Analysis3-Outline

YangKai

2022 年 9 月 14 日

目录

1	复习	:多元	函	数自	均可	积怕	生															3
	1.1	外测度	度利	1测	度																	3
	1.2	Lebess	gue	e 测	』度	的性	比尼	턴.														3
	1.3	可测函	函数	Ţ																		4
	1.4	可测函	函数	的	积分	分.																4
		1.4.1	禾	只分	与	换序	÷															5
	1.5	\mathbb{R}^n \perp	的	Le	bge	sgu	e ž	积	分	的	计	算	•									5
		1.5.1	F	ub:	ini	定理	E															6
		1.5.2	禾	只分	.换	元公	左	, .														6
		1.5.3	F	ub	ini	定理	卧	匀应	过月	Ħ												7
		1.5.4	Ż	き化	题	目的	J解	程	打	支工	5											9

1 复习: 多元函数的可积性

1.1 外测度和测度

定义 (外測度) $\mu^*: 2^X \mapsto [0, +\infty]$ 满足:

- 1. $\mu^*()=0$
- 2. $A \subseteq B, \mu^*(A) \le \mu^*(B)$
- 3. $\mu^*(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} \mu^*(E_j)$

则称 μ^* 为 X 上的外测度,由此可引出:

定义 (Lebesgue 外測度) $m^*(E) = \inf\{\sum_{k>1} |I_k| | E \subseteq \bigcup_{k>1} I_k 且 I_k$ 是有界开区间}

定义 (CY 条件) 假设 μ^*x 是 X 上的外测度, $E \subseteq X$, 若:

$$\forall T \subseteq X, \mu * (T) = \mu^*(T \cap E) + \mu^*(T \cap E^c) \tag{1}$$

则称 E 满足 CY 条件

定理 (CY 定理) μ^* 是 X 上的外测度,定义 $\mathcal{M} = \{E \subseteq X | E$ 满足 μ^* 的 CY 条件 $\}$,则:

- 1. *M* 是 σ- 代数
- 2. μ* 在 *M* 上满足可数可加性 (不交)
- 3. $\forall E \subseteq X, \mu^*(E) = 0$ 则 $E \in \mathcal{M}$

定义 (测度空间) $(X, \mathcal{M}, \mu), \mu = \mu^*$

1.2 Lebesgue 测度的性质

定理 (\mathcal{L} - 可测集的特征)(结构性定理) ($\mathbb{R}^n, \mathcal{M}, m$) 为 Lebesgue 测度空间

- 1. (内外正则性) $\forall \varepsilon > 0, E \subseteq \mathcal{M}, \exists \mathcal{H}G,$ 湖足 $E \subseteq E \subseteq G$ 且 $m(E \setminus F), m(G \setminus E) < \varepsilon$
- 2. (紧集逼近) $\forall E \subseteq \mathcal{M}, \exists$ 紧集列 $\{K_i\}_{i=1}$ 以及 $A \subseteq \mathbb{R}^n$ 满足:

1 复习: 多元函数的可积性

• $K_j \subseteq K_{j+1}$

•
$$E = (\bigcup_{j \ge 1} K_j) \bigcup A$$

•
$$m(Z) = 0$$

定理 (Lebesgue 测度的平移伸缩性)

$$m(\lambda E + h) = |\lambda|^n m(E)$$

$$m(A(E)) = |\det A| m(E)$$
(2)

4

注:约定 $0 \cdot \infty = 0$

注 2: 第二条的证明需要用到结构性定理 (复习!)

1.3 可测函数

定义 (可测函数) $(X, \mathcal{J}_X), (Y, \mathcal{J}_Y), 则$:

$$f \in L(X,Y)$$

$$\Leftrightarrow \forall B \in \mathcal{J}_Y, f^{-1}(B) \in \mathcal{J}_X$$

$$\Leftrightarrow \forall B \in \mathcal{B}(Y), f^{-1}(B) \in \mathcal{B}(X)$$
(3)

定义 (广义可测函数) 把值域扩展到 $[-\infty, +\infty]$

定理 (简单函数逼近定理) (X, \mathcal{M}) 可测空间, $E \in \mathcal{M}, f \in \mathcal{L}^+(E)$ 则:

$$f = \sum_{k=1}^{\infty} c_k 1_{E_k}(x), \{c_k\} \ge 0, \{E_k\} \in \mathcal{M}$$
 (4)

1.4 可测函数的积分

- ƒ为简单函数
- f 为其他复杂函数: $\int_E f d\mu =: \sup\{\int_E \phi d\mu \Big| 0 \le \phi \le f, \phi \in S^+(E)\}$ 注:
- $f = f^+ f^-$
- $f \in L^1(E) \Leftrightarrow |f| \in L^1(E)$

