AURIX 2G Reset, Clock, WDT

IFCN ATV SMD GC SAE MC

Content

- > Reset introduction
- Clock system
- > WDT introduction

Reset pins and interface

Reset pins and interface

infineon

Reset types, triggers and effect

Reset Type (Class)	Reset Trigger(s)	Additional Modules affected by Cold Power-on	Additional Modules affected by warm PORST	Additional Modules affected by System reset	Modules affected by Application reset		
Cold Power-on Reset	StartupVEXT supply < 3.0VVDDP3 supply < 3.0VVDD supply < 1.125V	EVRInternal clocksRAMs	•JTAG interface •OCDS •MCDS				
Warm Power-on Reset	•PORST pad asserted		-8 bit μC (opt.)	Flash memoryXTAL/Osc./PLLESRx pins	All CPUsAll PeripheralsSCU except EVR		
System Reset	ESR0/ESR1SMUSTMxWatchdog (via SMU)Software reset	A higher reset en	ets all the modules res		Port pins exceptESRxRAMs-Dcache invalid-Pcache invalid		
Application Reset	ESR0/ESR1SMUSTMxSoftware resetTuning protection		Capsulates a lower res	Set Set by a lower reset			
SW Module reset	<pre>-<module>_KRST0.RST -<module>_KRST1.RST</module></module></pre>	•Available for All CPUs , Each DMA Channel, QSPI, CAN, ASCLIN, Flexray, Ethermac, MSC, HSSL, GTM, CCU6, GPT12, ADC, SENT, SD_ADC					
Debug Reset	OCDS request triggerJTAG reset	•OCDS + MCDS reset , All CPUs and peripherals (except SCU) are put into reset.					

Clearing reset status register RSTSTAT

Reset was triggered by Event X

- O_B The last reset was not requested by this reset trigger X
- 1_B The last reset was requested by this reset trigger X

■ Following flags are cleared by RSTCON2.CLRC bit

(This is intended so that Cold Power-on reset information is not lost owing to consecutive resets)

- Supply watchdog (Supply below 3.0V)
- EVR33 (EVR33 voltage below 3.0V)
- EVRC (EVR13 voltage below 1.13V)
- All other Flags are cleared with the next reset
 - PORST (PORST pad was asserted low)
 - ESR0 (ESR0 configured as reset and pad was asserted low)
 - ESR1 (ESR1 configured as reset and pad was asserted low)
 - Safety Management unit triggered a reset
 - SW Software reset
 - STMx (System timer)

Terminology: Warm vs Cold Power On Reset

- A Cold reset is one which is caused owing to
 - Temporary power failures of any of the 3 supply domains
 - Ext. Supply undervoltage < 3.0 V
 - EVR33 undervoltage < 3.0 V
 - EVRC undervoltage < 1.13 V
 - Represents the status at startup
- A Warm reset is one which is triggered when system is operational and supplies are stable namely
 - RAM data reliability is ensured during Reset phase
 - Ongoing module operations are brought to an end before reset issue

Reset Type	Reset Trigger(s)
Cold Power-on Reset	StartupPre reg./ Standby supply falls below1.13V
Cold Power-on Reset	■EVRC supply falls below 1.13V
Cold Power-on Reset	■EVR33 supply below 3.0V
Cold Power-on Reset	External supply (SWD) falls below 3.0V
Warm Power-on Reset	■PORST pad asserted

TC3xx PORST assertion, ESR0 elongation...

ESR0 asserted @ PORST recognition

ESR0 deassertion delay after PORST deassertion

Additional PORST Glitch filter - 500ns

TC3xx Clock Generation Typical Block Diagram (I)

TC3xx Clock Generation Typical Block Diagram (I) with Details

TC3xx Clock Generation Typical Block Diagram (II)

TC3xx Clock Generation Typical Block Diagram (II) with Details

TC3xx Clock Generation Clock Sources

- Different clock sources can be selected
- Separate performance selection for CPU(s), busses, and peripherals. CPU clock frequency (performance) of every single CPU can be changed without changing clock of any peripheral
- Options for constant clock for timers (STM / GTM) & communication interfaces (QSPI / LIN / ...) & ADCs while CPU and bus frequencies (performance) can be changed to different values
- ☐ Limited current transients resulting from frequency changes in single steps up to system target frequency

TC3xx Oscillator Details

- Crystal oscillator is set to External Input Clock Mode at power-on and has to be set to External Crystal Mode:
 - with direct access to OSCCON.MODE=0
 - ➤ or via UCB configuration (→PROCONDF)
- ☐ TC3xx crystal oscillator supports a f_{OSC} frequency range from (16...40)MHz.¹⁾
- Oscillator gain of TC3xx oscillator is similar to TC2xx oscillator.¹⁾
- □ Values of the internal load capacitors are changed due to support also crystals with a higher specified load capacitance.²⁾

