

유전체 변이 분석에 대한 이해 (실습)

초고성능컴퓨터 활용 교육

(주)바이오투 생물정보팀 전임연구원 이보미

목치

I. Dataset and Softwares

II. Variant discovery with GATK

III. Variant Annotation & Filtration

IV. Application of SNPs

1.1. 예제 데이터

1.2. 분석 프로그램

2.1. Data pre-processing

2.2. Read Mapping

2.3. Variant Discovery

3.1. Variant Annotation

3.2. Variant Filtration

4.1. 계통수 작성

I. Dataset and Softwares

Dataset

- WGS Dataset from BioProject: PRJNA795286
- This dataset has Illumina short reads (HiSeq X Ten) of Oryza sativa.

Sample	SRR-id	Total bases (bp)	Read Length (bp)	Avg. length (bp)	Organism
P1	SRR17493738	7,661,857,420	25,398,995	150.83	Oryza sativa
P2	SRR17493737	6,136,486,300	20,336,095	150.88	Oryza sativa
Mix_S	SRR17493735	16,993,464,319	56,323,130	150.86	Oryza sativa
Mix_R	SRR17493736	19,584,672,393	64,908,654	150.86	Oryza sativa
		•			

Random selection 200,000 reads

Reference Genome

• 출처: Os-Nipponbare-Reference-IRGSP-1.0 (RAP-DB)

No. of chr	Total length of chr (bp)	GC (%)	No. of coding genes
chr01	43,270,923	43.77	5,981
chr02	35,937,250	43.33	4,801
chr03	36,413,819	43.69	5,244
chr04	35,502,694	44.25	3,775
chr05	29,958,434	43.95	3,412
chr06	31,248,787	43.61	3,506
chr07	29,697,621	43.50	3,204
chr08	28,443,022	43.38	2,896
chr09	23,012,720	43.53	2,356
chr10	23,207,287	43.58	2,302
chr11	29,021,106	42.91	2,587
chr12	27,531,856	43.01	2,389
Total	373,245,519	522.49	42,453

예제 데이터 파일

• Sequencing Data(FASTQ) **SRR17493738_ransel_1.fastq.gz**

SRR17493738_ransel_2.fastq.gz

• 표준유전체 서열 (FASTA) reference.fa

Softwares

- **1. PuTTy** a free SSH and telnet client for Windows
- 2. Trimmomatic (version 0.39) A flexible read trimming tool for Illumina NGS data
- 3. BWA-0.7.17 (Burrows-Wheeler Aligner)
 BWA is a software package for mapping low-divergent sequences against a large reference genome, such as the human genome.
- **4. SAMtools-1.17** Provides various utilities for manipulating alignments in the SAM/BAM format.
- **5. GATK version 4.4.0.0** A genomic analysis toolkit focused on variant discovery.
- **6. SnpEff (version 5.1)** Genetic variant annotation and functional effect prediction toolbox.
- 7. **BCFtools-1.17** BCFtools is a set of utilities that manipulate variant calls in the Variant Call Format (VCF).
- 8. **MEGA 11**Sophisticated and user-friendly software suite for analyzing DNA and protein sequence data from species and populations.
- 9. 기타 프로그램: Python, Java 17
- 10. Perl/Python script

프로그램 설치 - PuTTY

SSH

PuTTY: 터미널 프로그램

Download PuTTY

Host Name: 제공된 주소(IP)

Port: 포트 번호

- ID:계정(엔터)
- PW : 비밀번호(엔터)

분석 디렉토리 (홈 디렉토리)로 이동

1. 터미널 접속 (로그인)

• User :계정

• Passwd:비밀번호

2. 분석 디렉토리로 이동

```
edu@192.168.0.29's password:
 elcome to Ubuntu 20.04.5 LTS (GNU/Linux 5.15.0-69-generic x86 64)
  Documentation: https://help.ubuntu.com
                  https://landscape.canonical.com
                  https://ubuntu.com/advantage
  Introducing Expanded Security Maintenance for Applications.
  Receive updates to over 25,000 software packages with your
  Ubuntu Pro subscription. Free for personal use.
    https://ubuntu.com/pro
47 updates can be applied immediately.
 of these updates is a standard security update.
 o see these additional updates run: apt list --upgradable
New release '22.04.2 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
 our Hardware Enablement Stack (HWE) is supported until April 2025.
 ** System restart required ***
 ast login: Fri May 26 16:47:22 2023 from 192.168.0.6
```

```
## 홈 디렉토리로 이동

cd /home/계정

cd ~

## 현재 위치 확인
pwd
```

리눅스 기본 명령어 요약

- 1. ls 현재 위치의 파일 목록 조회
- 2. cd 디렉토리 이동
- 3. pwd 현재 위치의 절대경로 출력
- 4. mkdir-디렉토리 생성
- 5. cp-파일 복사
- 6. mv-파일/디렉토리 이동 및 이름 변경
- 7. rm 파일 삭제
- 8. rmdir 디렉토리 삭제
- 9. less, more 파일 내용을 페이지 단위로 화면에 출력
- 10. head, tail 파일의 앞 또는 뒤 10행을 화면에 출력

리눅스 기본 명령어 옵션 설명

- 1. ls (List segments) : 현재 위치의 파일 목록 조회
 - ls-l: 파일의 상세정보
 - ls-a: 숨김 파일 표시
- 2. cd (Change directory) :디렉토리 이동
 - d [디렉토리 경로]: 이동하려는 디렉토리로 이동
 - cd.: 현재 디렉토리
 - d..:상위 디렉토리로 이동
 - 여~:홈디렉토리로이동
 - d/: 최상위 디렉토리로 이동
- 3. pwd (Print Working Directory): 현재 위치의 절대경로 출력
- 4. mkdir (Make directory) : 디렉토리 생성
 - mkdir [디렉토리 이름]: [디렉토리 이름] 이라는 디렉토리 생성

리눅스 기본 명령어 옵션 설명

- 5. cp (Copy) : 파일 복사
 - cp [파일1] [파일2] : [파일1]을 [파일2] 으로 복사
 - cp -r [디렉토리1] [디렉토리2]: 디렉토리 복사. 폴더 안의 모든 하위 경로와 파일들이 함께 복사됨.
- 6. mv (Move): 파일/디렉토리 이동 및 이름 변경
 - mv [파일1] [파일2]: [파일1]을 [파일2] 으로 이름 변경
 - mv [파일1] [디렉토리 경로] : [파일1]을 [디렉토리 경로] 하위로 위치 이동
 - mv [디렉토리1] [디렉토리2]: [디렉토리1]을 [디렉토리2] 으로 이름 변경
- 7. rm (Remove) : 파일 삭제
 - rm [파일]: 파일 삭제
 - rm -f [파일] : 파일 강제 삭제
 - rm -r [디렉토리]: 디렉토리 삭제 (디렉토리는 -r 옵션 없이 삭제 불가)

리눅스 기본 명령어 옵션 설명

- 8. rmdir (Remove Directory) : 디렉토리 삭제
 - rmdir [디렉토리]: 디렉토리 삭제
- 9. less, more 파일 내용을 페이지 단위로 화면에 출력
 - less [파일]: 파일의 첫 행부터 화면에 출력
 - less +10 [파일] : 파일의 10행부터 화면에 출력
 - ※ space bar: 다음 페이지, b: 이전 페이지, q: 종료, enter: 줄 단위로 이동
 - ※ less 명령어는 추가로 화살표 키, page up과 page down 키 사용 가능
- 10. head, tail 파일의 앞 또는 뒤 10행을 화면에 출력
 - head [파일]: 파일의 앞 10행부터 화면에 출력
 - head -50 [파일] : 파일의 앞 50행부터 화면에 출력

명령어 실습

• 홈 디렉토리 이동

cd ~ cd /home/계정

• 현재 위치의 파일 목록 조회

ls -l

• 현재 위치의 절대경로 출력

pwd

• 디렉토리 생성

mkdir 1.trimmed mkdir /home/계정/1.trimmed

• 디렉토리 이동

cd 1.trimmed cd /home/계정/1.trimmed

• 텍스트 파일 출력

less reference.fa

II. Variant discovery with GATK

변이분석 실습 - Workflow

변이분석 실습 - VCF

VCF (Variant Call Format)

- VCF is a text file format (tab-delimited)
- It contains a header line, and then data lines each containing information about a position in the genome.
- The format also has the ability to contain genotype information on samples for each position.

변이분석 실습 - VCF and gVCF

변이분석 실습 - 1) Pre-processing

Trimmomatic 프로그램 옵션

- Phred33
- Remove adapters (ILLUMINACLIP:TruSeg3-PE.fa:2:30:10)
- Remove leading low quality or N bases (LEADING:3)
- Remove trailing low quality or N bases (TRAILING:3)
- Scan the read with a 4-base wide sliding window, cutting when the average quality per base drops below 15 (SLIDINGWINDOW:4:15)
- Drop reads below the 36 bases long (MINLEN:36)

Trimmomatic 수행

trimmomatic PE -threads 1 -phred33 SRR17493738_ransel_1.fastq.gz
SRR17493738_ransel_2.fastq.gz P1_paired1.fq P1_paired1_un.fq P1_paired2.fq
P1_paired2_un.fq ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36

