Lecture 13

Feature engineering and transformations

DSC 40A, Fall 2025

Announcements

- · Homework 3 is due today. Assign questions correctly
- Homework 2 scores will be available on Gradescope this weekend.
- Midterm logistics will be announced on Monday.
 - Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

Agenda

• Feature engineering and transformations.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Multiple linear regression

The general problem

• We have n data points, $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots, (\vec{x}_n, y_n)$, where each \vec{x}_i is a feature vector of d features:

$$ec{x}_i = egin{bmatrix} x_i^{(1)} \ x_i^{(2)} \ dots \ x_i^{(d)} \end{bmatrix}$$

• We want to find a good linear hypothesis function:

The general solution

• Define the design matrix $X \in \mathbb{R}^{n \times (d+1)}$ and observation vector $\vec{y} \in \mathbb{R}^n$:

$$X = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \ dots & dots & dots & dots \ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = egin{bmatrix} \mathrm{Aug}(ec{x_1})^T \ \mathrm{Aug}(ec{x_2})^T \ dots \ \mathrm{Aug}(ec{x_n})^T \end{bmatrix} & ec{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

• Then, solve the **normal equations** to find the optimal parameter vector, \vec{w}^* :

$$X^T X \vec{w}^* = X^T \vec{y}$$
 if matrix is invertible
$$\hat{V}^+ = (X^T X)^{-1} X^T \vec{y}$$

Interpreting parameters

Example: Predicting sales

- For each of 26 stores, we have:
 - net sales,
 - square feet,
 - inventory,
 - advertising expenditure,
 - district size, and
 - number of competing stores.
- Goal: Predict net sales given the other five features.
- To begin, we'll start trying to fit the hypothesis function to predict sales:

$$H(\text{square feet, competitors}) = w_0 + w_1 \cdot \text{square feet} + w_2 \cdot \text{competitors}$$

Question 👺

Answer at q.dsc40a.com

Which feature is most "important"?

- ullet A. square feet: $w_1^*=16.202$ Most selected this
- ullet B. competitors: $w_2^*=-5.311$
- ullet C. inventory: $w_{oldsymbol{3}}^*=0.175$
- ullet D. advertising: $w_{m{arrho}}^*=11.526$
- ullet E. district size: $w_{\mbox{3}}^*=13.580$

Which features are most "important"?

- The most important feature is **not necessarily** the feature with largest magnitude weight.
- Features are measured in different units, i.e. different scales.
 - \circ Suppose I fit one hypothesis function, H_1 , with sales in US dollars, and another hypothesis function, H_2 , with sales in Japanese yen (1 USD \approx 157 yen).
 - Sales is just as important in both hypothesis functions.
 - \circ But the weight of sales in H_1 will be 157 times larger than the weight of sales in H_2 .
- **Solution**: If you care about the interpretability of the resulting weights, **standardize** each feature before performing regression, i.e. convert each feature to standard units.

Standard units

• Recall: to convert a feature x_1, x_2, \ldots, x_n to standard units, we use the formula:

$$x_{i \; (ext{su})} = rac{x_i - ar{x}}{\sigma_x}$$

- Example: 1, 7, 7, 9.
 - Mean: $\frac{1+7+7+9}{4} = \frac{24}{4} = 6$.
 - Standard deviation:

$$SD = \sqrt{\frac{1}{4}((1-6)^2 + (7-6)^2 + (7-6)^2 + (9-6)^2)} = \sqrt{\frac{1}{4} \cdot 36} = 3$$

Standardized data:

$$1\mapsto \frac{1-6}{3} = \boxed{-\frac{5}{3}} \qquad 7\mapsto \frac{7-6}{3} = \boxed{\frac{1}{3}} \qquad 7\mapsto \boxed{\frac{1}{3}} \qquad 9\mapsto \frac{9-6}{3} = \boxed{1}$$

Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
 - There's no need to standardize the outcome (net sales), since it's not being compared to anything.
 - Also, we can't standardize the column of all 1s. → std of this column
- Then, solve the normal equations. The resulting $w_0^*, w_1^*, \dots, w_d^*$ are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.
- Note that standardizing each feature does not change the MSE of the resulting hypothesis function!

Once again, let's try it out! Follow along in this notebook.

Feature engineering and transformations

Question: Would a linear hypothesis function work well on this dataset?

A quadratic hypothesis function

• It looks like there's some sort of quadratic relationship between horsepower and MPG in the last scatter plot. We want to try and fit a hypothesis function of the form: $H_{sin}(x) = V_0 + V_1 x$

$$H(x) = w_0 + w_1 x + w_2 x^2$$

- Note that while this is quadratic in horsepower, it is linear in the parameters!
- That is, it is a linear combination of features.
- ullet We can do that, by choosing our two "features" to be x_i and x_i^2 , respectively.
 - \circ In other words, $x_i^{(1)} = x_i^{(1)}$ and $x_i^{(2)} = x_i^{(1)}$.
 - More generally, we can create new features out of existing features.

