GeeksforGeeks

A computer science portal for geeks

Login

Home	Algorithms	DS	GATE	Intervi	ew Corner	Q&A	С	C++	Java	Books	Contribute	Ask a Q	About
Array	Bit Magic	C/C+	+ Arti	cles	GFacts	Linked L	ist	MCQ	Misc	Output	t String	Tree	Graph

Segment Tree | Set 2 (Range Minimum Query)

We have introduced segment tree with a simple example in the previous post. In this post, Range Minimum Query problem is discussed as another example where Segment Tree can be used. Following is problem statement.

We have an array arr[0 . . . n-1]. We should be able to efficiently find the minimum value from index qs (query start) to qe (query end) where $0 \le qs \le qe \le n-1$. The array is static (elements are not deleted and inserted during the series of queries).

A **simple solution** is to run a loop from *qs* to *qe* and find minimum element in given range. This solution takes O(n) time in worst case.

Another solution is to create a 2D array where an entry [i, j] stores the minimum value in range arr[i...j]. Minimum of a given range can now be calculated in O(1) time, but preprocessing takes O(n²) time. Also, this approach needs O(n²) extra space which may become huge for large input arrays.

Segment tree can be used to do preprocessing and query in moderate time. With segment tree, preprocessing time is O(n) and time to for range minimum query is O(Logn). The extra space required is O(n) to store the segment tree.

Representation of Segment trees

- 1. Leaf Nodes are the elements of the input array.
- 2. Each internal node represents minimum of all leaves under it.

An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at $\lfloor (i-1)/2 \rfloor$.

Segment Tree for input array $\{2, 5, 1, 4, 9, 3\}$

Construction of Segment Tree from given array

We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the minimum value in a segment tree node. All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a Full Binary Tree because we always divide segments in two halves at every level. Since the constructed tree is always full binary tree with n leaves, there will be n-1 internal nodes. So total number of nodes will be 2*n - 1.

Height of the segment tree will be $\lceil \log_2 n \rceil$. Since the tree is represented using array and relation between parent and child indexes must be maintained, size of memory allocated for segment tree will be $2 * 2^{\lceil \log_2 n \rceil} - 1$.

Query for minimum value of given range

Once the tree is constructed, how to do range minimum query using the constructed segment tree. Following is algorithm to get the minimum.

```
// qs --> query start index, qe --> query end index
int RMQ(node, qs, qe)
```


Interview Experiences
Advanced Data Structures

Dynamic Programming

Greedy Algorithms

Backtracking

Pattern Searching

Divide & Conquer

Mathematical Algorithms

Recursion

Geometric Algorithms

```
if range of node is within gs and ge
        return value in node
   else if range of node is completely outside gs and ge
        return INFINITE
   else
    return min( RMQ(node's left child, qs, qe), RMQ(node's right child, qs, qe) )
}
```

Implementation:

```
// Program for range minimum query using segment tree
#include <stdio.h>
#include <math.h>
#include <limits.h>
// A utility function to get minimum of two numbers
int minVal(int x, int y) { return (x < y)? x: y; }
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) { return s + (e - s)/2; }
/* A recursive function to get the minimum value in a given range of
    indexes. The following are parameters for this function.
          --> Pointer to segment tree
    index --> Index of current node in the segment tree. Initially 0 i
             passed as root is always at index 0
    ss & se --> Starting and ending indexes of the segment represented
                 current node, i.e., st[index]
    qs & qe --> Starting and ending indexes of guery range */
int RMQUtil(int *st, int ss, int se, int qs, int qe, int index)
    // If segment of this node is a part of given range, then return to
    // min of the segment
    if (qs <= ss && qe >= se)
        return st[index];
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return INT MAX;
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return minVal(RMQUtil(st, ss, mid, qs, qe, 2*index+1),
                  RMQUtil(st, mid+1, se, qs, qe, 2*index+2));
```

Popular Posts

All permutations of a given string

Memory Layout of C Programs

Understanding "extern" keyword in C

Median of two sorted arrays

Tree traversal without recursion and without stack!

Structure Member Alignment, Padding and

Data Packing

Intersection point of two Linked Lists

Lowest Common Ancestor in a BST.

Check if a binary tree is BST or not

Sorted Linked List to Balanced BST


```
// Return minimum of elements in range from index qs (quey start) to
// ge (query end). It mainly uses RMQUtil()
int RMQ(int *st, int n, int qs, int qe)
    // Check for erroneous input values
    if (qs < 0 | | qe > n-1 | | qs > qe)
        printf("Invalid Input");
        return -1;
    return RMQUtil(st, 0, n-1, qs, qe, 0);
// A recursive function that constructs Segment Tree for array[ss..se]
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int *st, int si)
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)
        st[si] = arr[ss];
        return arr[ss];
    // If there are more than one elements, then recur for left and
    // right subtrees and store the minimum of two values in this node
    int mid = getMid(ss, se);
    st[si] = minVal(constructSTUtil(arr, ss, mid, st, si*2+1),
                     constructSTUtil(arr, mid+1, se, st, si*2+2));
    return st[si];
/* Function to construct segment tree from given array. This function
   allocates memory for segment tree and calls constructSTUtil() to
   fill the allocated memory */
int *constructST(int arr[], int n)
    // Allocate memory for segment tree
    int x = (int)(ceil(log2(n))); //Height of segment tree
    int max size = 2*(int)pow(2, x) - 1; //Maximum size of segment tre-
    int *st = new int[max size];
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, st, 0);
    // Return the constructed segment tree
```

Recent Comments

akshay what happens to our code when we put it here??

