Estruturas de repetição - FOR

Nesse trabalho o estudante deverá fazer

- um vídeo (captura de tela) explicando a construção de um código para solucionar um dos seis temas mostrados a seguir;
- o código da tag JAVASCRIPT deve ser iniciado do zero (HTML pode ser feito previamente);
- deverá ser feito obrigatoriamente no VISUAL STUDIO CODE (VSCODE);
- apresentar testes que valide o código desenvolvido;
- o único áudio no vídeo deverá ser a voz do estudante explicando o código (sem música de fundo);
- o vídeo deve ter no máximo 5 minutos (pratique bastante o roteiro da sua fala para não estourar esse tempo, use nomes curtos para as variáveis e seja objetivo);
- tome como referência os vídeos da plataforma https://eupossoprogramar.netlify.app/
- OBS. 1: vídeo aula sobre o uso do VSCODE: https://eupossoprogramar.netlify.app/introducao-ao-javascript/como-instalar-e-utilizar-o-visual-studio-code
- OBS. 2: Usar fone de ouvido durante a gravação.
- OBS. 3: Procure os monitores se tiver alguma dúvida sobre como fazer vídeo capturando a tela do computador e sua voz.
- OBS. 4: No livro tem vário exemplos de código com HTML e JAVASCRIPT, leia o livro!!

Pontuação: 4,0

Prazo para envio do link da gravação pelo formulário: <u>02/09/24</u> (se usar google drive compartilhar arquivo com leonardo.silva@ifal.edu.br)

Temas para cada estudante:

Estudante	TEMA
ALANA SOFIA MENDONÇA RIBEIRO TRAJANO	1
ANA LARA MARQUES CANDIDO BANDEIRA	2
ANA LUÍSA DE ASSIS GOMES	3
ARTHUR CÉSAR VIEIRA MARTINIANO LEITE	4
BRUNA NÁTALY MIGUEL LIMA DA SILVA	- 5
DEVID KETSON MARQUES DE SOUZA	6
EDUARDO CAIO DA SILVA	1
EMANOEL NICHOLAS CARLOS COSTA PACHECO CANT	2
ENZO GABRIEL PIMENTEL BARBOSA	3
FELIPE MICAEL COSTA LIMA DOS SANTOS	4
GIOVANNA ANSELMO SAMPAIO	5
HILLARY DOS SANTOS PEREIRA	6
IASMIN NIKOLY BERNARDINO DA SILVA	1
ISABELLY CHRISTINY GOMES DE JESUS	2
IVAN MENDES DA COSTA	3
JHONATA EMANUEL SILVA DOS SANTOS	4
JOÃO MARCOS CARIRI SANTOS	5
JOÃO VITOR ROCHA DE LIMA	6
JÚLIA VITORIA CASSIANO DOS SANTOS SILVA	1
KAMILLY DAVINIA DE SOUZA VERCOSA	2
LUCAS GABRIEL PONTES DE OLIVEIRA E SILVA LIMA	3
LUCAS RAFAEL NEVES REGO	4
LUNA ELARA CAMINHA BRANDÃO	5
LYVIA MOREIRA DUARTE DO ESPIRITO SANTO	6
MARIA BEATRIZ DA SILVA VEIGA	1
MARIA BEATRIZ FERREIRA DE FREITAS	2
MARIA EDUARDA FERREIRA SILVA	3
MIGUEL SILVA CAVALCANTE	4
MILENA VITÓRIA BEZERRA DA SILVA CAVALCANTI	5
NIVELYN MARIA SANTOS OLIMPIO	6
STYVEN BÔTTO ALVES GUIMARÃES	1
VITÓRIA CAMILLY BERNARDO DA SILVA	2
VITÓRIA EVELLYN SANTOS RUFINO	3
YASMIM FERNANDES DA SILVA	4

Temas para as apresentações

- Digamos que o número de chinchilas de uma fazenda triplica a cada ano, após o primeiro ano. Elaborar um programa que leia o número inicial de chinchilas e anos decorridos e informe ano a ano o número médio previsto de chinchilas da fazenda.
 - Observações:
 - O número inicial de chinchilas deve ser maior ou igual a 2 (um casal), crie um IF de restrição para isso.
 - Veja os exemplos a seguir.

	Criação de Chinchilas
Criação de Chinchilas	Quantidade inicial de Chinchilas: 7 Estimativa de quantos anos: 10
Quantidade inicial de Chinchilas: 4 Estimativa de quantos anos: 6	Calcular 1ª Ano: 7 Chinchilas 2ª Ano: 21 Chinchilas
Calcular 1ª Ano: 4 Chinchilas 2ª Ano: 12 Chinchilas 3ª Ano: 36 Chinchilas 4ª Ano: 108 Chinchilas 5ª Ano: 324 Chinchilas 6ª Ano: 972 Chinchilas	3ª Ano: 63 Chinchilas 4ª Ano: 189 Chinchilas 5ª Ano: 567 Chinchilas 6ª Ano: 1701 Chinchilas 7ª Ano: 5103 Chinchilas 8ª Ano: 15309 Chinchilas 9ª Ano: 45927 Chinchilas 10ª Ano: 137781 Chinchilas

- 2) Elabore um único código para as questões **a** e **b** abaixo:
 - a) O máximo divisor comum (MDC) de dois números inteiros, x e y, é o maior inteiro que é divisível por x e y.

