Planche no 31. Espaces vectoriels

* très facile ** facile *** difficulté movenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1: (*T)

Soit E le R-espace vectoriel des applications de [0, 1] dans R muni des opérations usuelles. Soit F l'ensemble des applications de [0,1] dans $\mathbb R$ vérifiant l'une des conditions suivantes :

1)
$$f(0) + f(1) = 0$$
 2) $f(0) = 0$

2)
$$f(0) = 0$$

3)
$$f\left(\frac{1}{2}\right) = \frac{1}{4}$$
 4) $\forall x \in [0, 1], f(x) + f(1-x) = 0$

5)
$$\forall x \in [0, 1], f(x) \ge 0$$
 6) $2f(0) = f(1) + 3$

6)
$$2f(0) = f(1) + 3$$

Dans quel cas F est-il un sous-espace vectoriel de E?

Exercice n° 2: (**T)

On munit \mathbb{R}^n des lois usuelles. Parmi les sous-ensembles suivants F de \mathbb{R}^n , lesquels sont des sous-espaces vectoriels?

1)
$$F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = 0\}$$

2)
$$F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = 1\}$$

3)
$$F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = x_2\}$$

$$\begin{array}{ll} \textbf{1)} \ F = \{(x_1,...,x_n) \in \mathbb{R}^n / \ x_1 = 0\} \\ \textbf{3)} \ F = \{(x_1,...,x_n) \in \mathbb{R}^n / \ x_1 = x_2\} \\ \end{array} \qquad \begin{array}{ll} \textbf{2)} \ F = \{(x_1,...,x_n) \in \mathbb{R}^n / \ x_1 = 1\} \\ \textbf{4)} \ F = \{(x_1,...,x_n) \in \mathbb{R}^n / \ x_1 + ... + x_n = 0\} \\ \end{array}$$

5)
$$F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 \times x_2 = 0\}$$

Exercice nº 3: (**)

Soit E un K-espace vectoriel. Soient A, B et C trois sous-espaces vectoriels de E vérifiant $A \cap B = A \cap C$, A + B = A + Cet $B \subset C$. Montrer que B = C.

Exercice no 4: (**T)

Soit $E = \mathbb{R}^{\mathbb{N}}$ le \mathbb{R} -espace vectoriel des suites réelles (muni des opérations usuelles). On considère les trois éléments de Esuivants : $\mathbf{u} = (\cos(n\theta))_{n \in \mathbb{N}}$, $\mathbf{v} = (\cos(n\theta + a))_{n \in \mathbb{N}}$ et $\mathbf{w} = (\cos(n\theta + b))_{n \in \mathbb{N}}$ où θ , a et b sont des réels donnés. Montrer que (u, v, w) est une famille liée.

Exercice no 5: (**T)

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par $\mathfrak{u}=(1,2,-5,3)$ et $\mathfrak{v}=(2,-1,4,7)$. Déterminer λ et \mathfrak{u} réels tels que $(\lambda, \mu, -37, -3)$ appartienne à F.

Exercice nº 6: (**T)

Montrer que a = (1,2,3) et b = (2,-1,1) engendrent le même sous-espace de \mathbb{R}^3 que c = (1,0,1) et d = (0,1,1).

Exercice nº 7: (**T)

- 1) Vérifier qu'il existe une unique application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 vérifiant f((1,0,0)) = (1,1) puis f((0,1,0)) = (0,1)et f((0,0,1)) = (-1,1). Calculer f((3,-1,4)) et f((x,y,z)) en général.
- 2) Déterminer Kerf. En fournir une base. Déterminer Imf.

Exercice nº 8: (**I)

Soit E un K-espace vectoriel et f un élément de $\mathcal{L}(E)$.

