PATENT SPECIFICATION

(11) **1 415 295**

15 29

5

10

15

20

(21) Application Nos. 47926/71 and 47927/71

(22) Filed 14 Oct. 1971

- (23) Complete Specification filed 16 Oct. 1972
- (44) Complete Specification published 26 Nov. 1975
- (51) INT CL² C07C 59/26; A61K 31/19, 31/215, 31/395; C07C 103/178, 131/00, 69/67; C07D 295/18

C2C 1175 1341 1530 1532 1562 1626 1731 215 21X 220 221 225 226 227 22Y 246 250 251 252 255 25Y 280 281 282 28X 290 29X 29Y 30Y 311 313 314 31Y 323 327 32Y 338 339 342 345 346 34Y 351 354 355 35X 35Y 360 361 362 364 365 366 367 368 36Y 371 373 37Y 388 389 396 401 40Y 464 491 496 500 50Y 574 583 584 588 58X 593 596 612 613 620 623 624 625 628 62X 634 635 638 63X 650 657 658 65X 662 665 668 66X 675 694 699 701 718 719 740 776 790 79Y BG BT KN KR KW LQ LZ MF MV QT RE RV UJ UL UQ UR

(72) Inventor ANDRÉ MIEVILLE

(54) SUBSTITUTED PHENOXY-ALKYL-CARBOXYLIC ACIDS AND DERIVATIVES THEREOF

(71) We, ORCHIMED S.A., a Swiss Body corporate of c/o Me. Gumy, 8 Bd. de Perolles, 1700 Fribourg, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be substantially described in and by the following statement:—

This invention concerns p-carbonyl-phenoxy-carboxylic acids and derivatives thereof which result from transforming the p-oxo radical into oxime, acid, ester and amide radicals and from transforming the carboxylic acid radical into ester and amide radicals.

Our copending Patent Application Number 3085/70 (1 268 321) claims compounds having the formula 10

where Y is —OH, —OCH₃, —OC₂H₅, —OC₃H₇, NHOH, NR₁R₂, A represents a single bond or a divalent straight- or branched-chain C_{1-3} hydrocarbon radical, R' is a hydrogen atom or a phenyl group, and either X is = O or = NOH and R is a hydrogen atom or a phenyl, halophenyl, C_{1-3} alkyl, C_{1-3} ω -haloalkyl, and if X = O, R is hydroxyl, methoxy, ethoxy, propoxy, —NHOH or —NR₁R₂ group or R—CX represents a cyano group, each of R₁ and R₂ being a hydrogen atom or an alkyl or diethylamino alkyl group or R₁ and R₂ forming, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic group.

The present invention provides compounds having the general formula

but excluding those claimed in the said copending application, in which R^v and R" are identical or different and each represents H, CH₃, C₂H₅, C₆H₅, p—F—C₆H₄, p—Cl—C₆H₄, —R"" and R"", which may be identical or different, represent H, a halogen atom, preferably F, Cl or Br, a C₁₋₅ alkyl group, CF₅, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OCH₃, OH or C₆H₅; R^{vi} represents H, a C₁₋₅ alkyl group, an aryl group, an aryl group the aromatic residue of which is substituted by one or more CH₃, CF₃ or halogen atoms, a cycloalkyl group, OH, a C₁₋₆ alkoxy group, an aryloxy

5

15

20

25

. 2	1,410,220	
	group, an aryloxy group the aromatic residue of which is substituted, a cycloalkyloxy group, a NR ₃ R ₄ group; a NHCH ₂ CH ₂ NR ₃ R ₄ group or an O-alkylene-NR ₃ R ₄ group; group, a NHCH ₂ CH ₂ NR ₃ R ₄ group or an O-alkylene-NR ₃ R ₄ ;	
. 5	Y' represents OH, C ₁₋₄ alkoxy, NR ₃ R ₄ , Nrioli ₂ Ori ₂ Mr ₃ R ₄ or X' represents O or NOR ₀ ; R ₀ represents H, C ₁₋₅ alkyl, CH ₂ CH ₂ NR ₃ R ₄ or X' represents OH, and each of R ₁ and R ₂ which may be identical or different,	5
J	represents a hydrogen atom, a C_{1-5} and R_1 group, a C_{3-6} cycloalkyl group, an aryl group, an aryl group the aromatic residue of which is a C_{5-6} cycloalkyl group, an aryl group, or C_{5-6} or C_{1-6} groups, or R_3 and R_4 are	
10	substituted by one of more hangen atoms of M ₃ of the state of the st	10
	hydrogen, then R^{vi} is methyl or p-chlorophenyl, and that if I is hydrogen, the other of R^{vi} is hydrogen or C_{1-5} alkyl and one of R^{vi} and and R^{v} is hydrogen, the other of R^{vi}	15
15	Rv is methyl or ethyl. This invention also concerns the acid-addition salts which can be formed from formula I compounds. Compounds of formula I can be used as therapeutic agents, and act in particular compounds of formula I can be used as therapeutic agents. Such	
20	on the central nervous system, or as anti-inflammatory or normolipennant agents. Stern compounds can be used in therapeutic medicines as analgesic, anti-inflammatory, psychotropic, cardiovascular, normolipemiant, hypocholesterolemiant or antitussive in-	20
25	Consequently, the invention further provides a therapeutic composition containing at least one compound of the invention as an active ingredient in association with a pharmaceutically acceptable carrier, diluent or coating.	25
	The term alkyl here means a straight or branched hydrocarbon chain. The term alkoxy means a straight or branched hydrocarbon chain which is bonded to an oxygen atom by a single bond. Among the alkoxy groups according to this invention, the following simplest ones can be mentioned: methoxy, ethoxy, propyloxy, isopropyloxy,	20
30	butyloxy, isobutyloxy and tertiobutyloxy. The preferred cycloalkyl groups are cyclopentyl, cyclohexyl and $\Delta^{1,2}$ -cyclohexenyl. The preferred cycloalkyloxy groups are cyclopentyloxy, cyclohexyloxy and $\Delta^{1,2}$ -cyclo-	30
35	hexenyloxy. The term "O-alkylene-NR ₂ R ₄ " which is also described as "aminoalkyloxy", represents a group consisting of a divalent straight or branched hydrocarbon chain which is between an oxygen atom and a NR ₃ R ₄ group. Preferably the alkylene residue comprises from 1 to 6 carbon atoms. Among the preferable or alkylene-NR ₃ R ₄ groups	35
40	the following ones can be mentioned: aminoetnoxy, aminopropyloxy, aminosciepty- loxy, mono- and dialkylaminoethoxy, mono- and dialkylaminojsopropyloxy, piper- dialkylaminoisopropyloxy, piperidinoethoxy, azepinoethoxy, pyrrolidinoethoxy, piperidinopropyloxy, azinoethoxy, N'-methylpiperazinoethoxy, pyrrolidinoethoxy, piperidinopropyloxy, azepinoisopropyloxy, piperazinopropyloxy, azepinoisopropyloxy, piperazinopropyloxy,	40
45	piperazinoisopropyloxy, morpholinopropyloxy, interpholinoisopropyloxy, thiomorpholinoisopropyloxy, N'-p-chlorophenylpiperazinopropyloxy and	45
	morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, N-p-chlorophenyl- piperazino, N- methylpiperazino, piperazino, 4-methylpiperidino, anilino, N-methyl- piperazino, N-methylpiperazino, p-trifluoro-	
50	The preferred halogen atoms are fluorine, chlorine and bromine. The arrivation of P''' R, and R, can be substituted by one or more F, Cl,	50
55	Br, CF ₃ and CH ₃ . The preferred ones according to this invention are phenyl, p-chlorophenyl and p-fluorophenyl. Among the compounds corresponding to formula I two kinds of products can be distinguished:	55
	1) the p-carbonyl-phenoxy-alkyl-carboxylic acids and derivatives thereof which result	
60	a) from transforming the p -oxo group into oxime $X = NOR_0$, b) from transforming the carboxylic acid group into ester and amide groups, and, c) from transforming both the p -oxo group into oxime and the carboxylic acid groups into ester and amide groups; and,	60

