Tutoriumsaufgabe 1 (LOOP Program)

Zeigen Sie, dass folgende arithmetische Befehle durch ein LOOP-Programm simuliert werden können:

- a) $x_i := x_j \ominus x_k$ (modifizierte Subtraktion mit Ergebnis 0 falls $x_j < x_k$)
- **b)** $x_i := \min\{x_i, x_k\}$

(A)
$$X_i := x_j + 0;$$

 $LOOP \times_k DO$
 $X_i := x_i - \Lambda$ } \times_k nicht nutzen
 END

6)
$$\min\{x_{j_1}x_{k}\}=x_{j_1}<=>x_{j_1}-x_{k}\leq 0$$

IF
$$x_{i}$$
=0 THEN P_{A} ELSE P_{2} much vilop-beechenber x_{1} (X_{2} := X_{2} + A ; X_{2} =0 X_{3} =1 [F X_{1} =0 | LOOP X_{1} DO X_{2} := X_{1} ; X_{3} := X_{1} + A END; THEN P_{A} | LOOP X_{2} DO P_{A} END; ELSE P_{2} (LOOP X_{3} DO P_{2} END

$$Y = X_i \Theta X_{k};$$

$$IP Y = O THEN X_i = X_i = X_k$$

Tutoriumsaufgabe 2 (Wachstumsfunktion)

Beweisen oder widerlegen Sie: Wenn ein LOOP Programm P die Hintereinanderausführung von genau vier Zuweisungsbefehlen vom Typ " $x_i := x_i + c$ " mit $c \in \{-1, 0, 1\}$ ist, dann erfüllt seine Wachstumsfunktion F_P für alle $n \geq 0$ die Ungleichung

$$F_P(n) \leq 5n + 8.$$

$$F_{\rho}(n) = \max \left\{ |f_{\rho}(a)| |a \in \mathbb{N}^{k+1} \text{ mit } \sum_{i=0}^{k} a_i \leq n \right\}$$

$$X_2 := X_1 + A_1$$
 $X_3 := X_2 + A_1$
 $X_4 := X_3 + A_1$
 $X_5 := X_4 + A_1$

$$\vec{\alpha} = (n, 0, 0, 0, 0) \xrightarrow{P} f_{P}(\vec{\alpha}) = (n, n+1, n+2, n+3, n+4)$$

$$F_{\rho}(n) = n + n + \lambda + n + 2 + n + 3 + n + 4$$

= $5n + 10 > 5n + 8$

Die Aussage stimmt auso nicht.

Tutoriumsaufgabe 3 (k-VARIABLE-WHILE)

Wenn ein WHILE Programm P nur k Variablen ($k \geq 1$) verwendet, so gehört P zur Familie der k-VARIABLE-WHILE Programme.

Beweisen Sie: 1-VARIABLE-WHILE Programme sind nicht Turing-mächtig.

Hinweis: Zeigen Sie, dass kein 1-VARIABLE-WHILE Programm die Funktion f(x)=2x berechnen kann.

1P1 = Anzahl der Befehlszeiten von P

strukturelle Induktion:

$$x_{\lambda} = \chi \xrightarrow{P} \chi_{\lambda} \leq \chi + |P|$$

$$X_{\Lambda} = X_{\Lambda} + C \leq X_{\Lambda} + \Lambda = X_{\Lambda} + |P|$$

Nach
$$1V: \chi_{\Lambda} \leq x + |P_{\Lambda}|$$
 und $\chi_{\Lambda} \leq x + |P_{2}|$

nach PA: X1 = X+1P1

nach P2: X1 = (x+1P1)+1P2 = x+1P1

- \rightarrow nach Ausführung gilt $x_{\Lambda}=0 \le x+1P1$
- => P berechnet bei Eingabe |P|+1 eine Ausgabe $\leq |P|+1+|P|=2-|P|+1<2(|P|+1)$