Exercise 1.35. Show that the golden ratio ϕ (section 1.2.2) is a fixed point of the transformation $x \mapsto 1 + \frac{1}{x}$, and use this fact to compute ϕ by means of the fixed-point procedure.

Answer. Note that $x = 1 + \frac{1}{x}$ is a simple transformation of the equation $x^2 - x - 1 = 0$; to derive it, multiply x to both sides of the equation

$$x^2 = x + 1$$

then move x+1 to the left of the equation

$$x^2 - x - 1 = 0$$

Obviously, the roots of this quadratic equation are

$$\begin{cases} x_1 = \frac{\sqrt{5} - 1}{2} \\ x_2 = \frac{\sqrt{5} + 1}{2} \end{cases}$$

that is, $\frac{\sqrt{5}-1}{2}$ and $\frac{\sqrt{5}+1}{2}$ are the fixed point of the transformation $x\mapsto 1+1/_x$.

On the other hand, since the value of golden ratio is $\frac{\sqrt{5}-1}{2}$. Hence, the golden ratio ϕ is a fixed point of the transformation $x\mapsto 1+\frac{1}{x}$.

Now we can use the fixed-point procedure to obtain the value of ϕ :

^{*.} Creative Commons 2013, Lawrence R. Amlord(颜世敏).