10

15

20

25

5

10

20

25

2) the p-carboxy-phenoxy-alkyl-carboxylic acids, hereafter called "diacids" and derivatives thereof which result from the transformation of one or the both carboxylic acid groups into ester and amide groups.

Among the compounds of the "p-carbonyl" type, Rvi represents H, C1-C5 alkyl, aryl preferably C₆H₅, p—Cl—C₆H₄ and p—F—C₆H₄.

Among the "diacid" type Rvi represents OH, C1-C6 alkoxy, aryloxy preferably

phenoxy and p-chlorophenoxy, cycloalkyloxy preferably cyclopentyloxy, cyclohexyloxy, $\Delta^{1,2}$ -cyclohexenyloxy, NR_3R_4 , $NHCH_2CH_2NR_3R_4$, or O-alkylene- NR_3R_4 .

The para-carbonyl compounds of formula I in which X' is an oxygen atom and Y' is a hydroxy group or a C_{1-3} alkoxy group may be prepared by reacting a parahydroxybenzoyl compound of the formula

in which Rvi, R''' and R'''' are defined as above with a halogen compound of the formula

in which Hal represents a halogen atom, Y'' is a hydroxy group or a C_{1-3} alkoxy group and R'' are as defined above, in an alkaline medium.

The carbonyl function >C=O may be converted into an oxime function or an ester or other ester or an amide function respectively, using a method known per-se for converting a carbonyl function to an oxime function or for converting a carboxylic or C₁₋₃ alkoxy ester function to an ester, other ester or amide function.

The following procedures may be used to prepare the compounds of formula I:

PROCEDURE A.

Preparation of acids, esters and amides of formula I, in which R" is a hydrogen atom and X' is an oxygen atom

a) A p-hydroxybenzoyl derivative having the formula

in which R₅ is a hydrogen atom or an alkyl or aryl group, particularly a p-chlorophenyl group, is reacted with an α -halogenated acid for the formula

$$R^{v}-CH(Cl)-CO_{2}H$$
(IIIa)

or an α-halogenated ester of the formula

$$R^v$$
— $CH(Br)$ — CO_2Et (IIIb)

in order to obtain respectively a compound of the formula

$$R_5-C$$
 R_5-C
 R_5-

15

35

40

b) When R_s represents a hydrogen atom or an alkyl group, compound IVa may be esterefied using methyl or ethyl alcohol; the ester obtained may be condensed with an appropriate amine to produce a desired amide of formula I, or transesterified to synthesize an ester of formula I other than those already mentioned in procedures A (a) and A (b).

- c) When R₅ represents an aryl radical, compound IVa may be converted by means of SOCl2 or PCl5 into the corresponding acid chloride which may be reacted with an appropriate amine, alcohol or amino alcohol, in accordance with a method known per se, in order to obtain respectively a desired amide, ester or amino ester of formula I.
- d) Compound IVb may be condensed with an appropriate amine in accordance 10 with a method known per se to produce a desired amide of formula I or compound IVb may be transesterified to prepare other esters of formula I.

10

15

PROCEDURE A_1 Preparation of acids, esters and amides of formula I in which $R^v = R'' = CH_3$ and

a) An acetone-chloroform mixture or an a-halogenated ester of the formula Br-C(CH₃)₂-CO₂Et (V), is reacted with compound IIa in an alkaline medium, in order to obtain respectively a compound of the formula

$$R_{5}-C \xrightarrow{R^{(1)}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{R_{5}-C} \xrightarrow{R^{(1)}} CH_{3} \xrightarrow{CH_{3}} CH_{3} CH_{3} \xrightarrow{CH_{3}} CH_{3} C$$

b) Compound VIa can be esterified by means of a lower alcohol, for instance to 20 give methyl, ethyl or iso-propyl ester, particularly when R₅ is an alkyl group.

20

c) Ester VIb can be amidified or transesterified, in accordance with methods known per se to produce respectively an amide or other ester of the formula I.

25

d) When R₅ is an aryl group, compound VIa may be converted into the corresponding acid chloride by means of SOCl2 or PCl3 and then, if desired, the acid 25 chloride may be reacted with an appropriate amine, alcohol or amino-alcohol to produce an amide, ester or amino ester respectively of the formula I.

PROCEDURE B.

Preparation of aldoximes and ketoximes of formula I, i.e. compounds of formula I in which X' = NOH or NOR_o . 30

30

a) The compounds of formula I in which X' = NOH may be prepared by treating corresponding compounds of the formula I in which X' = O with hydroxylamine hydrochloride in a basic medium, preferably a pyridinic medium.

35

40

b) The compounds of the formula I in which X' = NOR_o may be prepared: by condensing corresponding compounds of the formula I in which X' = 0 in a basic (pyridine) medium, with a substituted hydroxylamine hydrochloride, such as:

H₂N-O-R_o, HCl,

from the compound of the formula I, in which X' = NOH, by the following reactions:

$$-NOH \xrightarrow[t.Bu\ OK]{} -NOK \xrightarrow[X\ R_o]{} -NOR_o$$

The following examples are given to illustrate the invention and analogous methods of preparing compounds in accordance with the invention.

10

15

20

25

30

35

40

5

10

30

40

45

EXAMPLE 1.

4-(p-chlorobenzoyl)-phenoxy-acetic acid

a) Preparation of 4-hydroxy-4'-chlorobenzophenone

Phenol and p-chlorobenzoyl chloride are successively added at 0°C to a solution of AlCl₃ in nitrobenzene (or a suspension of AlCl₃ in ligroine or dichloroethylene); the resulting mixture is kept warm to 25°C for 17 hours, and hydrolysed; 4-hydroxy-4′-chlorobenzophenone is then isolated by extraction using dilute sodium hydroxide and washing with hexane.

b) 4-(p-chlorobenzoyl)-phenoxyacetic acid

A mixture of 1 mole of 4-hydroxy-4'-chlorobenzophenone, 2.2 moles of NaOH, 1.2 moles of ClCH₂—CO₂H and 1300 cc of water, is refluxed for 7 hours.

