

How Are Individual Lifts & Attributes Driving Powerlifting Totals?

Charlie Evert

Background

- How can we predict lifting totals using a combo of variables?
 - Which models are best for quantitative vs qualitative variables?
- Powerlifting competitions measure 3 lifts & score based on totals
 - Bench Press
 - Squat
 - Deadlift
- Competitions vary with PED* tests, equipment**, genders & dates

^{*}Performance Enhancing Drugs such as Anabolic Steroids, Human Growth Hormone, etc.

^{**}Lifting Straps, Bench Press Shirts, wraps, etc. that increase performance potential on lifts

Data Summary

- Source: Open Powerlifting
 - https://openpowerlifting.gitlab.io/opl-csv/
- Nominal Variables -> Binary Columns
- N = 2,536,437 rows of data
 - n = Randomly sampled 1000 rows of data from N*
 - 70% Training (700), 30% Validation (300)
 - 16 Variables | 6 Interval | 10 Binary | 1 Target (Total Weight Lifted in kg)

Attribute Descriptions

Attribute	Description					
Male	Gender where Male = 1 and Female = 0					
Multi-ply	Two layers of equipment or more are permitted					
Raw	No equipment is permitted					
Straps	Lifting straps on wrists to increase grip are permitted					
Unlimited	All equipment is permitted					
Wraps	Tight cloth wraps to support joints are permitted					
Bodyweight Kg	Bodyweight of the lifter, in kilograms					
Best of 3 Squat Kg	Highest amount squatted of 3 attempts, in kilograms					
Best of 3 Bench Kg	Highest amount bench-pressed of 3 attempts, in kilograms					
Best of 3 Deadlift Kg	Highest amount deadlifted of 3 attempts, in kilograms					
Total Kg	Aggregate of the Best of 3 Bench, Squat and Deadlift					
Not Tested for PED	Not tested for Performance Enhancing Drugs (AKA PEDs are permissable) = 1, and tested for PED = 0					
Year	The year that the lift took place					

2 Sets of Models for Different Results

- There are 2 models because of the direct influence each individual lift has on predicting totals
 - We want to also examine attributes, so the model must be split

Model 1: Includes 3 Lifts & All Variables

Name	Role	Level	Drop
Best_of_3_Bend	Input	Interval	No
Best_of_3_Dead	Input	Interval	No
Best_of_3_Squa	Input	Interval	No
Bodyweight_Kg	Input	Interval	No
Female	Input	Binary	Yes
Male	Input	Binary	No
Multi_ply	Input	Binary	No
Not_Tested_for	Input	Binary	No
Raw	Input	Binary	No
Single_ply	Input	Binary	Yes
Straps	Input	Binary	No
Tested_for_PED	Input	Binary	No
Total_Kg	Target	Interval	No
Unlimited	Input	Binary	No
Wraps	Input	Binary	No
Year	Input	Interval	No

Model 2: Excludes 3 Lifts

Name	Role	Level	Drop
Best_of_3_Benc	Input	Interval	Yes
Best_of_3_Dead	Input	Interval	Yes
Best_of_3_Squa	Input	Interval	Yes
Bodyweight_Kg	Input	Interval	No
Female	Input	Binary	Yes
Male	Input	Binary	No
Multi_ply	Input	Binary	No
Not_Tested_for	Input	Binary	No
Raw	Input	Binary	No
Single_ply	Input	Binary	Yes
Straps	Input	Binary	No
Tested_for_PED	Input	Binary	No
Total_Kg	Target	Interval	No
Unlimited	Input	Binary	No
Wraps	Input	Binary	No
Year	Input	Interval	No

SAS Enterprise Miner Diagram*

Variable Distributions

Model Comparison

Model 1: Decision Tree has lowest MSE of any model

Selected Model	Predecessor Node	Model Node	Model Description	Target	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Total Degrees of Freedom	Train: Degrees of Freedom for Error	Train: Model Degrees of Freedom	Train: Number of Estimated Weights	Information	Train: Schwarz's Bayesian Criterion	Squared	Train: Maximum Absolute Error	Train: Divisor for ASE	Train: Sum of Frequencies
Υ	ree	Tree	Tree	Total Ko	Total Ko	3789 539	700						2493.272	504.6691	700	700
	AutoNeural /	AutoNeural	AutoNeural	Total Kg	Total Kg	4462.11	700	615	85	85	5296.176	5683.018	1514.905	447.5514	700	
	Reg2	Reg2	Stepwise	Total Kg	Total Kg	5016.612	700	695	5	5	5485.788	5508.544	2496.274	551.4567	700	700
	Reg	Reg	Regressi	Total Kg	Total Kg	5062.489	700	688	12	12	5493.971	5548.584	2475.615	553.7066	700	700

