Streamable Neural Fields

Junwoo Cho^{1*}, Seungtae Nam^{1*}, Daniel Rho¹, Jong Hwan Ko^{1,2}, Eunbyung Park ^{1,2†}

¹Department of Artificial Intelligence, ²Department of Electrical and Computer Engineering Sungkyunkwan University, South Korea

Neural Fields

- ✓ Encoding a signal into a coordinate-based neural network.
- ✓ Requires the entire network parameters for decoding.

Streamable Neural Fields (Ours)

Designed neural fields that can be decoupled into parts.

Progressive vs Slimmable Training

- ✓ Progressive [1]: grow the width after convergence of each sub-net.
- ✓ Slimmable [2]: accumulate the gradients of each sub-net. and update the parameters in each epoch.

Network Architecture and Progressive Training

Learning Spectral Decomposition

- ✓ Each sub-net. learns the residual (: $y = \sum_i w_i \phi_i$).
- ✓ Learns signals in increasing frequency orders

 (*:cpoctral bias)

Experimental Results

[sub-net.1]

of params $(\times 10^6)$

[sub-net.2]

[sub-net.3]

Training Dynamics

✓ Our method significantly stabilizes the training by smoothing the loss landscape.

4 6 8 10 12

of params $(\times 10^5)$

4 6 8 10 12