After acidification and extraction with NaHCO₃ have been conducted and followed by a second acidification, 4-(p-chlorobenzoyl)-phenoxyacetic acid is isolated. Its melting point is 152°C.

15 EXAMPLE 2.

N-(p-propionyl-phenoxyacetyl)-morpholine. This example illustrates the procedures A(b) and A(d) described above.

This example illustrates the procedures A(b) and A(d) described above.

a) Methyl p-propionyl-phenoxyacetate

1 mole of p-propionyl-phenoxyacetic acid is refluxed during 10 hours, with 100 cc

20 of MeOH and 300 cc of CHCl₃ or CH₂Cl₂ in the presence of sulfuric acid. The resulting mixture is poured into water. The desired ester remains in the organic phase. It is washed once with dilute NaOH, then twice with water. Pure methyl p-propionyl-phenoxyacetate is thus isolated, with a yield of about 90%. MP: 59°C.

1 mole of the ester obtained in step (a) is refluxed for 8 hours with 2.5 moles of morpholine. Then, 1 volume of water is added, and the product is left to crystallize in the cold state. The morpholinic amide is filtered off and recrystallized from alcohol (yield: 85%; melting point: 88°C).

By using the procedure described in example 2, original compounds listed in table III are prepared.

EXAMPLE 3.

N-(p-benzoylphenoxyacetyl)-piperidine This example illustrates procedure A (c) described above

The piperidinoamide of p-benzoylphenoxy acetic acid is obtained by treating 1 mole of p-benzoylphenoxy acetic acid chloride with 2 moles of piperidine in benzene.

By using the procedure described in example 3 pricinal compounds listed in table

By using the procedure described in example 3, original compounds listed in table IV are obtained.

EXAMPLE 4.

Para-propionhydroximoyl- phenoxy-acetyl-1-piperidine

1 mole of p-propionylphenoxyacetyl-1-piperidine is refluxed for 5 hours with 1.1 mole of NH₂OH.HCl and 1.05 mole of pyridine. The desired oxime is precipitated in water and recrystallized from alcohol. Its melting point is 144°C.

By using the procedure described in example 4, original compounds listed in table V are obtained.

10

15

20

30

35

40

45

5

15

20

25

30

35

40

45

EXAMPLE 5. Preparation of para-(4-chlorobenzoyl)-phenoxy-isobutyric acid

1 mole of 4-hydroxy-4'-chlorobenzophenone is dissolved in anhydrous acetone and then 5 moles of powdered sodium hydroxide is added. The corresponding sodium phenate precipitates. Refluxing is effected, and then, 1,5 mole of CHCl₈ diluted with anhydrous acetone is added and the resulting mixture is refluxed for 10 hours. After cooling, water is added, the acetone is evaporated, the aqueous phase is washed with ether and acidified and the organic phase is re-dissolved in ether and extracted into a solution of bicarbonate. The bicarbonate solution is then acidified to obtain the desired 10 acid, having a melting point of 185°C, with a yield of 75%.

By using the procedure described in example 5, original compounds listed in table

VI are prepared. Esters and amides of the phenoxy-isobutyric acids prepared in accordance with the procedure of example 5 are produced in accordance with procedure A₁ described above. Esters and amides prepared in this manner are listed in table VII.

The compounds listed in table VII can be prepared in a manner similar to that

described in the following example.

EXAMPLE 6. Iso-propyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate

(Code No. 178)

1 mole of the acid obtained in example 6 is converted into its acid chloride using thionyl chloride (2,5 moles). 1 mole of the acid chloride is then condensed with 1,05 mole of isopropyl alcohol in the presence of 0,98 mole of pyridine in an inert solvent such as

Since traces of SO₂ (which has a bad smell) may be obtained from the thionyl chloride; it is preferable to avoid this disadvantage by carrying out the esterification

Using procedure B described above, isobutyric acids, and esters and amides thereof prepared in example 5 are connected to the corresponding oxime compounds listed in

The compounds of formula I in which Rvi and Y' are both hydroxy groups may be prepared in accordance with the invention by a) reacting p-hydroxybenzoic acid which has the formula

with a halogeno carboxylic acid having the formula

in which Hal represents a halogen atom in an aqueous alkaline medium under reflux, and b) precipitating the resulting diacid in an acidic medium.

It is preferred to use one mole of p-hydroxy benzoic acid per mole of the halogeno

carboxylic acid. The compounds of formula I in which at least one of Rvi and Y' is other than hydroxyl can be prepared in accordance with the invention by converting at least one of the acid functions of the diacid into an ester or amide function by a method known per-se for converting carboxylic acid groups to ester or amide groups.

10

20

5

10

15

20

25

The diacid, which has the formula

can be used directly:

a) for the synthesis of a diester of the invention in which $R^{vi} = Y'$, b) to prepare an intermediary acid dichloride for which a diester or a diamide of

the invention in which $R^{vl} = Y'$ can be synthesized, or c) for the synthesis of a monoester of the invention; in this case the acid function carried by the oxyacetic chain, i.e. the group OCR'R"COOH, is esterified through the

acid monochloride prepared with PCl₅ in C₅H₆ at 0°C.

The monoesters of the formula

HO-C-C00-C2H5

can be synthesized in accordance with method c) or else by the action of ethyl bromo-acetate:

on a para-carboxy-hydroxyphenone of the formula

HO-COOH

in a heterogenous alkaline medium.

From the monoesters of the invention, particularly those of formula VIII above, there can be obtained, by using a method known per-se, monoamides of the invention, e.g. of the formula

or acid monochlorides, e.g. of the formula

The acid monochlorides can in turn be converted into symmetrical and asymmetrical diesters and amide-esters of the invention, e.g. of the formula

Finally, a symmetrical or asymmetrical diester of the invention, e.g. of the formula

can be converted to an amide ester of the invention, e.g. of the formula

By a simple modification of the reaction sequences described above it is possible to obtain the compounds of the invention in which one of R^{vi} CO— and —COY is an amino-ester group and the other of R^{vi} CO— and —COY is an amide group, any substituents on the nitrogen atom of the amino-ester group being identical to or different from those on the nitrogen atom of the amide group. This is illustrated in the following reaction scheme in which

$$N_1$$
 and N_2

represent non-identical amino groups.

$$\begin{array}{c} R^{III} \\ HO_2C \\ \hline \\ Cl-CH_2CH_2OH \\ \hline \\ H^{III} \\ \hline \\ R^{III} \\ \\ R^{III} \\ \hline \\ R^{III} \\ \\$$

The following examples are given to illustrate the invention.

EXAMPLE 8. N-(p-carboxyphenoxy-acetyl)piperidine

A mixture of 1 mole of ethyl p-carboxy-phenoxy-acetate and 2,5 moles of piperidine is refluxed for 7 hours. Water is then added, and 1-p-carboxy-phenoxy-acetyl piperidine precipitates.

