# 电子线路课程设计报 告

| 课 | 题 |
|---|---|
|   |   |

学 号\_\_\_\_\_

姓 名\_\_\_\_\_

# 电子线路课程设计指导

# 课题一 音频功率放大器

# 设计任务书

# 音频功率放大器技术指标

1.最大不失真输出功率

P<sub>om</sub>≥8W (负载阻抗 R<sub>L</sub>=8Ω)

2.输入灵敏度

V<sub>i</sub>≤100mv (输入阻抗 R>47KΩ)

3.频率响应

 $f\!\!=\!\!20Hz\!\!\sim\!\!20KHz$ 

4.噪声电压

 $V_N < 15 \text{mv}(\pm 3 \text{db})$ 

5.失真度

 $\gamma \leqslant 3\%$ 

6.音调控制范围

100Hz $\pm 6$ dB 10KHz $\pm 6$ dB

# 设计报告要求

- 1.各单元电路的工作点电压
- 2.各单元电路的电压增益
- 3.各单元电路幅频特性
- 4.最大输出功率
- 5.系统电路的工作效率

# 设计基本步骤和方法

设计系统电路的一般方法, 先根据给定的技术指标进行设计方案选择, 然后再安选用的方案进行系统电路设计, 一般步骤为:

- 1. 确定系统电路形式
- 2. 确定放大器级数和各级增益
- 3. 选择晶体管或集成电路等元器件
- 4. 选定各级静态工作点
- 5. 设计计算电路元件参数并选取元件
- 6. 技术指标校核
- 7. 系统电路调试

图(一)所示为音频功率放大器原理图。它由前置放大电路、音调控制电路和功率放大级组成。在进行各部分电路设计计算之前,先确定放大器的级数和各级增益。因给定最大输出功率

$$P_{om} \ge 8W$$

所以输出电压有效值

$$V_0 = \sqrt{P_{\text{om}} \cdot R_L} = 8V \qquad (R_L = 8\Omega)$$

而给定的输入电压

$$V_i \le 100 mV$$

所以放大器总增益

$$A_{vm} = V_0 / V_i$$

$$= \sqrt{P_{om} \cdot R_L / V_i}$$

$$= 8V / 100mV$$

$$= 80$$

考虑到电压放大器倍数应留有充分余量,为了设计计算方便,取 A<sub>vm</sub>=160,并分配给各级电路:

- 1.前置放大器: 因该级对输出的噪声电压影响最大, 故增益不宜太高, 可选 A<sub>vml</sub>=5~10。
- 2.音调控制电路: 该级无增益要求,可选 A<sub>vm2</sub>=1。
- 3.功率输出级:输出级电压增益 Avm3 可由

$$A_{vm}=A_{vm1} \cdot A_{vm2} \cdot A_{vm3}$$

得

$$A_{vm3}=A_{vm} / A_{vm1} \cdot A_{vm2}$$
  
=160 / 5×1=32



# 前置放大器的设计

根据任务书中的指标要求,为了便于与多种信号源匹配,前置放大器须具有较高的输入阻抗,同时,为了使音调控制电路的特性好,前置放大器的输出阻抗要低。另外,由于多级放大器的第一级噪声系数 NF 对总的噪声影响最大,因此,在设计时须考虑采取措施降低前置级的噪声。第一方案可选用场效应管组成本级放大电路,如图(二) 所示为用场效应管共源放大器和源极跟随器组成的该放大电路。第二方案可选用由集成运算放大器构成的同相比例放大器电路。



# 1.场效应管共源放大器的设计

# (1)选择静态工作点

由图(二)可见,该级由  $T_1$ 、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $C_1$ 、 $C_2$ 、 $C_3$  组成的自给偏压放大器。根据场效应管的转移特性曲线图(三),漏极电流  $I_D$  随栅极电压  $V_{GS}$  变化的关系

$$I_{D}=I_{DSS}(1-\frac{V_{GS}}{V_{P}})^{2}$$
 (1)

根据场效应管放大器工作原理,可得

$$V_{GS} = -V_S = -I_D R_S \tag{2}$$

$$V_D = V_{DS} + I_D R_S \tag{3}$$

$$R_{D}=E_{C}-V_{D} \tag{4}$$

选择静态工作点,就是确定电路中的 VGS ID VDS 的数值。

# (2) 选择 R<sub>S</sub>、R<sub>D</sub>

①先由图(三)中选定的  $V_{GSQ}$  数值代入(1)式, 算得  $I_{DQ}$  值

$$I_{DQ} = I_{DSS} (1 - \frac{V_{GSQ}}{V_{P}})^{2}$$

$$R_S = -V_{GSO} / I_{DO}$$

- ③选取  $V_{DS}$  =E/2 或  $V_{DS}$ =(1~2) $V_{S}$ ,并代入(3)式,算得  $V_{D}$
- ④将 V<sub>D</sub>值代入(4)式,算得 R<sub>D</sub>

$$R_D = (E-V_D)/I_D$$

(3) 计算电容 C<sub>1</sub>、C<sub>2</sub>

因为 C<sub>1</sub>、C<sub>2</sub>主要影响低频响应,要求:

$$C_1 \geqslant (3-10) \frac{1}{2\pi f_L R_1}$$

$$C2 \geqslant \frac{1 + g_m R_2}{2\pi \pi_I R_2}$$

(4)电压增益计算

$$A_{vm_1} = \frac{g_m R_D / / R_L}{1 + g_m R_s}$$

# 设计举例

现对图(二)电路进行计算。已知放大器输入电压<100mV,输入阻抗  $R_i>470$ K  $\Omega$ ,输出阻抗  $R_0<1$ K  $\Omega$ ,频响 20Hz $\sim50$ KHz。

为了保证放大器有足够的动态范围,要求场效应管的  $V_P$ 、 $g_m$ 和  $I_{DSS}$  值不能太小。 $T_1$  由使用手册查得参数:

$$V_p = -1V$$
,  $g_m = 1.8 \text{ mA} / V$ ,  $I_{DSS} = 5.2 \text{ mA}$ .

