

现代密码学 Modern Cryptography

张方国 中山大学计算机学院

Office: Room 305, IM School Building

E-mail: isszhfg@mail.sysu.edu.cn

HomePage: https://cse.sysu.edu.cn/content/2460

第五讲 密码的数学基础(复习二)

- 群论基础 定义,交换群,循环群,子群,商群
- 环论
- 有限域

代数远算定律

- 假如。是一个A×A到A的代数运算,我们就说,集合A对于代数运算。来说是封闭的,也说。是A的代数运算或二元运算。
- 一个集合A的代数运算。适合结合律,假如对于A的任何三个元a,b,c来说,都有($a \circ b$) ° $c=a \circ (b \circ c)$
- 一个 $A \times A$ 到D的代数运算。适合交换律,假如对于A的任何两个元a,b来说,都有 $a \circ b = b \circ a$
- 代数运算⊙ ⊕适合分配律,假如对于B的任何元素b,A的任何元素a1,a2来说,都有b⊙(a1⊕a2) = (b⊙ a1) ⊕ (b⊙ a2)
 或者, (a1⊕a2)⊙b = (a1⊙ b) ⊕ (a2⊙b)

群 (Group)

- 群G,有时记做{**G**, ∘},是定义了一个二元运算的非空集合,这个二元运算可表示为。,**G**中的每一个序对(a,b)通过运算生成**G**中的元素(a ∘ b),并满足以下公理:
- ①封闭性: 如果a 和 b都属于G,则 (a ° b)也属于G。
- **②结合律成立: a** ∘(**b** ∘ **c**)=(**a** ∘ **b**) ∘ **c**, 对于**G**的任 意三个元素都**a**,**b**,**c**成立
- ③单位元: G里至少存在一个元素e,对于G的任何元a,都有e。a=a。e=a成立。
- **④逆元**:对于**G**的每一个元素**a**,在**G**里至少存在一个元素**a**',**使得a**'。**a**=**a**。**a**'=**e**成立。

例子9

- 1)整数集在加法+下构成群,单位元e=0;
- 2) 有理数,实数,复数集在乘法×下构成群;
- 3) 所有2×2矩阵在加法+下构成群,所有行列 式不等于0的矩阵在乘法×下构成群;
- 4) 集合 $\{T, F\}$ 在逻辑异或XOR下构成群,单位元 $e = F, T^{-1} = T$ 。

群论-近代代数学的基本概念之一

Hermann Weyl: "Galois' ideas, which for several decades remained a book with seven seals but later exerted a more and more profound influence upon the whole development of

mathematics are contained in a farewell letter written to a friend on the eve of his death, which he met in a silly duel at the age of twenty-one. This letter, if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing in the whole literature of mankind."

伽罗瓦(1811-1832)

1829年 18岁 群论

伽罗瓦的手稿(1846年出版)

On for wir ensule go on few trejours transform on witegral Some on one water Dans to pull the place to be pourse tot Grown pat le montre runnie p , et to la 2mi autre rester la minne. I so when down a composer que l'o categrale on le privile tours

be wines & part of & note , for tells percentiguet go a trem & l'an l'exprissent dus équation qu'um tode de Degré se que ruger & am a lasta et religiraquement. Le mois ou seven lien .

To his non the legate, que en histo in dut in le sent que " in explois . My fle the frienipely wortations spinis opening time Attent Diegna har Papplication a l'analya transcandente ? la theori. In Pumbiquité. Il l'agistist De vois à prose dons un relation onte de quete, on quette futies hursewinter and tolongs on privat join , queller quantities on prevail substitute des quantités donnes some que la cabien put come B'arris les. Celà fait remente bjant fleigemette de la 8 up pression que l'as pourreit cheche Alley je u'en per l'aux et mes Ohn be but for her own him Dubygo and of rain go est-

The first singrimes att letter son be reven Energyled going. & tad Jame dus sowet harant a around de grapestin but & all par sor colley but a gu j'ai exist to est dying lantit en an same am the , it jup it at trop o and intiet do in far me transport pour go to an bruggam steward known the therein but it to have you a chandle

The age pines publiquement faute Ote Jums is down her avis here had be post , seems our of inspendance is therein.

