The compute hnema keyword

From GPUMD Jump to navigationJump to search

Contents

- 1 Purpose
- 2 Grammar
- 3 Examples
 - 3.1 Example 1
 - 3.2 Example 2
 - 3.3 Example 3
- 4 Output file
- 5 Caveats
- 6 References

Purpose

The compute_hnema keyword is used to calculate the modal thermal conductivity using the Homogeneous Nonequilibrium Modal Analysis (HNEMA) method [Gabourie 2020].

Grammar

compute_hnema sample_interval output_interval Fe_x Fe_y Fe_z first_mode last_mode bin_option size

- sample_interval is the sampling interval (in number of steps) used to compute the heat modal heat current. Must be a divisor of output_interval.
- output_interval is the interval to output the modal thermal conductivity. Each modal thermal conductivity output is averaged over all samples per output interval.
- Fe_x is the x direction component of the external driving force $\mathbf{F_e}$ in units of $\mathbf{\mathring{A}}^{-1}$
- Fe_y is the y direction component of the external driving force F_e in units of \mathring{A}^{-1} .
- Fe_z is the z direction component of the external driving force $\mathbf{F_e}$ in units of $\mathring{\mathbf{A}}^{-1}$.
- first mode is the first mode in the eigenvector.in file file to include in the calculation.
- last_mode is the last mode in the eigenvector.in file to include in the calculation.
- bin option determines which binning technique to use: bin size or f bin size.
- size defines how the modes are added to each bin. If bin_option = bin_size, then this is an integer describing how many modes are included per bin. If bin_option = f_bin_size, then binning is by frequency and this is a float describing the bin size in THz.

Examples

Example 1

compute hnema 10 1000 0.000008 0 0 1 27216 f bin size 1.0

This means that (1) you want to calculate the modal thermal conductivity with the HNEMA method; (2) the modal thermal conductivity will be sampled every 10 steps; (3) the average of all sampled modal thermal conductivities will be output every 1000 time steps; (4) the external driving force is along the x direction and has a magnitude of $0.8 \times 10^{-5} \text{Å}^{-1}$ (5) the range of modes you want to include of calculations are from 1 to 27216; (6) you want to bin the modes by frequency with a bin size of 1 THz.

Example 2

```
compute_hnema 10 1000 0.000008 0 0 1 27216 bin_size 1
```

This example is identical to Example 1, except the modes are binned by count. Here, each bin only has one mode (i.e. all modes are output).

Example 3

```
compute_hnema 10 1000 0.000008 0 0 1 27216 bin_size 10
```

This example is identical to Example 2, except each bin has 10 modes.

Output file

kappamode.out

Caveats

- This computation can be very memory intensive. The memory requirements are comparable to the size of the eigenvector.in file.
- This keyword cannot be used in the same run as the compute_gkma keyword. The keyword used last will be used in the run.

References

• [Gabourie 2020] Alexander J. Gabourie, Zheyong Fan, and Eric Pop, in preparation.

Retrieved from "https://gpumd.zheyongfan.org/index.php?title=The compute hnema keyword&oldid=21358"

■ This page was last edited on 23 August 2020, at 09:01.