因为  $V_i$ <100mv,为了减小 NF,所以工作点 Q 选低一些,如图(三)所示,取  $V_{GSQ}$ =0.75V,则  $I_{DQ}$ = $I_{DSS}$ (1- $V_{GSQ}$  /  $V_P$ )2 $\approx$ 0.3mA,

若电源电压 E=12V,

则:  $V_{DS} \approx E / 2 = 6V$ ,

V<sub>D</sub>=V<sub>DS</sub>+V<sub>S</sub>=6.75V (取 V<sub>S</sub>=0.75V)

 $R_D=R_4=(E-V_D)/I_{DQ}\approx 18K \Omega$ 

 $R_S=R_2+R_3=V_{GSQ} / I_{DQ} \approx 2.5 \text{ K} \Omega$ 

取:  $R_3=2K\Omega$ ,  $R_2=510\Omega$ 

因  $R_i \approx R_1$  取  $R_1 = 1$  M  $\Omega$ 

$$C_1 \geqslant \frac{10}{2\pi\pi_I} R_1 \approx 0.8\mu$$
. 取  $C_1$ =1  $\mu$  F (取 f=20Hz)

$$C_2 \! \geqslant \! \frac{1 + g_{_{m}} R_{_{2}}}{2 \pi \pi_{_{\!\!L}} R_{_{2}}} \! pprox \! 18.3 \mu \qquad \mbox{W C}_2 \! = \! 20 \ \mu \ \mbox{F}$$

# 2.场效应管源极跟随器的设计

为了得到更大的动态跟随范围,一般将工作点选在转移特性曲线的中点,由图(四)可见即

$$\begin{aligned} &V_{GS} \!\!=\!\! V_p \; / \; 2 \\ &I_{DQ} \!\!=\!\! I_{DSS} \; \left[ \; 1 \text{-} (V_{GS} \; / \; V_P) \; \right]^{-2} \\ &V_S \!\!=\!\! - \! V_{GS} \\ &R_S \!\!=\!\! V_S \; / \; I_{DQ} \end{aligned}$$



方案二 由图 (五) 所示是一个同相输入放大器,增益为  $A_{vm}$ = $(R_2+R_3)/R_2$ 

# 音调控制电路的设计

# 一、反馈型音调控制电路的工作原理

反馈型音调控制电路如图 1,它主要由两部分组成: ①RC 网络(其中  $Z_1$ 代表输入回路总阻抗, $Z_f$ 代表反馈回路总阻抗),它们可以由电阻、电容串并联构成如图 2 所示的四种不同形式的电路。②放大单元,它可由晶体管、场效应管或线性集成电路构成。因为该电路属于电压并联负反馈形式,当放大单元的开环增益 Au 很高时,则闭环增益



 $A_{uf} = V_O / V_i \approx -Z_f/Z_1$ 

当信号频率不同时, $Z_1$ 和  $Z_f$ 的阻抗值也不同,所以  $A_{uf}$ 随着频率的改变而改变。

如图 2(a),若  $C_1$  取值较大,只在频率很低时起作用,则当信号频率在低频区, $f \downarrow$  时,则  $Z_f=R_2+(1/j\omega c_1)\uparrow$ ,  $A_uf=Z_f/R_1\uparrow$ ,因此可以得到低音提升。再如图 2(b),若  $C_3$  较小,只有高频时起作用,当信号频率在高频区, $f \uparrow$  时,则  $Z_1=R_1/(1/j\omega c_3)\downarrow$ ,  $A_uf=Z_f/Z_1\uparrow$ ,因此可以得到高音提升。

同理,图 2(d)、(c)分别可得到高、低音衰减。



如将四种形式的电路组合起来,即可得到反馈型音调控制电路,如图 3 所示。



为了分析方便, 先假设: R<sub>1</sub>=R<sub>2</sub>=R<sub>3</sub>=R; W<sub>1</sub>=W<sub>2</sub>=9R; C<sub>1</sub>=C<sub>2</sub>》C<sub>3</sub>。

1.信号在低频区因  $C_3$  很小, $C_3$ 、 $R_4$  支路可视为开路,反馈网络主要由上半边起作用,即  $V_i$  由上半边电路通过。又因为运算放大器开环增益很高,放大器输入阻抗又很高,所以  $V_E \approx V'_E \approx 0$  (虚地),因此  $R_3$  的影响可以忽略。

①当电位器  $V_2$  的滑动端移到 A 点时, $C_1$  被短路,其等效电路如图 4,它和图 2(a)很相似,因此可以得到低音提升。

先分析该电路的幅频特性: 比较图 1 和图 4 可知:  $Z_1=R_1$ ,  $Z_1=R_2+C_2/W_2$ 。 所以

$$A_{uf} = -\frac{Z_f}{Z_1} = -\frac{R_2 + W_2}{R_1} \cdot \frac{1 + j\omega \frac{R_2 W_2 C_2}{R_2 + W_2}}{1 + j\omega W_2 \cdot C_2}$$

