MATH 6490. Nonlinear Optimization in Machine Learning. Assignment 1.

There are 3 problems, each problem is worth 5 points, total is 15 points.

1. Consider the following one-hidden layer Neural Network with 2k hidden units. The network parameters are $W \in \mathbb{R}^{2k \times d}$ and $\mathbf{v} \in \mathbb{R}^{2k}$, which we denote jointly by $W = (W, \mathbf{v})$. The network output is given by the function $g_W : \mathbb{R}^d \to \mathbb{R}$ defined as

$$g_{\mathcal{W}}(\boldsymbol{x}) = \boldsymbol{v}^T \sigma(W \boldsymbol{x}) , \ \boldsymbol{x} \in \mathbb{R}^d ,$$

where σ is the ReLU activation function applied element—wise, such that element—wise $\sigma(z) = \max(z, 0)$.

Consider a set of binary classification training data $S = \{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_n, y_n)\}$ where $\boldsymbol{x}_i \in \mathbb{R}^d$ and $y_i = \pm 1$. We define the empirical loss over S to be the mean hinge-loss

$$L_S(\mathcal{W}) = \frac{1}{n} \sum_{i=1}^n \max(1 - y_i g_{\mathcal{W}}(\boldsymbol{x}_i), 0) .$$

Let n = 1, k = 1 and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, show that the network output is given by the function

$$g_{\mathcal{W}}(\boldsymbol{x}) = \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) - \sigma(\langle \boldsymbol{u}, \boldsymbol{x} \rangle)$$

for $w, u \in \mathbb{R}^d$. Suppose $y_1 = -1$, then show that the loss function takes the form

$$L_S(\boldsymbol{w}, \boldsymbol{u}) = \max(1 + (\sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) - \sigma(\langle \boldsymbol{u}, \boldsymbol{x} \rangle)), 0)$$
.

2. Continuing the example in problem 1, set $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{u}_1 = \mathbf{x}$ and $\mathbf{u}_2 = -\mathbf{x}$. Set $0 < ||\mathbf{x}||^2 < 1$. Show that

$$L_S\left(rac{m{w}_1+m{w}_2}{2},rac{m{u}_1+m{u}_2}{2}
ight) > rac{1}{2}\left(L_S(m{w}_1,m{u}_1) + L_S(m{w}_2,m{u}_2)
ight) \; .$$

Thus the loss function $L_S(W)$ in this case is not convex.

3. Show that if f is continuously differentiable and convex in the sense that for any $x, y \in \text{dom}(f)$ and all $\alpha \in [0, 1]$ we have

$$f((1-\alpha)x + \alpha y) < (1-\alpha)f(x) + \alpha f(y).$$

then for any $x, y \in dom(f)$ we have

$$f(y) \ge f(x) + (\nabla f(x))^T (y - x)$$
.

(Hint: First consider for some small $\alpha > 0$ that $z_{\alpha} = (1 - \alpha)x + \alpha y$ and work out the Taylor expansion $f(z_{\alpha}) = f(x) + (\nabla f(x))^T (z_{\alpha} - x) + O(|z_{\alpha} - x|^2)$. Make use of convexity, we obtain that $f(z_{\alpha}) \leq (1 - \alpha)f(x) + \alpha f(y)$, so that $\alpha f(y) - \alpha f(x) \geq (\nabla f(x))^T (z_{\alpha} - x) + O(|z_{\alpha} - x|^2)$. Divide by α on both sides we obtain that $f(y) \geq f(x) + (\nabla f(x))^T \frac{z_{\alpha} - x}{\alpha} + O\left(\frac{|z_{\alpha} - x|^2}{\alpha}\right)$. Show that $\frac{z_{\alpha} - x}{\alpha} = y - x$.