```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\madrid_2006.csv")
 data

Out[2]:

		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	F
_	0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000	97.57
	1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.82
	2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000	34.41
	3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000	28.26
	4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000	54.18
	230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999	93.12
i	230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.46
	230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000	64.68
·	230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN	94.36
	230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.49

230568 rows × 17 columns

```
In [3]: data.info()
```

13

14

SO 2

TCH

15 TOL

<class 'pandas.core.frame.DataFrame'> RangeIndex: 230568 entries, 0 to 230567 Data columns (total 17 columns): Column Non-Null Count Dtype _ _ _ -----0 date 230568 non-null object float64 1 BEN 73979 non-null 2 CO 211665 non-null float64 3 EBE 73948 non-null float64 4 MXY 33422 non-null float64 90829 non-null 5 **NMHC** float64 float64 6 NO 2 228855 non-null 7 NOx 228855 non-null float64 float64 8 OXY 33472 non-null 9 0_3 216511 non-null float64 10 227469 non-null float64 PM10 11 PM25 61758 non-null float64 float64 12 PXY 33447 non-null

dtypes: float64(15), int64(1), object(1)

16 station 230568 non-null int64

90887 non-null

73840 non-null

229125 non-null float64

float64

float64

memory usage: 29.9+ MB

In [4]: df=data.fillna(value=0)
df

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	F
0	2006- 02-01 01:00:00	0.00	1.84	0.00	0.00	0.00	155.100006	490.100006	0.00	4.880000	97.57
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.82
2	2006- 02-01 01:00:00	0.00	1.25	0.00	0.00	0.00	66.800003	192.000000	0.00	4.430000	34.41
3	2006- 02-01 01:00:00	0.00	1.68	0.00	0.00	0.00	103.000000	407.799988	0.00	4.830000	28.26
4	2006- 02-01 01:00:00	0.00	1.31	0.00	0.00	0.00	105.400002	269.200012	0.00	6.990000	54.18
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	0.00	0.20	112.500000	218.000000	0.00	24.389999	93.12
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.46
230565	2006- 05-01 00:00:00	0.96	0.00	0.69	0.00	0.19	135.100006	179.199997	0.00	11.460000	64.68
230566	2006- 05-01 00:00:00	0.50	0.00	0.67	0.00	0.10	82.599998	105.599998	0.00	0.000000	94.36
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.49

230568 rows × 17 columns

```
In [5]: df.columns
```

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x2d5f9741c70>


```
In [7]: sns.distplot(data["MXY"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

MODEL BUILDING

Linear Regression

Out[13]: <matplotlib.collections.PathCollection at 0x2d59894d0d0>


```
In [14]: print(lr.score(x_test,y_test))
```

0.9267060020053357

Ridge Regression

```
In [15]: from sklearn.linear_model import Ridge
In [16]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[16]: Ridge(alpha=10)
In [17]: rr.score(x_test,y_test)
Out[17]: 0.9267070700237199
```

Lasso Regression

```
In [18]: from sklearn.linear_model import Lasso
```

```
In [19]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[19]: Lasso(alpha=10)

In [20]: la.score(x_test,y_test)

Out[20]: 0.04809089726963345
```

Elastic Regression

```
In [21]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[21]: ElasticNet()
In [22]: |print(en.coef_)
         [ 0.
                       0.
                                    0.
                                                                        0.00131568
                                               0.19728964
           0.52948898 0.
                                   -0.0006754
           0.13238778 0.01146552]
In [23]: print(en.predict(x_test))
         [ 1.92201814 2.76911128 1.05761045 ... 0.5440165 -0.16558609
          -0.05781555]
In [24]:
         print(en.score(x_test,y_test))
         0.7196134103451814
```

Logistic Regression

```
In [25]: from sklearn.linear_model import LogisticRegression

In [26]: feature_matrix=df1.iloc[:,0:15]
    target_vector=df1.iloc[:,-1]

In [27]: feature_matrix.shape

Out[27]: (230568, 15)

In [28]: target_vector.shape

Out[28]: (230568,)
```

```
In [29]: | from sklearn.preprocessing import StandardScaler
In [30]: | fs=StandardScaler().fit transform(feature matrix)
In [31]: logr=LogisticRegression()
         logr.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[31]: LogisticRegression()
In [32]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
         prediction=logr.predict(observation)
In [33]:
         print(observation)
         [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]
In [34]: logr.classes
Out[34]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079026, 28079027, 28079035, 28079036, 28079038,
                28079039, 28079040, 28079099], dtype=int64)
In [35]: logr.score(fs,target vector)
Out[35]: 0.9029136740571111
```

Random Forest

```
In [36]: from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import plot_tree
```

```
In [37]: df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
                 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
         x=df1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
                 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
         y=df1['station']
In [38]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.70)
In [39]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[39]: RandomForestClassifier()
In [40]:
         parameters={'max_depth':[1,2,3,4,5],
                    'min_samples_leaf':[5,10,15,20,25],
                    'n_estimators':[10,20,30,40,50]}
In [41]: from sklearn.model_selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='acc
         grid_search.fit(x_train,y_train)
Out[41]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [42]: grid search.best score
Out[42]: 0.8118548503686569
In [43]: rfc best=grid_search.best_estimator_
```

```
In [44]: from sklearn.tree import plot tree
       plt.figure(figsize=(80,40))
       plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
        9, 0, 0, 0, 0, 0, 0]'),
        Text(1974.4615384615383, 181.199999999999, 'gini = 0.215\nsamples = 306
       \nvalue = [0, 0, 0, 0, 0, 7, 0, 0, 0, 436, 0, 0, 0\n0, 0, 36, 0, 0, 7,
       8, 0, 0, 0, 0, 0, 0]'),
        2\nvalue = [0, 0, 0, 2, 0, 282, 0, 0, 0, 1248, 0, 0\n0, 0, 670, 0,
       0, 493, 375, 0, 0, 0, 0, 0\n6]'),
        Text(2146.153846153846, 181.1999999999982, 'gini = 0.731\nsamples = 691
       \nvalue = [0, 0, 0, 0, 0, 123, 0, 0, 0, 43, 0, 0, 0 \n0, 0, 204, 0, 0, 3]
       53, 375, 0, 0, 0, 0, 0, 0]'),
        Text(2317.846153846154, 181.1999999999999, 'gini = 0.562 \nsamples = 1221
       \nvalue = [0, 0, 0, 2, 0, 159, 0, 0, 0, 0, 1205, 0, 0 \n0, 0, 0, 466, 0, 0, 0]
       140, 0, 0, 0, 0, 0, 6]'),
        Text(3219.230769230769, 1630.8000000000002, 'TCH <= 0.34\ngini = 0.749\ns
       0, 2444, 0, 0, 0, 2298, 0, 0, 0, 0, 2653]'),
        Text(2661.230769230769, 1268.4, 'NO_2 <= 13.22\ngini = 0.097\nsamples = 6
       54\nvalue = [0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 17, 0, 0,
       0, 965, 0, 0, 0, 0, 25]'),
```

Results

The best model is Ridge Regression 0.9267070700237199

In []: