MS BGD: MDI720 Modèle linéaire en dimension 1

Anne Sabourin Telecom ParisTech

Septembre 2018

1. Introduction: visualisation / Python

2. Moindres carrés uni-dimensionnels Modélisation Formulation mathématique Centrer - Réduire Vraisemblance

Point de départ en dimension deux

 $\underline{\text{Exemple}}$: distance de freinage d'une voiture en fonction de la vitesse (n=50 mesures)

Dataset cars: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/cars.html

Point de départ en dimension deux

Exemple : distance de freinage d'une voiture en fonction de la vitesse (n = 50 mesures)

Dataset cars: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/cars.html

Commandes sous Python

```
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.linear_model as lm
# Load data
url = 'https://forge.scilab.org/index.php/p/rdataset/
   source/file/master/csv/datasets/cars.csv'
dat = pd.read_csv(url)
y = dat['dist']
X = dat[['speed']] # sklearn needs X to have 2 dim.
skl_linmod = lm.LinearRegression(fit_intercept=False)
skl_linmod.fit(X, y) # Fit regression model
fig = plt.figure(figsize=(8, 6))
plt.plot(X, y, 'o', label="Data")
plt.plot(X, skl_linmod.predict(X),
        label="OLS-sklearn-no-intercept")
plt.legend(loc='upper left')
plt.show()
```

Avec constante à l'origine

Avec constante à l'origine

Commandes sous Python: avec constantes

```
import statsmodels.api as sm
# data, fitted, etc
y = dat['dist']
X = dat[['speed']]
X = sm.add constant(X)
results = sm.OLS(y,X).fit()
# plot
fig, ax = plt.subplots(figsize=(8,6))
ax.plot(X['speed'], y, 'o', label="data")
ax.plot(X['speed'], results.fittedvalues,
       linewidth=3, label="OLS-sm-w-intercept")
ax.legend(loc='best')
```

1. Introduction: visualisation / Python

2. Moindres carrés uni-dimensionnels Modélisation Formulation mathématique Centrer - Réduire Vraisemblance

1. Introduction: visualisation / Python

2. Moindres carrés uni-dimensionnels Modélisation

Formulation mathématique Centrer - Réduire Vraisemblance

Modélisation I

Observations:
$$(y_i, x_i)$$
, pour $i = 1, ..., n$

Hypothèse de modèle linéaire ou de régression linéaire :

$$y_i \approx \theta_0^{\star} + \theta_1^{\star} x_i$$

- θ_0^{\star} : ordonnée à l'origine (inconnue)
- θ_1^{\star} : coefficient directeur (inconnu)

Rem: les deux paramètres sont inconnus du statisticien

Définition

- y est une observation ou une variable à expliquer
- x est une variable explicative ou covariable (\ge : feature)

Interprétation des notations

Exemple : dataset cars

- n = 50
- y_i : temps de freinage de la voiture i
- x_i : vitesse de la voiture i
- $\bullet \ y$: l'observation est le temps de freinage
- \bullet x: la variable explicative est la vitesse

L'hypothèse de régression linéaire/modèle linéaire revient à postuler que le temps de freinage d'une voiture est proportionnel à sa vitesse

 \mathbf{Exo} : utiliser $\mathtt{describe}$ () de \mathtt{Pandas} pour obtenir quelques informations basiques.

Modélisation II

On donne un sens au symbole \approx de la manière suivante :

Modèle probabiliste

$$Y_{i} = \theta_{0}^{\star} + \theta_{1}^{\star} x_{i} + \varepsilon_{i},$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0$$

où i.i.d. signifie « indépendants et identiquement distribués »

Interprétation

 $\varepsilon_i = Y_i - \theta_0^{\star} - \theta_1^{\star} x_i$: erreurs entre le modèle théorique et les observations, représentées par des variables aléatoires ε_i centrées (on parle aussi de **bruit blanc**).

<u>Rem</u>: l'aspect aléatoire peut avoir diverses causes : bruit de mesure, bruit de transmission, variabilité dans une population, etc.

Modélisation III

Définition

On appelle

- ordonnée à l'origine la quantité θ_0^{\star} (\blacksquare : intercept)
- **pente** la quantité θ_1^{\star} ($\mathbb{H}: slope$)

Objectif

Estimer θ_0^* et θ_1^* (inconnus) par des quantités $\widehat{\theta}_0$ et $\widehat{\theta}_1$ dépendant des observations (y_i, x_i) pour $i = 1, \ldots, n$

Moindres carrés: visualisation

Moindres carrés: visualisation

Moindres carrés (totaux) : visualisation

Moindres carrés (totaux) : visualisation

Estimateur des moindres carrés : formulation

Pour des raisons mathématiques on peut choisir de minimiser la somme des carrés des "erreurs"

Définition

L'estimateur des **moindres carrés** est défini comme suit :

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \underset{(\theta_0, \theta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

- on l'appelle aussi l'estimateur des moindres carrés ordinaires, MCO (carrés ordinaires, MCO (carrés ordinaires, OLS)
- l'intérêt original vient de ce que les conditions du premier ordre sont équivalentes à résoudre un système linéaire

 $\underline{\operatorname{Rem}}$: la notation « \in argmin » ne présage en rien de l'unicité...

Paternité des moindres carrés

Adrien-Marie Legendre

Carl Friedrich Gauss

"Nouvelles méthodes pour la détermination des orbites des comètes", 1805 "Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium" 1809

Aparté

Définition

On définit l'estimateur des moindres déviations absolues

 $(\succeq : Least \ Absolute \ Deviation \ (LAD))$ comme suit :

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname*{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

<u>Rem</u>: difficile à calculer sans ordinateur; nécessite un algorithme itératif d'optimisation non-lisse (fonctions non différentiables)

Rem: on verra plus tard qu'il est en revanche plus robuste aux points aberrants (cutliers) que l'estimateur MCO

Paternité des moindres déviations absolues

Ruđer Josip Bošković: "???", 1757

Pierre-Simon de Laplace "Traité de mécanique céleste", 1799

1. Introduction: visualisation / Pythor

2. Moindres carrés uni-dimensionnels

Modélisation

Formulation mathématique

Centrer - Réduire

Vraisemblance

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , $i.e.\nabla f(x^*) = 0$.

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , $i.e.\nabla f(x^*) = 0$.

Rem: Ce n'est une condition suffisante que si f est convexe!

Condition du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local x^* alors le gradient de f est nul en x^* , $i.e.\nabla f(x^*) = 0$.

<u>Rem</u>: Ce n'est une condition suffisante que si f est convexe!

Retour aux moindres carrés

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname*{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

On cherche donc à minimiser une fonction de deux variables :

$$f(\theta_0, \theta_1) = f(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Conditions nécessaires du premier ordre (CNO) :

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0\\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

Exo: f est elle convexe? Aide : la somme de fonction convexe est convexe

Suite du calcul

Notation usuelle de la moyenne : $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ et $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$

Avec ces notations, les CNO s'écrivent (en divisant par n) :

$$\begin{cases} \frac{\partial f}{\partial \theta_{1}}(\widehat{\theta}) = \sum_{i=1}^{n} (y_{i} - \widehat{\theta}_{0} - \widehat{\theta}_{1}x_{i}) = 0 \\ \frac{\partial f}{\partial \theta_{1}}(\widehat{\theta}) = \sum_{i=1}^{n} (y_{i} - \widehat{\theta}_{0} - \widehat{\theta}_{1}x_{i})x_{i} = 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \widehat{\theta}_{0} = \overline{y}_{n} - \widehat{\theta}_{1}\overline{x}_{n} & (CNO1) \\ \widehat{\theta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}_{n})(y_{i} - \overline{y}_{n})}{\sum_{i=1}^{n} (x_{i} - \overline{x}_{n})^{2}} & (CNO2) \end{cases}$$

Exo: Prouver que (CNO2) est vraie si et seulement si $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ est non constant, *i.e.* \mathbf{x} non proportionnel à $\mathbb{1}_n = (1, \dots, 1)^{\top} \in \mathbb{R}^n$