若设

$$\omega_{L1} = 2\pi f_{L1} = \frac{1}{W_2 C_2}; \omega_{L2} = 2\pi f_{L2} = \frac{R_2 + W_2}{R_2 W_2 C_2}$$

则

$$|A_{\text{uf}}| = \frac{R_2 + W_2}{R_1} \sqrt{\frac{1 + (\frac{\omega}{\omega_{L2}})^2}{1 + (\frac{\omega}{\omega_{L1}})^2}}$$

根据前面假设  $R_1=R_2=R_3=R$ ;  $W_1=W2=9R$ ;  $C_1=C_2$ 》 $C_3$  可得:  $(R_2+W_2)/R_1=10$ ;  $\omega_{L2}/\omega_{L1}=10$ 。 当信号的角频率  $\omega=\omega_{L2}$  时,

$$|A_{\rm uf}| \approx \frac{R_2 + W_2}{R_1} \sqrt{\frac{1 + (\frac{\omega}{\omega_{\rm L2}})^2}{1 + (\frac{\omega}{\omega_{\rm L1}})^2}} \approx \sqrt{2}$$
 (即 20logA<sub>uf</sub>=3dB)。

当信号的角频率ω=ωL1时,

$$|A_{uf}| \approx 7.07$$
 ( $\mathbb{H} 20 log A_{uf} = 17 dB$ ).

当  $\omega \geqslant \omega_{L2}$  时,即信号接近中频时, $|A_{uf}| \approx R_2 + W_2 R_1 \bullet \sqrt{\omega_{L1}/\omega_{L2}} = 1$ (即  $20logA_{uf} = 0dB$ )。 当  $\omega \geqslant \omega_{L1}$  时, $A_uf| \approx 10$ (即  $20logA_{uf} = 20dB$ )。

综上所述,可画出图 5 所示的幅频特性。在  $f=f_{L2}$ 或  $f_{L1}$ (提升量为 3dB 和 17dB),曲线变化较大,称  $f_{L2}$ 或  $f_{L1}$  为转折频率。在两转折频率之间曲线斜率为-6dB / 倍频程。若用折线(图中虚线所示)近似表示此曲线,则  $f_{L1}$  和  $f_{L2}$  为折线的拐点。此时,低音最大提`升量为 20dB。



2. 当电位器  $W_2$  的滑动端移到 B 点时, 其等效电路如图 6 所示。用同样的分析可得图 7

所示低频衰减幅频特性曲线, 其中

$$A_{uf} = \frac{R_2}{R_1 + W_2} \cdot \sqrt{\frac{1 + (\frac{\omega}{\omega_{L1}})^2}{1 + (\frac{\omega}{\omega_{L2}})^2}}$$

$$\mathbf{f}_{L1}^1 = \frac{1}{2\pi C_1 W_2} = \mathbf{f}_{L1}; \mathbf{f}_{L2}^1 = \frac{R_1 + W_2}{2\pi C_1 W_2 R_1} = \mathbf{f}_{L2}$$

低音最大衰减量为:

$$A_{uc}=R_2 / (R_1+W_2)=1 / 10(BJ-20dB)$$



3.信号在高频区  $C_1$  和  $C_2$  对高频可视为短路,此时  $C_3$  和  $R_4$  支路已起作用,等效电路可画成图 8 形式。为分析方便将电路中 Y 型接法的  $R_1$ 、 $R_2$  和  $R_3$  变换成  $\Delta$  型接法的  $R_a$ 、 $R_b$  和  $R_c$ ,如图 9 所示,



其中  $R_a=R_1+R_3+\frac{R_1R_3}{R_2}=3R$ 

$$R_a = R_1 + R_3 + \frac{R_1 R_3}{R_2} = 3R$$

$$(:R_1 = R_2 = R_3),$$

$$R_b = R_2 + R_3 + \frac{R_2 R_3}{R_1} 3R$$

$$R_c = R_1 + R_2 + \frac{R_1 R_2}{R_3} = 3R$$

因为前级输出电阻很小(500  $\Omega$ ),输出信号  $V_0$ 通过 R,反馈到输入端的信号,被前级输出电阻所旁路,所以  $V_c$ 的影响可以忽略,视为开路。当  $W_i$  滑动端至 C 和 D 点时,等效电战又可以画成图 10、11 形式(因  $W_1$  数值很大,亦可视为开路)。



通过幅频特性分析,可得到如下关系式:

高音最大提升量为(图 10 中 C3 短路):

$$A_u T \approx \frac{R_b}{R_a / / R_4} = \frac{R_4 + 3R}{R_4}$$

高频转折频率为:

$$f_{H1} \approx \frac{1}{2\pi C_3 (R_a + R_b)}; f_{H2} = \frac{1}{2\pi C_3 R_4}$$

