ΕΘΝΙΚΟ ΜΕΤΣΟΝΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΜΟΝΑΔΑ ΠΑΡΑΛΛΗΛΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

ΠΕΡΙ ΒΕΛΤΙΣΤΉΣ ΧΡΗΣΗΣ ΜΕΤΑΠΡΟΤΎΠΩΝ ΣΤΟΥΣ ΕΞΕΛΙΚΤΙΚΟΎΣ ΑΛΓΟΡΙΘΜΟΎΣ ΜΕ ΕΦΑΡΜΟΓΈΣ ΣΤΗΝ ΑΕΡΟΔΥΝΑΜΙΚΗ

ΔΗΜΗΤΡΙΟΣ ΜΙΧΑΛΗΣ

Ημερομηνία: 23/02/2022 Επιβλέπων: Κ.Χ. Γιαννάκογλου

Εισαγωγή

- Στόχος η βέλτιστη αξιοποίηση των εξελικτικών αλγορίθμων ενισχυμένων με μεταπρότυπα → επιλογή κατάλληλου μεταπροτύπου και μεθόδου βελτιστοποίησης
 - Βελτιστοποίηση μέσω EASY
 - Ενίσχυση με εξωτερικά μεταπρότυπα του SMT (Surrogate Model Toolbox)

≻Τρόποι:

- 1. Σύγκριση απλών εξελικτικών και ενισχυμένων με μεταπρότυπα
- 2. Σύγκριση μεταξύ εξωτερικών μεταπροτύπων του SMT
- 3. Σύγκριση εσωτερικών (EASY) και εξωτερικών (SMT) μεταπροτύπων
- ≻Εφαρμογή στη βελτιστοποίηση
 - 1. Απλών προβλημάτων ψευδο-μηχανικής
 - 2. Σχήματος αεροτομής με επίλυση των εξισώσεων Navier-Stokes

(μ,λ) Evolutionary Algorithms (EAs)

- Στοχαστική μέθοδος βελτιστοποίησης με βάση πληθυσμούς (μ,λ)
- \circ Σε κάθε γενιά g γίνεται επιλογή επικρατέστερων υποψήφιων λύσεων $\vec{\beta} \in P_{\lambda}^g$ μέσω της $\Phi(\vec{\beta})$, αφού πρώτα αξιολογηθούν στο PSM (Problem-Specific Model)
- \circ Οι επικρατέστερες λύσεις αποθηκεύονται στο σύνολο P_e
- \circ Ανανεώνεται στο σύνολο P_{lpha}^{g+1} μέσω τελεστών ελιτισμού
- \circ Γίνεται η επιλογή γονέων της επόμενης γενιάς P_{μ}^{g+1}
- \circ Σχηματισμός συνόλου P_{λ}^{g+1} μέσω ανάμειξης (crossover) και μετάλλαξης (mutation)

Metamodel-Assisted Evolutionary Algorithms (MAEAs)

- ∘ Εκπαίδευση μεταπροτύπου που αντικαθιστά το ακριβό υπολογιστικά PSM
- Μείωση του υπολογιστικού κόστους της αξιολόγησης
- Πρόβλεψη μεταπροτύπου → ανάγκη επαναξιολόγησης στο PSM
- Τρόποι εκπαίδευσης μεταπροτύπων, στη βελτιστοποίηση με MAEAs

MAEAs με off-line Εκπαίδευση

- \circ Εκπαίδευση ενός καθολικού μεταπροτύπου με n_t επιλεγμένα δείγματα εκπαίδευσης
- Η εκπαίδευση και η επαναξιολόγηση των βέλτιστων λύσεων γίνεται αποκομμένα από την εξέλιξη
- Η σύγκλιση της μεθόδου και ο αριθμός των κύκλων βελτιστοποίησης βασίζεται στην ακρίβεια του καθολικού μεταπροτύπου
- Η δειγματοληψία γίνεται με χρήση DoE (Design of Experiments) σχημάτων που διαθέτει το SMT

