Molecular Simulation of the Potential of Methane Reoccupation during the Replacement of Methane Hydrate by CO₂

Chun-Yu Geng,†,‡ Hao Wen,*,† and Han Zhou§

State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 2nd North Lane, ZhongGuanCun, Beijing 100190, China, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, China, and Research Institute of Petroleum Processing, SINOPEC, No.18 Xueyuan Road, Beijing 100083, China

Received: December 29, 2008; Revised Manuscript Received: March 23, 2009

Molecular dynamics simulations and stabilization energy calculations are performed in this work in order to understand the stability of CH_4 hydrate, CO_2 hydrate, and CH_4-CO_2 mixed hydrate. The model systems of fully occupied type SI CH_4 hydrate, CO_2 hydrate, and CH_4-CO_2 mixed hydrate are prepared in a simulation box of $2 \times 2 \times 2$ unit cell with periodic boundary conditions. The MD simulation results reveal that the CH_4-CO_2 mixed hydrate is the most stable one in above three hydrates. The stabilization energy calculations of small and large cavities occupied by CH_4 and CO_2 show that the CO_2 molecule is less suitable for the small cavity because of its larger size compared with the CH_4 molecule but is more suitable for the large cavity. The results in this work can also explain the possibility of CH_4 molecule in reoccupying the small cavity during the replacement of CH_4 hydrate by CO_2 , from the hydrate stability point of view.

1. Introduction

Natural gas hydrate (NGH) is expected to be a future energy resource, since the amount of NGH below the ocean floor is more than all of the current fossil fuel sources combined. Methods based on decomposition of hydrate by external stimulations, such as thermal treatment, depressurizing, and adding inhibitors into the hydrate, have been proposed for producing natural gas from NGH. Some researchers have also suggested that the decomposition of NGH could lead to weakening of the ocean floor.

On the other hand, as the increasing anthropogenic carbon dioxide emission contributes to global warming, CO₂ hydrate is becoming a promising form for CO₂ storage that may help to the climate change mitigation.⁴ Interest in CO₂ hydrate has intensified because of discussions on the possible disposal of isolating CO₂ from the atmosphere in deep oceans as a means of greenhouse gas emission reduction.^{5–7} Therefore, replacement of natural gas from NGH by CO₂ is also a candidate for producing natural gas from NGH and disposal of CO₂.⁸ This process is a favorable way as a long-term storage of CO₂ and enables the ocean floor to remain stable even after recovering the natural gas, because of the same structure of CH₄ and CO₂ hydrates.⁹

The possibility of replacing natural gas by CO₂ from NGH has been investigated. Measurements of three-phase (vapor—liquid—hydrate) equilibria for CO₂—CH₄—H₂O ternary system show that CO₂ hydrate is thermodynamically more stable than CH₄ hydrate below 283 K, since the equilibrium pressure of CO₂ hydrate is lower than that of CH₄ hydrate. Further, the Gibbs free energy of the replacement is found to be a negative value from molecular simulation. This thermodynamic evidence supports the replacement in hydrate at appropriate conditions.

Typically, both CH₄ and CO₂ can form hydrates of type structure I (SI) crystallographic structure, 14,15 in which the small cavity is composed of 12 pentagonal faces (a dodecahedral framework) of 20 H₂O molecules and forms a dodecahedron framework, and the large one is composed of 12 pentagonal faces and two hexagonal faces of 24 H₂O molecules and forms a tetrakaidecahedron framework. Though measurements using Raman spectroscopy of SI CO₂ hydrate do not show any splitting in the Raman frequencies, buttressing the notion that CO₂ molecules occupy only large cavities,16 infrared spectra of the double clathrate, such as carbon dioxide-ethylene oxide, suggest that the CO₂ molecules can occupy both the dodecahedron and the tetrakaidecahedron cavities. 17,18 Crystal structure of type SI CO₂ hydrate has been carried out to confirm that CO₂ molecules can occupy both the small and large cavities.¹⁸ Ota et al.¹⁹ presented an experimental study on the replacement of CH4 in hydrate with liquid CO₂ and used a view cell for visual observation and Raman spectroscopy for analysis. They found that the CH₄ molecules released from hydrate could reoccupy the small cavities.

