Contrôle final Vendredi 5 avril 2019

Contrôle final: partie EDP (2 pages)

Consignes

- Les documents ne sont pas autorisés, de même que l'usage de tout ordinateur, calculatrice ou téléphone.
- Ne pas utiliser de correcteur fluide.
- Ecrire avec un stylo à encre noire ou bleu foncé (éviter le stylo plume à encre claire).
- Bien remplir le cartouche de chaque copie en majuscule.
- Bien numéroter les copies.
- Rendre les copies à plat toutes dans le même sens (coin coupé en haut à droite).
- Chacune des affirmations doit être justifiée par une démonstration.
- Les exercices 1 et 2 sont indépendants.

Exercice 1

Sur [0,1], on étudie le problème : trouver $w:[0,1]\to\mathbb{R}$ satisfaisant à

$$\begin{cases} -\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0, \\ w(0) = 1, \quad w'(1) = 0. \end{cases}$$
 (Q)

- Q.1.1 Comment se ramener à un problème avec condition homogène (nulle) en x = 0?
- **Q.1.2** Montrer que $H = \{v \in H^1(0,1) : v(0) = 0\}$ muni du produit scalaire usuel de $H^1(0,1)$ est un espace de Hilbert .
- **Q.1.3** Montrer que, sur $H, v \mapsto \|v'\|_{L^2(0,1)}$ est une norme, que l'on notera $\|\cdot\|_H$, et que, toujours sur H, cette norme est équivalente à la norme $H^1(0,1)$ classique.
- Q.1.4 Montrer l'existence et l'unicité de la solution de classe $C^{\infty}([0,1])$ du problème (Q). On justifiera notamment soigneusement que cette solution vérifie les conditions aux limites du problème (Q).

Exercice 2

On rappelle qu'une matrice B carrée est monotone si pour tout vecteur y à coefficients positifs tel qu'il existe x satisfaisant à Bx = y, le vecteur x est à coefficients positifs.

- **Q.2.1** (Question de cours) Montrer qu'une matrice B monotone est inversible.
- Q.2.2 (Question de cours) Montrer que l'inverse d'une matrice B monotone est à coefficients positifs.

Soit $J \geq 2$. On note h = 1/J le pas de discrétisation et $x_j = jh$ pour $j \in \{0, \dots, x_{J+1}\}$. On considère le schéma numérique suivant : on cherche $V = (v_j)_{1 \leq j \leq J} \in \mathbb{R}^J$, sachant que $v_0 = 1$ est

fixé, tel que

$$\begin{cases}
-\frac{1}{h} \left(\frac{v_{j+1} - v_j}{(1 + h(j+1/2))h} - \frac{v_j - v_{j-1}}{(1 + h(j-1/2))h} \right) + v_j = 0, \ j \in \{1, \dots, J\}, \\
v_{J+1} = v_{J-1}.
\end{cases}$$
(S)

Q.2.3 Ecrire le schéma (S) sous la forme d'un système linéaire $A_h u_h = b_h$ de taille J, en précisant soigneusement la matrice A_h et le vecteur b_h .

INDICATION : On pourra utiliser les notations $\beta: x \mapsto (1+x)^{-1}$ et $\beta_{j-1/2} = \beta(h(j-1/2))/h^2$ pour $j \in \{1, \ldots, J\}$.

- **Q.2.4** Ecrire la matrice A_h et le vecteur b_h pour J=4.
- **Q.2.5** Montrer que la matrice A_h est monotone.
- **Q.2.6** Montrer que, pour tous $x \in [h/2, 1 h/2]$ et $f \in C^2([0, 1])$,

$$\frac{1}{h}(f(x+h/2) - f(x-h/2)) = f'(x) + O(h^2).$$

Q.2.7 Montrer que le schéma (S) est consistant à l'ordre (au moins) 1 avec l'équation

$$-\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0 \text{ sur }]0,1[.$$
 (E)

Q.2.8 Trouver la solution w_1 de classe $C^{\infty}([0,1])$ du problème suivant et justifier son unicité :

$$\begin{cases} -\left(x \mapsto \frac{w_1'(x)}{1+x}\right)' = 1, \\ w_1(0) = 1, \quad w_1'(1) = 0. \end{cases}$$
(Q1)

- **Q.2.9** Montrer que la matrice $A_h I$ est monotone.
- Q.2.10 (Question plus difficile) Montrer que le schéma numérique (S) est stable en norme $\|\cdot\|_{\infty}$.

