Data Mining

CS57300 Purdue University

Bruno Ribeiro

January 22, 2018

Differences Between Classification & Prediction

- Classification
 - Observing feature x predict discrete-valued label y
- Prediction (point estimate)
 - Observing feature x predict of real-value label y
 - Forecasting: predictions + confidence intervals
- Ranking prediction (rank estimate)
 - Predict item ranking
 - E.g.: Google results, Netflix recommendations

Predictive modeling

- Data representation:
 - Training set: Paired attribute vectors and labels < y(i), x(i) > or
 n×p tabular data with label (y) and p-1 attributes (x)
- Task: estimate a predictive function $f(x;\theta)=y$
 - Assume that there is a function y=f(x) that **maps** data instances (x) to labels (y)
 - Construct a model that approximates the mapping
 - Classification: if y is categorical
 - Regression: if y is real-valued

Modeling approaches

Learning predictive models

- Choose a data representation
- Select a knowledge representation (a "model")
 - Defines a **space** of possible models $M=\{M_1, M_2, ..., M_k\}$
- Use search to identify "best" model(s)
 - Search the space of models (i.e., with alternative structures and/or parameters)
 - Evaluate possible models with scoring function to determine the model which best fits the data

Scoring functions

- Given a model M and dataset D, we would like to "score" model M with respect to D
 - Goal is to rank the models in terms of their utility (for capturing D) and choose the "best" model
 - Score function can be used to search over *parameters* and/or *model structure*
- Score functions can be different for:
 - Models vs. patterns
 - Predictive vs. descriptive functions
 - Models with varying complexity (i.e., number parameters)

Predictive scoring functions

- Assess the quality of predictions for a set of instances
 - Measures difference between the prediction M makes for an instance i and the true class label value of i

Predictive scoring functions

- Common score functions:
 - · Zero-one loss

$$S_{0/1}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I[f(x(i); M), y(i)]$$

where
$$I(a,b) = \begin{cases} 1 & a \neq b \\ 0 & \text{otherwise} \end{cases}$$

Squared loss

$$S_{sq}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} \left[f(x(i); M) - y(i) \right]^2$$

Careful with definition of class labels! Why?

- More later...
- Do we minimize or maximize these functions?

Scoring functions

- Guide search inside of algorithms
 - Select path in heuristic search
 - Decide when to stop
 - Identify whether to include model or pattern in output
- Evaluate results outside of algorithms
 - Measure the absolute quality of model or pattern
 - Compare the relative quality of different algorithms or outputs

Where's the search?

Find Parameters that Minimize Model Score (Error)

Usually we maximize (- score)

Searching over models/patterns

- Consider a **space** of possible models $M = \{M_1, M_2, ..., M_k\}$ with parameters θ
- Search could be over model structures or parameters, e.g.:
 - **Parameters**: In a linear regression model, find the regression coefficients (β) that minimize squared loss on the training data
 - Model structure: In a decision trees, find the tree structure that maximizes accuracy on the training data

Optimization over score functions

Smooth functions:

- If a function is *smooth*, it is differentiable and the derivatives are continuous, then we can use gradient-based optimization
 - If function is *convex*, we can solve the minimization problem in closed form: $\nabla S(\theta)$ using **convex optimization**
 - If function is smooth but non-linear, we can use iterative search over the surface of S to find a local minimum (e.g., hill-climbing)

Non-smooth functions:

 If the function is discrete, then traditional optimization methods that rely on smoothness are not applicable. Instead we need to use combinatorial optimization Linear Methods for Classification

Motivation 1/2

- Given x features of a car (length, width, mpg, maximum speed,...)
- Classify cars into categories based on x

small car rentals >

compacts economy car rentals

medium car & SUV rentals >

Coupes Sedans intermediate SUV rentals

large car & SUV rentals >

standard SUVs premiums luxury car rentals

fuel efficient & hybrid >

Green car rentals

reservable models >

high occupancy car rentals >

12-passenger vans mini vans premium SUV rentals

Corvettes Infinitis BMWs & more

Motivation 2/2

- A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?
- An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.
- On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.

