Performance indices

Classification

Confusion matrix

Confusion matrix

Objective of any classification task: reaching highest rates of true values

Confusion !!!

By default presentation in scikit-learn (e.g. for confusion matrix, classification report)

Accuracy

Percentage of good prediction

		Predicte	ed value
		Immune	No Imm.
Actual	Immune	45	15
	No Imm.	13	27

Covid

In a sample of 100 observations

- 60, naturally immune

- 40, no immunization

$$Accuracy = \frac{TP + TN}{Total} = \frac{45 + 27}{100} = 0,72$$

Accuracy !!! not good indicator if strongly unbalanced classes

No skill model predict that everyone is immune

		Predicted value		Covid
		Immune	No Imm.	In a sample of 100 observations
Actual	Immune	95	0	 - 95, naturally immune
value	No Imm.	5	0	 - 5, no immunization
	1			

$$Accuracy = \frac{TP + TN}{Total} = \frac{95 + 0}{100} = 0.95$$

Accuracy !!! not good indicator if strongly unbalanced classes

No skill model predict that no one is immune

		Predicted value		Covid
		Immune	No Imm.	In a sample of 100 observations
Actual	Immune	0	95	 - 95, naturally immune
value	No Imm.	0	5	 - 5, no immunization
	1			

$$Accuracy = \frac{TP + TN}{Total} = \frac{0+5}{100} = 0.05$$

$$Precision = \frac{TP}{TP + FP} \longrightarrow Penalize optimistic models$$
(i.e. those with high FP rate)

Precision

• Ratio true positives (TP) on all <u>pre</u>dicted positives (TP + FP)

		Predicted value			Covid
		Immune	No Imm.		In a sample of 100 observations
Actual	Immune	45	15		- 60, naturally immune
value	No Imm.	13	27		- 40, no immunization
	•	•		G	ood predictions

$$Precision = \frac{TP}{TP + FP} = \frac{45}{45 + 13} = 0.78$$

$$Recall = \frac{TP}{TP + FN}$$

 $Recall = \frac{TP}{TP + FN}$ Penalize pessimistic models (i.e. those with high FN rate)

Ratio true positives (TP) on all <u>real</u>/actual positives (TP + FN)

		Predicted value		
		Immune	No Imm.	In
Actual	Immune	45	15	-
value	No Imm.	13	27	

Covid

a sample of 100 observations

60, naturally immune

40, no immunization

$$Recall = \frac{TP}{TP + FP} = \frac{45}{45 + 15} = 0.75$$

Accuracy, precision, recall

Pessimistic model					
		Predicted			
		values			
		Imm. No i.			
Actual	Imm	35	25		
values	No i.	2	38		

Perfect model					
Predicted					
	values				
	lmm No i.				
Imm	60	0			
No i.	0	40			
	Imm	Pred val			

		Optimist	ic mode			
			Pred	icted		
			val	ues		
			Imm	No i.		
	Actual	Imm	58	2		Actual positives
	values	No i.	25	15		•
						Predicted
	Accu	ıracy		0.73		positives
		ision redicted p		0.69 re not TP		
M	Re(call	ny FP) correctly	0.97	(few	

Accuracy 0.73

Precision 0.95
Most predicted positives are TP (few FP)

Recall 0.58
Many actual positives not correctly predicted (many FN)

Accuracy 1.00
Precision 1.00
Recall 1.00

F1-score

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

- Harmonic mean of precision and recall
 - Harmonic mean
 - Reciprocal of the arithmetic mean of the reciprocals of the given set of observations
 - Used for averaging rates/ratios (respect proportionality links)
 - Ex : calculate the average speed of a round trip when the speed of the outbound trip is not the same as the return trip

F1-score

Harmonic mean of precision and recall

$$F1score = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2}{\frac{precision + recall}{precision * recall}} = 2 * \frac{precision * recall}{precision + recall}$$

$$F1score = \frac{\frac{2}{1}}{\frac{TP}{TP + FP}} + \frac{1}{\frac{TP}{TP + FN}} = \frac{\frac{2}{TP + FP + TP + FN}}{\frac{2}{TP}} = \frac{\frac{2*TP}{2*TP + FP + FN}}{2*TP + FP + FN} \longrightarrow \frac{\text{ratio/# of FP and FN respected in the harmonic mean calculation}}{\text{mean calculation}}$$

Penalize optimistic and pessimistics models in the exact same way

F1-score

		Predicted value	
		Immune	No imm.
Actual	Immune	45	15
value	No imm.	13	27

$$Precision = \frac{TP}{TP + FP} = \frac{45}{45 + 13} = 0.78$$

$$Recall = \frac{TP}{TP + FP} = \frac{45}{45 + 15} = 0.75$$

$$F1score = 2 * \frac{precision + recall}{precision * recall} = 2 * \frac{0.78 * 0.75}{0.78 + 0.75} = 2 * \frac{0.585}{1,53} = 0,76$$

$$F1score = \frac{2*TP}{2*TP+FP+FN} = \frac{2*45}{2*45+13+15} = \frac{90}{118} = 0.76$$

Accuracy, Precision, Recall & F1-Score

Pessimistic model					
	Predicted				
		values			
		Imm. No I			
Actual	lmm.	35	25		
values	No I.	2	38		

Perfect model					
	Predicted				
		values			
		Imm. No I.			No I.
Actual	lmm.		60		0
values	No I.		0		40

Optimistic model							
	Predicted						
		values					
		I	lmm.		No I.		
Actual	lmm.		58		2		
values	No I.		25		15		

Accuracy	0.73	Accuracy	1.00	Accuracy	0.73
Precision	0.95	Precision	1.00	Precision	0.69
Recall	0.58	Recall	1.00	Recall	0.97
F1-Score	0,72	F1-Score	1.00	F1-Score	0,81

Multiclass classification

```
from sklearn.metrics import confusion_matrix

conf_matrix = confusion_matrix(y_test, y_pred)

fig = plt.figure (figsize=(2,2))

sns.heatmap(conf_matrix, annot=True, cmap="Blues", cbar=False)
```


print(classification_report(y_test, y_pred, target_names=iris_data.target_names))

	precision	recall	f1-score	support	
setosa versicolor	1.00	1.00	1.00 0.96	11 13	
virginica	0.86	1.00	0.92	6	cells size
accuracy	Simple mean		0.97	30	
macro avg	0.95	0.97	0.96	30	
weighted avg	0.97 Mean weighted by cells size	0.97	0.97	30	