Homework 2

Due Friday, October 13

1. (a.) Let \mathcal{A} be the algebra on $\mathbb{Z}_q^{\mathbb{N}}$ defined last week. Define a function μ_0 on \mathcal{A} by the rule

$$\mu_0(\Pi_n^{-1}(E)) = \frac{1}{a^n} \operatorname{card}(E)$$

when $E \in \mathbb{Z}_q^n$ and $\operatorname{card}(E)$ is the number of elements in E. Verify that μ_0 is well defined on \mathcal{A} , and is finitely additive.

- (b.) Show that $(\mathbb{Z}_q^{\mathbb{N}}, \mathcal{A}, \mu_0)$ is a pre-measure space. (Hint: use 1(c) and 2(b) of last week's homework.)
- 2. Folland Page 27, Problem 11.
- 3. Suppose that (X, \mathcal{A}, μ_0) is a pre-measure space, μ^* is the corresponding outer measure, \mathcal{M}^* the σ -algebra of sets satisfying the Carathéodory condition. Let \mathcal{M} be the σ -algebra generated by \mathcal{A} .
 - (a.) Show that if $E \subset X$ and $\mu^*(E) = 0$ then $E \in \mathcal{M}^*$, and $E \subset F$ for some $F \in \mathcal{M}$ with $\mu^*(F) = 0$.
 - (b.) If $E \in \mathcal{M}^*$ and $\mu^*(E) < \infty$, show there exists $A \in \mathcal{M}$ with $\mu^*(A \setminus E) = 0$.
 - (c.) If $E \in \mathcal{M}^*$ and $\mu^*(E) < \infty$, show there exists $B \in \mathcal{M}$ with $\mu^*(E \setminus B) = 0$.
 - (d.) Show that (b) and (c) hold if $E = \bigcup_{j=1}^{\infty} E_j$ with $\mu^*(E_j) < \infty$.
 - (e.) Conclude that if (X, \mathcal{A}, μ_0) is σ -finite then $(X, \mathcal{M}^*, \mu^*)$ is the completion of (X, \mathcal{M}, μ) (where μ is the restriction of μ^* to \mathcal{M}).
- 4. Folland Page 39, Problem 28.
- **5.** Folland Page 39, Problem 30. (Hint: use Theorem 1.18. If you prefer you may assume $E \in \mathcal{B}_{\mathbb{R}}$.)