

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 9 de mayo de 2011 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

			-		-		•		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm
က		5 B 10,81	13 AI 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
	·	•		30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk
riódic				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu
		.1		25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p
	atómico	Elemento Masa atómica relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U
	Número atómico	Elemento fasa atómica re		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa
	<u> </u>			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	⊹	
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
								ı	

- 1. ¿Cuál es el número total de átomos de hidrógeno en 1,0 mol de benzamida, C₆H₅CONH₂?
 - A. 7
 - B. 6.0×10^{23}
 - C. 3.0×10^{24}
 - D. 4.2×10^{24}
- 2. El cloroeteno, C₂H₃Cl, reacciona con oxígeno de acuerdo con la siguiente ecuación.

$$2C_2H_3Cl(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g) + 2HCl(g)$$

¿Qué cantidad de H_2O , en mol, se produce cuando se mezclan 10,0 mol de C_2H_3Cl con 10,0 mol de O_2 y la reacción anterior transcurre hasta completarse?

- A. 4,00
- B. 8,00
- C. 10,0
- D. 20,0
- 3. ¿Cuál es la concentración de NaCl, en mol dm⁻³, que se obtiene cuando se añaden 10,0 cm³ de solución de NaCl 0,200 mol dm⁻³ a 30,0 cm³ de solución de NaCl 0,600 mol dm⁻³?
 - A. 0,450
 - B. 0,300
 - C. 0,500
 - D. 0,800

4. Considere la abundancia relativa de los isótopos del elemento X.

Isótopo	Abundancia relativa (%)
²⁴ X	80
²⁵ X	10
²⁶ X	10

¿Cuál es la masa atómica relativa de X?

- A. 24
- B. 25
- C. Entre 24 y 25
- D. Entre 25 y 26
- 5. En el espectro de emisión del hidrógeno, ¿qué transición electrónica produciría una línea en la región visible del espectro electromagnético?
 - A. $n=2 \rightarrow n=1$
 - B. $n = 3 \rightarrow n = 2$
 - C. $n=2 \rightarrow n=3$
 - D. $n = \infty \rightarrow n = 1$

-5-

		Energía de tercera ionización / kJ mol ⁻¹	
420	3600	4400	5900

¿En qué grupo de la tabla periódica se podría encontrar el elemento desconocido?

- A. 1
- B. 2
- C. 3
- D. 4

7. ¿Qué par de elementos tiene la mayor diferencia de electronegatividad?

- A. Cs y F
- B. Cs y Cl
- C. Cs y Br
- D. Cs e I

8. Los ligandos pueden formar enlaces covalentes dativos con iones metálicos para originar iones complejos. ¿Cuáles de los siguientes pueden actuar como ligandos?

- I. Cl
- II. NH₃
- III. H₂O
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

- 9. ¿Qué solución de nitrato metálico es coloreada?
 - A. $Zn(NO_3)_2(aq)$
 - B. $Ni(NO_3)_2(aq)$
 - C. $Mg(NO_3)_2(aq)$
 - D. $Sc(NO_3)_3(aq)$
- **10.** ¿Qué opción presenta el orden correcto cuando las especies C_2H_2 , C_2H_4 y C_2H_6 se disponen de forma **creciente** respecto de la fuerza del enlace carbono-carbono (enlace más débil primero)?
 - A. C_2H_2 , C_2H_4 , C_2H_6
 - B. C_2H_2 , C_2H_6 , C_2H_4
 - C. C_2H_6 , C_2H_4 , C_2H_2
 - D. C_2H_6 , C_2H_2 , C_2H_4
- 11. ¿Qué molécula tiene un par electrónico no enlazante (solitario) alrededor del átomo central?
 - A. BF₃
 - B. SO₂
 - C. PCl₅
 - D. SiF₄
- 12. ¿Qué partículas son responsables de la conducción de la electricidad en el aluminio fundido?
 - A. Cationes
 - B. Aniones
 - C. Electrones
 - D. Protones

- 13. ¿Cuántos enlaces sigma y pi hay en el propino, CH₃CCH?
 - A. 2 sigma y 2 pi
 - B. 7 sigma y 1 pi
 - C. 6 sigma y 2 pi
 - D. 5 sigma y 3 pi
- 14. ¿Qué especie no tiene electrones deslocalizados?
 - A. NO_3^-
 - B. NO_2^-
 - $C. O_3$
 - D. C_3H_6
- 15. ¿En qué compuesto todos los átomos de carbono tienen hibridación sp²?
 - A. COOH
 - B. CH
 - C. CH₂CHCH₃
 - D. CH₃CH₂CHCHCH₂CH₃

