Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum Mechanics

Spectral Decomposition of Quantum-Mechanical Operators

Saturday, April 22, 2017 Daniel Halmrast Advisor: Dr. David Gaebler

Outline

Spectral Decomposition of Quantum-Mechanical Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics 1 Hilbert Space Basics

2 The Spectral Theorem

3 Quantum Mechanics

What Is a Hilbert Space?

Spectral Decomposition of Ouantum-Mechanical Operators

A *Hilbert space* is an inner product space that is complete with Hilbert Space respect to the induced metric $d(x, y) = \langle x - y, x - y \rangle$.

Basics

Example

- 1 \mathbb{C}^n with the inner product $\langle x, y \rangle = x \cdot y$
- 2 $L^2(X,\mu)$ with the inner product $\langle f,g\rangle = \int_X f\overline{g}d\mu$ (Riesz-Fischer)

Operators in Hilbert Spaces

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum Mechanics ■ A *linear operator* on a Hilbert space **H** is a function $T: \mathbf{H} \to \mathbf{H}$ that satisfies $T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2)$ for $x_1, x_2 \in \mathbf{H}$.

■ A linear operator is *bounded* if there exists some scalar C such that $\forall x \in \mathbf{H} : ||T(x)|| \le C||x||$

Example

- Any matrix $M \in \mathbb{C}^{n \times n}$ is a bounded linear operator on \mathbb{C}^n .
- 2 Given a subspace $M \subset \mathbf{H}$, the orthogonal projection operator P_M is a bounded linear operator on \mathbf{H} .
- for any essentially bounded function ϕ on a measure space (X, μ) , the multiplication operator M_{ϕ} , given by $M_{\phi}(f) = \phi f$ is a bounded linear operator on $L^2(X, \mu)$.

Adjoints and Normality

Spectral
Decomposition
of QuantumMechanical
Operators

The *adjoint* of an operator A on a Hilbert space \mathbf{H} is the unique operator A^* that satisfies

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

for all x, y in **H**. An operator is said to be *normal* if it commutes with its adjoint, and *self-adjoint* if it equals its own adjoint.

Example

- The adjoint of a matrix $M \in \mathbb{C}^{n \times n}$ is the conjugate transpose M^{\dagger} .
- 2 The projection operator P_M is self-adjoint.
- 3 The adjoint of the multiplication operator M_{ϕ} is multiplication by the conjugate $M_{\overline{\phi}}$.

Hilbert Space Basics

The Spectrum of an Operator

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum Mechanics In finite dimensions, the spectrum of a matrix M is the set of eigenvalues for that matrix (i.e. the set of all λ such that $(A - \lambda I)x = 0$ for some x).

In infinite dimensions, however, there are more ways to fail invertibility than just having a nontrivial kernel.

Definition

The *spectrum* of an operator A, denoted $\sigma(A)$, is the set of all complex numbers λ for which the operator $A - \lambda I$ is not invertible.

Spectral
Decomposition
of QuantumMechanical
Operators

Question

In what ways can $A - \lambda I$ *fail to be invertible?*

Hilbert Space Basics

The Spectral Theorem

Quantum Mechanic

Spectral Decomposition of Quantum-Mechanical Operators

Hilbert Space

Basics

Question

In what ways can $A - \lambda I$ *fail to be invertible?*

 $\mathbf{I} A - \lambda I$ has nontrivial kernel (the *point spectrum*).

Spectral
Decomposition
of QuantumMechanical
Operators

Question Hilbert Space

Basics In what ways can $A - \lambda I$ fail to be invertible?

- \blacksquare $A \lambda I$ has nontrivial kernel (the *point spectrum*).
- 2 $A \lambda I$ is not bounded below (the *approximate point spectrum*).

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum

Question

In what ways can $A - \lambda I$ *fail to be invertible?*

- $\blacksquare A \lambda I$ has nontrivial kernel (the *point spectrum*).
- $A \lambda I$ is not bounded below (the *approximate point spectrum*).
- 3 $A \lambda I$ does not have dense range (the *compression spectrum*).

Interpreting the Approximate Point Spectrum

Spectral
Decomposition
of QuantumMechanical
Operators

For an operator $A - \lambda I$ to *not* be bounded below, there must exist some sequence $\{h_n\}$ of unit vectors such that

$$||(A-\lambda I)h_n||\to 0$$

Hilbert Space Basics

The Spectra Theorem

Quantum

Theorem

If A_n is a sequence of invertible operators that converge to $A - \lambda I$, where $A - \lambda I$ is not invertible, then $\lambda \in \sigma_{AP}(A)$.

Theorem

 $\overline{\sigma_P(A)} \subset \sigma_{AP}(A)$, where $\overline{\sigma_P(A)}$ is the closure of the point spectrum of A.

Examples

Spectral Decomposition of Ouantum-Mechanical Operators

Hilbert Space Basics

Example

In finite dimensions, $\sigma(M) = \sigma_P(M)$. That is, the spectrum is entirely a point spectrum.

