Introduction to Geostatistics

Andrew Finley¹ & Jeffrey Doser² May 15, 2023

 $^{^{1}\}mathsf{Department}$ of Forestry, Michigan State University.

²Department of Integrative Biology, Michigan State University.

https://doserjef.github.io/CASANR23-Spatial-Modeling/

• Course materials available at

What is spatial data?

- Any data with some geographical information (i.e., spatially indexed)
- Common sources of spatial data: agricultural, climatology, forestry, ecology, environmental health, disease epidemiology, product marketing, etc.
 - have many important predictors and response variables
 - are often presented as maps

What is spatial data?

- Any data with some geographical information (i.e., spatially indexed)
- Common sources of spatial data: agricultural, climatology, forestry, ecology, environmental health, disease epidemiology, product marketing, etc.
 - have many important predictors and response variables
 - are often presented as maps
- Other examples where spatial need not refer to space on earth:
 - Genetics (position along a chromosome)
 - Neuroimaging (data for each voxel in the brain)

Point-referenced spatial data

- Each observation is associated with a location (point)
- Data represents a sample from a continuous spatial domain
- Also referred to as geocoded or geostatistical data

Figure: Pollutant levels in Europe in March, 2009

Point level modeling

- Point-level modeling refers to modeling of point-referenced data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).
- Data from a spatial process $\{Y(\mathbf{s}) : \mathbf{s} \in \mathcal{D}\}$, \mathcal{D} is a subset in Euclidean space.
- Example: Y(s) is a pollutant level at site s
- Conceptually: Pollutant level exists at all possible sites
- Practically: Data will be a partial realization of a spatial process observed at $\{s_1, ..., s_n\}$
- Statistical objectives: Inference about the process Y(s);
 predict at new locations.
- Remarkable: Can learn about entire Y(s) surface. The key: Structured dependence

Exploratory data analysis (EDA): Plotting the data

- A typical setup: Data observed at n locations $\{\mathbf{s}_1, \dots, \mathbf{s}_n\}$
- At each \mathbf{s}_i we observe the response $y(\mathbf{s}_i)$ and a $p \times 1$ vector of covariates $\mathbf{x}(s_i)$
- Surface plots of the data often helps to understand spatial patterns

Figure: Response and covariate surface plots for Dataset 1

What's so special about spatial?

- Linear regression model: $y(\mathbf{s}_i) = \mathbf{x}(s_i)^{\top} \boldsymbol{\beta} + \epsilon(\mathbf{s}_i)$
- $\epsilon(\mathbf{s}_i)$ are iid $N(0, \tau^2)$ errors
- $\mathbf{y} = (y(\mathbf{s}_1), \dots, y(\mathbf{s}_n))^{\top}; \ \mathbf{X} = (\mathbf{x}(\mathbf{s}_1)^{\top}, \dots, \mathbf{x}(\mathbf{s}_n)^{\top})^{\top}$
- Inference: $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \sim N(\boldsymbol{\beta}, \tau^2(\mathbf{X}^{\top}\mathbf{X})^{-1})$
- Prediction at new location \mathbf{s}_0 : $\widehat{y(s_0)} = \mathbf{x}(s_0)^{\top} \hat{\boldsymbol{\beta}}$
- Although the data is spatial, this is an ordinary linear regression model

Residual plots

• Surface plots of the residuals $(y(\mathbf{s}) - y(\mathbf{s}))$ help to identify any spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on $x(\mathbf{s})$

Residual plots

• Surface plots of the residuals $(y(\mathbf{s}) - y(\mathbf{s}))$ help to identify any spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on x(s)

- No evident spatial pattern in plot of the residuals
- The covariate x(s) seem to explain all spatial variation in y(s)
- Does a non-spatial regression model always suffice?

Western Experimental Forestry (WEF) data

- Data consist of a census of all trees in a 10 ha. stand in Oregon
- Response of interest: Diameter at breast height (DBH)
- Covariate: Tree species (Categorical variable)

Western Experimental Forestry (WEF) data

- Data consist of a census of all trees in a 10 ha. stand in Oregon
- Response of interest: Diameter at breast height (DBH)
- Covariate: Tree species (Categorical variable)

- Local spatial patterns in the residual plot
- Simple regression on species seems to be not sufficient

More EDA

Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

More EDA

Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

First law of geography

"Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler

More EDA

 Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern?

First law of geography

"Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler

- In general $(Y(s + h) Y(s))^2$ roughly increasing with ||h|| will imply a spatial correlation
- Can this be formalized to identify spatial pattern?

