Nama: Satya Athaya Daniswara

NIM: 1103213152

TUGAS PERBAIKAN BAB 7

1. Pengantar Regresi

- Regresi adalah salah satu tugas utama dalam machine learning yang bertujuan untuk memprediksi nilai kontinu berdasarkan data input.
- Penulis menjelaskan perbedaan antara regresi linier dan regresi non-linier, serta situasi di mana masing-masing digunakan.

2. Algoritma Regresi

- Regresi Linier:
- Model yang paling sederhana, di mana hubungan antara variabel independen (fitur) dan variabel dependen (target) diasumsikan linier.
- Penulis menjelaskan bagaimana model ini bekerja, termasuk konsep slope (kemiringan) dan intercept (titik potong).
 - Contoh penggunaan regresi linier sederhana dan regresi linier berganda (dengan beberapa fitur).
 - Regresi Polinomial:
- Memperluas regresi linier dengan menambahkan fitur polinomial untuk menangkap hubungan non-linier.
 - Penulis menjelaskan bagaimana memilih derajat polinomial yang tepat dan risiko overfitting.
 - Support Vector Regression (SVR):
- Menggunakan prinsip yang sama dengan Support Vector Machines untuk klasifikasi, tetapi diterapkan pada masalah regresi.
 - Penulis menjelaskan konsep margin dan epsilon-insensitive loss.
 - Decision Tree Regressor:
- Model yang membagi data menjadi subset berdasarkan fitur, membentuk struktur pohon untuk memprediksi nilai kontinu.
 - Penulis menjelaskan cara kerja algoritma ini dan bagaimana menghindari overfitting dengan pruning.
 - Random Forest Regressor:
- Ensemble method yang menggabungkan beberapa decision trees untuk meningkatkan akurasi dan mengurangi variabilitas.

- Penulis menjelaskan cara kerja Random Forest dan keuntungannya dibandingkan dengan decision tree tunggal.
 - Gradient Boosting Regressor:
- Metode ensemble yang membangun model secara bertahap, di mana setiap model baru berusaha memperbaiki kesalahan model sebelumnya.
 - Penulis membahas algoritma seperti XGBoost yang populer dalam kompetisi data science.
- 3. Implementasi Regresi dengan Scikit-learn
- Penulis memberikan contoh kode untuk menerapkan berbagai algoritma regresi menggunakan pustaka Scikit-learn.
 - Contoh mencakup:
 - Memuat dataset (misalnya, dataset Boston Housing atau dataset lain yang relevan).
 - Memisahkan data menjadi set pelatihan dan pengujian.
 - Melatih model regresi.
- Membuat prediksi dan mengevaluasi kinerja model menggunakan metrik yang telah dibahas sebelumnya (seperti Mean Absolute Error, Mean Squared Error, dan R² score).
- 4. Evaluasi Model Regresi
- Penulis menekankan pentingnya evaluasi model regresi dengan menggunakan metrik yang sesuai.
- Diskusi tentang penggunaan metrik seperti:
- Mean Absolute Error (MAE): Rata-rata dari selisih absolut antara nilai yang diprediksi dan nilai aktual.
- Mean Squared Error (MSE): Rata-rata dari kuadrat selisih antara nilai yang diprediksi dan nilai aktual.
- R² Score: Mengukur proporsi varians dalam variabel dependen yang dapat dijelaskan oleh variabel independen.
- 5. Tuning Model
- Penulis menjelaskan pentingnya tuning hyperparameter untuk meningkatkan kinerja model regresi.
- Contoh penggunaan Grid Search dan Randomized Search untuk menemukan kombinasi hyperparameter terbaik.
- 6. Studi Kasus

- Di akhir bab, penulis sering menyertakan studi kasus atau contoh praktis yang menunjukkan penerapan algoritma regresi pada dataset nyata.
- Ini memberikan konteks dan pemahaman yang lebih baik tentang bagaimana algoritma bekerja dalam situasi dunia nyata.

7. Kesimpulan

- Bab ini memberikan pemahaman yang komprehensif tentang berbagai algoritma regresi, cara menerapkannya, dan pentingnya evaluasi serta tuning model.
- Pembaca diharapkan dapat memilih algoritma yang tepat berdasarkan karakteristik data dan tujuan analisis.

Contoh Kode Regresi

Berikut adalah contoh kode sederhana yang menunjukkan penerapan Regresi Linier untuk memprediksi harga rumah menggunakan dataset Boston Housing:

```python

Importing necessary libraries

import numpy as np

import pandas as pd

from sklearn.datasets import load\_boston

from sklearn.model\_selection import train\_test\_split

from sklearn.linear\_model import LinearRegression

from sklearn.metrics import mean\_absolute\_error, mean\_squared\_error, r2\_score

Load the Boston Housing dataset

boston = load boston()

X = boston.data

y = boston.target

Split the dataset into training and testing sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Create a Linear Regression model

lin_reg = LinearRegression()

Fit the model to the training data

lin_reg.fit(X_train, y_train)

Make predictions on the test data
y_pred = lin_reg.predict(X_test)

Evaluate the model

print("Mean Absolute Error:", mean_absolute_error(y_test, y_pred))

print("Mean Squared Error:", mean_squared_error(y_test, y_pred))

print("R² Score:", r2_score(y_test, y_pred))
```