Optimal PSPACE-hardness of Approximating Set Cover Reconfiguration

⇔Shuichi Hirahara

(National Institute of Informatics, Japan)

Naoto Ohsaka⇒

(Cyber Agent, Inc., Japan)

Intro of reconfiguration

Imagine connecting a pair of feasible solutions (of NP problem)

under a particular adjacency relation

Q. Is a pair of solutions reachable to each other?

Q. If so, what is the shortest transformation?

Q. If not, how can the feasibility be relaxed?

Many reconfiguration problems have been derived from

Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Set, Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...

See [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013] [Hoang. https://reconf.wikidot.com/]

Set Cover Reconfiguration

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
- Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)

 $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)

• YES case (k = 3)

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k •Output: $C = (C^{(1)} := C_{\text{start}}, ..., C^{(T)} := C_{\text{goal}})$ (reconf. sequence) S.t.
 - $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)
 - $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)
- YES case (k = 3)

Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
•Output: $C = (C^{(1)} := C_{\text{start}}, ..., C^{(T)} := C_{\text{goal}})$ (reconf. sequence) S.t. $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility) $|C^{(t)} \triangle C^{(t+1)}| \leq 1$ (adjacency)

• YES case (k = 3)

Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
•Output: $C = (C^{(1)} := C_{\text{start}}, ..., C^{(T)} := C_{\text{goal}})$ (reconf. sequence) s.t. $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility) $|C^{(t)} \triangle C^{(t+1)}| \leq 1$ (adjacency)

• YES case (k = 3)

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
- Output: $C = (C^{(1)} := C_{\text{start}}, ..., C^{(T)} := C_{\text{goal}})$ (reconf. sequence) S.t.
 - $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)
 - $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)
- •YES case (k = 3)

Set Cover Reconfiguration

• Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k • Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t. $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility) $|C^{(t)} \triangle C^{(t+1)}| \leq 1$

(adjacency)

• YES case (k = 3)

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k •Output: $C = (C^{(1)} := C_{\text{start}}, ..., C^{(T)} := C_{\text{goal}})$ (reconf. sequence) S.t.
 - $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)
 - $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)
- NO case (k = 3)

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
- Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.
 - $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)
 - $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)
- NO case (k = 3)

- •Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k
- Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.
 - $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ (feasibility)
 - $|C^{(t)} \triangle C^{(t+1)}| \le 1$ (adjacency)
- NO case (k = 3)

Optimization versions of reconfiguration problems

Even if...

- NOT reconfigurable! and/or
- many problems are PSPACE-complete!

Still want an "approximate" reconf. sequence (e.g.) made up of not-too-large set covers

RELAX feasibility to obtain approximate reconfigurability

e.g. Set Cover Reconf. [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014]

Submodular Reconf. [O.-Matsuoka. WSDM 2022]

Minmax Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k

• Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $C^{(t)} \leq k+1$ & $C^{(t)} \triangle C^{(t+1)} \leq 1$

Minmax Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k

• Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $C^{(t)} \leq k+1$ & $C^{(t)} \triangle C^{(t+1)} \leq 1$

Minmax Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k

• Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ & $|C^{(t)} \triangle C^{(t+1)}| \leq 1$

Minmax Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k

• Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $|C^{(t)}| \leq k+1$ & $|C^{(t)} \triangle C^{(t+1)}| \leq 1$

Minmax Set Cover Reconfiguration

•Input: Set system \mathscr{F} & covers C_{start} & C_{goal} of size k

• Output: $C = (C^{(1)} := C_{start}, ..., C^{(T)} := C_{goal})$ (reconf. sequence) S.t.

 $C^{(t)}$ covers \mathscr{F} & $C^{(t)} \leq k+1$ & $C^{(t)} \triangle C^{(t+1)} \leq 1$

Known results on Minmax Set Cover Reconf.

P [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. TCS 2011]

PSPACE-hard!! (This work)

Q. 1.5-approx. $\in NP$?

NP-hard [Karthik C. S.-Manurangsi. 2023]

 $2-\varepsilon \ (\forall \varepsilon > 0)$

PSPACE-hard

[O. SODA 2024] + PCRP thm.

1.0029

PSPACE-hard (PCRP thm.)

[Hirahara-O. STOC 2024]

1+ε

PSPACE-hard [Hearn-Demaine. TCS 2005]

Known results on Minmax Set Cover Reconf.

P [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. TCS 2011]

NP-hard [Karthik C. S.-Manurangsi. 2023]

PSPACE-hard!! 2-o(1) (This work)

 $2-\epsilon$ ($\forall \epsilon > 0$)

The main open question is clear: Can we prove tight PSPACE-hardness of approximation results for $GapMaxMin-2-CSP_q$ and $Set\ Cover\ Reconfiguration$?

PSPACE-hard [Hearn-Demaine. TCS 2005]

Our contribution

• Input: Set system F

Covers C_{start} & C_{goal} of size k

PSPACE-hard to distinguish between

(Completeness) ∃reconf. sequence ∀cover has size ≤

(Soundness)

 \forall reconf. sequence \exists cover has size $> (2-o(1))\cdot(k+1)$

 $(C_{\text{start}}, C^{(1)}, ..., C^{(T-1)},$

 \rightarrow \bigcirc Minmax Set Cover Reconfiguration is **PSPACE**-hard to approx. within 2-o(1)

FIRST sharp approx. threshold for reconf. problems

Related work

Min Set Cover

```
In N-approx. in P [Johnson. J. Comput. System Sci. 1974] [Lovász. Discrete Math. 1975] (1-\epsilon)\cdotIn N is NP-hard [Feige. J. ACM 1998] [Dinur-Steurer. STOC 2014]
```

•PSPACE-hardness of approx. for reconfiguration problems

```
Clique Reconf. n^{\epsilon}-approx. [Hirahara-O. STOC 2024]
```

2-CSP Reconf. 0.9942-approx. [O. SODA 2024] [O. ICALP 2024]

many problems $(1+\epsilon)$ -approx. [O. STACS 2023] [Hirahara-O. STOC 2024]

Proof outline

NP-hardness

PCP theorem [ALMSS. J. ACM 1998] [AS. J. ACM 1998] Label Cover Reconf. 1 vs. 2-ε

[Lund-Yannakakis. J. ACM 1994]

Partial 2-CSP 1 vs. ε [FGLSS. J. ACM 1996] Set Cover Reconf.
1 vs. 2-ε

[Karthik C. S.-Manurangsi. 2023]

PSPACE-hardness

PCRP theorem
[Hirahara-O. STOC 2024]

A Reconf. analogue of FGLSS reduct.

Maxmin 2-CSP Reconf. 1 vs. 0.9942 [O. STACS 2023 & SODA 2024] Set Gver Reconf. 10s. 1.0029 [0.50DA 2024]

Partial 2-CSP Reconf. 1 vs. o(1) Set Cover Reconf. 1 vs. 2-o(1)

Similar to [KM. 2023]

Proof outline

NP-hardness

PCP theorem
[ALMSS. J. ACM 1998]
[AS. J. ACM 1998]

Label Cover Reconf. 1 vs. 2-ε

[Lund-Yannakakis. J. ACM 1994]

Partial 2-CSP 1 vs. ε [FGLSS. J. ACM 1996] Set Cover Reconf.
1 vs. 2-ε

[Karthik C. S.-Manurangsi. 2023]

PSPACE-hardness

PCRP theorem

[Hirahara-O. STOC 2024]

A Reconf. analogue of FGLSS reduct.

Maxmin 2-CSP Reconf. 1 vs. 0.9942 [O. STACS 2023 & SODA 2024] Set Cover Reconf. 1 vs. 1.0029 [O. SODA 2024]

Partial 2-CSP Reconf. 1 vs. o(1)

Set Cover Reconf. 1 vs. 2-o(1)

Similar to [KM. 2023]

Probabilistically Checkable Reconfiguration Proofs [Hirahara-O. STOC 2024]

• Verifier V & poly-time alg. π_{start} & π_{goal} for language $L \subseteq \{0,1\}^*$ (Completeness)

$$x \in L \implies \exists \pi = (\pi^{(1)}, ..., \pi^{(T)}) \text{ from } \pi_{\text{start}}(x) \text{ to } \pi_{\text{goal}}(x) \text{ s.t.}$$

$$\forall t \text{ Pr}[\mathcal{V}(x) \text{ accepts } \pi^{(t)}] = 1$$

Probabilistically Checkable Reconfiguration Proofs [Hirahara-O. STOC 2024]

• Verifier V & poly-time alg. π_{start} & π_{goal} for language L \subseteq {0,1}*

Adjacent proofs differ in (at most) one symbol $\tau^{(T)}$) from π . .(x) to π .(x) < t Pr[] π can be exponentially long accept $\pi^{(2)}$ $\pi^{(3)}$ $\pi^{(T-3)} \pi^{(T-2)} \pi^{(T-1)} \pi^{(T)}$ $\pi_{start}(x)$

Probabilistically Checkable Reconfiguration Proofs [Hirahara-O. STOC 2024]

