Métodos Bayesianos

(Grado en Economía. Cuarto curso)

Curso 16/17

Ejercicicos Propuestos (I)

Ejercicio 1. Supongamos que deseamos hacer inferencia sobre el parámero $p \in (0,1)$, de una población geométrica:

$$f(x|p) = p(1-p)^{x-1}, \quad x = 1, 2, \dots$$

Para ello, obtenemos una muestra aleatoria simple de tamaño $n, x_1, ..., x_n$. Se pide:

- 1. Obtener la función de verosimilitud.
- 2. Para una a priori para p del tipo $\mathcal{B}eta(\alpha,\beta)$, obtener la distribución a posteriori de p.

Ejercicio 2. Supongamos que deseamos hacer inferencia sobre la proporción de éxitos θ de una prueba médica realizada aleatoriamente de la que se han observado n realizaciones. Para ello utilizamos una densidad a priori para θ del tipo:

$$\pi(\theta) = K(\theta^3(1-\theta)^2 + \theta^2(1-\theta)^3), \quad 0 < \theta < 1.$$

- 1. Calcular el valor de K para que $\pi(\theta)$ sea una densidad. Calcular la media y la desviación estandard a priori.
- 2. Obtener la distribución a posteriori general para una muestra aleatoria simple $x_1, ..., x_n$.
- 3. Para el fichero de datos CANCER disponible en FirstBayes, obtener la distribución a posteriori, el intervalo bayesiano al 95% para θ y realizar el test de hipótesis bayesiano $H_0: \theta < 0.30$ vs $H_1: \theta \ge 0.30$.

Ejercicio 3. Una fábrica de empaquetado de fruta dedicada a la exportación, pongamos por caso el empaquetado de mangas, examina si éstas tienen algún defecto que las hace poco atractivas para su comercialización. Una muestra de n mangas es examinada y, dado el valor del parámetro θ que representa la proporción de mangas con desperfectos, observamos x el número de mangas con desperfecto en la muestra como una distribución binomial, $Bin(n, \theta)$. La densidad a priori para θ es

$$\pi(\theta) = K\left(20 \ \theta(1-\theta)^3 + 1\right), \quad 0 \le \theta \le 1.$$

- 1. Calcular K y la media y moda a priori de esta distribución.
- 2. Observadas n = 10 mangas, se obtuvo x = 4. Calcular la densidad a posteriori y media, mediana y moda a posteriori.
- 3. Obtener un intervalo predictivo al 90% para el número de mangas con defectos en las siguientes 10 mangas examinadas.

Ejercicio 4. Una empresa dedicada al cultivo de peces en cautividad desea introducir una nueva especie para la que estima una gran demanda en el mercado local. El número de crías N de dicha especie tiene una distribución del tipo:

$$\Pr(N = n | \alpha, \beta) = \begin{cases} \alpha, & n = 0\\ (1 - \alpha)\beta(1 - \beta)^{n-1}, & n = 1, 2, \dots \end{cases}$$

con $0 < \alpha, \beta < 1$.

- 1. En una muestra de t observaciones se han detectado r ceros y el resto valores positivos $n_1, n_2, ..., n_{t-r}$. Obtener la función de verosimilitud de dichas observaciones.
- 2. Asumiendo independencia entre α y β , con a prioris del tipo Beta para ambas, es decir, $\alpha \sim \mathcal{B}eta(\alpha_1, \alpha_2)$, $\beta \sim \mathcal{B}eta(\beta_1, \beta_2)$, con $\alpha_1, \alpha_2, \beta_1$ y β_2 parámetros positivos dados, obtener las distribuciones a posteriori correspondientes.
- 3. Realizadas 10 observaciones, se obtuvieron los siguientes resultados: $n_1 = n_2 = n_3 = 0, n_4 = 4, n_5 = 0, n_6 = n_7 = 2, n_8 = 3, n_9 = 1, n_{10} = 4$. Obtener un intervalo bayesiano a posteriori al 95% para α y β . Calcular la probabilidad de que una nueva observación n_{11} sea igual a 1.