### OVERSAMPLING: SMOTE

- SMOTE creates synthetic instances of minority class.
  - Interpolate between neighboring minority instances.
- Instances are created in  $\mathcal X$  rather than in  $\mathcal X \times \mathcal Y$ .

  Algorithm: For each minority class instance:

# Sam & Find its k nearest minority neighbors.

- Randomly select one of these neighbors.
- Randomly generate new instances along the lines connecting the minority example and its selected neighbor.
  - Understand the state-of-art oversampling technique SMOTE



## SMOTE GENERATING NEW EXAMPLES

- Let  $\mathbf{x}^{(i)}$  be the feature of the minority instance and let  $\mathbf{x}^{(j)}$  be its
- nearest neighbor. The line connecting the two instances is
- Instances ar(1creal) x (i) that a there is than to \( x \times y \), x(i)
- where thr∈ (0, 1) ach minority class instance:
- By sampling a λ ∈ [0,1] say λ, we create a new instance
  - Randomly selection \( \sigma \) (\( \frac{1}{2} \)) \( \text{hqs} \( \frac{1}{2} \) (\( \frac{1}{2} \)) (\( \frac{1} \)) (\( \frac{1} \)) (\( \frac{1}{2} \)) (\( \frac{1} \)) (\( \frac{1} \)) (\( \frac{1}

Example: Let  $\mathbf{x} = (1, 2)^{\text{properties}}$  and  $\mathbf{x} = (3, 1)^{\text{properties}}$ . Assume  $\lambda \approx 0.25$ . the minority example and its selected neighbor.





### SMOTE: VISUALIZATIONEW EXAMPLES

For an imbal anced data situation, take four instances of the minority class. Let K ==2 be the number of meanest neighbors stances is

5. 
$$(1 - \lambda)\mathbf{x}^{(i)} + \lambda\mathbf{x}^{(j)} = \mathbf{x}^{(i)} + \lambda(\mathbf{x}^{(j)} - \mathbf{x}^{(i)})$$
 where  $\lambda \in [0, 1]$ .

• By sampling a  $\lambda \in [0,1]$ , say  $\tilde{\lambda}$ , we create a new instance

$$\tilde{\mathbf{x}}^{(i)} = \mathbf{x}^{(i)} + \tilde{\lambda} (\mathbf{x}^{(j)} - \tilde{\mathbf{x}}^{(i)})^{\text{Minority instance}}$$

Example: Let  $\mathbf{x}^{(i)} = (1, 2)^{\top}$  and  $\mathbf{x}^{(j)} = (3, 1)^{\top}$ . Assume  $\tilde{\lambda} \approx 0.25$ .









































# SMOTE: VISUALIZATION CONTINUED

After 100 literations of SMOTE for  $K \approx 2$  we get notes of the minority class. Let K = 2 be the number of nearest neighbors.





# SMOTE: VISUALIZATION CONTINUED

After 100 iterations of SMOTE for K = 3 we get:





#### SMOTE: EXAMPLEATION CONTINUED

After Iris data set with 3 classes and 50 instances per class.

Make the data set "imbalanced": relabel one class as positive relabel two other classes as negative Original iris Data SMOTE'd iris Data (k=5) SMOTE'd iris Data (k=1) Species a common a rare Species e common e rare SMOTE enriches minority class feature space.



### SMOTE: DIS-/ADVANTAGES

- Generalize decision region for minority class instead of making it
- quite specific such as by random oversampling.
- Well-performed among the oversampling techniques and is the basis for many oversampling methods: Borderline-SMOTE, LN-SMOTE, ... (over 90 extensions!)
- Prone to overgeneralizing as it pays no attention to majority class.



SMOTE enriches minority class feature space.



#### COMPARISON OF SAMPLING TECHNIQUES

- Compare different sampling techniques on a binarized version of Optdigits dataset for optical recognition of handwritten digits.
- Use random forest with 100 trees; 5 föld cv, and Fe Score the basis for many oversampling methods: Borderline SMOTE, Sampling technique Class ratio F1-Score LN-SMOTE, (over 90 extensions!)

| • | Prone to overgeneralizing as it pays n<br>Undersampling | o attention | 0.9239 to majority class. |
|---|---------------------------------------------------------|-------------|---------------------------|
|   | Undersampling                                           | 0.68        | 0.9538                    |
|   | Oversampling                                            | 0.69        | 0.9538                    |
|   | SMOTE                                                   | 0.79        | 0.9576                    |



- Sampling techniques outperform base learner.
- · SMOTE leads sampling techniques, although by a small margin.



#### **COMPARISON OF SAMPLING TECHNIQUES**

- Compare different sampling techniques on a binarized version of Optdigits dataset for optical recognition of handwritten digits.
- Use random forest with 100 trees, 5-fold cv, and F<sub>1</sub>-Score.

| Sampling technique | Class ratio | F1-Score |
|--------------------|-------------|----------|
| None               | 0.11        | 0.9239   |
| Undersampling      | 0.68        | 0.9538   |
| Oversampling       | 0.69        | 0.9538   |
| SMOTE              | 0.79        | 0.9576   |

- Class ratios could be tuned (here done manually).
- Sampling techniques outperform base learner.
- SMOTE leads sampling techniques, although by a small margin.