A quadratic hypothesis function

- Desired hypothesis function: $H(x) = w_0 + w_1 x + w_2 x^2$.
- The resulting design matrix looks like:

More examples

What if we want to use a hypothesis function of the form:

$$H(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$
?
$$X = \begin{bmatrix} 1 & X_1 & X_1^2 & X_1^3 \\ 1 & X_3 & X_1^3 & X_1^3 \end{bmatrix}$$

$$\widehat{V} = \begin{bmatrix} V_0 \\ V_4 \\ V_2 \\ V_3 \end{bmatrix}$$
action of the form:

• What if we want to use a hypothesis function of the form:

 $H(x)=w_1rac{1}{x^2}+w_2\sin x+w_3e^x$? There is the parameters

$$X = \begin{bmatrix} \frac{1}{x_1} & \sin x_1 & e^{x_1} \\ \frac{1}{x_2} & \sinh x_2 & e^{x_2} \\ \vdots & \vdots & \vdots \\ \frac{1}{x_2} & \sin x_1 & e^{x_2} \end{bmatrix}$$

$$X_1 = w_1 \frac{1}{x^2} + w_2 \sin x + w_3 e^{w}? \quad | \text{mear in the parameters} \qquad X_1 \quad w_3$$

$$X_2 = \begin{bmatrix} \frac{1}{X_1} & \sin x_1 & e^{x_1} \\ \frac{1}{X_1} & \sin x_1 & e^{x_1} \\ \vdots & \vdots & \vdots \\ \frac{1}{X_k} & \sin x_k & e^{x_k} \end{bmatrix} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \vdots \\ w_k & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots & \cos x_k \end{cases} \quad \begin{cases} w_1 & \cos x_1 & \cos x_2 \\ w_2 & \cos x_2 \\ \vdots$$

Feature engineering

- The process of creating new features out of existing information in our dataset is called **feature engineering**.
- In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
- In the future you'll learn how to do other things, like encode categorical information.
 - You'll be exposed to this in Homework 4, Problem 5!

Non-linear functions of multiple features

• Recall our earlier example of predicting sales from square footage and number of competitors. What if we want a hypothesis function of the form:

$$H(\operatorname{sqft},\operatorname{comp}) = w_0 + w_1 \cdot \operatorname{sqft} + w_2 \cdot \operatorname{sqft}^2 + w_3 \cdot \operatorname{comp} + w_4 \cdot (\operatorname{sqft} \cdot \operatorname{comp}) \ = w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 s c$$

• The solution is to choose a design matrix accordingly:

$$X = egin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1c_1 \ 1 & s_2 & s_2^2 & c_2 & s_2c_2 \ dots & dots & dots & dots \ 1 & s_n & s_n^2 & c_n & s_nc_n \end{bmatrix} egin{bmatrix} 5 = sq. & H \ C = compatitions \ C =$$

Finding the optimal parameter vector, \vec{w}^*

• As long as the form of the hypothesis function permits us to write $\vec{h}=X\vec{w}$ for some X and \vec{w} , the mean squared error is:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - X ec{w}\|^2 = rac{1}{n} \|ec{e}\|^2$$

• Regardless of the values of X and \vec{y} , the value of \vec{w}^* that minimizes $R_{\rm sq}(\vec{w})$ is the solution to the **normal equations**:

$$X^T X ec{w}^* = X^T ec{y}$$

Linear in the parameters

• We can fit rules like:

$$h(x) = w_0 + w_1 x + w_2 x^2 \quad \text{for } w_1 e^{-x^{(1)^2}} + w_2 \cos(x^{(2)} + \pi) + w_3 \frac{\log 2x^{(3)}}{x^{(2)}}$$

- This includes arbitrary polynomials.
- We can't fit rules like:

$$v_{\bullet} + v_{\bullet} + v_{\bullet$$

• We can have any number of parameters, as long as our hypothesis function is linear in the parameters, or linear when we think of it as a function of the parameters.

Determining function form

- How do we know what form our hypothesis function should take?
- Sometimes, we know from *theory*, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a hypothesis function that will generalize well to unseen data.

Example: Amdahl's Law

 Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor.

onsequential parts on one processor.
$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p} \qquad \text{for all law}$$
 sequential

Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: Fitting
$$H(x) = w_0 + w_1 \cdot rac{1}{x}$$

$$X = \begin{bmatrix} 1 & 1/4 \\ 1 & 1/4 \\ 1 & \frac{1}{4} \end{bmatrix}$$

$$\overline{W} = \begin{bmatrix} V \\ V_1 \end{bmatrix} \quad \overline{Y} = \begin{bmatrix} 8 \\ 4 \\ 3 \end{bmatrix}$$

On Monday:

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

$$H(x)=w_0e^{w_1x}$$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- Possible solution: Try to apply a transformation.

Transformations

• Question: Can we re-write $H(x)=w_0e^{w_1x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x) = \log H(x)$.
- ullet $ec{b}$ is related to $ec{w}$ by $b_0 = \log w_0$ and $b_1 = w_1$.
- ullet Our new observation vector, $ec{z}$, is $egin{bmatrix} \log y_1 \\ \log y_2 \\ \ldots \\ \log y$
- $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - \circ For example, $H(x) = w_0 \sin(w_1 x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2$$

- One method: gradient descent, the topic of the next lecture!
- Hypothesis functions that are linear in the parameters are much easier to work with.

Question 🤔

Answer at q.dsc40a.com

Which hypothesis function is **not** linear in the parameters?

$$ullet$$
 A. $H(ec{x}) = w_1(x^{(1)}x^{(2)}) + rac{w_2}{x^{(1)}} \mathrm{sin}\left(x^{(2)}
ight)$

$$ullet$$
 B. $H(ec x)=2^{w_1}x^{(1)}$

$$ullet$$
 C. $H(ec{x}) = ec{w} \cdot \mathrm{Aug}(ec{x})$

$$ullet$$
 D. $H(ec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$

• E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
 - Switch gears to probability.