SMART WASTE MANAGEMENT SYSTEM FOR METEROPOLITAN CITIES

TECHNOLOGY: IOT

TEAM ID: PNT2022TMID15872

Submitted By

NANDHINI N (927619BEC4125)

NARMADHA B (927619BEC4127)

RANJANI S (927619BEC4163)

RITHIKA SHREE B (927619BEC4165)

SARUMATHI T (927619BEC4182)

CONTENTS

1.INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA
- **7. CODING & SOLUTIONING** (Explain the features added in the project along with code)
 - 7.1 Feature 1
 - 7.2 Feature 2
 - 7.3 Database Schema (if Applicable)
- 8. TESTING
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9. RESULTS
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview

Garbage may consists of unwanted material leftover from City, Public area, Society, College, home etc. For the smart lifestyle, cleanliness is needed, and cleanliness begins with Garbage Bin. Pollution is the spread of contaminants into an environment that causes instability, disorder, harm or discomfort to the environment. Solid waste management is one of the major environmental problems of India. Solid waste management is the collection, transport, disposal, managing and monitoring of waste material. Garbage may consist of the municipal solid waste construction waste, commercial waste, industrial waste etc... left over the city. This project is related to the "Smart City" and based on "Internet of Things" (IOT). To overcome the wate management problem, a web page is built to show the status to the user monitoring it. Once the garbage bin gets filled, the solenoid lock will be locked. Only after the user unlocks it, garbage bin can be used again. Thus we can avoid spilling of waste in public places, which in turn leads to a healthy environment.

1.2 Purpose

For healthy lifestyle cleanliness is needed and it begins with the use of trash bins. This project will help to eradicate or minimize the solid waste disposal problem. In present scenario, many times we see the garbage bins gets overloaded due to increase in solid waste everyday. It creates unhygienic environment and bad smell in the society and because of this many disease get spread in the society, to avoid this situation we are designing "Smart Waste Management System using Internet of Things" In this proposed system the multiple trash bins are located throughout the city, these trash bins are embedded with low cost embedded device. The proposed system is cost effective because it will notify to the organization and they will get time to optimize the cost of transportation.

2.LITERATURE SURVEY

2.1 Existing Problem

We have noticed that our city is filled with garbage at every nook and corner. I am trying to prevent people from disease caused by spilling of garbage. But it is not possible to find a solution only by giving awareness to people about spillage of garbage. Because giving awareness does not reach every person which makes me feel to develop a project on waste management to prevent each and every individual from disease. Thus we can keep our environment clean and disease free.

2.2 References

- 1. M. Batty, "Smart Cities, Big Data," Environment and Planning B: Planning and Design 2012, vol. 39,pp. 191–93.
- 2. Pedro Reis, Rui Pitarma, Celistino Goncalves, Intelligent System for Valorizing Solid Urban Waste, Filipe Caetano Faculty of Engineering UBI University of Beira Interior Covilha, Portugal, 2015.
- 3. Adnan Aijaz, Member, IEEE; Cognitive Machine-toMachine Communications for Internet-of-Things: A Protocol Stack Perspective.
- 4. Dr.K.G.Srinivasa Head of the Department; Department of Computer Science; M S Ramaiah Institute of Technology.
- 5. Ni-Bin Chang, Smart and Green Urban Solid Waste Collection Systems: Advances, Challenges, and Perspectives.
- 6. Ikuo Ihara; Nagaoka University of Technology; Ultrasonic Sensing: Fundamentals and Its Applications to Non-destructive Evaluation.
- 7. Navghane S.S., Killedar M.S., Rohokale Dr.V.M, IoT Based Smart Garbage and Waste Collection Bin, International Journal of Advanced Research in Electronics and Communication Engineering.
- 8. Gaikwad Prajakta, Jadhav Kalyani, Machale Snehal, Smart Garbage Collection System In Residential Area, International Journal of Research in Engineering and Technology.

- 9. Tarandeep Singh, Rita Mahajan, Deepak Bagai, Smart Waste Management using Wireless Sensor Network, International Journal of Innovative Research in Computer and Communication Engineering.
- 10. Sahu R.M., Akshay Godase, Pramod Shinde, Reshma Shinde Garbage and Street Light Monitoring System Using Internet of Things, International Journal Of Innovative Research In Electrical, Electronics, Instrumentation And Control Engineering.

2.3 Problem Statement Definition

Due to increase in population in metropolitan cities, the disposal of waste is also increased. A big challenge in the urban cities is solid waste management. People throw garbage on that dustbin which is already overflowed. Sometimes due to unclean garbage bins bad smell arises also toxic and unhygienic gases are produced which is way to support to the air pollution and to some harmful diseases which are easily spreadable. Nowadays, there are tons of flats and apartments which have been built in the rapid urbanization area. This is due to high housing demands which have been drastically risen as a result of migration from villages to cities to find work. In order to accommodate the growing population in the urban area, the government has also constructed more apartment complexes. There are several issues faced by the residents of the flats. One of them is disposal of solid waste. Unlike private houses, the residents of all the apartments use a common dustbin, which tends to fill up very quickly. This overflowing of garbage is a sanitary issue which might cause diseases like cholera and dengue. Moreover it is a waste of fuel to travel around a complex or an area to find that some of the garbage are filled and some are not. One of the main concerns with our environment has been solid waste management which impacts the health and environment of our society. The detection, monitoring and management of waste is one of the primary problems of the present era.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brain Storming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	There are several issues faced by the residents of the flats. One of them is the disposal of solid waste. This is due to high housing demands which have drastically risen because of migration from villages to cities to find work.

		The garbage level in dustbins is monitored
		continuously and lock the dustbin with help of a
2.	Idea / Solution description	solenoid lock if the dustbin gets filled. Thus no one
		can able to open it before the disposal of waste.
		In this project, we used an ultrasonic sensor to
		detect the garbage level and solenoid lock.
3.	Novelty / Uniqueness	Once the dustbin is filled the sensor automatically
		sends the notification through IoT and activates the
		lock, then the dustbin will get locked.
	Social Impact / Customer Satisfaction	Makes a clean and healthy environment.
4.		To automate the waste management process
		efficiently. This avoids voids infectious diseases like
		dengue, cholera, and parasitic diseases.
		Waste Management incurs costs in relation to the
	Business Model (Revenue Model) social and economic quality.	procurement of supplies and equipment – including
		vehicles, the development of its website and online
5.		platform, the maintenance of its IT and
		communications infrastructure, the operation of its
		physical waste management facilities, the
		management of its partnerships, the implementation
		of marketing and advertising campaigns, and the
		retention of its personnel.

6. Scalability of the Solution

Smart cities can create safe and sustainable environments that are centerd on the well-being of their inhabitants. They can and do achieve that success by focusing on accessibility, transportation, improved healthcare, and reduced waste to improve social and economic quality.

3.4 Problem Solution Fit

1. CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS CS The garbage level in dustbins is monitored Each and every individual in the Since metropolitan cities covers large area, continuously monitored and once if the society implementation of this project requires dustbin gets filled it automatically gets more time and each and every individual locked and the message will be sent to the should work for it. Also we are lack of municipality workers. This will be the best development of technology in this field is a major issue. solution for this problem. 2. JOBS-TO-BE-DONE / PROBLEMS 7. BEHAVIOUR 9. PROBLEM ROOT CAUSE J&P There are several issues faced by the residents The main reason for this problem is increase They should inform the municipality of the flats. One of them is the disposal of in population in metropolitan cities. This is workers about the problem or they should solid waste. This is due to high housing mainly due to development of the voluntarily involve in waste management demands which have drastically risen because technology and people started to migrate activities. of migration from villages to cities to find form rural areas to urban due to work. unemployment. 10. YOUR SOLUTION 8. CHANNELS of BEHAVIOUR They get triggered after seeing the people who are Online: Advertising about the issue in internet, affected with some diseases like cholera, typhoid and Our solution for this problem is the garbage television, and creating some postures about the some skin diseases due to the improper handling of level of the dustbin is continuously waste. And also by seeing awareness programs about impact of the problem. monitored by the sensor and once if the waste management. dustbin get filled, it automatically gets Offline: Organising a campaign and awareness 4. EMOTIONS: BEFORE / AFTER locked. Simultaneously message will be sent program in public places and schools. to the respective municipality worker and Before: They get affected with some air borne then he can dispose the waste effectively. diseases and the city is also more polluted. After: But it helps them to diagnose about the problem in early stage and they took some effective measures in waste management to avoid the problem.

4. REQUIREMENTS

4.1 Functional Requirements

FR No.	Functional	Description			
	Requirement				
		All monitored bins and stands can be seen on the map			
		and you can visit them at any time via the Street View			
		feature from Google. Bins or stands are visible on the ma			
FR-1	Detailed bin	as green, orange or red circles. You can see bin details in the			
	inventory	Dashboard – capacity, waste type, last measurement, GPS			
		location and Collection schedule or pick recognition.			
		The Dashboard displays real-time data on fill-levels of			
		bins monitored by smart sensors. In addition to the % of fill-			
		level, based on the historical data, the tool predicts when the			
		bin will become full, one of the functionalities that are no			
FR-2	Real time bin	included even in the best waste management software.			
	monitoring	Sensors recognize picks as well; so you can check when the			
		bin was last collected. With real-time data and predictions,			
		you can eliminate the overflowing bins and stop collecting			
		half-emptyones.			
		We help you identify bins that drive up your collection			
		costs. The tool calculates a rating for each bin in terms of			
		collection costs. The tool considers the average distance			
FR-3	Expensive bins	depo-bin-discharge in the area. The tool assigns bin a rating			
		(1-10) and calculates distance from depo-bin discharge.			

		Ensure the most optimal distribution of bins. Identify
		areas with either dense or sparse bin distribution. Make sure
FR-4	Adjust bin	all trash types are represented within a stand. Based on the
	distribution	historical data, you can adjust bin capacity or location where
		necessary.
		Eliminate the collection of half-empty bins. The sensors
		recognize picks. By using real-time data on fill-levels and
		pick recognition, we can show you how full the bins you
FR-5	Eliminate	collect are. The report shows how full the bin was when
	inefficient picks	picked. You immediately see any inefficient picks below
		80% full.
		The tool semi-automates waste collection route planning.
		Based on current bin fill-levels and predictions of reaching
FR-6	Plan waste	full capacity, you are ready to respond and schedule waste
	collection routes	collection. You can compare planned vs executed routes to
		identify any inconsistencies.

4.2 Non - Functional Requirements

FR No.	Non-Functional Requirement	Description				
	requirement	IoT device verifies that usability is a special and				
NED 4	Usability	important perspective to analyze user requirements, which				
NFR-1	can further improve the design quality. In the design process					
		with user experience as the core, the analysis of users'				
		product usability can indeed help designers better understand				

		users' potential needs in waste management, behavior and			
		experience.			
		Use a reusable bottles			
NFR-2	Security	Use reusable grocer bags			
11111-2	Security	Purchase wisely and recycle			
		Avoid single use food and drink containers.			
		Smart waste management is also about creating better			
		working conditions for waste collectors and drivers. Instead			
NIED 2	Daliahilia	of driving the same collection routes and servicing empty			
NFR-3	Reliability	bins, waste collectors will spend their time more efficiently,			
		taking care of bins that need servicing.			
		The Smart Sensors use ultrasound technology to measure			
		the fill levels (along with other data) in bins several times a			
	Performance	day. Using a variety of IoT networks ((NB-IoT, GPRS), the			
NFR-4		sensors send the data to Sensoneo's Smart Waste			
		Management Software System, a powerful cloud-based			
		platform, for data- driven daily operations, available also as			
		a waste management app.			
		By developing & deploying resilient hardware and			
NFR-5	Availability	beautiful software we empower cities, businesses, and			
		countries to manage waste smarter.			
	Scalability	Using smart waste bins reduce the number of bins inside			
NFR-6		town, cities coz we able to monitor the garbage 24/7 more			
		cost effect and scalability when			
		we moves to smarter.			

5. POJECT DESIGN

5.1 Dataflow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within the system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leave the system, what changes information, and where data is saved. A smart waste management platform uses analytics to transfer the data gather in your into actionable insights to help you improve your waste service. You can receive data on metric such as

5.2 Solution & Technical Architecture

A smart waste management platform uses analytics to transfer the data gather in your into actionable insights to help you improve your waste service. You can receive data on metric such as:

- The first test conducted is the situation where the garbage bin is empty or its garbage level is very low.
- Then, the bin is filled with more garbage until its level has surpassed the first threshold value which is aid to 80% then the first warning SMS is being sent, as depicted.
- The first notification SMS sent by the system, once the waste reaches the level of 85% full.
- The second notification SMS sent by the system, indicating that bin is at least 95% full and the garbage needs to be collected immediately.
- Locations prone to overflow
- The number of bins needed to avoid overflowing waste is reduced.
- The number of collection services that could be saved
- > The amount of fuel could be saved
- > The driving distance could be saved

5.3 User Stories

User Type	Functional Requireme nt(Epic)	User Story Numb er	User Story/Task	Acceptance Criteria	Priority	Release
Admin(Who			As an Admin, I gave	I can manage		
Manage web	Login	USN-1	user id and password	web account /	Medium	Sprint-2
Server)			for ever workers and	dashboard		
			manage them.			
			As a Co Admin, I'll	I can manage		
			manage garbage	garbage		
			level monitor if	monitoring		
Co Admin	Login	USN-2	garbage get filling		High	Sprint-1
			alert will post location			
			and garbage id to trash			
			truck			
			As Truck Driver, I'll	I can drive to		
			follow the route send	reach the		
TruckDriver	Login	USN-3	by Co Admin to reach	garbagefilled	Medium	Sprint-2
			the filled garbage	route in shortest		
				route given		
			As a Waste Collector,	I can collect		
Local			I'll collectall the trash	trachand pulled		
Garbage	Login	USN-4	from garbage and load	to truck and	Medium	Sprint-2
Collector			into garbage truck and	send off		
			send them to landfill			
			As a Municipality, I'll	I can manage all		
			check the process are	these process are		
Municipality	Login	USN-5	happening in	going good	High	Sprint-1
			discipline manner			
			without any issues			

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	Task	Story Points	Priority	Team Members
Sprint-1	Registration	As a team lead, I can enrolled for the project by entering my email, password and within that I can enter my team members name and their email.		High	Narmadha B
Sprint-1		As a team lead, I will receive confirmation email once, I have enrolled for the projectwith team id and along with team members name.		High	Narmadha B
Sprint-2	Login	As a team member, I can login to the IBM portal by entering email & password		Medium	Nandhini N
Sprint-2		As a team member, I can login to the IBM portal by entering email & password		Medium	Ranjani S
Sprint-2		As a team member, I can login to the IBM portal by entering email & password		Medium	Rithikashree B
Sprint-2		As a team member, I can login to the IBM portal by entering email & password		Medium	Sarumathi T

6.2 Sprint delivery Schedule

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint StartDate	Sprint End Date (Planned)	Story Points Complete d (Planned EndDate)	Sprint ReleaseDate (Actual)
Sprint-1	20	6 Days	22 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	06 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	07 Nov 2022

Velocity:

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

DELIVERY OF SPRINT – 1

Functional Requirement – Sign in / Sign up

User story: USN - 1

HTML CODE:

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Smart Waste Management System</title>
<!-- Bootstrap 4 CSS CDN -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-</pre>
bootstrap/4.5.2/css/bootstrap.min.css" />
<!-- Fontawesome CSS CDN -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/5.14.0/css/all.min.css" />
<link rel="stylesheet" href="css/style.css" />
</head>
<body class="bg-info">
<div class="container">
<!-- Login Form Start -->
<div class="row justify-content-center wrapper" id="login-box">
```

```
<div class="col-lg-10 my-auto myShadow">
<div class="row">
<div class="col-lg-7 bg-white p-4">
<h1 class="text-center font-weight-bold text-primary">Sign in</h1>
<hr class="my-3"/>
<form action="#" method="post" class="px-3" id="login-form">
<div class="input-group input-group-lg form-group">
<div class="input-group-prepend">
<span class="input-group-text rounded-0"><i class="far fa-envelope fa-lg"</pre>
fa-fw"></i></span>
</div>
<input type="email" id="email" name="email" class="form-control rounded-0"</pre>
placeholder="E-Mail" required />
</div>
<div class="input-group input-group-lg form-group">
<div class="input-group-prepend">
<span class="input-group-text rounded-0"><i class="fas fa-key fa-lg fa-fw"></i></span>
</div>
     <input type="password" id="password" name="password" class="form-control</pre>
rounded-0" minlength="5" placeholder="Password" required autocomplete="off" />
</div>
<div class="form-group clearfix">
```

```
<div class="custom-control custom-checkbox float-left">
<input type="checkbox" class="custom-control-input" id="customCheck" name="rem" />
<label class="custom-control-label" for="customCheck">Remember me</label>
</div>
<div class="forgot float-right">
<a href="#" id="forgot-link">Forgot Password?</a>
</div>
</div>
<div class="form-group">
<input type="submit" id="login-btn" value="Sign In" class="btn btn-primary btn-lg btn-</pre>
block myBtn"/>
</div>
</form>
</div>
<div class="col-lg-5 d-flex flex-column justify-content-center myColor p-4">
<h1 class="text-center font-weight-bold text-white">Welcome Friend!</h1>
<hr class="my-3 bg-light myHr" />
Start your initiative to make your
environment clean
<button class="btn btn-outline-light btn-lg align-self-center font-weight-bolder mt-4</pre>
myLinkBtn" id="register-link">Sign Up</button>
</div>
</div>
</div>
```

```
</div>
<!-- Login Form End -->
<!-- Registration Form Start -->
<div class="row justify-content-center wrapper" id="register-box" style="display: none;">
<div class="col-lg-10 my-auto myShadow">
<div class="row">
<div class="col-lg-5 d-flex flex-column justify-content-center myColor p-4">
<h1 class="text-center font-weight-bold text-white">Welcome Back!</h1>
<hr class="my-4 bg-light myHr" />
To stay connected Please login
with your personal info.
<button class="btn btn-outline-light btn-lg font-weight-bolder mt-4 align-self-center</pre>
myLinkBtn" id="login-link">Sign In</button>
</div>
<div class="col-lg-7 bg-white p-4">
<h1 class="text-center font-weight-bold text-primary">Create Account</h1>
<hr class="my-3"/>
</div>
     <input type="password" id="password" name="password" class="form-control</pre>
rounded-0" minlength="5" placeholder="Password" required autocomplete="off" />
</div>
<div class="form-group clearfix">
<div class="custom-control custom-checkbox float-left">
```

```
<input type="checkbox" class="custom-control-input" id="customCheck" name="rem" />
<label class="custom-control-label" for="customCheck">Remember me</label>
</div>
<div class="forgot float-right">
<a href="#" id="forgot-link">Forgot Password?</a>
</div>
</div>
<div class="form-group">
<input type="submit" id="login-btn" value="Sign In" class="btn btn-primary btn-lg btn-
block myBtn"/>
</div>
</form>
</div>
<div class="col-lg-5 d-flex flex-column justify-content-center myColor p-4">
<h1 class="text-center font-weight-bold text-white">Welcome Friend!</h1>
<hr class="my-3 bg-light myHr" />
Start your initiative to make your
environment clean
<button class="btn btn-outline-light btn-lg align-self-center font-weight-bolder mt-4</pre>
myLinkBtn" id="register-link">Sign Up</button>
</div>
</div>
</div>
</div>
```

<!-- Login Form End -->

<!-- Registration Form Start -->

```
<div class="row justify-content-center wrapper" id="register-box" style="display: none;">
<div class="col-lg-10 my-auto myShadow">
<div class="row">
<div class="col-lg-5 d-flex flex-column justify-content-center myColor p-4">
<h1 class="text-center font-weight-bold text-white">Welcome Back!</h1>
<hr class="my-4 bg-light myHr" />
To stay connected Please login
with your personal info.
<button class="btn btn-outline-light btn-lg font-weight-bolder mt-4 align-self-center</pre>
myLinkBtn" id="login-link">Sign In</button>
</div>
<div class="col-lg-7 bg-white p-4">
<h1 class="text-center font-weight-bold text-primary">Create Account</h1>
<hr class="my-3"/>
<div class="col-lg-10 my-auto myShadow">
<div class="row">
<div class="col-lg-7 bg-white p-4">
<h1 class="text-center font-weight-bold text-primary">Forgot Your Password?</h1>
<hr class="my-3"/>
```

To reset your password, enter the
registered e-mail adddress and we will send you password reset instructions on your email!

```
<form action="#" method="post" class="px-3" id="forgot-form">
<div id="forgotAlert"></div>
<div class="input-group input-group-lg form-group">
<div class="input-group-prepend">
<span class="input-group-text rounded-0"><i class="far fa-envelope fa-lg"></i></span>
</div>
<input type="email" id="femail" name="email" class="form-control rounded-0"</pre>
placeholder="E-Mail" required />
</div>
<div class="form-group">
<input type="submit" id="forgot-btn" value="Reset Password" class="btn btn-primary btn-
lg btn-block myBtn" />
</div>
</form>
</div>
<div class="col-lg-5 d-flex flex-column justify-content-center myColor p-4">
<h1 class="text-center font-weight-bold text-white">Reset Password!</h1>
<hr class="my-4 bg-light myHr" />
<button class="btn btn-outline-light btn-lg font-weight-bolder myLinkBtn align-self-
center" id="back link">Back</button>
</div>
</div>
</div>
</div>
```

```
<!-- Forgot Password Form End -->
</div>
<!-- jQuery CDN -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="js/script.js"></script>
</body>
</html>
CSS CODE:
@import
url("https://fonts.googleapis.com/css?family=Maven+Pro:400,500,600,700,800,900&displa
y=swap");
margin: 0; padding: 0; box-sizing:
border-box; font-family: "Maven Pro", sans-serif;
.wrapper
{ height: 100vh;}
.myColor
{
background-image: linear-gradient(to right, #324bf3 50%, #f9d423 150%);
}
.myShadow {
box-shadow: 0 10px 10px rgba(0, 0, 0, 0.5);
```

```
}
 .myBtn { border-radius: 50px; font-weight: bold; font-size: 20px; background-image:
 linear-gradient(to right, #0acffe 0%, #495aff 100%); border: none;
 }
 .myBtn:hover { background-image: linear-gradient(to right, #495aff 0%, #0acffe 100%);
 .myHr {
            height: 2px; border-radius: 100px;
 .myLinkBtn { border- radius: 100px; width: 50%; border: 2px solid #fff;
 @media (max-width: 720px) {
.wrapper { margin: 2px;
 }
 }
JS CODE:
 $(function() {
 $("#register-link").click(function() {
 $("#login-box").hide();
 $("#register-box").show();
 });
 $("#login-link").click(function() {
 $("#login-box").show();
```

