

Haute École Bruxelles-Brabant École Supérieure d'Informatique Bachelor en Informatique

STAT CLG - STATS Q2

Exercices – Applications des statistiques

1 Des exercices - Pensez à justifier toutes vos réponses, y compris si cela n'est pas précisé.

Exercice 1

Intensités numériques

Soit l'image suivante composée des valeurs d'intensité numérique :

250	249	251	250	251	250	248	248	245	244
197	200	202	203	210	191	182	205	202	198
144	146	152	136	134	155	146	161	156	155
122	121	143	122	128	124	110	118	120	118
99	102	107	113	96	103	103	129	136	156
95	130	110	95	94	124	127	120	105	118
110	121	111	131	128	117	155	110	126	127
56	105	103	124	102	134	126	100	124	113
64	120	200	46	189	161	172	99	112	103
57	68	180	126	93	195	127	134	146	85
103	142	163	137	107	118	84	91	132	162
111	143	111	172	141	92	145	133	200	173
125	107	139	143	98	139	113	73	42	45
57	111	61	171	43	113	141	148	121	187

- \triangleright En supposant que les axes x et y sont orientés de gauche à droite pour x et de haut en bas pour y, donnez la valeur de l'intensité numérique du pixel en position (8,9).
- ⊳ Multipliez par deux la valeur de l'intensité numérique du pixel en position (4,5) et (5,4) et donnez la nouvelle image.
- ▶ Quelle est la dynamique de l'image?
- ▶ En supposant une dynamique sur 8 bits, quelle est la valeur minimale et maximale que peut prendre cette image?
- ▶ Multipliez toutes les valeurs de l'image par 2 et donnez en la nouvelle image. En supposant une dynamique sur 8 bits, quelles sont les valeurs d'intensité numérique possibles? Que se passe-t-il pour les valeurs qui ne sont pas possibles? Comment remédier à ce problème?

(Exercice $oldsymbol{2}$)

Histogramme

Soit l'image suivante composée des valeurs d'intensité numérique :

250	249	251	250	251	250	248	248	245	244
197	200	202	203	210	191	182	205	202	198
144	146	152	136	134	155	146	161	156	155
122	121	143	122	128	124	110	118	120	118
99	102	107	113	96	103	103	129	136	156
95	130	110	95	94	124	127	120	105	118
110	121	111	131	128	117	155	110	126	127
56	105	103	124	102	134	126	100	124	113
64	120	200	46	189	161	172	99	112	103
57	68	180	126	93	195	127	134	146	85
103	142	163	137	107	118	84	91	132	162
111	143	111	172	141	92	145	133	200	173
125	107	139	143	98	139	113	73	42	45
57	111	61	171	43	113	141	148	121	187

- ▷ Calculer et tracer l'histogramme de cette image;
- ▶ Quelle est la plus petite intensité numérique, la plus grande intensité numérique, la dynamique des valeurs?
- ▷ Sur combien de bits cette image est-elle codée?
- ▶ Rajoutez la valeur de 100 à chacune des intensités numériques et tracez le nouvel histogramme. Que constatez-vous? Comment l'image est-elle modifiée?
- ▶ Enlevez la valeur de 10 à chacune des intensités numériques et tracez le nouvel histogramme. Que constatez-vous? Comment l'image est-elle modifiée?
- ▶ Quel est la moyenne de cette image? Quelle est la médiane (valeur partageant en 2 l'ensemble des valeurs)? Quelle est son contraste?
- ▶ Proposez une transformation affine afin que l'image utilise toute la dynamique de codage. Donnez-en l'histogramme et la nouvelle image.
- ▶ Établissez et tracez l'histogramme cumulé.
- ▶ Mettez en œuvre (histogramme et nouvelle image) une technique dont le but est d'augmenter le contraste, en jouant sur l'histogramme.

Exercice 3

Voisinage d'un pixel

- ▷ Qu'est-ce qu'un 4-voisinage? Donnez un exemple de filtre 4-voisinage.
- ▷ Qu'est-ce qu'un 8-voisinage?

$\left(\mathbf{Exercice} \; \mathbf{4} \; \right)$

Filtrage 1

Soit l'image suivante composée des valeurs d'intensité numérique :

250	249	251	250	251	250
197	200	255	203	210	191
144	146	255	136	134	155
122	121	255	122	128	124
99	102	254	113	96	103
95	130	250	95	94	124
110	121	255	131	128	117
56	105	255	124	102	134
64	120	255	46	189	161

	-1	0	1
Soit le filtre :	-1	0	1
	-1	0	1

- ▷ Convoluez-les ensemble et écrivez le résultat du filtrage dans une nouvelle matrice de pixels, sans traiter les bords que vous laisserez à leurs valeurs initiales.
- ▷ Convoluez-les ensemble et écrivez le résultat du filtrage dans une nouvelle matrice de pixels, en dupliquant les bords.
- ▶ Quels changements constatez vous?
- ▶ Quel coefficient appliquer sur l'image afin de la normaliser? Appliquez ce changement.
- ▷ De quel filtre s'agit-il et d'où proviennent les coefficients du filtre?
- ▶ Donnez son autre composante.
- ▷ Comment calculer sa norme?
- ▷ Quel est la particularité de ce filtre? Justifiez.