- 1) Montrer que $[\text{Kerf} = \text{Kerf}^2 \Leftrightarrow \text{Kerf} \cap \text{Imf} = \{0\}]$ et $[\text{Imf} = \text{Imf}^2 \Leftrightarrow E = \text{Kerf} + \text{Imf}]$ (où $f^2 = f \circ f$).
- 2) On rappelle qu'un endomorphisme p de E est un projecteur si et seulement si $p^2 = p$. Montrer que

$$[p \text{ projecteur} \Leftrightarrow Id - p \text{ projecteur}]$$

puis que

$$[p \text{ projecteur} \Rightarrow \text{Im}p = \text{Ker}(\text{Id} - p) \text{ et Ker}p = \text{Im}(\text{Id} - p) \text{ et } E = \text{Ker}p \oplus \text{Im}p].$$

- 3) Soient p et q deux projecteurs, montrer que : [Kerp = Kerq $\Leftrightarrow p = p \circ q$ et $q = q \circ p$].
- 4) p et q étant deux projecteurs vérifiant $p \circ q + q \circ p = 0$, montrer que $p \circ q = q \circ p = 0$. Donner une condition nécessaire et suffisante pour que $\mathfrak{p}+\mathfrak{q}$ soit un projecteur lorsque \mathfrak{p} et \mathfrak{q} le sont. Dans ce cas, déterminer $\mathrm{Im}(\mathfrak{p}+\mathfrak{q})$ et $\mathrm{Ker}(\mathfrak{p}+\mathfrak{q})$ en fonction de Kerp, Kerq, Imp et Imq.

Exercice nº 9: (**)

Soient E un K-espace vectoriel et A, B et C trois sous-espaces de E.

- 1) Montrer que : $(A \cap B) + (A \cap C) \subset A \cap (B + C)$.
- 2) A-t-on toujours l'égalité?
- 3) Montrer que : $(A \cap B) + (A \cap C) = A \cap (B + (A \cap C))$.

Exercice nº 10: (**T)

Dans $E = \mathbb{R}^4$, on considère $V = \{(x, y, z, t) \in E \mid x - 2y = 0 \text{ et } y - 2z = 0\}$ et $W = \{(x, y, z, t) \in E \mid x + z = y + t\}$.

- 1) Montrer que V et W sont des sous espaces vectoriels de E.
- 2) Donner une base de V, une base de W et une base de $V \cap W$.
- 3) Montrer que E = V + W.

Exercice no 11: (***)

Soit C l'ensemble des applications de \mathbb{R} dans \mathbb{R} , croissantes sur \mathbb{R} .

- 1) C est-il un espace vectoriel (pour les opérations usuelles)?
- 2) Montrer que $V = \{f \in \mathbb{R}^{\mathbb{R}} / \exists (g,h) \in \mathbb{C}^2 \text{ tel que } f = g h\} \text{ est un } \mathbb{R}\text{-espace vectoriel.}$

Exercice no 12: (**)

Montrer que la commutativité de la loi + est une conséquence des autres axiomes de la structure d'espace vectoriel.

Exercice no 13: (**)

Soient E un K-espace vectoriel et A, B et C trois sous-espaces vectoriels de E. Montrer que

$$(A \cap B) + (B \cap C) + (C \cap A) \subset (A + B) \cap (B + C) \cap (C + A)$$
.

Exercice no 14: (**IT)

Soient $F = \{(\lambda, \lambda, ..., \lambda), \lambda \in \mathbb{R}\}$ puis $G = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 + ... + x_n = 0\}$. Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^n et que $\mathbb{R}^n = F \oplus G$.

Exercice no 15: (****)

- 1) Soit n un entier naturel. Montrer que si n n'est pas un carré parfait alors $\sqrt{n} \notin \mathbb{Q}$.
- 2) Soit $E = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}, (a, b, c, d) \in \mathbb{Q}^4\}$. Vérifier que E est un \mathbb{Q} -espace vectoriel puis déterminer une base de E.

Exercice no 16: (***T)

Dans $\mathsf{E} = \mathbb{R}^{\mathbb{R}}$, étudier la liberté des familles suivantes A de vecteurs de E :

- 1) a, b et c étant trois réels deux à deux distincts donnés, $A = (f_a, f_b, f_c)$ où, pour tout réel x, $f_u(x) = \sin(x + u)$.
- 2) $A = (f_n)_{n \in \mathbb{Z}}$ où, pour tout réel x, $f_n(x) = nx + n^2 + 1$.
- 3) $A = (x \mapsto x^{\alpha})_{\alpha \in \mathbb{R}} \text{ (ici } E = (]0; +\infty[)^2).$
- 4) $A = (x \mapsto |x a|)_{a \in \mathbb{R}}$.

