standard of these "function spaces", we mention the space $C_{_{\scriptsize O}}(X)$ of all continuous complex valued functions vanishing at infinity on a locally compact space X, or the spaces $L^p(X,\Sigma,\mu)$, $1 \le p \le \infty$, of all (equivalence classes of) p-integrable functions on a σ -finite measure space (X,Σ,μ) .

On these function spaces $E=C_O(X)$, resp. $E=L^D(X,\Sigma,\mu)$, there is a simple way to define "multiplication operators": Take a continuous, resp. measurable function $q:X\to \mathbb{C}$ and define

$$M_q f := q \cdot f$$
 , i.e. $M_q f(x) := q(x) \cdot f(x)$ for $x \in X$,

for every f in the "maximal" domain $D(M_q) := \{g \in E : q \cdot g \in E\}$. This natural domain is a dense subspace of $C_o(X)$, resp. $L^p(X, \Sigma, \mu)$, for $1 \leq p < \infty$. Moreover, $(M_q, D(M_q))$ is a closed operator. This is easy in case $E = C_o(X)$. For $E = L^p(\mu)$, $1 \leq p < \infty$, we consider a sequence $(f_n) \subseteq E$ such that $\lim_{n \to \infty} f_n = f \in E$ and $\lim_{n \to \infty} q f_n =: g \in E$. Choose a subsequence $(f_{n(k)})_{k \in N}$ such that $\lim_{k \to \infty} f_{n(k)}(x) = f(x)$ and $\lim_{k \to \infty} q(x) f_{n(k)}(x) = g(x)$ for μ -almost every $x \in X$. Then $g = q \cdot f$ and $f \in D(M_q)$, i.e. M_q is closed. For such multiplication operators many properties can be checked quite directly. For example, the following statements are equivalent:

(a) M_q is bounded. (b) q is (μ -essentially) bounded.

One has $\|\mathbf{M}_{\mathbf{q}}\| = \|\mathbf{q}\|_{\infty}$ in this situation.

Observe that on spaces C(K), K compact, there are no densely defined, unbounded multiplication operators.

By defining the <u>multiplication semigroups</u> $T(t)f(x) := \exp(t \cdot q(x))f(x) , x \in X, f \in E,$

one obtains the following characterizations.

<u>Proposition</u>. Let M_q be a multiplication operator on $E = C_0(X)$ or $E = L^p(X, \Sigma, \mu)$, $1 \le p < \infty$. Then the properties (a) and (b), resp. (a') and (b'), are equivalent:

- (a) M_q generates a strongly continuous semigroup.
- (b) $\sup\{\text{Re }q(x): x \in X \} < \infty$.
- (a') M_{q} generates a uniformly continuous semigroup.
- (b') $\sup\{|q(x)|: x \in X\} < \infty$.