Kuis Sesi UAS

Angga Fathan Rofiqy 29 November, 2023

DEPARTEMEN STATISTIKA DAN SAINS DATA
FAKULTAS ILMU PENGETAHUAN ALAM
IPB UNIVERSITY
2023

1.1. Daftar Isi

1.1.	Daftar Isi	2
2. So	al no 1	3
2.1.	Point (a)	3
	Point (b)	
	Point (c)	
	Point (d)	
	Point (e)	
	Point (f)	
	Point (g)	
3. So	al no 2	7
3.1.	Point (a)	7
3.2.	Point (b)	9
	Point (c)	

2. Soal no 1

Misalkan $y_1, ..., y_6$ merupakan hasil produksi yang dilakukan enam hari berturut-turut dengan menggunakan dua mesin. Mesin A digunakan pada hari ke 1, 3, dan 5 sedangkan Mesin B digunakan pada hari ke 2, 4 dan 6. Dengan asumsi $E(\varepsilon_i) = 0$ dan $Var(\varepsilon_i) = \sigma^2$. Data hasil produksi berturut-turut adalah 8.95,5.81,7.81,7.30,7.50, dan 7.60. Tentukan :

2.1. Point (a)

Susunlah **model linier**nya dalam bentuk **matriks** dan **persamaan normal** dari rancangan diatas, lengkapi dengan **keterangan** yang jelas.

Persamaan dalam bentuk Matriks

$$y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{23} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{23} \\ \varepsilon_{23} \end{bmatrix}$$

$$\begin{bmatrix} 8.95 \\ 7.81 \\ 7.5 \\ 5.81 \\ 7.30 \\ 27.60 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{23} \\ \varepsilon_{23} \end{bmatrix}$$

Dimana:

y : vektor respons

• **X**: matriks rancangan

• β : vektor parameter

• ε : vektor galat

Persamaan normal

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
; $i = 1,2 \text{ dan } j = 1,2,3$

Dimana:

• y_{ij} : respons perlakuan (pada perlakuan ke-i dan ulangan ke-j)

• μ : rataan umum

• τ_i : pengaruh perlakuan (pada perlakuan ke-i)

• ε_{ij} : pengaruh acak (pada perlakuan ke-*i* dan ulangan ke-*j*)

2.2. Point (b)

Hitunglah **penduga kuadrat terkecil** bagi beda pengaruh Mesin A dan Mesin B.

Hasil dari R

```
## X'X :
## [,1] [,2] [,3]
## [1,] 6 3 3
## [2,] 3 3 0
## [3,] 3 0 3
##
## (X'X)^c :
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 1/3 0
## [3,] 0 0 1/3
##
## X'y :
## [,1]
## [1,] 44.97
## [2,] 24.26
## [3,] 20.71
##
## Beta :
## [,1]
## [1,] 0.000000
## [2,] 8.086667
## [3,] 6.903333
```

Dalam Latex

$$\mathbf{X'X} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}$$

$$(\mathbf{X'X})^c = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

$$\mathbf{X'y} = \begin{bmatrix} 44.97 \\ 24.26 \\ 20.71 \end{bmatrix}$$

$$\beta = (\mathbf{X'X})^c \mathbf{X'y}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 44.97 \\ 24.26 \\ 20.71 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 8.0866 \end{bmatrix}$$

2.3. Point (c)

Tentukan penduga ragam au_1 – au_2

Hasil dari R

```
## SSres : 3.004133
##
##
## s^2 : 0.7510333
```

Dalam Latex

$$SS_{res} = y'[\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{c}\mathbf{X}']y$$

$$= [8.95 \quad 7.81 \quad 7.5 \quad 5.81 \quad 7.30 \quad 7.60] \begin{bmatrix} \mathbf{I} - \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 8.95 \\ 7.81 \\ 7.5 \\ 5.81 \\ 7.30 \\ 7.60 \end{bmatrix}$$

$$= 3.004133$$

Penduga ragam galat

$$s^{2} = \frac{SS_{res}}{n-r}$$

$$= \frac{3.004133}{6-2}$$

$$= 0.7510333$$

2.4. Point (d)

Apakah $\tau_1 - \tau_2$ estimable?