변이분석 실습 - 1) Pre-processing

• Trimmomatic 수행 결과

-rw-r--r-- 1 root root 172898 Jul

```
root@d57c9b675d47:/home/1.works/1.trimmed# java -jar /home/0.tools/Trimmomatic-0.39/trimmomatic-0.39.jar PE -threads 10 -phred33 SRR17493738_ransel_1.
fastq.gz SRR17493738_ransel_2.fastq.gz P1_paired1.fq P1_paired1_un.fq P1_paired2.fq P1_paired2_un.fq ILLUMINACLIP:/home/0.tools/Trimmomatic-0.39/adapt
ers/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

TrimmomaticPE: Started with arguments:
   -threads 10 -phred33 SRR17493738_ransel_1.fastq.gz SRR17493738_ransel_2.fastq.gz P1_paired1.fq P1_paired1_un.fq P1_paired2.fq P1_paired2_un.fq ILLUMI
NACLIP:/home/0.tools/Trimmomatic-0.39/adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
Using PrefixPair: 'TACACTCTTTCCCTACACGACGCTCTTCCGATCT' and 'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT'
ILLUMINACLIP: Using 1 prefix pairs, 0 forward/reverse sequences, 0 forward only sequences, 0 reverse only sequences
Input Read Pairs: 200000 Both Surviving: 197635 (98.82%) Forward Only Surviving: 1723 (0.86%) Reverse Only Surviving: 517 (0.26%) Dropped: 125 (0.06%)
TrimmomaticPE: Completed successfully
```

4 15:38 P1 paired2 un.fq

결과 파일 확인 ls -l -rw-r--r-- 1 root root 75682990 Jul 4 15:38 P1_paired1.fq -rw-r--r-- 1 root root 571082 Jul 4 15:38 P1_paired1_un.fq -rw-r--r-- 1 root root 75474326 Jul 4 15:38 P1_paired2.fq

변이분석 실습 - 1) Pre-processing

• Trimmomatic 수행 결과

데이터 전처리 수행 전 FASTQ

@SRR17493738.913322 913322 length=151

+SRR17493738.913322 913322 length=151

데이터 전처리 수행 후 FASTQ

@SRR17493738.913322 913322 length=151

CCGTGCACCTGGAGTTGGCTGCAGCTCCTCAGCTTAAGCTCTCAAGGTTTCCGTTTCCTCTT

+SRR17493738.913322 913322 length=151

변이분석 실습 - 2) Reference Indexing

Reference index 작성 1 – BWA index

bwa index reference.fa

결과 파일 확인

ls - l

```
-rw-r--r-- 1 root root 9076 Jul 4 16:17 reference.fa.amb
                     226 Jul 4 16:17 reference.fa.ann
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root 212332012 Jul 4 16:17 reference.fa.bwt
-rw-r--r-- 1 root root 53082978 Jul 4 16:17 reference.fa.pac
-rw-r--r-- 1 root root 106166008 Jul 4 16:18 reference.fa.sa
```

```
root@d57c9b675d47:/home/1.works# bwa index reference.fa
[bwa index] Pack FASTA... 0.92 sec
[bwa index] Construct BWT for the packed sequence...
[BWTIncCreate] textLength=231243984, availableWord=28271124
[BWTIncConstructFromPacked] 10 iterations done. 46634416 characters processed.
[BWTIncConstructFromPacked] 20 iterations done. 86153072 characters processed.
[BWTIncConstructFromPacked] 30 iterations done. 121273312 characters processed.
[BWTIncConstructFromPacked] 40 iterations done. 152484240 characters processed.
[BWTIncConstructFromPacked] 50 iterations done. 180220560 characters processed.
[BWTIncConstructFromPacked] 60 iterations done. 204868656 characters processed.
[BWTIncConstructFromPacked] 70 iterations done. 226771904 characters processed.
[bwt_gen] Finished constructing BWT in 73 iterations.
[bwa_index] 46.73 seconds elapse.
[bwa_index] Update BWT... 1.09 sec
[bwa_index] Pack forward-only FASTA... 0.58 sec
[bwa_index] Construct SA from BWT and Occ... 25.94 sec
[main] Version: 0.7.17-r1188
[main] CMD: bwa index reference.fa
[main] Real time: 75.588 sec; CPU: 75.255 sec
```

변이분석 실습 - 2) Reference Indexing


```
## Reference index 작성 2 - SAMtools index
samtools faidx reference.fa

## 결과 파일 확인
ls -l
-rw-r--r-- 1 root root 176 Jul 4 16:15 reference.fa.fai
```

