Examen F1V2 - 2020 - J1

Pregunta 1. Si $F(x) = \int_0^x f(t)dt$ es derivable en un punto $a \in (0,1)$ entonces:

- A) f es continua en el punto a
- B) f es derivable en todo $x \in (0,1)$
- C) Ninguna de las otras dos es cierta.

Pregunta 2. Si $J(a) = \int_0^a \frac{1}{a} \log^4 \left(\frac{t}{a}\right) dt$ con a > 0 entonces J(a)

- A) Es una integral impropia no convergente para todo a > 0.
- B) J(a) es un número natural para todo a > 0.
- C) Ninguna de las otras dos es cierta.

Pregunta 3. Si $f:[0,2\pi]$ es integrable Riemann, entonces $\lim_{n\to\infty}\int_0^{2\pi}\frac{f(x)}{\sin^2 x+n}dx$

- A) Existe y vale 0.
- B) No existe.
- C) Existe y es mayor que 1.

Pregunta 4. Dada la ecuación $\int_0^x f(t)dt = \int_x^1 t f(t)dt + x + C$ donde $f(t): [0,1] \to \mathbb{R}$ es continua y C es una constante, entonces

- A) Existe una función racional f y una constante C que cumple la ecuación.
- B) Existe una función $f(t) = e^{at}$ con $a \in \{1, 2, 3, \dots\}$ y una constante C que cumple la ecuación.
- C) Ninguna de las otras dos es cierta.

Pregunta 5. La serie de potencias $\sum_{n=2}^{\infty} \frac{\log(n)}{n^3} x^n$ converge absolutamente.

- A) En todo \mathbb{R} .
- B) En x < 1.
- C) Ninguna de las otras dos es cierta.

Pregunta 6. La serie de potencias $\sum_{n=2}^{\infty} \frac{\log(n)}{n^3} x^n$

- A) Converge en x = 1 y x = -1
- B) Diverge en x = 1 y converge en x = -1
- C) Ninguna de las otras dos es cierta.

Pregunta 7. Se $f: \mathbb{R} \to \mathbb{R}$ periódica y derivable en todo $x \in \mathbb{R}$. Entonces

- A) La derivada f'(x) es periódica.
- B) $\int_{-\infty}^{\infty} f(x)dx$ es convergente.
- C) Ninguna de las otras dos es cierta.

Pregunta 8. Sea la serie $S(x) = \sum_{n=1}^{\infty} \frac{x^n(x-1)}{n!}$

- A) S(x) es convergente en todo $x \in \mathbb{R}$ y S(2) = 1
- B) S(x) es convergente en todo $x \in \mathbb{R}$ y $S(2) = e^2 1$
- C) Ninguna de las otras dos es cierta.

Pregunta 9. Sea la sucesión de funciones $f_n(x) = \tanh(nx), n \in \mathbb{N}$, donde $\tanh(nx)$ es la función "tangente hiperbólica". Entonces

- A) La sucesión no tiene límite puntual.
- B) La sucesión tiene límite puntual y no es continua
- C) Ninguna de las otras dos es cierta.

Pregunta 10. Considerando $I = \int_1^n \log(x) dx$ y la partición $P = \{1 < 2 < 3 < \dots < n\}$ se tiene que

- A) La suma inferior $L(\log(x), P) = \text{suma superior } U(\log(x), P)$.
- B) $\log((n-1)!) \le n \log(n) n + 1 \le \log(n!)$
- C) Ninguna de las otras dos es cierta.