3D Mesh Crypto-Compression

HAI911I - PROJET IMAGE MASTER 2 IMAGINE

Sayamath Charles Emery Bourget-Vecchio

Sommaire

- Compression
- Chiffrage
- Analyse des résultats
- Démonstration

DÉFINITIONS

DÉFINITIONS

COMPOSITION D'UN MAILLAGE

- Un maillage est composé d'éléments géométriques différents :
 - o sommets
 - o arêtes
 - o faces
- Un maillage va être découpé en différentes catégories d'informations :
 - Connectivité : correspond aux relations entre les éléments du maillage permettant de le former
 - Géométrie : position géométrique de chaque sommet du maillage
 - Autres: couleurs, normales, textures, etc.

- Approche basé sur la valence
 - → Une des plus optimisé (3 bits par sommet)
- Expansion progressive d'une région initiale afin de conquérir tous les sommets du maillage

CONNECTIVITÉ

Principe:

- choix d'un triangle aléatoire représentant la frontière à étendre
- choix d'un sommet pivot dans la liste active
- parcourir ses arêtes non encodées dans le sens inverse des aiguilles d'une montre
- encoder la valence des sommets le long de chaque arête et les ajouter à notre frontière
- changement de sommet pivot quand notre sommet n'a plus d'arêtes non encodées

CONNECTIVITÉ

• **ADD <valence> :** le sommet n'a pas encore été encodé. Il est conquis puis le code add<valence> est écrit dans le fichier

- **ADD <valence> :** le sommet n'a pas encore été encodé. Il est conquis et ajouté dans la liste active. Le code add<valence> est écrit dans le fichier compressé.
- **SPLIT<offset> :** le sommet est déjà encodé et est contenue dans la liste active. Séparation de la liste active en deux à l'endroit du sommet. Le code split<offset> est écrit dans le fichier compressé.

- **ADD <valence> :** le sommet n'a pas encore été encodé. Il est conquis et ajouté dans la liste active. Le code add<valence> est écrit dans le fichier compressé.
- **SPLIT<offset> :** le sommet est déjà encodé et est contenue dans la liste active. Séparation de la liste active en deux à l'endroit du sommet. Le code split<offset> est écrit dans le fichier compressé.
- **MERGE<index><offset> :** le sommet est déjà encodé et est contenue dans une liste inactive de la pile. On fusionne cette dernière avec la liste active à l'endroit du sommet. Le code merge<index><offset> est écrit dans le fichier compressé.

CONNECTIVITÉ

Fichier compressé:

- Suite d'instructions add, split et merge
- Utilisées pour décompresser le maillage

QUANTIFICATION

- Chacun des sommets sont quantifiés:
 - → Normalisation des données entre [0;1]
 - → Multiplication des valeurs par un coefficient de quantification
 - ◆ 1024 = 12 bits
 - ♦ 512 = 11 bits
 - **♦** ...
 - → Conservation uniquement de la partie entière
- Donnés superflus supprimées + sommets codée sur moins de bits

QUANTIFICATION

QUANTIFICATION

PREDICTION

• Calcule de r, le vertex qui forme un parallélogramme avec le triangle

$$\mathbf{r}^{\mathbf{p}} = \mathbf{u} + \mathbf{v} - \mathbf{w}$$

Conservation de la différence entre r

pet r

COMPRESSION DE HUFFMAN

- Construction d'un arbre binaire
- Chaque feuille représente un élément du message à encodé
- Plus un élement est proche de la racine, plus il est fréquent
- A l'inverse, plus un élément est profond dans l'arbre, moins il est fréquent

RÉSUMÉ

RÉSULTAT

ANALYSES DES RÉSULTATS

ANALYSE DES RÉSULTATS

TAUX DE COMPRESSION POUR LA GÉOMÉTRIE

ANALYSE DES RÉSULTATS

TAUX DE COMPRESSION POUR LA GÉOMÉTRIE + CONNECTIVITÉ

DISTANCE DE HAUSSDORF

• Mesure la distance qui sépare deux sous-ensembles

 Plus grande distance entre un point d'un ensemble et le point le plus proche de l'autre ensemble.

ANALYSE DES RÉSULTATS

DISTANCE DE HAUSSDORF

DÉMONSTRATION

CONCLUSION