Upon who it to tenera, it was , In gour pui however her profer à d'elister tout en gartier.

Je tintram were effection & Bacong Lag Mis 1832.

有关群的概念

- 一个群叫做有限群,假如这个群的元素个数是一个有限整数。否则,这个群叫做无限群。一个有限群的元素的个数叫做这个群的阶,用#G表示。
- 一个群叫做交换群(阿贝尔群),假如a。b=b。a ,对于G里的任何两个元a,b都成立。
- 若一个群的每一个元素都是G的某一个固定元素a的乘方,我们把G叫做循环群,我们也说G是由元素a所生成的,并且用符号G=(a)来表示。a叫做G的一个生成元。

子群与Lagrange 定理

设G是一个群,若H是G的一个非空子集且同时H在和G一样的单位 元与代数运算下是一个群,则H称为G的一个子群。

陪集: $a \circ H = \{a \circ h, h \setminus \text{in } H\}$ 称H的一个陪集,这里H是G的子群.

Lagrange 定理: #H |#G

商群: $G/H = \{a \circ H, a \setminus \text{in } G\}$ $(a \circ H)*(b \circ H) = (a \circ b) \circ H$ 恒等元 $e \circ H$

推论: 如果 H 是 有限群 G 的子群,则有 # (G/H) = # G / # H

群元素的阶

定义: $a \in G$, 满足 $a^i=e$ 的最小的正整数 i 称作 a 的阶, 记作 ord(a).

Lagrange 推论: ord(a) #G

RSA: $a^{\varphi(N)}=1 \mod N$, 这里,群 Z_N^* 的阶是 $\varphi(N)$

循环群

定义: 任意的 $b \in G$, 都存在 $a \in G$ 和一个整数i,都有 $b=a^i$,我们把a 叫群的生成元。记G=<a>.

Euler 函数 $\varphi(N)$: 不超过N且和N互素的元素的个数。 定理:

- 1、循环群 $G=<\alpha>$ 的任何子群都是循环群。
- 2、任意的d | #<a> , 都唯一存在一个阶为d的子群。
- 3、如果#<a>=m,那么#< $a^k>=ord (<math>a^k$) =m/(k, m)
- 4、任意d | # < a > , < a > 中存在 $\varphi (d)$ 个阶为d 的元素。
- 5、如果#<a>=m,那么<a>中有 $\varphi(m)$ 个生成元。
- 6、素数阶的循环群的任何非恒等元都是生成元。

环

- 一个集合R叫做一个环,假如
- ① **R**对于一个叫做加法的代数运算作成一个交换 群
- ② R对于一个叫做乘法的代数运算来说是封闭的
- ③ 这个乘法适合结合律a(bc)=(ab)c,对于属于R 的任意的元素a,b,c都成立
- ④ 分配律成立, a(b+c)=ab+ac, (b+c)a=ba+ca
- 环R被称为含有单位元的环,是指R内含有乘法单位元"1",使得∀a∈R,有a·1=1·a=a。
- 我们同城考虑的环一般是有单位元的。无乘法单位元的的环一般记为Rng

环的定义也可以描述为:一个集合R叫做一个环,假如R对于加法构成一个交换群,对于乘法运算构成幺半群,乘法对加法满足左右分配律。

在抽象代数产生的19世纪,数学家们开始研究满足所有合成律(即加法交换律、结合律,乘法交换律、结合律,以及乘法对加法的分配律等等)或者满足其中的一部分的集合。倘若一个集合具有加法、乘法和相应的运算性质,就称为环。环论是抽象代数中较晚成熟的,20世纪以来环论得到了快速和广泛的发展。韦德伯恩研究了线性结合代数,这种代数实际上就是环,而环和理想的系统理论由诺特给出。

