Лекция №7

§ 5. Теория вычетов функций:

классификация изолированных особых точек на основе вычисления предела функции

5.1 Нули аналитической функции

Определение 5.1. Точка z_0 называется нулем n-го порядка аналитической в окрестности z_0 функции f(z), если

$$f(z_0) = 0, f'^{(z_0)} = 0, \dots, f^{(n-1)}(z_0) = 0,$$

 $f^{(n)}(z_0) \neq 0.$

Если n = 1, то точка z_0 называется простым нулем.

Теорема 5.1. Точка z_0 является нулем n-го порядка функции f(z), аналитической в точке z_0 , тогда и только тогда, когда имеет место равенство

$$f(z) = (z - z_0)^n \varphi(z)$$

где $\varphi(z)$ аналитическая в точке z_0 и $\varphi(z_0) \neq 0$.

<u>Пример.</u> Найти нули функции f(z) = cosz - 1, определить порядок нуля.

Pешение. Приравняем f(z) нулю, получим cosz=1, откуда

 $z_n=2\pi n \ (n=0,\pm 1,\dots)$ – нули данной функции.

Найдем

$$f'(z)|_{z=z_n} = -\sin z|_{z=2\pi n} = 0,$$

 $f''(z)|_{z=z_n} = -\cos z|_{z=2\pi n} = -1 \neq 0.$

Согласно определению (5.1), $z_n = 2\pi n$ являются нулями второго порядка.

<u>Пример.</u> Найти нули функции $f(z) = z^8 - 9z^7$, определить порядок нуля.

Решение. Приравняем f(z) нулю, получим $z^7(z-9)=0$, $z_1=0$, $z_2=9$. Можно воспользоваться определением (5.1), однако проще использовать теорему 5.1. Функция f(z) представима в виде

 $f(z)=z^7(z-9)$, но тогда z=0 является нулем порядка 7, функцией $\varphi(z)$ является сомножитель $\varphi(z)=z-9, \ \varphi(0)=-9\neq 0; \ z=9,$ является нулем порядка 1, функцией $\varphi(z)$ в данном случае является $\varphi(z)=z^7,$

$$\varphi(9) = 9^7 \neq 0.$$

5.2 Изолированные особые точки, их классификация

Определение 5.2. Точка z_0 называется <u>изолированной особой точкой</u> функции f(z), если f(z) аналитическая в некоторой окрестности этой точки, за исключением самой точки z_0 , а в точке z_0 функция не определена или не дифференцируема.

Определение 5.3. Точка z_0 называется <u>устранимой особой точкой</u> функции f(z), если существует конечный предел функции f(z) в точке z_0

$$\lim_{z\to z_0}f(z)=C.$$

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{1 - e^{3z}}{z}$ и установить их тип.

Pешение. Особая точка функции f(z) - это $z_0=0$. Вычислим

$$\lim_{z \to 0} \frac{1 - e^{3z}}{z} = \left[\frac{0}{0} \right] = \lim_{z \to 0} \frac{-3z}{z} = -3.$$

т.е. $z_0 = 0$ – устранимая особая точка.

Определение 5.4. Точка z_0 называется <u>полюсом</u> функции f(z), если $\lim_{z \to z_0} f(z) = \infty$.

Теорема 5.2. Для того, чтобы точка z_0 была полюсом функции f(z) необходимо и достаточно, чтобы эта точка была нулем для функции $\varphi(z) = \frac{1}{f(z)}$.

Теорема 5.3. Пусть f(z) является аналитической в окрестности точки z_0 . Если точка z_0 – нуль порядка n для f(z), то точка z_0 –полюс порядка n для функции $\varphi(z) = \frac{1}{f(z)}$.

3амечание. Если точка z_0 – полюс порядка n для f(z), то точка z_0 – нуль порядка n для функции $\varphi(z)=rac{1}{f(z)}$ при условии $rac{1}{f(z_0)}=0$.

Отметим, что без последнего условия $\frac{1}{f(z_0)} = 0$ утверждение становится неверным. В самом деле, если $f(z) = \frac{\sin z}{z^2}$, то z = 0 – полюс первого порядка.

Однако функция $\varphi(z) = \frac{1}{f(z)} = \frac{z^2}{\sin z}$ не определена при z=0.

Теорема 5.4. Если функцию f(z) можно представить в виде $f(z) = \frac{\varphi(z)}{(z-z_0)^n}$, где $\varphi(z)$ аналитическая функция в точке z_0 и

 $\varphi(z_0) \neq 0$, то точка z_0 является полюсом порядка n функции f(z).

3амечание. Теорема остается справедливой, если z_0 – устранимая особая точка функции $\varphi(z)$ и существует $\lim_{z \to z_0} \varphi(z) \neq 0$.

Например, если $\varphi(z) = \frac{\sin z}{z}$, а $f(z) = \frac{\varphi(z)}{z}$, то $z_0 = 0$ – полюс первого порядка функции f(z).

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{2z+1}{z^4-2z^3}$ и установить их тип.

Решение. Найдем нули функции $\frac{1}{f(z)} = \frac{z^2 - 2z^3}{2z + 1}$. Поскольку

 $z^4 - 2z^3 = z^3(z-2)$, то для функции $\frac{1}{f(z)}$ точка z = 0 – это нуль третьего порядка согласно теореме 5.1, а z = 2 – нуль первого порядка. Пользуясь теоремой 5.2, имеем: z = 0 – это полюс третьего порядка функции f(z), а z = 2 – полюс первого порядка.

Теорема 5.5. Если функция f(z) представима в виде $f(z) = \frac{P(z)}{Q(z)}$ и точка z_0 является нулем порядка m для функции P(z) и нулем порядка l для функции Q(z), тогда

- 1. если $m \ge l \ge 1$, то точка z_0 устранимая особая точка функции f(z);
- 2. если m < l, то точка z_0 будет полюсом порядка n = m l функции f(z).

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{e^{z-3}-1}{(z-3)^2z^4}$ и установить их тип.

Pешение. Особыми точками функции f(z) являются $z_1=3$ и $z_2=0$.

В точке $z_1=3$ числитель и знаменатель f(z) обращаются в нуль. Для числителя $P(z)=e^{z-3}-1$ число z=3 является нулем 1 порядка, так как $P'(z)\mid_{z=3}=e^{z-3}\mid_{z=3}=1$, то z=3 – нуль 1-го порядка,

т.е. в теореме 5.5 m = 1.

Знаменатель $Q(z)=(z-3)^2z^4$ по теореме 5.1 в точке z=3 имеет нуль 2-го порядка, т. е. l=2. Следовательно по теореме 5.5 l-m=1 – порядок полюса функции f(z).

В точке z=0 перепишем функцию в виде $f(z)=\frac{\varphi(z)}{z^4}$,

где $\varphi(z) = \frac{e^{z-3}-1}{(z-3)^2}$ — аналитическая функция в точке z=0,

$$\varphi(0) = \frac{e^{-3} - 1}{9} \neq 0.$$

По теореме 5.4 z = 0 – полюс 4-го порядка.

Окончательно, z = 3 – полюс первого порядка, z = 0 – полюс 4-го порядка.

Определение 5.5. Точка z_0 называется <u>существенно особой</u> точкой, если в этой точке не существует ни конечного, ни бесконечного предела функции f(z) при $z \rightarrow z_0$.

Рассмотрим различные задачи.

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{e^{z} - 1}{(z^{2} + 9)z^{3}}$

и установить их тип.

Решение: Изолированные особые точки функции $z_1 = 3i$, $z_2 = -3i$ и $z_3 = 0$.

Для нахождения типа каждой особой точки нужно вычислить предел функции в каждой особой точке. При этом используем определения, приведенные в данной лекции, и теорему 5.5.

$$\lim_{z \to 3i} \frac{e^{z} - 1}{(z^{2} + 9)z^{3}} = \lim_{z \to 3i} \frac{e^{z} - 1}{(z - 3i)(z + 3i)z^{3}} = \infty$$
, следовательно

получаем $z_1 = 3i$ полюс первого порядка.

Рассмотрим следующую иот. $z_2 = -3i$.

$$\lim_{z \to -3i} \frac{e^z - 1}{(z^2 + 9)z^3} = \lim_{z \to -3i} \frac{e^z - 1}{(z - 3i)(z + 3i)z^3} = \infty,$$
следовательно

 $z_2 = -3i$ полюс первого порядка.

