1 不定项选择题 (每题 3 分)

注:全部选对得3分,少选且正确得1分,错选不得分

- 1. 下面不是永假式的是BDE(注: ⊕ 为异或)
 - (A) $(\boldsymbol{p} \oplus \boldsymbol{q}) \wedge (\boldsymbol{p} \wedge \boldsymbol{q})$
 - (B) $(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{T}$
 - (C) $\neg (\mathbf{p} \lor \mathbf{q}) \land (\mathbf{q} \lor \mathbf{p})$
 - (D) $\boldsymbol{p} \vee \neg \boldsymbol{p}$
 - (E) $\boldsymbol{p} \oplus \neg \boldsymbol{p}$
- 2. 下列集合中,是完备集的是ABD
 - $(A) \{\neg, \land\}$
 - (B) $\{\neg, \rightarrow\}$
 - (C) $\{\neg, \leftrightarrow\}$
 - (D) $\{\uparrow\}$
 - (E) $\{\land,\lor\}$
- 3. 下列等值式不正确的是C
 - (A) $\neg(\forall x)A = (\exists x)\neg A$
 - (B) $(\forall x)(B \to A(x)) = B \to (\forall x)A(x)$
 - (C) $(\exists x)(A(x) \land B(x)) = (\exists x)A(x) \land (\exists x)B(x)$
 - (D) $(\forall x)(\forall y)(A(x) \to B(y) = (\exists x)A(x) \to (\forall y)B(y)$
 - (E) $\neg (\exists x)(\exists y)(F(x) \land F(y) \land \neg G(x,y)) = (\forall x)(\forall y)(F(x) \land F(y) \rightarrow G(x,y))$ (P71)
- 4. 定义如下命题:
 - i. F(x): x 是女性
 - ii. S(x): x 是学生
 - iii. K(x,y): x 认识 y

则对命题"Jack 认识每一个女生"的正确的形式化为BCD

- (A) $\forall x (K(\operatorname{Jack}, x) \to F(x) \land S(x))$
- (B) $\neg \exists x (F(x) \land S(x) \land \neg K(Jack, x))$
- (C) $\forall x (\neg F(x) \lor \neg S(x) \lor K(Jack, x))$
- (D) $\forall x ((F(x) \land S(x)) \rightarrow K(Jack, x))$
- (E) $\neg \exists x (F(x) \land S(x) \land K(Jack, x))$

- 5. 设 B(x,y) 表示命题: " $y \in x$ 的朋友". 下列选项哪个表示了命题: "每一个人都有且仅有一个朋友" CE
 - (A) $\forall x \exists y \forall z ((B(x,y) \land B(x,z)) \rightarrow (y=z))$
 - (B) $\forall x \exists y \exists z (((x \neq y) \rightarrow B(x, y)) \land ((x \neq z) \rightarrow \neg B(x, z)))$
 - (C) $\forall x \exists y (B(x,y) \land \forall z ((z \neq y) \rightarrow \neg B(x,z)))$
 - (D) $\exists x \forall y (B(x,y) \land \forall z ((z \neq y) \rightarrow \neg B(x,z)))$
 - (E) $\forall x \exists y \forall z ((B(x,y) \land (B(x,z) \rightarrow (y=z))))$

2 填空题 (每题 2 分)

- 1. 设 p,r 为真命题, q,s 为假命题, 则复合命题 $(p \to q) \leftrightarrow (\neg r \to s)$ 的真值为 F
- 2. 公式 $P \wedge (F \vee (\neg P \wedge Q))$ 的对偶式为 $P \vee (T \wedge (\neg P \vee Q))$
- 3. 将 $\neg p \land (\neg q \land r)$ 化成等值的并且仅含 ↑ 联结词的公式为

 $((p \uparrow p) \uparrow (((q \uparrow q) \uparrow r) \uparrow ((q \uparrow q) \uparrow r))) \uparrow ((p \uparrow p) \uparrow (((q \uparrow q) \uparrow r) \uparrow ((q \uparrow q) \uparrow r)))$

- 4. 已知命题公式 $G = \neg(P \to Q) \land R$, 则 G 的主析取范式是 $P \land \neg Q \land R$ 或 \bigvee_5 或 m_5
- 5. $\forall x((\exists y P(x,y) \to \forall y R(y)) \to (\exists z Q(z) \to S(x)))$ 的 Skolem 标准形 (仅保留全称量词的前束形) 是 $\forall x \forall z ((P(x,f(x)) \land \neg R(g(x))) \lor \neg Q(z) \lor S(x))$

3 解答题(每题 5 分)

1. 已知: $\{\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t\}$, 求证: t

证明:

1.
$$\neg p \land q$$
 Primise

2.
$$r \to p$$
 Primise

3.
$$\neg r \rightarrow s$$
 Primise

4.
$$s \to t$$
 Primise

5.
$$\neg p$$
 Simplification, 1

6.
$$\neg r$$
 Modus Tollens, 5, 2

7.
$$s$$
 Modus Ponens, $6, 3$

8. t Modus Ponens, 7, 4

- 5 分

2. 证明: $(\neg(P \to Q) \to \neg(R \lor S)) \land ((Q \land \neg P) \to \neg R) \land R \Rightarrow (P \leftrightarrow Q)$

证明: 运用反证法证明:

 $(1) \neg (P \leftrightarrow Q)$

	(2)	$((Q \land \neg P) \to \neg R)$	
	(3)	R	
	(4)	$\neg(P \to Q) \to \neg(R \lor S)$	
	(5)	$(Q \to P) \to \neg (P \to Q) \ (1)$	
	(6)	$R \to \neg (Q \land \neg P) \ (2)$	
	(7)	$\neg (Q \land \neg P) \ (3)(6)$	
	(8)	$Q \to P$ (7)	
	(9)	$\neg P \to Q$ (8)	
	(10)	$\neg (R \lor S) \ (4)(8)$	
	(11)	$\neg R$	
	(12)	矛盾 (3)(11)	
	得出	矛盾,证毕。	
3.	证明	$: (\forall x (W(x) \to Q(x))) \land (\exists x (R(x) \land S(x))) \land (\forall x (R(x) \land \neg Q(x))) \Rightarrow \exists x (S(x) \land \neg W(x))$	
	证明	;	
	(1)	$\forall x(W(x) \to Q(x))$	
	(2)	$\exists x (R(x) \land S(x))$	
	(3)	$\forall x (R(x) \land \neg Q(x))$	
	(4)	$W(x) \to Q(x)$ (1) 全称量词消去	
	(5)	$R(a) \wedge S(a)$ (2) 存在量词消去	
	(6)	$R(x) \wedge \neg Q(x)$ (3) 全称量词消去	
	(7)	$\neg Q(x) \to \neg W(x)$ (4)	
	(8)	$\neg Q(x)$ (6)	
	(9)	$\neg W(x) \ (7)(8)$	
	(10)	S(a) (5)	
	(11)	$S(a) \wedge \neg W(x) $ (9)(10)	
		$\exists x(S(x) \land \neg W(x) \ (11)$ 存在量词引入	
4.	任何人如果他喜欢美术,他就不喜欢体育。每个人或喜欢体育,或喜欢音乐,有的人不喜欢音乐,因而有的人		
	喜欢	美术。	
	要求	: 将自然语言形式化,用谓词逻辑表达上述已知条件,再证明。	
	答 :	自然语言形式化: $P(x)$: x 喜欢美术; $Q(x)$: x 喜欢体育; $R(x)$: x 喜欢音乐。论域: 人。待证命题: $\exists x (P(x))$	
	谓词	逻辑表达已知条件:	
	已知	:	

	$(1) \ \forall x (P(x) \to \neg Q(x))$
	(2) $\forall x(Q(x) \lor R(x)$ 注: 异或亦可
	$(3) \ \exists x(\neg R(x))$
	2 分 证明:
	$(4) \neg R(a) (3)$
	$(5) \ \ Q(a) \vee R(a) \ (2)$
	(6) $Q(a)$ (4)(5)
	$(7) \ P(a) \to \neg Q(a) \ (1)$
	(8) $\neg P(a)$ (6)(7)
	$(9) \ \exists x (P(x))$
	得证。
5.	张三说李四在说谎,李四说王五在说谎,王五说张三和李四都在说谎。问张三、李四、王五三人,到底谁在说真话,谁说假话?
	要求:将自然语言形式化,用命题逻辑表达上述推理前提,再运用推理演算求解。
	答: 自然语言形式化: <i>P</i> : 张三说真话; <i>Q</i> : 李四说真话; <i>R</i> : 王五说真话
	已知:
	(1) $P \leftrightarrow \neg Q$
	$(2) \ Q \leftrightarrow \neg R$
	$(3) R \leftrightarrow (\neg P \land \neg Q)$
	2 分
	则
	$(4) \ \neg P \leftrightarrow Q (1)$
	$(5) R \leftrightarrow (Q \land \neg Q) (3)(4)$
	(6) $R = F$ (5)
	(7) $Q = T(2)(6)$
	(8) $P = F(1)(7)$
	4 分
	综上, 张三、王五说假话, 李四说真话。5 分