INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

2 - FUNDAMENTOS

- 2.1) Teoria dos Conjuntos
- 2.2) Números Inteiros
- 2.3) Funções
- 2.4) Seqüências e somas
- 2.5) Crescimento de funções

CONJUNTOS E SUBCONJUNTOS

- Um conjunto é uma coleção "bem-definida" de objetos (chamados de membros ou elementos do conjunto).
 - "Bem-definida" significa simplesmente que é possível decidir se um dado objeto pertence ou não à coleção.
- Ou: "coleção não-ordenada de objetos".
- Normalmente, os objetos em um conjunto possuem uma mesma propriedade.
- **Exemplo:** o conjunto dos inteiros menores do que 4:

$$A = \{1, 2, 3\}$$

EXEMPLOS DE CONJUNTOS

- Conjunto dos livros da livraria da FEESC (finito).
- Conjunto dos números naturais (infinito).
- Conjunto dos dinossauros vivos (conj. Vazio, , Ø)
- Conjunto S de 2 elementos, um dos quais é o conjunto das letras minúsculas do alfabeto e o outro é o conjunto dos dígitos decimais:

$$X = \{a, b, c, d, \dots, y, z\}$$

$$Y = \{0, 1, 2, \dots, 9\}$$

$$S = \{X, Y\} = \{\{a, b, c, \dots, y, z\}, \{0, 1, 2, \dots, 9\}\}$$

CONJUNTOS E SUBCONJUNTOS

- Usualmente:
 - letras maiúsculas denotam conjuntos
 - letras minúsculas denotam elementos de um conjunto
- **Exemplo:** Se $A = \{violeta, amarelo, vermelho\}$, então:
 - \bullet amarelo $\in A$
 - \bullet $azul \notin A$

CARACTERÍSTICAS DOS CONJUNTOS

A ordem em que os elementos são listados em um conjunto é irrelevante:

 $\{3,2,1\}$ e $\{1,3,2\}$ representam o mesmo conjunto

A repetição dos elementos em um conjunto é irrelevante:

 $\{1,1,1,3,2\}$ é uma outra representação de $\{1,2,3\}$

CONJUNTOS DEFINIDOS POR PROPRIEDADES

- Conjuntos infinitos podem ser definidos indicando-se um padrão.
 - ullet Exemplo: o conjunto S, de todos os inteiros pares, pode ser expresso como $\{2,4,6,\ldots\}$
- S também pode ser definido por "recursão":
 - 1. $2 \in S$
 - 2. Se $n \in S$, então $(n+2) \in S$
- \blacksquare Forma mais clara (e mais segura) de descrever este conjunto S:
 - $S = \{x \mid x \text{ \'e inteiro positivo par}\}$
 - ou: "o conjunto de todos os x tal que x é inteiro positivo e par"

CONJUNTOS DEFINIDOS POR PROPRIEDADES

- A melhor maneira de definir um conjunto é especificando uma propriedade que os elementos do conjunto têm em comum.
- Usa-se um predicado P(x) para denotar uma propriedade P referente a uma variável objeto x.
- ullet Notação para um conjunto S cujos elementos têm a propriedade P:
- O que significa também:

CONJUNTOS DEFINIDOS POR PROPRIEDADES

Exemplos:

- 1. $\{x \mid x \text{ \'e um inteiro e } 3 < x \le 7\}$
- 2. $\{x \mid x \text{ \'e um m\'es com exatamente 30 dias}\}$
- 3. $\{x \mid x \text{ \'e a capital do Brasil}\}$

Exercícios: Descreva os seguintes conjuntos:

- **1.** {1, 4, 9, 16}
- 2. {o pedreiro, o padeiro, o alfaiate}
- 3. $\{2,3,5,7,11,13,17,\ldots\}$

