Sieć neuronowa - rozpoznawanie cyfr z bazy MNIST

Dawid Marszałkiewicz Piotr Matuszak

2016-05-30

Założenia projektu

Stworzenie sieci neuronowej w języku Python, rozpoznającej cyfry

Rysunek: Trzy pierwsze cyfry w bazie treningowej MNIST

Sieć neuronowa

Rysunek: Przykładowa sieć neuronowa

Neuron sigmoidalny

Neuron sigmoidalny

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in [0,1]$$

Neuron sigmoidalny

Rysunek: Wykres funkcji sigmoid

Propagacja do przodu

Przemnóż wejście X przez wagę w_i - Z

Propagacja do przodu

- Przemnóż wejście X przez wagę w_i Z
- \circ Zastosuj funkcję $\sigma(Z)$ A

Propagacja do przodu

- Przemnóż wejście X przez wagę w_i Z
- \circ Zastosuj funkcję $\sigma(Z)$ A
- A wyjście neuronu

Błąd

Rysunek: Definicja błędu

$$e = y - a$$

8 / 17

Funkcja kosztów

$$C(w) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

Wsteczna propagacja

Zmniejszanie błędu - Gradient Descend

Rysunek: Zasada działania metody Gradient Descend w dwóch wymiarach

Wprowadzić blok danych do nauki

- Wprowadzić blok danych do nauki
- Dla każdego przykładu:

- Wprowadzić blok danych do nauki
- Dla każdego przykładu:
 - Wykonać operację propagacji do przodu, obliczając wyjście kolejnych neuronów i podając je na wejścia neuronów po nich następujących (przejście po kolejnych warstwach).

- Wprowadzić blok danych do nauki
- Dla każdego przykładu:
 - Wykonać operację propagacji do przodu, obliczając wyjście kolejnych neuronów i podając je na wejścia neuronów po nich następujących (przejście po kolejnych warstwach).
 - Obliczyć błąd na wyjściu z sieci

- Wprowadzić blok danych do nauki
- Dla każdego przykładu:
 - Wykonać operację propagacji do przodu, obliczając wyjście kolejnych neuronów i podając je na wejścia neuronów po nich następujących (przejście po kolejnych warstwach).
 - Obliczyć błąd na wyjściu z sieci
 - Przeprowadzić wsteczną propagację błędu po sieci

- Wprowadzić blok danych do nauki
- Dla każdego przykładu:
 - Wykonać operację propagacji do przodu, obliczając wyjście kolejnych neuronów i podając je na wejścia neuronów po nich następujących (przejście po kolejnych warstwach).
 - Obliczyć błąd na wyjściu z sieci
 - Przeprowadzić wsteczną propagację błędu po sieci
- Zaktualizować wagi połączeń sieci

Usprawnienie nauki - Stochastic Gradient Descend

Polega na losowym wyborze z bazy treningowej n przykładów (mini batch) i korzystając z tylko części danych, uzyskiwać (dość dobrą) aproksymację gradientu funkcji kosztu.

Usprawnienie nauki - Stochastic Gradient Descend

Polega na losowym wyborze z bazy treningowej n przykładów (*mini batch*) i korzystając z tylko części danych, uzyskiwać (dość dobrą) aproksymację gradientu funkcji kosztu.

Stosując analogię "schodzenia w dół doliny" w każdym kroku wybieramy *mniej-więcej* dobrą drogę w dół, nie musi być ona tą najlepszą.

Overfitting

Szukanie minimum globalnego

Przykład

Tabela: Dane empiryczne zebrane do nauki sieci - przykład

Wejście		Wyjście
X_1	X_2	Y
0.2	0.4	0.3
0.6	1.0	0.8
0.1	0.5	0.3

Przykład

Rysunek: Sieć neuronowa dla danych z przykładu