高音最大衰减量为(图 11 中 C3 短路):

$$A_u T_c \approx \frac{R_b / / R_4}{R_a} = \frac{R_4}{R_4 + 3R}$$

图 12 为音调控制电路全频高低音提升衰减曲线,从曲线可看出在  $f_{L1}\sim f_{L2}$  和  $f_{H1}\sim f_{H2}$  之间,曲线按 $\pm 6dB$  倍频程的斜弯变化,假设给出低频  $f_{LX}$  处和高频  $f_{HX}$  处的提升量,可知:

$$f_{L1} < f_{LX} < f_{L2}$$
;

$$f_{H1} < f_{HX} < f_{H2}$$

得:  $f_{L2} = f_{LX} \cdot 2 \frac{\frac{B}{2} + \frac{1}{2} (dB)}{6dB}$ 

$$f_{H1}$$
= $f_{HX}$  • 2  $\frac{提升量(dB)}{6dB}$ 



上述两个关系式是该电路设计时的计算方法。如已知某一频率的提升量或衰减量时,就可以利用它们求出所需的转折频率及相应元件参数。

# 二、反馈型音调控制电路的设计方法

音调控制电路元器件参计算步骤如下:

1. 确定转折频率

依据技术指标给出转折频率  $f_{H2}$ ,  $f_{L1}$ , 以及  $f_{LX}$ 和  $f_{HX}$ 的提升衰减量,于是可算出:

$$f_{L2}\!\!=\!\!f_{LX}$$
・  $2\,rac{\mathrm{提升} \pm (\mathrm{dB})}{6\mathrm{dB}}$  ;  $f_{H1}\!\!=\!\!f_{HX}$ ・  $2\,rac{\mathrm{提升} \pm (\mathrm{dB})}{6\mathrm{dB}}$  ;

2. 确定 W<sub>1</sub>和 W<sub>2</sub>的数值和放大单元

若放大单元输入阻抗高, $W_1$  和  $W_2$  的阻抗可适当选大些(可选 50K、100K)。通常放大单元的开环增益和输入阻抗要求高些为好(大于 47K)。

3.计算各元件参数

根据式 
$$f_{L1} = \frac{1}{2\pi W_2 C_2}$$
,  
可算出  $C_1 = C_2 = \frac{1}{2\pi W_2 f_{L1}}$ 。

根据式 
$$f_{L1} = \frac{1}{2\pi W_2 C_2}$$
 和  $f_{L2} = \frac{W_1 + R_2}{2\pi C_2 W_2 R_2}$ 

可算出 
$$R_2 = \frac{W_2}{(\frac{f_{L1}}{f_{12}} - 1)}$$
,

通常取  $R_1=R_2=R_3$ 。

根据式 
$$f_{H2}$$
=1 / 2  $\pi$   $C_3R_4$  和  $f_{H1}$ =1  $\frac{1}{2\pi C_3(R_4 + R_a)}$ ,

可以算出 
$$R_4$$
= $R_a$  /  $(\frac{f_{H2}}{f_{H1}}$  -1) (可取  $R_a$ = $3R_1$ )。

根据式 
$$f_{H2} = \frac{1}{2\pi C_3 R_4}$$

可以算出 
$$C_3 = \frac{1}{2\pi R_4 f_{H2}}$$
。

# 三、设计举例

已知,低音  $f_{LX}$ =100Hz 时±12dB;高音  $f_{HX}$ =10KHz 时±12dB,频率响应; $f_{LI}$ =50Hz, $f_{H2}$ =20KHz。

1.选用图 3 所示电路形式, 并根据公式可求得:

$$f_{L2}\!\!=\!\!f_{LX} \bullet 2^{12/6}\!\!=\!\!400 Hz;$$

 $f_{H1} = f_{HX} \cdot 2^{12/6} = 2.5 KHz$ .

2.选用线性电位器,并  $W_1$ = $W_2$ =100K  $\Omega$  。放大单元选用 LM741 集成运算放大器。

3.计算各元件参数

$$C_1 = C_2 = \frac{1}{2\pi W_2 f_{L1}} \approx 0.021 \ \mu F(取 \ 0.022 \ \mu F)$$
。

$$R_1=R_2=rac{W2}{rac{f_{L2}}{f_{L1}}-1}=21K\Omega$$
(按电阻系列取 20K $\Omega$ )。

 $R_3=R_1=R_2=20K \Omega$ .

$$R_4 = \frac{R_a}{\frac{f_{H2}}{f_{H1}} - 1} = \frac{3R_1}{\frac{f_{H2}}{f_{H1}} - 1} \approx 8.5 \text{K} \Omega (接电阻系列取 8.2 \text{K} \Omega)$$
。

$$C_3 = \frac{1}{2\pi R_4 f_{H2}} \approx 970 pF(接电容系列取 1000 pF)$$
。

# 4.设计校核

# ①转折频率:

$$\begin{split} f_{L1} &= \frac{1}{2\pi W_2 C_2} \approx 48 \text{Hz}; \ f_{L2} = \frac{W_2 + W_2}{2\pi C_2 W_2 R_2} \approx 410 \text{Hz}. \\ F_{H1} &= \frac{1}{2\pi C_3 (R_4 + R_a)} \approx 2.3 \text{KH}_2; \ f_{H2} = \frac{1}{2\pi C_3 R_4} \approx 19 \text{KH}_2. \end{split}$$

# ②提升量:

低音最大提升量: 
$$A_{vB} = \frac{R_2 + W_2}{R_1} = 8.5$$
 (18.6dB)。

低音最大衰減量: 
$$A_{vc} = \frac{R_2}{R_1 + W_2} = 0.118$$
 (-18.6dB)。

高音最大衰减量: 
$$A_{\text{vTC}} = \frac{R_4}{R_4 + 3R} = 0.12$$
 (-18.4dB)。

高音最大提升量: 
$$A_{VT} = \frac{R_4 + 3R}{R_4} = 8.3$$
 (18.4dB)。

# OCL 放大器设计

图 1 所示为该放大器电路图,分为三个部,即功率输出级、推动级和输入级。功率输出级由  $T_{10}$ 、 $T_{12}$ 、 $T_{11}$ 、 $T_{13}$ 组成的复合管准互补对称电路,以得到较大的输出功率,电阻  $R_{31}$ 、 $R_{32}$ 、 $R_{27}$ 、 $R_{30}$ 用来减小复合管的穿透电流,增加电路的稳定性。偏置电路用  $T_9$ 组在恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。推动级采用  $T_8$  组成的共射放大电路。为了扩大输出管的动态范围,本级加了自举电容  $C_{19}$ ,在信号负半周,通过  $C_{19}$  反馈,可为  $T_{11}$  提供足够的基极电流,保证  $T_{11}$ 、 $T_{13}$  充分导通。输入级是由  $T_5$ 、 $T_6$ 、 $T_7$  组成的带恒流源的差分放大电路,减小了直流漂移。由于引入深度直流负反馈,进一步稳定了输出点 A的静态零电压。其反馈系数  $F \approx R_{21} / (R_{21} + R_{22})$ ,总电压增益  $A_{vf} \approx 1 + R_{22} / R_{21}$ 。

由于电路是多级放大电路,所以它可以遵循下述原则进行设计:由末级开始,从负载要求出发逐级向前设计各有的偏置电路;根据电路安全可靠地工作选择元器件参数;由电压增益确定负反馈电路;由频响确定耦合和旁路电容值。

#### 1. 确定电源电压

为了保证电路安全可靠地工作,通常使电路的最大输出功率  $P_{om}$  比额定输出功率  $P_{o}$  要大一些,一般  $P_{om} \approx (1.5 \sim 2) P_{o}$ ,然后根据  $P_{om}$  和负载阻抗  $R_{L}$  计算最大输出电

压 
$$V_{om} = \sqrt{2P_{om}R_L}$$
。

考虑到  $T_{12}$ 、 $T_{13}$  在输出电压最大值时已经接近饱和及发射极电阻  $R_{31}$ 、 $R_{32}$  上的电压降等 因 素 , 选 择 的 电 源 电 压  $E_c$  值 必 须 大 于  $V_{om}$  。 它 们 的 关 系 为 :  $V_{om}$ =  $\eta$   $E_c$  , 即  $E_c$ =1  $\frac{1}{n}V_{om}$ =  $\frac{1}{n}\sqrt{2P_{om}R_L}$  ,式中  $\eta$  为电源利用效率,一般取  $\eta$  =0.6 $\sim$ 0.8。

### 2.估算功率输出级

(1)选择大功率管  $T_{12}$ 、 $T_{13}$ 。根据最大输出功率和电源电压  $E_c$ ,主要考虑三个参数,即晶体管  $e_c$  结承受的最大反向电压  $e_c$  集电极最大电流  $e_c$   $e_c$ 

因为  $T_{12}$ 、 $T_{13}$  随受的最大反压  $V_{CEmax} \approx 2Ec$ ;每只管子最大集电极电流(忽略管压降) $I_{cl2max} \approx Ec$  / ( $R_L + R_{31}$ );单管最大集功耗  $P_{cl2max} \approx 0.2P_{om} + I_OE_c$ (乙类电路管耗最大值  $P_{CM}$  发生在最大输出功率的 0.4 倍时,两个管耗的最大值为  $0.4P_{om}$ ,则单管管耗为  $0.2P_{om}$ )。所以选择  $T_{12}$ 、 $T_{13}$  时其极参数应满足: $BV_{CEO} > V_{CEmax}$ ; $I_{CM} > I_{cl2max}$ ; $P_{CM} > P_{cl2max}$ 。并使两管  $\beta_{12} \approx \beta_{13}$ ,参数尽量对称。还要根据环境温度采取必要的散热措施。

(2)选择  $T_{10}$ 、 $T_{11}$ 估算  $R_{27}$ 、 $R_{30}$  和  $R_{34}$ 。确定  $R_{27}$ 、 $R_{30}$  的原则是: 应使  $T_{10}$ 、 $T_{11}$  的输出电流大部分发能注入  $T_{12}$ 、 $T_{13}$  的基极。因为  $T_{12}$ 、 $T_{13}$  参数对称,所以基极回路的输入电阻  $T_{112}=T_{113}$ ,通常取  $R_{27}=R_{30}=(5\sim10)T_{112}$ 。

其中  $r_{i12}$ = $r_{be12}$ + $(1+β_{12})R_{31}$ ;  $r_{i13}$ = $r_{be13}$ + $(1+β_{13})R_{32}$ ,大功率管  $r_{be12}$ 、 $r_{be13}$ 一般为 10Ω左右。

 $r_{34}$  为平衡电阻。因为  $T_{10}$  和  $T_{11}$  分别为 NPN 与 PNP 两种管型,电路接法也不相同,所以两管输入阻抗也不相等,会使加在两管基极的输入信号不对称,产生失真。为此,需加平衡电阻  $R_{34}$ ,以尽量保证两复合管输入电阻相等,一般要求:  $R_{34}$ = $R_{27}$ // $r_{i12}$ 。

