4.10 Do Now: Quadratics, function operations, linear equations

1. [Maximum mark: 6]

The diagram shows part of the graph of the quadratic function f.

The vertex is at (2,-1) and the x-intercepts are at 1 and 3.

The function f can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down the value of h and k. [2]

The function can also be written in the form f(x) = (x - a)(x - b).

- (b) Write down the value of a and b. [2]
- (c) Find the y-intercept. [2]

2. [Maximum mark: 6]

The diagram below shows the graph of a function f for $-\frac{5}{2} \le x \le 3$.

(a) Write down the value of f(-2).

[1]

(b) Write down the value of $f^{-1}(1)$.

[2]

(c) Sketch the graph of f^{-1} on the grid.

[3]

3. [Maximum mark: 5]

The diagram shows the straight line L_1 , which intersects the x-axis at A(j,0) and the y-axis at B(0,k).

diagram is not to scale

The equation of L_1 is $y = -\frac{2}{5}x + 3$.

(a) Find the value of

i. *j*

ii. k

(b) The line L_2 is perpendicular to L_1 and passes through (4,3).

i. Write down the gradient for the line L_2 .

[1]

[2]

[2]

ii. Hence, write down the equation of L_2 . Leave your answer in the form y-a=m(x-b).

4. [N	Maximum mark: 5]	
Le	et $f(x) = x + 3$ and $g(x) = x^2$, for $x \in R$.	
((a) Find x such that $f(x) = 0$.	[1
((b) Find $(f \div g)(1)$.	[1
((c) Find $(g \circ f)(x)$.	[1
((d) Find $f^{-1}(7)$.	[2