L-4: Descriptive Statistics

Today.....

- Recall the past for a while_ Conditional probability and Baye's theorem & some examples
- > Random variables
- Probability distribution
- > Examples

Conditional Probability and Baye's theorem —

Recapi

conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A|B) P(B)$$

$$= P(B|A) P(A)$$

Baye's the Trem

$$E/A \quad \text{Total prob}$$

$$E/B = \sum P(E|A)P(A)$$

$$A_{iB,C}$$

$$E/C$$

$$P(A|E) : \quad P(E|A) P(A)$$

$$2P(E|A) P(A)$$

$$P(E|B) P(B)$$

$$2P(E|A) P(B)$$

$$2P(E|A) P(A)$$

Expecting Some examples or case studies or applications foom

In a factory, three machines A, B and C manufactures 401/1, 35. } 25% of the total output. From the past record, it is observed that of their out--put 2, 4,5 percents are défective. A product is drawn at random and is found to be defective. what is the prob. that it was manufactured by A B C-7 what is the observation?

innovate

$$\frac{1}{0.03} = \frac{0.4 \times 0.00}{0.0345} = 0.232$$

$$\frac{1}{0.0345} = 0.232$$

$$\frac{1}{0.0345} = 0.232$$

$$\frac{1}{0.35 \times 0.04} = 0.406$$

$$\frac{1}{0.25 \times 0.05} = 0.362$$

Conclusion

Random Variable

Random Variables

We now introduce a new term

Instead of saying that the possible outcomes are 1,2,3,4,5 or 6, we say that *random variable* X can take values {1,2,3,4,5,6}. A random variable is an expression whose value is the outcome of a particular experiment.

The random variables can be either *discrete* or *continuous*.

It's a convention to use the upper case letters (X, Y) for the names of the random variables and the lower case letters (x, y) for their possible particular values.

Random Variables

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

Random Variables

Examples of Random Variables

Examples of continuous random variables: electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables: number of scratches on a surface, proportion of defective parts among 1000 tested, number of transmitted bits received in error

S= { HHH, HHT, HTH, THH, TTH, HTT X = mo of heads (ie)
3 2 2 7 6
\times 0 1 2 3 $P(x) = ?$
P(x) /8 /3/8 /8

Random variable Discrete , x (C) 0 4 P(x) 51 (i) 0 ≤ f(x) ≤ 1 11 (fcx)dx.7 prob. distribution -function

Validation

$$y = \frac{x-3}{2}$$
 $x = 1, 2, 3, 4$

another

$$P(x) = \frac{x^2}{5}, x = 0, 1, 2, 3, 4$$

2 3 K 21 21 31 12 212 71248 P(2) K value:? (i), P(x<6)(111) P (27,6) P(3<256)

2 3 4 5 K 214 214 314 16 216 71648 K value: ? EPCX=1 0 + 1C + 21C - - = 1 $10K^2 + 9K - 1 = 0$ P (2<6) (") P (27,6) P(3<7,56)

Examplei-

K	0	2	2	3	4	5	6	7
P(2)	0	1<	214	214	314	ر ار	212	71245
Ċ,	K V	alue	: 7 /		コス・	= /10)	
را، ب	P (2	< 6)		> P	(0) +	W2-	P(S) + 8K.	81
("()	P (a7, 6	s)—		P(6)	+P((7) =(19
(1117)	P (27, 6 3 < 7	<u> </u>		P(Y) +···	. 33	9

$$f(x) = \begin{cases} Kx^2, & 0 < x < 3 \\ & 0, & \text{otherwise} \end{cases}$$

$$K = ?$$

$$P(1 < x < 2)$$

$$f(x) = \begin{cases} Kx^2, & o < x < 3 \end{cases}$$

$$o_{7} & \text{otherwise}$$

$$3 & \text{in } 2x^2 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^2 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^3 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^3 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^3 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^3 dx = 1$$

$$f(x) dx = 1 \Rightarrow \int Kx^3 dx = 1$$

$$f(x) = \begin{cases} Kx^2, & 0 < x < 3 \\ 0, & \text{otherwise} \end{cases}$$

$$K = ? \rightarrow ? \qquad \begin{cases} 1 < x^2 dx \\ 1 < x < 2 \end{cases}$$

$$P(1 < x < 2) \qquad \begin{cases} 1 \\ 3 \end{cases} \begin{cases} x^3 \\ 1 \end{cases}$$

$$= ? 27 (8-1)^{\frac{1}{2}} \left[\frac{x^3}{27} \right]$$

Expectation of a random Vaniable

Variance of a v.v

$$Vor(x) = \sigma^{2} = E(x - \mu)^{2}$$

$$= E(x^{2} + \mu^{2} - 2\mu x)$$

$$= E(x^{2}) + \mu^{2} - 2\mu E(x)$$

$$= E(x^{2}) + \mu^{2} - 2\mu \cdot \mu$$

$$= E(x^{2}) - \mu^{2}$$

$$= E(x^{2}) - \mu^{2}$$

$$= E(x^{2}) - \mu^{2}$$

Mean
$$\mu = E(x) = \xi n p(x)$$
 $= \int x f(x) dx$

Variance $\sigma^2 = E(x-\mu)^2$
 $= E(x^2) - [E(x)]^2$
 $= E(x^2) = \xi x^2 p(x)$ —) discrete

 $= \int x^2 f(x) dx$ —) Continuo.

Probability Distributions Discoele Continuous Noma Binomic Poisson Gaussi

Discrete	
Binomial	poisson _ > x
P(a) = m (x P &	P(x) = ex.
	7 = 0,1,2
Lo. of freely but d.	1-P

Thanks