README.md 2022/10/22

# **Image Processing Homework 2**

Author: M11102122 陳煜翔

Date: 2022/10/21

[TOC]

### Introduction

In this task, we use gamma correction to darken the image, and then achieve histogram equalization to get the image.

## Coding Detail

#### **Environment**

We use Python environment by version **3.8**, and use cv2, numpy to achieve the histogram equalization algorithm.

#### Constant

The constant value is setting in the config.py file.

Image\_Path: The original picture path. q\_k: Maximum choose gray scale value. q\_o: Minimum Choose gray scale value.

```
# config.py
Image_Path = r".\0.jpg"
q_k = 255
q_o = 0
```

```
# main.py
import utils
import config
import cv2

if __name__ == "__main__":
    Image_Path = config.Image_Path
    Image = cv2.imread(Image_Path)
    image = utils.cv_image(Imag)
    image.convert2gray()
    image.gamma_correction_image(gamma=0.4)

raw_hist = image.plt_histogram(img=image.image, name="RAW_HIST", save=True)
    gamma_hist = image.plt_histogram(img=image.new_image, name="GAMMA_HIST",
save=True)
```

README.md 2022/10/22

```
q_k = config.q_k
q_o = config.q_o
img = image.histogram_equalization(q_o=q_o, q_k=q_k, hist=gamma_hist[0])

result_hist = image.plt_histogram(img=img, name="Result_HIST", save=True)

cv2.imwrite("Result.png", img)
cv2.imwrite("Gamma_image.png", image.new_image)
```

```
# utils.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
class cv_image:
    def __init__(self, Image):
        self.image = cv2.resize(Image, (1024, 1024))
        self.new_image = cv2.resize(Image, (1024, 1024))
    def convert2gray(self): # Convert Image from BGR to GRAY
        self.new_image = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
        self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
    def gamma_correction_image(self, gamma): # Use gamma correction to change
illumination of image
        inverse_gamma = 1.0 / gamma
        self.new_image = self.image.astype(np.float32) / 255.0 # Normalize image
to [0, 1]
        self.new_image = ((self.new_image ** inverse_gamma) * 255.0
).astype(np.uint8)
    def plt_histogram(self, img, name, save): # Get histogram value
        hist = plt.hist(img.flatten(), 256, [0, 255], label = name)
        plt.xlabel("Value")
        plt.ylabel("Frequency")
        if save == True:
            plt.legend([name], loc ="lower right")
            plt.savefig(name + ".png")
            plt.close("all")
        return hist
    def histogram_equalization(self, q_k, q_o, hist):
        width, heigh = self.new_image.shape # Save the orignal shape for the
resize to same size.
        img = self.new_image.flatten() # Convert to 1-D vector
        cp_img = img.copy()
        fq sigma = 0
```

README.md 2022/10/22

```
for i in range(img.size):
    fq_sigma = hist[:cp_img[i]+1].sum() # Calculate sigma(H(p))
    img[i] = (((q_k - q_o) / img.size) * fq_sigma) + q_o #
histogram_equalization function

img = np.resize(img, (width, heigh)) # Resize to the original size
    return img
```

### Design Detail

We use cv2 package to read Image, and resize it to 1024x1024. Futher we use gamma correction to get the darken image for the experiment.

Then we use the darken image to achieve the histogram equalization.

## **Experiment Result**







