MATH 447: Real Variables - Homework #6

Jerich Lee

October 24, 2024

Problem 1 (18.7). Prove $xe^x = 2$ for some x in (0, 1).

Solution 1. Proof. Our goal is to show that f = x and $g = e^x$ are both continuous, then invoke Theorem 17.4 part iii): Let f and g be real-valued functions that are continuous at x_0 in \mathbb{R} . Then:

$$fg$$
 is continuous at x_0 (1)

To show that f = x is continuous, we can show the following:

$$|x_n - x| < \varepsilon \tag{2}$$

Choosing $\delta = \epsilon$, we get:

$$|x_n - x| < \delta \implies |f(x_n) - f(x)| < \epsilon$$
 (3)

We wish to prove that the function $f(x) = e^x$ is continuous.

Let $\epsilon > 0$. We need to show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then $|e^x - e^{x_0}| < \epsilon$.

Starting with the expression:

$$|e^x - e^{x_0}| = e^{x_0}|e^{x - x_0} - 1| (4)$$

Now, we use the elementary inequality:

$$e^y \ge 1 + y \tag{5}$$

For y = -y, we get:

$$e^{-y} \ge 1 - y \tag{6}$$

which implies:

$$\frac{1}{1-y} \ge e^y \quad \text{for } y < 1 \tag{7}$$

Hence:

$$|e^y - 1| \le \max\left\{|y|, \left|\frac{y}{1 - y}\right|\right\} \quad \text{for } y < 1$$
 (8)

Thus, taking $y = x - x_0$, we have:

$$|e^y - 1| \le \max\left\{|y|, \left|\frac{y}{1 - y}\right|\right\} \tag{9}$$

Now, choose δ small enough such that $|y| = |x - x_0| < \delta$ satisfies:

$$\max\left\{|y|, \left|\frac{y}{1-y}\right|\right\} < e^{-x_0}\epsilon\tag{10}$$

and |y| < 1.

Therefore, we can conclude that e^x is continuous at x_0 . Invoking Theorem 17.4 iii), we

show that xe^x is a continuous function. To show that there exists x such that $h = xe^x = 2$, we can show that pick two points in (0,1): $x_1 = 0.01$, and $x_2 = 0.99$, and substitute these into h, getting $h(x_1) = 0.01$ and $f(x_2) = 2.66$. $h(x_1) < 2 < h(x_2)$, and because h is continuous on (0,1), we can invoke the IVT, which proves that there exists x such that $xe^x = 2$.

Problem 2 (21.2). Consider $f: S \to S^*$ where S, d and S^*, d^* are metric spaces. Show that f is continuous at $s_0 \in S$ if and only if for every open set U in S^* containing $f(s_0)$, there is an open set V in S containing s_0 such that $f(V) \subseteq U$.

Solution 2. Proof. \Longrightarrow : The goal is to show that every point in V has a neighborhood, i.e., is open. Because U is open, we know that there exists $r = \varepsilon$ for each point $y \in U$. Because f is continuous, we also know that there is a corresponding $\delta > 0$ such that $s \in B_{\delta}(x) = V$, so this implies that there exists an open ball V around each point s in S. Because $d(s, s_0) < \delta \implies d(f(s), f(s)) < \varepsilon$, and $\delta = V$, $\varepsilon \subseteq U$, as there may be other points not in δ that map into U, this implies $f(V) \subseteq U$.

 \iff : We know that V is open for every U in S^* . Choose $\varepsilon \in U$ s.t. $\varepsilon > 0$. Then choose $\delta \in V$ s.t. $\delta > 0$. By implication, we know that δ is open. Then, we can state that $d(s,s_0) < \delta \implies d(f(s),f(s_0)) < \varepsilon$, which is the definition of continuity at a point. \square

Problem 3 (21.3). Let (S, d) be a metric space and choose $s_0 \in S$. Show $f(s) = d(s, s_0)$ defines a uniformly continuous real-valued function f on S.

