Representation Learning

Week 8

What Our Datum Really Is

- A datum of interest is typically something in the real world
 - A physical object
 - A place
 - A user
 - An idea

Numerical Representation

- Computers don't see the real data
- Computers see numbers
- Use numbers represent the real datum
- Simplest example: use raw observarional data
 - Pixels
 - Point clouds
 - Letters

Countless Representations

- There are many way to represent the same daum
- In fact, infinite ways
- How do we select the best one?
- What are the criteria for a good representation?

http://texchingingragrass.blagspot.com

Mathematical Formulation

- A procedure such that:
 - for every data point **x**, we have vector **e** that represents it
- Very general
- Can map every x to 0
- Can map each x to a different random number
- Procedure is not neccesarily a parametric function
- Need more constraints...

Information Preservation

- Representation should present the important information
- What's imporant?
- Option 1: Everything
- Option 2: Only the semantic aspects
 - What's semantic?

Low-dimension

- We often want a compact representation
- Like compression there is a tradeoff
 - Low dimension high compression high information loss
 - High dimension low compression low information loss

Meaningful Distance on Semantic Attributes

- Assume there is a set of attributes we care about
- Does low (I1,I2,cosine) distance = similar value of semantic attributes?

$$||e_{dog} - e_{anotherdog}||^2 < ||e_{dog} - e_{donkey}||^2$$

Informativeness on Semantic Attributes

- Assume there is a set of attributes we care about
- Can linear classifier predict attribute values?

$$y = w \cdot e + c$$

Visualization

- Can we easily visualize the representation?
- Typically means:
 - 2D representation
 - Distance corresponds to semantic attributes

Pretraining – Not Really RL

- In DL –preliminary training stage on large, but unrelated dataset
- A good starting point for training on our target dataset
- Not really representation learning
- Often confused together

Classical Machine Learning Ideas

- Traditional literature:
 - Reducing dimension
 - Preserving as much information as possible
- Challenge: measuring how much important information is preserved

Distance Preservation: Schema

- Calculate distance between each pairs of samples $d_{ij} = d(x_i, x_j)$
- Come up with embeddings for each point e.g. e_i for xi
- Distances between embeddings and samples should be similar

Simple Case: Classical Dimensional Scaling

- Measure distance between sample pairs using L2
- Measure distance between embedding pairs using L2
- Minimize difference between distances
- We will show this is equivalent to PCA

cMDS = PCA

Assume $||e_i - e_j||^2 = d_{ij} \equiv ||x_i - x_j||^2$ then if the embeddings have mean 0,

$$e_i \cdot e_j = -\frac{1}{2} [d_{ij} - \frac{1}{n} \sum_i d_{ij} - \frac{1}{n} \sum_j d_{ij} + \frac{1}{n^2} \sum_{ij} d_{ij}]$$

or in matrix notation:

$$E^{T}E = K \equiv -\frac{1}{2}(I - \frac{1}{n}1)^{T}D(I - \frac{1}{n}1)$$

As we can write: $K = V^t \Lambda V$

We have: $K = \Lambda^{\frac{1}{2}}V$

So What's Wrong with PCA

- Several issues:
 - A linear function not powerful enough for complex data
 - More influence by large distances than small ones
 - Clusters are separated but local structure not preserved

Local Embedding Methods

- Let's reconsider the swiss roll
- Data lies on a 2D manifold
- How to describe it's geometry?
- Idea: local structure!

