Complementaria 1

Ejercicios sobre eventos, técnicas de conteo y cálculo de probabilidades.

Sergio Angulo

12 de agosto de 2018

Contenido

- Experimento Aleatorio
- Espacio Muestral
- Eventos
- Diagramas de Venn
- 6 Axiomas
 - Algunos Teoremas
- Probabilidad
- Métodos de conteo

Definición

Un experimento se denomina aleatorio si tiene estas tres propiedades:

• Antes de que el experimento haya analizado es imposible conocer con certeza cual sería el resultado del experimento(se dice entonces que el experimento es no determinístico).

Definición

Un experimento se denomina aleatorio si tiene estas tres propiedades:

- Antes de que el experimento haya analizado es imposible conocer con certeza cual sería el resultado del experimento(se dice entonces que el experimento es no determinístico).
- Todo experimento aleatorio debe producir en cada una de sus
 ocurrencias un resultado único.

Definición

Un experimento se denomina aleatorio si tiene estas tres propiedades:

- Antes de que el experimento haya analizado es imposible conocer con certeza cual sería el resultado del experimento(se dice entonces que el experimento es no determinístico).
- Todo experimento aleatorio debe producir en cada una de sus ocurrencias un resultado único.
- El conjunto de resultados posibles de un experimento aleatorio se debe poder determinar completamente.

Definición

Un experimento se denomina aleatorio si tiene estas tres propiedades:

- Antes de que el experimento haya analizado es imposible conocer con certeza cual sería el resultado del experimento(se dice entonces que el experimento es no determinístico).
- Todo experimento aleatorio debe producir en cada una de sus ocurrencias un resultado único.
- El conjunto de resultados posibles de un experimento aleatorio se debe poder determinar completamente.

Espacio Muestral

Definición

Se llama espacio muestral de un experimento aleatorio al conjunto Ω de todos los resultados posibles del experimento.

A los elementos de Ω se les llama resultados elementales. El E.M. puede ser finito o infinito; en caso de ser infinito es importante distinguir entre espacios numerables(discretos), y no numerables(continuos).

Espacio Muestral

Definición

Se llama espacio muestral de un experimento aleatorio al conjunto Ω de todos los resultados posibles del experimento.

A los elementos de Ω se les llama resultados elementales. El E.M. puede ser finito o infinito; en caso de ser infinito es importante distinguir entre espacios numerables(discretos), y no numerables(continuos).

Definición

Un evento asociado a un experimento aleatorio es un subconjunto B del espacio muestral Ω del experimento aleatorio. Se dice que el evento B se da o tiene lugar si el resultado final del experimento es un elemento de B.

Propiedades

• Si B es un evento, entonces B^c (el complemento de B con respecto a Ω , ó la afirmación contraria a la que define B) también es un evento.

Definición

Un evento asociado a un experimento aleatorio es un subconjunto B del espacio muestral Ω del experimento aleatorio. Se dice que el evento B se da o tiene lugar si el resultado final del experimento es un elemento de B.

Propiedades

- Si B es un evento, entonces B^c (el complemento de B con respecto a Ω , ó la afirmación contraria a la que define B) también es un evento.
- Debe haber una forma de representar los eventos imposibles: el conjunto vacío, Ø, permite representar tales eventos. Luego Ø debería ser un evento.

Definición

Un evento asociado a un experimento aleatorio es un subconjunto B del espacio muestral Ω del experimento aleatorio. Se dice que el evento B se da o tiene lugar si el resultado final del experimento es un elemento de B.

Propiedades

- Si B es un evento, entonces B^c (el complemento de B con respecto a Ω , ó la afirmación contraria a la que define B) también es un evento.
- Debe haber una forma de representar los eventos imposibles: el conjunto vacío, Ø, permite representar tales eventos. Luego Ø debería ser un evento.
- Si tenemos dos eventos A y B la unión de éstos debe ser también un evento.

