Automated Probabilistic Reasoning Via Variational Inference

Edwin V. Bonilla January 15th, 2018

Bayesian Reasoning — Challenges

Prior over geology and Forward model's rock properties

likelihood

$$p(\mathbf{f}|\mathbf{y}) = \frac{p(\mathbf{f})p(\mathbf{y}|\mathbf{f})}{\int p(\mathbf{f})p(\mathbf{y}|\mathbf{f})d\mathbf{f}} \leftarrow \text{Hard bit}$$

Posterior geological model

- General likelihood models (non-linear fwd models)
- Large datasets

\$20 Million

Surveys and explorations

Goal: Build generic yet practical inference tools for practitioners and researchers

- Deterministic
- Stochastic

Automated Probabilistic Reasoning

- Other dimensions
 - Accuracy
 - Convergence

Automation

Gaussian Process Priors

Distribution over functions

 f(x₁), f(x₂), ... f(x_N) follow a joint Gaussian distribution

· Example: density field

Notoriously unscalable!

Latent Gaussian Process Models (LGPMs)

- Supervised learning: $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$
- Factorised prior over Q latent functions

$$f_j \sim \mathcal{GP}\left(0, \kappa_j(\cdot, \cdot)\right)$$

$$p(\mathbf{f}|\boldsymbol{\theta}) = \prod_{j=1}^{Q} \mathcal{N}(\mathbf{f}_{.j}; \mathbf{0}, \mathbf{K}_{j})$$

Factorised likelihood over observations

$$p(\mathbf{y}|\mathbf{f},\boldsymbol{\phi}) = \prod_{n=1}^{N} p(\mathbf{y}_n|\mathbf{f}_{n\cdot},\boldsymbol{\phi})$$

Examples of LGPMs

- Multi-class classification
 - Q classes, softmax likelihood
- Multi-output regression
- Inversion problems
- LGCPs for count data
- Access to 'black-box' likelihood

Solution 1.0: Automated VI for LGPMs

Nguyen and Bonilla (NIPS, 2014)

- ELBO = -KL + ELL
- KL
 - Analytical lower bound
 - Exact gradients
- ELL
 - Samples from univariate Gaussians
 - No explicit gradients required

- ★ Efficient parameterisation
- ★ As good as hand-coded solutions
- ★ Orders of magnitude faster than MCMC

Solution 1.1: SAVIGP

Dezfouli and Bonilla (NIPS, 2015)

- Scalability through "sparsification": M<< N
- Statistical efficiency
- Efficient parameterisation
- Control variates

Large-scale inference for GP priors and general black-box likelihoods

Solution 1.2: AutoGP

Krauth, Bonilla, Cutajar and Filippone (UAI, 2017)

Scalability & efficient computation

Low-variance gradient estimates

The holy trinity of machine learning

- ★ Breaks error-barrier on MNIST for GP models
- ★ Unprecedented scale

Representational power

Generalisations to More Complex Settings

Structured prediction

(Galliani, Dezfouli, Bonilla and Quadrianto, AISTATS, 2017)

Network Structure Discovery

Deep Gaussian processes

(Cutajar, Bonilla, Michardi and Filippone, ICML, 2017)

Implicit models

$$\mathbf{z}_n = g_z(\boldsymbol{\beta})$$

$$\mathbf{x}_n = g_x(\mathbf{z}_n; \boldsymbol{\beta})$$

$$q(\mathbf{Z}, \boldsymbol{\beta}|\mathbf{X}) = g(\mathbf{Z}, \boldsymbol{\beta})$$

Summary & Conclusions

- General framework for GP priors and non-linear likelihoods
- Scalable automated variational inference
- AutoGP
- Generalisations

