Section 6.1 Eigenvalues, Eigenvectors (178)

Main Equation: AX = XX

-) x is a scalar multiple of x (stretch, shrink, reverse directions, go to o)

- Most vectors change directions when multiplied by A.

Facts: nxn matrix A has n eigenvalues

\[
\lambda \text{ could be 0, real, or imaginary} \]
\[
\lambda \text{ could have duplicates} \]
\[
\det(A) = \text{product of eigenvalues} \]
\[
\text{trace(A)} = \alpha_{11} + \alpha_{22} + \cdots + \alpha_{nn} \]
\[
= \leq \lambda_{i}
\]

Get eigenvalues first. Get eigenvectors second. How to And >:

AZ = XX

成-1次=0

AX-XIX=0

(A-XI) = 0

Vectors & are in the nullspace of

(A-XI). We want the nonzero vectors x. Thus, solve

 $det(A-\lambda I) = 0$ to get λ .

Once we get > find the nonzero eigenvectors =.

How to find X

Take A- >I and find a

non-zero vector in its nullspace.

Ti and Xi are a pair.

Example: Find all eigenvalues/eigenvectors:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\det (A-\lambda I) = \det \begin{bmatrix} 2-\lambda - 1 \\ -1 & 2-\lambda \end{bmatrix} =$$

$$(2-\lambda)^{2} - (1) = \lambda^{2} - 4\lambda + 3 = 0$$

$$(\lambda - 3)(\lambda - 1) = 0$$

$$\lambda = 3, \lambda = 1$$

For
$$\lambda_1=3$$
, find $\overrightarrow{\lambda}_1$.

 $A-3I=\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$

Check:
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \lambda_1 \times 1$$

This matrix is Singular with a nonzero vector in N(A-3I).

For
$$\lambda_2=1$$
, find \aleph_2

$$A-1T=\begin{bmatrix}1&-1\\-1&1\end{bmatrix}$$

$$\begin{bmatrix}1&-1\\-1&1\end{bmatrix}$$

$$\begin{bmatrix}1&-1\\2&1\end{bmatrix}$$

$$\begin{bmatrix}1&-1\\2&1\end{bmatrix}$$

$$\begin{bmatrix}1&-1\\2&1\end{bmatrix}$$

(find a nonzero
vector in
its nullspace)

Check:
$$A\vec{x}_2 = \begin{bmatrix} 2 - 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Now, since we have a full set of eigenvectors, we have a basis
for R².

Any vector e.a. [37], can be 4

Any vector, e.g. $\frac{3}{7}$, can be written as a linear combination of \overrightarrow{X} , $\overset{\cancel{\varepsilon}}{\times} \overrightarrow{X}_2$: $\begin{bmatrix} 3\\7 \end{bmatrix} = 2\begin{bmatrix} -1\\7 \end{bmatrix} + 5\begin{bmatrix} 1\\1 \end{bmatrix} = C_1\overrightarrow{X}_1 + C_2\overrightarrow{X}_2$

For
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, $\det(A) = 4 - 1 = 3$ (182)
 $\lambda_1 \lambda_2 = 3(1) = 3$

trace (A) = 2+2=4

$$\lambda_1 + \lambda_2 = 3+1 = 4$$

$$A = \begin{bmatrix} 0 & 1 & 3 & 0 \\ -2 & 3 & 0 & 4 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 1 & 6 \end{bmatrix}$$

$$dt(A)I) = dt \begin{bmatrix} -2 & 3 & 0 & 4 \\ -2 & 3 & 0 & 4 \\ 0 & 0 & 6 & 1 \end{bmatrix} = 0$$

$$-\lambda dt \begin{bmatrix} 3-2 & 6 & 4 \\ 0 & 1 & 6 & 1 \end{bmatrix} + 2 dt \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 6 & 1 \end{bmatrix} = 0$$

$$-\lambda (3-\lambda) dt \begin{bmatrix} 6-1 & 1 \\ 1 & 6-1 \end{bmatrix} + 2(1) dt \begin{bmatrix} 6-1 & 1 \\ 1 & 6-1 \end{bmatrix} = 0$$

$$dt \begin{bmatrix} 6-1 & 1 \\ 1 & 6-1 \end{bmatrix} \begin{pmatrix} \lambda^2 - 3\lambda + 2 \end{pmatrix} = 0$$

$$(\lambda^2 - 1)(\lambda^2 - 1)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 - 1) = 0$$

$$(\lambda^2 - 12\lambda + 35)(\lambda^2 - 2)(\lambda^2 -$$

For
$$\lambda_2 = 5$$

$$A - 5I = \begin{bmatrix} -5 & 1 & 3 & 0 \\ -2 & -2 & 0 & 4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$0 0 0 1 0 0 0 0$$

$$0 0 1 1 0 0 0 0$$

$$136 0 0 0 0$$

$$136 0 0 0 0$$

$$136 0 0 0 0$$

Recall:

For
$$\lambda_3 = 2$$
,
$$A - 2I = \begin{bmatrix} -2 & 1 & 3 & 6 \\ -2 & -2 & 0 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix} \text{ has } \vec{X}_3 = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$
For $A - 1I = \begin{bmatrix} -1 & 2 & 0 & 4 \\ -2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix} \text{ has } \vec{X}_4 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

And remember
$$A\vec{x}_3 = 2\vec{x}_3$$
 and $A\vec{x}_4 = 1\vec{x}_4$

1 A gets raised to a power,

(1) Eigenvectors X Stay is same direction
(2) Eigenvalues > get raised to that

Power.

Proof:

$$A\overrightarrow{x} = \lambda \overrightarrow{x}$$

 $A(A\overrightarrow{x}) = \lambda(A)\overrightarrow{x}$
 $A^{2}\overrightarrow{x} = \lambda A\overrightarrow{x} = \lambda(\lambda \overrightarrow{x})$
 $A^{2}\overrightarrow{x} = \lambda^{2}\overrightarrow{x}$ With same \overrightarrow{x} .

Theorem: T'is an eigenvalue of A-1 (186) Prof $A = \lambda \neq A$ $A^{-1}A \neq A = \lambda A^{-1} \neq A$ 文= >A-1文 X' = A-1 x

Theorem: 7+1 is an eigenvalue of A+I.

AZ = XZ AX + IX = XX + IX $(A+I) \overrightarrow{z} = \lambda \overrightarrow{z} + \overrightarrow{z} = (\lambda + 1) \overrightarrow{z}$

Theorem: Product of Di = det (A)

Dorg: det (A-XI) is a factorable Polynomial in >:

det (A-NI) = (X,-N)(x-N) (N-N) now set >= 0

det (A) = / /2 ·· /n

Theorem: trace (A) = 2 >i Prove for 2x2 case: A= [a b] $\det \begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix} = \chi^2 - (a+d)\chi + ad - bc \stackrel{\text{Set}}{=} 0$ Solve for > using quadratic formula: $\lambda = (a+d) \pm (a+d)^2 - 4(1)(ad-bc)^2$ > = (a+d) + Ja2+2ad+d2-4ad+4bc The same and the s $m = (a+d) - \sqrt{Mess}$ 7,+ /2 = a+d This extends to non.

Non-Real Eigenvalues

Example: The CCW rotation matrix

direction!

First, take 0 = 90°.

Then
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. Get eigenvalues.
Cigenvectors.

$$\det (A- \lambda I) = \det \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1 \stackrel{\text{set}}{=} 0.$$

$$\frac{\lambda^{2} = -1}{\sqrt{\lambda^{2}}} = \pm \sqrt{-1}$$

$$\lambda = \pm c$$

And we will get non-real eigenvectors as well!

(they don't rotate when multiplied by A).

$$A\vec{X}_{1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ i \end{bmatrix} = \begin{bmatrix} -1 \\ i \end{bmatrix} = \hat{c} \begin{bmatrix} i \\ i \end{bmatrix} = \hat{\lambda}_{1} \vec{X}_{1}$$

$$A+iI=\begin{bmatrix}i-1\\i\end{bmatrix}$$

Find
$$\vec{x}_2$$
 for $\lambda_2 = -i$
 $A + i I = \begin{bmatrix} i & -1 \\ -i & i \end{bmatrix}$ has $\vec{x}_2 = \begin{bmatrix} i & \text{in its} \\ i & \text{null space} \end{bmatrix}$
 $A\vec{x}_2 = \begin{bmatrix} 0 & -1 \\ -i & i \end{bmatrix} = \begin{bmatrix} -i \\ i \end{bmatrix} = -i \begin{bmatrix} i \\ i \end{bmatrix} = \lambda_2 \vec{x}_2$
 $A\vec{x}_2 = \begin{bmatrix} 0 & -1 \\ -i & i \end{bmatrix}$

$$det(\pi) = det \begin{bmatrix} 0 - 1 \\ 1 & 0 \end{bmatrix} = 1$$

$$\lambda_1 \lambda_2 = i(-i) = -(-i) = 1$$

Now, do this for any
$$\Theta$$
.

 $Q = \begin{bmatrix} \cos \Theta - \sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$, find $\lambda_1, \lambda_2, \dot{\chi}_1, \dot{\chi}_2$
 $\det \begin{pmatrix} Q - \lambda F \end{pmatrix} = \\ \det \begin{pmatrix} G -$

Need a nonzero

$$\begin{bmatrix}
-i\sin\theta & -\sin\theta \\
\sin\theta & -i\sin\theta
\end{bmatrix}$$

$$\begin{vmatrix}
i \\
j
\end{vmatrix}$$

$$\begin{vmatrix}
i \\
j
\end{vmatrix}$$

$$\begin{vmatrix}
i \\
j
\end{vmatrix}$$

For
$$\lambda_2 = \cos \Theta - i \sin \Theta$$
, get \overline{X}_2 .

nullspace.

$$\begin{bmatrix} i \sin \theta & -\sin \theta \\ \sin \theta & i \sin \theta \end{bmatrix} \begin{bmatrix} i \\ i \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$$

String 6.2 Diagonalizing a Matrix

For an nxn matrix with n linearly independent eigenvectors:

X = matrix with n independent eigenvectors

(i) Get
$$\times$$
 first.

$$\det \begin{bmatrix} A - \lambda I \end{bmatrix} = \det \begin{bmatrix} 1 - \lambda \\ 0 \end{bmatrix} = (1 - \lambda)(3 - \lambda) = 0$$

$$\lambda_1 = 1$$

$$\lambda_2 = 3$$

For
$$\lambda_1 = 1$$
, oct $\hat{\mathbf{x}}_1$. For $\lambda_2 = 3$, get $\hat{\mathbf{x}}_2$. [93]
$$A - 1 = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \text{ has } \hat{\mathbf{x}}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ in its nullspace.}$$

$$A - 3 = \begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix} \text{ has } \hat{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ in its nullspace.}$$

$$X = \begin{bmatrix} \hat{\mathbf{x}} \hat{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = X \text{ A} \text{ A} \text{ A} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 - 1 \\ 0 & 3$$

D'ifference Equations / Discrete (194).
Steps Tikt = Atik "Values at (k+1) the step are the matrix A times values at the kth step". Example First: We start with $\vec{X}_0 = \begin{bmatrix} 1000 & \text{Comcast} \\ 1000 & \text{Fios} \end{bmatrix}$ On Jan 1st each year, 50% with Comeast stay and 50% swith to Fios. Also, toto with Fios switch to Comcast and 30% stay with Fios. (#1) Get matrix A that governs the system: $A = \begin{bmatrix} C & 0.50 & 0.70 \\ 0.50 & 0.30 \end{bmatrix}$ #Z) Show what happens after years 1,2, n.

After I year: [0.50 0.70] [1000] = [1200 Comeast]

0.50 0.30] [1000] = [800 Fios] After 2 years: [0.50 0.70] [1200] = [160 Com. 7 800] [840 Fios]

AAX = AX

After n years, $A^n \vec{x}$ and after a very long time, $A^{\infty} \vec{x} = \vec{x}_{\infty}$.