CONJUNTOS ESPECIAIS

 \mathbb{N} : conjunto dos números naturais: $\{0,1,2,3,\ldots\}$

 \mathbb{Z} : conjunto dos números inteiros: $\{\ldots,-2,-1,0,1,2,\ldots\}$

 $\mathbb{Z}*$: conjunto dos números inteiros positivos: $\{1,2,3,\ldots\}$

 \mathbb{Q} : conjunto dos números racionais: $\{x \mid x = n/m, \ m, n \in Z \ e \ m \neq 0\}$

 \mathbb{R} : conjunto dos números reais: $\{x \mid x \text{ \'e um número real}\}$

IGUALDADE DE CONJUNTOS

- ullet Dois conjuntos A e B são ditos **iguais** se e somente se eles possuem os mesmos elementos.
 - Neste caso, escreve-se: A = B
- A=B significa:

$$(\forall x)[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

SUBCONJUNTOS

- ullet O conjunto A é dito um **subconjunto** de B se e somente se todo elemento de A é também um elemento de B.
 - Isto é: $\forall x \ (x \in A \rightarrow x \in B)$
 - Diz-se que "A está contido em B" e escreve-se $A \subseteq B$
 - Se A não é um subconjunto de B, escreve-se $A \not\subset B$
 - Se A é um subconjunto de B, mas queremos enfatizar que $A \neq B$, escrevemos $A \subset B$
 - ullet neste caso, A é um **subconjunto próprio** de B

SUBCONJUNTOS (EXEMPLOS)

Sejam os conjuntos:

$$A = \{1, 7, 9, 15\}$$

•
$$B = \{7, 9\}$$

$$C = \{7, 9, 15, 20\}$$

Então as seguintes sentenças são verdadeiras:

$$B \subseteq C$$
 $15 \in C$
 $B \subseteq A$ $\{7,9\} \subseteq B$
 $B \subset A$ $\{7\} \subset A$

$$A \not\subset C \qquad \emptyset \subseteq C$$

- Nota: O conjunto Vazio é um subconjunto de todo conjunto, pois:
 - se $x \in \emptyset$, então $x \in S$

SUBCONJUNTOS (EXEMPLOS)

Conjuntos podem ter outros conjuntos como membros.

Exemplos:

- $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- $\{x \mid x \text{ \'e um subconjunto do conjunto } \{a, b\}\}$
 - (Note que estes dois conjuntos são iguais.)

SUBCONJUNTOS (EXEMPLOS)

- Conjuntos podem ter outros conjuntos como membros.
- **Exemplo:** Seja A um conjunto e seja $B = \{A, \{A\}\}.$
 - Como A e $\{A\}$ são elementos de B, tem-se que:

$$A \in B$$
 e também que $\{A\} \in B$

- Segue então que $\{A\} \subseteq B$ e que $\{\{A\}\} \subseteq B$
- Mas não é verdade que $A \subseteq B$ (Por quê?)

SUBCONJUNTOS

- **Suponha que** $B = \{x \mid P(x)\}$ e que $A \subseteq B$
- **Para** provar que $A \subseteq B$:
 - toma-se um $x \in A$ arbitrário
 - mostramos que P(x) é verdadeira
 - ullet (os elementos de A "herdam" a propriedade de B)
- **Exemplo:** seja $B = \{x \mid x \text{ \'e m\'ultiplo de 4}\}$ $A = \{x \mid x \text{ \'e m\'ultiplo de 8}\}$
 - para mostrar que A ⊆ B, tomamos um x ∈ A:
 x = m.8 para algum inteiro m
 - então x=m.2.4 ou x=k.4, onde k=2m também é um inteiro
 - ullet isto mostra que x é múltiplo de 4 e que, portanto, $x \in B$

IGUALDADE DE CONJUNTOS

- A e B são iguais se e somente se contêm os mesmos elementos
- Logo, podemos provar que A=B provando que:

$$A \subseteq B$$
 e $B \subseteq A$

Exemplo: Provar que:

$$\{x \mid x \in \mathbb{N} \ e \ x^2 < 15\} = \{x \mid x \in \mathbb{N} \ e \ 2x < 7\}$$

