Sparse Kernel Machines Chapter 7

Prof. Reza Azadeh University of Massachusetts Lowell

Previously

- In previous chapter, we looked at non-parametric methods in which we have to evaluate a kernel for all pairs of data points.
- This process can be time consuming and computationally expensive.
- In this chapter, we look at kernel methods with sparse solutions, in which for the prediction of new points we only need to evaluate the kernel with a subset of points.

Background - Lagrange Multipliers (1)

Consider the problem of finding the maximum of a function $f(x_1, x_2)$ subject to a constraint relating x_1 and x_2 .

maximize
$$f(\mathbf{x})$$

s.t.
$$g(\mathbf{x}) = 0$$

Background - Lagrange Multipliers (2)

To approach this problem, we introduce a parameter λ called a Lagrange multiplier and write the Lagrangian function as

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

We then need to find the stationary point of $L(\mathbf{x}, \lambda)$ with respect to both \mathbf{x} and λ .

Background - Lagrange Multipliers example (1)

Suppose we would like to solve

maximize
$$f(x_1, x_2) = 1 - x_1^2 - x_2^2$$

s.t. $g(x_1, x_2) = x_1 + x_2 - 1 = 0$

We write the Lagrangian function

$$L(\mathbf{x}, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1)$$

Background - Lagrange Multipliers example (2)

Background - Lagrange Multipliers example (2)

Background - Lagrange Multipliers example (3)

We then get the gradients

$$\frac{\partial L}{\partial x_1} = -2x_1 + \lambda = 0$$
$$\frac{\partial L}{\partial x_2} = -2x_2 + \lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = x_1 + x_2 + 1 = 0$$

Solving this set of equations results in the stationary point $(x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2}).$

Maximum Margin Classifiers (1)

Consider a 2-class classification problem using the following linear model:

$$y(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b$$

where $\phi(\mathbf{x})$ denotes a fixed feature space transformation, and we have made the bias parameter explicit.

We also consider a training data set with N input vectors $\mathbf{x}_1, \dots, \mathbf{x}_N$ with corresponding target values t_1, \dots, t_N where $t_n = \{-1, 1\}$, and new data point \mathbf{x} are classified according to the sign of $y(\mathbf{x})$.

Maximum Margin Classifiers (2)

We also assume that the training set is linearly separable in feature space, so there is at least one choice of parameters \mathbf{w} and b, such that we get $y(\mathbf{x}_n) > 0$ for points with $t_n = +1$ and $y(\mathbf{x}_n) < 0$ for points with $t_n = -1$. And therefore for all data points we have $t_n y(\mathbf{x}_n) > 0$.

The **support vector machine** approaches this problem using the concept of the *margin*, which is defined to be the smallest distance between the decision boundary and any of the samples.

Maximum Margin Classifiers (3)

Figure: The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points (left). Maximizing the margin leads to a particular choice of decision boundary (right). The location of the boundary is determined by a **subset** of the data points, known as *support* vectors, shown by circles.

Maximum Margin Classifiers (4)

Recall from our discussions on linear models for classification, the perpendicular distance of a point \mathbf{x} from a hyper-plane defined by $y(\mathbf{x}) = 0$ is given by $|y(\mathbf{x})| / ||\mathbf{w}||$.

Maximum Margin Classifiers (5)

In this section, we are interested in the solution where all the data points are correctly classified. Thus the distance of a point \mathbf{x}_n to the decision surface is given by

$$\frac{t_n y(\mathbf{x})}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

We wish to optimize the parameters \mathbf{w} and b to maximize the distance. Thus the maximum margin solution is found by solving

$$\operatorname{argmax}_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_{n}(\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) \right] \right\}$$

Maximum Margin Classifiers (6)

Since solving this optimization problem is difficult, we convert it to a simpler formulation. We do this simplification based on the knowledge that scaling $\mathbf{w} \to \kappa \mathbf{w}$ and $b \to \kappa b$ does not change $t_n y(\mathbf{x}_n)/\|\mathbf{w}\|$. We can use this freedom to set

$$t_n(\mathbf{w}^{\top}\boldsymbol{\phi}(\mathbf{x}_n) + b) = 1$$

for the point that is closest to the surface. All the data points then satisfy

$$t_n(\mathbf{w}^{\top}\boldsymbol{\phi}(\mathbf{x}_n) + b) \ge 1, \quad n = 1, \dots, N$$

