College of

AD-A252 638

OCEANOGRAPHY

This document has been approved for public release and sale; its distribution is unlimited.

OREGON STATE UNIVERSITY

CTD Observations in the Coastal Transition Zone off Northern California from R/V Wecoma, July to August 1988

by
Jane Fleischbein
Richard E. Schramm
Adriana Huyer
P. Michael Kosro
Tim Cowles
Kevin Krefft
Clayton Paulson

Data Report 144 Reference 89-1 March 1989

Office of Naval Research N00014-87-K-0242 NR 083-102

REPORT	DOCUMENTATIO	N PAGE	_		Form Approved OMB No. 0704-0188					
1a REPORT SECURITY CLASSIFICATION Unclassified		16. RESTRICTIVE	MARKINGS							
2a. SECURITY CLASSIFICATION AUTHORITY		*	/AVAILABILITY OF		•					
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE		on unlimite		·•					
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)					
89-1 DR 144										
6a. NAME OF PERFORMING ORGANIZATION College of Oceanography Oregon State University	6b. OFFICE SYMBOL (If applicable)	1	onitoring orgai Naval Rese							
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP C	ode)	**************************************					
Oceanography Admin Bldg 104 Corvallis, OR 97331-5503		Arlingto	n, VA 2221	7						
8a. NAME OF FUNDING / SPONSORING	86 OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICAT	ION NUMBER					
ORGANIZATION Office of Naval Reasearch	(If applicable)	N00014-8	37-k-0242							
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBERS	TASK	WORK UNIT					
		NRO83	102	NO.	ACCESSION NO.					
11. THILE (Include Security Classification) CTD Observations in the Coas R/V Wecoma, July to August 1		Zone off No	orthern Cal	iforni	a from					
12 PERSONAL AUTHOR(S)			·· · · · · · · · · · · · · · · · · ·	D	1 0					
Fleischbein, J.; Schramm, R.E.;		,P.M.; COWTES			PAGE COUNT					
	v 88 ro Aug 88	89-3	Ki (<i>rear, month, t</i>	13.	242					
16. SUPPLEMENTARY NOTATION										
17. COSATI CODES	18. SUBJECT TERMS (C									
FIELD GROUP SUB-GROUP Hydrographic data, CTD data, mesoscale eddies, cold filaments, Central California Coast.										
Wecoma cruise W8807A part of the Coastal Trans a standard grid in the cobetween 37°N and 39.5°N the August; this cruise completed successful positions. Additional seconth side of the grid, a occupied four times in 19500 m. Temperature, sali measured at all stations. tabulations of data at se	was conducted ition Zone projastal transition hat was occupied the sixth ly; 68 of these tions were addend along the notation, light transity, light transity, light transity, light transity, report p	in late Julipect. CTD of point zone off ed repeatedly survey. As stations we at the somethern port sampling departments ion appresents ver	bservations northern Cay during Ju total of 8 ere at star uthwest corion of an ath at most nd fluoresctical profition; verti	s were alifornine, Julia 88 CTD address and alongsher at a cence where the cence where the cence where the plotter and the cence where the plotter and the cence where the cen	made over nia uly and stations grid nd the nore line ons was were ots and					
☑ UNCLASSIFIED/UNLIMITED ☐ SAME AS RI 22a. NAME OF RESPONSIBLE INDIVIDUAL	PT. DTIC USERS	Unclassifie 225 TELEPHONE (17) (503) 754-	d oxlude Area Code)	22c. OFF	ICE SYMBOL					
Dr. Adriana Huyer		(503) 754-	2108							

temperature, salinity and potential density anomaly (sigma-theta), and maps of temperature, salinity, potential density anomaly, and dynamic topography.

Wecoma cruise W8806B (28 June to 24 July 1988) completed 13 transects along the D-line making primarily microstructure and towed thermistor chain observations, but CTD observations were also made. A total of 51 CTD stations were completed. The vertical profile plots and standard depth listings of the CTD data are presented in this report.

CTD Observations in the Coastal Transition Zone off Northern California from R/V Wecoma, July to August 1988

by

Jane Fleischbein
Richard E. Schramm
Adriana Huyer
P. Michael Kosro
Tim Cowles
Kevin Krefft
Clayton Paulson

College of Oceanography Oregon State University Oceanography Admin Bldg 104 Corvallis, OR 97331-5503

> Data Report 144 Reference 89-1 March 1989

Office of Naval Research N00014-87-K-0242 NR 083-102

Accesi	on For	
DIIC	ouriced	
By Dict ib	ation/	
A	vailabinty (Codec
Dist	Avail ond Specia	•
A-1		

ABSTRACT

Wecoma cruise W8807A was conducted in late July and early August 1988 as part of the Coastal Transition Zone project. CTD observations were made over a standard grid in the coastal transition zone off northern California between 37°N and 39.5°N that was occupied repeatedly during June, July and August; this cruise completed the sixth survey. A total of 88 CTD stations were completed successfully; 68 of these stations were at standard grid positions. Additional sections were added at the southwest corner and the north side of the grid, and along the northern portion of an alongshore line occupied four times in 1987. Maximum sampling depth at most stations was 500 m. Temperature, salinity, light transmission and fluorescence were measured at all stations. This report presents vertical profile plots and tabulations of data at selected depths for each station; vertical sections of temperature, salinity and potential density anomaly (sigma-theta), and maps of temperature, salinity, potential density anomaly, and dynamic topography.

Wecoma cruise W8806B (28 June to 24 July 1988) completed 13 transects along the D-line making primarily microstructure and towed thermistor chain observations, but CTD observations were also made. A total of 51 CTD stations were completed. The vertical profile plots and standard depth listings of the CTD data are presented in this report.

ACKNOWLEDGMENTS

We are grateful to all those who participated in these cruises, and particularly to the master, crew and the marine technicians of the R/V Wecoma for their expert work on this cruise. This study is funded by the Office of Naval Research, contract number N00014-87-K-0242.

TABLE OF CONTENTS

	Page No.
Abstract	
Acknowledgments	
List of Figures and Tables	
Introduction	1
Sampling and Calibration Procedures	9
CTD Data Processing Procedures	18
Data Presentation	19
References	24
Vertical Sections	
W8806B	25
W8807A	33
Maps at Selected Depths	59
Profile Plots and Listings	
W8806B	89
W8807A	117
Transmission and Fluorescence Profile Plots and Listings	
W8806B	163
W8807A	191
Appendix	237

LIST OF FIGURES

BIST OF FIGURES	Page No.
Figure 1. The standard grid for repeated surveys of a portion of the coastal transition zone off northern California during summer 1988. Sections are lettered A through F from the coast, and positions along each line are numbered from 1 through 9 or more from north to south.	2
Figure 2. Ship's track during W8807A, R/V Wecoma, 27 July - 5 August 1988. Squares indicate the position of CTD stations.	2
Figure 3. Speed and direction of the wind vectors averaged over half-hour intervals for W8807A.	- 3
Figure 4. Sample-CTD conductivity differences plotted versus consecutive station number for cruises W8806A, W8806B and W8807A.	11
Figure 5. Overall averages, and the average plus and minus the standard deviation of temperature, salinity and density anomaly, calculated and displayed as a function of pressure for W8807A Stations 1-79.	22
Figure 6. Average T-S curve for W8807A Stations 1-79, and the average plus and minus the standard deviations of temperature and salinit calculated as a function of sigma-theta (intervals of $0.01~{\rm kg/m^3}$) and shown only for the density range covered by at least 10 stations. Dashed curves are lines of constant sigma-t.	ΞУ,
LIST OF TABLES	Page No.

		Page No
Table 1.	List of CTD stations occupied during W8806B.	4
Table 2.	List of CTD stations occupied during W8807A.	7
Table 3.	Results of $\underline{\text{in situ}}$ calibration samples, W8806B Stations 1-52 and W8807A Stations 1-88.	12
Table 4.	Calibration conversions for fluorescence voltage.	18
Table 5.	Stations edited during data processing.	20

INTRODUCTION

As part of the Coastal Transition Zone project, three ships conducted cruises off northern California in June, July and August 1988. Observations included a sequence of six surveys of a standard grid covering an area of about 150 by 150 km, repeated microstructure measurements along an alongshore section (the "D" Line") about 150 km from the coast, moored current measurements, satellite-tracked drifters and hydrographic observations along and across the drifter track (CTZ Group, 1387). The main purpose of this data report is to present and summarize the CTZ observations made during the sixth survey of the standard grid (Wecoma cruise W8807A). Results of the ancillary CTD stations made during the microstructure cruise (W8806B) are also presented.

Cruise Narrative for W8807A

This Wecoma cruise had two basic objectives: to recover four current meter moorings deployed in June 1988, and to make the sixth of a series of CTD and ADCP surveys of a standard grid in a portion of the Coastal Transition Zone (CTZ) off northern California; only the CTD data are presented here. The first survey was made by Wecoma during 18-27 June 1988 (Fleischbein et al., 1988). The intervening surveys were made by the R/V Thomas Washington (25 June to 2 July) and by the R/V Pt. Sur (6-12 July, 13-18 July, 21-27 July); these data will be presented elsewhere.

Wecoma departed Sausalito, California at 1100 PDT, 26 July 1988. We steamed directly to position D-10 at the southern end of the D-Line of the standard grid (Figure 1), arriving there in the evening of 26 July. Winds were moderate (Figure 3) and we began making CTD stations (Stations 1-5, Figure 2, Table 1) northward along the D-Line. Next morning the winds and sea state were still moderate, so we broke off CTD operations to recover moorings D5/6 and D4/5 that day. We resumed CTD work on the D-Line that evening, completing Stations 6-8 at positions D-5 through D-3. Although winds had picked up, the sea state was still moderate, so we again broke off CTD work to recover the two remaining moorings, D7/8 and D8/9. After recovering both of these, we steamed to A-12 to begin a complete survey of the standard grid.

We arrived at A-12 late evening on 28 July, and worked northward along the A-Line (Stations 9-20). On the basis of a very recent satellite image, we decided to add two additional stations farther north on the B-Line, but by the time we arrived at the most northern position (B-00 at 39°37.6′N, 125°3.2′W) it was too rough to make a CTD cast, and we deployed an XBT instead. We were barely able to make a CTD cast (Station 21) at B-0 and the weather improved considerably as we worked southward along the B-Line on 30 July. We began working northward along the C-Line from C-9 (Station 31) early on 31 July; winds increased gradually as we worked northward, reaching 24 knots at C-1 (Station 39). The D-Line was completed on 1 August, with wind speeds again decreasing from >20 kts in the northern portion to <10 kts at the southern stations (48 and 49 at D-9 and D-10). The E-Line and F-Line were completed on 2 and 3 August, with winds again stronger at the northern stations than at the southern stations. Since the shipborne ADCP had indicated that the main flow was along, rather than across, the D, E and F-

Figure 1. The standard grid for repeated surveys of a portion of the coastal transition zone off northern California during summer 1988. Sections are lettered A through F from the coast, and positions along each line are numbered from 1 through 9 or more from north to south.

Figure 2. Ship's track during W8807A, R/V Wecoma, 26 July - 5 August 1988. Squares indicate the position of CTD stations.

Figure 3. Speed and direction of the wind vectors averaged over half-hour intervals for \$8807A.

List of CTD stations occupied during W8807A, showing date, time, location, weather and sea state. Table 1.

Date	Time (UT)	Stn. No.	Stn. Name	Latitude (N)	Longitude (W)	Depth (m)	Wind Dir Spd	Atmos. Press.	Swell Dir Ht	.l Per	Air Dry	Temp
Jul 27	33 53 75 24 24	H 20 20 4 10		7 23. 7 35. 7 47. 7 58. 8 10.	24 23. 24 31. 24 39. 24 49. 24 57.	υυ4 ∞ο	50 50 57 50 50 2	013. 014. 015. 014.	00000			4444
28 29 29	23 52 52 54 54 50			8 22. 8 33. 8 45. 8 11.	25 05. 25 14. 25 23. 23 21.	32 63 67 18 18	45 2 45 2 38 3 3 10 2 14 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	017 018. 018. 014.	0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
ć	0705 0905 11066 1432 1634 1728 1943 2239	11111111111111111111111111111111111111	A A - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	38 10.0 38 31.6 38 32.9 38 32.9 38 56.2 39 20.8 39 20.8	123 361 123 36.3 123 36.3 123 45.4 124 02.0 124 02.0	569 187 187 150 1406 167 1157	314 30 311 26 330 27 335 20 335 20 337 24 330 20	1014.7 1014.2 1014.2 1014.2 1015.0 1015.4	320 320 320 320 320 320 320 88 88 90 90	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 w w w w w w w 4 c	
On 1	31 31 31 31			8 8 8 9 9 4 6 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24 15. 24 46. 24 37. 24 29. 24 20.	4488794	35 3 445 3 445 3 440 3 60 2 00 1 calm	012. 012. 013. 015. 014.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			00000000
31	10000000000000000000000000000000000000		1 1 1 1 1 1	8 18. 8 06. 7 55. 7 43. 7 39. 7 51. 8 03. 8 14.	24 03. 23 55. 23 46. 24 05. 24 22. 24 30. 24 39.	7047748084	0549040409	013. 015. 015. 016. 016. 016. 016.	000000000000000000000000000000000000000		14.5 113.9 115.7 115.7 114.1 114.1 113.3	12.7 12.8 12.8 14.1 13.0 12.7 12.5 12.5

Table 1. (continued)

Temp	6 12.9	13.	13.	13.	13.	12.	13.	13.	12.	12.	12.	13.	13.	13.	13.	13.	13.	13.	14.	13.	13.	13.	14.	14.	14.	14.	13.	13.	13.	12.	13.	12.	12.	13.
Air Dry	14.6	വ	ы.	ت	4.	4.	4.	5	4.	4.	4.	4.	5	4.	4.	ك	4.	5	ت	5	5.	5	7.	9	ъ.	5	<u>ي</u>	5	4.	ش	4.	4.	4.	•
Swell Dir Ht Per	330 7 9	40 10	40 10	40 10	45 10	50 8	50 8	40 8	40 8	40 8	30 7	30 6 1	30 7	40 8	40 9	40 9	40 9	6 09	50 10	50 10	50 10	50 10	50 9	55 8	55 8	55 7	55 7	55 6	55 6	55 6	50 6	55 6	00 5	50 5
Atmos. Press.	1017.2	015.	016.	016.	015.	014.	014.	014.	014.	013.	013.	013.	013.	012.	012.	013.	013.	012.	012.	013.	014.	015.	015.	014.	014.	014.	014.	014.	014.	014.	014.	016.	016.	017.
Wind Dir Spd	350 16	10 2	55 2	55 2	52 2	55 2	55 2	00 2	45 2	55 1	58	10	50 1	05 2	00 2	50 2	50 2	55 2	05 2	00 2	00 2	57 2	15 2	00 2	00	10 2	15 2	20 2	20 1	30	eak	2		20
Depth (m)	3510	12	62	73	67	62	81	89	97	94	95	66	18	14	14	60	92	90	98	07	90	02	21	21	26	28	23	21	26	26	26	28	22	18
Longitude (W)	124 56.5	25 13.	25 40.	25 31.	25 23.	25 14.	25 05.	24 57.	24 48.	24 40.	24 31.	24 23.	24 49.	24 57.	25 06.	25 15.	25 24.	25 32.	25 41.	25 50.	25 58.	26 07.	26 33.	26 25.	26 17.	26 08.	26 01.	25 51.	25 42.	25 33.	25 24.	25 15.	25 02.	24 49.
Latitude (N)	38 49.1	9 11.	9 09.	8 57.	8 45.	8 34.	8 22.	8 10.	7 59.	7 44.	7 35.	7 23.	7 19.	7 31.	7 43.	7 55.	8 07.	8 18.	8 30.	8 42.	8 54.	906	9 03.	8 51.	8 39.	8 27.	8 15.	8 03.	7 51.	7 39.	7 27.	7 15.	7 17.	7 19.
Stn. Name	C-3	1	-	-	1	1	- 1	1	1	•	1	- 1	7	- 1	1	- 1	-	1	-	1	•	-	1	1	1	1	1	ı	-	-	•	1	Ľ,	1
Stn No.	37	36	40	41	42	43	44	45	46	47	48	49	20	51	25	53	54	52	26	22	28	59	09	61	62	63	64	65	99	67	68	69	70	71
Time (UT)	2117	10	44	64	83	01	20	35	54	73	92	12	34	15	40	62	83	04	30	51	74	00	24	04	22	42	61	80	95	14	33	52	72	82
Date	Jul 31	Aug 1	•											7										٣										

Table 1. (continued)

Date	Time (UT)	Stn. No.	Stn. Name	Time Stn. Stn. Latitude (UT) No. Name (N)	de Longitude (W)	Depth (m)	Wind Dir Spd	Atmos. Press.	Swell Dir Ht	Per	Air Dry	Temp
Aug 3	3	72	DE-10	7 21.	4 36.	7	145 4		40		7.	
	0	73	D-10	7 23.	4 22.	66	220 1		40		ω.	5.
	4	74	CD-10	7 25.	4 09.	76	calm		30		7.	5
4	0	75	B-0	9 26.	4 54.	90	weak var		10		4.	ش
	4	92	BC-0	9 24.	5 08.	01	325 4		30		4.	ω,
	1625	11	0 - 0	39 23.0	125 21.6	3371	- \n/w	1017.1	330 5	თ	14.0	12.9
	\vdash	78	CD-0	9 21.	5 35.	68	- N/W		30		4.	3.
	S	79	D-0	9 20.	5 49.	79	258 6		30		5	4.
ស	3	80		9 32.	5 10.	29	- N/M		20		4.	3.
	3	81		9 46.	5 20.	28	- \n/\m		20		4	د
	3	82		00 0	5 29.	97	- V/W		20		5	щ
	3	83		0 15.	5 29.	27	calm -		20		ري	ش
	2	84		0 30.	5 30.	83			20		4.	3
	2	82		0 45.	5 30.	98	20		20		3.	2
	\vdash	86		1 00.	5 30.	07	030 10		00		2	ä
	\vdash	87		15.	5 30.	10	020 4		30		•	Ę.
	0	88		1 29.	5 30.	60	335 9		30		•	12.0

List of CTD stations occupied during W8806B, showing date, time, location, weather and sea state. Table 2.

'	Sec)	œ	ω	7	7	ω	7	œ	7	9	7	7	7	7	9	9	œ	9	7	7	7	7	œ	9	9	9	ស	7	7	7	7	თ	7
Swel.	ft)	σ	9	9	9	9	വ	വ	10	σ	σ	σ	σ	σ	σ	σ	7	7	ω	10	σ	10		വ	വ	₹,	4	9	9	വ	S	വ	9
•	(T) (T)	~	က	2	2	3	$^{\circ}$	က	4	S	S	S	S	S	Ω	4	4	က	2	4	Ω	4	4	~	2	\sim	\sim	က	$^{\circ}$	0	300	0	7
Atmos	Press.	014.	014.	014.	015.	015.	016.	017.	016.	015.	015.	015.	014.	014.	013.	014.	015.	015.	018.	018.	015.	012.	014.	018.	019.	018.	017.	018.	017.	018.	1018.7	018.	02
•	(°T) (Kts)	30 2	30 2	20 1	10	25	25 1	30 1	34 2	35 2	40 2	30 2	25 2	25 2	40 2	30 1	30 2	35 1	45 2	40 2	30 2	25 2	30 2	20 1	10	15 1	30 1	15 1	35 1	00 1	300 10	35	30 2
,	Deptn (m)	93	73	01	01	04	4396	00			50	80	91	48	3533	96	00	01	91	93	00	98		3680	95								
4	Longitude (°W)	.30.	28.	45.	47.	52.	55.	23.	31.	23.	15.	05.	57.	49.	40.	31.	23.	23.	59.	18.	23.	23.	31.	22.	31.	16.	31.	14.	31.	13.	13.2	31.	13.
; ;	rong							$^{\circ}$	2	2	7	2	2	\sim	0	2	~	7	2	2	2	2	$^{\circ}$	\sim	\sim	2	$^{\circ}$	2	$^{\circ}$	2	125	2	2
	(°N)		0	4.	2	ж •	2	ش	7.	5	4.	۲,	0	6	7.	<u>.</u>	ش	4.	ij	7.	ж •	÷	<u>ي</u>	<u>ي</u>	<u>ي</u>	9	<u>ي</u>	4.	<u>ي</u>	2	32.8	ე.	1.
	Lati																														38		
	stn. Name	D-9						1	ı	1	ĺ	1	1	1	D-8	ŀ	Ţ	٦	Ţ		1	D-10	1	ı			D-9			D-4	D-4		1
	Stn No.	-	7	ო	4	വ	9	7	∞	σ																					31		
	(UT)	74	51	54	90	21	64	55	35	25	42	9	81	01	20	35	54	04	61	32	50	10	02	31	30	54	31	43	31	42	0512	31	43
-	Date	July 2				വ			9	7								∞		0		10		12		13		14		15			16
6	ä	۲																															

Table 2 (cont'd)

Date	T: T	st n	Stn	Tatitude	Latitude Longitude	Denth	Wind Dir Snd	Atmos Press.	Si	Swell Ht	Per
,	(UT)	No.	(UT) No. Name	(N)	(M°)	(m)	17	(mb)	_	ft) (Sec)
-	L.		ć	0	,		(,	ć	c	
	2		שרח	1 35.	4 J.		V	OTQ.	222	o	0
19	11			8 54.	5 26.		5 2	013.	000	12	œ
	11		D-8	7 47.	4 40.		Ŋ	014.	330	Ŋ	7
20	40		D-10	7 23.	24 22.		0 1	012.	330	4	8
	44		D-10	7 23.	24 23.		5 1	Ч	350	വ	œ
21	93			8 29.	25 10.		7 2	017.	350	9	7
	51		0 - 0	7 36.	24 32.		0 1	017.	350	9	8
22	40			8 24.	25 08.		0 2	018.	350	10	æ
	73			7 38.	24 32.		0 1	016.	350	7	æ
23	72			8 24.	25 12.		2 2	014.	000	δ	æ
	30		1	8 57.	25 31.		0 2	013.	010	10	6
	45		1	8 46.	25 22.		5 2	013.	350	12	æ
	63		1	8 34.	25 14.		0 2	014.	000	12	æ
	1813	47	D-5	38 20.3	125 09.7		015 18	014.	000	10	æ
	94		ı	8 11.	24 56.		5 1	⊣	345	ω	6
	12		1	7 59.	24 48.		٦,	1014.0	330	9	6
	30		-	7 47.	24 40.		2	٦	330	9	6
24	05		1	7 35.	4 31.						
	25		1	7 23.	4 22.						

Lines, we made a short section of six stations (69-74) through F-10, E-10 and D-10 in hopes of intersecting the current maximum.

After completing the standard grid on 3 August we proceeded to 37°38'N, 123°54'W to follow a line (Line II of the Pilot Program) that had been occupied repeatedly in 1987 (with CTD stations in February, March, May and June, and ADCP in February, May, June, August and October). We interrupted this line to make a short section of CTD stations (75-79) between B-O and D-O in an effort to define the current structure along the northern boundary of the grid. After returning to Line II, we made CTD stations (80-88) at 28 km intervals to 41°30'N.

Personnel participating in the cruise were Michael Kosro (chief scientist), Adriana Huyer, Robert L. Smith, Rich Schramm, Henry Pittock, Robert Still, Stephen Pierce, Dennis Barstow, Ted Benson, Kevin Krefft and Jackie Johnson of Oregon State University; Kent Forte of Duke University; and Monte Graham and Clarence Low of the University of California, Santa Cruz.

CTD Observations During W8806B

The main purpose of Wecoma cruise W8806B (28 June to 24 July, 1988) was to make microstructure observations along the D-line of the standard grid using a rapid-sampling vertical profiler (RSVP) and a towed thermistor chain. A cruise description and the observations are presented in Dewey et al., 1988. Most of the CTD stations were made on an occasional basis to provide calibration data for the RSVP and thermistor chain, but a complete CTD section was made along the D-Line both early and late in the cruise (Table 2). Note that Station 15 was aborted.

SAMPLING AND CALIBRATION PROCEDURES

A Neil Brown Instruments Mark IIIb conductivity-temperature-depth (CTD) probe (#2561) was used to obtain continuous profiles of temperature, salinity and pressure at each CTD station during both cruises W8806B and W8807A. The profiling package consisted of the CTD mounted below a General Oceanics Rosette sampler with twelve 5-liter Niskin bottles. Mounted adjacent to the CTD were a Sea Tech 25 cm transmissometer (s/n 33D) and a Sea Tech Fluorometer (s/n 48). The CTD was fitted with a 1600 decibar pressure sensor. The fast response thermistor was disabled and replaced in the circuitry with a precision 10 ohm resistor to permit only the platinum thermometer's temperature signal to be digitized. The time constant of the platinum resistance thermometer of the probe had earlier been determined to be 0.235 sec (Fleischbein et al., 1987) using estimates of the slope of the phase spectrum between the measured temperature and conductivity as suggested by Millard, Toole and Swartz (1980). The CTD was set to sample at its maximum rate of 32 Hz. The entire instrument package was lowered at a rate of about 45 meters per minute to a pressure of 500 decibars.

OSU's CTD probe #2561 was calibrated for pressure, temperature and conductivity by the manufacturer in June 1988. Previous experience has indicated that the CTD pressure and temperature sensors are very stable (temperature to within a few millidegrees and pressure to within a few decibars) over a period of several months. During cruise W8806B in situ

temperature and pressure calibration data were not collected. At a few stations of cruise W8807A, protected reversing thermometers were mounted on one bottle; these thermometers are calibrated once every three years at the Northwest Regional Calibration Center and have an accuracy of $\pm 0.02\,^{\circ}\text{C}$. The temperatures recorded by these thermometers were the same as the CTD temperature within the stated accuracy of the reversing thermometers so no correction was applied to the CTD temperature data of W8807A and W8806B. The CTD pressure at the surface prior to a cast was recorded at 61 stations of cruise W8807A; it remained less than 0.5 dbar (mean = 0.16, standard deviation = 0.16) which is within the stated accuracy of the pressure sensor (\pm 1.6 dbar) so no correction was applied to the CTD pressure data of W8807A and W8806B.

Water samples were collected at each station from Niskin bottles at two or more selected depths to provide in situ conductivity calibration data. Bottles were tripped during the up-cast, and the CTD data to be compared with the samples were recorded at the actual depth at which each bottle was tripped. Duplicate salinity samples were drawn from selected bottles and stored in round 4-oz. glass bottles with new poly-seal caps, with an additional outer seal of 'Parafilm'. One complete set of the salinity samples from each cruise was analyzed on a Guildline 8400A Autosal salinometer (OSU's #4) in August and September 1988. Duplicates were analyzed mainly to check those sample values which showed relatively large differences from the CTD. The Guildline Autosal determines water sample salinity with a precision of \pm 0.002 and an accuracy of \pm 0.003. Sample conductivities were calculated using the sample salinity value with the CTD temperature and pressure values; a value of 42.914 mmho cm⁻¹ for the conductivity of standard seawater at 15°C (Culkin and Smith, 1980) was used to convert the measured sample conductivity ratios to conductivity. Sample conductivities were compared to CTD conductivities which had been corrected for temperature and pressure effects on the cell. Two of 58 sample CTD differences from W8806B and 29 of 176 sample CTD differences from W8807A were larger by several standard deviations than the others and were eliminated from the in situ calibration data set. These large differences occurred either in regions of sharp vertical gradients or, in some cases during cruise W8807A, appeared to be due to the Rosette misfiring. At eleven stations of W8807A the Rosette appeared to fire the first two bottles at once as determined by salinity comparisons so the remaining bottles possibly fired at the selected depth of the previous bottle. The salinity samples from these eleven stations were excluded from the final calibration data set. When the conductivity differences are plotted versus station number (Figure 4) for the three consecutive R/V Wecoma CTZ cruises, W8806A, W8806B and W8807A, there is a definite drift over time in the CTD calibration with conductivity differences gradually increasing from about -0.001 mmho cm⁻² at the beginning of W8806A to about 0.012 mmho cm $^{-2}$ at the end of W8807A. A least squares fit to the conductivity differences from all three cruises yielded the equation:

$$C = C_0 - 0.0005807 + 0.000064 N$$

where C is the corrected conductivity, C_0 is the raw conductivity and N is the consecutive station number (N = N + 60 for W8806B and N = N + 112 for W8807A). Applying this correction resulted in small conductivity differences (Table 3) with a mean of zero and a standard deviation of 0.0027 mmho⁻²; hence, this equation was used to process the CTD data from these two cruises.

Sample-CTD conductivity differences plotted versus consecutive station number for cruises W8806A, W8806B and W8807A. Figure 4.

Table 3. Results of in situ calibration samples for W8806B, and W8807A:
Station number (STA), sample depth (2), additive conductivity correction for CTD data (CC), and the comparison between sample and corrected CTD values of temperature (T), conductivity (C), and salinity (S).

•			Sample	Values_	·	CTD Valu	es	Differ	cences
STA	Z	СС	s	С	T	С	S	DC	DS
W880	6B								
1	19	0.0033	33.033	38.036	12.058	38.037		-0.001	-0.001
ī	5	0.0033	33.032	38.048	12.079			0.005	0.004
2	40	0.0034	32.939	41.255			32.936	0.004	0.003
2	5	0.0034	32.937	41.236		41.235		0.001	0.000
5	156	0.0036	33.944	35.316	8.022		33.944	0.000	0.000 -0.002
5	53	0.0036	33.584	36.883			33.586	-0.002	0.000
6	218	0.0036	33.999	34.820	7.387		33.999	0.000	0.000
7	5	0.0037	32.817	39.123	13.498		32.816	0.001	0.001
8	10	0.0038	32.565	40.817			32.564	0.001	0.001
9	10	0.0038	32.929	41.553			32.928 32.649	0.001	0.001
11	10	0.0040	32.650 33.050	40.327 39.758	13.912		33.053	-0.003	-0.003
16	10	0.0043	33.964	34.841	7.449		33.965	-0.001	-0.001
17	213 5	0.0043	33.148	39.137			33.146	0.002	0.002
17	234	0.0043	34.049	34.905			34.050	-0.001	-0.001
18 19	234 6	0.0044	32.645	39.081			32.642	0.003	0.003
20	5	0.0045	32.929	41.254			32.930	-0.001	-0.001
22	201	0.0047	34.044	35.532			34.047	-0.003	-0.003
22	20	0.0047	33.024	39.086			33.017	0.008	0.007
23	4	0.0047	32.943	39.587			32.942	0.001	0.001
25	325	0.0049	34.120	34.368	6.710	34.369	34.121	-0.001	-0.001
25	4	0.0049	32.933	39.801	14.097	39.797	32.930	0.004	0.003
26	410	0.0049	33.994	33.525	5.853	33.523	33.992	0.002	0.002
26	25	0.0049	32.718	41.222	15.872	41.220		0.002	0.002
27	390	0.0050	34.149	33.846	6.068			0.000	0.000
27	5	0.0050	32.913	39.994	14.328	39.990	32.910	0.003	0.003
28	5	0.0051	32.722	41.758	16.449	41.759	32.723	-0.001	-0.001
29	259	0.0051	34.070	34.739	7.205	34.742		-0.003	-0.003
30	295	0.0052	33.971	34.713	7.259	34.715	33.974	-0.002	-0.003
33	336	0.0054	33.987	34.138	6.583	34.137	33.986	0.001	0.001 0.001
33	5	0.0054	32.739	42.264		42.263		0.001	0.001
34	423	0.0054	34.159	33.691		33.685		0.006	0.007
34	264	0.0054	34.050	34.645		34.645		0.000 -0.003	-0.003
35 35	360	0.0055	34.006	33.603	5.953	41.541	34.009	0.011	0.009
35 36	10 474	0.0055	32.621 34.110	41.552 32.873		32.868		0.005	0.005
36	355	0.0056 0.0056	34.110	33.627		33.626		0.003	0.001
37	390	0.0056	34.157	33.977		33.979		-0.002	-0.002
37	146	0.0056	33.994	35.608		35.609		-0.002	-0.002
38	500	0.0057	34.213	33.335		33.335		0.000	0.000
									

			Sample	Values	 	CTD Val	ues	Differ	ences
STA	z	СС	S	С	Т	С	S	DC	DS
39	465	0.0058	34.101	33.350		33.345		0.005	0.005
39	10	0.0058	32.602	41.279		41.275		0.004	0.003
40	476	0.0058	34.218	33.605		33.604		0.001	0.001
40	247	0.0058	34.092	34.871		34.868		0.004	0.004 -0.006
41	339 454	0.0059 0.0059	34.057 34.193	34.237 33.610		34.242 33.606		-0.005 0.003	0.004
42	304	0.0059	34.193	34.187		34.189		-0.003	-0.002
42 44	294	0.0059	33.985	34.416		34.417		-0.002	-0.002
44	9	0.0061	32.669	41.512		41.509		0.002	
45	10	0.0061	32.633	41.474		41.472		0.002	0.002
46	10	0.0062	32.515	40.539		40.535		0.004	0.004
47	249	0.0063	33.977	34.592		34.592		-0.001	-0.001
47	5	0.0063	32.670	40.071		40.067		0.004	0.003
48	315	0.0063	34.042	33.883		33.882		0.001	0.001
49	468	0.0064	34.149	33.103	5.196	33.105	34.151	-0.001	-0.002
50	174	0.0065	33.962	34.904	7.540	34.902	33.960	0.002	0.002
52	400	0.0066	34.157	33.832	6.039	33.830	34.155	0.002	0.002
W880	7 A								
1	446	0.0067	34.187	33.538	5.658	33.539	34.188	-0.001	-0.001
1	150	0.0067	34.000	35.602	8.283	35.604	34.002	-0.002	-0.002
2	382	0.0067	34.120	33.744	5.986	33.745	34.122	-0.001	-0.002
3	339	0.0068	34.046	33.543		33.543		0.000	0.000
4	2	0.0068	32.682	40.596		40.595		0.001	0.001
5	500	0.0069	34.176	33.153		33.155		-0.002	-0.002
5	431	0.0069	34.089	33.171		33.175		-0.004	-0.005
6	400	0.0070	34.046	33.098		33.100		-0.002	-0.003
6	301	0.0070	34.004	33.886		33.888		-0.002	-0.003
7	449	0.0070	34.076	33.058		33.060		-0.003	-0.003
8	501	0.0071	34.091	32.917		32.920		-0.003	-0.004
9	150	0.0072	33.958	35.840		35.841		0.000 -0.003	0.000 -0.003
10	500	0.0072	34.201	33.740		33.743		0.000	0.000
10	453	0.0072	34.163	33.893		33.892		0.000	0.001
12 12	175	0.0074	34.017	35.540		35.539 37.772		0.001	0.000
14	2 383	0.0074 0.0075	33.829 34.129	37.773 34.146		34.148		-0.001	-0.002
15	124	0.0075	33.992	35.563		35.566		-0.003	-0.003
15	74	0.0075	33.819	35.565		35.569		-0.004	-0.004
16	504	0.0076	34.186	33.558		33.559		-0.001	-0.001
17	459	0.0077	34.197	33.967		33.967		0.000	0.000
19	2	0.0078	32.870	37.936		37.936		0.001	0.001
20	9	0.0079	32.826	37.093		37.094		-0.001	-0.001
21	5	0.0079	32.642	39.298		39.296		0.002	0.002
22	374	0.0080	34.105	34.575		34.580		-0.005	-0.005
23	358	0.0081	34.098	34.650		34.652		-0.002	-0.002
23	10	0.0081	32.794	37.530		37.529		0.001	0.001
24	429	0.0081	34.162	33.961		33.963		-0.002	-0.003
26	500	0.0083	34.190	33.385		33.385		0.001	0.001 -0.003
26	413	0.0083	34.139	33.749		33.751		-0.002	0.000
27 27	406	0.0083	34.144	33.739		33.739		0.000	-0.005
27 28	80 503	0.0083	33.863	35.912		35.917 33.758		-0.005 -0.004	-0.003
28 28	502 443	0.0084	34.219	33.754 33.836		33.838		-0.004	-0.001
20	447	0.0084	34.174	22.020	0.000	22.020	34.1/3	0.001	3.3 -

			Sample	2 Values	·	CTD Values		Differences	
STA	Z	CC	S	С	Т	С	S	DC	DS
29	501	0.0084	34.195	33.967	6.103		34.196	-0.001	-0.001 0.004
29	406	0.0084	34.138	34.222	6.490			0.003	0.004
30	499	0.0085	34.217	33.558	5.624			0.002	0.002
30	386	0.0085	34.135	34.112		34.112		0.001	0.001
31	385	0.0086	34.131	33.801	6.038			0.002	0.005
31	2	0.0086	33.366	40.990	14.864 5.822		34.236	-0.001	-0.001
32	498	0.0086	34.235	33.750				0.001	0.003
32	360	0.0086	34.149	34.210	6.488	34.207 33.832		0.003	0.002
33	412	0.0087	34.176	33.833	14.493			-0.002	-0.002
33	10	0.0087	33.103	40.357 33.360	5.398			0.002	0.002
34	501	0.0088	34.220 34.109	33.503	5.721			-0.001	-0.002
34	396	0.0088	33.940	35.233	7.938		33.940	0.000	0.000
34	149	0.0088	34.068	34.650	7.125		34.072	-0.004	-0.004
35	225	0.0088	33.150	40.266			33.148	0.003	0.002
35	20	0.0089	34.225	33.362	5.397			-0.001	-0.001
36	499 400	0.0089	34.223	33.681	5.876		34.151	0.000	0.000
36	377	0.0099	34.147	34.109	6.369		34.153	-0.006	-0.006
38	10	0.0090	33.158	39.479	13.486		33.155	0.003	0.003
38 39	433	0.0091	34.095	33.367	5.563		34.094	0.001	0.001
40	501	0.0091	34.107	32.849	4.934		34.108	0.000	-0.001
40	436	0.0091	34.057	33.043	5.234		34.056	0.001	0.001
40	11	0.0091	32.649	39.398		39.397		0.001	0.001
41	501	0.0092	34.143	32.910		32.910		0.001	0.001
41	439	0.0092	34.075	33.051		33.048		0.003	0.004
42	499	0.0093	34.109	32.832		32.836		-0.003	-0.004
42	405	0.0093	34.043	33.224	5.468	33.227		-0.002	-0.003
43	424	0.0093	34.060	33.044	5.238	33.044	34.060	0.000	0.000
43	10	0.0093	32.769	38.590				0.001	0.001
44	500	0.0094	34.149	33.030	5.098		34.154	-0.004	-0.005
44	10	0.0094	33.067	39.587		39.590		-0.002	-0.002
45	431	0.0095	34.126	33.352		33.350	34.123	0.002	0.003
46	440	0.0095	34.120	33.119	5.256	33.119	34.120	0.000	0.000
46	10	0.0095	33.147	40.285	14.365	40.280	33.142	0.005	0.005
47	499	0.0096	34.222	33.311	5.343	33.312	34.223	0.000	-0.001
47	10	0.0096	33.131	40.023	14.102	40.024	33.132	-0.001	-0.001
48	500	0.0097	34.197	33.216	5.260	33.218	34.199	-0.002	-0.002
48	330	0.0097	34.051	33.773	6.113	33.770	34.048	0.003	0.003
49	500	0.0097	34.222	33.361	5.398	33.362	34.223	-0.001	-0.001
49	450	0.0097	34.186	33.508	5.623	33.507	34.185	0.001	0.001
50	340	0.0098	34.052	33.963	6.320	33.959	34.048	0.004	0.004
50	3	0.0098	32.853	39.369	13.724	39.365	32.849	0.004	0.004
51	356	0.0099	34.036	33.661	5.990	33.662	34.037	-0.001	-0.001
51	2	0.0099	32.737	39.754		39.753		0.001	0.001
52	500	0.0099	34.150	33.304			34.150		0.000
52	9	0.0099	32.697	40.711		40.711		0.000	0.000
53	430	0.0100	34.050	33.106		33.109		-0.004	-0.004
53	10	0.0100	32.593	41.021		41.021		0.000	0.000
54	499	0.0100	34.096	32.884		32.885		-0.002	-0.002
54	424	0.0100	34.054	33.249		33.253		-0.004	-0.005
55	433	0.0101	34.075	33.546	5.784	33.546	34.076	-0.001	-0.001

Table 3 (continued)

			Sample Values		CTD Values			Differences	
STA	Z	СС	S	С	Т	С	S	DC	DS
55	2	0.0101	32.656	39.645			32.655	0.001	0.001
56	385	0.0102	34.030	33.617	5.932			-0.002	-0.002
56	9	0.0102	32.662	41.265	15.993			0.001	0.001
57	454	0.0102	34.058	33.032	5.212			0.006	0.005
57	20	0.0102	32.841	41.919		41.913 33.613		-0.001	-0.001
58	369	0.0103	34.000	33.612		40.398		0.002	0.001
58	10	0.0103	32.504	40.400 32.956	5.029		34.136	-0.002	-0.002
59	500	0.0104	34.134 34.057	33.534			34.063	-0.005	-0.006
60	399 10	0.0104 0.0104	32.584	40.338			32.583	0.001	0.001
60 61	346	0.0104	34.057	34.258			34.059	-0.002	-0.002
61	10	0.0105	32.654	41.105			32.655	-0.001	-0.001
62	372	0.0105	34.017	33.647			34.019	-0.002	-0.002
62	11	0.0106	32.788	42.068			32.788	0.000	0.000
63	473	0.0106	34.096	33.275	5.439		34.102	-0.005	-0.006
63	20	0.0106	32.809	42.355			32.810	-0.001	-0.001
64	327	0.0107	34.021	34.332	6.769			-0.003	-0.003
64	20	0.0107	32.787	42.232	16.868		32.783	0.005	0.004
65	440	0.0107	34.051	33.344		33.345		-0.001	-0.001
65	10	0.0107	32.839	41.976	16.537	41.971	32.835	0.005	0.004
66	401	0.0108	34.030	33.476	5.766	33.477	34.031	-0.001	-0.001
67	403	0.0109	34.103	34.019	6.300	34.016	34.100	0.003	0.003
67	11	0.0109	32.751	41.802		41.799		0.002	0.002
68	426	0.0109	34.160	33.917		33.919		-0.002	-0.003
68	3	0.0109	32.703	40.810		40.809		0.002	0.001
69	454	0.0110	34.156	33.754		33.754		-0.001	-0.001
69	199	0.0110	34.002	35.633		35.635		-0.001	-0.001
70	320	0.0111	34.036	34.056		34.058		-0.002	-0.002
70	199	0.0111	33.944	35.244		35.243		0.001	0.001
71	445	0.0111	34.175	33.459	5.581		34.182	-0.006	-0.007 0.005
71	10	0.0111	32.790	39.161	13.568		32.785	0.005 0.000	-0.001
73	454	0.0113	34.196	33.488	5.589	41.227	34.197	-0.001	0.000
73	10	0.0113	33.359	41.227				-0.001	-0.002
74	384	0.0113	34.120 33.979	33.577 35.467		33.580	33.983	-0.004	-0.004
74 75	151 423	0.0113 0.0114	34.142	33.906			34.148	-0.005	-0.006
75 75	11	0.0114	32.802	37.490		37.498		-0.008	-0.008
76	195	0.0115	34.034	35.482		35.477		0.004	0.005
76	150	0.0115	33.920	35.866		35.862		0.004	0.004
77	262	0.0115	33.980	33.906		33.906		0.000	0.000
78	276	0.0116	33.981	33.925		33.921		0.005	0.005
78	149	0.0116	33.895	34.951		34.946		0.005	0.005
79	310	0.0116	34.011	33.757		33.756		0.001	0.001
79	10	0.0116	32.639	39.727		39.732		-0.005	-0.005
80	420	0.0117	34.130	33.785		33.784		0.001	0.001
80	340	0.0117	34.093	34.246		34.246		0.001	0.001
81	500	0.0118	34.104	32.958		32.958		0.000	0.000
81	364	0.0118	33.993	33.552	5.907	33.561	34.003	-0.009	-0.010
83	390	0.0119	34.063	33.244		33.246		-0.002	-0.002
83	285	0.0119	34.007	33.887				0.004	0.004
84	320	0.0120	34.020	33.567	5.918	33.565	34.018	0.002	0.002

Table 3 (continued)

			Sample	Values	CTD Values		Differences		
STA	Z	СС	S	С	Т	С	S	DC	DS
84 85 85 86 86 87 87 88 88	165 432 270 18 338 147 503 370 170 501 185	0.0120 0.0120 0.0120 0.0120 0.0121 0.0121 0.0122 0.0122 0.0122 0.0122	33.919 34.105 34.011 32.653 34.034 33.934 34.135 34.078 33.970 34.201 34.000	34.722 33.257 34.341 39.480 33.420 34.905 32.677 33.272 34.681 33.161 34.179	5.430 6.818 14.072 5.731 7.583 4.711	34.343 39.475 33.416 34.907 32.679 33.269	34.104 34.013 32.649 34.029 33.936 34.137 34.076 33.968 34.199	0.000 0.001 -0.002 0.005 0.004 -0.002 -0.002 0.002 0.002 0.002	0.000 0.001 -0.002 0.004 0.005 -0.002 -0.002 0.002 0.002 0.002
						Std	Mean. dev. obs.	0.0000 0.0027 312.	-0.0001 0.0029 312.

The CTD data from W8806A (presented by Fleischbein et al., 1988) were not reprocessed.

The Sea Tech transmissometer measures the light transmitted by a collimated beam of nearly monochromatic (660 nm) light through a path length of 25 cm. It provides an analog output of 0 to 5 VDC, corresponding to 0 to 100% transmission. This output is digitized into a 12-bit number by the CTD using a modified Neil Brown Instruments two-channel DC digitizer board (Option 14) with an improved voltage reference which reduces the temperature sensitivity to less than 3 bits. The digitizer is calibrated against a DC Voltage Standard which has an accuracy of ±0.0004 mv. The digitizer's output is adjusted so that its output is 4095 at 5.000 VDC and is linear to \pm 1 bit over the range of 0-5 volts. The transmissometer was calibrated by the manufacturer against a distilled water standard in May of 1988. Readings in air were also obtained at this time (air calibration = 4.740 VDC, zero offset = 0.002 VDC), and air calibrations on the ship prior to both cruises were within the stated accuracy of the transmissometer so the factory calibration was applied to the transmissometer data. The formula, TRANS = (VOLTS/5)*100, was used to convert the voltage to percent transmission. Although the instrument is intended to measure the light transmission through a 25-cm water column, the light may occasionally be blocked by the presence of organisms. These frequently result in spikes in the transmission profile (e.g., at 190 and 455 dbar at Station 1 of W8806B, and at 285, 295 and 310 dbar at Station 1 of W8807A). Portions of a gelatinous organism may be caught on the instrument package and interfere with the light transmission through much of the water column (as at Stations 14, 30 and 49 of W8806B and at Stations 17 and 75 of W8807A).

The Sea Tech fluorometer measures the fluorescence emitted by photosynthetic pigments (chlorophyll and related pigments) in marine phytoplankton following excitation with blue light from a xenon flashlamp. The fluorometer provides analog output of 0 to 5 VDC, with adjustable sensitivity ranges and integration time constants. For stations 1-21 of W8806B, the fluorometer was operated at a mid-range setting which provided an operational sensitivity range of approximately 0.2 to 8.0 μ g pigment per liter. For stations 22-52 of W8806B and all of W8807A, the fluorometer was operated at the high range setting which provided an operational sensitivity of 0.25 to 25 μ g pigment per liter. The analog output is digitized by the CTD using the same digitizer board as the transmissometer and is merged into the data stream. Calibration samples were obtained from multiple depths via rosette samples from 43 stations during W8806B and from 78 stations during W8807A. In vivo fluorescence values from the fluorometer were compared with the extracted pigment concentrations obtained from the calibration samples, using standard chlorophyll extraction techniques for frozen, filtered samples. Results of this calibration are presented for each cruise in Table 4.

Table 4. Calibration conversions for fluorescence voltage to total pigment $(\mu g/\ell)$ for day-time and night-time stations of cruises W8806B and W8807A.

Depth <u>Range</u>	<u>Calibration Equation</u>	No of <u>Samples</u>	Correlation Coefficient				
W8806B-Day (0600-1930 local time (GMT-7))							
0-50 m	total pigment = 1.23 * volts + 0.098	63	.95				
51-59 m	total pigment = 1.15 * volts	interp	olated				
60-100+ m	total pigment = 1.113 * volts - 0.025	30	.89				
W8806B-Night (W8806B-Night (1930-0600 local time)						
All depth	s total pigment = 1.01 * volts - 0.032	34	.92				
W8807A-Day (0600-1930 local time (GMT-7))							
0-40 m	total pigment = 0.623 * volts + 0.007	106	. 84				
41-59 m	total pigment = 0.65 * volts + 0.001	inter	polated				
60-100+ m	total pigment = 0.693 * volts - 0.008	56	.89				
W8807A Night (1930-0600 local time)							
0-40 m	total pigment = 0.51 * volts + 0.06	57	.86				
41-59 m	total pigment = 0.60 * volts + 0.04	inter	polated				
60-100+ m	total pigment = 0.70 * volts + 0.02	28	. 90				

CTD DATA PROCESSING PROCEDURES

The CTD data are recorded at sea on a Kennedy 9-track data logger, with many stations on each tape. Data logging normally begins as soon as the CTD probe is in the water, and continues until after the probe has reached the maximum depth. The first step in data processing is to obtain a directory of the data tape using program NBCTD3. For each station, this directory lists the header data, the block number in which the instrument descent begins, and the maximum pressure. NBCTD3 is then used to create disc files of pressure, temperature, conductivity, transmissometer counts and fluorescence counts for each cast. This program also corrects the conductivity data for variations in cell geometry due to pressure and temperature changes. Using program CTDRED6 we then apply the temperature, conductivity and pressure calibrations (described above), and check for extraneous values and extreme gradients. This program applies a recursive filter designed by R. Millard (S. Hayes, pers. comm.) to the conductivity data to remove the phase difference

introduced by the finite response time (T = 235 msec) of the temperature sensor; this filter has the form

$$C(n) = a_0 C(n-1) + (1-a_0) C_1(n)$$

where $C_i(n)$ is the observed value plus the calibration adjustment, C(n) is the filtered value of the n^{th} scan, and $a_0 = T / (T + ti) = 0.880$ is a constant determined from the time constant T and the time interval T between scans. The same recursive filter is applied to the pressure data to reduce the digitizing noise and ensure that the pressure data is in phase with the temperature and conductivity data at low frequencies (<1 Hz). Practical salinity (Lewis, 1978) is computed from the temperature and the filtered conductivity and pressure data using standard algorithms (Fofonoff and Millard, 1983) and a value of 42.914 to convert CTD conductivity to conductivity ratio (Culkin and Smith, 1980).

The filtered pressure data are used to eliminate the ascending scans caused by ship's motion. Data collected during descent are sorted into 2 dbar bins, and the extremes and averages of each variable are computed for each bin. Profiles of the temperature and salinity extremes are plotted to determine whether further editing is needed, and the 2 dbar mean temperatures and salinities constitute the processed data. When editing appears to be necessary, the original data files are examined in detail; data points that are rejected are replaced by linearly interpolated values, and the files are reprocessed using CTDRED6.

Stations that showed a sudden downward jump or shift in conductivity that was probably due to detritus in the cell were edited during processing, are presented in Table 5. These stations also have footnotes to the listings in the body of the data report.

The processed data files containing integral pressure, and average temperature, conductivity, salinity, transmission, and fluorescence are archived. These files are used to calculate other parameters of interest such as potential temperature (theta), potential density anomaly (sigmatheta), specific volume anomaly, geopotential anomaly, sound velocity, etc., from the new equation of state of sea-water (UNESCO, 1981) using standard algorithms (Fofonoff and Millard, 1983). In this data report we show only profile plots of temperature, salinity, sigma-theta, fluorescence and light transmission vs. pressure, and tables of temperature, salinity, sigma-theta, specific volume anomaly, geopotential anomaly, fluorescence and light transmission at selected pressures.

DATA PRESENTATION

The hydrographic data are summarized in maps and vertical sections. For each alongshore and cross-shore section, we show the vertical distribution of temperature, salinity and sigma-theta, contoured subjectively. Tick marks at the top of each section and dots on each map indicate station positions at which a CTD cast was made.

For the complete survey of W8807A, we show maps of temperature, salinity and sigma-theta at eleven standard depths: 0, 25, 50, 75, 100, 150, 200, 250, 300, 400 and 500 db. Maps of dynamic heights of the sea surface relative to

Table 5. Stations edited during data processing.

