Cours de Mathématiques Classe de 6^e Année scolaire 20252026

Abdoullatuf Maoulida

20 août 2025

Table des matières

1	Les	nombres entiers	7
	1.1	Rang des chiffres	7
	1.2	Décomposition décimale	7
	1.3	Écriture en toutes lettres	8
	1.4	Demi-droite graduée	8
	1.5	Comparaison de nombres entiers	9
	1.6	Exercices d'application	9
	1.7	Évaluation rapide (5 à 10 min)	10
2	Poi	nts et droites	11
3	Fra	ctions décimales et nombres décimaux	15
	3.1	Définitions et exemples	15
	3.2	Décompositions d'un nombre décimal	16
	3.3	Comparer deux nombres décimaux	16
	3.4	Ranger des nombres décimaux	17
	3.5	Encadrer un nombre décimal	18
	3.6	Lire l'abscisse décimale d'un point	19
	3.7	Lire l'abscisse d'un point par agrandissements successifs	20
4	Dis	tance, cercle et triangles	23
	4.1	Distance entre deux points	23
	4.2	Appartenance à un segment	24
	4.3	Milieu d'un segment	24
	4.4	Le cercle	25
	4.5	Utilisation de la définition du cercle	26
	4.6	Construction d'un triangle équilatéral	26
	4.7	Construction d'un triangle isocèle	27
	4.8	Construction d'un triangle quelconque	29
	4.9	Construction d'un triangle rectangle	30
5	Not	tion de proportionnalité	33
	5.1	Découverte	33
	5.2	Leçon	33
	5.3	Exercices d'entraînement	33
	5.4	Évaluation rapide (5 à 10 min)	34

6	Not	ion de probabilités	35
	6.1	Découverte	35
	6.2	Leçon	35
	6.3	Exercices d'entraînement	35
	6.4	Évaluation rapide (5 à 10 min)	36
7	Ang	les et rapporteur	37
	7.1	Découverte	37
	7.2	Leçon	37
	7.3	Exercices d'entraînement	37
	7.4	Évaluation rapide (5 à 10 min)	38
8	Opé	rations avec les nombres décimaux	39
	8.1	Addition et soustraction avec des nombres décimaux	39
	8.2	Multiplication avec des nombres décimaux	41
	8.3	Ordre de grandeur	42
	8.4	Exercices d'entraînement	42
	8.5	Évaluation rapide (5 à 10 min)	43
9	La r	nédiatrice dun segment	45
	9.1	Découverte	45
	9.2	Leçon	45
	9.3	Exercices d'entraînement	45
	9.4	Évaluation rapide (5 à 10 min)	46
10			47
		Découverte	47
		Leçon	47
		Exercices d'entraînement	47
	10.4	Évaluation rapide (5 à 10 min)	48
11	Sym	nétrie axiale	49
	11.1	Découverte	49
	11.2	Leçon	49
	11.3	Exercices d'entraînement	49
	11.4	Évaluation rapide (5 à 10 min)	50
12	Frac	ction partage et comparaison de fractions	51
	12.1	Découverte	51
	12.2	Leçon	51
	12.3	Exercices d'entraînement	51
	12.4	Évaluation rapide (5 à 10 min)	52
13	Unit	tés de longueur, de masse et de contenance	53
	13.1	Découverte	53
		Leçon	53
	13.3	Exercices d'entraînement	53
			54