5

10

15

20

20

20

25

5

10

15

20

EXAMPLE 9.

Ethyl para-piperidinocarbonyl-phenoxy-acetate Operation is in accordance with the following reaction scheme:

5 The amide ester product can be reacted with any amine, in accordance with the procedure described in Example 8, to produce a diamide.

The substances indicated in Tables I and II are prepared in accordance with the procedure described in Example 8 or Example 9.

The substances listed in Table I bis have been found to possess anti-tussive and analgesic properties.

The following Examples illustrate particular procedures for preparing the compounds number 96 and 99 appearing in Tables I and II respectively.

EXAMPLE 10. N-(p-carboxyphenoxy-acetyl)-piperidine

15 coded as No. 96

a) Ethyl p-carboxyphenoxy-acetate

1 mole of ethyl bromoacetate is reacted with 1 mole of p-hydroxybenzoic acid in the presence of 2 moles of K₂CO₃ in acctone, methyl-ethylketone, dioxan or tetra-hydrofuran, for 48 hours, at the reflux temperature of the organic solvent to obtain ethyl pcarboxyphenoxy-acetate.

b) N-(p-carboxy-phenoxy-acetyl)piperidine The preceding ester (1 mole) is heated under reflux with piperidine (3 moles) in a chlorinated solvent, for 6 hours. Water is added to precipitate N-(p-carboxy-

phenoxy-acetyl) piperidine after condensation is complete.

EXAMPLE 11. 25 N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine coded as No. 99

Ethyl p-carboxy-phenoxy-acetate is esterified in ethanol and chloroform in the presence of sulphuric acid. N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine is ob-30 tained by condensation of 1 mole of the resulting diester (ethyl p-ethoxycarbonyl-30 phenoxy-acetate) with 3 moles of piperidine in an inert solvent for 7 hours at the boiling temperature of said solvent.

	Activity found	Anti-inflammatory Anti-tussive	.		:		î	:
٠.	و	19 000 16 000	18 000 17 000	12 000 15 000	17 000 16 000	14 000 11 000	20 000 16 000	15 000 12 000
U.V.	λ Мах.(πμ)	209 248	210 249	208 251	209	207 237	208 . 249	207 241
m-1	ν-C-Υ΄ 	1660	1640	1690	1640	1760	1660	1760
I.R. cm-1	ν-C-R ^{vi} 	1630	1700	1640	1700	1630	1630	1620
	M.P. °C	168	190	265	183	06	181	116
	Υ'.	Q.	Q	-NH ₂		-0C2H5	Ç	-0C,H,
	R."	エ	н	H	Œ	E	Œ	H
	RV	王	Ξ	Œ	Ξ	H	Ħ	田
	R ^v i	-NH ₂	НО—	ZHN-	НО-	Ç	-NH ₂	
	Code No.	100	96	106	112	116	138	145

_
ਚ
e)
=
.≘
يد
Ħ
ď
\boldsymbol{z}
_
띡
Ľ.
$\overline{\mathbf{a}}$
7
\simeq

TABLE 1 (Continued)	I.R. cm ⁻¹ U.V.	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	H H -0C ₂ H _s 75 1710 1760 210 27 000 Anti-tussive, 253 19 000 analgesic, cardiovascular	Et , HCl H H , —OC ₂ H ₅ 108 1710 1760 208 16 000 Et	ней H H ——ОС ₂ H ₅ 182 1710 1760 208 17 500 ,,	<i>461</i> H H —OC ₂ H ₅ 169 1710 1760 207 18 000 ,,,	H H ϕ - ch_{p} - ch_{p} - h 190 1710 1770 213 36 000 ,, funanate , funanate	(cH_3) H H $-o-cH_2-cH_2-M$ 140 1710 1760 217 34000 ,,
		R ^{vi} R ^v	H —o-cH ₂ -CH ₂ -H	_0_CH ₂ _CH ₂ _N, HCI H	-0-04-042-4) , HCl	н о-сн5-сн5-и о, нсі	o-ch-ch-n H	H 667.
		Code No.	199	200	201	225	293	294

)

(Pa
tinned)
000
_
I
TAR
Ě

		ity d	/e, cular, miant		
		Activity found	Antitussive, cardiovascular, normolipemiant		:
	•	٤	15 000 19 000	l	15 000
	.V.U	л Мах.(mµ)	210 253	l	209
	m ⁻¹	v-C-Y'	1700	1760	1730
	I.R. cm ⁻¹	ν-C-R ^{vi} ν-C-Y΄	1690	1710	1710
		M.P.	175		136
		Υ,	Н0-	CH,	-0-CH2-CH2-N
		π,	СН3	СН	СН, СН,
		RV	. CH³	CH,	GH,
		R ^{vi}	Н0-	-0-CH CH,	ó
Ì		Code No.	310		

∷	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IADLE	Surce Surce

(Continued)
=
ABLE
\perp

I.R. cm ⁻¹ U.V.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160 1710 1660 210 30 000 Antitussive, 254 20 000 analgesic, cardiovascular	139 1710 1660 210 36 000 ,, 255 23 000	100 1710 1660 207 32 000 ,, 285 16 000	138 1710 1660 209 34 000 254 21 600	162 1710 1660 211 27 000 ", 242 30 000	168 1710 1660 212 32 000
	λ,	Q-	Ç	Q		Ç	NH-CH ₂ -CH ₂ -N
	R ^{vi}	0-CH2-CH2-N ,	o-chp-chp-th	0-CH2-CH2-H	0-CH2-CH2-N), fumatate	101, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O-CH2-CH2-N
	Code No.	221	222	228	235	249	311

(Continued)	
TABLE II	

_						
		Activity found	Antitussive, analgesic, cardiovascular	2	£	z
		Ų	31 000 22 000	30 000 22 000	30 000 23 000	30 000 20 000
	U.V.	λ Μ αχ. (mμ)	212 253	211 252	211 252	212 252
	ш-т	v-C-Y'	1660	1660	1660	1660
	I.R. cm-1	$ \begin{array}{c} \nu\text{-C-R}^{\text{Vi}}\\0\end{array} $	1710	1710	1710	1710
		M.P.	134	150	134	142
		Α,	°,	Ç	Ç	
		R ^{vi}	o-04-c12-N	-0-CH-CH2-N CH3, fumatait	$-o$ $-cH$ $-cH_2$ $-h$ $-h$ $-h$ $-h$ $-h$ $-h$ $-h$ $-h$	o-CHq-CHq-H fumataie
		Code No.	312	313	314	

