Athena Chen

615 N Wolfe Street F3035 Baltimore MD 21202

C 214-802-2179 | ☐ achen70@jhu.edu | 🖀 athchen.github.io | 🖸 athchen | in athchen

Summary ____

PhD candidate in biostatistics developing methods for analyzing proteomic and genomic data to better understand, diagnose, and treat disease. Data scientist experienced in R, Bayesian analyses, immunology, and working with high-throughput biological data.

Education _

Johns Hopkins Bloomberg School of Public Health

Baltimore, MD

PHD, BIOSTATISTICS | GPA: 3.74/4.00

August 2017 - PRESENT

- · Advisor: Ingo Ruczinski, PhD
- Relevant coursework: Bayesian Methods, Advanced Data Science, Introductory Molecular Immunology, Statistical Machine Learning

Johns Hopkins University

Baltimore, MD

August 2014 - May 2017

- Bachelor of Arts, Biophysics and Applied Mathematics and Statistics \mid GPA: 3.92/4.00
- Thesis advisor: Margaret Johnson, PhD
- Honors thesis: Evaluation and Application of Spatial Cell Modeling Methodologies
- Graduated with general and departmental honors

Professional Experience _____

ConfluenceStat, LLC

CONSULTANT August 2020

- Constructed a model for a Bayesian adaptive clinical trial with negative binomial outcome.
- Estimated power of the clinical trial given various effect sizes and efficacy/non-inferiority cutoffs.

Research Experience _____

Graduate Research Assistant

Baltimore, MD

Johns Hopkins Bloomberg School of Public Health | PI: Ingo Ruczinski, PhD

August 2017 - PRESENT

- Developed a classifier for identifying recent HIV infections, improving the accuracy of cross-sectional estimates of incidence.
- Characterize human immune responses to various antigns derived from bacteriophage in the gut microbiome and human viruses.
- Construct a Bayesian model for proteomics data to identify enriched antibody responses. This model has been applied to data from HIV-infected individuals and COVID patients.

Undergraduate Research Assistant

Baltimore, MD

Johns Hopkins University, Department of Biophysics | PI: Margaret Johnson, PhD

December 2015 - August 2017

- · Analyzed and assessed challenges facing current single-particle modeling methods of biochemical systems.
- Studied spatial and stochastic effects on protein dynamics.
- Mentored a student in the Biophysics Research for Baltimore Teens program.

Skills _____

Computing *Proficient*: R, MATLAB, JAGS

Intermediate: Stan, Git, Github ETeX, Python, Microsoft Office, Java, Mathematica, Microsoft Office, Pymol

Languages Native: English

Intermediate: Spanish

Conversational: Mandarin Chinese

Software

beer: Bayesian Enrichment in R (R package)

- ♪ BIOCONDUCTOR | ATHCHEN/BEER
- R package implementing a Bayesian model for identifying peptides peptides that elicit enriched antibody responses in PhIP-Seq experiments.
- Includes specialized methods to subset and identify negative control samples, filter by viral species, and use existing libraries to populate object
 parameters.

PhIPData (R package)

- ♪ BIOCONDUCTOR | ATHCHEN/PHIPDATA
- R package for organizing data from phage-immunoprecipitation sequencing (PhIP-seq) experiments.
- Includes specialized methods to subset and identify negative control samples, filter by viral species, and use existing libraries to populate object
 parameters.

Publications .

- 1. Peng, R., Chen, A., Bridgeford, E., Leek, J. T. & Hicks, S. C. Diagnosing Data Analytic Problems in the Classroom. *Journal of Statistics and Data Science Education*. doi: 10.1080/26939169.2021.1971586 (Aug. 2021).
- 2. Kammers, K., Chen, A., Monaco, D. R., Hudelson, S. E., Grant-McAuley, W., Moore, R. D., Alter, G., Deeks, S. G., Morrison, C. S., Eller, L. A., Blankson, J. N., Laeyendecker, O., Ruczinski, I., Eshleman, S. H. & Larman, H. B. HIV Antibody Profiles in HIV Controllers and Persons With Treatment-Induced Viral Suppression. Frontiers in Immunology 12, 3459 (Aug. 2021).
- 3. Chen, A., Laeyendecker, O., Eshleman, S. H., Monaco, D. R., Kammers, K., Larman, H. B. & Ruczinski, I. A top scoring pairs classifier for recent HIV infections. Statistics in Medicine. doi: 10.1002/sim.8920 (Mar. 2021).
- 4. R., M. W., Henson, S. N., Monaco, D. R., **Chen, A.**, Littlefield, K., Bloch, E. M., Fujimura, E., Ruczinski, I., Crowley, A. R., Harini, N., Butler, S. E., Weiner, J. A., Li, M. Z., Bonny, T. S., Benner, S. E., Balagopal, A., Sullivan, D., Shoham, S., Quinn, T. C., Eshleman, S., Casadevall, A., Redd, A. D., Laeyendecker, O., Ackerman, M. E., Andrew, P., Elledge, S. J., Robinson, M. L., Tobian, A. A. R. & Larman, H. B. **Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality.** *The Journal of Clinical Investigation.* doi: 10.1172/JCI146927 (Feb. 2021).
- 5. Johnson, M. E., Chen, A., Faeder, J. R., Henning, P., Moraru, I. I., Meier-Schellersheim, M., Murphy, R. F., Prustel, T., Theriot, J. A. & Uhrmacher, A. M. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. *Molecular Biology of the Cell* 32. PMID: 33237849, 186–210 (Jan. 2021).
- Eshleman, S. H., Laeyendecker, O., Kammers, K., Chen, A., Sivay, M. V., Kottapalli, S., Sie, B. M., Yuan, T., Monaco, D. R., Mohan, D., Wansley, D., Kula, T., Morrison, C., Elledge, S. J., Brookmeyer, R., Ruczinski, I. & Larman, H. B. Comprehensive profiling of HIV antibody evolution. Cell Reports 27, 1422–1433 (Apr. 2019).

Posters and Presentations

Mar 2021	Antibody Profiling Identifies Antibody Targets Associated with Natural HIV Control	Virtual
	Conference on Retroviruses and Opportunistic Infections Science Spotlight Presentation	
April 2020	Top Scoring Pairs Classifier for Identifying Recent HIV Infection	Baltimore, MD
	Johns Hopkins Biostatistics Seminar Lightning Talk	
Mar 2020	Improving Classification for Recent HIV Infection Using Top Scoring Pairs	Boston, MA
	Conference on Retroviruses and Opportunistic Infections Poster	
Nov 2016	Spatial Cell Modeling: Application and Evaluation of Methodologies	Baltimore, MD
	Lectures in Computational Biophysics at Johns Hopkins University Invited Talk	

Honors & Awards

2021	New Investigator Scholarship, Conference on Retroviruses and Opportunistic Infections (\$700)
2020	The June B. Culley Award, Johns Hopkins Department of Biostatistics
	The Jane and Steve Dykacz Award, Johns Hopkins Department of Biostatistics
	New Investigator Scholarship, Conference on Retroviruses and Opportunistic Infections
2018	Wolfe Street Competition, Maryland Genetics, Epidemiology, and Medicine (MD-GEM) Training Program
	and Burroughs-Wellcome Fund (\$14,000)
2017	Phi Beta Kappa, Johns Hopkins University
	Hartline Research Award in Biophysics, Johns Hopkins University Department of Biophysics
	Naddor Prize, Johns Hopkins University Department of Applied Math and Statistics
2015-2016	Michael S. Applestein Scholarship, Johns Hopkins University
	Aronson Family Scholarship, Johns Hopkins University
2014-2017	Dean's List, Johns Hopkins University

Teaching _____

Guest Lecturer

Fall 2019 **Advanced Data Science**, *Evaluating Data Analyses with Examples* taught by Stephanie Hicks, PhD and Roger Peng, PhD

Graduate Teaching Assistant

- Guided students through lab exercises and discussions of course material.
- Provided feedback on assignments to facilitate a better understanding of course concepts.

Spring 2021	Bayesian Methods I and II, taught by Gary Rosner, PhD and Robert Scharpf, PhD	
Fall 2019/2020	Advanced Data Science, taught by Jeff Leek, PhD; Stephanie Hicks, PhD; and Roger Peng, PhD	
Summer 2020	Data Wrangling with R, taught by Andrew Jaffe, PhD and John Muschelli, PhD	
	Introduction to R for Public Health Researchers, taught by Andrew Jaffe, PhD and John Muschelli, PhD	
Spring 2020	Statistics for Laboratory Scientists I and II, taught by Ingo Ruczinski, PhD	
Spring 2019	Statistical Methods in Public Health III and IV, taught by Marie Diener-West, PhD; Leah Jager, PhD;	
	James Tonascia, PhD	
Fall 2018	Methods in Biostatistics I and II, taught by Ciprian Crainiceanu, PhD	

Undergraduate Teaching Assistant

- Developed computer lab exercises on bioinformatic techniques to analyze omic data sets.
- Assisted students with homework and computing lab assignments.
- Led review sessions to reinforce topics introduced in lecture.

Spring 2017	Introduction to Bioinformatics, taught by Patrick Fleming, PhD
Fall 2016	Biochemistry I, taught by Patrick Fleming, PhD
Summer 2016	Discrete Mathematics, taught by Fred Torcaso, PhD

Service _____

Biostatistics Student Organization Co-founder and President

Baltimore, MD

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH, DEPARTMENT OF BIOSTATISTICS

August 2020 – PRESENT

- Established a student organization to facilitate student-to-student and student-to-faculty communication in the department and advocate for student needs.
- Organized monthly meetings to discuss student concerns, activities, and other initiatives.

PhD Student Mentoring Committee Chair

Baltimore, MD

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH, DEPARTMENT OF BIOSTATISTICS

August 2019 – PRESENT

- Established mentoring program to enable students to collaboratively enhance skills, share knowledge, and experience growth through peer mentoring.
- Organized training sessions regarding mental health awareness, prevention, and treatment for mentors as well as mentor resources.

PhD Student Event Committee Chair

Baltimore, MD

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH, DEPARTMENT OF BIOSTATISTICS

August 2019 – Present

• Organized luncheons discussing student well-being, concerns, and career opportunities.

Graduate Program Recruiting Committee

Baltimore, MD

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH, DEPARTMENT OF BIOSTATISTICS

February 2018 - Present

- · Assisted with recruitment weekend events and interviews.
- Met with prospective and admitted students.