14	Calculer avec les angles	55
	14.1 Découverte	55
	14.2 Leçon	55
	14.3 Exercices d'entraînement	55
	14.4 Évaluation rapide (5 à 10 min)	56
15	Nombres en écriture fractionnaire	57
	15.1 Découverte	57
	15.2 Leçon	57
	15.3 Exercices d'entraînement	57
	15.4 Évaluation rapide (5 à 10 min)	58
16	Proportionnalité et pourcentages	59
	16.1 Découverte	59
	16.2 Leçon	59
	16.3 Exercices d'entraînement	59
	16.4 Évaluation rapide (5 à 10 min)	60
17	Déterminer des probabilités et des issues	61
	17.1 Découverte	61
	17.2 Leçon	61
	17.3 Exercices d'entraînement	61
	17.4 Évaluation rapide (5 à 10 min)	
18	Aires et périmètres	63
	18.1 Découverte	63
	18.2 Leçon	63
	18.3 Exercices d'entraînement	63
	18.4 Évaluation rapide (5 à 10 min)	
19	Heures et durées	65
	19.1 Découverte	65
	19.2 Leçon	65
	19.3 Exercices d'entraînement	65
	19.4 Évaluation rapide (5 à 10 min)	66
20	Solides et volumes	67
	20.1 Découverte	67
	20.2 Leçon	67
	20.3 Exercices d'entraînement	67
	20.4 Évaluation rapide (5 à 10 min)	68
Δ	Progression annuelle (récapitulatif)	69

1. Les nombres entiers

1.1 Rang des chiffres

Définition

Chiffres et valeur

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sont les dix **chiffres** qui permettent d'écrire tous les nombres.
- Chaque chiffre a une valeur en fonction de sa position dans le nombre.

On peut utiliser un tableau de numération pour visualiser le rang d'un chiffre.

Classe des milliards Cla		Classe	se des millions		Classe des milliers		Classe des unités		ınités		
c	d	u	c	d	u	c	d	u	c	d	u

Remarque: Lorsqu'on écrit un nombre en chiffres, il faut laisser un espace entre les classes. Par exemple le nombre suivant 25204879603 s'écrit:

1.2 Décomposition décimale

On peut donner la décomposition décimale de 3 584 :

En effet :

1.3 Écriture en toutes lettres

Exemple

- 1823 : Mille-huit-cent-vingt-trois (pas de « s » à « cent », ni à « vingt » car ils sont suivis d'autres chiffres!)
- 2087 : Deux-mille-quatre-vingt-sept (le mot « mille » est invariable, et toujours pas de « s » à « vingt »...)
- 600 : Six-cents (ici on met bien un « s » car il n'y a plus rien derrière!)
- 680 : Six-cent-quatre-vingts (pas de « s » à « cent », mais un « s » obligatoire à « vingt » car le nombre se termine par 80).

Voici les règles correspondantes à ces exemples :

- Le mot « mille » est invariable; les mots « million » et « milliard », cependant, s'accordent et prennent donc un « \mathbf{s} » au pluriel.
- Les mots « cent » et « vingt » prennent un « \mathbf{s} » au pluriel uniquement lorsqu'ils sont à la fin du nombre.
- Exemples: 300: ... 420: ...
- Le mot « vingt » ne s'utilise au pluriel (avec un « s ») que si un nombre se finit par 80 (quatre-vingts).
- Les tirets sont mis entre chaque mot d'un nombre qui se présente sous forme composée. Avec des nombres entiers, il y aura donc des tirets partout!
- Exemples: 79:. . 1031:.

1.4 Demi-droite graduée

Définition

Demi-droite graduée

On appelle demi-droite graduée une demi-droite sur laquelle on fixe :

- Un point appelé origine de la demi-droite
- Un sens représenté par une flèche
- Une unité de longueur que l'on reporte régulièrement à partir de l'origine.

1.5 Comparaison de nombres entiers

Définition

Comparaison de nombres entiers

Pour comparer deux nombres entiers, on peut :

- Les placer sur une demi-droite graduée
- Comparer le nombre de chiffres
- Comparer chiffre par chiffre en partant de la gauche

Exemple

Comparons 2 847 et 2 853 :

- Les deux nombres ont 4 chiffres
- On compare les milliers : 2 = 2
- On compare les centaines : 8 = 8
- On compare les dizaines : 4 < 5
- Donc 2.847 < 2.853

Remarque: Plus un nombre est à droite sur la demi-droite graduée, plus il est grand.

