Conditional Random Fields

CSE 447 / 517 February 17, 2022 (Week 7)

Readings: Eisenstein (2019) 7 and 8

Logistics

- A6 is due tomorrow (Friday 2/18 11:59PM)

Agenda

- Conditional Random Field Review
 - Viterbi Algorithm
 - Forward Algorithm
- Quiz 6 Solutions
- Q&A

Task: Sequence Labeling

Problem: Given a sequence, label each element with from a discrete set of labels.

Example: Part-of-Speech tagging

time flies like an arrow

N, V, Prep, Det, N

Notation: $\langle x_1 \rightarrow y_1, x_2 \rightarrow y_2, \dots, x_n \rightarrow y_n \rangle$, each $y_i \in L$

Conditional Random Field: Motivation

Previously: Hidden Markov Model (HMM)

Assumptions:

- 1. y_i is conditionally independent of prior states given y_{i-1}
- 2. Observations x_i are conditionally independent of each other and states given y_i

Conditional Random Field: Motivation

In general, CRFs do not require these independence assumptions.

Conditional Random Field: Motivation

HMM (generative model) - models joint distribution $\prod_{i=1}^N p(y_i|y_{i-1})p(x_i|y_i)$

CRF (discriminative model) - directly models conditional distribution

$$\prod_{i=1}^{N} p(y_i|y_{i-1},x_i) \qquad p(\mathbf{y}|\mathbf{x})$$

Conditional Random Field: Overview

Score function:

$$ext{Score}(\mathbf{x},\,\mathbf{y}) = \sum_{i=0}^n s(\mathbf{x},i,y_i,y_{i+1})$$

 $s(\mathbf{x}, i, y_i, y_{i+1})$ tells us how good is the label assignments \mathbf{y}_i and \mathbf{y}_{i+1} are given "access" to the whole input sequence \mathbf{x} and the position i.

We let y_0 be the start symbol (START) and y_{n+1} be the stop symbol (STOP).

Notation reminder: bold variables are vectors.

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$egin{aligned} \hat{\mathbf{y}} &= ext{argmax}_{\mathbf{y}} \ ext{Score}(\mathbf{x}, \ \mathbf{y}) \ &= ext{argmax}_{(y_0, y_1, y_2 ... y_{n+1})} \sum_{i=0}^n s(\mathbf{x}, i, y_i, y_{i+1}) \end{aligned}$$

Note: these decisions are not local!

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$egin{aligned} \hat{\mathbf{y}} &= ext{argmax}_{\mathbf{y}} \ ext{Score}(\mathbf{x}, \, \mathbf{y}) \ &= \overline{ ext{argmax}_{(y_0, y_1, y_2 ... y_{n+1})}} \sum_{i=0}^n s(\mathbf{x}, i, y_i, y_{i+1}) \end{aligned}$$

This is argmax over all possible sequences $(y_1, y_2, ..., y_n)!$

Note: these decisions are not local!

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$\begin{split} \hat{\mathbf{y}} &= \mathrm{argmax}_{\mathbf{y}} \ \mathrm{Score}(\mathbf{x}, \ \mathbf{y}) \\ &= \underbrace{\mathrm{argmax}_{(y_0, y_1, y_2 \dots y_{n+1})} \sum_{i=0}^n s(\mathbf{x}, i, y_i, y_{i+1})}_{i=0} \end{split}$$
 This is argmax over all possible sequences $(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)!$

Note: these decisions are not local!

Naively: To find $\hat{\mathbf{y}}$, we can iterate over all possible sequences. Given label set size of L and sequence length of n, this is $O(L^n)$ (

Viterbi Algorithm: Overview

Problem: to solve the decoding problem efficiently.

Solution: dynamic programming, specifically, Viterbi algorithm.

Intuition: the best label sequence that end in (y_{i-1}, y_i) (i.e. $y_1, y_2, y_3, ..., y_{i-1}, y_i$) has to have the best prefix $(y_1, y_2, y_3, ..., y_{i-1})$.

Viterbi Algorithm: Recurrence

Let $\heartsuit_i(y)$ be the score of the best label sequence for $(x_1, x_2, ..., x_i)$ that ends in y.

Define it by recurrence:

$$egin{aligned} egin{aligned} igtriangledown_i(y) &= \max_{y_{i-1} \in \mathcal{L}} s(oldsymbol{x}, i-1, y_{i-1}, y) + \boxed{igtriangledown_{i-1}(y_{i-1})} \end{aligned}$$

Base case: the best possible label sequence for (x_1) that ends in y.

$$\heartsuit_1(y) = s(\boldsymbol{x}, 0, \bigcirc, y)$$

Viterbi Algorithm: Recurrence

Let $\heartsuit_i(y)$ be the score of the best label sequence for $(x_1, x_2, ..., x_i)$ that ends in y.

