П

DTIC FILE COPY

TECHNICAL REPORT HL-30-7

MISSISSIPPI RIVER-GULF OUTLET, LOUISIANA

Field Data Report

by

T. L. Fagerburg

Hydraulics Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

Approved For Public Release; Distribution Unlimited

Prepared for US Army Engineer District, New Orleans New Orleans, Louisiana 70160-0267

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE	MARKINGS		<u> </u>
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF REPORT			
		1	l for publi		e:
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE		ition unlim		-,
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	REPORT NU	MBER(S)
Technical Report HL-90-7					
a. NAME OF PERFORMING ORGANIZATION (if applicable)		7a. NAME OF M	ONITORING ORG	GANIZATION	
USAEWES	CEWES-HE-P	ł			
Hydraulics Laboratory 6c. ADDRESS (City, State, and ZIP Code)	CEWES-RE-F	7b. ADDRESS (C	ty, State, and Z	IP Code)	
3909 Halls Ferry Road Vicksburg, MS 39180-6199					
8a. NAME OF FUNDING/SPONSORING ORGANIZATION USAED, New Orleans	ME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NU (If applicable)			ON NUMBER	
8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10 SOURCE OF	FUNDING NUMB	ERS	
PO Box 60267 New Orleans, LA 70160-0267		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification)					
Mississippi River-Gulf Outle	t, Louisiana; Fi	ield Data Rep	ort		
12. PERSONAL AUTHOR(S)				-	
Fagerburg, Timothy L. 13a, TYPE OF REPORT 13b, TIME CO		F-1			
	TO	14. DATE OF REPO		th, Day) 15	. PAGE COUNT
Final report FROM		A(gust 1990		172
Available from National Tech VA 22161.	nical Informatio	on Service, S	5285 Port R	Royal Roa	d, Springfield,
17. COSATI CODES	18. SUBJECT TERMS	Continue on rever	se if necessary i	and identify	by block number)
FIELD GROUP SUB-GROUP	Current (Salinity .		later-sur	face elevation.
	Current speed Field survey	Suspended S	ediment		
9. ABSTRACT (Continue on reverse if necessary	Field survey	Synoptic fi	eld data	•	
Water levels, current sconcentrations were measured in October and November 1988 incorporate these data in a report describes the equipmentables, plots, and summaries	in the Mississi The prototype numerical model nt and procedure of all the data ground truth sus	ippi River-Gue data were of for determines used in the collected.	alf Cutlet collected a mation of s me data acq ment data w	Canal, Nas part of shoaling quisition with sate	ew Orleans, LA, f a study to rates. This and presents
Attempts to correlate punsuccessful due to cloud con	ver auring the p				
			mana gana kapang i Panjana		Sy 1
unsuccessful due to cloud co		Tal ABSTRACT S	SCHRITY CLASS	EIGATION	Sylver 1 i
unsuccessful due to cloud co		21. ABSTRACT S	CURITY CLASSII	FICATION	Sy 1

PREFACE

The field investigation reported herein was conducted during the period 26 October through 27 November 1988 by the US Army Engineer Waterways Experiment Station (WES), Vicksburg, MS, to provide the necessary data for support of the Mississippi River-Gulf Outlet Channel Project, New Orleans, LA. This effort was funded by the US Army Engineer District, New Orleans (LMN), under the project management of Mr. Bill Garrett, LMN.

Personnel of the WES Hydraulics Laboratory (HL), Estuaries Division (ED), Estuarine Processes Branch (EPB), performed the work under the general supervision of Messrs. F. A. Herrmann, Jr., Chief, HL; R. A. Sager, Assistant Chief, HL; W. H. McAnally, Jr., Chief, ED; and G. M. Fisackerly, Chief, EPB. The data collection program was designed by Messrs. Fisackerly, T. L. Fagerburg, H. A. Benson, and J. W. Parman, EPB. Data reduction was performed by Ms. C. J. Coleman, EPB, and Mr. Fagerburg. Laboratory analysis of water samples was performed by Mr. L. G. Caviness, EPB. This report was prepared by Mr. Fagerburg and edited by Mrs. Marsha C. Gay, Information Technology Laboratory, WES.

Commander and Director of WES during preparation of this report was COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.

CONTENTS

	<u>Page</u>
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	5
Project DescriptionPurpose and Scope	
PART II: DATA COLLECTION EQUIPMENT, PROCEDURES, AND CONDITIONS	7
Data Collection EquipmentProcedures	
PART III: DATA PRESENTATION	16
Tide Data. Velocity Data. Salinity Data. Total Suspended Material Data. LANDSAT Information.	17 18 18
PART IV: SUMMARY	22
TABLES 1-70	
PLATES 1-54	

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurements used in this report can be converted to SI (metric) units as follows:

<u>Multiply</u>	By	To Obtain
feet	0.3048	metres
inches	25.4	millimetres
miles (US statute)	1.609347	kilometres
ounces (US fluid)	0.02957353	cubic decimetres

Figure 1. Location and vicinity maps

MISSISSIPPI RIVER-GULF OUTLET, LOUISIANA

Field Data Report

PART I: INTRODUCTION

Project Description

1. The Mississippi River-Gulf Outlet (MRGO) Canal, as shown in Figure 1, is a 66-mile*-long deepwater channel that extends northwest from deep water in the Gulf of Mexico to New Orleans, LA. The Federal project provides for a 40-ft-deep (mean low Gulf datum) channel for approximately 32 miles where it joins the Gulf Intracoastal Waterway and thence for about 5 miles to a turning basin at its junction with the Inner Harbor Navigation Canal at New Orleans. The project was completed in 1968 to provide a shortcut from New Orleans to the Gulf for ship and barge traffic. The original project channel width was constructed to 650 ft; but due to the wave wash and drawdown from ships transiting the channel, the unstable marsh bank line has eroded to create a channel width of 1,500 ft.

Purpose and Scope

Purpose

2. The primary purpose of this investigation was to obtain information on the water levels, current speeds and directions, salinity concentrations, and suspended sediment concentrations within the MRGO, Lake Borgne, and the connecting channel areas between these two areas. This information was then to be used in a numerical model to determine the expected rates of shoaling in MRGO if the breached bank areas were to widen to a maximum of 5,000 ft. A secondary purpose was to correlate suspended sediment data with satellite thematic mapper data.

Approach and scope

3. Three 8-hr surveys were conducted to collect synoptic field data

^{*} A table of factors for converting non-SI units of measurement to metric (S1) units is found on page 3.

during peak flow periods in conjunction with LANDSAT satellite overflights of the MRGO study area. The surveys were timed to establish ground truth sediment concentrations for the satellite information. Measurements consisted of the following:

- a. Water levels recorded at six locations.
- b. Current speed and direction at three ranges.
- c. Suspended sediment and salinity profile samples at each range.
- d. Discrete water samples taken automatically at two locations.
- e. Thematic mapper tapes from the LANDSAT satellite.
- $\underline{\mathbf{f}}$. Wind speed and direction in the study area.
- 4. This report describes the field investigation methods used to collect the field data and presents the results of the data reduction efforts.

PART II: DATA COLLECTION EQUIPMENT, PROCEDURES, AND CONDITIONS

Data Collection Equipment

Current speed and direction

5. Each of the boats used in the surveys was equipped to deploy instruments over the side using the portable equipment setup shown in Figure 2.

Figure 2. Components of the field instrument assembly

Collapsible aluminum frames were used to support the equipment, and winches with 1/8-in. Wire rope were used to raise and lower the velocity and direction equipment. An indicator on the winch displayed the depth of the instruments below the water surface. A Gurley Model 665 velocity meter with vertical axis cup-type impeller and direct velocity readout capabilities was used to measure the current speeds. These meters have a threshold speed of less than 0.2 fps and an accuracy of ± 0.1 fps for velocities less than 1 fps. Current directions were monitored with a magnetic directional indicator mounted above the velocity meter on a solid suspension bar. This entire assembly was connected to a streamlined lead weight that held the sensors in a vertical position and criented them into the direction of the flow. The signal cables from each instrument were raised and lowered with the equipment and connected to the

display units located on the deck of the boat.

Suspended sediment and salinity water samples

6. Water samples for analysis of salinities and total suspended solids were obtained at each depth at which a velocity reading was taken by pumping the sample from the depth to the surface collection point. The pumping system consisted of a 1/4-in.-ID plastic tubing attached to the current meter signal cables for support. The opening of the sampling tubing was attached to the solid suspension bar at the same elevation as the current meter and was pointed into the flow. A 12-v d-c pump was used to pump the sample from the depth of the meter through 50 ft of the tubing to the deck of the boat where each sample was then collected in individual 8-oz plastic bottles. The pumps and tubing were flushed for approximately 1 min at each depth before the sample was collected.

Automatic water samplers

- 7. Discrete water samples taken automatically during each survey period and during the periods between the individual periods were obtained using ISCO Model 2700 automatic water samplers, as shown in Figure 3. A typical field installation of these water samplers is shown in Figure 4. The samplers operated from a 12-v d-c battery power source. Samples were collected in $1-\ell$ plastic bottles located inside the sampler. The samplers are fully programmable for obtaining any volume of sample desired up to the maximum size of the bottle, for obtaining composite samples, for setting different intervals between samples, and for setting times to begin the sampling routine. When the sampling period was complete, the sample bottles were replaced with empty bottles to begin a new sampling period.
- 8. Two samplers were used in this study to obtain water samples at the Martello Castle and Shell Beach locations, AWS-2 and AWS-1, respectively, in Lake Borgne as shown in Figure 5. At the locations where these samplers were installed, the intake line from each sampler was positioned at a depth of 3 ft above the bottom for retrieval of the samples. The samplers were programmed to collect one sample per bottle every 373 min during each of the 8-hr survey periods. For the sampling periods between the individual surveys, the samplers were programmed to collect two samples per bottle every 6.25 hr during the peak flood and ebb tides and the slack-water periods.

Figure 3. Automatic water samplers

Figure 4. Typical field installation of the automatic water samplers

Figure 5. Sampling locations

Tide level recorders

9. Water levels were recorded using ENDECO Model 1029 and Model 1152 solid-state water level recorders similar to those shown in Figure 6. The

Figure 6. Water level recorder

ENDECO recorders contained a strain gage type pressure transducer in a submersible case that is used to record the absolute pressure of the column of water above the case. This pressure transducer was vented to the atmosphere by a small tube in the signal cable that compensated for any changes in barometric pressure. The Model 1152 was similarly equipped, but in addition it has a conductivity sensor for monitoring salinity. The recording time intervals for the tide level data were set for 10-15 min. The data from each recorder were stored on a solid-state EPROM cartridge in the waterproof housing above the surface, which also contained the d-c power supply. The accuracy of these recorders is 0.1 percent (or ±0.05 ft over the full scale of the recorder). The pressure was measured for 49 sec of each minute of the recording interval with a frequency of 5-55 kHz to filter out surface waves, therefore eliminating the need for a stilling well.

10. Six recorders were used for this study to obtain water-surface elevation measurements at different locations in the study area. These locations are shown in Figure 5. One recorder, TG-4, was located on a channel marker in the Intracoastal Waterway at the northeast end of Lake Borgne. Recorder TG-7 was located on a navigational structure in Chandeleur Sound near Point Chicot. These two locations were identical to those used in another

study; therefore, the previous station numbering system was used. Recorders TG-10 and TG-12 were located on channel markers in the MRGO near the Martello Castle and Shell Beach entrances into Lake Borgne. Recorders TG-11 and TG-13 were located on abandoned piling structures within Lake Borgne close to these same entrances. The recorders were operated continuously throughout the entire study period.

Wind speed and direction

11. The wind conditions at the time of each 8-hr survey were recorded using a WeatherMaster Model No. 132 hand-held anemometer. The directions of the prevailing winds were determined from the compass heading of the anemometer giving the highest speed indication. Periodic maximum wind speeds were recorded at various times throughout each of the surveys. No wind conditions were monitored during the intervals between the individual surveys. Wind data at New Orleans for all periods were obtained from the National Weather Service, but are not presented here.

Procedures

For each of the 8-hr data collection periods in the MRGO study area, a total of three ranges were selected that would probably yield the information most applicable to the problem statement. The general locations of these ranges are shown in Figure 7. Range 1, located within the MRGO at mile marker 27.0, had three stations across the channel. Sta 1-B was located at the channel center line and sta 1-A and 1-C were located at the channel prism lines. A fourth station, sta 1-X, located 1.5 miles below range 1, was monitored only during the scheduled times of the LANDSAT satellite overflights. Range 2, located at MRGO mile marker 41.0 and at the Shell Beach entrance to Lake Borgne, had three stations that were monitored. Sta 2-B and 2-C were located within the MRGO channel, at the channel center line and prism line, respectively, at MRGO mile marker 41.0. Sta 2-A of this range was located approximately 150 ft inside the entrance of the Shell Beach access channel to Lake Borgne. A fourth station, 2-X, located at channel marker 2 in Lake Borgne, was monitored only during the scheduled period of satellite overflights. Range 3, located near MRGO mile marker 51.0, had four stations which were monitored. Sta 3-C and 3-D were located in the MRGO at the channel center line and prism line, respectively. Sta 3-A and 3-B were located across

Figure 7. Survey data collection ranges and stations

the entrance from MRGO into Lake Borgne at the Martello Castle area and equally spaced across the width of the channel. A fifth station, 3-X, located at channel marker 2 in Lake Borgne, was monitored only during the scheduled periods of satellite overflights.

13. Before the beginning of each survey, anchors and mooring lines were deployed at each of the stations. The mooring lines were attached to large inflated buoys. The boat moved into position at each of the buoys and used the anchored line to hold a steady position in the current while data collection was being performed. With the exception of the X stations, the velocity data and water samples were collected at three depths: bottom, middepth, and surface. The bottom measurement was made at a distance of 2 ft above the actual bottom. The middepth measurement was obtained at the actual middepth point. The surface measurement was obtained at 3 ft below the top of the water surface. At sta 1-X, 2-X, and 3-X, only bottom and surface measurements were obtained. Data collected at each depth included current speed, current direction, and a pumped water sample. The data at each station were obtained once per hour except during the scheduled period of satellite overflights. During the overflight periods, data were collected at each station, including the X stations, on 1/2-hr intervals beginning 1/2 hr prior to and extending to 1/2 hr following the scheduled passing of the satellite.

Laboratory analysis of suspended sediments and salinities

- 14. The samples collected by the automatic water samplers and those obtained at the individual sampling stations during the survey were analyzed in the Hydraulics Laboratory at the US Army Engineer Waterways Experiment Station. Total suspended materials were determined by filtration of the samples. Nuclepore polycarbonate filters with $0.4-\mu$ pore size were used. They were desiccated and preweighed, then a vacuum system was used to draw the sample through the filter. After the filters and holders were washed with distilled water, the filters were dried at 105° C for 1 hr and reweighed. The total suspended materials were calculated based on the weight of the filter and volume of the filtered sample.
- 15. The water samples were also measured for salinities in the laboratory. A Beckman Model RA5 salinometer with automatic temperature compensation was used for these analyses. The salinometer was calibrated with standard seawater (34 ppt) and was accurate to within ± 0.2 ppt.

Conditions of the survey

16. Each 8-hr data collection survey was conducted during a slightly different tide condition. The maximum tidal ranges were observed to be 2.45 ft in the upper reaches of Lake Borgne and 2.5 ft near Point Chicot. The cloud conditions were variable during each survey. The survey conducted on 26 October 1988 appeared to be excellent for the satellite overflights (no large cloud formations). Extreme cloud cover existed at the time of the 11 and 27 November 1988 data collection surveys. The wind conditions were variable for each survey ranging from slight breezes to strong winds of 17 mph.

PART III: DATA PRESENTATION

Tide Data

- 17. The variations observed in the water-surface elevation data are tabulated in Tables 1-9. The water-surface data for periods of 12 hr prior to and following each of the survey period dates are shown in Plates 1-9. Water level recorders TG-4, TG-7, TG-10, TG-11, TG-12, and TG-13 appeared to function properly during each of the surveys. However, some difficulties were encountered at location TG-10 during the interval between the first and second surveys. This problem was corrected prior to the second survey conducted on 11 November. The tide phase and ranges observed on all the recorders appeared to be consistent with each other.
- The data from water level recorders TG-10 and TG-11 were compared to determine the presence of a head differential at the Martello Castle opening from Lake Borgne to the MRGO. The information obtained from these recorders is listed in Tables 4-6. The data from the additional water level recorders TG-12 and TG-13 were also compared in a similar manner to determine the head differential occurring at the Shell Beach opening from Lake Borgne to the MRGO and are listed in Tables 7-9. To determine the head differential that existed at each location, a representative datum had to be determined. assumed that the relative proximity of the pairs of recorders to each other was close enough that the time of occurrence of the slack water at each location would be the same. From the water level data recorded at each of these locations and the velocity data, the offset of one of the gages could be adjusted up or down depending on the change in direction indicated by the velocity data. The mean water level reading from each recorder was used as the datum for plotting the data. The maximum water-surface differential observed at TG-10 and TG-11, the Martello Castle opening, was 0.154 ft and occurred on 11 November. The maximum water-surface differential observed at TG-12 and TG-13, the Shell Beach opening, was 0.93 ft occurring on 27 November. It should be noted here that the extreme water-surface differential that occurred at the Shell Beach location was caused by the effects of a very strong cold front advancing in a southward direction. Associated with this advancing front were very strong winds, which created very high waves in the southern end of Lake Borgne, particularly at the Shell Beach area.

plots of the water surface at the Martello Castle and Shell Beach openings are shown in Plates 4-9. The period of time plotted for each water level recorder represents the length of time required to complete each survey and includes a 12-hr period immediately preceding and following the survey. In every case, the measured flow velocity through the openings into Lake Borgne was in the direction of the measured water level gradient.

19. The water level recorder at location TG-7 was used as a reference station for comparison with the data from the other stations to estimate tidal phase and range differences between location TG-4 at Point Chicot and the upper reaches of Lake Borgne. This comparison illustrated that the maximum tidal range observed was 2.5 ft at location TG-4 and 2.4 ft at location TG-7 on 11 November 1988. The comparison also reflected that the phase differences in these tide ranges differed as much as 1-1/2 hr between locations TG-7 and TG-4. The plots of these water surface elevations are shown in Plates 1-3.

Velocity Data

20. Tables 10-42 and Plates 10-42 are the time series listings and plots, respectively, of the velocity data obtained at the three ranges as described in paragraph 12. At each station the current speed and direction were measured at three depths: near bottom, middlepth, and near surface. The maximum velocity observed at the lower range, range 1, in the channel of the MRGO was 3.6 fps occurring on 26 October 1988. The maximum velocity observed in the MRGO channel at range 2 was 2.7 fps occurring on 27 November 1988. The maximum velocity in the channel at range 3 was 2.9 fps occurring on 27 November. In the Martello Castle opening into the MRGO (sta 3-A and 3-B), currents generally flowed out of Lake Borgne, indicated by the ebb direction, during this period. The maximum currents observed in the center of the opening (sta 3-B) were near 3.2 fps on 27 November. In the Shell Beach opening into the MRGO (sta 2-A), the maximum velocity was found to be 3.6 fps occurring on 27 November. The flows during this period were predominantly out of Lake Borgne into the MRGO as indicated by the ebb direction. Within the main MRGO channel between these two openings, at sta 3-C, the maximum current speed was found to be 2.9 fps during the November 27 survey. At the lower end of the MRGO, range 1, the maximum currents measured were predominantly in the channel. The maximum velocity observed was 3.6 fps at sta 1-B during the

October 26 survey. These maximum velocities were found to occur mainly in the center of the channel and near the middepth.

21. The majority of the flows within the channel of the MRGO, particularly at ranges 2 and 3, were in a southeast direction. The two major entrances into Lake Borgne (the Martello Castle and Shell Beach openings) and other openings along the MRGO contributed to the flow in the channel. As a result, there were no large variations, other than tidal, in the magnitude and direction of the currents. Eddies and unusual flow circulation patterns created by change in the tidal periods were not always observed to be present in the velocity data. These are highly dynamic processes and represent changes that are created by tidal as well as climatic factors. Several of the surveys illustrated that the changes within the system were not always detectable using hourly observation periods. However, the data set does provide sufficiently detailed information for model verification.

Salinity Data

22. The results of the sample analysis for salinities at each sample station during each survey are listed in Tables 43-51. Plates 43-47 are the plots of the salinities for representative stations within the MRGO and at each of the openings into Lake Borgne. The salinities for the samples obtained from the automatic water samples are listed in Tables 52-56 and plotted in Plate 48. The salinity values at the sampling locations within the MRGO indicate that ranges 2 and 3 represent a partly to well-mixed flow system while range 1 is generally well mixed. At sta 2-A, 3-A, and 3-B, the changes in the observed salinity values indicated the change in direction of the measured flow through the openings. Increases in salinity values at these stations indicated flow from the MRGO into Lake Borgne. Low or decreasing values of salinity at these stations indicated flow from Lake Borgne into the MRGO.

Total Suspended Material Data

23. The results of the sample analysis for total suspended material at each sample station monitored during each survey are shown in Tables 57-65. Plates 49-53 are plots of the suspended sediment concentrations for representative stations within the MRGO channel and at each of the openings into

Lake Borgne. The majority of the samples containing the greatest concentrations of suspended sediment were generally found near the bottom of the channel. The suspended sediment concentrations within the openings tended to be slightly different from those observed in the channel, especially when the flow within the opening was predominantly from Lake Borgne into the MRGO. If the flow was from Lake Borgne into the MRGO, then the suspended sediment concentrations were dependent upon the surface conditions within the lake. If the water surface was relatively calm, then the sediment concentrations were generally low throughout the depth profile. If the water surface was rough, with a wind that prevailed toward the southern end of the lake, the suspended sediment concentrations were noticeably greater at the various depths sampled. This condition is illustrated well in Plate 50 during the 27 November survey period.

24. The results of the analyses of total suspended materials from the automatic water samplers are listed in Tables 66-70 and are also plotted in Plate 54. The concentrations were found to vary from 300 mg/ ℓ at the Martello Castle location (AWS-2) during the November 27 survey to a minimum of less than 10 mg/ ℓ during the October 26 survey.

