GRAPHICS GEMS EDITED BY PAUL S. HECKBERT

GRAPHICS GEMS IV

Edited by Paul S. Heckbert

Computer Science Department Carnegie Mellon University Pittsburgh, Pennsylvania

A Harcourt Science and Technology Company

San Diego San Francisco New York Boston London Sydney Tokyo ACADEMIC PRESS

A Harcourt Science and Technology Company 525 B Street, Suite 1900, San Diego, CA 92101-4495 USA http://www.academicpress.com

Academic Press 24-28 Oval Road, London NW1 7DX United Kingdom http://www.hbuk/ap/

Morgan Kaufmann 340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205 http://mkp.com

This book is printed on acid-free paper. (👁)

Copyright © 1994 by Academic Press, Inc. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

All brand names and product names mentioned in this book are trademarks or registered trademarks of their respective companies.

33 TZA 3659-4,1

2000 K 351

Library of Congress Cataloging-in-Publication Data

Graphics Gems IV / edited by Paul S. Heckbert.
p. cm. --(The Graphics Gems Series)

p. cm. --(1 ne Graphics Gens Sches)
Includes bibliographicsl references and index.
ISBN 0-12-336156-7 (with Macintosh disk). —ISBN 0-12-336155-9

(with IBM disk).

1. Computer graphics.
II. Title: Graphics Gems 4. III. Title: Graphics Gems four.

IV. Series.

T385.G6974 1994

006.6'6--dc20

93-46995 CIP

Printed in the United States of America 99 00 01 02 03 MB 9 8 7 6 5 4

♦ Contents

Autl	hor Inde	exix		
For	eword <i>t</i>	oy Andrew Glassnerxi		
Pre	face	xv		
Abc	out the	Cover xvii		
1.	Polyg	jons and Polyhedra		
	I.1.	Centroid of a Polygon by Gerard Bashein and Paul R. Detmer 3		
	I.2.	Testing the Convexity of a Polygon by Peter Schorn and Frederick Fisher 7		
	1.3.	An Incremental Angle Point in Polygon Test by Kevin Weiler 16		
	1.4.	Point in Polygon Strategies by Eric Haines		
	1.5.	Incremental Delaunay Triangulation by Dani Lischinski 47		
	I.6.	Building Vertex Normals from an Unstructured Polygon List by Andrew Glassner		
	I.7.	Detecting Intersection of a Rectangular Solid and a Convex Polyhedron by Ned Greene		
	I.8.	Fast Collision Detection of Moving Convex Polyhedra by Rich Rabbitz 83		
II.	Geon	netry111		
	II.1.	Distance to an Ellipsoid by John C. Hart		
	II.2.	Fast Linear Approximations of Euclidean Distance in Higher Dimensions by Yoshikazu Ohashi		
	II.3.	Direct Outcode Calculation for Faster Clip Testing by Walt Donovan and Tim Van Hook125		
	II.4.	Computing the Area of a Spherical Polygon by Robert D. Miller132		
	II.5.	The Pleasures of "Perp Dot" Products by F. S. Hill, Jr		
	II.6.	Geometry for N-Dimensional Graphics by Andrew J. Hanson		
III.	Transformations			
	III.1.	Arcball Rotation Control by Ken Shoemake175		
	III.2.	Efficient Eigenvalues for Visualization by Robert L. Cromwell193		

