Model #101: Credit Card Default Model

Model Development Guide

Mimi Trinh

Section 1: Introduction

The credit card default model in this report is based upon the research aimed at the case of customer default payments in Taiwan. The original study concentrates on comparing the predictive accuracy of probability of default among six data mining methods. However, this study only focuses on developing the most accurate predictive model to forecast default outcome using four predictive models: random forest, gradient boosting, logistic regression with variable selection, and support vector machine (SVM). The measurement metrics used in this study to compare the effectiveness of four models are true positive rate (TPR), false positive rate (FPR), and accuracy.

This study is conducted in multiple phases to approach the problem to develop the most accurate predictive model to forecast default outcome 1) data understanding 2) feature engineering 3) exploratory data analysis (EDA) using traditional and model-based decision tree EDA 4) predictive model development 5) predictive model result comparison. Two major highlights of the study are the facts that model-based decision tree EDA doesn't produce accurate predictive models and the fact that logistic regression with variable selection is the most accurate method to predict default outcome, using both train and test dataset.

Section 2: The Data

The dataset comes in the R data format, which is loaded into R studio to analyze, process, and develop models. The data group variable is constructed to partition the dataset in a single dimension to divide the dataset into three parts: train dataset to develop the models, test dataset to test the model accuracy, and validate dataset to monitor the chosen models. The figure below shows that there are 15,180 observations in the train dataset of 30,000 observations, which

accounts for 50.6% of the total dataset. The test dataset includes 7323 observations, which represent 24.4% of the total dataset. Finally, the validate dataset has 7497 observations, which account for 25% of the total dataset. Sections 2-4 of this paper only focuses on the train dataset.

Figure 1

train	test	validate	Sum
15180	7323	7497	30000

There are 30 variables included in the dataset. Below is the data dictionary table of the default variables.

Figure 2

Variable	Name	Descript
1	ID	Observation identification number
2	LIMIT_BAL	Amount of the given credit (NT dollar in Taiwan), including both
		the individual consumer credit and his/her family (supplementary)
		credit
3	SEX	Gender (1 = male, 2 = female)
4	EDUCATION	Education (1 = graduate school, 2 = university, 3 = high school, 4 =
		others)
5	MARRIAGE	Marital status (1 = married, $2 = \text{single}$, $3 = \text{others}$)
6	AGE	Age (year)
7	PAY_0	Repayment status in September 2015 (-1 = pay duly, 1 = payment
		delay for one month, $2 =$ payment delay for two months,, $9 =$
		payment delay for nine months and above)
8	PAY_2	Repayment status in August 2015 (-1 = pay duly, 1 = payment
		delay for one month, $2 =$ payment delay for two months,, $9 =$
		payment delay for nine months and above)
9	PAY_3	Repayment status in July 2015 (-1 = pay duly, 1 = payment delay
		for one month, $2 =$ payment delay for two months,, $9 =$ payment
		delay for nine months and above)
10	PAY_4	Repayment status in June 2015 (-1 = pay duly, 1 = payment delay
		for one month, $2 = \text{payment delay for two months},, 9 = \text{payment}$
		delay for nine months and above)
11	PAY_5	Repayment status in May 2015 (-1 = pay duly, 1 = payment delay
		for one month, $2 = \text{payment delay for two months},, 9 = \text{payment}$
		delay for nine months and above)
12	PAY_6	Repayment status in April 2015 (-1 = pay duly, 1 = payment delay
		for one month, $2 = \text{payment delay for two months},, 9 = \text{payment}$
		delay for nine months and above)
13	BILL_AMT1	Amount of bill statement in September 2015

14	BILL_AMT2	Amount of bill statement in August 2015
15	BILL_AMT3	Amount of bill statement in July 2015
16	BILL_AMT4	Amount of bill statement in June 2015
17	BILL_AMT5	Amount of bill statement in May 2015
18	BILL_AMT6	Amount of bill statement in April 2015
19	PAY_AMT1	Amount paid in September 2015
20	PAY_AMT2	Amount paid in August 2015
21	PAY_AMT3	Amount paid in July 2015
22	PAY_AMT4	Amount paid in June 2015
23	PAY_AMT5	Amount paid in May 2015
24	PAY_AMT6	Amount paid in April 2015
25	DEFAULT	Binary variable, default payment $(1 = yes, 0 = no)$ as the response
		variable
26	u	Added variable to partition the dataset
27	train	Flag variable to indicate observations in train dataset (1 = train
		dataset, $0 = not in train dataset$
28	test	Flag variable to indicate observations in test dataset (1 = test
		dataset, $0 = not in test dataset$)
29	validate	Flag variable to indicate observations in validate dataset (1 =
		validate dataset, 0 = not in validate dataset)
30	data.group	Added variable to partition the dataset in a single dimension to
		divide the dataset into three parts: train, test, validate

To conduct a data quality check, it's necessary to use the data summary for each variable.

