37233 Linear Algebra

Subject coordinator: Ara Asatryan

Ara.Asatryan@uts.edu.au

Lecturers: Ara Asatryan and Mikhail Lapine

Mikhail.Lapine@uts.edu.au

Classes

- One two-hour lecture (p.w.)
- ▶ One two-hour tutorial/computer laboratory (p.w.)

Subject Assessments

- Weekly Tutorial Assignments (starting week 2): weight 15%
- Written Assignment: weight 25 %
- ► Final exam: weight 60% It is required to gain at least 40% at the final exam
- ► To pass the subject it is necessary to obtain at least 50% for the final combined mark

Teaching linear algebra

- Purely theoretical approach (abstract)
- Application-oriented approach (hands on approach)

Subject contents

- Fundamentals of Linear Algebra
- Applications of Linear Algebra
- Computational Methods

Software

Wolfram Mathematica

Contents of Lecture 1

- What is the subject of Linear Algebra?
- Why do we need Liner Algebra?
- Applications of Linear Algebra
- A brief review
 - ▶ Linear systems of equations
 - Row reduction / elimination (Gauss–Jordan)
 - Determinants det A
 - ▶ Inverse of a matrix A⁻¹

The subject of linear algebra

- ► Linear algebra is one of the essential parts of mathematics. In short, it is the study of linear equations.
- Linear equation in variables x_1, x_2, \dots, x_n is an equation that can be written as

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b,$$
 (1)

where b and $a_1, a_2, \ldots a_n$ are real or complex numbers. The subscript n is any integer number.

Equations

$$4x_1 - 5x_2 + 2 = x_1$$
, $x_2 = 2(\sqrt{6} - x_1) + x_3$

are linear because they can be arranged as in (1)

$$3x_1 - 5x_2 = -2$$
, $2x_1 + x_2 - x_3 = 2\sqrt{6}$

▶ The equations

$$4x_1 - 5x_2 + 2 = x_1 \sin x_2$$
, $x_2 = 2\sqrt{x_1} - 6$

are not linear.

Why do we need linear algebra?

- ▶ Linear models in science, engineering, economics, statistics . . .
- Many systems in real world behave in a linear manner over a significant parameter ranges, even though they are nonlinear
- Genuinely nonlinear problems can be often linearised approximated by linear systems
- Natural phenomena are often described in terms of partial or ordinary differential equations. Solving these equations requires discretisation. This, in turn, leads to linear systems.

Applications of linear algebra

- Science
 - Physics
 - Chemistry
 - Biology
 - **.** . . .
- ► Engineering (mechanical, electrical, ...)
- Economics
- Statistics
- ▶ Big Data Analysis

Systems of linear equations

▶ A system of linear equations (a linear system) is a collection of one or more linear equations involving the same variables

$$\begin{cases} 2x_1 - x_2 + 1.5x_3 = 8, \\ x_1 - x_3 = -7. \end{cases}$$

In general

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

▶ The solution of the system is a list of numbers $x_1, x_2, ..., x_n$ that makes each equation a true statement.

System of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Set of coefficients a_{ij} is the matrix $\mathbf{A}[m \times n]$ of linear system

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

The element a_{ii} located in *i*-th row and *j*-th column of **A**.

Matrix representation of a linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

In short, $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Augmented matrix of a linear system

▶ For a linear system with *m* equations and *n* unknowns

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

an augmented matrix of the system is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Systems of Linear Equations

- Linear system naturally arise in network analysis
- ▶ Network is a set of branches through which something "flows"
 - Electrical wires (electricity flow)
 - Economic linkages (money flow)
 - Pipes through which oil, gas or water flows
 - Fibres through which information flows (Internet)
- Branches meet at nodes or junctions
- ▶ A numerical measure is the rate of flow through a branch
- Analysis of networks is based on linear systems

Example: Electric circuits

Voltage drop across a resistor is given by Ohm's law V = RI

Kirchhoff's Voltage Law: The algebraic sum of the IR voltage drops in one direction around a loop equals the algebraic sum of the voltage sources in the same direction around the loop.

$$\sum_{i=1}^{N} R_i I_i = \sum_{i=1}^{M} V_i$$

Example: Electric circuits

Loop 1:
$$4l_1 + 3l_1 - 3l_2 + 4l_1 = 30$$

Loop 2:
$$-3I_1 + 3I_2 + I_2 + I_2 - I_3 + I_2 = 5$$

Loop 3:
$$-I_2 + I_3 + I_3 + I_3 = -5 - 20$$

$$\begin{cases}
11I_1 - 3I_2 & = 30 \\
-3I_1 + 6I_2 - I_3 & = 5 \\
- I_2 + 3I_3 & = -25
\end{cases}$$

