

ТРИ СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Методические указания к выполнению лабораторных работ по курсу «Электроника и схемотехника»

Москва 2019

Лабораторная работа №2. «ТРИ СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА»

<u>Цель работы</u> – изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

Теоретическая часть

1. НАЗНАЧЕНИЕ И ПАРАМЕТРЫ ЭЛЕКТРОННЫХ УСИЛИТЕЛЕЙ

Электронный усилитель – устройство, увеличивающее мощность (напряжение, ток) входного сигнала за счет энергии внешнего источника питания посредством усилительных элементов (полупроводниковых приборов, электронных ламп и др.).

На рис. 1, a представлена структурная схема включения усилителя в цепь усиления электрического сигнала, где I – источник входного сигнала; 2 – усилитель; 3 – источник энергии; 4 – нагрузка. В качестве источников питания усилителя используют стабильные источники энергии постоянного тока. Источник входного сигнала (датчик) формирует изменяющееся во времени напряжение u_{ex} (ток i_{ex}) различной амплитуды, частоты и формы. Нагрузка усилителя – устройство, которое можно представить в виде линейного пассивного двухполюсника. Сам усилитель с парой входных и парой выходных зажимов иногда представляют в виде нелинейного четырехполюсника вследствие нелинейности характеристик входящих в него элементов.

Условное обозначение усилителей на схемах изображено на рис. 1, δ . Напряжение входа $u_{\delta x}$ и напряжение выхода $u_{\delta b x}$ измеряют относительно общего вывода. При упрощенном изображении усилителя в виде прямоугольника, на нем изображают только вход и выход (рис. 1, δ), опуская выводы напряжения питания U_n и общий вывод.

Важнейшим параметром усилителя является коэффициент усиления по мощности, равный отношению изменения мощности выходного сигнала к изменению мощности входного сигнала, т. е. $K_p = \Delta P_{\rm cbix}/\Delta P_{\rm cx}$. Помимо коэффициента усиления по мощности вводят также коэффициент усиления по напряжению $K_u = \Delta U_{\rm cbix}/\Delta U_{\rm cx}$ и коэффициент усиления по току $K_i = \Delta I_{\rm cbix}/\Delta I_{\rm cx}$. Тогда коэффициент $K_p = K_u K_i$.

Важнейшими характеристиками усилителя являются амплитудная и частотные. Амплитудная характеристика (рис. 2, a) — это зависимость амплитуды (или действующего значения) выходного напряжения от амплитуды (или действующего значения) входного синусоидального напряжения, т. е. $U_{6blx} = f(U_{6x})$, где $u_{6x} = U_m \sin \omega t$, $U_m = var$; $\omega = const$.

Пунктиром показана амплитудная характеристика идеального усилителя. Отклонение реальной характеристики от идеальной объясняется наличием шумов и нелинейностями характеристик усилительных элементов при слабых и больших входных сигналах.

Динамическим диапазоном усилителя в децибелах называют отношение максимального значения входного напряжения к минимальному на линейном участке ab амплитудной характеристики (см. рис. 2, a):

$$D=20\lg \frac{U_{ex.max}}{U_{ex.min}}$$
.

Коэффициент усиления по напряжению на этом участке

$$K_{u} = \frac{U_{\text{вых.max}} - U_{\text{вых.min}}}{U_{\text{ex.max}} - U_{\text{ex.min}}} = \frac{\Delta U_{\text{вых}}}{\Delta U_{\text{ex}}}.$$

Амплитудно-частотная характеристика (AЧX) усилителя — это зависимость коэффициента усиления, например, по напряжению K_u от частоты f входного сигнала, т. е. $K_u(f)$ при $u_{ex} = U_m \sin \omega t$, $U_m = const$; $\omega = var$.

Обычно АЧХ строят на двойной логарифмической сетке: по оси ординат откладывают значения K_u в децибелах, а по оси абсцисс — частоты в логарифмическом масштабе, однако около делений записывают значения частот без логарифма (рис. 2, δ).

Полоса пропускания усилителя определяет диапазон частот Δf (или $\Delta \omega$), в пределах которого коэффициент усиления K_u (на средней частоте) не снижается ниже $1/\sqrt{2} \approx 0,707(3\,\mathrm{дБ})$ своего уровня, т. е. $\Delta f = f_{\ell} - f_{\ell}$, где f_{ℓ} и f_{ℓ} — верхняя и нижняя частоты среза AЧX усилителя.

