String Disequalities

Let \mathbb{X} be a set of (string) variables and Σ be a (finite) alphabet. A string assignment is a mapping $\sigma \colon \mathbb{X} \to \Sigma^*$, giving each variable a string value. An automata assignment is a mapping α assigning every variable $x \in \mathbb{X}$ a deterministic finite automaton (DFA). A string disequality is a formula of the form $x_1 \dots x_n \neq y_1 \dots y_m$ where $x_1, \dots, x_n, y_1, \dots, y_m \in \mathbb{X}$ (there can be multiple occurrences of the same variable in a disequality). A system of string disequalities is a conjunction of string disequalities. A string assignment σ is a model of a string disequality $x_1 \dots x_n \neq y_1 \dots y_m$, written as $\sigma \models x_1 \dots x_n \neq y_1 \dots y_m$, iff $\sigma(x_1) \dots \sigma(x_n) \neq \sigma(y_1) \dots \sigma(y_m)$. For instance, for $\sigma = \{x \mapsto ab, y \mapsto bab\}$, it holds that $\sigma \models xy \neq yxx$ because $\sigma(x)\sigma(y) = abbab$ and $\sigma(y)\sigma(x)\sigma(x) = bababab$. For a system of string disequalities S, we write $\sigma \models S$ (σ is a model of S) iff $\sigma \models D$ for every disequality D in S.

Problem statement. StringDisequalities

Input: A system of string disequalities S and

an automata assignment α .

Output: true iff there exists a string assignment σ such that $\sigma \models S$ and

for all $x \in \mathbb{X}$, it holds that $\sigma(x) \in \mathcal{L}(\alpha(x))$, false otherwise.

Task 1 Characterize as precisely as possible the complexity of StringDisequalities.

Hint: start with the lower bound.