Figure 4

```
> summary(train)
       ID
                   LIMIT_BAL
                                        SEX
                                                      EDUCATION
                                                                        MARRIAGE
Min.
                 Min.
                        : 10000
                                   Min.
                                          :1.000
                                                    Min.
                                                           :0.000
                                                                            :0.000
                                                                                     Min.
                                                                                             :21.00
1st Qu.: 7509
                 1st Qu.: 50000
                                   1st Qu.:1.000
                                                    1st Qu.:1.000
                                                                    1st Qu.:1.000
                                                                                     1st Qu.:28.00
Median :14958
                 Median :140000
                                   Median :2.000
                                                    Median :2.000
                                                                    Median :2.000
                                                                                     Median :34.00
        :14994
                        :168065
                                   Mean
                                          :1.603
                                                    Mean
                                                           :1.847
                                                                    Mean
                                                                            :1.551
                                                                                     Mean
                                                                                             :35.48
                 Mean
                                   3rd Qu.:2.000
3rd Qu.:22472
                 3rd Qu.:240000
                                                    3rd Qu.:2.000
                                                                    3rd Qu.:2.000
                                                                                     3rd Qu.:41.00
        :29999
                         :800000
                                          :2.000
                                                           :6.000
                                                                            :3.000
                 Max.
                                   Max.
                                                    Max.
                                                                    Max.
                                                                                     Max.
                        PAY_2
                                          PAY_3
     PAY_0
                                                             PAY_4
                                                                                PAY_5
                                                                                                   PAY_6
        :-2.00000
                    Min.
                            :-2.000
                                      Min.
                                             :-2.0000
                                                         Min.
                                                                :-2.0000
                                                                            Min.
                                                                                   :-2.0000
                                                                                                      :-2.0000
Min.
                                                                                              Min.
                    1st Qu.:-1.000
                                      1st Qu.:-1.0000
                                                         1st Qu.:-1.0000
                                                                            1st Qu.:-1.0000
1st Qu.:-1.00000
                                                                                               1st Qu.:-1.0000
Median: 0.00000
                    Median : 0.000
                                      Median : 0.0000
                                                         Median : 0.0000
                                                                            Median : 0.0000
                                                                                              Median: 0.0000
        :-0.02009
                    Mean
                            :-0.134
                                      Mean
                                             :-0.1632
                                                         Mean
                                                                :-0.2165
                                                                            Mean
                                                                                   :-0.2611
                                                                                               Mean
                                                                                                      :-0.2868
                    3rd Qu.: 0.000
                                      3rd Qu.: 0.0000
                                                                                               3rd Qu.: 0.0000
3rd Qu.: 0.00000
                                                         3rd Qu.: 0.0000
                                                                            3rd Qu.: 0.0000
        : 8.00000
                                                                : 8.0000
                                                                                   : 8.0000
                            : 8.000
                                             : 8.0000
Max.
                    Max.
                                      Max.
                                                         Max.
                                                                            Max.
                                                                                              Max.
                                                                                                        8.0000
  BILL_AMT1
                     BILL_AMT2
                                       BILL_AMT3
                                                         BILL_AMT4
                                                                            BILL_AMT5
                                                                                              BILL_AMT6
Min.
        :-165580
                   Min.
                          :-69777
                                     Min.
                                            :-61506
                                                       Min.
                                                              :-170000
                                                                          Min.
                                                                                 :-61372
                                                                                           Min.
                                                                                                   :-339603
1st Qu.:
            3528
                   1st Qu.:
                              3010
                                     1st Qu.: 2772
                                                       1st Qu.:
                                                                  2418
                                                                          1st Qu.: 1754
                                                                                           1st Qu.:
                                                                                                       1320
                   Median : 21492
                                     Median : 20089
Median :
           22576
                                                       Median :
                                                                 19106
                                                                          Median : 18138
                                                                                                      17112
                                                                                           Median :
           51218
                          : 49297
                                            : 47021
                                                                 43197
                                                                          Mean
                                                                                 : 40154
                                                                                                      38722
Mean
                   Mean
                                     Mean
                                                       Mean
                                                                                           Mean
                                                                          3rd Qu.: 49858
3rd Qu.:
           66608
                   3rd Qu.: 63659
                                     3rd Qu.: 59596
                                                       3rd Qu.:
                                                                 53914
                                                                                            3rd Qu.:
                                                                                                      48932
       : 626648
                                                              : 628699
                                                                                :823540
                                                                                                  : 699944
Max.
                   Max.
                         :624475
                                     Max.
                                            :632041
                                                       Max.
                                                                          Max.
                                                                                            Max.
   PAY_AMT1
                     PAY_AMT2
                                        PAY_AMT3
                                                          PAY_AMT4
                                                                            PAY_AMT5
                                                                                                PAY_AMT6
Min.
                  Min.
                                 0
                                     Min.
                                                   0
                                                       Min.
                                                                    0
                                                                         Min.
                                                                                      0.0
                                                                                            Min.
1st Qu.:
           1000
                  1st Qu.:
                               836
                                     1st Qu.:
                                                 396
                                                       1st Qu.:
                                                                  281
                                                                         1st Qu.:
                                                                                    273.5
                                                                                            1st Qu.:
                                                                                                        138
           2129
                  Median :
                              2011
                                     Median :
                                               1800
                                                       Median :
                                                                 1500
                                                                         Median :
                                                                                   1506.5
                                                                                            Median :
                                                                                                       1500
Median :
           5658
                              5872
                                     Mean
                                               5149
                                                       Mean
                                                                 4806
                                                                         Mean
                                                                                   4712.8
                                                                                                       5334
                  Mean
                                                                                            Mean
3rd Qu.:
           5002
                  3rd Qu.:
                              5000
                                     3rd Qu.:
                                               4500
                                                       3rd Qu.:
                                                                 4000
                                                                         3rd Qu.:
                                                                                   4016.8
                                                                                             3rd Qu.:
                                                                                                       4005
        :873552
                  Max.
                          :1215471
                                     Max.
                                            :889043
                                                       Max.
                                                               :621000
                                                                         Max.
                                                                                :417990.0
                                                                                            Max.
                                                                                                    :443001
   DEFAULT
                                                                   validate
                                                                               data.group
                                            train
                        u
                                                         test
                                                                        :0
        :0.0000
                          :0.0000251
                  Min.
                                       Min.
                                               :1
                                                   Min.
                                                           :0
                                                                Min.
                                                                             Min.
                                                                                    :1
Min.
1st Qu.:0.0000
                  1st Qu.:0.1263411
                                                    1st Qu.:0
                                                                1st Qu.:0
                                                                             1st Qu.:1
                                       1st Qu.:1
                  Median :0.2524615
                                                    Median :0
Median :0.0000
                                       Median :1
                                                                Median :0
                                                                             Median :1
        :0.2255
                          :0.2514970
                                       Mean
                                               :1
                                                    Mean
                                                           :0
                                                                        :0
                                                                             Mean
                                                                                    :1
Mean
                  Mean
                                                                Mean
3rd Qu.:0.0000
                  3rd Qu.:0.3777524
                                       3rd Qu.:1
                                                    3rd Qu.:0
                                                                 3rd Qu.:0
                                                                             3rd Qu.:1
        :1.0000
                  Max.
                          :0.4999846
                                       Max.
                                                    Max.
                                                           :0
                                                                Max.
                                                                        :0
                                                                             Max.
```

From the data summaries above, the data quality check shows that there is no missing value in the dataset. However, there are data integrity issues in the dataset. In other words, the dataset is dirty, especially in variables EDUCATION, MARRIAGE, PAY 0-6, and BILL_AMT 1-6.

