

1. Conjuntos

Ejercicio 1.1

Determinar los siguientes conjuntos por extensión y por comprensión:

- 1. A es el conjunto formado por los cuadrados de los primeros diez números naturales.
- 2. B es el conjunto formado por las raíces cuadradas de los primeros cincuenta naturales y que además sean naturales.
- 3. C es el conjunto formado por los naturales múltiplos de tres que además son menores que diecisiete o múltiplos de cinco que además son menores que treinta.

Ejercicio 1.2

Determinar todos los elementos de los siguientes conjuntos:

1.
$$A = \{ n \in \mathbb{N} : n \le 5 \}$$

3.
$$C = \{(-1)^n : n \in \mathbb{N}\}$$

2.
$$B = \{ n \in \mathbb{N} : n^2 \le 12 \}$$

4.
$$D = \{x \in \mathbb{R} : x^2 - x + 2 = 0\}$$

Ejercicio 1.3

Determinar todos los elementos de los siguientes conjuntos:

1.
$$A = \left\{ \sin\left(\frac{n\pi}{4}\right) : n \in \mathbb{N} \right\}$$

4.
$$B = \{\cos(\frac{n\pi}{3}) : n \in \mathbb{N}\}$$

2.
$$B = \left\{ \sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \right\}$$

5.
$$D = \left\{ \sin\left(\frac{n\pi}{6}\right) + \cos\left(\frac{n\pi}{6}\right) : n \in \mathbb{N} \right\}$$

3.
$$C = \left\{ \sin\left(\frac{n\pi}{4}\right) + \cos\left(\frac{n\pi}{4}\right) : n \in \mathbb{N} \right\}$$
 6. $E = \left\{ \sin\left(\frac{n\pi}{4}\right) + \cos\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \right\}$

6.
$$E = \left\{ \sin\left(\frac{n\pi}{4}\right) + \cos\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \right\}$$

Nota: $A \setminus B$ denota el conjunto formado por los elementos de A que no son elementos de B (diferencia de conjuntos).

Ejercicio 1.4

Consideremos $A = \{1, 2, 3, 4, 6, 8\}$ y $B = \{2, 3, 4, 5, 7, 9\}$. Hallar $A \setminus B$, $A \cap B$, $A \cup B \setminus \{2, 3, 4\}$.

Ejercicio 1.5

Dados $B = \{x \in \mathbb{N} : 2 \text{ divide } x \text{ y } 3 < x < 9\} \text{ y } C = \{x \in \mathbb{N} : 3 < x < 9\}.$

Hallar todos los conjuntos D que verifican simultáneamente $D \subset C$, $\{6,7\} \subset D$ y $B \cap D =$ $\{6, 8\}.$

2. Lógica

Ejercicio 2.1

Negar las frases:

- 1. Todos los fines de semana voy a ver algún deporte.
- 2. Algún jueves del año no voy a jugar al fútbol.
- 3. Algún jueves del año voy a jugar al fútbol.
- 4. Todos los domingos cocino pasta.

Ejercicio 2.2

Completar el cuadro siguiente:

\mathcal{P}	no ${\cal P}$
Las rectas \mathcal{D} y \mathcal{D}' son perpendiculares.	
Las rectas \mathcal{D} y \mathcal{D}' son paralelas.	
13=12	
$x \in \mathbb{N}$.	
$x \neq 1$.	
x > 0.	
$x \le 1$	
x - 2 = 0	

Ejercicio 2.3

Consideramos dos frases P y Q. Las frases "si P entonces Q" y "si no Q entonces no P" son ambas verdaderas (o ambas falsas) al mismo tiempo.

La frase "si no Q entonces no P" se llama **contrarecíproco** de la frase "si P entonces Q".

Escribir el contrarecíproco de cada una de las frases siguientes:

- 1. Si es el 1ero de enero entonces el museo está cerrado.
- 2. Si es un número entero y múltiplo de 6 entonces es un múltiplo de 3.
- 3. Si un número es mayor que 7 entonces es mayor que 4.
- 4. Si x > 0 entonces x + 4 > 0.

