Que1.1 Data type of columns in Table

Field name	Туре	Mode
customer_id	STRING	NULLABLE
customer_unique_id	STRING	NULLABLE
customer_zip_code_prefix	INTEGER	NULLABLE
customer_city	STRING	NULLABLE
customer_state	STRING	NULLABLE

Field name	Туре	Mode
geolocation_zip_code_prefix	INTEGER	NULLABLE
geolocation_lat	FLOAT	NULLABLE
geolocation_Ing	FLOAT	NULLABLE
geolocation_city	STRING	NULLABLE
geolocation_state	STRING	NULLABLE

Customers table

Field name	Туре	Mode
order_id	STRING	NULLABLE
order_item_id	INTEGER	NULLABLE
product_id	STRING	NULLABLE
seller_id	STRING	NULLABLE
shipping_limit_date	TIMESTAMP	NULLABLE
price	FLOAT	NULLABLE
freight_value	FLOAT	NULLABLE

Geolocation table

Field name	Туре	Mode
review_id	STRING	NULLABLE
order_id	STRING	NULLABLE
review_score	INTEGER	NULLABLE
review_comment_title	STRING	NULLABLE
review_creation_date	TIMESTAMP	NULLABLE
review_answer_timestamp	TIMESTAMP	NULLABLE

Order_items

Field name	Туре	Mode
order_id	STRING	NULLABLE
customer_id	STRING	NULLABLE
order_status	STRING	NULLABLE
order_purchase_timestamp	TIMESTAMP	NULLABLE
order_approved_at	TIMESTAMP	NULLABLE
order_delivered_carrier_date	TIMESTAMP	NULLABLE
order_delivered_customer_date	TIMESTAMP	NULLABLE
order_estimated_delivery_date	TIMESTAMP	NULLABLE

Order_reviews

Field name	Type	Mode
order_id	STRING	NULLABLE
payment_sequential	INTEGER	NULLABLE
payment_type	STRING	NULLABLE
payment_installments	INTEGER	NULLABLE
payment_value	FLOAT	NULLABLE

Orders

Field name	Туре	Mode
product_id	STRING	NULLABLE
product_category	STRING	NULLABLE
product_name_length	INTEGER	NULLABLE
product_description_length	INTEGER	NULLABLE
product_photos_qty	INTEGER	NULLABLE
product_weight_g	INTEGER	NULLABLE
product_length_cm	INTEGER	NULLABLE
product_height_cm	INTEGER	NULLABLE
product_width_cm	INTEGER	NULLABLE

Payments

Field name	Туре	Mode
seller_id	STRING	NULLABLE
seller_zip_code_prefix	INTEGER	NULLABLE
seller_city	STRING	NULLABLE
seller_state	STRING	NULLABLE

<u>Sellers</u>

Products

Que 1.2 Time period for which the data given

Query:

Output Table:

Row /	first_order_date ▼	last_order_date ▼	time_duration_in_year
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	2

Que 1.3 Cities and States of customers ordered during the given period Query:

Row	customer_city ▼	customer_state ▼	
1	rio de janeiro	RJ	
2	sao leopoldo	RS	
3	general salgado	SP	
4	brasilia	DF	
5	paranavai	PR	
6	cuiaba	MT	
7	sao luis	MA	
8	maceio	AL	
9	hortolandia	SP	
10	varzea grande	MT	

Que 2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:

```
with purchase per month as
       (select order_id, customer_id,
       format_date("%Y-%m", date(order_purchase_timestamp)) as
        year mnth of purchase
        from `trgt_dataset234.orders` ),
  payment per order as (SELECT order id,
                         round(sum(payment value),2) as total payment
                         FROM `sclr-sql-project1.trgt dataset234.payments`
                         group by order id)
   SELECT prm.year_mnth_of_purchase,
          count(prm.order id) as count of orders,
          round(sum(po.total payment),2) as revenue per month
  FROM purchase_per_month prm
  join payment_per_order po
  on prm.order id=po.order id
  group by prm.year_mnth_of_purchase
  order by prm.year_mnth_of_purchase ,count_of_orders desc,
   revenue_per_month desc
```

Output Table:

Row /	year_mnth_of_purchase ▼	count_of_orders 🕶	revenue_per_month
1	2016-09	3	252.24
2	2016-10	324	59090.48
3	2016-12	1	19.62
4	2017-01	800	138488.04
5	2017-02	1780	291908.01
6	2017-03	2682	449863.6
7	2017-04	2404	417788.03
8	2017-05	3700	592918.82
9	2017-06	3245	511276.38
10	2017-07	4026	592382.92

Insight/Recommendation:

Peak seasonality seen in May, July, and August

Row	year_mnth_of_purchase ▼	count_of_orders 🕶	revenue_per_month
1	08	10843	1696821.64
2	05	10573	1746900.97
3	07	10318	1658923.67

Que 2.2 What time do brazillian customers tends to buy?

