

Contents

- 1 LOSS FUNTION
- COST FUNTION
- OPTIMIZERS

Introduction

- 1 Loss Function vs. Cost Function
- * What are Loss Function and Cost Function?
 - Loss Function: Measures how wrong the model's prediction is for a single data point.
 - Cost Function: Measures how wrong the model's predictions are for the entire dataset (average of all losses).
- * Example:

Imagine a student predicting their exam marks:

- Actual Marks: 80
- Predicted Marks: 70
- Loss: Difference between actual and predicted marks = 10
- Cost: If we check this loss for all students and take the average loss, we get the cost function.

- Types of Optimizers
- 1. Gradient Descent (GD)
- Moves in the direction of the lowest cost.
- Works slowly if the dataset is large.

- Updates weights after each training example.
- Faster than GD but fluctuates more.
- 3. Mini-Batch Gradient
 Descent
- Updates weights after a small batch instead of the whole dataset.
- Balances between GD & SGD.

- 4. Adam (Adaptive Moment Estimation) Most Used
 - Adjusts learning rate automatically.
 - Works well for most problems.
- 5. RMSprop (Root Mean
 Square Propagation)
 - Good for recurrent neural networks (RNNs).
 - Adjusts learning rates for each parameter.

Examples

* Example of Optimizers in Action

Imagine you are on a hill and want to reach the lowest point (minimum cost):

- GD: Walks straight but slowly.
- SGD: Runs in different directions, sometimes overshooting.
- Adam: Adjusts step size smartly and reaches the lowest point faster

Final Thoughts:

- Loss Function → Measures error for one data point.
- Cost Function → Measures error for entire dataset.
- Optimizers → Help to reduce loss and improve model performance.

ANN

Regression

MAE

MSE

RMSE

HUBER LOSS

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

Mean Absolute Error (MAE)

- Measures the average absolute difference between actual and predicted values.
- Formula:

$$MAE = rac{1}{n} \sum |y_i - \hat{y}_i|$$

- y_i = actual value
- \hat{y}_i = predicted value
- n = number of samples
- Pros: Simple, interpretable, and robust to outliers.
- X Cons: Doesn't penalize large errors heavily.
- **Example:** If actual values = [10, 12, 14] and predictions = [9, 13, 15], then

$$MAE = rac{|10-9|+|12-13|+|14-15|}{3} = rac{1+1+1}{3} = 1$$

Mean Squared Error (MSE)

- Penalizes large errors more than small ones because it squares the differences.
- Formula:

$$MSE = rac{1}{n} \sum (y_i - \hat{y}_i)^2$$

- Pros: Amplifies large errors, making it useful when you want to reduce large deviations.
- **X** Cons: Sensitive to outliers.
- Example:

$$MSE = rac{(10-9)^2 + (12-13)^2 + (14-15)^2}{3} = rac{1+1+1}{3} = 1$$

Root Mean Squared Error (RMSE)

Formula:

$$RMSE = \sqrt{MSE} = \sqrt{rac{1}{n} \sum (y_{
m actual} - y_{
m predicted})^2}$$

Advantages:

- More interpretable than MSE (error in original units).
- Penalizes large errors like MSE but in the original scale.

X Disadvantages:

- Computationally expensive due to the square root operation.
- Sensitive to outliers.

Loss vs. Cost Function:

- Loss Function → Square root of squared error for one data point.
- Cost Function → Average RMSE across all data points.

4 Huber Loss

Used when data has outliers (combines MSE & MAE benefits).

Formula:

$$L = egin{cases} rac{1}{2}(y_{
m actual} - y_{
m predicted})^2, & ext{if } |y_{
m actual} - y_{
m predicted}| \leq \delta \ \delta(|y_{
m actual} - y_{
m predicted}| - rac{1}{2}\delta), & ext{if } |y_{
m actual} - y_{
m predicted}| > \delta \end{cases}$$

Advantages:

- Less sensitive to outliers than MSE.
- Works well when both small and large errors need balanced handling.

X Disadvantages:

• Requires **tuning** the hyperparameter δ .

