Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

INPT- 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

Supervised Learning

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Trees (Decision and Regression)
- Random Forests
- Boosting
- Artificial Neural Networks

Bagging

Bootstrap Aggregating

Training

Pick m' examples with replacement and train B trees

Testing

Regression: mean errors

of all the B trees
Classification: vote

- Problem: Bagged trees will look quite similar to each other, so averaging them will not led to much reduction of variance!
- Solution: Random Forest constructs multiple trees where each tree uses n_b random features from the n initial features (generally $n_b = \sqrt{n}$)
- $n_b = n$ -> Bagging case

- Both training and prediction are very fast, because of the simplicity of the underlying decision trees.
- Tasks can be straightforwardly parallelized, because the individual trees are entirely independent entities.
- The multiple trees allow for a probabilistic classification: a majority vote among estimators gives an estimate of the probability
- RF is a Nonparametric model, extremely flexible, and can thus perform well on tasks that are under-fit by other models.

- Hyper-Parameters Tuning
 - d: Depth of the trees
 - B: number of Bags