

Organisation du groupe

Organisation du projet

Choix des composants de la station de stockage H2

Estimation de la durée de vie

Etude du terrain

Dimensionnement des composants

Estimation cout

Principe

Pour:

12h d'irrigation — **0,25 kW** par jour

Calcul de dimensionnement /résultats

Pile à combustible

5 - 9 bar

> 68 g/kWh

Boxhy (H2sys)

Calcul de dimensionnement/résultats

Mahytec

SERVICE CONDITIONS	
Hydrogen storage capacity	2100NI (+/-100)
Temperature of use	From 10°C to 85°C
Temperature of storage	From -40°C to 85°C
Minimum working pressure	-1barg
Maximum working pressure	100barg
Minimum refilling temperature	10°C
Maximum refillilng pressure	15barg
Refilling time with cooling	2 hours (+/-30 minutes)
DIMENSIONS	
Mass of empty tank	22.8kg
Dimensions	Ø14,4 x 63,1
MATERIALS	
Hydride type	FeTi
Body material	Aluminium alloy
REGULATION TEST	
TPRD	Opening temperature 110°C (+/- 10°C)
Valve	Compliant with ISO 10297
Hydrostatic test pressure	143bar
Approved according to	ISO16111:2008 - PED 2014/68/EU & TPED 2010/35/EU

Calcul de dimensionnement /résultats

Electrolyseur

Elyte10 (Elogen)

Calcul de dimensionnement/résultats

Panneaux photovoltaïques

Optypo pro (Systovi)

Pourquoi Notre Système? Avantages: Consommation d'eau réduite

L'irrigation en utilisant notre système permet de réduire la consommation d'eau de 20 à 30 % par rapport aux systèmes traditionnels.

Énergie verte

L'hydrogène peut être produit à partir d'énergies renouvelables, telles que le solaire comme dans notre systemes

Précision accrue

Notre systèmes d'irrigation utilisent des pompes et des buses plus précises que les systèmes traditionnels.

Aspect économique

Cout initial ~300.00€

Aspect économique

Prediction de diminution de prix

50,000 €

En 2035 Selon l'évolution du marché

Conclusion

Produit réalisable présentant plusieurs avantages, mais initialement concu comme un projet expérimental. Une fois la phase expérimentale réussie et les coûts de production réduits, il sera accessible à tous les agriculteurs.

Retour d'expérience...

- Collaboration efficace
- Bonne répartition des tâches
- ★ challenge = respect des délais

- → Communication continue
- → Bonne gestion des conflits
- → Bonne fexibilité

Merci de votre attention!

Pour en savoir plus...

https://github.com/BLHmarl/GROUPE-7/blob/main/README.md