

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ УЗБЕКИСТАНА
ИМЕНИ МИРЗО УЛУГБЕКА
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ М.В.ЛОМОНОСОВА
ИНСТИТУТ МЕХАНИКИ И СЕЙСМОСТОЙКОСТИ СООРУЖЕНИЙ
АН РУЗ ИМЕНИ М.Т.УРАЗБАЕВА
ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСКИЙ ИНСТИТУТ
ИМЕНИ Н.Е.ЖУКОВСКОГО

МЕЖДУНАРОДНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ «РАХМАТУЛИНСКИЕ ЧТЕНИЯ»

ТЕЗИСЫ ДОКЛАДОВ

Ташкент, 26-27 мая 2023 года

Издательство «Университет», 2023 Международная научно-практическая конференция «Рахматулинские чтения»: Тезисы докладов. Ташкент, 26—27 мая 2023 года/ Составители: А.Х.Закиров, Ш.Р.Ибодуллоев.- Национальный университет Узбекистана, 2023.

Публикуются тезисы докладов, представленные на Международной научнопрактической конференции «Рахматулинские чтения». Тезисы докладов включает в себя научные работы, отражающие современные достижения газовой и волновой динамике, механике многофазных сред, механике деформируемого твердого тела, вычислительной механике, управление и стабилизации динамических систем. Для специалистов, а также для магистрантов и докторантов профильных вузов.

Национальный университет Узбекистана имени Мирзо Улугбека, 2023

АНОМАЛЬНЫЙ ПЕРЕНОС ВЕЩЕСТВА В ПОРИСТОЙ СРЕДЕ С УЧЕТОМ АДСОРБЦИОННЫХ ЭФФЕКТОВ И РАЗЛОЖЕНИЯ ВЕЩЕСТВА ¹Ф.Б.Холлиев, ²С.Шодиев, ³С.Ч.Хасанов

^{1,2}Самаркандский государственный университет, Самарканд, Узбекистан. ³Термезский государственный университет, Термез, Узбекистан. surxon88@bk.ru

Поставлена и численно решена задача переноса вещества в полубесконечный пористой среде с фрактальной структурой с учетом адсорбционных эффектов.

Адсорбция при переносе веществ в пористой среде значительно влияет на характеристики переноса. Предложен ряд моделей для описания адсорбции химических веществ на породы [1–3]. В работе [4] рассмотрена задача переноса загрязняющих веществ в пористой среде, состоящей из двух зон (с подвижной и неподвижной), с учетом явлений конвективного переноса, гидродинамической дисперсии, адсорбции и внутреннего диффузионного массопереноса между двумя зонами. Для описания массообмена между зонами использованы линейные и нелинейные кинетические уравнения [5].

В данной работе среда состоит из двух зон: подвижной, т.е. пористой среды, где жидкость мобильна, и неподвижной, где жидкость неподвижна, но происходит диффузионный перенос вещества. Для трех случаев коэффициента дисперсии: постоянный, линейный, асимптотик, результаты сравниваются.

Модель аномального переноса вещества с учетом адсорбции записывается как [6]

$$(\theta_m + f\rho_b k_d) \frac{\partial c_m}{\partial t} = \theta_m \frac{\partial}{\partial x} \left[D_m(x) \frac{\partial^\beta c_m}{\partial x^\beta} \right] - v_m \theta_m \frac{\partial c_m}{\partial x} - \omega (c_m - c_{im}) -$$
(1)

$$-(\theta_m \mu_{lm} + f \rho_b k_d \mu_{sm}) c_m,$$

$$\left[\theta_{im} + (1 - f)\rho_b k_d\right] \frac{\partial^{\alpha} c_{im}}{\partial t^{\alpha}} = \omega(c_m - c_{im}) - \left[\theta_{im} \mu_{\lim} + (1 - f)\rho_b k_d \mu_{sim}\right] c_{im}$$
 (2)

где θ_m , θ_{im} – коэффициент пористости; v_m – является скоростью жидкости (M/c); c_m и c_{im} – концентрации растворенных веществ в подвижной и неподвижной зонах (M^3/M^3) , соответственно; ω – коэффициент массообмена (1/c); f и 1- f представляют доли центров адсорбции, соответственно; ρ_b- объемная плотность пористой среды ($\kappa \epsilon / M^3$); k_d коэффициент распределения линейного процесса адсорбции (${}_{M}{}^{3}/\kappa z$); μ_{lm} и μ_{\lim} коэффициенты разложения первого порядка для разложения растворенного вещества в областях с подвижной и неподвижной жидкостью (1/c), соответственно; μ_{sm} и μ_{sim} коэффициенты разложения вещества первого порядка в подвижной и неподвижной адсорбированных твердых фазах (1/c), соответственно; $D_m(x)$ коэффициент подвижной зоне $(M^{\beta+1}/c)$, дисперсии в выражаемый как гидродинамической $D_m(x) = \varphi(x) \cdot v_m + D_0$, $\varphi(x) -$ дисперсность (м), $D_0 -$ коэффициент диффузии (м²/с). Формула постоянный зависимой дисперсии от расстояния выражается как $\varphi(x) = 0$, формула линейной дистанционно — зависимой дисперсии $\varphi(x) = kx$, где k представляет собой наклон отношения дисперсии к расстоянию (безразмерный). Экспоненциальная зависимость дисперсии от расстояния выражается как $\varphi(x) = a(1 - e^{-bx})$, где a – асимптотическое значение на бесконечности (M), a b – положительные константы (1/M).

