

NBS PUBLICATIONS

NBSIR 79-1757

Volume 10

HUD UTILITIES DEMONSTRATION SERIES

DATA REDUCTION PROCESSES FOR THE JERSEY CITY TOTAL ENERGY PROJECT

Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

Prepared for:

Department of Housing and Urban Development Energy, Building Technology and Standards Division Office of Policy Development and Research Washington, D.C. 20410

MAY 1979

100 .U56 79-1757

NBSIR 79-1757

DATA REDUCTION PROCESSES FOR THE JERSEY CITY TOTAL ENERGY PROJECT

JUL 10 1979
NOT ACC CLIC

OCLOO

US6

79-1157

Daniel E. Rorrer William G. Rippey Yui-May L. Chang

Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

May 1979

Prepared for:

U.S. Department of Housing and Urban Development Energy, Building Technology and Standards Division Office of Policy Development and Research Washington, D.C. 20410

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

	•	

TABLE OF CONTENTS

							Page
List	of E	Figures	and Tables	• • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • •	vii
Abs t	ract	• • • • • •		• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	v
1.	Intro	duction		• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • •	. 1
	1.1	Backgro	und	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • •	. 1
		1.1.1 1.1.2 1.1.3	Instrument	ation Syste	em Descript	ion	, 3
				-			
		1.1.4 1.1.5					
	1.2	Purpose	and Scope		• • • • • • • • • •		, 9
2.		-		_		1 Data Reduc-	, 9
3.	Desci	ription	of Data Re	duction So	tware Func	ctions	. 13
	3.1 3.2					3)	
		3.2.1 3.2.2 3.2.3 3.2.4	Calculation Calculation	on of Hourly on of Daily	y Derived V and Monthl	ring Units Variables Ly Summaries .	. 15 . 15
	3.3	Creation	on of Yearl	ly Data Sumi	mary Disk	• • • • • • • • • • • •	. 16
4.	Desc	ription	of Output	and Display	y Software	Capabilities	. 16
	4.1 4.2					• • • • • • • • • • • • • • • • • • • •	
			•			• • • • • • • • • • • • •	
5.	Form	at Desc	ciptions	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	. 18
	5.1	Raw Da	a		• • • • • • • • •		. 18

			Page
	5.1.1 5.1.2	Magnetic Tape Format	18 18
6. Dat	a Conver	sion and Editing	19
6.1 6.2 6.3 6.4	Initia Data F Charac	g Considerations	20 23
	6.5.1 6.5.2 6.5.3 6.5.4	Non-existing Measurements	24 24 25 29
		6.5.4.1 Turbine Meters	32 34 34
	6.5.5 6.5.6	Special	36
×.	6.5.7 6.5.8 6.5.9 6.5.10 6.5.11 6.5.12	Events	40 40 40
6.6 6.8 6.8	TEREVI Error Output	tine Classification	42 42 42
		sophy	43
		· · · · · · · · · · · · · · · · · · ·	44
Append:	ices	• • • • • • • • • • • • • • • • • • • •	46
I. II. IV. V.	Instrume Derived Typical	Magnetic Tape Scan - Character by Character entation Locations and Raw Data Codes Variable Definitions and Codes TEREVIEW Output of a Converted Scan Numerical Summary Listing	47 48 59 64 70

			rage
	1. 2. 3.	Hourly Daily Monthly	70 75 80
VI.	Тур	ical Graphical Displays	85
	1. 2. 3.	Daily Monthly Yearly	85 86 87
VII.	Тур	ical Modem Scan Output	. 88
	1. 2.	Characters Received	88 89
VIII.	Raw	Data Format	93
	1. 2. 3.	Character Location Description	93 95 95
IX.	List	ting of Subroutines	96
	1. 2. 3. 4. 5.	Input or Output	96 96 96 97 97
. X.	TER	EVIEW Command Listing	100
	1. 2.	Definitions and Abbreviations	
XI.	TER	EVIEW Error Messages	106
Acknow	ledg	ements	110

•

		LIST OF FIGURES	Page
Figure	1	Aerial view of the total energy site	2
Figure	2	Plan layout of the total energy site	2
Figure	3	Total energy plant schematic	4
Figure	4	Photograph of the total energy data acquisition system	5
Figure	5	Basic data flow through the total energy data acquisition system	7
Figure	6	Photograph of mini-computer system	10
Figure	7	Overall data flow diagram	11
Figure	8	Initialization and command decoding flow diagram	21
Figure	9	Pulse counter sequence	31
Figure	10	Logical connection of event (on/off) measurements	38
Figure	11	Logical diagram of the binary decomposition of a number representing six events	39

DATA REDUCTION PROCESSES FOR THE JERSEY CITY TOTAL ENERGY PROJECT

by

Daniel E. Rorrer, William G. Rippey, Yui-May L. Chang

Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

ABSTRACT

The major processes used in the reduction of the data obtained from the Jersey City, New Jersey, Total Energy Site are discussed. These discussions begin with the acquisition of the raw engineering data and carry through to the final data presentation in a form from which the summary performance reports of the Total Energy Site are produced.

The major functions of the Jersey City total energy data editing and conversion software program developed by the National Bureau of Standards are described in some detail. Included are descriptions of the command structure, overall data flow, data editing, data conversions, error processing, and the creation of data output tapes for use in further analysis. The more important subroutines which are used to handle the individual operations are also discussed. The equations used in the calculation of engineering units are described, along with their derivations where appropriate.

The report assumes that the reader has a basic familiarity with computer and engineering terminology.

Key Words: Computerized processing; data editing; data flow; data reductions; data processing; raw data conversion to engineering units; total energy; total energy data flow.

by

Daniel E. Rorrer, William G. Rippey, Yui-May L. Chang

Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

INTRODUCTION

During the normal generation of electrical power, a considerable amount of energy is lost in the form of waste heat. The total energy concept makes use of this waste heat to supplement the energy required for other purposes such as the heating and cooling of buildings and the generation of domestic hot water. In order for this to be a viable concept, the point of use of the waste heat must be close to the point of generation of the electrical energy. Thus, the single plant generation of electrical energy as well as thermal energy is encouraged. Such a plant is a total energy plant [1]*.

1.1 BACKGROUND

The Department of Housing and Urban Development (HUD) has sponsored the Jersey City, New Jersey, Total Energy study with the National Bureau of Standards (NBS) having the responsibility for the evaluation of the effectiveness of the Total Energy plant in a building complex. Extensive engineering and economic data are being continually collected and analyzed by NBS to determine the energy savings, costs, reliability, and environmental impact of an actual total energy system.

1.1.1 Site Description

The Jersey City Total Energy system consists of a Central Equipment Building (CEB) which supplies all electrical and thermal energy to a 6.35 acre (2.6 hectare) site which has 4 medium to high-rise apartments housing 1300 people in 485 apartments, an elementary school, a swimming pool, a 46,000 ft² (4300 m²) commercial building, and parking space for the site tenants. Figures 1 and 2 show an aerial view and a site plan respectively.

The Central Equipment Building (CEB) is a three-story structure which houses five 600 kW diesel engine generators, two 13.4 MBtu/hour (4.0 MW) hot water boilers, and two 546 ton (6.6 MBtu/hour or 1.9 MW)

^{*}Numbers in brackets refer to reference numbers.

FIGURE 1. Aerial view of the total energy site

FIGURE 2. Plan layout of the total energy site

absorption chillers. The engines and boilers burn #2 fuel oil which is stored in three 25,000 gallon (95 m³) underground tanks. The total energy plant is completely automatic, allowing unattended overnight and weekend operation. The plant is operated by a private contractor under contract to HUD.

Heat is recovered from the engine-generators and utilized by a primary hot-water (PHW) loop (see Fig. 3). Primary hot water at a temperature ranging from 180°F to 230°F (82°C to 110°C) is pumped at an approximate rate of 11000 pounds (5000 kg) per minute, transferring heat from the engines and boilers to the chillers and site hot water system. From the engines, the PHW passes through two 25 hp (19 kW) circulation pumps and then through the boilers where additional heat can be added if necessary. During the summer the PHW is routed through two 546 ton (1.9 MW) absorption chillers which provide 45°F (7°C) chilled water for the site. The PHW then passes through two water-to-water heat exchangers transferring heat to the site secondary hot-water system. In the rare event that both heating and cooling demands are extremely low, a forced circulation, dry surface heat exchanger (dry cooler) releases the excess PHW heat to the atmosphere as a control on the upper limit of the PHW temperature. Figure 3 depicts schematically the major components of the CEB.

Electric power, hot water, and chilled water are delivered to the site via underground conduits. Two sets of 480-volt, three-phase feeders (normal and essential) are used for eletrical power distribution. In the event of an electrical plant outage, power is automatically supplied to the essential feeder (only) from the local utility company to preserve certain operations (emergency lighting, fire protection systems, and hot water supply and return, and chilled water supply and return). Heat exchangers in the individual buildings transfer heat to and from the building loops which are designed for space heating, cooling, and domestic hot-water production.

The site is also equipped with a pneumatic trash collection system (PTC) which collects refuse from the site buildings into a single, compactor-type receptacle located in the central equipment building.

1.1.2 Instrumentation System Description

Evaluation of the performance of the total energy plant and its components and the determination of building utility loads are being accomplished by analyzing data obtained from transducers which are located throughout the CEB and site buildings. These specialized transducers translate physical variables into analog voltages that are sampled and recorded electronically on magnetic tape in a digital format. All measurments are directly related to physical and electrical parameters (such as flow rate, temperature, pressure, power, voltage, frequency, etc). The Data Acquisition System (DAS) (see Fig. 4) is the engineering tool that accomplishes the task of recording these measurement data every five minutes on a 24-hour, year round basis [2]. These

FIGURE 3. Total energy plant schematic

FIGURE 4. Photograph of the total energy data acquisition system

5-minute recording intervals (scans) are short enough to reflect changes in plant status and to measure accurately the changing physical quantities.

The instrumentation consists of a variety of transducers which measure both thermal and electrical variables. Water flow and fuel flow are measured by either turbine or nutating disk meters with integrating circuitry, or by venturis with differential pressure cells. Temperature measurements are obtained by either copper/constantan or iron/constantan thermocouples. Temperature differentials are measured by multi-junction copper/constantan thermopiles. Potential and current transformers placed on the electrical buses feed signals to watt transducers and voltage transducers. The DC output of the watt transducer is then amplified for use as an instantaneous power signal which is integrated over time to obtain plant electrical frequency, electrical power factor, and system voltage[2,3].

Signal lines from plant (CEB) transducers are hardwired to the DAS scanning equipment. This equipment selects one line at a time to feed the system digital voltmeter. Each of the site buildings has a remote station which is controlled by the central DAS. These remote stations have relays which select each remote transducer signal to be sampled by the DAS. A system clock initiates data scans to begin at selected time intervals (currently, every 5 minutes). In the scan mode, the DAS selects data channels sequentially and routes the analog signal to the digital voltmeter. The digital voltmeter digitizes the analog voltages which are then written with their respective channel numbers (in EBCDIC* format) on an incremental 9-track magnetic tape drive. A data scan includes the recording of information from all channels in the central equipment building plus all of the sub-channels in each of 8 remote locations (Six buildings, swimming pool, and weather station). The entire data scanning process for a single scan requires less than 30 seconds.

A ten inch (25.4 cm) diameter magnetic tape is sufficient for recording up to 2 weeks of raw (unprocessed) data. "Real time" transmission is on a character by character basis (in ASCII** format) at a BAUD*** rate of 300.[5] Figure 5 illustrates the basic data flow through the data acquisition system. It should be noted that channel 13 on each of the remote scanners is a reference channel. This reference channel is used by the computer software for the determination of the remote amplifier bias.

^{*}EBCDIC - Extended Binary coded decimal interchange code.

^{**}ASCII - American Standard Code for Information Interchange. Established as an American Standard by the American Standards Association (ANSI).

^{***}BAUD - A unit of data transfer rate where 1 binary digit equals 1 BAUD.

FIGURE 5. Basic data flow through the total energy data acquisition system

The DAS began monitoring and recording CEB data in April, 1975. The first remote building data were recorded in November 1975, and the remaining remotes were placed on-line in conjuction with building construction and equipment calibration schedules.

1.1.3 Data Acquisition System Outputs

1.1.3.1 Raw Data Tape

The DAS is currently operated in an automatic mode whereby a magnetic tape record (scan) is produced every 5 minutes. Each record on the tape contains information concerning the total energy site physical parameters for the previous 5-minute period. A 5 minute data collection interval was chosen based on accuracy considerations of integration-type measurements, thermal response of the total energy plant, desired time resolution for later systems analysis, and the number of scans a single magnetic tape could contain. After a raw data tape is sufficiently filled with data (approximately each week) it is shipped to NBS for computerized editing and analysis.

1.1.3.2 Modem Transmission

During the time periods in which magnetic tape records are not being written, data scans are transmitted to NBS using a telephone datalink in an ASCII format. Through the use of computerized techniques, a "pseudo" raw data magnetic tape in EBCDIC format can be created. This capability has the advantage of near real-time processing and allows for daily checks of the data acquisition and instrumentation system operation.

1.1.4 Data Processing

Raw data tapes are processed at NBS by a Raytheon 704 mini-computer in order to obtain the engineering information needed for system analysis. The software program that processes the raw data tapes is called TERE-VIEW. TEREVIEW is an operator interactive set of subroutines which are utilized in the editing of the raw data, its conversion to engineering units, and the production of an output tape for the purpose of data, or, total energy system analysis. The software program, TERE-VIEW, is the major program used in the processing of all Jersey City total energy data. All subsequent data processing and data analysis are directly dependent upon the output of TEREVIEW.

1.1.5 Mini-Computer Configuration

All data which are received by NBS from the Total Energy site in the form of DAS-generated magnetic tapes or modem transmissons, are processed by a Raytheon 704 mini-computer.[4] This computer system consists of a (16 bit word) central processing unit (CPU), two disk memories of 128K words each, a 7-and a 9-Track magnetic tape drive, a 9600 BAUD Cathode Ray Tube (CRT) terminal and keyboard with "hard

copy" unit, a teletype (110 BAUD) terminal, a high speed paper tape reader and punch, and a full-duplex modem. The CPU has 32K words of 1.0 micro-second core memory, hardware multiply-and-divide capability, 16 priority interrupt levels, and a power-fail-safe provision. Communication between the two disk memories and the CPU is by Direct Memory access with control of the disk drives taking place over a Direct Input/Output (DIO) bus. Signals from the CRT and modem are converted from serial to parallel and are preconditioned through the use of a 4-channel serial line multiplexer with control and output taking place over the DIO bus. All other peripherals have their own electronic hardware controllers and signal conditioners which communicate with the CPU over the DIO bus. The two magnetic tape drives operate at 25 inches per second in a synchronous mode with selectable density and parity. Figure 6 is a photograph of the minicomputer system.

1.2 PURPOSE AND SCOPE

The purpose of this report is to describe the basic data flow from its receipt at NBS through the software system that processes it into its final "report ready" condition of charts, graphs, and numbers.

This report describes in some detail the total energy data editor and engineering units conversion program (TEREVIEW) including the command structure, overall data flow, data editing, data conversions, error processing, and the creation of data tapes to be used in further analysis. The more important subroutines which are used to handle the individual operations are also discussed. The equations which are used in the engineering unit conversions are described, along with their derivations where appropriate. The format of the output data tape is also discussed. This report assumes that the reader has a basic familiarity with computer and engineering terminology.

2. DESCRIPTION OF DATA FLOW THROUGH THE OVERALL DATA REDUCTION SOFTWARE SYSTEM

For the following discussion it will prove helpful to refer to Figure 7. Each of the instrumented engineering parameters arrive at the DAS as an analog voltage input (some of the basic instrumentation has a digital output format initially; however, in every case, conversion to analog takes place before presentation to the DAS). The DAS then converts these analog voltages to digital values prior to output.

Three options exist with respect to the DAS handling of the raw digital data outputs for transfer to NBS:

1. Production of a magnetic tape in an EBCDIC format for subsequent land/air transport to the NBS.

Figure 6. Photograph of mini-computer system

- 2. Transmission of the data in an ASCII format over telephone lines to NBS where it is received and reformatted into EBCDIC. Once format conversion has occurred, three additional options are available to the computer operator:
 - (a) Engineering unit conversions can be performed and the resultant answers compared against their "normal range values." A numerical display summary of the plant and instrumentation status is also made. A sample printout of this option is contained in Appendix VII-2.
 - (b) A magnetic tape can be produced to simulate the magnetic tape which is normally obtained by option 1.
 - (c) Both (a) and (b) can be performed simultaneously.
- 3. Options 1 and 2 above are available simultaneously.

The normal mode of operation for receipt of raw data at NBS is to utilize option 1 above, with a daily verification of plant operation through the use of option 2(a).

Additional engineering information concerning the site fuel oil analysis is received twice a month at NBS from a private testing laboratory. This information is manually input into the data flow at a later stage of processing.

The raw data tape in conjunction with a site status log serve as the basic data inputs to an operator interface and data editor software program (this program is named TEREVIEW). The prime purpose of TEREVIEW is to produce another magnetic tape which is both electrically and mechanically acceptable to the computer and which consists of the millivolt readings as well as the engineering unit parameters for each channel for each scan. Additionally, this "engineering unit" magnetic tape contains a set of flags for each scan (one flag per channel) indicating the software as well as the operator assessment of the quality of the data. A more detailed description of the functions of TEREVIEW is contained in section 3.1. When the engineering unit magnetic tape has been completed and verified, the raw data tape is erased and returned to the site for use again by the DAS.

In order to produce the engineering parameters which consist of relationships or calculations involving two or more data measurements (these parameters are called Derived Variables), a software program called ANALYSIS is used. ANALYSIS utilizes as its input the engineering unit magnetic tape, as well as the operator's input of such items as the site fuel oil laboratory analysis, plant status, and data dates. The basic function of ANALYSIS is to produce a cartridge disk (for each month of the year) which contains all of the information necessary to analyze properly the engineering performance of the total energy system. ANALYSIS is actually a set of three main software

programs which handle the data sequentially in a logical order such that the required result is achieved. A more detailed discussion of ANALYSIS is contained in section 3.2.

The monthly disk produced by the ANALYSIS software is used in the accumulation of seasonal trends on a yearly disk (see paragraph 3.3) as well as for input to numerical and graphical display software.

Ultimately, the engineering reports concerning the total energy system operation are written on the basis of a careful study of all data stored on the monthly and yearly disks.

Both the monthly and yearly disks are copied to magnetic tape (as a backup storage media) and saved for future reference.

3. DESCRIPTION OF DATA REDUCTION SOFTWARE FUNCTIONS

3.1 RAW DATA TAPE EDITING (TEREVIEW)

Past experience with the raw data tapes produced by the DAS has shown that it is not feasible to assume that the tape will be both electrically and mechanically "perfect". Such common anomalies as parity errors, scratched oxide base, interspaced inter-record gaps, intermittent ends-of-file, extraneous bits and characters, and missing bits and characters have been frequently experienced. The first job of TEREVIEW is to read a complete raw data record (scan) and check it for proper format and structure. In the event an error is found which cannot be corrected by software, the operator is informed of the error and is given many options to use in its correction. A complete list of the command codes and error displays which are available to the operator is contained in Sections 6.7 and 6.8. Once a corrected record has been placed in computer memory, the following operations are performed.

- 1. Conversion of the label information (see Section 5.1), date, and time from EBCDIC to binary real* numbers.
- 2. Conversion of the EBCDIC, 13-character groupings (see APPENDIX VIII (1)) to a DAS channel-ordered array of binary real numbers representing the millivolt readings of each channel.
- 3. Conversion of the millivolt readings to their respective engineering units.

^{*} A real number, for purposes used in this report, is a computer compatible, signed, floating point, decimal number.

- 4. Verification of millivolt and engineering unit values to be within broad practical operation limits.
- 5. Setting of flags for each channel to indicate such information as: no error detected, error detected and not corrected by operator, and converted value inserted by operator.
- 6. Production of a temporary disk based (scratch) file.
- 7. Further editing and checking of the scratch file (if required) with complete operator interaction.
- 8. Creation of the engineering unit tape from the scratch file.
- 9. Verification of the engineering unit tape.

The raw data tape edit (and creation of the engineering unit tape) function is performed on each tape which is received from the total energy site. Approximately four raw data tapes are processed each month and the resultant engineering unit tapes (one to four per month) are stored for future processing and reference. Since the engineering unit tapes contain the raw millivolt values, they serve as a direct link back to the primary measurements. A listing of a representative scan as outut by TERÉVIEW is contained in Appendix IV.

It should be noted that although the intention is to gather data every five minutes, this is not always the case. In reality, due to DAS system calibration verifications, occasional transducer malfunctions, and various other reasons, there are time periods for which no data exists. These time periods of no data are taken into account by the ANALYSIS software as described in the following section.

3.2 CREATION OF THE MONTHLY DISK (ANALYSIS)

3.2.1 Hourly Accumulation of Engineering Units

In order to create a monthly disk which contains engineering parameters representing the total energy plant operation, it is first necessary to compress the five-minute data prior to the calculation of derived variables. In this stage, a five-minute data scan is read into the computer and each data flag is checked for the validity of the data. If the flag indicates that the data are not acceptable, then no further action is taken; however, if the data is apparently good, the data value is further verified to be within a range of values. The particular verification range for which the data is tested is based on the status of the plant at the time the measurement value was recorded. The selection of the actual verification range value was made based on analysis of all data recorded during a time period in excess of a year. If the data does not check out under the last test, then no action is taken. If the data does check out under the last test, then it is accumulated into an accumulation buffer and

a "time of good data" counter is incremented. At the end of each data hour, the average value of the data (over the time for which acceptable data were present) is calculated and written, along with the time for which the data channel was present, into its respective hour sector on the disk. The above continues on a channel by channel and scan-by-scan basis until all hours in the month have been processed. At this point, the second phase of ANALYSIS is called into operation.

3.2.2 Calculation of Hourly Derived Variables

All derived variables are calculated based on the hourly average of the required engineering units. If any required variable is indicated (by its time parameter) as not being present, then no calculation is made. A time for which the derived variable is considered to be good is also calculated. This time is normally the smallest time of all of the engineering units used in the calculation. Once the hourly derived variables (and their associated times) are calculated, they are written to the disk on the appropriate derived variable hourly time sector. The above calculations take place for each hour of the month for which any data existed. At this point, all of the engineering units and derived variables (with their associated times) for each hour of the month are on the disk.

3.2.3 Calculation of Daily and Monthly Summaries

The third and final phase of ANALYSIS is to calculate the daily and monthly summary for each of the engineering units and derived variables. The daily summaries are averages over time of all of the hours in the day and are written on the disk (with their effective time) in specific daily sector locations. The monthly summary is also an average over time; however, it is based on the daily values. Once this third phase is completed, selected data can be displayed either graphically or numerically and an operator can assess the validity of the entire process.

3.2.4 Monthly Disk Editing

If, after the creation of the monthly disk, it is learned that conditions at the total energy site were different from that which was originally thought, a software program called DISKUPDT will allow for a knowledgeable operator to have access to the hourly engineering units (only) in order to modify or update them. Once DISKUPDT has been used on a particular disk, then the second and third phases of ANALYSIS must also be reexecuted. An example of where this program has been used is in the deletion of a data channel when it was discovered that the channel was malfunctioning.

A typical listing of an hourly, daily, and a monthly summary is contained in Appendix V. Definitions for each engineering unit and derived variable are contained in Appendices II and III.

3.3 CREATION OF YEARLY DATA SUMMARY DISK

The name "yearly data summary disk" is a misnomer; in reality, the disk is a 20-month disk. The number 20 was arrived at based on the space which was available on a single disk cartridge. This disk is nothing more than a logically ordered copy of all of the daily and monthly summaries for up to 20 sequential months. This disk is only used for graphical presentation such that "smoothed" trends can be easily observed. The presentation is "smoothed" by eliminating the normal diurnal hourly fluctuations and by using the average daily values.

4. DESCRIPTION OF OUTPUT AND DISPLAY SOFTWARE CAPABILITIES

Provisions for displaying all calculated data in a graphical and/or a numerical format is dependent not only on the desires of the operator, but also upon the type of media from which the data are obtained. Graphical presentation of information is available only for data which exists on either a monthly or yearly disk. Numerical information display is available for data existing on a monthly disk or for data which are being obtained from the direct modem telephone link with the site. The reason that numerical data lists are not available from the yearly disk is that the yearly disk is simply a reduced copy of the several monthly disks comprising it. If the operator desires numerical listing of information contained on a yearly disk, then it is obtainable in greater detail from one or more of the monthly disks (which were used in the creation of the yearly disk).

4.1 GRAPHICAL PRESENTATIONS

The software used in the preparation of plots (or graphs) of monthly information is call PLOTDISK. PLOTDISK is a program that requires the operator to enter the current date, data code (or codes), data range, and time domain. Additionally, options exist for the operator to display different types of data, insert title and/or sub-title, and to vary the number of divisions of the data range along the Y-axis. Simple arithmetic operations involving two variables are also available for display. In order to maintain a consistent history, each plot has printed on it a code number. From this code number, the particular disk from which the data were obtained, the current date, and the data code which was plotted can all be determined. A summary of the capabilities of PLOTDISK which are available to the operator follows.

Number of Plotted Variables - one to five per display.

Type of Variable - hourly raw data, hourly derived variables, time history for which data were considered acceptable, hourly information concerning constants and other data which have no established data code, and arithmetic operations involving two variables.

Main Title - either automatic or selectable by operator.

Sub-Title - operator choice only.

Variable Range - maximum and minimum values selectable by operator.

Divisions of Range on Y-axis - selectable by operator.

Unit titling of x and y axes - automatic with no operator choice.

Time period of plot - selectable by operator by first and last hour or first and last day of month to plot. If no data existed for a part of a requested time period for reasons previously described, then no data will be plotted. If data existed but was not used in calculations, it is either not displayed or, at the operators option, will be plotted with appropriate code marks.

The software which is used in the graphical display of yearly information is called PLOTYEAR. PLOTYEAR is essentially identical to PLOTDISK with the only exceptions being:

- (1) daily information points are presented instead of hourly;
- (2) the time period of the plot is based on the first month and day and the last month and day; and
- (3) no option exists for display of unused data.

Examples of several of the available modes of graphical presentation are presented in Appendix $^{'}$ VI.

4.2 NUMERICAL PRESENTATIONS

4.2.1 Monthly Disks

Numerical listings of the monthly disk values of hourly, daily, and monthly variables are available through the use of a software program called ANALYSPT. The particular listing which is presented is left to the desire of the operator. Examples of each option are contained in Appendix V.

4.2.2 Modem Data

Current millivolt and engineering unit values of raw data are available to the operator on a "real-time" basis. Additionally, these listings contain a software assessment as to the quality of the received data. The program which is used for this listing is called MODMCHEK. Another program called MODMLIST will only print each raw character as received by the electronic hardware. Examples of both types of output are contained in Appendix VII.

5. FORMAT DESCRIPTIONS

5.1 RAW DATA

All data transmission (which is either recorded on magnetic tape or sent to NBS over telephone lines) takes place serially on a character-by-character basis. The only alphanumeric characters which are used are:

A character-by-character description for a typical scan is contained in Appendix VIII (1).

5.1.1 Magnetic Tape Format

Each magnetic tape as generated by the DAS contains a series of data records (1 record per data scan), inter-record gaps, and end-of-file marks. After each data record (of 3672 characters) is an inter-record gap followed by either another data record (for the next data scan) or an end-of-file mark. An end-of-file mark is used to indicate either the physical end of data recording for the tape, or that the DAS has not been recording continuously. The DAS does not record data scans when it is being used for transducer calibration or if it is "down" because of some malfunction or other reason.

