Stochastic Greedy Local Search

Chapter 7 @ Constraint Processing by Rina Dechter

Motivation

A life spent making mistakes is not only more honorable, but more useful than a life spent doing nothing.

George Bernard Shaw

- Two main exact methods for CSP solving: inference and search
- Both have exponential worst-case time (and space) complexity

- Stochastic greedy local search is approximation method
 - Appealing for requiring little memory
 - Start with arbritrary full assignment; resolve inconsistencies by local repairs

Stochastic greedy local search

- Greedy local search
 - The algorithm
 - Heuristics
- Random walk strategies
 - WalkSAT
 - Properties
- Hybrids of local search and inference

Greedy local search

- Implements greedy / hill climbing traversal of the search space
 - Does not guarantee finding a solution
- Explores search spaces whose states are complete assignments
 - Not necessarily consistent
 - Rather than partially consistent assignments

Greedy local search: the algorithm

- Start with a random complete assignment / instantiation
- Move from one complete assignment to the next
- Cost function estimates the distance between current assignment and solution
- Most greedy variant: change in value of variable gives best reduction
 - Requires a local change, and so the name local search
 - Stops when cost = 0 (*global minimum*) or no improvement possible changing one variable (*local minimum*)
 - Shortcoming: algorithm *gets stuck* in local minimum

procedure SLS

Input: A constraint network $\Re = (X, D, C)$, number of tries MAX_TRIES. A cost function defined on full assignments.

Output: A solution iff the problem is consistent, "false" otherwise.

- 1. **for** i = 1 to MAX_TRIES
 - **initialization:** let $\bar{a} = (a_1, ..., a_n)$ be a random initial assignment to all variables.

• repeat

- (a) if \bar{a} is consistent, return \bar{a} as a solution.
- (b) **else** let $Y = \{\langle x_i, a_i' \rangle\}$ be the set of variable-value pairs that when x_i is assigned a_i' , give a maximum improvement in the cost of the assignment; pick a pair $\langle x_i, a_i' \rangle \in Y$,

$$\bar{a} \leftarrow (a_1, \ldots, a_{i-1}, a_i', a_{i+1}, \ldots, a_n)$$
 (just flip a_i to a_i').

- until the current assignment cannot be improved.
- 2. endfor
- 3. return false

Greedy local search: example

Propositional formula (0-1 CSP)

$$\varphi = \{ (\neg C), (\neg A \lor \neg B \lor C), (\neg A \lor D \lor E), (\neg B \lor \neg C) \}$$

- Initial assignment: all variables assigned value 1 (true)
 - Cost = 2 (first and last clauses violated)
- Next assignment?
 - Flipping A, D or E will not reduce cost
 - Flipping C to 0 satisfies violated clauses but violates second clause (cost=1)
 - Flipping B to 0 satisfies one violated clause (cost=1)
 - Decision: C=0
- Next assignment?
 - Flip B to 0 and find a solution

Greedy local search: improvements

- In the selection of the initial assignment
- In the nature of the local changes
 - Trying to escape local minima

Heuristics to improve local search (I)

- Plateau search
 - When a local optimum is reached, apply non-improving sideway moves
- Constraint weighting
 - The guiding cost function $F(\bar{a}) = \sum_i w_i * C_i(\bar{a})$ is a weighted sum of the violated constraints, where w_i is the current weight of C_i and $C_i(\bar{a}) = 1$ iff \bar{a} violates C_i (0 otherwise)
 - First select variable/value pair that leads to largest reduction in F
 - Adjust weights
 - Increase +1 the weight of each constraint violated by current assignment
 - Local minima: no longer a local minima!

Heuristics to improve local search (II)

- Tabu search
 - Construct a list of the last n variable-value assignments
 - List forbids picking the same variable-value pairs are tabu
- Other ideas...
 - Tie-breaking rules based on historic information
 - Value propagation over unsatisfied constraints when at local minima
- Automating MAX-TRIES/MAX-FLIPS
 - How to pick a value?
 - Continue search so long as there is progress, i.e. more constraints satisfied

Constraint weighting: example

Propositional formula (0-1 CSP)

$$\varphi = \{ (\neg C), (\neg A \lor \neg B \lor C), (\neg A \lor D \lor E), (\neg B \lor \neg C) \}$$

- Initially all weights $\omega_1, \dots, \omega_4$ are set to 1
- Initial assignment: all variables assigned value 1 (true)
 - Increment by 1 the weights of the violated clauses
 - $\omega_1 = \omega_4 = 2$, i.e. cost = 4
- Next assignment? C=0
 - Flipping C to 0 satisfies violated clauses but violates second clause (cost=1)
 - Flipping B to 0 keeps first clause unsatisfied (cost=2)
- Next assignment?
 - Flip B to 0 and find a solution

Random walk strategies

- Combine random walk with a greedy bias
 - Toward assignments that satisfy more constraints
- Stochastic element for escaping local minima

- WalkSAT
 - Some probability for choosing worse assignment
- Simulated annealing
 - Noise model inspired by statistical mechanics

WalkSAT

- Designed for SAT (0-1 CSP)
- First step: constraint violated randomly selected
- Second step:
 - With probability p: change the value of one variable in violated constraint
 - With probability (1-p): minimize number of constraints that become inconsistent
- Often identify value of p given class of problems

procedure WALKSAT

Input: A network $\Re = (X, D, C)$, number of flips MAX_FLIPS, MAX_TRIES, probability p.

Output: "True," and a solution, if the problem is consistent, "false," and an inconsistent best assignment, otherwise.

- 1. for i = 1 to MAX_TRIES do
- 2. **start** with a random initial assignment \bar{a} .
- 3. Compare best assignment with \bar{a} and retain the best.
- 4. for i = 1 to MAX_FLIPS
 - if \bar{a} is a solution, **return** true and \bar{a} .
 - else,
 - i. **pick** a violated constraint *C*, randomly
 - ii. **choose** with probability p a variable-value pair $\langle x,a'\rangle$ for $x \in scope$ (C), or, with probability 1 p, choose a variable-value pair $\langle x,a'\rangle$ that minimizes the number of new constraints that break when the value of x is changed to a' (minus 1 if the current constraint is satisfied).
 - iii. Change x's value to a'.
- 5. endfor
- 6. return false and the best current assignment.

WalkSAT: example

- Propositional formula (0-1 CSP) $\varphi = \{ (\neg C), (\neg A \lor \neg B \lor C), (\neg A \lor D \lor E), (\neg B \lor \neg C) \}$
- Initial assignment: all variables assigned value 1 (true)
 - Cost = 2 (first and last clauses violated)
- Randomly select unsatisfied clause $(\neg B \lor \neg C)$
 - Try to minimize violated constraints? Flip B to 0 (cost=1)
- Only one unsatisfied clause $(\neg C)$
 - Flip C to 0 (cost=0, i.e. solution found!)

Hybrids of local search

- Inference-based methods can help backtracking search
 - Forward checking, arc- and path-consistency
- Can inference-based methods help local search?

Effect of propagation on local search

- Certain classes of structured problems are easy for backtracking and hard for local search
- Problems become trivial for local search with local consistency
 - Local consistency changes the search space
 - Many near solutions are eliminated

Summary

- Stochastic local search
 - Randomized greedy scheme
 - Approximation of systematic search
 - Cannot prove inconsistency
- Start with a random complete instantiation
- Move to the next complete instantiation
 - Random walk in a cost function
- Stop at a glocal / local minimum
 - Escape from local minimum with restart / relaxing the improvement requirement

