Moltiplicare efficacemente i polinomi in caratteristica 2

Ottavio Giulio Rizzo

Ottavio.Rizzo@UniMI.it

Dipartimento di matematica «Federigo Enriques» Università degli Studi di Milano

De Cifris Athesis — 15 aprile 2019

Campi finiti

Teorema

Sia **F** un campo di n < ∞ elementi. Allora:

- $n = p^s$ con p primo ed $s \in \mathbb{N}$ opportuno;
- $\mathbf{F} \simeq \frac{\mathbf{F}[x]}{\langle g(x) \rangle}$ dove $g(x) \in \mathbf{F}_p[x]$ è irriducibile di grado s.

Proposizione

Se $\#F = \#F' < \infty$, allora $F \simeq F'$. Parliamo quindi del campo finito $F_{p^s} = GF(p^s)$ di ordine p^s .

Elementi primitivi

Definizione

$$\alpha \in \mathbf{F}_{p^s}$$
 è primitivo se $\mathbf{F}_{p^s} = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^s-2}\}\$

Esempio

Sia $\mathbf{F} = \mathbf{F}_3[x]/\langle x^2 + 1 \rangle$ e sia $i \in \mathbf{F}$ con $i^2 = -1$. Allora i non è un elemento primitivo, mentre $\alpha = i + 1$ lo è:

$$\alpha^{2} = (i+1)^{2} = i^{2} + 2i + 1 = 2i = -i, \qquad \alpha^{3} = -i(i+1) = -i^{2} - i = -i + 1$$

$$\alpha^{4} = (-i)^{2} = -1, \qquad \alpha^{5} = \alpha^{4} \cdot \alpha = -i - 1$$

$$\alpha^{6} = -\alpha^{2} = i, \qquad \alpha^{7} = -\alpha^{3} = i - 1$$

Proposizione

Sia $\alpha \in \mathbb{F}_{p^s}$ e sia $g(x) \in \mathbb{F}_p[x]$ il suo polinomio minimo. Allora α è un elemento primitivo se e solo se g(x) è irriducibile di grado s e il minimo $n \in \mathbb{N}$: $g(x)|x^n-1$ è $n=p^s-1$.

Definizione

Chiamiamo primitivo un tale polinomio.

Proposizione

Sia $\alpha \in \mathbb{F}_{p^s}$ e sia $g(x) \in \mathbb{F}_p[x]$ il suo polinomio minimo. Allora α è un elemento primitivo se e solo se g(x) è irriducibile di grado s e il minimo $n \in \mathbb{N}$: $g(x)|x^n-1$ è $n=p^s-1$.

Definizione

Chiamiamo primitivo un tale polinomio.

Esempio

Se $\mathbf{F} = \mathbf{F}_3[x]/\langle x^2 + 1 \rangle$ abbiamo $p^s - 1 = 8$. Allora

- i ha polinomio minimo $x^2 + 1|x^4 1$
- i+1 ha polinomio minimo x^2+x+2 che divide solo x^8-1 .

Basi

Proposizione

Se $\alpha \in \mathbf{F} = \mathbf{F}_{p^s}$ ha polinomio minimo di grado s, allora $\{1, \alpha, ..., \alpha^{s-1}\}$ è una base di \mathbf{F} come \mathbf{F}_p -spazio vettoriale.

Basi

Proposizione

Se $\alpha \in \mathbf{F} = \mathbf{F}_{p^s}$ ha polinomio minimo di grado s, allora $\{1, \alpha, ..., \alpha^{s-1}\}$ è una base di \mathbf{F} come \mathbf{F}_p -spazio vettoriale.

Somme

La somma di due elementi di F è banale

Basi

Proposizione

Se $\alpha \in \mathbf{F} = \mathbf{F}_{p^s}$ ha polinomio minimo di grado s, allora $\{1, \alpha, ..., \alpha^{s-1}\}$ è una base di \mathbf{F} come \mathbf{F}_p -spazio vettoriale.

Somme

La somma di due elementi di F è banale

Prodotti

Il prodotto di due elementi di F si ottiene dal prodotto di polinomi.

Problema

La struttura moltiplicativa di F dipende dalla scelta di α (del polinomio minimo di α).

Prodotto in campi finiti

Siano $\alpha \in \mathbf{F}$ come sopra, e sia g(x) il polinomio minimo di α su \mathbf{F}_p . Abbiamo un morfismo di \mathbf{F}_p -algebre:

$$\psi \colon \mathsf{F}_{p}[x] \longrightarrow \frac{\mathsf{F}_{p}[x]}{\langle g(x) \rangle} \longrightarrow \mathsf{F}$$

$$f(x) \longmapsto f(\alpha)$$

$$\parallel \qquad \qquad \qquad \parallel$$

$$\sum_{i=0}^{s-1} a_{i} x^{i} \longmapsto \sum_{i=0}^{s-1} a_{i} \alpha^{i}$$

Siano

$$f(x) = \sum_{i=0}^{s-1} a_i x^i \qquad v = \psi(f) = \sum_{i=0}^{s-1} a_i \alpha^i$$
$$h(x) = \sum_{i=0}^{s-1} b_i x^i \qquad \mu = \psi(h) = \sum_{i=0}^{s-1} b_i \alpha^i$$

Allora

$$\mathbf{v} \cdot \mathbf{\mu} = \mathbf{\psi}(f \cdot h) = (fh \bmod g)|_{\mathbf{x} = \alpha}$$

Algoritmo scolastico

Siano
$$f(x) = \sum_{i=0}^{s-1} a_i x^i$$
, $h(x) = \sum_{i=0}^{s-1} b_i x^i$. Se $\ell(x) = f(x) \cdot h(x)$, allora

$$\ell(x) = \sum_{i=0}^{2s-2} c_i x^i, \text{ dove } c_i = \begin{cases} \sum_{j=0}^{i} a_j b_{i-j} & \text{se } 0 \le i \le s-1\\ \sum_{j=0}^{s-1} a_j b_{i-j} & \text{se } s \le i \le 2s-2 \end{cases}$$

Algoritmo scolastico, p qualsiasi

Algoritmo scolastico, p qualsiasi

Sia
$$g(x) = x^8 + x^4 + 2 \in \mathbf{F}_5[x]$$
: è irriducibile.
Sia $\alpha \in \mathbf{F} := \mathbf{F}_5[x]/\langle g(x) \rangle$ una sua radice. Siano
$$v = 2\alpha^7 + \alpha^6 + 4\alpha^5 + 2\alpha^3 + \alpha^2 + 4\alpha + 1$$

$$u = \alpha^7 + 3\alpha^5 + 2\alpha^4 + \alpha^3 + 4\alpha^2 + \alpha + 3$$

Cioè

$$f(x) = 2x^7 + x^6 + 4x^5 + 2x^3 + x^2 + 4x + 1$$

$$h(x) = x^7 + 3x^5 + 2x^4 + x^3 + 4x^2 + x + 3$$

							2	1	4	0	2	1	4	1	×
							1	0	3	2	1	4	1	3] =
							1	3	2	0	1	3	2	3]
							_	_		_	-				J
						2	1	4	0	2	1	4	1		
					3	4	1	0	3	4	1	4			
				2	1	4	0	2	1	4	1				
			4	2	3	0	4	2	3	2					
		1	3	2	0	1	3	2	3						
	0	0	0	0	0	0	0	0							
2	1	4	0	2	1	4	1								

							2	1	4	0	2	1	4	1] ×
							1	0	3	2	1	4	1	3	=
							1	3	2	0	1	3	2	3	3
						2	1	4	0	2	1	4	1		1
					3	4	1	0	3	4	1	4			4
				2	1	4	0	2	1	4	1				1
			4	2	3	0	4	2	3	2					2
		1	3	2	0	1	3	2	3						3
	0	0	0	0	0	0	0	0							0
2	1	4	0	2	1	4	1								1

							2	1	4	0	2	1	4	1	×
							1	0	3	2	1	4	1	3] =
							1	3	2	0	1	3	2	3	3
						2	1	4	0	2	1	4	1		1
					3	4	1	0	3	4	1	4			4
				2	1	4	0	2	1	4	1				1
			4	2	3	0	4	2	3	2					2
		1	3	2	0	1	3	2	3						3
	0	0	0	0	0	0	0	0							0
2	1	4	0	2	1	4	1								1
2	1	0	2	3	3	0	1	3	2	2	4	1	3	3	

Sia
$$g(x) = x^8 + x^4 + 2 \in \mathbf{F}_5[x]$$
: è irriducibile.
Sia $\alpha \in \mathbf{F} := \mathbf{F}_5[x]/\langle g(x) \rangle$ una sua radice. Siano

$$v = 2\alpha^{7} + \alpha^{6} + 4\alpha^{5} + 2\alpha^{3} + \alpha^{2} + 4\alpha + 1$$
$$\mu = \alpha^{7} + 3\alpha^{5} + 2\alpha^{4} + \alpha^{3} + 4\alpha^{2} + \alpha + 3$$

Cioè

$$f(x) = 2x^7 + x^6 + 4x^5 + 2x^3 + x^2 + 4x + 1$$

$$h(x) = x^7 + 3x^5 + 2x^4 + x^3 + 4x^2 + x + 3$$

Quindi f(x)h(x) vale

$$2x^{14} + x^{13} + 2x^{11} + 3x^{10} + 3x^{9} + x^{7} + 3x^{6} + 2x^{5} + 2x^{4} + 4x^{3} + x^{2} + 3x + 3$$

$$\equiv 4x^{7} + 3x^{6} + 3x^{5} + 2x^{4} + 4x^{2} + 4x + 3 \mod g(x)$$

$$\forall u = 4\alpha^{7} + 3\alpha^{6} + 3\alpha^{5} + 2\alpha^{4} + 4\alpha^{2} + 4\alpha + 3$$

4 D > 4 A > 4 B > 4 B > B 900

Riassumendo

Il prodotto di due elementi qualsiasi in F_{p^s} richiede:

- il prodotto di due polinomi in $F_p[x]$ di grado s-1;
- una riduzione di un polinomio di grado s 2 modulo un polinomio di grado s.

Poiché $x^n = 1$ in un gruppo di ordine n, l'inversione di un elemento di \mathbf{F}_{p^s} richiede al peggio di calcolarne la potenza $p^s - 2$, il che richiede O(s) moltiplicazioni.

Problema chiave

Velocizzare la moltiplicazione di due polinomi di grado fissato

In caratteristica 2

$$f(x) = x^6 + x^2 + 1$$
, $h(x) = x^7 + x^5 + x^3 + x + 1$: $f(x)h(x)$?
 $f(x) = x^6 + x^2 + 1$, $h(x) = x^7 + x^5 + x^3 + x + 1$: $f(x)h(x)$?

In caratteristica 2

$$f(x) = x^6 + x^2 + 1, h(x) = x^7 + x^5 + x^3 + x + 1:$$
 $f(x)h(x)$?
 $f(x) = x^6 + x^2 + 1, h(x) = x^7 + x^5 + x^3 + x + 1:$ $f(x)h(x)$?

In caratteristica 2

$$f(x) = x^6 + x^2 + 1$$
, $h(x) = x^7 + x^5 + x^3 + x + 1$: $f(x)h(x)$?
 $f(x) = \frac{1}{2}$, $h(x) = \frac{1}{2}$

Quindi
$$f(x)h(x) = x^{13} + x^{11} + x^7 + x^6 + x^2 + x + 1$$
.

Un esercizio

Vogliamo calcolare il seguente prodotto in $F_2[x]$:

$$(x^7 + x^5 + x^4 + x^2 + 1)(x^7 + x^6 + x^4 + x^3 + 1)$$

Un esercizio

Vogliamo calcolare il seguente prodotto in $F_2[x]$:

$$(x^7 + x^5 + x^4 + x^2 + 1)(x^7 + x^6 + x^4 + x^3 + 1)$$

Complessità

Indichiamo con $M_2(s)$ il costo del prodotto di due polinomi di grado s-1 su \mathbf{F}_2 . Trascurando gli *shift*, sono necessarie

$$1+2+\cdots+(s-1)+s+(s-1)+\cdots+2+1=s+2\sum_{i=1}^{s-1}i=s^2$$

somme di bit.

Fatto

$$M_2(s) \leq s^2$$

Algoritmo di Karatsuba

Notiamo, in particolare, che se M_{AS} indica il costo dell'algoritmo scolastico: $M_{AS}(2s) = 4M_{AS}(s)$. Possiamo fare di meglio!

Fatto (Anatolij Alekseevič Karacuba, 1960)

$$M(2s) \simeq 3M(s)$$
. Infatti

$$(at+b)(ct+d) = act^2 + ((a+b)(c+d) - ac - bd)t + bd$$

dove scriviamo

$$f(x) = (a_{2s-1}x^{2s-1} + \dots + a_sx^s) + (a_{s-1}x^{s-1} + \dots + a_0)$$

$$= (a_{2s-1}x^{s-1} + \dots + a_s)x^s + (a_{s-1}x^{s-1} + \dots + a_0)$$

$$a(x) = a_{2s-1}x^{s-1} + \dots + a_s, \quad b(x) = a_{s-1}x^{s-1} + \dots + a_0, \quad t = x^s$$

Calcoliamo 75·49 usando Karatsuba

Calcoliamo 75.49 usando Karatsuba

$$(at+b)(ct+d) = act^2 + ((a+b)(c+d) - ac - bd)t + bd$$

Calcoliamo 75·49 usando Karatsuba

$$(7 \cdot 10 + 5)(4 \cdot 10 + 9) = 7 \cdot 4 \cdot 10^2 + ((7 + 5)(4 + 9) - 7 \cdot 4 - 5 \cdot 9)10 + 5 \cdot 9$$

Calcoliamo 75·49 usando Karatsuba

$$(7 \cdot 10 + 5)(4 \cdot 10 + 9) = 7 \cdot 4 \cdot 10^{2} + ((7 + 5)(4 + 9) - 7 \cdot 4 - 5 \cdot 9)10 + 5 \cdot 9$$

cioè

$$ac = 7 \cdot 4$$

 $bd = 5 \cdot 9$
 $(a+b)(c+d) = (7+5)(4+9)$

Calcoliamo 75 · 49 usando Karatsuba

$$(7 \cdot 10 + 5)(4 \cdot 10 + 9) = 7 \cdot 4 \cdot 10^{2} + ((7 + 5)(4 + 9) - 7 \cdot 4 - 5 \cdot 9)10 + 5 \cdot 9$$

cioè

$$ac = 7 \cdot 4 = 28$$

$$bd = 5 \cdot 9 = 45$$

$$(a+b)(c+d) = (7+5)(4+9) = 12 \cdot 13 = 156$$

Calcoliamo 75 · 49 usando Karatsuba

$$(7 \cdot 10 + 5)(4 \cdot 10 + 9) = 7 \cdot 4 \cdot 10^{2} + ((7 + 5)(4 + 9) - 7 \cdot 4 - 5 \cdot 9)10 + 5 \cdot 9$$

cioè

$$ac = 7 \cdot 4 = 28$$

 $bd = 5 \cdot 9 = 45$
 $(a+b)(c+d) = (7+5)(4+9) = 12 \cdot 13 = 156$
 $75 \cdot 49 = 28 \cdot 00 + (156 - 28 - 45)0 + 45 = 3675$

Complessità

Da $M(2s) \simeq 3M(s)$ ricaviamo, supponendo $s = 2^k$:

$$M(2^k) = 3M(2^{k-1}) = 3^2M(2^{k-2}) = \dots = 3^kM(1)$$

Quindi

$$M(s) \simeq s^{\ln_2 3}$$

Complessità in operazioni su bit

Dati due polinomi f(x), $h(x) \in \mathbf{F}_2[x]$ di grado 2s - 1: scriviamo

$$f = f_1 x^s + f_0, \quad h = h_1 x^s + h_0$$

$$fh = (f_1 x^s + f_0)(h_1 x^s + h_0)$$

$$= (f_1 h_1)(x^{2s} + x^s) + (f_1 + f_0)(h_1 + h_0)x^s + (f_0 h_0)(x^s + 1)$$

Costo in operazioni su bit

- 2s: somme $\sigma_0 = f_1 + f_0$, $\sigma_1 = h_1 + h_0$
- $3M_2(s)$: prodotti $\pi_0 = f_1 h_1$, $\pi_1 = (f_1 + f_0)(h_1 + h_0)$, $\pi_2 = (f_0 h_0)$
- 2(s-1): somme $\Pi_0 = \pi_0(x^{2s} + x^s)$, $\Pi_2 = \pi_2(x^s + 1)$
- 2s 1: somma $\Sigma_0 = \Pi_0 + \pi_1 x^s$
- 2s-1: somma $\Sigma_0 + \Pi_2$

Per un totale di: $M_2(2s) = 3M_2(s) + 8s - 4$.

