Chapter 3 Vector

벡터의 성질과 연산에 대해서 알아 본다 벡터 표시 벡터 연산 벡터 곱

Physics 1 1

Dimensional analaysis

원운동하는 물체에 작용하는 구심력은 물체의 질량(m), 원운동 반지름(R), 물체의 속력(v)에 의존함이 실험적으로 알려져있다.

 $F = ma \longrightarrow F$ 의 차원에 대한 정보

Try with: $F = Cm^{\alpha}v^{\beta}R^{\gamma}$, C = const

벡터의 정의

- 크기와 방향을 같은 물리량을 벡터(물리량)이라 한다.
 - ❖ 속도, 가속도, 변위, 위치... *스칼라→ 값만 있는 물리량

- 벡터의 표현:
 - \diamond 식 : 굵은 문자 또는 화살표 얻은 문자 \vec{v} or \mathbf{v}

- ❖ 그림: 화살표.
- 벡터의 상등: 시작 위치에 상관없이 크기와 방향이 같으면 같다.
 - ❖ 평행이동 가능

- 음의 벡터:
 - ❖ 크기는 같고 방향은 반대
- 영 벡터:

Physics 1 3

단위벡터

- ◆단위벡터: 크기가 1인 벡터
- [x-축 방향 단위벡터: \hat{i} (\hat{x}) ullet 중요한 단위벡터 $\{y-$ 축 방향 단위벡터: $\hat{j}(\hat{y})\}$ z-축 방향 단위벡터: \hat{k} (\hat{z})
 - •벡터 ā 의 크기 표현: $|\vec{a}| = a$ (화살표를 떼어냄) $|-3\vec{a}| = |-3| |\vec{a}| = 3a$
 - 교화 같은 방향의 단위벡터: $(|\vec{a}|\neq 0)$

벡터의 성분

- 벡터 연산은 성분을 이용하면 쉽다.
 - ❖ 성분을 계산하기 위해서는 좌표계을 잡아야 한다.
 - ❖ 평행 이동하여 시작을 원점에 놓을 때 정사영의 <mark>좌표값</mark>이 성분임.
 - ❖ 각도는 x-축에서 시작해서 반시계방향 → +

- •성분은 부호를 갖음: $a_x = a\cos\theta$, $a_y = a\sin\theta$
- •성분과 단위벡터를 이용한 벡터표현: $\vec{a} = a_x \hat{i} + a_y \hat{j}$
 - 벡터의 크기: $a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}$,
 - •기울어진 각도: $\tan \theta = \frac{a_y}{a_x}$

 $(0 \le \theta < 2\pi, \text{ or } -\pi < \theta \le \pi)$

Physics 1 7

3차원에서 벡터의 성분

1차원: $\vec{a} = a_x \hat{i}$

2차원:
$$\vec{a} = (a_x, a_y)$$

 $\vec{a} = a_x \hat{i} + a_y \hat{j}$

3차원:
$$\vec{a} = (a_x, a_y, a_z)$$

 $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$

Physics 1 9

성분을 이용한 벡터의 연산

$$\bullet \vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$

덧셈:
$$\vec{R} = \vec{A} + \vec{B}$$

$$\downarrow \downarrow$$
 $R_x = A_x + B_x$
 $R_y = A_y + B_y$
 $R_z = A_z + B_z$

豐 셈 :
$$\vec{R} = \vec{A} - \vec{B}$$

$$\downarrow \downarrow$$
 $R_x = A_x - B_x$
 $R_y = A_y - B_y$
 $R_z = A_z - B_z$

벡터를 이용한 물리법칙 표현

- 벡터는 좌표축을 잡는 방법에 따라 성분이 달라질 수 있다.
- •동일한 벡터도 좌표계를 다르게 잡으면 성분이 달라진다: $a_x \neq a_x$ ' and $a_y \neq a_y$ '
- 그러나, 벡터의 덧셈, 뺄셈, 스칼라곱 등은 좌표계에 선택에 무관한다:

 $\mathbf{q}: \ \vec{c} = \vec{a} + \vec{b}$

⇒ 성분은 달라져도 등호는 변하지않음.

e.g. $c = a_x + a_y \rightarrow c$ 값은 좌표계에 따라 달라짐 ;올바른 물리공식은 좌표계 선택에 무관함.

