神经网络实验

内容提要

- 神经网络中的分类模型
- 神经网络中的回归模型
- 卷积神经网络

- from sklearn.neural_network import MLPClassifier
- class sklearn.neural_network.MLPClassifier(hidden_lay er_sizes=(100,), activation='relu', solver='adam',alpha =0.0001, batch_size='auto', learning_rate='constant', le arning_rate_init=0.001, power_t=0.5, max_iter=200,sh uffle=True, random_state=None, tol=0.0001, verbose=F alse, warm_start=False, momentum=0.9,nesterovs_momentum=True, early_stopping=False, validation_fractio n=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,n_iter_no_change=10)

• 常用参数说明

参数名	说明
activation	激活函数(identity,logistic,tanh,relu),默认为relu
alpha	正则化程度,L2正则化,默认为0.0001
hidden_layer_sizes	隐藏层的规模,默认是1个隐藏层100个节点
solver	权重优化的求解器(lbfgs,sgd,adam),默认为adam

activation参数

identity:对特征不做处理,返回值是f(x)=x

logistic:返回f(x)=1/[1+exp(-x)]

tanh:双曲正切处理,返回f(x)=tanh(x)

relu:线性整流函数又称修正线性单元,返回

 $f(x) = \max(0, x)$

• solver参数

lbfgs:是准牛顿方法族的优化器

sgd:随机梯度下降

adma: 基于随机梯度的优化器

- import numpy as np
- import matplotlib.pyplot as plt
- line=np.linspace(-6,6,200)
- #tanh
- plt.plot(line,np.tanh(line),label='tanh')
- #relu
- plt.plot(line,np.maximum(line,0),label='relu')
- #logistic
- plt.plot(line,1/(1+np.exp(-line)),label='logistic')
- plt.legend(loc='best')
- plt.xlabel('x')
- plt.ylabel('y')
- plt.show()

- from sklearn.neural network import MLPClassifier
- from sklearn.datasets import load_wine
- from sklearn.model_selection import train_test_split
- import matplotlib.pyplot as plt
- from matplotlib.colors import ListedColormap
- import numpy as np
- wine=load wine()
- x=wine.data[:,:2]
- y=wine.target
- x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)

mlp=MLPClassifier(solver='lbfgs', random_state=0)

- mlp.fit(x_train,y_train)
- print("train_score=",mlp.score(x_train,y_train))
- #可视化
- cmap light=ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF'])
- cmap_bold=ListedColormap(['#FF0000','00FF00','#0000FF'])
- x min,x max=x train[:,0].min()-1,x train[:,0].max()+1
- y_min,y_max=x_train[:,1].min()-1,x_train[:,1].max()+1
- xx,yy=np.meshgrid(np.arange(x min,x max,.02),np.arange(y min,y max,.02))
- z=mlp.predict(np.c [xx.ravel(),yy.ravel()])
- z=z.reshape(xx.shape)
- plt.figure()
- plt.pcolormesh(xx,yy,z,cmap=cmap_light)
- plt.scatter(x[:,0],x[:,1],c=y,edgecolor='k',s=60)
- plt.xlim(xx.min(),xx.max())
- plt.ylim(yy.min(),yy.max())
- plt.title("MLPClassifier")
- plt.show()

 $MLPC lassifier\ solver=lbfgs, hidden_layer_sizes=[10,10], activation='tanh', alpha=1$

- from sklearn.neural_network import MLPRegressor
- class sklearn.neural_network.MLPRegressor(hidden_la yer_sizes=(100,), activation='relu', solver='adam', alph a=0.0001,batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True,random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,n_iter_no_change=10)

- from sklearn.datasets import load boston
- from sklearn.model_selection import train_test_split
- · from sklearn import preprocessing
- from sklearn.neural_network import MLPRegressor
- #波士顿房价数据
- boston=load_boston()
- x=boston.data
- y=boston.target
- train_x, test_x, train_y, test_y = train_test_split(x, y,train_size=0.8, random_state=10)
- #数据标准化
- ss_x = preprocessing.StandardScaler()
- train x = ss x.fit transform(train x)
- test_x = ss_x.transform(test_x)
- ss y = preprocessing.StandardScaler()
- train y = ss y.fit transform(train y.reshape(-1, 1))
- test_y=ss_y.transform(test_y.reshape(-1, 1))
- #多层感知器-回归模型
- model_mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=(20, 20, 20), random_state=10)
- model_mlp.fit(train_x,train_y)
- mlp_score=model_mlp.score(test_x,test_y)
- print('sklearn多层感知器-回归模型得分',mlp_score)
- #多层感知器预测
- mlp_pridict=model_mlp.predict(test_x)

