

¿Qué es una función?

Una función relaciona una entrada con una salida.

Una función es como una máquina: tiene una entrada y una salida.

Y lo que sale está relacionado de alguna manera con lo que entra.

f(x) f(x) = ... es la forma clásica de escribir una función. Y hay otras maneras, como Y=X +1

Entrada, relación, salida

En las funciones, siempre hay tres partes principales:

- La entrada
- La relación
- La salida

Ejemplo: "Multiplicar por 2" es una función.

Aquí están las tres partes:

Entrada	Relación	Salida
0	× 2	0
1	× 2	2
7	× 2	14
10	× 2	20

Para una entrada de 50, ¿cuál es la salida?

Algunos ejemplos de funciones

- x² (elevar al cuadrado) es una función
- x³+1 es también una función
- Seno, coseno y tangente son funciones utilizadas en la trigonometría
- ¡y hay muchas más!

Pero no vamos a mirar funciones específicas...

... en su lugar vamos a mirar la idea general de una función.

Nombres

Primero, es útil darle un nombre a una función.

El nombre más común es "f", pero puedes ponerle otros como "g" ... o cualquier letra.

Pero usemos "f":

Decimos "f de x es igual a x al cuadrado"

lo que entra en la función se pone entre paréntesis () después del nombre de la función:

Así que f(x) te dice que la función se llama "f', y "x" se pone dentro

Y normalmente se verá lo que la función hace a la entrada:

 $f(x) = x^2$ nos dice que la función "f' toma "x" y lo eleva al cuadrado.

Ejemplo: con $f(x) = x^2$:

- una entrada 4
- arroja un 16 como valor de salida.

De hecho, podemos escribir f(4) = 16.

La "x" es sólo un marcador de posición.

Es decir, que solo está ahí para mostrarnos a dónde va la entrada y qué le pasa.

¡Podría ser cualquier cosa!

Así que esta función:

$$f(x) = 1 - x + x^2$$

es la misma función que:

•
$$f(q) = 1 - q + q^2$$

•
$$h(A) = 1 - A + A^2$$

•
$$w(\theta) = 1 - \theta + \theta^2$$

La variable (x, q, A, etc.) está justo ahí para que sepamos dónde poner los valores:

$$f(2) = 1 - 2 + 2^2 = 3$$

A veces no hay nombre para la función

A veces una función no tiene nombre, y vemos algo como:

 $y = x^2$

Pero sigue habiendo:

- una entrada (x)
- una relación (elevar al cuadrado)
- y una salida (y)

Relacionar

Una función es **como** una máquina. Pero una función no tiene engranajes ni correas ni partes que se muevan. ¡Y no destruye lo que pones dentro!

En realidad, una función *relaciona* la entrada con la salida.

Decir que "f(4) = 16" es como decir que 4 está relacionado de alguna manera con 16. O también $4 \rightarrow 16$

Ejemplo: este árbol crece 20 cm cada año, así que la altura del árbol está *relacionada* con la edad por la función *a*, es decir función altura.

$$a(edad) = edad \times 20$$

Así que si la edad es 10 años, la altura es a(10) = 200 cm

Aquí hay algunos valores de ejemplo:

edad	$a(\text{edad}) = \text{edad} \times 20$
0	0
1	20
3,2	64
15	300

Los "números" parecen una respuesta clara, pero...

... ¿qué números?

Por ejemplo, la función de la altura del árbol $a(edad) = edad \times 20$ no tiene sentido si la edad es menor que cero.

... también podrían ser letras ("A" \to "B"), o códigos de identificación ("A6309" \to "Acceso").

Tenemos que usar algo **más general**, y ahí es donde entran en juego los <u>conjuntos</u>:

Un conjunto es una colección de cosas, por ejemplo números.

Aquí tienes algunos ejemplos:

El conjunto de los números pares: $\{..., -4, -2, 0, 2, 4, ...\}$ Un conjunto de ropa: $\{$ "sombrero","camisa",... $\}$ El conjunto de los números primos: $\{2, 3, 5, 7, 11, 13, 17, ...\}$ Los múltiplos de 3 que son más pequeños que $10: \{3, 6, 9\}$

Cada cosa individual en un conjunto (como "4" o "sombrero") es un miembro, o elemento.

