## 1 Problem 1

The motion of a particle in a cubic potential is governed by the Hamiltonian

$$H(q,p) = \frac{p^2}{2m} + \frac{k^2}{2}q^2 - \frac{A}{3}q^3. \tag{1}$$

Here m is the particle mass, k is the spring constant, and A is a positive dimensional constant.

**1.a** Sketch the potential and the contours of H. Identify any fixed points (mechanical equilibrium states) that exist. Classify them as stable (elliptic) or unstable (hyperbolic).

**Solution.** Define the potential of (1) as

$$V(q) \equiv \frac{k^2}{2}q^2 - \frac{A}{3}q^3 \equiv g(q) + g(q), \tag{2}$$

where we have defined  $f(q) = k^2 q^2/2$  and  $g(q) = -Aq^3/3$ . Figures 1 and 2 and show sketches of f(q) and g(q), respectively. Their sum V(q) may be obtained by summing them graphically, and is shown in figure 3.

Fixed points are located where  $dV/dq \mid_{q^*} = 0$ . They are stable where V(q) has a local minimum ( $d^2V/dq^2 \mid_{q^*} > 0$ ) and unstable where V(q) has a local maximum ( $d^2V/dq^2 \mid_{q^*} < 0$ ). There are two fixed points, indicated by circles in figure 3. The stable (unstable) fixed point is indicated by a closed (open) circle.

Hamilton's equations for (1) are given by

$$\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m} \implies p = m\dot{q},$$

$$\dot{p} = -\frac{\partial H}{\partial q} = k^2 q - Aq^2.$$
(3)

Fixed points occur where  $\dot{q} = \dot{p} = 0$ ; that is, the solutions of the equation

$$p^* = k^2 q^* - A q^{*2}.$$

From (3),  $\dot{q} = 0 \implies \dot{p} = 0$ . Thus, the stable fixed point is located at  $(q^*, p^*) = 0$ , and the unstable fixed point is located at  $(q^*, p^*) = (k^2/A, 0)$ .

Contours are curves in the phase plane for which H is constant. Several contours are shown in figure 4.

**1.b** Sketch qualitatively both representative and interesting trajectories in the phase space. If there is a separatrix, a trajectory separating qualitatively different types of motion, specify the equation governing its shape.

**Solution.** Trajectories lie along contours of H. The directions of the trajectories may be deduced by (3), which indicates that time evolution flows in the +q (-q) direction when p > 0 (< 0). This corresponds to the top (bottom) half of the phase plane. Representative trajectories corresponding to some of the contours in figure 4 are shown in figure 5.

There is a separatrix in figure 5, shown in red. The separatrix passes through the unstable fixed point at  $(q^*, p^*) = (k^2/A, 0)$ . Feeding these values into (1), we obtain

$$E \equiv \frac{k^2}{2} \left(\frac{k^2}{A}\right)^2 - \frac{A}{3} \left(\frac{k^2}{A}\right)^3 = \frac{1}{6} \frac{k^6}{A^2}$$



Figure 1: Sketch of f(q) as defined in (2).



Figure 2: Sketch of g(q) as defined in (2).



Figure 3: Sketch of V(q) obtained by summing f(q) and g(q). The stable (unstable) fixed point is represented by a closed (open) circle.



Figure 4: Contours of H. The stable (unstable) fixed point is represented by a closed (open) circle.



Figure 5: Trajectories of H, with the direction of time evolution indicated by arrows. The stable (unstable) fixed point is represented by a closed (open) circle. The separatrix is drawn in red.

as the constant energy of the separatrix. Substituting once more into (1) yields

$$\frac{1}{6}\frac{k^6}{A^2} = \frac{p^2}{2m} + \frac{k^2}{2}q^2 - \frac{A}{3}q^3 \iff p^3 = m\left(\frac{1}{3}\frac{k^6}{A^2} - k^2q^2 + \frac{2}{3}Aq^3\right)$$

as the equation governing the shape of the separatrix.

## 2 Problem 2

A particle in three spatial dimensions moves in a force field give by the Yukawa potential

$$U(r) = -\frac{k}{r} \exp\left(-\frac{r}{a}\right),\,$$

where k and a are positive, and r is the radial distance between the particle and the origin.

**2.a** Show that this central force problem can be reduced to an equivalent one-dimensional problem with an effective potential. Specify the effective potential.

**Solution.** We will show that the problem can be reduced to one dimension by showing that the system has two independent conserved quantities.

U(r) is easily written in the spherical coordinates  $(r, \theta, \phi)$  where  $\phi$  is the azimuthal. In these coordinates, the Lagrangian is given by

$$L = T - U = \frac{m}{2}(\dot{r}^2 + r^2\sin^2\theta\,\dot{\phi}^2 + r^2\dot{\theta}^2) + \frac{k}{r}\exp\left(-\frac{r}{a}\right). \tag{4}$$

Firstly, L has no explicit time dependence, so the total energy of the system H = T + U is conserved.

Secondly, L has no explicit  $\phi$  dependence. From Noether's theorem, this implies a second conserved quantity, given by

$$mr^2(\sin^2\theta\,\dot{\phi} + \dot{\theta}) \equiv J$$

L can be rewritten in terms of J as

$$L = \frac{mr^2}{2}\dot{\theta}^2 + \frac{1}{2}\frac{J^2}{mr^2\sin^2\theta} + \frac{k}{r}\exp(-\frac{r}{a}) \equiv \frac{mr^2}{2}\dot{\theta}^2 - U_{\text{eff}},$$

where we have defined the effective potential  $U_{\text{eff}}$  by

$$U_{\text{eff}}(r) = -\frac{1}{2} \frac{J^2}{mr^2 \sin^2 \theta} - \frac{k}{r} \exp\left(-\frac{r}{a}\right).$$

**2.b** Describe qualitatively the different types of motion possible as the system parameters are varied. If you think a sketch clarifies your answer, include it.