Introduction
Projection-based Real Coded Genetic Algorithm
Experimental Procedure
Experimental Results
Conclusion
Thank you

Benchmarking Projection-Based Real Coded Genetic Algorithm on BBOB-2013 Noiseless Function Testbed

Babatunde Sawyerr¹ Aderemi Adewumi² Montaz Ali³

¹University of Lagos, Lagos, Nigeria
 ²University of KwaZulu-Natal, Durban, South Africa
 ³University of The Witwatersrand, Johannesburg, South Africa

Workshop on Black Box Optimization Benchmarking, 2013

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- Experimental Procedure
 - Experimental Settings
- Experimental Results
 - Empirical Results
 - Discussion
- Thank you

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- Experimental Procedure
 - Experimental Settings
- 4 Experimental Results
 - Empirical Results
 - Discussion
- 5 Thank you

The Global Optimization Problem Real Parameter Optimization

• The task is to minimize an objective function f. Given $f: S \to \Re$ where $S \subset \Re^n$, find $x^* \in S$ for which,

$$f(x^*) \le f(x), \quad \forall x \in S.$$
 (1)

- Black Box approach:
 - gradients are not known or not useful.
 - problem domain are rugged and ill-conditioned.
- Goal:
 - To find the global optimum, x* quickly.
 - With the least search cost (function evaluations).

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- Experimental Procedure
 - Experimental Settings
- 4 Experimental Results
 - Empirical Results
 - Discussion
- Thank you

Problem Statement Genetic Algorithms

Genetic Algorithms

- Developed by John Holland in 1975.
- Goal: Develop robust and adaptive systems.
- Solutions are represented internally as genetic encoding of points.
- Reproduction of offspring via:
 - mutation,
 - recombination.
- Selection methods: initially Fitness-proportional method.
- Model: Generational or Steady state.

Problem Statement Genetic Algorithms

Real Coded Genetic Algorithms

- Real valued representation are used as genetic encodings of points.
- They are better adapted to numerical optimization of continuous problems.
- They can also be easily hybridized with other search methods.

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- Experimental Procedure
 - Experimental Settings
- 4 Experimental Results
 - Empirical Results
 - Discussion
- Thank you

Orthogonal Projection of a vector x on a vector y

For any two *n* dimensional vectors, the projection of a vector *x* on another vector *y* generates a vector, defined by:

$$\hat{y} = \frac{x^T y}{y^T y} y = \frac{x^T y}{\|y\|^2} y = \left(\frac{\|x\| \cos(\theta)}{\|y\|} y\right).$$
 (2)

Note that the projected vector \hat{y} (the offspring) will be in the same direction as y unless $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ in which case the angle, θ , between the two vectors is such that $\cos(\theta) < 0$. As a result, the projected vector is in the opposite direction (the reflection of y about the origin).

Orthogonal Projection of a vector x on a vector y

Figure: Projection of vector x on vector y

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- 3 Experimental Procedure
 - Experimental Settings
- 4 Experimental Results
 - Empirical Results
 - Discussion
- Thank you

The PRCGA Algorithm

- PRCGA was first introduced as RCGA-P in [6, 7].
- The incorporated projection operator showed promising exploratory search capability in some search problems.
- PRCGA is an enhanced version of RCGA-P.

Inputs

- Fitness function f.
- Parameters.

Outputs

- The Best solution x_{best}.
- Fitnss value of x_{best} , $f(x_{best})$.

The PRCGA Algorithm

- **1** Initialize $P_{t=0}, P_t = \{x_{1,t}, x_{2,t}, \dots, x_{N,t}\}$ from S
- 2 $f(x_{i,t}) = \text{evaluate}(P_t), \{1 \leq i \leq N\}$
- While not stopping condition, do steps 4 12
- **4** $\zeta_t = \sigma(f(P_t))$, if $\zeta_t \leq \epsilon$ do step 5 else step 6
- $\hat{P}_t = \text{tournamentSelection}(P_t)$
- \mathbf{O} $\mathbf{C}_t = \mathsf{blend} \cdot \alpha \mathsf{Crossover}(\hat{P}_t, p_c)$
- $M_t = \text{non-uniformMutation}(C_t, p_m)$