Station	Depth of Jump <u>In Conductivity</u>	Editing
<u> W8806B</u>		
12	29-41 db	Linearly interpolated processed salinity 27-43db
13	23-65 db	Linearly interpolated processed salinity 21-67 db
21	29-33 db	Linearly interpolated processed salinity 27-35 db
23	305-329 db	Linearly interpolated processed salinity 303-331 db
27	33-35 db	Linearly interpolated processed salinity 31-37 db
32	offset 69-501 db	Added correction to processed salinity 69-249 db :s=s+[0.4-(0.001314917* (pressure - 69))]
34	25-27 db	Linearly interpolated processed salinity 23-29 db
<u>W8807A</u>		
3	15-25 db	Linearly interpolated processed salinity 13-27 db
39	483-485 db	Linearly interpolated processed salinity 481-487 db
40	looked like a possible jump at 20-80 db so a recast was done 20-504 db, recast followed first cast.	Joined data from 0-21 db with data from recast 21-504 db, resulting in a 4 minute gap at 21 db
42	59 db	Linearly interpolated processed salinity 57-61 db
77	30 db	Joined data from 0-23 db to data from recast 23-501 db, resulting in 2 minute gap at
23 db		20000 25 501 00, 1000101116 111 2 miliace gap at
81	43 db	Linearly interpolated processed salinity 41-45 db

100, 200, 250 and 500 db; of the 25, 50, 75, 100 and 150 db surfaces relative to 200 db; of the 25, 50 and 100 db surfaces relative to 250 db; and of the 25, 50, 75, 100, 150, 200 and 300db surfaces relative to 500 db are included. Equivalent maps for the June 1988 cruise were presented earlier for most of these depths (Fleischbein et al., 1988); additional maps for the June cruise are presented in the Appendix. The Appendix also includes maps of the depth of the 8°C isotherm. For ease of comparison with earlier surveys, maps are presented on the same scales as those in the reports by Schramm et al. (1987, 1988a,b) and Fleischbein et al. (1988).

Averages and standard deviations of the profiles of temperature, salinity and sigma-theta vs pressure are presented for Stations 1-79 of W8807A (Figure 5). The average and standard deviations for the temperature vs salinity curve are also shown (Figure 6).

Vertical profiles of temperature, salinity and sigma-theta vs. pressure are presented for the 51 stations of W8806B and 88 stations of W8807A. In addition, a second group of plots shows the vertical profiles of light transmission and total pigment calculated from fluorescence with the salinity profile repeated to facilitate comparisons among variables.

For each station, we also present tabulations of selected parameters at standard depths. Header information for each station includes:

STA NO	Consecutive station number
LAT	Latitude in degrees and minutes north of the equator
LONG	Longitude in degrees and minutes west of the Greenwich Meridian
DATE	Day, Month, Year
TIME	Universal Time (Greenwich Mean Time)
PROBE	Serial number of the CTD probe
DEPTH	Sonic depth in meters, corrected according to Matthews Tables.

The data table for each station gives values of temperature in °C (TEMP), practical salinity (SAL), potential temperature (POTEN TEMP), density anomaly in kg/m 3 (SIGMA THETA), specific volume anomaly in 10^{-8} m $^3/kg$ (SVA), geopotential anomaly (dynamic height, DELD) in dynamic meters. The values of light transmission (TRN) in percent, and fluorescence converted to total pigment (TP) in $\mu g/\ell$ at standard depths accompany the transmission and fluorescence vertical profiles.

standard deviation of temperature, salinity and density anomaly, calculated and displayed as a function of pressure for W8807A Overall averages, and the average plus and minus the stations 1-79. Figure 5.

Figure 6. Average T-S curve for Stations 1-79 of W8807A, and the average plus and minus the standard deviations of temperature and salinity, calculated as a function of sigma-theta (intervals of $0.01~kg/m^3$), and shown only for the density range covered by at least 10 stations. Dashed curves are lines of constant sigma-t.

REFERENCES

- Coastal Transition Zone Group, 1988. The Coastal Transition Zone Program, Transactions, American Geophysical Union, <u>EOS</u>, Vol. 69, 698-699, 704.
- Culkin, F., and N. D. Smith. 1980. Determination of the concentration of potassium chloride having the same electrical conductivity, at 15 C and infinite frequency, as standard seawater of salinity 35.000 $^{\rm O}/_{\rm OO}$ (chlorinity 19.37394 $_{\rm OO}$). IEEE Journal of Ocean Engineering, OE-5, 22-23.
- Dewey, R. K., J. N. Moum, D. R. Caldwell, T. C. Sullivan, J. T. Baer, R. D. Kreth, and M. D. Neeley-Brown, 1988. <u>Coastal Transition Zone Experiment 1988: Rapid Sampling Vertical Profiler Observations</u>. College of Oceanography, Oregon State University, Corvallis, Oregon. Data Report 143, Ref. 88-8. 336 pp.
- Fleischbein, J., R. E. Schramm, A. Huyer and R. L. Smith. 1987. <u>CTD</u>

 <u>Observations off Peru and Ecuador February 1983-April 1985.</u> College of
 Oceanography, Oregon State University, Corvallis, Oregon. Data Report 138,
 Ref. 87-26. 387 pp.
- Fleischbein, J., R. E. Schramm, A. Huyer, P. M. Kosro, T. Cowles and K. Krefft. 1988. <u>CTD Observations in the Coastal Transition Zone off Northern</u> <u>California 18-17 June 1988.</u> College of Oceanography, Oregon State University, Corvallis, Oregon. Data Report 143, Ref 88-9. 131 pp.
- Fofonoff, N. P., and R. C. Millard, Jr. 1983. Algorithms for computation of fundamental properties of sea water. UNESCO Technical Papers in Marine Science, 44, 53 pp.
- Lewis, L. L. 1980. The Practical Salinity Scale 1978 and its antecedents. <u>IEEE</u> <u>Journal of Ocean Engineering</u>, <u>OE-5</u>, 3-8.
- Millard, R., J. Toole and M. Swartz, 1980. A fast responding temperature measurement system for CTD applications. Ocean. Engr., 7:413-427.
- Schramm, R. E., J. Fleischbein, A. Huyer and P. M. Kosro. 1987. <u>CTD Observations in the Coastal Transition Zone off Northern California</u>, 16-25 February 1987. College of Oceanography, Oregon State University, Corvallis, Oregon. Data Report 137, Ref. 87-24. 62 pp.
- Schramm, R. E., J. Fleischbein, R. Marsh, A. Huyer, P. M. Kosro, T. Cowles and N. Dudek. 1988a. <u>CTD Observations in the Coastal Transition Zone off Northern California</u>, 18-27 May 1987. College of Oceanography, Oregon State University, Corvallis, Oregon. Data Report 141, Ref. 88-3. 192 pp.
- Schramm, R. E., J. Fleischbein, R. Marsh, A. Huyer, P. M. Kosro, T. Cowles and N. Dudek. 1988b. <u>CTD Observations in the Coastal Transition Zone off Northern California</u>, 18-27 May 1987. College of Oceanography, Oregon State University, Corvallis, Oregon. Data Report 142, Ref. 88-4. 228 pp.
- UNESCO, 1981. Tenth report on the joint panel on oceanographic tables and standards, Sidney, B.C., Canada, 1-5 September 1980, sponsored by UNESCO, ICES, SCOR, IAPSO. UNESCO Technical Papers in Marine Science, 36, 23 pp.

VERTICAL SECTIONS

W8806B

VERTICAL SECTIONS
W8807A

MAPS AT SELECTED DEPTHS

PROFILE PLOTS AND LISTINGS
W8806B

STA N	0 1	L	LAT: 37 36.5 N LONG: 124 30.6 W					
02 JU	L 1988	1744 GM	T PRO	BE 2561	DEPTH	3936M		
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD		
			TEMP	THETA				
3	12.066	33.025	12.066	25.044	290.7	0.009		
10	12.070	33.024	12.069	25.042	291.0	0.029		
20	12.065	33.026	12.063	25.045	291.0	0.058		
30	12.015	33.049	12.011	25.072	288. 6	0.087		
40	11.182	33.064	11.177	25.237	273.1	0.115		
50	10.667	33.099	10.661	25.355	262.1	0.142		
60	10.361	33.155	10.354	25.452	253.0	0.168		
70	9.633	33.254	9.626	25.651	234.3	0.192		
80	9.308	33.360	9.299	25.787	221.5	0.215		
90	8.936	33.496	8.926	25.953	205.9	0.236		
100	8.738	33.577	8.728	26.047	197.2	0.257		
110	8.551	33.652	8.539	26.135	188.9	0.276		
120	8.447	33.703	8.435	26.190	183.8	0.295		
130	8.334	33.775	8.321	26.264	177.0	0.313		
140	8.129	33.857	8.115	26.359	168.1	0.330		
150	7.996	33.881	7.982	26.398	164.5	0.346		
175	7.855	33.978	7.838	26.496	155.7	0.386		
200	7.610	34.006	7.591	26.553	150.6	0.425		
225	7.356	34.020	7.335	26.601	146.4	0.462		
250	6.926	34.019	6.903	26.659	141.0	0.498		
300	6.742	34.089	6.714	26.740	134.1	0.566		
400	6.107	34.149	6.072	26.871	122.6	0.694		
500	4.711	34.084	4.672	26.986	111.5	0.811		
501	4.711	34.085	4.672	26.987	111.4	0.812		

STA N	-	t	AT: 38 5	0.2 N L	ONG: 125	28.4 U
04 JL	JL 1988	0513 GN		BE 2561		1 3736M
PRESS	S TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
3	15.641	32.937	15.641	24.242	367.1	0.011
10	15.641	32.936	15.639	24.242	367.3	0.037
20	15.641	32.936	15.638	24.242	367.6	0.073
30	15.642	32.936	15.637	24.243	367.8	0.110
40	15.640	32.936	15.634	24.243	368.1	0.147
50	15.614	32.932	15.607	24.246	368.1	0.184
60	15.515	32.918	15.506	24.258	367.3	0.221
70	13.150	32.839	13.141	24.692	325.9	0.256
80	12.489	32.921	12.478	24.885	307.8	0.287
90	11.992	32.909	11.981	24.970	299.9	0.318
100	11.690	33.014	11.678	25.107	287.0	0.347
110	11.204	32.967	11.190	25.159	282.2	0.376
120	11.021	33.042	11.006	25.251	273.7	0.403
130	10.547	33.100	10.532	25.379	261.6	0.430
140	10.068	33.226	10.052	25.558	244.6	0.456
150	9.852	33.321	9.835	25.669	234.3	0.479
175	9.178	33.590	9.159	25.989	204.2	0.534
200	8.451	33.837	8.430	26.296	175.3	0.581
225	8.213	33.948	8.190	26.419	164.0	0.623
250	7.796	33.988	7.771	26.513	155.4	0.663
300	6.900	33.985	6.872	26.637	143.9	0.738
400	5.806	34.012	5.772	26.801	129.0	0.874
500	5.117	34.077	5.077	26.935	116.8	0.997
501	5.117	34.079	5.077	26.936	116.7	0.998

STA NO	STA NO 3 LAT: 37 54.0 N LONG:124 45.9 W							
		_						
04 JUI	1988	1546 GM	ı PRU	BE 2561	DEPIR	4011M		
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD		
1	11.122	33.170	11.122	25.329	263.5	0.003		
10	10.908	33.195	10.907	25.387	258.2	0.026		
20	10.785	33.398	10.782	25.567	241.3	0.051		
30	10.558	33.480	10.555	25.671	231.7	0.075		
40	10.317	33.587	10.312	25.796	219.9	0.097		
50	10.097	33.627	10.091	25.865	213.6	0.119		
60	9.831	33.624	9.824	25.907	209.8	0.140		
70	9.070	33.590	9.062	26.004	200.6	0.161		
80	8.773	33.660	8.765	26.106	191.1	0.180		
90	8.605	33.731	8.595	26.188	183.6	0.199		
100	8.443	33.808	8.433	26.273	175.6	0.217		
110	8.403	33.868	8.392	26.326	170.8	0.234		
120	8.315	33.892	8.303	26.359	167.9	0.251		
130	8.030	33.909	8.017	26.414	162.7	0.268		
140	8.043	33.966	8.029	26.458	158.8	0.284		
150	7.933	33.990	7.918	26.493	155.6	0.300		
175	7.608	33.986	7.592	26.537	151.7	0.338		
200	7.428	34.012	7.409	26.584	147.6	0.375		
225	7.276	34.028	7.255	26.618	144.7	0.412		
250	7.056	34.043	7.033	26.661	141.0	0.447		
300	6.592	34.060	6.565	26.737	134.2	0.516		
400	5.813	34.116	5.779	26.882	121.3	0.644		
500	5.478	34.224	5.437	27.009	110.4	0.759		
501	5.475	34.224	5.434	27.009	110.3	0.760		

STA N	0 4	L.	AT: 37 52	2.9 N LO	NG:124	47.7 W
04 JU	L 1988	1904 GM	T PROE	BE 2561	DEPTH	4014M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	11.869	33.288	11.869	25.285	267.7	0.003
10	11.576	33.277	11.574	25.331	263.6	0.027
20	11.165	33.266	11.163	25.397	257.5	0.053
30	10.274	33.237	10.271	25.530	245.0	0.078
40	10.491	33.491	10.487	25.691	229.9	0.102
50	10.251	33.588	10.245	25.808	219.0	0.124
60	10.128	33.618	10.121	25.853	215.0	0.146
70	10.080	33.625	10.072	25.867	213.9	0.167
80	9.779	33.632	9.770	25.923	208.7	0.188
90	9.057	33.645	9.047	26.050	196.7	0.209
100	8.635	33.720	8.625	26.175	185.0	0.228
110	8.478	33.811	8.467	26.271	176.1	0.246
120	8.355	33.865	8.343	26.332	170.4	0.263
130	8.176	33.876	8.163	26.367	167.2	0.280
140	8.041	33.909	8.027	26.413	163.0	0.296
150	8.032	33.973	8.017	26.465	158.3	0.312
175	7.591	33.986	7.574	26.540	151.4	0.351
200	7.420	34.014	7.401	26.586	147.4	0.388
225	7.198	34.036	7.176	26.635	143.1	0.425
250	6.919	34.045	6.896	26.681	139.0	0.460
300	6.715	34.106	6.688	26.757	132.4	0.528
400	5.498	34.059	5.465	26.875	121.7	0.654
500	4.957	34.142	4.918	27.004	110.1	0.770
501	4.958	34.143	4.919	27.005	110.0	0.771

STA NO	5	L	AT: 37 53	5.0 N LC	NG:124	52.1 W
05 JUI	L 1988	0217 GM	T PROE	BE 2561	DEPTH	4048M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	12.116	33.386	12.116	25.314	264.9	0.003
10	11.270	33.350	11.269	25.442	252.9	0.026
20	10.594	33.400	10.592	25.602	238.0	0.050
30	10.495	33.464	10.491	25.670	231.7	0.074
40	10.250	33.558	10.245	25.785	221.0	0.097
50	10.120	33.608	10.115	25.846	215.4	0.118
60	10.113	33.620	10.106	25.857	214.6	0.140
70	9.998	33.632	9.990	25.886	212.1	0.161
80	9.802	33.638	9.793	25.924	208.6	0.182
90	9.421	33.619	9.411	25.971	204.3	0.203
100	8.743	33.685	8.732	26.130	189.2	0.223
110	8.553	33.769	8.541	26.226	180.3	0.241
120	8.448	33.845	8.435	26.302	173.2	0.259
130	8.179	33.865	8.166	26.358	168.1	0.276
140	8.080	33.890	8.066	26.393	164.9	0.292
150	8.024	33.942	8.009	26.442	160.4	0.309
175	7.877	33.983	7.860	26.496	155.7	0.348
200	7.592	33.996	7.573	26.548	151.1	0.387
225	7.359	34.031	7.338	26.609	145.7	0.424
250	7.234	34.060	7.210	26.649	142.2	0.460
300	6.830	34.093	6.802	26.731	134.9	0.529
400	6.089	34.137	6.054	26.864	123.3	0.658
500	5.001	34.118	4.961	26.981	112.4	0.776
501	4.988	34.119	4.948	26.983	112.2	0.777

STA NO	0 6	L	AT: 37 52	2.0 N LO	NG:124 !	
05 JUI	L 1988	0645 GM	T PROB	E 2561	DEPTH	4396M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	12.351	33.027	12.351	24.992	295.6	0.003
10	11.857	33.199	11.855	25.218	274.3	0.029
20	11.409	33.224	11.407	25.320	264.8	0.056
30	10.830	33.243	10.827	25.439	253.7	0.082
40	10.253	33.228	10.248	25.527	245.5	0.107
50	10.184	33.264	10.178	25.567	241.9	0.131
60	9.671	33.291	9.664	25.674	231.9	0.155
70	9.646	33.444	9.638	25.797	220.4	0.177
80	9.473	33.526	9.464	25.890	211.7	0.199
90	9.423	33.578	9.413	25.939	207.3	0.220
100	9.321	33.635	9.311	26.000	201.7	0.240
110	8.930	33.679	8.918	26.097	192.6	0.260
120	8.632	33.768	8.619	26.213	181.7	0.279
130	8.422	33.828	8.408	26.292	174.3	0.297
140	8.229	33.863	8.215	26.349	169.1	0.314
150	8.081	33.888	8.066	26.391	165.3	0.330
175	7.780	33.970	7.763	26.500	155.3	0.371
200	7.601	33.992	7.581	26.544	151.5	0.409
225	7.374	34.017	7.353	26.595	146.9	0.446
250	7.082	34.055	7.059	26.667	140.4	0.482
300	6.642	34.094	6.615	26.758	132.3	0.550
400	5.587	34.068	5.554	26.871	122.1	0.677
500	4.890	34.126	4.851	26.999	110.5	0.794
501	4.955	34.131	4.916	26.996	110.9	0.795

STA N	0 7	ι	AT: 37 23	3.6 N LC	NG:124	23.4 W
05 JU	L 1988	1551 GM	T PROE	BE 2561	DEPTH	4004M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.551	32.814	13.551	24.591	333.7	0.003
10	13.511	32.814	13.510	24.599	333.2	0.033
20	13.221	32.819	13.219	24.661	327.6	0.067
30	12.908	32.886	12.904	24.775	317.0	0.099
40	12.531	32.905	12.525	24.863	308.8	0.130
50	11.807	32.921	11.801	25.012	294.8	0.160
60	11.077	32.999	11.070	25.205	276.6	0.189
70	10.417	33.197	10.409	25.475	251.1	0.215
80	9.934	33.291	9.925	25.631	236.4	0.240
90	9.587	33.414	9.577	25.784	222.0	0.263
100	9.340	33.494	9.330	25.887	212.5	0.284
110	9.115	33.602	9.103	26.008	201.1	0.305
120	8.885	33.694	8.873	26.116	191.0	0.325
130	8.667	33.767	8.654	26.207	182.5	0.343
140	8.400	33.826	8.386	26.295	174.3	0.361
150	8.303	33.870	8.288	26.344	169.8	0.378
175	7.971	33.925	7.954	26.437	161.3	0.420
200	7.552	33.950	7.533	26.517	154.0	0.459
225	7.327	33.997	7.306	26.586	147.8	0.496
250	7.081	34.022	7.058	26.640	142.9	0.533
300	6.690	34.049	6.663	26.715	136.4	0.603
400	5.605	34.057	5.572	26.861	123.1	0.733
500	5.281	34.178	5.241	26.996	111.3	0.849
503	5.322	34.187	5.280	26.998	111.2	0.853

STA NO	8 (D-2 L	AT: 38 57	7.3 N LO	NG:125	31.5 W
06 JUL	. 1988	2356 GM	T PRO	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	15.642	32.563	15.641	23.955	394.4	0.004
10	15.642	32.563	15.640	23.955	394.6	0.039
20	15.608	32.563	15.605	23.963	394.2	0.079
30	15.599	32.562	15.594	23.965	394.3	0.118
40	15.144	32.557	15.138	24.060	385.5	0.158
50	13.439	32.573	13.433	24.428	350.6	0.194
60	12.628	32.629	12.620	24.631	331.4	0.228
70	11.933	32.759	11.924	24.864	309.4	0.260
80	11.593	32.855	11.583	25.001	296.6	0.290
90	11.155	32.870	11.144	25.092	288.0	0.320
100	10.942	32.928	10.930	25.176	280.3	0.348
110	10.491	32.947	10.479	25.268	271.6	0.376
120	10.141	33.010	10.128	25.377	261.4	0.402
130	9.809	33.108	9.795	25.510	249.0	0.428
140	9.436	33.214	9.421	25.653	235.5	0.452
150	9.196	33.346	9.180	25.795	222.1	0.475
175	8.870	33.663	8.852	26.095	194.1	0.527
500	8.485	33.811	8.465	26.270	177.8	0.573
225	8.124	33.924	8.101	26.414	164.5	0.615
250	7.922	33.991	7.897	26.497	157.0	0.655
300	7.338	34.005	7.309	26.592	148.4	0.732
400	6.088	34.013	6.054	26.766	132.5	0.872
500	5.374	34.097	5.333	26.921	118.5	0.997
503	5.391	34.103	5.350	26.923	118.3	1.001

STA N			AT: 38 4	5.7 N LC	MG:125	23.0 W
07 JU	L 1988	0250 GM	T PRO	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
3	15.975	32.931	15.974	24.763	374.6	0.011
10	15.978	32.930	15.977	24.162	374.9	0.037
20	15.975	32.930	15.971	24.163	375.1	0.075
30	15.918	32.933	15.913	24.178	374.0	0.112
40	15.869	32.933	15.863	24.190	373.2	0.150
50	15.506	32.911	15.499	24.254	367.4	0.187
60	14.469	32.846	14.461	24.427	351.0	0.223
70	12.861	32.816	12.852	24.731	322.2	0.256
80	12.057	32.835	12.047	24.900	306.3	0.288
90	11.558	32.811	11.547	24.973	299.4	0.318
100	11.196	32.878	11.184	25.091	288.4	0.348
110	11.018	32.963	11.005	25.189	279.3	0.376
120	10.850	33.035	10.835	25.275	271.3	0.404
130	10.547	33.127	10.532	25.400	259.6	0.430
140	10.308	33.188	10.292	25.489	251.3	0.456
150	9.832	33.298	9.815	25.654	235.6	0.480
175	9.151	33.612	9.132	26.011	202.1	0.535
200	8.673	33.782	8.652	26.219	182.7	0.582
225	8.360	33.895	8.336	26.356	170.1	0.626
250	7.998	33.947	7.973	26.451	161.4	0.667
300	7.189	33.972	7.161	26.587	148.8	0.745
400	6.305	34.045	6.270	26.763	133.0	0.885
500	5.231	34.051	5.190	26.901	120.1	1.012
501	5.222	34.054	5.181	26.905	119.8	1.013

STA NO	0 10	D-4 L	AT: 38 3	4.0 N LO	NG: 125	15.2 W
07 JU	L 1988	0429 GM	T PRO	BE 2561	DEPTH	3508M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.581	32.915	15.581	24.239	367.3	0.004
10	15.579	32.915	15.578	24.239	367.5	0.037
20	15.583	32.915	15.580	24.239	367.9	0.074
30	15.545	32.911	15.541	24.244	367.7	0.110
40	15.549	32.912	15.543	24.245	367.9	0.147
50	15.353	32.891	15.345	24.272	365.6	0.184
60	15.222	32.881	15.213	24.293	363.9	0.220
70	14.039	32.926	14.029	24.579	336.8	0.256
80	12.885	32.886	12.875	24.781	317.7	0.288
90	12.442	32.925	12.431	24.897	306.8	0.319
100	12.101	33.052	12.088	25.060	291.5	0.349
110	11.803	33.089	11.790	25.145	283.7	0.378
120	11.585	33.130	11.571	25.217	277.0	0.406
130	10.987	33.162	10.972	25.350	264.5	0.433
140	10.467	33.227	10.451	25.492	251.1	0.459
150	10.077	33.283	10.060	25.602	240.7	0.483
175	9.339	33.559	9.320	25.939	209.0	0.540
200	8.587	33.770	8.567	26.223	182.3	0.589
225	8.277	33.882	8.254	26.358	169.8	0.633
250	7.736	33.928	7.712	26.474	159.0	0.673
300	7.082	33.986	7.054	26.613	146.3	0.749
400	6.146	34.057	6.111	26.793	130.0	0.887
500	5.296	34.093	5.256	26.927	117.8	1.011
501	5.302	34.095	5.261	26.927	117.8	1.012

STA N	0 11	0-5	LAT: 3	88 22.6	N L	ONG: 125	5.9 W
07 JU	L 1988	0609	GMT	PROBE 2	561	DEPTH	3809M
PRESS	TEMP	SAL	PO	TEN S	I GMA	SVA	DELD
			TE		HETA		
5	15.014	32.64			.158	375.1	0.019
10	15.016	32.64			. 158	375.3	0.038
20	14.983	32.64			.161	375.3	0.075
30	14.941	32.63			. 165	375.2	0.113
40	14.283	32.51			.214	370.8	0.150
50	13.788				.309	361.9	0.186
60	13.309				.414	352.2	0.222
70	12.606	32.54			.568	337.7	0.257
80	11.815	32.67			.817	314.1	0.289
90	11.808	32.92			.015	295.6	0.319
100	11.527	32.96			.100	287.6	0.349
110	11.263	33.04			.205	277.8	0.377
120	10.855	33.08			.310	268.0	0.404
130	10.508	33.23			.490	251.0	0.430
140	9.851	33.35			.696	231.5	0.454
150	9.588	33.46			.822	219.7	0.477
175	9.024	33.74			. 133	190.6	0.528
200	8.552	33.85		32 26	.295	175.5	0.574
225	8.082	33.92			.421	163.8	0.616
250	7.614	33.94			.508	155.7	0.656
300	7.172	34.01		_	.622	145.5	0.731
400	5.845	34.00		311 26	.786	130.4	0.869
500	5.719	34.15		576 26	.923	118.7	0.993
503	5.719	34.15	2 5.6	577 26	.923	118.7	0.996

STA N 07 JU	-	D-7 L 1010 GM	AT: 37 59 IT PRO	9.2 N LC BE 2561	NG:124 DEPTH	49.1 W 3483M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	12,690	33.254	12.690	25.102	285.1	0.003
10	12.548	33.253	12.547	25,129	282.8	0.028
20	11.867	33.279	11.865	25.279	268.8	0.056
30	11.177	33.351	11.173	25.461	251.6	0.082
40	10.319	33.429	10.314	25.672	231.7	0.106
50	9.959	33.507	9.954	25.794	220.3	0.129
60	9.636	33.585	9.630	25.909	209.6	0.150
70	9.494	33.660	9.486	25.991	202.0	0.171
80	9.068	33.623	9.060	26.031	198.3	0.191
90	8.977	33.723	8.967	26.124	189.7	0.210
100	9.049	33.782	9.039	26.159	186.6	0.229
110	8.995	33.834	8.983	26.208	182.1	0.248
120	8.933	33.847	8.921	26.228	180.4	0.266
130	8.833	33.856	8.819	26.251	178.4	0.284
140	8.562	33.835	8.547	26.277	176.0	0.301
150	8.331	33.876	8.316	26.344	169.8	0.319
175	8.051	33.937	8.034	26.434	161.6	0.360
200	7.798	33.990	7.778	26.513	154.5	0.399
225	7.382	34.001	7.360	26.582	148.2	0.437
250	7.076	34.009	7.053	26.631	143.8	0.474
300	6.772	34.057	6.744	26.711	136.8	0.544
400	6.030	34.118	5.995	26.856	124.0	0.673
500	5.440	34.195	5.399	26.990	112.0	0.791
501	5.416	34.193	5.375	26.992	111.9	0.792
LIN	INT SAL	21-67 DB				

STA NO	14	D-8 L	AT: 37 4	7.6 N LO	NG:124	40.7 W
07 JUL	. 1988	1203 GM	T PRO	BE 2561	DEPTH	3533M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.084	33.022	14.084	24.643	328.8	0.003
10	14.055	33.030	14.053	24.655	327.9	0.033
20	13.863	33.091	13.861	24.742	319.9	0.065
30	11.302	33.240	11.298	25.353	261.9	0.095
40	10.281	33.305	10.276	25.582	240.3	0.120
50	10.018	33.351	10.013	25.662	232.8	0.144
60	9.424	33.430	9.418	25.822	217.8	0.166
70	9.120	33.517	9.112	25.940	206.8	0.187
80	8.929	33.598	8.920	26.033	198.1	0.208
90	8.781	33.644	8.771	26.093	192.6	0.227
100	8.434	33.725	8.424	26.209	181.7	0.246
110	8.278	33.804	8.267	26.295	173.7	0.264
120	8.162	33.864	8.150	26.360	167.7	0.281
130	8.071	33.907	8.058	26.408	163.3	0.297
140	7.985	33.928	7.971	26.437	160.7	0.313
150	7.979	33.945	7.964	26.450	159.6	0.329
175	7.703	33.998	7.686	26.533	152.1	0.368
200	7.435	34.015	7.416	26.585	147.5	0.406
225	7.275	34.048	7.254	26.634	143.2	0.442
250	7.204	34.078	7.180	26.668	140.4	0.477
300	6.916	34.092	6.889	26.719	136.1	0.546
400	5.963	34.124	5.929	26.869	122.7	0.676
500	5.453	34.191	5.412	26.986	112.5	0.794
501	5.444	34.189	5.403	26.985	112.5	0.795

STA NO 07 JUL		D-9 L/ 1359 GM	AT: 37 35 T PROE	5.6 N LO BE 2561	NG:124 DEPTH	31.6 W 3967M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.996	33.045	13.996	24.678	325.4	0.003
10	13.976	33.047	13.974	24.684	325.1	0.033
20	13.971	33.047	13.968	24.686	325.2	0.065
30	13.944	33.050	13.939	24.694	324.8	0.098
40	13.043	33.014	13.038	24.848	310.3	0.130
50	11.371	33.172	11.365	25.287	268.6	0.158
60	10.994	33.226	10.986	25.397	258.4	0.185
70	10.614	33.295	10.606	25.518	247.0	0.210
80	10.032	33.314	10.023	25.632	236.3	0.234
90	9.445	33.435	9.435	25.824	218.2	0.257
100	9.152	33.518	9.141	25.936	207.8	0.278
110	9.170	33.647	9.158	26.034	198.7	0.298
120	8.973	33.707	8.960	26.112	191.4	0.318
130	8.809	33.736	8.795	26.161	186.9	0.337
140	8.561	33.785	8.546	26.238	179.8	0.355
150	8.298	33.828	8.283	26.312	172.8	0.373
175	7.981	33.909	7.964	26.422	162.7	0.414
200	7.752	33.957	7.732	26.494	156.2	0.454
225	7.442	33.982	7.420	26.559	150.4	0.493
250	7.110	34.004	7.087	26.623	144.6	0.529
300	6.616	34.043	6.589	26.720	135.8	0.599
400	5.725	34.082	5.691	26.866	122.8	0.729
500	5.405	34.209	5.364	27.006	110.5	0.846
501	5.401	34.209	5.359	27.006	110.5	0.847

STA NO	17	D-10 L/			NG:124 2	
07 JUL	1988	1544 GM	r PRO	BE 2561	DEPTH	4004M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
3	13.136	33.148	13.136	24.932	301.3	0.009
10	13.125	33.149	13.124	24.935	301.2	0.030
20	12.914	33.177	12.911	24.999	295.4	0.060
30	12.095	33.143	12.091	25.131	283.1	0.089
40	10.953	33.041	10.948	25.260	271.0	0.117
50	10.609	33.172	10.603	25.422	255.7	0.143
60	10.394	33.217	10.387	25.495	249.0	0.168
70	9.959	33.292	9.951	25.627	236.6	0.192
80	9.675	33.377	9.666	25.740	226.0	0.215
90	9.294	33.517	9.284	25.912	209.9	0.237
100	9.073	33.613	9.062	26.022	199.5	0.258
110	8.882	33.686	8.870	26.110	191.4	0.277
120	8.711	33.751	8.699	26.188	184.2	0.296
130	8.550	33.803	8.537	26.253	178.1	0.314
140	8.310	33.849	8.296	26.326	171.3	0.331
150	8.108	33.894	8.093	26.392	165.2	0.348
175	7.843	33.944	7.826	26.470	158.1	0.389
200	7.533	33.964	7.514	26.531	152.7	0.428
225	7.354	33.973	7.333	26.564	149.9	0.465
250	7.168	33.995	7.144	26.607	146.1	0.502
300	6.972	34.068	6.944	26.692	138.7	0.574
400	6.206	34.143	6.171	26.854	124.3	0.705
500	5.462	34.188	5.421	26.983	112.8	0.823
501	5.460	34.189	5.418	26.983	112.7	0.824

STA NO 08 JUL		D-10 L/ 0049 GM	AT: 37 24 T PROE	5.0 N LO BE 2561	NG:124 DEPTH	23.3 W 4017M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.328	33.121	13.328	24.873	306.9	0.003
10	13.230	33.125	13.229	24.896	305.0	0.031
20	13.200	33.127	13.197	24.903	304.5	0.061
30	11.345	33.058	11.341	25.202	276.2	0.090
40	10.855	33.117	10.851	25.336	263.7	0.117
50	10.417	33.224	10.411	25.496	248.6	0.143
60	10.149	33.263	10.142	25.573	241.6	0.167
70	9.924	33.318	9.916	25.653	234.1	0.191
80	9.420	33.464	9.411	25.850	215.6	0.213
90	9.075	33.605	9.065	26.016	197.9	0.234
100	8.940	33.662	8.929	26.082	193.9	0.254
110	8.852	33.683	8.841	25.112	191.1	0.273
120	8.622	33.757	8.609	26.206	182.4	0.292
130	8.472	33.817	8.459	26.276	175.9	0.309
140	8.261	33.862	8.247	26.344	169.6	0.327
150	8.137	33.901	8.122	26.393	165.1	0.344
175	7.922	33.952	7.905	26.465	158.6	0.384
200	7.626	34.007	7.607	26.552	150.7	0.423
225	7.456	34.045	7.434	26.606	145.9	0.460
250	7.156	34.051	7.132	26.653	141.8	0.496
300	6.870	34.085	6.843	26.720	136.1	0.565
400	6.074	34.132	6.039	26.862	123.5	0.694
500	5.551	34.211	5.509	26.990	112.2	0.812
501	5.542	34.211	5.501	26.991	112.1	0.813

STA N	0 19	L	AT: 38 1	1.6 N 10	NG:124	50.0 U
08 JU	L 1988	1617 GM		BE 2561		3914M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
. 5	13.697	32.638	13.697	24.425	349.6	0.017
10	13.699	32.638	13.697	24.425	349.8	0.035
20	13.675	32.672	13.673	24.456	347.1	0.070
30	13.037	32.920	13.033	24.776	316.9	0.103
40	12.361	32.841	12.356	24.846	310.4	0.134
50	11.951	32.873	11.945	24.949	300.9	0.165
60	11.678	32.956	11.671	25.063	290.2	0.195
70	11.442	33.007	11.433	25.147	282.4	0.223
80	10.768	32.964	10.759	25.233	274.3	0.251
90	10.563	33.111	10.552	25.384	260.2	0.278
100	10.196	33.245	10.184	25.551	244.5	0.303
110	9.924	33.384	9.911	25.705	230.0	0.327
120	9.458	33.420	9.445	25.810	220,2	0.349
130	9.336	33.495	9.322	25.889	212.9	0.371
140	9.161	33.577	9.146	25.981	204.2	0.392
150	9.409	33.713	9.393	26.048	198.2	0.412
175	8.657	33.755	8.639	26.200	184.0	0.460
200	8.386	33.877	8.366	26.337	171.4	0.504
225	8.087	33.991	8.064	26.472	158.9	0.545
250	7.758	34.011	7.734	26.537	153.1	0.584
300	7.261	34.042	7.232	26.632	144.6	0.659
400	6.372	34.102	6.336	26.800	129.6	0.795
500	5.884	34.168	5.841	26.915	119.6	0.920
501	5.868	34.166	5.825	26.916	119.5	0.921

STA N		L	AT: 38 3	7.8 N LC	NG:125	18.6 W
09 JU	L 1988	0324 GM	T PRO	BE 2561	DEPTH	3932M
PRESS	TEMP	SAL	POTEN	CICHA	61/4	2512
rkc33	IEMP	SAL	TEMP	SIGMA THETA	SVA	DELD
3	15.672	32,929	15.671	24.230	368.2	0.011
10	15.668	32.930	15.666	24.231	368.3	0.037
20	15.674	32.929	15.671	24.230	368.7	0.074
30	15.676	32.929	15.671	24.230	369,1	0.111
40	15.677	32.929	15.671	24.230	369.4	0.147
50	15.662	32.928	15.654	24.232	369.4	0.184
60	15.315	32.905	15.306	24.292	364.0	0.221
70	13.271	32.803	13.261	24.640	330,9	0.256
80	11.877	32.806	11.867	24.911	305.2	0.288
90	11.326	32.838	11.315	25.036	293.4	0.318
100	11.095	32.909	11.083	25.133	284.4	0.347
110	10.939	33.007	10.926	25.237	274.7	0.374
120	10.776	33.065	10.761	25.312	267.8	0.402
130	10.464	33.135	10.449	25.420	257.6	0.428
140	10.178	33.217	10.162	25.533	247.1	0.453
150	9.902	33.305	9.885	25.648	236.2	0.477
175	9.112	33.631	9.094	26.032	200.1	0.532
200	8.695	33.855	8.674	26.273	177.6	0.579
225	8.480	33.934	8.457	26.368	169.0	0.622
250	8.103	33.961	8.078	26.447	161.8	0.663
300	7.339	33.969	7.310	26.564	151.1	0.741
400	6.174	34.020	6.139	26.761	133.1	0.883
500	5.521	34.128	5.480	26.928	118.0	1.008
503	5.511	34.134	5.470	26.934	117.5	1.012

STA NO	21	D-10 L	AT: 37 2	3.9 N L	ONG: 124	23.0 ₩
09 JUI	. 1988	1506 GM	T PRO	BE 2561		4003M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
3	13.022	33.038	13.022	24.870	307.3	0.009
10	13.024	33.039	13.023	24.870	307.4	0.031
20	12.943	33.038	12.941	24.886	306.2	0.061
30	11.922	33.073	11.918	25.108	285.2	0.091
40	10.278	33.030	10.273	25.368	260.6	0.118
50	9.880	33.108	9.874	25.496	248.6	0.144
60	9.713	33.241	9.706	25.628	236.3	0.168
70	10.215	33.604	10.207	25.827	217.7	0.191
80	9.886	33.585	9.877	25.868	213.9	0.212
90	9.659	33.642	9.649	25.951	206.3	0.233
100	9.618	33.701	9.607	26.004	201.4	0.254
110	9.494	33.742	9.482	26.056	196.7	0.274
120	9.316	33.805	9.303	26.134	189.4	0.293
130	9.210	33.847	9.196	26.185	184.8	0.312
140	9.048	33.883	9.033	26.239	179.8	0.330
150	8.795	33.935	8.779	26.319	172.3	0.347
175	8.668	33.971	8.650	26.368	168.1	0.390
200	8.302	34.012	8.282	26,456	160.1	0.431
225	7.950	34.007	7.928	26.505	155.8	0.471
250	7.646	34.043	7.622	26.577	149.2	0.509
300	6.953	34.045	6.925	26.677	140.2	0.581
400	6.371	34.133	6.335	26.824	127.3	0.715
500	5.653	34.181	5.611	26.954	115.7	0.836
503	5.573	34.172	5.530	26.957	115.4	0.840

LIN INT SAL 27-35 DB

STA NO		•	T: 37 23		NG:124 2 DEPTH	
10 JUL	1988	0105 GM1	PROB	E 2561	DEPIR)AO)W
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.296	33.020	13.296	24.801	313.8	0.003
10	13.296	33.019	13.294	24.801	314.0	0.031
20	13.294	33.020	13.292	24.802	314.2	0.063
30	13.282	33.020	13.278	24.804	314.2	0.094
40	11.810	33.079	11.805	25.134	283.0	0.124
50	10.784	33.019	10.778	25.273	269.9	0.152
60	10.344	33.097	10.337	25.410	257.1	0.178
70	10.068	33.129	10.060	25.481	250.5	0.204
80	9.952	33.304	9.943	25.638	235.8	0.228
90	9.760	33.335	9.750	25.694	230.6	0.251
100	10.226	33.689	10.215	25.892	212.1	0.273
110	9.860	33.747	9.848	26.000	202.1	0.294
120	9.476	33.812	9.463	26.114	191.4	0.314
130	9.195	33.879	9.181	26.212	182.2	0.332
140	8.804	33.928	8.790	26 <i>.</i> 312	172.8	0.350
150	8.680	33.948	8.665	26.347	169.6	0.367
175	8.372	33.993	8.354	26.431	162.1	0.408
200	8.112	34.046	8.092	26.511	154.8	0.448
225	7.773	34.058	7.751	26.571	149.4	0.486
250	7.513	34.074	7.489	26.621	145.0	0.523
300	6.811	34.061	6.784	26.708	137.1	0.593
400	6.277	34.133	6.241	26.837	126.0	0.725
500	5.597	34.183	5.556	26.962	114.9	0.845
501	5.603	34.186	5.561	26.964	114.7	0.846

STA	NO 24	D-3 L	AT: 38 4	5.8 N LC	NG:125	22.8 W
12 J	UL 1988	0310 GM	T PRO	BE 2561	DEPTH	3680M
PRES	S TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	16.028	32.632	16.028	23.922	397.6	0.004
10		32.634	15.926	23.946	395.5	0.040
20	15.863	32.664	15.860	23.984	392.2	0.079
30	15.888	32.679	15.883	23.990	391.9	0.118
40	15.928	32.701	15.921	23.999	391.4	0.158
50	15.533	32.915	15.525	24.251	367.7	0.196
60	14.194	32.879	14.186	24.511	343.0	0.231
70	13.316	32.969	13.306	24.760	319.5	0.264
80	12.922	32.983	12.912	24.849	311.2	0.296
90	12.261	33.012	12.249	24.999	297.1	0.326
100	11.819	33.048	11.806	25.110	286.7	0.355
110	11.616	33.122	11.602	25.205	277.9	0.383
120	11.209	33.170	11.194	25.316	267.5	0.411
130	10.525	33.213	10.509	25.471	252.9	0.437
140	10.021	33.317	10.005	25.637	237.1	0.461
150	9.512	33.433	9.496	25.812	220.6	0.484
175	9.008	33.655	8.990	26.067	196.8	0.537
200	8.539	33.834	8.519	26.281	176.8	0.583
225	8.089	33.933	8.066	26.426	163.3	0.625
250	7.909	33.989	7.884	26.498	156.9	0.665
300	6.942	33.968	6.915	26.618	145.7	0.741
400	6.006	34.012	5.972	26.776	131.5	0.879
500	5.170	34.055	5.130	26.911	119.1	1.004
501	5.162	34.055	5.122	26.912	119.0	1.005

STA NO		D-9 L. 1302 GM			NG:124	
	1700	1302 GM	i PKU	BE 2561	DEPTH	3953M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.110	32.931	14,109	24.566	336.1	0.003
10	14.094	32.931	14.093	24.570	336.0	0.034
20	13.740	32.961	13.737	24.666	327.1	0.067
30	13.565	32.993	13.560	24.727	321.6	0.099
40	13.168	33.044	13.162	24.846	310.5	0.131
50	12.873	33.091	12.866	24.942	301.6	0.161
60	10.757	33.062	10.750	25.312	266.5	0.190
70	10.402	33.219	10.394	25.495	249.2	0.216
80	9.902	33.373	9.893	25.700	229.9	0.240
90	9.988	33.538	9.978	25.815	219.2	0.262
100	9.850	33.652	9.839	25.926	8.805	0.284
110	9.501	33.716	9.489	26.035	198.7	0.304
120	9.004	33.738	8.991	26.131	189.6	0.323
130	8.988	33.808	8.974	26.189	184.3	0.342
140	8.980	33.916	8.965	26.275	176.3	0.360
150	8.825	33.942	8.809	26.320	172.2	0.377
175	8.231	34.001	8.214	26.458	159.5	0.419
200	7.906	34.012	7.886	26.515	154.4	0.458
225	7.547	34.024	7.525	26.577	148.8	0.496
250	7.270	34.042	7.246	26.630	144.0	0.533
300	6.856	34.094	6.828	26.729	135.2	0.602
400	6.065	34.146	6.030	26.874	122.3	0.731
500	5.454	34.197	5.413	26.990	112.0	0.849
501	5.474	34.203	5.432	26.993	111.8	0.850

26	L	AT: 38 36	.O N LO	NG:125	16.3 W
1988	0543 GM	T PROB	E 2561	DEPTH	М
TEMP	SAL	POTEN	SIGMA	SVA	DELD
		TEMP	THETA		
16.365	32.694	16.365	23.893	400.4	0.012
16.363	32.694	16.361	23.894	400.5	0.040
15.902	32.711	15.898	24.011	389.6	0.080
15.871	32.713	15.867	24.020	389.0	0.118
15.846	32.716	15.840	24.028	388.6	0.157
15.605	32.831	15.598	24.170	375.3	0.196
14.800	32.924	14.791	24.417	352.0	0.232
13.550	32.876	13.540	24.641	330.9	0.266
12.353	32.814	12.342	24.827	313.2	0.299
11.562	32.844	11.551	24.999	297.0	0.329
11.368	32.897	11.356	25.075	289.9	0.358
11.170	32.947	11.157	25.150	283.0	0.387
10.955	33.006	10.941	25.234	275.2	0.415
10.642	33.089	10.627	25.354	264.0	0.442
10.187	33.180	10.171	25.502	250.0	0.468
9.797	33.310	9.781	25.669	234.2	0.492
9.082	33.639	9.063	26.043	199.1	0.546
8.695	33.880	8.674	26.293	175.8	0.592
8.149	33.918	8.126	26.406	165.2	0.635
7.920	33.972	7.895	26.482	158.4	0.675
7.084	33.985	7.056	26.612	146.4	0.751
5.950	33.985	5.916	26.761	132.8	0.890
5.505	34.095	5.463	26.904	120.2	1.017
5.500	34.097	5.458	26.906	120.0	1.018
	TEMP 16.365 16.363 15.902 15.871 15.846 15.605 14.800 13.550 12.353 11.562 11.368 11.170 10.955 10.642 10.187 9.797 9.082 8.695 8.149 7.920 7.084 5.950 5.505	TEMP SAL 16.365 32.694 16.363 32.694 15.902 32.711 15.871 32.713 15.846 32.831 14.800 32.924 13.550 32.876 12.353 32.814 11.562 32.844 11.368 32.897 11.170 32.947 10.955 33.006 10.642 33.089 10.187 33.180 9.797 33.310 9.082 33.639 8.695 33.808 8.149 33.918 7.920 33.972 7.084 33.985 5.950 33.985 5.505 34.095	TEMP SAL POTEN TEMP 16.365 32.694 16.365 16.363 32.694 16.361 15.902 32.711 15.898 15.871 32.713 15.867 15.846 32.716 15.840 15.605 32.831 15.598 14.800 32.924 14.791 13.550 32.876 13.540 12.353 32.814 12.342 11.562 32.844 11.551 11.368 32.897 11.356 11.170 32.947 11.157 10.955 33.006 10.941 10.642 33.089 10.627 10.187 33.180 10.171 9.797 33.310 9.781 9.082 33.639 9.063 8.695 33.880 8.674 8.149 33.918 8.126 7.920 33.972 7.895 7.084 33.985 5.916 5.505 34.095 5.463	TEMP SAL POTEN SIGMA TEMP THETA 16.365 32.694 16.365 23.893 16.363 32.694 16.365 23.893 15.890 24.011 15.871 32.713 15.8867 24.020 15.846 32.716 15.840 24.028 15.605 32.831 15.598 24.170 14.800 32.924 14.791 24.417 13.550 32.876 13.540 24.641 12.353 32.814 12.342 24.827 11.562 32.844 11.551 24.999 11.368 32.897 11.356 25.075 11.170 32.947 11.157 25.150 10.955 33.006 10.941 25.234 10.642 33.089 10.627 25.354 10.187 33.180 10.171 25.502 9.797 33.310 9.781 25.669 9.082 33.639 9.063 26.043 8.695 33.880 8.674 26.293 8.149 33.918 8.126 26.406 7.920 33.972 7.895 26.482 7.084 33.985 7.056 26.612 5.950 33.985 5.916 26.761 5.505 34.095 5.463 26.904	TEMP SAL POTEN SIGMA SVA TEMP THETA 16.365 32.694 16.365 23.893 400.4 16.363 32.694 16.361 23.594 400.5 15.902 32.711 15.898 24.011 389.6 15.871 32.713 15.867 24.020 389.0 15.846 32.716 15.840 24.028 388.6 15.605 32.831 15.598 24.170 375.3 14.800 32.924 14.791 24.417 352.0 13.550 32.876 13.540 24.641 330.9 12.353 32.814 12.342 24.827 313.2 11.562 32.844 11.551 24.999 297.0 11.368 32.897 11.356 25.075 289.9 11.170 32.947 11.157 25.150 283.0 10.955 33.006 10.941 25.234 275.2 10.642 33.089 10.627 25.354 264.0 10.187 33.180 10.171 25.502 250.0 9.797 33.310 9.781 25.669 234.2 9.082 33.639 9.063 26.043 199.1 8.695 33.808 8.674 26.293 175.8 8.149 33.918 8.126 26.406 165.2 7.920 33.972 7.895 26.482 158.4 7.084 33.985 7.056 26.612 146.4 5.950 33.985 5.916 26.761 132.8 5.505 34.095 5.463 26.904 120.2

STA NO	28	D-4 L/	AT: 38 34	.2 N LO	NG:125	14.9 W
14 JUL	. 1988	0,436 GM	T PROB	E 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	16.445	32.719	16.445	23.894	400.2	0.004
10	16.457	32.719	16.456	23.891	400.7	0.040
20	16.342	32.793	16.339	23.975	393.1	0.080
30	16.305	32.818	16.300	24.002	390.8	0.119
40	16.192	32.829	16.186	24.037	387.8	0.158
50	14.760	32.787	14.753	24.320	361.0	0.196
60	13.692	32.768	13.684	24.528	341.3	0.231
70	13.027	32.804	13.018	24.689	326.2	0.264
80	12.041	32.822	12.030	24.893	306.9	0.296
90	11.496	32.849	11.485	25.015	295.5	0.326
100	11,190	32.907	11.178	25.114	286.2	0.355
110	11.095	33.011	11.082	25.213	277.0	0.383
120	10.747	33.071	10.733	25.321	266.9	0.410
130	10.319	33.156	10.304	25.461	253.7	0.436
140	10.045	33.220	10.029	25.558	244.6	0.461
150	9.758	33.349	9.741	25.706	230.7	0.485
175	9.078	33.643	9.059	26.046	198.7	0.539
200	8.635	33.875	8.614	26.298	175.2	0.585
225	8.188	33.919	8.165	26.401	165.7	0.628
250	7.770	33.974	7.745	26.506	156.0	0.668
300	6.967		6.939	26.631	144.5	0.743
400	5.835	33.987	5.801	26.777	131.2	0.881
500	5.533	34.120	5.491	26.920	118.7	1.006
501	5.530	34.121	5.488	26.921	118.6	1.007

STA N 14 JU		L 1314 GM		5.6 N LO BE 2561	NG:124 DEPTH	
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
1	1/ 5/0	72.0/5	TEMP	THETA	7// 0	
10	14.560	32.945	14.560	24.483	344.0	0.003
20	13.874	33.005	13.873	24.673	326.2	0.034
_	13.512	33.028	13.509	24.764	317.8	0.066
30	12.638	33.113	12.634	25.003	295.2	0.097
40	12.538	33.167	12.533	25.064	289.7	0.126
50	12.547	33.305	12.540	25.171	279.8	0.155
60	11.050	33.2 65	11.043	25.418	256.4	0.181
70	11.192	33.620	11.184	25.668	232.9	0.206
80	10.463	33.719	10.454	25.874	213.4	0.228
90	9.738	33.7 52	9.728	26.023	199.4	0.249
100	9.326	33.785	9.315	26.117	190.6	0.268
110	9.302	33.828	9.290	26.154	187.3	0.287
120	8.851	33.806	8.838	26.209	182.2	0.306
130	8.738	33.849	8.724	² 5.260	177.5	0.324
140	8.696	33.899	8.682	26.306	173.3	0.341
150	8.633	33.938	8.617	26.347	169.6	0.358
175	8.214	33.991	8.196	26.453	159.9	0.400
500	7.952	34.008	7.932	26.505	155.4	0.439
225	7.673	34.025	7.651	26.559	150.5	0.477
250	7.374	34.070	7.350	26.638	143.3	0.514
300	6.958	34,108	6.931	26.726	135.6	0.584
400	6.120	34.138	6.085	26.861	123.6	0.713
500	5.451	34.188	5.409	26.984	112.7	0.831
503	5.436	34.191	5.395	26.988	112.3	0.835