- import matplotlib.pyplot as plt
- fig = plt.figure(figsize=(20, 3))
- axes = fig.add_subplot(1, 1, 1)
- line1,=axes.plot(range(len(test_y)), test_y, 'g',label='test_y')
- line2,=axes.plot(range(len(mlp_pridict)), mlp_pridict, 'r--',label='mlp_pridict',linewidth=2)
- axes.grid()
- fig.tight_layout()
- plt.legend(handles=[line2,line1])
- plt.title('MLPRegressor')
- plt.show()

卷积神经网络(CNN)

- 卷积层(用来提取局部区域的特征)
- 池化层(用在连续的卷积层之间,减少特征和参数数量)
- 全连接层

• 识别手写数字

卷积层1(28*28图像共16层)

池化层1(14*14图像共16层)

卷积层2(14*14图像共36层)

池化层2(7*7图像共36层)

平坦层(36*7*7=1764神经元)

隐藏层(128个神经元)

输出层(10个神经元)

- from keras.datasets import mnist
- from keras.utils import np_utils
- import numpy as np
- from keras.models import Sequential
- from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
- np.random.seed(10)
- (x_train,y_train),(x_test,y_test)=mnist.load_data()
- #将数字图像特征转换为四维矩阵
- x_train4d=x_train.reshape(x_train.shape[0],28,28,1).astype ('float32')
- x_test4d=x_test.reshape(x_test.shape[0],28,28,1).astype('float32')

- #对数据进行标准化
- x_train4d=x_train4d/255
- x_test4d=x_test4d/255
- #使用one-hot encoding转换
- y_train=np_utils.to_categorical(y_train)
- y_test=np_utils.to_categorical(y_test)

- #建立线性堆叠模型
- model=Sequential()
- #建立卷积层1,filter滤镜, kernel_size每个滤镜的大小,让卷积运算产生的卷积图像大小不变,
- model.add(Conv2D(filters=16,kernel_size=(5,5),p adding='same',input_shape=(28,28,1),activation= 'relu'))
- #建立池化层1
- model.add(MaxPooling2D(pool_size=(2,2)))

- #建立卷积层2
- model.add(Conv2D(filters=36,kernel_size=(5,5),padding='same',activation='relu'))
- #建立池化层2
- model.add(MaxPooling2D(pool_size=(2,2)))
- #加入dropout层
- model.add(Dropout(0.25))

- #建立平坦层,将36个7*7的图像换为一维向量,36*7*7=1764
- model.add(Flatten())
- #建立隐藏层, 128个神经元
- model.add(Dense(128,activation='relu'))
- model.add(Dropout(0.5))#建立输出层
- model.add(Dense(10,activation='softmax'))

print(model.summary())

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 16)	416
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_2 (Conv2D)	(None,	14, 14, 36)	14436
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 36)	0
dropout_1 (Dropout)	(None,	7, 7, 36)	0
flatten_1 (Flatten)	(None,	1764)	0
dense_1 (Dense)	(None,	128)	225920
dropout_2 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	10)	1290
Total params: 242,062 Trainable params: 242,062 Non-trainable params: 0			

- #定义训练方式
- model.compile(loss='categorical_crossentropy ',optimizer='adam',metrics=['accuracy'])
- #开始训练
- train_history=model.fit(x=x_train4d,y=y_train, validation_split=0.2,epochs=10,batch_size=30 0,verbose=2)

```
- 44s - loss: 0.4901 - acc: 0.8472 - val loss: 0.0977 - val acc: 0.9715
Epoch 2/10
- 40s - loss: 0.1419 - acc: 0.9580 - val loss: 0.0638 - val acc: 0.9806
Epoch 3/10
 - 41s - loss: 0.1032 - acc: 0.9692 - val loss: 0.0511 - val acc: 0.9844
Epoch 4/10
- 40s - loss: 0.0851 - acc: 0.9751 - val loss: 0.0457 - val acc: 0.9861
Epoch 5/10
 - 41s - loss: 0.0723 - acc: 0.9779 - val loss: 0.0394 - val acc: 0.9867
Epoch 6/10
- 41s - loss: 0.0649 - acc: 0.9806 - val loss: 0.0389 - val acc: 0.9883
Epoch 7/10
 - 41s - loss: 0.0573 - acc: 0.9823 - val loss: 0.0412 - val acc: 0.9875
Epoch 8/10
 - 40s - loss: 0.0513 - acc: 0.9843 - val loss: 0.0340 - val acc: 0.9898
Epoch 9/10
- 40s - loss: 0.0456 - acc: 0.9865 - val loss: 0.0339 - val acc: 0.9898
Epoch 10/10
- 40s - loss: 0.0430 - acc: 0.9868 - val loss: 0.0338 - val acc: 0.9903
```

- #评估模型的准确性
- scores=model.evaluate(x_test4d,y_test)
- print(scores)
- #预测
- prediction=model.predict_classes(x_test4d)
- #查看前10项预测结果
- print(prediction[:10])