

Search

Tim Komarek

Department of Economics

Dragas Center for Economic Analysis and Policy

Strome College of Business

Information Economics

- Uncertainty and economic behavior
 - Search
 - Baye's Theorem and updating beliefs

- Uncertainty and the market
 - Asymmetric information
 - Signaling and screening

Information Economics: Nobel Prizes

Search 2010 (Diamond, Mortensen and Pissarides)

Asymmetric info 2001 (Akerlof, Spence and Stigltz)

Search – consumer goods

- Previously assumed consumers knew the price of goods with certainty
- Things get more complicated when consumers do not know the prices charged by different firms for the same product
- Consumers sometimes incur a cost, c, to obtain each price quote
- After observing each quote a consumer must weigh the <u>expected</u> cost and benefit from acquiring an additional quote with the additional cost c

Consumer Search: Scalping tickets for the football game

- 75% of sellers charging \$100 and 25% of sellers charge \$40
- First scalper offers to sell for \$40. Should you search?
 - Should stop searching and buy the tickets

Consumer Search: Scalping tickets for the football game

- 75% of sellers charging \$100 and 25% of sellers charge \$40
- First scalper offers to sell for \$100. Should you keep searching?

Consumer Search: Scalping tickets for the football game

- 75% of sellers charging \$100 and 25% of sellers charge \$40
- First scalper offers to sell for \$100. Should you keep searching?
 - If search: 25% chance will save \$100 \$40 = \$60
 75% chance will save \$100 \$100 = \$0
 - Expected benefit from searching: = $.25*(\$100 - \$40) + .75*(\$100-\$100) \neq \$15$
 - Expected costs from searching? (

Optimal search strategy

Optimal search strategy

Optimal search strategy

Consumer's search rule

- Consumer rejects a price above the reservation price, R, and accepts below the reservation price
- Reservation price:
 - The price at which a consumer is indifferent between purchasing at that price and searching for a lower price
- The optimal search strategy is to keep searching if price above reservation price and stop searching when the price is below the reservation price

Increasing cost of search

Increasing cost of search

Decreasing cost of search

- This also comes up for the unemployed in the labor market
 - Different firms offer different opportunities
 - Workers are not fully informed about the "best" jobs
- It takes time to search, interview, etc.

Should you take the first job offer that comes along?

- Akin to consumer search this becomes an optimal stopping problem.
 - Looks like a sequential search
 - Asking / Reservation wage:
 - The threshold wage that determines if an unemployed worker accepts or rejects incoming job offers.
 - Accept first job offer at or above reservation wage

- Policy questions
 - What effects unemployed workers reservation wages?
 - Unemployment benefits
 - Must meet certain criteria
 - Receive a portion of previous salary based on the "replacement ratio" normally for up to 26 weeks
 - CARES Act in 2020
 - Offered additional benefits
 - Extended time & increase \$

- Did people remain unemployed for longer spells?
- Was there a disincentive effect?

- Policy questions
 - Can we reform the system to reduce the disincentive effect?
 - Illinois and Pennsylvania experiments in the 1980s
 - Experiment: randomly determined treatment and control groups
 - IL offered a cash bonus (\$500 = 4 times the benefits)
 - If accepted a job within 11 week
 - Results
 - Those in cash bonus group accepted jobs more quickly and for the same wage, on average, as those in the "control group"

- Thomas Bayes
 - 1701 1761
 - English minister and mathematician

- Mathematical formula to update beliefs based on new info
 - Probability that some "state of the world" is true
 - Given some information or an event
 - Thinking about "signal" vs "noise"

- Bayes Theorem
 - Posterior probability (final assessment = P(S|I)
 - S State of the world or hypothesis is true
 - Have a medical condition "sick"
 - I Information or event takes place
 - Positive test result

- Bayes Theorem
 - Posterior probability / final assessment = P(S|I)
 - S State of the world or hypothesis is true
 - Have a medical condition "sick"
 - I Information or event takes place
 - Positive test result
 - To make an assessment or "update our beliefs"
 - Probability information is "true positive" or "signal"
 - Probability information could be a "false positive" or "noise"
 - Probability of S before any information "prior"

