Machine Learning Techniques Homework #4

tags: mlt, ntu, course, homework

Cheng-Shih Wong, R04945028, mob5566@gmail.com (mailto:mob5566@gmail.com)

1.

For N is larget, the probability of one of the examples not being sampled is

$$\left(1 - \frac{1}{N}\right)^{N'} = \frac{1}{\left(\frac{N}{N-1}\right)^{N'}}$$

$$= \frac{1}{\left(\frac{N}{N-1}\right)^{pN}}$$

$$= \left(\frac{1}{\left(\frac{N}{N-1}\right)^{N}}\right)^{p}$$

$$\approx \left(\frac{1}{e}\right)^{p}$$

$$= e^{-p}$$

Therefore, there are probably $e^{-p}\cdot N$ of the examples will not be sampled.

2.

Because $\sum_{k=1}^{3} E_{\text{out}}(g_k) = 0.75 \le 1$, then we can obtain the minimum $E_{\text{out}}(G) = 0$ by covering an error prediction by other two correct predictions.

To obtain the maximum $E_{\mathrm{out}}(G)$, we have to combine exact two error predictions with one correct prediction as much as possible.

Denote $\{d_k\}_{k=1}^4$ that $\bigcup_{k=1}^4 d_k = D$ and $d_i \cap d_j = \phi$ for $i \neq j$ and $1 \leq i, j \leq 4$, where D is test data.

We can have

$$|d_1| = 0.025|D|$$
 and $E_{d_1}(g_1) = E_{d_1}(g_2) = 1$ and $E_{d_1}(g_3) = 0$

$$|d_2| = 0.125|D|$$
 and $E_{d_2}(g_1) = E_{d_2}(g_3) = 1$ and $E_{d_2}(g_2) = 0$

$$|d_3| = 0.225|D|$$
 and $E_{d_3}(g_2) = E_{d_3}(g_3) = 1$ and $E_{d_3}(g_1) = 0$

That is $E_{d_1 \cup d_2 \cup d_3}(G) = 0$ and $E_{d_4}(G) = 1$, where $|d_4| = 0.625|D|$.

Therefore, the maximum possible $E_{\rm out}(G)$ is 0.375.

The possible range of $E_{\rm out}(G)$

$$0 \le E_{\text{out}}(G) \le 0.375$$

3

Let N be the number of examples, then the total error predictions are $N \cdot \sum_{k=1}^K e_k$.

To get the upper bound of $E_{\mathrm{out}}(G)$, we can exploit a greedy though described below.

For an example x_n , if there are exact $\frac{K+1}{2}$ binary classification trees predict wrongly on x_n , then G will also predict wrongly on x_n .

Therefore, for the maximum possible error predictions of G, we have at most $\frac{N \cdot \sum_{k=1}^K e_k}{\frac{K+1}{2}}$ examples that will be predicted wrongly.

Finally, the upper bound of $E_{\mathrm{out}}(G)$ is

$$E_{\text{out}}(G) \le \frac{\frac{2N \cdot \sum_{k=1}^{K} e_k}{K+1}}{N}$$
$$\le \frac{2}{K+1} \sum_{k=1}^{K} e_k$$

4

From lecture 211 slide page 17, $lpha_1$ is optimal η that

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} ((y_n - s_n) - \eta g_1(\mathbf{x}_n))^2 = \min_{\eta} \frac{1}{N} \sum_{n=1}^{N} ((y_n - 0) - 2\eta)^2
= \min_{\eta} \frac{1}{N} \sum_{n=1}^{N} (y_n - 2\eta)^2
\Rightarrow \frac{-2}{N} \sum_{n=1}^{N} (y_n - 2\alpha_1) = 0
\Rightarrow -2N\alpha_1 + \sum_{n=1}^{N} y_n = 0
\Rightarrow \alpha_1 = \frac{\sum_{n=1}^{N} y_n}{2N}
\therefore s_n = \alpha_1 g_1(\mathbf{x}_n)
= \left(\frac{\sum_{n=1}^{N} y_n}{2N}\right) \cdot 2
= \frac{\sum_{n=1}^{N} y_n}{N}$$

5

Let $s_n^0 = 0$ and $s_n^t = s_n^{t-1} + \alpha_t g_t(\mathbf{x}_n)$ after t iterations.

