

Worksheet 2 (Solved)

HoTTEST Summer School 2022

The HoTTEST TAs 08 July 2022

1 (*)

The type **suit** is a type generated by four constructors:

Hearts: suit Diamonds: suit Clubs: suit Spades : suit

Suppose we had a type family $s : \mathbf{suit} \vdash P(s)$ type. What data do we need to supply in order to define a term of the following type?

$$\prod_{s:\mathbf{suit}} P(s)$$

Four terms:

• pHearts: P(Hearts)

• pDiamonds: P(Diamonds)

 $\bullet \ \mathbf{pClubs} \colon P(\mathbf{Clubs}) \\$

 $\bullet \ \mathbf{pSpades} \colon P(\mathbf{Spades}) \\$

2 (**)

Here's an informal description of a type:

 $\mathbb{1}$ is a type generated by one constructor term, \star : $\mathbb{1}$.

Express this description formally as two inference rules, a 'Formation' rule, and an 'Introduction' rule (analogously to how we introduced bool in lecture).

$$\overline{\vdash 1 \text{ type}} \qquad \overline{\vdash \star \colon 1}$$

Now, write the induction principle for 1, where $x: 1 \vdash D$ type is some type family.

We have a term

$$\mathbf{ind}_{\mathbb{1}} \quad : \quad D(\star) \to \prod_{x:\mathbb{1}} D(x)$$

satisfying the computation rule:

$$\operatorname{ind}_{\mathbb{1}}(d,\star) \doteq d.$$

As inference rules:

$$\frac{\Gamma, x: \mathbb{1} \vdash D \ \mathbf{type} \quad \Gamma \vdash d: D[\star/x]}{\Gamma, x: \mathbb{1} \vdash \mathbf{ind}_{\mathbb{1}}(d, x) \colon D} \ \mathbb{1}\text{-}\mathbf{Elim}$$

$$\frac{\Gamma, x: \mathbb{1} \vdash D \ \mathbf{type} \quad \Gamma \vdash d: D[\star/x]}{\Gamma \vdash \mathbf{ind}_{\mathbb{1}}(d, \star) \doteq d} \ \mathbb{1}\text{-}\mathbf{Comp}$$

Instantiate this for the constant type family, i.e. D doesn't depend on $x : \mathbb{1}$ and is always a fixed type D. What do the elimination and computation rules for $\mathbb{1}$ say?

If d is some term of type D, then

$$\operatorname{ind}_{\mathbb{1}}(d): \mathbb{1} \to D$$

is a term, and

$$\operatorname{ind}_{\mathbb{I}}(d,\star) \doteq d : D$$

3 (**)

Define a boolean-valued 'less than' operation on natural numbers:

$$<_2$$
 : $\mathbb{N} \to \mathbb{N} \to \mathsf{bool}$

so that $(m <_2 n) \doteq \text{true}$ when m is less than n, and false otherwise.

By the induction principle, we need to supply

$$0 <_{2} - : \mathbb{N} \rightarrow \mathbf{bool}$$

and, assuming some $m: \mathbb{N}$,

$$s(m) <_{2} - : \mathbb{N} \to \mathbf{bool}$$

We'll do each of these by induction, giving the four cases:

$$0 <_2 0 \doteq \mathsf{false}$$
 $0 <_2 s(n) \doteq \mathsf{true}$ $s(m) <_2 0 \doteq \mathsf{false}$ $s(m) <_2 s(n) \doteq (m <_2 n).$

This is adequate to define $<_2$.

Using this definition of add,

$$\begin{array}{ll} \operatorname{add} \, 0 & n \, \stackrel{.}{=} \, n \\ \operatorname{add} \, s(m) \, n \, \stackrel{.}{=} \, s(\operatorname{add} \, m \, n) \end{array}$$

Compute the term

$$(\text{add } s(s(0)) \ s(s(0))) \ <_2 \ (\text{add } s(0) \ s(0))$$

to either true or false.

$$(\mathbf{add}\ s(s(0))\ s(s(0))) <_2\ (\mathbf{add}\ s(0)\ s(0)) \\ \doteq s(\mathbf{add}\ s(0)\ s(s(0))) <_2\ (\mathbf{add}\ s(0)\ s(0)) \\ \doteq s(s(\mathbf{add}\ 0\ s(s(0)))) <_2\ (\mathbf{add}\ s(0)\ s(0)) \\ \doteq s(s(s(s(0)))) <_2\ (\mathbf{add}\ s(0)\ s(0)) \\ \doteq s(s(s(s(0)))) <_2\ s(\mathbf{add}\ 0\ s(0)) \\ \doteq s(s(s(s(0)))) <_2\ s(s(0)) \\ \doteq s(s(s(0))) <_2\ s(s(0)) \\ \doteq s(s(s(0))) <_2\ s(0) \\ \doteq \mathbf{false}$$

Fix some type X, and some type family $x:X,x':X\vdash P(x,x')$ type. Write a term of type

$$\sum_{b:X} \prod_{a:X} P(a,b) \to \prod_{a:X} \sum_{b:X} P(a,b)$$

$$\lambda(b, f)$$
. $\lambda a.(b, fa)$

Here, f has type $\prod_{a:X} P(a,b)$.

What does this say, under our logical interpretation?

If there exists a b such that, for all a, P(a,b) holds, then, for all a there exists a b such that P(a,b) holds.

$\mathbf{5} \quad (\star \star \star)$

 \emptyset is the *empty type*: there are no terms of type \emptyset . It has the following induction principle:

For any type family $x : \emptyset \vdash Q(x)$ type, we have a term $\mathsf{ind}_{\emptyset} : \prod_{x : \emptyset} Q(x)$.

What does this say when Q(x) is a fixed type Q?

For any type Q, there is a term $\operatorname{ind}_{\emptyset} \colon \emptyset \to Q$

Remember that we interpret types to be logical propositions, and terms/inhabitants to be proofs or witnesses of those propositions. What proposition does \emptyset represent?

A false proposition: there are no proofs of \emptyset .

If P is some proposition, what is the logical meaning of $P \to \emptyset$?

P implies false, or P leads to absurdity: if there was a proof of P, we would have a proof of falsity.

We write $\neg P$ as an abbreviation for $P \to \emptyset$

Write a term of type $\neg \neg 1$.

$$\lambda f.f \star : (\mathbb{1} \to \emptyset) \to \emptyset$$

Is there a term of type $\neg\neg\emptyset$? Why or why not?

There is no such term. Suppose we had such a term,

$$\mathbf{absurd} \colon (\emptyset \to \emptyset) \to \emptyset$$

Then we can form the term

$$\mathsf{ind}_\emptyset:\emptyset\to\emptyset$$

and apply absurd to it:

$$absurd(ind_{\emptyset})$$
 : \emptyset

so we've constructed a term of type \emptyset , which is impossible.

Let P and Q be types. We will write $P \leftrightarrow Q$ for the type $(P \to Q) \times (Q \to P)$. Use the fact that $\neg P$ is defined as the type $P \to \emptyset$ of functions from P to the empty type to give type theoretic proofs of the constructive tautologies

- (i) $\neg (P \times \neg P)$
- (ii) $\neg (P \leftrightarrow \neg P)$
 - (i) $\lambda((p, np) : P \times \neg P)$. np p
 - (ii) $\lambda((ltr, rtl) : (P \rightarrow \neg P) \times (\neg P \rightarrow P)).ltr \phi \phi$, where $\phi \doteq rtl(\lambda(p : P).ltr p p))$