15LL IN

Instituto Superior de Engenharia de Lisboa (ISEL)

DEPARTAMENTO DE ENGENHARIA ELETRÓNICA E DE TELECOMUNICAÇÕES E COMPUTADORES (DEETC)

LEIM

LICENCIATURA EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA UNIDADE CURRICULAR DE PROJETO

Desenvolvimento de uma API de Pesquisa Semântica para Registos Criminais

Pedro Miguel Tavares da Silva Pato e Silva (49734)

	Orientador
Professor [Doutor]	Helder Filipe de Oliveira Bastos

Junho, 2025

Resumo

Motivado pelo interesse na área criminal e pela necessidade de melhorar a recuperação de informação em registros criminais, este projeto desenvolveu uma API de pesquisa semântica que utiliza processamento de linguagem natural (NLP) para interpretar o contexto das consultas. Implementado em Docker, o sistema foi programado em Python e utiliza uma interface desenvolvida com Flask e React. Após os testes realizados, o modelo escolhido foi o medcpt_article, que alcançou uma precisão de 95,1% em testes realizados para este projeto. A arquitetura baseada em contentores permite uma gestão dinâmica de dados, com seleção de buckets e mecanismos de Healthcheck. Desafios como a transição para Docker e a optimização do chunking foram superados de forma iterativa. O trabalho futuro prevê o fine-tuning do modelo em colaboração com a Polícia Judiciária.

Abstract

Driven by an interest in the criminal domain and the need to improve information retrieval in criminal records, this project developed a semantic search API that leverages natural language processing (NLP) to interpret the context of user queries. The system is implemented using *Docker*, programmed in *Python*, and features an interface built with *Flask* and *React*. Following extensive testing, the selected model was *medcpt_article*, which achieved an accuracy of 95.1% in evaluations made for this project. The container-based architecture enables dynamic data management, including the selection of *buckets* and the use of *Healthcheck* mechanisms. Challenges such as the migration to *Docker* and the optimization of *chunking* were addressed iteratively. Future work includes fine-tuning the model in collaboration with the Portuguese Criminal Police (*Polícia Judiciária*).

Agradecimentos

Agradeço ao Professor Doutor Helder Filipe de Oliveira Bastos pelas aulas da unidade curricular de Projeto, que, apesar de diferentes, contribuíram para um excelente aproveitamento das aulas, e pela orientação inestimável e apoio contínuo, fundamentais para o sucesso deste projeto. Agradeço à Polícia Judiciária, cuja área de atuação motivou este trabalho e forneceu importante contexto, assim como aos meus amigos e namorada pela inspiração e discussões técnicas

Ao Professor	Doutor Helder	$Bastos,\ pela$	ipoio indispensáveis longo deste projeto.

Índice

R	esum	10	i
A	bstra	act	iii
\mathbf{A}	grad	ecimentos	v
Ín	idice		ix
Li	ista d	le Tabelas x	iii
Li	ista d	le Figuras	ΧV
1	Inti	rodução	1
2	Pol	ícia Judiciária e Pesquisa Semântica	3
	2.1	Introdução à Polícia Judiciária	3
	2.2	Registos Criminais na PJ	3
	2.3	Desafios na Pesquisa de Registos	4
	2.4	Compreensão da Pesquisa Semântica	4
		2.4.1 Introdução à Pesquisa Semântica	4
		2.4.2 Pesquisa Semântica no Projeto	5
3	Tra	balho Relacionado	7
4	Mo	delo Proposto	9
	4.1	Requisitos	9
	4.2	Fundamentos	10
	4.3	Abordagem	10
	4.4	Modelo Utilizado	11

x Conteúdo

5	Imp	lementação do Modelo	13
	5.1	Arquitetura	13
		5.1.1 Arquitetura da Interface	14
		5.1.2 Arquitetura dos Buckets	15
		5.1.3 Componentes Principais	16
	5.2	Métodos da Pesquisa Semântica	25
		5.2.1 Cálculo de Similaridade	25
		5.2.2 Escolha do Tamanho de Chunk	26
	5.3	Interface	26
6	Val	dação e Testes	27
	6.1	Gráficos de Desempenho por Modelo	27
		6.1.1 medcpt-article	27
		6.1.2 medcpt-query	28
		6.1.3 nomic-embed	28
		6.1.4 all-minilm	29
		6.1.5 mxbai-embed	29
		6.1.6 avrsfr-embed	30
		6.1.7 snowflake-embed 2	30
	6.2	Comparação de Modelos	32
		6.2.1 Comparação Geral	32
		6.2.2 Seleção do Modelo medcpt-article	33
	6.3	Consultas e Script de Teste	33
		6.3.1 Consultas Utilizadas	33
		6.3.2 Verificação de Robustez a Erros Ortográficos	34
	6.4	Script test_model.py	34
	6.5	Exemplos de Uso da Interface	35
7	Cor	clusões e Trabalho Futuro	41
	7.1	Conclusão	41
	7.2	Principais Conclusões	42
	7.3	Trabalho Futuro	42
A	Ges	tão de Código e Controlo de Versões	47

CONTENTS	xi
B Documentação	49
B.1 Guia de Utilização	49
B.1.1 Instruções do README	49