因为  $T_{10}$ 、 $T_{11}$ 分别与  $T_{12}$ 和  $T_{13}$ 复合,它们承受的最大反压相同,均为  $2E_c$ 。而在计算集电极最大电流和最大管耗时,还要考虑到  $R_{27}$ 、 $R_{30}$ 的分流作用和晶体管内部造成的损耗。所以在工程计算中可近似认为:

$$I_{c10max} = I_{c11max} \approx (1.1 \sim 1.5)I_{c12max} / \beta_{12}$$
  
 $P_{c10max} = I_{c11max} \approx (1.1 \sim 1.5)P_{c12max} / \beta_{12}$ 

因此, T<sub>10</sub>、T<sub>11</sub>的极限参数选择原则是:

$$\begin{aligned} BV_{CEO} \!\! > \!\! 2E_c \\ I_{CM} \!\! > \!\! (1.1 \!\! \sim \!\! 1.5)I_{c12max} \, / \, \beta_{12} \\ P_{CM} \!\! > \!\! (1.1 \!\! \sim \!\! 1.5)P_{c12max} \, / \, \beta_{12} \end{aligned}$$

 $T_{10}$ 为 NPN 管, $T_{12}$ 为 PNP 管,并使  $\beta_{10} \approx \beta_{11}$ 。

(3)计算偏置电路,确定  $R_{23}$ 、 $R_{24}$ 、 $R_{25}$ 并选择  $T_9$ 。  $R_{23}$ 、 $R_{24}$ 、 $R_{25}$ 与  $T_9$ 组成了功率输出级的偏置电路,通常称为"VBE 扩大电路"。它利用  $T_9$ 管的 TBE 基本上为一固定值(硅管为 0.7V 左右)的现象,当电阻  $R_{24}$ // 的  $R_{25}$ 跨接在它的三个电极时,只要流过电阻的电流远大于基极电流  $I_{B9}$ ,我们就可以利用这两个电阻的阻值比来得到某一个近似固定的偏压,因为  $V_{B10}$ 、 $V_{B11}$ 分别为  $T_{10}$ 、 $T_{11}$ 的基极电位,又  $V_{BE10}$ = $V_{BE12}$ = $V_{BE11}$ | $\approx 0.7$ V,则  $V_{B10}$ - $V_{B11}$  $\approx 2.1$ V,故

$$V_{CE9} = V_{B10} - V_{B11} \approx V_{BE9} \cdot \frac{R_{24} / (R_{25} + R_{23})}{R_{23}}$$



设  $V_{BE9}$ =0.7V,可得  $R_{24}$ //  $R_{25}$ =2 $R_{23}$ ,而  $R_{23}$  $\approx$   $V_{BE9}$  /  $I_{R23}$  $\approx$  (5 $\sim$ 10) $I_{CQ9}$  /  $\beta$  9,以保证  $T_9$  基极电位稳定)。为了便于调节偏置电压的数值,取  $R_{24}$  为一固定电阻, $R_{25}$ 为一可调电阻。

### 3.估算推动级电路

- (1)确定  $T_8$  的工作电流。推动级要有足够的电流输出给功率输出级。为了保证信号不失真, $T_8$  必须工作在甲类放大状态,通常要求:  $I_{CQ8}{\geqslant}3I_{B10max}{\approx}3I_{c10max}{\approx}3I_{c10max}/$   $\beta_{10}$  ,一般取  $I_{CQ8}{\approx}2{\sim}10mA$  。
- (2)确定  $R_{28}$ 、 $R_{29}$ 。因为 $(R_{28}+R_{29})$ 是  $T_8$  的直流负载,而  $V_{B11}$  $\approx$ -0.7V,所以  $R_{28}+R_{29}=(E_c-V_{B11})$  /  $I_{CQ8}$ 。从交流通路看, $R_{29}$ 实际与负载  $R_L$  并联,其阻抗太小会损耗信号输出功率,太大必

然使  $R_{28}$  减小,而  $R_{28}$  为共射电路有效负载,其值太小将会使推动级的增益下降,因此一般取:  $(R_{28}+R_{29})/3 > R_{9} > R_{L}$ 。确定了  $R_{29}$  就可求出  $R_{28}$ 。

(3)确定  $C_{19}$ 。为了在最低工作频率时其容抗远小于  $R_{29}$ ,一般取  $C_{19}$ ≈(3 $\sim$ 10)1 / 2 $\pi$   $f_L R_{29}$ 。 (4)选择  $T_8$  管。因  $T_8$  工作在甲类放大状态,一般要求:  $BV_{CEO}$ > $V_{CEBmax}$ =2 $E_c$ (最大反向电压);  $P_{CM}$ >> $E_c I_{CO8}$ (一般取  $5E_c \cdot I_{CO8}$ )。

