MPSI – Physique-chimie

TD5: Oscillateurs

Exercice 1 : CIRCUIT RLC PARALLÈLE

On étudie le circuit RLC parallèle ci-contre. L'interrupteur K est initialement fermé pendant un temps suffisamment long pour que le régime permanent soit atteint. À t=0 on ouvre l'interrupteur et on observe l'évolution de la tension u(t).

- 1. Donner les valeurs des intensités i_C , i_R , et i_L et de la tension u dans le circuit à $t=0^-$, $t=0^+$, et $t\to\infty$.
- 2. Tracer qualitativement l'allure de u(t) après l'ouverture de K.
- 3. Comment le facteur de qualité Q du circuit dépend-il de R? Proposer une expression de Q basée sur une analyse dimensionnelle.
- 4. Déterminer l'équation différentielle satisfaite par u(t) pour t > 0.
- 5. En déduire les expressions de la fréquence propre w_0 et du facteur de qualité Q en fonction de R, L et C. Comparer l'expression de Q avec celle trouvée à la question précédente.
- 6. A.N. : On donne $R=40\,\Omega,\,C=200\,\mu\text{F}$ et $L=10\,\text{m}\,\text{H}.$ Calculer la pulsation propre du système et le facteur de qualité. Quelle est la durée du régime transitoire?
- 7. Tracer l'allure du portrait de phase de la tension u(t), c'est-à-dire le graphique représentant $\frac{du}{dt}$ en fonction de u.

Exercice 2 : OSCILLATEUR MÉCANIQUE AMORTI

On étudie le mouvement d'une masse m accrochée à un ressort de raideur k et soumise à une force de frottement visqueux $\vec{f} = -\gamma \vec{v}$ (v est la vitesse de la masse). Le mouvement a lieu suivant l'axe x. On donne le portrait de phase du mouvement de la masse :

- 1. Faire un schéma du système décrit en représentant les différentes forces qui s'appliquent sur m.
- 2. Déterminer graphiquement la pulsation propre ω_0 et le facteur de qualité Q de l'oscillateur
- 3. L'équation différentielle satisfaite par la position x(t) de la masse est : $\ddot{x} + \frac{\gamma}{m}\dot{x} + \frac{k}{m}x = 0$. Exprimer le facteur de qualité et la fréquence propre de l'oscillateur en fonction de m, k et γ .
- 4. On donne $m=1\,\mathrm{g}$. Déterminer k et γ .

Exercice 3: Oscillateur à condensateurs

Dans le circuit ci-dessous, les condensateurs sont identiques et ont une capacité $C=10\,\mu\text{F}$, les résistors sont identiques et ont une résistance $R=10\,\text{k}\Omega$. Les condensateurs sont initialement déchargés lorsqu'on ferme l'interrupteur K à t=0. E = $10\,\text{V}$.

- 1. Déterminer une constante de temps du circuit.
- 2. Déterminer toutes les valeurs des tensions et des intensités au temps $t = 0^+$, ainsi qu'en régime permanent (faire des schémas équivalents si nécessaires).
- 3. Etablir l'équation différentielle vérifiée par la tension u(t) en faisant apparaître la pulsation propre ω_0 et le facteur de qualité Q du circuit. Dans quel régime se trouve-t-il?
- 4. Résoudre l'équation différentielle pour trouver l'expression de u(t). Tracer l'allure de u(t).

Exercice 4 : Interprétation énergétique du facteur de qualité

On considère le circuit suivant dans lequel e(t)=E si t<0 et e(t)=0 si $t\geq0$. Avec $R=100\,\Omega,\ L=1{,}00\,\mathrm{H}$ et $C=1{,}00\,\mathrm{\mu}\mathrm{F}$.

1. Pour t>0, montrer que l'équation différentielle satisfaite par la tension $u_C(t)$ aux bornes du condensateur s'écrit

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u_C}{\mathrm{d}t} + \omega_0^2 u_C = 0 \tag{1}$$

avec $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q = \frac{L\omega_0}{R}$.

2. Montrer que la tension $u_C(t)$ peut s'écrire :

$$u_C(t) = e^{-\frac{t}{\tau}} (A\cos(\omega t) + B\sin(\omega t))$$
(2)

avec $\omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$ et $\tau = \frac{2Q}{\omega_0}$.