Exercice no 17: (****)

Soit E un K-espace vectoriel et soit $(u, v) \in (\mathcal{L}(E))^2$.

- 1) Montrer que [Ker $\mathfrak{v} \subset \text{Ker}\mathfrak{u} \Leftrightarrow \exists \mathfrak{w} \in \mathscr{L}(\mathsf{E})/\mathfrak{u} = \mathfrak{w} \circ \mathfrak{v}$].
- 2) En déduire que [v injectif $\Leftrightarrow \exists w \in \mathcal{L}(E) / w \circ v = Id_E$].

Exercice no 18: (***)

Soit $E = \mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels.

- 1) Soit $f: E \to E$. f est-elle linéaire, injective, surjective? Fournir un supplémentaire de Kerf. $P \mapsto P'$
- 2) Mêmes questions avec $g: E \to E$ $P \mapsto \int_0^x P(t) \ dt$

Exercice no 19: (**IT)

- 1) Soit $E = \mathbb{C}^{\mathbb{N}}$. Soient a, b et c trois nombres complexes tels que $a \neq 0$.
 - a) Soit F l'ensemble des suites u vérifiant : $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = 0$. Montrer que F est un sous-espace vectoriel de E.
 - b) Soit φ l'application de E dans E qui à un élément $\mathfrak u$ de E associe l'élément $\varphi(\mathfrak u)$ de E défini par

$$\forall n \in \mathbb{N}, \ (\varphi(u))_n = au_{n+2} + bu_{n+1} + cu_n.$$

En utilisant l'application φ , retrouver le fait que F est un sous-espace vectoriel de E.

- 2) Soit $E = \mathbb{C}^{\infty}(I, \mathbb{C})$ où I est un intervalle de \mathbb{R} . Soient \mathfrak{a} , \mathfrak{b} et \mathfrak{c} trois nombres complexes tels que $\mathfrak{a} \neq \mathfrak{0}$.
 - a) Soit F l'ensemble des fonctions f vérifiant : $\forall x \in I$, $\mathfrak{af}''(x) + \mathfrak{bf}'(x) + \mathfrak{cf}(x) = 0$. Montrer que F est un sous-espace vectoriel de E.
 - b) Soit φ l'application de E dans E qui à un élément f de E associe l'élément de E défini par

$$\forall x \in I, \ (\varphi(f))(x) = \alpha f''(x) + bf'(x) + cf(x).$$

En utilisant l'application φ , retrouver le fait que F est un sous-espace vectoriel de E.

Exercice nº 20: (**IT)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E .

- 1) C_EF est-il un sous-espace vectoriel de E?
- 2) a) Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.
 - b) Quel est l'espace vectoriel engendré par $F \cup G$?

Exercice nº 21: (*IT)

Soient E un espace vectoriel puis f et g deux éléments de $\mathcal{L}(E)$. Montrer que

$$g \circ f = 0 \Leftrightarrow Imf \subset Kerg.$$

Exercice no 22: (*)

Soient E un espace vectoriel puis f et g deux éléments de $\mathcal{L}(E)$. Montrer que $\operatorname{Ker}(g \circ f) = f^{-1}(\operatorname{Kerg})$.

Exercice nº 23: (**I)

Soit z un nombre complexe non réel. Montrer que (1,z) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Exercice no 24: (***I)

Pour $a \in \mathbb{R}$ et $x \in \mathbb{R}$, on pose $f_a(x) = e^{ax}$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est libre.

Exercice nº 25: (**I)

Soient φ et ψ deux formes linéaires sur un K-espace vectoriel E. Montrer que

$$\phi \times \psi = 0 \Leftrightarrow \phi = 0 \text{ ou } \psi = 0.$$

Exercice nº 26: (**IT)

Soit $\alpha\in\mathbb{R}$ et $n\in\mathbb{N}.$ Montrer que la famille $\left((X-\alpha)^k\right)_{0\leqslant k\leqslant n}$ est une base de $\mathbb{R}_n[X].$