MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY

Bakalářská práce

BRNO 2017

LENKA HELDOVÁ

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY

Název práce na titulní list

Bakalářská práce

Lenka Heldová

Vedoucí práce: Plné jméno včetně titulů Brno 2017

Bibliografický záznam

Autor: Lenka Heldová

Přírodovědecká fakulta, Masarykova univerzita

Ústav matematiky a statistiky

Název práce: Název práce

Studijní program: Studijní program

Studijní obor: Studijní obor

Vedoucí práce: Plné jméno včetně titulů

Akademický rok: 2016/2017

Počet stran: ?? + ??

Klíčová slovo; Klíčové slovo; Klíčové slovo; Klíčové slovo; Klíčové slovo; Klí

čové slovo; Klíčové slovo; Klíčové slovo

Bibliographic Entry

Author: Lenka Heldová

Faculty of Science, Masaryk University Department of Mathematics and Statistics

Title of Thesis: Title of Thesis

Degree Programme: Degree programme

Field of Study: Field of Study

Supervisor: Plné jméno včetně titulů

Academic Year: 2016/2017

Number of Pages: ?? + ??

Keyword; Keyword; Keyword; Keyword; Keyword; Keyword;

Keyword; Keyword; Keyword

Abstrakt

V této bakalářské/diplomové/rigorózní práci se věnujeme ...

Abstract

In this thesis we study ...

Poděkování

Na tomto místě bych chtěl(-a) poděkovat	
Prohlášení	
Prohlašuji, že jsem svoji bakalářskou práci vypracoval mačních zdrojů, které jsou v práci citovány.	a samostatně s využitím infor-
Brno xx. měsíce 20xx	 Lenka Heldová

Poďakovanie

Na tomto místě bych chtěl(-a) poděkovat	
Prohlášení	
Prohlašuji, že jsem svoji bakalářskou práci vypracovala načních zdrojů, které jsou v práci citovány.	a samostatně s využitím infor-
Brno xx. měsíce 20xx	Lenka Heldová

Obsah

Úvod .		ix
Kapito	la 1. PerfCake	1
_	O nástroji	1
1.2	Použitie	3
1.3	Výstup	5
	1.3.1 Dáta	7
	1.3.2 Grafy	7
Kapito	la 2. Matematická teória	8
2.1	Regresná analýza	8
2.2	Jadrové odhady	9
	2.2.1 Jadrová funkcia	9
	2.2.2 Šírka vyhladzovacieho okna	10
	2.2.3 Vhodný výber vyhladzovacieho parametra	10
	2.2.4 Typy jadrových odhadov	12
2.3	Miera polohy a miera variability	13
	2.3.1 Aritmetický priemer	13
	2.3.2 Rozptyl a smerodajná odchýlka	14
Kapito	la 3. Analýza dát	15
Kapito	la 4. Vyhladenie dát	17
Závěr		23
Příloha	a	26
Seznan	n použité literatury	29

Úvod

Test interpunkce:

Žluťoučký kůň úpěl ďábelské ódy ěščřžýáíeľťňďúů

Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky.

Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky. Toto je nějaký úvodní text, ve kterém se obvykle popisuje struktura práce, cíle a případně i výsledky.

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Donec vitae velit. Suspendisse porta fermentum mauris. Ut vel nunc non mauris pharetra varius. Duis consequat libero quis urna. Maecenas at ante. Vivamus varius, wisi sed egestas tristique, odio wisi luctus nulla, lobortis dictum dolor ligula in lacus. Vivamus aliquam, urna sed interdum porttitor, metus orci interdum odio, sit amet euismod lectus

Úvod _____x

felis et leo. Praesent ac wisi. Nam suscipit vestibulum sem. Praesent eu ipsum vitae pede cursus venenatis. Duis sed odio. Vestibulum eleifend. Nulla ut massa. Proin rutrum mattis sapien. Curabitur dictum gravida ante.

Phasellus placerat vulputate quam. Maecenas at tellus. Pellentesque neque diam, dignissim ac, venenatis vitae, consequat ut, lacus. Nam nibh. Vestibulum fringilla arcu mollis arcu. Sed et turpis. Donec sem tellus, volutpat et, varius eu, commodo sed, lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque enim arcu, suscipit nec, tempus at, imperdiet vel, metus. Morbi volutpat purus at erat. Donec dignissim, sem id semper tempus, nibh massa eleifend turpis, sed pellentesque wisi purus sed libero. Nullam lobortis tortor vel risus. Pellentesque consequat nulla eu tellus. Donec velit. Aliquam fermentum, wisi ac rhoncus iaculis, tellus nunc malesuada orci, quis volutpat dui magna id mi. Nunc vel ante. Duis vitae lacus. Cras nec ipsum.

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi, sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a, hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

Aenean scelerisque. Fusce pretium porttitor lorem. In hac habitasse platea dictumst. Nulla sit amet nisl at sapien egestas pretium. Nunc non tellus. Vivamus aliquet. Nam adipiscing euismod dolor. Aliquam erat volutpat. Nulla ut ipsum. Quisque tincidunt auctor augue. Nunc imperdiet ipsum eget elit. Aliquam quam leo, consectetuer non, ornare sit amet, tristique quis, felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque interdum quam sit amet mi. Pellentesque mauris dui, dictum a, adipiscing ac, fermentum sit amet, lorem.

Ut quis wisi. Praesent quis massa. Vivamus egestas risus eget lacus. Nunc tincidunt, risus quis bibendum facilisis, lorem purus rutrum neque, nec porta tortor urna quis orci. Aenean aliquet, libero semper volutpat luctus, pede erat lacinia augue, quis rutrum sem

Úvod ______xi

ipsum sit amet pede. Vestibulum aliquet, nibh sed iaculis sagittis, odio dolor blandit augue, eget mollis urna tellus id tellus. Aenean aliquet aliquam nunc. Nulla ultricies justo eget orci. Phasellus tristique fermentum leo. Sed massa metus, sagittis ut, semper ut, pharetra vel, erat. Aliquam quam turpis, egestas vel, elementum in, egestas sit amet, lorem. Duis convallis, wisi sit amet mollis molestie, libero mauris porta dui, vitae aliquam arcu turpis ac sem. Aliquam aliquet dapibus metus.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristique mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero aliquet hendrerit. Proin placerat, mi non elementum laoreet, eros elit tincidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas facilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus, purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna. Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elementum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam magna, ultricies eget, ultrices placerat, adipiscing rutrum, sem.

Kapitola 1

PerfCake

Táto kapitola sa venuje nástroju na testovanie výkonu PerfCake, jeho použitiu a typu dát, ktorými sa budeme zaoberať. Celá kapitola je len povrchným zoznámením sa s nástrojom pre potreby tejto práce, čerpá hlavne z oficiálne stránky tohto nástroja, kde v prípade väčšieho záujmu je všetko o nástroji podrobne rozpísané.

Obr. 1.1: PerfCake

1.1 O nástroji

PerfCake je open-source framework vyvíjaný spoločnosťou Red Hat. Je to generátor zaťaženia s cieľom byť minimalistický a ľahko ovládateľný, poskytujúci stabilné výsledky, majúci minimálny vplyv na testovaný systém, byť nezávislý na platforme, umožňujúci vysokú priepustnosť a používajúci komponentový dizajn.

