Лабораторна робота №5

Проекціювання.

Мета роботи:

Оволодіти навичками побудови гранованих тіл у тривимірному просторі.

Завдання:

Створити систему побудови гранованого тіла довільної форми у тривимірному просторі за допомогою методу проєкціювання, визначеного для індивідуального варіанту. Необхідно уникати моделювання найпростіших форм — кубу, паралелепіпеду, тощо.

Система повинна забезпечувати виконання наступних функцій:

1. Можливість зміни двох і більше параметрів гранованого тіла, таких, як, наприклад, висота фігури, ширина, глибина, масштаб.

2. **Реалізація евклідових перетворень** гранованого тіла — зсув фігури та обертання фігури навколо власної осі. Для реалізації обертання фігури навколо власної осі необхідно визначити додаткову точку всередині фігури, навколо якої фігура буде виконувати обертання за визначеними осями **XYZ**. Наприклад, виконання зсуву на 100 од. за віссю **X** та **Y**, та одночасне обертання навколо власної осі **Y** фігури на 90°:

3. **Анімація** зміни параметрів гранованого тіла разом зі зміною положення у просторі. Необхідно задати мінімальне та максимальне значення одного з параметрів фігури (наприклад, значення виоти), і одночано задати оффсет зсуву або обертання за осями, на значення якого, кожен кадр анімації, фігура буде виконувати зсув або обертання у просторі:

4. Зміна параметрів проекціювання. Зауважте, що для кожного виду проекції властиві окремі параметри проекціювання. Наприклад, для матриці триметричної проекції на площину z=0, визначені параметри кутів обертання навколо осі Х та Ү:

$$M = \begin{bmatrix} \cos\beta & \sin\beta \cdot \sin\alpha & 0 & 0 \\ 0 & \cos\alpha & 0 & 0 \\ \sin\beta & -\sin\alpha \cdot \cos\beta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{де, } \alpha - \text{ кут обертання навколо осі Y}$$

де, α – кут обертання навколо осі Х

Методи проекціювання:

- 1. Ортографічне проекціювання на площину x=0, y=0, z=0.
- 2. Ортографічне проекціювання на площину x=p, y=p, z=p.
- 3. Диметрія на площину z=0.
- 4. Диметрія на площину x=p.
- 5. Диметрія на площину y=0.
- 6. Триметрія на площину z=0.
- 7. Триметрія на площину x=0.
- 8. Ізометрія на площину y=p.
- 9. Ізометрія на площину z=0.
- 10. Косокутне проекціювання на площину x=0.
- 11. Косокутне проекціювання на площину z=0.
- 12. Кабіне на площину z=0.
- 13. Кавальє на площину z=0.
- 14. Одноточкова переспектива на площину z=0.
- 15. Одноточкова перспектива на площину x=p.
- 16. Двоточкова перспектива на площину z=0.
- 17. Триточкова перспектива на площину z=0.
- 18. Триточкова перспектива на площину x=0.

Індивідуальні варіанти:

Таблиця - 1

Варіант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Метод	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	
Варіант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	