Sequências e Séries

Matheus Pimenta

Universidade Estadual de Londrina Londrina

Fev. 2022

1/24

MOTIVAÇÃO:

MOTIVAÇÃO:

$$2 = 1 + 1$$

$$2 = 1 + \frac{1}{2} + \frac{1}{2}$$

$$2 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$$

$$\vdots$$

$$2 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} + \dots$$

Definition (Séries Infinitas)

Seja $\{U_n\}$ uma sequência. Defina $S_1=u_1$ e $S_n=u_1+u_2+\cdots+u_n$.

Diremos que $\{S_n\}$ é uma série infinita (ou simplismente, série).

NOTAÇÃO: $\sum_{n=1}^{\infty} U_n$ para representar $\{S_n\}$.

Definition (Séries Infinitas)

Seja $\{U_n\}$ uma sequência. Defina $S_1=u_1$ e $S_n=u_1+u_2+\cdots+u_n$. Diremos que $\{S_n\}$ é uma *série infinita* (ou simplismente, série).

NOTAÇÃO: $\sum_{n=1}^{\infty} U_n$ para representar $\{S_n\}$.

• Os números $u_1, u_2, \ldots, u_n, \ldots$ são chamados de termos da série $\{S_n\}$.

Definition (Séries Infinitas)

Seja $\{U_n\}$ uma sequência. Defina $S_1=u_1$ e $S_n=u_1+u_2+\cdots+u_n$. Diremos que $\{S_n\}$ é uma *série infinita* (ou simplismente, série).

NOTAÇÃO: $\sum_{n=1}^{\infty} U_n$ para representar $\{S_n\}$.

- Os números $u_1, u_2, \ldots, u_n, \ldots$ são chamados de termos da série $\{S_n\}$.
- Os números S_1, S_2, S_3, \ldots são chamados de somas parciais da série.

Definition (Séries Infinitas)

Seja $\{U_n\}$ uma sequência. Defina $S_1=u_1$ e $S_n=u_1+u_2+\cdots+u_n$. Diremos que $\{S_n\}$ é uma *série infinita* (ou simplismente, série).

NOTAÇÃO: $\sum_{n=1}^{\infty} U_n$ para representar $\{S_n\}$.

- Os números $u_1, u_2, \ldots, u_n, \ldots$ são chamados de termos da série $\{S_n\}$.
- Os números S_1, S_2, S_3, \ldots são chamados de somas parciais da série.

OBS.:

$$S_n = u_1 + u_2 + \dots + u_{n-1} + u_n$$

 $S_{n-1} = u_1 + u_2 + \dots + u_{n-1}$
 $S_n - S_{n-1} = u_n, n \in \mathbb{N}$

3/24

EXEMPLO 01:

Considere $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. A sequência $\{S_n\}$ é determinada por:

4 / 24

EXEMPLO 01:

Considere $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. A sequência $\{S_n\}$ é determinada por:

$$S_{1} = 1$$

$$S_{2} = u_{1} + u_{2} = 1 + \frac{1}{2} = \frac{3}{2}$$

$$S_{3} = u_{1} + u_{2} + u_{3} = S_{2} + u_{3} = \frac{3}{2} + \frac{1}{4} = \frac{7}{4}$$

$$\vdots$$

$$S_{n} = 1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}$$

EXEMPLO 02:

Considere a série telescópica $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Determine S_n .

EXEMPLO 02:

Considere a série telescópica $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Determine S_n . Note que: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, \forall n \geq 1$. Dessa forma:

EXEMPLO 02:

Considere a série telescópica $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Determine S_n . Note que: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, \forall n \geq 1$. Dessa forma:

$$S_1 = 1 - \frac{1}{2} = \frac{1}{2}$$

$$S_2 = \frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{6} = \frac{1}{6}$$

$$S_3 = \frac{1}{3} - \frac{1}{4} = \frac{4 - 3}{12} = \frac{1}{12}$$

$$S_4 = \frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20}$$

Séries Infinitas EXEMPLO 02:

Ou ainda:

EXEMPLO 02:

Ou ainda:

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

Simplificando

$$=1-\frac{1}{n+1}$$

EXEMPLO 02:

Ou ainda:

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

Simplificando

$$=1-\frac{1}{n+1}$$

$$\therefore S_n = 1 - \frac{1}{n+1}, \forall n \geq 1$$

EXEMPLO 03:

Seja |r| < 1. Calcule S_n para $\sum_{n=1}^{\infty} r^{n-1}$ (série geométrica)

EXEMPLO 03:

