SOFTWARE-ENTWICKLUNGSPROZESSE Moderne Prozesse zur Softwareentwicklung

Herwig Mayr

Fakultät für Informatik, Kommunikation und Medien Fachhochschule OÖ, Hagenberg

Moderne Softwareentwicklung

Positive Charakteristika:

- + enge Kundeneinbindung
- + iterativ-inkrementelle Entwicklung
- + effiziente Werkzeugnutzung

Negative Charakteristika:

- weniger erfahrene Entwickler (heterogene Teams)
- Aversion gegenüber Management-Information
- kaum Prozessverständnis, geschweige denn -verbesserung

Agile Softwareentwicklung: Anlass

Software-Prozessmodelle wurden in den Neunziger Jahren immer umfangreicher!

(Grafik: http://oeag.test.oeag.at)

⇒ "Dokumentationsmodelle"

z.B.

- in Deutschland "V-Modell"
- in USA "SW-CMM"

Agile Softwareentwicklung: Auslöser

Agiles Manifest (nach Beck et al., 2001):

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools, Working software over comprehensive documentation, Customer collaboration over contract negotiation, Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

(Grafik: Snowbird, sandy,utah.gov)

Agile Vorgehensmethoden

Bandbreite des Methodenspektrums:

Paradigmenwechsel durch agile Methoden:

- einheitlicher Entwicklungsprozess nicht definierbar
- Projekte nicht langfristig detailliert planbar
- Projektkontrolle ist ohne Entwicklerkooperation unmöglich

Vorteile agiler Vorgehensmethoden

- + iterativ-inkrementelle Entwicklung
- + kurze Releasezyklen
- + überprüfbare Qualität
- + intensive Kundeneinbindung
- + intensive Kommunikation im Team
- + Anwendung von Programmierstandards
- + einfaches Design
- + laufende (Code-)Reviews
- + testgesteuerte Entwicklung
- + kontinuierliche Integration

(Bild: www.dilbert.com)

Nachteile agiler Vorgehensmethoden

- nur hoch qualifizierte Mitarbeiter brauchbar
- schlechte Skalierbarkeit
- mangelnde Transparenz für das Management
- keine Migrationsmöglichkeit aus bestehenden Prozessen
- fehlender Qualitätsplan
- kontinuierliche Anforderungsänderungen
- keine Design-Reviews
- stark inkrementelles Design, fehlende Dokumentation dazu
- Code-Zentriertheit statt Design-Zentriertheit
- fehlende Quellen für Systemtests

Größtes Problem: fehlendes "Big-Picture"-Design (Architektur!)

(Bild: www.dilbert.com)

Folgen des Agilen Manifests (I)

(Bild: www.marconetz.de)

Prozesskrieg

traditionell
schwergewichtig
rigoros
stabil

4

modern
leichtgewichtig
agil
fragil

"If you want to start a religious or software war, issue an edict or a manifesto" (K. Orr, Cutter 2003)

Folgen des Agilen Manifests (II)

"Des Kaisers neue Kleider"

⇒"Dokumentationsmodelle" werden zu skalierbaren (Dokumentations-)Modellen.

z.B.

- in Deutschland vom "V-Modell" zum "V-Modell XT" (2005)
- in USA vom "SW-CMM" zum "CMMI" (2002)

(Bild: http://freie-zeit.eu/2012/07/24/des-kaisers-neue-kleider/)

Prozessoptimierung [Wiederholung]

Motivation: Definierte (Teil-)Prozesse müssen laufend angepasst und verbessert werden, damit sich der Aufwand amortisiert!

Vor allem bei agilen Methoden Änderungen nicht nur von Projekt zu

Projekt, sondern auch während eines Projekts.

Vier wichtige Schritte:

- Prozess identifizieren,
- 2. Prozess verstehen,
- 3. Prozess wirtschaftlich machen,
- 4. Prozess verbessern.

