Отчёт по лабораторной работе №4

Kseniia Mikhailovna Fogileva¹

22 February, 2021 Moscow, Russia

¹RUDN University, Moscow, Russian Federation

Модель гармонических колебаний _____

1. Колебания без затуханий и без действий внешней силы

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = f(t)$$

Изучили начальные условия. Это уравнение консервативного осциллятора, энергия колебания которого сохраняется во времени. Т. е. потери в системе отсутствуют, это означает, что $\gamma=0$. Собственная частота колебаний $\omega=2,4$. $x_0=2,y_0=-1$. Правая часть уравнения f(t)=0. Ищем решение на интервале $t\in[0;60]$ (шаг 0,05), значит, $t_0=0$ – начальный момент времени, $t_{max}=60$ – предельный момент времени, dt=0,05 – шаг изменения времени.

2. Колебания с затуханием и без

действий внешней силы

2. Колебания с затуханием и без действий внешней силы

Изучили начальные условия. Потери энергии в системе $\gamma=7$. Собственная частота колебаний $\omega=9$. x_0 и y_0 те же, что и в п. 1.1. Правая часть уравнения такая же, как и в п. 1.1.

3. Колебания с затуханием и под действием внешней силы

3. Колебания с затуханием и под действием внешней силы

Изучили начальные условия. Потери энергии в системе $\gamma=12$. Собственная частота колебаний $\omega=3$. x_0 и y_0 те же, что и в п. 1.1. Правая часть уравнения $f(t)=0,2\sin(5t)$.

Выводы

Была построена модель гармонических колебаний с помощью Python.