Seja |r| < 1. Calcule S_n para $\sum_{n=1}^{\infty} r^{n-1}$ (série geométrica)

Temos que $S_n = u_1 + u_2 + u_3 + \cdots + u_n$, logo:

$$S_n = 1 + r + r^2 + r^3 + \dots + r^{n-1}$$
 (1)

Pode-se multiplicar 1 por r, e dessa forma:

$$rS_n = r + r^2 + r^3 + r^4 + \dots + r^n$$
 (2)

Realizando a subtração de 1 - 2 segue:

$$S_n - rS_n = 1 - r^n \iff S_n(1 - r) = 1 - r^n \iff S_n = \frac{1 - r^n}{1 - r}, \forall n \ge 1$$

←□ → ←□ → ← = → ← = → へ

EXEMPLO 03:

Como |r| < 1, então:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - r^n}{1 - r}$$
$$= \frac{1}{1 - r}$$

Já que
$$\lim_{n\to\infty} r^n = 0$$

$$\therefore \lim_{n\to\infty} S_n = \frac{1}{1-r}$$

Definition

Seja $\sum_{n=1}^{\infty} u_n$ uma série e $\{s_n\}$ a sequência de suas somas parciais. Se $\lim_{n\to\infty} S_n = S$ (S é definido como soma da série), então dizemos que a série converge. Caso contrário, ou seja, se não existe $\lim_{n\to\infty} S_n$ então dizemos que a série diverge.

Definition

Seja $\sum_{n=1}^{\infty} u_n$ uma série e $\{s_n\}$ a sequência de suas somas parciais. Se $\lim_{n\to\infty} S_n = S$ (S é definido como soma da série), então dizemos que a *série* converge. Caso contrário, ou seja, se não existe. $\lim_{n\to\infty} S_n$ então dizemos que

 $n \to \infty$. Converge. Caso contrário, ou seja, se não existe $\lim_{n \to \infty} S_n$ então dizemos que a série diverge.

OBS. 01: A série telescópica
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
, pois

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} 1 - \frac{1}{1+n} = 1$$

OBS. 02: A série geométrica (como apresentada anteriormente) é

convergente, pois
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1-r^n}{1-r} = \frac{1}{1-r}$$

4 D > 4 P > 4 B > 4 B > B 900

Se
$$\sum_{n=1}^{\infty} u_n$$
 é convergente, então $\lim_{n\to\infty} u_n = 0$

Theorem

Se
$$\sum_{n=1}^{\infty} u_n$$
 é convergente, então $\lim_{n\to\infty} u_n = 0$

OBSERVAÇÃO: O teorema anterior não diz que $\sum_{n=1}^{\infty} u_n$ converge se $a_n \to 0$. É possível para uma série divergir quando $u_n \to 0$.

Theorem

Se
$$\sum_{n=1}^{\infty} u_n$$
 é convergente, então $\lim_{n\to\infty} u_n = 0$

OBSERVAÇÃO: O teorema anterior não diz que $\sum_{n=1}^{\infty} u_n$ converge se

 $a_n o 0$. É possível para uma série divergir quando $u_n o 0$.

OBSERVAÇÃO: NEM TODA SEQUÊNCIA $\{u_n\}$ TAL QUE $u_n \to 0$ É DO TIPO $\sum u_n$ CONVERGENTE.

Theorem

Se
$$\sum_{n=1}^{\infty} u_n$$
 é convergente, então $\lim_{n\to\infty} u_n = 0$

OBSERVAÇÃO: O teorema anterior não diz que $\sum_{n=1}^{\infty} u_n$ converge se

 $a_n \to 0$. É possível para uma série divergir quando $u_n \to 0$.

OBSERVAÇÃO: NEM TODA SEQUÊNCIA $\{u_n\}$ TAL QUE $u_n \to 0$ É DO TIPO $\sum u_n$ CONVERGENTE.

Theorem

Se
$$\sum_{n=1}^{\infty} u_n$$
 é convergente, então $\lim_{n\to\infty} u_n = 0$

OBSERVAÇÃO: O teorema anterior não diz que $\sum_{n=1}^{\infty} u_n$ converge se

 $a_n \to 0$. É possível para uma série divergir quando $u_n \to 0$.

OBSERVAÇÃO: NEM TODA SEQUÊNCIA $\{u_n\}$ TAL QUE $u_n \to 0$ É DO TIPO $\sum u_n$ CONVERGENTE.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

EXEMPLO:

A série $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge. Esta série é chamada de *Série Harmônica*.

EXEMPLO:

A série $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge. Esta série é chamada de *Série Harmônica*.

