

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

PROGRAMA DE ESTUDIOS

Materia:	Inteligencia Artificial		Semestre:	Séptimo
Ciclo:	Ingeniería Informática			1
Código:	115			
Horas Semanales:	Teóricas:	4		
	Prácticas:	-		
	Laboratorio:	2		
Horas Semestrales:	Teóricas:	68		
	Prácticas:	-		
	Laboratorio:	34		
Pre-Requisitos:	Algoritmos y Estructuras de datos II			

I - OBJETIVOS GENERALES

Los objetivos de esta materia son desarrollar en el alumno las capacidades de:

- 1. Identificar, formular y resolver problemas utilizando agentes inteligentes.
- 2. Usar técnicas, capacidades, y herramientas modernas de Inteligencia Artificial.

II - OBJETIVOS ESPECÍFICOS

Al término del curso el estudiante será capaz de:

- 1. Reconocer las propiedades y características de los agentes.
- 2. Utilizar algoritmos de búsquedas para la resolución de problemas de búsquedas.
- 3. Entender los principios básicos sobre Agentes Inteligentes, Probabilidad Condicional, NaiveBayes, Modelos de Markov, Aprendizaje Máquina, Regresión Lineal y Logística, Aprendizaje Supervisado, Árboles de Decisiones, Sistemas de Recomendaciones, Redes Neuronales y Robótica
- 4. Resolver problemas de Aprendizaje Máquina

Algunas capacidades secundarias que podrá adquirir adicionalmente son:

- 1. Saber cómo funcionan algoritmos de búsquedas informadas, no informadas, locales y búsquedas entre adversarios.
- 2. Reconocer problemas que pueden ser resueltos utilizando probabilidades, redes bayesianas y modelos ocultos de Markov

	Actualización No.:		
Aprobado por	Resolución No.:		Página 1 de 4
Fecha:	Fecha:		
	r cena	Sello y Firma	

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

PROGRAMA DE ESTUDIOS

- 3. Escribir programas basados en agentes inteligentes para la resoluciones de problemas de clasificación y aprendizaje supervisado
- 4. Aplicar las fórmulas probabilísticas para la implementación de programas que permiten realizar recomendaciones en base a un conjunto de conocimiento

III. CONTENIDOS PROGRAMÁTICOS

Unidad I

Introducción: Aplicaciones de la Inteligencia Artificial

- 1. Concepto Inteligencia Artificial
- 2. Agente Inteligente, Propiedades, Ejemplos
- 3. Problemas parcialmente observables vs totalmente observables, determinísticos vs estocásticos, continuos vs discretos, adversarios vs no adversarios.
- 4. Aplicaciones de los agentes inteligentes
- 5. Definición de problemas
- 6. Proceso de aprendizaje de un agente

Unidad II

Algoritmos de Búsquedas: No Informadas, Informadas, Locales y Adversariales

- 1. Búsqueda en Profundidad y en Anchura
- 2. Búsqueda de Costo Uniforme
- 3. Búsqueda en Profundidad Limitada e Iterada
- 4. Búsqueda Bidireccional
- 5. Heurísticas
- 6. Búsqueda Primero el Mejor
- 7. Búsqueda A*
- 8. Búsqueda Ascenso de Colinas
- 9. Búsqueda Temple Simulado
- 10. Algoritmo Genético
- 11. Búsqueda Minimax
- 12. Búsqueda Minimax Alfa Beta Poda
- 13. Búsqueda Espectimax y Espectiminimax

	Actualización No.:		
Aprobado por	Resolución No.:		Página 2 de 4
Fecha:	resolución rvo		
	Fecha:	Sello y Firma	

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

PROGRAMA DE ESTUDIOS

Unidad III

Probabilidad

- 1. Probabilidad Simple
- 2. Complemento
- 3. Probabilidad Independiente
- 4. Probabilidad Condicional
- 5. Regla de Bayes
- 6. Aplicaciones de la Regla de Bayes
- 7. Utilización de la regla de Bayes
- 8. Modelo de Markov
- 9. Suavizado de Laplace
- 10. Redes Bayesianas Dinámicas

Unidad IV

Aprendizaje Máquina

- 1. Concepto
- 2. Aplicaciones
- 3. Aprendizaje Supervisado
- 4. Problemas de Clasificación
- 5. Support Vector Machine
- 6. Regresión Lineal
- 7. Árboles de Decisiones
- 8. Regresión Logística
- 9. Redes Neuronales
- 10. Sistemas de Recomendación

Unidad V

Robótica

- 1. Conceptos
- 2. Localización
- 3. Planificación
- 4. Control de Procesos

	Actualización No.:		
Aprobado por	Resolución No.:		Página 3 de 4
Fecha:	Resolucion No.:		
1 001141.	Fecha:	Sello y Firma	

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

PROGRAMA DE ESTUDIOS

IV - METODOLOGÍA

Clases Teóricas: Los alumnos deberán leer previamente los materiales antes de la clase.

Clases Prácticas: En aula, resolver ejercicios, con la guía del profesor de la clase. Estas prácticas son de carácter individual y grupal. Además de los ejercicios que se desarrollan en aula, a los alumnos se les entregan: Ejercicios y proyectos para resolver en la casa.

Clases de Laboratorio: Resolver con la computadora ejercicios y proyectos, con la guia del profesor de laboratorio.

V. CRITERIOS DE EVALUACION

Conforme al Reglamento Académico y Reglamento de Cátedra vigente.

VI. BIBLIOGRAFÍA

Russell, Norvig. Inteligencia Artificial. (2004). Un enfoque moderno. 2da, Prentice-Hall.

Cazorla, E., Colomina, A. Lozano (2003). Inteligencia Artificial - Modelos, Técnicas y Áreas de Aplicación. Thomson, España.

Segaran, T. (2007). ProgrammingCollectiveIntelligence. O'ReillyMeida.

	Actualización No.:		
Aprobado por	Danalusián Na		Página 4 de 4
E. L.	Resolución No.:		
Fecha:	Fecha:	Sello y Firma	
		Selio y I illia	