TABLE III	RVI-C-43 - 2 - 0-011-C-Y
-----------	--------------------------

	Activity discovered	Antitussive and psychotropic	:	:	:	¢ ¢	.
U.V.	Ę	18 000 18 000	18 000 18 000	18 000 24 000	17 500 17 500	18 000 17 000	18 500 18 000
U.	А Мах.	213	214 266	210 263	214 266	214 265	214 267
-1	v-C- 0 amide	1650	1650	1665	1660	enlarged peak	enlarged peak
I.R. cm ⁻¹	ν-C- O ketone	1680	1680	1700	1680	1670 enl	1660 enl
	M.P.	82	92	130	107	88	80
	λ,	N-	Q	₩W	Ç _z	\$	
	R	Н	н	н	Ħ		Ħ
	R ""	Н	я	ж	#	耳	ж
	R"	H	æ	Ξ	ж	Ħ	ж
	R ^v i	CH3—(CH2)2	CH3(CH2)2	СН³	CH ₁ -CH ₂	сн, –сн,	H,C CH
	Code No.	124	126	184	134	136	148

TABLE III (Continued)

							I.R. cm ⁻¹	ī-E	U.V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Code No.	R ^{vi}	R."	R""	RV	Υ'	M.P.	v-C- 	v-C- O amide	λ Мах.	ę	Activity discovered
149	H,C CH	Н	н	Ж		94	1670	1650	214	19 000 18 000	Antitussive and psychotropic
151	CH ₃ -(CH ₂) ₃	н	Ж	Ħ		:75	1670	1650	214	19 000 18 500	2
154	H,C CH-CH,	н	Ħ	I	Q.	. 73	1660 enla	enlarged peak	214 267	19.000 18 000	
157	н,с сн–сн, н,с	Ξ	E	五	Ç	86	1665	1650	213	18 000 18 000	
159	CH³-(CH²)₃	Ħ	н	H	\bigcirc	66	1680	1660	211 257	19 000 15 000	:
164	Br-CH2	H	Н	正	Ç	134	1670	1640	214 266	22 000 15 000	"

_
=
~
ပ
=
=
-=
-==
~
$\overline{}$
۳
$^{\circ}$
$\overline{}$
_
=
Ħ

	Activity discovered	Antitussive, psychotropic and analgesic		<u>.</u>	:	: .	:	
٧.		14 000 18 500	14 000 18 500	24 000 18 500	14 000 17 500	14 000 16 000	19 000 16 000	
U.V.	А Мах.	214 266	215 268	212	215 268	212 268	210	
	ν-C- Ο amide	enlarged peak	1640	1640	1630	1645	1650	
I.R. cm-1	ν-C- O ketone	1660 enk	1680	1670	1680	1670	1670	
	M.P.	106	66	170	167	125	117	137
	, Y,	\	NH NH	MIT CH'S CH'S	NH-NH2		Ç	Image: Control of the
	Rv	I	五	Ħ	Ξ	Ħ	н	H
	R ""	H	н		Æ	Ħ	Ħ	н
	R".	E	н	н	H	Ħ	3-сн,	3-0CH3
	Rvi	CH,	СН	CH,	CH,	CH,	CH,	CH,
	Code No.	202	203	216	218	219	223	

_
ied
in
E
9
Ξ
ьń
B
T

•									
		Activity discovered	Antitussive, psychotropic and analgesic		•	:	6	:	
	U.V.	و	15 000 17 000	29 000 17 000	27 000 16 000	22 000 13 000	23 000 13 000	25 000 15 000	23 000 15 000
	Ω	у Мах.	210 262	245 273	244 270	214 267	214 267	213 268	214 268
		v-C- amide	1665	1660	1660	1650	1660	1660	1660
IABLE III (Continued)	I.R. cm-	v-C- 0 ketone	1705	1660	1660	1670	1680	1680	1660
]		M.P.	104	86.	109	64	119	82	88
IADLE		λ,	## O33	Ç		Ç		Ç	No.
		Rv	Ξ	王	=	Ħ	Ξ	Ħ	Ħ
	·	R ""	т	н	Œ	—3 СН,	-3 CH ₃	–5 CH ₃	–5 CH ₃
		R."	Ħ			–2 CH ₃	-2 CH,	-2 CH ₃	–2 CH3
		Rvi	сн,	CH,	СН	CH,	CH,	CH,	CH,
		Code No.	256	246	263	287	254	260	- 286

TABLE III (Continued)

							I.R. cm ⁻¹		n	U.V.	
Code No.	R ^{vi}	. ". "	R ""	RV	γ.	M.P.	v-C- ketone	v-C- O amide	А Мах.	و	Activity discovered
261	CH,	–2 CH ₃	Ξ	I		29	1680	1660	21 <i>7</i> 269	19 000 16 000	Antitussive, psychotropic and analgesic
264	сн,	–2 CH ₃	E	I		107	1680	1660	209	20 000 17 000	£
271	CH,	-3 OCH,	Œ	н	Ç,	125	1680	1660	264 302	15 000 9 000	÷
275	CH,	-3 SCH ₃	I	Н	Ç	128	1670	1650	249 27 <u>6</u>	40 000	â
306	CH,	-3 SCH ₃	Ħ	н		130	1660	1660	ı	[
309	ů HD	-2 C ₂ H ₅	-5 CH,	Ħ		95	1660	1660	I	1	:
318	CH,	-2 C ₂ H ₅	–5 CH ₃	Н		96	1670	1650	l		:

.....

ভ
tinue
Con Con
III
3LE
TABL

							I.R. cm-1	1	Ω	U.V.	
Code No.	R ^{vi}	R‴	R ""	R	Τ, , ,	. S.P.	v-C- ketone	ν-C- 	Л Мах.	رد	Activity discovered
304	CH,	Н	Н	Н	NH-CH-CH ₂ SH CO ₂ H 140	SH 140	1660	1660	215 265	13 000 17 000	Antitussive, psychotropic and analgesic
	СН,	–2 Br	Ξ	Ξ	Ç	06	l	I	l	l	•

TABLE IV	13 to 100/2-C-Y
TABLE	RN-C-4312

	Activity discovered	Antitussive and psychotropic	:	:	:	2	:
U.V.	و	22 000 18 000	20 000 16 000	41 000 40 000	22 000 19 000	14 000 15 000	16 000 17 500
U.	λ Мах.	211 283	211 283	211 255	245 280	210	210 283
m ⁻¹	v-C- 0 amide	1650	1650	0	1650	1660	20
I.R. cm ⁻¹	ν-C- O ketone	1670	1675	1650	1680	1690	1650
-	M.P. °C	104	129	140	130	116	130
	Υ,	Ç	Ç		₩ HH	NH NH	\\
	R'''	Ξ.	Ξ	H	Ħ	Ħ	Н
	R""	3 2	н	Ħ	Œ	Œ	н
	R ^{vi}	\bigcirc	0	0		0	
	Code No.	128	129	131	168	167	174

TABLE IV (Continued)

						I.R. cm ⁻¹	,m-1	n	U.V	
Code No.	R ^{vi}	R."	R""	λ,	M.P.	v-C- 0 ketone	ν-C- Ο amide	λ Мах.	و	Activity discovered
237		Н	Н	Q ₁	140	1665	1645	208 288	25 000 18 000	Antitussive and psychotropic
248		Ħ	Ħ	()	130	1665	1645	207 286	26 000 19 000	:

No. 2 + 2 - NA. 2 - NA. 3 - NA
--

I.R. cm ⁻¹ U.V.	v OH v-C-	oxime O amide λ Max. ε 3250 1640 211 45 000 255 40 500	3250 1645 212 22 000 257 18 000	.3250 1650 212 26 000 ", 240 16 000	3250 1645 212 19 500 258 16 000	3300 1660 211 22 000 257 18 000
	.P. C.P.	%.P	147	136	159	144
		, X			Ç	٥
	7	H H	H	#		田
	%	R.""	H	H	Œ ·	æ
	R."	R."	Ħ	Ħ	Ħ	Ħ
	æ'	ж	Ħ	Æ	æ	н
	R ^v i	R ^V I.	CH ₃ CH ₂ CH ₂	\bigcirc	CH3—CH2—CH2	CH ₃ CH ₂
	Code No.	No. 125	127	130	132	135

		Activity discovered	Sedative, antiinflam-	matory, analgesic and anti-		•	:	•
	U.V.	Ų		19 000 15 000			18 000 10 000	21 000 21 000
		Л Мах.		212 268			212 243	213 266
	I.R. cm ⁻¹	ν-C- Ο amide	1635	1650	1635	1640	1635	1640
	I.R.	ν OH oxime	3300	3350	3300	3300	3150	3200
_		 Ω.Ω	150	144	124	147	142	132
TABLE V (Continued)		Υ,	Q	()	Ç _i		Ç	\bigcirc
TA		~	Ξ	Ξ.	H	Ξ	Ħ	н
		R ""	E	=	ж	н	Ξ	Н
		, w	H	H .	ж	н	II.	H.
·		æ°	=	Ħ	Ξ.	ш .	Ξ	Ή
		R ^{vi}	CH3—CH2	CH ₃ -(CH ₂) ₃	H,C CH-CH, H,C	H,C CH-CH,	H,C CH H,C	CH ₃ -(CH ₂);
	·	Code No.	147	152	155	156	160	161

 \bigcirc

		Activity discovered	Sedative, antiinflam- matory, analgesic		:	\$	6	Active on the CNS
	U.V.	¥	18 000 10 000	29 000 16 000	.27 000 19 000	25 000 18 000	15 000 15 000	29 000 17 500
	n.	λ Мах.	210 242	215 259	212 238	210 264	240 263	209
	I.R. cm ⁻¹	ν-C- 0 amide	1660	1630	1630	1640	1640	1660
	I.R.	ν OH oxime	3350	3350	3350	3200	3250	3250
		M.P.	170	182	184	200	194	216
E V CC-ontinued)		Ŕ			Ç	→ HM	\	MIT CH3 CH3
TABLE V		R _v	工	I	I	ж	H	E
	•	R ""	Ħ	н	#	斑	Ξ	H
		R",	ж	Ħ	H	Œ	I	=
		జం	×	H	Ħ	н	I I.	± .
		R ^{vi}	H,C CH	Br-CH,	0	0	0	СН,
		Code No.	177	179	181	183	185	214

•		Activity discovered	Antitussive and psycho- tropic		•	•	í		ć
	U.V.	· •	24 000 9 000	23 000 21 000	21 000 19 000	25 000 17 000	22 000	40 000 15 000	30 000 30 000
•	٦	λ Мах.	210 240	210 265	210 257	211 241	211	212 255	208 242
	cm ⁻¹	ν-C- Ο amide	1650	1620	1640	1640	1640	1630	1640
·	I.R.	ν OH oxime	3300	3200	3300	3300	3300	3250	3200
		M.P.	142	130	162	202	133	164	153
TABLE V (Continued)		λ,						Ç	
3LE		R	H	H	王	I	æ	H	H
TAF		R """	н	E		н	Ξ	—6 CH₃	Ħ
		R""	–3 СН,	H	Ħ	Н	–3 CH ₃	–2 CH ₃	\bigcirc
		R _o	Н	#	E	ж .	Ξ	Ħ	Ħ
		R ^{vi}	СН,	Ħ	СН3	\bigcirc	CH ₃	СН3	СН3
		Code No.	220	236	279	295	258	245	247

		Activity discovered	Antitussive and psycho- tropic	:		•	:	:	2	:
	U,V.	٠	27 000 29 500	28 000	24 000	27 000 17 000	25 000 17 000	25 000	23 000	11 000 4 000
	n	λ Мах.	211 242	212	212	212 258	213 259	225	223	245 282
-	cm-1	v-C- amide	1640	1640	1640	1640	1630	1640	1640	1630
•	I.R.	ν OH oxime	3200	3250	3250	3250	3250	3200	3250	3250
		°. C.P	166	149	166	200	188	163	167	154
TABLE V (Continued)		γ,	0		\bigcirc	Ç	Ç	Ç		Ç
TABL		RV	Η.	芷	出	Ħ	H	Ξ	H	Н
		, W	H	-3 CH,	-3 CH,	. #	Œ	Ħ	#	Ħ
		R."	Q	–2 CH ₃	–2 CH ₃	–2 сн,	-2 CH ₃	-3 SCH	-3 SCH,	-3 OCH3
		ഷ്	·H	н		Ħ	Ħ	н	Ħ	н
	-	R ^{vi}	СН3	њ	ĊH,		E	Ğ.	CH,	CH,
		Code No.	250	262	252	255	257	274	265	284
•										

	Activity discovered	Antitussive and psycho- tropic	:	•				
.V.	و	11 000 4 000	26 000	26,000	36 000	24 000 20 000	23 000 20 000	35 000 20 000
n	А Мах.	245 283	213	213	213	213 263	210 260	21.1 262
cm-1)=0	1640	1630	1640	1620	1640	1640	1630
I.R.	ν OH oxime	3300	3250	3250	l 	l	1	1
	M.P.	153	140	146	125	130	110	125
	· 'A		Ç.		Ç	Ç		
	R	出	×	耳	H	Ξ	H	Ħ
	R ""	Н	-5 СН3	5 CH ₃	Ħ	Œ	π	н
	R.""	–3 осн,	-2 CH;	–2 CH ₃	–3 CH ₃	II.	I	Н
	Ro	Н	н	I	(CHp)2—h	(chp)z-M	сн,-снон-сн,он	$(CH_2)_2$ - h
	R ^v i	CH,	CH³	CH,	CH,	CH,	CH,	CH,
	Code No.	283	300	292	281	251	277	280
	I.R. cm ⁻¹ U.V.	$R^{Vi} \qquad \qquad R_0 \qquad R''' \qquad R''' \qquad R''' \qquad R''' \qquad R''' \qquad R'' \qquad $	$R^{Vi} \qquad R_0 \qquad R''' \qquad R''' \qquad R''' \qquad R'' \qquad Y' \qquad \frac{\Lambda.P.}{^{9}C} \qquad \frac{1.R. cm^{-1}}{^{9}C} \qquad \frac{1.V.}{^{9}C} \qquad \frac{1.8. cm^{-1}}{^{9}C} \qquad \frac{1.0.V.}{^{9}C} \qquad \frac{1.8. cm^{-1}}{^{9}C} \qquad \frac{1.0.V.}{^{9}C} \qquad \frac{1.8. cm^{-1}}{^{9}C} \qquad \frac{1.0.V.}{^{9}C} \qquad \frac{1.0.V.}{^{$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ryi R,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Antitussive and psycho-tropic Activity discovered : U.V. λ Max. 0 amide 1660 1620 1630 I.R. cm⁻¹ oxime 3250 3300 1 но ^д M.P. 126 126 195 TABLE V (Continued) $\vec{\lambda}$ **R** < H H Ξ -5 CH, **18** Ή Ή -2 C₂H₅ R. H Ξ CH, **%** Ξ H CH, R vi Œ, CH, Code No. 320 317