Linear Discriminant Function (Two Classes)

- Two classes
- x is a D-dimensional real-valued vector (set of features)
- y is the car class

$$y_c = \begin{cases} 1 & \text{, if car } c \text{ is "small"} \\ -1 & \text{, if car } c \text{ is "luxury"} \end{cases}$$

Find linear discriminant weights w

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

• Score function is the **squared error**

$$\sum_{c \in \text{TestDataCars}} (y_c - y(x_c))^2$$

Figure: C. Bishop

• Search algorithm: least squares algorithm

How to Deal with Multiple Classes?

Naïve Approach: one vs. many Classification

How to classify objects into multiple types?

$$y_c^{(1)} = \begin{cases} 1 & \text{, if car } c \text{ is "small"} \\ -1 & \text{, if car } c \text{ is "luxury"} \end{cases}$$

$$y_c^{(2)} = \begin{cases} 1 & \text{, if car } c \text{ is "small"} \\ -1 & \text{, if car } c \text{ is "medium"} \end{cases}$$

$$y_c^{(3)} = \begin{cases} 1 & \text{, if car } c \text{ is "medium"} \\ -1 & \text{, if car } c \text{ is "luxury"} \end{cases}$$

Might work OK in some scenarios... but not clear in this case

Using Least Squares for Multiple Classes (Solution)

Encoding the K Classes

$$\mathbf{I}_{K} = \left(egin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & \cdots & 1 \end{array}
ight)
brace K$$

- We start by encoding the classes as a one-hot binary coding scheme
- Class 3 is encoded as i_3 , the 3rd column of identity matrix I_K

Linear Function

• Assign item with features **x** to class k if $y_k(\mathbf{x}) > y_j(\mathbf{x})$, $\forall j \neq k$

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

• The decision boundary is a (D-1) dimensional hyperplane

$$(\mathbf{w}_k - \mathbf{w}_j)^{\mathrm{T}} \mathbf{x} + (w_{k0} - w_{j0}) = 0$$
 $y > 0$
 $y = 0$
 $y < 0$
 $y = 0$
 $y < 0$
 $y <$

Least Squares Solution in Matrix Form

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}}$$

where

$$\widetilde{\mathbf{W}} = \begin{bmatrix} w_{10} & \cdots & w_{k0} & \cdots & w_{K0} \\ \mathbf{w}_1^T & \cdots & \mathbf{w}_k^T & \cdots & \mathbf{w}_K^T \end{bmatrix}$$

and
$$\widetilde{\mathbf{x}} = (1, \mathbf{x}^T)^T$$

The least squares solution is

Pseudoinverse

$$\widetilde{\mathbf{W}} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T}$$

$$\widetilde{\mathbf{X}} = \begin{bmatrix} 1 & \cdots & 1 \\ \mathbf{x}_{1}^{T} & \cdots & \mathbf{x}_{n}^{T} \end{bmatrix}$$

$$\mathbf{T} = \left[i_{y_1}, \cdots, i_{y_n} \right]$$

One hot encoding of class y_1

Working with non-linearly separable data...

Linear Methods → Linear Boundaries?

Data from three classes, with linear decision boundaries

Linear boundaries in the five-dimensional space $\phi(\mathbf{x}) = (X_1, X_2, X_1 X_2, X_1^2, X_2^2)$

Linear inequalities in the transformed space are quadratic inequalities in the original space.

Tips

- Helps if $\phi_n = \phi(x_n)$ is binary, quantized or normalized
 - Example: if 1st feature $x_n(1)$ is age of user n, then
 - $\phi_n(1)$ could be indicator if $x_n(1)$ belongs to 1st quantile
 - $\phi_n(2)$ indicator whether $x_n(1)$ belongs to 2^{nd} quantile
 - •
- Useful to add interaction terms $\phi_h = \phi(x_n) \circ \phi(x_m)$, where "o" is the Hadamard product (or element-wise product)
 - XOR operator can be better than Hadamard product for binary variables.

