MATH 633(HOMEWORK 2)

HIDENORI SHINOHARA

Exercise. (Problem 3)

$$\int_{a}^{b} |z'(t)|dt = \int_{c}^{d} |z'(t(s))|t'(s)ds$$
$$= \int_{c}^{d} |z'(t(s))t'(s)|ds$$
$$= \int_{a}^{d} |\tilde{z}'(s)|ds$$

where $\tilde{z}(s):[c,d]\to\mathbb{C}$ is a reparametrization of $z(t):[a,b]\to\mathbb{C}.$

Exercise. (Problem 4) If $t^* \in \Omega_1$, then there exists an open neighborhood U of $z(t^*)$ contained in Ω_1 . Then $z^{-1}(U)$ is a neighborhood of t^* in [0,1] because z is continuous. Since $z(1) \in \Omega_2$, $t^* \neq 1$. However, this implies the existence of $\epsilon > 0$ such that $t^* + \epsilon < 1$ and $z(t^* + \epsilon) \in \Omega_1$. This is a contradiction.

If $t^* \in \Omega_2$, then there exists an open neighborhood U of $z(t^*)$ contained in Ω_2 . Since U is open, $z^{-1}(U)$ is a neighborhood of t^* in [0,1], so $\exists \epsilon > 0$ such that $z(t^* - \epsilon) \in \Omega_2$.

In each case, we reached a contradiction, so Ω is not disconnected.