Each character which is placed on the tape consists of 8 <u>binary digits</u> (BITS) and a parity BIT which make up a single 9 BIT incremental frame. There are 800 frames or BITS per inch (BPI) and both the lateral and longitudinal parity is odd. The individual character BIT configurations for the magnetic tape are given in Appendix VIII (2).

5.1.2 Modem Format

All characters which are transmitted (and received) over the modem data link are continuous with no breaks or gaps between individual data scans. The only time that a break in the data flow occurs is when the DAS is recording on magnetic tape and this is represented by a complete loss of the modem transmission carrier. An individual character is transmitted serially as a string of 10 pieces of information which consist of 8 data BITS and 2 control functions. These BITS are transmitted at a rate of 300 per second and determine a character transfer rate of 30 characters per second. The individual character BIT configurations for the modem are given in Appendix VIII (3).

The only other difference in the modem and the magnetic tape format is that an extra blank is added by the modem before the label and before each data signal group of 13.

6. DATA CONVERSION AND EDITING

6.1 EDITING CONSIDERATIONS

The program TEREVIEW was developed by NBS* to operate with a raw data magnetic tape as input, a magnetic tape for output, and a disk for use as a temporary storage (scratch) media.

It was desired that maximum human operator interaction be available and that operator inputs and commands be simple and flexible. It was required that the input and output operations controlling the flow of data through TEREVIEW be operable in either an automatic or a manual, scan-by-scan mode. Input operations include the reading of the input raw data tape, format conversion, millivolt calculation, conversion of the millivolt data to engineering units, error test, data sorting and cataloging, setting of status flags, etc., while output is the recording of the information on a magnetic tape. In addition, it was necessary that the operator have access to a sufficiently large volume of converted data (covering a long data time period) in order for realistic decisions to be made as to the acceptability of the data. Of secondary importance were such functions as audible error alarms, operator input variable assignments, capability for operator termination of certain error listings, automatic carryover of calculations from one day to another, and automatic correction of certain repetitive logical errors in the raw data. Since raw unprocessed data records (approximately 250 measurements per record) were to be processed for each 5 minute time period over a two-year span or more, the execution time (time required to process a data record or scan) was of prime importance. All of the required and desired conditions for this major editing and conversion computer program were met.

The TEREVIEW program requires approximately 24000 (16 BIT) words (out of 32000 available) of core storage (memory) and has been written to operate as a library program on a Raytheon 704 mini-computer. The subroutines which comprise TEREVIEW were written in either FORTRAN-4 or in machine (symbolic) language [4,5]. If a particular subroutine was normally used enough times to justify the potential processing time savings, then the routine was written in machine language; otherwise, it was written in FORTRAN-4. As a result, the automatic execution time required to process completely (from input tape to output tape) a single (error free) scan of data is approximately 3 1/4 seconds.

6.2 INITIALIZATION AND COMMAND DECODING .

When TEREVIEW is first brought into execution, all variables are initialized to their required first values, all working buffers are cleared, all constants are initialized, and a command structure table is set up to include a unique reference number and pointer set for each command.

^{*} For a description of the early stages of program development, including original design philosophy, see [15].

Initialization of the scratch disk file [5] and its associated time and scan reference table, if desired, must be done through an operator initialization command. A textual reminder is provided (at first command input time only) such that the operator will not forget that a decision is necessary concerning the mode of disk initialization. The operator options are to begin processing where it was terminated last, or to start processing data as if no previous processing had been done.

All operator input commands are processed by a command decode processor set of routines which return (to the calling routine) a unique integer number (1-39) for each command, a disk vector pointer, and all operatorentered arguments. Command arguments (24 maximum) are placed in an argument table in the order in which the operator entered them and the first location of the table is set to the total number of arguments entered. If the argument entered is a variable name, then the last previously defined numerical value of the variable is retrieved and placed in the table. Command legality, as well as command argument count correspondence, are checked and appropriate error codes are provided. In addition, certain commands require that arguments be related directly to each other or that they meet closely defined criteria; these conditions are also verified. Figure 8 illustrates the initialization and command decoding sequence. Once a command (with its associated arguments) is verified as acceptable, control is passed to the command processor part of the software. It is in the command processor that a final determination is made as to what has been requested by the operator.

6.3 DATA FLOW IN NORMAL OPERATION

In order to utilize the full capabilities of TEREVIEW, it is essential that the data flow through the various data handling buffers be understood. If a normal operation does in fact exist, then it would be defined as those operations that take place when two or more error-free raw data scans are converted. Two sequential scans are necessary in order to reduce properly certain ramp-type measurement data. In reality many data scans have been found to contain errors of some type, most of which are corrected by the software without any decision required (or desired) by the operator. The basic sequence of data flow is as follows.

- 1. One scan (record) from the raw data magnetic tape containing EBCDIC characters is read into an input buffer.
- 2. The first 19 EBCDIC characters of the <u>input</u> buffer are subdivided into groups of 4, 4, 4, 3, 2, 2 characters which are converted to 6 integer numbers and placed in a label buffer. The label buffer contains:

```
Label - 3 four-digit numbers (The characters "NBS" are replaced by zeros);

Day - 1 three-digit number;

Hour and Minute - 1 four-digit number [(Hour x 100) + Minute)];

Minute - 1 two-digit number.
```


FIGURE 8. Initialization and command decoding flow diagram

- 3. The remaining EBCDIC characters in the input buffer array are divided into groups of 13 and are converted, one group at a time, into two integers representing DAS channel and subchannel, and one real floating point number representing millivolt value. A unique location index number is calculated using the channel and subchannel numbers, and the millivolt value is placed in a millivolt buffer location as determined by the index.
- 4. The millivolt buffer is transferred to a working buffer which contains the last known good millivolt values. The working buffer is only updated if the millivolts are known (by the software from previously defined criteria) to be good and if the operator has made no entries which would disallow it. Any changes to input data which are made by the operator, in reality, are made to the working buffer. The millivolt buffer is not allowed to be changed.
- 5. All engineering units (pressure, temperature, etc.) are calculated in an optimum, logical order using the millivolt value contained in the working buffer. The engineering units are placed in an engineering units buffer. The order of calculation of the engineering units is such that a practical minimum of duplicate calculations is required. For example; since the temperature of various points throughout the system is required in many of the calculations (for differential temperature, viscosity, density, etc.), then all temperatures are calculated first.
- 6. A status flag buffer is continuously updated during all of the above operations. These flags consist of one integer number per DAS channel and indicate such information as: data is good, data is bad, data was set by operator to be used in all subsequent calculations, data was set by operator to be used only in certain subsequent calculations, data was deleted by operator, etc.
- 7. The label, flag, millivolt, and engineering units buffers are written to a scratch disk utilizing a data time based file control system [5].

In the automatic mode, the above operations continue, if not interrupted by either the operator or the occurance of a major error requiring an operator assisted fix, until the scratch disk file is full (700 data scans).

Additional editing of the scans contained on the disk can be made at this time if the operator so desires.

8. The engineering units output tape is next created by transferring the data scans (one scan per record) from the scratch disk file to the output tape unit. The only data difference in an output tape record and a scratch disk scan is that the integer label information is deleted (it is contained, along with other processing status information, within the first nine locations of all buffers) and certain checksum calculations are made.

If for some reason the disk file is not available for use, a program called TEEDITOR is available which performs the same functions as TERE-VIEW except that the engineering units output tape is created at step 7 above. The disk file would not be available for use at times of malfunction of either the disk hardware, disk controller, or the computer direct memory access capability.

6.4 CHARACTER GROUP CONVERSION

All EBCDIC characters representing numerical digits contained on a raw data input magnetic tape must be broken down into their respective integer numbers before they are computer usable. Once the individual digits are obtained, these must be combined logically into computer numbers representing 1 or more digits. Useful computerized processing can take place only after the above is completed.

6.5 ENGINEERING UNIT CONVERSION

After character group conversion, each measurement channel is identified by its DAS channel number (and its assigned NBS number) and is converted to a real millivolt number which is placed in a holding buffer. Each measurement channel is further categorized into one of seventeen types in which there is also one and only one reference value. Each category type has associated with it a unique engineering unit conversion routine and each reference channel number (within a specific type family) has associated with it a particular set of calibration constants. A subsubroutine is used to set up the NBS number, type of measurement, and reference value (when given the DAS channel). The subroutine which performs these functions is called LOCTED. Engineering unit conversions take place according to the type of measurement. A brief discussion of the equations applied and the name of the conversion routines which are used is contained below.

During the initial TEREVIEW planning and transducer calibration phases of the Total Energy program, the metric system of measurement (SI) was just beginning to be used in the United States. As a consequence, all transducer calibrations were received by NBS and all software was developed by NBS in English units. To convert the TEREVIEW software to the SI system would have represented a major effort. The derivations and textual discussions which follow are therefore as originally done at NBS and are not described in the SI system (except where appropriate). If the reader desires further information concerning the SI measurement system, reference 6 has been found to be appropriate.

6.5.1 Non-Existing Measurement (Type 1):

Since the DAS is designed to take measurement data sequentially from all channels beginning with the first programmed channel and ending with the last, there are necessarily some channels which do not contain measurements. In addition, there are some channels which are reserved as spares to be used if they are required for future system analysis purposes. When a type I measurement is encountered, no further processing takes place; however, the millivolt value for the channel is maintained for possible future reference.

6.5.2 Pressure (Type 2): PRESS1*

There are two kinds of pressure measurement. The first is for measuring liquid pressure such as system water (pump discharge) and lubrication oil for an individual engine. The second is for measuring exhaust gas back pressures from individual engines.

For the first kind; the measured voltage is calibrated to be between 2 and 10 volts while the pressure varies from 0 to 100 pounds per square inch (PSI). The linear equation for the pressure is:

$$p = \frac{(M - 2000)}{80},$$
 (1)

where

M is the measured voltage in millivolts (mv), and p is the pressure in PSI.

For the second kind, the measured voltage is calibrated to be between 2 and 10 volts while the pressure varies from 0 to 30 inches of water column. The linear equation is

$$h = 0.00375 (M - 2000),$$
 (2)

where

M is the measured value in mv, and h is the pressure in inches of water.

The gas pressure in PSI is

$$p = \left(\frac{h}{12}\right) (\gamma), \tag{3}$$

^{*} PRESS1 is the name of the subroutine which converts pressure (type 2) data to engineering units.

where

 γ is the water density in (1b/ft³), which is taken as 62.3664 1b/ft³ (at 60°F).

By combining (2) and (3) and inserting the value for γ , the pressure at 60°F will be

$$p = 0.0194895 (M - 2000) lb/ft^2.$$
 (4)

The constant volume relationship for a perfect gas as given in reference 7 is:

$$p_2 = \frac{P_1}{T_1} (T_2), (5)$$

where

 \mathbf{p}_1 is pressure at temperature \mathbf{T}_1 , \mathbf{p}_2 is pressure at temperature \mathbf{T}_2 , \mathbf{T}_1 and \mathbf{T}_2 are absolute temperatures,

i.e.,
$$T = (459.63 + T^{\circ}F)$$
. (6)

Therefore, by combining (4), (5), and (6), the equation for the gas pressure being measured is

$$p = 3.75 (M - 2000) (459.63 + T^{\circ}F) (10^{-5}).$$
 (7)

6.5.3 Venturi (Type 3): VENTRI

Flow rate is measured at many points throughout the total energy system by venturis. Their basic equation as given in Reference 8 is:

$$W_{c} = C\alpha\gamma \sqrt{\frac{1}{1-\beta^{4}}} \sqrt{2g_{L}h}, \qquad (8)$$

with
$$\alpha = \frac{\pi}{4} \left(\frac{d}{12}\right)^2 F_a$$
, (9)

$$\beta = \frac{d}{D}, \tag{10}$$

$$h = \frac{\Delta P}{\gamma}, \tag{11}$$

where

W_c = the flow rate of fluid in lb/sec,
C = the coefficient of discharge,
γ = specific weight of fluid in lb/ft³,
g_L = gravitational constant at site = 32.16 ft/sec² at latitude 40°45',
d = venturi throat diameter in inches,
D = internal pipe diameter in inches,
Δp = differential pressure in lb/ft², and

By combining equations (8), (9) and (11) we obtain

F_a = bore temperature correction factor.

$$Wc = C \frac{\pi}{4} \left(\frac{d^2}{12}\right) F_a \left(\alpha \gamma\right) \sqrt{\frac{1}{1 - \beta^4}} \sqrt{2g_L \frac{\Delta P}{\gamma}}.$$
 (12)

The pipe Reynolds number as given in references 8 and 9:

$$R_{D} = \frac{22752}{D} \left(\frac{Wc}{\mu c p} \right) \tag{13}$$

where

cp = the line fluid viscosity in centipoises.

The expression representing coefficient of discharge (C) as a function of pipe Reynolds number $(R_{\rm D})$ is expressed as

$$C = a + \frac{b}{R_D}, \tag{14}$$

where a and b are constants which are obtained by laboratory tests for each venturi.

Let

$$c_{a} = \frac{\pi \sqrt{2gL}}{22752 (12)^{2}} = 7.690279 \times 10^{-6}, \tag{15}$$

$$c_{b} = \frac{\pi \sqrt{2gL}}{4 (12)^{2}} = 4.374230 \times 10^{-2}, \tag{16}$$

$$c_{c} = \frac{\pi d^{2}}{\sqrt{1 - \frac{4}{\beta}}},\tag{17}$$

$$c_{\rm d} = \frac{d^2 D}{\sqrt{1 - \beta^4}} \tag{18}$$

By combining equations (12), (13), and (14) and by substitution of definitions (15) through (18), the following is obtained:

$$W_{c} = C_{e} + \sqrt{C_{e}^{2} + C_{f}}, \tag{19}$$

where

$$C_{e} = \frac{a}{2} C_{b} C_{c} F_{a} \sqrt{\gamma \Delta p}, \qquad (20)$$

$$C_{f} = b C_{a} C_{d}^{\mu} C_{p} F_{a} \sqrt{\gamma \Delta p}. \tag{21}$$

Classification of terms necessary to solve equation (19) is as follows:

true constants: C_a and C_b ;

venturi specific constants: a, b, Cc, and Cd; and

system variables: μ_{cp} , γ , F_a , and Δp .

The specific weight of water (γ) as a function of temperature (reference 10) can be plotted and a curve fit to the resulting points. The resulting expression is:

$$\gamma = A + B(T^{\circ}F) + C(T^{\circ}F)^{2} + D(T^{\circ}F)^{3} + E(T^{\circ}F)^{4},$$
 (22)

where

A = 62.21161, B = 1.198719 x 10^{-2} , C =-1.820609 x 10^{-4} , D = 4.684719 x 10^{-7} , E =-6.036029 x 10^{-10} .

$$(\frac{510}{T^{\circ}K - 150})$$

The viscosity, $\mu_{cp} = 0.029e$

where T°K is the temperature in degree Kelvin (reference 11), or

$$\mu_{cp} = 0.029e$$
 (24)

Each differential pressure transducer was calibrated to produce a voltage drop across a 500 Ω resistor. The voltage range is 2 to 10 volts, corresponding to a differential pressure of 0 to 150 inches water column. The differential pressure is determined by

$$h = 0.01875 \text{ (m - 2000) in.,}$$
or
 $h = 1.5625 \times 10^{-3} \text{ (M - 2000) ft,}$
(25)

where M is the measured voltage across the 500 Ω resistor in mv. The transducer was also calibrated at 60°F with γ =62.3664 lb/ft³, therefore

$$\Delta p = .0974475 \text{ (M - 2000) } 1b/ft^2.$$
 (26)

The venturi temperature correction factor, F_a , can be calculated by a linear approximation as follows:

$$\frac{(F_a - 1)}{(T - T_c)} = \frac{(F_a' - 1)}{(T' - T_c)}.$$
 (27)

Then

$$F_a = 1 + (F_a^{\dagger} - 1) \frac{(T - T_c)}{(T^{\dagger} - T_c)},$$
 (28)

where F_a is the temperature correction factor at temperature T', F_a is the temperature correction factor at temperature T, T_c is the temperature when F_a = 1.

In order to calculate F_a for each venturi, T_c must be determined first. Once T_c is known, a set of known calibrations, F_a and T', is used to obtain F_a by equation (28). The calculation of T_c is based on the Flow Calibration Report (reference 8) as follows:

Two sets of temperatures and corrections are needed in order to determine T_{C} . One set is at operation condition, T_{Op} and F_{Op} , given by the Flow Data Calibration Sheet for each venturi. Another set is calculated from actual flow calibrations. The velocity of approach factor, F, given by the physical dimensions of an individual venturi, corresponds to the particular temperature T_{1} . T_{1} equals the temperature for which the discharge coefficient has an approximate zero percentage deviation from the fitted expression over the calibrated range. By using these values and equation (27) to solve for T_{C} , we have

$$T_{c} = \frac{(BT_{1} - T_{op})}{(B - 1)},$$
(29)

$$B = \frac{(F_{op} - 1)}{(F - 1)} (30)$$

Therefore, equation 28 becomes

$$F_a = 1 + CFF(T_{op} - T_c), \qquad (31)$$

where

$$CFF = \frac{(F_{op} - 1)}{(T_{op} - T_{c})} = \frac{(F - 1)}{(T_{1} - T_{c})}.$$
 (32)

F_a can now be determined through the use of the venturi specific constants CFF and T when the system temperature T°F is known.

The actual flow rate calculation for a venturi is performed by the subroutine VENTRI as follows.

- Calculate $\Delta p = h$ using equation (25).
- Calculate Y. using the subroutine DENSTY (which uses equation
- Calculate μ_{Cp} using the subroutine VISCOS (which uses equation 24).
- 4. Calculate F_a using equation (31). 5. Calculate C_e and C_f using equations (20) and (21). 6. Calculate the flow rate, W_c in 1b/sec using equation (19).
- Convert W to 1b/min.

Integrated Pulse Type (Types 4, 9, and 13): INTEGR 6.5.4

Several types of measurement are being made which depend on the change in the value of the measurement from one scan to the next. In all cases of this type, the primary parameter (which is a rate) produces a series of pulses which are electronically counted (integrated) and then presented to the DAS as a voltage level which represents the number of pulses which have currently been counted. Since an infinitely large voltage would be obtained if this process were allowed to continue indefinitely, it is necessary to reset to a zero value and start over when the counters reach their limiting value. The parameters which are being measured through the use of this technique are fuel flow rate (turbine meters with pulses representing gallons), electrical power (kilowatt hour meters with pulses representing kilowatts), and time (frequency with pulses representing minutes). In order to calculate accurately the number of pulses which were counted during a given time period, it is necessary to know if the counter reset to zero during the period. It is also necessary to be absolutely certain that the counter

only reset once (if at all). This condition is met by dividing the number of pulses presented to the counter by a power of two such that no reset will occur during a time period less than or equal to the DAS scan time when the physical parameter being measured is at its maximum value. This division is controlled by the semi-permanent manual setting of a thumbwheel. A representation of the process is contained in Figure 10.

For a given thumbwheel setting, N, and a physical parameter count output of C, the counters will contain a value, $C_{\rm N}$, of

$$C_{N} = \frac{C}{2^{N}} \qquad (33)$$

Since the digital to analog converter (DAC) is electronically wired to the most significant bits of the counter, the Digital Count is effectively divided by 32 (or 2^5). Therefore, the input to the DAC, $C_{\rm D}$ is equivalent to

$$c_{D} = \frac{c_{N}}{2^{5}} = \frac{c}{2^{N+5}} {.} {.} {.}$$

The voltage output of the DAC (and therefore, the voltage which will be recorded by the DAS) is

$$M = \frac{M_{\text{max}} C_{\text{D}}}{256} , \qquad (35)$$

where

M = the voltage as recorded by the DAS,

 M_{max} = the full scale voltage output of the DAC.

Since we are converting an analog step to a digital value, the value

$$C_{D} = \frac{256 \text{ M}}{M_{\text{max}}} \tag{36}$$

must be taken as an integer;

i.e.,
$$C_{D_{I}} = (\frac{256 \text{ M}}{M_{\text{max}}})$$
 Forced to be integer between 0 and 255

Applying (37) to (34) produces the pulse count integration as a function of DAS voltage:

$$C = C_{DI} (2^{N+5}).$$
 (38)

Figure 9. Pulse Counter Sequence

During any given time period, the integration of the number of pulses over time is

$$C_{I} = C_{2} - C_{1}.$$
 (39)

If the quantity C_T is negative, then the digital counter reached its maximum (and reset) during the time period between the two samples. The value $\mathbf{C}_{\mbox{\scriptsize I}_{\mbox{\scriptsize R}}}$ in this case would then be

$$C_{I_R} = C_2 - C_1 + ((2^{12}) (2) (2^N)), \text{ or }$$
 $C_{I_R} = C_1 + R,$
(40)

where

$$R = 8192(2^{N}). (41)$$

Between two sequential scans, the number of pulses which were output from the instrument measuring the physical parameter is calculated by the INTEGR subroutine as follows.

- Calculate the current count, $C_2 = C$ using equations (37) and (38).
- Retrieve the previous count, C_{γ} from a count save buffer array.
- 3. Update the count save buffer array with the current count, C1.
- 4. Calculate C_{I} using equation (39). 5. If C_{I} is negative, calculate C_{I} = $C_{I_{R}}$ using equations (40)

The value $C_{\rm T}$ is calculated for every measurement which is of type 4 (turbine), 9 (kilowatt), and 13 (time). This value of $C_{\rm T}$ is then utilized (by INTEGR) to calculate the actual engineering unit value of the parameter being measured.

6.5.4.1 Turbine meters (TYPE 4):

For each turbine meter installed in the system, there is a corresponding family of curves consisting of K factor versus total flow [12, 13]. K factor is typically expressed in pulses per gallon, and is also a function of flow rate and fluid viscosity. The viscosity of #2 fuel oil, uo is a function of temperature. For the normal fuel oil system operating temperature range, viscosity can be approximated as

$$\mu_{O} = A + BT + CT^{2} + DT^{3} + ET^{4},$$
 (42)

the viscosity of #2 fuel oil in centipoises,

= -4.764022,

 6.907599×10^{-1} $C = -1.450071 \times 10^{-2},$ $D = 1.159411 \times 10^{-4},$

 $E = -3.29042 \times 10^{-7}$, and

= the temperature of the fuel oil in degrees Fahrenheit.

Equation (42) was obtained by using a least-squares fit (on laboratory test data) over the range of temperatures from 70°F to 110°F. The standard error of estimate is .0038 centipoises.

The flow of the fuel oil through the turbine will cause a series of pulses to be output to the DAS counters. Knowing the time between DAS scans and the total number of pulses counted between the scans, an average pulse frequency can be determined. This frequency is proportional to the average flow rate over the time period between scans.

$$H_{z} = \frac{C_{I}}{TIME},$$
(43)

where

 H_z = frequency in pulses per minute,

= total pulses as determined in section 6.5.4, time over which C_T was determined (in minutes).

K factor can be expressed as a function of H_z/μ_0 . The original factory (and additional laboratory) calibration points (K factor) were tabulated versus corresponding $H_{\rm z}/\mu_{\rm o}$ values and a series of equations were fit to the tabulated data points. Through examination of the standard error of estimates obtained, and from considerations for consistency in calculation from one turbine meter to another, the following equation was obtained:

$$K = A + BV + CV^2 + DV^3 + EV^4 + FV^5 + GV^6 + HV^7,$$
 (44)

where

= K factor in pulses per gallon,

 $V = H_z/\mu_0,$ (45)

A thru H = a set of unique constants for each turbine meter.

The total flow through the turbine meter during the time over which the turbine output pulses were counted is

gallons =
$$\frac{C_I}{K}$$
, (46)

and the average flow rate is

$$GPM = \frac{gallons}{time} (47)$$

The subroutine INTEGR calculates the average flow rate of fuel oil through a turbine as follows.

- C_T is calculated as described in section 6.5.4.
- The time between scans is known.
- The fuel oil temperature, T has been determined previously by another subroutine (DEGRSF).
- 4. μ_0 is calculated using equation (42). 5. H_z is calculated using equation (43). 6. V is calculated using equation (45).

- 7. K is calculated using equation (44).
- The average flow rate in GPM is calculated using equations (46) and (47).

6.5.4.2 Kilowatt (Type 9): INTEGR

The kilowatt transducers measure instantaneous electrical power and output a voltage which is proportional to it. This voltage is then input to a voltage to frequency converter, the output of which is input to the integrating counters described previously. Therefore,

$$KW = \frac{C_1 \text{ (A)}}{\text{Time}}, \tag{48}$$

where

KW = kilowatts produced during the time period,

C_I = total counts over time,

= a unique constant for each kilowatt transducer in kilowatt minutes which has been previously obtained pulse

from laboratory calibration, and

Time = the time in minutes over which C_{\uparrow} was obtained.

6.5.4.3 Time (Type 13): INTEGR

Time measurements are made by counting the voltage (frequency) pulses which are output as a result of the normal operation of the system (or subsystem) for which operation time is desired. This frequency is 60 Hz (pulses per second). Therefore,

Time =
$$\frac{C_{I}}{60(60)} = \frac{C_{I}}{3600}$$
, (49)

Time = time in minutes, and = total 60 Hz pulses counted.

Special (Type 5): SPECL1

Several of the more important (for analysis purposes) kilowatt transducers described in section 6.5.4.2 have their outputs (voltage vs instantaneous electrical power) measured directly. These measurements serve as a backup (and check) for the voltage-to-frequency conversion and counter technique previously described. Of course it must be assumed that the instantaneous power being produced or used (at the time of the sample) is representative of the average electrical power produced during the time between successive samples. The instantaneous power is calculated by

$$KW_{\mathsf{T}} = M(A), \tag{50}$$

where

 KW_I = instantaneous power in kilowatts, M = the measured millivolts, and

A = the kilowatt transducer calibration constant in kilowatts per millivolt.

6.5.6 Temperatures

6.5.6.1 T-Type (Type 6): **DEGRSF**

Measurement data obtained from all copper/constantan thermocouples referenced to 0°C (T-Type) are converted to engineering units by the use of the following equation [14]:

$$T^{\circ}C = AM^4 + BM^3 + CM^2 + DM + E,$$
 (51)

where

 $A = -3.550090 \times 10^{-4},$ $B = 2.218164 \times 10^{-2},$ $C = -6.195487 \times 10^{-1},$

D = 25.66130,

E = 0,

M = the measured millivolts, and

T°C = temperature in degrees Celsius.

Since most of the subsequent total energy work requiring temperature as a variable is expressed as degrees Fahrenheit (T°F), the value obtained above is converted to T°F using the equation:

$$T^{\circ}F = T^{\circ}C (1.8) + 32$$
 (52)

6.5.6.2 J-Type (Type 7): DEGRSF

Measurement data obtained from all iron/constantan thermocouples referenced to 0°C (J-Type) are converted to degrees Fahrenheit in the same manner as shown above for T-Type, the only difference being in the value of the constants used. The constants are a function of temperature range as shown in the table below.

constant	$\binom{0 < T^{\circ}F < 752}{M < 21.84588}$	752 < T°F (21.84588 < M)
A	-1.328057×10^{-4}	9.936448×10^{-5}
В	8.368396×10^{-3}	-1.398701×10^{-2}
С	-1.854260 x 10 ⁻ 1	6.525454×10^{-1}
D	19.75095	5.445382
E	0	92.60835 .

6.5.6.3 Differential (Type 8): DEGDLF

Differential temperatures are measured between two points through the use of multi-junction copper/constantan thermopiles. Through this technique, several thermocouples are electrically connected in series such that the measured voltage is an integer multiple of the value that would have been obtained if only one set of junctions were used. This higher measured value is desired in order for the DAS to be operating in its most accurate region. An actual temperature is also being measured at one end point in the differential thermopile. This actual temperature serves as a reference and is coded (in the software) as being either the normally high or normally low side of the differential measurement. The actual differential temperature is calculated as follows.

1. T_R is calculated using equations (51) and (52) based on the reference temperature millivolt, M_R .

2.
$$M_2$$
 is calculated using $M_2 = M_R + \frac{M}{N}$ (J)
where

M = measured millivolts for the differential temperature,

N = the number of junctions in the thermopile,

J = +1 if the reference is normally low,
-1 if the reference is normally high.

- 3. T is calculated using equations (51) and (52) and M_2 .
- 4. The differential temperature, ΔT is then

$$\Delta T = (T_R - T) J. \tag{54}$$

6.5.7 Events (Type 10): EVENTS

Events are ON/OFF type measurements and are used as indicators for certain engine parameters, system malfunctions, and other plant alarm conditions. There are six event indicators compressed into each DAS event channel. The six events are electrically connected to an eight-bit digital-to-analog converter (DAC) as shown logically in figure 10. The output of the DAC would normally be 0 to 5 volts; however, note that the two least significant inputs are electrically set to a logical 0 (off). Thus, the least significant (logically) event has a binary weight of 4. Each step of the DAS output voltage will correspond to

$$\frac{5000}{256-1}$$
 (4) = 78.431 millivolts; and

if a DAC drift of no more than two logical input bits (39.216 millivolts output) is assumed; then a number, I, from 0 to 63 representing all of the 64 input event combinations can be determined. This is accomplished as follows:

$$I + \left(\frac{M + 39.216}{78.431}\right) \underset{\text{part of}}{\text{integer}} -1 , \qquad (55)$$

where

M = the measured analog millivolts for the event channel I, forced by the software to be within the range of 0 to 63.

A simple binary decomposition is next performed on I such that the number carried forward for subsequent use is an integer power of 10 with each digit representing the status of a particular event. This number varies from 0 to 111111 and is calculated as illustrated in Figure 11.

6.5.8 Voltage (Type 12): VOLTS1

A.C. voltage is measured through the use of potential transformers. The output of the potential transformer is rectified such that a D.C. voltage is presented to the DAS. The equation which is used to reconstruct the measured voltage is:

$$V = M(A), (56)$$

FIGURE 10. Logical Connection of event (on/off) measurements

FIGURE 11. Logical diagram of the binary decomposition of a number representing six events

V = the AC voltage measured,

M = the millivolts as recorded by the DAS,

A = the channel calibration constant in volts AC per millivolt DC.

6.5.9 Frequency (Type 14): FREQHZ

The Total Energy Plant output frequency is measured at each scan time by the use of a transducer connected to the main power bus. The characteristics of the frequency measurement system are such that the following equation is valid:

$$HZ = 59 + M(A),$$
 (57)

where

HZ = the system frequency in hertz,

M = the transducer output in millivolts,

A = the transducer calibration constant in HZ per millivolt.

6.5.10 Power Factor (Type 15): PWRFCT

Power factor (the ratio of the active power to the apparent power) is being measured at the main plant bus. The conversion equation for the power factor transducer is:

$$PF = (1000 - M) \times 10^{-4}$$
, (58)

where

PF = power factor (0 to 1),

M = measured millivolts.

6.5.11 Weather Station (Type 16): WEASTA

A weather station is installed at the Total Energy site and is instrumented to measure wind direction and velocity, direct and indirect solar radiation, barometric pressure, relative humidity, ambient temperature, and weather station electronics cabinet temperature. Since the weather station instrumentation and associated calibration factors represent a special category which generally does not fit any other particular measurement conversion technique, all of the measurements are converted within one subroutine. The linear equation used for the conversion from DAS measured millivolts to the particular weather station measured parameter along with the calibration constant for each measurement is:

$$ANS = M(A), (59)$$

ANS = the engineering unit answer as shown below,

M = the measured millivolts,

A = the particular parameter calibration constant as shown below.

1. Direct Solar radiation:

ANS = calories per square centimeter per minute, $A = 1.329787 \times 10^{-4}$.

2. Indirect Solar radiation:

ANS = calories per square centimeter per minute, $A = 1.25 \times 10^{-4}$.

3. Wind direction:

ANS = compass heading in degrees (0 - 360°),

A = .1.

4. Wind Velocity:

ANS = miles per hour,

A = .01.

5. Barometric pressure:

ANS = inches of mercury,

A = .01.

6. Relative Humidity:

ANS = percent,

A = .01.

7. Temperature:

ANS = degrees Fahrenheit,

A = .01.

6.5.12 Deleted Measurements

Measurement types which were originally planned and have since been deleted are handled the same as a Type 1 (non-existing measurements). Currently, these are represented by Types 11 and 17.

6.6 SUBROUTINE CLASSIFICATION

All computer subroutines used in the TEREVIEW program can be classified by the type of function they perform. These functions are input or output, bookkeeping, conversion, control, and support. Appendix IX contains an alphabetical listing of each subroutine classified by type, along with a brief description of what it does.

6.7 TEREVIEW COMMANDS

Once TEREVIEW has been placed in operation, all requests for an operator command input will be solicited (by the program) with a question mark (?). The operator then has the option of selecting any one of 39 commands to be executed. A command is entered by the operator preceded by a line feed and followed by a carriage return. All commands consist of two alphanumeric characters followed by a variable length argument string. Commands and arguments are separated by either a comma or a space (or spaces). Two or more commas in a row are interpreted as containing a zero between them. Arguments can either be entered as integer numbers or as a one or two alphanumeric character name which has been previously assigned a value. Appendix X contains a listing of all TEREVIEW commands.

6.8 ERROR PROCESSING

For the purposes of TEREVIEW, all errors have been classified into two categories: those not requiring operator assistance and those that do. Detected errors which do not require operator assistance are either simple magnetic-tape—related mechanical or electronic errors which are logically correctable by the software (such as extra or missing characters, parity, intermittent record gaps, etc.), abnormalities that are known before conversions take place (such as timing errors) for which the operator has made provisions by the setting of appropriate flags, and certain minor special EBCDIC character errors which are either not used in the calculation of data or whose value is known. If an error is detected which does not require operator interaction, it is corrected by the software and, in most cases, an error message is output to the operator; however, the overall program flow will continue normally.

If an error is detected and no software provision has been made to fix it, an error message is provided to the operator followed by a question mark (?). It is then left to the operator to provide the necessary commands to either fix the error or delete the data.

In general, the error messages which are output by TEREVIEW have the following format:

**ERROR-NAME TYPE () "I" "J" "K" "L" "M" "HHHH"

Where "HHHH" is normally the hexidecimal representation of "M" and is used in those few cases where bit value or position are required in order to evaluate an error and determine its subsequent fix. "NAME" indicates the subroutine which detected the error.

Appendix XI contains a list of TEREVIEW error messages.

6.9 OUTPUT DATA TAPE

The output data tape from TEREVIEW contains the following information for each scan of data processed.

- 1. Label information including the data time.
- 2. A set of flag numbers, one flag per data point, which indicate both the software and operator assessment of quality of the respective data.
- 3. The input millivolt values, one value per DAS channel.
- 4. The converted engineering units.

The output data tape is utilized in the subsequent calculation of those variables requiring two or more data points and is the primary data set from which all further processing ultimately originates.

6.10 ADDITIONAL DOCUMENTATION AND ORIGINAL DESIGN PHILOSOPHY

For the interested reader, reference [15] contains additional documentation of TEREVIEW, including a discussion of the original design philosophy. Certain major subroutines are discussed in detail with respect to their original design, implementation, and interaction. It also contains the original listings for many of the subroutines which are given in Appendix IX.

References

- 1. J.B. Coble & P.R.Achenbach, Site Analysis and Field Instrumentation for an Apartment Application of a Total Energy Plant, National Bureau of Standards, NBSIR 75-711.
- 2. Description of the Data Acquisition and Instrumentation Systems: Jersey City Total Energy Project, HUD Utilities Demonstration Series, Volume 9, NBSIR 79-1709.
- 3. Instruction Manual Multi-Channel Data Acquisition System, Volumes 1 and 2, Document 10185A, July 20, 1973, Monitor Laboratories, Incorporated.
- 4. Raytheon 704 Computer User's Manual, Rev. 1, August 1973. Raytheon Data Systems, 1415 Boston-Providence Turnpike, Norwood, Massachusetts 02062.
- 5. File Control System (FCS) Specification, Rev. B, November 1973
 Raytheon Data Systems, 1415 Boston-Providence Turnpike, Norwood,
 Massachusetts 02062.
- 6. The International System of Units (SI), NBS Special Publication 330, 1977 Edition, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C. 20234
- 7. Handbook of Chemistry and Physics, 36th Edition, Chemical Rubber Publishing Co., 2310 Superior Avenue, NE., Cleveland, Ohio.
- 8. Flow calibration reports (for various venturis) tested at The Foxboro Company Fluid Flow Laboratory, Foxboro, Massachusetts 02035.
- 9. Flow of Fluids through Valves, Fittings, and Pipe; Crane Technical Paper No. 410, Crane Co., 4100 S. Kedzie Avenue, Chicago, Ill. 60632
- 10. International Critical Tables of Numerical Data, Volume III.
- 11. A.A. Miller, "Free Volume" and the Viscosity of Liquid Water, The Journal of Chemical Physics, Volume 38, Number 7, April 1, 1963, page 1568.
- 12. Installation and Operation Manual, Omniflow Turbine Flowmeter Model FTM, Manual FTM-751 Flow Technology, Inc., 4250 E. Broadway Road, Phoenix, Arizona 85040.
- 13. Turbine Meter Calibration Data Sheets and Curves, ITT Barton.

- 14. R.P. Benedict, Generating Thermocouple Reference Tables new equation to meet standards, Westinghouse Instruments and Control Systems, January 1974.
- 15. Richard H.F. Jackson, An Expandable Total Energy Data Editor, National Bureau of Standards, NBSIR 75-735, June 1977.

APPENDICES

143093001977143093000200V+01022500300V+15664500400V+061995 00500V+06062500600V+01505500700V+03421500800V+02996500900V-001315 00201V+00033500301V+084655004Q1V+02263500501V+02260500601V+021555 00701V+02185500801V+02149500901V+08617500202V+07661500302V+113665 00402V+00616500502V-00001500602V+00159500702V-00356500802V+002435 00902V+09400500203V+09147500303V+05730500403V+04400500503V-000005 0060**3V+055795007**03**V+02**062500803**V+0331**4500903V+02113500204V+028895 00304V-00412500404V-00733500504V+03053500604V+01635500704V+034305 00804V+03685500904V+00091500205V+00424500305V+02097500405V+036685 **00505**V+11168500605V+03886500705V+05341500805V+03295500905V+032295 00206V+02926500306V+02808500406V+04768500506V+06338500606V+047465 00706V+04025500806V+04432500906V+02254500207V+02338500307V+022735 00**407V+00141500507V+00001500607V+039**02500707V+03952500807V+029125 **00907V+06197500208V+05754500308V+0275750040**8V+04097500508V+000015 **00608V+059115007**08V+0614**1500808V+05873500**908V+0**7**30**7**500209V+071135 00**309V-00268500409V+0127750**0509V+00001500609V+00440500709V-000075 00809V-00020500909V+00589500210V+01315500310V+02633500410V+004765 00510V-15075500610V+03801500710V+01320500810V+00454500910V+039295 00211V+03653500311V+00969500411V+01545500511V~15073500611V+038215 00711V+03882500811V+03827500911V+00041500212V+00460500312V-000115 00412V+00828500512V-15071500612V-00006500712V+03867500812V+038115 00912V+00041500213V+00109500313V-00011500413V-00001500513V-150705 00613V-00006500713V-00008500813V-00031500913V+000415010 V+075445 011 V+020595012 V+066015013 V+018105014 V+035625015 V+064545 016 V+058165017 V+054595018 V+028725019 V+048035020 V+072855 V+055865022 V+058515023 V+038315024 V+042415025 V+043075 021 V+065725027 V+020465028 V+042755029 V+026505030 V+035365 026 V+009455032 V+029265033 V+010165034 V+005515035 V+029895 031 036 V+005245037 V+028715038 V+030225039 V+011545040 V+029485 V-000185043 V+023485044 V-000445045 041 V+013285042 V+031965 V+007035049 V+012845047 V+013455048 V-000245050 046 M+038932 051 M+038842052 M+040552053 M+038522054 M+041592055 M+043962 M+039002058 M+038912060 056 M+040392057 M+040232059 M+038942 M+006922 061 M+005362062 M+003622063 M+004602064 M+005262065 066 M+012062067 M+012072068 M+012122069 M+012112070 M+013712 071 M+012202072 M-001562073 M+035742074 M+014542075 M+014512 076 M+014372077 M+014902078 M+013072079 M+013262080 M+077622 081 M+040832082 M+030602083 M+180292084 M+031232085 M+117202 086 M-001532087 M+024162088 M+002682089 M+018732090 M-002602 091 M+021262092 M-000132093 M+000852094 M+013452095 M+082292 096 M-006632097 M+056032098 M+017692099 M+004902100 M-034922 101 M+013702102 M+007462103 M+128932104 M+017522105 M+026042 106 M-001102107 M+023582108 M+000342109 M-0000012110 V+043405 111 V+000515112 V+004115113 V+000005114 V+011335115 V+042465 116 V+040055117 V+006525118 V+031165119 V+028655120 V+028665 121 V+028655122 V+028655123 V+028645124 V+028635125 V+028635 126 V+028625127 V+028625128 V+028625129 V+028615130 V+028605 131 V+028605132 V+028605133 V+028605134 V+028595135 V+028595 136 V+028585137 V+028585138 V+028585139 V+028585140 V+043385 V+093805142 141 V+075785143 V+058805144 V+045555145 V+035455 146 V+030985147 V+025355148 V+024845149 V+024745150 V+024735 151 V+024735152 V+024735153 V+024735154 V+024745155 V+024745 156 V+024735157 V+024745158 V+024745159 V+024745160 V+004966 161 V+000046162 V±000006163 V+004726164 V+000006165 V-0000016 166 V-000006167 V-0000006168 V-000016169 V-0000006170 **V-**0000043 171 V-000043172 V+156474173 V+037085174 V+071624175 V+068404 176 V+066224177 V+03032517800V+024805

II. INSTRUMENTATION LOCATIONS AND RAW DATA CODES

National Bureau of Standards Jersey City Total Energy System Data Acquisition List Revision 9/19/77

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
·	SI	PECIAL CATEGORY	
HEADING	100	7 characters in the heading of each scan contain clock data: date (1-365) and time (0-24 hours plus minutes)	
172	102	Time generated by plant	5 minutes (2.82V/5 min)
173	110	Eng. run time EG 1	5 minutes (2.80V/5 min)
174	111	Eng. run time EG 2	when engine is on
177	130	Power factor on CEB bus	.5 lag - 1.0 (+5.0V - 0.0V)
178	141	Frequency of total plant output	59-61 Hz (0-5.0V)
•	WE	ATHER STATION - Remote 005	
005-00	148	Direct solar radiation	Clear Sky (7.5V)
005-01	149	Indirect solar radiation	Bright Sky (1.6V)
008-08	150	Wind Direction	0-360 deg (0-3.6V)
008-09	151	Wind velocity	0-120 MPH (0-12V)
005-04	200	Outdoor baro. pressure	27-31 inches Hg (2.7 - 3.1V)
005-05	710	Outdoor temperature	-20° to 120°F (-2.0 to 12.0V DC)
005-06	712	Outdoor humidity	0 to 100% (0 to 10V DC)
005-07	714	Data cabinet ambient temperature	

DAG	NBS		Normal Physical Page
DAS CHANNEL	CODE	Identification	Normal Physical Range DAS mV in parentheses
		PRESSURE CATEGORY (#'s 200 to 299)	
010	202	CEB primary hot water system pressure, at pump outlet	0 to 100 psi trans- ducer range (2-10V DC).
011 012	220 221	Lub. oil pressure EG-1 Lub. oil pressure EG-2	Normal Values: 202-55 psi (6.4V) 220,
VI.		data off pressure no r	221-50 psi (6.0V) when engine is on.
013	230	Exhaust gas back pressure EG-1	Transducer range 0-30
014	231	Exhaust gas back pressure EG-2	inches water (2-10V DC) Normal 20 in. (7.0V)
			when engine is on.
		FLOW CATEGORY (#'s 300 to 399	
		All flows determined by Venturi and de	elta pressure
		transducer unless a turbine meter is a pressure cells have 0 to 150" H ₂ 0 rang	
015	301	Primary water flow to all engines	11,300 lb/min (6.1V)
016	302	Primary water flow from engine 1 jacket	2,200 lb/min (5.0V)
017	303	Primary water flow from eng. 2 jacket	2,300 lb/min (5.2V)
018	304	Primary water flow from Chiller #1	7,500 lb/min (5.1V)
019	305	SHW return from HSP East (Shelley A, Shelley B, School, Pool)	8,700 lb/min (6.3V)
020	306	SHW supply to HSP West (Business, Camci, Descon)	7,000 1b/min (8.2V)
021	307	Condenser water flow inlet to Chiller CH l	14,000 lb/min (4.5V)
022	308	Condenser water inlet to Chiller #2	17,000 1b/min (5.9V)
023	309	Total condenser water makeup	
024	310	Total chilled water flow to both chillers	20,000 lb/min (5.5V)
025	311	Chilled water from chiller #1	10,000 lb/min (6.4V)
330	312 .	Chilled water or HWR ret. from plant fan coil units FC-1 thru 5 (Turbine)	

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
027	313	Chilled water return from main CEB air inlet coil CC-1	900 lb/min (4.1V)
028	314	Chilled water from HSP East zone	9,000 lb/min (5.5V)
029	315	Chilled water from HSP West zone	9,000 lb/min (3.2V)
026	316	Total raw water from all engines	3,200 lb/min (8.8V)

			•
	FUEL	CONSUMPTION - DIRECT TURBINE	MEASUREMENT
140	360	Engine 1	06 GPM
141	361	Engine 2	06 GPM
142	362	Engine 3	06 GPM
143	363	Engine 4	06 GPM
144	364	Engine 5	06 GPM
145	365	Boiler 1	0-1.5 GPM
146	366	Boiler 2	0-1.5 GPM
147	367	Spare	0-10.24 VDC

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
	SITI	E BUILDING FLOW	
		Flow by venturi and delta pressure transducer unless a turbine is specifi All delta pressure cells range 0 to 15 water (2-10V DC).	
	CI	B Secondary Hot Water to Buildings	
007-01	327	Shelley A Total Building Return	
006-01	328	Shelley B Heating Return	
003-01	330	School Heating Hot Water Return	
004-01	331	Business Building Total Building Return	n
002-01	332	Pool Domestic Hot Water Exchanger Supp	
009-01	333	Descon Concordia Heating Hot Water in	
		Winter, Chilled Water in Summer	
008-01	334	Camci Total Building Supply	
007-03 006-03 003-03 004-03 008-03	336 337 339 340 343	Shelley A Return Shelley B Return School Return Business Building Return Camci Supply	
	CE	B SHW To Building Domestic Heat Exchan	ger
007-05 006-05 003-05 004-05 009-03 008-05	345 346 348 349 351 353	Shelley A Supply Shelley B Return School Return (turbine) Business Building Return (turbine meter Descon Return Camci Supply	e)

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
		ELECTRICAL SIGNALS	
		Voltage (#'s 400 to 499)	
160 163	400 410	CEB main bus line voltage, ØA-B PSE&G feeder in CEB, utility side	480V AC (12.0V DC) 480V AC (12.0V DC)
007-08 006-08 003-08 009-07 009-08 008-08 004-08	416 420 424 426 428 430 432	Shelley A PN5 voltage Shelley B PN4 voltage School PN3 voltage Descon-Concordia PN2 A3 Descon-Concordia PN2 A1,2 Camci PN1 voltage Business Bldg. PN1 voltage	480V AC (6.0V DC) 120V AC (6.0V DC) 277V AC (2.77V DC) 480V AC (6.0V DC) 120V AC (6.0V DC) 480V AC (6.0V DC) 277V AC (6.0V DC)
		Integrated Power (#'s 500 to 549)	
110 111 112 113 114 115 116 117	501 502 503 509 510 511 512 513 514	Total plant production GEN #1 Production GEN #2 Production PTC Compactor Load LP-1 MCC-1 MCC-2 MCC-3 PTC	600-1200 KW 200-350 KW 200-350 KW 12-16 KW 100-140 KW 35-45 KW 150 KW summer
007-07 007-06 006-07 006-06 002-04 003-07 003-06 009-04 009-05 009-06 008-07 008-06 004-07	515 516 519 520 522 523 524 526 527 528 529 530	Shelley A PE2 Shelley B PE2 Shelley B PE2 Shelley B PN4 Pool PN3 School PE3 School PN3 Descon-Concordia PN2, A3 Descon-Concordia PE1, A3 Descon-Concordia PN2, A1,2 Camci PE1 Camci PN1 Business Bldg. PE1 Business Bldg. PN1	30-40 KW 180-350 KW 10-20 KW 40-110 KW 40-100 KW 40-45 KW 50-150 KW 30-40 KW 100-200 KW

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
	<u>I</u> :	nstantaneous Power	
		DC voltage proportional to KW (0-10V	DC)
041 042 043 044 045 046 047 048 049	550 551 552 553 554 555 556 557 558	Total Plant Production Generator #1 Generator #2 PTC Compactor LP-1 MCC-1 MCC-2 MCC-3 PTC	700-1200 KW 200-350 KW 200-350 KW 18-21 KW 125 KW 38 KW 150 KW summer
	TEM	PERATURE CATEGORY (#'s 600 to 799)	
		Actual temperature signals originate thermocouple junction, delta (DT) means a pair of multi-junction piles. Signate 10 to +10 mV. All are type T copper unless otherwise noted.	surements from al levels are
050	600 A,B,C	(Actual) PHW temp. to all engines	175-195°F
086	601	(DT) PHW between engine 1 jacket water inlet & outlet (600C & 603)	3-6°F ON -1 OFF
087	602	(DT) PHW between engine 2 jacket water inlet & outlet (600B & 604)	3-6°F ON -1° OFF
051	603	(Actual) PHW outlet from EG-1 jacket	Inlet plus 3-6°F
052	604	(Actual) PHW outlet from EG-2 jacket	Inlet plus 3-6°F
089	605	(DT) PHW supply and return all engines (600A)	3.5-6.0°F
080	612 .	(Actual) exhaust gas temp. in boiler 1 stack, iron constantan	300-460°F ON 160°F OFF
081	61 3	(Actual) exhaust gas temp. in boiler 2 stack, iron constantan	300-460°F ON 160°F OFF
090	614	(DT) PHW across EG-1 jacket plus M-1 (600A)	4.5-7.0 ON
091	615	(DT) PHW across EG-2 jacket plus M-2 (600C)	4.5-7.0 ON

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in parentheses
053	616	(Actual) PHW outlet from M-1	195-215°F
054	617	(Actual) PHW outlet from M-2	195-215°F
055	627 A,B,C	(Actual) \underline{PHW} outlet of both boilers, inlet to the chillers.	195-225°F
092	628	(DT) \underline{PHW} across B-2 inlet & outlet (627C)	-1 to 14°F
056	629	(Actual) PHW inlet to HX-1, 1-A, outlet of chillers	170-195°F
057	630	(Actual) $\frac{\text{PHW}}{\text{IA}}$ inlet to DCJW, outlet of HX-1, $\frac{\text{TA}}{\text{IA}}$	165-195°F
093	631	(DT) in PHW main line caused by DCJW (630)	.3-1.0°F
094	632	(DT) PHW across inlet & outlet of HX-1, 1A (629&630)	10-18°F winter
058	633	(Actual) PHW inlet to boilers	170-195°F
095	634	(DT) $\frac{\text{PHW}}{\text{CH-1}}$ across inlet & outlet, CH-1 (627B)	8-20°F
096	635		
059	636	(Actual) PHW outlet of DCJW (uses well 631)	170-185°F
097	637	(DT) PHW across inlet & outlet of both boilers (633 & 627A)	5-15°F
060	640	(Actual) mixed outlet of both <u>SHW</u> heat exchangers, SHW to site.	175-190°F
098	641	(DT) across East site SHW supply & return (640)	7-15°F winter
099	642	(DT) across west site $\underline{\text{SHW}}$ supply & return (640)	12-21°F winter
100	647 A,B	(DT) CHW or HW across CEB office fan coil supply & return	
101	659	(DT) across East site $\underline{\text{CHW}}$ supply and return	1-5°F
102	660	(DT) across West site $\underline{\text{CHW}}$ supply and return	1-5°F

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in Parentheses
061	661	(Actual) CHW outlet CH-1	42-50°F
062	662	(Actual) CHW outlet CH-2	42-50°F
063	663 A,B	(Actual) temp. chilled water to site West zone	42-50°F
103	664 A,B	(DT)across CC-1 supply & return	
064	665	(Actual) CHW to inlet of both chillers.	45-55°F
065	671	(Actual) condenser water makeup	65-75°F
066	672	(Actual) condenser water inlet to CH-2	75-85°F
067	673	(Actual) condenser water inlet to CH-1	7 5-85°F
104	674	(DT) condenser water temp between inlet & outlet CH-1 (673)	2-12°F
105	675	(DT) <u>condenser water</u> temp. between inlet & outlet CH-2 (672)	2-12°F
.068	690 A,B	(Actual) <u>raw water</u> inlet to all engines	70-85°F
069	691	(Actual) <u>raw water</u> supply manifold after E-1 outlet, before E-2 inlet.	70-85°F
106	692	(DT) between inlet and outlet of raw water pumps. (693A)	2°F
070	693 A,B,C	(Actual) <u>raw water</u> temp. downstream of all enginestotal engine outlet	75-85°F
088	694	(DT) RW across HWPS and HC-1 plus RHC-1 thru 3 (693B)	.2°F
107	695	(DT) \underline{RW} between total engine outlet and DCRW outlet (693C)	6-8°F
071	69 6	(Actual) Raw water supply manifold after E-2 outlet, before E-3 inlet.	70-80°F
072	. 700	(Actual) <u>lub. oil</u> sump Eng. 1	120°F OFF, 180°F ON
073	701	(Actual) <u>lub. oil</u> sump Eng. 2	120°F OFF, 180°F ON

DAS CHANNEL	NBS CODE	Identification	Normal Physical Range DAS mV in Parentheses
108	702	(DT) RW across HX-3 (690A)	
109	703	(DT) on \underline{RW} supply manifold across E-1 (691 & 690B)	1.5°F ON
074	711	(Actual) engine room air temp. db	75-85°F
075	713	(Actual) engine room air temp. wb	60-75°F
076	730	(Actual) fuel oil supply to all engines	84-93°F
077	731	(Actual) fuel oil return from all engines	85-94°F
078	732	(Actual) fuel oil supply to boilers	70-81°F
079	733	(Actual) fuel oil return from boilers	71-82°F
082	750	(Actual) temp. of exhaust gas entering M-1, iron constantan	480-600°F ON 130°F OFF
083	751	(Actual) temp. of exhaust gas entering M-2, iron constantan	480-600°F ON 130°F OFF
084	752	(Actual) temp. of exhaust gas leaving M-1, iron constantan	400-500 ON 130°F OFF
085	753	(Actual) temp. of exhaust gas leaving M-2, iron constantan	400-500°F ON
	WATE	ER TEMPERATURES AT SITE BUILDINGS	
	<u>(A</u>	Actual) Chilled Water To Individual Bui	ldings
006-09 007-10 008-10 009-09 003-09 004-10	643 644 645 646 624 625	Shelley B (well 650A) Shelley A (well 648A) Camci (well 654A) (Actual) Hot or chilled water for heating or cooling (well 626A) School Business Building	42-50°F for all buildings

