# Retrieving Linguistic Expressions of Political Attitudes

#### Paul Nulty

Department of Methodology, London School of Economics and Political Science,

QUANTESS ERC Project

Computational Social Science, ECCS 2014 24th September 2014

# Modes of information communication in online social networks

- Network structure (friend, follower, subscriber)
- ▶ Simple actions: like, retweet, mention, favorite
- Multimedia: links, animations, videos, images
- Linguistic (text): Posts, comments, tweets

#### Introduction

- Text is a hugely rich but unstructured information source
- Social media offers large, real-time corpus of spontaneous communication and expression
- Retrieval depends on bursty and ambiguous search terms
- Simple word frequency matrix methods, also rich latent structure
- ▶ NLP offers methods to discover structure and help retrieval
- ► Twitter's communication model makes it especially useful

### Natural language on twitter

- Text is the principal mode of communication broadcast on twitter
- ▶ Limit on post length causes some issues, but fixable ¹
- Simple statistical linguistics can aid retrieval
- Linguistic structure can be identified with parsing

<sup>&</sup>lt;sup>1</sup>Syntactic normalization of twitter messages, Kaufman and Kalita 2010) =

#### Zipf's laws

- ► In natural languages, word frequencies have a very heavy-tailed distribution
- ➤ Zipf's Law (1935): The frequency of a word is inversely proportional to its rank in the frequency table
- ➤ Zipf (1945): The more frequent a word is, the more senses it is likely to have
- frequent search terms give high recall, but low precision

#### Rank frequency of terms



Data

from 260,619 tweets (no retweets), from twitter 'gardenhose' api on Scottish referendum day, containing any of these terms: ["#indyref", "salmond", "cameron", "scotland", "scottish", "referendum", "vote", "voted", "voting"]

#### Log-Log Rank frequency



Data

from 260,619 tweets (excluding retweets, 1.02M total), from twitter 'gardenhose' api on Scottish referendum day, containing any of these terms: ["#indyref", "salmond", "cameron", "scottland", "scottish", "referendum", "vote", "voted", "voting"]

## Discovering query terms with a classifier

- Initially, prefer recall over precision
- ► Hone search terms by learning association between terms and concept of interest
- e.g. Initially search for "vote", "cameron", "indyref"
- ▶ learn which terms co-occur with precise terms of interest

### Example Naive Bayes classifier

- Train
- ► Simple bag-of-words model
- •

## terms predictive of 'no' (bettertogether and nothanks

| term    | Direction | Ratio    |
|---------|-----------|----------|
| kingdom | no        | 20.7 1.0 |
| stupid  | no        | 16.1 1.0 |
| united  | no        | 15.0 1.0 |
| stay    | no        | 8.9 1.0  |