Listing of Claims

Amendments to the Claims

- 1. (canceled)
- 2. (canceled)
- 3. (canceled)
- 4. (canceled)
- 5. (canceled)
- 6. (canceled)
- 7. (canceled)
- 8. (canceled)
- 9. (canceled)
- 10. (canceled)
- 11. (canceled)
- 12. (canceled)
- 13. (canceled)
- 14. (canceled)
- 15. (canceled)
- 16. (canceled)
- 17. (canceled)
- 18. (currently amended) A method of inhibiting a resistant neoplasm, or a neoplasm susceptible to resistance, in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof; in combination with an effective amount of one or more oncolytic agents.:

$$\begin{array}{c|c}
R^{9} & R^{10} \\
\hline
R^{1} & R^{11} \\
\hline
R^{1} & CH_{2})_{m} & O
\end{array}$$

where:

het is a five (5) membered heteroaryl ring containing N and a second heteroatom selected from N, O, or S;

wherein the non-fused carbon atom of the heteroaryl ring is optionally substituted with C₁-C₆ alkyl, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, heterocycle, heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl, an amino acid ester, CH₂OH, CH₂O-heterocycle, halo, CH₂N₃, CH₂SR¹, CH₂NR⁴R⁵, OR¹, SR¹², S(CH₂)_n-phenyl, or NR⁴R⁵; provided that when het is pyrazole or imidazole, the saturated nitrogen of the het ring is optionally substituted with C₁-C₄ alkyl;

R is $(CH_2)_m$, CHR^1NHR^2 , $O(CH_2)_2NHR^2$, $(CH_2)_m$, COR^3 , NHR^2 , and $(CH_2)_m$, $CHR^1NR^4R^5$;

R' is hydrogen, hydroxy, or $O(C_1-C_6$ alkyl optionally substituted with phenyl or C_3-C_7 cycloalkyl);

m and m' are independently at each occurrence 0, 1, or 2;

R¹ is independently at each occurrence hydrogen or C₁-C₆ alkyl;

 R^2 is hydrogen, COR^6 , CH_2R^6 , SO_2R^7 , or a moiety of the formula;

R³ is hydrogen, hydroxy, C₁-C₆ alkoxy, an amino acid ester, an amino acid, or NR⁴R⁵, wherein the amino acid is selected from the group consisting of alanine, asparagine, cysteine, glutamine, glycine, isoleucine, leusine, methionine, phenylalanine, proline, serine threonine, tryptophan, tyrosine, valine, aspartic acid, glutamic acid, arginine, histidine, and lysine;

 R^4 is hydrogen or C_1 - C_6 alkyl;

R⁵ is hydrogen, C₁-C₆ alkyl, C₆-C₁₀ bicycloalkyl, (C₁-C₄ alkyl)-phenyl, (C₁-C₄ alkyl)-CO₂R¹, CH₂CO₂R¹, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, (CH₂)_nCHR⁸NHC(O)OC(CH₃)₃, (CH₂)_nNH₂, (CH₂)₂NHCOR⁶, (CH₂)₂OR¹, (CH₂)_q-heterocycle, (CH₂)_q-(heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl), or R⁴ and R⁵, together with the nitrogen to which they are attached, combine to form a pyrrolidin-1-yl, piperidin-1-yl, hexamethyleneimin-1-yl, or morpholin-4-yl ring;

n is 1, 2, 3, or 4;

q is 0, 1, 2, or 3;

 $\frac{R^6 \text{ is } C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_6 \text{ cycloalkyl substituted once with a phenyl, substituted}}{\text{phenyl, or } CO_2R^1 \text{ group, aryl, aryl substituted from 1 to 3 times independently with } C_1\text{-}C_6 \text{-} \text{alkyl, } C_1\text{-}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH\text{-}Pg, C_1\text{-}C_6 \text{-} \text{alkoxy, benzyloxy, } CO_2R^1, C_5\text{-}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro, } \text{tert-butoxy, }}{(CH_2)_q\text{-heterocycle, } (CH_2)_q\text{-(heterocycle substituted 1 or 2 times independently with a}}{C_1\text{-}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl), } (CH_2)_nS(O)_rR^1, }{C(CH_3)_2CH_2N(R^1)_2, (CH_2)_nCHR^8NHC(O)OC(CH_3)_3, (CH_2)_nCHR^8NH_2, }}{(CH_2)_2NH\text{-aryl, or } NHR^7;}$

