

Mark Scheme (Results) Summer 2010

GCE

GCE Decision Mathematics D2 (6690/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Decision Mathematics D2 6690 Mark Scheme

Question Number	Scheme	Mai	·ks
Q1 (a)	F 13 20 D	M1 A1	(2)
(b)	Minimum Spanning tree length 93, so upper bound is £186	B1ft	(1)
(c)	A C F E B D A 18 24 13 20 22 28 Length 125 A C F E D B A 18 24 13 20 22 36 Length 133	M1 A1 A1	(3)
(d)	Best upper bound is £125	B1ft	(1)
(e)	Delete A A 22 24 F 13 20 D	M1 A1	
	RMST weight = 77 Lower bound = 77 + 18 + 22 = £117	M1 A1	(4) [11]

edexcel	

	COCA	
Question Number	Scheme	Marks
Q2 (a)	Since maximising, subtract all elements from some $n \ge 27$ $ \begin{bmatrix} 12 & 6 & 8 & 13 \\ 10 & 5 & 11 & 60 \\ 5 & 6 & 3 & 8 \\ 11 & 4 & 7 & 16 \end{bmatrix} $	1M1 2M1
	Reduce rows $\begin{bmatrix} 6 & 0 & 2 & 7 \\ 5 & 0 & 6 & 55 \\ 2 & 3 & 0 & 5 \\ 7 & 0 & 3 & 12 \end{bmatrix}$ then columns $\begin{bmatrix} 4 & 0 & 2 & 2 \\ 3 & 0 & 6 & 50 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 3 & 7 \end{bmatrix}$	3M1 A1
	$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 4 & 48 \\ 0 & 5 & 0 & 0 \\ 3 & 0 & 1 & 5 \end{bmatrix}$	4M1 A1ft
	$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 47 \\ 0 & 6 & 0 & 0 \\ 2 & 0 & 0 & 4 \end{bmatrix}$	5M1A1 (8)
(b)	Three optimal allocations: Harry 3 4 4 Jess 1 1 2 Louis 4 3 1 Saul 2 2 3	M1
	Total amount earned by team: £90	A1 (2) [10]

Question Number	Scheme					
Q3 (a)		X 18 31 4				
(b)	$\begin{array}{c cc} X & 18 - \theta & 3 \\ Y & \theta & \end{array}$	28 20 19 22 A B C D 0 X x x x x -6 -5 Y -8 -3 x x A B C D X 18-0 31 4+0				
	Entering cell:	$\theta = 18$				
	Either Exiting cell: XA A B C D X 31 22 Y 18 0 29	Or Exiting cell: YC A B C D X 0 31 22 Y 18 29	2A1ft			
	20 20 19 22 A B C D 0 X 8 x x -6 -5 Y x -3 x x	28 20 19 30 A B C D 0 X x x x -14 -13 Y x 5 8 x	3M1 3A1			
	Entering cell: XD A B C D X 31 22 - θ θ Y 18 0 + θ 29 - θ Exiting cell: XC $\theta = 22$	Entering cell: XD A B C D X 0-\theta 31 22 \theta Y 18+\theta 29-\theta Exiting cell: XA $\theta = 0$	4M1			
	A B C D X 31 22 Y 18 22 7	A B C D X 31 22 0 Y 18 29	4A1ft			
	14 20 13 16 A B C D 0 X 14 X 6 x 1 Y x -9 x x	14 20 19 16 A B C D 0 X 14 x x x 1 Y x -9 -6 x	5A1	(9)		
(c)	Negative improvemen	B1ft	(1) [11]			
Q4 (a)	Minima	ax route		-		