			. 1 Di
DAS	NBS	71	Normal Physical Range
CHANNEL	CODE	Identification	DAS mV in Parentheses
		(DT) Chilled Water Between Building Supp	oly And Return
		Well A is Supply, B Return	Ty Ind Rocall
		well if to bappin, a needin	
007-02	648	Shelley A	
006-02	650	Shelley B	
003-02	651	School School	
009-00	626	Descon Heating and Cooling	
008-02	654	Camci	
004-02	655	Business Building	
		(Actual) CEB SHW To Buildings	
002-08	760	Pool domestic	170-190°F for all
003-10	761	School heating supply	buildings
004-11	762	Business Bldg. Total Bldg. supply	ballalings
006-10	763	Shelley B Total Supply	
007-11	764	Shelley A Total bldg. supply	
		(uses well 768)	
008-11	765	Camci Total bldg supply (uses well 77	(4)
		(2)	
		(DT) Between HWS and HWR	
007-00	768	Shelley A total building	
006-00	770	Shelley B total building	
003-00	771	School heating	
002-00	772	Pool domestic	
.008-00	774	Camci total bldg.	
004-00	775	Business bldg. total bldg.	
		202220 02.261 00.00	
		(Actual) HW Temperature Inlet To Domesti	c Heat Exchanger
003-11	781	Cahaal	170-190°F for all
004-12	782	School Business bldg.	buildings
006-11	783	Shelley B	r
007-12	784	Shelley A	I
008-12	785	Camci	i
009-10	786	Descon-Concordia	
		2000011 2011011 211	
		•	
		(DT) Hot Water Inlet and Outlet of Domes	tic Heat Exchanger
007-04	788	Shelley A	•
006-04	790	Shelley B	
003-04	791	School	
009-02	793	Descon-Concordia	
008-04	794	Camci	
004-04	795	Business bldg.	
	1		

DAS CHANNEL	NBS CODE	<u>Identification</u>	Normal Physical Range DAS mV in Parentheses
	ALA	RMS AND INDICATORS (#'s 800 to 899)	
	Engines		
127	800	Engine low oil pressure, malfunction	Engine 1 -(2.58V)
	801	Engine high water temperature, malfunction	(1.29V)
	802	Engine high oil temperature, malfuncti	ion (.65V)
	803	Engine overspeed (110%)	(.32V)
	804	Engine underspeed (90%)	(.16V)
	805	Engine excessive vibration malfunction	n (.08V)
120	806	Engine high oil coolant temperature	Engine 1 -(2.58V)
	807	Circuit breaker trip	(1.29V)
· ·	808	Engine excessive start time	(.65V)
	809	Generator overload	(.32V)
	810	Failure to parallel	(.16V)
	811	Reverse power protection	(.08V)
1.21	815 to 820	(Same as 800 to 805)	Engine 2
122	821 to 826	(Same as 806 to 811)	Engine 2
123	830 to 835	(Same as 800 to 805)	Engine 3
124	836 to 841	(Same as 806 to 811)	Engine 3
125	845 to 850	(Same as 800 to 805)	Engine 4
126	851. to 856	(Same as 806 to 811)	Engine 4
128	860 to 865	(Same as 800 to 805)	Engine 5
129	866 to 871	(Same as 806 to 811)	Engine 5

LOC	TITLE	UNITS
1010	TIME GAIN OF SITE CLOCKS EG1 RUN TIME EG2 RUN TIME INST POWER - ALL EG INST POWER - EG1 INST POWER - EG2 INST POWER - EG3-5 INST POWER USED - PTC COMP	MINUTES PER HOUR
1011	EG1 RUN TIME	MINUTES PER HOUR
1012	EG2 RUN TIME	MINUTES PER HOUR
1013	INST POWER - ALL EG	INSTANT. KILOWATE HOURS
1014	INST POWER - EG1	INSTANT. KILOWATT HOURS
1015	INST POWER - EG2	INSTANT. KILOWATI HOURS
1016	INST POWER - EG3-5	INSTANT. KILOWATT HOURS
1018	INST POWER USED - PTC COMP	INSTANT. KILOWAFF HOURS
1019	11451 1 0 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	211011111111111111111111111111111111111
1 020	INST POWER USED - MCC1	INSTANT KILOWATI HOURS
1 021	INST POWER USED - MCC2	INSTANT. KILOWATT HOURS
1 022	INST POWER USED - MCC3 INST POWER USED - PTC EXH	INSTANT. KILOWATT HOURS
1 023 1 025		KILOWATT HOURS
1 025	TOTAL POWER PROD BY EGI	KILOWATT HOURS
1 027	TOTAL POWER PROD BY EG2	KILOWATT HOURS
1 028	TOTAL POWER PROD BY EG3-5	KILOWATT HOURS
1 030		
1 031	TOTAL POWER USED BY PTC COMP TOTAL POWER USED BY LP1	KILOWATT HOURS
1 032	TOTAL POWER USED BY MCC1	KILOWATT HOURS
1 033	TOTAL POWER USED BY MCC2	KILOWATT HOURS
1 034	TOTAL POWER USED BY MCC3	KILOWATT HOURS
1 035	TOTAL POWER USED BY PTC EXH	KILOWATT HOURS
1 036	POWER USED BY SHELLEY A , PE2	KILOWATT HOURS
1037	POWER USED BY SHELLEY A . PN5	KILOWATT HOURS
1 038	TOTAL POWER USED BY SHELLEY A	KILOWATT HOURS
1 039	POWER USED BY SHELLEY B , PE2	KILOWATT HOURS
1 040	POWER USED BY SHELLEY B , PN4	KILOWATT HOURS
1 041	TOTAL POWER USED BY SHELLEY B	KILOWATT HOURS
1 042	TOTAL POWER USED BY POOL , PN3	KILOWATI HOURS
1 043	POWER USED BY SCHOOL , PE2 POWER USED BY SCHOOL , PN3	KILOWAII MOUNS
1 044	TOTAL POWER USED BY SCHOOL	KILOWATT HOURS
1 046	POWER USED BY DESCON EAST , PN2	
1047	POWER USED BY DESCON EAST , PEI	KILOWATT HOURS
1 048	TOTAL POWER USED BY DESCON EAST	KILOWATI HOURS
1049	TOTAL POWER USED BY DESCON WEST	KILOWATT HOURS
1 050	TOTAL POWER USED BY DESCON	KILOWATT HOURS
1 051	POWER USED BY CAMCI . PE1	KILOWATT HOURS
1052	POWER USED BY CAMCI . PN1	KILOWATT HOURS
1 053	TOTAL POWER USED BY CAMCI	KILOWATT HOURS
1054	POWER USED BY COM. ELDG , PE1	KILOWATT HOURS
1 055	POWER USED BY COM. BLDG , PN1	KILOWATT HOURS
1056	TOTAL POWER USED BY COM-BLDG	KILOWATT HOURS
1 059	TOTAL POWER USED BY CEB	KILOWATT HOURS
1 0 60	POWER USED BY SHWP	KILOWATT HOURS
1061	POWER ASSIGNED TO BOILERS POWER ASSIGNED TO CHILLERS	KILOWATT HOURS
1063	POWER ASSIGNED TO ELECT PROD	KILOWATT HOURS KILOWATT HOURS
1064	POWER ASSIGNED TO AIR & HEAT	KILOWATT HOURS
1 0 6 5	TOTAL POWER USED BY PTC	KILOWATT HOURS
1066	TOTAL POWER USED BY SITE	KILOWATT HOURS
		1100110

LOC TITLE UNITS

1067	TOTAL NET POWER USED	KILOWATT HOURS		
1073	TOTAL POWER USED BY PE1	KILOWATT HOURS		
1074	TOTAL POWER USED BY PE2			
1 0 75		KILOWATT HOURS		
	TOTAL POWER USED BY ESS BUSS	KILOWATT HOURS		
1076	TOTAL POWER USED BY PNI	KILOWATT HOURS		
1077	TOTAL POWER USED BY PN2	KILOWATT HOURS		
1 078	TOTAL POWER USED BY PN3	KILOWATT HOURS		
1079	TOTAL POWER USED BY PN4	KILOWATT HOURS		
1 080	TOTAL POWER USED BY PN5	KILOWATT HOURS		
1 081	TOTAL POWER USED BY NORM. BUSS	KILOWATT HOURS		
1082	POWER USED BY NOR & ESS BUSS	KILOWATT HOURS		
1087	HEAT ADDED BY CHI TO COND H20	KILO B.T.U. PER HIUR		
1 088	HEAT ADDED BY CH2 TO COND H20	KILO B.T.U. PER HLUR		
	TOTAL HEAT ADDED TO COND H20			
1089		KILO B.T.U. PER HOUR		
1 090	COND H20 HEAT REMOVED BY TOWERS	KILO B.T.U. PER HOUR		
1 091	COND HEAT REMOVED BY MAKEUP			
1092	COND H20 HEAT REMOVED BY RAW	KILO B.T.U. PER HLUR		
1093	HEAT REMOVED FROM COND H20	KILO B.T.U. PER HOUR		
1 100	PHW HEAT ADDED BY EG1 MUF (1)	KILO B.T.U. PER HOUR		
1 101	PHW HEAT ADDED BY EG1 MUF (2)	KILO B.T.U. PER HOUR		
1 102	PHW HEAT ADDED BY EG1 MUF (3)	KILO B.T.U. PER HKUR		
1 103	PHW HEAT ADDED BY EG2 MUF (1)	KILO B.T.U. PER HOUR		
1 104	PHW HEAT ADDED BY EG2 MUF (2)	KILO B.T.U. PER HOUR		
1 105				
	PHW HEAT ADDED BY EG2 MUF (3)	KILO B.T.U. PER HOUR		
1 106	PHW HEAT ADDED BY EG1 JAC (1)	KILO B.T.U. PER HOUR		
1 107	PHW HEAT ADDED BY EG1 JAC (2)	KILO B.T.U. PER HOUR		
1 108	PHW HEAT ADDED BY EG1 JAC (3)	KILO B.T.U. PER HOUR		
1 109	PHW HEAT ADDED BY EG2 JAC (1)	KILO B.T.U. PER HOUR		
1 110	PHW HEAT ADDED BY EG2 JAC (2)	KILO B.T.U. PER HKUR		
1 1 1 1	PHW HEAT ADDED BY EG2 JAC (3)	KILO B.T.U. PER HOUR		
1112	HEAT ADDED BY EGI TO PHW (1)	KILO B.T.U. PER HOUR		
1 113	HEAT ADDED BY EGI TO PHW (2)	KILO B.T.U. PER HIUR		
1114	HEAT ADDED BY EGI TO PHW (3)	KILO B.T.U. PER HOUR		
1 1 1 5	HEAT ADDED BY EG2 TO PHW (1)	KILO B.T.U. PER HOUR		
1116	HEAT ADDED BY EG2 TO PHW (2)	KILO B.T.U. PER HOUR		
1117	HEAT ADDED BY EG2 TO PHW (3)	KILO B.T.U. PER HKUR		
1 118	HEAT ADDED BY EG3-5 TO PHW (1)	KILO B.T.U. PER HLUR		
1119	HEAT ADDED BY EG3-5 TO PHW (2)	KILO B.T.U. PER HLUR		
1 150	HEAT ADDED BY EG3-5 TO PHW (3)	KILO B.T.U. PER HOUR		
1121	HEAT ADDED BY ALL EG TO PHW	KILO B.T.U. PER HOUR		
1155	HEAT ADDED BY B1 TO PHW (1)	KILO B.T.U. PER HOUR		
1 123	HEAT ADDED BY B1 TO PHW (2)	KILO B.T.U. PER HLUK		
1124	HEAT ADDED BY B1 TO PHW (3)	KILO B.T.U. PER HLUR		
1 125	HEAT ADDED BY B1 TO PHW (4)	KILO B.T.U. PER HOUR		
1126	HEAT ADDED BY B2 TO PHW	KILO B.T.U. PER HIUR		
1127	PHW HEAT ADDED BY BOILERS (1)	KILO B.T.U. PER HKUR		
1 128	PHW HEAT ADDED BY BOILERS (2)	KILO B.T.U. PER HOUR		
1 129	PHW HEAT ADDED BY BOILERS (3)	KILO B.T.U. PER HOUR		
1 130	HEAT REMOVED BY CHI TO PHW	KILO B.T.U. PER HOUR		
1 1 3 1	HEAT REMOVED BY CH2 TO PHW	KILO B.T.U. PER HOUR		
1 132	HEAT REMOVED BY CHILLERS TO PHW	KILO B.T.U. PER HOUR		
1 133	HEAT REMOVED BY PRI/SEC HX (1)	KILO B.T.U. PER HOUR		
		•		

LOC TITLE UNITS

1134	HEAT REMOVED BY PRI/SEC HX (2)	KILO	B • T • U •	PER	HOUR
1 1 35	HEAT REMOVED BY PRI/SEC HX (3)	KILO	B.T.U.	PER	HOUR
1136	HEAT REMOVED BY DRY COOL (1)	KILO	B.T.U.	PEH	HOUK
1137	HEAT REMOVED BY DRY COOL (2)	KILO	B.1.U.	PER	HOUH
1 1 38	HEAT REMOVED BY DRY COOL (3)	KILO	B • T • U •	PEH	HOOH
1139	HEAT REMOVED BY EMER HX	KILO	B.T.U.	PER	HOUR
1 1 40	HEAT ADDED BY PHWP	KILO	B.T.U.	PER	HOUH
1 1 4 1	TOTAL HEAT ADDED TO PHW (1)	KILO	B.T.U.	PER	HOUR
1 1 4 2	TOTAL HEAT ADDED TO PHW (2)		B.T.U.		
1 1 43	TOTAL HEAT ADDED TO PHW (3)	KILO	B • T • U •	PER	HOUR
1 1 4 4	HEAT REMOVED FROM PHW (1)		B. T. U.	PEH	HOUR
1 1 4 5	HEAT REMOVED FROM PHW (2)	KILO	B.T.U.	PEH	HOUK
1146	HEAT REMOVED FROM PHW (3)	KILO	B.T.U.	PER	HOUR
1 1 4 7	HEAT LOSSES TO PHW (1) HEAT LOSSES TO PHW (2)	KILO	B • T • U •	PER	HOUR
1 1 48	HEAT LOSSES TO PHW (2)	KILO	B.T.U.	PER	HOUR
1 1 49	HEAT LOSSES TO PHW (2) HEAT LOSSES TO PHW (3) HEAT REMOVED BY SEC HX HEAT REMOVED BY CC1 IN SHE	KILO	B. T. U.	PER	HOUH
1 1 5 5	HEAT REMOVED BY SEC HX	KITO	B.T.U.	PER	HOUR
1156	ALAI REMOVED BI CCI IN SAW	MILLO	Delen	L EII	MOOSE
1157	HEAT REMOVED BY FC IN SHW	KILO	B • T • U •	PER	HOOH
1 158	HEAT REMOVED BY WEST ZONE SHW HEAT REMOVED BY SITE E SHW	KILO	B. T. U.	PER	HOUR
1 159					
1 1 60	HEAT REMOVED BY EAST ZONE SHW		B.T.U.		
1161	HEAT LOSSES THRU PRI/SEC HX (1)				
1162	HEAT LOSSES THRU PRI/SEC HX (2)		B.1.U.		
1 1 6 3	HEAT LOSSES THRU PRI/SEC HX (3) SCW HEAT REMOVED BY CHI	KILO	B.T.J.		
1 1 70			B. T. U.		
1 1 71	SCW HEAT REMOVED BY CH2	KILO	B.T.U.	PEK	HOUR
1172	SCW HEAT REMOVED BY CHILLERS	KILO	B • T • U •	PER	HOUR
1 1 73			B.T.U.		
1 1 74			B.T.U.		
1 1 75	SCW HEAT REMOVED BY W ZONE (1)		B.T.U.		
1176	SCW HEAT REMOVED BY W ZONE (2)		B.T.U.		
1 1 77			B.T.U.		
1 1 78			B.T.U.		
1 1 79					
	HEAT REMOVED FROM SCW (1)		B. T. U.		
	HEAT REMOVED FROM SCW (2)		B.T.U.		
	HEAT REMOVED FROM SCW (3)		B.T.U.		
1 183			B.T.U.		
1 184			B. I. U.		
1 1 8 5		KILO	B.T.U.	PER	HOUR
1191					
1192	RAW H20 HEAT ADDED BY EG! (2)				
1193			B.T.U.		
			B. T. U.		
1195			B.T.U.		
			B.T.U.		
	HEAT ADDED BY ALL EG RAW (2)	KILO	B.T.U.	PEH	HOUR
			B.T.U.		
1199			B.T.U.		
	HEAT ADDED BY HX 3 TO RAW H20				
1 201	HEAT ADDED BY HX 4 TO RAW H20	VILO	D.1.0.	PER	HOUR

1 202	HEAT ADDED BY HWP TO RAW H20	KILO	B.T.U.	PER	HOUR
1 203	HEAT ADDED BY COILS TO RAW H20	KILO	B.T.U.	PER	HOUR
1 204	HEAT ADDED BY DCRW TO RAW H20		B.T.U.		
1 205			B.T.U.		
1 206	TOTAL HEAT ADDED TO RAW H20 (2)		B.T.U.		
1 207	TOTAL HEAT ADDED TO RAW H20 (3)		B.T.U.		
1 208	TOTAL HEAT ADDED TO RAW H20 (4)		B.T.U.		
1 209	TOTAL HEAT ADDED TO RAW H20 (5)		B.T.U.		
1210	TOTAL HEAT ADDED TO RAW H20 (6)				
	TOTAL HEAT ADDED TO RAW H20 (7)				
1212			B.T.U.		
1213					
			B.T.U.		
	HEAT LOSSES TO RAW H20 (2)				
1215					
	HEAT LOSSES TO RAW H20 (4)				
	HEAT LOSSES TO RAW H20 (5)				
1218	HEAT LOSSES TO RAW H20 (6)	KILU	8.1.0.	PER	HOUR
1219	HEAT LOSSES TO RAW H20 (7, HEAT ADDED BY BOILERS TO FUEL	KILO	B.T.U.	PER	HOUR
1 225	HEAT ADDED BY BOILERS TO FUEL	KILO	B.T.U.	PER	HOUR
	HEAT ADDED BY ALL EG TO FUEL				
	TOTAL HEAT ADDED TO FUEL		B.T.U.		
	FUEL HEAT USED BY EG1		B. T. U.		
	FUEL HEAT USED BY EG2	KILO	B.T.U.	PER	HOUR
1 230	FUEL HEAT USED BY EG3	KILO	B.T.U.	PER	HOUR
1 231	FUEL HEAT USED BY EG4	KILO	B. T. U.	PER	HOUR
1 232	FUEL HEAT USED BY EG5	KILO	B.T.U.	PER	HOUR
1 233	SHELLEY A DOM H20 HEAT	KILO	B.T.U.	PER	HOUR
1 234	SHELLEY A SPACE HEAT	KILO	B. T. U.	PER	HOUR
1 235	HEAT USED BY SHELLEY A	KILO	B.T.U.	PER	HOUR
1 236	SHELLEY B DOM H20 HEAT		B.T.U.		
1 237	SHELLEY B SPACE HEAT		B.T.U.		
1 238	HEAT USED BY SHELLEY B		B.T.U.		
1 241	HEAT USED BY POOL		B.T.U.		
1 242	SCHOOL DOM HOO HEAT		B.T.U.		
1 243	SHELLEY B SPACE HEAT HEAT USED BY SHELLEY B HEAT USED BY POOL SCHOOL DOM H20 HEAT SCHOOL SPACE HEAT HEAT USED BY SCHOOL		B.T.U.		
1 244	HEAT HEED BY SCHOOL		B.T.U.		
1 245	HEAT REMOVED BY SITE E		B.T.U.	-	
	HEAT REMOVED BY EAST ZONE		B.T.U.		
	EAST ZONE HEAT LOSSES		B.T.U.		
	DESCON DOM H20 HEAT		B.T.U.		
	DESCON SPACE HEAT		B.T.U.		
	HEAT USED BY DESCON				
			B.T.U.		
1 251	CAMCI DOM H20 HEAT		B • T • U •		
	CAMCI SPACE HEAT		B. T. U.		
	HEAT USED BY CAMCI		B.T.U.		
	COM-BLDG DOM H20 HEAT		B.T.U.		
	COM. BLDG SPACE HEAT		B.T.U.		
	HEAT USED BY COM. BLDG		B.T.U.		
	HEAT USED BY WEST ZONE		B.T.U.		
	WEST ZONE HEAT LOSSES		B.T.U.		
1259	HEAT REMOVED BY SITE		B.T.U.		
1 560	SITE HEAT LOSSES	KILO	B.T.U.	PER	HOUR

LOC	TITLE	UNITS
1 2 6 1	FUEL HEAT USED BY ALL EG FUEL HEAT USED BY B1 FUEL HEAT USED BY B2 FUEL HEAT USED BY BOILERS	KILO B.T.U. PER HOUR KILO B.T.U. PER HOUR
1 263	FUEL HEAT USED BY B2	KILO B.T.U. PER HOUR
1 2 6 4	FUEL HEAT USED BY BOILERS	KILO B.T.U. PER HOUR
1 265	FUEL HEAT USED BY PLANT COOLING USED BY SHELLEY A	KILO B.T.U. PER HOUK
1266	COOLING USED BY SHELLEY A	KILO B.T.U. PER HOUR
1267	COOLING USED BY SHELLEY B	KILO B.T.U. PER HOUR
1268	COOLING USED BY POOL	KILO B.T.U. PER HOUR
1 269	COOLING USED BY POOL COOLING USED BY SCHOOL COOLING USED BY SITE E	KILO B.T.U. PER HOUR
1 270	COOLING USED BY SITE E	KILO B.T.U. PER HOUR
1 271	COOLING USED BY EAST ZONE	KILO B.T.U. PER HLUR
1 2 7 2	EAST ZONE COOLING HEAT LOSSES	KILO B.T.U. PER HOUR
1 273	COOLING USED BY DESCON	KILO B.T.U. PER HOUR
1 2 7 4	COOLING USED BY CAMCI	KILO B.T.U. PER HOUR
1 2 7 5 1 276	COOLING USED BY WEST ZONE	MILO B. I. O. PER MOUR
1277	COOLING USED BY SCHOOL COOLING USED BY SITE E COOLING USED BY EAST ZONE EAST ZONE COOLING HEAT LOSSES COOLING USED BY DESCON COOLING USED BY CAMCI COOLING USED BY COM. BLDG COOLING USED BY WEST ZONE WEST ZONE COOLING HEAT LOSSES	KILO BOTOUR PER HOUR
1278	COOLING USED BY SITE	KILO B.T.U. PER HOUR
1 2 7 9	SITE COOLING HEAT LOSSES	KILO B.T.U. PER HOUR
1 285	WEST ZONE COOLING HEAT LOSSES COOLING USED BY SITE SITE COOLING HEAT LOSSES FUEL HEAT USED BY EG1 -TB	KILO B.T.U. PER HOUR
1 286	FUEL HEAT USED BY EG2 -TB	KILO B.T.U. PER HOUR
1287	FUEL HEAT USED BY EG3-5 -TB	KILO B.T.U. PER HOUR
1 288	FUEL HEAT USED BY ALL EG -TB	KILO B.T.U. PER HOUR
1 289	FUEL HEAT USED BY B1 - TB FUEL HEAT USED BY B2 - TB	KILO B.T.U. PER HOUR
1 290	FUEL HEAT USED BY B2 -TB	KILO B.T.U. PER HOUR
1 291	FUEL HEAT USED BY BOILERS -TB	
1292	FUEL HEAT USED BY PLANT -TB	
1 294	FUEL HEAT USED BY PLANT -TB FUEL USED BY B1 FUEL USED BY B2 FUEL USED BY B0ILERS FUEL USED BY EG1 -TB FUEL USED BY EG2 -TB FUEL USED BY EG3-5 -TB FUEL USED BY ALL EG -TB	GALLONS PER HOUR
1 295	FUEL USED BY BOILERS	GALLONS PER HOUR GALLONS PER HOUR
1 2 9 0	FUEL USED BY EGY - TO	GALLONS PER HOUR
1 299	FILE USED BY EGS - TB	GALLONS PER HOUR
1 300	FUEL USED BY EG3-5 -TB	GALLONS PER HLUR
1301	FUEL USED BY ALL EG -TB	GALLONS PER HOUR
1 302	FUEL USED BY B1 -TB	GALLONS PER HOUR
1 303	FUEL USED BY B2 -TB	GALLONS PER HOUR
1304	FUEL USED BY BOILERS -TB	GALLONS PER HOUR
1 305	FUEL USED BY PLANT -TB	GALLONS PER HOUR
1 307	FUEL USED BY EGI	GALLONS PER HOUR
1 308	FUEL USED BY EG2	GALLONS PER HOUR
1 309	FUEL USED BY EG3	GALLONS PER HOUR
1310	FUEL USED BY EGA	GALLONS PER HOUR
1311	FUEL USED BY EG5 FUEL USED BY ALL EG	GALLONS PER HOUR GALLONS PER HOUR
1 3 1 3	FUEL USED BY PLANT	GALLONS PER HOUR
1 3 1 5	TOTAL POWER USED BY SHWP	KILOWATTS
1316	CH ON=1; OFF=2	SEASON
1317	% LP1 TO ELECT	FRACTION
1318	EFF HX 4	FRACTION
1319	DEG API	DEGREES A.P.I.
1 320	ANALYZED HEAT CONTENT OF FUEL	B.T.U. PEH GALLON

```
NES O. LOC 1: 3.000 NONE 1.000 M.V. FLAG = 0 NES O. LOC 2: 1.000 NONE 1.000 M.V. FLAG = 1 NES O. LOC 3: 5.000 NONE 5.000 M.V. FLAG = 1 NES O. LOC 4: .000 NONE ..000 M.V. FLAG = 1 NES O. LOC 5: 40192.000 NONE ..000 M.V. FLAG = 1 NES O. LOC 6: 578000.000 NONE 40192.000 M.V. FLAG = 1 NES O. LOC 6: 578000.000 NONE 40192.000 M.V. FLAG = 1 NES O. LOC 6: 578000.000 NONE 40192.000 M.V. FLAG = 1 NES O. LOC 7: 47.000 NONE 40192.000 M.V. FLAG = 1 NES O. LOC 8: 1.000 NONE 1:000 M.V. FLAG = 1 NES O. LOC 8: 1.000 NONE 1:000 M.V. FLAG = 1 NES O. LOC 9: 15.000 NONE 1:000 M.V. FLAG = 1 NES O. LOC 9: 15.000 NONE 1:000 M.V. FLAG = 1 NES O. LOC 10: 58.575 PSI 668.000 M.V. FLAG = 0 NES 220. LOC 10: 58.575 PSI 668.000 M.V. FLAG = 0 NES 220. LOC 10: 58.575 PSI 668.000 M.V. FLAG = 0 NES 220. LOC 11: .887 PSI 1669.000 M.V. FLAG = 0 NES 230. LOC 12: 57.787 PSI 668.000 M.V. FLAG = 0 NES 230. LOC 13: -.018 PSI 1869.000 M.V. FLAG = 0 NES 230. LOC 14: .238 PSI 3758.000 M.V. FLAG = 0 NES 301. LOC 15: 1323.916 LBMIN 5592.000 M.V. FLAG = 0 NES 303. LOC 16: 2440.495 LBMIN 5592.000 M.V. FLAG = 0 NES 303. LOC 17: 2310.435 LBMIN 5592.000 M.V. FLAG = 0 NES 303. LOC 18: .000 LBMIN 2030.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 2030.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 2030.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 2046.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 307. LOC 21: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 311. LOC 23: .000 LBMIN 2046.000 M.V. FLAG = 0 NES 311. LOC 24: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 311. LOC 25: .2836.554 LBMIN 1971.000 M.V. FLAG = 0 NES 315. LOC 31: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 315. LOC 31: .000 LBMIN 1971.000 M.V. FLAG = 0 NES 315. LOC 31: .000 LBMIN 2070.000 M.V. FLAG = 0 NES 315. LOC 31: .000 LBMIN 1978.000 M.V. FLAG = 0 NES 315. LOC 31: .000 LBMIN 1978.000 M.V. FLAG = 0 NES 314. LOC 33: .000 M.V. FLAG = 0 NES 314. LOC 33: .000 M.V. FLAG = 0 NES 314. LOC 33: .00
```

