# Undershoot in Kyrgyz short vowels increases with the articulatory distance to adjacent consonants.

# Undershoot in Kyrgyz Short Vowels IS ARTICULATORILY CONDITIONED

Nathaniel Ziv Stern Swarthmore College

# Background

#### Undershoot

Occurs when articulators fall short of reaching their target position in a gesture.

- Extremely common
- Conditioned by extra-ling. factors (speech rate)
- Result of decreasing articulatory effort
- Related to coarticulation
- Timing vs. adjacent segments debated

#### Undershoot in short vowels

- In languages with V/Vz constrast, V more central
- V: articulations thought of as targets for V
- At times minor differences phonologised

## **Vowel length in Kyrgyz**

- Largely unstudied
- Documented C influence on V and vice versa
- Potentially high amounts of undershoot

## Methodology

## Corpus

- Speakers of Turkish, Kazakh, Kyrgyz
- Indiana University Speech Production Lab
- Philips EPIQ 7 Ultrasound System
- $C_1VC_2$  stems (mostly); range of  $C_1$  and  $C_2$
- in various morphological forms, from  $1\sigma$  to  $3\sigma$
- Үйгө барып, деп айттым. deβ ajttʰwm] [yjyæ ßarwp\_ I went/reached home and said деп айттым. Үйгө кирип, deβ ajttʰɯm] [yjyœ yirip] 'I entered the house and said

• 2 carrier sentences, 1 each per stimulus

- sentences randomised, 6 per slide, ~150 slides
- session up to 2 hours, optional breaks

## Speaker

P04: 42/F; from Kyrgyzstan, Jalalabat oblast, Suzaq district, Joon Küngöy village; also knows Russian, Turkish, English, some Arabic

#### Data processing

- Examined Vs / #K\_\_\_D $\sigma(\sigma)$ K: k,q D: d,l,n,r,s
- Avoids documented palatal C influence on V
- Avoids stress effects
- Avoids other limitations of corpus
- US frames acquired every 19.6ms (51Hz)
- Processed in UltraTrace (Murphy et al. 2020)
- US & audio recordings aligned, adjusted by hand
- US frames traced by hand
- US frame closest to vowel midpoint selected

Jonathan North Washington Swarthmore College

# **Findings**



- 1. Spectral differences between V and V:
- 2. Mainly back V more central than V:

# **Articulatory**



- 3. back Vs raised tongue tip
- 4. front Vs raised tongue dorsum
- 5. back Vs backed tongue root

# Analysis

#### Effect of **preceding dorsal** on undershoot:

- All Vs: tongue body closer to Cs' POA
- Front Vs: velum (4); back Vs: uvula (5)

#### Effect of **following coronal** on undershoot:

- Back Vs: tongue tip closer to aleveolar ridge (3)
- Front Vs: tongue is already very close

# Effect of undershoot on **high vs non-high** (back) Vs:

- Tongue tip: more undershoot in non-high V
- Tongue dorsum & root: more undershoot in high Vs

## Effect of undershoot on **formants** (2):

- Front Vs: no effect, dorsal raising small
- Back Vs: connection between formant and articulation differences not yet modeled

Generally: most undershoot where largest articulatory effort would be required

# Supplemental data

## All vowels together



#### **Durations**



#### Words examined

| words examined                                                                                                                                                    |                                                                                                                                      |                                                                                                                                    |                                                                                                                                                  |                                                                                                                                        |                                                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| колдогу<br>колдубу?<br>колумабы?<br>колуна<br>колунда<br>коондогу<br>коондубу?<br>коонумабы<br>коонуна<br>коонунда<br>коргонго<br>коргонун<br>кордубу?<br>коробу? | корорду<br>корот<br>корсунбу?<br>коруптур<br>көлдүбү?<br>көлдөгү<br>көлүндө<br>көлүнө<br>көргөнгө<br>көргөнүн<br>көрдүбү?<br>көрдөгү | көрүмөбү?<br>көрүндө<br>көрүнө<br>көрүптүр<br>көрөбү?<br>көрөрдү<br>көрөт<br>көөдөгү<br>көөсүндө<br>көөсүнд<br>кулдагы<br>кулдубу? | кулумабы?<br>кулуна<br>кулунда<br>курабы?<br>курарды<br>курат<br>курганга<br>курганын<br>курдагы<br>курдубу?<br>курсунбу?<br>курумабы?<br>куруна | курунда<br>куруптур<br>куудагы<br>куудубу?<br>куунубу?<br>куурду<br>куусуна<br>куусунда<br>күлгөнгө<br>күлгөнүн<br>күлдүбү?<br>күлдөгү | күлүмөбү?<br>күлүндө<br>күлүнө<br>күлүптүр<br>күлөбү?<br>күлөрдү<br>күлөт<br>күүдөгү<br>күүдөгү<br>күүсүндө<br>күүсүндө |  |

158 V tokens: 24 y 8 y: 34 u 14 u:

26 o 10 o: 34 ø 8 ø:

# **Future work**

- Examine articulation of adjacent Cs
- Expected acoustic effects = observed? Model!
- Examine other Kyrgyz speakers in corpus
- V versus V: in other articulatory contexts?
- Do these findings hold up cross-linguistically? Can undershoot effects be lang.-dependent?

#### References

Johnson, K., & Martin, J. (2001). Acoustic vowel reduction in Creek: Effects of distinctive length and position in the word. *Phonetica*, *58*, 81–102. https://doi.org/10.1159/000028489

Lindblom, B. (1963). Spectrographic study of vowel reduction. *Journal* of the Acoustical Society of America, 35(11), 1773–1781.

Murphy, K., Stern, N. Z., Swanson, D., Ho, C., & Washington, J. (2020). UltraTrace: A free/open-source cross-platform tool for manual

annotation of ultrasound tongue imaging data. *UltraFest IX*. Stern, N. Z., & Washington, J. (2019). A phonetic study of length and duration in Kyrgyz vowels. Proceedings of the 4th Workshop on Turkic & languages in contact with Turkic (Tu+4). https://doi.

org/10.3765/ptu.v4i1.4577 van Son, R. (1993). Spectro-temporal features of vowel segments (Doctoral dissertation). Universiteit van Amsterdam.

Yazawa, K., & Kondo, M. (2019). Acoustic characteristics of Japanese

short and long vowels: Formant displacement effect revisited.



#### With generous support from:

- Swarthmore Faculty Research Support Grants
- Indiana University Grant-in-Aid of Dissertation
- Joel Dean Summer Research Fellowship
- Eugene M. Lang Summer Research Fellowship

#### Also thanks to:

- University of Delaware Phon Group, especially Katie Franich
- Anonymous reviewer for UltraFest



Download: