Mathematical Logic in Computer Science Homework 2 2024-25

Simone Bianco, 1986936

Sapienza Università di Roma, Italy

 $\mathrm{June}\ 1,\ 2025$

Question 1 (Basic Concepts). Let R be a transitive relation on a finite set W. Prove that R is well-founded iff R is irreflexive. (R is called well-founded if there are no infinite paths ... $Rs_2Rs_1Rs_0$.)

Solution. Suppose that R is reflexive. Then, for any element $s \in W$ we can form a trivial infinite path of the form ... RsRsRsRs by taking the loop infinitely many times. Thus, R cannot be well-founded.

Vice versa, suppose that R is irreflexive. By way of contradiction, suppose that R is not well-founded. Let $P = \dots Rs_2Rs_1Rs_0$ be an infinite path on W. Since W is finite, the path P has to eventually loop, meaning that $\exists i, j$ with $i \leq |W| \leq j$ such that $s_iRs_j \dots s_{i+1}Rs_iR \dots Rs_2Rs_1Rs_0$. By transitivity, we get that s_iRs_i , contradicting the irreflexivity of R. Thus, R must be well-founded.

Question 2 (Models and Frames). Consider the basic temporal language and the frames $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$, and $(\mathbb{R}, >)$ (the integer, rational, and real numbers, respectively, all ordered by the usual less-than relation <). In this exercise we use $E\phi$ to abbreviate $P\phi \lor \phi \lor F\phi$ and $A\phi$ to abbreviate $H\phi \lor \phi \lor G\phi$. Which of the following formulas are valid on these frames?

- 1. $GGp \rightarrow p$
- 2. $(p \wedge Hp) \rightarrow FHp$

3.
$$(Ep \land E \neg p \land A(p \rightarrow Hp) \land A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \land G \neg p)$$

Solution. Let $\mathcal{Z} = (\mathbb{Z}, <)$, $\mathcal{Q} = (\mathbb{Q}, <)$, and $\mathcal{R} = (\mathbb{R}, >)$. The following table summarizes the validity of the formulas for each model.

First, we give an informal idea behind each result:

1. $GGp \rightarrow p$ doesn't hold in any of the models. Knowing that p will be true for every value following the current one doesn't ensure that it also holds for the current value.

- 2. $(p \land Hp) \to FHp$ holds only in \mathcal{Z} . This is due to the non-density of \mathbb{Z} , thus if p holds for the current value n and all previous values n' < n, p will hold for all n'' < n + 1. Without density, there may be values between n and n + 1 for which p doesn't hold.
- 3. $(Ep \land E \neg p \land A(p \rightarrow Hp) \land A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \land G \neg p)$ doesn't hold in any of the models. The premise of the implication states that there are two instants x,y for which p holds for any value x' with x' < x and it doesn't hold for any value y' with y > y'. The conclusion of the implication states that there is an instant z for which p is true for any value that comes before z and false for any value that comes after z. However, there may be values s,t between x and y for which p holds on s and it doesn't on t, making at least one of the two conclusions false for any value z.

We start by restricting our interest to \mathcal{Z} :

• We prove that the formula $GGp \to p$ is not valid in \mathcal{Z} by giving a model that doesn't satisfy it. Let $\mathfrak{M}_{\mathcal{Z}} = (\mathcal{Z}, V)$ be a model such that $V(p) = \{v \in \mathbb{Z} \mid 0 < v\}$. We observe that:

$$\mathfrak{M}_{\mathcal{Z}}, 0 \models GGp \iff \forall x \in \mathbb{Z} \text{ with } 0 < x, \ \mathfrak{M}_{\mathcal{Z}}, x \models Gp$$

 $\iff \forall x, y \in \mathbb{Z} \text{ with } 0 < x < y, \ \mathfrak{M}_{\mathcal{Z}}, y \models p$
 $\iff \forall x, y \in \mathbb{Z} \text{ with } 0 < x < y, \ y \in V(p)$

which is true by choice of y itself. However, we have that $\mathfrak{M}_{\mathcal{Z}}, 0 \not\models p$ because $0 \notin V(p)$, concluding that $\mathfrak{M}_{\mathcal{Z}}, 0 \not\models GGp \to p$