Laplacian Eigenmaps

- For each point x_i find its k NNs
- For each NN j, compute weight $w_{ij} \propto e^{-d_{ij}}$
- Learn embedding ei for each xi such that

$$\sum_{ij} \|e_i - e_j\|^2 w_{ij} \quad s.t. \quad cov(E) = I$$

- Constraint is in theory a little more complex
- Constraint ensures solution does not collapse to 0

Lots of Issues with Local Methods

Discuss in class

Stochastic Neighborhood Embeddings

A mixture of global and local approaches

• Define:

$$p_{i|j} = \frac{e^{-\frac{1}{2\sigma^2} \|x_i - x_j\|^2}}{\sum_{k \neq i} e^{-\frac{1}{2\sigma^2} \|e_i - e_k\|^2}}$$
$$q_{i|j} = \frac{e^{-\|e_i - e_j\|^2}}{\sum_{k \neq i} e^{-\|e_i - e_k\|^2}}$$

• The loss is given by:

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}},$$

Symmetric SNE

• SNE is not symmtric, but easily fixed

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

$$q_{ij} = \frac{e^{-\|e_i - e_j\|^2}}{\sum_{l \neq k} e^{-\|e_l - e_k\|^2}}$$

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$

tSNE: Symmetric SNE with Student's t

- The Gaussian distribution makes far embedding decay too fast
- Replace with Student's t

$$q_{ij} = \frac{e^{-\|e_i - e_j\|^2}}{\sum_{l \neq k} e^{-\|e_l - e_k\|^2}}$$

$$q_{ij} = \frac{(1+\|e_i - e_j\|^2)^{-1}}{\sum_{l \neq k} (1+\|e_i - e_j\|^2)^{-1}}$$

tSNE is Great for Visualization

- Combines global and local structure
- Comarison to local method LLE:

Issues with Classical Methods

- What to do with test samples?
- Is computing neighbors with L2 really a good idea?
- Not really suitable for high d embeddings? (why?)
- Classically, local methods did not work really well (t-SNE did in low d)

Two Modification are All You Need

- Modern method only modify two aspects
 - 1. Mapping from x to e through a parametric function (e.g. deep nets)
 - 2. Neighbors generated, not retrieved
- These simple changes are enough to make a massive impact!

Amortizarion

- Classical method optimized all embeddings directly
 - Cannot generlize to new samples
 - Prone to overfitting for large d
- Modern methods learn the mapping, this solves the issues
- Typically a ResNet or Transformer (like anywhere else In the course)

Augmentations

- Local methods want similar samples to have similar embeddings
- What is similar? L2 distance is terrible at high d
- Idea: let user decide which variation is not important
- For sample: generate samples that differ in unimportant aspects

Examples of Image Augmentations

Augmentations: the Good and the Ugly

• Good:

- Can model much more semantic variation than L2
- Does not require kNN search

• Bad:

- Need to know what variation is not important
- Need to be able to sample such augmentations (when is that hard?)

Contrastive Learning – SNE Interpretation

- Augment image x_i
- Compute probability of augmented image to belong to each image
- Embeddings unit normalized
- Groundtruth p_{i|i} is now 1-hot

$$KL(Q|P) = \sum_{i} \frac{e^{e'_i \cdot e_i}}{\sum_{j \neq i} e^{e'_i \cdot e_j}}$$

Contrastive Learning – Classifier Interpret.

- Define each image x_i as a class
- All augmentations of x_i belong to class I
- Train a classifier to map augmented image to the correct class
- In practice, we subsample the denominator for faster runtime

Intuition

- Objective:
 - Augmentations fall in the same position
 - Feature hypersphere unifromly populated

Alignment: Similar samples have similar features. (Figure inspired by Tian et al. (2019).)

Uniformity: Preserve maximal information.

Figure 2: **Hypersphere:** When classes are well-clustered (forming spherical caps), they are linearly separable. The same does not hold for Euclidean spaces.

MOCO

- Tricks to reduce memory requirements
- Do not calculate embeddings for every batch
- Instead, keep the values of all embeddings in memory
- Momentum encoder ensure that embeddings change slowly

VICReg: Modern Laplacian Eigenmaps

- Another method by Lecun
- This one is basically laplacian eigenmaps with augmentations

$$\mathcal{L}_{\text{vic}} = \alpha \sum_{k=1}^{K} \max \left(0, 1 - \sqrt{\text{Cov}(\boldsymbol{Z})_{k,k}} \right) + \beta \sum_{j=1, j \neq k}^{K} \text{Cov}(\boldsymbol{Z})_{k,j}^{2} + \frac{\gamma}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} (\boldsymbol{G})_{i,j} \|\boldsymbol{Z}_{i,.} - \boldsymbol{Z}_{j,.}\|_{2}^{2}.$$