Fazendo (s_n) , a sequência de somas parciais de $\frac{1}{n}$, isto é:

$$s_1 = 1$$
 $s_2 = a_1 + a_2 = 1 + \frac{1}{2}$
 $s_3 = a_1 + a_2 + a_3 = 1 + \frac{1}{2} + \frac{1}{3}$
 $s_4 = a_1 + a_2 + a_3 + a_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$
 \vdots

$$s_8 = a_1 + \dots + a_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

Podemos analisar a sequência auxiliar como

$$s_k^{aux} = 1 + \frac{(k-1)}{2}$$

e mais que isso, s_k^{aux} é monótona crescente.

12 / 24

Podemos analisar a sequência auxiliar como

$$s_k^{aux} = 1 + \frac{(k-1)}{2}$$

e mais que isso, s_k^{aux} é monótona crescente.

Note que:

$$\lim_{k \to \infty} s_k^{\text{aux}} = \lim_{k \to \infty} \left[1 + \frac{(k-1)}{2} \right]$$
$$= \infty$$

Como $s_n>s_k^{aux}$ então $s_n\to\infty$, por também ser uma sequência monótona crescente.

Podemos analisar a sequência auxiliar como

$$s_k^{aux} = 1 + \frac{(k-1)}{2}$$

e mais que isso, s_k^{aux} é monótona crescente.

Note que:

$$\lim_{k \to \infty} s_k^{\text{aux}} = \lim_{k \to \infty} \left[1 + \frac{(k-1)}{2} \right]$$
$$= \infty$$

Como $s_n>s_k^{aux}$ então $s_n\to\infty$, por também ser uma sequência monótona crescente.

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n} \text{ \'e divergente.}$$

Do Teorema anterior é possível determinar o primeiro teste.

Do Teorema anterior é possível determinar o primeiro teste.

TESTE DO n-ÉSIMO TERMO PARA DIVERGÊNCIA:

 $\sum_{n=1}^{\infty} u_n$ é divergente se $\lim_{n\to\infty} u_n$ não existe ou é diferente de zero.

Se
$$\sum_{n=1}^{\infty} a_n = A$$
 e $\sum_{n=1}^{\infty} b_n = B$ são séries convergentes, então:

• Regra da Soma:
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B$$

Se
$$\sum_{n=1}^{\infty} a_n = A$$
 e $\sum_{n=1}^{\infty} b_n = B$ são séries convergentes, então:

- Regra da Soma: $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B$
- Regra da Diferença: $\sum_{n=1}^{\infty}(a_n-b_n)=\sum_{n=1}^{\infty}a_n-\sum_{n=1}^{\infty}b_n=A-B$

Se
$$\sum_{n=1}^{\infty} a_n = A$$
 e $\sum_{n=1}^{\infty} b_n = B$ são séries convergentes, então:

- Regra da Soma: $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B$
- Regra da Diferença: $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n = A B$
- Regra da Multiplicação por constante: $\sum_{n=1}^{\infty} ka_n = k \sum_{n=1}^{\infty} a_n = kA$ (qualquer número k)

Corollary

• Todo múltiplo constante diferente de zero de uma série divergente diverge.

Corollary

- Todo múltiplo constante diferente de zero de uma série divergente diverge.
- Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ diverge, então tanto $\sum_{n=1}^{\infty} (a_n + b_n)$ quanto $\sum_{n=1}^{\infty} (a_n b_n)$ divergem

 $\sum_{n=1}^{\infty} (a_n - b_n) \text{ divergem.}$

Corollary

- Todo múltiplo constante diferente de zero de uma série divergente diverge.
- Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ diverge, então tanto $\sum_{n=1}^{\infty} (a_n + b_n)$ quanto

 $\sum (a_n - b_n)$ divergem.

OBSERVAÇÃO: $\sum (a_n + b_n)$ pode convergir quando tanto $\sum a_n$ quanto

 $\sum b_n$ divergem.

Corollary

- Todo múltiplo constante diferente de zero de uma série divergente diverge.
- Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ diverge, então tanto $\sum_{n=1}^{\infty} (a_n + b_n)$ quanto $\sum (a_n - b_n)$ divergem.

$$\sum_{n=1}^{\infty} (a_n - b_n) \ divergem.$$

OBSERVAÇÃO: $\sum (a_n + b_n)$ pode convergir quando tanto $\sum a_n$ quanto

 $\sum b_n$ divergem.

