12 Solutions to Exercises

Problem Set 2.1, page 41

- 1 The row picture for A = I has 3 perpendicular planes x = 2 and y = 3 and z = 4.
 Those are perpendicular to the x and y and z axes: z = 4 is a horizontal plane at height 4.
 - The column vectors are i = (1,0,0) and j = (0,1,0) and k = (0,0,1). Then b = (2,3,4) is the linear combination 2i + 3j + 4k.
- **2** The planes in a row picture are the same: 2x = 4 is x = 2, 3y = 9 is y = 3, and 4z = 16 is z = 4. The solution is the same point X = x. The three column vectors are changed; but the same combination (coefficients z, produces b = 34), (4, 9, 16).
- **3** The solution is not changed! The second plane and row 2 of the matrix and all columns of the matrix (vectors in the column picture) are changed.
- **4** If z = 2 then x + y = 0 and x y = 2 give the point (x, y, z) = (1, -1, 2). If z = 0 then x + y = 6 and x y = 4 produce (5, 1, 0). Halfway between those is (3, 0, 1).
- **5** If x, y, z satisfy the first two equations they also satisfy the third equation = sum of the first two. The line **L** of solutions contains v = (1, 1, 0) and $w = (\frac{1}{2}, 1, \frac{1}{2})$ and $w = \frac{1}{2}v + \frac{1}{2}w$ and all combinations cv + dw with c + d = 1. (Notice that requirement c + d = 1. If you allow all c and d, you get a plane.)
- **6** Equation 1 + equation 2 equation 3 is now 0 = -4. The intersection line L of planes 1 and 2 misses plane 3 : no solution.
- 7 Column 3 = Column 1 makes the matrix singular. For b = (2, 3, 5) the solutions are (x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple of (-1, 0, 1). b = (4, 6, c) needs c = 10 for solvability (then b lies in the plane of the columns and the three equations add to 0 = 0).
- 8 Four planes in 4-dimensional space normally meet at a *point*. The solution to Ax = (3,3,3,2) is x = (0,0,1,2) if A has columns (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1). The equations are x+y+z+t=3, y+z+t=3, z+t=3, t=2. Solve them in reverse order!

Solutions to Exercises 13

- **9** (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).
- **10** Multiplying as linear combinations of the columns gives the same Ax = (18, 5, 0) and (3, 4, 5, 5). By rows or by columns: **9** separate multiplications when A is 3 by 3.
- **11** Ax equals (14, 22) and (0, 0) and (9, 7).
- **12** Ax equals (z, y, x) and (0, 0, 0) and (3, 3, 6).
- 13 (a) x has n components and Ax has m components (b) Planes from each equation in Ax = b are in n-dimensional space. The columns of A are in m-dimensional space.
- **14** 2x+3y+z+5t=8 is Ax=b with the 1 by 4 matrix $A=\begin{bmatrix}2&3&1&5\end{bmatrix}$: one row. The solutions (x,y,z,t) fill a 3D "plane" in 4 dimensions. It could be called a hyperplane.
- **15** (a) $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = "identity" (b) $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ = "permutation"
- **16** 90° rotation from $R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, 180° rotation from $R^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$.
- **17** $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ produces $\begin{bmatrix} y \\ z \\ x \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ recovers $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Q is the

inverse of P. Later we write QP = I and $Q = P^{-1}$.

- **18** $E = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ and $E = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ subtract the first component from the second.
- **19** $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and $E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, $E\mathbf{v} = \begin{bmatrix} 3 \\ 4 \\ 8 \end{bmatrix}$ and $E^{-1}E\mathbf{v}$ recovers $\begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$.
- **20** $P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ projects onto the *x*-axis and $P_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ projects onto the *y*-axis.

The vector $\mathbf{v} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ projects to $P_1 \mathbf{v} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ and $P_2 P_1 \mathbf{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- **21** $R=\frac{1}{2}\begin{bmatrix}\sqrt{2} & -\sqrt{2}\\\sqrt{2} & \sqrt{2}\end{bmatrix}$ rotates all vectors by 45°. The columns of R are the results from rotating (1,0) and (0,1)!
- **22** The dot product $Ax = \begin{bmatrix} 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (1 \text{ by } 3)(3 \text{ by } 1) \text{ is zero for points } (x, y, z)$

on a plane in three dimensions. The 3 columns of A are one-dimensional vectors.

