Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia
Camilo Garcia-Jimeno

University of Pennsylvania

November 19th, 2015

What is the causal effect of T^* ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y − Outcome of interest
- ▶ h Unknown function that does not depend on i
- ▶ T* Unobserved, endogenous binary treatment
- ➤ T Observed, mis-measured surrogate for T*
- ▶ x − Exogenous covariates
- \triangleright ε Mean-zero error term
- ➤ z Discrete instrumental variable

Example 1: Smoking and Birthweight (SNAP Trial)

Coleman et al. (N Engl J Med, 2012)

RCT with 1050 pregnant smokers in England: 521 given nicotine patches, the rest given placebo patches.

- ▶ y Birthweight
- ▶ T* True smoking behavior
- ► T Self-reported smoking behavior
- x Mother characteristics
- z Indicator of nicotine patch

Example 2: Schooling and Test Scores

Burde & Linden (2013, AEJ Applied)

RCT in Afghanistan: 32 villages divided into 11 clusters. Randomly choose 6 and build a school in each village of these clusters.

- ▶ y Score on math and language test
- ▶ T* True school attendance
- ► T Self-reported school attendance
- x Household characteristics
- ▶ z School built in village

Example 3: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Non-classical Measurement Error: Binary T^*

- Many applications of linear model have binary treatment
- ▶ Binary $T^* \implies \mathbb{E}[T^*w] \le 0$
- Misclassification Probabilities:

$$\alpha_0 = \mathbb{P}(T = 1 | T^* = 0)$$
 $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1)$

- ▶ Non-Differential Measurement Error: $T \perp (z, u) | T^*$
- $\sigma_{T^*}^2 \not< \sigma_T^2$ so work with α_0, α_1 rather than κ
- Four-dimensional Problem...

Results for a Mis-classified Binary Regressor

Aigner (1973), Bollinger (1996)...

▶ Even if $\rho_{T^*u} = 0$, OLS is biased and inconsistent: typically attenuated towards zero *but could flip signs!*

Kane et al. (1999), Black et al. (2000), Frazis et al. (2003)...

- $ho_{zu}=0 \implies \text{IV}$ solves endogenous regressor problem if there is no mis-classification
- $ho_{T^*u}=0$ and $ho_{zu}=0 \implies$ non-linear GMM estimator can solve the mis-classification problem

OLS and IV Probability Limits: Binary T^*

Where $p = \mathbb{P}(T = 1)$

$$\begin{aligned} \text{plim}\left(\widehat{\beta}_{OLS}\right) &= \frac{\sigma_{T^*}^2}{\sigma_T^2} \left[\beta \left(1 - \alpha_0 - \alpha_1\right) + \frac{\sigma_{T^*u}}{\sigma_{T^*}^2}\right] \\ \text{plim}\left(\widehat{\beta}_{IV}\right) &= \frac{\beta}{1 - \alpha_0 - \alpha_1} + \frac{\sigma_{zu}}{\sigma_{zT}} \\ \sigma_{T^*}^2 &= \frac{\left(p - \alpha_0\right)\left(1 - p - \alpha_1\right)}{\left(1 - \alpha_0 - \alpha_1\right)^2} \end{aligned}$$

8/ 32

What About Endogenous, Mis-measured T^* , Valid z?

$$y = \beta T^* + u$$
$$u = c + \varepsilon$$

- ▶ No results in the literature for this case
- Important setting in applied work: e.g. RCTs
- ▶ Discrete Instrument: $z \in \{z_1, \dots, z_K\}$
- ▶ Non-parametric First Stage: $p_k^* = \mathbb{P}(T^* = 1|z = z_k)$
- ▶ What does $E[\varepsilon|z] = 0$ buy us in this case?

Observable Moments: $y = \beta T^* + u$

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
 $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$

Unobservable Moments: $y = \beta T^* + u$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$

$$p_k^* = \mathbb{P}(T^* = 1|z = z_k) = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}$$

Possible Assumptions On m_{tk}^*

Joint Exogeneity:
$$\mathbb{E}[\varepsilon|T^*,z]=0$$
 $\Rightarrow m_{tk}^*=c \quad \text{for all } t,k$

Exogenous Treatment: $\mathbb{E}[\varepsilon|T^*]=0$
 $\Rightarrow \frac{1}{\mathbb{P}(T^*=t)}\sum_k p_{tk}^* m_{tk}^*=c \quad \text{for all } t$

Exogenous Instrument: $\mathbb{E}[\varepsilon|z]=0$
 $\Rightarrow (1-p_k^*)m_{0k}^*+p_k^*m_{1k}^*=c \quad \text{for all } k$

Mahajan (2006, Econometrica)

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Main Result (Correct) – Exogenous Treatment

Relevant binary instrument z $(p_1^* \neq p_2^*)$ identifies α_0, α_1 and

$$\mathbb{E}[y|T^*]$$
 provided that $\mathbb{E}[\nu|T^*,T,z]=0$.

Mahajan (2006, Econometrica)

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[arepsilon|T^*]
eq 0$$

Additional Result (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ \rho_1^* \neq \rho_2^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$

Mahajan's Argument

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Ingredients

- 1. If $p_1^* \neq p_2^*$, $\mathbb{E}[\varepsilon|z] = 0$ then, since $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$, knowledge of α_0, α_1 is sufficient to recover β . (Correct)
- 2. If $p_1^* \neq p_2^*$, $\mathbb{E}[\nu|T^*,T,z]=0$, α_0,α_1 are identified. (Correct) How to satisfy both 1 and 2 while allowing $\mathbb{E}[\varepsilon|T^*]\neq 0$?
- 3. Assume that $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ (i.e. $m_{01}^* = m_{02}^*$ and $m_{11}^* = m_{12}^*$)

Mahajan's Argument

Proposition

If $\mathbb{E}[\varepsilon|T^*] \neq 0$ then $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ combined with $\mathbb{E}[\varepsilon|z] = 0$ implies $\rho_1^* = \rho_2^*$, i.e. z is irrelevant for T^* .

Proof

Recall that
$$\mathbb{E}[arepsilon|z]=0$$
 implies
$$(1-p_1^*)m_{01}^*+p_1^*m_{11}^*=c$$

$$(1-p_2^*)m_{02}^*+p_2^*m_{12}^*=c$$

while Mahajan's assumption implies $m_{01}^*=m_{02}^*$ and $m_{11}^*=m_{12}^*$. Therefore either $m_{01}^*=m_{02}^*=m_{11}^*=m_{12}^*=c$, which is ruled out by $E[\varepsilon|T^*]=0$, or $p_1^*=p_2^*$.

What about increasing the support of z?

$$\mathbb{E}[arepsilon|z] = 0 \implies \mathit{pair} \ \mathsf{of} \ \mathsf{equations} \ \mathsf{for} \ \mathsf{each} \ k = 1, \dots, K$$

$$\begin{split} \hat{y}_{0k} &= \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^* \\ \hat{y}_{1k} &= (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^* \\ \end{split}$$
 where
$$\hat{y}_{0k} = (1 - p_k)\bar{y}_{0k} \text{ and } \hat{y}_{0k} = p_k\bar{y}_{1k} \end{split}$$

2K Equations in K + 4 Unknowns

Theorem: β is undentified regardless of K.

(For general case, see paper.)

Proof of special case: $\alpha_0 = 0$

1. System of equations simplifies to

$$\hat{y}_{0k} = c + p_k \beta \left(\frac{\alpha_1}{1 - \alpha_1}\right) - p_k m_{1k}^*$$

$$\hat{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

2. $\beta/(1-\alpha_1) \equiv \mathcal{W}$ is identified and imposing this, algebra gives $\beta \alpha_1/(1-\alpha_1) = \mathcal{W} - \beta$.

Theorem: β is undentified regardless of K.

(For general case, see paper.)

Proof of special case: $\alpha_0 = 0$ continued...

3. Substituting:

$$(c + p_k W - \hat{y}_{0k})/p_k = \beta + m_{1k}^*$$

 $\hat{y}_{1k}/p_k = \beta + m_{1k}^*$

- 4. Linear system in (β, m_{1k}^*) no solution or ∞ of solutions.
- 5. Sum original pair of equations $\implies c + p_k W \hat{y}_{0k} = \hat{y}_{1k}$ thus ∞ of solutions. The model is unidentified.

Conditional Second Moment Independence.

New Assumption

Homoskedastic errors w.r.t. the *instrument*: $E[\varepsilon^2|z] = E[\varepsilon^2]$

Not Crazy!

Holds in an RCT or a true natural experiment.

New Moment Conditions

Defining
$$\mu_{k\ell}^* = (p_k - \alpha_0)m_{1k}^* - (p_\ell - \alpha_0)m_{k\ell}^*$$
,

$$\mathbb{E}(y^2|z_k) - \mathbb{E}(y^2|z_\ell) \equiv \Delta \overline{y^2} = \beta \mathcal{W}(p_k - p_\ell) + 2\mathcal{W}\mu_{k\ell}^*$$

$$\mathbb{E}(yT|z_k) - \mathbb{E}(yT|z_\ell) \equiv \Delta \overline{yT} = (1 - \alpha_1)\mathcal{W}(p_k - p_\ell) + \mu_{k\ell}^*$$

Theorem: $(\alpha_1 - \alpha_0)$ is Identified.

