به نام خدا

دانشکده مهندسی برق

گزارش درس یادگیری ماشین

مقطع: کارشناسی ارشد گرایش: مهندسی کنترل

گزارش آزمون پایان ترم

توسط:

مرجان محمدى

4.111044

استاد درس:

دکتر علیاری

لینک کولب

لینک دوم کولب

لینک کولب

لینک گیت هاب

آ. (هماهنگشدهٔ ۱): در یک سیستمی که تفکیک پذیر خطی نیست، ثابت کنید اگر بخواهیم با SVM آن را کلاس بندی
 کنیم در تابع هزینه آن شرط زیر برقرار است :

$$L(w, b, \Lambda, R, \varepsilon) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \left(w^T x_i + b \right) - 1 + \varepsilon_i \right) - \sum_{i=1}^{N} r_i \varepsilon_i + C \sum_{i=1}^{N} \varepsilon_i^2 + C \sum_{i=1}^{N} \varepsilon_i$$

$$\Phi = \frac{1}{2} \omega \omega + C \left(\sum_{i=1}^{N} \xi_{i,i} \right)^{2}$$

$$\Delta \omega = \frac{1}{2} \omega \omega + C \left(\sum_{i=1}^{N} \xi_{i,i} \right)^{2}$$

$$L(\omega_{2}\xi_{3}b_{3}\omega_{3}r) = \frac{1}{2} \omega \omega + C \left(\sum_{i=1}^{N} \xi_{i,i} \right)^{2} - \sum_{i=1}^{N} \alpha_{i} \left(y_{i}(x_{i}\omega_{3} + b) - 1 + \xi_{i,i} \right) - \sum_{i=1}^{N} r_{i} \xi_{i}$$

$$\Delta r_{i} > d_{i} > d_{i}$$

$$\frac{\partial L}{\partial \epsilon_{i}} = 2C \sum_{i=1}^{N} \epsilon_{i} - \alpha_{i} - r_{i} = 0 \Rightarrow \alpha_{i} + r_{i} = 2C \sum_{i=1}^{N} \epsilon_{i} = \delta \Rightarrow \sum_{i=1}^{N} \epsilon_{i} = \frac{\delta}{2C}$$
Girl : $r_{i} \epsilon_{i} = 0$, $\epsilon_{i} > 0 \Rightarrow \alpha_{i} = 2C \sum_{i=1}^{N} \epsilon_{i}$

L(X, E, b) = \frac{1}{2} (\frac{5}{2} \times, \frac{7}{2}, \frac{7}{2}

مر دع ن این مع هرن ما تدجه می در رفرس برموری ریزوشه می دد:

 $W(x_0 g) = \sum_{i=1}^{N} x_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} x_i \cdot x_j \cdot y_j \cdot (x_i \cdot x_j) - \frac{g^2}{2c} (1 - \frac{1}{2})$ $D = d_{i} \cdot y_j \cdot (x_i \cdot x_j \cdot y_j \cdot y_j) - \Lambda = \begin{pmatrix} x_i \\ x_N \end{pmatrix} \rightarrow x_i \cdot y_i \circ d_{i} \cdot d_{i} \cdot x_j \cdot y_i$

=> W(1,5)=1-(1,0 t + 52 (1-1)) (=)

المرط صاي در :

0 (1 < C1 , IT Y = 0

الن قعم مان المهندات ويقع ما نزيميزات. مِن ب مان موادم قيد ع مان المهندات من مان المهندات ع مان المهندات مان

ب. (هماهنگشدهٔ ۲): ثابت کنید در روش کاهش بعد با LDA ، مقدار Scatter Total دادهها طبق رابطه زیر بدست می آید:

$$S_{\text{Total}} = S_B + S_w$$

 $S_B = \text{Between Scatter}, S_w = \text{Within Scatter}$
(7)

$$S_{i,i} = \sum_{i=1}^{N} S_{i,i} + S_{i,i} = \sum_{j=1}^{N} (n_{j} - h_{j}) (n_{j} - h_{j})^{T} = \sum_{i=1}^{N} N_{i}$$

$$M = \frac{1}{n} \sum_{i=1}^{N} N_{i} = \sum_{i=1}^{N} \sum_{i=1}^{N} n_{i} M_{i}$$

$$\lim_{\substack{i=1 \ i=1 \ i=1$$

ج. در فضای دو بُعدی نقاط زیر و برچسب متناظر با آنها داده شده است:

