Basics of Elliptic Curves Cryptosystems

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Email: gianluca.dini@unipi.it
Version: 2021-04-18

ECC in a nutshell

- Mid-1980s
- Same level of security of RSA and DL-system with considerably shorter operands
 - -160 256 bit vs 1024 3072 bit
- Based on GDLP
 - DHKE and DL-systems can be realized using ECCs
- Performance advantages over RSA and DLsystems
 - RSA with short public parameter is faster than ECC

Apr-21

Elliptic Curves Cryptosystem

How to Compute with ECC

- ECC is based on GDLP so we have to accomplish two tasks
 - Task 1: Define a elliptic-curve-based cyclic group
 - Task 1.1: Define a set of elements
 - Task 1.2: Define the group operation
 - Task 2: Show that DLP is hard in that group

Polynomials and curves

• We can form curves from polynomial equations

 A curve is the set of points (x, y) which are the solutions of the equations

- Examples (in \mathbb{R})
 - $-x^2 + y^2 = r^2$ is a circle
 - $-a \cdot x^2 + b \cdot y^2 = c$ is an ellipse

Apr-21

Elliptic Curves Cryptosystem

ECC - definition

- We consider $GF(p) = \{0, 1, ..., p 1\}$
 - Intuitively, GF is a finite set where you can add, subtract, multiply and invert
- Definition
 - The elliptic curve over \mathbb{Z}_p , p > 3, is the set of points $(x,y) \in \mathbb{Z}_p$ which fulfils $y^2 \equiv x^3 + a \cdot x + b \bmod p$
 - together with an imaginary point of infinity \mathcal{O} , where $a,b\in\mathbb{Z}_p$, and the condition

$$4 \cdot a^3 + 27 \cdot b^2 \neq 0 \bmod p$$

• The curve is non-singular (no vertices, no self-intersections)

Apr-21

Elliptic Curves Cryptosystem

Group elements (task 1.1)

Sweether RISPS IND X

- Plotting in $\mathbb R$ for the sake of illustration
- Observations
 - 1, 3 intersections with x axis
 - Symmetric with respect to x axis
- Task 1.1 solved
 - of the curve

Apr-21

 We call "addition" the group operation and denote it by "+" an operation that takes two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and produces a third point R = (x_3, y_3) as a result

$$P+Q=R$$

P+Q=R ADDISONE TRA BUE PUTI

- Geometrical interpretation of + in \mathbb{R}
 - Point Addition P + Q, Q \neq P
 - Point Doubling P + P, P = Q

Apr-21

Elliptic Curves Cryptosystem

- Geometrical interpretation of "+" operation
 - The tangent-and-chord method

Point addition

Apr-21

Point doubling

WIERASIAZIONE POR AR

- · Geometrical interpretation of +
 - The tangent-and-chord method only uses the four standard operations
- FACT
 - If addition + is defined this way, the group points fulfil most of necessary conditions of a group: closure, associativity, existence of an identity element and existence of an inverse

Apr-21

Elliptic Curves Cryptosystem

- Elliptic Curve Point Addition and Point Doubling
 - Analytic expressions

$$-x_3 \equiv s^2 - x_1 - x_2 \bmod p$$

$$-y_3 \equiv s \cdot (x_1 - x_3) - y_1 \bmod p$$

- where

ABB ALBONTA CURNA OBU THUESTE.

 $-s \equiv \frac{y_2 - y_1}{x_2 - x_1} \mod p$ if $P \neq Q$ (point addition)

$$-s \equiv \frac{3 \cdot x_1^2 + a}{2 \cdot y_1} \mod p$$
 if P = Q (point doubling)

-> – with s the slope of chord/tangent

Apr-21

Elliptic Curves Cryptosystem

Point at infinity (task 1.2)

- An identity (neutral) element $\ensuremath{\mathcal{O}}$ is still missing
 - $\forall P \in E : P + \mathcal{O} = P$
- There exists not such a point on the curve
- Thus, we define \mathcal{O} as the point at infinity
 - Located at "plus" infinity towards the y-axis or at "Postourateo" "minus" infinity towards the y-axis "L'Esister + "" O
- Now, we also define -P (inverse) $P + (-P) = \mathcal{O}$

Apr-21

Elliptic Curves Cryptosystem

12

One thing that is still missing is an identity (or neutral) element O.

