Aprendizaje de máquina Regularización y entrenamiento

Leonardo Flórez-Valencia

Facultad de ingeniería

Regularización

• Cresta (ridge, o norma L^2)

$$J_R(\mathbf{w}, b) = J(\mathbf{w}, b) + \frac{\lambda}{[m]} \left(\sum_{j=1}^n [w^j]^2 + b^2 \right)$$

2 Least Absolute Shrinkage and Selection Operator (LASSO, o norma L^1)

$$J_R(\mathbf{w}, b) = J(\mathbf{w}, b) + \frac{\lambda}{[m]} \left(\sum_{j=1}^n |w^j| + |b| \right)$$

¿Qué es un buen entrenamiento?

- Hay 3 hiperparametros reales: $\epsilon \approx 0, \ \alpha \in (0,1)$ y $\lambda \geq 0$.
- ¿Cómo configurar cada valor?
- Tres configuraciones algorítmicas:
 - Función de activación.
 - Tipo de regularización.
 - Tipo de normalización.
- ¿Cuál escoger?
- Los resultados pueden ser:
 - Perfectos.
 - Imperfectos.
 - Satisfactorios

Entrenamiento imperfecto

- Más ejemplos X, y.
- Cambiar la cantidad de variables.
- Adicionar características polinomiales.
- Cambiar λ : Resultados de alto sesgo o alta varianza.

Matriz de confusión

		Realidad	
		0	1
Predicción	0	Tz	Fz
	1	Fo	То

Sensibilidad (clase 0):

$$\frac{Tz}{Tz + Fo}$$

Especificidad (clase 1):

$$\frac{To}{To+Fz}$$

Exactitud:

$$\frac{Tz + To}{Tz + To + Fz + Fo}$$

Calificación F1 (F1-score):

$$\frac{2To}{2To + Fz + Fo}$$

Grupos de entrenamiento

De los ejemplos de entrenamiento:

$$\mathbf{X} = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^n \\ x_2^1 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots \\ x_m^1 & x_m^2 & \cdots & x_m^n \end{bmatrix} \in \mathbb{R}^{m \times n}$$

extraer $\underline{\textit{aleatoriamente}}$ los ejemplos $\mathbf{X}_{tra} \in \mathbb{R}^{m_{tra} \times n}$ (entrenamiento), $\mathbf{X}_{val} \in \mathbb{R}^{m_{val} \times n}$ (validación) y $\mathbf{X}_{tes} \in \mathbb{R}^{m_{tes} \times n}$ (prueba), donde $m_{tra} \approx 0.6m, \ m_{val} \approx 0.2m$ y $m_{tes} \approx 0.2m$

$$m = m_{tra} + m_{val} + m_{tes}$$

Selección del modelo

Aumentar con características polinomiales

- **1** Estimar $[\mathbf{w}, b]$ con \mathbf{X}_{tra} , medir $J_{val}(\mathbf{w}, b)$
- $\textbf{② Estimar } \left[\mathbf{w} \bigcup w_1^2, b \right] \text{ con } \mathbf{X}_{tra} \text{, medir } J_{val} \left(\mathbf{w} \bigcup w_1^2, b \right)$
- $\bullet \ \, \mathsf{Estimar} \, \left[\mathbf{w} \bigcup w_1^2 \bigcup w_2^2, b \right] \, \mathsf{con} \, \, \mathbf{X}_{tra}, \, \, \mathsf{medir} \, J_{val} \left(\mathbf{w} \bigcup w_1^2 \bigcup w_2^2, b \right)$
- ullet Quedarse con el J_{val} mínimo.

Sesgo vs. varianza

- Sesgo: bajo ajuste (fit) de los datos.
 - J_{tra} alto, $J_{val} \approx J_{tra}$
- Varianza: algo ajuste (fit) de los datos.
 - J_{tra} bajo, $J_{val} \gg J_{tra}$
- "Jugar" con $\lambda = [0.1, 1, 10, 100, 1000, \cdots]$
 - ullet Estimar $[{f w},b]$ con regularización a partir de ${f X}_{tra}$.
 - Medir $J_{val}\left(\mathbf{w},b\right)$ sin regularización $(\lambda=0)$.
 - Quedarse con el λ que minimiza J_{val} .

Taller 1: identificar dígitos

- Recuperar la base de datos MNIST.
- Proponer un sistema, que use únicamente la regresión logística, para identificar los dígitos del 0 al 9:
 - 1 Diseñar el proceso de entrenamiento.
 - 2 Ejecutar el proceso de entrenamiento.
 - 3 Implementar un sistema simple para usuarios finales.
- Escribir un documento corto con sus observaciones, resultados, conclusiones y perspectivas.