Seoul National Uiniversity

M1522.000900 Data Structure

Homework 7: Searching (Chapter 9)

Computer Science & Engineering

2017-18538 Hwang Sun Young

Question1

(1) true.

index	0	1	2	3	4	5	6	7	8	9	10
comparison	3	4	2	3	4	1	3	4	2	3	4

number of total comparison = 1*1+2*2+3*4+4*4=33

Average number of search = 33/11 = 3

- (2) true. The size of optimal jump is $n^{1/2}$. So average case time complexity and worst case time complexity are both $O(n^{1/2})$. Let the worst case cost T(n). Because T(n) is in the set $O(n^{1/2})$, T(n) is in the set O(n).
- (3) false. If 1^{st} position is key, key comparison is 1. If last position is key, key comparisons is n. So the average number of key comparisons is (n+1)/2.

Question2

(1)

Slot	0	1	2	3	4	5	6
Value	null	null	9	3	2	12	null

(2)

$$P(slot0) = P(slot1) = 37/256, P(slot6) = 128/256 = 91/128$$

It is problem of linear probing. Nonempty slots are clustered, and thus giving unequal probability to empty slot.

Question3

- (1) k=10. The number of comparison is 12.
- (2) k=4. The number of comparison is 6.

Question4

I felt happy because 4 saw the others were 7 and 8 8 knew 2 should feel 7, but 5 was not really 6.