APS1070

Foundations of Data Analytics and Machine Learning
Summer 2020

Wed June 24 / Week 7:

 Principle Component Analysis (PCA)

News

- Midterm quiz in progress
- Project 3 Tutorial tomorrow, Q&A session next week
- No class next week Canada Day!

Slide Attribution

These slides contain materials from various sources. Special thanks to Scott Sanner, Marc Deisenroth and Josh Starmer.

Principle Component Analysis (PCA)

High-Dimensional Data

- Real world data is often high-dimensional!
- Challenge: difficult to analyze, visualize and interpret

Properties of High-Dimensional Data

- Many dimensions are unnecessary
- Data often lives on a low-dimensional manifold
- Dimensionality reduction finds the relevant dimensions

Data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1		11	8	3	2	1
Gene 2		4	5	3	2.8	1

Average

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

Shift the data

Draw a line crossing the origin (any orientation)

Target: Fit the data as best as a line can

How do we know we have the best fit?

How we know the best fit?

Intuition

Why?

Why?

Objective: Minimize b or Maximize c

Distances

Distances

Distances

Maximize the Sum of squared distances

 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2}$ = sum of squared distances = SS(distances)

• The slope of the PC1 = 0.25

Eigenvector for PC1 = [0.97, 0.242] Other name: Singular vector

Sum of squared distances for PC1 = **Eigenvalue** for PC1 Sqrt(Eigenvalue for PC1) = Singular Value for PC1

PC2

Projection - PC1 and PC2

Reconstruction

Reconstruction

Scree Plot

TERMINOLOGY ALERT!!!! A Scree

Plot is a graphical representation of the percentages of variation that each PC accounts for.

What happens beyond 2D?

- When finding PC2:
 - Should cross the origin
 - Be perpendicular to PC1
 - Minimizes the sum of squared distances

How to obtain PCA?

- We rigidly rotate the coordinate axes to new 'natural' positions (principal axes) such that:
 - Principal axis 1 corresponds to the highest variance, axis 2 has the next highest variance, . . . , and axis *p* has the lowest variance.
 - All principal axes are uncorrelated.

Content: Václav Hlaváč

In summary...

- Project D-dimensional data onto an M-dimensional subspace that retains as much information as possible
- Informally: information = diversity = variance

What About Images?

- Images? Yes, we can use PCA! (Turk, Pentland, 1991)
- Each 150 pixel × 150 pixel image can be represented by a 22,500-long vector

Normalized Face Data

The Eigenfaces

Eigenvalues for each Eigenface

Reconstructing a Face from PCs

Faces in PC-space (Dims 1,2)

Faces in PC-space (Dims 59,60)

PCA Overview

- 1. Standardize the data.
- 2. Obtain the Eigenvectors and Eigenvalues
- 3. Choose the k eigenvectors that correspond to the k largest eigenvalues
- 4. Construct the projection matrix \mathbf{W} from the selected k eigenvectors.
- 5. Transform the original dataset \mathbf{X} via \mathbf{W} to obtain a k-dimensional feature subspace \mathbf{Y} .

Why use PCA?

- Speed-up machine learning!
- Data Visualization!

From Chen et al., Deep Learning in Label-free Cell Classification, 2016

Additional Reading: Mathematics for Machine Learning – Chapter 10