Funkcje

Szymon Cedrowski

Lekcja -1

1 Zbiory i funkcje

Definicja 1 (Zbiór). Pojęcie zbioru traktujemy aksjomatycznie. Jest to pierwotny koncept stojący u podstaw matematyki. Zbiór traktujemy jako nieuporządkowaną kolekcję elementów. Jeśli zbiór A zawiera elementy: \circ, \triangle, \star to zapiszemy go jako $A = \{\circ, \triangle, \star\}$. Kolejność zapisu nie ma znaczenia, przykładowo: $\{\circ, \star, \triangle\} = \{\star, \circ, \triangle\}$.

Przykłady Zbiorów liczbowych używacie od początku waszej edukacji. Na początku w szkole uczyli was jak liczyć, czyli zbioru **liczb naturalnych** $\mathbb{N} = \{1, 2, 3, ...\}$. Potem poznaliście **liczby całkowite** $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$. Potem wam mówili o całej osi liczbowej, czyli o **liczbach rzeczywistych** \mathbb{R} . Przy omawianiu ułamków poznaliście **liczby wymierne** $\mathbb{Q} = \{p/q \mid p, q \in \mathbb{Z} \land q \neq 0\}$ (liczby, które da się przedstawić w postaci ułamka).

Definicja 2 (Arytmetyka zbiorów). Rozwinięcie arytmetyki granic zostawię waszym nauczycielom matematyki, natomiast tutaj przypomnę tylko notację. Przy bardziej skomplikowanych operacjach przydatne są diagramy Venna.

• suma zbiorów: $A \cup B$

• różnica zbiorów: $A \setminus B$

• część wspólna zbiorów: $A \cap B$

 \bullet iloczyn kartezjański: $A\times B,$ w szczególności $A^n=\underbrace{A\times\cdots\times A}_{n-1\text{ razy}}$

Definicja 3 (Funkcja). Dla danych zbiorów X, Y funkcją nazywamy przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. X nazywamy **dziedziną**, natomiast Y **przeciwdziedziną** funkcji. Elementy zbioru X są **argumentami**. Zbiór wartości funkcji nazywamy jej **obrazem** i zawiera się on w przeciwdziedzinie. Zapis formalny wyglada następująco:

$$f: X \to Y$$

Jeśli $x \in X$, a $y \in Y$ jest odpowiadającym obrazem elementu x, to funkcje wyrażane za pomocą wzoru możemy określić poprzez zapis:

$$f(x) = y$$

My będziemy się najczęściej zajmowali funkcjami typu $\mathbb{R} \to \mathbb{R}$, $\mathbb{R}^n \to \mathbb{R}^n$, $\mathbb{R}^n \to \mathbb{R}$.

Definicja 4 (Złożenie funkcji). Złożenie funkcji $f: X \to Y$ z funkcją $g: Y \to Z$ nazywamy przekształcenie $g \circ f: X \to Z$ takie, że $g(f(x)) = (g \circ f)(x)$.

Przykład
$$f(x) = x^2$$
, $g(x) = 2x + 1$. Wówczas $g(f(x)) = 2f(x) + 1 = 2x^2 + 1$

Definicja 5 (Funkcja różnowartościowa). Funkcja różnowartościowa (**injekcja**) to taka, w której każdy element dziedziny przekształca się w inny element przeciwdziedziny (żadne 2 elementy X nie wskazują na ten sam element Y).

Definicja 6 (Funkcja "na"). Funkcja "na" (**surjekcja**) to taka, której obraz jest przeciwdziedziną f(X) = Y (wszystkie elementy Y są użyte).

Definicja 7 (Funkcja wzajemnie jednoznaczna). Funkcja wzajemnie jednoznaczna (**bijekcja**) to taka, która jest różnowartościowa i "na" (injekcja i surjekcja).

Definicja 8 (Funkcja odwrotna). Funkcja odwrotna f^{-1} to taka, która elementy przeciwdziedziny funkcji f przeprowadza na elementy jej dziedziny. Zachodzą więc związki:

$$f^{-1}(f(x)) = x$$
 oraz $f(f^{-1}(x)) = x$

Innymi słowy,

$$f^{-1} \circ f = f \circ f^{-1} = \mathrm{id}_X$$

Uwaga! Z powyższej definicji płynie wniosek, że tylko bijekcje są funkcjami odwracalnymi (posiadają funkcje odwrotne). Gdyby bowiem f nie była różnowartościowa, to funkcja doń odwrotna dla pewnego argumentu w Y wskazywałaby na dwa różne elementy X, zatem nie byłaby funkcją. Podobnie, gdyby f nie była "na", to istniałyby elementy Y, które nie wskazywałyby na żaden element X.

2 Funkcje trygonometryczne

Definicja 9 (Na trójkącie prostokątnym). Funkcje trygonometryczne można zdefiniować dla kątów (dziedziny) z zakresu $(0, \pi/2)$ używając stosunków boków trójkąta prostokątnego, rozpiętego przez dany kąt α .

$$\sin \alpha = \frac{b}{c}, \qquad \qquad \sin : \left(0, \frac{\pi}{2}\right) \to (0, 1)$$

$$\cos \alpha = \frac{a}{c}, \qquad \qquad \cos : \left(0, \frac{\pi}{2}\right) \to (0, 1)$$

$$\tan \alpha = \frac{b}{a} = \frac{\sin \alpha}{\cos \alpha}, \qquad \qquad \tan : \left(0, \frac{\pi}{2}\right) \to (0, +\infty)$$

$$\cot \alpha = \frac{a}{b} = \frac{\cos \alpha}{\sin \alpha}, \qquad \cot : \left(0, \frac{\pi}{2}\right) \to (0, +\infty)$$

Jednoznaczność zdefiniowania funkcji w ten sposób zapewnia nam fakt, że wybranie kąta α generuje nam za każdym razem taki sam trójkąt, z dokładnością do skali (podobieństwo, cecha kkk). W trójkątach podobnych natomiast stosunki odpowiednich boków są jednakowe.

Rysunek 1: Definicje funkcji trygonometrycznych

Definicja 10 (sin, cos na okręgu jednostkowym). Rozszerzenie dziedziny nowo zdefiniowanych funkcji otrzymujemy poprzez użycie okręgu jednostkowego, w którym kąt skierowany od osi x do wybranego promienia wodzącego (antyzegarowo) pełni rolę kąta α . Wówczas wartość $\cos \alpha$ wskazuje nam **rzut punktu przecięcia promienia z okręgiem** na oś x, natomiast $\sin \alpha$ to analogiczny rzut na oś y.

W ten sposób możemy zdefiniować funkcje trygonometryczne dla kątów $\langle 0, 2\pi \rangle$. Jeśli zatoczymy promieniem wodzącym kąt większy niż 2π to naturalnie trafiamy w obszar I ćwiartki, stąd wniosek, że sin i cos są okresowe.

$$\sin(\alpha + 2k\pi) = \sin(\alpha), \quad \cos(\alpha + 2k\pi) = \cos(\alpha), \quad \forall k \in \mathbb{Z}$$

 $\sin, \cos \colon \mathbb{R} \to \langle -1, 1 \rangle$

Definicja 11 (tan, cot). Naturalnie każdą funkcję trygonometryczną i jej odmiany można umieścić na okręgu jednostkowym. W podobny sposób możemy zdefiniować tan pamiętając, że chcemy by $\tan\alpha=\sin\alpha/\cos\alpha$. Wówczas z podobieństwa odpowiednich trójkątów (polecam sprawdzić) wynika, że tan ma swoją reprezentację tak jak na Rysunku 1. Stąd widzimy, że tan jest również okresowy, z okresem podstawowym π . Tak samo dla funkcji $\cot\alpha=1/\tan\alpha$.

$$\tan(\alpha + k\pi) = \tan(\alpha), \quad \cot(\alpha + k\pi) = \cot(\alpha), \quad \forall k \in \mathbb{Z}$$
$$\tan \colon \mathbb{R} \setminus \left\{ \pi/2 + k\pi \mid k \in \mathbb{Z} \right\} \to \mathbb{R}$$
$$\cot \colon \mathbb{R} \setminus \left\{ k\pi \mid k \in \mathbb{Z} \right\} \to \mathbb{R}$$

Rysunek 2: $\sin x$, $\cos x$, $\tan x$, $\cot x$