Therefore, it's necessary to do a brief analysis and check each variable before conducting any indepth exploratory data analysis (EDA) or building any predictive model.

First, it's necessary to convert the DEFAULT variable from numeric values to factor values since this is a nominal variable. The table below shows that among 15,180 observations in the train dataset, only 3423 observations or 22.55% actually default on their payment. We can conclude that majority of the observations do not default on their payment. The fact that the two

classes within the response variable are not equally distributed is an important note to keep in mind as we build predictive models in section 5 of this report.

Figure 5

Second, it's necessary to convert the numeric values in the SEX column into factor values since this is a nominal variable. The table below shows that 40% of the observations are male and 60% of them are female, which is close to the 50-50 equal split between the two classes.

Figure 6

Third, it's necessary to convert the numeric values to factor values in the EDUCATION column because it's a nominal variable. Below is the breakdown of all levels within this variable. However, this variable has dirty data because the dataset has seven classes from 0 to 6 whereas the provided data dictionary only has four levels from 1 to 4.

Figure 7

Fourthly and similarly, we have to convert the numeric values to factor values in MARRIAGE variable. Below is the breakdown of all levels in the MARRIAGE column. Again, there's a data discrepancy here in which the dataset has four levels from 0 to 3 whereas the data dictionary only has three levels from 0 to 3.

Figure 8

Fifthly, it's necessary to convert numeric values to factor values in all fix variables PAY 0-6 because they represent nominal variables. There are data discrepancies in these columns as well since the data dictionary only has -1 and positive values whereas the dataset has -1, -2, 0, and positive values.

In order to clean the dataset and fix these data discrepancy issues, it's necessary to run a brief EDA to determine how we should handle the dirty observations. It's bad practice to simply delete these dirty observations. Rather we should conduct a brief EDA to understand their patterns to determine how to best remap them.

Starting with the EDUCATION variable, below is the breakdown of default rate for each class within the variable.

Figure 9

Class	0	1	2	3	4	5	6
Default rate	0%	20%	24%	26%	8%	9%	9%

The dataset has seven classes from 0 to 6 whereas the data dictionary only has four classes from 1 to 4 with 4 being the unknown category. Since categories 5 and 6 have the default rate very close to category 4, it's safe to remap them into category 4 of others. Since there are only seven observations in category 0, it's a very small sample size, so we will remap category 0 into category 4 of others. Thus, overall, observations in category 0, 5, 6 will be remapped into category 4 of others.

Next regarding the MARRIAGE variable, below is the breakdown of default rate for each class within the variable.

Figure 10

Category	0	1	2	3
Default rate	3%	24%	21%	25%

Since category 0% has a default rate that's very different from the remaining categories, we can conclude that this category behaves very differently from the other three categories. Therefore, it's bad practice to map observations in category 0 into category 3 of others. Therefore, we will leave this variable the way it is and consult the industry expert to understand what this category means since it's not reported in the data dictionary.

Then, regarding the PAY 0-6 variables, first it's necessary to convert the variable PAY_0 to PAY_1 to keep the naming consistent among the variables. Then we need to determine how to handle observations with values of -2 and 0 since the data dictionary doesn't have these values. Since all PAY 1-6 variables have a similar pattern in which the majority of the observations fall in the categories of -2, -1, 0, and 1, it's only necessary to conduct a brief EDA on the default rate of observations with values of -2, -1, 0, 1, and 2 in the first PAY variable. Below is the breakdown.

Figure 11

Class	-2	-1	0	1	2
Default rate	13%	14%	17%	34%	70%

Since the default rates for values -2 and 0 are very close to the default rate for 1 category, we can conclude that these three categories behave similarly. Thus, we can remap observations with categories of -2 and 0 to category -1, which means customers paying duly.

Finally, it's interesting to see negative values in the variables BILL_AMT 1-6. However, after conducting research in consumer credit, it's possible to have a negative bill statement if the customer overpays the bill and/or if the customer has a credit back for certain items on their accounts. Therefore, it's reasonable and permissible to have negative account balance.

Section 3: Feature Engineering

In this project, we need to engineer additional features from the variables provided. First, the AGE variable by default has the age measured in years. The min AGE in the dataset is 21 and max is 75, so we bin the variable into four categories 1) young adults 25 years old and less 2) adults 26-40 years old 3) middle age 41-64 years old 4) the elder 65 and over.

Second, we add the following additional variables to the dataset.

- AVG_BILL_AMT: average bill amount by averaging the monthly bill amount (expenditure) over the six months
- AVG_PAY_AMT: average payment amount can be used as a prxy for income or ability to pay
- PAY_RATIO 1-5: how much of each bill does the customer pay each month? Do they
 pay in full or less than the full amount? Since there's a time delay here, PAY_RATIO1 =
 PAY_AMT1 / BILL_AMT2, and so on. For N/A values in these variables with 0
 payment / 0 bill, we define them as 100
- AVG PAY RATIO: average of the five payment ratio variables above
- AVG_UTIL 1-6: utilization of how much of the credit line the customer is using.
 Utilization = current balance / credit limit
- AVG UTIL: average utilization of the six utilization variables above
- BILL_GROWTH 2-6: the balance growth of each month. BILL_GROWTH2 = BILL_AMT2 BILL_AMT1
- UTIL_GROWTH 2-6: the utilization growth of each month. UTIL_GROWTH2 = UTIL2
 UTIL1
- MAX BILL AMT: the max billed amount over the six months

• MAX_PAY_AMT: the max payment amount over six months

• DLQ 1-5: delinquency of each month. Negative values mean customer owe money

whereas positive values mean customer overpay. DLQ1 = PAY_AMT1 – BILL_AMT2

• MAX DLQ: maximum of delinquency amount over months

Since we engineer features, we don't use the raw variables in the predictor pool anymore. Instead

we use the engineer features to replace the raw variables to build the predictive models. For

example, instead of using the six raw variables of payment amount, we use the average and max

payment amount.