At *t*-th iteration, α_t is the steepest η that

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} \left((y_n - s_n^{t-1}) - \eta g_t(\mathbf{x}_n) \right)^2$$
 (5.1)

To obtain α_t , let the derivative of (5.1) equal to 0.

$$\frac{-2}{N} \sum_{n=1}^{N} \left((y_n - s_n^{t-1}) - \alpha_t g_t(\mathbf{x}_n) \right) g_t(\mathbf{x}_n) = 0$$

$$\Rightarrow \sum_{n=1}^{N} \left(y_n - (s_n^{t-1} + \alpha_t g_t(\mathbf{x}_n)) \right) g_t(\mathbf{x}_n) = 0$$

$$\Rightarrow \sum_{n=1}^{N} \left(y_n - s_n^t \right) g_t(\mathbf{x}_n) = 0$$

$$\Rightarrow \sum_{n=1}^{N} y_n g_t(\mathbf{x}_n) - \sum_{n=1}^{N} s_n^t g_t(\mathbf{x}_n) = 0$$

$$\therefore \sum_{n=1}^{N} s_n^t g_t(\mathbf{x}_n) = \sum_{n=1}^{N} y_n g_t(\mathbf{x}_n)$$

6

First, we have

$$s_1 = s_2 = \dots = s_N = 0$$

For convenience, we augment the input \mathbf{x} to \mathbf{x}' with a constant dimension 1.

We are to solve the linear regression problem

$$\min_{\mathbf{w}} \sum_{n=1}^{N} ((y_n - s_n) - \mathbf{w} \mathbf{x}'_n)^2 = \min_{\mathbf{w}} \sum_{n=1}^{N} (y_n - \mathbf{w} \mathbf{x}'_n)^2$$
 (6.1)

Let
$$\mathbf{w}^*$$
 be the optimal \mathbf{w} minimize (6.1) and $g_1(\mathbf{x}') = \mathbf{w}^* \mathbf{x}'$

Then we have to find α_1 as the steepest η that minimize

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \eta(\mathbf{w}^* \mathbf{x}'_n) \right)^2$$

Assume that α_1 is the optimal η and $\alpha_1 \neq 1$.

Then we have $\bar{\mathbf{w}} = \alpha_1 \mathbf{w}^*$ that minimize

$$\sum_{n=1}^{N} (y_n - \alpha_1(\mathbf{w}^* \mathbf{x}'_n))^2 = \sum_{n=1}^{N} (y_n - \bar{\mathbf{w}} \mathbf{x}'_n)^2$$

and $\bar{\mathbf{w}} = \alpha_1 \mathbf{w}^* \neq \mathbf{w}^*$ contradict to (6.2).

Therefore, $\alpha_1 = 1$.

7

Continue from **Q.6**, we update all s_n by $s_n = \alpha_1 g_1(\mathbf{x}'_n) = \mathbf{w}^* \mathbf{x}'_n$.

For the second iteration, we have to solve the linear regression problem

$$\min_{\mathbf{w}} \sum_{n=1}^{N} ((y_n - \mathbf{w}^* \mathbf{x}'_n) - g_2(\mathbf{x}'_n))^2 = \min_{\mathbf{w}} \sum_{n=1}^{N} ((y_n - \mathbf{w}^* \mathbf{x}'_n) - \mathbf{w} \mathbf{x}'_n)^2$$
(7.1)

Assume the optimal $\mathbf{w} = \hat{\mathbf{w}} \neq 0$ with minimum value of (7.1) as

$$\sum_{n=1}^{N} ((y_n - \mathbf{w}^* \mathbf{x}'_n) - \hat{\mathbf{w}} \mathbf{x}'_n)^2 = \sum_{n=1}^{N} (y_n - (\mathbf{w}^* + \hat{\mathbf{w}}) \mathbf{x}'_n)^2$$

Therefore, $\mathbf{w}^* + \hat{\mathbf{w}}$ minimizes (6.1), but $\mathbf{w}^* + \hat{\mathbf{w}} \neq \mathbf{w}^*$ contradicts to (6.2).