(Requires only binary z)

Proof

$$\Delta \overline{y^2} = \beta \mathcal{W}(p_k - p_\ell) + 2\mathcal{W}\mu_{k\ell}^*$$

$$\Delta \overline{yT} = (1 - \alpha_1)\mathcal{W}(p_k - p_\ell) + \mu_{k\ell}^*$$

Solve for $\mu_{k\ell}^*$, substitute and rearrange:

$$\mathcal{R} \equiv \beta - 2(1 - \alpha_1)\mathcal{W} = \frac{\Delta \overline{y^2} - 2\mathcal{W}\Delta \overline{yT}}{\mathcal{W}(p_k - p_\ell)}.$$

Rearrange and substitute $\beta = \mathcal{W}(1 - \alpha_0 - \alpha_1)$ to find

$$\alpha_1 - \alpha_0 = 1 + \mathcal{R}/\mathcal{W}.$$

What Good is $(\alpha_1 - \alpha_0)$?

- ▶ Test a necessary condition for *no mis-classification*: $\alpha_0 = \alpha_1$
- ▶ Simple, tighter partial identification bounds for β
- In some settings, one of the mis-classification probabilities is known to be zero $\implies \beta$ point identified

Conditional Third Moment Independence

New Assumption

Third moment independence w.r.t instrument: $E[\varepsilon^3|z] = E[\varepsilon^3]$

New Moment Conditions

Define
$$\lambda_{k\ell}^* = (p_k - \alpha_0)v_{1k}^* - (p_\ell - \alpha_0)v_{1\ell}^*$$

where $v_{tk}^* = \mathbb{E}(u^2|T^* = t, z_k)$. Then

$$\begin{split} \mathbb{E}(y^3|z_k) &- \mathbb{E}(y^3|z_\ell) \equiv \\ \Delta \overline{y^3} &= \beta^2 \mathcal{W}(p_k - p_\ell) + 3\beta \mathcal{W} \mu_{k\ell}^* + 3\mathcal{W} \lambda_{k\ell}^* \\ \mathbb{E}(y^2 T|z_k) &- \mathbb{E}(y^2 T|z_\ell) \equiv \\ \Delta \overline{y^2 T} &= \beta(1 - \alpha_1) \mathcal{W}(p_k - p_\ell) + 2(1 - \alpha_1) \mathcal{W} \mu_{k\ell}^* + \lambda_{k\ell}^* \end{split}$$

Theorem: β , α_0 and α_1 are identified.

Requires $\alpha_0 + \alpha_1 < 1$, but z need only be binary.

$$\Delta \overline{y^3} = \beta^2 \mathcal{W}(p_k - p_\ell) + 3\beta \mathcal{W} \mu_{k\ell}^* + 3\mathcal{W} \lambda_{k\ell}^*$$

$$\Delta \overline{y^2 T} = \beta (1 - \alpha_1) \mathcal{W}(p_k - p_\ell) + 2(1 - \alpha_1) \mathcal{W} \mu_{k\ell}^* + \lambda_{k\ell}^*$$

Simulation Study

$$\begin{split} y &= \beta \, T^* + \varepsilon \\ T^* &= \mathbf{1} \, \{ \gamma_0 + \gamma_1 z + \eta > 0 \} \\ \gamma_0 &= \Phi^{-1}(\delta), \; \gamma_1 = \Phi^{-1}(1-\delta) - \Phi(\delta) \; \text{so that} \; \delta \\ \text{E.g. if} \; \delta &= 0.1 \; \text{then} \; 10\% \; \text{of those} \; \textit{not} \; \text{offered treatment get it} \\ \text{anyway, and} \; 10\% \; \text{of those offered treatment don't take it up.} \\ \text{If} \; T^* &= 0 \; \text{then} \; T = 0 \; \text{(E.g. Birthweight and smoking)} \\ T | T^* &= 1 \sim \text{Bernoulli(?)} \end{split}$$

$$\left[\begin{array}{c} \varepsilon \\ \eta \end{array}\right] \sim N\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array}\right]\right)$$

Sampling Distribution of $\hat{\alpha}_1 - \hat{\alpha}_0$

(a)
$$N = 500, \delta = 0.1$$
 (b) $N = 1000, \delta = 0.1$ (c) $N = 5000, \delta = 0.1$ (d) $\alpha_1 = 0.1$ (e) $\alpha_1 = 0.1$ (f) $\alpha_1 = 0.1$ (f) $\alpha_1 = 0.1$ (g) α

(a)
$$N = 500, \delta = 0.3$$
 (b) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) N

Sampling Distribution of $\widehat{eta}=(1-\widehat{lpha}_0-\widehat{lpha}_1)\widehat{eta}_{IV}$

(a)
$$N = 500$$
, $\delta = 0.1$ (b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a) $N = 500$, $\delta = 0.1$ (b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a) $N = 500$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(b) $N = 1000$, $\delta = 0.1$ (c) $N = 5000$, $\delta = 0.1$

(a)
$$N = 500, \delta = 0.3$$
 (b) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 1000, \delta = 0.3$ (e) $N = 1000, \delta = 0.3$ (f) N

Empirical Illustration: Schooling and Test Scores