INDICATION : On pourra utiliser les propriétés de la fonction w_1 et les techniques utilisées pour montrer la consistance du schéma avec (E).

Q. 2.11 En utilisant les questions précédentes, montrer la convergence du schéma numérique vers la solution du problème (Q).

Eléments de correction

Solution Q.1.1 Soit f une fonction de classe $C^{\infty}([0,1])$ telle que g(0) = 1. On considère la fonction $z : x \mapsto w(x) - g(x)$ qui s'annule en 0 et dont la dérivée s'annule en 1. La fonction z est solution de

$$\begin{cases} -\left(x \mapsto \frac{z'(x)}{1+x}\right)' + z(x) = \frac{g''(x)}{1+x} - \frac{g'(x)}{(1+x)^2} - g(x) =: f(x), \ x \in]0, 1[, \\ z(0) = 0, \quad z'(1) = -g'(1). \end{cases}$$
(QS)

On peut évidemment s'arranger pour que g'(1) = 0. Par exemple : $g : x \mapsto 1$ satisfait à nos conditions. Ce n'est pas une obligation, cela conditionne juste la forme linéaire dans la formulation variationnelle.

Solution Q.1.2 Le sous-espace H est fermé dans $H^1(0,1)$:

si on pose $\Psi: v \in H^1(0,1) \mapsto v(0)$, on a $H = \Psi^{-1} \langle \{0\} \rangle$. Or Ψ est une forme linéaire continue sur $H^1(0,1)$ (voir TD). Donc H est un sous-espace fermé comme image réciproque d'un fermé par une forme linéaire continue.

Solution Q.1.3 La forme $(\cdot, \cdot)_H : u, v \in H \mapsto (u', v')_{L^2(0,1)}$ est définie, bilinéaire, symétrique sur H. De plus, $(v, v)_H = 0$ implique v' = 0 dans $L^2(0,1)$ et donc v est constante. Or v(0) = 0. Donc v est nulle. On en conclut que $\|\cdot\|_H$ est une norme sur H.

Équivalence des normes $\|\cdot\|_H$ *et* $\|\cdot\|_{H^1}$ *sur* H :

On a clairement $\|\cdot\|_H \leq \|\cdot\|_{H^1}$. Pour l'autre inégalité, on remarque que l'inégalité de Poincaré est encore vraie sur H (reprendre la démonstration).

Solution Q.1.4 Supposons $z \in C^2([0,1])$ solution de (QS) et considérons $v \in H^1(0,1)$ (ou $\mathcal{D}([0,1])$). Alors, en multipliant l'équation de (QS) par v et en intégrant, on obtient

$$\int_{]0,1[} \frac{z'(x)v'(x)}{1+x} dx + \int_{]0,1[} z(x)v(x) dx = \int_{]0,1[} f(x)v(x) dx - \frac{g'(1)v(1)}{2}.$$

On va considérer la formulation variationnelle suivante dans l'espace H:

Trouver $u \in H$ telle que $\forall v \in H, a(u, v) = \ell(v)$

avec

$$a: (u, v) \in H \times H \mapsto \int_{]0,1[} \frac{u'(x)v'(x)}{1+x} dx + \int_{]0,1[} u(x)v(x)dx$$

et

$$\ell: v \mapsto \int_{]0,1[} fv - \frac{1}{2}g'(1)v(1).$$

H est bien un espace de Hilbert pour le produit scalaire $(u,v)\mapsto \int_{]0,1[}u'v'$ d'après les questions précédentes. On montre alors que a est

