Tools for collaborating in teams

(sample solution for the test case)

A test case

Using the gapminder data provided, we are asked to:

- 1. Visualize life expectancy over time for Canada in the 1950s and 1960s using a line plot.
- 2. Something is clearly wrong with this plot! Turns out there's a data error in the data file: life expectancy for Canada in the year 1957 is coded as 999999, it should actually be 69.96. Make this correction.
- 3. Visualize life expectancy over time for Canada again, with the corrected data.

Step-by-step plan of work

- 1. Read the data
- 2. Focus on values of Canada
- 3. Visualize the values for Canada
- 4. See whether we can find the problem
- $5. \dots$ then we'll see \dots

Reading the data

```
life5060 <- read.csv("https://raw.githubusercontent.com/Stat480-at-ISU/materials/master/01_collaborativ
head(life5060)</pre>
```

```
##
        country continent year lifeExp
                                            pop gdpPercap
## 1 Afghanistan
                     Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan
                     Asia 1957
                                30.332 9240934 820.8530
## 3 Afghanistan
                                31.997 10267083 853.1007
                     Asia 1962
## 4 Afghanistan
                                34.020 11537966 836.1971
                     Asia 1967
## 5
                   Europe 1952 55.230 1282697 1601.0561
        Albania
                                59.280 1476505 1942.2842
## 6
        Albania
                   Europe 1957
```

Focus on the values for Canada

```
canada <- life5060 %>% filter(country == "Canada")
head(canada)
```

```
## country continent year lifeExp pop gdpPercap
## 1 Canada Americas 1952 68.75 14785584 11367.16
## 2 Canada Americas 1957 999999.00 17010154 12489.95
## 3 Canada Americas 1962 71.30 18985849 13462.49
## 4 Canada Americas 1967 72.13 20819767 16076.59
```

Visualize

Draw a line for the life expectancy in Canada

```
canada %>%
  ggplot(aes(x = year, y = lifeExp)) +
  geom_line()
```


Find the problematic value and fix it

```
canada %>% filter(year == 1957)

## country continent year lifeExp pop gdpPercap
## 1 Canada Americas 1957 999999 17010154 12489.95

canada_fixed <- canada %>% mutate(
   lifeExp = replace(lifeExp, year==1957, 69.96)
)
```

visualize the fixed data

```
canada_fixed %>% ggplot(aes(x = year, y = lifeExp)) +
  geom_line()
```


... on to the stretch goal ...

Add lines for Mexico and the US

\dots on to the stretch goal \dots

Add lines for Mexico and the US, color lines by country and add a legend

How reproducible is this solution?

- 1. Navigate to https://github.com/stat480-at-isu/materials-2020
- 2. Open the folder ${\tt O1_collaborative-environment}$
- 3. Download the file 02_test-case-solution.Rmd
- 4. Open the file in RStudio.
- 5. "Knit" the file.

R Markdown

- code and text/documentation are interwoven: reproducible and self-documenting.
- extend or refine analyses by copying and modifying code blocks.
- disseminate your work by sharing the RMarkdown file