

Process Generators

SYS-611: Simulation and Modeling

Paul T. Grogan, Ph.D.
Assistant Professor
School of Systems and Enterprises

Agenda

- 1. Random Numbers
- 2. Discrete Process Generators
- 3. Continuous Process Generators

Reading: S.M. Ross, "Generating Discrete Random Variables," and "Generating Continuous Random Variables," Ch. 4-5 in *Simulation*, 2012.

J.V. Farr, "Review of Probability and Statistics," Ch. 3 in Simulation of Complex Systems and Enterprises, Stevens Institute of Technology, 2007.

Random Numbers

Random Number Generators

- Pseudorandom numbers can be generated using a computational algorithm (generator)
 - Deterministic sequences of random variables
 - Often seeded with controlled initial conditions
 - Uniform U(0,1) is most common PDF provided
- Hardware generators may use aleatory data sources
 - Thermal noise
 - Quantum phenomena

Sun Microsystems Crypto Accelerator (Shieldforyoureyes/Wikimedia)

Example: Human RNG

- Submit random numbers: goo.gl/WaCZda
 - What biases can be observed?
- Random number generators are critical to effective stochastic simulation
 - Eliminate any underlying biases
 - Reproducible/seeded streams help verification
- Most software libraries today have good RNGs

Discrete Process Generators

Discrete Process Generators

Discrete processes are a sequence of discrete random variable values

- Built-in process generators exist for most common distributions (Uniform, Binomial, etc.)
- Two methods to generate arbitrary processes:
 - Inverse transform method requires global knowledge of the CDF
 - Accept-reject method only requires local knowledge of the PMF but less efficient

Inverse Transform Method

Generate U(0,1)
value rDraw horizontal line from r on yaxis to CDF and read x-value

Inverse Transform for Discrete Processes


```
import numpy as np
def gen roll ivt():
   r = \overline{np.random.rand()}
   if r < 1./6:
      roll = 1
   elif r < 2./6:
      roll = 2
   elif r < 3./6:
      roll = 3
   elif r < 4./6:
      roll = 4
   elif r < 5./6:
      roll = 5
   else:
      roll = 6
   return roll
```

	Α	В	С
1	cdf	х	
2	0.00	1	
3	0.17	2	
4	0.33	3	
5	0.50	4	
6	0.67	5	
7	0.83	6	
8			
9	0.897527	=VLOOKUF	P(A9,A2:B7,2)
10			
11			

- CDF lower bounds
- RV (x) values
- RNG (=RAND())
- VLOOKUP function

Class Problem: Café Java

 Stevens students enjoy coffee at Café Java. The manager gathered data last week for coffee demand during the ~7:30pm break period.

Demand (X)	Frequency	$P\{X=x\}=p(x)$	$P\{X \le x\} = F(x)$
No coffee	8		
Small	10		
Medium	22		
Large	10		

 Complete the PMF and CDF and develop a discrete process generator for future simulation.

Café Java Demand Generators


```
import numpy as np
demands = np.array([0, 1, 2, 3])
frequency = np.array([8, 10, 22, 10])
pmf = frequency/float(np.sum(frequency))
cdf = np.cumsum(pmf)
def gen demand ivt():
  r = np.random.rand()
  for i in demands:
    if r <= cdf[i]:</pre>
      return i
samples ivt = [gen demand ivt()
    for i in range(1000)]
counts = np.array(
  [sum(samples ivt==i) for i in demands]
frequency ivt = counts/float(np.sum(counts))
```


Inverse Transform for Discrete Processes

Accept-Reject Method

- Some CDFs are not easy to quantify or express
- Rely only on PMFs
- Example: Café Java

Continuous Process Generators

Continuous Process Generators

Continuous processes are a sequence of continuous random variable values

- Built-in process generators exist for most common distributions (Uniform, Normal, etc.)
- Two methods to generate arbitrary processes:
 - Inverse transform method requires global knowledge of the CDF
 - Accept-reject method only requires local knowledge of the PDF but less efficient

Inverse Transform Method


```
import numpy as np

def gen_spin_ivt():
    r = np.random.rand()
    return 360*r
```

	Α	В	С
1	0.828353	=360*A1	
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			

- RNG (=RAND())
- Inverse CDF

Class Problem: Café Java VIP

The Café Java manager contacts Dr. Farr for expert data on arrivals. Farr reports customers arrive as a Poisson process with a 2-minute inter-arrival period ($\lambda=1/2$ customers/minute). Develop a continuous process generator for arrival times.

X: time between customer arrivals

$$f(x) = \lambda e^{-\lambda x}$$

$$F(x) = \int_{i=0}^{x} f(i)di = \int_{i=0}^{x} \lambda e^{-\lambda i} di = 1 - e^{-\lambda x}$$

$$\to x = \frac{-\ln(1-r)}{\lambda}$$

Café Java Arrival Time Generators

```
import numpy as np
 lambda = 1./2
plot x = np.linspace(0,10)
pdf = lambda*np.exp(- lambda*plot x)
cdf = 1-np.exp(- lambda*plot x)
def gen arrival ivt():
 r = np.random.rand()
 return -np.log(1-r)/lambda
num samples = 1000
samples ivt = [gen arrival ivt()
   for i in range(num samples)]
```


Accept-Reject Method

- Some CDFs do not have closed-form equations
- Rely only on PDFs
 - Use a simpler "enveloping" distribution g(x) where $c * g(x) \ge f(x) \forall x$
 - Simplest: $g(x) \sim \text{uniform}(a, b)$
 - Find maximum f(x) and assign
 c appropriately

Accept-Reject Example (Ross)

- PDF: $f(x) = 20x(1-x)^3$, 0 < x < 1
- Proposed PDF: g(x) = 1, 0 < x < 1
- What is the max value of f(x) to ensure enveloping?

•
$$0 = f'(x) = 20(1-x)^3 - 60x(1-x)^2$$

$$\bullet = -20(x-1)^2(4x-1)$$

•
$$\rightarrow f(0.25) = \frac{135}{64} \rightarrow c = \frac{135}{64}$$

•
$$r \le \frac{f(y)}{cg(y)} = \frac{256}{27}y(1-y)^3$$

• Equivalently: $r * c \le f(y)$

Accept-Reject for Continuous Processes

