Aluno: Pedro Passareli Bozzo BA3148921

Lista de exercícios 1.6 – "Arquitetura de Sistemas Operacionais"

1. Como seria utilizar um computador sem um sistema operacional? Quais são suas duas principais funções?

R: Seria extremamente complexo e exigiria um conhecimento profundo do usuário para realizar qualquer tarefa computacional. As duas principais funções de um sistema operaiconal é atuar como uma máquina de extendida (ou virtual) e atuar como um gerente de recursos.

2. Quais as principais dificuldades que um programador teria no desenvolvimento de uma aplicação em um ambiente sem um sistema operacional?

R: precisaria lidar diretamente com o hardware se comunicando diretamente com cada componente do computador em linguagem de máquina, gerenciando a memória, controlando a tela e interagindo com cada periférico, tornando o desenvolvimento lento, propenso a erros e não portável para outros computadores.

3. Explique o conceito de máquina virtual. Qual a grande vantagem em utilizar este conceito?

R: Máquina virtual é uma camada de software que esconde os detalhes e a complexidade do hardware, criando uma interface mais amigável e fácil de usar. A vantagem é deixar o uso de um computador intuitivo e facil para qualquer um usar.

4. Defina o conceito de uma máquina de camadas.

R: É um modelo de so que é organizado em diferentes camadas com "hierarquia". Cada camada oferece um conjunto de funções e serviços para a camada de cima e utiliza os serviços da camada de baixo. Isso organiza o sistema, facilitando seu desenvolvimento e manutenção.

5. Quais os tipos de sistemas operacionais existentes?

R: Monotarefa, Multitarefa, Sistema com multiprocessadores, Sistemas distribuidos e Sistemas em tempo real.

6. Por que dizemos que existe uma subutilização de recursos em sistemas monoprogamáveis??

R: porque enquanto um programa espera por uma operação lenta, o processador fica ocioso, sem fazer nada. Em um sistema monoprogramável, esse tempo de espera do processador é perdido.

7. Defina sistemas multiprogramáveis e tempo compartilhado (time-sharing).

R: O multiprogramável mantêm vários programas na memória principal ao mesmo tempo, e o de time-sharing é uma evolução do de multiprogramação pois permite que vários usuários interagirem com o sistema ao memo tempo.

8. Qual a principal diferença entre sistemas fortemente acoplados e fracamente acoplados?.

- R: O fortemente acoplado tem uma programação melhor e interage. melhor com o sistema pois os processadores compartilham a mesma memória. Os fracamente acoplados cada um possui a própria memória.
- 9. Defina sistemas operacionais de rede e sistemas operacionais distribuídos.
- R. O SO de rede cada computador tem seu próprio sitema operacional e compartilham os arquivos entre sí. Já os SO distribuidos os computadores são interconectados, sendo um sistema único

10. Qual o objetivo principal de um sistema de tempo real? Cite um exemplo de aplicação.

R. Garantir que as tarefas sejam executadas e finalizadas dentro de um prazo máximo e previsível. Exemplos são os controle de voo de um avião, sistemas de freios ABS em carros ou monitoramento de pacientes em uma UTI.

11. Quais as principais características de um sistema operacional para aplicações de multimídia?

R: Aguentar grande volume de dados e arquivos, como áudios e vídeos, e garantir a entrega desses dados em delay ou travamentos.

12. O que é um sistema operacional embarcado (embedded)? Cite dois exemplos?

R: É um sistema operacional com recursos limitados e projetado para executar uma função específica dentro de um dispositivo que não é um computador normal, como o SO de um microondas, TV digital ou injeção eletrônica de um carro.

13. Para que servem as system calls (chamadas ao sistema)?

R: Servem como a interface entre uma aplicação e o núcleo (kernel) do sistema operacional.

14. Descreva o que é a arquitetura monolítica.

R: é quando o sistema operacional é implementado como um único programa grande e complexo, onde todos os seus componentes (gerência de processos, memória, arquivos, etc.) rodam no mesmo espaço de endereçamento (modo kernel), sem uma separação clara entre eles.

15. Qual a principal vantagem da arquitetura em camadas?

R: A principal vantagem é a modularidade. A organização em camadas simplifica o projeto, a implementação e a manutenção do sistema, pois cada camada pode ser desenvolvida e testada de forma independente.

16. O que é o conceito de micronúcleo (microkernel)?

R: É uma abordagem onde o núcleo (kernel) do sistema operacional é o menor e mais simples possível, contendo apenas as funções mais básicas, como comunicação entre processos e gerenciamento de baixo nível do processador. Outros serviços, como sistema de arquivos e gerência de memória, rodam como processos comuns em modo usuário.

17. Quais as principais vantagens da arquitetura micronúcleo?

R: As principais vantagens são a confiabilidade e a flexibilidade. Como a maioria dos serviços roda fora do núcleo, uma falha em um deles (como no sistema de arquivos) não derruba o sistema inteiro.

18. Qual a principal desvantagem da arquitetura micronúcleo??

R: o desempenho pois a comunicação entre os processos de usuário e o micronúcleo exige mais trocas de contexto, o que gera uma sobrecarga e pode tornar o sistema mais lento em comparação com a arquitetura monolítica.

19. Descreva o processo de inicialização de um computador (boot).

R: Ao ligar uma máquina, se inicia um firmware inicial chamada BIOS, realizando testes iniciais em todos os componentes. Após isso é localizado o sistema operacional no dispositivo de armazenamento principal, dessa forma é carregado o kernel do sistema operacional para a memória principal e transfere todo o controle para ele.

20. O que é o BIOS?

R: A sigla BIOS significa "Basic Imput/Output System", é um firmware armazenado em um chip na placa-mãe responsável por inicializar o hardware do computador durante o processo de boot e fornecer serviços básicos de entrada e saída para o sistema operacional.