EXEMPLO????????:

Exemplo:

$$\sum_{n=1}^{\infty} a_n = 1 + 1 + 1 + \dots \text{ e } \sum_{n=1}^{\infty} b_n = (-1) + (-1) + (-1) + \dots \text{ divergem,}$$
 enquanto
$$\sum_{n=1}^{\infty} (a_n + b_n) = 0 + 0 + \dots \text{ converge para } 0.$$

Theorem

 $Se\sum_{n=1}^{\infty}a_n$ converge $e\{s_n\}$ é a sequência das somas parciais de $\sum_{n=1}^{\infty}a_n$, então, para dado $\epsilon>0$, existe N>0 tal que se m,n>N então $|s_n-s_m|<\epsilon$

Theorem

 $Se\sum_{n=1}^{\infty}a_n$ converge $e\{s_n\}$ é a sequência das somas parciais de $\sum_{n=1}^{\infty}a_n$, então, para dado $\epsilon>0$, existe N>0 tal que se m,n>N então $|s_n-s_m|<\epsilon$

Theorem

Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ séries que diferem somente de uma quantidade ffinita de termos, isto é, existe N>0 tal que $a_n=b_n, \ \forall n>N$. Então ambas convergem ou ambas divergem.

Adicionando ou retirando termos;

- Adicionando ou retirando termos;
- Reindexação;

- Adicionando ou retirando termos;
- Reindexação;

Vimos um exemplo quando apresentada a Série Geométrica.

Se todos os termos de uma série for positivos temos que $\{s_n\}$, sequência das somas parciais, é monótina crescente.

Se todos os termos de uma série for positivos temos que $\{s_n\}$, sequência das somas parciais, é monótina crescente.

Logo, para que uma série $\sum_{n=1}^{\infty} a_n$ de termos positivos seja convergente basta que $\{s_n\}$ seja limitada superiormente.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Corollary

Uma série $\sum_{n=1}^{\infty} a_n$ de termos não negativos converge se, e somente se, suas somas parciais são limitadas superiormente.

Séries Infinitas MOTIVAÇÃO:

Estudaremos o comportamento da série $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Séries Infinitas MOTIVAÇÃO:

Estudaremos o comportamento da série $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Para determinarmos a convergência de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ utilizamos a comparação com a seguinte integral $\int_{1}^{\infty} \left(\frac{1}{x^2}\right) dx$. Para a comparação, pensaremos nos termos da série como valores da função $f(x) = \frac{1}{x^2}$ e interpretamos esses valores cmo as áreas de retângulos sob a curva $y = \frac{1}{x^2}$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

Séries Infinitas MOTIVAÇÃO:

Estudaremos o comportamento da série $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Para determinarmos a convergência de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ utilizamos a comparação com a seguinte integral $\int_1^\infty \left(\frac{1}{x^2}\right) dx$. Para a comparação, pensaremos nos termos da série como valores da função $f(x) = \frac{1}{x^2}$ e interpretamos esses valores cmo as áreas de retângulos sob a curva $y = \frac{1}{..2}$. **FIGURA**

21/24

Da figura temos que:

$$s_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2}$$

$$= f(1) + f(2) + f(3) + \dots + f(n)$$

$$< f(1) + \int_1^n \frac{1}{x^2} dx$$

$$< 1 + \int_1^\infty \frac{1}{x^2} dx$$

$$< 1 + 1 = 2$$

OBS.:
$$\int_{1}^{n} \frac{1}{x^{2}} dx < \int_{1}^{\infty} \frac{1}{x^{2}} dx$$
OBS.:
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = 1$$

22 / 24

Então, as somas parciais de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ são limitadas superiormente (por 2) e a série converge.

Então, as somas parciais de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ são limitadas superiormente (por 2) e a série converge.

A soma da série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ é conhecida por ser $\frac{\pi^2}{6} \approx 1,64493$

Então, as somas parciais de $\sum_{n=1}^{\infty} \frac{1}{n^2}$ são limitadas superiormente (por 2) e a série converge.

A soma da série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ é conhecida por ser $\frac{\pi^2}{6} \approx 1,64493$

OBS.: A série e a integral não precisam ter o mesmo valor no caso convergente. Conforme o exemplo anterior, a série $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ e a

integral
$$\int_{1}^{\infty} \frac{1}{x^2} dx = 1$$

Teste da Integral

Theorem (Teste da Integral)

Seja $\{a_n\}$ uma sequência de termos positivos. Suponha que $a_n = f(n)$, onde f é uma função continua, positiva e decrescente de x para todo $x \geq N$ (sendo N um inteiro positivo). Então, tanto a série $\sum_{n=N}^{\infty} a_n$ quanto a integral $\int_{\infty}^{\infty} f(x) dx$ simultaneamente convergem ou divergem.