Energy and Power

Nachiket Kapre nachiket@uwaterloo.ca

Outline

- ▶ Why care about power/energy?
- Physical Equations of Power/Energy
- Tradeoffs
 - Voltage-Frequency Scaling
 - Parallelism, Pipelining, and Time-Multiplexing
 - Activity Rates and associated analysis
 - Clock gating and Power gating

Google Liquid-Cooled TPU

TPU v3 runs very hot, consumes too much power! Cannot be cooled with fans, needs liquid cooling!

MSR Underwater Datacenter

Microsoft Research put a small datacenter under the Scottish sea. Liquid cooled in the extreme!

Why do we care about Power/Energy of Computing Chips?

- ► Datacenter power usage now 10% of global demand and rising
- ▶ Desktops/servers constrained by how quickly they can be cooled \rightarrow Practical capability 100 W/cm^2
- Mobile phones, IoT/embedded devices have limited battery capacity

- Datacenter: TCO (Total Cost of Ownership) entails buying more expensive silicon if electricity + cooling costs will stay low
- ▶ Power Limits: Dark Silicon, where we have to keep parts of our large multi-billion transistor chip idle or it will get too hot/melt
- Energy Limits: Cellphones are limited by battery capacity which is a measure of energy. Must design chips differently.

Reducing Power and Energy?

- ▶ Reducing power → reduce activity (do fewer things per unit time)
 - ▶ Implication on reduced cooling/heat removal costs
- ▶ Reduce energy → efficiency (do fewer things, period!)
 - Implication on extending battery life

Textbook Definitions

- ▶ Power is rate of consumption of energy (Energy/Time)
- $\triangleright P \propto f \times C \times V^2$
 - $\triangleright P = Power$
 - ightharpoonup f = Frequency
 - ightharpoonup C = Capacitance
 - ightharpoonup V = Voltage
- ▶ Energy is the amount of work that can be accomplished by the circuit.
- $ightharpoonup E \propto C \times V^2$

Reducing Power

- $ightharpoonup P \propto f \times C \times V^2$
- \triangleright To reduce P, we can reduce:
 - ightharpoonup f = frequency of the chip, slow it down?
 - Reduce f will also delay time required to complete task!
 - ightharpoonup C = capacitance of the design
 - Reduce c requires reducing circuit size, using right kind of hardware modules, novel materials
 - ightharpoonup V = voltage
 - Reduce V provides a quadratic reduction in power. Most effective technique! But cannot drop V too low, and it affects f (see next slide)
- \triangleright $E \propto \times C \times V^2$
- ightharpoonup To reduce E, we can reduce C or V (see above)

Power Equation Breakdown

- Possible to decompose P into its constituent contributors
 - $P = \alpha \times f \times C \times V^2$
- $ightharpoonup P = P_{dynamic} + P_{static}$
 - $ightharpoonup P_{dynamic} =$ Power due to switching activity in the circuit
 - P_{static} = Power due to leakage currents in the circuit (chip will draw power even if not doing anything useful)
- $ightharpoonup P_{dynamic} = P_{switching} + P_{short-circuit}$
 - $ightharpoonup P_{switching} = Dynamic power due to useful work in the design$
 - ho $P_{short-circuit}$ = Dynamic power due to mismatched rise/fall times leading the momentary short circuits between V_{dd} and GND.

P_{switching}

- ► The $0 \rightarrow 1$ charging path goes through the PMOS
 - Energy required to charge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ The $1 \rightarrow 0$ discharging path goes through the NMOS
 - Energy required to discharge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ Activity Factor $\alpha =$ Number of Transitions / (Number of Signals × Number of Cycles)
- $P_{dynamic} = \alpha f \times C \times V_{dd}^2$

P_{switching}

- ► The $0 \rightarrow 1$ charging path goes through the PMOS
 - Energy required to charge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ The $1 \rightarrow 0$ discharging path goes through the NMOS
 - Energy required to discharge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ Activity Factor $\alpha =$ Number of Transitions / (Number of Signals × Number of Cycles)
- $ightharpoonup P_{dynamic} = \alpha f \times C \times V_{dd}^2$

