Introduction to Formal Semantics Exam on 18.07.2022 Help Sheet

Composition Rule 1: Function Application

Let γ be a syntax tree whose sub-trees are α and β where:

- $\alpha \rightsquigarrow \alpha'$ where α' has type $\langle \sigma, \tau \rangle$
- $\beta \leadsto \beta'$ where β' has type $\langle \sigma \rangle$

then

 $\gamma \leadsto \alpha'(\beta')$

Composition Rule 2: Non-branching Nodes

If β is a tree whose only daughter is α , where $\alpha \rightsquigarrow \alpha'$ then $\beta \rightsquigarrow \alpha'$

Composition Rule 3: Predicate Modification

If:

- γ is a tree whose only two subtrees are α and β
- $\alpha \leadsto \alpha'$
- $\beta \sim \beta'$
- α' and β' are of type $\langle e, t \rangle$

Then:

 $\gamma \leadsto \lambda u.[\alpha'(u) \land \beta'(u)]$

where u is a variable of type e that does not occur free in α' or β' .

Composition Rule 4: Pronouns and Trace Rule

If α is an indexed trace or pronoun, $\alpha_i \rightsquigarrow v_i$

Composition Rule 5: Predicate Abstraction

If:

- γ is a tree whose only two subtrees are α_i and β
- $\beta \rightsquigarrow \beta'$
- β' is an expression of type t

Then $\gamma \leadsto \lambda v_i.\beta'$

Type-Shifting Rule 1: Predicate-to-modifier shift

If $\alpha \rightsquigarrow \alpha'$, where α' is of type $\langle e, t \rangle$,

then $\alpha \rightsquigarrow \lambda P.[\alpha'(x) \land P(x)]$ (as long as P and x are not free in α ; in that case, use different variables of the same type).

Type Shifting Rule 2: Object Raising (RAISE-O)

If an English expression α is translated into a logical expression α' of type $\langle e, \langle \alpha, t \rangle \rangle$ for any type α , then α also has a translation of type $\langle \langle \langle e, t \rangle, t \rangle, \langle \alpha, t \rangle \rangle$ of the following form:

$$\lambda Q_{\langle e,t\rangle,t\rangle} \lambda x_{\alpha}. Q(\lambda y.\alpha'(y)(x))$$

(unless Q, y or x occurs in α' ; in that case, use different variables).

Type Shifting Rule 3: Subject Raising (RAISE-O)

If an English expression α is translated into a logical expression α' of type $\langle \alpha, \langle e, t \rangle \rangle$ for any type α , then α also has a translation of type $\langle \alpha \langle \langle \langle e, t \rangle, t \rangle, t \rangle \rangle$ of the following form:

$$\lambda y_{\alpha} \lambda Q_{\langle e,t \rangle,t \rangle} . Q(\lambda x_e . \alpha'(y)(x))$$

(unless Q, y or x occurs in α' ; in that case, use different variables).

Type-Shifting Rule 5: Existential Closure

if $\alpha \rightsquigarrow \alpha'$, where α' is of a category $\langle v, t \rangle$, then:

$$\alpha \leadsto \exists e.\alpha'(e)$$

as well (as long as) e does not occur in α' ; in that case, use a different variable of the same type

Syntax Rule: Definedeness Conditions

If ϕ is an expression of type t, then $\partial(\phi)$ is an expression of type t

Semantic Rule: Defineteness Conditions

If ϕ is an expression of type t, then:

$$[\![\partial(\phi)]\!]^{M,g} = \begin{cases} 1 \ if \ [\![\phi]\!]^{M,g} = 1 \\ \#_e otherwise \end{cases}$$

Semantic Rule: Existence Predicate

 $[Exists(\alpha)]^{M,g} = 1$ if $[\alpha]^{M,g} \neq \#_e$ and 0 otherwise

Type-Shifting Rule 6: Quantifier Closure

if $\alpha \leadsto \alpha'$, where α' is of a category $\langle \langle v, t \rangle, t \rangle$, then: $\alpha \leadsto \alpha'(\lambda e.true)$ as well.