- آ) بردارهای $\varphi_i(\mathbf{x}), i=1,\dots,6$ را در فضای مخفی رسم کنید و بدون محاسبه و صرفاً بهصورت شهودی بردارهای پشتیبان را پیدا کنید.
 - ب) با استفاده از حلّ مسألهٔ دوگان، مقادیر بهینهٔ وزن و بایاس را پیدا کنید.
- ج) یک تبدیل غیرخطی معرفی کنید که دادهها را از فضای دو بعدی به فضای یک بعدی انتقال دهد، به طوری که دسته بندی خطی آنها امکان پذیر شود.

$$X_{1} = \{(1,0),1\} \qquad X_{2} = \{(2,0),1\} \qquad X_{3} = \{(1,0),1\} \qquad X_{4} = \{(1,0),1\} \qquad X_{5} = \{(1,0),1\} \qquad X_{6} = \{(1,0),1\} \qquad X_{1} = \{(1,0),1\} \qquad X_{1} = \{(1,0),1\} \qquad X_{2} = \{(1,0),1\} \qquad X_{3} = \{(1,0),1\} \qquad X_{4} = \{(1,0),1\} \qquad X_{5} = \{(1,0),1\} \qquad X_{6} = \{(1,0),1\} \qquad X_{7} = \{(1,0),1\} \qquad X_{1} = \{(1,0),1\} \qquad X_{2} = \{(1,0),1\} \qquad X_{3} = \{(1,0),1\} \qquad X_{4} = \{(1,0),1\} \qquad X_{4$$

Generated by Campuanner

$$\frac{2}{\sqrt{3}} \left(\frac{5}{1} \right)^{3} \left(\frac{5}{1} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{1} \right)^{3} \left(\frac{5}{1} \right) = 1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{1} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) = -1$$

$$\frac{1}{\sqrt{2}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{11} \right)^{3} \left(\frac{5}{11} \right) + \frac{2}{\sqrt{4}} \left(\frac{5}{$$

b= 2/424+1)-1=0->24244+2b=1

=) -0.158x1,()()+6.158b)=1 => -0.158x26-1=0.158b

متلانع تاع تا از معالی دو (۱۲, ۱۲) و معنی سی این تاست داده معارا ز فعالی دومی - متال دومی دارده و در سرمان وال سان بالا می اند.

پرسش دو ستون های غیر عددی را از دیتاست حذف کردیم و کرولیشن ماتریکس را برای بقیه رسم کردیم.

سپس با هسته خطی و rbf مدل svm را آموزش می دهیم.

هسته :rbf در لینک دوم کولب

Confusion Matrix - RBF Kernel									
0 -	0	0	14	1	0	13	9		- 20
н-	0	0	6	0	0	23	7		
и -	0	0	13	1	0	20	8		- 15
True 3	1	0	14	0	0	19	9		- 10
4 -	0	0	13	0	0	16	6		
ι ν -	1	0	11	0	0	20	10		- 5
φ-	0	0	12	1	0	21	9		
	Ó	i	2	3 Predicted	4	5	6		- 0

Classificatio	•	RBF Kernel recall		support
0	0.00	0.00	0.00	37
1	0.00	0.00	0.00	36
2	0.16	0.31	0.21	42
3	0.00	0.00	0.00	43
4	0.00	0.00	0.00	35
5	0.15	0.48	0.23	42
6	0.16	0.21	0.18	43
accuracy			0.15	278
macro avg	0.07	0.14	0.09	278
weighted avg	0.07	0.15	0.09	278

قسمت ج در لینک دوم کولب

Confusion Matrix - Best SVM Model									
0 -	0	0	0	0	0	0	37	- 40	
н-	0	3	0	0	0	0	33	- 35	
7 -	0	0	2	0	0	0	40	- 30 - 25	
True 3	0	0	1	2	0	0	40	- 20	
4 -	0	0	0	0	4	0	31	- 15	
rv -	0	0	0	0	0	4	38	- 10	
φ-	0	0	0	0	0	0	43	- 5	
	Ó	i	2	3 Predicted	4	5	6	- 0	