Nástroj PerfCake môže byť použitý na na všetky druhy testovania výkonu, včetne:

- záťažové testovanie (load testing) testuje sa správanie softvéru pri očakávanom zaťažení, pri tomto type testu sa prejavujú takzvané "hrdlá fľaše"(bottlenecks) v sytéme, miesta, ktoré v nejakom smere sytém limitujú,
- *testovanie hraničnej záťaže (stress testing)* tento test hľadá hranice možného zaťaženia systému a zisťuje správanie sa systému za touto hranicou,

- testovanie odolnosti (endurance testing, soak testing) zisťuje sa, či testovaný systém dokáže vydržať sústavnú záťaž po dlhšiu dobu a taktiež, či pri takejto sústavnej záťaži neklesá jeho výkon,
- testovanie škálovateľnosti (scalability testing) testuje sa, či systém dobre škáluje a teda či je možné efektívne zvyšovať jeho kapacity bez zmien nečakaných správania,
- benchmarking zaznamenávanie a porovnávanie výsledkov testov, za účelom získania rôznych metrík.

Pre účely spomínaných testov, podporuje PerfCake radu metrík na testovanie cieľového systému. Napríklad:

- monitorovanie vybraného atribútu správy, roztriedenie a spočítanie podľa konkrétnych hodnôt daného atribútu,
- počítanie priemernej priepustnosti za sekundu,
- sledovanie veľkosti spotrebovanej pamäte cieľovej JVM (Java virtual machine),
- zaznamenávanie času odpovede (response time) v milisekundách, pomocou HDR (High Dynamic Range) histogramu, ktorý dokáže riešiť problém Koordinovaného vynechania (Coordinated ommission), viac o tomto probléme a riešení pomocou HRD histogramu sa môžme dočítať na oficiálnej stránke nástroja v sekcii 4.7. Reporting [],
- počítanie štatistík, ako maximum, minimum, priemer z hodnôt priepustnosti alebo časov odpovedí, za čas od začiatku trvania testu, až po reportovanie výsledku alebo zo špecifikovaného časového okna,
- detekovanie pripravenosti systému, ktorá sa určuje pomocou splnenia 3 podmienok, momentálna priepustnosť sa mení o menej ako nastaviteľná hranica, špecifikovaný čas bol dosiahnutý a špecifikovaný počet iterácií bol vykonaný,
- rozoznávanie geo-lokácie tretích strán.

Užívateľ má niekoľko možností reportovania výsledkov, ako napríklad výpis na konzolu, súbor logov, CSV formát, ktorý môže byť importovaný ako tabuľkový zošit (*spreadsheet*) pomocou nástrojov ako Excel alebo LibreOffice Calc, alebo tiež dokáže generovať grafy výsledkov už v priebehu testovania.

Jeden z problémov podobných testovacích nástrojov je prípad, kedy testovaný softvér zlyhá a vzápätí odošle chybovú správu. Pre tento prípad sú v nástroji PerfCake zabudované validátory, ktoré dokážu takúto správu rozpoznať a nezaviesť tým chybové správy do výsledku výkonu softvéru. Podobné softvéry, ktoré takéto validácie neprevádzajú potom vytvárajú veľmi skreslený výsledok.

1.2 Použitie

Pre spustenie nástroja PerfCake je potrebné vytvoriť, takzvané scenáre (scenarios). V týchto súboroch sú definované testovacie bloky, ktoré hovoria PerfCaku čo a ako robiť. Scenáre sú rozdelené do niekoľko sekcií:

- *vlastnosti (properties)* táto sekcia slúži na pridanie akýchsi meta-dát o scenári, nie je to povinný parameter a slúži na komplexnejšie využitie testovacích scenárov,
- beh (run) slúži na definovanie dĺžky trvania testu,
- generátor (generator) špecifikuje ako a koľko zaťaženia sa má vytvárať,

```
1 <?xml version="1.0" encoding="utf-8"?>
 2 ▼ <scenario
       xmlns="urn:perfcake:scenario:8.0">
 3
4
        <!-- Scenario properties (optional) -->
        properties>
 5 +
            cproperty name="..." value="..."/>
 6
7
8
        </properties>
9
        <!-- Run section (required) -->
10 -
        <run ... >
11
            . . .
12
         </run>
13
        <!-- Generator section (required) -->
14 -
        <generator ... >
15
            . . .
16
        </generator>
17
        <!-- Sequences section (optional) -->
18 -
        <sequences>
19
20
         </sequences>
21
        <!-- Sender section (required) -->
        <sender ... >
22 -
23
24
         </sender>
25
        <!-- Receiver section (optional) -->
26 -
        <receiver>
27
        </receiver>
28
29
        <!-- Reporting section (optional) -->
30 +
        <reporting>
31
32
        </reporting>
        <!-- Messages section (optional) -->
33
34 -
        <messages>
35
            . . .
36
         </messages>
        <!-- Validation section (optional) -->
37
38 -
        <validation>
39
         </validation>
40
41 </scenario>
```

Obr. 1.2: Štruktúa scenára

• *odosielateľ (sender)* - táto sekcia je o spôsobe prenosu, o tom, kde zaťaženie posielať, poprípade o prijímaní odozvy z testovaného systému,

- prijímateľ (receiver) ďalšia rozširujúca sekcia, ktorá sa používa v prípade, že odozva z testovaného systému prichádza iným kanálom (protokolom) ako bola poslaná správa,
- reportovanie (reporting) definuje metriky, spôsob a výstup reportovania výsledkov testu,
- *správy (messages)* sekcia slúži na definovanie formátu a obsahu správ posielaných na testovaný systém,
- *sekvencie* (*sequencies*) táto sekcia umožňuje používať sekvenciu hodnôt, ktoré sa menia pre každú správu (prípadne množinu správ, špecifikovaných v jednom scenári), čo dáva možnosť vytvárať unikátne správy,
- validácia (validation) dovoľuje validovať odpoveď testovaného systému.

Štruktúru testovacieho scenára vo formáte XML (eXtensible Markup Language) a povinnosť konkrétnych parametrov zobrazuje obrázok 1.2. Okrem tohto formátu podporuje PerfCake aj iné možnosti scenárov, napríklad DSL (Domain Specific Language) formát alebo použitie špeciálneho rozhrania pre programovanie aplikácií (API) v jazyku Java, kde si užívateľ môže nadefinovať celý scenár.

```
1 <?xml version="1.0" encoding="utf-8"?>
 2 ▼ <scenario
 3
        xmlns="urn:perfcake:scenario:7.0">
        <run type="${perfcake.run.type:time}"</pre>
 4 +
               value="${perfcake.run.duration:30000}"/>
 5
        <generator class="DefaultMessageGenerator"</pre>
 6 +
 7
               threads="${perfcake.thread.count:100}"/>
 8 =
        <sender class="HttpSender">
             <target>http://${server.host}/post</target>
 9
             cproperty name="method" value="POST"/>
10
        </sender>
11
12 -
        <reporting>
             <reporter class="IterationsPerSecondReporter">
13 *
                 <destination class="ConsoleDestination">
14 -
                     <period type="time" value="1000" />
15
                 </destination>
16
17
             </reporter>
        </reporting>
18
19 -
        <messages>
             <message uri="plain.txt"/>
20
21
        </messages>
22 </scenario>
```

Obr. 1.3: Príklad scenára

Pre jednoduchú ukážku si uvedieme príklad scenára XML. Máme vyvinutý softvér, ktorý asynchrónne spracováva správy prichádzajúce pomocou POST metódy a HTTP protokolu. Následne tieto správy spracúva (validuje, vytvára záznamy do databázy, generuje

reporty, ...) a po úspešnom spracovaní pošle potvrdzujúcu správu späť. Na obrázku 1.3 sa nachádza scenár pre jednoduchý testovací blok, ktorý by sme mohli na takýto nami vytvorený softvér použiť. Zo scenára je možné vidieť, že tento test bude bežať 3000 ms = 3 sekundy, generuje správy použitím 100 vlákien, ktoré posiela pomocou HTTP protokolu a metódy POST. Text správy je špecifikovaný v súbore"plain.txt" a výsledky sú zaznamenávané na konzolu, každú 1 sekundu. Ako reporter je použitý "IterationsPerSecondReporter" a teda sa každú sekundu zapíše, koľko správ bolo softvérom spracovaných.