9

Empirical semivariogram

■ Binning: Make intervals $I_1 = (0, m_1)$, $I_2 = (m_1, m_2)$, and so forth, up to $I_K = (m_{K-1}, m_K)$. Representing each interval by its midpoint t_K , we define:

$$N(t_k) = \{(\mathbf{s}_i, \mathbf{s}_j) : \|\mathbf{s}_i - \mathbf{s}_j\| \in I_k\}, k = 1, \dots, K.$$

Empirical semivariogram:

$$\gamma(t_k) = \frac{1}{2|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$$

- For spatial data, the $\gamma(t_k)$ is expected to roughly increase with t_k
- A flat semivariogram would suggest little spatial variation

Empirical variogram: Data 1

Residuals display little spatial variation

Empirical variograms: WEF data

ullet Regression model: DBH \sim Species

Variogram of the residuals confirm unexplained spatial variation

Modeling with the locations

- When purely covariate based models does not suffice, one needs to leverage the information from locations
- General model using the locations: $y(\mathbf{s}) = \mathbf{x}(\mathbf{s})^{\top} \boldsymbol{\beta} + w(\mathbf{s}) + \epsilon(\mathbf{s})$ for all $\mathbf{s} \in \mathcal{D}$
- How to choose the function $w(\cdot)$?
- Since we want to predict at any location over the entire domain \mathcal{D} , this choice will amount to choosing a surface w(s)
- How should such a surface be chosen?

Gaussian Processes (GPs)

- One popular approach to model w(s) is via Gaussian Processes (GP)
- The collection of random variables $\{w(s) | s \in \mathcal{D}\}$ is a GP if
 - it is a valid stochastic process
 - all finite dimensional densities $\{w(\mathbf{s}_1), \dots, w(\mathbf{s}_n)\}$ follow multivariate Gaussian distribution
- A GP is completely characterized by a mean function $m(\mathbf{s})$ and a covariance function $C(\cdot, \cdot)$
- Advantage: Likelihood based inference. $w = (\mathbf{w}(s_1), \dots, w(s_n))^{\top} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$ where $\mathbf{m} = (m(s_1), \dots, m(s_n))^{\top}$ and $\mathbf{C} = C(s_i, s_i)$

Valid covariance functions and isotropy

- $C(\cdot, \cdot)$ needs to be valid. For all n and all $\{s_1, s_2, \dots, s_n\}$, the resulting covariance matrix $C(s_i, s_j)$ for $(w(s_1), w(s_2), \dots, w(s_n))$ must be positive definite
- So, $C(\cdot, \cdot)$ needs to be a positive definite function
- Simplifying assumptions:
 - Stationarity: $C(\mathbf{s}_1, \mathbf{s}_2)$ only depends on $\mathbf{h} = \mathbf{s}_1 \mathbf{s}_2$ (and is denoted by $C(\mathbf{h})$)
 - Isotropic: $C(\mathbf{h}) = C(||\mathbf{h}||)$
 - Anisotropic: Stationary but not isotropic
- Isotropic models are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for C.

Some common isotropic covariance functions

Model	Covariance function, $C(t) = C(h)$
Spherical	$C(t) = \left\{ egin{array}{ll} 0 & ext{if } t \geq 1/\phi \ \sigma^2 \left[1 - rac{3}{2}\phi t + rac{1}{2}(\phi t)^3 ight] & ext{if } 0 < t \leq 1/\phi \ au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
	$\tau^2 + \sigma^2$ otherwise
Exponential	$C(t) = \left\{ egin{array}{ll} \sigma^2 \exp(-\phi t) & ext{if } t > 0 \ & au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
	$\tau^2 + \sigma^2 \qquad \text{otherwise}$
Powered	$C(t) = \left\{ egin{array}{ll} \sigma^2 \exp(- \phi t ^p) & ext{if } t > 0 \ au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
exponential	$\tau^2 + \sigma^2 \qquad \text{otherwise}$
Matérn	$C(t) = \begin{cases} \sigma^2 (1 + \phi t) \exp(-\phi t) & \text{if } t > 0 \\ \tau^2 + \sigma^2 & \text{otherwise} \end{cases}$
at $ u = 3/2$	$\tau^2 + \sigma^2 \qquad \text{otherwise}$

Notes on exponential model

$$C(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t = 0 \\ \sigma^2 \exp(-\phi t) & \text{if } t > 0 \end{cases}.$$

- We define the effective range, t_0 , as the distance at which this correlation has dropped to only 0.05. Setting $\exp(-\phi t_0)$ equal to this value we obtain $t_0 \approx 3/\phi$, since $\log(0.05) \approx -3$.
- The nugget τ^2 is often viewed as a "nonspatial effect variance,"
- The partial sill (σ^2) is viewed as a "spatial effect variance."
- $\sigma^2 + \tau^2$ gives the maximum total variance often referred to as the sill
- Note discontinuity at 0 due to the nugget. Intentional! To account for measurement error or micro-scale variability.

