17.5.19

Série 19

1. Résoudre l'équation polynomiale $-x^3 - \frac{3i}{2}x^2 + x + \frac{i}{2} = 0$ sachant qu'elle admet un nombre imaginaire pur comme solution.

- 2. Déterminer le polynôme P_3 (troisième degré) vérifiant les quatre conditions suivantes :
 - $P_3(1) = 0$,
 - le reste de la division de P_3 par z-i est égal à i 1,
 - le produit des racines de P_3 vaut 1 + i,
 - la somme des racines non réelles de P_3 est égale à 1 + i.
- 3. En utilisant les formules de Viète , résoudre dans $\mathbb C$ le système :

$$\begin{cases} x + y + z &= 1 \\ x^2 + y^2 + z^2 &= 9 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} &= 1 \end{cases}$$

- 4. (a) Déterminer le développement de Taylor de la fonction $\arcsin(x)$
 - au voisinage de $x_0 = 0$ à l'ordre 5
 - au voisinage de $x_0 = \frac{1}{2}$ à l'ordre 3;
 - (b) Utiliser le point précédent pour calculer la limite suivante :

$$\lim_{x \to 0} \frac{6\arcsin(x) - 6x - x^3}{x^5} \, .$$

- 5. (a) Déterminer le développement de Taylor au voisinage de $x_0 = 0$ et à l'ordre 7 de la fonction $f(x) = \cosh(x)$:
 - (b) Utiliser le point précédent pour étudier si la fonction :

$$f(x) = \frac{24\cosh(x) - 24 - 12x^2 - x^4}{x^5}$$

est prolongeable par continuité au voisinage de $x_0 = 0$.

oblème récréatif: Dériver l'expression

$$\sqrt{x + \sqrt{x + \sqrt{x + \dots}}}$$

EPFL - CMS Analyse II

Solutions

S1
$$x_1 = -i$$
, $x_2 = \frac{\sqrt{7}-i}{4}$, $x_3 = -\frac{\sqrt{7}+i}{4}$

S2
$$P_3(z) = \frac{1}{2}(1+i)z^3 - (1+2i)z^2 + \frac{1}{2}(1+5i)z - i$$

S3
$$x = -2, y = 1, z = 2$$

S4 (a)

$$DL_0^5(Arcsin)(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5,$$

$$DL_{1/2}^3(Arcsin)(x) = \frac{\pi}{6} + \frac{2}{\sqrt{3}}(x - \frac{1}{2}) + \frac{2}{3\sqrt{3}}(x - \frac{1}{2})^2 + \frac{8}{9\sqrt{3}}(x - \frac{1}{2})^3.$$

(b) 9/20

S5 (a)
$$DL_0^7(\cosh(x)) = 1 + \frac{1}{2}x^2 + \frac{1}{4!}x^4 + \frac{1}{6!}x^6$$

(b)
$$f(0) = 0$$