Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: Информатика и системы управления

КАФЕДРА: Компьютерные системы и сети

ОТЧЁТ по домашней работе № 2

Название: Оценка поведения многокаска связами	адного усилителя, охвач	ченного обратными
Дисциплина: Электроника		
Coversor pp. 14V6 49E		И. В. Бобрачио
Студент гр. ИУ6-42Б Преподаватель	(Подпись, дата)	 И.В. Бобренко (И.О. Фамилия) В. А. Карпухин
	(Подпись, дата)	(И.О. Фамилия)

1 Задание

Вариант 35

Найти в схеме все обратные связи и дать им определение. Что произойдёт с коэффициентами передачи усилителя $K_{\rm uoc}$ и $K_{\rm ioc}$, если разомкнуть цепь общей OC?

Рис. 1.1: Схема каскадов

1.1 Решение связей

1.1.1 Первый каскад (VT1)

К каскаду относятся:

• R_1 – Резистор последовательной ООС по напряжению и нагрузка первого каскада.

1.1.2 Второй каскад (VT2)

К каскаду относятся:

- \bullet R_2 Резистор параллельной ООС по напряжению
- R₃ Задание тока смещения на VT2

1.1.3 Третий каскад (VT3)

К каскаду относятся:

- R_3 Резистор последовательной ООС по току
- R_4 Резистор последовательной ООС по току и задание тока смещения на ${
 m VT3}$
- R_n Нагрузка третьего каскада

1.1.4 Общая связь

К общей связи относятся:

• R₄ – Резистор последовательной ООС по напряжению

Из схемы очевидно, что цепь обратной связи подключена параллельно входной и выходной цепи усилителя, за счет чего образуется параллельная обратная связь по напяржению. Таким образом, общая обратная связь является параллельной ООС по напряжению.

1.2 Коэффициенты

Коэффициент усиления по напряжению:

$$K_{\text{uoc}} = \frac{K_u}{1 + K_u \cdot b}$$

Коэффициент усиления по току:

$$K_{\rm ioc} = \frac{K_i}{1 + K_i \cdot b}$$

 Γ де b — коэффициент передачи цепи обратной связи. Очевидно, что если обратная связь размыкается, то коэффициент усиления по напряжению и току увеличивается.

"Коэффициент усиления при замкнутой цепи обратной связи никогда не может стать больше, чем коэффициент усиления при разомкнутой цепи обратной связи." – Искусство схемотехники.

2 Выводы

- Первый каскад последовательная ООС по напряжению.
- Пассивные элементы обратной связи первого каскада: R_1 .
- Второй каскад параллельная ООС по напряжению.
- Пассивные элементы обратной связи второго каскада: R_2 .
- Третий каскад последовательная ООС по току.
- Пассивные элементы обратной связи третьего каскада: R_3 , R_4 .
- Общая обратная связь параллельная ООС по напряжению.
- Пассивные элементы обратной связи первого каскада: R_5 .
- При размыкании ООС, коэффициент усиления по напряжению увеличится.
- При размыкании ООС, коэффициент усиления по току увеличится.
- При введении ООС, параметры усилителя изменятся **в глубину обратной связи раз**.

2.1 Сипсок использованных источников:

- Электроника О. В. Миловзоров, И. Г. Панков
- Электронные устройства автоматики Г. В. Королев
- Искусство схемотехники П. Хоровиц, У. Хилл