SAMPLE EXAMPLE OF RANDOM FOREST ALGORITHM:

CODE:

#The problem here is to predict the gas consumption (in millions of gallons) in 48 of the US s tates based on petrol tax (in cents),

#per capita income (dollars), paved highways (in miles) and the proportion of population with the driving license.

import pandas as pd

import numpy as np

dataset = pd.read_csv('petrol_consumption.csv')

dataset.head()

dataset.tail()

#Preparing Data for training

X = dataset.iloc[:, 0:4].values

y = dataset.iloc[:, 4].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

#Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

 $X_{\text{test}} = \text{sc.transform}(X_{\text{test}})$

#Training

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=20, random_state=0)

regressor.fit(X_train, y_train)

 $y_pred = regressor.predict(X_test)$

1 DEPSTAR (CSE)

OUTPUT:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumption
0	9.0	3571	1976	0.525	541
1	9.0	4092	1250	0.572	524
2	9.0	3865	1586	0.580	561
3	7.5	4870	2351	0.529	414
4	8.0	4399	431	0.544	410

Data set glimpses

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumption
43	7.0	3745	2611	0.508	591
44	6.0	5215	2302	0.672	782
45	9.0	4476	3942	0.571	510
46	7.0	4296	4083	0.623	610
47	7.0	5002	9794	0.593	524

Data set glimpses

Mean Absolute Error: 51.76500000000001 Mean Squared Error: 4216.166749999999

Root Mean Squared Error: 64.93201637097064

RMSE with 20 Trees

Mean Absolute Error: 49.30400000000016

Mean Squared Error: 3758.84496000001

Root Mean Squared Error: 61.30941983088733

RMSE with 50 Trees

2 DEPSTAR (CSE)

Root Mean Squared Error: 59.112037818028234

RMSE with 200 Trees

Mean Absolute Error: 48.1766666666667 Mean Squared Error: 3472.820688888889

Root Mean Squared Error: 58.93064303814179

RMSE with 300 Trees

You can see that the error values decreases with the increase in number of estimator. After 200 the rate of decrease in error diminishes, so therefore 200 is a good number for n_estimators

DEPSTAR (CSE)