frac{di_{G}}{dt}$ peak value of I_{A} should be

large enough to ensure that all cathode islands begin to conduct & there is a sharing of anode I

⇒ Else hot spots & could damage the device

 $\Rightarrow I_{GM} \square 10 I_{GT}$

Turn – off of GTO:

When thyristor (or GTO) is ON, both $T_1 & T_2$ are in saturation.

By \downarrow I_{B2} , T_2 can be brought out of saturation.

The total saturation current of the GTO

$$i_A = \frac{a_2 I_G + i_{CBO}}{1 - (a_1 + a_2)} - - - - (A)$$

$$\mathbf{i}_{\mathsf{CBO}} = \mathbf{i}_{\mathsf{CBO1}} + \mathbf{i}_{\mathsf{CBO2}}$$

When GTO is in ON state, i_G is very small.

$$\therefore i_{A(ON)} = \frac{i_{CBO}}{1 - (a_1 + a_2)}$$

Is the current to be turned OFF

From eqn. (A), $i_A = 0$ if there is a large gate current

such as
$$i_G = \frac{-i_{CBO}}{a_2}$$

$$\therefore \frac{\mathbf{i}_{A(ON)}}{\mathbf{i}_{G}} = \frac{\mathbf{a}_{2}}{(\mathbf{a}_{1} + \mathbf{a}_{2}) - 1}$$

 $a_2 \rightarrow$ Should be as high as possible transistor $N_1 P_2 N_2 \Rightarrow$ should have a high current gain

 \Rightarrow P₂ layer should be very thin & N₂ should be heavily doped.

To turn – OFF a GTO:

- ⇒ Gate is reversed biased w.r.t. cathode
- \Rightarrow Holes from anode are extracted from P-base (P_2)
- ⇒ 'V' drop is developed in P-base region
- ⇒ Eventually reversed biases G-K junction & cut-off injection of electrons
- \Rightarrow As the holes extraction continues, P_2 is further depleted.
- ⇒ Conduction area ↓

- ⇒ Anode I flows through the area which is far away from gate.
- ⇒ May form high current density filaments
- ⇒ May lead to localised heating
- ⇒ Should be controlled
- ⇒ Device may fail
- ⇒ Eventually device turns-OFF

Turn – OFF:

Performance is generally influenced by the characteristics of gate turn-OFF circuit.

- \Rightarrow Turn-OFF gain is low (around 6-15)
- \Rightarrow If $i_A = 100A$, $i_G = 10A$ (but for a short period)

As -ve l_c is established, anode

I starts \downarrow after a time $t_s \rightarrow$ storage time

Turn-OFF process can not be studied without taking the snubber into account.

(Turn on: Small L is sufficient compared to that used in SCR because of interdigitated structure.) $t_s \rightarrow Storage time is of the$

Application of $-I_G$ brings about a fast & sudden \downarrow in I_A .

(di/dt could be 10^9 A/S)

order of few µs.

After t_s anode I starts \downarrow steeply to a tail current in t_f (fall time)

- ⇒ start flowing through the snubber 'c'
- ⇒ A large 'V' spike due to stray inductance in the loop formed by C, D & GTO.
- ⇒ Should be controlled
- ⇒ Loop L should be very low
- ⇒ Snubber ckt layout is very important.
- \Rightarrow After the spike capacitor limits $\frac{dv}{dt}$

Tail current: $(I_K = 0 : I_G = I_A)$

Corresponding to the free charge carriers which exist in blocking layer N₁ (very thick & lightly doped).

Carriers are numerous & they recombine slowly (Higher the forward V to be blocked, thicker the N₁ layer, & longer the tail current period).

- \Rightarrow During t, V_{AK} is \uparrow
- ⇒ Turn-OFF losses are significant

Anode short: It produces a short circuit between anode & N₁

- \Rightarrow Heavily doped 'N ' cells make the minority carriers trapped in N₁ recombine more quickly
- ⇒ Structure is no longer symmetrical.

