Lagemaße

Arithmetisches Mittel

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum x_i$$

Median

$$Tiefe_{Median} = \frac{n+1}{2}$$

Streuungsmaße

Varianz

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$$

$$\sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$$

Standardabweichung

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2}$$

$$\sigma = \sqrt{\frac{1}{n}\sum (x_i - \bar{x})^2}$$

Spannbreite (Range)

Range =
$$x_{\text{max}} - x_{\text{min}}$$

Quartil

$$Tiefe_{Quartil} = \frac{Tiefe_{Median} + 1}{2} = \frac{n+3}{4}$$

Interquartilsabstand

$$IQR = Q_{75} - Q_{25}$$

z-Standardisierung

Allgemein:

$$Z = \frac{X-\mu}{\sigma}$$

Annahme: Mittelwert μ und Streuung σ der Population bekannt. In der Praxis werden dennoch zuweilen die Stichprobenschätzungen $\hat{\mu} = \bar{x}$ und $\hat{\sigma}$ verwendet.

Im Rahmen eines z-Tests:

$$z = \frac{\hat{\theta}}{se}$$
 (z.B. $z = \frac{\Delta \bar{x}}{se}$)

Zusammenhangsmaße

Kovarianz

$$\hat{Cov}(X,Y) = \frac{1}{n-1} \sum (x_i - \bar{x})(y_i - \bar{y})$$

$$Cov(X,Y) = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$$

Pearson-Korrelation

$$\hat{\rho} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Spearman-Korrelation

$$\hat{\rho}_{\rm s} = \frac{Cov(R(X), R(Y))}{\sigma_{R(X)}\sigma_{R(Y)}}$$

Kendalls Tau

$$\hat{\tau} = \frac{K - D}{K + D}$$

K: Zahl der konkordanten Paare

D: Zahl der diskordanten Paare

Phi-Koeffizient

$$\hat{\Phi} = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

		Faktor 1			
		Level 1	Level 2		
Faktor 2	Level 1	a	b		
TARLUI Z	Level 2	С	d		

Einfache lineare Regression

Regressionsgleichung

$$\hat{y}_i = \hat{b}_0 + \hat{b}_1 \cdot x_i$$

Residuen

$$\Delta \hat{y}_i = \hat{\epsilon}_i = \hat{y}_i - y_i$$

Bestimmtheitsmaß/Determinationskoeffizient

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} \stackrel{\text{(einfache Regression)}}{=} \hat{\rho}^{2}$$

y-Achsenabschnitt

$$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$$

Steigung

$$\hat{b}_1 = \frac{Cov(X, Y)}{Var(X)}$$

Steigung (standardisiert)

$$\hat{\beta}_1 = \frac{\sigma_X}{\sigma_Y} \hat{b}_1$$

Korrelation ↔ **Steigung**

$$\hat{\rho} = \frac{\sigma_X}{\sigma_Y} \hat{b}_1$$

Effektmaße

Mittelwertdifferenz: Einzelmessung

$$d = \frac{\bar{x} - \mu_0}{\hat{\sigma}}$$

Mittelwertdifferenz: abhängige Stichproben

$$d = \frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma}_{\Delta}} \quad \text{mit}$$

$$\hat{\sigma}_{\Delta} = \sqrt{\frac{1}{n-1} \sum (\Delta x_i - \Delta \bar{x})^2} \text{ oder}$$

$$\hat{\sigma}_{\Delta} = \sqrt{\hat{\sigma}^2 + \hat{\sigma}^2} - 2\hat{Cov}(X - X_i)$$

$$\hat{\sigma}_{\Delta} = \sqrt{\hat{\sigma}_A^2 + \hat{\sigma}_B^2 - 2\hat{Cov}(X_A, X_B)}$$
$$= \sqrt{\hat{\sigma}_A^2 + \hat{\sigma}_B^2 - 2\hat{\rho}\hat{\sigma}_A\hat{\sigma}_B}$$

Mittelwertdifferenz: unabhängige Stichproben

$$d = \frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma}_{\text{pooled}}} \quad \text{mit}$$

$$\hat{\sigma}_{\text{pooled}} = \sqrt{\frac{(n_A - 1)\hat{\sigma}_A^2 + (n_B - 1)\hat{\sigma}_B^2}{n_A + n_B - 2}}$$