변이분석 실습 - 2) Reference Indexing

Reference index 작성 3 – GATK index

gatk CreateSequenceDictionary -R reference.fa

```
Using GATK jar /home/0.tools/gatk-4.4.0.0/gatk-package-4.4.0.0-local.jar
    java -Dsamjdk.use_async_io_read_samtools=false -Dsamjdk.use_async_io_write_samtools=true -Dsamjdk.use_async_io_write_tribble=false -Dsamjdk.compre
ssion_level=2 -jar /home/0.tools/gatk-4.4.0.0/gatk-package-4.4.0.0-local.jar CreateSequenceDictionary -R reference.fa
INFO 2023-07-04 13:07:54
                               CreateSequenceDictionary
                                                               Output dictionary will be written in reference.dict
13:07:54.641 INFO NativeLibraryLoader - Loading libgkl_compression.so from jar:file:/home/0.tools/gatk-4.4.0.0/gatk-package-4.4.0.0-local.jar!/com/in
tel/gkl/native/libgkl compression.so
[Tue Jul 04 13:07:54 KST 2023] CreateSequenceDictionary --REFERENCE reference.fa --TRUNCATE NAMES_AT_WHITESPACE true --NUM_SEQUENCES 2147483647 --VERB
OSITY INFO --QUIET false --VALIDATION_STRINGENCY STRICT --COMPRESSION_LEVEL 2 --MAX_RECORDS_IN_RAM 500000 --CREATE_INDEX false --CREATE_MD5_FILE false
 --help false --version false --showHidden false --USE_JDK_DEFLATER false --USE_JDK_INFLATER false
[Tue Jul 04 13:07:54 KST 2023] Executing as root@d57c9b675d47 on Linux 5.15.0-69-generic amd64; OpenJDK 64-Bit Server VM 17.0.7+7-Ubuntu-0ubuntu120.04
; Deflater: Intel; Inflater: Intel; Provider GCS is available; Picard version: Version:4.4.0.0
[Tue Jul 04 13:07:55 KST 2023] picard.sam.CreateSequenceDictionary done. Elapsed time: 0.01 minutes.
Runtime.totalMemory()=285212672
```

결과 파일 확인

ls -l

-rw-r--r 1 root root

587 Jul 4 16:16 reference.dict

변이분석 실습 - 3) Read Mapping

BWA 수행 (FASTQ to SAM)

bwa mem -t 1 -k 19 -R "@RG\tID:P1.1\tLB:P1.fq\tSM:P1\tPL:ILLUMINA"
reference.fa P1_paired1.fq P1_paired2.fq -o P1_paired.sam

SAM to BAM

samtools view -b -t reference.fa.fai -o P1_paired.bam P1_paired.sam

FIXMATE

gatk FixMateInformation -I P1_paired.bam -O P1_fixmate.bam -SO coordinate --CREATE INDEX true --VALIDATION STRINGENCY SILENT

REMOVE DUPLICATES

gatk MarkDuplicates -I P1_fixmate.bam -0 P1_rmdup.bam -M P1_metrics.txt --REMOVE_DUPLICATES true --CREATE_INDEX true --VALIDATION_STRINGENCY SILENT

변이분석 실습 - 3) Read Mapping

BAM stats

```
samtools flagstats P1_rmdup.bam
```

396505 + 0 in total (QC-passed reads + QC-failed reads)

394230 + 0 primary

0 + 0 secondary

2275 + 0 supplementary

0 + 0 duplicates

0 + 0 primary duplicates

392658 + 0 mapped (99.03%: N/A)

390383 + 0 primary mapped (99.02%: N/A)

394230 + 0 paired in sequencing

197115 + 0 read1

197115 + 0 read2

379678 + 0 properly paired (96.31%: N/A)

389314 + 0 with itself and mate mapped

1069 + 0 singletons (0.27%: N/A)

7752 + 0 with mate mapped to a different chr

4653 + 0 with mate mapped to a different chr (mapQ>=5)

변이분석 실습 - BQSR Workflow

- BQSR Workflow
 - GATK HaplotypeCaller initial round of variant calling on unrecalibrated data
 - GATK BaseRecalibrator generation of recalibration table for BQSR
 - 2. GATK ApplyBQSR actual base quality score recalibration of reads

변이분석 실습 - 4) BQSR (Base Quality Score Recalibration)

GATK HaplotypeCaller - initial round of variant calling on unrecalibrated data

```
gatk --java-options '-DGATK_STACKTRACE_ON_USER_EXCEPTION=true' HaplotypeCaller
-R reference.fa -I P1_rmdup.bam -0 P1_raw_variants.vcf
```