- Bayes Theorem
 - To make an assessment or "update our beliefs"
 - Probability information is "true positive" or "signal"
 - Probability information could be a "false positive" or "noise"
 - Probability of S before any information "prior"

$$P(S|I) = \frac{P(I|S) * P(S)}{P(I)}$$

- Bayes Theorem
 - To make an assessment or "update our beliefs"
 - Probability information is "true positive" or "signal"
 - Probability information could be a "false positive" or "noise"
 - Probability of S before any information "prior"

$$P(S|I) = \frac{P(I|S) * P(S)}{P(I)}$$

- Bayes Theorem
 - Probability information is "true positive" or "signal"
 - Probability information could be a "false positive" or "noise"
 - Probability of S before any information "prior"

$$P(S | I) = \frac{(Info is true signal) * (Prior)}{(Info is true signal) * (Prior) + (Info is noise) * (1- Prior)}$$

 Weighting the signal to the noise based on our "prior" belief

&

Prior = chance we believe he's sick before getting tested

= case rate at the time (5%)

$$P(S \mid I) = \frac{(Info \text{ is true signal}) * (Prior)}{(Info \text{ is true signal}) * (Prior) + (Info \text{ is noise}) * (1- Prior)}$$

Weighting the signal to the noise based on our "prior" belief

&

Prior = chance we believe he's sick before getting tested

= case rate at the time (5%)

$$P(S \mid I) = \frac{(Info \text{ is true signal}) * (\textbf{0.05})}{(Info \text{ is true signal}) * (\textbf{0.05})} + (Info \text{ is noise}) * (\textbf{1-0.05})$$

• Weighting the signal to the noise based on our "prior" belief

&

Prior = chance we believe he's sick before getting tested

= case rate at the time (5%)

$$P(S | I) = \frac{(Info is true signal) * (\mathbf{0.05})}{(Info is true signal) * (\mathbf{0.05})} + (Info is noise) * (\mathbf{0.95})$$

• Weighting the signal to the noise based on our "prior" belief

&

Info is true signal =
$$true$$
 positive

Based on medical data = 90%

$$P(S \mid I) = \frac{(Info \text{ is true signal}) * (\textbf{0.05})}{(Info \text{ is true signal}) * (\textbf{0.05}) + (Info \text{ is noise}) * (\textbf{0.95})}$$

Weighting the signal to the noise based on our "prior" belief

&

Info is true signal = true positive

Based on medical data = 90%

$$P(S | I) = \frac{(0.90) * (0.05)}{(0.90)*(0.05) + (Info is noise)*(0.95)}$$

• Weighting the signal to the noise based on our "prior" belief

Info is noise= false positive

Based on medical data \neq 2%

Weighting the signal to the noise based on our "prior" belief

&

• Weighting the signal to the noise based on our "prior" belief

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?
 - How do you tell an extroverted mathematician?

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

Prior = 1 math for every 10 business

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

Prior = 1 math for every 10 business

Math and Shy = 75%

Business and Shy = 15%

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

Prior = 1 math for every 10 business

Math and Shy = 75%

Business and Shy = 15%

Compare relative rectangles

	Math	Business
Prior	1	10
Likilhood	75	15
Posterior	75	150

- Visual version of Bayes Theorem
 - Meet someone on campus and notice they are shy
 - Math major or Business major?

Compare relative rectangles

	<u>Math</u>	Business
Prior	1	10
Likilhood	75	15
Posterior	75	150

P(Business | shy) = 66% chance business

SOMETIMES, IF YOU UNDERSTAND BAYES' THEOREM WELL ENOUGH, YOU DON'T NEED IT.

- Principals in Bayesian thinking
- 1) Remember your priors
 - Don't just focus on the evidence / information
 - Remember the background knowledge (prior)
- 2) How likely is a false positive?
 - Imagine your theory / hypothesis is wrong. Would the world look different?
- 3) Update incrementally
 - Posterior from the last piece of evidence becomes the new prior

- Visual version of Bayes Theorem
 - Nelson's Covid-19 test

Prior = 1 sick for every 20 not sick

Sick and + Test =
$$90\%$$

Not Sick and + Test = 2%

Compare relative rectangles

Prior
Likilhood
Posterior

Sick	Not Sick
1	20
'	20
90	2
90	40
2.25	1

P(Sick | + Test) = 70% chance business.