•00 Exercice 159.

Dans le plan complexe muni d'un repère orthonormal direct, on donne les trois points A, B et C d'affixes respectives :

$$z_A = -4 + 2i$$
, $z_B = -i$, $z_C = 3 + 3i$ et $z_D = -1 + 6i$.

- 1. Placer ces quatre points. Quelle conjecture peut-on émettre sur le quadrilatère *ABCD*?
- 2. Écrire le quotient $\frac{z_C z_B}{z_A z_B}$ sous forme algébrique puis sous forme exponentielle.
- 3. Démontrer la conjecture émise à la question ${f 1.}$

●○○ Exercice 160.

Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $(z+i)^4=1$
- 2. $z^4 = 81$

●○○ Exercice 161.

Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $(z-8)^5=1$
- 2. $z^5 = 4\sqrt{2}$

•∞ Exercice 162.

Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $z^5 = 32i$
- 2. $z^4 = -9i$

••o Exercice 163.

- 1. Calculer $(1+i)^3$.
- 2. Résoudre dans \mathbb{C} l'équation $z^3 = -2(1-i)$.
- 3. Donner le module et un argument de chaque solution.

••o Exercice 164.

- 1. Vérifier que le complexe $\sqrt{3}$ i est une racine quatrième du complexe $-8(1+i\sqrt{3})$.
- 2. Résoudre dans $\mathbb C$ l'équation :

$$z^4 = -8(1+i\sqrt{3})$$

3. Donner le module et un argument de chaque solution.

••o Exercice 165.

- 1. (a) Calculer le module et u argument du nombre complexe $4\sqrt{2}(-1+i)$.
 - (b) Soit $z = re^{i\theta}$. Exprimer le module et un argument de z^3 .

En déduire l'écriture exponentielle des solutions de l'équation :

$$z^3 = 4\sqrt{2}(-1+i)$$

- 2. En utilisant les racines cubiques de 1, écrire les solutions de l'équation $z^3=4\sqrt{2}(-1+\mathrm{i})$ sous forme algébrique.
- 3. Déduire des deux questions précédentes les

valeurs de
$$\cos\left(\frac{11\pi}{12}\right)$$
 et $\sin\left(\frac{11\pi}{12}\right)$.

••• Exercice 166.

On pose $z_0 = 8$ et, pour tout entier naturel n:

$$z_{n+1} = \frac{3 - \mathrm{i}\sqrt{3}}{4} z_n.$$

On note A_n le point du plan d'affixe z_n .

1. Démontrer par récurrence que, pour tout entier naturel n,

$$z_n = 8 \times \left(\frac{\sqrt{3}}{2}\right)^n e^{-i\frac{n\pi}{6}}.$$

2. Pour tout entier naturel n, on pose :

$$u_n = |z_n|$$

Déterminer la nature et la limite de la suite (u_n) .

3. (a) Démontrer que, pour tout entier naturel k,

$$\frac{z_{k+1} - z_k}{z_{k+1}} = -\frac{1}{\sqrt{3}}i.$$

En déduire que, pour tout entier naturel k, on a l'égalité : $A_k A_{k+1} = \frac{1}{\sqrt{3}} OA_{k+1}$.

(b) Pour tout entier naturel n, on appelle ℓ_n la longueur de la ligne brisée reliant dans cet ordre les points A_0 , A_1 , A_2 , ..., A_n .

On a ainsi : $\ell_n = A_0 A_1 + A_1 A_2 + \dots + A_{n-1} A_n$.

Démontrer que la suite (ℓ_n) est convergente et calculer sa limite.

••• Exercice 167.

Soit la suite de nombres complexes (z_n) définie par

$$\left\{ \begin{array}{lcl} z_0 & = & 100 \\ z_{n+1} & = & \frac{\mathrm{i}}{3} z_n & \text{pour tout entier naturel } n. \end{array} \right.$$

Le plan est muni d'un repère orthonormé direct. Pour tout entier naturel n, on note M_n le point d'affixe z_n .

- 1. Démontrer que, pour tout entier naturel n, les points O, M_n et M_{n+2} sont alignés.
- 2. On rappelle qu'un disque de centre A et de rayon r, où r est un nombre réel positif, est l'ensemble des points M du plan tels que $AM \leq r$.

Démontrer que, à partir d'un certain rang, tous les points M_n appartiennent au disque de centre O et de rayon 1.