Scilab Textbook Companion for Electronics Devices And Circuit Theory by R. L. Boylestad And L. Nashelsky¹

Created by
Shubhanshu Yadav
B.Tech. (pursuing)
Electronics Engineering
IIIT, Allahabad
College Teacher
Neetesh Purohit
Cross-Checked by
Sonanya Tatikola, IIT Bombay

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronics Devices And Circuit Theory

Author: R. L. Boylestad And L. Nashelsky

Publisher: Pearson Education India

Edition: 9

Year: 2009

ISBN: 81-317-0314-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Semiconductor Diodes	6
2	Diode Applications	10
3	Bipolar Junction Transistor	40
4	DC Biasing BJT	42
5	BJT AC Analysis	61
6	Field Effect Transistor	88
7	FET Biasing	94
8	FET Amplifiers	126
9	BJT and JFET frequency response	143
10	Operational Amplifiers	163
11	Op Amp Applications	174
12	Power Amplifiers	182
13	Linear Digital ICs	193
14	. Feedback and oscillator circuits	196

List of Scilab Codes

Exa 1.1	Thermal Voltage calculation
Exa 1.2	Dc level resistance calculation
Exa 1.3	Ac resistance calculation
Exa 1.4	Zener voltage determination
Exa 1.5	Wavelength determination
Exa 2.1	Q point using diode characteristics
Exa 2.2	Vdq Vr and Idq by approx equivalent model 11
Exa 2.3	Vdq Vr and Idq by ideal diode model 11
Exa 2.4	Vd Vr and Id
Exa 2.5	Vd Vr and Id with diode reversed
Exa 2.6	Vd Vr and Id for series diode config
Exa 2.7	Vo and Id calculation
Exa 2.8	Id Vd2 and Vo calculation
Exa 2.9	I V1 V2 and Vo calculation
Exa 2.10	Vo I1 Id1 and Id2 for parallel diode config 15
Exa 2.11	Resistor values
Exa 2.12	Output voltage
Exa 2.13	Determine network currents
Exa 2.14	Output voltage
Exa 2.15	Output voltage for positive logic AND 17
Exa 2.16.a	Sketch output and determine dc level
Exa 2.16.b	Sketch output and determine dc level for Si diode case 19
Exa 2.16.c	Determine dc level if Vm is 200V
Exa 2.17	Sketch output waveform
Exa 2.18	Sketch output waveform
Exa 2.19	Sketch output waveform
Exa 2.20	Sketch output waveform
Exa 2.21	Sketch output waveform using Ge diode 27

Exa	2.22	Sketch output waveform
Exa	2.23	Sketch output waveform using Si diode
Exa	2.24	Voltages and Power calculation
Exa	2.25	Sketch output waveform
Exa	2.26.a	Vl Vr Iz Pz
Exa	2.26.b	Vl Vr Iz Pz with different Rl
Exa	2.27	Rl Il Range max power and zener increase
Exa	2.28	Range of Vi
Exa	3.1	Determining Collector current and Vbe 40
Exa	3.2	Determining Collector current 41
Exa	4.1	Fixed Bias Network characteristics 42
Exa	4.2	Saturation level
Exa	4.3	Vcc Rc and Rb for fixed bias config
Exa	4.4	Emitter bias Network characteristics 44
Exa	4.6	Saturation current
Exa	4.7	Vce and Ic for voltage divider config 45
Exa	4.8	Icq and Vcq calculation
Exa	4.9	Icq and Vceq calculation
Exa	4.10	Icq and Vceq calculation for voltage divider 47
Exa	4.11	Icq and Vceq calculation
Exa	4.12	Icq and Vceq calculation for a different beta 48
Exa	4.13	Ib and Vc calculation
Exa	4.14	Network characteristics determination 49
Exa	4.15	Vc and Vb calculcation
Exa	4.16	Vceq and Ie
Exa	4.17	Vcb and Ib for common base config 51
Exa	4.18	Vc and Vb calculcation
Exa	4.19	Vcc Rc and Rb for fixed bias config
Exa	4.20	R1 and Rc
Exa	4.21	Rc Re and Rb
Exa	4.22	Resistor values for the netowrk
Exa	4.23	Rc Re R1 and R2
Exa	4.24	Rb and Rc
Exa	4.25	Determine proper operation of network
Exa	4.26	Determine proper operation of network
Exa	4.27	Vce for voltage divider config
Exa	4.28	Stability factor and change in Ic
Exa	4.29	Stability factor and change in Ic

Exa 4.30	Determine Icq
Exa 5.1	Common base config characteristics
Exa 5.2	Zi Av and Ai for common emitter
Exa 5.3	Common emitter hybrid and common base model
Exa 5.4	Network characteristics determination
Exa 5.5	Network characteristics determination
Exa 5.6	Network characteristics without Ce
Exa 5.7	Network characteristics with Ce
Exa 5.8	Network characteristics determination
Exa 5.9	Network characteristics determination with Ce
Exa 5.10	Emitter follower Network characteristics determination
Exa 5.11	Network characteristics determination
Exa 5.12	Network characteristics determination
Exa 5.13	Network characteristics determination
Exa 5.14	Fixed Bias Network characteristics
Exa 5.15	Av and Avs
Exa 5.16	Network characteristics determination
Exa 5.17	Network characteristics determination
Exa 5.18	Network characteristics determination
Exa 5.19	No load voltage gain
Exa 5.20	Dc bias voltage and current
Exa 5.21	Input impedance
Exa 5.22	Ac current gain
Exa 5.23	Output impedance
Exa 5.24	Ac voltage gain
Exa 5.25	Dc bias voltage and current
Exa 5.26	Ac circuit values of Zi Zo Ai Av
Exa 5.27	Mirrored Current
Exa 5.28	Current through transistors
Exa 5.29	Constant current
Exa 5.30	Constant current
Exa 5.31	Network characteristics determination
Exa 5.32	Network characteristics determination
Exa 5.33	Determing parameters using hybrid equivalent model.
Exa 5.34	Determing parameters using hybrid equivalent model.
Exa 6.1	Sketching the transfer curve
Exa 6.2	Sketching the transfer curve
Exa 6.3	Sketching the transfer curve

Exa 6.4	Sketching the transfer curve and finding value of k 92
Exa 7.1	Network characteristics determination 94
Exa 7.2	Network characteristics determination 95
Exa 7.3	Q point for network
Exa 7.4	Network characteristics determination 101
Exa 7.5	Network characteristics determination 102
Exa 7.6	Network characteristics determination 106
Exa 7.7	Idq Vgsq and Vds calculation
Exa 7.8	Idq Vgsq and Vds calculation
Exa 7.9	Idq Vgsq and Vd calculation
Exa 7.10	Vds determination
Exa 7.11	Idq Vdsq Calculation
Exa 7.12	Idq Vgsq and Vds calculation
Exa 7.13	Vd and Vc level determination
Exa 7.14	Vd level determination
Exa 7.15	Vdq and Idq level
Exa 7.16	Rs determination
Exa 7.17	Vdd and Rd determination
Exa 7.18	Idq Vgsq and Vds calculation
Exa 7.19	Q point value of Id and Vgs
Exa 7.20	Q point value of Id and Vgs
Exa 8.1	Calculation of gm for different Vgs 126
Exa 8.2	Calculation of gm for different Vgs and max gm 128
Exa 8.3	gm vs Vgs
Exa 8.4	gm vs Id
Exa 8.5	Output impedance
Exa 8.6	FET equivalent model
Exa 8.7	JFET fix bias configuration calculation 133
Exa 8.8	JFET self bias configuration calculation 134
Exa 8.9	JFET source follower configuration calculation 135
Exa 8.10	JFET common gate configuration calculation 136
Exa 8.11	Network components determination
Exa 8.12	E MOSFET components determination
Exa 8.13	Rd value determination
Exa 8.14	Rd and Rs determination
Exa 8.15	Rd and Rs determination
Exa 8.16	Network characteristics determination
Exa 8.17	Input output impedance and output voltage 142
	8

Exa 9.1	Log calculation
Exa 9.2	Log calculation
Exa 9.3	Anti Log calculation
Exa 9.4	Log calculation
Exa 9.5	Magnitude gain calculation
Exa 9.6	Power and voltage gain
Exa 9.7	Input power and input voltage
Exa 9.8	Break frequency and bode plot
Exa 9.9	Frequency and bode plot
Exa 9.10	Frequency and bode plot
Exa 9.11	Frequency and bode plot
Exa 9.12	Frequency
Exa 9.13	Frequency and bode plot
Exa 9.14	Frequency
Exa 9.15	Fourier transform and time
Exa 10.1	Dc voltages and currents calculation 163
Exa 10.2	Single ended output voltage
Exa 10.3	Common mode gain
Exa 10.4	Common mode gain
Exa 10.5	Output voltage
Exa 10.6	Output voltage
Exa 10.7	Output voltage
Exa 10.8	Output offset voltage
Exa 10.9	Output offset voltage
Exa 10.10	Total offset voltage
Exa 10.11	Input bias current
Exa 10.12	Cut off frequency
Exa 10.13	Maximum closed loop voltage gain 169
Exa 10.14	
Exa 10.15	Current drawn calculation
Exa 10.16	Output offset voltage
Exa 10.17	Gain and input output impedance calculation 170
Exa 10.18	Cut off frequency
Exa 10.19	Maximum frequency
Exa 10.20	Open loop voltage gain
Exa 10.21	CMRR calculation
Exa 10.22	Output voltage
Exa 11.1	Output voltage

Exa 11.2	Output voltage	174
Exa 11.3	Output voltage	175
Exa 11.4	Output voltage	175
Exa 11.5	Connection of op amp stages	176
Exa 11.6	Output voltage	177
Exa 11.7	Output voltage	178
Exa 11.8	Output voltage	178
Exa 11.10	Il and Vo calculation	179
Exa 11.11	Output voltage	179
Exa 11.12	Cut off frequency	180
Exa 11.13	Cut off frequency of high pass filter	180
Exa 11.14	Cut off frequency of band pass filter	181
Exa 12.1	input output power and efficiency	182
Exa 12.2	Effective Resistance	183
Exa 12.3	Turns ratio	183
Exa 12.4	Ac power delivered	183
Exa 12.5	input and dissipated power and efficiency	184
Exa 12.6	Efficiency calculation	185
Exa 12.7	Input output power and efficiency	186
Exa 12.8	Power and transmission dissipation	186
Exa 12.9	Efficiency calculation	187
Exa 12.10	Input output dissipated power and efficiency	187
Exa 12.11	Dissipated power and efficiency	188
Exa 12.12	Max dissipated power and input voltage	189
Exa 12.13	Harmonic distortion components	189
Exa 12.14	Total Harmonic distortion components	190
Exa 12.15	Second Harmonic distortion	190
Exa 12.16	Total Harmonic distortion and fundamental and total	
	power	191
Exa 12.17	Maximum dissipation	191
Exa 12.18	Max dissipated power	192
Exa 13.1	frequency and output waveform	193
Exa 13.2	Period of output waveform	195
Exa 14.1	input output impedance and voltage gain	196
Exa 14.2	change in gain of feedback amplifier	197
Exa 14.3	gain with and without feedback	197
Exa 14.4	amplifier gain	198
Exa 14.5	voltage gain	198

Exa 14.6	voltage gain
Exa 14.7	value of C
Exa 14.8	resonant frequency and RC elements 200
Exa 14.9	RC elements for wien bridge 200
Exa 15.1	Measure output and filter voltage
Exa 15.2	Voltage regulation value
Exa 15.3	Ripple voltage and output voltage value 203
Exa 15.4	Filter dc voltage value
Exa 15.5	Ripple of capacitor
Exa 15.6	dc voltage across 1k load
Exa 15.7	dc ac and ripple values of output signal 204
Exa 15.8	output voltage and zener current
Exa 15.9	regulated output voltage
Exa 15.10	regulated output voltage
Exa 15.11	regulated voltage and circuit current 206
Exa 15.13	minimum input voltage
Exa 15.14	max value of load current
Exa 15.15	regulated output voltage
Exa 15.16	regulated output voltage

List of Figures

2.1	Sketch output and determine dc level	18
2.2	Sketch output and determine dc level for Si diode case	19
2.3	Sketch output waveform	21
2.4	Sketch output waveform	23
2.5	Sketch output waveform	24
2.6	Sketch output waveform	26
2.7	Sketch output waveform using Ge diode	28
2.8	Sketch output waveform	30
2.9	Sketch output waveform using Si diode	32
2.10	Sketch output waveform	35
6.1	Sketching the transfer curve	89
6.2	Sketching the transfer curve	90
7.1	Network characteristics determination	95
7.2	Q point for network	97
7.3	Network characteristics determination	100
7.4	Network characteristics determination	103
7.5	Network characteristics determination	105
7.6	Idq Vgsq and Vds calculation	108
7.7	Idq Vgsq and Vds calculation	111
7.8	Idq Vgsq and Vd calculation	113
7.9	Idq Vdsq Calculation	116
7.10	Idq Vgsq and Vds calculation	118
8.1	Calculation of gm for different Vgs	127
8.2	gm vs Vgs	129
8.3	gm vs Id	131

9.1	Break frequency and bode plot	46
9.2	Frequency and bode plot	48
9.3	Frequency and bode plot	50
9.4	Frequency and bode plot	52
9.5	Frequency and bode plot	56
11.1	Output voltage	76
	Connection of op amp stages	
	Connection of unity gain ckt	
13.1	frequency and output waveform	94

Chapter 1

Semiconductor Diodes

Scilab code Exa 1.1 Thermal Voltage calculation

Scilab code Exa 1.2 Dc level resistance calculation

```
1 clear; clc; close;
```

```
3 \text{ Id_low} = 2; //mA
4 Id_high = 25; /mA
5 Vd_reverse_bias = -10; //V
6
7 \text{ Vd_low} = 0.5; //V
8 \text{ Vd\_high} = 0.85; //V
9 Id_reverse_bias = -10*10^{(-6)}; //A
10
11 Rd_low = Vd_low/Id_low;
12 Rd_high = Vd_high/Id_high;
13 Rd_reverse_bias = Vd_reverse_bias/Id_reverse_bias;
14
15 disp(Rd_low, 'Low level dc resistance(in ohm):');
16 disp(Rd_high, 'High level dc resistance(in ohm):');
17 disp(Rd_reverse_bias, 'Reverse bias dc resistance(in
      ohm):');
```

Scilab code Exa 1.3 Ac resistance calculation

```
1 clear; clc; close;
2
3 Id1 = 2*10^(-3); //A
4 Id2 = 25*10^(-3); //A
5
6 Delta_Id1 = (4-0)*10^(-3); //A
7 Delta_Vd1 = 0.76-0.65; //V
8 rd1 = Delta_Vd1/Delta_Id1;
9
10 Delta_Id2 = (30-20)*10^(-3); //A
11 Delta_Vd2 = 0.80-0.78; //V
12 rd2 = Delta_Vd2/Delta_Id2;
13
14 //From graph
15 Vd1 = 0.7; //V
16 Vd2 = 0.79; //V
```

```
17
18 Rd1 = Vd1/Id1;
19 Rd2 = Vd2/Id2;
20
21 disp(rd1, 'ac resistance in part a(in ohm) is : ');
22 disp(rd2, 'ac resistance in part b(in ohm) is : ');
23 disp(Rd1, 'dc resistance in part a(in ohm) is : ');
24 disp(Rd2, 'dc resistance in part b(in ohm) is : ');
```

Scilab code Exa 1.4 Zener voltage determination

```
1 clear; clc; close;
2
3 Tc = 0.072; // %/'C
4 Vz = 10; //V
5 T1 = 100; // 'C
6 T0 = 25; // 'C
7
8 Delta_Vz = Tc*Vz*(T1-T0)/100;
9
10 Vz_new = Vz + Delta_Vz;
11
12 disp(Delta_Vz, 'Change in zener potential(in V):');
13 disp(Vz_new, 'Resulting zener potntial(in V):');
```

Scilab code Exa 1.5 Wavelength determination

```
1 clear; clc; close;
2
3
4 c = 3*10^(17); // nm/s
5 f = 750*10^(12); // Hz
```

```
7 Lambda = c/f;
8
9 disp(Lambda, 'Wavelength provided for visible light(
    in nm): ');
```

Chapter 2

Diode Applications

Scilab code Exa 2.1 Q point using diode characteristics

```
1 clear; clc; close;
3 E = 10; // volts
                 //ohms
4 R = 500;
6 \text{ Id} = E/R;
7 \text{ Vd} = E;
9 Vdq = 0.78; // volts
10 Idq = 18.5*10^{(-3)}; //Amperes
11
12 Vr = Idq*R;
13
14 diary ('C:\ Users\DELL\ Desktop\ intern\ chapter_2\ 2_1.
       txt');
15 disp(Vdq, 'Voltage at Q-point is :');
16 disp(Idq, 'Current at Q-point is :');
17 \operatorname{disp}(\operatorname{Vr}, \operatorname{Vr} = \operatorname{V});
```

Scilab code Exa 2.2 Vdq Vr and Idq by approx equivalent model

Scilab code Exa 2.3 Vdq Vr and Idq by ideal diode model

Scilab code Exa 2.4 Vd Vr and Id

```
1 clear; clc; close;
```

Scilab code Exa 2.5 Vd Vr and Id with diode reversed

Scilab code Exa 2.6 Vd Vr and Id for series diode config

Scilab code Exa 2.7 Vo and Id calculation

Scilab code Exa 2.8 Id Vd2 and Vo calculation

```
1 clear; clc; close;
3 E = 20; //volts
4 R = 5.6*10^{(3)};
                                //ohms
6 \text{ Id} = 0;
                   //amperes
7 \text{ Vd1} = 0;
8 \text{ Vo = Id*R};
9 \text{ Vd2} = E;
10
11
12 \operatorname{diary}('C: \setminus \operatorname{Users}\setminus \operatorname{DELL}\setminus \operatorname{Desktop}\setminus \operatorname{intern}\setminus \operatorname{chapter}_2\setminus 2_8.
         txt');
13 disp(Vo, 'Output Volatge is : ');
14 disp(Id, 'Output Current is : ');
15 disp(Vd2, 'Voltage across diode 2 is :')
```

Scilab code Exa 2.9 I V1 V2 and Vo calculation

```
16 disp(I, 'Output Current is : ');
17 disp(V1, 'Voltage across resistance 1 is : ');
18 disp(V2, 'Voltage across resistance 2 is : ');
```

Scilab code Exa 2.10 Vo I1 Id1 and Id2 for parallel diode config

Scilab code Exa 2.11 Resistor values

Scilab code Exa 2.12 Output voltage

Scilab code Exa 2.13 Determine network currents

Scilab code Exa 2.14 Output voltage

Scilab code Exa 2.15 Output voltage for positive logic AND

Figure 2.1: Sketch output and determine dc level

Scilab code Exa 2.16.a Sketch output and determine dc level

```
1 clear; clc; close;
2
3 Vm = 20;
4 Vdc = -0.318*Vm;
5
6 disp(Vdc, 'Dc volatge for ideal diode : ');
7
8
9 t = 0:0.1:4*%pi;
10 x = 20*sin(t);
11
12 for i=1:length(t)
13     if(x(i) <=0)
14     y(i) = x(i);</pre>
```


Figure 2.2: Sketch output and determine dc level for Si diode case

```
15     else y(i)=0
16     end
17 end
18
19 plot(t,y)
20 xtitle('output for ideal diode','t','Vo');
```

Scilab code Exa 2.16.b Sketch output and determine dc level for Si diode case

```
1 clear; clc; close;
2
3 Vm = 20;    //volts
4 Vdc = -0.318*(Vm-0.7);    //volts
```

```
5
6 disp(Vdc, 'Dc voltage for silicon diode: ');
8
9 t = 0:0.1:4*\%pi;
10 x = (20-0.7)*sin(t);
11
12 for i=1:length(t)
13
       if(x(i) \le 0)
          y(i) = x(i);
14
       else y(i)=0
15
16
       end
17 end
18
19 plot(t,y);
20 xtitle('output for silicon diode', 't', 'Vo');
```

Scilab code Exa 2.16.c Determine dc level if Vm is 200V

Scilab code Exa 2.17 Sketch output waveform

Figure 2.3: Sketch output waveform

```
1 clear; clc; close;
3 \text{ Vi_max} = 10;
4 Vo_max = 0.5*Vi_max;
6 \text{ Vdc} = 0.636*\text{Vo_max};
8 disp(Vdc, 'Required Dc voltage :');
10 t = 0:0.1:2*\%pi;
11 x = 10*sin(t);
13 for i=1:length(t)
        if(x(i) >= 0)
14
           y(i) = x(i);
15
       else y(i)=0;
16
17
       end
18 \text{ end}
19
20 plot(t,y)
21 xtitle('output waveform', 't', 'Vo');
```

Scilab code Exa 2.18 Sketch output waveform

```
1 clear; clc; close;
2
3 amp = 20;
4 vi_t = -5; // transition voltage
5
6 t = 0:0.1:2*%pi;
7 vi = amp*sin(t);
8 vo = vi+5; // output voltage
```


Figure 2.4: Sketch output waveform

```
10 disp(vi_t, 'transition voltage : ');
11
12 for i = 1:length(t)
13     if(vo(i) <= 0)
14         vo(i) = 0;
15     end
16
17
18 end
19
20 plot(t,vo);
21 xtitle('Ouptut voltage', 't', 'vo');</pre>
```

Scilab code Exa 2.19 Sketch output waveform

Figure 2.5: Sketch output waveform

```
1 clear; clc; close;
3 t = 0:0.1:20;
4 for i=1:int(length(t)/2)
       vi(i) = 20;
6 end
7 for i = int(length(t)/2):length(t)
       vi(i) = 0;
9 end
10 for i=1:int(length(t)/2)
11
       vo(i) = 20+5;
13 for i = int(length(t)/2):length(t)
       vo(i) = 0;
14
15 end
16 plot2d(t,vo,2,'011','',[0,-5,21,30]);
17 \ a = gca();
18 a.x_label.text = 't';
19 a.y_label.text = 'Vo';
```

Scilab code Exa 2.20 Sketch output waveform

```
1 clear; clc; close;
3 t = 0:0.1:20;
4 for i = 1:length(t);
5
       if(t(i)<=5)
            x(i) = (16/5)*t(i);
6
7
       elseif(t(i) >= 5 \& t(i) <= 16)
            x(i) = -3.2*t(i) + 32;
9
       elseif(t(i)>=16 & t(i)<=20)</pre>
10
            x(i) = (16/5)*t(i)-64;
11
       end
```


Figure 2.6: Sketch output waveform

```
12 end
13
14 \text{ for } i = 1:length(t)
        if(x(i)>4)
15
16
             y(i) = x(i);
17
        elseif(x(i) \le 4)
             y(i) = 4;
18
19
        end
20 \text{ end}
21
22 plot2d(t,y,2,'011','',[0,0,20,16]);
23
24 \ a = gca();
25 \text{ a.x\_label.text} = 't';
26 a.y_label.text = 'Vo';
```

Scilab code Exa 2.21 Sketch output waveform using Ge diode

```
1 clear; clc; close;
3 \quad V = 4;
4 \text{ Vk} = 0.3;
5 \text{ id} = 0;
6 \text{ vd} = 0.3;
7
8 \text{ vi} = V - Vk;
9 disp(vi, 'new transition level: ');
10
11 t = 0:0.1:20;
12 for i = 1:length(t);
13
        if(t(i) <=5)</pre>
14
              x(i) = (16/5)*t(i);
        elseif(t(i) >= 5 \& t(i) <= 16)
15
```


Figure 2.7: Sketch output waveform using Ge diode

```
16
            x(i) = -3.2*t(i) + 32;
        elseif(t(i) >= 16 \& t(i) <= 20)
17
             x(i) = (16/5)*t(i)-64;
18
19
        end
20 \, \text{end}
21
22 \text{ for i = } 1:length(t)
       if(x(i)>vi)
23
            y(i)=x(i);
24
        elseif(x(i) \le 3.7)
25
            y(i)=3.7;
26
27
        end
28 end
29
30 plot2d(t,y,2,'011','',[0,0,20,16]);
31
32 \ a = gca();
33 a.x_label.text = 't';
34 a.y_label.text = 'Vo';
35
36 xset('thickness',2);
37 \text{ xstring}(10,0,T/2);
```

Scilab code Exa 2.22 Sketch output waveform

```
1 clear; clc; close;
2
3 f = 1000;
4 T = 1/f;
5 C = 0.1*10^(-6);
6 R = 100*10^(3);
7 //between t1-->t2
8 vo_1 = 5;
```


Figure 2.8: Sketch output waveform

```
9 \text{ Vc} = 25;
10 //between t2 \longrightarrow t3
11 \text{ Rth} = 0;
12 Eth = 5;
13 \text{ vo}_2 = 35;
14 tau = R*C;
15 discharge_time = 5*tau;
16 //between t3 \longrightarrow t4
17 \text{ vo}_3 = 5;
18
19 disp(vo_1, 'output voltage during t1-->t2: ');
20 disp(vo_2, 'output voltage during t2 \longrightarrow t3: ');
21 disp(vo_3, 'output voltage during t3->t4: ');
22
23
24 t = 0:10^{(-6)}:2.5*10^{(-3)};
25
26 for i= 1:length(t)
        if(t(i) \ge 0 \& t(i) \le 0.5*10^{(-3)})
27
28
             y(i) = 0;
29
        elseif (t(i) \ge 0.5*10^{(-3)} & t(i) \le 10^{(-3)}
30
             y(i) = 5;
31
        elseif (t(i) >= 10^{(-3)} & t(i) <= 1.5*10^{(-3)})
32
             y(i) = 35;
        elseif (t(i) \ge 1.5*10^{(-3)} \& t(i) \le 2.0*10^{(-3)})
33
34
             y(i) = 5;
35
        elseif (t(i) \ge 2.0*10^{(-3)} & t(i) \le 2.5*10^{(-3)})
36
             y(i) = 35;
37
        end
38 end
39 \ a = gca();
40 a.thickness = 2;
41 plot2d(t,y);
42 a.x_label.text = 't';
43 a.y_label.text = 'Vo';
44 xset ('thickness',2);
45 xstring(0.5*10^(-3),0,'t1');
46 xstring(10^(-3),0,'t2');
```


Figure 2.9: Sketch output waveform using Si diode

```
47 xstring(1.5*10^(-3),0,'t3');
48 xstring(2*10^(-3),0,'t4');
```

Scilab code Exa 2.23 Sketch output waveform using Si diode

```
1 clear; clc; close;
2
3 f = 1000;
4 T = 1/f;
5 C = 0.1*10^(-6);
6 R = 100*10^(3);
```

```
7 \text{ Vk} = 0.7;
8 / \text{between } t1 \longrightarrow t2
9 \text{ vo}_1 = 4.3;
10 \text{ Vc} = 25-0.7;
11 / \text{between } t2 \longrightarrow t3
12 \text{ Rth} = 0;
13 \text{ Eth} = 4.3;
14 \text{ vo}_2 = 34.3;
15 tau = R*C;
16 discharge_time = 5*tau;
17 //between t3 \longrightarrow t4
18 \text{ vo}_3 = 5;
19
20 disp(vo_1, 'output voltage during t1->t2 : ');
21 disp(vo_2, 'output voltage during t2 \longrightarrow t3: ');
22 disp(vo_3, 'output voltage during t3 \longrightarrow t4: ');
23
24
25 t = 0:10^{(-6)}:2.5*10^{(-3)};
26
27 for i= 1:length(t)
         if(t(i) \ge 0 \& t(i) \le 0.5*10^{(-3)})
28
29
              y(i) = 0;
         elseif (t(i) \ge 0.5*10^{(-3)} & t(i) \le 10^{(-3)}
30
31
              y(i) = 4.3;
32
         elseif (t(i) \ge 10^{(-3)} & t(i) \le 1.5*10^{(-3)}
33
              y(i) = 34.3;
         elseif (t(i) >= 1.5*10^{(-3)} & t(i) <= 2.0*10^{(-3)}
34
35
              y(i)=4.3;
         elseif (t(i) \ge 2.0*10^{(-3)} \& t(i) \le 2.5*10^{(-3)})
36
37
              y(i) = 34.3;
38
         end
39 end
40 \ a = gca();
41 a.thickness = 2;
42 plot2d(t,y);
43 a.x_label.text = 't';
44 a.y_label.text = 'Vo';
```

```
45 xset('thickness',2);

46 xstring(0.5*10^(-3),0,'t1');

47 xstring(10^(-3),0,'t2');

48 xstring(1.5*10^(-3),0,'t3');

49 xstring(2*10^(-3),0,'t4');

50 xstring(0,4.3,'4.3');

51 xstring(0,34.3,'34.3');
```

Scilab code Exa 2.24 Voltages and Power calculation

```
1 clear; clc; close;
3 E = 40;
4 \text{ Vk} = 0.7;
5 \text{ Vz1} = 6;
6 \text{ Vz2} = 3.3;
7 R = 1.3*10^{(3)};
9 \text{ Vol} = \text{Vz2} + \text{Vk};
10 Vled = Vo1;
11 \text{ Vo2} = \text{Vo1} + \text{Vz1};
12 Vr = E-Vo2-Vled;
13 Ir = Vr/R;
14 Iled = Ir;
15 Iz = Ir;
16 Ps = E*Ir;
17 Pled = Vled*Iled;
18 \text{ Pz} = \text{Vz1*Iz};
19
20 disp(Vo1, 'Reference voltage 1: ');
21 disp(Vo2, 'Reference voltage 2: ');
22 disp(Iled, 'Level of current through led:');
23 disp(Ps, 'Power supplied by circuit: ');
24 disp(Pled, 'Power absorbed by led :');
25 disp(Pz, 'Power absorbed by zener diode:');
```


Figure 2.10: Sketch output waveform

Scilab code Exa 2.25 Sketch output waveform

```
1 clear; clc; close;
2
3
4 t = 0:0.1:2*%pi;
5 y = 60*sin(t);
6
7 a = gca();
8 a.line_style = 3;
```

```
9 a.thickness = 2;
10 a.y_location = 'left';
11 a.x_location = 'middle';
12 a.x_label.text = 'time';
13 a.y_label.text = 'Voltage';
14 a.title.text = 'Network Response';
15 plot2d(t,y);
16
17
18 / a.grid = [1 1];
19
20 t1 = (asin(1/3)):0.1:(\%pi-asin(1/3));
21
22 y1 = 20*(t1>=(asin(1/3)))
23
24 b = gca();
25 b.line_style = 1;
26 plot2d(t1,y1);
```

Scilab code Exa 2.26.a Vl Vr Iz Pz

```
1 //Implementation of example 2.26_a in chapter 2
2
3 clear; clc; close;
4
5 Rl = 1.2*10^(3);
6 R = 10^(3);
7 Vi = 16;
8 Vz = 10;
9
10 V = (Rl*Vi)/(R+Rl);
11 Vl = V;
12 Vr = Vi-Vl;
13 Iz = 0;
14
```

```
15 Pz = Iz*Vz;

16

17 disp(V1, 'V1 is : ');

18 disp(Vr, 'Vr is : ');

19 disp(Iz, 'IZ is : ');

20 disp(Pz, 'Pz is : ');
```

Scilab code Exa 2.26.b Vl Vr Iz Pz with different Rl

```
1 clear; clc; close;
3 R1 = 3*10^{(3)};
4 R = 10^{(3)};
5 \text{ Vi} = 16;
6 \text{ Vz} = 10;
 7
8 V = Vz;
9 V1 = V;
10 Vr = Vi - Vl;
11 Il = V1/R1;
12 Ir = Vr/R;
13 \text{ Iz} = \text{Ir} - \text{Il};
14
15
16 \text{ Pz} = \text{Iz*Vz};
17
18 disp(V1, 'V1 is : ');
19 disp(Vr, 'Vr is :');
20 disp(Iz, 'IZ is :');
21 disp(Pz, 'Pz is :');
```

Scilab code Exa 2.27 Rl Il Range max power and zener increase

```
2 clear; clc; close;
4 R = 10^{(3)};
5 \ Vz = 10;
6 \text{ Vi} = 50;
7 \text{ Izm} = 32*10^{(-3)};
8 \text{ Pz} = 380*10^{(-3)};
10 Rlmin = (R*Vz)/(Vi-Vz);
11 Vr = Vi - Vz;
12 Ir = Vr/R;
13 Ilmin = Ir - Izm;
14 Rlmax = Vz/Ilmin;
15 Pmax = Vz*Izm;
16 \text{ Izm}_2 = \text{Pz/Vz};
17 Ilmin_2 = Ir - Izm_2;
18
19 disp(Rlmin, 'Lowest value of R: ');
20 disp(Rlmax, 'Max value of R: ');
21 disp(Ilmin, 'Min value of I: ');
22 disp(Pmax, 'Maximum wattage rating of diode: ')
23 disp(Ilmin_2, 'New min value of I : ');
```

Scilab code Exa 2.28 Range of Vi

```
1 clear; clc; close;
2
3 Rl = 1200;
4 R = 320;
5 Vz = 20;
6 Izm = 60*10^(-3);
7
8 Vimin = ((R1+R)*Vz)/(R1);
9 Il = Vz/R1;
```

```
10 Irmax = Izm+Il;
11 Vimax = Irmax*R + Vz;
12 disp(Vimin, 'Min value of V : ');
13 disp(Vimax, 'Max value of V: ');
```

Chapter 3

Bipolar Junction Transistor

Scilab code Exa 3.1 Determining Collector current and Vbe

```
1 clear; clc; close;
3 // part a
4 Ie = 3*10^{(-3)};
5 \text{ Vcb} = 10;
6 \text{ Ic} = \text{Ie};
7 disp(Ic, 'Ic (A): ');
9 // part b
10 \text{ Vcb} = 2;
11 Ie = 3*10^{(-3)};
12 Ic = Ie;
13 disp(Ic, 'No effect of changing Vcb & Ic remains same
       , Ic(A) is : ');
14 //part c
15 Ic = 4*10^{(-3)};
16 \text{ Vcb} = 20;
17 Ie = Ic;
18 \text{ Vbe} = 0.74;
19 disp(Vbe, 'Vbe(volts) is :');
20 // part d
```

```
21 Ic = 4*10^(-3);
22 Ie = Ic;
23 Vbe = 0.7;
24 disp(Vbe, 'Vbe(volts) in this case is : ');
```

Scilab code Exa 3.2 Determining Collector current

```
1 clear; clc; close;
2
3
4 // part a
5 \text{ Ib} = 30*10^{(-6)};
6 \text{ Vce} = 7.5;
7 Ic = 3.3*10^{(-3)};
8 disp(Ic, 'Ic(A) is : ');
9 // part b
10 \text{ Vce} = 15;
11 Vbe = 0.7;
12 Ib = 20*10^{(-6)};
13 Ic = 2.5*10^{(-3)};
14 disp(Ic, 'Ic(A) ate the intersection of Ib & Vceis:'
      );
15 // part c
16 Ib = 4*10^(-6);
17 \text{ Vce} = 15;
18 Ic = 800*10^{(-6)};
19 disp(Ic, 'Ic(A)) in this case is : ');
```

Chapter 4

DC Biasing BJT

Scilab code Exa 4.1 Fixed Bias Network characteristics

```
1 clear; clc; close;
3 \text{ Vcc} = 12;
4 \text{ Vbe} = 0.7;
5 \text{ Vce} = 4.23;
6 \text{ Rb} = 240*10^{(3)};
7 \text{ Rc} = 2.2*10^{(3)};
8 \text{ Beta} = 75;
9 Ic = 3.53*10^{(-3)};
10
11 Ibq = (Vcc-Vbe)/Rb;
12 Icq = Beta*Ibq;
13 Vceq = Vcc-Ic*Rc;
14 Vb = Vbe;
15 \text{ Vc} = \text{Vce};
16 \text{ Vbc} = \text{Vb-Vc};
17
18 disp(Ibq, 'Ibq(Amperes) is :');
19 disp(Icq, 'Icq(Amperes) is :');
20 disp(Vceq, 'Vceq(volts) is :');
21 disp(Vb, 'Vb(volts) is :');
```

```
22 disp(Vc, 'Vc(volts) is :');
23 disp(Vbc, 'Vbc(volts) is :');
```

Scilab code Exa 4.2 Saturation level

```
1 clear; clc; close;
2
3 Vcc = 12;
4 Rc = 2.2*10^(3);
5
6 Icsat = Vcc/Rc;
7 disp(Icsat, 'saturation current(Amperes) for network is :');
```

Scilab code Exa 4.3 Vcc Rc and Rb for fixed bias config

```
1 clear; clc; close;
2
3 Vce = 16;
4 Ic = 10*10^(-3);
5 Vbe = 0.7;
6 Ib = 25*10^(-6);
7
8 Vcc = Vce;
9 Rc = Vcc/Ic;
10 Rb = (Vcc-Vbe)/Ib;
11
12 disp('At Q-point')
13 disp(Vcc, 'Value of Vcc(Volts) is :');
14 disp(Rc, 'Value of Rc(ohms) is :');
15 disp(Rb, 'Value of Rb(ohms) is :');
```

Scilab code Exa 4.4 Emitter bias Network characteristics

```
1 clear; clc; close;
3 \text{ Vcc} = 16;
4 \text{ Vbe} = 0.7;
5 \text{ Rb} = 430*10^{(3)};
6 \text{ Rc} = 2*10^{(3)};
7 \text{ Re} = 1*10^{(3)};
8 \text{ Beta} = 75;
9
10
11 Ib = (Vcc-Vbe)/(Rb+(1+Beta)*Re);
12 Ic = Beta*Ib;
13 Vce = Vcc - Ic*(Rc+Re);
14 Vc = Vcc - Ic*Rc;
15 Ve = Vc - Vce;
16 Vb = Vbe + Ve;
17 \text{ Vbc} = \text{Vb} - \text{Vc};
18
19 disp(Ib, 'Ib(Amperes) is : ');
20 disp(Ic, 'Ic(Amperes) is : ');
21 disp(Vce, 'Vce(volts) is : ');
22 disp(Vc, 'Vc(Volts) is : ');
23 disp(Ve, 'Ve(volts) is : ');
24 disp(Vb, 'Vb(Volts) is : ');
25 disp(Vbc, 'Vbc(Volts) is : ');
```

Scilab code Exa 4.6 Saturation current

```
1 clear; clc; close;
```

```
3  Vcc = 16;
4  Rc = 2*10^(3);
5  Re = 1*10^(3);
6
7  Icsat = Vcc/(Rc+Re);
8
9  disp(Icsat, 'Saturation current(amperes) for the given network : ');
```

Scilab code Exa 4.7 Vce and Ic for voltage divider config

```
1 clear; clc; close;
3 R1 = 39*10^{(3)};
4 R2 = 3.9*10^{(3)};
5 \text{ Re} = 1.5*10^{(3)};
6 \text{ Rc} = 4*10^{(3)};
7 \text{ Vcc} = 18;
8 \text{ Vbe} = 0.7;
9 \text{ Beta} = 140;
10
11 Rth = R1*R2/(R1+R2);
12 Eth = R2*Vcc/(R1+R2);
13 Ib = (Eth - Vbe)/(Rth + (Beta+1)*Re);
14 	ext{ Ic} = Beta*Ib;
15 Vce = Vcc - Ic*(Rc+Re);
16
17 disp(Ic, 'Collector current (Amperes) in :');
18 disp(Vce, 'Vce(Volts) is : ');
19 disp('Value of Vce differs because wrong value of
      Vcc is used in the book');
```

Scilab code Exa 4.8 Icq and Vcq calculation

```
1 clear; clc; close;
 3 R1 = 39*10^{(3)};
4 R2 = 3.9*10^{(3)};
5 \text{ Re} = 1.5*10^{(3)};
6 \text{ Rc} = 4*10^{(3)};
 7 \text{ Vcc} = 18;
8 \text{ Vbe} = 0.7;
9 \text{ Beta} = 140;
10 Ic = 0.63*10^{(-3)};
11
12 disp('Since the approximate technique can be applied
       , hence ');
13 Eth = R2*Vcc/(R1+R2);
14 \text{ Vb} = \text{Eth};
15 Ve = Vb - Vbe;
16 \text{ Icq} = \text{Ve/Re};
17 Vceq = Vcc - Ic*(Rc+Re);
18
19 disp(Icq, 'Value of Icq(Amperes) is : ');
20 disp(Vceq, 'Value of Vceq(Volts) : ');
```

Scilab code Exa 4.9 Icq and Vceq calculation

```
1 clear; clc; close;
2
3 R1 = 39*10^(3);
4 R2 = 3.9*10^(3);
5 Re = 1.5*10^(3);
6 Rc = 4*10^(3);
7 Vcc = 18;
8 Vbe = 0.7;
9 Beta = 70;
10
11 Rth = R1*R2/(R1+R2);
```

```
12 Eth = R2*Vcc/(R1+R2);
13 Ib = (Eth - Vbe)/(Rth + (Beta+1)*Re);
14 Icq = Beta*Ib;
15 Vceq = Vcc - Icq*(Rc+Re);
16 disp(Icq, 'Collector current(Amperes) in :');
17 disp(Vceq, 'Vce(Volts) is : ');
```

Scilab code Exa 4.10 Icq and Vceq calculation for voltage divider

```
1 clear; clc; close;
3 R1 = 82*10^{(3)};
4 R2 = 22*10^{(3)};
5 \text{ Re} = 1.2*10^{3};
6 \text{ Rc} = 5.6*10^{(3)};
7 \text{ Vcc} = 18;
8 \text{ Vbe} = 0.7;
9 \text{ Beta} = 50;
10
11 Rth = R1*R2/(R1+R2);
12 Eth = R2*Vcc/(R1+R2);
13 Ib = (Eth - Vbe)/(Rth + (Beta+1)*Re);
14 Icq = Beta*Ib;
15 Vceq = Vcc - Icq*(Rc+Re);
16 disp(Icq, 'Collector current (Amperes) in : ');
17 disp(Vceq, 'Vce(Volts) is : ');
18
19 //approximate analysis
20 Eth = R2*Vcc/(R1+R2);
21 Vb = Eth;
22 Ve = Vb - Vbe;
23 Icq = Ve/Re;
24 \text{ Vceq} = \text{Vcc} - \text{Icq*(Rc+Re)};
25 disp('For approximate analysis: ');
26 disp(Icq, 'Value of Icq(Amperes) is : ');
```

```
27 disp(Vceq, 'Value of Vceq(Volts): ');
```

Scilab code Exa 4.11 Icq and Vceq calculation

```
1 clear; clc; close;
2
3 Re = 1.2*10^(3);
4 Rc = 4.7*10^(3);
5 Rb = 250*10^(3);
6 Vcc = 10;
7 Vbe = 0.7;
8 Beta = 90;
9
10 Ib = (Vcc - Vbe)/(Rb + (Beta)*(Re+Rc));
11 Icq = Beta*Ib;
12 Vceq = Vcc - Icq*(Rc+Re);
13 disp(Icq, 'Value of Icq(Amperes) is : ');
14 disp(Vceq, 'Value of Vceq(Volts) : ');
```

Scilab code Exa 4.12 Icq and Vceq calculation for a different beta

```
1 clear; clc; close;
2
3 Re = 1.2*10^(3);
4 Rc = 4.7*10^(3);
5 Rb = 250*10^(3);
6 Vcc = 10;
7 Vbe = 0.7;
8 Beta = 135;
9
10 Ib = (Vcc - Vbe)/(Rb + (Beta)*(Re+Rc));
11 Icq = Beta*Ib;
12 Vceq = Vcc - Icq*(Rc+Re);
```

```
13 disp(Icq, 'Value of Icq(Amperes) is : ');
14 disp(Vceq, 'Value of Vceq(Volts) : ');
```

Scilab code Exa 4.13 Ib and Vc calculation

```
1 clear; clc; close;
2
3 Re = 0.51*10^(3);
4 Rc = 3.3*10^(3);
5 Rb = (91+110)*10^(3);
6 Vcc = 18;
7 Vbe = 0.7;
8 Beta = 75;
9
10 Ib = (Vcc - Vbe)/(Rb + (Beta)*(Re+Rc));
11 Ic = Beta*Ib;
12 Vc = Vcc - Ic*(Rc);
13 disp(Ic, 'Value of Icq(Amperes) is : ');
14 disp(Vc, 'Value of Vceq(Volts) : ');
```

Scilab code Exa 4.14 Network characteristics determination

```
1 clear; clc; close;
2
3 Re = 0;
4 Rc = 4.7*10^(3);
5 Rb = 680*10^(3);
6 Vcc = 20;
7 Vbe = 0.7;
8 Beta = 120;
9
10 Ib = (Vcc - Vbe)/(Rb + (Beta)*(Rc));
11 Icq = Beta*Ib;
```

```
12  Vceq = Vcc - Icq*(Rc);
13  Vb = Vbe;
14  Vc = Vceq;
15  Ve = 0;
16  Vbc = Vb-Vc;
17  disp(Icq, 'Value of Icq(Amperes) is : ');
18  disp(Vceq, 'Value of Vceq(Volts) : ');
19  disp(Vc, 'Vc(volts) is : ');
20  disp(Vb, 'Vb(volts) is : ');
21  disp(Ve, 'Ve(volts) is : ');
22  disp(Vbc, 'Vbc(volts) is : ');
```

Scilab code Exa 4.15 Vc and Vb calculcation

```
1 clear; clc; close;
2
3 Re = 0;
4 Rc = 1.2*10^(3);
5 Rb = 100*10^(3);
6 Vee = 9;
7 Vbe = 0.7;
8 Beta = 45;
9
10 Ib = (Vee-Vbe)/Rb;
11 Ic = Beta*Ib;
12 Vc = -Ic*Rc;
13 Vb = -Ib*Rb;
14 disp(Vc, 'Vc(Volts) is :');
15 disp(Vb, 'Vb(Volts) is :');
```

Scilab code Exa 4.16 Vceq and Ie

```
1 clear; clc; close;
```

```
2
3 Re = 2*10^(3);
4 Rb = 240*10^(3);
5 Vee = 20;
6 Vbe = 0.7;
7 Beta = 90;
8
9 Ib = (Vee-Vbe)/(Rb+(Beta+1)*Re);
10 Ic = Beta*Ib;
11 Ie = (Beta+1)*Ib;
12 Vceq = Vee - (Beta+1)*Ib*Re;
13 disp(Vceq, 'Vceq(Volts) is :');
14 disp(Ie, 'Ie(amperes) is :');
```

Scilab code Exa 4.17 Vcb and Ib for common base config

```
1 clear; clc; close;
2
3 Re = 1.2*10^(3);
4 Rc = 2.4*10^(3);
5 Rb = 240*10^(3);
6 Vee = 4;
7 Vcc = 10;
8 Vbe = 0.7;
9 Beta = 60;
10
11 Ie = (Vee-Vbe)/Re;
12 Ic = Ie;
13 Vcb = Vcc-Ic*Rc;
14 Ib = Ic/Beta;
15 disp(Vcb, 'Vcb(Volts) is : ');
16 disp(Ib, 'Ib(amperes) is :');
```

Scilab code Exa 4.18 Vc and Vb calculcation

```
1 clear; clc; close;
 2
 3 \text{ Re} = 1.8*10^{(3)};
4 \text{ Rc} = 2.7*10^{(3)};
5 R1 = 8.2*10^{(3)};
6 R2 = 2.2*10^{(3)};
 7 \text{ Vee} = 20;
8 \ \text{Vcc} = 20;
9 \text{ Vbe} = 0.7;
10 \text{ Beta} = 120;
11
12 Rth = R1*R2/(R1+R2);
13 I = (Vcc+Vee)/(R1+R2);
14 Eth = I*R2 - Vee;
15 Ib = (Vee-Eth-Vbe)/(Rth+(Beta+1)*Re);
16 	ext{ Ib} = 35.39*10^{(-6)};
17 Ic = Beta*Ib;
18 Vc = Vcc - Ic*Rc;
19 Vb = Eth+Ib*Rth;
20 disp(Vc, 'Vc(volts) is : ');
21 disp(Vb, 'Vb(Volts) is :');
```

Scilab code Exa 4.19 Vcc Rc and Rb for fixed bias config

```
1 clear; clc; close;
2
3 Vcc = 20;
4 Ic = 8*10^(-3);
5 Vbe = 0.7;
6 Ib = 40*10^(-6);
7
8 Rc = Vcc/Ic;
9 Rb = (Vcc-Vbe)/Ib;
```

```
10

11 disp(Rc, 'Rc(ohms) is : ');

12 disp(Rb, 'Rb(ohms) is : ');
```

Scilab code Exa 4.20 R1 and Rc

```
1 clear; clc; close;
 3 \text{ Re} = 1.2*10^{(3)};
 4 R2 = 18*10^{(3)};
 5 \text{ Vcc} = 18;
 6 \text{ Vce} = 10;
 7 \text{ Vbe} = 0.7;
 8 \text{ Ve} = 2.4
 9 Ic = 2*10^{(-3)};
10
11 Ve = Ic*Re;
12 \text{ Vb} = \text{Vbe+Ve};
13 R1 = (R2*Vcc/Vb) - R2;
14 \text{ Vc} = \text{Vce+Ve};
15 Rc = (Vcc-Vc)/Ic;
16 disp(R1, 'R1(ohms) is : ');
17 \operatorname{disp}(\operatorname{Rc}, \operatorname{'Rc}(\operatorname{ohms}) \text{ is } : \operatorname{'});
```

Scilab code Exa 4.21 Rc Re and Rb

```
1 clear; clc; close;
2
3 Icq = 4*10^(-3);
4 Vcc = 28;
5 Vc = 18;
6 Vbe = 0.7;
7 Ve = 2.4;
```

```
8 Beta = 110;
9 Icsat = 8*10^(-3);
10
11 Rc = (Vcc-Vc)/Icq;
12 Re = (Vcc/Icsat)-Rc;
13 Ibq = Icq/Beta;
14 Rb = ((Vcc-Vbe)/Ibq) - (Beta+1)*Re;
15
16 disp(Rc, 'Rc(ohms) is : ');
17 disp(Re, 'Re(ohms) is : ');
18 disp(Rb, 'Rb(ohms) is : ');
```

Scilab code Exa 4.22 Resistor values for the netowrk

```
1 clear; clc; close;
2
3 \text{ Vcc} = 20;
4 \text{ Vc} = 18;
5 \text{ Vce} = 10;
6 \text{ Vbe} = 0.7;
7 \text{ Beta} = 150;
8 \text{ Ic} = 2*10^{(-3)};
9 Ie = Ic;
10
11 Ve = 0.1*Vcc;
12 Re = Ve/Ie;
13 Rc = (Vcc-Vce-Ve)/Ic;
14 Ib = Ic/Beta;
15 \text{ Rb} = (Vcc-Vbe-Ve)/Ib;
16
17 disp(Re, 'Value of Re(ohms) is : ');
18 disp(Rc, 'Value of Rc(ohms) is : ');
19 disp(Rb, 'Value of Rb(ohms) is: ');
```

Scilab code Exa 4.23 Rc Re R1 and R2

```
1 clear; clc; close;
3 \text{ Vcc} = 20;
4 \text{ Vc} = 18;
5 \text{ Vce} = 8;
6 \text{ Vbe} = 0.7;
7 \text{ Beta} = 150;
8 \text{ Ic} = 10*10^{(-3)};
9 Ie = Ic;
10 R2 = 1.6*10^{(3)};
11 Ve = 0.1*Vcc;
12 Re = Ve/Ie;
13 Rc = (Vcc-Vce-Ve)/Ic;
14
15 Vb = Vbe + Ve;
16 R1 = R2*Vcc/Vb - R2;
17
18 disp(Re, 'Value of Re(ohms) is : ');
19 disp(Rc, 'Value of Rc(ohms) is : ');
20 disp(R1, 'Value of R1(ohms) is : ');
```

Scilab code Exa 4.24 Rb and Rc

```
1 clear; clc; close;
2
3 Vcc = 10;
4 Vbe = 0.7;
5 Beta_dc = 250;
6 Icsat = 10*10^(-3);
7
```

```
8 Rc = Vcc/Icsat;
9 Ib_min = Icsat/Beta_dc;
10 Rb = (Vcc-Vbe)/Ib_min;
11 //if we take standard Rb value then
12 Rb = 150*10^(3);
13 Ib = (Vcc-Vbe)/Rb;
14
15 disp(Rc,'value of Rc(ohms) is : ');
16 disp(Rb,'value of Rb(ohms) is : ');
```

Scilab code Exa 4.25 Determine proper operation of network

```
1 clear; clc; close;
3 \text{ Vcc} = 20;
4 \text{ Vbe} = 0.7;
5 \text{ Beta} = 100;
6 \text{ Rb} = 250*10^{(3)};
7 \text{ Re} = 2*10^{(3)};
8 \text{ Vrb} = 19.85;
9 \text{ Ic} = 0;
10
11 Irb = Vcc/(Rb+Re);
12 Ib = (Vcc-Vbe)/(Rb+(Beta+1)*Re);
13
14 disp(Irb, 'The base current (amperes) obtained is: ')
15 disp(Ib, 'Ideally Ib(Amperes) should be: ');
16 disp('Hence the transistor is in a damaged state,');
17 disp('with short-circuit between base and emitter.')
```

Scilab code Exa 4.26 Determine proper operation of network

Scilab code Exa 4.27 Vce for voltage divider config

```
1 clear; clc; close;
2
3 \text{ Vcc} = -18;
4 Vbe = -0.7;
5 \text{ Beta} = 100;
6 R1 = 47*10^{(3)};
7 R2 = 10*10^{(3)};
8 \text{ Re} = 1.1*10^{(3)};
9 \text{ Rc} = 2.4*10^{(3)};
10
11 Vb = R2*Vcc/(R1+R2);
12 \text{ Ve = Vb-Vbe};
13 Ie = abs(Ve)/Re;
14 Ic = Ie;
15 Vce = Vcc+Ic*(Rc+Re);
16 disp(Vce, 'Vce(volts) is : ');
```

Scilab code Exa 4.28 Stability factor and change in Ic

```
1 clear; clc; close;
3 \text{ Beta} = 50;
4 //denoting Rb/Re by x, we have
5 //for part a
6 x = 250;
7 \text{ ico} = 19.9*10^{(-9)};
8 s = (1+Beta)*((1+x)/(Beta+1+x));
9 delta_ic = s*ico;
10 disp(s, 'stability factor for part a is:');
11 disp(delta_ic, 'change in Ic(amperes) is : ');
12
13 //for part b
14 \times = 10;
15 s = (1+Beta)*((1+x)/(Beta+1+x));
16 delta_ic = s*ico;
17 disp(s, 'stability factor for part b is:');
18 disp(delta_ic, 'change in Ic(amperes) is : ');
19
20 //for part c
21 \times = 0.01;
22 s = (1+Beta)*((1+x)/(Beta+1+x));
23 delta_ic = s*ico;
24 disp(s, 'stability factor for part c is:');
25 disp(delta_ic, 'change in Ic(amperes) is : ');
```

Scilab code Exa 4.29 Stability factor and change in Ic

```
1 clear; clc; close;
```

```
3 //for part a
4 \text{ beta} = 100;
5 \text{ delta_vbe} = -0.17;
6 \text{ Rb} = 240*10^{(3)};
8 s = -beta/Rb;
9 delta_ic = delta_vbe*s;
10 disp(s, 'Stability factor for part a is: ');
11 disp(delta_ic, 'change in Ic(amperes) for part a is:
      <sup>'</sup>);
12
13 //for part b
14 \text{ Rb} = 240*10^{(3)};
15 Re = 1*10^(3);
16 s = -beta/(Rb+(beta+1)*Re);
17 delta_ic = delta_vbe*s;
18 disp(s, 'Stability factor for part b is: ');
19 disp(delta_ic, 'change in Ic(amperes) for part b is:
      ');
20
21 //for part c
22 \text{ Rb} = 47*10^{(3)};
23 Re = 4.7*10^{(3)};
24 	 s = -1/Re;
25 delta_ic = delta_vbe*s;
26 disp(s, 'Stability factor for part c is: ');
27 disp(delta_ic, 'change in Ic(amperes) for part c is:
      <sup>'</sup>);
```

Scilab code Exa 4.30 Determine Icq

```
1 clear; clc; close;
2 3 // lets say Rb/Re = x, then we have 4 x = 20;
```

```
5  Ic1 = 2*10^(-3);
6  beta1=50;
7  beta2=80;
8 
9  s = (Ic1*(1+x))/(beta1*(1+beta2+x));
10  delta_ic = s*(beta2-beta1);
11
12  disp(delta_ic, 'change in the level of Ic(amperes) is : ')
```

Chapter 5

BJT AC Analysis

Scilab code Exa 5.1 Common base config characteristics

```
1 clear; clc; close;
3 Vt = 26*(10^{(-3)}); //thermal voltage = 26mV
4 Vi=3*(10^{(-3)});
                      //emitter current=4mV
5 Ie=4*(10^{(-3)});
6 alpha=0.991; //common base amplification factor
7 R1 = 610;
                   //Load Resistance (in ohms)
9 //Part-1 -> Determining input impedance
10 \text{ re} = Vt/Ie;
11 disp(re, 'Input impedance(ohms): ');
12
13 // Part -2 \rightarrow Calculating the voltage gain
14 Ii = (Vi/re);
15 Ie = Ii;
16 Ic=alpha*Ie;
17 Vo=Ic*R1;
18 Av = Vo/Vi;
19 disp(Av, "Voltage gain :");
20
21 / Part - 3 \rightarrow Calculating the output impedance and
```

```
current gain
22 disp(%inf, "The output impedance(ohms) is :");
23 Ai = -Ic/Ie;
24 disp(Ai, "Current gain is :");
```

Scilab code Exa 5.2 Zi Av and Ai for common emitter

Scilab code Exa 5.3 Common emitter hybrid and common base model

```
1 clear; clc; close;
2
3 Vt=26*(10^(-3)); //thermal voltage
4 Ie=3.2*(10^(-3)); //emitter current
5 Beta = 150; //Common Emitter amplification factor
6 h_oe = 25*(10^(-6));
```

```
7 h_ob = 0.5*(10^{-6});
9 \text{ re} = Vt/Ie;
10 h_ie = Beta*re;
11 r_o = 1/h_{oe};
12 disp("For the common emitter hybrid equivalent
       circuit :-")
13 disp(re, re(ohms) = ');
14 disp(h_ie, "hie(ohms) = ");
15 \operatorname{disp}(r_o, "\operatorname{hoe}(\operatorname{ohms}) = ");
16
17 r_o = 1/h_{ob};
18 \text{ alpha} = 1;
                    //approximation
19 disp("For the common base re model :-")
20 disp(re, 're(ohms) = ');
21 disp(alpha, "alpha = ");
22 \operatorname{disp}(r_o, "ro(ohms) = ");
```

Scilab code Exa 5.4 Network characteristics determination

```
1 clear; clc; close;
2
3 Vcc = 15;
4 Vbe = 0.7;
5 Vt = 26*(10^(-3));
6 Rb = 470*(10^(3));
7 Rc = 4.7*(10^(3));
8 ro = 50*(10^(3));
9 Beta = 100;
10
11
12 Ib = (Vcc-Vbe)/Rb;
13 Ie = (Beta+1)*Ib;
14 re = Vt/Ie;
15 disp(re,"Value of diode resistive element is :")
```

```
16
17 Zb = Beta*re;
                        //resistance seen from base into
       the diode
18 Zi = (Rb*Zb)/(Rb+Zb);
19 disp(Zi, "Input impedance(ohms):");
20
21 disp("At ro = infinity values are :-");
22 \text{ Zo} = \text{Rc};
23 disp(Zo, "Output impedance(ohms):");
24
25 \text{ Av} = -\text{Rc/re};
26 disp(Av, "Voltage gain :");
27
28 disp("At ro = 50kohm, values are :-");
29 \text{ Zo}_2 = (\text{ro*Rc})/(\text{ro+Rc});
30 disp(Zo_2, "Input impedance(ohms):");
31
32 \text{ Av}_2 = -((\text{ro*Rc})/(\text{ro+Rc}))/\text{re};
33 disp(Av_2, "Voltage gain :");
```

Scilab code Exa 5.5 Network characteristics determination

```
1 clear; clc; close;
2
3 Vcc = 22;
4 Vbe = 0.7;
5 Vt = 26*(10^(-3));
6 R1 = 56*(10^(3));
7 R2 = 8.2*(10^(3));
8 Re = 1.5*(10^(3));
9 Rc = 6.8*(10^(3));
10 ro = 50*(10^(3));
11 Beta = 90;
12
13
```

```
14 Vb = (R2/(R1+R2))*Vcc;
15 Ve = Vb - Vbe;
16 Ie = Ve/Re;
17 re = Vt/Ie;
18 disp(re, "Value of diode resistive element is:");
19
20 disp("At ro=infinity, the values are :-");
21 Rx = (R1*R2)/(R1+R2);
22 Zb = Beta*re;
23 Zi = (Rx*Zb)/(Rx+Zb);
24 disp(Zi, "Input Impedance(ohms):");
25
26 \text{ Zo} = \text{Rc};
27 disp(Zo, "Output Impedance(ohms):");
28
29 \text{ Av} = -\text{Rc/re};
30 disp(Av, "Voltage gain :");
31
32 disp("At ro=1/hoe, the values are :-")
33 disp(Zi, "Input Impedance(ohms):");
34 \text{ Zo}_2 = (\text{Rc*ro})/(\text{Rc+ro});
35 disp(Zo_2, "Output Impedance(ohms):");
36 \text{ Av}_2 = -((\text{ro*Rc})/(\text{ro+Rc}))/\text{re};
37 disp(Av_2, "Voltage gain :");
```

Scilab code Exa 5.6 Network characteristics without Ce

```
1 clear; clc; close;
2
3 Vcc = 20;
4 Vbe = 0.7;
5 Vt = 26*(10^(-3));
6 Re = 0.56*(10^(3));
7 Rc = 2.2*(10^(3));
8 Rb = 470*(10^(3));
```

```
9 \text{ ro} = 40*(10^{(3)});
10 \text{ Beta} = 120;
11
12 Ib = (Vcc-Vbe)/(Rb+(Beta+1)*Re);
13 Ie = (Beta+1)*Ib;
14 \text{ re} = Vt/Ie;
15 disp(re, "Value of diode resistive element is :");
16
17 Zb = Beta*(re+Re);
18 Zi = (Rb*Zb)/(Rb+Zb);
19 disp(Zi, "Input Impedance(ohms):");
20
21 \text{ Zo = Rc};
22 disp(Zo, "Output Impedance(ohms):");
23
24 \text{ Av} = -\text{Beta*Rc/Zb};
25 disp(Av, "Voltage gain :");
```

Scilab code Exa 5.7 Network characteristics with Ce

```
1 clear; clc; close;
2
3 Vcc = 20;
4 Vbe = 0.7;
5 Vt = 26*(10^(-3));
6 Re = 0.56*(10^(3));
7 Rc = 2.2*(10^(3));
8 Rb = 470*(10^(3));
9 ro = 40*(10^(3));
10 Beta = 120;
11
12 Ib = (Vcc-Vbe)/(Rb+(Beta+1)*Re);
13 Ie = (Beta+1)*Ib;
14 re = Vt/Ie;
15 disp(re,"Value of diode resistive element is (in
```

```
ohms) :");

16

17 Zb = Beta*re;

18 Zi = (Rb*Zb)/(Rb+Zb);

19 disp(Zi,"Input Impedance(ohms) :");

20

21 Zo = Rc;

22 disp(Zo,"Output Impedance(ohms) :");

23

24 Av = -Rc/re;

25 disp(Av,"Voltage gain :");
```

Scilab code Exa 5.8 Network characteristics determination

```
1 clear; clc; close;
2
3 \text{ Vcc} = 16;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
6 R1 = 90*(10^{(3)});
7 R2 = 10*(10^{(3)});
8 \text{ Re} = 0.68*(10^{(3)});
9 Rc = 2.2*(10^{(3)});
10 ro = 50*(10^{3});
11 Beta = 210;
12
13 Vb = (R2/(R1+R2))*Vcc;
14 Ve = Vb - Vbe;
15 Ie = Ve/Re;
16 \text{ re} = Vt/Ie;
17 disp(re, "Value of diode resistive element is (in ohms
      ) :");
18
19 Rb = (R1*R2)/(R1+R2);
20 Zb = Beta*Re;
```

```
21 Zi = (Rb*Zb)/(Rb+Zb);
22 disp(Zi,"Input Impedance(ohms) :");
23
24 Zo = Rc;
25 disp(Zo,"Output Impedance(ohms) :");
26
27 Av = -Rc/Re;
28 disp(Av,"Voltage gain :");
```

Scilab code Exa 5.9 Network characteristics determination with Ce

```
1 clear; clc; close;
2
3 \text{ Vcc} = 16;
4 \text{ Vbe} = 0.7;
5 Vt = 26*(10^{(-3)});
6 R1 = 90*(10^{(3)});
7 R2 = 10*(10^{(3)});
8 \text{ Re} = 0.68*(10^{(3)});
9 Rc = 2.2*(10^{(3)});
10 ro = 50*(10^{(3)});
11 Beta = 210;
12
13 Vb = (R2/(R1+R2))*Vcc;
14 Ve = Vb - Vbe;
15 Ie = Ve/Re;
16 \text{ re} = Vt/Ie;
17 disp(re, "Value of diode resistive element is (in ohms
      ) :");
18
19 Rb = (R1*R2)/(R1+R2);
20 Zb = Beta*re;
21 \text{ Zi} = (Rb*Zb)/(Rb+Zb);
22 disp(Zi, "Input Impedance(ohms):");
23
```

```
24 Zo = Rc;
25 disp(Zo, "Output Impedance(ohms) :");
26
27 Av = -Rc/re;
28 disp(Av, "Voltage gain :");
```

Scilab code Exa 5.10 Emitter follower Network characteristics determination

```
1 clear; clc; close;
3 \text{ Vcc} = 12;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
6 Re = 3.3*(10^{(3)});
7 \text{ Rb} = 220*(10^{(3)});
8 \text{ ro} = \% \text{inf};
9 \text{ Beta} = 100;
10
11 disp("For ro=infinity the values are:-");
12 Ib = (Vcc-Vbe)/(Rb+(Beta+1)*Re);
13 Ie = (Beta+1)*Ib;
14 \text{ re} = Vt/Ie;
15 disp(re, "Value of diode resistive element is (in ohms
      ) :");
16
17 Zb = (Beta*re) + ((Beta+1)*Re);
18 Zi = (Rb*Zb)/(Rb+Zb);
19 disp(Zi, "Input Impedance(ohms):");
20
21 Zo = (Re*re)/(Re+re);
22 disp(Zo, "Output Impedance(ohms):");
23
24 \text{ Av} = \text{Re/(Re+re)};
25 disp(Av, "Voltage gain :");
```

```
26
27 disp("For ro=25kohm the values are :-")
28 ro_2 = 25*(10^(3));
29
30 Zb_2 = (Beta*re) + ((Beta+1)*Re)/(1+(Re/ro_2));
31 Zi_2 = (Rb*Zb_2)/(Rb+Zb_2);
32 disp(Zi_2,"Input Impedance(ohms) :");
33
34 Zo_2 = (Re*re)/(Re+re);
35 disp(Zo_2,"Output Impedance(ohms) :");
36
37 Av_2 = (((Beta+1)*Re)/Zb_2)/(1+(Re/ro_2));
38 disp(Av_2,"Voltage gain :");
```

Scilab code Exa 5.11 Network characteristics determination

```
1 clear; clc; close;
3 \text{ Vee} = 2;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
6 Re = 1*(10^{(3)});
7 \text{ Rc} = 5*(10^{(3)});
8 \text{ ro} = 1*(10^{(6)});
9 \text{ alpha} = 0.98;
10
11 Ie = (Vee-Vbe)/Re;
12 \text{ re} = Vt/Ie;
13 disp(re, "Value of diode resistive element(re):");
14
15 Zi = (Re*re)/(Re+re);
16 disp(Zi, "Input Impedance(Zi):");
17
18 \text{ Zo} = \text{Rc};
19 disp(Zo, "Output Impedance(Zo):");
```

```
20
21 Av = Rc/re;
22 disp(Av, "Voltage gain(Av) :");
23
24 Ai = -alpha;
25 disp(Ai, "Current gain(Ai) :");
```

Scilab code Exa 5.12 Network characteristics determination

```
1 clear; clc; close;
 3 \ \text{Vcc} = 9;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
 6 \text{ Rf} = 180*(10^{(3)});
 7 \text{ Rc} = 2.7*(10^{(3)});
8 \text{ Beta} = 200;
9 \text{ ro} = \% \text{inf};
10
11 disp("Values at ro=infinity are :-");
12 Ib = (Vcc-Vbe)/(Rf+(Beta*Rc));
13 Ie = (Beta+1)*Ib;
14 \text{ re} = Vt/Ie;
15 disp(re, "Value of diode resistive element(re):");
16
17 Zi = re/((1/Beta) + (Rc/Rf));
18 disp(Zi, "Input Impedance(Zi):");
19
20 Zo = (Rc*Rf)/(Rc+Rf);
21 disp(Zo, "Output Impedance(Zo):");
22
23 \text{ Av} = -\text{Rc/re};
24 disp(Av, "Voltage gain(Av):");
25 disp("Values at ro=25kohm are :- ");
26 \text{ ro}_2 = 20*(10^{(3)});
```

Scilab code Exa 5.13 Network characteristics determination

```
1 clear; clc; close;
2
3 \text{ Vcc} = 12;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
6 \text{ Rc} = 3*(10^{(3)});
7 \text{ Rf1} = 120*(10^{(3)});
8 \text{ Rf2} = 68*(10^{3});
9 Rf = Rf1 + Rf2;
10 ro = 30*(10^{(3)});
11 Beta = 140;
12
13 Ib = (Vcc-Vbe)/(Rf+Beta*Rc);
14 Ie = (1+Beta)*Ib;
15 re = Vt/Ie;
16 disp(re, "Value of diode resistive element(re):");
17
18 Zb = Beta*re;
19 Zi = (Rf1*Zb)/(Rf1+Zb);
20 disp(Zi, "Input Impedance(Zi):");
21
```

```
22 Zo = (Rc*Rf2)/(Rc+Rf2);
23 disp(Zo, "Output Impedance(Zo) :");
24
25 Av = -[(Rf2*Rc)/(Rf2+Rc)]/re;
26 disp(Av, "Voltage gain(Av) :");
```

Scilab code Exa 5.14 Fixed Bias Network characteristics

```
1 clear; clc; close;
3 \text{ Vcc} = 15;
4 \text{ Vbe} = 0.7;
5 \text{ Vt} = 26*(10^{(-3)});
6 \text{ Rb} = 470*(10^{3});
7 \text{ Rc} = 4.7*(10^{(3)});
8 R1 = 4.7*(10^{(3)});
9 \text{ Rs} = 0.3*(10^{(3)});
10 ro = 50*(10^{(3)});
11 Beta = 100;
12
13
14 Ib = (Vcc-Vbe)/Rb;
15 Ie = (Beta+1)*Ib;
16 \text{ re} = Vt/Ie;
17 disp(re, "Value of diode resistive element(re):")
18
19 Zb = Beta*re;
20 \text{ Zi_prev} = (Rb*Zb)/(Rb+Zb);
21 disp(Zi_prev, "Input Impedance(Zi):");
22
23 \text{ Zo_prev} = \text{Rc};
24 disp(Zo_prev, "Output Impedance(Zo):");
25
26 \text{ Av_prev} = -\text{Rc/re};
27 disp(Av_prev, "Voltage gain(Av) with no-load :");
```

```
28
29
30
31 Av = -[(Rc*R1)/(Rc+R1)]/re;
32 disp(Av, "Voltage gain(Av) with 4.7kohm load :");
33
34 Avs = (Zi_prev/(Zi_prev+Rs))*Av;
35 disp(Avs, "Voltage gain(Avs) from source to output with 4.7kohm load :");
36 disp(Av_prev, "Voltage gain(Av) with no-load :");
```

Scilab code Exa 5.15 Av and Avs

```
1 clear; clc; close;
2
3 R1 = 4.7*(10^(3));
4 Rs = 0.3*(10^(3));
5 Ro = 4.7*(10^(3));
6 Zi = 846.1;
7 Zo = 4.7*(10^(3));
8 AvNL = -555.55;     //gain under no-load condition
9
10 Av = {R1/(R1+Ro)}*AvNL;
11 disp(Av,"Voltage gain(Av) with 4.7kohm load :");
12
13 Avs = (Zi/(Zi+Rs))*(R1/(R1+Ro))*AvNL;
14 disp(Avs,"Voltage gain(Avs) from source to output with 4.7kohm load :");
```

Scilab code Exa 5.16 Network characteristics determination

```
1 clear; clc; close;
2
```

```
3 \text{ Zi} = 4*(10^{(3)});
4 \text{ Zo} = 2*(10^{(3)});
5 \text{ Rs} = 0.2*(10^{(3)});
6 \text{ AvNL} = -480;
7 disp(AvNL, "Voltage gain (Av) with no-load:")
9 R1 = 1.2*(10^{(3)});
10 Av = \{R1/(R1+Zo)\}*AvNL;
11 disp(Av, "Voltage gain(Av) with 1.2kohm load:");
12
13 R1 = 5.6*(10^{3});
14 Av = \{R1/(R1+Zo)\}*AvNL;
15 disp(Av, "Voltage gain(Av) with 5.6kohm load:");
16
17 R1 = 1.2*(10^{(3)});
18 Avs = {Zi/(Zi+Rs)}*{R1/(R1+Zo)}*AvNL;
19 disp(Avs, "Voltage gain (Avs) from source to output
      with 1.2 kohm load :");
20
21 R1 = 5.6*(10^{(3)});
22 \quad Ai = -Av*(Zi/R1);
23 disp(Ai, "Current gain with 5.6 kohm load:");
```

Scilab code Exa 5.17 Network characteristics determination

```
1 clear; clc; close;
2
3 Rs = 1*(10^(3));
4 Rl = 8.2*(10^(3));
5
6 Zi1 = 10*(10^(3));
7 Zo1 = 12;
8 AvNL1 = 1;
9 Vi1 = rand();
10
```

```
11 \text{ Zi2} = 26;
12 \text{ Zo2} = 5.1*(10^{(3)});
13 \text{ AvNL2} = 240;
14 \text{ Vi2} = \text{rand}();
15
16 \text{ Vol} = (Zi2/(Zi2+Zo1))*AvNL1*Vi1;
17 \text{ Av1} = \text{Vo1/Vi1};
18 disp(Av1, "Voltage gain(Av1) for first stage:");
19
20 Vo2 = (R1/(R1+Zo2))*AvNL2*Vi2;
21 \text{ Av2} = \text{Vo2/Vi2};
22 disp(Av2, "Voltage gain(Av2) for second stage:");
23
24 \text{ Avt} = \text{Av1} * \text{Av2};
25 disp(Avt, "Total Voltage gain(Avt):");
26
27 \text{ Avs} = \{Zi1/(Zi1+Rs)\}*Avt;
28 disp(Avs, "Total Voltage gain(Avs) from source:");
29
30 Ait = -Avt*(Zi1/R1);
31 disp(Ait, "Total current gain(Ai):");
32
33 \text{ Vs} = \text{rand}();
34 \text{ Vi} = \{\text{Zi2}/(\text{Zi2+Rs})\}*\text{Vs};
35 \text{ Avs} = (Vi/Vs)*Av2;
36 disp(Avs, "Total gain if emitter-follower
       configuration removed :");
```

Scilab code Exa 5.18 Network characteristics determination

```
1 clear; clc; close;
2
3 Vi = 25*(10^(-6));
4 Beta = 200;
5 R1 = 15*(10^(3));
```

```
6 R2 = 4.7*(10^{3});
7 \text{ Rc} = 2.2*(10^{(3)});
8 \text{ Zo} = \text{Rc};
9 Re = 1*(10^{(3)});
10
11 \text{ Vb} = 4.7;
12 Ve = 4;
13 \text{ Vc} = 11;
14 Vt = 26*(10^-(3));
15 Ie = 4*(10^{(-3)});
16
17 re = Vt/Ie;
18 Zb = Beta*re;
19 Zi2 = (R1*R2*Zb)/(R1*R2 + R2*Zb + Zb*R1);
20 \text{ Av1} = -\{(\text{Rc}*\text{Zi2})/(\text{Rc}+\text{Zi2})\}/\text{re};
21 \text{ AvNL2} = -Rc/re;
22 \text{ AvT_NL} = \text{Av1*AvNL2};
23 disp(AvT_NL, "No-load voltage gain(Avt(NL)):");
24
25 \text{ Vo } = \text{AvT}_{\text{NL}} * \text{Vi};
26 disp(Vo, "Voltage gain(Vo):");
27
28 R1 = 10*(10^{(3)});
29 Avt = \{R1/(R1+Zo)\}*AvT_NL;
30 disp(Avt, "Voltage gain(Avt) when 10kohm load applied
        to stage 2:");
31
32 Zi1 = Zi2;
33 disp(Zi1, "input impedance of first stage(Zi1):");
34
35 \text{ Zo2} = \text{Rc};
36 disp(Zo2, "Output impedance of second stage(Vo2):");
```

Scilab code Exa 5.19 No load voltage gain

```
1 clear; clc; close;
 3 \text{ Vcc} = 18;
 4 Vt = 26*(10^{(-3)});
 5 \text{ Beta} = 200;
 7 \text{ Vb1} = 4.9;
 8 \text{ Vb2} = 10.8;
 9 Ic1 = 3.8*(10^{(-3)});
10 Ic2 = 3.8*(10^-(3));
11 Ie = Ic1;
12 Re1 = 1.1*(10^{(3)});
13 Rc2 = 1.8*(10^{(3)});
14
15
16 \text{ re} = Vt/Ie;
17 \text{ Rc1} = \text{re};
18 \text{ Av1} = -\text{Rc1/re};
19
20 \text{ Av2} = \text{Rc2/re};
21 \text{ Avt} = \text{Av1}*\text{Av2};
22 disp(Avt, "no-load voltage gain(Avt):");
```

Scilab code Exa 5.20 Dc bias voltage and current

```
1 clear; clc; close;
2
3 Vcc = 18;
4 Vbe = 1.6;
5 Rb = 3.3*(10^(6));
6 Re = 390;
7 Beta = 8000;
8
9 Ib = (Vcc-Vbe)/(Rb+(Beta*Re));
10 disp(Ib, "Ib :");
```

```
11  Ie = (Beta+1)*Ib;
12  disp(Ie,"Ie :");
13  Ve = Ie*Re;
14  disp(Ve,"Ve :");
15  Vb = Ve+Vbe;
16  disp(Vb,"Vb :");
17  disp(Vcc,"Vc :");
```

Scilab code Exa 5.21 Input impedance

```
1 clear; clc; close;
2
3 ri = 5*(10^(3));
4 Rb = 3.3*(10^(6));
5 Beta = 8000;
6 Re = 390;
7
8 Zb = ri + (Beta*Re);
9 Zi = (Rb*Zb)/(Rb+Zb);
10 disp(Zi, "input impedance(Zi) :");
```

Scilab code Exa 5.22 Ac current gain

```
1 clear; clc; close;
2
3 Rb = 3.3*(10^(6));
4 Beta = 8000;
5 Re = 390;
6
7 Ai = (Beta*Rb)/(Rb+Beta*Re);
8 disp(Ai, "ac current gain(Ai):");
```

Scilab code Exa 5.23 Output impedance

```
1 clear; clc; close;
2
3 Beta = 8000;
4 Re = 390;
5 ri = 5*(10^(3));
6
7 x = ri/Beta;
8 Zo = (Re*ri*x)/(Re*ri+ri*x+x*Re);
9 disp(Zo, "output impedance(Zo) :");
```

Scilab code Exa 5.24 Ac voltage gain

```
1 clear; clc; close;
2
3 Beta = 8000;
4 Re = 390;
5 ri = 5*(10^(3));
6
7 Av = (Re+(Beta*Re))/(ri+(Re+Beta*Re));
8 disp(Av, "ac voltage gain(Av) :");
```

Scilab code Exa 5.25 Dc bias voltage and current

```
1 clear; clc; close;
2
3 Vcc = 18;
4 Veb1 = 0.7;
```

```
5 \text{ Rb} = 2*(10^{(6)});
6 \text{ Rc} = 75;
7 \text{ Beta1} = 140;
8 \text{ Beta2} = 180;
10 Ib1 = (Vcc-Veb1)/(Rb+(Beta1*Beta2*Rc));
11  Ic1 = Beta1*Ib1;
12 	ext{ Ib2} = 	ext{Ic1};
13 disp(Ib2,"Ib :");
14 \text{ Ic2} = \text{Beta2*Ib2};
15 disp(Ic2,"Ic :");
16 \text{ Ie1} = \text{Ic1-Ib1};
17 Ic = Ie1+Ic2;
18 disp(Ic," Ic(Total) :");
19 Vo_dc = Vcc-Ic*Rc;
20 disp(Vo_dc,"Dc voltage(Ouput):");
21 Vi_dc = Vo_dc-Veb1;
22 disp(Vi_dc,"Dc voltage (Input):");
```

Scilab code Exa 5.26 Ac circuit values of Zi Zo Ai Av

```
1 clear; clc; close;
2
3 Vcc = 18;
4 Veb1 = 0.7;
5 Rb = 2*(10^(6));
6 Rc = 75;
7 Beta1 = 140;
8 Beta2 = 180;
9 ri1 = 3*(10^(3));
10
11 Zb = ri1+(Beta1*Beta2*Rc);
12 Zi = (Rb*Zb)/(Rb+Zb);
13 disp(Zi,"Input impedance(Zi):");
14
```

```
15 Ai = (Beta1*Beta2)*(Rb/(Rb+Zi));
16 disp(Ai, "Current gain(Ai):");
17
18 Zo = ri1/(Beta1*Beta2);
19 disp(Zo, "Output impedance(Zo):");
20 Av = (Beta1*Beta2*Rc)/((Beta1*Beta2*Rc)+ri1);
21 disp(Av, "volatge gain(Av):");
```

Scilab code Exa 5.27 Mirrored Current

```
1 clear; clc; close;
2
3 Vcc = 12;
4 Vbe = 0.7;
5 Rx = 1.1*(10^(3));
6
7 Ix = (Vcc-Vbe)/Rx;
6 disp(Ix, "Mirrored current :");
```

Scilab code Exa 5.28 Current through transistors

```
1 clear; clc; close;
2
3 Vcc = 6;
4 Vbe = 0.7;
5 Rx = 1.3*(10^(3));
6
7 Ix = (Vcc-Vbe)/Rx;
8 disp(Ix, "Current through each transistor:");
```

Scilab code Exa 5.29 Constant current

```
1 clear; clc; close;
2
3 Vee = 20;
4 Vbe = 0.7;
5 R1 = 5.1*(10^(3));
6 R2 = R1;
7 Re = 2.2*(10^(3));
8
9 Vb = (R1/(R1+R2))*(-Vee);
10 Ve = Vb - Vbe;
11 Ie = (Ve-(-Vee))/Re;
12 disp(Ie, "Constant current :");
```

Scilab code Exa 5.30 Constant current

```
1 clear; clc; close;
2
3 Vee = 18;
4 Vz = 6.2;
5 Vbe = 0.7;
6 Re = 1.8*(10^(3));
7
8 I = (Vz-Vbe)/Re;
9 disp(I, "Constant current :");
```

Scilab code Exa 5.31 Network characteristics determination

```
1 clear; clc; close;
2
3 Vcc = 10;
4 Vbe = 0.7;
```

```
5 hfe = 120;
6 hie = 1.175*(10^(3));
7 hoe = 20*(10^(-6));
8 Rb = 470*(10^(3));
9 Rc = 2.7*(10^(3));
10
11 Zi = (Rb*hie)/(Rb+hie);
12 disp(Zi, "Input impedance(Zi) :");
13 ro = 1/hoe;
14 Zo = (ro*Rc)/(ro+Rc);
15 disp(Zo, "Output impedance(Zo) :");
16 Av = -hfe*Zo/hie;
17 disp(Av, "Voltage gain(Av) :");
18 Ai = hfe;
19 disp(Ai, "Current gain(Ai) :");
```

Scilab code Exa 5.32 Network characteristics determination

```
1 clear; clc; close;
2
3 \text{ hfb} = -0.99;
4 \text{ hib} = 14.3;
5 \text{ hob} = 0.5*(10^{(-6)});
6 Re = 2.2*(10^{(3)});
7 \text{ Rc} = 3.3*(10^{(3)});
9 Zi = (Re*hib)/(Re+hib);
10 disp(Zi, "Input impedance(Zi):");
11 ro=1/hob;
12 Zo = (ro*Rc)/(ro+Rc);
13 disp(Zo, "Output impedance(Zo):");
14 \text{ Av} = -\text{hfb*Rc/hib};
15 disp(Av, "Voltage gain(Av):");
16 Ai = hfb;
17 disp(Ai, "Current gain(Ai):");
```

Scilab code Exa 5.33 Determing parameters using hybrid equivalent model

```
1 clear; clc; close;
3 \text{ Vcc} = 8;
4 \text{ hfe} = 110;
5 hie = 1.6*(10^{(3)});
6 hoe = 20*(10^{(-6)});
7 hre = 2*(10^{-4});
8 Rl = 4.7*(10^{3});
9 Rc = 4.7*(10^{(3)});
10 Rb = 470*(10^{3});
11 Rs = 1*(10^{(3)});
12
13 Zi = hie - (hfe*hre*R1)/(1+hoe*R1);
14 disp(Zi, "Input impedance using hybrid equivalent:")
15 disp(hie, "Input impedance using approximate model:"
16 \text{ Zi_b} = (\text{Rb*hie})/(\text{Rb+hie});
17 disp(Zi_b, "Input impedance including Rb:");
18
19 Av = -hfe*Rl/(hie+(hie*hoe-hfe*hre)*Rl);
20 disp(Av, "Voltage gain using hybrid equivalent:");
21 Av_approx = -hfe*Rl/hie;
22 disp(Av_approx," Voltage gain using approximate model
       :");
23
24 Ai = hfe/(1+hoe*R1);
25 disp(Ai, "Current gain using hybrid equivalent:");
26 Ai_approx = hfe;
27 disp(Ai_approx, "Current gain using approximate model
       :");
28
```

```
29 Zo = 1/[hoe-(hfe*hre)/(hie+Rs)];
30 disp(Zo,"Output impedance using hybrid equivalent :");
31 Zo_approx = 1/hoe;
32 disp(Zo_approx,"Output impedance using approximate model :");
33 Zo_rc = (Rc*Zo)/(Rc+Zo);
34 disp(Zo_rc,"Output impedance including Rc & using hybrid equivalent :");
35 Zo_rc_approx = Rc;
36 disp(Zo_rc_approx,"Output impedance including Rc & using approximate model :");
```

Scilab code Exa 5.34 Determing parameters using hybrid equivalent model

```
1 clear; clc; close;
2
3 \text{ hfe} = 110;
4 hie = 1.6*(10^{(3)});
5 hoe = 20*(10^{(-6)});
6 hre = 2*(10^{-4});
7 R1 = 2.2*(10^{3});
8 \text{ Rc} = 2.2*(10^{(3)});
9 R1 = 3*(10^{(3)});
10 Rs = 1*(10^{(3)});
11 disp ("Common base hybrid parameters are as follows:
       ")
12 \text{ hib} = \text{hie}/(1+\text{hfe});
13 disp(hib, "hib :");
14 \text{ hrb} = (\text{hie*hoe})/(1+\text{hfe})-\text{hre};
15 disp(hrb, "hrb :");
16 hfb = -hfe/(1+hfe);
17 disp(hfb, "hfb :");
18 \text{ hob} = \text{hoe}/(1+\text{hfe});
19 disp(hob, "hob :");
```

```
20
21 Zi = hib - (hfb*hrb*Rl)/(1+hob*Rl);
22 disp(Zi, "Input impedance using hybrid equivalent:")
23 disp(hib, "Input impedance using approximate model:"
24 \text{ Zi}_b = (R1*hib)/(R1+hib);
25 disp(Zi_b,"Input impedance including Rb:");
26
27 Ai = hfb/(1+hob*Rl);
28 disp(Ai, "Current gain using hybrid equivalent:");
29 Ai_approx = hfb;
30 disp(Ai_approx, "Current gain using approximate model
       :");
31
32 \text{ Av} = -\text{hfb*Rl/(hib+(hib*hob-hfb*hrb)*Rl)};
33 disp(Av, "Voltage gain using hybrid equivalent:");
34 Av_approx = -hfb*Rl/hib;
35 disp(Av_approx," Voltage gain using approximate model
       :");
36
37 Zo = 1/[hob-(hfb*hrb)/(hib+Rs)];
38 disp(Zo, "Output impedance using hybrid equivalent:"
      );
39 \text{ Zo\_approx} = 1/\text{hob};
40 disp(Zo_approx, "Output impedance using approximate
      model :");
41 \text{ Zo\_rc} = (\text{Rc}*\text{Zo})/(\text{Rc}+\text{Zo});
42 disp(Zo_rc,"Output impedance including Rc & using
      hybrid equivalent :");
43 \text{ Zo_rc_approx} = \text{Rc};
44 disp(Zo_rc_approx,"Output impedance including Rc &
      using approximate model :");
```

Chapter 6

Field Effect Transistor

Scilab code Exa 6.1 Sketching the transfer curve

```
1 clear; clc; close;
3 \text{ Idss} = 12;
4 \text{ Vp} = -4;
5 // point 1
6 \text{ Vgs1} = \text{Vp/2};
7 \text{ Id1} = \text{Idss}/4;
8 // point 2
9 \text{ Id2} = \text{Idss/2};
10 Vgs2 = 0.3*Vp;
11
12
13 \times = [-4 -2 -1.2 0];
14 y = [0 3 6 12];
15 // \operatorname{plot} 2d(x,y);
16 yi=smooth([x;y],0.1);
17 \ a = gca();
18 a.thickness = 2;
19 a.y_location = 'right';
```


Figure 6.1: Sketching the transfer curve

Figure 6.2: Sketching the transfer curve

```
20 a.x_label.text = 'Vgs';
21 a.y_label.text = 'Id(mA)';
22 plot2d(yi(1,:)',yi(2,:)',[3]);
```

Scilab code Exa 6.2 Sketching the transfer curve

```
1 clear; clc; close;
2
3 Idss = 8;
4 Vp = 4;
5 //point 1
```

```
6 \text{ Vgs1} = \text{Vp/2};
7 \text{ Id1} = \text{Idss}/4;
8 //point 2
9 Id2 = Idss/2;
10 Vgs2 = 0.3*Vp;
11
12
13 \times = [0 \ 1.2 \ 2 \ 4];
14 y = [8 4 2 0];
15 yi=smooth([x;y],0.1);
16 \ a = gca();
17 a.thickness = 2;
18 a.y_location = 'left';
19 a.x_label.text = 'Vgs';
20 a.y_label.text = 'Id(mA)';
21 plot2d(yi(1,:)',yi(2,:)',[3]);
```

Scilab code Exa 6.3 Sketching the transfer curve

```
1 clear; clc; close;
2
3 Idss = 10;
4 Vp = -4;
5 //point 1
6 Vgs1 = Vp/2;
7 Id1 = Idss/4;
8 //point 2
9 Id2 = Idss/2;
10 Vgs2 = 0.3*Vp;
11 Vgs3 = 1;
12 Id = Idss(1-Vgs3/Vp)^2;
13 x = [-4 -2 -1.2 1];
14 y = [0 2.5 5 15.63];
15
16 yi=smooth([x;y],0.1);
```

```
17 a = gca();
18 a.thickness = 2;
19 a.y_location = 'middle';
20 a.x_label.text = 'Vgs';
21 a.y_label.text = 'Id(mA)';
22 plot2d(yi(1,:)',yi(2,:)',[3]);
```

Scilab code Exa 6.4 Sketching the transfer curve and finding value of k

```
1 clear; clc; close;
3 \text{ Id\_on} = 3*10^{(-3)};
4 \text{ Vgs\_on} = 10;
5 \text{ Vgs\_th} = 3;
6 \text{ Vt} = 3;
8 k = Id_on/(Vgs_on-Vgs_th)^2;
9 disp(k, 'resulting value of k(A/V^2) is: ');
10
11 \text{ Vgs1} = 5;
12 Id1 = k*(Vgs1-Vt)^2;
13 \text{ Vgs2} = 8;
14 Id2 = k*(Vgs2-Vt)^2;
15 \text{ Vgs3} = 10;
16 \text{ Id3} = k*(Vgs3-Vt)^2;
17 \text{ Vgs4} = 12;
18 Id4 = k*(Vgs4-Vt)^2;
19 \text{ Vgs5} = 14;
20 Id5 = k*(Vgs5-Vt)^2;
21
22 x = [Vt Vgs1 Vgs2 Vgs3 Vgs4 Vgs5];
23 y = [0 Id1 Id2 Id3 Id4 Id5];
24 yi=smooth([x;y],0.1);
25 \ a = gca();
26 a.thickness = 2;
```

```
27 a.y_location = 'left';

28 a.x_label.text = 'Vgs';

29 a.y_label.text = 'Id(A)';

30 plot2d(yi(1,:)',yi(2,:)',[3]);
```

Chapter 7

FET Biasing

Scilab code Exa 7.1 Network characteristics determination

```
1 clear; clc; close;
 2
3 \text{ Vgg} = 2;
4 Idss = 10*10^{(-3)};
5 \text{ Vp} = -4;
6 \text{ Vdd} = 16;
7 \text{ Rd} = 2*10^{(3)};
9 \text{ Vgs} = -\text{Vgg};
10 Id = Idss*(1-(Vgs/Vp))^2;
11 Vds = Vdd - Id*Rd;
12 \text{ Vd} = \text{Vds};
13 \text{ Vg = Vgs};
14 \ Vs = 0;
15
16 disp(Vgs, 'Vgsq(Volts) = ');
17 disp(Id, 'Idq(Amperes) = ');
18 \operatorname{disp}(Vds, 'Vds(Volts) = ');
19 \operatorname{disp}(Vd, 'Vd(Volts) = ');
20 disp(Vg, Vg(Volts) = V);
21 disp(Vs, 'Vs(Volts) = ');
```


Figure 7.1: Network characteristics determination

Scilab code Exa 7.2 Network characteristics determination

```
1 clear; clc; close;
2
3 Idss = 8*10^(-3);
4 Vp = -6;
5 Vdd = 20;
6 Rd = 3.3*10^(3);
7 Rs = 1*10^(3);
8
9 Vgs1 = Vp;
```

```
10 \text{ Id1} = 0;
11 Vgs2 = Vp/2;
12 \text{ Id2} = \text{Idss/4};
13 \text{ Vgs3} = 0;
14 \text{ Id3} = \text{Idss};
15 x = [Vgs1 Vgs2 Vgs3];
16 \ y = [Id1 \ Id2 \ Id3];
17
18 yi = smooth([x;y],0.1);
19 a = gca();
20 a.thickness = 2;
21 a.y_location = 'right';
22 a.x_label.text = 'Vgs';
23 a.y_label.text = 'Id(mA)';
24 a.title.text = 'Device characteristics JFET';
25 \text{ a.grid} = [1 \ 1];
26 plot2d(yi(1,:)',yi(2,:)',[3]);
27
28
29 \text{ Vgs1} = 0;
30 \text{ Id1} = 0;
31 \text{ Id2} = 4*10^{(-3)};
32 \text{ Vgs2} = -\text{Id2*Rs};
33 \text{ Id3} = 8*10^{(-3)};
34 \text{ Vgs3} = -\text{Id3*Rs};
35 x = [Vgs1 Vgs2 Vgs3];
36 y = [Id1 Id2 Id3];
37 \text{ plot2d}(x,y);
38
39 \text{ Vgsq} = -2.6;
40 disp(Vgsq, 'Q-point value of Vgs(found after
        interpolation) is :');
41
42 \text{ Idq} = 2.6*10^{(-3)};
43 \text{ Vds} = \text{Vdd} - \text{Idq}*(\text{Rs}+\text{Rd});
44 \text{ Vs} = Idq*Rs;
45 \text{ Vg} = 0;
46 \text{ Vd} = \text{Vds} + \text{Vs};
```


Figure 7.2: Q point for network

```
47
48 disp(Idq, 'Idq(Amperes) = ');
49 disp(Vds, 'Vds(Volts) = ');
50 disp(Vd, 'Vd(Volts) = ');
51 disp(Vg, 'Vg(Volts) = ');
52 disp(Vs, 'Vs(Volts) = ');
```

Scilab code Exa 7.3 Q point for network

```
1 clear; clc; close;
2
```

```
3 \text{ Rs} = 100;
 4 \text{ Idss} = 8*10^{(-3)};
 5 \text{ Vp} = -6;
 6 \text{ Vdd} = 20;
 8 \text{ Vgs1} = \text{Vp};
9 \text{ Id1} = 0;
10 \text{ Vgs2} = \text{Vp/2};
11 \text{ Id2} = \text{Idss/4};
12 \text{ Vgs3} = 0;
13 \text{ Id3} = \text{Idss};
14 x = [Vgs1 Vgs2 Vgs3];
15 y = [Id1 Id2 Id3];
16
17 yi=smooth([x;y],0.1);
18 \ a = gca();
19 a.thickness = 2;
20 a.y_location = 'right';
21 a.x_label.text = 'Vgs';
22 a.y_label.text = 'Id(mA)';
23 a.title.text = 'Device characteristics JFET';
24 \text{ a.grid} = [1 1];
25
26 plot2d(yi(1,:)',yi(2,:)',[3]);
27
28
29 \text{ Vgs1} = 0;
30 \text{ Id1} = 0;
31 \text{ Id2} = 4*10^{(-3)};
32 \text{ Vgs2} = -\text{Id2*Rs};
33 \text{ Id3} = 8*10^{(-3)};
34 \text{ Vgs3} = -\text{Id3*Rs};
35 \times = [Vgs1 Vgs2 Vgs3];
36 \text{ y} = [Id1 \ Id2 \ Id3];
37 \text{ plot2d}(x,y);
38
39
40
```

```
41
42 \text{ Idq} = 6.4*10^{(-3)};
43 \text{ Vgsq} = -0.64;
44 disp('From the figure, for part a i.e Rs=100Kohm, we
        get ');
45 \operatorname{disp}(\operatorname{Idq}, \operatorname{Idq}(\operatorname{Amperes}) = ');
46 disp(Vgsq, 'Vgsq(Volts) = ');
47
48 // part b
49
50 \text{ Rs} = 10*10^{(3)};
51 \text{ Idss} = 8*10^{(-3)};
52 \text{ Vp} = -6;
53 \text{ Vdd} = 20;
54
55
56
57 \text{ Vgs1} = 0;
58 \text{ Id1} = 0;
59 \text{ Id2} = 4*10^{(-3)};
60 \text{ Vgs2} = -\text{Id2*Rs};
61 \text{ Id3} = 8*10^{(-3)};
62 \text{ Vgs3} = -\text{Id3*Rs};
63 \times = [Vgs1 Vgs2 Vgs3];
64 y = [Id1 Id2 Id3];
65 \text{ plot2d}(x,y);
66 \text{ a.data\_bounds} = [-8 \ 0; 0 \ 8*10^(-3)];
67 \text{ Idq} = 0.46*10^{(-3)};
68 \text{ Vgsq} = -4.6;
69 disp('From the figure, for part b i.e Rs=10Kohm, we
        get ')
70 \operatorname{disp}(\operatorname{Idq}, \operatorname{Idq}(\operatorname{Amperes}) = ');
71 disp(Vgsq, 'Vgsq(Volts) = ');
```


Figure 7.3: Network characteristics determination

Scilab code Exa 7.4 Network characteristics determination

```
1 clear; clc; close;
2
3 \text{ Idss} = 12*10^{(-3)};
4 \text{ Vp} = -6;
5 \text{ Vdd} = 12;
6 \text{ Rd} = 1.5*10^{(3)};
7 \text{ Rs} = 680;
9 \text{ Vgs1} = \text{Vp};
10 \text{ Id1 = 0};
11 Vgs2 = Vp/2;
12 \text{ Id2} = \text{Idss/4};
13 \text{ Vgs3} = 0;
14 \text{ Id3} = \text{Idss};
15 x = [Vgs1 Vgs2 Vgs3];
16 y = [Id1 Id2 Id3];
17
18 yi=smooth([x;y],0.1);
19 a = gca();
20 a.thickness = 2;
21 a.y_location = 'right';
22 a.x_label.text = 'Vgs';
23 a.y_label.text = 'Id(mA)';
24 a.title.text = 'Device characteristics JFET';
25 \text{ a.grid} = [1 \ 1];
26 plot2d(yi(1,:)',yi(2,:)',[3]);
27
28
29 \text{ Vgs1} = 0;
30 \text{ Id1} = 0;
31 \text{ Id2} = 4*10^{(-3)};
32 \text{ Vgs2} = -\text{Id2*Rs};
33 \text{ Id3} = 8*10^{(-3)};
34 \text{ Vgs3} = -\text{Id3*Rs};
35 x = [Vgs1 Vgs2 Vgs3];
36 y = [Id1 Id2 Id3];
```

```
37 plot2d(x,y);
38
39
40 \text{ Vgsq} = -2.6;
41 disp(Vgsq, 'Q-point value of Vgs(found after
        interpolation) is :');
42
43 \text{ Idq} = 3.8*10^{(-3)};
44 \text{ Vd} = \text{Vdd} - \text{Idq}*\text{Rd};
45 \text{ Vg} = 0;
46 \text{ Vs} = Idq*Rs;
47 \text{ Vds} = \text{Vd-Vs};
48
49 disp(Idq, 'Idq(Amperes) = ');
50 disp(Vds, 'Vds(Volts) = ');
51 disp(Vd, 'Vd(Volts) = ');
52 \text{ disp(Vg, 'Vg(Volts) = ');}
53 \text{ disp(Vs, 'Vs(Volts) = ');}
54 \operatorname{disp}(Vds, 'Vds(Volts) = ');
```

Scilab code Exa 7.5 Network characteristics determination

```
1 clear; clc; close;
2
3 Idss = 8*10^(-3);
4 Vp = -4;
5 Vdd = 16;
6 Rd = 2.4*10^(3);
7 Rs = 1.5*10^(3);
8 R1 = 2.1*10^(6);
9 R2 = 0.27*10^(6);
10 //finding Vg
11 Vg = R2*Vdd/(R1+R2);
```


Figure 7.4: Network characteristics determination

```
12
13 //plotting transfer curve
14
15 \text{ Vgs1} = \text{Vp};
16 \text{ Id1} = 0;
17 Vgs2 = Vp/2;
18 \text{ Id2} = \text{Idss/4};
19 \ Vgs3 = 0;
20 \text{ Id3} = \text{Idss};
21 x = [Vgs1 Vgs2 Vgs3];
22 y = [Id1 Id2 Id3];
23
24 yi = smooth([x;y],0.1);
25 \ a = gca();
26 a.thickness = 2;
27 a.y_location = 'right';
28 a.x_label.text = 'Vgs';
29 a.y_label.text = 'Id(mA)';
30 a.title.text = 'Q-Point determination';
31 \text{ a.grid} = [1 1];
32 plot2d(yi(1,:)',yi(2,:)',[3]);
33
34
35 \text{ Id1} = 0;
36 \text{ Vgs1} = \text{Vg-Id1*Rs};
37 \text{ Id2} = 4*10^{(-3)};
38 \text{ Vgs2} = \text{Vg-Id2*Rs};
39 \text{ Id3} = 8*10^{(-3)};
40 \text{ Vgs3} = \text{Vg-Id3*Rs};
41 x = [Vgs1 Vgs2 Vgs3];
42 y = [Id1 Id2 Id3];
43 \operatorname{plot2d}(x,y);
44 a.data_bounds = [-4 \ 0; 2 \ 8*10^{(-3)}];
45
46
47 \text{ Vgsq} = -1.8;
48 disp(Vgsq, 'Q-point value of Vgs(found after
       interpolation) is :');
```


Figure 7.5: Network characteristics determination

```
49
50  Idq = 2.4*10^(-3);
51
52  Vd = Vdd-Idq*Rd;
53  Vs = Idq*Rs;
54  Vds = Vdd - Idq*(Rd+Rs);
55
56  disp(Idq, 'Idq(Amperes) = ');
57  disp(Vds, 'Vds(Volts) = ');
58  disp(Vd, 'Vd(Volts) = ');
59  disp(Vs, 'Vs(Volts) = ');
60  disp(Vds, 'Vds(Volts) = ');
```

Scilab code Exa 7.6 Network characteristics determination

```
1 clear; clc; close;
 3 \text{ Idss} = 9*10^{(-3)};
4 \text{ Vp} = -3;
5 \text{ Vdd} = 20;
6 \text{ Vss} = 10;
7 \text{ Rd} = 1.8*10^{(3)};
8 \text{ Rs} = 1.5*10^{(3)};
9
10
11 \text{ Vgs1} = \text{Vp};
12 \text{ Id1} = 0;
13 Vgs2 = Vp/2;
14 \text{ Id2} = \text{Idss/4};
15 \text{ Vgs3} = 0;
16 \text{ Id3} = \text{Idss};
17 x = [Vgs1 Vgs2 Vgs3];
18 y = [Id1 Id2 Id3];
19
20 yi=smooth([x;y],0.1);
21 \ a = gca();
22 a.thickness = 2;
23 a.y_location = 'right';
24 \text{ a.x\_label.text} = \text{'Vgs'};
25 a.y_label.text = 'Id(mA)';
26 a.title.text = 'Q-point for network';
27 \text{ a.grid} = [1 \ 1];
28 plot2d(yi(1,:)',yi(2,:)',[3]);
29
30
31
32 \text{ Id1} = 0;
```

```
33 \text{ Vgs1} = \text{Vss-Id1*Rs};
34 \text{ Id2} = 4*10^{(-3)};
35 \text{ Vgs2} = \text{Vss-Id2*Rs};
36 \text{ Id3} = 8*10^{(-3)};
37 \text{ Vgs3} = \text{Vss-Id3*Rs};
38 \times = [Vgs1 Vgs2 Vgs3];
39 y = [Id1 Id2 Id3];
40 \operatorname{plot2d}(x,y);
41 \text{ a.data\_bounds} = [-3 \ 0;10 \ 9*10^(-3)];
42
43
44
45 \text{ Vgsq} = -0.35;
46 disp(Vgsq, 'Q-point value of Vgs(found after
        interpolation) is :');
47
48 \text{ Idq} = 6.9*10^{(-3)};
50 \text{ Vds} = \text{Vdd} + \text{Vss} - \text{Idq} * (\text{Rd} + \text{Rs});
51 \text{ Vd} = \text{Vdd-Idq*Rd};
52 \text{ Vs} = \text{Vd-Vds};
53
54 disp(Idq, 'Idq(Amperes) = ');
55 disp(Vds, 'Vds(Volts) = ');
56 \text{ disp(Vd, 'Vd(Volts)} = ');
57 disp(Vs, 'Vs(Volts) = ');
58 disp(Vds, 'Vds(Volts) = ');
```

Scilab code Exa 7.7 Idq Vgsq and Vds calculation

```
1 clear; clc; close;
2
3 Idss = 6*10^(-3);
```


Figure 7.6: Idq Vgsq and Vds calculation

```
4 \text{ Vp} = -3;
5 \text{ Vdd} = 18;
6 \text{ Rd} = 1.8*10^{(3)};
7 \text{ Rs} = 750;
9 \text{ Vg} = 10*10^{(6)}*18/((10+110)*10^{(6)});
10
11 \text{ Vgs1} = \text{Vp};
12 \text{ Id1} = 0;
13 Vgs2 = Vp/2;
14 \text{ Id2} = \text{Idss/4};
15 \text{ Vgs3} = 0;
16 \text{ Id3} = \text{Idss};
17 \text{ Vgs4} = 1;
18 \text{ Id4} = \text{Idss}*(1-(Vgs4/Vp))^2;
19 disp(Id4);
20 x = [Vgs1 Vgs2 Vgs3 Vgs4];
21 y = [Id1 Id2 Id3 Id4];
22
23 yi = smooth([x;y],0.1);
24 \ a = gca();
25 a.thickness = 2;
26 a.y_location = 'right';
27 a.x_label.text = 'Vgs';
28 a.y_label.text = 'Id(mA)';
29 a.title.text = 'Q-point for network';
30 \text{ a.grid} = [1 \ 1];
31 plot2d(yi(1,:)',yi(2,:)',[3]);
32
33
34 \text{ Id1} = 0;
35 \text{ Vgs1} = \text{Vg-Id1*Rs};
36 \text{ Id2} = 3*10^{(-3)};
37 \text{ Vgs2} = \text{Vg-Id2*Rs};
38 \text{ Id3} = 6*10^{(-3)};
39 \text{ Vgs3} = \text{Vg-Id3*Rs};
40 x = [Vgs1 Vgs2 Vgs3];
41 \ y = [Id1 \ Id2 \ Id3];
```

```
42 plot2d(x,y);
43 a.data_bounds = [-3 0;2 10*10^(-3)];
44
45
46 Vgsq = -0.8;
47 disp(Vgsq,'Q-point value of Vgs(found after interpolation) is :');
48
49 Idq = 3.1*10^(-3);
50
51 Vds = Vdd - Idq*(Rd+Rs);
52
53 disp(Idq,'Idq(Amperes) = ');
54 disp(Vds,'Vds(Volts) = ');
```

Scilab code Exa 7.8 Idq Vgsq and Vds calculation

```
1 clear; clc; close;
2
3 Idss = 6*10^(-3);
4 Vp = -3;
5 Vdd = 18;
6 Rd = 1.8*10^(3);
7 Rs = 150;
8
9
10 Vg = 10*10^(6)*18/((10+110)*10^(6));
11
12 Vgs1 = Vp;
13 Id1 = 0;
14 Vgs2 = Vp/2;
15 Id2 = Idss/4;
16 Vgs3 = 0;
```


Figure 7.7: Idq Vgsq and Vds calculation

```
17 \text{ Id3} = \text{Idss};
18 \ Vgs4 = 1;
19 Id4 = Idss*(1-(Vgs4/Vp))^2;
20 disp(Id4);
21 x = [Vgs1 Vgs2 Vgs3 Vgs4];
22 y = [Id1 Id2 Id3 Id4];
23
24 yi = smooth([x;y],0.1);
25 \ a = gca();
26 a.thickness = 2;
27 a.y_location = 'right';
28 a.x_label.text = 'Vgs';
29 a.y_label.text = 'Id(mA)';
30 a.title.text = 'Q-point for network';
31 \text{ a.grid} = [1 1];
32 plot2d(yi(1,:)',yi(2,:)',[3]);
33
34
35 \text{ Id1} = 0;
36 \text{ Vgs1} = \text{Vg-Id1*Rs};
37 \text{ Id2} = 3*10^{(-3)};
38 \text{ Vgs2} = \text{Vg-Id2*Rs};
39 \text{ Id3} = 6*10^{(-3)};
40 \text{ Vgs3} = \text{Vg-Id3*Rs};
41 \text{ Vgs4} = 0;
42 \text{ Id4} = (Vg - Vgs4)/Rs;
43 \times = [Vgs1 Vgs2 Vgs3 Vgs4];
44 \ y = [Id1 \ Id2 \ Id3 \ Id4];
45 \text{ plot2d}(x,y);
46 \text{ a.data\_bounds} = [-3 \ 0; 2 \ 10*10^{(-3)}];
47
48
49
50
51 \text{ Vgsq} = 0.35;
52 disp(Vgsq, 'Q-point value of Vgs(found after
       interpolation) is :');
53
```


Figure 7.8: Idq Vgsq and Vd calculation

```
54    Idq = 7.6*10^(-3);
55
56    Vds = Vdd - Idq*(Rd+Rs);
57
58    disp(Idq,'Idq(Amperes) = ');
59    disp(Vds,'Vds(Volts) = ');
```

Scilab code Exa 7.9 Idq Vgsq and Vd calculation

```
1 clear; clc; close;
2
```

```
3 \text{ Idss} = 8*10^{(-3)};
4 \text{ Vp} = -8;
5 \text{ Vdd} = 20;
6 \text{ Rd} = 6.2*10^{(3)};
7 \text{ Rs} = 2.4*10^{(3)};
9 \text{ Vgs1} = \text{Vp};
10 \text{ Id1} = 0;
11 Vgs2 = Vp/2;
12 \text{ Id2} = \text{Idss/4};
13 \text{ Vgs3} = 0;
14 \text{ Id3} = \text{Idss};
15 \text{ Vgs4} = 2;
16 \text{ Id4} = \text{Idss}*(1-(Vgs4/Vp))^2;
17 x = [Vgs1 Vgs2 Vgs3 Vgs4];
18 y = [Id1 Id2 Id3 Id4];
19
20 yi = smooth([x;y], 0.1);
21 \ a = gca();
22 a.thickness = 2;
23 a.y_location = 'right';
24 a.x_label.text = 'Vgs';
25 a.y_label.text = 'Id(mA)';
26 a.title.text = 'Q-point for the network';
27 \text{ a.grid} = [1 \ 1];
28 plot2d(yi(1,:)',yi(2,:)',[3]);
29
30
31 \text{ Vgs1} = 0;
32 \text{ Id1} = 0;
33 \text{ Id2} = 4*10^{(-3)};
34 \text{ Vgs2} = -\text{Id2*Rs};
35 \text{ Id3} = 8*10^{(-3)};
36 \text{ Vgs3} = -\text{Id3*Rs};
37 \times = [Vgs1 Vgs2 Vgs3];
38 y = [Id1 Id2 Id3];
39 \text{ plot2d}(x,y);
40 \text{ a.data\_bounds} = [-8 \ 0; 0 \ 13*10^(-3)];
```

```
41
42
43  Vgsq = -4.3;
44  disp(Vgsq, 'Q-point value of Vgs(found after interpolation) is :');
45
46  Idq = 1.7*10^(-3);
47
48  Vd = Vdd - Idq*(Rd);
49
50  disp(Idq, 'Idq(Amperes) = ');
51  disp(Vd, 'Vd(Volts) = ');
```

Scilab code Exa 7.10 Vds determination

```
1 clear; clc; close;
 2
 3 \text{ Idss} = 10*10^{(-3)};
4 \text{ Vp} = -4;
5 \text{ Vdd} = 20;
 6 \text{ Rd} = 1.5*10^{(3)};
8 \text{ Vgsq} = 0;
9 disp(Vgsq, 'Q-point value of Vgs(found after
       interpolation) is :');
10
11 Idq = 10*10^{(-3)};
12
13 Vd = Vdd - Idq*(Rd);
14
15 disp(Idq, 'Idq(Amperes) = ');
16 \operatorname{disp}(Vd, 'Vds(Volts) = ');
```


Figure 7.9: Idq Vdsq Calculation

Scilab code Exa 7.11 Idq Vdsq Calculation

```
1 clear; clc; close;
 3 \text{ Id\_on} = 6*10^{(-3)};
4 \text{ Vgs\_on} = 8;
5 \text{ Vgs\_th} = 3;
6 \text{ Rd} = 2*10^{(3)};
7 \text{ Vdd} = 12;
9 k = Id_on/(Vgs_on-Vgs_th);
10
11 \text{ Vgs1} = \text{Vgs\_th};
12 \text{ Id1} = 0;
13 \text{ Vgs2} = 6;
14 \text{ Id2} = 0.24*10^{(-3)}*(6-3)^2;
15 \text{ Vgs3} = \text{Vgs\_on};
16 \text{ Id3} = \text{Id\_on};
17 \text{ Vgs4} = 10;
18 Id4 = 0.24*10^{(-3)}*(10-3)^2;
19
20 x = [0 1 2 Vgs1 Vgs2 Vgs3 Vgs4];
21 y = [0 \ 0 \ 0 \ Id1 \ Id2 \ Id3 \ Id4];
22
23 yi = smooth([x;y],0.1);
24 \ a = gca();
25 a.thickness = 2;
26 a.y_location = 'left';
27 a.x_label.text = 'Vgs';
28 a.y_label.text = 'Id(mA)';
29 a.title.text = 'Transfer curve for MOSFET';
30 \text{ a.grid} = [1 1];
31 plot2d(yi(1,:)',yi(2,:)',[3]);
32
```


Figure 7.10: Idq Vgsq and Vds calculation

```
33 Vgs = Vdd; //at Id = 0
34 Id = Vdd/Rd; //at Vgs = 0
35 x = 0:1:12;
36 y = (-0.5*10^(-3))*x + 6*10^(-3);
37 plot2d(x,y);
38 Idq = 2.75*10^(-3);
39 Vgsq = 6.4;
40 Vdsq = Vgsq;
41 disp(Idq, 'Idq(Amperes) = ');
42 disp(Vdsq, 'Vdsq(Volts) = ');
```

Scilab code Exa 7.12 Idq Vgsq and Vds calculation

```
1 clear; clc; close;
2
3 \text{ Id\_on} = 3*10^{(-3)};
4 \text{ Vgs\_on} = 10;
5 \text{ Vgs\_th} = 5;
6 \text{ Vdd} = 40;
7 R1 = 22*10^{(6)};
8 R2 = 18*10^{(6)};
9 \text{ Rs} = 1*10^{(3)};
10 Rd = 3*10^(3);
11
12 Vg = (R2*Vdd)/(R1+R2)
13 \text{ Vgs} = 0:1:18;
14 Id = (Vg-Vgs)/Rs;
15 plot2d(Vgs,Id);
16 \ a = gca();
17 a.thickness = 2;
18 a.y_location = 'left';
19 a.x_label.text = 'Vgs';
20 a.y_label.text = 'Id(mA)';
21 a.title.text = 'Q-point for network';
22 \text{ a.grid} = [1 \ 1];
23
24 k = Id_on/(Vgs_on-Vgs_th)^2;
25 \text{ Vgs} = 5:1:18;
26 Id = k*(Vgs-Vgs_th)^2;
27 yi=smooth([Vgs;Id],0.1);
28 plot2d(yi(1,:)',yi(2,:)',[3]);
29
30 \text{ Idq} = 5.2*10^{(-3)};
31 \text{ Vgsq} = 12.5;
32 \text{ Vds} = \text{Vdd-Idq*(Rs+Rd)};
33
34 disp(Idq, 'Idq(Amperes) = ');
35 disp(Vgsq, 'Vgsq(Volts) = ')
36 \text{ disp}(Vds, 'Vds(Volts) = ');
```

Scilab code Exa 7.13 Vd and Vc level determination

```
1 clear; clc; close;
 3 \text{ Idss} = 12*10^{(-3)};
4 \text{ Vp} = -3;
5 \text{ Vbe} = 0.7;
6 \text{ Beta} = 180;
7 Re = 1.6*10^{(3)};
9 Vb = (24*10^{(3)}*16)/((82+24)*10^{(3)});
10 Ve = Vb-Vbe;
11 Vre = Ve;
12 Ie = Vre/Re;
13 Ic = Ie;
14 \text{ Id} = \text{Ic};
15 Vd = 16-Id*(2.7*10^{(3)});
16 \text{ Vgsq} = -1.8;
17 Vc = Vb - Vgsq;
18
19 \operatorname{disp}(Vd, 'Vd(Volts) = ');
20 disp(Vc, Vc(Volts) = V);
```

Scilab code Exa 7.14 Vd level determination

```
1 clear; clc; close;
2
3 Idss = 12*10^(-3);
4 Vp = -3;
5 Vbe = 0.7;
6 Beta = 80;
```

```
7 Re = 1.6*10^(3);
8 Rs = 2.4*10^(3);
9
10 Vgsq = -2.6;
11 Idq = 1*10^(-3);
12 Ic = Idq;
13 Ie = Ic;
14 Ib = Ic/Beta;
15 Vb = 16-Ib*(470*10^(3));
16 Vd = Vb-Vbe;
17 disp(Vd, 'Vd(Volts) = ');
```

Scilab code Exa 7.15 Vdq and Idq level

```
1 clear; clc; close;
2
3 Vdd = 20;
4 Vdq = 12;
5 Idq = 2.5*10^(-3);
6 Vgsq = -1;
7 Rd = (Vdd-Vdq)/Idq;
8 Rs = -Vgsq/Idq;
9
10 disp(Rd, 'Rd(Ohms) = ');
11 disp(Rs, 'Rs(Ohms) = ');
12 disp(3.3*10^(3), 'Closest commercial value of Rd(Ohms ) = ');
13 disp(0.39*10^(3), 'Closest commercial value of Rs(Ohms) = ');
```

Scilab code Exa 7.16 Rs determination

```
1 clear; clc; close;
```

```
2
3 Vd =12;
4 Vdd = 16;
5 Vgsq = -2;
6 Rd = 1.8*10^(3);
7
8 Vg = (47*10^(3)*16)/((47+91)*10^(3));
9 Id = (Vdd-Vd)/Rd;
10
11 Rs = (Vg-Vgsq)/Id;
12
13 disp(Rs, 'Rs(Ohms) = ');
```

Scilab code Exa 7.17 Vdd and Rd determination

```
1 clear; clc; close;
2
3 Id_on = 4*10^(-3);
4 Vgs_on = 6;
5 Vgs_th = 3;
6
7 Vgs = Vgs_on;
8 Vdd = 2*Vgs;
9 Vds = Vgs;
10 Id = Id_on;
11
12 Rd = (Vdd-Vds)/Id;
13
14 disp(Rd, 'Rd(Ohms) = ');
```

Scilab code Exa 7.18 Idq Vgsq and Vds calculation

```
1 clear; clc; close;
```

```
3 \text{ Idss} = 8*10^{(-3)};
4 \text{ Vp} = 4;
5 \text{ Vdd} = 20;
6 \text{ Rd} = 4*10^{(3)};
7 \text{ Rs} = 1.8*10^{(3)};
9 Vg = 20*10^{(3)}*(-20)/((20+68)*10^{(3)});
10
11 \ Vgs1 = 0;
12 \text{ Id1} = \text{Idss};
13 Vgs2 = Vp/2;
14 \text{ Id2} = \text{Idss/4};
15 Vgs3 = Vp;
16 \text{ Id3} = 0;
17 x = [Vgs1 Vgs2 Vgs3];
18 y = [Id1 Id2 Id3];
19
20 yi=smooth([x;y],0.1);
21 \ a = gca();
22 a.thickness = 2;
23 a.data_bounds = [-5 \ 0; 5 \ 8*10^{(-3)}];
24 a.y_location = 'middle';
25 a.x_label.text = 'Vgs';
26 a.y_label.text = 'Id(mA)';
27 a.title.text = 'Q-point for network';
28 \text{ a.grid} = [1 \ 1];
29 plot2d(yi(1,:)',yi(2,:)',[3]);
30
31
32 \text{ Id1} = 0;
33 \text{ Vgs1} = \text{Vg+Id1*Rs};
34 \text{ Vgs2} = 0;
35 \text{ Id2} = (Vgs2-Vg)/Rs;
36 \text{ Id3} = 4*10^{-3};
37 \text{ Vgs3} = \text{Vg+Id3*Rs};
38 x = [Vgs1 Vgs2 Vgs3];
39 y = [Id1 Id2 Id3];
```

```
40 plot2d(x,y);
41
42
43 Vgsq = 1.6;
44 Idq = 3.1*10^(-3);
45 Vds = -Vdd+Idq*(Rd+Rs);
46
47 disp(Vgsq,'Q-point value of Vgs(found after interpolation) is :');
48 disp(Idq,'Q-point value of Id(found after interpolation) is :');
49 disp(Vds,'Vds(Volts) = ');
```

Scilab code Exa 7.19 Q point value of Id and Vgs

```
1 clear; clc; close;
2
3 Idss = 6*10^(-3);
4 Vp = -3;
5 Vdd = 16;
6 Rd = 3.9*10^(3);
7 Rs = 1.6*10^(3);
8
9 m = abs(Vp)/(Idss*Rs);
10 Idq = 0.18*Idss;
11 Vgsq = -0.575*abs(Vp);
12
13 disp(Vgsq,'Vgsq(Volts) = ');
14 disp(Idq,'Idq(Amperes) = ');
```

Scilab code Exa 7.20 Q point value of Id and Vgs

```
1 clear; clc; close;
```

```
2
 3 \text{ Idss} = 8*10^{(-3)};
 4 \text{ Vp} = -6;
 5 \text{ Vdd} = 18;
 6 \text{ Rs} = 1.2*10^{(3)};
 7 R1 = 2*10^{(6)};
 8 R2 = 470*10^{(3)};
 9
10 m = abs(Vp)/(Idss*Rs);
11 Vg = R2*Vdd/(R1+R2);
12 M = m*(Vg/abs(Vp));
13
14 \text{ Idq} = 0.52*Idss;
15 Vgsq = -0.27*abs(Vp);
16
17 disp(Vgsq, 'Vgsq(Volts) = ');
18 \operatorname{disp}(\operatorname{Idq}, \operatorname{'Idq}(\operatorname{Amperes}) = \operatorname{'});
```

Chapter 8

FET Amplifiers

Scilab code Exa 8.1 Calculation of gm for different Vgs

```
1 clear; clc; close;
3 \text{ Idss} = 8*10^{(-3)};
4 \text{ Vp} = -4;
 5
6
7 \text{ Vgs1} = \text{Vp};
8 \text{ Id1} = 0;
9 Vgs2 = Vp/2;
10 \text{ Id2} = \text{Idss/4};
11 \ Vgs3 = 0;
12 \text{ Id3} = \text{Idss};
13 \times = [Vgs1 Vgs2 Vgs3];
14 y = [Id1 Id2 Id3];
15
16 yi=smooth([x;y],0.1);
17 \ a = gca();
18 a.thickness = 2;
19 a.y_location = 'right';
```


Figure 8.1: Calculation of gm for different Vgs

```
20 \text{ a.x\_label.text} = \text{`Vgs'};
21 a.y_label.text = 'Id(mA)';
22 a.title.text = 'gm calculation';
23 \text{ a.grid} = [1 1];
24 plot2d(yi(1,:)',yi(2,:)',[3]);
25
26
27 / part-a
28 \text{ Vgs} = -0.5;
29 Id_delta = 2.1*10^{(-3)};
30 \text{ Vgs\_delta} = 0.6;
31
32 gm = Id_delta/Vgs_delta;
33 disp(gm, 'gm(in S) for part a = ');
34
35 / part-b
36 \text{ Vgs} = -1.5;
37 \text{ Id\_delta} = 1.8*10^(-3);
```

```
38  Vgs_delta = 0.7;
39
40  gm = Id_delta/Vgs_delta;
41  disp(gm, 'gm(in S) for part b = ');
42
43  //part-c
44  Vgs = -2.5;
45  Id_delta = 1.5*10^(-3);
46  Vgs_delta = 1;
47
48  gm = Id_delta/Vgs_delta;
49  disp(gm, 'gm(in S) for part c = ');
```