Model 2: Neural Network has lowest MSE of model 2

Selected Model	Predecessor Node	Model Node	Model Description	Target	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Total Degrees of Freedom	Train: Degrees of Freedom for Error	Train: Model Degrees of Freedom	Train: Number of Estimated Weights	Train: Akaike's Information Criterion		Train: Average Squared Error	Train: Maximum Absolute Error	Train: Divisor for ASE	Train: Sum of Frequencies
Υ	AutoNeural	AutoNeural	AutoNeural	Total Ko	Total Ko	38512 87	700	655	45	45	7456.882	7661.68	37201.95	802.6793	700	700
	Reg2	Reg2	Stepwise	Total Kg	Total Kg	39769.52	700	693	7	7	7428.199	7460.056	39803.6	683.0605	700	700
	Reg	Reg	Regressi	Total Kg	Total Kg	40279.2	700	691	9	9	7430.291	7471.251	39695.28	655.2707	700	700
	Tree	Tree	Tree	Total Kg	Total Kg	42333.23	700						39108.98	669.7326	700	700

Model 1's Decision Tree: Optimal Path

Model 1's Decision Tree: Optimal Path

The Highest-Lifting Branch

- Squats at/over 132kg
- Deadlifts at/over 203kg
- Bench-presses at/over 150kg
- Squats at/over 327kg

- This branch makes up only 7 of the 1000 total observations
- Thus, clearly squat numbers drive the highest lifting totals and should be trained the most for a competitive advantage

Model 1's Decision Tree Results & Output

- Squat is the most important predictor of a heavy total, followed by deadlifts and then bench-press
- This model omits every other variable due to the importance of the 3 (despite them being inputs)

Assessi	ment Score Rankin	gs		
Data Ro	ole=TRAIN Target	Variable=To	otal_Kg Target	Label=Total Kg
	Number of	Mean	Mean	
Depth	Observations	Target		
5	37	785.351	785.351	
10	44	658.806	658.806	
15	50	601.136	601.136	
20	20	562.583	562.583	
25	28	524.031	524.031	
30	53	483.443	483.443	
35	28	436.448	436.448	
40	50	373.657	373.657	
45	58	318.207	318.207	
55	66	269.572	269.572	
65	27	234.584	234.584	
70	62	182.375	182.375	
75	33	162.346	162.346	
80	5	157.100	157.100	
85	66	118.109	118.109	
90	11	64.091	64.091	
95	30	56.248	56.248	
100	32	25.331	25.331	

Model 2's Neural Network

Model 2's Stepwise Regression

- Stepwise Regression for model 2 shows how each attribute affects totals
- Not being tested for PEDs increase totals more than any other attribute
- Wraps are the most beneficial equipment for higher totals

Analysis of Maximum Likelihood Estimates											
Standard											
Parameter		DF	Estimate	Error	t Value	Pr > t					
Intercept		1	4852.6	1855.8	2.61	0.0091					
Bodyweight_Kg		1	2.0482	0.3535	5.79	<.0001					
Male	0	1	-51.4957	9.9733	-5.16	<.0001					
Not_Tested_for_PED	0	1	21.5564	9.4620	2.28	0.0230					
Raw	0	1	16.8751	8.4585	2.00	0.0464					
Wraps	0	1	-73.8934	17.8189	-4.15	<.0001					
Year		1	-2.3140	0.9211	-2.51	0.0122					

Limitations & Future Research

- SAS Enterprise Miner crashes with more than 1k rows
 - More data would be ideal for analysis to get better insights
- It would be interesting to have country of origin as a variable
 - Some countries produce better lifters; this could aid in predictions
 - This isn't possible due to SAS Enterprise Miner crashing
 - Countries coded binarily would create 200+ columns, which it can't handle

Conclusion

- Using PEDs & equipment undoubtedly increases lifting totals
- Focusing on squats will increase totals the most
- Neural Networks are ideal for prediction from attributes
- Decision Trees are ideal for predicting from 3 lifts
- Stepwise Regression is ideal for understanding attribute effects