A categorical approach to the maximum theorem

Seerp Roald Koudenburg

Middle East Technical University - Northern Cyprus Campus

August 8, CT2016

Maximum theorem

Let

- ▶ $J \subseteq A \times B$ be a relation between topological spaces
- ▶ $d: B \rightarrow [0, \infty]$ be a continuous map

Consider the function $r \colon A \to [0, \infty]$ given by the suprema

$$rx = \sup d(Jx).$$

Berge's $maximum\ theorem\ (1959)$ gives conditions on J ensuring the continuity of r.

Aims:

- give a categorical proof of the maximum theorem
- ▶ use this to obtain generalisations to e.g. closure spaces, approach spaces and metric closure spaces?

Topological spaces as relational algebras

Let *U* be the "ultrafilter monad" on Set.

Theorem (Barr, 1970)

Topologies τ on A correspond precisely to relations $\alpha\colon UA \to A$ satisfying certain associativity and unit axioms.

We can change the type of relations here...

Theorem (Clementino-Hofmann, 2003)

Associative and unital $[0,\infty]$ -relations $\alpha\colon UA\times A\to [0,\infty]$ correspond to approach distances $\delta\colon A\times PA\to [0,\infty]$ on A, making it into an approach space.

...or the monad.

Theorem

Associative and unital relations $\alpha \colon PA \to A$ correspond to *closure* operations on A.

\mathcal{V} -relations

Consider relations $J \colon A \times B \to \mathcal{V}$ with values in a *quantale* $\mathcal{V} = (\mathcal{V}, \otimes, k)$.

Examples

- $\triangleright \ 2 = (\{\bot \leq \top\}, \land, \top)$
- ▶ $P_+ = (([0,\infty], \ge), +, 0)$

Composition

$$(J\odot H)(x,z)=\sup_{y\in B}J(x,y)\otimes H(y,z)$$

Cells

$$A \xrightarrow{J} B$$

$$\exists ! \ f \downarrow \qquad \downarrow \qquad \downarrow g \qquad \Longleftrightarrow \qquad \bigvee_{\substack{x \in A \\ V \in B}} J(x, y) \leq K(fx, gy)$$

(T, \mathcal{V}) -monoids

Definition

Let T be a Set-monad that "extends to V-relations".

- ▶ a (T, V)-monoid A is a set A equipped with an associative and unital V-relation $\alpha \colon TA \to A$
- ▶ a morphism $f: A \to C$ between (T, V)-monoids is a function $f: A \to C$ such that the cell below exists

$$TA \xrightarrow{\alpha} A$$

$$Tf \downarrow \qquad \downarrow f$$

$$TC \xrightarrow{\gamma} C$$

If $T=\operatorname{id}$ then we call $(\operatorname{id},\mathcal{V})$ -monoids \mathcal{V} -monoids

- ▶ 2-monoids are preorders
- ► P₊-monoids are generalised metric spaces (Lawvere)

(T, V)-monoids from (T, V)-algebras

A (T, \mathcal{V}) -algebra M is a triple $M = (M, \overline{M}: M \to M, m: TM \to M)$ with (M, \overline{M}) a \mathcal{V} -monoid and (M, m) a T-algebra, such that m is a map of \mathcal{V} -monoids.

Lemma

For any (T, \mathcal{V}) -algebra $M = (M, \overline{M}, m)$ the \mathcal{V} -relation $\overline{M}(m, \mathrm{id}) \colon TM \to M$ is a (T, \mathcal{V}) -monoid structure on M.

The case $M = P_+$

- ▶ (Manes, 2002) P_+ admits both U_- and P_- algebra structures, both of them a morphism of 2-monoids as well as P_+ -monoids
- ▶ the topology on P_+ is generated by the closed intervals [0,x]
- ▶ the approach distance on P_+ is given by $\delta(x, S) = x \ominus \sup S$
- ▶ for a topological/closure space A, $f: A \rightarrow P_+$ is morphism of (T, V)-monoids precisely if it is *lower semicontinuous*:

$$\bigvee_{x \in P_{\perp}} f^{-1}([0,x]) \text{ is closed in } A$$

Right Kan extensions into \mathcal{V} -monoids

$$\begin{array}{ccc}
A & \xrightarrow{J} & B \\
r \downarrow & & \downarrow \varepsilon & \downarrow d \\
M & \xrightarrow{\bar{M}} & M
\end{array}$$

defines $r: A \to M$ as the *right Kan extension* of d along J if every cell on the left below factors as shown.

