FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 1

(S1.1) Consider the first-order language $\mathcal{L}_{ar} = (\dot{\mathbf{x}}; \dot{+}, \dot{\mathbf{x}}; \dot{\mathbf{y}}; \dot{\mathbf{y}})$ (the language of arithmetics) and the \mathcal{L}_{ar} -structure $\mathcal{N} = (\mathbb{N}, \mathbf{x}, \mathbf{y}, \mathbf{y},$

- (i) Let $x, y \in V$ with $x \neq y$ and $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Evaluate $t^{\mathcal{N}}(e)$, where $e: V \to \mathbb{N}$ is an assignment verifying e(x) = 3 and e(y) = 7.
- (ii) Let $\varphi = x \dot{\prec} \dot{S}y \to (x \dot{\prec} y \lor x = y) = \dot{\prec} (x, \dot{S}y) \to (\dot{\prec} (x, y) \lor x = y)$. Prove that $\mathcal{N} \vDash \varphi[e]$ for all $e: V \to \mathbb{N}$.

Proof. (i) For any assignment $e: V \to \mathbb{N}$, we have that

$$t^{\mathcal{N}}(e) = \dot{x}^{\mathcal{N}}((\dot{S}x)^{\mathcal{N}}(e), (\dot{S}\dot{S}y)^{\mathcal{N}}(e)) = (\dot{S}x)^{\mathcal{N}}(e) \cdot (\dot{S}\dot{S}y)^{\mathcal{N}}(e)$$
$$= \dot{S}^{\mathcal{N}}(x^{\mathcal{N}}(e)) \cdot \dot{S}^{\mathcal{N}}((\dot{S}y)^{\mathcal{N}}(e)) = S(e(x)) \cdot S(\dot{S}^{\mathcal{N}}(y^{\mathcal{N}}(e)))$$
$$= S(e(x)) \cdot S(S(e(y))).$$

Hence, if e(x) = 3 and e(y) = 7, then

$$t^{\mathcal{N}}(e) = S(3) \cdot S(S(7)) = 4 \cdot 9 = 36.$$

(ii) For any assignemnt $e: V \to \mathbb{N}$, we have that

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ or } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$

$$\iff \dot{<}^{\mathcal{N}}(e(x), S(e(y)) \text{ is not satisfied or}$$

$$\mathcal{N} \vDash (\dot{<}(x, y))[e] \text{ or } \mathcal{N} \vDash (x = y)[e]$$

$$\iff < (e(x), S(e(y)) \text{ is not satisfied or } < (e(x), e(y))$$

$$\text{ or } e(x) = e(y)$$

$$\iff e(x) \ge S(e(y)) \text{ or } e(x) < e(y) \text{ or } e(x) = e(y)$$

$$\iff e(x) \ge e(y) + 1 \text{ or } e(x) < e(y) \text{ or } e(x) = e(y).$$

Hence, $\mathcal{N} \vDash \varphi[e]$ for all $e: V \to \mathbb{N}$.

We usually write

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ or } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$

 $\iff e(x) \ge S(e(y)) \text{ or } e(x) < e(y) \text{ or } e(x) = e(y)$
 $\iff e(x) \ge e(y) + 1 \text{ or } e(x) < e(y) \text{ or } e(x) = e(y).$

Notation. Let \mathcal{L} be a first-order language. For any variables x, y with $x \neq y$, \mathcal{L} -structure \mathcal{A} , $e: V \to A$ and $a, b \in A$, we have that:

$$(e_{y \leftarrow b})_{x \leftarrow a} = (e_{x \leftarrow a})_{y \leftarrow b}.$$

In this case, we denote their common value with $e_{x\leftarrow a,y\leftarrow b}$. Thus,

$$e_{x \leftarrow a, y \leftarrow b} : V \to A, \quad e_{x \leftarrow a, y \leftarrow b}(v) = \begin{cases} e(v) & dac\ \ v \neq x \ and \ v \neq y \\ a & dac\ \ \ v = x \\ b & dac\ \ \ \ \ \ \ \ \ \ \ \end{cases}$$

(S1.2) Let \mathcal{L} be a first-order language. Prove that for any formulas φ , ψ and any distinct variables x, y,

- (i) $\neg \exists x \varphi \vDash \forall x \neg \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \vDash \forall x \varphi \wedge \forall x \psi$;
- (iii) $\exists y \forall x \varphi \models \forall x \exists y \varphi$;
- (iv) $\forall x(\varphi \to \psi) \vDash \forall x\varphi \to \forall x\psi$.

Proof. Let \mathcal{A} be an \mathcal{L} -structure and $e: V \to A$ be an \mathcal{A} -assignment.