Lista de Tabelas

4.1	Requisitos Funcionais											9
4.2	Requisitos Não Funcionais											10

Lista de Figuras

3.1	Arquitetura do Elasticsearch com extensões de NLP	7
3.2	Crachá da Polícia Judiciária	8
5.1	Arquitetura da API de Pesquisa Semântica	14
5.2	Arquitetura da interface	15
5.3	Arquitetura dos buckets	16
6.1	Desempenho do modelo medcpt-article	27
6.2	Desempenho do modelo medcpt-query	28
6.3	Desempenho do modelo nomic-embed	28
6.4	Desempenho do modelo all-minilm	29
6.5	Desempenho do modelo mxbai-embed	29
6.6	Desempenho do modelo avrsfr-embed	30
6.7	Desempenho do modelo snowflake-embed2	30
6.8	Comparação da similaridade média (K3) entre os modelos para	
	chunk size 300	32
6.9	Comparação do tempo de consulta K3 entre os modelos para	
	chunk size 300	32
6.10	Comparação do tempo de processamento de documentos entre	
	os modelos para <i>chunk size</i> 300	33
6.11	Tela da interface	35
	Resultado de uma consulta	36
6.13	Consulta num só bucket com $k = 3. \dots \dots \dots$	37
6.14	Consulta num só bucket com $k = 12. \dots \dots \dots$	38
6.15	Resultados da consulta num só bucket com $k = 12.$	39
6.16	Demonstração de um <i>bucket</i> que falhou	39
6.17	Seleção do bucket que falhou agora indisponível	40

Introdução

A recuperação de informação em registos criminais é um desafio crítico para sistemas judiciais e de segurança pública, devido à complexidade e o volume dos dados. As abordagens tradicionais baseadas em palavras-chave frequentemente falham em captar o contexto semântico das consultas,o que leva a resultados irrelevantes ou incompletos.

Este projeto, motivado por um interesse pessoal na área criminal e pela necessidade de modernizar sistemas de busca, desenvolveu uma API de pesquisa semântica ,focada em relatórios criminais, que utiliza técnicas de processamento de linguagem natural (NLP) para interpretar consultas e recuperar documentos relevantes com base na similaridade semântica.

Inicialmente, considerei escolher o projeto de Retrieval-Augmented Generation (RAG), mas, após uma discussão com o orientador, percebi que não correspondia aos meus objetivos, pois o foco do RAG é gerar respostas baseadas em documentos recuperados, enquanto eu buscava priorizar a recuperação semântica direta.

Sugeri então a pesquisa semântica, que se revelou mais adequada.

A API, implementada com Python, Flask, React, Ollama e Docker, utiliza o modelo medcpt-article, selecionado após testes comparativos com sete modelos, alcançando uma similaridade média de 95,1% em cerca de 100 relatórios criminais em português.

A arquitetura da API é baseada em microserviços, um modelo onde cada componente (como os buckets ou a interface) operam de forma independente, comunicando via interfaces bem definidas, o que facilita escalabilidade e manutenção.

Os utilizadores podem selecionar qualquer bucket para consulta, e a API retorna os k resultados mais relevantes, suporta por mecanismos de Healthcheck para garantir robustez.

Desafios como a transição para Docker, optimização de chunking e resolução de problemas como resultados duplicados ou incompletos foram superados com apoio do orientador.

Do ponto de vista da engenharia, o projeto seguiu uma abordagem iterativa, com foco na modularidade, escalabilidade e validação rigorosa. Testes extensivos avaliaram métricas como similaridade, tempo de consulta e tempo de processamento de documentos, confirmando a superioridade do medoptarticle.

Este trabalho contribui para a modernização de sistemas judiciais, com potencial aplicação em outros domínios, como relatórios médicos ou jornalísticos.

Este relatório está organizado da seguinte forma:

- Capítulo 2 Trabalho Relacionado: Contextualiza o projeto em relação a sistemas de busca semântica e gestão de registos criminais.
- Capítulo 3 Modelo Proposto: Detalha os requisitos, fundamentos tecnológicos e abordagem metodológica.
- Capítulo 4 Implementação do Modelo: Descreve a arquitetura, componentes e desafios técnicos.
- Capítulo 5 Validação e Testes: Apresenta os resultados dos testes e análises comparativas.
- Capítulo 6 Conclusões e Trabalho Futuro: Resume os resultados e sugere direções futuras.

Polícia Judiciária e Pesquisa Semântica

2.1 Introdução à Polícia Judiciária

A Polícia Judiciária (PJ), criada em 1945 pelo Decreto-Lei n.º 35042, é o órgão superior de polícia criminal em Portugal, subordinado ao Ministério da Justiça. Investiga crimes graves, como crime organizado, terrorismo, tráfico de drogas, corrupção e crimes financeiros. A sua estrutura inclui diretorias regionais e unidades especializadas, como a Unidade Nacional de Combate ao Terrorismo e o Laboratório de Polícia Científica.

2.2 Registos Criminais na PJ

Os registos criminais em Portugal, geridos pela Direção-Geral da Administração da Justiça (DGAJ), contêm informações sobre condenações de indivíduos maiores de 16 anos. A PJ acede a bases de dados internas com relatórios detalhados, evidências e perfis de suspeitos, essenciais para investigações. Esses registos, que abrangem crimes complexos como fraude financeira, incluem relatórios textuais, documentos financeiros e evidências forenses.

