Kentaro Wada

https://wkentaro.com

www.kentaro.wada@gmail.com • +44 7535-753123

Date of birth: 31 January 1994 • Nationality: Japan • Location: London, UK

EDUCATION	Imperial College London	
	PhD in Computing	2018 – 2022
	Supervisor: Prof. Andrew J. Davision	
	The University of Tokyo	
	MS in Information Science and Technology	2016 – 2018
	BE in Mechano-Informatics	2012 – 2016
	Supervisors: Prof. Masayuki Inaba, Prof. Kei Okada	
WORK	Corvus Robotics Inc., San Francisco	2020 – 2021
EXPERIENCE	Computer vision engineer for semantic segmentation (remote, part-time).	
	Donuts Co. Ltd., Tokyo	2013 – 2014
	Web system engineer (part-time).	
DISTINCTION	Contributions to the Open Source Community on GitHub	2015 - 2022
	Created popular software with 1-8k stars and 500-1000 daily traffics (e.g., Labelme, Gdo	<u>wn</u>).
	PhD President's Scholarship of Imperial College London	2018 – 2022
	One of the fifty PhD students for the full funded scholarship*1.	2010 2022
	Two Patents on Object 6D Pose Estimation	2021
	Invented methods for 3D object-level scene understanding using vision sensors*2, 3.	_0_1
	IEEE Robotics and Automation Society Japan Joint Chapter Young Award at IROS 2018	2018
	One of the five Japanese students nominated with their conference papers*4.	
	Lead the UTokyo Team at the Amazon Robotics Challenge	2015 – 2017
	Won the 5th place our of 16 teams in 2016. Mainly worked on the vision part*5.	

PUBLICATIONS

- *Kentaro Wada*, Stephen James, and Andrew J. Davison, "ReorientBot: Learning Object Reorientation for Specific-Posed Placement", IEEE International Conference on Robotics and Automation (ICRA), 2022. [Paper] [Video] [Webpage]
- *Kentaro Wada*, Stephen James, and Andrew J. Davison, "SafePicking: Learning Safe Object Extraction via Object-Level Mapping", IEEE International Conference on Robotics and Automation (ICRA), 2022. [Paper] [Video] [Webpage]
- *Kentaro Wada*, Edgar Sucar, Stephen James, Daniel Lenton, and Andrew J. Davison, "MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [Paper] [Video] [Webpage]
- *Kentaro Wada*, Shingo Kitagawa, Kei Okada, and Masayuki Inaba, "Instance Segmentation of Visible and Occluded Regions for Finding and Picking Target from a Pile of Objects", IEEE International Conference on Intelligent Robots and Systems (IROS), 2018. [Paper] [Video]

See more...

KEY SKILLS

- Coding and software development with Python and C++ for GUI applications, command-line tools, deep learning, volumetric reconstruction, 2D/3D visualization, and physics simulation.
- SLAM for 3D semantic scene understanding with expertise in object tracking, reconstruction, detection and pose estimation using onboard, moving vision sensors.
- **Real-time vision and robotic system building** for 3D scene understanding and motion generation with expertise in integration using The Robot Operation System (ROS).

INTERESTS

Deep Learning, 3D Computer Vision, Robotics