# 4.估算输入级电路

- (1)确定差分管工作电流。因为差管  $T_5$ 、 $T_6$ 的集电极电流太大,会增加管耗和噪声,使失调电压和漂移增大;太小又会降低电路的开环增益,所以一般选择:  $I_{c5} \approx I_{c6} \approx (0.5 \sim 2) mA$ ,则  $I_{c5} + I_{c6}$ 。
- (2)确定  $R_{17}$ 、 $R_{18}$ 、 $R_{19}$ 、 $R_{20}$ 。  $R_{17}$ + $R_{18}$ = $V_{BE8}$  /  $I_{c5}$ (若不加  $R_{26}$ 、,  $V_{BE8}$   $\approx$  0.7V)。  $T_7$  为恒流源,为使其工作点稳定应使流过  $D_1$ 、 $D_2$  的电流( $I_D$ 》  $I_{C7}$  /  $\beta_7$ ),又由于利用  $D_1$ 、 $D_2$  正向导通时的稳压特性来稳定 Q 点。要使 2CP 型二极管有较好的稳定效果, $I_D$  需在 3mA 以上,因此一般取  $I_D \geq 3mA$ ,由图 1 可直接求出:  $R_{20}$ =  $\left[ |E_C| V_{D1} + V_{D2} \right]$  /  $I_D$ (其中  $V_{D1}$ = $V_{D2}$   $\approx$  0.7V)。  $R_{19}$ = $\left( V_{D1} + V_{D2} V_{BE7} \right)$  /  $I_{C7}$ 。
- (3)选择  $T_5$ 、 $T_6$ 、 $T_7$ 管。为了使差分放大电路稳定可靠地工作,要求  $T_5$ 、 $T_6$ 满足:  $BV_{CEO} > 1.2E_c$ ;  $P_{CM} > 5P_c(I_{CS} \cdot E_c)$ ,并使  $\beta_5 = 6$ 。 $T_7$  亦可选同类的晶体管。

#### 5.计算反馈支路

差分放大器电路引入了电压串联负反馈,使输入级的输入电阻提高,因此基极电阻  $R_{16}$  对该级输入阻抗影响很大,一般骤  $R_{16}$ =15~47K  $\Omega$  。为了保证直流平衡,选  $R_{16}$ = $R_{22}$ 。又因为功率放大电路的总电压增益  $A_{rr}$ ≈1+( $R_{22}$  /  $R_{21}$ ),所以  $R_{21}$ = $R_{22}$  / ( $A_{rf}$ -1)。另外  $C_{18}$ 应保证在低频截止频率时,其容抗远小于  $R_{21}$ ,一般取  $C_{18}$  $\geq$ (3~10) 1 / 2  $\pi$   $f_LR_{21}$ 。耦合电容  $C_{15}$  一般取  $C_{15}$  $\geq$ (3~10) 1 / 2  $\pi$   $f_LR_{26}$ 。

### 6.补偿元件的选取

为了使负载在高频时仍为纯电阻,需加补偿电阻  $R_{33}$  和补偿电容  $\geq C_{20}$ 。一般取  $R_{33}=R_L,C_{20}=1$  /  $2\pi$   $f_HR_{33}(f_H$  为放大器上限频率)。此外,为了消除高频自激,通常在  $T_8$  和 bc 之间, $R_{16}$  两端加消振电容,一般取  $100\sim200 pF$ 。

# 设计举例

已知:要求最大输出功率  $P_{om} \ge 8W$ ;负载阻抗  $R_L = 8\Omega$ ;电压放大倍数  $A_{vf} = 30$ ;失真度  $v \le 3\%$ 。现计算如下:

# 1.选择图 1 所示电路

#### 2.确定电源电压

 $E_c$ =1 / η  $\overline{)2P_{om}R_L}$   $\approx$ 14V(取 η =0.8),选定电源电压±15V。

# 3选 T<sub>12</sub>、T<sub>13</sub>

要求 BV<sub>CEO</sub>>2E<sub>C</sub>=30V;  $I_{CM}$ > $I_{c12max}$ ≈ $E_c$  / ( $R_L$ + $R_{31}$ )≈ $E_c$  /  $R_L$ ≈1.88A;  $P_{CM}$ > $P_{c12max}$ ≈0.2 $P_{om}$ + $E_c$ •  $I_{O}$ ,取功率管静态电流  $I_{O}$ =20mA,则  $P_{CM}$ >1.9W。 按以上参数选得 TIP41,测得  $\beta$   $I_{12}$ = $\beta$   $I_{3}$ =60。

### 4.选择 T<sub>10</sub>、T<sub>11</sub>估算 R<sub>31</sub>、R<sub>27</sub>、R<sub>30</sub>、R<sub>34</sub>。

- (1)要求  $T_{10}$ 、 $T_{11}$ 管  $BV_{CEO}>30V$ ;  $I_{CM}>1.5I_{c12max}$  /  $\beta_{12}\approx48mW$ 。选  $T_{10}$  为 2SC8050,  $T_{11}$  为 2SC8550,测得  $\beta_{10}=\beta_{11}=60$ 。
- (2)据  $R_{31}$ = $R_{32}$ = $(0.05\sim0.1)R_L$ ,选  $R_{31}$ = $R_{32}$ = $0.5\,\Omega$  电阻,可用电子线绕制,功率大于 1W。 因为  $r_{i12}$ = $r_{bc12}$ + $(1+\beta_{12})R_{31}$ = $40.5\,\Omega$ ,所以  $R_{27}$ = $R_{30}$ = $5r_{i12}$ = $202.5\,\Omega$ ,取  $R_{27}$ = $R_{30}$ = $220\,\Omega$ 。因  $R_{34}$ = $R_{27}$ //  $r_{i12}$  $\approx$ 34 $\Omega$ ,所以取  $R_{34}$ 为  $30\,\Omega$ 。