NBS	627.	LOC	55:	193 • 478	DEG F		3 • 800	M. V.	FLAG = 0
NBS	629,	LOC	56:	195 • 127	DEG F		3 • 842	M.V.	FLAG = 0
	630.		571	183.090			3.537		FLAG = 0
	633,		58:	187.289			3.643		FLAG = 0
NBS			591	181.899			3.507		FLAG = 0
N BS		LOC	60:	180 • 627			3.475		FLAG = 0
	661,		61:	81 • 512			1.100		FLAG = 0
			62:	81 • 205			1.100		FLAG = 0
	662,			117.737					
	663,		63:				1.941		FLAG = 0
N BS			648	84 • 141			1 • 160		FLAG = 0
	671,		65 :	67.903				M.V.	FLAG = 0
	672,		66:	82 • 258			1 • 117		FLAG = 0
	673,		671	80 • 722			1.082		FLAG = 0
N BS		LOC	68:	79 • 008			1.043		FLAG = 0
N BS	691,	LOC	691	79.052			1.044		FLAG = 0
NBS	693,	LOC	70:	84 • 185	DEG F		1.161		FLAG = 0
N BS	696,	LOC	71:	79 • 492	DEG F		1.054	M.V.	FLAG = 0
NBS	700,	LOC	72:	36.516	DEG F		•098	M.V.	FLAG = 0
N BS	701.	LOC	73:	183 • 249	DEG F		3.541	M.V.	FLAG = 0
NBS	711.	LOC	74:	80 • 766	DEG F		1.083	M. V.	FLAG = 0
N BS	713.		751	79.887			1.063	M. V.	FLAG = 0
NBS	730.		761	83 • 835			1.153		FLAG = 0
N BS	731.		77:	86.021			1.203		FLAG = 0
NBS	732.		78:	75 • 615				M.V.	FLAG = 0
N BS	733		79:	76.321				M.V.	FLAG = 0
	612		80:	303 • 351			8.048		FLAG = 0
NBS									
NBS	613,		81:	170 - 239			4.014		FLAG = 0
NBS		LOC	82:	112-830			2.319		FLAG = 0
NBS		LOC	83:	559.041			15.927		FLAG = 0
NBS	752,		84:	130.060			2.824		FLAG = 0
NBS	753		85 :	412.905			11.422		FLAG = 0
N BS	601,		86:		DL DEG			M.V.	FLAG = 0
N BS	6023		871		DL DEG		2.037		FLAG = 0
N BS	6940		88:		DL DEG		1.214		FLAG = 0
N BS	605 #	LOC	89:	5 • 116	DL DEG	F	1 935	M. V.	FLAG = 0
N BS	6140	LOC	90:	- • 143	DL DEG	F	036	M.V.	FLAG = 0
NBS	615.	LOC	91:	7 • 267	DL DEG	F	1.834	M.V.	FLAG = 0
NBS	628,	LOC	92:	• 123	DL DEG	F	•047	M.V.	FLAG = 0
NBS	631.	LOC	93:	•893	DL DEG	F	• 225	M.V.	FLAG = 0
	632,		941	11.880	DL DEG	F	3.010	M.V.	FLAG = 0
	634,		951		DL DEG		20.000		FLAG = 0
	635,		961	-3.473			872		FLAG = 0
	637,		971	6 • 739			2.565		FLAG = 0
	641.		98:		DL DEG		2.366		FLAG = 0
	642		99:	12.396			3.098		FLAG = 0
	647			1 • 347			• 478		FLAG = 0
	659,								
	660,			4 • 863			1.729		FLAG = 0
				-•931 -22.496			~ 330		FLAG = 0
	664,			-33.426			-11.657		FLAG = 0
	674			-3.661			-1.253		FLAG = 0
	675,			~5.922			-2.032		FLAG = 0
	692,			079			027		FLAG = 0
	695,			5 • 500			1.880		FLAG = 0
N BS	702.	LOC	108:	•026	DL DEG	F	•009	M.V.	FLAG = 0
								,	

NBS 703,	LOC	109:	023	DL DEG F	-•008	M.V.	FLAG =	: 0
NBS 501.	LOC	110:	805 • 546	KW (AVG)	734.000	M.V.	FLAG =	= 0
NBS 502				KW (AVG)	4677.000		FLAG =	i i)
NBS 503				KW (AVG)	3406.000		FLAG =	
NBS 509				KW (AVG)	2.000		FLAG =	
N BS 510.				KW (AVG)	4943.000			: 0
	LOC			KW (AVG)	3198.000		FLAG =	
	LOC			KW (AVG)	1755.000			: 0
				KW (AVG)				
NBS 513,				KW (AVG)	8.000		FLAG =	
	LOC				1354.000		FLAG =	
-	LOC		1331.000		1331.000		FLAG =	
NBS 806			1332 • 000		1332.000		FLAG =	
NBS 815,			1331.000		1331-000		FLAG =	
NBS 821,			1331 • 000		1331.000		FLAG =	
NBS 830,			1331.000		1331.000		FLAG =	: ()
NBS 836,			1330.000		1330.000		FLAG =	-
NBS 845,			1330 • 000		1330.000		FLAG =	: ()
NBS 851,	LOC	126:	1330.000	ON/OFF	1330.000		FLAG =	: O
NBS 800,	LOC	127:	1329.000	ON/OFF	1329.000	M.V.	FLAG =	: 0
NBS 860.	LOC	128:	1329.000	ON/OFF	1329.000	M.V.	FLAG =	0
NBS 866.	LOC	129:	1328.000	ON/OFF	1328.000	M. V.	FLAG =	()
NBS O	LOC	130:	1328 • 000	NONE	1328.000	M. V.	FLAG =	1
	LOC		1327 • 000		1327.000		FLAG =	1
	LOC		1327.000		1327.000		FLAG =	
	LOC		1327.000		1327.000		FLAG =	
	LOC		1326 • 000		1326.000		FLAG =	
	LOC		1326 • 000		1326.000		FLAG =	
	LOC		1326 • 000		1326.000		FLAG =	
	LOC		1325 • 000		1325.000		FLAG =	
	FOC		1325 • 000		1325-000		FLAG =	
	LOC		1324.000		1324.000			
							FLAG =	
	LOC			GPM (AV)	8428 000		FLAG =	
	roc			GPM (AV)	9754.000		FLAG =	
	LOC			GPM (AV)	5451.000		FLAG =	
NBS 363,				GPM (AV)	5899.000		FLAG =	
NBS 364				GPM (AV)	1456.000			
NBS 365.				GPM (AV)	3207.000		FLAG =	
N BS 366.				GPM (AV)	6456.000		FLAG =	
	LOC		6364 • 000		6364.000		FLAG =	
	LOC		6356 • 000		6356.000		FLAG =	
	LOC		6355 • 000		6355.000		FLAG =	
	LOC		6355 • 000		6355 • 000		FLAG =	: 1
NBS O.	LOC	151:	6354 • 000	NONE	6354.000	M.V.	FLAG =	1
NBS O.	LOC	152:	6353 • 000	NONE	6353.000	M. V.	FLAG =	= 1
NBS 0,	LOC	153:	6352.000	NONE	6352.000	M.V.	FLAG =	1
MBS O.	LOC	1548	6351 • 000	NONE	6351.000	M. V.	FLAG =	1
NBS O.	LOC	155:	6350 • 000		6350 000		FLAG =	
	LOC		6350 • 000		6350.000		FLAG =	
	LOC		6349 • 000		6349 • 000		FLAG =	
	LOC		6348 • 000		6348 000		FLAG =	
1	LOC		6347.000		6347 • 000		FLAG =	
	LOC		496.000		4960 • 000		FLAG =	
	LOC		70.000		70.000		FLAG =	
	LOC		30.000		30 - 000		FLAG =	
	200		00-000	* 7 107 10 (m)	000000			•

NBS	410.	LOC	163:	465 • 000	VOLTS	4650 • 000	M.V.	FLAG = 0
NBS	O.	LOC	164:	20 • 000	NONE	20.000	M. V.	FLAG = 1
NBS	0,	LOC	165:	10.000	NONE	10.000	M.V.	FLAG = 1
NBS	0.	LOC	166:	20 • 000	NONE	20.000	M.V.	FLAG = 1
N BS	O.	LOC	167:	20.000	NONE	20.000	M.V.	FLAG = 1
NBS	0.	LOC	168:	20.000	NONE	20.000	M.V.	FLAG = 1
NBS	0,	LOC	169:	20.000	NONE	20.000	M.V.	FLAG = 1
NBS	0.	LOC	170:	-•030	NONE	-•030	M.V.	FLAG = 1
NBS	0,	LOC	171:	030	NONE	030	M.V.	FLAG = 1
NBS	102,	LOC	172:	5 • 120	MINUTES	3669:000	M.V.	FLAG = 0
NBS	110.	LOC	173:	• 000	MINUTES	4583.000	M.V.	FLAG = 0
NBS	111,	LOC	174:	• 427	MINUTES	2085.000	M.V.	FLAG = 0
NBS	0,	LOC	175:	1834.000	NONE	1834-000	M.V.	FLAG = 1
NBS	0,	LOC	176:	1670.000	NONE	1670.000	M.V.	FLAG = 1
NBS	130,	LOC	177:	• 695	PWR FACT	3054.000	M.V.	FLAG = 0
NBS	141,	LOC	178:	60 • 031	HERTZ	2578.000	M.V.	FLAG = 0
NBS	772,	LOC	179:	4.049	DL DEG F	1187.000	M.V.	FLAG = 0
NBS	332,	LOC	180:	708 • 432	LB/MIN	4396.000	M. V.	FLAG = 0
NBS	0.	LOC	181:	2531.000	NONE	2617:000	M.V.	FLAG = 1
NBS	Q.	LOC	182:	2935 • 000	NONE	3021.000	M.V.	FLAG = 1
N BS	522,	LOC	183:	10 - 404	KW (AVG)	4185.000	M.V.	FLAG = 0
N BS	O.	LOC	184:	424.000	NONE	510.000	M.V.	FLAG = 1
NBS	0,	LOC	185:	4499.000	NONE	4585.000	M. V.	FLAG = 1
N BS			186:	4372.000	NONE	4458.000	M. V.	FLAG = 1
NBS	760.	LOC	187:	271.661	DEG F	5946.000	M.V.	FLAG = 0
NBS	0.	LOC	188 :	6487.000	NONE	6573.000	M. V.	FLAG = 1
NBS	0,	LOC	189:	1886 • 000	NONE	1972.000	MoVo	FLAG = 1
N BS	0.	LOC	190:	3176.000	NONE	3262.000	M.V.	FLAG = 1
NBS	0.	LOC	191:	296•000	NONE	382.000	M.V.	FLAG = 1
NBS			192:		NONE	86.000	M.V.	FLAG = 1
N BS	771,	LOC	193:	19.219	DL DEG F	4726.000		FLAG = 0
NBS			194:		LB/MIN	-17.000		FLAG = 0
NBS			195:		DL DEG F	1144.000		FLAG = 0
NBS			196:		LB/MIN	-15.000		FLAG = 0
	7915				DL DEG F	116.000		FLAG = 0
	348,				GPM (AV)			
	524,				KW (AVG)			
	523,				KW (AVG)			
	424,			306 • 400		3049.000		
	624,				DEG F	2740.000		FLAG = 0
	761,				DEG F	3204.000		FLAG = 0
	781,			171.438		3230.000		FLAG = 0
N BS			205:		NONE	-15.000		FLAG = 1
N BS			206:		NONE	-15.000		FLAG = 1
	775,				DL DEG F			FLAG = 0
	331,				LB/MIN	2287.000		FLAG = 0
	655.				DL DEG F			FLAG = 0
	340,			• 000		1924.000		FLAG = 0
N BS					DL DEG F			FLAG = 0
	349				GPM (AV)			FLAG = 0
	532			181 • 371				FLAG = 0
	531,				KW (AVG)			FLAG = 0
				28 • 367		2982-000		
N BS	(1)	LUC	216:	586.000	MOINE	2954.000	1.1 • A •	FLAG = 1

NBS	625,	LOC	217:	59 • 680	DEG F	2	976 000	M.V.	FLAG	=	Q
NBS			218:	60 • 891	DEG F		0003.000		FLAG		
NBS	782,	LOC	219:	45 • 576	DEG F		664.000		FLAG		
NBS			220:	• 000	NONE		368 000		FLAG		
NBS			221:		WEA.STA		588.000		FLAG		
NBS			555:		WEA.STA		547.000		FLAG		
NBS			223:	-145.000			494.000		FLAG		
NBS			224:	-220.000			419.000		FLAG		
NBS					WEA.STA		325.000		FLAG		
N BS	7100				WEA.STA		385.000		FLAG		
NBS			227:		WEA.STA		2457.000		FLAG		
NBS			228:		WEA.STA		2526 • 000		FLAG		
NBS			229:	-50.000			2589 0000		FLAG		
NBS			230:		NONE		639.000		FLAG		
NBS			231:		NONE		683.000		FLAG		
NBS			232:		NONE		2726.000		FLAG		
NBS			233:		NONE		2717-000		FLAG		
NBS			234:		NONE		2668-000		FLAG		
N BS			235:		DL DEG		814-000		FLAG		
N BS			236:	966•035			2705 • 000		FLAG		
	650				DL DEG I		192-000		FLAG		
N BS			238:		LB/MIN		2056-000		FLAG		
N BS			239:		DL DEG		253-000		FLAG		
N BS			240:	441.024			194.000		FLAG		0
N BS			241:		KW (AVG		3914.000		FLAG		
	519,				KW (AVG		3174.000				
N BS			243:	117.920			928.000		FLAG		
									FLAG		
NBS			2448	85 • 278			218.000		FLAG		
NBS			245:	178 • 277			3448.000		FLAG		
NBS			2468	178 • 835		3	3462.000		FLAG		
N BS N BS			247:		NONE NONE		32.000		FLAG		
			249:			F 0	32.000		FLAG		
NBS					DL DEG		869.000		FLAG		
NBS			250:	4493 • 028			324 • 000 578 • 000		FLAG		
	648,				DL DEG		2048 • 000		FLAG		
	336				LB/MIN				FLAG		
	788,				DL DEG		2842-000		FLAG		
	345,			851 • 297			839.000		FLAG		
	516,				KW (AVG		1285 000		FLAG		
	515,						201.000		FLAG		
	416,			533 • 040		C	5667.000		FLAG		
NBS			258:	1.000			5.000		FLAG		1
NBS			259:	112.394			819.000		FLAG		
NBS			260:	174.883			335.000		FLAG		
NBS			261:	174 • 643		3	3329.000		FLAG		
NBS			262:		NONE		4.000		FLAG		1
NBS			2638		DL DEG		495.000		FLAG		
NBS			264:	1210 • 428			3078.000		FLAG		
	654,				DL DEG		1119.000		FLAG		
	343,			1363.075			2347.000		FLAG		
	7943				DL DEG		1090-000		FLAG		
	353			145 • 149			2157.000		FLAG		
			269:		KW (AVG		818 000		FLAG		
M B2	529,	70C	2/08	30.742	KW (AVG) 3	368 7 •°∪00	M• A•	FLAG	640	U

NBS	150.	LOC	271:	346.000	WEA.STA.	3472.000	M. V.	FLAG	=	Q
NBS	151,	LOC	272:	7 • 000	WEA.STA.	719.000	M • V •	FLAG	=	Q
NBS	645	LOC	273:	106.294	DEG F	1684.000	M.V.	FLAG	=	0
NBS	765.	LOC	274:	177.041	DEG F	3397:000	M.V.	FLAG	=	O
NBS	785,	LOC	275:	178.397	DEG F	3431.000	M.V.	FLAG	=	0
NBS	0.	LOC	276:	• 000	NONE	12.000	M.V.	FLAG	=	1
NBS	626,	LOC	277:	14.032	DL DEG F	4842.000	M.V.	FLAG	÷	O
NBS	333,	LOC	278:	1847.929	LB/MIN	2427.000	M.V.	FLAG	Ė	0
NBS	793.	LOC	279:	8 • 162	DL DEG F	3076-000	M.V.	FLAG	=	0
NBS	351,	LOC	280:	3238 • 291	LB/MIN	4341.000	M.V.	FLAG	Ė	O
NBS	526,	LOC	281:	47.295	KW (AVG)	51.000	M.V.	FLAG	=	0
NBS	527.	LOC	282:	26 • 485	KW (AVG)	5077.000	M. V.	FLAG	=	0
NBS	528.	LOC	283:	27.034	KW (AVG)	4464.000	M.V.	FLAG	Ė	0
NBS	426.	LOC	284:	489.520	VOLTS	6138-000	M.V.	FLAG	1000 0000	0
NBS	428,	LOC	285:	132.740	VOLTS	6656.000	M.V.	FLAG	essele escare	0
NBS	646,	LOC	286:	93.851	DEG F	1402.000	M.V.	FLAG	=	()
NBS	786.	LOC	287:	177.560	DEG F	3417.000	M.V.	FLAG	=	O
NBS	147.	LOC	288:	• 000	SUM/WINT	19.000	M.V.	FLAG	=	0
N BS	1470	LOC	289:	• 000	SUM/WINT	19.000	M.V.	FLÅĜ	=	0
NBS	0.	LOC	290:	• 000	NONE	19.000	M.V.	FLAG	=	1

V. TYPICAL NUMERICAL SUMMARY LISTING 1. HOURLY

TOTAL N BS	HOURI DATA TIME	LY SUMMARY 60 MI	FOR SI	EPTEMBER 20, ACTUAL TIME	1976; 1100 : 264 11: 1		PAGE 1
LOC	VALUE	UNITS	TIME	DER *	VALUE	UNITS	TIME
10	55.591	PSI	60	1010	014	MINUTES	60
11	56.675	PSI	60	1011		MINUTES	60
12	• 000	PSI	60	1012		MINUTES	60
13	• 346	PSI	60	1013		KWH(INS)	
14	• 001	PSI	60	1014		KWH(INS)	
15	11410.902	LB/MIN	60	1015	•000	KWH(I.NS)	
16	2416.938	LB/MIN	60	1016	807-195	KWH(INS)	60
17	2262.988	LB/MIN	60	1018	•000	KWH(INS)	60
18	6935.794	LB/MIN	60	1019	15.812	KWHCINS	60
19	6546.213	LB/MIN	60	1020	109.670	KWH(INS)	60
20	5511.771	LB/MIN	60	1021	107.906	KWHCINS	60
21	17064-230	LB/MIN	60	1022	153.561	KWHCINS	60
22	18374.711	LB/MIN	60	1023	•000	KWHCINS	60
23	782.666	LB/MIN	60	1025	1196.941	KWH(AVG)	60
24	17924.504	LB/MIN	60	1026	370.346	KWH(AVG)	60
25	10148-211	LB/MIN	60	1027	.000	KWHCAVG	60
26	2856.137	LB/MIN	60	1028	826.595	KWH(AVG)	60
27	843.221	LB/MIN	60	1030	•000	KWH (AVG)	60
28	8441.324	LB/MIN	60	1031	16.120	KWH (AVG)	60
29	9974.648	LB/MIN	60	1032	116.464	KWH(AVG)	60
30	• 000	GPM (AV)	60	1033	109.882	KWH (AVG)	60
31	5 • 414	GPM (AV)	60	1034	164.035	KWH (AVG)	60
32	5 • 334	GPM (AV)	60	1035	7.646	KWHCAVG	60
33	5.067	GPM (AV)	60	1036	20.573	KWH (AVG)	60
34	3.975	GPM (AV)	60	1037	146.063	KWH (AVG)	60
35	24.201	GPM (AV)	60	1038	166.636	KWH (AVG)	60
36	22.442	GPM (AV)	60	1039	€000	KWH(AVG)	Q e
37	4.468	GPM (AV)	60	1040	•000	KWH(AVG)	0
38	5 • 480	GPM (AV)	60	1041		KWH(AVG)	
39		GPM (AV)	60	1042		KWH(AVG)	
40		GPM (AV)	60	1043	4.417	KWH (AVG)	60
41		KW (INS)	60	1044	33.915	KWH (AVG)	55
42		KW (INS)	60	1045		KWH(AVG)	
43	· -	KW (INS)	60	1046		KWH(AVG)	
44		KW (INS)	60	1047		KWH(AVG)	
45		KW (INS)	60	1048		KWH(AVG)	
46		KW (INS)	60	1049		KWH(AVG)	
47		KW (INS)	60	1050		KWH(AVG)	
48		KW (INS)	60	1051		KWH(AVG)	
49		KW (INS)	60	1052		KWH(AVG)	
50	201.758		60	1053		KWH(AVG)	
51	207.875		60	1054		KWH(AVG)	
52	201-176		60	1055		KWH(AVG)	
53	215-121		60	1056		KWH(AVG)	
54	197.319		60	1059		KWH(AVG)	
55	218.524		60	1060		KWH(AVG)	
56	204-319		60	1061		KWH(AVG)	_
57	202:077		60	1062		KWH(AVG)	
58	207.500	DEG. F.	60	1063	• 000	KWH(AVG)	O

^{*}DER DENOTES THE DERIVED VARIABLE CODE (SEE APPENDIX III).

	HOURLY SUMMARY	FOR SEP	TEMBER	20, 1976; 1100-1	1200 г	AGE 2
NBS				(14.1.75)	. 1. • • •	. 7.4413
LOC	VALUE UNITS	TIME	DER	VALJE	UNIIS	LIME
59	201.697 DEG.F.	60	1064	•000	KWHCAVG	0
60	201.970 DEG.F.	60	1065		KWH(AVG)	
61	58.176 DEG.F.	60	1066		KWH(AVG)	
62	61.966 DEG.F.	60	1067		KWHCAVG	
63	59.688 DEG.F.	60	1073		KWHCAVG	
64	61.914 DEG.F.	60	1074		KWH (AVG	
65	70.225 DEG.F.	60	1075		KWH(AVG)	
66	73.855 DEG.F.	60	1076		KWH (AVG	
67	73.939 DEG.F.	60	1077		KWH (AVG	
68	80.166 DEG.F.	60	1078		KWH(AVG	
69	82.619 DEG.F.	60	1079		KWH(AVG	
70	87.567 DEG.F.	60	1080		KWHCAVG	
71	82.671 DEG.F.	60	1081		KWHCAVG	
72	217.886 DEG.F.	5	1082		KwH(AVG)	
73	119.293 DEG.F.	60	1087	8698860 • 000		60
74	90.542 DEG.F.	60	1088	4627887 • 000		60
75	90.292 DEG.F.	60	1089	13326746.000		60
76	98.146 DEG.F.	60	1090	12653688 • 000		60
77	99.543 DEG.F.	60	1091	170443.375		60
78	90 • 133 DEG • F •	60	1092	502614.000		60
79	90.770 DEG.F.	60	1093	13999802.000		60
80	306.095 DEG.F.	60	1100		B. 1.U.	Ü
81	95.595 DEG.F.	60	1101	284408 • 500		60
82	665.878 DEG.F.	60	1102	284408 • 500		60
83	141.056 DEG.F.	60	1103		B • 1 • J •	Ú.
84	483.674 DEG.F.	60	1104	-182693 • 375		60
85	138.418 DEG.F.	60	1105	-182693 • 375		60
86	6.078 DL DEG.F	60	1106	887020 • 875		6Q
87	611 DL DEG.F		1107	881472 • 625		60
88	230 DL DEG-F		1108	881472 • 625		60
89	5.737 DL DEG.F		1109	-79002-922		60
90	8.040 DL DEG.F		1110	-82934 • 203		60
91	-1.956 DL DEG.F	60	1111	-82934 • 203		60
92	.000 DL DEG.F		1112		B. 1. U.	0
93	•358 DL DEG•F		1113	1165881 • 000		60
94	2.061 DL DEG.F		1114	1165881 • 000		60
95	16.070 DL DEG.F		1115		B. I. J.	U
96	-3.589 DL DEG.F		1116	-265627.562		60
97	11.059 DL DEG.F		1117	-265627.562		60
98	1.285 DL DEG.F		1118		B.1.J.	U)
99	3.081 DL DEG.F		1119	3027623 • 500		60
100	3.988 DL DEG.F		1120	3027623 • 500		60
101	1.006 DL DEG.F		1121	3927877.000		60
102	2.103 DL DEG.F		1122		B. I. U.	0
103	5.513 DL DEG.F		1123		R. 1.U.	Ü
104	8 • 496 DL DEG • F		1124		B. I. U.	Ü
105	4.198 DL DEG.F		1125		B.1.U.	Ö
106	214 DL DEG.F		1126		B. [.U.	ő
107	2.309 DL DEG.F		1127	7547513 • 000		60
108	2.160 DL DEG.F		1128	7571375 • 000		60

	HOURL	Y SUMMARY	FOR SEP	TEMBER	20, 1976; 1100-	1200	PAGE 3
NBS LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	IIME
109	2.466	DL DEG.F	60	1129	7571375 • 000	B • 1 • U •	60
110	1196.941	KW (AVG)	60	1130	6687524 • 000		60
111	370.346	KW (AVG)	60	1131	3037476 • 000	B. 1. U.	60
112	• 000	KW (AVG)	60	1132	9725000 • 000	B. I. U.	60
113	• 000	KW (AVG)	60	1133	1535373 • 500	B . I . U .	60
114	16.120	KW (AVG)	60	1134	1411287.500	b. 1. U.	60
115		KW (AVG)	60	1135	1411287.500	B. 1. U.	60
116		KW (AVG)	60	1136	260380 • 844	B. 1. J.	60
117		KW (AVG)	60	1137	244813•062		60
118		KW (AVG)	60	1138	244813.062		60
120		ON/OFF	O	1139	-42164.062		60
121		ON/OFF	0	1140	-3217 • 673		60
122		ON/OFF	0	1141	11472172.000		60
123		ON/OFF	0	1142	11496034 000		60
124		ON/OFF	0	1143	11496034 000		60
125 126		ON/OFF ON/OFF	O O	1144 1145	11478588 • 000		60
127		ON/OFF	0	1145	11338934•000 11338934•000		60
128		ON/OFF	0	1147	-6416 • 000		60 60
129		ON/OFF	0	1148	157100.000		60
160	49.292		60	1149	157100.000		60
163	46.825		60	1155	1523791 • 250		60
172		MINUTES	60 60	1156		B. [.J.	60
173		MINUTES	60	1157		B. 1. U.	60
174		MINUTES	60	1158	1019067 • 875		60
177		PWR.FACT	60	1159	504723 • 375		60
178	59.986		60	1160	504723 • 375	B. 1. J.	60
179	• 000	DL DEG.F	0	1161	11582 • 250	B . I . U .	60
180	• 000	LB/MIN	O	1162	-112503.750	B. 1. U.	60
183	• 000	KW (AVG)	60	1163	-112503 • 750	B . I . U .	60
187	• 000	DEG.F.	0	1170	2276295•000	B. 1.U.	60
193		DL DEG.F	60	1171	-24369.730		60
194		LB/MIN	60	1172	2251925.000		60
195		DL DEG.F	60	1173	278938 • 125		60
196	1000-939		60	1174	28710.973		60
197		DL DEG.F	60	1175		B. I.U.	0
198		GPM (AV)	60	1176	1258578 • 500		60
199		KW (AVG)	55	1177	1258578 • 500		60
200		KW (AVG)	60	1178	172074 • 250		60
201 202	56.068	DEG.F.	60	1179	479723 • 375		60
202	193.965		60 60	1180 1181	1738301 • 750	B. L. U.	0 60
204	199.328		60	1182	1738301 • 750		60 60
207		DL DEG.F	60 60	1183		B. 1. J.	ΰ
208	733 • 844		60	1184	513623 • 250		60
209		DL DEG.F	60	1185	513623 • 250		60
210	2909.195		60	1191	420510 • 500		60
211		DL DEG.F	60	1192	422554.062		60
212		GPM (AV)	60	1193	422554.062		60
213	98.304	KW (AVG)	60	1194	8759.818	B. I. U.	60