- Elementos de A: $\{0,1,2,3\}$ (todos com dobro < 7)
- Elementos de B: $\{0, 1, 2, 3\}$ (todos com quadrado < 15)

CONJUNTO POTÊNCIA

- Muitos problemas envolvem testar todas as combinações dos elementos de um conjunto para ver se elas satisfazem alguma propriedade.
- Dado um conjunto A, o **conjunto potência** de A é o conjunto formado por todos os subconjuntos de A.
 - é denotado por P(A) ou 2^A
 - também chamado de conjunto de "todas as partes" de A
- **• Exemplo:** Seja $A = \{1, 2, 3\}$.
 - Então P(A) consiste dos seguintes subconjuntos de A: $\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
- ▶ Nota: se A tem n elementos, então P(A) tem 2^n elementos.

SEQÜÊNCIAS

- Como os conjuntos não são ordenados, uma estrutura diferente é necessária para representar coleções ordenadas.
- Uma seqüência é uma lista de objetos em ordem.
 - um "primeiro elemento", um "segundo elemento",...
 - a lista pode ser finita ou não

EXEMPLOS DE SEQÜÊNCIAS

- A seqüência 1,0,0,1,0,1,0,0,1,1,1
- \blacksquare A seqüência 1,4,9,16,25,... ("quadrados dos nos positivos") é infinita
 - também pode ser denotada por $(n^2)_{1 \le n \le \infty}$
- ▶ A seqüência finita 1,2,4,...,256 pode ser denotada por $(2^n)_{0 \le n \le 8}$
- ▶ A notação $(1/n)_{2 < n < \infty}$ representa a seqüência: 1/2, 1/3, 1/4,...
- A palavra "pesquisa" pode ser vista como a sequência finita: p,e,s,q,u,i,s,a
 - é costume omitir-se as vírgulas e escrever a palavra no modo usual
 - mesmo uma palavra sem sentido, como "abacabcd" pode ser vista como uma sequência de tamanho 8
 - seqüências de letras ou outros símbolos, escritos sem vírgulas, são chamadas de "strings"

CONJUNTO CORRESPONDENTE A UMA SEQÜÊNCIA

- Conjunto de todos os elementos distintos na sequência.
- Exemplo: o conjunto correspondente à sequência:
 - a,b,a,b,a,b,a,b,...
 - é, simplesmente: $\{a, b\}$

- Um conjunto é dito contável se for o conjunto correspondente a alguma seqüência.
- Informalmente: os elementos do conjunto podem ser arranjados em uma lista ordenada, a qual pode, portanto, ser contada.
- Todos os conjuntos finitos são contáveis.
- Alguns conjuntos infinitos também:
 - Exemplo: por definição, o conjunto $\mathbb{Z}^+ = \{1, 2, 3, 4, 5, \ldots\}$ é contável.
- Um conjunto que não é contável é dito incontável.

- lacksquare O número de elementos em um conjunto X é a cardinalidade de X.
 - ullet denotada por |X|
 - Exemplo: $|\{2,5,7\}| = 3$
- Importante: saber se dois conjuntos possuem mesma cardinalidade.
 - se ambos forem finitos, é só contar os elementos de cada um
 - porém: será que \mathbb{Z} , \mathbb{Q} , e \mathbb{R} possuem a mesma cardinalidade?
- Ainda: será que \mathbb{Z} , \mathbb{Q} , e \mathbb{R} são contáveis?