Por lo tanto, una función toma **elementos de un conjunto**, y devuelve **elementos de un conjunto**.

Una función es especial

Pero una función tiene reglas especiales:

Debe funcionar para **cada** valor de entrada posible Y sólo tiene **una relación** por cada valor de entrada

Esto se puede decir en una definición:

Definición formal de función

Una función relaciona **cada elemento** de un conjunto con **exactamente un elemento** de otro conjunto (puede ser el mismo conjunto).

¡Dos cosas importantes!

1. "...cada elemento..." de "X" se relaciona con un elemento de "Y".

Decimos que la función *cubre* "X" (relaciona cada elemento de)

(Pero algunos elementos de la **Y** podrían no estar relacionados en absoluto, lo cual está bien.)

2. "...exactamente un elemento..." significa que la función es *univaluada*. No devolverá 2 o más resultados para la misma entrada.

¡Así que "
$$f(2) = 7 o 9$$
" no vale!

"Uno a muchos" **no** está permitido, pero "muchos a uno" **sí**:

(uno a muchos)

(muchos a uno)

Esto **NO** está bien en una función

Pero esto **SÍ** está bien en una función

Cuando una relación **no** sigue esas dos reglas, entonces **no es una función**... sigue siendo una **relación**, pero no una función.

Ejemplo: La relación $x \rightarrow x^2$

También podría escribirse como una tabla:

X: x	Y: x ²
3	9
1	1
0	0
4	16
-4	16

Es una función, porque:

- Cada elemento en X está relacionado con Y
- Ningún elemento en X tiene dos o más relaciones

(El 4 y el -4 se relacionan con el 16, lo cual está permitido.)

Ejemplo: Esta relación **no** es una función:

Es una **relación**, pero **no una función**, por estas razones:

- El valor "3" en X no tiene relación en Y
- El valor "4" en X no tiene relación en Y
- El valor "5" está relacionado con más de un valor en Y

(Y el hecho de que el "6" de la Y no tenga ninguna relación no importa).

La prueba de la línea vertical

En un gráfico, ninguna línea vertical cruza más de una vez a la función.

Si alguna cruzara más de una vez no sería una función.

Infinitamente muchos

Las funciones suelen trabajar en conjuntos de infinitos elementos.

Ejemplo: $y = x^3$

- El conjunto de entrada "X" son todos los <u>Números Reales</u>
- El conjunto de salida "Y" es también todos los números reales

No podemos mostrar TODOS los valores, así que aquí hay algunos ejemplos:

X: x	Y: x ³

-2	-8
-0,1	-0,001
0	0
1,1	1,331
3	27
etc	etc

Dominio, codominio y rango

En el dibujo de arriba

- el conjunto "X" es el **dominio**,
- el conjunto "Y" es el codominio, y
- el conjunto de elementos de Y a los que llega alguna flecha (los valores verdaderos de la función) se llama **rango** o **imagen**.

¡Muchos nombres!

Las funciones se han utilizado en las matemáticas durante mucho tiempo, y han surgido muchos nombres y formas diferentes de escribir las funciones.

Aquí hay algunos términos comunes con los que deberías familiarizarte:

Ejemplo: $z = 2u^3$:

- "u" podría llamarse la "variable independiente"
- "z" podría llamarse la "variable dependiente" (**depende del** valor de u)

Ejemplo: f(4) = 16:

• "4" podría llamarse el "argumento"

• "16" podría llamarse el "valor de la función"

Ejemplo: $h(a\tilde{n}o) = 20 \times a\tilde{n}o$:

La altura del árbol es de 20cm por cada año

- h() es la función
- "año" podría llamarse el "argumento", o la "variable"
- un valor fijo como "20" puede ser llamado un parámetro o constante

A menudo llamamos a una función "f(x)" cuando en realidad la función es realmente "f"

Pares ordenados

Hay otra forma de pensar en las funciones:

Puedes escribir las entradas y salidas de una función como "pares ordenados", como (4.16).

Se llaman pares **ordenados** porque la entrada siempre va primero y la salida después.

(entrada, salida)

Por lo que se ve así

(x,f(x))

Ejemplo:

(4.16) significa que la función toma "4" y devuelve "16"

Conjunto de pares ordenados

Una función puede entonces definirse como un conjunto de pares ordenados:

Ejemplo: {(2,4), (3,5), (7,3)} es una función que dice:

"2 se relaciona con 4", "3 se relaciona con 5" y "7 se relaciona con 3".

También, fíjate en esto:

- el dominio es **{2,3,7}** (los valores de entrada)
- y el rango es **{4,5,3}** (los valores de salida)

Pero la función debe ser univaluada, esto se puede decir

"si contiene (a, b) y (a, c), entonces b tiene que ser igual a c"

Es otra manera de decir que una entrada "a" no puede dar dos resultados diferentes.

Ejemplo: $\{(2,4), (2,5), (7,3)\}$ no es una función porque $\{2,4\}$ y $\{2,5\}$ quieren decir que 2 estaría relacionado con 4 y 5.

O sea, no es función porque no es univaluada

Un beneficio de los pares ordenados es que Podemos graficarlos porque también son <u>coordenadas</u>!
Así que un conjunto de coordenadas es también una función (si siguen las reglas anteriores, por supuesto)

Una función puede estar en pedazos

Podemos crear funciones que se comporten de manera diferente dependiendo del valor de entrada Ejemplo: Una función con dos piezas:

- cuando x es menos de 0, da 5,
- cuando x es 0 o más da x²

Aquí hay algunos valores de ejemplo:

X	у
-3	5
-1	5
0	0
2	4
4	16

Explícito vs. Implícito

Explícito es cuando la función nos muestra cómo ir directamente de x a y, como:

$$y = x^3 - 3$$

Cuando conocemos x, podemos encontrar y

Es decir, el estilo clásico y = f(x) con el que a menudo trabajamos.

Implícito es cuando no se da directamente como:

$$x^2 - 3xy + y^3 = 0$$

Cuando conocemos x, ¿cómo encontramos y?

Puede ser difícil (¡o imposible!) ir directamente de la x a la y.

"Implícito" viene de "implícito", en otras palabras, mostrado **indirectamente**.

Conclusión

- una función relaciona entradas con salidas
- una función toma elementos de un conjunto (el **dominio**) y los relaciona con elementos de un conjunto (el **codominio**).
- las salidas (los verdaderos valores de la función) se llaman la imagen o rango
- una entrada sólo produce una salida (no una **u** otra)
- una función es un tipo especial de relación donde:
 - cada elemento del dominio está incluido, y
 - cualquier entrada produce **solo una salida** (no esto o aquello)
- una entrada y la salida que corresponde se llaman juntos un par ordenado
- así que una función también se puede ver como un conjunto de pares ordenados

ACTIVIDADES

Un programador Web comienza una pequeña empresa con 3 clientes y su plan de negocios es incorporar 2 clientes nuevos cada mes que pase. En su proyecto hay una correspondencia entre 2 variables.

Las variables son:

Completar la siguiente tabla que

las 2 variables.

x=meses	y=cantidad de clientes
0	3
1	
2	
3	
4	

La relación entre las 2 variables puede ser descripta por una **fórmula**, que permita conocer la cantidad de clientes, según sean los

Llamamos "x" a los meses e "y" a la cantidad de clientes.

Si en la fórmula se va **reemplazando** la "x" por los valores de la primera columna de la tabla, se deben obtener los valores de la

Marcar con una CRUZ la fórmula que permite calcular los clientes.

 $y = 3 \cdot x + 2$

y = 3 + x

y = 2 • x

 $y = 2 \cdot x + 3$

A la "x" la llamamos VARIABLE INDEPENDIENTE.

A la "y" la llamamos VARIABLE DEPENDIENTE.

Las funciones lineales tienen por fórmula genérica: $y = a \cdot x + b$ En esta fórmula a y b están representando números.

Cómo graficar la función en el plano cartesiano

Para graficar recurrimos a la tabla de valores de la función.

Meses	Cantidad de clientes	Pares Ordenados		
X	Y	(X;Y)		
0	3	(;)
1	5	(;)
2	7	(;)
3	9	(;)
4	11	(;)

La tabla nos provee los PARES ORDENADOS de la función.

Cada PAR ORDENADO permite representar un PUNTO de la gráfica.