

数据和函数的可视化

第4讲

引言

- 世界顶级的数值计算工具软件MATLAB具有极其强大的数据可视化功能,可制作具有出版质量图形。
- 在前面的课程中,已经使用了数据可视化命令plot。
- 详细介绍MATLAB这一部分的内容可以写一本书。
- 我们只能介绍MATLAB数据可视化的基础,2-D数据可视化、3-D数据可视化初步。
- 二维图形是将平面坐标上的数据点连接起来的平面图形。可以采用直角坐标系、对数坐标、极坐标等形式。 数据点可以用向量或矩阵形式给出,类型可以是实型或复型。

2021/1/17 Matlab Language

3.1 二维曲线绘图的基本操作

■ plot指令的基本调用格式

(1) plot(x)

- x为向量时,以该元素的下标为横坐标、元素值为纵坐标绘出曲线
- x为实数二维数组时,则按列绘制每列元素值相对其下标的曲线,曲线数等于x数组的列数。
- x为复数二维数组时,则按列分别以数组的实部和虚部为横、纵坐标绘制多条曲 线

(2) plot(x, y)

- x、y为同维数组时,绘制以x、y元素为横纵坐标的曲线
- x为向量,y为二维数组、且其列数或行数等于x的元素数时,绘制多条不同颜色的曲线
- x为二维数组,y为向量时,情况与上相同,只是y仍为纵坐标。

(3) plot(x1, y1, x2, y2, ...)

- 绘制以x1为横坐标、y1为纵坐标的曲线1,以x2为横坐标、y2为纵坐标的曲线2,等等。
- 其中x为横坐标,y为纵坐标,绘制y=f(x)函数曲线。

例3.1使用直角坐标系

在[0, 2π]区间内,绘制曲线 $y = 2e^{-0.5x} \sin(2\pi x)$

x = 0:pi/100:2*pi;

y = 2*exp(-0.5*x).*sin(2*pi*x);

plot(x,y)

例3.2 使用参数方程绘制曲线

绘制曲线

$$\begin{cases} x = t \cos(3t) \\ y = t \sin^2 t \end{cases}, -\pi \le t \le \pi$$

```
t = -pi:pi/100:pi;
x = t.*cos(3*t);
y = t.*sin(t).^2;
plot(x,y)
```


例3.3 绘制复杂曲线

用图形表示连续调制波形 及其包络线。

t=(0:pi/100:pi)';

 $y1=\sin(t)*[1,-1];$

 $y2=\sin(t).*\sin(9*t);$

t3=pi*(0:9)/9;

 $y3=\sin(t3).*\sin(9*t3);$

plot(t,y1,'r:',t,y2,'b',t3,y3,'bo')

axis([0,pi,-1,1])

%长度为101的时间采样列向量

%包络线函数值,是(101x2)的矩阵

%长度为101的调制波列向量

■ 多次叠绘

- 多次调用plot命令在一幅图上绘制多条曲线,需要hold指令的配合。
- hold on 保持当前坐标轴和图形,并可以接受下一次绘制。
- hold off 取消当前坐标轴和图形保持,这种状态下,调用 plot绘制完全新的图形,不保留以前的坐标格式、曲线。

例 3.5 重绘曲线

重绘波形 $y = \sin(t)\sin(9t)$ 及其包络线。

```
t=(0:pi/100:pi)'; %长度为101的时间采样列向量
y1=sin(t)*[1,-1]; %包络线函数值,是(101x2)的矩阵
y2=sin(t).*sin(9*t); %长度为101的调制波列向量
t3=pi*(0:9)/9;
y3 = \sin(t3).*\sin(9*t3);
plot(t,y1,'r:')
hold on
plot(t,y2,'b')
plot(t3,y3,'bo')
axis([0,pi,-1,1])
hold off
```


例3.6 利用hold绘制离散信号的波形。

```
t=2*pi*(0:20)/20;
y=cos(t).*exp(-0.4*t);
stem(t,y,'g');
hold on;
stairs(t,y,'r');
hold off
```


双纵坐标: plotyy指令

■ plotyy指令调用格式:

plotyy(x1, y1, x2, y2)

x1-y1曲线y轴在左, x2-y2曲线y轴在右。

例3.7:

```
x = 0:0.01:20;

y1 = 200*exp(-0.05*x).*sin(x);

y2 = 0.8*exp(-0.5*x).*sin(10*x);

plotyy(x,y1,x,y2);
```


多子图

- MATLAB允许在同一图形窗口布置几幅独立的子图。具体指令:
 - subplot(m, n, k)使 (mxn) 幅子图中第k个子图成为当前图
 - subplot('postion', [left, bottom, width, height]) 在指定的位置上开辟子图,并成为当前图 说明:
 - > subplot(m, n, k)的含义:图形窗口包含(mxn)个子图,k为要指定的当前子图的编号。其编号原则:左上方为第1子图,然后向右向下依次排序。该指令按缺省值分割子图区域。
 - ▶ subplot('postion', [left, bottom, width, height])用于手工指定子图位置,指定位置的四元组采用归一化的标称单位,即认为整个图形窗口绘图区域的高、宽的取值范围都是[0, 1],而左下角为(0,0)坐标。
 - 产生的子图彼此独立。所有的绘图指令均可以在子图中使用。

例3.8 演示subplot指令对图形窗的分割

t=(pi*(0:1000)/1000)';

 $y1=\sin(t);y2=\sin(10*t);y12=\sin(t).*\sin(10*t);$

subplot(2,2,1),plot(t,y1); subplot(2,2,2),plot(t,y2);

subplot('position',[0.2,0.0

plot(t,y12,'b-',t,[y1,-y1],':

绘制图形的辅助操作

曲线线形控制符

符号	-	:		
含义	实线	虚线	点划线	双划线

曲线颜色控制符

符号	b	g	r	С	m	У	k	W
含义	<u></u>	绿	红	青	品红	黄	黑	白

曲线的色彩、线型和 数据点形

数据点型控制符

符号	含义	符号	含义
•	实心黑点	d	菱形符 diamond
+	十字符	h	六角星符 hexagram
*	八线符	0	空心圆圈
٨	朝上三角符	P	五角星符 pentagram
<	朝左三角符	ប	方块符 square
>	朝右三角符	Х	叉字符
V	朝下三角符		

- ▶曲线的线形控制符、颜色控制符、数据点形控制符可以组合使用
- > 其先后次序不影响绘图结果
- ▶也可以单独使用。

例3.9 绘制图形的辅助操作

Specify Line properties

```
t=(0:15)*2*pi/15;
y=sin(t);
subplot(3,2,1), plot(t, y); title('Lins style is default')
subplot(3,2,2), plot(t, y, 'o'); title('Lins style is o')
subplot(3,2,3), plot(t, y, 'k:'); title('Lins style is k:')
subplot(3,2,4), plot(t, y, 'k:*'); title('Lins style is k:*')
subplot(3,2,5), plot(t, y, 'm-d'); title('Lins style is m-d')
subplot(3,2,6), plot(t, y, 'r-p'); title('Lins style is r-p')
```


坐标、刻度和分格线控制

常用的坐标控制指令

坐标轴控制方式、取向、范围		坐标轴的高宽比		
axis auto	使用缺省设置	axis equal	纵、横坐标等长刻度	
axis manual	是当前坐标范围不变	axis image	纵、横坐标等长刻度,坐标框紧贴数据范围	
axis off	不显示坐标轴	axis square	产生方形坐标系	
axis on	显示坐标轴	axis normal	缺省矩形坐标系	
axis ij	坐标原点在左上方			
axis xy	坐标原点在左下方			
axis (v)	设定坐标范围			
v=[x1, x2, y1, y2]				

以上只是常用的坐标控制指令,全部的坐标控制指令可使用 doc axis 命令可获得。

4

刻度、分格线和坐标框

- 分格线与grid指令
 - grid on 画出分格线
 - grid off 不画分格线
 - MATLAB的缺省设置是不画分格线;分格线的疏密取决于坐标刻度(改变坐标刻度,可改变分格线的疏密)。
- 坐标框
 - box on 控制加边框线
 - box off 控制不加边框线
- 刻度设置
 - 指令及格式:
 - set(gca, 'xtick', xs, 'ytick', ys)
 - xs、ys可以使任何合法的实数向量,用于分别设置x、y轴的刻度。

4

例3.11绘制y=1-exp(-0.3*t).*cos(0.7*t)

```
t=6*pi*(0:100)/100;
y=1-exp(-0.3*t).*cos(0.7*t);
tt=t(find(abs(y-1)>0.05));
ts=max(tt);
plot(t,y,'r-');
grid on;
axis([0,6*pi,0.6,max(y)]);
title('y=1-exp(-\alpha*t)*cos(\omega*t)');
hold on;
plot(ts,0.95,'bo');
hold off;
set(gca,'xtick',[2*pi,4*pi,6*pi],'ytick',[0.95,1,1.05,max(y)]);
grid on;
```


2021/1/17

Matlab Language

图形标识

- 图形标识包括:
 - 图名 (title)
 - 坐标轴名 (xlabel、ylabel)
 - 图形文本注释 (text)
 - 图例 (legend)
- 简捷使用格式
 - title(s)

% s为字符串变量或常量

- xlabel(s)
- ylabel(s)
- legend(s)
- text(x, y, s) % 指定坐标(x, y) 处加注文字

2. 特殊图形

- 直方图(柱形图)bar
 - 垂直直方图
 - > 累计式
 - > 分组式
 - 水平直方图
 - > 累计式
 - > 分组式

x = -2.9:0.2:2.9;bar(x,exp(-x.*x),'r')