ATTO C	HOURLY SUMMARY	FOR SEP	TEMBER	20,	1976; 1100-	1200	PAGE 4
NBS	VALUE UNITS	TIME	DER		VALUE	UNITS	IIME
214	2.940 KW (AVG)	60	1195		839059 • 875	B • 1 • U •	60
215	81.187 VOLTS	60	1196		1268330 - 250		60
217	65.846 DEG.F.	5.5	1197		1268330 • 000	B . I . U .	60
218	190.430 DEG.F.	60	1198		1270373 - 500		60
219	182.915 DEG.F.	60	1199		1270373.500		60
221	.884 C/CM2/MN	60	1200		370088 • 750	B . I . U .	60
222	•223 C/CM2/MN	60	1201		502614.000		60
223	• 000 DEGREES	60	1202		-36736.539		60
224	102.917 MILES/HR	60	1203		-2739.078	B. 1. U.	60
225	30.426 IN.HG.	60	1204		435101 • 437		60
226	73.799 DEG.F.	60	1205		1231593 • 500	B. I. U.	60
227	43.500 PER-CENT	60	1206		1231593 • 250	B . 1 . U .	60
228	•000 DEG•F•	0	1207		1233636.750	B . 1 . U .	60
235	5 • 164 DL DEG • F	60	1208		1233636:750	B . 1 . J .	60
236	•000 LB/MIN	60	1209		1231593.500	B. I.U.	60
237	•841 DL DEG•F	60	1210		1233637 • 000		60
238	1988.088 LB/MIN	60	1211		1233637 • 000	B. 1. U.	60
239	5 • 448 DL DEG • F	60	1212		1305065 • 000	B. T. U.	60
240	275.341 LB/MIN	60	1213		-73471 - 500	B.T.J.	60
241	•000 KW (AVG)	0	1214		-73471.750	B. I. U.	60
242	•000 KW (AVG)	0	1215		-71428 - 250	B. I. U.	60
243	117.748 VOLTS	60	1216		-71428 - 250	B . T . U .	60
244	61.287 DEG.F.	60	1217		-73471.500	B . I . U .	60
245	196.643 DEG.F.	60	1218		-71428-000	B . I . U .	60
246	198.229 DEG.F.	60	1219		-71428.000	B . T . U .	60
249	5.871 DL DEG.F	60	1225		42604.570	B . I . U .	60
250	1149.771 LB/MIN	60	1226		60421.836	B . L . U .	60
251	1 • 604 DL DEG • F	60	1227		103026 • 406	B. I.U.	60
252	6950.810 LB/MIN	60	1233		356788 • 750	B . I . U .	60
253	6.333 DL DEG.F	60	1234		48240 • 187	B • I • J •	60
254	938.934 LB/MIN	60	1235		405028 • 937	B - 1 - U -	60
255	146.063 KW (AVG)	60	1236		90010 • 453		60
256	20.573 KW (AVG)	60	1237		-4697 • 3 28	B • 1 • U •	60
257	119.087 VOLTS	60	1238		85313 • 1 25		64
259	61.995 DEG.F.	55	1241		•000	B • I • U •	U
260	201.554 DEG.F.	60	1242			B.I.J.	60
261	200.330 DEG.F.	60	1243			B • I • U •	60
263	6.624 DL DEG.F	50	1244			B. 1. J.	60
264	438.645 LB/MIN	60	1245		490342.062		60
265	1.161 DL DEG.F	60	1246		490342 • 062		60
266	2573.372 LB/MIN	60	1247		14381 • 312		60
267	8.591 DL DEG.F	60	1248			B . I . U .	60
268	238.678 LB/MIN	60	1249			B • I • U •	60
269	87.732 KW (AVG)	60	1250			B • I • U •	60
270	34.289 KW (AVG)	60	1251		123027.062		60
271	130.228 VOLTS	60	1252		51310.031		50
273	61.152 DEG.F.	55	1253		174337 • 094		50
274	198.956 DEG.F.	60	1254		866 • 949		60
275	197.949 DEG.F.	60	1255		288882 • 250		60
277	595 DL DEG.F	60	1256		289749 • 250	B. I. U.	60

NBS	HOURL	Y SUMMARY	FOR SE	PTEMBER	20, 1976; 1100-	1200	PAGE 5
LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
278	4686 • 000	LB/MIN	60	1257	464086.312	H. T. U.	50
279	1 • 428	DL DEG. F	60	1258	554981.500		50
280	• 000	LB/MIN	60	1259	954428 • 375		50
281	55.966	KW (AVG)	60	1260	569362 • 750		50
282	33.580	KW (AVG)	60	1266	669002.000		60
283	26.880	KW (AVG)	60	1267	100338 • 656		60
284	118.143	VOLTS	60	1268	• 000	B. T. U.	60
285	111.867	VOLTS	60	1269	26731 • 184	B . I . U .	60
286	61 • 705	DEG.F.	60	1270	796071.750	B . T . U .	60
287	201.254	DEG.F.	60	1271	1103720.500	B. T. U.	60
288	• 000	SUM/WINT	O	1272	-623997-125	B. T. U.	60
289	• 000	SUM/WINT	O	1273	167273.687	B. T. U.	60
315	46.000	KW (AVG)	60	1274	179297 • 812	B . T . U .	60
316	1 • 000	SUM/WINT	60	1275	411035-875	B.T.U.	60
317		PER-CENT	60	1276	757607.375	B. T. U.	60
318	1 • 000		60	1277	500971 • 125	B. T. U.	60
319		DEG.API	60	1278	1861327.750		60
320	139200 • 000	BTU/GAL	60	1279	-123026.000	B • T • U •	60
				1285	•000	B. I. U.	O
				1286	• 000	B.T.U.	O
				1287	• 000	B. T.U.	O
				1288	14562678•000		60
				1289	6 69730• 000		60
				1290	9005438•000		60
				1291	9675168•000		60
				1292		B. 1.00.	()
				1298		GALLONS	Q
				1299		GALLONS	Q
				1300		GALLONS	O
				1301		GALLONS	60
				1302		GALLONS	60
				1303		GALLONS	60
				1304		GALLONS	
				1305		GALLONS	Q
				1315		KW (AVG	
				1316		SUM/WIN	
				1317		PER-CEN	
				1318	1.000		60
				1319		DEG • API	60
				1320	139200 • 000	BTU, GAL	60

2. DAILY

TOTAL N BS	DATA TIME			OR SEPTEMBE ACTUAL TIM	ER 20, 1976 ME: 264 0: 0		PAGE 1
LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
10	55 • 638	PSI	1440	1010	192	MINUTES	1440
11	56.931	PSI	1440	1011	1414.947		1435
12	1 • 20 7	PSI	1440	1012	116.431	MINUTES	1435
13	• 335		1440	1013	27803 • 605		
14	• 005		1440	1014	8560 • 643		
15	11773 • 168		1440	1015		KWH(INS)	
16	2485.011		1440	1016	19131-012		
17	2336 • 201		1440	1018		KWH(INS)	
18	6887 • 752		1440	1019		KWH(INS)	
19	6543 • 331		1440	1020	2642 867		
20	5512-026		1440	1021	2388 • 825		
21	16965 • 340		1440	1022	3680 • 268	_	
22	18247-160		1440	1023		KWH(INS)	
23	786 • 361		1440	1025	28223 805		
24	17826-770		1440	1026	8653 604		
25	10268-971		1440	1027	19432.973	KWH(AVG)	
26	2858 • 187		1440	1028			
27	846.587		1440 1440	1030 1031		KWH(AVG)	
28 29	8417·047 9862·311		1440	1032	2800-131		
30		GPM (AV)	1435	1033	2428 • 678		1435
31		GPM (AV)	1435	1034	3932 • 602		
32		GPM (AV)	1435	1035		KWH(AVG)	
33		GPM (AV)	1435	1036		KWH(AVG)	
34	3 • 968		1435	1037	3664.533		
35	24. 151	GPM (AV)	1435	1038	4150 • 239		
36	22.440	GPM (AV)	1435	1039		KWH(AVG)	O.
37		GPM (AV)	1435	1040		KWH(AVG)	O
38	5 • 501		1435	1041		KWH(AVG)	Ö
39			1435	1042	•000	KWH(AVG)	1435
40	3 • 060	GPM (AV)	1435	1043	60 • 185	KWH(AVG)	1435
41	1158.484	KW (INS)	1440	1044	405-278	KWH(AVG)	1405
42	356 • 693	KW (INS)	1440	1045	465.611	KWH(AVG)	1405
43	4 • 665	KW (INS)	1440	1046	1470 • 938	KWH(AVG)	1435
44	• 000	KW (INS)	1440	1047	796.771	KWH(AVG)	1435
45		KW (INS)	1440	1048	2267.710	KWH(AVG)	1435
46		KW (INS)	1440	1049	796-878	KWH(AVG)	1435
47		KW (INS)	1440	1050	3064.588	KWH(AVG)	1435
48		KW (INS)	1440	1051		KWH(AVG)	
49		KW (INS)	1440	1052	2128.970		
50	202.162		1440	1053	2970.111		
51	207.881		1440	1054		KWH(AVG)	
52	201 • 665		1440	1055	1818 • 965		
53	214-434		1440	1056	1891 • 345		
54	197.881		1440	1059	9655 • 338		
55	218 • 502		1440	1060	1104.000		
56	204 669		1440	1061		KWH(AVG)	
57	202-523		1440	1062	6426 • 405		
58	207.596	DEG. F.	1440	1063	2854 • 110	KWH(AVG)	180

NBS							
LOC	VALUE	UNITS	TIME	DER	VALUE	UNIIS	TIME
59	202.079	DEG.F.	1440	1064	7405 • 459	KWH(AVG)	180
60	202.434	DEG.F.	1440	1065	118.808	KWH(AVG)	1435
61	57.686	DEG.F.	1440	1066	18568 • 465		1435
62	60 • 601	DEG.F.	1440	1067	30398 • 887		180
63	58.847		1440	1073		KWH(AVG)	1370
64	61.079		1440	1074		KWH(AVG)	0
65	70.156		1440	1075		KWH(AVG)	O
66	74.779		1440	1076		KWH(AVG)	1430
67	74.875		1440	1077		KWH(AVG)	1435
68	78.941		1440	1078		KWH(AVG)	1405
69	81.360		1440	1079		KWH(AVG)	0
70	86.354		1440	1080		KWH(AVG)	1435
71	81.413		1440	1081		KWH(AVG)	Ü
72	217.886		5	1082		KWH(AVG)	0
73	126.553		1440	1087	202281824-000		1440
74	90.821		1440	1088	116057664.000		1440
75	90.751		1440	1089	318339456 • 000		1440
76	99.009		1440	1090	304828608 • 000		1440
77	100.328		1440	1091	5181246.000		1440
78	90.981		1440	1092	8329605 • 000		1440
79	91.583		1440	1093	331850240 • 000		1440
80	307.627		1440	1100		B. T. U.	
81	95 • 641		1440	1100	6401640 • 000		1.4.40
82	654.854						1440
			1440	1102	6401640 • 000		1440
83	161.072		1440	1103		B. T. U.	0
84	476.668		1440	1104	-4441271.000		1440
85	157.515		1440	1105	-4441271.000		1440
86		DL DEG. F	1440	1106	20493504 000		1440
87		DL DEG. F	1440	1107	20480412 000		1440
88		DL DEG F	1440	1108	20480412.000		1440
89		DL DEG.F	1440	1109	-1656385.500		1440
90		DL DEG. F	1440	1110	-1640116.750		1440
91		DL DEG.F	1440	1111	-1640116 • 750		1440
92		DL DEG.F	50	1112		B. T. U.	0
93		DL DEG. F	1440	1113	26882044.000		1440
94		DL DEG. F	1440	1114	26882044.000		1440
95		DL DEG. F	1440	1115		B. T. U.	0
96		DL DEG.F	1440	1116	-6081389.000		1440
97		DL DEG.F	1440	1117	-6081389.000		1440
98		DL DEG.F	1440	1118		B. T. U.	()
99		DL DEG.F	1440	1119	71747504 • 000		1440
100		DL DEG.F	1440	1120	71747504.000		1440
101		DL DEG.F	1440	1121	92548160 • 000		1440
102		DL DEG.F	1440	1122	189214048 • 000		50
103		DL DEG.F	1440	1123	189983232.000		50
104		DL DEG.F	1440	1124	189214048 • 000		50
105		DL DEG.F	1440	1125	189214048 • 000		50
106		DL DEG.F	1440	1126		B. T. U.	50
107		DL DEG.F	1440	1127	184665792.000		1440
108	1.946	DL DEG. F	1440	1128	184521888.000	B. 1. U.	1440

NDC.	I	DAILY SUMM	ARY FOR	SEPTEM	BER 20, 1976		PAGE 3
LOC	VALUE	UNITS	TIME	DER	VALUE	ONITS	TIME
109	2 • 452	DL DEG.F	1440	1129	184521888 • 000	B . T . U .	1440
110	1175.992	KW (AVG)	1435	1130	155057760.000	B. T. U.	1440
111	360.567	KW (AVG)	1435	1131	79307520 • 000	B.T.U.	1440
112	5 • 718	KW (AVG)	1435	1132	234365312.000	B. T.U.	1440
113	• 000	KW (AVG)	1435	1133	36403128.000	B. T. U.	1440
114	15 • 630	KW (AVG)	1435	1134	33142132 • 000	B. T. U.	1440
115	116.672	KW (AVG)	1435	1135	33142132.000	B. I. U.	1440
116	101 • 195	KW (AVG)	1435	1136	7568791.000	B. T. U.	1440
117	163.858	KW (AVG)	1435	1137	7436494.000	B. T. U.	1440
118	4 • 950	KW (AVG)	1435	1138	7436494 • 000	B.T.U.	1440
120	• 000	ON/OFF	O	1139	-1390951.000		1440
121	• 000	ON/OFF	O	1140	267393.187	B. T. U.	1440
122	• 000	ON/OFF	0	1141	277481216.000	B. T. U.	1440
123	• 000	ON/OFF	O	1142	277337408 • 000	B. T. U.	1440
124	• 000	ON/OFF	O	1143	277337408 • 000	B • T • U •	1440
125		ON/OFF	O	1144	276946240.000		1440
126	• 000	ON/OFF	0	1145	273552960 • 000	B. T. U.	1440
127	• 000	ON/OFF	O	1146	273552960 • 000	B. T. U.	1440
128	• 000	ON/OFF	0	1147	535044.000	B.T.U.	1440
129	• 000	ON/OFF	0	1148	3784467.000		1440
160	49.289		1440	1149	3784467 • 000		1440
163	46.705	VOLTS	1440	1155	36083904 • 000	B. T. U.	1440
172	4 • 998	MINUTES	1435	1156		B. I. U.	1440
1 73	4.913	MINUTES	1435	1157		B.T.U.	1440
174		MINUTES	1435	1158	23176068:000		1440
177		PWR.FACT	1440	1159	12907832.000		1440
178	59.992		1440	1160	12907832.000		1440
179	• 000	DL DEG. F	O	1161	319230 • 875		1440
180		LB/MIN	O	1162	-2941773.500		1440
183		KW (AVG)	1435	1163	-2941773.500		1440
187		DEG.F.	O	1170	50169384.000		1440
193		DL DEG.F	1440	1171	5150729 000		1440
194		LB/MIN	1440	1172	55320096.000		1440
195		DL DEG. F	1440	1173	5443969 • 000		1440
196	769 • 723		1440	1174	757840 • 250		1440
197		DL DEG.F	1440	1175		B • T • U •	0
198		GPM (AV)	1435	1176	31446700 • 000		1440
199	-	KW (AVG)	1405	1177	31446700 • 000		1440
200		KW (AVG)	1435	1178	5555217 • 000		1440
201	56.002		1440	1179	11757030 • 000		1440
202		DEG.F.	1440	1180		B.T.U.	0
203	194.832		1440	1181	43203720.000		1440
204	199 • 450		1440	1182	43203720-000		1440
207		DL DEG. F	1440	1183		B.T.U.	0
208	739 • 900		1440	1184	12116384.000		1440
209		DL DEG.F	1440	1185	12116384.000		1440
210	2822-189		1440	1191	9954438 000		1440
		DL DEG. F	1440	1192	10089188.000		1440
212		GPM (AV)	1435	1193	10089188.000		1440
213	15 • 190	KW (AVG)	1430	1194	217613 • 187	8.1.0.	1440

MDC	1	DAILY SUMM	ARY FOR	SEPTEME	BER 20, 1976		PAGE 4
NBS	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
214	3.016	KW (AVG)	1435	1195	20335988.000	B.T.U.	1440
215	81.194		1440	1196	30508036.000		1440
217		DEG.F.	1330	1197	30508036.000		1440
218	190.461		1440	1198	30642784 • 000		1440
219	183.213		1440	1199	30642784.000		1440
221		C/CM2/MN	1440	1200	8003005.000		1440
222		C/CM2/MN	1440	1201	8329605.000		1440
223	8 • 740	DEGREES	1440	1202	-813024.000	B. T.U.	1440
224	103.028	MILES/HR	1440	1203	-30048.586		1440
225	30.343	IN·HG·	1440	1204	15018464.000	B.T.U.	1440
226	72.940	DEG · F ·	1440	1205	29695008.000	B.T.U.	1440
227	45.896	PER-CENT	1440	1206	29695000.000	B.T.U.	1440
228	• 000	DEG.F.	O	1207	29829768.000	B. T. U.	1440
235	6 • 142	DL DEG.F	1440	1208	29829768 000	B.T.U.	1440
236	• 000	LB/MIN	1440	1209	29695000-000	B.T.U.	1440
237	1.077	DL DEG.F	1440	1210	29829768.000	B. T. U.	1440
238	1990 • 060	LB/MIN	1440	1211	29829768 • 000	B.T.U.	1440
239	6.396	DL DEG.F	1440	1212	31321024.000	B. T. U.	1440
240	278.025	LB/MIN	1440	1213	-1626012-000	B.T.U.	1440
241	• 000	KW (AVG)	O	1214	-1626014.500	B. T. U.	1440
242		KW (AVG)	O	1215	-1491261-750	B.T.U.	1440
243	118 • 030		1440	1216	-1491261-750	B. T. U.	1440
244		DEG • F •	1440	1217	-1626013.500		1440
245	197.139		1440	1218	-1491260-250		1440
246	198.634		1440	1219	-1491260 • 250		1440
249		DL DEG.F	1440	1225	1033525 625		1435
250	1076.856		1440	1226	1435525 • 000		1435
251		DL DEG. F	1440	1227	2469050 • 500		1435
252	6964.394		1440	1233	8581212 000		1440
253 254	940 • 105	DL DEG. F	1440	1234	722917 • 250		1440
255		KW (AVG)	1440 1435	1235 1236	9304128 • 000 2559199 • 000		1440
256		KW (AVG)	1410	1236	-101735 • 016		1440 1440
257	119.172		1440	1238	2457463.500		1440
259		DEG•F•	1335	1241		B.T.U.	O
260	201.786		1440	1242	2462.760		1435
261	200.720		1440	1243		B. T. U.	1440
263		DL DEG.F	1115	1244	2462.760		1435
264	500 • 308		1440	1245	11766738.000		1435
265		DL DEG.F	1440	1246	11766738 000		1435
266	2619.511		1440	1247	1134996.000		1435
267		DL DEG.F	1 43 5	1248		B.T.U.	1440
268	219.169		1440	1249		B. T. U.	1440
269		KW (AVG)	1435	1250		B. T. U.	1440
270		KW (AVG)	1370	1251	4052565.500		1435
271	130 - 453		1440	1252	-307916-250		1115
273		DEG.F.	1350	1253	4606460.000		1115
274	198.806		1440	1254	22257 • 375		1435
275	198.312	DEG.F.	1440	1255	7050363 • 000	B.T.U.	1435
277	- • 625	DL DEG.F	1410	1256	7072822.000	B • T • U •	1440

M DC		DAILY SUM	MARY FOR	SEPTEM	BER 20.	1976		PAGE 5
N BS LOC	VALUE	UNITS	TIME	DER		VALUE	UNITS	TIME
278	4686•000	LB/MIN	1440	1257	116577	′00 • 000	B.T.U.	1115
2 79		DL DEG.F	1440	1258		76.000		1115
280		LB/MIN	1440	1259		80.000		1115
281		KW (AVG)	1435	1260		76.000		1115
282		KW (AVG)	1435	1266		98.000		1440
283		KW (AVG)	1435	1267		00.500		1440
284	118.869		1440	1268	• • • • • • • • • • • • • • • • • • • •		B.T.U.	1440
285	110.876		1440	1269	15362	70 - 500		1440
286		DEG. F.	1440	1270		72.000		1440
287	201.606		1440	1271		68-000		1440
288		SUM WINT	0	1272	-132658			1440
289		SUM WINT	Ö	1273		89.000		1410
3 1 5		KW (AVG)	1440	1274		05.000		1440
316		SUM/WINT	1440	1275	98091	10:000	B. T.U.	1440
317	• 500	PER-CENT	1440	1276	186128	000.000	B.T.U.	1410
3 18	1 • 000	EFF.	1440	1277	128504	84.000	B.T.U.	1410
3 1 9	33.900	DEG. API	1440	1278	437033	52.000	B.T.U.	1410
3 20	139200 • 000	BTU/ GAL	1440	1279	-4421	26.312	B.T.U.	1410
				1285			B. T.U.	0
				1286	21815	24.000	B. T. U.	180
				1287		• 000	B.T.U.	0
				1288	3397299	84.000	B. T. U.	1435
				1289		48.000		1435
				1290	2158373			1435
				1291	2315453			1435
				1292			B.T.U.	Q
				1298			GALLONS	0
				1299			GALLONS	180
				1300			GALLKNS	Q
				1301			GALLONS	1435
				1302			GALLONS	1435
				1303	15	50.555	GALLOLS	1435
				1304	16		GALLONS	1435
				1305			GALLONS	O
				1315	1 1		KW (AVG)	
				1316			SUM/WINT	
				1317			PER-CENT	
				1318		1.000		1440
				1319			DEG - API	1440
				1320	1392	2000,000	BTU/GAL	1440

3. MONTHLY

		MONTHLY	SUMMA	RY FOR SEP	TEMBER 1976		PAGE 1
	DATA TIME	41020 MI	INUTES,	ACTUAL TI	ME: 245 0: 0)	
N BS LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
200	VALUE	0.41.5		22	VALOE	014112	1 INE
10	51.398	PSI	41000	1010	-2.104	MINUTES	41020
1 1	48.177	PSI	41020	1011	35681 • 656	MINUTES	40135
12	8 • 929	PSI	41020	1012	9408-479		40135
13	• 275	PSI	41020	1013	799000 • 625		
14	• 045		41020	1014	209559.219		
15	11579.326		41015	1015	38338.719		
16	2398 • 346		41010	1016	551102.750		
17	2293.812		40225	1018		KWH(INS)	
18	7041 • 582		41010	1019	9602.703		
19	6586.456		41005	1020	79032 • 328		
20	5561.771		41020	1021	65791 • 687		
21	16582 • 301		41020	1022	98060-562		
22	13672 • 738		41000	1023		KWH(INS)	
23	790-819		41020	1025	809468 • 750		
24	16966 988		27105	1026	211870-625		
25	9838 • 746		39430	1027	38513.672		
26	2859 • 493		41020	1028	559083 • 375		
27	832.853		30895	1030		KWH(AVG)	
28	8153-119		27715	1031 1032	9782•033 83309•922		
29	7831 • 028		40990	1032	66207.031		
30 31		GPM (AV)		1033	102638 • 156		
32		GPM (AV)		1034	3110.234		
33		GPM (AV)		1035	14217.898		
34		GPM (AV)		1037	105028-016		
35		GPM (AV)		1038	119256.047		
36		GPM (AV)		1039		KWH(AVG)	
37		GPM (AV)		1040		KWH(AVG)	
38		GPM (AV)		1041		KWH (AVG)	
39		GPM (AV)		1042		KWH(AVG)	
40		GPM (AV)		1043		KWH (AVG)	
43	1107-273	KW (INS)	41020	1044	9951.068	KWH(AVG)	40065
42		KW (INS)		1045	11264 805	KWH(AVG)	40065
43	52.490	KW (INS)	41020	1046	43444.977	KWH (AVG)	40135
44	• 000	KW (INS)	41020	1047	21762.734	KWH (AVG)	40090
45	13.302	KW (INS)	41020	1048	65212-289	KWH(AVG)	40090
46		KW (INS)		1049	23785 • 141		
47		KW (INS)		1050	89000 • 125	KWH(AVG)	40090
48		KW (INS)		1051	25471.598		
49		KW (INS)		1052	66487 • 500		
50	199.157		41020	1053	91981.531		
51	203-514		40520	1054	2207.447		
52	199.450		41020	1055	51131 • 383		
53	208 • 169		41020	1056	53338 • 844		
54	196.221		41020	1059	265096 • 125		
55 54	211.618 202.052		41020	10 60	33120 • 000		
56 5 7	199-604		41020	106 1 1062	30607·930 196093·594		
5 <i>8</i>	204.427		41020	1063	83761.828		
JU	C1 480 45 1	mmda t.a	-01060	4000	02401.020	WALLE WAG	OIAG