Define it by recurrence:

$$\bigtriangledown_i(y) = \max_{y_{i-1} \in \mathcal{L}} s(\pmb{x},i-1,y_{i-1},y) + \boxed{\bigtriangledown_{i-1}(y_{i-1})}$$
 Try every possible label for y_{i-1}.

Base case: the best possible label sequence for (x_1) that ends in y.

$$\heartsuit_1(y) = s(\boldsymbol{x}, 0, \bigcirc, y)$$

Viterbi Algorithm: Recurrence

Let $\heartsuit_i(y)$ be the score of the best label sequence for $(x_1, x_2, ..., x_i)$ that ends in y.

Define it by recurrence:

Base case: the best possible label sequence for (x_1) that ends in y.

$$\heartsuit_1(y) = s(\boldsymbol{x}, 0, \bigcirc, y)$$

		x ₁	x ₂	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$			
L	ℓ_2				
	ℓ_3				

$$\heartsuit_1(l_1) = s(\mathbf{x}, 0, \text{START}, l_1)$$

		x ₁	x ₂	x ₃	X ₄
Label set	ℓ ₁	$\heartsuit_1(\ell_1)$			
L {	ℓ_2				
	ℓ_3				

$$\heartsuit_1(l_1) = s(\mathbf{x}, 0, \text{START}, l_1)$$

Fill out this table from left to right, and backtrack from right to left.

Input sequence with 4 tokens

			x ₁	x ₂	x ₃	X ₄
Labels	set	ℓ ₁	$\heartsuit_1(\ell_1)$			
L		ℓ_2				
		ℓ_3				

$$\heartsuit_1(l_1) = s(\mathbf{x}, 0, \text{START}, l_1)$$

$$igotimes_1(l_1) = s(\mathbf{x}, 0, ext{START}, l_1)$$

Fill out this table from left to right, and backtrack from right to left.

		x ₁	x ₂	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$			
L	ℓ_2	$\bigcirc_1(\ell_2)$			
	ℓ_3	$\heartsuit_1(\ell_3)$			

$$\heartsuit_1(l_1) = s(\mathbf{x}, 0, \text{START}, l_1)$$

. . .

		x ₁	x ₂	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$	$\heartsuit_2(\ell_1)$		
L	ℓ_2	$\bigcirc_1(\ell_2)$			
	ℓ_3	$\heartsuit_1(\ell_3)$			

$$\lozenge_2(l_1) = \max_{y \in L} s(\mathbf{x}, 1, y, l_1) + \lozenge_1(y)$$

$$\heartsuit_2(l_1) = \max_{y \in L} s(\mathbf{x}, 1, y, l_1) + \heartsuit_1(y)$$

Fill out this table from left to right, and backtrack from right to left.

How good is the label pair y and ℓ_1 at position 1 and 2?

Fill out this table from left to right, and backtrack from right to left.

How good is the label pair y and ℓ_1 at position 1 and 2?

How good is the prefix that ends in y?

Fill out this table from left to right, and backtrack from right to left.

		x ₁	$x_{_2}$	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$	$\heartsuit_2(\ell_1)$		
L {	ℓ_2	$\heartsuit_1(\ell_2)$			
	ℓ_3	$\heartsuit_1(\ell_3)$			

$$igtriangledown_2(l_1) = \max_{y \in L} \overline{s(\mathbf{x}, 1, y, l_1)} + igtriangledown_1(y)$$

Good news! We have both of these!

		x ₁	$x_{_2}$	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$	$ \begin{array}{c} \heartsuit_{2}(\ell_{1}) \\ bp_{2}(\ell_{1}) \end{array} $		
L $\left.\right $	ℓ_2	$\heartsuit_1(\ell_2)$			
	ℓ_3	$\heartsuit_1(\ell_3)$			

$$igotimes_2(l_1) = \max_{y \in L} s(\mathbf{x}, 1, y, l_1) + igotimes_1(y)$$

$$\mathrm{b}p_2(l_1) = \mathrm{argmax}_{y \in L} \, s(\mathbf{x}, 1, y, l_1) + \heartsuit_1(y)$$

Fill out this table from left to right, and backtrack from right to left.

		x ₁	x ₂	x ₃	X ₄
	ℓ_1	$\heartsuit_1(\ell_1)$	$ \begin{array}{c} \bigcirc_{2}(\ell_{1}) \\ bp_{2}(\ell_{1}) \end{array} $		
$L \mid$	ℓ_2	$\heartsuit_1(\ell_2)$			
	ℓ_3	$\heartsuit_1(\ell_3)$			

$$\lozenge_2(l_1) = \max_{y \in L} s(\mathbf{x}, 1, y, l_1) + \lozenge_1(y)$$

$$\mathrm{b}p_2(l_1) = \mathrm{argmax}_{y \in L} \, s(\mathbf{x}, 1, y, l_1) + \heartsuit_1(y) \, .$$

Just keep track of which label y gave us the best score!

