Econometria I

Exame 1

26/10/2023

Instruções:

- Você precisa justificar suas respostas com cuidado e mostrar seu trabalho para obter o crédito total. Crédito parcial pode ser dado para cada pergunta.
- Caso o tempo se esgote ou não consiga completar a argumentação/prova formal, o crédito parcial poderá ser dado para uma resposta intuitiva.
- Salvo indicação em contrário, podem ser utilizados pressupostos padrão do modelo linear. Indique claramente as suposições que você está usando para resolver cada exercício.
- Cada questão vale 20 pontos, distribuídos igualmente entre os ítens de cada uma.
- 1. Considere os seguintes modelos:

$$\mathbf{y} = \mathbf{X}\beta_1 + \varepsilon_1 \text{ (Modelo 1)}$$

 $\mathbf{y} = \mathbf{X}\beta_2 + \mathbf{Z}\gamma + \varepsilon_2 \text{ (Modelo 2)}$

onde \mathbf{X} é uma matrix $n \times K_X$ e \mathbf{Z} é uma matrix $n \times K_Z$. Denote os estimadores de MQO de \mathbf{b}_1 e \mathbf{b}_2 , respectivamente.

- a. Encontre $E[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ caso o modelo 2 represente o verdadeiro processo gerador de dados.
- b. Encontre $E[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ caso o modelo 1 represente o verdadeiro processo gerador de dados.
- c. Compare $E[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ e $E[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ caso o modelo 1 represente o verdadeiro processo gerador de dados.
- d. Compare $E[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ e $E[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_1|\mathbf{X},\mathbf{Z}]$ e $Var[\mathbf{b}_2|\mathbf{X},\mathbf{Z}]$ caso o modelo 2 represente o verdadeiro processo gerador de dados.
- e. Discuta e interprete os resultados obtidos acima.
- 2. Considere os seguintes modelos:

$$y_i = \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \varepsilon_i$$

$$y_i = \alpha_1 z_{1,i} + \alpha_2 z_{2,i} + \alpha_3 z_{3,i} + u_i$$

onde
$$z_{1,i} = x_{1,i} - 2x_{2,i}$$
, $z_{2,i} = x_{2,i} + 4x_{3,i}$, $z_{3,i} = 2x_{1,i} - 3x_{2,i} + 5x_{3,i}$. Seja $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$, onde $\mathbf{x}_k = [x_{k,1}, x_{k,2}, \dots, x_{k,n}]'$ (um vetor coluna) e $\mathbf{Z} = [\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3]$, onde $\mathbf{z}_k = [z_{k,1}, z_{k,2}, \dots, z_{k,n}]'$.

- a. Encontre os elementos da matrix 3×3 A tal que $\mathbf{Z} = \mathbf{X}\mathbf{A}$.
- b. Qual a relação entre o estimador b_1 e os estimadores $\hat{\alpha}_1$, $\hat{\alpha}_2$ e $\hat{\alpha}_3$?

- c. Mostre que as duas regressões fornecem os mesmos valores previstos e resíduos. Forneça alguma intuição para este resultado.
- 3. Considere o modelo de regressão linear

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i.$$

a. Derive a estatística de teste para a realização do seguinte teste de hipótese:

$$H_0: \beta_1^2 - \beta_2^2 = 5$$
, e $\beta_2 + \beta_3 = 1$

$$H_1: \beta_1^2 - \beta_2^2 \neq 5$$
, ou $\beta_2 + \beta_3 \neq 1$

- b. Qual é a distribuição limite da sua estatística de teste?
- 4. Considere o modelo de regressão

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

onde y é um vetor de observações $n \times 1$, X é uma matrix $n \times K$, β é um vetor $K \times 1$ de coeficientes e ε é um vetor $n \times 1$ de termos de erro.

- a. Mostre que o estimador de MQO b é um estimador consistente de β . Explicite todas as hipóteses e resultados utilizados em sua prova.
- b. Derive a distribuição assintótica de b, detalhando as hipóteses e resultados necessários em sua derivação.
- 5. A estimativa de um modelo misterioso usando um método misterioso produz o resultado fornecido a seguir. Sabe-se que $E[y|x_2;x_3] = g(1+2x_2+3x_3)$ onde a forma funcional g() é desconhecida, mas sabe-se que g() é monotônicamente decrescente.

. sum y x2 x3			
Variable	Obs	Mean	Std. Dev.
уΙ	167	.3473054	.6202229
x2	167	.0443812	1.020856
x3	167	.0263457	.5186052

Mystery regress	ion			chi2(r of obs 2) > chi2	= = =	167 6.87 0.0322
у І	Coef.	Std. Err.	z	P> z	[95% Coi	nf.	Interval]
x2 x3 _cons	.272362 .4223453 -1.141784	.1331826 .2653977 .1426118	2.05 1.59 -8.01	0.041 0.112 0.000	.0113289 097824 -1.421298	7	.5333952 .9425153 8622702

Forneça uma interpretação do resultado com a maior quantidade de detalhes possível.