

Week 08.2: Spatial data structures

DS-GA 1004: Big Data

This week

- Search and MinHash
- Spatial data structures

Can we improve the efficiency of MinHash?

Locality sensitive hashing

[Indyk and Motwani, 1998] [Charikar 2002]

LSH

- Traditional hash functions scatter data "randomly"
 - Probability of collision is independent of similarity between inputs
- Locality-sensitive hashes have high probability of collision for inputs that are near each other
- LSH has a huge literature, this intro will be superficial

LSH + MinHash

- Carve signature matrix into b blocks of R rows each
- Hash each sub-column with a standard (non-local) hash function W
 - Pick **W** such that collisions are rare for non-identical inputs
- Candidate set = items that collide in *any* row block

	Α	В	С	D				Α	В	С	C
H ₁	0	0	1	0			Block 1	0	5	3	0
H ₂	0	1	2	0			Block 2	3	0	1	3
H ₃	1	2	0	1			Block 3	0	7	2	2
H ₄	0	1	0	0							
H ₅	2	2	0	0			(Fe - 11)				
H ₆	1	2	1	1		W	([0, 1])	→ 2			

LSH + MinHash

Carve signature matrix into **b** blocks of R rows each

Hash each su What's the probability that we have at Pick W such least one block where all rows match?

unction W

Candidate set = items that collide in any row block

	Α	В	С	D			Α	В	С	D
H ₁	0	0	1	0		Block 1	0	5	3	0
H ₂	0	1	2	0		Block 2	3	0	1	3
H ₃	1	2	0	1		Block 3	0	7	2	2
H ₄	0	1	0	0						
H ₅	2	2	0	0		[a .]\				
H ₆	1	2	1	1	W([0, 1]) -	→ 2			

- MinHash:
 - P[single row collision] = J(A, B) = j
- LSH:
 - $P[all R rows in a block collide] = j^R$

	Α	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0
H ₂ H ₃ H ₄ H ₅ H ₆	1	2	0	1
H ₄	0	1	0	0
H ₅	2	2	0	0
H ₆	1	2	1	1

	A	В	С	D
Block 1	0	5	3	0
Block 2	3	0	1	3
Block 3	0	7	2	2

- MinHash:
 - P[single row collision] = J(A, B) = j
- LSH:
 - $P[all R rows in a block collide] = j^R$

		. 4	
		H_5	
		H_6	
d = 1	- i	R	

 H_1

 H_2

H₃

Α

0

0

	Α	В	С	D
Block 1	0	5	3	0
Block 2	3	0	1	3
Block 3	0	7	2	2

• P[at least one non-collision in a block] = 1 - j^k

- MinHash:
 - P[single row collision] = J(A, B) = j
- LSH:
 - $P[all R rows in a block collide] = j^R$

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0
H_3	1	2	0	1
H ₂ H ₃ H ₄ H ₅ H ₆	0	1	0	0
H ₅	2	2	0	0
H ₆	1	2	1	1

	A	В	С	D
Block 1	0	5	3	0
Block 2	3	0	1	3
Block 3	0	7	2	2

- P[at least one non-collision in a block] = 1 j^R
- P[at least one non-collision in all **b** blocks] = $(1 j^R)^b$

- MinHash:
 - P[single row collision] = J(A, B) = j
- LSH:
 - $P[all R rows in a block collide] = j^R$

	A	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0
H ₃	1	2	0	1
H ₃	0	1	0	0
H ₅	2	2	0	0
H ₆	1	2	1	1

	Α	В	С	D
Block 1	0	5	3	0
Block 2	3	0	1	3
Block 3	0	7	2	2

- P[at least one non-collision in a block] = 1 j^R
- P[at least one non-collision in all **b** blocks] = $(1 j^R)^b$
- P[at least one block collides on all rows] = $1 (1 j^R)^b$

- MinHash:
 - P[single row collision] = J(A, B) = j
- LSH:
 - P[all R rows in a block collide] = j^R

P[at least one non-collision in a block] = 1
--

- P[at least one non-collision in all **b** blocks] = $(1 j^R)^b$
- P[at least one block collides on all rows] = $1 (1 j^R)^b$

Result:

Collisions are **more likely** for high Jaccard similarity and **less likely** for low Jaccard similarity

	Α	В	С	D
H ₁	0	0	1	0
H ₂	0	1	2	0
H ₃	1	2	0	1
H ₄	0	1	0	0
H ₃ H ₄ H ₅ H ₆	2	2	0	0
H ₆	1	2	1	1

	Α	В	С	D
Block 1	0	5	3	0
Block 2	3	0	1	3
Block 3	0	7	2	2

LSH for cosine similarity [Charikar 2002]

• What if we want to compare vectors \mathbf{u} , $\mathbf{v} \in \mathbf{R}^d$ by cosine similarity?

$$sim(u, v) = cos(\theta)$$

LSH for cosine similarity [Charikar 2002]

• What if we want to compare vectors \mathbf{u} , $\mathbf{v} \in \mathbf{R}^d$ by cosine similarity?

$$sim(u, v) = cos(\theta)$$

• Pick a vector w uniformly from the sphere in \mathbf{R}^d

$$h_{w}(x) = 1 \text{ if } w^{\mathsf{T}}x >= 0$$

= 0 if $w^{\mathsf{T}}x < 0$

LSH for cosine similarity [Charikar 2002]

• What if we want to compare vectors \mathbf{u} , $\mathbf{v} \in \mathbf{R}^d$ by cosine similarity?

