Constrained Unscented Dynamic Programming

Brian Plancher, Zac Manchester and Scott Kuindersma Harvard Agile Robotics Lab

Trajectory Optimization synthesizes dynamic motions for complex robotic systems

Trajectory optimization minimizes a discrete time cost function subject to dynamics constraints

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k)$$

s.t.
$$x_{k+1} = f(x_k, u_k)$$

d

Dynamic Programming solves this problem through the recursive Bellman equation

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k)$$

s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$V_k(x) = \min_{u} l(x, u) +$$

$$V_{k+1}(f(x, u))$$

$$V_N(x_N) = l_f(x_N)$$

 χ_{0}

- Compute the cost-to-go and the associated optimal feedback control update to the controls backward in time
- 2. Simulate the system **forward** in time to create a new nominal trajectory
- 3. Repeat this process until convergence

Two Historic Problems with DP Algorithms

- 1. Expensive to capture the 2nd order information
- 2. Hard to enforce constraints

- 1. Expensive to capture the 2nd order information
- 2. Hard to enforce constraints

Recent research into adding constraints to DP like algorithms has taken two general paths

QP Methods

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k) \quad \text{s.t. } x_{k+1} = f(x_k, u_k) \quad b_l \le u \le b_u$$

[Tassa ICRA 2014] [Xie ICRA 2017] [Farshidian ICRA 2017]

Penalty Methods

$$\min_{x,u} \ l_f(x_N) + \sum_{k=1}^{N-1} l(x_k,u_k) + \mu \| \varphi(x_k,u_k) \|^2 \text{ s. t. } x_{k+1} = f(x_k,u_k)$$
[van den Berg ACC 2014]
[Farshidian ICRA 2017]
[Neunert RAL 2017]

Quadratic penalty methods are popular but can lead to numerical ill conditioning

Penalty Methods

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k) + \mu ||\phi(x_k, u_k)||^2 \quad \text{s.t. } x_{k+1} = f(x_k, u_k)$$

[Gould 2006]

Augmented Lagrangian methods show promise for trajectory optimization problems

Augmented Lagrangian Methods

$$\min_{x,u} l_f(x_N) + \sum_{k=1}^{N-1} l(x_k, u_k) + \mu ||\phi(x_k, u_k)||^2 + \lambda^T g(x_k, u_k) \quad \text{s.t. } x_{k+1} = f(x_k, u_k)$$

[Gould 2006]

- 1. Expensive to capture the 2nd order information
- 2. Hard to enforce constraints

UDP takes inspiration from the Unscented Kalman Filter to approximate the Hessian

[CDC 2016]

UDP takes inspiration from the Unscented Kalman Filter to approximate the Hessian

$$V_k(x) \approx \min_u l(x, u) + \tilde{V}_{k+1}$$

[CDC 2016]

Experimentally UDP captures 2nd order information with first order per-iteration cost

[CDC 2016]

Constrained Unscented Dynamic Programming (CUDP)

- Compute the cost-to-go (including constraint costs) and the associated optimal feedback control update to the controls backward in time using the unscented transform
- Simulate the system forward in time to create a new nominal trajectory
- 3. Repeat this process until convergence
- 4. At convergence test for constraint satisfaction and if not update μ , λ and go back to step 1

Precise constraint satisfaction requires both the unscented transform and augmented Lagrangian

	Φ < 1e-2	Φ < 1e-4	Φ < 5e-7
Penalty iLQR	✓	X	X
Penalty UDP	✓	X	X
AL iLQR	✓		X
AL UDP (CUDP)	✓	✓	✓
Constraints	Torque Limit on motorFinal state position and velocity constraint		

Precise constraint satisfaction requires both the unscented transform and augmented Lagrangian

	Φ < 1e-2	Φ < 1e-4	Φ < 1e-6
Penalty iLQR	*	X	X
Penalty UDP	✓	*	X
AL iLQR	*	X	X
AL UDP (CUDP)	*	*	*

Constraints

- Torque Limits on motors
- No-contact constraints with trees
- Final state position and velocity constraint

CUDP can pass through constraint boundaries during early major iterations

Precise constraint satisfaction requires both the unscented transform and augmented Lagrangian

	5e-1 Precision	1e-2 Precision	5e-3 Precision
Penalty iLQR	*	X	X
Penalty UDP	✓	X	X
AL iLQR	*	✓	X
AL UDP (CUDP)	✓	*	✓

Constraints

- Torque Limits on motors
- No-contact constraints with block and shelf
- Final state position and velocity constraint

Constrained Unscented Dynamic Programming

- A derivative-free DDP/iLQR algorithm inspired by the Unscented Kalman Filter
- Uses augmented Lagrangian to handle nonlinear state and input constraints
- Provides faster convergence and higher constraint precision vs iLQR and penalty methods