Back to the maximum theorem: hemicontinuity of relations

As at the start, let $r: A \to P_+$ be the right Kan extension of a continuous map $d: B \to P_+$ along a relation $J: A \to B$.

"Lower maximum theorem" (Berge)

r is lower semicontinuous as soon as $J: A \rightarrow B$ is lower hemicontinuous: $J^{\circ}U$ is open in A for all $U \subseteq B$ open.

Definition

A V-relation $J: A \rightarrow B$ between (T, V)-monoids is called *lower hemicontinuous* if the cell on the left below exists.

$$TA \xrightarrow{\alpha} A \xrightarrow{J} B \qquad TA \xrightarrow{TJ} TB \xrightarrow{\beta} B$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \parallel \qquad \parallel$$

$$TA \xrightarrow{TJ} TB \xrightarrow{\beta} B \qquad TA \xrightarrow{\alpha} A \xrightarrow{J} B$$

Dually J is upper hemicontinuous if the cell on the right exists.

Examples

▶ for relations $J: A \rightarrow B$ between topological spaces this recovers the notion of lower hemicontinuity just described:

 $J^{\circ}U$ is open in A for all $U\subseteq B$ open

▶ a relation J: A → B between closure spaces is upper hemicontinuous if

JV is closed in B for all $V \subseteq A$ closed

J: A → B between topological spaces is upper hemicontinuous if the condition above holds and

 $J^{\circ}y$ is compact in A for all $y \in B$

▶ upper hemicontinuity of a P_+ -relation $J: A \rightarrow B$ between approach spaces is a "numerified generalisation" of topological upper hemicontinuity

Generalised lower maximum theorem

Let

- ▶ $M = (M, \overline{M}, m)$ be a (T, V)-algebra
- ▶ $d: B \to M$ be a morphism of (T, V)-monoids

The right Kan extension $r: A \to M$ of d along J, if it exists, is a morphism of (T, \mathcal{V}) -monoids

Proof

Factor the following composite through the universal cell defining the right Kan extension r.

Generalised upper maximum theorem

Let

- $M = (M, \overline{M}, m)$ be a (T, V)-algebra
- ▶ $d: A \rightarrow M$ be a morphism of (T, V)-monoids

The left Kan extension $I: B \to M$ of d along $J: A \to B$, if it exists, is a morphism of (T, \mathcal{V}) -monoids as soon as the following hold:

- ightharpoonup T preserves composites of \mathcal{V} -relations
- the cell below exists

Extreme value theorem

The second condition here means:

• for $\mathcal{V}=2$:

$$\forall_{y \in B} \exists_{x \in J^{\circ} y} ly \le dx$$

that is the supremum Iy of $d(J^{\circ}y)$ is in fact a maximum

- ▶ if T = U then the above is implied by the theorem's assumptions on d and J, as long as the preorder M is total and $J^{\circ}y \neq \emptyset$ for all $y \in B$: this is Weierstraß' extreme value theorem!
- ▶ if T = P then the above is implied by the assumption on d as long as M is total and $J^{\circ}y$ is both non-empty and compact for all $y \in B$

Extreme value theorem for approach spaces

▶ for $V = P_+$ the second condition means that, for all $y \in B$,

$$\inf_{x\in A} \bar{M}(Iy, dx) + J(x, y) = 0$$

▶ if T = U and $M = P_+$ then the above is implied by the theorem's assumptions on d and J, as long as J is discrete (i.e. im $J \subseteq \{0, \infty\}$) with $J_0^\circ y$ non-empty for all $y \in B$