

Faculdade de Ciências e Tecnologia
Universidade de Coimbra
2010/2011

# Análise e Transformação de Dados Trabalho Prático 1

Igor Nelson Garrido da Cruz №2009111924

Gonçalo Silva Pereira № 2009111643

"Objectivo: Pretende-se adquirir sensibilidade para as questões fundamentais de sinais e sistemas, em particular propriedades de sinais de tempo contínuo e de tempo discreto, transformações de sinais, energia e potência, sistemas lineares, propriedades de sistemas lineares, convolução, estabilidade, resposta a impulso e resposta em frequência."

## Exercício 1.1

Este exercício tem como objectivo obter uma expressão equivalente ao sinal dado, na forma de um somatório de cosenos, para isso foi necessário efectuar alguns cálculos simples:

```
G# = 3
A_1 = 2 * \mod (3, 2) = 2 * 1 = 2
A_2 = 3 * \mod (4, 2) = 3 * 0 = 0
A_3 = 5 * \mod (3, 2) = 5 * 1 = 5
A_4 = 4 * \mod (4, 2) = 4 * 0 = 0
\omega_a = \mod(3, 5) + 2 = 5
\omega_b = \mod(3, 7) + 7 = 10
\omega_c = \mod(3, 9) + 1 = 4
Obtendo assim:
x_1(t) = 2 * \sin(5 * t) * \cos(10 * t) + 5 * \cos(4 * t)^2
```

De seguida, aplicamos as regras de transformação e simplificação de senos e co-senos obtendo o seguinte:

```
x_1(t) = 2 * \frac{1}{2} * (\sin (15 * t) - \sin (5 * t)) + 5 * \cos (4 * t)^2

= \sin (15 * t) - \sin (5 * t) + 5 * \cos (4 * t)^2

= \sin (15 * t) - \sin (5 * t) + 5 * \frac{1}{2} (\cos (8 * t) + \cos (8 * t))

= \cos (15 * t + \pi/2) - \cos (5 * t + \pi/2) + 5/2 (\cos (8 * t) + \cos (4 - 4))

= \cos (15 * t + \pi/2) - \cos (5 * t + \pi/2) + 5/2 * \cos (8 * t) + 5/2
```

#### Exercício 1.2

Neste exercício, tivemos de obter o resultado do sinal contínuo da alínea anterior, aplicando a relação t = nTs, transformando desta forma o sinal contínuo, num sinal discreto:

```
X_1[n] = X_1(t) \text{ com } t = nTs

X_1[n] = 2 * \sin (0.5 * t) * \cos (0.10 * t) + 5 * \cos (0.4 * t)^2 \text{ com } n \in t/Ts
```

#### Exercício 1.3

Como podemos observar as amostras de tempo discreto dadas pela expressão x1[n] coincidem, exactamente, com a representação do sinal contínuo.



#### Exercício 1.4

Usando as funções do calculo simbólico, efectuámos o cálculo exacto da energia do sinal  $X_1(t)$ , obtendo dessa forma que a Energia do mesmo é igual a (83 \*  $\pi$ ) / 4, aproximadamente igual a 65.188048.

Efectuamos também o mesmo cálculo, mas desta vez recorrendo à Regra dos Trapézios e à regra de Simpson, para isso tivemos de implementar estas duas funções:

```
function [E] = simpson(f,n,h)

E=0;

for k=2:2:(n-1),
    E=E+(2*f(k));
end

for k=3:2:(n-2),
    E=E+(4*f(k));
end

E=(E+f(1)+f(n))*(h/3);

end

function [E] = trapezios(f,n,h)
E=0;
```

```
for k=2:n-1, E=E+(2*f(k)); end E=(E+f(1)+f(n))*h/2; end
```

Obtendo assim os seguintes resultados:

Tempo de cálculo da Regra dos Trapézios: 548.907322s

Valor Aproximado: 65.187048

Passo necessário: 0.000040

Tempo de cálculo da Regra de Simpson: 4008.140159s

Valor Aproximado: 65.187048

Passo necessário: 0.000015

# Exercício 1.5

Efectuando o calculo do valor da energia do sinal discreto x1[n], o valor da Energia é de: 65.617761.