Classification	Report -	Best SVM M		
1	precision	recall	f1-score	support
0	0.00	0.00	0.00	37
1	1.00	0.08	0.15	36
2	0.67	0.05	0.09	42
3	1.00	0.05	0.09	43
4	1.00	0.11	0.21	35
5	1.00	0.10	0.17	42
6	0.16	1.00	0.28	43
accuracy			0.21	278
macro avg	0.69	0.20	0.14	278
weighted avg	0.69	0.21	0.14	278

بخش د

در لینک سومی کولب به اسم final_ml2کل کد یکجا اورده شده فقط ران شدنش طول کشید عکساشو نذاشتم

پرسش سه

 $(A_{1}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{1}, R_{1}) + 1 = 0 + 0.9 \times \text{man} \hat{Q}(A_{2}) = 0$ $(A_{2}, R_{1}) + 1 \rightarrow A_{3} \qquad \hat{Q}(A_{2}, R_{1}) + 1 = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}) = 0$ $(A_{3}, R_{1}) + 1 \rightarrow R_{3} \qquad \hat{Q}(A_{3}, R_{1}) + 1 = 0 + 0.9 \times \text{man} \hat{Q}(B_{3}, Q_{1}') = 0$ $(B_{3}, R_{1}) + 1 \rightarrow B_{4} \qquad \hat{Q}(B_{3}, R_{1}) + 1 = 0 + 0.9 \times \text{man} \hat{Q}(B_{3}, Q_{1}') = 0$ $(C_{2}, Left) \rightarrow C_{1} \qquad \hat{Q}(C_{2}, Left) = 0 + 0.9 \times \text{man} \hat{Q}(C_{3}, Q_{1}') = 0$ $(C_{1}, R_{1}') \rightarrow B_{1} \qquad \hat{Q}(C_{2}, Left) = 0 + 0.9 \times \text{man} \hat{Q}(B_{3}, Q_{1}') = 0$ $(B_{3}, Q_{1}) \rightarrow A_{1} \qquad \hat{Q}(B_{3}, Q_{1}') = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(B_{3}, Q_{1}) \rightarrow A_{1} \qquad \hat{Q}(B_{3}, Q_{1}') = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{3} \qquad \hat{Q}(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{3} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{3} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{2} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$ $(A_{3}, R_{1}) \rightarrow A_{3} \qquad \hat{Q}(A_{3}, R_{1}) = 0 + 0.9 \times \text{man} \hat{Q}(A_{3}, Q_{1}') = 0$

 $(A_{3}, right) \rightarrow A_{3} \qquad Q(A_{1}, right) = 0 + 0.9 \text{ man } \hat{q} (A_{3}, a') = 0$ $(A_{3}, right) \rightarrow A_{4} \qquad \hat{Q}(A_{3}, right) = 10 + 0.9 \text{ man } \hat{q} (A_{4}, a') = 10$ $(C_{3}, a') \rightarrow B_{3} \qquad \hat{Q}(C_{3}, a') = \frac{1}{2} + 0 + 0.9 \text{ man } \hat{q} (B_{3}, a') = 0.9 \times -10 = -9$ $(B_{3}, a') \rightarrow A_{3} \qquad \hat{Q}(B_{3}, a') = -10 + 0.9 \text{ man } \hat{q} (A_{3}, a') = 10 + 0.9 \times 10 = -1$ $(A_{3}, right) \rightarrow A_{4} \qquad \hat{Q}(A_{3}, a') = 10 + 0.9 \times 10 = -1$ $(A_{3}, right) \rightarrow A_{4} \qquad \hat{Q}(A_{3}, a') = 10$

Q values = A(1,R) = 0 $\hat{Q}(A_2)R = 0$ $\hat{Q}(A_3,R) = 10$ $\hat{Q}(B_3,R) = 10$ $\hat{Q}(B_3,R) = 10$ $\hat{Q}(C_3,L) = 0$ $\hat{Q}(C_3,L) = 0$ $\hat{Q}(C_3,R) = 10$ $\hat{Q}(C_3,R) = 10$ $\hat{Q}(C_3,R) = 10$ $\hat{Q}(C_3,R) = 10$ $\hat{Q}(C_3,R) = 10$

راى مل ابن مال اله موسر بن عمرورا ، واري مقدر به ابن موا مد عني نني

 $A \rightarrow \rightarrow \rightarrow +1_0$ $B \rightarrow \times \leftarrow -1_0$ $C \rightarrow \leftarrow \leftarrow$