Finally, $\hat{\mathbf{w}} = 0$, that is $g_2(\mathbf{x}') = 0$.

8

To implement $\mathbb{OR}(x_1,x_2,\ldots,x_d)$, we know that there is only one condition that $\sum_{i=0}^d w_i x_i < 0$, when $x_1 = x_2 = \cdots = x_d = -1$.

Let x_0 be the constant input 1, and $w_1 = w_2 = \cdots = w_d = 1$.

We will have $\sum_{i=1}^d w_i x_i = -d$ which is the minimum value under all x_i combinations.

After that, we let $w_0 = d - 1$, then

$$\sum_{i=0}^{d} w_i x_i = \begin{cases} -1, & \text{if } x_1 = x_2 = \dots = x_d = -1\\ 2 * (\text{number of postive } x_i) - 1, & \text{else} \end{cases}$$

Therefore, we have

$$g_A(\mathbf{x}) = \text{sign}\left(\sum_{i=0}^d w_i x_i\right) = \begin{cases} -1, & \text{if } x_1 = x_2 = \dots = x_d = -1 \\ +1, & \text{else} \end{cases}$$

with

9

To implement $XOR((x)_1, (x)_2, (x)_3, (x)_4, (x)_5)$, we first recognize that the "exclusive or operation" will judge whether the number of positive x_i is odd or not.

$$\sum_{i=1}^{5} x_i = \begin{cases} -5, & \text{if the number of positive } x_i = 0 \\ -3, & \text{if the number of positive } x_i = 1 \\ -1, & \text{if the number of positive } x_i = 2 \\ +1, & \text{if the number of positive } x_i = 3 \\ +3, & \text{if the number of positive } x_i = 4 \\ +5, & \text{if the number of positive } x_i = 5 \end{cases}$$

We can split these six conditions with five threshold θ_k that $\sum_{i=1}^5 x_i \ge \theta_k$ where $\theta_k \in \{-4, -2, 0, 2, 4\}$ and $k = 1, \dots, 5$ respectively.

$$\operatorname{sign}\left(\sum_{i=1}^{5} x_i - \theta_k\right) = \begin{cases} (-1, -1, -1, -1, -1), & \text{if the number of positive } x_i = 0\\ (+1, -1, -1, -1, -1), & \text{if the number of positive } x_i = 1\\ (+1, +1, -1, -1, -1), & \text{if the number of positive } x_i = 2\\ (+1, +1, +1, -1, -1), & \text{if the number of positive } x_i = 3\\ (+1, +1, +1, +1, -1), & \text{if the number of positive } x_i = 4\\ (+1, +1, +1, +1, +1), & \text{if the number of positive } x_i = 5 \end{cases}$$

Then we give the weights to the results from last step with $w_k \in \{1, -1, 1, -1, 1\}$.

That is

$$\sum_{k=1}^{5} w_k \cdot \text{sign}\left(\sum_{i=1}^{5} x_i - \theta_k\right) = \begin{cases} -1, & \text{if the number of positive } x_i = 0\\ +1, & \text{if the number of positive } x_i = 1\\ -1, & \text{if the number of positive } x_i = 2\\ +1, & \text{if the number of positive } x_i = 3\\ -1, & \text{if the number of positive } x_i = 4\\ +1, & \text{if the number of positive } x_i = 5 \end{cases}$$

which is my "exclusive or network" architecture.

As a result, the smallest size of the middle layer of this network D=5.

10

All the initial weights $w_{ij}^{(l)}=0$, then the score of every neuron $s_j^{(l)}=\sum_{i=0}^{d^{(l-1)}}w_{ij}^{(l)}x_i^{(l-1)}=0$.

The square error function is

$$e_n = \left(y_n - \tanh\left(s_1^{(L)}\right)\right)^2$$

The partial derivative of weights of last layer are

$$\frac{\partial e_n}{\partial w_{i1}^{(L)}} = -2\left(y_n - \tanh\left(s_1^{(L)}\right)\right) \tanh'\left(s_1^{(L)}\right) \left(x_i^{(L-1)}\right)$$

$$= -2\left(y_n - \tanh\left(s_1^{(L)}\right)\right) \left(1 - \tanh\left(s_1^{(L)}\right)\right) \left(x_i^{(L-1)}\right)$$

$$= -2y_n\left(x_i^{(L-1)}\right)$$

For the input of last layer L, $x_i^{(L-1)}=\tanh\left(s_i^{(L-1)}\right)=\tanh(0)=0$ except the constant input $x_0^{(L-1)}=1$.

For the partial derivative of rest layers.

$$\frac{\partial e_n}{\partial w_{ij}^{(l)}} = \frac{\partial e_n}{\partial s_j^{(l)}} \cdot \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$

$$= \delta_j^{(l)} \cdot \left(x_i^{(l-1)}\right)$$

$$= \sum_{k=1}^{d^{(l+1)}} \left(\delta_k^{(l+1)}\right) \left(w_{jk}^{(l+1)}\right) \left(\tanh'\left(s_j^{(l)}\right)\right) \left(x_i^{(l-1)}\right)$$

$$= 0$$

Therefore, except the gradient component of bias weight at the last layer $\frac{\partial e_n}{\partial w_{01}^{(L)}} = -2y_n$ may be not equal to 0, the rest of the gradient components are all 0.

11

There is only one hidden layer, then the last layer of this network is layer 2.

Therefore, we have

$$\delta_{1}^{(2)} = -2 \left(y_{n} - \tanh\left(s_{1}^{(2)}\right) \right) \left(1 - \tanh\left(s_{1}^{(2)}\right) \right)$$
$$\delta_{j}^{(1)} = \left(\delta_{1}^{(2)}\right) \left(w_{j1}^{(2)}\right) \left(1 - \tanh\left(s_{j}^{(1)}\right) \right)$$

Initialize all $w_{ij}^{(l)} = 1$, then

By the weight update rule from lecture 212 page 16

$$w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta x_i^{(l-1)} \delta_j^{(l)}$$

Then

$$w_{i1}^{(2)} \leftarrow w_{i1}^{(2)} - \eta x_i^{(1)} \delta_1^{(2)}$$

$$\therefore w_{i1}^{(2)} = w_{j1}^{(2)}, \forall 1 \leq i, j \leq d^{(1)}$$

$$\therefore \delta_i^{(1)} = \left(\delta_1^{(2)}\right) \left(w_{i1}^{(2)}\right) \left(1 - \tanh\left(s_i^{(1)}\right)\right) = \left(\delta_1^{(2)}\right) \left(w_{j1}^{(2)}\right) \left(1 - \tanh\left(s_j^{(1)}\right)\right) = \delta_j^{(1)}$$

$$\forall 1 \leq i, j \leq d^{(1)}$$

$$\therefore w_{ij}^{(1)} = 1 - \eta x_i^{(0)} \delta_j^{(1)} = 1 - \eta x_i^{(0)} \delta_{j+1}^{(1)} = w_{i(j+1)}^{(1)}$$

$$\forall i \text{ and } 1 \leq j < d^{(1)}$$

12

With bagging full grown trees, the in-sample error can down to 0.

However, the out-sample error converges at about 0.075.

When we aggregate more decision trees, the errors (in-sample and out-sample) goes lower and more stable.

When we aggregate one-branch decision trees, the in-sample error converges at 0.11, and the out-sample error converges at about 0.15.

Obviously, the both errors rise a lot than the fully-grown trees, because the individual one-branch decision tree is restricted by the height of tree.

Therefore, the average error of one-branch decision tree is larger than fully-grown tree.

Another strange finding is that the curves of in-sample error and out-sample error are similar.

That is, the out-sample error rises up, when in-sample rises up; and vise versa.