Find if a given string can be represented from a substring by iterating the substring "n" times \cdot 39 minutes ago

Akshay kabra I have done this in O(n) with no extra...

Find if a given string can be represented from a substring by iterating the substring "n" times · 42 minutes ago

Anurag Singh From node u, we visit it's adjacent UNVISITED...

Articulation Points (or Cut Vertices) in a Graph · 1 hour ago

po http://ideone.com/SVP9lw iterative version you...

Write a C program to print all permutations of a given string \cdot 1 hour ago

kanu i think recursion we can use for that.....

Oracle Interview | Set 11 (For Server Technology) \cdot 1 hour ago

po here is the iterative version with time...

Write a C program to print all permutations of a given string \cdot 1 hour ago

AdChoices [>

- ▶ Binary Tree
- ▶ Geeks for Geeks

```
return st;
// Driver program to test above functions
int main()
   int arr[] = {1, 3, 2, 7, 9, 11};
    int n = sizeof(arr)/sizeof(arr[0]);
    // Build segment tree from given array
    int *st = constructST(arr, n);
    int qs = 1; // Starting index of guery range
    int ge = 5; // Ending index of guery range
    // Print minimum value in arr[qs..qe]
   printf("Minimum of values in range [%d, %d] is = %d\n",
                           qs, qe, RMQ(st, n, qs, qe));
    return 0;
```

Output:

```
Minimum of values in range [1, 5] is = 2
```

Time Complexity:

Time Complexity for tree construction is O(n). There are total 2n-1 nodes, and value of every node is calculated only once in tree construction.

Time complexity to query is O(Logn). To query a range minimum, we process at most two nodes at every level and number of levels is O(Logn).

Please refer following links for more solutions to range minimum query problem.

http://community.topcoder.com/tc? module=Static&d1=tutorials&d2=lowestCommonAncestor#Range Minimum Query (RMQ) http://wcipeg.com/wiki/Range_minimum_query

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

- ► C++ Range
- AdChoices D>
- ▶ Data Structure
- ► C++ Example
- ▶ Range Tree
- AdChoices [>
- ► The Tree Trees
- ▶ Tree Size
- Max Range

Related Topics:

- Perfect Binary Tree Specific Level Order Traversal
- Print Nodes in Top View of Binary Tree
- K Dimensional Tree
- Convert a Binary Tree to Threaded binary tree
- Serialize and Deserialize an N-ary Tree
- Serialize and Deserialize a Binary Tree
- Print nodes between two given level numbers of a binary tree
- Find Height of Binary Tree represented by Parent array

Tags: Advance Data Structures, Advanced Data Structures

34 Tweet 3

Writing code in comment? Please use ideone.com and share the link here.

20 Comments GeeksforGeeks

Sort by Newest ▼

Join the discussion...

iyer • 25 days ago

i think atmost 4 nodes are processed at each level. isn't it?

Rishabh Yadav • 2 months ago

Somebody please give example when this conditonal wiil be executed.

```
if (qs <= ss && qe >= se)
return st[index];
```


Guest ⋅ 6 months ago

١,

kbanglore • 7 months ago

Why can't the segment tree size be simply 2*n -1 instead of calculating all the binary tree can't have more than 2*n -1 nodes!

tushar → kbanglore • 5 months ago

u dnt hve to calculate log.just initialize an extra O(2n-1) space

This code looks fine.. I would be glad to know if someone points out any issue

#include <stdio.h>

#include <math h>

```
HATTOAUGO STILLETTE
  #include <limits.h>
  #include <cstring>
  #include <iostream>
  class range_min_query
         #define M_LOG2E 1.443
         int* segment_tree;
         int max_size;
         int populate_segment_tree(int* array, int start, int end, int
                if(start == end)
                        *(segment_tree+index) = *(array+start);
                                              see more
1 ^ Reply · Share >
prashant saxena • a year ago
 If qs>ss and qe<se, |the="" query="" might="" return="" a="" value=""
Vishal Agrawal • a year ago
can i update the segment tree(storing minimum values in a range) in o(log(n))
   /* Paste your code here (You may delete these lines if not writing co
Adrian Carballo → Vishal Agrawal • a year ago
      http://sportcoder.com/segment-...
```


sap · 2 years ago

Can't we update values in array? in $O(\log n)$

/* Paste your code here (You may **delete** these lines **if not** writing co

Kanhaiya Yadav • 2 years ago

GeeksforGeeks http://ideone.com/ZbIEzWng check what is wrong in this code

GeeksforGeeks • 2 years ago

It seems to be working fine for 3-4 and 4-5. Please see http://ideone.com/Gyel

Kanhaiya Yadav • 2 years ago

it is not giving the correct answer for range 3-4 and 4-5 in your given test case

abhishek08aug • 2 years ago

Intelligent :D

kk · 2 years ago

Can this problem be solved using BIT?

 $/^{\star}$ Paste your code here (You may delete these lines if not writing code

acodebreaker → kk · 8 months ago

Yes the problem can be solved using bit even faster

Madhav • 2 years ago

Please ignore above comment.

Can the same solution be extended for (Range MAXIMUM Query)?

Srinath → Madhav • 2 years ago

To easily use this for ranged max insert -element instead of element, w returned value

jaffa → Srinath • 7 months ago what exactly is a bit?

Madhav ⋅ 2 years ago

Can the same solution be extended for (Range Minimum Query)?

Add Disqus to your site

@geeksforgeeks, Some rights reserved

Contact Us!

Powered by WordPress & MooTools, customized by geeksforgeeks team