Veľmi podobným scenárom by sme mohli testovať, koľko softvér používa pamäte, stačilo by zmeniť atribút reporter na "MemoryUsageReporter". Týmto spôsobom sa veľmi ľahko odhaľujú úniky pamäte. Scenáre sa púšťajú pomocou nástroja Maven alebo pomocou shell skriptu.

1.3 Výstup

Ako bolo uvedené v prvej podkapitole, PerfCake má bohaté možnosti východzích súborov. Pri vytváraní optimalizačného algoritmu budeme ale pracovať iba s dvoma typmi. Dáta budeme spracovávať z CSV súboru a následne z nich budeme generovať grafy.

Throughput			Memory		
Time	Current	Average	Time	Used	Total
00:01:00	1,67	1,67	00:01:00	777,30	2817,06
00:02:00	1,67	1,67	00:02:00	528,81	2835,94
00:03:00	2,22	2,22	00:03:00	450,90	2901,19
00:04:00	2,08	2,08	00:04:00	585,94	2911,63
00:05:00	2,33	2,33	00:05:00	979,96	2953,00
00:06:00	2,22	2,22	00:06:00	855,63	2960,25
00:07:00	2,38	2,38	00:07:00	1193,20	2992,13
00:08:00	2,29	2,29	00:08:00	1175,80	3001,75
00:09:00	2,22	2,22	00:09:00	1197,66	3009,88
00:10:00	2,17	2,17	00:10:00	831,64	3013,38
00:11:00	2,27	2,27	00:11:00	1380,88	3019,63
00:12:00	2,22	2,22	00:12:00	815,44	3031,56
00:13:00	2,18	2,18	00:13:00	950,54	3035,38
00:14:00	2,26	2,26	00:14:00	726,44	3036,44
00:15:00	2,44	2,33	00:15:00	659,87	3042,88
00:16:00	2,18	2,19	00:16:00	715,86	3042,88
00:17:00	2,18	2,16	00:17:00	909,47	3042,44
00:18:00	2,05	2,13	00:18:00	1016,83	3042,31
00:19:00	2,14	2,19	00:19:00	697,72	3043,13
00:20:00	2,05	2,17	00:20:00	844,43	3043,75

Tabuľka 1.1: Dáta

Obr. 1.4: Grafy

1.3.1 Dáta

Pri optimalizácií dát pre potreby vykresľovania do grafov, bude používaný formát súboru CSV, ktorý môžeme previesť do podoby tabuľky.

Tabuľka 1.1 ukazuje dáta vygenerované nástrojom PerfCake za 20 minút, testovala sa priepustnosť softvéru v iteráciách za sekundu a využitie pamäte v megabajtoch. Pri vytváraní algoritmu budeme pracovať len s dátami, ktoré boli vytvorené pri testovaní týchto dvoch vlastností softvéru. Pri priepustnosti sa počíta priemer za časovú jednotku (current) a tiež priemer za niekoľko časových jednotiek (average), časová jednotka a veľkosť okna, s ktorými sa bude počíta sa dá nastaviť v scenári, pri dátach s tabuľky je to minúta a 15 záznamov. Priemer sa začína počítať, keď sa naplní okno a potom už pre každý ďalší záznam.

Pri testovaní využívania pamäte sa zaznamenáva použitá (used) a celková pamäť (total). Celková pamäť, je pamäť, ktorú si JVM alokuje a použitá pamäť je pamäť, ktorú naozaj využije - celková mínus voľná pamäť. Viac o pamäti v JVM sa čitateľ dozvie v oficiálnej dokumentácií(http://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html).

V popisovanej tabuľke sú dáta zaznamenané za 20 min, v praxi ale tie testy bežia väčšinou niekoľko desiatok hodín a teda tabuľky môžu dosahovať tisíce záznamov. Ukladať a následne spracovať takéto množstvo dát je pamäťovo aj časovo náročné a preto budem hľadať algoritmus, ktorý zmenší objem dát a zároveň neznehodnotí informáciu z nich vyplývajúcu, pri vykreslení do grafov.

1.3.2 Grafy

Pomocou grafu vieme často do mozgu preniesť oveľa viac informácií. Na obrázku 1.4 sú znázornené grafy z testov, ktoré bežali 108 hodín, a ktorých prvých 20 záznamov sme si ukázali v tabuľke 1.1. Pre analýzu výsledku nie sú potrebné tak presné grafy, väčšinou je dôležitá hodnota okolo ktorej dáta v určitej časti grafu konvergujú, alebo či hodnoty veľmi "skáču". V bakalárskej práci budú tieto grafy upravené a následne porovnávané s grafmi, ktoré budú vykreslené z dát, na ktoré sa použije optimalizačný algoritmus.

Kapitola 2

Matematická teória

V tejto kapitole uvedieme potrebné znalosti z matematickej teórie, ktoré sú potrebné pre zostrojenie optimalizačných algoritmov, ktorými sa budeme zaoberať v následujúcich kapitolách.Najprv sa oboznámime s úvodom do regresnej analýzy a s neparametrickou metódou odhadu regresnej funkcie - metódou jadrových odhadov,ktorú použijeme na vyhladenie dát. Na konci kapitoly si ešte uvedieme vzorce pre aritmetický priemer, rozptyl a smerodajnú odchýlku, budú použité na redukciu dát. Pojmy a definície sú prebraté zo zdrojov...

2.1 Regresná analýza

Pre pevné hodnoty nezávisle premennej X (v našom prípade čas) máme k dispozícií namerané hodnoty závisle premennej Y (priepustnosť, použitá pamäť,...). Takýmito dvojicami bodov $(x_i, Y_i), i = 1, ..., n$ chceme preložiť vhodnú krivku, tak aby boli odfiltrované výkyvy a bolo možné lepšie poznať štruktúru dát. Táto krivka sa nazýva regresná krivka a jej príslušný regresný vzťah zapisujem v tvare

$$Y_i = m(x_i) + \varepsilon_i, i = 1, \dots, n, \tag{2.1}$$

kde m je neznáma regresná funkcia a ε_i , i=1,...,n, sú chyby merania. Cieľom regresnej analýzy je nájsť vhodnú aproximáciu \hat{m} neznámej funkcie m. Hľadanie tejto regresnej krivky sa tiež nazýva vyhladzovanie a je možné použiť dva spôsoby odhadu, parametricky a neparametricky:

- Parametrický prístup predpokladá, že regresná funkcia je nejakého predpísaného tvaru. Odhadnutá regresná funkcia bude teda určitého tvaru a bude ju popisovať množina parametrov - to je dôvod pre názov parametrický.
- Neparametrický prístup nepredpokladá predpísaný tvar regresnej funkcie. Tento prístup sa vyhýba parametrizácii a tvar funkcie sa odhaduje priamo z dát. Predpokladá sa jedine istá hladkosť hľadanej funkcie.