Absolute Risikoreduktion

$$ARR = \frac{a}{a+b} - \frac{c}{c+d}$$

		Faktor 1		
		Level 1	Level 2	
Faktor 2	Level 1	a	b	
I antol 2	Level 2	С	d	

Numbers needed to treat

$$NNT = \frac{1}{ARR}$$

Odd's Ratio

$$OR = \frac{a \cdot c}{b \cdot d}$$

Standardfehler

Mittelwert

$$\hat{se} = \frac{\hat{\sigma}}{\sqrt{n}}$$

Mittelwertdifferenz: abhängige Stichproben

$$\hat{se} = \frac{\hat{\sigma}_{\Delta}}{\sqrt{n}} \text{ mit } \hat{\sigma}_{\Delta} = \sqrt{\frac{1}{n-1} \sum (\Delta x_i - \Delta \bar{x})^2}$$

oder
$$\hat{\sigma}_{\Delta} = \sqrt{\hat{\sigma}_A^2 + \hat{\sigma}_B^2 - 2\hat{Cov}(X_A, X_B)}$$

Mittelwertdifferenz: unabhängige Stichproben

<u>Varianzen in A und B ähnlich</u> $(0.5 < \frac{\hat{\sigma}_A}{\hat{\sigma}_B} < 2)$:

$$\hat{se} = \hat{\sigma}_{\text{pooled}} \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}$$
 mit

$$\hat{\sigma}_{\text{pooled}} = \sqrt{\frac{(n_A - 1)\hat{\sigma}_A^2 + (n_B - 1)\hat{\sigma}_B^2}{n_A + n_B - 2}}$$

Varianzen in A und B unähnlich:

$$\hat{se} = \sqrt{\frac{\hat{\sigma}_A^2}{n_A} + \frac{\hat{\sigma}_B^2}{n_B}}$$

Anteile

$$\hat{se} = \frac{\hat{p}(1-\hat{p})}{n}$$

 \hat{p} : Proportion/Anteil (0-1)

Pearson-Korrelation

$$\hat{se} = \sqrt{\frac{1 - \hat{\rho}^2}{n - 2}}$$

Pearson-Korrelation (Fisher z-Transformation)

$$\hat{se} = \frac{1}{\sqrt{n-3}}$$

Steigung (einfache lineare Regression)

$$\hat{se} = \frac{\sigma_Y}{\sigma_X} \sqrt{\frac{1-\hat{\rho}^2}{n-2}}$$

t-Test

Mittelwertdifferenz: Einzelmessung

$$t = \frac{\bar{x} - \mu_0}{\hat{se}} \quad \text{mit} \quad df = n-1$$

Mittelwertdifferenz: abhängige Stichproben

$$t = \frac{\bar{x}_A - \bar{x}_B}{\hat{se}} \quad \text{mit} \quad df = n-1$$

Mittelwertdifferenz: unabhängige Stichproben

$$t = \frac{\bar{x}_A - \bar{x}_B}{\hat{se}} \quad \text{mit} \quad \text{df} = n_A + n_B - 2$$
(ähnliche Varianzen)

bzw. (unähnliche Varianzen)
$$df = \frac{\left(\hat{\sigma}_A^2/n_A + \hat{\sigma}_B^2/n_B\right)^2}{\frac{\left(\hat{\sigma}_A^2/n_A\right)^2}{n_A - 1} + \frac{\left(\hat{\sigma}_B^2/n_B\right)^2}{n_B - 1} }$$

Pearson-Korrelation

$$t = \frac{\hat{\rho}}{\hat{se}} = \hat{\rho}\sqrt{\frac{n-2}{1-\hat{\rho}^2}}$$
 mit df= $n-2$

Steigung (einfache lineare Regression)

$$t = \frac{\hat{b}_1}{\hat{se}} = \hat{\rho} \sqrt{\frac{n-2}{1-\hat{\rho}^2}} \quad \text{mit} \quad \text{df} = n-2$$

