

The Radicals of Hopf Module Algebras *

Shouchuan Zhang

Department of Mathematics, Hunan University
Changsha 410082, P.R.China. E-mail:z9491@yahoo.com.cn

Abstract

The characterization of H -prime radical is given in many ways. Meantime, the relations between the radical of smash product $R \# H$ and the H -radical of Hopf module algebra R are obtained.

0 Introduction and Preliminaries

In this paper, let k be a commutative associative ring with unit, H be an algebra with unit and comultiplication Δ (i.e. Δ is a linear map: $H \rightarrow H \otimes H$), R be an algebra over k (R may be without unit) and R be an H -module algebra.

We define some necessary concept as follows.

If there exists a linear map $\begin{cases} H \otimes R & \longrightarrow R \\ h \otimes r & \mapsto h \cdot r \end{cases}$ such that

$$h \cdot rs = \sum (h_1 \cdot r)(h_2 \cdot s) \quad \text{and} \quad 1_H \cdot r = r$$

for all $r, s \in R, h \in H$, then we say that H weakly acts on R . For any ideal I of R , set

$$(I : H) := \{x \in R \mid h \cdot x \in I \text{ for all } h \in H\}.$$

I is called an H -ideal if $h \cdot I \subseteq I$ for any $h \in H$. Let I_H denote the maximal H -ideal of R in I . It is clear that $I_H = (I : H)$. An H -module algebra R is called an H -simple module algebra if R has not any non-trivial H -ideals and $R^2 \neq 0$. R is said to be H -semiprime if there are no non-zero nilpotent H -ideals in R . R is said to be H -prime if $IJ = 0$ implies $I = 0$ or $J = 0$ for any H -ideals I and J of R . An H -ideal I is called an H -(semi)prime ideal of R if R/I is H -(semi)prime. $\{a_n\}$ is called an H - m -sequence in R with beginning a if there exist $h_n, h'_n \in H$ such that $a_1 = a \in R$ and $a_{n+1} = (h_n \cdot a_n)b_n(h'_n \cdot a_n)$ for any

*This work was supported by the National Natural Science Foundation

natural number n . If every H - m -sequence $\{a_n\}$ with $a_{7.1.1} = a$, there exists a natural number k such that $a_k = 0$, then a is called an H - m -nilpotent element. Set

$$W_H(R) = \{a \in R \mid a \text{ is an } H\text{-}m\text{-nilpotent element}\}.$$

R is called an H -module algebra if the following conditions hold:

- (i) R is a unital left H -module(i.e. R is a left H -module and $1_H \cdot a = a$ for any $a \in R$);
- (ii) $h \cdot ab = \sum(h_1 \cdot a)(h_2 \cdot b)$ for any $a, b \in R$, $h \in H$, where $\Delta(h) = \sum h_1 \otimes h_2$.

H -module algebra is sometimes called a Hopf module.

If R is an H -module algebra with a unit 1_R , then

$$\begin{aligned} h \cdot 1_R &= \sum_h (h_1 \cdot 1_R)(h_2 S(h_3) \cdot 1_R) \\ &= \sum_h h_1 \cdot (1_R(S(h_2) \cdot 1_R)) = \sum_h h_1 S(h_2) \cdot 1_R = \epsilon(h)1_R, \end{aligned}$$

$$\text{i.e. } h \cdot 1_R = \epsilon(h)1_R$$

for any $h \in H$.

An H -module algebra R is called a unital H -module algebra if R has a unit 1_R such that $h \cdot 1_R = \epsilon(h)1_R$ for any $h \in H$. Therefore, every H -module algebra with unit is a unital H -module algebra. A left R -module M is called an R - H -module if M is also a left unital H -module with $h(am) = \sum(h_1 \cdot a)(h_2 m)$ for all $h \in H, a \in R, m \in M$. An R - H -module M is called an R - H - irreducible module if there are no non-trivial R - H -submodules in M and $RM \neq 0$. An algebra homomorphism $\psi : R \rightarrow R'$ is called an H -homomorphism if $\psi(h \cdot a) = h \cdot \psi(a)$ for any $h \in H, a \in R$. Let r_b, r_j, r_l, r_{bm} denote the Baer radical, the Jacobson radical, the locally nilpotent radical, the Brown-MacCoy radical of algebras respectively. Let $I \triangleleft_H R$ denote that I is an H -ideal of R .

1 The H -special radicals for H -module algebras

J.R. Fisher [7] built up the general theory of H -radicals for H -module algebras. We can easily give the definitions of the H -upper radical and the H -lower radical for H -module algebras as in [11]. In this section, we obtain some properties of H -special radicals for H -module algebras.

Lemma 1.1 (1) *If R is an H -module algebra and E is a non-empty subset of R , then $(E) = H \cdot E + R(H \cdot E) + (H \cdot E)R + R(H \cdot E)R$, where (E) denotes the H -ideal generated by E in R .*

(2) *If B is an H -ideal of R and C is an H -ideal of B , then $(C)^3 \subseteq C$, where (C) denotes the H -ideal generated by C in R .*

Proof. It is trivial. \square

Proposition 1.2 (1) R is H -semiprime iff $(H \cdot a)R(H \cdot a) = 0$ always implies $a = 0$ for any $a \in R$.

(2) R is H -prime iff $(H \cdot a)R(H \cdot b) = 0$ always implies $a = 0$ or $b = 0$ for any $a, b \in R$.

Proof. If R is an H -prime module algebra and $(H \cdot a)R(H \cdot b) = 0$ for $a, b \in R$, then $(a)^2(b)^2 = 0$, where (a) and (b) are the H -ideals generated by a and b in R respectively. Since R is H -prime, $(a) = 0$ or $(b) = 0$. Conversely, if B and C are H -ideals of R and $BC = 0$, then $(H \cdot a)R(H \cdot b) = 0$ and $a = 0$ or $b = 0$ for any $a \in B, b \in C$, which implies that $B = 0$ or $C = 0$, i.e. R is an H -prime module algebra.

Similarly, part (1) holds. \square

Proposition 1.3 If $I \triangleleft_H R$ and I is an H -semiprime module algebra, then

(1) $I \cap I^* = 0$; (2) $I_r = I_l = I^*$; (3) $I^* \triangleleft_H R$, where $I_r = \{a \in R \mid I(H \cdot a) = 0\}$, $I_l = \{a \in R \mid (H \cdot a)I = 0\}$, $I^* = \{a \in R \mid (H \cdot a)I = 0 = I(H \cdot a)\}$.

Proof . For any $x \in I^* \cap I$, we have that $I(H \cdot x) = 0$ and $(H \cdot x)I(H \cdot x) = 0$. Since I is an H -semiprime module algebra, $x = 0$, i.e. $I \cap I^* = 0$.

To show $I^* = I_r$, we only need to show that $(H \cdot x)I = 0$ for any $x \in I_r$. For any $y \in I, h \in H$, let $z = (h \cdot x)y$. It is clear that $(H \cdot z)I(H \cdot z) = 0$. Since I is an H -semiprime module algebra, $z = 0$, i.e. $(H \cdot x)I = 0$. Thus $I^* = I_r$. Similarly, we can show that $I_l = I^*$.