BJT (1948)

In $1975 \Rightarrow 300V$, 400A, giant Transistor by Toshiba.

Power transistor are normally of NPN type.

N layer which forms the collector is thickest.

Reverse blocking capability is small.

 \Rightarrow Emitter is heavily doped to increase β .

Operated in quasi-saturation

In saturation
$$I_c = \frac{V_{cc} - V_{CE(sat)}}{R}$$

$$\neq \beta I_R$$

- ⇒ For high voltage BJT, current gain is low when operated in saturation.
- ⇒ Use Darlington circuit
- ⇒ Requires a low base current
- $\Rightarrow \beta_1 \& \beta_2$ are current gains of transistors.

$$egin{aligned} \mathbf{i}_{\text{C}} &= \mathbf{i}_{\text{C1}} + \mathbf{i}_{\text{C2}} \ \mathbf{i}_{\text{C}} &= oldsymbol{\beta}_1 \mathbf{i}_{\text{B1}} + oldsymbol{\beta}_2 \mathbf{i}_{\text{B2}} \ \mathbf{But} \ \mathbf{i}_{\text{B2}} &= \mathbf{i}_{\text{E1}} = (oldsymbol{\beta} + 1) \mathbf{i}_{\text{B1}} \end{aligned}$$

$$i_{C} = \beta_{1}i_{B1} + \beta_{2}(1+\beta_{1})i_{B1}$$

= $(\beta_{1} + \beta_{2} + \beta_{1}\beta_{2})i_{B1}$

- \Rightarrow Over all gain = $\beta_1 + \beta_2 + \beta_1\beta_2$
- \Rightarrow Cannot operate T_2 in saturation

since
$$V_{CE2} = V_{CE1} + V_{BE2}$$

 \Rightarrow T₂ may be in quasi-saturation

On – State Safe operating Area (FBSOA)

- (2) if transistor is ON for a very small time.
- $AB \rightarrow admissible current I_c$ in steady state
- BC → Maximum power that transistor can dissipate
- CD → Secondary breakdown
- P_{max} limitation (or $T_{j(max)}$)

in the various transistor region.

- ⇒ Difficult to achieve
- \Rightarrow BJT is a minority carrier device
- \Rightarrow Have a -ve resistance coefficient.
- \Rightarrow Resistance \downarrow as temp \uparrow
- (∴ Minority carrier density ∞ to intrinsic current density which increases exponentially
- with temperature)
- \Rightarrow Power dissipation \uparrow as R \downarrow

- ⇒ Temp ↑
- ⇒ Goes ON till device fails (Thermal runaway)
- ⇒ Paralleling the devices is difficult.

DE = corrosponding to max. voltage limit.

⇒ If BJT is ON for very small period boundaries of SOA expand.

Turn-ON:

Requires $+ I_{B}$ to turn on

$$t_{ON} = t_d + t_r$$

 $t_d \rightarrow delay time$

 $t_r \rightarrow rise time$

During turn-on, there is a progressive accumulation of charge in the base which increases i_c.

 $t_d \rightarrow$ Corrosponding to charging of B-E capacitance $t_r \rightarrow$ should be very small In order to reduce t_{ON} , supply $l_B = 1.5l_{B(required)}$ \Rightarrow Transistor is operated in quasi saturation mode. On stateloss= $V_{CE(||sat)} * l_C$

Turn – off:

$$t = t_s + t_f$$

 $t_s \rightarrow Storage time$

- = delay between the change of base current & the instant when I_c starts \downarrow .
- ⇒ Limits the upper frequency of operation
- $t_f \rightarrow Fall time of I_c$

Storage time: If transistor is in saturation/quasi

saturation, width of base region \uparrow

- \Rightarrow Equivalent to as if a part of collector is transformed to base. I_c remains constant.
- $I_{\rm c}$ does not fall even though $I_{\rm b}$ has reversed.