```
$("#register-box").hide();
});
$("#forgot-link").click(function () {
$("#login-box").hide();
$("#forgot-box").show();
});
$("#back-link").click(function () {
$("#login-box").show();
$("#forgot-box").hide();
});
});
```

OUTPUT

SPRINT 2

CODE:


```
#define ECHO_PIN 12
#efine TRIG_PIN 13 float dist;
void setup()
{
Serial.begin(115200); pinMode(LED_BUILTIN, OUTPUT); pinMode(TRIG_PIN,
OUTPUT); pinMode(ECHO_PIN, INPUT);
//pir pin
pinMode(34, INPUT);
//ledpins
pinMode(23, OUTPUT); pinMode(2, OUTPUT); pinMode(4, OUTPUT); pinMode(15,
OUTPUT); lcd.init(); lcd.backlight(); lcd.setCursor(1, 0); lcd.print(""); wifiConnect();
mqttConnect();
float readcmCM()
digitalWrite(TRIG_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIG_PIN, HIGH);
delayMicroseconds(10); digitalWrite(TRIG_PIN, LOW);
int duration = pulseIn(ECHO_PIN, HIGH); return duration * 0.034 / 2;
void loop()
if (!client.loop())
```

```
mqttConnect();
                       // function call to connect to IBM
}
/* -----*/
void wifiConnect()
Serial.print("Connecting to ");
Serial.print("Wifi"); WiFi.begin("Wokwi-GUEST", "", 6);
while (WiFi.status() != WL_CONNECTED)
Serial.print("WiFi connected, IP address: "); Serial.println(WiFi.localIP());
}
void mqttConnect()
{
if (!client.connected())
Serial.print("Reconnecting MQTT client to "); Serial.println(server);
while (!client.connect(clientId, authMethod, token))
Serial.print("."); delay(500);
initManagedDevice(); Serial.println();
}
```

```
void initManagedDevice()
if (client.subscribe(topic))
Serial.println("IBM subscribe to cmd OK");
}
else
{
Serial.println("subscribe to cmd FAILED");
}
void publishData()
{
float cm = readcmCM();
if(digitalRead(34)) //pir motion detection
Serial.println("Motion Detected"); Serial.println("Lid Opened"); digitalWrite(15, HIGH);
if(digitalRead(34)== true)
{
if(cm \le 60)
                          //Bin level detection
{
digitalWrite(2, HIGH);
Serial.println("High Alert!!!, Trash bin is about to be full"); Serial.println("Lid Closed");
```

```
lcd.print("Full! Don't use"); delay(2000);
lcd.clear(); digitalWrite(4, LOW); digitalWrite(23, LOW);
else if(cm > 60 \&\& cm < 120)
digitalWrite(4, HIGH);
Serial.println("Warning!!,Trash is about to cross 50% of bin level"); digitalWrite(2, LOW);
digitalWrite(23, LOW)
else if (cm > 120)
{
digitalWrite(23, HIGH); Serial.println("Bin is available"); digitalWrite(2,LOW);
digitalWrite(4, LOW);
delay(10000); Serial.println("Lid Closed");
}
else
Serial.println("No motion detected"); digitalWrite(2, LOW); digitalWrite(15, LOW);
digitalWrite(4, LOW); digitalWrite(23, LOW);
else
```

```
{
 digitalWrite(15, LOW);
 if(cm \le 60)
 digitalWrite(21,HIGH);
 String payload = "{\"High_Alert\":"; payload += cm;
payload += " }"; Serial.print("\n"); Serial.print("Sending payload: ");
Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) // if data is uploaded to cloud
 successfully, prints publish ok else prints publish failed
 {
 Serial.println("Publish OK");
 }
 else if(cm \le 120)
 digitalWrite(22,HIGH);
 String payload = "{\"Warning\":"; payload += cm;
 payload += " }"; Serial.print("\n");
 Serial.print("Sending payload: "); Serial.println(payload);
 if(client.publish(publishTopic, (char*) payload.c_str()))
```

