EE P 538 Analog Circuits for Sensor Systems

Spring 2020

Instructor: Jason Silver, PhD

Announcements

- Assignment 2 due Saturday, April 18 at midnight
- Assignment 3 will be posted April 17
 - Due Saturday, April 25 at midnight

Week 3

- AoE Chapter 2 Bipolar Transistors
 - **2.3**, 2.4.2, 2.4.4
- AoE Chapter 3 Field Effect Transistors
 - **■** 3.1 3.4

Overview

- Last time...
 - Constant *V_{BE}* BJT model
 - Ebers–Moll BJT model
 - Emitter follower and common emitter amplifiers
 - Small-signal model of a BJT
- Today...
 - Small-signal BJT model
 - Current sources
 - Differential amplifiers
 - Field effect transistors
 - Small-signal model of a MOSFET

Lecture 3 – Transistors 2

Small-Signal Transconductance

- The Ebers–Moll model describes the behavior of collector current with respect to base-emitter voltage (large signal)
- g_m (the m stands from mutual) describes how the collector current responds to *small changes* in base-emitter voltage (small signal)
- Linear circuit design is based on this small-signal approximation

Realizing Voltage Gain

- The common-emitter amplifier exemplifies how we achieve voltage gain in circuits:
 - 1. Input voltage is use to generate a current via transconductance
 - 2. Output voltage is the product of current and resistance
- This is the method by which gain is realized in circuits based on BJT's, FET's, and even vacuum tubes

CE Input Impedance

$$i_{c} = g_{m}v_{test}$$

$$i_{b} = i_{test} = \frac{i_{c}}{\beta} = \frac{g_{m}v_{test}}{\beta}$$

$$r_{in} = \frac{v_{test}}{i_{test}} = \frac{\beta}{g_{m}}$$

- The impedance "looking into" the base is β times higher that that looking into the emitter
- This may be unacceptably low for applications requiring high input impedance (e.g. sensor with high equivalent impedance)
- Field-effect transistors exhibit much higher input impedance (up to teraohms and more), and thus may be preferred for such applications

CE Nonlinearity

- Larger signal amplitudes cause nonlinear "distortion" in the output, due to the exponential relationship between V_{BE} and I_C
- As seen here, this is apparent for even moderate signal amplitudes
- The amount of distortion can be better quantified in the frequency domain using a Fourier transform
- CE distortion (Ltspice)

CE Gain Temperature Dependence

- Both g_m and resistance vary with temperature
- Over typical specified temperature ranges (e.g. industrial or military spec), the common-emitter gain varies substantially (± 25%)
- Is it possible to ensure consistent gain over a wide temperature range?

Emitter Degeneration

- The "degenerated" common emitter amplifier employs feedback:
- 1. As the input voltage increases, so does the current (i_c)
- 2. The increase in produces an increase in the emitter voltage (v_e) proportional to R_F
- 3. This decreases i_c , leading to a dependence of gain on R_E

Temperature Performance

- Through the use a feedback, we are able to reduce the gain variability from ± 25% to ± 0.6%
- This comes at a cost, as the gain has been reduced from 400 V/V to 10 V/V
- This is central to the use of feedback in engineered systems:

We employ high open-loop gain and feedback to achieve precise closed-loop control

Early Effect

- According to the model we've employed so far, I_C depends only on V_{BE} and is independent of V_{CE}
- In reality, the collector current has a slight dependence on V_{CE}
- This dependence is due to the variation of base width as V_{CE} changes
- The variation of I_C with V_{CE} is captured by the Early voltage (V_A)
- The collector current is thus expressed as

$$I_C = I_{C0} \left(1 + \frac{V_{CE}}{V_A} \right),$$

where
$$I_{C0} = I_S(e^{V_{BE}/V_T} - 1)$$

Output Resistance

- For values of V_{CE} above a few 10's of mV, the collector current varies approximately linearly
- We capture this dependence with the *small-signal resistance* r_o , called the *output resistance*
- r_o depends on the DC collector current, so a given value of r_o is only valid only a narrow signal range (small-signal assumption)
- 2N3904 DC sweep (Ltspice)