Vİ	♦ (Contents			
	III.3.	Fast Inversion of Length- and Angle-Preserving Matrices by Kevin Wu 199			
	111.4.	Polar Matrix Decomposition by Ken Shoemake			
	111.5.	Euler Angle Conversion by Ken Shoemake222			
	III.6.	Fiber Bundle Twist Reduction by Ken Shoemake230			
IV.	Curves and Surfaces				
•••	IV.1.	Smoothing and Interpolation with Finite Differences by Paul H. C. Eilers241			
	IV.2.	Knot Insertion Using Forward Differences by Phillip Barry and Ron Goldman251			
	IV.3.	Converting a Rational Curve to a Standard Rational Bernstein-Bézier Representation by Chandrajit Bajaj and Guoliang Xu			
	IV.4.	Intersecting Parametric Cubic Curves by Midpoint Subdivision by R. Victor Klassen			
	IV.5.	Converting Rectangular Patches into Bézier Triangles by Dani Lischinski 278			
	IV.6.	Tessellation of NURB Surfaces by John W. Peterson			
	IV.7.	Equations of Cylinders and Cones by Ching-Kuang Shene321			
	IV.8.	An Implicit Surface Polygonizer by Jules Bloomenthal			
V.	Ray Tracing351				
	V.1.	Computing the Intersection of a Line and a Cylinder by Ching-Kuang Shene353			
	V.2.	Intersecting a Ray with a Cylinder by Joseph M. Cychosz and Warren N. Waggenspack, Jr			
	V.3.	Voxel Traversal along a 3D Line by Daniel Cohen			
	V.4.	Multi-Jittered Sampling by Kenneth Chiu, Peter Shirley, and Changyaw Wang370			
	V.5.	A Minimal Ray Tracer by Paul S. Heckbert			
VI.	Shading				
	VI.1	385			
	VI.2	388 Androw Moo 388			
	VI.3	- W. D. LO is Franchiscophy Christophy Schlick 101			
	VI.4	404			

		Contents 💠 VII		
VII.	Frame Buffer Techniques			
	VII.1.	XOR-Drawing with Guaranteed Contrast by Manfred Kopp and Michael Gervautz		
	VII.2.	A Contrast-Based Scalefactor for Luminance Display by Greg Ward 415		
	VII.3.	High Dynamic Range Pixels by Christophe Schlick		
VIII.	Image	Processing		
	VIII.1.	Fast Embossing Effects on Raster Image Data by John Schlag433		
	VIII.2.	Bilinear Coons Patch Image Warping by Paul S. Heckbert		
	VIII.3.	Fast Convolution with Packed Lookup Tables by George Wolberg and Henry Massalin		
	VIII.4.	Efficient Binary Image Thinning Using Neighborhood Maps by Joseph M. Cychosz		
	VIII.5.	Contrast Limited Adaptive Histogram Equalization by Karel Zuiderveld 474		
	VIII.6.	Ideal Tiles for Shading and Halftoning by Alan W. Paeth		
IX.	Graph	nic Design495		
	IX.1.	Placing Text Labels on Maps and Diagrams by Jon Christensen, Joe Marks, and Stuart Shieber		
	IX.2.	Dynamic Layout Algorithm to Display General Graphs by László Szirmay-Kalos		
Χ.	Utilitie	es519		
	X.1.	Tri-linear Interpolation by Steve Hill		
	X.2.	Faster Linear Interpolation by Steven Eker		
	X.3.	C++ Vector and Matrix Algebra Routines by Jean-François Doué		
	X.4.	C Header File and Vector Library by Andrew Glassner and Eric Haines 558		

Index 571

Author Index

Format: author, institution, chapter number: p. start page.

Author's full address is listed on the first page of each chapter.

Chandrajit Bajaj, Purdue University, West Lafayette, IN, USA, IV.3: p. 256.

Phillip Barry, University of Minnesota, Minneapolis, MN, USA, IV.2: p. 251.

Gerard Bashein, University of Washington, Seattle, WA, USA, I.1: p. 3.

Uwe Behrens, Bremen, Germany, VI.4: p. 404.

Jules Bloomenthal, George Mason University, Fairfax, VA, USA, IV.8: p. 324.

Kenneth Chiu, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Jon Christensen, Harvard University, Cambridge, MA, USA, IX.1: p. 497.

Daniel Cohen, Ben Gurion University, Beer-Sheva, Israel, V.3: p. 366.

Robert L. Cromwell, Purdue University, West Lafayette, IN, USA, III.2: p. 193.

Joseph M. Cychosz, Purdue University, West Lafayette, IN, USA, V.2: p. 356, VIII.4: p. 465.

Paul R. Detmer, University of Washington, Seattle, WA, USA, I.1: p. 3.

Walt Donovan, Sun Microsystems, Mountain View, CA, USA, II.3: p. 125.

Jean-François Doué, HEC, Paris, France, X.3: p. 534.

Paul H. C. Eilers, DCMR Milieudienst Rijnmond, Schiedam, The Netherlands, IV.1: p. 241.

Steven Eker, City University, London, UK, X.2: p. 526.

Frederick Fisher, Kubota Pacific Computer, Inc., Santa Clara, CA, USA, I.2: p. 7, VI.2: p. 388.

Michael Gervautz, Technical University of Vienna, Vienna, Austria, VII.1: p. 413.

Andrew Glassner, Xerox PARC, Palo Alto, CA, USA, I.6: p. 60, X.4: p. 558.

Ron Goldman, Rice University, Houston, TX, USA, IV.2: p. 251.

Ned Greene, Apple Computer, Cupertino, CA, USA, I.7: p. 74.

Eric Haines, 3D/Eve Inc., Ithaca, NY, USA, I.4: p. 24, X.4: p. 558.

Andrew J. Hanson, Indiana University, Bloomington, IN, USA, II.6: p. 149.

John C. Hart, Washington State University, Pullman, WA, USA, II.1: p. 113.

Paul S. Heckbert, Carnegie Mellon University, Pittsburgh, PA, USA, V.5: p. 375, VIII.2: p. 438.

F. S. Hill, Jr., University of Massachusetts, Amherst, MA, USA, II.5: p. 138.

Steve Hill, University of Kent, Canterbury, UK, X.1: p. 521.

R. Victor Klassen, Xerox Webster Research Center, Webster, NY, USA, IV.4: p. 261.

Manfred Kopp, Technical University of Vienna, Vienna, Austria, VII.1: p. 413.

Dani Lischinski, Cornell University, Ithaca, NY, USA, I.5: p. 47, IV.5: p. 278.

Joe Marks, Digital Equipment Corporation, Cambridge, MA, USA, IX.1: p. 497.

Henry Massalin, Microunity Corporation, Sunnyvale, CA, USA, VIII.3: p. 447.

Robert D. Miller, E. Lansing, MI, USA II.4: p. 132.

Yoshikazu Ohashi, Cognex, Needham, MA, USA, II.2: p. 120.

Alan W. Paeth, Okanagan University College, Kelowna, British Columbia, Canada, VIII.6: p. 486.

John W. Peterson, Taligent, Inc., Cupertino, CA, USA, IV.6: p. 286.

Rich Rabbitz, Martin Marietta, Moorestown, NJ, USA, I.8: p. 83.

John Schlag, Industrial Light and Magic, San Rafael, CA, USA, VIII.1: p. 433.

Christophe Schlick, Laboratoire Bordelais de Recherche en Informatique, Talence, France, VI.1: p. 385, VI.3: p. 401, VII.3: p. 422.

Peter Schorn, ETH, Zürich, Switzerland, I.2: p. 7.

Ching-Kuang Shene, Northern Michigan University, Marquette, MI, USA, IV.7: p. 321, V.1: p. 353.

Stuart Shieber, Harvard University, Cambridge, MA, USA, IX.1: p. 497.

Peter Shirley, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Ken Shoemake, University of Pennsylvania, Philadelphia, PA, USA, III.1: p. 175, III.4: p. 207, III.5: p. 222, III.6: p. 230.

László Szirmay-Kalos, Technical University of Budapest, Budapest, Hungary, IX.2: p. 505.

Tim Van Hook, Silicon Graphics, Mountain View, CA, USA, II.3: p. 125.

Warren N. Waggenspack, Jr., Louisiana State University, Baton Rouge, LA, USA, V.2: p. 356.

Changyaw Wang, Indiana University, Bloomington, IN, USA, V.4: p. 370.

Greg Ward, Lawrence Berkeley Laboratory, Berkeley, CA, USA, VII.2: p. 415.

Kevin Weiler, Autodesk Inc., Sausalito, CA, USA, I.3: p. 16.

George Wolberg, City College of New York/CUNY, New York, NY, USA, VIII.3: p. 447.

Andrew Woo, Alias Research, Inc., Toronto, Ontario, Canada, VI.2: p. 388.

Kevin Wu, SunSoft, Mountain View, CA, USA, III.3: p. 199.

Guoliang Xu, Purdue University, West Lafayette, IN, USA, IV.3: p. 256.

Karel Zuiderveld, Utrecht University, Utrecht, The Netherlands, VIII.5: p. 474.