Úvod do informačních technologií

přednášky

Jan Outrata

září-prosinec 2009 (aktualizace září-prosinec 2012)

Binární logika

Číselné soustavy (1)

Počítač = počítací stroj ... počítání s čísly

Člověk:

- deset hodnot (deset prstů na rukách), deset symbolů (číslic, 0 až 9)
- použití desítkové (dekadické) poziční číselné soustavy: číslo jako součet mocninné řady o základu (radixu) 10, zápis = posloupnost symbolů pro koeficienty řady, pozice (pořadí) symbolu určuje mocninu (řád)

$$(1024)_{10} = 1 \cdot 10^3 + 0 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0$$

 jiné číselné soustavy: dvanáctková (hodiny), šedesátková (minuty, sekundy), dvacítková (dřívější platidla) aj.

Číselné soustavy (2)

Věta (O reprezentaci přirozených čísel (včetně 0))

Libovolné přirozené číslo N (včetně 0) lze vyjádřit jako součet mocninné řady o základu $B \geq 2, B \in \mathbb{N}$:

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B^1 + a_0 \cdot B^0,$$

kde $0 \le a_i < B, a_i \in \mathbb{N}$ jsou koeficienty řady.

Číslo N se (v poziční číselné soustavě o základu B) zapisuje jako řetěz symbolů (číslic) S_i pro koeficienty a_i zleva v pořadí pro i od n-1 k 0:

$$(S_{n-1}S_{n-2}\ldots S_1S_0)_B$$

Číselné soustavy (2)

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ postupným přičítáním:

```
egin{aligned} N &= a_0 \ B' &= B \ & 	ext{for } i &= 1 	ext{ to } n-1 	ext{ do} \ N &= N + a_i * B' \ B' &= B' * B \end{aligned}
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným odečítáním:

```
B' = i = 1

while B' * B \le N do

B' = B' * B

i = i + 1

for i = i - 1 to 0 do

a_i = N/B'

N = N - a_i * B'

B' = B'/B
```

Číselné soustavy (2)

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ postupným přičítáním:

```
N=a_0
B' = B
for i = 1 to n - 1 do
  N = N + a_i * B'
  B' = B' * B
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným odečítáním:

$$B' = i = 1$$

while $B' * B \le N$ do
 $B' = B' * B$
 $i = i + 1$
for $i = i - 1$ to 0 do
 $a_i = N/B'$
 $N = N - a_i * B'$
 $B' = B'/B$

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}...S_1S_0)_E$ postupným násobením:

$$N = a_{n-1}$$

for $i = n - 2$ **to** 0 **do**
 $N = N * B + a_i$

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

```
a_0 = N \mod B

i = 1

while N \ge B do

N = N/B

a_i = N \mod B

i = i + 1
```

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným násobením:

$$N = a_{n-1}$$

for $i = n - 2$ to 0 do
 $N = N * B + a_i$

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

$$a_0 = N \mod B$$

 $i = 1$
while $N \ge B$ do
 $N = N/B$
 $a_i = N \mod B$
 $i = i + 1$

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným násobením:

$$N = a_{n-1}$$

for $i = n - 2$ to 0 do
 $N = N * B + a_i$

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

$$a_0 = N \mod B$$

 $i = 1$
while $N \ge B$ do
 $N = N/B$
 $a_i = N \mod B$
 $i = i + 1$

ÚKOL

- Pro několik čísel zjistěte (hodnotu) čísla ze zápisů ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.
- Pro několik čísel zjistěte zápis čísla (dané hodnoty) ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.

Číselné soustavy (4)

Počítač:

- první mechanické počítací stroje dekadické, tj. používající desítkovou soustavu
- mechanické součásti mající 10 stabilních stavů = deset hodnot
- elektromechanické a elektronické součásti: nejsnadněji realizovatelné 2 stabilní stavy (relé sepnuto/rozepnuto, elektronkou či tranzistorem proud prochází/neprochází, mezi částmi integrovaného obvodu je/není napětí) = 2 hodnoty, 2 symboly (číslice, 0 a 1) → digitální zařízení
- použití dvojkové (binární) poziční číselné soustavy: číslo jako součet mocninné řady o základu 2, zápis = posloupnost symbolů pro koeficienty, pozice symbolu určuje mocninu

$$(11)_{10} = (1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Dlaší typy dat (čísla s řádovou čárkou, znaky), odvozeny od (celých) čísel \rightarrow binární reprezentace všech typů dat.

Číselné soustavy (5)

Počítač pro člověka:

- použití pozičních číselných soustav o základu 2^k $(k \in \mathbb{N})$:
 - osmičkové (oktalové): symboly (číslice) 0 až 7
 - šestnáctkové (hexadecimální): symboly (číslice) 0 až 9 a A až F
- jednoduchý převod mezi soustavami:

Převod zápisu čísla v soustavě o základu B^k $(k \in \mathbb{N})$ na zápis v soustavě o základu B (a naopak):

každý symbol soustavy o základu B^k zapisující nějaké číslo nahradíme k-ticí symbolů soustavy o základu B zapisující stejné číslo (a naopak, k-tice symbolů v zápisu brány zprava, chybějící symboly nahrazeny 0)

Binární logika (1)

Základní operace v počítači = logické operace

- formální základ = výroková logika zkoumá pravdivostní hodnotu výroků (pravda/nepravda, spojky/operátory "neplatí, že" → operace negace ¬, "a současně platí" → konjunkce ∧, "nebo platí" → disjunkce ∨, "jestliže platí, pak platí" → implikace ⇒ aj.)
- výroky = logické výrazy vyhodnocované na hodnoty pravda/nepravda, 1/0
- matematický aparát pro práci s log. výrazy: Booleova algebra (binární, dvoustavová, logika)
- fyzická realizace logické elektronické obvody základ digitálních zařízení
- binární logika: univerzální, teoreticky zvládnutá, efektivně realizovatelná logickými el. obvody

Binární logika (2)

Logická proměnná x

- veličina nabývající dvou možných diskrétních logických hodnot: 0
 (nepravda) a I (pravda)
- definice: $x = \mathbf{I}$ jestliže $x \neq \mathbf{0}$ a $x = \mathbf{0}$ jestliže $x \neq \mathbf{I}$

Logická funkce $f(x_1, \ldots, x_n)$

- funkce n logických proměnných x_1, \ldots, x_n nabývající dvou možných diskrétních hodnot $\mathbf{0}$ (nepravda) a \mathbf{I} (pravda)
- logická proměnná = logická funkce identity proměnné, skládání funkcí
- základní = logické operace

Booleova algebra (binární logika)

- algebra logických proměnných a logických funkcí
- dvouhodnotová algebra, algebra dvou stavů
- relace rovnosti: f = g, právě když $(f = \mathbf{I} \land g = \mathbf{I}) \lor (f = \mathbf{0} \land g = \mathbf{0})$

Logické operace (1)

3 základní:

Negace (inverze)

pravdivá, když operand nepravdivý, jinak nepravdivá

• operátory: \overline{x} , NOT x, $\neg x$ (výrokově negace, algebraicky negace), \overline{X} (množinově doplněk)

Logické operace (2)

Logický součin (konjunkce)

pravdivá, když oba operandy pravdivé, jinak nepravdivá

X	у	$x \cdot y$
0	0	0
0	ı	0
ı	0	0
ı	-	I

• operátory: $x \cdot y/xy$ (prázdný), x AND y, $x \wedge y$ (výrokově konjunkce, algebraicky průsek), $X \cap Y$ (množinově průnik)

Logické operace (3)

Logický součet (disjunkce)

nepravdivá, když oba operandy nepravdivé, jinak pravdivá

X	у	x + y
0	0	0
0	ı	1
	0	1
I	ı	I

• operátory: x+y, $x ext{ OR } y$, $x \vee y$ (výrokově disjunkce, algebraicky spojení), $X \cup Y$ (množinově sjednocení)

Logické operace (4)

Logický výraz

- korektně vytvořená posloupnost (symbolů) logických proměnných a funkcí (operátorů) spolu se závorkami
- priority sestupně: negace, log. součin, log. součet
- např. $x \cdot \overline{y} + f(x, z) = (x \cdot \overline{y}) + f(x, z)$
- = zápis logické funkce