Jedna z najjednoduchších neparametrických metód je *metóda kĺzavých priemerov*. Pre odhad hodnoty Y_i sa používa priemer niekoľkých hodnôt Y_i , $j \in [i-h, i+h]$ v centrovanom

okolí príslušného bodu x_i . Konkrétne,

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} Y_i I_{[x-h,x+h]}(x_i)}{\sum_{i=1}^{n} I_{[x-h,x+h]}(x_i)}.$$
(2.2)

Na vyjadrenie

$$I_{[j,k]}(x) \begin{cases} 1 & x \in [j,k], \\ 0 & \text{inak.} \end{cases}$$
 (2.3)

sa používa *indikátorová funkcia* $I_{[i,k]}(x)$.

Jadrové odhady sa považujú za zovšeobecnenie metódy kĺzavých priemerov.

2.2 Jadrové odhady

Pri odhadovaní regresnej funkcie pomocou jadrových odhadov, sa taktiež používajú vážené hodnoty Y v centrovanom okolí príslušného bodu x_i . Váhy hodnôt Y sú závislé na vzdialenosti príslušných x bodov od konkrétneho x_i , bližšie hodnoty - väčšia váha. Toto nám pomáha dosiahnuť *jadrová funkcia*. Vzorec pre jadrové odhady vo všeobecnosti, môžme zapísať nasledovne

$$\hat{m}(x,h) = \sum_{i=1}^{n} W_i(x,h) Y_i, \tag{2.4}$$

kde $W_i(x,h)$ je váhová funkcia s vyhladzovacím parametrom h. Ide teda o akýsi vážený súčet pozorovaní, ktorý v jednom z najjednoduchších prípadov môže mať tvar

$$W_i(x,h) = K_h(x - x_i) = \frac{1}{h}K(\frac{x - x_i}{h}),$$
 (2.5)

kde K je jadrová funkcia. Váhová funkcia by mala dávať súčet váh 1.

2.2.1 Jadrová funkcia

Jadrová funkcia determinuje tvar vyhladzovacej funkcie. Na obrázku 2.1 môžme vidieť niekoľko najpoužívanejších jadrových funkcií. V popise funkcie sa používa indikátorová funkcia (2.3).

Vo všeobecnosti hocijaká integrovatelná, obmedzená funkcia, ktorá spĺňa kritériá 2.6 môže byť jadrom.

$$a) \int K(z)dz = 1 \qquad b) \int zK(z)dz = 0$$

$$c) \int z^2K(z)dz < \infty \qquad d)K(x) \ge 0 \text{ pre všetky } x.$$

$$(2.6)$$

Obr. 2.1: Rôzne tvary jadrových funkcií:

a)
$$K(x) = \frac{3}{4}(1-x^2)I_{[-1,1]}(x)$$
, b) $K(x) = \frac{15}{16}(1-x^2)^2I_{[-1,1]}(x)$, c) $K(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, d) $K(x) = \frac{1}{2}I_{[-1,1]}(x)$, e) $K(x) = (1-|x|)I_{[-1,1]}(x)$, f) $K(x) = \frac{1}{2}e^{-|x|}$

2.2.2 Šírka vyhladzovacieho okna

Okrem jadrovej funkcie, alebo jadra, je ďalším dôležitým parametrom tejto metódy šírka vyhladzovacieho okna h.Šírka vyhladzovacieho okna alebo aj vyhladzovací parameter h udáva šírku vyhladzovacej funkcie a teda aj silu vyhladenia.

Malá šírka vyhladzovacieho okna znamená, že odhad závisí na úzkom okolí bodu x_i a teda odhad do veľkej miery reprodukuje pôvodné dáta. Naopak, ak zvolíme vysokú hodnotu h, aj veľmi vzdialené hodnoty majú vysoký dopad na odhad, čo vedie k "prehladeniu" a pri dostatočne veľkej šírke h až k priemeru dát.

Spomínané rozdieli v šírke vyhladzovacieho okna môžme vidieť na obrázku 2.2. Pre ilustráciu vplyvu vyhladzovacieho parametra sú použité reaálne dáta meranie použitej pamäte nástroja PerfCake. Aplikované sú Nadaraya-Watsonove odhady, ktoré sú popísané v nasledujúcej podkapitole, s Gaussovou jadrovou funkciou.

2.2.3 Vhodný výber vyhladzovacieho parametra

Hoci je v praxi bežné vybrať vhodnú šírku vyhladzovacieho okna na základe niekoľkých pokusov a následného subjektívneho výberu, existuje niekoľko metód pre výber optimálnej šírky vyhladzovacieho okna.

Kvalita jadrových odhadov regresnej funkcie môže byť lokálne popísaná pomocou strednej kvadratickej chyby (MSE - Mean Square Error)

$$MSE\{\hat{m}(x,h)\} = E\{\hat{m}(x,h) - m(x)\}^{2}.$$

Alebo tiež pomocou globálnej chyby - priemernej strednej kvadratickej chyby (AMSE -

Obr. 2.2: Porovnanie šírky vyhladzovacieho okna, bodky sú pôvodné dáta, súvislá čiara odhadnutá regresná funkcia

average MSE)

$$AMSE\{\hat{m}(.,h)\} = \frac{1}{n}E\sum_{i=1}^{n} \{\hat{m}(x_i,h) - m(x_i)\}^2.$$

Minimalizovaním týchto chýb pre hodnotu parametra h, dostávame jeho optimum.

Keďže vzorec pre AMSE obsahuje neznáme hodnoty regresnej funkcie, použijeme pre výpočet optimálnej hodnoty parametra h, reziduálny súčet štvorcov (RSS), kde tieto neznáme hodnoty nahradíme nameranými hodnotami Y_i . Teda

$$RSS_n(h) = \frac{1}{n} \sum_{i=1}^n \{Y_i - m(x_i, h)\}^2.$$
 (2.7)

RSS ale nie je nestranným odhadom AMSE, preto sa metódy pre odhad optimálnej šírky vyhladzovacieho okna snažia RSS upraviť tak, aby bol nestranný.

Jedna z najpoužívanejších metód tohto typu je $metóda\ krížového\ overenia\ (Cross-validation\ method)$. Táto metóda spočíva vo vynechaní pozorovania x_j pre spočítanie odhadu v bode x_j

$$\hat{m}_{-j}(x_j,h) = \sum_{\substack{i=1\\i\neq j}}^n W_i(x_j,h)Y_i.$$

S použitím tejto modifikácie, môžme RSS prepísať do tvaru

$$CV(h) = \frac{1}{n} \sum_{i=1}^{n} \{Y_i - m_{-i}(x_i)\}^2,$$
(2.8)

funkcia CV je tiež známa ako "cross-validačná" funkcia. Odhadnuté optimálne *h* dostaneme minimalizovaním (2.8)

$$\hat{h}_{CV} = \underset{h \in H_n}{\arg \min} CV(h). \tag{2.9}$$

Aj keď je táto metóda jedna z najpoužívanejších, negarantuje nestrannosť odhadu, ani že \hat{h}_{CV} minimalizuje AMSE (alebo hocijakú inú chybovú mieru). Dôsledkom toho je, že \hat{h}_{CV} nadobúda väčšinou jemne nižšiu hodnotu ako je optimálna šírka h.

