Algorithm Design Assignment 3

2181_INFSCI_2591_SEC1250: Nidhi Agarwal

Solution #1
Refer to Table 1 and Figure 1:

Table 1

Node	Max Weight	Promising	Bound	
1,1	20	1	60	
2,1	50	1	60	
3,1		×	58	
Backtrack to node (2,1)				
3,2	50	✓		
4,1		×		
Backtrack to node (3,2)				
<mark>4,2</mark>	<mark>50</mark>	✓	<mark>53</mark>	
5,1	53	×		
Backtrack to node (4,2)				
5,2	50	×		
Backtrack to node (1,1)				
2,2	20	✓	55	
3,3	55	×		
Backtrack to node (2,2)				
3,4		×		
Backtrack to node (0,0)				
1,2		×		

Solution: Node (4,2)

Profit: \$50

Weight: 7 Bound: 53

Figure 1

Solution #2
Refer to Table 2 and Figure 2
Here, we apply best-first search to the travelling salesperson problem.

The given adjacency matrix:

	1	2	3	4	5
1	0	6	6	10	8
2	3	0	12	7	6
3	8	7	0	14	20
4	5	13	9	0	8
5	9	8	10	6	0

We first compute the minimum bound:

Min_bound=sum of minimum of each row

: 6+3+7+5+6=<mark>27</mark>

Table :2

Node	Distance	Total Bound		
[1,2]	6+3+8+5+6	28		
[1,3]	63756	<mark>27</mark>		
[1,4]	10 3 7 5 8	33		
[1,5]	83756	29		
Node containing [1,3] has min bound, so we go to its children				
[1,3,2]	67686	<mark>33</mark>		
[1,3,4]	6 14 6 8 8	42		
[1,3,5]	6 20 7 13 6	52		
Node containing [1,3,2] has min bound, so we go to its children				
[1,3,2,4]	67789	37		
Tour Length [1,3,2,4,5,1]= 37				
[1,3,2,5]	67665	<mark>30</mark>		
Tour Length [1,3,2,5,4,1]= <mark>30</mark>				
The nodes containing [1,4],[1,3,4] and [1,3,5] become non				
promising because their bounds 33,42 and 52 are greater than				

30,the new value of minlength				
Next we find promising, unexpanded node with the smallest				
bound → node[1,2]: bound=28(<30)				
[1,2,3]	6 12 14 8 6	46		
[1,2,4]	6 14 8 20 10	58		
[1,2,5]	6 20 14 8 6	54		
All these are non-promising because their bounds are greater				
than minimum tour length i.e. 30				
Next we find promising, unexpanded node with the smallest				
bound → node[1,5]: bound=29(<30)				
[1,5,2]	88779	39		
[1,5,3]	8 10 7 7 9	41		
[1,5,4]	86779	37		
All these are non-promising because their bounds are greater				
than minimum tour length i.e. 30				

The minimum total length found is 30.

The nodes are \rightarrow [1,3,2,5]

The optimal tour is provided by \rightarrow [1,3,2,5,4,1]

Figure 2 on next page

Figure 2

_____******