STA NO		D-4		32.8 N	LONG: 125	
15 JUI	1988	0423 (offi f	PROBE 2561	DEPTH	ı m
PRESS	TEMP	SAL	POTE TEM			DELD
3	16.964	32.833	16.96	4 23.861	403.4	0.012
10	16.831	32.832	2 16.82	29 23.891		0.040
20	16.129	32.720				0.080
30	16.060	32.724	16.05	6 23.986	392.3	0.119
40	15.315	32.704		9 24.136	378.3	0.158
50	14.030	32.656				0.195
60	12.892	32.664				0.229
70	12.738	32.788				0.262
80	11.862	32.829	11.85	24.931	303.2	0.293
90	11.546	32.849		5 25.005	296.4	0.323
100	11.259	32.911	11.24	7 25.106	287.0	0.352
110	11.078	32.971	11.06	5 25.185	279.7	0.381
120	10.814	33.073	10.80	0 25.311	267.9	0.408
130	10.460	33.133	10.44	5 25.420	257.7	0.434
140	9.930	33.259	9.91	4 25.607	239.9	0.459
150	9.603	33.405	9.58	6 25.775	224.1	0.483
175	8.978	33.672	8.96	0 26.085	195.1	0.534
200	8.687	33.892	8.66	6 26.303	174.7	0.580
225	8.172	33.908	8.14	9 26.394	166.4	0.623
250	8.080	33.971	8.05	5 26.458	160.7	0.664
300	7.204	33.973	7.17	6 26.586	149.0	0.741
400	6.436	34.084		0 26.778	131.8	0.881
500	5.369	34.105	5.32	8 26.928	117.8	1.006
501	5.375	34.106	5.33	4 26.928	117.8	1.007

STA NO	32	0-9	LAT:	37 3	35.4 N	LONG: 124	31.5 W
15 JUL	. 1988	1315	GMT	PRO	DBE 2561	DEPTI	H M
PRESS	TEMP	SAL		OTEN	SIGM		DELD
				EMP	THET		
*	14.570	33.0		.570	24.53		0.003
10	14.098	33.02		.097	24.		0.034
20	12.700	33.13		.697	25.00		0.065
30	11.734	33.2		.730	25.25		0.093
40	12.415	33.43		.409	25.30		0.120
50	10.819	33.23		.813	25.43		0.146
60	11.032	33.47		.025	25.54		0.171
70	10.182	33.47		.174	25.73		0.195
80	9.764	33.4		.755	25.79		0.218
90	9.987	33.63	58 9	.977	25.89		
100	9.514	33.7	39 9	.503	26.05	0 197.0	0.260
110	9.219	33.8	35 9	.207	26.21	3 181.7	0.279
120	9.040	33.9	27 9	.028	26.27	4 176.1	0.297
130	8.940	33.93	30 8	.926	26.29	2 174.5	0.314
140	8.880	33.9	41 8	.865	26.31	1 172.9	0.332
150	8.680	33.9	75 8	.664	26.36	8 167.6	0.349
175	8.284	34.0	11 8	.266	26.45	8 159.5	0.390
200	7.945	34.0	35 7	.925	26.52	7 153.2	0.429
225	7.678	34.0	60 7	.656	26.58	6 147.9	0.466
250	7.244	34.0	23 7	.221	26.61	9 145.0	0.503
300	7.047	34.0	87 7	.019	26.69	8 138.3	0.574
400	6.188			. 153	26.86	7 123.1	0.704
500	5.434	34.2	24 5	.393	27.01	4 109.8	0.821
501	5.425	34.2	50 5	.384	27.03	6 107.8	0.822

SAL + OFFSET, 69-501 DB SEE DATA REPORT

STA N			AT: 38 3		DNG: 125	13.0 W
16 JU	L 1988	0433 GM	T PRO	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
3	16.988	32.735	16.988	23.780	411.1	0.012
10	16.980	32.732	16.978	23.780	411.3	0.041
20	16.260	32.785	16.256	23.987	391.9	0.081
30	16.377	32.855	16.372	24.014	389.6	0.120
40	16.249	32.88 8	16.242	24.069	384.7	0.159
50	14.999	32.882	14.991	24.342	358.9	0.196
60	12.998	32.689	12.989	24.605	333.9	0.231
70	12.453	32.790	12.444	24.790	316.5	0.263
80	11.860	32.820	11.850	24.925	303.8	0.294
90	11.369	32.860	11.358	25.046	292.5	0.324
100	11.263	32.929	11.251	25.119	285.8	0.353
110	11.093	33.002	11.080	25.206	277.7	0.381
120	10.793	33.056	10.779	25.301	268.8	0.408
130	10.533	33.117	10.518	25.395	260.1	0.435
140	10.125	33.197	10.109	25.527	247.7	0.460
150	9.708	33.364	9.691	25.727	228.8	0.484
175	8.931	33.701	8.912	26.115	192.2	0.537
200	8.602	33.876	8.582	26.304	174.6	0.583
225	8.052	33.936	8.030	26.434	162.5	0.625
250	7.746	33.969	7.722	26,505	156.1	0.665
300	7.044	33.983	7.016	26.615	146.1	0.740
400	6.175	34.039	6.140	26.776	131.7	0.879
500	5.371	34.093	5.331	26.918	118.7	1.004
501	5.366	34.092	5.325	26.918	118.7	1.005

STA N	0 34	D-9 L	AT: 37 3	5.5 N LC	MG:124	31.6 W
16 JU	L 1988	1259 GM	IT PRO	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	13.840	33,154	13.840	24.795	314.3	0.003
10	13.816	33.167	13.815	24.810	313.2	0.031
20	12.843	33.459	12.840	25.231	273.3	0.061
30	12.042	33.482	12.038	25.404	257.1	0.087
40	10.705	33.523	10.700	25.679	231.1	0.111
50	10.045	33.621	10.040	25.869	213.2	0.134
60	9.767	33.749	9.761	26.015	199.5	0.154
70	9.468	33.774	9.460	26.085	193.1	0.174
80	9.304	33.825	9.295	26.151	187.0	0.193
90	9.195	33.852	9.185	26.190	183.5	0.211
100	8.978	33.891	8.967	26.255	177.4	0.229
110	8.915	33.916	8.903	26.285	174.8	0.247
120	8.701	33.927	8.688	26.327	171.0	0.264
130	8.639	33.957	8.625	26.360	168.0	0.281
140	8.521	33.974	8.507	26.392	165.1	0.298
150	8.432	33.989	8.417	26.418	162.9	0.314
175	8.195	34.020	8.177	26.478	157.5	0.354
500	7.960	34.035	7.940	26.525	153.4	0.393
225	7.681	34.058	7.659	26.585	148.1	0.431
250	7.421	34.073	7.397	26.633	143.8	0.467
300	6.897	34.077	6.870	26.710	137.1	0.538
400	5.977	34.137	5.943	26.878	121.9	0.666
500	5.424	34.199	5.383	26,996	111.5	0.783
501	5.419	34.200	5.378	26.997	111.4	0.784
LIN	INT SAL	23-29 DB				

STA I		0119 G		54.6 N (DBE 2561	ONG: 125. DEPT	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA	SVA	DELD
1 10	16.359 16.360	32.611 32.611	16.358 16.358	THETA 23.831 23.831	406.2	
20 30	16.361 16.296	32.611 32.613	16.358	23.831	406.5 406.8	0.041 0.081
40 50	16.200 13.314	32.624 32.716	16.193 13.307	23.878	405.5 402.9 337.7	0.122
60 70	12.639 11.905	32.732 32.769	12.631 11.896	24.709	324.0 308.2	0.199 0.232 0.263
80 90 100	11.559	32.893 32.929	11.550 11.347	25.037 25.102	293.1 287.2	0.293
110 120	11.019 10.285 10.129	32.952 32.905	11.007	25.180 25.271	279.9 271.3	0.351 0.378
130 140	9.766 9.371	33.030 33.132 33.283	10.116 9.751	25.395 25.535	259.7 246.5	0.405 0.431
150 175	9.033 8.528	33.415 33.628	9.356 9.017 8.510	25.718 25.875	229.3	0.454 0.476
200 225	8.098 7.869	33.785 33.899	8.078 7.847	26.120 26.309 26.432	191.5 174.0 162.6	0.527
250 300	7.377 6.631	33.944 33.966	7.353 6.604	26.538 26.658	152.7	0.614 0.653 0.727
400 500 501	5.603 5.006 5.004	34.022 34.094 34.095	5.570 4.966	26.833 26.961	125.8 114.3	0.860 0.979
		24.07)	4.964	26.962	114.2	U OBU

STA NO	36	D-8 L	AT: 37 4	7.5 N LC	NG:124	40.5 W
19 JUI	1988	2115 GM	T PRO	BE 2561	DEPTH	М
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
3	13.665	33.206	13.664	24.870	307.2	0.009
10	12.568	33.161	12.566	25.053	290.0	0.030
20	11.862	33.225	11.859	25.238	272.6	0.058
30	11.548	33.299	11.544	25.354	261.9	0.085
40	10.442	33.196	10.437	25.469	251.0	0.110
50	10.388	33.343	10.383	25.594	239.4	0.135
60	9.266	33.333	9.260	25.772	222.6	0.158
70	9.005	33.454	8.998	25.909	209.7	0.180
80	8.797	33.552	8.789	26.018	199.5	0.200
90	8.581	33.646	8.572	26.125	189.5	0.220
100	8.453	33.720	8.443	26.202	182.3	0.238
110	8.353	33.775	8.342	26.261	176.9	0.256
120	8.209	33.792	8.197	26.296	173.7	0.274
130	8.068	33,861	8.056	26.371	166.8	0.291
140	8.043	33.899	8.029	26.405	163.7	0.307
150	7.894	33.916	7.879	26.440	160.5	0.324
175	7.586	33.965	7,569	26.524	152.9	0.363
200	7, 197	33,971	7.178	26.584	147.5	0.400
225	7.067	34.009	7.047	26.632	143.3	0.436
250	7.004	34.051	6.981	26.682	139.0	0.472
300	6.742	34,120	6.715	26.765	131.8	0.539
400	5.824	34.123	5.790	26.886	121.0	0.666
500	4.970	34.141	4.931	27.002	110.3	0.781
501	4.972	34.142	4.932	27.003	110.3	0.782

STA NO	37	D-10 L/	AT: 37 23	.6 N L	ONG: 124	22.5 W
20 JUL	. 1988	0402 GM	r PROB	E 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
3	14.910	32.986	14.910	24.440	348.2	0.010
10	14.840	32.997	14.839	24.463	346.2	0.035
20	14.585	33.024	14.582	24.539	339.2	0.069
30	12.973	33.117	12.969	24.940	301.2	0.101
40	11.884	33.240	11.879	25.246	272.4	0.130
50	10.566	33.263	10.560	25.500	248.3	0.156
60	10.025	33.373	10.018	25.679	231.5	0.180
70	9.681	33.397	9.673	25.755	224.4	0.202
80	9.429	33.481	9.421	25.862	214.4	0.224
90	9.229	33.562	9.219	25.957	205.5	0.245
100	8.958	33.656	8.947	26.075	194.5	0.265
110	8.675	33.758	8.664	26.198	183.0	0.284
120	8.522	33.841	8.510	26.287	174.7	0.302
130	8.691	33.963	8.677	26.357	168.3	0.319
140	8.508	33.983	8.494	26.401	164.2	0.336
150	8.332	33. 9 91	8.317	26.435	161.2	0.352
175	8.193	34.019	8.176	26.478	157.6	0.392
200	7.776	34.022	7.757	26.541	151.8	0.431
225	7.531	34.046	7.509	26.596	147.0	0.468
250	7.262	34.051	7.239	26.638	143.2	0.504
300	6.836	34.100	6.809	26.736	134.5	0.574
400	6.119	34.160	6.084	26.878	122.0	0.701
500	5.535	34.200	5.493	26.983	112.8	0.819
503	5.546	34.204	5.504	26.985	112.7	0.822

STA NO		D-10 1440 G	LAT: 37 2 MT PRO	23.4 N L 08E 2561	ONG:124. DEPTH	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.040	33.103	15.040	24.502	342.3	0.003
10	12.906	33.019	12.905	24.878	306.7	0.033
20	11.661	33.064	11.659	25.149	281.0	0.063
30	11.046	33.142	11.042	25.322	264.8	0.091
40	10.418	33.194	10.414	25.472	250.7	0.116
50	9.817	33.267	9.812	25.631	235.8	0.141
60	9.686	33.377	9.680	25.738	225.8	0.164
70	9.529	33.487	9.521	25.850	215.4	0.186
80	9.135	33.597	9.127	26.000	201.3	0.207
90	8.860			26.129	189.1	0.226
100	8.651	33.769	8.640	26.211	181.6	0.245
110	8.545	33.853	8.534	26.293	173.9	0.263
120	8.661	33.936	8.648	26.340	169.7	0.280
130	8.616	33.951	8.602	26.359	168.1	0.297
140	8.539	33.964	8.525	26.382	166.1	0.313
150	8.433	33.982	8.418	26.412	163.4	0.330
175	8.124	34.017	8.107	26.486	156.7	0.370
200	7.891	34.042	7.872	26.541	151.9	0.408
225	7.516	34.063	7.495	26.612	145.4	0.445
250	7.352	34.088	7.328	26.655	141.7	0.481
300	6.659	34.07	6.632	26.740	134.0	0.550
400	5.973			26.894	120.4	0.677
500	5.368	34.21	2 5.327	27.013	109.8	0.792
501	5.362	34.21	5.321	27.015	109.6	0.793

STA N	0 40	D-9	LAT: 37 3	36.2 N	LONG: 124	32.0 W
21 JU	L 1988	1514 G	MT PRO	DBE 2561	DEPT	l M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.287	33.017		24.596		0.003
10	14.222	33.035	14.221	24.623	330.9	0.033
20	12.104	33.177		25.155	280.5	0.064
30	10.832	33.033		25.274	269.3	0.091
40	10.061	33.071		25.437		0.118
50	9.903	33.252		25.605	238.3	0.142
60	9.692	33.323		25.696		0.166
70	9.523	33.507		25.867	213.8	0.188
80	9.220	33.554		25.953		0.209
90	8.815	33.621	8.806	26.069		0.229
100	8.684	33.694	8.674	26.147	187.7	0.248
110	8.480	33.734		26.210	181.8	0.266
120	8.453	33.823	8.441	26.284	175.0	0.284
130	8.311	33.850	8.298	26.327	171.1	0.302
140	8.239	33.889		26.368	167.3	0.318
150	8.139	33.927		26.413	163.2	0.335
175	7.919	34.000	7.901	26.504	155.0	0.375
200	7.763	34.047		26.563	149.7	0.413
225	7.459	34.062		26.619	144.7	0.450
250	7.342	34.090		26.658	141.4	0.485
300	6.757	34.097		26.744	133.7	0.554
400	6.125	34.168		26.884	121.4	0.681
500	5.511	34.219	5.469	27.001	111.1	0.797
501	5.515	34.222	5.474	27.003	111.0	0.798

STA NO	3 41	L	AT: 38 24	.7 N LO	NG:125	8.1 W
22 JUI	. 1988	0404 GM	T PRO	3E 2561	DEPTH	1018M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.257	32.621	14.257	24.297	361.8	0.004
10	14.264	32 YS0	14.263	24.295	362.2	0.036
20	14.042	32.629	14.039	24.348	357.4	0.072
30	13.735	32.647	13.731	24.425	350.4	0.108
40	13.570	32.654	13.564	24.464	346.8	0.142
50	13.517	32.652	13.510	24.473	346.3	0.177
60	12.721	32.755	12.713	24.711	323.8	0.211
70	11.800	32.894	11.791	24.993	297.1	0.242
80	11.222	32.930	11.213	25.127	284.6	0.271
90	11.000	32.952	10.989	25.184	279.3	0.299
100	10.846	32.974	10.834	25.228	275.3	0.327
110	10.168	33.130	10.155	25.466	252.8	0.353
120	9.520	33.350	9.507	25.745	226.3	0.377
130	9.105	33.521	9.091	25.946	207.4	0.399
140	9.005	33.585	8.920	26.012	201.3	0.419
150	8.891	33.672	8.876	26.098	193.3	0.439
175	8.405	33.838	8.388	26.303	174.1	0.484
200	8.127	33.918	8,107	26.409	164.5	0.526
225	7.918	33.971	7.895	26.482	158.0	0.567
250	7.455	33.979	7.431	26.555	151.2	0.605
300	6.818	34.000	6.790	26.660	141.7	0.679
400	5.852	34.031	5.818	26.809	128.2	0.813
500	5.416	34.127	5.375	26.939	116.8	0.935
501	5.373	34.122	5.332	26.941	116.6	0.936
				20.741		0.730

STA NO 42		L	AT: 37 38		NG:124 3	
22 JUI	1988	1738 GM	T PROB	E 2561	DEPTH	H
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.957	33.017	13.956	24.665	326.7	0.003
10	13.465	33.025	13.464	24.771	316.9	0.033
20	10.989	33.047	10.987	25.257	270.7	0.062
30	10.710	33.111	10.707	25.357	261.5	0.088
40	10.156	33.129	10.152	25.466	251.3	0.114
50	9.492	33.295	9.486	25.706	228.7	0.138
60	9.138	33.403	9.131	25.847	215.4	0.160
70	9.098	33.567	9.090	25.982	202.7	0.181
80	9.011	33.680	9.002	26.084	193.3	0.201
90	8.898	33.735	8.889	26.145	187.6	0.220
100	8.699	33.772	8.689	26.206	182.1	0.238
110	8.414	33.782	8.403	26.258	177.3	0.256
120	8.287	33.836	8.274	26.319	171.6	0.274
130	8.212	33.873	8.199	26.360	167.9	0.291
140	8.150	33.915	8.136	26.401	164.1	0.307
150	7.997	33.953	7.982	26.455	159.2	0.323
175	7.713	34.004	7.696	26.536	151.8	0.362
200	7.433	34.017	7.414	26.587	147.3	0.400
225	7.289	34.035	7.267	26.622	144.4	0.436
250	7.082	34.041	7.059	26.656	141.5	0.472
300	6.612	34.075	6.585	26.746	133.4	0.540
400	5.893	34.129	5.859	26.882	121.4	0.668
500	5.484	34.211	5.442	26. 99 8	111.4	0.784
503	5.481	34.213	5.440	27.000	111.2	0.787

STA NO) 44	D-2 L	AT: 38 5	7.3 N L	ONG: 125	31.9 W
23 JUI	1988	1303 GM	IT PRO	8E 2561	DEPTH	H
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
		72 //5	TEMP	THETA	(00.0	0 001
1	16.261	32.665	16.261	23.894	400.2 400.5	0.004
10	16.262	32.664	16.260	23.894		
20	16.263	32.664	16.260	23.894	400.8	0.080
30	16.262	32.665	16.257	23.895	401.0	0.120
40	13.328	32.720	13.323	24.564	337.3	0.157
50	12.610	32.782	12.603	24.753	319.5	0.189
60	11.686	32.855	11.678	24.984	297.7	0.220
70	11.460	32.894	11.451	25.055	291.1	0.250
80	11.193	32.940	11.183	25.140	283.3	0.278
90	11.040		11.029	25.177	279.9	0.306
100	10.524	32.935	10.512	25.254	272.8	0.334
110	10.143		10.131	25.372	261.7	0.361
120	9.952	33.117	9.939	25.492	250.4	0.386
130	9.601	33.236	9.586	25.643	236.2	0.411
140	9.160	33.3 <i>7</i> 5	9.145	25.823	219.2	0.433
150	9.007	33.428	8.991	25.889	213.2	0.455
175	8.344	33.681	8.326	26.190	184.9	0.505
200	8.014	33.810	7.994	26.341	170.9	0.549
225	7.680	33.909	7.658	26.467	159.2	0.590
250	7.430	33.953	7.406	26.538	152.8	0.629
300	6.853	33.987	6.825	26.645	143.1	0.703
400	5.836	34.031	5.802	26.812	127.9	0.839
500	5.176	34.080	5.136	26.930	117.3	0.962
503	5.145	34.081	5.105	26.935	116.9	0.965
		•				

STA N			AT: 38 4	6.3 N LC	NG:125	22.9 W
23 JU	L 1988	1451 GM	T PRO	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
1	16.250	32.624	16.250	23.865	402.9	0.004
10	16.254	32.629	16.252	23.869	402.9	0.040
20	16.252	32.629	16.249	23.869	403.1	0.081
30	16.252	32.630	16.247	23.870	403.4	0.121
40	15.117	32.696	15.111	24.172	374.8	0.161
50	13.557	32.771	13.550	24.557	338.3	0.196
60	12.649	32.833	12.641	24.785	316.8	0.228
70	12.033	32.864	12.024	24.926	303.5	0.259
80	11.595	32.908	11.585	25.042	292.7	0.289
90	11.246	32.974	11.235	25.157	281.9	0.318
100	11.022	33.007	11.010	25.222	275.9	0.346
110	10.523	33.016	10.510	25.317	267.0	0.373
120	9.862	33.039	9.849	25.447	254.7	0.399
130	9.619	33.171	9.605	25.590	241.3	0.424
140	9.305	33.304	9.290	25.744	226.7	0.447
150	9.052	33.406	9.036	25.865	215.4	0.469
175	8.384	33.693	8.366	26.193	184.6	0.519
200	7.966	33.830	7.946	26.363	168.7	0.563
225	7.644	33.897	7.622	26.463	159.6	0.604
250	7.436	33.949	7.412	26.534	153.2	0.643
300	6.951	34.004	6.923	26.645	143.2	0.717
400	5.621	34.011	5.588	26.822	126.8	0.851
500	4.975	34.094	4.936	26.965	113.9	0.971
503	4.962	34.096	4.923	26.967	113.6	0.975

STA NO 23 JUI		D-4 L. 1631 GM	AT: 38 34 T PRO	4.7 N LC BE 2561	NG:125 DEPTH	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
3	15.409	32.512	15.409	23.967	393.3	0.012
10	15.411	32.513	15.410	23.967	393.4	0.039
20	15.401	32.513	15.398	23.969	393.6	0.079
30	15.400	32.512	15.395	23.970	393.8	0.118
40	15.403	32.513	15.397	23.970	394.1	0.157
50	15.047	32.532	15.040	24.062	385.6	0.197
60	13.894	32.745	13.886	24.469	347.0	0.233
70	12.395	32.849	12.386	24.846	311.1	0.266
80	11.640	32.904	11.630	25.031	293.8	0.296
90	11.180	32.903	11.169	25.113	286.1	0.325
100	10.535	32.884	10.524	25.212	276.8	0.354
110	10.400	33.013	10.387	25.336	265.2	0.381
120	10.244	33.045	10.230	25.387	260.5	0.407
130	9.833	33.168	9.818	25.552	244.9	0.432
140	9.104	33.397	9.089	25.849	216.8	0.455
150	8.715	33.561	8.699	26.039	198.8	0.476
175	8.336	33.717	8.318	26.219	182.1	0.524
200	7.952	33.859	7.932	26.388	166.4	0.567
225	7.876	33.964	7.854	26.482	157.9	0.608
250	7.643	33.999	7.618	26.544	152.4	0.646
300	6.810	33.987	6.783	26.650	142.6	0.720
400	5.649	34.034	5.616	26.837	125.4	0.854
500	4.987	34.089	4.947	26.959	114.4	0.973
503	4.993	34.093	4.953	26.962	114.2	0.977

STA N		D-5 L	AT: 38 2	0.3 N L	ONG: 125	9.7 W
23 JU	L 1988	1813 GM	T PRO	BE 2561	DEPTH	
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.791	32.667	14.790	24.220	369.1	0.004
10	14.724	32.665	14.723	24.232	368.2	0.037
20	14.645	32.658	14.642	24.244	367.4	0.074
30	14.234	32.625	14.229	24.306	361.7	0.110
40	13.622	32.650	13.616	24.450	348.2	0.146
50	12.135	32.754	12.129	24.821	313.0	0.179
60	10.940	32.720	10.933	25.013	294.9	0.209
70	10.395	32.740	10.387	25.123	284.6	0.238
80	10.656	32.955	10.647	25.246	273.2	0.266
90	10.009	33.018	9.999	25.405	258.1	0.293
100	9.318	33.110	9.308	25.590	240.6	0.318
110	9.238	33.285	9.226	25.740	226.6	0.341
120	9.017	33.436	9.004	25.893	212.1	0.363
130	8.756	33.574	8.742	26.043	198.1	0.383
140	8.578	33.664	8.563	26.140	189.0	0.403
150	8.522	33.782	8.506	26.242	179.5	0.421
175	8.156	33.923	8.138	26.408	164.2	0.464
200	7.992	33.985	7.972	26.481	157.6	0.504
225	7.607	33.982	7.585	26.535	152.8	0.542
250	7.116	33.975	7.093	26.599	146.9	0,580
300	6.782	34.034	6.754	26.691	138.7	0.651
400	5.855	34.074	5.821	26.843	125.0	0.783
500	4.971	34.105	4.932	26.973	113.0	0.902
501	4.972	34.106	4.933	26.974	113.0	0.903

STA NO 23 JUL		D-6 L. 1941 GM		1.0 N LO BE 2561	NG:124 DEPTH	56.9 W M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
3	12.369	32.833	12.368	24.837	310.3	0.009
10	11.776	33.038	11.775	25.108	284.7	0.030
20	11.563	33.041	11.561	25.150	281.0	0.058
30	11.219	33.001	11.215	25.181	278.2	0.086
40	10.574	32.946	10.570	25.252	271.7	0.114
50	9.825	32.955	9.819	25.385	259.1	0.141
60	9.581	33.031	9.574	25.485	249.8	0.166
70	9.498	33.195	9.490	25.627	236.5	0.190
80	9.731	33.412	9.722	25.759	224.3	0.213
90	9.803	33.519	9.793	25.831	217.7	0.235
100	9.632	33.559	9.621	25.890	212.2	0.257
110	9.277	33.637	9.265	26.009	201.1	0.278
120	8.633	33.663	8.620	26.131	189.5	0.297
130	8.714	33.808	8.700	26.232	180.1	0.315
140	8.297	33.815	8.283	26.301	173.6	0.333
150	8.189	33.857	8.174	26.350	169.2	0.350
175	7.809	33.919	7.792	26.455	159.5	0.391
200	7.569	33.966	7.550	26.527	153.0	0.430
225	7.240	33.979	7.218	26.585	147.9	0.468
250	6.881	33.990	6.858	26.643	142.6	0.504
300	6.315	34.033	6.289	26.752	132.7	0.573
400	5.731	34.077	5.697	26.861	123.3	0.702
500	5.163	34.177	5.123	27.009	109.9	0.818
501	5.161	34.178	5.121	27.010	109.8	0.819

STA N	0 49	D-7 L	AT: 37 5	9.1 N LC	ONG: 124	48.9 W
23 JU	L 1988	2120 GM	T PRO	BE 2561	DEPTH	
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.200	33.172	14.200	24.734	320.1	0.003
10	12.641	33.085	12.640	24.979	297.0	0.031
20	11.646	33.042	11.643	25.135	282.4	0.060
30	10.849	32.938	10.846	25.195	276.9	0.088
40	11.585	33.377	11.580	25.407	257.0	0.115
50	11.585	33.420	11.579	25.441	254.0	0.140
60	11.142	33.427	11.135	25.527	246.0	0.166
70	10.541	33.415	10.533	25.624	237.0	0.190
80	9.987	33.493	9.978	25.780	222.3	0.213
90	9.130	33.654	9.121	26.046	197.1	0.234
100	8.745	33.729	8.735	26.165	186.0	0.253
110	8.619	33.762	8.608	26.210	181.8	0.271
120	8.453	33.812	8.440	26.275	175.8	0.289
130	8.297	33.848	8.284	26.327	171.0	0.306
140	8.009	33.876	7.995	26.392	164.9	0.323
150	7.902	33.898	7.887	26.425	162.0	0.339
175	7.689	33.939	7.672	26.489	156.3	0.379
200	7.354	33.978	7.335	26.568	149.1	0.417
225	6.866	33.968	6.845	26.627	143.7	0.454
250	6.716	33.986	6.694	26.662	140.7	0.489
300	6.220	34.024	6.194	26.757	132.1	0.558
400	5.585	34.102	5.552	26.898	119.6	0.683
500	5.200	34.200	5.160	27.023	108.7	0.798
501	5.196	34.200	5.156	27.023	108.6	0.799

STA NO	50	D-8 L	AT: 37 47	7.6 N LO	NG:124	40.5 W
23 JUI	. 1988	2306 GM	T PROE	BE 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.182	33.209	14.182	24.766	317.1	0.003
10	13.710	33.213	13.709	24.867	307.8	0.031
20	12.981	33.249	12.978	25.041	291.4	0.061
30	12.267	33.317	12.263	25.233	273.4	0.089
40	11.542	33.345	11.537	25.390	258.6	0.116
50	10.446	33.495	10.441	25.702	229.1	0.141
60	9.595	33.613	9.588	25.938	206.9	0.162
70	9.375	33.638	9.367	25.993	201.7	0.183
80	9.395	33.732	9.386	26.064	195.2	0.202
90	8.665	33.740	8.656	26.186	183.7	0.221
100	8.510	33.806	8.500	26.261	176.8	0.239
110	8.312	33.827	8.301	26.308	172.4	0.257
120	8.236	33.850	8.224	26.337	169.8	0.274
130	8.049	33.875	8.036	26.385	165.5	0.291
140	7.842	33.882	7.828	26.422	162.1	0.307
150	7.889	33.943	7.874	26.463	158.4	0.323
175	7.537	33.957	7.520	26.525	152.8	0.362
200	7.233	33.983	7.214	26.588	147.1	0.399
225	6.996	34.006	6.976	26.640	142.5	0.435
250	6.630	33.996	6.608	26.681	138.8	0.471
300	6.350	34.048	6.324	26.759	132.0	0.538
400	5.893	34.142	5.859	26.893	120.4	0.665
500	5.344	34.211	5.303	27.015	109.6	0.780
501	5.347	34.212	5.306	27.015	109.6	0.781

STA NO	52	D-10 L	AT: 37 2	3.2 N LO	ONG:124	22.8 W
24 JUI	L 1988	0254 GM	T PRO	8E 2561	DEPTH	M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	15.107	33.058	15.107	24.453	346.9	0.003
10	13.819	33.045	13.818	24.715	322.2	0.034
20	12.976	33.096	12.973	24.924	302.5	0.065
30	12.604	33.470	12.600	25.286	268.3	0.094
40	12.573	33.485	12.567	25.304	266.8	0.120
50	11.497	33.432	11.491	25.466	251.6	0.146
60	10.484	33.502	10.477	25.701	229.4	0.170
70	10.183	33.576	10.175	25.811	219.2	0.193
80	9.242	33.587	9.233	25.975	203.7	0.214
90	8.815	33.687	8.805	26.121	190.0	0.234
100	8.647	33.770	8.637	26.212	181.4	0.252
110	8.560	33.830	8.549	26.273	175.9	0.270
120	8.551	33.889	8.539	26.320	171.6	0.288
130	8.579	33.942	8.565	26.358	168.2	0.305
140	8.455	33.9 65	8.440	26.395	164.8	0.321
150	8.378	33.997	8.363	26.432	161.5	0.338
175	8.094	34.037	8.076	26.506	154.8	0.377
200	7.768	34.034	7.748	26.553	150.7	0.415
225	7.609	34.067	7.587	26.602	146.4	0.452
250	7.169	34.055	7.145	26.654	141.6	0.488
300	6.739	34.090	6.711	26.742	133.9	0.557
400	6.044	34.153	6.009	26.883	121.5	0.684
500	5.372	34.222	5.331	27.020	109.1	0.799
501	5.373	34.225	5.331	27.022	109.0	0.800

PROFILE PLOTS AND LISTINGS
W8807A

STA NO			AT: 37 2		NG:124	
27 JUI	. 1988	0337 GM	r Pro	BE 2561	DEPTH	3994M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
· KESO		0.1.2	TEMP	THETA	• • • • • • • • • • • • • • • • • • • •	0220
1	14.959	33.001	14.959	24.441	348.0	0.003
10	14.232	33.026	14.231	24.614	331.8	0.034
20	12.611	33.176	12.608	25.057	289.9	0.066
30	12.041	33.264	12.037	25.234	273.2	0.094
40	11.249	33.193	11.244	25.325	264.8	0.121
50	10.687	33.171	10.681	25.408	257.1	0.147
60	10.361	33.286	10.354	25.554	243.4	0.172
70	9.618	33.346	9.611	25.725	227.2	0.196
80	9.561	33.544	9.552	25.890	211.8	0.218
90	9.408	33.618	9.398	25.973	204.1	0.238
100	8.867	33.644	8.856	26.079	194.1	0.258
110	8.700	33.741	8.688	26.181	184.6	0.277
120	8.553	33.811	8.541	26.259	177.4	0.295
130	8.329	33.864	8.316	26.335	170.3	0.313
140	8.229	33.927	8.215	26.399	164.3	0.330
150	8.287	33.999	8.272	26.447	160.0	0.346
175	7.859	34.016	7.842	26.525	153.0	0.385
200	7.624	34.046	7.604	26.583	147.8	0.422
225	7.322	34.055	7.301	26.633	143.4	0.459
250	7.165	34.078	7.141	26.673	139.9	0.494
300	6.678	34.083	6.651	26.744	133.7	0.562
400	5.940	34.158	5.906	26.899	119.8	0.689
500	5.432	34.219	5.391	27.011	110.1	0.804
507	5.386	34.222	5.344	27.018	109.4	0.811

STA N	_		AT: 37 3	5.4 N L	ONG: 124	31.2 W
27 JU	L 1988	0538 GM	T PRO	BE 2561	DEPTH	3959M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_			TEMP	THETA		
1	12.873	32.956	12.873	24.835	310.5	0.003
10	12.150	33.013	12.149	25.019	293.2	0.031
20	10.784	33.026	10.781	25.277	268.9	0.059
30	11.491	33.409	11.487	25.449	252.8	0.085
40	11.319	33.447	11.315	25.510	247.2	0.110
50	10.684	33.416	10.679	25.599	238.9	0.135
60	9.825	33.505	9.818	25.816	218.5	0.158
70	8.912	33.531	8.905	25.983	202.6	0.179
80	8.768	33.638	8.760	26.090	192.7	0.198
90	8.838	33.739	8.829	26.158	186.4	0.217
100	8.614	33.779	8.604	26.224	180.3	0.236
110	8.355	33.800	8.344	26.280	175.1	0.253
120	8.169	33.849	8.157	26.347	169.0	0.271
130	8.094	33.891	8.081	26.391	164.9	0.287
140	8.059	33.921	8.045	26.420	162.3	0.304
150	8.000	33.944	7.985	26.447	160.0	0.320
175	7.584	33.966	7.567	26.525	152.8	0.359
200	7.286	33.975	7.267	26.574	148.5	0.397
225	7.061	34.001	7.040	26.626	143.8	0.433
250	6.599	33.979	6.576	26.671	139.7	0.469
300	6.583	34.088	6.556	26.761	132.0	0.537
400	5.884	34.128	5.850	26.882	121.4	0.663
500	5.482	34.227	5.440	27.011	110.2	0.778
503	5.481	34.227	5.439	27.011	110.2	0.781

STA N 27 JU		D-8 L 0753 GM		7.5 N LO BE 2561	NG:124 DEPTH	39.3 W 3949M
PRESS	TEMP	SAL	POTEN TEMP	S1GMA THETA	SVA	DELD
1	14.937	33.134	14.937	24.548	337.8	0.003
10	14.798	33.137	14.796	24.581	335.0	0.034
20	12.189	33.162	12.186	25.127	283.1	0.064
30	11.575	33.329	11.571	25.372	260.1	0.092
40	10.740	33.402	10.735	25.578	240.7	0.117
50	10.185	33.480	10.179	25.735	225.9	0.140
60	9.617	33.555	9.610	25.889	211.5	0.162
70	9.073	33.598	9.065	26.011	200.1	0.182
80	8.925	33.646	8.917	26.072	194.4	0.202
90	8.804	33.727	8.795	26.154	186.8	0.221
100	8.609	33.760	8.598	26.210	181.6	0.240
110	8.435	33.783	8.424	26.255	177.5	0.258
120	8.381	33.839	8.369	26.307	172.8	0.275
130	8.077	33.873	8.064	26.380	166.0	0.292
140	7.903	33.889	7.890	26.418	162.5	0.308
150	7.820	33.916	7.805	26.452	159.4	0.324
175	7.483	33.966	7.467	26.539	151.4	0.363
200	7.212	33.985	7.193	26.593	146.7	0.401
225	6.913	33.991	6.893	26.639	142.6	0.437
250	6.585	33.993	6.563	26.684	138.5	0.472
300	6.275	34.037	6.249	26.760	131.8	0.540
400	5.680	34.113	5.647	26.895	119.9	0.665
500	5.368	34.195	5.327	26.999	111.1	0.781
501	5.359	34.194	5.318	27.000	111.1	0.782
LIN	INT SAL	13-27 DB				

STA NO 4 D-7 LAT: 37 58.8 N LONG:124 49.1 W 27 JUL 1988 1001 GMT PROBE 2561 **DEPTH 3981M** PRESS TEMP SAL POTEN SIGMA SVA DELD TEMP THETA 15.385 1 15.385 32.675 24.097 380.8 0.004 10 15.371 32.676 15.369 24.101 380.7 0.038 377.6 20 15.205 32.675 15.202 24.137 0.076 30 0.110 12.240 32.840 12.236 24.868 308.1 40 11.533 32.873 11.528 25.025 293.4 0.140 50 11.383 33.036 11.377 25.179 278.9 0.169 60 11.816 33.306 11.808 25.310 266.8 0.196 70 10.641 33.317 10.633 25.530 245.9 0.221 80 10.141 33.486 10.132 25.748 225.4 0.245 90 9.688 33.499 9.678 25.834 217.3 0.267 100 9.292 33.588 25.968 9.281 204.7 0.288 110 9.020 33.647 9.009 26.058 196.4 0.308 120 8.780 33.706 8.768 188.5 26.142 0.328 130 8.447 33.760 8.434 26.236 179.7 0.346 140 8.273 33.821 8.259 26.309 172.9 0.364 150 6.254 33.893 8.239 26.369 167.4 0.380 175 33.923 7.679 7.663 26.478 157.4 0.421 200 7.285 33.950 7.266 26.555 150.3 0.459 225 7.055 33.975 7.034 26.607 145.7 0.496 33.979 250 6.679 6.656 26.661 140.7 0.532 300 6.024 33.983 5.999 26.749 132.7 0.601 400 5.437 34.092 5.405 26.908 118.5 0.726 500 5.005 34.172 4.965 27.023 108.4 0.839 503 4.998 34.173 4.958 27.025 108.3 0.843

STA NO 27 JUL		D-6 L 1247 GM		0.7 N LO BE 2561	NG:124	57.2 W 3893M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	16.076	32.643	16.076	23.919	397.8	0.004
10	16.049	32.642	16.048	23.924	397.6	0.040
20	15.908	32.643	15.905	23.958	394.7	0.079
30	12.456	32.808	12.452	24.802	314.3	0.115
40	11.663	32.871	11.658	25.000	295.7	0.145
50	11.447	32.915	11.441	25.074	288.9	0.174
60	10.909	32.917	10.902	25.172	279.8	0.202
70	10.299	32.939	10.291	25.294	268.3	0.230
80	9.794	33.080	9.785	25.489	249.9	0.256
90	9.554	33.221	9.544	25.638	235.9	0.280
100	9.134	33.383	9.123	25.833	217.5	0.303
110	8.728	33.547	8.716	26.025	199.4	0.323
120	8.460	33.660	8.448	26.155	187.2	0.343
130	8.403	33.756	8.390	26.239	179.4	0.361
140	8.376	33.853	8.362	26.319	172.0	0.379
150	8.204	33.895	8.188	26.379	166.5	0.396
175	8.027	33.947	8.010	26.446	160.5	0.436
200	7.738	33.989	7.719	26.521	153.7	0.476
225	7.266	33.984	7.245	26.585	147.9	0.513
250	6.944	33.995	6.921	26.638	143.0	0.550
300	6.200	33.993	6.174	26.735	134.1	0.619
400	5.947	34.133	5.913	26.878	121.8	0.747
500	5.208	34.176	5.167	27.003	110.6	0.864
501	5.208	34.177	5.168	27.003	110.5	0.865

STA N	-		LAT: 38 3		ONG: 125	
28 JU	L 1988	0521 GI	MT PRO	BE 2561	DEPTH	3639M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.272	32.671	15.272	24.119	378.7	0.004
10	15.275	32.671	15.273	24.119	379.0	0.038
20	15.131	32.671	15.128	24.150	376.3	0.076
30	14.552	32.676	14.548	24.278	364.4	0.113
40	12.949	32.732	12.944	24.648	329.3	0.147
50	11.964	32.846	11.958	24.925	303.1	0.179
60	11.221	32.913	11.214	25.113	285.4	0.208
70	10.809	32.947	10.801	25.212	276.1	0.236
80	9.963	32.929	9.954	25.343	263.8	0.263
90	9.832	33.145	9.822	25.534	245.9	0.289
100	9.359	33.296	9.348	25.72 9	227.4	0.312
110	9.374	33.493	9.363	25.881	213.2	0.335
120	9.496	33.629	9.483	25.968	205.2	0.355
130	9.311	33.721	9.297	26.070	195.7	0.376
140	8.787	33.734	8.772	26.163	186.9	0.395
150	8.537	33.769	8.522	26.229	180.8	0.413
175	8.205	33.901	8.188	26.383	166.5	0.456
200	7.941	33.963	7.921	26.471	158.5	0.497
225	7.472	33.985	7.451	26.556	150.7	0.535
250	7.221	34.005	7.198	26.608	146.1	0.572
300	6.466	34.009	6.439	26.713	136.4	0.643
400	5.529	34.032	5.496	26.850	124.1	0.773
500	5.020	34.126	4.980	26.985	112.0	0.890
505	4.954	34.124	4.914	26.990	111.5	0.896

STA NO 29 JUI	-	A-12 L 0548 GM	AT: 38 1 T PRO	1.5 N LC BE 2561	NG:123 DEPTH	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	11.270	33.426	11.270	25.502	247.0	0.002
10	11.269	33.427	11.267	25.503	247.2	0.025
20	11.076	33.431	11.074	25.541	243.7	0.049
30	9.978	33.472	9.975	25.763	222.8	0.073
40	9.863	33.661	9.859	25.931	207.1	0.094
50	9.647	33.703	9.641	26.000	200.8	0.115
60	9.481	33.750	9.474	26.064	194.9	0.134
70	9.275	33.829	9.267	26.159	186.0	0.153
80	9.221	33.867	9.212	26.198	182.5	0.172
90	9.176	33.876	9.166	26.212	181.4	0.190
100	9.075	33.895	9.064	26.243	178.6	0.208
110	8.950	33.917	8.938	26.280	175.2	0.226
120	8.892	33.930	8.879	26.300	173.6	0.243
130	8.855	33.939	8.841	26.313	172.5	0.260
140	8.758	33.959	8.744	26.343	169.8	0.277
150	8.579	33.959	8.564	26.372	167.3	0.294
151	8.578	33.960	8.562	26.372	167.2	0.296

STA NO 10 A-11 LAT: 38 10.0 N LONG: 123 31.9 W PROBE 2561 29 JUL 1988 0705 GMT DEPTH 569M **PRESS** TEMP **POTEN** SIGMA SVA DELD SAL THETA TEMP 12.293 33.252 12.293 25.177 278.0 0.008 12.301 278.4 0.028 33.251 12.300 25.175 10 20 12.262 33.250 12.260 25.182 278.0 0.056 30 11.364 33.283 11.360 25.373 260.0 0.083 33.515 0.106 40 9.842 9.838 25.820 217.7 50 9.744 33.684 9.738 25.969 203.7 0.128 60 9.701 33.750 9.694 26.027 198.4 0.148 70 9.522 33.787 9.514 26.086 193.0 0.167 80 9.449 33.829 9.440 26.131 188.9 0.186 90 9.385 33.856 9.375 26.162 186.1 0.205 9.252 9.241 100 26.191 183.6 33.864 0.223 110 8.951 33.914 8.939 26.278 175.5 0.241 33.932 120 8.833 8.821 26.311 172.5 0.259 130 8.676 33.959 8.663 26.357 168.3 0.276 140 8.619 33.971 8.604 26.375 166.8 0.293 33.979 8.547 165.3 150 8.532 26.392 0.309 8.531 175 33.995 8.513 26.407 164.4 0.350 200 8.493 33.999 8.472 26.417 163.9 0.391 8.384 26.438 225 34.004 8.360 162.4 0.432 250 7.952 34.013 7.927 26.510 155.8 0.472 300 7.241 34.057 26.647 7.213 143.2 0.547 26.808 6.392 400 128.9 34.115 0.682 6.356 500 5.812 34.202 .5.770 26.951 116.2 0.805 5.784 5.741 26.952 501 34.199 116.0 0.806

STA NO					NG:123	
29 JUL	. 1988	0905 GM	II PROI	BE 2561	DEPTH	517M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
3	11.961	33.335	11.960	25.304	265.9	0.008
10	11.958	33.336	11.957	25.305	266.0	0.027
20	11.768	33.309	11.765	25.321	264.8	0.053
30	10.240	33.220	10.236	25.523	245.7	0.079
40	9.653	33.258	9.649	25.650	233.7	0.103
50	9.956	33.501	9.950	25.790	220.7	0.125
60	9.907	33.573	9.900	25.855	214.8	0.147
70	9.810	33.649	9.802	25.930	207.8	0.168
80	9.281	33.674	9.272	26.037	197.8	0.189
90	9.188	33.73 5	9.179	26.100	192.0	0.208
100	9.043	33.792	9.032	26.168	185.7	0.227
110	8.922	33.848	8.910	26.246	178.5	0.245
120	8.773	33.905	8.760	26.299	173.7	0.263
130	8.654	33.930	8.640	26.337	170.2	0.280
140	8.567	33.946	8.553	26.363	167.9	0.297
150	8.479	33.964	8.463	26.390	165.5	0.313
175	8.293	33.999	8.275	26.447	160.5	0.354
200	8.125	34.029	8.105	26.496	156.3	0.394
225	7.819	34.043	7.797	26.552	151.3	0.432
250	7.617	34.066	7.593	26.600	147.0	0.470
300	7.308	34.082	7.279	26.657	142.3	0.542
400	6.639	34.120	6.603	26.780	131.8	0.679
500	6.025	34.179	5.981	26.906	120.6	0.805
501	6.018	34.180	5.975	26.908	120.5	0.806

STA NO	12	A-9 L	AT: 38 3		NG:123	30 Z U
29 JUL		1106 GM			NG:123	187M
29 100	. 1900	I I UO GM	I PRUI	BE 2561	DEPIN	10/1
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	10.853	33.821	10.853	25.884	210.7	0.002
10	10.857	33.820	10.856	25.883	211.0	0.021
20	10.860	33.820	10.858	25.883	211.3	0.042
30	10.740	33.799	10.737	25.887	211.1	0.063
40	9.509	33.612	9.504	25.950	205.2	0.084
50	9.366	33.673	9.360	26.022	198.6	0.105
60	9.444	33.777	9.438	26.090	192.3	0.124
70	8.928	33.851	8.921	26.231	179.1	0.143
80	8.839	33.887	8.831	26.273	175.3	0.160
90	8.716	33.920	8.707	26.319	171.2	0.178
100	8.527	33.947	8.516	26.369	166.5	0.195
110	8.430	33.987	8.418	26.416	162.3	0.211
120	8.398	33.999	8.385	26.430	161.1	0.227
130	8.362	34.005	8.348	26.440	160.3	0.243
140	8.267	34.016	8.253	26.464	158.3	0.259
150	8.252	34.015	8.236	26.466	158.3	0.275
175	8.186	34.014	8.168	26.475	157.9	0.315

STA N 29 JU	-	A-8 L 1209 GM		2.9 N LO BE 2561	DEPTH	45.4 W 982M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	11.293	33.619	11.292	25.648	233.2	0.002
10	11.297	33.618	11.296	25.647	233.5	0.023
20	11.295	33.618	11.292	25.647	233.7	0.047
30	10.657	33.560	10.654	25.716	227.4	0.070
40	9.911	33.521	9.906	25.813	218.3	0.092
50	9.344	33.555	9.339	25.933	207.0	0.114
60	9.221	33.589	9.214	25.979	202.8	0.134
70	9.065	33.650	9.058	26.052	196.1	0.154
80	8.752	33.706	8.744	26.145	187.4	0.173
90	8.519	33.757	8.510	26.222	180.3	0.191
100	8.477	33.787	8.467	26.251	177.7	0.209
110	8.389	33.845	8.378	26.311	172.2	0.227
120	8.291	33.883	8.279	26.356	168.1	0.244
130	8.235	33.904	8.222	26.380	166.0	0.261
140	8.180	33.931	8.166	26.410	163.3	0.277
150	8.076	33.955	8.061	26.444	160.2	0.293
175	7.988	33.976	7.971	26.474	157.8	0.333
200	7.876	33.990	7.856	26.502	155.6	0.372
225	7.655	33.997	7.633	26.540	152.3	0.411
250	7.376	34.011	7.352	26.591	147.8	0.448
300	6.893	34.028	6.865	26.672	140.6	0.520
400	6.524	34.147	6.488	26.816	128.2	0.654
500	5.752	34.194	5.710	26.952	116.0	0.776
503	5.741	34.195	5.699	26.955	115.8	0.780

STA NO	0 15	A-6 L	AT: 38 5	56.2 N L	ONG: 123	55.0 W
29 JUI		1634 GM		DBE 2561	DEPTH	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	11.771	33.321	11.771	25.329	263.5	0.003
10	11.741	33.353	11.740	25.359	260.8	0.026
20	10.234	33.650	10.232	25.859	213.6	0.050
30	9.388	33.643	9.385	25.994	200.9	0.070
40	9.285	33.672	9.280	26.034	197.3	0.090
50	8.865	33.720	8.860	26.138	187.5	0.109
60	8.648	33.764	3.642	26.207	181.2	0.128
70	8.487	33.811	8.479	26.269	175.5	0.146
80	8.445	33.829	8.436	26.289	173.7	0.163
90	8.426	33.937	8.416	26.377	165.6	0.180
100	8.395	33.968	8.385	26.406	163.0	0.197
110	8.312	33.990	8.301	26.436	160.4	0.213
120	8.291	33.991	8.278	26.440	160.1	0.229
125	8.264	33.994	8.251	26.446	159.6	0.237

STA NO	16	A-5 L	AT: 38 55	.3 N L	ONG: 124	2.0 W
29 JUL	1988	1728 GM	T PROB	E 2561	DEPTH	815M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	12.029	33.420	12.029	25.357	260.8	0.003
10	11.999	33.421	11.998	25.364	260.4	0.026
20	10.820	33.616	10.818	25.731	225.7	0.051
30	10.126	33. <i>7</i> 34	10.123	25.943	205.8	0.072
40	9.303	33.703	9.299	26.056	195.2	0.093
50	9.160	33.735	9.155	26.103	190.9	0.112
60	9.035	33.777	9.029	26.156	186.1	0.131
70	8.924	33.819	8.917	26.207	181.4	0.149
80	8.609	33.802	8.601	26.243	178.1	0.167
90	8.333	33.835	8.323	26.310	171.9	0.185
100	8.250	33.863	8.240	26.346	168.7	0.202
110	8.080	33.889	8.069	26.391	164.5	0.218
120	7.993	33.921	7.981	26.429	161.1	0.235
130	7.909	33.943	7.896	26.459	158.4	0.251
140	7.797	33.966	7.784	26.494	155.3	0.266
150	7.809	33.994	7.794	26.514	153.5	0.282
175	7.870	34.056	7.853	26.554	150.2	0.320
200	7.700	34.065	7.680	26.586	147.5	0.357
225	7.577	34.069	7.555	26.608	145.8	0.393
250	7.455	34.074	7.431	26.630	144.1	0.430
300	7.032	34.091	7.004	26.703	137.8	0.500
400	6.226	34.148	6.191	26.855	124.3	0.633
500	5.705	34.189	5.662	26.954	115.8	0.753
505	5.657	34.186	5.615	26.958	115.4	0.758

STA NO	17	A-4	LAT:	39	6.8 N	LONG: 124	10.6 W
29 JUI	. 1988	1943	GMT	PRO	DBE 2561	DEPTH	1406M
PRESS	TEMP	SAL	PO	OTEN	SIGMA	N SVA	DELD
			71	MP	THETA		
1	11.942	32.88	2 11.	.942	24.956	299.0	0.003
10	11.855	32.90	1 11	.854	24.987	7 296.2	0.030
20	11.099	33.12	1 11	. 096	25.296		0.058
30	11.030	33.20	9 11.	. 026	25.377	7 259.6	0.084
40	11.037	33.23	9 11	. 033	25.399		0.110
50	10.845	33.23	3 10	. 839	25.428		0.136
60	9.893	33.27		. 886	25.626		0.161
70	9.455	33.35	-	.448	25.755		0.184
80	9.182	33.46	-	. 173	25.892	2 211.5	0.205
90	9.523	33.66		.513	25.988		0.226
100	9.176	33.73		. 165	26.103		0.246
110	8.931	33.83		.919	26.217		0.264
120	8.862	33.84	-	. 850	26.241		0.282
130	8.786	33.85	-	.772	26.259		0.300
140	8.680	33.89		. 665	26.304		0.318
150	8.544	33.92	98	.529	26.354	169.0	0.335
175	8.297	33.97	-	. 279	26.430		0.376
200	7.973	34.00		. 953	26.502		0.416
225	7.682	34.02	-	. 660	26.558		0.454
250	7.509	34.03		. 485	26.591		0.491
300	7.022	34.06	-	. 994	26.679		0.563
400	6.092	34.07	-	.057	26.817		0.697
500	6.017	34.21		.974	26.939		0.818
501	6.009	34.21	4 5	.966	26.936	117.8	0.820