Viac o metóde krížového overenia, ale aj iných metódach na odhad optimálnej šírky vyhladzovacieho okna, napr. Malloowsova metóda, Penalizačná metóda, alebo metóda založená na Fourierovej transformácii, môžme nájsť v [(Kernel smoothing)].

2.2.4 Typy jadrových odhadov

V tejto podkapitole si uvedieme niektoré najznámejšie typy jadrových odhadov, ktoré sú uvedené v zdrojoch ...

Ak ako váhovú funkciu použijeme (2.5) dostávame **Priestley-Chaove odhady**

$$\hat{m}_{PCH}(x;h) = \frac{1}{n} \sum_{i=1}^{n} K_h(x - x_i) Y_i.$$
 (2.10)

Modifikovaním tohto estimátora získame ďalší známy typ jadrových odhadov, **Gasser-Müllerove odhady**

$$\hat{m}_{GM}(x;h) = \sum_{i=1}^{n} Y_{i} \int_{s_{i-1}}^{s_{i}} K_{h}(t-x)dt, \qquad (2.11)$$

kde $s_0 = 0, s_i = \frac{x_i + x_{i+1}}{2}, s_n = 1$, pre x_i ekvidištantne rozdelené na [0,1]. Tento estimátor sa dá vhodne použiť pre odhad derivácie regresnej funkcie.

Nasledujúce typy jadrových odhadov vychádzajú z takzvaných *lokálne polynomiálnych jadrových odhadov*. Odhad neznámej regresnej funkcie v bode *x* je získaný preložením polynómu stupňa *d* váženou metódou najmenších štvorcov. Nech tento polynóm má tvar

$$P(u) = \beta_0 + \beta_1(u - x) + \dots + \beta_d(u - x)^d.$$
 (2.12)

Váhy sú dané pomocou jadrovej funkcie

$$K_h(x - x_i) = \frac{1}{h} K\left(\frac{x - x_i}{h}\right). \tag{2.13}$$

Aplikujeme váženú metódu najmenších štvorcov, to znamená, že minimalizujeme výraz

$$\sum_{i=1}^{n} \{Y_i - \beta_0 - \beta_1(x_i - x) - \dots - \beta_d(x_i - x)^p\}^2 K_h(x_i - x)$$
 (2.14)

v závislosti na parametroch $\boldsymbol{\beta}=(\beta_0,...,\beta_d)'$. Označme $\boldsymbol{\hat{\beta}}=(\hat{\beta}_0,...,\hat{\beta}_d)'$ vektor, pre ktorý (2.14) nadobúda minimum. Odhad regresnej funkcie získaný popísanou metódou je hodnota parametra $\hat{\beta}_0$.

Špeciálnym prípadom lokálne polynomiálnych odhadov, kde stupeň polynómu d=0 sú Nadaraya-Watsonove odhady

$$\hat{m}_{MW}(x;h) = \frac{\sum_{i=1}^{n} K_h(x - x_i)Y_i}{\sum_{i=1}^{n} K_h(x - x_i)}.$$
(2.15)

V tomto prípade prekladáme dáta konštantnou funkciou. Môžme si tiež všimnúť, že ak použijeme Nadaraya-Watsonove odhady s obdĺžnikovou jadrovou funkciou, dostaneme metódu kĺzavých priemerov (2.2).

Druhým špeciálnym prípadom lokálne polynomiálnych odhadov, kde stupeň polynómu d=1 a ide teda o priamku, sú **Lokálne lineárne estimátory**

$$\hat{m}_{LL}(x;h) = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{s}_2(x;h) - \hat{s}_1(x;h)(x_i - x)K_h(x - x_i)Y_i}{\hat{s}_2(x;h)\hat{s}_0(x;h) - \hat{s}_1(x;h)^2},$$
(2.16)

kde

$$\hat{s}_r(x;h) = \frac{1}{n} \sum_{i=1}^n (x_i - x)^r K_h(x - x_i). \tag{2.17}$$

2.3 Miera polohy a miera variability

Ako bolo uvedené na začiatku kapitoly, v tejto podkapitole sa oboznámime ešte s niektorými pojmami zo štatistiky.

Majme súbor hodnôt

$$x_1, x_2, x_3, \dots, x_n,$$
 (2.18)

kde *n* je rozsah súboru a jeho hodnoty sú intervalového alebo pomerového typu. To znamená, že je možné stanoviť vzdialenosti medzi meranými hodnotami, a teda počítať s ich rozdielami. Tento súbor hodnôt môžme analyzovať niekoľkými spôsobmi.

2.3.1 Aritmetický priemer

Na určenie hodnoty, okolo ktorej sa hodnoty jednotlivých pozorovaní nachádzajú je vhodný aritmetický priemer daného súboru.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2.19}$$

Aritmetický priemer je tiež nazývaný miera polohy štatistických znakov.

2.3.2 Rozptyl a smerodajná odchýlka

Miery variability určujú, spôsob akým sú merané hodnoty usporiadané okolo strednej hodnoty. Najpoužívanejšie miery variability sú rozptyl a smerodajná odchýlka.

Rozptyl je často označovaný ako stredná kvadratická odchýlka a je definovaný

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$
 (2.20)

V prípade, že rozptyl počítame iba zo vzorky hodnôt, a nie z celého súboru hodnôt, vzorec sa zmení na

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}, \tag{2.21}$$

vďaka tejto úprave bude rozptyl jemne väčší. Táto korektúra sa používa na zmiernenie zkreslenia výsledku pri výpočte zo zmenšeného počtu dát.

Smerodajná odchýlka je daná ako odmocnina z rozptylu

$$s = \sqrt{s^2}. (2.22)$$

Čím väčšie hodnoty rozptyl a smerodajná odchýlka naberajú, tým viac sú hodnoty rozptýlené od priemeru, naopak menšie hodnoty indikujú "tesnejšie" usporiadanie meraných hodnôt.

Kapitola 3

Analýza dát

V tejto kapitole si ukážeme a zanalyzujeme konkrétne dáta vykreslené do grafov, s ktorými budeme pri vytváraní optimalizačného algoritmu pracovať.

Nástroj PerfCake môže testovať radu funkčností, ako bolo opísané v kapitole 1. Pre vytvorenie vhodného algoritmu máme k dispozícií 4 typy dát, na ktorých by mal algoritmus vhodne fungovať. Od rýchlo sa meniacich hodnôt dát (pripomínajúce šum), cez stredne rýchlo sa meniace hodnoty dát so "skokmi" a pomaly sa meniace hodnoty až po takmer konštantné hodnoty dát. Na obrázku 1.4 môžme z vymenovaných vidieť dva typy dát, vykreslené do grafov z redukovaného počtu hodnôt, do podoby v akej sú potrebné pre analýzu výsledkov Perfcaku. V tejto práci, budeme pracovať s grafmi všetkých 4 typov, každý pôvodne vykreslený z 10080 hodnôt, ktoré budeme následne redukovať, v podobe nami vyhovujúcej k následnému spracovaniu a demonštrovaniu výsledkov. Tieto grafy môžme vidieť na obrázku 3.1, sú to dáta vygenerované nástrojom PerfCake z testov, ktoré bežali 168 hodín, 2 grafy z testov na použitú pamäť a 2 grafy z testov na meranie priepustnosti.