- Inverse of a point P on an elliptic curve
 - Apply the tangent-and-chord method
- In ECC over GF(p)
 - Given P = (x, y) then -P = (x, p y)

Apr-21

Elliptic Curves Cryptosystem

A useful theorem

- THM
 - The points on an elliptic curve together with ⊕ have cyclic subgroups. Under certain conditions all points on an elliptic curve form a cyclic group
 - A primitive element must exist such that its powers generate the entire group

Apr-21

Elliptic Curves Cryptosystem

Example (1/2)

Apuraiso us EQUAZIONI E

- E: $y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$
 - #E (order of E) = 19
 - -P = (5, 1) primitive element
 - "Powers" of P
 - 2P = (6, 3) point doubling
 - 3P = (10, 6) point addition 2P + P
 - · 4P = (3, 1) DOWT DOWBLING 2×2P
 - 5P = (9, 16)
 - 6P = (16, 13)
 - 7P = (0, 6)
 - 8P = (13, 7)
 - 9P = (7, 6)
 - 10P = (7, 11)

POSEIBLES NEOSE

CHE LA CUPUA

PARRIES EN ARGENTAR or arous cy

11P = (13, 10)

12P = (0, 11)

13P = (16, 4)

14P = (9, 1)

15P = (3, 16)

16P = (10, 11)

17P = (6, 14)

18P = (5, 16)

 $19P = 0 = \#E \cdot P$

Apr-21

Elliptic Curves Cryptosystem

Example (2/2)

- The cyclic structure becomes visible
 - -20 P = 19P + P = O + P = P
 - -21P = 19P + 2P = 2P
 - **–** ...
- Furthermore
 - 19P = O, thus 18P + P = O, then18P is the inverse of P and vice versa
 - Verification
 - P = (5, 1), 18P = (5, 16)
 - $x_p = x_{18P} = 5$
 - $y_p + y_{18p} \equiv 0 \mod 17$

Apr-21

Elliptic Curves Cryptosystem

SENTA DOLOSPAZIONE

Hasse's theorem

Hasse's Theorem

- Given an elliptic curve E modulo p, the number of points on the curve is denoted by #€ and is bounded by:

ALDMALCH CORNA → APLESO D. ROTTI

 $(p+1-2\sqrt{p}) \le \#E \le (p+1+\sqrt{p}) \text{ FULTA ANCUE SE NOW PRINTED FOR PRINTED FOR$

- The number of points is roughly in the range of (Hasse's bound)
- Example If you need an EC with 2¹⁶⁰ points, you have to use a prime p of about 160 bit

Apr-21

Elliptic Curves Cryptosystem

18

To set up DL cryptosystems it is important to know the order of the group. Even though knowing the exact number of points on a curve is an elaborate task, we know the approximate number due to Hasse's theorem.

ECDLP – point multiplication

- Elliptic Curved Discrete Logarithm Problem (ECDLP)
 - Given is an elliptic curve E. We consider a primitive element P and another element T. The DL problem is finding the integer d, where $1 \le d \le \#E$, such that:

$$P + P + \dots + P = d \cdot P = T$$
d times

- is the private key, T is the public key
- Point multiplication ≝ T = d·P \ Քառ Չաւն Կահա

Apr-21

Elliptic Curves Cryptosystem

In cryptosystems, d is the private key which is an integer, while the public key T is a point on the curve with coordinates T = (xT, yT). The operation is called point multiplication, since we can formally write $T = d \cdot P$.

Square-and-multiply

- Point multiplication is analogue to exponentiation in multiplicative groups (Z_p^{*},×)
- We can adopt the square-and-multiply algorithm
- Example
 - $26P = (11010)_2P = (d_4d_3d_2d_1d_0)2P$
 - Step

```
• #0 P = 1P
                                              init setting, bit processed: d_4 = 1
                                              DOUBLE, bit processed: d<sub>3</sub>
• #1a P+P = 2P = 10P
• #1b 2P+P = 3P = 10P+1P = 11P
                                              ADD, since d_3 = 1
• #2a 3P+3P = 6P = 2(11P) = 110P
                                              DOUBLE, bit processed: d2
                                              no ADD, since d_2 = 0
• #3a 6P+6P = 12P = 2(110P) = 1100P
                                              DOUBLE, bit processed: d<sub>1</sub>
• #3b 12P+P = 13P = 1100P+1P = 1101P
                                              ADD, since d₁= 1
• #4a 13P+13P = 26P = 2(1101P) = 11010P DOUBLE, bit processed: d<sub>0</sub>
• #4b
                                              no ADD, since d_0 = 0
```

Apr-21

Elliptic Curves Cryptosystem

EC Cryptosystem

- · Private key: d
- Public key: T
- Geometrical interpretation of ECDLP
 - Given P, we compute 2P, 3P,..., d⋅P = T, we actually jump back and forth on the EC
 - Given the starting point P and the final point T (public key), the adversary has to figure out how often we "jumped" on the EC

Apr-21

Elliptic Curves Cryptosystem