OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

DESCRIPTION

The M74LS245P is a semiconductor integrated circuit containing of 8 bus transmitter/receiver circuits with non-inverted outputs.

FEATURES

- Bi-directional transmission or separation of two 8 bit data is possible.
- Low input load factor (pnp input)
- Input/output A and output/input B have hysteresis characteristics (Hysteresis = 400mV typical)
- High fan-out (I_{OL} = 24mA, I_{OH} = -15mA)
- Wide operating temperature range. (T_a = -20 ~ +75°C)

APPLICATION

General digital equipment for industrial and consumer use

FUNCTIONAL DESCRIPTION

The inputs and outputs of the two buffer circuits with 3-state non-inverted outputs are connected alternately to form a bi-directional buffer.

With hysterisis characteristics in the input section of input/output A and output/input B, noise margin is high. The use of a pnp transistor input has made the input load factor small. The data direction control input DIR controls the direction of input and output. When DIR is high, A is the input terminal and B is the output terminal. On the contrary, when DIR is low, B is the input terminal and A is the output terminal.

When the output control input \overline{OC} is high, both A and B, in a high-impedance state, are separated.

FUNCTION TABLE (Note 1)

	7	,	
oc .	DIR	Α	В
L .	<u> </u>	0	J. J.
L	Н		0
			
LH	X	Z	Z

Note 1: I : input

O: output (noninverted output)

Z: high-impedance

X : irrelevant

OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

ABSOLUTE MAXIMUM RATINGS ($Ta = -20 \sim +75 \, ^{\circ} C$, unless otherwise noted)

Symbol	Pai	rameter	Conditions	Limits	Unit
V _{CC}	Supply voltage			-0.5-+7	V
		A, B		-0.5~+5.5	V
V _I Input voltage	DIR, OC		-0.5~+15	V	
Vo	Output voltage		Off-state	$-0.5 \sim +5.5$	V
Topr	Operating free-air ambie	nt temperature range		-20~+75	°C
Tsta	Storage temperature ran	ige		- 65~ + 150	Ϋ́

RECOMMENDED OPERATING CONDITIONS (Ta = -20 - +75 C, unless otherwise noted)

	Parameter			Unit		
Symbol			Min	Тур	Max	Unit
Vcc	Supply voltage		4.75	5	5.25	V
		V _{OH} ≥ 2.4V	0		-3	mA
Гон	High-level output current	V _{OH} ≥ 2V	0		- 15	mA
loL L	Law level autout gurrent	V _{OL} ≤ 0.4∨	0		12	mA
	Low-level output current	V _{OL} ≦ 0.5∨	0		24	mA

ELECTRICAL CHARACTERISTICS ($Ta = -20 - +75 \, \text{C}$, unless otherwise noted)

	Parameter Test conditions		T		Limits			Unit
Symbol			Min	Тур	Max	Unit		
VIH	High-level input voltage							V
VIL	Low-level input voltage						0.8	٧
V _{T+} — V _T -	Hystersis		V _{CC} =4.75V	V _{CC} = 4.75V		0.4		V
Vic	Input clamp voltage		V _{CC} =4.75V, I _{IC} =-	V _{CC} =4.75V, I _{IC} =-18mA			- 1.5	V
		-	V _{CC} =4.75V	I _{OH} = -3mA	2.4	3.4		٧
V _{OH}	High-level output voltage		$V_1 = 0.8V, V_1 = 2V$	I _{OH} = - 15mA	2			V
			V _{CC} = 4.75V	I _{OL} = 12mA			0.4	٧
Vol	Low-level output voltage		$V_1 = 0.8V, V_1 = 2V$	1 _{OL} =24mA			0.5	٧
lozh	Off-state high-level output current $V_{CC} = 5.25V$, $V_I = 0.8V$, $V_I = 2V$, $V_0 = 2.7V$		$V_1 = 2V, V_0 = 2.7V$			20	μΑ	
lozL	Off-state low-level output current		V _{CC} =5.25V, V _I =0.8V	$V_1 = 2V, V_0 = 0.4V$			- 200	μΑ
		A, B	V _{CC} = 5.25V, V _I = 2.7V				-20	μΑ
	High-level input current	DIR, OC					20	μΑ
ІІН		А, В	V _{CC} =5.25V, V _I =5.5	SV .			0.1	mA
		DIR, OC	V _{CC} =5.25V, V _I = 10	V			0.1	mΑ
I _{IL}	Low-level input current		V _{CC} =5.25V, V _I =0.4	IV			-0.2	mA
los	Short-circuit output current (Note 2) V _{CC} = 5.25V, V _O = 0 V		- 40		- 225	mA		
Гссн	Supply current, all outputs high		$V_{CC} = 5.25V, V_{I} = 0$	V, V _I = 4.5V		48	70	m A
ICCL	Supply current, all outputs low		V _{CC} =5.25V, V _I = 0	V, Vi = 4.5V		62	90	mA
lccz	Supply current, all outputs off		V _{CC} =5.25V, V _I = 0	V, V _L = 4.5V		64	95	mA

^{* :} All typical values are at $V_{CC} = 5V$, $Ta = 25^{\circ}C$.

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS ($V_{CC}=5V$, Ta=25°C unless otherwise noted)

	,* ,	~	Limits			Unit
Symbol	Parameter ,	Test conditions	Min	Тур	Max	Unit
tpLH	Low-to-high-level, high-to-low-level output propagation			10	15	ns
t _{PHL}	time, from input A, B to output B, A	C _L =45pF (Note 3)		10	15	ns
t PZL	Output enable time to low-level	R _L =667Ω, C _L =45pF (Note 3)		25	40	ns
tpzh	Output enable time to high-level	R _L =667Ω, C _L =45pF (Note 3)		23	40	ns
tpLZ	Output disable time from low-level	$R_L = 667\Omega$, $C_L = 5 pF$ (Note 3)		15	25	ns
t _{PHZ}	Output disable time from high-level	R _L =667Ω, C _L =5ρF (Note 3)		14	25	ns

OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

Note 3: Measurement circuit

Symbol	SW1	SW2
tрzн	Open	Closed
tezu	Closed	Open
tpLZ	Closed	Closed
IPH7	Closed	Closed

OUTPUT VOLTAGE Vo(V)

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_f = 6ns, t_f = 6ns, t_w = 500ns, V_P = $3V_{P,P}$, Z_O = 50Ω
- (2) All diodes are switching diodes $(t_{rr} \le 4ns)$
- (3) Ct includes probe and jig capacitance.

TIMING DIAGRAM (Reference level = 1.3V)

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE VS INPUT VOLTAGE

INPUT VOLTAGE VI (V)

HIGH-LEVEL OUTPUT VOLTAGE VS HIGH-LEVEL OUTPUT CURRENT

.

-OW-LEVEL OUTPUT VOLTAGE VOL(V)

LOW-LEVEL OUTPUT VOLTAGE VS LOW-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT CURRENT IOL (mA)

HIGH-LEVEL OUTPUT VOLTAGE VOH(V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

