Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (currently amended) An OLED device comprising a light-emitting layer (LEL) containing a host and an emitting dopant located between a cathode and an anode wherein the dopant is an orange-red light emitting rubrene derivative represented by formula (I):

Formula (I)

wherein:

- a) there are identical oxy, aza or thio groups at the 2- and 8-positions;
- b) the phenyl rings in the 5- and 11-positions contain only parasubstituents identical to the oxy, aza or thio groups in paragraph a);
- c) the phenyl rings in the 6- and 12-positions are substituted <u>or usubstituted</u>; and

provided that when a single substituent is present on both phenyl rings in paragraph c), said substituent is not a methoxy group located at the para-position.

- 2. (original) The device of claim 1 comprising a further lightemitting compound to provide a white light emission.
- 3. (original) The device of claim 2 further comprising a blue light-emitting compound to provide a white light emission.

- 4. (original) The device of claim 2 further comprising a filter overlying the device.
- 5. (original) The device of claim 2 wherein the layer comprises a host and dopant where the dopant is present in an amount of up to 10%-wt of the host.
- 6. (original) The device of claim 5 wherein the dopant is present in an amount of 0.1-5.0%-wt of the host.
- 7. (original) The device of claim 1 wherein the dopant is represented by formula (II):

$$R_1X$$
 R_1X
 R_1X
 R_1X
 R_1X
 R_1X
 R_1X
 R_1X

wherein

 R_1 is selected from alkyl, carbocyclic, and heterocyclic groups; R_2 is a substituent group;

Formula (II)

X is oxygen, sulfur or $N(R_3)$ wherein R_3 is selected from alkyl, carbocyclic and heterocyclic groups or taken with R_1 may form a ring;

n is 0-5;

provided that all R₁ groups are the same;

provided further, that the R₂, their location and n value on one ring are the same as those on the second ring; and

provided still further that when X is oxygen and n is 1, R_2 is not para-methoxy.

8. (original) The device of claim 7 wherein the dopant is represented by formula (III):

$$R_1O$$
 R_1O
 OR_1
 $(R_2)_n$

Formula (III)

wherein

 R_1 is selected from alkyl, carbocyclic, and heterocyclic groups;

R₂ is a substituent group;

n is 0-5;

provided that all R₁ groups are the same;

provided further, that the R_2 , their location and n value on one ring are the same as those on the second ring; and

provided still further that when n is 1, R₂ is not para-methoxy.

9. (original) The device of claim 1 wherein the dopant is represented by formula (IV):

wherein

R₂ is a substituent group;

n is 0-5;

provided that the R₂, their location and n value on one ring are the same as those on the second ring; and

provided further that when n is 1, R₂ is not para-methoxy.

- 10. (original) The device of claim 7 wherein R_1 is a carbocyclic or heterocyclic group.
- 11. (original) The device of claim 7 wherein R_1 is an alkyl or aryl group.
- 12. (original) The device of claim 7 wherein R_1 is represented by the formula;

$$- \left\langle \begin{array}{c} R_4 \\ R_5 \end{array} \right|$$

wherein each of R_4 , R_5 and R_6 is hydrogen or an independently selected substituent.

- 13. (original) The device of claim 12 wherein R₄, R₅ and R₆ taken together may form a mono- or multi-cyclic ring system.
- 14. (original) The device of claim 7 wherein R_1 is represented by the formula;

$$\begin{array}{c}
R_4 \\
R_5 \\
R_6
\end{array}$$

wherein each of R₄, R₅ and R₆ is hydrogen or an independently selected substituent with no more than one being hydrogen.

- 15. (original) The device of claim 7 comprising a further lightemitting compound to provide a white light emission.
- 16. (original) The device of claim 15 further comprising a blue lightemitting compound to provide a white light emission.
- 17. (original) The device of claim 15 further comprising a filter overlying the device.
- 18. (original) The device of claim 7 wherein R₂ is located in meta and para positions of the phenyl group.
 - 19. (original) The device of claim 7 wherein R_2 is phenyl.
 - 20. (original) The device of claim 7 wherein R_2 is tert-butyl.
- 21. (original) The device of claim 7 wherein R_2 is selected from fluorine, trifluoromethyl, pentafluoroethyl and fluorinated-phenyl groups.
- 22. (original) The device of claim 7 wherein R_2 is a fluorine-containing group.
 - 23. (original) The device of claim 7 wherein R_2 is fluorine.
- 24. (original) The device of claim 7 wherein R_1 is a fluorine-containing group.

- 25. (original) The device of claim 1 wherein the host is an amine compound.
- 26. (original) The device of claim 1 wherein the host comprises N,N'-di-1-naphthalenyl-N,N'-diphenyl-4, 4'-diaminobiphenyl.

27. (canceled)

- 28. (original) The device of claim 1 wherein the substituents are selected to provide a reduced loss of initial luminance compared to the device containing no rubrene compound.
- 29. (original) The device of claim 7 wherein R₂ are independently selected from the group consisting of fluorine, fluorine containing groups, alkyl, aryl, alkoxy and aryloxy groups.
- 30. (original) The device of claim 7 wherein the layer comprises a host and dopant where the dopant is present in an amount of up to 10%-wt of the host.
- 31. (original) The device of claim 30 wherein the dopant is present in an amount of 0.1-5.0%-wt of the host.
- 32. (original) The device of claim 1 wherein the rubrene compound is selected from the following:

Inv-1

33. (original) An OLED device comprising a light-emitting layer (LEL) containing a host and an emitting dopant located between a cathode and an anode wherein the dopant is an orange-red light emitting rubrene derivative represented by formula (I):

Formula (I)

wherein:

- a) there are identical oxy, aza or thio groups at the 2- and 8-positions;
- b) the phenyl rings in the 5- and 11-positions contain only parasubstituents identical to the oxy, aza or thio groups in paragraph a);
- c) the phenyl rings in the 6- and 12-positions are substituted or not; and provided that the rubrene derivative has a wavelength of maximum emission (λ_{max}) in ethyl acetate solution such that 560nm $< \lambda_{max} \le 650$ nm and a wavelength of maximum emission (λ_{max}) in the EL device such that 570nm $< \lambda_{max} \le 650$ nm.
- 34. (original) An OLED device of claim 33 wherein the rubrene derivative has a wavelength of maximum emission (λ_{max}) in ethyl acetate solution such that $565 \text{nm} < \lambda_{max} \le 625 \text{nm}$ and a wavelength of maximum emission (λ_{max}) in the EL device such that $570 \text{nm} < \lambda_{max} \le 650 \text{nm}$.
- 35. (original) A light emitting device containing the OLED device of claim 1.
- 36. (original) A light-emitting display containing the OLED device of claim 1.
- 37. (original) A method of emitting light comprising subjecting the device of claim 1 to an applied voltage.