1.6 Exercices d'application

Exercice

Exercice 1 : Écris en toutes lettres les nombres suivants :

- 1. 1 234
- 2. 5 678
- 3. 12 345
- 4. 100 000

Exercice

Exercice 2 : Place les points A, B, C et D d'abscisses respectives 2, 7, 4 et 9 sur une demi-droite graduée.

Exercice

1.7 Évaluation rapide (5 à 10 min)

Exercice

Mini-quiz:

- 1. Écris en toutes lettres : 8 765
- 2. Quel est le chiffre des centaines dans 12 345?
- 3. Place le point E d'abscisse 6 sur une demi-droite graduée

2. Points et droites

Objectifs

Vocabulaire et notations : point, segment, demi-droite, droite, lectures [AB], (AB), [AB), AB.

Relations: appartenance, alignement, droites sécantes/perpendiculaires/parallèles.

Méthodes: tracer des parallèles et des perpendiculaires (règle + équerre).

1) Vocabulaire et notations

- Une est une ligne définie par points distincts; elle est (s'étend à l'infini). La droite passant par A et B se note :
- Un est une portion de délimitée par deux appelés On le note :
- Une est une partie de qui commence en un donné et s'étend à l'infini. On la note par exemple :

	Point	Segment	Demi-droite	Droite
Figure	×A ×B	A B	AB	(d) A
Notation				

FIGURE 2.1 – Vocabulaire : (AB) droite ; [CD] segment ; [EF) demi-droite ; AB longueur.

2) Appartenance et alignement

- $A \ldots (d), B \ldots (d), C \ldots (d); K \ldots (d)$.
- Définition : Des points sont dits alignés s'ils

3) Positions relatives des droites

- Deux droites sont **sécantes** si elles se coupent en point.
- Deux droites sont **parallèles** si elles ne sont pas On note : (AB)//(EF).

4) Tracer à la règle et à l'équerre

- Perpendiculaire à (d) passant par A: placer l'..... sur (d), aligner le petit, faire un repère par A, tracer la droite à (d).
- Parallèle à (d) passant par B: avec et équerre, faire glisser l'équerre en conservant le; quand un côté passe par B, tracer la à (d).

Parallèle par
$$B$$

$$(d)$$
Perpendiculaire en A

FIGURE 2.2 – Constructions : perpendiculaire en A; parallèle passant par B.

5) Existence et unicité

- Par deux points distincts, il passe droite et une seule.
- Par un point donné A, il existe droite à (d); elle est
- Par un point donné A, il existe droite à (d); elle est

6) Je m'entraîne

- Lecture : [MN], (RS), [TU), VU.
- Notations : « La droite passant par P et Q » ; « Le segment KL » ; « La demi-droite d'origine H passant par J » ; « La longueur AB ».
- Complète : Si $A \in (BC)$ alors A, B, C sont Si $D \notin (EF)$ alors D à la droite (EF).

3. Fractions décimales et nombres décimaux

Objectifs

Objectifs d'apprentissage de la séquence

- Reconnaître un nombre décimal
- Connaître les liens entre les unités de numération unité, dizaine, centaine, millier, dixième, centième, millième
- Associer et utiliser différentes écritures d'un nombre décimal : écriture à virgule, fraction, nombre mixte, pourcentage
- Comparer deux nombres décimaux
- Ordonner une liste de nombres décimaux
- Encadrer un nombre décimal par deux nombres décimaux, intercaler un nombre décimal entre deux nombres décimaux
- Placer sur une demi-droite graduée un point dont l'abscisse est un nombre décimal
- Repérer un nombre décimal sur une demi-droite graduée

3.1 Définitions et exemples

Définition

Nombre décimal et fraction décimale

Un **nombre décimal** est un nombre qui peut s'écrire avec une virgule et qui possède un nombre fini de chiffres après la virgule.

