

PageRank and Circularity

$$I(P_i) = \sum_{P_j \in B_i} \overline{\frac{I(P_j)}{l_j}}$$

A page is important

if it is

pointed to by

severel

important

pages

Example

$$I(l) = \frac{1}{3}I(l_1)$$

$$I(l_1) = \frac{1}{3}I(l_1) + \frac{1}{2}I(l_1) + \frac{1}{2}I(l_1) + \frac{1}{2}I(l_1)$$

$$\mathbf{H} = \begin{bmatrix} 1/2 & 0 & 1/2 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/3 \\ 0 & 0 & 0 & 0 & 1/3 & 1 & 1/3 & 0 \end{bmatrix}$$

$$I = \begin{bmatrix} 0.0675 \\ 0.0300 \\ 0.0675 \\ 0.0975 \\ 0.2025 \\ 0.1800 \\ 0.2950 \\ \end{bmatrix}$$

0.0600

Example

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1/3 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/3 & 1 & 1/3 & 0 \end{bmatrix}$$

$$I = \begin{bmatrix} 0.0600 \\ 0.0675 \\ 0.0300 \\ 0.0675 \\ 0.0975 \\ 0.2025 \\ 0.1800 \\ 0.2950 \end{bmatrix}$$

The Power Method

1 = H2

Computing the eigenvector

$$I^{k+1} = HI^k$$

General principle: The sequence I^k will converge to the stationary vector I.

I 0	I 1	I ²	I ³	I 4	 I ⁶⁰	I 61
1	0	0	0	0.0278	 0.06	0.06
0	0.5	0.25	0.1667	0.0833	 0.0675	0.0675
0	0.5	0	0	0	 0.03	0.03
0	0	0.5	0.25	0.1667	 0.0675	0.0675
0	0	0.25	0.1667	0.1111	 0.0975	0.0975
0	0	0	0.25	0.1806	 0.2025	0.2025
0	0	0	0.0833	0.0972	 0.18	0.18
0	0	0	0.0833	0.3333	 0.295	0.295

Three Questions

- Does the sequence I^k always converge?
- Is the vector to which it converges independent of the initial vector I⁰?
- Do the importance rankings contain the information that we want?

Problem 1

$$\mathbf{H} = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

10	11	1 ²	I ³ =I	
1	0	0	0	
0	1	0	0	

Solution

$$H: \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 0 & 1/2 \\ 1 & 1/2 \end{bmatrix}$$

$$I = \left[\begin{array}{c} 1/3 \\ 2/3 \end{array} \right]$$

Problem 2

10	I 1	I 2	I 3	14	1 ⁵
1	0	0	0	0	1
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0

Problem 3

Treducible

$$\mathbf{S} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 1/3 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/3 & 1 & 1/2 & 0 \end{bmatrix}$$

$$I = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.12 \\ 0.24 \\ 0.24 \\ 0.4 \end{bmatrix}$$

Observation

Google Equations

$$\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) \frac{1}{n} \mathbf{1}$$

$$\Rightarrow \mathbf{S} = \mathbf{H} + \mathbf{A}$$

$$\mathbf{G} = \alpha \mathbf{H} + \alpha \mathbf{A} + \frac{1 - \alpha}{n} \mathbf{1}$$

$$\mathbf{G}I^k = \alpha \mathbf{H}I^k + \alpha \mathbf{A}I^k + \frac{1 - \alpha}{n} \mathbf{1}I^k$$

$$\mathbf{S} \in \mathbf{A}$$

$$\mathbf{G} = \alpha \mathbf{H} = \mathbf{A} \mathbf{A} = \mathbf{A} =$$

Applications

- Web Search
- Word Meanings
- Word Sense Disambiguation
- SentiWordNet
- SimRank

Problem Setting where PageRank is useful: Global ranking to be mined from pairwise preferences

SimRank

$$s(A,B) = \frac{C_1}{|O(A)||O(B)|} \sum_{i=1}^{|O(A)|} \sum_{j=1}^{|O(B)|} s(O_i(A), O_j(B))$$

$$s(c,d) = \frac{C_2}{|I(c)||I(d)|} \sum_{i=1}^{|I(c)|} \sum_{j=1}^{|I(d)|} s(I_i(c), I_j(d))$$