Section 4: Exploratory Data Analysis (EDA)

Section 4a: Traditional EDA

Below are the data summaries to act as a data quality check for the engineered features. From the

results below, there's no issue with the engineered features.

Figure 12

10

```
LIMIT_BAL
                         SEX EDUCATION MARRIAGE AGE
   ID
                                                         PAY_1
Min. : 1 Min. : 10000 1:6020 1:5389 0: 29 1:1964 -1 :11742 -1 :12944
1st Qu.: 7509
            1st Qu.: 50000
                        2:9160 2:7115
                                         1:6939 2:9041 1
                                                             : 1874 2
                                                                         : 1981
Median :14958
            Median :140000
                                3:2443
                                         2:8037 3:4117
                                                       2
                                                            : 1340 3
                                                                        : 159
Mean :14994
            Mean :168065
                                4: 233
                                         3: 175 4: 58
                                                       3
                                                            : 153 4
                                                                        : 54
                                                                        : 15
3rd Ou.:22472
            3rd Ou.:240000
                                                       4
                                                            : 39 1
                                                                        : 13
Max. :29999
            Max. :800000
                                                       5
                                                            :
                                                                13 5
                                                       (Other):
                                                                19 (Other): 14
  PAY_3
               PAY_4
                            PAY_5
                                         PAY_6
                                                                BILL_AMT2
                                                    BILL_AMT1
                        -1 :13651 -1 :13617 Min. :-165580 Min. :-69777
-1 :13041
            -1 :13382
                              : 1365 2
2
     : 1935
            2
                  : 1622
                         2
                                           : 1406  1st Qu.: 3528  1st Qu.: 3010
                                          : 91 Median : 22576 Median : 21492
                  : 88
                             : 89 3
     : 129
3
            3
                         3
                                              26 Mean : 51218 Mean : 49297
     : 39
                  : 38 4
                              : 36 7
                                          :
4
            4
     : 14
                              : 30 4
                                           : 23 3rd Qu.: 66608 3rd Qu.: 63659
7
                  : 30 7
            7
                             : 7 6 : 10 Max. : 626648 Max. :624475
     : 10
            5 : 15 5
            (Other): 5 (Other): 2 (Other): 7
(Other): 12
                         BILL_AMT5 BILL_AMT6
                                                       PAY_AMT1
BILL_AMT3
            BILL_AMT4
                                                                     PAY_AMT2
           Min. :-170000 Min. :-61372
                                         Min. :-339603
Min. :-61506
                                                       Min. : 0 Min. :
            1st Qu.: 2418 1st Qu.: 1754
1st Qu.: 2772
                                         1st Qu.: 1320
                                                       1st Qu.: 1000
                                                                    1st Qu.:
                                                                              836
            Median : 19106
                                         Median : 17112
                          Median : 18138
Median : 20089
                                                       Median : 2129
                                                                     Median :
                                                                              2011
             Mean : 43197
                           Mean : 40154
                                         Mean : 38722
                                                       Mean : 5658
Mean : 47021
                                                                    Mean :
            3rd Qu.: 53914 3rd Qu.: 49858
                                         3rd Qu.: 48932
                                                       3rd Qu.: 5002
                                                                    3rd Qu.: 5000
3rd Qu.: 59596
Max. :632041 Max. : 628699 Max. :823540 Max. : 699944
                                                       Max. :873552 Max. :1215471
                           PAY_AMT5
             PAY_AMT4
                                                       DEFAULT
 PAY_AMT3
                                          PAY_AMT6
                          Min. : 0.0 Min. : 0 0:11757
                                                               Min. :0.0000251
Min. : 0 Min. : 0
             1st Qu.: 281
                          1st Qu.: 273.5
                                        1st Qu.: 138 1: 3423 1st Qu.:0.1263411
1st Qu.:
       396
                          Median: 1506.5 Median: 1500
Mean: 4712.8 Mean: 5334
3rd Qu.: 4016.8 3rd Qu.: 4005
             Median : 1500
                                        Median : 1500
Median : 1800
                                                               Median :0.2524615
Mean : 5149
             Mean : 4806
                                                               Mean :0.2514970
             3rd Qu.: 4000
3rd Ou.: 4500
                                                               3rd Qu.:0.3777524
                          Max. :417990.0 Max. :443001
Max. :889043 Max. :621000
                                                               Max. :0.4999846
 train
                   validate data.group AVG_BILL_AMT
                                                    AVG_PAY_AMT
                                                                  PAY_RATI01
         test
Min. :1 Min. :0
                  Min. :0 Min. :1 Min. :-56043
                                                    Min. : 0 Min. :-497.8000
1st Qu.:1
         1st Qu.:0
                  1st Qu.:0
                            1st Qu.:1
                                      1st Qu.: 4789
                                                    1st Qu.: 1112
                                                                 1st Ou.: 0.0432
Median :1
         Median :0
                   Median :0
                            Median :1
                                      Median : 21198
                                                    Median : 2389
                                                                  Median :
                                                                          0.0908
Mean :1
                            Mean :1
                                                                  Mean :
         Mean :0
                   Mean :0
                                      Mean : 44935
                                                    Mean : 5255
                                                                          1.0000
         3rd Ou.:0
                   3rd Ou.:0
                            3rd Ou.:1
                                      3rd Ou.: 56880
                                                    3rd Ou.: 5554
3rd Ou.:1
                                                                  3rd Ou.:
Max. :1 Max. :0 Max. :0 Max. :1
                                      Max. :592432 Max. :627344 Max. : Inf
```

