P. Maurer ENS Rennes

Leçon 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

Devs:

- Théorème des extrema liés
- Invariants de similitude

Références:

- 1. Gourdon, Algèbre
- 2. Gourdon, Analyse
- 3. Rouvière, Petit guide du calcul différentiel
- 4. Objectif Agrégation

1 Formes linéaires. Définitions et propriétés.

Définition 1. On appelle forme linéaire sur E toute application linéaire de E dans k. L'ensemble $\mathcal{L}(E,k)$ des formes linéaires de E dans k est aussi noté E^* . C'est le dual de E.

Exemple 2. Si $E = k_n[X]$, l'application $\varphi: P \mapsto P(0)$ est une forme linéaire de $\mathcal{L}(k_n[X], k)$. Si $E = \mathbb{R}_n[X]$, $\psi: P \mapsto \int_0^1 P(t) \, dt$ est une forme linéaire de $\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$. Si $E = \mathcal{M}_n(k)$, $\operatorname{Tr}: A \mapsto \operatorname{Tr}(A)$ est une forme linéaire de $\mathcal{L}(\mathcal{M}_n(k), k)$.

Proposition 3. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, et $X = (X_1, \dots, X_n)$ un vecteur aléatoire réel. La loi de X est entièrement déterminé par sa fonction caractéristique, donnée pour tout $t \in \mathbb{R}^n$ par $\varphi_X(t) := \mathbb{E}[e^{i\langle X, t \rangle}]$, où $\langle x, t \rangle := x_1t_1 + \dots + x_nt_n$ défini une forme linéaire sur Ω^n pour tout $t \in \mathbb{R}^n$.

Théorème 4. $\mathcal{M}_n(k)$ est isomorphe à son dual. De plus, toute forme linéaire f de $\mathcal{M}_n(k)$ vérifiant f(XY) = f(YX) est colinéaire à la trace.

Application 5. Tout hyperplan de $\mathcal{M}_n(k)$ coupe $\mathrm{GL}_n(k)$.

Application 6. On suppose $\operatorname{car}(k) = 0$. Soit $\varphi : \mathcal{M}_p(k) \to \mathcal{M}_n(k)$ un morphisme d'algèbre. Alors p divise n.

Proposition 7. Une forme linéaire est nulle ou surjective.

Théorème 8. (Théorème de Riesz)

Soit H espace de Hilbert. Pour toute forme linéaire continue f sur E, il existe un unique $x_f \in E$ tel que $f(a) = \langle x_f, a \rangle$ pour tout $a \in E$. L'application $f \mapsto x_f$ est un isomorphisme d'espaces vectoriels.

Application 9. (Théorème de Radon-Nikodym, version faible)

Soit μ et ν deux mesures σ -finies sur (Ω, \mathcal{A}) telles que $\mu(A) = 0 \Longrightarrow \nu(A) = 0$ pour tout $A \in \mathcal{A}$. Alors il existe une fonction mesurable $f: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}_+, \mathcal{B}(\overline{\mathbb{R}}_+))$ telle que pour tout $A \in \mathcal{A}$:

$$\nu(A) = \int_A f d\mu$$

Application 10. Soit $(E, \langle ., . \rangle)$ un espace euclidien et $f: E \to \mathbb{R}$ une application différentiable en $a \in E$. Par définition, df(a) est une forme linéaire continue sur E.

Il existe un unique vecteur de E, noté $\nabla f(a)$ tel que $\mathrm{d}f(a) \cdot h = \langle \nabla f(a), h \rangle$ pour tout $h \in E$. On appelle $\nabla f(a)$ le gradient de f en a. Il dépend du produit scalaire choisi sur E.

Définition 11. On appelle hyperplan de E tout sous-espace vectoriel de dimension n-1.

Proposition 12. Tout hyperplan H de E est le noyau d'une forme linéaire non nulle.

2 Espace dual.

2.1 Base duale

Définition 13. Soit $B = (e_1, \ldots, e_n)$ une base de E. Alors $B^* = (e_1^*, \ldots, e_n^*)$ est une base de E^* , où $e_i^*(e_i) := \delta_{ij}$. On l'appelle la base duale de B.

Proposition 14. On a donc dim(E) = dim (E^*) , et pour tout $\varphi \in E^*$, $\varphi = \sum_{i=1}^n \varphi(e_i) e_i^*$.

En particulier, $E \simeq E^*$. Cet isomorphisme n'est cependant pas canonique, et dépend de la base choisie.

Proposition 15. Soit $x, y \in E$. Alors x = y si et seulement si $\varphi(x) = \varphi(y)$ pour tout $\varphi \in E^*$.

Proposition 16. Soit $\varphi_1, \ldots, \varphi_p \in E^*$, et $\varphi : E \to k^p$ définie par $\varphi = (\varphi_1, \ldots, \varphi_p)$. Alors φ est surjective si et seulement si $\varphi_1, \ldots, \varphi_p$ sont linéairement indépendantes.

Section 3

2.2 Bidual, antédual

Définition 17. On appelle bidual de E l'espace $E^{**} = (E^*)^*$.

Théorème 18. Si $x \in E$, on note \tilde{x} : $\begin{cases} E^* \to k \\ \varphi \mapsto \varphi(x) \end{cases}$.

On a alors $\tilde{x} \in E^{**}$ et l'application f: $\begin{cases} E \to E^{**} \\ x \mapsto \tilde{x} \end{cases}$ est un isomorphisme.

Remarque 19. Cet isomorphisme est canonique, et ne dépend pas du choix d'une base. On convient d'identifier E à E^{**} en identifiant x à \tilde{x} pour $x \in E$.

En dimension infinie, f est injective mais pas surjective.

Proposition 20. Soit (f_1, \ldots, f_n) une base de E^* . Il existe une unique base (e_1, \ldots, e_n) de E telle que pour tout $i \in [1, n]$, on ait $e_i^* = f_i$. Cette base s'appelle la base antéduale de (f_1, \ldots, f_n) .

Exemple 21. La famille $(f_{ij})_{1 \le i,j \le n}$ donnée par f_{ij} :=Tr $(E_{ij} \cdot)$ est une base de $\mathcal{M}_n(k)^*$. Sa base antéduale est donnée par e_{ij} := E_{ji} .

3 Transposition et orthogonalité

3.1 Orthogonalité par rapport à une forme linéaire.

Définition 22. Des éléments $x \in E$ et $\varphi \in E^*$ sont dits orthogonaux si $\varphi(x) = \langle \varphi, x \rangle = 0$.

Définition 23

Si $A \subset E$, on note $A^{\perp} = \{ \varphi \in E^* : \forall x \in A \quad \varphi(x) = 0 \}$. A^{\perp} est appelé orthogonal de A. Si $B \subset E^*$, on note $B^{\circ} = \{ x \in E : \forall \varphi \in B \quad \varphi(x) = 0 \}$. B° est appelé orthogonal de B.

Proposition 24. Les sous-ensembles A^{\perp} et B° sont des sous-espaces vectoriels de E^* (resp de E).

Remarque 25. Si $\varphi \in E^*$, alors $\{\varphi\}^{\circ}$ est le noyau de φ .

Proposition 26. On donne quelques propriétés :

- $Si \ A_1 \subset A_2 \subset E \ alors \ A_2^{\perp} \subset A_1^{\perp}$.
- Si $B_1 \subset B_2 \subset E^*$, alors $B_2^{\circ} \subset B_1^{\circ}$.
- Si $A \subset E$, alors $A^{\perp} = (\operatorname{Vect} A)^{\perp}$.
- Si $B \subset E$, alors $B^{\circ} = (\text{Vect } B)^{\circ}$.

Théorème 27.

- 1. Si F est un sous-espace vectoriel de E, $\dim F + \dim F^{\perp} = \dim E$ et $(F^{\perp})^{\circ} = F$.
- 2. Si G est un sous-espace vectoriel de E^* , $\dim G + \dim G^{\circ} = \dim E$ et $(G^{\circ})^{\perp} = G$.

Remarque 28. En dimension infinie, l'égalité $F^{\perp \circ} = F$ est vraie, mais on a seulement l'inclusion $G \subset G^{\circ \perp}$.

Application 29. Soit F un sous-espace vectoriel de E. Alors $F = E \iff F^{\perp} = \{0\}$.

Théorème 30. (Equation d'un s.e.v en dimension finie)

- Soit p formes linéaires $\varphi_1, \ldots, \varphi_p$ de E^* telles que $\operatorname{rg}(\varphi_1, \ldots, \varphi_p) = r$. Le sous-espace vectoriel $F = \{x \in E : \forall i \in [\![1,p]\!] \mid \varphi_i(x) = 0\}$ est de dimension n-r.
- Réciproquement, si F est un sous-espace vectoriel de E de dimension q, il existe n-q formes linéaires indépendantes $\varphi_1, \ldots, \varphi_{n-q}$ telles que $F = \{x \in E : \forall i \in [\![1, n-q]\!] \quad \varphi_i(x) = 0\}.$

Exemple 31. L'ensemble des formes linéaires qui s'annulent sur un hyperplan de E forme une droite vectorielle de E^* .

Application 32.

Soit A_1, A_2 deux sous-espaces vectoriels de E. Alors $(A_1 + A_2)^{\perp} = A_1^{\perp} \cap A_2^{\perp}$, et $(A_1 \cap A_2)^{\perp} = A_1^{\perp} + A_2^{\perp}$.

Soit B_1, B_2 deux sous-espaces vectoriels de E^* . Alors $(B_1+B_2)^\circ=B_1^\circ\cap B_2^\circ$ et $(B_1\cap B_2)^\circ=B_1^\circ+B_2^\circ$.

Remarque 33. Dans un espace de Hilbert H, l'orthogonalité du produit scalaire et l'orthogonalité au sens des formes linéaires correspondent, grâce au théorème de Riesz : pour $f \in E^*$ et $x \in E$ tel que $f = \langle x, . \rangle$, on a $f(y) = 0 \Longleftrightarrow \langle x, y \rangle = 0$ pour tout $y \in E$.

3.2 Transposition

Définition 34. Soit E et F deux k-espaces vectoriels de dimension finie, et $u \in \mathcal{L}(E,F)$. Pour tout $f \in F^*$, on a $f \circ u \in E^*$. L'application $\begin{cases} F^* \to E^* \\ f \mapsto f \circ u \end{cases}$ est appelée transposée de u et notée u^T .

Proposition 35. On a:

- 1. $\operatorname{rg}(u) = \operatorname{rg}(u^T)$
- 2. $\operatorname{Im}(u^T) = (\operatorname{Ker} u)^{\perp}$
- 3. $\operatorname{Ker}(u^T) = (\operatorname{Im} u)^{\perp}$

Applications 3

Proposition 36. Soit E, F, G trois k-espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors $(v \circ u)^T = u^T \circ v^T$.

Proposition 37. Soit $u \in \mathcal{L}(E)$. Un sous-espace vectoriel F de E est stable par u si et seulement si F^{\perp} est stable par u^{T} .

Remarque 38. Si E est un espace euclidien, alors pour $f \in \mathcal{L}(E)$, on a $f^T = f^*$, où f^* désigne l'adjoint de f.

Proposition 39. Soit $u \in \mathcal{L}(E, F)$, B une base de E et B' une base de F. On note B^* et B'^* leurs bases duales respetives. Alors :

$$\max_{B,B'}(f)^T = \max_{B^*} {}_{B'^*}(f^T)$$

Théorème 40. (Formule de changement de base dans le dual)

Soit $B = (e_1, \ldots, e_n)$ et $B' = (\varepsilon_1, \ldots, \varepsilon_n)$ des bases de E, B^* et B'^* leurs bases duales respectives.

Notons $C := P_B^{B'} = \max_{B', B} (\operatorname{Id}_E)$ la matrice de passage de la base B à la base B'. Alors la matrice de passage de B^* à B'^* est $(C^{-1})^T$. Autrement dit :

$$P_{B^*}^{B^{\prime *}} = (P_{B^{\prime}}^B)^T$$

4 Applications

4.1 Base (anté)duale et polynômes

Théorème 41. On suppose que car(k) = 0. Alors tout polynôme $P \in k_n[X]$ vérifie :

$$\forall a \in k \ P(X) = \sum_{k=0}^{n} \frac{F^{(k)}(a)}{k!} (X - a)^{k}$$

Fixons $a \in k$ et posons $\varphi_i: P \mapsto P^{(i)}(a)$. Alors $(\varphi_1, \dots, \varphi_n)$ est une base de $k_n[X]^*$, et sa base antéduale est (Q_1, \dots, Q_n) , où $Q_i(X) = \frac{(X-a)^k}{k!}$.

Théorème 42. Soit $a_1, \ldots, a_n \in k$ deux à deux distincts.

