Часть 1. Тест.

Вопрос 1 \clubsuit При добавлении новой переменной скорректированный R^2
А обязательно упадёт
может как вырасти, так и упасть
С обязательно вырастет
Вопрос 2 ♣ При условной гетероскедастичности и наблюдениях, представляющих случайную выборку, оценки МНК
остаются состоятельными В перестают быть состоятельными
Вопрос 3 \clubsuit При условной гетероскедастичности и наблюдениях, представляющих случайную выборку, оценки МНК
А перестают быть несмещёнными остаются несмещёнными
Вопрос 4 ♣ При условной гетероскедастичности использование робастных стандартных ошибок позволяет
А устранить смещённость оценок коэффициентов
В устранить несостоятельность оценок коэффициентов
Нет верного ответа.
Вопрос 5 \clubsuit Для проверки гипотезы о значимости коэффициентов при мультиколлинеарности стандартные t -статистики
можно использовать, т.к. они по прежнему имеют t -распределение
$\boxed{\mathrm{B}}$ нельзя использовать т.к. они не имеют t -распределения
Вопрос 6 ♣ При предпосылке о нормально распределенных ошибках в классической линейной регрессионной модели оценки коэффициентов уравнения с помощью МНК и оценки с помощью максимального правдоподобия
А отличаются
совпадают
Вопрос 7 Если нарушена только предпосылка $\mathrm{E}(u_i)=0$, то при оценке модели $y_i=\beta_1+\beta_2x_i+u_i$ оценка $\hat{\beta}_2$ окажется
А смещённой несмещённой

Вопрос 8 👫 При автокорреляции первого порядка в ошибках использование робастных стан
дартных ошибок Нью-Веста позволяет
А устранить смещённость оценок коэффициентов
В устранить несостоятельность оценок коэффициентов
Нет верного ответа.
Вопрос 9 ♣ Если все выборочные корреляции между регрессорами по модулю меньше 0.1 то строгая мультиколлинеарность
возможна В невозможна
Вопрос 10 \clubsuit При добавлении новой переменной коэффициент детерминации R^2 :
А обязательно упадёт
В может как вырасти, так и упасть
обязательно вырастет

Часть 2. Задачи.

1. Регрессионная модель задана в матричном виде при помощи уравнения $y=X\beta+\varepsilon$, где $\beta=(\beta_1,\beta_2,\beta_3)'$. Известно, что $\mathrm{E}(\varepsilon)=0$ и $\mathrm{Var}(\varepsilon)=\sigma^2\cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{m} (X'X)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}.$$

- а) Найдите вектор МНК-оценок коэффициентов $\hat{\beta}$.
- б) Найдите несмещенную оценку для неизвестного параметра σ^2 .
- 2. На основе квартальных данных с 2003 по 2008 год было получено следующее уравнение регрессии, описывающее зависимость цены на товар P от нескольких факторов:

$$P = 3.5 + 0.4X + 1.1W, ESS = 70.4, RSS = 40.5$$

Когда в уравнение были добавлены фиктивные переменные, соответствующие первым трем кварталам года Q_1, Q_2, Q_3 , оцениваемая модель приобрела вид:

$$P_{t} = \beta + \beta_{X} X_{t} + \beta_{W} W_{t} + \beta_{Q_{1t}} Q_{1t} + \beta_{Q_{2t}} Q_{2t} + \beta_{Q_{3t}} Q_{3t} + \varepsilon_{t}$$

При этом величина $ESS = \sum (\hat{y}_i - \bar{y})^2$ выросла до 86.4.

- а) Аккуратно сформулируйте гипотезу об отсутствии сезонности
- б) На уровне значимости 5% проверьте гипотезу о наличии сезонности
- 3. Эконометресса Анжелла хочет оценить модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \varepsilon_i$, но, к сожалению, величина w_i ненаблюдаема. Известно, что $\mathrm{Var}(x_i) = 9$, $\mathrm{Var}(w_i) = 4$, $\mathrm{Var}(\varepsilon_i) = 1$ и $\mathrm{Cov}(x_i, w_i) = -2$. Случайная составляющая не коррелированна с регрессорами.

За неимением w_i Анжелла оценивает регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ с помощью МНК.

- а) Найдите plim $\hat{\beta}_2$
- б) Являются ли оценки, получаемые Агнессой, состоятельными?

- 4. Методом максимального правдоподобия оценили логит-модель $\hat{y}_i^* = 2 + 3x_i 5z_i$
 - а) Оцените вероятность того, что $y_i = 1$ для $\bar{x} = 5$, $\bar{z} = 7$
 - б) Оцените предельный эффект увеличения x на единицу на вероятность того, что $y_i=1$ для $\bar{x}=5,$ $\bar{z}=7$
 - в) При каком значении x предельный эффект увеличения z на 1 в точке $\bar{z}=7$ будет максимальным?

Часть 3. Теоретические вопросы

- 1. Для парной регрессии выведите условия первого порядка (нормальные уравнения) для оценок коэффициентов
- 2. Опишите процедуру получения первой и второй главной компоненты
- 3. Дайте определение стационарного в широком смысле и нестационарного ряда, приведите по одному примеру стационарного и нестационарного ряда