Hybrid-pi BJT Model

$$g_m = rac{I_{C0}}{V_T}$$
 $r_o = rac{V_A}{I_{C0}}$ $r_\pi = rac{eta}{g_m}$

- The improved small-signal model includes the linear transconductance (g_m) , base resistance (r_π) , and the output resistance (r_o)
- This model is adequate for "hand" analysis for a wide range of applications of linear analog circuits
- Note that the product $g_m r_o$ is the "intrinsic gain" of the transistor, and represents the transistor gain with no external load

Analog Circuit Biasing

- Nearly all analog circuits utilize some form of current bias
- This is largely due to the dependence of critical circuit parameters (e.g. g_m) on current
- For this reason, the availability of good current sources is essential to analog design

BJT Current Source

$$R_{out} = r_o \approx \frac{V_A}{I_{out}}$$

$$\frac{\Delta I_{out}}{I_{out}} = \frac{\Delta V_{out}}{I_{out} r_{out}} = \frac{\Delta V_{out}}{V_A}$$

- A higher value of V_A corresponds to a higher output resistance
- Consequently, the precision of the output current also depends on Early voltage, which is a device parameter
- Typical values of V_A are from ~50V to several hundred
- How do we generate the bias voltage V_{bias} ?

Current Mirror

$$V_{BE} \approx V_T \ln \frac{I_{bias}}{I_S}$$

- Q_1 "compresses" Ibias into V_{BE} via a logarithmic relationship
- Q_2 "expands" V_{BE} into lout via an exponential one
- A current mirror is an example of a translinear circuit, as the linear relationship between input and output is accomplished via nonlinear device operation
- Current Mirror (Ltspice)
- How do we generate I_{bias} ?

Small-Signal Model

- As always, DC voltages and currents become zero
- Because the small-signal base voltage of Q₂ is zero, no current flows through its transconductance
- The equivalent circuit at the output is just Q₂'s output resistance

Differential Amplifiers

- Differential amplifiers process differential signals, or signals encoded as the difference between two voltages (or currents)
 - An advantage of differential amplifiers is their rejection of common-mode signals
 - The differential gain is defined as the ratio of differential output voltage to differential input voltage

Differential Signaling

- Differential signaling provides an inherent immunity to "noise" that affects both signals equally
- The signal is always encoded as the difference between two voltages or currents with opposite phases
- When their difference is taken, the signal adds constructively and the common-mode noise is removed

Half-Circuit Analysis

$$i_{+} = -i_{-} = g_{m}v_{i+} = g_{m}\frac{v_{id}}{2}$$

$$g_m = \frac{I_{tail}}{2V_T} \qquad v_e = 0$$

$$v_{o-} = -g_m \frac{v_{id}}{2} R_C$$
 $v_{o+} = g_m \frac{v_{id}}{2} R_C$

$$v_{od} = v_{o+} - v_{o-} = -g_m v_{id} R_C$$

Ideal Opamp

- Opamps (typically) have differential inputs and single-ended outputs
- The desirable characteristics of an opamp are:
 - a) High open-loop gain
 - b) Low output impedance
 - c) High input-impedance

Simple Opamp

- Q₁ Q₃ form *current mirrors*, biasing the amplifier
- Q₄ and Q₅ are transconductors, which realize gain
 - Q_6 and Q_7 form an *active load*, converting the differential input signal to a single-ended voltage
- What about Q₈?

How does it stack up?

$$A_v \approx \frac{g_m r_o}{2} = \frac{I_{bias}}{2V_T} \frac{V_A}{I_{bias}} = \frac{V_A}{2V_T} \approx 1000 \frac{V}{V}$$

$$r_{out} pprox rac{1}{g_{m8}} = rac{V_T}{I_{bias}} pprox 25\Omega$$

$$r_{in} = r_{\pi 4,5} = \frac{\beta}{g_{m4,5}} = \frac{2\beta V_T}{I_{bias}} \approx 5k\Omega$$

BJT Operation

- For current to flow in a BJT, we need to overcome the "potential barrier" formed by the base-emitter junction diode
- Beyond this threshold (\sim 0.6V), charge carriers are injected into base region as a exponential function of V_{RE}
- The base current is "amplified" in the collector by a roughly constant factor β

FET Operation

- Conduction in a FET (Field-Effect Transistor) occurs in a conducting channel formed by an electric field
- The absence of a forward biased junction (V_{BE} in the BJT) means that the gate draws no current
- The high input impedance (up to tera-ohms and above) is the FET's *most* essential characteristic, important for many applications