Extract SNPs

gatk SelectVariants -V P1_raw_variants.vcf -select-type SNP -0 P1_raw_snps.vcf

Filter VCF to obtain high confidence variants using Hard Filtering recommendations ## Filter SNPs

```
gatk VariantFiltration -V P1_raw_snps.vcf -filter "QD < 2.0" --filter-name "QD2" -filter "QUAL < 30.0" --filter-name "QUAL30" -filter "SOR > 3.0" --filter-name "SOR3" -filter "FS > 60.0" --filter-name "FS60" -filter "MQ < 40.0" --filter-name "MQ40" -filter "MQ40" -filter "MQRankSum < -12.5" --filter-name "MQRankSum-12.5" -filter "ReadPosRankSum < -8.0" --filter-name "ReadPosRankSum-8" -0 P1_flt_snps.vcf
```

변이분석 실습 - 4) BQSR (Base Quality Score Recalibration)

Filter VCF to obtain high confidence variants using Hard Filtering recommendations

Extract Indels

gatk SelectVariants -V P1_raw_variants.vcf -select-type INDEL -0 P1_raw_indels.vcf

Filter Indels

```
gatk VariantFiltration -V P1_raw_indels.vcf -filter "QD < 2.0" --filter-name "QD2" -filter "QUAL < 30.0" --filter-name "QUAL30" -filter "FS > 200.0" --filter-name "FS200" -filter "ReadPosRankSum < -20.0" --filter-name "ReadPosRankSum-20" -0 P1_flt_indels.vcf
```

Base (Quality Score) Recalibration

```
gatk BaseRecalibrator -R reference.fa -I P1_rmdup.bam --known-sites P1_flt_snps.vcf -- known-sites P1_flt_indels.vcf -0 P1_recal.table
```

ApplyBQSR

gatk ApplyBQSR -R reference.fa -I P1_rmdup.bam -bqsr P1_recal.table -0 P1_recal.bam

변이분석 실습 - Workflow

변이분석 실습 - 5) Variant Discovery

GATK HaplotypeCaller - GVCF

gatk ——java—options '—DGATK_STACKTRACE_ON_USER_EXCEPTION=true' HaplotypeCaller —R reference.fa —I P1_recal.bam —O P1_variants.g.vcf —ERC GVCF

CombineGVCFs

gatk CombineGVCFs -R reference.fa -V P1_variants.g.vcf -V P2_variants.g.vcf -V
MixS_variants.g.vcf -V MixR_variants.g.vcf -0 combined_raw.g.vcf

Perform joint genotyping on one or more samples pre-called with HaplotypeCaller ## GenotypeGVCFs

gatk GenotypeGVCFs -R reference.fa -V combined_raw.g.vcf -O combined_raw.vcf

변이분석 실습 - 5) Variant Discovery


```
## VCF 결과 확인
less combined_raw.vcf
#CHROM
       P0S
             ID
                   REF
                        ALT QUAL FILTER INFO
                                                   FORMAT MixR
                                                                  MixS
                                                                               P2
chr01
       80388
                     C
                         Т
                                    40.18
AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=2;MLEAF=1.00;MQ=60.00;QD=20.09;SOR=0.693
GT:AD:DP:GQ:PL ./.:0,0:0:0:0,0,0
                                          ./.:0,0:0:0:0,0,0
1/1:0,2:2:6:49,6,0 ./.:0,0:0:0:0,0,0
```


III. Variant Annotation and Filtration

변이분석 실습 - 6) Variant Annotation

SnpEff 프로그램

Usage: snpeff [command] [options] [files]

Available commands: ann : Annotate variants

build : Build a SnpEff database

databases: Show currently available databases (from local config file)

download: Download a SnpEff database

Finding a database

java -jar /agribio/soft/snpEff/snpEff-5.1/snpEff.jar databases | grep Oryza_sativa

Database download

다운로드 위치: /agribio/HOME/edu_02/prepare/dataset/Oryza_sativa/

java -jar /agribio/soft/snpEff/snpEff-5.1/snpEff.jar download -v Oryza_sativa

```
-rw-r--r-- 1 root root 4173997 Jul 5 11:14 sequence.1.bin
-rw-r--r-- 1 root root 3434377 Jul 5 11:14 sequence.2.bin
-rw-r--r-- 1 root root 3698390 Jul 5 11:14 sequence.3.bin
-rw-r--r-- 1 root root 2684939 Jul 5 11:14 sequence.4.bin
...
-rw-r--r-- 1 root root 2041957 Jul 5 11:14 sequence.11.bin
-rw-r--r-- 1 root root 1776653 Jul 5 11:14 sequence.12.bin
-rw-r--r-- 1 root root 37261 Jul 5 11:14 sequence.bin
-rw-r--r-- 1 root root 32210111 Jul 5 11:14 snpEffectPredictor.bin
```