Une **fraction décimale** est une fraction dont le dénominateur est 10, 100, 1000, etc.

- 0,1; 0,7; 0,01 et 0,001 sont des nombres décimaux
- $\frac{1}{10}$; $\frac{7}{10}$; $\frac{1}{100}$ et $\frac{1}{1000}$ sont des fractions décimales
- $-12,56 = \frac{1256}{100}$ et $0,025 = \frac{25}{1000}$

Correspondances importantes:

Un dixième Sept dixièmes Un centième
$$\frac{1}{10} = \frac{7}{10} = \frac{1}{100} =$$

3.2 Décompositions d'un nombre décimal

On peut représenter un nombre décimal dans un tableau de numération :

Partie entière				Partie	décimale	
Dizaines	Unités	,	Dixièmes	Centièmes	Millièmes	Dix-millièmes
1	5	,	9	3	1	

Exemple: Pour le nombre 15,931:

Différentes lectures possibles du nombre 15,931 :

- « »
- «»
- « »
- « »

3.3 Comparer deux nombres décimaux

Définition

Comparer deux nombres

Comparer deux nombres, c'est dire lequel est le plus grand ou s'ils sont égaux. On utilise les symboles : < (plus petit que), > (plus grand que), = (égal à).

Méthode pour comparer deux nombres décimaux :

Exemple	
Exemple 1 : Comparer 14,12 et 11,865	
On commence par comparer	: si elles sont différentes,
le nombre qui a la plus grande partie en	tière est le plus grand.
14,12 > 11,865 se lit «	11,865 < 14,12 se
lit «	»

Exemple

Exemple 3 : Comparer 8,0171 et 8,0159. Si les deux nombres ont le même chiffre des dixièmes, on fait de même avec les centièmes, les millièmes... 8,0171 > 8,0159 car

3.4 Ranger des nombres décimaux

Exemple

symbole $\ll > \gg$.

Quand on range des nombres dans l'ordre croissant, on les sépare par le symbole « < ».

3.5 Encadrer un nombre décimal

Définition

Encadrer un nombre

Encadrer un nombre, c'est trouver deux nombres, l'un plus petit et l'autre plus grand, entre lesquels se situe ce nombre.

Exemple	
Exemples d'encadrements :	
— Donner un encadrement à l'unité de 12,27 :	<
12,27 < On lit «	»
On veut encadrer 12,27 entre deux nombres dont unité.	la différence est une
D'autres réponses sont justes :	
— Donner un encadrement au dixième de 3,526 : $< 3,526 < \dots$	
On lit «	»
On veut encadrer 3,526 entre deux nombres don dixième.	t la différence est un
— Donner un encadrement au centième de 1,159 : $< 1,159 < \dots$	
— Donner un encadrement au millième de 7,1459 : $<7,1459<\dots$	

3.6 Lire l'abscisse décimale d'un point

Méthode : Pour lire l'abscisse d'un point sur une demi-droite graduée, il faut :

- 1. Identifier l'unité et voir en combien de parts elle est divisée
- 2. Calculer la valeur de chaque graduation
- 3. Compter les graduations depuis l'origine

3.7 Lire l'abscisse d'un point par agrandissements successifs

Méthode des agrandissements successifs :

Cette méthode consiste à « zoomer » progressivement sur la partie de la droite graduée qui nous intéresse pour lire une abscisse avec plus de précision.

