Mathematics Homework Sheet 2

Author: Abdullah Oguz Topcuoglu & Yousef Farag

Problem 1

Inductive set $M \subseteq R$ means that

$$1 \in M$$

$$\forall n \in M \implies n+1 \in M$$

We want to show that the set $\bigcap_{i \in I} M_i$ is inductive. We know that $\forall i \in I, M_i$ is inductive.

We need to show two things:

- $1 \in \bigcap_{i \in I} M_i$
- If $n \in \bigcap_{i \in I} M_i$, then $n + 1 \in \bigcap_{i \in I} M_i$

Let's start with the first one:

Is $1 \in \bigcap_{i \in I} M_i$?

Yes because $\forall i \in I, 1 \in M_i$.

Now let's move on to the second one:

Pick an element $n \in \bigcap_{i \in I} M_i$.

This means that $\forall i \in I, n \in M_i$.

By definition of inductive set, $\forall i \in I, n+1 \in M_i$.

Which means that $n+1 \in \bigcap_{i \in I} M_i$.

Thus, $\bigcap_{i \in I} M_i$ is inductive.

Problem 2

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

is what we want to prove using mathematical induction We need to do two things:

- Prove the base case
- Prove the inductive step

Let's start with the base case: Insert n = 0 into the equation:

$$\sum_{k=0}^{0} k^2 = 0^2 = 0 = \frac{0(0+1)(2*0+1)}{6} = 0$$

Now the inductive step:

Assume that the equation holds for n = m, that is:

$$\sum_{k=0}^{m} k^2 = \frac{m(m+1)(2m+1)}{6}$$

Now we need to prove that the equation holds for n = m + 1:

$$\sum_{k=0}^{m+1} k^2 = \frac{(m+1)(m+2)(2m+3)}{6}$$

$$\sum_{k=0}^{m+1} k^2 = \sum_{k=0}^{m} k^2 + (m+1)^2$$

$$= \frac{m(m+1)(2m+1)}{6} + (m+1)^2 \qquad \text{(This step uses the induction assumption)}$$

$$= \frac{m(m+1)(2m+1) + 6(m+1)^2}{6}$$

$$= \frac{(m+1)(m(2m+1) + 6(m+1))}{6}$$

$$= \frac{(m+1)(2m^2 + m + 6m + 6)}{6}$$

$$= \frac{(m+1)(2m^2 + 7m + 6)}{6}$$

$$= \frac{(m+1)((m+2)(2m+3))}{6}$$

Problem 3

Problem 3 (a)

Symmetric relation means that

$$\forall x, y \in X, xRy \iff yRx$$

 R_1 and R_2 are symmetric.

$$\forall x, y \in X, xR_1y \iff yR_1x$$

$$\forall x, y \in X, xR_2y \iff yR_2x$$

Let's pick an element from $R_1 \cup R_2$. $(x,y) \in R_1 \cup R_2$ Which means that $(x,y) \in R_1$ or $(x,y) \in R_2$ If it is in R_1 , then $(y,x) \in R_1$ If it is in R_2 , then $(y,x) \in R_2$ In both cases $(y,x) \in R_1 \cup R_2$ Which means that $R_1 \cup R_2$ is symmetric.

Problem 3 (b)

Reflexive relation means that

$$\forall x \in X, xRx$$

 R_1 is reflexive.

$$\forall x \in X, xR_1x$$

 R_2 is arbitrary. Let R_3 be $R_1 \cup R_2$. Let $x \in X$ Is xR_3x ? If xR_3x , then $(x,x) \in R_3$ Which means that $(x,x) \in R_1$ or $(x,x) \in R_2$ And we know that xR_1x is true because R_1 is reflexive. Thus xR_3x is true which means R_3 is reflexive

Problem 3 (c)

Antisymmetric relation means that

$$\forall x, y \in X, xRy \land yRx \implies x = y$$

 R_1 and R_2 is antisymmetric. Let's take a look at this example:

$$X = \{1, 2\}$$

$$R_1 = \{(1, 2)\}$$

$$R_2 = \{(2, 1)\}$$

 R_1 and R_2 are antisymmetric. But $R_1 \cup R_2$ is not antisymmetric because it contains (1,2) and (2,1) and $1 \neq 2$.

Problem 4

$$X = Z \times N$$

$$(a,b) \sim (c,d) \iff ad = bc$$

Problem 4 (a)

Relation \sim being an equivalence relation means that it is reflexive, symmetric and transitive.

Let's start with reflexivity:

$$(a,b) \sim (a,b) \implies ab = ba$$

Above statement is true for all $a \in \mathbb{Z}$, $b \in \mathbb{N}$.

Thus \sim is reflexive.

Now let's check symmetry:

$$\forall a, c \in Z \ \forall b, d \in N \ (a, b) \sim (c, d) \iff ad = bc \iff cb = da \iff (c, d) \sim (a, b)$$

Thus \sim is symmetric.

Now let's check transitivity:

$$\forall a, b, c, d, e, f \in Z \ \forall x, y, z \in N \ (a, b) \sim (c, d) \land (c, d) \sim (e, f) \implies (a, b) \sim (e, f)$$
$$(a, b) \sim (c, d) \iff ad = bc$$
$$(c, d) \sim (e, f) \iff cf = de$$

Multiply these two equations together, we get:

$$adcf = bcde$$

$$af = be$$

$$af = be \iff (a, b) \sim (e, f)$$

Thus \sim is transitive.

Problem 4 (b)

$$(a,b) \sim (a',b') \wedge (c,d) \sim (c',d')$$
 means that

We want prove $(ad + cb, bd) \sim (a'd' + c'b', b'd')$ $(ad + cb, bd) \sim (a'd' + c'b', b'd')$ means that

$$(ad + cb)b'd' = (a'd' + c'b')bd$$

 $ab' = a'b \wedge cd' = c'd$

$$adb'd' + cbb'd' = a'd'bd + c'b'bd$$

$$adb'd' - a'd'bd = c'b'bd - cbb'd'$$

$$dd'(ab' - a'b) = bb'(c'd - cd')$$

$$dd'(0) = bb'(0) \quad \text{(Since } ab' = a'b \text{ and } cd' = c'd\text{)}$$

0=0 which is true for every a b c d a' b' c' d'. Thus $(ad+cb,bd)\sim (a'd'+c'b',b'd')$