1.° Semestre 2016/2017

Duração: 60 minutos

4 fevereiro 2017

NOME	NÚMERO	

1. (1,5 + 1,5 valores) Considere o seguinte programa, que usa rotinas de interrupção para alterar o valor de um display hexadecimal.

PLACE	1000H	
contador:	WORD	6
pilha:	TABLE	100H
fim_pilha:		
tab:	WORD	0
	WORD	rot1
	WORD	0
	WORD	rot3
PLACE	0	
	MOV	SP, fim_pilha
	MOV	BTE, tab
	MOV	R2, contador
	EI1	
	EI3	
	EI	
fim:	JMP	fim

rot1:	PUSH	R1
	MOV	R1, [R2]
	SUB	R1, 2; decrementa
	MOV	[R2], R1; atualiza contador
	POP	R1
	RFE	

rot3:	PUSH	R1
	MOV	R1, [R2]
	ADD	R1, 1; incrementa
	MOV	[R2], R1; atualiza contador
	POP	R1
	RFE	

- a) Complete a zona de dados, o programa principal e as rotinas de interrupção (do lado direito) com o necessário para as interrupções 1 e 3 funcionarem corretamente;
- b) Suponha que os pinos das interrupções 1 e 3 (sensíveis ao flanco ascendente) estão ligadas ao mesmo relógio, cuja frequência é de 1 Hertz. Assumindo que o primeiro pedido de interrupção é feito no instante 0 (quando o programa arranca), indique de seguida a sequência dos 8 primeiros valores que as rotinas de interrupção escrevem no contador, bem como o número da interrupção em que cada valor é escrito e o tempo em segundos (desde que o programa arranca) em que <u>aproximadamente</u> essa escrita ocorre.

Tempo	0	0	1	1	2	2	3	3
Interrupção	1	3	1	3	1	3	1	3
Valor	4	5	3	4	2	3	1	2

- 2. (1,5 + 1,5 valores) Uma transmissão de dados é feita por um barramento série assíncrono, com bit de paridade, 2 stop bits e um ritmo de transmissão de 10.000 bits/seg.
- a) Indique qual o tempo mínimo necessário para enviar 10.000 bytes de dados. Justifique;

Para transmitir um byte, para além dos 8 bits de dados é preciso enviar um start bit, um bit de paridade e dois stop bits, ou seja, 12 bits no total.

Para transmitir 10.000 bytes é assim preciso transmitir 120.000 bits. Com uma taxa de transmissão de 10.000 bits/seg, a transmissão demora 12 segundos.

b) Suponha agora que um programa demora T₁ segundos a executar, gastando 60% deste tempo em processamento e no fim transmite os 10.000 bytes da alínea anterior, usando para tal o tempo mínimo possível, o que corresponde a 40% do tempo de execução do programa. Se o ritmo de transmissão de dados duplicar (dos 10.000 bits/seg para 20.000 bits/seg), mantendo-se todas as restantes condições, o tempo total de execução do programa passou a ser T₂. Qual a melhoria M=T₁/T₂ verificada no desempenho? <u>Justifique</u>.

```
T_1 = 0,6 \ T_1 + 0,4 \ T_1 T_2 = 0,6 \ T_1 + 0,2 \ T_1 \ (tempo \ de \ comunicação \ passou \ para \ metade) T_2 = 0,8 \ T_1 M = T_1/T_2 = 1,25
```

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. <u>Pretende-se que cada saída do descodificador fique ativa em 1 K endereços consecutivos (dimensão da fatia de endereços de cada saída). Preencha a tabela com os bits de endereço a que o descodificador e cada dispositivo devem ligar, a capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que cada dispositivo está ativo (<u>não considerando endereços de acesso</u> repetido - espelhos).</u>

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador	A10-A12			
RAM1	A0-A8	512	0000Н	01FFH
RAM2	A0-A9	1 K	0800Н	0BFFH
ROM	A0-A8	512	0С00Н	0DFFH
Periférico	A0-A6	128	1800H	187FH

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

Z	D	C	В	A
1	0	0	0	0
1	1	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
0	1	1	0	1
0	0	0	1	1
1	1	0	1	1
0	0	1	1	1
1	1	1	1	1

$$Z = \overline{AC} + \overline{AB} + BD + \overline{BCD}$$

- 5. (1 + 2 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 1024 palavras e blocos de 8 palavras.
 - a) Quantos bits são precisos para indicar qual o bloco em que cada palavra se situa (campo índice)?

7

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 5 ns e 40 ns, respetivamente. Se o tempo médio de acesso for de 8,5 ns, qual é a *hit rate* média? <u>Justifique</u>.

O tempo médio de acesso é dado por:

$$8.5 \text{ ns} = HR * 5 \text{ ns} + (1 - HR) * 40 \text{ ns}$$
 (HR – *Hit rate*)

Resolvendo,

HR = 0,9 ou 90%

6. (2 + 1 valores) Pretende-se construir um circuito microprogramado que implemente o somatório

$$\sum_{i=0}^{P-1} N * (P-i)$$

em que N, P > 1. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem N e P, respetivamente. O registo R3 vai acumulando o resultado das somas sucessivas. O sinal DEC_R2 decrementa R2 de uma unidade. O sinal INIT_R3 inicializa R3 a zero. O sinal nZ está ativo (vale 1) quando R2 é diferente de zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	PRONTO	LOAD_R1	LOAD_R2	DEC_R2	INIT_R3	LOAD_R3	SEL_MICRO _SALTO	MICRO_ SALTO
	$R1 \leftarrow N$ $R2 \leftarrow P$ $R3 \leftarrow 0$		SIM	SIM		SIM			
1	R3 ← R3 + R1 * R2						SIM		
2	R2 ← R2 - 1				SIM				
3	$(R2 != 0): MPC \leftarrow 1$							nZ	1
4	$\begin{array}{l} PRONTO \; \leftarrow 1 \\ MPC \leftarrow 4 \end{array}$	SIM						1	4

b) Quantos bits de largura deve ter no mínimo a ROM de microprograma?

11

- 7. (1,5 + 1,5 valores) Pretende executar um programa que necessita de 12 Mbytes de memória. O computador de que dispõe tem apenas 512 KBytes de memória física, mas o seu processador suporta memória virtual com páginas virtuais de 4 Kbytes (com endereçamento de byte).
 - a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º mínimo de bits do espaço virtual	24
N.º de páginas físicas existentes	128

b) Suponha que a TLB é totalmente associativa de 8 entradas e a memória física disponível para o programa está <u>localizada a partir do endereço 30000H</u>. Após reset, o processador acede aos seguintes endereços virtuais:

203B8H

4B35AH

3A1A0H

1E5BEH

4BFFEH

208FCH

Indique, na tabela a seguir, um <u>possível</u> estado do conteúdo da TLB imediatamente após estes acessos. <u>Arbitre o que for necessário</u> (não há solução única) e preencha apenas o que for relevante.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	1	20	30
1	1	4B	31
2	1	3A	32
3	1	1E	33
4	0		
5	0		
6	0		
7	0		