作业1

迷宫	算法	用时/s	展开节点数	路径代价	分数
tinyMaze	dfs	0.0	15	8	502.0
	bfs	0.0	16	8	502.0
	A*	0.0	14	8	502.0
smallMaze	dfs	0.0	93	37	473.0
	bfs	0.0	94	19	491.0
	A*	0.0	53	19	491.0
mediumMaze	dfs	0.0	269	246	264.0
	bfs	0.0	275	68	442.0
	A*	0.0	224	68	442.0
bigMaze	dfs	0.0	466	210	300.0
	bfs	0.0	620	210	300.0
	A*	0.0	549	210	300.0

作业2

假设当前位置为 P_0 ,当前食物位置的集合为 F , D(A,B) 是从 A 点到 B 点的最短路径的长度,则启发函数定义为:

$$h(P_0) = \max_{F_i \in F} D(P_0, F_i)$$

显然 $h(P_0)\geq 0$ 。设 $F_m=rgmax\ h(P_0)$,即离吃豆人当前位置最远的食物位置。首先,吃豆人必须至少到达 F_m 处才有可能吃完所有豆子(结束),由于中间还要吃其他豆子,故显然 $h(P_0)\leq h^*(P_0)$,即 $h(P_0)$ 是可采纳的。

设 P_0' 是除 P_0 和 F_m 之外的另外一点, $F_m = \operatorname{argmax} h(P_0')$ 。

由于 $D(P_0,F_m)$ 是最短路径,故 $D(P_0,F_m) \leq D(P_0,P_0') + D(P_0',F_m)$ 。而 F_m' 是距离 P_0' 最远的食物,故 $D(P_0',F_m) \leq D(P_0',F_m')$ 。

故 $D(P_0,F_m) \leq D(P_0,P_0') + D(P_0',F_m')$,即 $h(P_0) \leq D(P_0,P_0') + h(P_0')$,即 $h(P_0)$ 具有一致性。

作业3

迷宫见 myMaze.lay 文件, 录屏见 myMaze.avi 文件。

P.S. 算法加入了一个 trick:当前所有步骤在 depth 范围内效果相同时,由于算法的模式是固定的,pacman 可能会呆在原地或反复徘徊,于是改为让 pacman 随机选择一个方向。