R6' is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl substituted once with a phenyl, substituted phenyl, or CO_2R^1 group, aryl, aryl substituted from 1 to 3 times independently with C_1 - C_6 alkyl, C_1 - C_4 alkoxy, halo, hydroxy, trifluoromethyl, $N(R^1)_2$, $SO_2N(R^1)_2$, NH-Pg, C_1 - C_6

alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro,

(CH₂)_q-heterocycle, (CH₂)_q-(heterocycle substituted 1 or 2 times independently with a

C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl), (CH₂)_nS(O)_rR¹,

C(CH₃)₂CH₂N(R¹)₂, (CH₂)_nCHR⁸NH-C(O)OC(CH₃)₃, (CH₂)_nCHR⁸NH₂, or

(CH₂)₂NH-aryl;

r is 0, 1, or 2;

R⁷ is C_1 - C_6 alkyl, phenyl, or phenyl substituted from 1 to 3 times independently with C_1 - C_6 alkyl, C_1 - C_4 alkoxy, halo, hydroxy, trifluoromethyl, $N(R^1)_2$, $SO_2N(R^1)_2$, NH-Pg, C_1 - C_6 alkoxy, benzyloxy, CO_2R^1 , C_5 - C_7 cycloalkyl, trifluoromethoxy, or nitro;

R⁸ is hydrogen or CO₂R¹; and

R⁹, R¹⁰, and R¹¹ are independently at each occurrence hydrogen, halo, CO₂R¹, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, thiophene, C₁-C₄ alkoxy, (C₁-C₃ alkyl)-phenyl, or C₂-C₆ alkenyl;

 $\frac{R^{12} \text{ is } C_1\text{--}C_6 \text{ alkyl, } (C_1\text{--}C_4 \text{ alkyl})\text{--phenyl, aryl, aryl substituted from 1 to 3 times}}{\text{independently with } C_1\text{--}C_6 \text{ alkyl, } C_1\text{--}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2,}\\ \frac{SO_2N(R^1)_2, NH\text{--Pg, } C_1\text{--}C_6 \text{ alkoxy, benzyloxy, } CO_2R^1, C_5\text{--}C_7 \text{ cycloalkyl,}}{\text{trifluoromethoxy, or nitro, heterocycle or heterocycle substituted 1 or 2 times independently with a } C_1\text{--}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl; or}}$

a pharmaceutical salt thereof; provided that if R⁹ and R¹⁰ are hydrogen and R¹¹ is

oncolytic agents.

19. (original) The method according to Claim 18 where the mammal is a human.

20. (original) The method according to Claim 19 where the oncolytic(s) is selected from: doxorubicin, daunorubicin, epirubicin, vincristine, and etoposide.

21. (original) The method according to Claim 19 where the neoplasm is of the

Wilm's type, bladder, bone, breast, lung(small-cell), testis, or thyroid or the neoplasm is associated with acute lymphoblastic and myeloblastic leukemia, neuroblastoma, soft tissue sarcoma, Hodgkin's and non-Hodgkin's lymphomas, and bronchogenic carcinoma.

- 22. (original) The method according to Claim 19 where the compound of formula I is a compound where m is 0 and R is at the meta position.
- 23. (original) The method according to Claim 22 where the compound of formula I is a compound where R is CHR¹NHR² and R¹ is methyl.
- 24. (original) The method according to Claim 23 where the compound of formula I is a compound where R^2 is 3,4,5-trimethoxybenzyl.
- 25. (original) The method according to Claim 22 where the compound of formula I is a compound where R is COR^3 or $(CH_2)COR^3$.
- 26. (original) The method according to Claim 25 where the compound of formula I is a compound where R³ is (3,4,5-trimethoxyphenyl)amino, (4-aminosulfonylphenyl)amino, or (6-methoxyquinolin-8-yl)amino.
- 27. (original) The method according to Claim 22 where the compound of formula I is a compound where R is (CH₂)NR⁴R⁵ and R⁴ is hydrogen.
- 28. (original) The method according to Claim 27 where the compound of formula I is a compound where R⁵ is 5-methylisoxazol-3-oyl, 3,5-dimethoxy-4-hydroxybenzyl, or 3,4,5-trimethoxybenzyl.
 - 29. (canceled)
 - 30. (currently amended) A pharmaceutical formulation comprising:
 - (a) a compound of formula I:

$$\begin{array}{c|c}
R^{9} & R^{10} \\
\hline
R^{10} & R^{11} \\
\hline
R^{10} & R^{11}
\end{array}$$
I

where:

het is a five (5) membered heteroaryl ring containing N and a second heteroatom selected from N, O, or S;

wherein the non-fused carbon atom of the heteroaryl ring is optionally substituted with C₁-C₆ alkyl, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, heterocycle, heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl, an amino acid ester, CH₂OH, CH₂O-heterocycle, halo, CH₂N₃, CH₂SR¹, CH₂NR⁴R⁵, OR¹, SR¹², S(CH₂)_n-phenyl, or NR⁴R⁵; provided that when het is pyrazole or imidazole, the saturated nitrogen of the het ring is optionally substituted with C₁-C₄ alkyl;

R is $(CH_2)_{m'}$ CHR¹NHR², $O(CH_2)_2$ NHR², $(CH_2)_{m'}$ COR³, NHR², and $(CH_2)_{m'}$ CHR¹NR⁴R⁵;

R' is hydrogen, hydroxy, or $O(C_1-C_6$ alkyl optionally substituted with phenyl or C_3-C_7 cycloalkyl);

m and m' are independently at each occurrence 0, 1, or 2;

 R^1 is independently at each occurrence hydrogen or C_1 - C_6 alkyl;

R² is hydrogen, COR⁶, CH₂R⁶, SO₂R⁷, or a moiety of the formula

R³ is hydrogen, hydroxy, C₁-C₆ alkoxy, an amino acid ester, an amino acid, or NR⁴R⁵, wherein the amino acid is selected from the group consisting of alanine, asparagine, cysteine, glutamine, glycine, isoleucine, leusine, methionine, phenylalanine, proline, serine threonine, tryptophan, tyrosine, valine, aspartic acid, glutamic acid, arginine, histidine, and lysine;

R⁴ is hydrogen or C₁-C₆ alkyl;

 R^5 is hydrogen, C_1 - C_6 alkyl, C_6 - C_{10} bicycloalkyl, $(C_1$ - C_4 alkyl)-phenyl, $(C_1$ - C_4 alkyl)- CO_2R^1 , $CH_2CO_2R^1$, aryl, aryl substituted from 1 to 3 times independently with

 C_1 - C_6 alkyl, C_1 - C_4 alkoxy, halo, hydroxy, trifluoromethyl, $N(R^1)_2$, $SO_2N(R^1)_2$, NH-Pg, C_1 - C_6 alkoxy, benzyloxy, CO_2R^1 , C_5 - C_7 cycloalkyl, trifluoromethoxy, or nitro, $(CH_2)_nCHR^8NHC(O)OC(CH_3)_3$, $(CH_2)_nNH_2$, $(CH_2)_2NHCOR^6$, $(CH_2)_2OR^1$, $(CH_2)_q$ -heterocycle, $(CH_2)_q$ -(heterocycle substituted 1 or 2 times independently with a C_1 - C_6 alkyl, halo, benzyl, phenyl, or trifluoromethyl), or R^4 and R^5 , together with the nitrogen to which they are attached, combine to form a pyrrolidin-1-yl, piperidin-1-yl, hexamethyleneimin-1-yl, or morpholin-4-yl ring;

n is 1, 2, 3, or 4;

q is 0, 1, 2, or 3;

 $\frac{R^6 \text{ is } C_1\text{--}C_6 \text{ alkyl, } C_3\text{--}C_6 \text{ cycloalkyl substituted once with a phenyl, substituted}}{\text{phenyl, or } CO_2R^1 \text{ group, aryl, aryl substituted from 1 to 3 times independently with } C_1\text{--}C_6 \text{--}alkyl, } C_1\text{--}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH\text{--}Pg, C_1\text{--}C_6 \text{--}alkoxy, benzyloxy, } CO_2R^1, C_5\text{--}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro, } tert\text{--butoxy, } (CH_2)_q\text{--heterocycle, } (CH_2)_q\text{--(heterocycle substituted 1 or 2 times independently with a}}{C_1\text{--}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl), } (CH_2)_nS(O)_rR^1, } C(CH_3)_2CH_2N(R^1)_2, (CH_2)_nCHR^8NHC(O)OC(CH_3)_3, (CH_2)_nCHR^8NH_2, } (CH_2)_2NH\text{--aryl, or } NHR^7;$