In this work, the structures and stability of type SI CH₄ and CO₂ hydrates are studied using molecular dynamics (MD) simulations. Previously, Ding et al.²⁰ have investigated the partly and fully occupied hydrates and observed a similar dissociation behavior except for the stability for the different occupancy of the hydrates; therefore, the fully occupied hydrates can be used in our simulations to avoid influence of the hydrate occupancy. For understanding the potential of CH₄ molecules in reoccupying the small cavities, the stabilities of CH₄ hydrate and CO₂ hydrate at different temperatures are compared with that of the CH₄–CO₂ mixed hydrate where CH₄ molecules are encaged in small cavities and CO₂ molecules in large cavities. The tendency of small cavity reoccupation can also be understood by comparison of the stabilization energies of the small and large cavities occupied by CH₄ and CO₂.

^{*} To whom correspondence should be addressed. E-mail: hwen@home.ipe.ac.cn.

[†] Institute of Process Engineering.

[‡] Graduate University of Chinese Academy of Sciences.

[§] Research Institute of Petroleum Processing.

Figure 1. Iinitial configurations of model systems of fully occupied type SI gas hydrates: red for O atoms; light-gray for H atoms; dark-gray for C atoms; light-blue dashed lines for the hydrogen bonding network between H₂O molecules.

2. Simulation Details

2.1. Simulation Systems and Simulation Methods. The model systems prepared in this work are fully occupied type SI CH₄ hydrate, CO₂ hydrate, and CH₄–CO₂ mixed hydrate in a simulation box of $2 \times 2 \times 2$ unit cell with periodic boundary conditions, as shown in Figure 1. The model system of CH₄ hydrate consists of 64 CH₄ molecules and 368 H₂O molecules, while CO₂ hydrate consists of 64 CO₂ and 368 H₂O molecules. The CH₄–CO₂ mixed hydrate consists of 16 CH₄, 48 CO₂, and 368 H₂O molecules, with CH₄ molecules encaged in small cavities and CO₂ molecules in large cavities. The initial positions of H₂O molecules in model systems are taken from X-ray diffraction measurements, ^{21,22} where the gas (CH₄ or CO₂) molecules are encaged in the center of cavities. Additionally, all atomic positions are allowed to freely translate during the simulation.

The *NPT* ensemble molecular dynamics (MD) simulations are performed with CVFF force field at pressure P=50 bar and temperatures T=260, 270, and 280 K, using the Materials Studio software.²³ The temperature and pressure of the model systems are controlled using Andersen²⁴ and Berendsen²⁵ methods, respectively. The initial equilibrations of the model systems are optimized by both steepest descent and conjugate gradient. The van der Waals and long-range Coulomb interactions are calculated with the Ewald summation. The Verlet velocity algorithm²⁶ is used to obtain accurate integrations and statistical ensembles.

Simulation time of 200 ps with an integration time step of 1 fs is typically employed at each temperature, and simulations of the first 50 ps are used for equilibration. The position and orientation of $\rm H_2O$ molecules are fixed in the first 5 ps simulations during the energy optimization in order to make sufficient movements of the gas molecules. All simulations are performed on the server with Intel Xeon CPU E5335 2.0 GHz and 4G memories.

2.2. Stabilization Energy of Small and Large Cavities. Structures of the small and large cavities in type SI hydrate from single crystal X-ray diffraction 21,22 are shown in Figure 2. The small cavity is a dodecahedral framework constructed by 20 H₂O molecules represented as (5^{12}) , while the large cavity is a tetrakaidecahedral framework constructed by 24 H₂O molecules as $(5^{12}6^2)$. The gas molecule occupied cavities are constructed by placing the CH₄ or CO₂ molecule at the center of small and large cavities according to Udachin and IDA et al.'s results, 18,27 represented as $CH_4 \cdot (5^{12})$, $CO_2 \cdot (5^{12})$, $CH_4 \cdot (5^{12}6^2)$, and $CO_2 \cdot (5^{12}6^2)$ in this work for simplification.

The structure optimization of cavities occupied by gas molecules is performed using the hybrid density functional theory in order to compare the stabilization energies of cavities occupied by CH₄ and CO₂. The hybrid density functional theory

Figure 2. Schematic framework of H₂O molecule cavities in type SI gas hydrates.

Figure 3. Snapshots of the final configurations of CH_4 hydrate at 260, 270, and 280 K.