Grafy z nástroja PerfCake sú určené ľudským užívateľom. Voľným okom nie je možné rozoznať desaťtisíce hodnôt v jednom grafe, navyše 10080 hodnôt pochádza z testov, ktoré bežali 7 dní a zaznamenávali dáta každú minútu, tieto testy môžu byť spustené na dlhší čas, poprípade zaznamenávať dáta častejšie. v takých prípadoch, môže byť záznamov niekoľko násobne viac, čo je aj v dnešnej dobe pamäťovo náročné a v prípade vykreslenia do grafu, náročné časovo. V neposlednom rade náročné na analýzu.

Z grafu je možné vyčítať niekoľko dôležitých informácií. Okolo akej hodnoty sa dáta pohybujú, ako veľmi a často "skáču" a teda ako veľmi sú stabilné, prípadne tesnosť ich rozptýlenia. Samozrejme analýza grafu sa mení v závislosti na vlastnosti softvéru, ktorú meriame. Pri testovaní použitej pamäte je rozptyl hodnôt obvykle väčší ako pri testovaní priepustnosti, čo môžme vidieť aj na obrázku 3.1. Vytvorené optimalizačné algoritmy dbajú na zachovanie, čo možno najmenšieho skreslenia týchto informácií pri redukovaní počtu dát. Algoritmy sú konfigurovateľné, čiže veľkosť redukcie, na úkor väčšieho skreslenia je nastaviteľný užívateľom, pomocou niekoľkých parametrov. Samozrejme sa predpokladá, že užívateľ, ktorý analyzuje výsledky, je oboznámený s aplikovaním optimalizačného algoritmu, poprípade si ho sám nakonfiguruje.

Postupné aplikovanie optimalizačných algoritmov na dáta, spolu s ich porovnaním si ukážeme v nasledujúcich kapitolách.

Obr. 3.1: Typy dát v grafoch

Kapitola 4

Vyhladenie dát

V tejto kapitole aplikujeme jadrové odhady opisované v podkapitole 2.2 na dáta, čím ich vyhladíme. Touto úpravou sa nestratí takmer žiadna podstatná informácia. Pre aplikovanie jadrových odhadov sme sa rozhodli po dôkladnej analýze dát a vyskúšaní kĺzavých priemerov.

Pri počítaní jadrových odhadov budeme používať Nadaraya-Watsonove odhady popísané v rovnici (2.15) s Gaussovým jadrom, ktoré môžme vidieť na obrázku 2.1, konkrétne obrázok (c), a s použitím (2.13).

Použitý vzorec teda vyzerá

$$\hat{m}_{MW}(x;h) = \frac{\sum_{i=1}^{n} \frac{1}{h} \frac{1}{\sqrt{2\pi}} e^{\frac{\left(\frac{x-x_i}{h}\right)^2}{2}} Y_i}{\sum_{i=1}^{n} \frac{1}{h} \frac{1}{\sqrt{2\pi}} e^{\frac{\left(\frac{x-x_i}{h}\right)^2}{2}}},$$
(4.1)

Optimalizačný algoritmus, by mal byť spustený naraz s testovaním nástrojom PerfCake a mal by pracovať v reálnom čase, poprípade s nejakých zdržaním. Určite ale pri aplikovaní jadrových odhadov, nebudú k dispozícii celé dáta. Budeme teda počítať jadrové odhady vždy zo 100 záznamov. To spôsobí zdržanie maximálne 100 záznamov plus výpočet.

Obr. 4.1: Jadrové odhady bez prelínania

Na obrázku 4.1 môžme vidieť aplikovanie jadrových odhadov (4.1) na dáta, vždy pre každých 100 záznamov a dĺžkou vyhladzovacieho okna 50. Graf, ktorý je výsledkom

(tmavá čiara), je ale príliš "hranatý", čo je následkom rozdelenia dát na 100 záznamov dlhé bloky.

Upravíme vyhladzovací algoritmus tak, že budeme síce aplikovať jadrové odhady vždy na 100 záznamov dlhé bloky, ale tieto bloky sa budú prekrývať. Po aplikovaní na prvý blok záznamov, sa posunieme o 30 záznamov a aplikujeme jadrové odhady znova. To znamená, že pre väčšinu záznamov (okrem prvých 30 a posledných 30 záznamov) bude spočítaných niekoľko odhadov, pre výpočet výslednej hodnoty, tieto odhady spriemerujeme. Takto upravený algoritmus s dĺžkou vyhladzovacieho okna h=50 aplikovaný na dáta môžme vidieť na obrázku 4.2.

Obr. 4.2: Jadrové odhady s prelínaním

Takto upravený algoritmus na vyhladenie dát je ale skoro tri krát pomalší, pretože takmer všetky hodnoty odhadu sa počítajú tri krát. Skúsime teda algoritmus upraviť ešte inak. Každú hodnotu odhadu spočítame z množstva záznamov, ktoré určí dvojnásobok dĺžky vyhladzovacieho parametra. To znamená, že v prípade dĺžky okna 50, zoberieme pre každý odhad 50 záznamov naľavo, 50 napravo a z nich spočítame jadrový odhad. V prípade prvých 50 a posledných 100 použijeme vždy posledných, resp. prvých 100 záznamov. Týmto spôsobom simulujeme počítanie jadrových odhadov pre všetky dáta naraz, a zároveň spočítame odhad v každom bode iba raz. Použitie takéhoto vyhladenia je zobrazené na obrázku 4.3, použitá dĺžka vyhladzovacieho okna je taktiež 50.

Obr. 4.3: Jadrové odhady s posúvaním bloku záznamov

Jadrové odhady upravené týmto spôsobom budú základom optimalizačných algoritmov, ktorých druhou časťou bude redukcia dát opísaná v ďalšej kapitole. Ako už bolo spomínané dĺžka vyhladzovacieho okna je veľmi dôležitým parametrom pri jadrových odhadoch.Počítať optimálnu dĺžku vyhladzovacieho okna pri takto upravenom algoritme,

by bolo veľmi náročné a navyše dáva tento parameter možnosť nastavenia veľkosti vyhladzovacieho efektu. Preto bude dĺžka vyhladzovacieho okna konfigurovateľný vstupný parameter pre algoritmus. Čím väčšiu hodnotu užívateľ zvolí, tým viac vyhladené grafy budú výsledkom. Na obrázku 4.4 môžme vidieť aplikovanie upravených jadrových odhadov s rôznymi dĺžkami vyhladzovacieho okna, s dĺžkami 5,15 a 30. Vyhladzovanie s dĺžkou okna 50 bolo ukázané na obrázku 4.2.

(a) Upravené jadrové odhady s dĺžkou okna 30

(b) Upravené jadrové odhady s dĺžkou okna 15

(c) Upravené jadrové odhady s dĺžkou okna 5

Obr. 4.4: Jadrové odhady s rôznymi hodnotami vychladzovacieho parametra

Vidíme, že zmena dĺžky vyhladzovacieho okna nám naozaj dáva možnosť riadiť silu vyhladenia. Vplyv jadrových odhadov na jede typ dát, typ a), sme si už ukázali, na ďalších obrázkoch, si ukážeme vyhladené aj ostatné typy dát. Pre vyhladenie na obrázku 4.5 bola zvolená dĺžka okna 30 a na obrázku 4.6 dĺžka okna 15.