 $\frac{R^{6'} \text{ is } C_1\text{-}C_6 \text{ alkyl, } C_3\text{-}C_6 \text{ cycloalkyl substituted once with a phenyl, substituted}}{\text{phenyl, or } CO_2R^1 \text{ group, aryl, aryl substituted from 1 to 3 times independently with } C_1\text{-}C_6 \text{-}alkyl, } C_1\text{-}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH\text{-}Pg, } C_1\text{-}C_6 \text{-}alkoxy, benzyloxy, } CO_2R^1, C_5\text{-}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro,}} (CH_2)_q\text{-heterocycle, } (CH_2)_q\text{-(heterocycle substituted 1 or 2 times independently with a}} C_1\text{-}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl), } (CH_2)_nS(O)_rR^1, } C(CH_3)_2CH_2N(R^1)_2, (CH_2)_nCHR^8NH\text{-}C(O)OC(CH_3)_3, (CH_2)_nCHR^8NH_2, or } (CH_2)_2NH\text{-aryl;}}$

r is 0, 1, or 2;

 $\frac{R^7 \text{ is } C_1\text{--}C_6 \text{ alkyl, phenyl, or phenyl substituted from 1 to 3 times independently with}{C_1\text{--}C_6 \text{ alkyl, } C_1\text{--}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH-Pg,}{C_1\text{--}C_6 \text{ alkoxy, benzyloxy, } CO_2R^1, C_5\text{--}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro;}}$

R⁸ is hydrogen or CO₂R¹; and

R⁹, R¹⁰, and R¹¹ are independently at each occurrence hydrogen, halo, CO₂R¹, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, thiophene, C₁-C₄ alkoxy, (C₁-C₃ alkyl)-phenyl, or C₂-C₆ alkenyl;

R¹² is C₁-C₆ alkyl, (C₁-C₄ alkyl)-phenyl, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, $\frac{SO_2N(R^1)_2, NH-Pg, C_1-C_6}{SO_2N(R^1)_2, NH-Pg, C_1-C_6} \frac{SO_2N(R^1)_2}{SO_2N(R^1)_2} \frac{SO_2N(R^1)_2}{SO_2N$

a pharmaceutical salt thereof; provided that if R⁹ and R¹⁰ are hydrogen and R¹¹ is chloro,

- (b) one or more oncolytic agents; and
- (c) one or more pharmaceutical carriers, diluents, or excipients therefor.
- 31. (original) The formulation according to Claim 30 where the oncolytic(s) is selected from: doxorubicin, daunorubicin, epirubicin, vincristine, and etoposide.
 - 32. (canceled)
 - 33. (canceled)
 - 34. (canceled)
 - 35. (canceled)
 - 36. (canceled)
 - 37. (canceled)

- 38. (canceled)
- 39. (canceled)
- 40. (canceled)
- 41. (canceled)
- 42. (canceled)
- 43. (canceled)
- 44. (canceled)
- 45. (canceled)
- 45. (currently amended) A pharmaceutical composition for inhibiting a resistant neoplasm, or a neoplasm susceptible to resistance, in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof; in combination with an effective amount of one or more oneolytic agents.:

$$\begin{array}{c|c}
R^{9} & R^{10} \\
\hline
R^{10} & R^{11} \\
\hline
R^{11} & R^{11} \\
\hline
R^{10} & R^{11} \\
\hline
R^{11} & R^{11} \\$$

where:

het is a five (5) membered heteroaryl ring containing N and a second heteroatom selected from N, O, or S;

wherein the non-fused carbon atom of the heteroaryl ring is optionally substituted with C₁-C₆ alkyl, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, heterocycle, heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl, an amino acid ester, CH₂OH, CH₂O-heterocycle, halo, CH₂N₃, CH₂SR¹, CH₂NR⁴R⁵, OR¹, SR¹², S(CH₂)_n-phenyl, or