1.4.1 积分与换序

定理 (单调收敛) $0 \le f_1 \le f_2 \le \cdots, f_n \to f, \mu.a.e$ 则:

$$\lim_{n \to \infty} \int_{E} f_n d\mu = \int_{E} f d\mu \tag{5}$$

定理 (Fatou 引理) $0 \le f_n, f_n \to f, \mu.a.e$ 则:

$$\liminf_{n \to \infty} \int_{E} f_n d\mu \ge \int_{E} f d\mu \tag{6}$$

定理 (LDC 控制收敛定理) 若满足:

- 1. $f_n \to f, \mu.a.e$
- $2. \exists g \in L^1(E), |f_n| \leq g$

则:

- $\lim_{n\to\infty} \|f_n f\|_{L^1(E)} = 0$
- $\lim_{n\to\infty} \int_R f_n d\mu = \int_E f d\mu$

1.5 \mathbb{R}^n 上的 Lebgesgue 积分的计算

定理 (Lebesgue 积分下的 Newton-Leibnitz) Newton-Leibnitz 公式, $\forall x \in [a,b]$:

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$
 (7)

成立条件:

- f 绝对连续
- $f \in C[a,b]$ 且可微, $f' \in L^1[a,b]$

定义 (绝对连续函数)

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta \Rightarrow \int_{\bigcup_{i=1}^{n} (\alpha_i, \beta_i)} |f'| dx < \epsilon$$
 (8)

6

1.5.1 Fubini 定理

定理 (形式 1)

$$\iint_{\mathbb{R}^{p+q}} 1_E(x, y) dx dy$$

$$= \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} 1_E(x, y) dx \right) dy$$

$$= \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} 1_E(x, y) dy \right) dx$$
(9)

定理 (形式 2) 若 $f \in \mathcal{L}^+(X \times Y)$ or $f \in L'(X \times Y)$

$$\iint_{X \times Y} f(x, y) dx dy$$

$$= \iint_{Y} (\int_{X} f(x, y) dx) dy$$

$$= \iint_{X} (\int_{Y} f(x, y) dy) dx$$
(10)

定理 (f(x,y) 的可测性判别) $f: X \times Y \mapsto \mathbb{R}$ 满足:

- 1. $X \in \mathcal{M}_p, Y \in \mathcal{M}_q$
- 2. $\forall x \in X, y \mapsto f(x,y)$ 连续
- 3. $\forall y \in Y, x \mapsto f(x,y)$ 可测

则 f 在 $X \times Y$ 上可测

例子 $E=\{(x,y)\big|\varphi(x)\leq y\leq \psi(x)\},\ \varphi,\psi$ 是 \mathbb{R}^{n-1} 上的可测函数,则 $\forall f\in L'(E)\ or\ f\in\mathcal{L}^+(E)\ f:$

$$\iint_{E} f(x,y) dx dy = \int_{X} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx \tag{11}$$

1.5.2 积分换元公式

定理 (积分换元公式) 开集 $\Omega \subseteq \mathbb{R}^n, \varphi : \Omega \mapsto \mathbb{R}^n$ 是 C' 单射, $E \subseteq \Omega$ 可测,则 $\forall f \in L'(E)$ or $f \in \mathcal{L}^+(E)$ 有:

$$\int_{\varphi(E)} f(y) \mathrm{d}y = \int_E (f \circ \varphi)(x) |\det \mathrm{D}\varphi(x)| \mathrm{d}x \tag{12}$$
 证明 (复习!)

7

定理 (闭区域上的积分换元公式) $\bar{\Omega} \subseteq V \subseteq \mathbb{R}^n$ 其中 V 为开集满足:

1. $m(\partial\Omega) = 0$

 $2. \varphi: \Omega \mapsto \mathbb{R}^n$ 是 C' 单射

 $3. \varphi: V \mapsto \mathbb{R}^n \ \text{\mathbb{E}} \ C'$ 函数

证明:

$$\int_{\varphi(\bar{\Omega})} f(y) dy$$

$$= \int_{\varphi(\Omega)} f(y) dy$$

$$= \int_{\Omega} (f \circ \varphi)(x) |\det D\varphi(x)| dx$$

$$= \int_{\bar{\Omega}} (f \circ \varphi)(x) |\det D\varphi(x)| dx$$
(13)