Por exemplo: os divisores comuns de 12 e 18 são 1, 2, 3 e 6. Dentre eles, 6 é o maior. Então chamamos o 6 de máximo divisor comum de 12 e 18 e indicamos MDC(12,18) = 6.

b) Calcule no espaço abaixo o resultado da soma de frações abaixo:

$$\frac{\frac{5}{12} + \frac{7}{18}}{\frac{11}{348} + \frac{5}{156}} =$$

Uma estratégia para solucionar a soma acima é primeiramente obter o mínimo múltiplo comum (MMC) dos denominadores das frações, ou seja, o MMC de 12 e 18, e o MMC de 348 e 156, você consegue fazer isso usando lápis e papel?

A partir da questão **a**, complemente o algoritmo para que ele calcule também o MMC de dois números. Ex.: MMC(12,18) = 36.

Dica: O MMC de dois números é igual ao produto deles dividido pelo MDC dos dois números.

Veja os exemplos a seguir.

MDC e MMC
1º número: 12
2° número: 18
Mostrar MDC e MMC
Divisores: 1 2 3 6
12 x 18 = 216
MDC(12,18) = 6
MMC(12,18) = 36

MDC e MMC		
1° número: 348		
2° número: 156		
Mostrar MDC e MMC		
Divisores: 1 2 3 4 6 12 348 x 156 = 54288		
MDC(348,156) = 12		
MMC(348,156) = 4524		

3) Elaborar um programa que leia um número e verifique se ele é ou não perfeito. Um número dito perfeito é aquele que é igual à soma dos seus divisores inteiros (exceto o próprio número). O programa deve exibir os divisores do número e a soma deles.

Veja os exemplos a seguir.

Números perf	eitos
número: 28	
Verificar	
Divisores:	
1	
2 4	
7	
14	
soma: 28	
28 é perfeito.	

4) Faça um algoritmo que leia um número N e mostre a soma de todos os números primos existentes entre 1 e N.

Veja os exemplos a seguir.

- 5) Elabore um algoritmo onde o usuário informa quantos números aleatórios entre 0 e 50 serão gerados e em seguida surge uma mensagem informando:
 - quantos são pares
 - qual o somatório dos números menores que 4
 - qual o maior valor aleatório gerado

Veja um exemplo de execução abaixo. Crie restrições que impeçam que o usuário informe um valor menor ou igual a 0, maior que 1000 ou não informe um valor numérico válido na caixa de texto.

Veja o exemplo a seguir.

Um estudante do IFAL campus Rio Largo decide reservar parte de sua mesada em algum investimento para no futuro conseguir uma boa quantia e aproveitá-la da melhor forma.

O estudando decide então construir um programa com base nos seus conhecimentos matemáticos de juros compostos. Ele sabe que uma quantia de R\$ 100,00 colocada na poupança vai lhe render 1% de juros daqui um mês, ou seja, depois de um mês ele vai ter em sua conta 1% a mais do que ele colocou, assim ele fez o seguinte cálculo:

rendimento ao final do primeiro mês => 100,00 x 1/100 = 1,00 (acumulado de R\$ 101,00)

Seguindo o mesmo raciocínio ele conseguiu descobrir o rendimento e o acumulado para os meses seguintes:

rendimento ao final do segundo mês => 101,00 x 1/100 = 1,01 (acumulado de R\$ 102,01) rendimento ao final do terceiro mês => 102,01 x 1/100 = 1,02 (acumulado de R\$ 103,03) rendimento ao final do quarto mês => 103,03 x 1/100 = 1,03 (acumulado de R\$ 104,06) e assim sucessivamente.

Construa um programa que permita calcular o valor final após uma certa quantidade de meses decorridos.

/eja os exemplos abaixo.	
Calculadora de rend	imentos
Capital Inicial (R\$): 100	
Taxa de juros (%): 1	
N. de meses: 12	
Calcular	
Capital final:	
1: 101.00	
2: 102.01	
3: 103.03	
4: 104.06 5: 105.10	
6: 106.15	
7: 107.21	
8: 108.29	
9: 109.37	
10: 110.46	
11: 111.57	
12: 112.68	

Desafio: Considere agora que após o primeiro mês o estudante continua fazendo novos depósitos (aportes) a cada mês que passa, implemente essa funcionalidade no programa. Visite https://www.mobills.com.br/calculadoras/calculador a-juros-compostos/ para verificar se o valor final está certo

Calculadora de rendimentos
Capital Inicial (R\$): 1000
Taxa de juros (%): 3
N. de meses: 36
Calcular
Capital final:
1: 1030.00
2: 1060.90
3: 1092.73
4: 1125.51
5: 1159.27
6: 1194.05
7: 1229.87
8: 1266.77
9: 1304.77
10: 1343.92 11: 1384.23
12: 1425.76
13: 1468.53
14: 1512.59
15: 1557.97
16: 1604.71
17: 1652.85
18: 1702.43
19: 1753.51
20: 1806.11 21: 1860.29
22: 1916.10
23: 1973.59
24: 2032.79
25: 2093.78
26: 2156.59
27: 2221.29
28: 2287.93
29: 2356.57
30: 2427.26 31: 2500.08
32: 2575.08
33: 2652.34
34: 2731.91
35: 2813.86
36: 2898.28