Classical Idea: CCA

- Canonical Correlation Analysis CCA
- Idea: given two views of the same data, learn common feature space
- Example: image and video descriptions of event
- Criterion: assume the features are x_i and y_i learn functions f and g s.t.:
 - Corr $(f(x_i),g(y_i)) = I$

Barlow Twins: CCA with Augmentations

- We denote each sample xi and its augments x',
- Learn function f s.t.
 - Corr(f(xi),f(x'_i)) = I
- Does not really depend on batch size

$$\mathcal{L}_{\mathrm{BT}} = \sum_{k=1}^{K} ((C)_{k,k} - 1)^2 + \alpha \sum_{k' \neq k} (C)_{k,k}^2, \ \alpha > 0.$$

SimSiam: No Negative Samples

- Exploring Simple Siamese Representation Learning, Chen and He, CVPR'21
- Main idea: drop the negative samples, fix one view

SimSiam Idea

- Extract features from two augmented views
- Learn predictor network to predict one from from the other

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp

for x in loader: # load a minibatch x with n samples
    x1, x2 = aug(x), aug(x) # random augmentation
    z1, z2 = f(x1), f(x2) # projections, n-by-d
    p1, p2 = h(z1), h(z2) # predictions, n-by-d

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

L.backward() # back-propagate
    update(f, h) # SGD update

def D(p, z): # negative cosine similarity
    z = z.detach() # stop gradient

p = normalize(p, dim=1) # 12-normalize
    z = normalize(z, dim=1) # 12-normalize
    return - (p*z).sum(dim=1).mean()
```

Multi-Modal Supervision

- Self-supervised learning needs distance guidance
- So far, augmentation generative method
- Sometimes better free supervision exists
- Internet is full of (image, text caption) pairs
- Idea: replace or extend guidance to SSL methods using this

CLIP: ML Trick

- Double contrastive learning
- One contrastive loss predicting the correct image given the caption
- One contrastive loss predicting correct caption given image

CLIP: DL Trick

- CLIP by OpenAI implements this ideas
- DL trick: train different encoders for the image and text
- Image encoder can be ResNet or ViT
- Text encoder is a standard trasformer
- Train on lots (300M pairs) of data there are now much bigger models

Masked Autoencoding

- Create hard labelled task for free
- Example: for a sentence, remove some word. Task is to predict word given the rest of the sentence.
- Very simple, but effective representation learner
- Similarly to AR models, here we estimate:

$$p(x_i|x_{-i})$$

BERT

- Given sentence, remove word then learn to predict it
- A representation succesful at this task must be very informative
- Technical details:
 - Use transformer
 - Replace of 15 of tokens:
 - 80% prob replace by "mask" token
 - 10% replace by wrong word
 - 10% word unchanged

Masked Autoencoders

- Idea: mask out most of the image, and try to reconstruct it
- Kaiming He and other FAIR team

Architecture

- Transformer encoder only operates on visible patches
- Decoder operates on both visible and masked token
- Reconstruction loss

High Masking Ratio

- Images are more sparse than NLP
- Masking of 75-85% vs 15% in BERT
- For video, ratios are around 95%!

Other Findings

- Working on raw pixels is as good as more complex ideas
- Random masking at least as good as other ideas
- Results are much better than contrastive methods for fiinetuning
- Results are not as good as contrastive for linear probing/knn
- Great scaling behavior to very large transformers
- Operates well even on small datasets (10k images)

BEIT

- BERT for images
- First tokenize image using some vector quantizer
- Then run discrete BERT on the discrete image representation
- Results in line with MAE

Overview of Pros and Cons of Representations

- Contrastive
- MoCo
- Barlow Twins
- SimSiam
- VICReg
- BERT
- BEIT
- MAE