STA NO		A-2 L 2346 GM	AT: 39 19	9.7 N LO BE 2561	NG:124 DEPTH	3.4 W 615M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	12.121	32.874	12.121	24.916	302.8	0.003
10	12.030	32.905	12.029	24.958	299.1	0.030
20	10.368	32.865	10.366	25.224	273.9	0.059
30	10.190	32.956	10.187	25.325	264.5	0.086
40	9.997	33.041	9.993	25.425	255.2	0.112
50	9.827	33.137	9.821	25.528	245.6	0.137
60	9.306	33.232	9.300	25.687	230.6	0.161
70 80 90 100	9.308 8.930 8.682	33.411 33.491 33.578	9.300 8.922 8.673	25.826 25.949 26.056	217.6 206.0 196.1	0.184 0.205 0.225
110 120 130	8.543 8.826 8.704 8.606	33.704 33.817 33.887 33.911	8.533 8.815 8.691 8.592	26.177 26.222 26.296 26.329	184.8 180.8 173.9 170.9	0.244 0.262 0.280 0.297
140	8.524	33.924	8.509	26.352	168.9	0.314
150	8.383	33.955	8.368	26.399	164.7	0.331
175	8.189	34.007	8.171	26.469	158.4	0.371
200	8.044	34.020	8.024	26.501	155.8	0.410
225	7.849	34.042	7.826	26.548	151.7	0.449
250	7.531	34.064	7.507	26.610	146.0	0.486
300	7.169	34.073	7.141	26.669	141.0	0.558
400	6.173	34.124	6.138	26.843	125.4	0.691
500	5.181	34.131	5.141	26.970	113.6	0.811
501	5.201	34.135	5.161	26.971	113.5	0.812

STA NO	20	A-1 L	AT: 39 17	7.9 N LO	NG:124	19.0 W
30 JUI	1988	0150 GM	T PROS	BE 2561	DEPTH	1541M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
3	11.263	32.825	11.263	25.036	291.5	0.009
10	11.259	32.825	11.258	25.036	291.5	0.029
20	11.240	32.828	11.238	25.043	291.2	0.058
30	11.215	32.833	11.211	25.052	290.5	0.087
40	11.141	32.849	11.136	25.077	288.3	0.116
50	10.611	32.910	10.605	25.218	275.2	0.145
60	10.287	33.028	10.280	25.365	261.3	0.172
70	9.971	33.056	9.963	25.441	254.3	0.197
80	9.691	33.120	9.682	25.537	245.3	0.222
90	9.323	33.266	9.313	25.711	228.9	0.246
100	8.989	33.426	8.979	25.889	212.1	0.268
110	8.976	33.594	8.964	26.023	199.7	0.289
120	8.722	33.644	8.710	26.102	192.3	0.308
130	8.399	33.707	8.386	26.201	183.0	0.327
140	8.335	33.809	8.321	26.291	174.6	0.345
150	8.395	33.897	8.379	26.351	169.1	0.362
175	8.168	33.966	8.150	26.439	161.2	0.403
200	7.960	34.031	7.940	26.522	153.7	0.443
225	7.505	34.015	7.484	26.575	148.9	0.480
250	7.446	34.065	7.422	26.624	144.7	0.517
300	7.123	34.101	7.095	26.698	138.3	0.588
400	5.938	34.076	5.904	26.835	125.9	0.720
500	5.294	34.114	5.253	26.944	116.2	0.841
501	5.289	34.114	5.249	26.944	116.2	0.842

STA NO	21	B-0 L	AT: 39 20	5.5 N LO	NG:124	56.6 W
30 JUI	1988	1255 GM	T PRO	BE 2561	DEPTH	2949M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	13.880	32.639	13.880	24.388	353.0	0.004
10	13.847	32.638	13.846	24.395	352.7	0.035
20	13.750	32.636	13.747	24.413	351.2	0.070
30	13.638	32.633	13.634	24.433	349.5	0.106
40	13.224	32.623	13.218	24.510	342.5	0.140
50	12.450	32.644	12.443	24.677	326.8	0.174
60	11.608	32.691	11.600	24.870	308.5	0.206
70	11.426	32.702	11.417	24.912	304.7	0.236
80	11.254	32.729	11.244	24.965	299.9	0.266
90	11.006	32.798	10.995	25.063	290.8	0.296
100	10.423	32.866	10.411	25.217	276.3	0.324
110	10.106	33.042	10.094	25.408	258.3	0.351
120	9.547	33.203	9.534	25.626	237.6	0.376
130	9.359	33.348	9.345	25.770	224.1	0.399
140	9.159	33.516	9.144	25.934	208.8	0.421
150	9.183	33.723	9.166	26.092	194.0	0.441
175	8.902	33.821	8.884	26,214	182.8	0.488
200	8.239	33.883	8.219	26.364	168.8	0.532
225	7.844	33.917	7.821	26,450	161.0	0.573
250	7.592	33.959	7.568	26.519	154.7	0.612
300	6.814	33.972	6.787	26.638	143.8	0.687
400	5.657	34.015	5.623	26.821	126.9	0.822
500	4.998	34.085	4.958	26.954	114.8	0.942
503	4.993	34.086	4.953	26.956	114.7	0.946

STA N	0 23	B-2 I	LAT: 39	3.5 N	LONG: 124	37.8 W
30 JU	L 1988	1721 GI	MT PRO	OBE 2561	DEPT	1 3382M
PRESS	TEMP	SAL	POTEN	SIGMA		DELD
			TEMP	THETA		
1	11.748	32.789	11.748	24.919		0.003
10	11.737	32.791	11. <i>7</i> 36	24.924		0.030
20	11.719	32. <i>7</i> 95		24.930		0.060
30	11.623	32.822	11.620	24.969		0.091
40	10.011	33.064	10.007	25.440		0.117
50	10.140	33.451	10.134	25.720	227.4	0.142
60	10.026	33.518	10.019	25.792	220.7	0.164
70	9.908	33.535	9.901	25.825	217.8	0.186
80	9.841	33.567	9.832	25.862	214.5	0.207
90	9.628	33.617	9.618	25.936	207.7	0.229
100	9.411	33.672	9.400	26.014	200.4	0.249
110	9.243	33.726	9.231	26.084	193.9	0.269
120	9.040	33.800	9.027	26.174	185.5	0.288
130	8.958	33.819	8.944	26.202	183.1	0.306
140	8.924	33.831	8.910	26.217	181.8	0.324
150	8.884	33.843	8.868	26.233	180.5	0.342
175	8.753	33.884	8.734	26.286	175.9	0.387
200	8.479	33.958	8.458	26.387	166.8	0.430
225	8.186	34.016	8.163	26.477	158.6	0.471
250	8.086	34.034	8.061	26.507	156.1	0.510
300	7.587	34.071	7.558	26.609	147.0	0.586
400	6.413	34.073	6.378	26.772	132.3	0.725
500	6.023	34.192	5.980	26.917	119.6	0.851
505	6.025	34.195	5.981	26.919	119.5	0.857

STA N 30 JU		B-4 L 2120 GN		0.8 N LC BE 2561	ONG:124 DEPTH	20.9 W 3404M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	12.231	33.246	12.231	25.184	277.3	0.003
10	12.123	33.247	12.121	25.205	275.5	0.028
20	12.050	33.252	12.047	25.223	274.0	0.055
30	10.196	33.309	10.193	25.600	238.4	0.082
40	10.616	33.708	10.612	25.839	215.9	0.104
50	10.089	33.728	10.084	25.945	206.0	0.125
60	9.890	33.790	9.884	26.027	198.4	0.145
70	9.527	33.784	9.519	26.083	193.3	0.165
80	9.156	33.814	9.147	26.166	185.5	0.184
90	9.021	33.867	9.012	26.229	179.7	0.202
100	8.838	33.904	8.828	26.287	174.4	0.220
110	8.677	33.939	8.666	26.340	169.5	0.237
120	8.426	33.947	8.413	26.385	165.4	0.254
130	8.373	33.968	8.360	26.409	163.2	0.270
140	8.255	33.976	8.241	26.434	161.1	0.287
150	8.195	33.982	8.180	26.448	159.9	0.303
175	7.823	33.989	7.806	26.509	154.5	0.342
200	7.495	33.990	7.476	26.557	150.2	0.380
2 25	7.589	34.068	7.567	26.605	146.1	0.417
250	7.153	34.034	7.130	26.640	143.0	0.453
300	7.096	34.148	7.068	26.738	134.5	0.523
400	6.041	34.122	6.007	26.858	123.8	0.651
500	5.492	34.193	5.450	26.982	112.8	0.770
503	5.493	34.197	5.451	26.986	112.5	0.773

STA NO	27	B-6	LAT:	38	18.2 N	LONG: 124	3.7 W
31 JUI	. 1988	0114	GMT	PR	OBE 256	1 DEPT	H 3520M
PRESS	TEMP	SAL		OTEN	SIG	MA SVA	DELD
				EMP	THE		
1	13.719	33.24		.719			
10	13.238	33.25		. 237			
20	12.880	33.24		.878			
30	11.299			. 296			
40	9.835	33.77		.831			
50	9.489	33.78		.484			
60	9.156			.150			
70	8.909	33.84	-	.902			
80	8.773	33.86		.764			
90	8.720	33.87		.711			
100	8.533	33.91		.523			
110	8.312	33.93	-	.301			
120	8.245			. 233			
130	8.167		-	. 154			
140	8.128			.114			
150	8.021	34.01	-	.006			
175	7.738	34.04		.721			
200	7.460			.441			
225	7.253	34.05		. 231			
250	7.073	34.07	-	.050			
300	6.644	34.10		.617			
400	5.993		-	.959			
500	5.450	34.17		.408			
503	5.447	34.18	5 5	.405	26.9	78 113.3	0.758

STA NO	29	8-8 L	AT: 37 5	5.0 N LO	NG:123	46.9 W
31 JUI	1988	0510 GM	IT PROI	BE 2561	DEPTH	3349M
DDECC	TEMO	SAL	POTEN	SIGMA	SVA	DELD
PRESS	TEMP	SAL	TEMP	THETA	SVA	DECD
1	12.054	33.607	12.053	25.498	247.5	0.002
10	11.650	33.597	11.649	25.565	241.2	0.025
20	9.972	33.694	9.970	25.938	206.0	0.047
30	9.753	33.784	9.750	26.045	196.1	0.067
40	9.334	33.833	9.330	26.152	186.1	0.086
50	9.271	33.902	9.265	26.216	180.2	0.104
60	9.158	33.929	9.152	26.256	176.6	0.122
70	9.039	33.955	9.031	26.295	173.1	0.140
80	9.045	33.974	9.036	26.310	171.9	0.157
90	8.831	33.959	8.822	26.331	170.0	0.174
100	8.755	33.980	8.744	26.360	167.5	0.191
110	8.676	34.004	8.665	26.391	164.7	0.207
120	8.628	34.016	8.616	26.408	163.2	0.224
130	8.597	34.024	8.584	26.419	162.4	0.240
140	8.524	34.032	8.509	26.437	160.8	0.256
150	8.463	34.042	8.448	26.454	159.4	0.272
175	8.378	34.051	8.360	26.475	157.9	0.312
200	8.192	34.079	8.172	26.525	153.5	0.351
225	8.037	34.090	8.015	26.557	150.9	0.389
250	7.852	34.103	7.828	26.595	147.6	J.426
300	7.484	34.105	7.455	26 .650	143.1	0.499
400	6.481	34.128	6.445	26.806	129.1	0.636
500	6.109	34.194	6.065	26.908	120.6	0.760
503	6.100	34.194	6.056	26.909	120.5	0.764

STA NO 31 JUL		C-9 L 0949 GM	AT: 37 39 T PROE	7.6 N LO BE 2561	NG:124 DEPTH	
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.859	33.363	14.859	24.741	319.4	0.003
10	14.645	33.376	14.644	24.797	314.4	0.032
20	13.727	33.374	13.724	24.987	296.6	0.063
30	11.461	33.631	11.457	25.627	235.8	0.089
40	11.171	33.755	11.166	25.777	221.9	0.112
50	10.819	33.743	10.813	25.831	216.9	0.134
60	10.248	33.815	10.241	25.986	202.3	0.155
70	9.924	33.822	9.916	26.047	196.8	0.175
80	9.765	33.826	9.756	26.076	194.2	0.194
90	9.552	33.833	9.542	26.118	190.4	0.213
100	9.270	33.858	9.259	26.183	184.3	0.232
110	9.004	33.881	8.992	26.243	178.8	0.250
120	8.879	33.903	8.866	26.280	175.4	0.268
130	8.814	33.934	8.801	26.315	172.3	0.285
140	8.836	33.99 5	8.821	26.360	168.3	0.302
150	8.556	33.995	8.541	26.403	164.3	0.319
175	8.303	34.052	8.285	26.487	156.7	0.359
200	7.748	34.050	7.729	26.568	149.3	0.397
225	7.512	34.054	7.490	26.605	146.1	0.434
250	7.260	34.069	7.236	26.653	141.8	0.470
300	7.119	34.164	7.091	26.748	133.6	0.539
400	5.939	34.131	5.905	26.878	121.9	0.666
500	5.429	34.204	5.388	26.999	111.2	0.782
501	5.424	34.205	5.383	27.000	111.1	0.783

STA N 31 JU		C-8 L 1142 GM	AT: 37 5	1.0 N LC BE 2561	NG:124 DEPTH	13.8 W 3018M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1 10	13.321 13.303	33.310 33.319	13.320 13.301	25.020 25.031	292.9 292.1	0.003 0.029
20 30	13.032 12.718	33.444	13.029	25.182	278.0	0.058
40	10.936	33.488 33.580	12.714 10.932	25.279 25.683	269.0 2 3 0.8	0.085 0.110
50 60	9.655 9.577	33.629 33.709	9.650 9.570	25.940 26.015	206.4 199.5	0.132 0.152
70 80	9.451 9.369	33.757 33.828	9.443 9.360	26.074 26.143	194.1 187.8	0.172 0.191
90 100	9.292 9.113	33.871	9.283	26.189	183.5	0.209
110	8.908	33.886 33.911	9.102 8.896	26.230 26.282	179.8 175.1	0.227 0.245
120 130	8.672 8.551	33.930 33.957	8.660 8.538	26.334 26.374	170.3 166.6	0.262 0.279
140 150	8.428 8.085	33.980 33.951	8.413 8.070	26.411 26.440	163.3 160.6	0.296 0.312
175 200	7.877 7.566	33.984 33.986	7.860 7.546	26.497	155.6	0.352
225	7.182	33.989	7.161	26.544 26.600	151.5 146.3	0.390 0.427
250 3 00	6.949 6.937	34.011 34.125	6.926 6.909	26.650 26.742	141.9 134.0	0.463 0.532
400 500	6.270 5.816	34.154 34.235	6.234 5.773	26.854 26.976	124.4 113.8	0.661 0.780
501	5.813	34.235	5.770	26.977	113.8	0.781

STA NO		C-7 L/	AT: 38	3.0 N L DBE 2561	ONG:124. DEPTH	22.0 W 3086M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.523	33.099	14.523	24.609	332.0	0.003
10	14.520	33.099	14.519	24.610	332.2	0.033
20	14.450	33.101	14.447	24.627	330.8	0.066
30	14.366	33.097	14.362	24.642	329.7	0.099
40	11.336	33.177	11.331	25.297	267.5	0.130
50	11.084	33.424	11.078		245.1	0.155
60	10.385	33.458	10.378	25.684	231.0	0.179
70	9.630	33.590	9.623	25.914	209.3	0.201
80	9.061	33.655	9.053		195.9	0.221
90	8.718	33.707	8.708	26.152		0.240
100	8.512	33.768	8.502	26.231	179.6	0.258
110	8.351	33.777	8.339	26.263	176.8	0.276
120	8.346	33.847	8.334			
130	8.168	33.883	8.155		166.5	0.310
140	8.049	33.923	8.035			0.327
150	7.910	33.945	7.895		158.6	0.343
175	7.796	34.007	7.779	_		
200	7.675		7.655			
225	7.438	34.070	7.416			
250	7.150		7.127			
300	6.756		6.728			
400	6.073		6.039			
500	5.485		5.443			
501	5.477	34.215	5.435	27.002	111.0	0.803

STA N	0 34	C-6 L	AT: 38 14		NG:124	30 K U
31 JU		1537 GM		E 2561		3809M
31 00	1700	1757 611	1 7 100	, 2,01	DE7 111	200711
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	13.957	33.151	13.957	24.768	316.9	0.003
10	13.850	33.238	13.849	24.858	308.6	0.031
20	13.617	33.264	13.614	24.926	302.4	0.062
30	12.321	33.261	12.317	25.179	278.5	0.091
40	10.992	33.325	10.987	25.474	250.6	0.117
50	10.231	33.374	10.225	25.645	234.5	0.142
60	9.538	33.462	9.531	25.829	217.2	0.164
70	9.107	33.513	9.100	25.938	206.9	0.185
80	9.016	33.653	9.007	26.062	195.3	0.205
90	8.865	33.675	8.856	26.104	191.6	0.224
100	8.714	33.716	8.703	26.160	186.4	0.243
110	8.410	33.795	8.399	26.268	176.3	0.261
120	8.253	33.854	8.241	26.338	169.8	0.279
130	8.184	33.916	8.171	26.398	164.3	0.295
140	7.999	33.924	7.985	26.431	161.2	0.312
150	7.948	33.938	7.933	26.450	159.6	0.328
175	7.736	33.998	7.719	26.529	152.6	0.367
200	7.466	34.015	7.447	26.580	148.0	0.404
225	7.252	34.039	7.231	26.630	143.6	0.441
250	7.027	34.063	7.004	26.681	139.1	0.476
300	6.517	34.082	6.491	26.764	131.6	0.544
400	5.684	34.118	5.651	26.899	119.6	0.669
500	5.410	34.219	5.369	27.013	109.8	0.784
503	5.392	34.220	5.350	27.016	109.6	0.787

STA	NO 35	C-5	LAT:	38	25.9 A		LONG: 124	39.1 W
31.	IUL 1988	3 173	3 GMT	PR	OBE 25	61	DEPTH	3787M
PRES	SS TEN	1P S		OTEN		GMA		DELD
				EMP		IETA		
1				.395		659		0.003
10				.384		663		0.033
20		-		.325		690		0.065
30				.476		210		0.097
40				.201		659		0.121
50				.712		834	216.5	0.144
60				.801		992		0.165
70				.857		106		0.184
80				.587		188		0.203
90				.553		236		0.221
100				.272		308		0.239
110				. 152		364		0.256
120			-	.905		411	162.8	0.272
130				.846		448		0.288
140				.694		491	155.5	0.304
150	7.53	33 33.	969 7	.518	26.	.534	151.5	0.319
17	7.49	95 34.		.479		.601	145.6	0.356
200				.306		.639		0.392
225				.085		.671		0.428
250		-		. 782	26.	.712		0.462
300				.437		. 783		0.528
400				.798		.910		0.653
500				.288		.023		0.766
50	3 5.3	18 34.	220 5	.277	27.	.024	108.7	0.770

STA N		_	AT: 38 3		NG:124	
31 JU	L 1988	1929 GM	T PRO	BE 2561	DEPTH	3744M
PRESS	TEND	CAL	DOTEN	C1.044	61/4	851.8
PKE33	TEMP	SAL	POTEN	SIGMA	SVA	DELD
4	1/ 070	77 200	TEMP	THETA	744 7	
1	14.032	33.200	14.031	24.791	314.7	0.003
10	14.013	33.201	14.011	24.795	314.5	0.031
20	11.541	33.438	11.538	25.462	251.3	0.061
30	9.975	33.377	9.972	25.689	229.8	0.085
40	9.800	33.435	9.796	25.764	222.9	0.108
50	9.404	33.541	9.398	25.912	209.1	0.129
60	9.190	33.640	9.183	26.024	198.6	0.149
70	8.936	33.678	8.929	26.095	192.0	0.169
80	8.641	33.748	8.632	26.195	182.7	0.188
90	8.387	33.770	8.378	26.251	177.5	0.206
100	8.235	33.807	8.225	26.303	172.7	0.223
110	8.043	33.830	8.032	26.350	168.4	0.240
120	7.930	33.848	7.918	26.381	165.6	0.257
130	7.885	33.889	7.873	26.421	162.0	0.273
140	7.868	33.923	7.854	26.450	159.5	0.289
150	7.798	33.935	7.783	26.470	157.7	0.305
175	7.742	34.007	7.725	26.534	152.0	0.344
200	7.543	34.033	7.523	26.584	147.7	0.381
225	7.345	34.056	7.324	26.630	143.6	0.418
250	7.061	34,077	7.038	26.686	138.6	0.453
300	6.665	34.093	6.638	26.753	132.8	0.521
400	5.883	34.149	5.849	26.899	119.8	0.647
500	5.398	34.225	5.357	27.019	109.3	0.762
501	5.393	34.225	5.351	27.020	109.2	0.763
					,	

STA N 31 JU		C-3 L 2117 GM		9.1 N L BE 2561	ONG: 124 DEPTI	56.5 W 1 3510M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1 10	13.326 13.300	33.173 33.174	13.326 13.298	24.913 24.919	303.0 302.7	0.003 0.030
20 30 40	12.202 10.924 9.847	33.209 33.598 33.748	12.199 10.921 9.843	25.161 25.698	279.9 229.1	0.060 0.086
50 60	9.451 9.231	33.789 33.829	9.446 9.224	26.001 26.098 26.166	200.4 191.4 185.2	0.107 0.126 0.145
70 80 90	9.150 8.845 8.771	33.869 33.876	9.142 8.837	26.210 26.264	181.1 176.1	0.163 0.181
100 110	8.752 8.617	33.895 33.933 33.947	8.762 8.742 8.605	26.291 26.323 26.356	173.8 170.9 168.0	0.199 0.216 0.233
120 130 140	8.551 8.484	33.959 33.980	8.538 8.470	26.375 26.402	166.3 163.9	0.250
150 175	8.432 8.289 7.936	33.987 33.984 34.010	8.418 8.274 7.919	26.416 26.435 26.508	162.8 161.1 154.6	0.283
200 225	7.687 7.467	34.034 34.051	7.667 7.446	26.564 26.609	149.6 145.6	0.338 0.376 0.413
250 300 400	7.039 6.640 5.948	34.050 34.084 34.139	7.016 6.613 5.914	26.669 26.750	140.2 133.1	0.449
500 501	5.495 5.515	34.210 34.213	5.454 5.473	26.883 26.996 26.996	121.4 111.5 111.6	0.644 0.761 0.762

STA NO	-	C-2 L 2303 GM		0.6 N 0	LONG: 125 DEPTH	4.8 W 3371M
PRESS	TEMP	SAL	POTEN	SIGMA		DELD
1 10 20 30 40 50 60 70 80 90 100 110 120 130 140	13.581 13.564 13.451 13.359 13.019 10.266 9.848 9.525 9.222 9.033 8.451 8.320 8.247 8.135	33.155 33.150 33.154 33.161 33.650 33.723 33.789 33.836 33.850 33.856 33.813 33.856 33.899 33.928	TEMP 13.581 13.562 13.448 13.355 13.014 10.260 9.841 9.634 9.517 9.212 9.023 8.440 8.308 8.234 8.121	THETA 24.848 24.848 24.874 24.899 25.004 25.854 25.982 26.068 26.124 26.184 26.219 26.276 26.375 26.375 26.415	309.3 309.5 307.3 305.2 295.4 214.6 202.7 194.7 189.6 184.0 180.9 175.6 169.9 166.5	0.003 0.031 0.062 0.092 0.123 0.147 0.168 0.207 0.226 0.244 0.262 0.279 0.296
150 175 200 225 250 300 400 500 503	8.093 7.837 7.649 7.437 7.269 6.873 6.294 5.496 5.457	33.973 34.004 34.041 34.047 34.085 34.099 34.172 34.174 34.173	8.121 8.078 7.820 7.629 7.415 7.245 6.846 6.258 5.454 5.416	26.456 26.519 26.575 26.610 26.664 26.731 26.866 26.967 26.971	159.1 153.5 148.5 145.5 140.8 135.1 123.3 114.3	0.328 0.367 0.405 0.442 0.477 0.546 0.675 0.794

STA	NO	39	C • 1	LAT:	39	11.8 N		LONG: 125	13.2 W
01 A	UG	1988	0105 (SMT	PR	OBE 25	61	DEPTH	3125M
PRES	S	TEMP	ŞAL		OTEN		GMA		DELD
					EMP		ETA		
1		13.986	33.108		. 985		729		0.003
10		13.982	33.11		. 981		734		0.032
20		13.983	33.11		.980		733	320.7	0.064
30		12.972	32.96		.968		822		0.096
40		11.777	33.28		.772		300		0.126
50)	10.167	33.549	7 10	. 161	25.	793	220.5	0.149
60		9.737	33.654		. 731		946		0.170
70)	9.218	33.687	79	.210	26.	057	195.7	0.190
80)	8.916	33.72	8	.908	26.	135	188.4	0.210
90		8.865	33.83		. 855		226		0.228
100)	8.764	33.848	8 8	. 753	26.	255	177.4	0.246
110)	8.483	33.84	1 8	.472	26.	293	1 73 .9	0.263
120		8.633	33.907		.620	26.	322		0.281
130)	8.265	33.878	8 8	. 251	26.	355	168.3	0.298
140)	8.121	33.909	98	. 107	26.	401	164.1	0.314
150)	8.019	33.92	58	. 004	26.	430		0.331
175		7.854	33.984	7	. 837	26.	500	155.3	0.370
200		7.658	34.00	-	. 638	26.	546		0.409
225		7.345	34.008		.324		593		0.446
250		7.169	34.03		. 146		635		0.483
300		6.824	34.08		.797		727		0.552
400		6.024	34.117		.989		856		0.681
500		5.105	34.12		.065		974		0.800
501	j	5.107	34.12	5 5	.067	26.	974	113.1	0.801

LIN INT SAL 481-487 DB

STA NO		-	AT: 39		NG:125	
01 AUG	1988	0440 GM1	r PRO	BE 2561	DEPTH	3029M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
PRESS	I CMP	JAL	TEMP	THETA	3111	0220
1	13.983	32,550	13.983	24.299	361.6	0.004
10	13.983	32.642	13.982	24.370	355.1	0.036
20	13.986	32.641	13.983	24.369	355.4	0.071
30	13.656	32.623	13.652	24.422	350.6	0.107
40	11.492	32.608	11.487	24.827	312.2	0.139
50	10.771	32.654	10.765	24.991	296.8	0.170
60	10.248	32.683	10.241	25.103	286.2	0.199
70	9.856	32.739	9.849	25.213	276.0	0.227
80	9.444	32.804	9.435	25.331	264.9	0.254
90	9.110	33.027	9,100	25.558	243.4	0.279
100	8.780	33.196	8.769	25.742	226.1	0.303
110	8.567	33.369	8.556	25.910	210.2	0.325
120	8.364	33.522	8.351	26.061	196.0	0.345
130	8.427	33.675	8.414	26.172	185.8	0.364
140	8.296	33.719	8.282	26.226	180.8	0.382
150	8.212	33.783	8.197	26.289	175.0	0.400
175	7.809	33.899	7.792	26.440	160.9	0.442
200	7.501	33.941	7.482	26.518	153.9	0.482
225	7.251	33.956	7.230	26.565	149.8	0.519
250	6.992	33.976	6.969	26.617	145.1	0.556
300	6.431	33.995	6.404	26.707	137.0	0.627
400	5.480	34.027	5.448	26.852	123.8	0.757
500	4.935	34.106	4.895	26.979	112.5	0.875
503	4.934	34.107	4.895	26.979	112.5	0.878

4 MIN GAP AT 21 DB

STA NO	41	D-2 L	AT: 38 57	7.1 N LO	NG:125	31.5 W
01 AU	1988	0644 GM	T PROE	SE 2561	DEPTH	3731M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	13.430	32.726	13.430	24.547	337.9	0.003
10	13.425	32.724	13.424	24.546	338.2	0.034
20	13.380	32.720	13.377	24.553	337.9	0.068
30	12.546	32.682	12.542	24.687	325.3	0.101
40	11.725	32.681	11.720	24.841	310.9	0.133
50	11.197	32.756	11.191	24.995	296.4	0.163
60	10.481	32.769	10.474	25.130	283.6	0.192
70	10.064	32.752	10.056	25.188	278.3	0.220
80	9.670	32.841	9.662	25.323	265.7	0.248
90	9.684	33.082	9.674	25.509	248.2	0.273
100	9.364	33.227	9.353	25.674	232.6	0.297
110	9.083	33.379	9.071	25.838	217.3	0.320
120	8.744	33.518	8.732	26.000	201.9	0.341
130	8.485	33.637	8.472	26.133	189.5	0.360
140	8.327	33.712	8.313	26.216	181.8	0.379
150	8.177	33.779	8.162	26.291	174.7	0.397
175	7.780	33.870	7.762	26.421	162.7	0.438
200	7.470	33.927	7.451	26.511	154.6	0.478
225	7.198	33.971	7.177	26.584	147.9	0.516
250	6.807	33.967	6.784	26.635	143.3	0.552
300	6.326	33.984	6.299	26.712	136.4	0.622
400	5.535	34.052	5.503	26.865	122.7	0.751
500	5.003	34.142	4.964	26.999	110.7	0.868
503	4.978	34.142	4.938	27.002	110.4	0.871

STA NO	43	D-4	LAT: 38	34.0 N	LONG: 125	14.3 W
01 AUG	1988	1017 G	MT PE	OBE 2561	DEPTH	3629M
PRESS	TEMP	SAL	POTER	I SIGMA	SVA	DELD
			TEMP	THETA	1	
1	12.983	32.764	12.982	24.666	326.6	0.003
10	12.980	32.765				0.033
20	12.978	32.766				0.065
30	12.507	32.785	12.503		-	0.098
40	11.928					0.129
50	11.001	32.801				0.158
60	10.522	32.856			277.9	0.187
70	10.075					0.214
80	9.731	33.094	9.72	2 25.510		0.239
90	9.483	33.244	9.47	25.668	3 233.0	0.263
100	9.139	33.351	9.12	3 25.807	219.9	0.286
110	8.896	33.460	8.88	5 25.93°	208.4	0.307
120	8.642	33.566	8.630	26.053	196.9	0.328
130	8.372	33.681	8.359	26.185	184.5	0.347
140	8.285	33.736	8.27	26.241	179.4	0.365
150	8.087	33.789	8.07	26.313	172.7	0.383
175	7.762	33.924	7.74	26.466	158.4	0.424
200	7.613	33.967	7.593	3 26.52	153.6	0.463
225	7.231	33.982	7.21	26.588	3 147.5	0.501
250	7.050	33.991	7.02	7 26.62	144.7	0.537
300	6.409	34.004	6.38	3 26.717	7 136.0	0.607
400	5.391	34.042	2 5.359	26.87	121.6	0.736
500	5.037	34,155	4.99	7 27.006	110.1	0.851
501	5.035	34.156	4.99	5 27.007	7 110.0	0.853

LONG:125 5.8 W STA NO 44 D-5 LAT: 38 22.5 N 01 AUG 1988 1200 GMT PROBE 2561 **DEPTH 3819M PRESS** TEMP SAL **POTEN** SIGMA **SVA** DELD TEMP THETA 13.766 33.085 13.765 24.757 318.0 0.010 13.769 33.086 13.768 24.757 318.2 0.032 10 32.985 12.917 309.9 0.063 12.914 24.847 20 30 10.923 32.876 10.920 25.136 282.5 0.093 40 10.445 32.922 10.440 25.256 271.3 0.120 10.087 50 10.092 33.038 25.406 257.2 0.147 60 9.729 33.139 9.722 25.545 244.1 0.172 70 9.329 33.287 9.321 25.726 227.1 0.196 25.927 80 9.474 33.574 208.3 0.217 9.465 90 9.197 33.632 9.187 26.018 199.8 0.238 33.756 9.079 26.131 189.2 100 9.089 0.257 8.803 8.791 181.0 0.276 110 33.809 26.219 120 8.470 33.822 8.458 26.280 175.3 0.293 169.9 0.311 33.867 8.304 26.339 130 8.317 140 8.171 33.890 8.157 26.379 166.3 0.327 8.160 33.931 26.413 163.2 0.344 150 8.145 33.990 26.511 154.2 0.383 175 7.791 7.808 200 7.641 34.012 7.622 26.553 150.6 0.421 7.190 33.998 26.606 145.8 225 7.169 0.459 250 6.831 33.998 6.808 26.656 141.3 0.494 300 6.311 34.001 6.284 26.727 135.0 0.564 34.108 400 5.809 26.872 122.3 0.692 5.843 500 5.100 34.148 5.060 26.993 111.3 0.808 503 5.050 34.146 5.010 26.997 111.0 0.812

STA N	0 45	D-6 L	AT: 38 1	0.8 N L	ONG: 124	57.1 W
01 AU	G 1988	1356 GM	T PRO	BE 2561	DEPTH	3893M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.347	33.120	14.346	24.663	326.9	0.003
10	14.200		14.198	24.708	322.9	0.033
20	13.535	33.244	13.532	24.927	302.3	0.064
30	12.877		12.873	25.102	285.9	0.094
40	10.427	33.484	10.422	25.697	229.3	0.119
50	10.140	33.536	10.135	25.786	221.1	0.141
60	9.778		9.771	25.919	208.6	0.162
70	9.522	33.672	9.514	25.996	201.5	0.183
80	9.335	33.681	9.326	26.033	198.1	0.203
90	8.929	33.760	8.920	26.160	186.3	0.222
100	8.861	33.815	8.850	26.214	181.3	0.241
110	8.214	33.782	8.203	26.288	174.4	0.258
120	8.157	33.816	8.145	26.322	171.2	0.276
130	8.073	33.886	8.060	26.391	164.9	0.292
140	8.030	33.925	8.016	26.428	161.6	0.309
150	7.917	33.942	7.903	26.458	158.9	0.325
175	7.671	33.984	7.654	26.527	152.7	0.363
200	7.258	33.984	7.240	26.585	147.4	0.401
225	7.049	33.982	7.028	26.613	145.1	0.438
250	6.637	33.975	6.615	26.663	140.5	0.473
300	6.184	33.998	6.158	26.741	133.6	0.542
400	5.393	34.059	5.361	26.887	120.4	0.669
500	4.963	34.149	4.923	27.009	109.7	0.784
501	4.985	34.154	4.946	27.011	109.5	0.785

STA NO		D-8 L/ 1734 GM		4.3 N LO BE 2561	NG:124 4 DEPTH	40.2 W 3949M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.130	33.126	14.130	24.713	322.1	0.003
10	14.134	33.127	14.132	24.713	322.4	0.032
20	13.968	33.121	13.965	24.743	319.8	0.064
30	10.955	32.896	10.951	25.146	281.5	0.094
40	10.494	32.953	10.489	25.272	269.8	0.122
50	10.200	33.039	10.194	25.389	258.9	0.148
60	10.633	33.314	10.626	25.529	245.8	0.173
70	10.162	33.409	10.154	25.684	231.2	0.197
80	9.663	33.501	9.654	25.839	216.6	0.220
90	9.585	33.587	9.575	25.919	209.2	0.241
100	9.169	33.564	9.158	25.969	204.6	0.262
110	8.612	33.593	8.600	26.079	194.3	0.281
120	8.378		8.365	26.186	184.2	0.300
130	8.233	33. <i>7</i> 50	8.220	26.260	177.4	0.318
140	8.120	33.814	8.106	26.327	171.2	0.336
150	8.276	33.898	8.261	26.370	167.3	0.353
175	7.996	33.971	7.979	26.469	158.3	0.393
200	7.476	33.971	7.457	26.544	151.4	0.432
225	6.956	33.961	6.936	26.609	145.4	0.469
250	6.714	33.978	6.692	26.655	141.3	0.505
300	6.313	34.035	6.287	26.754	132.5	0.573
400	5.652	34.109	5.618	26.896	119.8	0.699
500	5.338	34.220	5.297	27.023	108.9	0.813
505	5.316	34.221	5.275	27.026	108.6	0.818

STA NO	0 49	D-10	LAT: 37 2	23.6 N L	ONG:124	23.2 W
01 AU	G 1988	2120 (GMT PRO	DBE 2561	DEPTH	3994M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.802	33.273	3 14.802	24.684	324.9	0.003
10	14.582	33.345	5 14.581	24.787	315.3	0.032
20	14.046	33.421	1 14.043	24.959	299.2	0.063
30	13.926	33.435	13.922	24.994	296.1	0.092
40	13.417	33.465	5 13.411	25.122	284.2	0.122
50	11.823	33.569	11.817	25.509	247.6	0.148
60	10.445	33.567	7 10.438	25.759	223.9	0.172
70	9.983	33.67	9.975	25.919	208.9	0.193
80	9.595	33.767	7 9.586	26.058	195.8	0.214
90	9.362	33.80	9.352	26.123	189.8	0.233
100	8.856	33.824	8.845	26.222	180.6	0.251
110	8.711	33.862	8.699	26.275	175.7	0.269
120	8.633	33.902	8.620	26.318	171.8	0.286
130	8.424	33.930	8.410	26.372	166.8	0.303
140	8.249	33.96	8.235	26.424	162.0	0.320
150	8.198	33.987	8.183	26.452	159.6	0.336
175	7.924	34.014	7.906	26.513	154.1	0.375
200	7.646	34.040	7.627	26.574	148.6	0.413
225	7.443	34.060	7.422	26.619	144.7	0.450
250	7.213	34.078	7.189	26.666	140.5	0.485
300	6.600	34.092	2 6.573	26.761	132.0	0.553
400	6.074				120.5	0.679
500	5.397					0.794
501	5.396	34.223	5.355	27.018	109.4	0.795

STA NO		E-9 L 0158 GM		1.6 N LC BE 2561	NG:124 DEPTH	57.9 W 4147M
PRESS	TEMP	SAL	POTEN	AMD12 ATBH1	SVA	DELD
1	14.298	32.734	14.298	24.375	354.3	0.004
10	14.263	32.735	14.261	24.384	353.7	0.035
20	14.001	32.740	13.998	24.442	348.5	0.071
30	13.448	32.774	13.444	24.581	335.5	0.105
40	12.690	32.829	12, 685	24.773	317.4	0.138
50	11.798	32.588	11.792	24.988	297.1	0.168
60	11.128	32.899	11.121	25.119	284.8	0.197
70	10.645	32.915	10.637	25.216	275.7	0.225
80	10.581	32.973	10.572	25.273	270.6	0.253
90	10.284	33.084	10.273	25.411	257.6	0.279
100	9.761	33.200	9.750	25.588	240.9	0.304
110	9.404	33.351	9.392	25.765	224.3	0.327
120	8.962	33.505	8.949	25.956	206.2	0.349
130	8.692	33.623	8.678	26.091	193.5	0.369
140	8.568	33.673	8.553	26.149	188.2	0.388
150	8.516	33.771	8.500	26.234	180.3	0.406
175	8.288	33.897	8.270	26.367	168.1	0.450
500	7,981	33.953	7.961	26.457	159.9	0.491
225	7.629	33.968	7.607	26.521	154.1	0.530
250	7.299	33.976	7.276	26.574	149.3	0.568
300	6.848	34.044	6.820	26.690	138.8	0.639
400	5.608	34.035	5.575	26.843	124.8	0.770
500	5.529	34.200	5.487	26.984	112.7	888.0
501	5.507	34.199	5.466	26.986	112.5	0.889

STA NO	53	E-7 L	AT: 37 5	5.5 N LO	NG:125	15.8 W
02 AUG	1988	0620 GM	T PRO	BE 2561	DEPTH	4092M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	15.795	32.588	15.794	23.940	395.8	0.004
10	15.806	32.589	15.804	23.938	396.2	0.040
20	15.586	32.612	15.583	24.005	390.2	0.079
30	13.967	32.705	13.963	24.423	350.6	0.116
40	13.478	32.775	13.472	24.576	336.2	0.150
50	12.097	32.808	12.090	24.871	308.3	0.182
60	11.318	32.838	11.311	25.038	292.6	0.212
70	10.976	32.908	10.968	25.153	281.8	0.241
80	10.799	32.982	10.790	25.242	273.5	0.269
90	10.587	33.087	10.577	25.360	262.5	0.295
100	10.355	33.207	10.344	25.494	249.9	0.321
110	9.889	33.283	9.877	25.632	236.9	0.346
120	9.541	33.377	9.528	25.763	224.6	0.369
130	8.901	33.471	8.887	25.939	208.0	0.390
140	8.625	33.587	8.611	26.073	195.4	0.410
150	8.315	33.711	8.300	26.217	181.8	0.429
175	7.820	33.868	7.803	26.414	163.5	0.472
200	7.575	33.924	7.556	26.494	156.2	0.512
225	7.275	33.959	7.254	26.563	149.9	0.550
250	6.995	33.972	6.972	26.613	145.5	0.587
300	6.421	33.986	6.395	26.701	137.5	0.658
400	5.563	34.041	5.530	26.853	123.8	0.788
500	5.149	34.161	5.109	26.998	111.0	0.906
503	5.170	34.169	5.129	27.002	110.6	0.909

STA NO			AT: 38		LONG: 125	
02 AUG	1988	1045 GM1	r PR	OBE 2561	DEPTH	3900M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA		DELD
3	14.426	32.637	14.425	24.274		0.011
10	14.411	32.638	14.410			0.036
20	14.287	32.649	14.284	24.313		0.073
30	14.237	32.658	14.233			0.109
40	13.167	32.768	13.162		330.8	0.144
50	12.697	32.862	12.691			0.176
60	12.349	32.927	12.341	24.916		0.207
70	12.272	33.048	12.263		294.2	0.237
80	12.110	33.147	12.100			0.266
90	11.885	33.152	11.874	25.179	280.0	0.294
100	11.298	33.127	11.286			0.322
110	10.828	33.159	10.814	25.376	261.5	0.348
120	10.419	33.216	10.405			0.374
130	9.890	33.318	9.875	25.660		0.398
140	9.659	33.429	9.643			0.421
150	9.260	33.575	9.243	25.964		0.443
175	8.650	33.791	8.632			0.491
200	8.208	33.916	8.188	26.395	165.9	0.534
225	7.740	33.931	7.718	26.476		0.574
250	7.401	33.973	7.378			0.613
300	6.803	33.993	6.776			0.686
400	5.975	34.046	5.941			0.821
500	5.131	34.093	5.091			0.943
501	5.134	34.095	5.094	26.947	115.7	0.944

STA NO		E-3 L/ 1519 GM	AT: 38 42 T PROF	2.4 N LO BE 2561	NG:125	50.1 W 4079M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	16.478	32.842	16.478	23.980	392.0	0.004
10	16.480	32.842	16.479	23.980	392.3	0.039
20	16.484	32.841	16.481	23.979	392.7	0.078
30	16.479	32.841	16.474	23.980	392.9	0.118
40	16.477	32.840	16.470	23.981	393.1	0.157
50	16.435	32.836	16.427	23.988	392.8	0.196
60	13.265	32.815	13.257	24.650	329.7	0.233
70	11.547	32 <i>.</i> 971	11.539	25.099	287.0	0.263
80	10.886	33.058	10.876	25.286	269.4	0.291
90	10.584	33.130	10.573	25.395	259.2	0.317
100	10.203	33.247	10.191	25.551	244.5	0.343
110	9.866	33.349	9.853	25.688	231.7	0.366
120	9.648	33.435	9.634	25.7 9 1	222.0	0.389
130	9.486	33.489	9.471	25.860	215.6	0.411
140	9.175	33.601	9.160	25.998	202.7	0.432
150	8.856	33.708	8.840	26.132	190.1	0.452
175	8.424	33.842	8.406	26.304	174.1	0.497
200	8.057		8.037	26.433	162.2	0.538
225	7.666	33.961	7.644	26.510	155.1	0.578
250	7.438		7.414	26.574	149.4	0.616
300	6.795	34.019	6.767	26.678	140.0	0.688
400	5.682		5.649	26.836	125.5	0.821
500	5.053		5.014	26.972	113.3	0.940
505	5.009	34.113	4.969	26.976	112.9	0.946

STA NO	59	E-1 L	AT: 39	6.7 N	LONG: 126	7.5 ₩
02 AUG	1988	2000 GM	T PR	DBE 2561	DEPTH	4021M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.741	32.490	14.741	24.094	381.1	0.004
10	14.730	32.490	14.728	24.096	381.1	0.038
20	14.721	32.490	14.718	24.099	381.2	0.076
30	14,698	32,491	14.693	24.104	380.9	0.114
40	13.557	32.549	13.551	24.384	354.5	0.152
50	11.847	32.620	11.840	24.771	317.7	0.185
60	10.756	32.634	10.749	24.978	298.2	0.216
70	10.038	32.656	10.030	25.117	285.0	0.245
80	9.748	32.668	9.739	25.175	279.7	0.273
90	9.503	32.719	9.493	25.255	272.3	0.301
100	9.321	32.818	9.310	25.362	262.3	0.328
110	8.972	33.123	8.961	25.655	234.5	0.353
120	8.595	33.322	8.583	25.869	214.3	0.375
130	8.419	33.492	8.406	26.029	199.3	0.396
140	8.350	33.574	8.336	26.104	192.3	0.415
150	8.141	33.687	8.126	26.224	181.1	0.434
175	7.733	33.849	7.715	26.412	163.6	0.477
200	7.310	33.912	7.291	26.522	153.4	0.516
225	7.045	33.958	7.024	26.595	146.8	0.554
250	6.836	33.977	6.813	26.638	143.0	0.590
300	6.208	33.984	6.182			0.660
400	5.430	34.049	5.397	26.875	121.6	0.787
500	5.031		4.991	26.991		0.904
501	5.024	34.136	4.985			0.905

STA N	0 61	F-2 L	AT: 38 51	I.1 N LC	WG:126	25.7 W
03 AU	G 1988	0040 GM	T PRO	BE 2561	DEPTH	4212M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	15.841	32.653	15.841	23.979	392.0	0.004
10	15.843	32.653	15.841	23.979	392.3	0.039
20	15.798	32.648	15.795	23.986	392.0	0.078
30	15.628	32.631	15.624	24.011	389.9	0.118
40	15.371	32.617	15.365	24.057	385.8	0.156
50	13.355	32.773	13.348	24.599	334.2	0.193
60	12.204	32.862	12.196	24.892	306.5	0.225
70	11.737	32.924	11.728	25.028	293.8	0.255
80	11.586	32.959	11.576	25.083	288.7	0.284
90	11.213	32.978	11.202	25.166	281.1	0.313
100	10.919	33.021	10.908	25.251	273.1	0.340
110	10.425	33.114	10.412	25.410	258.2	0.367
120	10.006	33.227	9.992	25.569	243.1	0.392
130	9.600	33.374	9.585	25.751	226.0	0.416
140	9.319	33.531	9.304	25.920	210.1	0.437
150	9.106	33.616	9.090	26.021	200.7	0.458
175	8.649	33.816	8.631	26.249	179.4	0.505
200	8.340	33.872	8.320	26.341	171.0	0.549
225	8.040	33.939	8.018	26.438	162.1	0.590
250	7.706	33.978	7.682	26.518	154.9	0.630
300	6.923	34.002	6.895	26.647	143.0	0.705
400	6.135	34.075	6.100	26.809	128.5	0.840
500	5.280	34.122	5.239	26.952	115.5	0.962
503	5.239	34.120	5.198	26.955	115.1	0.965

STA NO	62	F-3 L#	NT: 38 39		NG:126	
03 AUG	1988	0225 GM1	r PROE	BE 2561	DEPTH	4269M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	16.701	32.787	16.701	23.887	400.9	0.004
10	16.702	32.786	16.701	23.887	401.2	0.040
20	16.702	32.786	16.699	23.887	401.5	0.080
30	16.701	32.785	16.696	23.887	401.8	0.120
40	16.683	32.782	16.677	23.889	401.9	0.161
50	16.653	32.776	16.645	23.892	402.0	0.201
60	15.497	32.769	15.488	24.146	377.9	0.240
70	13.003	32.794	12.993	24.686	326.5	0.275
80	11.438	32.915	11.428	25.076	289.4	0.306
90	10.990	33.006	10.980	25.227	275.2	0.334
100	10.555	33.114	10.544	25.387	260.1	0.361
110	10.147	33.240	10.135	25.555	244.3	0.386
120	9.946	33.297	9.933	25.634	237.0	0.410
130	9.742	33.359	9.728	25.717	229.3	0.434
140	9.524	33.452	9.509	25.825	219.2	0.456
150	9.270	33.572	9.253	25.960	206.5	0.477
175	8.711	33.778	8.693	26.210	183.1	0.526
200	8.250	33.888	8.230	26.366	168.6	0.570
225	7.872	33.941	7.850	26.465	159.6	0.611
250	7.597	33.980	7.573	26.535	153.1	0.650
300	6.866	33.988	6.839	26.644	143.2	0.724
400	6.143	34.086	6.108	26.817	127.8	0.858
500	5.336	34.126	5.295	26.948	115.8	0.980
503	5.320	34.130	5.279	26.953	115.4	0.983

STA NO		F-4 LA 0420 GMT	T: 38 27	7.2 N LO BE 2561	NG:126 DEPTH	8.3 W 4282M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
3	16.979	32.808	16.978	23.839	405.5	0.012
10	16.981	32.808	16.979	23.838	405.8	0.041
20	16,982	32.808	16.979	23.838	406.1	0.081
30	16.976	32.808	16.971	23.840	406.3	0.122
40	16.865	32.799	16.858	23.860	404.7	0.162
50	16.667	32.782	16.660	23.893	401.8	0.203
60	13.742	32.788	13.733	24.533	340.9	0.241
70	11,826	32.870	11.817	24.970	299.3	0.273
80	11.292	32.947	11.282	25.127	284.5	0.302
90	10.927	33.014	10.917	25.244	273.5	0.330
100	10.693	33.081	10.682	25.338	264.9	0.357
110	10.327	33.179	10.315	25.477	251.7	0.383
120	10.080	33.266	10.066	25.587	241.4	0.407
130	9.778	33.384	9.763	25.730	228.1	0.431
140	9.530	33.475	9.514	25.842	217.5	0.453
150	9.393		9.377	25.908	211.5	0.475
175	8.948		8.929	26.113	192.4	0.525
200	8.363		8.342	26.317	173.3	0.571
225	7.997	33.946	7.974	26.450	161.0	0.612
250	7.579		7.555	26.518	154.8	0.652
300	6.953		6.926	26.636	144.0	0.726
400	6.117		6.082	26.802	129.1	0.863
500	5.516		5.474	26.951	115.9	0.985
503	5.51		5.471	26.952	115.8	0.988

STA NO		Fre L دیانی GM	AT: 38	3.8 N L DBE 2561	ONG: 125 DEPTH	51.2 W 4211M
PRESS	TEMP	- 41	POTEN TEMP	SIGMA THETA	SVA	DELD
3	16.538	32.835	16.538	23.961	393.8	0.012
10	16.542	32.834	16.541	23.960	394.2	0.039
20	16.543	32.835	16.540	23.960	394.5	0.079
30	16.541	32.834	16.536	23.961	394.7	0.118
40	16.535	32.834	16.529	23.962	394.9	0.158
50	14.755	32.908	14.747	24.415	351.9	0.196
60	13.670	32.942	13.661	24.667	328.1	0.230
70	12.887	32.947	12.877	24.828	313.0	0.262
80	12.502	32.973	12,491	24.923	304.2	0.293
90	11.959	33.002	11.948	25.048	292.4	0.323
100	11.638	33.051	11.625	25.145	283.3	0.352
110	11.401	33.108	11.388	25.233	275.2	0.380
120	11.186	33.164	11.171	25.316	267.5	0.407
130	10.620	33.279	10.604	25.505	249.6	0.432
140	9.897	33.328	9.881	25.366	234.3	0.457
150	9.607	33.444	9.591	25.805	221.3	0.479
175	8.989	33.645	8.970	26.062	197.2	0.532
200	8.433	33.826	8.413	26.291	175.8	0.578
225	8.082	33.929	8.059	26.424	163.5	0.620
250	7.619	33.950	7.595	26.509	155.7	0.660
300	7.162	34.023	7.134	26.631	144.7	0.735
400	5.944	34.019	5.910	26.789	130.2	0.873
500	5.217	34.089	5.177	26.933	117.1	0.996
501	5.213	34.090	5.172	26.934	117.1	0.997

STA NO	_	F-8 L	AT: 37 3	9.6 N LO	NG: 125	33.2 W 4267M
03 NO	, 00			JE 230.		
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
	. =		TEMP	THETA		
3	16.447	32,744	16.447	23,912	398.5	0.012
10	16,459	32.745	16.457	23.911	398.9	0.040
20	16.461	32.746	16.458	23.912	399.1	0.080
30	16.216	32.766	16.211	23.983	392.6	0.120
40	13.760	32.930	13.754	24.639	330.3	0.155
50	12.848	32.932	12.841	24.823	312.9	0.187
60	11.647	32.820	11.639	24.963	299.7	0.217
70	11.678	32.971	11.669	25.075	289.3	0.247
80	11.083	32.938	11.074	25.157	281.6	0.275
90	10.907	33.001	10.897	25.238	274.1	0.303
100	11.029	33.187	11.017	25.362	262.7	0.330
110	10.117	33.211	10.105	25.538	245.9	0.355
120	9.832	33.290	9.819	25.648	235.7	0.380
130	9.577	33.391	9.562	25.768	224.4	0.403
140	9.269	33.492	9.254	25 .897	212.2	0.424
150	8.965	33.625	8.949	26.050	197.9	0.445
175	8.544	33.814	8.526	26.264	178.0	0.492
200	8.194	33.920	8.174	26.400	165.3	0.535
225	7.896	33.968	7.874	26.482	157.9	0.575
250	7.436	33.956	7.412	26.539	152.7	0.614
300	6.997	34.019	6.969	26.650	142.7	0.688
400	6.340	34.100	6.305	26.803	129.3	0.824
500	5.408	34.128	5.367	26.941	116.6	0.947
501	5.389	34.127	5.348	26.943	116.4	0.948

STA N 03 AU		F-9 L 1336 GM		7.6 N LC BE 2561	NG:125 DEPTH	24.4 W 4265M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.508	32.699	15.508	24.089	381.6	0.004
10	15.477	32.698	15.476	24.095	381.3	0.038
20	15.263	32.714	15.260	24.155	375.9	0.076
30	14.018	32.818	14.013	24.499	343.3	0.112
40	13.250	32.916	13.244	24.731	321.5	0.145
50	12.414	32.928	12.408	24.903	305.2	0.177
60	12.227	33.036	12.220	25.023	294.1	0.207
70	11.924	33.028	11.915	25.074	289.4	0.236
80	11.121	32.976	11.111	25.180	279.5	0.264
90	10.862	33.027	10.851	25.266	271.4	0.292
100	10.582	33.105	10.570	25.376	261.2	0.319
110	9.918	33.221	9.906	25.579	242.0	0.344
120	9.545	33.395	9.532	25.777	223.3	0.367
130	9.261	33.558	9.247	25.950	207.0	0.388
140	9.048	33.637	9.033	26.046	198.1	0.409
150	8.789	33.739	8.773	26.167	186.7	0.428
175	8.589	33.943	8.571	26.358	169.0	0.473
200	8.231	33.999	8.211	26,456	160.1	0.514
225	8.026	34.019	8.004	26.503	156.0	0.553
250	7.771	34.046	7.746	26.562	150.7	0.592
300	7.120	34.045	7.092	26.654	142.5	0.665
400	6.215	34.115	6.180	26.831	126.5	0.800
500	5.660	34.208	5.618	26.975	113.8	0.919
501	5.652	34.209	5.610	26.976	113.6	0.920

STA NO 69	F-10 L/	AT: 37 1	5.6 N LC	NG: 125	15.5 W
03 AUG 1988	1529 GM1	T PRO	BE 2561	DEPTH	4280M
PRESS TEMP	SAL	POTEN	SIGMA	SVA	DELD
		TEMP	THETA		
1 15.026	32.724	15.026	24.213	369.8	0.004
10 14.787	32.725	14.786	24.265	365.1	0.037
20 14.235	32.754	14.232	24.405	352.0	0.073
30 13.788	32.846	13.784	24.568	336.8	0.107
40 13.409	32.904	13.400	24.690	325.3	0.140
50 12.696	32.925	12.689	24.847	310.6	0.172
60 11.485	32.916	11.478	25.068	289.8	0.202
70 10.683	32.923	10.675	25.216	275.8	0.230
80 11.015	33.295	11.005	25.448	254.0	0.257
90 10.661	33.390	10.650	25.584	241.3	0.282
100 10.475	33.508	10.463	25.709	229.6	0.305
110 10.066	33.636	10.054	25.878	213.6	0.327
120 9.716	33.707	9.703	25.992	203.0	0.348
130 9.316	33.790	9.302	26.123	190.7	0.368
140 9.085	33.862	9.070	26.216	182.0	0.386
150 9.024	33.881	9.008	26.241	179.8	0.405
175 8.696	33.939	8.678	26.338	171.0	0.449
200 8.266	34.004	8.246	26.455	160.2	0.490
225 7.999	34.043	7.977	26.526	153.8	0.529
250 7.762	34.054	7.737	26.570	150.0	0.567
300 7.198	34.082	7.170	26.673	140.8	0.639
400 6.416	34.157	6.381	26.838	126.1	0.773
500 5.730	34.198	5.687	26.958	115.4	0.894
503 5.70	34.200	5.662	26.962	115.0	0.898

					••	
STA		EF-10	LAT: 37 1	7.7 N	LONG: 125	2.2 W
03 AU	JG 1988	1720 GI		BE 2561	DEPTH	
				DE 2301	DEPIR	1 4229M
PRESS	S TEMP	SAL	POTEN	61044		
		J.12	TEMP	SIGMA	¥ ***	DELD
1	14.659	32.758		THETA		
10	14.082	32.752	14.659	24.318	359.8	0.004
20	13.749		14.081	24.434	348.9	0.036
30	13.160	32.763	13.746	24.512	341.8	0.070
40		32.801	13.156	24.659	328.0	0.104
	12.266	32.820	12.261	24.848	310.2	0.136
50	11.554	32.862	11.548	25.013	294.7	0.166
60	11.203	32.933	11.196	25.132	283.6	0.195
70	11.062	33.015	11.053	25.221	275.3	
80	10.797	33.090	10.787	25.326	265.5	0.223
90	10.422	33.140	10.412	25.430		0.250
100	9.965	33.236	9.954	25.583	255.8	0.276
110	9.469	33.377	9.457		241.4	0.301
120	9.155	33.480	9.142	25.775	223.3	0.324
130	8.930	33.621		25.906	211.0	0.345
140	8.740		8.916	26.052	197.2	0.366
150	8.686	33.720	8.725	26.159	187.3	0.385
175		33.788	8.671	26.221	181.6	0.404
	8.386	33.902	8.369	26.357	169.1	0.447
500	7.946	33.941	7.926	26.454	160.2	0.488
225	7.561	33.966	7.539	26.529		0.527
250	7.366	34.005	7.343	26.587		
300	6.678	34.022	6.651	26.696		0.565
400	5.885	34.105	5.851	26.865		0.636
500	5.590	34.230	5.549			0.767
503	5.563	34.229		27.000		0.883
-		34.669	5.521	27.002	111.1	0.887

STA	NO	71	E-10	LAT:	37	19.7 N	LUNG: 124	49.6 W
03	AUG	1988	1857	GMT	PR	OBE 2561	DEPTH	4180M
			•					
PRE	SS	TEMP	SAL		OTEN			DELD
					MP	THET		
	_	13.636	32.77		.635			0.010
		13.558	32.78		.557			0.034
		13.363	32.80		360			0.067
		13.145	32.82		.141			0.100
		12.398	32.85		. 392			0.132
	-	11.672	32,90		.666			0.162
	-	11.058	32.89	-	. 05 1			0.191
	-	10.646	32.93		.638			0.219
	-	10.291	33.04		.282			0.246
	90	9.917	33.15		907			0.271
10		9.537	33.25	_	526			0.295
11		9.236	33.39	29.	.224			0.317
12	20	8.912	33.50	98.	.899	25.96	7 205.1	0.339
13	0	8.739	33.58	98.	726	26.05	5 196.8	0.359
14	0	8.559	33.64	68.	545	26.129	9 190.0	0.378
15	0	8.511	33.76	38.	496	26.228	8 180.8	0.397
17	' 5	8.237	33.90	28.	.219	26.37	9 166.9	0.440
20		7.851	33.96	97.	.831	26.489	9 156.7	0.480
22		7.378	33.97	57.	356	26.56	2 150.1	0.519
25		6.914	33.98		.891		5 143.3	0.555
30	0	6.347	34.00	06.	.320	26.72	2 13 5.5	0.625
40		5.497	34.05		464			0.753
50		5.078	34.18		.038			0.867
50	1	5.060	34.18	5 5.	.020	27.02	7 108.1	0.868

	,					
STA NO	72	DE-10 LA			NG:124 3	
03 AUG	1988	2034 GMT	PROB	E 2561	DEPTH	4116M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.247	33.097	14.247	24.666	326.6	0.003
10	14.060	33.105	14.058	24.711	322.5	0.032
20	12.192	32.847	12.189	24.882	306.5	0.064
30	11.223	32.919	11.219	25.117	284.4	0.094
40	10.790	32.979	10.786	25.241	272.8	0.122
50	10.177	33.017	10.172	25.375	260.1	0.148
60	10.010	33.103	10.003	25.470	251.3	0.174
70	9.711	33.168	9.703	25.572	241.8	0.198
80	9.395	33.281	9.386	25.711	228.7	0.222
90	9.018	33.436	9.008	25.893	211.6	0.244
100	9.396	33.674	9.385	26.019	199.9	0.264
110	8.909	33.719	8.898	26.131	189.3	0.284
120	8.727	33 <i>.7</i> 53	8.715	26.187	184.3	0.303
130	ა.453	33.793	8.440	26.260	177.4	0.321
140	8.316	33.879	8.302	26.349	169.1	0.338
150	7.995	33.893	7.980	26.408	163.6	0.355
175	7.789	33.973	7.772	26.501	155.2	0.394
200	7.192	33.976	7.174	26.588	147.1	0.432
225	7.012	33.980	6.992	26.617	144.7	0.469
250	6.765	33.987	6.743	26.656	141.3	0.504
300	6.355	34.027	6.328	26.742	133.6	0.573
400	5.813	34.126	5.779	26.890	120.6	0.699
500	5.344	34.202	5.303	27.007	110.3	0.815
501	5.339	34.203	5.298	27.008	110.2	0.816

STA NO		D-10 L. 2208 GM		8.8 N LO BE 2561	NG:124 DEPTH	22.9 W 3994M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.206	33.367	15.206	24.669	326.3	0.003
10	15.062	33.360	15.061	24.696	324.0	0.033
20	14.701	33.361	14.698	24.774	316.9	0.065
30	14.514	33.348	14.510	24.804	314.3	0.096
40	12.538	33.450	12.533	25.284	268.8	0.125
50	10.580	33.561	10.574	25.730	226.4	0.150
60	9.928	33.642	9.921	25.905	210.0	0.172
70	9.650	33.714	9.643	26.008	200.4	0.193
80	9.387	33.716	9.379	26.053	196.3	0.212
90	9.174	33.751	9.164	26.114	190.7	0.232
100	9.103	33.789	9.093	26.155	186.9	0.251
110	8.904	33.863	8.893	26.245	178.6	0.269
120	8.746	33.909	8.733	26.306	172. 9	0.286
130	8.555	33.930	8.542	26.352	168.7	0.303
140	8.377	33.947	8.362	26.393	165.0	0.320
150	8.232	33.978	8.216	26.440	160.7	0.336
175	7.603	33.980	7.586	26.534	152.0	0.375
200	7.265	33.984	7.246	26.585	147.4	0.413
225	7.113	34.016	7.092	26.631	143.4	0.449
250	7.145	34.072	7.121	26.671	140.1	0.485
300	6.701	34.102	6.674	26.756	132.6	0.553
400	5.846	34.157	5.812	26.910	118.7	0.679
500	5.346	34.216	5.305	27.018	109.3	0.793
501	5.340	34.215	5.299	27.019	109.3	0.794

STA NO	74	CD-10 LA	T: 37 25	.9 N L	ONG: 124	9.6 W
03 AUG	1988	2341 GMT	PROB	E 2561	DEPTH	3764M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	16.015	33.313	16.014	24.448	347.4	0.003
10	15.490	33.319	15.489	24.570	336.0	0.034
20	14.135	33.340	14.133	24.877	307.0	0.067
30	12.542	33.354	12.538	25.208	275.7	0.096
40	11.105	33.379	11.100	25.496	248.5	0.122
50	10.840	33.523	10.834	25.656	233.6	0.146
60	9.981	33.634	9.974	25.890	211.4	0.168
70	9.707	33.707	9.699	25.993	201.9	0.188
80	9.387	33.756	9.378	26.083	193.4	0.208
90	9.132	33.816	9.122	26.172	185.2	0.227
100	8.967	33.870	8.957	26.240	178.9	0.245
110	8.811	33.905	8.799	26.293	174.0	0.263
120	8.624	33.932	8.612	26.343	169.4	0.280
130	8.453	33.946	8.439	26.380	166.0	0.297
140	8.295	33.957	8.281	26.413	163.0	0.313
150	8.174	33.967	8.159	26.439	160.8	0.329
175	8.086	34.002	8.069	26.480	157.3	0.369
200	7.670	34.005	7.651	26.544	151.5	0.408
225	7.238		7.216	26.601	146.3	0.445
250	6.947		6.924	26.649	142.0	0.481
300	6.577		6.550	26.753	132.7	0.550
400	5.792		5.758	26.897	119.9	0.676
500	5.376	-	5.335	27.012	109.9	0.790
501	5.367	34.212	5.326	27.013	109.8	0.791

STA NO	75	B-0 L	AT: 39 2	6.5 N LO	NG:124	54.8 W
04 AU	1988	1309 GM	T PRO	BE 2561	DEPTH	2907M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
		30 340	TEMP	THETA		
1	13.043	32.762	13.043	24.652	327.9	0.003
10	11.875	32.798	11.874	24.903	304.3	0.031
20	11.587	32.801	11.584	24.959	299.2	0.061
30	11.390	32.810	11.386	25.002	295.3	0.091
40	10.754	32.838	10.749	25.137	282.6	0.120
50	10.794	32.946	10.788	25.214	275.5	0.148
60	10.488	32.987	10.481	25.299	267.6	0.175
70	10.034	33.113	10.026	25.474	251.1	0.201
80	9.772	33.181	9.763	25.571	242.1	0.226
90	9.638	33.319	9.629	25.701	229.9	0.250
100	9.612	33.498	9.601	25.846	216.4	0.272
110	9.277	33.642	9.265	26.013	200.7	0.293
120	9.081	33.688	9.068	26.080	194.4	0.312
130	8.954	33.736	8.941	26.138	189.2	0.332
140	8.972	33.806	8.957	26.190	184.4	0.350
150	8.911	33.854	8.895	26.237	180.1	0.369
175	8.391	33.876	8.374	26.335	171.1	0.412
200	8.254	33.984	8.234	26.441	161.5	0.454
225	8.042	34.011	8.019	26.494	156.8	0.493
250	7,798	34.039	7.774	26,553	151.6	0.532
300	7.388	34.078	7.359	26.643	143.7	0.605
400	6.285	34.130	6.250	26.834	126.4	0.740
500	5.776	34.211	5.734	26.962	115.1	0.861
501	5.772	34.213	5.729	26.965	114.8	0.862

STA NO		8C-0 L			NG:125	8.2 W
04 AU	1988	1444 GM	T PROE	E 2561	DEPTH	3015M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
1 10 20 30 40 50 60 70 80 90 100	12.773 11.875 11.156 10.752 10.330 9.945 9.595 9.405 9.528 9.522 9.331 9.184	32,724 32,732 32,790 32,848 32,866 33,045 33,156 33,275 33,483 33,606 33,673 33,725	TEMP 12.772 11.874 11.154 10.748 10.325 9.939 9.589 9.397 9.519 9.512 9.320 9.172	THETA 24.675 24.852 25.028 25.144 25.232 25.436 25.581 25.704 25.847 25.944 26.028 26.093	325.8 309.1 292.6 281.7 273.5 254.3 240.8 229.2 215.8 206.8 199.1	0.003 0.032 0.062 0.091 0.118 0.145 0.169 0.193 0.215 0.236 0.257
120 130 140 150 175 200 225 250 300 400	8.998 8.872 8.707 8.500 8.126 8.088 8.029 7.712 6.835 6.297		8.985 8.858 8.692 8.484 8.108 8.067 8.007 7.688 6.808 6.262	26.174 26.235 26.297 26.357 26.462 26.504 26.540 26.581 26.687 26.852	185.5 179.9 174.2 168.7 159.0 155.5 152.5 148.9 139.1 124.6	0.295 0.313 0.331 0.348 0.389 0.428 0.467 0.505 0.576 0.707
500 503	5.751 5.737	34.225 34.225	5.708 5.694	26.977 26.979	113.7 113.5	0.827 0.830

STA NO		C-0 1 1625 G		3.0 N LC BE 2561	NG:125 DEPTH	21.6 W 3371M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	13.211	32.834	13.211	24.675	325.8	0.003
10	13.129	32.911	13.128	24.750	318.8	0.032
20	13.057	32.934	13.054	24.783	316.0	0.064
30	12.389	32.849	12.385	24.846	310.1	0.095
40	11.937	32.857	11.932	24.939	301.6	0.126
50	10.762	33.315	10. <i>7</i> 56	25.507	247.7	0.154
60	10.338	33.38 5	10.332	25.635	235.7	0.178
70	9.837	33.470	9.829	25.786	221.5	0.201
80	9.387	33.557	9.378	25.928	208.1	0.222
90	8.683	33.549	8.674	26.033	198.3	0.242
100	8.461	33.631	8.451	26.131	189.1	0.262
110	8.346	33.690	8.335	26.195	183.1	0.280
120	8.184	33.751	8.172	26.268	176.4	0.298
130	8.040	33.814	8.027	26.338	169.9	0.316
140	7.849	33.861	7.835	26.404	163.8	0.332
150	7.712	33.892	7.698	26.448	159.8	0.349
175	7.480	33.938	7.463	26.518	153.4	0.388
200	7.158	33.964	7.139	26.584	147.5	0.425
225	6.770	33.969	6.749	26.641	142.3	0.461
250	6.452	33.973	6.430	26.686	138.2	0.496
300	5.972	33.98 5	5.946	26.758	131.8	0.564
400	5.346	34.049		26.885	120.6	0.690
500	4.834	34.129		27.008	109.6	0.806
503	4.834	34.131	4.795	27.009	109.5	0.809

2 MIN GAP AT 23 DB

					435 3	
STA NO			AT: 39 21		NG:125	
04 AU	1988	1810 GM1	r PROB	E 2561	DEPIN	3685M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
_	45 045	72 025	TEMP	THETA 24.898	304.6	0.009
3	12.015	32.825	12.015		299.3	0.030
10	11.797	32.845	11.795	24.955		0.060
20	11.781	32.868	11.779	24.975	297.6	
30	11.779	32.887	11.775	24.991	296.4	0.090
40	11.804	32.906	11.799	25.001	295.7	0.119
50	11.757	33.120	11.751	25.176	279.3	0.148
60	11.095	33.472	11.088	25.570	242.0	0.175
70	9.436	33.654	9.428	25.996	201.5	0.196
80	8.977	33.727	8.968	26.127	189.2	0.216
90	8.802	33.784	8.793	26.1 99	182.6	0.235
100	8.311	33.776	8.301	26.268	176.1	0.252
110	8.047	33.797	8.036	26.324	170.9	0.270
120	7.932	33.829	7.920	26.367	167.0	0.287
130	7.834	33.845	7.822	26.393	164.6	0.303
140	7.793	33.858	7.779	26.409	163.3	0.320
150	7.735	33.871	7.720	26.428	161.6	0.336
175	7.519	33.929	7.502	26.505	154.7	0.375
200	7.183	33.937	7,165	26.559	149.9	0.413
225	6.878	33.952	6.858	26.613	145.0	0.450
250	6.584	33.964	6.562	26.662	140.6	0.486
300	6.205	33.976	6.179	26.721	135.5	0.555
400	5.446	34.036	5.413	26.863	122.8	0.684
500	4.951	34.121	4.912	26.989	111.6	0.801
503	4.939	34.124	4.899	26.992	111.3	0.804
743	,.,					

STA NO 79 D-0 LAT: 39 20.5 N LONG:125 49.4 W						
04 AUG 1988 1950 GMT PROBE 2561 DEPTH 3797M						
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.585	32.632	14.585	24.237	367.5	0.004
10	14.450	32.630	14.448	24.263	365.2	0.037
20	13.286	32.647	13.283	24.515	341.5	0.072
30	12.805	32.653	12.801	24.615	332.2	0.106
40	12.470	32.667	12.464	24.690	325.2	0.139
50	12.031	32.721	12.025	24.816	313.5	0.171
60	11.696	32.791	11.688	24.932	302.7	0.201
70	11.028	32.959	11.019	25.184	278.9	0.231
80	10.449	33.161	10.439	25.442	254.5	0.257
90	9.727	33.374	9.717	25.730	227.2	0.281
100	9.363	33.464	9.352	25.859	215.1	0.303
110	8.981	33.516	8.969	25.962	205.5	0.324
120	8.609	33.580	8.597	26.069	195.4	0.344
130	8.465	33.654	8.451	26.150	187.9	0.364
140	8.323	33.728	8.309	26.229	180.5	0.382
150	8.051	33.807	8.036	26.332	170.8	0.400
175	7.783	33.905	7.766	26.449	160.1	0.441
200	7.506	33.947	7.486	26.521	153.6	0.480
225	7.158	33.969	7.137	26.588	147.5	0.517
250	6.884		6.861	26.637	143.1	0.554
300	6.231	34.004	6.205	26.740	133. 7	0.623
400	5.562		5.529	26.858	123.3	0.751
500	4.986	_	4.946	27.002	110.4	0.868
501	4.979	34.145	4.939	27.004	110.1	0.870

STA N	0 80	L	AT: 39 32	2.0 N LC	NG: 125	10.0 W
05 AU	G 1988	0138 GM	T PROB	E 2561	DEPTH	3295M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	13.650	32.709	13.649	24.490	343.4	0.003
10	11.980	32.732	11.978	24.833	310.9	0.033
20	11.188	32.780	11.186	25.014	293.9	0.063
30	10.800	32.840	10.796	25.130	283.0	0.092
40	10.462	32.864	10.457	25.207	275.9	0.119
50	10.126	32.899	10.121	25.292	268.0	0.147
60	9.796	33.003	9.790	25.428	255.2	0.173
70	9.536	33.165	9.528	25.597	239.4	0.197
80	9.393	33.344	9.384	25.761	224.0	0.221
90	9.522	33.627	9.512	25.961	205.2	0.242
100	9.265	33.678	9.254	26.043	197.7	0.262
110	9.292	33.798	9.280	26.132	189.4	0.282
120	9.080	33.847	9.067	26.205	182.6	0.300
130	8.845	33.907	8.831	26.289	174.8	0.318
140	8.720	33.953	8.705	26.345	169.6	0.335
150	8.666	33.989	8.650	26.381	166.4	0.352
175	8.256	34.030	8.238	26.477	157.7	0.393
200	7.763	34.016	7.744	26.539	152.0	0.431
225	7.654	34.041	7.632	26.575	149.0	0.469
250	7.095	34.019	7.071	26.636	143.3	0.506
300	6.909	34.098	6.882	26.724	135.7	0.575
400	6.092	34.121	6.057	26.851	124.5	0.706
500	5.506	34.192	5.464	26.981	113.0	0.825
501	5.508	34.193	5.466	26.981	113.0	0.826

STA N		_	AT: 39 40		NG:125	
05 AU	G 1988	0338 GM	T PRO	BE 2561	DEPTH	3282M
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	15.204	32.626	15.204	24.099	380.7	0.004
10	14.928	32.622	14.927	24.156	375.5	0.038
20	14.358	32.617	14.355	24.273	364.6	0.075
30	12.202	32.631	12.198	24.713	322.9	0.110
40	11.670	32.744	11.665	24.900	305.3	0.141
50	11.602	32.820	11.596	24.971	298.7	0.171
60	11.064	32.918	11.057	25.145	282.3	0.201
70	10.528	33.070	10.520	25.357	262.3	0.228
80	10.074	33.331	10.064	25.638	235.8	0.253
90	10.339	33.653	10.329	25.844	216.5	0.275
100	10.154	33.750	10.143	25.952	206.4	0.296
110	9.940	33.771	9.927	26.005	201.6	0.316
120	9.766	33. 7 97	9.752	26.055	197.0	0.336
130	9.426	33.813	9.412	26.123	190.7	0.356
140	9.082	33.850	9.067	26.208	182.8	0.375
150	8.870	33.899	8.854	26.279	176.1	0.392
175	8.286	33.952	8.268	26.411	163.9	0.435
200	7.906	33.959	7.886	26.473	158.3	0.475
225	7.619	33.993	7.597	26.542	152.1	0.514
250	7.270	33.979	7.247	26.580	148.7	0.551
300	6.520	33.974	6.493	26.679	139.7	0.623
400	5.643	34.011	5.609	26.820	127.0	0.756
500	5.059	34.106	5.020	26.965	114.0	0.876
503	5.056	34.108	5.016	26.966	113.8	0.879
LIN	INT SAL	41-45 DB				

STA NO	82	LA			NG:125 2	
05 AUG	1988	0537 GM1	r Proe	E 2561	DEPTH	297 9M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	14.599	32.597	14.599	24.207	370.4	0.004
10	14.337	32.644	14.336	24.298	361.9	0.037
20	13.729	32.665	13.726	24.440	348.7	0.072
30	13.293	32.653	13.289	24.518	341.4	0.107
40	12.516	32.701	12.511	24.708	323.6	0.140
50	11.011	32.663	11.005	24.956	300.1	0.172
60	10.242	32.719	10.235	25.132	283.4	0.201
70	10.000	32.758	9.993	25.204	276.8	0.229
80	9.695	32.813	9.686	25.297	268.1	0.256
90	9.769	32.950	9.759	25.392	259.3	0.282
100	9.548	33.137	9.537	25.574	242.1	0.307
110	9.222	33.200	9.210	25.676	232.6	0.331
120	8.827	33.307	8.815	25.822	218.8	0.354
130	8.487	33.529	8.474	26.048	197.5	0.374
140	8.292	33.624	8.277	26.152	187.8	0.394
150	8.108	33.736	8.093	26.268	177.0	0.412
175	7.814	33.862	7.797	26.410	163.8	0.455
200	7.453	33.932	7.434	26.517	154.0	0.495
225	7,175	33.970	7.154	26.587	147.6	0.532
250	6.879	33.975	6.856	26.631	143.6	0.568
300	6.392	33.992	6.366	26.709	136.7	0.638
400	5.708	34.043	5.675	26.837	125.5	0.770
500	5.086	34.092	5.046	26.950	115.4	0.890
503	5.074	34.094	5.034	26.953	115.1	0.893

STA NO 83 LAT: 40 15.0 N LONG:125 29.9 05 AUG 1988 0732 GMT PROBE 2561 DEPTH 227					
05 AUG 1700	OFFE GREE PROBE ESOT DEFINE ELTIM				
PRESS TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1 15.201	32,564	15,201	24.052	385.1	0.004
10 14.959	32.551	14.957	24.095	381.3	0.038
20 14.714	32.547	14.712	24.144	376.9	0.076
30 13.182	32.647	13.178	24.535	339.8	0.113
40 9.717	32.838	9.713	25.312	265.9	0.143
50 9.334	32.940	9.329	25.453	252.6	0.169
60 9.306	33.129	9.300	25.606	238.3	0.193
70 9.103	33.264	9.096	25.744	225.4	0.216
80 8.865	33.415	8.857	25.900	210.8	0.238
90 8.353	33.572	8.344	26.102	191.7	0.258
100 8.157	33.624	8.147	26.172	185.1	0.277
110 8.032	33.712	8.021	26.259	177.0	0.295
120 8.009	33.753	7.997	26.295	173.8	0.313
130 7.913	33.805	7.900	26.350	168.7	0.330
140 7. <i>7</i> 38	33.856	7.725	26.416	162.6	0.346
150 7.538	33.889	7.524	26.471	157.5	0.362
175 7.372	33.926	7.355	26.524	152.9	0.401
200 7.228	33.959	7.210	26.570	148.8	0.439
225 6.804	33.973	6.783	26.639	142.5	0.475
250 6.605	33.991	6.582	26.680	138.8	0.510
300 6.070	34.005	6.044	26.761	131.6	0.578
400 5.367	34.062	5.335	26.893	119.8	0.703
500 4.929	34.143	4.890	27.009	109.6	0.818
501 4.927	34.144	4.888	27.010	109.6	0.819

STA N	0 84	L	AT: 40 30	0.0 N LC	NG:125	30.0 W
05 AU	G 1988	0926 GM	T PRO	3E 2561	DEPTH	2834M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	15.025	32.588	15.025	24 . 109	379.7	0.004
10	14.998	32.587	14.996	24.114	379.5	0.038
20	13.448	32.643	13.445	24.480	344.9	0.075
30	10.289	32.844	10.285	25.221	274.4	0.106
40	9.593	33.028	9.589	25.480	249.9	0.132
50	9.570	33.139	9.565	25.571	241.4	0.156
60	9.115	33.189	9.109	25.683	231.0	0.180
70	8.844	33.299	8.837	25.812	218.9	0.202
80	8.600	33.414	8.59?	25.940	206.9	0.224
90	8.253	33.548	8.244	26.098	192.0	0.244
100	8.200	33.522	8.190	26.164	185.9	0.262
110	8.001	33.728	7.990	26.277	175.3	0.281
120	7.885	33.765	7.873	26.323	171.1	0.298
130	7.789	33.809	7.776	26.371	166.7	0.315
140	7.703	33.856	7.690	26.421	162.1	0.331
150	7.533	33.888	7.518	26.471	157.5	0.347
175	7.318	33.935	7.302	26.538	151.5	0.386
200	6.982	33.960	6.964	26.605	145.5	0.423
225	6.771	33.981	6.751	26.650	141.4	0.459
250	6.540	33.989	6.518	26.687	138.2	0.494
300	6.128	34.015	6.103	26.761	131.6	0.561
400	5.470	34.081	5.438	26.895	119.7	0.686
500	4.992	34.137	4.953	26.996	110.9	0.802
501	4.990	34.137	4.950	26.997	110.9	0.803

STA NO 85 05 AUG 1988		LAT: 40 45.0 N LONG:125 30.1 W 1120 GMT PROBE 2561 DEPTH 2986M				
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD
1	14.437	32.645	14.437	24.278	363.6	0.004
10	14.291	32.644	14.290	24.307	361.0	0.036
20	14.090	32.644	14.088	24.350	357.2	0.072
30	13.975	32.649	13.971	24.377	354.9	0.108
40	12.292	32.700	12.287	24.749	319.6	0.142
50	10.419	32.841	10.414	25.197	277.1	0.172
60	9.221	32.882	9.214	25.427	255.3	0.198
70	8.956	33.098	8,949	25.637	235.5	0.223
80	8.666	33.381	8.658	25.904	210.3	0.245
90	8.512	33.497	8.503	26.018	199.6	0.265
100	8.367	33.588	8.357	26.112	190.9	0.285
110	8.191	33.684	8.180	26.214	181.3	0.303
120	8.059	33.756	8.047	26.290	174.2	0.321
130	7.964	33.809	7.951	26.346	169.1	0.338
140	7.884	33.839	7.870	26.382	165.9	0.355
150	7.760	33.854	7.746	26.411	163.2	0.371
175	7.569	33.897	7.552	26.473	157.8	0.412
200	7.450	33.938	7.430	26.523	153.4	0.450
225	7.254	33.966	7.233	26.572	149.1	0.488
250	6.905	33.981	6.882	26.632	143.6	0.525
300	6.515	34.026	6.489	26.720	135.8	0.594
400	5.607	34.077	5.574	26.876	121.7	0.723
500	4.899	34.131	4.860	27.003	110.2	0.839
501	4.893	34.131	4.854	27.003	110.1	0.840

STA MO	38 C	L	AT: 41 C	0.0 N LC	NG:125	30.0 W
05 AU	1988	1310 GM	T PROE	BE 2561	DEPTH	3078M
PRESS	TEMP	SAL	POTEN	SIGMA	SVA	DELD
			TEMP	THETA		
1	12.948	32.716	12.948	24.634	329.6	0.003
10	12.466	32.734	12.465	24.742	319.5	0.033
20	12.130	32.778	12.127	24.840	310.5	0.064
30	11.310	32.825	11.306	25.027	292.9	0.095
40	10.365	32.893	10.360	25.246	272.2	0.122
50	10.073	32.967	10.067	25.354	262.1	0.149
60	9.457	33.067	9.450	25.533	245.2	0.174
70	8.984	33.296	8.977	25.788	221.2	0.198
80	8.687	33.428	8.679	25.938	207.1	0.219
90	8.526	33.575	8.517	26.078	194.0	0.239
100	8.365	33.655	8.354	26.165	185.8	0.258
110	7.912	33.765	7.901	26.318	171.4	0.276
120	7.842	33.847	7.830	26.394	164.4	0.293
130	7. <i>7</i> 37	33.881	7.724	26.436	160.6	0.309
140	7.618	33.915	7.604	26.479	156.6	0.325
150	7.539	33.935	7.525	26.506	154.2	0.341
175	7.213	33.975	7.197	26.584	147.1	0.378
200	6.879	33.993	6.861	26.645	141.6	0.414
225	6.657	34.010	6.637	26.688	137.8	0.449
250	6.447	34.023	6.425	26.726	134.4	0.483
300	6.017	34.032	5.991	26.789	129.0	0.549
400	5.367	34.081	5.334	26.908	118.4	0.674
500	4.883	34.144	4.844	27.014	109.1	0.787
501	4.883	34.145	4.844	27.015	109.0	0.788

STA NO					ONG: 125		
05 AU	G 1988	1510 GM	T PRO	BE 2561	DEPTH 3101M		
PRESS	TEMP	SAL	POTEN TEMP	SIGMA THETA	SVA	DELD	
1	12.808	32.796	12.807	24.724	321.1	0.005	
10	12.364	32.861	12.363	24.860	308.4	0.032	
20	11.094	33.057	11.092	25.247	271.7	0.061	
30	10.593	33.131	10.589	25.393	258.0	0.087	
40	10.323	33.220	10.319	25.508	247.3	0.112	
50	9.307	33.288	9.302	25.730	226.4	0.136	
60	8.589	33.476	8.583	25.990	201.8	0.157	
70	8.346	33.579	8.339	26.108	190.7	0.177	
80	8.106	33.714	8.098	26.250	177.4	0.196	
90	8.050	33.760	8.042	26.294	173.3	0.213	
100	7.981	33.794	7.971	26.331	170.0	0.230	
110	7.951	33.815	7.940	26.352	168.2	0.247	
120	7.875	33.847	7.863	26.388	164.9	0.264	
130	7.732	33.881	7.719	26.437	160.5	0.280	
140	7.542	33.930	7.529	26.502	154.4	0.296	
150	7.413	33.945	7.399	26.532	151.7	0.311	
175	7.239	33.968	7.223	26.576	147.9	0.348	
200	7.015	33.993	6.997	26.626	143.4	0.385	
225	6.765	34.010	6.745	26.673	139.2	0.420	
250	6.411	34.010	6.389	26.721	134.9	0.454	
300	5.936	34.030	5.910	26.797	128.1	0.520	
400	5.353	34.083	5.321	26.911	118.1	0.643	
500	4.749	34.126	4.711	27.015	108.8	0.757	
503	4.735	34.128	4.696	27.019	108.5	0.760	

STA NO	88	L	AT: 41 29	•••	NG:125 3	
05 AUG	1988	1708 GM1	r PROB	E 2561	DEPTH	3098M
PRESS	TEMP	SAL	POTEN	SIGMA THETA	SVA	DELD
	40 (30	72 000	TEMP 12.422	24.879	306.3	0.003
1	12.422	32.900		25.437	253.4	0.029
10	10.969	33.273	10.968	25.559	242.0	0.053
20	10.585	33.343	10.583	25.684	230.4	0.077
30	10.193	33.416	10.189 9.786	25.775	221.9	0.077
40	9.791	33.447		25.887	211.4	0.077
50	9.481	33.524	9.476		190.8	0.121
60	8.838	33.673	8.832	26.106	170.3	0.159
70	8.181	33.822	8.174	26.323	163.1	0.176
80	7.907	33.868	7.900	26.400		0.170
90	7.753	33.882	7.745	26.434	160.1	
:00	7.635	33.907	7.626	26.470	156.7	0.208
10	7.532	33.921	7.521	26.497	154.4	0.223
120	7.415	33.941	7.404	26.529	151.5	0.238
130	7.204	33.957	7.192	26.571	147.6	0.253
140	7.063	33.971	7.050	26.602	144.8	0.268
150	6.993	33.981	6.979	26.619	143.3	0.282
175	6.796	34.001	6.781	26.662	139.6	0.318
200	6.665	34.010	6.647	26.687	137.5	0.352
225	6.471	34.019	6.451	26.720	134.7	0.386
250	6.261	34.038	6.239	26.763	130.9	0.420
300	6.285	34.113	6.258	26.819	126.3	0.484
400	5.679	34.160	5.645	26.933	116.4	0.605
500	5.205	34.195	5.165	27.018	109.1	0.718
503	5.191	34.194	5.151	27.019	109.0	0.722

TRANSMISSION AND FLOURESCENCE
PROFILE PLOTS AND LISTINGS

W8806B

STA 1 LAT: 37 36.5 N LONG:124 30.6 W 02 JUL 1988 1744 GMT PROBE 2561 DEPTH 3936M

PRESS	TEMP	SAL	TRN	ŢΡ	
3	12.066	33.025	83.0	2.22	
10	12,070	33.024	83.0	2.56	
20	12.065	33.026	82.9	3.72	
30	12.015	33.049	83.2	3.47	
40	11.182	33.064	86.3	2.29	
50	10,667	33.099	89.1	1.13	
60	10.361	33.155	90.1	0.55	
70	9.633	33.254	90.4	0.25	
80	9.308	33.360	90.5	0.19	
90	8.936	33.496	90.4	0.14	
100	8.738	33.577	90.4	0.13	
110	8.551	33.652	90.4	0.14	
120	8.447	33.703	90.5	0.12	
130	8.334	33.775	90.5	0.15	
140	8.129	33.857	90.5	0.11	
150	7.996	33.881	90.3	0.11	
175	7.855	33.978	90.5	0.11	
200	7.610	34.006	90.7	0.11	
225	7.356	34.020	90.9	0.11	
250	6.926	34.019	91.0	0.10	
300	6.742	34.089	91.0	0.11	
400	6.107	34.149	90.9	0.12	
500	4.711	34.084	91.1	0.10	
501	4.711	34.085	91.1	0.10	

STA 2 LAT: 38 50.2 N LONG:125 28.4 W 04 JUL 1988 0513 GMT PROBE 2561 DEPTH 3736M

PRESS	TEMP	SAL	TRN	TP
3	15.641	32.937	90.0	0.08
10	15.641	32.936	90.0	0.08
20	15.641	32.936	90.0	0.09
30	15.642	32.936	90.0	0.09
40	15.640	32.936	90.0	0.09
50	15.614	32.932	90.0	0.10
60	15.515	32.918	90.1	0.11
70	13.150	32.839	89.7	0.20
80	12.489	32.921	89.6	0.34
90	11.992	32.909	89.1	0.53
100	11.690	33.014	89.7	0.77
110	11.204	32.967	90.1	0.53
120	11.021	33.042	90.6	0.30
130	10.547	33.100	90.8	0.16
140	10.068	33.226	90.9	0.10
150	9.852	33.321	90.9	0.08
175	9.178	33.590	90.9	0.06
200	8.451	33.837	90.9	0.06
225	8.213	33.948	90.8	0.07
250	7.796	33.988	90.9	0.07
300	6.900	33.985	90.9	0.08
400	5.806	34.012	91.0	0.08
500	5.117	34.077	91.1	0.08
501	5.117	34.079	91.1	0.08

LAT: 37 54.0 N LONG:124 45.9 W STA 3 04 JUL 1988 1546 GMT PROBE 2561 DEPTH 4011M PRESS TEMP SAL TRN TP 33.170 76.0 5.54 1 11.122 6.08 10.908 33.195 78.0 10 33.398 73.8 6.23 10.785 20 30 10.558 33.480 69.7 6.25 10.317 33.587 72.5 6.25 40 50 10.097 33.627 79.8 5.58 60 9.831 33.624 82.1 4.21 70 9.070 33.590 88.0 90.4 0.38 80 33.660 8.773 90 8.605 33.731 90.6 0.17 33.808 90.6 0.13 100 8.443 33.868 90.6 0.13 8.403 110 120 8.315 33.892 90.6 0.12 33.909 90.6 0.11 8.030 130 90.5 33.966 140 8.043 0.12 150 7.933 33.990 90.5 0.12 175 7.608 33.986 90.6 0.11 34.012 90.7 0.11 200 7.428 225 7.276 34.028 90.8 0.11 90.9 0.11 7.056 34.043 250 91.0 0.11 34.060 300 6.592 400 5.813 34.116 90.9 0.11 34.224 91.0 0.12 5.478 500

34.224

501

5.475

91.0 0.12

LAT: 37 52.9 N LONG:124 47.7 W STA 04 JUL 1988 1904 GMT PROBE 2561 DEPTH 4014M **PRESS** TEMP TRN ΤP SAL 11.869 33.288 70.4 2.62 11.576 33.277 10 67.4 6.20 20 11.165 33.266 72.3 6.25 30 33.237 10.274 84.0 3.34 40 33.491 10.491 73.3 6.25 50 10.251 33.588 72.8 6.00 33.618 60 10.128 78.3 5.64 70 79.9 4.91 10.080 33.625 80 9.779 33.632 82.9 3.50 90 9.057 33.645 88.7 1.28 100 8.635 33.720 90.5 0.26 110 8.478 33.811 90.6 0.14 33.865 90.6 120 8.355 0.13 130 8.176 33.876 90.5 0.12 8.041 33.909 140 90.0 0.13 33.973 150 8.032 90.5 0.11 175 7.591 33.986 90.7 0.11 200 7.420 34.014 90.7 0.11 225 7.198 34.036 90.8 0.12 250 6.919 34.045 91.0 0.11 34.106 300 6.715 90.9 0.11 400 5.498 34.059 90.9 0.11 500 4.957 91.1 34.142 0.11

91.1

0.11

34.143

4.958

501

STA 5 LAT: 37 53.0 N LONG:124 52.1 W 05 JUL 1988 0217 GMT PROBE 2561 DEPTH 4048M

PRESS	TEMP	SAL	TRN	TP	
1	12.116	33.386	59.2	6.25	
10	11.270	33.350	65.4	6.25	
20	10.594	33.400	78.5	6.09	
30	10.495	33.464	75.8	5.51	
40	10.250	33.558	76.2	6.23	
50	10.120	33.608	77.3	5.93	
60	10.113	33.620	78.7	5.20	
70	9.998	33.632	79.8	3.81	
80	9.802	33.638	82.0	3.42	
90	9.421	33.619	85.1	2.69	
100	8.743	33.685	90.0	0.39	
110	8.553	33.769	90.5	0.15	
120	8.448	33.845	90.6	0.12	
130	8.179	33.865	90.6	0.13	
140	8.080	33.890	90.6	0.11	
150	8.024	33.942	90.6	0.12	
175	7.877	33.983	90.6	0.11	
200	7.592	33.996	90.6	0.11	
225	7.359	34.031	90.7	0.12	
250	7.234	34.060	90.9	0.11	
300	6.830	34.093	91.0	0.11	
400	6.089	34.137	91.0	0.11	
500	5.001	34.118	91.1	0.10	
501	4.988	34.119	91.1	0.11	

STA 6 LAT: 37 52.0 N LONG:124 55.8 W 05 JUL 1988 0645 GMT PROBE 2561 DEPTH 4396M

PRESS	TEMP	SAL	TRN	TP
1	12.351	33.027	71.4	5.02
10	11.857	33.199	66.1	5.02
20	11.409	33.224	69.0	5.02
30	10.830	33.243	79.7	4.97
40	10.253	33.228	84.8	2.46
50	10.184	33.264	85.8	2.12
60	9.671	33.291	87.6	1.63
70	9.646	33.444	89.1	0.52
80	9.473	33.526	89.4	0.44
90	9.423	33.578	88.7	0.36
100	9.321	33.635	89.1	0.37
110	8.930	33.679	88.7	0.53
120	8.632	33.768	89.6	0.36
130	8.422	33.828	90.0	0.24
140	8.229	33.863	89.9	0.18
150	8.081	33.888	90.1	0.17
175	7.780	33.970	90.0	0.14
200	7.601	33.992	90.5	0.11
225	7.374	34.017	90.6	0.12
250	7.082	34.055	90.8	0.10
300	6.642	34.094	91.0	0.10
400	5.587	34.068	91.0	0.09
500	4.890	34.126	91.1	0.08
501	4.955	34.131	91.1	0.09

STA 7 LAT: 37 23.6 N LONG:124 23.4 W 05 JUL 1988 1551 GMT PROBE 2561 DEPTH 4004M

PRESS	TEMP	SAL	TRN	TP	
1	13.551	32.814	88.4	0.30	
10	13.511	32.814	89.4	0.35	
20	13.221	32.819	89.1	0.45	
30	12.908	32.886	88.3	0.61	
40	12.531	32.905	85.6	0.91	
50	11.807	32.921	86.7	1.53	
60	11.077	32.999	88.9	0.83	
70	10.417	33.197	90.3	0.35	
80	9.934	33.291	90.5	0.20	
90	9.587	33.414	90.6	0.16	
100	9.340	33.494	90.7	0.12	
110	9.115	33.602	90.7	0.12	
120	8.885	33.694	90.6	0.12	
130	8.667	33.767	90.7	0.11	
140	8.400	33.826	90.6	0.11	
150	8.303	33.870	90.7	0.11	
175	7.971	33.925	90.8	0.11	
200	7.552	33.950	90.8	0.11	
225	7.327	33.997	90.8	0.11	
250	7.081	34.022	90.9	0.11	
300	6.690	34.049	91.0	0.11	
400	5.605	34.057	91.0	0.10	
500	5.281	34.178	91.0	0.11	
503	5.322	34.187	91.1	0.11	

STA 8 D-2 LAT: 38 57.3 N LONG:125 31.5 W 06 JUL 1988 2356 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	ΤP
1	15.642	32.563	89.3	0.19
10	15.642	32.563	89.6	0.18
20	15.608	32.563	89.5	0.20
30	15.599	32.562	89.5	0.20
40	15.144	32.557	88.9	0.21
50	13.439	32.573	87.1	0.24
60	12.628	32.629	88.2	0.19
70	11.933	32.759	89.0	0.24
80	11.593	32.855	88.9	0.59
90	11.155	32.870	89.4	0.84
100	10.942	32.928	90.0	0.60
110	10.491	32.947	90.5	0.39
120	10.141	33.010	90.7	0.26
130	9.809	33.108	90.8	0.20
140	9.436	33.214	90.9	0.14
150	9.196	33.346	90.9	0.10
175	8.870	33.663	90.8	0.08
200	8.485	33.811	90.8	0.08
225	8.124	33.924	90.8	0.08
250	7.922	33.991	90.9	0.09
300	7.338	34.005	91.0	0.09
400	6.088	34.013	91.0	0.09
500	5.374	34.097	91.1	0.10
503	5.391	34.103	91.1	0.10

STA 07	JUL 1988	LAT: 0250 G	38 45.7 M MT PROBE		G:125 23 DEPTH	8.0 W M
	PRESS	TEMP	SAL	TRN	TP	
	3 10	15.975 15.978	32.931			
	20	15.975	32.930 32.930	90.0	0.06	
	30	15.918	32.933	90.0 90.0	0.06	
		15.869			0.06	
		15.506				
		14.469			0.09 0.12	
	70	12.861	32.816		0.12	
	80	12.057	32.835		0.16	
	90	11.558	32.811			
		11.196	32.878			
		11.018	32.963			
	120	10.850	33.035		0.22	
	130	10.547	33.127			
	140	10.308	33.188		0.09	
	150	9.832	33.298			
	175	9.151	33.612			
	200	8.673	33.782	90.8	0.08	
	225	8.360	33.895	90.9	0.07	
	250	7.998	33.947	90.9	0.06	
	300	7.189	33.972	91.0	0.08	
	400	6.305	34.045	91.0	0.08	
	500	5.231	34.051		0.08	
	501	5.222	34.054	91.1	0.08	

STA 10 D-4 LAT: 38 34.0 N LONG:125 15.2 W 07 JUL 1988 0429 GMT PROBE 2561 DEPTH 3508M

PRESS	TEMP	SAL	TRN	ΤP	
1	15.581	32.915	89.8	0.07	
10	15.579	32.915	90.0	0.07	
20	15.583	32.915	90.0	0.07	
30	15.545	32.911	90.0	0.07	
40	15.549	32.912	90.0	0.09	
50	15.353	32.891	90.0	0.09	
60	15.222	32.881	89.9	0.11	
70	14.039	32.926	89.5	0.18	
80	12.885	32.886	89.6		
90	12.442	32.925	89.8	0.31	
100	12.101	33.052	89.6	0.66	
110	11.803	33.089	90.3	0.59	
120	11.585	33.130	90.7	0.40	
130	10.987	33.162	90.8	0.25	
140	10.467	33.227	90.9	0.12	
150	10.077	33.283	91.0	0.08	
175	9.339	33.559	91.0	0.07	
200	8.587	33.770	90.3	0.07	
225	8.277	33.882	90.9	0.07	
250	7.736	33.928	90.9	0.07	
300	7.082	33.986	91.0	0.07	
400	6.146	34.057	91.1	0.08	
500	5.296	34.093	91.2	0.08	
501	5.302	34.095	91.2	0.08	

STA 11 D-5 LAT: 38 22.6 N LONG:125 5.9 W 07 JUL 1988 0609 GMT PROBE 2561 DEPTH 3809M

PRESS	TEMP	SAL	TRN	ΤP
5	15.014	32.649	88.7	0.12
10	15.016	32.649	88.7	0.13
20	14.983	32.644	88.6	0.16
30	14.941	32.636	88.6	0.21
40	14.283	32.519	87.8	0.27
50	13.788	32.510	87.6	0.39
60	13.309	32.520	87.6	0.46
70	12.606	32.542	87.5	0.59
80	11.815	32.670	83.9	1.09
90	11.808	32.923	88.8	1.09
100	11.527	32.966	89.5	0.81
110	11.263	33.040	90.2	0.54
120	10.855	33.081	90.6	0.31
130	10.508	33.234	90.8	0.20
140	9.851	33.356	90.9	0.11
150	9.588	33.461	91.0	0.08
175	9.024	33.742	90.9	0.08
200	8.552	33.855	90.9	0.07
225	8.082	33.925	90.9	0.07
250	7.614	33.949	90.9	0.07
300	7.172	34.014	91.1	0.08
400	5.845	34.000	91.1	0.08
500	5.719	34.152	91.1	0.09
503	5.719	34.152	91.1	0.09

STA 12 D-6 LAT: 38 10.8 N LONG:124 57.3 W 07 JUL 1988 0812 GMT PROBE 2561 DEPTH 3919M

PRESS	TEMP	SAL	TRN	ΤP
1	13.119	32.671	86.2	0.93
10	13.127	32.672	86.3	0.87
20	12.169	32.709	85.1	0.76
30	11.476	32.801	81.8	1.41
40	11.367	33.018	85.7	1.57
50	11.124	33.213	84.4	1.75
60	10.510	33.390	85.3	1.68
70	10.052	33.480	86.2	1.57
80	9.956	33.493	88.2	1.13
90	9.774	33.541	87.3	1.09
100	9.716	33.580	86.1	1.25
110	9.768	33.608	85.8	1.49
120	9.549	33.623	86.4	1.00
130	9.484	33.713	84.6	1.23
140	9.308	33.756	83.9	2.08
150	9.183	33.762	85.8	1.43
175	8.756	33.786	88.8	0.70
200	8.164	33.897	90.4	0.14
225	7.932	33.995	90.6	0.11
250	7.615	34.037	90.7	0.10
300	7.063	34.055	90.9	0.10
400	6.235	34.102	90.8	0.09
500	5.701	34.179	90.9	0.11
503	5.675	34.180	91.0	0.14

LIN INT SAL 27-43 DB

STA 13 D-7 LAT: 37 59.2 N LONG:124 49.1 W 07 JUL 1988 1010 GMT PROBE 2561 DEPTH 3483M

PRESS	TEMP	SAL	TRN	TP
1	12.690	33.254	80.4	2.87
10	12.548	33.253	80.0	3.30
20	11.867	33.279	80.2	3.37
30	11.177	33.351	77.3	2.98
40	10.319	33.429	80.6	4.35
50	9.959	33.507	83.0	2.94
60	9.636	33.585	82.4	3.54
70	9.494	33.660	83.2	2.65
80	9.068	33.623	88.0	1.74
90	8.977	33.723	89.0	0.49
100	9.049	33.782	87.5	0.78
110	8.995	33.834	88.2	0.69
120	8.933	33.847	88.2	0.42
130	8.833	33.856	88.0	0.49
140	8.562	33.835	89.2	0.43
150	8.331	33.876	90.4	0.17
175	8.051	33.937	90.5	0.11
200	7.798	33.990	90.6	0.10
225	7.382	34.001	90.8	0.09
250	7.076	34.009	90.9	0.09
300	6.772	34.057	91.0	0.10
400	6.030	34.118	91.0	0.09
500	5.440	34.195	91.1	0.10
501	5.416	34.193	91.1	0.09

