

TELESCOPE CONTROL SYSTEM

K. Nitya -CB.AI.U4AIM24123
B. Pavani Shreeya -CB.AI.U4AIM24106
Ardhra Vinod -CB.AI.U4AIM24105
Hari krishna Iyer -CB.AI.U4AIM24114

PROBLEM STATEMENT

Modern telescope systems require precise pointing accuracy to track celestial objects efficiently. This work introduces an interactive simulation setup that controls theory, real-time visualization, and user interaction to address these challenges.

Data Acquisition:

 Imported SkyCoord (co-ordinates), EarthLocation and Time from astropy to retrive positions of celestial objects.

DSA Implementation:

- Used arrays to store angles, angular velocities and feedforward terms.
- Dynamic arrays are used to handle state space representation, matrix multiplications, simulation data and control input efficiently.

LITERATURE REVIEW

SI. no.	Title	Year	Methodology	Key Contributions
1.	A Systematic Methodology for Modeling and Attitude Control of Multibody Space Telescopes	2024	Kane's method for multibody modeling, Linear Quadratic Regulator (LQR) design.	Developed a systematic method for modelling multibody space telescope.
2.	Execution of Queue-Scheduled Observations with the Gemini 8m Telescopes	1997	Queue scheduling, dynamic simulation models.	Proposed an efficient queue-based scheduling model for telescope operations.

3	Pointing Accuracy Improvements for the South Pole Telescope with Machine Learning	2024	Two XGBoost models were trained using historical telescope observation data, and weather conditions to predict real-time corrections.	Achieved a 33% reduction in pointing errors, enabling more precise observations.
4	Model Predictive Star Tracking Control for Ground-Based Telescopes: The Telescopio Nazionale Galileo Case	2024	A two-layer MPC-based tracking system is designed, to track astronomical targets while mitigating disturbances.	Achieved superior tracking accuracy, robustness to wind disturbances, and improved performance over traditional PID and LQG-PI controllers, validated on the Telescopio Nazionale Galileo (TNG).
5	Model Control Law by William Brogan	1990	centers on designing optimal control laws by minimizing a quadratic cost function that balances state regulation (matrix Q) and control effort (matrix R) We solve the Algebraic Riccati Equation to compute a feedback gain matrix K, ensuring asymptotic stability for stabilizable systems.	used for its systematic trade- off tuning and inherent robustness margins
6	Modern Control Engineering by Katsuhiko Ogata	1970	The optimal feedback gain is computed by solving the algebraic Riccati equation, resulting in a control law that ensures system stability and a systematic trade-off between performance and energy use.	highlights LQR's practicality for modern control system design, especially for multi- variable and state-space models

7	Modern Control of Dynamic Systems by Gene F. Franklin J David Powell	1986	The approach formulates a quadratic cost function that penalizes both deviations in system states and excessive control effort, leading to a control law where the optimal gain matrix is found by solving the algebraic Riccati equation.	This ensures a balance between performance and energy use, providing robust and stable closed-loop behavior.
8	Modern Control Systems by Richard C Dorf	1967	Minimizes a quadratic cost function reflecting both state deviations and control effort, weighted matrices Q and R. The optimal feedback gain is determined by solving the algebraic Riccati equation, resulting in a control law u=-Kx that ensures system stability and a systematic trade-off between performance and actuator usage. Dorf emphasizes LQR's value for its mathematical rigor, robustness, and practical applicability to modern statespace control system design.	Dorf emphasizes LQR's value for its mathematical rigor, robustness, and practical applicability to modern statespace control system design.

ALGORITHM

-> System Dynamics Modeling

• State Space Representation:

$$\dot{x} = Ax + Bu, \qquad x = [\theta, \dot{\theta}, \phi, \dot{\phi}]^T$$

A: Defines how state variables change over time.

B: Control input matrix for torque application.

-> Optimal LQR Control

computes u to minimize:

$$I = -kx J = \int_0^\infty (x^T Qx + u^T Ru) dt$$

Q: State weighting matrix (prioritizes angular precision).

R: Control effort weighting matrix.

Algebraic Riccati Equation (ARE):

• Solve $A^TP + PA - PBR^{-1}B^TP + Q = 0$ P = Solution matrix used to compute optimal control gain

$$K = R^{-1}B^T P$$

-> Feedforward Compensation

Velocity Feedforward: Enhance tracking by compensating for target motion:

$$ff_{\theta} = \frac{\triangle \theta \ target}{\Delta t}, \ ff_{\varnothing} = \frac{\triangle \varnothing \ target}{\Delta t}$$

Integrated into control law:

$$u = -k(x - x_{target}) + f f_u$$

-> Real-Time Target Tracking Simulation:

Celestial Position Updates:

Fetch real-time RA/Dec coordinates of target (e.g., Sirius) using astroquery.

Time-Delay Simulation:

Introduce latency with time.sleep() to mimic real-world operation.

-> Numerical Integration of Dynamics

Runge-Kutta 4th Order (RK4):

Propagate system states over time:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Solves nonlinear dynamics with time-varying feedforward terms.

-> Performance Metric

Root Mean Square Error (RMSE):

Quantify tracking accuracy:

$$RMSE = \sqrt{\frac{1}{N} \sum (\theta_{target} - \theta_{actual})^2}$$

3D - VISUALIZATION

- A celestial dome representing the sky and a red dot at Siriu's position in 3D Cartesian coordinates is the Traget. The telescope model is shown as a cylinder oriented using the simulated angles.
- Spherical Linear Interpolation: A technique used in computer graphics to smoothly interpolate between two rotations or orientations. It's particularly useful for animating 3D rotations, ensuring a smooth and constant-speed motion along the shortest path between two rotations.
- Rodrigues' Rotation Formula: This computes a 3D rotation matrix which rotates the telescope in the target direction. When the initial direction vector, the target direction vector, the rotation axis k, and the angle θ are given, the rotation matrix R is calculated as

$$\circ R = I + \sin\theta K + (1 - \cos\theta) K^2$$

where, K is the skew-symmetric matrix of cross product vector k.

RESULTS

Observation:

The LQR control effectively stabilizes the telescope and brings it to the desired target with minimal oscillations.