FET Flavors

N-channel

P-channel

- In an n-channel FET, conduction occurs as the movement of electrons
 - In normal operation, drain is at a higher potential than the source
- In a p-channel FET, "holes" are the charge carriers
 - Source has a higher potential than the drain in normal operation
- As with BJT's, p-type FET's typically perform worse than n-type

Enhancement-mode MOSFET

for
$$V_{DS} < V_{GS} - V_{th}$$
, $I_D = 2\kappa \left[(V_{GS} - V_{th})V_{DS} - \frac{V_{DS}^2}{2} \right]$ (linear region)
$$I_D = 2\kappa \left[(V_{GS} - V_{th})V_{DS} - \frac{V_{DS}^2}{2} \right]$$
 (linear region)
$$I_D = \kappa (V_{GS} - V_{th})^2$$
 (saturation region)

- "Enhancement-mode" just means that the bulk semiconductor is doped to limit conduction to gate-source voltages above V_{th}
- The two regions of operation are used for different applications:
 - Linear region: Switches, logic gates, and (sometimes) resistors
 - Saturation region: Amplifiers, current sources

Regions of Operation

- At low values of V_{DS} , I_D is approximately linear with V_{DS}
- Above the critical value $V_{GS} V_{th}$, the conducting channel becomes "pinched off" and I_D is (approximately) constant with V_{DS}
- For linear circuits, we typically operate FETs in the saturation region, due to the high output resistance there ("good" transconductor)

Dependence on V_{DS}

- Due to a number of contributing effects, drain current varies slightly with V_{DS} (similar to BJT's)
- The combination of effects is often referred to as "channellength modulation," due to the variation of the conducting channel length with V_{DS}
- Thus, similar to BJT's, FET's exhibit finite output resistance, which sets limits on their performance as current sources

MOSFET I-V Characteristics

V_{GS} dependence

V_{DS} dependence

Small-Signal Transconductance

■ As with the BJT (or any transconductance device), g_m is defined as the derivative of drain current with respect to gate-source voltage:

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \frac{\partial}{\partial V_{GS}} \kappa (V_{GS} - V_{th})^2 (1 + \lambda V_{DS}) = 2\kappa (V_{GS} - V_{th})$$

• g_m can be expressed in terms of drain current:

$$g_m = 2\kappa (V_{GS} - V_{th}) = \frac{2I_{D0}}{(V_{GS} - V_{th})}$$

■ Again, we have a linear dependence of g_m on current

Output Resistance in Saturation

- As with the BJT, the dependence of FET drain current on VDS is captured by a scalar λ
- The drain current can be defined as

$$I_D = I_{D0}(1 + \lambda V_{DS}), \quad \text{where} \quad I_{D0} = \kappa (V_{GS} - V_{th})^2$$

The output resistance is thus

$$r_o = \frac{\partial I_D}{\partial V_{DS}} = \frac{1}{\lambda I_{DO}}$$

• A typical value of λ for an integrated MOSFET is around 0.1V⁻¹, though this can vary considerably

Small-Signal Model

Hybrid-pi FET Model

- The DC small-signal model of the FET is similar to the BJT, but lacks the r_{π} parameter (high input impedance)
- Again, this model is sufficiently accurate for many applications
- The product $g_m r_o$ is the "intrinsic gain" of the transistor, and represents the transistor gain with no external load

Common-Source Amplifier

- High-gain structure, essentially identical to the common-emitter amplifier
- High gate impedance of FET devices makes it ideal for interfacing with sensors with high source resistance
- For higher gain, R_D can be replaced by an "active load," which is p-channel FET in saturation

Small-Signal Approach

DC operating point

$$I_D = I_{D0}(1 + \lambda V_{DS})$$

$$V_{OUT} = V_{CC} - I_D R_D$$

Small-signal model

$$g_m = \frac{2I_{D0}}{V_{GS} - V_{th}}$$

$$r_o = \frac{1}{\lambda I_{D0}}$$

Small-signal analysis

$$i_D = g_m v_{in}$$
 $v_{out} = -i_D(r_o||R_D)$

$$\frac{v_{out}}{v_{in}} = -g_m(r_o||R_D) \approx -g_m R_D$$