Out[8]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	med
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22.
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11.

506 rows × 14 columns

In [9]: 1 df.head()

Out[9]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

In [10]: 1 df.describe()

Out[10]:

		crim	zn	indus	chas	nox	rm	age	
-	ount	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
r	nean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.
4									

In [11]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	crim	506 non-null	float64
1	zn	506 non-null	float64
2	indus	506 non-null	float64
3	chas	506 non-null	int64
4	nox	506 non-null	float64
5	rm	506 non-null	float64
6	age	506 non-null	float64
7	dis	506 non-null	float64
8	rad	506 non-null	int64
9	tax	506 non-null	int64
10	ptratio	506 non-null	float64
11	b	506 non-null	float64
12	lstat	506 non-null	float64
13	medv	506 non-null	float64

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

```
In [12]:
               df.isnull().sum()
Out[12]: crim
                      0
                      0
          zn
          indus
                      0
          chas
                      0
          nox
                      0
                       0
          rm
                       0
          age
          dis
                      0
          rad
                      0
                      0
          tax
          ptratio
                      0
                       0
          b
                      0
          1stat
                      0
          medv
          dtype: int64
```

```
In [16]:
```

```
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.distplot(df['medv'], bins=30)
plt.show()
```

C:\Users\admin\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

In [18]: 1 corr_matrix=df.corr().round(2)

2 | sns.heatmap(data=corr_matrix, annot=True)

Out[18]: <AxesSubplot:>


```
In [19]:
           1
              plt.figure(figsize=(20, 5))
           2
           3
              features = ['lstat', 'rm']
              target = df['medv']
           4
           5
           6
              for i, col in enumerate(features):
                  plt.subplot(1, len(features) , i+1)
           7
           8
                  x = df[col]
           9
                  y = target
                  plt.scatter(x, y, marker='o')
          10
                  plt.title(col)
          11
                  plt.xlabel(col)
          12
                  plt.ylabel('medv')
          13
              X = pd.DataFrame(np.c_[df['lstat'], df['rm']], columns = ['lstat','rm'])
In [20]:
              Y = df['medv']
In [21]:
              from sklearn.model selection import train test split
           2
           3 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,
             print(X_train.shape)
             print(X_test.shape)
             print(Y_train.shape)
              print(Y test.shape)
          (404, 2)
         (102, 2)
          (404,)
          (102,)
In [22]:
              from sklearn.linear_model import LinearRegression
           2
             from sklearn.metrics import mean_squared_error
              lin_model = LinearRegression()
              lin_model.fit(X_train, Y_train)
Out[22]: LinearRegression()
```

```
In [24]:
         1 # model evaluation for training set
          2 from sklearn.metrics import r2 score
          3 y_train_predict = lin_model.predict(X_train)
           rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))
           r2 = r2_score(Y_train, y_train_predict)
          7
            print("The model performance for training set")
            |print("-----")
            print('RMSE is {}'.format(rmse))
            print('R2 score is {}'.format(r2))
         10
           print("\n")
         11
         12
         13 # model evaluation for testing set
         14 | y_test_predict = lin_model.predict(X test)
         15  rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))
         16 r2 = r2_score(Y_test, y_test_predict)
         17
         18 | print("The model performance for testing set")
         19 | print("----")
         20 print('RMSE is {}'.format(rmse))
            print('R2 score is {}'.format(r2))
         21
        The model performance for training set
        -----
```



```
In [ ]: 1
```