Appendix B.1 Sets - Condensed Notes

```
Def: Set: A collection of distinct members or elements.
```

Notation: If an object x is a member of set S, we write $x \in S$.

Read "x is a member of S" or "x is in S"

If x is not a member of S, we write $x \notin S$.

We can describe a set explicitly using set notation, example: $\{1, 2, 3\}$.

Two sets A and B are are **equal**, written A = B, if they contain the same elements.

Note: Sets are unordered collections.

Special Notation for frequently encountered sets:

Ø denotes the empty set, a set with no members.

 \mathbb{Z} denotes the set of **integers** $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$

 \mathbb{R} denotes the set of **real numbers**.

 \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, 3, \ldots\}$

Note: Some mathematicians start the natural numbers with 0 or 1.

Set Notation Reading

```
Let A = \{a \in \mathbb{N} : a < 10 \text{ and } a \geq b \ (b \in \mathbb{N} \ni b = \lceil f(a) \rceil) \}.
```

This can be read as the set A contains the natural numbers less than 10 and greater than b with b being the ceiling of f of a. This notation can be broken down into several components

- 1. The enclosing curly brackets { } indicate a collection of elements of length of elements.
- 2. The variable declaration $a \in \mathbb{N}$ is used to declare the type of variable that is used.
- 3. The such-that operator, the colon, is used to separate the variable declaration from the conditions. Note: The separator may appear as a vertical bar | based on preference.
- 4. The conditions declaration segment can include multiple conditions and new variables.

Subsets

```
Def: Subset: If \forall x \in A \implies x \in B, then we write A \subseteq B (read as "A is a subset of B"). Def: Proper Subset: If \forall x \in A \implies (x \in B) \land (A \neq B), then we write A \subset B.
```

Note: The Empty Set \emptyset is a subset of all sets.

Set Operations

Given two sets A and B, we can define new sets by applying **set operations**.

Union: $A \cup B = \{ x : x \in A \text{ or } x \in B \}$, the set of elements in either A or B.

Intersections: $A \cap B = \{ x : x \in A \text{ and } x \in B \}$, the set of elements in both A and B.

Difference: $A - B = \{ x : x \in A \text{ and } x \notin B \}$, the set of elements in A and not in B.

Set Operations must obey the following laws:

Empty Set Laws:

$$A \cap \emptyset = \emptyset$$
,

$A \cup \emptyset = A$.

Identity Laws:

$$A \cap A = A$$

$$A \cup A = A$$
.

Associative Laws:

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

$$A \cup (B \cup C) = (A \cup B) \cup C.$$

Distributive Laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$$

Absorption Laws:

$$A\cap (A\cup B)=A$$
,

$$A \cup (A \cap B) = A$$
.

DeMorgans Laws:

$$A - (B \cap C) = (A - B) \cup (A - C),$$

$$A - (B \cup C) = (A - B) \cap (A - C).$$

The Universe and Complements

All sets are typically subsets of some larger set U, the *universe*.

Example: The set $A = \{1, 2, 3\}$ is a subset of the natural numbers or the integers.

It may be crucial to define $U = \mathbb{N}$ or $U = \mathbb{Z}$ for clarity.

Given a universe U, we define the **complement** of a set A as $A' = U - A = \{ x : x \in U \text{ and } x \notin A \}$.

For any set $A \subseteq U$, we have the following laws,

$$A'' = A$$

$$A \cap A' = \emptyset$$

$$A \cup A' = U$$
.

We can rewrite DeMorgan's laws with set complements.

For any two sets $A, B \subseteq U$, we define:

$$(A \cap B)' = A' \cup B',$$

$$(A \cup B)' = A' \cap B'$$
.

Disjoint Sets

Def: Disjoint: Two sets A and B are disjoint if they have no elements in common, $A \cap B = \emptyset$.

A collection $\mathbb{S} = \{S_i\}$ of nonempty sets forms a **partition** of a set S if

- 1. The sets are *pairwise disjoint*, that is $(S_i, S_j \in \mathbb{S})(i \neq j) \implies S_i \cap S_j = \emptyset$,
- 2. The union of all sets of \mathbb{S} is S. This is represented symbolically as,

$$S = igcup_{S_i \in \ \mathbb{S}} S_i.$$

In other words, \mathbb{S} forms a partition of S if each element of S appears in exactly one S_i member of \mathbb{S} .

Notation: Due to set theory rules, S is referred to as a collection and **not** as a set of sets.

Notation: The Big Union operator \bigcup iterates through all set elements and unions them into a single set.

Counting

Def: Cardinality (Size): The number of elements in a set, denoted as |S|.

Note: The cardinality of the empty set $\emptyset = 0$.

If the cardinality of a set is a natural number, then set is *finite*, else it is *infinite*.

If an infinite set that can be put into a one-to-one correspondence with the natural numbers \mathbb{N} is *countably infinite*, else it is *uncountable*.

The integers \mathbb{Z} are countably infinite while the reals R are uncountable.

For any two finite sets A and B, we have the identity $|A \cup B| = |A| + |B| - |A \cup B|$.

We can deduce that $|A \cup B| \leq |A| + |B|$.

If A and B are disjoint, then $|A \cap B| = 0$, thus $A \subset B = |A| + |B|$. If $A \subseteq B$, then $|A| \leq |B|$.

A finite set of n element is sometimes called an n-set.

A 1-set is called a singleton.

A subset of k elements of a set is sometimes called a k-subset.

Power Sets

Def: Power Set: The set of all subsets of a set S, include the \emptyset and S itself is called the **power set** of S, denoted as $\mathcal{P}(S)$. Example: Let $S = \{a, b\}$, then $\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$.

Cartesian Product

Def: Cartesian Product: Given two sets A and B, the Cartesian Product, denoted $A \times B$ \$, istheset\$ $\{(a,b): a \in A \text{ and } b \in B\}$. Example: $\{a,b\} \times \{a,b,c\} =$

$$\begin{cases}
(a, a), (a, b), (a, c), \\
(b, a), (b, b), (b, c)
\end{cases}$$

When A and B are finite sets, the cardinality of the Cartesian product is $|A \times B| = |A| \cdot |B|$.

The Cartesian product of n sets A_1, A_2, \ldots, A_n is the set of **n-tuples**.

The cardinality of this product is $|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|$ if all sets are finite.

We denote an *n-fold* Cartesian product over a single set A as $A^n = A_1 \times A_2 \times A_n$.

The cardinality of this product $|A^n| = |A|^n$ if A is finite.

Ordered Sets

Recall: Sets are unordered collections of elements.

To get around this property, we can define an *ordered list* of numbers as nested sets. Example:

$$egin{aligned} \operatorname{set}(a,b,c)
eq \operatorname{set}(c,b,a) \ \left\{a,\{a,b\},\{a,b,c\}
ight\}
eq \left\{c,\{c,b\},\{c,b,a\}
ight\}. \end{aligned}$$