• We prove that the formula $(p \wedge Hp) \to FHp$ is valid in \mathcal{Z} . Let $\mathfrak{M}_{\mathcal{Z}} = (\mathcal{Z}, V)$ be any model of \mathcal{Z} . We observe that:

$$\mathfrak{M}_{\mathcal{Z}}, n \models p \land Hp \iff n \in V(p) \ \forall x \in \mathbb{Z} \text{ with } x < n \ \mathfrak{M}_{\mathcal{Z}}, x \models p$$

$$\iff n \in V(p) \ \forall x \in \mathbb{Z} \text{ with } x < n \ x \in V(p)$$

Thus, we know that p holds for n and all x such that x < n. Moreover, we observe that:

$$\mathfrak{M}_{\mathcal{Z}}, n \models FHp \iff \exists x \in \mathbb{Z} \text{ with } n < x \ \mathfrak{M}_{\mathcal{Z}}, x \models Hp$$

 $\iff \exists x, y \in \mathbb{Z} \text{ with } n < x \text{ and } y < x \ \mathfrak{M}_{\mathcal{Z}}, y \models p$
 $\iff \exists x, y \in \mathbb{Z} \text{ with } n < x \text{ and } y < x \ y \in V(p)$

Hence, x must be a successor of n such that p is true for all of x's predecessors. In \mathbb{Z} , picking x = n + 1 satisfies the formula since we already know that p holds for all y such that $y \leq n$ and there are no elements between n and n + 1.

• We prove that the formula $(Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \wedge G \neg p)$ is not valid in \mathcal{Z} . Let $S \equiv Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)$. Let $\mathfrak{M}_{\mathcal{Z}} = (\mathcal{Z}, V)$ be a model of \mathcal{Z} such that

$$V(p) = \{ v \in \mathbb{Z} \mid v < 0 \} \cup \{ 1 \}$$

- . We observe that $\mathfrak{M}_{\mathcal{Z}}, 0 \models S$ is true when:
 - There are two values $x, y \in \mathbb{Z}$ with $x \in V(p), y \notin V(p)$. This comes from the definition of Ep and $E\neg p$ (e.g. x has to be either less than, equal to or greater than 0)
 - For any value $m \in \mathbb{Z}$, if $m \in V(p)$ then for all $x' \in \mathbb{Z}$ with x' < m then $x' \in V(p)$
 - For any value $m \in \mathbb{Z}$, if $m \notin V(p)$ then for all $y' \in \mathbb{Z}$ with m < y' then $y' \notin V(p)$

Picking x = -1 and y = 1 satisfies all the above conditions, thus $\mathfrak{M}_{\mathcal{Z}}, 0 \models S$ is satisfied. However, we have that $\mathfrak{M}_{\mathcal{Z}}, 0 \not\models E(Hp \land G \neg p)$ because for all values $z \in \mathbb{Z}$ with x < z < y at least one between Hp and $G \neg p$ is false.

We now consider the model Q:

• We prove that the formula $GGp \to p$ is not valid in \mathcal{Q} by giving a model that doesn't satisfy it. Let $\mathfrak{M}_{\mathcal{Q}} = (\mathcal{Q}, V)$ be a model such that $V(p) = \{v \in \mathbb{Q} \mid 0 < v\}$. We observe that:

$$\mathfrak{M}_{\mathcal{Q}}, 0 \models GGp \iff \forall x \in \mathbb{Q} \text{ with } 0 < x, \ \mathfrak{M}_{\mathcal{Q}}, x \models Gp$$
 $\iff \forall x, y \in \mathbb{Q} \text{ with } 0 < x < y, \ \mathfrak{M}_{\mathcal{Q}}, y \models p$
 $\iff \forall x, y \in \mathbb{Q} \text{ with } 0 < x < y, \ y \in V(p)$

which is true by choice of y itself. However, we have that $\mathfrak{M}_{\mathcal{Q}}, 0 \not\models p$ because $0 \notin V(p)$, concluding that $\mathfrak{M}_{\mathcal{Q}}, 0 \not\models GGp \to p$

