

Assessing Ecology and Evolution of Aneuploidy in

Yeast

Eduardo Scopel Ferreira da Costa November 20th 2019

Aneuploidy as a mechanism of local adaptation

- Aneuploidy is usually detrimental to fitness;
- It can increase fitness under specific conditions;
- May be an extreme rapid response to stressful conditions.

Why study aneuploidy in *S. cerevisiae*?

- They live in diverse environments [1];
- Many genomes available from around the globe^[1];
- Ploidy change is common, yet the number of chromosomes (16) is conserved^[2,3];
- There is a debate whether aneuploidy is rare^[1] or common^[4] in wild strains.

^[1] Peter et al. Nature 556.7701 (2018): 339.

^[2] Gordon et al. PLoS genetics 7.7 (2011): e1002190.

^[3] Wolfe & Shields. Nature 387.6634 (1997): 708.

Assessing ecology and evolution of aneuploidy

 Aim 1: Evaluate computational tools to detect aneuploidy from yeast genome data.

• **Aim 2:** Identify environmental or genetic factors associated with aneuploidy in *S. cerevisiae*.

• **Aim 3:** Test fitness effects of aneuploidy in different environments.

Aim 1. Using genome data to detect aneuploidy

Methods used to detect aneuploidy:

 Most of the past work focused on cancer, embryos, CNVs, exome data (known overall ploidy).

Aim 1. Assessing 6 tools with 46 yeast strains

Tool	Method	Citations	Original Application	Reference
VarScan2	RD	2,310	Cancer	[1]
Control-Freec	RD, BAF	386	Cancer	[2]
nQuire	BAF	14	Fungi	[3]
ploidyNGS	BAF	16	Fungi	[4]
Vcf2alleleplot	BAF	14	Yeast	[5]
Ymap	RD, BAF	30	Yeast	[6]

23 *C. albicans* and 23 *S. cerevisiae* strains:

- 12 aneuploids and 11 euploids for each;
- Previously sequenced;
- Known ploidy (FC);
- Varied genome structure.

^[1] Koboldt et al. Genome research 22.3 (2012): 568-576.

^[2] Boeva et al. Bioinformatics 28.3 (2011): 423-425.

^[3] Weiß et al. BMC bioinformatics 19.1 (2018): 122.

^[4] dos Santos et al. Bioinformatics 33.16 (2017): 2575-2576.

^[5] Bensasson et al. Genetics 211.1 (2019): 277-288.

^[6] Abbey et al. Genome medicine 6.11 (2014): 100.

Tools	VarScan2 RD	Control-Freec RD	nQuire ^{BAF}	ploidyNGS ^{BAF}	vcf2alleleplot ^{BAF}	Ymap ^{RD,BAF}		
		Saccharomy	ces cerevisiae					
(N = 23 genomes, 368 chromosomes, 25 aneuploidies [6.8%])								
Sensitivity (TP)	84% (21)	94% (23.5)	76% (17)	60% (15)	64% (16)	82% (20.5)		
Specificity (TN)	100% (343)	98% (336)	69% (239.5)	99% (341)	100% (343)	99% (340)		
FDR (FP)	0% (0)	23% (7)	86% (106)	12% (2)	0% (0)	13% (3)		
		Candida	albicans					
	(N = 23 ge	nomes, 184 chromos	somes, 14 aneur	oloidies [7.6%])				
Sensitivity (TP)	86% (12)	86% (12)	82% (11.5)	92% (12)	86% (12)	86% (12)		
Specificity (TN)	100% (170)	98% (166)	92% (156)	99% (169)	100% (170)	98% (166)		
FDR (FP)	0% (0)	25% (4)	55% (14)	14% (2)	0% (0)	20% (3)		

RD - Read Depth tools

BAF - Allele Ratio tools

Sensitivity (*True Positive Rate*) = (True Positives)/(True Positives+False Negatives)
Specificity (*True Negative Rate*) = (True Negatives)/(True Negatives+False Positives)
FDR (*False Discovery Rate*) = (False Positives)/(True Positives + False Positives)

Aim 1. Conclusion

Read Depth tools

- + Not affected by heterozygosity
- Can detect segmental copy number variation
- Require good sequencing/DNA quality
- Do not detect overall ploidy

Allele Ratio

- Detect overall ploidy
- + Only few HQ heterozygous SNPs are enough
- + Work well on low quality DNA
- Only work on heterozygous strains
- Not good for CNVs

Assessing ecology and evolution of aneuploidy

 Aim 1: Evaluate computational tools to detect aneuploidy from yeast genome data.

• **Aim 2:** Identify environmental or genetic factors associated with aneuploidy in *S. cerevisiae*.

Aim 3: Test fitness effects of aneuploidy in different environments.

Aim 2. Factors associated with aneuploidy

What do environments with high frequency of aneuploidy have in common?