Obviously, I^* is an ideal of R . For any $x \in I^*, h \in H$, we have $(H \cdot (h \cdot x))I = 0$. Thus $h \cdot x \in I^*$ by part (2), i.e. I^* is an H -ideal of R . \square

Definition 1.4 \mathcal{K} is called an H -(weakly)special class if

(S1) \mathcal{K} consists of H -(semiprime)prime module algebras.

(S2) For any $R \in \mathcal{K}$, if $0 \neq I \triangleleft_H R$ then $I \in \mathcal{K}$.

(S3) If R is an H -module algebra and $B \triangleleft_H R$ with $B \in \mathcal{K}$, then $R/B^* \in \mathcal{K}$, where $B^* = \{a \in R \mid (H \cdot a)B = 0 = B(H \cdot a)\}$.

It is clear that (S3) may be replaced by one of the following conditions:

(S3') If B is an essential H -ideal of R (i.e. $B \cap I \neq 0$ for any non-zero H -ideal I of R) and $B \in \mathcal{K}$, then $R \in \mathcal{K}$.

(S3'') If there exists an H -ideal B of R with $B^* = 0$ and $B \in \mathcal{K}$, then $R \in \mathcal{K}$.

It is easy to check that if \mathcal{K} is an H -special class, then \mathcal{K} is an H -weakly special class.

Theorem 1.5 If \mathcal{K} is an H -weakly special class, then $r^{\mathcal{K}}(R) = \cap\{I \triangleleft_H R \mid R/I \in \mathcal{K}\}$, where $r^{\mathcal{K}}$ denotes the H -upper radical determined by \mathcal{K} .

Proof. If I is a non-zero H -ideal of R and $I \in \mathcal{K}$, then $R/I^* \in \mathcal{K}$ by (S3) in Definition 1.4 and $I \not\subseteq I^*$ by Proposition 1.3. Consequently, it follows from [7, Proposition 5] that

$$r^{\mathcal{K}}(R) = \cap\{I \mid I \text{ is an } H\text{-ideal of } R \text{ and } R/I \in \mathcal{K}\} . \quad \square$$

Definition 1.6 If r is a hereditary H -radical(i.e. if R is an r - H -module algebra and B is an H -ideal of R , then so is B) and any nilpotent H -module algebra is an r - H -module algebra, then r is called a supernilpotent H -radical.

Proposition 1.7 r is a supernilpotent H -radical, then r is H -strongly hereditary, i.e. $r(I) = r(R) \cap I$ for any $I \triangleleft_H R$.

Proof. It follows from [7, Proposition 4]. \square

Theorem 1.8 If \mathcal{K} is an H -weakly special class, then $r^{\mathcal{K}}$ is a supernilpotent H -radical.

Proof. Let $r = r^{\mathcal{K}}$. Since every non-zero H -homomorphic image R' of a nilpotent H -module algebra R is nilpotent and is not H -semiprime, we have that R is an r - H -module algebra by Theorem 1.5. It remains to show that any H -ideal I of r - H -module algebra R is an r - H -ideal. If I is not an r - H -module algebra, then there exists an H -ideal J of I such that $0 \neq I/J \in \mathcal{K}$. By (S3), $(R/J)/(I/J)^* \in \mathcal{K}$. Let $Q = \{x \in R \mid (H \cdot x)I \subseteq J$ and $I(H \cdot x) \subseteq J\}$. It is clear that J and Q are H -ideals of R and $Q/J = (I/J)^*$. Since $R/Q \cong (R/J)/(Q/J) = (R/J)/(I/J)^*$ and R/Q is an r - H -module algebra, we have $(R/J)/(I/J)^*$ is an r - H -module algebra. Thus $R/Q = 0$ and $I^2 \subseteq J$, which contradicts that I/J is a non-zero H -semiprime module algebra. Thus I is an r - H -ideal. \square

Proposition 1.9 R is H -semiprime iff for any $0 \neq a \in R$, there exists an H - m -sequence $\{a_n\}$ in R with $a_{7.1.1} = a$ such that $a_n \neq 0$ for all n .

Proof. If R is H -semiprime, then for any $0 \neq a \in R$, there exist $b_1 \in R$, h_1 and $h'_1 \in H$ such that $0 \neq a_2 = (h_1 \cdot a_1)b_1(h'_1 \cdot a_1) \in (H \cdot a_1)R(H \cdot a_1)$ by Proposition 1.2, where $a_1 = a$. Similarly, for $0 \neq a_2 \in R$, there exist $b_2 \in R$ and h_2 and $h'_2 \in H$ such that $0 \neq a_3 = (h_2 \cdot a_2)b_2(h'_2 \cdot a_2) \in (H \cdot a_2)R(H \cdot a_2)$, which implies that there exists an H - m -sequence $\{a_n\}$ such that $a_n \neq 0$ for any natural number n . Conversely, it is trivial. \square

2 H -Baer radical

In this section, we give the characterization of H -Baer radical(H -prime radical) in many ways.

Theorem 2.1 We define a property r_{Hb} for H -module algebras as follows: R is an r_{Hb} - H -module algebra iff every non-zero H -homomorphic image of R contains a non-zero nilpotent H -ideal; then r_{Hb} is an H -radical property.

Proof. It is clear that every H -homomorphic image of r_{Hb} - H -module algebra is an r_{Hb} - H -module algebra. If every non-zero H -homomorphic image B of H -module algebra R contains a non-zero r_{Hb} - H -ideal I , then I contains a non-zero nilpotent H -ideal J . It is clear that (J) is a non-zero nilpotent H -ideal of B , where (J) denotes the H -ideal generated by J in B . Thus R is an r_{Hb} - H -module algebra. Consequently, r_{Hb} is an H -radical property. \square

r_{Hb} is called H -prime radical or H -Baer radical.

Theorem 2.2 *Let*

$$\mathcal{E} = \{R \mid R \text{ is a nilpotent } H\text{-module algebra}\},$$

then $r_{\mathcal{E}} = r_{Hb}$, where $r_{\mathcal{E}}$ denotes the H -lower radical determined by \mathcal{E} .

Proof. If R is an r_{Hb} - H -module algebra, then every non-zero H -homomorphic image B of R contains a non-zero nilpotent H -ideal I . By the definition of the lower H -radical, I is an $r_{\mathcal{E}}$ - H -module algebra. Consequently, R is an $r_{\mathcal{E}}$ - H -module algebra. Conversely, since every nilpotent H -module algebra is an r_{Hb} - H -module algebra, $r_{\mathcal{E}} \leq r_{Hb}$. \square

Proposition 2.3 *R is H -semiprime if and only if $r_{Hb}(R) = 0$.*

Proof. If R is H -semiprime with $r_{Hb}(R) \neq 0$, then there exists a non-zero nilpotent H -ideal I of $r_{Hb}(R)$. It is clear that H -ideal (I) , which the H -ideal generated by I in R , is a non-zero nilpotent H -ideal of R . This contradicts that R is H -semiprime. Thus $r_{Hb}(R) = 0$. Conversely, if R is an H -module algebra with $r_{Hb}(R) = 0$ and there exists a non-zero nilpotent H -ideal I of R , then $I \subseteq r_{Hb}(R)$. We get a contradiction. Thus R is H -semiprime if $r_{Hb}(R) = 0$. \square

