

Atividade de Engenharia de Qualidade - Cálculo de RPN (FMEA)

Aluno: Zairo Lins Ribeiro Cunha

Cálculo de RPN (FMEA)

Modo de Falha	Efeito da Falha	Causa Potencial	Severidade (S)	Ocorrência (O)	Detecção (D)	RPN
Solda irregular	Peças desalinhadas	Erro no software do robô	8	5	6	240
Quebra do braço	Linha de montagem					
robótico	parada	Desgaste mecânico	9	7	4	252
Falha na	Parada inesperada do					
alimentação elétrica	robô	Oscilação na rede elétrica	7	6	5	210

Análise FMEA e Cálculo do RPN na Indústria Metalúrgica

Introdução

A Análise dos Modos e Efeitos de Falha (FMEA) é uma metodologia sistemática utilizada para identificar, avaliar e mitigar riscos associados a falhas em processos industriais. No contexto desta análise, aplicamos a técnica FMEA em uma linha de montagem automatizada de uma indústria metalúrgica que enfrenta falhas que resultam em atrasos na produção.

Objetivo

O principal objetivo desta análise é calcular o Número de Prioridade de Risco (RPN) para as falhas identificadas e propor melhorias para reduzir a ocorrência das falhas ou melhorar sua detecção. O foco está em:

- Identificar a falha mais crítica (maior RPN);
- Propor ações para reduzir a ocorrência (O) ou melhorar a detecção (D);
- Justificar quais falhas devem ser priorizadas para mitigação;
- Implementar medidas corretivas imediatas para falhas com RPN > 200.

Identificação da Falha Mais Crítica

A falha mais crítica identificada é a **quebra do braço robótico**, com um RPN de **252**, o maior da análise. Essa falha pode causar uma paralisação completa da linha de montagem, impactando diretamente a produção e gerando prejuízos significativos.

Propostas de Melhoria

Para minimizar os impactos das falhas identificadas, sugerimos as seguintes ações:

1. Quebra do Braço Robótico (RPN = 252)

- Redução da Ocorrência (O): Implementação de manutenção preditiva com sensores para monitoramento de desgaste.
- Melhoria na Detecção (D): Inspeção periódica com análise de vibração para prever falhas mecânicas.

2. Solda Irregular (RPN = 240)

- Redução da Ocorrência (O): Revisão e atualização do software do robô para minimizar erros de programação.
- Melhoria na Detecção (D): Implementação de sistemas de visão computacional para verificação em tempo real da qualidade da solda.

3. Falha na Alimentação Elétrica (RPN = 210)

- Redução da Ocorrência (O): Instalação de estabilizadores de tensão e fontes redundantes para evitar oscilações de energia.
- Melhoria na Detecção (D): Uso de sensores para monitoramento da rede elétrica e detecção de variações antes que afetem o funcionamento do robô.

Justificativa para Priorização das Falhas

As falhas foram priorizadas com base no RPN. Como todas possuem um valor acima de **200**, elas exigem ações corretivas imediatas. Entretanto, a ordem de prioridade segue o seguinte critério:

- Quebra do Braço Robótico (RPN = 252): Impacto severo, pois paralisa completamente a linha de montagem.
- **Solda Irregular (RPN = 240)**: Afeta a qualidade das peças, o que pode gerar retrabalho e desperdício.

• Falha na Alimentação Elétrica (RPN = 210): Pode ser mitigada com medidas de estabilização da energia, reduzindo os riscos.

Conclusão

A aplicação do FMEA permitiu identificar os principais modos de falha na linha de montagem e suas consequências para a produção. Com base no cálculo do RPN, foi possível determinar quais falhas requerem atenção imediata e quais medidas podem ser tomadas para reduzir os riscos. A implementação das melhorias propostas contribuirá para aumentar a confiabilidade do sistema automatizado e minimizar os atrasos na produção.