The maths behind Dobble / Spot It!

Rules

- 55 cards
- 8 symbols on each card
- only one common symbol between any two cards

Rules

- 55 cards
- 8 symbols on each card
- only one common symbol between any two cards

Rules

- 55 cards
- 8 symbols on each card
- only one common symbol between any two cards

How can you make your own set of cards?

Trivial Approach

Trivial Approach

Trivial Approach

Inefficient Approach

Inefficient Approach

Inefficient Approach

Number of symbols needed?

Combination without repetition

For
$$4 \text{ cards} = C(4,2) = 6$$

$$C(n,r) = {n \choose r} = rac{n!}{(r!(n-r)!)}$$

Number of symbols needed?

Combination without repetition

For
$$55$$
 cards = $C(55,2) = 1485$

$$C(n,r) = {n \choose r} = rac{n!}{(r!(n-r)!)}$$

(Dobble only uses 57 symbols!)

Mathsy Approach

Geometry

Euclidean geometry

For every two points, there always exists a line that goes through them

For every two points, there always exists a line that goes through them Every two lines, intersect at exactly one point

For every two points, there always exists a line that goes through them Every two lines, intersect at exactly one point

For every two points, there always exists a line that goes through them Every two lines, intersect at exactly one point

Vanishing points at "infinity", where parallel lines meet, wrap around

For every two points, there always exists a line that goes through them Every two lines, intersect at exactly one point

 Vanishing points at "infinity", where page 	arallel lines meet, wrap around
--	---------------------------------

For every two points, there always exists a line that goes through them Every two lines, intersect at exactly one point

Vanishing points at "infinity", where parallel lines meet, wrap around

Finite Geometries

Finite Plane:

• discrete, finite number of points / lines

Finite Projective Planes

can be mapped to dobble cards

Finite Projective Planes

Finite Plane:

• discrete, finite number of points / lines

Projective Plane:

Vanishing points, extra "points at infinity", where parallel lines meet

Order of the Projective Plane: n

- each line contains n+1 points, each point is on n+1 lines
- n^2 + n + 1 total number of lines and also total number of points

Start with n x n points

00

Add n+1 sets of parallel lines

Add n + 1 vanishing points at "infinity"

Connect the vanishing point with an extra line

Finite Projective Planes (order n=2)

7 points (symbols), 7 lines (cards)

Dobble = Finite Projective Plane (order=7)

Projective Finite Plane of order: 7

Stand-up Maths youtube channel - Steve Mould

Projective Finite Plane of order: 7

8 set of 7 lines (56)

Vanishing points at "infinity"

All 8 vanishing points - extra line at "infinity"

8 symbols, 8 lines, 49+8 = 57 cards

Point (Images), Lines (Cards)

Points (57)

7*7 grind = 49

+ 8 vanishing points

Lines (57)

8 sets of 7 rows/columns = 56

+ 1 line connecting vanishing points

57 vs 55 cards?

Why are the extra 2 cards missing?

- Why?
 - Manufacturing optimization?
 - 5 X 11 grid used for printing standard cards
 (52 plus 2 jokers and 1 advertising card)
 - Reusing the same machine

"While they [kids] may think they are picking out the crazy clown common to both cards,

I know that they are actually identifying the unique line that passes through points in the projective plane of order seven"

Marcus du Sautoy - Around the World in 80 Games

