riptografie și Securitate

- Prelegerea 5 - Criptografie computațională

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Securitate perfectă vs. Criptografie Computațională

2. Criptografie computațională

 Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;
- ► Majoritatea construcțiilor criptografice moderne → securitate computațională;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;
- ► Majoritatea construcțiilor criptografice moderne → securitate computațională;
- Schemele moderne pot fi sparte dacă un atacator are la dispoziție suficient spațiu și putere de calcul.

 Securitatea computațională mai slabă decât securitatea informațional-teoretică;

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- Intrebare: de ce renunţăm la securitatea perfectă?

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- ▶ Intrebare: de ce renunțăm la securitatea perfectă?
- ► Raspuns: datorită limitărilor practice!

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- Intrebare: de ce renunţăm la securitatea perfectă?
- Raspuns: datorită limitărilor practice!
- Preferăm un compromis de securitate pentru a obţine construcţii practice.

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

 Sunt de interes mai mare schemele care practic nu pot fi sparte deşi nu beneficiază de securitate perfectă;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deși nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deşi nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;
 - Adversarii pot efectua un atac cu succes cu o probabilitate foarte mică;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deși nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;
 - Adversarii pot efectua un atac cu succes cu o probabilitate foarte mică;
 - 3. Se impune un nouă modalitate de a defini securitatea:

Definiție

O schema este sigură dacă orice adversar care execută atacuri în timp polinomial în n (parametrul de securitate) efectuează un atac cu succes numai cu o probabilitate neglijabilă.

ightharpoonup în practică: ϵ este scalar și

- ▶ în practică: € este scalar și
 - ullet ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$

- \blacktriangleright în practică: ϵ este scalar și
 - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon \leq 1/2^{80}$

- \blacktriangleright în practică: ϵ este scalar și
 - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon \leq 1/2^{80}$
- ▶ în teorie: ϵ este funcție $\epsilon: \mathbb{Z}_{>0} \to \mathbb{R}_{>0}$ și

- \blacktriangleright în practică: ϵ este scalar și
 - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon < 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ și
 - lacktriangledown ne-neglijabil dacă $\exists d: \epsilon(\lambda) \geq 1/\lambda^d$

- ▶ în practică: € este scalar și
 - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon < 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{>0} \to \mathbb{R}_{>0}$ și
 - lacktriangledown ne-neglijabil dacă $\exists d: \epsilon(\lambda) \geq 1/\lambda^d$
 - ϵ neglijabil dacă $\forall d, \lambda > \lambda_d : \epsilon(\lambda) \leq 1/\lambda^d$

Important de reținut!

- Securitate perfectă vs. securitate computațională
- Neglijabil vs. ne-neglijabil