2024-2025 - IngéSUP - Systèmes Techniques Midterm - Systèmes Mécaniques - Cinématique (Corrigé) Durée : 2 heures

 ${\bf ESME~Bordeaux\text{-}Lille\text{-}Lyon\text{-}Paris}$

Exercice 1: Dérivation Vectorielle (5 pts)

On considère trois repères de bases (R_0, R_1, R_2) déduits les uns des autres par rotation comme le précisent les deux figures planes de calcul suivantes :

On se donne le vecteur \overrightarrow{AP} tel que :

$$\overrightarrow{AP} = \rho(t)\overrightarrow{X_2}$$

L'objectif de cet exercice est d'appliquer les régles de calculs de la dérivation vectorielle pour déterminer la variation de ce vecteur dans la base 0.

Q1. Donner le vecteur vitesse de rotation $\overrightarrow{\Omega_{1/0}}$ et $\overrightarrow{\Omega_{2/1}}$ [1 pt]

$$\begin{array}{c} \overrightarrow{\Omega_{1/0}} = \dot{\theta} \overrightarrow{\overline{z_0}} \\ \overrightarrow{\Omega_{2/1}} = \dot{\phi} \overrightarrow{\overline{Y_1}} \end{array}$$

Q2. Déterminer le vecteur vitesse de rotation $\overrightarrow{\Omega_{2/0}}$ [1 pt]

$$\overrightarrow{\Omega_{2/0}} = \overrightarrow{\Omega_{2/1}} + \overrightarrow{\Omega_{1/0}} = \dot{\theta} \overrightarrow{z_0} + \dot{\phi} \overrightarrow{Y_1}$$

Q3. Donner la dérivée du vecteur unitaire $\overrightarrow{\mathbf{x}_2}$ par rapport aux vecteurs de base $(\overrightarrow{\mathbf{x}_0}, \overrightarrow{\mathbf{y}_0}, \overrightarrow{\mathbf{z}_0})$. [1.5 pts]

Q4. À partir des résultats précédents, déterminer la dérivée du vecteur $\left[\frac{\mathrm{d}\overrightarrow{\mathrm{AP}}}{\mathrm{d}t}\right]_{I}$

[1.5 pts]

Exercice 2: Cinématique d'un moulin à farine (10 pts)

Le dispositif utilisé pour écraser les graines de céréales comporte trois solides principaux, présentés sur l'ébauche de schéma ci-dessous :

- Au bâti **1** est associé le repère $R_1(O, \overrightarrow{X_1}, \overrightarrow{Y_1}, \overrightarrow{Z_1})$.
- L'arbre **2** est lié au bâti 1 par une liaison pivot glissant d'axe $(O, \overrightarrow{z_1})$. On lui associe le repère $R_2(B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$, tel que $\overrightarrow{z_2} = \overrightarrow{z_1}$; on pose $\alpha = (\overrightarrow{x_1}, \overrightarrow{x_2})$ et $\overrightarrow{OB} = \mu \overrightarrow{z_1}$. La distance OB n'est pas fixe pour permettre au mécanisme de fonctionner.
- La meule 3, de rayon R, est liée à l'arbre 2 par une liaison pivot d'axe $(B, \overrightarrow{x_2})$. On lui associe le repère $R_3(B, \overrightarrow{X_3}, \overrightarrow{Y_3}, \overrightarrow{Z_3})$, tel que $\overrightarrow{X_3} = \overrightarrow{X_2}$ et on pose $\beta = (\overrightarrow{Y_2}, \overrightarrow{Y_3})$.
- Finalement, la meule 3 est en contact avec le bâti par une liaison linéaire rectiligne (ou dites encore cylindre/plan) d'axe $(B, \vec{x_3})$

Soit I l'un des points de contact appartenant au segment de la tranche de la meule, on pose $\overrightarrow{OI} = \lambda \overrightarrow{X_2}$.

FIGURE 1 – (à gauche) Ebauche d'un moulin à farine (à droite) et son schéma cinématique.

Q1. Tracer le graphe de liaison de ce mécanisme [1pt]

Q2. Tracer les figures planes permettant de représenter les paramètres d'orientation. [2 pts]

Q3. Donner les torseurs cinématiques associés aux mouvements des solides 2/1 et 3/2 au point B (c'est à dire ceux associés aux pivots). Attention la distance OB n'est pas fixe : $\overrightarrow{OB} = \mu(t)\overrightarrow{\mathbf{z}_1}$ [2 pts]

Q4. Déterminer les vitesses $\overrightarrow{V_{\rm I}}_{\rm E2/1}$ et $\overrightarrow{V_{\rm I}}_{\rm E3/2}$. [2 pts]

Q5. Déterminer la vitesse $\overrightarrow{V_{{\rm I}\in 3/1}}$ par composition du mouvement. [1 pt]

Q6. Dans quel cas cette vitesse est orthogonal à $\overrightarrow{\mathbf{z}_1}$? Autrement dit, déterminer la condition pour que $\overrightarrow{V_{I\in 3/1}}\cdot\overrightarrow{\mathbf{z}_1}=0$. [1 pt]

Q7. Que devient la vitesse $\overrightarrow{V_{{\rm I}\in 3/1}}$ pour $\dot{\mu}=0$? Et dans ce cas, déterminer une relation pour que $\overrightarrow{V_{{\rm I}\in 3/1}}=\overrightarrow{0}$ [1 pt]

Si $\dot{\mu} = 0$ alors :	$\overrightarrow{V_{\mathrm{I}\in3/1}}=(\lambda\dot{lpha}+\mu\dot{eta})\overrightarrow{\mathrm{Y}_{2}}$	
et donc on a $\overrightarrow{V_{\text{I}\in 3/1}} = \overrightarrow{0}$ si :	$(\lambda \dot{\alpha} + \mu \dot{\beta}) = 0$	