MPC for Group Reconstruction Circuits

Lúcás Críostóir Meier

June 8, 2022

Abstract

In this paper, we present a thing.

1 Introduction

Write the introduction

2 Background

Throughout this paper, we let \mathbb{G} denote a group of prime order q, with generators G and H. Let \mathbb{F}_q denote the scalar field associated with this group, and let $\mathbb{Z}/(q)$ denote the additive group of elements in this field.

We make heavy use of group homomorphisms throughout this paper. We let

$$\varphi(P_1,\ldots,P_m):\mathbb{A}\to\mathbb{B}$$

denote a homomorphism from \mathbb{A} to \mathbb{B} , parameterized by some public values P_1, \ldots, P_m . Commonly \mathbb{A} will be a product of several groups $\mathbb{G}_1, \ldots, \mathbb{G}_n$, in which case we'd write:

$$\varphi(P_1,\ldots,P_m)(x_1,\ldots,x_n)$$

to denote the application of φ to an element (x_1, \ldots, x_n) of the product group. Such an element is sometimes treated as a vector \mathbf{x} , in which case we write $\varphi(P_1, \ldots, P_m)(\mathbf{x})$. We also often leave the public values P_i implicit.

2.1 Pedersen Commitments

2.2 Sigma Protocols

2.3 Maurer's φ -Proof

In [Mau09], Maurer generalized Schnorr's sigma protocol for knowledge of the discrete logarithm [Sch90] to a much larger class of relations. In particular, Maurer provided a sigma protocol for proving knowledge of the pre-image of a group

homomorphism φ . We denote this protocol as a " φ -proof", and recapitulate the scheme here.

Given a homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$, and a public value $X \in \mathbb{B}$, the prover wants to demonstrate knowledge of a private value $x \in \mathbb{A}$ such that $\varphi(x) = X$. The prover does this by means of Protocol 2.1:

Protocol 2.1:
$$\varphi$$
-Proof

Prover

knows $x \in \mathbb{A}$

Verifier

public $X \in \mathbb{B}$

$$k \overset{R}{\leftarrow} \mathbb{A}$$

$$K \leftarrow \varphi(k)$$

$$\overset{K}{\longrightarrow}$$

$$c \overset{R}{\leftarrow} \mathbb{Z}/(p)$$

$$\overset{c}{\leftarrow}$$

$$s \leftarrow k + c \cdot x$$

$$\varphi(s) \stackrel{?}{=} K + c \cdot X$$

Here, p is chosen such that $\forall B \in \mathbb{B}$. $p \cdot B = 0$. In practice, we'll set p = q, which will work perfectly for the groups we use, which are all products of \mathbb{G} or $\mathbb{Z}/(q)$.

Claim 2.1. Protocol 2.1 is a valid sigma protocol.

Completeness follows directly from the fact that φ is a homomorphism.

For the HVZK property, the simulator S(X, c) works by generating a random $s \stackrel{R}{\leftarrow} \mathbb{A}$, and then setting $K := \varphi(S) - c \cdot X$.

Finally, we prove 2-extractability. Given two verifying transcripts (K, c, s) and (K, c', s') sharing the first message, we extract a value \hat{x} satisfying $\varphi(\hat{x}) = X$ as follows:

$$\varphi(s) - c \cdot X = K = \varphi(s') - c' \cdot X$$

$$\varphi(s) - \varphi(s') = c \cdot X - c' \cdot X$$

$$\frac{1}{c - c'} \cdot \varphi(s - s') = X$$

$$\varphi\left(\frac{s - s'}{c - c'}\right) = X$$

Thus, defining $\hat{x} := (s-s')/(c-c')$, we successfully extract a valid pre-image.

We conclude that the protocol is a valid sigma protocol.

Maurer's protocol can also work even in the case where the order of the groups are not known, but this makes the challenge generation a bit more complicated, and we don't need this functionality in this work.

2.4 UC Security and the Hybrid Model

2.5 Ideal Functionalities for Sigma Protocols

Functionality 2.1: Zero-Knowledge Functionality $\mathcal{F}(ZK, \varphi)$

A functionality \mathcal{F} for parties P_1, \ldots, P_n .

On input (prove, sid, x) from P_i :

 \mathcal{F} checks that sid has not been used by P_i before.

 \mathcal{F} generates a new token π , and sets $x_{\pi} \leftarrow x$.

 \mathcal{F} replies with (proof, π).

On input (verify, X, π):

 \mathcal{F} replies with (verify-result, $\varphi(x_{\pi}) \stackrel{?}{=} X$).

2.6 Broadcast Functionalities

Functionality 2.2: Authenticated Broadcast Functionality C

A functionality C for parties P_1, \ldots, P_n .

On receiving (broadcast-in, sid, m) from P_i :

C checks that sid has not been used by P_i before.

C sends (broadcast-out, pid_i, sid, m) to every party P_i .

3 Group Reconstruction Circuits

- **3.1 Formal Definition**
- 3.2 Normalized Form

4 MPC Protocol for GRCs

4.1 Ideal Functionality

Functionality 4.1: GRC functionality $\mathcal{F}(GRC, \Phi, \mathbf{X}^j, \mathbf{Y}^j)$

A functionality \mathcal{F} for parties P_1, \ldots, P_n .

After receiving (input, sid, \mathbf{x}^j , \mathbf{y}^j , α^j , \mathbf{k}^j) from every party P_j : \mathcal{F} checks, for every $j \in [n]$, that:

$$\mathbf{X}^j \stackrel{?}{=} \mathbf{x}^j \cdot G$$

$$\mathbf{Y}^j \stackrel{?}{=} \mathbf{y}^j \cdot G + \alpha^j \cdot H$$

 \mathcal{F} computes, for each round $r \in [d]$:

$$\mathbf{V}_r^j := \varphi_r(\mathbf{V}_1, \dots, \mathbf{V}_{r-1})(\mathbf{x}^j, \mathbf{y}^j, \mathbf{k}^j)$$

$$\mathbf{V} := \sum_{i=1}^{r} \mathbf{V}_i^j$$

$$\mathbf{V}_r := \sum_i \mathbf{V}_r^j$$

 \mathcal{F} sends (output, sid, $\mathbf{V}_1^1, \dots, \mathbf{V}_d^n$) to every party P_j .

- 4.2 Protocol
- 4.3 Security Analysis
- 4.4 Practical Considerations
- 5 Applications
- 6 Limitations and Further Work

7 Conclusion

References

- [Mau09] Ueli Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In *AFRICACRYPT 2009*, volume 5580 of *LNCS*, pages 272–286. Springer, Berlin, Heidelberg, 2009.
- [Sch90] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO 1989, volume 435 of LNCS, pages 239–252, New York, NY, 1990. Springer.