Libros para enseñar cómo pensamos y no sólo lo que sabemos

Vicente Talanquer

Dept. of Chemistry and Biochemistry University of Arizona

¿De Dónde Vengo?

México
Facultad de Química, UNAM
1992-2000

EUA

Dept. Química y Bioquímica, Universidad de Arizona 2000-

La Pregunta Central

Cómo "reconceptualizar" los libros de texto para:

- ❖ Transformar el contenido: lo que sabemos → cómo pensamos
- ❖ Transformar la evaluación: segmentación → integración
- ❖ Transformar la instrucción: explicación → indagación y diseño

La Motivación

Investigación y experiencia en la enseñanza y el aprendizaje de las ciencias.

El Eje Conductor

"Pensamiento Químico"

Un proyecto en desarrollo para transformar la enseñanza de química general.

El Origen

Es difícil hablar de libros de texto sin discutir asuntos curriculares.

Libros de

Los Problemas

En general, los currículos de ciencias son monolíticos y tienen diversas limitaciones:

Extensión vs. Profundidad

Segmentación vs. Integración

Conocimiento vs. Pensamiento

Algoritmos vs. Conceptos

Tradición vs. Relevancia

Impacto sobre el aprendizaje y la motivación

La Tesis

LIBROS DE TEXTO

Resúmenes descriptivos del conocimiento acumulado.

Herramientas para desarrollar formas útiles de pensar sobre el mundo.

RECONCEPTUALIZACIÓN

Libros de

La Estrategia

Diseño de Currículo y Libro de Texto

Contenidos

¿Cómo transformar los contenidos para hacerlos más coherentes, relevantes y funcionales?

Cambios de Énfasis Principales

De temas — A preguntas

De lo que sabemos — A cómo pensamos

De la academia Al contexto

¿Cómo Hacerlo?

Temas → **Preguntas**

Tradicionalmente, los currículos de ciencias manifiestan una obsesión compulsiva con los abordajes temáticos de las disciplinas.

Estequiometría
Estructura Atómica
Cinética
Ácidos y Bases
Termoquímica

Capa de Ozono
Calentamiento
Global
Combustibles
Polímeros
Drogas

Los libros son compendios fragmentados de nuestros conocimientos en estas áreas.

Temas → **Preguntas**

¿Qué preguntas fundamentales nos permite responder el "pensamiento químico"?

Análisis ¿Qué es esto?

Transformación ¿Cómo lo cambio?

Síntesis ¿Cómo lo hago?

Modelaje ¿Cómo lo explico?

Preguntas Esenciales

Preguntas cuyas respuestas nos permiten explicar o predecir las propiedades y comportamientos de sistemas relevantes.

- ¿Cómo distinguimos sustancias?
- ❖ ¿Cómo determinamos estructura?
- ¿Cómo usamos estructura para predecir propiedades?

La Espiral Inquisitiva

Sustancias

8. ¿Cómo aprovechamos la energía química?

7. ¿Cómo hacemos

6. ¿Cómo controlamos cambios químicos?

> 5. ¿Como predecimos cambios químicos?

> > 4. ¿Cómo modelamos cambios químicos?

Procesos

2. ¿Cómo determinamos estructura?

nuevas sustancias?

3. ¿Cómo predecimos propiedades?

Conceptos Fundamentales

¿Qué conocimientos son necesarios para generar las respuestas?

Unidades	Conceptos Fundamentales
1 ¿Cómo	Estados de la Materia Modelo Corpuscular de la Materia
distinguimos sustancias?	Elemento-Compuesto; Átomo-Molécula Mol-Masa Molar
2 ¿Cómo determinamos	Interacciones Luz-Materia Estructura Atómica Enlace Covalente
estructura?	Geometría Molecular y Polaridad

Progresiones de Aprendizaje

¿Qué secuencia de contenidos es la mejor para facilitar la comprensión de una idea central?

Consideraciones Básicas Conocimiento Disciplinario

Resultados de Investigación Educativa

Experiencia Docente

Libros de

Cambios al Contenido

De temas

A preguntas

De lo que sabemos

→

A cómo pensamos

De la academia

Al contexto

Conocer → **Pensar**

¿Qué "formas de pensar" queremos que desarrollen los estudiantes?

Dominio General

Observar

Inferir

Analizar

Diseñar

VS.

Dominio Específico

?

Conocer → **Pensar**

EJEMPLO: Entender la diversidad del mundo material es una meta central de la Química.

Tradición: ¿Cómo lo explicamos?

Conocer → **Pensar**

EJEMPLO: Entender la diversidad del mundo material es una meta central de la Química.

¿Para qué? ¿Cómo?

Substancias

¿Propósitos?	Identificación, Detección, Separación
¿Suposiciones?	Características Diferenciantes
¿Herramientas Intelectuales?	Modelos estructura-propiedades
¿Herramientas Experimentales?	Técnicas Espectroscópicas

Academia -> Contexto

Tradicionalmente, los currículos de ciencia se centran en la discusión de problemas académicamente interesantes pero poco relevantes en la vida actual.