(#3) Determine the long run behavior.
- Get >, eigenvectors.

 $\det \left[A - \lambda I \right] = \left[\begin{array}{c} 0.50 - \lambda & 0.70 \\ 0.50 & 0.30 - \lambda \end{array} \right] =$

 $\sqrt{2} - 0.80 \times - 0.20 \stackrel{\text{set}}{=} 0$ (x-1)(x+0.20) = 0

 $\gamma_{1}=1$ $\gamma_{2}=-0.20$

Get 7,

A->, I= [-0.50 0.70]

0.50-0.70

X = 0.70 0.50 A-12I=
[0.70 0.70]
[0.50 0.50]
has

 $\overline{X}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Determine closed form solutions for Tilk using x, , x2, >1, >2 We Know Tix = Atto UK = A 5000 X, - 500 X2 7K = 5000 AKX - 580 AKX UK = 5000 (X1)X1 - 500 (N2)X2 $T_{K} > \frac{5000}{3} (1)^{K} [0.70] - \frac{500}{3} (-0.20)^{K} [1]$ $\frac{1}{4}$ = $\frac{3500/3}{2500/3}$ - $(-0.2)^{1/2}$ $\frac{500/3}{500/3}$

Let $K \rightarrow \infty$ (long run) $\vec{U}_{\infty} = \begin{bmatrix} 3500/3 \\ 2500/3 \end{bmatrix}$

The eigenvector associated with $\chi = 1$ is
the steady State vector: $\chi = 0.70$ 0.50

 \overrightarrow{X} , could be $\begin{bmatrix} 77\\ 5 \end{bmatrix}$ or $\begin{bmatrix} 71/2\\ 5/12 \end{bmatrix}$ = $\begin{bmatrix} 71/2\\ 5/12 \end{bmatrix}$ Flos

197

Steps to find closed solutions For Wikt = Atuk Problems:

- 1) Write tio = Cix, +Czx2+...+ Cix
- (2) Multidy each \$\frac{1}{2}\$ by (\hat{\chi})\$
- (3.) Add up the pieces Ci(\lambda_i) \(X_i \)

Example: Each week 110 in section A (1) and 120 in section B drop Calculus.

Also, each week 110 of the students in each section switch to the other section.

(a) Cook up the 3×3 matrix that governs this system:

(b) We start with 20 in each section. What are the enrollments at the end of 14 weeks?

@ Diagonalize the matrix A.
Want A = X 1 X

Technology gives:

$$\lambda_2 \approx 0.9281$$
, $\vec{\chi}_2 \approx (-0.4384, -0.5616, 1)$

$$\lambda_3 = 1$$
, $\vec{\chi}_3 = (0,0,1)$

$$A^{k} = X A^{k} X$$

$$A^{k} = X A^{k} X$$

$$A^{k} = \begin{bmatrix} -4.5616 & -0.4384 & 0 \\ 3.5616 & -0.5616 & 0 \end{bmatrix} \begin{bmatrix} 0.7219 & 0 & 0 \\ 0.9281 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -0.8638 & -1.1063 & 0 \\ 0 & 0.9281 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Push Kinside

a) In theory what happens to calculus curdiment as $k > \infty$?

lin A = X [0 0 0] X-700 = 0000 Now, with starting enrollments of 20), IMAKIO = [000 [20] [5] K-200 | 11 | 0 | 40

Everyone drops, given enough time!

Example: NW Mexico is populated by two competing species, coyotes and roadrunners

We wish to model the populations C(t) and r(t) t years from now if the current populations are C_0 and C_0 .

We have the model:

$$C(t+1) = 0.86C(t) + 0.08\Gamma(t)$$

 $\Gamma(t+1) = -0.12C(t) + 1.14\Gamma(t)$

As a matrix equation

The vector $x(t) = \begin{bmatrix} c(t) \\ r(t) \end{bmatrix}$ is the state vector at time t

$$\vec{\chi}(t+1) = A\vec{\chi}(t)$$

If we know
$$\vec{X}(0) = \vec{X}_0 = \begin{bmatrix} C_0 \\ \Gamma_0 \end{bmatrix}$$
 then $\vec{X}(t) = A^t \vec{X}_0$

e.g. $\vec{x}(10) = A^{10}\vec{x}_0$ and long-term behavior depends on initial populations.