Figure 4. Snapshots of the final configurations of CO_2 hydrate at 260, 270, and 280 K.

used in this work is Becke's three-parameter hybrid functional 28 with Lee, Yang, and Parr's correlation functional (B3LYP), 29 using the 6-31g(d,p) basis set. According to ref 30, the stabilization energy of a cavity occupied by a gas molecule is defined as the difference between the total energy of cavities occupied by gas molecules and those of separated H_2O and gas molecules involved in the cavity occupied by a gas molecule. Thus, in this work, the stabilization energy of cavity occupied by a gas molecule ΔE_{GH} can be calculated by

$$\Delta E_{\rm GH} = E_{\rm GH-cavity} - \sum_{i} (E_{\rm H_2O})_i - E_{\rm gas}$$
 (1)

where $E_{\text{GH-cavity}}$ is the total energy of cavity occupied by gas molecule, $E_{\text{H}_2\text{O}}$ and E_{gas} are the energies of H_2O and gas molecules involved in the cavity occupied by the gas molecule, respectively.

The aforementioned calculations are performed by using the Gaussian 03 program³¹ on the Shenteng 6800 workstation provided by the Computer Network Information Center, Chinese Academy of Sciences.

3. Results and Discussion

3.1. Snapshots of the Final Configurations. Snapshots of the final configurations of CH₄ hydrate, CO₂ hydrate, and CH₄–CO₂ mixed hydrate at pressure P = 50 bar and temperatures T = 260, 270, and 280 K are presented in Figures 3–5. Figures 3 and 5 indicate that the crystal structure of CH₄ hydrate and CH₄–CO₂ mixed hydrate can keep stable at 270 K; even

Figure 5. Snapshots of the final configurations of CH₄-CO₂ mixed hydrate at 260, 270, and 280 K.

distortions of the hydrogen bonding network between H₂O molecules appeared. An evident collapse of the hydrogen bonding network in CO₂ hydrate can be observed at 270 K as presented in Figure 4; however, no aggregation of CO2 molecules observed. When the system temperature grows to 280 K, observable aggregation of CH₄ and CO₂ molecules appears in decomposed CH₄ and CO₂ hydrates. Moreover, the CH₄ molecules exhibit higher aggregation tendency than CO₂ molecules do. While in the CH₄-CO₂ mixed hydrate, although there are some guest molecules clustering at 280 K, most of the CH₄ and CO₂ molecules are still dispersed in water. Additionally, the average energies of CH₄ hydrate, CO₂ hydrate, and CH₄−CO₂ mixed hydrate at 280 K are −1952.0, −2456.5, and $-2549.4 \text{ kcal} \cdot \text{mol}^{-1}$, respectively. The result indicates that CH₄-CO₂ mixed hydrate could be more stable than CH₄ or CO₂ hydrate at the same temperature and pressure.

3.2. Radial Distribution Function (RDF). The radial distribution functions (RDFs) of O and C atoms at P = 50 bar and T = 260, 270, and 280 K for CH₄ hydrate, CO₂ hydrate, and CH₄-CO₂ mixed hydrate are presented in Figures 6 and 7.

In Figure 6, the RDFs of O atom goo in H₂O molecules, for CH₄ hydrate, CO₂ hydrate, and CH₄-CO₂ mixed hydrate, display a structural consistency with the recent simulations. 32,33 The maximal RDF peaks of the O atom in H₂O molecules appear at a distance of $r_{OO} = 2.78$ Å, corresponding to the nearest distance between H₂O molecules separated from each other at around 2.78 Å. The second maximal peaks appeared at $r_{\rm OO} = 4.53$ Å and indicate the existence of tetrahedral hydrogen bonding structures of H₂O molecules in gas hydrates.²⁰ In Figure 7, the RDF peaks of C atoms in CH₄ and/or CO₂ molecules g_{CC} appear at $r_{\rm CC} = 6.7$ Å with excellent agreement with the recent neutron diffraction results and pair correlation functions for gas hydrate.³⁴ The RDF peaks of C atoms appear at $r_{CC} = 4.1 \text{ Å}$ and show that the dissociation of hydrates with aggregation of gas molecules occurred when the system temperature rises to 280 K.

It can be seen from Figures 6 and 7 that the gradually lower and broader g_{OO} peaks at 2.78 and 4.53 Å and g_{CC} peaks at 6.7 Å with rising temperature indicate the hydrates becoming less stable, while the appearance and growth of g_{CC} peaks at approximately 4.1 Å imply the aggregation of CH₄ and/or CO₂ molecules. The goo and gcc peaks appearing in CH₄-CO₂ mixed hydrate are slightly higher than those in CH₄ and CO₂ hydrates at the same temperature and pressure, indicating the higher stability of CH₄-CO₂ mixed hydrate.