- (i) We know that " $\exists x$ " is an abbreviation for " $\neg \forall x \neg$ ". $\mathcal{A} \vDash (\neg \exists x \varphi)[e] \iff \mathcal{A} \vDash (\neg \neg \forall x \neg \varphi)[e] \iff$ it is not true that $\mathcal{A} \vDash (\neg \forall x \neg \varphi)[e]$ \iff it is not true that it is not true that $\mathcal{A} \vDash (\forall x \neg \varphi)[e] \iff \mathcal{A} \vDash (\forall x \neg \varphi)[e]$.
- (ii) $\mathcal{A} \vDash (\forall x(\varphi \land \psi))[e] \iff$ for all $a \in A$, we have that $\mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}] \iff$ for all $a \in A$, we have that $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ and $\mathcal{A} \vDash \psi[e_{x \leftarrow a}] \iff$ (for all $a \in A$, we have that $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$) and (for all $a \in A$, we have that $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$) $\iff \mathcal{A} \vDash (\forall x \varphi)[e]$ and $\mathcal{A} \vDash (\forall x \psi)[e] \iff \mathcal{A} \vDash (\forall x \varphi \land \forall x \psi)[e]$.
- (iii) Using the hypothesis that $x \neq y$, we get that $A \models (\exists y \forall x \varphi)[e] \iff$ there exists $b \in A$ such that for all $a \in A$ we have that $A \models \varphi[(e_{y \leftarrow b})_{x \leftarrow a}]$, hence

 $\mathcal{A} \vDash (\exists y \forall x \varphi)[e] \iff \text{there exists } b \in A \text{ s.t. for all } a \in A, \ \mathcal{A} \vDash \varphi[e_{x \leftarrow a, y \leftarrow b}] \quad (*).$

and $\mathcal{A} \vDash (\forall x \exists y \varphi)[e] \iff$ for all $c \in A$ there exists $d \in A$ such that $\mathcal{A} \vDash \varphi[(e_{x \leftarrow c})_{y \leftarrow d}]$, hence

 $\mathcal{A} \vDash (\forall x \exists y \varphi)[e] \iff \text{for all } c \in A \text{ there exists } d \in A \text{ s.t. } \mathcal{A} \vDash \varphi[e_{x \leftarrow c, y \leftarrow d}] \quad (**).$

We know (*) and we wish to show (**). Let $c \in A$. We wish to get $d \in A$ such that $A \models \varphi[e_{x \leftarrow c, y \leftarrow d}]$.

Let b satisfy (*) and take d := b. Then, for all $a \in A$ we have that $\mathcal{A} \vDash \varphi[e_{x \leftarrow a, y \leftarrow d}]$. In particular, letting a := c, we get $\mathcal{A} \vDash \varphi[e_{x \leftarrow c, y \leftarrow d}]$, as needed.

(iv) We have that $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e] \iff$ for all $a \in A$, $\mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}] \iff$ for all $a \in A$, $\varphi^{\mathcal{A}}(e_{x \leftarrow a}) \to \psi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \iff$

(*) for all
$$a \in A$$
, $\varphi^{\mathcal{A}}(e_{x \leftarrow a}) \le \psi^{\mathcal{A}}(e_{x \leftarrow a})$.

We obtain similarly that $\mathcal{A} \models (\forall x \varphi \rightarrow \forall x \psi)[e] \iff$

(**) for all
$$a \in A$$
, $(\forall x \varphi)^{\mathcal{A}}(e) \leq (\forall x \psi)^{\mathcal{A}}(e)$.

We assume (*) and we have to prove (**).

If $(\forall x\varphi)^{\mathcal{A}}(e) = 0$, (**) is obvious. Suppose that $(\forall x\varphi)^{\mathcal{A}}(e) = 1$, that is

(***) for all
$$b \in A$$
, $\varphi^{\mathcal{A}}(e_{x \leftarrow b}) = 1$.

We need to prove that $(\forall x\psi)^{\mathcal{A}}(e) = 1$, that is

for all
$$c \in A$$
, $\psi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$.

Let $c \in A$. By (*), we have that $\varphi^{\mathcal{A}}(e_{x \leftarrow c}) \leq \psi^{\mathcal{A}}(e_{x \leftarrow c})$ and, by (***), that $\varphi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$. Hence, $\psi^{\mathcal{A}}(e_{x \leftarrow c}) = 1$, as needed.

(S1.3) Let x, y be distinct variables. Give examples of first-order languages \mathcal{L} and formulas φ, ψ of \mathcal{L} such that:

- (i) $\forall x(\varphi \lor \psi) \not\vDash \forall x\varphi \lor \forall x\psi;$
- (ii) $\exists x \varphi \land \exists x \psi \not\vDash \exists x (\varphi \land \psi);$
- (iii) $\forall x \exists y \varphi \not\models \exists y \forall x \varphi$.

Proof. Consider $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{×}, \dot{S}, \dot{0})$, the \mathcal{L}_{ar} -structure $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ and $e : V \to \mathbb{N}$ be an arbitrary assignment (we take, for example, e(v) := 7 for all $v \in V$).

(i) Let $\dot{2} := \dot{S}\dot{S}\dot{0}$, $\varphi := x\dot{<}\dot{2}$ and $\varphi := \neg(x\dot{<}\dot{2})$. Then

$$\mathcal{N} \vDash \forall x (\varphi \lor \psi)[e].$$

On the other hand,

(a) $\mathcal{N} \vDash (\forall x \varphi)[e] \iff$ for all $n \in \mathbb{N}$, we have that $\mathcal{N} \vDash \varphi[e_{x \leftarrow n}] \iff$ for all $n \in \mathbb{N}$, we have that n < 2, which is false (take n := 3, for example). Hence, $\mathcal{N} \nvDash (\forall x \varphi)[e]$.

(b) $\mathcal{N} \vDash (\forall x \psi)[e] \iff$ for all $n \in \mathbb{N}$, we have that $\mathcal{N} \vDash \psi[e_{x \leftarrow n}] \iff$ for all $n \in \mathbb{N}$, we have that $n \geq 2$, which is false (take n := 1, for example). Hence, $\mathcal{N} \nvDash (\forall x \psi)[e]$.

It follows that

$$\mathcal{N} \not\models (\forall x \varphi \lor \forall x \psi)[e].$$

- (ii) Let $\dot{2} := \dot{S}\dot{S}\dot{0}$, $\varphi := x\dot{<}\dot{2}$ and $\psi := \neg(x\dot{<}\dot{2})$. Then
 - (a) $\mathcal{N} \vDash (\exists x \varphi)[e] \iff$ there exists $n \in \mathbb{N}$ such that $\mathcal{N} \vDash \varphi[e_{x \leftarrow n}] \iff$ there exists $n \in \mathbb{N}$ such that n < 2, which is true (take n := 1, for example). Hence, $\mathcal{N} \vDash (\exists x \varphi)[e]$.
 - (b) $\mathcal{N} \vDash (\exists x \psi)[e] \iff$ there exists $n \in \mathbb{N}$ such that $\mathcal{N} \vDash \psi[e_{x \leftarrow n}] \iff$ there exists $n \in \mathbb{N}$ such that $n \geq 2$, which is true (take n := 3, for example). Hence, $\mathcal{N} \vDash (\exists x \psi)[e]$.

It follows that

$$\mathcal{N} \vDash (\exists x \varphi \wedge \exists x \psi)[e].$$

On the other hand, $\mathcal{N} \models \exists x (\varphi \land \psi)[e] \iff$ there exists $n \in \mathbb{N}$ such that $\mathcal{N} \models (\varphi \land \psi)[e_{x \leftarrow n}] \iff$ there exists $n \in \mathbb{N}$ such that n < 2 and $n \geq 2$, which is false. Thus,

$$\mathcal{N} \not\models \exists x (\varphi \wedge \psi)[e].$$

(iii) Let $\varphi := x \dot{<} y$. Then

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e] \iff \text{for all } n \in \mathbb{N}, \text{ we have that } \mathcal{N} \vDash (\exists y \varphi)[e_{x \leftarrow n}] \iff \text{for all } n \in \mathbb{N} \text{ there exists } m \in \mathbb{N} \text{ such that } \mathcal{N} \vDash \varphi[e_{x \leftarrow n, y \leftarrow m}] \iff \text{for all } n \in \mathbb{N} \text{ there exists } m \in \mathbb{N} \text{ such that } n < m,$$

which is true (take m := n + 1, for example). Hence,

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e].$$

On the other hand,

$$\mathcal{N} \vDash (\exists y \forall x \varphi)[e] \iff \text{ there exists } m \in \mathbb{N} \text{ such that } \mathcal{N} \vDash (\forall x \varphi)[e_{y \leftarrow m}]$$

$$\iff \text{ there exists } m \in \mathbb{N} \text{ such that for all } n \in \mathbb{N}$$

$$\text{ we have that } \mathcal{N} \vDash \varphi[e_{x \leftarrow n, y \leftarrow m}]$$

$$\iff \text{ there exists } m \in \mathbb{N} \text{ such that for all } n \in \mathbb{N}, \text{ we have that } n < m,$$

which is false. It follows that

$$\mathcal{N} \not\models (\exists y \forall x \varphi)[e].$$