光衍射的定量研究

雷逸鸣

1 单缝衍射

1.1 实验数据

图 1 单缝衍射光强与坐标关系

由于具体的数据量过大,不在报告中展示。

1.2 实验数据的检验

1.2.1 对称性检验

-1 级条纹相对光强极大值:

$$I_1 = 141$$

1级条纹相对光强极大值:

$$I_2 = 150$$

对称性:

$$\frac{|I_1 - I_2|}{(I_1 + I_2)/2} = 6.19\% < 10\%$$

1.2.2 0 级条纹±1 级条纹光强比检验

0级条纹光强:

$$I_0 = 2807$$

光强比:

$$\frac{I_1 + I_2}{2I_0} = 5.18\% \approx 4.7\%$$

1.3 计算缝宽

-1 级条纹峰值位置:

$$x_1 = 5.405$$
mm

1级条纹峰值位置:

$$x_2 = 14.010$$
mm

峰峰距:

$$\Delta x = \frac{x_2 - x_1}{2} = 4.303 \text{mm}$$

单缝与接收屏距离:

$$Z = 82.1$$
cm

利用公式求得缝宽 b:

$$b = 1.43\lambda \frac{Z}{\Delta r} = 172.7 \mu \text{m}$$

2 三缝衍射

2.1 实验数据

图 2 三缝衍射光强与坐标关系

由于具体的数据量过大,不在报告中展示。

2.2 实验数据的检验

2.2.1 对称性检验

-1 级次极大相对光强:

$$I_1 = 1498$$

1级次极大相对光强:

$$I_2 = 1477$$

对称性:

$$\frac{|I_1 - I_2|}{(I_1 + I_2)/2} = 1.4\% < 10\%$$

2.2.20 级条纹±1 级条纹光强比检验

0级条纹光强:

$$I_0 = 3784$$

光强比:

$$\frac{I_1 + I_2}{2I_0} = 39.3\%$$

2.3 计算缝间距

-1 级条纹峰值位置:

$$x_1 = 10.700$$
mm

1级条纹峰值位置:

$$x_2 = 21.845$$
mm

峰峰距:

$$\Delta x = \frac{x_2 - x_1}{2} = 5.573$$
mm

单缝与接收屏距离:

$$Z = 82.1$$
cm

利用公式求得缝宽 d:

$$d = \frac{Z\lambda}{\Delta x} = 93.2 \mu m$$

2.4 计算缝宽

观察发现第五级条纹出现了缺级, 因此:

$$a = \frac{2}{5}d = 37.28 \mu \text{m}$$

3 不同衍射屏对应的衍射图样

图 3 双圆孔

图 4 矩形方孔

图 5 方孔方阵

图 6 等腰三角形

图 7 等边三角形

图 9 圆孔方阵

图 10 五角星

图 12 方孔密排

注:实验记录见下页。

	姓名学号	4	里期	第	_组	页码	1
1	a. 主译衍射.						
4	I = 1498	71 = 10. 700 mm.					
	Z= 1477	72 = 21.845 mm					
	J. = 3784	20 = 15.965 mm					
	17.7.1						
	0 Ji-Ii = 1.4%	<10%.					
	@ J.+ J2 = 39, 3%.						
	雄龙. 第二次就设:	1 1 1 1 1					
	第二级·林级·	a= = 46.0	µm.				
	22 No KT & TO						
	Bin NE: $\beta = \frac{k\pi}{N} = \frac{\pi d}{\lambda} \sin \theta$			/	,		
	AD =ACIND = NA NA	2.					
	$d = \frac{2\lambda}{N\Delta^{\chi}} = 3$	1 93.2 д	200				
					2 8		
				9 1/	3:19		
			V	Y	CU	27	