ИЗПИТ

по ДИС I част, специалност "Компютърни науки"
2 февруари 2023г.
Име: Фак.номер:

1. Нека A е ограничено непразно множество от реални числа. Дайте дефиниция на $\sup A$ и

$$\sup \{|x - y| : x \in A, y \in A\} = \sup A - \inf A.$$

 $\inf A$. Докажете, че

- 2. Нека $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа и $a \in \mathbb{R}$. Какво означава тази редица да клони към a? Какво означава a да е точка на сгъстяване на тази редица? Какво означава, че "редицата $\{a_n\}_{n=1}^{\infty}$ няма точки на сгъстяване"? Дефинирайте "подредица на дадена редица". Докажете, че a е точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$ точно тогава, когато съществува подредица на $\{a_n\}_{n=1}^{\infty}$, която клони към a.
- 3. Дайте дефиниция на $\lim_{x\to -\infty} f(x) = 6$ във формата на Хайне и във формата на Коши, където $f: D \longrightarrow \mathbb{R}, \ D \subset \mathbb{R}$. Какво трябва да предположите за D, за да е смислена дадената дефиниция? Докажете, че ако $\lim_{x\to -\infty} f(x) = 6$ в смисъл на Коши, то f клони към 6, когато аргументът клони към $-\infty$, в смисъл на Хайне.
- 4. Нека $f: D \longrightarrow \mathbb{R}$, където $D \subset \mathbb{R}$. Какво означава f да е непрекъсната? Докажете, че ако $f: D \longrightarrow \mathbb{R}$, $[a,b] \subset D$ и f е непрекъсната във всяка точка на [a,b], то за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяко $x' \in [a,b]$ и за всяко $x'' \in D$, за което $|x' x''| < \delta$, е в сила $|f(x') f(x'')| < \varepsilon$. Доказаното твърдение по-силно ли е от Теоремата на Кантор или по-слабо? Дайте дефиниция на равномерна непрекъснатост. Докажете, че функцията $f(x) = \sqrt[3]{x}$ е равномерно непрекъсната върху реалната права.
- 5. Напишете дефиницията за производна на функция в дадена точка. Дайте дефиниция на локален екстремум. Формулирайте и докажете Теоремата на Ферма. Формулирайте и докажете Теоремата на Рол.
- 6. Напишете формулата на Тейлър за n+1 пъти диференцируема функция f около точката a до n-тия член с остатък във формата на Лагранж. Пресметнете границата

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + 12x} - \sqrt{1 + 8x}}{x^2}$$

като използвате бинома на Нютон (развитието в полином на Тейлър на $(1+x)^{\alpha}$).

7. Дайте дефиниция на изпъкнала функция. Формулирайте необходимо и достатъчно условие една диференцируема функция да е изпъкнала. Нека функцията $f:(a,+\infty) \longrightarrow \mathbb{R}$ е диференцируема, изпъкнала и притежава хоризонтална асимптота, т. е. съществува границата $l=\lim_{x\to+\infty} f(x)$. Докажете, че $\lim_{x\to\infty} f'(x)=0$.