Definición

Un evento asociado a un experimento aleatorio es un subconjunto B del espacio muestral Ω del experimento aleatorio. Se dice que el evento B se da o tiene lugar si el resultado final del experimento es un elemento de B.

Propiedades

- Si B es un evento, entonces B^c (el complemento de B con respecto a Ω , ó la afirmación contraria a la que define B) también es un evento.
- Debe haber una forma de representar los eventos imposibles: el conjunto vacío, Ø, permite representar tales eventos. Luego Ø debería ser un evento.
- Si tenemos dos eventos A y B la unión de éstos debe ser también un evento.

Suponga que Ω es un espacio muestral asociado con un experimento. A todo evento A en Ω (A es el subconjunto de Ω) le asignamos un número, P(A), llamado probabilidad de A, de modo que se cumplen los siguientes axiomas:

1 $0 \le P(A) \le 1$.

Suponga que Ω es un espacio muestral asociado con un experimento. A todo evento A en Ω (A es el subconjunto de Ω) le asignamos un número, P(A), llamado probabilidad de A, de modo que se cumplen los siguientes axiomas:

- **1** $0 \le P(A) \le 1$.
- **2** $P(\Omega) = 1$.

Suponga que Ω es un espacio muestral asociado con un experimento. A todo evento A en Ω (A es el subconjunto de Ω) le asignamos un número, P(A), llamado probabilidad de A, de modo que se cumplen los siguientes axiomas:

- **1** $0 \le P(A) \le 1$.
- **2** $P(\Omega) = 1$.
- ③ Si A_1, A_2, A_3, \cdots forman una secuencia de eventos por pares mutuamente excluyentes en Ω (es decir, $A_i \cap A_j = \emptyset$ si $i \neq j$), entonces

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

Suponga que Ω es un espacio muestral asociado con un experimento. A todo evento A en Ω (A es el subconjunto de Ω) le asignamos un número, P(A), llamado probabilidad de A, de modo que se cumplen los siguientes axiomas:

- **1** $0 \le P(A) \le 1$.
- **2** $P(\Omega) = 1$.
- **3** Si A_1, A_2, A_3, \cdots forman una secuencia de eventos por pares mutuamente excluyentes en Ω (es decir, $A_i \cap A_j = \emptyset$ si $i \neq j$), entonces

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$

- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- Si $A \subset B$ entonces $P(A) \leq P(B)$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- Si $A \subset B$ entonces $P(A) \leq P(B)$

Probabilidad

Definición

Una probabilidad es una medida sobre el grado de certeza de que un EVENTO asociado a un experimento aleatorio tiene lugar.

Cálculo

Sea A un evento del experimento aleatorio, entonces:

$$P(A) = \frac{\text{RESULTADOS FAVORABLES AL EVENTO A}}{\text{TOTAL DE RESULTADOS POSIBLES}}$$

Probabilidad

Definición

Una probabilidad es una medida sobre el grado de certeza de que un EVENTO asociado a un experimento aleatorio tiene lugar.

Cálculo

Sea A un evento del experimento aleatorio, entonces:

$$P(A) = \frac{RESULTADOS FAVORABLES AL EVENTO A}{TOTAL DE RESULTADOS POSIBLES}$$

Principio Fundamental del conteo

Si un evento puede realizarse en n_1 formas diferentes y si por cada una de éstas una segunda operación puede llevarse a cabo de n_2 formas diferentes, una tercera de n_3 formas, y así sucesivamente, entonces el número de maneras que se puede realizarse el experimento en el orden indicado es:

$$n_1 \cdot n_2 \cdot n_3 \cdot \cdots$$

Principio Fundamental del conteo

Si un evento puede realizarse en n_1 formas diferentes y si por cada una de éstas una segunda operación puede llevarse a cabo de n_2 formas diferentes, una tercera de n_3 formas, y así sucesivamente, entonces el número de maneras que se puede realizarse el experimento en el orden indicado es:

$$n_1 \cdot n_2 \cdot n_3 \cdot \cdots$$

Arreglo Ordenado

En el caso de que las τ operaciones tengan la misma cantidad de formas diferentes η , el número de maneras que se puede realizarse el experimento es:

Principio Fundamental del conteo

Si un evento puede realizarse en n_1 formas diferentes y si por cada una de éstas una segunda operación puede llevarse a cabo de n_2 formas diferentes, una tercera de n_3 formas, y así sucesivamente, entonces el número de maneras que se puede realizarse el experimento en el orden indicado es:

$$n_1 \cdot n_2 \cdot n_3 \cdot \cdots$$

Arreglo Ordenado

En el caso de que las r operaciones tengan la misma cantidad de formas diferentes n, el número de maneras que se puede realizarse el experimento es:

Principio Fundamental del conteo

Si un evento puede realizarse en n_1 formas diferentes y si por cada una de éstas una segunda operación puede llevarse a cabo de n_2 formas diferentes, una tercera de n_3 formas, y así sucesivamente, entonces el número de maneras que se puede realizarse el experimento en el orden indicado es:

$$n_1 \cdot n_2 \cdot n_3 \cdot \cdots$$

Arreglo Ordenado

En el caso de que las r operaciones tengan la misma cantidad de formas diferentes n, el número de maneras que se puede realizarse el experimento es:

Permutaciones

En forma general una permutación es una secuencia ordenada de r objetos tomados de un conjunto de n objetos distintos.

$$n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1)$$

Permutaciones

En forma general una permutación es una secuencia ordenada de r objetos tomados de un conjunto de n objetos distintos.

$$n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1)$$

$$nPr = \frac{n!}{(n-r)!}$$

Permutaciones

En forma general una permutación es una secuencia ordenada de r objetos tomados de un conjunto de n objetos distintos.

$$n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1)$$

$$nPr = \frac{n!}{(n-r)!}$$

Permutaciones

En forma general una permutación es una secuencia ordenada de r objetos tomados de un conjunto de n objetos distintos.

$$n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1)$$

$$nPr = \frac{n!}{(n-r)!}$$

Combinaciones

Dado un conjunto de n objetos distintos, cualquier subconjunto no ordenado de tamaño k de los objetos se llama combinación. En las combinaciones el orden de aparición de los objetos es irrelevante.

El número de combinaciones de n elementos distintos, tomando r a la vez

Combinaciones

es:

Dado un conjunto de n objetos distintos, cualquier subconjunto no ordenado de tamaño k de los objetos se llama combinación. En las combinaciones el orden de aparición de los objetos es irrelevante. El número de combinaciones de n elementos distintos, tomando r a la vez

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Combinaciones

Dado un conjunto de n objetos distintos, cualquier subconjunto no ordenado de tamaño k de los objetos se llama combinación. En las combinaciones el orden de aparición de los objetos es irrelevante.

El número de combinaciones de n elementos distintos, tomando r a la vez es:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Combinaciones

Dado un conjunto de n objetos distintos, cualquier subconjunto no ordenado de tamaño k de los objetos se llama combinación. En las combinaciones el orden de aparición de los objetos es irrelevante.

El número de combinaciones de n elementos distintos, tomando r a la vez es:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Particiones Ordenadas

El número de formas de dividir n objetos distintos en k grupos distintos que contienen n_1, n_2, \cdots, n_k objetos, respectivamente, donde cada objeto aparece en exactamente un grupo

$$\sum_{i=1}^k n_i = n$$

es:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Particiones Ordenadas

El número de formas de dividir n objetos distintos en k grupos distintos que contienen n_1, n_2, \dots, n_k objetos, respectivamente, donde cada objeto aparece en exactamente un grupo

$$\sum_{i=1}^{k} n_i = n$$

es:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Particiones Ordenadas

El número de formas de dividir n objetos distintos en k grupos distintos que contienen n_1, n_2, \dots, n_k objetos, respectivamente, donde cada objeto aparece en exactamente un grupo

$$\sum_{i=1}^{k} n_i = n$$

es:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$