Lecture 24

- Section 5.6
 - The Internet Control Message Protocol (ICMP)
- Sections 6.1 and 6.2
 - Introduction to the data link layer and its services
 - Error detection and correct @ data link layer

Network Layer Control Plane 5-58

58

Chapter 5: Network Layer

- 5. 1 Introduction
- 5.2 Routing algorithms
 - 5.2.1 link-state routing algorithm
 - 5.2.2 distance vector routing
- 5.3 Intra-Autonomous System (AS) routing: OSPF
- 5.4 Routing among Autonomous Systems (ISPs)
- 5.6 The Internet Message Control Protocol (ICMP)

Network Layer Control Plane 4-59

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Network Layer Control Plane 4-60

60

Traceroute and ICMP

- Source sends series of UDP segments to dest
 - first has TTL =1
 - second has TTL=2, etc.
 - unlikely port number
- When nth datagram arrives to nth router:
 - router discards datagram
 - and sends to source an ICMP message (type 11, code 0)
 - ICMP message includes name of router & IP address

- when ICMP message arrives, source calculates RTT
- traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" packet (type 3, code 3)
- when source gets this ICMP, stops.

Network Layer Control Plane 4-61

What have we covered in Chapter 5?

- Principles behind network control plane:
 - traditional routing algorithms
- instantiation, implementation in the Internet:
 - OSPF, DV (RIP), BGP
 - Internet Control Message Protocol: ICMP

Network Layer Control Plane 5-62

Chapter 6: The Data Link Layer & LANs

Chapter objectives:

- understand principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - reliable data transfer: done (uses ARQ, which is the same technique presented in Chapter 3)
- instantiation and implementation of various link layer technologies

Data Link Layer 6-1

1

Link Layer

6.1 Introduction and services

Data Link Layer 6-2

Link Layer (layer 2): Introduction

Terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates a layer 3 packet

Data Link Layer 6-5

5

Link layer: context

- different links can be implemented using different technologies
 - e.g, first link is twisted pair, intermediate links are fiber, last link is wireless
- different links can use different data link layer protocols
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- * each link protocol provides different services
 - e.g., may or may not provide rdt over link

Data Link Layer 6-6

Link Layer Services

- framing, addressing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - "MAC" addresses used in frame headers to identify source, dest on the same subnet
 - · different from IP address!
 - channel access if shared medium
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - · Q: why both link-level and end-end reliability?

Data Link Layer 6-7

7

Link Layer Services (more)

- * error detection.
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - · signals sender for retransmission; or drops frame
- error correction:
 - by using ARQ protocols; or
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- link layer flow control:
 - pacing between adjacent sending and receiving nodes
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Data Link Layer 6-8

Where is the link layer implemented?

- in each and every host that connects to network
- link layer implemented in "adaptor" (aka network interface card NIC)
 - Ethernet card, 802.11 card (built in, USB, or PCMCI card) implements link, physical layer
- attaches into host's system buses
- combination of hardware software, firmware

Data Link Layer 6-9

9

Adaptors Communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.
 - uses an access protocol to send protocol on medium
- receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Data Link Layer 6-10

Link Layer

- 6.1 Introduction and services
- 6.2 Error detection and correction

Data Link Layer 6-11

11

Error Detection

D = Data protected by error checking, may include header fields EDC= Error Detection and Correction bits (redundancy)

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- · larger EDC field yields better detection and correction

Data Link Layer 6-12

Parity Checking

Single Bit Parity:

Parity bit = XNOR of all data bits (odd parity) even parity can be used

Detect single bit errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Data Link Layer 6-13

13

Internet checksum (review)

<u>Goal:</u> detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer *only*)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into segment checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors
 nonetheless?

Data Link Layer 6-14

Checksumming: Cyclic Redundancy Check

- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), 6
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

Data Link Layer 6-15

15

CRC Example

Want:

D.2
r
 XOR R = nG equivalently:

$$D.2^r = nG XOR R$$

$\it equivalently:$

if we divide $D \cdot 2^r$ by G, want remainder R

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

Data Link Layer 6-16