- **23** $A = \begin{bmatrix} 1 & 2 & ; & 3 & 4 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 5 & -2 \end{bmatrix}'$ or $\begin{bmatrix} 5 & ; & -2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 & 7 \end{bmatrix}'$ or $\begin{bmatrix} 1 & ; & 7 \end{bmatrix}$. $\mathbf{r} = \mathbf{b} A * \mathbf{x}$ prints as two zeros.
- **24** $A * \mathbf{v} = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}'$ and $\mathbf{v}' * \mathbf{v} = 50$. But $\mathbf{v} * A$ gives an error message from 3 by 1 times 3 by 3.
- **25** ones(4,4) * ones(4,1) = column vector $\begin{bmatrix} 4 & 4 & 4 & 4 \end{bmatrix}'$; $B * w = \begin{bmatrix} 10 & 10 & 10 & 10 \end{bmatrix}'$.
- **26** The row picture has two lines meeting at the solution (4, 2). The column picture will have 4(1, 1) + 2(-2, 1) = 4(column 1) + 2(column 2) = right side (0, 6).
- 27 The row picture shows 2 planes in 3-dimensional space. The column picture is in2-dimensional space. The solutions normally fill a *line in* 3-dimensional space.
- **28** The row picture shows four *lines* in the 2D plane. The column picture is in *four*-dimensional space. No solution unless the right side is a combination of *the two columns*.
- **29** $u_2 = \begin{bmatrix} .7 \\ .3 \end{bmatrix}$ and $u_3 = \begin{bmatrix} .65 \\ .35 \end{bmatrix}$. The components add to 1. They are always positive. Their components still add to 1.
- **30** u_7 and v_7 have components adding to 1; they are close to s = (.6, .4). $\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .6 \\ .4 \end{bmatrix} = \begin{bmatrix} .6 \end{bmatrix}$

$$\begin{bmatrix} .6 \\ .4 \end{bmatrix} = \textit{steady state s}. \text{ No change when multiplied by } \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}.$$

31
$$M = \begin{bmatrix} 8 & 3 & 4 \\ 1 & 5 & 9 \\ 6 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 5+u & 5-u+v & 5-v \\ 5-u-v & 5 & 5+u+v \\ 5+v & 5+u-v & 5-u \end{bmatrix}; M_3(1,1,1) = (15,15,15);$$

 $M_4(1,1,1,1) = (34,34,34,34)$ because $1+2+\cdots+16=136$ which is 4(34).

Solutions to Exercises 15

32 A is singular when its third column w is a combination cu + dv of the first columns. A typical column picture has b outside the plane of u, v, w. A typical row picture has the intersection line of two planes parallel to the third plane. Then no solution.

- **33** w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av. Linearity means: When w is a combination of u and v, then Aw is the same combination of Au and Av.
- 34 $\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ has the solution $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 8 \\ 6 \end{bmatrix}.$
- 35 x = (1, ..., 1) gives $Sx = \text{sum of each row} = 1 + \cdots + 9 = 45$ for Sudoku matrices. 6 row orders (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7. The same 6 permutations of *blocks* of rows produce Sudoku matrices, so $6^4 = 1296$ orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

- **1** Multiply equation 1 by $\ell_{21} = \frac{10}{2} = 5$ and subtract from equation 2 to find 2x + 3y = 1 (unchanged) and -6y = 6. The pivots to circle are 2 and -6.
- **2** -6y = 6 gives y = -1. Then 2x + 3y = 1 gives x = 2. Multiplying the right side (1, 11) by 4 will multiply the solution by 4 to give the new solution (x, y) = (8, -4).
- **3** Subtract $-\frac{1}{2}$ (or add $\frac{1}{2}$) times equation 1. The new second equation is 3y = 3. Then y = 1 and x = 5. If the right side changes sign, so does the solution: (x, y) = (-5, -1).
- **4** Subtract $\ell = \frac{c}{a}$ times equation 1 from equation 2. The new second pivot multiplying y is d (cb/a) or (ad bc)/a. Then y = (ag cf)/(ad bc). Notice the "determinant of A" = ad bc. It must be nonzero for this division.