• We prove that the formula $(p \wedge Hp) \to FHp$ is not valid in \mathcal{Q} . Let $\mathfrak{M}_{\mathcal{Q}} = (\mathcal{Q}, V)$ be a model of \mathcal{Q} with $V(p) = \{v \in \mathbb{Q} \mid v < 0\} \cup \{0\}$. We observe that:

$$\mathfrak{M}_{\mathcal{Q}}, 0 \models p \land Hp \iff 0 \in V(p) \ \forall x \in \mathbb{Q} \text{ with } x < 0 \ \mathfrak{M}_{\mathcal{Q}}, x \models p$$

 $\iff n \in V(p) \ \forall x \in \mathbb{Q} \text{ with } x < 0 \ x \in V(p)$

which is true by choice of x itself. However, we have that $\mathfrak{M}_{\mathcal{Q}}, 0 \not\models FHp$ because $\forall y \in \mathbb{Q}$ with 0 < y there is a value $z \in \mathbb{Q}$ with 0 < z < y such that $z \notin V(p)$ due to density of \mathbb{Q} .

• We prove that the formula $(Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \wedge G \neg p)$ is not valid in \mathcal{Q} . Let $S \equiv Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)$. Let $\mathfrak{M}_{\mathcal{Q}} = (\mathcal{Q}, V)$ be a model of \mathcal{Q} such that

$$V(p) = \{ v \in \mathbb{Q} \mid v < 0 \} \cup \{ 1 \}$$

- . We observe that $\mathfrak{M}_{\mathcal{Q}}, 0 \models S$ is true when:
 - There are two values $x, y \in \mathbb{Q}$ with $x \in V(p), y \notin V(p)$. This comes from the definition of Ep and $E\neg p$ (e.g. x has to be either less than, equal to or greater than 0)
 - For any value $m \in \mathbb{Q}$, if $m \in V(p)$ then for all $x' \in \mathbb{Q}$ with x' < m then $x' \in V(p)$
 - For any value $m \in \mathbb{Q}$, if $m \notin V(p)$ then for all $y' \in \mathbb{Q}$ with m < y' then $y' \notin V(p)$

Picking x = -1 and y = 1 satisfies all the above conditions, thus $\mathfrak{M}_{\mathcal{Q}}, 0 \models S$ is satisfied. However, we have that $\mathfrak{M}_{\mathcal{Q}}, 0 \not\models E(Hp \land G \neg p)$ because for all values $z \in \mathbb{Q}$ with x < z < y at least one between Hp and $G \neg p$ is false.

Finally, we consider the model \mathcal{R} :

• We prove that the formula $GGp \to p$ is not valid in \mathcal{R} by giving a model that doesn't satisfy it. Let $\mathfrak{M}_{\mathcal{R}} = (\mathcal{R}, V)$ be a model such that $V(p) = \{v \in \mathbb{R} \mid 0 > v\}$. We observe that:

$$\mathfrak{M}_{\mathcal{R}}, 0 \models GGp \iff \forall x \in \mathbb{R} \text{ with } 0 > x, \ \mathfrak{M}_{\mathcal{R}}, x \models Gp$$

 $\iff \forall x, y \in \mathbb{R} \text{ with } 0 > x > y, \ \mathfrak{M}_{\mathcal{R}}, y \models p$
 $\iff \forall x, y \in \mathbb{R} \text{ with } 0 > x > y, \ y \in V(p)$

which is true by choice of y itself. However, we have that $\mathfrak{M}_{\mathcal{R}}, 0 \not\models p$ because $0 \notin V(p)$, concluding that $\mathfrak{M}_{\mathcal{R}}, 0 \not\models GGp \to p$

• We prove that the formula $(p \wedge Hp) \to FHp$ is not valid in \mathcal{R} . Let $\mathfrak{M}_{\mathcal{R}} = (\mathcal{R}, V)$ be a model of \mathcal{R} with $V(p) = \{v \in \mathbb{R} \mid v > 0\} \cup \{0\}$. We observe that:

$$\mathfrak{M}_{\mathcal{R}}, 0 \models p \land Hp \iff 0 \in V(p) \ \forall x \in \mathbb{R} \text{ with } x > 0 \ \mathfrak{M}_{\mathcal{R}}, x \models p$$

 $\iff n \in V(p) \ \forall x \in \mathbb{R} \text{ with } x > 0 \ x \in V(p)$

which is true by choice of x itself. However, we have that $\mathfrak{M}_{\mathcal{R}}, 0 \not\models FHp$ because $\forall y \in \mathbb{R}$ with 0 > y there is a value $z \in \mathbb{R}$ with 0 > z > y such that $z \notin V(p)$ due to density of \mathbb{R} .

• We prove that the formula $(Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \wedge G \neg p)$ is not valid in \mathcal{R} . Let $S \equiv Ep \wedge E \neg p \wedge A(p \rightarrow Hp) \wedge A(\neg p \rightarrow G \neg p)$. Let $\mathfrak{M}_{\mathcal{R}} = (\mathcal{R}, V)$ be a model of \mathcal{R} such that

$$V(p) = \{ v \in \mathbb{R} \mid v > 0 \} \cup \{-1\}$$

. We observe that $\mathfrak{M}_{\mathcal{R}}, 0 \models S$ is true when:

- There are two values $x, y \in \mathbb{R}$ with $x \in V(p), y \notin V(p)$. This comes from the definition of Ep and $E\neg p$ (e.g. x has to be either greater than, equal to or less than 0)
- For any value $m \in \mathbb{R}$, if $m \in V(p)$ then for all $x' \in \mathbb{R}$ with x' > m then $x' \in V(p)$
- For any value $m \in \mathbb{R}$, if $m \notin V(p)$ then for all $y' \in \mathbb{R}$ with m > y' then $y' \notin V(p)$

Picking x=1 and y=-1 satisfies all the above conditions, thus $\mathfrak{M}_{\mathcal{R}}, 0 \models S$ is satisfied. However, we have that $\mathfrak{M}_{\mathcal{R}}, 0 \not\models E(Hp \land G \neg p)$ because for all values $z \in \mathbb{R}$ with x > z > y at least one between Hp and $G \neg p$ is false.

Question 3 (General frames). Consider the structure $g = (\mathbb{N}, C, A)$ where A is the collection of finite and co-finite subsets of \mathbb{N} , and C is defined by:

$$C(n_1, n_2, n_3) \iff n_1 \le n_2 + n_3 \text{ and } n_2 \le n_1 + n_3 \text{ and } n_3 \le n_1 + n_2$$

If C is the accessibility relation of a dyadic modal operator, show that g is a general frame.

Solution. In order to prove that g is a general frame, we have to prove that A is closed under union, complement and modal operators. Closure under complement is implied by the very definition of A: for any $X \in A$, if X is finite then \overline{X} is co-finite, otherwise if X is co-finite then \overline{X} is finite.

We now prove that A is closed under union. Fix two subsets $X,Y\in A$. We may assume that at least one of X and Y is co-finite, otherwise we trivially get that $X\cup Y$ is finite and thus that $X\cup Y\in A$. Without loss of generality, assume that X is co-finite, implying that \overline{X} is finite. By De Morgan's theorem we have that $\overline{X}\cup Y=\overline{X}\cap \overline{Y}$. Since \overline{X} is finite, $\overline{X}\cap \overline{Y}$ must also be finite, concluding that $X\cup Y$ is co-finite and thus that $X\cup Y\in A$.

Lastly, we prove that A is closed under Δ_C , i.e. the dyadic modal operator associated with C. To prove this, we have to show that for each $X_1, X_2 \in A$ it holds that $m_{\Delta_C}(X_1, X_2) \in A$, where:

$$m_{\Delta_C}(X_1, X_2) = \{ w \in \mathbb{N} \mid \exists (x_1, x_2) \in X_1 \times X_2 \ C(w, x_1, x_2) \}$$

Fix two subsets $X_1, X_2 \in A$. If both X_1 and X_2 are finite, both subsets have a maximum under \leq , implying that $m_{\Delta_C}(X_1, X_2)$ is finite since for each pair $(x_1, x_2) \in X_1 \times X_2$ there are only finitely many values $w \in \mathbb{N}$ for which $w \leq x_1 + x_2$ holds.

Hence, we may assume that at least one between X_1, X_2 is co-finite. Without loss of generality assume that X_1 is co-finite. Then, X_1 must be infinite since $X_1 = \mathbb{N} - \overline{X_1}$ and $\overline{X_1}$ is finite, concluding that X_1 has no maximum value. Consider the set:

$$\overline{m_{\Delta_C}(X_1, X_2)} = \{ w \in \mathbb{N} \mid \forall (x_1, x_2) \in X_1 \times X_2 \ \neg C(w, x_1, x_2) \}$$

Claim 3.1: for any $n_1, n_2, n_3 \in \mathbb{N}$ it holds that $\neg C(n_1, n_2, n_3)$ if and only if exactly one of the following conditions holds:

- 1. $n_1 > n_2 + n_3$
- 2. $n_2 > n_1 + n_3$
- 3. $n_3 > n_1 + n_2$

Proof of Claim 3.1. By definition, we have that

$$\neg C(n_1, n_2, n_3) \iff n_1 > n_2 + n_3 \text{ or } n_2 > n_1 + n_3 \text{ or } n_3 > n_1 + n_2$$

We now observe that:

• It cannot hold that both $n_1 > n_2 + n_3$ and $n_2 > n_1 + n_3$ are true, otherwise:

$$n_1 > n_2 + n_3 > n_1 + 2n_3 \implies 0 > n_3$$

which is impossible since $n_3 \in \mathbb{N}$

• It cannot hold that both $n_1 > n_2 + n_3$ and $n_3 > n_1 + n_2$ are true, otherwise:

$$n_1 > n_2 + n_3 > 2n_2 + n_1 \implies 0 > n_2$$

which is impossible since $n_2 \in \mathbb{N}$

• It cannot hold that both $n_2 > n_1 + n_3$ and $n_3 > n_1 + n_2$ are true, otherwise:

$$n_2 > n_1 + n_3 > 2n_1 + n_2 \implies 0 > n_1$$

which is impossible since $n_1 \in \mathbb{N}$

Claim 3.1 allows us to partition $\overline{m_{\Delta_C}(X_1,X_2)}$ into three disjoint subsets $Z_1,Z_2,Z_3,$ where:

- $Z_1 = \{ w \in \mathbb{N} \mid \forall (x_1, x_2) \in X_1 \times X_2 \ w > x_1 + x_2 \}$
- $Z_2 = \{ w \in \mathbb{N} \mid \forall (x_1, x_2) \in X_1 \times X_2 \ x_1 > w + x_2 \}$
- $Z_3 = \{ w \in \mathbb{N} \mid \forall (x_1, x_2) \in X_1 \times X_2 \ x_2 > w + x_2 \}$

Claim 3.2: Z_1, Z_2, Z_3 are finite.

Proof of Claim 3.2. Since X_1 has a minimum, there are only finitely many values $w \in \mathbb{N}$ for which $\min(X_1) > w + x_2$ holds for every $x_2 \in X_2$. Similarly, since X_2 has a minimum there are only finitely many values $w \in \mathbb{N}$ for which $\min(X_2) > w + x_1$ holds for every $x_1 \in X_1$. This concludes that Z_2 and Z_3 are finite.

Consider now the set Z_1 . Since X_1 has no maximum, for each $w \in \mathbb{N}$ there is always a pair $(x_1, x_2) \in \mathbb{N}$ with $w < x_1$ such that $w \not> x_1 + x_2$. This concludes that $Z_1 = \emptyset$.

Since $m_{\Delta_C}(X_1, X_2) = Z_1 \cup Z_2 \cup Z_3$, by Claim 3.2 we conclude that $m_{\Delta_C}(X_1, X_2)$ is finite and thus that $m_{\Delta_C}(X_1, X_2)$ is co-finite.

Question 4 (Modal Consequence Relations). Let Σ be a set of formulas in the basic modal language and let M denote the class of all models. Show that $\Sigma \models_M^g \phi$ iff $\{\Box^n \sigma \mid \sigma \in \Sigma, n \in \mathbb{N}\} \models_M \phi$.

Solution. Let $\Pi = \{ \Box^n \sigma \mid \sigma \in \Sigma, n \in \mathbb{N} \}$. We recall that $\Sigma \models_M^g \phi$ holds iff:

$$\forall \mathfrak{M} \in M \ ((\forall w \in W \ \mathfrak{M}, w \models \Sigma) \to (\forall w \in W \ \mathfrak{M}, w \models \phi))$$

while $\Pi \models_M \phi$ holds iff:

$$\forall \mathfrak{M} \in M \ \forall w \in W \ ((\mathfrak{M}, w \models \Sigma) \to (\mathfrak{M}, w \models \phi))$$

Claim 1: if $\Pi \models_M \phi$ then $\Sigma \models_M^g \phi$

Proof of Claim 1. Assume that $\Pi \models_M \phi$ holds. Fix a model $\mathfrak{M} = (W, R, V) \in M$. Suppose that $\forall w \in W$ it holds that $\mathfrak{M}, w \models \Sigma$. Then, $\forall w \in W, \forall \sigma \in \Sigma$ we have that $\mathfrak{M}, w \models \sigma$. However, this implies that for each $\forall w \in W, \forall \sigma \in \Sigma, n \in \mathbb{N}$ it holds that:

$$\forall w, \forall x_1, \dots, x_n \text{ with } R(w, x_1), R(x_1, x_2), \dots, R(x_{n-1}, x_n)$$
 $\mathfrak{M}, x_n \models \sigma$

which is equivalent to saying that $\mathfrak{M}, w \models \Box^n \sigma$, and thus that $\mathfrak{M}, w \models \Pi$ holds for all $w \in W$. By applying the assumption $\Pi \models_M \phi$, we conclude that $\mathfrak{M}, w \models \phi$ for all $w \in W$. Since the argument holds for an arbitrary model $\mathfrak{M} \in M$, we conclude that $\Sigma \models_M^g \phi$.

Claim 2: if $\Sigma \models_M^g \phi$ then $\Pi \models_M \phi$

Proof of Claim 2. Assume $\Sigma \models_M^g \phi$. Fix a model $\mathfrak{M} = (W, R, V) \in M$ and a world $w \in W$.

Let $C \subseteq W \times W$ be the relation of reachability from w in W, meaning that:

$$C(w, w') \iff \exists m \in \mathbb{N}, \exists z_1, \dots, z_m \in W \text{ with } R(w, z_1), \dots, R(z_m, w')$$

Consider the $\mathfrak{M}' = (W', R', V')$ such that:

- $W' = \{w' \in W \mid C(w, w')\}$
- $R' = R \cap (W' \times W')$
- $V'(p) = V(p) \cap W'$

Suppose that $\mathfrak{M}, w \models \Pi$. Then, we have that:

$$\mathfrak{M}, w \models \Pi$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N} \ \mathfrak{M}, w \models \Box^n \sigma$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in W \text{ with } R(w, x_1), \dots, R(x_{n-1}, x_n) \ \mathfrak{M}, x_n \models \sigma$$

Since $W' \subseteq W$, we have that each x_1, \ldots, x_n in the above statement can also be chosen from W'. When taken from W', we get that $R'(w, x_1), \ldots, R'(x_{n-1}, x_n)$ holds by definition of R' and thus that $\mathfrak{M}', x_n \models \sigma$ by definition of \mathfrak{M}' .

$$\mathfrak{M}, w \models \Pi$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in W \text{ with } R(w, x_1), \dots, R(x_{n-1}, x_n) \quad \mathfrak{M}, x_n \models \sigma$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in W' \text{ with } R(w, x_1), \dots, R(x_{n-1}, x_n) \quad \mathfrak{M}, x_n \models \sigma$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in W' \text{ with } R'(w, x_1), \dots, R'(x_{n-1}, x_n) \quad \mathfrak{M}, x_n \models \sigma$$

$$\iff \forall \sigma \in \Sigma, \forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in W' \text{ with } R'(w, x_1), \dots, R'(x_{n-1}, x_n) \quad \mathfrak{M}', x_n \models \sigma$$

