

ABES Engineering College, Ghaziabad Department of AS&H

Session: 2023-24 Semester: || Section: All

Course Code: BAS-203 Course Name: Engg. Maths-II

Tutorial-3 (Series and Sequence)

S.No.	KL, CO	Question
1	K3, CO3	Expand $f(x) = x \sin x$, $0 < x < 2\pi$ as a Fourier series. AKTU 2015, 2022
2	K3, CO3	Express $f(x) = x , -\pi < x < \pi$, as Fourier series. Hence Show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$. AKTU 2017-18
3	K3, CO3	Obtain Fourier series for the function $f(x)$ given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi} & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & 0 \le x \le \pi \end{cases}$. Hence, deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}.$ AKTU 2021-22
4	K3, CO3	Find the Fourier expansion for the function $f(x) = x - x^3$ in the interval (-1,1). AKTU 2015-2016
5	K3, CO3	Find the Fourier half –range cosine series of the function $f(t) = \begin{cases} 2t & 0 < t < 1 \\ 2(2-t) & 1 < t < 2 \end{cases}$. AKTU 2018-19
6	K3, CO3	Test the convergence of the following infinite series: $\frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{4}-1} + \frac{1}{\sqrt{5}-1} + \cdots \dots$
7	K3, CO3	Test the series whose n th term is $\frac{1}{n} \sin \frac{1}{n}$. AKTU 2021-22
8	K3, CO3	Test the convergence of the series

		$\frac{1}{1.2.3} + \frac{x}{4.5.6} + \frac{x^2}{7.8.9} \dots \dots$ AKTU 2022-23
9	K3, CO3	Test the convergence of the series
		$1 + \frac{x}{2} + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots \dots x > 0.$
	K3, CO3	Test the convergence of the series
10		$1 + \frac{x}{2} + \frac{2! x^2}{3^2} + \frac{3! x^3}{4^3} + \cdots \dots$

Answers:

1.
$$f(x) = 1 - \frac{1}{2}cosx + \pi sinx + \sum_{n=2}^{\infty} \frac{2}{n^2 - 1}cosx$$
.
3. $f(x) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} [1 - (-1)^n] \frac{cosnx}{n^2}$

$$3. f(x) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} [1 - (-1)^n] \frac{\cos nx}{n^2}$$

4.
$$f(x) = \frac{12}{\pi^3} \left(\sin \pi x - \frac{\sin 2\pi x}{2^3} + \frac{\sin 3\pi x}{3^3} - \cdots \right)$$

4.
$$f(x) = \frac{12}{\pi^3} \left(sin\pi x - \frac{sin2\pi x}{2^3} + \frac{sin3\pi x}{3^3} - \cdots \right)$$
.
5. $f(t) = 1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(2cos \frac{n\pi}{2} - 1 - cosn\pi \right) cos \frac{n\pi t}{2}$

- 6. Convergent
- 7. Convergent
- 8. Convergent if $x \le 1$ and divergent if x > 1.
- 9. Convergent if x<1 and divergent if $x \ge 1$.
- 10. Convergent if x < e and divergent if $x \ge e$.