## Homework 5

Juanwu Lu (3037432593)

(M.Sc. Civil Engineering, UC Berkeley)

## Problem 1 "Unsupervised" RND and exploration performance

#### Part 1 Results



**Figure 1.** Results from PointmassEasy Environment: (a) Random exploration with epsilon-greedy; (b) Exploration with RND. State density of from the two algorithms are similar but RND unexpectedly has a denser density around the lower left corner (origin).



**Figure 2.** Results from PointmassMedium Environment: (a) Random exploration with epsilon-greedy; (b) Exploration with RND. State density of from the two algorithms are similar but RND has a more uniformly distributed density than the random exploration one.



**Figure 3.** Learning curve from the two environments. RND reaches higher score faster than epsilon-greedy on the PointmassEasy environment, while slower on the PointmassMedium environment.

### Part 2 Results

## Problem 2 Offline learning on exploration data

- Part 1 Compare CQL to DQN on the medium environment
- Part 2 Ablation study on amount of exploration data
- Part 3 Ablation study on the regularizer weight  $\alpha$

Problem 3 "Supervised" exploration with mixed reward bonuses

## Problem 4 Offline Learning with AWAC



Figure 4. Learning curve from PointmassEasy environment: (a) supervised algorithm with different  $\lambda$  settings; (b) unsupervised algorithm with different  $\lambda$  settings. Explorations with supervised and unsupervised perform quite similar in this environment, which I think is partly due to the simplicity of the task.



Figure 5. Learning curve from PointmassMedium environment: (a) supervised algorithm with different  $\lambda$  settings; (b) unsupervised algorithm with different  $\lambda$  settings. Unexpectedly, explorations with unsupervised perform a bit better overall in this environment with faster reaching a higher return. The best  $\lambda$  setting for supervised and unsupervised RND are  $\lambda = 20$  and  $\lambda = 0.1$ , respectively.

# Problem 5 Offline Learning with IQL $\,$