The loop currents are $I_1 = 3 \,\text{A}$, $I_2 = 1 \,\text{A}$ and $I_3 = -8 \,\text{A}$

- ▶ The total current in the branch AB is $I_1 I_2 = 3 1 = 2$ A
- ▶ The current in branch CD is $I_2 I_3 = 9 \text{ A}$

Example: Balancing chemical equations

► Chemical equations describe the quantities of substances consumed and produced by chemical reactions:

$$(x_1) C_3 H_8 + (x_2) O_2 \rightarrow (x_3) CO_2 + (x_4) H_2 O$$

Balancing requires finding amounts x_1, x_2, x_3, x_4 such that the total amounts of carbon C, hydrogen H, and oxygen O atoms on the left match the corresponding numbers on the right.

$$\mathrm{C}_3\mathrm{H}_8: \left[\begin{array}{c} 3 \\ 8 \\ 0 \end{array}\right] \ \mathrm{O}_2: \left[\begin{array}{c} 0 \\ 0 \\ 2 \end{array}\right] \ \mathrm{CO}_2: \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] \ \mathrm{H}_2\mathrm{O}: \left[\begin{array}{c} 0 \\ 2 \\ 1 \end{array}\right]$$

$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The solution of this system is $x_1 = 1$, $x_2 = 5$, $x_3 = 3$, $x_4 = 4$.

Linear equations: graphical representation

Consider a system of linear equations

$$\begin{cases} x_1 - 2x_2 = -1, \\ -x_1 + 3x_2 = 3. \end{cases}$$

It has a unique solution $x_1 = 3$ and $x_2 = 2$.

This may be represented graphically; in "Mathematica" type $\texttt{ContourPlot}[\{x1-2x2=-1,-x1+3x2=-3\},\{x1,0,6\},\{x2,0,4\},\texttt{Axes}-\texttt{True}]$

System 1: Unique solution

$$\left\{ \begin{array}{rcl} x_1 & - & 2x_2 & = & -1, \\ -x_1 & + & 3x_2 & = & 3. \end{array} \right.$$

System 2: No solutions

$$\begin{cases} x_1 - 2x_2 = -1, \\ -x_1 + 2x_2 = 3. \end{cases}$$

System 3: Infinitely many solutions

$$\begin{cases} x_1 - 2x_2 = -1, \\ -x_1 + 2x_2 = 1. \end{cases}$$

Linear systems of equations

- A linear system may have
 - exactly one solution
 - no solutions
 - infinitely many solutions
- ► For 2 equations in 2 unknowns, easy to assess and visualise. Much harder or impossible in higher dimensions.
- ▶ We need a general tool to understand whether a system has a solution, and if so, whether the solution is unique.

Gaussian reduction / elimination

In the process of Gauss–Jordan elimination, an augmented matrix is reduced to a diagonal form.

Row operations that can be used:

- Adding a multiple of one row to another
- Multiplying a row by a constant
- Swapping two rows

Row reduction and echelon form

- ► The first non-zero element in a row is called the **leading element** of the row
- ► The reduction of a matrix to echelon form (EF) occurs via a sequence of row operations
- ▶ The matrix in **echelon form** has the following properties:
 - ▶ All non-zero rows are above any rows of all zeroes.
 - ► Each **leading entry** of a row is in a column to the right of the leading entry of the row above it.
 - ▶ All entries in a column below a leading entry are zeroes.

$$\left[\begin{array}{cccc}
\blacksquare & * & * & * \\
0 & \blacksquare & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

(where ■ is a non-zero number, and * is any number)

Reduced echelon form (REF)

▶ The next step is to obtain a reduced echelon form (REF):

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- ▶ **REF** matrix, in addition to **EF** form, has the properties
 - ▶ The **leading entry** in each non-zero row is 1
 - ▶ The leading 1 is the only non-zero entry in its column

(■ is a non-zero number, * is any number)

Matrices in EF and REF forms

Scheme of EF form (■ is non-zero number, * is any number)

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & \blacksquare & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * \end{bmatrix}$$

Scheme of REF form

$$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{bmatrix}$$

Matrices in EF and REF forms

- ▶ The echelon form of a matrix (**EF**) is not unique, however reduced echelon form **REF** is unique.
- ▶ Theorem: Each matrix is row-equivalent to one and only one matrix in reduced echelon form REF.
- ▶ A **pivot position** corresponds to leading 1 in REF. A **pivot column** is a column that contains a pivot position.

