- 1. (Poisson Regression) The independent random variables Y_i , i = 1, 2, ...n, represent the outcomes of a Poisson experiment where the mean μ_i is proportional to the value of x_i . That is, $Y_i \sim Poisson(\mu_i)$ and $\mu_i = \gamma x_i$, Assume that the x_i , values are known constants.
- a) Find the MLE of γ

$$\begin{split} L(\gamma) &= \prod_{i=1}^{n} (\frac{\mu_{i}^{y_{i}}}{y_{i}!} e^{-\mu_{i}}) = \prod_{i=1}^{n} \frac{(\gamma x_{i})^{y_{i}} e^{-\gamma x_{i}}}{y_{i}!} = \frac{\gamma^{\sum_{i=1}^{n} y_{i}} \prod_{i=1}^{n} x_{i}^{y_{i}}}{\prod_{i=1}^{n} y_{i}!} e^{-\gamma \sum_{i=1}^{n} x_{i}}, \quad y_{i} \in \mathbb{0}, 1, 2... \\ l(\gamma) &= \ln \gamma \sum_{i=1}^{n} y_{i} + \sum_{i=1}^{n} x_{i}^{y_{i}} - \sum_{i=1}^{n} \ln y_{i}! - \gamma \sum_{i=1}^{n} x_{i}} \\ l'(\gamma) &= \frac{\sum_{i=1}^{n} y_{i}}{\gamma} - \sum_{i=1}^{n} x_{i} \stackrel{\text{set}}{=} 0 \\ \hat{\gamma}_{MLE} &= \frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}} \end{split}$$

b) Find the mean and variance of $\hat{\gamma}_{MLE}$

For x_i are known constants. $Y_i \sim Poisson(\mu_i)$, $E[y_i] = Var[y_i] = \mu_i = \gamma x_i$,

$$E[\hat{\gamma}_{MLE}] = \frac{E[\sum_{i=1}^{n} y_i]}{\sum_{i=1}^{n} x_i} = \frac{\sum_{i=1}^{n} E[y_i]}{\sum_{i=1}^{n} x_i} = \frac{\sum_{i=1}^{n} \gamma x_i}{\sum_{i=1}^{n} x_i} = \gamma$$

For Y_i are independent random variables, $Cov(y_i, y_j) = 0$, $i \neq j$, $Var[\sum_{i=1}^n y_i] = \sum_{i=1}^n Var[y_i]$

$$Var[\hat{\gamma}_{MLE}] = \frac{Var[\sum_{i=1}^{n} y_i]}{(\sum_{i=1}^{n} x_i)^2} = \frac{\sum_{i=1}^{n} Var[y_i]}{(\sum_{i=1}^{n} x_i)^2} = \frac{\sum_{i=1}^{n} \gamma x_i}{(\sum_{i=1}^{n} x_i)^2} = \frac{\gamma}{\sum_{i=1}^{n} x_i}$$

2. Consider the regression model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i = 1,...,n. Find the maximum likelihood estimates of the paramiters if:

a) $\varepsilon_i \sim N(0, \sigma^2 x_i^2)$, independent for i = 1, ..., n.

For $E[\varepsilon_i] = 0$, $Var[\varepsilon_i] = \sigma^2 x_i^2$, x_i and ε_i are independents,

$$E[y_i] = E[\beta_0 + \beta_1 x_i] + E[\varepsilon_i] = \beta_0 + \beta_1 x_i$$

$$Var[y_i] = Var[\beta_0 + \beta_1 x_i] + Var[\varepsilon_i] = \sigma^2 x_i^2$$

From Slutsky's theorem? C.L.T.?

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2 x_i^2)$$

$$f_Y(y_i) = \frac{1}{x_i \sqrt{2\pi\sigma^2}} e^{\frac{-1}{2\sigma^2 x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2}$$

$$L(\sigma) = \prod_{i=1}^{n} (x_i \sqrt{2\pi\sigma^2})^{-1} e^{\sum_{i=1}^{n} \frac{-1}{\sigma^2 x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2} = (2\pi\sigma^2)^{-\frac{n}{2}} (\prod_{i=1}^{n} x_i)^{-1} e^{\sum_{i=1}^{n} \frac{-1}{\sigma^2 x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2}$$

$$l(\sigma) = -n \ln \sigma^2 - \frac{n}{2} \ln (2\pi) - \ln(\prod_{i=1}^n x_i) - \sum_{i=1}^n \frac{1}{\sigma^2 x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2$$
$$l'(\sigma) = -\frac{n}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n \frac{1}{x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2 \stackrel{\text{set}}{=} 0$$
$$\hat{\sigma}_{MLE} = \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2$$

b)
$$\varepsilon_i \sim i.i.d.$$
 $f(\varepsilon; \lambda) = \frac{\lambda}{2} e^{-\lambda |x|}.$ $\varepsilon_i = y_i - \beta_0 - \beta_1 x_i +$ $f_Y(y_i) = \frac{\lambda}{2} e^{-\lambda |y_i - \beta_0 - \beta_1 x_i|}$