PAY_RATIO2	PAY_RATIO3	PAY_RATIO4	PAY_RATIO5	AVG_PAY_RATIO
Min. :-40.75000	Min. :-500.0000	Min. :-3.03e-	+03 Min. :-31.0	2329 Min. :-605.4581
1st Qu.: 0.04285	1st Qu.: 0.0368	1st Qu.: 3.60e	-02 1st Qu.: 0.0	3735 1st Qu.: 0.0470
Median : 0.09091	Median : 0.0762	Median : 6.77e	-02 Median : 0.0	7791 Median: 0.1584
Mean : Inf	Mean : Inf	Mean :	Inf Mean :	Inf Mean : Inf
3rd Qu.: 1.00000			+00 3rd Qu.: 1.0	0000 3rd Qu.: 1.0004
Max. : Inf	Max. : Inf	Max. :	Inf Max. :	Inf Max. : Inf
UTTL 4	UTT 2	UTTI 3	UTTLA	LITTLE
	UTIL2			
Min. :-0.61989	Min. :-1.39554			
1st Qu.: 0.02191	1st Qu.: 0.01863	1st Qu.: 0.0162		
Median : 0.31646	Median : 0.29684	Median : 0.2752		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Mean : 0.42435	Mean : 0.41252	Mean : 0.3920		
3rd Qu.: 0.83020	3rd Qu.: 0.81098	3rd Qu.: 0.7532	•	-
Max. : 6.45530	Max. : 6.38050	Max. : 5.3914	Max. : 5.14685	Max. : 4.92625
UTIL6	AVG_UTIL	BILL_GROWTH2	BILL_GROWTH3	BILL_GROWTH4
Min. :-1.212868				
1st Qu.: 0.008023	1st Qu.: 0.03114	1st Qu.: -2145	1st Qu.: -2596	1st Qu.: -3434
Median : 0.184772	Median : 0.28614	Median: 0	Median: 0	Median: 0
Mean : 0.318171	Mean : 0.37306	Mean : -1920	Mean : -2276	Mean : -3823
3rd Qu.: 0.582484	3rd Qu.: 0.68764	3rd Qu.: 1572	3rd Qu.: 1389	3rd Qu.: 1022
Max. : 3.885550	Max. : 5.36431	Max. : 489972	Max. : 391348	Max. : 429981
BILL_GROWTH5		UTIL_GROWTH2		
Min. :-432730		in. :-2.63080	Min. :-4.91340	Min. :-3.02322
1st Qu.: -2705		st Qu.:-0.01986	1st Qu.:-0.02349	1st Qu.:-0.02800
Median : 0		ledian : 0.00000	Median : 0.00000	Median : 0.00000
Mean : -3043		lean :-0.01182	Mean :-0.02049	Mean :-0.03277
3rd Qu.: 996	-	rd Qu.: 0.01731	3rd Qu.: 0.01496	3rd Qu.: 0.01078
Max. : 341696	Max. : 381629 M	ax. : 1.63324	Max. : 1.98697	Max. : 1.68050

UTIL1	UTIL2	UTIL3	UTIL4	UTIL5	
Min. :-0.61989	Min. :-1.39554	Min. :-1.0251	Min. :-1.04330	Min. :-0.8767	4
1st Qu.: 0.02191	1st Qu.: 0.01863	1st Qu.: 0.0162	1st Qu.: 0.01539	1st Qu.: 0.0111	3
Median : 0.31646	Median : 0.29684	Median : 0.2752	Median : 0.24000	Median : 0.2110	4
Mean : 0.42435	Mean : 0.41252	Mean : 0.3920	Mean : 0.35926	Mean : 0.3320	3
3rd Qu.: 0.83020	3rd Qu.: 0.81098	3rd Qu.: 0.7532	3rd Qu.: 0.66542	3rd Qu.: 0.6025	5
Max. : 6.45530	Max. : 6.38050	Max. : 5.3914	Max. : 5.14685	Max. : 4.9262	5
UTIL6	AVG_UTIL	BILL_GROWTH2	BILL_GROWTH3	BILL_GROWTH4	
Min. :-1.212868	Min. :-0.23259				
1st Qu.: 0.008023	1st Qu.: 0.03114	1st Qu.: -2145	1st Qu.: -2596	1st Qu.: -3434	
Median : 0.184772	Median : 0.28614	1 Median: 0	Median: 0	Median : 0	
Mean : 0.318171					
	3rd Qu.: 0.68764				
Max. : 3.885550	Max. : 5.36431	L Max. : 489972	Max. : 391348	Max. : 429981	
		UTIL_GROWTH2			
Min. :-432730		Min. :-2.63080			
1st Qu.: -2705	1st Qu.: -1625	1st Qu.:-0.01986	1st Qu.:-0.02349	1st Qu.:-0.02800	
Median : 0		Median : 0.00000	Median : 0.00000	Median : 0.00000	
Mean : -3043		Mean :-0.01182	Mean :-0.02049	Mean :-0.03277	
3rd Qu.: 996	3rd Qu.: 1184	3rd Qu.: 0.01731	3rd Qu.: 0.01496	3rd Qu.: 0.01078	
Max. : 341696	Max. : 381629	Max. : 1.63324	Max. : 1.98697	Max. : 1.68050	
LITTI CROUTLIE	LITTI CROUTUS			51.04	51.63
		MAX_BILL_AMT			
Min. :-1.99750		Min. : -2900	Min. : 0	Min. :-597607	Min. :-609666
1st Qu.:-0.02220	•	•	1st Qu.: 2196		1st Qu.: -53412
Median : 0.00000			Median : 5000	Median : -16804	Median : -16070
Mean :-0.02723			Mean : 15621	Mean : -43640	Mean : -41149
3rd Qu.: 0.01021			3rd Qu.: 12201	3rd Qu.: 0	3rd Qu.: 0
Max. : 2.02000	Max. : 2.00897	Max. :823540	Max. :1215471	Max. : 696809	Max. :1181069
DI 03	DI 04	DLQ5	MAY DIO		
Min. :-622699			Min. :-823540.0		
1st Qu.: -48270			1st Qu.: -66104.5		
Median : -15220	•	•	Median : -23012.0		
Mean : -38048			Mean : -49998.7		
3rd Qu.: 0	3rd Qu.: 0		3rd Qu.: -767.2		
Max. : 683112	Max. : 355569		Max. : 4341.0		
PMA: . 003112	Max 333303	MAA 333003	-ux +J+1.0		

The LIMIT_BAL variable has the mean of \$179,039 under the no default group and of \$130,371 under the default group. The 25th, 50th, and 75th limit credit for the no default group are \$70,000, \$150,000, and \$260,000 whereas for the default group are \$50,000, \$90,000, and \$200,000. Therefore, the customers in default tend to have a lower credit limit, perhaps because they have a bad credit history, so they can't obtain a higher credit limit.

