Logarithmes: exemples corrigés

Corrigé des exemples de la page 1 du cours

- 1) $\log_2 8$ A quelle puissance faut-il élever 2 pour trouver 8 ? C'est 3 : on a $2^3=8.$ Donc $\log_2 8=3$
- 2) $\log_3 81$ Autrement dit : $3^? = 81$; réponse 4, donc $\log_3 81 = 4$
- 3) $\log_2 \frac{1}{8}$ Se souvenir des puissances négatives : $\frac{1}{8} = \frac{1}{2^3} = 2^{-3}$ et ainsi $\log_2 \frac{1}{8} = -3$
- 4) $\log_5 \sqrt{5}$ Se souvenir des exposants fractionnaires : $5^{\frac{1}{2}} = \sqrt{5}$ et ainsi $\log_5 \sqrt{5} = \frac{1}{2}$
- 5) $\log_{\frac{1}{2}} 16$ Passer par les puissances de 2 : on a $16 = 2^4$ et $\frac{1}{2} = 2^{-1}$; la question est donc : $(2^{-1})^? = 2^4$ et la réponse est -4
- 6) $\log_8 32$ Méthode analogue : on a $32 = 2^5$ et $8 = 2^3$, on cherche donc x tel que $\left(2^3\right)^x = 2^5$ autrement dit $2^{3x} = 2^5 \Rightarrow 3x = 5 \Rightarrow x = \frac{5}{3}$ et ainsi $\log_8 32 = \frac{5}{3}$
- 7) $\log_{\sqrt[5]{16}} \frac{1}{\sqrt{32}}$ Méthode analogue : on a $\frac{1}{\sqrt{32}} = \frac{1}{\sqrt{2^5}} = \frac{1}{(2^5)^{\frac{1}{2}}} = \frac{1}{2^{\frac{5}{2}}} = 2^{-\frac{5}{2}}$ De même $\sqrt[5]{16} = \sqrt[5]{2^4} = (2^4)^{\frac{1}{5}} = 2^{\frac{4}{5}}$ Et on cherche donc x tel que $\left(2^{\frac{4}{5}}\right)^x = 2^{-\frac{2}{5}} \implies \frac{4}{5}x = -\frac{5}{2} \implies x = -\frac{25}{8}$
- 8) $\log_1 17$ A quelle puissance faut-il élever 1 pour trouver 17 ? Pas possible.
- 9) $\log_0 17$ A quelle puissance faut-il élever 0 pour trouver 17? Pas possible.
- 10) $\log_6 0$ A quelle puissance faut-il élever 6 pour trouver 0 ? Pas possible dans les nombres rels. Mais $6^{-100000}=$ presque zéro. On pourrait donc dire $6^{-\infty}=0$ et $\log_6 0=-\infty$