

Vector Engine Processor of NEC's Brand-New Supercomputer SX-Aurora TSUBASA

Yohei Yamada, NEC Corporation Shintaro Momose, Ph.D., NEC Deutschland GmbH 21 August 2018

Agenda

- Introduction
- SX-Aurora TSUBASA
- Vector Engine
- Benchmarks
- Conclusion

Introduction

35 years
Experience
For
High Sustained
Performance

SX-Aurora TSUBASA

Vector computing in a standard environment

- High sustained performance vector processing
- Vector capability is transparently provided on x86/Linux

Aurora architecture

Applications are entirely executed on VE side

Hardware

- Vector Engine (VE) + x86 node
- High memory bandwidth
- Flexible configuration

SW Environment

- x86 / Linux OS
- Fortran/C/C++ standard programming
- Automatic vectorization and parallelization by proven vector compiler

Supercomputer Model

- For large scale configurations
- DLC with 40°C/104°F water

Rack Mount Model

- Flexible configuration
- Air Cooled

Tower Model

- For developer/programmer
- Personal supercomputer

Air Cooled Card

Two types of packages

Passive Cooling Type

Water Cooled Card

- Direct liquid cooling
- Hot water cooling available

40°C/104°F water

Direct Liquid Cooling Type

For Supercomputer

Vector Engine

Standard PCIe card

- PCIe Gen3 x16 interface
- Full-length full-height card
- Dual slot
- •<300W power

2.5D implementation

- A VE processor and six 8Hi or 4Hi HBM2 modules on a silicon interposer
- Lidless package to minimize thermal resistance
- Package size: 60mm x 60mm
- Interposer size: 32.5mm x 38mm
- VE processor size: 15mm x 33mm

World's first implementation of a processor with 6 HBM2s

Vector Engine Processor Overview

Components

- 8 vector cores
- 16MB LLC
- 2D mesh network on chip
- DMA engine
- 6 HBM2 controllers and interfaces.
- PCI Express Gen3 x16 interface

Specs

Core frequency	1.6GHz
Core performance	307GF(DP) 614GF(SP)
CPU performance	2.45TF(DP) 4.91TF(SP)
Memory bandwidth	1.2TB/s
Memory capacity	24/48GB

Technology

16nm FinFET process

Vector Processing Unit (VPU)

- Powerful computing capability
 - 307.2GFLOPS DP / 614.4GFLOPS SP performance
- High bandwidth memory access
 - 409.6GB/sec Load and Store

Scalar Processing Unit (SPU)

- Provides the basic functionality as a processor
 - Fetch, decode, branch, add, exception handling, etc...
- Controls the status of complete core

Address translation and data forwarding crossbar

- To support contiguous vector memory access
 - 16 elements/cycle vector address generation and translation, 17 requests/cycle issuing
 - 409.6GB/sec load and 409.6GB/sec store data forwarding

Vector Processing Unit

- Four pipelines, each 32-way parallel
 - FMA0: FP fused multiply-add, integer multiply
 - FMA1: FP fused multiply-add, integer multiply
 - ALUO/FMA2: Integer add, multiply, mask, FP FMA.
 - ALU1/Store: Integer add, store, complex operation
- Doubled SP performance by 32bit x 2 packed vector data support

Total

- Vector register (VR) renaming with 256 physical VRs
 - 64 architectural VRs are renamed
 - Enhanced preload capability
 - Avoidance of WAR and WAW dependencies
- OoO scheduling
- Dedicated complex operation pipeline to prevent pipeline stall
 - Vector sum, divide, mask population count, etc.

Scalar Processing Unit

- General enhancements
 - 4 instructions / cycle fetch and decode
 - Sophisticated branch prediction
 - OoO scheduling
 - 8-level speculative execution
 - Four scalar instruction pipes
 - Two 32kB L1 caches + unified 256kB L2 cache
 - Hardware prefetch
- Support for contiguous vector operation
 - Dedicated vector instruction pipe
 - 16 elements / cycle coherency control for vector store

Memory Subsystem

- High bandwidth
 - 409.6GB/s x2 core bandwidth
 - Over 3TB/s LLC bandwidth
 - 1.2TB/s memory bandwidth
- Caches
 - Scalar L1/L2 caches in each core
 - 16MB shared LLC
- Two memory networks
 - 2D mesh NoC for core memory access
 - Ring bus for DMA and PCIe traffic
- DMA engine
 - Used by both vector cores and x86 node
 - Can access VE memory, VE registers, and x86 memory

Network on chip (NoC)

- 2D mesh network
 - Maximize bandwidth with minimal wiring
 - Minimizing data transfer distance
 - 16 layered mesh
- Deadlock avoidance
 - Dimension-ordered routing
 - Virtual channels for request and reply
- Adaptive flow control
- Age based QoS control

Last Level Cache (LLC)

- Memory side cache
 - Avoiding massive snoop traffic
 - Increasing efficiency of indirect memory access
- 16MB, write back
- Inclusive of L1 and L2
- High bandwidth design
 - 128 banks, in total more than 3TB/s bandwidth
- Auto data scrubbing
- Assignable data buffer feature
 - Priority of data can be controlled by a flag for vector memory access instructions

Benchmarks

Benchmark conditions

SX-Aurora TSUBASA: SX-Aurora TSUBASA A500 model

Intel Xeon: Intel Xeon Gold 6142 2 sockets, 192GB DDR4-2666

NVIDIA Tesla V100: Intel Xeon CPU E5-2630v4 2 sockets, 128GB DDR4-2400, NVIDIA Tesla V100 16GB

Floating point calculation and memory bandwidth

Industry leading memory access performance and efficiency

Comfortable enough compute capability for memory intensive workloads

Note: VE price is much cheaper than V100

HPCG and Himeno benchmark (Poisson equation solver)

Competitive performance and power efficiency available using standard programming paradigms

Note: VE price is much cheaper than V100

Performance on Machine Learning

Statistical machine learning

- Workloads
 - Web ads optimization (Logistic regression)
 - Document clustering (K-means)
 - Recommendation (Singular value decomposition)
- NEC's Frovedis[™] framework for AI/BigData processing
 - Apache Spark MLlib compatible API
 - Open source
 - -https://github.com/frovedis

Summary

SX-Aurora TSUBASA

- A new product line of vector supercomputers based on Aurora architecture
- Vector capability is provided in a standard x86/Linux environment

Vector Engine

- High memory bandwidth by six HBM2s configuration
- Enhancements of the vector microarchitecture to provide high sustained performance and power efficiency

Benchmarks

- Very competitive performance and power efficiency using standard programming paradigms
- Outstanding performance on statistical machine learning workloads with Frovedis framework

Thank you!

\Orchestrating a brighter world

NEC