CS228 Tutorial Solutions

Arpon Basu

$March\ 8,\ 2023$

Contents

1	l Tutorial 1															2	2										
	1.1	Q1																								-	2
	1.2	Q2																								-	2
	1.3	Q3																								4	1

1 Tutorial 1

1.1 Q1

Note that FO-definable languages are a (strict) subset of regular languages. Consequently, if a language is FO-definable then it is automatically regular.

- (a) The language is $a\Sigma^*a + b\Sigma^*b$, which is regular and FO definable by the formula $\varphi := \exists x, y. (\forall z. (x \leq z \leq y) \land (Q_a(x) \iff Q_a(y)))$, assuming $\Sigma = \{a, b\}$.
- (b) The language is $a^* \# b^*$, which is regular and FO definable by the formula $\varphi := \exists x. (Q_\#(x) \land (\forall y. y < x \implies Q_a(y)) \land (\forall y. x < y \implies Q_b(y))).$
- (c) The language is a^*b^* , which is regular and FO definable by the formula $\varphi := \forall x, y. (S(x,y) \land Q_b(x) \implies Q_b(y)).$
- (d) The language is $\Sigma 0\Sigma^* 0\Sigma + \Sigma 0\Sigma$, which is regular and FO definable by the formula $\varphi := \exists x.((\forall y.y \geq x) \land \exists t.(S(x,t) \land Q_0(t))) \land \exists x.((\forall y.y \leq x) \land \exists t.(S(t,x) \land Q_0(t))).$
- (e) Note that our alphabet here is $\Sigma = \{\binom{0}{0}, \binom{0}{1}, \binom{1}{0}, \binom{1}{1}\}$. If the top row is larger than the bottom row, then we must have a $\binom{1}{0}$ somewhere, preceding which all digits should be the same. Thus the language is $(\binom{0}{0} + \binom{1}{1})^* \binom{1}{0} \Sigma^*$, which is FO definable by the formula $\varphi := \exists x. (Q_{\binom{0}{0}}(x) \land \forall y. (y < x \Longrightarrow (Q_{\binom{0}{0}}(y) \lor Q_{\binom{1}{1}}(y))))$.

1.2 Q2

(1)

- (a) $\mathcal{L}(\varphi) = \{\varepsilon\}$
- (b) $\overline{\mathcal{L}(\varphi)} = \Sigma^* \setminus \{\varepsilon\}$, ie:- the set of all non-empty words.
- (c) Yes. Consider a DFA \mathcal{A} with only two states α, β , where α is the start state, and the only accept state. The transitions are $\delta(\alpha, \sigma) = \delta(\beta, \sigma) = \beta$ for every $\sigma \in \Sigma$. \mathcal{A} accepts $\{\varepsilon\}$.
- (d) The complement of a regular language is regular, so yes.

(2)

- (a) $\mathcal{L}(\varphi) = \Sigma^*(ba^+)\Sigma^*$
- (b) $\overline{\mathcal{L}(\varphi)} = a^*b^*$

(c)

(d) The complement of a regular language is regular, so yes.

Figure 1: 2(2)(c)

(3)

(a)
$$\mathcal{L}(\varphi) = \Sigma^* a \Sigma$$

(b)
$$\overline{\mathcal{L}(\varphi)} = \{\varepsilon, a, b\} \cup \Sigma^* b \Sigma$$

Figure 2: 2(3)(c)

(c)

(d) The complement of a regular language is regular, so yes.

(4)

(a)
$$\mathcal{L}(\varphi) = (ab)^+$$

(b)

Figure 3: 2(4)(c)

(c)

(d) The complement of a regular language is regular, so yes.

1.3 Q3

The language described by the DFA is $b(a^+b^3)^*$. It is FO describable, with the (conjunction of the) following sentences:-

- 1. First letter is 'b': $\exists x \forall y (x \leq y \land Q_b(x))$
- 2. If the length of the word is more than 1, then it ends with a "bbb":

$$(\exists x, y.S(x,y)) \implies \exists x.((\forall t.t \leq x) \land Q_b(x) \land \exists y.(S(y,x) \land Q_b(y) \land \exists z.(S(z,y) \land Q_b(z))))$$

3. For every "bbb", there is a non-empty block of 'a's before it, preceding which there is a 'b':

$$\forall x, y, z. ((S(x,y) \land S(y,z) \land Q_b(x) \land Q_b(y) \land Q_b(z)) \implies ($$

$$(\exists t. S(t,x) \land Q_a(t)) \bigwedge$$

$$(\exists u. u < x \land Q_b(u) \land (\forall v. (u < v < x) \implies Q_a(v))))$$

4. We don't have 4 consecutive 'b's:

$$\neg \exists x, y, z, w. S(x, y) \land S(y, z) \land S(z, w) \land Q_b(x) \land Q_b(y) \land Q_b(z) \land Q_b(w)$$

5. We don't have "aba":

$$\neg \exists x, y, z. S(x, y) \land S(y, z) \land Q_a(x) \land Q_b(y) \land Q_a(z)$$

6. If a 'b' is preceded by an 'a' and succeeded by a 'b', then it is a triplet,

$$\forall x, y, z. (Q_a(x) \land S(x, y) \land Q_b(y) \land S(y, z) \land Q_b(z) \implies \exists t. (S(z, t) \land Q_b(t)))$$