

Sample Complexity Analysis of Transfer Learning for Deep **Reinforcement Learning Models**

Malek Ben Alaya

March 11, 2022

Bachelor Thesis Presentation Malek Ben Alava March 11, 2022

Motivation

- 'Project Phoenix': fly a quadcopter in the real world using deep Reinforcement Learning (RL).
- Deep RL methods:
 - Require a lot of data.
 - Have safety issues.
- Mitigate with Transfer Learning (TL).

Problem statement

Problem:

- No guarantee TL is beneficial.
- Certain deep RL methods: inappropriate.

Solution:

- Test transfer in sim-to-sim.
- Poor deep RL methods in sim-to-sim: avoid them in sim-to-real.

Folie 3/1 Bachelor Thesis Presentation Malek Ben Alaya March 11, 2022

Thesis contribution

Contribution of this work:

For a drone hovering task:

- Evaluate benefits of TL (sim-to-sim).
- Analyze sample complexity on 3D simulation.
- Conclude: most appropriate methods.

(Deep) Reinforcement Learning

Algorithms:

- PPO: on-policy, stochastic.
- **SAC:** off-policy, stochastic.
- **DDPG:** off-policy, deterministic.
- **TD3:** off-policy, deterministic.

Figure: Block diagram of actor-critic approach.

Bachelor Thesis Presentation Malek Ben Alava March 11, 2022

Transfer Learning Approach

What knowledge do we transfer?

 \rightarrow Weights of actor and critic networks.

Bachelor Thesis Presentation Malek Ben Alaya March 11, 2022

Transfer Learning metrics

Figure: Metrics to evaluate TL benefits.

Folie 7/1 Bachelor Thesis Presentation Malek Ben Alaya March 11, 2022

Drone Hovering Task

- No obstacles in the environment.
- Episode ends if:
 - Maximum episode length (500) is reached.
 - Constraint is violated: e.g., speed, position or orientation limit.

Experiment: Transfer Learning benefits

Aim: Investigate effects of TL in 3D sim:

- Initial actor and critic weights:
 - **Transfer:** initialized with pre-trained weights.
 - No Transfer: randomly initialized.
- Transfer/ No Transfer: train 5 instances.

Bachelor Thesis Presentation Malek Ben Alava March 11, 2022

Transfer Learning benefits: PPO

Folie 10/1 Bachelor Thesis Presentation

Transfer Learning benefits: SAC

Transfer Learning benefits: DDPG

Folie 12/1 Bachelor Thesis Presentation

Transfer Learning benefits: TD3

Folie 13/1 Bachelor Thesis Presentation

Sample complexity analysis: PPO, SAC, TD3

Goal performance:

- Episode length: 500. \rightarrow No constraint violation.
- Return : -2. \rightarrow Magnitude of relative error $\approx 2\%$.

Figure: Relative error between goal position and current position (x,y,z).

Bachelor Thesis Presentation Folie 14/1 Malek Ben Alava March 11, 2022

Sample complexity analysis

- Every 10k timesteps: 5 evaluation episodes.
- $\begin{tabular}{l} \blacksquare & Performance drops \rightarrow affect reliability. \end{tabular}$

	# Drops below 500	Average over drops
PPO	7	479
SAC	11	473
TD3	13	469

Sample complexity analysis

Conclusion

Benefits from TL?	Solves the task?	Time needed
no	no	-
yes	no	-
yes	yes	120k
yes	yes	120k
	no yes yes	no no yes no yes yes