Figure 13

Default by Limit Balance

Among those in no default, 38% are male. Among those in default, 44% are male. Among both groups, 40% are male. Thus, the relationship between gender and payment default is not clear.

Figure 14

	male	female	Sum
no default	4523	7234	11757
default payment	1497	1926	3423
Sum	6020	9160	15180

Figure 15

Among both default and no default groups, majority observations belong to the graduate school and university classes. The relationship between education and default payment thus is unclear.

Figure 16

	graduate	school	university	high	school	others	Sum
no default		4335	5403		1806	213	11757
default payment		1054	1712		637	20	3423
Sum		5389	7115		2443	233	15180

Figure 17

Similarly, we only have a few others and unknown observations in the MARRIAGE variable. There are more single observations than married, but the proportion is similar between default and no default group. Thus, the relationship between marriage and default payment is unclear.

	unknown	married	single	others	Sum
no default	28	5277	6321	131	11757
default payment	1	1662	1716	44	3423
Sum	29	6939	8037	175	15180

Figure 19

Figure 18

Similarly, using the figure below, both the default and no default groups have the same distribution of age. Thus, there's no clear relationship between age and default payment.

Figure 20

Under the no default group, the average bill amount is \$ 45,119.49 whereas the mean for the default group is \$44,300.94. The 25th, 50th, 75th percentile of average bill amount for the no default group are \$5,040.66, \$21,558.16, and \$57,864.66 whereas for the default group are \$3,700.66, \$20,261.83, and \$51,184.16. The min value for the default group is lower than that of the no default group, and the no default group has a larger outlier range than the default group. However, there's still no clear relationship between the bill amount and default payment.

Figure 20

Default by Average Balance

The average payment amount under no default group is \$5,808.24 and under the default group is \$3,355.24. The 25th, 50th, and 75th percentile of payment amount under the no default group are \$1,236.16, \$2,750.00, \$6,194.33 and under the default group are \$811.66, \$1,614.50, \$3,578.33. Under the no default group, there's a significant upper outlier that skews the dataset. If we remove this outlier, the payment of the no default group is higher than that of the default group. Therefore, perhaps customers who pay less amount tends to pay default customers.

Figure 21

The average utilization among no default group is 35% and among the default group is 45%, which is a 10% difference. The 25th, 50th, 75th utilization percentile in the no default group are 3%, 24%, 65% and in the default group are 4%, 46%, 79%. Perhaps people who utilize less of their credit limit are more likely to default on payment.

Figure 22

Default by Average Utilization

Section 4b: Model Based EDA

When we fit a decision tree using rpart and plot the tree dendogram in R, we have the following result.

Figure 23

Decision Tree

The decision tree result above keys on the variable PAY_1 or the payment status of the month of September. So we go back to the dataset to plot this variable to see a separation between two classes of the variable.

Figure 24

	no	default	default	payment	Sum
pay in full		10053		1689	11742
1 month late		1246		628	1874
2 month late		403		937	1340
3 month late		35		118	153
4 month late		8		31	39
5 month late		7		6	13
6 month late		3		4	7
7 month late		0		6	6
8 month late		2		4	6
Sum		11757		3423	15180

Figure 25

Using the results above, among those with no default, 86% paid in full in September. Among those with default payment, only 49% paid in full in September. Thus, perhaps customers who fail their payment right at the beginning are more likely to default on their payment later on.

```
OneR.formula(formula = DEFAULT ~ LIMIT_BAL + SEX + EDUCATION +
    MARRIAGE + AGE + AVG_BILL_AMT + AVG_PAY_AMT + AVG_UTIL +
    MAX_BILL_AMT + MAX_PAY_AMT + MAX_DLQ, data = model_train,
    verbose = TRUE)
Rules:
If LIMIT_BAL = (9.21e+03, 1.68e+05] then DEFAULT = 0
If LIMIT_BAL = (1.68e+05, 3.26e+05] then DEFAULT = 0
If LIMIT_BAL = (3.26e+05,4.84e+05] then DEFAULT = 0
If LIMIT_BAL = (4.84e+05,6.42e+05] then DEFAULT = 0
If LIMIT_BAL = (6.42e+05, 8.01e+05] then DEFAULT = 0
11757 of 15180 instances classified correctly (77.45%)
Contingency table:
      LIMIT_BAL
DEFAULT (9.21e+03,1.68e+05] (1.68e+05,3.26e+05] (3.26e+05,4.84e+05] (4.84e+05,6.42e+05,8.01e+05]
                     * 6236
                                        * 3750
                                                            * 1330
                                                                                 * 418
                                                                                                      * 23
    0
    1
                       2403
                                                               221
                                                                                    57
                      8639
                                          4488
                                                               1551
                                                                                   475
                                                                                                        27
      LIMIT_BAL
DEFAULT Sum
    0 11757
    1
        3423
    Sum 15180
Maximum in each column: '*'
Pearson's Chi-squared test:
X-squared = 325.36, df = 4, p-value < 2.2e-16
```

Using OneR to build model-based decision tree EDA, the result above shows that the model is statistically significant with p-value less than 0.05 alpha. The model has a high accuracy because its accuracy is 77.45%.

