Sean la relacion $R = \{A, B, C, D, E, F, G, H, I, J\}$ y el conjunto de dependencias funcionales $F1 = \{AB \to C, BD \to EF, AD \to GH, A \to I, H \to J\}$.

- 1. Encontrar una clave de R y demostrar que es clave.
- 2. Descomponer R en segunda forma normal.
- 3. Descomponer el conjunto de relaciones resultantes en tercera forma normal.

Soluciones

1. Definitions la clave $K = \{A, B, D\}$. Demostracion:

•
$$ABD \rightarrow A$$
.

•
$$ABD \rightarrow B$$
.

•
$$ABD \rightarrow AB \rightarrow C$$
.

•
$$ABD \rightarrow D$$
.

•
$$ABD \rightarrow BD \rightarrow EF \rightarrow E$$

•
$$ABD \to BD \to EF \to F$$
.

•
$$ABD \to AD \to GH \to G$$
.

•
$$ABD \to AD \to GH \to H$$
.

•
$$ABD \rightarrow A \rightarrow I$$
.

•
$$ABD \to BD \to EF \to E$$
. • $ABD \to AD \to GH \to H \to J$.

2.

•
$$R = \{A, B, C, \underline{D}, E, F, G, H, I, J\}.$$

•
$$R_1 = \{A, B, C\}; R_2 = \{A, B, D, E, F, G, H, I, J\}.$$

•
$$R_1 = \{\underline{A}, \underline{B}, C\}; R_2 = \{\underline{B}, \underline{D}, E, F\}; R_3 = \{\underline{A}, \underline{B}, \underline{D}, G, H, I, J\}.$$

•
$$R_1 = \{\underline{A}, \underline{B}, C\}; R_2 = \{\underline{B}, \underline{D}, E, F\}; R_3 = \{\underline{A}, \underline{D}, G, H, J\}; R_4 = \{\underline{A}, \underline{B}, \underline{D}, I\}.$$

•
$$R_1 = \{\underline{A}, \underline{B}, C\}; R_2 = \{\underline{B}, \underline{D}, E, F\}; R_3 = \{\underline{A}, \underline{D}, G, H, J\}; R_4 = \{\underline{A}, I\} R_5 = \{\underline{A}, \underline{B}, \underline{D}\}.$$

3.
$$R_1 = \{\underline{A}, \underline{B}, C\}; R_2 = \{\underline{B}, \underline{D}, E, F\}; R_3 = \{\underline{A}, \underline{D}, G, H\}; R_4 = \{\underline{H}, J\}; R_5 = \{\underline{A}, I\} R_6 = \{\underline{A}, \underline{B}, \underline{D}\}.$$

Dado el esquema $R = \{A, B, C, D, E, G, H\}$ donde se cumplen las siguientes DF $F = \{B \to C, D \to A, E \to H, C \to E, B \to G\}$:

- 1. Encontrar una clave del esquema y demostrar que lo es.
- 2. Descomponer el esquema en 3NF, manteniendo las dependencias.
- 3. Verificar si la descomposicion hallada en el punto anterior preserva la propiedad lossless join.
- 4. ¿La descomposicion esta en BCNF? ¿Por que?

Soluciones

1. Definimos la clave $K = \{B, D\}$. Demostracion:

•
$$BD \to D \to A$$
.

•
$$BD \to B \to C \to E$$
.

•
$$BD \rightarrow B$$
.

•
$$BD \rightarrow B \rightarrow G$$
.

•
$$BD \to B \to C$$
.

•
$$BD \rightarrow D$$
.

•
$$BD \to B \to C \to E \to H$$
.

2.

- $R = \{A, \underline{B}, C, \underline{D}, E, G, H\}.$
- $R_1 = \{\underline{D}, A\}; R_2 = \{\underline{B}, C, \underline{D}, E, G, H\}.$
- $R_1 = \{\underline{D}, A\}; R_2 = \{\underline{B}, C, E, G, H\}; R_3 = \{\underline{B}, \underline{D}\}.$
- $R_1 = \{\underline{D}, A\}; R_2 = \{\underline{B}, C, G\}; R_3 = \{\underline{C}, E, H\}; R_4 = \{\underline{B}, \underline{D}\}.$
- $R_1 = \{\underline{D}, A\}; R_2 = \{\underline{B}, C, G\}; R_3 = \{\underline{C}, E\}; R_4 = \{\underline{E}, H\}$ $R_5 = \{\underline{B}, \underline{D}\}.$

3.		A	В	C	D	E	G	H
	R_1	✓	×	×	✓	×	×	×
	R_2	×	✓	\checkmark	×	\rightarrow	√	\rightarrow
	R_3	×	×	✓	×	√	×	\rightarrow
	R_4	×	×	×	×	\checkmark	×	\checkmark
	R_5	\rightarrow	√	\rightarrow	√	\rightarrow	\rightarrow	\rightarrow

4. Esta en BCNF pues no existen otras claves.

Se desea modelar la actividad de un broker bursatil, quien maneja las carteras de acciones de varios inversores. Los atributos relevantes son:

- B (broker).
- I (inversor).
- E (domicilio comercial del broker).
- A (accion de una empresa que cotiza en bolsa).
- D (dividendo).
- C (cantidad de acciones).

Ademas se cumplen las siguientes DF: $F = \{A \to D, I \to B, IA \to C, B \to E\}$.

- 1. Determinar una clave y demostrar que lo es.
- 2. Si descomponemos el esquema en $D_3 = \{IB, IAC, AD, IAE\}$:
 - (a) Proyectar F sobre cada subesquema.
 - (b) ¿Se puede afirmar que D_3 preserva dependencias?

Soluciones

1. Definimos la clave $K = \{A, I\}$. Demostracion:

- $AI \rightarrow A$.
- $AI \rightarrow I \rightarrow B$.
- $AI \rightarrow C$.
- $AI \rightarrow A \rightarrow D$.

- $AI \rightarrow A \rightarrow D$.
- \bullet $AI \rightarrow I \rightarrow B \rightarrow E$.
- $AI \rightarrow I$.

2.

- (a) $F_{IB} = \{I \to B\}; F_{IAC} = \{IA \to C\}; F_{AD} = \{A \to D\}; F_{IAE} = \{I \to E\}.$
- (b) No preserva dependencias pues no se puede recuperar $B \to E$.

Chequear la equivalencia de los suigentes conjuntos de DFs:

•
$$F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$

•
$$G = \{A \rightarrow CD, E \rightarrow AH\}$$

Solucion

Therefore
$$G^{+} = \left\{ \boldsymbol{A} \to \boldsymbol{C}\boldsymbol{D}, \overline{A \to C}, A \to D, AC \to DC, \overline{AC \to D}, \overline{E \to AH}, \overline{E \to H}, E \to A, A \to AD, \overline{E \to AD}, \dots \right\}.$$

$$F^{+} = \left\{ \boldsymbol{A} \to \boldsymbol{C}, A \to AC, \boldsymbol{AC \to D}, A \to D, \overline{A \to CD}, \overline{E \to AD}, E \to AD, E \to A, E \to H, \overline{E \to AH}, \dots \right\}$$

Ejercicio 5

Dado el esquema $R = \{A, B, C, D, E, G, H\}$ y las DFs

$$F = \{A \rightarrow C, B \rightarrow D, BC \rightarrow E, BC \rightarrow H, GH \rightarrow E, D \rightarrow A\}$$

y sabiendo que CG es clave:

- 1. Buscar otra clave mostrar que lo es.
- 2. Dada la siguiente descomposicion de R, verificar si preservan las dependencias: $R_1 = \{B, D\}$; $R_2 = \{G, H, E\}$; $R_3 = \{A, B, C\}$.

Soluciones

- 1. El conjunto $\{AG\}$ es clave. Basta notar que $AG \to A \to C$ y $AG \to G$.
- 2. $F_{R1} = \{B \to D\}$; $F_{R2} = \{GH \to E\}$; $F_{R3} = \{A \to C\}$. No preserva dependencias pues no es posible recuperar $BC \to E$.

Sea el esquema $R = \{A, B, C, D, E, G, H\}$ y las DFs

$$F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow G, H \rightarrow E, E \rightarrow A, E \rightarrow H\}$$

encontrar todas las claves del esquema. Justificar que lo son.

Solucion Las unicas claves son $\{E\}$ y $\{H\}$.

- Para $K = \{E\}$:
 - $-E \rightarrow A$.
 - $-E \rightarrow A \rightarrow BC \rightarrow B.$
 - $-E \to A \to BC \to C.$
 - $-E \rightarrow A \rightarrow BC \rightarrow C \rightarrow D.$
 - $-E \rightarrow E$.
 - $-E \to A \to BC \to C \to D \to G.$
 - $-E \rightarrow H.$
- Para $K = \{H\}$: Con $H \to E$ llegamos a la clave anterior.

Ejercicio 7

Sea $S = \{A, B, C, D, E, G\}$. Se sabe que las unicas claves son $\{AG\}$ y $\{CE\}$. Ademas se conocen las siguientes DFs: $A \to B, B \to D, D \to B$.

- 1. ¿Se encuentra S en 3FN? Ejemplifique con una instancia de S un caso posible de anomalia.
- 2. Obtenga una descomposicion de S que este en 3FN.
- 3. ¿Se encuentra la descomposicion obtenida en BCNF? Justifique.

Soluciones

- 1. COMPLETAR.
- 2. COMPLETAR.
- 3. Efectivamente, pues las claves no se solapan.