

Primer Parcial TDC1 2024

Grupo A

NOMBRE COMPLETO DEL ALUMNO/A	
_	

FIRMA _____

Se solicita realizar el trabajo en forma prolija y presentar el desarrollo de cada ejercicio, destacando cada resultado alcanzado. Entregar solamente resultados no se acepta como respuesta correcta.

Ejercicio 1 (20%)

Para el circuito de la figura:

SE PIDE calcular:

- a) La resistencia equivalente total del circuito.
- b) Las corrientes I_1 , I_2 e I_3 .
- c) El voltaje en la resistencia de $5K\Omega$.
- d) La potencia que entrega la fuente y las potencias que se disipa en cada una de las resistencias.

Ejercicio 2 (30%)

Para el circuito de la figura:

continúa

continúa ejercicio 2 SE PIDE calcular:

- a) Corriente por cada una de las ramas del circuito.
- b) Voltaje en el punto VA del circuito.

Ejercicio 3 (30%)

Para la red de la figura

- a) Halle las expresiones matemáticas del voltaje en el capacitor $v_c(t)$, corriente por el capacitor $i_c(t)$ y voltaje en el resistor R1 $v_{R1}(t)$, si en el instante inicial se cierra el interruptor S1 mientras el interruptor S2 permanece abierto.
- b) Trace las curvas correspondientes a las expresiones matemáticas $v_c(t)$, $i_c(t)$ y $v_{R1}(t)$.
- c) Halle las expresiones matemáticas del voltaje en el capacitor v_c(t) y corriente por el capacitor i_c(t), si luego de transcurrido un tiempo superior a cinco constantes de tiempo se abre el interruptor S1 y se cierra el S2.

Pregunta teórica (20%)

- a) Explique cómo se modifica la capacitancia de un capacitor de placas paralelas cuando se adiciona un dieléctrico
- b) Determinar la capacitancia del capacitor del lado derecho de la figura