Pri type c) sa hodnoty menia veľmi rýchlo a bez akéhokoľvek trendu, pripomínajú biely šum. Pri takýchto dátach, by vplyvom vyhladenia mohlo dôjsť k strate informácie o veľkosti rozptylu dát. Samozrejme to závisí na testovanej vlastnosti a type softvéra. Obvykle sa pri testovaní použitej pamäte zameriava na hľadanie "únikov pamäte" (skôr známe pod anglickým pojmom - *memory leak*). V tomto prípade je takéto vyhladenie viac

Obr. 4.5: Typy dát v grafoch s jadrovými odhadmi

Obr. 4.6: Typy dát v grafoch s jadrovými odhadmi

ako prospešné, pretože ukazuje, že nenastali žiadne výkyvy. Naopak ak by sa pri testovaní zameriavalo na rozptyl hodnôt použitej pamäte, poprípade na nejaké lokálne maximá, vyhladenie by takéto informácie zničilo. Pre takéto prípady môžme pridať možnosť ohraničujúcich kriviek, ktoré doplnia stratené informácie. Použitie týchto kriviek je na obrázku 4.7.

Obr. 4.7: Ohraničujúce krivky

Dáta, z ktorých sú krivky vykreslené sú tvorené maximami a minimami z každých 100 vzoriek. To znamená, že pri 10080 záznamov potrebujeme ďalších 202 záznamov pre tieto krivky. Vykresľovanie ohraničujúcich kriviek, ktoré ukazujú akési lokálne minimá a maximá, bude ďalší konfigurovateľný parameter pre výsledný optimalizačný algoritmus.

Závěr

Zde můžete napsat závěr. Zde můžete napsat závěr.

Zde můžete napsat závěr. Zde můžete napsat závěr.

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Donec vitae velit. Suspendisse porta fermentum mauris. Ut vel nunc non mauris pharetra varius. Duis consequat libero quis urna. Maecenas at ante. Vivamus varius, wisi sed egestas tristique, odio wisi luctus nulla, lobortis dictum dolor ligula in lacus. Vivamus aliquam, urna sed interdum porttitor, metus orci interdum odio, sit amet euismod lectus felis et leo. Praesent ac wisi. Nam suscipit vestibulum sem. Praesent eu ipsum vitae pede cursus venenatis. Duis sed odio. Vestibulum eleifend. Nulla ut massa. Proin rutrum mattis sapien. Curabitur dictum gravida ante.

Phasellus placerat vulputate quam. Maecenas at tellus. Pellentesque neque diam, dignissim ac, venenatis vitae, consequat ut, lacus. Nam nibh. Vestibulum fringilla arcu mollis arcu. Sed et turpis. Donec sem tellus, volutpat et, varius eu, commodo sed, lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque enim arcu, suscipit nec, tempus at, imperdiet vel, metus. Morbi volutpat purus at erat. Donec dignissim, sem id semper

tempus, nibh massa eleifend turpis, sed pellentesque wisi purus sed libero. Nullam lobortis tortor vel risus. Pellentesque consequat nulla eu tellus. Donec velit. Aliquam fermentum, wisi ac rhoncus iaculis, tellus nunc malesuada orci, quis volutpat dui magna id mi. Nunc vel ante. Duis vitae lacus. Cras nec ipsum.

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi, sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a, hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

Aenean scelerisque. Fusce pretium porttitor lorem. In hac habitasse platea dictumst. Nulla sit amet nisl at sapien egestas pretium. Nunc non tellus. Vivamus aliquet. Nam adipiscing euismod dolor. Aliquam erat volutpat. Nulla ut ipsum. Quisque tincidunt auctor augue. Nunc imperdiet ipsum eget elit. Aliquam quam leo, consectetuer non, ornare sit amet, tristique quis, felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque interdum quam sit amet mi. Pellentesque mauris dui, dictum a, adipiscing ac, fermentum sit amet, lorem.

Ut quis wisi. Praesent quis massa. Vivamus egestas risus eget lacus. Nunc tincidunt, risus quis bibendum facilisis, lorem purus rutrum neque, nec porta tortor urna quis orci. Aenean aliquet, libero semper volutpat luctus, pede erat lacinia augue, quis rutrum sem ipsum sit amet pede. Vestibulum aliquet, nibh sed iaculis sagittis, odio dolor blandit augue, eget mollis urna tellus id tellus. Aenean aliquet aliquam nunc. Nulla ultricies justo eget orci. Phasellus tristique fermentum leo. Sed massa metus, sagittis ut, semper ut, pharetra vel, erat. Aliquam quam turpis, egestas vel, elementum in, egestas sit amet, lorem. Duis convallis, wisi sit amet mollis molestie, libero mauris porta dui, vitae aliquam arcu turpis ac sem. Aliquam aliquet dapibus metus.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristique mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero aliquet hendrerit. Proin placerat,

mi non elementum laoreet, eros elit tincidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas facilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus, purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna. Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elementum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam magna, ultricies eget, ultrices placerat, adipiscing rutrum, sem.

Morbi sem. Nulla facilisi. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla facilisi. Morbi sagittis ultrices libero. Praesent eu ligula sed sapien auctor sagittis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Donec vel nunc. Nunc fermentum, lacus id aliquam porta, dui tortor euismod eros, vel molestie ipsum purus eu lacus. Vivamus pede arcu, euismod ac, tempus id, pretium et, lacus. Curabitur sodales dapibus urna. Nunc eu sapien. Donec eget nunc a pede dictum pretium. Proin mauris. Vivamus luctus libero vel nibh.

Fusce tristique risus id wisi. Integer molestie massa id sem. Vestibulum vel dolor. Pellentesque vel urna vel risus ultricies elementum. Quisque sapien urna, blandit nec, iaculis ac, viverra in, odio. In hac habitasse platea dictumst. Morbi neque lacus, convallis vitae, commodo ac, fermentum eu, velit. Sed in orci. In fringilla turpis non arcu. Donec in ante. Phasellus tempor feugiat velit. Aenean varius massa non turpis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

Aliquam tortor. Morbi ipsum massa, imperdiet non, consectetuer vel, feugiat vel, lorem. Quisque eget lorem nec elit malesuada vestibulum. Quisque sollicitudin ipsum vel sem. Nulla enim. Proin nonummy felis vitae felis. Nullam pellentesque. Duis rutrum feugiat felis. Mauris vel pede sed libero tincidunt mollis. Phasellus sed urna rhoncus diam euismod bibendum. Phasellus sed nisl. Integer condimentum justo id orci iaculis varius. Quisque et lacus. Phasellus elementum, justo at dignissim auctor, wisi odio lobortis arcu, sed sollicitudin felis felis eu neque. Praesent at lacus.

Vivamus sit amet pede. Duis interdum, nunc eget rutrum dignissim, nisl diam luctus leo, et tincidunt velit nisl id tellus. In lorem tellus, aliquet vitae, porta in, aliquet sed, lectus. Phasellus sodales. Ut varius scelerisque erat. In vel nibh eu eros imperdiet rutrum. Donec ac odio nec neque vulputate suscipit. Nam nec magna. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nullam porta, odio et sagittis iaculis, wisi neque fringilla sapien, vel commodo lorem lorem id elit. Ut sem lectus, scelerisque eget, placerat et, tincidunt scelerisque, ligula. Pellentesque non orci.

Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem. Vivamus viverra consequat enim.

Příloha

Sem můžete přidat přílohu. Pokud chcete "Přílohy", tak upravte definici záhlaví v souboru sci.muni.thesis.sty, viz příkaz \HlavickaPriloha.

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Donec vitae velit. Suspendisse porta fermentum mauris. Ut vel nunc non mauris pharetra varius. Duis consequat libero quis urna. Maecenas at ante. Vivamus varius, wisi sed egestas tristique, odio wisi luctus nulla, lobortis dictum dolor ligula in lacus. Vivamus aliquam, urna sed interdum porttitor, metus orci interdum odio, sit amet euismod lectus felis et leo. Praesent ac wisi. Nam suscipit vestibulum sem. Praesent eu ipsum vitae pede cursus venenatis. Duis sed odio. Vestibulum eleifend. Nulla ut massa. Proin rutrum mattis sapien. Curabitur dictum gravida ante.

Phasellus placerat vulputate quam. Maecenas at tellus. Pellentesque neque diam, dignissim ac, venenatis vitae, consequat ut, lacus. Nam nibh. Vestibulum fringilla arcu mollis arcu. Sed et turpis. Donec sem tellus, volutpat et, varius eu, commodo sed, lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque enim arcu, suscipit nec, tempus at, imperdiet vel, metus. Morbi volutpat purus at erat. Donec dignissim, sem id semper tempus, nibh massa eleifend turpis, sed pellentesque wisi purus sed libero. Nullam lobortis tortor vel risus. Pellentesque consequat nulla eu tellus. Donec velit. Aliquam fermentum, wisi ac rhoncus iaculis, tellus nunc malesuada orci, quis volutpat dui magna id mi. Nunc vel ante. Duis vitae lacus. Cras nec ipsum.

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi, sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a,

hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

Aenean scelerisque. Fusce pretium porttitor lorem. In hac habitasse platea dictumst. Nulla sit amet nisl at sapien egestas pretium. Nunc non tellus. Vivamus aliquet. Nam adipiscing euismod dolor. Aliquam erat volutpat. Nulla ut ipsum. Quisque tincidunt auctor augue. Nunc imperdiet ipsum eget elit. Aliquam quam leo, consectetuer non, ornare sit amet, tristique quis, felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque interdum quam sit amet mi. Pellentesque mauris dui, dictum a, adipiscing ac, fermentum sit amet, lorem.

Ut quis wisi. Praesent quis massa. Vivamus egestas risus eget lacus. Nunc tincidunt, risus quis bibendum facilisis, lorem purus rutrum neque, nec porta tortor urna quis orci. Aenean aliquet, libero semper volutpat luctus, pede erat lacinia augue, quis rutrum sem ipsum sit amet pede. Vestibulum aliquet, nibh sed iaculis sagittis, odio dolor blandit augue, eget mollis urna tellus id tellus. Aenean aliquet aliquam nunc. Nulla ultricies justo eget orci. Phasellus tristique fermentum leo. Sed massa metus, sagittis ut, semper ut, pharetra vel, erat. Aliquam quam turpis, egestas vel, elementum in, egestas sit amet, lorem. Duis convallis, wisi sit amet mollis molestie, libero mauris porta dui, vitae aliquam arcu turpis ac sem. Aliquam aliquet dapibus metus.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristique mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero aliquet hendrerit. Proin placerat, mi non elementum laoreet, eros elit tincidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas facilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus, purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna. Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elementum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam magna, ultricies eget, ultrices placerat, adipiscing rutrum, sem.

Morbi sem. Nulla facilisi. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla facilisi. Morbi sagittis ultrices libero. Praesent eu

Příloha _______28

ligula sed sapien auctor sagittis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Donec vel nunc. Nunc fermentum, lacus id aliquam porta, dui tortor euismod eros, vel molestie ipsum purus eu lacus. Vivamus pede arcu, euismod ac, tempus id, pretium et, lacus. Curabitur sodales dapibus urna. Nunc eu sapien. Donec eget nunc a pede dictum pretium. Proin mauris. Vivamus luctus libero vel nibh.

Fusce tristique risus id wisi. Integer molestie massa id sem. Vestibulum vel dolor. Pellentesque vel urna vel risus ultricies elementum. Quisque sapien urna, blandit nec, iaculis ac, viverra in, odio. In hac habitasse platea dictumst. Morbi neque lacus, convallis vitae, commodo ac, fermentum eu, velit. Sed in orci. In fringilla turpis non arcu. Donec in ante. Phasellus tempor feugiat velit. Aenean varius massa non turpis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

Aliquam tortor. Morbi ipsum massa, imperdiet non, consectetuer vel, feugiat vel, lorem. Quisque eget lorem nec elit malesuada vestibulum. Quisque sollicitudin ipsum vel sem. Nulla enim. Proin nonummy felis vitae felis. Nullam pellentesque. Duis rutrum feugiat felis. Mauris vel pede sed libero tincidunt mollis. Phasellus sed urna rhoncus diam euismod bibendum. Phasellus sed nisl. Integer condimentum justo id orci iaculis varius. Quisque et lacus. Phasellus elementum, justo at dignissim auctor, wisi odio lobortis arcu, sed sollicitudin felis felis eu neque. Praesent at lacus.

Vivamus sit amet pede. Duis interdum, nunc eget rutrum dignissim, nisl diam luctus leo, et tincidunt velit nisl id tellus. In lorem tellus, aliquet vitae, porta in, aliquet sed, lectus. Phasellus sodales. Ut varius scelerisque erat. In vel nibh eu eros imperdiet rutrum. Donec ac odio nec neque vulputate suscipit. Nam nec magna. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nullam porta, odio et sagittis iaculis, wisi neque fringilla sapien, vel commodo lorem lorem id elit. Ut sem lectus, scelerisque eget, placerat et, tincidunt scelerisque, ligula. Pellentesque non orci.

Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem. Vivamus viverra consequat enim.

Seznam použité literatury

- [1] S. J. Monaquel a K. M. Schmidt, *On M-functions and operator theory for non-self-adjoint discrete Hamiltonian systems*, v "Special Issue: 65th birthday of Prof. Desmond Evans", J.Comput. Appl. Math. **208** (2007), č. 1, 82–101.
- [2] M. Murata, Positive solutions and large time behaviors of Schrödinger semigroups, Simon's problem, J. Funct. Anal. **56** (1984), č. 3, 300–310.
- [3] J. Qi a S. Chen, *Strong limit-point classification of singular Hamiltonian expressions*, Proc. Amer. Math. Soc. **132** (2004), č. 6, 1667–1674 (elektronicky).
- [4] Z. Pospíšil, *An inverse problem for matrix trigonometric and hyperbolic functions on measure chains*, v "Colloquium on Differential and Difference Equations CDDE 2002" (Brno, 2002), Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. **13**, str. 205–211, Masarykova univerzita, Brno, 2003.
- [5] R. Šimon Hilscher a P. Zemánek, *Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval*, v "Equadiff 12", Proceedings of the Conference on Differential Equations and their Applications (Brno, 2009), J. Diblík, O. Došlý, P. Drábek a E. Feistauer, editoři, Math. Bohem. **135** (2010), č. 2, 209–222.
- [6] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [7] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [8] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [9] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [10] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [11] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [12] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.

- [13] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [14] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.