DoE Τεχνικές

- Οι διαθέσιμες μέθοδοι DoE με χρήση των οποίων πραγματοποιείται η δειγματοληψία είναι οι εξής:
 - 1. Τυχαία δειγματοληψία (Random sampling)
 - 2. LHS (Latin Hypercube Sampling)
 - Centered
 - Maximin
 - Maximin centered
 - Maxent
 - ESE
 - 3. Παραγοντική δειγματοληψία (πλήρης ή μερική)

Τυχαία

DoE Τεχνικές

Centered

Maxent

Minmax

ESE)

Minmax Centered

Παραγοντική (πλήρης ή μερική)

ΔΗΜΗΤΡΙΟΣ ΜΙΧΑΛΗΣ

MAEAs με on-line Εκπαίδευση

- \circ Εισαγωγή μιας φάσης προσεγγιστικής προ-αξιολόγησης (Low-Cost Pre-Evaluation LCPE) μέσα στην εξέλιξη και ξεκινά αφού n_{user} $\vec{\beta}$ αξιολογηθούν στο PSM
- \circ Η δειγματοληψία γίνεται στην εγγύτητα κάθε $ec{eta} \in P^g_\lambda$
- \circ Εκπαίδευση τοπικών-προσωποποιημένων μεταπροτύπων για κάθε $\vec{\beta} \in P^{g}_{\lambda}$
- Η εκπαίδευση και η αξιολόγηση των βέλτιστων λύσεων γίνεται μέσα στην εξέλιξη

Σύζευξη SMT με EASY σε MAEAs

- ► MAEAs με on-line εκπαιδευμένα εξωτερικά μεταπρότυπα → σύνταξη των εξής κωδίκων σε Python που εκτελούν τις παρακάτω ενέργειες:
 - 1. Αξιολόγηση των δειγμάτων στο PSM
 - 2. Εκπαίδευση του μεταπροτύπου
 - 3. Πρόβλεψη με βάση το εκπαιδευμένο μεταπρότυπο Όλες οι διεργασίες της βελτιστοποίησης καλούνται μέσα από τον EASY με χρήση κατάλληλα διαμορφωμένων batch αρχείων.
- ►MAEAs με on-line εκπαιδευμένα εσωτερικά μεταπρότυπα → μόνο ένας κώδικας για την αξιολόγηση των δειγμάτων στο PSM
- ightharpoonup Στους MAEAs με off-line εκπαίδευση όλες οι διεργασίες της βελτιστοποίησης (με EASY) καλούνται μέσα από ένα καθολικό κώδικα της Python <math>
 ightharpoonup κώδικας για δειγματοληψία και επαναξιολόγηση τής 'βέλτιστης' λύσης με το PSM.

Εξωτερικά Μεταπρότυπα

- □ Τα διαθέσιμα μεταπρότυπα στο SMT είναι τα εξής:
 - 1. RBFs (Radial Basis Functions)
 - 2. Kriging
 - 3. KPLS
 - 4. KPLSK

Βελτιστοποίηση Συγκολλητής Δοκού ενός Στόχου

Μείωση του κόστους κατασκευής [\$] με 4 μεταβλητές
 σχεδιασμού και 5 κατασκευαστικούς περιορισμούς

$$min \ f(\vec{\beta}) = 1.10471h^2l + 0.04811tb(14.0 + l)$$
subject to
$$c_1(\vec{\beta}) = \tau(\vec{\beta}) - \tau_{max} \le 0$$

$$c_2(\vec{\beta}) = \sigma(\vec{\beta}) - \sigma_{max} \le 0$$

$$c_3(\vec{\beta}) = h - b \le 0$$

$$c_4(\vec{\beta}) = \delta(\vec{\beta}) - \delta_{max} \le 0$$

$$c_5(\vec{\beta}) = P - P_c(\vec{\beta}) \le 0$$

Βελτιστοποίηση Συγκολλητής Δοκού ενός Στόχου

Αποτελέσματα βελτιστοποίησης MAEAs και EAs

Σύγκριση μεταπροτύπων του SMT (on-line)

Σύγκριση KPLS και RBFs του EASY (on-line)