Scilab code Exa 8.2 Calculation of gm for different Vgs and max gm

```
1 clear; clc; close;
 2
 3 \text{ Idss} = 8*10^{(-3)};
 4 \text{ Vp} = -4;
 6 \text{ gmo} = 2*Idss/abs(Vp);
 8 / part-a
9 \text{ Vgs} = -0.5;
10
11 gm = gmo*(1-(Vgs/Vp));
12 disp(gm, 'gm(in S) for part a = ');
13
14 / part - b
15 \text{ Vgs} = -1.5;
16 gm = gmo*(1-(Vgs/Vp));
17 \operatorname{disp}(\operatorname{gm}, \operatorname{gm}(\operatorname{in} S) \text{ for part } b = ');
18
19 / part - c
20 \text{ Vgs} = -2.5;
```


Figure 8.2: gm vs Vgs

```
21  Id_delta = 1.5*10^(-3);
22  Vgs_delta = 1;
23
24  gm = gmo*(1-(Vgs/Vp));
25  disp(gm, 'gm(in S) for part c = ');
26
27  disp(gmo, 'Max gm(in S) is = ')
```

Scilab code Exa $8.3~\mathrm{gm}$ vs Vgs

```
1 clear; clc; close;
```

```
3 \text{ Vp} = -4;
4 \text{ gmo} = 4*10^{(-3)};
5
6 \text{ vgs1} = -4;
7 \text{ gm1} = \text{gmo}*(1-(\text{vgs1/Vp}));
8 \text{ vgs2} = -2.5;
9 \text{ gm2} = \text{gmo}*(1-(\text{vgs2/Vp}));
10 \text{ vgs3} = -1.5;
11 gm3 = gmo*(1-(vgs3/Vp));
12 \text{ vgs4} = -1.5;
13 gm4 = gmo*(1-(vgs4/Vp));
14 \text{ vgs5} = 0;
15 \text{ gm5} = \text{gmo}*(1-(\text{vgs5/Vp}));
16
17 x = [vgs1 vgs2 vgs3 vgs4 vgs5];
18 y = [gm1 gm2 gm3 gm4 gm5];
19 plot2d(x,y);
20 \ a = gca();
21 a.thickness = 2;
22 a.y_location = 'right';
23 \text{ a.x\_label.text} = \text{'Vgs'};
24 a.y_label.text = 'gm(S)';
25 a.title.text = 'gm vs Vgs';
```

Scilab code Exa 8.4 gm vs Id

```
1 clear; clc; close;
2
3 Idss = 8*10^(-3);
4 Vp = -4;
5
6 gmo = 2*Idss/abs(Vp);
```


Figure 8.3: gm vs Id

```
8 \text{ Id1} = 0;
9 \text{ gm1} = \text{gmo*}(\text{sqrt}(\text{Id1/Idss}));
10 \text{ Id2} = \text{Idss/4};
11 gm2 = gmo*(sqrt(Id2/Idss));
12 \text{ Id3} = \text{Idss/2};
13 gm3 = gmo*(sqrt(Id3/Idss));
14 \text{ Id4} = \text{Idss};
15 gm4 = gmo*(sqrt(Id4/Idss));
16
17 x = [Id1 Id2 Id3 Id4];
18 y = [gm1 gm2 gm3 gm4];
19 yi = smooth([x;y], 0.0005);
20 \ a = gca();
21 a.thickness = 2;
22 a.y_location = 'left';
23 a.x_label.text = 'Id(mA)';
24 a.y_label.text = 'gm(S)';
25 a.title.text = 'gm vs Id';
26 plot2d(yi(1,:)',yi(2,:)',[3]);
```

Scilab code Exa 8.5 Output impedance

```
1 clear; clc; close;
2
3 Vds = 8;
4
5 Vgs = 0;
6 Vds_delta = 5;
7 Id_delta = 0.2*10^(-3);
8 rd = Vds_delta/Id_delta;
9 disp(rd, 'For Vgs = 0V, rd(ohms) = ');
10
11 Vgs = -2;
12 Vds_delta = 8;
```

```
13  Id_delta = 0.1*10^(-3);
14  rd = Vds_delta/Id_delta;
15  disp(rd, 'For Vgs = -2V, rd(ohms) = ');
```

Scilab code Exa 8.6 FET equivalent model

```
1 clear; clc; close;
2
3 yfs = 3.8*10^(-3);
4 yos = 20*10^(-6);
5
6 gm = yfs;
7 rd = 1/yos;
8
9 disp(gm, 'gm(in S) = ');
10 disp(rd, 'rd(ohms) = ');
```

Scilab code Exa 8.7 JFET fix bias configuration calculation

```
1 clear; clc; close;
2
3 yos = 20*10^(-6);
4 Idss = 10*10^(-3);
5 Vp = -8;
6 Vgsq = -2;
7 Idq = 5.625*10^(-3);
8 Rg = 1*10^(6);
9 Rd = 2*10^(3);
10
11 gmo = 2*Idss/abs(Vp);
12 gm = gmo*(1-(Vgsq/Vp));
13 rd = 1/yos;
14 Zi = Rg;
```

```
15  Zo = Rd*rd/(Rd+rd);
16  Av = -gm*(Rd*rd/(Rd+rd));
17  Av2 = -gm*Rd;
18
19  disp(gm, 'gm(S) = ');
20  disp(rd, 'rd(ohms) = ');
21  disp(Zi, 'Zi(ohms) = ');
22  disp(Zo, 'Zo(ohms) = ');
23  disp(Av, 'Voltage gain Av = ');
24  disp(Av2, 'Volatge gain Av(ignoring rd) = ');
```

Scilab code Exa 8.8 JFET self bias configuration calculation

```
1 clear; clc; close;
 3 \text{ yos} = 25*10^{(-6)};
 4 Idss = 8*10^{(-3)};
 5 \text{ Vp} = -6;
 6 \text{ Vgsq} = -2.6;
 7 \text{ Idq} = 2.6*10^{(-3)};
 8 \text{ Rg} = 1*10^{(6)};
 9 \text{ Rd} = 3.3*10^{(3)};
10 Rs = 1*10^(3);
11
12 gmo = 2*Idss/abs(Vp);
13 gm = gmo*(1-(Vgsq/Vp));
14 \text{ rd} = 1/\text{yos};
15 Zi = Rg;
16 \text{ Zo} = \text{Rd};
17 Av = -gm*Rd/(1+gm*Rs+((Rd+Rs)/rd));
18 Av2 = -gm*Rd/(1+gm*Rs);
19
20 disp(gm, 'gm(S) = ');
21 \operatorname{disp}(\operatorname{rd}, \operatorname{rd}(\operatorname{ohms}) = ');
22 \operatorname{disp}(\operatorname{Zi}, \operatorname{Zi}(\operatorname{ohms}) = ');
```

```
23 disp(Zo, 'Zo(ohms) = ');
24 disp(Av, 'Voltage gain Av = ');
25 disp(Av2, 'Volatge gain Av(ignoring rd) = ');
```

Scilab code Exa 8.9 JFET source follower configuration calculation

```
1 clear; clc; close;
 3 \text{ yos} = 30*10^{(-6)};
 4 Idss = 16*10^{(-3)};
 5 \text{ Vp} = -4;
 6 \text{ Vgsq} = -2.86;
 7 \text{ Idq} = 4.56*10^{(-3)};
 8 \text{ Rg} = 1*10^{(6)};
 9 \text{ Rs} = 2.2*10^{(3)};
10
11
12 gmo = 2*Idss/abs(Vp);
13 gm = gmo*(1-(Vgsq/Vp));
14 \text{ rd} = 1/\text{yos};
15 Zi = Rg;
16 \text{ Zo} = \text{rd*Rs*gm^(-1)/((rd*Rs)+(Rs*gm^(-1))+(rd*gm^(-1))}
        ));
17 \text{ Zo2} = \text{Rs*gm}^{(-1)}/(\text{Rs+gm}^{(-1)});
18 Av = gm*(rd*Rs/(rd+Rs))/(1+(gm*(rd*Rs/(rd+Rs))));
19 Av2 = gm*Rs/(1+gm*Rs);
20
21 disp(gm, 'gm(S) = ');
22 \operatorname{disp}(\operatorname{rd}, \operatorname{rd}(\operatorname{ohms}) = ');
23 \operatorname{disp}(\operatorname{Zi}, \operatorname{Zi}(\operatorname{ohms}) = \operatorname{Zi};
24 \operatorname{disp}(\operatorname{Zo}, \operatorname{'Zo}(\operatorname{ohms}) = ');
25 disp(Zo2, 'Zo without rd = ')
26 disp(Av, 'Voltage gain Av = ');
27 disp(Av2, 'Volatge gain Av(ignoring rd) = ');
```

Scilab code Exa 8.10 JFET common gate configuration calculation

```
1 clear; clc; close;
 3 \text{ yos} = 50*10^{(-6)};
 4 Idss = 10*10^{(-3)};
 5 \text{ Vp} = -4;
 6 \text{ Vgsq} = -2.2;
 7 \text{ Idq} = 2.03*10^{(-3)};
 8 \text{ Rd} = 3.6*10^{(3)};
 9 \text{ Rs} = 1.1*10^{(3)};
10 Vi = 40*10^{(-3)};
11
12 gmo = 2*Idss/abs(Vp);
13 gm = gmo*(1-(Vgsq/Vp));
14 \text{ rd} = 1/\text{yos};
15 Zi = Rs*((rd+Rd)/(1+gm*rd))/(Rs+((rd+Rd)/(1+gm*rd)))
16 Zi2 = Rs*gm^(-1)/(Rs+gm^(-1));
17 Zo = Rd*rd/(Rd+rd);
18 \text{ Zo2} = \text{Rd};
19 Av = (gm*Rd+(Rd/rd))/(1+Rd/rd);
20 \text{ Vo} = \text{Av}*\text{Vi};
21 \text{ Av2} = \text{gm}*\text{Rd};
22 \text{ Vo2} = \text{Av2}*\text{Vi};
23
24 disp(gm, 'gm(S) = ');
25 \operatorname{disp}(\operatorname{rd}, \operatorname{rd}(\operatorname{ohms}) = \operatorname{'});
26 \operatorname{disp}(\operatorname{Zi}, '\operatorname{Zi}(\operatorname{ohms}) = ');
27 disp(Zi2, 'Zi(ohms) without rd = ');
28 \operatorname{disp}(\operatorname{Zo}, \operatorname{'Zo}(\operatorname{ohms}) = \operatorname{'});
29 disp(Zo2, 'Zo(ohms)) without rd = ')
30 disp(Av, 'Voltage gain Av = ');
31 \operatorname{disp}(Vo, 'Vo = ');
```

```
32 disp(Av2, 'Volatge gain Av(ignoring rd) = ');
33 disp(Vo2, 'Vo2 witout rd = ');
```

Scilab code Exa 8.11 Network components determination

```
1 clear; clc; close;
 3 \text{ yos} = 10*10^{(-6)};
 4 Idss = 6*10^{(-3)};
 5 \text{ Vp} = -3;
 6 \text{ Vgsq} = 0.35;
 7 \text{ Idq} = 7.6*10^{(-3)};
 8 \text{ Rd} = 1.8*10^{(3)};
 9 R1 = 10*10^{(6)};
10 R2 = 110*10^{(6)};
11
12
13 gmo = 2*Idss/abs(Vp);
14 gm = gmo*(1-(Vgsq/Vp));
15 \text{ rd} = 1/\text{yos};
16 \text{ Zi} = R1*R2/(R1+R2);
17 Zo = rd*Rd/(Rd+rd);
18 Av = -gm*Rd;
19
20 disp(gmo, 'gmo(S) = ');
21 \operatorname{disp}(\operatorname{gm}, \operatorname{'gm}(S) = ');
22 \operatorname{disp}(\operatorname{rd}, \operatorname{rd}(\operatorname{ohms}) = ');
23 \operatorname{disp}(\operatorname{Zi}, '\operatorname{Zi}(\operatorname{ohms}) = ');
24 \operatorname{disp}(\operatorname{Zo}, \operatorname{Zo}(\operatorname{ohms}) = ');
25 disp(Av, 'Av = ');
```

Scilab code Exa 8.12 E MOSFET components determination

```
1 clear; clc; close;
 3 \text{ yos} = 20*10^{(-6)};
 4 \text{ Vgs\_on} = 8;
 5 \text{ Vgs\_th} = 3;
 6 \text{ Vgsq} = 6.4;
 7 \text{ Idq} = 2.75*10^{(-3)};
 8 \text{ Id\_on} = 6*10^{(-3)};
 9 k = 0.24*10^{(-3)};
10 Rf = 10*10^{(6)};
11 Rd = 2*10^(3);
12
13 gm = 2*k*(Vgsq-Vgs_th);
14 \text{ rd} = 1/\text{yos};
15 Zi = (Rf+(rd*Rd/(rd+Rd)))/(1+gm*(rd*Rd/(rd+Rd)));
16 Zi2 = Rf/(1+gm*Rd);
17 Zo = Rf*Rd*rd/(Rf*rd+rd*Rd+Rd*Rf);
18 \text{ Zo2} = \text{Rd};
19 Av = -gm*Rf*Rd*rd/(Rf*rd+rd*Rd+Rd*Rf);
20 \text{ Av2} = -gm*Rd;
21
22 \operatorname{disp}(\operatorname{gm}, \operatorname{'gm}(S) = ');
23 \operatorname{disp}(\operatorname{rd}, \operatorname{rd}(\operatorname{ohms}) = ');
24 \operatorname{disp}(\operatorname{Zi}, '\operatorname{Zi}(\operatorname{ohms}) = ');
25 disp(Zi2, 'Zi without rd(ohms) = ');
26 \operatorname{disp}(\operatorname{Zo}, \operatorname{'Zo}(\operatorname{ohms}) = ');
27 disp(Zo2, 'Zo without rd(ohms) = ')
28 disp(Av, 'Voltage gain Av = ');
29 disp(Av2, 'Volatge gain Av(ignoring rd) = ');
```

Scilab code Exa 8.13 Rd value determination

```
1 clear; clc; close;
2
3 yos = 30*10^(-6);
```

```
4 Idss = 10*10^{(-3)};
 5 \text{ Idq} = 10*10^{(-3)};
 6 \text{ Vp} = -4;
 7 \text{ Vgsq} = 0;
 8 \text{ Rg} = 10*10^{(6)};
 9 \text{ Av} = -15;
10 \text{ Vdd} = 30;
11
12 gmo = 2*Idss/abs(Vp);
13 \text{ gm} = \text{gmo};
14 \text{ rd} = 1/\text{yos};
15
16 // let x = Rd | rd
17 x = -Av/gm;
18 Rd = 100*10^{(3)}/30.33; //found by solving for x
19 Vdsq = Vdd-Idq*Rd;
20 Zi = Rg;
21 Zo = Rd*rd/(Rd+rd);
22
23
24 \operatorname{disp}(\operatorname{Rd}, '\operatorname{Rd}(\operatorname{ohms}) = ');
25 \operatorname{disp}(\operatorname{Zi}, \operatorname{'Zi}(\operatorname{ohms}) = \operatorname{'});
26 \operatorname{disp}(\operatorname{Zo}, \operatorname{'Zo}(\operatorname{ohms}) = ');
```

Scilab code Exa 8.14 Rd and Rs determination

```
1 clear; clc; close;
2
3 yos = 20*10^(-6);
4 Idss = 10*10^(-3);
5 Idq = 10*10^(-3);
6 Vp = -4;
7 Vdsq = Vp/4;
8 Rg = 10*10^(6);
9 Av = -8;
```

```
10  Vdd = 20;
11
12
13  Vgsq = Vp/4;
14  Id = Idss*(1-(Vgsq/Vp))^2;
15  gmo = 2*Idss/abs(Vp);
16  gm = gmo*(1-(Vgsq/Vp));
17  //let  Rd||rd = x
18  x = abs(Av)/gm;
19  rd = 1/yos;
20  Rd = 106.5*10^(3)/47.87;
21  Rs = -Vgsq/Id;
22
23  disp(Rd, 'Rd(ohms) = ');
24  disp(Rs, 'Rs(ohms) = ');
```

Scilab code Exa 8.15 Rd and Rs determination

```
1 clear; clc; close;
2
3 \text{ yos} = 20*10^{(-6)};
4 Idss = 10*10^{(-3)};
5 \text{ Idq} = 10*10^{(-3)};
6 \text{ Vp} = -4;
7 \text{ Vdsq} = \text{Vp/4};
8 \text{ Rg} = 10*10^{(6)};
9 \text{ Av} = -8;
10 \text{ Vdd} = 20;
11
12 Vgsq = Vp/4;
13 Id = Idss*(1-(Vgsq/Vp))^2;
14
15 \text{ Rs} = -Vgsq/Id;
16
17 gmo = 2*Idss/abs(Vp);
```

```
18 gm = gmo*(1-(Vgsq/Vp));
19 Rd = -Av*(1+gm*Rs)/gm;
20
21 disp(Rs, 'Rs(ohms) = ');
22 disp(Rd, 'Rd(ohms) = ');
```

Scilab code Exa 8.16 Network characteristics determination

```
1 clear; clc; close;
2
3 \text{ yos} = 20*10^{(-6)};
4 Idss = 10*10^{(-3)};
5 \text{ Idq} = 2.8*10^{(-3)};
6 \text{ Vp} = -4;
7 \text{ Vgsq} = -1.9;
8 \text{ Vi} = 20*10^{(-3)};
9 \text{ Rd} = 2.4*10^{(3)};
10 Rg = 3.3*10^{(6)};
11 R1 = 10*10^{(3)};
12
13 gmo = 2*Idss/abs(Vp);
14 gm = gmo*(1-(Vgsq/Vp));
15 Av2 = -gm*Rd;
16 \text{ Av1} = -gm*(Rd*Rg/(Rd+Rg));
17 \quad Av = Av1*Av2;
18 Vo = Av*Vi;
19 Zi = Rg;
20 \text{ Zo} = \text{Rd};
21 \text{ V1} = (R1/(Zo+R1))*Vo;
22
23
24 disp(gm, 'gm(S) = ');
25 disp(Av2, 'voltage gain = ');
26 disp(Vo, 'output voltage(Volts) = ');
27 disp(Zi, 'input impedance(ohms) = ');
```

```
28 disp(Zo, 'output impedance(ohms) = ');
29 disp(V1, 'output voltage across the load(Volts) = ');
```

Scilab code Exa 8.17 Input output impedance and output voltage

```
1 clear; clc; close;
 3 \text{ Ri\_stage2} = 15*(10^{(3)})*4.7*(10^{(3)})
       *1300/(15*(10^(3))*4.7*(10^(3))+4.7*(10^(3))
       *1300+15*(10^(3))*1300);
4 \text{ Rd1} = 2.4*10^{(3)};
5 \text{ Rd2} = 2.2*10^{(3)};
6 \text{ gm} = 2.6*10^{(-3)};
 7 \text{ Vil} = 20*10^{(-3)};
8 \text{ Vi2} = 1*10^{(-3)};
9
10 Av1 = -gm*(Rd1*Ri_stage2/(Rd1+Ri_stage2));
11 \text{ Av2} = -338.46;
12 Av = Av1 * Av2;
13 Vo1 = Av*Vi1;
14 \text{ Vo2} = \text{Av*Vi2};
15 \text{ Zi} = 3.3*10^{(6)};
16 \text{ Zo} = \text{Rd2};
17
18
19 disp(Vo2, 'Output voltage is ');
20 disp(Zi, 'Input impedance is ');
21 disp(Zo, 'Output impedance is ');
```

Chapter 9

BJT and JFET frequency response

Scilab code Exa 9.1 Log calculation

```
1 clear; clc; close;
2
3 disp(log10(10^6), 'ans for part a :- ');
4 disp(log(%e^3), 'ans for part b :- ');
5 disp(log10(10^(-2)), 'ans for part c :- ');
6 disp(log(%e^-1), 'ans for part d :- ');
```

Scilab code Exa 9.2 Log calculation

```
1 clear; clc; close;
2
3 disp(log10(64), 'ans for part a :- ');
4 disp(log(64), 'ans for part b :- ');
5 disp(log10(1600), 'ans for part c :- ');
6 disp(log10(8000), 'ans for part d :- ');
```

Scilab code Exa 9.3 Anti Log calculation

```
1 clear; clc; close;
2
3 disp(10^1.6, 'ans for part a :- ');
4 disp(%e^0.04, 'ans for part b :- ');
```

Scilab code Exa 9.4 Log calculation

```
1 clear; clc; close;
2
3 disp(log10(0.5), 'ans for part a :- ');
4 disp(log10(4000/250), 'ans for part b :- ');
5 disp(log10(0.6*30), 'ans for part c :- ');
```

Scilab code Exa 9.5 Magnitude gain calculation

```
1 clear; clc; close;
2
3 Gdb = 100;
4 Ratio_V2_by_V1 = 10^(Gdb/20);
5
6 disp(Ratio_V2_by_V1, 'Magnitude gain = ');
```

Scilab code Exa 9.6 Power and voltage gain

```
1 clear; clc; close;
2
3 Pi = 10*10^(3);
4 Po = 500;
5 Vi = 1000;
6 Ro = 20;
7
8 Gdb = 10*log10(Po/Pi);
9 Gv = 20*log10(sqrt(Po*Ro)/Vi);
10 Ri = Vi^2/Pi;
11
12 disp(Gdb, 'Power gain in decibels = ');
13 disp(Gv, 'Voltage gain in decibels = ');
14 disp(Ri, 'Ri(ohms) is ');
15 disp('which is not equal to Ro');
```

Scilab code Exa 9.7 Input power and input voltage

```
1 clear; clc; close;
2
3 Po = 40;
4 Ro = 10;
5 Gv = 40;
6 Gdb = 25;
7
8 Pi = Po/(10^(25/10));
9 disp(Pi, 'Input power in Watt = ');
10
11 Vo = sqrt(Po*Ro);
12 Vi = Vo/10^(Gv/20);
13 disp(Vi, 'Input voltage in volts = ');
```


Figure 9.1: Break frequency and bode plot

Scilab code Exa 9.8 Break frequency and bode plot

```
1 clear; clc; close;
3 R = 5*10^{(3)};
4 C = 0.1*10^{(-6)};
6 	 f1 = 1/(2*\%pi*R*C);
7 disp(f1, 'Break frequency = ');
9 f = 31.85:10:10*f1;
10 av = (1+(f1./f)^2)^{-1/2}; //-10*\log 10
11 av1 = -20*log10(f1/f1);
12 	 f2 = f1/10;
13 av2 = -20*log10(f1/f2);
14 	 f3 = f1/4;
15 av3 = -20*log10(f1/f3);
16 	 f4 = f1/2;
17 \text{ av4} = -20*\log 10(f1/f4);
18
19
20 x = [f2 f3 f4 f1];
21 y = [av2 av3 av4 av1];
22
23 gainplot(f,av);
24 \ a = gca();
25 a.y_location = 'left';
26 a.x_location = 'top';
27 a.x_label.text = 'frequency';
28 a.y_label.text = 'Av';
29 a.title.text = 'Bode';
30 \text{ plot2d}(x,y);
```


Figure 9.2: Frequency and bode plot

Scilab code Exa 9.9 Frequency aand bode plot

```
1 clear; clc; close;
2
3 Cs = 10*10^(-6);
4 Ce = 20*10^(-6);
5 Cc = 1*10^(-6);
6 Rs = 1*10^(3);
7 R1 = 40*10^(3);
8 R2 = 10*10^(3);
```

```
9 Re = 2*10^{(3)};
10 Rc = 4*10^{(3)};
11 R1 = 2.2*10^{(3)};
12 \text{ Beta} = 100;
13 \text{ ro} = \% \text{inf};
14 \ Vcc = 20;
15 Ve = 4-0.7;
16
17 Vb = R2*Vcc/(R2+R1);
18 Ie = Ve/Re;
19 re = 26*10^{(-3)}/(1.65*10^{(-3)});
20 x = Beta*re;
21 Av = -Rc*R1/((Rc+R1)*re);
22 Zi = R1*R2*x/(R1*R2+R2*x+x*R1);
23 Ri = Zi;
24 \text{ Vi_by_Vs} = \text{Ri/(Ri+Rs)};
25 \text{ Avs} = \text{Av*Vi_by_Vs};
26 \text{ fls} = 1/(2*\%pi*(Rs+Ri)*Cs);
27 disp(fls, 'Low cutoff frequency is ');
28
29 \text{ f1} = \text{fls};
30 f = .1:10:10*f1;
31 av = (1+(f1./f)^2)^{-1/2};
32 \text{ av1} = -20*\log 10(f1/f1);
33 f2 = f1/10;
34 \text{ av2} = -20*\log 10(f1/f2);
35 f3 = f1/4;
36 \text{ av3} = -20*\log 10(f1/f3);
37 	 f4 = f1/2;
38 \text{ av4} = -20*\log 10(f1/f4);
39
40
41 x = [f2 f3 f4 f1];
42 y = [av2 av3 av4 av1];
43
44 gainplot(f,av);
45 \ a = gca();
46 a.y_location = 'left';
```


Figure 9.3: Frequency and bode plot

```
47 a.x_location = 'top';

48 a.x_label.text = 'frequency';

49 a.y_label.text = 'Av';

50 a.title.text = 'Bode';

51 plot2d(x,y);
```

