SAMPLE PROBLEM C

Equilibrium

PROBLEM

Three charges lie along the x-axis. One positive charge, $q_1 = 15 \mu C$, is at x = 2.0 m, and another positive charge, $q_2 = 6.0 \mu C$, is at the origin. At what point on the x-axis must a negative charge, q_3 , be placed so that the resultant force on it is zero?

SOLUTION

Given:
$$q_1 = 15 \,\mu\text{C}$$
 $r_{3,1} = 2.0 \,\text{m} - d$

$$q_2 = 6.0 \,\mu\text{C}$$
 $r_{3,2} = d$

Unknown: the distance (d) between the negative charge q_3 and the positive charge q_2 such that the resultant force on q_3 is zero

Diagram:

Because we require that the resultant force on q_3 be zero, $F_{3,1}$ must equal $F_{3,2}$. Each force can be found by using Coulomb's law.

$$F_{3,1} = F_{3,2}$$

$$k_C \left(\frac{q_3 q_1}{(r_{3,1})^2} \right) = k_C \left(\frac{q_3 q_2}{(r_{3,2})^2} \right)$$

$$\frac{q_1}{(2.0 \text{ m} - d)^2} = \frac{q_2}{d^2}$$

Because k_C and q_3 are common terms, they can be canceled from both sides of the equation.

Now, solve for d to find the location of q_3 .

$$(d^2)(q_1) = (2.0 \text{ m} - d)^2(q_2)$$

Take the square root of both sides, and then isolate *d*.

$$d\sqrt{q_1} = (2.0 \text{ m} - d)\sqrt{q_2}$$

$$d\left(\sqrt{q_1} + \sqrt{q_2}\right) = \sqrt{q_2}(2.0 \text{ m})$$

$$d = \frac{\sqrt{q_2}(2.0 \text{ m})}{\sqrt{q_1} + \sqrt{q_2}} = \frac{\sqrt{6.0 \,\mu\text{C}}(2.0 \text{ m})}{\sqrt{15 \,\mu\text{C}} + \sqrt{6.0 \,\mu\text{C}}} = 0.77 \text{ m}$$

$$d = 0.77 \text{ m}$$