P_{switching}

- ► The $0 \rightarrow 1$ charging path goes through the PMOS
 - Energy required to charge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ The $1 \rightarrow 0$ discharging path goes through the NMOS
 - Energy required to discharge capacitor is $\frac{1}{2} \times C \times V_{dd}^2$
- ▶ Activity Factor $\alpha =$ Number of Transitions / (Number of Signals × Number of Cycles)
- $ightharpoonup P_{dynamic} = \alpha f \times C \times V_{dd}^2$

$P_{short-circuit}$

- ► Short circuit between *V*_{dd} and *GND* happens briefly during slow transitions at *in*
 - For brief periods, both PMOS and NMOS transistors will be turned ON
 - A direct path is established between the power supply and ground
 - ► This is wasted current that is a tax on operation
- $ightharpoonup P_{short} = \alpha f \times t_{short} \times I_{short} \times V_{dd}$

$P_{short-circuit}$

- ► Short circuit between *V*_{dd} and *GND* happens briefly during slow transitions at *in*
 - For brief periods, both PMOS and NMOS transistors will be turned ON
 - A direct path is established between the power supply and ground
 - ► This is wasted current that is a tax on operation
- $ightharpoonup P_{short} = \alpha f \times t_{short} \times I_{short} \times V_{dd}$

P_{static}

- Parasitic diode in the MOS substrate layer
- Constant leakage current flows between V_{dd} and GND throughput circuit operation
- This current is independent of circuit activity and is hence termed, static/leakage current!
- ► Leakage Current $I_{leak} = e^{\frac{-q \times V_t}{k \times T}}$
- $ightharpoonup P_{static} = I_{leak} imes V_{dd}$

P_{static}

- Parasitic diode in the MOS substrate layer
- Constant leakage current flows between V_{dd} and GND throughput circuit operation
- ➤ This current is independent of circuit activity and is hence termed, static/leakage current!
- ► Leakage Current $I_{leak} = e^{\frac{-q \times V_t}{k \times T}}$
- $ightharpoonup P_{static} = I_{leak} imes V_{dd}$

Voltage Scaling

- Voltage reduction is an interesting approach here because:
 - Lower both power and energy by a quadratic factor
 - ▶ Lower voltage forces slower operation $f \downarrow$
- ▶ Alpha Power Law of MOS: $\frac{1}{f} = t = K \times \frac{V_{dd}}{(V_{dd} V_{th})^a}$
 - ▶ Approximate a=2 and $V_{th}=0$, which yields $t=K imes rac{1}{V_{dd}}$
- ▶ If we lower V_{dd} , t increases inversely \rightarrow circuit slows down

Energy-Delay Product

Figure 1. Energy and Delay vs. Voltage

Low-Power Digital Design, Horowitz et al

- lacktriangle Energy $(E \propto C imes V_{dd}^2)$ can be lowered by lowering V_{dd}
- lacktriangle However, Delay $t=K imes rac{1}{V_{dd}}$ also increases with lower V_{dd}
- ▶ Thus, you can always lower energy if you slow down the computation
 - lackbox Hence, need new metric of efficiency ightarrow Energy-Delay product

Frequency Scaling

- Scaling frequency f can reduce power, but will not affect energy
- **► Faster** Frequency will get the job done sooner → Can turn off chip?
- lacktriangle Slower frequency will never draw more than specified power o battery current draw will be capped

Frequency Scaling

- Scaling frequency f can reduce power, but will not affect energy
- **► Faster** Frequency will get the job done sooner → Can turn off chip?
- lacktriangle Slower frequency will never draw more than specified power o battery current draw will be capped

Contemporary scandal

- ▶ Apple throttling old iPhones → https://ifixit.org/blog/11208/batterygate-timeline/
- ► Cause: Unexpected shutdowns due to battery degradation
- Fix: Slow down iPhones to lower burden on battery
- ▶ Result: Worldwide scandal → low-cost battery replacement apology.

