AMERICAN SOCIETY OF CIVIL



NAME CLEVELAND DATE 30 APRIL

COURSE <u>CE3305</u> SHEET / OF 14

Property called

circulation

Integral of tangential valuation

around a surface - if

any asymmetry, then Errculation"

If circulation, slight imbulance
of pressure farce > lift



Page 299

NAME CLEVELAND DATE 30 APR 14

COURSE (E3305 SHEET 2 OF /4





EXAMPLE 11.6 P425 GOOD ILLUSTRAPION HOW TO USE CHARTS

AMERICAN SOCIETY OF CIVIL

COURSE (£3505 SHEET 3 OF /4

AIRFOILS ( AND PAPEUSE BLADES)

WATER TOWN

NHEN INTEGRATE, BETAIN ASSYMETRIC HENCE LIFT.

GIRPOLL THEORY ELABORATE NOTICE THE SIGNIFICANT GSTMATOR OF LIFT & DRAG ARE ANGLE OF ATTACK

AMERICAN SOCIETY OF



Page 301



$$\frac{C_0 A_p \varphi^{V^2}}{\#} + \forall \delta_w = \delta_s^{*V}$$

$$C_0 A_p \varphi^{V^2} = (\delta_s - \delta_w) + \frac{V^2}{2} = (\delta_s - \delta_w) + \frac{V^2}{2} = (\delta_s - \delta_w) + \frac{V^2}{2} = \frac{(\delta_s - \delta_w) + \frac{V^2}{2}}{(\delta_s - \delta_w) + \frac{V^2}{2}}$$

$$V = \left[\frac{2(\delta_s - \delta_w) + \frac{V^2}{2}}{(\delta_s - \delta_w) + \frac{V^2}{2}}\right]^{\frac{1}{2}}$$





| $A_p = \pi d^2$                                                                            | 7.4. T. 1.5.                          |
|--------------------------------------------------------------------------------------------|---------------------------------------|
| + = #d3                                                                                    |                                       |
| $V = \int \frac{2(8_6 - 8_w) \pi d^3}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ell_{D} p$ |                                       |
| $V^{*} = \left(\frac{(8s - 8w)(4/3)d}{Cop}\right)^{1/2}$                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| Cp of Vod  V  IN EXAM |        |       | FOR VALUES<br>EXAMPLE 11.4 | ANTS<br>OLE 11.4 |    |
|-----------------------|--------|-------|----------------------------|------------------|----|
| THE                   | V BUIL | D TAC | BLE                        |                  |    |
| V                     | Re     | Co    | 10*                        |                  | 14 |
| Ink                   | 20,000 | 0.456 | 0.413                      |                  |    |
| 0.413                 | 8264   | 0.406 | 0.438                      |                  |    |
| 1:1                   | •      |       | •                          |                  |    |
|                       | .      | •     | •                          |                  |    |



Page 303

NAME <u>CLEVERAND</u> DATE <u>30 A/R 14</u>

COURSE <u>LE 330.5</u> SHEET <u>6</u> OF <u>14</u>





6



Page 304

NAME CLEUTE AND DATE 30 APR 14

COURSE <u>(£3505</u> SHEET <u>7</u> OF <u>/4</u>







Page 305

NAME CLEVERAND DATE 30 APRI 4

COURSE CE 3305 SHEET 8 OF 14



Laminar
$$S = \frac{5 \times Re_{x}^{1/2}}{Re_{x}^{1/2}} \qquad (Re_{x} < 10^{6})$$
Turbulent
$$S = \frac{0.16 \times Re_{x}^{1/4}}{Re_{x}^{1/4}} \qquad (Re_{x} > 10^{6})$$

AMERICAN SOCIETY OF CIVIL



Page 306

NAME CLEREZAND DATES APRILY
COURSE CE 3305 SHEET 9 OF 14



Assume laminar

$$Re_{\chi} = \frac{U\chi}{2}$$
 $\frac{U}{2} = \frac{2044/5}{1.09.10^{-5}47/5} = 1.84.10^{6}4^{-1}$ 

Page 307



$$S^{2} = \frac{25 \times 2}{1.84 \cdot 10^{6} \times 1.84 \cdot 10^{6} (\frac{1}{12})^{2}} = 511 \text{ At}$$

Check Rex

Rex = 1.84.106.511 ft = 9.4.108 106

Nor LAMINAR,

USE TURBULENT

MODEL (Ep 9.33)

ENGINEERS

Page 308



$$\frac{S^{7} 1.84.10^{6}}{(0.16)^{7}} = \chi^{6}$$

$$\chi = \left[\frac{S^{7} (1.84.10^{6})}{(0.16)^{7}}\right]^{1/6}$$

$$= \left[\frac{\left(\frac{1}{12}\right)^{7} (1.84.10^{6})}{(0.16)^{7}}\right]^{1/6} = 5.17 \text{ ft}$$

$$Re_{\chi} = \frac{(20)(5.17)}{1.09.10^{-5}} = 9.5-10^{6} > 10^{6} \text{ turbursuf}$$

: At GIVEN CONDITIONS, B.L. = I'M AT 5.17 ft from leading edge. ENGINEERS





Shew Force (one side) drag
$$C_{f} = \frac{F_{s}}{A(pV_{2}^{2})}$$

$$C_{f} = \frac{1.33}{Re_{x}^{V_{2}}} (LAMINAR)$$

$$C_{f} = \frac{0.032}{Re_{x}^{U_{2}}} (Re < 10^{2}), \frac{0.523}{h^{2}/0.06Re_{x}}$$



Page 310

NAME <u>CLEVELAND</u> DATE <u>30 APR 14</u> COURSE <u>CE3305</u> SHEET 13 OF 14



$$Re_{L} = \frac{(2.0)(1.0)}{1.46.10^{-5}} = 137,000 < 106$$

$$Lamwar.$$

$$Re_{F} = \frac{1.33}{(137,000)^{1/2}} = 0.0036$$

$$F_{S} = C_{F}A\left(\frac{9.40^{2}}{2}\right)$$

$$= (0.0036)(3)(1)(1.23)(2)^{2}(\frac{1}{2}) = 0.0265N$$

$$m^{-1} |ky|m^{3} |ky| = kqm^{2} = N$$

$$m^{3} \cdot 5^{2} = 5^{2} = N$$



Page 311

NAME <u>CLASSAND</u> DATE <u>30 APR 14</u>
COURSE <u>653305</u> SHEET <u>14</u> OF <u>14</u>