条件 3: $m(\partial\Omega) = m(\varphi(\partial\Omega)) = 0$

1.5.3 Fubini 定理的应用

球极变换 记 $E_o = [0, +\infty[\times[0, \pi]^{n-2} \times [0, 2\pi]]$

$$\Psi: E_o \mapsto \mathbb{R}^n \tag{14}$$

特例:

$$\Psi(r,\theta_1,\dots,\theta_{n-1}) = x \begin{cases}
x_1 = r\sin(\theta_1)\dots\sin(\theta_{n-1}) \\
x_2 = r\sin(\theta_1)\dots\cos(\theta_{n-1}) \\
\dots \\
x_{n-1} = r\sin(\theta_1)\cos(\theta_2) \\
x_n = r\cos(\theta_1)
\end{cases} (15)$$

注意到:

$$|\det D\Psi| = r^{n-1} \sin^{n-1}(\theta_1) \sin^{n-2}(\theta_2) \cdots \sin(\theta_{n-1})$$
 (16)

命题 (球面换元公式) $f \in \mathcal{L}^+(\mathbb{R}^n)$ or $f \in L'(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} f(x) dx = \int_{E_o} (f \circ \Psi)(r, \theta_1, \cdots, \theta_{n-1}) r^{n-1} \sin^{n-1}(\theta_1) \sin^{n-2}(\theta_2) \cdots \sin(\theta_{n-1}) d\theta_1 \cdots d\theta_{n-1}$$
(17)

证明: 考虑使用闭区域积分换元公式,开集 $E_{\epsilon} =]-\epsilon, +\infty[\times]-\epsilon, \pi+\epsilon[^{n-2}\times]-\epsilon$ $\epsilon, 2\pi+\epsilon[$, Ψ 在 E_{ϵ} 上是 C' 函数, 从而有 $m_n(\partial E_o) = m_n(\Psi(\partial E_o)) = 0$

命题 (球面测度与球面积分) 记 $\Phi(\theta_1, \dots, \theta_{n-1}) = \Psi(1, \theta_1, \dots, \theta_{n-1}), E'_o = [0, \pi]^{n-2} \times [0, 2\pi]$ 则: 考虑应该存在的诱导关系:

$$E \in \mathcal{M}(\mathbb{S}^{n-1}) \Leftrightarrow \Phi^{-1}(E) \in \mathcal{M}(E'_o)$$
(18)

则可以定义:

$$\mathcal{M}(\mathbb{S}^{n-1}) := \{ E \subseteq \mathbb{S}^{n-1} \middle| \Phi^{-1}(E) \in \mathcal{M}(E'_o) \}$$

$$\sigma(E) = \int_{\Phi^{-1}(E)} \sin^{n-1}(\theta_1) \sin^{n-2}(\theta_2) \cdots \sin(\theta_{n-1}) d\theta_1 \cdots d\theta_{n-1}$$
(19)

则有结论:

- 1. $(\mathcal{M}(\mathbb{S}^{n-1}), \sigma)$ 是一个完备的测度空间
- 2. $\sigma(\mathbb{S}^{n-1}) = \int_{E'_o} \sin^{n-1}(\theta_1) \sin^{n-2}(\theta_2) \cdots \sin(\theta_{n-1}) d\theta_1 \cdots d\theta_{n-1}$
- 3. f 在 $(\mathcal{M}(\mathbb{S}^{n-1}), \sigma)$ 上可测 $\Leftrightarrow f \circ \Phi$ 在 E'_o 上可测
- 4. $\forall f \in \mathcal{L}^+(\mathbb{S}^{n-1}) \text{ or } f \in L'(\mathbb{S}^{n-1})$ 有:

$$\int_{\mathbb{S}^{n-1}} f(w) d\sigma(w) = \int_{E'_o} (f \circ \Phi)(\theta_1, \cdots, \theta_{n-1}) \sin^{n-1}(\theta_1) \sin^{n-2}(\theta_2) \cdots \sin(\theta_{n-1}) d\theta_1 \cdots d\theta_{n-1}$$
(20)

结论 4 只证明对简单函数成立: 带入 $f=1_E$

$$\int_{\mathbb{S}^{n-1}} 1_{E}(w) d\sigma(w)$$

$$= \sigma(E)$$

$$= \int_{\Phi^{-1}(E)} \sin^{n-1}(\theta_{1}) \sin^{n-2}(\theta_{2}) \cdots \sin(\theta_{n-1}) d\theta_{1} \cdots d\theta_{n-1}$$

$$= \int_{E'_{o}} 1_{\Phi^{-1}E}(\theta_{1}, \cdots, \theta_{n-1}) \sin^{n-1}(\theta_{1}) \sin^{n-2}(\theta_{2}) \cdots \sin(\theta_{n-1}) d\theta_{1} \cdots d\theta_{n-1}$$