5. Si un triangulo ABC es rectángulo en A entonces $BC^2 = AC^2 + AB^2$.

Ejercicio 2.4

Las expresiones "existe al menos un..." y "para todo..." se utilizan para precisar cuántos elementos de un conjunto verifican una proposición, si son todos o algunos. En matemática el "existe" se denota con el simbolo " \exists ", el "para todo" con el simbolo " \forall " y reciben el nombre de cuantificadores.

Completar con un cuantificador las proposiciones siguientes para que sean verdaderas:

1.
$$(x+1)^2 = x^2 + 1$$
.

2.
$$(x+1)^2 = x^2 + 2x + 1$$
.

3.
$$a(b-c) + b(c-a) + c(a-b) = 0$$
.

4.
$$x^3 - 2x^2 + 1 = 0$$
.

3. Algebra

3.1. Operatoria básica

Ejercicio 3.1

Expresar en forma reducida cada uno de los siguientes números.

1.
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

$$5. \ \frac{\frac{1}{2}}{\frac{1}{3} + \frac{3}{4}}$$

9.
$$\left(\frac{1/3}{2/5}\right)^{-2}$$

2.
$$4(\frac{1}{3})$$

6.
$$\left(\frac{1}{3} + \frac{4}{5}\right) \left(\frac{1}{4} - \frac{3}{2}\right)$$

10.
$$3! + \frac{1}{3!}$$

3.
$$\frac{-3}{5} \left(\frac{2}{3} - 1 \right) - \frac{4}{3}$$

7.
$$\left(\frac{1}{5} - \frac{2}{3}\right)^3$$

11.
$$\frac{5!}{2!+3!}$$

4.
$$\left(1+\frac{1}{2}\right)^2$$

8.
$$\left(\frac{2^3}{3^3}\right)^4 \left(\frac{3}{4}\right)^2$$

12.
$$\frac{6!}{2!3!}$$

Ejercicio 3.2

Calcular simplificando la respuesta lo más posible. Expresar el resultado como una sola fracción reducida.

1.
$$\frac{3}{5} - \frac{4}{3}$$

$$5. \ \frac{3}{4(x+1)} - \frac{7}{2(x-1)}$$

8.
$$\frac{A}{x-1} + \frac{B}{x+2}$$

$$2. \ \frac{x}{yz} + \frac{y}{z}$$

$$6. \ \frac{\left(\frac{x^2-4}{x+1}\right)}{\left(\frac{x+2}{3x-5}\right)}$$

9.
$$\frac{1+\frac{3}{2}}{\frac{3}{4}-1}$$

3.
$$\frac{3x}{5y} + \frac{4x}{2y^2}$$
4. $\frac{3}{5} \times \frac{4}{3} \times \frac{5}{2}$

7.
$$\frac{xy}{yz} - \frac{y}{z}$$

$$10. \ \frac{x + \frac{y}{z}}{\frac{y}{z} - z}$$

Ejercicio 3.3

Simplificar los siguientes radicales

1.
$$\sqrt{32}\sqrt{2}$$

3.
$$\frac{\sqrt[4]{32x^4}}{\sqrt[4]{2}}$$

5.
$$\sqrt{16a^4b^3}$$

2.
$$\frac{\sqrt[3]{-2}}{\sqrt[3]{54}}$$

4.
$$\sqrt{xy}\sqrt{x^3y}$$

6.
$$\frac{\sqrt[5]{96a^6}}{\sqrt[5]{3a}}$$

Ejercicio 3.4

Factorizar las siguientes expresiones:

1.
$$2x + 12x^3$$

7.
$$9x^2 - 36$$

13.
$$4t^2 - 12t + 9$$

$$2. 5ab - 8abc$$

8.
$$8x^2 + 10x + 3$$

14.
$$x^3 - 27$$

3.
$$x^2 + 7x + 6$$

9.
$$6x^2 - 5x - 6$$

15.
$$x^3 + 2x^2 + x$$

4.
$$x^2 - x - 6$$

10.
$$x^2 + 10x + 25$$

5.
$$x^2 - 2x - 8$$

11.
$$t^3 + 1$$

16.
$$x^3 - 4x^2 + 5x - 2$$

6.
$$2x^2 + 7x - 4$$

12.
$$4t^2 - 9s^2$$

17.
$$x^3 + 3x^2 - x - 3$$

3.2. Ecuaciones e inecuaciones

Ejercicio 3.5

Indicar si las siguientes ecuaciones son verdaderas para todo valor de la variable x:

1.
$$\sqrt{x^2} = x$$

$$5. \ \frac{1}{x^{-1} + y^{-1}} = x + y$$

2.
$$\sqrt{x^2+4} = |x|+2$$

6.
$$\frac{2}{4+x} = \frac{1}{2} + \frac{2}{x}$$

3.
$$\frac{x}{x+y} = \frac{1}{1+y}$$

7.
$$(x^3)^4 = x^7$$

4.
$$\frac{16+a}{16} = 1 + \frac{a}{16}$$

8.
$$6 - 4(x+a) = 6 - 4x - 4a$$

Ejercicio 3.6

Determinar para qué valores de x son ciertas las siguientes inecuaciones.

1.
$$4x - 2 > 3$$

5.
$$1 + 5x > 5 - 3x$$

2.
$$x^2 + 4x + 1 > 0$$

6.
$$0 \le 1 - x < 1$$

3.
$$x(x-1)(x-2)(x-3) < 0$$

7.
$$\frac{2-x}{1+x} \le 0$$

4.
$$4 - 3x > 6$$

8.
$$\frac{1}{x} + \frac{1}{x+1} > 0$$

9.
$$\frac{x}{x-1} < \frac{2x+1}{x}$$

10.
$$\sqrt{x+4} < x$$

11.
$$\sqrt{x^2+1} > 2x-3$$

12.
$$3|x| - |x - 2| > 2$$

Ejercicio 3.7

Resolver las siguientes desigualdades:

1.
$$|x| < 3$$

2.
$$|x| \ge 3$$

3.
$$|x-4| < 1$$

4.
$$|x+5| \ge 2$$

5.
$$|2x - 3| \le 0.4$$

6.
$$|5x - 2| < 6$$

Ejercicio 3.8

Resolver en $\mathbb R$ las siguientes ecuaciones y expresarlas de forma factorizada si es posible:

1.
$$x^2 + 9x - 10 = 0$$

2.
$$x^2 + 9x - 1 = 0$$

3.
$$x^2 - 2x - 7 = 0$$

4.
$$x^3 - 2x + 1 = 0$$

5.
$$x^3 + 3x^2 + x - 1 = 0$$

6.
$$x^2 - 7x = 0$$

7.
$$6x^2 + 36x = 0$$

$$8. -2x^2 = 8x$$

9.
$$x^2 + 6x - 1 = (x - 1)(x + 7)$$

10.
$$x^2 - \frac{7}{2}x + 2 = 10x^2 - \frac{3}{2}x - 1$$

Ejercicio 3.9

Resolver los siguientes sistemas de ecuaciones:

$$1. \begin{cases} x + y = 2 \\ x - y = 0 \end{cases}$$

$$2. \begin{cases} x+y=2\\ 3x+3y=0 \end{cases}$$

$$3. \begin{cases} 2x + 3y = 2 \\ x + y = 1 \end{cases}$$

4.
$$\begin{cases} \frac{x}{2} + \frac{2y}{3} = 2\\ x - \frac{y}{4} = 1 \end{cases}$$

Ejercicio 3.10

Calcular las raíces de los siguientes polinomios.

1.
$$P(x) = x^3 + 2x$$

2.
$$P(x) = x^3 - x^2 - 4x + 4$$
, sabiendo que 2 es raíz.

3. $P(x)=8x^3+14x^2-5x-2$ sabiendo que $\frac{1}{2}$ es raíz.

4. Combinatoria

Ejercicio 4.1

Se quiere colorear una bandera de tres franjas utilizando los siguientes colores: amarillo, verde, rojo y azul.

- 1. ¿De cuántas puede hacerse?
- 2. ¿Y si no se pueden repetir los colores?
- 3. ¿Y si los colores de las franjas contiguas deben ser distintos?
- 4. ¿Y si los colores de la primera y última franja deben ser diferentes?
- 5. ¿Cuántas de las posibilidades de la parte 1 tienen los mismos colores pero en un orden distinto?
- 6. ¿Cuántas de las posibilidades de la parte 2 tienen los mismos colores pero en un orden distinto?

Ejercicio 4.2

La matrícula en Uruguay consiste de tres letras y cuatro números.

- 1. ¿Cuántos vehículos pueden registrarse si no se permite que se repita ninguna letra o número?
- 2. ¿Cuántos se podrían registrar en caso que se permitan repeticiones?
- 3. En caso en que se permitan repeticiones, ¿cuántas de las matrículas tienen solo vocales y números pares?

Ejercicio 4.3

- 1. En una pastelería hay 6 tipos de pasteles. ¿De cuántas formas pueden elegirse 4?
- 2. ¿Cuántos números se pueden representar en el sistema binario de 6 bits si el primer dígito es 1 y los últimos 2 son ceros?

5. Funciones

Ejercicio 5.1

Consideremos las siguientes funciones:

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = x^2$

2.
$$q: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$$
 tal que $q(x) = x^2$.

3.
$$h: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$$
 tal que $h(x) = x^2$.

4.
$$i: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\} \text{ tal que } i(x) = x^2$$
.

Estudiar inyectividad, sobreyectividad y biyectividad.

Ejercicio 5.2

- 1. Se considera $X = \{-3, -1, 0, 2, 4, 7\}$ como dominio de f y $B = \{-2, -1, 0, 1, 3, \pi, 8, 10\}$ tal que f(-3) = 0, f(-1) = 8, $f(0) = \pi$, f(2) = 8, f(4) = 3, f(7) = 1. Representar mediante un diagrama de flechas y efectuar el gráfico de f en un sistema de ejes cartesianos.
- 2. Se considera $g: \mathbb{R} \setminus \{0,2\} \to \mathbb{R}$ tal que $g(x) = \frac{(2x+1)^2}{x^2-2x}$, calcular $g(1), g(-1), g(3), g(-\sqrt{3}), g(-\pi), g(1/3), g(x+1), g(x-1)$.
- 3. Sea $j: \mathbb{R} \setminus \{-3\} \to \mathbb{R}$ tal que $j(x) = \frac{x^2 + x}{x + 3}$ y $k: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ tal que $k(x) = \frac{1}{x}$. Determinar si son posibles las siguientes composiciones, en caso contrario determinar una función de dominio más amplio posible cuya regla de asignación sea la que se obtendría mediante la composición.

$$a)$$
 $j \circ k$

c)
$$j(cx), c \in \mathbb{R}$$

b)
$$k \circ j$$

$$d) k(cx), c \in \mathbb{R}$$

Ejercicio 5.3

Se considera $f: \mathbb{R} \to \mathbb{R}$ tal que su gráfico se representa en la siguiente figura: Sin encontrar la expresión de f, hallar el gráfico de las siguientes funciones:

1.
$$h: \mathbb{R} \to \mathbb{R}$$
 tal que $h(x) = f(x) + 1$.

3.
$$j: \mathbb{R} \to \mathbb{R}$$
 tal que $j(x) = f(x+1)$.

2.
$$i: \mathbb{R} \to \mathbb{R}$$
 tal que $i(x) = f(x) - 2$.

4.
$$l: \mathbb{R} \to \mathbb{R}$$
 tal que $l(x) = f(x-1)$.

5.
$$m : \mathbb{R} \to \mathbb{R}$$
 tal que $m(x) = f(-x)$.