The RDFs of O atom for CH₄ hydrate, CO₂ hydrate, and CH_4-CO_2 mixed hydrate at P=50 bar and T=280 K are presented in Figures 8 and those of the C atom in Figure 9 for further comparison of the stability of different gas hydrates. For RDF peaks of O atoms and those of C atoms at $r_{CC} = 6.7 \text{ Å}$, the sharper peak represents the higher hydrate stability while the RDF peaks of C atoms at $r_{CC} = 4.1 \text{ Å}$ are opposite. The

Figure 6. RDFs of O atom in H₂O molecules at 50 bar and 260, 270, and 280 K for (A) CH₄ hydrate, (B) CO₂ hydrate, and (C) CH₄-CO₂ mixed hydrate.

CH₄-CO₂ mixed hydrate exhibits higher stability compared with the CH₄ hydrate and CO₂ hydrate. Although the crystal structure of the CH₄-CO₂ mixed hydrate decomposes at 280 K, the occurrence of gas-molecule aggregation in the CH₄-CO₂ mixed hydrate is evidently less than those in CH₄ hydrate and CO₂ hydrate, which can be observed as different by the higher RDF peak of C atoms at 6.7 Å and lower peak at 4.1 Å.

3.3. Mean Square Displacement (MSD). The mean square displacement (MSD) is a measure of the average distance a

Figure 7. RDFs of C atom in CH_4 and/or CO_2 molecules at 50 bar and 260, 270, and 280 K for (A) CH_4 hydrate, (B) CO_2 hydrate, and (C) CH_4 – CO_2 mixed hydrate.

molecule travels. For a stable crystal, the constituent molecules vibrate around their lattice sites without diffusing.

Figures 10–12 illustrate the MSD profiles of H_2O molecules in the CH_4 hydrate, CO_2 hydrate, and CH_4 – CO_2 mixed hydrate at P=50 bar and T=260, 270, and 280 K. In Figure 11, it indicates that H_2O molecules in CO_2 hydrate is slightly diffusing at 270 K, while those in CH_4 hydrate and in CH_4 – CO_2 mixed hydrate still show a typical feature of crystalline solid until the temperature approaches 280 K, as shown in Figures 10 and 12. The collapse of the crystal structure and H_2O molecule diffusion occurs in the three hydrates when temperature approaches 280 K.

Figure 8. RDFs of O atom in H₂O molecules for CH₄ hydrate, CO₂ hydrate, and CH₄-CO₂ mixed hydrate at 50 bar and 280 K.

Figure 9. RDFs of C atoms in CH_4 and/or CO_2 molecules for CH_4 hydrate, CO_2 hydrate, and CH_4 – CO_2 mixed hydrate at 50 bar and 280 K.

Figure 10. MSD of H_2O molecules in CH_4 hydrate at 50 bar and 260, 270, and 280 K.

A comparison of MSD of H_2O molecules in the CH_4 hydrate, CO_2 hydrate, and CH_4-CO_2 mixed hydrate at 270 and 280 K is shown in Figure 13. H_2O molecules show an obviously larger MSD value in the CO_2 hydrate than those in CH_4 hydrate and in CH_4-CO_2 mixed hydrate at 270 K. This predicted larger MSD is indicative of partial decomposition of CO_2 hydrate at 270 K. In addition, H_2O molecules in CH_4 hydrate show larger MSD values than those in CH_4-CO_2 mixed hydrate do at 280 K, implying that the diffusion of CH_4 hydrate is obviously stronger than the CH_4-CO_2 mixed hydrate. Accordingly, the decomposition of CH_4 hydrate is much more pronounced than the CH_4-CO_2 mixed hydrate at 280 K.

Figure 14 presents the predicted diffusion coefficients of CH₄ in the CH₄ hydrate and the CH₄–CO₂ mixed hydrate and those of CO₂ in CO₂ hydrate and CH₄–CO₂ mixed hydrate at 260, 270, and 280 K. A comparison of the predicted diffusion coefficients of CH₄ and CO₂ in different hydrates indicates that a significant diffusive motion of the CO₂ hydrate can be

Figure 11. MSD of H₂O molecules in CO₂ hydrate at 50 bar and 260, 270, and 280 K

Figure 12. MSD of H₂O molecules in CH₄-CO₂ mixed hydrate at 50 bar and 260, 270, and 280 K.

