

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYME001 Mathematics Part 2 Examination (Science & Engineering)

Examination Session Semester Two Time Allowed 2 Hours 10 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 40% of the exam

marks.

SECTION B Answer 4 questions. This section carries 60% of the exam

marks.

The marks for each question are indicated in square brackets [].

Your School or College will provide a Formula Booklet.

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the answer books in the space provided.
- Write the answers in the answer books provided. Additional sheets will be provided on request.
- Write the section letter, the question number and numbers to parts of questions attempted clearly at the start of each answer.
- **No** written material is to be brought into the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Full marks will only be given for full and detailed answers.

Section A Answer ALL questions. This section carries 40 marks.

Question A1

A curve is defined as $y = \frac{x^3}{1+x^2}$

Find the gradient of the curve when x = 2.

[4]

Question A2

A function is defined as $f(x) = \frac{3x+2}{5}$.

Explain why f(x) has an inverse, and write down an expression for $f^{-1}(x)$. [3]

Question A3

Solve the equation $2 \sin^2 \theta - \cos \theta = 2$ for $0 \le \theta \le 2 \pi$.

Give your answers as exact multiples of π .

[5]

Question A4

Use the substitution
$$u = 1 + x^3$$
 to evaluate $\int_0^1 \frac{x^2}{1+x^3} dx$ [5]

Question A5

The curve $y = x^2 + 3$ is rotated about the *x*-axis. Find the exact volume of the solid formed between x = 1 and x = 2. [5]

Question A6

Vectors \boldsymbol{a} and \boldsymbol{b} are defined as $\boldsymbol{a} = 3\boldsymbol{i} - 3\boldsymbol{j} + 7\boldsymbol{k}$ and $\boldsymbol{b} = -2\boldsymbol{i} + 5\boldsymbol{j} + p\boldsymbol{k}$.

Find the value of p if a is perpendicular to b.

[3]

Question A7

Solve the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$

given y = 1 when x = 1. In your answer, express y in terms of x.

[4]

Question A8

Given that
$$x = \ln(\tan y)$$
, find the value of $\frac{dy}{dx}$ when $y = \frac{\pi}{4}$.

Question A9

The function f is defined as $f(x) = x^3 - 25$.

An approximate solution to the equation f(x) = 0 is $x_0 = 3$.

Use the Newton-Raphson method, **twice**, to give a better approximation.

[4]

Give your answer to four significant figures.

In this question one mark will be awarded for the correct use of significant figures.

Question A10

The ages of 6 children are 7, 12, 10, 9, 7, 3.

Find the mean, mode and median.

[3]

Section B Answer <u>4</u> questions. This section carries 60 marks.

Question B1

a) A curve C has equation $x^2 + 2xy + y^3 = 13$.

i. Find
$$\frac{dy}{dx}$$
 in terms of x and y .

ii. Write down an expression for
$$\frac{dx}{dy}$$
 in terms of x and y . [1]

iii. Find the value of
$$\frac{dx}{dy}$$
 at the point (3,2). [1]

b) i. Show that the equation
$$x^2 - 12 = 0$$
 has a root between [3] $x = 4.0$ and $x = 4.3$

ii. Show that
$$x = \frac{1}{2} \left[x + \frac{17}{x} \right]$$
 can be written as $x^2 - 17 = 0$. [2]

iii. A better approximation to $x^2 - 17 = 0$ can be obtained by using the

iterative formula
$$\frac{1}{2} \left[x_n + \frac{17}{x_n} \right]$$

Starting with
$$x_0 = 4.3$$
 find x_1 and x_2 [3]

Question B2

a)

Figure 1

Figure 1 shows the curve y = f(x). It crosses the *x*-axis at (-2,0) and (6,0). It also has a maximum at (1,7).

On separate axes, sketch the following: (On each sketch show clearly the coordinates where the curve crosses the x-axis, and the coordinates of the maximum point.)

i.
$$y = 2f(x)$$
 [3]

ii.
$$y = f(x - 3)$$
 [3]

iii.
$$y = f(-x)$$
 [3]

b) The functions g(x) and h(x) are defined as follows:

$$g(x) = 5x - 3$$
 and $h(x) = x^2 + 1$

i. Evaluate
$$g(h(2))$$
. [2]

ii. Solve the equation
$$h(g(x)) = 65$$
. [4]

Question B3

a) i. Given $\tan 60^\circ = \sqrt{3}$ and $\tan 45^\circ = 1$, use a trigonometric formula [3] to find the exact value of $\tan 15^\circ$.

(You must show each stage of your working.)

b) i. Given
$$\cos 2x = \cos^2 x - \sin^2 x$$
 show that $\cos 2x = 1 - 2\sin^2 x$. [2]

ii. Solve the equation
$$\cos 2x + \sin 2x = 1$$
 for $0^{\circ} \le x \le 360^{\circ}$. [7]

Question B4

a) i. Find
$$\int \frac{1}{\cos^2 x} dx$$
 [2]

ii. Use the substitution
$$u = 1 + x$$
 to evaluate $\int_0^1 \frac{x}{1+x} dx$. [5]

b) i. Express
$$\frac{5x}{(x-2)(x^2+1)}$$
 in the form $\frac{A}{x-2} + \frac{Bx}{x^2+1} + \frac{C}{x^2+1}$ [4]

ii. Find
$$\int \frac{5x}{(x-2)(x^2+1)} dx$$
. [4]

Question B5

a) i. Find the vector equation of the line l_1 which joins A(2,-1,3) and **[1]** B(5,1,-3).

The line l_2 passes through A(2, -1, 3) and C(4,1,2).

- i. Show that the cosine of acute angle CAB is $\frac{16}{21}$.
- iii. Find the exact value of the sine of angle CAB. [2]
- iv. Find the exact area of triangle *ABC*. [2]
- b) Two lines have vector equations $\mathbf{r} = \mathbf{i} + 3\mathbf{j} 2\mathbf{k} + t(-2\mathbf{i} + 3\mathbf{j} + \mathbf{k})$ and and $\mathbf{r} = 2\mathbf{i} \mathbf{j} + 4\mathbf{k} + s(\mathbf{i} \mathbf{j} 2\mathbf{k})$.

Show that these lines do **not** intersect. [6]

Question B6

- a) i. Give an example of discrete data. [1]
 - ii. Seven readings are recorded: 7,10, k, 3,2,9,12.

Find k if the mean of these readings is 6. [2]

- iii. Find the mean and standard deviation of 3,7,8,10,11,15. [3]
- b) 200 students took part in solving a Mathematics problem. The times that it took them to complete it are shown below.

Time t (seconds)	Frequency
$40 \le t \le 60$	20
$60 < t \le 70$	42
70 < t ≤ 75	44
75 < t ≤ 80	40
80 < t ≤ 90	30
90 < t ≤ 120	24

(You may wish to copy and extend the table to help you answer some of the questions below.)

- i. Estimate the mean. [31
- ii. State the modal interval. [1]
- iii. Work out the frequency densities. [2]
- iv. Draw a histogram to represent the data. [3]