Process Scheduling

(Operating System)

Deepika H V

C-DAC, Bengaluru (deepikahv@cdac.in)

- Dispatcher & swap
- Preemptive and non-preemptive Scheduling
- Scheduling Algorithms
 - FCFS
 - SJF & SRTF
 - RR

CPU Switch

12004
12005
Timeout
100
101
102
103
104
105
5006
5007
5008
5009
5010
5011
Timeout
100
101
102
103
104
105
12006
12007
12008
12009
12010
12010 12011

Dispatcher

- Module which gives control of CPU to the process selected by short term scheduler
 - Switch context
 - Switching to user mode
 - Jump to exact location in the program to restart the process
- Dispatch latency
 - Time taken by dispatcher to stop on process and start execution of the other process

1	5000		27	12004	
2	5001		28	12005	
3	5002				-Timeout
4	5003		29	100	
5	5004		30	101	
6	5005		31	102	
		-Timeout	32	103	
7	100		33	104	
8	101		34	105	
9	102		35	5006	
10	103		36	5007	
11	104		37	5008	
12	105		38	5009	
13	8000		39	5010	
14	8001		40	5011	
15	8002				-Timeout
16	8003		41	100	
		-I/O Request	42	101	
17	100		43	102	
18	101		44	103	
19	102		45	104	
20	103		46	105	
21	104		47	12006	
22	105		48	12007	
23	12000		49	12008	
24	12001		50	12009	
25	12002		51	12010	
26	12003		52	12011	
					-Timeout

Scheduler

- Long term (Job Scheduler)
 - selects which processes should be brought into the ready queue
 - Degree of multiprogramming
 - I/o bound or CPU bound
- Medium term (swapping scheduler)
 - Swapping is necessary to improve the process mix. Swap-in and swap-out of processes.
- Short term (CPU scheduler)
 - selects which process should be executed next and allocates CPU

Non-preemptive scheduling

- when a process terminates or
- when an explicit system request causes a wait state

Preemptive scheduling

- An interrupt occurs
- When new processes become ready with higher priority

Acronyms

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes, complete their execution per time unit
- Turnaround time amount of time taken between submission of program to execute and return of the output.
- Waiting time amount of time a process waits in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
- Arrival Time time when a process enters into the ready state and is ready for its execution

Algorithms

- First-come, First-Served (FCFS)
 - Complete the jobs in order of arrival
- Shortest Job First (SJF)
 - Complete the job with shortest next CPU requirement (e.g., burst)
 - Provably optimal w.r.t. average waiting time
- Priority
 - Processes have a priority number
 - Allocate CPU to process with highest priority
- Round-Robin (RR)
 - time quantum or time slice based
 - For now, assume a FIFO queue of processes

FCFS

Draw Gantt chart and compute average wait time

Process	Burst time
P1	7
P2	3
Р3	4
P4	6

	P1		P 2	P3		P4	
0		7	10)	1	4	20
		Process	В	urst time	Wai	ting Time	
		P1		7		0	
		P2		3		7	
		Р3		4		10	
		P4		6		14	
				Average		7.75	

SJF

Non pre-emptive

once CPU given to the process it cannot be preempted until completes its CPU burst

Pre-emptive

 if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is known as the Shortest-Remaining-Time-First (SRTF)

SJF

Process	Burst time	Waiting Time
P1	7	13
P2	3	0
Р3	4	3
P4	6	7
		Avg: 5.75

Process	Arrival Time	Burst time
P1	0.0	7
P2	2.0	4
Р3	4.0	1
P4	5.0	4

	P2	Р3	P4		P1	
() 3	3	7	13	2	0

SRTF

Process	Arrival Time	Burst time	Waiting Time
P1	0.0	7	9
P2	2.0	4	1
Р3	4.0	1	0
P4	5.0	4	2
			Avg:3

	P1	P2	Р3	P2	P4	P1
0	2	2	1 5	5 7	1	1 16

Scheduling with Priority

Calculate TAT and waiting time

- Turnaround time = Process finish time Arrival time
- Waiting time = Turnaround time CPU Burst time

Process	Arrival Time	Burst time	Priority
P1	10	10	2
P2	15	4	1
Р3	20	12	4
P4	5	8	3
P5	25	6	5

Priority

Process	Arrival Time	Burst time	Priority	Finish Time	Turnaround time	Waiting time
P1	10	10	2	23	13	3
P2	15	4	1	27	12	8
Р3	20	12	4	39	19	7
P4	5	8	3	13	8	0
P5	25	6	5	45	20	14

• Average Turnaround time: 14.4 and average waiting time is 6.4

Idle	Idle	P4	P4	P1	P4	P1	P2	P1	Р3	P2	P5	P1	Р3	P5	Р3	Р3	
0	3	5	8 1	l1 1	.4 1	.6	19	22	25	28	29	32	33	36	39	42	_

Process	Arrival Time	Burst time	Finish Time	Turnaround time	Waiting time
P1	10	10	33	23	13
P2	15	4	29	14	10
Р3	20	12	45	25	13
P4	5	8	16	11	3
P5	25	6	39	14	8
				Avg: 87/5	Avg: 47/5

Request Queue

P1 P1 P2 P1 P3 P2 P5 P3 P5 P3 **P3** P4 **P4 P1 P4** = 5 8 36 10 11 14 15 19 20 22 25 25 28 32 42

Mar 14 - 22, 2022 DAC , Operating System - Scheduling

=9.4

=17.4

Thank You