1

Límites y continuidad

Definición 1.1 (La razón promedio de cambio) de y = f(x) con respecto a x en el intervalo $[x_1, x_2]$ sabiendo que $\triangle x = x_2 - x_1 = h$ es

$$\frac{\triangle y}{\triangle x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \quad h \neq 0$$

1.1. Ejercicios

Razones promedio de cambio

En los ejercicios 1 a 6, determine la razón promedio de cambio de la función en el intervalo o intervalos dados.

- 1. $f(x) = x^3 + 1$
 - **a)** [2,3]

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{(3^3 + 1) - (2^3 + 1)}{3 - 2} = 19$$

b) [-1,1]

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{(1^3 + 1) - ((-1)^3 + 1)}{1 - (-1)} = 1$$

- **2.** $g(x) = x^2 2x$
 - a) [1,3]

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{(3^2 - 2 \cdot 3) - (1^2 - 2 \cdot 1)}{3 - 1} = 2$$

b)
$$[-2, 4]$$

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{(4^2 - 2 \cdot 4) - ((-2)^2 - 2 \cdot (-2))}{4 - (-2)} = 0$$

3.
$$h(t) = \cot t$$

(a)
$$[\pi/4, 3\pi/4]$$

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{\cot(\pi/4) - \cot(3\pi/4)}{\pi/4 - 3\pi/4} = \frac{1+1}{\frac{\pi-3\pi}{4}} = \frac{8}{-2\pi}$$

(b)
$$[\pi/6, \pi/2]$$

Respuesta.-
$$\frac{\triangle y}{\triangle x} = \frac{\cot(\pi/6) - \cot(\pi/2)}{\pi/6 - \pi/2} = \frac{-3\sqrt{3}}{\pi}$$

4.
$$g(t) = 2 + \cos t$$

(a)
$$[0, \pi]$$

Respuesta.-
$$\frac{2 + \cos \pi - (2 + \cos 0)}{\pi - 0} = -\frac{2}{\pi}$$

(b)
$$[-\pi, \pi]$$

Respuesta.-
$$\frac{2 + \cos \pi - (2 - \cos \pi)}{\pi + \pi} = \frac{3 - 3}{2\pi} = 0$$

5.
$$R(\theta) = \sqrt{4\theta + 1}$$
; $[0, 2]$

Respuesta.-
$$\frac{\sqrt{4*2+1}+1-(\sqrt{4*0+1}+1)}{2-0}=\frac{2}{2}=1$$

6.
$$P(\theta) = \theta^3 - 4\theta^2 + 5\theta$$
: [1, 2]

Respuesta.-
$$\frac{2^3 - 4 \cdot 2^2 + 5 \cdot 2 - (1^3 - 4^2 + 5)}{2 - 1} = 0$$

Pendiente de una curva en un punto

En los ejercicios 7 a 14, utilice el método del ejemplo 3 para determinar a) la pendiente de la curva en el punto P dado, y b) la ecuación de la recta tangente en P