Centre de gravité et interprétation

(CNO1)
$$\Leftrightarrow$$
 $(\overline{x}_n, \overline{y}_n) \in \{(x, y) \in \mathbb{R}^2 : y = \widehat{\theta}_0 + \widehat{\theta}_1 x\}$

- $\overline{speed} = 15.4$
- $\overline{dist} = 42.98$
- $\widehat{\theta}_0 = -17.579095$ l'ordonnée l'origine (négatif!!!)
- $\widehat{\theta}_1 = 3.932409$ pente de la dr

<u>Interprétation physique</u> : le centre de gravité du nuage de points est sur <u>la droite de régression (estimée)</u>

Reformulation vectorielle

Notation:
$$\mathbf{x} = (x_1, \dots, x_n)^{\top}$$
 et $\mathbf{y} = (y_1, \dots, y_n)^{\top}$

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}$$

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \text{corr}_n(\mathbf{x}, \mathbf{y}) \cdot \frac{\sqrt{\text{var}_n(\mathbf{y})}}{\sqrt{\text{var}_n(\mathbf{x})}}$$

où
$$\operatorname{corr}_{n}(\mathbf{x}, \mathbf{y}) = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x}_{n})(y_{i} - \overline{y}_{n})}{\sqrt{\operatorname{var}_{n}(\mathbf{x})} \sqrt{\operatorname{var}_{n}(\mathbf{y})}}$$
et $\operatorname{var}_{n}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} (z_{i} - \overline{z}_{n})^{2} \text{ (pour tout } \mathbf{z} = (z_{1}, \dots, z_{n})^{\top} \text{)}$

respectivement corrélations empiriques et variances empiriques

Retour sur l'exemple du dataset cars

Pente de la droite tracée : $\operatorname{corr}_n(\mathbf{x},\mathbf{y}) \cdot \frac{\sqrt{\operatorname{var}_n(\mathbf{y})}}{\sqrt{\operatorname{var}_n(\mathbf{x})}} = 3.932409.$

1. Introduction: visualisation / Pythor

2. Moindres carrés uni-dimensionnels

Modélisation

Formulation mathématique

Centrer - Réduire

Vraisemblance

Recentrage

Nouveau modèle d'observation, dit (re)centré :

Si pour tout
$$i = 1, ..., n : \begin{cases} x'_i = x_i - \overline{x}_n \\ y'_i = y_i - \overline{y}_n \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}' = \mathbf{x} - \overline{x}_n \mathbb{1}_n \\ \mathbf{y}' = \mathbf{y} - \overline{y}_n \mathbb{1}_n \end{cases}$$

si l'on note $\mathbb{1}_n = (1, \dots, 1)^\top \in \mathbb{R}^n$ et que l'on résout le programme des moindres carrés pour les $(\mathbf{x}', \mathbf{y}')$ alors

$$\begin{cases} \widehat{\theta}'_{0} = 0 \\ \widehat{\theta}'_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} x'_{i} y'_{i}}{\frac{1}{n} \sum_{i=1}^{n} x'_{i}^{2}} \end{cases}$$

Rem: équivalent à choisir pour origine le centre de gravité du nuage de points, $i.e.(\overline{x}'_n, \overline{y}'_n) = (0,0)$

Recentrage (II)

Recentrage et réinterprétation

Considérons le coefficient $\widehat{\theta}_1'$ $(\widehat{\theta}_0'=0)$ des données centrées \mathbf{y}',\mathbf{x}' :

$$\widehat{\theta}_1' \in \operatorname*{argmin}_{\theta_1} \sum_{i=1}^n (y_i' - \theta_1 x_i')^2 = \operatorname*{argmin}_{\theta_1'} \sum_{i=1}^n x_i'^2 \left(\frac{y_i'}{x_i'} - \theta_1 \right)^2$$

 $\underline{\text{Interprétation}}:\widehat{\theta}_1'$ est une moyenne pondérée des "pentes" $\frac{y_i'}{x_i'}$

$$\widehat{\theta}'_{1} = \frac{\sum_{i=1}^{n} x_{i}'^{2} \frac{y_{i}'}{x_{i}'}}{\sum_{i=1}^{n} x_{j}'^{2}}$$