TABLE VI	PIII CH3
TA]	PN-C-4

						· · · · · · · · · · · · · · · · · · ·
	Activity discovered	Normolipemiant	î	£		
U.V.	٤	13 000 19 000	13 000 17 000	15 000 17 000	ı	13 000 16 000
n	λ Мах.	215 269	259 294	222 271	ı	258
-1	v-C- 0 acid	1720	1710	1735	1710	1740
I.R. cm ⁻¹	v-C- O ketone	1670	1640	1640	1660	1630
	M.P.	62	184	86	106	140
	R ^V	CH3	ĞH	CH,	ćH,	CH,
	R"	#	Ξ.	3 СН _{3.}		Ħ
	R ^{vi}	CH3-CH2-CH2	<i>a-b</i>	CH3	· CH,	\bigcirc_{p}
	Code No.	198	153	243		305

	·				I.R. cm ⁻¹	- = o	U.V.		
Code No.	R ^{vi}	R""	Υ,	B.P. or M.P. °C	ketone	ester or amide	λ Мах.	Ų	Activity discovered
140	CH,	н	0-CH3	M.P. = 62	1670	1730	215 267	12 000 17 000	Normolipemiant
162		Ħ	0-Сн,	M.P. = 89	1660	1740	207 284	13 000 12 000	.
163		ж	0-C,H,	M.P. = 79	1665	1735	208 285	19 000 18 000	:
170	Ç	#4	Ç	M.P. = 160	1650	1620	208 287	24 000 .18 000	
171	Ç	н	Q	M.P. = 148	1650	1640	210 285	25 000 20 000	2
190	\bigcirc	н	O-CH CH,	M.P. = 84	1660	1730	207	18 500 18 000	:

ਜ਼ ਜ਼
tinue
<u>5</u>
5
BLE VI

					I.R. cm ⁻¹	- C-			
					,	_0	U.V.	V.	
Code No.	Rvi	R."	, λ	B.P. or M.P.	ketone	ester or amide	λ Мах.	Ę	Activity discovered
209		т	0 - CH_2 - CH_2 - A $fumatate$	M.P. = 118	1655	1740	208 282	44 000 20 000	Normolipemiant and cardio- vascular
210	CH³	T	o-chz-chz-A b, fumatate	M.P. = 134	1670	1740	212 265	32 000 12 000	Normolipemiant
211		E	o-chp-chp-H	M.P. = 115	1650	1740	208 184	33 000 17 000	Normolipemiant and cardio- vascular
212		E	O-CH ₂ -CH ₂ -N,	M.P. = 62	1660	1740	209 283	35 000 18 000	Normolipemiant
217		Ħ	o	M.P. = 135	1645	1760	ı	. 1	:
229		, H	o-cn _e -cn _{e-h}	M.P. = 120	1650	1745	207	33 000 16 000	

`

		Activity discovered	Normolipemiant	2	<u>.</u>		:	:
	U.V.		22 000 17 500	26 000 14 000	12 000 16 000	12 500 16 000	20 000 19 000	20 000 16 000
	n.	А Мах.	286	208	214	212 267	259 285	208 286
	~-C —0	ester or amide	1730	1730	1740	1740	1740	1740
	I.R. cm 1	ketone	1650	1645	1675	1675	1660	1645
VII (Continued)		B.P. or M.P. °C	M.P. = 104	M.P. = 116	M.P. = 72	M.P. = 118	M.P. = 144	M.P. = 145
TABLE		λ,	0-CH ₂ -CH ₂ -N Et	o-che-che-M	0-CH ₂ -CH ₂ -N, HCI	0-042-042-N	0-042	0-CH2-CH2-N 0, HCl
7.		R."	н	æ	#	·Ħ	Ħ	н
		R ^{vi}		\bigcirc_{a}	CH3—(CH2)3	CH,-(CH,),	\bigcirc	
		Code No.	230	231	232	233	238	239

Continued)
IIA
ABLE
\Box

		·	Activity discovered	Normolipemiant	î			· ;	
		U.V.	Ų	17 000 15 500	16 000 16 200	17 000 16 200	22 700 18 000	17 000 16 500	ı
		U.	λ Мах.	208 267	208 267	208	211 257	284	l
	-C -C	=0	ester or amide	1745.	1740	1730	1730	1740	1720
TABLE VII (Continued)	I.R. cm ⁻¹ ~_C~		ketone	1680	1680	1680	1660	1640	1650
			M.P. or B.P.	B.P. _{0.05} = 132	B.P. 0.05 = 136	B.P. _{0.05} = 139		M.P. = 80	BP, = 198
TABI			Υ,'	0-CH ₃	0-C2H5	O-CH CH,	O-CH CH,	CH, 0-CH ₂ -0 ₂ C-C-CH, CH,	O-CH CH,
			R."	-3 CH,	-3 CH3	-3 CH,	-3 CH,	Ħ	-3 SCH ₃
			R ^{vi}	CH,	CH,	CH,			CH ₃
		•	Code No.	240	241	242	253	297	

.

.

		Activity discovered	Normolipemiant	•
	۷.	Ų		[
	U.V.	Л Мах.		۱.
	ν-C =0	ester or . amide	1720	1710
. (pa	I.R. cm ¹	ketone	1690	1660
TABLE VII (Continued)		M.P. or B.P.	M.P. = 86	M.P. = 95
TAI		λ,	O-CH,	O-CH CH,
		R."	–3 SO ₂ CH ₃	\(\rightarrow\)?-
		R ^{vi}	СН3	СН,
		Code No.		