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Internal load capacitor	C _{L0} CC	1.30	1.40	1.55	pF	enabled via bit OSCCON.CAP0EN
Internal load capacitor	C _{L1} CC	3.05	3.35	3.70	pF	enabled via bit OSCCON.CAP1EN
Internal load capacitor	C _{L2} CC	7.85	8.70	9.55	pF	enabled via bit OSCCON.CAP2EN
Internal load capacitor	C _{L3} CC	12.05	13.35	14.65	pF	enabled via bit OSCCON.CAP3EN

¹⁾ TC39x AA excluded because of Errata "XTAL_TC.H001 External Oscillator Configuration"

²⁾ TC39x AA excluded

TC3xx Oscillator Circuitry with ext. Load Capacitors (compatible Mode)

TC3xx Oscillator Circuitry with on-Chip Load Capacitors (Low BOM Mode)

TC3xx Oscillator Circuitry Oscillator Watchdog Block Diagram

TC3xx PLL Configuration

	TC3xx System PLL							
crystal	Р	N	fdco	K2	fpll0			
[MHz]			[MHz]		[MHz]			
20	1	30	600	6/4/3/2	100/150/200/300			
25	1	24	600	6/4/3/2	100/150/200/300			
40	2	30	600	6/4/3/2	100/150/200/300			
40	1	15	600	6/4/3/2	100/150/200/300			

	TC3xx Peripheral PLL									
crystal	Р	N	fdco	K2	fpll1	PLL1DIVDIS	fsource1	DIVBY	К3	fpll2
[MHz]			[MHz]		[MHz]		[MHz]			[MHz]
20	1	32	640	2	320	0 (*1/2)	160	0 (*5/8)	2	200
25	1	32	800	5	160	1 (*1)	160	1 (*1/2)	2	200
40	2	32	640	2	320	0 (*1/2)	160	0 (*5/8)	2	200
40	1	16	640	2	320	0 (*1/2)	160	0 (*5/8)	2	200

PLL Configuration Principle

- Configuration Principle
 - Enable crystal oscillator (when using an external crystal / resonator)
 - Set Clock Control Unit input clocks to backup clock f_{BAK}
 - Select PLL input clock f_{osc}
 - Start and initialize System PLL and Peripheral PLL then wait for lock
 - Initialize CCUCONx register
 - Set Clock Control Unit input clocks to PLL clocks
 - Increase clock frequency f_{PLL0} (CPU clock) step by step to target frequency
- Note, that PLL reference frequency may not exceed specified values:
 - > System PLL : $f_{REF min} = 16MHz$, $f_{REF max} = 40MHz$
 - \triangleright Peripheral PLL: $f_{REF min} = 10MHz$, $f_{REF max} = 40MHz$
 - \rightarrow f_{REF} = f_{OSC} / P

TC3xx Clock Restrictions Clock Frequency

Parameter	Symbol	Values		;	Unit
		Min.	Тур.	Max.	
SRI frequency	$f_{SRI}SR$	-	-	300	MHz
CPU Frequency (All CPUs)	$f_{\sf CPUx}\sf SR$	-	-	300	MHz
PLL0 output frequency	$f_{ t PLL0}$ SR	50	-	300	MHz
SPB frequency	$f_{\sf SPB}{\sf SR}$	-	-	100	MHz
FSI2 frequency	$f_{\sf FSI2}\sf SR$	-	-	300	MHz
FSI frequency	$f_{\sf FSI}{\sf SR}$	20	-	100	MHz
GTM frequency	$f_{\sf GTM}{\sf SR}$	-	-	200	MHz
STM frequency	$f_{\sf STM}{\sf SR}$	-	-	100	MHz
ERAY frequency	$f_{\sf ERAY}{\sf SR}$	-	80	-	MHz
BBB frequency	$f_{\mathtt{BBB}}\mathtt{SR}$	-	-	150	MHz
VADC frequency	$f_{\sf ADC}{\sf SR}$	-	-	160	MHz
ASCLIN Operating Frequency	$f_{ASCLINx}SR$	-	-	200	MHz
CAN frequency	$f_{\sf CAN}{\sf SR}$	-	-	80	MHz
I2C frequency	$f_{\rm I2C}$ SR	-	-	100	MHz
Operating MSC Frequency	$f_{MSC}SR$	-	-	200	MHz
PLL1 output frequency from PER PLL	f _{PLL1} SR	50	-	320	MHz
PLL2 output frequency from PER PLL	$f_{\mathtt{PLL2}}\mathtt{SR}$	25	-	200	MHz
QSPI Frequency	$f_{\sf QSPI}\sf SR$	-	-	200	MHz
ADAS clock frequency	$f_{\sf ADAS}$ CC	200	-	300	MHz
MCANH frequency	f_{MCANH} CC	-	-	100	MHz
GETH frequency	f_{GETH} CC	150	-	200	MHz
EBU operating frequency	$f_{EBU}SR$	-	-	160	MHz

→ only TC39x

TC3xx Clock Restrictions CCU Clock Options

CCU Clock Output	Clock Source									
	System PLL	Peripheral PLL	Peripheral PLL	Back-up (f _{BACK})	OSC_XTAL					
	(f _{PLLo})	(f _{PLL1})	(f _{PLL2})		(f _{osco})					
f _{SRI}	✓	_	-	Default	-					
f _{CPUx}	f _{SRI}	_	_	-	-					
f _{SPB}	✓	_	-	Default	-					
f _{FSI}	f _{SRI}	_	_	_	_					
f _{FSI2}	f _{SRI}	_	_	_	_					
f _{REFCLK1}	✓	_	_	Default	-					
f _{REFCLK2}	_	✓	_	Default	_					
f _{BBB}	✓	_	_	Default	-					
f _{ERAY}	_	✓	_	_	_					
f _{GTM}	✓	_	_	Default	-					
f _{STM}	✓	_	-	Default	-					
f _{MSC}	_	✓	✓	Default	-					
f _{GETH}	✓	_	_	Default	✓					
f _{ADAS}	✓	_	_	Default	✓					
f _{MCANH}	✓	_	_	Default	✓					
f _{MCAN}	_	✓	_	Default	✓					
f _{asclinf}	_	_	✓	Default	_					
f _{ASCLINS}	_	✓	_	Default	✓					
f _{QSPI}	_	✓	✓	Default	-					
f _{ADC}	_	✓	-	Default	-					
f _{I2C}	-	-	✓	Default	-					
f _{EBU}	_	✓	-	Default	-					
f _{HSPDM_160}	-	✓	-	Default	-					
f _{HSPDM_320}	_	✓	-	Default	_					

TC3xx Clock Restrictions CCU allowed Clock Ratios

Clock A	Clock B	Allowed Ratios	Notes	Recommended Default
f_{SRI}	f_{SPB}	1:n	n = 1, 2, 3, 4, 5, 6,	n = 2 or 3
f_{SRI}	f _{FSI}	1:n	n = 1, 2, 3	n=2 or 3
f _{SRI}	f _{FSI2}	1:n	n = 1, 2, 3	n = 1
f _{FSI2}	f _{FSI}	1:n	n = 1, 2, 3	n = 2 or 3
f _{FSI}	f _{SPB} /2 ¹⁾	1:n	n = 1, 2, 3, 4, 5, 6,	n = 2
f_{GTM}	f_{SPB}	1:n	n = 1, 2	n = 2
f _{SPB}	f_{GTM}	1:n	n = 1, 2, 3, 4, 5, 6	n = 2
f _{SPB}	f_{STM}	1:n ²⁾	n = 1, 2, 3, 4, 5, 6	n = 1
f _{STM}	f_{SPB}	1: n ²⁾	n = 1, 2, 3, 4, 5, 6,	n = 1
f_{SRI}	f _{BBB} ³⁾	1:n	n = 1, 2	n = 2
f _{SRI}	f_{GETH}	1:n	n = 1, 2, 3, 4, 5, 6,	n = 2
f _{SPB}	f _{MCANH}	1:n	n = 1 ⁴⁾	n = 1
f _{MCANH}	f _{MCAN}	1: n ⁵⁾	n >= 1.0	n = 1.0
f _{ADAS}	f_{SRI}	1:n	n = 1, 2	n = 1
f _{ADAS}	f_{BBB}	1:n ⁶⁾	n = 2	n = 2

- 1) for FSI module, SPBhalf clock is internally used, hence relevant for clock ratios
- 2) f_{STM} can be faster, slower, or equal to f_{SPB}
- 3) f_{BBB} has to be slower, or equal to f_{SRI}
- 4) restriction only valid when not in pretended networking / LP mode
- 5) n is not an integer as the related clocks are asynchronous to each other
- 6) $f_{\rm BBB}$ has to be half the SPU frequency $f_{\rm ADAS}$

Note:

Recommended values did not necessarily reflect the default configuration after a reset event. Instead they should give a hint how to configure the system for an optimal performance. In addition, it may happen that applying an allowed ratio on two selected clocks violates the ratio of others. Due to its complexity, this cannot be shown here in all combinations. The user has to take care not to violate clock ratios depending on the use case, i.e. enabled clocks.