Query:

Table Output:

Row	part_of_day ▼	11	count_of_orders 🔻
1	Afternoon		38135
2	Night		28331
3	Morning		27733
4	Dawn		5242

Insight/Recommendation:

- 1. Mostly Brazillian prefer purchasing in Afternoon so it will be good if manpower in the afternoon slightly more than other parts of day.
- 2. We can shift some manpower from the dawn to the Afternoon because in the dawn there is less traffic Compare to other parts of day.

Que 3.1 Get Month on month orders by states

Query:

Output Table:

Row	customer_state ▼	month_on_month ▼	count_of_orders 🕶
1	AC	Apr	9
2	AC	Aug	7
3	AC	Dec	5
4	AC	Feb	6
5	AC	Jan	8
6	AC	Jul	9
7	AC	Jun	7
8	AC	Mar	4
9	AC	May	10
10	AC	Nov	5

Insight/Recommendation:

• From 2016 to 2018 data in month of May, July, and August there is growth in orders

Que 3.2 Distribution of customers across the states in Brazil

Query:

```
select customer_state, count(distinct customer_id) as count_of_customer
from `trgt_dataset234.customers`
group by customer_state
order by count_of_customer desc
```

Row /	customer_state ▼	11	count_of_customer_
1	SP		41746
2	RJ		12852
3	MG		11635
4	RS		5466
5	PR		5045
6	SC		3637
7	BA		3380
8	DF		2140
9	ES		2033
10	GO		2020

Que 4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
Query:
```


Que 4.2 Mean & Sum of price and freight value by customer state

Query:

total_freight_value	mean_freight_value	total_item_price 🕶	mean_item_price 🔻	customer_state 🔻	Row /
3686.75	40.07	15982.95	173.73	AC	1
15914.59	35.84	80314.81	180.89	AL	2
5478.89	33.21	22356.84	135.5	AM	3
2788.5	34.01	13474.3	164.32	AP	4
100156.68	26.36	511349.99	134.6	BA	5
48351.59	32.71	227254.71	153.76	CE	6
50625.5	21.04	302603.94	125.77	DF	7
49764.6	22.06	275037.31	121.91	ES	8
53114.98	22.77	294591.95	126.27	GO	9
31523.77	38.26	119648.22	145.2	MA	10

Que 5.1 Calculate days between purchasing, delivering and estimated delivery

Query:

Row	order_id ▼	date_diff_prchs_to_carrier_delivery	date_diff_prchs_to_customer	date_diff_prchs_to_estimated	diff_estimated_delivery
1	00010242fe8c5a6d1ba2dd792	6	7	15	8
2	00018f77f2f0320c557190d7a1	8	16	18	2
3	000229ec398224ef6ca0657da	1	7	21	13
4	00024acbcdf0a6daa1e931b03	2	6	11	5
5	00042b26cf59d7ce69dfabb4e	11	25	40	15
6	00048cc3ae777c65dbb7d2a06	1	6	21	14
7	00054e8431b9d7675808bcb8	1	8	24	16
8	000576fe39319847cbb9d288c	1	5	20	15
9	0005a1a1728c9d785b8e2b08	8	9	9	0
10	0005f50442cb953dcd1d21e1f	1	2	20	18

```
Que 5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

time_to_delivery = order_delivered_customer_date - order_purchase_timestamp

diff_estimated_delivery = order_estimated_delivery_date - order_delivered_customer_date
```

Query:

Row	order_id ▼	time_to_delivery	diff_estimated_delivery
1	00010242fe8c5a6d1ba2dd792	7	8
2	00018f77f2f0320c557190d7a1	16	2
3	000229ec398224ef6ca0657da	7	13
4	00024acbcdf0a6daa1e931b03	6	5
5	00042b26cf59d7ce69dfabb4e	25	15
6	00048cc3ae777c65dbb7d2a06	6	14
7	00054e8431b9d7675808bcb8	8	16
8	000576fe39319847cbb9d288c	5	15
9	0005a1a1728c9d785b8e2b08	9	0
10	0005f50442cb953dcd1d21e1f	2	18

```
Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
Que 5.3
Query:
   with cte as
         (select cust.customer_state,
                  itm.freight value,
                  date diff(order delivered customer date,
                  order_purchase_timestamp, day)as time_to_delivery,
                  date diff(order estimated delivery date,
                  order delivered customer date, day) as diff estimated delivery
             from `trgt dataset234.customers` cust
              join `trgt_dataset234.orders` ord
              on cust.customer id=ord.customer id
              join `trgt dataset234.order items` itm
              on ord.order_id=itm.order_id)
select cte.customer state, round(avg(freight value),2) as mean freight value ,
       round(avg(time to delivery),2) as avg time to delivery,
       round(avg(diff_estimated_delivery),2) as avg_diff_estimated_delivery
from cte
group by customer state
order by customer_state
```

Row	customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	AC	40.07	20.33	20.01
2	AL	35.84	23.99	7.98
3	AM	33.21	25.96	18.98
4	AP	34.01	27.75	17.44
5	BA	26.36	18.77	10.12
6	CE	32.71	20.54	10.26
7	DF	21.04	12.5	11.27
8	ES	22.06	15.19	9.77
9	GO	22.77	14.95	11.37
10	MA	38.26	21.2	9.11

Que 5.4.a Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Query:

```
with cte as (select cust.customer_state,
                itm.freight_value
              from `trgt_dataset234.customers` cust
              join `trgt dataset234.orders` ord
              on cust.customer_id=ord.customer_id
              join `trgt dataset234.order items` itm
              on ord.order id=itm.order id)
(select "heighest avg freight value" as heighest_or_lowest,
    customer_state, round(avg(freight_value),2) as avg_freight_value
from cte
group by customer_state
order by avg freight value desc
limit 5)
union all
(select "lowest avg freight value" as heighest_or_lowest,
    customer_state, round(avg(freight_value),2) as avg_freight_value
from cte
group by customer_state
order by avg freight value asc
limit 5)
```

Row /	heighest_or_lowest ▼	customer_state	avg_freight_value
1	heighest avg freight value	RR	42.98
2	heighest avg freight value	PB	42.72
3	heighest avg freight value	RO	41.07
4	heighest avg freight value	AC	40.07
5	heighest avg freight value	PI	39.15
6	lowest avg freight value	SP	15.15
7	lowest avg freight value	PR	20.53
8	lowest avg freight value	MG	20.63
9	lowest avg freight value	RJ	20.96
10	lowest avg freight value	DF	21.04

```
Que 5.4.b Top 5 states with highest/lowest average time to delivery
```

```
Query:
```

```
with cte1 as
        (select customer_state,
             date diff(order delivered customer date, order purchase timestamp,
             day) as time to delivery,
        from `trgt_dataset234.customers` cust
        join `trgt dataset234.orders` ord
        on cust.customer id= ord.customer id)
(select "lowest avg time to delivery" as heighest_or_lowest,
      customer state, round(avg(time to delivery), 2) as avg time to delivery,
from cte1
group by customer_state
order by avg time to delivery asc
limit 5)
union all
(select "heighest average time to delivery" as heighest or lowest,
      customer_state, round(avg(time_to_delivery),2) as avg_time_to_delivery,
from cte1
group by customer state
order by avg_time_to_delivery desc
limit 5)
```

Row /	heighest_or_lowest ▼	customer_state 🔻	avg_time_to_delivery
1	lowest avg time to delivery	SP	8.3
2	lowest avg time to delivery	PR	11.53
3	lowest avg time to delivery	MG	11.54
4	lowest avg time to delivery	DF	12.51
5	lowest avg time to delivery	SC	14.48
6	heighest average time to delivery	RR	28.98
7	heighest average time to delivery	AP	26.73
8	heighest average time to delivery	AM	25.99
9	heighest average time to delivery	AL	24.04
10	heighest average time to delivery	PA	23.32

Que 5.4.c Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
Query:
```

```
with cte as
    (select customer_state,
             date_diff(order_estimated_delivery_date,
            order delivered customer date, day) as diff estimated delivery,
    from `trgt_dataset234.customers` cust
    join `trgt dataset234.orders` ord
    on cust.customer id=ord.customer id)
(select "fast delivery state" as fast_or_notFast, customer_state,
    round(avg(diff estimated delivery),2) as mean diff estimated delivery
from cte
group by customer_state
order by mean diff estimated delivery asc
limit 5)
union all
(select "Not fast delivery state" as fast or notFast,
    customer_state, round(avg(diff_estimated_delivery),2) as
mean diff estimated delivery
from cte
group by customer_state
order by mean diff estimated delivery desc
limit 5)
```

Output Table:

Row /	fast_or_notFast ▼	customer_state	mean_diff_estimated_delivery
1	Not fast delivery state	AC	19.76
2	Not fast delivery state	RO	19.13
3	Not fast delivery state	AP	18.73
4	Not fast delivery state	AM	18.61
5	Not fast delivery state	RR	16.41
6	fast delivery state	AL	7.95
7	fast delivery state	MA	8.77
8	fast delivery state	SE	9.17
9	fast delivery state	ES	9.62
10	fast delivery state	BA	9.93

Insight/Recommendation:

- AC, RO, AP, AM, RR this states are taking more days compare to other states.
- States which are taking more days for delivery this can be reduced by optimizing supply chain.

Que 6.1 Month over Month count of orders for different payment types

Query:

Row /	month_on_month_	payment_type /	order_count
1	2016-Dec	credit_card	1
2	2016-Oct	credit_card	254
3	2016-Oct	UPI	63
4	2016-Oct	voucher	23
5	2016-Oct	debit_card	2
6	2016-Sep	credit_card	3
7	2017-Apr	voucher	202
8	2017-Apr	credit_card	1846
9	2017-Apr	UPI	496
10	2017-Apr	debit_card	27

Que 6.2 Count of orders based on the no. of payment installments

Query:

```
select payment_installments, count(order_id)as order_count
from `trgt_dataset234.payments`
  group by payment_installments
  order by order_count desc
```

Output Table:

Row	payment_installments	order_count ▼
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644

Insight/Recommendation:

• There is growing Trend from 2016 to 2018

• To reach to the more customers more advertisement is needed, specially RR, AP, AC this states have less count of customers compare to other states

Row	customer_state ▼	count_of_customer_/
1	RR	46
2	AP	68
3	AC	81