- 0 t = t + 1
- end while

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- Separation State

 Experimental Procedure

 Experimental Procedure

 Output

 Description

 Experimental Procedure

 Description

 Experimental Procedure

 Output

 Description

 Experimental Procedure

 Descrip
 - Experimental Settings
- 4 Experimental Results
 - Empirical Results
 - Discussion
- Thank you

Computer System and Software

Computer System Configuration

- HP Probook 6545b with AMD Turion(tm) II Ultra Dual-Core mobile M620 CPU processor.
- CPU Speed: 2.5GHz.
- RAM: 2.75GB

Software

- Microsoft Windows 7 Professional service pack 1.
- MATLAB 7.10 (R2010a).
- COmparing Continuous Optimisers (COCO) software.
- Post-Processing Script in Python

Experimental setup

- The experimental setup was carried out according to [3] on the benchmark functions provided in [2, 4].
- Two independent restart strategies were employed
 - Checks for stagnation [1].
 - Maximum number of generations reached without f_{target} .
- For each restart strategy, the genetic run is initiated with an initial population P_0 which is $\sim Unif([-4,4]^D)$.

Parameter Settings

Parameters

- Population Size = min(100, 100 × D), where D = dimension.
- Maximum Number of Evaluation = $10^5 \times D$.
- Tournament size = 3.
- Crossover rate $p_c = 0.8$.
- Mutation rate $p_m = 0.15$.
- Non-uniformity factor for Mutation $\beta = 15$.
- Crafting effort CrE = 0.

CPU Timing Experiment

The CPU timing experiment was conducted using the same independent restart strategies on the function f_8 for a duration of 30 seconds.

Time per function evaluation							
Dimension	2	3	5	10	20	40	
Time $(\times 10^{-5})$	7.1	7.5	6.9	6.9	7.1	8.0	

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- 3 Experimental Procedure
 - Experimental Settings
- Experimental Results
 - Empirical Results
 - Discussion
- Thank you

Ellipsoid separable

Rastrigin separable

Skew Rastrigin-Bueche separable

- Introduction
 - Problem Statement
 - Genetic Algorithms
- Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm
- 3 Experimental Procedure
 - Experimental Settings
- Experimental Results
 - Empirical Results
 - Discussion
- 5 Thank you

Discussion

Separable Functions

- PRCGA performed well on separable functions $f_1 f_4$.
- PRCGA also solved Gallagher's Gaussian 101-me Peaks Function f₂₁, a multi-modal function with weak global structure.
- PRCGA showed some encouraging performance in solving problems $f_6 f_7$ in dimensions 2 10.

Functions with high conditioning and unimodal

• Functions $f_{10} - f_{14}$ prove to be difficult for PRCGA to solve to the required level of accuracy.

Empirical Results
Discussion

Discussion

Comparison of PRCGA with Previous GAs

- DBRCGA [1] outperformed PRCGA.
- PRCGA performed better than the RCGA in [8].
- PRCGA performed better than the simpleGA in [5].

Conclusion

- The benchmarking of PRCGA on noiseless BBOB function testbed shows the strengths and weaknesses of the algorithm.
- The performance of PRCGA shows that in its current form it cannot compete with state-of-the-art evolutionary algorithms.

Introduction
Projection-based Real Coded Genetic Algorithm
Experimental Procedure
Experimental Results
Conclusion
Thank you

Thank You!!!

For Further Reading I

S. Finck, N. Hansen, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions.
Technical Report 2009/20, Research Center PPE, 2009.
Updated February 2010.

For Further Reading II

N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.

For Further Reading III

Application of a simple binary genetic algorithm to a noiseless testbed benchmark.

In GECCO (Companion), pages 2473-2478, 2009.

Hybrid real coded genetic algorithms with pattern search and projection.

PhD thesis, University of Lagos, Lagos, Nigeria, 2010.

For Further Reading IV

B. A. Sawyerr, M. M. Ali, and A. O. Adewumi. A comparative study of some real coded genetic algorithms for unconstrained global optimization.

Optimization Methods and Software, 26(6):945-970, 2011.

T.-D. Tran and G.-G. Jin.

Real-coded genetic algorithm benchmarked on noiseless black-box optimization testbed.

In GECCO (Companion), pages 1731-1738, 2010.