Autocorrelação

Prof. Renzo Flores-Ortiz

Correlação (populacional)

- A correlação populacional mede a intensidade e a direção da associação linear entre duas variáveis aleatórias na população.
- O coeficiente de correlação populacional de Pearson, denotado por ho (rho), é definido como:

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Onde

- Cov(X,Y) é a covariância populacional entre X e Y.
- σ_X e σ_Y são os desvios padrão populacionais de X e Y.

O valor de ρ sempre está entre -1 e 1:

- ρ = 1: correlação perfeita positiva (associação linear crescente)
- ρ = -1: correlação perfeita negativa (associação linear decrescente)
- ρ = 0: ausência de associação linear

Correlação amostral

- A correlação amostral é o estimador de ho, baseado em uma amostra extraída da população.
- ullet Esse estimador $\dot{\mathbf{e}}$ conhecido como **coeficiente de correlação amostral de Pearson**, denotado por r:

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Onde:

- ullet (x_i,y_i) são as observações amostrais,
- \bar{x} e \bar{y} são as médias amostrais de x e y,
- *n* é o tamanho da amostra.

4

Resumo comparativo

Conceito	Correlação (ρ)	Correlação amostral (r)	
Contexto	População (teórico)	Amostra (observado)	
Tipo de medida	Parâmetro	Estatística (estimador)	
Fórmula	Usa variâncias e covariância populacionais	Usa variâncias e covariância amostrais	
Objetivo	Medir associação linear na população	Estimar $ ho$ a partir de dados amostrais	

Aplicações da Correlação em Séries Temporais

- A correlação mede o grau de associação linear entre duas variáveis. Em séries temporais, ela é usada para investigar dependências ao longo do tempo, seja dentro da própria série ou entre séries diferentes.
- A seguir estão listadas essas e outras aplicações:
- 1. Autocorrelação: correlação de uma série com ela mesma.
- 2. Correlação entre duas séries temporais diferentes.
- 3. Seleção de variáveis e defasagens para modelagem preditiva.
- 4. Diagnóstico de modelos (autocorrelação dos resíduos).

6

Autocorrelação (populacional)

 A autocorrelação mede a intensidade e a direção da associação linear entre os valores da mesma variável de um processo estocástico em dois instantes distintos, separados por uma defasagem (ou lag) h.

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \frac{Cov(X_t, X_{t+h})}{Var(X_t)}$$

- $\rho(h)$ é a autocorrelação populacional no lag h.
- $\gamma(h) = Cov(X_t, X_{t+h})$ é a função de autocovariância no lag h.
- $\gamma(0) = Var(X_t) = \sigma^2$ é a variância populacional do processo estocástico.
- Supõe-se que o processo estocástico seja estacionário (média e variância constantes, e covariância dependendo apenas da defasagem).
- Tecnicamente, a autocorrelação é o coeficiente de correlação de Pearson entre X_t e X_{t+h} .
- Também pode ser interpretada como uma padronização da autocovariância.

Função de autocorrelação (FAC ou ACF)

• É a função que associa a cada defasagem h o correspondente coeficiente de autocorrelação ho(h).

$$FAC: h \mapsto \rho(h) = corr(X_t, X_{t+h})$$
 ou seja $FAC = \{\rho(h) | h = 0, 1, 2, ..., h_{max}\}$

- A FAC descreve o comportamento da dependência linear entre os valores do processo estocástico ao longo do tempo, considerando todas as defasagens possíveis.
- É útil na identificação de modelos ARIMA, ajudando a determinar o número adequado de defasagens (lags).

7

Autocorelação amostral

- A **autocorrelação amostral** no lag h é o estimador de $\rho(h)$, calculado a partir de uma amostra finita da série temporal.
- Para uma amostra $\{x_1, x_2, ..., x_T\}$, com média amostral \bar{x} :

$$r(h) = \frac{\sum_{t=1}^{T-h} (x_t - \bar{x})(x_{t+h} - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}$$

- $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x_t$ é a média amostral da série,
- $h \in \{0, 1, 2, \dots\}$ é o valor da defasagem (lag),
- x_t é o valor observado no tempo t,
- x_{t+h} é o valor observado h períodos à frente,
- Os valores de r(h) estão entre -1 e 1.

