### **MAT103**

Mathematical Methods – I

Ajit Kumar (ajit.kumar@snu.edu.in)

& Teaching Assistants (TAs)

### JAMES STEWART ESSENTIAL CALCULUS

EARLY TRANSCENDENTALS



- ▶ 1 FUNCTIONS AND LIMITS
- ▶ 2 DERIVATIVES
- 3 INVERSE UNCTIONS: Exponential, Logarithmic, a...
- ▶ 4 APPLICATIONS OF DIFFERENTIATION
- ▶ 5 INTEGRALS
- 6 TECHNIQUES OF INTEGRATION
- 7 APPLICATIONS OF INTEGRATION
- 8 SERIES
- ▶ 9 PARAMETRIC EQUATIONS AND POLAR COORDIN...
- 10 VECTORS AND THE GEOMETRY OF SPACE
- 11 PARTIAL DERIVATIVES
- ▶ 12 MULTIPLE INTEGRALS
- 13 VECTOR CALCULUS

#### **NEW! ENHANCED WebAssign EDITION**

This value-priced edition includes access to Enhanced WebAssign, an easy-to-use online homework



(a) 
$$f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$$

# at multivaviorse frs.





# derivatives of f(x, x)









## Logrange nultipliers













length of C

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$



#### PARAMETRIC SURFACES





## PARTIAL DERIVATIVES

### 11.1 FUNCTIONS OF SEVERAL VARIABLES

**EXAMPLE** I Find the domains of the following functions and evaluate f(3, 2).

(a) 
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$
 (b)  $f(x, y) = x \ln(y^2 - x)$ 

**EXAMPLE 2** Find the domain and range of  $g(x, y) = \sqrt{9 - x^2 - y^2}$ .

#### **GRAPHS**

**DEFINITION** If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in  $\mathbb{R}^3$  such that z = f(x, y) and (x, y) is in D.

**EXAMPLE 4** Sketch the graph of  $g(x, y) = \sqrt{9 - x^2 - y^2}$ .

### https://www.geogebra.org/3d?lang=en

(a) 
$$f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$$

(d) 
$$f(x, y) = \frac{\sin x \sin y}{xy}$$