 Φ азочастотная характеристика $\varphi(f)$ — это зависимость угла сдвига фаз φ между выходным и входным напряжениями усилителя от частоты (см. рис. 2, δ). Фазовые искажения в усилителе отсутствуют, когда фазовый сдвиг φ линейно зависит от частоты.

Входное и выходное сопротивления усилителя:

$$\underline{Z}_{ex} = \underline{U}_{ex} / \underline{I}_{ex} = R_{ex} + jX_{ex}; \ \underline{Z}_{eblx} = \underline{U}_{eblx} / \underline{I}_{eblx} = R_{eblx} + jX_{eblx}.$$

При сопротивлении нагрузки R_H выходная мощность $P_{eblx} = R_H I_{eblx}^2$.

2. Усилитель с общим эмиттером (ОЭ)

Одним из наиболее распространённых усилителей на биполярных транзисторах является усилитель с *общим эмиттером* (ОЭ). В этом усилителе эмиттер является общим электродом для входной и выходной цепей (рис. 3, a). Входное напряжение u_{6x} от источника сигнала E_c с внутренним сопротивлением R_c подаётся на усиливаемый каскад на биполярном транзисторе VT через конденсатор связи C_1 , предотвращающий прохождение постоянной составляющей тока от источника сигнала. Усиленное выходное напряжение подаётся на нагрузку R_H через разделительный конденсатор C_2 , т. е. подаётся только переменная составляющая напряжения u_{6bix} .

В усилителе, кроме источника переменного сигнала, действует источник напряжения с ЭДС E_n (обычно напряжение $U_n = 10...30$ В) с внутренним сопротивлением R_{6m} . Сопротивление резистора R_K выбирают, исходя из требований усиления входных сигналов и ограничения тока коллектора I_K транзистора VT. Обычно сопротивление R_K составляет 0,2...5 кОм для транзисторов малой мощности и порядка 100 Ом для транзисторов средней мощности. Резисторы R_{E1} и R_{E2} делителя напряжения питания U_n предназначены для установки тока базы I_E транзистора (по постоянному току), соответственно рабочей точки (точки покоя) на линии нагрузки.

С помощью резистора R_{\Im} создаётся обратная отрицательная связь усилителя по постоянному току, обеспечивающая температурную стабилизацию его режима усиления. Так, при увеличении температуры возрастают постоянные составляющие токов коллектора I_K и эмиттера I_{\Im} и падение напряжения $R_{\Im}I_{\Im}$. В результате, напряжение $U_{E\Im}$ уменьшается, что вызывает уменьшение тока базы I_E , и, следовательно, тока I_K , стабилизируя его.

Конденсатор $C_{\mathfrak{I}}$ большой ёмкости (десятки микрофарад) шунтирует сопротивление резистора $R_{\mathfrak{I}}$ по переменному току, что исключает ослабление усиливаемого сигнала по переменному току цепью обратной связи.

Для удобства анализа работы усилителя отдельно рассматривают его схемы замещения по постоянному (рис. 3, δ) и переменному току (рис. 5). В режиме работы усилителя по *постоянному току* для получения наименьших нелинейных

искажений усиливаемого сигнала рабочую точку a (рис. 4) выбирают посередине рабочего участка bc линии нагрузки по постоянному току, описываемой уравнением

$$I_{Kn} = (U_n - U_{Kn}) / R_K$$
, где $U_{Kn} = U_{K\ni} + R_{\ni} I_{\ni n}$.

Линию нагрузки строят следующим образом. Из приведенного уравнения следует, что при $I_{Kn}=0,\ U_{Kn}=U_n$, а при $U_{Kn}=0,\ I_{Kmax}=U_n/R_K$.

Через две найденные точки проводят прямую (нагрузочную) линию. Задав ток базы в режиме покоя I_{En} , находят на пересечении линии нагрузки по постоянному току с выходной характеристикой транзистора при $I_E = I_{En}$ точку покоя $a(U_{Kn}, I_{Kn})$.

Рис. 5

При подаче на вход усилителя *переменного напряжения* u_{gx} происходит изменение тока базы $i_{\mathcal{B}}$, тока коллектора $i_{\mathcal{K}}$ и напряжения на коллекторе $u_{\mathcal{K}} = U_n - R_{\mathcal{K}} i_{\mathcal{K}}$ (см. рис. 4). Амплитуда переменного коллекторного тока $I_{m\mathcal{K}}$ примерно в h_{21} раз больше амплитуды тока базы $I_{m\mathcal{B}}$, а амплитуда коллекторного напряжения $U_{m\mathcal{K}}$ во много раз больше амплитуды входного напряжения. Таким образом, в схеме усилителя с ОЭ усиливается ток и напряжение входного сигнала.