★ Loss vs. Cost Function:

- Loss Function \rightarrow Switches between MSE & MAE based on δ for one data point.
- Cost Function → Average Huber Loss across all data points.

Loss Function	Best For	Handles Outliers?	Interpretability	Computational Cost
MAE	Simple models, Robust data	Yes	Easy to interpret	Slow convergence
MSE	Normally distributed errors	X No	X Squared errors (not original scale)	◆ High
RMSE	Large errors impact performance	X No	More interpretable than MSE	Very High
Huber Loss	Datasets with outliers	Yes	Balances MAE & MSE	$lacktriangle$ Requires tuning δ

* Loss Functions for Classification in ANN

Classification problems in Artificial Neural Networks (ANN) use entropy-based loss functions, also called Log Loss (Logarithmic Loss). These functions measure how well a model predicts categorical labels (classes).

Binary Cross-Entropy (Log Loss for 2 Classes)

Used when the target variable has two classes (e.g., 0 & 1, "Spam" or "Not Spam").

♦ Formula:

$$Loss = -rac{1}{n}\sum \left(y_{ ext{actual}} \cdot \log(y_{ ext{predicted}}) + (1 - y_{ ext{actual}}) \cdot \log(1 - y_{ ext{predicted}})
ight)$$

where:

- y_{actual} → True label (0 or 1)
- $y_{\text{predicted}} \rightarrow \text{Predicted probability (between 0 and 1)}$
- $n \rightarrow$ Number of data points

Example:

Let's say we are predicting whether an email is spam (1) or not spam (0).

Email	Actual Label ($y_{ m actual}$)	Predicted Probability ($y_{ m predicted}$)	Log Loss
Email 1	1 (Spam)	0.9	$-\log(0.9) = 0.105$
Email 2	0 (Not Spam)	0.8	-log(1-0.8) = 0.223

Key Points:

- Works well for binary classification.
- Penalizes incorrect predictions more when the model is confident but wrong.

2 Categorical Cross-Entropy (Log Loss for Multi-Class)

Used when the target variable has more than two classes (e.g., Dog, Cat, Horse).

♦ Formula:

$$Loss = -rac{1}{n}\sum\sum y_{ ext{actual},i}\log(y_{ ext{predicted},i})$$

where:

- $y_{\text{actual},i} \rightarrow 1$ if class i is the true class, otherwise 0
- $y_{\text{predicted},i} \rightarrow \text{Probability of class } i \text{ (from Softmax output)}$

Example:

Let's say we have a 3-class problem (Dog, Cat, Horse).

Animal	Actual Label	Predicted Probabilities (Dog, Cat, Horse)	Log Loss
🙆 Dog	(1, 0, 0)	(0.8, 0.1, 0.1)	$-\log(0.8) = 0.223$
🥶 Cat	(0, 1, 0)	(0.2, 0.7, 0.1)	$-\log(0.7) = 0.357$
A Horse	(0, 0, 1)	(0.1, 0.2, 0.7)	$-\log(0.7) = 0.357$

Summary (Easy to Remember)

Loss Function	Used For	Works With	How it Works?	Disadvantages
Binary Cross- Entropy	Binary Classification (Yes/No, Spam/Not Spam)	Sigmoid Activation	Compares predicted probability to actual label (0 or 1)	Sensitive to extreme confidence errors
Categorical Cross-Entropy	Multi-Class Classification (Dog/Cat/Horse)	Softmax Activation	Compares predicted probabilities for multiple classes	Wrong confident predictions get heavily penalized

Sparse Categorical Cross-Entropy

What is Sparse Categorical Cross-Entropy?

- Used for multi-class classification problems where labels are integers instead of one-hot encoded vectors.
- Best when dealing with large categories (e.g., classifying 1000+ objects).

