Ножиці та скотч (scissors)

День 2

Мова Українська Обмеження по часу: 1 секунда Обмеження по пам'яті: 1024 мегабайт

Дано шматок паперу у формі простого багатокутника S. Ваше завдання полягає у тому, щоб перетворити його на простий багатокутник T, що має ту ж саму площу, що і S.

Можна використовувати два інструменти: ножиці та скотч. Ножиці можуть бути використані для розрізання будь-якого багатокутника на менші багатокутні частини. Скотч може використовуватися для об'єднання менших частин у великі багатокутники. Кожен інструмент можна використовувати кілька разів, у будьякому порядку.

Багатокутники задані у вхідних даних мають цілочисельні координати, але ви можете робити форми з **не цілочисельними координатами** у вашому виводі.

Далі йде формальне визначення завдання.

Форма $Q = (Q_0, \dots, Q_{n-1})$ являє собою послідовність з трьох або більше точок на площині так, що:

- Замкнена ламана $Q_0Q_1Q_2\dots Q_{n-1}Q_0$ ніколи не доторкається та не перетинає саму себе, тому формує з себе контур замкненого багатокутника.
- Ламана рухається по контуру проти годинникової стрілки.

Багатокутник, контур якого — форма Q буде позначено P(Q).

Дві форми називаються **еквівалентними**, якщо одну можна перекласти та/або повернути так, щоб вона була рівна другій.

Зауважте, що відображення фігур не дозволяється. Також зауважте, що має значення порядок обходу вершин: форма $(Q_1, \ldots, Q_{n-1}, Q_0)$ не обов'язково еквівалентна формі (Q_0, \ldots, Q_{n-1}) .

На малюнку зліва: форми U та V еквівалентні. Форма W не є еквівалентною до них тому, що точки W задано в іншому порядку. Незалежно від порядку точок, четверта форма не еквівалентна попереднім, так як не можна перевертати форму.

У вхідних та вихідних даних форма з n точок задана у одному рядку з 2n+1 чисел, розділених пробілами. Першим з цих чисел ϵ число n. Інші числа — це координати точок: $Q_{0,x}, Q_{0,y}, Q_{1,x}, \dots$

Форми мають **ідентифікаційні номери** (IDs). Задана форма S має ID 0, форми які ви оброблюєте у ваших рішеннях мають ID $1, 2, 3, \ldots, y$ порядку, в якому вони утворюються.

Форми B_1, \ldots, B_k формують **розділення** форми A, якщо:

- Об'єднання усіх $P(B_i)$ рівне P(A).
- Для кожного $i \neq j$, ділянка перетину $P(B_i)$ та $P(B_i)$ є порожньою.

Операція **ножиці** видаляє одну існуючу форму A та додає одну, або декілька форм B_1, \ldots, B_k , що формують розділення A.

×<< \$|\$>>×<< \$|\$>>×<< \$|\$</p>

На малюнку зліва: форму A (квадрат) розділено на форми B_1 , B_2 , B_3 (три три-кутники). Один правильний спосіб описати один з B_i це «З 3 1 6 1 5.1 4».

Операція **скотч** видаляє одну, або декілька існуючих форм A_1, \ldots, A_k та додає нову форму B. Для виконання цієї операції, спочатку потрібно вказати форми C_1, \ldots, C_k та тільки потім одну форму B. Ці форми повинні задовольняти наступним умовам:

- Для кожного i, форма C_i еквівалентна формі A_i .
- Форми C_1, \ldots, C_k формують розділення B.

Тобто ви вибираєте форму B і показуєте, як рухати кожну з існуючих A_i до правильної позиції C_i всередині B. Зверніть увагу, що тільки форма B отримує нове ID , а форми C_i не отримують.

Вхідні дані

Перший рядок містить початкову форму S.

Другий рядок містить необхідну форму T.

Кожна форма має від 3 до 10 точок, включно. Обидві форми подаються у форматі, вказаному вище.

Всі координати вхідних даних є цілими числами між -10^6 та 10^6 , включно.

У кожній формі жодні три точки не утворюють кут, менший за 3 градуси. (Це включає в себе не послідовні точки і має на увазі, що жодні три точки не є колінеарними.)

Багатокутники P(S) та P(T) мають однакову площу.

Вихідні дані

Коли ви використовуєте операцію ножиці, виведіть набір рядків у вигляді:

scissors
id(A) k
B_1
B_2
...
B_k

Де id(A) — це ID форми, яку ви хочете видалити, k — це кількість нових форм, які ви хочете отримати, та B_1, \ldots, B_k — це ці форми.

Кожен раз, коли ви використовуєте операцію скотч, виведіть набір рядків у вигляді:

```
tape
k id(A_1) ... id(A_k)
C_1
C_2
...
C_k
B
```

Де k — це кількість форм, які ви хочете склеїти разом, $id(A_1), \ldots, id(A_k)$ — це їх ID, C_1, \ldots, C_k є еквівалентими формами, що показують їх позиції всередині B, та B є кінцевою формою отриманою склеюванням їх разом.

Рекомендується виводити координати точок не менше, ніж з 10 знаками після коми.