Pour tout $i \in [1, n]$, on pose $\varphi_i : P \mapsto P(a_i)$. Alors $(\varphi_1, \dots, \varphi_n)$ est une base de $k_n[X]^*$ et sa base antéduale est (L_1, \dots, L_n) où $L_i(X) = \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$ est le $i^{\text{ème}}$ polynôme de Lagrange associé à (a_1, \dots, a_n) .

Corollaire 43. Soit a_0, \ldots, a_n des réels deux à deux distincts et $P \in \mathbb{R}_n[X]$. Alors il existe des réels c_0, \ldots, c_n tels que $\int_0^1 P(t) dt = \sum_{i=0}^n c_i P(a_i)$.

4.2 Calcul différentiel

Développement 2 :

Théorème 44. (Théorème des extrema liés)

Soit $U \subset \mathbb{R}^n$ un ouvert, $f, g_1, \ldots, g_r \in \mathcal{C}^1(U, \mathbb{R})$ et $\Gamma = \{x \in U : \forall i \in \llbracket 1, n \rrbracket \mid g_i(x) = 0\}$. Si $f_{|\Gamma}$ admet un extrémum local en $a \in \Gamma$ et si les formes linéaires $dg_1(a), \ldots, dg_r(a)$ sont linéairement indépendantes, alors $df(a) \in \text{Vect}(dg_1(a), \ldots, dg_r(a))$ et ses coordonnées sont les multiplicateurs de Lagrange de a.

Application 45. On applique le théorème des extrema liés à $f:(x_1,\ldots,x_n)\mapsto x_1\cdots x_n$ et à $\Gamma=\{(x_1,\ldots,x_n)\in\mathbb{R}^n:\sum_{i=1}^nx_i=0\}$. On retrouve l'inégalité arithmético-géométrique :

$$\left(\prod_{i=1}^{n} x^{i}\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Application 46. (Inégalité de Hadamard)

Pour tout $v_1, \ldots, v_n \in \mathbb{R}^n$, $|\det(v_1, \ldots, v_n)| \le ||v_1|| \cdots ||v_n||$, avec égalité si et seulement si un des v_i est nul ou si les v_i forment une base orthogonale de E.

4.3 Invariants de similitude

Notation 47. Si $x \in E$, on note P_x le polynôme unitaire engendrant l'idéal $\{P \in \mathbb{K}[X] : P(f)(x) = 0\}$, et E_x l'ensemble $\{P(f)(x) : P \in \mathbb{K}[X]\}$.

Dans la suite, on notera k le degré de π_f et ℓ_x le degré de P_x pour $x \in E$.

Proposition 48. L'ensemble E_x est un sous-espace vectoriel de E de dimension ℓ_x , dont une base est $(x, \ldots, f^{\ell_x-1}(x))$.

Théorème 49. Il existe $x \in E$ tel que $P_x = \pi_f$.

Définition 50. On dit que f est cyclique s'il existe $x \in E$ tel que $E_x = E$. D'après ce qui précède, ceci équivant à dire que $k = \deg(\pi_f) = n$, ou encore que $\pi_f = (-1)^n \chi_f$, où χ_f désigne le polynôme caractéristique de f.

Développement 2 :

Théorème 51. (Invariants de similitude)

Soit $f \in \mathcal{L}(E)$. Il existe une suite finie F_1, \dots, F_r de sous-espaces vectoriels de E, tous stables par f, telle que

- 1. $E = \bigoplus_{i=1}^r F_i$
- 2. pour tout $i \in [1, r]$, $f_{|F|}$ est un endomorphisme cyclique,
- 3. si $P_i = \pi_{f_i}$ on a $P_{i+1}|P_i$ pour tout $i \in [1, r-1]$.

La suite P_1, \ldots, P_r ne dépend que de f et non du choix de la décomposition. On l'appelle suite des invariants de similitude de f.

4 Section 4

Application 52. (réduction de Frobenius)

Soit $f \in \mathcal{L}(E)$ et P_1, \ldots, P_r la suite des invariants de similitude de f. Alors il existe une base \mathcal{B} de E dans laquelle $\max_{\mathcal{B}}(f) = \operatorname{diag}(\mathcal{C}(P_1), \ldots, \mathcal{C}(P_r))$. On a $P_1 = \pi_f$ et $P_1 \cdots P_r$ est le polynôme caractéristique de f, à un facteur $(-1)^n$ près.