全体整数构成的集合对于普通加法和乘法来说作成一个环。 全体有理数构成的集合对于普通加法和乘法来说作成一个环。 n阶实方阵全体在矩阵的加和和乘法下构成一个环

会换环

- 一个环叫做一个交换环,假如ab=ba,对于属于R的任意两个元素a,b都成立。
- 剩余类环Zn。Zn为整数模n剩余类的集合 Zn={[0],[1],...,[n-1]},它对剩余类的加法和乘法构成一个含有单位元"[1]"的交换环。
- 各式各样的数域都对通常的数的加法和乘法形成一个含有"1"的交换环
- 设F表示上面几个例子给出的任意一个数环。定义
 F[x]={anx n+an-1x n-1+...+a1x+a0| ai ∈ F,n为正整数},它是F上的一元多项式环。
- 取大于1的正整数n,则n的一切整数倍形成的集合nZ对数的加法和乘法形成了一个不含单位元"1"的交换环。

整环

- 整环: 含有乘法单位元"1"而无零因子的交换环称为整环。
- 若在一个环里, a ≠ 0, b ≠ 0但ab=0,我们就说a是这个环的一个左零因子, b是这个环的一个右零因子。
- 任何一个整环都至少含有2个元素。恰含有2个元素的整环是存在的,例如F2={0,1}它对模2的加法乘法运算形成一个整环,事实上,它为二元域

定义 设 R与R是两个环. 如果有一个R到 R的 映射 φ 满足

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
,
 $\varphi(ab) = \varphi(a)\varphi(b) \ (\forall a,b \in R)$,

则称 φ 是环R到R的一个同态映射.

如果 φ 是满射(单射、双射),则称 φ 为环同态满射(环同态单射,环同构).特别 φ 是环同态满射时,则称R与R同态,记为 $R\sim R$.

- 除环: 一个环被称为除环(或斜域),是 指该环的非零元全体对"·"形成一个群。
- 域: 一个可交换的除环称为域。
- **Fp**为整数模**p**的剩余类环,**p**为素数,可以验证它为域。因为**Fp**中的元素有限,称它为有限域;又因为**p**为素数,又称之为素域.
- 有理数域, 实数域
- 域首先必是整环; 反之则不然

有限域

- 一个元素个数有限的域称为有限域,或者伽罗华域 (Galois field)。
- 有限域中元素的个数为一个素数,或者一个素数的幂,记为**GF**(**p**)或**GF**(**p**ⁿ),其中**p**为素数。
- 有限域中运算满足交换律、结合律、和分配律。
- 加法的单位元是0,乘法的单位元是1,每个非零元素都有一个唯一的乘法逆元。
- 密码学中用到很多有限域中的运算,因为可以保持数在有限的范围内,且不会有取整的误差。
- $-\mathbf{GF}(\mathbf{p})$
- $-\mathbf{GF}(2^n)$

有限域的结构

域 $F_{p:}$ 用 Z_{p} 表示, p是一个素数。所有的素数P阶的域都同构于 $Z_{p:}$

特征:任意的a ∈ A,满足 na=o的最小的自然数n 叫做A的特征。

定理: 任何一个有限域都有一个素特征。

有限域的结构

任何一个有限域都可以表示成 GF(p) 或者 $GF(p^n)$, $p是一个素数。 <math>GF(p^n)$ 叫做 GF(p)的 n 次扩域,它可以表示成定义在 GF(p)上一个 n 维的向量空间。