- Para nos convencermos de que dois conjuntos X e Y possuem a mesma cardinalidade:
 - tentamos produzir um "emparelhamento" de cada x em X com apenas um y em Y
 - ullet de maneira que cada elemento de Y seja usado apenas uma vez neste emparelhamento
- **Exemplo:** para os conjuntos $X = \{2, 5, 7\}$ e $Y = \{?, !, \#\}$, o emparelhamento:

$$2 \leftrightarrow ?$$
, $5 \leftrightarrow \#$, $7 \leftrightarrow !$

mostra que ambos possuem a mesma cardinalidade

Exemplo: O emparelhamento:

```
1 2 3 4 5 6 7 8 9 10 \cdots
1 1 2 1 1 -2 2 -3 3 -4 4 -5 \cdots
```

- ullet mostra que os conjuntos $\mathbb Z$ e $\mathbb Z^+$ possuem mesma cardinalidade
- ullet logo, o conjunto $\mathbb Z$ é contável.
- Exemplo: O conjunto dos racionais, Q, é contável.
 - Emparelhamento com \mathbb{Z}^+ ???

- Exemplo: o conjunto de todos os números reais entre 0 e 1 é incontável.
 - Nota: um nro real entre 0 e 1 é o decimal infi nito $a_1 a_2 a_3 \dots$, onde a_i é um inteiro tal que $0 \le a_i \le 9$.

Prova (por contradição):

- \blacksquare assuma que o conjunto dos decimais $(0.a_1a_2a_3...)$ entre 0 e 1 é contável (!)
- então deve ser possível formar uma seqüência contendo todos estes decimais:

```
n_1 = .a_1 a_2 a_3 \dots
n_2 = .b_1 b_2 b_3 \dots
n_3 = .c_1 c_2 c_3 \dots
\vdots
```

lesson todo decimal infi nito deve aparecer em algum lugar desta lista. (\Rightarrow)

Exemplo: o conjunto de todos os números reais entre 0 e 1 é incontável.

Prova (cont.):

- Vamos estabelecer uma contradição construindo um decimal infi nito x que não está na lista.
- Construindo o decimal $x = .x_1x_2x_3...$:
 - ightharpoonup valor de x_1 : qualquer dígito diferente de a_1
 - ightharpoonup valor de x_2 : qualquer dígito diferente de b_1
 - ightharpoonup valor de x_3 : qualquer dígito diferente de c_1
 - e assim por diante...

Exemplo: o conjunto de todos os números reais entre 0 e 1 é incontável.

Prova (cont.):

Por exemplo, se tivéssemos:

```
n_1 = 0.3659663426...

n_2 = 0.7103958453...

n_3 = 0.0358493553...

n_4 = 0.9968452214...

\vdots
```

ullet o número x poderia ser dado por: 0.5637...

Exemplo: o conjunto de todos os números reais entre 0 e 1 é incontável.

Prova (cont.):

- o número x que resulta é um decimal infinito
 - certamente está entre 0 e 1
- mas difere de todos os números da lista em algum dígito
 - logo, x não está na lista
- resumindo: não importa como a lista é construída
 - sempre é possível construir um número real entre 0 e 1 que não está nela
- Contradição!
 - (a lista deveria conter todos os reais entre 0 e 1)

SEQÜÊNCIAS E ALFABETOS

- $m{P}$ A^* : conjunto de todas as seqüências finitas de elementos de A
 - quando A é um conjunto de símbolos (e não de números), é chamado de alfabeto
- Seqüências em A^* : palavras ou strings de A
 - neste caso, as sequências em A^{*} não são escritas com vírgulas entre os elementos
- Assume-se que A contém a sequência vazia (Λ)

SEQÜÊNCIAS E ALFABETOS

- **Exemplo:** seja $A = \{a, b, c, \dots, x, y, z\}$
 - A^* = todas as palavras comuns
 - tais como: macaco, universidade, desburocratizar,...
 - mas também: ixalovel, zigadongdong, cccaaa, pqrst, ...
 - ullet Todas as sequências finitas de A estão em A^*
 - tenham elas significado ou não...

PRODUTO CARTESIANO

● O **produto cartesiano** de dois conjuntos A e B, é o conjunto de todos os pares ordenados (a,b), onde $a \in A$ e $b \in B$, ou seja:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Exemplo: qual é o produto de $A = \{1, 2\}$ e $B = \{a, b, c\}$?