- **16.** ¿Qué compuesto iónico tiene la mayor entalpía de red?
 - A. MgO
 - B. CaO
 - C. NaF
 - D. KF
- 17. ¿Qué ecuación representa la entalpía del enlace H–Br en el bromuro de hidrógeno?
 - A. $HBr(g) \rightarrow H(g) + Br(g)$
 - B. $HBr(g) \rightarrow H(g) + Br(l)$
 - C. $HBr(g) \rightarrow H(g) + \frac{1}{2}Br_2(l)$
 - D. $HBr(g) \rightarrow H(g) + \frac{1}{2}Br_2(g)$
- **18.** ¿Qué cambio **no** producirá aumento de la entropía del sistema?
 - A. Aumento de temperatura
 - B. Variación del estado líquido al gaseoso
 - C. Mezcla de diferentes tipos de partículas
 - D. Una reacción en la que cuatro moles de reactivos gaseosos originan dos moles de productos gaseosos
- 19. Al calculan ΔG^{\ominus} , ¿cuál de las siguientes combinaciones de ΔH^{\ominus} y ΔS^{\ominus} predice que una reacción será siempre espontánea?
 - A. $+\Delta H^{\ominus} y + \Delta S^{\ominus}$
 - B. $+\Delta H^{\ominus} y \Delta S^{\ominus}$
 - C. $-\Delta H^{\ominus} y \Delta S^{\ominus}$
 - D. $-\Delta H^{\ominus} y + \Delta S^{\ominus}$

20. El carbonato de sodio y el ácido clorhídrico reaccionan de acuerdo con la siguiente ecuación.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + 2NaCl(aq) + H_2O(l)$$

¿Qué condiciones producirán la mayor velocidad inicial con 2,0 g de carbonato de sodio en polvo?

- A. 100 cm³ de ácido clorhídrico 1,0 mol dm⁻³ a 323 K
- B. 50 cm³ de ácido clorhídrico 2,0 mol dm⁻³ a 323 K
- C. 100 cm³ de ácido clorhídrico 1,0 mol dm⁻³ a 348 K
- D. 50 cm³ de ácido clorhídrico 2,0 mol dm⁻³ a 348 K
- **21.** Para la siguiente reacción a temperatura constante, se obtuvo la información de velocidad que se da a continuación.

$$2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$$

$[NO_2]$ / mol dm $^{-3}$	[F ₂] / mol dm ⁻³	Velocidad / mol dm ⁻³ s ⁻¹
$2,0\times10^{-3}$	$1,0 \times 10^{-2}$	$4,0\times10^{-4}$
4,0×10 ⁻³	1,0×10 ⁻²	8.0×10^{-4}
4,0×10 ⁻³	$2,0\times10^{-2}$	1,6×10 ⁻³

¿Cuáles son los órdenes de reacción con respecto al NO2 y al F2?

- A. De primer orden respecto al NO₂ y de segundo orden respecto al F₂
- B. De segundo orden respecto al NO₂ y de primer orden respecto al F₂
- C. De primer orden respecto al NO₂ y de primer orden respecto al F₂
- D. De segundo orden respecto al NO_2 y de segundo orden respecto al F_2

22. Considere la siguiente reacción.

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Se propone el siguiente mecanismo de reacción.

$$NO(g) + NO(g) \rightarrow N_2O_2(g)$$
 rápida

$$N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$
 lenta

$$N_2O(g) + H_2(g) \rightarrow N_2(g) + H_2O(g)$$
 rápida

¿Cuál es la expresión de velocidad?

- A. velocidad = $k[H_2][NO]^2$
- B. $velocidad = k[N_2O_2][H_2]$
- C. velocidad = $k[NO]^2[H_2]^2$
- D. velocidad = $k[NO]^2[N_2O_2]^2[H_2]$
- 23. La siguiente reacción representa el proceso Haber para la producción industrial de amoníaco.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\ominus} = -92 \text{ kJ}$

Las condiciones óptimas de temperatura y presión se eligen con arreglo a las que favorecen un elevado rendimiento de amoníaco y a las que favorecen una velocidad de producción rápida. Los factores económicos son también importantes.

¿Qué enunciado es correcto?

- A. Una temperatura mayor aseguraría rendimiento más alto y mayor velocidad.
- B. Una presión menor aseguraría rendimiento más alto a menor coste.
- C. Una temperatura menor aseguraría rendimiento más alto y mayor velocidad.
- D. Una presión mayor aseguraría rendimiento más alto a mayor coste.

24. ¿Qué combinación de fuerzas intermoleculares, punto de ebullición y entalpía de vaporización es correcta?

	Fuerzas intermoleculares	Punto de ebullición	Entalpía de vaporización
A.	potentes	bajo	baja
B.	potentes	alto	baja
C.	débiles	bajo	alta
D.	débiles	bajo	baja

- **25.** ¿Cuál de los siguientes **no** es un par ácido-base conjugado?
 - A. HNO₃ y NO₃
 - B. CH₃COOH y CH₃COO⁻
 - C. $H_3O^+ y OH^-$
 - D. $HSO_4^- y SO_4^{2-}$
- **26.** El pH de una solución varía desde pH = 2 a pH = 5. ¿Qué sucede con la concentración de los iones hidrógeno durante esta variación de pH?
 - A. Disminuye por un factor de 1000
 - B. Aumenta por un factor de 1000
 - C. Disminuye por un factor de 100
 - D. Aumenta por un factor de 100

27. Sobre la base de la información de la tabla de abajo, ¿cuál es el ácido más fuerte?

	Ácido	pK _a	K _a
A.	НА	2,0	_
B.	НВ	_	1×10 ⁻³
C.	НС	4,0	-
D.	HD	_	1×10 ⁻⁵

- **28.** ¿Qué combinación formará una solución tampón (*buffer*)?
 - A. 100 cm³ de ácido clorhídrico 0,10 mol dm⁻³ con 50 cm³ de hidróxido de sodio 0,10 mol dm⁻³.
 - B. 100 cm³ de ácido etanoico 0,10 mol dm⁻³ con 50 cm³ de hidróxido de sodio 0,10 mol dm⁻³.
 - C. 50 cm³ de ácido clorhídrico 0,10 mol dm⁻³ con 100 cm³ de hidróxido de sodio 0,10 mol dm⁻³.
 - D. 50 cm³ de ácido etanoico 0,10 mol dm⁻³ con 100 cm³ de hidróxido de sodio 0,10 mol dm⁻³.

29. El gráfico de abajo muestra la curva de titulación de 25 cm³ de ácido clorhídrico 0,100 mol dm⁻³ con hidróxido de sodio de concentración 0,100 mol dm⁻³. Se usó naranja de metilo como indicador para determinar el punto de equivalencia. El rango de pH del naranja de metilo es 3,2−4,4.

Volumen de NaOH (aq) 0,100 mol dm⁻³ añadido / cm³

Si se reemplazara el ácido clorhídrico por el mismo volumen de ácido etanoico de la misma concentración, ¿qué propiedad de la titulación se mantendría igual?

- A. El pH inicial
- B. El pH en el punto de equivalencia
- C. El volumen de base fuerte, NaOH, necesario para alcanzar el punto de equivalencia.
- D. El color de la mezcla de titulación justo en el momento anterior de alcanzar el punto de equivalencia.
- **30.** ¿Qué le pasa al yodo cuando los iones yodato, IO, , se convierten en moléculas de yodo, I,?
 - A. Sufre reducción y su número de oxidación cambia de -1 a 0
 - B. Sufre oxidación y su número de oxidación cambia de -1 a 0
 - C. Sufre reducción y su número de oxidación cambia de +5 a 0
 - D. Sufre oxidación y su número de oxidación cambia de +5 a 0

Véase al dorso

31. Considere las siguientes reacciones de tres metales desconocidos X, Y y Z.

$$2XNO_3(aq) + Y(s) \rightarrow 2X(s) + Y(NO_3)_2(aq)$$

 $Y(NO_3)_2(aq) + Z(s) \rightarrow No \text{ se produce reacción}$
 $2XNO_3(aq) + Z(s) \rightarrow 2X(s) + Z(NO_3)_2(aq)$

¿Cuál es el orden **creciente** de reactividad de los metales (el menos reactivo primero)?

- Α X < Y < Z
- B. X < Z < Y
- C. Z < Y < X
- D. Y < Z < X
- 32. A continuación se dan los potenciales estándar de electrodo de dos metales.

$$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$$
 $E^{\ominus} = -1,66 \text{ V}$

$$E^{\oplus} = -1.66 \text{ V}$$

$$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$$
 $E^{\Theta} = -0.23 \text{ V}$

$$E^{\ominus} = -0.23 \text{ V}$$

¿Cuál es la ecuación y el potencial de la pila para la reacción espontánea que se produce?

