Martin Skilleter

Email: martin.skilleter@anu.edu.au

Mobile: +61 457 579 229

EDUCATION

Bachelor of Philosophy – Science (Honours)

2021

Australian National University

Major: Mathematics

Thesis: Deligne-Lusztig theory and character sheaves

• GPA: 7.00 (out of 7.00)

AWARDS and COMMENDATIONS

Scholarships

(i) National University Scholarship (\$12,500 per annum for 4 years) 2018-2021

- (ii) College of Engineering & Computer Science Research & Development Excellence Scholarship (\$5,000)
- (iii) Bachelor of Mathematical Sciences Relocation Grant (\$1,000)
- (iv) Mathematical Sciences Institute Honours Scholarship (\$5,000) 2021
- Dean's Science Education Commendation Award 2019 / 2020
- Chancellor's Letter of Commendation
 2018 / 2019 / 2020

PREVIOUS EXPERIENCE and LEADERSHIP ROLES

•	Internship – Junior Quality Assurance Officer at Fugro Roames Pty Ltd	2015 / 2016
•	Internship – Data Analyst at <i>LGIAsuper</i>	2018 / 2019
•	Peer-Assisted Learning Mentor for MATH1005, MATH1116	2019
•	Summer Research Scholar	2019 / 2020
_	First very Dury In Montey	

- First-year Drop-In Mentor
- Sponsorship Officer for ANU Mathematics Society
- President of ANU Mathematics Society
 2020
- Secretary of Undergraduate Student Research Society (formerly PhB Society)
- Demonstrator for MATH1005, MATH1013, MATH1014, MATH1115, MATH2322 at the
 Australian National University

PREVIOUS RESEARCH and SPECIAL TOPICS

Project Title	Description	Supervisor
The Implementation of	I investigated the mathematical theory of inner	Prof. Scott Morrison
Inner Product Spaces in	product spaces and Hilbert spaces in the context of	
Lean	implementing this theory in the interactive theorem	
	proving language Lean. I developed the rudimentary	
	theory, including implementing the axioms of an	
	inner product space, and proceeded to prove results	
	such as the Jordan von Neumann Theorem, the	
	Orthogonal Decomposition Theorem and the Riesz-	
	Representation Theorem.	
Differential Geometry and	I followed the text Calculus on Manifolds by Michael	Dr. Ben Andrews
de Rham Cohomology	Spivak to learn the elementary theory of differential	
	geometry. Ben Andrews provided resources to	
	extend the project into the topics of Riemannian	
	metrics and de Rham Cohomology.	
Applications of Persistent	I used techniques from the field of persistent	Dr. Katharine Turner
Homology to Identifying	homology to develop an algorithm to identify bridges	
Bridges in Graphs	in graphs. This algorithm has applications in	
	identifying diffusers of malicious information	
	through social media.	
Perverse Sheaves &	This formal lecture course was divided into two	Dr. Asilata Bapat &
Deligne-Lusztig Theory	sections. In the perverse sheaves component, we	Dr. Uri Onn
	developed the theory of derived categories and t -	
	structures on a triangulated category. We used this	
	to study perverse sheaves and the perverse t -	
	structure induced by a perversity function.	
	The Deligne-Lusztig component was devoted to	
	various classifications for characters on finite	
	reductive groups, including parabolic induction and	
	Deligne-Lusztig induction.	
Computational Algebraic	This course gave a computational approach to	Dr. Martin Helmer
Geometry	modern algebraic geometry, developing algorithms	
	and showing their applications using the language	
	Macaulay2.	
	As a personal project, I studied the invariant theory	
	of finite matrix groups, culminating with the	
	Chevalley-Todd-Shephard Theorem. This theory has	
	direct applications to the representation theory of	
	finite groups of Lie type.	
		ı

Vector Bundles and K-	This course developed the theory of vector bundles	Dr. Vigleik Angeltveit
Theory	on a topological space, defining topological <i>K</i> -	
,	theory and showing its applications.	
	and one ming the approachement	
	As a personal project, I constructed an alternate <i>K</i> -	
	theory for analytic objects called C^* -algebras. I also	
	proved the Serre-Swan theorem, which shows that	
	topological <i>K</i> -theory is a special case of operator <i>K</i> -	
	theory of C*-algebras.	D 4 1D 1
Foundations of Algebraic	This reading course followed Ravi Vakil's <i>The Rising</i>	Dr. Anand Deopurkar
Geometry	Sea: Foundations of Algebraic Geometry to develop	
	the theory of sheaves and schemes. The first half	
	focused on the equivalence between rings and affine	
	schemes, while the second was built around	
	quasicoherent sheaves, line bundles and sheaf	
	cohomology.	
Fourier Analysis on	This reading course developed the background	Dr. Uri Onn
Number Fields	necessary to understand Tate's seminal thesis,	
	which used techniques from representation theory	
	to prove the meromorphic continuation of zeta	
	functions on locally compact abelian groups.	
3-Manifolds	This course was a broad survey of many topics in 3-	Dr. Joan Licata
	manifold theory, including Heegaard	
	decompositions, surgery, Morse theory and more. It	
	was intended to provide an introduction to many	
	different areas, with the goal that students might	
	have the language to research any interesting topics	
	further.	
	As a personal project, I gave a talk and wrote a short	
	paper about the construction of Khovanov homology	
	for knots. I also proved that it was invariant under	
	the first and second Reidemeister moves.	
Riemann Surfaces	This lecture course developed much of the	Dr. Ian Le
Tuernami carracce	important theory for Riemann surfaces, including	D1. 1011 E0
	the uniformization theorem, the existence of	
	meromorphic functions on any compact Riemann	
	surface, the classification of elliptic curves and	
	More.	
	As a personal project, I wrote a short paper	
	demonstrating the equivalence of the Čech, de	
	Rham and Dolbeault cohomologies on any complex	
	manifold. I then used this to give an alternate proof	
	of the existence of meromorphic functions on	
	compact Riemann surfaces, different from the one	
	seen in lectures.	

Algebraic & Analytic	This reading course was devoted to various topics in	Dr. Amnon Neeman
Number Theory	modern number theory. The first half was devoted to	
,	algebraic number theory and various standard	
	results, such as the Kummer-Dedekind theorem,	
	Minkowski's bound and methods of computing the	
	class group. We then spent some time analysing	
	techniques specific to Galois extensions of number	
	fields.	
	For the second half, we transitioned into analytic	
	number theory, proving results such as the prime	
	number theorem and the analytic class number	
	formula. I gave a lecture proving the Chebotarev	
	density theorem, as well as Frobenius' theorem and	
	the Dirichlet density theorem (which can be derived	
	as corollaries).	
Crystals: Combinatorial	In this lecture course, we developed the theory of	Dr. Noah White
Algorithms and Tensor	monoidal categories, with a focus on braided and	
Categories	coboundary monoidal categories. We also studied	
	the induced actions by the braid and cactus groups,	
	with a focus towards constructing interesting	
	examples of these actions.	
	To motivate the definition of a crystal, we defined	
	reflection groups and root systems before proving	
	various results, such as the classification of	
	irreducible finite real reflection groups.	
	In the final part of the course, we constructed	
	crystals and used combinatorial algorithms to	
	compute their various properties, with a focus on	
	the crystals of semistandard tableaux for the (GL_n)	
	root datum. More precisely, we studied the RSK	
	algorithm, the Schützenberger involution and the	
	Littlewood-Richardson coefficients.	