importing the necessary libraries for data manipulation, visualization, and analysis.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load dataset

```
df = pd.read csv('Fashion Retail Sales.csv' )
```

Display first 5 rows

```
print(df.head(5))
```

₹	0 1 2 3	Customer	Reference ID 4018 4115 4019 4097	Handbag Tunic Tank Top Leggings	Purchase Amount (USD) 4619.0 2456.0 2102.0 3126.0	05-02-2023 11-07-2023 23-03-2023	\
	4		3997	Wallet	3003.0		

Review Rating Payment Method 0 NaN Credit Card 2.0 Credit Card 1 2 4.1 Cash 3.2 4.7 3 Cash 4 Cash

print(df.info())

<<rp><<class 'pandas.core.frame.DataFrame'> RangeIndex: 3400 entries, 0 to 3399

Data columns (total 6 columns):

Column Non-Null Count Dtype ---------Customer Reference ID 3400 non-null int64 0 1 Item Purchased 3400 non-null object 2 Purchase Amount (USD) 2750 non-null float64 Neview Rating 3076 non-null Payment Method 3400 --3 Date Purchase 3400 non-null object 4 Review Rating float64 object

dtypes: float64(2), int64(1), object(3)

memory usage: 159.5+ KB

None

checking for missing values

```
print(df.isnull().sum())
```

```
Customer Reference ID 0
Item Purchased 0
Purchase Amount (USD) 650
Date Purchase 0
Review Rating 324
Payment Method 0
dtype: int64
```

print(df.describe(include='all'))

→ *				Purchase Amount (USD)	,
	count	3400.000000	3400	2750.000000	
	unique	NaN	50	NaN	
	top	NaN	Belt	NaN	
	freq	NaN	90	NaN	
	mean	4039.660588	NaN	156.709818	
	std	48.122583	NaN	419.536669	
	min	3957.000000	NaN	10.000000	
	25%	3997.000000	NaN	57.000000	
	50%	4040.000000	NaN	110.000000	
	75%	4081.000000	NaN	155.750000	
	max	4122.000000	NaN	4932.000000	

	Date	Purchase	Review	Rating	Payment	Method
count		3400	3076	.000000		3400
unique		365		NaN		2
top	22	2-09-2023		NaN	Cred:	it Card
freq		17		NaN		1770
mean		NaN	2	.999057		NaN
std		NaN	1	.156505		NaN
min		NaN	1	.000000		NaN
25%		NaN	2	.000000		NaN
50%		NaN	3	.000000		NaN
75%		NaN	4	.000000		NaN
max		NaN	5	.000000		NaN

```
# Strategy: Fill missing numeric values with the median or mean, and categorical value:
# For Purchase Amount (USD), fill missing values with the median
df['Purchase Amount (USD)'] = df['Purchase Amount (USD)'].fillna(df['Purchase Amount (USD)'].fillna(df['Purchase Amount (USD)'].fillna(df['Review Rating'].median())
# For Review Rating'] = df['Review Rating'].fillna(df['Review Rating'].median())
# Verify that missing values have been handled
print("\nMissing Values After Handling:")
print(df.isnull().sum())
```



```
Missing Values After Handling:
Customer Reference ID 0
Item Purchased 0
Purchase Amount (USD) 0
Date Purchase 0
Review Rating 0
Payment Method 0
dtype: int64
```

Convert Date Column to DateTime Format

Exploratory Data Analysis (EDA)

```
# Plot monthly sales
plt.figure(figsize=(10, 6))
monthly_sales.plot(kind='line', marker='o', color='blue')
plt.title('Monthly Sales Trend')
plt.xlabel('Month')
plt.ylabel('Total Sales (USD)')
plt.grid()
plt.show()
```


Most Popular Items

```
item_counts = df['Item Purchased'].value_counts().head(10)  # Updated column name

# Plot top 10 most popular items
plt.figure(figsize=(10, 6))
item_counts.plot(kind='bar', color='green')
plt.title('Top 10 Most Popular Items')
plt.xlabel('Item Purchased')  # Updated label
plt.ylabel('Number of Purchases')
plt.xticks(rotation=45)
plt.show()
```


Top 10 Most Popular Items


```
# Count the occurrences of each payment method
payment_counts = df['Payment Method'].value_counts()

# Plot payment method preferences
plt.figure(figsize=(8, 6))
payment_counts.plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=['lightblue', plt.title('Payment Method Preferences')
plt.ylabel('')
plt.show()
```


Payment Method Preferences

Advanced Analysis

```
# Calculate correlation
correlation = df[['Purchase Amount (USD)', 'Review Rating']].corr()

# Plot heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()
```


