

Projet Mécanique

Phase 3: Etude du looping

Crée par

Groupe Projet N°02

Table des matières

I.	Membres du groupe	.3
	Objectifs de cette partie	
III.	Schématisation de la maquette	. 3
IV.	Résolution de la partie	. 3

I. Membres du groupe

- ATOUGA II Emmanuel Désiré
- DJISSOU HAPPI Franck Sean
- KUITANG Audrey Michelle
- NKOULOU Joseph Emmanuel
- OLINGA Jean Donald
- TANESSOK Larelle Sandra

II. Objectifs de cette partie

Dans cette partie du projet, nous allons étudier la dernière partie du circuit : le saut de la voiture au-dessus de ravin.

L'objectif est de déterminer la vitesse minimale nécessaire au franchissement du ravin sans encombre. La voiture devra atteindre un point donné K de coordonnées (1m; -0,18m) pour atterrir en toute sécurité.

Les calculs seront effectués sans frottements puis avec les frottements de l'air.

III. Schématisation de la maquette

IV. Résolution de la partie

В	>0 =) mv1 - mg > 0
	$\Rightarrow \frac{mv^2}{r} \ge mq$
	=) V ² ≥ qr
	→ V ≥ \(\q \text{r} \)
	Elant donné que nous sommer dans un car où il n'ya par de frotte
-m	unk on a un système cornervatif
	d'où DEM = 0 > DEC + DEP = 0
	$\Rightarrow \Delta E_c : -\Delta E_p$ $\Rightarrow \frac{1}{2} mV_B^{\frac{1}{2}} - \frac{1}{2} mV_A^{\frac{1}{2}} = mg(h(-h_1))$
	$\frac{1}{2}mV_{s}^{2} - \frac{1}{2}mV_{A}^{2} = -mger$
	$\Rightarrow V_{g}^{2} - V_{\Lambda}^{2} = yrx4$
	3 V2-V2491
	= Vx = 491+VB
•	= VA=+ gr + gr cox V=Yb = Yb-Yb-gr
	$= \frac{V_A^2 = 5qr}{}$
	$9 \frac{V_{A^{2}} = 5qr}{V_{A} = \sqrt{5q\frac{D}{2}}}$
	N VA = \(\frac{5 \chi_{\text{20}} \text{81 \chi_{\text{20}}}{2}}{2} \)
	VA: 2,375 026 315 64 m/A
	V _A = 2,38 m/A
J)	Déterminon la vitene de sortie du looping.
р	to appliquant la conservation de l'énergle mécanique,
S Soonné ave	c CamScanner

ΔEm = 0 + ΔEc+ ΔEq = 0	
$\frac{m}{2}V_{\lambda}^{2} - \frac{m}{2}V_{\delta}^{2} = -mg(h_{1}-h_{1})$	
$\frac{m}{2}V_{A}^{2} - \frac{m}{2}V_{B} = mq2C$	
3 1/2 - 1/3 = 4 yr	
= Yx = 4qx + Y2	
y V2 = tgr + qr Lax VB V = VB2 = V2 = qr	
2 Vat = 591	-
$\frac{3}{4} = 5q \frac{D}{a}$	
$V_{\lambda} = \sqrt{5q\frac{D}{2}}$	
$\frac{AN}{2} Y_{A} = \sqrt{5 \times 3.81 \times 0.23} = 2.395 0.24 3.45 64 m/\Delta$	
V _A = 2,38 m/s	
3) Déterminons la houteux de déport de la pente.	
En appliquant le théorème de l'énergie mécanique en c	u b, on
α:	
AEm = D	
= Emi = Emi	
=> Ep + Ec, - Ep + Ec}	
pour te = 07 4 Ep = 07, on a mgh = mV	
pour te; =0] it tp =05, on a mgh = mV2 or V2 = V2	
$h = \frac{V_1}{2q}$	
	72 - 10 S

AN
$$h = \frac{(2.38)^{2}}{2\times9.81} = 0.989 + 5 \text{ m}$$

$$\frac{h = 0.99 \text{ m}}{2\times9.81}$$

$$\frac{h}{2} = 0.99 \text{ m}$$

1) Distringual to vitare d'entrée niculaure pour faire le tour du losquing.

En applitant le TEC

On a $\sum W_{p}(\vec{F} cxt) = \Delta F_{c}$

$$\Rightarrow W_{p}(\vec{F}) + W_{p}(\vec{h}_{p}) \cdot W_{p}(\vec{h}_{p}) + W_{p}(\vec{h}_{p}) = \frac{m}{2}V_{p}^{2} - \frac{m}{2}V_{p}^{2}$$

$$\Rightarrow \text{migh} + 0 - \int_{0}^{1} x D - \int_{0}^{1} x Ter \cdot \frac{m}{2} V_{p}^{2} - \frac{m}{2}V_{p}^{2}$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter \cdot \frac{m}{2} V_{p}^{2} - \frac{m}{2}V_{p}^{2}$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter \cdot \frac{m}{2} V_{p}^{2} - \frac{m}{2}V_{p}^{2}$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter \cdot \frac{m}{2} V_{p}^{2} - \frac{m}{2}V_{p}^{2}$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter + \int_{0}^{1} \frac{m}{2} Ter + \int_{0}^{1} \frac{m}{2} Ter$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter + \int_{0}^{1} \frac{m}{2} Ter + \int_{0}^{1} \frac{m}{2} Ter$$

$$\Rightarrow -2mqr - \int_{0}^{1} x Ter - \int_{0}^{1} x Ter + \int_{0}^{1} \frac{m}{2} Ter + \int_{0}^{1}$$

VA = 2,375 210 038 58 M/A

2) Déterminons la vitere de vortic du looping.

D'après le TEC, on a : ∑W_b(Fext) = Δ€C = W_b(P) + W_b(RN) + W_b(R) + W_b(R) = mV_a² - mV_a²

or in on cheche à déterminer Vi

on a donc

VA= 3,318 526 644 16 m/s

3) Déterminons la houteur de départ de la pente.

$$\Rightarrow$$
 mgh = $-\frac{1}{4} \times D - \frac{1}{4} \times D - \left(\frac{mV_1^2}{2} - \frac{mV_1^2}{2} \right)$

Pour V; = 0 m/4 on a done mgh = - faxD - faxD - mV12 pour Vj = VA on a mgh = - faxD - faxD - mV22 $\frac{\Delta}{mq} \left(-\int_{a}^{b} x D - \int_{a}^{b} x D - \frac{mV_{A}^{2}}{2} \right)$ h= 1 / Lungers x x lo - 1 Cx Pair SVA x mod - mVA2 h + Mond + 1 Cylais 5V2 x h = mV22 2 smg M (A + MCDAS + Con Rain SVA2) = mVA2

A + MONA + Con Con SVA2

A + MONA + Con Con SVA2

2 mg MNA

2 mg MNA 1 + 0,03 \ (2,3+5 210 034 58) 2 2x0p3 x 9,81 1 + 0,03 \ \(\pi\) + 0,04 \ \(\pi\) 1,225 \ \(\pi\) 0,03 \ \(\pi\) (2,3+5210 038 58) 2 2 \ \(\pi\) 0,03 \ \(\pi\) 9,81 \(\pi\) \(\pi\) \(\pi\) \(\pi\) h = 0,287 544 481 52 m CS Scanné avec CamScanner