#### 5.估算推动级电路

- (1)取  $I_{CO8}=3I_{c10max}$  /  $\beta_{10}=3\times47$  /  $60\approx2.4mA$ 。
- (2)估算  $T_9$ 偏置电路。选取  $T_9$ 为 2SC9013,测得  $\beta_9$ =60,取  $I_{R33}$ =1mA (此时  $I_{R33}$ 》 $I_{C19}$  /  $\beta_9$ ,保证了  $T_9$ 基极电位稳定),则  $R_{23}$  $\approx$   $V_{BE9}$  /  $I_{R23}$  $\approx$  0.7V / ImA=700  $\Omega$  。
- (此时 I<sub>R33</sub>) I<sub>C1</sub>9 / β 9,保证了 T9基极电位稳定),则 R<sub>23</sub> ~ V<sub>BE9</sub> / I<sub>R23</sub> ~ 0.7V / ImA=700 Ω 。 又 R<sub>24</sub> // R<sub>25</sub>=2R<sub>23</sub>=1.36K Ω,以 R<sub>24</sub>=2.7K Ω 半可调电阻。
- (3)估算  $R_{28}$ 、 $R_{29}$ 。因为  $R_{28}+R_{29}$   $\approx$  ( $E_c-V_{BEII}$ )/ $I_{CQ8}$   $\approx$  (15-0.7) / 2.4  $\approx$  5.96K  $\Omega$  ,又要求 2K  $\Omega$  >  $R_{29}$  >  $160 <math>\Omega$  ,所以取  $R_{29}$  = 1K  $\Omega$  , $R_{28}$  = 4.7K  $\Omega$  (注: $R_{28}$  为共射电路交流有效负载,其值太小会使推动级的增益下降,从而使最大输出功率减小。因此,若输出功率达不到技术指标,可适当增大  $R_{28}$  的取值)。
- (4)选  $T_8$ 管。要求  $P_{CM}>5E_cI_{CQ8}=180W$ ;  $BV_{CEC}>2E_c=30V$ ,选择小功率 PNP 型管可满足要求。

### 6.自举电路

# 7.估算输入级

- (1)取差分管工作电流  $I_{c5}=I_{c6}=0.8$ mA,则  $I_{c7}=2\times I_{c5}=1.6$ mA。
- (2)估算  $R_{17}$ 、 $R_{18}$ 、 $R_{19}$ 、 $R_{20}$ 。一般取  $R_{17}+R_{18}=|V_{BE8}|$  /  $I_{c5}=875\,\Omega$  (取  $R_{7}=470\,\Omega$  ,  $R_{18}$  可用  $1K\,\Omega$  可调电位器,调节时应使  $R_{18}$  由小向大)。另外,为了防止在调节  $R_{18}$  时  $T_8$  电流过大烧毁晶体管,可以在  $T_8$  射极串一电阻  $R_{26}$ ,此时推动稳定性提高了,但增益会有下降。接入  $R_{26}$  后,应用下式计算:

$$R_{17}$$
+ $R_{18}$ = $|V_{BE8}|$ + $I_{E8}$  •  $R_{26}$  /  $I_{c5}$ 
 $R_{19}$ = $\left[(V_{D1}+V_{D2})-V_{BE7}\right]$  /  $I_{c7}$ =440  $\Omega$  (與 470  $\Omega$ )
 $R_{20}$ = $\left[E_c$ - $\left(V_{D1}+V_{D2}\right)\right]$  /  $I_D$   $\left[15$ - $\left(0.7+0.7\right)\right]$  /  $3.12$ 
=4.36K  $\Omega$  (與 4.3K  $\Omega$ )

(3)选择 T<sub>5</sub>、T<sub>6</sub>和 T<sub>7</sub>管。要求 T<sub>5</sub>、T<sub>6</sub>满足 BV<sub>CEO</sub>>1.2E<sub>c</sub>=18V, P<sub>CM</sub>≥5P<sub>c5</sub>=5P<sub>c5</sub>=5 P<sub>c6</sub> =5E<sub>c</sub> • I<sub>c5</sub>=60mW; β<sub>5</sub>=β<sub>6</sub>≥50,且反向电流小,例如,选择小功率 NPN 型管。T<sub>7</sub>亦可选用同类型管。

# 8.计算反馈支路

即  $R_{16}$ = $R_{22}$ =47K  $\Omega$  。 因为  $A_{rf}$ =32,所以  $R_{22}$  /  $A_{rf}$ -1 $\approx$ 1.5K  $\Omega$  (取 1.5K  $\Omega$  ). $C_{18}$  $\geqslant$ 10 / 2  $\pi$   $f_LR_{21}$  $\approx$ 33  $\mu$  F (取  $f_L$ =20Hz, $C_{18}$ =47  $\mu$  F);  $C_{15}$  $\geqslant$ 10 / 2  $\pi$   $f_LR_{16}$  $\approx$ 1.7  $\mu$  F (取  $C_{15}$ =10  $\mu$  F)。

# 9.计算补偿元件

取  $R_{33}$ =20  $\Omega$ ;  $C_{20}$ =1 / 2  $\pi$   $f_L R_{33} \approx 0.4 \mu$  F(取  $f_H$ =20KHz),通常取  $C_{20}$ =0.1  $\mu$  F 即可,  $C_{16}$ = $C_{17}$ =100pF。附录一所示完整的设计结果。