- When excessive number of charges are injected into the base,
- \Rightarrow they are diffused in N⁻ layer of the collector.

- \Rightarrow equivalent to P-type doping & to an extension of base thickness, with a corresponding \downarrow in N⁻.
- ⇒ due to a \downarrow in N⁻ (highly resistive layer), V_{CE} \downarrow for a given I_C. Also $\beta \downarrow$.
- \Rightarrow Quasi saturation.
- \Rightarrow As $I_B \uparrow$ further, N^- is completely changed to P-type.

Highly doped N⁺ layer of collector prevents the base region from extending further.

Turn-off

Involves removing all of the stored charge in the transistor

- \Rightarrow Could be accomplished by making $I_R = 0$
- ⇒ Takes long time
- \Rightarrow Instead make I_R -ve

What should be the value of I_B during turn off?

If prior to turn off, the transitor is over saturated state, if large l_R is applied

- ⇒ Rapid evacuation of the carriers at the base
- ⇒ Results in rapid cut-off of B-E junction
- \Rightarrow Holes in collector region requires certain time to recombine and -ve I_B has negligible effect on this time.

- ⇒ From the time B-E junction is in cut-off and base collector current continuous to flow, operation is equivalent to diode during t_{rr}
- ⇒ Also known as current tail
- ⇒ During this period, in most cases

V_{CF} is already high

- ⇒ High losses
- ⇒ Risk of thermal runaway
- \Rightarrow \uparrow i_B gradually in the -ve direction

Anti Saturation network (Baker clamp)

Operating the transistor in

Quasi saturation region increases V_{CF} slightly.

But t is greatly reduced.

Prevent the BJT from over saturating.

Now,
$$V_{CE} = V_{BE} + V_{D2} + V_{D3} - V_{D1}$$

$$\Rightarrow$$
 V_{CE} is maintained at $V_{BE} + V_{D1}$

By connecting additional diodes in series with D_2 or D_3 , V_{CE} can be \uparrow

-Assume Transistor is off. +ve I_B applied at point x Till $V_{CE} = V_x + V_{D1}$ D_3 is off. All I_B will flow through D_2 & D_3 & into the base.

Assume that load has \downarrow Since I_B is held constant corresponding to rated load, transistor might get saturated.

- $\Rightarrow V_{CE} \downarrow$
- \Rightarrow When $V_{CE} = V_x + V_{D1}$, D_1 turns on. Part of I_R flows through D_1
- $I_{\scriptscriptstyle B}$ flows into the base \downarrow
- Transistor comes out of saturation
- ⇒ -ve feedback or 'control value'
- \Rightarrow D₄ provides a path for -ve I_B

Review:

TRIAC:→ Functionally equivalent to 2 thyristors connected anti-parallel. Can be triggered by

$$\begin{array}{c|c} MT_2 + ve \\ I_G + ve \end{array} \qquad W.R.T. \ MT_1 \\ MT_2 - ve \\ I_G - ve \end{array} \qquad W.R.T. \ MT_1 \\ \Rightarrow \frac{dv}{dt} \ rating < than that of SCR \\ \end{array}$$

GTO:
$$\rightarrow$$
 High power device (6KV, 6KA by MITSUBISHI)

Turn ON \rightarrow by +I_G

OFF \rightarrow by -I_G

- ⇒ 4 layer structure
- \Rightarrow Thickness of P₂ layer is reduced by \uparrow $\underline{a_2}$ thereby increasing gain during turn-off.
- ⇒ Gate cathode structure is highly interdigitited
- \Rightarrow High $\frac{di}{dt}$ rating

- ⇒ Gate current to turn-off the GTO is high \Box 10% of I_{Δ}
- ⇒ Though it is a latching device,
 I_G is maintained during ON period.
- ⇒ Turn-off loss is high. Can be ↓
 by reducing tail current.
- \Rightarrow Tail current is due to minority carriers in N₁ layer.