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

▶ Note que: $B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$

DIAGRAMAS DE VENN

Conjunto universal U: conjunto contendo todos os objetos em consideração:

OPERAÇÕES SOBRE CONJUNTOS

ullet A **união** de dois conjuntos A e B é o conjunto que contém aqueles elementos que estão em A ou em B, ou em ambos:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Exemplo: A união dos conjuntos $\{1,3,5\}$ e $\{1,2,3\}$ é o conjunto $\{1,2,3,5\}$.

OPERAÇÕES SOBRE CONJUNTOS

■ A intersecção de dois conjuntos A e B é o conjunto que contém aqueles elementos que estão tanto em A como em B:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Exemplo: A intersecção dos conjuntos $\{1,3,5\}$ e $\{1,2,3\}$ é o conjunto $\{1,3\}$.

OPERAÇÕES SOBRE CONJUNTOS

A diferença de dois conjuntos A e B é o conjunto de todos os elementos que estão em A mas não em B:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Exemplo: A diferença dos conjuntos $\{1,3,5\}$ e $\{1,2,3\}$ é o conjunto $\{5\}$.

OPERAÇÕES SOBRE CONJUNTOS

Se U é o conjunto universo, U-A é chamado de **complemento** de A:

$$\overline{A} = \{x \mid x \notin A\}$$

- Exemplo: Seja A o conjunto dos inteiros positivos maiores do que 10 (onde o universo é o conjunto de todos os inteiros positivos).
 - Então: $\overline{A} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

IDENTIDADES DE CONJUNTOS

- As operações sobre conjuntos satisfazem às propriedades:
 - Comutatividade:

$$\triangle A \cup B = B \cup A$$

$$\triangle A \cap B = B \cap A$$

Associatividade:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributividade:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Idempotência:

$$\triangle$$
 $A \cup A = A$

$$\triangle$$
 $A \cap A = A$

IDENTIDADES DE CONJUNTOS

- As operações sobre conjuntos satisfazem às propriedades:
 - Propriedades do complemento:

$$\overline{\overline{A}} = A$$

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

•
$$\overline{\emptyset} = U$$
 e também: $\overline{U} = \emptyset$

$$All A \cup B = \overline{A} \cap \overline{B}$$
 (1a. Lei de De Morgan)

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 (2a. Lei de De Morgan)

IDENTIDADES DE CONJUNTOS

- Propriedades do conjunto Universo:
 - \bullet $A \cup U = U$
 - \bullet $A \cap U = A$
- Propriedades do conjunto Vazio:
 - \bullet $A \cup \emptyset = A$
 - \bullet $A \cap \emptyset = \emptyset$
- Nota: cada identidade acima tem o seu dual:
 - Troca-se ∪ por ∩
 - Troca-se U por \emptyset

Exemplo: Sejam A, B e C conjuntos. Mostre que:

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Solução (1/4):

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$$
 (1^a lei de De Morgan)

Exemplo: Sejam A, B e C conjuntos. Mostre que:

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Solução (2/4):

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)} \qquad \text{(1a lei de De Morgan)}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \qquad \text{(2a lei de De Morgan)}$$

Exemplo: Sejam A, B e C conjuntos. Mostre que:

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Solução (3/4):

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$$
 (1^a lei de De Morgan)
= $\overline{A} \cap (\overline{B} \cup \overline{C})$ (2^a lei de De Morgan)
= $(\overline{B} \cup \overline{C}) \cap \overline{A}$ (comutatividade de \cap)

Exemplo: Sejam A, B e C conjuntos. Mostre que:

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Solução (4/4):

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)} \qquad \text{(1a lei de De Morgan)}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \qquad \text{(2a lei de De Morgan)}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \qquad \text{(comutatividade de } \cap \text{)}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A} \qquad \text{(comutatividade de } \cup \text{)}$$

CONJUNTO UNIVERSO

- O conjunto "todas as coisas" não pode ser considerado sem destruir a lógica da matemática.
- ullet Para cada discussão existe um "conjunto universal" U contendo todos os objetos para os quais a discussão faz sentido.

