# Revisões de Geometria



### **Objetivos**

- Introduzir os elementos de geometria
  - Escalares
  - Vetores
  - Pontos
- Estabelecer as operações entre eles de forma independente do referencial
- Definir as primitivas básicas
  - Segmentos de recta
  - Polígonos



#### Elementos Básicos de Geometria

- A geometria é o estudo das relações entre os objetos num espaço de n dimensões.
  - Em computação gráfica estamos interessados principalmente no espaço tridimensional
- Para modelarmos objetos pretendemos identificar o menor conjunto de primitivas que nos permitam construir objectos mais sofisticados
- Vamos necessitar de 3 elementos básicos:
  - Escalares (por si só não têm significado geométrico)
  - Vetores
  - Pontos



#### **Vetores**

- Definição física: um vetor é uma entidade com dois atributos
  - Direção
  - Magnitude
- Exemplos:
  - Força
  - Velocidade
  - Segmentos de recta dirigidos







- Operações
  - Vetor simétrico
  - Multiplicação por um escalar
  - Existência de vetor nulo
  - A soma de 2 vetores é um vetor



#### **Vetores**

- Um espaço linear|vetorial é um sistema matemático para manipular vetores
- As operações suportadas num espaço linear são:
  - A multiplicação por um escalar  $\mathbf{u} = \alpha \mathbf{v}$
  - o A adição de vetores:  $\mathbf{w} = \mathbf{u} + \mathbf{v}$
- Expressões possíveis num espaço linear
  v = u + 2w 3r

Exemplos de vetores idênticos:



 Os espaços lineares são insuficientes para definirmos geometria, precisamos de locais: pontos!

#### **Pontos**

- Definem uma localização no espaço
- As operações suportadas entre pontos e vetores são:
  - A subtração de dois pontos



A adição de um ponto e um vetor



### Espaço Afim

- Um espaço afim obtém-se acrescentando a um espaço linear um ponto
- Operações suportadas:
  - Adição de dois vetores
  - Multiplicação dum escalar por um vetor
  - Adição de um vetor a um ponto (ou subtração de dois pontos)
  - Operações entre escalares (adição, produto, inverso)
- ullet Adicionalmente, para um qualquer ponto P, definem-se as operações:
  - $\circ$  1 × P = P
  - $0 \times P = 0$  (vetor nulo, de comprimento zero e sem direção definida)

### Linhas

• Considerem-se todos os pontos da forma  $P(\alpha) = P_0 + \alpha \mathbf{d}$ 



• Conjunto de todos os pontos da recta que passa por  $P_0$ , com a direção do vetor  ${f d}$ .

#### Linhas

- $P(\alpha) = P_0 + \alpha \mathbf{d}$  é designada por equação paramétrica vetorial da reta / linha
- É uma forma mais robusta que as alternativas e é facilmente extensível a curvas e superfícies.
- Outras equações possíveis para uma reta:
  - Explícita: y = mx + b
  - o Implícita: ax + by + c = 0
  - Paramétrica:

$$x(\alpha) = (1 - \alpha)x_0 + \alpha x_1$$

$$y(\alpha) = (1 - \alpha)y_0 + \alpha y_1$$

### Raios e Segmentos de reta

• Se  $\alpha \geq 0$ , então  $P(\alpha)$  é um raio partindo de  $P_0$ , na direção de  ${\bf d}$ 



Se usarmos dois pontos para definir d, então:



Para  $0 \le \alpha \le 1$ , obtêm-se todos os pontos do segmento de reta que liga Q a R

$$P(\alpha) = Q + \alpha(R - Q) = Q + \alpha R - \alpha Q = (1 - \alpha)Q + \alpha R$$

### Polígono

 Um polígono é a região do espaço delimitada por uma sequência de segmentos de reta, contíguos, que formam uma figura fechada (início e fim) no mesmo ponto. Todos os pontos deverão estar num mesmo plano.







### Convexidade

 Um objeto é convexo se e só se, para quaisquer dois pontos pertencentes ao objeto, todos os pontos no segmento de reta que os une também pertencem ao objeto.





### Somas afins

- Considere-se a expressão:  $P = \alpha_1 P_1 + \alpha_2 P_2 + \ldots + \alpha_n P_n$
- Embora não se tenha definido a operação de multiplicação dum escalar por um ponto, pode mostrar-se por indução que a "soma" acima faz sentido se e só se:  $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$
- A expressão diz-se então ser uma soma afim dos pontos  $P_1, P_2, ..., P_n$ .
- Adicionalmente, se  $\forall i, \alpha_i \geq 0$ , então obtém-se o casco convexo (convex hull) dos pontos  $P_1, P_2, \ldots, P_n$ .

### Casco convexo (Convex Hull)

- É o menor objeto convexo contendo os pontos  $P_1, P_2, \dots, P_n$
- Em 2D (forma-se um polígono convexo) pode imaginar-se que passamos um elástico em torno do conjunto de pontos e o largamos



• Em 3D (forma-se um poliedro convexo) a analogia é a de um balão elástico envolvente que se larga até tocar em alguns dos pontos.

### Curvas e Superfícies

• Curvas - são entidades definidas por um parâmetro da forma  $P(\alpha)$ , onde a função é não linear:

Exemplo: 
$$\mathbf{P}(t) = (1-t)3\mathbf{P1} + 3(1-t)2t\mathbf{P2} + 3(1-t)t2\mathbf{P3} + t3\mathbf{P4}$$
  $P(\alpha_i)$ 

• Superfícies - são formadas por funções de dois parâmetros  $P(\alpha, \beta)$ 



Nota: funções lineares geram linhas e polígonos

### Plano

 Um plano pode definir-se através dum ponto e de dois vetores, ou através de 3 pontos



$$P(\alpha, \beta) = R + \alpha \mathbf{u} + \beta \mathbf{v}$$



$$P(\alpha, \beta) = R + \alpha(Q - R) + \beta(P - R)$$

## Triângulos



 $\begin{aligned} & \text{Para} \\ & 0 \leq \alpha, \beta \leq 1, \\ & \text{obtêm-se todos} \\ & \text{os pontos } T \text{ do} \\ & \text{triângulo} \end{aligned}$ 



#### Coordenadas Baricêntricas

- Um triângulo é convexo, logo cada ponto do seu interior pode ser representado por uma soma afim:  $P(\alpha_1,\alpha_2,\alpha_3)=\alpha_1Q+\alpha_2R+\alpha_3S$ , onde  $\alpha_1+\alpha_2+\alpha_3=1$  e  $\forall i,\alpha_i\geq 0$ .
- Os valores de  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  são denominados de **coordenadas baricêntricas** do ponto P, em relação ao triângulo.

### Coordenadas baricêntricas (interpretação geométrica)



#### **Normais**

- Num espaço tridimensional, todos os planos têm um vetor perpendicular ou ortogonal a eles, denominado de vetor normal
- A partir da formulação  $P(\alpha, \beta) = P + \alpha \mathbf{u} + \beta \mathbf{v}$ , podemos usar o produto externo  $\mathbf{u} \times \mathbf{v}$  para encontrar o vetor  $\mathbf{n}$  que satisfaz:

$$(P(\alpha, \beta) - P) \cdot \mathbf{n} = 0$$

