Lista zadan nr 5- rozwiazania

Lukasz Kopyto

March 26, 2024

1 Zadanie 1.

1.1 Tresc:

Przypomnij sobie definicje funkcji map. Nastepnie pokaz, ze dla dowolnych funkcji f i g oraz listy xs zachodzi map f (map g xs) \equiv map (fun x \rightarrow f (g x)) xs Mozesz zalozyc, ze funkcje f i g poprawnie obliczaja sie do wartosci dla dowolnego argumentu.

1.2 Rozwiazanie

Definicja funkcji map:

Zasada indukcji dla list typu 'a list

Dla kazdej wlasnosci P, jesli zachodzi $P([\])$ oraz dla kazdego a : 'a, as : 'a list P(as) impikuje P(a::as), to dla kazdej listy as zachodzi P(as)

Przeprowadzimy dowod przez indukcje dla list. Ustalmy dowolne funkcj f i g oraz dowolna liste xs.

Podstawa indukcji:

```
 \begin{array}{l} L = \mathrm{map} \ f \ (\mathrm{map} \ g \ [ \ ]) = z \ \mathrm{def.} \ \mathrm{map} = \mathrm{map} \ f \ [ \ ] = z \ \mathrm{def.} \ \mathrm{map} = [ \ ] \\ P = \mathrm{map} \ (\mathrm{fun} \ x \to f \ (g \ x)) \ [ \ ] = z \ \mathrm{def.} \ \mathrm{map} = [ \ ] \\ \end{array}
```

Zatem podstawa indukcji zachodz i.

Krok indukcyjny:

Wezmy dowolne xs i zalozmy ze map f (map g xs) \equiv map (fun x \rightarrow f (g x)) xs. Pokaze, ze dla kazdego a : 'a map f (map g a::xs) \equiv map (fun x \rightarrow f (g x)) a :: xs

 $L=map\ f\ (map\ g\ a::xs)=z\ def.\ map=map\ f\ ((g\ a)::(map\ g\ xs))=z$ def. $map=f\ (g\ a)::map\ f\ (map\ g\ xs)=zal\ indukcyjne=f\ (g\ a)::map\ (fun\ x\to f\ (g\ x))\ xs$

```
P = map (fun x \rightarrow f (g x)) (a :: xs) = f (g a) :: (map (fun x \rightarrow f (g x)) xs)
Zatem L = P. Na mocy zasady indukcji dla list zachodzi teza.
```

2 Zadanie 2.

2.1 Tresc:

Pokaz ze funkcja append zawsze wylicza sie do wartosci. Tzn. pokaz ze dla dowolnych list xs, ys istnieje lista zs taka ze append ys xs \equiv zs.

2.2 Rozwiazanie:

Definicja appenda:

3 Zadanie 3.

3.1 Tresc:

Formuly w negacyjnej postaci normalnej(nnf) mozna opisac nastepujacym typem danych, sparametryzowanym typem opisujacym zmienne.

Flaga boolowska w konstruktorze literalu oznacza, czy zmienna jest zanegowana(wartosc true), czy nie (wartosc false). Sformuluj zasade indukcji dla typu NNF.

3.2 Rozwiazanie:

Zasada indukcji dla typu 'v nnf

Dla kazdej własności P, jesli dla dowolnych (b : bool), (v : 'v) zachodzi P(NNLit(b, v)) oraz dla kazdego (n1 : 'v nnf), (n2 : 'v nnf), P(n1) i P(n2) implikuje P(NNFConj(n1, n2)) oraz P(n1) i P(n2) implikuje P(Conj(n1, n2)), to wtedy dla kazdej formuly f zapisanej w 'v nnf zachodzi P(f).

4 Zadanie 4.

4.1 Tresc:

Zdefiniuj funkcje neg_nnf : 'v nnf \rightarrow 'v nnf negujaca formule zapisana w negacyjnej postaci normalnej. Nastepnie pokaz, ze neg_nnf (neg_nnf ϕ) $\equiv \phi$

4.2 Rozwiazanie:

Funkcja:

Dowod przez indukcje:

Baza indukcji:

Ustalmy dowolny literal l = NNFLit(b:bool, v). wtedy:

 $\label{eq:local_local_local_local} L = \text{neg_nnf (neg_nnf (neg_nnf NNFLit(b, v))} = z \text{ def neg_nnf nnFLit(not b, v)} = z \text{ def neg_nnf = NNFLit(not not b, v)} = NN-FLit(b,v) = l = P.$

Krok indukcyjny: Ustalmy dowolne formuly $(\phi: v' \text{ nnf})$ i $(\psi: v' \text{ nnf})$.