Da dove salta fuori Karatsuba?

Sia P(t) un polinomio di grado due: se conosco il suo valore in tre punti lo posso determinare!

Interpolazione di Lagrange

Siano dati tre punti distinti
$$t_0, t_1, t_2 \in \mathbf{F}$$
. Sia $L_i(t) = \prod_{j \neq i} \frac{t - t_j}{t_i - t_j}, i = 0, 1, 2$.

Allora
$$P(t) = \sum L_i(t)P(t_i)$$
.

Da dove salta fuori Karatsuba?

Sia P(t) un polinomio di grado due: se conosco il suo valore in tre punti lo posso determinare!

Interpolazione di Lagrange

Siano dati tre punti distinti
$$t_0, t_1, t_2 \in \mathbf{F}$$
. Sia $L_i(t) = \prod_{j \neq i} \frac{t - t_j}{t_i - t_j}, i = 0, 1, 2$.
Allora $P(t) = \sum_i L_i(t) P(t_i)$.

Ci basta infatti notare che $L_i(t_i) = 1$ mentre $L_i(t_j) = 0$ se $j \neq i$ e che il polinomio $P(t) - \sum L_i(t)P(t_i)$ ha grado due e tre radici distinte.

Da dove salta fuori Karatsuba?

Sia P(t) un polinomio di grado due: se conosco il suo valore in tre punti lo posso determinare!

Interpolazione di Lagrange

Siano dati tre punti distinti
$$t_0, t_1, t_2 \in \mathbf{F}$$
. Sia $L_i(t) = \prod_{j \neq i} \frac{t - t_j}{t_i - t_j}, i = 0, 1, 2$. Allora $P(t) = \sum L_i(t)P(t_i)$.

Ci basta infatti notare che $L_i(t_i) = 1$ mentre $L_i(t_j) = 0$ se $j \neq i$ e che il polinomio $P(t) - \sum L_i(t)P(t_i)$ ha grado due e tre radici distinte. Quali tre punti possiamo scegliere?

Interpolazione proiettiva

Problema

Non ci sono tre punti in F_2 !

Interpolazione proiettiva

Problema

Non ci sono tre punti in F_2 !

La retta proiettiva

- Retta affine: $F_2 = \{0, 1\}$
- Retta proiettiva: $P^1(F_2) = \{0, 1, \infty\}$

Sia
$$P(t) = (at + b)(ct + d)$$
. Allora

- P(0) = bd
- P(1) = (a+b)(c+d)

Karatsuba raffinato

Bernstein, 2009

Siano $f(x), h(x) \in \mathbf{F}_2[x]$ di grado s + k - 1 con $s/2 \le k/2 \le s$. Scriviamo

$$f = f_1 x^s + f_0, \quad h = h_1 x^s + h_0$$

$$fh = (f_1 h_1 x^s + f_0 h_0)(x^s + 1) + (f_1 + f_0)(h_1 + h_0)x^s$$

Quindi il costo in operazioni su bit è

$$M_2(s+k) \le 2M_2(s) + M_2(k) + 4k + 3s - 3$$

Two-level Seven-way Recursion

Bernstein, 2009

Siano $f(x), h(x) \in \mathbf{F}_2[x]$ di grado 3s + k - 1 con $s/2 \le k/2 \le s$. Scriviamo

$$f = f_3 x^{3s} + f_2 x^{2s} + f_1 x^s + f_0, \quad h = h_3 x^{3s} + h_2 x^{2s} + h_1 x^s + h_0$$