A.
$$2Al^{3+}(aq) + 3Ni(s) \rightarrow 2Al(s) + 3Ni^{2+}(aq)$$
 $E^{\Theta} = 1.89 \text{ V}$

$$E^{\Theta} = 1.89 \text{ V}$$

B.
$$2Al(s) + 3Ni^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Ni(s)$$
 $E^{\Theta} = 1.89 \text{ V}$

$$E^{\odot} = 1.89 \text{ V}$$

C.
$$2Al^{3+}(aq) + 3Ni(s) \rightarrow 2Al(s) + 3Ni^{2+}(aq)$$
 $E^{\Theta} = 1.43 \text{ V}$

$$E^{\Theta} = 1.43 \text{ V}$$

D.
$$2Al(s) + 3Ni^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Ni(s)$$
 $E^{\Theta} = 1.43 \text{ V}$

$$E^{\oplus} = 1.43 \text{ V}$$

- Se hizo pasar la misma cantidad de electricidad a través de muestras fundidas separadas de bromuro 33. de sodio, NaBr, y cloruro de magnesio, MgCl₂. ¿Qué enunciado es verdadero cuando se refiere a las cantidades que se forman, en mol?
 - La cantidad de Mg que se forma es igual a la cantidad de Na que se forma. A.
 - В. La cantidad de Mg que se forma es igual a la cantidad de Cl₂ que se forma.
 - C. La cantidad de Mg que se forma es el doble de la cantidad de Cl₂ que se forma.
 - D. La cantidad de Mg que se forma es el doble de la cantidad de Na que se forma.

34.	¿Qu	é características del etano contribuyen a su baja reactividad?
		I. La entalpía del enlace carbono-carbono es relativamente alta.
		II. La polaridad del enlace es baja.III. La entalpía del enlace carbono-hidrógeno es alta.
		III. La entalpía del enlace carbono-hidrógeno es alta.
	A.	Sólo I y II
	B.	Sólo I y III
	C.	Sólo II y III
	D.	I, II y III
35.	_	é tipo de reacción se produce cuando el 2-yodo-2-metilpropano, C(CH ₃) ₃ I, reacciona con óxido de sodio acuoso, NaOH(aq)?
	A.	Adición
	B.	Sustitución por radicales libres
	C.	$S_{N}1$
	D.	$S_N 2$
36.	¿Qu	halógenoalcanos pueden sufrir reacciones $S_{\rm N}1$ y $S_{\rm N}2$ con hidróxido de sodio acuoso. é halógenoalcano reaccionará más rápidamente con una solución acuosa de hidróxido de sodio $100{\rm m}^{-3}$?
	A.	2-cloro-2-metilpropano
	B.	2-yodo-2-metilpropano
	C.	1-clorobutano
	D.	1-yodobutano

Véase al dorso 2211-6125

- **37.** El propanonitrilo se puede preparar haciendo reaccionar bromoetano con cianuro de potasio. ¿Qué enunciado **no** es correcto sobre la reacción entre bromoetano y cianuro de potasio?
 - A. La reacción es bimolecular.
 - B. La reacción transcurre por un mecanismo $S_N 2$.
 - C. Se produce una fisión homolítica en el enlace carbono-bromo del bromoetano.
 - D. El ion cianuro, :CN⁻, actúa como un nucleófilo.
- **38.** ¿Qué reactivos se pueden usar para formar el siguiente compuesto?

- A. Ácido butanoico y etanol
- B. Ácido propanoico y etanol
- C. Ácido etanoico y 1-propanol
- D. Ácido etanoico y 1-butanol

39. ¿Qué compuesto es ópticamente activo?

A.

В.

1-clorobutano

2-clorobutano

C.

D.

ácido 2-aminoetanoico

2,2-dimetilpropano

40. Se determinó que el volumen de un trozo de aluminio metálico de masa de 10,044 g era de 3,70 cm³. Un estudiante llevó a cabo el siguiente cálculo para determinar la densidad.

Densidad (g cm⁻³) =
$$\frac{10,044}{3,70}$$

¿Cuál es el mejor valor que el estudiante puede informar para la densidad del aluminio?

- A. $2,715 \text{ g cm}^{-3}$
- B. 2,7 g cm⁻³
- C. $2,71 \text{ g cm}^{-3}$
- D. 2,7146 g cm⁻³