edexcel	

							CUCN	
Question Number				Sc	cheme			Marks
	Г	Stage	State	Action	Dest.	Value		
	-	Stage	G	GT	T	17*		1111
	-	1	H	HT	T	21*		1M1 A1
	-	1	I	IT	T	29*		Δ1
	-	2	D	DG	G	max(22, 17) = 22*		
	_		D	DH	Н	max(22, 17) = 22 max(31, 21) = 31		2M1 A1
			Е	EH	Н	max(34, 21) = 34*		0.4
				EI	I	max(39, 29) = 39		A1
			F	FI	I	max(52, 29) = 52*		
		3	A	AD	D	max(41, 22) = 41		
	-			AE	Е	max(38, 34) = 38*		
	_		В	BE	Е	max(44, 34) = 44*		3M1 A1ft
			C	CE	Е	max(36, 34) = 36*		A1ft
				CF	F	max(35, 52) = 52		AIII
	-	4	S	SA	A	max(37, 38) = 38*		
				SB	В	max(39, 44) = 44		A1ft
				SC	С	max(41, 36) = 41		
	_				I.	, ,		(9)
(1-)	D GARIE	C			020.00			M4 M4 CL (O)
(b)	Route: SAEHT	Grea	itest ani	nual cost	£38 00	00		M1 A1ft (2)
(c)		27	. 20 . 2	24 - 21	120			
(6)	Average expendito	ure $\frac{3/}{}$	+ 38 + 3	$\frac{94 + 21}{} =$	$\frac{130}{4} = 3$	£32 500		M1A1 (2)
	_		4		4			[40]
								[13]

		CUCX	<u> </u>	300
Ques Num		Scheme	Mar	ks
Q5	(a)	Initial flow = 41	B1	(1)
	(b)	Capacity of $C_1 = 69$ Capacity of $C_2 = 64$	B1 B1	(2)
	(c)	$\begin{array}{c} \mathbf{D} \\ \mathbf{F} \\ \mathbf{I} \\ \mathbf{S} \\ \mathbf{I} \\ $	M1 A1	(2)
	(d)	e.g. SBADHT – 2 SCGEDHT – 2	M1 A1 A1	(3)
	(e)	maximum flow = minimum cut e.g. cut through SA, SB, CE, GE, GI or HT, FI, GI	DM1 A1	(2) [10]
		Notes: (a) 1B1: cao (b) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (c) 1M1: Two numbers on each arc 1A1: cao (d) 1M1: One valid flow augmenting route, S to T, found and value (≤4) stated. 1A1: Flow increased by at least 2 2A1: Flow increased by 4 (e) 1DM1: Must have attempted (d) and made an attempt at a cut. 1A1: cut correct − may be drawn. Refer to max flow-min cut theorem three words out of four.		

edexcel	

	CUCA	
Question Number	Scheme	Marks
Q6 (a) (b)	P - x - 2y - 6z = 0 $b.v x y z r s t Value$	B1 (1)
	r 0 1 2 1 0 0 24 s 2 1 4 0 1 0 28 t -1 \frac{1}{2} 3 0 0 1 22 P -1 -2 -6 0 0 0 0	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft A1 (5)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft M1 A1 (4)
(c)	Notes: (a) 1B1: cao (b) 1M1: correct pivot located, attempt to divide row 1A1: pivot row correct including change of b.v. 2M1: (ft) Correct row operations used at least once or stated correctly. 1A1ft: Looking at non zero-and-one columns, one column ft correct 2A1: cao. 3M1: (ft)Correct pivot identified – negative pivot gets M0 M0 1A1: ft pivot row correct including change of bv – but don't penalise b.v. twice. 4M1: (ft) Correct row operations used at least once or stated correctly. 1A1: cao (c) 1M1: At least 4 values stated. No negative. Reading off bottom row gets M0. 1A1ft: At least 4 values correct. 2A1: cao	M1 A1ft A1 (3) [13]

edexcel	
CUCALCI	

		CUCA	
Question Number	Scho	eme	Marks
Q7	$\begin{bmatrix} -4 & 5 & 1 \\ 3 & -1 & -2 \\ -3 & 0 & 2 \end{bmatrix} \rightarrow \text{add 5 to all entries} \begin{bmatrix} 1 & 16 \\ 8 & 4 \\ 2 & 5 \end{bmatrix}$	$\begin{bmatrix} 0 & 6 \\ 4 & 3 \\ 5 & 7 \end{bmatrix}$	M1
	Either Define variables e.g. let p ₁ , p ₂ and p ₃ be the probability that A plays rows 1, 2 and 3 respectively.	Or Define variables e.g. let p_1 , p_2 and p_3 be the probability that A plays rows 1, 2 and 3 respectively. Let $x_i = \frac{p_i}{V}$	B1
	Maximise $P = V$	$ \begin{array}{ll} \text{Minimise} \\ P = x_1 + x_2 + x_3 \end{array} $	B1
	Subject to:	Subject to	
	$V - p_1 - 8p_2 - 2p_3 \le 0$	$x_1 + 8x_2 + 2x_3 \ge 1$	M1
	$V - 10p_1 - 4p_2 - 5p_3 \le 0$	$10x_1 + 4x_2 + 5x_3 \ge 1$	A1
	$V - 6p_1 - 3p_2 - 7p_3 \le 0$		A1
	$p_1 + p_2 + p_3 \le 1$ $p_1, p_2, p_3 \ge 0$	$6x_1 + 3x_2 + 7x_3 \ge 1$ $x_1, x_2, x_3 \ge 0$	A1
	Notes: 1M1: Adding n (≥ 4) to all entries 1B1: Defining variables 1B1: Objective correct 2M1: At least 3 constraints, using columns 1A1ft: one correct constraint — excluding r 2A1ft: two correct constraints — excluding r 3A1: cao including non-negativity constrain	non-negativity constraint non-negativity constraint	[7]

Notes for Question 1

(a) 1M1: Spanning tree found. Allow 1x2x43 across top of table or 93

1A1: CAO must see tree or list of arcs

(b) 1B1ft: 186 their ft93 x 2

(c) 1M1: One Nearest Neighbour each vertex visited at least once (condone lack of return to start)

1A1: One correct route and length CAO – must return to start.

2A1: Second correct route and length CAO – must return to start.

(d) 1B1ft: ft but only on three different values.

(e) 1M1: Finding correct RMST (maybe implicit) 77 sufficient, or correct numbers. 4 arcs.

1A1: CAO tree or 77.

2M1: Adding 2 least arcs to A, 18 and 22 or 40 only

2A1: CAO 117

edexcel

Notes for Question 2

(a) 1M1: Subtracting from some $n \ge 27$, condone up to two errors

2M1: Dealing with (Jess, 4) entry.

3M1: Reducing rows then columns

1A1: cao (pick up (J,4) value here)

4M1: Double covered +e; one uncovered – e; and one single covered unchanged. 2 lines needed to 3 lines needed.

2A1ft: ft correct - no errors

5M1: Double covered +e; one uncovered – e; and one single covered unchanged. 3 line to 4 line solution.

3A1: correct - no errors

(b) 1M1: A complete, correct solution.

1A1: cao

Q2 Special case (Minimises)

M1

M0 M1

A1

M0 M0

Solution:

Total £75

Harry - 1 Jess - 3 Louis - 2

Saul - 4

A1

M1

Maximum 5 marks

Notes for Question 3

(a) 1B1: Cao

(b) 1M1: 6 shadow costs and precisely 3 improvement indices stated. (no extra zeros)

1A1: cao.

2M1: A valid route, negative II chosen, only one empty square used, θ 's balance.

2A1ft: improved solution (no extra zeros)

3M1ft: 6 shadow costs and precisely 3 improvement indices stated (no extra zeros)

3A1: cao.

4M1ft:A valid route, negative II chosen, only one empty square used, θ 's balance.