Пользуясь графиками, изображенными на рис. 4, нетрудно определить входное сопротивление и коэффициенты усиления каскада.

При этом положительному полупериоду входного напряжения u_{ex} соответствует отрицательный полупериод выходного напряжения $u_K \approx u_{ebix}$. Иначе говоря, между входным и выходным напряжениями существует сдвиг фаз, равный 180°, т. е. схема усилителя с ОЭ является инвертирующим устройством, усиливающим и изменяющим фазу входного напряжения на 180°.

Обычно рассмотренный тип усилительного каскада работает в режиме усиления слабых сигналов (постоянные составляющие тока базы и коллектора существенно превосходят аналогичные переменные составляющие). Эти особенности позволяют использовать аналитические методы расчета параметров усилительного каскада на низких частотах по известным h-параметрам транзистора (рис. 5, δ), полагая, что транзистор работает в линейном режиме. При этом сигнал, поданный на вход усилителя, практически не искажается (по форме) на его выходе.

Наличие в усилителе ёмкостей C_1 и C_2 (см. рис. 3, a) приводит к частотным искажениям усиливаемых сигналов в области нижних частот: с уменьшением частоты входного сигнала увеличивается сопротивление конденсатора $X_{C1} = 1/\omega C_1$, падение напряжения u_{C1} на нем, следовательно, снижается входное u_{6x} и выходное u_{6bx} напряжения. Это приводит к уменьшению коэффициента усиления K_u с уменьшением частоты (см. рис. 2, δ), а наличие в усилителе междуэлектродных ёмкостей транзистора и монтажных ёмкостей приводит к возникновению частотных искажений усиливаемых сигналов в области высоких частот. С учётом ёмкости C_K коллекторного p-n-перехода, условно включаемой между коллектором и базой, входное сопротивление каскада в области верхних частот

$$\underline{Z}_{ex} = \frac{\underline{U}_{ex}}{\underline{I}_{ex}} = \frac{R_{B1} \cdot h_{11}}{R_{B1} + h_{11}(1 + j\omega C_K R_{B1})}.$$

Входное сопротивление усилительного каскада на биполярном транзисторе с ОЭ обычно имеет значение порядка нескольких сотен ом. Выходное сопротивление обычно на порядок больше входного.

Реальный коэффициент усиления по напряжению K_u всегда меньше коэффициента усиления ненагруженного усилителя ($R_u >> R_K$). Это различие тем заметнее, чем больше выходное сопротивление усилителя и меньше сопротивление нагрузки R_u . На практике реальный коэффициент усиления каскада K_u может достигать нескольких сотен, а коэффициент усиления по мощности $K_p = K_u K_i$ в схеме с ОЭ – нескольких тысяч.

2. Усилитель с общей базой (ОБ)

На Рис. 6 приведена схема усилителя на биполярном транзисторе, включенном с общей базой (ОБ), а также эквивалентная схема.

Рис. 6

Резистор R_K являться нагрузкой транзистора и определяет его усилительные свойства,. Если R_K =0 то эффект усиления напряжения не происходит, т.к. U_{KB} = E_K =const. С увеличением R_K растет коэффициент усиления схемы по напряжению, однако существует ограничение на R_K сверху.

Коэффициент усиления по току k_I меньше 1, k_I ≈(0.5÷0.95).

Следовательно, схема с ОБ усиливает напряжение, мощность, но не усиливает ток.

Режим работы схемы по постоянному току определяется элементами: R_K , R_B , E_K , E_B и характеристиками транзистора VT. Запишем уравнения Кирхгофа для выходной цепи:

$$\begin{cases} E_K = I_K \cdot R_K + U_{KB} & (1); \\ U_{KB} = \Psi(I_{\mathcal{T}}, I_K) & (2). \end{cases}$$

На рис. 7 уравнение (1) представляет собой уравнение прямой, которую называют нагрузочной прямой, а уравнение (2) представляет семейство выходных характеристик транзистора, включенного по схеме с общей базой. На основании определенных критериев может быть выбран тип транзистора, при этом по справочнику определим его входные и выходные характеристики.