LIN INT SAL 21-67 DB

STA 14 D-8 LAT: 37 47.6 N LONG:124 40.7 W 07 JUL 1988 1203 GMT PROBE 2561 DEPTH 3533M

PRESS	TEMP	SAL	TRN	TP
1	14.084	33.022	88.0	0.47
10	14.055	33.030	88.1	0.58
20	13.863	33.091	87.1	0.92
30	11.302	33.240	84.0	2.43
40	10.281	33.305	89.0	0.95
50	10.018	33.351	88.2	0.45
60	9.424	33.430	89.0	0.25
70	9.120	33.517	88.1	0.16
80	8.929	33.598	89.5	0.15
90	8.781	33.644	89.7	0.17
100	8.434	33.725	89.1	0.12
110	8.278	33.804	89.3	0.10
120	8.162	33.864	89.6	0.11
130	8.071	33.907	89.7	0.09
140	7.985	33.928	90.0	0.09
150	7.979	33.945	90.2	0.10
175	7.703	33.998	90.1	0.09
200	7.435	34.015	89.9	0.09
225	7.275	34.048	89.9	0.09
250	7.204	34.078	90.5	0.13
300	6.916	34.092	90.8	0.09
400	5.963	34.124	91.0	0.09
500	5.453	34.191	90.9	0.09
501	5.444	34.189	90.9	0.09

STA 16 D-9 LAT: 37 35.6 N LONG:124 31.6 W 07 JUL 1988 1359 GMT PROBE 2561 DEPTH 3967M

PRESS	TEMP	SAL	TRN	ΤP
1	13.996	33.045	87.0	1.10
10	13.976	33.047	87.6	0.98
20	13.971	33.047	87.6	1.14
30	13.944	33.050	87.6	0.99
40	13.043	33.014	88.4	0.89
50	11.371	33.172	88.8	0.91
60	10.994	33.226	89.4	0.69
70	10.614	33.295	89.9	0.47
80	10.032	33.314	90.1	0.36
90	9.445	33.435	90.3	0.22
100	9.152	33.518	90.4	0.19
110	9.170	33.647	90.5	0.16
120	8.973	33. <i>7</i> 07	90.6	0.12
130	8.809	33. <i>7</i> 36	90.6	0.15
140	8.561	33.785	90.6	0.12
150	8.298	33.828	90.6	0.13
175	7.981	33.909	90.7	0.11
200	7.752	33.957	90.7	0.12
225	7.442	33.982	90.9	0.11
250	7.110	34.004	91.0	0.11
300	6.616	34.043	91.1	0.11
400	5.725	34.082	91.1	0.11
500	5.405	34.209	91.1	0.11
501	5.401	34.209	91.1	0.11

STA 17 D-10 LAT: 37 23.6 N LONG:124 23.1 W 07 JUL 1988 1544 GMT PROBE 2561 DEPTH 4004M

PRESS	TEMP	SAL	TRN	TP
3	13.136	33.148	85.9	1.69
10	13.125	33.149	85.8	1.86
20	12.914	33.177	86.1	1.73
30	12.095	33.143	88.1	1.02
40	10.953	33.041	89.5	0.61
50	10.609	33.172	90.3	0.37
60	10.394	33.217	90.2	0.30
70	9.959	33.292	90.6	0.21
80	9.675	33.377	90.6	0.16
90	9.294	33.517	90.7	0.15
100	9.073	33.613	90.7	0.14
110	8.882	33.686	90.7	0.14
120	8.711	33.751	90.7	0.13
130	8.550	33.803	90.8	0.12
140	8.310	33.849	90.8	0.11
150	8.108	33.894	90.8	0.11
175	7.843	33.944	90.9	0.11
200	7.533	33.964	90.9	0.10
225	7.354	33.973	90.9	0.11
250	7.168	33.995	91.0	0.10
300	6.972	34.068	91.1	0.10
400	6.206	34.143	91.0	0.11
500	5.462	34.188	91.2	0.11
501	5.460	34.189	91.1	0.11

STA 18 D-10 LAT: 37 24.0 N LONG:124 23.3 W 08 JUL 1988 0049 GMT PROBE 2561 DEPTH 4017M

PRESS	TEMP	SAL	TRN	TP
1	13.328	33.121	86.7	1.13
10	13.230	33.125	86.6	0.98
20	13.200	33.127	86.8	1.00
30	11.345	33.058	89.3	1.03
40	10.855	33.117	90.0	0.52
50	10.417	33.224	90.5	0.36
60	10.149	33.263	90.5	0.23
70	9.924	33.318	90.5	0.20
80	9.420	33.464	90.6	0.15
90	9.075	33.605	90.7	0.12
100	8.940	33.662	90.7	0.12
110	8.852	33.683	90.6	0.11
120	8.622	33.757	90.7	0.11
130	8.472	33.817	90.8	0.13
140	8.261	33.862	90.8	0.11
150	8.137	33.901	90.7	0.10
175	7.922	33.952	90.8	0.10
200	7.626	34.007	90.9	0.10
225	7.456	34.045	91.0	0.10
250	7.156	34.051	91.0	0.10
300	6.870	34.085	91.0	0.10
400	6.074	34.132	91.0	0.11
500	5.551	34.211	91.1	0.11
501	5.542	34.211	91.1	0.11

STA 19 LAT: 38 11.6 N LONG:124 59.9 W 08 JUL 1988 1617 GMT PROBE 2561 DEPTH 3914M

PRESS	TEMP	SAL	TRN	TP
5	13.697	32.638	88.3	0.43
10	13.699	32.638	88.3	0.44
20	13.675	32.672	88.4	0.48
30	13.037	32.920	89.5	0.37
40	12.361	32.841	89.5	0.38
50	11.951	32.873	89.2	0.44
60	11.678	32.956	88.5	0.89
70	11.442	33.007	89.6	0.83
80	10.768	32.964	90.2	0.51
90	10.563	33.111	90.6	0.32
100	10.196	33.245	89.6	0.26
110	9.924	33.384	87.8	1.04
120	9.458	33.420	88.9	0.88
130	9.336	33.495	89.0	0.43
140	9.161	33.577	89.1	0.44
150	9.409	33.713	87.9	0.61
175	8.657	33.755	89.6	0.30
200	8.386	33.877	89.5	0.22
225	8.087	33.991	90.3	0.16
250	7.758	34.011	90.4	0.14
300	7.261	34.042	90.4	0.13
400	6.372	34.102	91.0	0.11
500	5.884	34.168	90.9	0.11
501	5.868	34.166	90.9	0.11

STA 20 LAT: 38 37.8 N LONG:125 18.6 W 09 JUL 1988 0324 GMT PROBE 2561 DEPTH 3932M

PRESS	TEMP	SAL	TRN	TP
3 10 20	15.672 15.668 15.674	32.929 32.930 32.929	89.9 89.8 90.0	0.08 0.08 0.08
30 40 50 60	15.676 15.677 15.662 15.315	32.929 32.929 32.928 32.905	90.0 90.0 90.0	0.08 0.08 0.08
70 80 90	13.271 11.877 11.326	32.803 32.806 32.838	89.9 89.6 89.2 88.7	0.10 0.20 0.35
100 110 120	11.095 10.939 10.776	32.909 33.007 33.065	90.0 90.6 90.8	0.78 0.50 0.26 0.14
130 140 150	10.464 10.178 9.902	33.135 33.217 33.305	90.9 90.9 90.9	0.09 0.07
175 200 225	9.112 8.695 8.480	33.631 33.855 33.934	90.9 90.8 90.8	0.07 0.07 0.08 0.09
250 300 400	8.103 7.339 6.174	33.961 33.969 34.020	90.8 90.9 91.0	0.08 0.07 0.08
500 503	5.521 5.511	34.128 34.134	91.1 91.1	80.0

STA 21 D-10 LAT: 37 23.9 N LONG:124 23.0 W 09 JUL 1988 1506 GMT PROBE 2561 DEPTH 4003M

PRESS	TEMP	SAL	TRN	TP
3	13.022	33.038	88.5	0.63
10	13.024	33.039	88.8	0.74
20	12.943	33.038	88.6	0.87
30	11.922	33.073	86.4	1.41
40	10.278	33.030	89.7	0.90
50	9.880	33.108	90.1	0.43
60	9.713	33.241	90.3	0.24
70	10.215	33.604	89.4	0.36
80	9.886	33.585	89.4	0.46
90	9.659	33.642	89.2	0.54
100	9.618	33.701	89.2	0.45
110	9.494	33.742	89.1	0.47
120	9.316	33.805	88.5	0.57
130	9.210	33.847	88.8	0.55
140	9.048	33.883	88.5	0.59
150	8.795	33.935	89.2	0.42
175	8.668	33.971	89.8	0.16
500	8.302	34.012	90.6	0.13
225	7.950	34.007	90.7	0.12
250	7.646	34.043	90.7	0.13
300	6.953	34.045	91.0	0.15
400	6.371	34.133	90.9	0.11
500	5.653	34.181	91.0	0.11
503	5.573	34.172	91.1	0.11

LIN INT SAL 27-35 DB

STA 22 D-10 LAT: 37 23.7 N LONG:124 23.2 W 10 JUL 1988 0105 GMT PROBE 2561 DEPTH 3983M

	88.5	0.86
	88.4	0.88
	88.4	0.92
	88.5	0.97
	89.0	0.84
	89.0	0.90
60 10.344 33.097	89.5	0.74
	90.0	0.43
	90.2	0.36
	90.1	0.33
100 10.226 33.689	88.9	0.54
	88.7	0.60
120 9.476 33.812	87.0	0.92
	86.3	1.08
	88.2	0.70
	B9.0	0.41
	90.0	0.25
	90.0	0.21
	90.4	0.21
	90.6	0.19
	91.1	0.18
	91.0	0.19
	91.1	0.19
501 5.603 34.186 9	91.0	0.19

STA 23 D-9 LAT: 37 35.6 N LONG:124 31.4 W 10 JUL 1988 2026 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	ΤP	
3	14.003	32.946	87.8	0.65	
10	14.010	32.946	87.8	0.72	
20	13.769	32.943	88.0	0.95	
30	12.680	32.908	88.2	1.06	
40	11.293	32.920	88.9	0.97	
50	10.522	33.065	90.0	0.70	
60	10.507	33.142	90.3	0.46	
70	10.059	33.291	90.3	0.32	
80	9.736	33.571	90.5	0.25	
90	9.496	33.613	90.6	0.22	
100	9.490	33.749	90.6	0.20	
110	9.399	33.824	90.6	0.19	
آئے ا	9.259	33.857	90.7	0.18	
130	8.921	33.891	90.7	0.19	
140	8.577	33.899	90.7	0.18	
150	8.377	33.941	90.7	0.18	
175	7.909	33.974	90.8	0.17	
200	7.715	34.017	90.8	0.17	
225	7.380	34.038	90.9	0.17	
250	7.175	34.048	90.9	0.17	
300	6.667	34.063	91.0	0.18	
400	6.132	34.161	91.0	0.18	
500	5.494	34.216	91.1	0.18	
501	5.487	34.217	91.1	0.18	

LIN INT SAL 303-331 DB

STA 24 D-3 LAT: 38 45.8 N LONG:125 22.8 W 12 JUL 1988 0310 GMT PROBE 2561 DEPTH 3680M

PRESS	TEMP	SAL	TRN	TP
1	16.028	32.632	89.5	0.14
10	15.927	32.634	89.6	0.13
20	15.863	32.664	89.5	0.14
30	15.888	32.679	89.5	0.14
40	15.928	32.701	89.5	0.14
50	15.533	32.915	88.9	0.19
60	14.194	32.879	89.1	0.25
70	13.316	32.969	89.4	0.33
80	12.922	32.983	89.4	0.43
90	12.261	33.012	89.7	0.53
100	11.819	33.048	90.1	0.65
110	11.616	33.122	90.4	0.46
120	11.209	33.17 0	90.5	0.33
130	10.525	33.213	90.7	0.23
140	10.021	33.317	<i>9</i> 0.7	0.17
150	9.512	33.433	90.8	0.13
175	9.008	33.655	90.8	0.13
200	8.539	33.834	90.8	0.13
225	8.089	33.933	90.8	0.14
250	7.909	33.989	90.9	0.14
300	6.942	33,968	91.0	
400	6.006	34.012	90.9	0.14
500	5.170	34.055	91.0	0.14
501	5.162	34,055	<i>9</i> 1.0	0.14

STA 25 D-9 LAT: 37 35.5 N LONG:124 31.7 W 12 JUL 1988 1302 GMT PROBE 2561 DEPTH 3953M

PRESS	TEMP	SAL	TRN	TP
1	14.110	32,931	88.4	1.04
10	14.094	32,931	88.3	1.03
20	13.740	32,961	88.4	1.15
30	13.565	32,993	88.5	1.20
40	13.168	33.044	88.8	1.30
50	12.873	33.091	88.8	1.08
60	10.757	33.062	90.0	0.68
70	10.402	33.219	90.4	0.42
80	9.902	33.373	90.4	0.31
90	9.988	33.538	90.4	0.32
100	9.850	33.652	90.5	0.27
110	9.501	33.716	90.6	0.21
120	9.004	33. <i>7</i> 38	90.6	0.20
130	8.988	33.808	90.6	0.18
140	8.980	33.916	90.6	0.18
150	8.825	33.942	90.6	0.19
175	8.231	34.001	90.7	0.17
200	7.906	34.012	90.7	0.18
225	7.547	34.024	90.7	0.17
250	7.270	34.042	90.9	0.18
300	6.856	34.094	90.9	0.18
400	6.065	34.146	91.0	0.18
500	5.454	34.197	91.0	0.18
501	5.474	34.203	91.1	0.18

ST		LAT:	38 36.0 1	N LONG	3:125	6.3 W
13	JUL 198	18 0543 GM	IT PROBE	2561	DEPTH	M
	PRES	S TEMP	SAL	TRN	TP	
	3	16.365	32.694	89.5	0.14	
	10	16.363	32.694	89.5		
	20	15.902	32.711			
	30	15.871	32.713	89.3	0.16	
	40	15.846	32.716	89.3		
	50	15.605	32.831	89.4		
	60	14.800	32.924	89.7	0.25	
	70	13.550	32.876	89.5	0.33	
	80	12.353	32.814	89.4	0.43	
	90	11.562	32.844	88.0	1.01	
	100	11.368	32.897	88.1	0.95	
	110	11.170	32.947	89.2	0.56	
	120	10.955	33.006	89.6	0.35	
	130	10.642	33.089	89.8	0.24	
	140	10.187	33.180	89.8	0.17	
	150	9.797	33.310	90.1	0.14	
	175		33.639	89.9	0.13	
	200		33.880	90.5	0.15	
	225	8.149	33.918	90.7	0.14	
	250		33.972	90.6	0.13	
	300		33.985	90.7	0.14	
	400		33.985	90.8	0.14	
	500	5.505	34.095	91.0	0.15	
	501	5.500	34.097	90.9	0.15	

STA 27 D-9 LAT: 37 35.4 N LONG:124 31.6 W 13 JUL 1988 1310 GMT PROBE 2561 DEPTH M PRESS TEMP SAL TRN TP

PRESS	TEMP	SAL	TRN	TP	
3	14.390	32.897	88.5	0.94	
10	14.391	32.897	88.5	0.93	
20	13.685	32.985	88.5	1.01	
30	13.230	33.058	88.1	1.32	
40	12.895	33.090	88.2	1.37	
50	12.523	33.203	88.8	1.11	
60	11.400	33.334	89.2	0.74	
70	10.308	33.381	90.0	0.49	
80	9.762	33.385	90.4	0.33	
90	9.548	33.438	90.5	0.27	
100	9.195	33.620	90.6	0.22	
110	9.205	33.750	90.6	0.20	
120	8.969	33.793	90.7	0.19	
130	8.968	33.900	90.6	0.19	
140	8.811	33.947	90.7	0.18	
150	8.658	33.975	90.7	0.19	
175	8.233	33.991	90.7	0.18	
200	7.914	34.017	90.8	0.18	
225	7.480	34.022	90.9	0.17	
250	7.324	34.061	91.1	0.18	
300	6.862	34.091	91.0	0.18	
400	6.029	34.157	91.0	0.18	
500	5.436	34.187	91.1	0.18	
501	5.430	34.187	91.1	0.18	

LIN INT SAL 31-37 DB

STA 28 D-4	LAT: 38	34.2 N	LONG	G:125 14.9 W
14 JUL 1988	0436 GMT	PROBE	2561	DEPTH M
PRESS	TEMP	SAL	TRN	TP
1	16.445	32.719	89.4	0.14
10	16.457	32.719	89.4	0.14
20	16.342	32.793	89.5	0.14
30	16.305	32.818	89.5	0.16
40	16.192	32.829	89.6	0.16
50	14.760	32.787	89.2	0.25
60	13.692	32.768	89.0	0.35
70	13.027	32.804	88.9	0.46
80	12.041	32.822	88.9	0.64
90	11.496	32.849	88.4	1.17
100	11.190	32.907	90.1	0.70
110	11.095	33.011	90.5	0.43
120	10.747	33.071	90.7	0.26
130	10.319	33.156	90.8	0.20
140	10.045	33.220	90.8	0.15
150	9.758	33.349	90.9	0.14
175	9.078	33.643	90.8	0.16
200	8.635	33.875	90.7	
225	8.188	33.919		
250	7.770	33.974	90.8	
300	6.967	33.990		
400	5.835	33.987		
500	5.533	34.120	91.1	
501	5.530	34.121	91.1	0.15

LAT: 37 35.6 N LONG: 124 31.5 W 14 JUL 1988 1314 GMT PROBE 2561 DEPTH **PRESS** TEMP SAL TRN TP 14.560 32.945 88.0 0.96 13.874 1.07 33.005 87.8 10 20 13.512 33.028 87.7 1.28 30 12.638 33.113 87.8 1.40 40 12.538 33.167 87.9 1.36 50 12.547 33.305 87.8 1.06 60 11.050 33.265 89.2 1.01 70 33.620 11.192 88.8 0.72 80 10.463 33.719 89.5 0.51 90 9.738 33.752 89.8 0.38 100 9.326 33.785 89.7 0.34 110 9.302 33.828 89.9 0.31 120 8.851 33.806 0.31 90.3 33.849 130 8.738 90.6 0.19 140 8.696 33.899 90.6 0.18 8.633 33.938 150 90.7 0.19 175 8.214 33.991 90.6 0.18 200 7.952 34.008 90.8 0.17 225 34.025 90.7 0.17 7.673 7.374 250 34.070 91.1 0.18 300 6.958 34.108 91.1 0.18 400 34.138 91.0 6.120 0.18 500 5.451 34.188 91.1 0.18

34.191 91.1 0.18

503

5.436

STA 30	D-4	LAT	: 38	32.	8 N	LON	G:125	13.2	W
15 JUL	1988 (0423	GMT	PRC)BE 2	2561	DEPTH	ł	M
PI	RESS	TEM	P	SA	\L	TRN	ΤÞ		
	3	16.96	4	32.8	333	89.4	0.13	3	
	10	16.83	1 :	32.8	32	89.4	0.14	•	
	20	16.12	9 :	32.7	20	89.7	0.14	•	
	30	16.06	0 :	32.7	24	89.7	0.14	•	
	40	15.31	5	32.7	' 04	89.0	0.20)	
	50	14.03	0	32.6	56	88.8	0.29)	
	60 '	12.89	2	32.6	64	88.3	0.48	3	
	70	12.73	8	32.7	'88	87.3	0.76	5	
	80	11.86	2	32.8	129	87.3	0.97	7	
	90 '	11.54	6	32.8	49	87.5	0.98	3	
	100	11.25	9 :	32.9	111	89.2	0.64	•	
	110 '	11.07	8	32.9	71	89.4	0.40)	
	120 '	10.81	4	33.0	73	89.7	0.29)	
•	130 '	10.46	0 3	33.1	33	89.6	0.21		
•	140	9.93	0 3	33.2	59	89.5	0.16	5	
•	150	9.60	3	33.4	05	89.7	0.14	+	
•	175	8.97	8 3	33.6	72	88.9	0.13	;	
- 2	200	8.68	7 3	33.8	92	89.5	0.14	•	
2	225	8.17	2 3	53.9	80	89.3	0.13	;	
7	250	8.08	0 3	53.9	71	89.1	0.13	;	
3	500	7.20	4 3	33.9	73	90.0	0.14		
4	00	6.43	6 3	34.0	84	90.1	0.15		
5	00	5.36	9 3	34.1	05	90.4	0.15		
5	501	5.37	5 3	54.1	06	90.7	0.15		

STA 31 D-4 LAT: 38 32.8 N LONG: 125 13.2 W 15 JUL 1988 0512 GMT PROBE 2561 DEPTH **PRESS** TEMP SAL TRN TP 16.921 32.824 32.807 87.1 0.13 16.625 16.259 10 89.6 0.13 20 32.745 89.8 0.13 30 16.058 32.713 89.8 0.15

32.697 15.040 89.2 0.18 13.888 50 32.654 88.7 0.29 60 12.883 32.685 88.3 0.50 70 32.801 12.577 88.0 0.75 80 11.853 32.829 88.3 1.04 90 89.2 11.490 32.851 0.98 32.913 100 11.168 90.0 0.64 110 11.000 32.999 90.5 0.39 120 10.686 33.101 90.7 0.27 130 10.311 33.160 90.8 0.21 140 9.805 33.320 90.8 0.18 150 9.447 33.447 90.8 0.15 175 8.873 33.719 90.8 0.13 200 8.690 33.910 90.7 0.15 225 8.133 33.917 90.9 0.13 250 7,925 33.969 0.14 90.9 251 7.917 33.972 90.9 0.14

STA 32 D-9					W
15 JUL 1988	1315 GM1	PROBE	2561	DEPTH	M
PRESS	TEMP	SAL	TRN	TP	
1	14.570	77 012	97 A	0.00	
-					
	14.098				
20	12.700	33.136	88.5	1.22	
30	11.734	33.217	87.7	1.67	
	12.415				
50					
60		33.424	89.1	0.56	
70		33.478			
	9.764				
9 0	9.987	33.638	89.0	0.61	
100	9.514	33 <i>.7</i> 39	90.0	0.35	
110	9.219	33.885	89.8	0.29	
120	9.040	33.927	90.0	0.27	
130	8.940	33.930	89.8	0.28	
	8.880				
150	8.680	33.975	90.2	0.27	
	8.284				
	7.945				
225	7.678				
250	7.244				
	7.047				
	6.188				
	5.434				
501					
50.	2.763	34.230	, , , ,	0.10	
SAL + OFFSET SEE DATA REF		DB			
SEE DAIR REF	UK I				

STA 33 D-4 LAT: 38 31.4 N LONG:125 13.0 W 16 JUL 1988 0433 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	TP
3	16.988	32.735	89.7	0.12
10	16.980	32.732	89.4	0.12
20	16.260	32.785	89.7	0.13
30	16.377	32.855	89.6	0.14
40	16.249	32.888	89.6	0.16
50	14.999	32.882	87.5	0.20
60	12.998	32.689	89.0	0.33
70	12.453	32.790	88.3	0.54
80	11.860	32.820	87.9	1.16
90	11.369	32.860	89.8	0.89
100	11.263	32.929	90.3	0.50
110	11.093	33.002	90.5	0.36
120	10.793	33.056	90.7	0.27
130	10.533	33.117	90.7	0.23
140	10.125	33.197	90.8	0.18
150	9.708	33.364	90.9	0.14
175	8.931	33.701	90.8	0.13
200	8.602	33.876	90.7	0.14
225	8.052	33.936	90.9	0.13
250	7.746	33.969	90.9	0.14
300	7.044	33.983	90.9	0.14
400	6.175	34.039	90.9	0.14
500	5.371	34.093	91.1	0.15
501	5.366	34.092	91.1	0.15

STA 34 D-9 16 JUL 1988					6 W M
PRESS	TEMP	SAL	TRN	TP	
1	13.840	33.154	84.8	1.08	
	13.816				
20	12.843	33.459	85.5	1.66	
	12.042				
40	10.705	33.523	87.9	2.02	
50	10.045	33.621	89.3	0.83	
60	9.767	33.749		0.46	
70	9.468	33.774	89.8	0.34	
80	9.304	33.825	89.9	0.34	
90	9.195	33.852	89.8	0.29	
100	8.978	33.891	89.9	0.27	
110	8.915	33.916	90.1	0.25	
120	8.701	33.927	90.0	0.23	
130	8.639	33.957	90.2	0.23	
140	8.521	33.974	90.2	0.25	
150	8.432	33.989	90.2	0.23	
175	8.195	34.020	90.5	0.22	
200	7.960	34.035	90.2	0.21	
225	7.681	34.058	90.4	0.20	
250	7.421	34.073	90.7	0.20	
300	6.897	34.077	91.0	0.19	
400	5.977	34.137	91.0	0.18	
500	5.424	34.199	91.1	0.18	
501	5.419	34.200	91.0	0.18	
LIN INT SAL	23-29 DE	3			

STA 35				:125 26.4	W
19 JUL 1988	0119 GMT	PROBE	2561	DEPTH	M
PRESS	TEMP	SAL	TRN	TP	
1	16.359	32.611	89.3	0.28	
10	16.360	32.611	89.4	0.29	
20	16.361	32.611	89.4	0.29	
30	16.296	32.613	89.4	0.30	
40	16.200	32.624	89.2	0.31	
50	13.314	32.716	89.1	0.29	
60	12.639	32.732	89.1	0.27	
70	11.905	32.769	89.0	0.32	
80	11.559	32.893	89.0	0.52	
90	11.358	32,929	89.2	0.80	
100	11.019	32.952	90.1	0.57	
110	10.285	32,905			
120	10.129	33.030	90.6	0.34	
130	9.766	33.132	90.7	0.35	
140	9.371	33.283	90.8	0.22	
150	9.033	33.415	90.8	0.17	
175	8.528	33.628	90.8	0.15	
200	8.098	33.785	90.8	0.15	
225	7.869	33.899	90.8	0.16	
250	7.377	33.944	90.8	0.16	
300	6.631	33.966	90.9	0.17	
400	5.603	34.022	91.0	0.17	
500	5.006	34.094	91.1	0.17	
501	5.004	34.095	91.1	0.17	

STA 36 D-8 19 JUL 1988	LAT: 37 2115 GMT	47.5 N PROBE	LONG 2561	:124 40. DEPTH	5 W M
PRESS	TEMP	SAL	TRN	ΤP	
3		33.206			
10		33.161		0.76	
20		33.225			
30	11.548	33.299		3.18	
40	10.442	33.196			
50	10.388	33.343			
60	9.266	33.333			
70	9.005				
80	8.797	33.552			
90	8.581	33.646			
100	8.453	33.720			
110	8.353	33.775	90.6	0.17	
120	8.209	33.792	90.5	0.19	
130	8.068	33.861	90.5	0.21	
140	8.043	33.899	90.5	0.21	
150	7.894	33.916	90.5	0.20	
175	7.586	33.965	90.7	0.21	
200	7,197	33.971	90.7	0.18	
225	7.067	34.009	90.7	0.19	
250	7.004	34.061	90.9	0.22	
300	6.742	34.120	90.9	0.20	
400	5.824	34.123	91.0	0.19	
500	4.970	34.141		0.18	
501	4.972	34.142	91.0	0.18	

STA 37 D-10 LAT: 37 23.6 N LONG:124 22.5 W 20 JUL 1988 0402 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	TP
3	14.910	32.986	88.7	0.51
10	14.840	32.997	88.4	0.50
20	14.585	33.024	88.1	0.54
30	12,973	33.117	88.7	0.70
40	11.884	33.240	87.6	1.03
50	10.566	33.263	89.6	0.81
60	10.025	33.373	89.9	0.53
70	9,681	33.397	90.2	0.43
80	9.429	33.481	90.5	0.29
90	9.229	33.562	90.5	0.22
100	8.958	33.656	90.6	0.18
110	8.675	33.758	90.6	0.16
120	8.522	33.841	90.6	0.16
130	8.691	33.963	90.7	0.16
140	8.508	33.983	90.6	0.16
150	8.332	33.991	90.5	0.15
175	8,193	34.019	90.7	0.16
200	7.776	34.022	90.8	0.15
225	7.531	34.046	90.9	0.16
250	7.262	34.051	90.9	0.16
300	6.836	34.100	91.0	0.16
400	6.119	34.160	91.0	9.16
500	5.535	34.200	91.0	0.16
503	5.546	34.204	91.0	0.16

STA 38 D-1 20 JUL 1988	0 LAT:	37 23.4 I T PROBE	N LONG 2561	G:124 2: DEPTH	3.1 W
PRESS	TEMP	SAL	TRN	TP	
1	15.040	33.103	87.8	0.85	
10	12.906	33.019	88.5	0.95	
20	11.661	33.064	89.0	1.09	
30	11.046	33.142	88.8	1.08	
40	10.418	33.194	89.7	0.97	
50	9.817	33.267	90.2	0.64	
60	9.686	33.377	90.2	0.42	
70	9.529	33.487	90.5	0.30	
80	9.135	33.597	90.7	0.23	
90	8.860	33.707	90.7	0.20	
100	8.651	33.769	90.7	0.18	
110	8.545	33.853	90.7	0.17	
120	8.661	33.936	90.7	0.18	
130	8.616	33.951	90.7	0.18	
140	8.539	33.964	90.8	0.17	
150	8.433	33.982	90.8	0.18	
175	8.124	34.017	90.8	0.18	
200	7.891	34.042	90.9	0.18	
225	7.516	34.063	91.0	0.17	
250	7.352	34.088	91.0	0.18	
300	6.659	34.075	91.0	0.18	
400	5.973	34.156	91.1	0.18	
500	5.368	34.212	91.0	0.19	
501	5.362	34.214	91.1	0.19	

STA 39 LAT: 38 29.0 N LONG:125 10.6 W 21 JUL 1988 0932 GMT PROBE 2561 DEPTH M

				V 111	
PRESS	TEMP	SAL	TRN	ΥP	
1	16.096	32.591	45.9	0.16	
10	16.094	32.595	89.6	0.14	
20	16.094	32.595	89.6	0.15	
30	15.977	32.620	89.6	0.15	
40	13.972	32.765	89.7	0.19	
50	12.898	32.830	89.7	0.23	
60	12.297	32.864	89.8	0.27	
70	11.867	32.904	89.8	0.43	
80	11.574	32.928	89.7	0.63	
90	11.289	32.947	90.2	0.59	
100	10.792	32.952	90.6	0.37	
110	10.376	33.029	90.8	0.31	
120	9.901	33.148	90.9	0.26	
130	9.494	33.359	90.9	0.18	
140	9.208	33.522	90.9	0.14	
150	9.016	33.621	90.9	0,13	
175	8.542	33.815	90.9	0.13	
200	8.153	33.914	90.9	0.13	
225	7.993	33.971	90.9	0.13	
250	7.566	33.982	90.9	0.14	
300	6.771	33.972	91.0	0.14	
400	5.829	34.024	91.0	0.14	
500	5.433	34.142	91.1	0.15	
501	5.432	34.143	91.1	0.15	

STA 40 D-9			LONG	:124 32	.0 W
21 JUL 1988	1514 GMT	PROBE	2561	DEPTH	М
PRESS	TEMP	SAL	TRN	TP	
1	14.287	33.017	88.7	0.85	
10	14.222	33.035	88.8	0.85	
20	12.104	33.177	88.7	0.76	
30	10.832	33.033	88.7	0.77	
40	10.061	33.071	89.3	0.88	
50	9.903	33.252	89.6	0.66	
	9.692	33.323	89.4	0.62	
	9.523	33.507	89.3	0.51	
80	9.220	33.554	90.2	0.34	
90	8.815	33.621	90.2	0.26	
100	8.684	33.694	90.3	0.24	
110	8.480	33.734	90.4	0.24	
120	8.453	33.823	90.5	0.22	
130	8.311	33.850	90.5	0.21	
140	8.239	33.889	90.5	0.20	
150	8.139	33.927	90.5	0.19	
175	7.919	34.000	90.5	0.18	
200	7.763	34.047	90.9	0.18	
225	7.459	34.062	91.0	0.18	
250	7.342	34.090	91.0	0.18	
300	6.757	34.097	91.0	0.18	
400	6.125	34.168	91.0	0.18	
500	5.511	34.219	91.0	0.18	
501	5.515	34.222	91.0	0.18	

STA 41 LAT: 38 24.7 N LONG:125 8.1 W 22 JUL 1988 0404 GMT PROBE 2561 DEPTH 1018M

PRESS	TEMP	SAL	TRN	ΤP
1	14.257	32.621	88.1	0.37
10	14.264	32.620	88.2	0.36
20	14.042	32.629	88.1	0.39
30	13.735	32.647	87.7	0.47
40	13.570	32.654	87.6	0.60
50	13.517	32.652	87.8	0.60
60	12.721	32.755	89.1	0.58
70	11.800	32.894	89.9	0.43
80	11.222	32.930	90.0	0.58
90	11.000	32.952	90.5	0.46
100	10.846	32.974	90.6	0.37
110	10.168	33.130	90.8	0.27
120	9.520	33.350	90.9	0.18
130	9.105	33.521	90.9	0.14
140	9.005	33.585	90.9	0.13
150	8.891	33.672	90.9	0.13
175	8.405	33.838	90.9	0.13
200	8.127	33.918	90.8	0.13
225	7.918	33.971	91.0	0.13
250	7.455	33.979	91.0	0.14
300	6.818	34.000	91.0	0.14
400	5.852	34.031	91.0	0.15
500	5.416	34.127	91.1	0.15
501	373. د	34.122	91.1	0.15

STA 42			LONG	i:124 32.3 W
22 JUL 1988	1738 GM1	PROBE	2561	DEPTH M
PRESS	TEMP	SAL	TRN	TP
1	13.957	33.017		
10	13.465	33.025		
20	10.989	33.047		
30	10.710	33.111	88.6	0.81
40	10.156	33.129		0.85
50	9.492	33.295		0.50
	9.138	33.403	90.6	0.24
70	9.098	33.567	90.6	0.24
80	9.011	33.680	90.4	0.25
90	8.898	33.735	90.3	0.29
100	8.699	33.772	90.4	0.26
110	8.414	33.782	90.4	0.23
120	8.287	33.836	90.5	0.22
130	8.212	33.873	90.5	0.22
140	8.150	33.915	90.5	0.21
150	7.997	33.953	90.6	0.21
175	7.713	34.004	90.6	0.19
200	7.433	34.017	90.7	0.19
225	7.289	34.035	90.8	0.19
250	7.082	34.041	90.8	0.19
300	6.612	34.075	90.9	0.19
400	5.893	34.129	90.9	0.18
500	5.484		91.0	0.18
503	5.481	34.213	91.0	0.18

STA 43 LAT: 38 24.4 N LONG:125 12.0 W 23 JUL 1988 0723 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	TP
1	15.159	32.594	88.4	0.31
10	15.065	32.592	88.5	0.32
20	14.714	32.605	88.2	0.45
30	14.521	32.612	88.2	0.53
40	14.086	32.643	88.1	0.73
50	13.854	32.610	88.4	0.70
60	13.649	32.607	88.4	0.64
70	12.195	32.680	89.0	0.62
80	11.659	32.865	89.9	0.47
90	11.105	32.933	90.1	0.58
100	10.784	33.002	90.6	0.40
110	10.040	33.090	90.9	0.29
120	9.338	33.318	91.0	0.18
130	9.069	33.444	91.0	0.13
140	8.946	33.508	90.9	0.14
150	8.923	33.641	90.9	0.13
175	8.689	33.797	90.9	0.13
200	8.196	33.906	90.9	0.13
225	7.958	33.954	90.9	0.13
250	7.640	32.977	91.0	0.13
300	6.871	33.991	91.0	0.14
400	5.756	34.037	91.0	0.15
500	5.326	34.156	91.2	0.15
503	5.317	34.159	91.2	0.15

LAT: 1303 GM			G:125 3 DEPTH	1.9 W M
TEMP	SAL	TRN	TP	
16.261 16.262 16.263 16.262 13.328 12.610 11.686 11.460 11.193 11.040 10.524 10.143 9.952 9.601 9.160 9.007 8.344 8.014 7.680	32.665 32.664 32.664 32.665 32.720 32.782 32.855 32.894 32.940 32.953 33.003 33.117 33.236 33.428 33.681 33.810 33.909	89.4 89.7 89.7 89.3 89.3 89.2 89.2 89.8 90.6 90.7 90.9 91.0 91.0 90.9 90.9	0.32 0.30 0.30 0.34 0.35 0.47 0.67 0.84 0.64 0.46 0.28 0.23 0.19 0.15 0.15	
6.853 5.836 5.176 5.145	33.987 34.031 34.080 34.081	90.4 91.1	0.17 0.17	
	1303 GN TEMP 16.261 16.262 16.263 16.262 13.328 12.610 11.686 11.460 11.193 11.040 10.524 10.143 9.952 9.601 9.007 8.344 8.014 7.680 7.430 6.853 5.836 5.176	TEMP SAL 16.261 32.665 16.262 32.664 16.263 32.665 13.328 32.720 12.610 32.782 11.686 32.855 11.460 32.855 11.460 32.953 10.524 32.935 10.143 33.003 9.952 33.117 9.601 33.236 9.160 33.375 9.007 33.428 8.344 33.681 8.014 33.810 7.680 33.997 7.430 33.993 7.430 33.993 6.853 33.987 5.836 34.031 5.176 34.080	TEMP SAL TRN 16.261 32.665 89.4 16.262 32.664 89.7 16.263 32.664 89.7 16.262 32.665 89.3 12.610 32.782 89.3 11.686 32.855 89.2 11.460 32.894 89.2 11.193 32.940 89.8 11.040 32.953 90.2 10.524 32.935 90.6 10.143 33.003 90.7 9.952 33.117 90.9 9.601 33.236 91.0 9.160 33.375 91.0 9.007 33.428 91.0 9.160 33.375 91.0 9.007 33.428 91.0 9.160 33.987 90.9 7.430 33.993 90.9 7.430 33.993 90.9 7.430 33.993 90.9 7.430 33.987 90.4 5.836 34.031 91.1	TEMP SAL TRN TP 16.261 32.665 89.4 0.32 16.262 32.664 89.7 0.30 16.263 32.664 89.7 0.30 16.263 32.665 89.7 0.30 13.328 32.720 89.3 0.34 12.610 32.782 89.3 0.35 11.686 32.855 89.2 0.47 11.460 32.894 89.2 0.67 11.193 32.940 89.8 0.84 11.040 32.953 90.2 0.64 10.524 32.935 90.6 0.46 10.143 33.003 90.7 0.37 19.952 33.117 90.9 0.28 10.143 33.26 91.0 0.23 10.16 33.375 91.0 0.19 10.17 33.428 91.0 0.16 10.34 33.681 90.9 0.15 10.35 33.909 90.9 0.16 10.36 33.909 90.9 0.16 10.37 33.909 90.9 0.16 10.38 33.909 90.9 0.17 10.83 33.999 90.9 0.17 10.836 34.031 91.1 0.17 10.17

STA 45 D-3 LAT: 38 46.3 N LONG:125 22.9 W 23 JUL 1988 1451 GMT PROBE 2561 DEPTH M

_		1421 011	FROBE	2301	DEPIN	
	PRESS	TEMP	SAL	TRN	TP	
	1	16.250	32.624	88.3	0.30	
	10	16.254	32.629	89.6	0.31	
	20	16.252	32.629	89.7	0.31	
	30	16.252	32.630	89.7	0.31	
	40	15.117	32.696	89.4	0.32	
	50	13.557	32.771	89.4	0.30	
	60	12.649	32.833	89.3	0.30	
	70	12.033	32.864	89.3	0.43	
	80	11.595	32.908	89.4	0.59	
	90	11.246	32.974	90.2	0.70	
	100	11.022	33.007	90.5	0.50	
	110	10.523	33.016	90.7	0.36	
	120	9.862	33.039	90.9	0.29	
	130	9.619	33.171	91.0	0.26	
	140	9.305	33.304	91.0	0.21	
	150	9.052	33.406	91.0	0.17	
	175	8.384	33.693	91.0	0.15	
	200	7.966	33.830	90.9	0.15	
	225	7.644	33.897	90.9	0.16	
	250	7.436	33.949	91.0	0.16	
	300	6.951	34.004	91.1	0.17	
	400	5.621	34.011	91.0	0.17	
	500	4.975	34.094	91.2	0.17	
	503	4.962	34.096	91.2	0.17	

STA 46 D-4		38 34.7 N	LON	3:125	14.4	w
23 JUL 1988	1631 GM	T PROBE	2561	DEPTH		M
PRESS	TEMP	SAL	TRN	ΤP		
3	15.409	32.512	89.2	0.33		
10	15.411	32.513	89.2	0.33		
20	15.401	32.513				
30	15.400	32.512	89.2	0.40		
40	15.403	32.513	89.2	0.42		
50	15.047	32.532	89.0	0.39		
60	13.894	32.745	89.5	0.38		
70	12.395	32.849	89.6	0.33		
80	11.640	32.904	89.4	0.52		
90	11.180	32.903	90.0	0.70		
100	10.535	32.884	90.6	0.46		
110	10.400	33.013	90.8	0.34		
120	10.244	33.045	90.8	0.30		
130	9.833	33.168	90.9	0.25		
140	9.104	33.397	91.0	0.18		
150	8.715	33.561	90.9	0.15		
175	8.336	33.717	90.9	0.15		
200	7.952	33.859	90.9	û.15		
225	7.876	33.964	90.9	0.16		
250	7.643	33.999	91.0	0.16		
300	6.810	33.987	91.0	0.16		
400	5.649	34.034	91.0	0.17		
500	4.987	34.089	91.1	0.17		
503	4.993	34.093	91.1	0.17		

STA 47 D-5 LAT: 38 20.3 N LONG:125 9.7 W 23 JUL 1988 1813 GMT PROBE 2561 DEPTH M

P	RESS	TEMP	SAL	TRN	TP	
	1	14.791	32.667	87.6	0.35	
	10	14.724	32.665	88.7	0.40	
	20	14.645	32.658	88.6	0.49	
	30	14.234	32.625	88.4	0.51	
	40	13.622	32.650	88.4	0.64	
	50	12.135	32.754	89.5	0.65	
	60	10.940	32.720	89.6	0.65	
	70	10.395	32.740	89.9	0.61	
	80	10.656	32.955	90.3	0.63	
	90	10.009	33.018	90.6	0.41	
	100	9.318	33.110	90.8	0.30	
	110	9.238	33.285	90.9	0.25	
	120	9.017	33.436	90.9	0.17	
	130	8.756	33.574	90.9	0.16	
	140	8.578	33.664	90.9	0.15	
	150	8,522	33.782	90.9	0.15	
•	175	8.156	33.923	90.9	0.16	
- 2	200	7.992	33.985	91.0	0.16	
1	225	7.607	33.982	91.0	0.16	
- 3	250	7.116	33.975	91.0	0.17	
:	300	6.782	34.034	91.0	0.17	
4	100	5.855	34.074	91.0	0.17	
:	500	4.971	34.105	91.1	0.17	
	501	4.972	34,106	91.1	0.17	

STA 48 D-6 LAT: 38 11.0 N LONG:124 56.9 W 23 JUL 1988 1941 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	ΤP
3	12.369	32.833	88.0	0.53
10	11.776	33.038	87.8	0.78
20	11.563	33.041	87.9	1.08
30	11.219	33.001	88.6	1.18
40	10.574	32.946	89.5	1.03
50	9.825	32.955	90.1	0.81
60	9.581	33.031	90.5	0.49
70	9.498	33.195	90.4	0.37
80	9.731	33.412	90.0	0.34
90	9.803	33.519	89.5	0.47
100	9.632	33.559	89.5	0.42
110	9.277	33.637	89.8	0.42
120	8.633	33.663	90.5	0.30
130	8.714	33.808	90.0	0.27
140	8.297	33.815	90.7	0.21
150	8.189	33.857	90.6	0.17
175	7.809	33.919	90.7	0.18
200	7.569	33.966	90.9	0.17
225	7.240	33.979	90.9	0.16
250	6.881	33.990	90.9	0.17
300	6.315	34.033	91.0	0.17
400	5.731	34.077	91.1	0.17
500	5.163	34.177	91.2	0.18
501	5.161	34.178	91.2	0.18

STA 49 D-7 LAT: 37 59.1 N LONG:124 48.9 W 23 JUL 1988 2120 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	TP	
1	14.200	33.172	88.3	0.58	
10	12.641	33.085	88.2	0.70	
20	11.646	33.042	88.2	0.88	
30	10.849	32.938	89.1	0.82	
40	11.585	33.377	87.7	1.07	
50	11.585	33.420	83.8	2.46	
60	11.142	33.427	85.0	2.75	
70	10.541	33.415	86.9	1.89	
80	9.987	33.493	87.3	1.67	
90	9.130	33.654	89.8	0.56	
100	8.745	33.729	90.2	0.32	
110	8.619	33.762	90.2	0.30	
120	8.453	33.812	90.3	0.28	
130	8.297	33.848	86.2	0.24	
140	8.009	33.876	86.8	0.23	
150	7.902	33.898	86.6	0.24	
175	7.689	33.939	87.6	0.21	
200	7.354	33.978	87.9	0.21	
225	6.866	33.968	89.2	0.19	
250	6.716	33.986	89.5	0.17	
300	6.220	34.024	90.7	0.17	
400	5.585	34.102	90.9	0.18	
500	5.200	34.200	91.1	0.19	
501	5.196	34,200	91.1	0.19	

STA 50 D-8 23 JUL 1988	LAT: 37 2306 GMT	7 47.6 N PROBE	LONG: 2561 D	124 40. EPTH	5 W M
PRESS	TEMP	SAL	TRN	ΤP	
PRESS 10 20 30 40 50 60 70 80 90 100 110 120 130 140	14.182 13.710 12.981 12.267 11.542 10.446 9.595 9.375 9.375 9.395 8.665 8.510	33.209 33.213 33.249 33.317 33.3495 33.613 33.638 33.732 33.740 33.806 33.806 33.850 33.850	87.1 87.0 86.4 88.0 88.6 89.0 89.7 89.8 89.9	0.67 0.96 1.08 1.20 0.98 0.81 0.49 0.42 0.43 0.31 0.26 0.23 0.22 0.21	
150 175 200 225 250 300 400 500	7.889 7.537 7.233 6.996 6.630 6.350 5.893 5.344	33.943 33.957 33.983 34.006 33.996 34.048	90.6 90.8 90.8 90.9 91.0 91.0 91.0	0.18 0.18 0.17 0.19 0.17 0.19 0.19	

PRESS TEMP SAL TRN TΡ 15.364 13.703 33.113 88.0 0.67 33.063 87.0 10 0.80 12.225 33.166 88.3 1.05 30 40 33.294 33.303 11.208 88.4 1.03 10.278 89.1 0.88 9.937 33.464 89.3 0.60 60 70 80 9.690 33.565 90.0 0.41 33.609 90.0 9.531 0.37 9.414 33.690 90.1 0.33 90 100 33.690 33.718 9.255 90.1 0.36 8.579 90.6 0.20 8.399 33.768 110 90.6 0.18 120 8.286 33.825 90.6 0.18 8.149 90.6 130 33.859 0.18 140 7.994 33.871 90.6 0.18 150 7.944 33.896 90.6 0.20 175 7.925 34.019 90.6 0.20 7.554 34.028 200 90.6 0.20 225 7.272 34.042 90.9 0.19 250 300 7.094 34.062 90.9 0.19

34.071

34.131

34.212

6.629

5.921

5.411

5.408

400

500

501

91.0

91.0

91.0

34.213 91.0 0.19

0.18

0.18

0.18

24 JUL 1988 0058 GMT PROBE 2561 DEPTH

LAT: 37 35.6 N LONG: 124 31.5 W

STA 51 D-9

STA 52 D-10 LAT: 37 23.2 N LONG:124 22.8 W 24 JUL 1988 0254 GMT PROBE 2561 DEPTH M

PRESS	TEMP	SAL	TRN	TP
	15 107	77 050	0/ 1	0.01
1	15.107	33.058	86.1	0.91
10	13.819	33.045	87.2	0.70
20	12.976	33.096	87.4	0.89
30	12.604	33.470	87.9	0.98
40	12.573	33.485	88.2	0.73
50	11.497	33.432	88.7	0.83
60	10.484	33.502	89.8	0.48
70	10.183	33.576	89.6	0.37
80	9.242	33.587	90.4	0.31
90	8.815	33.687	90.7	0.18
100	8.647	33.770	90.7	0.15
110	8.560	33.830	90.7	0.15
120	8.551	33.889	90.8	0.15
130	8.579	33.942	90.8	0.16
140	8.455	33.965	90.8	0.16
150	8.378	33.997	90.8	0.15
175	8.094	34.037	90.9	0.15
200	7.768	34.034	90.9	0.15
225	7.609	34.067	91.0	0.15
250	7.169	34.055	91.1	0.15
300	6.739	34.090	91.0	0.16
400	6.044	34.153	91.1	0.16
500	5.372	34.222	91.1	0.16
501	5.373	34.225	91.1	0.16
701	7.313	J4.223	71.1	0.10

TRANSMISSION AND FLOURESCENCE
PROFILE PLOTS AND LISTINGS
W8807A

STA 1 D-10 LAT: 37 23.8 N LONG:124 23.0 W 27 JUL 1988 0337 GMT PROBE 2561 DEPTH 3994M

PRESS	TEMP	SAL	TRN	TP
1	14.959	33.001	87.5	0.38
10	14.232	33.026	87.1	0.43
20	12.611	33.176	87.7	0.56
30	12.041	33.264	88.4	0.58
40	11.249	33.193	88.2	0.55
50	10.687	33.171	88.8	0.55
60	10.361	33.286	89.8	0.36
70	9.618	33.346	90.1	0.27
80	9.561	33.544	90.2	0.22
90	9.408	33.618	90.3	0.21
100	8.867	33.644	90.6	0.17
110	8.700	33.741	90.6	0.16
120	8.553	33.811	90.6	0.15
130	8.329	33.864	90.6	0.15
140	8.229	33.927	90.7	0.15
150	8.287	33.999	90.7	0.15
175	7.859	34.016	90.8	0.15
200	7.624	34.046	91.0	0.15
225	7.322	34.055	91.0	0.15
250	7.165	34.078	91.1	0.15
300	6.678	34.083	91.0	0.15
400	5.940	34.158	91.1	0.15
500	5.432	34.219	91.1	0.15
507	5.386	34.222	91.1	0.15

STA 2 D-9 LAT: 37 35.4 N LONG:124 31.2 W 27 JUL 1988 0538 GMT PROBE 2561 DEPTH 3959M

PRESS	TEMP	SAL	TRN	TP
1	12.873	32.956	87.8	0.40
10	12.150	33.013	87.6	0.42
20	10.784	33.026	88.2	0.53
30	11.491	33.409	88.3	0.54
40	11.319	33.447	88.5	0.42
50	10.684	33.416	88.9	0.42
60	9.825	33.505	90.0	0.29
70	8.912	33.531	90.5	0.21
80	8.768	33.638	90.3	0.16
90	8.838	33.739	90.5	0.18
100	8.614	33.779	90.5	0.18
110	8.355	33.800	90.5	0.16
120	8.169	33.849	90.5	0.15
130	8.094	33.891	90.6	0.15
140	8.059	33.921	90.6	0.14
150	8.000	33.944	90.6	0.15
175	7.584	33.966	90.8	0.15
200	7.286	33.975	90.9	0.14
225	7.061	34.001	90.9	0.14
250	6.599	33.979	90.9	0.14
300	6.583	34.088	91.0	0.16
400	5.884	34.128	91.0	0.15
500	5.482	34.227	91.0	0.15
503	5.481	34.227	91.0	0.15

STA 3 D-8 LAT: 37 47.5 N LONG:124 39.3 W 27 JUL 1988 0753 GMT PROBE 2561 DEPTH 3949M

PRESS	TEMP	SAL	TRN	ΤP	
1	14.937	33.134	89.0	0.34	
10	14.798	33.137	89.0	0.34	
20	12.189	33.162	88.5	0.49	
30	11.575	33.329	88.4	0.55	
40	10.740	33.402	88.9	0.50	
50	10.185	33.480	89.4	0.42	
60	9.617	33.555	90.0	0.32	
70	9.073	33.598	90.3	0.25	
80	8.925	33.646	90.4	0.22	
90	8.804	33.727	90.5	0.21	
100	8.609	33.760	90.5	0.18	
110	8.435	33.783	90.5	0.19	
120	8.381	33.839	90.4	0.17	
130	8.077	33.873	90.5	0.17	
140	7.903	33.889	90.4	0.17	
150	7.820	33.916	90.5	0.17	
175	7.483	33.966	90.4	0.16	
200	7.212	33.985	90.8	0.14	
225	6.913	33.991	90.8	0.15	
250	6.585	33.993	90.9	0.15	
300	6.275	34.037	90.9	0.15	
400	5.680	34.113	91.0	0.15	
500	5.368	34.195	91.0	0.16	
501	5.359	34.194	91.0	0.16	