4A1ft: improved solution (no extra zeros)

5A1=5M1: 6 shadow costs and precisely 3 improvement indices, (or 1 negative improvement index), stated (no extra zeros).

(c) 1B1ft=1A1ft: cao for conclusion, but must follow from at least one negative in a third 'set' of IIs.

Misreads for Q3b Not choosing most negative.

	A	В	С	D
X	18	31	4	
Y			18	29

		28	20	19	22
		Α	В	C	D
0	X	X	X	X	-6
-5	Y	-8	-3	X	X

Either

Entering cell: XD

	A	В	С	D
X	18	31	4– θ	θ
Y			18+ θ	29– θ

Exiting cell: XC $\theta = 4$

	Α	В	C	D
X	18	31		4
Y			22	25

		28	20	13	16
		A	В	C	D
0	X	X	X	6	X
1	Y	-14	-9	X	X

Or

Entering cell: YB

	A	В	С	D
X	18	31- θ	4+ θ	
Y		θ	18- θ	29

Exiting cell: YC $\theta = 18$

	A	В	С	D
X	18	13	22	
Y		18		29

		28	20	19	25
		Α	В	C	D
0	X	X	X	X	-9
-8	Y	-5	X	3	X

Candidates can get

2M1 2A1 for first route and the improved solution

3M1 3A0 – 6 shadow costs and 3 IIs

4M1 for finding a valid route and 4A1 if their route leads to an improved solution

[A0 – 6 shadow costs and 3 IIs but it is CAO]

edexcel

Notes for Question 4

Throughout section (a):

- Condone lack of destination column and/or reversed stage numbers throughout.
- Only penalise incorrect result in Value ie ignore working values.
- Penalise absence of state or action column with first two A marks earned only
- Penalise empty/errors in stage column with first A mark earned only.
- (a) 1M1: First, T, stage complete and working backwards.
 - 1A1: CAO (condone lack of *)
 - 2M1: Second stage completed. Penalise reversed states here and in (b). Bod if something in each column.
 - 2A1: Any 2 states correct. Penalise * errors, with an A mark, only once in the question).
 - 3A1: All 3 states correct. (Penalise * errors only once in the question).
 - 3M1: 3rd and 4th stages completed. Bod if something in each column.
 - 4A1ft: Any 2 states correct. (Penalise * errors only once in the question). A, B or C
 - 5A1ft: All 3 states correct. (Penalise * errors only once in the question). A, B and C.
 - 6A1ft: Final, S, state correct. (Penalise * errors only once in the question).
- (b) 1M1: Route (S to T or vv.) and cost stated
 - 1A1ft: CAO (Penalise reversed states here)
- (c) 1M1: Sum of four arcs /4 (do not isw here if they 'add' to this method)
 - 1A1: CAO (32 500 gets both marks)

Special cases (and misreads)

SC1 Maximin: treat as misread. MAX 11/13

SC2 Maximum: 1M1,1A1; 2M0; 3M1,4A1ft,5A0,6A1ft, M1A1ft M1A1ft MAX 9/13

SC3 Minimum: Marks awarded as above SC2

SC4 Maximax: 1M1,1A1; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft **MAX 7/13**

SC5 Minimin: Marks awarded as above SC4

SC6 Working forwards:

1M1,1A0; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft **MAX6/13**

Anything else annotate and send to review.

Q4 Misreads

SC 1 Maximin

Stage	State	Action	Dest	Value
1	G	GT	T	17*
	Н	HT	T	21*
	I	IT	T	29*
2	D	DG	G	min(22, 17) = 17
		DH	Н	min(31, 21) = 21*
	Е	EH	Н	min(34, 21) = 21
		EI	I	min(39, 29) = 29*
	F	FI	I	min(52, 29) = 29*
3	A	AD	D	min(41, 21) = 21
		AE	Е	min(38, 29) = 29*
	В	BE	Е	min(44, 29) = 29*
	С	CE	Е	min(36, 29) = 29*
		CF	F	min(35, 29) = 29*
4	S	SA	A	min(37, 29) = 29*
		SB	В	min(39, 29) = 29*
		SC	C	min(41, 29) = 29*