Example

The infinite matrix
$$M = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots \\ 0 & \frac{1}{2} & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & 0 & \cdots \\ 0 & 0 & 0 & \frac{1}{2^n} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 has $\sigma_P(M) = \{\frac{1}{2^n}\}$ and $\sigma_{AP}(M) = \sigma_P(M) \cup \{0\}$.

$$\operatorname{nas} \sigma_P(M) = \{ \underline{\dot{z}}_n \} \operatorname{and} \sigma_{AP}(M) = \sigma_P(M) \cup \{0\}$$

The Spectral Theorem for Matrices

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum

Theorem (The Spectral Theorem–Finite Dimension)

Every normal matrix A is unitarily equivalent to a diagonal matrix. That is, $A = UDU^*$ for some unitary matrix U and some diagonal matrix D.

Here, the unitary matrix has columns equal to the eigenvectors of A, and the diagonal matrix has the corresponding eigenvalues of A.

The Spectral Theorem for Matrices (Cot'd)

Spectral
Decomposition
of QuantumMechanical
Operators

Clhant Cusas

The Spectral Theorem

Quantum Mechanics Alternately,

Theorem (The Spectral Theorem–Finite Dimension, Take Two)

Every normal matrix A is expressable as a linear combination of projections onto its eigenspaces. That is,

$$A = \sum_{i=1}^{n} \lambda_i P_{\lambda_i}$$

where $\{\lambda_i\}$ is the spectrum of A, and P_{λ_i} is an orthogonal projection onto the eigenspace associated with λ_i .

The Spectral Theorem for Operators

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space

The Spectral Theorem

Quantum Mechanics What happens when we extend to the infinite-dimensional case?

Theorem (The Spectral Theorem–Projection-valued Measures)

Every normal operator A on a Hilbert space \boldsymbol{H} is expressible as

$$A = \int_{\sigma(A)} z dE(z)$$

Where dE is a projection-valued measure on the spectrum of A.

Examples

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics

Example

$$Let M = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

Then, the spectral measure E(S) is the δ -measure on $\sigma(M)$ with $E(\lambda_i) = P_{\lambda_i}$, and the spectral theorem states that

$$M = \int_{\sigma(M) = \{\lambda_i\}} z dE(z) = \sum_{i=1}^n \lambda_i P_{\lambda_i}$$

which is a restatement of the familiar spectral theorem.

Hilbert Space Basics

The Spectral Theorem

Quantum

Given a measure space (X, μ) and a collection of separable Hilbert spaces $\{\mathbf{H}_{\lambda}\}_{{\lambda}\in X}$ with a measureability structure, the *direct* integral

$$\int_X^{\oplus} \mathbf{H}_{\lambda} d\mu(\lambda)$$

is the space of equivalence classes of sections s for which $||s|| < \infty$ under the norm induced from the inner product

$$\langle s_1, s_2 \rangle = \int_{\mathbf{Y}} \langle s_1(\lambda), s_2(\lambda) \rangle d\mu(\lambda)$$

The Spectral Theorem-Direct Integral

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum

Theorem

Given a normal operator A, there exists a σ -finite measure μ on $\sigma(A)$ such that A is unitarily equivalent to the multiplication operator M_{λ} on the direct integral

$$\int_{\sigma(A)}^{\oplus} \boldsymbol{H}_{\lambda} d\mu(\lambda)$$

The \mathbf{H}_{λ} can be thought of as the "generalized eigenspaces" of the operator, and the measure will count their "generalized multiplicity". More on this later...

Quantum Lives in a Hilbert Space

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics Quantum Mechanics has five basic "axioms" to describe the theory.

- Associated with each quantum system is a Hilbert space, and quantum states are unit vectors in this Hilbert space.
- 2 Each classical phase space variable has an associated self-adjoint operator known as a quantum observable.
- The probability distribution of an observable \hat{f} for a quantum state ψ satisfies $\langle f \rangle = \langle \psi, \hat{f} \psi \rangle$
- 4 If an observable \hat{f} is measured to have a value of λ for a quantum system with initial state ψ , it will collapse to a state ψ' satisfying $\hat{f}\psi'=\lambda\psi'$
- 5 Time evolution is governed by the Schrodinger equation

$$\partial_t \psi - \frac{1}{i\hbar} \hat{H} \psi$$

Quantization of Energy

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectra Theorem

Quantum Mechanics

Proposition

The quantization of the phase space variables x and p are

- $x \to M_x$
- $p \to -i\hbar \frac{d}{dx}$

Example

The standard quantization of kinetic energy uses the identity

$$KE = \frac{p^2}{2m}$$

Which implies that

$$\hat{KE} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$$

The Finite Square Well

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics The Hilbert space for the finite square well can be taken to be $L^2(\mathbb{R})$, and the Hamiltonian for the finite square well is

$$\hat{H}(x) = \begin{cases} \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} - V_0 & \text{if } x \in [-a, a] \\ \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} & \text{else} \end{cases}$$

The goal is to find the *allowed energies* for this system. To do so, we need to find the spectrum of \hat{H} .

The Finite Square Well: Results

Spectral
Decomposition
of QuantumMechanical
Operators

First pass: solve $H\psi = E\psi$ to find eigenvalues. As it turns out, this splits into two cases: $V_0 < E < 0$ and E > 0.

