Data Warehousing * Data Engineering - Input - Data * DW - efficient way of managing data, provider support on ngmt decisions

* Warehouse - storage place, DW - Warehouse on datacenters. * Features -> Soubject oriented -> Degarning data acc to subject

Integrated -> Integrated different data sources Time - variant Non-Volatile > No updates allowed. * Data Storage

* Data Processing * spark > data processing * ETL > Exteacting, Teansporting, Loading * DSS -> Decision Support System -> supports decision-making Structured component > directly helps for decision
Unstructured ", > Human Interaction required * DSS architectural styles - OLTP (Online TeamsachaPercering)
- used by ROBMS - used by Dw

* DW > dotabase for analytics * the * DSS data vs Operational Data & time sporm, granularly, dimensionality * ET Piplelin - staging, integration & access layers * First data to arrive at DW is apeational Data stou (Ops) * DSS components > Data star 2. Esctraction " Filting End were query tool

End were presentation tool

* Data mostly * Data Marts is as ruled at DW oriented to Data Mart Architectur: Multi-Tier DW Defini a high had comporate data world

Approach to solve Multi-dimenional queuer rulational preparities adotal separations analysis of data stoud in relations?

D. W. Applications:

Information Processing - queuing, banic etatistical analysis

* Information Processing - multidimensional queuing, dailings.

* Analytical " - multidimensional queuing, dailings.

* Data Mining - Find Hidden Pattern

Big Data:

- If data runs beyond processing power & storage capacity, then we call it big data.