Question number	Answer		Mark
17(a)	• Use of $\Delta p = m\Delta v$	1	
	• Use of $F\Delta t = \Delta p$	1	(3)
	$\bullet F = 0.14 \text{ N}$	1	
	Example of calculation		
	$p = 0.11 \text{ kg} \times 0.35 \text{ m s}^{-1}$		
	$= 0.039 \text{ kg m s}^{-1}$		
	$0.039 \text{ N s} = F \times 0.28 \text{ s}$ F = 0.14 N		
17 (b)(i)	• Use of $p = mv$	1	
	• Use of correct components of <i>p</i>	1	(4)
	Use of conservation of momentum	1	
	$\bullet \text{Speed} = 0.26 \text{ m s}^{-1}$	I	
	Example of calculation		
	Momentum for puck 1 after collision = $0.11 \text{ kg} \times 0.28 \text{ m s}^{-1}$		
	$= 0.031 \text{ kg m s}^{-1}$ component of momentum of puck 1 in the direction perpendicular to the initial		
	velocity of puck $1 = 0.031 \text{ kg m s}^{-1} \times \sin 49^{\circ}$		
	$= 0.023 \text{ kg m s}^{-1}$		
	component of momentum of puck 1 in the direction perpendicular to the initial		
	velocity of puck 1 = component of momentum of puck 2 in the direction		
	perpendicular to the initial velocity of puck 1		
	$0.023 \text{ kg m s}^{-1} = p \times \sin 43^{\circ}$ $p = 0.034 \text{ kg m s}^{-1}$		
	$p = 0.034 \text{ kg m s}^{-1}$ $v = 0.034 \text{ kg m s}^{-1} / 0.13 \text{ kg}$		
	$v = 0.26 \mathrm{m s^{-1}}$		
17(b)(ii)	• Use of $E_k = \frac{1}{2} m v^2$	1	
	• A correct value of E_k [ecf for v_2]	1	
	Comparison of kinetic energy before and after collision and conclusion that		(2)
	kinetic energy before collision is different to kinetic energy after collision, so		(3)
	it is not an elastic collision [accept inelastic] Or Comparison of kinetic energy before and after collision and conclusion		
	that so kinetic energy is not conserved, so it is not an elastic collision [accept		
	inelastic]		
	Example of calculation	1	
	Before collision		
	$E_{\rm k} = \frac{1}{2} \text{m v}^2 = \frac{1}{2} \times 0.11 \text{kg} \times (0.41 \text{m s}^{-1})^2$		
	$= 0.0092 \mathrm{J}$		
	After collision		
	$E_{\rm k} = \frac{1}{2} \text{m} v^2 = \frac{1}{2} \times 0.11 \text{kg} \times (0.28 \text{m s}^{-1})^2$		
	= 0.0043 J		
	$E_k = \frac{1}{2} m v^2 = \frac{1}{2} \times 0.13 \text{ kg} \times (0.26 \text{ m s}^{-1})^2$		
	= 0.0044 J		
	Total after = 0.0087 J 0.0092 J > 0.0087 J		
17(c)	The assumption is that no (resultant) external forces act	1	(2)
	Because if external forces act there will be acceleration, so the final		
	momentum will be different than otherwise		
	Or if external forces act there will be an (additional) impulse, so the change in	1	
	momentum will be different	1	