Theorem 2.4 *If $\mathcal{K} = \{R \mid R \text{ is an } H\text{-prime module algebra}\}$, then \mathcal{K} is an H -special class and $r_{Hb} = r^{\mathcal{K}}$.*

Proof. Obviously, (S1) holds. If I is a non-zero H -ideal of an H -prime module algebra R and $BC = 0$ for H -ideals B and C of I , then $(B)^3(C)^3 = 0$ where (B) and (C) denote the H -ideals generated by B and C in R respectively. Since R is H -prime, $(B) = 0$ or $(C) = 0$, i.e. $B = 0$ or $C = 0$. Consequently, (S2) holds. Now we shows that (S3) holds. Let B be an H -prime module algebra and be an H -ideal of R . If $JI \subseteq B^*$ for H -ideals I and J of R , then $(BJ)(IB) = 0$, where $B^* = \{x \in R \mid (H \cdot x)B = 0 = B(H \cdot x)\}$. Since B is an H -prime module algebra, $BJ = 0$ or $IB = 0$. Considering I and J are H -ideals, we have that $B(H \cdot J) = 0$ or $(H \cdot I)B = 0$. By Proposition 1.3, $J \subseteq B^*$ or $I \subseteq B^*$, which implies that R/B^* is an H -prime module algebra. Consequently, (S3) holds and so \mathcal{K} is an H -special class.

Next we show that $r_{Hb} = r^{\mathcal{K}}$. By Proposition 1.5, $r^{\mathcal{K}}(R) = \cap\{I \mid I \text{ is an } H\text{-ideal of } R \text{ and } R/I \in \mathcal{K}\}$. If R is a nilpotent H -module algebra, then R is an $r^{\mathcal{K}}\text{-}H$ -module algebra. It follows from Theorem 2.2 that $r_{Hb} \leq r^{\mathcal{K}}$. Conversely, if $r_{Hb}(R) = 0$, then R is an H -semiprime module algebra by Proposition 2.3. For any $0 \neq a \in R$, there exist $b_1 \in R$, $h_1, h'_1 \in H$ such that $0 \neq a_2 = (h_1 \cdot a_1)b_1(h'_1 \cdot a_1) \in (H \cdot a_1)R(H \cdot a_1)$, where $a_1 = a$. Similarly, for $0 \neq a_2 \in R$, there exist $b_2 \in R$ and $h_2, h'_2 \in H$ such that $0 \neq a_3 = (h_2 \cdot a_2)b_2(h'_2 \cdot a_2) \in (H \cdot a_2)R(H \cdot a_2)$. Thus there exists an H - m -sequence $\{a_n\}$ such that $a_n \neq 0$ for any natural number n . Let

$$\mathcal{F} = \{I \mid I \text{ is an } H\text{-ideal of } R \text{ and } I \cap \{a_1, a_2, \dots\} = \emptyset\}.$$

By Zorn's Lemma, there exists a maximal element P in \mathcal{F} . If I and J are H -ideals of R and $I \not\subseteq P$ and $J \not\subseteq P$, then there exist natural numbers n and m such that $a_n \in I$ and $a_m \in J$. Since $0 \neq a_{n+m+1} = (h_{n+m} \cdot a_{n+m})b_{n+m}(h'_{n+m} \cdot a_{n+m}) \in IJ$, which implies that $IJ \not\subseteq P$ and so P is an H -prime ideal of R . Obviously, $a \notin P$, which implies that $a \notin r^{\mathcal{K}}(R)$ and $r^{\mathcal{K}}(R) = 0$. Consequently, $r^{\mathcal{K}} = r_{Hb}$. \square

Theorem 2.5 $r_{Hb}(R) = W_H(R)$.

Proof. If $0 \neq a \notin W_H(R)$, then there exists an H -prime ideal P such that $a \notin P$ by the proof of Thoerem 2.4. Thus $a \notin r_{Hb}(R)$, which implies that $r_{Hb}(R) \subseteq W_H(R)$. Conversely, for any $x \in W_H(R)$, let $\bar{R} = R/r_{Hb}(R)$. Since $r_{Hb}(\bar{R}) = 0$, \bar{R} is an H -semiprime module algebra by Proposition 2.3. By the proof of Theorem 2.4, $W_H(\bar{R}) = 0$. For an H - m -sequence $\{\bar{a}_n\}$ with $\bar{a}_1 = \bar{x}$ in \bar{R} , there exist $\bar{b}_n \in \bar{R}$ and $h_n, h'_n \in H$ such that

$$\bar{a}_{n+1} = (h_n \cdot \bar{a}_n)\bar{b}_n(h'_n \cdot \bar{a}_n)$$

for any natural number n . Thus there exists $a'_n \in R$ such that $a'_1 = x$ and $a'_{n+1} = (h_n \cdot a'_n)b_n(h'_n \cdot a'_n)$ for any natural number n . Since $\{a'_n\}$ is an H - m -sequence with $a'_1 = x$ in R , there exists a natural number k such that $a'_k = 0$. It is easy to show that $\bar{a}_n = \bar{a}'_n$ for any natural number n by induction. Thus $\bar{a}_k = 0$ and $\bar{x} \in W_H(\bar{R})$. Considering $W_H(\bar{R}) = 0$, we have $x \in r_{Hb}(R)$ and $W_H(R) \subseteq r_{Hb}(R)$. Therefore $W_H(R) = r_{Hb}(R)$. \square

Definition 2.6 We define an H -ideal N_α in H -module algebra R for every ordinal number α as follows:

(i) $N_0 = 0$.

Let us assume that N_α is already defined for $\alpha < \beta$.

(ii) If $\beta = \alpha + 1$, N_β/N_α is the sum of all nilpotent H -ideals of R/N_α .

(iii) If β is a limit ordinal number, $N_\beta = \sum_{\alpha < \beta} N_\alpha$.

By set theory, there exists an ordinal number τ such that $N_\tau = N_{\tau+1}$.

Theorem 2.7 $N_\tau = r_{Hb}(R) = \cap\{I \mid I \text{ is an } H\text{-semiprime ideal of } R\}$.

Proof. Let $D = \cap\{I \mid I \text{ is an } H\text{-semiprime ideal of } R\}$. Since R/N_τ has not any non-zero nilpotent H -ideal, we have that $r_{Hb}(R) \subseteq N_\tau$ by Proposition 2.3. Obviously, $D \subseteq r_{Hb}(R)$. Using transfinite induction, we can show that $N_\alpha \subseteq I$ for every H -semiprime ideal I of R and every ordinal number α (see the proof of [12, Theorem 3.7]). Thus $N_\tau \subseteq D$, which completes the proof. \square

Definition 2.8 Let $\emptyset \neq L \subseteq H$. An H - m -sequence $\{a_n\}$ in R is called an L - m -sequence with beginning a if $a_{7.1.1} = a$ and $a_{n+1} = (h_n \cdot a_n)b_n(h'_n \cdot a_n)$ such that $h_n, h'_n \in L$ for all n . For every L - m -sequence $\{a_n\}$ with $a_{7.1.1} = a$, there exists a natural number k such that $a_k = 0$, then R is called an L - m -nilpotent element, written as $W_L(R) = \{a \in R \mid a \text{ is an } L\text{-}m\text{-nilpotent element}\}$.

Similarly, we have

Proposition 2.9 If $L \subseteq H$ and $H = kL$, then

- (i) R is H -semiprime iff $(L.a)R(L.a) = 0$ always implies $a = 0$ for any $a \in R$.
- (ii) R is H -prime iff $(L.a)R(L.b) = 0$ always implies $a = 0$ or $b = 0$ for any $a, b \in R$.
- (iii) R is H -semiprime if and only if for any $0 \neq a \in R$, there exists an L - m -sequence $\{a_n\}$ with $a_1 = a$ such that $a_n \neq 0$ for all n .
- (iv) $W_H(R) = W_L(R)$.

3 The H -module theoretical characterization of H -special radicals

If V is an algebra over k with unit and $x \otimes 1_V = 0$ always implies that $x = 0$ for any right k -module M and for any $x \in M$, then V is called a faithful algebra to tensor. For example, if k is a field, then V is faithful to tensor for any algebra V with unit.

In this section, we need to add the following condition: H is faithful to tensor.

We shall characterize H -Baer radical r_{Hb} , H -locally nil radical r_{Hl} , H -Jacobson radical r_{HJ} and H -Brown-McCoy radical r_{Hbm} by R - H -modules.

We can view every H -module algebra R as a sub-algebra of $R \# H$ since H is faithful to tensor. By computation, we have that

$$h \cdot a = \sum(1 \# h_1)a(1 \# S(h_2))$$

for any $h \in H, a \in R$, where S is the antipode of H .

Definition 3.1 An R - H -module M is called an R - H -prime module if for M the following conditions are fulfilled:

- (i) $RM \neq 0$;

(ii) If x is an element of M and I is an H -ideal of R , then $I(Hx) = 0$ always implies $x = 0$ or $I \subseteq (0 : M)_R$, where $(0 : M)_R = \{a \in R \mid aM = 0\}$.

Definition 3.2 We associate to every H -module algebra R a class \mathcal{M}_R of R - H -modules. Then the class $\mathcal{M} = \cup \mathcal{M}_R$ is called an H -special class of modules if the following conditions are fulfilled:

- (M1) If $M \in \mathcal{M}_R$, then M is an R - H -prime module.
- (M2) If I is an H -ideal of R and $M \in \mathcal{M}_I$, then $IM \in \mathcal{M}_R$.
- (M3) If $M \in \mathcal{M}_R$ and I is an H -ideal of R with $IM \neq 0$, then $M \in \mathcal{M}_I$.
- (M4) Let I be an H -ideal of R and $\bar{R} = R/I$. If $M \in \mathcal{M}_R$ and $I \subseteq (0 : M)_R$, then $M \in \mathcal{M}_{\bar{R}}$. Conversely, if $M \in \mathcal{M}_{\bar{R}}$, then $M \in \mathcal{M}_R$.

Let $\mathcal{M}(R)$ denote $\cap \{(0 : M)_R \mid M \in \mathcal{M}_R\}$, or R when $\mathcal{M}_R = \emptyset$.

Lemma 3.3 (1) If M is an R - H -module, then M is an $R\#H$ -module. In this case, $(0 : M)_{R\#H} \cap R = (0 : M)_R$ and $(0 : M)_R$ is an H -ideal of R ;

(2) R is a non-zero H -prime module algebra iff there exists a faithful R - H -prime module M ;

(3) Let I be an H -ideal of R and $\bar{R} = R/I$. If M is an R - H -(resp. prime, irreducible)module and $I \subseteq (0 : M)_R$, then M is an \bar{R} - H -(resp. prime, irreducible)module (defined by $h \cdot (a + I) = h \cdot a$ and $(a + I)x = ax$). Conversely, if M is an \bar{R} - H -(resp. prime irreducible)module, then M is an R - H -(resp. prime, irreducible)module (defined by $h \cdot a = h \cdot (a + I)$ and $ax = (a + I)x$). In the both cases, it is always true that $R/(0 : M)_R \cong \bar{R}/(0 : M)_{\bar{R}}$;

(4) I is an H -prime ideal of R with $I \neq R$ iff there exists an R - H -prime module M such that $I = (0 : M)_R$;

(5) If I is an H -ideal of R and M is an I - H -prime module, then IM is an R - H -prime module with $(0 : M)_I = (0 : IM)_R \cap I$;

(6) If M is an R - H -prime module and I is an H -ideal of R with $IM \neq 0$, then M is an I - H -prime module;

(7) If R is an H -semiprime module algebra with one side unit, then R has a unit.

Proof. (1) Obviously, $(0 : M)_R = (0 : M)_{R\#H} \cap R$. For any $h \in H, a \in (0 : M)_R$, we see that $(h \cdot a)M = \sum(1\#h_1)a(1\#S(h_2))M \subseteq \sum(1\#h_1)aM = 0$ for any $h \in H, a \in R$. Thus $h \cdot a \in (0 : M)_R$, which implies $(0 : M)_R$ is an H -ideal of R .

(2) If R is an H -prime module algebra, view $M = R$ as an R - H -module. Obviously, M is faithful. If $I(H \cdot x) = 0$ for $0 \neq x \in M$ and an H -ideal I of R , then $I(x) = 0$ and $I = 0$, where (x) denotes the H -ideal generated by x in R . Consequently, M is a faithful R - H -prime module. Conversely, let M be a faithful R - H -prime module. If $IJ = 0$ for two H -ideals I and J of R with $J \neq 0$, then $JM \neq 0$ and there exists $0 \neq x \in JM$ such

that $I(Hx) = 0$. Since M is a faithful R - H -prime module, $I = 0$. Consequently, R is H -prime.

(3) If M is an R - H -module, then it is clear that M is a (left) \overline{R} -module and $h(\bar{a}x) = h(ax) = \sum(h_1 \cdot a)(h_2x) = \sum\overline{(h_1 \cdot a)}(h_2x) = \sum(h_1 \cdot \bar{a})(h_2x)$ for any $h \in H$, $a \in R$ and $x \in M$. Thus M is an \overline{R} - H -module. Conversely, if M is an \overline{R} - H -module, then M is an (left) R -module and

$$h(ax) = h(\bar{a}x) = \sum(h_1 \cdot \bar{a})(h_2x) = \sum\overline{(h_1 \cdot a)}(h_2x) = \sum(h_1 \cdot a)(h_2x)$$

for any $h \in H$, $a \in R$ and $x \in M$. This shows that M is an R - H -module.

Let M be an R - H -prime module and I be an H -ideal of R with $I \subseteq (0 : M)_R$. If $\overline{J}(Hx) = 0$ for $0 \neq x \in M$ and an H -ideal J of R , then $J(Hx) = 0$ and $J \subseteq (0 : M)_R$. This shows that $\overline{J} \subseteq (0 : M)_{\overline{R}}$. Thus M is an R - H -prime module. Similarly, we can show the other assert.

(4) If I is an H -prime ideal of R with $R \neq I$, then $\overline{R} = R/I$ is an H -prime module algebra. By Part (2), there exists a faithful \overline{R} - H -prime module M . By part (3), M is an R - H -prime module with $(0 : M)_R = I$. Conversely, if there exists a R - H -prime M with $I = (0 : M)_R$, then M is a faithful \overline{R} - H -prime module by part (3) and I is an H -prime ideal of R by part (2).

(5) First, we show that IM is an R -module. We define

$$a\left(\sum_i a_i x_i\right) = \sum_i (aa_i)x_i \quad (1)$$

for any $a \in R$ and $\sum_i a_i x_i \in IM$, where $a_i \in I$ and $x_i \in M$. If $\sum_i a_i x_i = \sum_i a'_i x'_i$ with $a_i, a'_i \in R$, $x_i, x'_i \in M$, let $y = \sum_i (aa_i)x_i - \sum_i (aa'_i)x'_i$. For any $b \in I$ and $h \in H$, we see that

$$\begin{aligned} b(hy) &= \sum_i b\{h[(aa_i)x_i - (aa'_i)x'_i]\} \\ &= \sum_i \sum_{(h)} b\{[(h_1 \cdot (aa_i))(h_2 x_i) - [h_1 \cdot (aa'_i)](h_2 x'_i)]\} \\ &= \sum_{(h)} \sum_i \{b[(h_1 \cdot a)(h_2 \cdot a_i)](h_3 x_i) - b[(h_1 \cdot a)(h_2 \cdot a'_i)](h_3 x'_i)\} \\ &= \sum_{(h)} \sum_i b(h_1 \cdot a)[h_2(a_i x_i) - h_2(a'_i x'_i)] \\ &= \sum_{(h)} b(h_1 \cdot a)h_2 \sum_i [a_i x_i - a'_i x'_i] = 0. \end{aligned}$$

Thus $I(Hy) = 0$. Since M is an I - H -prime module and $IM \neq 0$, we have that $y = 0$. Thus this definition in (1) is well-defined. It is easy to check that IM is an R -module. We see that

$$h\left(a \sum_i a_i x_i\right) = \sum_i h[(aa_i)x_i]$$

$$\begin{aligned}
&= \sum_i \sum_h [h_1 \cdot (aa_i)][h_2 x_i] \\
&= \sum_i \sum_h [(h_1 \cdot a)(h_2 \cdot a_i)](h_3 x) \\
&= \sum_h (h_1 \cdot a) \sum_i (h_2 \cdot a_i)(h_3 x_i) \\
&= \sum_h (h_1 \cdot a)[h_2 \sum_i (a_i x_i)]
\end{aligned}$$

for any $h \in H$ and $\sum_i a_i x_i \in IM$. Thus IM is an R - H -module.

Next, we show that $(0 : M)_I = (0 : IM)_R \cap I$. If $a \in (0 : M)_I$, then $aM = 0$ and $aIM = 0$, i.e. $a \in (0 : IM)_A \cap I$. Conversely, if $a \in (0 : IM)_R \cap I$, then $aIM = 0$. By part (1), $(0 : IM)_R$ is an H -ideal of R . Thus $(H \cdot a)IM = 0$ and $(H \cdot a)I \subseteq (0 : M)_I$. Since $(0 : M)_I$ is an H -prime ideal of I by part (4), $a \in (0 : M)_I$. Consequently, $(0 : M)_I = (0 : IM)_R \cap I$.

Finally, we show that IM is an R - H -prime module. If $RIM = 0$, then $RI \subseteq (0 : M)_R$ and $I \subseteq (0 : M)_R$, which contradicts that M is an I - H -prime module. Thus $RIM \neq 0$. If $J(Hx) = 0$ for $0 \neq x \in IM$ and an H -ideal J of R , then $JI(Hx) \subseteq J(Hx) = 0$. Since M is an I - H -prime module, $JI \subseteq (0 : M)_I$ and $J(IM) = 0$. Consequently, IM is an R - H -prime module.

(6) Obviously, M is an I - H -module. If $J(Hx) = 0$ for $0 \neq x \in M$ and an H -ideal J of I , then $(J)^3(Hx) = 0$ and $(J)^3 \subseteq (0 : M)_R$, where (J) denotes the H -ideal generated by J in R . Since $(0 : M)_R$ is an H -prime ideal of R , $(J) \subseteq (0 : M)_R$ and $J \subseteq (0 : M)_I$. Consequently, M is an I - H -prime module.

(7) We can assume that u is a right unit of R . We see that

$$(h \cdot (au - a))b = \sum (1\#h_1)(au - a)(1\#S(h_2))b = 0$$

for any $a, b \in R, h \in H$. Therefore $(H \cdot (au - a))R = 0$ and $au = a$, which implies that R has a unit. \square

Theorem 3.4 (1) If \mathcal{M} is an H -special class of modules and $\mathcal{K} = \{ R \mid \text{there exists a faithful } R\text{-}H\text{-module } M \in \mathcal{M}_R \}$, then \mathcal{K} is an H -special class and $r^{\mathcal{K}}(R) = \mathcal{M}(R)$.

(2) If \mathcal{K} is an H -special class and $\mathcal{M}_R = \{ M \mid M \text{ is an } R\text{-}H\text{-prime module and } R/(0 : M)_R \in \mathcal{K} \}$, then $\mathcal{M} = \cup \mathcal{M}_R$ is an H -special class of modules and $r^{\mathcal{K}}(R) = \mathcal{M}(R)$.

Proof. (1) By Lemma 3.3(2), (S1) is satisfied. If I is a non-zero H -ideal of R and $R \in \mathcal{K}$, then there exists a faithful R - H -prime module $M \in \mathcal{M}_R$. Since M is faithful, $IM \neq 0$ and $M \in \mathcal{M}_I$ with $(0 : M)_I = (0 : M)_R \cap I = 0$ by (M3). Thus $I \in \mathcal{K}$ and (S2) is satisfied. Now we show that (S3) holds. If I is an H -ideal of R with $I \in \mathcal{K}$, then there exists a faithful I - H -prime module $M \in \mathcal{M}_I$. By (M2) and Lemma 3.3(5), $IM \in \mathcal{M}_R$ and $0 = (0 : M)_I = (0 : IM)_R \cap I$. Thus $(0 : IM)_R \subseteq I^*$. Obviously, $I^* \subseteq (0 : IM)_R$. Thus

$I^* = (0 : IM)_R$. Using (M4), we have that $IM \in \mathcal{M}_{\overline{R}}$ and IM is a faithful \overline{R} - H -module with $\overline{R} = R/I^*$. Thus $R/I^* \in \mathcal{K}$. Therefore \mathcal{K} is an H -special class.

It is clear that

$$\{I \mid I \text{ is an } H\text{-ideal of } R \text{ and } R/I \in \mathcal{K}\} = \{(0 : M)_R \mid M \in \mathcal{M}_R\}.$$

Thus $r^{\mathcal{K}}(R) = \mathcal{M}(R)$.

(2) It is clear that (M1) is satisfied. If I is an H -ideal of R with $M \in \mathcal{M}_I$, then M is an I - H -prime module with $I/(0 : M)_I \in \mathcal{K}$. By Lemma 3.3(5), IM is an R - H -prime module with $(0 : M)_I = (0 : IM)_R \cap I$. It is clear that

$$(0 : IM)_R = \{a \in R \mid (H \cdot a)I \subseteq (0 : M)_I \text{ and } I(H \cdot a) \subseteq (0 : M)_I\}$$

and

$$(0 : IM)_R / (0 : M)_I = (I / (0 : M)_I)^*.$$

Thus $R / (0 : IM)_R \cong (R / (0 : M)_I) / ((0 : IM)_R / (0 : M)_I) = (R / (0 : M)_I) / (I / (0 : M)_I)^* \in \mathcal{K}$, which implies that $IM \in \mathcal{M}_R$ and (M2) holds. Let $M \in \mathcal{M}_R$ and I be an H -ideal of R with $IM \neq 0$. By Lemma 3.3(6), M is an I - H -prime module and $I / (0 : M)_I = I / ((0 : M)_R \cap I) \cong (I + (0 : M)_R) / (0 : M)_R$. Since $R / (0 : M)_R \in \mathcal{K}$, $I / (0 : M)_I \in \mathcal{K}$ and $M \in \mathcal{M}_I$. Thus (M3) holds. It follows from Lemma 3.3(3) that (M4) holds.

It is clear that

$$\{I \mid I \text{ is an } H\text{-ideal of } R \text{ and } 0 \neq R/I \in \mathcal{K}\} = \{(0 : M)_R \mid M \in \mathcal{M}_R\}.$$

Thus $r^{\mathcal{K}}(R) = \mathcal{M}(R)$. \square

Theorem 3.5 *Let $\mathcal{M}_R = \{M \mid M \text{ is an } R\text{-}H\text{-prime module}\}$ for any H -module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then \mathcal{M} is an H -special class of modules and $\mathcal{M}(R) = r_{Hb}(R)$.*

Proof. It follows from Lemma 3.3(3)(5)(6) that \mathcal{M} is an H -special class of modules. By Lemma 3.3(2),

$$\{R \mid R \text{ is an } H\text{-prime module algebra with } R \neq 0\} =$$

$$\{R \mid \text{there exists a faithful } R\text{-}H\text{-prime module }\}.$$

Thus $r_{Hb}(R) = \mathcal{M}(R)$ by Theorem 2.4(1). \square

Theorem 3.6 *Let $\mathcal{M}_R = \{M \mid M \text{ is an } R\text{-}H\text{-irreducible module}\}$ for any H -module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then \mathcal{M} is an H -special class of modules and $\mathcal{M}(R) = r_{Hj}(R)$, where r_{Hj} is the H -Jacobson radical of R defined in [7].*

Proof. If M is an R - H -irreducible module and $J(Hx) = 0$ for $0 \neq x \in M$ and an H -ideal J of R , let $N = \{m \in M \mid J(Hm) = 0\}$. Since $J(h(am)) = J(\sum_h(h_1 \cdot a)(h_2 m)) = 0$, $am \in N$ for any $m \in N, h \in H, a \in R$, we have that N is an R -submodule of M . Obviously, N is an H -submodule of M . Thus N is an R - H -submodule of M . Since $N \neq 0$, we have that $N = M$ and $JM = 0$, i.e. $J \subseteq (0 : M)_R$. Thus M is an R - H -prime module and $(M1)$ is satisfied. If M is an I - H -irreducible module and I is an H -ideal, then IM is an R - H -module. If N is an R - H -submodule of IM , then N is also an I - H -submodule of M , which implies that $N = 0$ or $N = M$. Thus $(M2)$ is satisfied. If M is an R - H -irreducible module and I is an H -ideal of R with $IM \neq 0$, then $IM = M$. If N is an non-zero I - H -submodule of M , then IN is an R - H -submodule of M by Lemma 3.3(5) and $IN = 0$ or $IN = M$. If $IN = 0$, then $I \subseteq (0 : M)_R$ by the above proof and $IM = 0$. We get a contradiction. If $IN = M$, then $N = M$. Thus M is an I - H -irreducible module and $(M3)$ is satisfied.

It follows from Lemma 3.3(3) that $(M4)$ holds. By Theorem 3.4(1), $\mathcal{M}(R) = r_{Hj}(R)$.

□

J.R. Fisher [7, Proposition 2] constructed an H -radical r_H by a common hereditary radical r for algebras, i.e. $r_H(R) = (r(R) : H) = \{a \in R \mid h \cdot a \in r(R) \text{ for any } h \in H\}$. Thus we can get H -radicals $r_{bH}, r_{lH}, r_{jH}, r_{bmH}$.

Definition 3.7 An R - H -module M is called an R - H -BM-module, if for M the following conditions are fulfilled:

- (i) $RM \neq 0$;
- (ii) If I is an H -ideal of R and $I \not\subseteq (0 : M)_R$, then there exists an element $u \in I$ such that $m = um$ for all $m \in M$.

Theorem 3.8 Let $\mathcal{M}_R = \{M \mid M \text{ is an } R\text{-}H\text{-BM-module}\}$ for every H -module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then \mathcal{M} is an H -special class of modules.

Proof. It is clear that M satisfies (M_1) and (M_4) . To prove (M_2) we exhibit: if $I \triangleleft_H R$ and $M \in \mathcal{M}_I$, then M is an I - H -prime module and IM is an R - H -prime module. If J is an H -ideal of R with $J \not\subseteq (0 : M)_R$, then JI is an H -ideal of I with $JI \not\subseteq (0 : M)_I$. Thus there exists an element $u \in JI \subseteq J$ such that $um = m$ for every $m \in M$. Hence $IM \in \mathcal{M}_R$.

To prove (M_3) , we exhibit: if $M \in \mathcal{M}_R$ and I is an H -ideal of R with $IM \neq 0$. If J is an H -ideal of I with $J \not\subseteq (0 : M)_I$, then $(J) \not\subseteq (0 : M)_R$, where (J) is the H -ideal generated by J in R . Thus there exists an elements $u \in (J)$ such that $um = m$ for every $m \in M$. Moreover,

$$m = um = uum = uuum = uuum = u^3m$$

and $u^3 \in J$. Thus $M \in \mathcal{M}_I$. □

Proposition 3.9 *If M is an R - H -BM-module, then $R/(0 : M)_R$ is an H -simple module algebra with unit.*

Proof. Let I be any H -ideal of R with $I \not\subseteq (0 : M)_R$. Since M is an R - H -BM-module, there exists an element $u \in I$ such that $uam = am$ for every $m \in M, a \in R$. It follows that $a - ua \in (0 : M)_R$, whence $R = I + (0 : M)_R$. Thus $(0 : M)_R$ is a maximal H -ideal of R . Therefore $R/(0 : M)_R$ is an H -simple module algebra.

Next we shall show that $R/(0 : M)_R$ has a unit. Now $R \not\subseteq (0 : M)_R$, since $RM \neq 0$. By the above proof, there exists an element $u \in R$ such that $a - ua \in (0 : M)_R$ for any $a \in R$. Hence $R/(0 : M)_R$ has a left unit. Furthermore, by Lemma 3.7 (7) it has a unity element. \square

Proposition 3.10 *If R is an H -simple-module algebra with unit, then there exists a faithful R - H -BM-module.*

Proof. Let $M = R$. It is clear that M is a faithful R - H -BM-module. \square

Theorem 3.11 *Let $\mathcal{M}_R = \{ M \mid M \text{ is an } R\text{-}H\text{-BM-module} \}$ for every H -module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then $r_{Hbm}(R) = \mathcal{M}(R)$, where r_{Hbm} denotes the H -upper radical determined by $\{R \mid R \text{ is an } H\text{-simple module algebra with unit}\}$.*

Proof. By Theorem 3.8, \mathcal{M} is an H -special class of modules. Let

$$\mathcal{K} = \{R \mid \text{there exists a faithful } R\text{-}H\text{-BM-module}\}.$$

By Theorem 3.4(1), \mathcal{K} is an H -special class and $r^{\mathcal{K}}(R) = \mathcal{M}(R)$. Using Proposition 3.9 and 3.10, we have that

$$\mathcal{K} = \{R \mid R \text{ is an } H\text{-simple module algebra with unit}\}.$$

Therefore $\mathcal{M}(R) = r_{Hbm}(R)$. \square

Assume that H is a finite-dimensional semisimple Hopf algebra with $t \in f_H^l$ and $\epsilon(t) = 1$. Let

$$G_t(a) = \{z \mid z = x + (t.a)x + \sum(x_i(t.a)y_i + x_iy_i) \text{ for all } x_i, y_i, x \in R\}.$$

R is called an r_{gt} - H -module algebra, if $a \in G_t(a)$ for all $a \in R$.

Theorem 3.12 *r_{gr} is an H -radical property of H -module algebra and $r_{gt} = r_{Hbm}$.*

Proof. It is clear that any H -homomorphic image of r_{gt} - H -module algebra is an r_{gt} - H -module algebra. Let

$$N = \sum\{I \triangleleft_H \mid I \text{ is an } r_{gt}\text{-}H\text{-ideal of } R\}.$$

Now we show that N is an r_{gt} - H -ideal of R . In fact, we only need to show that $I_1 + I_2$ is an r_{gt} - H -ideal for any two r_{gt} - H -ideals I_1 and I_2 . For any $a \in I_1, b \in I_2$, there exist $x, x_i, y_i \in R$ such that

$$a = x + (t \cdot a)x + \sum_i (x_i(t \cdot a)y_i + x_iy_i).$$

Let

$$c = x + (t \cdot (a+b))x + \sum x_i(t \cdot (a+b))y_i + x_iy_i \in G_t(a+b).$$

Obviously,

$$a + b - c = b - (t \cdot b)x - \sum x_i(t \cdot b)y_i \in I_2.$$

Thus there exist $w, u_j, v_j \in R$ such that

$$a + b - c = w + (t \cdot (a + b - c))w + \sum_j (u_j(t \cdot (a + b - c))v_j + u_jv_j).$$

Let $d = (t \cdot (a+b))w + w + \sum_j (u_j(t \cdot (a+b))v_j + u_jv_j)$ and $e = c - \sum_j u_j(t \cdot c)v_j - (t \cdot c)w$. By computation, we have that

$$a + b = d + e.$$

Since $c \in G_t(a+b)$ and $d \in G_t(a+b)$, we get that $e \in G_t(a+b)$ and $a + b \in G_t(a+b)$, which implies that $I_1 + I_2$ is an r_{gt} - H -ideal.

Let $\bar{R} = R/N$ and \bar{B} be an r_{gt} - H -ideal of \bar{R} . For any $a \in B$, there exist $x, x_i, y_i \in R$ such that

$$\bar{a} = \bar{x} + (t \cdot \bar{a})\bar{x} + \sum (\bar{x}_i(t \cdot \bar{a})\bar{y}_i + \bar{x}_i\bar{y}_i)$$

and

$$x + (t \cdot a)x + \sum (x_i(t \cdot a)y_i + x_iy_i) - a \in N.$$

Let

$$c = x + (t \cdot a)x + \sum (x_i(t \cdot a)y_i + x_iy_i) \in G_t(a).$$

Thus there exist $w, u_j, v_j \in R$ such that

$$a - c = (t \cdot (a - c))w + w + \sum (u_j(t \cdot (a - c))v_j + u_jv_j)$$

and

$$a = (t \cdot a)w + w + \sum u_j(t \cdot a)v_j + u_jv_j + c - (t \cdot c)w - \sum u_j(t \cdot c)v_j \in G_t(a),$$

which implies that B is an r_{gt} - H -ideal and $\bar{B} = 0$. Therefore r_{gt} is an H -radical property. \square

Proposition 3.13 *If R is an H -simple module algebra, then $r_{gr}(R) = 0$ iff R has a unit.*

Proof. If R is an H -simple module algebra with unit 1, then $-1 \notin G_t(-1)$ since

$$x + (t \cdot (-1))x + \sum(x_i(t \cdot (-1))y_i + x_iy_i) = 0$$

for any $x, x_i, y_i \in R$. Thus R is r_{gt} - H -semisimple. Conversely, if $r_{gt}(R) = 0$, then there exists $0 \neq a \notin G_t(a)$ and $G_t(a) = 0$, which implies that $ax + x = 0$ for any $x \in R$. It follows from Lemma 9.3.3 (7) that R has a unit. \square

Theorem 3.14 $r_{gt} = r_{Hbm}$.

Proof. By Proposition 3.13, $r_{gt}(R) \subseteq r_{Hbm}(R)$ for any H -module algebra R . It remains to show that if $a \notin r_{gt}(R)$ then $a \notin r_{Hbm}(R)$. Obviously, there exists $b \in (a)$ such that $b \notin G_t(b)$, where (a) denotes the H -ideal generated by a in R . Let

$$\mathcal{E} = \{I \triangleleft_H R \mid G_t(b) \subseteq I, b \notin I\}.$$

By Zorn's Lemma, there exists a maximal element P in \mathcal{E} . P is a maximal H -ideal of R , for, if Q is an H -ideal of R with $P \subseteq Q$ and $P \neq Q$, then $b \in Q$ and $x = -bx + (bx + x) \in Q$ for any $x \in R$. Consequently, R/P is an H -simple module algebra with $r_{gt}(R/P) = 0$. It follows from Proposition 3.13 that R/P is an H -simple module algebra with unit and $r_{Hbm}(R) \subseteq P$. Therefore $b \notin r_{Hbm}(R)$ and so $a \notin r_{Hbm}(R)$. \square

Definition 3.15 Let I be an H -ideal of H -module algebra R , N be an R - H -submodule of R - H -module M . (N, I) are said to have "L-condition", if for any finite subset $F \subseteq I$, there exists a positive integer k such that $F^k N = 0$.

Definition 3.16 An R - H -module M is called an R - H -L-module, if for M the following conditions are fulfilled:

- (i) $RM \neq 0$.
- (ii) For every non-zero R - H -submodule N of M and every H -ideal I of R , if (N, I) has "L-condition", then $I \subseteq (0 : M)_R$.

Proposition 3.17 If M is an R - H -L-module, then $R/(0 : M)_R$ is an r_{lH} - H -semisimple and H -prime module algebra.

Proof. If M is an R - H -L-module, let $\bar{R} = R/(0 : M)_R$. Obviously, \bar{R} is H -prime. If \bar{B} is an r_{lH} - H -ideal of \bar{R} , then (M, B) has "L-condition" in R - H -module M , since for any finite subset F of B , there exists a natural number n such that $F^n \subseteq (0 : M)_R$ and $F^n M = 0$. Consequently, $B \subseteq (0 : M)_R$ and \bar{R} is r_{lH} -semisimple. \square

Proposition 3.18 R is a non-zero r_{lH} - H -semisimple and H -prime module algebra iff there exists a faithful R - H -L-module.

Proof. If R is a non-zero r_{lH} - H -semisimple and H -prime module algebra, let $M = R$. Since R is an H -prime module algebra, $(0 : M)_R = 0$. If (N, B) has "L-condition" for non-zero R - H -submodule of M and H -ideal B , then, for any finite subset F of B , there exists an natural number n , such that $F^n N = 0$ and $F^n(NR) = 0$, which implies that $F^n = 0$ and B is an r_{lH} - H -ideal, i.e. $B = 0 \subseteq (0 : M)_R$. Consequently, M is a faithful R - H - L - module.

Conversely, if M is a faithful R - H - L -module, then R is an H -prime module algebra. If I is an r_{lH} - H -ideal of R , then (M, I) has "L-condition", which implies $I = 0$ and R is an r_{lH} - H -semisimple module algebra. \square

Theorem 3.19 Let $\mathcal{M}_R = \{ M \mid M \text{ is an } R\text{-}H\text{-}L\text{-module}\}$ for any H -module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then \mathcal{M} is an H -special class of modules and $\mathcal{M}(R) = r_{Hl}(R)$, where $\mathcal{K} = \{R \mid R \text{ is an } H\text{-prime module algebra with } r_{lH}(R) = 0\}$ and $r_{Hl} = r^{\mathcal{K}}$.

Proof. Obviously, (M1) holds. To show that (M2) holds, we only need to show that if I is an H -ideal of R and $M \in \mathcal{M}_I$, then $IM \in \mathcal{M}_R$. By Lemma 3.3(5), IM is an R - H -prime module. If (N, B) has the "L-condition" for non-zero R - H -submodule N of IM and H -ideal B of R , i.e. for any finite subset F of B , there exists a natural number n such that $F^n N = 0$, then (N, BI) has "L-condition" in I - H -module M . Thus $BI \subseteq (0 : M)_I = (0 : IM)_R \cap I$. Considering $(0 : IM)_R$ is an H -prime ideal of R , we have that $B \subseteq (0 : IM)_R$ or $I \subseteq (0 : IM)_R$. If $I \subseteq (0 : IM)_R$, then $I^2 \subseteq (0 : M)_I$ and $I \subseteq (0 : M)_I$, which contradicts $IM \neq 0$. Therefore $B \subseteq (0 : IM)_R$ and so IM is an R - H - L - module.

To show that (M3) holds, we only need to show that if $M \in \mathcal{M}_R$ and $I \triangleleft_H R$ with $IM \neq 0$, then $M \in \mathcal{M}_I$. By Lemma 3.3(6), M is an I - H -prime module. If (N, B) has the "L-condition" for non-zero I - H -submodule N of M and H -ideal B of I , then IN is an R - H -prime module and $(IN, (B))$ has "L-condition" in R - H -module M , since for any finite subset F of (B) , $F^3 \subseteq B$ and there exists a natural number n such that $F^{3n}IN \subseteq F^{3n}N = 0$, where (B) is the H -ideal generated by B in R . Therefore, $(B) \subseteq (0 : M)_R$ and $B \subseteq (0 : M)_I$, which implies $M \in \mathcal{M}_I$.

Finally, we show that (M4) holds. Let $I \triangleleft_H R$ and $\bar{R} = R/I$. If $M \in \mathcal{M}_R$ and $I \subseteq (0 : M)_R$, then M is an \bar{R} - H - prime module. If (N, \bar{B}) has "L-condition" for H -ideal \bar{B} of \bar{R} and \bar{R} - H -submodule N of M , then subset $F \subseteq B$ and there exists a natural number n such that $F^n N = (\bar{F})^n N = 0$. Consequently, $M \in \mathcal{M}_{\bar{R}}$. Conversely, if $M \in \mathcal{M}_{\bar{R}}$, we can similarly show that $M \in \mathcal{M}_R$.

The second claim follows from Proposition 3.18 and Theorem 3.4(1). \square

Theorem 3.20 $r_{Hl} = r_{lH}$.

Proof. Obviously, $r_{lH} \leq r_{Hl}$. It remains to show that $r_{Hl}(R) \neq R$ if $r_{lH}(R) \neq R$. There exists a finite subset F of R such that $F^n \neq 0$ for any natural number n . Let

$$\mathcal{F} = \{I \mid I \text{ is an } H\text{-ideal of } R \text{ with } F^n \not\subseteq I \text{ for any natural number } n\}.$$

By Zorn's lemma, there exists a maximal element P in \mathcal{F} . It is clear that P is an H -prime ideal of R . Now we show that $r_{lH}(R/P) = 0$. If $0 \neq B/P$ is an H -ideal of R/P , then there exists a natural number m such that $F^m \subseteq B$. Since $(F^m + P)^n \neq 0 + P$ for any natural number n , we have that B/P is not locally nilpotent and $r_{lH}(R/P) = 0$. Consequently, $r_{Hl}(R) \neq R$. \square

In fact, all of the results hold in braided tensor categories determined by (co)quasitriangular structure.

References

- [1] R. J. Blattner and S. Montgomery. Ideal and quotients in crossed products of Hopf algebras. *J. Algebra* **125** (1992), 374–396.
- [2] R. J. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, *Transactions of the AMS.*, **298** (1986)2, 671–711.
- [3] William Chin. Crossed products of semisimple cocommutative of Hopf algebras. *Proceeding of AMS*, **116** (1992)2, 321–327.
- [4] William Chin. Crossed products and generalized inner actions of Hopf algebras. *Pacific Journal of Math.*, **150** (1991)2, 241–259.
- [5] Weixin Chen and Shouchuan Zhang. The module theoretic characterization of special and supernilpotent radicals for Γ -rings. *Math.Japonic*, **38**(1993)3, 541–547.
- [6] M. Cohen and S. Montgomery. Group-graded rings, smash products, and group actions. *Trans. Amer. Math. Soc.*, **282** (1984)1, 237–258.
- [7] J.R. Fisher. The Jacobson radicals for Hopf module algebras. *J. algebra*, **25**(1975), 217–221.
- [8] Shaoyue Liu. Rings and Algebras. Science Press, 1983 (in Chinese).
- [9] S. Montgomery. Hopf algebras and their actions on rings. CBMS Number 82, Published by AMS, 1993.
- [10] M. E. Sweedler. Hopf Algebras. Benjamin, New York, 1969.

- [11] F. A. Szasz. Radicals of rings. John Wiley and Sons, New York, 1982.
- [12] Shouchuan Zhang and Weixin Chen. The general theory of radicals and Baer radical for Γ -rings. J. Zhejiang University, **25** (1991), 719–724(in Chinese).