Klucz: KLUCZ

Imiona: Nazwisko:

Nr albumu:

Odpowiedzi na poszczególne pytania należy koniecznie wpisać (jako cyfry) do poniższej tabeli. Punktacja podana jest na lewym marginesie. Podczas testu nie wolno korzystać z żadnych pomocy oprócz prostych kalkulatorów naukowych. Każde pytanie ma dokładnie jedną prawidłową odpowiedź. Czas trwania testu: 35 minut.

UWAGA! W niniejszym kluczu każde pytanie może mieć więcej niż jedną odpowiedź prawidłową i więcej niż trzy nieprawidłowe. Do docelowego testu wybierana jest spośród nich dokładnie jedna odpowiedź prawidłowa i dokładnie trzy nieprawidłowe. Odpowiedzi prawidłowe są w tekście klucza wyróżnione pogrubieniem.

Pyt.	A	В	С	D	Е	F	G	Σ
Pkt.	1	1	1	2	1	1	2	9

Odp.

1p. A. Które stwierdzenie jest prawdziwe dla każdego elementu skupionego?

1. pole magnetyczne wokół elementu jest w przybliżeniu stałe 2. pole elektryczne wokół elementu jest w przybliżeniu potencjalne 3. równania elementu nie zawierają zmiennych przestrzennych (x, y, z)

4. pole magnetyczne wokół elementu jest pomijalnie małe
5. ładunek elektryczny wewnątrz obszaru elementu jest pomijalnie mały
6. pole elektryczne wokół elementu jest zerowe
7. równania elementu nie zawierają jako zmiennej czasu (t)

1p. B. Która charakterystyka napięciowo-prądowa opisuje opór nieliniowy?

 R_1 R_3 R_4 R_5 R_6 W układzie pokazanym na rysunku:

1. opory R_1 i R_2 są połączone w gwiazdę z R_3 2. opory R_2 i R_5 są połączone w trójkąt z R_3 3. opory R_1 i R_2 są połączone szeregowo 4. opory R_1 i R_2 są połączone równolegle ze sobą 5. opory R_4 i R_5 są połączone równolegle ze sobą 7. opory R_2 i R_5 są połączone równolegle ze sobą 8. opory R_2 i R_5 są połączone równolegle z oporem R_3

15. 0 i 1 k Ω 16. 0 i 2 k Ω 17. 0 i 3 k Ω 18. 0 i 4 k Ω 19. to zależy od sposobu podłączenia 20. żadna z pozostałych odpowiedzi nie jest poprawna

Ip. E. R_1 R_2 R

1. E 2. $E \cdot (1 + gR_1)$ 3. $E \cdot (1 + gR_2)$ 4. $E \cdot (1 - gR_1)$ 5. $E \cdot (1 - gR_2)$ 6. $E/(1 + gR_1)$ 7. $E/(1 + gR_2)$ 8. $E/(1 - gR_1)$ 9. $E/(1 - gR_2)$

Ile wynosi wkład (wynikający z zasady superpozycji) do napięcia u pochodzący od źródła e_2 ? Dane: $e_1=1$ V, $e_2=2$ V, $j_1=1$ A, $j_2=2$ A, $R_1=1$ k Ω , $R_2=2$ k Ω .

1. $\frac{2}{3}$ V 2. $\frac{1}{3}$ V 3. $\frac{4}{3}$ V 4. $\frac{1}{2}$ V 5. 1 V 6. $\frac{3}{2}$ V 7. 2 V

Ile wynosi moc dysponowana dwójnika o zaciskach A–B? Dane: $J=4~{\rm mA}$, $R_1=1~{\rm k}\Omega,\,R_2=2~{\rm k}\Omega,\,r=1~{\rm k}\Omega.$ Wskazówka: Należy skorzystać z twierdzenia Nortona.

Ile wynosi SEM zastępczego źródła Thévenina dwójnika o zaciskach A-B?

1. 4 mW 2. $\frac{1}{4}$ mW 3. $\frac{1}{2}$ mW 4. 1 mW 5. 2 mW 6. 8 mW