2.3 Desafios na Pesquisa de Registos

Os sistemas tradicionais de pesquisa baseados em palavras-chave apresentam limitações para a PJ:

- Dependência de Palavras-Chave: Exige termos exatos, o que dificulta procuras em documentos extensos.
- Falta de Contexto: N\(\tilde{a}\) compreende o significado sem\(\tilde{a}\)ntico, retornando resultados irrelevantes.
- Volume de Dados: Grandes quantidades de dados digitais sobrecarregam as pesquisas tradicionais.
- Dados Interconectados: Casos exigem compreender relações entre documentos.

2.4 Compreensão da Pesquisa Semântica

2.4.1 Introdução à Pesquisa Semântica

A pesquisa semântica é uma técnica avançada que visa compreender a intenção e o significado contextual de uma consulta, indo além da correspondência exata de palavras-chave.

Utiliza processamento de linguagem natural (NLP) e AI, interpreta a semântica das palavras, recupera resultados conceptualmente relevantes, mesmo sem termos idênticos.

Por exemplo, uma consulta sobre ?crimes que envolvem computadores? pode corresponder a documentos sobre "cibercrime", porque reconhece a similaridade conceptual.

Essa abordagem é valiosa em domínios com dados complexos, como registos criminais, onde documentos extensos e jargões específicos dificultam procuras tradicionais.

A pesquisa semântica usa *embeddings*? representações numéricas de texto que capturam significado? para medir a similaridade entre as consultas e os documentos.

2.4.2 Pesquisa Semântica no Projeto

Neste projeto, a pesquisa semântica é o foco para a API de recuperação de registos criminais. A API utiliza o modelo medcpt_article que alcançou 95,1% de precisão nos testes.

Este modelo gera *embeddings* para consultas e documentos, comparados via similaridade de cosseno, que mede a proximidade semântica.

Por exemplo, uma consulta sobre ?crimes cibernéticos? retorna documentos sobre "crimes digitais?, mesmo sem correspondência exata.

A API esta preparada para erros ortográficos, como ?actividades? em vez de ?atividades? porque mantém os resultados relevantes ao focar no conteúdo semântico.

Trabalho Relacionado

Figura 3.1: Arquitetura do Elasticsearch com extensões de NLP.

A pesquisa semântica tem sido explorada em sistemas de procura de informação, mas a sua aplicação em registos criminais é limitada. O Elasticsearch, com extensões de NLP, suporta buscas avançadas, mas não é optimizado para textos jurídicos complexos.

Figura 3.2: Crachá da Polícia Judiciária.

Sistemas tradicionais, como os da Polícia Judiciária, dependem de buscas por palavras-chave, limitando a relevância dos resultados.

A API desenvolvida neste projeto distingue-se pelo modelo medopt-article, optimizado para textos longos, e pela arquitetura Docker, que permite escalabilidade e gestão dinâmica de dados. Apesar de treinado em relatórios médicos, o medopt-article demonstrou excelente desempenho em relatórios criminais devido à sua capacidade de captar semântica em textos longos e estruturados. A capacidade de selecionar buckets e os mecanismos de Healthcheck tornam a solução robusta, contribuindo para avanços na procura de informação jurídica.

Modelo Proposto

Este capítulo apresenta o modelo proposto para a API de pesquisa semântica, delineando os requisitos, fundamentos tecnológicos e a abordagem metodológica, com o objetivo de fornecer uma visão clara dos objetivos do projeto.

4.1 Requisitos

Os requisitos do sistema foram definidos para garantir funcionalidade e robustez, conforme apresentado nas Tabelas 4.1 e 4.2.

$N^{\underline{o}}$	Requisito	Implementado
1	Pesquisa semântica em linguagem natural	Sim
2	Interface de utilizador para consultas	Sim
3	Seleção de <i>buckets</i> para consultas	Sim
4	Healthcheck aos buckets	Sim
5	Feedback sobre resultados	Sim

Tabela 4.1: Requisitos Funcionais

Nº	Requisito	Implementado
1	Escalabilidade para múlt buckets	iplos Sim
2 3	Monitorização de logs Segurança de dados	Sim Não

Tabela 4.2: Requisitos Não Funcionais

4.2 Fundamentos

A API utiliza técnicas de NLP para processar consultas em linguagem natural, que geram embeddings com o modelo medcpt_article via Ollama. Python e Flask formam o backend, enquanto React suporta a interface de utilizador. Docker permite a execução de buckets independentes, e FAISS é usado para indexação e busca de embeddings. A escolha do medcpt_article foi baseada em sua capacidade de lidar com textos longos, como relatórios criminais como vamos observar nos resultados do teste.

4.3 Abordagem

O desenvolvimento seguiu uma metodologia iterativa:

- Prototipagem Local: Inicialmente, o projeto foi desenvolvido localmente para explorar as técnicas de embeddings e de pesquisa semântica.
- optimização de Chunking: Passou-se de chunking baseado em caracteres para palavras, melhorando a relevância dos resultados.
- Transição para Docker: Adotou-se uma arquitetura baseada em contentores para escalabilidade e gestão dinâmica.
- Seleção de Modelo: Sete modelos foram testados, com o medcpt_article selecionado por sua precisão de 95,1%.

4.4 Modelo Utilizado

O modelo utilizado neste sistema é o medopt-article, projetado para processar textos longos de forma eficiente e treinado em relatórios médicos reais. Diferente do modelo nomic-embed-text, que foi inicialmente considerado e optimizado para consultas curtas, o "medopt-article" oferece melhor desempenho em documentos extensos, capturando contextos mais amplos nos embeddings gerados.

