Contexte

Dans le cadre de l'UE de projet du deuxième semestre de Master 1, nous avons été chargés du projet *Apprentissage social et imitation pour la robotique en essaim*.

La robotique en essaim est un sous-domaine de la robotique collective qui désigne un ensemble de robots miniatures aux faibles capacités de calcul individuelles qui collaborent pour accomplir des tâches complexes.

Ce domaine bio-inspiré se révèle très efficace pour la résolution de problèmes et la prise de décision dans des systèmes multi-agents. Mis à part son efficacité évidente, il manque aujourd'hui une méthode théorique permettant de déterminer les meilleurs descripteurs comportementaux et comment les transmettre aux autres agents. L'objectif du projet est d'implémenter en Python ces descripteurs comportementaux et ensuite de définir la stratégie de sélection des individus experts à imiter. Cela permet d'observer les modalités de diffusion de compétences au sein de la population. L'implémentation d'un tel algorithme devrait favoriser la diversité au sein d'une population, et pourrait être plus efficace que d'autres algorithmes existants pour résoudre certains problèmes.

Spécificités générales

Le projet a deux objectifs principaux :

- 1. Implémenter des descripteurs comportementaux permettant aux robots d'enseigner ou d'apprendre comment réaliser une tâche.
- 2. Déterminer la stratégie de sélection des individus à imiter (Par exemple : imiter le comportement majoritaire ? imiter le comportement de l' individu le plus âgé ?)

Tout au long du projet, un rendez-vous hebdomadaire en présentiel ou en distanciel avec au moins l'un des encadrants est prévu. Ces rendez-vous ont pour objectif d'informer les encadrants du travail effectué, des éventuelles difficultés rencontrées et de déterminer dans quelle direction orienter la recherche la semaine suivante.

Objectifs spécifiques

Rendi	re le projet et ses résultats disponibles sur la plateforme collaborative Git.		
Tester	ce projet sur le simulateur Roborobo! et permettre la reproduction de ces		
résult	ats par exécution d'un programme disponible sur Git.		
Code	en Python un algorithme d'apprentissage par imitation basé sur l'algorithme		
HIT-E	EE [1].		
Ce de	rnier doit être modulable :		
0	Choix du taux d'apprentissage.		
0	Choix du taux de mutation.		
0	Choix du nombre de robots dont robots experts.		
0	Choix de la tâche à effectuer (par modification de l'environnement, des		
	données accessibles aux robots et de leur fonction de fitness).		
0	Et les différentes caractéristiques modifiables de manière inhérente par		
	Roborobo! (taille des robots et des objets, nombre de senseurs, distance des		
	senseurs, etc).		
L'app	rentissage se fait par observation des comportements des autres agents :		
0	Qu'ils soient définis comme agents-experts		
0	Ou qu'ils aient un indice de fitness supérieur		
Effect	Effectuer et analyser une étude statistique des résultats de l'algorithme pour une		
expér	ience donnée : le foraging.		
Identi	fier les descripteurs comportementaux permettant de maximiser les objectifs		
de l'es	ssaim et analyser leurs performances sur la population.		
Rédig	diger un rapport détaillé sur les expériences réalisées, leurs résultats et les		
ouver	tures possibles.		
Présenter ces résultats lors de la soutenance.			

Ressources

Ressources disponibles:

- Deux personnes travaillent sur le projet
- Un rendez-vous régulier avec les encadrants, spécialisés dans le domaine de la robotique en essaim
- Des publications scientifiques de référence :
 - Nicolas Bredeche and Nicolas Fontbonne. 2022. Social learning in swarm robotics. *Philos. Trans. R. Soc. B Biol. Sci.* 377, 1843 (January 2022), 20200309.
 DOI:https://doi.org/10.1098/rstb.2020.0309
 - Nicolas Bredeche. 2019. HIT-EE: a novel embodied evolutionary algorithm for low cost swarm robotics. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, ACM, Prague Czech Republic, 109–110. DOI:https://doi.org/10.1145/3319619.3321928
 - Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality Diversity: A New Frontier for Evolutionary Computation. Front. Robot. AI 3, (2016). Retrieved February 26, 2022 from https://www.frontiersin.org/article/10.3389/frobt.2016.00040
 - Jean-Baptiste Mouret and Stéphane Doncieux. 2012. Encouraging Behavioral Diversity in Evolutionary Robotics: an Empirical Study. Evol. Comput. 20, 1 (2012), 91–133. DOI:https://doi.org/10.1162/EVCO_a_00048
- Simulateur Roborobo!

Contraintes:

- Temps disponible limité pour travailler ensemble en présentiel (un jour/semaine)
- Pas de serveurs dédiés pour faire fonctionner les expériences sur de très longues durées

Délais

Activité	Délai
Rendu du carnet de bord de la recherche documentaire	27 février 2022
Séance de tutorat	17 mars 2022
Rendu du cahier de charges	31 mars 2022
Rendu du rapport	18 mai 2022
Soutenance	23-24 mai 2022