

Classification of Network Traffic by Website Function

Francis Adams, Saad Khan, Nicolette Glut, Elena Ceravalo, Joey Horner

Introduction

- Monitor and analyze network traffic
- Using features extracted from network traffic data to build machine learning models
- Use models to classify traffic to help understand user behavior, without tracking IP addresses
- Possible Application: blacklisting and whitelisting websites

Data collection

Extracted features: Protocol Dataset size: 38532 samples Length, Info

Features:	<u>Details</u>
Protocol	Protocol used to communicate, i.e. TCP, UDP, TLSv1.3, etc.
Length	Size of a packet
Info	More details about communication of packet, i.e. ACK, TCP Duplicate ACK, Application Data, TCP Fast Retransmit, etc.

Category	Dataset size		
Shopping	10008		
Social Media	9999		
Streaming	9421		
Banking	9104		

Data collection

Shopping (0)

Social Media (1)

Streaming (2)

Banking (3)

No.	Time	Source	Destination	Protocol	Length	Info	label
1	0.0	192.168.1.31	52.3.144.142	TLSv1.2	118	Application Data	0
2	2.8E-05	192.168.1.31	52.3.144.142	TLSv1.2	93	Application Data	0
3	0.016127	52.3.144.142	192.168.1.31	TCP	60	443 > 56483 [ACK] Seq=1 Ack=104 Win=68 Len=0	0
4	0.016873	52.3.144.142	192.168.1.31	TLSv1.2	93	Application Data	0
5	0.059521	192.168.1.31	52.3.144.142	TCP	54	56483 > 443 [ACK] Seq=104 Ack=40 Win=1025 Len=0	0

Model Architecture

Decision Tree:

• Split classifications by threshold for feature at each parent node, final leaf node reached represents prediction class

Multilayer Perceptron (MLP):

 Model has inner nodes between original input and output associated with weights which are influenced by error in output at a node. Node weights are received by each node in the next layer K Nearest Neighbors: Make classifications based on classes of K neighbors closest to data point. Closer neighbors have more influence

Evaluation & Results

Decision Tree Confusion Matrix

	<u>Decision</u> <u>Tree</u>	KNN	MLP
Accuracy	0.709	0.700	0.537
F1 Score	0.705	0.701	0.510