- bien définie, puisque $x \mapsto (1+x)^{-1}$ est bornée sur [0,1] et que $u',v' \in L^2(0,1)$,
- continue : pour $(u,v) \in H \times H$, $|a(u,v)| \leq \int_{]0,1[} |u'||v'| + \int_{]0,1[} |u||v| \leq 2||u||_H||v||_H$ par l'inégalité de Cauchy-Schwarz,
- coercive: pour $u \in H$, $a(u, u) \ge \frac{1}{2} ||u||_H^2$.

La forme linéaire ℓ étant continue grâce \tilde{a} l'inégalité de Cauchy-Schwarz et au théorème de Rellich, on peut appliquer le théorème de Lax-Milgram. On trouve ainsi une solution unique $z \in H$. Par la théorie des distributions, on remonte au problème différentiel : $\forall \varphi \in \mathcal{D}(]0,1[) \subset H$,

$$0 = \left(\frac{z'}{1+x}, \varphi'\right)_{L^2(0,1)} + (z - f, \varphi)_{L^2(0,1)}$$
$$= \left\langle \frac{z'}{1+x}, \varphi' \right\rangle + (z - f, \varphi)_{L^2(0,1)}$$
$$= -\left\langle \left(\frac{z'}{1+x}\right)', \varphi \right\rangle + (z - f, \varphi)_{L^2(0,1)}$$
$$= \left\langle \left(-\frac{z'}{1+x}\right)' + z - f, \varphi \right\rangle.$$

D'où z est bien solution de l'équation dans (QS) au sens des distributions. Comme g est de classe C^{∞} sur [0,1], f aussi, z est de classe C^{2} , puis, par récurrence, de classe C^{∞} et w=z+g aussi. Il reste à prouver que z+g satisfait bien aux conditions aux limites présentes dans (Q). Pour la condition à gauche, comme z(0)=0, w(0)=z(0)+g(1)=1. Pour la condition à droite, on prend $v:x\mapsto x, v\in H$, et on fait une intégration par parties :

$$0 = \int_{]0,1[} \frac{z'(x)}{1+x} dx + \int_{]0,1[} (z(x)-f(x))x dx - \frac{g'(1)}{2} = \frac{z'(1)}{2} + \int_{]0,1[} \underbrace{\left(\left(-\frac{z'(x)}{1+x}\right)' + z(x) - f(x)\right)}_{=0} x dx - \frac{g'(1)}{2}.$$

Donc z'(1) = g'(1) et w'(1) = z'(1) - g'(1) = 0.

Solution Q.2.3 Notons tout d'abord que la matrice A_h est tridiagonale. On pose $\alpha_i = \beta_{i-1/2} + \beta_{i+1/2}$ pour $i \in \{1, \ldots, J-1\}$ et $\alpha_J = \beta_{J-1/2} + \beta_{J+1/2}$. La diagonale de A est constituée du vecteur $(\alpha_1 + 1, \ldots, \alpha_J + 1)^T$, la surdiagonale est égale au vecteur vecteur $(-\beta_{3/2}, \ldots, -\beta_{J-1/2})^T$ et la sous-diagonale à $(-\beta_{3/2}, \ldots, -\beta_{J-3/2}, -\beta_{J-1/2} - \beta_{J+1/2})^T$. $b_h = (\beta_{1/2}, 0, \ldots, 0)^T$.

Solution Q.2.4

$$A_h = \begin{pmatrix} \beta_{1/2} + \beta_{3/2} + 1 & -\beta_{3/2} & 0 & 0 \\ -\beta_{3/2} & \beta_{3/2} + \beta_{5/2} + 1 & -\beta_{5/2} & 0 \\ 0 & -\beta_{5/2} & \beta_{5/2} + \beta_{7/2} + 1 & -\beta_{7/2} \\ 0 & 0 & -\beta_{7/2} - \beta_{9/2} & \beta_{7/2} + \beta_{9/2} + 1 \end{pmatrix}$$

et $b_h = (\beta_{1/2}, 0, 0, 0)^T$

Solution Q.2.5 Pour montrer que A_h est monotone, on raisonne comme on l'a fait en cours et en TD: soit b un vecteur à coefficients positifs ou nuls. Soit $V \in \mathbb{R}^J$ tel que $A_hV = b$. Alors si v_m est le minimum des (v_i) , avec $m \in \{1, \ldots, J\}$, on est confronté à deux cas:

— soit m = 1, on a

$$-\beta_{3/2}v_2 + \alpha_1v_1 + v_1 = b_1 \ge 0.$$

Comme $\alpha_1 = \beta_{1/2} + \beta_{3/2}$, $(\beta_{1/2} + 1)v_1 = b_1 + \beta_{3/2}(v_2 - v_1)$, v_1 est positif ou nul car $\beta_{1/2} + 1 > 0$. — soit $m \in \{2, \ldots, J-1\}$. On a

$$-\beta_{m+1/2}v_{m+1} + \alpha_m v_m + v_m - \beta_{m-1/2}v_{m-1} = b_m \ge 0,$$

c'est-à-dire $v_m = b_m + \beta_{m-1/2}(v_{m-1} - v_m) + \beta_{m+1/2}(v_{m+1} - v_m)$. Donc $v_m \ge 0$. — soit m = J, on a

$$-(\beta_{m-1/2} + \beta_{m-1/2})v_{m-1} + (\beta_{m-1/2} + \beta_{m+1/2})v_m + v_m = b_m \ge 0.$$

Donc $v_m = b_m + (\beta_{m-1/2} + \beta_{m+1/2})(v_{m-1} - v_m)$, donc $v_m \ge 0$. La matrice A_h est donc monotone et, par suite, inversible.

Solution Q.2.6 Les 2 développements de Taylor additionnés donnent $f(x+h/2) - f(x-h/2) = hf'(x) + O(h^3)$.

Solution Q.2.7 Soit u une solution de classe $C^4([0,1])$ de (E) avec u(0) = 1 et u'(1) = 0. Soit $j \in \{1, \ldots, J-1\}$. Alors

$$\mathcal{E}(w,h,x_{j}) = -\frac{1}{h} \left(\frac{1}{(1+h(j+1/2))h} (\underbrace{u(x_{j+1}) - u(x_{j})}_{=hu'(x_{j+1/2}) + O(h^{3})}) - \frac{u(x_{j}) - u(x_{j-1})}{(1+h(j-1/2))h} \right) + u(x_{j})$$

$$= -\frac{1}{h} \left(\beta(x_{j+1/2})u'(x_{j+1/2}) - \beta(x_{j-1/2})u'(x_{j-1/2}) + O(h^{3}) \right) + u(x_{j})$$

$$= -\frac{1}{h} \left(h(\beta u')'(x_{j}) + O(h^{3}) \right) + u(x_{j}) = \mathcal{O}(h^{2}).$$

Notons que $u(1) = (\beta u')'(1) = \beta(1)u''(1) + \beta'(1)u'(1) = \beta(1)u''(1)$. Pour j = J, on a

$$\mathcal{E}(u,h,x_J) = -\frac{1}{h^2} \left(\underbrace{(\beta(x_{J+1/2}) + \beta(x_{J+1/2}))}_{2\beta(x_J) + O(h^2)} (\underbrace{u(x_{J-1}) - u(x_J)}_{=-hu'(x_J) + \frac{h^2}{2}u''(x_J) + O(h^3)}) + u(x_j) + O(h^2) = \mathcal{O}(h).$$

Le schéma est bien au moins consistant à l'ordre 1 avec (E).