Figure 13. MSD of H₂O molecules in CH₄ hydrate, CO₂ hydrate, and CH₄-CO₂ mixed hydrate at 270 and 280 K.

observed at 270 K. However, the calculations predict that CH₄ molecules evidently become more diffusive in the CH₄ hydrate at 280 K. Furthermore, at the same temperature, the diffusion is less efficient in the CH₄-CO₂ hydrate than in the other hydrates. Additionally, the diffusion coefficient of CO₂ hydrate at 273 K in Demurov's result³⁵ in which 70% of the small cavities are occupied by CO2 molecules is much lower than that of our fully occupied CO₂ hydrate at 270 K, and it is obviously higher than that of the CH₄-CO₂ mixed hydrate. The prediction of less efficient diffusion in the mixed hydrate implies that the decomposition of this phase is weaker than either of the others. The result obtained agrees with RDF, which also indicates that the CH₄-CO₂ mixed hydrate is the most stable hydrate of the three.

3.4. Stabilization Energies. Calculations and comparisons on the stabilization energies of CH₄ and CO₂ occupying small and large cavities are performed in an attempt to comprehend the stability of the CH₄ hydrate, the CO₂ hydrate, and the CH₄-CO₂ mixed hydrate. The small and large cavities of the

Figure 14. Diffusion coefficients of CH₄ and CO₂ molecules in CH₄ hydrate, CO₂ hydrate, and CH₄-CO₂ mixed hydrate at 260, 270, and

Figure 15. Optimized structures of small and large cavities occupied by CH₄ and CO₂.

hydrate structure from single-crystal X-ray diffraction^{21,22} are used as the initial structures for energy optimization. The optimized cavity structures are shown in Figure 15.

For $CH_4 \cdot (5^{12})$ and $CO_2 \cdot (5^{12})$, there are 30 hydrogen-bonding H atoms in each small cavity with average O-H bond length of ~ 0.99 Å. The average H-O-H bond angle of H₂O molecule is $\sim 106^{\circ}$. The O-O distance in the dodecahedral structure is 2.73 Å, and the O-O-O angle $\sim 108^{\circ}$. The O-H···O angle is $\sim 176^{\circ}$, and the average bond length of H···O hydrogen bond is 1.75 Å, which represents an effective hydrogen bond. The stabilization energy of CH₄•(5¹²) is -292.2 kcal•mol⁻¹, and that of $CO_2 \cdot (5^{12}) = 285.3 \text{ kcal} \cdot \text{mol}^{-1}$.

For $CH_4 \cdot (5^{12}6^2)$ and $CO_2 \cdot (5^{12}6^2)$, both of the two cavities have an average O-O distance of \sim 2.72 Å and O-O-O angle of 110°. There are 36 hydrogen-bonding H atoms in each large cavity. Similarly, the average hydrogen bonding O-H bond length and H-O-H angle of the H₂O molecule in the large cavity are 0.99 Å and 106°, respectively. The H···O hydrogen bond is ~ 1.73 Å, and the O-H···O angle 176°. The stabilization energy of CH₄•(5¹²6²) is -357.1 kcal•mol⁻¹, and that of $CO_2 \cdot (5^{12}6^2) - 369.0 \text{ kcal} \cdot \text{mol}^{-1}$.

The structural parameters of cavities occupied by CH₄ or CO₂ indicate that the gas hydrate cavities do not distort the hydrogenbonding network, and the size of either small or large cavity is big enough to accommodate a CH₄ or a CO₂ molecule. For

TABLE 1: Stabilization Energies of Different Clusters^a

cluster	$E_{\text{GH-cavity}}$, hartree	$\Delta E_{\rm GH}$, hartree	$\Delta E_{\rm GH}$, kcal·mol ⁻¹
CH ₄ •(5 ¹²)	-1569.3537	-0.4657	-292.2
$CO_2 \cdot (5^{12})$	-1717.3996	-0.4546	-285.3
$CH_4 \cdot (5^{12}6^2)$	-1875.1299	-0.5691	-357.1
$CO_2 \cdot (5^{12}6^2)$	-2023.2058	-0.5880	-369.0

 a The energies of optimized structures for H₂O, CH₄, and CO₂ molecules are -76.4182, -40.5240, and -188.5810 hartree, respectively.

