Identifying High-Tc transmon candidates with minimal oxide thickness

Nathan Song, Tyrel McQueen

Department of Physics, U.C. Berkeley

Department of Chemistry, Johns Hopkins

What are transmons?

Quantum Advantage

Classical bit

0 state

1 state

Qubit

Probabilistic

Exact outcome *uncertain* until measurement / interaction

Entanglement

Qubit measurement outcomes become correlated after gates

Quantum tunneling Quantum 'teleportation'

Quantum Advantage

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

 Highly sensitive to external noise (insert transitions / arrows while explaining circuit complexity)

 Highly sensitive to external noise (insert transitions / arrows while explaining circuit complexity)

Current record: 0.3 ms, Tantalum

Why are oxides important?

Transmon Decoherence

Image Credit: Sam Bader's thesis

Credit: McLellan, Dutta, et. al, Chemical profiles of the oxides on tantalum in state of the art superconducting circuits

Transmon Decoherence

~1/3rd Oxide Layer

- Two-level systems from dangling electrons
- Resonance of microwaves or phonons between oxide layers

Image Credit: Sam Bader's thesis

Credit: McLellan, Dutta, et. al, Chemical profiles of the oxides on tantalum in state of the art superconducting circuits

Developed Metrics

- Oxidation Metric
- % Removable Oxide
- Critical Temperature

Oxidation Metric

How likely is a material to form an oxide?

1. Identify potential oxides

2. Solve for minimal energy

$$\begin{split} & \Delta H_{Oxides} = Net \ oxide \ energies \\ & \Delta H_{Material} = Material \ energy \\ & \mu = \Delta H_{Oxides} - \Delta H_{Material} \end{split}$$

$$metric = 1 - \mu / \Delta H_{Oxides}$$

3. Compare oxide and material Formation Energies

% Removable Oxide

How much of the oxides could we remove?

2. Solve for minimal energy

Minimization Data

- Formation energy of oxide
- Optimal amount oxides

Additional Data

- Melting temp of oxides
- Melting temp of material

Courtesy of ASU's Hong Research Group

for oxide in oxides:
if oxide_melt < material_melt
% += oxide_percentage

3. Calculate % of removable oxide

Example: Tantalum

Identify Ta-based oxides

Name	Formation E	Features
Ta2O5	ΔH_{Ta2O5}	Mass
Ta2O3	ΔH_{Ta2O3}	# Atoms
TaO2	ΔH_{TaO2}	
Ta6O	ΔH_{Ta6O}	
Ta308	ΔH_{Ta3O8}	

Additional Data

- Melting temp of oxides
- Melting temp of material

Courtesy of ASU's Hong Research Group

Obtain ideal oxide composition

Constraints

- Conservation of mass
- Positivity of material

Calculate metrics

% Total	Meltable?	
55%	No	
20%	Yes	
10%	No	
6%	Yes	
9%	No	

*Filler data

Net Oxide Formation E Net % Meltable Oxide

Critical Temperature

1. Take known Tc from SuperCon database

2. Create dataset with elemental composition

3. Predict Tc for entries from Materials Project

Metric Predictability (w/ XG boost)

Y-axis: Actual values X-axis: Predicted values

Material Metrics

Material Analysis

- Identify material (Ex. Ta, Nb)
- Generate 'neighborhood'
- Identify patterns (Ex. Cuprates)
- Select high-Tc materials with thin oxide layers

Perform MD simulations for top material candidates

Results

- Creation of metrics applicable to any material
- Prediction of metrics solely from elemental composition
 - Tc predictable, Oxidation Metric complicated

Bonus:

```
LK-99 'Room-Tc Superconductor' -> CuP6Pb9025
Predicted Tc -> 39.89267 Kelvin
```


Contributors

Tyrel McQueen

Special Thanks

Jim Overhiser
Evan Crites
REU cohort
McQueen group

Bonus+: First-Principles Tantalum Oxidation Simulations

 Force Field calculations for oxide growth (In progress)

Transmon Decoherence

~1/3rd Oxide Layer

- Two-level systems from dangling electrons
- Resonance of microwaves or phonons between oxide layers

Image Credit: Sam Bader's thesis

Credit: McLellan, Dutta, et. al, Chemical profiles of the oxides on tantalum in state of the art superconducting circuits

MD (Molecular Dynamics) for Ta-O interaction

Ta-Ta interaction – PINN potential

Bonded Ta-O interaction – M-BKS potential

$$\Phi_{ij}^{M-BKS} = q_i q_j / r_{ij} + A_{ij} \exp(-r_{ij} / \rho_{ij}) - C_{ij} / r_{ij}^6$$
$$+ D_{ij} (1 - \exp(-a_{ij} (r_{ij} - r_e))^2,$$

In order:

Coulomb force, Pauli repulsion, Van-der Waals, Covalent bond (Morse)

O-O interaction – Lennard-Jones potential

MISSING: Non-bonded Ta-O interaction

Film	Ta ^{5 +}	Ta ^{3 +}	Ta ¹⁺	Ta ⁰ _{int}
Native	2.257 ± 0.023	0.370 ± 0.016	0.370 ± 0.017	0.368 ± 0.019
Ta treated in 10:1 BOE	1.853 ± 0.028	0.296 ± 0.022	0.302 ± 0.023	0.400 ± 0.021
Ta treated in triacid	4.826 ± 0.036	0.379 ± 0.016	0.545 ± 0.020	1.198 ± 0.027

Current setup:

- Equilibrate system with Nose-Hoover over 5 ps to 300K
- Heating stage with Nose-Hoover over 15 ps to 600K
- Steady temperature for 20 ps

How?

- Minimize oxide layers
- Remove oxides entirely
- Understand why oxides decohere qubits

Why?

- Oxide interfaces have unmatched spin pairs
- Oxide layers cause interference
- Microwave loss amplified by oxide layers