Logické rovnice

- ekvivalentní úpravy: negace obou stran, logický součin/součet obou stran se stejným výrazem, ..., log. funkce obou stran se stejnými ostatními operandy funkce
- NEekvivalentní úpravy: "krácení" obou stran o stejný (pod)výraz, např. x + y = x + z není ekvivalentní s y = z

Logické operace (5)

Axiomy (Booleovy algebry)

• komutativita:

$$x \cdot y = y \cdot x$$
 $x + y = y + x$

distributivita:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 $x+y \cdot z = (x+y) \cdot (x+z)$

• identita (existence neutrální hodnoty):

$$\mathbf{I} \cdot x = x \qquad \mathbf{0} + x = x$$

• komplementárnost:

$$x \cdot \overline{x} = \mathbf{0}$$
 $x + \overline{x} = 1$

Logické operace (5)

Vlastnosti základních logických operací

nula a jednička:

$$\mathbf{0} \cdot \mathbf{x} = \mathbf{0} \qquad \mathbf{I} + \mathbf{x} = \mathbf{I}$$

• idempotence:

$$x \cdot x = x$$
 $x + x = x$

asociativita:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 $x + (y + z) = (x + y) + z$

• involuce (dvojí negace):

$$\overline{\overline{x}} = x$$

• De Morganovy zákony:

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$
 $\overline{x + y} = \overline{x} \cdot \overline{y}$

absorpce:

$$x \cdot (x + y) = x$$
 $x + x \cdot y = x$

a další

Logické operace (6)

Vlastnosti základních logických operací – použití

- důkazy: s využitím axiomů a již dokázaných vlastností, rozborem případů (dosazením všech možných kombinací hodnot 0 a l za proměnné)
- ekvivalentní úpravy (pro zjednodušování) logických výrazů
- . . .

Logické operace (7)

Další operace

Implikace

nepravdivá, když první operand pravdivý a druhý nepravdivý, jinak pravdivá

X	у	$x \rightarrow y$
0	0	ı
0	ı	l I
	0	0
I	ı	I

• operátory: $x \to y$, $x \to y$ (výrokově i algebraicky implikace), $X \subseteq Y$ (množinově podmnožina)

Logické operace (8)

Ekvivalence

pravdivá, když operandy mají stejnou hodnotu, jinak nepravdivá

X	У	$x \equiv y$
0	0	1
0	ı	0
ı	0	0
I	I	ı

• operátory: $x \equiv y$, x XNOR y, $x \equiv y$ (výrokově i algebraicky ekvivalence), $X \equiv Y$ (množinově ekvivalence nebo rovnost)

Logické operace (9)

Nonekvivalence (negace ekvivalence, aritmetický součet modulo 2)

pravdivá, když operandy mají různou hodnotu, jinak nepravdivá

X	у	$x \oplus y$
0	0	0
0	ı	l 1
1	0	l 1
ı	ı	0

• operátory: $x \oplus y$, $x ext{ XOR } y$, $x \not\equiv y$ (výrokově i algebraicky negace ekvivalence), $X \not\equiv Y$ (množinově negace ekvivalence)

Logické operace (10)

Shefferova funkce (negace logického součinu)

• nepravdivá, když oba operandy pravdivé, jinak pravdivá

X	у	$x \uparrow y$
0	0	
0	1	1
ı	0	ı
I	I	0

• operátory: $x \uparrow y$, x NAND y

Logické operace (11)

Piercova funkce (negace logického součtu)

• pravdivá, když oba operandy nepravdivé, jinak nepravdivá

X	у	$x \downarrow y$
0	0	I
0	ı	0
ı	0	0
I	I	0

• operátory: $x \downarrow y$, x NOR y

Logické funkce (1)

- zadání pravdivostní tabulkou:
 - úplně funkční hodnota $f(x_i)$ definována pro všech 2^n možných přiřazení hodnot proměnným $x_i, 0 \le i < n$
 - neúplně funkční hodnota pro některá přiřazení není definována (např. log. obvod realizující funkci ji neimplementuje)
- základní tvary (výrazu):
 - součinový (úplná konjunktivní normální forma, ÚKNF) log. součin log. součtů všech proměnných nebo jejich negací (úplných elementárních disjunkcí, ÚED)

$$(X_0 + \ldots + X_{n-1}) \cdot \ldots \cdot (X_0 + \ldots + X_{n-1})$$
 $X_i = x_i$ nebo $\overline{x_i}$

 součtový (úplná disjunktivní normální forma, ÚDNF) – log. součet log. součinů všech proměnných nebo jejich negací (úplných elementárních konjunkcí, ÚEK)

$$(X_0 \cdot \ldots \cdot X_{n-1}) + \ldots + (X_0 \cdot \ldots \cdot X_{n-1})$$
 $X_i = x_i$ nebo $\overline{x_i}$

Logické funkce (2)

Převod log. funkce $f(x_i)$ na základní tvar (normální formu)

- ekvivalentními úpravami a doplněním chybějících proměnných nebo jejich negací
- tabulkovou metodou:
 - pro řádky s $f(x_i) = \mathbf{0}(\mathbf{I})$ sestroj log. součet (součin) všech x_i pro $x_i = \mathbf{0}(\mathbf{I})$ nebo $\overline{x_i}$ pro $x_i = \mathbf{I}(\mathbf{0})$
 - výsledná ÚKNF (ÚDNF) je log. součinem (součtem) těchto log. součtů (součinů)

				. ,	,
X	У	z	f(x, y, z)	ÜED	ÚEK
0	0	0	0	x+y+z	
0	0	1	0	$x + y + \overline{z}$	
0	1	0	0	$x + \overline{y} + z$	
0	1	1	ı		$\overline{x} \cdot y \cdot z$
1	0	0	0	$\overline{x} + y + z$	
1	0	1	ı		$x \cdot \overline{y} \cdot z$
ı	1	0	ı		$x \cdot y \cdot \overline{z}$
			1		$x \cdot v \cdot z$

$$\text{ÚKNF}(f(x,y,z)): (x+y+z) \cdot (x+y+\overline{z}) \cdot (x+\overline{y}+z) \cdot (\overline{x}+y+z)$$

$$\text{ÚDNF}(f(x,y,z)): \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

ÚKOL

Převeďte několik log. funkcí se třemi a více proměnnými do ÚKNF a ÚDNF.

Logické funkce (3)

Věta (O počtu log. funkcí)

Existuje právě 2^(2ⁿ) logických funkcí s n proměnnými.

Funkce f^1 jedné proměnné

X	f_0	f_1	$\frac{f_2}{\overline{x}}$	f_3
	0	X	\overline{X}	ı
0	0	0	ı	ı
	0	1	0	1

Funkce f^2 dvou proměnných

X	У	f ₀ 0	<i>f</i> ₁	f ₂	f ₃	f ₄	f ₅	<i>f</i> ₆ ⊕	<i>f</i> ₇ +	<i>f</i> ₈ ↓	<i>f</i> ₉ ≡	$\frac{f_{10}}{\overline{y}}$	f ₁₁	$\frac{f_{12}}{\overline{x}}$	f_{13} \rightarrow	<i>f</i> ₁₄ ↑	f ₁₅
0	0	0	0	0	0	0	0	0	0	ı	ı	ı	ı	ı	ı	ı	I
0	1	0	0	0	0	- 1	1	ı	1	0	0	0	0	- 1	1	1	1
1	0	0	0	1	ı	0	0	ı	1	0	0	ı	ı	0	0	1	1
I	ı	0	ı	0	ı	0	ı	0	ı	0	ı	0	ı	0	ı	0	ı

září-prosinec 2012

Logické funkce (4)

Funkce více než dvou proměnných

pro *n*= 3:

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

a podobně pro n > 3

Věta (O reprezentaci log. funkcí

Jakoukoliv logickou funkci libovolného počtu proměnných lze vyjádřit pomocí logických funkcí dvou proměnných.

Logické funkce (4)

Funkce více než dvou proměnných

pro *n*= 3:

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

a podobně pro n > 3

Věta (O reprezentaci log. funkcí)

Jakoukoliv logickou funkci libovolného počtu proměnných lze vyjádřit pomocí logických funkcí dvou proměnných.

Logické funkce (5)

Zjednodušení výrazu logické funkce

- optimalizace za účelem dosažení co nejmenšího počtu operátorů (v kompromisu s min. počtem typů operátorů)
- důvod: méně (typů) log. obvodů realizujících funkci (menší, levnější, nižsí spotřeba, ...)

Algebraická minimalizace

$$\begin{array}{ll} f &=& \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z \\ & // \ \, \text{dvakrát přičteme} \ \, x \cdot y \cdot z \ \, \text{(idempotence)} \\ f &=& (\overline{x} \cdot y \cdot z + x \cdot y \cdot z) + (x \cdot \overline{y} \cdot z + x \cdot y \cdot z) + (x \cdot y \cdot \overline{z} + x \cdot y \cdot z) \\ & // \ \, \text{distributivita} \\ f &=& y \cdot z \cdot (\overline{x} + x) + x \cdot z \cdot (\overline{y} + y) + x \cdot y \cdot (\overline{z} + z) \ \, // \ \, \text{komplementárnost} \\ f &=& x \cdot y + y \cdot z + x \cdot z \end{array}$$

pro složitější výrazy náročná

Logické funkce (5)

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

- nahrazení algebraických ekvivalentních úprav geometrickými postupy
- nalezení minimálního výrazu
- k výrazu v základním součtovém tvaru se sestaví tzv. Karnaughova mapa = tabulka vyplněná l v buňkách reprezentující log. součiny, součiny reprezentované sousedními buňkami se liší v 1 proměnné
- hledání smyček (minterm) v mapě splňujících jisté podmínky (min. počet, max. obdélníková oblast vyplněná I, počet políček mocnina 2, mohou se překrývat, pokrytí všech I)
- smyčky po vyloučení komplementárních proměnných a jejich negací reprezentují log. součiny výsledného součtového tvaru

Logické funkce (6)

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

$$f = \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

	$\overline{x} \cdot \overline{y}$	$\overline{x} \cdot y$	$x \cdot y$	$x \cdot \overline{y}$
Z				
Z				

Obrázek: Karnaughova mapa

$$f = x \cdot y + y \cdot z + x \cdot z$$

výpočetně náročná (hledání smyček)

Další algoritmické metody: tabulační (Quine-McCluskey), branch-and-bound (Petrick), Esspreso logic minimizer aj.

ÚKOL

Pokuste se minimalizovat log. funkce z přechozího úkolu.

Logické funkce (7)

Úplný systém logických funkcí

- = množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- \rightarrow množina log. funkcí dvou proměnných (Věta o reprezentaci log. funkcí)
 - (1) negace \overline{x} , log. součin $x \cdot y$ a log. součet x + y
 - (2) negace \overline{x} a implikace $x \to y$
 - a další

Minimální úplný systém logických funkcí

- úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný
- (1) NENÍ: $x \cdot y = \overline{\overline{x} + \overline{y}}$, $x + y = \overline{\overline{x} \cdot \overline{y}}$ (De Morganovy zákony)
- (2) je
- (3) negace \overline{x} a log. součin $x \cdot y$
- (4) negace \overline{x} a log. součet x + y
- a další

Logické funkce (7)

Úplný systém logických funkcí

- množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- → množina log. funkcí dvou proměnných (Věta o reprezentaci log. funkcí)
 - (1) negace \overline{x} , log. součin $x \cdot y$ a log. součet x + y
 - (2) negace \overline{x} a implikace $x \to y$
 - a další

Minimální úplný systém logických funkcí

- úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný
- (1) NENÍ: $x \cdot y = \overline{x} + \overline{y}$, $x + y = \overline{x} \cdot \overline{y}$ (De Morganovy zákony)
- (2) je
- (3) negace \overline{x} a log. součin $x \cdot y$
- (4) negace \overline{x} a log. součet x + y
- a další

Logické funkce (8)

Minimální úplný systém logických funkcí

Jediná funkce:

- Shefferova ↑ (negace log. součinu)
- Piercova ↓ (negace log. součtu)
- důkaz: vyjádření např. negace a log. součinu (součtu)

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

- vyjádření funkce v základním součtovém tvaru
- 2 zjednodušení výrazu funkce, např. pomocí Karnaughovy metody
- aplikace De Morganových zákonů pro převedení výrazu do tvaru, který obsahuje pouze Shefferovy nebo pouze Piercovy funkce

Logické funkce (8)

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

$$f = \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

$$f = x \cdot y + y \cdot z + x \cdot z$$

$$f = \overline{x \cdot y} \cdot \overline{y \cdot z} + x \cdot z$$

$$f = \overline{x \cdot y} \cdot \overline{y \cdot z} \cdot \overline{x \cdot z}$$

$$f = (\overline{x} + y + z) \cdot (x + \overline{y} + z) \cdot (x + y + \overline{z}) \cdot (x + y + z)$$

$$f = (x + y) \cdot (y + z) \cdot (x + z)$$

$$f = \overline{x + y} + \overline{y + z} \cdot (x + z)$$

$$f = \overline{x + y} + \overline{y + z} \cdot (x + z)$$

$$f = \overline{x + y} + \overline{y + z} + \overline{x + z}$$

$$f = \overline{x + y} + \overline{y + z} + \overline{x + z}$$

ÚKOL

Vyjádřete log. operace negace, log. součin, log. součet, implikace, ekvivalence a nonekvivalence pomocí (1) Shefferovy funkce a (2) Piercovy funkce.

Fyzická realizace logických funkcí (1)

- dříve pomocí spínacích relé a elektronek
- dnes pomocí tranzistorů v integrovaných obvodech

Obrázek: Realizace log. operací NAND a NOR

- realizace log. operací pomocí integrovaných obvodů logických členů, hradel
 - vstupy = reprezentované log. proměnné
 - výstup = výsledek realizované log. operace
 - stavy (signály) na vstupech/výstupu = log. (binární) hodnoty $\mathbf{0}/\mathbf{I} =$ míra informace s jednotkou $\mathbf{1}$ bit
- symbolické značky log. členů ve schématech zapojení logických obvodů realizujících lib. log. funkci

Fyzická realizace logických funkcí (2)

Obrázek: Symbolické značky logických členů (podle normy IEC)

Obrázek: Symbolické značky logických členů (tradiční, ANSI)

Fyzická realizace logických funkcí (3)

$$f = \overline{\overline{\overline{x \cdot y} \cdot \overline{y \cdot z}} \cdot \overline{\overline{x \cdot y} \cdot \overline{y \cdot z}} \cdot \overline{x \cdot z}}$$

Obrázek: Schéma zapojení log. obvodu realizujícího log. funkci f pomocí log. členů realizujících log. operaci NAND

ÚKOL

Nakreslete schéma zapojení log. obvodu realizujícího log. operace NOT, AND, OR, implikace, ekvivalence a XOR pomocí log. členů realizujících operaci (1) NAND a (2) NOR.

Logické obvody

- jeden výstup: realizace jedné log. funkce
- více výstupů: realizace více log. funkcí zároveň \to realizace vícebitové log. funkce $^{\rm n}{\rm f}$
- n-tice vstupů: reprezentace vícebitových (n-bitových) log.
 proměnných ⁿx = vícebitový log. obvod
- kombinační: stavy na výstupech obvodu (tj. funkční hodnota) závisí pouze na okamžitých stavech na vstupech (tj. hodnotách proměnných)
- sekvenční: stavy na výstupech obvodu (tj. funkční hodnota) závisí nejen na okamžitých stavech na vstupech (tj. hodnotách proměnných), ale také na přechozích stavech na vstupech

Kombinační logické obvody (1)

- stavy na výstupech obvodu (tj. funkční hodnota) závisí pouze na okamžitých stavech na vstupech (tj. hodnotách proměnných)
- jedné kombinaci stavů na vstupech odpovídá jediná kombinace stavů na výstupech

Kombinační logické obvody (2)

Komparátor

- provádí srovnání hodnot dvou log. proměnných A a B na vstupu
- tři výstupy udávající pravdivost vztahů: A < B, A > B a A = B, realizace tříbitové log. funkce

$$Y_{<} = Y(A < B), Y_{>} = Y(A > B), Y_{=} = Y(A = B)$$

jednobitový:

$$Y_{<} = \overline{A} \cdot B \quad Y_{>} = A \cdot \overline{B} \quad Y_{=} = A \cdot B + \overline{A} \cdot \overline{B}$$

$$Y_{<} = \overline{\overline{A} \cdot B} \quad Y_{>} = \overline{A \cdot \overline{B}} \quad Y_{=} = \overline{\overline{A} \cdot B} \cdot \overline{A \cdot \overline{B}}$$

Kombinační logické obvody (3)

Komparátor

Α	В	Y<	Y _{>}	Y =
0	0	0	0	ı
0	ı	1	0	0
ı	0	0	ı	0
ı	ı	0	0	I

Obrázek: Pravdivostní tabulka a schéma zapojení jednobitového komparátoru

 vícebitový: zřetězené zapojení jednobitových pro každý řád vícebitových proměnných od nejvýznamějšího po nejméně významný

Obrázek: Schéma zapojení vícebitového komparátoru

Kombinační logické obvody (4)

Multiplexor

Obrázek: Symb. značka multiplexoru

- přepíná na výstup Q log. hodnotu na jednom z 2^n datových vstupů D_i vybraném na základě n-bitové hodnoty na adresním vstupu A
- ullet kromě výstupu Q navíc ještě negovaný (invertovaný) výstup \overline{Q}
- např. čtyřvstupý (4 datové vstupy, dvoubitový adresní vstup) realizuje log. funkci

$$Q = \overline{A_0} \cdot \overline{A_1} \cdot D_0 + \overline{A_0} \cdot A_1 \cdot D_1 + A_0 \cdot \overline{A_1} \cdot D_2 + A_0 \cdot A_1 \cdot D_3$$

Kombinační logické obvody (5)

Multiplexor

A_0	A_1	Q
0	0	D_0
0	ı	D_1
ı	0	D_2
ı	ı	D_3

Obrázek: Pravdivostní tabulka a schéma zapojení čtyřvstupého multiplexoru

• použití: multiplexování datových vstupů na základě adresy

Kombinační logické obvody (6)

Binární dekodér

• nastaví (na I) jeden z 2^n výstupů S_i odpovídající n-bitové hodnotě na adresním vstupu A

A_0	A_1	<i>S</i> ₀	S_1	S_2	<i>S</i> ₃
0	0		0	0	0
0	ı	0	ı	0	0
ı	0	0	0	ı	0
I	I	0	0	0	I

Obrázek: Pravdivostní tabulka a schéma zapojení bin. dekodéru se čtyřmi výstupy

použití: dekodér adresy pro výběr místa v paměti

Kombinační logické obvody (7)

Binární sčítačka

- čísla ve dvojkové soustavě = binárně reprezentovaná
- platí stejná pravidla aritmetiky jako v desítkové soustavě, např. (+ je zde aritmetické sčítání!):

$$0 + 0 = 0$$
 $0 + I = I$ $I + I = I0$

- sčítačka sečte binární hodnoty v každém řádu dvou n-bitových proměnných A a B podle pravidel aritmetiky pro sčítání, tj. s přenosem hodnoty do vyššího řádu
- realizuje log. funkce součtu S_i v řádu $0 \le i < n$ a přenosu r_i z řádu i do vyššího řádu:

$$S_i = A_i \oplus B_i \oplus r_{i-1}$$
 $r_i = A_i \cdot B_i + (A_i + B_i) \cdot r_{i-1},$ $r_{-1} = 0$

Kombinační logické obvody (8)

Binární sčítačka

A_i	Bi	r_{i-1}	Si	ri
0	0	0	0	0
0	0	ı	1	0
0	ı	0		0
0	ı	ı	0	
ı	0	0		0
ı	0	ı	0	
ı	ı	0	0	ı
ı	ı	I	ı	ı

Obrázek: Pravdivostní tabulka a schéma zapojení jednobitové sčítačky (pro řád i)

- vícebitová: zřetězené zapojení jednobitových pro každý řád vícebitových proměnných od nejméně významného po nejvýznamější s přenosem do vyššího
- použití: (aritmetické) sčítání binárně reprezentovaných 8-, 16-, 32-,
 atd. bitových čísel

Sekvenční logické obvody (1)

- stavy na výstupech obvodu (tj. funkční hodnota) závisí nejen na okamžitých stavech na vstupech (tj. hodnotách proměnných), ale také na přechozích stavech na vstupech
- předchozí stavy na vstupech zachyceny vnitřním stavem obvodu
- nutné identifikovat a synchronizovat stavy obvodu v čase
- čas: periodický impulsní signál = "hodiny" (clock), diskrétně určující okamžiky synchronizace obvodu, generovaný krystalem o dané frekvenci

```
Obrázek: Časový signál "hodin" (clock)
```

zpětné vazby z (některých) výstupů na (některé) vstupy

Sekvenční logické obvody (2)

Přenos dat (hodnot vícebitových log. proměnných):

ullet sériový: bity (hodnoty $oldsymbol{0/I}$) přenášeny postupně v čase za sebou po jednom datovém vodiči

Obrázek: Sériový přenos dat

paralelní: bity přenášeny zároveň v čase po více datových vodičích

Obrázek: Paralelní přenos dat

úlohy transformace mezi sériovým a paralelním přenosem

Sekvenční logické obvody (3)

Klopné obvody

nejjednodušší sekvenční obvody

druhy:

- astabilní: nemají žádný stabilní stav, periodicky (např. podle hodinových impulsů) překlápí výstupy z jednoho stavu do druhého; použití jako generátory impulsů
- monostabilní: jeden stabilní stav na výstupech, po vhodném řídícím signálu je po definovanou dobu ve stabilním stavu; použití k vytváření impulsů dané délky
- bistabilní: oba stavy na výstupech stabilní, zůstává v jednom stabilním stavu dokud není vhodným řídícím signálem překlopen do druhého; použití pro realizaci pamětí

Řízení:

- asynchronně signály (0 nebo I) na datových vstupech
- synchronně hodinovým signálem
- hladinou signálu: horní (I) nebo dolní (0)
- ullet hranami signálu: nástupní $(oldsymbol{0}
 ightarrow oldsymbol{I})$ nebo sestupní $(oldsymbol{I}
 ightarrow oldsymbol{0})$

Sekvenční logické obvody (4)

Klopný obvod (typu) RS

Obrázek: Symb. značka klopného obvodu RS

- nejjednodušší bistabilní, základ ostatních
- jednobitový paměťový člen
- asynchronní vstupy R (Reset) pro nulování log. hodnoty na výstupu Q (v čase i) a S (Set) pro nastavení hodnoty
- ullet kromě výstupu Q navíc ještě negovaný (invertovaný) výstup \overline{Q}

Sekvenční logické obvody (5)

Klopný obvod (typu) RS

R	S	Qi	$\overline{Q_i}$
0	0	Q_{i-1}	$\overline{Q_{i-1}}$
0		I	0
ı	0	0	ı
ı	ı	N/A	N/A

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu RS

ullet varianta se synchronizačním vstupem C s hodinových signálem

Sekvenční logické obvody (6)

Klopný obvod (typu) D

Obrázek: Symb. značka a schéma zapojení klopného obvodu D

- realizace pomocí klopného obvodu RS, navíc vstupy R a S
- ullet typ Latch: asynchronní řízení stavu vstupu D hladinou signálu na vstupu C
- typ D: synchronní (flip-flop) řízení stavu vstupu D nástupní hranou hodinového signálu na vstupu C
- typ Master-Slave: dvoufázový (master, slave), synchronní řízení stavu vstupu D nástupní i sestupní hranou hodinového signálu na vstupu C, rozšíření = klopný obvod (typu) JK

Sekvenční logické obvody (7)

Klopný obvod (typu) D

Obrázek: Symb. značka a schéma zapojení klopného obvodu JK

 implementace ve formě integrovaných obvodů, např. MH 7472, MH 7474, MH 7475

Sekvenční logické obvody (8)

Obvody v počítačích:

• **sériová sčítačka**: (aritmetické) sčítání log. hodnot dodávaných na vstupy v sériovém tvaru po jednotlivých řádech

Obrázek: Schéma zapojení sériové sčitačky

 paralelní registr (střádač): vícebitová paměť pro hodnotu dodanou paralelně na více vstupů

Obrázek: Symb. značka a schéma zapojení paralelního registru

Sekvenční logické obvody (9)

Obvody v počítačích:

 sériový (posuvný) registr: vícebitová paměť pro hodnotu dodanou sériově na vstupu, použití pro transformaci sériových dat na paralelní

Obrázek: Symb. značka a schéma zapojení sériového registru

 čítač: paměť počtu impulsů na hodinovém vstupu, binárně reprezentovaný počet na vícebitovém výstupu

Obrázek: Symb. značka a schéma zapojení čítače