

Deep Learning

Prof. Jorge Zavaleta Prof. Sergio Serra

RJ, Setembro de 2022

Deep Learning (DL)

- Deep Learning (DL) Aprendizado **Profundo:**
 - ✓ Este é um subcampo do aprendizado de máquina no qual redes neurais profundas e multicamadas são usadas para fazer previsões, especialmente destacando-se em visão computacional, reconhecimento de fala, compreensão de linguagem natural e etc.

A. Koul, S. Ganju, and M. Kasam, @ 2020

Deep Learning (DL)

• O aprendizado profundo cria muitas camadas de neurônios, tentando aprender a representação estruturada de big data, camada por camada.

DL - Frameworks

Anirudh Koul,

Siddha Ganju & Meher Kasam

Framework	Best suited for	Typical target platform
TensorFlow (including Keras)	Training	Desktops, servers
PyTorch	Training	Desktops, servers
MXNet	Training	Desktops, servers
TensorFlow Serving	Inference	Servers
TensorFlow Lite	Inference	Mobile and embedded devices
TensorFlow.js	Inference	Browsers
ml5.js	Inference	Browsers
Core ML	Inference	Apple devices
Xnor Al2GO	Inference	Embedded devices

O'REILLY"

Computer-Vision Projects Using Python, Keras & TensorFlow

Practical Deep Learning for Cloud, Mobile & Edge

- **Dataset**: imagens, vídeos, texto, dados de satélite, áudio, ...
- Modelo: Arquitetura de redes neurais (CNN, RNN, LSTM,...)
- Hardware: CPU, GPU (NVidia), FPGA, ASIC, TPU, NPU, ...

Dataset + Model + Framework + Hardware = DL

A. Koul, S. Ganju, and M. Kasam, @ 2020

Fluxo de desenvolvimento de DL Train (PC/GPU) Initial Network Design Iterate with translate Train Network depths, etc. Meets Yes Meets Yes No Performance Accuracy Goals Goals (adjust weights

Deep Learning (DL) - Keras

TensorFlow / CNTK / MXNet / Theano / ...

TPU

Deep Learning (DL) - KERAS

- O que é Keras?
 - ✓ Biblioteca de rede neural escrita em Python
 - ✓ Projetada para ser minimalista e direta
 - ✓ Construída em cima do TensorFlow e Theano
- Por que usar Keras?
 - √ Simples para começar, simples para continuar
 - ✓ Altamente modular e fácil de expandir
 - ✓ Profunda o suficiente para construir modelos importantes

Keras

Prepare Input

(Images, videos, text, audio)

- A ideia geral é basear-se em camadas de entradas e saídas
 - 1. Preparar as entradas e especificar da dimensão de saída;
 - 2. Definir a arquitetura do modelo e construir o gráfico computacional;
 - 3. Especifique o otimizador e configure o processo de aprendizado;
 - 4. Especifique as entradas, saídas do gráfico computacional (modelo) e a função de custo;
 - 5. Treine e teste o modelo no conjunto de dados.

Define the

ANN model

(Sequential or

Functional style)
(MLP, CNN, RNN)

Keras - camadas

- Modelos:
 - ✓ Sequential Pilha linear de camadas. Útil para construir modelos simples.
 - ✓ Functional Multi-input e multi-output
 - ✓ Subclassing Máxima flexibilidade
- Keras tem um número de camadas pré-definidas:
 - Regulares: Dense, tipo MLP;
 - Camadas recorrentes: LSTM, GRU, etc
 - Camadas Convolucionais: 1D, 2D, 3D
 - Autoencoders construir outros tipos de camadas.
 - Outras: Dropout, noise, Pooling, Normalization, Embedding, etc.

Keras - otimizadores

- Otimizadores:
 - ✓ SGD Stochastic gradient descent
 - ✓ SGD with momentum
 - ✓ Adam
 - ✓ AdaGrad
 - ✓ RMSprop
 - ✓ AdaDelta
- Funções de custo
 - ✓ MSE, MAE, Categorical cross entropy, KL Divergence.

Arquiteturas DL comuns

- Redes Convolucionais:
 - ✓ Alex net
 - √ VGG
 - ✓ Res-Net
 - ✓ DenseNet
- Input

 Dense Block 1

 Dense Block 2

 Dense Block 3

 Pooling

 Pooling

https://github.com/liuzhuang13/DenseNet

- ✓ Modelos generativos
 - ✓ Autoencoders
 - ✓ GAN Generative adversarial network

DL - Aplicações

- Improving pick and place
- · Predictive maintenance/failure

Agriculture

Optimize crop watering and harvesting

Retail

- Improve automated checkout
- Track shoppers and provide incentives

DL - Aplicações

DL - Aplicações

- Processamento de Linguagem Natural (PLN)
- Visão Computacional
- Medicina
- Biologia
- Geração de Imagens
- Sistemas de recomendação
- Robótica
- Outras aplicações Mercado financeiro, ...