Influence des points extrêmes : poids proportionnels aux $x_i'^2$

Rem:voir aussi la notion de point "levier" (: leverage)

Illustration de l'influence des points extrêmes

Recentrage + mise à l'échelle

Nouveau modèle d'observation, dit aussi centré-réduit :

$$\forall i = 1, \dots, n : \begin{cases} x_i'' = (x_i - \overline{x}_n) / \sqrt{\operatorname{var}_n(\mathbf{x})} \\ y_i'' = (y_i - \overline{y}_n) / \sqrt{\operatorname{var}_n(\mathbf{y})} \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}'' = \frac{\mathbf{x} - \overline{x}_n \mathbb{1}_n}{\sqrt{\operatorname{var}_n(\mathbf{x})}} \\ \mathbf{y}'' = \frac{\mathbf{y} - \overline{y}_n \mathbb{1}_n}{\sqrt{\operatorname{var}_n(\mathbf{y})}} \end{cases}$$

En résolvant le programme des moindres carrés pour (x'', y'') alors

$$\begin{cases} \widehat{\theta}_0'' = 0 \\ \widehat{\theta}_1'' = \frac{1}{n} \sum_{i=1}^n x_i'' y_i'' \end{cases}$$

C'est équivalent à choisir le centre de gravité du "nuage de points" pour origine et normaliser \mathbf{x} et \mathbf{y} pour la norme empirique $\|\cdot\|_n$:

$$\|\mathbf{x}''\|_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i'')^2 = 1$$
$$\|\mathbf{y}''\|_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i'')^2 = 1$$

Recentrage + mise à l'échelle (II)

Interprétation corrélation (cas centré-réduit)

Exemple : cas n=3 et $\|\mathbf{x}''\|_n^2=\|\mathbf{y}''\|_n^2=1$

Quand/Pourquoi pré-traiter?

On peut recentrer \boldsymbol{y} ou bien ajouter une variable constante au modèle, mais recentrer est souvent plus simple

Rem:dans les cas creux ($\trianglerighteq \& : sparse$) cela peut être plus difficile à gérer, cf régression logistique avec données textuelles

Pour la/les variables explicatives la mise à l'échelle est importante :

- si l'on veut <u>interpréter</u> l'ordonnée à l'origine, ou bien interpréter l'amplitude des coefficients de régression (notion de coefficients "petits")
- si l'on veut pénaliser les coefficients (cf.Lasso, Ridge, etc.)
- pour des <u>raisons numériques</u> (e.g. accélérer les calculs, améliorer le conditionnement, etc.)

Rem: en anticipant sur la suite, centrer/réduire est plus utile en estimation qu'en prédiction

Recentrage en python

Utiliser le recentrage de sklearn http://scikit-learn.org/stable/modules/preprocessing.html