$$\iff \forall \sigma \in \Sigma, \forall w' \in W' \quad \mathfrak{M}', w \models \sigma$$

$$\iff \forall w' \in W' \quad \mathfrak{M}', w \models \Sigma$$

Using the assumption $\Sigma \models_M^g$ and the fact that $w \in W'$, we conclude that:

$$\mathfrak{M}, w \models \Pi \implies \forall w' \in W' \ \mathfrak{M}', w \models \Sigma$$

$$\implies \forall w' \in W' \ \mathfrak{M}', w \models \phi$$

$$\implies \mathfrak{M}', w \models \phi$$

$$\implies w \in V'(\phi) \subseteq V(\phi)$$

$$\implies \mathfrak{M}, w \models \phi$$

The two claims conclude the proof.

Question 5 (Normal Modal Logic). Let F be a class of frames. Prove that Λ_F is a normal modal logic.

Solution. We recall that Λ_F is the set of all formulas that are valid for every frame of F. To show that Λ_F is a normal modal logic, we have to prove that:

- (1) it contains all tautologies, the formula $\Box(p \to q) \to (\Box p \to \Box q)$ and the formula $\Diamond p \leftrightarrow \neg \Box \neg p$
- (2) it is closed under modus ponens, uniform substitution and generalization

Claim 5.1: (1) holds on Λ_F

Proof of Claim 5.1. Fix $\mathfrak{F} = (W,R) \in F$. Since all tautologies are valid on every frame by definition, they are also valid in \mathfrak{F} . Likewise, the formula $\Diamond p \leftrightarrow \neg \Box \neg p$ is valid in every frame by definition of \Diamond and \Box , thus also in \mathfrak{F} . Consider now a model \mathfrak{M} of \mathfrak{F} . Given a world $w \in W$, suppose that $\mathfrak{M}, w \models \Box (p \to q)$ and $\mathfrak{M}, w \models \Box p$ then, we have that:

$$\mathfrak{M}, w \models \Box(p \rightarrow q) \iff \forall x \in W \text{ with } R(w, x) \ \mathfrak{M}, x \models p \rightarrow q$$

and that:

$$\mathfrak{M}, w \models \Box p \iff \forall x \in W \text{ with } R(w, x) \ \mathfrak{M}, x \models p$$

which implies that $\forall x \in W$ with R(w,x) $\mathfrak{M}, x \models p \land (p \rightarrow q)$. Since $p \land (p \rightarrow q) \equiv p \land q$, we get that:

$$\iff \forall x \in W \text{ with } R(w,x) \ \mathfrak{M}, x \models q \iff \mathfrak{M}, w \models \Box q$$

which concludes that for each $w \in W$ it holds that:

$$\mathfrak{M}, w \models \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$$

Since M was a arbitrary model of \mathfrak{F} and \mathfrak{F} was a arbitrary frame of F, we conclude that the formula is valid on every frame of F.

Claim 5.1: (2) holds on Λ_F

Proof of Claim 5.2. We prove that Λ_F is closed under each of the three operations:

• Modus Ponens: given two formulas ϕ, ψ , suppose that $\phi \in \Lambda_F$ and $\phi \to \psi \in \Lambda_F$. Then, for every frame $\mathfrak{F} = (W, R) \in F$ it holds that:

$$(\mathfrak{F} \models \phi)$$
 and $\mathfrak{F} \models \phi \rightarrow \psi \implies \mathfrak{F} \models \phi \land (\phi \rightarrow \psi)$

We now observe that:

$$\phi \wedge (\phi \rightarrow \psi) \equiv \phi \wedge (\neg \phi \vee \psi) \equiv (\phi \wedge \neg \phi) \vee (\phi \wedge \psi) \equiv \phi \wedge \psi$$