Result

■ For $V_0 < E < 0$, the solutions are of the form

$$\psi(x) = \begin{cases} C_1 e^{\sqrt{\epsilon}x} & \text{if } x \in (-\infty, -a] \\ C_2 \cos(\sqrt{v - \epsilon}) & \text{if } x \in [-a, a] \\ C_3 e^{-\sqrt{\epsilon}x} & \text{if } x \in [a, \infty) \end{cases}$$

with the condition that $\sqrt{\epsilon} = \sqrt{v - \epsilon} \tan(\sqrt{v - \epsilon}a)$

■ For E > 0, the solutions are linear combinations of $\psi_E(x) = C_1 e^{ikx} + C_2 e^{-ikx}$ for $k = \frac{\sqrt{2mE}}{\hbar}$.

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics

The Finite Square Well: Bound states

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space

The Spectral Theorem

Quantum Mechanics For $E < V_0$, we find a finite discrete set of allowed energies.

$$\sqrt{\epsilon} = \sqrt{v - \epsilon} \tan(\sqrt{v - \epsilon}a)$$

The Finite Square Well: Bound States(Cot'd)

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral

Quantum Mechanics

The Finite Square Well: Spectral Partitions

Spectral Decomposition of Ouantum-Mechanical Operators

 $\sigma_P(\hat{H})$, and each free state corresponds to an energy in the approximate point spectrum $\sigma_{AP}(\hat{H})$.

Ouantum Mechanics

Proof.

For E > 0, let ψ solve $\hat{H}\psi = E\psi$, and define a sequence of functions

Each bound state corresponds to an energy in the point spectrum

$$\psi_n(x) = \psi * \begin{cases} 0 & |x| \ge n+1 \\ 1 & |x| \le n \\ \chi_{[0,\frac{1}{3}]}(-x-n) & -(n+1) < x < -n \\ \chi_{[0,\frac{1}{3}]}(x-n) & n < x < n+1 \end{cases}$$

Then, it can be shown that $\lim_{n\to\infty} \frac{||(H-EI)\psi_n||}{||_{I/n}||} = 0$.

Ouantum Mechanics For this slide, E will represent an element of the spectrum of \hat{H} , and F will be a projection-valued measure.

■ For the point spectrum,

$$dF(E) = P_E$$

where P_E is the orthogonal projection onto the one dimensional subspace of the state with energy E.

For the approximate point spectrum, one can interpret dF(E)to be a projection onto the two dimensional subspace spanned by the "states"

$$\psi_E(x) = e^{-ikx}$$
$$\psi_E(x) = e^{ikx}$$

$$\psi_E(x) = e^{ikx}$$

The Finite Square Well: Projection-Valued Measure (Cot'd)

Spectral Decomposition of Ouantum-Mechanical Operators

Ouantum Mechanics Problem:

$$\psi_E(x) = e^{-ikx}$$

$$\psi_E(x) = e^{ikx}$$

$$\psi_E(x) = e^{ikx}$$

is not in $L^2(\mathbb{R})$!

The Finite Square Well: Projection-Valued Measure (Cot'd)

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space

The Spectral Theorem

Quantum Mechanics Problem:

$$\psi_E(x) = e^{-ikx}$$

$$\psi_E(x) = e^{ikx}$$

is not in $L^2(\mathbb{R})$! This is because F(E) = 0...

The Finite Square Well: Projection-Valued Measure (Cot'd)

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectral Theorem

Quantum Mechanics Problem:

$$\psi_E(x) = e^{-ikx}$$
$$\psi_E(x) = e^{ikx}$$

is not in $L^2(\mathbb{R})$!

This is because F(E) = 0...

For a set of positive measure, we get infinitely many frequencies to work with, and can build a square-integrable function from them!

Quantum Mechanics The spectrum of \hat{H} is $\sigma(\hat{H}) = E_n \cup (0, \infty)$ for some finite set of allowed bound energies E_n .

The measure on the point spectrum is the counting measure, so that part of the integral becomes

$$\int_{\sigma_P(\hat{H})}^{\oplus} \mathbf{H}_E d\mu(E) = \bigoplus_{i=1}^n \mathbf{H}_E$$

Where \mathbf{H}_E is the one dimensional subspace of the state with energy E.

The Finite Square Well: Direct Integral

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Spac Basics

The Spectral Theorem

Quantum Mechanics The measure on the approximate point spectrum is more mysterious, but the integrand \mathbf{H}_E can be shown to be the two-dimensional subspace of complex exponentials e^{ikx} and e^{-ikx} . Thus, the Hilbert space for which \hat{H} acts as multiplication is

$$\bigoplus_{i=1}^{n}\mathbf{H}_{E_{n}}\oplus\int_{\sigma_{AP}(\hat{H})}^{\oplus}H_{E}d\mu(E)$$

Spectral
Decomposition
of QuantumMechanical
Operators

Hilbert Space Basics

The Spectra Theorem

Quantum Mechanics

Thanks for your time and attention!