NR⁴R⁵; provided that when het is pyrazole or imidazole, the saturated nitrogen of the het ring is optionally substituted with C_1 - C_4 alkyl;

R is $(CH_2)_m$, CHR^1NHR^2 , $O(CH_2)_2NHR^2$, $(CH_2)_m$, COR^3 , NHR^2 , and $(CH_2)_m$, $CHR^1NR^4R^5$;

R' is hydrogen, hydroxy, or $O(C_1-C_6$ alkyl optionally substituted with phenyl or C_3-C_7 cycloalkyl);

m and m' are independently at each occurrence 0, 1, or 2;

 R^1 is independently at each occurrence hydrogen or C_1 - C_6 alkyl;

R² is hydrogen, COR⁶, CH₂R⁶, SO₂R⁷, or a moiety of the formula

R³ is hydrogen, hydroxy, C₁-C₆ alkoxy, an amino acid ester, an amino acid, or NR⁴R⁵, wherein the amino acid is selected from the group consisting of alanine, asparagine, cysteine, glutamine, glycine, isoleucine, leusine, methionine, phenylalanine, proline, serine threonine, tryptophan, tyrosine, valine, aspartic acid, glutamic acid, arginine, histidine, and lysine;

R⁴ is hydrogen or C₁-C₆ alkyl;

R⁵ is hydrogen, C₁-C₆ alkyl, C₆-C₁₀ bicycloalkyl, (C₁-C₄ alkyl)-phenyl, (C₁-C₄ alkyl)-CO₂R¹, CH₂CO₂R¹, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, (CH₂)_nCHR⁸NHC(O)OC(CH₃)₃, (CH₂)_nNH₂, (CH₂)₂NHCOR⁶, (CH₂)₂OR¹, (CH₂)_q-heterocycle, (CH₂)_q-(heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl), or R⁴ and R⁵, together with the nitrogen to which they are attached, combine to form a pyrrolidin-1-yl, piperidin-1-yl, hexamethyleneimin-1-yl, or morpholin-4-yl ring;

n is 1, 2, 3, or 4;

q is 0, 1, 2, or 3;

 $\frac{R^6 \text{ is } C_1\text{--}C_6 \text{ alkyl, } C_3\text{--}C_6 \text{ cycloalkyl substituted once with a phenyl, substituted}}{\text{phenyl, or } CO_2R^1 \text{ group, aryl, aryl substituted from 1 to 3 times independently with } C_1\text{--}C_6 \text{--}alkyl, } C_1\text{--}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH\text{--}Pg, C_1\text{--}C_6 \text{--}alkoxy, benzyloxy, } CO_2R^1, C_5\text{--}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro, } tert\text{--butoxy, } (CH_2)_q\text{--heterocycle, } (CH_2)_q\text{--(heterocycle substituted 1 or 2 times independently with a}}{C_1\text{--}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl), } (CH_2)_nS(O)_rR^1, } C(CH_3)_2CH_2N(R^1)_2, (CH_2)_nCHR^8NHC(O)OC(CH_3)_3, (CH_2)_nCHR^8NH_2, } (CH_2)_2NH\text{--aryl, or } NHR^7;$

 $\frac{R^{6'} \text{ is } C_1\text{--}C_6 \text{ alkyl, } C_3\text{--}C_6 \text{ cycloalkyl substituted once with a phenyl, substituted}}{\text{phenyl, or } CO_2R^1 \text{ group, aryl, aryl substituted from 1 to 3 times independently with } C_1\text{--}C_6 \text{--}alkyl, } C_1\text{--}C_4 \text{ alkoxy, halo, hydroxy, trifluoromethyl, } N(R^1)_2, SO_2N(R^1)_2, NH\text{--}Pg, C_1\text{--}C_6 \text{--}alkoxy, benzyloxy, } CO_2R^1, C_5\text{--}C_7 \text{ cycloalkyl, trifluoromethoxy, or nitro,}}{(CH_2)_q\text{--heterocycle, } (CH_2)_q\text{--(heterocycle substituted 1 or 2 times independently with a}}{C_1\text{--}C_6 \text{ alkyl, halo, benzyl, phenyl, or trifluoromethyl), } (CH_2)_nS(O)_rR^1, } C(CH_3)_2CH_2N(R^1)_2, (CH_2)_nCHR^8NH\text{--}C(O)OC(CH_3)_3, (CH_2)_nCHR^8NH_2, or } (CH_2)_2NH\text{--aryl;}}$

r is 0, 1, or 2;