$$sim(u, v) = cos(\theta)$$

• Pick a vector w uniformly from the sphere in \mathbf{R}^d

$$h_{w}(x) = 1 \text{ if } w^{\mathsf{T}}x >= 0$$

= 0 if $w^{\mathsf{T}}x < 0$

• What's the probability of collision?

$$\circ$$
 $P[h_w(u) = h_w(v)] = 1 - P[h_w(u) \neq h_w(v)]$

LSH for cosine similarity

[Charikar 2002]

• What if we want to compare vectors u, $v \in \mathbb{R}^d$ by cosine similarity?

$$sim(u, v) = cos(\theta)$$

• Pick a vector w uniformly from the sphere in \mathbf{R}^d

$$h_{w}(x) = 1 \text{ if } w^{\mathsf{T}}x >= 0$$

= 0 if $w^{\mathsf{T}}x < 0$

What's the probability of collision?

○
$$P[h_w(u) = h_w(v)] = 1 - P[h_w(u) \neq h_w(v)]$$

= 1 - P[w in shaded region]

LSH for cosine similarity [Charikar 2002]

• What if we want to compare vectors \mathbf{u} , $\mathbf{v} \in \mathbf{R}^d$ by cosine similarity?

$$sim(u, v) = cos(\theta)$$

• Pick a vector w uniformly from the sphere in \mathbf{R}^d

$$h_{w}(x) = 1 \text{ if } w^{\mathsf{T}}x >= 0$$

= 0 if $w^{\mathsf{T}}x < 0$

What's the probability of collision?

$$P[h_w(u) = h_w(v)] = 1 - P[h_w(u) \neq h_w(v)]$$

$$= 1 - P[w \text{ in shaded region}]$$

$$= 1 - 2 \cdot |\theta| / 2\pi$$

$$= 1 - |\theta|/\pi$$

Not exactly $cos(\theta)$, but monotonically decreasing with $|\theta| \Rightarrow$ same rank-ordering

Multiple projections

- P[No collision | single projection] = θ/π
- P[All projections do not collide | m projections] = $(\theta/\pi)^m$
- P[At least one **Collision** | m projections] = 1 $(\theta/\pi)^m$

Multi-probe LSH

[Lv et al., 2007]

- Random projections can isolate neighbors from each other
 - LSH uses multiple projections to minimize the chance of this happening
 - But it might take a lot of projections!
- Multi-probe LSH explores neighboring hash buckets
 - O Did the query land close to a threshold?
 - If so, check both buckets
- End result: better recall with fewer hash tables

Spatial trees

[Bentley, 1975] [Uhlmann, 1991]

Recursive partitioning

- Spatial trees recursively partition data into subsets
 - Pick a direction w
 - Split data $\{x_i\}$ at median $\{w^Tx_i\}$
 - Recurse on left and right subsets
 - Stop when input set is sufficiently small
- Each split cuts data in half
 - \Rightarrow O(log N) splits to get small candidate sets

Recursive partitioning

- Spatial trees recursively partition data into subsets
 - Pick a direction w
 - Split data $\{x_i\}$ at median $\{w^Tx_i\}$
 - Recurse on left and right subsets
 - Stop when input set is sufficiently small
- Each split cuts data in half
 - \Rightarrow O(log N) splits to get small candidate sets

Recursive partitioning

- Spatial trees recursively partition data into subsets
 - o Pick a direction w
 - Split data $\{x_i\}$ at median $\{w^Tx_i\}$
 - Recurse on left and right subsets
 - Stop when input set is sufficiently small
- Each split cuts data in half
 - \Rightarrow O(log N) splits to get small candidate sets

KD-Trees [Bentley, 1975]

- Splitting direction cycles through coordinates
 - \circ $\mathbf{w}_i \leftarrow \mathbf{e}_i$ (ith standard basis)
- This works in low dimensions, but is inefficient in high dimensions
- Better alternative:
 - \circ $w_i \leftarrow$ coordinate of maximum variance

Alternative splitting rules

[Verma, Kpotufe, & Dasgupta, 2009]

Principal direction:

- \circ w \leftarrow direction of maximum variance (PCA) estimated from input
- Idea: variance ~= diameter of subset, and we want that to be small

2-means:

- \circ w \leftarrow direction spanned by k-means solution for (k=2)
- o **Idea**: minimize variance (diameter) *after* splitting

Random projection:

- \circ w \leftarrow random on the unit sphere
- o **Idea**: ¯_(ツ)_/¯ randomness is robust! (and adaptive to intrinsic dimension of data)
- Like LSH, takes multiple random projections (ie a forest) to work well

Spill trees

[Liu et al., 2005]

- Partition trees can isolate data near decision boundaries, just like LSH
- Fix is similar to multi-probe LSH:
 - Instead of splitting at median (0 overlap)
 - Make overlapping subsets with >50% of data
- Query now lands in multiple leaves
 - Candidate set = union of leaf sets

What should I use?

http://ann-benchmarks.com/

benchmarks for approximate nearest neighbor methods

Some points of reference (\rightarrow)

- bruteforce
- **MP-lsh** (multiprobe)
- **KD**(-tree)
- rpforest
- annoy = approx PD forest
- hnsw = hierarchical non-metric small-world network

Wrap-up

- Similarity search benefits from spatial data structures
- MinHash is simple, but low-precision
- LSH can improve precision, many variants available
- Trees and other structures often work better in practice