다양한 공간적 필터링 기법

- > 공간적 필터링
- ▶ 영상 부드럽게 만들기
- ▶ 영상 날카롭게 만들기
- ▶ 잡음 생성
- ▶ 잡음 제거를 위한 비선형 필터

- □ 필터링(Filtering)
 - 영상에서 특정 주파수 성분을 제거하는 작업
- □ 공간적 필터링(Spatial filtering)
 - 영상의 픽셀 값을 그대로 이용하여 영상에서 원하는 정보만을 걸러내는 영상 처리 기법
 - 마스크(mask)를 이용하는 방법
 - □ 윈도우(window), 템플릿(template), 커널(kernel)

$$g[y][x] = \sum_{j=-w}^{w} \sum_{i=-w}^{w} m[j][i]f[y+j][x+i]$$

□ 3×3 크기의 마스크를 이용한 필터링 방법

- □ 최외곽 픽셀 처리 방법
 - 최외곽 픽셀은 마스크 연산에서 제외
 - 최외곽 바깥에 가상의 픽셀이 있다고 가정

[0][0]	[0][1]	• • •	[0][w-2]	[0][w-1]
[1][0]	[1][1]	• • •	[1][w-2]	[1][w-1]
•	•	• •	•	•
[h-2][0]	[h-2][1]	• • •	[h-2] [w-2]	[h-2] [w-1]
[h-1][0]	[h-1][1]	• • •	[h-1] [w-2]	[h-1] [w-1]

- □ 마스크 연산 시 주의할 점
 - 일반적으로 원본 영상의 복사본을 만들어 픽셀 값을 참조해야 함.

마스크 연산을 이용하여 (x,y) 좌표의 값을 설정할 때, 노란색 부분의 픽셀은 이미 원본 영상의 픽셀 값이 변경된 상태임.

f[y-1][x-1]	f[y-1][x]	f[y-1][x+1]
f[y][x-1]	f[y][x]	f[y][x+1]
f[y+1][x-1]	f[y+1][x]	f[y+1][x+1]

- □ 평균 값 필터(Mean filter)
 - 영상의 특정 좌표 값을 주변 픽셀들의 그레이스케일 값 들의 산술 평균 값으로 설정하는 필터

	1	1	1
$\frac{1}{9}$ ×	1	1	1
-	1	1	1

	1	1	1	1	1
	1	1	1	1	1
$\frac{1}{25}$ ×	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

- □ 실제 영상에 평균 값 필터를 적용한 결과
 - 입력 영상, 3x3, 5x5 크기의 마스크를 이용한 결과

- □ 가중 평균 값 필터(Weighted mean filter)
 - 평균 값 필터의 일종
 - 필터 마스크의 가운데 위치한 픽셀에 가중치를 더 주는 방법

	1	2	1
$\frac{1}{16}$ ×	2	4	2
10	1	2	1

1 256×	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

- □ 실제 영상에 가중 평균 값 필터를 적용한 결과
 - 입력 영상, 3x3, 5x5 크기의 마스크를 이용한 결과

- □ 가우시안(Gaussian) 함수
 - 1차원 가우시안 함수
- 2차원 가우시안 함수

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} e^{\left(-\frac{x^2 + y^2}{2\sigma^2}\right)}$$

 \square 2차원 가우시안 필터 마스크(σ = 1.0)

0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.0000	0.0000
0.0000	0.0002	0.0029	0. 0131	0.0215	0.0131	0.0029	0.0002	0.0000
0.0000	0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011	0.0000
0.0001	0.0018	0.0215	0.0965	0.1592	0.0965	0.0215	0.0018	0.0001
0.0000	0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011	0.0000
0.0000	0.0002	0.0029	0. 0131	0.0215	0.0131	0.0029	0.0002	0.0000
0.0000	0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000

□ 1차원 가우시안 함수를 이용하여 2차원 가우시안 필터 마스크 만들기

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{\left(-\frac{x^2+y^2}{2\sigma^2}\right)} = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{x^2}{2\sigma^2}\right)} \times \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{y^2}{2\sigma^2}\right)}$$

실제 영상에 가우시안 필터를 적용한 결과 (차례대로 입력 영상, σ = 1.0, 2.0, 3.0, 4.0, 5.0)