Вихідні дані повинні задовольняти наступним умовам:

- Всі координати точок на виході повинні бути між -10^7 та 10^7 , включно.
- Кожна форма на виході повинна мати не більше 100 точок.
- У кожній операції кількість форм k має бути між 1 та 100, включно.
- Кількість операцій не повинна перевищувати 2000.
- Загальна кількість точок у всіх формах на виході не повинна перевищувати 20000.
- \bullet В кінці має бути одна форма (яка не була знищеною), і ця форма повинна бути еквівалентна T.
- Всі операції мають вважатись правильними відповідно до чекера. Рішення з малою точністю приймаються. (Два числа вважаються рівними, якщо їхня абсолютна або відносна похибка не перевищує 10^{-3} .)

Handouts

- Інструкції, як виводити дійсні числа, доступні в додатках до вашої мови програмування.
- Ви можете завантажити бінарний файл scissors-checker, можете зробити його виконуваним (chmod a+x scissors-checker) та використовувати його локально для перевірки правильності вашої відповіді (./scissors-checker input your_output).

Оцінювання

Форма називається **гарним прямокутником**, якщо вона має форму $((0,0),\ (x,0),\ (x,y),\ (0,y))$ для деяких додатних цілих x та y.

Форма називається **гарним квадратом**, якщо додатково x = y.

 Φ орма A називається **строго опуклою**, якщо всі внутрішні кути багатокутника P(A) менше 180 градусів.

Підзадача 1 (5 балів): S та T гарні прямокутники. Всі координати всіх точок є цілими числами від 0 до 10 включно

Підзадача 2 (13 балів): S є гарним прямокутником з x > y, та T це гарний квадрат

Підзадача 3 (12 балів): S та T це гарні прямокутники

Підзадача 4 (14 балів): S це трикутник та T є гарним квадратом

Підзадача 5 (10 балів): S та T є трикутниками

Підзадача 6 (16 балів): S є строго опуклим багатокутником та T є гарним прямокутником

Підзадача 7 (11 балів): T є гарним прямокутником

Підзадача 8 (19 балів): ніяких додаткових обмежень

Приклади

standard input	standard output
6 0 0 6 0 6 4 5 4 5 9 0 9	scissors
4 0 0 7 0 7 7 0 7	0 5
	3 0 0 3 0 3 4
	3 3 4 0 4 0 0
	3 3 0 6 0 6 4
	3 6 4 3 4 3 0
	4 0 4 5 4 5 9 0 9
	tape
	5 1 2 5 3 4
	3 0 3 0 0 4 0
	3 4 0 7 0 7 4
	4 0 3 4 0 7 4 3 7
	3 7 4 7 7 3 7
	3 3 7 0 7 0 3
	400707707
4 0 0 3 0 3 3 0 3	scissors
4 7 -1 10 -1 11 2 8 2	0 2
	3 0 0 1 3 0 3
	4 1 3 0 0 3 0 3 3
	tape
	2 1 2
	3 110 -1 111 2 110 2
	4 108 2 107 -1 110 -1 110 2
	4 107 -1 110 -1 111 2 108 2

standard input	standard output
400909101	scissors
4 0 0 3 0 3 3 0 3	0 2
	4 1.47000000000 0 9 0 9 1 1.470000000 1
	4 0 0 1.470000000 0 1.470000000 1 0 1
	scissors
	1 2
	4 1.470000000 0 6 0 6 1 1.470000000 1
	4 9 0 9 1 6 1 6 0
	tape
	2 4 3
	4 3 2 3 1 6 1 6 2
	4 6 1 1.470000000 1 1.470000000 0 6 0
	6 1.470000000 0 6 0 6 2 3 2 3 1 1.47 1
	scissors
	5 4
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 3 0 4 0 4 2 3 2
	4 4 2 4 0 5 0 5 2
	4 5 0 6 0 6 2 5 2
	tape
	5 2 6 7 8 9
	4 0 0 1.470000000 0 1.470000000 1 0 1
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 0 2 0 1 2 1 2 2
	4 0 2 2 2 2 3 0 3
	4 3 3 2 3 2 1 3 1
	4 0 0 3 0 3 3 0 3

Примітка

Малюнок зліва показує приклад першого тесту. Зліва розташований вихідний малюнок після використання ножиць, праворуч — відповідний C_i коли ми склеюємо ці частини разом.

У другому прикладі вихідних даних зауважте, що достатньо, якщо кінцева форма еквівалентна потрібній, вони не обов'язково повинні бути ідентичними.

На малюнку нижче показано три етапи третього прикладу. По-перше, ми розрізали вхідний прямокутник на два менші прямокутники. Далі ми розрізали більший з цих двох прямокутників на два менших. Стан після цих розрізів показаний у верхній лівій частині малюнка.

Продовжуючи, ми склеюємо два нових прямокутника разом, щоб сформувати шестигранний багатокутник, а потім розрізаємо цей багатокутник на три прямокутники 2 на 1 та один меньший прямокутник. Це показано в нижній лівій частині малюнка.

Нарешті, ми беремо прямокутник, який ми маємо ще з першого кроку та чотири нових прямокутники, і збираємо їх у бажаний квадрат 3 на 3.