Implementação do Modelo

5.1 Arquitetura

A API adota uma arquitetura de microserviços, com Flask para endpoints REST, React para a interface, e Ollama para executar o medcpt-article em contentores Docker. Cada bucket é um serviço independente, configurado via docker-compose.yml, que permite adicionar dados sem interrupção.

- Interface: Desenvolvida em React, permite a seleção de buckets e a submissão de consultas em linguagem natural.
- Buckets: Serviços independentes que geram e armazenam embeddings dos documentos, processando consultas em paralelo.
- AI Node: Coordena o sistema, registra buckets, faz /textitHealth-checks e encaminhando consultas para processamento.

Figura 5.1: Arquitetura da API de Pesquisa Semântica

5.1.1 Arquitetura da Interface

A interface utiliza componentes React para interação dinâmica, incluindo um seletor de buckets e uma área de entrada de texto. O $AI\ Node$ é integrado como um ponto de comunicação central, recebe consultas e retornando respostas processadas. O $AI\ Node$ é uma parte integral da interface, serve como o centro de comunicação entre a interface e os buckets como mencionado anteriormente.

Figura 5.2: Arquitetura da interface.

5.1.2 Arquitetura dos Buckets

Os buckets são serviços modulares que dividem documentos em chunks de 300 palavras, geram embeddings com o modelo "medcpt-article" e os armazenamnos para consultas futuras. Cada bucket opera de forma independente, permitindo escalabilidade.

Figura 5.3: Arquitetura dos buckets.

5.1.3 Componentes Principais

Os componentes principais do sistema foram projetados para fornecer capacidades de pesquisa semântica, que utilizam *embeddings*, uma arquitetura distribuída de *buckets* e uma interface para interação com o utilizador. Abaixo, detalhamos cada componente e suas funcionalidades.

Criação e Armazenamento de Embeddings

Os *embeddings* são representações numéricas de texto que capturam o significado semântico, que permite pesquisas baseadas em similaridade. Este processo envolve duas classes principais: Embedder.py e EmbeddingRepo.py.

Embedder.py A classe Embedder gera embeddings a partir de texto utilizando o serviço Ollama.

• Divisão de Texto: Documentos grandes são divididos em *chunks* para garantir que os *embeddings* representem o contexto local de forma eficaz. O método chunk_content divide o texto com base no número de palavras, com tamanho e sobreposição configuráveis.

Código 1: Método de chunking em Embedder.py

• Geração de *Embeddings*: O método generate_embedding envia um *chunk* de texto ao serviço Ollama via OllamaDAO e retorna o *embedding* como um array NumPy.

```
def generate_embedding(self, text: str) -> np.
   ndarray:
    return self.ollama_dao.generate_embedding(text)
```

Código 2: Geração de embedding em Embedder.py

EmbeddingRepo.py A classe EmbeddingRepo lida com o armazenamento e recuperação de *embeddings* utilizando o FAISS, uma biblioteca otimizada para pesquisa de similaridade.

• Configuração do Índice: Utiliza um índice IndexFlatIP da FAISS com dimensão 768 (correspondente ao tamanho do *embedding*) para pesquisa de similaridade por produto interno.

```
self.faiss_index = faiss.IndexFlatIP(768)
```

Código 3: Configuração do índice FAISS

• Armazenamento de *Embeddings*: O método save normaliza os *embeddings* (para garantir magnitude consistente) e os adiciona ao índice FAISS, associando-os aos metadados do documento.

Código 4: Armazenamento de embeddings

• Pesquisa de *Embeddings*: O método search encontra os *k embeddings* mais similares a um vetor de consulta, retorna os detalhes do documento e pontuações de similaridade.

```
def search(self, query_vector: np.ndarray, k: int =
  3) -> List[Tuple[Doc, float, int, str]]:
    norm = np.linalg.norm(query_vector)
    normalized_query = query_vector / norm if norm
       != 0 else query_vector
    search_k = min(k * 2, self.faiss_index.ntotal)
    distances, indices = self.faiss_index.search(np.
       array([normalized_query]), search_k)
    similarities = distances[0]
    results = []
    seen_docs = set()
    for j, i in enumerate(indices[0]):
        if len(results) >= k:
            break
        doc, chunk_index, chunk_text = self.docs[i]
        if doc.name not in seen_docs:
            results.append((doc, similarities[j],
               chunk_index, chunk_text))
            seen_docs.add(doc.name)
    return results
```

Código 5: Pesquisa de embeddings

Gestão de Buckets

Os *buckets* são unidades independentes que processam e armazenam *embeddings* de documentos. A sua gestão envolve registo, processamento de documentos e manipulação de ficheiros.

BucketWebService.py A classe BucketWebService gere o serviço web do bucket e sua interação com o $AI\ Node.$

• Configuração: Utiliza variáveis de ambiente para definir o nome, pasta e URLs de comunicação do bucket.

```
self.bucket_name = os.getenv("BUCKET_NAME", "
    default_bucket")
self.bucket_folder = os.getenv("BUCKET_FOLDER", "./
    documents")
self.ai_node_url = os.getenv("AI_NODE_URL", "http://
    interface:5000/ai-node")
self.bucket_url = os.getenv("BUCKET_URL", "http://
    bucket1:5000")
```

Código 6: Configuração do bucket

• **Registo**: Os *buckets* registam-se no *AI Node* enviando seu nome e URL, acionando o processamento de documentos após o registo bemsucedido.

