Tutorials for the R package chapt

Youyi Fong

April 23, 2018

This tutorial illustrates the use of *chngpt* (Fong et al., 2017a) with code examples. Estimation methods are described in Fong (2018); Fong et al. (2017b), hypothesis testing methods are described in Fong et al. (2015).

1 Continuous threshold regression models

1.1 Threshold linear regression example 1

To estimate a threshold linear regression model with a segmented-type change point for the relationship between V3 BioV3B and NAb score in the MTCT dataset, we call

```
fit=chngptm (formula.1=V3_BioV3B~1, formula.2=~NAb_score, dat.mtct.2,
   type="segmented", family="gaussian",
   est.method="fastgrid", var.type="bootstrap", save.boot=TRUE)
```

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- est.method defaults to fastgrid and is recommended
- var.type: bootstrap method is recommended here
- save.boot: saves bootstrap samples for plotting bootstrap distributions

Calling summary(fit), we get

Change point model type: segmented

Coefficients:

	Est]	p.value	(lower	upper)
(Intercept)	-22.33152	NA	-30.07675	-14.58628
NAb_score	67.23925	NA	49.98398	84.49452
(NAb_score-chngpt)+	-64.83129	NA	-81.61413	-48.04845

Threshold:

31.8% (lower upper) 0.4653923 0.4535000 0.4772845

To get an estimate of the slope after threshold, we call

Calling plot(fit, which=1) and plot(fit, which=3), we get the two plots on the left-hand side of Figure 1. Changing est.method to smoothapprox in the model fit led us to the two plots on the right-hand side.

Figure 1: This is a replicate of Fong (2018) Figure 1. Left: results by fast grid search; right: results by smooth approximation search. Top: scatterplots with fitted models (gray lines); bottom: bootstrap distributions of the threshold estimate from 10³ replicates. The dashed lines correspond to the 95% symmetric bootstrap confidence interval.

1.2 Threshold linear regression example 2

To estimate a threshold linear regression model with a segmented-type change point in *Girth* for the *trees* dataset, we call

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- var.type: bootstrap method is recommended for confidence interval
- weights can be supplied

Calling summary(fit), we get

Change point model type: segmented

Coefficients:

	Est	p.value	(lower.(Intercept)	upper).(Intercept)
(Intercept)	-24.614440	NA	-37.580354	-11.648527
Girth	3.993966	NA	2.785558	5.202373
(Girth-chngpt)+	4.266618	NA	1.765770	6.767467

Threshold:

```
74.2% (lower upper)
16.0 12.9 19.1
```

Calling plot(fit), we get Figure 2.

Figure 2: (a) Scatterplot of timber volume vs girth. The gray line shows the fitted segmented model. (b) Log likelihood of the submodel versus threshold parameter.

To test whether there is a change point, we call

```
test=chngpt.test(formula.null=Volume\sim1, formula.chngpt=\simGirth, trees, type="segmented", family="gaussian")
```

When printed, we get

Maximum of Likelihood Ratio Statistics

data: trees

Maximal statistic = 17.694, change point = 15.388, p-value = 0.00014 alternative hypothesis: two-sided

The first line gives the type of test carried out, and it is maximal likelihood ratio test here, which is the default. In addition, a plot function can be called on the test object to show the score or likelihood ratio statistic as a function of candidate change points.

1.3 Threshold logistic regression example 1

To estimate a logistic regression model with a hinge-type change point in NAb_SF162L for the MTCT dataset, we call

```
library(splines)
fit=chngptm(formula.1=y~birth, formula.2=~NAb_SF162LS, dat.mtct,
type="hinge", family="binomial",
est.method="smoothapprox", var.type="robust",
aux.fit=glm(y~birth + ns(NAb_SF162LS,3), dat.mtct, family="binomial"))
```

- formula.2 and formula.1: threshold variable and the rest of the model
- type: type of threshold model to fit
- est.method: smoothapprox is recommended
- var.type: robust is recommended for confidence interval
- aux.fit: required for robust variance estimation

Calling summary(fit), we get

Change point model type: hinge

Coefficients:

```
OR p.value (lower upper)
(Intercept) 0.7026523 0.341429662 0.3388366 1.4571044
birthVaginal 1.2397649 0.523159883 0.6393632 2.4039809
(NAb_SF162LS-chngpt)+ 0.6712371 0.001332547 0.5270730 0.8548327
```

Threshold:

```
26.3% (lower upper)
7.373374 5.472271 8.186464
```

To test whether there is a change point, we call

```
test=chngpt.test(formula.null=y\simbirth, formula.chngpt=\simNAb_SF162LS, dat.mtct, type="hinge", family="binomial", main.method="score")
```

When printed, we get

Maximum of Score Statistics

```
data: dat.mtct
Maximal statistic = 3.3209, change point = 7.0347, p-value = 0.00284
alternative hypothesis: two-sided
```

The first line gives the type of test carried out, and it may be maximal likelihood ratio test. In addition, a plot function can be called on the test object to show the score or likelihood ratio statistic as a function of candidate change points.

2 Discontinuous threshold regression models

The package also provides some support for estimation and hypothesis testing under discontinuous threshold regression models. What is missing, though, is confidence intervals for parameter estimates.

References

- Fong, Y. (2018), "Fast Bootstrap Confidence Intervals for Continuous Threshold Linear Regression," *Journal of Computational and Graphical Statistics*, in press.
- Fong, Y., Di, C. and Permar, S. (2015), "Change point testing in logistic regression models with interaction term," *Statistics in medicine*, 34, 1483–1494.
- Fong, Y., Huang, Y., Gilbert, P. and Permar, S. (2017a), "chngpt: threshold regression model estimation and inference," *BMC Bioinformatics*, 18, 454–460.
- Fong, Y., Chong, D., Huang, Y. and Gilbert, P. (2017b), "Model-robust Inference for Continuous Threshold Regression Models," *Biometrics*, 73, 452–462.