- ⇒ Duration of tail current ↑
 with thickness of N₁ layer
- ⇒ This duration can be ↓ by using anode short structure
 At regular intervals N⁺ region penetrates P₁ layer to make contact with N⁻ region.
- \Rightarrow Cannot block -ve \underline{V}

Inductance in GTO & turn-off snubber loop should be very small.

A large voltage spike due to loop 'L'.

BJT (1948)

In $1975 \Rightarrow 300V$, 400A, giant Transistor by Toshiba.

- \Rightarrow Power transistors are normally of NPN type.
- ⇒ N layer which forms the collector is thickest.
- ⇒ Reverse blocking capability is small.
- \Rightarrow Emitter is heavily doped to increase β .
- ⇒ Operated in quasi-saturation

In saturation
$$I_c = \frac{V_{cc} - V_{CE(sat)}}{R}$$

$$\neq \beta I_R$$

- ⇒ For high voltage BJT, current gain is low when operated in saturation.
- ⇒ Use Darlington circuit
- ⇒ Requires a low base current
- $\Rightarrow \beta_1 \& \beta_2$ are current gains of transistors.

$$egin{aligned} & \mathbf{i}_{C} = \mathbf{i}_{C1} + \mathbf{i}_{C2} \\ & \mathbf{i}_{C} = eta_{1} \mathbf{i}_{B1} + eta_{2} \mathbf{i}_{B2} \\ & \mathbf{But} \ \mathbf{i}_{B2} = \mathbf{i}_{E1} = (eta + 1) \mathbf{i}_{B1} \end{aligned}$$

$$i_{C} = \beta_{1}i_{B1} + \beta_{2}(1+\beta_{1})i_{B1}$$

= $(\beta_{1} + \beta_{2} + \beta_{1}\beta_{2})i_{B1}$

- \Rightarrow Overall gain = $\beta_1 + \beta_2 + \beta_1\beta_2$
- \Rightarrow Cannot operate T_2 in saturation

since
$$V_{CE2} = V_{CE1} + V_{BE2}$$

 \Rightarrow T₂ may be in quasi-saturation

- On State Safe operating Area (FBSOA)
- (2) if transistor is ON for a very small time.
- $AB \rightarrow admissible current I_c$ in steady state
- BC → Maximum power that transistor can dissipate
- CD → Due to secondary breakdown.
- P_{max} limitation (or $T_{j(max)}$)

in the various transistor regions.

- ⇒ Difficult to achieve
- ⇒ BJT is a minority carrier device
- ⇒ Has a -ve resistance coefficient.
- \Rightarrow Resistance \downarrow as temp. \uparrow
- (: Minority carrier density ∞ to intrinsic current density which increases exponentially with temperature)
- \Rightarrow Power dissipation \uparrow as R \downarrow

- ⇒ Temp ↑
- ⇒ Goes ON till device fails (Thermal runaway)
- ⇒ Paralleling the devices is difficult.

DE = corresponds to max. voltage limit.

⇒ If BJT is ON for a very small period, boundaries of SOA expand.

Turn-ON:

Requires $+ I_{\beta}$ to turn on

$$t_{ON} = t_d + t_r$$

 $t_d \rightarrow delay time$

 $t_r \rightarrow rise time$

During turn-on, there is a progressive accumulation of charge in the base which increases i_c.

- $t_d \rightarrow delay time.$
- $t_r \rightarrow \text{should be very small}$
- In order to reduce t_{ON} , supply $I_B = 1.5I_{B(required)}$
- ⇒ Transistor is operated in quasi saturation mode.
- On state loss = $V_{CE(\square sat)} * I_{C}$

Turn – off:

$$t = t_s + t_f$$

 $t_s \rightarrow Storage time$

- = delay between the change of base current & the instant when I_c starts \downarrow .
- \Rightarrow Limits the upper frequency of operation

 $t_f \rightarrow Fall time of I_c$

Storage time: If transistor is in saturation/quasi

saturation, width of base region \uparrow

⇒ Equivalent to as if a part of collector is transformed to base. I_c remains constant.