Código 7: Registo do bucket

StartUpController.py A classe StartUpController processa os documentos no bucket durante a inicialização.

• Processamento de Documentos: Corre a pasta do *bucket* em busca de tipos de ficheiros suportados (e.g., .txt, .pdf) e processa-os utilizando o EmbeddingManager.

Código 8: Processamento de documentos

FileManagerDAO.py A classe FileManagerDAO lida com o acesso a ficheiros dentro dos buckets.

• Listagem de Ficheiros: Recupera uma lista de ficheiros suportados do diretório do *bucket* e suas subpastas.

```
"content": ""
})
return docs
```

Código 9: Listagem de ficheiros

Gestão de Consultas

As consultas são processadas para encontrar documentos semanticamente similares com o uso dos *embeddings*.

QueryController.py A classe QueryController lida com requisições de consulta via endpoint web.

• Endpoint de Consulta: Aceita requisições POST com uma string de consulta e um valor k, retornando resultados classificados.

```
@app.route("/query", methods=["POST"])
def query_endpoint():
    data = request.get_json()
    query_text = data.get("query", "")
    k = int(data.get("k", 3))
    result = self.embedding_manager.process_query(
        query_text, k)
    return jsonify({
        "results": result["results"],
        "query_time": query_time
})
```

Código 10: Endpoint de consulta

QueryManager.py A classe QueryManager processa consultas que geram embeddings e faz uma pesquisa no repositório.

• Processamento de Consultas: Converte a consulta num embedding e recupera as k melhores correspondências.

```
def process_query(self, query: str, k: int = 3) ->
   List[Dict[str, any]]:
   query_vector = self.embedding_manager.embedder.
        generate_embedding(query)
```

```
results = self.embedding_repo.search(
   query_vector, k)
result_list = [
   {
       "name": doc.name,
       "similarity": float(dist),
       "location": doc.location,
       "chunk": chunk_text,
   }
   for doc, dist, chunk_index, chunk_text in
       results
]
return result_list
```

Código 11: Processamento de consultas

Healthcheck e Comunicação

O sistema garante confiabilidade através de *healthchecks* e comunicação eficiente entre *buckets* e a interface.

AlNode.py A classe Alnode supervisiona a saúde dos *buckets* e encaminha consultas.

• *Healthcheck*: Verifica o estado dos *buckets* a cada 30 segundos, envia uma requisição GET para o endpoint /status. Um *bucket* é marcado como vivo se responder com código 200.

```
time.sleep(30)
```

Código 12: Healthcheck dos buckets

• Encaminhamento de Consultas: Encaminha consultas de forma assíncrona para os *buckets* selecionados e agrega os resultados.

```
async def forward_query(self, query, k,
   selected_buckets):
    results = {}
    async with httpx.AsyncClient() as client:
        for bucket in self.buckets:
            if bucket['name'] in selected_buckets:
                 try:
                     url = f"{bucket['url']}/query"
                     resp = await client.post(url,
                        json={"query": query, "k": k
                        }, timeout=10)
                     if resp.status_code == 200:
                         data = resp.json()
                         results[bucket['name']] =
                            data.get("results", [])
                     else:
                         results[bucket['name']] = [{
                            "error": f"Bucket⊔
                            retornou_{\square}estado_{\square}\{resp.
                            status_code}"}]
                 except Exception as e:
                     results[bucket['name']] = [{"
                        error": f"Bucket,inacessível:
                        _{str(e)}"}]
    return results
```

Código 13: Encaminhamento de consultas

011amaDA0

A classe OllamaDAO integra-se com o serviço Ollama para gerar embeddings.

• Inicialização: Conecta-se ao serviço Ollama com um host e modelo configuráveis.

```
def __init__(self):
```

```
self.model = "nomic-embed-text:v1.5"
ollama_host = os.getenv("OLLAMA_HOST", "http://
    localhost:11434")
os.environ["OLLAMA_HOST"] = ollama_host
try:
    ollama.list()
    logger.info(f"Serviço_Ollama_inicializado_
        com_o_modelo_{self.model}")
except Exception as e:
    logger.error("Serviço_Ollama_indisponível")
    raise RuntimeError("Serviço_Ollama_
        indisponível") from e
```

Código 14: Inicialização do OllamaDAO

• Geração de *Embeddings*: Envia texto ao Ollama e recupera o *embedding* como um array NumPy.

Código 15: Geração de embedding via Ollama

Componentes Adicionais

- DocsParser: Extrai texto de ficheiros (e.g., .pdf, .docx) com a bibliotecas PyPDF2 e prepara o conteúdo para embeddings.
- DocsRepo: Integra FileManagerDAO e DocsParser para procurar e analisar documentos para criar objetos Doc com metadados e conteúdo.

- EmbeddingManager: Orquestra o processamento de documentos, coordenando Embedder e EmbeddingRepo para gerar e armazenar embeddings.
- Interface (InterfaceWebService e main_interface.py): Serve um frontend baseado em React e encaminha requisições para *buckets* via *AI Node*, proporcionando uma interface amigável ao utilizador.
- *Logging*: Registo abrangente em todos os componentes auxilia no monitoramento, depuração e optimização de desempenho.

Este sistema processa documentos, armazena *embeddings* e lida com consultas de forma eficiente, tornando-o adequado para aplicações de pesquisa semântica.

5.2 Métodos da Pesquisa Semântica

5.2.1 Cálculo de Similaridade

A similaridade entre a consulta e os embeddings dos documentos é calculada com a similaridade de cosseno, que mede o cosseno do ângulo entre dois vetores. A fórmula é:

$$similaridade = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

onde A é o vetor de embedding da consulta e B é o vetor de embedding do documento.

Por exemplo, se uma consulta como "crimes cibernéticos" tiver o embedding $\mathbf{A} = [1,0]$ e um documento com "segurança online" tiver $\mathbf{B} = [0.5,0.5]$, o cálculo é:

similaridade =
$$\frac{1 \cdot 0.5 + 0 \cdot 0.5}{\sqrt{1^2 + 0^2} \cdot \sqrt{0.5^2 + 0.5^2}} = \frac{0.5}{1 \cdot \sqrt{0.5}} \approx 0.707$$

Este valor indica uma similaridade moderada. A comparação final é feita considerando o chunk com a maior pontuação de similaridade em cada documento e não uma média de todos os chunks.

5.2.2 Escolha do Tamanho de Chunk

O tamanho de chunk de 300 palavras foi escolhido após experimentos que equilibraram contexto e eficiência. Chunks menores (e.g., 200 tokens) aumentam a granularidade, mas elevam o custo computacional. Chunks maiores (e.g., 500 tokens) reduzem custos, mas perdem especificidade nos embeddings. O valor de 300 palavras, embora não seja exatamente a média dos tamanhos testados, mostrou-se ideal para otimizar pontuações de similaridade e desempenho do sistema.

5.3 Interface

Durante o desenvolvimento, foram enfrentadas diversas dificuldades técnicas, entre as quais:

- Transição para Docker: A migração da implementação local para contentores exigiu ajustes nas configurações de redes e volumes, resolvidos com o apoio do orientador.
- 2. **optimização de** *Chunking*: A abordagem inicial, baseada no número de caracteres, foi substituída por uma segmentação por palavras, o que melhorou a relevância dos resultados.
- 3. Filtro de Duplicados: A filtragem de documentos repetidos limitava o número de resultados. A solução passou por aumentar o número de candidatos retornados pela FAISS antes de aplicar o filtro.

Capítulo 6

Validação e Testes

6.1 Gráficos de Desempenho por Modelo

Esta seção apresenta os resultados dos modelos testados (medcpt-article, medcpt-query, nomic-embed, all-minilm, mxbai-embed, avrsfr-embed, snowflake-embed2) em documentos em português, com base nas métricas de similaridade média (K3), tempo de processamento de documentos e tempo de consulta K3, para diferentes tamanhos de *chunk* (200, 300, 500 palavras). As figuras de cada modelo são apresentadas lado a lado, seguidas de suas análises.

6.1.1 medcpt-article

Figura 6.1: Desempenho do modelo medcpt-article.

O modelo medcpt-article apresentou a maior similaridade K3 (0.947, 0.951, 0.949 para *chunk sizes* 200, 300, 500), indicando recuperação de documentos altamente relevante. O tempo de processamento de documentos

diminui com o aumento do *chunk size* (7.38s, 4.64s, 1.94s), devido à redução de *chunks* (4.7, 3.03, 1.22). O tempo de consulta K3 é estável (0.018?0.020s). Comparado ao medcpt-query, tem ligeira vantagem em similaridade, com tempos de processamento semelhantes.

6.1.2 medcpt-query

Figura 6.2: Desempenho do modelo medcpt-query.

O medcpt-query exibiu alta similaridade K3 (0.916, 0.918, 0.912 para chunk sizes 200, 300, 500), ligeiramente inferior ao medcpt-article. O tempo de processamento de documentos é eficiente (7.55s, 4.14s, 1.70s), similar ao medcpt-article, e o tempo de consulta K3 é rápido (0.016?0.018s). Supera o nomic-embed em similaridade e precisão, mantendo tempos de consulta competitivos.

6.1.3 nomic-embed

Figura 6.3: Desempenho do modelo nomic-embed.

O nomic-embed alcançou similaridade K3 moderada (0.757, 0.722, 0.696), inferior aos medcpt. O tempo de processamento de documentos é razoável (7.52s, 6.99s, 4.30s), mas ligeiramente superior ao medcpt-query para *chunk size* 500. O tempo de consulta K3 é o mais rápido (0.017?0.018s). Comparado ao mxbai-embed, tem melhor similaridade e tempos de consulta mais curtos.

6.1.4 all-minilm

Figura 6.4: Desempenho do modelo all-minilm.

O all-minilm apresentou a menor similaridade K3 (0.622, 0.607, 0.582), indicando recuperação menos eficaz. O tempo de processamento é competitivo para *chunk size* 500 (1.22s), mas elevado para 200 (9.77s). O tempo de consulta K3 é o mais baixo (0.013?0.015s), mas a baixa similaridade limita sua utilidade. Comparado ao snowflake-embed2, tem melhor similaridade.

6.1.5 mxbai-embed

Figura 6.5: Desempenho do modelo mxbai-embed.

O mxbai-embed obteve similaridade K3 razoável (0.769, 0.748, 0.717), inferior aos medcpt. O tempo de processamento é elevado para *chunk size* 200 (14.10s), mas reduz para 500 (3.69s). O tempo de consulta K3 (0.029?0.030s) é mais lento que nomic-embed e medcpt. Comparado ao avrsfr-embed, tem melhor similaridade, mas tempos de processamento mais longos para *chunk size* 200.

6.1.6 avrsfr-embed

Figura 6.6: Desempenho do modelo avrsfr-embed.

O avrsfr-embed apresentou similaridade K3 baixa (0.623, 0.619, 0.605). O tempo de processamento é o mais alto (43.65s, 40.96s, 28.63s), devido ao tamanho do embedding (4096). O tempo de consulta K3 (0.029?0.030s) é semelhante ao mxbai-embed. Comparado ao snowflake-embed2, tem melhor similaridade, mas tempos de processamento superiores.

6.1.7 snowflake-embed2

Figura 6.7: Desempenho do modelo snowflake-embed2.

O snowflake-embed2 teve o pior desempenho em similaridade K3 (0.570, 0.552, 0.388), inadequado para recuperação de documentos. O tempo de processamento é elevado (24.85s, 15.26s, 8.58s), e o tempo de consulta K3 é o mais lento (0.051?0.063s). É consistentemente inferior em todas as métricas.

6.2 Comparação de Modelos

Esta subseção apresenta uma análise comparativa dos modelos, utilizando gráficos gerados pelo script compare_metrics.py, destacando diferenças para chunk size 300.

Figura 6.8: Comparação da similaridade média (K3) entre os modelos para chunk size 300.

Figura 6.9: Comparação do tempo de consulta K3 entre os modelos para chunk size 300.

6.2.1 Comparação Geral

Os modelos medcpt-article e medcpt-query destacam-se com similaridades K3 (¿0.91), ideais para alta relevância. O nomic-embed equilibra si-

Figura 6.10: Comparação do tempo de processamento de documentos entre os modelos para *chunk size* 300.

milaridade moderada e tempos de consulta rápidos, adequado para velocidade. all-minilm, mxbai-embed, avrsfr-embed e snowflake-embed2 têm limitações em similaridade ou eficiência. Para *chunk size* 500, o tempo de processamento reduz, mas a similaridade cai, exceto para medcpt-article e medcpt-query.

6.2.2 Seleção do Modelo medcpt-article

O medcpt-article foi selecionado devido à alta similaridade K3 (0.951), eficiência em processamento (4.64s) e tempos de consulta ágeis (0.0204s). Embora o medcpt-query seja competitivo, seu treino em textos curtos o torna menos adequado para relatórios criminais.

6.3 Consultas e Script de Teste

6.3.1 Consultas Utilizadas

Consultas em português, abrangendo tópicos variados:

- "Quais são os relatórios recentes sobre atividades de gangues armadas em Vilkor, Zakovia?"
- "Quais são os relatórios mais recentes sobre roubos de arte envolvendo os Ghost Shadows em Ravenska, Zakovia?"

- "Quais incidentes envolvendo os esquemas de proteção dos Blood Ravens ocorreram perto de Baron's Peak em 2023?"
- "Quais são os casos de contrabando de armas relatados em Sokovia em 2024?"
- "Quais atividades criminosas dos Night Vipers foram documentadas em Krov, Zakovia?"
- "Quais são as políticas de turismo sustentável em Ravenska, Zakovia?"

6.3.2 Verificação de Robustez a Erros Ortográficos

O script test_model.py testou erros ortográficos (e.g., ?actividades? por ?atividades?). As pontuações de similaridade permaneceram altas, com queda mínima (0.85 para 0.80), mostrando tolerância a erros.

- "Quais são os relatórrios resentes sobbre atividades de ganguues armadaz em Vilkorr, Zakovia?"
- "Quais são os relatórios mais recntes sobre rouboos de arte enolvendo os Ghoost Shadws em Ravennska, Zakovia?"
- "Quais incidntes envovendo os esquemmas de proteçção dos Blod Ravns ocoreram perto de Baroon?s Peek em 2023?"
- "Quais são os casso de contrabbando de armaz relatadoz em Sokovia em 2024?"
- "Quais atvidades criminossas dos Nigt Viipers foram documntadas em Kroov, Zakovia?"
- "Quais são as políicas de turismmo sustntável em Ravennska, Zakovia?"

6.4 Script test_model.py

O script automatiza a avaliação dos modelos:

1. **Processamento de Documentos**: Lê documentos, divide em *chunks* (200, 300, 500 tokens), gera *embeddings* via Ollama.

- 2. Indexação com FAISS: Armazena embeddings para busca eficiente.
- 3. Execução de Consultas: Mede similaridade (K3), tempos de consulta e processamento.
- 4. Avaliação de Desempenho: Calcula médias das métricas.
- 5. **Geração de Resultados**: Exporta para JSON, permitindo análises e gráficos.

6.5 Exemplos de Uso da Interface

A interface em React permite selecionar buckets, realizar consultas e visualizar resultados.

Figura 6.11: Tela da interface.

Figura 6.12: Resultado de uma consulta.

Figura 6.13: Consulta num só bucket com k = 3.

Figura 6.14: Consulta num só bucket com k = 12.

Figura 6.15: Resultados da consulta num só bucket com k = 12.

Figura 6.16: Demonstração de um bucket que falhou.

Figura 6.17: Seleção do bucket que falhou agora indisponível.

