A Probabilistic Graphical Model for Major Adverse Cardiac Event Prediction

Sakin Kirti and Joshua Freeze CSDS 491: Probabilistic Graphical Models

Contents

INTRODUCTION
MOTIVATION
APPROACH & RATIONALE
RESULTS
CONCLUSION

Data Availability
Logistic Regression
Deep Neural Network
Bayesian Model

Classification
MACE Prediction
Survival Analysis

Introduction Heart Disease

- Leading cause of death in the US
- Costs the US \$229 billion annually
- Strongly tied to other medical disorders like diabetes and obesity
- Coronary artery disease causes 50% of heart disease-related deaths

Introduction MACE Events

- Major Adverse Cardiovascular Events: a set of events used by clinicians and researchers to track and investigate deadly outcomes relating to cardiovascular health
 - Acute myocardial infarction
 - Stroke
 - Cardiovascular death

- Current methods for MACE event prediction is formulaic
- Time-to-event analysis is done in the same way
- More advanced techniques are needed
 - o Can be used in a more general sense
- Heart calcification can lead to atherosclerosis and eventually to strokes, needing bypass surgery
 - Creating early warning systems

Approach & Rationale Data Availability

- Biomedical Imaging lab work provided the data for use
 - 23 features (general heart health)
 - o 61 features (heart calcification)
- Permission from lab before using any data
- Dataset contained little missing data <5% of 3900 samples
 - Imputation
- Dataset was imbalanced
 - o 90% no MACE, 10% MACE
 - SMOTE was used to increase size of underrepresented class

Approach & Rationale Model Metrics

- Each model was measured based on several outputs
 - o Classification power
 - Risk prediction
 - Model metrics
 - Accuracy, ROC curves, AUC
 - Time-to-event analysis
 - Survival analysis

Approach & Rationale Models

Built 3 models, wanted to understand the pros/cons of each

- Logistic regression → easy, quick
- Neural network → powerful classification
- Bayesian model → understanding of node connections

Approach & Rationale Results Logistic Regression

Approach & Rationale

- Logistic Regression a good first model
 - o Examine any correlation in the dataset
 - Simple, quick, easy (with scikit-learn)

Results

- Accuracy: 66.1%
- AUC: 0.685
 - Vastly overpredicted MACE (57 MACE, 200+ predicted)
- Survival analysis:
 - Working separation between classes

Approach & Rationale Results

Neural Network

Approach & Rationale

- Model architecture which output logits
- Step up from logistic regression
- Known for powerful classification
- For comparison with Bayesian model

Results

- Accuracy: 87.4%
- AUC: 0.907
 - Note: did not do well with classifying positive cases (57 MACE, only 11 detected)
 - Still significantly better than the logistic regression model
- Survival analysis
 - Classification and low numbers cause sharp drop in time-to-event analysis

Approach & Rationale Results Bayesian Model

Approach and Rationale

- Outputs probability of MACE occurring
 - Risk score/calculation
- Node relationships based on
 - Gupta et al for general heart features
 - Conversations with Josh's PI for heart calcification data

Results

- Accuracy (rounded): 90.5%
- AUC: 0.720
- Survival Analysis
 - Accurate separation of classes

Conclusion Project Models

3 Models built

- Logistic Regression
 - o good insight into the data
- Deep Neural Network
 - o classification power and comparison for Bayesian Model
- Bayesian Model
 - o classification and confidence for predictions

Project-specific Outcomes

- Deep neural model did the best and created risk scores in the process (probability proxy)
- Neural network did well with classification

Next Steps

- Rethink node classifications and maybe reduce the number of nodes
- Spend some time on hyperparameter tuning

Conclusion Project Models

Broad Outcomes

- Literature contains examples of probabilistic models for heart data
- We expand on this by adding calcification data

Thank you!

Results Summary

Results Summary