□ 언샤프 마스크(Unsharp mask) 필터

$$h(x, y) = f(x, y) + g(x, y)$$

= $f(x, y) + [f(x, y) - \overline{f}(x, y)]$

□ 언샤프 마스크 필터링 시뮬레이션

3x3 크기의 가중 평균 값 필터를 사 용하여 부드럽게 만든 영상

입력 영상에서 가중 평균값 필터 결과 영상를 이용 하여 뺄셈 연산을 한 결과

입력 영상에 뺄셈 결과 영상을 더한 영상

- □ 라플라시안(Laplacian) 필터
 - 영상의 2차 미분을 이용
- \square 영상의 x 방향으로의 일차 미분

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

 \square 영상의 x 방향으로의 이차 미분

$$\frac{\partial^2 f}{\partial x^2} = \left[f(x+1) - f(x) \right] - \left[f(x) - f(x-1) \right]$$
$$= f(x+1) + f(x-1) - 2f(x)$$

□ 라플라시안 필터

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$= \left[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) \right]$$

$$-4f(x, y)$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

- □ 실제 영상에 라플라시안 필터를 적용한 결과
 - 입력 영상, 4방향, 8방향을 고려한 라플라시안 필터링 결과

□ 언샤프 마스크 필터 수식 변경

$$h(x, y) = f(x, y) + \nabla^2 f(x, y)$$

= $f(x, y) - \{ [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] - 4f(x, y) \}$

$$h(x, y) = 5f(x, y)$$
$$-f(x+1, y) - f(x-1, y) - f(x, y+1) - f(x, y-1)$$

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

□ 하이부스트(High-boost filter) 필터

$$h(x, y) = \alpha f(x, y) + \nabla^2 f(x, y)$$

 $\alpha = 1$ 이면 언샤프 마스크 필터와 동일

$$\alpha = 1$$

 α = 1.5

잡음 생성

- □ 소금&후추(Salt&Pepper) 잡음
 - 입력 영상의 임의의 좌표 픽셀 값을 0 또는 255로 설정하는 잡음

- □ 실제 영상에 소금&후추 잡음을 추가한 결과
 - 입력 영상, 10%, 30% 의 소금&후추 잡음을 추가한 결과

- □ 미디언(Median) 필터
 - □ 입력 영상의 (x,y) 좌표 주변 픽셀들의 값들을 오름 또는 내림 차순으로 정렬하여 그 중앙에 있는 픽셀 값을 사용

- □ 삽입 정렬
 - 배열의 맨 첫 번째 원소부터 이미 정렬되어있는 원소들을 순회하면서 데이터가 들어갈 위치를 찾아 삽입하는 정렬 알고리즘

□ 소금&후추 잡음이 포함된 영상에 미디언 필터를 적용한 결과

- □ 경계선 보전(Edge-preserving) 잡음 제거
 - 경계선 정보는 살리고 잡음은 제거
- □ 비등방성 확산(Anisotropic diffusion) 필터

$$I_{t} = div(c(x, y, t)\nabla I) = c(x, y, t)\Delta I + \nabla c \cdot \nabla I$$

- div : 발산(divergence) 연산자
- ∇ : 그래디언트(gradient) 연산자
- $\Delta = \nabla^2$: 라플라시안(Laplacian) 연산자

□ 비등방성 확산 수식을 이산 함수 형태로 변환

$$I_{i,j}^{t+1} = I_{i,j}^{t} + \lambda \left[c_N \cdot \nabla_N I + c_S \cdot \nabla_S I + c_E \cdot \nabla_E I + c_W \cdot \nabla_W I \right]$$

$$\begin{split} \nabla_{N}(I_{i,j}) &= I_{i,j-1} - I_{i,j} & \nabla_{S}(I_{i,j}) = I_{i,j+1} - I_{i,j} \\ \nabla_{E}(I_{i,j}) &= I_{i+1,j} - I_{i,j} & \nabla_{W}(I_{i,j}) = I_{i-1,j} - I_{i,j} \end{split}$$

■ 전달 계수 함수

$$c_{N\sim W} = g(\|\nabla_{N\sim W}I\|) = \frac{1}{1 + \left(\frac{\|\nabla_{N\sim W}I\|}{K}\right)^2}$$

원본영상

가우시안 필터링

250 200 150 100 50 0 50 100 150 200 250

비등방성 확산

- □ 실제 영상에 비등방성 확산 필터를 적용한 결과
 - 입력 영상, 반복 횟수 10, 반복 횟수 30을 적용한 결과