Lithium electron configuration

1s 2s 1
1s 2s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f 5g
6s 6p 6d 6f 6g 6h
2 6 10 14 18 22 26
maximum number of electrons
that can occupy each subshell

Academia → Contexto

¿En qué areas es probable que el "pensamiento químico" resulte más relevante en el siglo XXI?

Problemas Ambientales

Diseño de Materiales

Fuentes Energéticas

La Estrategia

Diseño de Currículo y Libro de Texto

Evaluación

¿Cómo evaluamos "aprendizajes significativos"?

En general, la evaluación en libros de texto se basa en preguntas y problemas diseñados para evaluar conocimientos y destrezas aislados.

FIGURA 4-48 Problems 29.

- 30. (II) En el instante en el que comenzó la carrera, un velocista de 65 kg ejerció una fuerza de 720 N sobre el bloque de salida, en un ángulo de 22" con respecto al suelo, a) ¿Cuál fue la aceleración horizontal del velocista? b) Si la fuerza la ejerció durante 0.32 s, ¿con qué rapidez el corredor dejó el bloque de salida?
- 31. (II) La figura 4-49 muestra un bloque (masa m_A) sobre una superficie horizontal lisa, conectado mediante una cuerda delgada que pasa sobre una polea hacia un segundo bloque (m_B), que cuelga verticalmente. a) Dibuje un diagrama de cuerpo libre para cada bloque, donde muestre la fuerza de gravedad sobre cada uno, la fuerza (tensión) ejercida por la cuerda y cualquier fuerza normal. b) Aplique la segunda ley de Newton para encontrar fórmulas para la aceleración del sistema y para la tensión en la cuerda. Ignore la fricción y las masas de la polea y la cuerda.

Evaluación

¿Cómo evaluamos "aprendizajes significativos"?

Crear oportunidades para aplicar conocimientos y destrezas de manera más integral y en contexto.

Libros de

Evaluación

¿Cómo evaluamos "aprendizajes significativos"?

Aventura en una isla deshabitada (4^{to})

Tras las huellas del pasado (6^{to})

Evaluación

MÓDULO

U2. ¿Cómo determinamos estructura?M1. Analizando interacciones

Evaluación

FINAL DE UNIDAD

Integración

U2. ¿Cómo determinamos estructura?

La Estrategia

Diseño de Currículo y Libro de Texto

¿Cómo facilitamos el "aprendizaje significativo"?

Actividades Grupales

Exploración o Aplicación

Actividades Grupales

Exploración o Aplicación

Actividades Grupales

Exploración o Aplicación

Laboratorio

Indagación vs. Diseño

Argumentación vs. Fundamentación

Your Challenge

Imagine that you work for a company that is interested in using superabsorbent polymers, in particular sodium polyacrylate, as ion and molecule "scavengers" for removal of toxic substances dissolved in water.

Your task is to design a set of experimental procedures to characterize the capacity of the polymer to absorb a variety of dissolved substances.

Pilotaje

2008 → Prueba de componentes

individuales.

2009 → Primer pilotaje (UA, PCC).

2010 → Segundo pilotaje (UA, PCC)

Herramientas

Observaciones en la Clase;

Comentarios de Estudiantes y Maestros (Encuestas, conversaciones grupales);

Análisis de Trabajos y Exámenes.

Estudiantes

- I. Ninguna diferencia en pruebas convencionales;
- II. Reconocimiento de: abordaje conceptual, relevancia, participación activa y profundización.

"La clase es muy conceptual y profundiza en todo lo que aprendes. La clase es muy interactiva con muchas actividades. Discutes mucho sobre aplicaciones de la química en la vida diaria. Tienes que aplicar muchos conceptos y no sólo memorizar datos y ecuaciones."

III. Dificultad para adaptarse a otras formas de enseñanza.

"El curso fue extremadamente conceptual lo que en ocasiones lo hizo muy difícil."

Maestros

Dificultad para cambiar y adaptarse a nuevas formas de pensar sobre el currículo y el uso del libro de texto.

Fuerte tendencia a "reformular" el currículo en un conjunto de piezas convencionales.

El Énfasis

CONTENIDO

PREGUNTAS ESENCIALES

FORMAS DE PENSAR

PROGRESIONES DE

APRENDIZA IE

CONTEXTOS RELEVANTES

EVALUACIÓN

EXPERIENCIAS: INDAGACIÓN/DISEÑO

Reconocimientos

Proyecto Apoyado por National Science Foundation.

Division of Undergraduate Education (DUE)
Course, Curriculum, and Laboratory Improvement
(CCLI-Phase I, DUE-0736844)

Colaboradores
John Pollard- UA
Steve Brown- UA
Silvia Kolchens- PCC West
Pollyanna Wikrent- PCC Desert Vista

CONTACTO: vicente@u.arizona.edu