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Row reduction to EF and REF forms

▶ Finding solutions of a linear system using Gaussian reduction:

$$\begin{cases} 3x_2 - 6x_3 + 6x_4 + 4x_5 = -5 \\ 3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9 \\ 3x_1 - 9x_2 + 12x_3 - 9x_4 + 6x_5 = 15 \end{cases}$$

Write the augmented matrix of this system:

$$\begin{bmatrix}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{bmatrix}$$

- ▶ Follow a step-wise procedure, using elementary row operations
 - Adding a multiple of one row to another
 - Multiplying a row by a constant
 - Swapping two rows

Row reduction to EF and REF forms

▶ **Step 1**: Begin with the leftmost non-zero column.

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

▶ **Step 2**: Select nonzero entry in the pivot column as a pivot. If necessary, interchange rows.

$$\begin{bmatrix}
3 & -9 & 12 & -9 & 6 & 15 \\
3 & -7 & 8 & -5 & 8 & 9 \\
0 & 3 & -6 & 6 & 4 & -5
\end{bmatrix}$$

▶ Step 3: Use row replacement operation to create zeros in all positions below the pivot (here, use $R_2 \rightarrow R_2 - R_1$).

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

The EF form ("forward phase")

▶ **Step 4**. Cover the row containing the pivot (and any rows above it). Apply all steps 1-3 to the remaining sub-matrix. Repeat until there are no more non-zero rows to modify.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

(now, we divide the second row by 2)

$$\begin{bmatrix}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 3 & -6 & 6 & 4 & -5
\end{bmatrix}$$

(now, we use $R_3 \rightarrow R_3 - 3R_2$)

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

The REF form ("backward phase")

▶ Step 5. Beginning with the rightmost pivot and working upward and to the left, create zeroes above each pivot. If pivot is not 1, make it 1 by a scaling operations. Row operation $R_1 \rightarrow R_1/3$ leads to

then, $R_2 \rightarrow R_2 - R_3$ and $R_1 \rightarrow R_1 - 2R_3$ lead to

The REF form ("backward phase")

$$\begin{bmatrix}
1 & -3 & 4 & -3 & 0 & -3 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{bmatrix}$$

now, $R_1 \rightarrow R_1 + 3R_2$. This finally brings us to the REF form

- ▶ Note there are 3 equations for 5 variables.
- ▶ Variables with pivots are called **basic variables**: x_1 , x_2 , x_5 .
- ▶ Variables without pivots are called **free variables**: x_3 , x_4 .
- ▶ In the final solution basic variables x_1 , x_2 , x_5 must be expressed in terms of free variables x_2 , x_4 .

▶ The solution is

$$x_1 = -24 + 2x_3 - 3x_4$$

$$x_2 = -7 + 2x_3 - 2x_4$$

$$x_5 = 4$$

 x_1, x_2, x_5 (basic) are expressed in terms of x_3, x_4 (free).

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -24 + 2x_3 - 3x_4 \\ -7 + 2x_3 - 2x_4 \\ x_3 \\ x_4 \\ 4 \end{bmatrix} = \begin{bmatrix} -24 \\ -7 \\ 0 \\ 0 \\ 4 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Gaussian reduction / elimination

Further examples

First example to solve:

To bring this to EF we eliminate x_1 in equation 3:

Eq3 + 4 * Eq1
$$\rightarrow$$
 Eq3 or R3 + 4 * R1 \rightarrow R3

Next, we eliminate x_2 in equation 3. But first, factor R2.

Next, Eq3 + 3 * Eq2
$$\rightarrow$$
 Eq3 or R3 + 3 * R2 \rightarrow R3
$$x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

The matrix of the system is now in an echelon form.

Now we continue towards REF, or we can also solve it directly:

Solving directly:

Eq3
$$\Rightarrow x_3 = 3$$

Eq2 $\Rightarrow x_2 = 4x_3 + 4 = 4 \times 3 + 4 = 16$
Eq1 $\Rightarrow x_1 = 2x_2 - x_3 + 0 = 2 \times 16 - 3 = 29$

This is called **backward substitution**.

