John A. Beachy

SOLVED PROBLEMS: SECTION 1.3

13. Let P be a prime ideal of the commutative ring R. Prove that if P is a prime ideal of R, then $A \cap B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$, for all ideals A, B of R. Give an example to show that the converse is false.

Solution: If P is a prime ideal of R, and $A \cap B \subseteq P$, then $AB \subseteq P$ since $AB \subseteq A \cap B$, and therefore $A \subseteq P$ or $B \subseteq P$.

In the ring \mathbb{Z}_4 , the zero ideal is not a prime ideal. On the other hand, since the ideals of \mathbb{Z}_4 form a chain, it is always true that either $A \subseteq A \cap B$ or $B \subseteq A \cap B$. It follows that if $A \cap B = (0)$, then either A = (0) or B = (0), so the zero ideal of \mathbb{Z}_4 provides the desired counterexample.

- 14. Show that in the polynomial ring $\mathbf{Z}[x]$, the ideal (n, x) generated by $n \in \mathbf{Z}$ and x is a prime ideal if and only if n is a prime number.
 - Solution: Define $\phi: \mathbf{Z}[x] \to \mathbf{Z}_n$ by $\phi(a_0 + a_1x + \cdots + a_nx^n) = a_0$, for all polynomials $a_0 + a_1x + \cdots + a_nx^n \in \mathbf{Z}[x]$. It follows from Example 1.2.2 that ϕ is a ring homomorphism. (In the example, let θ be the projection of \mathbf{Z} onto \mathbf{Z}_n , and let $\eta(x) = [0]_n$. Then $\phi = \hat{\theta}$.) It is clear that ϕ is onto, and that $\ker(\phi) = (n, x)$. Thus $\mathbf{Z}[x]/(n, x) \cong \mathbf{Z}_n$, so (n, x) is a prime ideal iff \mathbf{Z}_n is an integral domain, which occurs iff n is a prime number.
- 15. Let R be a Boolean ring (see Exercise 1.1.11 in the text) and let P be a prime ideal of R. Prove that P is maximal, and that $R/P \cong \mathbb{Z}_2$.
 - Solution: The factor ring R/P is also a Boolean ring, since if $x^2 = x$ for all $x \in R$, then the same identity holds in the factor ring. Thus if $\overline{a} \neq \overline{0}$ in R/P, then $(\overline{a})^2 = \overline{a}$, so $\overline{a} = \overline{1}$ since R/P is an integral domain. We conclude that R/P is a field with only two elements, $\overline{0}$, and $\overline{1}$, so it must be isomorphic to \mathbb{Z}_2 .
- 16. Let R be a commutative ring. Then R is called a *local ring* if it has a proper ideal P such that $P \supseteq I$, for all proper ideals I of R. Prove that the following conditions are equivalent for R.
 - (1) R is a local ring;
 - (2) the set of nonunits of R forms an ideal;
 - (3) there exists a maximal ideal P of R such that 1+x is a unit, for all $x \in P$.
 - Solution: (1) \Longrightarrow (3): If R has a proper ideal P such that $P \supseteq I$, for all proper ideals I of R, then P is certainly a maximal ideal of R. If $a \in P$, then $1 + a \notin P$, since otherwise we would have $1 = (1 + a) a \in P$. From the assumption on P it follows that 1 + a does not generate a proper ideal, so 1 + a must be a unit.
 - (3) \Longrightarrow (2): Let $a \in R$. If $a \in P$, then a is certainly a nonunit of R. If $a \notin P$, then there exists $b \in R$ with (a+P)(b+P)=1+P, since R/P is a field and a+P is a nonzero element of R/P. Therefore ab=1+x, for some $x \in P$, so by assumption, ab is a unit. It follows that a is a unit since, $a(b(ab)^{-1})=1$. Thus P is precisely the set of nonunits of R.
 - (2) \Longrightarrow (1): Suppose that the set of nonunits of R forms an ideal P of R. No proper ideal I of R can contain a unit, so we must have $P \supseteq I$ for all proper ideals I of R, and thus R is a local ring.

Note: The usual definition states that a commutative ring is a local ring if it has a unique maximal ideal. We must wait until we have proved Lemma 2.1.13 to show that this is equivalent to the definition given here.

- 17. Prove that any nonzero homomorphic image of a local ring is again a local ring. Solution: Let R be a local ring, and let P be the proper ideal that contains all other proper ideals of R. By Theorem 1.2.7, any nonzero homomorphic image of R is isomorphic to R/K, for some nonzero ideal K of R. It follows from the definition of a local ring that $K \subseteq P$. Since there is a one-to-one correspondence between ideals of R/K and ideals of R that contain K (apply Proposition 1.2.9), it follows immediately that $P/K \supseteq I/K$ for all proper ideals I/K of R/K, and thus R/K is a local ring.
- 18. Show that the ring R defined in Exercise 1.2.9 of the text is a local ring. Solution: The ring R is defined to be the set of all rational numbers m/n such that p is not a factor of n. We can now see that this just the localization of \mathbf{Z} at the prime ideal $p\mathbf{Z}$. Theorem 1.3.11 (c) shows that pR is the unique maximal ideal of R. In fact, pR is the set of nonunits of R, since a nonzero element m/n is invertible iff p is not a divisor of m.