Difficulties of tensor NN and brief simulations for polynomial time algorithms

Chanwoo Lee, July 8, 2021

1 The difficulty of tensor NN

My original trial of extension from [2] is to estimate the probability tensor by

$$\hat{P}_{ij} := \frac{1}{|\mathcal{N}_i||\mathcal{N}_j|} \sum_{i' \in \mathcal{N}_i, j' \in \mathcal{N}_i} A_{i'j'},$$

where \mathcal{N}_i and \mathcal{N}_j are neighbors of i and j-th nodes respectively which should be defined well. Then estimation error is decomposed as

$$\frac{1}{d^{2}} \sum_{i,j \in [d]} \left\{ \hat{P}_{ij} - P_{ij} \right\}^{2}$$

$$= \frac{1}{d^{2}} \sum_{i,j \in [d]} \left\{ \frac{\sum_{i' \in \mathcal{N}_{i},j' \in \mathcal{N}_{j}} P_{i'j'} - P_{ij}}{|\mathcal{N}_{i}||\mathcal{N}_{j}|} \right\}^{2}$$

$$\lesssim \frac{1}{d^{2}} \left\{ \sum_{\substack{i,j \in [d]}} \left(\frac{\sum_{i' \in \mathcal{N}_{i},j' \in \mathcal{N}_{j}} P_{i'j'} - A_{i'j'}}{|\mathcal{N}_{i}||\mathcal{N}_{j}|} \right)^{2} + \sum_{\substack{i,j \in [d] \text{variance}}} \left(\frac{\sum_{i' \in \mathcal{N}_{i},j' \in \mathcal{N}_{j}} A_{i'j'} - A_{ij}}{|\mathcal{N}_{i}||\mathcal{N}_{j}|} \right)^{2} \right\}$$

$$\lesssim \underbrace{\left(\frac{1}{h^{2}}\right)}_{\text{variance}} + \underbrace{\sum_{\substack{i,j \in [d]}} \left(\frac{\sum_{i' \in \mathcal{N}_{i},j' \in \mathcal{N}_{j}} A_{i'j'} - A_{ij}}{|\mathcal{N}_{i}||\mathcal{N}_{j}|} \right)^{2}}_{\text{block error}}, \tag{1}$$

where $|\mathcal{N}_i| = \mathcal{O}(h)$ and the the variance term is bounded by Hoeffding's inequality. However, to bound the block error, we need several techniques that has some difficulties.

Assumption 1 (Pieacewise Lipchitz graphon family). There exists an integer $K \ge 1$ and a sequence $0 \le x_0 < x_1 < \cdots < x_K = 1$, satisfying $\min_k |I_k|/\sqrt{\log d/d} \to \infty$ and f is a bi-Lipchitz function on $I_k \times I_\ell$ for all $1 \le k, \ell, \le K$ where $I_k := [x_{k-1}, x_k]$

For any $\xi \in [0,1]$, let $I(\xi)$ denote the I_k that contains ξ . Define $s_i(\Delta) = [\xi_i - \Delta, \xi_i + \Delta] \cap I(\xi_i)$.

Lemma 1. Let $\{\xi_i\}_{i\in[d]}$ are random variables i.i.d. drawn from U[0,1]. Define $\Delta_d = \{c_1 + (\tilde{c}_1 + 4)^{1/2}\sqrt{\frac{\log d}{d}} < \frac{\min_k |I_k|}{2}$, then

$$\mathbb{P}\left(\min_{i} \frac{\{i' \neq i : \xi_{i'} \in S_{i}(\Delta_{d})\}}{d-1} \ge c_{1} \sqrt{\frac{\log d}{d}}\right) \le 1 - 2d^{-\tilde{c}_{1}/4}$$

We can think of $S_i(\Delta)$ as true neighbor of ξ_i . Lemma 1 makes sure that the proportion of elements in $\tilde{S}_i(\Delta_d) := \{i' \neq i : \xi_{i'} \in S_i(\Delta_d)\}$, a neighbor of ξ , is greater than $\sqrt{\frac{\log d}{d}}$.

Notice that for true $\tilde{S}_i(\Delta)$, we are able to bound the block error

$$\sum_{i,j\in[d]} \left(\frac{\sum_{i'\in S_i(\Delta_d),j'\in S_j(\Delta_d)} A_{i'j'} - A_{ij}}{|S_i(\Delta_d)||S_j(\Delta_d)|} \right)^2$$

by the following decomposition

$$|A_{ij} - A_{i'j'}| \le |P_{ij} - P_{i'j'}| + |A_{i'j'} - P_{i'j'}| + |A_{ij} - P_{ij}|, \tag{2}$$

where the last two term is easily bounded by Hoeffding's inequality. For the first term, we can use the Lipchitz assumption as

$$|P_{ij} - P_{i'j'}| \le |f(\xi_i, \xi_j) - f(\xi_i, \xi_{j'})| + |f(\xi_i, \xi_{j'}) - f(\xi_{i'}, \xi_{j'})| \le 2L\Delta_d, \tag{3}$$

where the last inequality is from Lipchitz continuity and definition of $\tilde{S}_i(\Delta_d)$.