N 15 C		MONTHLY	SUMMARY	FOR S	EPTEMBER 1976		PAGE 2
N BS LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
58	204.427	DEG. F.	41020	1063	83761 • 828	KWH(AVG)	6190
59	199.060		41020	1064	226701 • 500		
60	199.482		41020	1065		KWH(AVG)	
61	48.542		41020	1066	544359.000		
62	49 • 675		41020	1067	826882.500		
63	48 • 504		41020	1073	49443.312		
64	50.923		41020	1074		KWH(AVG)	0
65	69.732		41020	1075	7 - 7	KWH(AVG)	Ö
66	75.362		41020	1076	117619.234		
67		DEG. F.	41020	1077	67230 • 109		
68	77.995		41020	1078		KWH(AVG)	
69	79.906		41020	1079		KWH(AVG)	0
70	84.931		41020	1080	105028 • 016		
71	79.994		41020	1081		KWH(AVG)	0
72	176.803	DEG.F.	7410	1082		KWH(AVG)	0
73	130-545		41020	1087	4540280832.000		40615
74	84.866		41020	1088	2659220480.000	B.T.U.	32810
75	84.702		41020	1089	7262274560.000	B.T.U.	32405
76	94.746	DEG. F.	41020	1090	7107586048.000	B. T. U.	26400
77	95.974	DEG.F.	41020	1091	124074000:000	B.T.U.	41020
78	87.721	DEG.F.	41020	1092	229037920.000	B. I. U.	34845
79	88 • 213	DEG. F.	41020	1093	7906913280 • 000	B.T.U.	26400
80	268-856	DEG. F.	41020	1100	• 000	B.T.U.	0
81	90.903	DEG. F.	41020	1101	111341488.000	B. T. U.	40235
82	558 • 469	DEG. F.	40385	1102	111341488 • 000	B.T.U.	40235
83	212.213	DEG. F.	41020	1103	•000	B. T. U.	0
84	413.362	DEG. F.	41020	1104	-93311600-000	B. T.U.	40215
85	190 • 627	DEG. F.	41020	1105	-93311600.000	B . I . U .	40215
86		DL DEG. F		1106	486566272.000	B. T. U.	40510
87		DL DEG.F		1107	486308736.000	B. T. U.	40235
88		DL DEG.F		1108	487077568.000		40510
89		DL DEG.F		1109	34343544.000		40225
90		DL DEG.F		1110	34451864.000		40225
91		DL DEG.F		1111	34451864.000		40225
92		DL DEG.F	3910	1112		B.T.U.	0
93		DL DEG.F		1113	602923520-000		41010
94		DL DEG.F		1114	602923520 000		41010
95		DL DEG.F		1115		B. I. U.	()
96		DL DEG.F		1116	-58839560 • 000		40215
97		DL DEG.F		1117	-58839560 • 000		40215
98		DL DEG F		1118		B.T.U.	0
99		DL DEG. F		1119	2063543296.000		40200
100		DL DEG.F		1120	2063543296.000		40200
101		DL DEG. F		1121	2613410816.000		41000
102		DL DEG.F		1122	3160504832.000		3910
103		DL DEG. F		1123	3160312320.000		3910
104		DL DEG.F		1124	3160505344.000		3910
105		DL DEG. F		1125	3160505344.000		3910
106		DL DEG. F		1126	693677440 • 000		3910
107	4 • 229	DL DEG.F	40935	1127	3575449088 • 000	B. 1.00.	41015

		MONTHLY	SUMMARY	FOR :	SEPTEMBER 1976		PAGE 3
N BS LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
107	4.229	DL DEG.F	40955	1127	3575449088•000	B•T•U•	41015
108		DL DEG.F		1128	3575043072.000		41015
109	1 • 930	DL DEG.F	41020	1129	3575043072.000		41015
110	1120.576	KW (AVG)	40135	1130	3620448768 • 000		40945
111	289 888	KW (AVG)	40125	1131	1142693632.000		40945
112	52.694	KW (AVG)	40025	1132	4762614784.000	B.T.U.	41015
113	• 000	KW (AVG)	40135	1133	1222118656.000	B. T. U.	41015
114	13.544	KW (AVG)	40135	1134	1130434560.000	B.T.U.	40850
1 15	115.926	KW (AVG)	40130	1135	1124976896.000	B. T.U.	41015
116	91.201	KW (AVG)	40130	1136	271216576.000	B.T.U.	41015
117	141.672	KW (AVG)	40135	1137	258856672.000	B.T.U.	40985
1 18	4.310	KW (AVG)	40100	1138	261953312.000	B. T. U.	41015
120	• 000	ON/OFF	o	1139	-48675744.000	B.T.U.	41015
121	• 000	ON/OFF	o	1140	-17916852.000	B.T.U.	41000
1 22	• 000	ON/OFF	O	1141	6171609088 000	B.T.U.	41000
1 23	• 000	ON/OFF	O	1142	6171157504.000	B. T. U.	41000
124	• ถอง	ON/OFF	0	1143	6171157504.000	B. T. U.	41000
1 25	• 000	ON/OFF	O	1144	6207275008 • 000	B. T. U.	41015
126	• 000	ON/OFF	O	1145	6102960128 • 000	B. T. U.	40840
127	• ถูดูด	ON/OFF	ũ	1146	6100869120.000	B. T. U.	41015
1 28	• 000	ON/OFF	O	1147	-35826744.000	B. T. U.	41000
129	• 000	ON/OFF	O	1148	69533152 • 000	B. T. U.	40840
160	49.358	VOLTS	41020	1149	70165008 •000	B. T. U.	41000
1 63	46.573	VOLTS	41020	1155	1217056512.000	B. T. U.	40690
1 72	5 • 000	MINUTES	40135	1156	- `000	B. T. U.	43200
1 73		MINUTES	40135	1157		B.T.U.	43200
174		MINUTES	40135	1158	783505024-000		40940
177		PWR. FACT	41020	1159	432854912.000		40 690
1 78	59.999		41020	1160	432854912-000		40690
1 79		DL DEG.F	0	1161	9423112 000		40 68 5
180	344.030		20	1162	-85451936.000		40680
183		KW (AVG)	40135	1163	-88236528.000		40685
187		DEG.F.	Q	1170	1085969920.000		3 9430
193		DL DEG. F		1171	589488640 000		26855
194		LB/MIN	41020	1172	1606886400 0000		26855
195		DL DEG.F		1173	224175296.000		30895
196	559.649		41020	1174	29978172.000		41020
197		DL DEG.F	34115	1175		B. T.U.	0
198		GPM (AV)		1176	838152576.000		40990
199		KW (AVG)	40065	1177	838152576.000		40990
200		KW (AVG)	40135	1178	28105752.000		27095
201	55.338		41020	1179	303152640 • 000		27095
202		DEG. F.	41020	1180		B.T.U.	0
203	192.340		41020	1181	1175510016.000		27095
204	195.064		40615	1182	1175510016-000		27095
207		DL DEG. F		1183		B. T. U.	0
208	770-135		41020	1184	436560256-000		26845
2 1 0 2 0 9		DL DEG. F		1185	436560256.000		26845
	2540.772		41020	1191	238367936•000 240827328•000		41020
211	00270	DL DEG. F	41012	1192	24U021320•UUU	5.1.0.	41020

AT ID C		MONTHLY	SUMMARY	FOR S	SEPTEMBER 1976		PAGE 4
N BS LOC	VALUE	UNITS	TIME	DER	VALUE	UNITS	TIME
211	6.590	DL DEG.F	41015	1192	240827328 • 000	B • T • U •	41020
212		GPM (AV)	40135	1193	240827328.000		41020
213	70.829	KW (AVG)	40130	1194	10999480.000		41020
214		KW (AVG)		1195	608739840.000		41020
215	83.577		41020	1196	858106880 • 000		41020
217		DEG.F.	40800	1197	858106880 • 000		41020
218	184.827		41020	1198	860566528.000		41020
219	177.040		40855	1199	860566528 • 000	B.T.U.	41020
221		C/CM2/MN	41020	1200	123135472.000		34910
222	• 079	C/CM2/MN	41020	1201	229037920 000	B.T.U.	34845
223	1.008	DEGREES	41020	1202	-28229428.000	B.T.U.	41020
224	103.062	MILES/HR	41020	1203	-613580.875	B. T.U.	41020
225	30-591	IN . HG.	41020	1204	546454784.000	B.T.U.	40955
226	67.405	DEG.F.	41020	1205	829877760 000	B. T. U.	41020
227	52.387	PER-CENT	41020	1206	629877376-000	B. T. U.	41020
228	• 000	DEG.F.	O	1207	832337024-000	B.T.U.	41020
235	5.942	DL DEG.F	40965	1208	832337024-000	B.T.U.	41020
236	• 000	LB/MIN	41020	1209	830086528 000	B.T.U.	39755
237	• 735	DL DEG.F	40685	1810	832537600.000	B. T. U.	39755
238	1994-234	LB/MIN	41020	1211	832537600.000	B. T. U.	39755
239	6.808	DL DEG.F	41015	1212	893619200-000	B. T. U.	33470
240	277.066	LB/MIN	41020	1213	-56805024.000	B.T.U.	33470
241	• 000	KW (AVG)	O	1214	-56805104-000	B. T. U.	33470
242	• 000	KW (AVG)	0	1215	-54317208:000	B.T.U.	33470
2 43	118 • 182	VOLTS	41020	1216	-54317208:000	B.T.U.	33470
244	50.633	DEG.F.	40965	1217	-56805072.000	B.T.U.	33470
245	193.876		40750	1218	-54317168.000		33470
246	195 • 678	DEG.F.	40730	1219	-54317168.000	B.T.U.	33470
2 49		DL DEG.F	40805	1225	20216884.000	B.T.U.	40075
250	1032-203		41020	1226	39415632.000	B.T.U.	40125
251		DL DEG. F		1227	59633608 • 000		40065
252	7053-854		41020	1233	256957056.000		40795
253		DL DEG.F		1234	14057096.000		40795
254	9 30 • 040		41020	1235	270956544.000	B.T.U.	40805
255		KW (AVG)		1236	80467776 000		41015
256		KW (AVG)	40040	1237	-10687476.000		40960
257	118.929		41020	1238	69844960 000		40965
259		DEG.F.	40800	1241		B. T. U.	0
2 60	198.804		40940	1242	7310.021		33310
261	197.760		41020	1243		B.T.U.	41020
263		DL DEG.F		1244	7310.021		33310
264	481-293		41020	1245	345187200.000		32595
2 65		DL DEG. F		1246	345187200.000		32595
266	2469-101		41020	1247	92331840.000		32490
267		DL DEG.F		1248		B.T.U.	37385
2 68	258•411		41020	1249		B.T.U.	43200
2 69		KW (AVG)		1250		B.T.U.	37385
270		KW (AVG)	39990	1251	138922496-000		40695
271	130-893		41020	1252	-30569224-000		32725
2 73	5 U • U8 4	DEG. F.	40890	1253	136463296.000	B. 1.00	32730

		MONTHLY	SUMMARY	FOR	SEPTEMBER	1976	J	PAGE 5
NBS								
LOC	VALUE	UNITS	TIME	DER		VALUE	UNITS	TIME
0.72	E 2 29 /s	DEC E	402.000	1050	1064606		TD (1	00000
273	50.084 196.05 7		40890	1253		96.000		32730
274			41020 41020	1254		92 • 250		40135
275	195.509	DL DEG.F		1255				40120
277				1256				41005
2 78	3845 • 256	DL DEG.F	43140	1257				29950
279		LB/MIN		1258				29895
280			41020	1259				25125
281		KW (AVG)		1260			_	25065
282		KW (AVG)		1266				40915
283		KW (AVG)		1267		56-000		40 685
284	119.139		41020	1268			B.T.U.	43200
285	118 • 851		41015	1269		72.000		40985
286	5 7 • 693		36095	1270				39180
287	192-973		39920	1271		76.000		29425
288		SUM/WINT	0	1272		-		25870
289		SUM/WINT	0	1273		36-000		38670
3 1 5		KW (AVG)		1274				40960
3 1 6	_	SUM WINT		1275				41015
3 1 7		PER-CENT		1276				38645
3 18	1.000		43200	1277				38645
3 1 9		DEG.API	43200	1278				27730
3 20	138966 656	BTU/GAL	43200	1279				24445
				1285			B. I. U.	0
				1286				6940
				1287			B.T.U.	Û
				1288				40125
				1289				40075
				1290				40135
				1291				40075
				1292			B.T.U.	0
				1298			GALLONS	O
				1299	-		GALLONS	6940
				1300	1	• 000	GALLO: 15	0
				1301	7 02	288-500	GALLOMS	40125
				1302	34	449 • 461	GALLO IS	40075
				1303	300	523.777	GALLONS	40135
				1304	340	75.641	GALLOS	40075
				1305		• 000	GALLONS	Q
				1315	331	20.000	KW (AVG)	43200
				1316		1.000	SUM/WINT	43200
				1317	7	• 500	PER-CENT	43200
				1318		1.000	EFF.	43200
				1319		33.900	DEG API	43200
				1320		66.656	BTU/GAL	43200

VI. TYPICAL GRAPHICAL DISPLAYS

1. DAILY

2. MONTHLY

3. YEARLY

1. CHARACTERS RECEIVED

```
1541415019771581032 00200V-120835 00300V+156295
                                                    00400V+023395 00500V+0
7 6475 00 600 V+0 17475 00 700 V+0 40085 00 800 V+0 46935
                                                    00900V-001205
                                                                    00201V=0
                                                    00601V+021425
                                                                    00701V+0
                                     00501V+043825
1 4715 00301V+021385
                     00401V+035035
      00801V+020245
                      00901V+084535
                                     00202V+072645
                                                    00302V+001085
                                                                    00402V+0
                                                    00802V+001745
                      00602V+010345
                                     00702V-005895
                                                                    00902V+0
      00502V-000025
0 9385
                                     00403V+049505
                                                    00503V-000015
                                                                    00 603V+0
      00203V+018755 00303V+035585
1 2435
21375
      00703V+020385
                      00803V+034425
                                     00903V+022815
                                                     00204V+022285
                                                                    003047+0
      00404V+012735 00504V+030145
                                     00604V+019095
25125
                                                     007047+039765
                                                                    008040+0
                                                     00405V+041105
      00904V+039045 00205V+037285
                                     00305V+008075
5 9 7 4 5
                                                                    00505V+1
      00605V+081045
                      00705V+053295
                                     00805V+029615
                                                     00905V+021285
0.7035
                                                                    00206V+0
      00306V+001535 00406V+049335
                                     00506V+064715
                                                     00606V+051965
2 2905
                                                                    00706V+0
      00806V+046195 00906V+001175
                                     00207V+003765
3 9845
                                                     00307V+044585
                                                                    00407V+0
 7725
       00507V+000005
                      00607V+049245
                                     00707V+025725
                                                     00807V+047645
                                                                    00907V+0
61745
      00208V+055205 00308V+027445
                                     00408V+041125
                                                     00508V+000005
                                                                    00608V+0
59615
      00708V+061335 00808V+058765
                                    00908V+077705
                                                     00209V+074985
                                                                    00309V-0
      00409V+015975 00509V+000005
0 4915
                                     00609V+009765
                                                     00709V-000045
                                                                    00809V-0
0.0145
      00909V+004405
                      00210V+012165
                                    00310V+028015
                                                     00410V+005135
                                                                    00510V-1
50085 00610V+038825
                      00710V+012925 00810V+003495
                                                    00910V+040195
                                                                    00211V+0
3 7295
      00311V+028295
                      00411V+037625 00511V-150055
                                                     00611V+039175
                                                                    00711V+0
3 9825
      00811V+039065
                      00911V+000345 00212V+004415
                                                     00312V=000155
                                                                    00412V+0
3 6095
      00512V-150035 00612V-000035 00712V+039665
                                                     00812V+038805
                                                                    00912V+0
0 0345
      00213V+001035 00313V-000155 00413V+000085
                                                    00513V-150025
                                                                    00613V-0
0 0035
      00713V-000045 00813V-000255
                                     00913V+000335
                                                    010
                                                          V+072785
                                                                          V+0
                                                                    011
20635 012
            V+021175 013
                           V+019515
                                    014
                                           V+019005, 015
                                                          V+064155
                                                                    016
                                                                          V+O
                                                                          V+O
58615 017
            V+054025 018
                           V+033265 019
                                           V+047885
                                                    020
                                                          V+069655
                                                                    021
                                                                          V+O
19935 022
            V+067685 023
                           V+026145
                                     024
                                           V+029565
                                                    025
                                                          V+020765
                                                                    026
65585 027
            V+024635 028
                           V+029655 029
                                           V+023075
                                                                          V+O
                                                    030
                                                          V+035415
                                                                    031
4 5 2 5 5 0 3 2
            V+021255 033
                           V+010185
                                     034
                                           V+005525
                                                    035
                                                          V+031295
                                                                    036
                                                                          V+0
            V+028745 038
                                           V+011555
45515 037
                           V+030265
                                     039
                                                     040
                                                          V+029525
                                                                          V+O
                                                                    041
11915 042
            V-000175 043
                                                                          V+0
                           V=000235
                                           V-000365
                                                     045
                                                          V+027505
                                    044
                                                                    046
                                           V-000295
12115 047
            V+008665 048
                           V+004215 049
                                                    050
                                                          M+039702 051
                                                                          M+O
                           M+039272
                                           M+039112
                                                    055
                                                          M+041342
39692 052
            M+039672 053
                                     054
                                                                    056
                                                                          M+0
                                                          M+039852 061
                                           M+039742
40472 057
            M+039882 058
                           M+040912 059
                                                    0.60
                                                                          M+U
03782 062
            M+003022 063
                           M+003102 064
                                           M+003632
                                                    065
                                                          M+006952
                                                                    066
                                                                          M+0
12042 067
            M+012542 068
                           M+010892
                                     069
                                           M+010892
                                                    070
                                                          M+012392
                                                                    071
                                                                          M+0
                           M+021922 074
                                           M+011702
                                                    ນ75
                                                          M+011602
                                                                          M+0
10902 072
            M+004652 073
                                                                   076
                           M+012352 079
                                           M+012452 080
                                                          M+029372 081
                                                                          M+U
13442 077
            M+013872 078
                                           M+029882
                                                    085
                                                          M+030252 086
                                                                          M+0
65902 082
            M+029092 083
                           M+029362
                                     084
                           M+002622 089
                                           M+016692
                                                    090
                                                          M-002812
                                                                    091
                                                                          M-0
01552 087
            M-001562 088
                                           M+005312
                                                    095
                                                          M+000212
                                                                    096
                                                                          M-0
                           M+001352 094
01492 092
            M+143532 093
                                                     100
                                                          M-022012
                                                                    101
                                                                          M-D
                           M+003652 099
                                           M+006462
0 6732 097
            M+007172 098
            M+012382 103
                           M+029692 104
                                           M+004812
                                                     105
                                                          M+013252
                                                                    106
                                                                          M-0
0 1502 102
                                                          V+042595
                                                                          V+O
                                           M+000062
                                                    110
                                                                    111
            M+023512 108
                           M+000072 109
00912 107
                                                          V+033015
                                                                          V+O
                                           V+044545
                                                     115
                                                                    116
                           V+0000005
                                    114
0 0515
      112
            V+018835 113
                                                                          V+V
                                                          V+023025
                                                                    121
                                           V+023045
                                                     120
49195 117
            V+006525 118
                           V+026145
                                     119
                                                          V+022955
                                                                          V+0
                           V+022985
                                     124
                                           V+022965
                                                     125
                                                                    126
            V+022995 123
23015 122
                                                     130
                                                          V+022895
                                                                    131
                                                                          V+0
                                           V+022915
            V+022935 128
                           V+022925
                                     129
22945 127
                                                                          V+O
                                                     135
                                                          V+022845
                                                                    136
                                           V+022865
                                     134
2 2 8 8 5 1 3 2
            V+022885
                     133
                           V+022865
                                           V+022815
                                                     140
                                                          V+035555
                                                                    141
                                                                          V+O
                           V+022825
                                     139
22845 137
            V+022835 138
                                           V+092785
                                                    145
                                                          V+051125
                                                                    146
                                                                          V+0
                           V+052395
75095 142
            V+098475 143
                                     144
                                                                          V+0
                                           V+017425
                                                     150
                                                          V+017445
                                                                    151
                           V+016805
                                     149
 8245
      147
            V+016445 148
                                                                          V+0
                                                          V+017515
                                           V+017505
                                                     155
                                                                    156
17465 152
            V+017475 153
                           V+017495
                                     154
                                                          V+004956
                                                                          V+0
                                           V+017535
                                                     160
                                                                    161
 7515 157
            V+017525 158
                           V+017535
                                     159
                                                          V-000016
                                                                    166
                                                                          V-0
                                           V+0000006
                                                     165
            V-000016 163
                           V+004726
                                     164
00026 162
                                                                          V-0
                                                                    171
                                                     170
                                                          V-0000043
            V-0000006
                     168
                           V-0000006
                                     169
                                           V-0000006
0 0006 167
                                           V+016645 175
                                                          V+015815 176
                                                                          V+D
0 0 0 0 4 3 1 7 2
            V+021285 173
                           V+022965
                                     174
            V+029565 17800V+025185 1541415019771581034 00200V+022195
15135 177
```

LABEL:	154141501977,	TIME: 159	8:37		PAGE 1
LOC NBS VOLE	AGE 000 M•V•	VALUE		FLAG	
10 202 7268.	000 M.V.	65 • 850		0	
	000 M.V.		PSI	O L -JSE:	• 000
	000 M.V.		PSI	O	
13 230 1984.	000 M.V.	002	PSI	O L -USE:	• 000
14 231 3686.	000 M.V.	• 228	PSI	Ü	
	000 M.V.			0	
	000 M.V.	2521.244		0	
	000 M.V.			O	
	000 M.V.		LB/MIN	0 H2-NO CALC	
19 305 4830	000 M.V.	7077.924		0	
20 306 5549•	000 M.V.			0	
	000 M.V.		LB/MIN	0 L1-05E:	• 000
	000 M.V.			0	
	000 M.V.	528 • 742		0	
24 310 2982•	000 M.V.	8820 • 963		0 H2-NO CALC	
	000 M.V.		LB/MIN	0 L1-USE:	• 000
	000 M.V.			0	
	000 M.V.				
	000 M.V.				
	000 M · V ·			0	
	000 M · V ·				
	000 M · V ·				
	000 M·V·			0	
33 319 101 7 •0 34 320 551•0					
	000 M · V ·		GPM (AV)		
	000 M. V.		GPM (AV)		
37 323 2872•	000 M.V.		GPM (AV)		
	000 M·V•		GPM (AV)		
	000 M• V•		GPM (AV)		
	000 M.V.		GPM (AV)		
		957.600		O E -NO CAEC	
	000 M• V•		KW (INS)	o	
	000 M• V•		KW (INS)	Ö	
	000 M• V•		Kw (INS)	Ö	
	000 M•V•		KW (INS)	Ö	
	000 M · V ·		KW (INS)	o	
	000 M.V.		KW (INS)	0	
	000 M.V.		KW (INS)	Ö	
	000 M.V.		KW (INS)	Ö	
	966 M.V.	199.982		0	
	967 M.V.	200.022		Ö	
	121 M.V.	206.021		0	
	933 M.V.	198 • 692		0	
54 617 4.5	215 M.V.	209 • 668	DEG F	0 .	
55 627 4.	127 M. V.	206 • 255	DEG F	0	
56 629 4•1	051 M.V.	203 • 298	DEG F	0	
57 630 3.	986 M•V•	200 • 764	DEG F	0	
	092 M.V.	204.894		0	
	971 M.V.	200 • 178		O	
	980 M.V.	200 • 529		0	
	356 M•V•	48.304		0	
	288 M.V.	45 • 211		0	
	295 M.V.	45.530		0	
	343 M. V.	47.714		0	
	688 M. V.	63 • 264		0	
66 672 1.1	097 M.V.	81 - 381	DEG F	O	
		0.0			

LOC	NBS	VOLTAGE		VALUE		FLAG		
67	673	1.245	M.V.	87.854	DEG F	O		
68	690	• 973	M. V.	75.924	DEG F	O		
69	691	.973	M. V.	75.924	DEG F	Q		
70	693	1.124	M. V.	82.565	DEG F	O		
71	696	• 980	M. V.	76.232	DEG F	O		
72	700	-•630	M. V.	32•000	DEG F	OL	-NO	CALC
73	701	3 • 565	M. V.	184.201	DEG F	O	•	
74	711	1.137	M. V.	83.134	DEG F	O		
75	713	1 • 130	M.V.	82 • 828	DEG F	O		
76	730	1.342	M.V.	92.073		0		
77	731	1 • 388	M.V.	94.068	DEG F	O		
78	732	1 • 233	M.V.	87.331	DEG F	O		
79	733	1 • 243	M.V.	87.767	DEG F	O		
80	612	2.834	M.V.	130 - 400	DEG F	O		
81	613	5 • 804		229.772		O		
82	750	2.910		132.983		O		
83	751	16.737		585 • 396		Ö		
84	752	3.039		137.361		O		
85	753	10.594				O		
86	601	139		362				
87	602	2.194		5 • 700				
88	694	•262		• 766		Ü		
89	605	1 • 735		4.510		Ö		
90	614	- • 255		997		Ö		
91	615	1.956		7.615	DL DEG F	Ö		
92	628	14.438		38.053	DL DEG F		-NO	CALC
93	631		M.V.	•496		ů.		0
94	632		M.V.	2.324		ŏ		
95	634		M.V.	•054		Ö		
96	635	- • 628		-2.456		ö		
97	637		M.V.	1 • 498		ŏ		
98	641		M.V.	1.086		ŏ		
99	642		M.V.	3.508		ŏ		
100	647	-2.233		-6.804				
101	659	- 133		404			-NO	CALC
	660	1.099		3.331	DL DEG F	ů Ž		ORLO
	664	2.329		7.045		Ö		
	674	991			DL DEG F		-NO	CALC
105		1.196		3.505		ŏ		01.20
106	692	090		-•263				
107	695	2.443		7.165	DL DEG F	õ		
108	702		M.V.	•000		ŏ		
109	703		M.V.	•038		ŏ		
110	501	374.000		996 • 693		õ		
111	502	51.000		•000		ö		
112	503	1622.000		330-240		ő		
113	509		M.V.	•000	KW (AVG)	ŏ		
114	510	1736.000		15.040	KW (AVG)	ŏ		
115	511	2512.000		110.671	KW (AVG)	ů		
116	512	2637.000		48.241	KW (AVG)	o o		
117		651.000		•000		Ö		
118	514	4468 0000		• 000		ů		
120	806	3913-000		3913.000		Ö		
181	815	3909.000		3909.000		Ö		
152	821	3905.000		3905.000		Ö		
	830	3902-000		3902.000		o o		
	836	3899.000		3899•000		Ö		
CP 1000 10				00774000	0.11			

	VOLTAGE		VALUE		FLAG	
125 845	3897.000					
126 851	3895•000		3895•000			
127 800	3893.000		3893.000		0	
128 860	3891.000	M.V.	3891.000	ON/OFF	o	
129 866	3888• 000	M. V.	3888•000	ON/OFF	o	
140 360	8116.000	M.V.	•018	GPM (AV)	O L1-USE:	• 000
141 361	40 • 000	M.V.	• 489	GPM (AV)	0	
142 362	4288 • 000	M. V.	• 000	GPM (AV)	O LI-USE:	• 000
143 363	3961 • 000	M. V.	• 433	GPM (AV)	0	
144 364	5307.000	M.V.	• 493	GPM (AV)	0	
145 365	59 • 000			GPM (AV)		• 000
146 366	3435 • 000			GPM (AV)		
160 400	4950 • 000		495.000		0	
	4680 • 000		468 • 000			
	1927-300			MINUTES		
	2295 • 000			MINUTES		
	1524.000			MINUTES	Ö	
177 130	2942.000	M • V •		PWR FACT	· ·	
178 141	2986.000	Ma Va			ő	
	-12074.000		-43.976			
	-1441.000		•000		0 2 NO CAZO	
	2320 • 000		10.404	KW (AVG)	0	
	5894 • 000		260.566	DEG E	O H -NO CALC	
213 0	91.000		65 • 61 6	DI DEC E	1 OKAHEE	• 000
300 771	15620 • 000					
301 330	2156.000		38 • 160		O OK-USE:	•000
302 651	85.000		• 466			
303 339	3611.000		355 • 212		0	
304 791	4927 • 000		20 • 247			
	1537-000		1.002			
306 524	4597•000		31.703			
307 523		M·V•	3.088	KW (AVG)		
308 424	2760 • 000		277.400		0	
309 624	-410-000		32.000		O L -NO CALC	
	2903.000				0	
311 781	2942.000		159 • 777		0	
313 0			• 000	M.V.	1	
	1932-000		5.055			
401 331	3615.000					
402 655	811.000	M • V •	2061-633	DL DEG F	0	
	1408-000			DL DEG F		
	4119.000			GPM (AV)		
406 532	2889.000					
	4955 • 000					
	4126.000	M • V •	190 • 205	VOLTS	0	
410 625	474.000	M • V •	53.241	DEG F	0	
411 762			192.494			
412 782					0	
	9.000			M.V.	1	
	4605.000		2 • 605	C/CM2/MN	0 H -NO CALC	
501 149	3779.000	M. V.	2.345	C/CM2/MN	O H -NO CALC	
502 150	-3.000	M·V·	• 000	DIR. DEGS	0	
503 151	-2.000	M. V.	150.000	MILES/HR	O H -NO CALC	
504 200	3016-000	M. V.	31.000	INCH HG.	0	
	10214-000		199.990	DEG.F.	0 H -NO CALC	
	4521.000		100-000	DEG. F.	0	

100	MDC	VOLTAGE		UALUE	FL	Δ.	2		
				149.830				CALC	
				• 000			11 140	OALO	
				4.478		Ô			
				440.670			OK-USE	1.2	• 000
				-2.540			L -NO		- 60 60
		2146.000		406.702		Ö	2	0.1.00	
		1887.000		4.940		Ö			
		8126.000	M. V.	631 • 225	LB/MIN	Ü			
		4457.000	M.V.	53.248	KW (AVG)	Ö			
		2341.000	M.V.	9.830	KW (AVG)	()			
608	420	E065.000	M - 17 -	110.240	HOLTC	Û			
609	643	1021-000	M.V.	78 · 128 196 · 892	DEG F	O			
610	763	3885 • 000	M.V.	196.892	DEG F	0			
	783	3914.000	M. V.	198.027	DEG F	0			
613	0	-2.000	M. V.	• 000	M.V.	1			
700	768	3714.000	M.V.	•000 9•721	DL DEG F	0			
701	327	1793.000	M.V.	• 000	LB/MIN	O			
702	648	-704.000	M. V.	•000 •2•035	DL DEG F	Q	L -NO	CALC	
703	336	2007.000	M. V.	•000	LB/MIN	Q			
704	788	3696.000		9.679		O			
705	345	5378 • 000		574.788		O			
706	516	1194.000	M•V•	59.592	KW (AVG)	()			
707	515			18 • 445		Ç			
	416			491 • 680		()			
	644			88.508		()			
	764	3980•000	M. V.	200 • 685	DEG F	()			
	784	3965•000	M • V •	200 • 100	DEG F	O			
	O	-4.000	M • V •	•000 20•881	M. V.	1			
	774	7909 • 000	M • V •	20.881	DL DEG F	0			
	334	2035 • 000	M · V ·	• 000	LB/MIN	0			
	654	115.000	M • V •	• 430	DL DEG F	0			
	343	3407.000	M. V.	2774.391	TR/WIN	0			
	794		M. V.	21.373	DL DEG F	0			
	353			451 • 934		0			
	530	3246 • 000		96.482		O O			
	529	51.000				O O			
	430	5881 · 000		472 • 640 48 • 304		O O			
	645 765	3926 • 000		199.474		O O			
	785	3898 • 000		198.379		0			
813	0	-27.000				1			
	626	- 79 • 000				Ô			
	333	8492.000		4448 • 622		Ö			
	793	2084.000				Ö			
	351	2286.000		598 • 682		ü			
	526					Ö			
	527					Ö			
	528	3920 - 000				o O			
	426			493 • 280		Ö			
	428	7473.000		148 • 780			H -NO	CALC	
	646			49.756		o			
	785			200.764		0			
911	147	34.000					OK-USE	:	• 000
912	147	34.000	M.V.				OK-USE		• 000
913	O	34.000	M. V.	• 000	M·V·	1			

Character 7

1. Character Location Description

The first 9 characters of a scan consist of digits (0 through 9) which have been manually set (on thumbwheel switches) on the DAS as part of the label information. These 9 characters are used in the definition of the time and date when the current magnetic tape was placed on-line.

