

Revisão

■ Representação de Sinais (matemática e gráfica)

 ... os sinais eléctricos são grandezas (eléctricas) que apresentam uma determinada evolução ao longo do tempo (são função da variável tempo t)...

$$e(t) = 10 \text{ V}$$

■ Representação de Sinais (matemática e gráfica)

e(t) = componente contínua + componente alternada

- Representação de Sinais (matemática e gráfica)
 - Sinais periódicos

$$e(t+T)=e(t)$$

- Representação de Sinais (matemática e gráfica)
 - Sinais sinusoidais

$$e(t) = A \cdot sen(\omega t + \theta)$$

 $\omega = 2\pi f \rightarrow$ frequência angular

A → *amplitude*

 $\theta \rightarrow fase$

- Representação de Sinais (matemática e gráfica)
 - Sinais sinusoidais

Forma de onda da tensão na rede de energia eléctrica

■ Valor Médio

$$e_{1} = 10sen(\omega t)$$

$$\downarrow \\ 5V \\ - \\ \boxed{ }$$

$$(c)$$

Valor Médio

$$G(valor \ médio) = \frac{\acute{a}rea (soma \ algébrica)}{T(período)}$$

$$G = \frac{A_1 - A_2}{T} = \frac{(8 \text{ V})(5 \text{ s}) - (2V)(5 \text{ s})}{10 \text{ s}} = \frac{30}{10} = 3 \text{ V}$$

■ Valor Médio (cálculo para o caso geral)

$$G = \frac{1}{T} \int_{t_1}^{t_1+T} e(t) dt$$

Valor Eficaz

$$E_{eff} = \sqrt{\frac{1}{T}} \int_{t_1}^{t_1+T} e(t)^2 dt$$

■ Exemplo: valor eficaz da sinusóide

$$E_{eff} = \sqrt{\frac{1}{T} \int_{t_1}^{t_1+T} e(t)^2 dt}$$

$$E_{eff} = \sqrt{\frac{1}{T} \int_0^T A^2 \operatorname{sen}^2(wt) dt} = \sqrt{\frac{1}{2\pi} \int_0^\alpha A^2 \operatorname{sen}^2(\varphi) d\varphi}$$

$$E_{\text{eff}}^{2} = \frac{1}{2\pi} \int_{0}^{\alpha} A^{2} \operatorname{sen}^{2}(\varphi) d\varphi = \frac{A^{2}}{4\pi} \int_{0}^{2\pi} \left(1 - \cos(2\alpha) \right) d\alpha = \frac{A^{2}}{4\pi} \left[\alpha - \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2} \operatorname{sen}(2\alpha) \right]_{0}^{2\pi} = \frac{A^{2}}{4\pi} \left[\frac{1}{2} \operatorname{sen}(2\alpha) + \frac{1}{2}$$

$$=\frac{A^2}{2}$$

$$ightarrow E_{eff} = \frac{A}{\sqrt{2}}$$

Quantidades em corrente contínua (cc):

Letras maiúsculas para a variável e para o índice (I_B , I_C , V_{CF})

Quantidades em corrente alternada (ca):

Letras minúsculas para a variável e para o índice (i_b, i_c, v_{ce})

■ Quantidades totais (cc + ca):

Letras minúsculas para a variável e maiúscula para o índice (i_B , i_C , v_{CF})

Rudimentos de Electricidade

- Tensão Eléctrica
 - A tensão é uma medida da energia envolvida no transporte de uma carga elementar entre dois pontos de um campo eléctrico. É uma quantidade que se mede em volts (V) e que coincide com o cociente entre a energia libertada e a quantidade de carga transportada:

$$Tens\~ao = \frac{W}{Q} \lor (volts)$$

Rudimentos de Electricidade

Fontes de Tensão

Bateria de chumbo

Rudimentos de Electricidade

- Valor nominal da tensão de fontes bem conhecidas:
 - Tensão gerada pelas células nervosas: cerca de 30 mV
 - Baterias recarregáveis NiMH or NiCd (por cada célula): 1.2 V
 - Bateria de mercúrio 1.355 V
 - Baterias alcalinas (tipo AAA, AA, C e D): 1.5 V
 - Alimentação do sistema eléctrico dos automóveis: 12 V (nominal)
 - Tensão nominal de rede eléctrica doméstica: 230 V (eficazes ou RMS) na Europa, Austrália, Ásia e África, 120 V na América do Norte, 100 V no Japão
 - Tensão de alimentação de comboios de alta velocidade: 25 kV eficazes
 - Linhas de transporte de energia eléctrica em alta tensão: entre 110 kV e
 1150 kV eficazes
 - Relâmpago: varia muito, frequentemente à volta de100 MV.