LIN INT SAL 13-27 DB

STA 4 D-7 LAT: 37 58.8 N LONG:124 49.1 W 27 JUL 1988 1001 GMT PROBE 2561 DEPTH 3981M

PRESS	TEMP	SAL	TRN	ΤP
1	15.385	32.675	89.4	0.18
10	15.371	32.676	89.4	0.18
20	15.205	32.675	89.4	0.18
30	12.240	32.840	89.5	0.18
40	11.533	32.873	88.5	0.30
50	11.383	33.036	87.1	0.93
60	11.816	33.306	88.7	0.76
70	10.641	33.317	89.8	0.53
80	10.141	33.486	90.4	0.29
90	9.688	33.499	90.2	0.24
100	9.292	33.588	90.1	0.23
110	9.020	33.647	90.1	0.23
120	8.780	33.706	90.2	0.22
130	8.447	33.760	90.3	0.18
140	8.273	33.821	90.3	0.17
150	8.254	33.893	90.2	0.17
175	7.679	33.923	90.4	0.16
200	7.285	33.950	90.6	0.15
225	7.055	33.975	90.7	0.15
250	6.679	33.979	90.7	0.15
300	6.024	33.983	90.9	0.15
400	5.437	34.092	91.0	0.15
500	5.005	34.172	91.1	0.15
503	4.998	34.173	91.0	0.15

STA 5 D-6 LAT: 38 10.7 N LONG:124 57.2 W 27 JUL 1988 1247 GMT PROBE 2561 DEPTH 3893M

PRESS	TEMP	SAL	TRN	ΤP
1	16.076	32.643	89.0	0.15
10	16.049	32.642	89.7	0.15
20	15.908	32.643	89.6	0.16
30	12.456	32.808	89.8	0.17
40	11.663	32.871	89.9	0.21
50	11.447	32.915	89.0	0.41
60	10.909	32.917	89.6	0.53
70	10.299	32.939	90.5	0.38
80	9.794	33.080	90.9	0.24
90	9.554	33.221	91.0	0.19
100	9.134	33.383	91.0	0.15
110	8.728	33.547	91.0	0.13
120	8.460	33.660	90.9	0.13
130	8.403	33.756	90.9	0.13
140	8.376	33.853	90.9	0.13
150	8.204	33.895	90.9	0.13
175	8.027	33.947	90.9	0.14
200	7.738	33.989	91.0	0.14
225	7.266	33.984	91.0	0.14
250	6.944	33.995	91.0	0.14
300	6.200	33.993	91.0	0.14
400	5.947	34.133	91.1	0.15
500	5.208	34.176	91.2	0.15
501	5.208	34.177	91.2	0.15

STA 6 D-5 LAT: 38 22.3 N LONG:125 5.8 W 28 JUL 1988 0233 GMT PROBE 2561 DEPTH 3825M

PRESS	TEMP	SAL	TRN	TP
1	14.674	33.115	88.1	0.38
10	13.909	33.027	88.3	0.37
20	11.994	32.817	89.1	0.28
30	11.199	32.903	88.8	0.46
40	10.976	32.926	89.4	0.47
50	10.282	32.890	90.1	0.34
60	10.170	33.018	90.5	0.28
70	10.448	33.335	89.9	0.31
80	10.133	33.460	89.8	0.34
90	9.700	33.546	90.0	0.30
100	9.667	33.702	89.3	0.27
110	8.960	33.685	90.1	0.24
120	8.733	33.753	90.4	0.21
130	8.847	33.871	90.0	0.20
140	8.666	33.902	89.8	0.20
150	8.395	33.887	90.2	0.18
175	8.276	33.997	89.1	0.18
200	7.555	34.004	90.5	0.16
225	7.003	33.977	90.9	0.15
250	6.809	33.989	90.9	0.14
300	6.209	34.001	91.0	0.14
400	5.303	34.051	91.1	0.14
500	5.090	34.170	91.2	0.15
501	5.092	34.167	91.2	0.15

STA 7 D-4 LAT: 38 33.7 N LONG:125 14.5 W 28 JUL 1988 0521 GMT PROBE 2561 DEPTH 3639M

PRESS	TEMP	SAL	TRN	TP
1	15.272	32.671	88.5	0.19
10	15.275	32.671	88.8	0.19
20	15.131	32.671	88.6	0.20
30	14.552	32.676	87.9	0.23
40	12.949	32.732	89.1	0.20
50	11.964	32.846	88.9	0.26
60	11.221	32.913	85.1	0.69
70	10.809	32.947	90.0	0.53
80	9.963	32.929	90.2	0.29
90	9.832	33.145	90.3	0.23
100	9.359	33.296	90.2	0.18
110	9.374	33.493	89.7	0.19
120	9.496	33.629	90.0	0.27
130	9.311	33.721	89.8	0.25
140	8.787	33.734	90.3	0.20
150	8.537	33.769	90.2	0.19
175	8.205	33.901	90.5	0.15
200	7.941	33.963	90.8	0.15
225	7.472	33.985	91.0	0.14
250	7.221	34.005	91.0	0.14
300	6.466	34.009	91.0	0.14
400	5.529	34.032	91.1	0.14
500	5.020	34.126	91.2	0.14
505	4.954	34.124	91.2	0.15

STA 8 D-3 LAT: 38 45.8 N LONG:125 23.4 W 28 JUL 1988 0804 GMT PROBE 2561 DEPTH 3672M

PRESS	TEMP	SAL	TRN	ΤP	
1	16.344	32.697	89.6	0.15	
10	16.355	32.697	89.8	0.15	
20	16.352	32.697	89.8	0.15	
30	16.205	32.692	89.6	0.15	
40	13.950	32.766	89.1	0.21	
50	12.558	32.802	89.1	0.26	
60	11.938	32.902	89.6	0.34	
70	11.494	32.924	89.0	0.60	
80	11.108	32.937	90.0	0.52	
90	10.874	32.970	90.4	0.43	
100	10.252	32.990	90.8	0.28	
110	9.704	33.163	90.9	0.22	
120	9.351	33.300	91.0	0.18	
130	8.959	33.449	91.0	0.14	
140	8.664	33.554	91.0	0.13	
150	8.477	33.626	91.0	0.13	
175	8.118	33.812	91.0	0.14	
200	7.742	33.904	90.9	0.14	
225	7.392	33.947	91.0	0.14	
250	7.138	33.963	91.0	0.14	
300	6.575	33.986	91.1	0.14	
400	5.682	34.023	91.1	0.14	
500	5.021	34.091	91.2	0.14	
501	5.028	34.094	91.2	0.14	

STA 9 A-12 LAT: 38 11.5 N LONG:123 21.8 W 29 JUL 1988 0548 GMT PROBE 2561 DEPTH 185M

PRESS	TEMP	SAL	TRN	ΤP
1 10 20 30 40 50	11.270 11.269 11.076 9.978 9.863 9.647 9.481	33.426 33.427 33.431 33.472 33.661 33.703 33.750	86.1 87.1 87.4 89.4 89.4 89.5 89.6	0.55 0.55 0.58 0.39 0.31 0.30
70 80 90 100 110 120 130 140 150	9.275 9.221 9.176 9.075 8.950 8.892 8.855 8.758 8.579 8.578	33.829 33.867 33.876 33.895 33.917 33.930 33.939 33.959 33.959 33.960	89.7 89.4 89.4 89.5 89.7 89.6 89.7 89.6 88.6	0.25 0.24 0.22 0.20 0.19 0.20 0.19 0.20 0.21

STA 10 A-11 LAT: 38 10.0 N LONG:123 31.9 W 29 JUL 1988 0705 GMT PROBE 2561 DEPTH 569M

PRESS	TEMP	SAL	TRN	ΤP
3	12.293	33.252	86.8	0.59
10	12.301	33.251	86.7	0.59
20	12.262	33.250	86.9	0.61
30	11.364	33.283	87.0	0.57
40	9.842	33.515	89.3	0.46
50	9.744	33.684	89.4	0.39
60	9.701	33.750	89.4	0.42
70	9.522	33.787	89.5	0.37
80	9.449	33.829	89.7	0.26
90	9.385	33.856	89.6	0.24
100	9.252	33.864	89.8	0.26
110	8.951	33.914	89.4	0.23
120	8.833	33.932	89.5	0.21
130	8.676	33.959	88.6	0.19
140	8.619	33.971	88.4	0.19
150	8.547	33.979	87.7	0.19
175	8.531	33.995	88.2	0.18
200	8.493	33.999	88.2	0.18
225	8.384	34.004	89.6	0.17
250	7.952	34.013	90.5	0.16
300	7.241	34.057	90.9	0.16
400	6.392	34.115	90.8	0.16
500	5.812	34.202	90.8	0.16
501	5.784	34.199	90.7	0.16

STA 11 A-10 LAT: 38 21.6 N LONG:123 36.8 W 29 JUL 1988 0905 GMT PROBE 2561 DEPTH 517M

PRESS	TEMP	SAL	TRN	ΤP
90 100 30 40 50 60 70 80 90 100 110 120 130 140	11.961 11.958 11.768 10.240 9.653 9.956 9.907 9.810 9.281 9.188 9.043 8.922 8.773 8.654 8.567	33.335 33.336 33.309 33.220 33.258 33.501 33.573 33.649 33.674 33.735 33.930 33.930 33.946	TRN 84.3 84.1 85.3 88.0 89.3 90.2 90.4 90.6 90.6 90.7 90.1 90.1	1.23 1.17 1.05 0.67 0.51 0.24 0.23 0.18 0.16 0.15 0.18 0.21 0.19
175 200	8.293 8.125	33.999 34.029	90.2	0.19
225 250 300 400 500 501	7.819 7.617 7.308 6.639 6.025 6.018	34.043 34.066 34.082 34.120 34.179 34.180	90.5 90.4 90.6 89.3 87.8 87.6	0.16 0.17 0.16 0.19 0.19 0.20

STA 12 A-9 LAT: 38 33.9 N LONG:123 39.3 W 29 JUL 1988 1106 GMT PROBE 2561 DEPTH 187M

PRESS	TEMP	SAL	TRN	TP
1	10.853	33.821	88.2	0.28
10	10.857	33.820	89.0	0.27
20	10.860	33.820	89.0	0.31
30	10.740	33.799	89.0	0.30
40	9.509	33.612	90.0	0.24
50	9.366	33.673	90.3	0.20
60	9.444	33.777	90.0	0.21
70	8.928	33.851	90.4	0.20
80	8.839	33.887	90.1	0.19
90	8.716	33.920	89.8	0.20
100	8.527	33.947	89.7	0.20
110	8.430	33.987	90.0	0.19
120	8.398	33.999	90.0	0.18
130	8.362	34.005	90.0	0.17
140	8.267	34.016	89.4	0.17
150	8.252	34.015	89.3	0.18
175	8.186	34.014	86.1	0.19

STA 13 A-8 LAT: 38 32.9 N LONG:123 45.4 W 29 JUL 1988 1209 GMT PROBE 2561 DEPTH 982M

PRESS	TEMP	SAL	TRN	ΤP
1	11.293	33.619	87.2	0.49
10	11.297	33.618	87.6	0.44
20	11.295	33.618	87.9	0.52
30	10.657	33,560	88.5	0.48
40	9.911	33.521	90.1	0.30
50	9.344	33.555	90.6	0.18
60	9.221	33.589	90.8	0.17
70	9.065	33,650	90.7	0.16
80	8.752	33.706	90.6	0.16
90	8.519	33,757	90.6	0.16
100	8.477	33.787	90.6	0.16
110	8.389	33.845	90.6	0.16
120	8,291	33.883	90.6	0.16
130	8.235	33,904	90.6	0.16
140	8.180	33.931	90.6	0.16
150	8.076	33,955	90.6	0.16
175	7,988	33.976	90.5	0.16
200	7.876	33,990	90.6	0.16
225	7.655	33,997	90.7	0.16
250	7.376	34.011	90.7	0.17
300	6.893	34.028	91.0	0.15
400	6.524	34.147	91.0	0.16
500	5.752	34.194	91.1	0.15
503	5.741	34,195	91.2	0.16

STA 14 A-7 LAT: 38 43.9 N LONG:123 53.0 W 29 JUL 1988 1432 GMT PROBE 2561 DEPTH 846M

PRESS	TEMP	SAL	TRN	ΤP
1	11.906	33.284	85.8	1,28
10	11.468	33.442	88.1	0,91
20	11.122	33.595	90.3	0.25
30	10.979	33.623	90.4	0.19
40	10.571	33.652	90.3	0.23
50	10.371	33.662	90.3	0.18
60	10.227	33.692	90.3	0.18
70	9.944	33.718	90.3	0.17
80	9.875	33.736	90.4	0.17
90	9.726	33.783	90.1	0.18
100	9.543	33.829	90.1	0.20
110	8.778	33.750	90.5	0.15
120	8.673	33.821	90.7	0.12
130	8.391	33.824	90.7	0.12
140	8.222	33.850	90.6	0.12
150	8.166	33.888	90.7	0.12
175	7.950	33.956	90.8	0.12
200	7.946	34.033	90.6	0.13
225	7.694	34.044	90.8	0.13
250	7.646	34.076	90.5	0.12
300	7.055	34.084	91.0	0.12
400	6.356	34.133	90.5	0.13
500	5.730	34.189	91.0	0.13
501	5.726	34.190	91.0	0.13

STA 15 A-6 LAT: 38 56.2 N LONG: 123 55.0 W 29 JUL 1988 1634 GMT PROBE 2561 DEPTH 150M PRESS TEMP SAL TRN TP

PRESS	TEMP	SAL	TRN	TP	
1	11.771	33.321	81.5	1.10	
10	11.741	33.353	80.5	2.44	
20	10.234	33.650	84.3	2.15	
30	9.388	33.643	88.7	0.53	
40	9.285	33.672	90.1	0.21	
50	8.865	33.720	90.5	0.15	
60	8.648	33.764	90.5	0.13	
70	8.487	33.811	90.6	0.13	
80	8.445	33.829	90.6	0.12	
90	8.426	33.937	90.4	0.13	
100	8.395	33.968	90.3	0.14	
110	8.312	33.990	89.3	0.14	
120	8.291	33.991	89.0	0.17	
125	8.264	33.994	88.8	0.15	

STA 16 A-5 LAT: 38 55.3 N LONG:124 2.0 W 29 JUL 1988 1728 GMT PROBE 2561 DEPTH 815M

PRESS	TEMP	SAL	TRN	ΤP	
1	12.029	33.420	72.0	2.40	
10	11.999	33.421	72.1	5.50	
20	10.820	33.616	80.7	3.90	
30	10.126	33.734	85.4	1.55	
40	9.303	33.703	87.5	0.75	
50	9.160	33.735	89.2	0.39	
60	9.035	33.777	89.5	0.26	
70	8.924	33.819	89.6	0.25	
80	8.609	33.802	90.2	0.19	
90	8.333	33.835	90.4	0.15	
100	8.250	33.863	90.5	0.14	
110	8.080	33.889	90.6	0.12	
120	7.993	33.921	90.7	0.12	
130	7.909	33.943	90.7	0.12	
140	7.797	33.966	90.6	0.12	
150	7.809	33.994	90.7	0.12	
175	7.870	34.056	90.2	0.13	
200	7.700	34.065	89.8	0.14	
225	7.577	34.069	89.7	0.13	
250	7.455	34.074	89.8	0.14	
300	7.032	34.091	90.9	0.13	
400	6.226	34.148	90.7	0.14	
500	5.705	34.189	90.4	0.13	
505	5.657	34.186	90.7	0.13	

STA 17 A-4 LAT: 39 6.8 N LONG:124 10.6 W 29 JUL 1988 1943 GMT PROBE 2561 DEPTH 1406M

PRESS	TEMP	SAL	TRN	ΤP
1	11.942	32.882	86.7	0.24
10	11.855	32.901	87.2	0.29
20	11.099	33.121	89.0	0.29
30	11.030	33.209	89.6	0.28
40	11.037	33.239	89.8	0.31
50	10.845	33.233	89.9	0.29
60	9.893	33.277	90.1	0.29
70	9.455	33.350	90.6	0.24
80	9.182	33.469	90.8	0.14
90	9.523	33.662	90.4	0.20
100	9.176	33.737	90.4	0.16
110	8.931	33.833	90.3	0.15
120	8.862	33.849	90.3	0.14
130	8.786	33.857	90.4	0.14
140	8.680	33.893	90.3	0.13
150	8.544	33.929	90.3	0.13
175	8.297	33.978	90.5	0.13
200	7,973	34.008	90.8	0.13
225	7.682	34.025	90.8	0.12
250	7.509	34.034	90.5	0.13
300	7.022	34.060	90.6	0.13
400	6.092	34.078	90.6	0.13
500	6.017	34.214	90.5	0.13
501	6.009	34.214	91.0	0.13
			71.0	0.13

STA 18 A-3 LAT: 39 20.4 N LONG:123 56.7 W 29 JUL 1988 2239 GMT PROBE 2561 DEPTH 167M

PRESS	TEMP	SAL	TRN	TP
1	11.685	32.888	86.4	0.29
10	11.130	32.918	87.0	0.38
20	10.593	33.031	88.1	0.34
30	9.684	33.181	89.2	0.34
40	9.410	33.293	89.2	0.35
50	9.321	33.432	89.3	0.38
60	9.372	33.661	89.1	0.42
70	9.424	33.793	89.4	0.28
80	8.912	33.829	90.1	0.18
90	8.742	33.862	89.8	0.18
100	8.560	33.907	89.4	0.17
110	8.405	33.968	87.2	0.17
120	8.347	33.990	83.2	0.19
130	8.328	33.992	81.7	0.19
140	8.317	33.994	81.7	0.19
150	8.301	33.995	81.5	0.20
153	8.290	33.996	81.4	0.20

STA 19 A-2 LAT: 39 19.7 N LONG:124 3.4 W 29 JUL 1988 2346 GMT PROBE 2561 DEPTH 615M

PRESS	TEND	~**			
PRESS	TEMP	SAL	TRN	ΤP	
1	12.121	32.874	85.6	0.47	
10	12.030	32.905	85.9	0.61	
20	10.368	32.865	89.4	0.52	
30	10.190	32.956	89.8	0.37	
40	9.997	33.041	90.3	0.30	
50	9.827	33.137	90.5	0.25	
60	9.306	33.232	90.6	0.20	
70	9.308	33.411	90.6	0.20	
80	8.930	33.491	90.7	0.17	
90	8,682	33.578	90.8	0.13	
100	8.543	33.704	90.9	0.12	
110	8.826	33.817	90.5	0.15	
120	8.704	33.887	90.2	0.14	
130	8.606	33.911	90.2	0.14	
140	8.524	33.924	90.4	0.14	
150	8.383	33.955	90.5	0.14	
175	8.189	34.007	90.4	0.14	
200	8.044	34.020	90.3	0.13	
225	7.849	34.042	90.5	0.13	
250	7.531	34.064	90.3	0.13	
300	7.169	34.073	90.8	0.13	
400	6.173	34.124	91.1	0.13	
500	5.181	34.131	91.1	0.13	
501	5.201	34.135	91.1	0.13	

STA 20 A-1 LAT: 39 17.9 N LONG:124 19.0 W 30 JUL 1988 0150 GMT PROBE 2561 DEPTH 1541M

PRESS	TEMP	SAL	TRN	TP	
3	11.263	32.825	87.4	0.58	
10	11.259	32.825	87.6	0.62	
20	11.240	32.828	87.5	0.64	
30	11.215	32.833	87.6	0.68	
40	11.141	32.849	87.7	0.68	
50	10.611	32.910	90.2	0.46	
60	10.287	33.028	90.7	0.25	
70	9.971	33.056	90.8	0.20	
80	9.691	33.120	90.9	0.17	
90	9.323	33.266	91.0	0.15	
100	8.989	33.426	91.0	0.13	
110	8.976	33.594	90.9	0.13	
120	8.722	33.644	90.9	0.14	
130	8.399	33.707	91.0	0.11	
140	8.335	33.809	90.9	0.11	
150	8.395	33.897	90.5	0.14	
175	8.168	33.966	90.7	0.14	
200	7.960	34.031	89.9	0.14	
225	7.505	34.015	90.4	0.13	
250	7.446	34.065	90.0	0.14	
300	7.123	34.101	90.6	0.13	
400	5.938	34.076	91.0	0.12	
500	5.294	34.114	91.2	0.12	
501	5.289	34.114	91.2	0.12	

STA 21 B-0 LAT: 39 26.5 N LONG:124 56.6 W 30 JUL 1988 1255 GMT PROBE 2561 DEPTH 2949M

PRESS	TEMP	SAL	TRN	ΤP	
1	13.880	32.639	87.0	0.41	
10	13.847	32.638	87.7	0.41	
20	13.750	32.636	87.6	0.43	
30	13.638	32.633	87.5	0.45	
40	13.224	32.623	87.3	0.48	
50	12.450	32.644	87.6	0.54	
60	11.608	32.691	89.7	0.40	
70	11.426	32.702	89.8	0.35	
80	11.254	32.729	90.0	0.33	
90	11.006	32.798	90.3	0.28	
100	10.423	32.866	90.5	0.21	
110	10.106	33.042	90.7	0.19	
120	9.547	33.203	90.8	0.17	
130	9.359	33.348	90.8	0.15	
140	9.159	33.516	90.7	0.13	
150	9.183	33.723	90.5	0.16	
175	8.902	33.821	90.4	0.15	
200	8.239	33.883	90.6	0.12	
225	7.844	33.917	90.8	0.11	
250	7.592	33.959	90.9	0.11	
300	6.814	33.972	91.0	0.11	
400	5.657	34.015	91.1	0.11	
500	4.998	34.085	91.2	0.11	
503	4.993	34.086	91.2	0.11	

STA 22 B-1 LAT: 39 14.8 N LONG:124 46.5 W 30 JUL 1988 1501 GMT PROBE 2561 DEPTH 2934M

PRESS	TEMP	SAL	TRN	TP	
1	13.761	32.678	71.3	0.28	
10	13.699	32.682	88.2	0.29	
20	13.630	32.688	88.1	0.34	
30	13.214	32,701	88.2	0.40	
40	12.411	32.727	88.1	0.43	
50	12.076	32.753	87.6	0.52	
60	11.024	32.891	86.8	0.73	
70	10.355	32.983	87.0	0.88	
80	10.167	33.173	89.1	0.64	
90	9.559	33.187	90.2	0.39	
100	9.768	33.450	90.3	0.25	
110	9.713	33.599	90.5	0.20	
120	9.507	33.643	90.8	0.15	
130	9.296	33.677	90.7	0.14	
140	9.094	33.698	90.8	0.14	
150	8.986	33.790	89.9	0.22	
175	8.462	33.942	90.0	0.16	
200	8.245	33.986	89.8	0.14	
225	8.044	33.999	90.0	0.14	
250	7.645	34.019	90.6	0.13	
300	7.423	34.074	90.5	0.13	
400	6.644	34.098	91.0	0.13	
500	5.937	34.179	91.1	0.13	
503	5.925	34.179	90.8	0.13	
JU3	J.763	34.117	70.0	U. 13	

STA 23 B-2 LAT: 39 3.5 N LONG:124 37.8 W 30 JUL 1988 1721 GMT PROBE 2561 DEPTH 3382M

PRESS	TEMP	SAL	TRN	TP
1	11.748	32.789	85.7	0.35
10	11.737	32.791	86.6	0.41
20	11.719	32.795	86.7	0.63
30	11.623	32.822	87.1	0.68
40	10.011	33.064	89.0	0.50
50	10.140	33.451	89.9	0.39
60	10.026	33.518	90.5	0.23
70	9.908	33.535	90.5	0.19
80	9.841	33.567	90.6	0.17
90	9.628	33.617	90.6	0.17
100	9.411	33.672	90.7	0.14
110	9.243	33.726	90.7	0.14
120	9.040	33.800	90.5	0.14
130	8.958	33.819	90.5	0.13
140	8.924	33.831	90.5	0.13
150	8.884	33.843	90.5	0.13
175	8.753	33.884	90.4	0.12
200	8.479	33.958	90.5	0.13
225	8.186	34.016	90.5	0.13
250	8.086	34.034	90.5	0.13
300	7.587	34.071	90.7	0.13
400	6.413	34.073	91.0	0.13
500	6.023	34.192	91.0	0.13
505	6.025	34.195	91.0	0.13

STA 24 B-3 LAT: 38 52.0 N LONG:124 29.5 W 30 JUL 1988 1926 GMT PROBE 2561 DEPTH 3474M

PRESS	TEMP	SAL	TRN	TP
3	11.315	32.917	87.4	0.26
10	11.282	32.917	87.4	0.35
20	11.178	32,908	87.3	0.54
30	11.071	32,904	87.6	0.61
40	10.015	33.033	89.8	0.45
50	10.035	33.236	89.8	0.43
60	9.236	33.315	90.4	0.26
70	9.303	33.463	90.6	0.19
80	9.319	33.562	90.7	0.17
90	9.228	33.620	90.6	0.15
100	9.057	33.657	90.7	0.15
110	8.904	33.724	90.7	0.14
120	8.924	33.804	90.1	0.14
130	8.910	33.833	90.2	0.14
140	8.787	33.875	90.4	0.14
150	8.643	33.901	90.3	0.13
175	8.338	33.967	90.3	0.13
200	8.027	34.018	90.6	0.13
225	7.654	34.044	90.7	0.13
250	7.487	34.074	90.6	0.13
300	6.999	34.085	91.0	0.12
400	6.283	34.142	90.8	0.13
500	5.754	34.194	91.0	0.13
501	5.748	34.194	91.0	0.13

STA 25 B-4 LAT: 38 40.8 N LONG:124 20.9 W 30 JUL 1988 2120 GMT PROBE 2561 DEPTH 3404M

PRESS	TEMP	SAL	TRN	TP
1	12.231	33.246	87.1	0.32
10	12.123	33.247	86.7	0.45
20	12.050	33.252	86.7	0.70
30	10.196	33.309	89.8	0.48
40	10.616	33.708	88.8	0.45
50	10.089	33.728	89.7	0.34
60	9.890	33.790	89.7	0.27
70	9.527	33.784	89.9	0.26
80	9.156	33.814	90.2	0.19
90	9.021	33.867	89.8	0.17
100	8.838	33.904	89.8	0.18
110	8.677	33.939	89.9	0.16
120	8.426	33.947	90.2	0.17
130	8.373	33.968	90.3	0.15
140	8.255	33.976	90.2	0.14
150	8.195	33.982	90.5	0.15
175	7.823	33.989	90.6	0.12
200	7.495	33.990	90.8	0.12
225	7.589	34.068	90.9	0.13
250	7.153	34.034	90.9	0.12
300	7.096	34.148	91.0	0.13
400	6.041	34.122	91.0	0.13
500	5.492	34.193	91.1	0.13
503	5.493	34.197	91.1	0.13

STA 26 B-5 LAT: 38 29.5 N LONG:124 12.1 W 30 JUL 1988 2319 GMT PROBE 2561 DEPTH 3418M

PRESS	TEMP	SAL	TRN	TP
1	13.088	33.226	87.1	0.47
10	12.868	33.224	86.6	0.66
20	12.094	33.198	87.4	0.72
30	10.023	33.208	88.9	0.57
40	9.883	33.402	89.6	0.48
50	9.820	33.599	90.4	0.23
60	9.739	33.717	90.2	0.17
70	9.461	33.783	90.5	0.16
80	9.311	33.804	90.4	0.15
90	9.108	33.855	90.3	0.17
100	8.824	33.872	90.3	0.17
110	8.759	33.914	90.5	0.16
120	8.459	33.929	90.5	0.14
130	8.271	33.944	90.6	0.13
140	8.216	33.988	90.6	0.12
150	8.234	34.020	90.7	0.13
175	7.889	34.022	90.8	0.12
200	7.669	34.029	90.8	0.12
225	7.381	34.030	90.9	0.12
250	7.120	34.031	90.9	0.12
300	6.683	34.064	91.0	0.12
400	5.985	34.135	91.0	0.12
500	5.456	34.189	91.1	0.12
501	5.456	34.189	91.1	0.12

STA 27 B-6 LAT: 38 18.2 N LONG:124 3.7 W 31 JUL 1988 0114 GMT PROBE 2561 DEPTH 3520M

PRESS	TEMP	SAL	TRN	TP
1	13.719	33.243	87.6	0.42
10	13.238	33.251	87.2	0.55
20	12.880	33.245	86.3	0.62
30	11.299	33.597	88.9	0.52
40	9.835	33.771	89.6	0.43
50	9,489	33.789	89.8	0.25
60	9.156	33.821	90.0	0.19
70	8.909	33.846	89.8	0.21
80	8.773	33.868	90.0	0.19
90	8.720	33.872	90.0	0.18
100	8.533	33.911	90.1	0.16
110	8.312	33.938	90.3	0.15
120	8.245	33.977	90.3	0.15
130	8.167	33.997	90.4	0.15
140	8.128	34.012	90.4	0.15
150	8.021	34.018	90.4	0.15
175	7.738	34.043	90.6	0.14
200	7.460	34.049	90.8	0.13
225	7.253	34.052	90.8	0.13
250	7.073	34.073	90.9	0.13
300	6.644	34.108	90.9	0.13
400	5.993	34.139	91.0	0.13
500	5.450	34,179	91.1	0.13
503	5.447	34.180	91.1	0.13

STA 28 B-7 LAT: 38 6.8 N LONG:123 55.4 W 31 JUL 1988 0308 GMT PROBE 2561 DEPTH 3495M

PRESS	TEMP	SAL	TRN	ΤP	
1	13.201	33.306	86.4	0.55	
10	12.797	33.376	86.2	0.63	
20	12.671	33.385	86.6	0.75	
30	11.655	33.501	88.5	0.54	
40	10.746	33.694	89.5	0.44	
50	10.292	33.676	90.0	0.32	
60	9.988	33.764	89.9	0.31	
70	9.523	33.796	89.7	0.30	
80	9.255	33.817	89.8	0.30	
90	8.929	33.862	90.1	0.23	
100	8.787	33.887	90.2	0.19	
110	8.633	33.921	90.3	0.19	
120	8.506	33.941	90.4	0.17	
130	8.733	34.020	90.3	0.17	
140	8.725	34.054	90.4	0.18	
150	8.581	34.062	90.5	0.17	
175	8.003	34.039	90.6	0.17	
200	7.819	34.077	90.5	0.16	
225	7.601	34.089	90.5	0.16	
250	7.337	34.083	90.7	0.16	
300	7.031	34.119	90.2	0.16	
400	6.180	34.137	90.9	0.16	
500	5.821	34.216	91.0	0.16	
503	5.826	34.223	90.9	0.16	

STA 29 B-8 LAT: 37 55.0 N LONG:123 46.9 W 31 JUL 1988 0510 GMT PROBE 2561 DEPTH 3349M

PRESS	TEMP	SAL	TRN	ΤP	
1	12.054	33.607	80.8	1.41	
10	11.650	33.597	82.9	1.64	
20	9.972	33.694	88.8	0.49	
30	9.753	33.784	89.5	0.33	
40	9.334	33.833	89.9	0.23	
50	9.271	33.902	90.1	0.18	
60	9.158	33.929	89.4	0.24	
70	9.039	33.955	89.2	0.19	
80	9.045	33.974	89.2	0.18	
90	8.831	33.959	90.0	0.18	
100	8.755	33.980	90.0	0.17	
110	8.676	34.004	90.0	0.17	
120	8.628	34.016	90.0	0.16	
130	8.597	34.024	90.1	0.16	
140	8.524	34.032	90.2	0.16	
150	8.463	34.042	90.2	0.16	
175	8.378	34.051	90.2	0.16	
200	8.192	34.079	90.6	0.16	
225	8.037	34.090	90.5	0.16	
250	7.852	34.103	90.6	0.16	
300	7.484	34.105	90.7	0.16	
400	6.481	34.128	90.9	0.16	
500	6.109	34.194	90.9	0.16	
503	6.100	34.194	90.8	0.16	

STA 30 B-9 LAT: 37 43.8 N LONG:123 38.2 W 31 JUL 1988 0712 GMT PROBE 2561 DEPTH 2972M

PRESS	TEMP	SAL	TRN	TP
1	15.266	33.327	87.7	0.45
10	15.179	33.323	87.6	0.45
20	13.723	33.321	87.0	0.60
30	11.127	33.283	88.0	0.69
40	10.921	33.481	89.0	0.59
50	10.223	33.642	89.9	0.42
60	9.775	33.698	90.1	0.29
70	9.461	33.746	90.5	0.22
80	9.553	33.847	90.0	0.21
90	9.108	33.818	90.2	0.19
100	8.805	33.846	90.4	0.16
110	8.702	33.869	90.5	0.16
120	8.719	33.939	90.5	0.18
130	8.489	33.940	90.6	0.16
140	8.442	33.951	90.6	0.15
150	8.312	33.969	90.6	0.15
175	8.030	34.019	90.7	0.16
200	7.796	34.046	90.9	0.16
225	7.537	34.050	90.9	0.16
250	7.345	34.064	91.0	0.16
300	6.909	34.089	91.0	0.16
400	6.338	34.143	90.9	0.16
500	5.621	34.217	90.7	0.16
501	5.619	34.218	90.7	0.16

STA 31 C-9 LAT: 37 39.6 N LONG:124 5.6 W 31 JUL 1988 0949 GMT PROBE 2561 DEPTH 3627M

PRESS	TEMP	SAL	TRN	TP
1	14.859	33.363	88.1	0.50
10	14.645	33.376	88.9	0.41
20	13.727	33.374	88.2	0.49
30	11.461	33.631	88.5	0.59
40	11.171	33.755	89.6	0.36
50	10.819	33.743	89.9	0.29
60	10.248	33.815	90.1	0.26
70	9.924	33.822	90.2	0.22
80	9.765	33.826	90.0	0.23
90	9.552	33.833	90.2	0.19
100	9.270	33.858	90.3	0.19
110	9.004	33.881	90.4	0.17
120	8.879	33.903	90.5	0.17
130	8.814	33.934	90.5	0.17
140	8.836	33.995	90.5	0.17
150	8.556	33.995	90.5	0.17
175	8.303	34.052	90.7	0.17
200	7.748	34.050	90.8	0.16
225	7.512	34.054	90.9	0.16
250	7.260	34.069	90.9	0.16
300	7.119	34.164	90.9	0.16
400	5.939	34.131	91.0	0.15
500	5.429	34.204	91.1	0.15
501	5.424	34.205	91.1	0.15
_ , ,		34.203	71.1	0.15

STA 32 C-8 LAT: 37 51.0 N LONG:124 13.8 W 31 JUL 1988 1142 GMT PROBE 2561 DEPTH 3018M

PRESS	TEMP	SAL	TRN	TP
1	13.321	33.310	87.0	0.62
10	13.303	33.319	86.9	0.57
20	13.032	33.444	85.7	0.74
30	12.718	33.488	86.8	0.74
40	10.936	33.580	88.5	0.60
50	9.655	33.629	90.1	0.32
60	9.577	33.709	90.2	0.22
70	9.451	33.757	90.3	0.21
80	9.369	33.828	90.3	0.20
90	9.292	33.871	90.4	0.19
100	9.113	33.886	90.3	0.17
110	8.908	33.911	90.4	0.17
120	8.672	33.930	90.5	0.17
130	8.551	33.957	90.5	0.17
140	8.428	33.980	90.5	0.16
150	8.085	33.951	90.6	0.15
175	7.877	33.984	90.7	0.15
200	7.566	33.986	90.8	0.15
225	7.182	33.989	90.9	0.15
250	6.949	34.011	90.9	0.15
300	6.937	34.125	90.8	0.16
400	6.270	34.154	91.0	0.16
500	5.816	34.235	90.8	0.16
501	5.813	34.235	90.9	0.16

STA 33 C-7 LAT: 38 3.0 N LONG:124 22.0 W 31 JUL 1988 1340 GMT PROBE 2561 DEPTH 3086M

PRESS	TEMP	SAL	TRN	TP
1	14.523	33.099	87.5	0.52
10	14.520	33.099	87.5	0.50
20	14.450	33.101	87.7	0.51
30	14.366	33.097	87.7	0.52
40	11.336	33.177	88.7	0.59
50	11.084	33.424	89.4	0.53
60	10.385	33.458	90.3	0.27
70	9.630	33.590	90.6	0.20
80	9.061	33.655	90.7	0.14
90	8.718	33.707	90.7	0.13
100	8.512	33.768	90.7	0.12
110	8.351	33.777	90.5	0.12
120	8.346	33.847	90.7	0.12
130	8.168	33.883	90.7	0.13
140	8.049	33.923	90.7	0.13
150	7.910	33.945	90.7	0.12
175	7.796	34.007	90.9	0.12
200	7.675	34.058	91.0	0.12
225	7.438	34.070	91.1	0.12
250	7.150	34.077	91.2	0.12
300	6.756	34.108	91.2	0.12
400	6.073	34.170	91.2	0.13
500	5.485	34.215	91.1	0.12
501	5.477	34.215	91.1	0.12

STA 34 C-6 LAT: 38 14.6 N LONG:124 30.6 W 31 JUL 1988 1537 GMT PROBE 2561 DEPTH 3809M

PRESS	TEMP	SAL	TRN	TP
1	13.957	33.151	88.3	0.47
10	13.850	33.238	88.2	0.48
20	13.617	33.264	87.9	0.54
30	12.321	33.261	88.6	0.68
40	10.992	33.325	89.4	0.50
50	10.231	33.374	90.0	0.34
60	9.538	33.462	90.3	0.26
70	9.107	33.513	90.4	0.18
80	9.016	33.653	90.6	0.15
90	8.865	33.675	90.7	0.14
100	8.714	33.716	90.7	0.13
110	8.410	33.795	90.7	0.13
120	8.253	33.854	90.7	0.13
130	8.184	33.916	90.7	0.12
140	7.999	33.924	90.6	0.12
150	7.948	33.938	90.7	0.12
175	7.736	33.998	90.8	0.12
200	7.466	34.015	90.8	0.12
225	7.252	34.039	91.0	0.12
250	7.027	34.063	91.1	0.13
300	6.517	34.082	91.1	0.12
400	5.684	34.118	91.1	0.12
500	5.410	34.219	91.1	0.12
503	5.392	34.220	91.1	0.12

STA 35 C-5 LAT: 38 25.9 N LONG:124 39.1 W 31 JUL 1988 1733 GMT PROBE 2561 DEPTH 3787M

PRESS	TEMP	SAL	TRN	TP	
1	14.396	33.129	87.4	0.50	
10	14.386	33.130	87.5	0.54	
20	14.328	33.149	87.8	0.60	
30	12.479	33.343	88.3	0.50	
40	10.206	33.387	89.5	0.40	
50	9.718	33.507	90.4	0.27	
60	8.807	33.522	90.6	0.14	
70	8.864	33.678	90.6	0.14	
80	8.595	33.730	90.4	0.15	
90	8.562	33.785	90.5	0.14	
100	8.282	33.821	90.6	0.13	
110	8.163	33.870	90.6	0.12	
120	7.917	33.883	90.7	0.12	
130	7.859	33.919	90.7	0.12	
140	7.708	33.946	90.8	0.12	
150	7.533	33.969	90.8	0.12	
175	7.495	34.046	90.9	0.13	
200	7.325	34.064	91.0	0.13	
225	7.105	34.066	91.0	0.13	
250	6.805	34.065	91.1	0.13	
300	6.463	34.097	91.1	0.13	
400	5.832	34.154	91.1	0.13	
500	5.329	34.219	91.1	0.13	
503	5.318	34.220	91.1	0.12	

STA 36 C-4 LAT: 38 37.7 N LONG:124 47.9 W 31 JUL 1988 1929 GMT PROBE 2561 DEPTH 3744M

PRESS	TEMP	SAL	TRN	TP
1	14.032	33.200	87.6	0.42
10	14.013	33.201	88.1	0.51
20	11.541	33.438	87.2	0.75
30	9.975	33.377	88.9	0.72
40	9.800	33.435	89.3	0.51
50	9.404	33.541	90.1	0.38
60	9.190	33.640	90.3	0.24
70	8.936	33.678	90.5	0.16
80	8.641	33.748	90.7	0.14
90	8.387	33.770	90.7	0.13
100	8.235	33.807	90.7	0.12
110	8.043	33.830	90.7	0.12
120	7.930	33.848	90.7	0.12
130	7.885	33.889	90.7	0.12
140	7.868	33.923	90.7	0.12
150	7.798	33.935	90.7	0.12
175	7.742	34.007	90.7	0.13
200	7.543	34.033	90.8	0.13
225	7.345	34.056	90.9	0.13
250	7.061	34.077	91.1	0.12
300	6.665	34.093	91.1	0.13
400	5.883	34.149	91.2	0.13
500	5.398	34.225	91.1	0.13
501	5.393	34.225	91.1	0.13

STA 37 C-3 LAT: 38 49.1 N LONG: 124 56.5 W 31 JUL 1988 2117 GMT PROBE 2561 DEPTH 3510M

PRESS	TEMP	SAL	TRN	ΤP
PRESS 1 10 20 30 40 50 60 70 80 90 110 120 130 140 150 175 200 225	TEMP 13.326 13.300 12.202 10.924 9.847 9.451 9.231 9.150 8.845 8.771 8.752 8.617 8.752 8.617 8.752 8.687 7.936 7.687 7.467 7.039	33.173 33.174 33.209 33.598 33.748 33.829 33.869 33.876 33.876 33.937 33.947 33.959 33.980 33.987 33.984 34.010 34.034 34.051 34.050	7RN 62.2 86.4 87.2 88.8 89.9 90.2 90.2 90.1 90.1 90.1 90.1 89.9 90.6 90.8	0.60 0.60 0.77 0.54 0.37 0.16 0.17 0.16 0.15 0.15 0.15 0.15 0.14 0.14
300 400 500 501	6.640 5.948 5.495 5.515	34.084 34.139 34.210 34.213	91.0 91.0 91.0 91.0	0.13 0.13 0.13 0.13
				-

STA 38 C-2 LAT: 39 0.6 N LONG:125 4.8 W 31 JUL 1988 2303 GMT PROBE 2561 DEPTH 3371M

PRESS	TEMP	SAL	TRN	TP
1	13.581	33.155	86.1	0.55
10	13.564	33.150	86.0	0.60
20	13.451	33.154	86.0	0.81
30	13.359	33.161	86.2	0.92
40	13.019	33.210	87.6	0.80
50	10.266	33.650	89.3	0.37
60	9.848	33.723	90.2	0.25
70	9.642	33.789	90.3	0.21
80	9.525	33.836	90.2	0.20
90	9.222	33.850	90.2	0.19
100	9.033	33.856	90.1	0.20
110	8.451	33.813	90.0	0.17
120	8.320	33.865	90.5	0.14
130	8.247	33.899	90.6	0.14
140	8.135	33.928	90.6	0.13
150	8.093	33.973	90.5	0.13
175	7.837	34.004	90.7	0.13
200	7.649	34.041	90.8	0.14
225	7.437	34.047	90.9	0.13
250	7.269	34.085	91.0	0.13
300	6.873	34.099	91.0	0.13
400	6.294	34.172	91.1	0.12
500	5.496	34.174	91.2	0.12
503	5.457	34.173	91.2	0.13

STA 39 C-1 LAT: 39 11.8 N LONG:125 13.2 W 01 AUG 1988 0105 GMT PROBE 2561 DEPTH 3125M

PRESS	TEMP	SAL	TRN	ĬΡ
1 10 20 30 40 50 60 70 80	13.986 13.982 13.983 12.972 11.777 10.167 9.737 9.218 8.916	33.108 33.113 33.112 32.964 33.285 33.549 33.654 33.687 33.726	84.5 87.1 87.0 88.9 88.8 88.9 89.9 90.2	0.51 0.53 0.53 0.62 0.58 0.45 0.44 0.26
90 100	8.865 8.764	33.832 33.848	90.3	0.16 0.15
110 120	8.483 8.633	33.841 33.907	90.5	0.14
130 140	8.265 8.121	33.878 33.909	90.6 90.7	0.14
150 175	8.019 7.854	33.926 33.984	90.8	0.12 0.12
200 225 250	7.658 7.345 7.169	34.006 34.008	90.9	0.12
300 400	6.824 6.024	34.031 34.086 34.117	90.9 91.0 91.1	0.13 0.13 0.13
500 501	5.105 5.107	34.124 34.125	91.2 91.1	0.13 0.12 0.12

LIN INT SAL 481-487 DB

STA 40 D-1 LAT: 39 9.0 N LONG:125 40.5 W 01 AUG 1988 0440 GMT PROBE 2561 DEPTH 3629M

PRESS	TEMP	SAL	TRN	ŢP	
1	13.983	32.550	48.8	0.43	
10	13.983	32.642	36.1	0.36	
20	13.986	32.641	86.8	0.37	
30	13.656	32.623	86.9	0.38	
40	11.492	32.608	88.3	0.58	
50	10.771	32.654	89.2	0.54	
60	10.248	32.683	89.7	0.51	
70	9.856	32.739	90.4	0.35	
80	9.444	32.804	90.7	0.25	
90	9.110	33.027	90.8	0.21	
100	8.780	33.196	90.9	0.17	
110	8.567	33.369	91.0	0.15	
120	8.364	33.522	91.0	0.14	
130	8.427	33.675	91.0	0.14	
140	8.296	33.719	91.0	0.14	
150	8.212	33.783	90.9	0.14	
175	7.809	33.899	90.9	0.15	
200	7.501	33.941	90.9	0.15	
225	7.251	33.956	91.0	0.14	
250	6.992	33.976	91.0	0.14	
300	6.431	33.995	91.1	0.15	
400	5.480	34.027	91.2	0.14	
500	4.935	34.106	91.2	0.15	
503	4.934	34.107	91.2	0.15	

4 MIN GAP AT 21 DB

STA 41 D-2 LAT: 38 57.1 N LONG:125 31.5 W 01 AUG 1988 0644 GMT PROBE 2561 DEPTH 3731M

PRESS	TEMP	SAL	TRN	TP	
1	13.430	32.726	86.2	0.54	
10	13.425	32.724	86.3	0.54	
20	13.380	32.720	86.3	0.55	
30	12.546	32.682	87.8	0.46	
40	11.725	32.681	88.0	0.60	
50	11.197	32.756	89.1	0.65	
60	10.481	32.769	90.0	0.49	
70	10.064	32.752	90.3	0.40	
80	9.670	32.841	90.7	0.27	
90	9.684	33.082	90.7	0.26	
100	9.364	33.227	90.9	0.21	
110	9.083	33.379	91.0	0.16	
120	8.744	33.518	91.0	0.14	
130	8.485	33.637	91.0	0.13	
140	8.327	33.712	91.0	0.13	
150	8.177	33.779	91.0	0.14	
175	7.780	33.870	91.0	0.13	
200	7.470	33.927	91.0	0.14	
225	7.198	33.971	91.1	0.14	
250	6.807	33.967	91.1	0.14	
300	6.326	33.984	91.1	0.14	
400	5.535	34.052	91.1	0.14	
500	5.003	34.142	91.2	0.15	
503	4.978	34.142	91.3	0.15	

STA 42 D-3 LAT: 38 45.9 N LONG:125 23.1 W 01 AUG 1988 0833 GMT PROBE 2561 DEPTH 3673M

PRESS	TEMP	SAL	TRN	TP
3	13.653	32.673	86.7	0.39
10	13.652	32.673	86.7	0.38
20	13.594	32.665	86.8	0.40
30	12.643	32.734	88.6	0.41
40	11.688	32.721	88.7	0.46
50	10.709	32.689	89.6	0.50
60	10.560	32.849	89.9	0.52
70	10.263	32.924	90.5	0.37
80	9.896	33.036	90.6	0.31
90	9.541	33.183	90.9	0.24
100	9.264	33.301	91.0	0.17
110	8.996	33.402	91.0	0.15
120	8.698	33.523	91.1	0.13
130	8.576	33.595	91.0	0.13
140	8.375	33.695	91.0	0.13
150	8.136	33.752	91.0	0.13
175	7.842	33.861	91.0	0.13
200	7.566	33.917	91.0	0.13
225	7.312	33.939	91.0	0.13
250	6.981	33.981	91.1	0.14
300	6.478	33.993	91.1	0.14
400	5.502	34.042	91.2	0.15
500	4.909	34.108	91.2	0.15
501	4.895	34.107	91.2	0.15

STA 43 D-4 LAT: 38 34.0 N LONG:125 14.3 W 01 AUG 1988 1017 GMT PROBE 2561 DEPTH 3629M

PRESS	TEMP	SAL	TRN	TP
1	12.983	32.764	86.3	0.53
10	12.980	32.765	86.8	0.52
20	12.978	32.766	86.7	0.53
30	12.507	32.785	88.8	0.43
40	11.928	32.846	89.3	0.31
50	11.001	32.801	88.6	0.69
60	10.522	32.856	89.9	0.58
70	10.075	32.954	90.5	0.36
80	9.731	33.094	90.8	0.26
90	9.483	33.244	91.0	0.18
100	9.139	33.351	91.0	0.16
110	8.896	33.460	91.0	0.14
120	8.642	33.566	91.0	0.14
130	8.372	33.681	91.0	0.13
140	8.285	33.736	91.0	0.13
150	8.087	33.789	91.0	0.13
175	7.762	33.924	91.0	0.14
200	7.613	33.967	91.0	0.14
225	7.231	33.982	91.0	0.14
250	7.050	33.991	91.1	0.14
300	6.409	34.004	91.0	0.14
400	5.391	34.042	91.1	0.15
500	5.037	34.155	91.2	0.15
501	5.035	34.156	91.2	0.15

STA 44 D-5 LAT: 38 22.5 N LONG:125 5.8 W 01 AUG 1988 1200 GMT PROBE 2561 DEPTH 3819M

PRESS	TEMP	SAL	TRN	TP
3	13.766	33.085	89.0	0.38
10	13.769	33.086	89.0	0.37
20	12.917	32.985	88.9	0.40
30	10.923	32.876	89.4	0.43
40	10.445	32.922	89.9	0.36
50	10.092	33.038	90.5	0.29
60	9.729	33.139	90.7	0.25
70	9.329	33.287	90.7	0.20
80	9.474	33.574	90.5	0.19
90	9.197	33.632	90.5	0.20
100	9.089	33.756	90.5	0.19
110	8.803	33.809	90.4	0.18
120	8.470	33.822	90.7	0.16
130	8.317	33.867	90.8	0.15
140	8.171	33.89 0	90.7	0.16
150	8.160	33.931	90.7	0.16
175	7.808	33.990	90.7	0.16
200	7.641	34.012	90.7	0.16
225	7.190	33.998	90.8	0.16
250	6.831	33.998	90.9	0.15
300	6.311	34.001	91.0	0.15
400	5.843	34.108	91.1	0.15
500	5.100	34.148	91.2	0.15
503	5.050	34.146	91.2	0.15

STA 45 D-6 LAT: 38 10.8 N LONG:124 57.1 W 01 AUG 1988 1356 GMT PROBE 2561 DEPTH 3893M

PRESS	TEMP	SAL	TRN	TP
1	14.347	33.120	88.5	0.44
10	14.200	33.138	88.7	0.45
20	13.535	33.244	88.2	0.49
30	12.877	33.301	88.2	0.61
40	10.427	33.484	89.8	0.44
50	10.140	33.536	90.4	0.22
60	9.778	33.628	90.7	0.19
70	9.522	33.672	90.7	0.17
80	9.335	33.681	90.6	0.17
90	8.929	33.760	90.5	0.16
100	8.861	33.815	90.5	0.15
110	8.214	33.782	90.8	0.12
120	8.157	33.816	90.8	0.11
130	8.073	33.886	90.9	0.12
140	8.030	33.925	90.9	0.11
150	7.917	33.942	90.9	0.11
175	7.671	33.984	91.0	0.11
200	7.258	33.984	91.0	0.11
225	7.049	33.982	91.0	0.11
250	6.637	33.975	91.0	0.12
300	6.184	33.998	91.0	0.12
400	5.393	34.059	91.1	0.12
500	4.963	34.149	91.3	0.12
501	4.985	34.154	91.3	0.12

STA 46 D-7 LAT: 37 59.0 N LONG:124 48.8 W 01 AUG 1988 1544 GMT PROBE 2561 DEPTH 3976M

PRESS	TEMP	SAL	TRN	TP
1	14.371	33.140	88.5	0.40
10	14.373	33.141	88.8	0.41
20	14.357	33.142	88.8	0.45
30	12.744	33.120	88.5	0.46
40	10.078	33.066	88.9	0.63
50	9.973	33.322	89.5	0.51
60	9.836	33.488	89.9	0.32
70	9.836	33.626	90.5	0.23
80	9.484	33.680	90.5	0.20
90	8.915	33.709	90.5	0.17
100	8.783	33.774	90.5	0.15
110	8.571	33.782	90.5	0.15
120	8.395	33.822	90.5	0.14
130	8.230	33.854	90.4	0.14
140	8.290	33.924	90.4	0.14
150	8.098	33.935	90.4	0.13
175	7.642	33.950	91.0	0.11
200	7.428	33.981	91.0	0.11
225	7.161	34.008	91.1	0.11
250	6.773	33.989	91.0	0.11
300	6.385	34.039	91.1	0.12
400	5.516	34.071	91.1	0.12
500	5.022	34.177	91.2	0.12
503	5.026	34.184	91.2	0.12