LANDSAT Information

25. The time of the year that this study was performed was not conducive to weather patterns and conditions that create the proper atmospheric condition for accurate LANDSAT information and pictures. The advancing weather fronts and the scheduled overflights of the satellite were synchronous and produced unsuccessful overflight data collection efforts. The sample satellite image shown in Figure 8 was the least amount of cloud cover that was present during each of the survey periods. Attempts were made to establish a relationship between the satellite imagery and the analysis of the suspended sediment samples collected in the field. It was hoped that a comparison could be made of the methodology used in this study with that used in a similar study on the Yangtze River in China*. However, the correlation value could not be made from the satellite data because of the complications created by

^{*} Yie Xiusheng. 1987. "The Application of Satellite Pictures in the Analysis of Estuarine Processes of the Yangtze Estuary," The Journal of Sediment Research, Vol 4, pp 93-97.

Figure 8. LANDSAT composite photograph of MRGO survey area

the clouds and interference with the analysis. As a result, no ground truth verification of the satellite image with field sample concentrations at the various locations could be attempted.

PART IV: SUMMARY

- 26. The data presented herein were collected from the intensive survey and longer term sampling efforts within the MRGO study area. The following observations were made of the data:
 - <u>a</u>. There appears to be a slight decrease in the maximum range of water-surface elevation (0.12 ft) from the Chandeleur Sound location (TG-7) to the upper reaches of Lake Borgne (TG-4).
 - $\underline{\mathbf{b}}$. The maximum velocities observed during the surveys occurred at the strength of flood periods. The maximum observed velocity was 3.6 fps at sta 1-B on 26 October.
 - <u>c</u>. Suspended sediment concentrations within the MRGO channel were found to be generally greater near the bottom during the strength of flood periods. The suspended sediment concentrations within Lake Borgne were high (106 to 283 mg/l) during windy periods and low (5 to 63 mg/l) during calm periods.
 - <u>d</u>. Salinity values indicated that the lower portion of the MRGO could be described as being partly mixed to well mixed, while the upper portions could be described as being generally well mixed.
 - <u>e</u>. Correlation of suspended sediment data with satellite data was not successful due to cloud cover during the periods data were obtained.

Table 1
Water-Surface Elevation Fluctuations
TG-4 and TG-7, 25-26 October 1988

1900 0.4217 0.6532 0040 1910 0.4407 0.6682 0050 1920 0.4657 0.6962 0100 1930 0.4857 0.7012 0110 1940 0.5047 0.7222 0120	Elevati TG-4 October 1988 (Co 0.7187 0.6867 0.6687 0.6357	TG-7
25 October 1988 26 1900 0.4217 0.6532 0040 1910 0.4407 0.6682 0050 1920 0.4657 0.6962 0100 1930 0.4857 0.7012 0110 1940 0.5047 0.7222 0120	October 1988 (Co 0.7187 0.6867 0.6687 0.6357	0.5642 0.5452
1900 0.4217 0.6532 0040 1910 0.4407 0.6682 0050 1920 0.4657 0.6962 0100 1930 0.4857 0.7012 0110 1940 0.5047 0.7222 0120	0.7187 0.6867 0.6687 0.6357	0.5642
1910 0.4407 0.6682 1920 0.4657 0.6962 1930 0.4857 0.7012 1940 0.5047 0.7222	0.6867 0.6687 0.6357	0.5452
1920 0.4657 0.6962 0100 1930 0.4857 0.7012 0110 1940 0.5047 0.7222 0120	0.6687 0.6357	
1930 0.4857 0.7012 0110 1940 0.5047 0.7222 0120	0.6357	0.5032
1940 0.5047 0.7222 0110 0120		0.5052
0120	0 (107	0.4692
	0.6127	0.4352
1950 0.5197 0.7402 0130	0.5777	0.3962
2000 0.5557 0.7572 0140	0.5/17	0 2710
7010 0 3667 0 7977 1	0.5417	0.3712
2020 0.5667 0.7832 0150	0.5167	0.3292
2030 0.6027 0.8322 0200	0.4807	0.2572
2040 0.6207 0.8332 0220	0.4397	0.2102
	0.4097	0.1842
2050 0.6407 0.8312 0230	0.3667	0.1162
2100 0.6707 0.8522 0240	0.3377	0.0742
0.6967 0.8572 0.250	0.2967	-0.0008
2120 0.7187 0.8702 0230 0300	0.2507	-0.0478
2130 0.7477 0.8632 0310	0.2127	-0.1168
2140 0.7507 0.8782		
0.7677 0.8622 0.320	0.1767	-0.1528
2200 0 7747 0 8872 0330	0.1197	-0.2048
2210 0.7927 0.8712 0.340	0.0787	-0.2528
0350	0.0347	-0.3158
2220 0.8077 0.8652 0400	-0.0203	-0.3698
2230 0.8297 0.8582 0410	-0.0523	0 / 2 / 0
0.832/ 0.83/2 0.20	-0.0323	-0.4268
0.831/ 0.83/2		-0.4898
2300 0.8347 0.8182 0430 0440	-0.1443	-0.5568
2310 0.8417 0.7912 0450	-0.1873	-0.5978
	-0.2393	-0.6518
1 0500	-0.2883	-0.7038
1 0510	-0.3563	-0.7648
1 0520	-0.3853	-0.8198
2350 0.8057 0.7152 0520 0530	-0.4433	-0.8708
<u>26 October 1988</u> 0540	-0.4823	-0.9248
0000 0.7967 0.6952 0550	-0.5313	-0.9668
0010 0.7887 0.6772 0600	-0.5883	-1.0368
0020 0.7757 0.6422 0610	-0.6243	-1.0798
0030 0.7477 0.6202 0620	-0.6913	-1.1218

 $[\]star$ Mean water level reading used as a datum.

Table 1 (Continued)

	Water S			Water S	
Time	<u>Elevati</u>		Time	<u>Elevati</u>	
<u>CST</u>	TG-4_	TG~7	CST	<u>TG-4</u>	TG-7_
<u>26</u>	<u> October 1988 (Co</u>	ontinued)	26 October 1988 (Conti		ontinued)
0630	-0.7283	-1.1588	1310	-1.1773	-0.8388
0640	-0.7713	-1.1888	1320	-1.1483	-0.7848
0650	-0.8223	-1.2288	1330	-1.1083	-0.7458
0700	-0.8343	-1.2608	1340	-1.0653	-0.7098
0710	-0.8723	-1.2958	1350	-1.0343	-0.6638
0720	-0.9113	-1.3278	1400	-0.9863	-0.6308
0730	-0.9303	-1.3418	1410	-0.9353	-0.5898
0740	-0.9753	-1.3628	1420	-0.8903	-0.5518
0750	-1.0143	-1.3868	1430	-0.8513	-0.5078
0800	-1.0443	-1.3968	1440	-0.8173	-0.4698
0810	-1.0703	-1.4228	1450	-0.7613	-0.4408
0820	-1.1073	-1.4268	1500	-0.7203	-0.3908
0830	-1.1333	-1.4368	1510	-0.6843	-0.3308
0840	-1.1523	-1.4498	1520	-0.6373	-0.2868
0850	-1.1783	-1.4328	1530	-0.5883	-0.2538
0900	-1.1973	-1.4338	1540	-0.5493	-0.2188
0910	-1.2123	-1.4178	1550	-0.5213	-0.1878
0920	-1.2413	-1.4098	1600	-0.4923	-0.1498
0930	-1.3343	-1.4128	1610	-0.4563	-0.1438
0940	-1.3383	-1.3848	1620	-0.4213	-0.0988
0950	-1.3633	-1.3878	1630	-0.3873	-0.0848
1000	-1.3643	-1.3918	1640	-0.3473	-0.0398
1010	-1.3483	3738	1650	-0.3073	-0.0178
1020	-1.3413	-1.3588	1700	-0.2733	0.0072
1030	-1.3423	-1.3448	1710	-0.2263	0.0542
1040	-1.3413	-1.3188	1720	-0.1953	0.0502
1050	-1.3393	-1.2898	1730	-0.1653	0.0852
1100	-1.3343	-1.2658	1740	-0.1363	0.1272
1110	-1.3243	-1.2308	1750	-0.1073	0.1652
1120	-1.3333	-1.2148	1800	-0.0733	0.2072
1130	-1.3423	-1.1948	1810	-0.0473	0.2602
1140	-1.3513	-1.1768	1820	-0.0083	0.3032
1150	-1.3153	-1.1388	1830	0.0187	0.3692
1200	-1.3043	-1.1138	1840	0.0707	0.3782
1210	-1.2883	-1.0608	1850	0.1027	0.4302
1220	-1.2763	-1.0138	1900	0.1437	0.4602
1230	-1.2683	-0.9698	1910	0.1777	0.5052
1240	-1.2503	-0.9308	1920	0.2067	0.5192
1250	-1.2313	-0.8938	1930	0.2337	0.5602
1300	-1.2043	-0.8748	1940	0.2727	0.5952

Table 1 (Concluded)

Water Surface Time Elevation, ft		Time	Water Surface Elevation, ft		
CST	<u> </u>	TG-7	CST	TG-4	TG-7
	October 1988 (Con		· -	 ctober 1988 (Co	
		-			
1950	0.3007	0.6322	0020	1.0197	0.9402
2000	0.3337	0.6752	0030	1.0187	0.9082
2010	0.3657	0.7282	0040	1.0057	0.8902
2020	0.4107	0.7692	0050	0.9957	0.8512
2030	0.4597	0.7912	0100	0.9637	0.8132
2040	0.5077	0.8192	0110	0.9457	0.7862
2050	0.5507	0.8442	0120	0.9077	0.7502
2100	0.5777	0.8942	0130	0.8837	0.7052
2110	0.6197	0.9182	0140	0.8547	0.6722
2120	0.6487	0.9552	0150	0.8207	0.6302
2130	0.6877	0.9952	0200	0.7787	0.5842
2140	0.7187	1.0152	0210	0.7337	0.5592
2150	0.7457	1.0102	0220	0.6847	0.4882
2200	0.7967	1.0222	0230	0.6437	0.4352
2210	0.8227	1.0192	0240	0.6067	0.3592
2220	0.8497	1.0242	0250	0.5577	0.3042
2230	0.8747	1.0402	0300	0.5097	0.3052
2240	0.9137	1.0362	0310	0.4867	0.2262
2250	0.9287	1.0532	0320	0.4487	0.2042
2300	0.9587	1.0602	0330	0.4197	0.1772
2310	0.9577	1.0762	0340	0.3847	0.0942
2320	0.9827	1.0792	0350	0.3337	0.0742
2330	0.9857	1.0262	0400	0.2867	0.0142
2340	1.0007	1.0312	0410	0.2437	-0.0408
2350	0.9977	0.9942	0420	0.2127	-0.0968
	27 October 198	<u> 88</u>	0430	0.1777	-0.1468
0000			0440	0.1577	-0.1768
0000	1.0137	0.9802	0450	0.1207	-0.2398
0010	1.0207	0.9512	0500	0.0877	-0.2988

Table 2
Water-Surface Elevation Fluctuations
TG-4 and TG-7, 10-12 November 1988

m:	Water Surf		m:		Water Surface Elevation, ft*	
Time	Elevation,		Time			
CST	<u>TG-4</u>	TG-7_	<u>CST</u>	TG-4	<u>TG-7</u>	
	10 November 1988	<u>3</u>	11 N	ovember 1988 (C	<u>ontinued)</u>	
1900	-0.1308	0.1030	0040	0.4882	0.3660	
1910	-0.0988	0.1440	0050	0.4822	0.3260	
1920	-0.0668	0.1720	0100	0.4682	0.2980	
1930	-0.0398	0.2260	0110	0.4602	0.2980	
1940	0.0002	0.2520	0120	0.4272	0.2400	
1950	0.0352	0.2920	0130	0.3702	0.2010	
2000	0.0762	0.3010	0130	0.3702	0.2010	
2010	0.1042	0.3450	0140	0.3642	0.1690	
2010	0.1372	0.3650	0150	0.3282	0.1060	
2020	0.1372	0.3030	0200	0.2682	0.1290	
2030	0.1682	0.4040	0210	0.2272	0.0720	
2040	0.2092	0.4250	0220	0.1832	0.0450	
2050	0.2382	0.4360	0020	0.1670	0.0100	
2100	0.2882	0.4580	0230	0.1642	0.0180	
2110	0.3122	0.4830	0240	0.1232	0.0010	
2120	0.3322	0.4870	0250	0.1032	-0.0250	
			0300	0.0762	-0.0930	
2130	0.3642	0.4990	0310	0.0512	-0.1760	
2140	0.3872	0.5060	0320	0.0102	-0.2250	
2150	0.4162	0.5020	0330	-0.0198	-0.3030	
2200	0.4462	0.5520	0340	-0.0518	-0.3330	
2210	0.4722	0.5260	0350	-0.0948	-0.3730	
2220	0.4962	0.5420	0400	-0.1118	-0.4030	
2230	0.5272	0.5510				
2240	0.5472	0.5540	0410	-0.1358	-0.4620	
2250	0.5562	0.5370	0420	-0.1768	-0.5000	
2300	0.5822	0.5480	0430	-0.2378	-0.5360	
2300	0.3822	0.5400	0440	-0.2758	-0.5790	
2310	0.5832	0.5220	0450	-0.2928	-0.6450	
2320	0.5842	0.4980	0500	-0.3328	-0.6880	
2330	0.5782	0.4920	0510	-0.3328	-0.7360	
2340	0.5822	0.4700				
2350	0.5812	0.4360	0520	-0.4318	-0.7870	
	11 N 1000	,	0530	-0.4518	-0.8110	
	<u>11 November 1988</u>	_	0540	-0.4728	-0.8600	
0000	0.5642	0.4040	0550	-0.5298	-0.8880	
0010	0.5412	0.3960	0600	-0.5818	-0.9160	
0020	0.5392	0.3970	0610	-0.6278	-0.9750	
0030	0.5232	0.3660	0620	-0.6718	-1.0090	

 $[\]star$ Mean water level reading used as datum.

Table 2 (Continued)

Time	Water S Elevati		Time	Water Su Elevation	
CST	Elevaci	TG-7	CST	TG-4	TG-7
	November 1988 (C			November 1988 (Co	
0630	-0.7098	-1.0240	1310	-0.9568	-0.7740
0640	-0.7298	-1.0540	1320	-0.9028	-0.7330
0650	-0.7588	-1.0600	1330	-0.8808	-0.6840
0700	-0.8048	-1.0880	1340	-0.8488	-0.6740
0710	-0.8538	-1.1220	1350	-0.8208	-0.6190
0720	-0.8968	-1.1430	1400	-0.7838	-0.5780
0730	-0.9238	-1.1660	1410	-0.7678	-0.5360
0740	-0.9558	-1.1710	1420	-0.7408	-0.5150
0750	-0.9948	-1.1870	1430	-0.6978	-0.4910
0800	-1.0128	-1.2230	1440	-0.6628	-0.4420
0810	-1.0328	-1.2340	1450	-0.6148	-0.3990
0820	-1.0158	-1.2090	1500	-0.5798	-0.3570
0830	-1.0448	-1.2280	1510	-0.5468	-0.3230
0840	-1.0498	-1.2320	1520	-0.5038	-0.2860
0850	-1.0988	-1.2210	1530	-0.4858	-0.2540
0900	-1.1198	-1.2510	1540	-0.4618	-0.2080
0910	-1.1108	-1.2320	1550	-0.4458	-0.1800
0920	-1.1418	-1.2410	1600	-0.4178	-0.1400
0930	-1.1648	-1.2810	1610	-0.3898	-0.0970
0940	-1.1568	-1.2440	1620	-0.3638	-0.0720
0950	-1.1668	-1.2540	1630	-0.3288	-0.0240
1000	-1.1858	-1.2170	1640	-0.2968	0.0080
1010	-1.2018	-1.2150	1650	-0.2658	0.0330
1020	-1.1778	-1.2000	1700	-0.2358	0.0730
1030	-1.1738	-1.1500	1710	-0.2108	0.0990
1040	-1.1718	-1.1370	1720	-0.1768	0.1260
1050	-1.1788	-1.0950	1730	-0.1438	0.1670
1100	-1.1998	-1.0990	1740	-0.1148	0.1960
1110	-1.1878	-1.1140	1750	-0.0878	0.2190
1120	-1.1828	-1.1000	1800	-0.0498	0.2470
1130	-1.1828	-1.0880	1810	-0.0238	0.2850
1140	-1.1588	-1.0520	1820	0.0122	0.3100
1150	-1.1378	-1.0340	1830	0.0372	0.3490
1200	-1.1018	-0.9980	1840	0.0592	0.3740
1210	-1.0948	-0.9700	1850	0.0812	0.3980
1220	-1.0918	-0.9390	1900	0.1182	0.4460
1230	-1.0728	-0.9180	1910	0.1332	0.4790
1240	-1.0488	-0.8660	1920	0.1702	0.5130
1250	-1.0278	-0.8560	1930	0.1912	0.5350
1300	-0.9838	-0.7970	1940	0.2352	0.5710

Table 2 (Concluded)

Water Surface				Water Surface	
Time	Elevation		Time	<u>Elevatio</u>	
CST	<u>TG-4</u> _	TG-7	CST	TG-4	TG-7
<u>11 N</u>	lovember 1988 (Con	tinued)	12 No	vember 1988 (Co	ontinued)
1950	0.2472	0.6010	0020	1.0512	1.0380
2000	0.2742	0.6270	0030	1.0592	1.0350
2010	0.3052	0.6670	0040	1.0722	1.0230
2020	0.3412	0.6840	0050	1.0672	1.0090
2030	0.3872	0.7140	0100	1.0702	1.0090
2040	0.4392	0.7520	0110	1.0702	0.9840
2050	0.5092	0.7670	0120	1.0732	0.9580
2100	0.5442	0.8040	0130	1.0872	0.9210
2110	0.5822	0.8360	0140	1.0752	0.9070
2120	0.6102	0.8860	0150	1.0622	0.8800
2130	0.6312	0.9190	0200	1.0632	0.8380
2140	0.6642	0.9410	0210	1.0552	0.8050
2150	0.6982	0.9670	0220	1.0382	0.7820
2200	0.7222	1.0130	0230	1.0372	0.7350
2216	0.7512	1.0280	0240	1.0152	0.6710
2220	0.7822	1.0390	0250	0.9952	0.6280
2230	0.8312	1,0600	0300	0.9842	0.5880
2240	0.8442	1.0730	0310	0.9522	0.5470
2250	0.8672	1.0760	0320	0.9222	0.5200
2300	0.8952	1.0750	0330	0.8852	0.4590
2310	0.9172	1.0810	0340	0.8672	0.4060
2320	0.9462	1.0900	0350	0.8442	0.3750
2330	0.9652	1.0980	0400	0.8112	0.3280
2340	0.9812	1.1110	0410	0.7722	0.2950
2350	1.0002	1.0970	0420	0.7402	0.2390
	12 November 198	<u>8</u>	0430	0.6972	0.1910
0000	1.0232	1.0710	0440	0.6492	0.1350
0010	1.0342	1.0530	0450	0.5812	0.0840
	2.07.2		0500	0.5262	0.0120

Table 3
Water-Surface Elevation Fluctuations
TG-4 and TG-7, 26-28 November 1988

Water Surface				Water Surface	
Time	Elevation		Time	Elevation	
<u>CST</u>	TG-4	TG-7	<u>CST</u>	TG-4	<u>TG-7</u>
	26 November 198	38	27 No	ovember 1988 (C	ontinued)
1900	0.0821	0.1091	0040	1.1851	1.0011
1910	0.1041	0.1381	0050	1.1991	0.9741
1920	0.1291	0.1751	0100	1.2041	0.9741
1930	0.1601	0.1891	0110	1.2041	0.9691
1940	0.1821	0.2111	0110		0.9551
1950	0.2041	0.2491	0130	1.1951	
			0130	1.1961	0.9341
2000	0.2571	0.3151	0140	1.2001	0.9271
2010	0.2881	0.3441	0150	1.1921	0.8731
2020	0.3061	0.3861	0200	1.1801	0.8671
2030	0.3381	0.4351	0210	1.1711	0.8521
2040	0.3641	0.4541	0220	1.1591	0.7971
2050	0.4131	0.5051			
2100	0.4451	0.5261	0230	1.1401	0.8041
2110	0.4771	0.5501	0240	1.1311	0.7531
2120	0.5311	0.6111	0250	1.0961	0.7241
			0300	1.0651	0.7111
2130	0.5691	0.6291	0310	1.0151	0.6761
2140	0.6051	0.6761	0320	1.0071	0.6031
2150	0.6431	0.7041	0330	0.9901	0.5541
2200	0.6781	0.7621	0340	0.9531	0.5291
2210	0.7401	0.7851	0350	0.9101	0.4821
2220	0.7791	0.8581	0400	0.8771	0.4711
2230	0.8341	0.8791			
2240	0.8581	0.9201	0410	0.8441	0.4111
2250	0.9051	0.9531	0420	0.7991	0.3981
2300	0.9411	0.9661	0430	0.7701	0.3251
			0440	0.7361	0.2691
2310	0.9901	0.9941	0450	0.6811	0.2491
2320	0.9811	0.9901	0500	0.6441	0.1981
2330	1.0651	1.0431	0510	0.6001	0.1761
2340	1.1041	1.0041	0520	0.5461	0.1761
2350	1.1261	1.0391	0530	0.4941	0.1141
	27 November 198	<u>38</u>	0540	0.4551	-0.0029
0000	1.1351	1.0351	0550	0.4061	-0.0389
0010	1.1481	1.0401	0600	0.3401	-0.1049
0020	1.1661	1.0441	0610	0.3261	-0.1559
0030	1.1681	1.0251	0620	0.2691	-0.1959
0000	1.1001	1.0271	. 0020	0.2071	-0.1333

^{*} Mean water level reading used as a datum.