- 3. Déterminer les valeurs de A et B.
- 4. Montrer qu'on peut faire l'approximation :

$$u_C(t) \approx Ee^{-\frac{t}{\tau}}\cos(\omega_0 t)$$
 et $i(t) = -\omega_0 C E e^{-\frac{t}{\tau}}\sin(\omega_0 t)$ (3)

On conservera cette approximation dans la suite du problème.

5. On représente ci-dessous l'évolution de l'énergie électrique totale E_{tot} , de l'énergie E_C stockée dans le condensateur et de l'énergie E_L stockée dans la bobine.

page 1/2

MPSI – Physique-chimie

TD5: Oscillateurs

Commenter le graphique ci-dessus.

- 6. Exprimer l'énergie électrique $E_{\text{tot}}(t)$ de l'oscillateur en fonction de t.
- 7. Montrer que la variation relative d'énergie sur une période est inversement proportionnelle à Q:

$$\frac{E_{\rm tot}(t) - E_{\rm tot}(t+T)}{E_{\rm tot}(t)} \propto \frac{1}{Q} \tag{4}$$

On donne le développement limité $e^x \approx 1 + x$ si $x \ll 1$.

Exercice 5 : Analogie entre oscillateur mécanique et oscillateur électrique

- 1. On considère une masse m accrochée à un ressort de raideur k et astreinte à se déplacer suivant un axe x horizontal. Déterminer l'équation différentielle de son mouvement.
- 2. Écrire l'équation différentielle satisfaite par la charge q portée par le condensateur dans un circuit comportant un condensateur de capacité C et une bobine d'inductance L branchés en parallèle.
- 3. Expliciter l'analogie qui existe entre les oscillateurs mécanique et électrique.

Exercice 6 : Associations d'impédances complexes

Calculer l'impédance complexe équivalente des dipôles suivants :

Exercice 7 : CIRCUIT RLC PARALLÈLE EN RÉGIME FORCÉ

On étudie le circuit ci-contre où le générateur fournit une tension sinusoïdale de pulsation ω .

- 1. À l'aide de la méthode des complexes, déterminer l'intensité complexe \underline{i} en fonction de \underline{e} . Faire apparaître la pulsation propre ω_0 et le facteur de qualité Q du circuit.
- 2. Que vaut l'amplitude de l'intensité?
- 3. Que vaut le déphasage ϕ entre la tension e et l'intensité i
- 4. La tension réelle est $e(t) = E_0 \cos(\omega t)$. Écrire l'expression de l'intensité réelle.

Exercice 8 : DÉTERMINER LES PARAMÈTRES D'UN OSCILLATEUR

Les graphiques ci-dessous montrent l'amplitude et la phase d'un oscillateur en fonction de la pulsation de l'excitation.

- 1. Déterminer graphiquement la pulsation propre ω_0 et le facteur de qualité Q de cet oscillateur.
- 2. Quelles sont les valeurs des composants que l'on doit choisir pour fabriquer cet oscillateur avec un circuit RLC série $(\omega_0 = \frac{1}{\sqrt{LC}} \text{ et } Q = \frac{1}{R} \sqrt{\frac{L}{C}})$
- 3. Quel constante de raideur de ressort doit-on choisir pour faire osciller une masse $m=1\,\mathrm{g}$ à la fréquence ω_0 ? On pourra retrouver la pulsation propre d'un système {masse + ressort} par analyse dimensionnelle.

Exercice 9 : ÉQUIVALENCE DE COMPOSANTS

Les deux dipôles suivants sont utilisés dans un circuit en régime sinusoïdal à la fréquence ω . Exprimer R_2 et C_2 en fonction de R_1 , C_1 et ω pour que les deux dipôles soient équivalents.

Exercice 10: IMPÉDANCE COMPLEXE D'UN CIRCUIT

Une source de tension $e(t) = E_m \cos(\omega t)$ alimente un circuit composé d'une bobine réelle (R,L) en série avec l'association en parallèle d'une bobine d'inductance L_1 et d'un condensateur de capacité C_1 . La bobine est parcourue par un courant d'intensité $i(t) = I_m \cos(\omega t + \varphi)$.

1. Montrer que l'impédance complexe du circuit peut se mettre sous la forme

$$\underline{Z} = R + jX \quad \text{avec} \quad X = L\omega \left(\frac{\omega_1^2 - \omega^2}{\omega_2^2 - \omega^2}\right)$$
 (1)

Donner les expressions de ω_1 et ω_2 .

- 2. En déduire les expressions de I_m et φ en fonction de E_m , R et X.
- 3. Déterminer de même l'amplitude et la phase de la tension u.

page 2/2