# Exercício 2

Neste exercício tivemos de efectuar alguns cálculos para determinar as várias constantes que dependem do número do grupo:

```
G\# = 3
B_{11} = 0.4 * mod(3, 2) = 0.4 * 1 = 0.4
B_{12} = 0.4 * mod(4, 2) = 0.4 * 0 = 0
B_{13} = 0.3 * (mod(3, 3) + 1) = 0.3 * 1 = 0.3
B_{14} = -0.1 * (mod(3, 4) + 1) = -0.1 * 4 = -0.4
B_{2} = 0.6 (mod(3, 2) + 1) = 1.2
B_{3} = 0.5 (mod(3, 2) + 1) = 1.0
Sistemas Discretos:
Y_{1}[n] = 0.4 * x[n-1] + 0.3 * x[n-3] - 0.4 * x[n-4],
Y_{2}[n] = 1.2 * x[2n-4],
Y_{3}[n] = 1.0 * x[n-2] * x[n-3],
Y_{4}[n] = (n-2) * x[n-3]
```

# Exercício 2.1



Exercício 2.2

Adiciona-mos um ruído uniforme com amplitude no intervalo [-0.2,0.2],



## Exercício 2.3

Análise da linearidade do sistema Y<sub>1</sub>[n]:

```
X[n] = ax_1[n]

Y[n] = 0.4 ax[n-1] + 0.3ax[n-3] - 0.4ax[n-4]

Y[n] = a Y_1[n]
```

Verifica a propriedade da Homogeneidade.

```
Y_{1}[n] = 0.4 \times [n-1] + 0.3 \times [n-3] - 0.4 \times [n-4]
X_{1}[n] -> Y_{1}[n] = 0.4 \times [n-1] + 0.3 \times [n-3] - 0.4 \times [n-4]
X_{2}[n] -> Y_{2}[n] = 0.4 \times [n-1] + 0.3 \times [n-3] - 0.4 \times [n-4]
Y[n] = 0.4 \times [n-1] + x[n-3] - x[n-4]) + 0.3 \times [n-1] + x[n-3] - x[n-4]) - 0.4 \times [n-1] + x[n-3] - x[n-4]) = 0.3 \times [n-1] + 0.3 \times [n-3] - 0.3[n-4] \neq Y_{1} + Y_{2}
```

Não verifica a propriedade da Aditividade.

Como para que qualquer sistema discreto seja linear tem de verificar a propriedade da Aditividade e da Homogeneidade, e o sistema acima não verifica a Aditividade, podemos concluir que o mesmo não é Linear.

Análise da linearidade do sistema Y<sub>2</sub>[n]:

```
Y_1[n] = 1.2 \times [2n-4]

Y_2[n] = 1.2 \times [2n-4]

Y[n] = 1.2 \times [2n-4] + x[2n-4] = 1.2 \times [2n-4] + 1.2 \times [2n-4] = Y_1[n] + Y_2[n]
```

O sistema discreto em questão verifica a propriedade da Aditividade.

```
X[n] = a x [2n-4]

Y[n] = 1.2 (a x [2n-4])

Y[n] = 1.2 a Y_1[n]
```

Também verifica a propriedade da Homogeneidade, logo é Linear.

Análise da linearidade do sistema Y<sub>3</sub>[n]:

$$Y[n] = 1 x [n-2] x[n-3]$$
  
 $Y_1[n] = x [n-2] x[n-3]$   
 $Y_2[n] = x [n-2] x[n-3]$ 

$$Y[n] = x [n-2] + x[n-3] * x [n-2] + x[n-3] \neq Y_1 + Y_2$$

Não verifica a propriedade da Aditividade, logo não é um sistema Linear.

Análise da linearidade do sistema Y<sub>4</sub>[n]:

$$Y[n] = (n-2) x[n-3]$$
  
 $Y_1[n] = (n-2) x[n-3]$ 

```
Y_2[n] = (n-2) x[n-3]
```

$$Y[n] = (n-2)(x[n-3] + x[n-3])$$

$$Y[n] = (n-2)(x[n-3]) + (n-2)(x[n-3]) = Y_1[n] + Y_2[n]$$

O sistema em questão satisfaz a propriedade da Aditividade.

$$Y[n] = (n-2)a x[n-3]$$

$$Y[n] = a Y_1[n]$$

Como o sistema acima para além de satisfazer a propriedade da Aditividade, também satisfaz a propriedade da Homogeneidade, concluímos então que o mesmo é Linear.