(Bild: www.ingenieurbuero-wilkens.de; adaptiert)

Prozessidentifikation

Bedeutung des Messens

Zwei Aspekte:

- Messen des Projektfortschritts
- Messen des Grades der Zielerreichung

Gerade bei agilem Vorgehen Anvisieren eines beweglichen Ziels – Fortbewegung in raschen, kurzen Schritten nötig!

Prozessverständnis

Regelmäßiges Feedback durch iterativ-inkrementelles Vorgehen:

- kurze Iterationszyklen
- häufiges Feedback vom Auftraggeber
- genauere Ermittlung des Projektstatus
- rasche Adaptierbarkeit

Durch laufende Validierung auch klare Abgrenzung vom Hackertum!

Prozessökonomie: Traditionelles Vorgehen

Traditionelle Vorgehensmethoden:

- Vorhersehbarkeit
- Wiederholbarkeit
- Optimierbarkeit
- Streben nach vollständigen Anforderungen
- Plan- und Modell-fokussiert

Risiken:

- Anforderungen ändern sich.
- Aktualisierung der Pläne und Modelle ist sehr aufwändig.

Prozessökonomie: Agiles Vorgehen

Agile Vorgehensmethoden:

(AgileAlliance.org, adaptiert durch J. Coldewey)

Agiles Manifest

"Kollaboration statt Formalismus, kurze Inkremente statt jahrelanger Meditation, Flexibilität statt Planungsorgien, Einbindung des Kunden statt Absicherung."

- Reduktion von Plänen und Modellen auf das Mindestmaß
- (ursprünglich) keine eigene explizite Designphase
- (ursprünglich) keine Prozessverbesserung

Prozessverbesserung

Gemeinsamkeiten aktueller Vorgehensmethoden:

- Projektziel ist Vision, die im Auge behalten werden muss.
- Kunde ist laufend eingebunden.
- Realisierung wird nach Festlegung minimaler Mindestanforderungen begonnen.
- Testfälle werden bereits mit der Anforderung erstellt (vor der Implementierung!).
- Entwicklung erfolgt iterativ-inkrementell mit kurzen Zyklen.
- Laufende Risikobehandlung ist wichtig.
- Nur für Auftraggeber oder Auftragnehmer essenzielle Dokumente werden erstellt.
- Anforderungsänderungen sind alltäglich und eingeplant.
- Pläne werden laufend geprüft und adaptiert.
- Design ist einfach, aber leicht erweiterbar.
- Tests werden möglichst automatisiert durchgeführt.

(Bild: hundeschule-pfotenteam.de)

Iteratives Vorgehen: Kaizen

Idee der kontinuierlichen Verbesserung [Deming]

Iteratives Vorgehen: Spiralmodell

Einbringen von Prototyping-Konzepten [Boehm]

Iteratives Vorgehen: Spiralmodell

Einbringen von Prototyping-Konzepten [Boehm]

Schritt 1: Iterative Entwicklung

"klassisches" Spiralmodell

Schritt 2: Kunden-integrierte Entwicklung

"agil" (XP-Hype)

Schritt 3: Iterativ-inkrementelle Entwicklung

"ideale" Kundennähe

Schritt 3: Iterativ-inkrementelle Entwicklung

"ideale" Kundennähe

Iterativ-inkrementeller Entwicklungsprozess

dreifach rückgekoppelter Prozess:

Einbettung in den Entwicklungszyklus (I)

AG = Auftraggeber AN = Auftragnehmer

PL = Projektleiter

PV = Produktverantwortlicher

E = Entwickler

Einbettung in den Entwicklungszyklus (II)

Einbettung in den Entwicklungszyklus (III)

Inkrement (z.B. 1 Tag)

SOFTWARE-ENTWICKLUNGSPROZESSE Moderne Prozesse zur Softwareentwicklung

Herwig Mayr

Fakultät für Informatik, Kommunikation und Medien Fachhochschule OÖ, Hagenberg