Parallelism, Pipelining, Time-Multiplexing (Scheduling)

- ► Concurrency helps us reduce energy! Counter-intuitive idea, but powerful
- ► Concurrency can be delivered by either:
 - Parallel copies of hardware
 - Pipelining of hardware
- Conversely, time-multiplexing increases energy due to sequentialization of evaluation!
- ▶ If you throw in voltage scaling, we need a different metric (Energy-Delay²) \rightarrow ED²P metric out of scope of 327

EDP of Parallel Hardware

- ► Sequential Evaluation of $ax^2 + bx + c$. Output register y.
- ► You know that:
 - Energy/Evaluation of the polynomial datapath is E
 - Delay/Evaluation is D
- ▶ If circuit must compute on *N* inputs:
 - ightharpoonup Total Energy = $N \times E$
 - ▶ Total Delay = $N \times D$
 - ▶ Energy-Delay Product = $N^2 \times E \times D$

EDP of Parallel Hardware

- ▶ Parallel Evaluation of $ax^2 + bx + c$
 - Assume distributing x, gathering y is free.
- P parallel copies of the hardware
 - Energy/eval/copy = E, and Delay/eval/copy = D
 - ► Thus, Energy/Eval = $P \times E$, and Delay/Eval = D (because of parallelism!)
- $lackbox{\it N}$ inputs will be distributed across P copies ightarrow each copy gets $rac{\it N}{\it P}$
 - ► Total Energy = $\frac{N}{P} \times P \times E = N \times E \rightarrow$ Total energy stays unchanged!
 - ▶ Total Delay = $\frac{N}{P} \times D$
 - ► Energy-Delay Product = $N^2 \times E \times D \times \frac{1}{P} \rightarrow P \times$ better than sequential

EDP of Parallel Hardware

- If customer is satisfied with original throughput of single evaluation/cycle → P parallel evaluations is too fast?
- We can now reduce voltage to $\frac{V_{dd}}{P}$
 - ▶ Recall $t \propto \frac{1}{V_{dd}} \rightarrow \text{Delay/eval/copy } D \times P$
 - ▶ Recall $E \propto V_{dd}^2 \rightarrow \text{Energy/eval/copy } \frac{E}{P^2}$
- ▶ Total Delay = $\frac{N}{P} \times D \times P = N \times D$
- ► Total Energy = $\frac{N}{P} \times P \times \frac{E}{P^2} = N \times \frac{E}{P^2}$
- ► Energy-Delay Product = $N \times D \times N \times \frac{E}{P^2}$ = $N^2 \times E \times D \times \frac{1}{P^2} \rightarrow P$ times better than parallel

- Pipelining is another way to improve energy efficiency of hardware
- ► Intuition: Hardware stays idle and consumes energy when not in use

- Pipelining is another way to improve energy efficiency of hardware
- ► **Intuition**: Hardware stays idle and consumes energy when not in use
- Unpipelined processing:
 - ightharpoonup Energy E_1, E_2 , and E_3 for each step
 - ▶ Delay D_1 , D_2 , and D_3 correspondingly
 - ightharpoonup Total Energy = $E_1 + E_2 + E_3$

 - ► EDP = $E_1 \times (D_1 + D_2 + D_3) + E_2 \times (D_1 + D_2 + D_3) + E_3 \times (D_1 + D_2 + D_3)$
 - ▶ If all qty equal, EDP = $3 \times E \times 3 \times D$

- Pipelining is another way to improve energy efficiency of hardware
- ► **Intuition**: Hardware stays idle and consumes energy when not in use
- Pipelined processing
 - ▶ Energy E_1, E_2 , and E_3 for each step
 - ▶ Delay $max(D_1,D_2,D_3)$ due to pipelining
 - ► Total Energy = $E_1 + E_2 + E_3$
 - ightharpoonup Total Delay = max (D_1, D_2, D_3)
 - ► EDP= $(E_1 + E_2 + E_3) \times max(D_1, D_2, D_3)$
 - If all qty equal, EDP = $3 \times E \times D \rightarrow 3 \times$ better than unpipelined