Table 3 (Continued)

	Water Su	rface	1	Water S	urface
Time	Elevation		Time	Elevati	on, ft
<u>CST</u>	TG-4	TG-7	<u>CST</u>	TG-4_	TG-7
	November 1988 (Co			ovember 1988 (C	
0630	0.2121	-0.2719	1300	-0.9999	-0.8669
0640	0.1561	-0.3169	1310	-0.9919	-0.8499
0650	0.1301	-0.3609	1320	-0.9769	-0.8639
0700	0.0821	-0.4169	1330	-0.9929	-0.9059
0710	0.0321	-0.4529	1340	-0.9739	-0.8969
0720	-0.0099	-0.5069	1350	-0.9839	-0.8309
0730	-0.0439	-0.5529	1400	-0.9879	-0.8119
0740	~0.0959	-0.6049	1410	-0.9879	-0.7849
0750	-0.1299	-0.6599	1420	-0.9949	-0.7709
0800	-0 1709	-0.7079	1430	-1.0109	-0.7499
0810	-0.2159	-0.7489	1440	-1.0019	-0.7519
0820	-0.2569	-0.7639	1450	-0.9999	-0.721
0830	-0.3019	-0.7929	1500	-1.0029	-0.6869
0840	-0.3509	-0.8389	1510	-1.0039	-0.6909
0850	-0.3839	-0.8789	1520	-0.9879	-0.6829
0900	-0.4249	-0.9029	1530	-0.9749	-0.6449
0910	-0.4669	-0.9149	1540	-0.9309	-0.6659
0920	-0.4899	-0.9329	1550	-0.9069	-0.6379
0930	-0.5279	-0.9599	1600	-0.8699	-0.6319
0940	-0.5669	-0.9669	1610	-0.8389	-0.6109
0950	-0.5959	-0.9909	1620	-0.8189	-0.6009
1000	-0.6039	-0.9839	1630	-0.7929	-0.5709
1010	-0.6779	-1.0079	1640	-0.8019	-0.5559
1020	-0.6829	-1.0169	1650	-0.7769	-0.5479
1030	-0.7329	-1.0439	1700	-0.7679	-0.5539
1040	-0.8209	-1.0369	1710	-0.7679	-0.5199
1050	-0.8789	-1.0559	1720	-0.7339	-0.5249
1100	-0.8919	-1.0199	1730	-0.6999	-0.4629
1110	-0.8829	-1.0159	1740	-0.6629	-0.4449
1120	-0.8849	-1.0159	1750	-0.6439	-0.3959
1130	-0.8009	-0.9719	1800	-0.6109	-0.3469
1140	-0.8629	-0.9979	1810	-0.5869	-0.2789
1150	-0.9079	-0.8759	1820	-0.5739	-0.2329
1200	-1.0529	-0.8999	1830	-0.5879	-0.2629
1210	-1.0989	-0.8929	1840	-0.5539	-0.1879
1220	-1.1089	-0.9039	1850	-0.5319	-0.2209
1230	-1.0819	-0.8899	1900	-0.5079	-0.1779
1240	-1.0889	-0.8879	1910	-0.5009	-0.1569
1250	-1.0409	-0.8889	1920	-0.4909	-0.1709

Table 3 (Concluded)

	Water Surfa			Water Su	
Time	Elevation,		Time	<u>Elevatio</u>	
CST	TG-4	<u>TG-7</u>	CST	TG-4	TG-7_
27	November 1988 (Conti	nued)	28 November 1988 (Continue		
1930	-0.4559	-0.1239	0010	0.2491	0.5201
1940	-0.3959	-0.0379	0020	0.2621	0.4931
1950	-0.3539	0.0051	0030	0.2871	0.4761
2000	-0.3599	0.0641	0040	0.2891	0.4831
2010	-0.3579	0.0611	0050	0.2881	0.4071
2020	-0.3469	0.1161	0100	0.2751	0.3801
2030	-0.3509	0.1351	0110	0.2831	0.3281
2040	-0.3199	0.2401	0120	0.2671	0.3141
2050	-0.2749	0.2481	0130	0.2571	0.3171
2100	-0.2229	0.3061	0140	0.2501	0.3101
2110	-0.1679	0.3521	0150	0.2351	0.2981
2120	-0.1489	0.3821	0200	0.2351	0.2821
2130	-0.1269	0.3991	0210	0.2201	0.2651
2140	-0.1039	0.4321	0220	0.1971	0.2311
2150	-0.0589	0.3931	0230	0.1521	0.1911
2200	-0.0319	0.4131	0240	0.1061	0.1551
2210	0.0011	0.4531	0250	0.0601	0.1161
2220	0.0191	0.5141	0300	0.0251	0.0521
2230	0.0601	0.5391	0310	0.0201	0.0241
2240	0.0871	0.5801	U320	-0.0119	0.0091
2250	0.1191	0.5761	0330	-0.0549	-0.0349
2300	0.1441	0.6031	0340	-0.0929	-0.0799
2310	0.1571	0.5411	0350	-0.1389	-0.1399
2320	0.1821	0.6061	0400	-0.1719	-0.1759
2330	0.1871	0.5811	0410	-0.1979	-0.2189
2340	0.2101	0.5831	0420	-0.2129	-0.2639
2350	0.2211	0.5991	0430	-0.2319	-0.3019
	28 November 1988		0440	-0.2779	-0.3229
0000	· · · · · · · · · · · · · · · · · · ·	0.5051	0450	-0.3149	-0.3429
0000	0.2391	0.5851	0500	-0.3459	-0.3639

Table 4
Water-Surface Elevation Fluctuations
TG-10 and TG-11, 25-27 November 1988

	Water Su	rface	1	Water Surface	
Time	Elevation, ft*		Time	Elevation, ft*	
<u>CST</u>	TG-10	TG-11	<u>CST</u>	TG-10	TG-11
<u>25 November 1988</u>			26 November 1988 (Continued)		
1900	0.1627	0.1920	0330	0.6247	0.4920
1915	0.1877	0.1950	0345	0.5407	0.4650
1930	0.1947	0.2140	0400	0.4347	0.5060
1945	0.2197	0.2300	0415	0.4447	0.4310
2000	0.2287	0.2390	0430	0.3567	0.3250
2015	0.2437	0.2510	0445	0.3477	0.2820
2030	0.2467	0.2660			
2045	0.2587	0.2680	0500	0.2847	0.2440
2100	0.2837	0.2870	0515	0.2157	0.1640
2115	0.2987	0.3020	0530	0.1947	0.1390
			0545	0.0737	0.0210
2130	0.3037	0.3230	0600	0.0177	-0.0150
2145	0.3237	0.3330	0615	-0.0523	-0.0720
2200	0.3497	0.3540	0630	-0.0323	-0.1000
2215	0.3757	0.3760	0645	-0.1343	-0.2110
2230	0.3727	0.4010	0700	-0.1343	-0.2110
2245	0.3537	0,4270	0700	-0.2753	-0.2620
2300	0.4197	0.4540	0/13	-0.2733	-0.2020
2315	0.4397	0.4700	0730	-0.3513	-0.3510
2313	0.4397	0.4810	0745	-0.3943	-0.3850
2345	0.4867	0.5040	0800	-0.4383	-0.4590
2343	0.4007	0.3040	0815	-0.4863	-0.5080
<u>26 November 1988</u>			0830	-0.5433	-0.5550
0000	0.5167	0.5330	0845	-0.5753	-0.6020
0015	0.5477	0.5560	0900	-0.6253	-0.6450
0030	0.5817	0.5860	0915	-0.6723	-0.6640
0045	0.5967	0.6120	0930	-0.7043	-0.7190
0100	0.6047	0.6080	0945	-0.7533	-0.7430
0115	0.6187	0.6240	1000	-0.7993	-0.7790
0130	0.6317	0.6340	1015	-0.8353	-0.8180
0145	0.6397	0.6310	1030	-0.8713	-0.8560
0200	0.6427	0.6310	1045	-0.9093	-0.8940
0215	0.6317	0.6360	1100	-0.9363	-0.9220
0230	0.6227	0.6240	1115	-0.9633	-0.9620
0245	0.6347	0.5860	1130	-0.9953	-0.9880
0300	0.6157	0.5590	1145	-1.0283	-1.0120
0315	0.5947	0.5300	1200	-1.0343	-1.0360
			•		

 $[\]ensuremath{\star}$ Mean water level reading used as a datum.

Table 4 (Concluded)

Water Surface		T	Water Surface		
Time	Elevation, ft		Time	Elevation, ft	
<u>CST</u>	TG-10	<u>TG-11</u>	CST	<u>TG-10</u>	<u>TG-11</u>
26 November 1988 (Continued)		26 November 1988 (Continued)			
1215	-1.0603	-1.0510	2100	0.0847	0.1160
1230	-1.0543	-1.0560	2115	0.1307	0.1610
1245	-1.0553	-1.0370	2130	0.1517	0.1950
1300	-1.0623	-1.0590	2145	0.2117	0.2110
1315	-1.0643	-1.0540	2200	0.2397	0.2500
1330	-1.0513	-1.0510	2215	0.2697	0.2920
1345	-1.0383	-1.0260	2230	0.2837	0.3330
1400	-1.0353	-1.0180	2245	0.3307	0.3520
1415	-1.0173	-1.0050	2300	0.3667	0.4020
1430	-1.0013	-1.0170	2315	0.4027	0.4430
1445	-1.0283	-1.0170	2330	0.4477	0.4890
1500	-0.9833	-1.0090	2345	0.4787	0.5170
1515	-0.9783	-0.9790		27 Nassambass 10	000
1530	-0.9573	-0.9680		27 November 19	<u> 888</u>
1545	-0.9243	-0.9320	0000	0.5177	0.5440
1600	-0.8763	-0.8970	0015	0.5497	0.5640
1615	-0.8543	-0.8710	0030	0.5867	0.6090
1630	-0.8083	-0.8220	0045	0.6187	0.6340
1645	-0.7533	-0.7700	0100	0.6567	0.6790
1700	-0.6923	-0.7140	0115	0.6837	0.7180
1715	-0.6143	-0.6300	0130	0.7167	0.7420
1730	-0.5393	-0.4970	0145	0.7327	0.7780
1745	-0.4343	-0.4980	0200	0.7577	0.8050
1800	-0.2623	-0.3590	0215	0.7967	0.8410
1815	-0.2203	-0.2940	0230	0.8197	0.8650
1830	-0.2153	-0.1660	0245	0.8437	0.8760
1845	-0.2123	-0.14.0	0300	0.8647	0.8980
1900	-0.1443	-0.1590	0315	0.8687	0.8820
1915	-0.1433	-0.1800	0330	0.8567	0.8720
1930	-0.1483	-0.1850	0345	0.8547	0.8530
10/.5	0 1053		0400	0.8267	0.8270
1945	-0.1253	-0.1310	0415	0.7227	0.7060
2000	-0.0923	-0.0950	0430	0.8487	0.7420
2015 2030	-0.0503 -0.0353	-0.0690 -0.0040	0445	0.7557	0.6840
2045	0.0017	0.0410	0500	0.6877	0.6660

Table 5
Water-Surface Elevation Fluctuations
TG-10 and TG-11, 10-12 November 1988

	Water Su	ırface		Water Su	
Time	Elevation	on, ft*	Time	Elevation	
<u>CST</u>	<u>TG-10</u>	TG-11	CST	_TG-10_	_TG-11
	10 November 19	988	11 No	ovember 1988 (Co	ontinued)
1900	-0.5365	-0.5458	0040	0.3035	0.3592
1910	-0.4875	-0.5118	0050	0.3215	0.3622
1920	-0.4625	-0.4788	0100	0.3255	0.3882
1930	-0.4395	-0.4638	0110	0.3525	0.3882
1940	-0.4105	-0.4278	0120	0.3685	0.4082
1950	-0.3865	-0.3958	0130	0.3875	0.4462
2000	-0.3595	-0.3658	Í		
2010	-0.3505	-0.3558	0140	0.4165	0.4772
2020	-0.3435	-0.3408	0150	0.4475	0.4992
2030	-0.3105	-0.2998	0200	0.4645	0.5042
		-0.2770	0210	0.4785	0.5352
2040	-0.2805	-0.2858	0220	0.4815	0.5492
2050	-0.2445	-0.2638	0230	0.4805	0.5552
2100	-0.2405	-0.2428	0240	0.5085	0.5792
2110	-0.^ .	-0.2278	0250	0.5085	0.6022
2120	5ر ` ۲. ۱−	-0.1988	0300	0.5445	0.6212
2130	-0.1675	-0.1818	0310	0.5625	0.6362
2140	-0.1375	-0.1618	0310	0.3023	0.0302
2140			0320	0.5595	0.6362
	-0.1345	-0.1348	0330	0.5555	0.6312
2200	-0.1115	-0.1388	0340	0.5575	0.6052
2210	-0.0155	-0.0718	0350	0.5385	0.5992
2220	-0.1255	-0.0448	0400	0.5255	0.5862
2230	-0.0565	-0.0788	0410	0.5235	0.5832
2240	0.0755	0.0362	0410		
2250	0.0385	-0.0458	0420	0.5075	0.5592
2300	0.0665	0.0412		0.4665	0.5232
0210	0.0575	0 0770	0440	0.4555	0.5132
2310	0.0565	0.0772	0450	0.4485	0.5092
2320	0.0665	0.0782	0500	0.4365	0.4662
2330	0.1015	0.1252	0510	0.4125	0.4362
2340	0.1325	0.1402	0520	0.3775	0.3982
2350	0.1495	0.1742	0530	0.3585	0.3652
	11 November 19	988	0540	0.3255	0.3472
0000	0.1795	0.1792	0550	0.2875	0.2992
0010	0.2085	0.2342	0600	0.2605	0.2602
0020	0.2455	0.2712	0610	0.2085	0.2272
0030	0.2685	0.3062	0620	0.1955	0.1832
	5.2005	0.000	,		

 $[\]star$ Mean water level reading used as a datum.

Table 5 (Continued)

	Water S		1	Water S	
Time	Elevation	TG-11	Time CST	Elevatio TG-10_	TG-11
CST	<u>TG-10</u>				
<u>11</u>	November 1988 (Co	ontinued)	11 N	ovember 1988 (Co	ontinued)
0630	0.1495	0.1542	1300	-0.9065	-0.9398
0640	0.0955	0.1182	1310	-0.9105	-0.9488
0650	0.0795	0.0972	1320	-0.9135	-0.9518
0700	0.0245	0.0582	1330	-0.8945	-0.9438
0710	-0.0085	0.0102	1340	-0.8915	-0.9298
0720	-0.0395	-0.0178	1350	-0.8895	-0.9208
0730	-0.0715	-0.0448	1400	-0.8745	-0.9108
0740	-0.1205	-0.0848	1410	-0.8765	-0.8848
0750	-0.1445	-0.1268	1420	-0.8535	-0.8848
0800	-0.1885	-0.1728	1430	-0.8585	-0.8848
0810	-0.2235	-0.2178	1440	-0.8455	-0.8838
0820	-0.2675	-0.2668	1450	-0.8325	-0.8608
0830	-0.3205	-0.3168	1500	-0.8175	-0.8458
0840	-0.3505	-0.3458	1510	-0.7915	-0.8308
0850	-0.3755	-0.3658	1520	-0.7695	-0.7928
0900	-0.4015	-0.3918	1530	-0.7495	-0.7758
0910	-0.4365	-0.4368	1540	-0.7305	-0.7548
0920	-0.4695	-0.4658	1550	-0.7035	-0.7328
0930	-0.4955	-0.5018	1600	-0.6745	-0.6948
0940	-0.5515	-0.5368	1610	-0.6525	-0.6678
0950	-0.5725	-0.5668	1620	-0.6255	-0.6298
1000	-0.5865	-0.5948	1630	-0.5935	-0.6098
1010	-0.6195	-0.6218	1640	-0.5635	-0.5788
1020	-0.6445	-0.6538	1650	-0.5345	-0.5448
1030	-0.6555	-0.6708	1700	-0.4905	-0.4998
1040	-0.6755	-0.6918	1710	-0.4505	-0.4708
1050	-0.6905	-0.7188	1720	-0.4225	-0.4258
1100	-0.7075	-0.7408	1730	-0.3915	-0.3968
1110	-0.7235	-0.7618	1740	-0.3615	-0.3608
1120	-0.7535	-0.7938	1750	-0.3475	-0.3338
1130	-0.7805	-0.8218	1800	-0.3155	-0.3148
1140	-0.7945	-0.8228	1810	-0.2875	-0.2968
1150	-0.8115	-0.8538	1820	-0.2745	-0.2668
1200	-0.8385	-0.8698	1830	-0.2515	-0.2258
1210	-0.8565	-0.8968	1840	-0.2145	-0.2118
1220	-0.8645	-0.9158	1850	-0.1915	-0.1848
1230	-0.8705	-0.8968	1900	-0.2105	-0.1678
1240	-0.8775	-0.9228	1910	-0.1765	-0.1618
1250	-0.8925	-0.9208	1920	-0.1565	-0.1398

Table 5 (Concluded)

Time	Water Surface Time Elevation, ft		Time	Water Surface Elevation, ft	
CST	TG-10	TG-11	CST	TG-10	
11	November 1988 (Con	tinued)	12 N	ovember 1988 (Co	ontinued)
1930	-0.1385	-0.1038	0010	0.5805	0.5912
1940	-0.1385	-0.0858	0020	0.5985	0.6122
1950	-0.0785	-0.0708	0030	0.6035	0.6102
2000	-0.0485	-0.0568	0040	0.6425	0.6382
2010	-0.0385	-0.0348	0050	0.6565	0.6542
2020	0.0015	-0.0108	0100	0.6775	0.6662
2030	0.0085	0.0102	0110	0.6985	0.6842
2040	0.0375	0.0422	0120	0.7185	0.7042
2050	0.0625	0.0482	0130	0.7375	0.7332
2100	0.0805	0.0872	0140	0.7605	0.7592
2110	0.1115	0.0972	0150	0.7795	0.7792
2120	0.1285	0.1222	0200	0.8105	0.8202
2130	0.1395	0.1242	0210	0.8365	0.8362
2140	0.1605	0.1402	0220	0.8535	0.8582
2150	0.1645	0.1472	0230	0.8675	0.8782
2200	0.1935	0.1772	0240	0.8965	0.8992
2210	0.2205	0.1902	0250	0.9095	0.9112
2220	0.2395	0.2072	0300	0.9385	0.9192
2230	0.2455	0.2222	0310	0.9285	0.9472
2240	0.2885	0.2662	0320	0.8995	0.9212
2250	0.3165	0.3152	0330	1.0255	0.9032
2300	0.3545	0.3652	0340	1.0195	0.9232
2310	0.3765	0.3762	0350	0.9645	0.9332
2320	0.4215	0.4322	0400	0.9815	0.9092
2330	0.4605	0.4612	0410	1.0025	0.9472
2340 2350	0.4865 0.5255 <u>12 November 198</u>		0420 0430 0440 0450	0.9105 0.9445 0.9625 0.9295	0.9092 0.8942 0.8922 0.8842
0000	0.5515	0.5602	0500 0510	0.9315 0.9055	0.8612 0.8632

Table 6
Water-Surface Elevation Fluctuations
TG-10 and TG-11, 26-28 November 1988

	Water S	urface	1	Water Si	urface
Time	<u>Elevati</u>	on, ft*	Time	Elevation	on, ft*
CST	TG-10	<u>TG-11</u>	CST	TG-10	TG-11
	26 November 1	988	27 No	ovember 1988 (Co	ontinued)
1900	-0.4774	-0.5548	0040	0.4486	0.4222
1910	-0.4554	-0.4968	0050	0.4906	0.4632
1920	-0.3824	-0.4698	0100	0.5176	0.5062
1930	-0.3744	-0.4048	0110	0.5516	0.5252
1940	-0.3364	-0.4028	0120	0.5826	0.5542
1950	-0.3134	-0.3788	0130	0.6076	0.6032
2000	-0.2714	-0.3788	0130	0.0076	0.0032
2010	-0.2714 -0.2494	-0.3338 -0.2728	0140	0.6396	0.6362
2010	-0.2084	-0.2728	0150	0.6696	0.6592
	-0.2084		0200	0.7016	0.6922
2030	-0.1924	-0.2048	0210	0.7326	0.7312
2040	-0.1564	-0.2148	0220	0.7626	0.7162
2050	-0.1354	-0.1618	0000	0.7/06	0.7/70
2100	-0.1074	-0.1368	0230	0.7486	0.7472
2110	-0.0764	-0.1448	0240	0.7776	0.7612
2120	-0.0574	-0.1118	0250	0.7886	0.7932
	0.0557		0300	0.8196	0.8122
2130	-0.0554	-0.0628	0310	0.8436	0.8512
2140	-0.0194	-0.0628	0320	0.8576	0.8632
2150	-0.0094	-0.0288	0330	0.8766	0.8662
2200	0.0026	0.0002	0340	0.8806	0.8822
2210	0.0646	0.0582	0350	0.9006	0.8912
2220	0.0886	0.0942	0400	0.9126	0.9062
2230	0.1146	0.1082	0/10	0.0126	0.0122
2240	0.1356	0.1262	0410	0.9136	0.9132
2250	0.1656	0.1642	0420	0.9276	0.9232
2300	0.1766	0.1512	0430	0.9316	0.9282
0210	0.1066		0440	0.9246	0.9192
2310	0.1866	0.1712	0450	0.9126	0.9012
2320	0.2216	0.1882	0500	0.9126	0.8872
2330	0.2486	0.2262	0510	0.9246	0.8712
2340	0.2606	0.2552	0520	0.8816	0.9302
2350	0.3086	0.2912	0530	0.9106	0.8132
	27 November 1	988	0540	0.8706	0.7672
0000	0.3406	0.3142	0550	0.7726	0.7692
0010	0.3596	0.3372	0600	0.7396	0.7722
0020	0.3896	0.3522	0610	0.7466	0.7202
0030	0.4126	0.3902	0620	0.7026	0.6632
	.,,		,		2

^{*} Mean water level reading used as a datum.