	x ₁	x ₂	x ₃	X ₄
ℓ ₁	$\heartsuit_1(\ell_1)$	${ { \bigcirc }_{2}(\ell_{1}) \atop bp_{2}(\ell_{1}) }$	${ { { { {undsymbol igor } } \ } }_{3}({{m{\ell}}_{1}}) \ { { { {bp}}_{3}({m{\ell}}_{1})} }$	${ \circlearrowleft_4(\ell_1) \atop bp_4(\ell_1) }$
ℓ_2	$\heartsuit_1(\ell_2)$	${ \circlearrowleft_2(\ell_2) \atop bp_2(\ell_2) }$	${ { igorage optimizes } igorage { {igorage optimizes } } igorage { {igorage opt$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
ℓ_3	$\heartsuit_1(\ell_3)$	$\heartsuit_2(\ell_3)$ $bp_2(\ell_3)$	$\heartsuit_3(\ell_3)$ bp $_3(\ell_3)$	$\bigcirc_4(\ell_3)$ $bp_4(\ell_3)$

	x ₁	x ₂	x ₃	X ₄	
ℓ_1	$\heartsuit_1(\ell_1)$	${ \circlearrowleft}_2(\ell_1) \ bp_2(\ell_1)$	${ \circlearrowleft }_3(\ell_1) \ bp_3(\ell_1)$	$ \bigcirc_{4}(\ell_{1}) $ $ bp_{4}(\ell_{1}) $	
ℓ_2	$\heartsuit_1(\ell_2)$	$ { { \circlearrowleft }_{2}(\boldsymbol{\ell}_{2}) \atop bp_{2}(\boldsymbol{\ell}_{2}) } $			♡ ₅ (STOP)
ℓ_3	$\heartsuit_1(\ell_3)$	${ \circlearrowleft }_2(\ell_3) \ {\sf bp}_2(\ell_3)$	$\heartsuit_3(\ell_3)$ bp $_3(\ell_3)$		bp ₅ (STOP)
STOP	\	\	1	\	

$$egin{aligned} igtriangledown_5(ext{STOP}) &= \max_{y \in L} s(\mathbf{x}, 4, y, ext{STOP}) + igtriangledown_4(y) \ &= \max_{\mathbf{y}} ext{Score}(\mathbf{x}, \, \mathbf{y}) \end{aligned}$$

	x ₁	x ₂	x ₃	X ₄	
ℓ ₁	$\heartsuit_1(\ell_1)$	${ { \bigcirc }_{2}(\ell_{1}) \atop bp_{2}(\ell_{1}) }$	${ \circlearrowleft }_3(\ell_1) \ bp_3(\ell_1)$		
ℓ_2	$\heartsuit_1(\ell_2)$	$ { { \circlearrowleft }_{2}(\boldsymbol{\ell}_{2}) \atop bp_{2}(\boldsymbol{\ell}_{2}) } $			♡ ₅ (STOP)
ℓ_3	$\heartsuit_1(\ell_3)$	$\bigcirc_2^{}(\ell_3^{})$ $bp_2^{}(\ell_3^{})$	$\bigcirc_3(\ell_3)$ bp $_3(\ell_3)$		bp ₅ (STOP)
STOP	\	1	\	\	

$$egin{aligned} egin{aligned} igtriangledown_5(\mathrm{STOP}) &= \max_{y \in L} s(\mathbf{x}, 4, y, \mathrm{STOP}) + igtriangledown_4(y) \ &= \max_{\mathbf{y}} \mathrm{Score}(\mathbf{x}, \, \mathbf{y}) \end{aligned}$$
 We found the max possible score!

Fill out this table from left to right, and backtrack from right to left.

	x ₁	X ₂	x ₃	X ₄	
ℓ ₁	$\heartsuit_1(\ell_1)$	${ \begin{tabular}{l} egin{subarray}{l} egin{sub$	${ { {\mathbb C}_3(\ell_1)} \atop {\sf bp}_3(\ell_1)}$		
ℓ_2	$\heartsuit_1(\ell_2)$				♡ ₅ (STOP)
ℓ_3	$\heartsuit_1(\ell_3)$		$\bigcirc_3(\ell_3)$ bp $_3(\ell_3)$	$\heartsuit_4(\ell_3)$ bp $_4(\ell_3)$	bp ₅ (STOP)
STOP	1	1	1	1	

Follow the back pointers to decode!

Viterbi Algorithm: Performance

Assume $s(\mathbf{x}, i, y_{i-1}, y_i)$ is constant time and space.

- Space: O(nL)
 - All we need in this case is to fill in the data structure.
 - It is a table with O(n) columns and O(L) rows.
- Runtime: O(nL²)
 - O(L): For each cell, we need to find max / argmax over label set L.
 - o There are O(nL) cells.

Remark: $s(\mathbf{x}, i, y_{i-1}, y_i)$ is often not constant time and space.

Decoding: given the input sequence \mathbf{x} and the score function, what is the best output sequence $\hat{\mathbf{y}}$?

$$egin{aligned} \hat{\mathbf{y}} &= ext{argmax}_{\mathbf{y}} \ ext{Score}(\mathbf{x}, \, \mathbf{y}) \ &= ext{argmax}_{(y_0, y_1, y_2 ... y_{n+1})} \sum_{i=0}^n s(\mathbf{x}, i, y_i, y_{i+1}) \end{aligned}$$

Just use Viterbi!

Runtime: Viterbi O(nL²) vs Naive O(nL)

Conditional Random Field: Learning

Training: Given input sequences \mathbf{x} and gold output sequences \mathbf{y} , what is the best θ^* such that we maximize $P(\mathbf{y} \mid \mathbf{x}; \theta)$ over all observations?

$$Z(x; \theta) = \sum_{y' \in \mathcal{Y}(x)} \exp \text{Score}(x, y'; \theta)$$

$$p_{\mathrm{CRF}}(oldsymbol{y} \mid oldsymbol{x}; oldsymbol{ heta}) = rac{\exp \mathrm{Score}(oldsymbol{x}, oldsymbol{y}; oldsymbol{ heta})}{Z(oldsymbol{x}; oldsymbol{ heta})}$$

$$-\log p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}) = -\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) + \log Z(\boldsymbol{x}; \boldsymbol{\theta})$$

Forward Algorithm: Overview

Problem: We need to compute the partition function $Z(x;\theta)$ in order to train our CRF model.

$$Z(x; \theta) = \sum_{y' \in \mathcal{Y}(x)} \exp \text{Score}(x, y'; \theta)$$

Solution: Dynamic programming similar to Viterbi algorithm.

Recurrence:

$$lpha_i(y_i) = \sum_{y_{i-1} \in L} \exp(s(\mathbf{x},i-1,y_{i-1},y)) imes lpha_{i-1}(y_{i-1})$$

$$\alpha_1(l_1) = e^{s(\mathbf{x}, 0, \text{START}, l_1)}$$

Scores are exponentiated, so we multiply

	x ₁	x ₂	x ₃	X ₄
ℓ ₁	$\alpha_1(\ell_1)$	$\alpha_2(\ell_1)$	$\alpha_3(\ell_1)$	α ₄ (ℓ ₁)
ℓ_2	$\alpha_1(\ell_2)$	$\alpha_2(\ell_2)$	$\alpha_3(\ell_2)$	$\alpha_4(\ell_2)$
ℓ_3	$\alpha_1(\ell_3)$	$\alpha_2(\ell_3)$	α ₃ (ℓ ₃)	α ₄ (ℓ ₃)

	x ₁	x ₂	x ₃	X ₄	
ℓ ₁	$\alpha_1(\ell_1)$	$\alpha_2(\ell_1)$	$\alpha_3(\ell_1)$	$\alpha_4(\ell_1)$	
ℓ_2	$\alpha_1(\ell_2)$	$\alpha_2(\ell_2)$	$\alpha_3(\ell_2)$	$\alpha_4(\ell_2)$	α ₅ (STOP)
ℓ_3	$\alpha_1(\ell_3)$	$\alpha_2(\ell_3)$	α ₃ (ℓ ₃)	$\alpha_4(\ell_3)$	
STOP	\	\	١		

Partition function $Z(\mathbf{x}; \theta)$

Forward Algorithm: Performance

Assume $s(\mathbf{x}, i, y_{i-1}, y_i)$ is constant time and space.

Space: O(nL)

Runtime: O(nL²)

Computation at each step is slightly different from Viterbi, but matches complexity

 X_1

 $\heartsuit_1(\ell_1)$

 $\heartsuit_1(\ell_2)$

 $\heartsuit_1(\ell_3)$

ℓ,

l,

l3

STOP

Viterbi

 X_4

 $\heartsuit_{\Delta}(\ell_1)$

 $bp_4(\ell_1)$

 $\bigcirc_4(\ell_2)$ bp₄(ℓ_2)

 $\bigcirc_4(\ell_3)$ bp₄(ℓ_3) $\heartsuit_5(STOP)$ $bp_s(STOP)$

n

 X_3

 $\heartsuit_3(\ell_1)$

 $bp_3(\ell_1)$

 $\bigcirc_3(\ell_3)$ bp₃(ℓ_3)

X,

 $\heartsuit_2(\ell_1)$

 $bp_2(\ell_1)$

 $\bigcirc_2(\ell_2)$ bp₂(ℓ_2)

 $\bigcirc_2(\ell_3)$ bp₂(ℓ_3)

Conditional Random Field: Learning

$$-\log p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}) = -\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) + \log Z(\boldsymbol{x}; \boldsymbol{\theta})$$

Use stochastic gradient descent to minimize log loss

Conditional Random Field: Beyond 1st Order

You are about to run the Viterbi algorithm using a label set of size 10, on a sequence of length 9; your model is an HMM. The HMM is smoothed, so that p(x | y) > 0 for every vocabulary word x and every label y, and p(y' | y) > 0 for every pair of labels y and y'. How many possible full-sequence labelings $\langle y_0 = \text{start}, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} = \text{stop} \rangle$ are there?

