Introduction to Storm

LI Tao

Hong Kong University of Science and Technology tliab@ust.hk

November 15, 2013

- 1 Overview
 - Why Storm
 - Examples
- 2 Structure
 - Topologies
 - Case Study
- Physical Structure
- 4 Implementation Details
 - Spout
 - Bolt

Why Storm?

- **Simple and Beautiful**: simple topology, easy to convert from existing single thread application.
- **Reliable**: all messages are guaranteed to be processed at least once.
- Scalable: all you need to do in order to scale is add more machines to the cluster. Storm will automatically reassign tasks to new machines as they become available.

Examples

Real World Example

- A data generator, emit data point one by one.
- Several layers of logic to process/transform data.
- Each layer emit processed data point to the next layer.

- Spout: Information source, emitting stream of tuples.
- Bolt: Logic to process or transform tuples.

physical structure

Physical Structure

Lifecycle of Spout

- open() the first method called in any spout
- nextTuple(): emit values to be processed by the bolts.
- ack(msgId): called after a tuple is successfully processed
- fail(msgId): called when a bolt fail to process a tuple.

•0

- Bolts are created on the client machine, serialized into the topology, and submitted to the master machine of cluster
- The cluster launches workers that deserialized the bolt. call prepare on it, and then start processing tuples
- The most important method in bolt is execute()

HKUST

Bolt

HKUST[']