```
Serial.println("Publish OK");
}
else
Serial.println("Publish FAILED");
}
Else
Serial.println();
}
float inches = (cm / 2.54);
                               //print on lcdlcd.setCursor(0,0);
 lcd.print("Inches");
 lcd.setCursor(4,0);
 lcd.setCursor(12,0);
 lcd.print("cm"); 1
 cd.setCursor(1,1);
 lcd.print(inches, 1);1
 cd.setCursor(11,1);
 lcd.print(cm, 1);
 lcd.setCursor(14,1);
 delay(1000); lcd.clear();
```

OUTPUT

SPRINT - 3

PYTHON CODE: [To connect IBM WATSON]

import timeimportsys

import ibmiotf.applicationimport ibmiotf.device import random

#Provide your IBM Watson Device Credentialsorganization ="zncs13"

deviceType = "SENSOR" deviceId = "SENSOR-23"authMethod = "use-token- auth" authToken = "12345678"

Initialize GPIO

def myCommandCallback(cmd):

```
print("Command received: %s" % cmd.data['command'])status=cmd.data['command']
if status=="lighton":print("led is on")
   else:
   print ("led is off")
   #print(cmd)
   try:
   deviceOptions = {"org": organization, "type": deviceType, "id":
  deviceId, "auth-method": authMethod, "auth-token": authToken}deviceCli =
   ibmiotf.device.Client(deviceOptions) #.....
    except Exception as e:
   print("Caught exception connecting device: %s" % str(e))sys.exit()
   # Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
   "greeting" 10 times
   deviceCli.connect()
   while True:
    #Get Sensor Data from DHT11
   level=random.randint(0,100)weight=random.randint(0,100)
   data = { 'level' : level, 'weight': weight }#print data
   def myOnPublishCallback():
   print ("Published level = %s C" % level, "weight = %s %%"
   % weight, "to IBM Watson")
   success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,on_publish=myOnPubli
   shCallback)
   if not success:
      print("Not connected to IoTF")time.sleep(1)
         deviceCli.commandCallback = myCommandCallbackif(level>=75):
```

print("Full LED ON")

Disconnect the device and application from the clouddeviceCli.disconnect()

OUTPUT

SPRINT 4

OUTPUT BY PHONE:

SCREEN 1 SCREEN 2

7. CODING AND SOLUTION

7.1 Feature 1

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "zncs13"
deviceType = "SENSOR"
deviceId = "SENSOR-23"
authMethod = "use-token-
auth"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="lighton":
print ("led is on")
else:
print ("led is off")
#print(cmd)
```

7.2 Feature 2

TEAM ID PNT2022TMID15872

PROJECT Smart Waste Management System For

```
Metropolitan Cities
    try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-
method":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type
"greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(0,100)
Humid=random.randint(0,100)
data = { 'temp' : temp, 'Humid': Humid }
#print data
def myOnPublishCallback():
print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid,
"to IBM
Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
if not success:
```

print("Not connected to IoTF")

time.sleep(1)

deviceCli.commandCallback = myCommandCallback

Disconnect the device and application from the clouddeviceCli.disconnect()

8.TESTING

8.1 Test Cases:

a. Login testing

We are creating login page for the users and deployed into the testing environment. This login page is tested using credentials.

b. Storage testing

We are testing whether the information from the user is stored as database using cloud login credentials and verifying it for the user.

c. Device testing

Here the IOT device is created using the cloud login credentials, the sample test case is deployed in the device and code is uploaded and tested in the testing environment.