$$\Sigma = f_3 h_3 x^{3s} + f_2 h_2 x^{2s} + f_1 h_1 x^s + f_0 h_0$$

$$\Pi = (f_3 + f_2)(h_3 + h_2) x^{3s} + (f_1 + f_0)(h_1 + h_0) x^s$$

$$\Psi = ((f_3 + f_1) x^s + f_2 + f_0)((h_3 + h_1) x^s + h_2 + h_0)$$

$$fh = (\Sigma + \Pi)(x^{2s} + 1) + \Psi x^{2s}$$

Quindi il costo in operazioni su bit è

$$M_2(3s+k) \le M(2s) + 5M(s) + M(k) + 19n + 8k - 8$$

CNH Three-Way Split Algorithm

Cenk, Negre, Hassan, 2011

Idea: Karatsuba per $(at^2 + bt + c)(dt^2 + et + f)$ interpolando su 5 punti. Dove li trovo? $P^1(\mathbf{F}_4) = \{0, 1, \alpha, \alpha + 1, \infty\}$ dove α è una radice di $x^2 + x + 1$. Il costo in operazioni su bit è

$$\begin{cases} M_2(3s) \le 3M_2(s) + M_4(s) + 20s - 5\\ M_4(3s) \le 5M_4(s) + 56s - 19 \end{cases}$$

Karatsuba al prossimo livello

De Piccoli, Visconti, R, 2019

Aumentiamo il livello di Karatsuba: polinomi di grado 8-1, 16-1, 32-1: migliora il limite nel caso ottimale, ma...

Karatsuba al prossimo livello

De Piccoli, Visconti, R. 2019

Aumentiamo il livello di Karatsuba: polinomi di grado 8-1, 16-1, 32-1: migliora il limite nel caso ottimale, ma...

Algoritmo	Miglior caso	Grado
B's refined Karatsuba		$s=2^k$
B's 2-level 7-way	$M(s) \le 6.43 s^{\log_2 3} - 6,80 s + 1,38$	
DVR's 3-level recursion	$M(s) \le 6.34s^{\log_2 3} - 6,68s + 1,35$	$s = 8^{k}$
DVR's 4-level	$M(s) \le 6.30s^{\log_2 3} - 6,62s + 1,31$	$s = 16^{k}$
DVR's 5-level	$M(s) \le 6.28s^{\log_2 3} - 6,57s + 1,30$	$s = 32^{k}$
dore l	og 23 = 1,58	

De Cifris Athesis

Alcuni nuovi record

S	Prima	Nostro	Δ Gates	Depth (da)	Depth (a)	Algorithm
24	702	697	5	10	9	3-lev
32	1156	1148	8	11	10	3-lev
40	1703	1700	3	14	13	3-lev
47	2228	2214	14	13	11	4-lev
48	2259	2238	21	13	11	4-lev
63	3626	3612	14	14	12	4-lev
64	3673	3640	23	13	12	4-lev
72	4510	4510	0	25	15	3-lev
79	5329	5313	16	16	15	4-lev
80	5366	5345	21	16	15	4-lev
95	7073	6978	95	15	13	5-lev
96	7110	7006	104	16	13	5-lev
120	10438	10294	144	130	17	3-lev
127	11447	11277	170	17	14	5-lev
128	11466	11309	157	16	14	5-lev

n-Way Split Algorithm

De Piccoli, Visconti, Rizzo, 2019

- $P^1(F_{2^d})$ ha $2^d + 1$ elementi
- Possiamo interpolare polinomio di grado 2^d
- Formula di stile Karatsuba per polinomi di grado 2^{d-1} .

Se
$$f(x) = \sum_{i=0}^{2^d} f_i x^i$$
, e se α è un elemento primitivo di \mathbf{F}_{2^d} :

$$f(x) = (f(\infty)x + f(0))(x^{2^{d}-1} + 1) + \sum_{i=0}^{2^{d}-2} f(\alpha^{i}) \frac{x^{2^{d}} + x}{x + \alpha^{i}}$$
$$= (f(\infty)x + f(0))(x^{2^{d}-1} + 1) + \sum_{j=0}^{2^{d}-1} \left(\sum_{i=0}^{2^{d}-2} \alpha^{i(j-1)} f(\alpha^{i})\right) x^{2^{d}-j}$$

· Complessità

Fissato d, sia

$$P = -1 + \frac{1}{d} \sum_{k=0}^{d-1} MCD(2^k - 1, 2^d - 1)$$

In particolare, se 2^d-1 è primo, $P=(2^d-2)/d$. Allora il valore asintotico di $M_2(s)$ è $O(s^\epsilon)$ dove

$$\epsilon = \log_{2^{d}+1} \left(3 + \frac{(d^2+d)P}{2} \right)$$