Рис. 7

Для обеспечения работы усилителя в точке покоя "О" нужно обеспечить (входной ток) $I_{\Im n}$.

Аналогично выходной цепи опишем входную цепь системой уравнений:

$$\begin{cases} E_{\mathcal{I}} = I_{\mathcal{I}} \cdot R_{\mathcal{I}} + U_{\mathcal{I}B} & \text{(1)'}; \\ U_{\mathcal{I}B} = \varphi(I_{\mathcal{I}}, U_{KB}) & \text{(2)'}. \end{cases}$$

Уравнение 1' нагрузочной прямой по входу, а уравнение 2' — входными характеристиками транзистора. Для построения нагрузочной линии используем режимы холостого хода и короткого замыкания:

На рис.8 положение рабочей точки на нагрузочной прямой можно определить по току $I_{\rm Эп}$ или по напряжению $U_{\rm KBn}$. Координаты рабочей точки определяют напряжение между базой и эмиттером по постоянному току $_{\rm Эбn}$.

Рис. 8 Принципиальная схема усилителя имеет вид, приведенный на Рис. 9.

Рис. 9.

Разделительные конденсаторы C_{P1} и C_{P2} нужны для того, чтобы:

- 1) источник входного сигнала и нагрузка не изменяли режим работы транзистора по постоянному току;
- 2) не пропускать на вход и в нагрузку постоянные составляющие, в которых нет информации о переменном входном сигнале.

3. Эмиттерный повторитель

В каскаде, собранном на биполярном транзисторе с общим коллектором, называемым эмиттерным повторителем, выходное напряжение $u_{вых}$ (через разделительный конденсатор C_2) снимается с резистора R_3 , включенного в цепь эмиттера (рис. 10, a).

Значения сопротивлений резисторов R_{E1} и R_{E2} выбирают такими, чтобы рабочая точка в режиме покоя находилась примерно посередине рабочего участка входной характеристики транзистора VT. При подаче переменного входного сигнала u_{ex} появляется переменная составляющая i_{Θ} эмиттерного тока, которая создает на резисторе R_{Θ} выходное напряжение $u_{ebix} = R_{\Theta}i_{\Theta}$.

Входное сопротивление повторителя значительно больше входного сопротивления транзистора h_{11} и достигает нескольких десятков и сотен килоом. С учетом сопротивлений резисторов R_{E1} и R_{E2} входное сопротивление повторителя

$$R_{ex.p} = R_{ex}R_{B}/(R_{ex} + R_{B}).$$

Выходное сопротивление $R_{\text{вых}} \approx h_{11}/(1+h_{21})$ имеет значение порядка нескольких единиц или десятков ом. Таким образом, эмиттерный повторитель обладает большим входным и малым выходным сопротивлениями, что упрощает согласование высокоомного источника сигнала и низкоомной нагрузки с усилительным устройством.

Эмиттерные повторители применяют при передаче напряжения без изменения формы, амплитуды и фазы, но при значительном усилении тока и мощности сигнала: эмиттерный повторитель усиливает ток входного сигнала в $h_{219}+1$ раз и в h_{219} раз его мощность.

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Задание 1 Собрать на рабочем поле среды Multisim схему для испытания *усилительного каскада на биполярном транзисторе* с ОЭ (рис. 11), ознакомиться с порядком расчёта параметров схемы.

Рис. 11

Скопировать схему (рис. 11), а также показания приборов на страницу отчета по работе.

Усилитель на транзисторе **VT1** с ОЭ (типа **2N3906(КТ361Г)** с параметрами: $U_{K.max} = 40$ В; $I_{\kappa.max} = 0.2$ А; Ск = 4,5рF; h21эмин = 30; h21эмах = 300; fгр = 300 МГц; $\tau \kappa \le 500$ пс; Rкэ равно от 40 до 60 Ом (в режиме насыщения); $I_{\kappa 0} = 7,5$ мА; $P_K = 0,625$ Вт. Включены постоянные резисторы **R1, R2, R3, R4, R5, R6**, конденсаторы **C1, C2, C3**, переключатель **A** и ключ **B**.

В качестве источника энергии использован генератор постоянного напряжения E2 с ЭДС E_2 , а в качестве источника входного сигнала — генератор синусоидального напряжения E1. Для визуализации результатов испытания в схему включены амперметры A1 и A2, вольтметры V1 и V2, двухканальный осцилло-

граф **XSC2** и плоттер **XBP1** (построитель AЧX и ФЧX усилителя по напряжению).