Are there genetic factors associated with high frequency of aneuploidy?

Aim 2. Sorting strains into 19 environments

Environment	# of strains	
Wine	363	
Commercial (including starter cultures)	223	
Beer	184	
Liquid Fermentation	136	
Bread	129	
Sake	59	
Dairy	47	
Solid-state fermentation (SSF)	45	
Bioethanol	43	
Lab	28	
Coffee	22	
Сосоа	18	
Industrial	10	
Clinical	277	
Trees	192	
Fruit	156	
Flower	74	
Insect	26	
Other plants	16	
Total	2048	

Human-associated (n=1307)

Clinical (n=277)

Wild (n=464)

Aim 2. Environmental differences in aneuploidy

- Aneuploidy is common regardless of environment;
- Aneuploidy differs among environments;
- Domestication does not explain the differences.

I designed a logistic model (**glm**) to test for differences in frequency of aneuploidy:

Aneuploidy ~ Environment * heterozygosity

Aim 2. aneuploidy ~ environment + heterozygosity

After the following simplifications:

- 1. Grouping Beer and Sake into Brewing;
- Grouping Flower, Fruit, Insect, Tree, and Wine into Seasonal (or diurnal);
- 3. Removing the interaction term;

The final model explains 28% (glm, n=773, df=10, p < 2.2e-16) of the deviance (environment, 21%; heterozygosity, 7%):

aneuploidy ~ environment + heterozygosity

I have tried other simplifications that resulted in worse models:

- 1. Grouping Wild, Domesticated and Clinical strains (3 environments);
- 2. Grouping Open Fermentation strains: Bioethanol, Dairy, Wine and Wild (7 environments);
- 3. Grouping Non-Seasonal strains: Brewing and Commercial (7 environments);
- 4. Grouping Continuous Growth strains: Bioethanol and Brewing (8 environments);
- 5. Removing heterozygosity or environment.

Aim 2. Environmental differences in aneuploidy

What happens in **seasonal (or diurnal)** environments?

Low aneuploidy in **domesticated wine** and **wild** environments suggests **meiosis is a better predictor of aneuploidy** than domestication.

Aim 2. Next steps

- Include lineage (genetic background) as an explanatory variable;
- Consider removing highly heterozygous strains;
- Identify what chromosomes are more frequently gained or lost;
- Annotate a phylogenetic tree with each aneuploidy event found here.

Assessing ecology and evolution of aneuploidy

 Aim 1: Evaluate computational tools to detect aneuploidy from yeast genome data.

• **Aim 2:** Identify environmental or genetic factors associated with aneuploidy in *S. cerevisiae*.

 Aim 3: Test fitness effects of aneuploidy in different environments.

Aim 3. Fitness effects of aneuploidy

What are the **fitness effects** (growth, sporulation) of **aneuploidy** in different lineages growing under **distinct environments**?

Aim 3a. Phenotypic differences: ploidy and lineage

Measure **phenotypic** differences between **aneuploid** and **euploid** strains living in **wild** and **beer**-like environments.

Using **human** and **non-human** associated lineages:

- North America Oak, European Oak;
- Lab (S288c);
- o Beer 1, Beer 2.

In 3 environments:

- Tree-like (Oak Bark Infusion Agar);
- Solid control (YPD Agar);
- Beer-like (Liquid YPD).

Aim 3b. Evolving wild yeast under distinct conditions

Determine how **aneuploid** and **euploid wild strains** respond to **wild** and **beer**-like environments.

Using **Wild** and **Lab** lineages:

- 2 North America Oak and 2 European Oak mosaic;
- 2 North America Oak and 2 European Oak non-mosaic;
- o 1 Lab (S288c).

Evolve for 1,000 generations in 4 environments:

- a. **Beer-like** (nutrient-rich, stable temperature);
- b. **Fluctuating temperature**;
- c. **Nutrient-poor**;
- d. **Tree-like** (fluctuating temperature & nutrient-poor).

Summary

Aim 1. Assess computational tools to detect aneuploidy using yeast genome data;

Aim 2. Explain the association between frequency of aneuploidy and environmental or genetic factors in yeast

Aim 3a. Test fitness consequences of aneuploidy in different yeast lineages under distinct environments;
Aim 3b. Determine how aneuploid and euploid wild yeast strains evolve under different conditions.

Association between aneuploidy and environment?

- Aneuploidy is common in clinical^[1], sake, beer, and admixed^[2] strains
 of *S. cerevisiae*;
- However, there is a debate whether the frequency of aneuploidy in wild strains, is rare^[2] or common^[3].

^[2] Peter et al. Nature 556.7701 (2018): 339.

^[3] Duan et al. Nature communications 9.1 (2018): 2690.

Ploidy and heterozygosity affect aneuploidy