Continue with the elimination into REF

► Elimination above the pivots:

Eq1 + 2 * Eq2
$$\rightarrow$$
 Eq1 or R1 + 2 * R2 \rightarrow R1
 x_1 - $7x_3$ = 8
 x_2 - $4x_3$ = 4
 x_3 = 3
$$\begin{bmatrix} 1 & 0 & -7 & 8 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\label{eq:continuous} \begin{array}{lll} \text{Eq1} + 7*\text{Eq3} \rightarrow \text{Eq1} & \text{or} & \text{R1} + 7*\text{R2} \rightarrow \text{R1} \\ \\ \text{Eq2} + 4*\text{Eq3} \rightarrow \text{Eq2} & \text{or} & \text{R2} + 4*\text{R3} \rightarrow \text{R2} \end{array}$$

Gaussian reduction / elimination

Second example

Upon doing $R_1 \leftrightarrow R_2$ and $R_3 \rightarrow (2R_3 - 5R_2) + R_1$ we get

The **inconsistency** 0 = 5 implies that this system does not have any solutions.

Gaussian reduction / elimination

Third example

Doing again $R_1 \leftrightarrow R_2$ and $R_3 \rightarrow (2R_3 - 5R_2) + R_1$ yields

3 equations in 3 unknowns $\;\longrightarrow\;$ 2 equations in 3 unknowns $\;\Rightarrow\;$ only two independent equations

No contradiction, but no unique solution (infinitely many)

► Case 1: Consistent system, unique solution:

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Case 2: Inconsistent system, no solution:

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 5 & -8 & 7 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Case 3: Consistent system with infinitely many solutions:

$$\begin{bmatrix} 0 & 1 & -4 & 6 \\ 2 & -3 & 2 & 1 \\ 5 & -8 & 7 & -1/2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- ▶ 1. System of equations is **consistent** if the solution is unique or there are infinitely many solutions.
 - 2. System of equations is **inconsistent** if it has no solutions.

Revision: Matrices. Determinants.

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Then det $\mathbf{A} = ad - bc$ is the determinant of the 2 × 2 matrix.

$$\det \mathbf{A} = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|$$

Properties (these properties hold for any $n \times n$) matrix

$$\left| \begin{array}{cc} a & b \\ c+e & d+f \end{array} \right| = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| + \left| \begin{array}{cc} a & b \\ e & f \end{array} \right|$$

$$\left| \begin{array}{cc} ka & b \\ kc & d \end{array} \right| = k \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|$$

$$\left| \begin{array}{cc} b & a \\ d & c \end{array} \right| = - \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|$$

Determinant of an identity (unitary) matrix is 1

$$\det \mathbf{I} = \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| = 1$$

• If two rows of **A** are same, then $\det \mathbf{A} = 0$

$$\begin{vmatrix} a & b \\ a & b \end{vmatrix} = ab - ab = 0$$

► The elementary row operation of subtraction a multiple of one row from another row leaves the determinant unchanged

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c \pm ka & d \pm kb \end{vmatrix}$$

Determinant with a zero row is zero

$$\begin{vmatrix} 0 & 0 \\ d & c \end{vmatrix} = 0$$

- ▶ **Definition**: Let **A** be $n \times n$ matrix and a_{ij} an element of **A**. The **cofactor** of a_{ij} denoted by A_{ij} , is the $(n-1) \times (n-1)$ determinant obtained by
 - 1. deleting the i-th row and j-th column of $\bf A$ and
 - 2. multiplying the resulting matrix determinant by $(-1)^{(i+j)}$.
- ► The determinant obtained by deleting the *i*-th row and *j*-th column of **A** is called a minor of a_{ij} .
- ▶ For a 3 × 3 matrix: det $\mathbf{A} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$.

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

- Let **A** be $n \times n$ matrix. Then the determinant of **A** is the number $a_{11}A_{11} + a_{12}A_{12} + \ldots + a_{1n}A_{1n}$.
- Expansion along *i*-th row is det $\mathbf{A} = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$
- For a 3×3 matrix expansion along the second row reads det $\mathbf{A} = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$.
- So

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$-a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

▶ **Definition**: An $n \times n$ matrix **A** is said to be invertible if there is an $n \times n$ matrix **C** such that

$$CA = I$$
 and $AC = I$,

where **I** is a unitary $n \times n$ matrix. Then **C** is an inverse of **A**.

C is uniquely determined by A. Indeed, suppose B is another inverse of C. Then

$$B = BI = B(AC) = (BA)C = IC = C.$$

This unique inverse **A** is denoted by \mathbf{A}^{-1} , so that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
 and $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.

A non-invertible matrix is called a singular matrix.
An invertible matrix is called a non-singular matrix.

