Searching for z = .6 galaxies through gravitational lenses

by Martin Tourneboeuf

Dr. Felipe Barrientos, Prof. Guía

Dr. Verónica Motta, Prof. Corrector

Dr. Gaspar Galaz, Prof. Corrector

Dr. Leopoldo Infante, Prof. Corrector

Dr. Alejandro Clocchiatti, Jefe Mención Astrofísica

Galaxy z=6 Cloud z=5.9

Galaxy cluster z=1

Telescope z=0

Searching for z=6 galaxies through gravitational lenses

I/ Lyman Break GalaxiesII/ ModelsIII/ Infra-red reduction

 $\lambda_{\alpha} \equiv 1215 \text{ Å}$ R = 650 nm

I = 800 nm

 $H = 1.6 \ \mu m$

$$W = \frac{\int F_{\lambda}(\lambda)d\lambda}{\int d\lambda} \neq FWHM$$

Column density (NHI)

Velocity disperssion (b)

$$(LAF(32\%): (10^{11} < N_{HI} < \times 10^{17.5} cm^{-2});$$

 $LLS(20\%): (10^{17.5} < N_{HI} < 10^{19} cm^{-2});$
 $SLLS(28\%): (10^{19} < N_{HI} < 10^{20.3} cm^{-2});$
 $DLA(8\%): (10^{20.3} < N_{HI} < 10^{21.55} cm^{-2});$

Number of Clouds
$$f(N_{HI}, z) = AN_{HI}^{-\beta}(1+z)^{\gamma}$$

Column density histogram of HI regions

Size of

Chapter I (LBG) Conclusion

- The inter-galactic medium proceeds as an optical filter for source-frame wavelength < 1215 Å.
- Larger z = larger absorption

II/ Models

...crosses the IGM... **Emitted Spectrum** 1.4 **IGM Transmission** 1.2 Fv [AU] 0.4 0.2 0.800 1400 1800 1200 1600 2000 2200 2400 1000

Wavelength [Å]

...and reaches the milky way. 1.6 **Emitted Spectrum** 1.4 **IGM Transmission** Observed spectrum 1.2 (in rest frame) Fv [AU] 0.6 0.4 0.2 1200 1400 1600 1800 2000 2200 2400 1000 Wavelength [Å]

In the observer frame, the situation looks like that:

SED translated WITHOUT evolution

SED translated WITHOUT evolution

SED translated WITHOUT evolution

SED translated WITH evolution

Chapter II (Models) Conclusion

Chapter III: Infra-red data reduction

Chapter III: Infra-red data reduction

High sky background (thermal)

No Bias

Non-linearity correction

$$Reduced = \sum \left[LinearCor\left(\frac{RAW - dark}{flat}\right) - sky \right]$$

-DARK

$$Reduced = \sum \left[LinearCor\left(\frac{RAW - dark}{flat}\right) - sky \right]$$

/FLAT

Then, normalize flat: Flat = Flat / Mean(Flat)

Raw (zoom)

Flat subtraction

Non linearity correction

 $Truecount = Im + Im^{2.5} \times LinCor$

Change result of a factor 5% and 10% for bright stars

$$Reduced = \sum \left[LinearCor\left(\frac{RAW - dark}{flat}\right) - sky \right]$$

Bad pixel mask

Mask high and low response pixels:

$$BPM = \begin{vmatrix} 0 & if|1 - flat| > 0.2\\ 1 & else \end{vmatrix}$$

IR Sky Subtraction

Raw (zoom)

Sky subtraction

Combination (1st)

Combination (1st)

Masks

Combination (1st)

Combination (2nd)

Combination (2nd) = Reduced

Steps

- 1/ Reduce2/ Align (WCS)
- 3/ Calibrate (ZPT)
- 4/ Extract flux
- 5/ Color Selection
 - 6/ Reject fake detections

Chapter III (IR reduction) Conclusion

- Sky subtraction + non-linear correction.
- I Selected 140 red galaxies likely to be i-dropouts with 2 or 3 filters (or 6).

The last slide.

WE SAW

- → The <u>IGM</u> works like a <u>filter</u>, clusters like a lens. This permits high redshift studies
- → The color selection to make is I-H > 2.5 to get z=6 galaxie (i-band dropouts)
- → IR reduction includes non-linear correction and careful <u>sky subtraction</u>

WE CONCLUDE

- → Contaminants may be modeled.
- → 140 candidates selected Supposed to be at z>6
- → i-dropouts: are correlated with foreground galaxy clusters

FUTURE WORK

- → <u>Spectroscopy</u>: analyze ne anuldates, Photo-z and high resolution
- → <u>Test fields</u>, study the density of i-dropouts without gravitational magnification
- → More accurate estimation of source <u>luminosity</u>

STARS

$$W_{\lambda} = \frac{\lambda_{\alpha}^{2}}{c} \int_{0}^{\infty} \left(1 - e^{-\sigma N_{HI}}\right)$$