RECURSOS PARA MATEMÁTICA

Grupo do Facebook

Prova Modelo de Exame Nacional Matemática A Prova 635 | Ensino Secundário | Junho 2022

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado por uma moldura que os rodeia, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

INSTRUÇÕES DE REALIZAÇÃO

- · Para cada resposta, identifique o item.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.
- Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final do enunciado da prova.
- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone:
$$\pi rg$$
 (r- raio da base; g - geratriz)

Área de uma superfície esférica:
$$4\pi r^2$$
 (r- raio)

Volume de uma pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Volume de um cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 (r- raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen}a\cos b + \operatorname{sen}b\cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \left(k \in \{0, \dots, n-1\} \text{ e } n \in \mathbb{N}\right)$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$\left| \left(\operatorname{tg} u \right)' = \frac{u'}{\cos^2 u} \right|$$

$$(e^u)' = u'e^u$$

$$(e^{u})' = u'e^{u}$$

$$(a^{u})' = u'a^{u} \ln a \quad (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- 1. Qual dos seguintes é o termo geral de uma sucessão crescente e convergente?
 - **(A)** 2^n

- **(B)** $2 + \frac{1}{n}$
- (C) $\left(\frac{1}{2}\right)^n$
- **(D)** $2 \frac{1}{n}$

Paulo Conde

- **2.** Seja (a_n) uma progressão aritmética tal que:
 - $a_3 + a_6 = -2$
 - $a_4 a_8 = -8$

Sabe-se que a soma de seis termos consecutivos da sucessão (a_n) é igual a 198.

Determine o primeiro destes seis termos, ou seja, o termo de menor ordem.

António Pedro Costa Silva

- 3. Seja E, conjunto finito, o espaço de resultados associado a uma certa experiência aleatória e sejam A e B dois acontecimentos $A \subset E$, $B \subset E$ tais que:
 - $P(A) = \frac{3}{5}$
 - $P(A \cap B) = \frac{1}{5}$
 - $P(A \cup B) = \frac{9}{10}$

Qual é o valor de $P(\overline{A}|B)$?

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

- **(C)** $\frac{3}{5}$
- **(D)** $\frac{4}{5}$

Marta Lopes

4. Na figura 1 está a planificação de um dado equilibrado, com as faces numeradas.

Considere a experiência aleatória, que consiste em lançar o dado seis vezes consecutivas e registar, pela ordem de saída, o número da face que fica voltada para cima em cada um dos lançamentos.

Quantos são os registos possíveis em que não existam números que não são divisíveis por 9 registados consecutivamente?

ıa	as.		36	
	5	15	18	27
			45	

Figura 1

Hugo Rocha

5. Um saco não transparente contém bolas de três cores distintas indistinguíveis ao tato, sendo que há, no saco, o mesmo número de bolas de cada cor.

Retiram-se sucessivamente e sem reposição duas bolas do saco.

Sabendo que a probabilidade de as duas bolas extraídas não serem da mesma cor é de 75%, quantas bolas existiam inicialmente no saco?

$$(x, y, z) = (0, -1, 2) + k(1, -1, 2), k \in \mathbb{R}.$$

6.1. Seja C o centro da superfície esférica $\mathcal S$ e sejam P e Q os pontos de interseção da reta r com a superfície esférica S.

Sendo θ a amplitude, em radianos, do ângulo PCQ, qual é o valor de $tg^2 \left(\frac{\theta}{2} \right)$? (A) $\frac{2}{5}$ (B) $\frac{11}{25}$ (C) $\frac{21}{50}$ (D) $\frac{3}{7}$

(A)
$$\frac{2}{5}$$

Anabela Matoso

(B)
$$\frac{11}{25}$$

(C)
$$\frac{21}{50}$$

(D)
$$\frac{3}{7}$$

Figura 2

6.2. Determine o perímetro da circunferência que resulta da interseção do plano α com a superfície esférica

7. Na figura 3 estão representados, num referencial o.n. xOy, a circunferência trigonométrica e e o triângulo [OAB].

Sabe-se que:

- C e D são os pontos da circunferência que têm a menor e a maior ordenada, respetivamente;
- a amplitude, em radianos, do ângulo AOD é α e a do ângulo $COB ext{ \'e o dobro } \left(\alpha \in \left] 0, \frac{\pi}{4} \right[\right);$
- os pontos A e B pertencem à circunferência e ao segundo e terceiro quadrantes, respetivamente;
- $A(\alpha)$ é a área do triângulo [OAB], em função de α .

Mostre que $A(\alpha) = \frac{\sin(3\alpha)}{2}$.

Figura 3

8. Considere a função f, de domínio $\mathbb{R} \setminus \{0\}$, definida por:

Paulo Conde

$$f(x) = \begin{cases} 2x^{2}e^{x} - 3xe^{x} & \text{se } x < 0\\ \frac{\ln(e^{x} + x) - 3x}{x} & \text{se } x > 0 \end{cases}$$

- 8.1. Estude a função quanto à existência de assíntotas horizontais ao seu gráfico.
- **8.2.** Estude, no intervalo $]-\infty,0[$, a função f quanto à monotonia e à existência de extremos relativos.

Anabela Matoso

$$F(t) = \frac{2}{1 + 3e^{-0.3t}}, t \ge 0$$

Considere que t = 0 corresponde ao início de 2022.

- 9.1. Em que ano se espera que o número de felinos desta espécie duplique em relação ao início de 2022?
 - (A) 2024
- **(B)** 2025
- (C) 2026
- **(D)** 2027
- 9.2. Segundo este modelo, após os primeiros cinco anos existe um instante t_1 tal que quando passa o quíntuplo do tempo que passou até ao instante t_1 o número de felinos desta espécie aumenta cinquenta

Determine o instante t_1 sabendo que ele existe e é único.

Apresente o resultado em anos e meses, com meses arredondados às unidades.

Na sua resposta deve:

- equacionar o problema;
- reproduzir o(s) gráfico(s) que considerar necessário(s) para a resolução do problema, bem como a(s) coordenada(s) de algum (ou alguns) ponto(s) relevante(s), arredondadas às centésimas.
- 10. Em \mathbb{C} , o conjunto dos números complexos, considere os complexos, não nulos, $z \in w$, tais que:

 $\operatorname{Arg}(\overline{z}) = \operatorname{Arg}(w)$ e $|z| \times |w| = 1$.

Podemos afirmar que:

(A) z é o simétrico de w.

(C) z é o conjugado de w.

(B) z é o inverso de w.

- **(D)** z é o simétrico do conjugado de w.
- 11. Sejam z e w dois números complexos tais que $z = \frac{2+i}{1-2i}$ e $w = \sqrt{2}e^{i\frac{\pi}{4}}$.

Determine o menor valor natural de n de modo que o número complexo $(w-2z)^n \times i^{2022}$ pertença ao conjunto definido por:

$$A = \{ z \in \mathbb{C} : \operatorname{Re}(z) = 0 \land \operatorname{Im}(z) < 0 \}$$

Victor Corveira

António Pedro Costa Silva

12. Considera a função g, de domínio \mathbb{R} definida por $g(x) = x^2 + x + \cos x (\sin x - 2)$.

Mostre que existe pelo menos um ponto com abcissa no intervalo $]-\pi,0[$ em que a reta tangente ao gráfico de g nesse ponto é paralela à bissetriz dos quadrantes ímpares.

José Carlos Pereira

$$g'(x) = \frac{1}{2} \ln \left(\frac{e^x - 1}{e^x + 1} \right) - e^x$$

Mostre que o gráfico de g tem exatamente um ponto de inflexão e indique a sua abcissa.

Apresente o resultado na forma $\ln(\sqrt{k})$, com $k \in \mathbb{N}$.

14. Determine em $\mathbb R$ o conjunto solução da inequação:

$$\left(\ln x - 1\right) \times 4^x \ge \ln\left(x^2\right) - 2$$

15. Considere as função f e g, diferenciáveis em $\mathbb R$, e uma reta r, oblíqua, tais que:

- f(1) = 1
- f não tem zeros;
- $g(x) = (f \circ f)(x) + \frac{1}{f(x)} 1$
- a reta r tangente aos gráficos de f e de g no ponto de abcissa 1.

Escreva a equação reduzida da reta r.

Item Extra Para certos valores reais de a e de b, a função f, de domínio $]-\infty,\pi]$, definida por:

$$f(x) = \begin{cases} \frac{e^{x+1} - x - 2}{x^2 - x - 2} & \text{se } x < -1 \\ ax + b & \text{se } -1 \le x \le 0 \\ \frac{\sec(3x) + x}{\cos(x + \frac{\pi}{2})} & \text{se } 0 < x \le \pi \end{cases}$$

é contínua.

Qual é o valor de $\log_8(a^b)$?

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obriga- toriamente para a classifica- ção final.	1.	3.	4.	6.1.	6.2.	8.1.	8.2.	9.1.	9.2.	10.	12.	15.	Subtotal
Cotação (em pontos)	12	12	14	12	14	14	14	12	14	12	14	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2. 5.		7.		11		13.		14.		Subtotal		
Cotação (em pontos) 3 × 14 pontos											42		
Total													200

Coordenação José Carlos Pereira

Paginação Antero Neves