Scilab code Exa 9.10 Frequency and bode plot

```
1 clear; clc; close;
2
3 Cs = 10*10^(-6);
4 Ce = 20*10^(-6);
5 Cc = 1*10^(-6);
6 Rs = 1*10^(3);
```

```
7 R1 = 40*10^{(3)};
8 R2 = 10*10^{(3)};
9 Re = 1.2*10^(3);
10 Rc = 4*10^{(3)};
11 R1 = 10*10^{(3)};
12 \text{ Beta} = 100;
13 ro = %inf;
14 \ Vcc = 10;
15 Ve = 2-0.7;
16
17 Vb = R2*Vcc/(R2+R1);
18 Ie = Ve/Re;
19 re = 26*10^{(-3)}/(1.083*10^{(-3)});
20 x = Beta*re;
21 Av = -Rc*R1/((Rc+R1)*re);
22 \text{ Zi} = R1*R2*x/(R1*R2+R2*x+x*R1);
23 Ri = Zi;
24 \text{ Vi_by_Vs} = \text{Ri/(Ri+Rs)};
25 \text{ Avs} = \text{Av*Vi_by_Vs};
26 	ext{ fls} = 1/(2*\%pi*(Rs+Ri)*Cs);
27 disp(fls, 'Low cutoff frequency is ');
28
29 	 f1 = fls;
30 f = 1:10:10*f1;
31 av = (1+(f1./f)^2)^{-1/2};
32 \text{ av1} = -20*\log 10(f1/f1);
33 f2 = f1/10;
34 \text{ av2} = -20*\log 10(f1/f2);
35 f3 = f1/4;
36 \text{ av3} = -20*\log 10(f1/f3);
37 	 f4 = f1/2;
38 \text{ av4} = -20*\log 10(f1/f4);
39
40
41 x = [f2 f3 f4 f1];
42 y = [av2 av3 av4 av1];
43
44 gainplot(f, av);
```


Figure 9.4: Frequency and bode plot

```
45  a = gca();
46  a.y_location = 'left';
47  a.x_location = 'top';
48  a.x_label.text = 'frequency';
49  a.y_label.text = 'Av';
50  a.title.text = 'Bode';
51  plot2d(x,y);
```

Scilab code Exa 9.11 Frequency and bode plot

```
1 clear; clc; close;
```

```
2
3 \text{ Cs} = 2*10^{(-6)};
4 \text{ Cg} = 0.01*10^{(-6)};
5 \text{ Cc} = 0.5*10^{(-6)};
6 \text{ Rs} = 1*10^{(3)};
7 \text{ Rg} = 1*10^{(6)};
8 \text{ Rsig} = 10*10^{(3)};
9 \text{ Rd} = 4.7*10^{(3)};
10 R1 = 2.2*10^{(3)};
11
12 Idss = 8*10^{(-3)};
13 Vp = -4;
14 \text{ rd} = \% \text{inf};
15 \text{ Vdd} = 20;
16
17 \text{ Vgsq} = -2;
18 \text{ Idq} = 2*10^{(-3)};
19 gmo = 2*Idss/abs(Vp);
20 gm = gmo*(1-(Vgsq/Vp));
21 flg = 1/(2*\%pi*(Rsig+Rg)*Cg);
22 flc = 1/(2*\%pi*(Rd+R1)*Cc);
23 Req = Rs*(1/gm)/(Rs+(1/gm));
24 	ext{ fls} = 1/(2*\%pi*Req*Cs);
25 Avmid = -gm*(Rd*R1/(Rd+R1));
26
27 disp(fls, 'Lowest frequency cutoff = ');
28 disp(Avmid, 'midband gain = ');
29
30 \text{ f1} = \text{fls};
31 f = .1*f1:10:5*f1;
32 av = (1+(f1./f)^2)^{-1/2};
33 \text{ av1} = -20*\log 10(f1/f1);
34 	 f2 = f1/10;
35 \text{ av2} = -20*\log 10(f1/f2);
36 f3 = f1/4;
37 \text{ av3} = -20*\log 10(f1/f3);
38 	 f4 = f1/2;
39 \text{ av4} = -20*\log 10(f1/f4);
```

```
40
41 x = [f2 f3 f4 f1];
42 y = [av2 av3 av4 av1];
43
44 gainplot(f,av);
45 \ a = gca();
46 a.y_location = 'left';
47 \text{ a.x\_location} = 'top';
48 a.x_label.text = 'frequency';
49 a.y_label.text = 'Av';
50 a.title.text = 'Bode';
51 plot2d(x,y);
52
53
54 \text{ f1} = \text{flg};
55 //f = .1*f1:10:10*f1;
56 \text{ av} = -10*\log 10(1+(f1./f)^2);
57 \text{ av1} = -20*\log 10(f1/f1);
58 f2 = f1/10;
59 \text{ av2} = -20*\log 10(f1/f2);
60 f3 = f1/4;
61 \text{ av3} = -20*\log 10(f1/f3);
62 	 f4 = f1/2;
63 \text{ av4} = -20*\log 10(f1/f4);
64
65 x = [f2 f3 f4 f1];
66 y = [av2 av3 av4 av1];
67
68 \text{ plot2d}(x,y);
69
70 	ext{ f1 = flc;}
71 //f = .1*f1:10:10*f1;
72 av = -10*log10(1+(f1./f)^2);
73 av1 = -20*log10(f1/f1);
74 	ext{ f2} = 	ext{f1/10};
75 av2 = -20*log10(f1/f2);
76 	 f3 = f1/4;
77 av3 = -20*log10(f1/f3);
```

```
78 f4 = f1/2;

79 av4 = -20*log10(f1/f4);

80

81 x = [f2 f3 f4 f1];

82 y = [av2 av3 av4 av1];

83 plot2d(x,y);
```

Scilab code Exa 9.12 Frequency

```
1 clear; clc; close;
3 \text{ Cs} = 10*10^{(-6)};
4 Ce = 20*10^{(-6)};
5 \text{ Cc} = 1*10^{-6};
6 \text{ Rs} = 1*10^{(3)};
7 R1 = 40*10^{(3)};
8 R2 = 10*10^{(3)};
9 Re = 2*10^{(3)};
10 Rc = 4*10^(3);
11 R1 = 2.2*10^{(3)};
12 \text{ Beta} = 100;
13 \text{ ro} = \% \text{inf};
14 \text{ re} = 15.76;
15 \text{ Vcc} = 20;
16 \text{ Ve} = 4-0.7;
17 Cwo = 8*10^{(-12)};
18 Cwi = 6*10^{(-12)};
19 Cce = 1*10^(-12);
20 \text{ Cbc} = 4*10^{(-12)};
21 Cbe = 36*10^{(-12)};
22 	 fls = 6.86;
23
24 \text{ Ri} = 1.32*10^{(3)};
25 \text{ Avmid} = -90;
26 Rthi = Rs*R1*R2*Ri/(Rs*R1*R2+R1*R2*Ri+R2*Ri*Rs+Ri*Rs
```


Figure 9.5: Frequency and bode plot

```
*R1);

27 Ci = Cwi+Cbe+(1-Avmid)*Cbc;

28 fhi = 1/(2*%pi*Rthi*Ci);

29 Rtho = Rc*Rl/(Rc+Rl);

30 Co = Cwo+Cce+(1-(1/Avmid))*Cbc;

31 fho = 1/(2*%pi*Rtho*Co);

32 fbeta = 1/(2*%pi*Beta*re*(Cbe+Cbc));

33 ft = Beta*fbeta;

34 disp(fhi, 'fhi = ');

35 disp(fho, 'fho = ');

36 disp(fbeta, 'fbeta = ');

37 disp(ft, 'ft = ');
```

Scilab code Exa 9.13 Frequency and bode plot

```
1 clear; clc; close;
3 \text{ Cs} = 10*10^{(-6)};
4 Ce = 20*10^{(-6)};
5 \text{ Cc} = 1*10^{-6};
6 \text{ Rs} = 1*10^{(3)};
7 R1 = 40*10^{(3)};
8 R2 = 10*10^{(3)};
9 Re = 1.2*10^(3);
10 Rc = 4*10^{(3)};
11 R1 = 10*10^{(3)};
12 \text{ Beta} = 100;
13 ro = %inf;
14 \text{ re} = 24.01;
15 \text{ Vcc} = 10;
16 \text{ Ve} = 2-0.7;
17 Cwo = 8*10^{(-12)};
18 Cwi = 6*10^{(-12)};
19 Cce = 1*10^(-12);
20 \text{ Cbc} = 4*10^{(-12)};
21 Cbe = 36*10^{(-12)};
22 	 fls = 6.86;
23
24 \text{ Ri} = 1.85*10^{(3)};
25 \text{ Avmid} = -119;
26 Rthi = Rs*R1*R2*Ri/(Rs*R1*R2+R1*R2*Ri+R2*Ri*Rs+Ri*Rs
       *R1);
27 \text{ Ci} = \text{Cwi+Cbe+}(1-\text{Avmid})*\text{Cbc};
28 \text{ fhi} = 1/(2*\%pi*Rthi*Ci);
29 Rtho = Rc*R1/(Rc+R1);
30 Co = Cwo+Cce+(1-(1/Avmid))*Cbc;
31 \text{ fho } = 1/(2*\%pi*Rtho*Co);
```

```
32 fpie = 1/(2*\%pi*Beta*re*(Cbe+Cbc));
33 ft = Beta*fpie;
34
35 \text{ disp}(fhi, 'fhi = ');
36 \text{ disp}(fho, 'fho = ');
37 \text{ disp(fpie,'fbeta = ');}
38 \text{ disp(ft,'ft = ');}
39 	 fle = 500;
40 flc = 1/(2*\%pi*(Rl+Rtho)*Cc);
41
42 \text{ f1} = \text{fle};
43 f = 0.1*f1:100:10*f1;
44 av = (1+(f1./f)^2)^{-1/2};
45 \text{ av1} = -20*\log 10(f1/f1);
46 	 f2 = f1/10;
47 \text{ av2} = -20*\log 10(f1/f2);
48 f3 = f1/4;
49 \text{ av3} = -20*\log 10(f1/f3);
50 	 f4 = f1/2;
51 \text{ av4} = -20*\log 10(f1/f4);
52
53 x = [f2 f3 f4 f1];
54 y = [av2 av3 av4 av1];
55
56 gainplot(f,av);
57 a = gca();
58 a.y_location = 'left';
59 a.x_location = 'top';
60 a.x_label.text = 'frequency';
61 a.y_label.text = 'Av';
62 a.title.text = 'Bode';
63 \text{ plot2d}(x,y);
64
65
66 	 f1 = fls;
67 / f = .1 * f1 : 10 : 10 * f1 ;
68 av = -10*log10(1+(f1./f)^2);
69 \text{ av1} = -20*\log 10(f1/f1);
```

```
70 	ext{ f2} = 	ext{f1/10};
 71 av2 = -20*log10(f1/f2);
 72 	 f3 = f1/4;
 73 av3 = -20*log10(f1/f3);
74 	 f4 = f1/2;
 75 av4 = -20*log10(f1/f4);
 76
 77 x = [f2 f3 f4 f1];
 78 y = [av2 av3 av4 av1];
79 \text{ plot2d}(x,y);
80
81
82 	ext{ f1} = 	ext{flc};
83 //f = .1*f1:10:10*f1;
84 av = -10*log10(1+(f1./f)^2);
85 \text{ av1} = -20*\log 10(f1/f1);
86 	 f2 = f1/10;
87 \text{ av2} = -20*\log 10(f1/f2);
88 f3 = f1/4;
89 \text{ av3} = -20*\log 10(f1/f3);
90 	 f4 = f1/2;
91 \text{ av4} = -20*\log 10(f1/f4);
92
93 \times = [f2 f3 f4 f1];
94 y = [av2 av3 av4 av1];
95 \text{ plot2d}(x,y);
96
97 \text{ f1} = \text{fhi};
98 f = 0.1*f1:100:10*f1;
99 av = (1+(f/f1)^2)^{-1/2};
100 \text{ av1} = -20*\log 10(f1/f1);
101 	 f2 = f1*10;
102 \text{ av2} = -20*\log 10(f2/f1);
103 f3 = f1*4;
104 \text{ av3} = -20*\log 10(f3/f1);
105 	 f4 = f1*2;
106 \text{ av4} = -20*\log 10(f4/f1);
107
```

```
108 x = [f1 f4 f3 f2];
109 y = [av1 av4 av3 av2];
110
111 gainplot(f,av);
112 plot2d(x,y);
113
114
115 f1 = fpie;
116 av1 = -20*log10(f1/f1);
117 	ext{ f2} = 	ext{f1*10};
118 av2 = -20*log10(f2/f1);
119 f3 = f1*4;
120 av3 = -20*log10(f3/f1);
121 	 f4 = f1*2;
122 \text{ av4} = -20*\log 10(f4/f1);
123
124 x = [f1 f4 f3 f2];
125 y = [av1 av4 av3 av2];
126
127 plot2d(x,y);
128
129
130 \text{ f1} = \text{fho};
131 av1 = -20*log10(f1/f1);
132 	 f2 = f1*10;
133 av2 = -20*log10(f2/f1);
134 f3 = f1*4;
135 \text{ av3} = -20*\log 10(f3/f1);
136 	 f4 = f1*2;
137 \text{ av4} = -20*\log 10(f4/f1);
138
139 x = [f1 f4 f3 f2];
140 y = [av1 av4 av3 av2];
141
142 plot2d(x,y);
```

Scilab code Exa 9.14 Frequency

```
1 clear; clc; close;
 3 \text{ Cs} = 2*10^{(-6)};
 4 \text{ Cg} = 0.01*10^{(-6)};
 5 \text{ Cc} = 0.5*10^{(-6)};
 6 \text{ Rs} = 1*10^{(3)};
 7 \text{ Rg} = 1*10^{(6)};
 8 \text{ Rsig} = 10*10^{(3)};
9 \text{ Rd} = 4.7*10^{(3)};
10 R1 = 2.2*10^{(3)};
11 Idss = 8*10^{(-3)};
12 Vp = -4;
13 \text{ rd} = \% \text{inf};
14 \text{ Vdd} = 20;
15 \text{ Cgd} = 2*10^{-12};
16 \text{ Cgs} = 4*10^{(-12)};
17 \text{ Cds} = 0.5*10^{(-12)};
18 Cwi = 5*10^{(-12)};
19 Cwo = 6*10^{(-12)};
20
21
22 Rthi = Rsig*Rg/(Rsig+Rg);
23 \text{ Av} = -3;
24 Ci = Cwi+Cgs+(1-Av)*Cgd;
25 \text{ fhi} = 1/(2*\%pi*Rthi*Ci);
26 Rtho = Rd*R1/(Rd+R1);
27 \text{ Co} = \text{Cwo} + \text{Cds} + (1 - (1/\text{Av})) * \text{Cgd};
28 fho = 1/(2*\%pi*Rtho*Co);
29
30 \text{ disp}(fhi, 'fhi = ');
31 disp(fho, 'fho = ');
```

Scilab code Exa 9.15 Fourier transform and time

Chapter 10

Operational Amplifiers

Scilab code Exa 10.1 Dc voltages and currents calculation

```
1 clear; clc; close;
2
3 Vcc = 9;
4 Vee = Vcc;
5 Rc = 3.9*10^(3);
6 Re = 3.3*10^(3);
7
8
9 Ie = (Vee-0.7)/Re;
10 Ic = Ie/2;
11 Vc = Vcc-Ic*Rc;
12
13 disp(Ie, 'Emitter current(Amperes) = ');
14 disp(Ic, 'Collector current(Amperes) = ');
15 disp(Vc, 'Collector voltage(Volts) = ');
```

Scilab code Exa 10.2 Single ended output voltage

```
1 clear; clc; close;
2
3 Vcc = 9;
4 Vee = Vcc;
5 Vi = 2*10^(-3);
6 Rc = 47*10^(3);
7 Re = 43*10^(3);
8
9
10 Ie = (Vee-0.7)/Re;
11 Ic = Ie/2;
12 Vc = Vcc-Ic*Rc;
13 re = 26/0.0965;
14 Av = Rc/(2*re);
15 Vo = Av*Vi;
16
17 disp(Vo, 'Single ended output voltage(Volts) = ');
```

Scilab code Exa 10.3 Common mode gain

```
1 clear; clc; close;
2
3 Beta = 75;
4 Rc = 47*10^(3);
5 ri = 20*10^(3);
6 Re = 43*10^(3);
7
8 Ac = Beta*Rc/(ri+2*(Beta+1)*Re);
9
10 disp(Ac, 'Common mode gain = ');
```

Scilab code Exa 10.4 Common mode gain

```
1 clear; clc; close;
2
3 Beta = 75;
4 Rc = 10*10^(3);
5 ri = 11*10^(3);
6 Re = 200*10^(3);
7 ro = 200*10^(3);
8
9 Re = ro;
10 Ac = Beta*Rc/(ri+2*(Beta+1)*Re);
11
12 disp(Ac, 'Common mode gain = ');
```

Scilab code Exa 10.5 Output voltage

```
1 clear; clc; close;
2
3 Rf = 500*10^(3);
4 R1 = 100*10^(3);
5 V1 = 2;
6
7 Vo = -(Rf/R1)*V1;
8
9 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 10.6 Output voltage

```
1 clear; clc; close;
2
3 Rf = 500*10^(3);
4 R1 = 100*10^(3);
5 V1 = 2;
```

```
7 Vo = (1+(Rf/R1))*V1;
8
9 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 10.7 Output voltage

```
1 clear; clc; close;
3 // part a
4
5 V1 = 1;
6 V2 = 2;
7 V3 = 3;
8 R1 = 500*10^{(3)};
9 R2 = 1*10^(6);
10 R3 = 1*10^{(6)};
11 Rf = 1000*10^{(3)};
12
13 Vo = -((Rf/R1)*V1+(Rf/R2)*V2+(Rf/R3)*V3);
14 disp(Vo, 'Output voltage(Volts) = ');
15
16 //part b
17
18
19 V1 = -2;
20 \quad V2 = 3;
21 \ V3 = 1;
22 R1 = 200*10^{(3)};
23 R2 = 500*10^{(3)};
24 R3 = 1*10^{(6)};
25 \text{ Rf} = 1000*10^{3};
26
27 \text{ Vo} = -((Rf/R1)*V1+(Rf/R2)*V2+(Rf/R3)*V3);
28 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 10.8 Output offset voltage

```
1 clear; clc; close;
2
3 Vio = 1.2*10^(-3);
4 R1 = 2*10^(3);
5 Rf = 150*10^(3);
6
7 Vo = Vio*((R1+Rf)/R1);
8 disp(Vo, 'Output offset voltage(Volts) = ');
```

Scilab code Exa 10.9 Output offset voltage

Scilab code Exa 10.10 Total offset voltage

```
7
8 Vo_vio = Vio*(R1+Rf)/R1;
9 Vo_io = Iio*Rf;
10 Vo = Vo_vio+Vo_io;
11
12 disp(Vo, 'Total voltage offset(Volts) = ');
```

Scilab code Exa 10.11 Input bias current

Scilab code Exa 10.12 Cut off frequency

```
1 clear; clc; close;
2
3 B1 = 1*10^(6);
4 Avd = 200*10^(3);//converting from V/mV
5
6 f1 = B1;
7 fc = f1/Avd;
8
9 disp(fc, 'Cutoff frequency(Hertz) = ')
```

Scilab code Exa 10.13 Maximum closed loop voltage gain

```
1 clear; clc; close;
2
3 SR = 2;
4 Vi_delta = 0.5;
5 t_delta = 10;
6
7 Acl = SR/(Vi_delta/t_delta);
8
9 disp(Acl, 'Maximum Closed loop voltage gain = ');
```

Scilab code Exa 10.14 Maximum frequency

```
1 clear; clc; close;
2
3 Rf = 240*10^(3);
4 R1 = 10*10^(3);
5 Vi = 0.02;
6 w = 300*10^(3);
7 SR = 0.5;
8
9 Acl = abs(Rf/R1);
10 K = Acl*Vi;
11 w1 = SR/K;
12
13 disp(w,'Since this frequency is much less than maximum obtained, hence no distortion will be observed');
```

Scilab code Exa 10.15 Current drawn calculation

```
1 clear; clc; close;
2
3 V = 12;
4 P = 250*10^(-3);
5
6 I = P/V;
7
8 disp(I, 'Current drawn(Amperes) = ');
```

Scilab code Exa 10.16 Output offset voltage

```
1 clear; clc; close;
2
3 Rf = 360*10^(3);
4 R1 = 12*10^(3);
5 Iio = 20*10^(-9);
6 Vio = 1*10^(-3);
7
8 Vo_vio = Vio*(R1+Rf)/R1;
9 Vo_iio = Iio*Rf;
10 Vo = Vo_vio + Vo_iio;
11
12 disp(Vo, 'Output offset voltage(Volts) = ');
```

Scilab code Exa 10.17 Gain and input output impedance calculation

```
1 clear; clc; close;
2
3 Rf = 360*10^(3);
4 R1 = 12*10^(3);
5 ro = 75;
```

```
6 A = 200*10^(3);
7 Beta = 1/30;
8
9 Acl = -Rf/R1;
10 Zi = R1;
11 Zo = ro/(1+Beta*A)
12
13 disp(Acl, 'Acl = ');
14 disp(Zi, 'Zi(Ohms) = ');
15 disp(Zo, 'Zo(Ohms) = ');
```

Scilab code Exa 10.18 Cut off frequency

```
1 clear; clc; close;
2
3 B1 = 1*10^(6);
4 Avd = 20*10^3;
5
6 f1 = B1;
7 fc = f1/Avd;
8
9
10 disp(fc, 'Cutoff frequency(Hertz) = ');
```

Scilab code Exa 10.19 Maximum frequency

```
1 clear; clc; close;
2
3 Vi = 25*10^(-3);
4 Acl = 30;
5 SR = 0.5*10^6; // convertin from us to s
6
7 K = Acl*Vi;
```

```
8 fmax = SR/(2*%pi*K);
9
10 disp(fmax, 'Maximum frequency(Hertz) = ');
```

Scilab code Exa 10.20 Open loop voltage gain

```
1 clear; clc; close;
2
3 Avd_db = 104;
4 Avd = 10^(104/20);
5
6 disp(Avd, 'Open loop voltage gain(Volts) = ');
```

Scilab code Exa 10.21 CMRR calculation

```
1 clear; clc; close;
2
3 Vo = 8;
4 Vo_1 = 12*10^(-3);
5 Vd = 1*10^(-3);
6 Vc = 1*10^(-3);
7
8
9 Ad = Vo/Vd;
10 Ac = Vo_1/Vc;
11 CMRR = Ad/Ac;
12 CMRR = 20*log10(Ad/Ac);
13
14 disp(CMRR, 'CMRR(dB) = ');
```

Scilab code Exa 10.22 Output voltage

```
1 clear; clc; close;
 3 \text{ Vi1} = 150*10^{(-6)};
 4 \text{ Vi2} = 140*10^{(-6)};
 5 \text{ Ad} = 4000;
 7 // part a
 8 \text{ CMRR} = 100;
 9
10 \text{ Vd} = \text{Vi1} - \text{Vi2};
11 Vc = 1/2*(Vi1+Vi2);
12 Vo = Ad*Vd*(1+(1/CMRR)*(Vc/Vd));
13 disp(Vo, 'Output voltage(Volts) = ');
14
15
16 //part b
17
18 \text{ CMRR} = 100000;
19
20 \text{ Vd} = \text{Vi1} - \text{Vi2};
21 \text{ Vc} = 1/2*(\text{Vi}1+\text{Vi}2);
22 Vo = Ad*Vd*(1+(1/CMRR)*(Vc/Vd));
23 disp(Vo, 'Output voltage(Volts) = ');
```

Chapter 11

Op Amp Applications

Scilab code Exa 11.1 Output voltage

```
1 clear; clc; close;
2
3 Rf = 200*10^(3);
4 R1 = 2*10^(3);
5 Vi = 2.5*10^(-3);
6
7 A = -Rf/R1;
8 Vo = A*Vi;
9
10 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 11.2 Output voltage

```
1 clear; clc; close;
2
3 Rf = 240*10^(3);
4 R1 = 2.4*10^(3);
5 Vi = 120*10^(-6);
```

```
6
7 A = 1+(Rf/R1);
8 Vo = A*Vi;
9
10 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 11.3 Output voltage

```
1 clear; clc; close;
2
3 Rf = 470*10^(3);
4 R1 = 4.3*10^(3);
5 R2 = 33*10^(3);
6 R3 = 33*10^(3);
7
8 Vi = 80*10^(-6);
9
10 A = ((1+(Rf/R1))*(-Rf/R2)*(-Rf/R3));
11 Vo = A*Vi;
12
13 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 11.4 Output voltage

```
1 clear; clc; close;
2
3 Rf = 270*10^(3);
4 A1 = 10;
5 A2 = -18;
6 A3 = -27;
7 Vi = 150*10^(-6);
```


Figure 11.1: Output voltage

```
8
9
10 R1 = Rf/(A1-1);
11 R2 = Rf/-A2;
12 R3 = Rf/-A3;
13
14 Vo = A1*A2*A3*Vi;
15
16 disp(Vo, 'Output voltage(Volts) = ');
```

Scilab code Exa 11.5 Connection of op amp stages

```
1 clear; clc; close;
2
3 Rf = 500*10^3;
4 A1 = -10;
5 A2 = -20;
6 A3 = -50;
7
```


Figure 11.2: Connection of op amp stages

```
8 R1 = -Rf/A1;
9 R2 = -Rf/A2;
10 R3 = -Rf/A3;
11
12
13 disp(R1, 'R1(ohms) = ');
14 disp(R2, 'R2(ohms) = ');
15 disp(R3, 'R3(ohms) = ');
```

