Exercice 2 : Pointe de Platon

1. (a) Patron d'un tétraèdre régulier dont les arêtes mesurent 5 cm

- (b) Le patron d'un tétraèdre régulier est celui d'une 3-pointe de Platon : la base est un triangle équilatéral donc un polygone régulier à 3 côtés, ses faces latérales sont des triangles équilatéraux identiques et toutes ses arêtes ont la même longueur. Il est donc possible de construire une 3-pointe de Platon.
- 2. Étude de la 4-pointe de Platon

- (a) On note H le pied de la hauteur issue de S dans le triangle BCS et O le centre du carré ABCD.
 - Le triangle BCS étant isocèle en S, le point H est aussi le milieu du segment [BC].

On complète cette figure en construisant à l'extérieur du carré les points S_2 , S_3 et S_4 tels que les triangles ABS_2 , DAS_3 et DCS_4 soient des triangles égaux au triangle BCS.

La figure ainsi obtenue est un patron d'une pyramide régulière à base carrée si et seulement si en repliant le triangle BCS, on parvient à placer le point S de telle sorte que la droite (SO) soit perpendiculaire à la face ABCD, c'est-à-dire si et seulement si SH > OH soit $h > \frac{a}{2}$.

(b) Une telle pyramide régulière est une 4-pointe de Platon si et seulement si le triangle BCS est équilatéral. Or la hauteur d'un triangle équilatéral de côté a est $\frac{a\sqrt{3}}{2}$ (à retrouver éventuellement en appliquant le théorème de Pythagore dans le triangle BHS rectangle en H) et $\frac{a\sqrt{3}}{2} > \frac{a}{2}$ car $\sqrt{3} > 1$ donc il est possible de construire une 4-pointe de Platon.

(c)

3. Étude de la 5-pointe de Platon

(a) Notons H_1 le pied de la hauteur issue de S_1 dans le triangle S_1BC .

Le triangle BCS_1 étant isocèle en S_1 , le point H_1 est aussi le milieu du segment [BC].

De même que dans la question précédente, la figure complète est un patron d'une pyramide régulière de base ABCDE si et seulement si $h > OH_1$.

Or $h > OH_1 \Longleftrightarrow h^2 > OH_1^2$ car h > 0 et $OH_1 > 0$ $h > OH_1 \Longleftrightarrow h^2 + H_1C^2 > OH_1^2 + H_1C^2$

 $h > OH_1 \iff l^2 > OC^2$ d'après le théorème de Pythagore appliqué aux triangles rectangles OH_1C et SH_1C

 $h > OH_1 \iff l > OC \text{ car } h > 0 \text{ et } OC > 0$

Le pentagone ABCDE est un pentagone régulier donc les triangles OBC, OBA, OAE, OED et ODC sont des triangles égaux et $\widehat{BOC} = \frac{360^\circ}{5} = 72^\circ$.

De plus, le triangle BOC est un triangle isocèle en O donc la droite (OH_1) est la bissectrice de l'angle BOC et $\widehat{COH_1} = \frac{72^{\circ}}{2} = 36^{\circ}.$

Dans le triangle COH_1 rectangle en H_1 , on a donc $\widehat{SOH_1} = \frac{H_1C}{OC}$ d'où $OC = \frac{\frac{a}{2}}{\sin 36^{\circ}} = \frac{a}{2\sin 36^{\circ}}$ On en déduit que la figure complète est un patron d'une pyramide régulière de base ABCDE si et seulement si

 $l > \frac{\alpha}{2\sin 36^{\circ}}$

(b) Une telle pyramide régulière est une 5-pointe de Platon si et seulement si l=a

Or $a > \frac{a}{2\sin 36^{\circ}}$ car $\frac{1}{2\sin 36^{\circ}} \approx 0.85$ donc il est possible de construire une 5-pointe de Platon.

4. Étude générale de la n-pointe de Platon

Par un raisonnement analogue à celui de la question précédente, on peut construire une n-pointe de Platon si et $\frac{a}{2\sin\left(\frac{180^{\circ}}{n}\right)} \text{ c'est-à-dire si et seulement si } \frac{1}{2\sin\left(\frac{180^{\circ}}{n}\right)} < 1 \text{ soit } \sin\left(\frac{180^{\circ}}{n}\right) > \frac{1}{2} \text{ : les seules}$

valeurs de n qui conviennent sont n = 3, n = 4 et n