清华大学《模式识别》

大作业——交通标志识别

郭一隆

June 24, 2018

Contents

1	问题	背景	2
	1.1	数据集	2
		1.1.1 GTSDB 原始数据集	2
		1.1.2 GTSDB 子集	3
		1.1.3 GTSDB 目标检测数据集	3
2	问题	描述	4
	2.1	GTSDB 子集(12 类)识别	4
		2.1.1 PCA or Fisher	
		2.1.2 HOG + SVM	4
	2.2	GTSDB 完整集(4 大类)识别	4
	2.3	GTSDB 目标检测集目标检测 + 识别	4
3	问题	求解	4
	3.1	PCA+KNN 12 类识别	4
		3.1.1 系统框图	5
		3.1.2 思路简述	5
		3.1.3 实验结果	6
		3.1.4 结果分析	8

1 问题背景

1.1 数据集

数据集包括用于分类识别的纯交通标志图像集,以及用于区域检测的含交通标志的场景图像集。

1.1.1 GTSDB 原始数据集

- German Traffic Signs Detection Benchmark
- 43 小类交通标志, 分别属于 4 大类 (prohibitory, danger, mandatory, other)

Table 1: GTSDB 类别

W = 11	Table 1. GTDDD	
类别	含义	大类
0	限速 20	prohibitory
1	限速 30	prohibitory
2	限速 50	prohibitory
3	限速 60	prohibitory
4	限速 70	prohibitory
5	限速 80	prohibitory
6	解除限速	other
7	限速 100	prohibitory
8	限速 120	prohibitory
9	禁止超车	prohibitory
10	禁止卡车超车	prohibitory
11	优先通过	danger
12	主路	other
13	让行	other
14	停车让行	other
15	禁止通行	prohibitory
16	禁止卡车通行	prohibitory
17	禁止驶入	other
18	危险	danger
19	左弯	danger
20	右弯	danger
21	连续弯道	danger
22	路面不平	danger
23	路面湿滑	danger
24	道路变窄	danger
25	道路施工	danger
26	注意信号灯	danger
27	注意行人	danger

28	注意学校	danger
29	注意自行车	danger
30	注意雪天	danger
31	注意动物	danger
32	限制解除	other
33	右转	mandatory
34	左转	mandatory
35	直行	mandatory
36	直行右转	mandatory
37	直行左转	mandatory
38	靠右行驶	mandatory
39	靠左行驶	mandatory
40	环岛	mandatory
41	超车限制解除	other
42	卡车超车限制解除	other

• 共 1213 张交通标志图像

• 图像规模: RGB, 16x16 ~ 100x100 不等

• Location: source/

1.1.2 GTSDB 子集

• 上述数据集的子集, 包含了类别: 1,2,4,5,6,7,10,11,12,13,18,38, 共 12 小类

• 另外选取了 150 张其他小类的交通标志图像作为负样本

• 其中 600 张作为训练集, 265 张作为测试集

• Location: data/

1.1.3 GTSDB 目标检测数据集

• 900 张日常道路拍摄图像

• 图像规模: RGB, 1360x800

• 1213 个标定的检测目标(交通标志)

• Location: Origin/

- 2 问题描述
- 2.1 GTSDB 子集 (12 类) 识别
- 2.1.1 PCA OR FISHER
 - 用 PCA 方法或 Fisher 线性判别准则的方法对 GTSDB 子集 12 类进行识别
 - 图像特征可以采用灰度图像值等
 - 采用 KNN 分类,分析选取不同的主分量个数,对识别率和虚警率的影响
 - 进行开集测试
- 2.1.2 HOG + SVM
 - 使用 HOG 特征提取 +SVM 分类方法对 GTSDB 子集 12 类进行识别
 - 分析评价该方法的性能
 - 进行开集测试
- 2.2 GTSDB 完整集(4 大类)识别
 - 用前述任意方法在 GTSDB 完整集上进行 4 大类识别
 - 分析结果
- 2.3 GTSDB 目标检测集目标检测 + 识别
 - 在 GTSDB 目标检测集上进行检测 + 识别
 - 分析结果
- 3 问题求解
- 3.1 PCA+KNN 12 类识别

3.1.1 系统框图

Figure 1: PCA+KNN 识别流程图

3.1.2 思路简述

- 要使用 PCA 对样本特征进行分析,必须保证样本特征维数一致。这里采用 imresize 至同一尺度,也可以采用其他特征提取方法,如直方图等。
- 由于训练样本容量为 600, 而 PCA 较好的应用场景是**样本容量 > 特征维度**, 因此 imresize 的尺度不宜太大, 并通过转为灰度图像进一步减小特征维度。

- PCA 的思路是通过保留输入样本的部分主要成分来降低数据维度,并能在一定程度上抑制噪声的影响。对于测试集,要进行与训练集相同的降维变换。
- 在 PCA 降维后的空间内进行 KNN 分类。
- 比较保留不同能量占比的主成分、不同的 K 值对识别性能的影响。

3.1.3 实验结果

比较不同 PCA 能量、不同 K 值下, 总识别率(图2)与总虚警率(图3)的变化。

Figure 2: 总识别率随 PCA 能量的变化

Figure 3: 总虚警率随 PCA 能量的变化

取能量阈值 =90%, K=1 时, 得到

$$P_{i,j} = N_{i,j} / \sum_{j=1}^{c} N_{i,j}$$

Figure 4: P 矩阵可视化

3.1.4 结果分析

- 保留 90% 能量主成分时,在闭集测试上性能最优,总识别率与总虚警率均达到峰值。
- KNN 分类中 K 值的选取对于本模型下识别性能的影响不大。
- 保留 100% 的主成分并不能达到更好的识别效果,因为此情况下不能很好地抑制次要成分(如噪声)的干扰。
- 仅保留少量(如 10%)主成分时,分类器近似于一个随机猜测器,识别率与虚警率均接近 $\frac{1}{12}\approx 0.083$ 。