Relatório Técnico: Projeto Sistemas Digitais

Disciplina: Sistemas Digitais **Professor:** Clayton J A Silva

Projeto: Trabalho AP1 - Período 25.2

Participantes do Grupo

• Nome e Matrícula:

Bernardo Mascarenhas -202303146701 - trabalhou ativamente Marcio Moreira – 202302986072 - trabalhou ativamente Rafael Donner – 202301189713 - trabalhou ativamente;

1. Tabelas Verdade Completas

As funções do sistema dependem das entradas dos sensores X, Y e Z. A lógica de alarme (Buzzer) depende das chaves de seleção S2, S1 e S0.

Tabela 1.1: Função 1 (Sistema de Iluminação)

Equação: $F1 = (X + Y) \cdot Z'$

X Y Z (X+Y) Z' **F1**

Χ	Υ	Ζ	(X+Y)	Ż	F1
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

Tabela 1.2: Função 2 (Sistema de Segurança)

Equação: $F2 = (X \cdot Y \cdot Z)'$ (NAND)

Χ	Υ	Z	F2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Tabela 1.3: Função 3 (Sistema de Reservatório)

Equação: F3 = (X + Y + Z)' (NOR)

Х	Υ	Ζ	F3
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Tabela 1.4: Lógica do Buzzer

O buzzer é ativado (Saída = 1) para seleções inválidas (011 a 111).

S2	S1	S0	Saída (Buzzer)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2. Equações Booleanas e Simplificação

Equações das Funções

As equações das três funções são definidas pelo escopo do projeto:

- Função 1: F1 = (X + Y) · Z'
- Função 2: F2 = (X · Y · Z)'
- Função 3: F3 = (X + Y + Z)'

Equação e Simplificação do Buzzer

A partir da Tabela Verdade 1.4, a expressão booleana para o buzzer (B) é obtida. Após a simplificação algébrica ou por Mapa de Karnaugh, a equação final é:

• Equação Simplificada do Buzzer: B = S2 + (S1 · S0)

3. Mapeamento das Entradas e Seleções do MUX 8x1

O multiplexador 8x1 seleciona a entrada de dados que será direcionada para a saída com base nas chaves de seleção S2, S1 e S0.

S2	S1	S0	Entrada do MUX Selecionada	Função Conectada
0	0	0	D0	Função 1 (Iluminação)
0	0	1	D1	Função 2 (Segurança)
0	1	0	D2	Função 3 (Reservatório)

S2	S1	S0	Entrada do MUX Selecionada	Função Conectada
0	1	1	D3	Nível Lógico 0 (Terra)
1	0	0	D4	Nível Lógico 0 (Terra)
1	0	1	D5	Nível Lógico 0 (Terra)
1	1	0	D6	Nível Lógico 0 (Terra)
1	1	1	D7	Nível Lógico 0 (Terra)

4. Esquema Final do Circuito (Descrição)

O circuito é composto por três blocos principais: Entradas, Processamento e Saídas.

- **Bloco de Entradas:** Seis pinos de entrada (X, Y, Z, S2, S1, S0). Três LEDs são acoplados às chaves de seleção S2, S1, S0 para indicar seu estado.
- Bloco de Processamento: As funções F1, F2 e F3 são implementadas com suas respectivas portas lógicas. As saídas dessas funções são conectadas às entradas D0, D1 e D2 de um MUX 8x1. As entradas D3 a D7 do MUX são aterradas (conectadas à constante 0). As chaves S2, S1, S0 são agrupadas por um Splitter, que se conecta à entrada de seleção do MUX. Em paralelo, as chaves também alimentam o circuito do buzzer, implementado pela lógica B = S2 + (S1 · S0).
- Bloco de Saídas: Um LED principal é conectado à saída do MUX para exibir o resultado da função selecionada. Outro LED é conectado à saída do circuito do buzzer para representar o alarme.

5. Descrição Textual da Lógica de Funcionamento

O circuito opera como um seletor de sistemas de controle. O usuário utiliza as chaves de seleção (S2, S1, S0), cujo estado é espelhado por LEDs, para escolher uma de três funções ou uma configuração inválida.

- Seleções Válidas (000, 001, 010): Ao escolher uma seleção válida, o multiplexador direciona o resultado da função correspondente (Iluminação, Segurança ou Reservatório) para um LED de saída principal. Este LED responde em tempo real às alterações nos sensores (X, Y, Z) de acordo com a lógica da função ativa.
- Seleções Inválidas (011 a 111): Se o usuário escolher uma combinação inválida, o circuito dedicado de detecção de erro (B = S2 + S1 · S0) ativa o LED do buzzer. Simultaneamente, o MUX seleciona uma entrada aterrada, mantendo o LED de saída principal apagado. Isso informa ao usuário que a configuração atual é inválida e não corresponde a nenhuma função.