## ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION – Lesson-12: ARM

# The ARM architecture processors popular in Mobile phone systems

#### **ARM Features**

- ARM has 32-bit architecture but supports 16 bit or 8 bit data types also.
- ARM is programmable as little endian or big endian data alignment in memory.
- ARM provides the advantage of using a CISC in terms of functionality, along with the advantage of an RISC in terms of faster program implementation as well as reduced code lengths.

#### ARM7, ARM9 and ARM 11 microprocessors

- ARM processor has an RISC core for processing
- Combination of RISC and CISC features— ARM supports to a complex addressing modes based instruction set

## In-built compilation unit

- Compiles the CISC instructions into RISC formats, which are then implemented by the RISC core of the processor.
- Internally the implementation for many instructions is like in an RISC (without the micro-programmed unit)

## Jazelle technology

Faster Java codes execution

#### ARM Thumb 16-bit instructions

- Thumb Set designed for 16-bit word lengths and instructions, which internally executes by same 32-bit core.
- Instruction fetch of 2 bytes in Thumb mode in place of 4 bytes in ARM mode.
- Data alignment at steps of 2 bytes in Thumb mode in place of 4 bytes in ARM mode Memory savings of up to 35%, over the equivalent 32-bit code, while retaining all the benefits of a 32-bit system (such as access to a full 32-bit address space).
- Enables 32-bit performance at the 8/16-bit system cost in terms of memory needs.

#### Thumb and 32-bit ARM modes

- Switch from one mode to another
- No overheads (in terms of time and memory) in moving between Thumb and the normal ARM state of the codes. Two states are compatible on a normal basis.
- Gives code designer complete control over performance and code-size optimisation

#### ARM7 versions

- ARM7TDMI® (Integer Core)
- ARM7TDMI-S<sup>TM</sup>, (Synthesisable version of ARM7TDMI)
- ARM7EJ-S<sup>TM</sup> (Synthesisable core with DSP and Jazelle technology)
- ARM720T<sup>TM</sup> (cached processor macrocell, 8K Cached Core with Memory Management Unit (MMU) supporting operating systems1 including Windows CE, Palm OS, Symbian OS and Linux)
- 130 MIPS using Dhrystone 2.1 benchmark in typical 0.13μm process

#### ARM9 versions

- ARM920T (Dual 16k caches with MMU support multiple OSs.
- ARM922T (Dual 8k caches for applications support multiple OSs1.
- ARM940T<sup>TM</sup> (Dual 4k caches for embedded control applications running a RTOS)
- 32-bit RISC processor core Super scaling 5-stage integer pipeline. 8-entry write buffers to avoid blocking the processor on external memory *writes*
- Achieves 1.1 MIPS/MHz, 300 MIPS (Dhrystone 2.1) in a typical 0.13μm process

#### ARM11 versions

- Families with ARMv6 instruction set architecture that includes the Thumb® extensions for code density, Jazelle<sup>TM</sup> technology for Java<sup>TM</sup> acceleration, ARM DSP extensions, and SIMD media processing extensions. MMU) supporting operating systems1 and palm OS
- 32-bit RISC processor core with 8-stage integer pipeline, static and dynamic branch prediction, and separate load-store and arithmetic pipelines to maximize instruction throughput
- Targets a performance range of Dhrystone MIPS 400 to 1200

### Memory Architecture

- ARM7 has Princeton memory architecture.
- ARM9 processor has Harvard architecture

## Faster implementation and Reduced code lengths

- Due to the instant availability of the register word to the execution-unit.
- Reduced code lengths— Most instructions use registers as operands.
- Few bits in the instruction specify a register as operand. 8, 16 or 32 bits specify a memory address as operand and the displacement bits in the instruction.

### ARM registers

- R0 to R15.
- R15 also function as program counter.
- R14 function as link register.
- R13 may be used as stack pointer
- CPSR (current program status register)
- SPSR (saved program status register).

#### **ARM Architecture**

#### 32-bit bus



Chapter-2 L12: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education

#### **ARM Codes**

- ARM Codes— Forward compatible with higher versions.
- ARM7 codes Forward compatible with ARM9, ARM9E and ARM10 processors as well as Intel XScale micro-architecture.
- ARM9E and ARM 10 families use a Vector Floating Point (VFP) ARM coprocessor, which adds full floating point operands.
- VFP also provides fast development in SoC design when using tools like MatLab®.
- Applications are in image processing (scaling),
  2D and 3D transformations, font generation and digital filters.

## ARM Intelligent Energy Manager (IEM) technology

- Advanced algorithms to optimally balance processor workload and energy consumption.
- Maximizes system responsiveness.
- IEM works with the operating system and mobile OS.
- Application running on a mobile phone dynamically adjusts the required CPU performance level.

## ARM processors AHB (AMBA Advanced High Performance Bus) interface

- AMBA an established open source specification for on-chip interconnects.
- AMBA serves as a framework for SoC designs and development of the IP library.
- AHB support in all new ARM cores.

#### AHB

- Provides a high-performance and fully synchronous back plane. (Back plane means additional set of controllers, which can access another common bus, which is distinct from system bus in a multilevel buses in the system.)
- Multi-layer AHB in version ARM926EJ-S and all members of the ARM10 family represents a significant advancement. It reduces access latencies and increases the bandwidth available to multi-master systems

## 3- stage pipeline in ARM7

**Successive Clock Intervals** 



Fetch

Decode

Read Operands

Execute Write

back

I1

I2

I3

I4

**I5** 

**I6** 

**I**1

I2

I3

**I4** 

**I**5

**I**1

I2

I3

**I**4

## Pipeline and Latch

#### 5- stage pipeline in ARM 9

#### **Successive Clock Intervals**



Chapter-2 L12: "Embedded Systems - " , Raj Kamal, Publs.: McGraw-Hill Education

## Super scaling in ARM

| Stages                     | Pipeline1 | Pipeline 2 |
|----------------------------|-----------|------------|
| Fetch                      | <b>I3</b> | I'3        |
| Decode<br>Read<br>Operands | I2        | I'2        |
| Execute Write back         | I1        | I'1        |

## Summary

#### We learnt

- ARM Architecture
- 32- address bus and 64-bit data bus
- Programmability as Little endian or Big endian
- Princeton Memory in ARM7 and Harvard in ARM9
- 16 Registers with R15 as Program counter

### Summary

#### We learnt

- 16-bit Thumb set for 16-bit instructions to reduce external memory requirement
- AHB
- 3 stage pipeline in ARM7 and 5 in ARM9

## End of Lesson 12 of Chapter 2