변이분석 실습 - 6) Variant Annotation

Building a database

- Step 1: Configure a new genome in SnpEff's config file snpEff.config.
 - a. Add genome entry to snpEff's configuration
 - b. If the genome uses a non-standard codon table: Add codon table parameter
- 2. Step 2: Build using gene annotations and reference sequences
 - a. Option 1: Building a database from GTF files (recommended for large genomes)
 - b. Option 2: Building a database from GenBank files (recommended for small genomes)
 - c. Option 3: Building a database from GFF files
 - d. Option 4: Building a database from RefSeq table from UCSC
- Step 3: Checking the database: SnpEff will check the database by comparing predicted protein sequences and CDS sequences with ones provided by the user.
 - a. Checking CDS sequences
 - b. Checking Protein sequences

변이분석 실습 - 6) Variant Annotation

VCF annotation

java -jar /agribio/soft/snpEff/snpEff-5.1/snpEff.jar ann -dataDir
/agribio/HOME/edu_02/prepare/dataset Oryza_sativa combined_raw.vcf > combined_raw.ann.vcf

VCF format

##INF0=<ID=ANN,Number=.,Type=String,Description="Functional annotations: 'Allele |
Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID |
Transcript_BioType | Rank | HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos /
CDS.length | AA.pos / AA.length | Distance | ERRORS / WARNINGS / INFO' ">

Impact	Meaning	Example
HIGH	The variant is assumed to have high (disruptive) impact in the protein, probably causing protein truncation, loss of function or triggering nonsense mediated decay.	stop_gained, frameshift_variant
MODERATE	A non-disruptive variant that might change protein effectiveness.	missense_variant (non-syn), inframe_deletion
LOW	Assumed to be mostly harmless or unlikely to change protein behavior.	synonymous_variant
MODIFIER	Usually non-coding variants or variants affecting non-coding genes, where predictions are difficult or there is no evidence of impact.	exon_variant, downstream_gene_variant

변이분석 실습 - 6) Variant Annotation

Annotation 수행 결과

```
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT MixR MixS P1 P2 chr01 1328686. T C 38.10. AC=2;AF=1.00;AN=2;DP=1;ExcessHet=0.0000;FS=0.000;MLEAC=2;MLEAF=1.00;MQ=60.00;QD=29.04;SOR=1.609 GT:AD:DP:GQ:PGT:PID:PL:PS /.:0,0:0:0::.::0,0,0 /.:0,0:0:0::.::0,0,0 1|1:0,1:1:3:1|1:1328662_T_C:45,3,0:1328662 /.:0,0:0:0::::0,0,0
```


Hard Filtering recommendations

Hard Filtering (SNPs)	Name	Summary
QUAL < 30.0	Quality	Base call quality
QD \(2.0	QualByDepth	 Variant confidence normalized by unfiltered depth of variant samples (QD) Avoid inflation caused when there is deep coverage
SOR > 3.0	StrandOddsRatio	Strand bias estimated by the symmetric odds ratio test (SOR)
FS > 60.0	FisherStrand	 Strand bias estimated using Fisher's exact test (FS)
MQ 〈 40.0	RMSMappingQuality	 Root mean square of the mapping quality of reads across all samples (MQ)
MQRankSum ⟨ -12.5	MappingQualityRankSumTest	 Rank sum test for mapping qualities of REF versus ALT reads (MQRankSum)
ReadPosRankSum 〈 -8.0	ReadPosRankSumTest	 Rank sum test for relative positioning of REF versus ALT alleles within reads (ReadPosRankSum)

Extract SNPs

gatk SelectVariants -V combined_raw.ann.vcf -select-type SNP -0 combined_raw.ann_snps.vcf

Filter SNPs - using Hard Filtering recommendations

```
gatk VariantFiltration -V combined_raw.ann_snps.vcf -filter "QD < 2.0" --filter-name "QD2" -filter "QUAL < 30.0" --filter-name "QUAL30" -filter "SOR > 3.0" --filter-name "SOR3" - filter "FS > 60.0" --filter-name "FS60" -filter "MQ < 40.0" --filter-name "MQ40" -filter "MQRankSum < -12.5" --filter-name "MQRankSum-12.5" -filter "ReadPosRankSum < -8.0" -- filter-name "ReadPosRankSum-8" -0 combined_flt_snps.vcf
```

Extract Indels

gatk SelectVariants -V combined_raw.ann.vcf -select-type INDEL -0
combined_raw.ann_indels.vcf