Capítulo 7

Conclusões e Trabalho Futuro

7.1 Conclusão

Este projeto demonstrou, de forma prática e eficaz, como a aplicação de técnicas modernas de processamento de linguagem natural pode transformar a recuperação de informação em domínios sensíveis e complexos, como os registos criminais da Polícia Judiciária. Ao desenvolver uma API de pesquisa semântica robusta, escalável e tolerante a erros ortográficos, foi possível superar limitações das abordagens tradicionais baseadas em palavras-chave, oferecendo assim uma solução mais alinhada com a complexidade dos dados tratados pela PJ.

A escolha do modelo medcpt-article, após uma avaliação rigorosa de desempenho entre sete alternativas, revelou-se determinante para atingir uma precisão de 95,1%, mesmo que tenho sido originalmente treinado em domínios distintos. Essa capacidade de generalização, aliada a uma arquitetura baseada em microserviços com Docker, React, Flask e FAISS, permitiu construir um sistema modular e eficiente, preparado para evolução contínua.

O projeto seguiu uma abordagem iterativa e prática, enfentrou desafios técnicos como a transição para uma arquitetura containerizada, a definição ideal do tamanho de chunk, e a mitigação de resultados duplicados. Todos esses obstáculos foram ultrapassados com sucesso, consolidando um sistema pronto para possível integração real com sistemas institucionais, como os da Polícia Judiciária, e com potencial de adaptação para outras áreas como saúde ou jornalismo investigativo.

7.2 Principais Conclusões

- A pesquisa semântica demonstrou ser substancialmente mais eficaz do que abordagens tradicionais baseadas em palavras-chave, especialmente em documentos longos e com vocabulário técnico, como os registos criminais.
- A arquitetura modular com buckets independentes garantiu escalabilidade e resiliência, que permitiu a adição dinâmica de novos conjuntos de dados sem comprometer o desempenho do sistema e sem precisar desligar o sistema.
- A utilização de ferramentas como FAISS, Docker, Flask, React e Ollama revelou-se acertada porque propocionou uma base sólida para o desenvolvimento, integração e expansão da solução.
- A metodologia iterativa adotada foi essencial para a evolução do projeto, permitindo a rápida identificação e resolução de problemas, como o ajuste do tamanho de *chunk*, a filtragem de duplicados e a estabilidade dos serviços em *Docker*.
- A solução desenvolvida provou estar apta não só para a modernização de sistemas judiciais, mas também para ser adaptada a outros contextos onde a recuperação inteligente de informação é crítica.

7.3 Trabalho Futuro

O trabalho futuro prevê o fine-tuning do modelo medcpt_article em colaboração com a Polícia Judiciária, otimizando-o para dados específicos da PJ. Além disso, planeia-se expandir a API para suportar múltiplos idiomas, melhorar a interface do utilizador com funcionalidades como filtros avançados, otimizar a escalabilidade com técnicas de indexação avançada e explorar funcionalidades como resumo automático de documentos e análise preditiva de padrões criminais, com o objetivo de uma integração eficaz com os sistemas da PJ.

Bibliografia

Bibliografia

[1] Decreto-Lei n.º 35.042, de 20 de Outubro de 1945. Criação da Polícia Judiciária.

Webgrafia

- Polícia Judiciária: https://www.policiajudiciaria.pt/
- Direção-Geral da Administração da Justiça: https://dgaj.justica.gov.pt/
- Docker: https://www.docker.com/
- Python: https://www.python.org/
- Flask: https://flask.palletsprojects.com/
- React: https://reactjs.org/
- Ollama: https://ollama.com/
- FAISS: https://faiss.ai/
- Git: https://git-scm.com/
- GitHub: https://github.com/
- Elasticsearch: https://www.elastic.co/elasticsearch/
- PyPDF2: https://pypdf2.readthedocs.io/en/latest/

46 Bibliografia

Apêndice A

Gestão de Código e Controlo de Versões

O projeto foi gerido com recurso ao sistema de controlo de versões *Git*, com o repositório hospedado na plataforma *GitHub*. Foi utilizado um único ramo principal, denominado master, concentrando todo o desenvolvimento da aplicação.

O repositório encontra-se organizado em diretórios específicos, separando os scripts em Python, configurações de *Docker*, ficheiros de composição docker-compose.yml e os testes automatizados, promovendo uma estrutura modular e facilmente extensível.

Apêndice B

Documentação

B.1 Guia de Utilização

Este apêndice fornece instruções detalhadas para usar a aplicação, baseadas no README, e uma explicação da interface com imagens ilustrativas.

B.1.1 Instruções do README

Para utilizar a aplicação, siga os passos abaixo:

- 1. Certifique-se de ter o Docker instalado no seu sistema.
- Clone o repositório do projeto a partir do GitHub https://github. com/Rexi10/PRJ_55_49734.
- 3. Na pasta raiz do projeto, execute o comando docker-compose up -d para iniciar os serviços em *background*.
- 4. Aceda à interface web no endereço http://localhost:5000/.
- 5. Na interface, selecione os *buckets* que deseja consultar, clicando nas caixas de seleção correspondentes.
- 6. Insira a sua consulta no campo de pesquisa e defina o número de resultados desejados (k).
- 7. Clique no botão "Pesquisar" para submeter a consulta. Os resultados serão exibidos com o nome do documento, a similaridade, o *bucket* de origem e o *chunk* relevante.

8. Para descarregar um documento, clique no botão "Descarregar" ao lado do resultado correspondente.

Estas instruções permitem configurar e usar a aplicação de forma eficaz.