Solution Q.2.8 $w_1: x \mapsto -\frac{x^3}{3} + x + 1:$ son unicité est due à la linéarité du problème. Pour des conditions aux limites homogènes et une source homogène, la seule solution possible est la fonction nulle. Cela est lié à la coercivité de la formulation variationnelle associée, les conditions étant du type Dirichlet-Neumann.

Solution Q.2.9 Pour montrer que A_h est monotone, on raisonne comme on l'a fait en cours et en TD: soit b un vecteur à coefficients positifs ou nuls. Soit $V \in \mathbb{R}^J$ tel que $A_hV = b$. Alors si v_m est le minimum des (v_i) , avec $m \in \{1, \ldots, J\}$, on est confronté à deux cas:

— soit m = 1, on a

$$-\beta_{3/2}v_2 + \alpha_1 v_1 = b_1 \ge 0.$$

Comme $\alpha_1 = \beta_{1/2} + \beta_{3/2}$, $(\beta_{1/2} + 1)v_1 = b_1 + \beta_{3/2}(v_2 - v_1)$, v_1 est positif ou nul. — soit $m \in \{2, \ldots, J-1\}$. On a

$$-\beta_{m+1/2}v_{m+1} + \alpha_m v_m - \beta_{m-1/2}v_{m-1} = b_m \ge 0,$$

c'est-à-dire $0 = b_m + \beta_{m-1/2}(v_{m-1} - v_m) + \beta_{m+1/2}(v_{m+1} - v_m) \ge 0$. Donc $v_m = v_{m-1} = v_{m+1} - soit \ m = J$, on a

$$-\beta_{m-1/2}v_{m-1} + \beta_{m-1/2}v_J = b_J \ge 0.$$

Donc $b_m + (\beta_{m+1/2} + \beta_{m-1/2})(v_{m-1} - v_m) = 0$, donc $v_m = v_{m-1}$ et le minimum n'est pas atteint en m = J sauf si V est colinéaire à \mathbf{e} .

La matrice $A_h - I$ est donc monotone et, par suite, inversible.

Solution Q.2.10 On sait déjà que les matrices A_h^{-1} et $(A_h - I)^{-1}$ sont à coefficients positifs. De plus, comme

$$A_h^{-1} - (A_h - I)^{-1} = A_h^{-1}(I - A_h(A_h - I)^{-1}) = A_h^{-1}(A_h - I - A_h)(A_h - I)^{-1} = -A_h^{-1}(A_h - I)^{-1},$$

les coefficients de la matrice A_h^{-1} sont inférieurs à ceux de $(A_h - 1)^{-1}$, donc $||A_h^{-1}||_{\infty} \le ||(A_h - I)^{-1}||_{\infty}$.

Or, par consistance du schéma avec (E) et les conditions aux bords, on a $(A_h-I)(\Pi_h w_1)-\mathbf{e}-b_h=\mathcal{E}$ et $\|\mathcal{E}\|_{\infty}=O(h)$, c'est à dire qu'il existe $h_0>0$ et une constante positive C tels que pour tout $h\in]0,h_0[$, $\|(A_h-I)(\Pi_h w_1)-\mathbf{e}-b_h\|_{\infty}\leq Ch$.

Ainsi, pour tout $i \in \{1, \ldots, J\}$,

$$((A_h - I)^{-1}\mathbf{e})_i = (\Pi_h w_1)_i - ((A_h - I)^{-1}b_h)_i + \mathcal{E}_i \le (\Pi_h w_1)_i + Ch \le 1 + Ch.$$

Donc, pour $h_1 \leq \min(h_0, 1/C)$, pour tout $h \leq h_1$, $||A_h^{-1}||_{\infty} = ||A_h^{-1}\mathbf{e}||_{\infty} \leq ||(A_h - I)^{-1}\mathbf{e}||_{\infty} \leq 2$.

Solution Q.2.11 On utilise le théorème de Lax : le schéma étant consistant à l'ordre 1 avec le problème (Q) et stable, il est convergent à l'ordre 1 vers la solution du problème (Q) trouvée à l'exercice 1.