•벡터의 크기는 좌표계의 회전에 무관한 값이다:

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{(a_x')^2 + (a_y')^2}$$

 $e.g.(x, y)$ 좌표계에서 $d = a_x^2 + a_y^2$ 로
주어지면 (x', y') 좌표계의
 $d' = (a_x')^2 + (a_y')^2$ 와 같은 값을 갖음

Physics 1 11

벡터의 내적

- 두 벡터를 써서 스칼라를 만든다:
 - ❖ 일, flux... 정의에서 쓰임

 $\circ \vec{a}$ 와 \vec{b} 의 내적 \Rightarrow 새로운 스칼라:

 $\vec{a} \bullet \vec{b} = ab \cos \phi$

 $ar{a}$ 의 크기(a)와 $ar{b}$ 의 $ar{a}$ 방향으로 정사영 $(b\cos\phi)$ 의 곱

 \circ 교환법칙: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

 \circ 배분법칙: $\vec{a} \bullet (\vec{b} + \vec{c}) = \vec{a} \bullet \vec{b} + \vec{a} \bullet \vec{c}$

 $\circ \vec{a} / / \vec{b} \Rightarrow \cos \phi = 1 \Rightarrow \vec{a} \cdot \vec{b} = ab$

 \circ 벡터 크기: $a = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_x^2 + a_y^2 + a_z^2}$

 \circ 일 정의: $W = \vec{F} \cdot \vec{d} = Fd \cos \phi$

성분을 이용한 내적

 \circ 단위벡터사이의 내적 $\hat{i} \perp \hat{j} \perp \hat{k} \perp \hat{i} \Rightarrow \hat{i} \bullet \hat{j} = \hat{j} \bullet \hat{k} = \hat{k} \bullet \hat{i} = 0$ 크기가 1인 벡터 $\Rightarrow \hat{i} \bullet \hat{i} = \hat{j} \bullet \hat{j} = \hat{k} \bullet \hat{k} = 1$

◦단위벡터를 이용한 내적의 표현:

$$\vec{a} \bullet \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \bullet (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}) = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \bullet \vec{b} = \sum_{i=x,y,z} a_i b_i$$

$$\circ a = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{(a_x)^2 + (a_y)^2 + (a_z)^2}$$

Physics 1 13

벡터의 외적

- 두 벡터로 새로운 벡터를 만듬:
 - ❖ Torque, 각운동량, 자기력... 정의에 쓰임
 - \vec{a} 와 \vec{b} 의 외적 ⇒ 새로운 벡터 \vec{c} : $\vec{c} = \vec{a} \times \vec{b}$
- •크기: $c = ab \sin \phi = \vec{a}$ 와 \vec{b} 가 만드는 평행사변형면적
- •방향: \vec{a} 와 \vec{b} 만드는 평면에 수직, 오른손 법칙

- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (교환법칙⇒ No!)
- $\bullet \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

$$\circ \vec{a} / / \vec{b} \implies \sin \phi = 0 \implies \vec{a} \times \vec{b} = 0$$

$$\circ \vec{a} \perp \vec{b} \implies \sin \phi = 1 \implies |\vec{a} \times \vec{b}| = ab$$

$$\circ \vec{a} \times \vec{a} = 0$$

성분을 이용한 외적

• 단위벡터사이의외적 $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$ $\hat{i} \times \hat{j} = -\hat{j} \times \hat{i} = \hat{k}$ $\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i}$ $\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j}$

•성분을 이용한 외적 표현:
$$\vec{c} = \vec{a} \times \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$
$$= (a_y b_z - a_z b_y) \hat{i} + (a_z b_x - a_x b_z) \hat{j} + (a_x b_y - a_y b_z) \hat{k}$$
$$\Leftrightarrow \begin{cases} c_x = a_y b_z - a_z b_y \\ c_y = a_z b_x - a_x b_z \\ c_z = a_x b_y - a_y b_x \end{cases}$$

*행렬식 표현: $\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$

Physics 1 15

Ex. 벡터 연산

$$\bullet \vec{a} = 3\hat{i} - 4\hat{j}, \quad \vec{b} = -2\hat{i} + 3\hat{k}$$
$$\vec{a} \bullet \vec{b} = ?, \quad \vec{a} \times \vec{b} = ?,$$

내적:
$$\vec{a} \cdot \vec{b} = (3)(-2) + (-4)(0) + (0)(3) = -6$$

