Lecture notes: Iterative Learning for Gravity Compensation

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2018

Outline

This lecture note is based on

 De Luca, Alessandro, and Stefano Panzieri. "An iterative scheme for learning gravity compensation in flexible robot arms." Automatica 30.6 (1994): 993-1002.

Set point tracking

- Goal: regulation of arbitrary equilibium configurations in the presence of gravity.
- Missing information: Do not have explicit knowledge of robot dynamic coefficients (nor of the structure of the gravity term).

Introduce iterative learning control:

- based on an iterative control scheme that uses: PD control+ constant feedforward term.
- iterative update of the feedforward term at successive steadystate conditions.

We will derive sufficient conditions for the global convergence.

Revision

robot dynamic model:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$

Assume the bound on the gradient of the gravity term

$$\|\frac{\partial N(q)}{\partial q}\| \leq \alpha$$

set point tracking control without gravity compensation:

$$u = -k_{p}(9-9d) - k_{p}(9-9d)$$

$$= -k_{p}(9-9d) - k_{p}(9-9d)$$

$$= -k_{p}(9-9d) - k_{p}(9-9d)$$

$$= -k_{p}(9-9d) - k_{p}(9-9d)$$

at steady state, there is a non-zero residual error

$$M_{\tilde{q}}^{\dot{q}} + C_{\tilde{q}}^{\dot{q}} + N(\tilde{q}) = -K_{p}(\tilde{q}-\tilde{q}_{d}) - K_{p}\tilde{q}$$

steady state \tilde{q}

4/6

$$N(\bar{q}) = - k_{p} (\bar{q} - q_{d})$$

$$\bar{q} - q_{d} = - k_{p} N(\bar{q})$$

$$\sum_{\alpha} q_{\alpha} q_$$

Non zero. Steady state error.

Iterative control scheme

Let

$$u = \frac{1}{\beta}(-K_P(q-q_d) - K_D\dot{q}) + \underbrace{u_{i-1}}, \quad \beta > 0$$

where u_{i-1} is a constant **compensation term**.

Iterarive update of u_{i-1} :

- Start with $u_0 = 0$, q_0 is the initial configuration.
 - At the steady state, $q = q_i$, $\dot{q} = 0$, one have

Update law:

$$u_i = \frac{1}{\beta}(-K_P(q-q_d) + u_{i-1})$$

Convergence analysis

Theorem: if
$$\left\|\frac{\partial N(t)}{\partial t}\right\| \leq \alpha$$

- $\lambda_{min}(K_P) \geq \alpha$.
- $0 \le \beta \le \frac{1}{2}$,

guarantee that the sequence q_0, q_1, \ldots , converges to q_d from any initial value q_0 (and \dot{q}_0), i.e., globally asymptotically stable in set point tracking.

proof

6/6

$$M \stackrel{\circ}{g}_{i}^{i} + C \stackrel{\circ}{g}_{i}^{i} + N(2) = \frac{1}{\beta} \left(- k_{\beta} \left(9_{i} - 1 d \right) - k_{\beta} \stackrel{\circ}{g} \right) + U_{i-1}$$

$$N(2i) = \frac{1}{\beta} \left(- k_{\beta} \left(9_{i} - 9 d \right) + U_{i+1} \right)$$

$$U_{i} = N(9i) - ... 9; \text{ Iteady state at the } i \text{ it iter.}$$

$$U_{i+1} = N(9i)$$

$$U_{i-1} = \|N(9i) - N(9i)\| \leq \alpha \|9i - 9i\|$$

$$G_{i} \text{ in } \|\frac{\partial N}{\partial 2}\| \leq \alpha$$

$$Q_{i} - Q_{d} = C_{i}$$

$$Q_{i} = C_{i} + 9 d$$

$$|2i+5| = |2i+6| + |$$

8/6

$$\frac{1}{\beta} \| K_P \| \| \| e_i \| = \alpha (\| e_i \| + \| e_{i+1} \|)$$
For any matrix A, $\lambda_{min}(A) \in \| A \| \leq \lambda_{max}(A)$

$$\frac{1}{\beta} \| \lambda_{min}(K_P) \| e_i \| \leq \frac{1}{\beta} \| K_P \| \| e_i \|$$

$$\frac{1}{\beta} \| e_i \| = \alpha (\| e_i \| + \| e_{i+1} \|)$$

$$\frac{1}{\beta} \| e_i \| - \| e_i \| - \| e_{i+1} \| \leq 0$$
To shown $\| e_i \| < \| e_{i-1} \| = \frac{1}{\beta} \| e_{i+1} \| e_{i$

Concluding remarks

• Given the bound α for the derivative of gravity term, we will determine the gain K_P such that

$$lpha < \lambda_{min}(K_P)$$

- in diagonal matrix of K_P , this just means all diagonal terms will be greater than α .
- again, it is a sufficient condition.
- the scheme can be interpreted as using an integral term which is updated only in correspondence of a discrete sequence of time instants and has guaranteed convergence and global asymptotic stability.