• Verifier V & poly-time alg. π_{start} & π_{goal} for language $L \subseteq \{0,1\}^*$ (Soundness)

$$x \notin L \implies \forall \pi = (\pi^{(1)}, ..., \pi^{(T)}) \text{ from } \pi_{\text{start}}(x) \text{ to } \pi_{\text{goal}}(x),$$

$$\exists t \ \Pr[\mathcal{V}(x) \text{ accepts } \pi^{(t)}] < \frac{1}{2}$$

1	1	1	1		1	1 -	→ 0	0
1 -	> 0	0	0		0 -	→ 1	1	1
0	0	0	0		1	1	1	1
1	1 -	→ 0	0	• • • • •	0	0	0	0
0	0	0	0		0	0	0	0
1	1	1-	> 0		1	1	1 -	→ 0
$\pi^{(1)}$	$\pi^{(2)}$	$\pi^{(3)}$	$\pi^{(4)}$		$\pi^{(T-3)}$	$\pi^{(T-2)}$	$\pi^{(T-1)}$	$\pi^{(\top)}$
$\pi_{start}()$	()			$\mathcal{V}(x)$				π _{goal} (x)

PCRP theorem [Hirahara-O. STOC 2024]

PSPACE = PCRP[O(log n), O(1)]

L ∈ **PSPACE**

- \exists Verifier \mathcal{V} with randomness comp. $O(\log n)$ & query comp. O(1)
- \exists Poly-time alg. π_{start} & π_{goal} Completeness = 1 Soundness $<\frac{1}{2}$

Recap of verifier

Verifier V

Given: input
$$x \in \{0,1\}^n$$

proof $\pi \in \{0,1\}^{poly(n)}$

- 1. Sample random bits $R \in \{0,1\}^{r(n)}$
- •2. Generate query seq. $I_R = (i_1, ..., i_{q(n)})$ circuit $D_{p}: \{0,1\}^{q(n)} \to \{0,1\}$

Recap of FGLSS reduction

[Feige-Goldwasser-Lovász-Safra-Szegedy. J. ACM 1996]

$$I_1 x_1 x_2 x_3$$

$$\bullet V := \{0,1\}^{r(n)}$$

Verifier's view

Recap of FGLSS reduction

[Feige-Goldwasser-Lovász-Safra-Szegedy. J. ACM 1996]

 $\bullet V := \{0,1\}^{r(n)}$

Verifier's view

Recap of FGLSS reduction

[Feige-Goldwasser-Lovász-Safra-Szegedy. J. ACM 1996]

Recap of FGLSS reduction

[Feige-Goldwasser-Lovász-Safra-Szegedy. J. ACM 1996]

- $V := \{0,1\}^{r(n)}$
- $\bullet \mathsf{E} \coloneqq \{(\mathsf{R}_{\mathsf{i}}, \mathsf{R}_{\mathsf{j}}) : \mathsf{I}_{\mathsf{i}} \cap \mathsf{I}_{\mathsf{j}} \neq \emptyset\}$
- $\bullet \Sigma := \{0,1\}^{q(n)} \quad \text{(local view)}$
- • $\Psi := (\psi_e)_{e \in F}$ where $\psi_e : \Sigma^e \to \{0,1\}$

Does FGLSS reduct. work for PCRP ...?

CSP view

Verifier's view

$$\exists f \text{ satisfies } \Psi \iff \exists \pi \text{ Pr}[\mathcal{V} \text{ accepts } \pi] = 1$$
Completeness of 2-CSP

Completeness of PCP

$$\exists \mathbf{f} \ \forall \mathbf{f}^{(t)} \ \text{satisfies} \ \Psi \iff \exists \mathbf{\pi} \ \forall \mathbf{\pi}^{(t)} \ \text{Pr}[\mathcal{V} \ \text{acc.} \ \mathbf{\pi}^{(t)}] = 1$$
Completeness of 2-CSP Reconf.

Completeness of PCRP

Alphabet squaring trick [0. STACS 2023 & SODA 2024]

- Think as if we could take a pair of values!
- Original $\Sigma = \{0, 1\}^{q(n)}$
- New $\Sigma_{sq} = \{0, 1, 01\}^{q(n)}$

Intuition

- 01 takes 0 & 1 simultaneously
- x & y are consistent $\Leftrightarrow x \subseteq y$ or $x \supseteq y$

	0	1	01
0			
1			
01			

Redefine ψ_e to "rescue" perfect completeness

(soundness analysis is nontrivial)

Conclusions

- Set Cover Reconf. is PSPACE-hard to approximate within 2-o(1)
- FIRST sharp approx. threshold for reconf. problems
- Reconf. analogue of FGLSS reduction [Feige-Goldwasser-Lovász-Safra-Szegedy. J. ACM 1996] from PCRP [Hirahara-O. STOC 2024]
- More tight hardness of approx...?

