Machine Learning & Big Data ECON590

Problem Set 2

- 1. (10 points) This question involves the Weekly dataset, which can be downloaded from the ISLR website.
 - (a) Fit a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary() to print the results.
 - (b) For which of the predictors can you reject the null hypothesis $H_0: \beta_j = 0$?
 - (c) Compute the confusion matrix and overall fraction of correct predictions.
 - (d) Repeat (c) using LDA. Which method performs better on this data?
- 2. (10 points) Consider the logistic regression with one predictor such that the success probability is given by

$$p(x_i; \boldsymbol{\beta}) = \mathbb{P}(y_i = 1 \mid x_i, \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)},$$

where $\beta = (\beta_0, \beta_1)'$. Recall that the likelihood function for this model is

$$L(\boldsymbol{\beta} | \mathbf{y}) = \prod_{i=1}^{n} p(x_i; \boldsymbol{\beta})^{y_i} (1 - p(x_i; \boldsymbol{\beta}))^{1-y_i}.$$

(a) Show that the log-likelihood function can be written as

$$\ell(\beta | \mathbf{y}) = -\sum_{i=1}^{n} \log(1 + \exp(\beta_0 + \beta_1 x_i)) + \sum_{i=1}^{n} y_i(\beta_0 + \beta_1 x_i).$$

- (b) Compute the gradient of the log-likelihood, $\nabla \ell(\boldsymbol{\beta} \mid \mathbf{y}) = \left(\frac{\partial \ell}{\partial \beta_0}, \frac{\partial \ell}{\partial \beta_1}\right)'$.
- (c) The dataset logit_data.csv contains 500 observations of a student's grade and her average weekly hours of study. More specifically, the first column contains a binary variable of whether the student gets an A from a class (y = 1) or not (y = 0); the second column contains the student's average weekly hours of study (x). Use gradient ascent to find the maximum likelihood estimate of $\boldsymbol{\beta}$. That is, given a positive learning rate $\alpha > 0$ and an initial value $\boldsymbol{\beta}_0$, iteratively update $\boldsymbol{\beta}_{t+1}$ using:

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t + \alpha \nabla \ell(\boldsymbol{\beta} \,|\, \mathbf{y}) \big|_{\boldsymbol{\beta} = \boldsymbol{\beta}_t}.$$

The iteration stops until $||\boldsymbol{\beta}_{t+1} - \boldsymbol{\beta}_t|| < \varepsilon$, where $||\cdot||$ is the usual Euclidean norm, i.e., $||\mathbf{z}|| = \sqrt{z_1^2 + z_2^2}$. Use the initial value $\boldsymbol{\beta}_0 = (0,0)'$, $\alpha = 0.001$ and $\varepsilon = 10^{-4}$. What are maximum likelihood estimates of β_0 and β_1 ? Report the values of the intermediate $\boldsymbol{\beta}_t$ using a scatter plot.

(d) If a student studies for x = 5 a week on average, what is the probability that she will not get an A (i.e., y = 0)?