- ⇒ When excessive number of charges are injected into the base,
- \Rightarrow They are diffused in N⁻ layer of the collector.

- \Rightarrow equivalent to P-type doping & an extension of base thickness, with a corresponding \downarrow in N⁻.
- \Rightarrow due to a \downarrow in N⁻ (highly resistive layer), V_{CE} \downarrow for a given I_C. Also $\beta \downarrow$.
- \Rightarrow Quasi saturation.
- \Rightarrow As I_B \uparrow further, N⁻ is completely changed to P-type.

Highly doped N⁺ layer of collector prevents the base region from extending further.

Turn-off

Involves removing all of the stored charge in the transistor

- \Rightarrow Could be accomplished by making $I_B = 0$
- ⇒ Takes a long time
- \Rightarrow Instead make I_{R} -ve

What should be the value of I_R during turn off?

If prior to turn off, the transitor is in oversaturated state and a large I_R is applied

- \Rightarrow Rapid evacuation of the carriers at the base
- ⇒ Results in rapid cut-off of B-E junction
- ⇒Holes in collector region requires certain time to recombine and -ve I_B has negligible effect on this time.

- \Rightarrow From the time B-E junction is in cut-off and base collector current continues to flow, operation is equivalent to a diode during t_{rr}
- ⇒ Also known as current tail
- ⇒ During this period, in most cases

V_{CE} is already high

- ⇒ High losses
- ⇒ Risk of thermal runaway
- $\Rightarrow \uparrow i_B$ gradually in the -ve direction

Anti-Saturation network (Baker clamp)

Operating the transistor in

Quasi saturation region increases V_{CF} slightly.

But t_s is greatly reduced.

Prevent the BJT from over saturating.

Now,
$$V_{CE} = V_{BE} + V_{D2} + V_{D3} - V_{D1}$$

$$\Rightarrow$$
 V_{CE} is maintained at $V_{BE} + V_{D1}$

By connecting additional diodes in series with D_3 or D_3 , V_{CF} can be increased.

Assume Transistor is off. +ve I_B applied at point x Till $V_{CE} = V_x + V_{D1}$ D_1 is off. All I_B will flow through D_2 & D_3 & into the base.

Assume that load has \downarrow Since I_B is held constant corresponding to rated load, transistor might get saturated.

- $\Rightarrow V_{CE} \downarrow$
- \Rightarrow When $V_{CE} = V_x V_{D1}$, D_1 turns on. Part of I_R flows through D_1
- \Rightarrow Current flowing into the base \downarrow
- ⇒ Transistor comes out of saturation
- ⇒ -ve feedback or 'control value'
- \Rightarrow D₄ provides a path for -ve I_B

Re view:

- 1) B.J.T ⇒ Should not be driven into saturation
 - ⇒ Storage time ↑
 - ⇒ Operated in quasi-saturation
 - \Rightarrow Supply I_B ; $1.5I_{B(st)}$ to $\downarrow T_{ON}$
- \Rightarrow Supply -ve I_B to turn off BJT.
- ⇒ Should be gradually increased.
- ⇒ Use Baker clamp to prevent the transistor operating in saturation.

- 2) Minority carrier device
 - ⇒ -ve resistance coefficient
 - ⇒ paralleling is difficult
- ⇒ SOA has secondary breakdown limit.

<u>Isolation</u>: In latching devices, pulse transformer is used.

- ⇒ BJT requires continuous base drive.
- ⇒ Use OPTO ISOLATOR
- ⇒ Transistor requires supply voltage.

As the no. of devices \uparrow , base drive circuit may become bulky.