Порядки производных: $0 < \alpha \le 1$, $0 \le \beta \le 1$. В отличие от работы [6], здесь $[D_m(x)] = M^{\beta+1}/c$, $[\theta_{im} + (1-f)\rho_b k_d] = c^{\alpha-1}$ — фрактальные размерности параметров.

Начальные и граничные условия имеют вид:

$$c_m(0, x) = 0, c_{im}(0, x) = 0,$$
 (3)

$$c_m(t, 0) = c_0, \qquad c_m(t, \infty) = 0.$$
 (4)

Порядки дробных производных α и β изменяются в следующем диапозоне: $0 < \alpha \le 1, \ 0 < \beta \le 1$.

Результаты некоторых расчетов, связанных с изменением величины адсорбции, показаны на рисунках 1. Как видно из рис.1, уменьшение β от 1, как и в предыдущих случаях, приводит к усилению диффузионных эффектов в обеих зонах. Сравнение этих результатов с соответствующими при $k_d=10^{-4}$, $k_d=10^{-3}$ и $k_d=10^{-2}$ показывает, что адсорбция приводит к общему замедлению процесса распространения вещества.

Литература

- 1. Cussler E. L. Diffusion mass transfer in fluid systems. Cambridge University Press. 1997.
- 2. Massel R. Principles of Adsorption and Reaction on Solid Surfaces. Jhon Willey and Sons, Inc., NY, 1996. 804 pp.
- 3. Oddson, J. K., J. Letey and L. V. Weeks, Predicted distribution of organic chemicals in solution and adsorbed as a function of position and time for various chemical and soil properties // Soil Sci. Soc. Amer. Proc. 1970. 34:412–417.
- 4. Хужаёров Б. Х., Махмудов Ж. М., Зикиряев Ш. Х. Перенос загрязняющих веществ в водоносных пластах с учетом двухместной адсорбции // Сибирский журнал индустриальной математики. 2011. Т. XIV, № 1(45). С.127–139.
- 5. Van Genuchten, M.Th. & Wierenga, P.J. 1976, Mass transfer studies in sorbing porous media. 1. Analytical solutions, Soil Sci. Soc. Am. J., 40(4), 473–480.
- 6. Gao G., Zhan H., Feng Sh, Bo-Jie Fu. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion // Water Resources Research August $2010\,46(8)$, $W08533\,DOI:10.1029/2009WR008707$

Численное решение заоачи аномальнои фильтрации в неоонорооных пористых	
средах	
Миралимов М.Х	104
Численное исследование зоны влияния двух параллельных перегонных тоннелей.	
Мардонов Б., Нишонов Н., Бердибаев М.	105
Грунт билан ўзаро таъсирдаги таянчларга бикир махкамланган тўсиннинг меъёрдан	
ортиқ оғир юклар таъсиридаги тебранишлари	40-
Назаров Ф.Х., Абдухамидов С.К	107
Сравнение численных схем для задачи ламинарного отрывного течения в	
канале.	
Khudoinazarov Kh., Kholikov D.Sh .	109
Vibrations of a truncated conical rod	
Khudoynazarov Kh., Abdurazakov J.N.	111
Physically nonlinear vibrations of a round elastic rod under the action of a	
combined end and surface loads	
Салохиддинов А.Т., Савицкий А. Г., McKinney D.C., Аширова О.А	113
Усовершенствованная консервативная конечно-разностная схема для решения	
уравнений переноса	
Салимьянова Д. Р., Поташев К. А.	115
Численное моделирование изоляции обводненного высокопроницаемого слоя в	
условиях неопределенности его положения в нефтяном пласте.	
Смирнова В.В., Балтина Т.В., Балтин М.Э., Саченков О.А	117
Анализ движения с помощью системы видеозахвата vicon motion systems	
Shukurov A.M	119
Non-stationary transverse vibrations of an elastic space with a spherical cavity and a	
hard shpere	
Utebaev B.D., Utebaev D., Orynbaeva Z.A.	121
Numerical methods of higher accuracy for solving electrodynamics problems	
Усманов Д. И., Поташев К. А	123
Идентификация граничных условий фильтрационной модели нефтяного пласта по	
замерам пластового давления в скважинах	
Холлиев Ф.Б., Шодиев С., Хасанов С.Ч	125
Аномальный перенос вещества в пористой среде с учетом адсорбционных	120
эффектов и разложения вещества	
Хужаев И.К., Хамдамов М.М., Эргашов Д.Й	127
МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ГОРЕНИЯ С ПОМОЩЬЮ ПАКЕТНОЙ	
ПРОГРАММЫ ANSYS FLUENT	
Хужаеров Б.Х., Файзиев Б.М., Эрмаматова З.Э	129
Численное решение задачи коши для уравнения Гельмгольца	12)
Назирова Э.Ш., Неъматов А., Шукурова М	131
Численное моделирование и алгоритм решения задач фильтрация жидкостей и	131
газа в пористой среде с учетом подвижной границы раздела «газ-вода»	
	133
Худайберганов Я. К, Сапаева Ш. Э Условная устойчивость и регуляризации начально-краевой задачи для системы	133
условная устоичивость и регуляризации начально-краевой заоачи оля системы уравнений параболического типа с двумя линиями вырождения	
уравнении параоолического типа с овумя линиями вырожоения Turdibekov J. E.	135
Numerical solution of the problem of elastic-plastic torsion	133
rumericai solullon of the problem of elastic-plastic torsion	