Catuşkoţi Existential Lift

by Sven Nilsen, 2021

In this paper I introduce a proof technique that exploits conditional branches of functions depending on some sub-type of the input resulting in indeterminate results encoded in many-value logic.

The result of this paper is the following:

$$f[g](x) = both$$
 => $g \cdot f\{(=x) \cdot g\} => both$ Catuşkoti Existential Lift

The Collatz function^[1] is defined as following:

collatz(x : nat
$$\land$$
 (> 0)) = if x % 2 = 0 { x / 2 } else { 3 * x + 1 }

It is known that for odd numbers, the result is even (in Path Semantical notation^[2]):

However, for even numbers, the result is indeterminate:

Using an existential path equation, this can be simplified.

For more information, see the paper "Catuṣkoṭi Existential Path Equations" [3]. Since the domain constraint `(= true)` is concrete, one can write this as:

In general:

$$f[g](x) = both$$
 <=> $f[g]\{(=x)\} => both$
 $f[g](x) = neither$ <=> $f[g]\{(=x)\} => neither$

However, since there is a symmetric path f[g] and the existential path equation is indeterminate with respect to the function identity $f[g]{(=x)}$ under both, one can do the following trick:

$$f[g](x) = both$$
 => $g \cdot f\{(=x) \cdot g\} => both$

- $f[g]\{(=x)\} => both$
- \therefore g.f[g \rightarrow id]{(= x)} => both
- \therefore g. f[id \rightarrow id]{(= x). g} => both
- \therefore g. f{(= x).g} => both

References:

- [1] "Collatz conjecture"
 Wikipedia
 https://en.wikipedia.org/wiki/Collatz_conjecture
- [2] "Path Semantics"
 AdvancedResearch
 https://github.com/advancedresearch/path_semantics
- [3] "Catuṣkoṭi Existential Path Equations"
 Sven Nilsen, 2021
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip2/catuskoti-existential-path-equations.pdf