CARDINALIDADE DE CONJUNTOS (REL.)

- Conjuntos são muito usados em problemas de contagem, o que leva a uma discussão sobre o seu tamanho.
- Um conjunto A é dito **finito** se ele tem n elementos distintos, onde $n \in \mathbb{N}$.
 - Neste caso, n é chamado de cardinalidade de A
 - A cardinalidade de A é denotada por |A|
 - Um conjunto que não é finito é chamado de infinito

CARDINALIDADE DE CONJUNTOS

Exemplos:

- Seja A o conjunto dos inteiros positivos ímpares < 10.
 - Então |A|=5
- Seja A o conjunto das letras do alfabeto: |A| = 26
- $|\emptyset| = ?$

CONTAGEM DE CONJUNTOS

- Princípio da adição: Se
 - uma primeira tarefa pode ser feita de n_1 modos e uma segunda de n_2 modos
 - e se ambos os eventos não podem ocorrer ao mesmo tempo então há $n_1+n_2\,$ modos de fazer uma ou outra tarefa
- Ou seja, se A e B são conjuntos, temos que: $|A \cup B| = |A| + |B|$
- Esta regra pode ser estendida para:

$$|A_1 \cup A_2 \cup \ldots \cup A_m| = |A_1| + |A_2| + \ldots + |A_m|$$

desde que n\(\tilde{a}\)o haja duas tarefas que podem ser realizadas ao mesmo tempo.

PRINCÍPIO DA ADIÇÃO

- Exemplo 1: Um estudante tem que escolher um projeto em uma de 3 listas. As 3 listas contêm 23, 15 e 19 possíveis projetos, respectivamente. Quantas possibilidades de projetos há para escolher?
- Exemplo 2: Qual o valor de k após a execução do código:

```
k := 0
for i_1 := 1 to n_1
k := k+1
end
for i_2 := 1 to n_2
k = k+1
end
...
for i_m := 1 to n_m
k = k+1
end
```

CONTAGEM DE CONJUNTOS

- Princípio da multiplicação: Suponha que:
 - um procedimento possa ser subdividido em duas tarefas
 - há n_1 modos de fazer a 1^{ra} tarefa
 - n_2 modos de fazer a segunda depois que a 1^{ra} esteja pronta então há $n_1.n_2$ modos de executar o procedimento.
- ullet Ou seja, se A e B são conjuntos finitos, temos que:

$$|A \times B| = |A|.|B|$$

Esta regra pode ser estendida para:

$$|A_1 \times A_2 \times \ldots \times A_m| = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_m|$$

PRINCÍPIO DA MULTIPLICAÇÃO

Exemplo 1: A última parte de un número de telefone tem 4 dígitos.
Quantos números de 4 dígitos existem?

Resposta: podemos imaginar como o total de possibilidades de uma seqüência de 4 etapas de escolha de 1 dígito:

10x10x10x10 = 10000

PRINCÍPIO DA MULTIPLICAÇÃO

Exemplo 2: Quantos números de 4 dígitos sem repetições de dígitos existem?

Resposta: novamente temos uma seqüência de 4 etapas

- mas não podemos usar o que já foi usado
- assim: 10x9x8x7 = 5040

PRINCÍPIO DA MULTIPLICAÇÃO

- Exemplo 3: Cada usuário em um dado sistema tem uma senha com 6 a 8 caracteres, onde:
 - cada caracter é uma letra maiúscula ou um número
 - cada senha tem que conter pelo menos 1 número então quantas possibilidades de senhas existem?