SC 2 Maximum route

Stage	State	Action	Dest	Value
1	G	GT	T	17*
	Н	HT	T	21*
	I	IT	T	29*
2	D	DG	G	22 + 17 = 39
		DH	Н	31 + 21 = 52*
	Е	EH	Н	34 + 21 = 55
		EI	I	39 + 29 = 68*
	F	FI	I	52 + 29 = 81*
3	A	AD	D	41 + 52 = 93
		AE	Е	38 + 68 = 106*
	В	BE	Е	44 + 68 = 112*
	C	CE	Е	36 + 68 = 104
		CF	F	35 + 81 = 116*
4	S	SA	A	37 + 106 = 143
		SB	В	39 + 112 = 151
		SC	C	41 + 116 = 157*

Route: SCFIT

SC3 Minimum route

Stage	State	Action	Dest	Value
1	G	GT	T	17*
	Н	HT	T	21*
	I	IT	T	29*
2	D	DG	G	22 + 17 = 39*
		DH	Н	31 + 21 = 52
	Е	EH	Н	34 + 21 = 55*
		EI	Ι	39 + 29 = 68
	F	FI	Ι	52 + 29 = 81*
3	A	AD	D	41 + 39 = 80*
		AE	Е	38 + 55 = 93
	В	BE	Е	44 + 55 = 99*
	C	CE	Е	36 + 55 = 91*
		CF	F	35 + 81 = 116
4	S	SA	A	37 + 80 = 117*
		SB	В	39 + 99 = 138
		SC	C	41 + 91 = 132

Route: SADGT

SC 4 Maximax route

Stage	State	Action	Dest.	Value
	G	GT	T	17*
1	Н	HT	T	21*
	Ι	IT	T	29*
2	D	DG	G	max(22, 17) = 22
		DH	Н	$\max(31, 21) = 31*$
	Е	EH	Н	max(34, 21) = 34
		EI	Ι	max(39, 29) = 39*
	F	FI	Ι	max(52, 29) = 52*
3	A	AD	D	max(41, 31) = 41
		AE	Е	$\max(38, 39) = 39*$
	В	BE	Е	max(44, 39) = 44*
	C	CE	Е	max(36, 39) = 39
		CF	F	max(35, 52) = 52*
4	S	SA	A	$\max(37, 39) = 39$
		SB	В	$\max(39, 44) = 44$
		SC	C	max(41, 52) = 52*

Route SCFIT

SC 5 Minimin

Stage	State	Action	Dest	Value
1	G	GT	T	17*
	Н	HT	T	21*
	I	IT	T	29*
2	D	DG	G	min(22, 17) = 17*
		DH	Н	min(31, 21) = 21
	Е	EH	Н	min(34, 21) = 21*
		EI	I	min(39, 29) = 29
	F	FI	I	min(52, 29) = 29*
3	A	AD	D	min(41, 17) = 17*
		AE	Е	min(38, 21) = 21
	В	BE	Е	min(44, 21) = 21*
	С	CE	Е	min(36, 21) = 21*
		CF	F	min(35, 29) = 29
4	S	SA	A	min(37, 17) = 17*
		SB	В	min(39, 21) = 21
		SC	C	min(41, 21) = 21

Route SADGT

SC 6 Working forwards S to T

IUSSIC			ı	T .
Stage	State	Action	Dest	Value
1	A	AS	S	37*
	В	BS	S	39*
	C	CS	S	41*
	D	DA	A	max(41, 37) = 41*
	Е	EA	A	max(38, 37) = 38*
		EB	В	max(44, 39) = 44
		EC	C	max(36, 41) = 41
	F	FC	C	$\max(35, 41) = 41*$
3	G	GD	D	max(22, 41) = 41*
	Н	HD	D	max(31, 41) = 41
		HE	Е	max(34, 38) = 38*
	I	ΙE	Е	max(39, 38) = 39*
		IF	F	max(52, 41) = 52
4	T	TG	G	max(17, 41) = 41
		TH	Н	max(21, 38) = 38*
		TI	I	max(29, 39) = 39