Table 6 (Continued)

Time.	Water SurfaceElevation, ft		T:	Water Surface Elevation, ft	
Time <u>CST</u>	Elevati	on, rt _TG-11_	Time <u>CST</u>	Elevati _TG-10_	on, It TG-11
		·		•	
<u>27 No</u>	ovember 1988 (C	ontinued)	27 N	ovember 1988 (C	<u>ontinued)</u>
0630	0.6646	0.6102	1300	-0.4744	-0.4158
0640	0.6246	0.5552	1310	-0.4524	-0.3888
0650	0.5736	0.5352	1320	-0.4194	-0.3468
0700	0.5156	0.4872	1340	-0.4644	-0.3328
0710	0.4776	0.4312	1350	-0.4584	-0.3378
0720	0.4266	0.3902	1400	-0.4694	-0.3658
0730	0.3756	0.3502	1410	-0.5124	-0.4158
0740	0.3566	0.3022	1420	-0.5264	-0.4188
0750	0.3216	0.2582	1430	-0.5234	-0.4268
0800	0.3366	0.2452	1440	-0.5114	-0.4298
0810	0.2786	-0.4968	1450	-0.5214	-0.4218
0820	0.0976	0.1592	1500	-0.5484	-0.4778
0830	0.0476	0.0682	1510	-0.5534	-0.4648
0840	0.0596	-0.0128	1520	-0.5634	-0.4878
0850	0.0386	-0.0588	1530	-0.5714	-0.4768
0900	-0.0454	-0.1338	1540	-0.5824	-0.4798
0910	-0.1394	-0.1718	1550	-0.5844	-0.4818
0920	-0.1894	-0.2118	1600	-0.5644	-0.4828
0930	-0.1994	-0.2748	1610	-0.5674	-0.4728
0940	-0.1964	-0.2168	1620	-C.5634	-0.4678
0950	-0.1534	-0.1908	1630	-0.5754	-0.4968
1000	-0.2364	- 0.1778	1640	-0.5854	-0.4918
1010	-0.0334	-0.1718	1650	-0.5514	-0.4428
1020	-0.2034	-0.1978	1700	-0.5384	-0.4408
1030	-0.2414	-0.2098	1710	-0.5614	-0.4798
1040	-0.2764	-0.3378	1720	-0.5504	-0.4568
1050	-0.3904	-0.4698	1730	-0.5394	-0.4648
1100	-0.4194	-0.4728	1740	-0.5734	-0.5398
1110	-0.4184	-0.3998	1750	-0.5984	-0.5738
1120	-0.3634	-0.3438	1800	-0.6124	-0.5948
1130	-0.3304	-0.3598	1810	-0.5994	-0.5588
1140	-0.3644	-0.3708	1820	-0.5764	-0.5648
1150	-0.3714	-0.3708	1830	-0.5704	-0.5588
1200	-0.4094	-0.3738	1840	-0.5624	-0.5638
1210	-0.4384	-0.3718	1850	-0.5724	-0.5508
1220	-0.4204	-0.3518	1900	-0.5634	-0.5548
1230	-0.3794	-0.3108	1910	-0.5534	-0.5328
1240	-0.5054	-0.6008	1920	-0.5304	-0.5208
1250	-0.5284	-0.3878	1930	-0 5224	-0.4798

Table 6 (Concluded)

	Water S			Water Su	
Time	Elevati		Time	Elevation	
CST	<u>TG-10</u>	_TG-11_	CST	_TG-10_	<u>TG-11</u>
<u>27 1</u>	November 1988 (C	ontinued)	28 No	vember 1988 (Co	ontinued)
1940	-0.5064	-0.4778	0020	-0.0034	0.0072
1950	-0.5054	-0.4698	0030	0.0296	0.0512
2000	-0.5004	-0.4658	0040	0.0776	0.1122
2010	-0.4694	-0.4598	0050	0.1076	0.1542
2020	-0.4664	-0.4538	0100	0.1276	0.1832
2030	-0.4304	-0.4268	0110	0.1226	0.2152
2040	-0.4194	-0.4128	0120	0.1786	0.2592
2050	-0.3804	-0.3938	0130	0.1836	0.2752
2100	-0.3774	-0.4018	0140	0.2266	0.3072
2110	-0.3574	-0.3978	0150	0.2286	0.2992
2120	-0.3454	-0.3838	0200	0.2466	0.3162
2130	-0.3454	-0.3788	0210	0.2636	0.2942
2140	-0.3454	-0.3808	0220	0.2346	0.2872
2150	-0.3264	-0.3438	0230	0.2466	0.2542
2200	-0.3144	-0.3188	0240	0.2446	0.2672
2210	-0.2724	-0.2728	0250	0.2506	0.2442
2220	-0.2264	-0.2318	0300	0.2316	0.2222
2230	-0.2224	-0.2248	0310	0.2266	0.2052
2240	-0.2064	-0.1948	0320	0.2166	0.2032
2250	-0.1744	-0.2048	0330	0.2036	0.1962
2300	-0.1694	-0.1838	0340	0.1966	0.1882
2310	-0.1674	-0.1568	0350	0.1976	0.1952
2320	-0.1514	-0.1618	0400	0.1896	0.1872
2330	-0.1264	-0.1348	0410	0.1736	0.1692
2340	-0.1074	-0.1108	0420	0.1576	0.1432
2350	-0.0774	-0.0978	0430	0.1376	0.1122
	28 November 1	<u>988</u>	0440 0450	0.1006 0.0926	0.0902 0.0462
0000	-0.0604	-0.0748	0500	0.0926	0.0462
0010	-0.0434	-0.0748	0510	0.0466	-0.0122

Table 7
Water-Surface Elevation Fluctuations
TG-12 and TG-13, 25-27 October 1988

Date	Time CST	TG-12 Water Surface* ft		Time CST	TG-13 Water Surface*
10/25/88	1900	0.2928	10/25/88	1900	0.1936
10/25/88	1910	0.2908	10/25/88	1915	0.2136
10/25/88	1920	0.2998	10/25/88	1930	0.2426
10/25/88	1930	0.3288	10/25/88	1945	0.2486
10/25/88	1940	0.3288	10/25/88	2000	0.2506
10/25/88	1950	0.3388	10/25/88	2015	0.2766
10/25/88	2000	0.3578	10/25/88	2030	0.2976
10/25/88	2010	0.3658	10/25/88	2045	0.3256
10/25/88	2020	0.3838	10/25/88	2100	0.3236
10/25/88	2030	0.3978	10/25/88	2115	0.3316
10/25/88	2040	0.4108	10/25/88	2130	0.3486
10/25/88	2050	0.4228	10/25/88	2145	0.3726
10/25/88	2100	0.4418	10/25/88	2200	0.3836
10/25/88	2110	0.4438	10/25/88	2215	0.4066
10/25/88	2120	0.4508	10/25/88	2230	0.4126
10/25/88	2130	0.4598	10/25/88	2245	0.4326
10/25/88	2140	0.4718	10/25/88	2300	0.4666
10/25/88	2150	0.4838	10/25/88	2315	0.4826
10/25/88	2200	0.4938	10/25/88	2330	0.5206
10/25/88	2210	0.5118	10/25/88	2345	0.5496
10/25/88	2220	0.5138	10/26/88	0000	0.5636
10/25/88	230	0.5278	10/26/88	0015	0.5846
10/25/88	2240	0.5138	10/26/88	0030	0.6126
10/25/88	2250	0.5498	10/26/88	0045	0.6356
10/25/88	2300	0.5588	10/26/88	0100	0.6266
10/25/88	2310	0.5708	10/26/88	0115	0.6576
10/25/88	2320	0.5738	10/26/88	0130	0.6496
10/25/88	2330	0.5828	10/26/88	0145	0.6456
10/25/88	2340	0.5948	10/26/88	0200	0.6456
10/25/88	2350	0.6098	10/26/88	0215	0.6196
10/26/88	0000	0.6108	10/26/88	0230	0.6156
10/26/88	0010	0.6198	10/26/88	0245	0.5786
10/26/88	0020	0.6298	10/26/88	0300	0.5686
10/26/88	0030	0.6308	10/26/88	0315	0.5246
10/26/88	0040	0.6368	10/26/88	0330	0.5146

 $[\]star$ Mean water level reading used as a datum.

Table 7 (Continued)

		TG-12 Water			TG-13 Water
Date	Time <u>CST</u>	Surface ft	Date	Time <u>CST</u>	Surface <u>ft</u>
10/26/88	0050	0.6468	10/26/88	0345	0.4776
10/26/88	0100	0.6478	10/26/88	0400	0.4216
10/26/88	0110	0.6458	10/26/88	0415	0.3596
10/26/88	0120	0.6508	10/26/88	0430	0.3076
10/26/88	0130	0.6488	10/26/88	0445	0.2446
10/26/88	0140	0.6408	10/26/88	0500	0.1846
10/26/88	0150	0.5858	10/26/88	0515	0.1446
10/26/88	0200	0.4998	10/26/88	0530	0.0786
10/26/88	0210	0.5858	10/26/88	0545	0.0006
10/26/88	0220	0.6008	10/26/88	0600	-0.0534
10/26/88	0230	0.5928	10/26/88	0615	-0.1254
10/26/88	0240	0.5408	10/26/88	0630	-0.1974
10/26/88	0250	0.5348	10/26/88	0645	-0.2704
10/26/88	0300	0.5348	10/26/88	0700	-0.3104
10/26/88	0310	0.4968	10/26/88	0715	-0.3514
10/26/88	0320	0.5018	10/26/88	0730	-0.3944
10/26/88	0330	0.4798	10/26/88	0745	-0.4714
10/26/88	0340	0.4208	10/26/88	0800	-0.5124
10/26/88	0350	0.4148	10/26/88	0815	-0.5614
10/26/88	0400	0.3968	10/26/88	0830	-0.6054
10/26/88	0410	0.3248	15/26/88	0845	-0.6594
10/26/88	0420	0.2918	10/26/88	0900	-0.7104
10/26/88	0430	0.2338	10/26/88	0915	-0.7464
10/26/88	0440	0.2088	10/26/88	0930	-0.7804
10/26/88	0450	0.1658	10/26/88	0945	-0.7964
10/26/88	0500	0.1258	10/26/88	1000	-0.8124
10/26/88	0510	0.0758	10/26/88	1015	-0.8304
10/26/88	0520	0.0278	10/26/88	1030	-0.8544
10/26/88	0530	-0.0212	10/26/88	1045	-0.8654
10/26/88	0540	-0.0522	10/26/88	1100	-0.8814
10/26/88	0550	-0.1002	10/26/88	1115	-0.9124
10/26/88	0600	-0.1522	10/26/88	1130	-0.9424
10/26/88	0610	-0.1972	10/26/88	1145	-0.9644
10/26/88	0620	-0.2492	10/26/88	1200	-0.9844
10/26/88	0630	-0.3162	10/26/88	1215	-1.0004
10/26/88	0640	-0.3842	10/26/88	1230	-0.9844
10/26/88	0650	-0.4172	10/26/88	1245	-1.0114
10/26/88	0700	-0.4282	10/26/88	1300	-1.0094
10/26/88	0710	-0.4862	10/26/88	1315	-0.9954
10/26/88	0720	-0.5572	10/26/88	1330	-0.9894

Table 7 (Continued)

		TG-12 Water		<u> </u>	TG-13 Water
Date	Time <u>CST</u>	Surface <u>ft</u>	<u>Date</u>	Time <u>CST</u>	Surface <u>ft</u>
10/26/88	0730	-0.5982	10/26/88	1345	-0.9964
10/26/88	0740	-0.6402	10/26/88	1400	-1.0034
10/26/88	0750	-0.7142	10/26/88	1415	-0.9844
10/26/88	0800	-0.7252	10/26/88	1430	-1.0014
10/26/88	0810	-0.7772	10/26/88	1445	-1.0094
10/26/88	0820	-0.8152	10/26/88	1500	-1.0204
10/26/88	0830	-0.8642	10/26/88	1515	-1.0204
10/26/88	0840	-0.9112	10/26/88	1530	-1.0104
10/26/88	0850	-0.9112	10/26/88	1545	-0.9854
10/26/88	0900	-0.9532	10/26/88	1600	-0.9194
10/26/88	0910	-0.9812	10/26/88	1615	-0.8504
10/26/88	0920	-1.0052	10/26/88	1630	-0.7804
10/26/88	0930	-1.0312	10/26/88	1645	-0.7004
10/26/88	0940	-1.0852	10/26/88	1700	-0.7844
10/26/88	0950	-1.0612	10/26/88	1715	-0.6194
10/26/88	1000	-1.0802	10/26/88	1730	-0.5894
10/26/88	1010	-1.1342	10/26/88	1745	-0.6034
10/26/88	1020	-1.1252	10/26/88	1800	-0.5884
10/26/88	1030	-1.1502	10/26/88	1815	-0.4754
10/26/88	1040	-1.1852	10/26/88	1830	-0.3804
10/26/88	1050	-1.1922	10/26/88	1845	-0.3844
10/26/88	1100	-1.1822	10/26/88	1900	-0.2224
10/26/88	1110	-1.2302	10/26/88	1915	-0.1474
10/26/88	1120	-1.2132	10/26/88	1930	-0.1334
10/26/88	1130	-1.2382	10/26/88	1945	-0.0414
10/26/88	1140	-1.2222	10/26/88	2000	0.0376
10/26/88	1150	-1.2442	10/26/88	2015	0.0106
10/26/88	1200	-1.2382	10/26/88	2030	0.0226
10/26/88	1210	-1.2552	10/26/88	2045	0.0666
10/26/88	1220	-1.2292	10/26/88	2100	0.0856
10/26/88	1230	-1.2362	10/26/88	2115	0.1176
10/26/88	1240	-1.2212	10/26/88	2130	0.1946
10/26/88	1250	-1.2072	10/26/88	2145	0.2646
10/26/88	1300	-1.2102	10/26/88	2200	0.3096
10/26/88	1310	-1.1982	10/26/88	2215	0.3856
10/26/88	1320	-1.1702	10/26/88	2230	0.4316
10/26/88	1330	-1.1512	10/26/88	2245	0.4646
10/26/88	1340	-1.1282	10/26/88	2300	0.5016
10/26/88	1350	-1.1042	10/26/88	2315	0.5166
10/26/88	1400	-1.0902	10/26/88	2330	0.5276

Table 7 (Continued)

		TG-12 Water			TG-13 Water
Date	Time <u>CST</u>	Surface <u>ft</u>	Date	Time <u>CST</u>	Surface <u>ft</u>
10/26/88	1410	-1.0372	10/26/88	2345	0.5496
10/26/88	1420	-0.9812	10/27/88	0000	0.5886
10/26/88	1430	-0.9582	10/27/88	0015	0.6186
10/26/88	1440	-0.9282	10/27/88	0030	0.6666
10/26/88	1450	-0.8982	10/27/88	0645	0.6956
10/26/88	1500	-0.8812	10/27/88	0100	0.7296
10/26/88	1510	-0.8492	10/27/88	0115	0.7786
10/26/88	1520	-0.8362	10/27/88	0130	0.8016
10/26/88	1530	-1.0212	10/27/88	0145	0.8076
10/26/88	1540	-0.7482	10/27/88	0200	0.8296
10/26/88	1550	-0.7252	10/27/88	0215	0.8586
10/26/88	1600	-0.6812	10/27/88	0230	0.8776
10/26/88	1610	-0.6422	10/27/88	0245	0.8846
10/26/88	1620	-0.6042	10/27/88	0300	0.8836
10/26/88	1630	-0.5562	10/27/88	0315	0.8576
10/26/88	1640	-0.5132	10/27/88	0330	0.8396
10/26/88	1650	- 0.5072	10/27/88	0345	0.8006
10/26/88	1700	-0.3822	10/27/88	0400	0.7776
10/26/88	1710	-0.5372	10/27/88	0415	0.7516
10/26/88	1720	-0.3222	10/27/88	0430	0.6946
10/26/88	1730	-0.4212	10/27/88	0445	0.6526
10/26/88	1740	-0.3522	10/27/88	0500	0.6166
10/26/88	1750	-0.3152			
10/26/88	1800	-0.2932	End of data	for TG-13	
10/26/88	1810	-0.2502			
10/26/88	1820	-0.2012			
10/26/88	1830	-0.1332			
10/26/88	1840	-0.1122			
10/26/88	1850	-0.0272			
10/26/88	1900	-0.0232			
10/26/88	1910	0.0338			
10/26/88	1920	0.0908			
10/26/88	1930	0.1098			
10/26/88	1940	0.1348			
10/26/88	1950	0.1728			
10/26/88	2000	0.1818			
10/26/88	2010	0.2128			
10/26/88	2020	0.2208			
10/26/88	2030	0.2468			
10/26/88	2040	0.2698			

Table 7 (Continued)

_	Time	TG-12 Water Surface		Time	TG-13 Water Surface
<u>Date</u>	<u>CST</u>	ft	<u>Date</u>	<u>CST</u>	<u> ft </u>
10/26/88	2050	0.2978			
10/26/88	2100	0.3098			
10/26/88	2110	0.3348			
10/26/88	2120	0.3478			
10/26/88	2130	0.3788			
10/26/88	2140	0.3938			
10/26/88	2150	0.4228			
10/26/88	2200	0.4388			
10/26/88	2210	0.4698			
10/26/88	2220	0.4768			
10/26/88	2230	0.4968			
10/26/88	2240	0.5168			
10/26/88	2250	0.5368			
10/26/88	2300	0.5588			
10/26/88	2310	0.5818			
10/26/88	2320	0.6068			
10/26/88	2330	0.6128			
10/26/88	2340	0.6378			
10/26/88	2350	0.6518			
10/27/88	0000	0.6608			
10/27/88	0010	0.6808			
10/27/88	0020	0.6978			
10/27/88	0030	0.7058			
10/27/88	0040	0.7168			
10/27/88	0050	0.7318			
10/27/88	0100	0.7538			
10/27/88	0110	0.7628			
10/27/88	0120	0.7808			
10/27/88	0130	0.7908			
10/27/88	0140	0.7888			
10/27/88	0150	0.8018			
10/27/88	0200	0.8058			
10/27/88	0210	0.8098			
10/27/88	0220	0.8168			
10/27/88	0230	0.8118			
10/27/88	0240	0.8118			
10/27/88	0250	0.8068			
10/27/88	0300	0.8028			
10/27/88	0310	0.8028			
10/27/88	0320	0.8188			

Table 7 (Concluded)

		TG-12 Water			TG-13 Water
_	Time	Surface	ъ.	Time	Surface
Date	<u>CST</u>	ft	<u> </u>	<u>CST</u>	<u>ft</u>
10/27/88	0330	0.3508			
10/27/88	0340	0.7468			
10/27/88	0350	0.7418			
10/27/88	0400	0.7268			
10/27/88	0410	0.6858			
10/27/88	0420	0.6258			
10/27/88	0430	0.6328			
10/27/88	0440	0.5858			
10/27/88	0450	0.5568			
10/27/88	0500	0.5318			
10/27/88	0510	0.4928			

Table 8
Water Surface Elevation Fluctuations
TG-12 and TG-13, 10-12 November 1988

m ·	Water S		m.	Water S	
Time	Elevation		Time	<u>Elevati</u>	
<u>CST</u>	<u>TG-12</u>	TG-13	CST	<u>TG-12</u>	_TG-13
	10 November 19	988	11 N	ovember 1988 (Co	ontinued)
1900	-0.3320	-0.4673	0030	0.3010	0.3947
1910	-0.3620	-0.4303	0040	0.3130	0.4177
1920	-0.2900	-0.4163	0050	0.3010	0.4347
1930	-0.2560	-0.4133	0100	0.3010	0.4347
1940	-0.2620	-0.3663	0110	0.3100	0.4017
1950	-0.2210	-0.3283	0120	0.3320	0.5567
2000	-0.1890	-0.3403	0130	0.3410	0.5847
2010	-0.1680	-0.2893			
2020	-0.1380	-0.2573	0140	0.3560	0.5947
2030	-0.1060	-0.2073	0150	0.3550	0.6117
			0200	0.3620	0.6157
2040	-0.0800	-0.1803	0210	0.3690	0.6077
2050	-0.0600	-0.1233	0220	0.3700	0.6137
2100	-0.0370	-0.1283	0230	0.3820	0.5947
2110	0.0010	-0.1073	0240	0.3890	0.6087
2120	0.0320	-0.0593	0250	0.3890	0.5867
2130	0.0370	-0.0273	0300	0.3700	0.5907
2140	0.1650	-0.0273	0310	0.3740	0.5687
2150	-0.0380	0.0177	0310	0.3740	0.5007
2200	0.1410	0.0177	0320	0.3750	0.5967
2210	0.1440	0.0557	0330	0.3670	0.6137
2210	0.1440	0.0337	0340	0.3740	0.5847
2220	0.1680	0.0907	0350	0.3510	0.5677
2230	0.1600	0.0917	0400	0.3450	0.5487
2240	0.1740	0.0917	0410	0.3300	0.5267
2250	0.2040	0.1127	0420	0.3050	0.3207
2300	0.2450	0.1747	0430	0.2870	0.4907
2310	0.2320	0.1817	0440	0.2650	0,4387
2320	0.3040	0.1617	0450	0.2480	0.4367
2330	0.2170	0.1687	0430	0.2460	0.4447
2340	0.2490	0.2557	0500	0.2390	0.4297
			0510	0.1990	0.4067
2350	0.2780	0.2817	0520	0.1690	0.3837
	11 November 1	988	0530	0.1340	0.3617
		<u>-</u>	0540	0.0940	0.3297
0000	0.2790	0.2907	0550	0.0650	0 2117
0010	0.2720	0.3117		0.0650	0.3117
0020	0.2960	0.3467	0600	0.0240	0.2727

 $[\]ensuremath{\star}$ Mean water level reading used as a datum.

Table 8 (Continued)

	Water S			Water S	
Time	Elevati		Time	Elevati	
CST	<u>TG-12</u>	_TG-13_	<u>CST</u>	_TG-12_	<u>TG-13</u>
<u>11 No</u>	ovember 1988 (C	ontinued)	<u>11 N</u>	ovember 1988 (C	ontinued)
0610	-0.0180	0.2317	1250	-0.9850	-0.9423
0620	-0.0640	0.1487	1250	-0.9650	-0.9233
0630	-0.1020	0.1437	1300	-0.9650	-0.9293
0640	-0.1580	0.0847	1310	-0.9390	-0.9573
0650	-0.2140	0.0487	1320	-0.9410	-0.9473
0700	-0.2550	-0.0303	1330	-0.9150	-0.9453
0710	-0.2840	-0.0793	1340	-0.9140	-0.9473
0720	-0.3290	-0.0993	1350	-0.9020	-0.9493
0730	0 2700	0.1/02	1400	-0.8930	-0.9523
0730	-0.3790	-0.1483	1/10	0.0760	
0740	-0.4260	-0.1923	1410	-0.8760	-0.9323
0750	-0.4600	-0.2213	1420	-0.8570	-0.9233
0800	-0.5050	-0.2523	1430	-0.8380	-0.9253
0810	-0.5380	-0.2603	1440	-0.8120	-0.9093
0820	-0.5690	-0.2893	1450	-0.8030	-0.9083
0830	-0.6070	-0.3273	1500	-0.7770	-0.8893
0840	-0.6510	-0.3923	1510	-0.7400	-0.8673
0850	-0.6930	-0.4553	1520	-0.7260	-0.8223
0900	-0.7260	-0.4923	1530	-0.6820	-0.7913
0910	-0.7640	-0.5103	1540	-0.6390	-0.7583
0920	-0.7890	-0.5633	1550	-0.5940	-0.7343
0930	-0.8090	-0.5873	1600	-0.5710	-0.6953
0940	-0.8340	-0.6303	1610	-0.5220	-0.6623
0950	-0.8530	-0.6373	1620	-0.4810	-0.6493
1000			1630	-0.4530	-0.6203
1000	-0.8830	-0.6473	1640		
1010	-0.9000	-0.6773	1640	-0.4030	-0.5793
1020	-0.9210	-0.7303	1650	-0.3690	-0.5263
1030	-0.9450	-0.7613	1700	-0.3390	-0.5063
1040	-0.9530	-0.7823	1710	-0.3090	-0.4853
1050	-0.9700	-0.8103	1720	-0.2760	-0.4693
1100	-0.9710	-0.8303	1730	-0.2510	-0.4353
1110	-0.9790	-0.8393	1740	-0.2200	-0.4053
1120	-0.9790	-0.8743	1750	-0.1890	-0.3843
1130	-0.9830	-0.8823	1800	-0.1540	-0.3623
			1810	-0.1290	-0.3323
1140	-0.9880	-0.8663			
1150	-0.9910	-0.8673	1820	-0.1030	-0.3073
1200	-0.9890	-0.8913	1830	-0.0690	-0.2763
1210	-0.9970	-0.9133	1840	-0.0480	-0.2373
1220	-0.9860	-0.9363	1850	-0.0230	-0.2083
1230	-0.9840	-0.9253	1900	0.0020	-0.1683

Table 8 (Concluded)

Time	Water Surf Elevation,		Time	Water Su Elevation	
CST_	TG-12	TG-13	CST	TG-12_	TG-13
11 November 1988 (Continued)		1	ovember 1988 (Co		
1910 1920	0.0350 0.0600	-0.1493 -0.1223	0010 0020 0030	0.7030 0.7210	0.5267 0.5567
1930 1940 1950	0.0880 0.1060 0.1230	-0.1123 -0.0913 -0.0693	0030 0040 0050	0.7470 0.7530 0.7810	0.5947 0.6197 0.6497
2000 2010 2020 2030 2040	0.1450 0.1580 0.1880 0.2070 0.2320	-0.0343 -0.0123 0.0077 0.0217 0.0277	0100 0110 0120 0130 0140	0.7980 0.8080 0.8260 0.8430 0.8470	0.6847 0.7037 0.7407 0.7657 0.7777
2050 2100 2110 2120 2130	0.2500 0.2790 0.2920 0.3200 0.3460	0.0437 0.0467 0.0507 0.0607 0.0727	0150 0200 0210 0220 0230	0.8610 0.8710 0.9080 0.7610 0.9260	0.7947 0.8057 0.8197 0.8227 0.8537
2140 2150 2200 2210 2220	0.3790 0.3970 0.4150 0.4450 0.4600	0.1097 0.1367 0.1387 0.1777 0.1997	0240 0250 0300 0310 0320	0.8950 0.8910 0.9030 0.8870 0.9620	0.8327 0.8427 0.8437 0.8467 0.8477
2230 2240 2250 2300 2310	0.4710 0.5010 0.5280 0.5450 0.5720	0.2517 0.3177 0.3647 0.3857 0.4247	0330 0340 0350 0400 0410	0.8450 0.9380 0.8900 0.9310 0.9080	0.8977 0.9087 0.9027 0.9197 0.9127
2320 2330 2340 2350	0.5940 0.6160 0.6390 0.6700 12 November 1988	0.4437 0.4697 0.4797 0.4797	0420 0430 0440 0450 0500	0.8840 0.8740 0.8480 0.8330 0.7950	0.9077 0.9037 0.8887 0.8777 0.8627
0000	0.6850	0.4987	0510	0.7640	0.8417

Table 9

<u>Water Surface Elevation Fluctuations</u>

<u>TG-12 and TG-13, 26-28 November 1988</u>

Time	Water S	urface on, ft*	Time	Water Su Elevation	
CST	TG-12_		CST	TG-12	TG-13
	26 November 1			November 1988 (Co	
1000	0.0700	0.0050	0030	0.5950	0.3328
1900 1910	-0.2720 -0.2420	-0.9252	0040	0.6260	0.3608
1920	-0.2420	-0.8432 -0.8042	0050		
1930	-0.1970	-0.7662	0100	0.6470	0.3808
1940	-0.1670	-0.6962	0110	0.6770 0.6150	0.3928 0.4188
			0120	0.8130	0.4188
1950	-0.1390	-0.6462	0130	0.7340	0.4748
2000	-0.1040	-0.6062			0.4746
2010	-0.0840	-0.5312	0140	0.7390	0.5048
2020	-0.0500	-0.4882	0150	0.7770	0.5418
2030	-0.0380	-0.4522	0200	0.7920	0.5538
2040	-0.0220	-0.4052	0210	0.8100	0.5898
2050	0.0020	-0.3752	0220	0.8220	0.6298
2100	0.0090	-0.3382	0230	0.8450	0.6648
2110	0.0400	-0.3102	0240	0.8660	0.6818
2120	0.0610	-0.2822	0250	0.8790	0.6938
2120	0.0070		0300	0.8900	0.7128
2130 2140	0.0940	-0.2522	0310	0.8900	0.7228
2140	0.1160 0.1340	-0.2052	j		
2200	0.1340	-0.1972	0320	0.8940	0.7378
2210	0.1390	-0.1792	0330	0.9060	0.7328
	0.1030	-0.1542	0340	0.9030	0.7378
2220	0.2280	-0.1182	0350 0400	0.9120	0.7358
2230	0.2470	-0.1002	0400	0.9170	0.7468
2240	0.2720	-0.0562	0410	0.8330	0.7408
2250	0.3060	-0.0252	0420	0.8990	0.7378
2300	0.3220	0.0118	0430	0.8570	0.7368
2310	0.3740	0.0508	0440	0.8690	0.6968
2320	0.3960	0.1198	0450	0.8660	0.6958
2330	0.4240	0.1338	0500	0.8430	0.6878
2340	0.4680	0.1808	0510	0.8230	0.6628
2350	0.4810	0.2178	0520	0.7960	0.6338
			0530	0.7780	0.6238
	27 November 19		0540	0.7500	0.5238
0000	0.5000	0.2578	0550	0.7260	0.5668
0010	0.5450	0.2888	0600	0.6820	0.5448
0020	0.5720	0.3068		0.0020	0.3440

^{*} Mean water level reading used as a datum.

Table 9 (Continued)

	Water S	urface		Water S	urface
Time	<u>Elevati</u>	on, ft	Time	Elevati	on, ft
<u>CST</u>	TG-12	<u>TG-13</u>	<u>CST</u>	_TG-12	<u>TG-13</u>
<u>27 N</u>	November 1988 (Co	ontinued)	<u>27 N</u>	ovember 1988 (C	ontinued)
0610	0.6520	0.5168	1240	-0.7430	-0.0482
0620	0.6010	0.4878	1250	-0.7530	-0.0912
0630	0.5720	0.4458	1300	-0.7590	-0.1712
0640	0.5300	0.4008	1310	-0.7640	-0.2122
0650	0.4820	0.3618	1320	-0.7850	-0.2302
0700	0.4380	0.3408	1330	-0.9960	-0.1792
0710	0.4050	0.2798	1340	-0.8240	-0.2292
0720	0.3370	0.2178	1350	-0.7630	-0.2522
0730	0.0000	0.1600	1400	-0.8070	-0.2542
0730	0 2960	0.1608	1/10	0.0000	0 0000
0740	0.2250	0.0928	1410	-0.8080	-0.2832
0750	0.1800	0.0168	1420	-0.7890	-0.1332
0800	0.1350	-0.0382	1430	-0.7760	-0.1702
0810	0.0700	-0.0942	1440	-0.7970	-0.1452
0820	0.0240	-0.1532	1450	-0.7860	-0.1992
0830	-0.0100	-0.1452	1500	-0.7840	-0.1522
0840	-0.0670	-0.1922	1510	-0.7780	-0.1512
0850	-0.2160	-0.2462	1520	-0.7560	-0.1602
0900	-0.2420	-0.3152	1530	-0.7570	-0.1702
0910	-0.2860	-0.3432	1540	-0.7570	-0.2082
0920	-0.3220	-0.4072	1550	-0.7430	-0.2752
0930	-0.4830	-0.4342	1600	-0.7400	-0.3392
0940	-0.4060	-0.4862	1610	-0.7380	-0.3922
0950	-0.4890	-0.5652	1620	-0.7430	-0.4962
1000	0 5000	0.6040	1630	-0.7300	-0.5432
1000	-0.5290	-0.6042	16/0	0 (050	0 5220
1010	-0.5400	-0.6072	1640	-0.6950	-0.5332
1020	-0.5540	-0.3122	1650	-0.6570	-0.5362
1030	-0.5520	-0.3232	1700	-0.6490	-0.5462
1040	-0.5130	-0.1602	1710	-0.6230	-0.5422
1050	-0.4960	-0.0772	1720	-0.5990	-0.5422
1100	-0.5130	0.0288	1730	-0.5780	-0.4622
1110	-0.5570	-0.0012	1740	-0.5540	-0.4492
1120	-0.6320	-0.0872	1750	-0.5550	-0.4732
1130	-0.6750	-0.2112	1800	-0.5450	-0.4272
1140	-0.7210	-0.0942	1810	-0.5260	-0.4352
1140	-0.7210 -0.6990	-0.0942	1820	-0.5370	_0 /.602
1200	-0.8990 -0.7000	-0.0092 -0.0152	1830		-0.4602
1200	-0.7000 -0.7000	-0.0132	1840	-0.5320	-0.4602
	-0.7210		1850	-0.5330 -0.5180	-0.5372 -0.5222
1220	-0.7210	-0.2322			
1230	-0.7380	-0.1982	1900	-0.5160	-0.5172

Table 9 (Concluded)

Time	Water Sur Elevation		Time	Water Su Elevation	
CST	TG-12_	TG-13	CST	TC 17	
	November 1988 (Con			ovember 1988 (Co	
1910	-0.4900	-0.5182	0010	0.1830	0.4168
1920	-0.4740	-0.5492	0020	0.1950	0.4048
1930	-0.4670	-0.5832	0030	9.1940	0.3608
1940	-0.4340	-0.5742	0040	0.1970	0.3348
1950	-0.3980	-0.5482	0050	0.1820	0.3088
2000	-0.3460	-0.5152	0100	0.1830	0.2858
2010	-0.3050	-0.4912	0110	0.1860	0.2508
2020	-0.2810	-0.4552	0120	0.1880	0.2638
2030	-0.2390	-0.3722	0130	0.2140	0.2878
2040	-0.2020	-0.2912	0140	0.1980	0.2788
2050	-0.1750	-0.2482	0150	0.2110	0.3028
2100	-0.1530	-0.2472	0200	0.2110	0.3138
2110	-0.1280	-0.2162	0210	0.2240	0.3628
2120	-0.1060	-0.1542	0220	0.2360	0.3968
2130	-0.0990	-0.1472	0230	0.2390	0.4008
2140	-0.0630	-0.1252	0240	0.2400	0.4058
2150	-0.0550	-0.1402	0250	0.2350	0.3958
2200	-0.0400	-0.1342	0300	0.2420	0.3968
2210	-0.0190	-0.0922	0310	0.2470	0.3918
2220	0.0090	-0.0682	0320	0.2410	0.3698
2230	0.0360	0.0048	0330	0.2360	0.2948
2240	0.0500	0.0198	0340	0.2380	0.2318
2250	0.0760	0.0508	0340	0.2380	0.2078
2300	0.1080	0.0828	0400	0.2280	0.2078
2310	0.1210	0.1558	0410	0.2210	0.1738
2320	0.1550	0.2248			
2330	0.1610	0.2718	0420	0.2030	0.0588
2340	0.1730	0.3528	0430	0.1820	0.0458
2350	0.1750	0.3468	0440	0.1790	0.0448
= = = *			0450	0.1570	0.0188
	<u> 28 November 198</u>	-	0500	0.1360	-0.0332
0000	0.1770	0.4078	0510	0.1140	-0.0412

Table 10

<u>Current Data Observed at Sta 1-A, 26 October 1988</u>

Depth	Speed	Direction
		deg*
<u>Su</u>	rface**	
3.0	2.8	282
3.0	3.2	295
3.0	3.0	312
3.0	3.0	292
3.0	2.9	285
3.0	2.6	320
3.0	2.4	305
3.0	2.4	315
3.0	1.5	305
3.0	1.1	325
3.0	0.3	125
3.0	0.3	126
<u>Mi</u>	ddepth	
19.4	3.3	282
	2.6	295
		310
		290
	2.6	280
		285
		268
		330
		305
		295
		30
9.0	0.6	124
<u>B</u>	ottom [†]	
36.8	1.4	280
	1.2	295
35.5	1.5	310
		290
		270
		290
		260
		360
		260
		135
		145
16.0	0.4	35
	Su 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	Surface** 3.0 2.8 3.0 3.2 3.0 3.0 3.0 3.0 3.0 2.4 3.0 2.4 3.0 2.4 3.0 1.5 3.0 3.3<

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 11

<u>Current Data Observed at Sta 1-B, 26 October 1988</u>

Hour	Depth	Speed	Direction
CST	<u>_ft</u>	<u>fps</u>	deg*
	<u>Su:</u>	rface**	
0812	3.0	3.4	309
0854	3.0	3.2	310
0926	3.0	3.2	290
1004	3.0	3.2	300
1037	3.0	3.1	310
1109	3.0	3.2	290
1211	3.0	2.8	310
1310	3.0	2.1	308
1408	3.0	1.5	328
1511	3.0	0.8	322
1606	3.0	0.5	20
	<u>Mi</u>	ddepth	
0811	23.2	3.6	310
0853	23.0	3.6	309
0925	23.1	3.2	280
1001	23.5	3.0	300
1035	23.0	2.9	280
1108	17.8	2.5	290
1210	22.8	2.3	340
1308	22.6	1.4	312
1407	22.6	0.6	310
1510	21.2	0.5	280
1605	22.5	0.9	246
	<u>B</u>	ottom [†]	
0810	44.3	1.2	320
0852	44.0	1.0	304
0924	44.2	0.6	252
0951	45.8	1.1	280
1034	44.0	1.1	270
1107	33.7	0.7	270
1213	43.7	0.5	60
1307	43.2	0.6	60
1406	43.3	0.5	135
1508	42.3	2.5	302
1603	43.1	0.2	270

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

Bottom measurement obtained at 2.0 ft above actual bottom.

Table 12

<u>Current Data Observed at Sta 1-C, 26 October 1988</u>

Depth ft	Speed fns	Direction <u>deg*</u>
<u>Su</u>	<u>rtace**</u>	
3.0	1.6	288
		230
		308
		300
		310
		290
		315
		310
		308
		330
		300
3.0	0.3	130
<u>Mi</u>	ddepth	
18.2	1.2	288
		310
		309
		295
		295
		290
19.8	1.4	330
18.1	0.8	345
18.7	1.0	315
20.0	0.9	328
		245
17.5	0.3	130
<u>B</u>	ottom [†]	
34.4	0.8	290
		10
		320
		282
		360
		275
		60
		330
		270
		330
		175
25.0	1.1	142
	Su 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	Surface** 3.0 1.6 3.0 2.1 3.0 2.3 3.0 2.6 3.0 2.5 3.0 1.9 3.0 1.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 1.0 3.0 0.5 3.0 1.0 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 13

<u>Current Data Observed at Sta 1-X, 26 October 1988</u>

Hour CST	Depth ft	Speed fps	Direction deg*
	<u>Su</u> :	rface**	
0835	3.0	0.8	320
0905	3.0	2.1	320
0939	3.0	1.5	320
1019	3.0	1.6	300

 $\frac{\texttt{Middepth}}{\texttt{(No current data collected at this depth)}}$

	<u>B</u>	ottom [†]	
0904	11.0	1.2	310
0938	11.0	1.1	320
1018	11.0	0.7	285

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

† Bottom measurement obtained at 2.0 ft above actual bottom.

Table 14

<u>Current Data Observed at Sta 2-A, 26 October 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u>	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0735	3.0	1.4	20
0817	3.0	1.8	20
0846	3.0	1.8	28
0916	3.0	1.7	24
0947	3.0	2.1	30
1023	3.0	2.1	30
1116	3.0	2.0	32
1218	3.0	1.7	30
1319	3.0	1.5	32
1418	3.0	0.9	38
1517	3.0	1.2	212
1549	3.0	1.4	210
	<u>M</u>	<u>iddepth</u>	
0734	5.4	1.6	18
0816	5.2	1.8	8
0845	5.8	1.8	18
0915	5.0	1.8	22
0946	5.5	1.9	36
1022	5.5	2.2	20
1115	6.2	1.9	22
1217	5.5	1.6	28
1318	5.5	1.6	28
1417	5.0	1.1	30
1516	6.1	1.2	208
1548	6.1	1.5	208
		Bottom [†]	
0733	8.8	0.9	22
0815	8.4	1.1	6
0844	9.6	1.0	358
0914	8.0	1.5	30
0945	9.0	1.3	40
1021	9.0	1.9	30
1114	10.5	1.2	30
1216	9.0	1.4	28
1317	9.0	1.1	22
1416	8.0	0.7	2
1515	10.2	1.1	212
1547	10.2	1.2	210
== .,			

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 15

<u>Current Data Observed at Sta 2-B, 26 October 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	_ft	<u>fps</u>	deg*
	<u>Su</u>	<u>rface**</u>	
0719	3.0	1.2	300
0800	3.0	1.4	308
0832	3.0	1.2	304
0902	3.0	1.5	290
0933	3.0	1.7	306
1004	3.0	1.5	294
1102	3.0	1.9	308
1203	3.0	1.6	304
1303	3.0	1.7	300
1404	3.0	1.0	294
1502	3.0	0.5	290
1532	3.0	0.4	266
	<u>Mi</u>	<u>ddepth</u>	
0717	17.8	1.1	294
0759	16.5	1.3	298
0831	18.3	1.5	284
0901	18.7	1.7	288
0932	19.1	2.1	288
1003	18.7	1.4	290
1101	19.2	1.9	302
1202	19.1	1.6	300
1302	18.8	1.7	296
1403	18.2	1.7	290
1501	11.4	0.6	306
1531	14.2	1.0	290
	<u>B</u>	ottom [†]	
0714	33.6	0.4	234
0758	31.0	0.2	318
0830	34.6	0.6	222
0900	35.4	0.4	186
0931	36.2	0.2	244
1002	35.4	0.4	102
1100	36.4	1.0	300
1201	36.2	0.7	254
1301	35.6	0.5	240
1402	34.3	0.2	240 242
1500	20.8	0.4	314
1530	26.5	0.7	282

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

† Bottom measurement obtained at 2.0 ft above actual bottom.

Table 16

<u>Current Data Observed at Sta 2-C, 26 October 1988</u>

Depth	Speed	Direction
<u>_ft</u>	fps	deg*
<u>Su</u>	rface**	
3.0	1.4	306
	1.3	308
	1.9	302
	1.7	302
		308
		302
		306
		300
		304
		304
		292
3.0	0.9	300
<u>M</u> i	<u>iddepth</u>	
19.3	0.8	304
		300
		306
		306
		302
		296
		300
		300
		308
		302
		302
17.1	0.6	294
<u>B</u>	ottom [†]	
36.6	0.4	340
32.0	0.4	310
		76
		36
		20
		164
		18
		300
		306
		296
		312
		230
	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Surface** 3.0 3.0 3.0 1.3 3.0 3.0 1.7 3.0 3.0 1.7 3.0 3.0 1.8 3.0 2.2 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.8 3.0 0.9 Middepth 19.3 0.8 17.0 0.9 16.7 1.0 18.8 1.4 18.6 1.7 17.8 1.7 17.8 1.7 17.8 2.3 17.7 18.3 18.8 1.4 18.6 1.7 17.8 1.7 17.8 1.7 18.3 18.8 1.4 19.0 6 Bottom [†] 36.6 32.0 0.4 31.4 0.2 35.6 0.1 35.2 0.5 33.5 33.6 33.6 33.4 34.7 35.3 0.3 32.3

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 17

<u>Current Data Observed at Sta 2-X, 26 October 1988</u>

Hour CST	Depth <u>ft</u>	Speed <u>fps</u>	Direction deg*
		urface**	
0854	3.0	0.3	150
0922	3.0	0.3	250
0953	3.0	0.4	186
0853	4.1	<u>iddepth</u> 0.3	150
0921 0952	4.2 4.0	0.3 0.4	274 190
		n •	
		Bottom [†]	
0853	6.2	0.3	162
0921 0951	6.4 6.0	0.2 0.4	270 180
0,31	0.0	0.4	100

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

^{*} Bottom measurement obtained at 2.0 ft above actual bottom.

Table 18

<u>Current Data Observed at Sta 3-A, 26 October 1988</u>

<u>_ft</u>	Speed <u>fps</u>	Direction
		<u>deg*</u>
<u>Su</u>	rface**	
3.0	1.7	246
3.0	0.5	290
3.0	0.4	351
3.0	0.5	25
3.0	1.1	28
3.0	0.9	32
3.0	1.1	24
3.0	1.4	30
3.0	1.8	30
3.0	1.8	35
3.0		35
3.0	0.6	39
<u>M:</u>	<u>iddepth</u>	
13.0	0.6	280
14.8	0.4	348
15.0	0.5	300
16.5	0.4	65
12.8	0.8	40
14.0	0.8	48
13.0	1.0	50
13.0	1.4	46
13.0		46
		29
		45
14.8	0.6	60
<u>B</u>	<u>ottom[†]</u>	
24.0	0.2	326
		5
		245
		40
		52
		88
		110
		48
		44
		47
		84
		35
	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	\$\frac{\surface**}{3.0}\$ 3.0 \\ 3.0 \\ 0.5 \\ 3.0 \\ 0.4 \\ 3.0 \\ 0.5 \\ 3.0 \\ 0.5 \\ 3.0 \\ 0.5 \\ 3.0 \\ 0.5 \\ 3.0 \\ 0.9 \\ 3.0 \\ 0.9 \\ 3.0 \\ 1.1 \\ 3.0 \\ 3.0 \\ 1.4 \\ 3.0 \\ 3.0 \\ 1.8 \\ 3.0 \\ 3.0 \\ 1.8 \\ 3.0 \\ 3.0 \\ 1.8 \\ 3.0 \\ 3.0 \\ 1.8 \\ 3.0 \\ 3.0 \\ 0.6 \\ \text{Middepth} \end{align*} \text{13.0} \\ 0.6 \\ \text{Middepth} \tag{14.8} \\ 0.8 \\ 14.0 \\ 0.8 \\ 13.0 \\ 1.0 \\ 13.0 \\ 1.4 \\ 13.0 \\ 1.4 \\ 13.0 \\ 1.3 \\ 1.4 \\ 13.0 \\ 1.5 \\ 14.8 \\ 0.6 \\ \text{Bottom*} \tag{24.0} \\ 0.3 \\ 24.0 \\ 0.2 \\ 24.0 \\ 0.2 \\ 24.0 \\ 0.2 \\ 24.0 \\ 0.2 \\ 24.0 \\ 0.2 \\ 24.0 \\ 1.2 \\ 24.0 \\ 1.2 \\ 24.0 \\ 1.2 \\ 24.0 \\ 1.1 \\ 27.0 \\ 0.6 \tag{1.1} \\ 27.0 \\ 0.6 \tag{1.1} \\ 27.0 \\ 0.6 \tag{1.1} \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 19

<u>Current Data Observed at Sta 3-B, 26 October 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u>	<u>fps</u>	<u>deg*</u> _
	<u>Su</u>	rface**	
0717	3.0	1.7	241
0808	3.0	1.5	235
0846	3.0	0.3	332
0922	3.0	0.4	10
0957	3.0	0.9	70
1024	3.0	1.0	44
1107	3.0	1.2	37
1208	3.0	1.4	40
1308	3.0	1.4	52
1408	3.0	1.5	50
1507	3.0	1.2	37
1539	3.0	0.6	40
	<u>Mi</u>	ddepth	
0715	9.2	0.8	210
0807	9.0	1.1	230
0845	9.3	0.8	268
0921	10.2	0.2	264
0956	8.4	0.6	56
1023	8.7	0.8	46
1106	8.8	1.1	47
1207	8.5	1.6	44
1307	8.8	1.6	46
1407	8.8	1.6	45
1506	8.8	1.0	44
1538	9.0	0.6	36
	<u>B</u>	ottom [†]	
0714	16.3	0.2	64
0806	16.0	0.2	135
0844	16.5	0.4	254
0920	18.3	0.3	283
0955	14.8	0.7	12
1022	15.4	0.3	36
1105	15.5	0.8	48
1206	15.0	1.3	58
1306	15.5	1.1	36
1406	15.5	1.3	32
1505	15.5	0.9	51
1537	16.0	0.5	42

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

^{*} Bottom measurement obtained at 2.0 ft above actual bottom.

Table 20
Current Data Observed at Sta 3-C, 26 October 1988

Hour	Depth	Speed	Direction
CST	<u>_ft</u>	<u>fps</u>	deg*_
	<u>Su</u>	rface**	
0728	3.0	0.6	342
0817	3.0	1.0	303
0856	3.0	1.7	330
0930	3.0	2.0	326
1005	3.0	2.2	326
1030	3.0	2.5	324
1116	3.0	2.4	321
1218	3.0	2.4	326
1316	3.0	2.6	325
1417	3.0	2.1	320
1515	3.0	1.6	320
1548	3.0	1.3	319
	<u>Mi</u>	<u>ddepth</u>	
0727	18.3	0.3	306
0816	19.0	0.6	307
0855	16.0	1.5	333
0929	19.1	1.6	322
1004	18.3	2.0	320
1029	18.5	1.9	320
1115	18.3	2.0	324
1217	18.0	2.3	320
1315	18.0	2.3	322
1416	18.3	2.3	319
1514	18.4	2.0	318
1547	18.0	1.3	315
	<u>B</u>	ottom [†]	
0726	34.5	0.3	325
0815	36.0	0.4	359
0854	30.0	0.7	340
0928	36.2	0.5	340
1003	34.5	0.3	344
1028	35.0	0.3	343
1114	34.5	0.4	328
1216	34.1	0.6	326
1314	34.1	0.3	300
1415	34.5	0.4	308
1513	34.8	0.2	340
1546	34.0	0.4	303

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 21

<u>Current Data Observed at Sta 3-D, 26 October 1988</u>

0.7 0.9 1.4 2.3 2.4 2.7 2.5 2.6	deg* 310 298 330 330 327 345 323
0.9 1.4 2.3 2.4 2.7 2.5 2.6	298 330 330 327 345 323
0.9 1.4 2.3 2.4 2.7 2.5 2.6	298 330 330 327 345 323
1.4 2.3 2.4 2.7 2.5 2.6	298 330 330 327 345 323
2.3 2.4 2.7 2.5 2.6	330 330 327 345 323
2.4 2.7 2.5 2.6	330 327 345 323
2.7 2.5 2.6	327 345 323
2.5 2.6	345 323
2.6	323
	325
2.4	323
	325
	322
1.2	330
0.7	313
0.5	270
	320
	322
	316
1.9	344
1.7	322
1.9	327
2.0	321
	320
	317
1.6	316
0.1	302
	240
	329
	345
	341
	342
	310
	355
	334
	342
	330
	325
	2.1 1.7 1.2 0.7 0.5 1.2 1.6 2.0 1.9 1.7 1.9 2.0 1.9

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 22

<u>Current Data Observed at Sta 3-X, 26 October 1988</u>

Hour CST	Depth <u>ft</u>	Speed fps	Direction deg*
	<u>Su:</u>	rface**	
0833	3.0	0.6	242
0910	3.0	0.5	258
0945	3.0	0.6	172

Middepth
(No current data collected at this depth)

<u>Bottom</u> †			
0832	5.8	0.6	265
0909	6.0	0.4	265
0944	5.5	0.4	218

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 23

<u>Current Data Observed at Sta 1-A, 11 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>ft</u>	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0734	3.0	2.4	300
0810	3.0	2.5	290
0904	3.0	2.3	290
1005	3.0	2.0	290
1104	3.0	1.7	285
1203	3.0	1.2	290
1307	3.0	1.0	300
1404	3.0	0.6	340
1504	3.0	0.3	160
1606	3.0	0.6	135
	<u>Mi</u>	<u>ddepth</u>	
0732	19.3	2.2	284
0808	19.9	2.5	290
0903	19.5	2.0	290
1002	19.1	1.5	290
1102	19.6	1.5	295
1202	16.4	1.0	270
1305	10.1	0.8	285
1402	8.5	0.7	285
1503	11.0	0.5	160
1604	11.7	0.4	130
	<u>B</u>	ottom	
0730	36.7	1.2	278
0806	36.8	1.2	270
0901	37.1	1.2	270
1001	36.2	0.8	270
1100	37.2	0.4	240
1200	30.8	0.5	260
1304	18.2	0.7	300
1400	15.0	0.3	300
1501	20.0	0.3	155
1601	21.4	0.6	130

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

*Bottom measurement obtained at 2.0 ft above actual bottom.

Table 24

<u>Current Data Observed at Sta 1-B, 11 November 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u>	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0744	3.0	2.7	287
0818	3.0	2.5	290
0915	3.0	3.0	285
1013	3.0	2.5	285
1112	3.0	1.9	285
1210	3.0	1.4	300
1316	3.0	1.0	305
1411	3.0	0.8	280
1513	3.0	0.3	160
1618	3.0	0.6	120
	<u>M</u>	iddepth	
0742	23.5	2.4	286
0817	23.1	2.5	290
0913	23.3	2.6	290
1011	23.1	2.3	290
1111	22.8	2.0	285
1208	22.7	1.5	290
1314	22.7	1.0	290
1410	23.0	1.0	270
1511	22.2	0.7	315
1616	22.8	0.6	120
	<u> </u>	Sottom [†]	
0741	45.0	1.1	278
0815	44.3	1.0	270
0911	44.6	0.8	260
1009	44.2	1.0	270
1109	43.5	0.5	230
1207	43.5	0.5	240
1312	43.4	0.5	230
1407	<i>t</i> · , 0	0.6	280
1508	42.3	0.5	245
1614	43.6	0.3	170

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 25

<u>Current Data Observed at Sta 1-C, 11 November 1988</u>

Depth	Speed	Direction
<u>_ft</u>	<u>fps</u>	deg*
<u>Su</u>	rface**	
3.0	1.8	300
3.0	2.2	290
3.0	2.0	295
3.0	1.4	290
3.0	1.5	290
3.0	1.3	287
3.0	1.2	300
3.0	1.0	310
3.0	0.4	175
3.0	0.6	120
<u>M</u> :	ddepth	
18.8	2.0	290
		290
		292
	1.6	280
18.6	1.2	280
18.1	1.0	290
18.6	0.8	285
19.2	0.7	230
19.9	0.4	155
22.8	0.6	120
<u>B</u>	ottom [†]	
35.6	0.4	360
35.3	1.2	270
37.4	0.5	290
32.8	0.9	270
35.2	0.8	275
34.2	0.8	270
35.2	0.2	195
36.5	0.3	205
37.8	0.2	155
43.6	0.3	170
	Su 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	Surface** 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 26

<u>Current Data Observed at Sta 2-A, 11 November 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u>	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0744	2.0	1.6	25
0824	2.0	1.8	30
0924	2.0	1.4	30
1022	2.0	1.6	30
1124	2.0	1.4	30
1228	3.0	0.9	30
1324	2.0	0.7	25
1427	2.0	0.2	240
1519	2.0	1.0	190
1624	2.0	1.3	210
	<u>M:</u>	<u>lddepth</u>	
0742	4.0	1.3	25
0822	5.0	1.5	20
0922	3.5	1.3	25
1020	3.5	1.4	32
1123	3.5	1.2	30
1226	5.0	0.9	25
1322	3.5	0.7	20
1425	3.5	0.2	230
1517	4.0	1.2	210
1622	5.0	1.2	210
	<u> </u>	ottom [†]	
0740	6.0	1.4	10
0820	8.0	1.1	10
0920	5.5	0.8	50
1018	6.0	1.1	30
1121	5.5	1.2	40
1224	8.0	0.5	25
1320	5.5	0.5	25
1423	6.0	0.1	250
1515	6.5	0.5	160
1620	9.0	0.6	200

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 27

<u>Current Data Observed at Sta 2-B, 11 November 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>ft</u> _	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0726	3.0	1.1	290
0804	3.0	1.0	300
0904	3.0	1.4	295
1004	3.0	0.6	295
1104	3.0	0.4	295
1206	3.0	0.3	300
1304	3.0	0.2	240
1404	3.0	0.3	315
1504	3.0	0.8	140
1604	3.0	0.6	120
	<u>Mi</u>	ddepth	
0724	11.0	1.2	290
0802	10.5	1.1	290
0902	10.5	1.2	300
1002	11.0	1.0	300
1102	12.5	1.0	300
1204	11.0	1.3	300
1302	11.0	1.1	300
1402	13.5	1.1	300
1502	17.0	1.0	300
1602	17.0	0.4	300
	<u>B</u>	ottom [†]	
0722	22.0	0.9	290
0800	22.0	0.9	310
0900	21.0	0.7	300
1000	22.0	0.4	290
1100	25.0	0.8	300
1202	22.0	1.0	310
1300	22.0	0.4	320
1400	22.7	0.5	310
1500	34.0	0.3	250
1600	34.0	0.0	0

Bottom measurement obtained at 2.0 ft above actual bottom.

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

Table 28

<u>Current Data Observed at Sta 2-C, 11 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>ft</u> _	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0734	3.0	1.2	290
0814	3.0	1.2	305
0910	3.0	1.0	295
1012	3.0	1.1	290
1110	3.0	1.0	290
1214	3.0	1.1	300
1315	3.0	0.8	290
1416	3.0	0.4	215
1511	3.0	0.3	230
1614	3.0	0.5	90
	<u>M</u>	<u>iddepth</u>	
0732	13.5	1.5	290
0812	17.5	1.5	300
0908	13.0	1.9	295
1010	16.5	1.4	295
1108	15.0	0.6	305
1212	17.5	1.7	300
1313	17.5	1.8	300
1414	18.0	1.4	295
1509	16.0	0.8	280
1612	17.0	0.3	290
	<u> </u>	Sottom [†]	
0730	27.0	1.0	270
0810	35.0	0.8	290
0906	26.0	1.1	280
1008	23.0	1.1	290
1106	30.0	1.2	290
1210	35.0	0.9	310
1311	35.8	0.7	290
1412 1507 1610	36.0 32.0 34.0	0.9 1.0 0.1	290 - 285 30

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 29

<u>Current Data Observed at Sta 3-A, 11 November 1988</u>

Hour CST	Depth _ft	Speed	Direction
031	•	<u>fps</u>	deg*
	<u>s</u>	<u>urface**</u>	
0706	3.0	1.4	40
0802	3.0	1.8	42
0904	3.0	1.7	40
0949	3.0	1.2	40
1022	3.0	1.3	30
1103	3.0	1.4	18
1202	3.0	1.0	44
1302	3.0	1.0	34
1402	3.0	1.2	30
1502	3.0	1.1	30
1602	3.0	1.1	32
	<u>4</u>	<u>liddepth</u>	
0705	13.1	1.3	20
0801	13.1	1.5	24
0903	12.9	1.8	34
0948	12.9	1.4	22
1021	12.8	1.5	30
1102	13.0	1.4	30
1201	12.9	1.0	34
1301	12.7	0.9	10
1401	12.8	1.0	18
1501	12.6	1.1	18
1601	12.7	1.1	12
		Bottom [†]	
0704	24.2	0.5	38
0800	24.2	0.4	44
0900	23.8	0.4	320
0946	23.8	0.3	314
1020	23.6	0.4	302
1100	24.0	0.3	264
1200	23.8	0.2	236
1300	23.4	0.3	326
1400	23.6	0.4	320
1500	23.2	0.3	326
1600	23.4	0.2	310

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

Bottom measurement obtained at 2.0 ft above actual bottom.

Table 30

Current Data Observed at Sta 3-B, 11 November 1988

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u> _	<u>fps</u>	deg*
	<u>Su</u>	ıface**	
0712	3.0	1.4	44
0808	3.0	1.8	44
0908	3.0	1.8	36
0953	3.0	1.3	34
1027	3.0	1.2	40
1108	3.0	1.5	30
1207	3.0	0.9	50
1308	3.0	0.9	30
1408	3.0	1.0	32
1511	3.0	1.0	30
1607	3.0	1.1	40
	<u>M</u> :	<u>lddepth</u>	
0711	8.7	1.4	42
0807	8.8	1.8	36
0907	8.3	1.8	34
0952	8.5	1.2	36
1026	8.6	1.3	30
1107	8.7	1.3	28
1206	8.4	0.8	48
1°07	8.5	0.8	22
1407	8.4	1.1	30
1 :09	8.6	1.1	22
1t-06	8.6	1.1	24
	<u>B</u>	ottom [†]	
0 10	15.4	0.8	38
0806	15.6	1.4	40
0406	14.6	1.6	42
0951	15.0	1.2	32
1025	15.2	1.2	34
1.06	15.4	1.4	26
1205	14.8	0.7	42
1 '06	15.0	0.7	32
1, 06	14.8	0.9	34
1 .05	15.2	0.6	22
1.05	15.2	1.1	22

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 31

<u>Current Data Observed at Sta 3-C, 11 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>_ft</u>	fps	deg*
	<u>Su</u>	rface**	
0730	3.0	1.4	324
0817	3.0	1.3	316
0916	3.0	1.4	318
1000	3.0	1.8	312
1036	3.0	1.9	316
1116	3.0	2.1	320
1217	3.0	1.9	312
1317	3.0	1.8	306
1417	3.0	1.3	306
1522	3.0	0.8	306
1617	3.0	0.7	308
	<u>Mi</u>	<u>ddepth</u>	
0728	16.7	0.4	322
0816	16.8	0.6	334
0915	17.0	0.7	314
0959	16.8	0.6	322
1035	16.8	0.5	310
1115	16.9	0.5	326
1216	16.7	0.5	308
1316	16.9	1.1	320
1416	16.8	0.9	310
1520	17.3	0.8	318
1616	16.2	0.7	310
	<u>B</u>	ottom [†]	
0727	31.4	0.4	318
0815	31.6	0.6	290
0914	32.0	0.5	312
0958	31.6	0.4	302
1034	31.6	0.3	320
1114	31.8	0.3	340
1215	31.4	0.2	278
1315	31.8	0.2	280
1415	31.6	0.2	294
1518	32.6	0.3	260
1615	30.4	0.5	290

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

*Bottom measurement obtained at 2.0 ft above actual bottom.

Table 32

<u>Current Data Observed at Sta 3-D, November 11, 1988</u>

Hour	Depth	Speed	Direction
CST	<u>ft</u>	fps	deg*
	<u>Su</u>	rface**	
0737	3.0	2.0	330
0826	3.0	2.0	322
0922	3.0	2.0	316
1006	3.0	1.8	320
1042	3.0	1.9	314
1122	3.0	2.1	328
1223	3.0	2.1	312
1323	3.0	1.5	314
1424	3.0	1.3	312
1536	3.0	1.0	296
1623	3.0	0.8	302
	<u>Mi</u>	ddepth	
0736	19.5	0.6	322
0825	19.7	0.5	330
0921	19.2	0.6	320
1004	19.1	0.9	310
1041	19.1	0.8	320
1121	19.0	1.1	342
1222	19.2	1.1	322
1322	19.3	1.5	320
1423	19.2	1.4	320
1535	19.1	1.1	306
1622	19.6	1.2	300
	<u>B</u>	ottom [†]	
0734	37.8	0.4	320
0824	37.4	0.5	318
0921	36.4	0.5	280
1004	36.2	0.4	296
1040	36.2	0.7	300
1120	36.0	0.4	314
1221	36.4	0.2	272
1321	36.6	0.2	280
1422	36.4	0.4	294
1533	36.2	0.3	268
1621	37.2	0.5	262

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 33

<u>Current Data Observed at Sta 1-A, 27 November 1988</u>

Depth	Speed	Direction
<u>_ft</u>	<u>fps</u>	deg*
<u>Su</u>	rface**	
3.0	1.4	320
3.0	1.7	296
3.0	1.7	292
3.0	1.7	310
3.0	1.8	298
3.0	1.6	296
3.0	1.4	290
3.0	2.4	298
3.0	1.6	294
<u>M:</u>	<u>lddepth</u>	
13.0	1.6	296
16.5		302
18.0	1.8	294
17.2	1.7	312
17.7	1.2	272
10.0	1.2	282
9.0	1.5	282
9.7	1.5	284
10.1	1.6	286
<u>B</u>	ottom [†]	
23.9	1.3	294
31.0	0.4	296
34.0	0.7	250
32.5	0.3	270
33.4	0.3	274
28.0	0.4	310
16.0	0.9	262
17.4	0.7	274
18.2	1.1	276
	Su 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Surface** Surface** 3.0 1.4 3.0 1.7 3.0 1.7 3.0 1.8 3.0 1.6 3.0 1.4 3.0 2.4 3.0 1.6 3.0 1.6 4.0 1.6 5 1.5 18.0 1.8 17.2 1.7 17.7 1.2 10.0 1.2 9.0 1.5 9.7 1.5 10.1 1.6 Bottom* 23.9 1.3 31.0 0.4 34.0 0.7 32.5 0.3 33.4 0.3 28.0 0.4 16.0 0.9 17.4 0.7

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 34

<u>Current Data Observed at Sta 1-B, 27 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>_ft</u> _	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0753	3.0	2.0	296
0811	3.0	2.1	294
0912	3.0	2.2	292
1008	3.0	2.0	294
1112	3.0	2.3	292
1210	3.0	2.4	286
1309	3.0	2.6	280
1406	3.0	2.1	292
1512	3.0	2.2	312
	<u>Mi</u>	ddepth	
0751	23.2	2.1	300
0810	23.2	2.3	294
0911	23.4	2.8	290
1007	23.0	2.6	294
1111	22.5	2.4	282
1209	22.7	2.3	286
1308	22.6	2.2	282
1405	22.4	1.5	274
1511	21.7	1.1	296
	<u>B</u>	ottom [†]	
0750	44.5	1.0	302
0809	44.5	0.8	296
0910	44.7	0.7	254
1006	44.0	1.0	292
1110	43.0	1.1	264
1208	43.5	1.0	276
1307	43.1	1.0	274
1404	42.8	0.8	264
1510	41.4	0.7	294

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 35

<u>Current Data Observed at Sta 1-C, 27 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>_ft</u>	<u>fps</u>	<u>deg*</u>
	<u>Sur</u>	face**	
0758	3.0	1.4	296
0816	3.0	1.6	300
0918	3.0	1.8	294
1016	3.0	1.4	298
1118	3.0	2.1	290
1216	3.0	2.2	294
1315	3.0	2.0	292
1411	3.0	2.1	284
1520	3.0	1.9	288
	<u>Mi</u>	<u>ddepth</u>	
0757	20.2	1.8	302
0815	20.0	1.8	304
0917	20.0	2.0	304
1015	19.0	1.5	304
1117	20.8	2.3	290
1215	21.0	2.2	284
1314	21.3	2.2	284
1410	21.0	1.3	290
1519	20.5	1.5	288
	<u>B</u> 6	ottom [†]	
0756	28.3	0.3	20
0814	38.0	0.3	22
0916	38.0	0.6	326
1014	36.0	0.9	322
1116	39.6	0.8	300
1214	40.1	0.9	268
1313	40.6	0.7	260
1409	40.1	0.4	268
1518	39.0	0.6	282

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

^{*} Bottom measurement obtained at 2.0 ft above actual bottom.

Table 36

<u>Current Data Observed at Sta 2-A, 27 November 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>_ft</u> _	<u>fps</u>	deg*
	Su	rface**	
0739	2.0	1.3	30
0819	2.0	1.1	30
0920	2.0	1.2	10
1020	2.0	1.2	30
1124	2.0	3.4	30
1226	2.0	3.2	30
1319	2.0	3.3	30
1419	2.0	3.1	30
1502	2.0	3.6	25
	<u>M</u>	i <u>ddepth</u>	
0737	4.5	1.2	25
0817	4.0	0.7	30
0918	4.5	1.1	20
1018	4.6	1.9	25
1122	5.0	3.4	30
1224	5.0	2.9	30
1317	4.0	3.3	35
1417	4.6	3.1	25
1500	4.8	3.0	20
	1	Bottom	
0735	8.0	0.2	30
0815	7.1	0.6	90
0916	7.7	1.2	50
1016	8.2	1.3	40
1120	9.0	2.9	30
1222	8.6	2.1	27
1315	6.8	3.2	20
1415	8.2	2.8	30
1458	8.6	3.2	27

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 37 Current Data Observed at Sta 2-B, 27 November 1988

Hour	Depth	Speed	Direction
<u>CST</u>	<u>ft</u>	<u>fps</u>	deg*
	<u>Su</u>	rface**	
0724	3.0	0.4	305
0804	3.0	0.7	310
0904	3.0	0.8	310
1005	3.0	1.2	300
1110	3.0	1.8	300
1208	3.0	1.0	300
1304	3.0	1.0	315
1404	3.0	1.4	306
1508	3.0	1.2	310
	<u>Mi</u>	<u>ddepth</u>	
0722	18.2	0.3	275
0802	18.9	0.6	295
0902	17.3	0.9	305
1003	18.0	1.0	285
1108	10.5	1.0	300
1206	8.5	0.9	320
1302	8.5	1.0	300
1402	10.5	0.8	280
1506	9.5	1.0	290
	<u>B</u>	ottom [†]	
0719	35.3	0.0	0
0800	36.9	0.1	175
0900	34.5	0.3	300
1001	35.0	0.1	205
1106	19.8	1.2	300
1204	16.0	0.1	280
1300	16.0	0.3	300
1400	20.0	0.6	280
1504	18.0	0.4	290

^{*} Direction from true north from which the current is flowing.** Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 38

Current Data Observed at Sta 2-C, 27 November 1988

Hour	Depth	Speed	Direction
CST	<u>_ft</u>	<u>fps</u>	deg*
	<u>Sur</u>	cface**	
0730	3.0	0.8	335
0811	3.0	0.7	325
0912	3.0	1.2	10
1011	3.0	1.1	300
1114	3.0	2.1	300
1216	3.0	2.3	305
1312	3.0	2.5	305
1412	3.0	2.7	305
1515	3.0	2.4	310
	<u>Mi</u>	ddepth	
0728	13.7	0.3	320
0809	15.1	0.6	330
0910	11.8	0.9	305
1009	11.5	0.7	290
1113	18.5	1.7	305
1214	18.5	1.9	310
1310	18.5	2.4	305
1410	18.6	2.4	310
1513	18.6	2.5	310
	<u>B</u> (ottom ^f	
0726	27.4	0.9	0
0807	29.2	0.0	0
0908	22.6	0.2	320
1007	22.1	0.6	325
1111	36.1	0.8	310
1212	-6.0	0.9	310
1308	36.0	0.9	290
1408	36.6	1.2	270
1511	36.5	1.4	280

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 t above actual bottom.

Table 39

<u>Current Data Observed at Sta 3-A. 27 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>ft</u>	<u>fps</u>	deg*
	<u>S</u>	urface**	
0716	3.0	1.2	214
0802	3.0	1.7	230
0902	3.0	2.0	214
1455	3.0	3.1	26
0715	13.8	1.6	240
0801	13.9	1.5	234
0901	11.9	1.7	208
1001	10.2	1.4	250
1454	12.7	3.2	50
0714	25.6	Bottom [†] 1.4 1.3 1.7 1.1 2.2	240
0800	25.8		240
0900	21.8		250
1000	18.4		250
1453	23.4		60

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top or water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bo tom.

Table 40

<u>Current Data Observed at Sta 3-B, 27 November 1988</u>

Hour CST	Depth _ft	Speed fps	Direction deg*
		Surface**	
0727	3.0	1.4	236
0808	3.0	1.8	236
0908	3.0	1.8	240
1502	3.0	3.2	30
0726	9.5	Middepth 1.5	242
0807 0907 1501	9.1 9.2 8.2	1.6 1.6 3.0	236 242 40
		Bottom [†]	
0725	17.0	1.0	240
0806	16.2	1.3	240
0906 1500	16.4 14.4	1.1 1.9	226 52
1000	¥4.4	1.9	J 2

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

[†] Bottom measurement obtained at 2.0 ft above actual bottom.

Table 41

<u>Current Data Observed at Sta 3-C, 27 November 1988</u>

Hour	Depth	Speed	Direction
<u>CST</u>	<u>ft_</u>	<u>fps</u>	<u>deg*</u>
	Sur	cface**	
0743	3.0	0.5	118
0823	3.0	0.6	60
0916	3.0	0.2	260
1047	3.0	2.2	324
1132	3.0	2.2	326
1232	3.0	2.6	330
1332	3.0	2.9	326
1434	3.0	2.7	330
1517	3.0	2.6	310
	<u>Mi</u>	<u>ddepth</u>	
0742	20.3	0.6	100
0822	20.2	1.0	78
0915	20.1	0.5	116
1046	18.3	0.7	346
1131	18.0	1.0	334
1231	18.4	1.4	330
1331	18.7	2.0	320
1433	18.3	2.1	322
1516	18.7	2.2	310
	<u>B</u>	ottom [†]	
0741	38.6	0.3	112
0820	38.4	0.3	110
0914	38.2	0.3	128
1045	34.6	0.1	22
1130	34.0	0.1	330
1230	34.8	0.7	312
1330	35.4	0.3	20
1430	34.6	0.3	342
1515	35.4	0.1	312

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

^{*} Bottom measurement obtained at 2.0 ft above actual bottom.

Table 42

<u>Current Data Observed at Sta 3-D, 27 November 1988</u>

Hour	Depth	Speed	Direction
CST	<u>_ft</u> _	<u>fps</u>	deg*
	Sur	cface**	
0750	3.0	0.7	110
0829	3.0	0.4	90
0923	3.0	0.1	70
1056	3.0	1.9	328
1140	3.0	2.3	328
1237	3.0	2.6	322
1344	3.0	2.9	324
1444	3.0	2.8	310
1525	3.0	2.6	314
	<u>Mi</u>	<u>ddepth</u>	
0749	17.5	0.7	96
0828	18.7	0.6	80
0923	17.3	0.1	134
1055	17.7	0.9	334
1139	20.1	0.7	338
1236	20.2	1.5	320
1343	20.3	1.8	322
1443	20.3	1.9	304
1524	20.6	1.7	306
	<u>B</u> c	ottom [†]	
0748	33.0	0.5	94
0827	35.4	0.2	58
0922	32.6	0.2	130
1054	33.4	0.2	32
1138	38.2	0.2	342
1235	38.4	0.3	324
1342	38.6	0.3	44
1440	38.6	0.1	40
1523	39.2	0.6	324

^{*} Direction from true north from which the current is flowing.

^{**} Surface measurement obtained at 3.0 ft below top of water surface.

Bottom measurement obtained at 2.0 ft above actual bottom.

Table 43
Salinity Data Observed at Range 1, 26 October 1988

Hour	Sta		Salinity, ppt	
CST	<u>No.</u>	Surface	<u>Middepth</u>	<u>Bottom</u>
731	Α	_	_	26.8
742	C		_	26.5
803	Ä	20.6	22.1	26.9
811	В	20.6	22.2	26.8
818	Č	21.5	21.8	26.5
835	X	20.1	_	_
847	Α	20.9	22.4	26.4
853	В	20.6	22.6	26.8
859	С	20.8	21.2	25.8
904	X	21.4	-	-
917	Α	20.9	22.0	26.1
925	В	20.9	22.4	26.4
931	С	20.4	21.2	26.1
939	X	21.4	_	-
948	Α	20.9	21.6	26.1
1001	В	21.0	22.7	26.2
1010	С	20.8	21.1	25.8
1019	X	21.4	_	-
1028	Α	20.7	21.1	25.4
1035	В	20.8	21.9	26.0
1043	С	20.7	20.9	24.4
1102	Α	20.7	20.8	25.2
1108	В	20.6	21.2	25.6
1114	С	20.5	21.4	25.6
1202	Α	20.2	20.9	24.8
1210	В	20.1	22.3	25.4
1216	С	20.3	20.4	24.9
1303	Α	19.8	20.6	24.9
1308	В	19.7	22.1	25.2
1318	С	19.8	20.7	25.0
1401	Α	19.6	22.2	24.9
1407	В	19.6	23.8	25.4
1413	С	19.7	23.8	25.2
1502	Α	20.0	19.7	20.1
1510	В	19.1	21.7	25.3
1516	С	19.2	20.0	24.9
1557	Α	19.4	19.7	
1605	В	19.4	24.1	25.4
1611	С	19.5	21.6	25.2
1740	С	-	_	26.5

Note: - = no sample.

Table 44

Salinity Data Observed at Range 2, 26 October 1988

Hour	Sta		Salinity, ppt	
<u>CST</u>	<u>No.</u>	Surface	<u>Middepth</u>	Bottom
717	В	15.6	21.2	27.4
725	С	16.7	27.4	27.4
734	Α	10.2	10.2	10.2
759	В	15.6	20.0	27.4
808	С	16.3	23.1	27.3
816	Α	10.2	10.2	10.3
831	В	15.5	20.6	10.2
837	С	16.4	27.4	27.4
845	Α	10.2	10.0	16.1
854	X	9.8	_	_
901	В	16.1	25.4	26.5
906	С	14.9	21.3	26.6
915	Α	10.3	10.1	10.1
922	X	9.7	_	_
932	В	14.0	20.6	26.0
938	С	14.8	25.7	20.9
946	Α	10.5	10.1	10.1
953	X	9.8	_	-
1003	В	14.1	20.1	25.6
1014	С	15.8	19.6	26.1
1022	Α	10.4	10.4	10.2
1101	В	14.3	20.8	25.9
1108	С	15.5	18.2	25.7
1115	Α	10.9	10.2	10.2
1202	В	13.9	19.4	25.3
1210	С	15.7	18.6	25.9
1217	Α	10.2	10.7	10.1
1302	В	13.6	20.2	25.5
1311	С	15.6	19.8	25.8
1318	Α	10.7	10.0	9.9
1403	В	13.0	17.4	25.3
1409	С	15.7	18.7	25.5
1417	Α	10.6	9.9	9.8
1501	В	13.5	16.0	20.6
1507	С	15.8	17.7	24.7
1516	Α	16.2	15.8	15.9
1531	В	14.9	16.0	23.1
1539	С	15.7	17.7	25.0
1548	Α	16.4	15.9	15.2
1548	Α	16.4	15.9	

Note: - = no sample

Table 45
Salinity Data Observed at Range 3, 26 October 1988

Hour	Sta		Salinity, ppt	
<u>CST</u>	No.	Surface	<u>Middepth</u>	Bottom
705	Α	No data	22.9	24.5
715	В	14.3	19.2	22.9
727	C	-	18.6	25.7
735	D	15.0	15.8	20.4
804	A	13.7	21.2	24.2
807	В	13.9	17.7	20.8
816	С	14.7	18.6	25.5
821	D	13.9	19.1	25.5
832	X	12.6	_	14.9
839	Α	19.2	20.2	23.8
845	В	13.5	19.7	19.4
855	С	17.9	25.6	25.9
859	D	13.9	16.2	16.8
909	X	12.0	~	15.5
916	Α	11.5	19.1	24.4
921	В	11.4	14.4	18.4
929	С	13.6	19.2	25.6
935	D	14.0	24.1	25.7
944	X	12.2	_	11.9
951	Α	11.8	16.0	19.0
956	В	11.9	12.9	14.3
1004	С	14.2	18.0	23.6
1009	D	13.8	21.8	25.7
1016	Α	11.0	12.9	19.1
1023	В	11.0	11.0	13.7
1029	С	12.9	18.6	25.6
1036	D	13.4	21.0	25.4
1101	Α	11.0	11.4	17.7
1106	В	10.6	10.7	11.2
1115	С	12.5	19.4	24.6
1120	υ	12.7	19.2	24.7
1201	Α	11.0	11.0	13.8
1207	В	10.8	10.8	11.4
1217	С	12.3	17.2	24.2
1223	D	12.3	20.1	25.0
1301	Α	10.6	11.1	11.8
1307	В	11.2	11.9	12.0
1315	С	11.7	17.7	24.2
1322	D	12.3	23.5	24.8
1401	Α	10.7	10.8	11.2

(Continued)

Note: - = no sample.

Table 45 (Concluded)

Hour	Sta		Salinity, ppt	
<u>CST</u>	No.	Surface	Middepth	Bottom
1407	В	11.0	11.3	11.2
1416	С	11.8	23.6	23.6
1421	D	11.7	19.3	24.4
1501	Α	11.1	12.7	22.4
1506	В	10.9	10.9	11.7
1514	С	12.0	18.7	23.7

Table 46

<u>Salinity Data Observed at Range 1, 11 November 1988</u>

Hour	Sta		Salinity, ppt	
<u>CST</u>	<u>No.</u>	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
732	Α	24.2	25.7	29.2
742	В	24.7	27.6	29.9
752	С	24.7	25.6	29.2
808	Α	24.8	25.3	28.8
817	В	24.7	26.6	29.2
825	С	24.8	25.1	28.7
903	Α	24.8	26.3	28.7
913	В	24.7	26.5	28.8
921	C	24.9	25.4	28.3
1002	Α	24.3	25.7	27.9
1011	В	24.6	26.5	28.3
1019	С	24.8	24.9	27.9
1102	Α	24.5	25.1	27.9
1111	В	24.5	25.9	27.9
1119	С	24.7	24.8	27.3
1202	Α	24.4	24.4	27.2
1208	В	24.3	24.8	27.5
1217	С	24.4	24.5	27.0
1305	Α	24.1	24.1	24.3
1314	В	23.9	25.3	27.4
1323	С	23.0	24.2	27.0
1402	Α	24.0	23.9	23.9
1410	В	23.8	24.8	27.3
1417	С	24.0	24.1	26.9
1503	Α	24.0	23.9	24.2
1511	В	23.9	24.3	27.4
1520	С	24.1	24.3	26.8
1604	Α	24.1	24.0	24.5
1616	В	24.0	24.8	27.4
1616	С	24.1	24.9	26.8

Table 47
Salinity Data Observed at Range 2, 11 November 1988

Hour	Sta		Salinity, ppt	
CST	<u>No.</u>	Surface	Middepth	Bottom
724	В	20.1	22.5	24.2
732	С	21.5	24.4	24.5
742	Α	11.8	11.3	15.5
802	В	14.6	21.5	23.7
812	С	18.6	24.0	24.3
822	Α	11.9	11.4	11.5
902	В	15.2	20.9	23.6
908	С	17.4	22.4	24.0
922	Α	12.0	11.6	11.5
1002	В	18.4	22.0	23.3
1010	С	15.9	22.9	23.8
1020	Α	12.0	11.6	11.6
1102	В	17.7	22.0	23.4
1108	С	16.0	22.4	23.6
1123	Α	12.0	11.6	11.6
1204	В	16.6	20.4	22.8
1212	С	22.7	22.7	23.5
1226	Α	11.9	11.5	11.5
1302	В	16.5	20.8	22.6
1313	С	20.5	22.0	23.3
1322	Α	11.9	11.6	12.5
1402	В	16.9	20.8	22.5
1414	С	16.8	20.5	23.1
1425	Α	15.2	15.1	17.9
1502	В	16.9	20.5	22.8
1509	С	17.8	20.5	20.9
1517	Α	17.8	19.4	18.8
1602	В	17.4	20.2	22.8
1612	С	17.7	20.5	23.0
1622	Α	17.8	18.2	18.0

Table 48

<u>Salinity Data Observed at Range 3, 11 November 1988</u>

Hour	Sta		Salinity, ppt	
<u>CST</u>	<u>No .</u>	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
705	Α	11.8	19.3	23.2
711	В	11.9	11.6	13.1
728	С	12.7	23.0	23.4
736	D	13.5	22.9	23.5
801	Α	11.9	11.9	23.0
807	В	11.8	11.4	11.5
816	С	13.3	22.0	23.3
825	D	14.3	22.7	23.3
903	Α	11.7	11.5	22.7
907	В	12.0	11.6	11.8
915	C	13.2	22.8	23.3
921	D	13.2	22.6	23.3
948	A	11.4	11.7	20.0
952	В	11.9	11.6	11.6
959	С	12.6	22.6	23.2
1004	D	22.4	22.9	23.3
1021	Α	11.3	11.3	22.4
1026	В	11.9	11.4	11.4
1035	С	12.3	22.6	23.1
1041	D	16.4	22.1	23.1
1102	Α	11.7	11.4	22.5
1107	В	11.8	11.4	11.5
1115	С	13.5	22.5	23.1
1121	D	13,3	21.1	22.9
1201	Α	11.7	11.5	22.2
1206	В	11.7	11.4	11.8
1216	С	12.9	21.8	23.0
1222	D	13.1	21.6	23.0
1301	Α	11.8	11.5	20.9
1307	В	11.7	11.8	11.9
1316	С	12.9	20.7	22.7
1322	D	12.8	19.9	22.9
1401	Α	11.8	11.6	20.9
1407	В	11.6	11.4	11.7
1416	С	12.6	20.4	22.4
1423	D	12.8	20.2	22.8
1501	Α	11.9	11.6	21.4
1509	В	11.7	11.8	11.9
1520	С	12.4	19.4	22.3
1535	D	12.7	20.0	22.6

(Continued)

Table 48 (Concluded)

Hour	Sta	Salinity, ppt		
<u>CST</u>	<u>No.</u>	Surface	Middepth	Bottom
1601	Α	11.8	11.6	21.9
1606	В	11.6	12.1	12.3
1616	С	12.2	18.5	22.3
1623	D	12.9	19.8	22.6

Table 49

<u>Salinity Data Observed at Range 1, 27 November 1988</u>

Hour	Sta		Salinity, ppt	
CST	<u>No.</u>	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
743	Α	21.3	21.7	23.3
751	В	20.3	22.5	25.9
757	С	20.8	22.4	25.5
804	Α	20.8	22.1	24.4
810	В	21.0	22.4	25.5
815	С	20.6	22.6	25.2
902	Α	21.2	22.2	24.2
911	В	20.7	23.2	24.8
917	С	20.7	22.8	24.4
1002	Α	21.3	22.1	23.4
1007	В	21.1	22.7	23.9
1015	С	20.7	22.3	23.6
1102	Α	21.3	21.9	23.4
1111	В	21.1	22.4	23.3
1117	С	20.9	22.4	23.2
1204	Α	21.4	21.3	22.4
1209	В	21.3	22.3	22.9
1215	С	21.3	22.0	22.9
1303	Α	21.4	21.3	22.2
1308	В	21.1	21.9	22.6
1314	С	21.2	21.8	22.6
1401	Α	21.0	21.3	21.3
1405	В	20.9	21.2	22.3
1410	С	20.7	21.2	22.3
1502	Α	20.4	20.4	20.5
1511	В	20.2	20.6	21.6
1519	С	20.3	20.5	21.8

Table 50
Salinity Data Observed at Range 2, 27 November 1988

Hour	Sta		Salinity, ppt	
CST	<u>No.</u>	Surface	<u>Middepth</u>	<u>Bottom</u>
722	В	19.8	21.2	21.5
728	С	17.8	20.9	21.4
737	Α	13.8	14.0	17.8
802	В	18.7	21.1	21.4
809	С	17.5	21.0	21.4
817	Α	13.3	13.6	18.8
902	В	19.3	22.6	21.3
910	С	17.0	20.6	21.3
918	Α	13.4	13.1	14.9
1003	В	18.8	20.5	21.1
1009	С	17.3	19.8	20.8
1003	Α	13.5	13.2	13.2
1108	В	16.6	19.6	20.0
1113	С	17.8	20.1	20.8
1122	Α	13.4	13.2	13.2
1206	В	16.6	18.1	19.4
1214	С	17.8	19.4	20.6
1224	Α	13.5	13.2	13.1
1302	В	16.7	17.5	19.7
1310	С	17.9	19.1	20.4
1317	Α	13.2	12.9	12.9
1402	В	16.5	17.4	18.9
1410	С	17.3	18.7	19.9
1417	Α	13.3	13.0	13.0
1500	Α	13.3	13.1	13.0
1506	В	16.3	17.3	17.2
1513	С	17.4	18.2	19.5

Table 51
Salinity Data Observed at Range 3, 27 November 1988

Hour	Sta		Salinity, ppt	
CST	<u>No.</u>	Surface	<u>Middepth</u>	<u>Bottom</u>
715	Α	_	_	17.3
801	Α	16.1	17.3	17.5
807	В	15.7	15.9	17.5
822	С	16.9	17.8	17.9
828	D	16.7	17.9	18.0
901	Α	15.8	16.6	17.6
907	В	15.6	15.9	17.5
915	С	16.8	17.7	18.0
923	D	15.9	17.9	18.0
1001	Α	_	16.2	17.6
1046	С	14.0	16.7	17.8
1055	D	14.1	16.1	17.9
1131	С	13.6	16.5	17.8
1139	D	13.6	17.0	18.0
1231	С	13.6	15.6	17.5
1236	D	13.6	15.6	17.7
1331	С	13.5	14.1	17.0
1343	Đ	13.3	14.3	17.3
1433	С	13.1	13.5	15.5
1443	D	13.0	13.6	17.1
1454	Α	12.6	13.6	15.3
1501	В	12.6	13.8	15.7
1516	С	12.8	13.2	13.5
1524	D	12.5	13.4	13.7

Note: - = no sample.