Exemple Étape 1 : Une centaine a été partagée en 10 : chaque graduation correspond donc à L'abscisse du point A est comprise entre et Étape 2 : Une dizaine a été partagée en 10 : chaque graduation correspond donc à L'abscisse du point A est comprise entre et Étape 3 : Une unité a été partagée en 10 : chaque graduation correspond donc à L'abscisse du point A est comprise entre et Étape 4 : Un dixième a été partagé en 10 : chaque graduation correspond donc à

Exercices d'application:

L'abscisse du point A est

Exercice		
1. Écrire sous forme de fraction décimale p	ouis sous forme décimale :	
TD 1 11 12	=	
— Vingt-sept centièmes :	=	
— Cent quarante-cinq millièmes :	=	
2. Comparer les nombres suivants (utiliser	$les \ symboles <, > ou =)$:
— 12,3		12,30
— 5,67		5,7
— 8,09		8,1
3. Ranger dans l'ordre croissant : 2,1 ; 2,01	; 2,11; 2,101	
4. Donner un encadrement au dixième de 7 $< 7,384 <$	7,384 :	

4. Distance, cercle et triangles

Objectifs

Objectifs d'apprentissage de la séquence

- Connaître et utiliser la définition de la distance entre deux points
- Connaître et utiliser la définition du milieu d'un segment
- Connaître les définitions d'un cercle, d'un disque, d'un rayon, d'un diamètre, d'une corde
- Comprendre la définition d'un cercle et celle d'un disque sous la forme d'ensembles de points
- Construire des triangles
- Résoudre des problèmes mettant en jeu des distances à un point

4.1 Distance entre deux points

Définition	
Distance entre deux points La distance entre deux points A et B est On la note et on peut également noter	· · · · ·
Propriétés importantes :	
— La distance entre deux points est toujours	
— La distance d'un point A à un point B est \dots distance du point B au point A	que la
— On peut noter :	
Remarque : Ne pas oublier l'unité de longueur!	

Soient 3 points O, P et M tels que OM = 3 cm, MP = 5 cm et OP = 8 cm. Montrer que le point M appartient au segment [OP].

4.2 Appartenance à un segment

DéfinitionPoints et segmentsLe segment [AB] estSi le point C n'appartient pas au segment [AB], alors...Si le point D appartient au segment [AB], alorsPour tout point M,Le symbole « \geqslant » se litPropriété : Si AD + DB = AB, alors

4.3 Milieu d'un segment

4.4 Le cercle

Définition

Définitions importantes

Le cercle de centre O et de rayon r est

.

Le disque de centre O et de rayon r est

.

Vocabulaire:

— OA =

OA est

BC est

DE est

— DE est

4.5 Utilisation de la définition du cercle

Exemple	
Exercice 1 : Trace l'ensemble de tous les j	points situés à 5 cm du point O.
Exercice 2 : Trace et colorie l'ensemble de cm et à moins de 4 cm du point P.	e tous les points situés à plus de 2

4.6 Construction d'un triangle équilatéral

Définition

Triangle équilatéral

Un triangle équilatéral est un triangle qui a ses trois côtés de même mesure.

Méthode de construction :

Pour tracer un triangle équilatéral, on commence par tracer un côté puis, au compas, on trouve son troisième sommet.

Points importants:

- On n'oublie pas de placer les noms des sommets
- On n'oublie pas le codage pour indiquer que les trois côtés ont la même mesure
- Les marques de construction doivent rester visibles

4.7 Construction d'un triangle isocèle

Définition

Triangle isocèle

Méthode de construction :

Pour tracer un triangle isocèle, on commence par tracer sa base puis, au compas, on

trouve son sommet principal.

4.8 Construction d'un triangle quelconque

Définition

Triangle quelconque

Un triangle quelconque a ses 3 côtés de mesures différentes.

Méthode de construction :

Pour tracer un triangle quelconque, on commence par tracer son plus long côté. Le troisième sommet se trace avec un compas.

Exemple

Exemple 1 : Finis la construction du triangle ABC sachant que AC = 8 cm, AB = 6 cm et BC = 4 cm.

Exemple 2 : Trace un triangle EFG sachant que EF = 10 cm, FG = 8 cm et EG = 5 cm.

