

2/20/2024

ENGINEERING ANALYSIS II (EA2)

Lecture # 26: Ch6. Structures in Equilibrium

Shady Gomaa, PhD
NORTHWESTERN UNIVERSITY

Lecture Outlines:

1. Frame Class Example 3.

References:

- 1. Bedford, A., & Fowler, W. Engineering Mechanics: Statics (5th ed.).
- 2. Prof. Alarcon's lecture notes.

Class Problem 3

6.87 The mass m = 12 kg. Determine the forces on member CDE.

1) Pully at E:-

$$w = m * 9$$

= 12 * 9.81 = 117.7 N

2 FBD of the whole frame.

$$\therefore R_{\rm Cx} = 206 N$$

3 FBD of each member:-

Formember ABD:-

$$\Rightarrow IF_{X} = 0 : -206 + 117.7 + B_{X} + D_{X} = 0$$

$$\therefore B_{X} = 117.75 N$$

For member CDE:-

$$\Rightarrow \text{ZFx} = 0 \qquad -29.45$$

$$\therefore 206 - D_{X} - E_{X} = 0 \qquad \therefore E_{X} = 235.45 \text{ N}$$

$$\Rightarrow IM_{D} = 0$$
235.45
$$\therefore *200 - Ey *400 = 0$$

$$\therefore Ey = 117.7 N$$

⇒
$$\Sigma fy = 0$$
 117.7 N
∴ $-Dy - Ey = 0$ ∴ $Dy = -117.7$ N

So, the forces on member CDE are:

