

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: B05C 5/02, B23K 3/06

(11) International Publication Number:

WO 98/16323

A1

SE

(43) International Publication Date:

23 April 1998 (23.04.98)

(21) International Application Number:

PCT/SE97/01738

(22) International Filing Date:

16 October 1997 (16.10.97)

(30) Priority Data:

9603808-8

16 October 1996 (16.10.96)

(71) Applicant (for all designated States except US): MYDATA AUTOMATION AB [SE/SE]; Adolfsbergsvagen 11, S-168 66 Bromma (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HANSSON, Jens [SE/SE]; Edsviksvägen 79, S-182 35 Danderyd (SE). KRONSTEDT, Johan [SE/SE]; Sidensvansvägen 24, S-192 55 Sollentuna (SE). HOLM, William [SE/SE]; Tullgårdsgatan 18, S-116 68 Stockholm (SE).

(74) Agents: LINDÉN, Stefan et al.; Bergenstråhle & Lindvall AB, P.O. Box 17704, S-118 93 Stockholm (SE).

(81) Designated States: JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DEVICE FOR APPLYING DROPS OF A FLUID ON A SURFACE

(57) Abstract

In a device for ejecting small amounts of a liquid material having accurately defined volumes from a chamber (1), the chamber has a nozzle aperture (7) and a rod (9) is mounted in or attached to a wall of the chamber (1), so that an end surface (11) of the rod is located opposite and at a small distance of the nozzle aperture (7). A driving device is coupled to the rod (9) for displacing the end surface (11) forwards and backwards inside the chamber with a very small stroke, with a high acceleration and a large force, so that a pressure wave is formed and propagates in the material in the chamber (1). The pressure wave then ejects material out of the nozzle aperture (7).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	ΙΤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

DEVICE FOR APPLYING DROPS OF A FLUID ON A SURFACE

The present invention relates to a device for placing small volumes of a material being in a liquid or fluid shape such as viscous media and liquid dispersions, in particular a viscous dispersion such as solder paste and different kinds of glues and adhesives, with a high speed on a substrate or base by ejecting drops of the material from a chamber through a nozzle.

BACKGROUND

When mounting electronic components on printed circuit boards and substrates it can be required that small isles or patches of solder paste are placed with a high speed and a high accuracy on such a base. Also, depositing varnishes and glues, in particular an electrically conductive adhesive, can be required. The high speed is required for the ever higher speed at which the electronic devices of today are produced.

In the published International patent application W091/12106 a device is disclosed for depositing material, which comprises a rod, the length of which is changed when it is subjected to a suitable magnetic field. The end of the rod forms one wall of a chamber filled with the material. When the length of the rod is suddenly changed to become longer, the volume of the chamber is changed and the material is in the shape of a drop pressed out of a nozzle. In the published International patent application W090/00852 instead the volume of the chamber is changed by making the chamber of a piezo-electrical material and subjecting it to an electric field.

In the European patent document EP-B1 0 517 767 a device is disclosed for depositing drops of a liquid material such as solder paste, glue and similar materials. The device comprises a rigid metal pipe through which material flows and which contains a nozzle in a wall of the pipe, and it further comprises a rod resting at the outside of the pipe conduit and made of an magnetostrictive material. By subjecting the rod to a magnetic field it will change its length to produce a blow on the outside of the pipe thereby locally increasing the pressure in the pipe, so that a drop of the material is ejected through the nozzle.

In U.S. patent US-A 5,320,250 a method is disclosed for rapid dispensing of small amounts of a viscous material. A chamber containing the material has a nozzle in a wall and an-40 other wall of the chamber has the shape of a flexible, elastic

diaphragm. An impact mechanism such as an electrically actuated hammer hits against the outside of the diaphragm in order to produce a change of the volume of the chamber, so that a drop is pressed out of the nozzle.

