

Predicting Traffic Delays Using U.S. Congestion and Weather Data

Team 26

Name	Role	Innomail
Alexey Tkachenko	Data engineer	a.tkachenko@innopolis.university
Daniil Abrosimov	ML specialist	d.abrosimov@innopolis.university
Egor Machnev	Data scientist	e.machnev@innopolis.university
Apollinaria Chernikova	Tester and Technical writer	a.chernikova@innopolis.university

+ CI bot

Introduction

- Analyze traffic congestion on US roads
- Identify key factors influencing traffic delays (weather, time, location).
- Predict traffic jam duration with reasonable accuracy.
- Develop a big data pipeline from raw CSVs to analytical dashboard.
- Provide decision support for urban planners and transportation authorities.

Data Description

US Traffic Congestions (2016-2022)

Comprehensive Dataset of 33 Million U.S. Traffic Congestion Events

Kaggle

Total rows

Rows used for training

1.96M

Rows used for training

Architecture of data pipeline

Stage	Input	Processing	Output
Stage I	Kaggle ZIP archive (CSV, ~12.8 GB)	- Load and clean data - Import to PostgreSQL - Export to HDFS using Sqoop → convert to Parquet (Snappy-compressed)	Raw lake: /project/warehouse/traffic (Parquet)
Stage II	Parquet files from Stage I	- Create external Hive table traffic - Create optimized partitioned & bucketed table traffic_partitioned - Auto-ingest per-state - Generate 14 EDA views (CSV + Hive)	Hive warehouse + /output/dashboard/qX.csv
Stage III	50k-row-per-state sample from traffic_partitioned Hive table. ~2mil rows in total	- Spark MLlib pipeline with custom transformers: - Cyclical time encoder - GeoToECEF spatial transformer - Word2Vec embedding - OneHotEncoding for low cardinality categorical features - Feature hashing for high cardinality features - Grid search for LR and RF models	Trained models + evaluation metrics (RMSE, R², MAE)
Stage IV	Analytical results + model outputs	- Load into Apache Superset - Configure dashboards, filters, drilldowns	Interactive BI dashboard

GitHub

Development Automation

To streamline development and ensure continuous throughout the project integration lifecycle, we implemented a custom CI script tailored for the cluster environment.

- Fetches and resets to the latest commit:
- Executes the main pipeline script (main.sh);
- Sends logs and outputs to a Telegram chat for real-time team visibility.

• c4c99b4 on deploy by Alexey: Fixed datatypes

- big-data-final-project
 - eb1b8a8 on deploy by machnevegor: fix: :construction: update guery in g12.hgl
 - finished main.sh on hadoop-01
 - 2025-05-03T01-09-37_eb1b8a8.log 11.7 KB - Download
 - 2025-05-03T01-09-37_eb1b8a8.zip 3.9 MB - Show in Finder

Data preparation

Data analysis

Initially formulated **14**hypotheses about factors
that might influence traffic
delays.

7 were tested and validated through visual analysis using charts and dashboards.

ML Modeling

→ Random Forest Regressor:

- maxDepth 10;
- numTrees 50.

Model	RMSE	R ²	MAE
Random Forest	2.9146	0.5787	1.5438
Linear Regression	3.3102	0.4566	1.8117

→ Linear Regression:

- regParam 0.01;
- elasticNetParam 0.0 (pure L2 regularization)

Data presentation

Superset Dashboard

Conclusion

Our contributions include:

- → End-to-end automation for data ingestion, partitioning, and transformation;
- → Targeted HQL queries for exploratory data analysis (EDA);
- A trained machine learning model predicting traffic delays using geographic, temporal, and weather-related features;
- An interactive Superset dashboard for intuitive data visualization and decision support.

Reflections on own work

A solid and awesome team!

