

Reforming Traditional Machine Learning Algorithms with Spatio-Temporal Analytics Capability for Big Data

Jing Xu, Lei Gao IBM Analytics

#SAISDS9

Content

- Spatio-Temporal Analysis Background
- Spatio-Temporal Exploratory and Modeling (STEM)
- Data Preparation for STEM
- Use case

Background

- Spatio-Temporal Data

Background

- Spatio-Temporal Data & Analysis

Background

- Analysis Areas for Spatio-Temporal Data

Spatio-Temporal Exploratory and Modeling

(STEM)

Spatio-Temporal Analysis Suite

Spatio-Temporal Analysis Suite

Work flow of data preparation

- The raw spatial-temporal data from customer involves multiple data sources with different data formats
- STEMDP component
 - Performs the data preparation for STP/PPM
 - Always required before STP/PPM model building
 - Provides the functionality that converts the raw data into regular data that STP/PPM requires
 - Outputs only one regular data source consumable by STP/PPM

Input data of STEM-DP

Regular data: A fixed set of spatial locations and equally spaced time stamps common across locations. There is only

one case for each location and time stamp combination

	A	В	C	D	E	F	G	Н	1	J
1	longitude	latitude	year	inc	pop	pctw	pctb	pcta	pcth	age
2	-84.431	33.94616	1996	7845.61	181891.1	86.56196	8.80415	3.45804	3.18889	41.3
3	-84.4502	33.92186	1996	9890.284	175523.6	84.40528	10.96279	3.34503	3.24738	34.7
4	-84.4695	33.90059	1996	7375.113	171122.6	82.50816	13.07871	3.0717	3.26355	32.7
5	-84.4522	33.88529	1996	9070.971	160988	83.33412	12.69587	2.67122	3.14153	32.7

Point occurrence data: A list of events labeled by a time stamp and the location of the event

	A	В	C	D
1	year	longitude	latitude	mat_addr
2	1996	-83.23	33.08	301 S WAYNE ST, MILLEDGEVILLE, GA, 31061
3	1996	-83.25	33.11	1900 N COLUMBIA ST, MILLEDGEVILLE, GA, 31061
4	1996	-83.47	33.6	223 N MAIN ST, MADISON, GA, 30650
5	1996	-83.47	33.6	223 N MAIN ST, MADISON, GA, 30650
6	1996	-82.6	31.86	901 S TALLAHASSEE ST, HAZLEHURST, GA, 31539

- Geospatial layout data:
 - Required if the regular data or point occurrence data requires the region boundary information
 - Shape files(*.shp and associated *.dbf, *.prj), JSON format, Geo-enabled databases, etc.
 - Convert all of them into unenclosed JSON format that can be used in parallel computing

Data transformation in STEM-DP

- Data transformation for Regular data
 - Convert timestamp variable into time-index variable
 - Missing records handling
- Data transformation for Point occurrence data
 - For STP: Perform kernel-density estimation algorithm by using the point occurrence data
 - For PPM: Obtain the centroid of each region and compute the event count in the region by using the point occurrence data. The count will be a new field for PPM
 - Missing records handling

* Optional inputs depends on the actual scenario

Scala API

Use Case

- Crime Occurrences Modeling and Prediction
 - Police department in a city want to predict crime occurrences of next several months in order to better plan and allocate resources
- Available information for analysis
 - Geo-spatial data defined census tracts of the city
 - Past crime occurrences
 - The time and coordinates of crime event
 - Local demographic profiles
 - population density
 - per capita income
 - ethnic diversity
 - median age
 - male-to-female ratio

Data Preparation

Prepared Data for Modeling

 Align crime occurrences points with layout, and merge with demographic profiles to get the model ready data for PPM

Prepared Data Visualization

- Event occurring intensity
 - Intensity is a measure of event counts per unit area

Prepared Data Visualization

- Event occurring trend

Intensity is a measure of event counts per unit area

Spatio-Temporal Modeling

Modeling process including 3 layers to handle different types of information:

- The influence of external factors
- Time-series autocorrelation

Spatial correlation among all the cities

Prepared Result Visualization

- Predicted crime counts for next month

What-if Scenario Analysis

Scenario

- A large sports festival will be held in the city
- Police department wants to estimate how the crime will increase due to
 - Large influx of people to some areas
 - Fans are mainly adult males

Without the festival

Thanks!