$$= \int_{E'_{o}} (1_{E} \circ \Phi)(\theta_{1}, \cdots, \theta_{n-1}) \sin^{n-1}(\theta_{1}) \sin^{n-2}(\theta_{2}) \cdots \sin(\theta_{n-1}) d\theta_{1} \cdots d\theta_{n-1}$$

$$= \int_{E'_{o}} (1_{E} \circ \Phi)(\theta_{1}, \cdots, \theta_{n-1}) \sin^{n-1}(\theta_{1}) \sin^{n-2}(\theta_{2}) \cdots \sin(\theta_{n-1}) d\theta_{1} \cdots d\theta_{n-1}$$
(21)

1.5.4 类似题目的解题技巧

验证积分换元 \Rightarrow 验证简单函数 $L'(\mathbb{S}^{n-1}) \Rightarrow$ 非负可测 $\mathcal{L}^+(\mathbb{S}^{n-1}) \Rightarrow$ 简单函数 $1_E(w)$

定理 $\forall f \in \mathcal{L}^+(\mathbb{R}^n) \text{ or } f \in L'(\mathbb{R}^n)$

$$\int_{\mathbb{R}^{n}} f(x) dx$$

$$= \int_{\mathbb{S}^{n-1}} \left(\int_{0}^{+\infty} r^{n-1} f(r, w) dr \right) d\sigma(w)$$

$$= \int_{0}^{+\infty} r^{n-1} \left(\int_{\mathbb{S}^{n-1}} f(r, w) d\sigma(w) \right) dr$$
(22)

应用 1

$$\iint_{a \le |x| \le b} f(x) dx = \int_a^b r^{n-1} \left(\int_{\mathbb{S}^{n-1}} f(r, w) d\sigma(w) \right) dr$$
 (23)

特别的, 当 f(x) = f(|x|) 时:

$$\iint_{a \le |x| \le b} f(x) dx = \sigma(\mathbb{S}^{n-1}) \int_a^b r^{n-1} f(r) dr$$
 (24)

应用 2 证明 $\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = (2\pi)^{\frac{1}{2}}$:

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx\right)^2$$

$$= \iint_{\mathbb{R} \times \mathbb{R}} e^{-\frac{x_1^2 + x_2^2}{2}} dx_1 dx_2$$

$$= \iint_{\mathbb{R}^2} e^{-\frac{|x|^2}{2}} dx$$

$$= \sigma(\mathbb{S}^1) \int_0^{+\infty} r e^{-\frac{r^2}{2}} dr$$

$$= 2\pi$$
(25)

应用 3

- $\sigma(\mathbb{S}^{n-1}) = ?$
- $m(B_1^n) = ?, B_1^n = \{|x| \le 1, x \in \mathbb{R}^n\}$

考察 $(\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx)^n$ 可以得到:

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx\right)^n$$

$$= (2\pi)^{\frac{n}{2}}$$

$$= \sigma(\mathbb{S}^{n-1}) \int_0^{+\infty} r^{n-1} e^{-\frac{r^2}{2}} dr$$
(26)

 $\diamondsuit t = \frac{r^2}{2}$ 则:

$$(2\pi)^{\frac{n}{2}} = \sigma(\mathbb{S}^{n-1}) \int_0^{+\infty} (2t)^{\frac{n}{2}-1} e^{-t} dt$$
$$= \sigma(\mathbb{S}^{n-1}) 2^{\frac{n}{2}-1} \int_0^{+\infty} r^{\frac{n}{2}-1} e^{-r} dr$$
(27)

记 Gamma 函数 $P(s) = \int_0^\infty t^{s-1} e^{-t} \mathrm{d}t$,满足性质:

- $P(\frac{1}{2}) = \sqrt{\pi}, P(1) = 1$
- P(s+1) = sP(s)

则可以得到:

$$\sigma(\mathbb{S}^{n-1}) = \frac{2\pi^{\frac{n}{2}}}{P(\frac{n}{2})} = \frac{n\pi^{\frac{n}{2}}}{P(\frac{n}{2}+1)}$$
 (28)

且:

$$m(B_1^n) = \int_{|x| \le 1} 1 dx = \sigma(\mathbb{S}^{n-1}) \int_0^1 r^{n-1} dr = \frac{\sigma(\mathbb{S}^{n-1})}{n},$$
 (29)

注:需要证明边界点零测 $B(0,R) = R \cdot B(0,1) \Rightarrow m(B(0,R)) = R^n m(B(0,1))$ 即 $m(\partial B(0,R)) = 0$

命题 (等经不等式)