

2015 亚太地区信息学奥林匹克竞赛

APIO2015

竞赛时间: 2015年5月9日 9:00-14:00

题目名称	巴厘岛的雕塑	雅加达的摩天楼	巴邻旁之桥
英文名称	sculpture	skyscraper	bridge
每个测试点时限	1秒	2 秒	2 秒
内存限制	64 MB	256 MB	256 MB
试题总分	100	100	100

巴厘岛的雕塑

【问题描述】

印尼巴厘岛的公路上有许多的雕塑,我们来关注它的一条主干道。

在这条主干道上一共有N座雕塑,为方便起见,我们把这些雕塑从1到N连续地进行标号,其中第i座雕塑的年龄是 Y_i 年。为了使这条路的环境更加优美,政府想把这些雕塑分成若干组,并通过在组与组之间种上一些树,来吸引更多的游客来巴厘岛。

下面是将雕塑分组的规则:

这些雕塑必须被分为恰好 X 组,其中 $A \le X \le B$,每组必须含有至少一个雕塑,每个雕塑也必须属于且只属于一个组。同一组中的所有雕塑必须位于这条路的连续一段上。

当雕塑被分好组后,对于每个组,我们首先计算出该组所有雕塑的年龄和,然后计算将每组年龄和按位取或(即对上述年龄和按位取或),我们把按位取或后得到的结果称为这一分组的最终优美度(颜值)。

请问政府能得到的最小的最终优美度(颜值)是多少?

备注:

将两个非负数 P 和 O 按位取或是这样进行计算的:

首先把 P 和 Q 转换成二进制:设 nP 是 P 的二进制位数,nQ 是 Q 的二进制位数,M 为 nP 和 nQ 中的最大值。P 的二进制表示为 $p_{M-1}, p_{M-2}, ..., p_1, p_0, Q$ 的二进制表示为 $q_{M-1}, q_{M-2}, ..., q_1, q_0$,其中 p_i 和 q_i 分别是 P 和 Q 二进制表示下的第 i 位,第 M-1 位是数的最高位,第 0 位是数的最低位。

P与Q按位取或后的结果是: $(p_{M-1}$ 或 $q_{M-1})(p_{M-2}$ 或 $q_{M-2})...(p_1$ 或 $q_1)(p_0$ 或 $q_0)$ 。其中:

- 0 或 0=0
- 0 或 1=1
- 1 或 0=1
- 1 或 1=1

【输入格式】

输入的第一行包含三个用空格分开的整数 N, A 和 B。第二行包含N 个用空格分开的整数 Y_1 , Y_2 , ..., Y_N 。

【输出格式】

输出一行一个数,表示最小的最终优美度。

【样例输入】

6 1 3

8 1 2 1 5 4

【样例输出】

11

【样例解释】

将这些雕塑分为 2 组,(8,1,2) 和 (1,5,4),它们的和是(11)和(10),最终优美度是(11 或 10) = 11 。(不难验证,这也是最终优美度的最小值。)

【数据规模和约定】

共有五部分数据(或称5个子任务)。

第 1 部分数据占 9 分,数据范围满足: $1 \le N \le 20$, $1 \le A \le B \le N$, $0 \le Y_i \le 1,000,000,000$;

第 2 部分数据占 16 分,数据范围满足: $1 \le N \le 50$, $1 \le A \le B \le \min(20, N)$, $0 \le Y_i \le 10$;

第 3 部分数据占 21 分,数据范围满足: $1 \le N \le 100$, $1 \le A \le B \le \min(20, N)$, $0 \le Y_i \le 20$;

第 4 部分数据占 25 分,数据范围满足: $1 \le N \le 100$, $1 \le A \le B \le N$, $0 \le Y_i \le 1,000,000,000$;

第 5 部分数据占 29 分,数据范围满足: $1 \le N \le 2000$,A = 1, $1 \le B \le N$, $0 \le Y_i \le 1,000,000,000$ 。