- While pipelining is great, it may be too fast for what you want
 - ▶ Unpipelined design delay $D_1 + D_2 + D_3 \approx 3 \times D$
 - ▶ Pipelined design delay $max(D_1, D_2, D_3) \approx D$
- ► To run pipelined design at $3 \times D$ delay, must scale V_{dd} by $\frac{1}{3} \times$.
 - lacktriangleq Recall $t \propto rac{1}{V_{dd}}$
 - ightharpoonup Recall $E \propto V_{dd}^2$
- ▶ Thus, energy per stage will decrease to $\frac{E}{3^2}$, ...
- ▶ EDP = $(3 \times \frac{E}{3^2}) \times (3 \times D) = E \times D \rightarrow 3$ times better than ideal pipelined scenario where V_{dd} didn't change

Activity Rate Analysis

- Activity rate α contributes to dynamic power $P_{dynamic}$.
- ► Recall $P_{dynamic} = \alpha f \times C \times V_{dd}^2$
- lacktriangle Thus, minimizing lpha is crucial ightarrow avoid unnecessary transitions
- ▶ Bit flips $0\rightarrow 1$ and $1\rightarrow 0$ will cost power.
- ► Simple RTL coding pattern to reduce bitflips:

```
always@(posedge clk) begin
  if(valid=1'b1) then
    data <= input_data;
  end if;
  output_valid <= valid;
  output_data <= compute(data);
end;</pre>
```

What is Activity Factor?

- lacktriangle Activity factor (α) is the rate of $0 \to 1$ or $1 \to 0$ signal transitions in the circuit
- $ightharpoonup lpha = (\mathsf{Num. of 0} o 1 + \mathsf{Num. of 1} o 0) \ / \ \mathsf{Tot. Cyc.}$
- ► Activity factor of a $\rightarrow \alpha_a = \frac{8}{8} = 1.0$
- Activity factor of b $\rightarrow \alpha_b = \frac{4}{8} = 0.5$
- Activity factor of c $\rightarrow \alpha_c = \frac{2}{8} = 0.25$
- ► Activity factor of d $\rightarrow \alpha_d = \frac{0}{8} = 0$

Activity Analysis – Simple gates

- When one of the inputs to an AND or OR gate is an appropriate constant, the output gets locked to a constant!
- ► AND gate, either input is 0, output is 0
- ▶ OR gate, either input is 1, output is 1
- ▶ If you know this, you can compute activity rate for the output as 0 upfront!

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- However, this exaggerates activity rates and a simulation-based methodology is typically used.

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- However, this exaggerates activity rates and a simulation-based methodology is typically used.

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- ► However, this exaggerates activity rates and a simulation-based methodology is typically used.

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- However, this exaggerates activity rates and a simulation-based methodology is typically used.

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- However, this exaggerates activity rates and a simulation-based methodology is typically used.

- ▶ If you only know input activity rates, you have to assume worst case and sum up the rates of both inputs.
- ▶ If one of the inputs is a constant, then output rate = input rate of the changing input
- However, this exaggerates activity rates and a simulation-based methodology is typically used.

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

- lacktriangle Knowing the value of input can help significantly improve bounds on lpha
- Simulations are the best strategy for tracking what's happening on each signal y_1 , y_2 and y to compute exact activity rates
- Simulations must be rigorous enough to model overall behavior

Class Wrapup

- Energy and Power use are fundamental to circuit design
- ightharpoonup Dataceneters take up pprox 10% of total electricity demand worldwide and growing ightharpoonup global warming forces us to take this seriously
- ightharpoonup Power increasingly dominated by static components ightarrow power gating tricks necessary
- lacktriangle Dynamic components depend on activity rates ightarrow clock gating is important here
- ▶ Pipelining and parallelism are key to unlocking energy efficiency