Note that the start and stop labels are given! Clarification: the 10 labels allowed for regular non-stop-symbol words do not include the start and stop labels.

You are about to run the Viterbi algorithm using a label set of size 10, on a sequence of length 9; your model is an HMM. The HMM is smoothed, so that p(x | y) > 0 for every vocabulary word x and every label y, and p(y' | y) > 0 for every pair of labels y and y'. How many possible full-sequence labelings $\langle y_0 = \text{start}, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} = \text{stop} \rangle$ are there?

Note that the start and stop labels are given! Clarification: the 10 labels allowed for regular non-stop-symbol words do not include the start and stop labels.

9 positions, 10 options for each position -> $10^9 = 1,000,000,000$

We know that "time flies like an arrow; fruit flies like a banana". Now let us label each word in the sequence "fruit flies like bananas". For simplicity, we consider three labels L = {N, V, O}. We apply Viterbi algorithm to decode the sentence. Compute the values for each blank space and record the back pointer.

Let the score function $s(x,i,y_i,y_{i-1}) = log(e(x_i|y_i) * q(y_i|y_{i-1}))*$, where e is the emission probability and q is the transition probability (given on the next slide).

We have the following recurrence: $\heartsuit_i(y) = \max_{y_{i-1} \in L} \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1}) \right) + \heartsuit_{i-1}(y_{i-1})$

*Note: use natural log!

	1	I	I
q(N START)=0.6	q(N N)=0.4	q(N V)=0.5	q(N O)=0.7
q(V START)=0.3	q(V N)=0.3	q(V V)=0.1	q(V O)=0.1
q(O START)=0.1	q(O N)=0.1	q(O V)=0.2	q(O O)=0.1
q(STOP START)=0.0	q(STOP N)=0.2	q(STOP V)=0.2	q(STOP O)=0.1
e(* STOP) = 1	e(fruit N)=0.3	e(fruit V)=0.1	e(fruit O)=0.1
	e(flies N)=0.3	e(flies V)=0.5	e(flies O)=0.0
	e(like N)=0.1	e(like V)=0.4	e(like O)=0.3
	e(bananas N)=0.3	e(bananas V)=0.0	e(bananas O)=0.6
	, ,	, , , ,	, , ,

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

	fruit	flies	like	bananas	
	♡₁(N)= bp₁(N)=	$\heartsuit_2(N)=$ $bp_2(N)=$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$ \bigcirc_{_{4}}(N) = $ $ bp_{_{4}}(N) = $	
♡₀(START)=0	♡₁(V)= bp₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ $bp_4(N)=$	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡₁(O)= bp₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V) = bp_2(V) =$	$ \bigcirc_{3}(V) = \\ bp_{3}(V) = $	♡ ₄ (V)= bp ₄ (V) =	○5(STOP)= bp5(STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O) = bp_3(O) =$	♡ ₄ (O)= bp ₄ (O) =	

q(N N)=0.4	q(N V)=0.5	q(N O)=0.7
q(V N)=0.3	q(V V)=0.1	q(V O)=0.1
q(O N)=0.1	q(O V)=0.2	q(O O)=0.1
q(STOP N)=0.2	q(STOP V)=0.2	q(STOP O)=0.1
e(fruit N)=0.3	e(fruit V)=0.1	e(fruit O)=0.1
e(flies N)=0.3	e(flies V)=0.5	e(flies O)=0.0
e(like N)=0.1	e(like V)=0.4	e(like O)=0.3
e(bananas N)=0.3	e(bananas V)=0.0	e(bananas O)=0.6
	q(V N)=0.3 q(O N)=0.1 q(STOP N)=0.2 e(fruit N)=0.3 e(flies N)=0.3 e(like N)=0.1	q(V N)=0.3 $q(V V)=0.1$ $q(O N)=0.1$ $q(O V)=0.2$ $q(STOP N)=0.2$ $q(STOP V)=0.2$ $e(fruit N)=0.3$ $e(fruit V)=0.1$ $e(flies N)=0.3$ $e(flies V)=0.5$ $e(like N)=0.1$ $e(like V)=0.4$

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$\heartsuit_i(y) = \max_{y_{i-1} \in L} \log \left(\underline{e(x_i \mid y_i)} \times \underline{q(y_i \mid y_{i-1})} \right) + \underline{\heartsuit_{i-1}(y_{i-1})}$$

$$\heartsuit_1(\mathsf{N}) = \max($$

$$-1.715$$

$$)$$

	fruit	flies	like	bananas	
	♡ ₁ (N)= bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$egin{aligned} igtriangledown_i(y) &= \max_{y_{i-1} \in L} \, \log \left(\underline{e(x_i \,|\, y_i)} imes \underline{q(y_i \,|\, y_{i-1})}
ight) + \underline{igtriangledown_{i-1}(y_{i-1})} \ igtriangledown_i(\mathsf{N}) &= -1.715 \end{aligned}$$

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)= bp₁ (V)=	$ \bigcirc_{2}(V) = $ $ bp_{2}(V) = $	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

The argmax was START.

Note: bp₁ is always START.

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ $bp_4(N)=$	
♡₀(START)=0	♡₁(V)= bp₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{4}(V) = \\ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$ \bigcirc_{2}(N) = $ $ bp_{2}(N) = $	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\heartsuit_3(N) = bp_3(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

q(N START)=0.6	q(N N)=0.4	q(N V)=0.5	q(N O)=0.7
q(V START)=0.3	q(V N)=0.3	q(V V)=0.1	q(V O)=0.1
q(O START)=0.1	q(O N)=0.1	q(O V)=0.2	q(O O)=0.1
q(STOP START)=0.0	q(STOP N)=0.2	q(STOP V)=0.2	q(STOP O)=0.1
e(* STOP) = 1	e(fruit N)=0.3	e(fruit V)=0.1	e(fruit O)=0.1
	e(flies N)=0.3	e(flies V)=0.5	e(flies O)=0.0
	e(like N)=0.1	e(like V)=0.4	e(like O)=0.3
	e(bananas N)=0.3	e(bananas V)=0.0	e(bananas O)=0.6

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$ \bigcirc_{2}(N) = $ $ bp_{2}(N) = $	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)= bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$\heartsuit_i(y) = \max_{y_{i-1} \in L} \log \left(\underline{e(x_i \mid y_i)} \times \underline{q(y_i \mid y_{i-1})} \right) + \underline{\heartsuit_{i-1}(y_{i-1})}$$
 $\heartsuit_1(V) = -3.507$

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$ \bigcirc_{4}(V) = $ $ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

The argmax was START.

Note: bp₁ is always START.

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$ \bigcirc_{2}(N) = $ $ bp_{2}(N) = $	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{4}(V) = $ $ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ $bp_2(N)=$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$ \bigcirc_{2}(V) = $ $ bp_{2}(V) = $	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ $bp_2(N)=$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$ \bigcirc_{2}(V) = $ $ bp_{2}(V) = $	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ $bp_2(N)=$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$ \bigcirc_{2}(V) = $ $ bp_{2}(V) = $	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)= bp ₁ (O)=	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$\heartsuit_i(y) = \max_{y_{i-1} \in L} \log \left(\underline{e(x_i \mid y_i)} \times \underline{q(y_i \mid y_{i-1})} \right) + \underline{\heartsuit_{i-1}(y_{i-1})}$$
 $\heartsuit_1(O) = -4.605$

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$ \bigcirc_{2}(N) = $ $ bp_{2}(N) = $	$\bigcirc_{3}(N) = bp_{3}(N) =$	$ \bigcirc_{4}(N) = $ $ bp_{4}(N) = $	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$ \bigcirc_{4}(V) = $ $ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes q(y_i \,|\, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

The argmax was ???

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ $bp_2(N)=$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$ \bigcirc_{2}(V) = $ $ bp_{2}(V) = $	$\heartsuit_3(V)=$ bp ₃ (V) =	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \,|\, y_i) imes \underline{q}(y_i \,|\, y_{i-1})
ight) + \underline{igtriangledown_{i-1}(y_{i-1})}$$

The argmax was START.

Note: bp₁ is always START.

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$ \bigcirc_{2}(N) = $ $ bp_{2}(N) = $	$\bigcirc_{3}(N) = bp_{3}(N) =$	$ \bigcirc_{_{4}}(N) = $ $ bp_{_{4}}(N) = $	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V) = bp_2(V) =$	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{4}(V) = \\ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ $bp_4(N)=$	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V) = bp_4(V) =$	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\heartsuit_3(N) = bp_3(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\heartsuit_3(N) = bp_3(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V) = bp_2(V) =$	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\heartsuit_3(N) = bp_3(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V) = bp_2(V) =$	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)=$ bp ₂ (N) =	$\heartsuit_3(N) = bp_3(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V) = bp_2(V) =$	$\heartsuit_3(V)=$ bp ₃ (V) =	$ \bigcirc_{4}(V) = $ $ bp_{4}(V) = $	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)=$ bp ₂ (O) =	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\heartsuit_3(N) = bp_3(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V) = bp_2(V) =$	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)=$ $bp_2(O)=$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\heartsuit_3(V)=$ bp ₃ (V) =	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V) =$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V) =$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\bigcirc_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	♡ ₃ (O)= bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	♡ ₄ (N)= bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=$ bp ₂ (V) =	$\bigcirc_{3}(V)=$ $bp_{3}(V) =$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
್ಧ(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	♡ ₂ (V)=-3.612 bp ₂ (V)=N	$\heartsuit_3(V)=$ bp ₃ (V) =	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	♡ ₂ (V)=-3.612 bp ₂ (V)=N	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	$\heartsuit_4(V)=$ bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$ \bigcirc_{4}(N) = $ $ bp_{4}(N) = $	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_2(V)=-3.612$ bp ₂ (V)=N	$\bigcirc_{3}(V)=$ $bp_{3}(V)=$	♡ ₄ (V)= bp ₄ (V) =	$\heartsuit_5(STOP)=$ bp ₅ (STOP) =
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = bp_2(O) =$	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \, | \, y_i) imes \underline{q}(y_i \, | \, y_{i-1})
ight) + \underline{igtriangledown_{i-1}(y_{i-1})}$$

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	♡ ₂ (V)=-3.612 bp ₂ (V)=N	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)=$ bp ₂ (O) =	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N)=-3.835$ $bp_2(N)=N$	$\bigcirc_{3}(N) = bp_{3}(N) =$	$\heartsuit_4(N)=$ bp ₄ (N) =	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	♡ ₂ (V)=-3.612 bp ₂ (V)=N	$\bigcirc_{3}(V) = bp_{3}(V) =$	$ \bigcirc_{_{4}}(V) = \\ bp_{_{4}}(V) = $	$\heartsuit_5(STOP)=$ $bp_5(STOP)=$
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)$ =-inf bp ₂ (O)=\	$\heartsuit_3(O)=$ bp ₃ (O) =	♡ ₄ (O)= bp ₄ (O) =	

10 minutes later

$$igtriangledown_i(y) = \max_{y_{i-1} \in L} \, \log \left(e(x_i \, | \, y_i) imes q(y_i \, | \, y_{i-1})
ight) + igtriangledown_{i-1}(y_{i-1})$$

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	♡ ₃ (N)=-7.852 bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\heartsuit_2(V)$ =-3.612 bp ₂ (V)=N	$\heartsuit_{3}(V)$ =-5.955 bp ₃ (V) =N	$\heartsuit_4(V)$ =-inf $bp_4(V)$ =\	$\heartsuit_5(STOP)=-9.461$ bp ₅ (STOP) =N
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)$ =-inf bp ₂ (O)=\	♡ ₃ (O)=-6.425 bp ₃ (O) =V	♡ ₄ (O)=-8.075 bp ₄ (O)=V	

fruit	flies	like	bananas	
♡₁(N)=log(0.3*0.6)=-1 .715 bp₁ (N)=START	$\heartsuit_2(N)=max($ $log(0.3*0.4)-1.715,$ $log(0.3*0.5)-3.507,$ $log(0.3*0.7)-4.605)=$ -3.835 $bp_2(N) = N$	$\nabla_3(N)=\max(\log(0.1*0.4)-3.835,\log(0.1*0.5)-3.612,\log(0.1*0.7)-\inf)=$ -6.608 $bp_3(N)=O$	$\heartsuit_4(N)=\max(\log(0.3*0.4)-6.608,\log(0.3*0.5)-5.955,\log(0.3*0.7)-6.425)=$ -7.852 bp ₄ (N) = V	
♡₁(V)=log(0.1*0.3)=-3 .507 bp₁ (V)=START	$\heartsuit_2(V)=max($ $log(0.5*0.3)-1.715,$ $log(0.5*0.1)-3.507,$ $log(0.5*0.1)-4.605)=$ -3.612 $bp_2(V) = N$		$\nabla_4(V)=\max(\log(0.0)-6.608,\log(0.0)-5.955,\log(0.0)-6.425)=-\inf_{0 \neq 1}$	$\heartsuit_5(STOP)=max($ $log(0.2)-7.852,$ $log(0.2)-inf,$ $log(0.1)-8.075) =$ -9.461 $bp_5(STOP) = N$
♡ ₁ (O)=log(0.1*0.1)=- 4.605 bp ₁ (O)=START	$\heartsuit_2(O)=\max(\log(0.0)-1.715,\log(0.0)-3.507,\log(0.0)-4.605)=-\inf$	$\heartsuit_3(O)=\max(\log(0.3*0.1)-3.835,\log(0.3*0.2)-3.612,\log(0.3*0.1)-\inf)=$ -6.425 $p_3(O)=V$	$\heartsuit_4(O)=\max(\log(0.6*0.1)-6.608,\log(0.6*0.2)-5.955,\log(0.6*0.1)-6.425) = -8.075$ $bp_4(O) = V$	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)=-3.835$ bp ₂ (N)=N	$\heartsuit_3(N)=-7.852$ bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
♡₀(START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\heartsuit_{2}(V)$ =-3.612 bp ₂ (V)=N	$\heartsuit_{3}(V)=-5.955$ bp ₃ (V) =N	$\heartsuit_4(V)$ =-inf $bp_4(V)$ =\	\heartsuit_{5} (STOP)=-9.461 bp ₅ (STOP) =N
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = -\inf$ bp ₂ (O)=\	$\heartsuit_{3}(O) = -6.425$ bp ₃ (O) = V	♡ ₄ (O)=-8.075 bp ₄ (O)=V	

What is the decoded label sequence? Divide labels by space in your answer, e.g. (V V N O).

Follow the backpointer!

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	$\heartsuit_3(N)=-7.852$ bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
್ಧ(START)=0	$\heartsuit_1(V)$ =-3.507 bp ₁ (V)=START	$\heartsuit_{2}(V)=-3.612$ bp ₂ (V)=N	$\heartsuit_{3}(V) = -5.955$ bp ₃ (V) = N	$\bigcirc_{4}(V)$ =-inf $bp_{4}(V)$ =\	[⊙] ₅(STOP)=-9.461 bp ₅ (STOP) =N
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = -\inf$ bp ₂ (O)=\	♡ ₃ (O)=-6.425 bp ₃ (O) =V	♡ ₄ (O)=-8.075 bp ₄ (O)=V	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	♡ ₃ (N)=-7.852 bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
್ಧ(START)=0	$\heartsuit_1(V)$ =-3.507 bp ₁ (V)=START	$\heartsuit_{2}(V)=-3.612$ bp ₂ (V)=N	$^{\circ}_{3}(V)$ =-5.955 bp ₃ (V) =N	$\nabla_4(V)$ =-inf $bp_4(V)$ =\	♡ ₅ (STOP)=-9.461 bp ₅ (STOP) =N
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = -\inf$ bp ₂ (O)=\	$\heartsuit_{3}(O) = -6.425$ bp ₃ (O) = V	♡ ₄ (O)=-8.075 bp ₄ (O)=V	

	fruit	flies	like	bananas	
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N)$ =-3.835 bp ₂ (N)=N	♡ ₃ (N)=-7.852 bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
♡₀(START)=0	♡₁(V)=-3.507 bp₁ (V)=START	$\heartsuit_{2}(V)=-3.612$ bp ₂ (V)=N	♡ ₃ (V)=-5.955 bp ₃ (V) =N	$\nabla_4(V)$ =-inf $bp_4(V)$ =\	$\heartsuit_5(STOP)$ =-9.461 bp ₅ (STOP) =N
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O)$ =-inf bp ₂ (O)=\	$\heartsuit_{3}(O) = -6.425$ bp ₃ (O) = V	♡ ₄ (O)=-8.075 bp ₄ (O)=V	

	fruit	flies	like	bananas	
	♡₁(N)=-1.715 bp₁ (N)=START	$\heartsuit_{2}(N)$ =-3.835 -bp ₂ (N)=N	$\heartsuit_3(N)$ =-7.852 bp ₃ (N)=O	♡ ₄ (N)=-7.852 bp ₄ (N)=V	
್ಧ(START)=0	[⊙] ₁(V)=-3.507 bp₁ (V)=START	$\bigcirc_{2}(V)=-3.612$ bp ₂ (V)=N	$\heartsuit_3(V) = -5.955$ $bp_3(V) = N$	$\nabla_4(V)$ =-inf $bp_4(V)$ =\	[♡] ₅(STOP)=-9.461 bp₅ (STOP) =N
	♡₁(O)=-4.605 bp₁ (O)=START	$\heartsuit_2(O)$ =-inf $bp_2(O)$ =\	$\heartsuit_3(O) = -6.425$ bp ₃ (O) = V	♥ ₄ (O)=-8.075 bp ₄ (O)=V	

NNVN						
	fruit	ffies	like	bananas		
	♡ ₁ (N)=-1.715 bp ₁ (N)=START	$\heartsuit_2(N) = -3.835$ bp ₂ (N)=N	♡ ₃ (N)=-7.852 bp ₃ (N)=0	♡ ₄ (N)=-7.852 bp ₄ (N)=V		
♡ ₀ (START)=0	♡ ₁ (V)=-3.507 bp ₁ (V)=START	$\heartsuit_{2}(V)=-3.612$ bp ₂ (V)=N	$\heartsuit_{_{3}}(V)$ =-5.955 bp ₃ (V) =N	$\heartsuit_4(V)$ =-inf bp ₄ (V)=\	$\heartsuit_5(STOP)=-9.461$ $bp_5(STOP)=N$	
	♡ ₁ (O)=-4.605 bp ₁ (O)=START	$\heartsuit_2(O) = -\inf$ bp ₂ (O)=\	$\heartsuit_{3}(O) = -6.425$ bp ₃ (O) = V	♡ ₄ (O)=-8.075 bp ₄ (O)=V		

Q & A