Maximum Margin Classifiers (7)

Using this approach, the optimization problem requires that we maximize $\|\mathbf{w}\|^{-1}$ which is equivalent to minimizing $\|\mathbf{w}\|^2$, and so we have to solve

$$\operatorname{argmin}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^{2}$$
s.t. $t_{n}(\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) \geq 1$

This problem can be solved using the Lagrange multiplier method, with multipliers $a_n \geq 0$ with one multiplier a_n for each of the constraints, giving

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n(\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1\}$$

Maximum Margin Classifiers (8)

Setting the derivatives w.r.t ${\bf w}$ and b equal to zero, we obtain

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
$$0 = \sum_{n=1}^{N} a_n t_n.$$

Maximum Margin Classifiers (9)

Eliminating \mathbf{w} and b from the Lagrangian, we should maximize

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

with respect to a subject to

$$a_n \ge 0, \quad n = 1, \dots, N$$

$$\sum_{n=1}^{N} a_n t_n = 0.$$

Note that the kernel is defined by $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$

Maximum Margin Classifiers (10)

To classify a new point using the trained model, we evaluate the sign of $y(\mathbf{x})$ as

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

The points that are on the maximum margin hyperplane in feature space, a.k.a *support vectors*, surface will appear in this formula but all other points do not because they satisfy $a_n = 0$. This means after training, a significant portion of the data points can be discarded and only the support vectors retained.

Maximum Margin Classifiers (11)

After finding \mathbf{a} , we can also find b by solving

$$b = \frac{1}{N_S} \sum_{n \in S} (t_n - \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m))$$

Maximum Margin Classifiers (12)

Figure: Example of a classification resulting from training a support vector machine on a simple synthetic data set using a Gaussian kernel. Also shown are the decision boundaries, the margin boundaries, and the support vectors.

Overlapping class distributions (1)

- When the class-conditional distributions overlap, exact separation of the training data can lead to poor generalization.
- We can do this by allowing data points to be on the "wrong side" of the margin boundary, but with a penalty that increases with the distance from that boundary.
- We introduce the slack variable $\xi_n \geq 0$ where n = 1, ..., N with one slack variable for each data point.
- These are defined by $\xi_n = 0$ for points that are on or inside the correct margin boundary and $\xi_n = |t_n y(\mathbf{x}_n)|$ for other points.
- a data point on the decision boundary will have $\xi_n = 1$.

Overlapping class distributions (2)

• Data points with $\xi_n > 1$ will be misclassified.

Overlapping class distributions (3)

Our goal now is to maximize the margin while softly penalizing points that lie on the wrong side of the margin boundary.

minimize
$$C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

s.t. $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$

where the parameter C controls the trade-off between the slack variable penalty and the margin.

Overlapping class distributions (4)

This can be done similar to the previous solution by forming the Lagrangian multiplier, resulting in

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

which is identical to the separable case, except that the constraints are different. We should maximize the above equation w.r.t **a** subject to the following box constraints

$$0 \le a_n \le C$$
$$\sum_{n=1}^{N} a_n t_n = 0$$

Overlapping class distributions (5)

We can also find b using

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} (t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m))$$

where \mathcal{M} denotes the set of indices of data points having $0 < a_n < C$.

ν-SVM

An alternative, equivalent formulation of the support vector machine, known as ν -SVM involves solving

maximize
$$\tilde{L}(\mathbf{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

s.t. $0 \le a_n \le \frac{1}{N}$

$$\sum_{n=1}^{N} a_n t_n = 0$$

$$\sum_{n=1}^{N} a_n \ge \nu$$

$\nu ext{-SVM}$ - example

Figure: ν -SVM applied to a non-separable data set in two dimensions. The support vectors are indicated by circles.