例3.16

■ 北京市从业人员统计

	1990年	1995年	2000年
第一产业	90.7	70.6	73.9 (万人)
第二产业	281.6	271	214.6
第三产业	254.8	323.7	326.5
执行以下语	至句:		
year=[1990	1995 2000];		
people=[90	.7 281.6 254.8	; 70.6 271 323	3.7; 73.9 214.6 326.5];
bar(year, p	eople, 'stack');	
· · · · · · · · · · · · · · · · · · ·	ntsize{6}第一。 ize{6}第三产。	•	size{6}第二产业',

累计式直方图

bar(year, people, 'group'); % 分组式直方图 legend('\fontsize{6}第一产业', '\fontsize{6}第二产业', '\fontsize{6}第二产业');

-

barh(year, people, 'group'); % 分组式直方图 legend('\fontsize{6}first', '\fontsize{6}second', '\fontsize{6}third');

barh(year, people, 'stack'); %累积式直方图 legend('\fontsize{6} first', '\fontsize{6} second', '\fontsize{6}third');

饼图指令pie

■ 饼图指令pie 用来表示各元素占总和的百分数。该指令第二 输入变量是与第一变量同长的0-1向量,1使对应扇块突出。

```
a=[1,1.6,1.2,0.8,2.1];
subplot(1,2,1),pie(a,[1 0 1 0 0]),
legend({'1','2','3','4','5'})
subplot(1,2,2), b=int8(a==min(a))
pie3(a,b)
colormap(cool)
```


离散杆图stem

余弦波的采样信号图

t = linspace(-2*pi,2*pi,20);

h = stem(t, cos(t));

例3.17分别以条形图、填充图、阶梯图和杆图形式绘图

x = 0:0.35:7;y = 2*exp(-0.5*x);subplot(221);bar(x,y title('bar(x,y,''g'')'); subplot(222);fill(x,y, title('fill(x,y,''r'')');a: subplot(223);stairs(x title('stairs(x,y,''b'')' subplot(224); stem(x,title('stem(x,y,''k'')')

例3.18 极坐标图

polar函数用来绘制极坐标图,其调用格式为: polar(theta,rho,选项)

例: 绘制 ρ =sin(2 θ)cos(2 θ)的图形

theta = 0:0.01:2*pi; rho = sin(2*theta).*co

polar(theta,rho,'k');

3. 三维绘图的基本操作

- 三维线图指令plot3
 - 三维绘图指令中,plot3最易于理解,它的使用格式与plot十分相似,只是对应第3维空间的参量。

```
t=(0:0.02:2)*pi;
x=sin(t);
y=cos(t);
z=cos(2*t);
plot3(x,y,z,'b-',x,y,z,'bd');
view([-82,58]);
box on
legend('链','宝石')
```


三维线图绘制结果

三维网线图 (mesh) 和曲面图 (surf)

画函数z=f(x,y)所代表的三维空间曲面,需要做以下的数据准备工作:

- 确定自变量的取值范围和取值间隔。
 - \rightarrow x=x1:dx:x2;
 - > y=y1:dy:y2;
- 构成x-y平面上的自变量采样"格点"矩阵。
 - ▶ 利用MATLAB指令meshgrid产生"格点"矩阵
 - \rightarrow [xa, ya]=meshgrid(x,y);
- Arr 计算函数在自变量采样"格点"上的函数值,即 z=f(x,y)。
- 网线图、曲面图绘制。

绘制函数z=x^2+y^2的曲面

```
x=-4:4;y=x;

[x,y]=meshgrid(x,y); %生成 x-y 坐标"格点"矩阵

z=x.^2+y.^2; %计算格点上的函数值

subplot(1,2,1), mesh(x,y,z); %三维网格图

subplot(1,2,2), surf(x,y,z); %三维曲面图

colormap(hot);
```


函数z=x^2+y^2的曲面的绘制结果

4. 图像文件的读写与图像显示

- imread指令 读取图像文件(BMP, GIF, PNG, JPEG, and TIFF)
- imshow指令 显示图像
- imwrite指令 保存图像
- 例:读取图像文件
 img1=imread('mudan.jpg'); % Load image data
 img2=imread('eight.tif');
 whos img1 img2

Name Size Bytes Class

img1 750x553x3 1244250 uint8 array

img2 242x308 74536 uint8 array

显示图像:

imshow(img1); % Display image

简单图像处理 **lighter = 2 * img1; subplot(1,2,1)**; imshow(img1); title('Original'); % Display image **subplot(1,2,2)**; imshow(lighter); title('Lighter'); % Display image

图像处理前后的比较

Original

Lighter

- 保存图像
- >> imwrite(lighter, 'mysaved.jpg')
- 查看保存结果
- >> dir mysaved.*

mysaved.jpg

彩色图像转换为灰度图像

black = rgb2gray(img1);
imshow(black)

图像特征提取

```
imag_edge1 = edge(img2,'sobel');
subplot(121),imshow(imag_edge1)
imag_edge2 = edge(img2,'canny');
subplot(122),imshow(imag_edge2)
```

%sobel边缘提取算法

%canny边缘提取算法

