PLS 120: Applied Statistics in Agricultural Sciences

Descriptive Statistics and Central Tendency

Week 2 Tutorial Guide

Mohammadreza Narimani Department of Biological and Agricultural Engineering University of California, Davis

mnarimani@ucdavis.edu

${\bf Contents}$

1	Important Links	2
2	Welcome to Week 2: Descriptive Statistics	2
3	Key Statistical Concepts	2
	3.1 Measures of Central Tendency	2
	3.1.1 Mean $(\mu \text{ or } \bar{x})$	2
	3.1.2 Median	2
	3.1.3 Mode	3
	3.2 Measures of Variability	3
	3.2.1 Variance (σ^2)	3
	3.2.2 Standard Deviation (σ)	3
	3.2.3 Coefficient of Variation (CV)	3
4	Key R Functions This Week	3
	4.1 Summary Statistics	4
	4.2 Data Exploration	4
	4.3 Custom Mode Function	4
5	Assignment 2: Central Tendency Analysis	4
	5.1 Assignment Overview (20 points total)	4
6	Why This Matters in Agriculture	5
7	Getting Started	5
8	Learning Objectives	5
9	Need Help?	5

Important Links

Essential Course Resources

Course Website

All course materials are available at:

Click Here to Access Course Website

Interactive Binder Environment

Access Week 2 lab materials directly:

Click Here to Launch Week 2 Binder

Welcome to Week 2: Descriptive Statistics

This week, we explore **descriptive statistics** and **measures of central tendency** - essential tools for summarizing and understanding data in agricultural research. You'll learn to calculate mean, median, mode, variance, and standard deviation using R!

Key Statistical Concepts

Measures of Central Tendency

Understanding where the "center" of your data lies is fundamental to statistical analysis.

3.1.1 Mean (μ or \bar{x})

Definition: The arithmetic average of all values

Formula: $\mu = \frac{\sum x}{n}$

When to use: Most common measure, but sensitive to outliers

Example: Average crop yield across all plots

3.1.2 Median

Definition: The middle value when data is ordered

Formula: Middle value of sorted data

When to use: Better for skewed distributions or data with outliers Example: Typical rainfall amount (not affected by extreme storms)

3.1.3 Mode

Definition: The most frequently occurring value

Formula: Most common value in dataset

When to use: Useful for categorical data or finding the most common observation

Example: Most common pest species observed

Measures of Variability

Understanding how spread out your data is from the center.

3.2.1 Variance (σ^2)

Definition: Average squared deviation from the mean

Formula: $\sigma^2 = \frac{\Sigma(x-\mu)^2}{n}$

Note: Units are squared, making interpretation less intuitive

3.2.2 Standard Deviation (σ)

Definition: Square root of variance - average distance from the mean

Formula: $\sigma = \sqrt{\sigma^2}$

Advantage: Same units as original data, easier to interpret

Rule of thumb: In normal distributions, approximately 68% of data falls within 1σ of

the mean

3.2.3 Coefficient of Variation (CV)

Definition: Relative variability measure

Formula: $CV = \frac{\sigma}{\mu} \times 100\%$

When to use: Allows comparison of variability across different scales or units

Example: Compare consistency of wheat yield (tons/ha) vs. corn yield (bushels/acre)

Key R Functions This Week

Summary Statistics

```
summary(data) - Comprehensive summary
mean(data$column) - Calculate mean
median(data$column) - Calculate median
var(data$column) - Calculate variance
sd(data$column) - Calculate standard deviation
quantile(data$column) - Calculate quantiles
```

Data Exploration

```
head(data) - First 6 rows
str(data) - Data structure
nrow(data) - Number of rows
ncol(data) - Number of columns
```

Custom Mode Function

Since R doesn't have a built-in mode function, we create our own:

```
Mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}</pre>
```

Assignment 2: Central Tendency Analysis

Assignment Overview (20 points total)

- 1. Part 1: Mean, Median, Mode (7 points)
- 2. Part 2: Variance & Standard Deviation (5 points)
- 3. Part 3: Quantiles (1 point)
- 4. Written Analysis (7 points)

The assignment uses the LA crime dataset to compare statistics between all victims, male victims, and female victims.

Why This Matters in Agriculture

Agricultural Applications:

- Crop Yields Compare mean yields across varieties
- Soil Properties Understand nutrient variability
- Weather Patterns Analyze rainfall and temperature
- Pest Populations Track abundance changes
- Quality Control Monitor product consistency

Getting Started

- 1. Launch Week 2 Binder environment
- 2. Navigate to class_activity folder
- 3. Open Week2_Descriptive_Statistics.ipynb
- 4. Work with the built-in iris dataset

Learning Objectives

By the end of this week, you will be able to:

- Calculate and interpret mean, median, and mode
- Understand when to use each measure of central tendency
- Compute variance, standard deviation, and CV
- Use quantiles to understand data distribution
- Compare statistics across different subgroups

Need Help?

Mohammadreza Narimani

Email: mnarimani@ucdavis.edu

Department of Biological and Agricultural Engineering, UC Davis