Remarques importantes:

- Les marques de construction doivent rester visibles
- Ne pas oublier de nommer les 3 sommets

4.9 Construction d'un triangle rectangle

Définition Triangle rectangle Un triangle rectangle est un triangle qui possède un angle droit. Méthode de construction : Pour tracer un triangle rectangle, on commence par tracer les 2 côtés de l'angle droit avec une règle et une équerre puis on reporte les longueurs connues. Points importants: — On n'oublie pas de placer les noms des sommets

— On n'oublie pas le codage pour indiquer l'angle droit

Exemple 1 : Finis la construction du triangle ABC rectangle en C sachant que AC=5 cm et BC=4 cm.

Exemple 2 : les 2 côtés de l'angle droit sont connus

Trace un triangle EFG rectangle en F sachant que EF = 6 cm et FG = 2 cm.

Exemple 3 : un seul côté de l'angle droit est connu

Trace un triangle MNO rectangle en O sachant que ON = 3 cm et MN = 5 cm.

Exercices d'application:

Exercice

1. Construire un triangle équilatéral XYZ de côté 3,5 cm.

2. Construire un triangle IJK isocèle en J avec IJ = 7 cm et IK = 4 cm.

3. Les points A, B et C sont-ils alignés si AB = 5 cm, BC = 3 cm et AC = 8 cm? Justifier.

.....

4. Soit M le milieu du segment [EF]. Si EM = 3,5 cm, quelle est la longueur EF ?

.....

5. Notion de proportionnalité

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

- ...

Pré-requis

5.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

5.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

5.3 Exercices d'entraînement

Exercice

Exercice 1.

Exercice	
Exercice 2.	

5.4 Évaluation rapide (5 à 10 min)

Exercice	
Mini-quiz.	

6. Notion de probabilités

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

6.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

6.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

6.3 Exercices d'entraînement

Exercice

Exercice 1.

Exercice			
Exercice 2.			

6.4 Évaluation rapide (5 à 10 min)

Exercice	
Mini-quiz.	

7. Angles et rapporteur

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

7.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

7.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

7.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

8. Opérations avec les nombres décimaux

Objectifs

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

- Additionner et soustraire des nombres décimaux
- Multiplier des nombres décimaux
- Poser correctement les opérations avec des nombres décimaux
- Calculer des ordres de grandeur

Pré-requis

- Connaissance des nombres entiers et de leurs opérations
- Maîtrise de la numération décimale
- Compréhension de la valeur des chiffres selon leur position

8.1 Addition et soustraction avec des nombres décimaux

Exemple

Dans les deux cas, les deux nombres 21,5 et 12,3 sont les termes du calcul.

Propriété

ATTENTION: Ce n'est pas vrai pour une soustraction!

Exemple

Exemple 1 (opération en ligne):
$$8,5+7,2+2,1+3,4 \\ = \underline{\qquad + \qquad + \qquad + \qquad } \\ = 10,6+10,6 \\ = 21,2$$

$$8,5-3,2 \\ = 5,3 \\ \text{(attention: on ne sait pas encore calculer } 3,2-8,5)$$

${\bf Exemple}$

Exemple 2 (opération posée) :
$$20,18 - 19,45$$

 $28,4 + 84,39$
 $84,39$
 $+ 28,40$
 $20,18$
 $- 19,45$

Remarques:

- Les mots « **addition** » et « **soustraction** » désignent des opérations, tandis que les mots « **somme** » et « **différence** » désignent des nombres (des résultats).
- Pour poser une addition ou une soustraction de nombres décimaux, il faut impérati-

vement aligner les nombres par la droite et aligner les virgules.

— On peut ajouter des zéros à droite d'un nombre décimal sans changer sa valeur (exemple : 28.4 = 28.40).

8.2 Multiplication avec des nombres décimaux

Exemple

On dit que 60,5 est le de 12,1 par 5

Propriété

On peut échanger l'ordre des facteurs sans changer le résultat. On dit que la multiplication est

Méthode : Poser une multiplication avec des nombres décimaux.