STA 47 D-8 LAT: 37 44.3 N LONG:124 40.2 W 01 AUG 1988 1734 GMT PROBE 2561 DEPTH 3949M

PRESS	TEMP	SAL	TRN	TP
1	14.130	33.126	88.9	0.32
10	14.134	33.127	89.0	0.38
20	13.968	33.121	89.0	0.39
30	10.955	32.896	88.6	0.54
40	10.494	32.953	89.5	0.49
50	10.200	33.039	90.2	0.36
60	10.633	33.314	89.8	0.34
70	10.162	33.409	90.2	0.30
80	9.663	33.501	90.6	0.21
90	9.585	33.587	90.5	0.19
100	9.169	33.564	90.6	0.17
110	8.612	33.593	90.9	0.11
120	8.378	33.684	90.9	0.10
130	8.233	33.750	90.9	0.10
140	8.120	33.814	90.9	0.11
150	8.276	33.898	90.9	0.11
175	7.996	33.971	91.0	0.11
200	7.476	33.971	90.9	0.12
225	6.956	33.961	90.9	0.12
250	6.714	33.978	90.9	0.12
300	6.313	34.035	91.0	0.12
400	5.652	34.109	91.1	0.12
500	5.338	34.220	91.1	0.13
505	5.316	34.221	91.1	0.13

STA 48 D-9 LAT: 37 35.6 N LONG:124 31.6 W 01 AUG 1988 1927 GMT PROBE 2561 DEPTH 3954M

				OLF III	3,7,7
PRESS	TEMP	SAL	TRN	TP	
1	14.698	33.141	88.6	0.33	
10	14.636	33.143	88.2	0.37	
20	13.672	33.140	88.6	0.43	
30	11.978	33.037	88.5	0.54	
40	11.253	33.223	88.8	0.59	
50	10.956	33.358			
60	10.311	33.450			
70	9.859	33.507	90.2	0.25	
80	9.391	33.576			
90	9.053	33.658	90.6		
100	8.827	33.718	90.6		
110	8.776	33.819	90.6		
120	8.586	33.836	90.6		
130	8.231	33.840	90.7	0.14	
140	7.984	33.882		,	
150	7.864	33.913	90.8		
175	7.700	33.970	90.8		
200	7.236	33.972	91.0		
225	6.930	33.988	91.0		
250	6.779	34.005	91.0		
300	6.438	34.051	91.0		
400	5.764	34.112	91.1		
500	5.258	34.195	91.2	0.12	
503	5.250	34.197	91.2	0.12	
	1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 175 200 225 250 300 400 500	1 14.698 10 14.636 20 13.672 30 11.978 40 11.253 50 10.956 60 10.311 70 9.859 80 9.391 90 9.053 100 8.827 110 8.776 120 8.586 130 8.231 140 7.984 150 7.864 175 7.700 200 7.236 225 6.930 250 6.779 300 6.438 400 5.764 500 5.258	1 14.698 33.141 10 14.636 33.143 20 13.672 33.140 30 11.978 33.037 40 11.253 33.223 50 10.956 33.358 60 10.311 33.450 70 9.859 33.507 80 9.391 33.576 90 9.053 33.658 100 8.827 33.718 110 8.776 33.819 120 8.586 33.836 130 8.231 33.840 140 7.984 33.882 150 7.864 33.913 175 7.700 33.970 200 7.236 33.972 225 6.930 33.988 250 6.779 34.005 300 6.438 34.051 400 5.764 34.112 500 5.258 34.195	PRESS TEMP SAL TRN 1 14.698 33.141 88.6 10 14.636 33.143 88.2 20 13.672 33.140 88.6 30 11.978 33.037 88.5 40 11.253 33.223 88.8 50 10.956 33.358 89.5 60 10.311 33.450 90.1 70 9.859 33.507 90.2 80 9.391 33.576 90.5 90 9.053 33.658 90.6 100 8.827 33.718 90.6 100 8.827 33.718 90.6 120 8.586 33.836 90.6 130 8.231 33.840 90.7 140 7.984 33.882 90.8 150 7.864 33.970 90.8 200 7.236 33.972 91.0 225 6.930 33.988	PRESS TEMP SAL TRN TP 1 14.698 33.141 88.6 0.33 10 14.636 33.143 88.2 0.37 20 13.672 33.140 88.6 0.43 30 11.978 33.037 88.5 0.54 40 11.253 33.223 88.8 0.59 50 10.956 33.358 89.5 0.53 60 10.311 33.450 90.1 0.39 70 9.859 33.507 90.2 0.25 80 9.391 33.576 90.5 0.20 90 9.053 33.658 90.6 0.15 100 8.827 33.718 90.6 0.15 110 8.776 33.819 90.6 0.14 120 8.586 33.836 90.6 0.14 130 8.231 33.840 90.7 0.14 140 7.984 33.892 <td< th=""></td<>

STA 49 D-10 LAT: 37 23.6 N LONG:124 23.2 W 01 AUG 1988 2120 GMT PROBE 2561 DEPTH 3994M

PRESS	TEMP	SAL	TRN	ΤP	
1	14.802	33.273	87.9	0.41	
10	14.582	33.345	88.0	0.48	
20	14.046	33.421	87.6	0.62	
30	13.926	33.435	87.7	0.64	
40	13.417	33.465	87.7	0.72	
50	11.823	33.565	89.5	0.47	
60	10.445	33.567	90.3	0.28	
70	9.983	33.671	90.4	0.20	
80	9.595	33.767	90.6	0.16	
90	9.362	33.801	90.5	0.17	
100	8.856	33,824	90.6	0.14	
110	8.711	33.862	90.5	0.13	,
120	8.633	33,902	90.6	0.14	
130	8.424	33,930	90.6	0.13	
140	8.249	33.962	90.6	0.13	
150	8.198	33.987	90.6	0.13	
175	7.924	34.014	90.8	0.12	
200	7.646	34.040	90.9	0.12	
225	7.443	34.060	90.9	0.13	
250	7.213	34.078	91.0	0.13	
300	6.600	34.092	91.0	0.12	
400	6.074	34.172	91.1	0.12	
500	5.397	34.222	91.1	0.13	
501	5.396	34.223	91.1	0.13	

STA 50 E-10 LAT: 37 19.7 N LONG:124 49.3 W 01 AUG 1988 2349 GMT PROBE 2561 DEPTH 4181M

PRESS	TEMP	SAL	TRN	TP
1	13.892	32.743	86.6	0.26
10	13.762	32.784	87.0	0.33
20	13.829	32.760	87.2	0.38
30	13.914	33.045	86.8	0.88
40	11.801	32.878	89.1	0.45
50	11.452	32.917	88.9	0.63
60	10.804	32.857	89.5	0.60
70	10.180	32.803	90.4	0.37
80	10.135	32.924	90.7	0.27
90	9.855	33.086	90.9	0.20
100	9.404	33.299	91.0	0.14
110	8.824	33.516	91.0	0.11
120	8.770	33.613	90.9	0.11
130	8.597	33.728	90.8	0.11
140	8.492	33.792	90.7	0.13
150	8.309	33.831	90.8	0.12
175	8.106	33.911	90.8	0.13
200	7.665	33.951	90.8	0.12
225	7.413	33.969	91.0	0.11
250	7.121	33 <i>.97</i> 5	91.0	0.11
300	6.605	34.026	91.1	0.11
400	5.877	34.074	91.1	0.12
500	5.237	34.156	91.2	0.12
503	5.159	34.151	91.2	0.12

STA 51 E-9 LAT: 37 31.6 N LONG:124 57.9 W 02 AUG 1988 0158 GMT PROBE 2561 DEPTH 4147M

PRESS	TEMP	SAL	TRN	ΤP
1	14.298	32.734	88.1	0.24
10	14.263	32.735	88.0	0.25
20	14.001	32.740	87.6	0.27
30	13.448	32.774	88.1	0.42
40	12.690	32.829	89.3	0.31
50	11.798	32.888	89.8	0.30
60	11.128	32.899	89.7	0.52
70	10.645	32.915	90.5	0.33
80	10.581	32.973	90.7	0.24
90	10.284	33.084	90.9	0.20
100	9.761	33.200	91.0	0.15
110	9.404	33.351	91.0	0.12
120	8.962	33.505	91.0	0.10
130 140 150	8.692 8.568 8.516	33.623 33.673 33.771	91.0 91.0	0.10 0.10
175	8.288	33.897	91.0	0.10
200	7.981	33.953	91.0	0.11
225	7.629	33.968	91.0	0.11
250 300 400	7.299 6.848 5.608	33.976 34.044	91.0 91.0 91.1	0.11 0.11 0.11
500 501	5.529 5.507	34.035 34.200 34.199	91.1 91.0 91.1	0.11 0.12 0.12

STA 52 E-8 LAT: 37 43.5 N LONG:125 6.9 W 02 AUG 1988 0404 GMT PROBE 2561 DEPTH 4143M

PRESS	TEMP	SAL	TRN	ŤΡ	
3	15.442	32.694	88.9	0.20	
10	15.449	32.693	88.9	0.19	
20	14.441	32.779	88.9		
30	13.193	32.772	88.8	0.27	
40	12.327	32.829	88.8	0.35	
50	11.861	32.981	89.3	0.58	
60	11.596	33.016	90.0	0.47	
70	11.334	33.064	90.4	0.36	
80	10.851	33.047	90.7	0.26	
90	10.295	33.099	90.9	0.21	
100	10.128	33.240	90.9	0.17	
110	9.411	33.336	91.0	0.15	
120	9.209	33.486	91.0	0.13	
130	9.009	33.565	91.0	0.13	
140	8.664	33.611	91.0	0.13	
150	8.477	33.688	90.9	0.13	
175	8.125	33.831	91.0	0.13	
200	7.929	33.914	91.0	0.14	
225	7.647	33.946	91.0	0.14	
250	7.381	33.989	91.0	0.14	
300	6.691	33.988	91.1	0.14	
400	5.881	34.052	91.1	0.14	
500	5.405	34.148	91.2	0.15	
503	5.383	34.147	91.2	0.15	

STA 53 E-7 LAT: 37 55.5 N LONG:125 15.8 W 02 AUG 1988 0620 GMT PROBE 2561 DEPTH 4092M

PRESS	TEMP	SAL	TRN	TP
1	15.795	32.588	89.1	0.18
10	15.806	32.589	89.2	0.18
20	15.586	32.612	89.1	0.18
30	13.967	32.705	87.1	0.36
40	13.478	32.775	88.0	0.46
50	12.097	32.808	87.9	0.38
60	11.318	32.838	88.7	0.83
70	10.976	32.908	90.3	0.43
80	10.799	32.982	90.6	0.30
90	10.587	33.087	90.8	0.23
100	10.355	33.207	90.8	0.20
110	9.889	33.283	91.0	0.15
120	9.541	33.377	91.0	0.14
130	8.901	33.471	91.0	0.13
140	8.625	33.587	91.0	0.13
150	8.315	33.711	91.0	0.13
175	7.820	33.868	91.0	0.14
200	7.575	33,924	91.0	0.14
225	7.275	33.959	91.0	0.14
250	6.995	33.972	91.0	0.14
300	6.421	33,986	91.0	0.14
400	5.563	34.041	91.1	0.14
500	5.149	34.161	91.2	0.15
503	5.170	34.169	91.2	0.15

STA 54 E-6 LAT: 38 7.0 N LONG:125 24.1 W 02 AUG 1988 0831 GMT PROBE 2561 DEPTH 3922M

PRESS	TEMP	SAL	TRN	TP	
3	13.444	32.720	87.0	0.29	
10	13.444	32.721	87.6	0.29	
20	13.443	32.721	87.5	0.31	
30	13.461	32.738	87.7	0.31	
40	13.538	32.849	89.0	0.27	
50	12.275	32.814	88.4	0.39	
60	11.491	32.883	87.3	0.87	
70	11.184	32.978	90.0	0.53	
80	10.942	33.043	90.4	0.31	
90	10.632	33.097	90.5	0.24	
100	10.298	33.177	90.7	0.19	
110	9.894	33.282	90.9	0.15	
120	9.600	33.389	90.9	0.14	
130	9.376	33.478	91.0	0.14	
140	9.075	33.576	91.0	0.13	
150	8.592	33.649	90.9	0.13	
175	8.107	33.795	91.0	0.13	
200	7.685	33.897	91.0	0.13	
225	7.418	33.952	91.1	0.14	
250	7.064	33.964	91.1	0.14	
300	6.537	34.003	91.1	0.14	
400	5.760	34,056	91.1	0.15	
500	4.972	34.096	91.2	0.15	
501	4.959	34.095	91.2	0.15	

STA 55 E-5 LAT: 38 18.9 N LONG:125 32.8 W 02 AUG 1988 1045 GMT PROBE 2561 DEPTH 3900M

PRESS	TEMP	SAL	TRN	ΤP	
3	14.426	32.637	87.9	0.25	
10	14.411	32.638	88.0	0.25	
20	14.287	32.649	87.9	0.25	
30	14.237	32.658	87.8	0.26	
40	13.167	32.768	88.8	0.27	
50	12.697	32.862	89.0	0.31	
60	12.349	32.927	88.1	0.61	
70	12.272	33.048	89.5	0.70	
80	12.110	33.147	90.5	0.40	
90	11.885	33.152	90.7	0.30	
100	11.298	33.127	90.7	0.26	
110	10.828	33.159	90.8	0.23	
120	10.419	33.216	90.8	0.20	
130	9.890	33.318	91.0	0.15	
140	9.659	33.429	90.9	0.14	
150	9.260	33.575	91.0	0.14	
175	8.650	33.791	91.0	0.14	
200	8.208	33.916	91.0	0.13	
225	7.740	33.931	91.0	0.14	
250	7.401	33.973	91.0		
300	6.803	33.993	91.1	0.14	
400	5.975	34.046	91.1	0.14	
500	5.131	34.093	91.2	0.14	
501	5.134	34.095	91.2	0.15	

STA 56 E-4 LAT: 38 30.6 N LONG:125 41.5 W 02 AUG 1988 1300 GMT PROBE 2561 DEPTH 3987M

PRESS	TEMP	SAL	TRN	TP
1	16.047	32.672	87.0	0.15
10	16.040	32.670	89.1	0.14
20	16.041	32.670	89.8	0.14
30	16.043	32.670	89.8	0.14
40	16.029	32.666	89.8	0.14
50	13.562	32.793	89.5	0.16
60	12.640	32.785	89.4	0.17
70	11.772	32.845	89.3	0.27
80	11.005	32.846	88.9	0.65
90	10.765	32.937	90.0	0.47
100	10.657	33.028	90.5	0.35
110	10.224	33,186	90.8	0.19
120	9.870	33.325	90.9	0.13
130	9.619	33.484	91.0	0.11
140	9.274	33.562	91.0	0.10
150	9.005	33.653	91.0	0.10
175	8.560	33.807	90.9	0.11
200	8.011	33.892	90.9	0.11
225	7.847	33,975	91.0	0.11
250	7.377	33.976	91.0	0.11
300	6.891	34.012	91.1	0.11
400	5.917	34.057	91.1	0.11
500	5.123	34.095	91.2	0.12
501	5.107	34.096	91.2	0.12

STA 57 E-3 LAT: 38 42.4 N LONG:125 50.1 W 02 AUG 1988 1519 GMT PROBE 2561 DEPTH 4079M

PRESS	TEMP	SAL	TRN	TP
1	16.478	32.842	89.4	0.14
10	16.480	32.842	89.4	0.14
20	16.484	32.841	89.4	0.13
30	16.479	32.841	89.4	0.13
40	16.477	32.840	89.4	0.14
50	16.435	32.836	89.4	0.14
60	13.265	32.815	88.9	0.19
70	11.547	32.971	88.1	0.65
80	10.886	33.058	89.6	0.34
90	10.584	33.130	90.2	0.28
100	10.203	33.247	90.6	0.23
110	9.866	33.349	90.8	0.14
120	9.648	33.435	90.9	0.12
130	9.486	33.489	90.9	0.11
140	9.175	33.601	90.9	0.11
150	8.856	33.708	90.9	0.11
175	8.424	33.842	90.9	0.11
200	8.057	33.935	91.0	0.11
225	7.666	33.961	91.0	0.11
250	7.438	34.000	91.0	0.11
300	6.795	34.019	91.1	0.11
400	5.682	34.038	91.1	0.12
500	5.053	34.115	91.2	0.12
505	5.009	34.113	91.2	0.12

STA 58 E-2 LAT: 38 54.0 N LONG:125 58.7 W 02 AUG 1988 1740 GMT PROBE 2561 DEPTH 4060M

PRESS	TEMP	SAL	TRN	TP
1	15.248	32.499	86.8	0.17
10	15.235	32.501	88.8	0.20
20	15.234	32.501	88.8	0.22
30	15.122	32.498	88.8	0.25
40	12.438	32.578	88.6	0.41
50	11.911	32.633	89.3	0.41
60	11.614	32.635	89.8	0.32
70	11.548	32.641	89.8	0.27
80	11.332	32.661	89.8	0.28
90	10.244	32.656	90.0	0.26
100	9.555	32.708	90.3	0.22
110	9.159	32.942	90.7	0.18
120	9.224	33.250	90.9	0.15
130	9.081	33.355	90.9	0.14
140	8.733	33.498	90.9	0.11
150	8.539	33.629	90.9	0.11
175	8.061	33.812	91.0	0.10
200	7.769	33.887	90.9	0.11
225	7.513	33.936	91.0	0.11
250	7.167	33.958	91.0	0.11
300	6.598	33.974	91.1	0.11
400	5.800	34.025	91.1	0.11
500	5.041	34.080	91.2	0.11
503	5.015	34.079	91.2	0.12

STA 59 E-1 LAT: 39 6.7 N LONG:126 7.5 W 02 AUG 1988 2000 GMT PROBE 2561 DEPTH 4021M

PRESS	TEMP	SAL	TRN	TP
1	14.741	32.490	88.1	0.18
10	14.730	32.490	88.5	0.20
20	14.721	32,490	88.4	0.25
30	14.698	32,491	88.5	0.28
40	13.557	32.549	88.0	0.36
50	11.847	32.620	88.8	0.53
60	10.756	32.634	89.2	0.40
70	10.038	32.656	90.3	0.27
80	9.748	32.668	90.5	0.21
90	9.503	32.719	90.5	0.19
100	9.321	32.818	90.7	0.18
110	8.972	33.123	90.8	0.15
120	8.595	33.322	90.8	0.13
130	8.419	33.492	90.8	0.12
140	8.350	33.574	90.7	0.14
150	8.141	33.687	90.8	G.14
175	7. <i>7</i> 33	33.849	90.9	0.12
200	7.310	33.912	90.9	0.13
225	7.045	33.958	91.0	0.12
250	6.836	33.977	91.0	0.12
300	6.208	33.984	91.0	0.12
400	5.430	34.049	91.1	0.12
500	5.031	34.135	91.2	0.12
501	5.024	34.136	91.2	0.12

STA 60 F-1 LAT: 39 3.3 N LONG:126 33.8 W 02 AUG 1988 2249 GMT PROBE 2561 DEPTH 4215M

PRESS	TEMP	SAL	TRN	TP
1	15.083	32.581	87.3	0.18
10	15.082	32.581	87.8	0.19
20	15.022	32.581	87.8	0.23
30	14.970	32.581	87.8	0.26
40	13.600	32.695	88.4	0.32
50	12.750	32.818	89.5	0.27
60	12.014	32.871	89.6	0.31
70	11.432	32.905	89.5	0.52
80	10.671	32.847	89.9	0.48
90	10.375	32.925	90.4	0.34
100	10.132	32.982	90.6	0.31
110	9.665	33.127	90.8	0.21
120	9.487	33.291	90.9	0.16
130	9.443	33.434	91.0	0.11
140	9.250	33.549	91.0	0.11
150	9.029	33.679	91.0	0.10
175	8.380	33.825	90.9	0.11
200	8.136	33.936	91.0	0.11
225	7.823	33.984	91.0	0.11
250	7.489	34.003	91.1	0.11
300	6.828	34.015	91.1	0.11
400	5.783	34.057	91.1	0.11
500	5.243	34.119	91.2	0.12
501	5.244	34.119	91.2	0.12

STA 61 F-2 LAT: 38 51.1 N LONG:126 25.7 W 03 AUG 1988 0040 GMT PROBE 2561 DEPTH 4212M

RESS	TEMP	SAL	TRN	TP
1	15.841	32.653	89.0	0.15
10	15.843	32,653	89.0	0.16
20	15.798	32.648	88.9	0.18
30	15,628	32.631	88.7	0.20
40	15.371	32.617	88.5	0.23
50	13.355	32,773	89.0	0.24
60	12.204	32.862	89.4	0.30
70	11.737	32.924	89.5	0.39
80	11,586	32.959	89.8	0.52
90	11.213	32.978	90.1	0.41
100	10.919	33.021	90.4	0.32
110	10.425	33.114	90.8	0.23
120	10.006	33.227	90.9	0.15
130	9,600	33.374	91.0	0.11
140	9.319	33.531	91.0	0.11
150	9,106	33.616	91.0	0.11
175	8.649	33.816	90.9	0.11
200	8.340	33.872	90.9	0.11
225	8.040	33.939	91.0	0.11
250	7.706	33.978	91.0	0.11
300	6,923	34.002	91.1	0.12
400	6.135	34.075	91.1	0.12
500	5.280	34.122	91.2	0.12
503	5.239	34.120	91.2	0.12

STA 62 F-3 LAT: 38 39.3 N LONG:126 17.2 W 03 AUG 1988 0225 GMT PROBE 2561 DEPTH 4269M

1 16.701 32.787 82.2 0.17	
10 16.702 32.786 89.8 0.17	
20 16.702 32.786 89.8 0.17	
30 16.701 32,785 89.7 0.17	
40 16.683 32.782 89.8 0.17	
50 16.653 32.776 89.7 0.17	
60 15.497 32.769 89.1 0.24	
70 13.003 32.794 88.8 0.29	
80 11.438 32.915 86.4 1.06	
90 10.990 33.006 89.3 0.62	
100 10.555 33.114 90.2 0.37	
110 10.147 33.240 90.6 0.24	
120 9.946 33.297 90.8 0.16	
130 9.742 33.359 90.8 0.15	
140 9.524 33.452 90.9 0.14	
150 9.270 33,572 90,9 0.14	
175 8.711 33.778 91.0 0.14	
200 8.250 33.888 91.0 0.15	
225 7.872 33.941 91.0 0.15	
250 7.597 33.980 91.0 0.14	
300 6.866 33.988 91.1 0.14	
400 6.143 34.086 91.2 0.15	
500 5.336 34.126 91.3 0.15	
503 5.320 34.130 91.3 0.15	

STA 63 F-4 LAT: 38 27.2 N LONG:126 8.3 W 03 AUG 1988 0420 GMT PROBE 2561 DEPTH 4282M

PRESS	TEMP	SAL	TRN	TP
RESS 3 10 20 30 40 50 60 70 80 90 110 120 130 140 150 175 200 225 250 400 500	16.979 16.981 16.982 16.976 16.865 16.667 13.742 11.826 11.292 10.927 10.693 10.327 10.080 9.778 9.530 9.393 8.948 8.363 7.997 7.579 6.953 6.117 5.516	32.808 32.808 32.808 32.799 32.782 32.788 32.947 33.014 33.081 33.179 33.266 33.384 33.475 33.530 33.702 33.846 33.955 33.993 34.063	89.2 89.2 89.2 89.3 89.4 89.4 88.7 88.7 88.9 90.2 90.5 90.9 90.9 91.0 91.1 91.2	0.20 0.19 0.19 0.21 0.20 0.22 0.30 0.98 0.88 0.27 0.17 0.15 0.14 0.14 0.14 0.14 0.15 0.15
503	5.513	34.157	91.2	0.15

STA 64 F-5 LAT: 38 15.3 N LONG:126 1.2 W 03 AUG 1988 0612 GMT PROBE 2561 DEPTH 4234M

PRESS	TEMP	SAL	TRN	TP
1	16.874	32.782	89.7	0.15
10	16.876	32.782	90.0	0.16
20	16.875	32.782	90.0	0.16
30	16.876	32.782	90.0	0.16
40	16.879	32.782	90.0	0.16
50	14.680	32.859	89.3	0.25
60	13.433	32.767	89.1	0.30
70	12.590	32.785	88.6	0.41
80	12.021	32.828	88.3	0.68
90	11.528	32.887	89.2	0.78
100	11.378	32.935	89.9	0.56
110	11.075	33.002	90.4	0.37
120	10.769	33.071	90.6	0.27
130	10.369	33.147	90.8	0.21
140	9.949	33.240	90.9	0.16
150	9.660	33.360	90.9	0.14
175	9.033	33.653	91.0	0.14
200	8.432	33.805	91.0	0.13
225	8.082	33.914	91.0	0.13
250	7.685	33.972	91.0	0.14
300	6.979	33.983	91.1	0.14
400	6.145	34.061	91.1	0.15
500	5.589	34.139	91.1	0.15
503	5.563	34.137	91.2	0.15

STA 65 F-6 LAT: 38 3.8 N LONG:125 51.2 W 03 AUG 1988 0803 GMT PROBE 2561 DEPTH 4211M

PRESS	TEMP	SAL	TRN	TP
3	16.538	32.835	88.8	0.18
10	16.542	32.834	89.5	0.17
20	16.543	32.835	89.5	0.17
30	16.541	32.834	89.5	0.18
40	16.535	32.834	89.5	0.18
50	14.755	32.908	89.5	0.23
60	13.670	32.942	89.6	0.31
70	12.887	32.947	89.9	0.51
80	12.502	32.973	90.3	0.41
90	11.959	33.002	90.4	0.39
100	11.638	33.051	90.8	0.28
110	11.401	33.108	90.8	0.25
120	11.186	33.164	90.9	0.20
130	10.620	33.279	91.0	0.17
140	9.897	33.328	91.0	0.14
150	9.607	33.444	91.0	0.14
175	8.989	33.645	91.0	0.13
200	8.433	33.826	90.9	0.13
225	8.082	33.929	90.9	0.14
250	7.619	33.950	91.0	0.14
300	7.162	34.023	91.1	0.14
400	5.944	34.019	91.1	0.14
500	5.217	34.089	91.2	0.14
501	5.213	34.090	91.2	0.14

STA 66 F-7 LAT: 37 51.5 N LONG:125 42.4 W 03 AUG 1988 0953 GMT PROBE 2561 DEPTH 4264M

PRESS	TEMP	SAL	TRN	ΤP
3	16.54.	32.780	89.8	0.16
10	16.549	32.780	90.1	0.16
20	16.551	32.780	90.1	0.16
30	16.552	32.780	90.1	0.19
40	16.528	32.772	90.0	0.16
50	13.355	32.783	88.8	0.30
60	12.492	32.788	89.3	0.69
70	12.204	32.886	90.0	0.44
80	11.918	33.000	90.6	0.32
90	11.839	33.076	90.8	0.24
100	11.332	33.053	90.9	0.20
110	11.019	33.200	91.0	0.17
120	10.388	33.254	91.0	0.16
130	9.916	33.317	91.0	0.15
140	9.386	33.441	91.0	0.13
150	9.135	33.542	91.0	0.14
175	8.577	33.778	90.9	0.14
200	8.306	33.888	90.9	0.14
225	8.010	33.952	91.0	0.14
250	7.634	33.985	91.0	0.14
300	6.988	34.019	91.1	0.14
400	5.775	34.030	91.1	0.14
500	5.093	34.098	91.2	0.14
501	5.086	34.098	91.2	0.14

STA 67 F-8 LAT: 37 39.6 N LONG:125 33.2 W 03 AUG 1988 1146 GMT PROBE 2561 DEPTH 4267M

STA 68 F-9 LAT: 37 27.6 N LONG:125 24.4 W 03 AUG 1988 1336 GMT PROBE 2561 DEPTH 4265M

PRESS	TEMP	SAL	TRN	ŢΡ	
1	15.508	32.699	89.8	0.13	
10	15.477	32.698	89.8	0.13	
20	15.263	32.714	89.7	0.15	
30	14.018	32.818	89.7	0.18	
40	13.250	32.916	89.9	0.21	
50	12.414	32.928	89.9	0.30	
60	12.227	33.036	90.0	0.41	
70	11.924	33.028	90.2	0.39	
80	11.121	32.976	90.5	0.30	
90	10.862	33.027	90.8	0.20	
100	10.582	33.105	90.8	0.17	
110	9.918	33.221	91.0	0.14	
120	9.545	33.395	91.0	0.11	
130	9.261	33.558	91.0	0.11	
140	9.048	33.637	91.0	0.11	
150	8.789	33.739	90.9	0.11	
175	8.589	33.943	90.9	0.12	
200	8.231	33.999	90.9	0.12	
225	8.026	34.019	90.9	0.12	
250	7.771	34.046	91.1	0.12	
300	7.120	34.045	91.2	0.12	
400	6.215	34.115	91.1	0.12	
500	5.660	34.208	91.2	0.12	
501	5.652	34.209	91.2	0.12	

STA 69 F-10 LAT: 37 15.6 N LONG:125 15.5 W 03 AUG 1988 1529 GMT PROBE 2561 DEPTH 4280M

PRESS	TEMP	SAL	TRN	TP
1	15.026	32.724	89.7	0.14
10	14.787	32.725	89.5	0.14
20	14.235	32.754	88.2	0.27
30	13.788	32.846	87.8	0.48
40	13.405	32.904	88.3	0.53
50	12.696	32.925	89.4	0.45
60	11.485	32.916	90.0	0.38
70	10.683	32.923	90.5	0.29
80	11.015	33.295	90.0	0.30
90	10.661	33.390	90.5	0.26
100	10.475	33.508	90.6	0.17
110	10.066	33.636	90.6	0.15
120	9.716	33.707	90.6	0.15
130	9.316	33.790	90.6	0.13
140	9.085	33.862	90.6	0.13
150	9.024	33.881	90.6	0.13
175	8.696	33.939	90.7	0.12
200	8.266	34.004	90.7	0.13
225	7.999	34.043	90.8	0.13
250	7.762	34.054	90.8	0.12
300	7.198	34.082	90.9	0.12
400	6.416	34.157	91.1	0.12
500	5.730	34.198	91.2	0.12
503	5.705	34.200	91.2	0.12

STA 70 EF-10 LAT: 37 17.7 N LONG:125 2.2 W 03 AUG 1988 1720 GMT PROBE 2561 DEPTH 4229M

PRESS	TEMP	SAL	TRN	TP
1	14.659	32.758	89.5	0.13
10	14.082	32.752	88.7	0.17
20	13.749	32.763	87.9	0.29
30	13.160	32.801	89.2	0.29
40	12.266	32.820	89.5	0.30
50	11.554	32.862	89.3	0.49
60	11.203	32.933	90.2	0.42
70	11.062	33.015	90.5	0.26
80	10.797	33.090	90.7	0.20
90	10.422	33.140	90.8	0.16
100	9.965	33.236	91.0	0.13
110	9.469	33.377	91.0	0.11
120	9.155	33.480	91.0	0.10
130	8.930	33.621	91.0	0.10
140	8.740	33.720	90.9	0.10
150	8.686	33.788	90.9	0.10
175	8.386	33.902	90.9	0.11
200	7.946	33.941	91.0	0.11
225	7.561	33.966	91.0	0.11
250	7.366	34.005	91.0	0.11
300	6.678	34.022	91.1	0.11
400	5.885	34.105	91.2	0.12
500	5.590	34.230	91.2	0.12
503	5.563	34.229	91.2	0.12

STA 71 E-10 LAT: 37 19.7 N LONG:124 49.6 W 03 AUG 1988 1857 GMT PROBE 2561 DEPTH 4180M

PRESS	TEMS	SAL	TRN	ΤP
3	13.636	32.779	87.4	0.23
10	13.558	32.782	86.8	0.31
20	13.363	32.808	86.9	0.61
30	13.145	32.826	87.7	0.67
40	12.398	32.857	89.4	0.48
50	11.672	32.900	90.1	0.31
60	11.058	32.898	90.1	0.41
70	10.646	32.934	90.5	0.31
80	10.291	33.042	90.8	0.23
90	9.917	33.154	90.9	0.18
100	9.537	33.258	91.0	0.13
110	9.236	33.392	91.0	0.11
120	8.912	33.509	91.0	0.10
130	8.739	33.589	91.0	0.10
140	8.559	33.646	90.9	0.10
150	8.511	33.763	90.9	0.10
175	8.237	J ⁷ .902	91.0	0.11
200	7.851	33. ′∽	91.0	0.10
225	7.378	33.975	91.0	0.11
250	6.914	33.986	91.0	0.11
300	6.347	34.000	91.0	0.11
400	5.497	34.055	91.1	0.11
500	5.078	34.187	91.2	0.12
501	5.060	34.185	91.2	0.12

STA 72 DE-10 LAT: 37 21.7 N LONG:124 36.2 W 03 AUG 1988 2034 GMT PROBE 2561 DEPTH 4116M

PRESS	TEMP	SAL	TRN	TP
1	14.247	33.097	88.0	0.11
10	14.060	33.105	88.7	0.27
20	12.192	32.847	89.5	0.32
30	11.223	32.919	90.1	0.28
40	10.790	32.979	90.1	0.30
50	10.177	33.017	90.1	0.31
60	10.010	33.103	90.4	0.24
70	9.711	33.168	90.7	0.21
80	9.395	33.281	90.8	0.17
90	9.018	33.436	90.8	0.13
100	9.396	33.674	90.5	0.18
110	8.909	33.719	90.6	0.14
120	8.727	33.753	90.6	0.13
130	8.453	33.793	90.6	0.13
140	8.316	33.879	90.6	0.14
150	7.995	33.893	90.7	0.13
175	7.789	33.973	90.8	0.11
200	7.192	33.976	91.0	0.11
225	7.012	33.980	91.0	0.11
250	6.765	33.987	91.0	0.11
300	6.355	34.027	91.0	0.12
400	5.813	34.126	91.1	0.12
500	5.344	34.202	90.5	0.12
501	5.339	34.203	89.9	0.12

STA 73 D-10 LAT: 37 23.8 N LONG:124 22.9 W 03 AUG 1988 2208 GMT PROBE 2561 DEPTH 3994M

PRESS	TEMP	SAL	TRN	ΤP
1	15.206	33.367	88.9	0.23
10	15.062	33.360	89.4	0.27
20	14.701	33.361	88.4	0.49
30	14.514	33.348	88.9	0.54
40	12.538	33.450	89.0	0.56
50	10.580	33.561	89.4	0.43
60	9.928	33.642	90.2	0.31
70	9.650	33.714	90.5	0.20
80	9.387	33.716	90.5	0.16
90	9.174	33.751	90.6	0.15
100	9.103	33.789	90.6	0.14
110	8.904	33.863	90.7	0.13
120	8.746	33.909	90.7	0.13
130	8.555	33.930	90.7	0.12
140	8.377	33.947	90.6	0.12
150	8.232	33.978	90.6	0.12
175	7.603	33.980	90.8	0.12
200	7.265	33.984	90.9	0.12
225	7.113	34.016	90.9	0.12
250	7.145	34.072	91.1	0.12
300	6.701	34.102	91.1	0.13
400	5.846	34.157	91.1	0.13
500	5.346	34.216	91.1	0.13
501	5.340	34.215	91.1	0.12

STA 74 CD-10 LAT: 37 25.9 N LONG:124 9.6 W 03 AUG 1988 2341 GMT PROBE 2561 DEPTH 3764M

PRESS	TEMP	SAL	TRN	TP
1	16.015	33.313	89.4	0.28
10	15.490	33.319	88.8	0.40
20	14.135	33.340	87.3	0.73
30	12.542	33.354	86.9	0.75
40	11.105	33.379	87.9	0.83
50	10.840	33.523	89.5	0.53
60	9.981	33.634	90.3	0.27
70	9.707	33.707	90.5	0.20
80	9.387	33.756	90.5	0.16
90	9.132	33.816	90.7	0.14
100	8.967	33.870	90.7	0.13
110	8.811	33.905	90.7	0.13
120	8.624	33.932	90.7	0.12
130	8.453	33.946	90.7	0.13
140	8.295	33.957	90.7	0.13
150	8.174	33.967	90.7	0.12
175	8.086	34.002	90.7	0.12
200	7.670	34.005	90.8	0.12
225	7.238	34.000	90.9	0.11
250	6.947	34.009	91.0	0.11
300	6.577	34.077	91.0	0.12
400	5.792	34.132	91.1	0.12
500	5.376	34.213	91.1	0.12
501	5.367	34.212	91.1	0.12

STA 75 B-0 LAT: 39 26.5 N LONG:124 54.8 W 04 AUG 1988 1309 GMT PROBE 2561 CEPTH 2907M

STA 76 BC-0 LAT: 39 24.8 N LONG:125 8.2 W 04 AUG 1988 1444 GMT PROBE 2561 DEPTH 3015M

PRESS	TEMP	SAL	TRN	TP
1	12.773	32.724	86.6	0.50
10	11.875	32.732	85.9	0.59
20	11.156	32.790	87.2	0.67
3 0	10.752	32.848	87.2	0.72
40	10.330	32.866	90.0	0.36
50	9.945	33.045	90.5	0.30
60	9.595	33.156	90.6	0.24
70	9.405	33.275	90.7	0.21
80	9.528	33.483	90.6	0.17
90	9.522	33.606	90.5	0.17
100	9.331	33.673	90.5	0.15
110	9.184	33.725	90.5	0.14
120	8.998	33.791	90.5	0.14
130	8.872	33.843	90.5	0.13
140	8.707	33.889	90.4	0.13
150	8.500	33.925	90.5	0.13
175	8.126	33.987	90.5	0.13
200	8.088	34.032	90.2	0.13
225	8.029	34.066	90.4	0.13
250	7.712	34.060	90.9	0.13
300	6.835	34.038	91.0	0.12
400	6.297	34.155	91.0	0.13
500	5.751	34.225	91.1	0.13
503	5.737	34.225	91.1	0.13

STA 77 C-0 LAT: 39 23.0 N LONG:125 21.6 W 04 AUG 1988 1625 GMT PROBE 2561 DEPTH 3371M

PRESS	TEMP	SAL	TRN	ΤP
1	13.211	32.834	88.4	0.40
10	13.129	32,911	88.0	0.43
20	13.057	32.934	87.9	0.47
30	12.389	32.849	87.7	0.54
40	11.937	32.857	88.9	0.49
50	10.762	33.315	90.0	0.34
60	10.732	33.385	90.1	0.28
70	9.837	33.470	90.3	0.25
80	9.387	33.557	90.5	0.16
90	8.683	33.549	90.8	0.12
100	8.461	33.631	90.7	0.12
110	8.346	33.690	90.7	0.12
120	8.184	33.751	90.9	0.11
130	8.040	33.814	90.9	0.11
140	7.849	33.861	90.9	0.11
150	7.712	33.892	90.9	0.11
175	7.480	33.938	91.0	0.11
200	7.158	33.964	91.0	0.11
225	6.770	33.969	91.0	0.11
250	6.452	33.973	91.1	0.12
300	5.972	33.985	91.1	0.11
400	5.346	34.049	91.2	0.11
	4.834	34.129	91.3	0.12
500	4.834	34.131	91.3	0.12
503	4.034	J4. [J]	, 1	/-

2 MIN GAP AT 23 DB

STA 78 CD-0 LAT: 39 21.7 N LONG:125 35.5 W 04 AUG 1988 1810 GMT PROBE 2561 DEPTH 3685M

PRESS	TEMP	SAL	TRN	TP
3	12.015	32.825	86.8	0.47
10	11.797	32.845	87.7	0.45
20	11,781	32.868	88.1	0.45
30	11.779	32.887	88.3	0.52
40	11.804	32.906	88.4	0.55
50	11.757	33.120	88.9	0.53
60	11.095	33.472	89.6	0.35
70	9.436	33.654	90.3	0.21
80	8.977	33.727	90.5	0.16
90	8.802	33.784	90.5	0.15
100	8.311	33.776	90.6	0.13
110	8.047	33.797	90.8	0.12
120	7.932	33.829	90.7	0.12
130	7.834	33.845	90.7	0.11
140	7.793	33.858	90.8	0.12
150	7.735	33.871	90.9	0.11
175	7.519	33.929	91.0	0.11
200	7.183	33.937	90.9	0.11
225	6.878	33.952	90.9	0.11
250	6.584	33.964	91.1	0.11
300	6.205	33.976	91.0	0.11
400	5.446	34.036	91.2	0.12
500	4.951	34.121	91.3	0.12
503	4.939	34.124	91.3	0.12

STA 79 D-0 LAT: 39 20.5 N LONG:125 49.4 W 04 AUG 1988 1950 GMT PROBE 2561 DEPTH 3797M

PRESS	TEMP	SAL	TRN	TP	
1 10 20 30	14.585 14.450 13.286 12.805	32.632 32.630 32.647 32.653	85.5 84.8 85.4 87.6	0.22 0.29 0.65 0.76	
40 50 60 70	12.470 12.031 11.696 11.028	32.667 32.721 32.791 32.959	88.2 89.4 89.8 89.9	0.74 0.51 0.34 0.31	
80 90 100 110	10.449 9.727 9.363 8.981	33.161 33.374 33.464 33.516	90.2 90.7 90.8 90.9	0.29 0.17 0.14 0.12	
120 130 140 150	8.609 8.465 8.323 8.051	33.580 33.654 33.728 33.807	90.9 90.9 90.9	0.11 0.11 0.11	
175 200 225	7.783 7.506 7.158	33.905 33.947 33.969	90.9 90.9 90.9 91.0	0.11 0.12 0.12 0.12	
250 300 400 500	6.884 6.231 5.562 4.986	33.983 34.004 34.047 34.143	91.2	0.11 0.12 0.12 0.12	
501	4.979	34 145	91.2	0.12	

STA 80 LAT: 39 32.0 N LONG:125 10.0 W 05 AUG 1988 0138 GMT PROBE 2561 DEPTH 3295M

PRESS	TEMP	SAL	TRN	TP
1	13.650	32.709	85.2	0.57
10	11.980	32.732	84.0	0.67
20	11.188	32.780	85.2	0.89
30	10.800	32.840	86.7	0.80
40	10.462	32,864	89.6	0.49
50	10.126	32.899	90.1	0.31
60	9.796	33.003	90.5	0.24
70	9.536	33.165	90.4	0.23
80	9.393	33.344	90.5	0.22
90	9.522	33.627	90.5	0.17
100	9.265	33.678	90.5	0.16
110	9.292	33.798	90.3	0.15
120	9.080	33.847	90.2	0.16
130	8.845	33.907	90.3	0.14
140	8.720	33.953	90.3	0.14
150	8.666	33.989	90.5	0.14
175	8.256	34.030	90.4	0.13
200	7.763	34.016	90.6	0.13
225	7.654	34.041	90.7	0.13
250	7.095	34.019	90.9	0.13
300	6.909	34.098	91.0	0.13
400	6.092	34.121	91.1	0.13
500	5.506	34.192	91.1	0.13
501	5.508	34.193	91.1	0.13

STA 81

05 AUG 1988 0338 GMT PROBE 2561 DEPTH 3282M PRESS TEMP SAL TRN 1 15.204 32.626 88.6 0.20 14.928 32.622 10 88.4 0.21 14.358 20 32.617 87.2 0.30 12.202 32.631 86.7 0.60 86.7 0.74 40 11.670 32.744 50 11.602 32.820 86.9 0.79 60 11.064 32.918 88.5 0.66 33.070 70 10.528 88.9 0.57 80 10.074 33.331 89.8 0.39 90 10.339 33.653 90.1 0.30 10.154 100 90.4 0.24 33.750 110 9.940 33.771 90.3 0.24 33.797 120 9.766 90.1 0.25 130 33.813 90.4 9.426 0.21 140 9.082 33.850 90.4 0.21 90.4 150 8.870 33.899 0.18 90.4 175 8.286 33.952 0.16 200 7.906 33.959 90.6 0.16 225 7.619 33.993 90.7 0.16 33.979 90.8 0.15

33.974

34.011

91.0

34.106 91.2 0.14

34.108 91.2 0.15

0.14

91.1 0.14

LAT: 39 46.1 N LONG:125 20.3 W

503 LIN INT SAL 41-45 DB

250

300

400

500

7.270

6.520

5.643

5.059

5.056

STA 82 LAT: 40 0.0 N LONG: 125 29.9 W 05 AUG 1988 0537 GMT PROBE 2561 DEPTH 2979M

PRESS	TEMP	SAL	TRN	TP
1	14.599	32.597	88.3	0.40
10	14.337	32.644	87.4	0.40
20	13.729	32.665	87.0	0.53
30	13.293	32.653	87.3	0.61
40	12.516	32.701	88.6	0.57
50	11.011	32.663	89.3	0.48
60	10.242	32.719	90.1	0.35
70	10.000	32.758	90.2	0.28
80	9.695	32.813	90.2	0.25
90	9.769	32.950	90.2	0.31
100	9.548	33.137	90.2	0.25
110	9.222	33.200	90.1	0.25
120	8.827	33.307	90.3	0.26
130	8.487	33.529	90.5	0.19
140	8.292	33.624	90.6	0.19
150	8.108	33.736	90.7	0.17
175	7.814	33.862	90.6	0.16
200	7.453	33.932	90.8	0.15
225	7.175	33.970	90.8	0.16
250	6.879	33.975	90.9	0.15
300	6.392	33.992	91.0	0.15
400	5.708	34.043	91.0	0.15
500	5.086	34.092	91.2	0.15
503	5.074	34.094	91.2	0.15

STA 83 LAT: 40 15.0 N LONG:125 29.9 W 05 AUG 1988 0732 GM: PROBE 2561 DEPTH 2271M PRESS TEMP SAL TRN TP 15.201 32.564 87.2 0.40 10 14.959 32.551 87.2 0.46 87.2 20 14.714 32.547 0.53 30 13.182 32.647 87.6 0.65 40 9.717 32.838 89.4 0.52 50 32.940 9.334 89.9 0.35 60 9.306 33.129 90.1 0.27 70 9.103 33.264 90.2 0.22 8.865 80 90.3 0.21 33.415 90 8.353 **33.**572 90.4 0.20 100 8.157 33.624 90.6 0.17 110 8.032 90.6 0.16 33.712 120 8.009 33.753 90.6 0.16 7.913 130 33.805 90.6 0.16 33.856 140 7.738 90.6 0.16 150 7.538 33.889 90.7 0.15

33.926

33.959

33.973

33.991

34.005

34 162 34 1.3 90.7

91.1

34.144 91.1 0.15

0.15

0.15

90.6 0.15

90.8 0.15

91.0 0.15

91.0 0.15

91.1 0.15

175

200

225

250

300

400

500

501

7.372

7.228

6.804

6.605

6.070

5.367

4.929

4.927

STA 84 LAT: 40 30.0 N LONG:125 30.0 W 05 AUG 1988 0926 GMT PROBE 2561 DEPTH 2834M

PRESS	TEMP	SAL	TRN	TP
1	15.025	32.588	87.3	0.36
10	14.998	32.587	87.3	0.36
20	13.448	32.643	86.9	0.59
30	10.289	32.844	88.2	0.71
40	9.593	33.028	89.8	0.41
50	9.570	33.139	90.3	0.25
60	9.115	33.189	90.4	0.21
70	8.844	33.299	90.6	0.23
80	8.600	33.414	90.6	0.19
90	8.253	33.548	90.7	0.16
100	8.200	33.622	90.7	0.17
110	8.001	33.728	90.7	0.15
120	7.885	33.765	90.7	0.15
130	7.789	33.809	90.8	0.14
140	7.703	33.856	90.7	0.15
150	7.533	33.888	90.7	0.15
175	7.318	33.935	90.8	0.15
200	6.982	33.960	90.9	0.15
225	6.771	33.981	90.9	0.15
250	6.540	33.989	91.0	0.15
300	6.128	34.015	91.0	0.15
400	5.470	34.081	91.0	0.15
500	4.992	34.137	91.2	0.15
501	4.990	34.137	91.2	0.15

LAT: 40 45.0 N LONG: 125 30.1 W STA 85 05 AUG 1988 1120 GMT PROBE 2561 DEPTH 2986M TP PRESS TEMP SAL TRN 32.645 86.7 0.48 1 14.437 14.291 32.644 86.9 0.51 10 32.644 87.4 0.57 14.090 20 0.59 13.975 32.649 87.6 40 12.292 32.700 88.5 0.58 32.841 89.5 50 10.419 0.42 32.882 90.4 0.29 9.221 70 8.956 33.098 90.6 0.23 33.381 90.7 0.17 80 8.666 90.7 0.16 90 8.512 33.497 100 8.367 33.588 90.7 0.16 33.684 90.7 0.16 8.191 110 120 8.059 33.756 90.7 0.16 33.809 90.7 0.15 130 7.964 33.839 90.7 0.15 7.884 140 150 7.760 33.854 90.7 0.15 33.897 90.8 0.15 175 7.569 33.938 90.8 0.15 200 7.450 225 7.254 33.966 90.8 0.15 33.981 90.9 0.15 250 6.905 90.8 0.15 34.026 300 6.515 5.607 400 34.077 91.0 0.15 34.131 4.899 500 91.1 0.15 34.131 91.1 0.15 501 4.893

STA 86 LAT: 41 0.0 N LONG:125 30.0 W 05 AUG 1988 1310 GMT PROBE 2561 DEPTH 3078M

PRESS	TEMP	SAL	TRN	ΤP
1	12.948	32.716	86.4	0.72
10	12.466	32.734	86.3	0.75
20	12.130	32.778	86.4	0.85
30	11.310	32.825	86.7	1.01
40	10.365	32.893	88.0	0.68
50	10.073	32.967	88.7	0.56
60	9.457	33.067	89.6	0.41
70	8.984	33.296	90.2	0.29
80	8.687	33.428	90.4	0.22
90	8.526	33.575	90.6	0.17
100	8.365	33.655	90.5	0.16
110	7.912	33.765	90.7	0.13
120	7.842	33.847	90.4	0.14
130	7.737	33.881	90.4	0.13
140	7.618	33.915	90.4	0.13
150	7.539	33.935	90.5	0.13
175	7.213	33.975	90.5	0.13
200	6.879	33.993	90.6	0.13
225	6.657	34.010	90.8	0.13
250	6.447	34.023	90.7	0.14
300	6.017	34.032	90.8	0.13
400	5.367	34.081	91.1	0.12
500	4.883	34.144	91.0	0.12
501	4.883	34.145	91.0	0.12

STA 87 LAT: 41 15.1 N LONG:125 30.1 W 05 AUG 1988 1510 GMT PROBE 2561 DEPTH 3101M

PRESS	TEMP	SAL	TRN	TP.	
PRESS 1 10 20 30 40 50 60 70 80 90 100 110 120	TEMP 12.808 12.364 11.094 10.593 10.323 9.307 8.589 8.346 8.106 8.050 7.981 7.951 7.875	32.796 32.861 33.057 33.131 33.220 33.288 33.476 33.579 33.714 33.760 33.794 33.815 33.847	85.0 85.6 85.6 84.6 84.7 87.7 90.2 89.9 90.6 90.6 90.5 90.6	1.20 1.16 1.34 1.60 1.40 1.07 0.21 0.13 0.13 0.12 0.13	
130 140 150 175 200 225 250 300 400 500 503	7.732 7.542 7.413 7.239 7.015 6.765 6.411 5.936 5.353 4.749 4.735	33,881 33,930 33,945 33,968 33,993 34,010 34,030 34,030 34,083 34,126 34,123	90.6 90.6 90.6 90.6 90.7 90.8 91.0 91.1 91.2 91.2	0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	

STA 88 LAT: 41 29.9 N LONG:125 30.0 W 05 AUG 1988 1708 GMT PROBE 2561 DEPTH 3098M

PRESS	TEMP	SAL	TRN	TP
1	12,422	32,900	83.7	0.92
10	10.969	33.273	79.1	2.22
20	10.585	33,343	78.4	3.60
30	10.193	33,416	77.7	3.49
40	9.791	33,447	81.1	2.98
50	9.481	33.524	82.7	2.57
60	8.838	33.673	85.9	1.37
70	8.181	33.822	88.8	0.57
80	7.907	33.868	89.3	0.30
90	7.753	33.882	89.7	0.24
100	7.635	33.907	89.6	0.23
110	7.532	33.921	89.8	0.20
120	7.415	33,941	89.7	0.18
130	7.204	33.957	90.1	0.17
140	7.063	33.971	90.3	0.14
150	6.993	33.981	90.4	0.14
175	6.796	34.001	90.4	0.14
200	6.665	34.010	90.2	0.13
225	6.471	34.019	90.4	0.13
250	6.261	34.038	90.6	0.14
300	6.285	34.113	90.9	0.13
400	5.679	34.160	90.9	0.13
500	5.205	34.195	90.9	0.13
503	5.191	34.194	91.0	0.13

APPENDIX