Hence, we that:

$$\mathfrak{F} \models \phi \land (\phi \rightarrow \psi) \implies \mathfrak{F} \models \phi \land \psi \implies \mathfrak{F} \models \psi$$

concluding that $\psi \in \Lambda_F$

- Generalization: given a formula ϕ , suppose that $\phi \in \Lambda_F$. Then, for every frame $\mathfrak{F} = (W, R) \in F$ it holds that $\mathfrak{M}, w \models \phi$ for each model \mathfrak{M} of \mathfrak{F} and each $w \in W$. Since every world $w \in W$ satisfies ϕ , we trivially get that $\mathfrak{M}, x \models \phi$ for all $x \in W$ with R(w, x), concluding that $\mathfrak{F} \models \Box \phi$ and thus that $\Box \phi \in \Lambda_F$.
- Uniform substitution: given a formula ϕ , suppose that $\phi \in \Lambda_F$ and let $\sigma(\phi)$ a formula obtained by replacing every propositional letter in ϕ with an arbitrary formula. Fix a frame $\mathfrak{F} = (W, R) \in F$ and let \mathfrak{M} be a frame of \mathfrak{F} . We construct a new model $\mathfrak{M}' = (\mathfrak{F}, V')$ such that:

$$V'(p) = \{ w \in W \mid \mathfrak{M}, w \models \sigma(p) \}$$

for each propositional letter p.

We prove by structural induction that for each $w \in W$ it holds that $\mathfrak{M}, w \models \sigma(\phi)$ if and only if $\mathfrak{M}', w \models \phi$. The base case is given by propositional letters, for which the statement holds by definition of \mathfrak{M}' . We inductively assume that the statement holds of every subformula of ϕ . Then, on the inductive step, we have three cases:

1. If $\phi = \neg \psi$ then $\sigma(\phi) = \neg \sigma(\psi)$, thus:

$$\mathfrak{M}', w \models \phi \iff \mathfrak{M}, w \models \neg \psi$$

$$\iff \mathfrak{M}', w \not\models \psi$$

$$\iff \mathfrak{M}, w \not\models \sigma(\psi)$$

$$\iff \mathfrak{M}, w \models \neg \sigma(\psi)$$

$$\iff \mathfrak{M}, w \models \sigma(\phi)$$

2. If
$$\phi = \psi \to \varphi$$
 then $\sigma(\phi) = \sigma(\psi) \to \sigma(\varphi)$, thus:

$$\mathfrak{M}', w \models \phi \iff \mathfrak{M}', w \models \psi \to \varphi$$

$$\iff (\mathfrak{M}', w \models \neg \psi) \lor (\mathfrak{M}', w \models \varphi)$$

$$\iff (\mathfrak{M}', w \not\models \psi) \lor (\mathfrak{M}', w \models \varphi)$$

$$\iff (\mathfrak{M}, w \not\models \sigma(\psi)) \lor (\mathfrak{M}, w \models \sigma(\varphi))$$

$$\iff (\mathfrak{M}, w \models \neg \sigma(\psi)) \lor (\mathfrak{M}, w \models \sigma(\varphi))$$

$$\iff \mathfrak{M}, w \not\models \sigma(\psi) \to \sigma(\varphi)$$

$$\iff \mathfrak{M}, w \not\models \sigma(\phi)$$

3. If $\phi = \Box \psi$ then $\sigma(\phi) = \Box \sigma(\psi)$, thus:

$$\mathfrak{M}', w \models \phi \iff \mathfrak{M}', w \models \Box \psi$$
 $\iff \forall x \in W \text{ with } R(w, x) \quad \mathfrak{M}', x \models \psi$
 $\iff \forall x \in W \text{ with } R(w, x) \quad \mathfrak{M}, x \models \sigma(\psi)$
 $\iff \mathfrak{M}, w \models \Box \sigma(\psi)$
 $\iff \mathfrak{M}, w \models \sigma(\phi)$

Therefore, since for each $w \in W$ it holds that $\mathfrak{M}, w \models \sigma(\phi)$ if and only if $\mathfrak{M}', w \models \phi$ and \mathfrak{M}' is a model of \mathfrak{F} , we get that $\mathfrak{M}, w \models \sigma(\phi)$ holds for each $w \in W$. Moreover, since M was a arbitrary model of \mathfrak{F} , the argument holds for every model of \mathfrak{F} . Likewise, since \mathfrak{F} was a arbitrary frame of F, this holds for every frame of \mathfrak{F} , concluding that $\sigma(\phi) \in \Lambda_F$.

The two claims conclude that Λ_F is a normal modal logic.