Covariance functions and semivariograms

• Recall: Empirical semivariogram:

$$\gamma(t_k) = \frac{1}{2|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$$

- For any stationary GP, $E(Y(\mathbf{s} + \mathbf{h}) - Y(\mathbf{s}))^2/2 = C(\mathbf{0}) - C(\mathbf{h}) = \gamma(\mathbf{h})$
- $\gamma(\mathbf{h})$ is the semivariogram corresponding to the covariance function $C(\mathbf{h})$
- $\begin{array}{l} \bullet \quad \text{Example: For exponential GP,} \\ \gamma(t) = \left\{ \begin{array}{ll} \tau^2 + \sigma^2(1 \exp(-\phi t)) & \text{if } t > 0 \\ 0 & \text{if } t = 0 \end{array} \right., \text{ where } t = ||\mathbf{h}|| \end{array}$

Covariance functions and semivariograms

Covariance functions and semivariograms

The Matèrn covariance function

• The Matèrn is a very versatile family:

$$C(t) = \begin{cases} \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\nu}t\phi)^{\nu} K_{\nu}(2\sqrt{(\nu)}t\phi) & \text{if } t > 0\\ \tau^2 + \sigma^2 & \text{if } t = 0 \end{cases}$$

 K_{ν} is the modified Bessel function of order ν (computationally tractable)

- ν is a smoothness parameter controlling process smoothness. Remarkable!
- ullet u=1/2 gives the exponential covariance function

Kriging: Spatial prediction at new locations

- Goal: Given observations $\mathbf{w} = (w(\mathbf{s}_1), w(\mathbf{s}_2), \dots, w(\mathbf{s}_n))^{\top}$, predict $w(\mathbf{s}_0)$ for a new location \mathbf{s}_0
- If w(s) is modeled as a GP, then $(w(s_0), w(s_1), \dots, w(s_n))^{\top}$ jointly follow multivariate normal distribution
- $w(\mathbf{s}_0) \mid \mathbf{w}$ follows a normal distribution with
 - Mean (kriging estimator): $m(s_0) + c^{\top}C^{-1}(w m)$
 - where $m = E(\mathbf{w})$, $\mathbf{C} = Cov(\mathbf{w})$, $\mathbf{c} = Cov(\mathbf{w}, w(\mathbf{s}_0))$
 - Variance: $\mathbf{C}(\mathbf{s}_0, \mathbf{s}_0) \mathbf{c}^{\top} \mathbf{C}^{-1} \mathbf{c}$
- The GP formulation gives the full predictive distribution of w(s₀)|w

Modeling with GPs

Spatial linear model

$$y(\mathbf{s}) = x(\mathbf{s})^{\top} \beta + w(\mathbf{s}) + \epsilon(\mathbf{s})$$

- w(s) modeled as $GP(0, C(\cdot | \theta))$ (usually without a nugget)
- $\epsilon(\mathbf{s}) \stackrel{\text{iid}}{\sim} N(0, \tau^2)$ contributes to the nugget
- Under isotropy: $C(\mathbf{s} + \mathbf{h}, \mathbf{s}) = \sigma^2 R(||\mathbf{h}||; \phi)$
- $\mathbf{w} = (w(\mathbf{s}_1), \dots, w(\mathbf{s}_n))^{\top} \sim N(\mathbf{0}, \sigma^2 \mathbf{R}(\phi))$ where $\mathbf{R}(\phi) = \sigma^2(R(||s_i s_j||; \phi))$
- $\mathbf{y} = (y(\mathbf{s}_1), \dots, y(\mathbf{s}_n))^{\top} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{R}(\phi) + \tau^2 \mathbf{I})$

Parameter estimation

- $\mathbf{y} = (y(\mathbf{s}_1), \dots, y(\mathbf{s}_n))^{\top} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{R}(\phi) + \tau^2 \mathbf{I})$
- We can obtain MLEs of parameters β , τ^2 , σ^2 , ϕ based on the above model and use the estimates to krige at new locations
- In practice, the likelihood is often very flat with respect to the spatial covariance parameters and choice of initial values is important
- Initial values can be eyeballed from empirical semivariogram of the residuals from ordinary linear regression
- Estimated parameter values can be used for kriging

Model comparison

- For *k* total parameters and sample size *n*:
 - AIC: $2k 2\log(l(\mathbf{y} | \hat{\beta}, \hat{\theta}, \hat{\tau}^2))$
 - BIC: $\log(n)k 2\log(l(\mathbf{y} | \hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}}, \hat{\tau^2}))$
- Prediction based approaches using holdout data:
 - Root Mean Square Predictive Error (RMSPE):

$$\sqrt{\frac{1}{n_{out}}\sum_{i=1}^{n_{out}}(y_i-\hat{y}_i)^2}$$

- Coverage probability (CP): $\frac{1}{n_{out}} \sum_{i=1}^{n_{out}} I(y_i \in (\hat{y}_{i,0.025}, \hat{y}_{i,0.975}))$
- Width of 95% confidence interval (CIW): $\frac{1}{n_{\text{out}}} \sum_{i=1}^{n_{\text{out}}} (\hat{y}_{i,0.975} \hat{y}_{i,0.025})$
- The last two approaches compares the distribution of y_i instead of comparing just their point predictions

Back to WEF data

Table: Model comparison

	Spatial	Non-spatial
AIC	4419	4465
BIC	4448	4486
RMSPE	18	21
CP	93	93
CIW	77	82

WEF data: Kriged surfaces

Summary

- Geostatistics Analysis of point-referenced spatial data
- Surface plots of data and residuals
- EDA with empirical semivariograms
- Modeling unknown surfaces with Gaussian Processes
- Kriging: Predictions at new locations
- Spatial linear regression using Gaussian Processes