Exemple : $25, 1 \times 7, 53$

$$25,1 \times 7,53$$

Règle pour placer la virgule : Le nombre de chiffres après la virgule dans le résultat est égal à la somme du nombre de chiffres après la virgule dans chaque facteur.

8.3 Ordre de grandeur

Définition

Ordre de grandeur

Un **ordre de grandeur** d'un nombre est un nombre proche de celui-ci et facile à utiliser en calcul mental.

Remarque : Un ordre de grandeur n'est pas unique : on peut donner des ordres de grandeur différents selon la précision voulue.

Exemple

La population française était de 67 063 703 habitants en 2020. Un ordre de grandeur de cette population est (on pourrait aussi choisir 100 millions ou 67 millions).

Exemple

Pour calculer $24, 7 \times 3, 8$, on peut d'abord estimer :

 $24.7 \approx 25$ (ordre de grandeur)

 $3.8 \approx 4$ (ordre de grandeur)

Donc 24, 7×3 , $8 \approx 25 \times 4 = 100$

Le résultat exact sera proche de 100.

8.4 Exercices d'entraînement

Exercice

Exercices d'application : Pose et calcule les opérations suivantes :

- 1.45,7+23,8
- 2. 67,2 34,5
- 3. $12, 3 \times 4, 6$

Exercice

Exercices d'application : Donne un ordre de grandeur de chaque calcul, puis calcule le résultat exact :

- 1. 23,4 + 45,7
- 2. 89,2 12,8
- 3. $15, 6 \times 3, 2$

8.5 Évaluation rapide (5 à 10 min)

Exercice

Évaluation rapide:

- 1. Quel est le résultat de 12.5 + 8.7?
- 2. Calcule 45,2 23,8
- 3. Donne un ordre de grandeur de $34,7\times 2,1$

9. La médiatrice dun segment

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

9.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

9.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

9.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

10. La division

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

10.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

10.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

10.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

11. Symétrie axiale

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

- ...

Pré-requis

11.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

11.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

11.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

12. Fraction partage et comparaison de fractions

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

12.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

12.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

12.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

12.4 Évaluation rapide (5 à 10 min)

Exercice	
Mini-quiz.	

13. Unités de longueur, de masse et de contenance

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

13.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

13.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

13.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

14. Calculer avec les angles

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

14.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

14.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

14.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

15. Nombres en écriture fractionnaire

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

- ...

Pré-requis

— ...

15.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

15.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

15.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

16. Proportionnalité et pourcentages

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

16.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

16.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

16.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

17. Déterminer des probabilités et des issues

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

17.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

17.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

17.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

18. Aires et périmètres

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

18.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

18.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

18.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

19. Heures et durées

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

- ...

Pré-requis

— ...

19.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

19.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

19.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

20. Solides et volumes

Définition

Objectifs d'apprentissage. À l'issue de la séquence, l'élève sera capable de :

— ...

Pré-requis

— ...

20.1 Découverte

Exemple

Problème d'introduction ou situation de découverte.

20.2 Leçon

- Rappels et définitions.
- Méthodes et exemples guidés.

20.3 Exercices d'entraînement

Exercice

Exercice	
Exercice 2.	

Exercice	
Mini-quiz.	

A. Progression annuelle (récapitulatif)

Cette progression correspond à la répartition établie pour l'année 20252026.

Période	Séquences
Période 1 (6 semaines)	S01 – Les nombres entiers, S02 – Points et droites, S03 – Fractions décimales
Période 2 (7 semaines)	S04 – Distance, cercle et triangles, S05 – Notion de proportionnalité, S06 – N
Période 3 (6 semaines)	S08 – Opérations avec les nombres décimaux, S09 – La médiatrice d'un segm
Période 4 (7 semaines)	S12 – Fraction partage et comparaison de fractions, S13 – Unités de longueur
Période 5 (6 semaines)	S16 – Proportionnalité et pourcentages, S17 – Déterminer des probabilités et