	Μέσο αποτέλεσμα	$ec{n}_{PSM}$	$ec{n}_{meta}$
MAEAs, on-line, SMT	2.54	10000	11579
MAEAs, on-line, EASY	2.53	10000	14422
MAEAs, off-line, SMT	3.12	388	23064
EAs	2.59	10000	-

Βελτιστοποίηση Συγκολλητής Δοκού ενός Στόχου

- Η κακή σύγκλιση των MAEAs με off-line εκπαίδευση οφείλεται στην φύση των περιορισμών και την κακή εκπαίδευση των σχετικών μεταπροτύπων
- \circ Γίνεται μετασχηματισμός των εξισώσεων των περιορισμών c_2 και c_4

Εκπαίδευση αρχικής εξίσωσης c_2

Εκπαίδευση μετασχηματισμένης εξίσωσης c_2

Βελτιστοποίηση Συγκολλητής Δοκού δύο Στόχων

- 2°ς στόχος η ελαχιστοποίηση της παραμόρφωσης δ
 στο άκρο της δοκού με 4 κατασκευαστικούς
 περιορισμούς
- Βελτιστοποίηση μέσω MAEAs με on-line εκπαίδευση
- Μέθοδος δείκτη υπερόγκου H(F) με σημείο
 αναφοράς το (0.0181, 98.27), δίνει για τα μέτωπα:

Δείκτης υπερόγκου Η(F)				
MAEAs, on-line, SMT 1,622				
MAEAs, on-line, EASY	1.6215			
EAs	1.6061			

Pareto front

Βελτιστοποίηση Μειωτήρα Ταχύτητας ενός Στόχου

Μείωση του συνολικού βάρους της κατασκευής [g] με
 7 μεταβλητές σχεδιασμού και 11 κατασκευαστικούς
 περιορισμούς

$$min \ f(\vec{\beta}) = 0.7854bm^2 \left(3.3333N_{teeth}^2 + 14.9334N_{teeth} - 43.0934\right) - 1.508 \left(d_1^2 + d_2^2\right)$$

$$7.4777 \left(d_1^3 + d_2^3\right) + 0.7854 \left(L_1 d_1^2 + L_2 d_2^2\right)$$

- Μεταβλητές σχεδιασμού:
 - Πάχος b του κινούμενου γραναζιού
 - Module m των συνεργαζόμενων γραναζιών
 - Αριθμός δοντιών N_{teeth} του pinion γραναζιού
 - Μήκη L₁, L₂
 - Διάμετροι d_1 , d_2

Βελτιστοποίηση Μειωτήρα Ταχύτητας ενός Στόχου

• Αποτελέσματα βελτιστοποίησης ΜΑΕΑς και ΕΑς

Σύγκριση μεταπροτύπων του SMT (on-line)

Σύγκριση KPLSK και RBFs του EASY (on-line)

	Μέσο αποτέλεσμα	$ec{n}_{PSM}$	$ec{n}_{meta}$
MAEAs, on-line, SMT	3002.68	20000	22792
MAEAs, on-line, EASY	3005.46	20000	24775
MAEAs, off-line, SMT	3004.34	151	18239
EAs	3006.01	20000	-

Βελτιστοποίηση NACA 4318

- Βελτιστοποίηση σχήματος αεροτομής
- □ Προσαρμογή πλέγματος με χρήση ογκομετρικών
 NURBS με 15 σημείων ελέγχου → 13 μεταβλητές
 σχεδιασμού οι κατά y συντεταγμένες
- Επίλυση των RANS εξισώσεων για την περίπτωση μόνιμης, συμπιεστής ροής με χρήση PUMA
- Χρήση Spalart-Allmaras μοντέλου τύρβης

ΔΗΜΗΤΡΙΟΣ ΜΙΧΑΛΗΣ

Βελτιστοποίηση Αεροτομής δύο Στόχων σε Συνθήκες Απογείωσης

∘ Συνθήκες πτήσης σε υψόμετρο h = 0 m

	$\rho [kg/m^3]$	p[bar]	T[K]	Mach	Re_{∞}	α[o]
Αέρας	1.225	1.01325	288	0.15	$3.492 \cdot 10^6$	10