Физическая эквивалентная схема транзистора, представляющая собой электрическую модель транзистора и, которая может использоваться для расчетов, может быть представлена в следующем виде:

Рис.12

Расчёт параметров схемы выполним с помощью следующих соотношений:

1) Определяем значение параметра h11э:

$$h119 = r_{\sigma'} + r_{\sigma'9} ,$$

где: $\mathcal{V}_{\tilde{O}'}$ - сопротивление базы транзистора, представляющее собой распределенное (объемное) сопротивление участка кристалла, примыкающего к электроду;

 $\mathcal{V}_{\delta' \ni}$ — сопротивление эмиттерного перехода;

$$r_{\delta'} = \tau_{\kappa/C\kappa},$$

$$r_{\delta'9} = \frac{1 + h219}{\gamma \cdot I\kappa_0},$$

где $\gamma = \frac{1}{\varphi_T}$, φ_T -температурный потенциал, равный 26 мВ при комнатной температуре.

2) Определяем среднее значение параметра h21э:

$$h_{219} = \sqrt{h_{219\text{MUH}} \cdot h_{219\text{Max}_x}}$$
,

3) Определим расчетное значение входного сопротивления усилительного каскада с учетом сопротивлений R61 и R62:

$$Rex = \frac{h119 \cdot R6}{h119 + R6}$$

где:
$$R\tilde{o} = \frac{R\tilde{o}1 \cdot R\tilde{o}2}{R\tilde{o}1 + R\tilde{o}2}$$

4) Определим значение выходного сопротивления транзистора усилительного каскада.

$$Reыx = R\kappa \vartheta \cdot (1 + \frac{h21\vartheta \cdot r_{_{\! 3}}}{r_{_{\! 3}} + r_{_{\!6'}}}) \; ,$$
 где: $r\vartheta = \frac{\varphi_T}{Iko} = \frac{26}{7.5} = 3,5 \; \mathrm{Om}; \;\;\; \mathrm{Rk}\vartheta = 60 \; \mathrm{Om};$

5) Определим коэффициент усиления по напряжению Ки:

$$K_u = \frac{h219 \cdot R\kappa}{h119}$$

- 6) Коэффициент усиления по току Кі для схемы с ОЭ составляет Ki = h219,
- 7) Определим величину коэффициента усиления по мощности: Kp = Ku * Ki.

Полученные значения параметров внести в табл. 1.

Используя показания амперметров **A1** и **A2**, вольтметров **V1** и **V2**, двухканального осциллографа **XSC2** вычислить Rвх, Rвых, Ku, Ki, Kp для области средних частот. Данные внести в табл. 1, сравнить с рассчитанными по формулам. Копию экрана осциллографа привести в отчете.

Снять с помощью плоттера **XBP1** амплитудно-частотную характеристику усилительного каскада. **Скопировать** экран плоттера на страницу отчёта по работе.

Задание 2 Собрать на рабочем поле среды Multisim схему для испытания *усилительного каскада на биполярном транзисторе* с ОБ (рис. 13), ознакомиться с порядком расчёта параметров схемы.

Рис. 13

Скопировать схему (рис. 13), а также показания приборов на страницу отчета по работе.

При расчете используются основные параметры, найденные при предыдущем расчете.

1) Определим статический коэффициент усиления по току для схемы с ОБ:

$$h21_{\delta} = \frac{h219}{1 + h219}$$

2) Определим параметр h11б: (входное сопротивление транзистора в схеме с

ОБ:
$$h11_{\delta} = \frac{h119}{1 + h219}$$

- 3) Определим расчетное значение входного сопротивления усилительного каскада (с учетом параллельного соединения сопротивлений Rб1, Rэ и h11б).
- 4) Определим значение выходного сопротивления транзистора усилительного каскада(как параллельное соединение h22б и сопротивления Rk, h12э=0,009, h22э= 1,5 мСим).

$$h_{226} = \frac{h_{229}}{1 - h_{129} + h_{219}}$$

5) Коэффициент усиления усилителя по току Кі составляет:

$$K_i = \frac{R9}{R9 + h11_{\delta}} \cdot \frac{h21\delta}{1 + h22_{\delta} \cdot R_{\kappa}}$$

6) Определим коэффициент усиления по напряжению Ки:

$$K_u = \frac{h21\delta \cdot Rk}{h11\delta}$$

7) Определим величину коэффициента усиления по мощности: Kp = Ku * Ki .