■ Rudimentos de Electricidade

Medida de Tensão

Resistência interna do voltímetro ideal

$$\rightarrow R = \infty \Omega$$

Rudimentos de Electricidade

Corrente Eléctrica

... define-se corrente média como a quantidade de carga eléctrica que na unidade de tempo atravessa uma dada superfície ...

$$I = \frac{Q}{\Delta T}$$
 A (ampere)

Rudimentos de Electricidade

- Corrente Eléctrica
 - Fluxo de electrões versus corrente convencional

Rudimentos de Electricidade

Medida Corrente Eléctrica

■ Rudimentos de Electricidade

Medida Corrente Eléctrica

■ Rudimentos de Electricidade

Medida Corrente Eléctrica

Rudimentos de Electricidade

Medida Corrente Eléctrica

Amperimetro

Resistência interna do amperímetro ideal

$$\rightarrow R = 0 \Omega$$

Rudimentos de Electricidade

- Potência Eléctrica
 - ... a potência (caso geral) é uma medida do ritmo a que se dissipa ou acumula energia...

$$P = \frac{W}{\Delta T}$$
 W (watt), $p(t) = \frac{dw(t)}{dt}$, $w(t) = \int_{-\infty}^{t} p(\tau) d\tau$

Tendo em conta as relações entre trabalho, tensão, carga, tempo e corrente eléctrica, a potência eléctrica é dada por (valor médio),

$$P = \frac{W}{\Delta T} = \frac{W}{Q} \frac{Q}{\Delta T} = VI \text{ (W)}$$

Rudimentos de Electricidade

- Resistência. Lei de Ohm
 - ... As duas grandezas eléctricas fundamentais **tensão** e **corrente** relacionam-se através de outra grandeza de igual importância: a **resistência** ...
 - ... A relação entre as duas grandezas é descrita pela mais importante das leis dos circuitos eléctricos: a *lei de Ohm*:

$$R = \frac{V}{I} \Omega \text{ (ohm)} \qquad \rightarrow I = \frac{V}{R}, \qquad V = RI$$

Rudimentos de Electricidade

Resistência. Lei de Ohm

Símbolo da resistência e polaridades

$$V = RI$$

Rudimentos de Electricidade

Resistência. Lei de Joule

... a potência dissipada por *efeito de Joule* numa resistência é dada por:

$$P = V \times I = (R \times I) \times I = R \times I^2$$

$$P = V \times I = V \times \left(\frac{V}{R}\right) = \frac{V^2}{R}$$

Rudimentos de Electricidade

Medida/Especificação de resistências

Rudimentos de Electricidade

Medida/Especificação de resistências

Rudimentos de Electricidade

Condensadores

$$Q = C \times V_C$$

$$C = \frac{Q}{V_C}$$
 F (farad)

$$i_{\rm C} = \frac{dq}{dt}$$

$$\rightarrow i_C = C \frac{dv_C}{dt}$$

$$\to W_{\rm C} = \frac{1}{2}CV_{\rm C}^2$$

(W_c é a energia armazenada no campo eléctrico do condensador)

Rudimentos de Electricidade

Condensadores

Rudimentos de Magnetismo

Bobina (ou Indutor) e Indutância Electromagnética

$$\rightarrow v_L = L \frac{di_L}{dt}$$

$$\rightarrow W_L = \frac{1}{2}LI_L^2$$
 (W_L é a energia armazenada no campo magnético da bobina)

■ Rudimentos de Magnetismo

Indutores

■ Componentes Electrónicos Básicos (resumo)

Componente	Relação v(t) / i(t)	Comentário
i(t)	$V(t) = R \times i(t)$	Dissipa energia (convertida em calor). A potência dissipada é, $P = R \cdot i^2 = \frac{V^2}{R}$
$C = \frac{V(t)}{T} + V(t)$	$i(t) = C \frac{dv(t)}{dt}$ ou $v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau + v(0^+)$	Armazena energia sob a forma de um campo eléctrico: $W = \frac{1}{2}C \cdot V^2$
/(t) + L	$v(t) = L \frac{di(t)}{dt}$ ou $i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau + i(0^+)$	Armazena energia sob a forma de um campo magnético: $W = \frac{1}{2}L \cdot I^2$