Рассмотрим следующую иот. $z_3 = 0$.

$$\lim_{z \to 0} \frac{e^{z} - 1}{(z^{2} + 9)z^{3}} = \lim_{z \to 0} \frac{z}{(z^{2} + 9)z^{3}} = \lim_{z \to 0} \frac{1}{(z^{2} + 9)z^{2}} = \infty$$

Отметим, что при вычислении предела использовались эквивалентности.

Получаем, что

 $z_3 = 0$ полюс второго порядка.

Ответ. Заданная функция имеет 3 иот. Тип каждой иот следующий:

 $z_1 = 3i$ полюс первого порядка

 $z_2 = -3i$ полюс первого порядка

 $z_3 = 0$ полюс второго порядка.

Пример. Найти особые точки функции
$$f(z) = \frac{e^z}{(z^2+9)z^3}$$

и установить их тип.

Решение: Изолированные особые точки функции $z_1 = 3i$, $z_2 = -3i$ и $z_3 = 0$.

Для нахождения типа каждой особой точки нужно вычислить предел функции в каждой особой точке. Заметим, что в отличие от предыдущего примера в числителе здесь стоит другая функция!

ТФКП, 4 семестр, ИРТС

$$\lim_{z \to 3i} \frac{e^z}{(z^2 + 9)z^3} = \lim_{z \to 3i} \frac{e^z}{(z - 3i)(z + 3i)z^3} = \infty$$

Получаем $z_1 = 3i$ полюс первого порядка.

Для следующей иот. имеем

$$\lim_{z \to -3i} \frac{e^z}{(z^2 + 9)z^3} = \lim_{z \to -3i} \frac{e^z}{(z - 3i)(z + 3i)z^3} = \infty$$

Получаем, что

 $z_2 = -3i$ полюс первого порядка .

Теперь установим тип $z_3 = 0$.

$$\lim_{z \to 0} \frac{e^z}{(z^2+9)z^3} = \infty$$
, значит

 $z_3 = 0$ полюс третьего порядка. Отметим, что в отличие от предыдущего примера, в данном случае эквивалентности не применяются!

Ответ. Заданная функция имеет 3 иот. Тип каждой иот следующий:

 $z_1 = 3i$ полюс первого порядка

 $z_2 = -3i$ полюс первого порядка

 $z_3 = 0$ полюс третьего порядка.

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{e^z - 1}{(z^2 + 9)z}$

и установить их тип.

Решение: Изолированные особые точки функции $z_1 = 3i$, $z_2 = -3i$ и $z_3 = 0$.

Для нахождения типа каждой особой точки нужно вычислить предел функции в каждой особой точке.

$$\lim_{z \to 3i} \frac{e^{z} - 1}{(z^{2} + 9)z} = \lim_{z \to 3i} \frac{e^{z} - 1}{(z - 3i)(z + 3i)z} = \infty$$

Получаем $z_1 = 3i$ полюс первого порядка.

$$\lim_{z \to -3i} \frac{e^z - 1}{(z^2 + 9)z} = \lim_{z \to -3i} \frac{e^z - 1}{(z - 3i)(z + 3i)z} = \infty, \text{ тогда}$$

 $z_2 = -3i$ полюс первого порядка.

$$\lim_{z \to 0} \frac{e^{z} - 1}{(z^{2} + 9)z} = \lim_{z \to 0} \frac{z}{(z^{2} + 9)z} = \frac{1}{9}$$

Получаем, что $z_3 = 0$ устранимая особая точка. Заметим, что здесь при вычислении предела были применены эквивалентности.

Ответ. Заданная функция имеет 3 иот. Тип каждой иот следующий:

 $z_1 = 3i$ полюс первого порядка

 $z_2 = -3i$ полюс первого порядка

 $z_3 = 0$ устранимая особая точка.

<u>Пример.</u> Найти особые точки функции $f(z) = (z+4)^5 e^{\frac{z}{z+4}}$ и установить их тип.

Решение: Изолированная особая точка функции z = -4.

Если вычислять предел функции в этой особой точке, то его не существует.

Получаем, что z = -4 существенно особая точка.

Данная задача довольно просто решается, если ввести классификацию изолированных особых точек на основе разложения функции в ряд Лорана.

Такой подход будет рассмотрен в следующих лекциях.