

Machine Learning and Analytics in Logistics and Supply Chain

Presented by:

Pavel Gupta

Co-Founder, NeenOpal Analytics Bangalore, India

Agenda

- Supply Chain: Challenges and Trends
- Introduction: Machine Learning and Al
- Case Study ML and AI in Supply Chain and Logistics
- Getting Started with Machine Learning
- Conclusion

Supply Chain Challenges

- Lower Prices
- Faster Delivery
- Higher customer service expectations
- Demand volatility
- High number of products
- Supply complexities
- More frequent shipments
- Transparency and sustainability

"Companies that continue to utilize traditional supply chain models will struggle to remain competitive and deliver orders that are complete, accurate and on-time."

A Lot of New Products

Today Amazon sells over 480 million products in the USA. Amazon's product selection has expanded by 235 million in the past 16 months.

That's as average addition of 485,00 new products per day.

A typical Amazon fulfilment centre

A Very Long Tail Demand

0.9 million

1.2 million

1.7 million

6.7 million

24 million

30 million

60 million

96 million

Machine Learning and AI

The Future is Here

- The most innovative companies in the world that have disrupted their respective industries – rely on <u>Machine Learning</u> to drive their business processes and a great customer experience
- The future of business innovation has <u>Artificial</u>
 <u>Intelligence</u> (AI) at its very core
- Machine Learning (subfield of AI) is no longer restricted to research labs and is fast becoming the <u>cornerstone</u> <u>of business disruption</u>

What was before Machine Learning?

Humans versus Machine

Deterministic Future Outlook

Machine Learning in our Business

Humans versus Machine

Probabilistic Future Outlook

Machine Learning Explained

House No.	Square Footage	Bedrooms	Age	School Rating	Final Price
H1	1000	4	3	2	\$100,000
H2	800	3	1	4	\$90,000
Н3	1200	5	3	5	\$125,000
H4	600	2	5	1	\$60,000
H5	1500	6	3	3	\$150,000

 $PRICE(Square\ Footage,\ Bedrooms,\ Age,\ School\ Rating) = w_1 x sf + w_2 x br + w_3 x age + w_4 x sr$

Learning Algorithms

Spam Non-Spam

Regression

Classification

Ranking

Supervised

Unsupervised

Reinforcement

Neural Networks

Deep Learning

INPUT

Case Study

Transforming Supply Chain and Logistics

Business Challenge:

Develop real-time customer feedback and analysis framework to measure customer satisfaction levels.

Situation:

Existing process was not capturing valuable customer data

Solution/Approach:

- Collect and aggregate the customer data on areas such as billing, complaints, repairs, contracts, social media and contact center calls.
- Big data analytics model provides real-time feedback and risk flagging for the customers om the verge of churning

Impact:

Reduction in customer complaints & improved customer satisfaction levels

Improving Customer Satisfaction

for a major Logistics Company

Getting Started

Start small by leveraging the cloud

- Low hanging fruit: Business problem "If we just knew..."
- Start Supervised: Historic data with ground truth
- Do not start with Big Data
- Use cloud-based offerings:
 - Microsoft Azure Machine Learning
 - Amazon Machine Learning
 - Google Cloud Machine Learning
 - Big ML

Thank You

Pavel Gupta

Co-Founder @ NeenOpal Analytics +91-9910945784 pavel.gupta@neenopal.com