Полученные значения параметров внести в табл. 1.

Используя показания амперметров **A1** и **A2**, вольтметров **V1** и **V2**, двухканального осциллографа **XSC2** вычислить Rвх, Rвых, Ku, Ki, Kp для области средних частот. Данные внести в табл. 1, сравнить с расститанными по формулам. Копию экрана осциллографа привести в отчете.

Снять с помощью плоттера **XBP1** амплитудно-частотную характеристику усилительного каскада. **Скопировать** экран плоттера на страницу отчёта по работе.

Задание 3 Собрать на рабочем поле среды Multisim схему для испытания *усили- тельного каскада на биполярном транзисторе* с ОК (рис. 14), ознакомиться с порядком расчёта параметров схемы.

Рис. 14

Скопировать схему (рис. 14), а также показания приборов на страницу отчета по работе.

1) Коэффициент усиления по напряжению Ки составляет:

$$K_{u} = \frac{(1+h219)R_{9}}{h119 + (1+h219)R_{9}}$$

2) Определим коэффициент усиления по току Кі:

$$Ki = h21\kappa = 1 + h21$$

3) Определим величину коэффициента усиления по мощности:

$$Kp = Ku * Ki$$

4) Определим расчетное значение входного сопротивления усилителя:

$$Rex = h119 + (1 + h219) \cdot R9$$

5) Определим расчетное значение выходного сопротивления усилителя: (как параллельное соединение R₂ и h₂₂к, для транзистора 2N₃906 h₂₂= h₂₂к=1,5 мСим).

Полученные значения параметров внести в табл. 1.

Используя показания амперметров A1 и A2, вольтметров V1 и V2, двухканального осциллографа XSC2 вычислить RBX, RBMX, KI, KI, KI, KI для области

средних частот. Данные внести в табл. 1, сравнить с расститанными по формулам. Копию экрана осциллографа привести в отчете.

Снять с помощью плоттера **XBP1** амплитудно-частотную характеристику усилительного каскада. **Скопировать** экран плоттера на страницу отчёта по работе.

Таблина 1

						таолица т.		
Пара- метр	Схема включения транзистора							
	09		ОБ		ОК			
Rex	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.		
Ki	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.		
Ки	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.		
<i>Rвых</i>	Теор.	Экспер.	Теор.	Экспер.	Теор.	Экспер.		

Варианты заданий при моделировании в Multisim:

Вариант	E_1	F_{E1}	Rн	E_2
	мВ	кГц	кОм	В
1,6,11,16,21,26	20	1	1	10
2,7,12,17,22,27	10	2	2	11
3,8,13,18,23,28	15	2,5	1	9
4,9,14,19,24,29	25	3	2	12
5,10,15,20,25,30	30	1.5	1.5	13

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Наименование и цель работы.
- 2. Перечень приборов, использованных в экспериментах, с их краткими характеристиками.
- 3. Изображения электрических схем испытания простейших усилителей на биполярных транзисторах.
- 4. Таблицы результатов измерений и расчётов параметров усилительных каскадов.
 - 5. Графики амплитудно-частотных характеристик усилителей.
 - 6. Выводы по работе.

Контрольные вопросы

- 1. Какова малосигнальная эквивалентная схема транзистора, транзисторных каскадов ОЭ, ОБ, ОК?
- 2. Чем отличается между собой усилительные каскады ОЭ, ОБ, ОК (схемные различия, различия в параметрах и характеристиках)?
- 3. Как измерить входное и выходное сопротивления усилителя, усиление по напряжению, току, мощности?
- 4. Назначение элементов схемы.
- 5. Принцип работы биполярного транзистора.
- 6. Принцип работы усилителя на семействе входных и выходных статических характеристик.
- 7. Понятие рабочей точки, напряжение смещения.
- 8. Условия линейного усиления.
- 9. Графически объяснить работу усилителя по переменному току.
- 10. Укажите тип усилительного каскада, у которого коэффициент усиления по току меньше единицы.
- 11. Укажите тип усилительного каскада, у которого коэффициент усиления по напряжению меньше единицы.
- 12. Укажите, какую роль в схеме транзисторного усилителя с ОЭ играет конденсатор C_{\ni} , резистор R_{\ni} включенные в цепь эмиттера.