OneR model diagnostic plot

Furthermore, to analyze the model deeper, by examining the OneR plot above, the most significant predictor to forecast DEFAULT is the LIMIT_BAL variable, which means that the limit balance of an individual is a good indicator to determine whether the individual will default on their credit card payments.

```
Confusion matrix (absolute):
          Actual
Prediction
                      1
                           Sum
           11757
                   3423 15180
       0
       Sum 11757 3423 15180
Confusion matrix (relative):
          Actual
Prediction
                    1
                       Sum
       0
           0.77 0.23 1.00
           0.00 0.00 0.00
       Sum 0.77 0.23 1.00
Accuracy:
0.7745 (11757/15180)
Error rate:
0.2255 (3423/15180)
Error rate reduction (vs. base rate):
0 \text{ (p-value = } 0.5046)
```

Thus far, the OneR decision tree model is proven solid. However, when the confusion matrix above is examined, the model doesn't perform as well as expected. Specifically, the model has a high accuracy metric because it predicts all cases to be under no default, which is the majority of the actual observations. Therefore, the OneR decision tree model is actually useless because it doesn't predict anything at all. It simply mirrors after the actual breakdown of default vs. no default in the response variable.

In conclusion, the decision tree results above are interesting but should not be used alone as the predictive model for this project. Therefore, it's necessary to build other more sophisticated

predictive models such as random forest, gradient boosting, logistic regression, and neural networks, which are presented in section 5 of this report.

Section 5: Predictive Modeling – Methods and Results

In this section, four predictive models are developed 1) random forest 2) gradient boosting 3) logistic regression with variable selection 4) support vector machine. For each model, relevant and useful mode output, in-sample model performance results on train dataset, and out-of-sample performance results on test dataset are presented. Three universal metrics are utilized to measure and compare four models' performance, including 1) true positive rate (TPR) 2) false positive rate (FPR) 3) accuracy.

Section 5a: Model #1 - Random Forest

A random forest is developed using the train dataset with 300 trees.

Figure 26

The variable importance plot is an expected output for random forest modeling. There are two approaches or two types of measurement utilized in a variable importance plot: accuracy and gini. Accuracy tests to see how worse the model performs without each variable. Gini goes deeper into decision tree to measure how pure the nodes are at the end of each tree. Both measurements indicate that the higher the score, the more significant the variable. In the variable importance plot above, we can conclude the following about the predictors.

- The most significant variable is AVG_PAY_AMT or the average payment amount
- The payment-related predictors are also significant
- The demographic variables, however, are not significant, including AGE, MARRIAGE,
 SEX, EDUCATION

Figure 27

predict1train	No	Default Actual	Default Actual	Sum
No Default Predicted		11748	91	11839
Default Predicted		9	3332	3341
Sum		11757	3423	15180

Using the classification above, we can calculate the following performance metrics for the train dataset.

- TPR = 3332 / 3423 = 97.34%
- FPR = 9 / 11,757 = 0.0766%
- Accuracy = (11,748 + 3332) / 15,180 = 99.34%

Figure 28

predict1test	No	Default	Actual	Default	Actual	Sum
No Default Predicted			5549		1348	6897
Default Predicted			217		209	426
Sum			5766		1557	7323

Using the classification above, we can calculate the following performance metrics for the test dataset.

- TPR = 209 / 1557 = 13.42%
- FPR = 217 / 5766 = 3.7634%
- Accuracy = (5549 + 209) / 7323 = 78.63%

Section 5b: Model #2 - Gradient Boosting

In this model, a cutoff of 0.4633751 is utilized to determine the classification of the predicted values with 0 as no default and 1 as default payment.

Figure 29

predict2train	No	Default Actual	Default Actual	Sum
No Default Predicted		11570	3155	14725
Default Predicted		187	268	455
Sum		11757	3423	15180

The classification table is used to calculate the following performance metrics for the train dataset using gradient boosting model.

- TPR = 268 / 3423 = 7.8294%
- FPR = 187 / 11,757 = 1.5905%
- Accuracy = (11,570 + 268) / 15,180 = 77.98%

Figure 30

predict2test	No	Default	Actual	Default	Actual	Sum
No Default Predicted			5666		1433	7099
Default Predicted			100		124	224
Sum			5766		1557	7323

The classification table above is used to calculate the following performance metrics for the test dataset.

- TPR = 124 / 1557 = 7.964%
- FPR = 100 / 5766 = 1.7343%
- Accuracy = (5666 + 124) / 7323 = 79.07%

Section 5c: Mode #3 – Logistic Regression with Variable Section

Using the results of the first two models of random forest and gradient boosting, we identify a pool of interesting predictors to use in the logistic regression model. Specifically, we remove the four insignificant demographic variables MARRIAGE, AGE, SEX, EDUCATION and leave the seven payment-related predictors remain in the predictor pool to develop a logistic regression

model. Then among these seven variables, we use the stepwise automatic variable selection method to arrive at the optimal logistic regression model.

```
Figure 31
Call:
alm(formula = DEFAULT ~ LIMIT_BAL + AVG_BILL_AMT + AVG_PAY_AMT +
    AVG_UTIL + MAX_BILL_AMT + MAX_PAY_AMT + MAX_DLQ, family = binomial(),
    data = model_train)
Deviance Residuals:
    Min
                   Median
              10
                                30
                                        Max
-1.4782 -0.7867 -0.6500
                          -0.2307
                                     4.9009
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.342e-01 5.612e-02 -14.865 < 2e-16 ***
             -1.960e-06 2.622e-07 -7.473 7.82e-14 ***
LIMIT_BAL
AVG_BILL_AMT 9.209e-06 1.826e-06
                                     5.043 4.59e-07 ***
AVG_PAY_AMT -1.787e-04 1.638e-05 -10.905 < 2e-16 ***
                                     3.190 0.00142 **
AVG_UTIL
              2.838e-01 8.895e-02
MAX_BILL_AMT -8.600e-06 1.719e-06 -5.003 5.65e-07 ***
MAX_PAY_AMT
              2.970e-05 3.125e-06
                                    9.504 < 2e-16 ***
MAX_DLQ
             -4.876e-06 2.102e-06 -2.319 0.02037 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 16205 on 15179 degrees of freedom
Residual deviance: 15464 on 15172 degrees of freedom
AIC: 15480
```

Number of Fisher Scoring iterations: 6

The result above shows that all seven predictors are statistically significant at 95% confidence level, each with p-value less than 0.05 alpha. Thus, the stepwise automatic variable selection algorithm indicate that all variables in the model are significant. Among these seven predictors, LIMIT_BAL, AVG_PAY_AMT, MAX_BILL_AMT, MAX_DLQ have negative coefficients,

which meant that they have a negative correlation with the dependent variable. In other words, the lower the limit balance and the lower the average payment amount and the lower of the maximum bill and the lower the maximum delinquency value, the higher the probability of default on payment. The other three predictors AVG_BILL_AMT, AVG_UTIL, MAX_PAY_AMT have positive coefficient, which mean that these variables have a positive correlation with the response variable. In other words, the higher the average billing amount and the higher the utilization rate and the higher the maximum payment amount, the higher the chance of default on payment.

Figure 32

	No Default Actual	Default Actual	Sum
No Default Predicted	7443	1332	8775
Default Predicted	4314	2091	6405
Sum	11757	3423	15180

The classification table above is used to calculate the following performance metrics for the train dataset.

- TPR = 2091 / 3423 = 61.09%
- FPR = 4314 / 11,757 = 36.69%
- Accuracy = (7443 + 2091) / 15,180 = 62.81%

Figure 33

Ne	Default	Actual	Default	Actual	Sum
No Default Predicted		3470		506	3976
Default Predicted		2296		1051	3347
Sum		5766		1557	7323

The classification matrix above is used to calculate the following performance metrics for the test dataset.

- TPR = 1051 / 1557 = 67.5%
- FPR = 2296 / 5766 = 39.82%
- Accuracy = (3470 + 1051) / 7323 = 61.74%

Figure 34

The two ROC curves and AUC above for train and test sets are very similar to one another. Thus, we can conclude that there's no overfitting issue in the logistic regression model.

Section 5d: Model #4 – Support Vector Machine (SVM)

Using linear kernel to build the SVM model, we generate the following results.

Figure 35

predict4train	No	Default Act	tual	Default	Actual	Sum
No Default Predicted		11	1757		3423	15180
Default Predicted			0		0	0
Sum		11	1757		3423	15180

The classification table above is used to calculate the following performance metrics for the train dataset.

- TPR = 0 / 3423 = 0%
- FPR = 0 / 11,757 = 0%
- Accuracy = (11,757 + 0) / 15,180 = 77.45%

From the results above, SVM is the worst model since it predicts all observations to belong to the no default group. In other words, the model predicts nothing and is useless.

Figure 36

predict4test	No	Default	Actual	Default	Actual	Sum
No Default Predicted			5766		1557	7323
Default Predicted			0		0	0
Sum			5766		1557	7323

The situation is similar with the test result, as indicated in the classification table above.

- TPR = 0 / 1557 = 0%
- FPR = 0 / 5766 = 0%
- Accuracy = (5766 + 0) / 7323 = 78.74%

Thus, we can conclude that SVM is the worst model since it doesn't predict anything in both train and test datasets.

Figure 37

SVM classification plot

Figure 38

Figure 39

SVM classification plot

The three classification plots or margin plots above show that there's no clear distinction between the default and no default observation. As a result, the plots above confirm the conclusion that the SVM model is useless since it doesn't predict anything.

Section 6: Comparison of Results

Using the results in section 5, below is the summary table that includes the performance metrics of all four models using with train and test datasets.

Figure 40

	Model #1	Model #2	Model #3	Model #4
Train Set				
TPR	97.34%	7.83%	61.09%	61.74%
FPR	0.08%	1.59%	36.69%	0.00%
Accuracy	99.34%	77.98%	62.81%	77.45%
Test Set				
TPR	13.42%	7.96%	67.50%	0.00%
FPR	3.76%	1.73%	39.82%	0.00%
Accuracy	78.63%	79.07%	61.74%	78.74%
Ranking	3	2	1	4

From the summary table above, model #4 SVM is the worst since it predicts all observations to be in no default category, which means that this model is useless and doesn't predict anything. The biggest problem with model #1 random forest is overfitting. In other words, the model trains the dataset very well to build a strong model, but it fails to apply to the test dataset. Model #2 gradient boosting has low TPR and FPR, so it's not as reliable. Model #3 logistic regression is the best model because there's no overfitting issue, and both TPR and FPR are reasonable. Because the DEFAULT variable has an unequal proportion of classes with the majority of observations falling into the no default category, accuracy is not a reliable performance metric. Thus, TPR and FPR carry more weight and indicate the model performance more accurately than the accuracy metric. As a result, using the summary table above, below is the model ranking based on the performance metrics using both train and test dataset.

- 1. Model #3: logistic regression with variable selection
- 2. Model #2: gradient boosting
- 3. Model #3: random forest
- 4. Model #4: SVM

Section 7: Conclusion

In conclusion, the credit card default project uses data from a research in Taiwan, aiming to study the customer default payments. The first half of the project is dedicated to get the data ready via understanding of the dataset, feature engineering, and EDA. The second half of the project is dedicated to building and comparing four predictive models: random forest, gradient boosting, logistic regression, and SVM. Using three measurement metrics TPR, FPR, and accuracy on both train and test data, the logistic regression model produces the best predictive outcomes. It doesn't overfit the dataset and has a balanced performance among all three metrics on both train and test dataset.

Future researchers are encouraged to approach the problem with the following recommendations. First, the data scientists should consider more relevant predictors. From the results of this project, demographics variables such as sex, marriage, age don't have significant impact on the response variable. Thus, data scientists should consider additional payment-related predictors such as FICO score, payment method, etc. Second, future modelers are encouraged to try different modeling techniques such as neural networks. Though the logistic regression model performs well, it can still be improved. Third, future researchers should consider options such as zero-based Poisson and zero-based negative binomial approaches along with the logistic regression model to address the imbalance of default vs. no default in response variable.