Scilab code Exa 11.6 Output voltage

```
1 clear; clc; close;
2
3 v1 = ["*sin(1000t)"];
4 v2 = ["*sin(3000t)"];
```

```
6 Vo = strcat([string(-(330*10^3)/(33*10^3)*50*10^(-3)
        ),v1,string(-(330*10^3)/(10*10^3)*10^(-3)),v2]);
7
8 disp(Vo,'Output voltage(Volts) = ');
```

Scilab code Exa 11.7 Output voltage

```
1 clear; clc; close;
2
3 Rf = 1*10^(6);
4 R1 = 100*10^(3);
5 R2 = 50*10^(3);
6 R3 = 500*10^(3);
7
8 v2 = ["*V2"];
9 v1 = ["*V1"];
10 Vo = strcat([string((-Rf/R2)),v2,"+",string((Rf/R3) *(Rf/R1)),v1]);
11
12 disp(Vo,'Output voltage = ');
```

Scilab code Exa 11.8 Output voltage

Figure 11.3: Connection of unity gain ckt

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 11.10 Il and Vo calculation

```
1 clear; clc; close;
2
3 V1 = 8;
4 R1 = 2*10^3;
5 I1 = 10*10^(-3);
6
7
8 I1 = V1/R1;
9 Vo = -I1*R1;
10
11 disp(I1, 'Il(Amperes) = ');
12 disp(Vo, 'Vo(Volts) = ');
```

Scilab code Exa 11.11 Output voltage

```
1 clear; clc; close;
2
3 R = 5000;
4 Rp = 500;
5
6
7 a = ['*(V1-V2)'];
8 Vo = strcat([string((1+(2*R/Rp))),a]);
9
10 disp(Vo, 'Output voltage ');
```

Scilab code Exa 11.12 Cut off frequency

```
1 clear; clc; close;
2
3 R1 = 1.2*10^(3);
4 C1 = 0.02*10^(-6);
5
6 foh = 1/(2*%pi*R1*C1);
7
8 disp(foh, 'Cutoff frequency of low pass filter(Hertz) = ');
```

Scilab code Exa 11.13 Cut off frequency of high pass filter

```
1 clear; clc; close;
2
3 Rf = 50*10^(3);
4 Rg = 10*10^(3);
5 R1 = 2.1*10^(3);
6 C1 = 0.05*10^(-6);
7
8 Av = 1+(Rf/Rg);
```

Scilab code Exa 11.14 Cut off frequency of band pass filter

```
1 clear; clc; close;
2
3 R1 = 10*10^(3);
4 R2 = 10*10^(3);
5 C1 = 0.1*10^(-6);
6 C2 = 0.002*10^(-6);
7
8
9 fol = 1/(2*%pi*R1*C1);
10 foh = 1/(2*%pi*R2*C2);
11
12 disp(fol, 'Low Cutoff frequency of band pass filter( hertz) = ');
13 disp(foh, 'High Cutoff frequency of band pass filter( hertz) = ');
```

Chapter 12

Power Amplifiers

Scilab code Exa 12.1 input output power and efficiency

```
1 clear; clc; close;
3 \ \text{Vcc} = 20;
4 \text{ Rb} = 1*10^{(3)};
5 \text{ Rc} = 20;
6 \text{ Beta} = 25;
7 	ext{ Ib_p} = 10*10^(-3);
9
10 Ibq = (Vcc-0.7)/Rb;
11 Ib = Ibq;
12 Icq = Beta*Ibq;
13 Ic= Icq;
14 Vceq = Vcc-Ic*Rc;
15 \text{ Ic_p} = \text{Beta*Ib_p};
16 Po_ac = (Ic_p^2)*Rc/2;
17 Pi_dc = Vcc*Icq;
18 n = (Po_ac/Pi_dc)*100;
19
20 disp(Po_ac, 'Output power = ');
21 disp(Pi_dc, 'Input power = ');
```

Scilab code Exa 12.2 Effective Resistance

```
1 clear; clc; close;
2
3 a = 15;
4 Rl = 8;
5
6 Rl_dash = (a^2)*Rl;
7
8 disp(Rl_dash, 'Effective resistance looking into primary transformer is ');
```

Scilab code Exa 12.3 Turns ratio

```
1 clear; clc; close;
2
3 Rl_dash = 10*10^(3);
4 Rl = 8;
5
6 N1_N2 = sqrt(Rl_dash/Rl);
7
8 disp(N1_N2, 'Turns ratio = ');
```

Scilab code Exa 12.4 Ac power delivered

```
1 clear; clc; close;
2
3 Vcc = 10;
```

```
4 \ a = 3;
5 R1 = 8;
7
8 Vceq = Vcc;
9 \text{ Vce} = \text{Vceq};
10 Icq = 140*10^{(-3)};
11
12 Rl_dash = (a^2)*Rl;
13 Ic = Vce/Rl_dash;
14
15 \text{ Vce\_min} = 1.7;
16 \ Vce_max = 18.3;
17 Ic_min = 25*10^{(-3)};
18 Ic_max = 255*10^(-3);
19
20 Po_ac = (Vce_max-Vce_min)*(Ic_max-Ic_min)/8;
21
22 disp(Po_ac, 'Ac Power delivered(Watts) = ');
```

Scilab code Exa 12.5 input and dissipated power and efficiency

```
1 clear; clc; close;
2
3 Vcc = 10;
4 Icq = 140*10^(-3);
5 Po_ac = 0.477;
6
7
8 Pi_dc = Vcc*Icq;
9 Pq = Pi_dc-Po_ac;
10 n = (Po_ac/Pi_dc)*100;
11
12 disp(Pi_dc, 'Dc input power(Watts) = ');
13 disp(Pq, 'Power dissipated by transistor(Watts) = ');
```

```
14 disp(n, 'Efficiency (Percentage) = ');
```

Scilab code Exa 12.6 Efficiency calculation

```
1 clear; clc; close;
3 \text{ Vcc} = 12;
5 // part a
6 V_p = 12;
7 \text{ Vceq} = \text{Vcc};
8 \ Vce_max = Vceq + V_p;
9 Vce_min = Vceq - V_p;
10
11 n = 50*((Vce_max-Vce_min)/(Vce_max+Vce_min))^2;
12
13 disp(n, 'Efficiency (Percentage) = ');
14
15 // part b
16 \ V_p = 6;
17 \text{ Vceq} = \text{Vcc};
18 \ Vce_max = Vceq + V_p;
19 Vce_min = Vceq - V_p;
20
21 n = 50*((Vce_max - Vce_min)/(Vce_max + Vce_min))^2;
22
23 disp(n, 'Efficiency (Percentage) = ');
24
25
26 // part c
27 \text{ V}_p = 8;
28 \text{ Vceq} = \text{Vcc};
29 \text{ Vce_max} = \text{Vceq} + \text{V_p};
30 \text{ Vce\_min} = \text{Vceq} - \text{V\_p};
31
```

```
32 n = 50*((Vce_max-Vce_min)/(Vce_max+Vce_min))^2;

33 disp(n, 'Efficiency (Percentage) = ');
```

Scilab code Exa 12.7 Input output power and efficiency

```
1 clear; clc; close;
2
3 Vl_p = 20;
4 Vcc = 30;
5 Rl = 16;
6
7
8 Il_p = Vl_p/Rl;
9 Idc = (2/%pi)*Il_p;
10 Pi_dc = Vcc*Idc;
11 Po_ac = ((Vl_p)^2)/(2*Rl);
12 n = (Po_ac/Pi_dc)*100;
13
14
15 disp(Pi_dc, 'Input power(Watts) = ');
16 disp(Po_ac, 'Output power(Watts) = ');
17 disp(n, 'Efficiency(Percentage) = ');
```

Scilab code Exa 12.8 Power and transmission dissipation

```
1 clear; clc; close;
2
3 Vcc =30;
4 Rl = 16;
5
6
7 Po_max = (Vcc^2)/(2*Rl);
```

```
8 Pi_max = (2*Vcc^2)/(%pi*R1);
9 n_max = (Po_max/Pi_max)*100;
10 Pq_max = (1/2)*(2*Vcc^2/((%pi^2)*R1));
11
12 disp(Po_max, 'Maximum output power(Watts) = ');
13 disp(Pi_max, 'Maximum input power(Watts) = ');
14 disp(Pq_max, 'Transmission dissipation(Watts) = ');
```

Scilab code Exa 12.9 Efficiency calculation

```
1 clear; clc; close;
2
3 Vcc = 24;
4
5 //part a
6 Vl_p = 22;
7 n = 78.54*(Vl_p/Vcc);
8 disp(n, 'Efficiency(Percentage) = ');
9
10
11 //part b
12 Vl_p = 12;
13 n = 78.54*(Vl_p/Vcc);
14 disp(n, 'Efficiency(Percentage) = ');
```

Scilab code Exa 12.10 Input output dissipated power and efficiency

```
1 clear; clc; close;
2
3 Vi_rms = 12;
4 Rl = 4;
5 Vcc = 25;
6
```

```
7
8
9 \text{ Vi_p} = \text{sqrt}(2)*\text{Vi_rms};
10 \text{ Vl_p} = \text{Vi_p};
11 Po_ac = (Vl_p^2)/(2*Rl);
12 \text{ Il_p} = \text{Vl_p/Rl};
13 Idc = (2/\%pi)*(Il_p);
14 Pi_dc = Vcc*Idc;
15 Pq = (Pi_dc - Po_ac)/2;
16
17 n = (Po_ac/Pi_dc)*100;
18
19 disp(Po_ac, 'Output power(Watts) = ');
20 disp(Pi_dc, 'Input power(Watts) = ');
21 disp(Pq, 'Power dissipated(Watts) = ');
22 disp(n, 'Efficiency (Percentage) = ');
```

Scilab code Exa 12.11 Dissipated power and efficiency

```
1 clear; clc; close;
2
3 Vcc =25;
4 R1 = 4;
5
6
7 Po_max = (Vcc^2)/(2*R1);
8 Pi_max = (2*Vcc^2)/(%pi*R1);
9 n_max = (Po_max/Pi_max)*100;
10 Vl_p = Vcc;
11 P2q = Pi_max-Po_max;
12
13
14 disp(Po_max, 'Output power(Watts) = ');
15 disp(Pi_max, 'Input power(Watts) = ');
16 disp(P2q, 'Power dissipated(Watts) = ');
```

```
17 disp(n_max, 'Efficiency (Percentage) = ');
```

Scilab code Exa 12.12 Max dissipated power and input voltage

```
1 clear; clc; close;
2
3 Vcc =25;
4 R1 = 4;
5 Vl_p = Vcc;
6
7 P2q_max = (2*Vcc^2)/((%pi^2)*R1);
8 V1 = 0.636*Vl_p;
9
10 disp(P2q_max, 'Maximum power dissipated(Watts) = ');
11 disp(V1, 'Input voltage at which this occurs(Volts) = ');
```

Scilab code Exa 12.13 Harmonic distortion components

```
1 clear; clc; close;
2
3 A1 = 2.5;
4 A2 = 0.25;
5 A3 = 0.1;
6 A4 = 0.05;
7
8 D2 = (abs(A2)/abs(A1))*100;
9 D3 = (abs(A3)/abs(A1))*100;
10 D4 = (abs(A4)/abs(A1))*100;
11
12
13 disp(D2, 'Second harmonic distortion(Percentage) = ');
```

```
14 disp(D3, 'Third harmonic distortion(Percentage) = ');
15 disp(D4, 'Fourth harmonic distortion(Percentage) = ');
;
```

Scilab code Exa 12.14 Total Harmonic distortion components

```
1 clear; clc; close;
2
3 D2 = 0.1;
4 D3 = 0.04;
5 D4 = 0.02;
6
7 THD = sqrt((D2^2)+(D3^2)+(D4^2))*100;
8
9 disp(THD, 'Total harmonic distortion(Percentage) = ');
;
```

Scilab code Exa 12.15 Second Harmonic distortion

```
1 clear; clc; close;
2
3 //part a
4 Vce_min = 1;
5 Vce_max = 22;
6 Vceq = 12;
7 D2 = abs(((1/2)*(Vce_max+Vce_min)-Vceq)/(Vce_max-Vce_min))*100;
8 disp(D2, 'Second harmonic distortion(Percentage) = ');
9
10 //part b
11 Vce_min = 4;
12 Vce_max = 20;
```

```
13 Vceq = 12;
14 D2 = abs(((1/2)*(Vce_max+Vce_min)-Vceq)/(Vce_max-Vce_min))*100;
15 disp(D2, 'Second harmonic distortion(Percentage) = ');
```

Scilab code Exa 12.16 Total Harmonic distortion and fundamental and total power

```
1 clear; clc; close;
2
3 D2 = 0.1;
4 D3 = 0.02;
5 D4 = 0.01;
6 I1 = 4;
7 Rc = 8;
8
9 THD = sqrt((D2^2)+(D3^2)+(D4^2));
10 P1 = (I1^2)*Rc/2;
11 P = (1+THD^2)*P1;
12
13 disp(THD, 'Total harmonic distortion = ');
14 disp(P1, 'Fundamental power component(Watts) = ');
15 disp(P, 'Total power(Watts) = ');
```

Scilab code Exa 12.17 Maximum dissipation

```
1 clear; clc; close;
2
3 Pd_temp0 = 80;
4 T1 = 100;
5 T0 = 25;
6 D = 0.5;
```

```
7
8
9 Pd_temp1 = Pd_temp0-(T1-T0)*(D);
10
11 disp(Pd_temp1, 'Maximum power dissipation(Watts) = ')
;
```

Scilab code Exa 12.18 Max dissipated power

```
1 clear; clc; close;
2
3 Tj = 200;
4 Ta = 40;
5 Qjc = 0.5;
6 Qcs = 0.6;
7 Qsa = 1.5;
8
9
10 Pd = (Tj-Ta)/(Qjc+Qcs+Qsa);
11
12 disp(Pd, 'Maximum power dissipated(Watts) = ');
```

Chapter 13

Linear Digital ICs

Scilab code Exa 13.1 frequency and output waveform

```
1 clear; clc; close;
3 \text{ Ra} = 7.5*10^{(3)};
4 Rb = 7.5*10^{(3)};
5 C = 0.1*10^{(-6)};
7 Thigh = 0.7*(Ra+Rb)*C;
8 \text{ Tlow} = 0.7*(Rb*C);
9 T = Thigh + Tlow;
10
11 f = 1/T;
13 disp(f, 'Frequency = ');
14
15
16 x = 0:0.001:1.575;
17 y = 5*(x \le 1.05) + 1*(x > 1.05);
18 plot2d(x,y);
19 a = gca();
```


Figure 13.1: frequency and output waveform

```
20 a.data_bounds = [0 0;2 5.2];
21 a.x_label.text = 'Time(ms)';
22 a.y_label.text = 'Vo(V)';
```

Scilab code Exa 13.2 Period of output waveform

```
1 clear; clc; close;
2
3 Ra = 10*10^(3);
4 C = 0.1*10^(-6);
5
6 Thigh = 1.1*Ra*C;
7
8 disp(Thigh, 'Period of output waveform = ')
```

Chapter 14

Feedback and oscillator circuits

Scilab code Exa 14.1 input output impedance and voltage gain

```
1 clear; clc; close;
3 A = -100;
4 \text{ Zi} = 10*10^{(3)};
5 \text{ Zo} = 20*10^{(3)};
6
8 //part a
9 \text{ Beta} = -0.1;
10 Af = A/(1+Beta*A);
11 Zif = Zi*(1+Beta*A);
12 Zof = Zo/(1+Beta*A);
13
14 disp(Af, 'Voltage gain for part a= ');
15 disp(Zif, 'Input impedance for part a= ');
16 disp(Zof, 'Output Impedance for part a= ');
17
18 // part b
19 Beta = -0.5;
20 Af = A/(1+Beta*A);
21 \text{ Zif} = \text{Zi}*(1+\text{Beta}*A);
```

```
22 Zof = Zo/(1+Beta*A);
23
24 disp(Af, 'Voltage gain for part b = ');
25 disp(Zif, 'Input impedance for part b = ');
26 disp(Zof, 'Output Impedance for part b = ');
```

Scilab code Exa 14.2 change in gain of feedback amplifier

```
1 clear; clc; close;
2
3 Beta = -0.1;
4 dA_A = 20;
5 A = -1000;
6
7 dAf_Af = abs(1/(Beta*A))*abs((dA_A));
8 disp(dAf_Af, 'Percentage Change in gain of feedback amplifier = ');
```

Scilab code Exa 14.3 gain with and without feedback

```
1 clear; clc; close;
2
3 R1 = 80*10^(3);
4 R2 = 20*10^(3);
5 Ro = 10*10^(3);
6 Rd = 10*10^(3);
7 gm = 4000*10^(-6);
8
9
10 R1 = Ro*Rd/(Ro+Rd);
11 A = -gm*R1;
12 Beta = -R2/(R1+R2);
13 Af = A/(1+Beta*A);
```

```
14
15 disp(A, 'Gain without feedback = ');
16 disp(Af, 'Gain with feedback = ');
```

Scilab code Exa 14.4 amplifier gain

```
1 clear; clc; close;
2
3 R1 = 1.8*10^(3);
4 R2 = 200;
5 A = 100000;
6
7
8 Beta = R2/(R1+R2);
9 Af = A/(1+Beta*A);
10 Af = 1/Beta;
11
12 disp(Af, 'Amplifier gain = ');
```

${\bf Scilab~code~Exa~14.5~} {\it voltage~gain}$

```
1 clear; clc; close;
2
3 hfe = 120;
4 hie = 900;
5 Re = 510;
6 Rc = 2.2*10^(3);
7 re = 7.5;
8
9 A = -hfe/(hie+Re);
10 Beta = -Re;
11 Af = A/(1+Beta*A);
12 Avf = Af*Rc;
```

```
13 Av = -Rc/re;
14
15
16 disp(Avf, 'Voltage gain with feedback = ');
17 disp(Av, 'Voltage gain without feedback = ');
```

Scilab code Exa 14.6 voltage gain

```
1 clear; clc; close;
2
3 gm = 5*10^(-3);
4 Rd = 5.1*10^(3);
5 Rs = 1*10^(3);
6 Rf = 10*10^(3);
7
8
9 Av = -gm*Rd;
10 Avf = (-gm*Rd)*(Rf/(Rf+(gm*Rd*Rs)));
11
12 disp(Av, 'Voltage gain without feedback = ');
13 disp(Avf, 'Voltage gain with feedback = ');
```

Scilab code Exa 14.7 value of C

```
1 clear; clc; close;
2
3 R = 10*10^(3);
4 f = 5*10^(3);
5 A = 40;
6 gm = 5000*10^(-6);
7
8 C = 1/(2*%pi*R*f*sqrt(6));
9 Rl = abs(A)/gm;
```

```
10

11 disp(C, 'Value of C = ');

12 disp(R1, 'Value of Rl = ');
```

Scilab code Exa 14.8 resonant frequency and RC elements

```
1 clear; clc; close;
2
3 R = 51*10^(3);
4 C = 0.001*10^(-6);
5
6
7 fo = 1/(2*%pi*R*C);
8
9 disp(fo, 'Resonant frequency = ');
10
11 fo2 = 2*fo;
12 RC = 1/(2*%pi*fo2);
13 R = 50*10^(3);
14 C = 510*10^(-12);
15
16 disp(R, 'Value of R can be = ');
17 disp(C, 'Value of C can be = ');
```

Scilab code Exa 14.9 RC elements for wien bridge

```
1 clear; clc; close;
2
3 fo = 5*10^(3);
4
5 R = 50*10^(3);
6 C = 1/(2*%pi*fo*R);
7
```

```
8 disp(R,'Value of R can be = ');
9 disp(C,'Value of C is = ');
```

Chapter 15

Power Supplies

Scilab code Exa 15.1 Measure output and filter voltage

```
1 clear; clc; close;
2
3 Vdc = 25;
4 Vr = 1.5;
5
6
7 r_a = (Vr/Vdc)*100;
8 r_b = (Vr*0.35/Vdc)*100;
9
10 disp(r_a, 'Ripple value in part a = ');
11 disp(r_b, 'New Ripple value in part b = ');
```

Scilab code Exa 15.2 Voltage regulation value

```
1 clear; clc; close;
2
3 Vnl = 60;
4 Vfl = 56;
```

```
5
6 VR = ((Vnl-Vfl)/Vfl)*100;
7
8 disp(VR, 'Voltage regulation in percentage = ');
```

Scilab code Exa 15.3 Ripple voltage and output voltage value

```
1 clear; clc; close;
2
3 //part a
4 Idc = 50*10^(-3);
5 C = 100*10^(-6);
6
7 Vr_rms = 2.4*(10^-3)*Idc/(C);
8
9 disp(Vr_rms, 'Ripple voltage = ');
10
11 //part b
12
13 R1 = 100;
14
15 Vdc = Vr_rms*R1*C/2.4;
16
17 disp(Vdc, 'Output voltage = ');
```

Scilab code Exa 15.4 Filter de voltage value

```
1 clear; clc; close;
2
3 Vm = 30;
4 Idc = 50;
5 C = 100;
6
```

```
7 Vdc = Vm - 4.17*Idc/C;
8
9 disp(Vdc, 'Filter dc voltage = ');
```

Scilab code Exa 15.5 Ripple of capacitor

```
1 clear; clc; close;
2
3 Idc = 50;
4 C = 100;
5 Vdc = 27.9;
6
7 r = (2.4*Idc/(C*Vdc))*100;
8
9 disp(r, 'Ripple value of capacitor in percentage = ');
;
```

Scilab code Exa 15.6 dc voltage across 1k load

```
1 clear; clc; close;
2
3 Rl = 1000;
4 R = 120;
5 Vdc = 60;
6
7 Vdc_dash = (Rl/(R+Rl))*Vdc;
8
9 disp(Vdc_dash, 'Dc voltage across 1k-ohm load = ');
```

Scilab code Exa 15.7 dc ac and ripple values of output signal

```
1 clear; clc; close;
2
3 R1 = 5*10^(3);
4 R = 500;
5 Vdc = 150;
6 C = 10*10^(-3);
7 Vr_rms = 15;
8
9 Vdc_dash = (R1/(R+R1))*Vdc;
10 Xc = 1.3/C;
11 Vr_rms_dash = (Xc/R)*Vr_rms;
12 r = (Vr_rms_dash/Vdc_dash)*100;
13
14 disp(Vdc_dash, 'Dc component of output voltage = ');
15 disp(Vr_rms_dash, 'Ac component of output voltage = ');
16 disp(r, 'Ripple = ');
```

Scilab code Exa 15.8 output voltage and zener current

```
1 clear; clc; close;
2
3 Vz = 12;
4 Vbe = 0.7;
5 Vi = 20;
6 Rl = 5*10^(3);
7 Ic = 2.26*10^(-3);
8 Beta = 50;
9 R = 220;
10
11 Vo = Vz-Vbe;
12 Vce = Vi-Vo;
13 Ir = (Vi-Vz)/R;
14 Il = Vo/Rl;
15 Ib = Ic/Beta;
```

```
16  Iz = Ir-Ib;
17
18  disp(Vo, 'Output voltage = ');
19  disp(Iz, 'Zener current = ');
```

Scilab code Exa 15.9 regulated output voltage

```
1 clear; clc; close;
2
3 R1 = 20*10^(3);
4 R2 = 30*10^(3);
5 Vz = 8.3;
6 Vbe = 0.7;
7
8 Vo = ((R1+R2)/R2)*(Vz+Vbe);
9
10 disp(Vo, 'Regulated Output voltage = ');
```

Scilab code Exa 15.10 regulated output voltage

```
1 clear; clc; close;
2
3 Vo = (1+( 30*10^(3)/(15*10^(3)) ))*6.2;
4
5 disp(Vo, 'Regulated Output voltage = ');
```

Scilab code Exa 15.11 regulated voltage and circuit current

```
1 clear; clc; close;
2
```

```
3 R1 = 320;
4 Vi = 22;
5 Rs = 120;
6
7
8 V1 = 8.2+0.7;
9 I1 = V1/R1;
10 Is = (Vi-V1)/Rs;
11 Ic = Is-I1;
12
13 disp(V1, 'V1 = ');
14 disp(I1, 'I1 = ');
15 disp(Is, 'Is = ');
16 disp(Ic, 'Ic = ');
```

Scilab code Exa 15.13 minimum input voltage

```
1 clear; clc; close;
2
3 Idc = 400*10^(-3);
4 C = 250*10^(-6);
5 Vm = 15;
6 Vdc = 15;
7
8 Vr_peak = sqrt(3)*2.4*(10^-3)*Idc/C;
9 Vi = Vdc - Vr_peak;
10
11 disp(Vi, 'Minimum input voltage = ');
```

Scilab code Exa 15.14 max value of load current

```
1 clear; clc; close;
2
```

```
3 Vm = 15;
4 Vi_min = 7.3;
5 C = 250*10^(-6);
6
7 Vr_peak = Vm - Vi_min;
8 Vr_rms = Vr_peak/sqrt(3);
9
10 Idc = Vr_rms*C/(2.4*(10^-3));
11
12 disp(Idc, 'Max value of load current = ');
```

Scilab code Exa 15.15 regulated output voltage

```
1 clear; clc; close;
2
3 Vo = 1.25*(1+ (1.8*10^3/240)) + (100*10^(-6))
        *(1.8*10^3);
4
5 disp(Vo, 'Regulated Output voltage = ');
```

Scilab code Exa 15.16 regulated output voltage

```
1 clear; clc; close;
2
3 Vo = 1.25*(1+ (1.8*10^3/240)) + (100*10^(-6))
      *(1.8*10^3);
4
5 disp(Vo, 'Regulated Output voltage = ');
```