- \circ Στόχοι: $f_1 = \max L$, $f_2 = \min D$
- ο Μέθοδος δείκτη υπερόγκου H(F) με σημείο αναφοράς το $(\max\{x \in F\} + 0.25, \min\{y \in F\} 20),$ δίνει για τα μέτωπα:

Μέσος Δείκτης υπερόγκου Η(F)				
MAEAs, on-line, SMT	223.65			
MAEAs, on-line, EASY	209.37			
MAEAs, off-line, SMT 215.08				
EAs	202.20			

Pareto front

Βελτιστοποίηση Αεροτομής ενός Στόχου σε Συνθήκες Απογείωσης

∘ Συνθήκες πτήσης σε υψόμετρο h = 0 m

ο Στόχος
$$\max \ f(\vec{\beta}) = L$$
 subject to $c_1(\vec{\beta}) = D - 1.08 D_{bsl} \le 0$

Σε συνθήκες απογείωσης $D_{bsl} = 15.53 N$

Μέο	$ec{n}_{PSM}$	$ec{n}_{meta}$	
MAEAs, on-line, SMT	1222.33	400	2988
MAEAs, on-line, EASY	1221.90	400	4000
MAEAs, off-line, SMT	1221.27	81	1000
EAs	1211.54	400	-

MAEAs με on-line εκπαίδευση vs EAs

Βελτιστοποίηση Αεροτομής ενός Στόχου σε Συνθήκες Απογείωσης

Βελτιστοποιημένη γεωμετρία

- Αύξηση 6.1% της άνωσης
- Θετική μετατόπιση της γραμμής κύρτωσης

Βελτιστοποίηση Αεροτομής ενός Στόχου σε Συνθήκες Ευθείας Πτήσης

· Συνθήκες πτήσης σε υψόμετρο h = 11000 m

	$\rho [\mathrm{kg}/m^3]$	p[bar]	T[K]	Mach	Re_{∞}	α[o]
Αέρας	0.364805	0.227	216.8	0.7	$4.797 \cdot 10^6$	2

$$\circ$$
 Στόχος: $min\ f(\vec{\beta}) = D$

subject to
$$c_1(\vec{\beta}) = L - 0.92L_{bsl} \ge 0$$

 \circ Σε συνθήκες ευθείας πτήσης $L_{bsl}=1123.81\ N$

N	Λέσο αποτέλεσμα	\overrightarrow{n}_{PSM}	$ec{n}_{meta}$
MAEAs, on-line, SMT	148.86	400	2988
MAEAs, on-line, EASY	149.57	400	4000
MAEAs, off-line, SMT	149.60	87	2000
EAs	154.63	400	-

MAEAs με on-line εκπαίδευση vs EAs

Βελτιστοποίηση Αεροτομής ενός Στόχου σε Συνθήκες Ευθείας Πτήσης

Βελτιστοποιημένη γεωμετρία

- Μείωση 26.3% της οπισθέλκουσας
- \circ Μετατόπιση της ζώνης αποκόλλησης της ροής από x/c = 0.33, x/c = 0.43
- Αρνητική μετατόπιση της γραμμής κύρτωσης

Συμπεράσματα

- 1. Σε απλά προβλήματα ψευδο-μηχανικής η εφαρμογή εξωτερικών μεταπροτύπων εμφανίζει παρόμοια αποτελέσματα με αυτά των εσωτερικών RBFs
- 2. Στην περίπτωση της αεροδυναμικής εφαρμογών η χρήση του KPLS με on-line είτε off-line εκπαίδευση, οδήγησε σε 60-80% μείωση του υπολογιστικού κόστους συγκριτικά με τα RBFs του EASY
- 3. Στις εφαρμογές που μελετήθηκαν σε αυτή τη διπλωματική εργασία παρατηρήθηκε:
 - Διαφαινόμενη υπεροχή των KPLS, KPLSK μεταξύ των όλων των χρησιμοποιούμενων μεταπροτύπων
 - Υπεροχή των MAEAs με on-line εκπαίδευση έναντι MAEAs με off-line εκπαίδευση και απλών εξελικτικών

ΑΠΟΡΙΕΣ/ΕΡΩΤΗΣΕΙΣ