Chapitre EN3

Les bascules (latch et flip-flop) Les registres

SOMMAIRE

- 1. Définitions
- 2. Les bascules asynchrones
- 3. Les bascules synchrones sur état
- 4. Les bascules synchrones sur front
- 5. Registre simple
- 6. Registre à décalage
- 7. Caractéristiques dynamiques

DÉFINITIONS — Rappels

Logique séquentielle

La combinaison des sorties ne dépend pas seulement de celle des entrées mais aussi de l'état précédent des sorties.

Types de circuits

Astable: le circuit ne possède pas d'état stable (oscillateur)

Monostable: le circuit possède un état stable et un état fugitif de durée déterminée déclenché par un évènement particulier (trigger)

Bistable: le circuit possède deux états stables (mémoire)

LES BASCULES ASYNCHRONES — Bascule élémentaire : la bascule $ar{R}ar{S}$

Circuit minimal

Bascule: circuit bistable

il faut un moyen de fixer l'état désiré

Réalisation pratique

LES BASCULES ASYNCHRONES — Analyse du fonctionnement

Les bascules asynchrones — La bascule $\bar{R}\bar{S}$

• Application de la bascule \overline{RS} : circuit anti-rebonds

- Limitations des bascules asynchrones
 - Fonctionnement asynchrone: la sortie réagit "immédiatement" à l'entrée
 - Les entrées doivent donc rester stables

LES BASCULES SYNCHRONES SUR ÉTAT — Principe et application à la bascule RS

CLK inactif: la bascule est isolée (il faut s'assurer qu'elle se trouve en configuration mémoire)

CLK actif: la bascule fonctionne normalement

Rmq: "actif" ne signifie pas nécessairement au niveau haut (1)

CLK = 0, R et S indifférents car NA1 et NA2 imposent un état $\bar{R} = \bar{S} = 1$ et par conséquent: Qn = Qn-1 (état mémoire)

CLK = 1: fonctionnement classique de la bascule car NA1 et NA2 se comportent en inverseurs

la bascule est transparente: la sortie réagit "immédiatement" à l'entrée lorsque CLK=1

LES BASCULES SYNCHRONES SUR ÉTAT — Bascule D

D (Data) = donnée

CLK = 1: la bascule est transparente

Bascule D: bloc de base incontournable

LES BASCULES SYNCHRONES SUR ÉTAT — Limitations pratiques

exemple avec une bascule D

- La transition en sortie *semble* déclenchée par un front d'horloge
- La sortie *peut évoluer* pendant le temps où CLK = 1

les entrées doivent *rester stables* lorsque CLK = 1

LES BASCULES SYNCHRONES SUR FRONT — Structure Maître-Esclave (Master-Slave)

Exemple avec une bascule D

Principe: maître et esclave travaillent en alternance

Elimine la nécessité d'avoir des entrées stables lorsque CLK est actif Dans cet exemple, la donnée apparaît en Q (et \overline{Q}) lors du front montant de CLK

REGISTRE SIMPLE

Ensemble de n latches (ou flip-flops) servant à stocker n bits

REGISTRE À DÉCALAGE — Principe

Application possible: retarder un signal de N périodes d'horloge avec N bascules

(exemple ci-dessus avec N=4)

REGISTRE À DÉCALAGE — Conversion série-parallèle

Application possible: UART (réception)

UART: Universal Asynchronous Receiver Transmitter (par ex. liaison RS232 d'un PC)

REGISTRE À DÉCALAGE — Conversion parallèle-série

 $\overline{LOAD}/SHIFT=0$ Pi connecté à Di: chargement parallèle du registre $\overline{LOAD}/SHIFT=1$ Qi connecté à Di+1: décalage vers la droite et sortie série

Application possible: UART (émission)

CARACTÉRISTIQUES TEMPORELLES — Propagation & signal d'horloge

Temps de propagation

Transition active de l'horloge

Temps écoulé entre la transition ACTIVE sur l'horloge (CLK) et un changement d'état sur une sortie (Q ou \overline{Q})

Durée d'impulsion (pulse duration)

t_{CKL} et t_{CKH} doivent permettre aux bascules maître et esclave de se positionner correctement

$$t_{ckw} = \frac{1}{f_{max}}$$

CARACTÉRISTIQUES TEMPORELLES — Setup & Hold

Temps de prépositionnement (setup time, t_{su}) et de maintien (hold time, t_h)

t_{su} et t_h permettent à la bascule maître d'effectuer sa transition vers un état mémoire avec des données d'entrée stables

t_{su} et t_h ne sont pas nécessairement égaux, th peut être nul

La transition active de l'horloge n'est pas obligatoirement un front montant

CARACTÉRISTIQUES TEMPORELLES — Fréquence maximale de fonctionnement

ANNEXE – Symboles et définitions

horloge active sur front (descendant)

horloge active sur état

horloge active sur front (montant)

Bascule avec horloge active sur état = latch (verrou)
Bascule avec horloge active sur front = Flip-Flop

Dans une bascule, il n'y a pas de relation temporelle directe entre la/les entré(es) et la sortie Q.

Les temps caractéristiques sont définis par rapport à l'horloge CLK:

 t_{su} , t_{h} entre CLK et la/les entré(es) de données t_{p} entre CLK et les sorties Q et \overline{Q}

Annexe — Entrées d'initialisation

exemple avec une bascule RS

$$\overline{PRESET} = 0, \overline{CLEAR} = 1 \longrightarrow Q = 1$$
 $\overline{PRESET} = 1, \overline{CLEAR} = 0 \longrightarrow Q = 0$
 $\overline{PRESET} = 1, \overline{CLEAR} = 1 \longrightarrow \text{bascule normale}$

Les entrées d'initialisation peuvent être synchrones ou asynchrones

TITRE