Multiclass SVMs

- The support vector machine is fundamentally a two-class classifier.
- There exist methods that use a single objective for training all K SVMs simultaneously, based on maximizing the margin from each to remaining classes.
 → can be slow, but the most commonly used method.
- Another approach is to training K(K-1)/2 different two-class SVMs on all the possible pairs of classes, and then to classify test points according to which class has the highest number of votes. \rightarrow still slow

SVMs for regression

To extend SVMs for regression, we replace the regularized error function

$$\frac{1}{2} \sum_{n=1}^{N} \{y_n - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

by an ϵ -insensitive error function, which gives zero error if the absolute difference between the predictions $y(\mathbf{x})$ and the target t is less than ϵ where $\epsilon > 0$.

$$E_{\epsilon}(y(\mathbf{x}) - t) = \begin{cases} 0, & \text{if } |y(\mathbf{x}) - t| < \epsilon \\ |y(\mathbf{x}) - t| - \epsilon, & \text{otherwise} \end{cases}$$

ϵ -insensitive error function

$$E_{\epsilon}(y(\mathbf{x}) - t) = \begin{cases} 0, & \text{if } |y(\mathbf{x}) - t| < \epsilon \\ |y(\mathbf{x}) - t| - \epsilon, & \text{otherwise} \end{cases}$$

Figure: quadratic error function (green) and ϵ -insensitive error function (red)

Minimization problem

So in SVM for regression, instead of

$$\frac{1}{2} \sum_{n=1}^{N} \{y_n - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

we minimize

$$C\sum_{n=1}^{N} E_{\epsilon}(y(\mathbf{x}_n) - t_n) + \frac{1}{2} \|\mathbf{w}\|^2$$

where $y(\mathbf{x}) = \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}) + b$.

ϵ -insensitive tube

We introduce two slack variables for each data point $\xi_n \geq 0$ and $\hat{\xi}_n \geq 0$. This definition results in a ϵ -insensitive tube.

Figure: regression curve together with the ϵ -tube. Points above the tube have $\xi > 0$ and $\hat{\xi} = 0$, whereas points below the tube have $\xi = 0$ and $\hat{\xi} > 0$, and points inside the tube have $\xi = \hat{\xi} = 0$.

Optimization

The error function then can be re-written as

$$C\sum_{n=1}^{N}(\xi_n+\hat{\xi}_n)+\frac{1}{2}\|\mathbf{w}\|^2$$

To cover all the constraints, we form the Lagrange multiplier as

$$L = C \sum_{n=1}^{N} (\xi_n + \hat{\xi}_n) + \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} (\mu_n \xi_n + \hat{\mu}_n \hat{\xi}_n)$$
$$- \sum_{n=1}^{N} a_n (\epsilon + \xi_n + y_n - t_n) - \sum_{n=1}^{N} \hat{a}_n (\epsilon + \hat{\xi}_n - y_n + t_n)$$

Lagrange multiplier

We then calculate the derivatives of the Lagrangian w.r.t \mathbf{w}, b, ξ_n , and $\hat{\xi}_n$ and setting them to zero.

$$\tilde{L}(\mathbf{a}, \hat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n)(a_m - \hat{a}_m)k(\mathbf{x}_n, \mathbf{x}_m)$$
$$-\epsilon \sum_{n=1}^{N} (a_n + \hat{a}_n) + \sum_{n=1}^{N} (a_n - \hat{a}_n)t_n$$

where $k(\mathbf{x}_n, \mathbf{x}_m) = \boldsymbol{\phi}(\mathbf{x}_n)^{\top} \boldsymbol{\phi}(\mathbf{x}_m)$, and the prediction

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \hat{a}_n)k(\mathbf{x}, \mathbf{x}_n) + b$$

ν -SVM for Regression

Similar to the classification case, there is an alternative formulation that involves maximizing

$$\tilde{L}(\mathbf{a}, \hat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n)(a_m - \hat{a}_m)k(\mathbf{x}_n, \mathbf{x}_m) + \sum_{n=1}^{N} (a_n - \hat{a}_n)t_n$$
s.t. $0 \le a_n \le C/N$

$$0 \le \hat{a}_n \le C/N$$

$$\sum_{n=1}^{N} (a_n - \hat{a}_n) = 0$$

$$\sum_{n=1}^{N} (a_n + \hat{a}_n) \le \nu C$$

ν -SVM for Regression - example

Figure: ν -SVM for regression applied to the sinusoidal synthetic data set using Gaussian kernel. The predicted regression curve (red), the ϵ -tube (shaded region), support vectors (blue circles) other data points (green circles).