comparison of the stability of cavities occupied by CH₄ and CO₂, the stabilization energies of CH₄•(5^{12}), CO₂•(5^{12}), CH₄•(5^{12} 6²), and CO₂•(5^{12} 6²) are calculated in accordance to eq 1, as presented in Table 1. The calculated stabilization energy of CH₄•(5^{12}) is somewhat larger than Khan's³⁰ HF and MP2 results, which should be attributed to the different method (B3LYP) used in our calculations. A comparison of the stabilization energy of CH₄•(5^{12}), CO₂•(5^{12}), CH₄•(5^{12} 6²), and CO₂•(5^{12} 6²), where the CH₄ and CO₂ molecules are encaged in the small and large cavities, respectively, suggests that CO₂•(5^{12} 0 is less stable than CH₄•(5^{12} 0) in the small cavity while CO₂•(5^{12} 6²) is more stable than CH₄•(5^{12} 6²) in the large cavity.

Ota et al.19 reported that during the replacement of CH₄ in the hydrate by use of CO₂, the decomposition of the large cavity in the CH₄ hydrate proceeded more quickly than that of the small cavity and some portions of the released CH₄ molecules reoccupied the small cavity because the CO₂ molecule is too large to be encaged in the small cavity. Given that CO₂ is somewhat larger than CH₄, the CO₂-H₂O interaction potential in the small cavity should be more repulsive in nature, as seen from the stabilization energies of $CH_4 \cdot (5^{12})$ and $CO_2 \cdot (5^{12})$ that we have calculated. The difference in stabilization energies, as seen from a comparison of the stabilization energies of $CH_4 \cdot (5^{12}6^2)$ and $CO_2 \cdot (5^{12}6^2)$, also suggests that the CO_2 molecule is more suited than the CH₄ molecule to be accommodated in the large cavity. The stabilization energy calculations also support the consideration from MD simulations that the CH₄-CO₂ mixed hydrate is the most stable of the three hydrates of CH₄, CO₂, and CH₄-CO₂ mixed. Therefore, during the replacement of CH₄ in the hydrate by CO₂, it is easier to form the CH₄-CO₂ mixed hydrate because of its stability.

4. Conclusions

The stabilities of the fully occupied type SI CH₄ hydrate, the CO₂ hydrate, and the CH₄-CO₂ mixed hydrate have been studied by molecular dynamics (MD) simulations at P = 50bar and T = 260, 270, and 280 K. The final configurations, the radial distribution functions of the O atoms in the H₂O molecules and the C atoms in CH₄ and CO₂, the mean square displacements, and the calculated diffusion coefficients of H₂O, CO₂, and CH₄ in the various hydrates all indicate that the CH₄-CO₂ mixed hydrate is the most stable of the three hydrates discussed. The calculation of the structures and the stabilization energies of CH₄ and CO₂ occupying small and large cavities indicate that cavities occupied by CH₄ or CO₂ do not distort the hydrogen-bonding network. A comparison of the stabilization energy indicates that $CO_2 \cdot (5^{12})$ is less stable than $CH_4 \cdot (5^{12})$, whereas $CO_2(5^{12}6^2)$ is fairly stable in comparison with $CH_4 \cdot (5^{12}6^2)$.

A comparison of the stabilization energies of the small and large cavities containing CH₄ and CO₂ shows that the CO₂ molecule is less suitable for the small cavity than the CH₄ molecule but is more suitable for the large cavity. Combining

the results from MD simulations with the stabilization energy calculations, one concludes that the CH₄–CO₂ mixed hydrate exhibits the best stability of the three hydrates considered in this work. In other words, it is possible to form the CH₄–CO₂ mixed hydrate during the replacement of CH₄ in the hydrate by CO₂. From the hydrate-stability point of view, the results of this work are consistent with the experimental study by Ota et al.¹⁹ and can also account for the CH₄ reoccupation of the small cavity during the replacement of CH₄ hydrate by CO₂.

Acknowledgment. The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (Grant No. 20821092). The authors also acknowledge generous computational services provided on the Shenteng 6800 workstation referred by the Computer Network Information Center, Chinese Academy of Sciences.

