Nota:	
-------	--

MA 141 Geometria Analítica e Vetores

Primeiro Semestre de 2012

Terceira Prova

21 de Junho de 2012

Nome:	RA:

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Total	

Questão 1. (3.0 Pontos)

(a) Considere o $I\!\!R^3$ com o sistema de coordenadas $\Sigma = \{O\,,\,\vec{e}_1\,,\,\vec{e}_2\,,\,\vec{e}_3\},$ e os vetores

$$\vec{u} = (x_1, y_1, z_1)$$
 , $\vec{v} = (x_2, y_2, z_2)$, $\vec{w} = (x_3, y_3, z_3)$,

onde O=(0,0,0) e $\{\vec{e}_1\,,\,\vec{e}_2\,,\,\vec{e}_3\}$ é a base canônica de $I\!\!R^3$. Mostre que

$$\langle \vec{u} \times \vec{v}, \vec{w} \rangle = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

que é o produto misto dos vetores $\vec{u}, \vec{v}, \vec{w}.$

(b) Considere as retas r e s, o vetor $\vec{u} \neq \vec{0}$ paralelo a r, o vetor $\vec{v} \neq \vec{0}$ paralelo a s, e os pontos $P \in r$ e $Q \in s$. Mostre que as retas r e s são coplanares se, e somente se, $\langle \vec{u} \times \vec{v} , \overrightarrow{PQ} \rangle = 0$.

Questão 2. (3.0 Pontos)

Considere as retas $\ r \ {\rm e} \ s \ {\rm dadas}$ pelas equações vetoriais

$$r: \quad X \, = \, (1,1,2) \ \, + \ \, \lambda(0,1,3) \quad , \quad \lambda \, \in \, I\!\!R$$

$$s: \quad X \, = \, (0,1,1) \ \ \, + \ \, \alpha(1,1,1) \quad \, , \quad \, \alpha \, \in \, I\!\!R$$

(a) Determine o volume de um paralelepípedo definido pelos vetores

$$\vec{u} = (-1,0,1)$$
 , $\vec{v} = (0,1,3)$, $\vec{w} = (1,1,1)$.

(b) Determine a distância entre as retas r e s.

Questão 3. (3.0 Pontos)

Considere os sistemas de coordenadas $\Sigma_1 = \{O\,,\,\vec{e}_1\,,\,\vec{e}_2\,,\,\vec{e}_3\}$ e $\Sigma_2 = \{O'\,,\,\vec{w}_1\,,\,\vec{w}_2\,,\,\vec{w}_3\}$ de $I\!\!R^3$, onde

$$\vec{e}_1 = (1,0,0)$$
 , $\vec{e}_2 = (0,1,0)$, $\vec{e}_3 = (0,0,1)$

$$\vec{w}_1 = (1, 1, 0)$$
 , $\vec{w}_2 = (0, 1, 1)$, $\vec{w}_3 = (1, 0, 1)$

a origem do sistema Σ_1 é O=(0,0,0) e a origem do sistema Σ_2 é O'=(1,2,-1).

- (a) Determine as equações da mudança de coordenadas do sistema Σ_1 para o sistema Σ_2 .
- (b) Determine a equação geral do plano π no sistema de coordenadas Σ_2 cuja equação geral no sistema de coordenadas Σ_1 é dada por:

$$2x - y + 3z = 0.$$

Questão 4. (3.0 Pontos)

Considere as bases ordenadas $\beta = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ e $\gamma = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ de \mathbb{R}^3 , relacionadas da seguinte forma:

$$\begin{cases}
\vec{w}_1 &= \vec{u}_1 - \vec{u}_2 - \vec{u}_3 \\
\vec{w}_2 &= 2\vec{u}_2 + 3\vec{u}_3 \\
\vec{w}_3 &= 3\vec{u}_1 + \vec{u}_3
\end{cases}$$

- (a) Determine as matrizes de mudança de base $[I]_{\gamma}^{\beta}$ e $[I]_{\beta}^{\gamma}$.
- (b) Considere que o vetor $\vec{u} \in \mathbb{R}^3$ tem por matriz de coordenadas

$$[\vec{u}]_{eta} \; = \; egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \; .$$

Determine a matriz de coordenadas do vetor \vec{u} com relação à base ordenada γ .