Zalozmy, ze zachodzi neg_nnf (neg_nnf ϕ) $\equiv \phi$ oraz neg_nnf (neg_nnf ψ) $\equiv \psi$.

Pokaze ze zachodzi neg_nnf (neg_nnf NNFConj (ψ, ϕ)) oraz neg_nnf (neg_nnf NNFDisj (ϕ, ψ)).

- 1. neg_nnf (neg_nnf NNFConj(ψ, ϕ)) = z def neg_nnf = neg_nnf NNFDisj(neg_nnf ψ , neg_nnf ϕ) = z def neg_nnf = NNFConj(neg_nnf (neg_nnf ψ), neg_nnf (neg_nnf
- ϕ) = zal indukcyjne = NNFConj (ψ, ϕ))
- 2. neg_nnf (neg_nnf NNFDisj(ψ , ϕ)) = z def neg_nnf = neg_nnf NNFConj(neg_nnf ψ , neg_nnf ϕ) = z def neg_nnf = NNFDisj(neg_nnf (neg_nnf ψ), neg_nnf (neg_nnf
- ϕ) = zal indukcyjne = NNFDisj (ψ, ϕ))

Zatem na mocy zasady indukcji, teza zachodzi.

5 Zadanie 5

5.1 Tresc:

Zdefiniuj funkcje eval_nnf interpretujaca formule w negacyjnej postaci normalnej, przy zadanym wartosciowaniu zmiennych. Nastepnie pokaz ze dla dowolnej formuly ϕ i wartosciowania σ zachodzi eval_nnf σ (neg_nnf ϕ) \equiv not (eval_nnf σ)

5.2 Rozwiazanie:

```
let rec eval_nnf sigma phi =
  match phi with
  | NNFLit (x, v) -> let t = sigma v in if x then not
    t else t
  | NNFConj (v1, v2) -> (eval_nnf sigma v1) && (
        eval_nnf sigma v2)
  | NNFDisj (v1, v2) -> (eval_nnf sigma v1) || (
        eval_nnf sigma v2)
```

Ustalmy dowolne wartosciowanie σ oraz dowolna formule ϕ zapisana w NNF. Dowod przez indukcje strutkturalna wzgledem struktury typu 'v nnf.

Podstawa indukcji:

Dla ϕ bedacego literalem, tzn ϕ = NNFLit(b:bool, v) mamy:

L = eval_nnf σ (neg_nnf ϕ) = eval_nnf σ (neg_nnf NNFLit (b, v)) = eval_nnf σ NNFLit (not b, v) = mamy dwa przypadki:

- 1. b = true. Wtedy eval_nnf σ NNFLit (not b, v) = eval_nnf σ NNFLit (false, v) = sigma v
- 2. b = false. Wtedy eval_nnf σ NNFLit (not b, v) = eval_nnf σ NNFLit (true, v) = not (sigma v)
- P = not (eval_nnf σ ϕ) = not (eval_nnf σ NNFLit(b, v)) = tutaj tez mamy dwa przypadki:
- 1. b = true. Wtedy not (eval_nnf σ NNFLit(b, v)) = not (eval_nnf σ NNFLit(false, v)) = not (not (sigma v)) = sigma v
- 2. b = false. Wtedy not (eval_nnf σ NNFLit(b, v)) = not (eval_nnf σ NNFLit(false, v)) = not (sigma v)

W obu przypadkach otrzymalismy, ze L = P. Zatem baza indukcji zachodzi. Ustalmy dowolne wartosciowanie σ oraz formuly ϕ , ψ . Zalozmy ze:

- (1) eval_nnf σ (neg_nnf ϕ) \equiv not (eval_nnf σ ϕ).
- (2) eval_nnf σ (neg_nnf ψ) \equiv not (eval_nnf σ ψ).

Pokaze ze zachodzi:

(1) eval_nnf σ (neg_nnf NNFConj(ϕ , ψ)) \equiv not (eval_nnf σ NNFConj(ϕ , ψ)).

(2) eval_nnf σ (neg_nnf NNFDisj (ϕ, ψ)) \equiv not (eval_nnf σ NNFDisj (ϕ, ψ)).

NNFConj

L = eval_nnf σ (neg_nnf NNFConj(ϕ , ψ)) = z def neg_nnf = eval_nnf σ NNFDisj((neg_nnf ϕ), (neg_nnf ψ)) = z def eval_nnf = (eval_nnf $\sigma\phi$) — (eval_nnf $\sigma\psi$) (z zal ind) \equiv (not (eval_nnf σ))

6 Zadanie 6

6.1 Tresc:

Formuly rachunku zdan mozemy opisac nastepujacym typem:

Zdefiniuj funkcja to_nnf transformujaca formule do rownowaznej formuly w negacyjnej postaci normalnej. Mozesz zdefiniowac funkcje pomocnicze, ale wszystkie funkcje(wzajemnie) rekurencyjne powinny byc strukturalnie rekurencyjne.

