N°	Titre	page
1	Nombres relatifs	2
2	Fractions	3
3	Puissances	4
4	Racines carrées	5
5	Arithmétique	6
6	Statistiques	7
7	Probabilités	8
8	Pourcentages	9
9	Vitesse	10
10	Calcul littéral	11
11	Equations	12
12	Inéquations	13
12		44.45
13	Fonctions, fonction linéaire, fonction affine	14-15
14	Utilisation du tableur	14-15 16-17
14	Utilisation du tableur	16-17
14 15	Utilisation du tableur Pythagore	16-17 18
14 15 16	Utilisation du tableur Pythagore Thalès	16-17 18 19
14 15 16 17	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle	16-17 18 19 20
14 15 16 17 18	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle Rappels de géométrie plane	16-17 18 19 20 21
14 15 16 17 18 19	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle Rappels de géométrie plane Triangles égaux	16-17 18 19 20 21 22
14 15 16 17 18 19	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle Rappels de géométrie plane Triangles égaux Agrandissements-réductions, triangles semblables	16-17 18 19 20 21 22 23
14 15 16 17 18 19 20 21	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle Rappels de géométrie plane Triangles égaux Agrandissements-réductions, triangles semblables symétries, translation, rotation, homothétie	16-17 18 19 20 21 22 23 24
14 15 16 17 18 19 20 21	Utilisation du tableur Pythagore Thalès Trigonométrie dans un triangle rectangle Rappels de géométrie plane Triangles égaux Agrandissements-réductions, triangles semblables symétries, translation, rotation, homothétie Géométrie dans l'espace	16-17 18 19 20 21 22 23 24 25

Fiche de révisions : rappels de géométrie plane

• Démontrer que des droites sont parallèles en utilisant une propriété vue en 6° :

Propriété: Si deux droites sont perpendiculaires à une même droite alors elles sont parallèles.

• Calculer la mesure d'un angle dans un triangle en utilisant une propriété vue en 5°:

Propriété: Dans un triangle la somme des mesures des trois angles est égale à 180°.

• Quadrilatères et triangles particuliers :

Fiche de révisions : triangles égaux

1) Qu'est-ce que des triangles égaux?

<u>Définition</u>: Deux triangles sont égaux si leurs côtés sont respectivement de la même longueur.

Exemple: Comme AB = A'B', AC = A'C' et BC = B'C' alors les triangles ABC et A'B'C' sont égaux.

<u>Propriété:</u> Des triangles égaux sont des triangles superposables: ils ont la même aire et leurs angles ont la même mesure.

Exemple : Les triangles ABC et DEF ci-contre sont égaux donc :

- $\mathcal{A}(ABC) = \mathcal{A}(DEF)$
- $\widehat{BAC} = \widehat{DFE}$
- $\widehat{ABC} = \widehat{EDF}$
- $\widehat{ACB} = \widehat{DEF}$

<u>Propriété 1 :</u> Si deux triangles ont un angle de même mesure compris entre deux côtés respectivement de même longueur alors ils sont égaux.

Exemple : Démontrer que les triangles BAC et HJI ci-dessous sont égaux.

Je sais que $\widehat{CAB} = \widehat{HJI}$ et que AC = JI et AB = JH

Or Si deux triangles ont un angle de même mesure compris entre deux côtés respectivement de même longueur alors ils sont égaux.

Donc les triangles BAC et HJI sont égaux.

<u>Propriété 2 :</u> Si deux triangles ont un côté de même longueur compris entre deux angles de même mesure alors ils sont égaux.

Exemple : Démontrer que les triangles ACB et LMK ci-dessous sont égaux.

Je sais que AB = LK et que $\widehat{CAB} = \widehat{MLK}$ et $\widehat{CBA} = \widehat{LKM}$

Si deux triangles ont un côté de même longueur compris entre deux angles de même mesure alors ils sont égaux.

Donc les triangles ACB et LMK sont égaux.

Fiche de révisions : Agrandissements-réductions, triangles semblables

Agrandissements, réductions

- coefficient d'agrandissement : k > 1
- coefficient de réduction : 0 < k < 1

Pour trouver le coefficient d'agrandissement ou de réduction :

$$k = \frac{longueur\ finale}{longueur\ initiale} = \frac{\ell'}{\ell}$$

<u>Longueurs</u>: En notant ℓ la longueur initiale et ℓ' la longueur agrandie ou réduite, on a la relation : $\ell' = \ell \times k$

Aires: En notant \mathcal{A} l'aire initiale et \mathcal{A}' l'aire de la figure agrandie ou réduite, on a la relation: $\mathcal{A}' = \mathcal{A} \times k^2$

• Triangles semblables

Deux triangles sont semblables si leurs angles sont respectivement de la même mesure.

Exemple: Comme $\widehat{BAC} = \widehat{B'A'C'}$, $\widehat{ABC} = \widehat{A'B'C'}$ et $\widehat{ACB} = \widehat{A'C'B'}$ alors les triangles ABC et A'B'C' semblables.

Lorsque deux triangles sont semblables

<u>Propriété</u>: Si deux triangles ABC et A'B'C' sont semblables alors leurs côtés respectifs sont proportionnels :

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC} = k \text{ où } k \text{ est le coefficient de proportionnalité}.$$

Exemple : Déterminer les longueurs EF et DF.

Comme
$$=$$
 $=$ $=$ \hat{A} \hat{B} \hat{C}

4 cm 2 cm A 3 cm

alors les triangles

DEF et ABC sont semblables

On a donc :
$$\frac{ED}{AB} = \frac{DF}{BC} = \frac{EF}{AC}$$

En remplaçant par les longueurs données on a : $\frac{3}{2} = \frac{DF}{4} = \frac{EF}{3}$

Comme
$$\frac{3}{2} = \frac{DF}{4}$$
 on a : $DF = \frac{3\times4}{2} = \frac{12}{2} = \boxed{6 \ cm}$

Comme
$$\frac{3}{2} = \frac{EF}{3}$$
 on a : $EF = \frac{3\times3}{2} = \frac{9}{2} = \boxed{4,5 \ cm}$

DEF est un agrandissement de ABC de coefficient $k = \frac{3}{2} = 1,5$.

Démontrer que deux triangles sont semblables

<u>Propriété</u>: Si deux triangles ont leurs côtés respectifs proportionnels alors ils sont semblables

<u>Exemple</u>: Démontrer que les triangles HIK et MON sont semblables.

Les longueurs données sont en cm.

- $\frac{MN}{HK} = \frac{2.6}{6.5} = 0.4$
- $\frac{NO}{KI} = \frac{1,4}{3.5} = 0,4$
- $\frac{MO}{HI} = \frac{2}{5} = 0.4$

Comme les quotients sont égaux, les côtés respectifs des triangles sont proportionnels donc les triangles HIK et MNO sont semblables.

Remarque: Dans une configuration de Thalès, on a deux triangles semblables.

Fiche de révisions : symétries, translation, rotation, homothéties

Symétrie axiale

Le triangle A'B'C' est l'image du triangle ABC par la symétrie d'axe (d)

Translation

Le triangle A'B'C' est l'image du triangle ABC par la translation de vecteur $\overline{AA'}$ (ou qui transforme A en A')

Si k > 0: $OA' = k \times OA$

(si 0 < k < 1 c'est une réduction, si k > 1 c'est un agrandissement)

Le triangle A'B'C est l'image du triangle ABC par l'homothétie de centre O et de rapport k=2 (c'est un agrandissement de coefficient 2)

Symétrie centrale

Le triangle A'B'C' est l'image du triangle ABC par la symétrie de centre O.

Rotation

Le triangle A'B'C' est l'image du triangle ABC par la rotation de centre O et d'angle 60° dans le sens inverse des aiguilles d'une montre (sens anti-horaire)

Homothéties

$Si k < 0 : OA' = -k \times OA$

(si -1 < k < 0 c'est une réduction, si k < -1 c'est un agrandissement)

Le triangle A'B'C est l'image du triangle ABC par l'homothétie de centre O et de rapport k=-0.5 (c'est une réduction de coefficient 0,5)

Fiche de révisions : Géométrie dans l'espace

Sections de solides

- d'un parallélépipède rectangle
- par un plan parallèle à une face est un rectangle de même dimension que la face.
- par un plan parallèle à une arête est un rectangle dont l'un des côtés a la lonqueur de l'arête.
- d'un cône de révolution
 par un plan parallèle à sa base (et donc
 perpendiculaire à son axe) est un cercle.
 Ce cercle est une réduction de celui de
 la base.
- d'une pyramide
 par un plan parallèle à sa base est un
 polygone de même forme que le poly gone de base (c'en est une réduction).

- d'un cylindre de révolution
- par un plan parallèle à sa base (et donc perpendiculaire à son axe) est un cercle de même rayon que le cercle de base.

- d'une sphère
- Si OH < R, la section de la sphère par le plan perpendiculaire à (OH) passant par H est un
- pendiculaire à (OH) passant par H est un cercle. ▶ Si OH = R, la plan et la sphère sont tangents. Ils ont
- un seul point commun, H.

 Si OH > R,
 le plan et la sphère n'ont aucun point

• Sections de solides et agrandissements, réduction

<u>Volumes</u>: En notant \mathcal{V} le volume initial et \mathcal{V}' le volume du solide agrandi ou réduit, on a la relation : $\mathcal{V}' = \mathcal{V} \times k^3$

Exemple:

Volume du grand cône :
$$V = \frac{\pi \times r^2 \times h}{3} = \frac{\pi \times 7^2 \times SA}{3} = \frac{\pi \times 49 \times 12}{3} = \frac{\pi \times 49 \times 4 \times 3}{3} = \pi \times 196 = \boxed{196 \ \pi \ cm^3}$$

Le coefficient de réduction est :
$$k = \frac{SA'}{SA} = \frac{3}{12} = \frac{3 \times 1}{3 \times 4} = \boxed{\frac{1}{4}}$$

∜Volume du petit cône :

$$\mathcal{V}' = \mathcal{V} \times k^3 = 196 \,\pi \times \left(\frac{1}{4}\right)^3 = 196 \,\pi \times \frac{1}{64} = \frac{196\pi}{64} = 3,0625 \,\pi \,cm^3$$
 (valeur exacte)

 $\mathcal{V}' \approx 10 \ cm^3$ (valeur arrondie au cm³)

• <u>Se repérer dans l'espace</u>

3 cm 12 cm

Sur un parallélépipède rectangle

E D C y axe des cotes C D axe des A axe des abscisses B

Autres points:

B(2;6;0) E(2;0;3)

F(2;6;3) G(0;6;3)

Origine du repère :
D (0 ; 0 ; 0)
Point sur l'axe des
abscisses :

A (2;0;0)

<u>Point sur l'axe des</u> <u>ordonnées :</u>

C (0; 6; 0)

Point sur l'axe des cotes: H (0;0;3)

sur une sphère

 Sur la Terre assimilée à une sphère, un point est repéré par ses coordonnées géographiques : sa longitude (par rapport au méridien de Greenwich) et sa latitude (par rapport à l'équateur).
 Exemples :

Point	Longitude	Latitude
Α	0°	0°
Р	20° E	0°
М	20° F	45° N

Fiche de révisions : Algorithmique

Exemple: Brevet, France, juin 2017

On donne le programme suivant qui permet de tracer plusieurs triangles équilatéraux de tailles différentes. Ce programme comporte une variable nommée « côté ». Les longueurs sont données en pixels.

- 4) On modifie le script initial pour obtenir la figure ci-contre. Indiquer le numéro d'une instruction du script après laquelle on peut placer l'instruction tourner de 60 degrés
- Il faut la placer après l'instruction n°8

- 1) Quelles sont les coordonnées du point de départ du tracé ? (-200 ; -100)
- 2) Combien de triangles sont dessinés par le script ? 5 triangles.
- 3) a) Quelle est la longueur (en pixels) du côté du 2e triangle tracé ? 100-20= 80 pixels
- b) Tracer à main levée l'allure de la figure obtenue quand on exécute le script.

Formulaire de géométrie plane (périmètre et aire)

Formulaire de géométrie dans l'espace (volumes)

PAVE DROIT	PRISME DROIT	PYRAMIDE	
ET	ET	ET	SPHERE / BOULE
CUBE	CYLINDRE DE REVOLUTION	CONE DE REVOLUTION	
parallélépipède rectangle (ou pavé droit) :	prisme droit: $V = \mathcal{B} \times h$ où \mathcal{B} est l'aire de la base	$\frac{\text{pyramide}: V = \frac{B \times h}{3}}{\text{où } B \text{ est l'aire de la base}}$	
$V = L \times l \times h$	h	h)	0
L	В	B	aire d'une sphère : $\mathcal{A} = 4 \times \pi \times r^2$
cube:	cylindre de révolution : $V = \pi \times r^2 \times h$	$\frac{\text{cone de révolution :}}{V = \frac{\pi \times r^2 \times h}{2}}$	volume d'une boule :
$V = c^3$		$V = \frac{n \times r \times n}{3}$	$V = \frac{4}{3} \times \pi \times r^3$
c	h axe de révolution	génératrice	

Formulaire de conversions

Masses

t tonne	q quintal	kg	hg	dag	9	dg	cg	mg

1 tonne = 1000 kg

• Capacités

hL	daL	L	dL	cL	mL		

• Longueurs

km	hm dam		m	dm	cm	mm		

• Aires

km² hm²		dam²	m²	dm²	cm²	mm²		

Volumes

km ³		hm³		dam³		m ³		dm ³			cm ³			mm ³						
												hL	daL	L	dL	cL	mL			

• Conversions L/m³

$$1 L = 1 dm^3$$
$$1 000 L = 1m^3$$

• Durées

```
1 min = 60 s
1 h = 60 min
1 jour = 24 h
1 an \approx 365 jours
```