Route SAEHT

Increasing *x* first,

b.v.	x	y	z	r	S	t	value	row ops
r	0	1	2	1	0	0	24	R_1 no change
х	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_2 \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	R_3+R_2
P	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_4 + R_2$

then y next

b.v.	x	y	z	r	S	t	value	row ops
y	0	1	2	1	0	0	24	$R_1 \div 1$
X	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 - \frac{1}{2}R_1$
t	0	0	3	-1	$\frac{1}{2}$	1	12	R_3-R_1
P	0	0	-1	$\frac{3}{2}$	$\frac{1}{2}$	1	50	$R_4 + \frac{3}{2}R_1$

then z.

b.v.	x	y	Z	r	S	t	value	row ops
У	-2	1	0	2	-1	0	20	R_1-2R_2
Z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	-3	0	0	1/2	-1	1	6	R_3 -3 R_2
P	0	0	0	1	1	1	52	$R_4 + R_2$

Increasing *x* first

b.v.	x	y	Z	r	S	t	value	row ops
r	0	1	2	1	0	0	24	R_1 no change
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_2 \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	R_3+R_2
P	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_4 + R_2$

Increasing z next

b.v.	X	y	z	r	S	t	value	row ops
r	-1	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	0	10	R_1-2R_2
Z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	7	$R_2 \div 2$
t	$-\frac{5}{2}$	$-\frac{1}{4}$	0	0	<u>3</u>	1	1	R_3-5R_2
P	2	$-\frac{1}{2}$	0	0	$\frac{3}{2}$	0	42	$R_4 + 4R_2$

then increasing y

b.v.	x	y	Z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	$R_1 \div \frac{1}{2}$
Z	1	0	1	$-\frac{1}{2}$	1/2	0	2	$R_2 - \frac{1}{4}R_1$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_3 + \frac{1}{4}R_1$
P	1	0	0	1	1	0	52	$R_4 + \frac{1}{2}R_1$

Increasing *y* first

b.v.	х	y	Z	r	s	t	value	row ops
у	0	1	2	1	0	0	24	$R_1 \div 1$
S	2	0	2	-1	1	0	4	$R_2 - R_1$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_3 - \frac{1}{2}R_1$
P	-1	0	-2	2	0	0	48	$R_4 + 2R_1$

Increasing *x* next

b.v.	x	у	Z	r	S	t	value	row ops
у	0	1	2	1	0	0	24	R_1 no changw
X	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	0	0	3	-1	$\frac{1}{2}$	1	12	$R_3 - 3R_2$
P	0	0	-1	$\frac{3}{2}$	1/2	0	50	$R_4 + R_2$

then increasing z

b.v.	x	у	Z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	R_1-2R_2
z	1	0	1	$-\frac{1}{2}$	1/2	0	2	$R_2 \div 1$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	R_3+R_2
P	1	0	0	1	1	0	52	$R_4 + R_2$

Increasing *y* first

b.v.	x	у	Z	r	S	t	value	row ops
у	0	1	2	1	0	0	24	$R_1 \div 1$
S	2	0	2	-1	1	0	4	$R_2 - R_1$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_3 - \frac{1}{2}R_1$
P	-1	0	-2	2	0	0	48	$R_4 + 2R_1$

Increasing z next

b.v.	x	у	Z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	R_1-2R_2
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	-3	0	0	1/2	-1	1	6	$R_3 - 2R_2$
P	1	0	0	1	1	0	52	$R_4 + 2R_2$

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023714 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH