INTRO TO DATA SCIENCE

LECTURE 5: REGRESSION AND REGULARIZATION

Paul Burkard 11/09/2015

LAST TIME:

- WHAT IS WEB SCRAPING?
 - HOW DO WE DO IT IN PYTHON?
 - HTML, XML, JSON, WEB APIS

TODAY:

- I. LINEAR REGRESSION
- II. MODEL EVALUATION: CROSS-VALIDATION
- III. REGULARIZATION

HANDS-ON: LINEAR REGRESSION AND REGULARIZATION

LEARNING GOALS

- ▶ What is Linear Regression?
 - What are the inputs and outputs?
 - What are some potential use cases?
- ▶ What is **Overfitting**?
 - How to we control for it?
 - What is Cross-Validation?
 - What is **Regularization**?
- ▶ Intro to **sklearn**, **patsy**, and **statsmodels**

I. LINEAR REGRESSION

INTRO TO REGRESSION

Q: What is a regression model?

A: A functional relationship between input & response variables

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

$$y = \alpha + \beta x + \varepsilon$$

INTRO TO REGRESSION

Q: What do the terms in this model mean?

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

A: y = response variable (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficients (the model "parameters")

 ε = residual (the prediction error)

TYPES OF LEARNING PROBLEMS

	continuous	categorical
supervised	???	???
unsupervised	???	???

TYPES OF LEARNING PROBLEMS

	continuous	categorical
supervised	regression	classification
unsupervised	dim reduction	clustering

ASIDE: LINEAR ALGEBRA INTRO

We can extend this model to several input variables, giving us the multiple linear regression model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \mathbf{x}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_n^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

II. CROSS-VALIDATION

TYPES OF LEARNING PROBLEMS

categorical continuous supervised classification regression unsupervised dim reduction clustering NOTE Remember! Regression is a supervised learning problem!

SUPERVISED LEARNING PROBLEMS

Q: What steps does a supervised learning problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

- Q: What can go wrong if we don't follow these steps?
- A: Overfitting!

- If we test our model against the training set it might perform quite well on the training set, but fail to generalize to new data
- The model might be overly complex and tailored to the training data

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

OVERFITTING EXAMPLE (REGRESSION)

- Q: How can we avoid overfitting?
- A: One way is Cross-Validation

- Pre-splitting the dataset into train/test sets is one form of cross-validation
- There are plenty of others (k-fold, leave-one-out, etc)

Steps of k-fold Cross-Validation:

- Partition dataset into k random, equal-sized subsets
- For each subset, hold it out as the test set and train on the rest
- Report the average of the testing performances as the model's estimated generalization performance

III. REGULARIZATION

- Q: What is regularization?
- A: Any built-in method to reduce complexity of a model in an effort to lower the risk of overfitting

Q: How do we define the complexity of a regression model?

A: One method is to define complexity as a function of the size of the coefficients.

Ex 1: $\sum |\beta_i|$ this is called the L1-norm

Ex 2: $\sum \beta_i^2$ this is called the L2-norm

The basic **Ordinary Least Squares** solution to regression problems can also be expressed as:

OLS: Choose β s.t. $min(\|y - x\beta\|^2)$

Here, the function in parenthesis is called the Cost Function and in general it is what you want to minimize when searching for solutions to machine learning problems.

Thus, the regularization problems can be expressed as:

```
OLS: min(\|y-x\beta\|^2)
L1 regularization: min(\|y-x\beta\|^2+\lambda\|\beta\|)
L2 regularization: min(\|y-x\beta\|^2+\lambda\|\beta\|^2)
```

- We are no longer just minimizing error but also an additional term.
- Thus, large values of β will be discouraged

These measures of complexity lead to the following regularization techniques:

L1 regularization:
$$y = \sum \beta_i x_i + \epsilon \quad st. \quad \sum |\beta_i| < s$$

L2 regularization:
$$y = \sum \beta_i x_i + \epsilon \quad st. \quad \sum \beta_i^2 < s$$

Regularization refers to the method of preventing overfitting by explicitly controlling model complexity.

These measures of complexity lead to the following regularization techniques:

Lasso regularization:
$$y = \sum \beta_i x_i + \epsilon \quad st. \quad \sum |\beta_i| < s$$

Ridge regularization:
$$y = \sum \beta_i x_i + \epsilon \quad st. \quad \sum \beta_i^2 < s$$

Regularization refers to the method of preventing overfitting by explicitly controlling model complexity.

INTRO TO REGRESSION

- Q: What problems might we see?
- *A:*

- 1) Correlated predictor variables
- 2) Large number of parameters allow us to overfit

INTRO TO REGRESSION

Q: What can we do about this?

A:

1) Drop correlated predictors

2) Get more data

Q: Do regression models have to depend linearly on input variables?

A: NO

We can use almost any transformation of a single input variable (aka $f(x_i)$) as a separate input variable, as long as we don't mix them (aka $f(x_i, x_j)$)

Some nonlinear laws in nature:

$$F = G \frac{m_1 m_2}{r^2}$$
 $F = \frac{1}{4\pi \varepsilon_0} \frac{qQ}{r^2} = k_e \frac{qQ}{r^2}$,

$$x(t) = A\cos(\omega t + \phi),$$