DMA 2018

-Ugeopgave 5 -

- Hele ugeopgaven skal besvares.
- Ugeopgaven skal afleveres mandag den 8. oktober klokken 21:59 på Absalon.
- Ugeopgaven skal laves i **grupper** af 3-4 personer.
- Besvarelsen skal udarbejdes i LATEX.
- Del 1 Når vi benytter Euklids algoritme på to tal a,b for at bestemme $\mathrm{GCD}(a,b)$ foretager vi et antal divisioner med rest indtil vi opnår resten 0 og dermed har bestemt den største fælles divisor som den næstsidst beregnede rest. Vi vil sige at antallet af **trin** der skal benyttes er antallet af divisioner. Således er antallet af trin der skal benyttes for at bestemme $\mathrm{GCD}(273,98)$ netop 5, jf. gennemregningen i KBR Example 1.4.5 (side 23). Antallet af trin for alle valg af a,b med $15 \geq a \geq b > 0$ på nær to sådanne valg er illustreret i figur 1.
 - (1) Beregn GCD(3,2), GCD(5,3), GCD(8,5), samt GCD(13,8) og bestem de fire manglende tal i figur 1.
 - (2) Lad t_n være det højeste (worst-case) antal trin der skal benyttes til at bestemme GCD(a, b) når $n \ge a \ge b > 0$. Benyt figur 1 til at bestemme t_1, t_2, \ldots, t_{15} .
 - (3) For k = 2, 3, 4, 5, 6, find par (a_k, b_k) således hver $GCD(a_k, b_k)$ har netop k divisioner, og $\max\{a_k, b_k\}$ bliver mindst muligt. Hint: Du kan med fordel benytte tabel i Figur 1. Du kan antage at $(a_6, b_6) = (21, 13)$.
 - (4) (Frivillig man behøves ikke at lave denne opgave) Kan du indse mønstret og forudsige (a_7, b_7) og (a_8, b_8) ? Derefter, overvej følgen defineret som $F_0 = 1$, $F_1 = 2$, og $F_k = \max\{a_k, b_k\}$ for k > 1. Kan du genkende følgen (F_k) fra forelæsningen? Hvad hedder den?
 - (5) Vis at t_n er O(n). Note: grafen for t_n for n mellem 1 og 200 er illustreret på figur 2. Bemærk, ud fra grafen så ser t_n ud ikke som $\Theta(n)$.
 - (6) Giv en begrundelse for at t_n ikke er O(1).
- Del 2 Benyt følgende opskrift til at give et induktionsbevis for at $4^n + 15n 1$ er deleligt med 9 for ethvert helt tal n > 0.

- (1) Bestem det relevante udsagn P(n).
- (2) Kontrollér at P(n) er et sandt udsagn for alle n mellem 1 og 5.
- (3) Indfør en følge $b_n=4^n+15n-1,$ og lav en formel der sammenknytter b_{n+1} og b_n
- (4) Antag nu at P(n) er sand for en eller anden bestemt værdi af n > 0. Gør rede for at så er P(n+1) også sand.
- (5) Opstil en konklusion ved hjælp af induktionsprincippet.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1		1	2	1	2	1	2	1	2	1	2	1	2
3			1	2		1	2	3	1	2	3	1	2	3	1
4				1	2	2	3	1	2	2	3	1	2	2	3
5					1	2	3		3	1	2	3	4	3	1
6						1	2	2	2	3	3	1	2	2	2
7							1	2	3	3	4	4	3	1	2
8								1	2	2	4	2		3	3
9									1	2	3	2	3	4	3
10										1	2	2	3	3	2
11											1	2	3	4	4
12												1	2	2	2
13													1	2	3
14														1	2
15															1

Figur 1: Antal trin i beregningen af $\mathrm{GCD}(a,b)$

Figur 2: Grafen for t_n