8.2 User Acceptance Testing

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commets	TC for Automation(Y/N)	BUGID	Executed By
LoginPage_TC_002	UI	Home Page	Verify whether user is able to access the URL	APP URL	https://node-red-psife-2022-11-15.au- sid.mibluemix.net/.ii/#/I/Ospoketiid=Omz&- FWSApBp/FSAAAf	URL	Now User able to access the URL	Able to access in mobile	Pass	Able to access in Chrome and Edge	YES		SNEHA
LoginPage_TC_003	Functional	Home page	User can enter the data in specified format	AFP URL	To have browsers to have enhanced capabilities	URL	enter a data in specified format only	specified input is not received	Fail	Specify the User formats	NO	110	SWATHIKA
LoginPage_TC_004	Functional	Home page	User can enter the data in any format	AFF URL	User can enter the data in required format	URL	User can enter the data in specified format now	Input received properly	Pass	Format specified	YES		SELVANAYAHI
CLOUD_STORAGE_TC_005	Functional	Cloud	Verify if User input is stored in the cloud	0.000	User has to enter the data[name,time and date]	MEDICINE NAME: Time(HH:MM) ; DATE(YYYY-MW-DD):	User inputs has to be stored in cloud	Failed to storing the inputs	Fail	Cloud not connected properly	YES	111	SNEHA
CLOUD_STORAGE_TC_006	Functional	Cloud	Verify if User input is stored in the cloud	CLOUD	User has to enter the data(name,time and date)	MEDICINE NAME: Time(HH:MM) : DATE(YYYY-MM-DD):	User inputs has to be stored in cloud	inputs are stored in the cloud	Pass	Cloud connected properly	YES		VARSHITHA
OUPUT_TC_007	Functional	lot device	Verify if it reminds the medicine intake to the user	IOT device	Comparing the UTC time and medicine intake time	Real time and medicine intake time	Gives True when both times match	Null	Fail	Check the input	YES	113	SWATHIKA
OUPUT_TC_007	Functional	lot device	Verify if it reminds the medicine intake to the user	IOT device	Comparing the UTC time and medicine intake time	Real time and medicine intake time	Gives True when both times match	TRUE	Fail	verified	Yes		SNEHA
TTS_TC_008	Functional	lot device	Verify if it gives voice notifications	IOT device and TTS	When True it gives a voice notifications	Voice notifications	Voice notifications	Voice notifications service didn't work	Fail	In program, commands are as object instead of	NO	121	SELVANAYAHI
TTS_TC_009	Functional	lot device	Verify if it gives voice notifications	IOT device and TTS	When True it gives a voice format notifications	Voice notifications	Voice notifications	Voice notifications arrived	Pass	New string functions were added	YES		VARSHITHA
AOX_TC_010	Functional	URL	Verify whether the patient has taken the medicine or not	IOT device	The TAXEN button has been included	The status of the medicine intake	The User clicks the TAKEN button to show that medicine has been taken	Button is unfunctional	Fail	Error occurs due to failure of call and connect function of the "taken" button	NO	132	SELVANAYAHI
ADX_TC_011	Functional	URL	Verify whether the patient has taken the medicine or not	lot device	The TAKEN button has been included	The status of the medicine intake	The User clicks the TAKEN button to show that medicine has been taken	The Taken status is updated in the cloud	Pass	The status of the medicine intake is updated in the cloud	Yes		SWATHIKA

9.RESULTS

9.1 Performance Metrics

10. ADVANTAGES

- ➤ Practice is highly lucrative
- > Keeps the environment clean and fresh
- > Saves the Earth and conserves energy
- > Reduces environmental pollution
- > Saves people from diseases
- Reduces man power
- ➤ Seeing real time data, 24/7

DISADVANTAGES

- > Process is always not cost-effective
- > The resultant product has short life
- Practices are not done uniformly

11. CONCLUSION

In this project we have successfully shown how we will monitor garbage system. Earlier, we saw that it was a night mare for the people as garbage collecting worker didn't aware about the condition of the garbage bin. Moreover, it was really hard for them to monitor thousands of bins in this mega town. Waste management involves the processes of waste collection, transportation, processing, as well as waste recycling or disposal. Sustainable waste management systems include advanced management strategies to minimize environmental challenges and protect resources.

This system will help the monitoring officer about the current situation of the bin. As result he can take necessary steps very easily and fast. Along with this, as we are adding notification system, it will be very easy for them to get notification about the reason condition of the bin. Through this project garbage collecting system will find a smart

12. FUTURE SCOPE

Waste management's future includes turning waste into energy, IoT-enabled practices, improvement in monitoring systems, data collection, and much more technology-based advancements. By implementing this project we can avoid the overflowing of trash bins in residential areas which will prevent many diseases and hence we can maintain a clean environment. This system will automatically send the notification to the municipal corporation. The proposed system is more efficient and practical then the existing scenario of processing solid waste collection in which everything is manually done. Every smart dustbins will be given a specific ID number which will be send in the notification by using

that we will get to know the location of dustbins. This system will reduce the wastage of fuel by reducing number of trips of garbage collection vehicle.

13. APPENDIX

Source Code

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "zncs13"
deviceType = "SENSOR"
deviceId = "SENSOR-23"
authMethod = "use-token-
auth"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="lighton":
print ("led is on")
else:
print ("led is off")
```

```
#print(cmd)
TEAM ID PNT2022TMID15872
PROJECT Smart Waste Management System For
Metropolitan Cities
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
"greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(0,100)
Humid=random.randint(0,100)
data = { 'temp' : temp, 'Humid': Humid }
#print data
def myOnPublishCallback():
print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "to IBM
Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
```

on_publish=myOnPublishCallback)

if not success:

print("Not connected to IoTF")

time.sleep(1)

deviceCli.commandCallback = myCommandCallback

Disconnect the device and application from the clouddeviceCli.disconnect()

GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-14606-1659587790

PROJECT DEMO LINK

https://drive.google.com/drive/folders/1UzedchqpzFZ-OKikCklCa7sEx7U9SEq9