References and Notes

- (1) Collett, T. S. AAPG Bull. 2002, 86, 1971.
- (2) Holder, G. D.; Kamath, V. A.; Godbole, S. P. Annu. Rev Energy 1984, 9, 427.
- (3) Gunn, D. A.; Nelder, L. M.; Rochelle, C. A.; Bateman, K.; Jackson, P. D.; Lovell, M. A.; Hobbs, P. R. N.; Long, D.; Rees, J. G.; Schultheiss, P.; Roberts, J.; Francis, T. *Terra Nova* **2002**, *14*, 443.
- (4) Sloan, E. D. Clathrate Hydrates of Natural Gases, 2nd ed.; M. Dekker: New York, 1998.
 - (5) Herzog, H.; Golomb, D.; Zemba, S. Environ. Prog. 1991, 10, 64.
- (6) Saji, A.; Yoshida, H.; Sakai, M.; Tanii, T.; Kamata, T.; Kitamura, H. Energy Convers. Manage. 1992, 33, 643.
- (7) Nishikawa, N.; Morishita, M.; Uchiyama, M.; Yamaguchi, F.; Ohtsubo, K.; Kimuro, H.; Hiraoka, R. *Energy Convers. Manage.* **1992**, *33*, 651.
- (8) Ohgaki, K.; Takano, K.; Moritoki, M. Kagaku Kogaku Ronbunshu 1994, 20, 121.
- (9) Uchida, T.; Ikeda, I. Y.; Takeya, S.; Kamata, Y.; Ohmura, R.;
 Nagao, J.; Zatsepina, O. Y.; Buffett, B. A. ChemPhysChem 2005, 6, 646.
 (10) Kang, S. P.; Chun, M. K.; Lee, H. Fluid Phase Equilib. 1998, 147,
- (11) Anderson, R.; Liamedo, M.; Tohidi, B.; Burgass, W. J. Phys. Chem. B 2003, 107, 3507.
- (12) Ohgaki, K.; Sangawa, H.; Matsubara, T.; Nakano, S. J. Chem. Eng. Jpn. 1996, 29, 478.
- (13) Yezdimer, E. M.; Cummings, P. T.; Chialvo, A. A. J. Phys. Chem. A **2002**, 106, 7982.
 - (14) Fleyfel, F.; Devlin, J. P. J. Phys. Chem. 1988, 92, 631.
 - (15) Fleyfel, F.; Devlin, J. P. J. Phys. Chem. 1991, 95, 3811.
- (16) Sum, A. K.; Burruss, R. C.; Sloan, E. D. J. Phys. Chem. B 1997, 101, 7371.
- (17) Hirai, S.; Okazaki, K.; Kuraoka, S.; Kawamura, K. *Energy Convers. Manage.* **1996**, *37*, 1087.
- (18) Udachin, I. A.; Ratchliffe, C. I.; Ripmeester, J. A. J. Phys. Chem. B **2001**, 105, 4200.
- (19) Ota, M.; Morohashi, K.; Abe, Y.; Watanabe, M.; Smith, R. L., Jr.; Inomata, H. Energy Convers. Manage. 2005, 46, 1680.
- (20) Ding, L. Y.; Geng, C. Y.; Zhao, Y. H.; Wen, H. Mol. Simul. 2007, 33, 1005.
- (21) Kirchner, M. T.; Boese, R.; Billups, W. E.; Norman, L. R. *J. Am. Chem. Soc.* **2004**, *126*, 9407.
- (22) Udachin, K. A.; Ratcliffe, C. I.; Ripmeester, J. A. *J. Supramol. Chem.* **2002**, 2, 405.
- (23) Materials Studio, version 4.0; Accelrys Software, Inc.: San Diego, CA, 2006.
 - (24) Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.
- (25) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. *J. Chem. Phys.* **1984**, *81*, 3684.
 - (26) Verlet, L. *Phys. Rev.* **1967**, *159*, 98.
 - (27) IDA, T.; Mizuno, M.; Endo, K. J. Comput. Chem. 2002, 23, 1071.
 - (28) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.
 - (29) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
 - (30) Khan, A. J. Chem. Phys. 1999, 110, 11884.
- (31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;

Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

- (32) Chialvo, A. A.; Housa, M.; Cummings, P. T. J. Phys. Chem. B 2002, 106, 442.
- (33) Hirai, S.; Okazaki, K.; Kuraoka, S.; Kaamura, K. Energy Convers. Manage. 1996, 27, 1087.
- (34) Koh, C. A.; Wisbey, R. P.; Wu, X. P.; Westacott, R. E.; Soper, A. K. *J. Chem. Phys.* **2000**, *113*, 6390.
- (35) Demurov, A.; Radhakrishnan, R.; Trout, B. L. J. Chem. Phys. 2002, 116, 702.

JP811474M