Check Bipartite-ness

- //1. keep colors of all vertices in an array. Initially vertices have no color.
- //2. push start on queue & mark it. Assign it color1.
- //3. pop the vertex.
- //4. push all its non-marked neighbors on the queue, mark them.
- //5. For each such vertex if no color is assigned yet, assign opposite color of current vertex (c1-c2, c2-c1).
- //6. If vertex is already colored with same of current vertex, graph is not bipartite (return).
- //7. repeat steps 3-6 until queue is empty.

color1 = -1, color = 1, no color = 0

0,3,4,1,2,5

Spanning Tree

- Tree is a graph without cycles. Includes all V vertices and V-1 edges.
- Spanning tree is connected sub-graph of the given graph that contains all the vertices and sub-set of edges.
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - BFS Spanning tree
 - DFS Spanning tree

DFS Spanning Tree

- //1. push starting vertex on stack & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the stack, mark them. //Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

BFS Spanning Tree

- //1. push starting vertex on queue & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the queue, mark them. //Also print the vertex to neighboring vertex edges.
- //4. repeat steps 2-3 until queue is empty.

Prim's MST

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices
 - i. Pick a vertex u which is not there in mst and has minimum key.
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u.
 - a. For each adjacent vertex v, if weight of edge u-v is less than the current key of v, then update the key as weight of u-v.
 - b. Record u as parent of v.

Prim's MST

	K	P
0	t	3
1	N	\bigcirc
2	0	-)
3	2	2
4	Û	6
5	(6
6	4	3

	K P
0	42
1	00 -
2	0 -1
3	22
4	00 -
5	5 2
6	00 -1

	K P
0	3
1	3
2	0 -1
3	22
4	7 3
5	5 2
6	4 3

K P
(S)
20
0 -1
22
7
52
4 3

	K	P
0	1	3
1	N	\bigcirc
2	\bigcirc	-)
3	2	2
4	7	3_
5	W	2
6	4	3

K	P
t	3
2	\bigcirc
\bigcirc	-)
2	2
U	6
(6
4	3
	12026

	K	P
0	t	3
1	2	\bigcirc
2	\bigcirc	-)
3	2	2
4	Û	6
5	(6
6	4	3

Wt=2+)+1+2+4+6=16

Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

Dijkstra's Algorithm

	D	P
0	. 4	2
1	()	6
2	0	-(
3	b	
4	12	3
5	5	2
6	9	3

	D P
0	. 4 2
1	00-1
2	0 -
3	∞ -1
4	00 -
5	5 2
6	00 7

	D	P
0	. 4	2
1		$^{\sim}$ \bigcirc
2	0	-(
3	b	\bigcirc
4	00	-1
5	15	2
6		7

	D	P
0	. 4	2
1	()	$^{\sim}$
2	0	-(
3		0
4	12	3
5	5	2
6	9	3

	D	P
0	. 4	2
1	()	
2	0	
3	b	\bigcirc
4	12	3
5	M	7
6	9	3

	D	P
0	. 4	2
1	()	$^{\sim}$
2		-(
3	b	\bigcirc
4	12	3
5	15	2
6	9	3

	D	P
0	. 4	2
1	()	$^{\sim}$
2	0	
3	b	\bigcirc
4	12	3
5	15	2
6	9	3

Problem solving technique: Greedy approach

- A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage with the intent of finding a global optimum.
- We can make choice that seems best at the moment and then solve the sub-problems that arise later.
- The choice made by a greedy algorithm may depend on choices made so far, but not on future choices or all the solutions to the sub-problem.
- It iteratively makes one greedy choice after another, reducing each given problem into a smaller one.
- A greedy algorithm never reconsiders its choices.
- A greedy strategy may not always produce an optimal solution.
- eg. Greedy algorithm decides minimum number of coins to give while making change. coins available: 50, 20, 10, 5, 2, 1

by road by train by flight

personal public

rehide transport