TABLE VIII

CH3	トゥーゥー・ー・	cH3 0
	_ `	
	Y-5-M4	HON

				I.R.	I.R. cm ⁻¹	U.V.	۷.
			2	НО л.	-C- ester		
	R ^{vi}	Åτ	သို	oxime	0 amide	λ Мах.	v
	CH,	0-C ₂ H ₅	106	3200	1730		
	CH3,	0-сн,	102	3200	1730		•
		Ç	184	3260	1620	210	32 000 20 000
a		Q	175	3280	1620	211 246	31 000 20 000
		0-CH2-CH2-N	139	3300	1740	ı	I

55

We make no claim to the compounds claimed in the specification of our prior copending Application No. 3085/70 (1,268,321), which are defined at the beginning of the specification. Subject to this disclaimer,

WHAT WE CLAIM IS:-

1. A phenoxy-alkyl-carboxylic compound of the general formula:

in which each of R" and R', which may be identical or different, is a hydrogen atom or a methyl, ethyl, phenyl, p-chlorophenyl or p-fluorophenyl group; each of R" and , which may be identical or different, is a hydrogen or halogen atom or a C1_8 alkyl, CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH, C₆H₅ or substituted phenyl group; R^{vi} is 10 10 a hydrogen atom, a C1-, alkyl group, an aryl group optionally containing one or more nuclear substituents selected from methyl and trifluoromethyl groups and halogen atoms, a cycloalkyl, hydroxyl or C1-6 alkoxy group, an aryloxy group optionally containing a cycloalkyl, hydroxyl of C_{1-6} alkoly group, an alytoly group optionary contents one or more nuclear substituents, or a cycloalkoxy, cycloalkenyloxy, NR_3R_4 , $NHCH_2CH_2NR_3R_4$ or O-alkylene- NR_3R_4 group; Y' is a hydroxy, C_{1-4} alkoxy, $-NR_3R_4$, $-NHCH_2CH_2NR_3R_4$ or O-alkylene- NR_3R_4 group; X' represents O or NOR_0 ; R_0 is a hydrogen atom or a C_{1-5} alkyl, $-CH_2CH_2NR_3R_4$ or $-CH_2CHOHCH_2OH$ group; and each of R_3 and R_4 , which may be identical or $-CH_2CHOHCH_2OH$ group; and each of R_3 and R_4 , which may be identical or $-CH_2CHOHCH_2OH$ group; and each of R_3 and R_4 , which may be identical or $-CH_2CHOHCH_2OH$ group; and each of R_3 and R_4 , which may be identical or 15 15 different, is a hydrogen atom, a C1-5 alkyl or C3-7 cycloalkyl group or an aryl group optionally containing one or more nuclear substituents selected from halogen atoms and 20 20 methyl and trifluoromethyl groups, or R₃ and R₄ together with the nitrogen atom to which they are attached represent an optionally substituted 5- to 7-membered heterocyclic ring which may contain a second heteroatom selected from O, S and N, or radical of formula -NH(CH2)4CH(NH2)COOH or -NH-CH(COOH)-CH2SH, with the provisos that if R''' and R''' are not both hydrogen, then R^{vi} is methyl or p-chlorophenyl, and that if Y' is hydroxy or alkoxy, R^{vi} is hydrogen or $C_{1-\delta}$ alkyl and one of R'' and R' is hydrogen, the other of R'' and R' is methyl or ethyl. 25 25 2. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, Rvi is a straight- or branched-chain C₁₋₆ alkoxy group or a hydroxyl, amino, monoalkylamino, di (C₁₋₆ alkyl) amino, piperidino, morpholino, azepino, pyrrolidino, piperazino, N'-p-chlorophenylpiperazino, aminoalkoxy, mono- or dialkylaminoalkoxy, piperidino alkoxy, morpholinoalkoxy, azepinoalkoxy, piperazinoalkoxy, aryloxy, p-chlorophenoxy cyclohexyloxy, Δ¹-cyclohexenyloxy, or NHCH₂CH₂NR₃R₄ group; Y' is a hydroxyl, C₁₋₆ alkoxy, NR₂R₄, —NHCH₂CH₂NR₃R₄, O—C₁₋₆ alkylene-NR₂R₄ or cycloalkylamino group or an arylamino group optionally containing one or more puclear substituents selected from 30 35 35 amino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups; X' represents O, and either each of R₃ and R₄ is a hydrogen atom or a C₁₋₅ alkyl group, or R₅ and R₄, together with the nitrogen atom to which they are attached, represent an optionally substituted 40 40 5- to 7- membered heterocyclic ring, which may contain a second heteroatom selected from O, S and N, or radical of formula NH(CH₂)₄CH(NH₂)COOH or —NH—CH(COOH)—CH₂SH. 3. A compound according to Claim 2, in which R' is a phenoxy group. 4. A compound according to Claim 1, in which each of R" and R' is a hydrogen 45 45 atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, R" is a hydrogen atom, a straight- or branched-chain C_{1_5} alkyl group, or an aryl, p-chlorophenyl, cyclohexyl or Δ¹-cyclohexenyl group, Y' is a hydroxyl, C_{1_4} alkoxy, —NR₅R₄, —NHCH₂CH₂NR₃R₄, O—C_{1_4} alkylene-NR₃R₄ or cycloalkylamino group or an aryl-50 50 amino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups, Ro is a hydrogen atom or a C1-s alkyl or CH2CH2NR3R4 group, and R3 and R4 are as defined in Claim 2, with the provisos set forth in Claim 1. 5. A compound according to claim 4, in which R" is a phenyl group. 55

6. A compound according to claim 1, in which each of R" and R" is a fluorine, chlorine or bromine atom.

7. A compound according to Claim 1 or 6, in which Y' is a C1-4 alkoxy group.

	8. A compound according to claim 1, 6 or 7, in which R_0 is a C_{15} alkyl group. 9. A compound according to claim 1, 6, 7 or 8, in which NR_0R_4 is amino, monoor dialkylamino, morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, piperazino, N - p -chlorophenyl-piperazino, N -methylpiperazino, 4-methylpiperidino, anilino,	
5	2,3-dimethylanilino, p-chloroanilino, O-trifluoromethylanilino, p-trifluoromethylanilino,	5
	cyclohexylamino, cyclopentylamino or N-methylanilino.	
	10. N-(p-propionyl-phenoxyacetyl)-morpholine.	
	11. N-(p-benzoyl-phenoxyacetyl)-piperidine.	
	12. N-(p-propionhydroximoyl-phenoxyacetyl)-piperidine.	
10	13. Isopropyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate.	10
	14. p-(4-chlorobenzoyl)-phenoxy-isobutyric acid.	
	15. N-(p-carboxyphenoxy-acetyl)-piperidine.	
	16. Ethyl p-piperidinocarbonyl-phenoxy-acetate.	
	17. N-(p-ethoxycarbonyl-phenoxy-acetyl)-piperidine.	
15	18. An acid addition salt of a compound according to any one of claims 1—9.	15
	19. A compound according to claim 1 or 18 substantially as hereinbefore described.	
	20. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 1, 6—9, 18 and 19.	
	21. A therapeutical composition comprising a pharmaceutically effective amount	
20	of at least one compound according to any one of claims 2, 3 and 15-17.	20
	22. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 4, 5 and 10-14.	

For the Applicants, D. YOUNG & CO., Chartered Patent Agents, 9 & 10 Staple Inn, London WC1V 7RD.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.