

Alkyner: Introduksjon til organisk syntese

Navnsetting av alkyner

- Samme prinsipp som for alkener
 - Erstatt "–an" med "-yn"
- Enyner dobbel- og trippelbinding i samme molekyl
 - Nummerer fra enden som er nærmest første multiple binding, enten den er dobbel eller trippel
 - Dobbeltbinding prioriteres dersom to like alternativer
 - Dobbeltbindingen angis først av de to som etterstavelse, f.eks.

sp-hybridisering (repetisjon)

Ved å "blande" en s- og en p-orbital får man to sphybridorbitaler som peker i motsatt retning av hverandre:

Disse to sp-orbitalene og de to ubrukte p-orbitalene kan benyttes til bindingsdannelse.

Korrekt lineær geometri forutsies nå for etyn (acetylen).

KJM 1110 - Mats Tilset

Elektronisk struktur til alkyner

- C-atomene i en C-C trippelbinding er sp-hybridiserte, og bindingene mot hvert C er lineært orientert
- Trippelbindingen har tre komponenter
 - En σ (sigma)-binding langs C-C aksen
 - En π (pi)-binding med elektrontetthet over/under molekylplanet
 - En π (pi)-binding med elektrontetthet foran/bak molekylplanet

KJM 1110 - Mats Tilset 4

Addisjon til alkyner

- Addisjonsreaksjoner forløper ganske likt med alkeners addisjonsreaksjoner
 - HBr, HCl adderer lett
 - Kan gjøres to ganger, trinnvis
 - Markovnikov orientering i begge trinn
 - Br₂, Cl₂ adderer lett
 - Kan gjøres to ganger, trinnvis
 - Trans addisjon i første trinn

Reduksjon av alkyner

- Katalytisk hydrogenering
 - Addisjon av H₂
 - Alkyn til alken til alkan
 - Lindlars katalysator er god for reduksjon til alken
 - H₂ adderes cis med Lindlars katalysator

- Reduksjon med Li eller Na i flytende NH₃
 - Netto addisjon av H₂
 - Addisjon skjer trans med denne metoden

Acetylid-anioner: Alkylering

- Terminale alkyner RC≡C-H er relativt sure (pK_a ca. 25), sammenlignet med alkaner (pK_a ca. 50)
- Behandling med en svært sterk base danner anionet:

$$R-C \equiv C-H$$
 $-NH_2 Na^+$
 $R-C \equiv C: Na^+ + NH_3$

- Det må benyttes et egnet løsemiddel, ofte THF
- Anionet kan deretter alkyleres med et primært alkylbromid, det dannes en ny C-C binding:

Strategier i organisk syntese – et eksempel

Oppgave:

Fremstill 5-metyl-1-heksanol fra acetylen og et bromalkan!

$$CH_3$$

 $R=CH + R=Br$ $CH_3CHCH_2CH_2CH_2CH_2OH$

Tenk "RETROSYNTETISK" !!

- Jobb deg fra sluttprodukt tilbake til aktuelle utgangsstoffer
- Det vil ofte finnes flere fullverdige løsninger