

2003 学年上学期《 概率论与数理统计》试卷

(A卷, 3学分用, 共10道大题, 120分钟, 2004年1月)

院系	专业 、班级
姓名	成绩报告表序号

题号	_	 11	四	五	六	七	八	九	+	总分
得分										

- 一、选择题(每小题3分,共24分)
- 1. 假设事件 A 和 B 满足______,则有 P(B|A)=1。
- (A) $A \subset B$; (B) $P(B | \overline{A}) = 0$; (C) $A \supset B$; (D) A 是必然事件。
- 2. A,B 是任意二事件,则下列各结论中正确的是。。
 - (A) $(A \cup B) B = A$; (B) $(A B) \cup B = A$; (C) $(A \cup B) B \subset A$;
- (D) $(A-B) \cup B \subset A$.
- 3. 设随机变量 X 与 Y 相互独立, 其分布列分别为

$$X \sim \begin{pmatrix} 1 & -1 \\ 0.5 & 0.5 \end{pmatrix}$$
 $Y \sim \begin{pmatrix} 1 & -1 \\ 0.5 & 0.5 \end{pmatrix}$

则下列各式正确的是____。

(A)
$$X = Y$$
; (B) $P(X = Y) = 0$; (C) $P(X = Y) = \frac{1}{2}$; (D) $P(X = Y) = 1$.

4. 设随机变量 X 的密度函数为 $f(x) = \frac{1}{\pi(1+x^2)}$,则 Y=2X 的密度函数为

(A)
$$\frac{2}{\pi(4+y^2)}$$
; (B) $\frac{1}{\pi(4+y^2)}$; (C) $\frac{1}{\pi(1+4y^2)}$; (D) $\frac{2}{\pi(1+y^2)}$.

- 5. 设随机变量 X, Y 满足 D(X+Y) = D(X-Y), 则必有____。
- (A) X,Y 不相关; (B) X,Y 独立; (C) D(Y)=0; (D) D(XY)=0。
- **6.** 设 X_1, X_2, \dots, X_9 相互独立,且 $E(X_i) = 1, D(X_i) = 1(i = 1, \dots, 9)$,则对 $\forall \epsilon > 0$,有

(A)
$$P\{\left|\sum_{i=1}^{9} X_{i} - 1\right| < \epsilon\} \ge 1 - \epsilon^{-2}; (B) P\{\left|\frac{1}{9}\sum_{i=1}^{9} X_{i} - 1\right| < \epsilon\} \ge 1 - \epsilon^{-2};$$

(C)
$$P\{\left|\sum_{i=1}^{9} X_{i} - 9\right| < \epsilon\} \ge 1 - \epsilon^{-2}; (D) P\{\left|\sum_{i=1}^{9} X_{i} - 9\right| < \epsilon\} \ge 1 - 9\epsilon^{-2}.$$

- 7. 已知 X~B(n,p), E(X)=2.4, D(X)=1.44,则二项分布的参数为____。
- (A) n = 4, p = 0.6; (B) n = 6, p = 0.4; (C) n = 8, p = 0.3;
- (D) n = 24, p = 0.1
- **8.** 设 X_1 和 X_2 为任意两个相互独立的连续型随机变量,它们的概率密度函数分别为 $f_1(x)$ 和 $f_2(x)$,分布函数分别为 $F_1(x)$ 和 $F_2(x)$,则下列各结论中正确的是。
 - (A) $f_1(x)+f_2(x)$ 必为某一随机变量的密度函数;
 - (B) $f_1(x) \times f_2(x)$ 必为某一随机变量的密度函数;
 - (C) $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数;
 - (D) $F_1(x) \times F_2(x)$ 必为某一随机变量的分布函数。

- 二、(8分)盒子中有10个球,其中4个白球,4个黑球,2个红球。现从盒中随机取3个球,求
- (1) 取到的球中恰好含有两个白球的概率; 0.3
- (2) 取到的球中至少含有一个白球 的概率。5/6

三、(8分)掷两颗骰子,在已知两颗骰子点数之和为7的条件下,求其中一颗为1点的条件概率。1/3

四、(8分)一袋中有5个球,编号为1,2,3,4,5。现从中一次取3个球,以X表示取出的3个球中的最小号码,试求X的分布列。

五、(10分)设随机变量 X 的密度函数为

$$f(x) = \begin{cases} 1 - |x|, & -1 < x < 1 \\ 0, & \text{其他} \end{cases}$$

求随机变量 $Y = X^2 + 1$ 的分布函数与密度函数。

六、(8分)设连续型随机向量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} \frac{3}{2} xy^2, & 0 \le x \le 2, 0 \le y \le 1 \\ 0, & 其他 \end{cases}$$

问 X 与 Y 是否独立?

七、(8分)设随机变量 $X\sim B(100,0.8)$,试用棣莫弗一拉普拉斯定理求 $P\{80\leq X\leq 100\}$ 的近似值($\Phi(x)$ 为标准正态随机变量的分布函数,当 x>4 时,取 $\Phi(x)=1$)。0.5

八、(10分)设总体 X 服从几何分布,即

$$P{X = k} = (1-p)^{k-1}p, \quad k = 1,2,\dots$$

其中0 。现从 <math>X 中抽得容量为 n 的样本的一组观察值 x_1, \cdots, x_n ,求参数 p 的最大似然估计。

九、(10 分)在正态总体 $N(\mu,1)$ 中抽取容量为 100 的样本,经计算得样本均值的观测值 $\bar{x}=5.32$,试在显著性水平 $\alpha=0.01$ 下,检验假设 $H_0:\mu=5,H_1:\mu\neq 5$ (其中 $\Phi(2.57)=0.995,\Phi(2.33)=0.99$)。

十、(6分)设某班车起点站上车人数 X 服从参数为 λ (λ >0)的泊松分布,并且中途不再有人上车。而车上每位乘客在中途下车的概率为 p(0 ,且中途下车与否相互独立,以 <math>Y 表示在中途下车的人数。试求(1)(X,Y)的联合概率分布律;(2)求 Y 的分布律(列)。(注:教材 P212 有答案)