SUMMARY

It is an object of the invention to provide a device by means of which small amounts of a liquid or fluid material can be ejected from a chamber containing the material, so that one drop at a time can be ejected in an accurately defined volume or so that the liquid material is ejected in a finely divided shape.

Thus, in a device for dispensing small quantities or amounts of a material a chamber is provided having a nozzle aperture arranged in a first wall. The chamber has a second wall which is 15 opposite and parallel to the first wall. A rod is movably mounted in or attached to the second wall in such a way that one surface of the rod and a neighbouring portion of envelope surface of the rod are located inside the chamber. This end surface is furthermore opposite the nozzle aperture. 20 actuating device is coupled to this rod in order to displace it through a short distance forwards and backwards or otherwise produce, e.g. by changing the length of the rod. Then the one end surface of the rod moves forwards and backwards inside the longitudinal direction chamber, in the of the rod, 25 pendicularly to the one end surface. The diameter or largest cross dimension of the rod is advantageously large compared to the diameter of the nozzle aperture. The length of stroke of the rod or equivalently the displacement of the end surface of the rod is small but the stroke movement is made with a high 30 acceleration and a large force, so that a pressure wave is formed and propagates in the viscous medium. hitting the inlet of the nozzle channel, the pressure wave then ejects material through the nozzle. The ejection of the material is thus primarily produced by a pressure wave or a pressure 35 shock which propagates in the material and not by a change of the volume of the chamber. Furthermore, in order that the pressure wave will efficiently act towards the nozzle aperture the end surface of the rod is advantageously located close thereto. Thus, the distance between the end surface of the rod 40 and the inlet of the nozzle aperture is preferably small

compared to the diameter of the end surface. Said diameter can be taken as equivalent to the largest dimension of the end surface as taken in a cross direction of the rod, i.e. from an edge of the end surface to an opposite edge thereof.

The displacement of the rod or its end surface can easily be produced maintaining a high accuracy of the movement without having it degraded because of wear or plays in bearings and similar reasons. Examples of suitable driving devices are electrostrictive, piezo-electrical, magnetostrictive actuators and memory metal actuators.

BRIEF DESCRIPTION OF THE DRAWING

The invention will now be described by way of a non limiting embodiment with reference to the accompanying drawing, in which

Fig. 1 is a schematic cross sectional view of a device for 15 feeding or depositing material.

DETAILED DESCRIPTION

In Fig. 1 a chamber 1 made in a rigid metal block is shown, which through an opening 3 in a side surface is connected to a material container, not shown. The chamber 1 has the shape of a 20 low cylinder having side surfaces and a top wall and a bottom wall. In the bottom wall there is a narrow outlet or nozzle aperture 7. The aperture 7 can be a channel in a nozzle 5 which is attached in a bore in the bottom wall by means of suitable cooperating threads. The nozzle 5 has a nozzle aperture 7 in the 25 shape of a narrow channel. The inner end of the nozzle channel 7 which is located at the chamber is bevelled or shaped as a funnel. Opposite the inner end of the channel 7 a rod 9 is located. The rod 9 is slidably mounted in the wall opposite the wall in which the nozzle 5 is located, i.e. the rod is mounted 30 in the top wall of the chamber 1. The lower end surface 11 of the rod 9 can move in directions towards and away from the nozzle 5 and the bottom wall by means of some suitable driving device or by the very construction of the rod together with a suitable actuator, not shown. For example the rod itself or its 35 driving device, if all of the rod is to be displaced, can be based on electrostrictive, piezoelectrical or magnetostrictive materials. Some portions of the rod or driving mechanism can also be based on memory metals.

Then, if the lower end surface 11 of the rod 9 is given a 40 sudden, very small movement downwards, towards the bottom wall

and the nozzle 5, in particular towards the inner end of the channel 7, a localized pressure increase or pressure blow or shock is obtained in the material in the chamber 1 close to the lower end surface 11 of the rod 9. A shock wave is thus 5 generated in the material in the chamber and it propagates surface away from the end 11, in a substantially perpendicular thereto. This pressure increase or pressure wave then also affects, for a suitable dimensioning, that region of the chamber 1, at which the inner channel 7 of to the nozzle 5 mouths in the chamber 1. Thereby a particulate quantity such as a drop of the material in the chamber 1 will be ejected from the nozzle channel 7 at its other, outer end. The particulate quantity of material will then move freely with a high velocity in air along a path substantially coinciding with prolongation of the longitudinal axis of the straight channel 7. The quantity can hit and thus be applied to some substrate, not shown, for example a printed circuit board or some other substrate having electrical conductor parts. In order that the pressure increase or pressure wave will efficiently act 20 towards the nozzle channel 7, the end surface 11 of the rod 9 can be located at only a small distance of the region in which the nozzle channel 7 starts inside the chamber 1, compared to the diameter of the rod or more particularly to the diameter of its end surface. Thus, the distance can be comprised within the 25 range of 0.05 - 0.5 mm, the diameter of the end surface 11 for example being 1 - 4 mm. The diameter of the end surface 11 is also large in relation to the diameter of the narrowest portion of the nozzle channel, which can be comprised within the range of 0.1 - 0.5 mm. Furthermore, the length of stroke of the end 30 surface 11 is small compared to the diameter thereof, example at most 0.01 - 0.02 mm.

The nozzle 5 is in Fig. 1 made as a threaded bushing having a basically cylindrical shape. The inner side of the nozzle is substantially flat at the surface surrounding the centrally located, coaxial channel 7. A deep cylindrical, coaxial recess is in the opposite side of the cylindrical nozzle which faces away from the chamber 1. The nozzle channel 7 then extends only a short way through the inner portion of the nozzle 5, having its outer end surrounded by the walls of the recess. The nozzle to thannel 7 is thus located directly connected to the main space

of the chamber 1 having its inner end located in the plane of the bottom wall, what results in that a pressure increase in the chamber 1 can easily be directed, so that it will efficiently affect the nozzle channel. Other detail solutions and attachment 5 methods of the nozzle are naturally conceivable. The end surface 11 of the rod 9 is furthermore made as a substantially flat surface located perpendicularly to the longitudinal axis of the rod and to the longitudinal axis of the channel 7 and parallel to the inner surface of the nozzle 5 and the bottom 10 wall and has its centre located straight above the nozzle channel 7. In particular those regions of the chamber wall which are located at and close to the inner end of the channel 7, these regions comprising the inner, upper surface of the nozzle are substantially flat and have an extension at 15 corresponding to the extension of the end surface 11. regions are also parallel to the end surface 11 of the rod 9. The longitudinal axes of the rod 9 and of the channel 7 can thus coincide. The end surface 11 of the rod can also be modified to comprise a concave, centrally located, shallow recess for pro-20 ducing an enhanced localisation of the pressure increase or a better definition of the direction of the pressure shock. Centrally in the recess in the end surface 11 a small and low, projection portion or boss 13 can be arranged, which can further increase the intensity of the pressure shock in the region 25 centrally below the end surface 11 and thus close to the inner end of the nozzle channel.

40

CLAIMS

1. A device for applying a fluid, a viscous medium or a dispersion as drops on a substrate, comprising

a chamber intended to contain the material to be applied,

a nozzle aperture in a first wall in the chamber,

characterized by

a rod mounted in or attached to a second wall of the chamber, the rod having an end surface and an envelope surface connecting to the end surface, the second wall being opposite the first wall, so that an end surface of the rod and a connecting portion of the envelope surface are located inside the chamber and the end surface is opposite the nozzle aperture, and

driving means coupled to the rod to act thereon for driving the end surface of the rod to move forwards inside the chamber towards the nozzle aperture.

- 2. A device according to claim 1, characterized in that the rod and/or the driving means are so configured that when the driving means are not active, the end surface of the rod returns to an original position thereof, the end surface then performing a movement backwards inside the chamber away from the nozzle aperture.
 - 3. A device according to any of claims 1 2, characterized in that the length of stroke of the end surface of the rod in its movement forwards and/or backwards respectively is significantly smaller than the diameter or largest cross dimension of the end surface.
- 4. A device according to any of claims 1 3, characterized in that the diameter or largest cross dimension of the end surface is large compared to the diameter of the narrowest portion of the nozzle aperture.
- 5. A device according to any of claims 1 4, characterized in that the distance between the end surface of the rod and the end of the nozzle aperture inside the chamber is small compared to the diameter or largest cross dimension of the end surface.
 - 6. A device according to any of claims 1 5, characterized in that the driving means coupled to the rod are made so that the movement of the end surface is produced having a high acceleration and with a large force.
 - 7. A device according to any of claims 1 6, characterized

WO 98/16323 PCT/SE97/01738

in that the nozzle aperture is made so that material passing through the opening is accelerated to a large velocity.

- 8. A device according to any of claims 1 7, characterized in that the end surface of the rod has a substantially flat shape.
- 9. A device according to any of claims 1 7, characterized in that the end surface of the rod is made so that it, in the movement of the end surface in a direction towards the nozzle aperture, produces a focusing of a pressure wave in the material inside the chamber in a direction towards the nozzle aperture.
 - 10. A device according to claim 9, characterized in that the end surface of the rod comprises a concave, centrally located, shallow recess.
- 11. A device according to claim 10, characterized in that 15 the recess in the end surface of the rod comprises a low projecting portion located centrally in the recess.

1/1-

INTERNATIONAL SEARCH REPORT

International application No.

	PC1/3E 9//	01/36							
A. CLASSIFICATION OF SUBJECT MATTER									
IPC6: B05C 5/02, B23K 3/06 According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED									
Minimum documentation searched (classification system followed	by classification symbols)								
IPC6: B05C, B23K									
Documentation searched other than minimum documentation to the	he extent that such documents are included i	n the fields searched							
SE,DK,FI,NO classes as above									
Electronic data base consulted during the international search (name	ne of data base and, where practicable, searc	h terms used)							
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.							
A WO 9112921 A1 (QUENICO AB), 5 S page 5, line 14 - line 18, abstract	Sept 1991 (05.09.91), figure 2,	1							
A WO 9112106 A1 (MYDATA AUTOMATIO 22 August 1991 (22.08.91),	N AB),	1							
Further documents are listed in the continuation of Bo	x C. χ See patent family annex								
Special categories of cited documents:	"T" later document published after the inte	rnational filing date or priority							
"A" document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand							
"E" erlier document but published on or after the international filing date	"X" document of particular relevance: the								
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or cannot be consider step when the document is taken alone								
"O" document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance: the considered to involve an inventive step combined with one or more other such	when the document is							
"P" document published prior to the international filing date but later than the priority date claimed		art							
									
ate of the actual completion of the international search Date of mailing of the international search report									
28 January 1998	09 -02- 1998								
Name and mailing address of the ISA/	Authorized officer								
Swedish Patent Office									
Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86	Johan von Döbeln								

INTERNATIONAL SEARCH REPORT Information on patent family members

07/01/98

International application No. – PCT/SE 97/01738 ′

Patent document cited in search report			Publication date	Patent family member(s)			Publication date
WO	9112921	A1	05/09/91	CA DE EP ES HK JP SE SE SG US	2077449 69101143 0517767 2048590 113894 5505065 465756 9000749 105094 5338360	D,T A,B T A T B,C A	03/09/91 11/05/94 16/12/92 16/03/94 27/10/94 29/07/93 28/10/91 03/09/91 28/10/94 16/08/94
WO	9112106	A1	22/08/91	DE EP ES SE SE US	69103137 0515472 2060368 465713 9000502 5558504	A,B T B,C A	09/03/95 02/12/92 16/11/94 21/10/91 13/08/91 24/09/96

Form PCT/ISA/210 (patent family annex) (July 1992)