R⁷ is C_1 - C_6 alkyl, phenyl, or phenyl substituted from 1 to 3 times independently with C_1 - C_6 alkyl, C_1 - C_4 alkoxy, halo, hydroxy, trifluoromethyl, $N(R^1)_2$, $SO_2N(R^1)_2$, NH-Pg, C_1 - C_6 alkoxy, benzyloxy, CO_2R^1 , C_5 - C_7 cycloalkyl, trifluoromethoxy, or nitro;

R⁸ is hydrogen or CO₂R¹; and

 R^9 , R^{10} , and R^{11} are independently at each occurrence hydrogen, halo, CO_2R^1 , aryl, aryl substituted from 1 to 3 times independently with C_1 - C_6 alkyl, C_1 - C_4 alkoxy, halo, hydroxy, trifluoromethyl, $N(R^1)_2$, $SO_2N(R^1)_2$, NH-Pg, C_1 - C_6 alkoxy, benzyloxy, CO_2R^1 , C_5 - C_7 cycloalkyl, trifluoromethoxy, or nitro, thiophene, C_1 - C_4 alkoxy, $(C_1$ - C_3 -alkyl)-phenyl, or C_2 - C_6 alkenyl;

R¹² is C₁-C₆ alkyl, (C₁-C₄ alkyl)-phenyl, aryl, aryl substituted from 1 to 3 times independently with C₁-C₆ alkyl, C₁-C₄ alkoxy, halo, hydroxy, trifluoromethyl, N(R¹)₂, SO₂N(R¹)₂, NH-Pg, C₁-C₆ alkoxy, benzyloxy, CO₂R¹, C₅-C₇ cycloalkyl, trifluoromethoxy, or nitro, heterocycle or heterocycle substituted 1 or 2 times independently with a C₁-C₆ alkyl, halo, benzyl, phenyl, or trifluoromethyl; or

a pharmaceutical salt thereof; provided that if R⁹ and R¹⁰ are hydrogen and R¹¹ is

chloro, then het is not Me; in combination with an effective amount of one or more oncolytic agents.

- 46. (original) The composition according to Claim 45 where the mammal is a human.
- 47. (original) The composition according to Claim 46 where the oncolytic(s) is selected from: doxorubicin, daunorubicin, epirubicin, vincristine, and etoposide.
- 48. (original) The composition according to Claim 46 where the neoplasm is of the Wilm's type, bladder, bone, breast, lung(small-cell), testis, or thyroid or the neoplasm is associated with acute lymphoblastic and myeloblastic leukemia, neuroblastoma, soft tissue sarcoma, Hodgkin's and non-Hodgkin's lymphomas, and bronchogenic carcinoma.
- 49. (original) The composition according to Claim 46 where the compound of formula I is a compound where m is 0 and R is at the meta position.
- 50. (original) The composition according to Claim 49 where the compound of formula I is a compound where R is CHR¹NHR² and R¹ is methyl.
- 51. (original) The composition according to Claim 50 where the compound of formula I is a compound where R² is 3,4,5-trimethoxybenzyl.
- 52. (original) The composition according to Claim 49 where the compound of formula I is a compound where R is COR^3 or $(CH_2)COR^3$.
- 53. (original) The composition according to Claim 52 where the compound of formula I is a compound where R³ is (3,4,5-trimethoxyphenyl)amino, (4-aminosulfonylphenyl)amino, or (6-methoxyquinolin-8-yl)amino.
- 54. (original) The composition according to Claim 49 where the compound of formula I is a compound where R is (CH2)NR⁴R⁵ and R⁴ is hydrogen.
 - 55. (original) The composition according to Claim 54 where the compound of

X-13338A

formula I is a compound where R^5 is 5-methylisoxazol-3-oyl, 3,5-dimethoxy-4-hydroxybenzyl, or 3,4,5-trimethoxybenzyl.