Hasil dari R

$$\begin{aligned} \tau_1 - \tau_2 &= t'\beta &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} \\ t'(\mathbf{X}'\mathbf{X})^c(\mathbf{X}'\mathbf{X}) &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \end{aligned}$$

Karena $t' = t'(\mathbf{X}'\mathbf{X})^c(\mathbf{X}'\mathbf{X})$ maka $\tau_1 - \tau_2$ **estimable**.

2.5. Point (e)

Apakah $H_0: \tau_1 - \tau_2$ testable?

Cek syarat testable:

- 1. $\mathbf{C}\beta$ estimable Dimana $\mathbf{C} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$, $\beta = \mathbf{H} = (\mathbf{X}'\mathbf{X})^c(\mathbf{X}'\mathbf{X})$ Karena matriks \mathbf{C} sama dengan vektor t' pada **point (d)**, maka dapat dipastikan bahwa $\mathbf{C}\beta$ estimable.
- 2. Vektor-vektor baris pada matriks **C** saling bebas Karena matriks **C** merupakan vektor baris, maka dapat dinyatakan vektor-vektor baris pada matriks **C** saling bebas.

$$a_1 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ a_1 \\ -a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Atau dapat dinyatakan dengan $a_1 = -a_1 = 0$, yang artinya saling bebas.

Karena semua syarat testable terpenuni, maka H_0 : τ_1 – τ_2 testable.

2.6. Point (f)

Lakukan pengujian hipotesis pada point (e) dengan taraf nyata 0.05.

Hasil dari R

Fhit : 2.796702 ## Ftab : 7.708647

$$F_{hit} = \frac{(\mathbf{C}\beta)'(\mathbf{C}(\mathbf{X}'\mathbf{X})^c\mathbf{C}')^{-1}\mathbf{C}\beta/m}{s^2}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}; \beta = \begin{bmatrix} 0 \\ 8.0866 \\ 6.9033 \end{bmatrix}$$

$$f_{hit} = \frac{ \left(\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 8.0866 \\ 6.9033 \end{bmatrix} \right)' \left(\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \\ 8.0866 \\ 6.9033 \end{bmatrix} }{0.7510333}$$

$$F_{hit} = 2.796702$$

Sedangkan $F_{(1;4)0.05} = 7.708647$ yang lebih besar dari F_{hit} .

2.7. Point (g)

Kesimpulan

Karena $F_{hit} < F_{(1;4)0.05}$, maka tolak H_0 . Artinya Tidak cukup bukti untuk menyatakan bahwa terdapat pengaruh minimal satu dari kedua mesin terhadap hasil produksi pada taraf nyata 5%.

3. Soal no 2

Suatu percobaan bertujuan untuk mengetahui pengaruh dosis fumigant terhadap daya kecambah benih kacang hijau. **Dosis** fumigant yang diberikan ada **dua**: $32gr/m^3$ dan $64gr/m^3$ dengan **3 ulangan**. Data yang diperoleh sebagai berikut:

Dogie (or/m³)	Ulangan			
Dosis (gr/m³)	1	2	3	
32	90	88	92	
64	90	80	78	

3.1. Point (a)

Jika rancangan yang digunakan adalah RAL, tuliskan model liner dalam bentuk matriks besera keterangannya. Tunjukkan cara memperolehnya.

Model dalam bentuk matriks

$$y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{23} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{23} \\ \varepsilon_{23} \end{bmatrix}$$

$$\begin{bmatrix} 90 \\ 88 \\ 92 \\ 90 \\ 80 \\ 78 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{23} \\ \varepsilon_{23} \end{bmatrix}$$

Dimana:

• *y* : vektor respons

• **X**: matriks rancangan

• β : vektor parameter

• ε : vektor galat

Model linier

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
; $i = 1,2 \text{ dan } j = 1,2,3$

Dimana:

• y_{ij} : respons perlakuan (pada perlakuan ke-i dan ulangan ke-j)

• μ : rataan umum

• τ_i : pengaruh perlakuan (pada perlakuan ke-i)

• ε_{ij} : pengaruh acak (pada perlakuan ke-*i* dan ulangan ke-*j*)

Cara memperoleh

1. Vektor respons y diperoleh dari data respon pada tabel yakni dari dosis i ($32gr/m^3$ dan $64gr/m^3$) dan ulangan j (1, 2, dan 3). Contoh :

 y_{11} : Dosis $32gr/m^3$, ulangan ke-1. y_{23} : Dosis $64gr/m^3$ ulangan ke-3.

Docis (or/m³)	Ulangan			
Dosis (gr/m³)	1	2	3	
32	90)	88	92	
64	90	80	78	

2. Matriks **X** diperoleh mirip seperi mencari dummy variabel.

- 3. Matriks β terdiri dari μ (rataan umum), τ_1 (pengaruh perlakuan 1), dan τ_2 (pengaruh perlakuan 2)
- 4. Matriks ε atau pengaruh acak, jumlah dan index nya sesuai dengan matriks y.

3.2. Point (b)

Tunjukkan bahwa persamaan normal untuk model ini adalah persamaan yang konsisten.

Hasil dari R

```
## X'X :
## [,1] [,2] [,3]
       6 3 3
## [1,]
## [2,] 3 3 0
## [3,] 3 0 3
##
## X'y :
## [,1]
## [1,]
       518
## [2,]
       270
## [3,] 248
## (X'X)|(X'y) :
## [,1] [,2] [,3] [,4]
## [1,]
       6 3 3 518
            3
## [2,]
        3
                  0 270
## [3,] 3 0 3 248
##
##
## rank(X'X) : 2
```

```
##
##
## rank{(X'X)|(X'y)} : 2
```

Sistem Persamaan Linier disebut konsisten jika $r(\mathbf{A}|\mathbf{B}) = r(\mathbf{A})$. Dimana SPL : $\mathbf{A}\mathbf{x} = \mathbf{B}$

Dalam Model Linier bentuknya menjadi : $(\mathbf{X}'\mathbf{X})\mathbf{b} = \mathbf{X}'\mathbf{y}$. Sehingga persamaan disebut konsisten jika $r(\mathbf{X}'\mathbf{X}|\mathbf{X}'\mathbf{y}) = r(\mathbf{X}'\mathbf{X})$.

$$r(\mathbf{X}'\mathbf{X}) = r \begin{pmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{pmatrix} \xrightarrow{\text{E31}(-1)} r \begin{pmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= 2$$

$$r(\mathbf{X}'\mathbf{X}|\mathbf{X}'\mathbf{y}) = r \begin{pmatrix} 6 & 3 & 3 & 518 \\ 3 & 3 & 0 & 270 \\ 3 & 0 & 3 & 248 \end{pmatrix} \xrightarrow{\text{E31}(-1)} r \begin{pmatrix} 6 & 3 & 3 & 518 \\ 3 & 3 & 0 & 270 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= 2$$

$$r(\mathbf{X}'\mathbf{X}) = r(\mathbf{X}'\mathbf{X}|\mathbf{X}'\mathbf{y})$$

Sehingga Persamaan normal pada model ini terbukti konsisten.

3.3. Point (c)

Tunjukkan bahwa beda pengaruh dosis 32 dan 64 merupakan fungsi linier dari parameter yang dapat diduga (estimable).

Hasil dari R

```
## (X'X)^c:

## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 1/3 0
## [3,] 0 0 1/3

##
## Tau_1 - Tau_2:

## [,1] [,2] [,3]
## [1,] 0 1 -1
```

Dosis 32 = τ_1 , dosis 64 = τ_2 . Sehingga akan dicek apakah $\tau_1 - \tau_2$ estimable?

$$\begin{aligned} \tau_1 - \tau_2 &= t'\beta &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \end{bmatrix} \\ t'(\mathbf{X}'\mathbf{X})^c(\mathbf{X}'\mathbf{X}) &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \end{aligned}$$

Karena $t' = t'(\mathbf{X}'\mathbf{X})^c(\mathbf{X}'\mathbf{X})$ maka $\tau_1 - \tau_2$ estimable.