子域: $GF(p^n)$ 的子域只有 $GF(p^m)$, $m \mid n$ 。

Modular Polynomial Arithmetic

- can write any polynomial in the form:
 - f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- polynomial arithmetic modulo an irreducible polynomial with coefficients in the field Zp forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
 - can adapt Euclid's Algorithm to find it:
 - EUCLID[a(x), b(x)]
 - 1. A(x) = a(x); B(x) = b(x)
 - **2. 2. if** B(x) = o **return** A(x) = gcd[a(x), b(x)]
 - **3.** $R(x) = A(x) \mod B(x)$
 - **4.** A(x) ... B(x)
 - **5.** B(x) R(x)
 - **6. goto** 2

Polynomials over Z_p

- $Z_p[x]$ = polynomials on x with coefficients in Z_p .
 - Example of $Z_5[x]$: $f(x) = 3x^4 + 1x^3 + 4x^2 + 3$
 - deg(f(x)) = 4 (the **degree** of the polynomial)
- Operations: (examples over $Z_5[x]$)
- Addition: $(x^3 + 4x^2 + 3) + (3x^2 + 1) = (x^3 + 2x^2 + 4)$
- Multiplication: $(x^3 + 3) * (3x^2 + 1) = 3x^5 + x^3 + 4x^2 + 3$
- $I_{+} = 0, I_{*} = 1$
- + and * are associative and commutative
- Multiplication distributes and o cancels
- Do these polynomials form a field?

Galois Fields

- The polynomials $Z_p[x] \mod p(x)$ Where $p(x) \in Z_p[x]$, p(x) is irreducible, and deg(p(x)) = n (i.e., n+1 coefficients) form a finite field. Such a field has p^n elements.
- Proof:
- These fields are called **Galois Fields** or **GF(pⁿ).**
- The special case n = 1 reduces to the fields Z_p
- The multiplicative group of GF(pⁿ)/{o} is cyclic (this will be important later).

$GF(2^n)$

- Hugely practical!
- The coefficients are **bits** {0,1}.
- For example, the elements of GF(2⁸) can be represented as **a byte**, one bit for each term, and GF(2⁶⁴) as **a 64-bit word**.
 - -e.g., $x^6 + x^4 + x + 1 = 01010011$
- How do we do addition?

Addition over Z_2 corresponds to xor.

Just take the xor of the bit-strings (bytes or words in practice).
 This is dirt cheap

$Multiplication over <math>GF(2^n)$

- If n is small enough can use a table of all combinations.
- The size will be $2^n \times 2^n$ (e.g. 64K for GF(2^8)).
- Otherwise, use standard shift and add (xor)
- **Note**: dividing through by the irreducible polynomial on an overflow by 1 term is simply a test and an xor.
- e.g. o111 / 1001 = 0111
- 1011 / 1001 = 1011 XOT 1001 = 0010

Finding inverses over $GF(2^n)$

- Again, if n is small just store in a table.
 - Table size is just 2ⁿ.
- For larger n, use Euclid's algorithm.
- 费马小定理

有限域上不可约多项式

- 2次3次不可约多项式的判定
- 4次不可约多项式的判定
- 高次不可约多项式的判定, 多项式分解

ETERSON'S TABLE OF IRREDUCIBLE POLYNOMIALS OVER GF(2)

 http://www.csee.umbc.edu/~lomonaco/f97/4 42/Peterson_Table.html

Example $GF(2^3)$

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	x	1	0

(a) Addition

	×	000	001 1	010 X	$011 \\ x + 1$	$\frac{100}{x^2}$	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	χ^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	χ^2	x+1

有限域的结构

定理:有限域的乘法群都是循环群。

本原根:有限域的乘法群的生成元。

随堂测试

- 设m=4,密钥流按照如下线性递归关系产生 z_{i+4} =(z_i + z_{i+3})mod 2 i>o. 若初始向量为(1,o,1,o),请写出由它产生的一个周期的密钥流。
- 计算gcd(57,93),并找出整数s和t,使得 57s+93t=gcd(57,93)。
- 有限域GF(25)可以由Z_2[x]/(x 5+x²+1)构造得到。在域中利用扩展欧几里得算法计算(x³+x²)⁻¹