Example:

$$\mathbf{A} = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}, \qquad \mathbf{C} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$

Then

$$\mathbf{AC} = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{CA} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

▶ Theorem:

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $\det \mathbf{A} = ad - bc \neq 0$

then **A** is invertible and $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

- ▶ If det $\mathbf{A} = ad bc = 0$, then \mathbf{A} is not invertible.
- ▶ The matrix is invertible if and only if det $\mathbf{A} \neq 0$.
- ► Theorem:

If **A** is an invertible $n \times n$ matrix then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

- ► Theorem:
 - a) If ${\bf A}$ is an invertible matrix, then ${\bf A}^{-1}$ is invertible, and ${({\bf A}^{-1})}^{-1}={\bf A}.$
 - b) If ${\bf A}$ and ${\bf B}$ are invertible matrices, then so is ${\bf AB}$, and $({\bf AB})^{-1}={\bf B}^{-1}{\bf A}^{-1}.$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

The system can be written in the matrix form

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

In short $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

▶ So the solution of Ax = b is (given $A^{-1}Ax = Ix = x$)

$$A^{-1}Ax = A^{-1}b,$$
 $x = A^{-1}b.$

▶ One of the way to find A^{-1} is using the adjoint matrix A^{adj} .

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} (\mathbf{A}^c)^T = \frac{1}{\det \mathbf{A}} \mathbf{A}^{adj}.$$

$$\mathbf{A}^{c} = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \dots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix},$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

A^{-1} by Gaussian elimination

- ► Theorem: A n × n matrix A is invertible if and only if A is row-equivalent to identity matrix I, and in this case any sequence of elementary row operations that reduces A to I also transforms I into A⁻¹.
- ▶ This gives an algorithm of finding A^{-1} .
- ▶ Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A I] is row equivalent to [I A⁻¹]. Otherwise A does not have an inverse.
- In practice A⁻¹ is seldom computed directly (2N³ operations). Row reduction is faster and often more accurate.
- ► Example: Find inverse of a matrix, if it exists

$$\mathbf{A} = \left[\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{array} \right]$$

▶ We form the extended augmented matrix

$$\left[\begin{array}{ccccccccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right]$$

$$\mathsf{R}_1 \leftrightarrow \mathsf{R}_2$$

$$R_3 \rightarrow R_3 - 4R_1 \,$$

$$R_3 \rightarrow R_3 + 3R_2 \\$$

$$ightharpoonup R_3
ightharpoonup R_3/2$$

$$R_2 \rightarrow R_2 - 2R_3 \,$$

$$R_1 \rightarrow R_1 - 3R_3 \,$$

► So **A** ~ **I**, and **A** is invertible,
$$\mathbf{A}^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

• • •

Homogeneous versus inhomogeneous linear systems

- A linear system can be written as $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- ▶ If $b \neq 0$, the system is called **inhomogeneous**
- ▶ If b = 0, the system is called **homogeneous** (Ax = 0)
- ► For the inhomogeneous system from the previous example the explicit linear system is

$$\begin{cases} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = & -5 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = & 9 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = & 15 \end{cases}$$

▶ The corresponding homogeneous system reads

$$\begin{cases} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = & 0 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = & 0 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = & 0 \end{cases}$$

Homogeneous linear systems

For the homogeneous linear system

$$\begin{cases} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = 0 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = 0 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = 0 \end{cases}$$

the augmented matrix and its REF are as follows

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & 0 \\ 3 & -7 & 8 & -5 & 8 & 0 \\ 3 & -9 & 12 & -9 & 6 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 0 \\ 0 & 1 & -2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

So the solution is

$$\begin{array}{rcl}
x_1 & = & 2x_3 - 3x_4 \\
x_2 & = & 2x_3 - 2x_4 \\
x_5 & = & 0
\end{array}$$

Basic variables x_1 , x_2 , x_5 are expressed in terms of free x_3 , x_4 .

Inhomogeneous linear systems

- ▶ Theorem: Suppose the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for some \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set is, all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}$ where \mathbf{v} is any solution of the homogeneous equation $\mathbf{A}\mathbf{x} = \mathbf{0}$.
- In our examples, a particular solution of the inhomogeneous system p and the solution set of the homogeneous system v were

$$\mathbf{p} = \begin{bmatrix} -24 \\ -7 \\ 0 \\ 0 \\ 4 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = x_3 \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

so the solution set of the inhomogeneous system is indeed

$$\mathbf{w} = \mathbf{p} + \mathbf{v}$$

See you next Friday

CB 06.03.022