Resposta:

- P_6 , P_7 , $P_8 =$ senhas com 6,7 e 8 caracteres
- \bullet cálculo de P_6 :
 - strings de letras maiúsculas e números com 6 caracteres = 36⁶
 - · (incluindo as sem número algum)
 - strings de letras maiúsculas e sem nro algum = 26⁶
 - Arr logo: $P_6 = 36^6 26^6$
- \bullet de maneira similar: $P_7 = 36^7 26^7$

$$P_8 = 36^8 - 26^8$$

total = 2.684.483.063.360 senhas

- Exemplo: Sabe-se que em uma aula de uma certa disciplina da Computação há 10 mulheres e 40 formandos. Quantos estudantes desta aula são mulheres ou formandos?
 - Provavelmente, a resposta correta não é "adicionar a quantidadade de mulheres e formandos"
 - mulheres formandas seriam contadas duas vezes
 - Logo, o nro de mulheres ou formandos é
 - a soma do nro de mulheres com o nro de formandos
 - menos o nro de mulheres formandas

Se A e B são conjuntos finitos, então:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

- **Exemplo:** Sejam $A = \{a, b, c, d, e\}$ e $B = \{c, e, f, h, k, m\}$. Verifique a igualdade acima.
 - $A \cup B = \{a, b, c, d, e, f, h, k, m\}$
 - $A \cap B = \{c, e\}$
 - $|A \cup B| = 9$ |A| = 5 |B| = 6 $|A \cap B| = 2$

$$|A| = 5$$

$$|B| = 6$$

$$|A \cap B| = 2$$

Exemplo: Suponha que haja 450 calouros no CTC da UFSC. Destes, 48 estão cursando Computação, 98 estão cursando Eng. Mecânica e 18 estão em ambos os cursos. Quantos não estão cursando Computação nem Eng. Mecânica?

Resposta:

- $m{\square}$ A= conjunto dos calouros em Computação
- $m{D} = {\rm Conjunto\ dos\ calouros\ em\ Eng.\ Mecânica}$

$$|A| = 48$$
 $|B| = 98$ $|A \cap B| = 18$

- logo:
 - $|A \cup B| = |A| + |B| |A \cap B| = 48 + 98 18 = 128$
 - (128 calouros estão cursando Comp. ou Eng. Mec.)
- Assim: há 450-128=322 calouros que não estão em nenhum dos 2 cursos.

■ Exemplo: Uma companhia de computação deve contratar 25 programadores para lidar com tarefas de programação de sistemas e 40 programadores para programação de aplicativos. Dos contratados, 10 terão que realizar tarefas de ambos os tipos. Quantos programadores devem ser contratados?

Solução:

- $m{\square}$ A = conjunto de programadores para sistemas
- $m{ ilde{P}}$ B= conjunto de programadores para aplicativos
- Deve-se ter $|A \cup B|$ programadores = 55

 \blacksquare Se A, B e C são conjuntos finitos, então:

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

■ Exemplo: Um mercadinho vende apenas brócolis, cenoura e batata. Em determinado dia, a quitanda atendeu 208 pessoas. Se 114 compraram apenas brócolis, 152 compraram apenas cenouras, 17 apenas batatas, 64 apenas brócolis e cenouras, 12 apenas cenouras e batatas e 8 apenas brócolis e batatas, determine se alguém comprou os 3 produtos simultaneamente.

Solução:

- \blacksquare $A = \{ pessoas que compraram brócolis \}$
- \blacksquare $B = \{ pessoas que compraram cenouras \}$
- $m{D}$ $C = \{ pessoas que compraram batatas <math>\}$

$$|A \cup B \cup C| = 208$$
 $|A| = 114$ $|B| = 152$ $|C| = 17$ $|A \cap B| = 64$ $|A \cap C| = 8$ $|B \cap C| = 12$ $|A \cap B \cap C| = ?$ $|A \cap B \cap C| = 208 - 114 - 152 - 17 + 64 + 12 + 8 = 9$

TEORIA DOS CONJUNTOS

Final deste item.

Dica: fazer exercícios sobre Teoria dos Conjuntos...