Formula

$$Loss = -\sum y \log(\hat{y})$$

Where:

- y = actual class label (integer form)
- \hat{y} = predicted probability

Example

If we have three classes: Dog (0), Cat (1), and Bird (2)

- True label = 1 (Cat)
- Model predicts probabilities: [0.2, 0.7, 0.1]
- Loss = $-\log(0.7)$

Batch Gradient Descent (BGD)

- Uses all data points to compute the gradient before updating weights.
- Stable but slow for large datasets.

$$W = W - \eta \cdot rac{1}{N} \sum
abla L(W,x,y)$$

- W = weights
- η = learning rate
- N = total dataset size
- ∇L = gradient of the loss function
- Pros: More stable updates, guaranteed convergence.
- X Cons: Very slow for large datasets.

Mini-Batch Gradient Descent (MBGD) - Best of Both! 🚀

- Uses small batches of data (e.g., batch size = 32, 64, 128).
- Balances between SGD (fast but noisy) and BGD (stable but slow).
- Most commonly used in Deep Learning!

Formula:

$$W = W - \eta \cdot rac{1}{m} \sum
abla L(W,x,y)$$

Where:

m = mini-batch size (e.g., 32, 64).

Pros: Efficient, stable, works well for large datasets.

X Cons: Needs tuning of batch size.

II SGD (Stochastic Gradient Descent)

- Mow it works:
- Adjusts weights step by step using gradient descent.
- Uses random small batches of data (stochastic = random).
- Good for small datasets but slow and noisy for deep networks.

Formula:

$$W = W - \eta \cdot \nabla L$$

- W = weights
- η = learning rate (step size)
- ullet abla L = gradient of the loss function
- Best for: Simple models, small datasets
- X Downside: Can get stuck in local minima, slow

Momentum SGD 💋 (Faster SGD)

- Mow it works:
- Similar to SGD, but adds momentum (like rolling a ball down a hill).
- Helps move faster in the right direction and avoids getting stuck.
- Formula:

$$v_t = \gamma v_{t-1} + \eta
abla L$$

$$W=W-v_t$$

- v_t = momentum term (helps smooth updates)
- γ = momentum factor (e.g., 0.9)
- Best for: Faster convergence in deep networks
- X Downside: Needs tuning of momentum factor

RMSprop (Root Mean Square Propagation)

- ★ How it works:
 - Adjusts the learning rate for each weight individually.
 - Reduces big jumps by dividing by the moving average of past gradients.
- Great for RNNs and deep networks.
- * Formula:

$$W=W-rac{\eta}{\sqrt{v_t+\epsilon}}g_t$$

- v_t = moving average of past gradients
- ϵ = small number to prevent division by zero
- Best for: RNNs, speech recognition
- X Downside: May not generalize well for all tasks

4 Adagrad (Adaptive Gradient Descent)

- Adapts learning rates for each weight.
- Works well for sparse data (NLP, recommendation systems).
- But the learning rate keeps decreasing, making it slow over time.

Formula:

$$W=W-rac{\eta}{\sqrt{G_t+\epsilon}}g_t$$

Where:

- G_t = sum of squared gradients
- η = learning rate

Best for: NLP, sparse data problems

X Downside: Learning rate becomes too small over time

Adam (Adaptive Moment Estimation) – Most Used

- How it works:
- Combines Momentum and RMSprop for the best results.
- Adjusts the learning rate for each weight based on past gradients.
- Works well for most deep learning problems.
- Formula:

$$m_t = eta_1 m_{t-1} + (1-eta_1) g_t$$
 $v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2$ $W = W - rac{\eta}{\sqrt{v_t} + \epsilon} m_t$

- m_t = moving average of gradients (Momentum)
- v_t = moving average of squared gradients (RMSprop)
- Best for: Most deep learning models (CNNs, RNNs, Transformers)
- X Downside: Uses more memory

Summary: Which Optimizer to Use?

Optimizer	Best For	Good Choice?
SGD	Small datasets, simple models	(Too slow for deep learning)
Momentum SGD	Faster convergence	(Better than SGD)
RMSprop	RNNs, speech recognition	(Works well for sequential data)
Adagrad	Sparse data, NLP	(Good, but slows over time)
Adam	Almost everything	8 Best overall choice