7.
$$r: \mathbb{R} \to \mathbb{R}$$
 tal que $r(x) = -f(-x)$.

6.
$$n: \mathbb{R} \to \mathbb{R}$$
 tal que $n(x) = -f(x)$.

8.
$$p: \mathbb{R} \to \mathbb{R}$$
 tal que $p(x) = 2f(x)$.

Ejercicio 5.4

Graficar las siguientes funciones:

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = \begin{cases} -1 & \text{si } x \leq 0 \\ 0 & \text{si } x > 0 \end{cases}$

2.
$$g: \mathbb{R} \to \mathbb{R}$$
 tal que $g(x) = \begin{cases} -x & \text{si } x \leq 0 \\ x & \text{si } x > 0 \end{cases}$

3.
$$h: \mathbb{R} \to \mathbb{R}$$
 tal que $h(x) = \begin{cases} 2x+1 & \text{si } x \leq 1 \\ -3 & \text{si } x > 1 \end{cases}$

4.
$$i: \mathbb{R} \to \mathbb{R}$$
 tal que $i(x) = \begin{cases} x - 3 & \text{si } x < -1 \\ 0 & \text{si } x \ge -1 \end{cases}$

5.
$$j: \mathbb{R} \setminus \{2\} \to \mathbb{R}$$
 tal que $j(x) = \begin{cases} -x^2 & \text{si } x < 2 \\ x + 2 & \text{si } x > 2 \end{cases}$

6.
$$k: \mathbb{R} \to \mathbb{R}$$
 tal que $k(x) = \begin{cases} -5 & \text{si } x = 1 \\ x^2 - 1 & \text{si } x \neq 1 \end{cases}$

7.
$$l: \mathbb{R} \to \mathbb{R}$$
 tal que $l(x) = \begin{cases} -1 & \text{si} & 0 \le x \le 2 \\ 0 & \text{en otro caso} \end{cases}$

Ejercicio 5.5

Para los siguientes pares de funciones calcular $f \circ g$, $g \circ f$ y f + g.

1.
$$f(x) = 2x + 1$$
,

$$g(x) = x^3 - x^2 - 4$$

2.
$$f(x) = \begin{cases} 2x+1 & x \le 0 \\ x-1 & 0 < x \end{cases}$$
, $g(x) = \begin{cases} x & x \le 0 \\ 2x & 0 < x \end{cases}$

$$g(x) = \begin{cases} x & x \le 0 \\ 2x & 0 < x \end{cases}$$

3.
$$f(x) = |2x + 1|$$
,

$$g(x) = x^2 + x + 1$$

Ejercicio 5.6

Escribir los siguientes enunciados en lenguaje matemático:

- f es una función de dominio y codominio el conjunto de los reales, tal que para todo elemento real entre -1 y 1, se tiene que su imagen funcional está entre 0 y 1.
- f es una función de dominio $A \subset \mathbb{R}$ y codominio $B \subset \mathbb{R}$, tal que para todo elemento del codominio existe una preimagen en el dominio.
- f es una función de dominio y codomino reales que tiene máximo y mínimo.
- f es una función de dominio $A \subset \mathbb{R}$ y codominio $B \subset \mathbb{R}$ que tiene dos raíces.

6. Funciones: límites y continuidad

6.1. Límites

Ejercicio 6.1

Determinar existencia y calcular los siguientes límites:

1.
$$\lim_{x \to 1} x^4 + x^3 + x^2 + x + 1$$

6.
$$\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1}$$

2.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$$

7.
$$\lim_{x \to 1} \frac{\sqrt{x} - x}{x - 1}$$

3.
$$\lim_{x \to 0} \frac{x^4 - 2x^3}{x^3 - x^2}$$

8.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$4. \lim_{x \to a} \frac{x^2 - a^2}{x - a}$$

9.
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$

5.
$$\lim_{x \to 3} \frac{|x-3|}{x-3}$$

10.
$$\lim_{x \to 0^+} \frac{\sin(x)^2}{x}$$

Ejercicio 6.2

Determinar existencia de los siguientes límites, y en caso de existencia calcularlos.