6.2 Rozwiazanie:

```
let rec to_nnf phi = match phi with
  | Var v -> NNFLit (false, v)
  | Neg psi -> neg_nnf (to_nnf psi)
  | Conj (c1, c2) -> NNFConj( (to_nnf c1), (to_nnf c2)
        )
  | Disj (d1, d2) -> NNFDisj( (to_nnf d1), (to_nnf d2)
        )
```

7 Zadanie 7.

7.1 Tresc:

Zdefiniuj funkcje eval_formula interpretujaca formuly z poprzedniego zadania. Nastepnie pokaz ze: eval_nnf σ (to_nnf ϕ) \equiv eval_formula σ ϕ

7.2 Rozwiazanie

Funkcja eval_formula:

Zasada indukcji dla typu 'v formula

Dla kazdej wlasnosci P, jesli dla dowolnego (x : v') zachodzi P(Var x) oraz dla kazdego (ϕ : 'v formula), (ψ : 'v formula) zachodzi:

- $P(\text{Neg }\phi)$
- $P(\phi) \wedge P(\psi) \implies P(\operatorname{Conj}(\phi, \psi))$
- $P(\phi) \wedge P(\psi) \implies P(\text{Disj}(\phi, \psi))$

To wtedy dla kazdej formuly ϕ typu 'v formula zachodzi $P(\phi)$

Dowod przez indukcje struktutralna, ze eval_nnf σ (to_nnf ϕ) \equiv eval_formula σ ϕ .

Ustalmy dowolne wartosciowanie σ .

Baza indukcji. Dla $(\phi : v')$:

 $\mathcal{L}=\text{evalnnf sigma (tonnf phi)}=\text{evalnnf sigma NNFlit(false, phi)}=\text{sigma phi}$

P = evalformula sigma phi = sigma phi

L = P zatem baza indukcji zachodzi.

Ustalmy dowolne formuly typu phi, psi typu 'v formula i zalozmy ze

- (i) eval_nnf σ (to_nnf ϕ) \equiv eval_formula σ ϕ
- (ii) eval_nnf σ (to_nnf ψ) \equiv eval_formula σ ψ .

Pokaze ze zachodzi tez:

- (a) eval_nnf σ (to_nnf Conj (ϕ, ψ)) \equiv eval_formula σ Conj (ϕ, ψ) .
- (b) eval_nnf σ (to_nnf Disj (ϕ, ψ)) \equiv eval_formula σ Disj (ϕ, ψ) .
- (c) eval_nnf σ (to_nnf Neg(ϕ)) \equiv eval_formula σ Neg(ϕ).
- (a) L = eval_nnf σ (to_nnf Conj(ϕ , ψ)) = z def to_nnf = eval_nnf σ NNFConj((to_nnf ϕ), (to_nnf ψ)) = z def eval_nnf = (eval_nnf σ (to_nnf ψ)) && (eval_nnf σ (to_nnf ϕ)) \equiv zal ind (eval_formula σ ϕ) && (eval_formula σ ψ) = z def eval_formula = eval_formula σ Conj(ϕ , ψ) = P

- (b) L = eval_nnf σ (to_nnf Disj(ϕ , ψ)) = z def to_nnf = eval_nnf σ NNFDisj((to_nnf ϕ), (to_nnf ψ)) = z def eval_nnf = (eval_nnf σ (to_nnf ψ)) || (eval_nnf σ (to_nnf ϕ)) = zal ind (eval_formula σ ϕ) || (eval_formula σ ψ) = z def eval_formula = eval_formula σ Disj(ϕ , ψ) = P
- (c) L = eval_nnf σ (to_nnf Neg(ϕ)) = z def to_nnf = eval_nnf σ (neg_nnf (to_nnf ϕ)) = z lematu = not (eval_nnf σ (to_nnf ϕ)
 - P = eval_formula σ Neg (ϕ) = z def eval_formula = not (eval_formula σ ϕ) \equiv zal ind \equiv not (eval_nnf σ (to_nnf ϕ))
 - Czyli L \equiv P. Zatem na mocy zasady indukcji, teza zachodzi.
- 8 Zadanie 8.
- 8.1 Tresc:
- 8.2 Rozwiazanie: