Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	(m
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$	$-2ik \sigma_2^{\#1}\alpha\beta == 0 \left -i(4 \partial_\delta \partial_\chi \partial^\beta \partial^\alpha \tau^{\chi\delta} + 2 \partial_\delta \partial^\delta \partial^\beta \sigma^{\tau\chi} \right _{\chi} -$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ \emph{i}\ \emph{k}^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	6 i k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
	$4 \mathbb{I} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:		16

Quadratic (free) action	$S == \iiint (\frac{1}{6} (2 \omega^{\alpha \prime}_{\alpha} (t_{1} \omega^{\theta}_{\prime} - 2 t_{3} \omega^{\kappa}_{\prime}) + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} -$	$4t_1\omega_{lphaeta}^{$	$8t_3\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$2t_1\partial_{\scriptscriptstyle\prime} f^{\alpha\prime}\partial_{\theta} f_{\alpha}^{\theta} + 4t_1\partial^{\prime} f^{\alpha}_{\alpha}\partial_{\theta} f_{\theta}^{\theta} - 6t_1\partial_{\alpha} f_{\theta}\partial^{\theta} f^{\alpha\prime} -$	$3t_1\partial_\alpha f_{\theta_{}}\partial^\theta f^{\alpha\prime} + 3t_1\partial_{,}f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} +$	$3t_1 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha\prime} + 6t_1 \omega_{\alpha\theta\prime} (\omega^{\alpha\prime\theta} + 2\partial^{\theta} f^{\alpha\prime}) +$	$8r_2\partial_eta\omega_{lpha_I}^{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{$	$4 r_2 \partial_{\beta} \omega_{\prime \theta \alpha} \partial^{\theta} \omega^{\alpha \beta \prime} - 2 r_2 \partial_{\prime} \omega_{\alpha \beta \theta} \partial^{\theta} \omega^{\alpha \beta \prime} +$	$2 r_2 \partial_\theta \omega_{lphaeta_l} \partial^\theta \omega^{lphaeta_l} - 4 r_2 \partial_\theta \omega_{lpha_leta} \partial^\theta \omega^{lphaeta_l} +$	$4t_3\partial_{_l}f^{lpha_l}\partial_{_k}f_{_{lpha}}^{k}-8t_3\partial_{_l}f^{lpha}_{}\partial_{_k}f_{_{_l}}^{k}))[t,lpha,lpha]d\!\!\mid\!$	
-------------------------	--	--------------------------	---	---	---	--	--	---	---	--	--

α σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	$\sigma_{1^-}^{\#2}{}_{lpha}$ $ au_{1^-}^{\#1}{}_{lpha}$ $ au_{1^-}^{\#2}{}_{lpha}$	0 0 0	0 0 0	0 0 0	$\begin{vmatrix} -\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3} & 0 & -\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3} \end{vmatrix}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3} 0 \frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0 0 0	$\frac{1}{t_3} - \frac{i\sqrt{2}k(t_1 + 4t_3)}{3(1 + 2k^2)^2 t_1 t_3} 0 \frac{2k^2(t_1 + 4t_3)}{3(1 + 2k^2)^2 t_1 t_3}$	
'	$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	
α α α	$\tau_1^{\#1}_+ _{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0	
	$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0	
	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	:
		$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$	

0	0	0	0	0	0	0						[‡] O
0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$		$\omega_{0}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$	ω_{\perp}^{*1} , f_{\perp}^{*1}
0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$	$f_{0+}^{#2}$ †	$ \begin{array}{c} t_3 \\ \bar{i} \sqrt{2} kt_3 \\ 0 \end{array} $	$-i \sqrt{2} kt_3$ $2 k^2 t_3$ 0	0 0 0	0 0 0	#1
$-\frac{2\sqrt{2}}{\sqrt{2}}$	0	0	0	0	0	0	$\omega_{0}^{#1}$ †	$\sigma^{\#1}_{0^+}$	$0 \\ \tau_{0^{+}}^{#1}$	$\tau_0^{\#}$	$k^2 r_2 - t_1$ $\sigma_0^{\#1}$	- #1
- 42	0	0	0	0	0	0	$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$		_]
- <u>- 2</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$			0	- # #
†" †	$\dagger^{\alpha \beta}$	$\dagger^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$	$\tau_{0^{+}}^{#2}$ †	0	0	0	0	
$\omega_1^{*+} + ^{lpha ho}$	$\omega_1^{\#_2} + ^{\alpha \beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#:}$	$\omega_{1^{-}}^{\#_{1}^{\prime}}$	$f_1^{\#}$	$f_{1}^{\#}$	$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	

 $\frac{1}{3}$ ik $(t_1 - 2t_3)$

Massive and massless spectra

ا -	<u> </u>	'
	$-\frac{1}{r_2} > 0$	
	1	
	$\frac{t_1}{r_2} > 0$	
	0	

Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$