If we find neighbors $(\mathcal{N}_1, \dots, \mathcal{N}_d)$ whose the number of elements is the same order of $|S_i(\Delta_d)|$ (Notice $|\tilde{S}_i(\Delta_d) \times \tilde{S}_j(\Delta_d)| \approx d \log d$) and satisfies,

$$\sum_{i,j\in[d]} \left(\sum_{i'\in\mathcal{N}_i,j'\in\mathcal{N}_j} |A_{ij} - A_{i'j'}| \right)^2 \le \sum_{i,j\in[d]} \left(\sum_{i'\in\tilde{S}_i(\Delta_d),j'\in\tilde{S}_j(\Delta_d)} |A_{ij} - A_{i'j'}| \right)^2, \tag{4}$$

Then by the upper bound of block error with true neighbors, we are able to bound the (1).

To summarize, the main idea is to find neighbors $(\mathcal{N}_1, \ldots, \mathcal{N}_d)$ that has small block error that can be bounded by the block error with true neighbors.

Task: How can we estimate neighbors $\{\mathcal{N}_i\}_{i=1}^d$ that satisfies (4)? I found it not an easy task.

Remark 1 (Previous approach). [2] only focuses on row-wise distance because (4) becomes

$$\sum_{i,j\in[d]} \left(\sum_{i'\in\mathcal{N}_i} |A_{ij} - A_{i'j}| \right)^2 = \sum_{i\in[d]} \sum_{i'\in\mathcal{N}_i} ||A_{i\cdot} - A_{i'\cdot}||_F^2 \le \underbrace{\sum_{i\in[d]} \sum_{i'\in S_i(\Delta_d)} ||A_{i\cdot} - A_{i'\cdot}||_F^2}_{(*)},$$

where the last inequality is from the definition of $\mathcal{N}_i := \{i' \neq i : ||A_{i\cdot} - A_{i'\cdot}||_F^2 \leq q(h/d)\}$ and $|\tilde{S}_i(\Delta_d)| \approx h$. Notice (*) is easily bounded based on the decompositions similar to (2) and (3).

Remark 2 (Tensor generalization based on [2]). I found a recent paper [1] which extends NN method to tensor case. This paper unfolds tensors to matrices and follows the exactly the same row-wise distance approach to estimate the probability tensor.

2 Simulations for polynomial time algorithms

I have performed brief simulations for polynomial time algorithms. I compare three different algorithms: SAS is smooth and sorting algorithm, Spectral is truncated SVD algorithm, and SBM is stochastic block approximation algorithm based on functions_sbm. Detailed simulation setting is as follows

Figure 1: Mean squared error of probability tensor estimation depending on tensor dimension d for three different methods: SAS,SBM, and Spectral.

1. (Smooth graphon model)

$$A_{ijk} = \text{Bernoulli}(\Theta_{ijk}), \quad \text{ and } \Theta_{ijk} = \frac{1}{1 + \exp(-(\xi_i^2 + \xi_j^2 + \xi_k^2))},$$

where $\xi_{\ell} \stackrel{\text{i.i.d}}{\sim} U[0,1]$ for all $\ell \in [d]$.

2. (Piece-wise constant graphon model)

$$A_{ijk} = \text{Bernoulli}(\Theta_{ijk}), \quad \text{ and } \Theta_{ijk} = Q_{z^{-1}(i,j,k)},$$

, where $Q \in [0,1]^{K \times K \times K}$ and entries of Q are i.i.d. drawn from U[0,1]. In simulations, I set K = d/2 for $d = \{10, 20, \dots, 100\}$.

Since SAS and SBM require the number of group k, I set $k = \lceil d^{\frac{m}{m+2}} \rceil$.

Figure 1 shows the performance of each algorithm according to two different settings for $d \in \{10, 20, \dots, 100\}$. The results are consistent regardless of simulation settings: smooth graphon and piece-wise smooth graphon. SBM performs the best while SAS shows the worst performance across most of the scenarios. In addition, I have checked the computing time under the smooth graphon model simulation when d = 100. It shows that SAS and Spectral algorithms are much faster than SBM as one can see in the following table.

Method	SAS	Spectral	SBM
Computing time	$0.609~{ m sec}$	$0.371~{\rm sec}$	$4.545 \sec$

References

[1] Yihua Li, Devavrat Shah, Dogyoon Song, and Christina Lee Yu. Nearest neighbors for matrix estimation interpreted as blind regression for latent variable model. *IEEE Transactions on Information Theory*, 66(3):1760–1784, 2019.

[2] Yuan Zhang, Elizaveta Levina, and Ji Zhu. Estimating network edge probabilities by neighbor-

hood smoothing. arXiv preprint arXiv:1509.08588, 2015.