Characters 10, 11, and 12 contain the letters "NBS" and are used as a trigger point for the rest of the scan.

Characters 13 through 19 are generated by the DAS clock and represent the day of the year (13, 14, 15), hour of day (16, 17), and minute of hour (18, 19).

Characters 20 through 1475 and characters 1476 through 3672 consist of 112 groups of 13 characters representing data from remote locations and 169 groups of 13 characters representing data from CEB locations, respectively. Each group of 13 characters is further subdivided as follows.

Characters	1,	2,	&	3	CO	ntair	ı ei	ther	the	remote	location	number
				٠,	or	the	CE B	char	ne1	number.		

Characters 4 & 5	contain either the remote channel number
	(if a remote channel), two zeros or two
	blanks (spaces) if a CEB channel is being
	recorded on magentic tape, or two blanks
	if a CEB channel is being transmitted over

	if a CEB channel is being transmitted over
	the modem link.
Character 6	is either an M (millivolt) or a V (volts)
	1 11 11 11 11 11 11 11 11 11 11 11 11 1

and represent the programmed function (or sensitivity) of the Digital Voltmeter (DVM). is either a + or - and represents the polarity of the analog signal level and also is the most significant digit of the analog

input voltage for the channel.

Charaters 9 thru 12 represent the second most significant digit through the least significant digit of the

signal level.

Character 13 represents the range of the DVM and contains a digit indicating how far to the right (from just after character 7) to place the decimal point in order to obtain a reading

in millivolts.

The following figures schematically describe the layout of a typical signal scan and depict the breakdown of the individual character groupings making up a scan. An alphanumeric printout of a complete typical scan is contained in Appendix I.

			3672 CHARACTERS COMPLETE SCAN	TERS		
6	3	3	2	Characters	1456	2197 Characters
Characters	Characters	characters	ollal acters	ollal acter 3		
Manually		Day	Hour	Minute	112 Groups	169 Groups
Programmable		of	of	of	of 13	of 13
Digits	NBS	Year	Day	Hour	(Remotes)	(CEB)
		~-	TIME			
		LARFI			281 DATA S	281 DATA SIGNAL GROUPS

Overall data scan

Character	1 2	3	4 5	9	7	∞	6	10	11	1.2	13
If a CEB	Channel Number	r	Spaces	Σ	+	S	Significant Data Digits	nt Data	Digits		Data
Channel			or	or	or	T	If character 8 is \$\phi\$ or 1 other-	ter 8 is	s & or 1	other-	Range
			Zeros	>	1	3	wise data is over range and.	is over	r range	and.	Pointer
							not usable	9			
				(See	(Polar-						
				text)	ity)						
1											
	- All Andrews										
li a	Remote Location	- no	Remote								
Remote	Number		-qns		Awag Pariji						
Channel			Channel		The Research						
			Number								
	· · · · · · · · · · · · · · · · · · ·							1		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	

Individual data signal groups

2. Magnetic Tape Bit Configuration

Character	BITS
0 1 2	11110000 11110001 11110010
3 4	11110011 11110100
5 6	11110101
7 8	11110111
9	11111001 01001110
- B	01100000 11000010
M	11010100
N S	11010101 11100010
V BLANK	11100101

3. MODEM BIT Configuration

Character	BITS	
0 1 2 3 4 5	00110000 10110001 10110010 00110011 101101	ASCII with an
7	10110111	additional parity
8	10111000	bit added.
9	00111001	
+	00101101	
В	01000010	
M	01001101	
N	01001110	
S	01010011	
V.	01010110	
BLANK	10100000	

IX. LISTING OF SUBROUTINES

1. Input and Output

DATTAP - used to set up and write a single record on the output magnetic tape.

DSKRTS - used to read, write, update, and perform all necessary checks on a single disk file (scan) location.

ERRPRT - used to sort and display all errors which require operator assistance and a few that do not.

FRENPT - reads an input string of ASCII characters and returns a variable number of real numbers.

GETCOM - gets, converts, and checks a single input command along with its associated arguments.

PINPUT - displays the input buffer (to the operator) in several display modes as requested.

RDITMT - reads a single record from the output magnetic tape.

RDTAPE - causes a single data scan of data to be read from the raw data input magnetic tape, checks the format, and corrects it if logically correctable and necessary. A single data scan of data could consist of one or more magnetic tape records.

WRITEF - writes three ends-of-file on a requested tape drive.

2. Bookkeeping

DEHASH - deletes an alphanumerically defined variable from a reference table such that it can no longer be referenced.

This routine will also delete a command such that it can no longer be used.

GETNBS - sets up all cross references between NBS data codes, DAS channel and subchannel, data location reference index number, measurement type, and measurement reference within a type.

INHASH - defines an integer number to be used in place of an alphanumerically defined variable. This subroutine is also used to define the parameters associated with a command.

UTABLE - sets up and continuously updates a reference table which defines the file location for the data scans located on the scratch disk. This subroutine also returns the contents of the reference table as requested.

3. Conversion

COMINT - converts a variable number of specially coded characters into a binary (integer) number.

CONATE - converts a complete buffer from ASCII format to EBCDIC format.

CONETA - converts a complete buffer from EBCDIC format to ASCII format.

CONGRP - converts a 13-character EBCDIC grouping of a single channel measurement into five integer code numbers.

DEGDLF - converts millivolt data to delta degrees Fahrenheit.

DEGRSF - converts millivolt data to degrees Fahrenheit.

DENSTY - calculates the density of water in pounds per cubic foot
 as a function of temperature.

EVENTS - converts millivolt data to a single number which represents the on or off status of six signals.

INTEGR - converts millivolt data to
(a) gallons per minute (turbines)
(b) kilowatts, or (c) minutes.

PRESS1 - converts millivolt data to pressure in pounds per square inch.

PWRFCT - converts millivolt data to total energy plant power
factor.

SPECL1 - converts millivolt data to instantaneous kilowatts.

TIMER1 - calculates the time difference between two successive

scans.

VENTRI - converts millivolt data to flow rate in pounds per minute.

VISCOS - calculates the viscosity of water in centipoises as a function of temperature.

VOLTSI - converts millivolt data to total energy plant voltages.
 WEASTA - converts all weather station millivolt data to the engineering units it represents.

4. Control

CKDISK - checks and controls the writing of data on the scratch disk. This subroutine will inhibit any write operation on a particular disk which has not been specifically assigned to TEREVIEW.

CONALL - controls the sequence of all character and engineering unit conversion operations.

DRIVER - controls the sequence of all operations required in order to create an output magnetic tape.

INIT - controls all initialization sequencing.

TEREVIEW - the main program which controls the overall sequencing of all initialization and command operations.

TRNRAW - controls the automatic sequencing for the transfer of raw input data through its various conversions prior to and including the writing on the scratch disk.

WIPOUT - controls the sequence of operations necessary in order to wipe out a scratch data disk and set it up such that it is ready to begin a new disk scan file.

5. Support

ADRESS - returns the memory address of a reference variable.

BACKSP - backspaces a requested magnetic tape a requested number of records.

CCITEBCD - converts an ASCII character to EBCDIC format.

CHDECD - returns a reference index location number as a function of DAS channel and subchannel.

CLASS - defines and references the character strings in an operator input command containing arguments.

CODIT - converts an operator input string of alphanumeric into a specially coded numerical string.

DECDIT - converts a specially coded numerical string into a string of ASCII characters.

DECTOBIN - converts six ASCII characters into a single binary integer.

EBCDTCCl - converts one EBCDIC format character to an ASCII format.

FCS - a set of subroutines which support all disk data file operations.

HASH - the subroutine that does the actual command decoding and makes integer assignments to variables.

HEXTCC - takes one binary word and converts it to four ASCII characters representing the hexadecimal equivalent for the word.

INDAN1 - contains the location reference required for differential temperature calculations. Also contains the ASCII representation of all units codes. This is basically a block data program.

LAND - returns the logical AND of two integers as an integer.

LEOR - returns the logical exclusive OR of two integers as an integer.

LOCTED - returns a data index location number as a function of NBS data code.

LOR - returns the logical OR of two integers as an integer.

LSHIFT - shifts a variable number of characters in a string to the left.

NBSLOC - returns the NBS data code as a function of the data index location number.

OUTHEX - outputs as hexadecimal text the contents of specified memory locations.

OUTINT - outputs as decimal text contents of specified memory locations.

OUTTXT - outputs a specified number of ASCII characters as text.

READIN - reads up to 72 ASCII characters into memory.

READMT - reads a single record of the raw data input tape.

RSHIFT - shifts a variable number of characters in a string to the right.

RWNDIT - rewinds a specified magnetic tape unit.

SEEKEF - seeks a specified number of ends-of-file on a requested magnetic tape unit.

SKBYTM - returns a relative scan number (contained on the scratch data disk) as a function of the time for which the scan occurred.

SKIP - skips a specified number of records on a requested magnetic tape unit.

SPLITA - splits one integer word logically into two words representing the left and right half of the original word.

TEDITX - serves as a support routine to TEREVIEW in the decoding

and initialization of several special functions.

UNSPLT - combines two integer words logically into the left and right half of one integer word.

WRITMT - writes one magnetic tape record on the output tape drive.

X. TEREVIEW COMMAND LISTING

ABBREVIATION

1. Definitions and Abbreviations

DEFINITIONS
Variable name (1 alpha and optional 1 number)
Delta day
Delta hour
Delta minute
First character
First day
First location number
First NBS number
First scan number
First time (hour and minute of lst, day)
Integer code for initialization
Day of the year (1 through 366)
Hour of the day
Minute of the hour
An integer number
Last character
Last day
Last location
Last NBS number
Location number
Last scan number
Last time (hour and minute of last day)
Logical unit number
NBS number
Number of position
Number of remotes
Number of variables
Number of records

DEFINITIONS

2. Commands and Functions

BK, NUM, LUN

Backspace NUM records on magnetic tape drive LUN

CA

Convert the contents of the input buffer from EBCDIC to millivolts and then to engineering units. Place the millivolt values and engineering units into the millivolt and the engineering units output buffers respectively. Convert all labels and flags and place the results in the appropriate output buffer locations. This is a one step conversion which combines the CI and CE instructions explained below.

CE

Convert the contents of the millivolt buffer from millivolts to engineering units and place them into the appropriate output buffer. Flag values are also calculated.

CI

Convert the contents of the input buffer from EBCDIC to millivolt values and place them into the millivolt buffer. Label information is also included.

CO, FS, LS (or CO, FD, FT, LD, LT)

Create an output magnetic tape from the scratch data disk beginning at FS and ending with LS (or FD, FT through LD, LT). If only the beginning scan (or day and time) is given, i.e., CO, FS (or CO, FD, FT, O), this command will create the output tape from FS (or FD, FT) through the end of the data that are currently on the scratch disk. If no arguments are given (CO), this command will create an output magnetic tape consisting of all data currently on the scratch disk.

DS

Produce a scratch disk summary consisting of the day and time of the first scan on the disk, the day and time of the last scan on the disk, and the total number of scans contained on the disk.

DV, AN

Delete variable AN from the variable name parameter table. This assumes that AN has been previously set by the SV instruction.

EU, FL, LL, O (or EU, FN, LN,)

Display the engineering units of the output buffer beginning at FL and ending with LL (or FN through LN). If only one argument is given, that argument is interpreted as an NBS code number and only the one output will be printed.

EX

Exit from the program after setting up the scratch disk with the necessary parameters for reentry and continuation.

GS, INT (or GS, IDAY, IHR, IMIN)

Place scan number INT (or the scan for IDAY, IHR, IMIN) which is currently on the scratch disk into the output buffer. Note that the arguments (IHR, IMIN) can also be written as one number $[(IHR \times 100)+IMIN]$.

HD, FC, LC

Display the input buffer in hexadecimal from FC through LC.

IN, ICODE

Initialize the disk according to ICODE as follows.

ICODE = 0, no operation if set by operator.

- 1, start processing where last stopped. This assumes that EX (exit) was previously called and that the scratch disk has not been disturbed.
- 2, initialize the scratch disk to contain no data.
- 3, start over with scan 1 on the scratch disk. This allows for program continuation, without exit, after the creation of an output magnetic tape (using the CO instruction).
- 4, Equivalent to the EX (exit) instruction.

LO, FL, LL, O (or LO, FN, LN)

Locate the corresponding NBS codes starting with FL and ending with LL (or the corresponding location starting with FN and ending with LN). One argument is interpreted as an NBS code and the appropriate location number will be returned.

LS, FC, LC, NP

Shift the input buffer characters beginning with FC and ending with LC to the left NP character positions.

NR, INT

Set the number of remotes to INT. This command was used during the early phases of the program when not all of the remote buildings were yet on line. This command is currently used only for very special reasons.

NV, INT

Set the number of variables to INT. This command was used during the early phases of the program when not all of the planned measurements were on line. This command is currently used only for very special reasons.

PF, FL, LL, O (or PF, FN, LN)

Print the value of the data flag beginning with location FL and ending with LL (or NBS code FN through LN). If only one argument is input, it will be interpreted as an NBS code and the one corresponding flag value will be displayed.

PI (or PI, FC, LC or PI, FC)

Print the characters currently contained in the raw data input buffer as follows:

PI - print the first 19 (label) characters only.

- PI, FC print all characters contained in the raw data input buffer beginning with character number FC.
- PI, FC, LC print the characters contained in the raw data input buffer beginning with character number FC and ending with LC.

PL

Display the label and time of the scan contained in the millivolt buffer.

PM, FL, LL, O (or PM, FN, LN)

Display the millivolt values contained in the millivolt buffer beginning with FL and ending with LL (or FN through LN). One argument is interpreted as an NBS code and only the one corresponding millivolt value will be displayed.

PT, FL, LL, O (or PT, FN, LN)

Display the thumbwheel constants (see section 6.5.4) currently assigned to locations FL through LL (or assigned to NBS codes FN through LN). One argument is interpreted to mean only one thumbwheel constant corresponding to the NBS number is desired.

RO

Read one record from the output magnetic tape and place it into the output buffer. If a particular record is required, the command RO, IDAY, IHR, IMIN will cause a search of the output tape for that record. Note that IHR and IMIN can be combined (as in the GS command) if desired.

RS, FC, LC, NP

Shift the input buffer characters beginning with FC and ending with LC to the right NP character positions.

RT

Read one record from the input raw data tape and place it into the input buffer. If a particular record is required, the command RT, IDAY, IHR, IMIN will cause a search similar to the RO command.

RW, LUN

Rewind the LUN magnetic tape.

SD, LOC, O (or SD, NBS)

Set the engineering units for a particular LOC (or NBS) channel to a new value. After the command is entered, there will be a slight delay followed by the request to enter the value. This command will also cause the appropriate flag value to be set to indicate that the operator has modified the data.

SE, INT, LUN

Seek INT number of ends-of-file on magnetic tape LUN.

SF, LOC, INT, O (or NBS, INT)

Set the flag value for LOC (or NBS) to the value INT.

SI, NP

Set the input character contained in the input character buffer position NP to a new EBCDIC value. A slight delay will occur followed by the request to enter the character (in ASCII).

SK, NUM, LUN

Skip NUM records on magnetic tape LUN.

SM, LOC, O (or SM, NBS)

Set the millivolt value contained in the millivolt array location LOC to a new value. This command is similar to the SD command.

SR, FC, LC, NP

A special read command to read the next record on the input raw data tape beginning with character FC (must be odd) and ending with character number LC (must be even). The data will be placed in the input buffer beginning with character position NP (must be odd).

SS

Change the delta time to the current time and set the delta time flag to reflect a normal status. This command allows for continued processing after an error in scan time has been detected.

ST, LOC, INT (or ST, NBS)

Set the thumbwheel calculation constant (see section 6.5.4) for location LOC (or NBS) to the value INT.

SV, AN, INT

Assign the two letter code AN to the value INT.

TM, DD, DH, DM

Modify all following label times up or down by a delta time factor corresponding to DD, DH, DM, with up being (+) and down being (-). This command is used to bring the raw data tape time to the actual data time when for any reason, the DAS clock was not in synchronization with the actual time.

TR, NUM, INT

Transfer NUM records from the raw data input tape to the scratch disk after converting the EBCDIC characters to millivolts and then to engineering units and calculating all label, flag, and data values. This command will cause NUM sequential executions of the RT, CA, and WS commands. The label information contained in the current scan will be displayed every INT records.

WE, LUN

Write three ends-of-file on magnetic tape number LUN.

WS

Write a scan from the output buffer to the next available scratch disk file location.

XI. TEREVIEW ERROR MESSAGES

The following error messages are listed in order of Type ().

NAME	TYPE	<u>A</u> <u>B</u> <u>C</u> <u>D</u> <u>E</u>	MEANING
MAIN	1	0 0 0 0 0	Undefined operator input detected in main program.
INIT	1 2	I J 0 0 0	<pre>Disk initialization error. Disk exit error. I = 0, not occurring with disk read; 1, occurring with disk read. J = 1, disk assigned to data;</pre>
GETCOM	3	1 0 0 0 0	<pre>Illegal command or argument. I = number of arguments converted before</pre>
HASH	5 6	I 0 0 0 0 I 0 0 0 0	<pre>Incorrect command key value. Request for variable which is undefined. I = the command or a variable random access key value, and has little meaning except for software debugging.</pre>
INHASH	7	1 J K L M 2 J K L M	Requested variable not equal to decoded variable. Requested variable is already defined. J = requested variable key, K = requested variable value, L = decoded variable key, and M = decoded variable value.
DEHASH	8	IJKLO	Requested command or variable is improper. I = 0, command or variable is in table; 1, command or variable not in table. J = requested key. K = decoded key. L = decoded value.
RDTAPE	9	I J K O O	Raw input tape read error or unexpected condition.

			in last record. J = -32767, record was unreadable; = -1, longitudinal parity or rate error; = 0, no mechanical magnetic tape errors; and = X, number of lateral parity errors detected. K = number of characters placed in input buffer before error detection.
CONALL	10	10000	<pre>Illegal EBCDIC character detected in first 19 label characters. I = the number of illegal characters detected.</pre>
	11	I 1 K O M	Conversion error characters 1-4.
	11	I 2 K O M	Conversion error characters 5-8.
	11	I 3 K O M	Conversion error characters 9-12. I = 99, converted number too large; = X, number of the offending character K = number of 1st character in conversion group of 13. M = converted value.
	11	I 4 0 0 M	Day of year conversion error (characters 13, 14 and 15).
	11	I 5 1 0 M	Hour of day conversion error (characters 16 and 17).
	11	I 5 2 0 M	Minute of hour conversion error (characters 18 and 19). I = 99, converted number too large; = X, number of offending character. M = converted value.
	12	IJKLM	<pre>Data group conversion error. I = 1, minor error not affecting data value; 2, major error which affects data value. J = character number of 1st character in 13-character group. K = converted channel number. L = converted sub-channel number. M = the offending characters within the 13-character group as indicated by the bit positions which are set to a logical 1.</pre>
DRIVER	13	I 1 0 0 0	Disk scan request error. I = 1, first scan in table; 2, requested scan not in table.

I = 0, end-of-file detected;
 X, number of characters read (if negative, all characters were not read)

	(NOTE: see additional information on type 14 errors below.)	<pre>Disk scan or operation error. I = 1, first scan in table; 2, requested scan not in table. J = 1, disk busy; 2, disk location error. K = scan number requested. L = converted scan number. M = scan number passed to the file control system.</pre>
DSKRTS	14 I J K O O (NOTE: See additional information on type 14 errors below.)	Disk file control. I = file control system error number (see documentation on Raytheon file control system error codes - Reference 6). J = 1, read mode; 2, write mode; 3, update mode. K = scan number requested.
UTABLE	15 IJKLO	The time between successive scans has changed. I = old delta-time.
	16 IJKLM	<pre>Time table request error. I = last day of current block of data. J = last time in current block of data. K = requested day. L = requested time. M = delta time between each scan in current block.</pre>
	17 I J K L O	Time table is full. I = old delta time. J = new delta time. K = number of entries requested L = size of time table.
DATTAP	18 I J K L O	<pre>Error on creation of output data tape. I = 0, not a magnetic tape error;</pre>

Type 14 errors:

These errors will generally be preceded by "FCXX", where XX will correspond to the error code as listed in the Raytheon File Control System manual [5]. Additionally, since type-14 errors are considered to be major in nature (with no operator fix allowed), the entire File Control table (33 information control words) will be output following the normal error message.

Other Error Messages:

Additional error messages may be output from time to time; however, these messages are always textual in nature and are self-explanatory. Messages of a textual type are normally concerned with operator requests which are outside of the TEREVIEW capabilities or which could not possibly be correct. An example would be for the operator to define the number of remote locations to be 9 or more when the physical system only has 8 or less.

Acknowledgements

This project, from its conception to the present, has spread over more than a five year period. During this time many NBS professionals have contributed towards its progress. Those whose contributions have been particularly significant during one or more phases are mentioned below as an expression of the author's gratitude.

For technical management and direction:

P.R. Achenbach

D.A. Didion, Section Chief, Mechanical Systems Section

L. Galowin, Section Chief, Building Services Section

J. Snell, Manager, Energy Conservation Programs

C.W. Phillips, Manager, Total Energy Program

For Initial Software Planning and Philosophy of Operation:

Dr. J. Snell

J.B. Coble

R.H.F. Jackson

R. Kirsch

D. J. Orser

Dr. R. Grot

Dr. L. Galowin

For Development of Engineering Units Conversion Techniques:

J.B. Coble

Dr. R. Grot

For Instrumentation Characterization:

C. Bulik

M. Kuklewicz

L.D. Ballard

J.B. Coble

For Output Display Philosophy:

J.B. Coble

C.W. Hurley

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 79-1757	1. Accession No. 3. Recipient's	Accession No.
4. TITLE AND SUBTITLE	99,0000000	5. Publication	n Date
Data Reduction P	rocesses for The Jersey City To	t-1	
Energy Project		riay 1:	
3	6. Performing	Organization Code	
7. AUTHOR(S)		8. Performing	Organ, Report No.
D. E. Rorrer, W.	G. Rippey and Y. L. Chang		
9. PERFORMING ORGANIZATION	10. Project/Ta	ask/Work Únit No.	
NATIONAL BUREAU OF	STANDARDS		
DEPARTMENT OF COMM		11. Contract/G	Frant No.
WASHINGTON, DC 20234			
12 SPONSORING ORGANIZATIO	ON NAME AND COMPLETE ADDRESS (Street, City,	12 T	1000110
II.S. Department of	Housing and Urban Development	State, ZIP) 13. Type of Re	eport & Period Covered
-	chnology and Standards Division		
•	velopment and Research		
Washington, D.C. 2		14. Sponsoring	Agency Code
15. SUPPLEMENTARY NOTES			
16. ABSTRACT (A 200-word or literature survey, mention it is the major proce City, New Jerse with the acquis final data pres the Total Energ The major funct software progra in some detail. data flow, data of data output which are used equations used with their deri The report assurengineering ter	sses used in the reduction of the control of the same engineering date that ion in a form from which the sy Site are produced. It is not the Jersey City to all endered and developed by the National Burn Included are descriptions of editing, data conversions, errotages for use in further analysis to handle the individual operation the calculation of engineeric vations where appropriate. The same of the control of the contro	he data obtained from ssed. These discussion ta and carry through the summary performance ergy data editing and eau of Standards are of the command structure or processing, and the is. The more importations are also discussing units are described familiarity with company to the company of the company of the more importations are also discussing units are described familiarity with company of the company of t	the Jersey ons begin to the e reports of conversion described , overall e creation nt subroutines ed. The d, along puter and
separated by semicolons)	ntries; alphabetical order; capitalize only the first le	iting; data flow; data	a processing;
	; raw data conversion to engine	ering units; total en	ergy;
total energy da	ta flow.		
18. AVAILABILITY	X Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES
For Official Distribution.	. Do Not Release to NTIS	UNCLASSIFIED	117
Order From Sup. of Doc.	U.S. Government Printing Office, Washington, DC	20. SECURITY CLASS	22. Price
20402, SD Stock No. SNO	03-003-	(THIS PAGE)	\$6.50
Order From National Tec VA. 22161	UNCLASSIFIED	Ψ0.00	

