Quick Reference for Fairness Measures

Fairness Metrics

Metrics by Category

Category	Metric	Definition	Weakness	References
Group Fairness	Demographic Parity	A model has Demographic Parity if the predicted positive rates (selection rates) are approximately the same for all protected attribute groups. $\frac{P(\hat{y}=1 unprivileged)}{P(\hat{y}=1 privileged)}$	Historical biases present in the data are not addressed and may still bias the model.	Zafar <i>et al</i> (2017)
	Equalized Odds	Odds are equalized if $P(+)$ is approximately the same for all protected attribute groups. Equal Opportunity is a special case of equalized odds specifying that $P(+ y=1)$ is approximately the same across groups.	Historical biases present in the data are not addressed and may still bias the model.	Hardt et al (2016)
	Predictive Parity	This parity exists where the Positive Predictive Value and Negative Predictive Value are each approximately the same for all protected attribute groups.	Historical biases present in the data are not addressed and may still bias the model.	Zafar et al (2017)
Similarity- Based Measures	Individual Fairness	Individual fairness exists if "similar" individuals (ignoring the protected attribute) are likely to have similar predictions.	The appropriate metric for similarity may be ambiguous.	Dwork (2012), Zemel (2013), Kim et al (2018)
	Unawareness	A model is unaware if the protected attribute is not used.	Removal of a protected attribute may be ineffectual due to the presence of proxy features highly correlated with the protected attribute.	Zemel et al (2013), Barocas and Selbst (2016)
Causal Reasoning	Counterfactual Fairness *	Counterfactual fairness exists where counterfactual replacement of the protected attribute does not significantly alter predictive performance. This counterfactual change must be propogated to correlated variables.	It may be intractable to develop a counterfactual model for some problems.	Russell et al (2017)

Statistical Definitions of Group Fairness

Metric	Statistical Criteria	Definition	Description
Demographic Parity	Statistical Independence	$R \bot\!\!\!\bot G$	sensitive attributes (A) are statistically independent of the prediction result (R)

Metric	Statistical Criteria	Definition	Description
Equalized Odds	Statistical Separation	$R \! \perp \! \! \! \perp \! \! \! \! \perp \! \! \! \! \! \! \! \! $	sensitive attributes (A) are statistically independent of the prediction result (R) given the ground truth (Y)
Predictive Parity	Statistical Sufficiency	$Y \perp \!\!\! \perp A \mid R$	sensitive attributes (A) are statistically independent of the ground truth (Y) given the prediction (R)

From: Verma & Rubin, 2018

Fairness Measures

Name	Definition	Description
Demographic Parity	$P(\phi G=u) = P(\phi G=p)$	Predictions must be s independent from the Subjects in all groups probability of being as positive class.
Conditional Statistical Parity	$P(\phi = 1 L = l, G = u) = P(\phi = 1 L = l, G = p)$	Subjects in all groups probability of being as positive class condition factors (L)
False positive error rate (FPR) balance	$P(\phi = 1 Y = 0, G = u) = P(\phi = 1 Y = 0, G = p)$	Equal probabilities for negative class to have predictions. Mathematically equiva P(d=0\lvert{Y=0,G=m}=0,G=f})
False negative error rate (FNR) balance	$P(\hat{y} = 0 Y = 1, G = u) = P(\hat{y} = 0 Y = 1, G = p)$	Equal probabilities for positive class to have predictions. Mathematically equiva $P(d = 1 Y = 1, G = m) = 0$
Equalized Odds	$P(\hat{y} = 1 Y = c, G = u) = P(\hat{y} = 1 Y = c, G = p), c \in 0, 1$	Equal TPR and equal f
Predictive Parity	$P(Y = 1 \hat{y} = 1, G = u) = P(Y = 1 \hat{y} = 1, G = p)$	All groups have equal that a subject with a p actually belongs to the Mathematically equiva Discovery Rate (FDR): $P(Y=0 d=1,G=m) = 0$
Conditional use accuracy equality	$(P(Y = 1 \hat{y} = 1, G = u) = P(Y = 1 \hat{y} = 1, G = p)) \land (P(Y = 0 \hat{y} = 0, G = u) = P(Y = 0 \hat{y} = 0, G = p))$	
Overall Accuracy Equity	$P(\phi = Y, G = m) = P(\phi = Y, G = p)$	

Name	Definition	Description
Treatment Equality	FNu/FPu = FNp/FPp	Groups have equal rat Negative Rates to Fals
Calibration	P(Y = 1 S = s, G = u) = P(Y = 1 S = s, G = p)	For a predicted proba groups should have ed belonging to the posit
Well- calibration	P(Y = 1 S = s, G = u) = P(Y = 1 S = s, G = p) = s	For a predicted proba groups should have ed belonging to the posit probability is equal to
Balance for positive class	E(S Y = 1, G = u) = E(S Y = 1, G = p)	Subjects in the positive groups have equal averaged probability score S
Balance for negative class	E(S Y = 0, G = u) = E(S Y = 0, G = p)	Subjects in the negation groups have equal avec probability score S
Causal discrimination	$(X_p = X_u \land G_p! = G_u) \to \hat{y}_u = \hat{y}_p$	Same classification pr
Fairness through unawareness	$X_i = X_j \longrightarrow \hat{y}_i = \hat{y}_j$	No sensitive attributes in the decision-making
Fairness through awareness (Individual Fairness)	for a set of applicants V , a distance metric between applicants $k: V \mathring{A} \sim V \to R$, a mapping from a set of applicants to probability distributions over outcomes $M: V \to \delta A$, and a distance D metric between distribution of outputs, fairness is achieved iff $D(M(x), M(y)) \leq k(x,y)$.	Similar individuals (as distance metric) shou classification
Counterfactual fairness	A causal graph is counterfactually fair if the predicted outcome d in the graph does not depend on a descendant of the protected attribute G.	