Example of a Clock Ramp-up Sequence (I)

- ☐ The example below shows one possibility to initialize the clock system with a XTAL1 input frequency of 20MHz
 - System PLL is set to
 - f_{SOURCE0} = 300MHz (CPU frequency)
 - Peripheral PLL is set to
 - f_{SOURCE1} = 160MHz (ADC frequency)
 - $f_{SOURCE2} = 200MHz$

Example of a Clock Ramp-up Sequence:

- enable crystal oscillator and wait for reliable XTAL1 clock
- select f_{BACK} as CCU input clock
- select f_{OSC0} (f_{XTAL1}) as SYS-PLL and PER-PLL input clock
- initialize System PLL:
 - start System PLL and wait 1ms
 - $P_{SYS} = 1$, $N_{SYS} = 30$ ($f_{DCO} = 600MHz$), $K2_{SYS} = 6$ ($f_{PLLO} = 100MHz$)
 - wait for lock

infineon

Example of a Clock Ramp-up Sequence (II)

- initialize Peripheral PLL:
 - start Peripheral PLL and wait 1ms
 - $P_{PER} = 1$, $N_{PER} = 32$ ($f_{DCO} = 640MHz$), $K2_{PER} = 2$ ($f_{PLL1} = 320MHz$)
 - DIVBY=0, $K3_{PER} = 2 (f_{PLL2} = 200MHz)$
 - wait for lock
- > set CCUCONx to desired values
- switch CCU input clocks f_{SOURCE0/1/2} to f_{PLL0/1/2} via CCUCON0.CLKSEL
- \triangleright set K2_{SYS} = 4 (f_{SOURCE0} = 150MHz
- \succ Wait $\sim 100 \mu s$ (wait until supply ripple caused by increased supply current is faded away)
- \triangleright set K2_{SYS} = 3 (f_{SOURCE0} = 200MHz
- \succ Wait $\sim 100 \mu s$ (wait until supply ripple caused by increased supply current is faded away)
- \gt set K2_{SYS} = 2 (f_{SOURCE0} = 300MHz
- \succ wait $\sim 100 \mu s$ (wait until supply ripple caused by increased supply current is faded away

TC389 AA-EES: Clock Ramp-up Sequence Typical Supply Current Idd @ Clock Ramp-up

Watchdog timers

- One Safety Watchdog Timer
- One Watchdog Timer per CPU

WDT Block Diagram

Safety and CPU Watchdogs Enhanced Software Flow Control monitoring

- > Safety watchdog is an overall system level watchdog.
- > Individual CPU watchdog monitors the individual CPU execution threads.
- > Challenge Response watchdog service through rolling seed value based on
 - Automatic Password sequencing based on a 14 bit Fibonacci LFSR
 - Temporal Password with actual time stamp or WDT count estimate
- Watchdog interface via pin or SPI to the external monitor

Watchdog Timer Block

- The Watchdog Timer block controls two functions:
 - EndInit protection: it is a a system wide protection that protects key registers from unwanted write access.
 - Watchdog Timer function: it is a 16 bit timer. It can be disabled.
- Configuration options are available which enable a Watchdog service to additionally check code execution sequence and intermediate code execution time.
 - If these checks are enabled then any incorrect sequence or out-of-limit execution time will also result in a Safety Management Unit (SMU) alarm request.

Endinit Protection

Endinit protection is the write protection mechanism of key system registers

- Endinit type
 - "CEy"- CPU critical registers. Writeable only when CPUy WDT ENDINIT=0 (y=CPU number)
 - "E" System critical registers Writeable when any (one or more) CPUy Watchdog Timer ENDINIT=0 or EICON0.ENDINIT =0
 - "SE" Safety critical registers Writeable only when Safety Watchdog Timer ENDINIT=0 or SEICON0.ENDINIT=0
- It can only be temporarily disabled via a complex access sequence to a WDT control registers
- The clearing of the ENDINIT bit takes some time.
 - Accesses to EndInit-protected registers after the clearing of the ENDINIT bit must only be done when bit ENDINIT is really cleared.
 - WDT_CON0 (the register with the ENDINIT bit) should be read back once before EndInit-protected registers are accessed the first time after bit ENDINIT has been cleared.