Função de autocorrelação amostral (FAC amostral ou estimada)

• É a função que associa cada defasagem h ao correspondente coeficiente de autocorrelação amostral r(h):

$$FAC\ amostral: h \mapsto r(h) \quad ou \quad FAC\ amostral = \{r(h)|h=0,1,...,h_{max}\}$$

- Essa função é empírica, calculada a partir dos dados disponíveis.
- Pode ser visualizada por meio do gráfico de autocorrelação (por ex., com a função acf() no R).
- Aplicações típicas:
 - Diagnosticar dependência temporal.
 - · Avaliar a estacionariedade.
 - Identificar modelos apropriados (ex: número de defasagens (lags) em modelos AR).

3

5

6

5

8

4

5

7

6

8

Considere a série temporal de T = 5 observações igualmente espaçadas no tempo: {3, 5, 7, 6, 8}

• Passo 1: Calcular a média amostral: $\bar{x} = \frac{3+5+7+6+8}{5} = 5.8$

 Passo 2: Aplicar a fórmula da autocorrelação amostral A fórmula da autocorrelação amostral com defasagem h é:

r(h) =	${\textstyle \sum_{t=1}^{T-h} (x_t - \bar{x})(x_{t+h} - \bar{x})}$
	$\frac{\sum_{t=1}^{T}(x_t-\bar{x})^2}{$

• Para *h*=1:

$$r(1) = \frac{\sum_{t=1}^{4} (x_t - 5.8)(x_{t+1} - 5.8)}{\sum_{t=1}^{5} (x_t - 5.8)^2} \approx 0.13$$

 Interpretação: A autocorrelação com defasagem 1 apresenta um valor positivo, indicando que os valores consecutivos da série tendem a variar na mesma direção — ou seja, há uma associação linear positiva entre os valores separados por um período. Contudo, essa associação é fraca, dada a baixa magnitude da autocorrelação observada.

Exemplo: calculo da autocorrelação amostral com defasagem h=2

- Considere a série temporal de T = 5 observações igualmente espaçadas no tempo: {3, 5, 7, 6, 8}
- Passo 1: Calcular a média amostral: $\bar{x} = \frac{3+5+7+6+8}{5} = 5.8$

• Passo 2: Aplicar a fórmula da autocorrelação amostral A fórmula da autocorrelação amostral com defasagem h é:

r(h) =	$\underline{\sum_{t=1}^{T-h}(x_t-\bar{x})(x_{t+h}-\bar{x})}$
	$\sum_{t=1}^{T} (x_t - \bar{x})^2$

Para h=1:

$$r(2) = \frac{\sum_{t=1}^{3} (x_t - 5.8)(x_{t+2} - 5.8)}{\sum_{t=1}^{5} (x_t - 5.8)^2} \approx -0.06$$

 <u>Interpretação</u>: A autocorrelação com defasagem 2 apresenta um valor negativo, indicando que os valores separados por dois períodos tendem a variar em direções opostas — ou seja, há uma associação linear negativa entre os valores separados por dois períodos. Contudo, essa associação é fraca, dada a baixa magnitude da autocorrelação observada.

Exemplo: calculo da autocorrelação amostral com defasagem h=0

• Considere a série temporal de T=5 observações igualmente espaçadas no tempo: $\{3,5,7,6,8\}$

Passo 1: Calcular a média amostral: .	$\bar{x} = \frac{3+5+7+6+8}{5} = 5.8$
---------------------------------------	---------------------------------------

• Passo 2: Aplicar a fórmula da autocorrelação amostral A fórmula da autocorrelação amostral com defasagem h é:

5 5.5	1	3	3
	2	5	5
autocorrelação amostral ostral com defasagem <i>h</i> é:		7	7
		6	6
$r(h) = \frac{\sum_{t=1}^{T-h} (x_t - \bar{x})(x_{t+h} - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}$	5	8	8
$\sum_{t=1}^{T} (x_t - \bar{x})^2$			

• Para *h*=0:

$$r(0) = \frac{\sum_{t=1}^{5} (x_t - 5.8)(x_{t+0} - 5.8)}{\sum_{t=1}^{5} (x_t - 5.8)^2} = \frac{\sum_{t=1}^{5} (x_t - 5.8)^2}{\sum_{t=1}^{5} (x_t - 5.8)^2} = 1$$

• <u>Interpretação</u>: A autocorrelação de defasagem 0 é sempre igual a 1, pois a associação linear de cada valor consigo mesmo é perfeita e positiva.