Table 52

<u>Automatic Sampler Salinity Data for 26 October 1988</u>

Hour	Salinity	7. ppt
CST	AWS-2	AWS-1
0700	15.0	10.2
0730	13.5	10.0
0800	12.9	10.0
0830	13.4	10.0
0900	13.5	10.0
0930	13.0	9.9
1000	11.6	9.9
1030	11.2	9.9
1100	11.3	9.9
1130	11.4	9.9
1200	11.4	9.9
1230	11.4	9.8
1300	11.4	9.8
1330	11.3	9.8
1400	11.2	9.8
1430	11.1	9.7
1500	11.0	9.7
1530	11.0	9.7
1600	11.0	10.0
1630	11.1	12.6
1700	11.1	14.1
1730	11.1	14.5
1800	11.1	14.8
1830	11.1	15.9

Table 53

<u>Automatic Sampler Salinity Data</u>

<u>28 October-9 November 1988</u>

Hour	Salinit	y, ppt
<u>CST</u>	AWS-2	AWS-1
10/28	10.7	13.2
10/29	12.8	12.8
10/29	10.7	12.3
10/30	11.6	10.6
10/30	10.5	11.0
10/31	10.7	11.6
10/31	10.2	10.5
11/01	10.9	11.2
11/01	10.4	10.3
11/02	10.2	9.6
11/02	10.7	9.5
11/03	11.1	9.6
11/03	12.2	11.6
11/04	13.3	11.7
11/04	14.0	13.9
11/05	15.3	18.1
11/05	15.7	11.6
11/06	16.6	12.7
11/06	15.2	11.6
11/07	17.1	16.1
11/07	20.0	15.7
11/08	21.5	18.3
11/08	22.5	14.6
11/09	19.0	14.2

Table 54

<u>Automatic Sampler Salinity Data for 11 November 1988</u>

Hour	Salinit	y, ppt
CST	AWS-2	<u>AWS-1</u>
0700	11.9	12.2
0730	11.8	11.9
0800	11.7	11.9
0830	11.6	11.8
0900	11.5	11.7
0930	11.4	11.6
1000	11.4	11.5
1030	11.3	11.5
1100	11.3	11.5
1130	11.3	11.4
1200	11.4	11.3
1230	11.4	11.3
1300	11.4	11.4
1330	11.4	11.4
1400	11.4	11.5
1430	11.4	11.7
1500	11.4	11.5
1530	11.4	11.6
1600	11.4	11.9
1630	11.5	12.8
1700	11.6	13.2
1730	11.5	15.5
1800	11.4	16.0
1830	11.4	15.5

Table 55

<u>Automatic Sampler Salinity Data for</u>

13-25 November 1988

Hour	Salinit	y, ppt
CST	<u>AWS-2</u>	AWS-1*
11/13	16.2	
11/14	14.4	
11/14	11.4	
11/15	12.3	
11/15	12.0	
11/16	13.0	
11/16	14.4	
11/17	13.9	
11/17	12.4	
11/18	12.1	
11/18	12.7	
11/19	12.1	
11/19	11.8	
11/20	12.3	
11/20	13.7	
11/21	13.3	
11/21	12.7	
11/22	11.7	
11/22	11.2	
11/23	10.6	
11/23	11,2	
11/24	10.6	
11/24	11.0	
11/25	10.9	

^{*} No samples available due to instrument malfunction.

Table 56
Automatic Sampler Salinity Data for 27 November 1988

CST AWS-2 AWS-1 0700 13.8 13.5 0730 15.3 12.9 0800 15.7 12.7 0830 15.6 12.7 0900 16.2 12.9 0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.7 1400 14.8 12.5 1430 14.6 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	Hour	Salinity	, ppt
0730 15.3 12.9 0800 15.7 12.7 0830 15.6 12.7 0900 16.2 12.9 0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1400 14.8 12.5 1530 14.7 12.5 1530 14.7 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	CST		
0800 15.7 12.7 0830 15.6 12.7 0900 16.2 12.9 0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1400 14.8 12.5 1530 14.7 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0700	13.8	13.5
0830 15.6 12.7 0900 16.2 12.9 0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0730	15.3	12.9
0900 16.2 12.9 0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1530 14.7 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0800	15.7	12.7
0930 16.2 13.1 1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.8 12.5 1530 14.7 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0830	15.6	12.7
1000 16.1 13.1 1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1400 14.8 12.5 1530 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0900	16.2	12.9
1030 16.1 13.2 1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	0930	16.2	13.1
1100 15.8 13.2 1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1000	16.1	13.1
1130 15.3 13.1 1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1030	16.1	13.2
1200 15.0 13.1 1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1100	15.8	13.2
1230 14.5 12.7 1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1130	15.3	13.1
1300 14.1 12.6 1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1200	15.0	13.1
1330 14.5 12.5 1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1230	14.5	12.7
1400 14.8 12.5 1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1300	14.1	12.6
1430 14.6 12.5 1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1330	14.5	12.5
1500 14.7 12.5 1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1400	14.8	12.5
1530 14.2 12.4 1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1430	14.6	12.5
1600 13.3 12.4 1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1500	14.7	12.5
1630 12.6 12.4 1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1530	14.2	12.4
1700 12.1 12.4 1730 11.8 12.4 1800 11.6 12.4	1600	13.3	12.4
1730 11.8 12.4 1800 11.6 12.4	1630	12.6	12.4
1730 11.8 12.4 1800 11.6 12.4	1700	12.1	12.4
1800 11.6 12.4	1730	11.8	
1830 11.6 12.4	1800	11.6	12.4
	1830	11.6	12.4

Table 57

<u>Suspended Sediment Concentration Data Observed at Range 1, 26 October 1988</u>

Hour	Hour Sta Concentration, mg/l			
CST	<u>No.</u>	Surface	<u>Middepth</u>	Bottom
731	Α	13	68	314
742	C	17	36	192
803	Α	20	55	348
811	В	15	14	636
818	С	13	34	476
835	X	17	-	_
847	Α	16	29	252
853	В	9	16	672
859	С	24	36	2160
904	X	25	-	-
917	Α	13	30	242
925	В	13	18	712
931	С	30	31	191
939	X	24	_	-
948	Α	19	30	352
1001	В	20	24	344
1010	С	22	21	544
1019	X	19	_	-
1028	Α	15	35	196
1035	В	14	22	240
1043	С	18	23	95
1102	Α	16	29	132
1108	В	13	19	182
1114	С	13	26	148
1202	Α	14	22	103
1210	В	15	16	115
1216	С	17	27	224
1303	A	23	19	37
1308	В	11	19	49
1318	С	12	13	22
1401	Α	10	15	28
1407	В	12	16	30
1413	С	11	18	38
1502	Α	15	14	17
1510	В	9	14	27
1516	С	12	16	29
1557	Α	17	14	-
1605	В	11	17	99
1611	С	10	16	18
1740	С	_	-	-

Note: - = No sample taken.

Table 58

<u>Suspended Sediment Concentration Data Observed at Range 2, 26 October 1988</u>

Hour Sta CST No. Surf 717 B 8 725 C 7	Concentration, mg/l ace Middepth Botto 9 73
725 C 7	9 73
725 C 7	
	38 56
734 A 14	11 21
759 B 10	10 58
808 C 7	13 46
816 A 15	19 41
831 B 11	13 16
837 C 9	27 176
845 A 13	15 10
854 X 6	
901 B 11	81 219
906 C 11	33 81
915 A 11	16 18
922 X 5 932 B 7	9 80
932 B 7	9 80
938 C 8	9 206
946 A 13	11 17
953 X 5	
1003 B 9	13 250
1014 C 10	12 76
1022 A 13	14 21
1101 B 8 1108 C 7	16 194
	13 96
1115 A 21	
1202 B 9	14 135
1210 C 7	16 60
1217 A 9 1302 B 7 1311 C 5	12 12
1302 B 7	16 137
1311 C 5	12 71
1318 A 10	10 11
1403 B 6	9 68
1409 C 7	8 37
1417 A 13	15 13
1501 B 6	9 18 7 18
1507 C 4	7 18
1516 A 10	
1531 B 7	7 13
1539 C 4	5 55
1548 A 8	7 8

Note: - = No sample taken.

Table 59

<u>Suspended Sediment Concentration Data Observed at</u>

<u>Range 3, 26 October 1988</u>

Hour	Sta		Concentration, mg/l	
CST	<u>No.</u>	<u>Surface</u>	Middepth	Bottom
705	Α	13	25	16
715	В	8	15	18
727	С	7	8	28
735	D	14	8	11
804	Α	8	8 7	13
807	В	7	6	35
816	С	5	6	13
821	D	5 2 5 7	5	29
832	X	5	_	8
839	Α	7	8	11
845	В	7	6	7
855	С	8	12	17
859	D	4	5	7
909	· X	5	_	8
916	Α	4	14	18
921	В	6	8	7
929	С	7	14	28
935	D	8	14	36
944	X	6	_	5
951	Α	6	17	50
956	В	10	8	8
1004	С	11	11	24
1009	D	8	11	28
1016	Α	5	7	32
1023	В	8	4	14
1029	С	6	10	25
1036	D	16	8	30
1101	Α	4	6	27
1106	В	5	3	7
1115	С	6	11	28
1120	D	5	8	46
1201	Α	3	4	12
1207	В	4	4	6
1217	С	6	4 7	38
1223	D	7	12	52
1301	Α	5	4	10
1307	В	8	6	7
1315	С	4	ò	41
1322	D	6	37	43

(Continued)

Note: - = No sample taken.

Table 59 (Concluded)

Hour	Sta	Concentration, mg/l		
CST	No.	<u>Surface</u>	<u>Middepth</u>	Bottom
1401	Α	5	4	10
1407	В	11	10	9
1416	С	8	29	35
1421	D	8	11	40
1501	Α	5	9	35
1506	В	9	8	19
1514	С	5	11	30
1519	D	6	9	28
1533	Α	5	21	25
1538	В	5	9	23
1547	С	8	27	24
1552	D	19	7	29

Table 60

<u>Susupended Sediment Corcentration Data Observed at Range 1, 11 November 1988</u>

Hour	Sta		Concentration, mg/l	, mg/l	
<u>CST</u>	<u>No.</u>	<u>Surface</u>	Middepth	Bottom	
732	Α	25	12	80	
742	В	13	24	515	
752	C	12	48	238	
808	Α	15	25	24	
817	В	11	16	455	
825	С	15	12	186	
903	Α	29	129	194	
913	В	26	11	380	
921	C	12	23	196	
- 1002	Α	11	23	202	
1011	В	5	24	250	
1019	С	17	20	124	
1102	Α	13	17	222	
1111	В	9	15	107	
1119	С	15	17	86	
1202	Α	17	29	70	
1208	В	15	17	46	
1217	С	17	14	35	
1305	Α	13	15	20	
1314	В	14	22	36	
1323	С	13	15	27	
1402	Α	14	13	13	
1410	В	12	16	26	
1417	С	12	15	112	
1503	Α	12	14	17	
1511	В	13	16	24	
1520	С	16	17	24	
1604	Α	11	7	13	
1616	В	12	22	15	
1616	С	8	14	18	

Table 61
Suspended Sediment Concentration Data Observed at
Range 2, 11 November 1988

Hour Sta		Concentration, mg/l		
CST	<u>No.</u>	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
724	В	21	19	43
732	С	19	38	40
742	Α	72	76	79
802	В	25	18	55
812	С	14	31	88
822	Α	86	91	93
902	В	27	23	72
908	С	23	19	74
922	Α	90	88	90
1002	В	30	39	56
1010	С	29	31	188
1020	Α	97	99	90
1102	В	19	35	110
1108	С	22	25	125
1123	Α	62	66	64
1204	В	66	25	19
1212	С	48	17	168
1226	Α	61	64	73
1302	В	16	19	62
1313	С	11	15	41
1322	Α	26	32	65
1402	В	17	87	37
1414	С	12	14	19
1425	Α	20	23	29
1502	В	13	14	49
1509	С	13	31	99
1517	Α	15	17	12
1602	В	10	15	23
1612	С	11	13	33
1622	Α	14	13	14

Table 62

<u>Suspended Sediment Concentration Data Observed at</u>

<u>Range 3, 11 November 1988</u>

Hour	Sta		Concentration, mg/l	
CST	<u>No.</u>	Surface	Middepth	<u>Bottom</u>
705	Α	26	30	21
711	В	57	40	66
728	Č	18	20	21
736	D	16	18	20
801	A	28	59	24
		58	56	79
807	B C	19	16	19
816 825	D	21	16	19
903	A	54	15	19
903	В	56	60	51
915	С	14	17	20
921	D	21	18	17
948	Α	49	49	32
952	В	60	81	92
959	С	38	17	20
1004	D	16	18	34
1021	Α	61	49	42
1026	В	61	90	106
1035	С	19	22	27
1041	D	23	19	20
1102	Α	30	47	41
1107	В	57	74	101
1115	C	19	21	23
1121	D	23	32	36
1201	A	57	42	33
			59	72
1206	В	50	22	26
1216	C	19	25 25	42
1222	D	20	32	24
1301 1307	A B	39 50	47	62
1316	C	16	19	21
1322	D	19	15	23
1401	Α	38	30	35
1407	В	62	37	65
1416	С	16	34	23
1423	D	15	17	112
1501	Α	31	27	46
1509	В	61	36	58
1520	С	16	34	38
1535	D	14	12	18
1601	Α	42	36	18
1606	В	53	31	29
1616	C	24	21	126
1623	D	14	13	17

Table 63

<u>Suspended Sediment Concentration Data Observed at Range 1, 27 November 1988</u>

Hour	Sta		Concentration, mg/l	
<u>CST</u>	<u>No.</u>	Surface	<u>Middepth</u>	Bottom
743	Α	22	21	44
751	В	16	13	147
757	С	22	14	172
804	Α	13	20	113
810	В	9	15	335
815	С	15	17	265
902	Α	15	36	363
911	В	8	19	454
917	С	10	32	247
1002	Α	20	33	216
1007	В	4	13	320
1015	С	10	32	72
1102	Α	25	39	144
1111	В	12	40	308
1117	С	14	27	312
1204	Α	48	78	148
1209	В	17	34	236
1215	С	20	34	228
1303	A	47	46	106
1308	В	22	38	262
1314	С	21	37	189
1401	Α	31	52	58
1405	В	21	38	180
1410	C	43	24	167
1502	Α	21	28	39
1511	В	17	30	68
1519	С	15	17	54

Table 64

<u>Suspended Sediment Concentration Data Observed at</u>

<u>Range 2, 27 November 1988</u>

Hour Sta			Concentration, mg/ℓ	
<u>CST</u>	No.	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
722	В	8	16	26
728	С	8	12	15
737	Α	9	10	13
802	В	7	23	22
809	С	8	16	46
817	Α	5	9	12
902	В	12	17	22
910	С	9	11	29
918	Α	25	25	21
1003	В	16	45	126
1009	С	11	22	44
1003	Α	21	12	16
1108	В	19	22	40
1113	С	21	72	138
1122	Α	190	184	224
1206	В	50	104	450
1214	С	36	32	124
1224	Α	120	214	224
1302	В	58	76	280
1310	С	60	70	101
1317	Α	247	243	245
1402	В	110	122	155
1410	С	61	43	190
1417	Α	204	197	200
1500	Α	259	250	252
1506	В	75	172	210
1513	С	58	46	243

Table 65
Suspended Sediment Concentration Data Observed at
Range 3, 27 November 1988

Hour Sta		Concentration, mg/ℓ		
CST_	No.	<u>Surface</u>	<u>Middepth</u>	<u>Bottom</u>
715	Α	14	22	38
726	В	14	41	53
742	С	13	22	129
749	D	16	19	24
801	Α	12	15	32
807	В	14	12	46
822	С	13	200	1630
828	D	13	30	438
901	Α	38	43	100
907	В	25	31	156
915	С	14	38	71
923	D	49	40	156
1001	Α	_	29	53
1046	С	20	44	87
1055	D	27	44	71
1131	С	24	40	69
1139	D	25	38	57
1231	С	24	34	54
1236	D	28	35	44
1331	С	54	99	127
1343	D	39	202	131
1433	С	43	84	107
1443	D	48	144	122
1454	Α	82	63	88
1501	В	82	. 68	104
1516	С	33	77	223
1524	D	29	95	242

Table 66

<u>Automatic Sampler Suspended Sediment Concentration</u>

<u>Data, 26 October 1988</u>

Hour		l Sediment ation, mg/l
CST	AWS-2	AWS-1
0700	8	8
0730	5	6
0800	8	8
0830	7	7
0900	7	9
0930	7	7
1000	5	8
1030	5	10
1100	4	9
1130	6	8
1200	6	10
1230	6	8
1300	5	11
1330	6	12
1400	8	16
1430	9	37
1500	10	63
1530	9	37
1600	7	52
1630	7	28
1700	8	22
1730	8	22
1800	8	40
1830	6	40

Table 67

<u>Automatic Sampler Suspended Sediment Concentration</u>

<u>Data, 28 October-9 November 1988</u>

		Sediment
Date_	AWS-2	AWS-1
10/28	7	12
10/29	8	12
10/29	2	11
10/30	4	8
10/30	3	20
10/31	7	8
10/31	2	59
11/01	21	81
11/01	3	115
11/02	41	96
11/02	6	30
11/03	7	22
11/03	5	35
11/04	11	19
11/04	5	18
11/05	32	57
11/05	3	46
11/06	5	61
11/06	5	151
11/07	8	92
11/07	14	25
11/08	4	81
11/08	7	15
11/09	2	22

Table 68

Automatic Sampler Suspended Sediment Concentration

Data, 11 November 1988

	Suspended	
Hour		tion, mg/l
CST	<u>AWS-2</u>	AWS-1
0700	50	177
0730	51	150
0800	60	165
0830	54	171
0900	62	161
0930	77	186
1000	80	163
1030	71	154
1100	74	163
1130	75	139
1200	62	123
1230	66	133
1300	66	118
1330	57	107
1400	45	118
1430	57	119
1500	62	122
1530	62	108
1600	61	110
1630	62	80
1700	58	75
1730	64	83
1800	58	69
1830	55	69

Table 69

<u>Automatic Sampler Suspended Sediment Concentration</u>

<u>Data, 14-25 November 1988</u>

		d Sediment
Doto	<u>Concentr</u> <u>AWS-2</u>	ation, mg/l
Date	<u>AWS-2</u>	AWS-1
11/13	7	
11/14	4	
11/14	14	
11/15	9	
11/15	25	
11/16	7	
11/16	20	
11/17	12	
11/17	61	
11/18	100	
11/18	111	
11/19	91	
11/19	44	
11/20	27	
11/20	45	
11/21	74	
11/21	211	
11/22	112	
11/22	140	
11/23	117	
11/23	59	
11/24	42	
11/24	33	
11/25	22	

^{*} No samples available due to instrument malfunction.

Table 70

<u>Automatic Sampler Suspended Sediment Concentration</u>

<u>Data, 27 November 1988</u>

	Suspended	Sediment
Hour	Concentra	tion, mg/l
<u>CST</u>	<u>AWS-2</u>	AWS-1
0700	4	34
0730	1	48
0800	1	52
0830	13	41
0900	24	73
0930	8	68
1000	22	44
1030	18	49
1100	151	53
1130	227	83
1200	202	78
1230	283	88
1300	233	81
1330	223	91
1400	190	106
1430	192	94
1500	230	88
1530	187	90
1600	232	81
1630	213	79
1700	213	80
1730	199	85
1800	193	66
1830	189	59

WATER-SURFACE ELEVATIONS GAGES TG-4 AND TG-7

25-27 OCTOBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS
GAGES TG-4 AND TG-7
10-12 NOVEMBER 1988

WATER-SURFACE ELEVATIONS GAGES TG-4 AND TG-7

26-28 NOVEMBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS
GAGES TG-10 AND TG-11
25-27 OCTOBER 1988

WATER-SURFACE ELEVATIONS GAGES TG-10 AND TG-11

10-12 NOVEMBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS GAGES TG-10 AND TG-11

26-28 NOVEMBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS
GAGES TG-12 AND TG-13
25-27 OCTOBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS GAGES TG-12 AND TG-13 10-12 NOVEMBER 1988

NOTE: MEAN WATER LEVEL READING USED AS DATUM

WATER-SURFACE ELEVATIONS GAGES TG-12 AND TG-13

26-28 NOVEMBER 1988

PLATE 10

PLATE 14

PLATE 16

PLATE 32

PLATE 40

PLATE 42

PLATE 48 (SHEET 1 OF 2)

SALINITY CONCENTRATIONS AUTOMATIC SAMPLERS OCTOBER - NOVEMBER 1988

SUSPENDED SEDIMENT CONCENTRATIONS AUTOMATIC SAMPLERS OCTOBER - NOVEMBER 1988