

Be Cool! 31 GENNAIO 2019

Chi siamo?

Museo degli Strumenti per il Calcolo

- Movimento internazionale
- Club volontario per insegnare/imparare la programmazione
- 30 incontri con Python, Scratch, AppInventor, micro:bit, HTML...
- Studenti di Informatica e non solo
- pisa.coderdojo.it, Facebook e Twitter!

Partecipa!

Pisa CoderDojo si riunisce una volta al mese a SMS Biblio, controlla il nostro calendario e acquista il biglietto gratuito su Eventbrite

attualmente non ci sono eventi in programma

Doio@Scuola!

Sei un insegnante o un preside di scuole elementari nel Comune di Pisa e vuoi organizzare un Dojo, coinvolgendo una o più classi? Allora clicca qui: ti faremo sapere quando possiamo organizzare gratuitamente l'evento nei laboratori di Informatica della tua scuola. Sempre in gamba!

Che cos'è?

Un Dojo è un'organizzazione volontaria di persone che costituisce, attiva e mantiene un club basandosi sul regolamento etico di CoderDojo al fine di facilitare l'apprendimento gratuito della programmazione informatica per i giovani fra i 7 e i 17 anni.

Coder significa Programmatore e Dojo significa Tempio

Se vuoi imparare il Karate vai in un KarateDoio

Perchè un Dojo?

Se ci guardiamo intorno, vediamo PC dappertutto. Il mondo intero viene mandato avanti dai computer. Ma che cosa manda avanti un computer? Il codice. Scritto da programmatori e da gente comune. A mano. Ad oggi mancano programmatori. Sempre più ci appoggiamo ai computer anche per scopi di sopravvivenza e d'altra parte i corsi universitari di Informatica sperimentano un abbandono del 50%

E' come se ci fosse un picco di richiesta di programmi e... potrebbe

Cos'è il suono?

n suono della chitarra viene prodotto pizzicando le corde con le dita e facendole vibrare.

Il suono del violino è prodotto dalla vibrazione delle corde ottenuta mediante lo strofinamento dell'archetto.

Cos'è il suono?

Notiamo quindi che il suono è sempre associato ad una vibrazione, ovvero un'oscillazione.

Tutte le onde sono caratterizzate da un numero chiamato **frequenza**, che indica il numero di oscillazioni in un secondo e si misura in Hertz.

Cos'è il suono?

Nel nostro orecchio c'è il timpano, una membrana che reagisce alla vibrazione dell'aria e invia impulsi al cervello. In questo modo possiamo sentire i suoni

Che cos'è il suono?

Ad ogni nota della scala musicale corrisponde una frequenza diversa.

Ad esembio, al I A centrale corrisponde una frequenza di

- Nei pianoforti meccanici quando si preme un tasto un martelletto colpisce una corda, che vibra e produce un suono.
- Le corde associate ai tasti vibrano a frequenze diverse e producono note diverse

- Nei pianoforti elettronici quando si preme un tasto si chiude un circuito elettrico.
- Una cassa collegata al circuito elettrico produce il suono.
- I suoni sono stati campionati in precedenza, ovvero sono stati suonati da pianoforti veri e registrati.

Cos'è un circuito elettrico?

Se il circuito è **chiuso**, passa corrente.

Se il circuito è **aperto**, <u>non</u> passa corrente

Oggi costruiremo un pianofort elettronico usando i micro:bit

Dobbiamo occuparci di due co

- I tasti
- Il suono

Useremo otto microbit per gestire i tasti e due master che emettono i suoni. I microbit comunicano fra di loro tramite onde radio.

Tasti

I micro:bit hanno tre pin, a cui si possono collegare i cavi a coccodrillo.

Se uno dei pin è collegato al pin **GND**, il microbit "se ne accorge"...

Tasti

I circuiti elettrici che uniscono i pin possono essere fatti con:

- cavi a coccodrillo (che sono di rame);
- ferro;
- argento;
- piombo;
- alluminio;
- Il nostro corpo;

Cos'hanno in comune tutti questi materiali?

Tasti

Toccando due parti diverse del circuito la corrente riesce a passare attraverso il nostro corpo.

Dividiamoci in quattro gruppi!

Dividiamoci in quattro gruppi!

Ogni gruppo dovrà:

- tagliare il cartone per la tastiera del pianoforte
- incollare pezzi di alluminio ad ogni tasto, facendo attenzione che i tasti di alluminio non si tocchino tra di loro
- scrivere il codice per ogni microbit
- scrivere il codice per il relativo Master.

Note musicali

Ora che abbiamo costruito il circuito, programmiamo i micro:bit in modo che se si premono i tasti del pianoforte il micro:bit invia al Master la frequenza corrispondente da suonare.

on start radio set group 📵 while (true ▼ pin P0 ▼ is pressed then radio send number (262) pin P1 ♥ is pressed then radio send number 277 pin P2 ♥ is pressed then radio send number 294 pause (ms) 50 ♥

Codice del micro:bit M1:

- se il pin 0 è premuto, invia al master il valore 262 (la frequenza del DO)
- se il pin 1 è premuto, invia al master il valore 277 (la frequenza del DO#)
- se il pin 2 è premuto, invia al master il valore 294 (la frequenza del RE)

I microbit M1,M2,M3 e M4 comunicano solo con il primo master nel gruppo radio 0.

I microbit M5,M6 M7 e M8 comunicano solo con il secondo master nel gruppo radio 1.

Note musicali

C = DO D = RE E = MI F = FA G = SOL A = LA B = SI

Visualizziamo sul display del microbit la nota che viene inviata al master

I Microbit Master devono essere collegati alle casse per poter emettere i suoni.

Creiamo una variabile frequenza che all'inizio ha un certo valore.

A seconda del valore arrivato al Master come cambia la variabile frequenza?

In questo blocco il Master fa suonare la frequenza ricevuta.

Il primo master comunica nel gruppo radio 0, ricevendo i valori da M1,M2,M3 e M4 e ignorando gli altri.

I secondo master comunica nel gruppo radio 1, ricevendo i valori da M5,M6,M7 e M8 e ignorando gli altri.

Musica per i miei micro:bit!

Perfezioniamo il pianoforte!

Come fare per evitare che il pianoforte continui a suonare sempre la stessa nota?

Perfezioniamo il pianoforte!

Creiamo una nuova variabile,

ultimo_tempo,

l'istante della ricezione dell'ultimo valore.

Se non riceviamo da molto tempo (ad esempio un secondo) allora imponiamo che la cassa non suoni più.

```
forever
on start
                                           ring tone (Hz)
                                                   running time (ms)
                                                                                                             then
     frequenza ▼ to 0
                                                 frequenza ▼ to 0
                                           pause (ms)
on radio received numero ▼
                     to running time (ms)
```