Filter Indels - using Hard Filtering recommendations

gatk VariantFiltration -V combined_raw.ann_indels.vcf -filter "QD < 2.0" --filter-name
"QD2" -filter "QUAL < 30.0" --filter-name "QUAL30" -filter "FS > 200.0" --filter-name
"FS200" -filter "ReadPosRankSum < -20.0" --filter-name "ReadPosRankSum-20" -0
combined_flt_indels.vcf</pre>


```
## GATK VariantFiltration 결과 예시
                                             FILTER INFO
#CHROM
       P0S
                      REF
                              ALT
                                      QUAL
                                                             FORMAT MixR
                                                                            MixS
                                                                                         P2
               ΤD
                                                                                   P1
chr01
       80388
                              Т
                                      40.18
                                             PASS
AC=2;AF=1.00;AN=2;ANN=T|upstream_gene_variant|MODIFIER|OsDjC1|Os01g0101700|transcript|Os01t01017
00-
00|protein coding|;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=2;MLEAF=1.00;MQ=60.00;QD=20.09;SOR=0.693
GT:AD:DP:GQ:PL ./.:0,0:0:0:0,0,0
1/1:0,2:2:6:49,6,0 ./.:0,0:0:0:0,0,0
                                             ./.:0,0:0:0:0,0,0
chr01
       133207 . A
                              G
                                      37.07
                                             M040
AC=2;AF=0.500;AN=4;ANN=G|upstream_gene_variant|MODIFIER|OsTLP27|Os01g0102300|transcript|Os01t010
2300 -
01|protein_coding|;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=2;MLEAF=0.500;MQ=29.00;QD=25.36;SOR=1.60
       GT:AD:DP:GQ:PGT:PID:PL:PS ./.:0,0:0:0:.:.:0,0,0
1|1:0,1:1:3:1|1:133207_A_G:45,3,0:133207
                                             0/0:1,0:1:3:.:.:0,3,23 ./.:0,0:0:0:.:.:0,0,0
chr01
       159218 . G
                              Α
                                      60.04
                                             PASS
AC=2;AF=0.500;AN=4;ANN=A|downstream_gene_variant|MODIFIER|CSB|Os01g0102800|transcript|Os01t01028
00 -
01|protein_coding|DP=4;ExcessHet=0.0000;FS=0.000;MLEAC=2;MLEAF=0.500;MQ=40.00;QD=30.02;SOR=0.693
                              ./.:0,0:0:0:.:.:0,0,0 0/0:1,0:1:3:.:.:0,3,19
GT:AD:DP:GO:PGT:PID:PL:PS
1|1:0,2:2:6:1|1:159218_G_A:70,6,0:159218 ./.:1,0:1:0:.:.:0,0,0
```


BCFtools 프로그램

utilities for variant calling and manipulating VCFs and BCFs.

Extract only PASS SNPs

bcftools view -f PASS combined_flt_snps.vcf > combined_flt_snps.PASS.vcf

Additional filtering

FORMAT:DP>5

bcftools view -i 'FMT/DP>5' combined_flt_snps.PASS.vcf > combined_flt_snps.PASS.DP5.vcf

QUAL>40

bcftools view -i 'QUAL>40' combined_flt_snps.PASS.vcf > combined_flt_snps.PASS.qual.vcf

IV. Application of SNPs - 계통수 작성

계통수 분석 (Phylogenetic tree)

• 계통수 분석:

생물의 진화 관계를 밝히기 위해 종 또는 그룹 간의 계통적 관계를 탐구하는 분석 방법

• 프로그램:

MEGA, IQ-TREE, PHYLIP, BEAST, PAUP, MrBayes, RAxML 등…

- 분석 방법 :
 - UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
 - NJ (Neighbour-Joining)
 - ML (Maximum Likelihood) 등…

