4005-800 Algorithms

Homework 5

Christopher Wood April 27, 2012

PROBLEM 1-a.

Solution.

To find the optimal parenthesization of a matrix chain product whose sequence of dimensions is <5,10,3,12,5,50,6>, we simply use the minMuls and genParens functions to find the optimal number of multiplications and then insert the right parentheses, respectively. The steps of the mulMuls algorithm is shown below.

0	-	-	-	-	-
-	0	-	-	-	_
_	-	0	-	-	-
-	-	-	0	-	_
_	-	_	-	0	_
_	-	-	-	-	0

-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

Table 1: m and c tables for l = 1 (base case)

0	150	-	-	-	-
-	0	360	-	-	-
-	-	0	180	_	-
_	-	-	0	3000	-
_	-	-	-	0	1500
_	_	-	_	-	0

-	1	-	-	-	-
-	_	2	_	_	-
-	_	-	3	_	-
-	_	_	_	4	-
_	_	_	_	_	5
-	_	-	_	-	-

Table 2: m and c tables for l=2

0	150	-	-	-	-
-	0	360	-	-	-
-	-	0	180	_	-
_	-	-	0	3000	-
_	-	-	-	0	1500
-	-	-	_	_	0

-	1	-	-	-	-
-	_	2	_	-	_
-	_	_	3	_	_
-	_	-	_	4	_
-	_	-	_	-	5
-	-	-	-	-	_

Table 3: m and c tables for l=3

PROBLEM 1-b. Show that a fully parenthesization of an n-element expression has exactly n-1 pairs of parentheses.

Solution. We can prove this fact using induction on the number of matrices in a matrix chain.

Base #1: n = 1

By definition, an expression is fully parenthesized if it is a single element. Therefore, since n = 1 corresponds to an expression of a single element (a single matrix), then we know it is fully parenthesized with no parentheses. Thus, we have (1-1) = 0 parentheses for a n = 1 element expression.

Base #2: n = 2

By definition, a 2-element expression is fully parenthesized if it is the product of the two fully parenthesized elements surrounded by a single pair of parenthesis. Since single elements are fully parenthesized by themselves with no addition parenthesis, we know that an 2-element expression is fully parenthesized if we write it as the product of the two elements surrounded by parentheses. Thus, with this 2-element expression, we can make it fully parenthesized with 2 - 1 = 1 pair of parentheses.

Induction: n=2

Solution.

Assume that a full parenthesization of a k-element expression has exactly k-1 pairs of parentheses. Now, let $[A_1, A_2, ..., A_k]A_{k+1}$ be a k+1-element expression. By the induction hypothesis, we know that $[A_1, A_2, ..., A_k]$ is fully parenthesized with k-1 parentheses. Now, since A_{k+1} is a single matrix we know that it is also fully parenthesized with 0 parentheses, so we can make the full expression $[A_1, A_2, ..., A_k]A_{k+1}$ by rewriting it as $([A_1, A_2, ..., A_k]A_{k+1})$ (since it is the product of two fully parenthesized expressions). Now, since $[A_1, A_2, ..., A_k]$ contributed k-1 parentheses and we have just added one more pair of parentheses, the total is now k, which is equal to exactly (k+1)-1.

Thus, we can see that a fully parenthesization of an n-element expression has exactly n-1 pairs of parentheses. This can also be argued by observing that a pair of parentheses always wraps two operands with a single operator, and since there are n-1 operators in an n-element expression, there must also be n-1 parentheses if it is fully parenthesized.

PROBLEM 2-a. Which is a more efficient way to determine the optimal number of multiplications in a matrix-chain multiplication problem: enumerating all the ways of parenthesizing the product and computing the number of multiplications for each, or running the recursive matrix chain algorithm?