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
print(np.isclose(scaler.mean_, np.mean(X)))
print(np.array_equal(scaler.std_, np.std(X)))
print(np.array_equal(scaler.transform(X),
                   (X - np.mean(X)) / np.std(X))
print(np.array_equal(scaler.transform([26]),
                   (26 - np.mean(X)) / np.std(X)))
```

Plus d'informations, variations, etc. : http://scikit-learn.org/stable/modules/pipeline.html

Définitions

Prédicteur

On appelle **prédicteur** une fonction qui à une nouvelle observation x_{n+1} associe une estimation de la variable à expliquer.

Pour les moindres carrées la prédiction est obtenue par :

$$\operatorname{pred}(x_{n+1}) = \widehat{\theta}_0 + \widehat{\theta}_1 x_{n+1}$$

Rem: souvent on note $\hat{y}_{n+1} = \text{pred}(x_{n+1})$ s'il n'y pas d'ambiguïté

Résidus

On appelle **résidu** d'un prédicteur la différence entre la valeur observée et la valeur prédite :

$$r_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Résidus

Histogramme des résidus

$$\underline{\text{Rappel}}: \quad r_i = y_i - \mathsf{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Propriété

Les résidus sont **centrés** :
$$\frac{1}{n} \sum_{i=1}^{n} r_i = 0$$

<u>Démonstration</u>:

$$\underline{\text{Rappel}}: \quad r_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Propriété

Les résidus sont **centrés** :
$$\frac{1}{n} \sum_{i=1}^{n} r_i = 0$$

$$\frac{1}{n}\sum_{i=1}^{n}r_{i}=\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\text{pred}(x_{i}))$$

$$\underline{\text{Rappel}}: \quad r_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Propriété

Les résidus sont **centrés** :
$$\frac{1}{n} \sum_{i=1}^{n} r_i = 0$$

$$\frac{1}{n}\sum_{i=1}^{n}r_{i} = \frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - \operatorname{pred}(x_{i})\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - \widehat{y}_{i}\right)$$

$$\underline{\text{Rappel}}: \quad r_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Propriété

Les résidus sont **centrés** :
$$\frac{1}{n} \sum_{i=1}^{n} r_i = 0$$

$$\frac{1}{n}\sum_{i=1}^{n}r_{i} = \frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - \operatorname{pred}(x_{i})\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - \widehat{y}_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - (\widehat{\theta}_{0} + \widehat{\theta}_{1}x_{i})\right)$$

$$\underline{\text{Rappel}}: \quad r_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

Propriété

Les résidus sont **centrés** :
$$\frac{1}{n} \sum_{i=1}^{n} r_i = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} r_{i} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \operatorname{pred}(x_{i}))$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (\widehat{\theta}_{0} + \widehat{\theta}_{1}x_{i}))$$

$$= \overline{y}_{n} - (\widehat{\theta}_{0} + \widehat{\theta}_{1}\overline{x}_{n}) = 0$$

1. Introduction: visualisation / Pythor

2. Moindres carrés uni-dimensionnels

Formulation mathématique

Vraisemblance

Raison du choix des moindres carrés

- <u>Intérêt calculatoire</u> : historiquement il fallait éviter des méthodes trop gourmandes en calcul (*e.g.* itératives)
- <u>Intérêt théorique</u> : il est possible d'analyser en détails l'estimateur sous des hypothèses simples

Exemple : sous l'hypothèse que le bruit suit une loi gaussienne *i.e.*, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ le maximum de vraisemblance amène à considérer les moindres carrés comme estimateur naturel de $(\theta_0^{\star}, \theta_1^{\star})$

Rem: pour un autre modèle de bruit ou pour limiter l'effet de points aberrants (\bowtie : outliers) on peut alternativement résoudre (e.g. QuantReg dans Statsmodels)

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname*{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

Vraisemblance gaussienne

Rappel : la densité d'une gaussienne uni-dimensionnelle

On note $Y \sim \mathcal{N}(\mu, \sigma^2)$, une variable dont la densité est

$$\varphi_{\mu,\sigma}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Supposons : $Y_i \sim \mathcal{N}(\theta_0^* + \theta_1^* x_i, \sigma^2)$, *i.e.* $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, alors le couple (θ_0, θ_1) le plus **vraisemblable** au vu des données est celui qui maximise la densité du vecteur (y_1, \ldots, y_n) .

Sous une hypothèse d'indépendance, c'est la solution de :

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname*{argmax}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \theta_0 - \theta_1 x_i)^2}{2\sigma^2} \right) \right)$$

Exo: retrouver les moindres carrés depuis cette formulation

Discussion: vers le multidimensionnel

Les lois physiques (ou vos souvenirs d'auto-école) conduisent plutôt à choisir une parabole au lieu d'une droite : la même procédure MCO permet d'obtenir l'ajustement suivant en choisissant comme variable explicative x_i^2 au lieu de x_i :

41/43

Sites web et livres pour aller plus loin

- Quelques notebooks de moindres carrés avec statsmodels
- McKinney (2012) concernant python pour les statistiques
- Lejeune (2010) concernant le modèle linéaire (notamment)
- pour aller plus loin (plus technique), lire le cours de régression de B. Delyon, par exemple sur les points leviers.

Références I

- [Del15] B. Delyon. Régression, 2015. https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf.
- [Lej10] M. Lejeune. Statistiques, la théorie et ses applications. Springer, 2010.
- [McK12] W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media, 2012.