Issues with Least Squares Classification

With square loss (score), optimization cares too much about reducing distance to boundary of well separable items...
...solution is to change the score function

Logistic Regression (for Classification)

- Back to two classes, C₁ and C₂
- Logistic regression is often used for two classes

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}\right)$$

where

$$\sigma(a) = \frac{\exp(a)}{1 + \exp(a)}$$
 Logistic function

and $\phi \equiv \phi(x)$

Transformation of feature vector (possibly non-linear)

But can be easily generalized to K classes

Finding Logistic Regression Parameters (binary classification)

- For a dataset $\{\phi_c,t_c\}$ where ϕ_c is transformed feature vector of car c, t_c \in $\{0,1\}$ is the class of car c \in TrainingDataCars
- The likelihood function over the training data is

$$p(\mathbf{t}|\mathbf{w}) = \prod_{c \in \text{TrainingDataCars}} y(\phi_c)^{t_c} (1 - y(\phi_c))^{1 - t_c}$$

where
$$\mathbf{t} = (t_1, \dots, t_N)^T$$
, $y(\phi_n) = \sigma(\mathbf{w}^T \phi_n)$

The log of the likelihood function (log-likelihood) is

$$\log p(\mathbf{t}|\mathbf{w}) = \sum_{c \in \text{TrainingDataCars}} t_c \log y(\phi_c) + (1 - t_c) \log(1 - y(\phi_c))$$

- To solve the above equation, we maximize the log-likelihood over parameters w
- The above equation is also described as cross-entropy loss, logistic loss, log loss, on Tensorflow, Sklearns, and pyTorch.

Solving Logistic Regression via Maximum Likelihood

The above equations give the following gradient

$$\nabla_{\mathbf{w}} \log p(\mathbf{t}|\mathbf{w}) = \sum_{c \in \text{TrainingDataCars}} (t_c - y(\phi_c))\phi_c = \mathbf{\Phi}^T(\mathbf{t} - \mathbf{y})$$

The logistic function has derivative

Exercise: what are the dimensions of **Φ**?

$$\frac{d}{da}\sigma(a) = \sigma(a)(1 - \sigma(a))$$

The second derivative (Hessian) is then (verify!)

$$\mathbf{H} = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$

where $R_c = y(\phi_c)(1 - y(\phi_c))$ and **H** is a positive definite matrix. Because **H** is positive definite the optimization is concave on **w** and has a unique maximum.

Iterative Update

The iterative parameter update is (Newton-Raphson)

$$\begin{split} \mathbf{w}^{(\text{new})} &= \mathbf{w}^{(\text{old})} - (\mathbf{\Phi}^{\text{T}} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\text{T}} (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^{\text{T}} \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^{\text{T}} \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\text{old})} - \mathbf{\Phi}^{\text{T}} (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^{\text{T}} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\text{T}} \mathbf{R} \mathbf{z} \end{split}$$

where \mathbf{z} is an N-dimensional vector with elements

$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\mathrm{old})} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t})$$

Training Logistic Regression with Data Selection Bias

- Let π_i be the probability of sampling example i in the training data
- We say a data sample is biased when π_i is **not** uniform
- Correcting for bias in the likelihood function:

$$\log p(\mathbf{t}|\mathbf{w}) = \sum_{c \in \text{TrainingDataCars}} \frac{1}{\pi_c} \left(t_c \log y(\phi_c) + (1 - t_c) \log(1 - y(\phi_c)) \right)$$

where C_c is the class of car c.

- Generally, it is a good idea to test training data for different weights
 - The weights can be used to protect against sampling designs which could cause selection bias.
 - The weights can be used to protect against misspecification of the model.
- Unbalanced datasets:
 - Suppose there are more males than females in dataset.
 What will happen to decision boundary? How to fix it?

Multiclass Logistic Regression (MLR)

- Consider K classes and N observations
- Let C_i be the class of the *i*-th example with feature vector ϕ_i

$$P(C_c = t_c | \phi_c) = \frac{\exp(\mathbf{w}_k^T \phi_c)}{\sum_{h=1}^K \exp(\mathbf{w}_h^T \phi_c)}$$
 a.k.a. **softmax**

• If we assume one-hot encoding of target variable t_c , the log-likelihood function is

$$\sum_{c \in \text{TrainingDataCars}} \sum_{k=1}^{K} t_{c,k} \log \frac{\exp(\mathbf{w}_k^T \phi_c)}{\sum_{h=1}^{K} \exp(\mathbf{w}_h^T \phi_c)}$$

$$= \sum_{c \in \text{TrainingDataCars}} \sum_{k=1}^{K} t_{c,k} \mathbf{w}_k^T \phi_c - \sum_{c \in \text{TrainingDataCars}} \log \sum_{h=1}^{K} \exp(\mathbf{w}_h^T \phi_c)$$