1.
$$\lim_{x \to +\infty} 2x + 3 - (2(x+5) + 3)$$

2.
$$\lim_{x \to +\infty} \frac{2x+3}{(2(x+5)+3)}$$

3.
$$\lim_{x \to +\infty} \frac{(x-1)^2}{x^2}$$

4.
$$\lim_{x \to +\infty} x - \sqrt{x^2 + x - 1}$$

5.
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$

6.
$$\lim_{x \to +\infty} \sqrt{x^4 - x^3 + 1} - \sqrt{x^4 + 15x^2 - 5}$$

7.
$$\lim_{x \to +\infty} \sin(x+1) - \sin(x)$$

8.
$$\lim_{x \to +\infty} \log(x+1) - \log(x)$$

9.
$$\lim_{x \to +\infty} e^{x+1} - e^x$$

10.
$$\lim_{x \to +\infty} \log(2x) - \log(x)$$

11.
$$\lim_{x \to +\infty} \sqrt{2x} - \sqrt{x}$$

12.
$$\lim_{x \to +\infty} e^{\sqrt{x+1}} - e^{\sqrt{x}}$$

13.
$$\lim_{x \to +\infty} \sin\left(\sqrt{x+1}\right) - \sin\left(\sqrt{x}\right)$$

6.2. Continuidad

Ejercicio 6.3

Determinar qué condiciones deben cumplir $a, b \in \mathbb{R}$ para que la función f sea continua:

1.
$$f(x) = \begin{cases} x^2 + 3x + 2 & \text{si } x \le 1\\ ax^2 + bx + 1 & \text{si } x > 1 \end{cases}$$

1.
$$f(x) = \begin{cases} x^2 + 3x + 2 & \text{si } x \le 1 \\ ax^2 + bx + 1 & \text{si } x > 1 \end{cases}$$
 3. $f(x) = \begin{cases} \sin(\pi x) & \text{si } x < 1 \\ ax + b & \text{si } 1 \le x \le 2 \\ x^2 & \text{si } x > 2 \end{cases}$

2.
$$f(x) = \begin{cases} \log(x+1) & \text{si } x > 0 \\ (x+a)^2 & \text{si } x \le 0 \end{cases}$$

4.
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x > 0\\ a \sin(x+b) & \text{si } x \le 0 \end{cases}$$

Ejercicio 6.4

Determinar existencia de máximo y mínimo de las siguientes funciones en \mathbb{R} . En caso de que existan, calcularlos:

1.
$$f(x) = x^2 + 2$$

5.
$$f(x) = |x^9 - 5x^7 + x - 3|$$

2.
$$f(x) = x^3 + x^2 + x + 1$$

6.
$$f(x) = \frac{x^5 + x^3 + 2}{x^2 + 1}$$

$$3. \ f(x) = x^4 + x^2 - 4$$

7.
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

$$4. \ f(x) = \sin^2(x)$$

Ejercicio 6.5

Para cada una de las siguientes funciones decida cúales están acotadas superior o inferiormente en el intervalo que se indica, y cuáles alcanzan su valor máximo o mínimo.

1.
$$f(x) = x^2$$
 en $(-1, 1)$

2.
$$f(x) = x^2$$
 en \mathbb{R}

3.
$$f(x) = x^2 \text{ en } [0, +\infty)$$

4.
$$f(x) = \begin{cases} x^2 & \text{si } x \le a \\ a+2 & \text{si } x > a \end{cases}$$
 en $(-a-1, a+1)$ con $a > -1$

6.3. Derivadas

Ejercicio 6.6

Calcular la derivada de las siguientes funciones cuya expresión es:

1.
$$f(x) = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$

9.
$$f(x) = \sin(\cos(x))$$

2.
$$f(x) = \frac{ax+b}{cx+d}$$

10.
$$f(x) = \sin(\frac{1}{x})$$

3.
$$f(x) = \frac{x^2 + 3x + 2}{x^4 + x^2 + 1}$$

11.
$$f(x) = \sin\left(e^{\frac{x+1}{x-2}}\right)$$

4.
$$f(x) = x\sqrt{1+x^2}$$

12.
$$f(x) = \sin\left(\frac{\cos(x)}{x}\right)$$

5.
$$f(x) = \frac{x}{\sqrt{4-x^2}}$$

13.
$$f(x) = \left(\frac{1+x^3}{1-x^3}\right)^{\frac{1}{3}}$$

6.
$$f(x) = (\sqrt[5]{x+1})^2$$

$$14. \ f(x) = x \log(x) - x$$

7.
$$f(x) = \sin^3(x)$$

8. $f(x) = \sin(x^3)$

15.
$$f(x) = e^{\frac{1}{x^2+1}}$$

Ejercicio 6.7

Hallar f' en función de g y g' para los siguientes ejemplos

a)
$$f(x) = g(x) + (x - a)$$
 b) $f(x) = g(x)(x - a)$ c) $f(x) = g(a)(x - a)$

$$b) \quad f(x) = g(x)(x-a)$$

c)
$$f(x) = q(a)(x-a)$$

d)
$$f(x) = g(x + g(a))$$
 e) $f(x) = g(xg(a))$ f) $f(x) = g(x + g(x))$

$$e) \quad f(x) = g(xg(a))$$

$$f) \quad f(x) = g(x + g(x))$$

$$g) \quad f(x+3) = g(x^3)$$

g)
$$f(x+3) = g(x^3)$$
 h) $f(x^3) = g(x+g(x))$

Ejercicio 6.8

En cada uno de los siguientes casos, calcular y graficar la recta tangente de la función f en el punto p

a)
$$f(x) = x^2$$
, $p = (3,9)$ b) $\cos(x)$, $p = (\frac{\pi}{2}, 0)$

b)
$$\cos(x)$$
, $p = \left(\frac{\pi}{2}, 0\right)$

c)
$$\frac{x}{x^2+1}$$
, $p=(0,0)$

c)
$$\frac{x}{x^2+1}$$
, $p=(0,0)$ d) $f(x)=\sqrt{9+x^2}$, $p=(4,5)$

Ejercicio 6.9

Calcular los extremos de las siguientes funciones en los dominios indicados

a)
$$f(x) = x^3 - x^2 - 8x + 1$$
 en $[-2, 2]$ b) $f(x) = x^5 + x + 1$ en $[-1, 1]$

b)
$$f(x) = x^5 + x + 1$$
 en $[-1, 1]$

c)
$$f(x) = \frac{x+1}{x^2+1}$$
 en $\left[-1, \frac{1}{2}\right]$ d) $f(x) = \frac{x}{x^2+1}$ en $[0, 5]$

d)
$$f(x) = \frac{x}{x^2 + 1}$$
 en $[0, 5]$

Ejercicio 6.10

Bosquejar funciones f con derivada segunda tal que

- 1. Los signos de f' y f'' sean positivo en todo $\mathbb R$
- 2. El signo de f' sea positivo y el signo f'' sea negativo en todo $\mathbb R$
- 3. El signo de f' sea negativo y el signo f'' sea positivo en todo \mathbb{R}
- 4. Los signos de f' y f'' sean negativo en todo $\mathbb R$

Ejercicio 6.11

Sean f y g dos funciones reales de las que se sabe que: f(2) = 1, g(2) = 3, f'(2) = -1, g'(2) = 3. Indica si son verdaderas o falsas las siguientes afirmaciones, justificando.

1.
$$(f+q)'(2) = 2$$

2.
$$(f.g)'(2) = 3$$

3.
$$g$$
 es continua en $x=2$

4. siendo
$$h: h(x) = x + f(x)$$
, se cumple que $h'(2) = 0$

Ejercicio 6.12

Sea la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3 - 6x + 8x$.

- 1. Demostrar que la recta de ecuación y = -x es tangente al gráfico de f y determina el punto de tangencia.
- 2. ¿La recta corta al gráfico de f en otro punto? Justificar.

Ejercicio 6.13

Sea $g: \mathbb{R} \setminus \{-4\} \to \mathbb{R}$ tal que $g(x) = (a-x) \ln |x+4|$. Hallar a sabiendo que la recta de ecuación: 8x + y = -24 es tangente al gráfico de g en x = -3.

Ejercicio 6.14

Se lanza, hacia arriba verticalmente un proyectil a una velocidad de 80m/s, su altura en función del tiempo está dada por la expresión

$$h(t) = 80t - 16t^2$$

- 1. ¿Cuál es la altura máxima que alcanza el proyectil?
- 2. ¿Cuál es la velocidad del proyectil cuando está a 96 metros de altura, subiendo? ¿y bajando?

7. Trigonometría

Ejercicio 7.1

Dibujar la gráfica de la función $y = 3\sin(\pi x)$. Para ello, construye una tabla de valores como la siguiente:

x					
πx	0	$\pi/2$	π	$3\pi/2$	2π
$\sin(\pi x)$					
y					

Da primero valores a πx . Luego calcula x despejando y obten los valores de $\sin \pi x$. Calcula por último, el valor de y multiplicando por 3 los últimos valores obtenidos y representa gráficamente.

Ejercicio 7.2

Dibujar por el mismo procedimiento del ejercicio anterior, las gráficas de las funciones:

a)
$$y = 2\cos(\pi x)$$
; b) $y = \cos(\frac{\pi x}{2})$; c) $y = 2\sin(\frac{\pi x}{2})$; d) $y = \sin(2x)$

Intenta sacar algunas conclusiones sobre las gráficas de las funciones $y = a \sin(kx)$ e y = $a\cos(kx)$. ¿Cómo influyen los valores de a y de k en ellas?

Ejercicio 7.3

En un par de ejes cartesianos bosquejar los siguientes elementos.

- 1. Las rectas determinadas por los pares de puntos
- a) (0,0); (1,1) b) (2,3); (3,2) c) (-1,2); (-1,-1) d) (2,2); (-1,-1)

2. Los semiplanos dados por las siguientes inecuaciones

$$a)$$
 $x+u < 2$

b)
$$x-y \ge -1$$

$$c) \quad y \ge 0$$

$$d) \quad 2x - 3y \ge 0$$

a)
$$x+y \le 2$$
 b) $x-y \ge -1$ c) $y \ge 0$ d) $2x-3y \ge 0$ e) $\frac{x}{2} + \frac{y}{3} \ge 1$

Ejercicio 7.4

Hallar la ecuación de la circunferencia que tiene su centro en (2, -3) y es tangente al eje de abscisas.

Aplicaciones 8.

Ejercicio 8.1 (Descuentos y porcentajes)

- 1. Juan decide comprarse un celular nuevo, luego de ver distintos modelos selecciona su favorito. Dos casas de telefonía, Alfa y Bravo venden ese celular a U\$S 900.
 - La casa Alfa al entrar en su semana aniversario decide hacer un descuento del 20 %. Sin embargo la casa Bravo decide no quedarse atrás y realiza un descuento del 40 %. Para no perder clientela Alfa decide realizar un nuevo descuento del $20\,\%$.
 - ¿Donde debería comprar Juan su celular?
- 2. Si usted es un mayorista que compra un producto en \$20, ¿a cuánto deberá venderlo para obtener una ganancia del 15 % de su precio de venta?
- 3. Un Shopping decide quitar el IVA a todos sus productos, realizando un descuento del 18.03%. Sin embargo el impuesto IVA aumenta en un 23% el costo del producto. ¿Es esta una publicidad engañosa?

Ejercicio 8.2 (Concentraciones)

Se tienen dos soluciones de salmuera, la solución A contiene 5% de sal mientras que la solución B contiene un 20 %. ¿Cuantos mililitros de cada solucion debe mezclar para obtener un litro de una solución con una concentración de 16 % de sal?