EE655: Computer Vision & Deep Learning

Lecture 07

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Definition

• In image classification, we analyze different image properties to organize the image data into pre-defined categories.

Motivation: Image Retrieval, Image Recognition, ...

Challenges

Features can be many. Which features to use for given classification problem

Similarly, categories can be many too for a single image

Multi-class Classification

Multi-label Classification

What do we need?

- □ A Feature Extractor: A set of algorithms that can provide numeric representations of the image data.
- □ A Classifier: An algorithm that can analyze the features of an image and assign the pre-defined label/s

ML Algo. vs ML Model

An "algorithm" in machine learning is a procedure that is run on data to create a machine learning "model."

MODEL PARAMETERS	HYPERPARAMETER	
They are required for making predictions	They are required for estimating the model parameters	
They are estimated by optimization algorithms(Gradient Descent, Adam, Adagrad)	They are estimated by hyperparameter tuning	
They are not set manually	They are set manually	
The final parameters found after training will decide how the model will perform on unseen data	The choice of hyperparameters decide how efficient the training is. In gradient descent the learning rate decide how efficient and accurate the optimization process is in estimating the parameters	

Performance vs Labelled Data required

It comes along with a cost

- Huge data-labelling
- Huge computational requirements
- Difficulty in explaining the decisions made

What's the silver lining: Excellent Accuracy !!!

Transfer Learning!!!

Two basic concepts we need to dive into deep learning

Convolution (for feature extraction)

Neural Networks (for classification)

Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

5 x 5 - Image Matrix

3 x 3 - Filter Matrix

Image

Convolved Feature

An example

Using Prewitt Filter

Valid (No) Padding

- Valid padding is a technique used in convolutional neural networks (CNNs) to process the input data without adding any additional rows or columns of pixels around the edges of the data.
- This means that the size of the output feature map is smaller than the size of the input data.
- Valid padding is used when it is desired to reduce the size of the output feature map in order to reduce the number of parameters in the model and improve its computational efficiency.

Same Padding

• In same padding, we add additional rows and columns of pixels around the edges of the input data so that the size of the output feature map is the same as the size of the input data.

Compute the output of following image when convolved with the following filter. Assume valid padding.

23	145	1
34	132	10
76	145	32

11	221	12
13	190	65
45	196	56

34	154	75
85	190	89
56	178	90

Input's Channel-1 Input's Channel-2

Input's Channel-3

0

Filter's Channel-1

Filter's Channel-2

Filter's Channel-3

Convolution on RGB Volume

Neural Networks

Mimicking a neuron

dendrites receive neuron signals, and **axons** transmit them

Perceptron model receives input(s), processes it, and then produces an output.

Perceptron has two functions

Multi-layer Perceptron (Neural Network)

Pooling Layer (To reduce the spatial size)

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Target Vector

Multi-class Classification

One-hot Encoded Target Vector with a single 1

[0 1 0 0]

Multi-label Classification

One-hot Encoded Target Vector with multiple 1s

[0 1 1 0]