계통수 분석 - Input file 작성 (VCF to FASTA)


```
##fileformat=VCFv4.2
                                                                                                 VCF (Variant Call Format)
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##contig=<ID=chr01,length=43270923>
#CHROM POS ID REF ALT QUAL FILTER INFO
                                          FORMAT
                                                     SAMPLE1
                                                                SAMPLE2
                                                                          SAMPLE3
                                                                                     SAMPLE4
                                                                                                SAMPLE5
                                                                                                           SAMPLE6
                                                                                                                      SAMPLE7
chr01 130333 . C T 225 . AC=90; AF=0.234
                                           GT:DP:GQ
                                                     0/0:35:99
                                                               0/0:15:72 0/0:6:45
                                                                                     0/0:10:57
                                                                                                0/0:13:66
                                                                                                           0/0:26:99
                                                                                                                      0/0:30:99
chr01 222644 . A T 125 . AC=292; AF=0.764
                                          GT:DP:G0
                                                     1/1:25:72 1/1:16:45 1/1:17:48 1/1:8:21
                                                                                                1/1:17:48
                                                                                                          1/1:49:99
                                                                                                                      1/1:27:78
chr01 242098 . A G 188 . AC=196; AF=0.513
                                          GT:DP:GQ
                                                     1/1:32:93 1/1:12:33 1/1:10:27 1/1:3:6
                                                                                                1/1:21:60 1/1:56:99 1/1:63:99
chr01 242110 . A T 96 . AC=290; AF=0.763
                                          GT:DP:GQ
                                                     1/1:32:93 1/1:12:30 1/1:10:27 1/1:4:6
                                                                                                1/1:20:57 1/1:57:99 1/1:60:90
chr01 242161 . G A 196 . AC=87; AF=0.230
                                          GT:DP:GQ
                                                     0/0:25:99
                                                               0/0:2:33 0/0:4:39
                                                                                     0/0:4:39
                                                                                               0/0:6:45
                                                                                                           0/0:43:99 0/0:49:99
chr01 242383 . T A 145 . AC=184; AF=0.487
                                          GT:DP:G0
                                                     1/1:24:69 1/1:13:36 ./.
                                                                                     1/1:4:9
                                                                                                1/1:12:33
                                                                                                          1/1:26:75 1/1:20:57
chr01 267711 . G C 59 . AC=264:AF=0.754
                                           GT:DP:G0
                                                     ./.
                                                                          1/1:6:15
                                                                                                1/1:6:15
                                                                                                           1/1:14:39 1/1:6:15
                                                                ./.
                                                                                      ./.
```


>SAMPLE1

CTGTGAnnnGCGATTCnnnnCCAAGAATATTGAACAGTGTTTAACAnCAGGTTACACTCCTAAAAGTCTGAGACACGCATAGTACTTTCTCGTAGTTCG...

>SAMPLE2

CTGTGAnnCGCGATnCATTACCAAGAATATTGAACAGTGTnnnnnCnnnAGGTTACACTCCTAAAAGTCTGAGACACGCATAGTACTTTCTCGTAGTTCG...

>SAMPLE3

CTGTGnCACGCGATTCATTACCAAGAAnAnTGAACAGTGTGTTAACnCCAGGTTAnACTCCTAAAAGnnTGAGACACnnATAGTACTTTCTGGTAGTTCG...

>SAMPLE4

 ${\tt CTGTGAnnnGCnnnTCnnnnCCAAnAAnnnTnnGCAGTGTRTTAACACCAnGTTAnnCTCCTAAAAGTnTGAnnnnCGCATnnnnnnTTnTnnTnGTTCG\dots}$

• • •

FASTA format

계통수 분석 - Input file 작성 (VCF to FASTA)

Input format 작성 명령어

python vcf2fasta.py combined_flt_snps.PASS.vcf

Input format 결과 파일 확인

less phylo_tree.fasta

phylo_tree.fasta 파일 예시

MixR

CTACTCCCAGGCCCKTRAGTCCCCGCGTGAYKWAGYTRRGGCCGTGAACTGYAAGCRTAMGACCARCACRMTYYYRTYYRRMAATYWACRMYRCTRCGATCAACYRRTCWATTTSAYCCTYRTGCRYRRRWRRMYC >MixS

MYACTCCCAGGCCCTKRRGTCYCCRYGYGRYKWMGYTGRRGCCGTGAACYGYRMGYRYRMGRYCRRYMYRCYYYYRTYYRRMAATYWACRMYRCTRYGRKYAACYRRWYWATTTSWYSYWYRKGCRYRRRWRRMYC >P1

CTMSKSSSWSSSSTTAAGTCCCCGCGTRRYGAAGTTGGGGCCGTGAACTGCAAGCATAAGACCAGCACGCTYCCATCCAGCAATTTRYGCCGYKACRRKYRRMTGGTCTATTYSAYCCTYRTGCRTRRWRGACC >P2

CTACTCCCAGGCCCTTGAGTCCCCGCGTGATTTAGCYGGGRYYRYRRRYTGCAAGCGTACGACCAACACACTCYYRYYYRRMRWWYWACRMYRCTGCGATCAACCAGTCAWKTTCWCSYWTGKKSRYRRRWRRMCM

계통수 분석 - 프로그램 설치

• MEGA 11 프로그램 다운로드: https://www.megasoftware.net/

계통수 분석 - 프로그램 실행/ 파일 불러오기

계통수 분석 - Neighbor-joining tree 작성하기

계통수 분석 - Tree 작성 결과 정리하기

〈MEGA11 결과〉

Tree 결과는 오른쪽 탭에 있는 설정을 통해 조절하여 정리할 수 있음.

- 라벨폰트, 사이즈, 포인트종류, 노드 위치 등,…

계통수 분석 - 계통수 분석 결과

감사합니다.

대전시 유성구 테크노2로 187, B동 412호

bi@bioto.co.kr

042-710-0077

070-7585-5344