Solution 3. *Proof.* We to show the definition of continuity:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } d_Y(f(p), f(q)) < \epsilon$$
 (11)

$$\forall p, q \in X \text{ for which } d_X(p, q) < \delta.$$
 (12)

We know that:

$$f(s_0) = d(s_0, s_0) = 0 (13)$$

$$f(p) = d(p, s_0) \tag{14}$$

$$f(q) = d(q, s_0) \tag{15}$$

$$d_Y(f(p), f(q)) \le d(f(p)) + d(f(q))$$
 (16)

(17)

We want to show using the triangle inequality:

$$d(f(p), f(q)) \le d(f(p), f(s_0)) + d(f(q), f(s_0)) < \varepsilon$$
(18)

From Eqn 13, 14, and 15, we can say:

$$d(f(p), f(q)) \le d(p, s_0) + d(q, s_0). \tag{19}$$

Choosing p,q such that $d(p,s_0)<\frac{\varepsilon}{2}$ and $d(q,s_0)<\varepsilon$, we can pick $\delta=\varepsilon$ and use Eqn 14 and 15 to show:

$$d(f(p), f(q)) \le d(f(p)) + d(f(q))$$
 (20)

$$\leq d(p, s_0) + d(q, s_0) < \varepsilon \tag{21}$$

o following

Problem 4 (21.4). Consider $f: S \to \mathbb{R}$ where (S, d) is a metric space. Show the following are equivalent:

- 1. f is continuous;
- 2. $f^{-1}((a,b))$ is open in S for all a < b;
- 3. $f^{-1}((a,b))$ is open in S for all rational a < b.

Solution 4. Proof. $1 \implies 2$: We know that any open interval (a, b) in R^1 is complete, i.e., every subsequence converges to a limit point contained in \mathbb{R} . Therefore, (a, b) is an open set in \mathbb{R} . We know from Problem 2 that if f is continuous, then every open set in the range corresponds to an open set in the domain. (a, b) is open, so $f^{-1}(a, b)$ is also open.

Proof. $1 \implies 3$: By $1 \implies 2$, we know that if $a, b \in \mathbb{Q}$, then (a, b) is open by the denseness of the rationals, i.e., between every real there exists a rational.

Proof. $3 \implies 1$: We achieve this by taking the converse of $1 \implies 3$, which exists by the bijection of $1 \implies 2$.

Proof.
$$2 \implies 1$$
: This exists by the bijection of $1 \implies 2$.

Proof. $3 \implies 2$: This is always true by the denseness of the rationals.

Proof. 2
$$\Longrightarrow$$
 3: This is always true, as $\mathbb{Q} \subset \mathbb{R}$

Problem 5 (21.5). Let E be a noncompact subset of \mathbb{R}^k .

- 1. Show there is an unbounded continuous real-valued function on E. Hint: Either E is unbounded or else its closure E^- contains $\mathbf{x}_0 \notin E$. In the latter case, use $\frac{1}{g}$ where $g(\mathbf{x}) = d(\mathbf{x}, \mathbf{x}_0)$.
- 2. Show there is a bounded continuous real-valued function on E that does not assume its maximum on E.

Solution 5. 1. (a) Suppose that E is bounded, and x_0 is not a point of E. To show that there exists a continuous unbounded real-valued function on E, consider the function:

$$f(x) = \frac{1}{x - x_0} \tag{22}$$

This function is continuous on E.

- (b) Suppose that E is unbounded. Then, f(x) = x is unbounded and is a continuous real-valued function on E.
- 2. Suppose that E is bounded. Then the following:

$$g(x) = \frac{1}{1 + (x - x_0)^2} \tag{23}$$

g(x) is bounded, as 0 < g(x) < 1 for all x. g(x) has no maximal element, as x_0 is not a member of E.

Problem 6 (21.10(d)). Explain why there are no continuous functions mapping [0,1] onto (0,1) or \mathbb{R} .

Solution 6. We know that [0,1] is compact according to the according to the Heine-Borel Theorem, as it is closed and bounded. According to Theorem 21.4, if E is compact, then f(E) is compact. (0,1) and \mathbb{R} are not compact, so this contradicts Theorem 21.4..

Problem 7. Is it true that any bounded continuous function on \mathbb{R} is uniformly continuous?

Solution 7. No. Choose $f = \frac{1}{x-x_0}$ with $x \in (0,x_0)$. Uniform continuity states that $\forall \varepsilon, \exists \delta \ s.t. \ d(p,q) < \delta \implies d(f(p),f(q))$ for all p,q. Choose an arbitrary ε . Then, there exists a corresponding δ such that $d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \varepsilon$. But as we take the same δ about x closer and closer to $x_0, d(f(x),f(x_n))$ will grow larger and larger, eventually exceeding our chosen ε . Therefore, there exists no constant δ that satisfies our chosen ε . Therefore, our bounded, continuous function f is not uniformly continuous.