Konfidenzintervall

Varianzen bekannt (z-Wert)

$$CI = \hat{\theta} \pm z_{(1-\frac{\alpha}{2})} \cdot se$$

Varianzen unbekannt (t-Wert)

$$CI = \hat{\theta} \pm t_{(1-\frac{\alpha}{2}, df)} \cdot \hat{se}$$

Pearson-Korrelation (Fisher z-Transformation)

$$CI = z_{\hat{\rho}} \pm z_{(1-\frac{\alpha}{2})} \cdot \hat{se}$$

mit
$$z_{\hat{\rho}} = \operatorname{artanh}(\hat{\rho})$$

Standardnormalverteilung (z-Verteilung)

In der Tabelle findet sich die Fläche, die von einem bestimmten z-Wert abgeschnitten wird. Dabei ist die erste Stelle hinter dem Komma des z-Wertes in der linken Spalte zu finden und die zweite Stelle hinter dem Komma in der ersten Zeile. Ein z-Wert von 1,23 schneidet beispielsweise eine Fläche von 0,8907 ab. Ein z-Wert muss die gleiche oder mehr als die Fläche des jeweiligen Signifikanzniveaus abschneiden. Bei einem Alpha-Niveau von 5% muss die Fläche also mindestens 0,95 betragen, bei einem Alpha-Niveau von 1% mindestens 0,99.

	ı									
Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5	0,504	0,508	0,512	0,516	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,591	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,648	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,67	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,695	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,719	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,758	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,791	0,7939	0,7967	0,7995	0,8023	0,8051	0,8079	0,8106	0,8133
0,9	0,8158	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,834	0,8365	0,8398
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,877	0,879	0,881	0,883
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,898	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,937	0,9382	0,9304	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9723	0,9738	0,9744	0,975	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,983	0,9834	0,9838	0,9842	0,9846	0,985	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,989
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,992	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,994	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,996	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,997	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,998	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,999	0,999

t-Verteilung

In der Tabelle finden sich die kritischen *t*-Werte. Das Signifikanzniveau wird durch die Fläche angegeben. Beim einseitigen Testen auf dem 5%-Niveau beträgt die relevante Fläche 0,95; beim zweiseitigen Testen entsprechend 0,975. Der empirische *t*-Wert muss gleich groß oder größer sein als der kritische *t*-Wert aus der Tabelle, um auf dem entsprechenden Niveau signifikant zu sein.

				Fläche			
df	0,8	0,85	0,9	0,95	0,975	0,99	0,995
1	1,377	1,964	3,078	6,314	12,706	31,821	63,657
2	1,001	1,386	1,886	2,92	4,303	6,965	9,925
3	0,978	1,25	1,638	2,353	3,182	4,541	5,841
4	0,941	1,19	1,533	2,132	2,776	3,747	4,604
5	0,92	1,156	1,476	2,015	2,571	3,365	4,032
6	0,906	1,134	1,44	1,943	2,447	3,143	3,707
7	0,896	1,119	1,415	1,895	2,305	2,998	3,5
8	0,889	1,108	1,397	1,86	2,306	2,896	3,355
9	0,883	1,1	1,383	1,833	2,262	2,821	3,25
10	0,879	1,093	1,372	1,813	2,228	2,764	3,169
11	0,876	1,088	1,363	1,796	2,201	2,718	3,106
12	0,873	1,083	1,356	1,782	2,179	2,681	3,055
13	0,87	1,079	1,35	1,771	2,16	2,651	3,012
14	0,868	1,076	1,345	1,761	2,145	2,625	2,977
15	0,866	1,074	1,341	1,753	2,131	2,602	2,947
16	0,865	1,071	1,337	1,746	2,12	2,584	2,921
17	0,863	1,069	1,333	1,74	2,11	2,567	2,898
18	0,862	1,067	1,33	1,734	2,101	2,552	2,878
19	0,861	1,066	1,328	1,729	2,093	2,54	2,861
20	0,86	1,064	1,325	1,725	2,086	2,528	2,845
21	0,859	1,063	1,323	1,721	2,08	2,518	2,831
22	0,858	1,061	1,321	1,717	2,074	2,508	2,819
23	0,858	1,06	1,319	1,714	2,069	2,5	2,807
24	0,857	1,059	1,318	1,711	2,064	2,492	2,797
25	0,856	1,058	1,316	1,708	2,06	2,485	2,787
26	0,856	1,058	1,315	1,706	2,056	2,479	2,779
27	0,855	1,057	1,314	1,703	2,052	2,473	2,771
28	0,855	1,056	1,313	1,701	2,048	2,467	2,763
29	0,854	1,055	1,311	1,699	2,045	2,462	2,756
30	0,854	1,055	1,31	1,697	2,042	2,459	2,75
40	0,851	1,05	1,303	1,684	2,021	2,423	2,705
60	0,848	1,046	1,296	1,671	1,997	2,39	2,86
120	0,845	1,041	1,289	1,658	1,98	2,358	2,617
00	0,843	1,039	1,282	1,645	1,96	2,326	2,576

Transformation von r in Fisher-z-Werte

In der Tabelle finden sich die Korrelationskoeffizienten r, die mit einem bestimmten z-Wert assoziiert sind. Dabei ist die erste Stelle hinter dem Komma des z-Wertes in der linken Spalte zu finden und die zweite Stelle hinter dem Komma in der ersten Zeile. Ein z-Wert von 1,23 ist beispielsweise mit einem r von 0,843 assoziiert.

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,1	0,1	0,11	0,119	0,129	0,139	0,149	0,159	0,168	0,178	0,187
0,2	0,197	0,207	0,216	0,226	0,236	0,245	0,254	0,264	0,273	0,282
0,3	0,291	0,3	0,31	0,319	0,327	0,336	0,345	0,354	0,363	0,371
0,4	0,38	0,389	0,397	0,405	0,414	0,422	0,43	0,438	0,446	0,454
0,5	0,462	0,47	0,478	0,485	0,493	0,5	0,508	0,515	0,523	0,53
0,6	0,537	0,544	0,551	0,558	0,565	0,572	0,578	0,585	0,592	0,598
0,7	0,604	0,611	0,617	0,623	0,629	0,635	0,641	0,647	0,653	0,658
0,8	0,664	0,67	0,675	0,68	0,686	0,691	0,696	0,701	0,706	0,711
0,9	0,716	0,721	0,726	0,731	0,735	0,74	0,744	0,749	0,753	0,757
1	0,762	0,766	0,77	0,774	0,778	0,782	0,786	0,79	0,793	0,797
1,1	0,8	0,801	0,808	0,811	0,814	0,818	0,821	0,824	0,828	0,831
1,2	0,834	0,837	0,84	0,843	0,846	0,848	0,851	0,854	0,856	0,859
1,3	0,862	0,864	0,867	0,869	0,872	0,874	0,876	0,879	0,881	0,883
1,4	0,885	0,888	0,89	0,892	0,894	0,896	0,898	0,9	0,902	0,903
1,5	0,905	0,907	0,909	0,91	0,912	0,914	0,915	0,917	0,919	0,92
1,6	0,922	0,923	0,925	0,926	0,928	0,929	0,93	0,932	0,933	0,934
1,7	0,935	0,937	0,938	0,939	0,94	0,941	0,942	0,944	0,945	0,946
1,8	0,947	0,948	0,949	0,95	0,951	0,952	0,953	0,954	0,954	0,955
1,9	0,956	0,957	0,958	0,959	0,96	0,96	0,961	0,962	0,963	0,963
2	0,964	0,965	0,965	0,966	0,967	0,967	0,968	0,969	0,969	0,97
2,1	0,97	0,971	0,972	0,972	0,973	0,973	0,974	0,974	0,975	0,975
2,2	0,976	0,976	0,977	0,977	0,978	0,978	0,978	0,979	0,979	0,98
2,3	0,98	0,98	0,981	0,981	0,982	0,982	0,982	0,983	0,983	0,983
2,4	0,984	0,984	0,984	0,985	0,985	0,985	0,986	0,986	0,986	0,986
2,5	0,987	0,987	0,987	0,987	0,988	0,988	0,988	0,988	0,989	0,989
2,6	0,989	0,989	0,989	0,99	0,99	0,99	0,99	0,99	0,991	0,991
2,7	0,991	0,991	0,991	0,992	0,992	0,992	0,992	0,992	0,992	0,992
2,8	0,993	0,993	0,993	0,993	0,993	0,993	0,993	0,994	0,994	0,994
2,9	0,994	0,994	0,994	0,994	0,994	0,995	0,995	0,995	0,995	0,995