3. Considere $\mathcal V$ um espaço vetorial de dimensão n com $\beta = \{v_1, v_2, \dots, v_n\}$ uma base de $\mathcal V$. Se $\mathbf v \in \mathcal V$, então $\mathbf v$ pode ser escrito como combinação linear dos vetores de β , ou seja,

$$\mathbf{v} = c_1 v_1 + c_2 v_2 + \dots + c_n v_n.$$

Suponha que β seja uma base ortonormal. Determine os coeficientes $c_1, c_2, ..., c_n$ que representam o vetor \mathbf{v} (isto é, as coordenadas do vetor \mathbf{v}). Dica: Utilize o produto interno e o fato de que β é ortonormal.

4. Seja
$$A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$$
.

- (a) (10 pontos) Determine os autovalores de A e de A^{-1} .
- (b) (10 pontos) Determine os auto-espaços correspondentes.