Interpretations of Common Measures

Group Measure Type	Examples	"Fair" Range
Statistical Ratio	Disparate Impact Ratio, Equalized Odds Ratio	0.8 <= "Fair" <= 1.2
Statistical Difference	Equalized Odds Difference, Predictive Parity Difference	-0.1 <= "Fair" <= 0.1

Metric	Measure	Equation	Interpretation
	Selection Rate	$\sum_{i=0}^{N} (\mathfrak{F}_i)/N$	-
Group Fairness Measures	Demographic (Statistical) Parity Difference	$P(\hat{y} = 1 unprivileged) - P(\hat{y} = 1 privileged)$	(-) favors privileged group (+) favors unprivileged group

Metric	Measure	Equation	Interpretation
	Disparate Impact Ratio (Demographic Parity Ratio)	$\frac{P(\hat{y} = 1 \mid unprivileged)}{P(\hat{y} = 1 \mid privileged)} = \frac{selection_rate(\hat{y}_{unprivileged})}{selection_rate(\hat{y}_{privileged})}$	< 1 favors privileged group > 1 favors unprivileged group
	Positive Rate Difference	$precision(\hat{y}_{unprivileged}) - precision(\hat{y}_{unprivileged})$	(-) favorsprivilegedgroup(+) favorsunprivilegedgroup
	Average Odds Difference	$\frac{(FPR_{unprivileged} - FPR_{privileged}) + (TPR_{unprivileged} - TPR_{privileged})}{2}$	(-) favorsprivilegedgroup(+) favorsunprivilegedgroup
	Average Odds Error	$\frac{ FPR_{unprivileged} - FPR_{privileged} + TPR_{unprivileged} - TPR_{privileged} }{2}$	(-) favorsprivilegedgroup(+) favorsunprivilegedgroup
	Equal Opportunity Difference	$recall(\hat{y}_{unprivileged}) - recall(\hat{y}_{privileged})$	(-) favorsprivilegedgroup(+) favorsunprivilegedgroup
	Equalized Odds Difference	$max((FPR_{unprivileged} - FPR_{privileged}), (TPR_{unprivileged} - TPR_{privileged}))$	(-) favorsprivilegedgroup(+) favorsunprivilegedgroup
	Equalized Odds Ratio	$min(\frac{FPR_{smaller}}{FPR_{larger}}, \frac{TPR_{smaller}}{TPR_{larger}})$	< 1 favors privileged group > 1 favors unprivileged group
Individual Fairness Measures	Consistency Score	$1 - \frac{1}{n \cdot N_{n_n eighbors}} * \sum_{i=1}^{n} \mathcal{Y}_i - \sum_{j \in N_{neighbors}(x_i)} \mathcal{Y}_j $	1 is consistent 0 is inconsistent
	Generalized Entropy Index	$GE = \mathbf{E}(\alpha) = \begin{cases} \frac{1}{n\alpha(\alpha-1)} \sum_{i=1}^{n} \left[\left(\frac{b_i}{\mu} \right)^{\alpha} - 1 \right], & \alpha \neq 0, 1 \\ \frac{1}{n} \sum_{i=1}^{n} \frac{b_i}{\mu} \ln \frac{b_i}{\mu}, & \alpha = 1 \\ -\frac{1}{n} \sum_{i=1}^{n} \ln \frac{b_i}{\mu}, & \alpha = 0 \end{cases}$	-
	Generalized Entropy Error	$GE(\hat{y}_i - y_i + 1)$	-
	Between-Group Generalized Entropy Error	$GE([N_{unprivileged}*mean(Error_{unprivileged}),N_{privileged}*mean(Error_{privileged})])$	0 is fair (+) is unfair

References

Barocas S, & Selbst AD (2016). Big data's disparate impact. California Law Review, 104, 671. Retrieved from http://www.californialawreview.org/wp-content/uploads/2016/06/2Barocas-Selbst.pdf

Dwork C, Hardt M, Pitassi T, Reingold O, & Zemel R (2012, January). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference (pp. 214-226). Retrieved from https://arxiv.org/pdf/1104.3913.pdf

Hardt M, Price E, & Srebro N (2016). Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323). Retrieved from http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning.pdf

Kim M, Reingol O, & Rothblum G (2018). Fairness through computationally-bounded awareness. In Advances in Neural Information Processing Systems (pp. 4842-4852). Retrieved from https://arxiv.org/pdf/1803.03239.pdf

Russell C, Kusner MJ, Loftus J, & Silva R (2017). When worlds collide: integrating different counterfactual assumptions in fairness. In Advances in Neural Information Processing Systems (pp. 6414-6423). Retrieved from https://papers.nips.cc/paper/7220-when-worlds-collide-integrating-different-counterfactual-assumptions-in-fairness.pdf

Verma, S., & Rubin, J. (2018, May). Fairness definitions explained. In 2018 ieee/acm international workshop on software fairness (fairware) (pp. 1-7). IEEE.

Zemel R, Wu Y, Swersky K, Pitassi T, & Dwork C (2013, February). Learning fair representations. International Conference on Machine Learning (pp. 325-333). Retrieved from http://proceedings.mlr.press/v28/zemel13.pdf

Zafar MB, Valera I, Gomez Rodriguez, M, & Gummadi KP (2017, April). Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In Proceedings of the 26th international conference on world wide web (pp. 1171-1180). https://arxiv.org/pdf/1610.08452.pdf