ENDINIT Control Registers

Endinit Protected Registers(examples)

Short Name	Long Name	Offset	Access	Mode			Reset	Page
		Address	Read	Wr	ite			Number
OSCCON	OSC Control Register	0010 _H	U,SV	SV,	,SE	,P0	See page 6	6
SYSPLLSTAT	System PLL Status Register	0014 _H	U,SV	BE			See page 13	13
SYSPLLCON0	System PLL Configuration 0 Register	0018 _H	U,SV	SV,	,SE	,P0	System Reset	14
SYSPLLCON1	System PLL Configuration 1 Register	001C _H	U,SV	SV,	,SE	,P0	System Reset	15
SYSPLLCON2	System PLL Configuration 2 Register	0020 _H	U,SV	SV,	,SE	,P0	System Reset	16
PERPLLSTAT	Peripheral PLL Status Register	0024 _H	U,SV	BE			System Reset	19
PERPLLCON0	Peripheral PLL Configuration 0 Register	0028 _H	U,SV	SV,	,SE	,P0	System Reset	20
PERPLLCON1	Peripheral PLL Configuration 1 Register	002C _H	U,SV	SV,	,SE	,P0	System Reset	21
CCUCON0	CCU Clock Control Register 0	0030 _H	U,SV	SV,	,SE	,P0	See page 27	27

Watchdog Timer

Key Features:

- 16 bit counter
- Selectable input frequency: fsys/64, fsys/256 or fsys/16384
- User definable reload value
- Complex password access mechanism
- Access error detection and overflow error detection triggers
 - SMU alarm
 - Interrupt or NMI
 - Reset or stop CPU
- Double reset detection (for safety WDT only)

Watchdog Timer: Operation Overview .

Watchdog Timer: Operation Overview .

- 1 Time-Out Mode is automatically entered after reset.
 - Timer counts with slowest input clock.
- 2 Time-Out Mode terminated and Normal Mode is entered
 - Correct password access to WDT_CON0
 - Modify access to WDT_CON0 sets the reload value to REL_1 and ENDINIT to 1

Watchdog Timer: Operation Overview .

- 3 Correct password access to WDT_CON0.
 - Normal Mode is terminated and Time-Out Mode is entered
- Modify access to WDT_CON0
 - ENDINIT set to 1
 - The reload value WDTREL has been changed to REL_2 and the timer input clock was set to the fast clock.
 - Time-Out Mode is terminated and Normal Mode entered again

Watchdog Timer: Operation Overview

- (5) If the Watchdog Timer is not serviced
 - It continues to count upwards until it overflows
 - SMU Alarm Mode is entered. Timer counts with selected fast input clock. Watchdog operation cannot be altered or stopped in this mode.

Access WDT_CON0

- In order to modify WDT_CON0, two write accesses are needed:
 - A password access to unlock WDT_CON0.
 - A valid password access is based on the present value of WDT_CON0, the value of WDT_CON1 and some guard bits.
 - A modify access to modify WDT_CON0 (e.g. to remove EndInit protection).
 - During the modify access, guard bits are also implemented.

Access WDT_CON0(cont.)

Password Access

Table 429 Password Access Bit Pattern Requirements

Bit Position	Required Value
[1:0]	Fixed; must be written to 01 _B
[15:2]	If PAS=0: WDTxCON0.PW[7:2] must be written with inverted current value read from WDTxCON0.PW[7:2]
	WDTxCON0.PW[15:8] must be written with non-inverted current value read from WDTxCON0.PW[15:8]
	If PAS=1:
	Must be written with Expected Next Sequence Password
[31:16]	If TCS=0: Must be written with current value of user-definable reload value, WDTxCON0.REL If TCS=1:
	Must be written with inverted estimate of the WDT count value, WDTxSR.TIM. This value must be within +/- WDTxSR.TCT of the actual value

Access WDT_CON0(cont.)

Modify Access

Table 431 Modify Access Bit Pattern Requirements

Bit Position	Value
0	User-definable; desired value for bit WDTxCON0.ENDINIT.
1	Fixed; must be written with 1 _B .
[15:2]	User-definable; desired value of user-definable password field, WDTxCON0.PW.
[31:16]	User-definable; desired value of user-definable reload value, WDTxCON0.REL.

Access WDT_CON0 (cont.)

- When a valid password access is performed, WDT_CON0 is unlocked only for a short period of time (Time-Out mode).
 - Time Out mode can only be exited after a valid modify access that sets EndInit to 1.
 - After a valid modify access, WDT_CON0 is automatically locked again.
- If either an invalid password or modify access is performed, the register WDT_CON0 remains unchanged and the Watchdog timer enters the Pre-Warning Mode and eventually triggers a reset.
 - This protection scheme makes it very unlikely that WDT_CON0 is incorrectly modified.

State Diagram of the Modes of the WDT

Part of your life. Part of tomorrow.