# Exercício 2.4

Variância do Y<sub>1</sub>:

 $Y(n-n0) = T\{x[n-n0]\}$ 

Y[n] = 0.4 x[n-1] + 0.3 x[n-3] - 0.4 x[n-4]

 $Y_1[n]|x[n-n_0] = 0.4 x[n-n_0-1] + 0.3 x[n-n_0-3] - 0.4 x[n-n_0-4]$ 

 $Y_2[n-n_0] = 0.4 x[n-n_0-1] + 0.3 x[n-n_0-3] - 0.4 x[n-n_0-4]$ 

Deste modo, podemos concluir que o sistema em questão não varia no tempo, ou seja, é invariante.

Variância do Y<sub>2</sub>:

Y[n] = 1.2 x[2n-4]

 $Y_1[n] | x[n-n_0] = 1.2 x[2 (n-n_0)-4]$ 

 $Y_2[n-n_0] = 1.2 x[2 (n-n_0)-4]$ 

Podemos concluir também que este sistema, assim como o anterior, é invariante no tempo.

Variância do Y<sub>3</sub>:

Y[n] = x[n-2] x[n-3]

 $Y_1[n] | x[n-n_0] = x[n-n_0-2] x[n-n_0-3]$ 

 $Y_2[n-n_0] = x[n-n_0-2] x[n-n_0-3]$ 

O sistema Y<sub>3</sub> é invariante no tempo.

Variância do Y<sub>4</sub>:

Y[n] = (n-2) x[n-3]

 $Y_1[n] | x[n-n_0] = (n-2) x[n-n_0-3]$ 

 $Y_2[n-n_0] = (n-n_0-2) x[n-n_0-3]$ 

Como são diferentes, logo este sistema varia no tempo.

## Exercício 2.5

Determinamos a expressão através do seguinte código:

```
n = -54:50; %mostramos uma margem para os valores = 0
ind = find(n>= -40& n < 40);

xnn = zeros (size(n));

xnn (ind) = 1.5 *cos(0.025*pi*n(ind));

nn = -54:50;
n = nn(5:end);

xn = xnn(5:end);

xn_1 = xnn (4:end-1);
%xn_2 = xnn (3:end-2); % constant B<sub>12</sub> = 0
xn_3 = xnn (2:end-3);
xn_4 = xnn (1:end-4);

yln = (0.4*xn_1) + (0.3*xn_3) + ((-0.4)*xn_4);
```

De seguida representa-mos graficamente a mesma, sendo o resultado o seguinte:



# Exercício 2.6

Efectua-mos o cálculo da transformada de Z da resposta a impulso do sistema, H1(z), com condições iniciais nulas, resultando:

0.4\*ztrans(charfcn[1](n), n, z) + 0.3\*ztrans(charfcn[3](n), n, z) - 0.4\*ztrans(charfcn[4](n), n, z)

#### Exercício 2.7

Um sistema é estável, se as raízes estiverem dentro do raio complexo da circunferência do denominador.

#### Exercício 3.1 e 3.2

Executando o código seguinte, são reproduzidas através do sistema de som do computador, várias frequências, entre [200,18000] Hz:

```
tt = 0.5;
f = 800;
fs = 44100;
t = (0:1/fs: tt)';
freq = 11025;
pos = 1;
maximototal=0;
for f = 200:100:18000,
    y = \sin (2 * pi * f * t);
    wavplay(y,fs,'async');
    y=wavrecord(0.5*fs+1,fs);
    for k=1:30
      % dividimos em 30 partes iguais
       subts=length(y)/30;
       suby=y((1+(k-1))*round(subts)):y(k*round(subts));
       maximototal=maximototal+max(abs(suby)); %maximototal+local
    end
    Amp(pos)=maximototal/30;
    pos=pos+1;
    maximototal = 0;
frequencia = 200:100:18000;
plot(frequencia,Amp);
```

#### Exercício 3.3

Executando o código referido em cima, obtemos o gráfico seguinte onde são apresentadas as amplitudes para cada valor da frequência no intervalo [200,18000] Hz.



# Exercício 3.4

Como é normal, os resultados obtidos sofrem muitas variações devido a diversos factores, entre eles, a qualidade do sistema de som, do microfone, a existência de barulho/ruído na zona envolvente onde foram gravados os mesmos sons, como também os próprios materiais de construção do espaço envolvente onde o mesmo foi gravado.