BU208D

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	700	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	10	V
Ic	Collector Current	8	Α
Ісм	Collector Peak Current (tp < 5 ms)	15	Α

ELECTRICAL CHARACTERISTICS (T_{case} = 25 ^oC unless otherwise specified)

A		(
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
()	Collector-Emitter Saturation Voltage	Ic = 4.5 A I _B = 2 A			1	٧
		$I_C = 4.5 \text{ A}$ $h_{FE} = 2.5 \text{ V}_{CC} = 140 \text{ V}$ $L_C = 0.9 \text{ mH}$ $L_B = 3 \mu\text{H}$		7 550		μs ns

BU208D-BJT:
$$V_{CEO} = 700V$$
, $I_{C} = 8A$, $t_{S} = 7\mu S$, $t_{F} = 500 nS$

$$h_{FF}$$
 at 5A; $\underline{5}$

$$\therefore I_{B} = \underline{1} A$$

$$I_{B(START)} = \underline{1.5} A$$

⇒ A small PT to drive another PT!

Overload protection:

- ⇒ Cannot be protected using a fuse.
- ⇒ Fuse is not fast enough
- ⇒ Overload capacity is not much higher than rated steady state capacity.
- ⇒ Necessary to detect an overcurrent condition & remove the base drive immediately.

- \Rightarrow Sense V_{CE} during conduction.
- \Rightarrow V_{CE} drops to V_X V_{D1}=Pot. of Y, after T_{ON}. If pot. of Y \uparrow above this limit during conduction period
- → Overload condition.
- ⇒ Withdraw +ve base drive & supply -I_B
- ⇒ Signals are apllied w.r.t emitter.
 Pot. of emitter □ Pot. of collector, when <u>ON</u>.
 When it is OFF = 0.
- ⇒ Reference point is floating.

Power MOSFET:

(1978:100V,25A power MOSFET)

MOSFET : [200V, 500A - SEMIKRON],

[60V, 1000A - SEMIKRON]

- ⇒ Generally low V, high I devices
- ⇒ Very popular in DC-DC conversion.
- ⇒ Metal Oxide Semiconductor Field Effect Transistor
- ⇒ Fast device
- ⇒ Majority carrier device
- ⇒ Unipolar device
- ⇒ Non-latching device
- $D \rightarrow Drain G \rightarrow Gate S \rightarrow Source$

Appears as though there cannot be any I flow between D & S.

Gate is insulated from the rest of the device

- ⇒ No steady I
- ⇒ Only displacement current (like in a parallel plate capacitor).
- MOSFET is in cut-off when V_{GS} < threshold value.
- When V_{GS} > threshold value,
- ⇒ Converts silicon surface below the gate into an N-type channel

- ⇒ Connects source to drain
- \Rightarrow I starts flowing.
- ⇒ Threshold value V_{TH}
 depends on thickness
 of oxide layer
- \Rightarrow V_{TH} can be reduced by \downarrow the thickness

- \Rightarrow when $V_{GS} > V_{GS(Ih)}$;
- \Rightarrow Device is driven into ohmic region $V_{GS} V_{GS(Th)} > V_{DS} > 0$
- ⇒ Power loss is <u>low</u>
- \Rightarrow In the active region, I_D depends only on V_{GS}
- ; Current is said to have saturated (saturation region).

In ON state the 'channel' of the device behaves like a resistance

$$R_{DS(ON)}$$

$$R_{DS(ON)} = \frac{\partial V_{DS}}{\partial i_{D}} \Big|_{V_{GS (constant)}}$$

 \Rightarrow Conduction power loss= $I_D^2 R_{DS(ON)}$

BJT requires a base current for I_c to flow

⇒ BJT has substantially lower voltage drop than MOSFET

Internal Body Diode

Has a internal Body Diode

Connected between source & drain

- → MOS can block +ve 'V'
 (junction P-N⁻ determines this V)
- → 'i' can be either +ve or -ve.
- → -ve I through diode
- → This diode has adequate I & switching speed rating
- → Some applications require fast diode

