Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech.(CSE/IT) (2018 & Onwards)/(Civil Engg.)/(Computer Engg.) (Sem.-1)

MATHEMATICS-I

Subject Code: BTAM-104-18 M.Code: 75362

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions EACH from SECTION B & C.

SECTION-A

- 1. Calculate $\Gamma\left(\frac{1}{2}\right)$.
- 2. Show that beta function is symmetric.
- 3. Compute $\lim_{x \to 0} \frac{\log x}{\cot x}$
- 4. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 0 & 5 \end{bmatrix}$. Compute AB.
- 5. Find the eigen values of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$.
- 6. Define symmetric and skew-symmetric matrices.
- 7. State rank and nullity theorem.
- 8. Evaluate $\int_{1}^{\infty} \frac{dx}{x^2}$.
- 9. Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -4 \\ 3 & 5 & -7 \\ 4 & -5 & -6 \end{bmatrix}$.
- 10. State Rolle's theorem.

SECTION-B

- 11. Find the eigen value and eigen vector of the following matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
- 12. Find the maximum and minimum value of $f(x, y) = x^3 + y^3 3xy$.
- 13. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$
- 14. Find the volume generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x-axis.

SECTION-C

15. Solve the following system using Gauss elimination:

$$x-2y+z=0$$
, $2x+y-3z=5$, $4x-7y+z=-1$.

- 16. a) Find the volume of the solid generated by the revolution of the cardioids $r = a(1 + \cos \theta)$ about the initial line.
 - b) Find the volume of the sphere of radius a.
- 17. a) Use Cramer's rule to solve 2x + 3y z = 1, 4x + y 3z = 11, 3x 2y + 5z = 21.
 - b) Evaluate $\int_0^\infty (x^2+4)e^{-2x^2}dx$ using gamma function.
- 18. a) Show that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ define by T(x, y, z) = (x + y, y + z, z + x) is linear.
 - b) Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ define by T (x, y, z) = (x + y + z, 2x + 2y + 2z, 3x + 3y + 3z).

Find the associated matrix corresponding to standard basis.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.