

Arhitectura sistemelor de calcul

- Prelegerea 5 -

Funcții și circuite logice

Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Recapitulare

- 1. Logica booleană
- 2. Operaţii de bază (NOT, OR, AND, XOR)

2. Funcții logice (booleene)

- 1. Forma normal disjunctivă (forma canonică)
- 2. Forma normal conjunctivă

3. Circuite combinaţionale

- 1. Porţi
- 2. Reprezentarea funcțiilor logice

Logica booleană

- ➤ Logică cu 2 valori de adevăr: *True* (1) si *False* (0)
- Operații în logica booleană:

P	NOT P
0	1
1	0

Р	Q	P AND Q
0	0	0
0	1	0
1	0	0
1	1	1

P	Q	P OR Q
0	0	0
0	1	1
1	0	1
1	1	1

P	Q	P XOR Q
0	0	0
0	1	1
1	0	1
1	1	0

NOT (negația)

AND (conjuncția)

OR (disjuncția)

XOR (disjuncția exclusivă)

Operația și poarta NOT

P	NOT P
0	1
1	0

Tabelul de adevăr

Reprezentarea porții NOT

Operația și poarta AND / NAND

Р	Q	P AND Q	P NAND Q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Tabelul de adevăr

Reprezentarea porților AND și NAND

- Observaţi că AND realizează înmulţirea pe 1 bit
- De aceea a AND b se reprezintă şi ca produsul ab

Operația și poarta OR / NOR

Р	Q	P OR Q	P NOR Q
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Tabelul de adevăr

Reprezentarea porților OR și NOR

> a OR b se reprezintă și ca suma a+b

Operația și poarta XOR

Р	Q	P XOR Q
0	0	0
0	1	1
1	0	1
1	1	0

Tabelul de adevăr

Reprezentarea porții XOR

> Observaţi că XOR realizează adunarea pe 1 bit (fără transport)

Funcție booleană (funcție logică)

O funcţie booleană (logică) o funcţie

$$f: \{0,1\}^m \to \{0,1\}^n$$

- > În acest caz se spune că funcția are **m** intrări și **n** ieșiri
- Funcţiile booleene pot fi reprezentate sub forma tabelelor de adevăr întrucât atât domeniul cât şi codomeniul acestora sunt finite
- \triangleright Există $(2^n)^{2^m}$ funcții logice cu m intrări și n ieșiri
- \blacktriangleright În general, dacă $f:A\to B$, atunci există $card(B)^{card(A)}$ funcții f, unde card(A), card(B) este cardinalul lui A, respectiv B

Funcţie booleană (funcţie logică)

> Întrebare: Care este tabelul de adevăr pentru funcția de mai jos?

$$f: \{0,1\}^3 \to \{0,1\}$$

 $f(a,b,c) = a\overline{b} + c$

Răspuns:

а	b	С	\overline{b}	$aar{b}$	f
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	1

Funcție booleană (funcție logică)

> Întrebare: Care este reprezentarea cu porți a funcției de mai jos?

$$f: \{0,1\}^3 \to \{0,1\}$$

 $f(a,b,c) = a\overline{b} + c$

Răspuns:

Negaţia se reprezintă printr-o poartă NOT Produsul se reprezintă printr-o poartă AND Suma se reprezintă printr-o poartă OR

Funcţie booleană (funcţie logică)

> Toate funcţiile booleene (logice)

$$f: \{0,1\}^m \to \{0,1\}^n$$

pot fi construite prin operațiile de bază (AND, OR, NOT), respectiv de porțile aferente

> Fie funcţia booleană definită prin următorul tabel de adevăr:

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Conform tabelului, funcţia ia valoarea 1 dacă şi numai dacă:

Exprimând matematic, se obţine forma canonică (FC) sau forma normal disjunctivă (FND):

$$f(a,b,c) = \bar{a}\bar{b}c + \bar{a}bc + a\bar{b}\bar{c} + a\bar{b}c + abc$$

Forma canonică (FC) sau forma normal disjunctivă (FND):

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$f(a,b,c) = \bar{a}\bar{b}c + \bar{a}bc + a\bar{b}\bar{c} + a\bar{b}c + abc$$

- Forma canonică se obţine uşor din tabela de adevăr astfel:
 - √ fiecărei valori 1 pe care o ia funcţia îi corespunde un termen în sumă (disjuncţie);
 - ✓ un termen este produsul (conjuncţia) literalilor în care aceştia apar negaţi dacă le corespunde 0 sau nu dacă le corespunde 1

> Forma normal conjunctivă (FNC):

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$f(a,b,c) = (a+b+c)(a+\overline{b}+c)(\overline{a}+\overline{b}+c)$$

- > FNC se obţine uşor din tabela de adevăr astfel:
 - √ fiecărei valori 0 pe care o ia funcţia îi corespunde un termen în produs (conjuncţie);
 - ✓ un termen este suma (disjuncţia)
 literalilor în care aceştia apar negaţi dacă le corespunde 1 sau nu dacă le corespunde 0

> Întrebare: Cum se reprezintă cu ajutorul porților logice FND obținută?

$$f(a,b,c) = \bar{a}\bar{b}c + \bar{a}bc + a\bar{b}\bar{c} + a\bar{b}c + abc$$

> Răspuns:

> Întrebare: Cum se reprezintă cu ajutorul porților logice FNC obținută?

$$f(a,b,c) = (a+b+c)(a+\overline{b}+c)(\overline{a}+\overline{b}+c)$$

> Răspuns:

- Forma normal disjunctivă (FND) este unică, făcând abstracţie de o permutare a termenilor sau a factorilor (datorită comutativităţii sumei şi produsului)
- Deci, 2 expresii logice sunt echivalente dacă au aceeaşi formă normal disjunctivă FND
- Este deci util să avem un algoritm de aducere a unui funcții la FND
- Vom folosi intens FND la crearea circuitelor logice

Aducerea funcțiilor la forma normal disjunctivă

- > Pas 1: Se scrie expresia / funcţia ca sumă de termeni
- Pas 2: Se elimină produsele care se repetă
- Pas 3: Se examinează fiecare produs. Dacă este minterm, se trece la următorul. Dacă nu, se completează prin înmulţire cu $(x + \bar{x})$ pentru variabilele care lipsesc
- > Pas 4: Se efectuează calculele și se elimină termenii redundanți

Aducerea funcției $f(a, b, c) = a + b(\overline{b} + \overline{c})$ la FND:

- Pas 1: Se scrie expresia / funcţia ca sumă de termeni
- Pas 2: Se elimină produsele care se repetă

$$f(a,b,c) = a + b\bar{c}$$

Pas 3: Se examinează fiecare produs. Dacă este minterm, se trece la următorul. Dacă nu, se completează prin înmulţire cu $(x + \bar{x})$ pentru variabilele care lipsesc

$$f(a,b,c) = a(b+\overline{b})(c+\overline{c}) + (a+\overline{a})b\overline{c}$$

Pas 4: Se efectuează calculele şi se elimină termenii redundanţi

$$f(a,b,c) = abc + ab\bar{c} + a\bar{b}c + a\bar{b}\bar{c} + \bar{a}b\bar{c}$$