$\begin{bmatrix} \mathbf{Exercice} \ \mathbf{5} \end{bmatrix}$

Filtrage 2

Soit l'image suivante composée des valeurs d'intensité numérique :

250	249	251	250	251	250
197	200	255	203	210	191
144	146	255	136	134	155
122	121	255	122	128	124
99	102	254	113	96	103
95	130	250	95	94	124
110	121	255	131	128	117
56	105	255	124	102	134
64	120	255	46	189	161

- ▷ Convoluez-les ensemble et écrivez le résultat du filtrage dans une nouvelle matrice de pixels, sans traiter les bords que vous laisserez à leurs valeurs initiales, mais en vous arrangeant pour que les nouvelles valeurs aient la même dynamique que l'image initiale.
- ▶ De quel filtre s'agit-il? Expliquez. Quel est l'objectif de chacun des aspects de ce filtre?
- ▷ Donnez son autre composante.
- ▶ Comment calculer sa norme?

$\left(\mathbf{Exercice} \; \mathbf{6} \; \right)$

Filtrage 3

Soit l'image suivante composée des valeurs d'intensité numérique :

250	249	251	250	251	250
197	200	255	203	210	191
144	146	255	136	134	155
122	121	255	122	128	124
99	102	254	113	96	103
95	130	250	95	94	124
110	121	255	131	128	117
56	105	255	124	102	134
64	120	255	46	189	161

Soit le filtre :

	0	-1	0
:	-1	+4	-1
	0	-1	0

- ▷ De quel filtre s'agit-il?
- Détaillez la provenance de ses coefficients.
- ▶ Par quel coefficient faut-il multiplier le filtre lors de la convolution avec l'image?
- ▷ Convoluez-les ensemble et écrivez le résultat du filtrage dans une nouvelle matrice de pixels, sans traiter les bords que vous laisserez à leurs valeurs initiales, et en tenant compte du coefficient de normalisation.
- ▶ Quel est son avantage et son inconvénient par rapport aux deux filtres des exercices précédents ?
- ▷ Que mettriez-vous en œuvre pour parer à son inconvénient ?

$ig(\mathbf{Exercice} \,\, m{7} \,\, ig)$

Filtrage 4

Soit le filtre de taille 9x9 suivant :

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	2	1
1	4	5	3	0	3	5	4	1
2	5	3	-12	-24	-12	3	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	3	-12	-24	-12	3	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	0

- ▶ De quel filtre s'agit-il?
- ▷ Comment l'obtient-on?

(Exercice 8)

Filtrage 5

- > Qu'est-ce qu'un filtrage passe-bas? But, principe, avantage(s), inconvénient(s).
- ▷ Qu'est-ce qu'un filtrage passe-haut? But, principe, avantage(s), inconvénient(s).

Exercice 9

Filtrage 6

- ▷ Quel filtre simple mettriez-vous en œuvre pour lisser le bruit?
- ▷ Écrivez ce filtre en version 3x3.

- ▶ Quel est son coefficient normalisateur?
- ▶ Que se passerait-il si on convoluait l'image avec le filtre sans le coefficient normalisateur?
- ▶ Appliquez le filtre sur l'image ci-dessous :

250	249	251	250	251	250
197	200	255	203	210	191
144	146	255	136	134	155
122	121	255	122	128	124
99	102	254	113	96	103
95	130	250	95	94	124
110	121	255	131	128	117
56	105	255	124	102	134
64	120	255	46	189	161

Exercice 10 Filtrage 7

- ightharpoonup Soit le filtre suivant : $G(x,y)=\frac{1}{2\pi\sigma^2}exp(-\frac{(x-\mu)^2+(y-\mu)^2}{2\sigma^2})$, avec μ la moyenne, σ l'écart-type, tels que $\mu=0$ et $\sigma=0.1$. Écrivez le filtre correspondant en dimension 3*3.
- ▷ Quel est son coefficient normalisateur?
- \triangleright Quel est le type de ce filtre?
- $\begin{tabular}{lll} Expliquez ses caractéristiques (but, principe, avantage(s), inconvénient(s)) par rapport au filtre suivant : & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ \hline \end{tabular}$
- $\,\vartriangleright\,$ Lequel des deux filtres donne de meilleurs résultats? Expliquez.
- ▷ Appliquez-le avec son coefficient normalisateur sur l'image ci-dessous (sans traiter les bords) :

ics bolds).							
250	249	251	250	251	250		
197	200	255	203	210	191		
144	146	255	136	134	155		
122	121	255	122	128	124		
99	102	254	113	96	103		
95	130	250	95	94	124		
110	121	255	131	128	117		
56	105	255	124	102	134		
64	120	255	46	189	161		

Exercice 11 Filtrage 8

- ▷ Qu'est-ce qu'un filtrage linéaire? un filtrage non-linéaire?
- Donnez un exemple de filtre linéaire et un exemple de filtre non linéaire.

Exercice 12 Filtrage 9

- ▷ Qu'est-ce qu'un filtre médian?
- ▷ Est-il linéaire? Justifiez.

- ▷ Quel est son principe? Ses avantage(s) et inconvénient(s) par rapport à un filtre moyenneur?
- ▶ Appliquez le filtre médian sur l'image ci-dessous :

250	249	251	250	251	250
197	200	255	203	210	191
144	2	0	136	1	155
122	121	10	122	128	124
99	102	254	113	96	103
95	130	0	95	0	124
110	121	255	131	128	117
56	5	255	124	102	134
64	120	255	46	189	161

▶ Appliquez le filtre moyenneur (sans oublier son coefficient normalisateur) sur l'image ci-dessous :

or acon					
250	249	251	250	251	250
197	200	255	203	210	191
144	2	0	136	1	155
122	121	10	122	128	124
99	102	254	113	96	103
95	130	0	95	0	124
110	121	255	131	128	117
56	5	255	124	102	134
64	120	255	46	189	161

▶ Quelle différence constatez-vous sur les deux résultats précédents ; expliquez.

Exercice 13 Détection de contours

▷ Citez et expliquez les trois critères pour une détection de contours optimale introduite dans le filtre de Canny (Dériche)?

Exercice 14 Détection de droites

- ▶ Quelle chaîne de traitement mettriez-vous en œuvre pour détecter des lignes droites dans une image?
- \triangleright Supposons une ligne droite dans l'espace cartésien (x,y). Quelle sera la projection de cette droite dans l'espace de Hough? Dessinez et expliquez.
- \triangleright Comment feriez-vous pour retrouver l'équation de la droite recherchée dans l'espace (x,y)?

Exercice 15 Morphologie mathématique 1

Vous disposez de trois grilles dont deux sont à compléter, et d'un élément structurant. La première grille (figure 1) est l'image originale.

Elle est suivie d'un élément structurant (figure 2) en forme de croix dont la position du point de référence est le centre de la croix.

▷ Réalisez l'opération de dilatation de l'image originale (figure 1) par l'élément structurant (figure 2) sur la figure 1 en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.

FIGURE 1 – Figure originale et résultat de la dilatation

FIGURE 2 – Élément structurant

- ▷ Réalisez l'opération d'érosion de l'image originale (figure 1) par l'élément structurant (figure 2) sur la figure 1 (nouvelle figure 1) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.
- ▷ Réalisez l'opération d'ouverture de l'image originale (figure 1) par l'élément structurant (figure 2) sur la figure 1 (nouvelle figure 1) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.
- ▷ Réalisez l'opération de fermeture de l'image originale (figure 1) par l'élément structurant (figure 2) sur la figure 1 (nouvelle figure 1) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.

Exercice 16

Morphologie mathématique 2

Vous disposez de trois grilles dont deux sont à compléter, et d'un élément structurant. La première grille (figure 3) est l'image originale. Elle est suivie d'un élément structurant (figure 4) en forme de croix dont la position du point de référence est le centre de la croix.

- ▷ Réalisez l'opération de dilatation de l'image originale (figure 3) par l'élément structurant (figure 4) sur la figure 3 (nouvelle figure 3) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.
- ▷ Réalisez l'opération d'érosion de l'image originale (figure 3) par l'élément structurant (figure 4) sur la figure 3 (nouvelle figure 3) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.
- ▷ Réalisez l'opération d'ouverture de l'image originale (figure 3) par l'élément structurant (figure 4) sur la figure 3 (nouvelle figure 3) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.

▶ Réalisez l'opération de fermeture de l'image originale (figure 3) par l'élément structurant (figure 4) sur la figure 3 (nouvelle figure 3) en coloriant (ou hachurant) le résultat dans son intégralité, et expliquez.

FIGURE 3 – Figure originale et résultat de la dilatation

FIGURE 4 – Élément structurant

Exercice 17 Codage de Freeman

Décrivez le contour de la forme ci-dessous avec le codage de Freeman.

FIGURE 5 – Description des contours : codage de Freeman

2 Programmation Scilab

Exercice 18 Code Scilab

- $\,\rhd\,$ Récupérez une image couleur à vous au format .png ou .jpeg.
- $\,\,\vartriangleright\,$ Installez Scilab et le module SIVP ou IPCV.
- $\,\,\vartriangleright\,\,$ Lancez le code interprété fourni ligne par ligne et observez le résultat. Expliquez!
- $\,\vartriangleright\,$ Tentez d'écrire de nouvelles fonctionnalités sous scilab.
- ▶ Bravo vous êtes arrivés au bout!