Safe Operating Area

No secondary breakdown region SOA is limited by

AB-maximum drain I at steady state

CD-Maximum V_{DS} that the device

can sustain

BC-Maximum power dissipation

- ⇒ Imposed by R_{DS(ON)}
- ⇒ Has +ve resistance coefficient.
- ⇒ Paralleling is easy

Internal Capacitor (Parasitic capacitance)

⇒ limits the switching speed

3 types

C_{Gs} → Dielectric is the oxide layer isolating G &

source

Almost independent of variation in V_{DS}

Gate – Drain capacitance : (C_{GD})

Varies considerably with V_{DS}

- \Rightarrow ; C_{GS} when V_{DS} is low
- \Rightarrow Negligible when V_{DS} is high
- $\Rightarrow \overline{C_{DS}} \rightarrow Less important$

$$\Rightarrow$$
 $C_{GD} + C_{GS} \rightarrow C_{i}$

 \Rightarrow C_i \rightarrow Input capacitance in pico Farads

Re view:

- 1) Power MOSFET

 Metal Oxide Semiconductor Field

 Effect Transistor
- ⇒ Fast Device
- ⇒ Gate is insulated from source
- \Rightarrow Input I; $\underline{0}$
- \Rightarrow Input Z $\rightarrow \infty$; it is capacitive.
- \Rightarrow If $V_{GS} > V_{TH}$, an channel is formed, which connects drain and source.

V-I characterisitcs

- ⇒ In ohmic region MOS can be represented by Resistance (R_{DS})
- ⇒ BJT has substantially lower voltage drop than MOSFET.
- ⇒ One of the drawbacks of MOSFET.

$$\Rightarrow$$
 Input C_i = C_{GD} + C_{GS}

 $C_{GD} \rightarrow varies with V_{DS}$

$$C_{GD}$$
; C_{GS} when $V_{DS} = V_{DS(ON)}$

C_{GD} is very low when V_{DS} is high

- ⇒ majority carrier device.
- ⇒ +ve temperature coefficient
- ⇒ paralleling is easy

SOA has

- \rightarrow I_D limit, V_{DS} limit.
- → Max. power dissipation limits.

Increase in V_{GS} as a function of charge

carried to the Gate:

 $Q_G \rightarrow$ Charge carried to the gate by current i_G during turn-ON

 $OA \rightarrow Corresponding to the charging of C_i under full <math>V_{DS}$

 C_i ; C_{GS}

→ Charge supplied depends on drain I.

AB \rightarrow Corresponds to V_{DS} decrease from the supply voltage to $V_{DS(ON)}$. V_{GS} remains constant. Charge supplied is used to vary the 'V' across C_{GD} .

BC → Corresponds to input capacitance charge

when the device is ON

$$C_i = C_{Gs} + C_{GD(ON)}$$

During turn-OFF

Removal of excess charge (EF), discharge of $C_{\rm GD}$ during voltage rise (FH), & $C_{\rm GS}$ discharge during current fall (HJ).

IRF640

$$V_{DSS} = 200V$$
 $R_{DS(on)} = 0.18\Omega$
 $I_D = 18A$

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ 10 V	18	
I _D @ T _C = 100°C	Continuous Drain Current, VGS @ 10 V	11	Α
V _{GS}	Gate-to-Source Voltage	±20	٧

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200	<u></u>	-(2	٧	V _{GS} =0V, I _D = 250μA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.18	Ω	V _{GS} =10V, I _D =11A ④
V _{GS(th)}	Gate Threshold Voltage	2.0	ı	4.0	٧	V _{DS} =V _{GS} , I _D = 250μA
Q_{gs}	Gate-to-Source Charge			13	nC	V _{DS} =160V
Q _{gd}	Gate-to-Drain ("Miller") Charge		_	39		V _{GS} =10V See Fig. 6 and 13 @
t _{d(on)}	Turn-On Delay Time		14			V _{DD} =100V
tr	Rise Time	L —_	51	_	ns	I _D =18A
td(off)	Turn-Off Delay Time	_	45		.,,,	R _G =9.1Ω
t _f	Fall Time		36			R _D =5.4Ω See Figure 10 @

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Switching characteristics:

 $t_d \rightarrow time required to$ $charge C_{GS} to V_{Th}$ $t_r \rightarrow Charging time to$ drive the gate for full conduction of the device

Rise in i_D with time (hatched area) is decided by internal circuit $t_{d(off)} \rightarrow Time$ required for the gate to discharge from the overdriven voltage to the threshold voltage corresponding to active region.

t_f → Time required for the gate voltage to move through the active region before entering cut-off.

Difference between BJT & MOSFET

BJT

MOSFET

- 1) Current controlled device
- 2) Minority carrier device
 - ∴ has -ve resistance co-efficient.

- 1) Voltage controlled device
- 2) Majority carrier device has +ve resistance co-efficient.
- 3) Has secondary breakdown 3) No secondary breakdown
- 4) Paralleling device is difficult
- 5) On state power loss $(V_{CS(sat)}I_c)$ is low
- 6) Turn-off time is higher

- 4) Easy
- 5) $I_D^2 R_{DS(ON)}$ is higher than on state losses of BJT
- 6) Very fast device

COOLMOS: On state resistance is low.

: conduction losses are low.

IGBT (1983-by Jayant Baliga)

(Insulated Gate Bipolar Transistor)

- ⇒ Prior to advent of IGBT,
- ⇒ BJTs & MOSFET were used in high frequency application
- ⇒ BJT has excellent on-state characteristics
- ⇒ Current controlled device

MOSFET: - Requires very small gate current. Is it possible to use both?

⇒ BJT & MOSFET have charcteristics that compliment each other is some respects.

IGBT ⇒ **Insulated** gate → **similar** to **MOS**

→ control stage

BJT ⇒ Power stage

Modify the structure

P⁺ layer forms the drain.

When +ve potential applied to the gate

& exceeds threshold voltage n channel is formed → similar to MOS

⇒ Electron flow into N⁻ region
N⁻ layer receives electrons from source (N⁺) & holes from drain (P⁺)

If P⁺ N⁺ (J₁) junction is forward biased holes are injected into the n⁻ region

- ⇒ Some electrons recombine with holes
- ⇒ Remaining holes are collected at source
- \Rightarrow J₁ can now block <u>-ve</u> V.

In comparison to MOSFET, IGBT has no inverse body diode.

- ⇒ Most IGBTs contain inverse diode
- ⇒ Built-in which is optimized to match the IGBT switching operation.

V-I charcteristics look similar to BJT except control parameter is V_{GS}

During conduction, R_{DS} is lower.

- ⇒ N⁺ layer between P⁺(drain) N⁻ drift layer is not essential for operation of IGBT
- ⇒ Some have just N layer
- ⇒ Non punch through (NPT) IGBT

 If both are present, is known as punch through IGBT (PT-IGBT)

When reverse voltage is applied J₁ should block <u>-ve</u>
Due to heavy doping on both sides this V ↓

- ⇒ PT IGBT has low -ve V blocking capability (Non-symmetrical IGBT)
- ⇒ Non-punch through IGBT
 → symmetrical IGBT

NPT PT

Turn – ON of IGBT is; same as that of power MOS

Turn-off:-

There are two distinct time interval during turn off:

- 1) The channel disappears & MOSFET blocks quickly
- $\Rightarrow i_D$ drops
- ⇒ Minority carriers in N⁻ layer gradually recombine.
- i_D ↓ relatively slowly(Tail current)

This period should be small since V_{DS} has attained reasonably a high value

- ⇒ Losses high
- ⇒ Punch through IGBT has smaller tail time
- ⇒ Has N⁺ layer
 (Almost similar to N⁺ layer
 in GTO anode short structure)

SOA of IGBT

Smart Power Module:

- ⇒ Power module + Driver circuit + Protection circuit
- Over temperature protection
- Over current protection
- Over voltage protection