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda}{2} e^{-\lambda |y_i - \beta_0 - \beta_1 x_i|}\right) = \lambda^n 2^{-n} e^{-\lambda \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|}$$

$$l(\lambda) = n \ln \lambda - n \ln 2 - \lambda \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|$$

$$l'(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \stackrel{\text{set}}{=} 0$$

$$\hat{\lambda}_{MLE} = \frac{n}{\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|}$$

- 3. Finde the finite breakdown point and the infinite breakdown point for
- a) the Mean Absolute Deviation, or $\frac{1}{n}\sum_{i=1}^{n}|X_i-\bar{X}_i|$.

The finite breakdown point is the smallest proportion m/n of the sample values such that $|\hat{\theta}^* - \hat{\theta}|$ can be made arbitarily large by corrupting m data values and computing $\hat{\theta}^*$, where n is the samle size, $\hat{\theta}$ is the estimator. The limit as $n \to \infty$ is called the breakdown point.

Replace X_i with X_i^*

$$|\hat{\theta}^* - \hat{\theta}| = |\frac{1}{n} \sum_{i=1}^n |X_n^* - \bar{X}_i| - \frac{1}{n} \sum_{i=1}^n |X_n - \bar{X}_i|| = \frac{1}{n} |X_n^* - X_n| = \frac{1}{n}$$

The breakdown point = $\frac{1}{n}$

$$\lim_{n\to\infty} |\hat{\theta}^* - \hat{\theta}| = \lim_{n\to\infty} \frac{1}{n} = 0$$

b) the Median Absolute Deviation, or Median $\{(X_1 - \bar{X}_i), ..., (X_n - \bar{X}_i)\}$.

When n is even,

$$|\hat{\theta}^* - \hat{\theta}| = |(X_{\frac{n}{2}}^* - \bar{X}_i) - (X_{\frac{n}{2}} - \bar{X}_i)| = |X_{\frac{n}{2}}^* - X_{\frac{n}{2}}|$$

The breakdown point $=\frac{n/2}{n}=\frac{1}{2}$

$$\lim_{n\to\infty} |\hat{\theta}^* - \hat{\theta}| = \lim_{n\to\infty} (\frac{1}{2}) = \frac{1}{2}$$

When n is odd,

$$|\hat{\theta}^* - \hat{\theta}| = |(X_{\frac{n+1}{2}}^* - \bar{X}_i) - (X_{\frac{n+1}{2}} - \bar{X}_i)| = |X_{\frac{n+1}{2}}^* - X_{\frac{n+1}{2}}|$$

The breakdown point $=\frac{(n+1)/2}{n}=\frac{1}{2}+\frac{1}{2n}$

$$\lim_{n \to \infty} |\hat{\theta}^* - \hat{\theta}| = \lim_{n \to \infty} (\frac{1}{2} + \frac{1}{2n}) = \frac{1}{2}$$

4. Assume that $X_1, X_2, ... X_n$ are i.i.d. Uniform(a, b). Find the asymptotic relative efficiency of the sample median to the sample mean.

For
$$X \sim Unif(a,b)$$
, $E[X] = \frac{a+b}{2}$, $Var[X] = \frac{(b-a)^2}{12}$, $\bar{X} = \frac{1}{n} \sum_{i=1}^n x_i$,

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[x_{i}] = \frac{1}{n}\sum_{i=1}^{n}\frac{a+b}{2} = \frac{a+b}{2}$$

For X_i are independent,

$$Var[\bar{X}] = Var[\frac{1}{n}\sum_{i=1}^{n}x_i] = \frac{1}{n^2}\sum_{i=1}^{n}Var[x_i] = \frac{1}{n^2}\sum_{i=1}^{n}\frac{(b-a)^2}{12} = \frac{(b-a)^2}{12n}$$

From Slutsky's theorem? C.L.T.?

$$\bar{X} \sim N(\frac{a+b}{2}, \frac{(b-a)^2}{12n})$$

For large n, the sample median $m_n \approx N(M, \frac{1}{4nf^2(M)})$, where M is the population median, f(x) is the p.d.f. of X

$$E[m_n] = M$$

$$Var[m_n] = \frac{1}{4nf^2(M)} = \frac{(b-a)^2}{4n}$$

The asymptotic relative efficiency of m_n to \bar{X}

$$= \frac{Var[\bar{X}]}{Var[m_n]} = \frac{\frac{(b-a)^2}{12n}}{\frac{(b-a)^2}{4n}} = \frac{1}{3}$$

3

Therefore, the sample mean is asymptotic more efficiency than sample median.