- We want closed-form solutions for (20% c(t) and r(t) as a function of t. Case I: (Specially chosen) Say we have $C_0 = 100$ and $\Gamma_0 = 300$ at t = 0. $\vec{X}_0 = \begin{bmatrix} 100 \\ 300 \end{bmatrix}$ $\vec{X}_1 = A\vec{X}_0 = \begin{bmatrix} 0.86 & 0.08 \\ -0.12 & 1.14 \end{bmatrix} \begin{bmatrix} 100 \\ 300 \end{bmatrix} = \begin{bmatrix} 110 \\ 330 \end{bmatrix}$ - Each population grows by 10%, and at time t, X= Atxo with > = 1.1 and Axo = >, xo for eigenvector $\vec{X}_0 = |100|$ Both populations grow without bound (X100 = [1,378,06] by the way) $\overrightarrow{X}(t) = \begin{bmatrix} C(t) \\ \Gamma(t) \end{bmatrix} = (1.1)^t \begin{vmatrix} 100 \\ \hline X_0 = (1.1)^t \end{vmatrix} = (1.1)^t \begin{vmatrix} 100 \\ \hline 300 \end{vmatrix}$ with $C(t) = 100(1.1)^t$ $\Gamma(t) = 300(1.1)^t$

Case 2: Suppose
$$\vec{X}_0 = \begin{bmatrix} 200 \\ 100 \end{bmatrix}$$
 (Carefully chosen) $\vec{X}(1) = A\vec{X}_0 = \begin{bmatrix} 0.86 & 0.08 \\ -0.12 & 1.14 \end{bmatrix} \begin{bmatrix} 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 180 \\ 90 \end{bmatrix}$

$$= 0.9 \vec{X}_0$$
Here, $\lambda_2 = 0.9$ and $\vec{X}_0 = \begin{bmatrix} 200 \\ 100 \end{bmatrix}$ is the eigenvector.

Both populations decline 10% each year.

Too many coyotes compared to roadrunners.

Case 3:
$$\vec{X}_0 = \begin{bmatrix} 1000 \\ 1000 \end{bmatrix}$$
 gives
$$\vec{X}_1 = A \vec{X}_0 = \begin{bmatrix} 940 \\ 1020 \end{bmatrix}, \vec{X}_2 = A \vec{X}_1 = \begin{bmatrix} 890 \\ 1050 \end{bmatrix}$$

- not a scalar multiple of Xo!
- Cannot detect the trend.
- We must work with the two eigenvectors $\vec{V}_1 = \begin{bmatrix} 100 \\ 300 \end{bmatrix}$ and $\vec{V}_2 = \begin{bmatrix} 200 \\ 100 \end{bmatrix}$

Fact: Since V, and V2 form a basis for RZ, any vector in RZ can be written as $\overline{X}_{o} = C_{1}\overline{V}_{1} + C_{2}\overline{V}_{2}$ In fact, $\overrightarrow{X}_0 = \begin{bmatrix} 1000 \\ 1000 \end{bmatrix} = \overrightarrow{AV}_1 + 4\overrightarrow{V}_2$ $A^{t}V_{i} = (1.1)^{t}V_{i}$ and Recall: At V2 = (0.9) TV2 X(t) = Atx. = At(2V, + 4V2) = 2 AtV, + 4 AtV2 = $2(1.1)^{t}\vec{V}_{1} + 4(0.9)^{t}\vec{V}_{2} =$ $2(1.1)^{t} \begin{bmatrix} 100 \\ 300 \end{bmatrix} + 4(0.9)^{t} \begin{bmatrix} 200 \\ 100 \end{bmatrix}$ $C(t) = 200(1.1)^{t} + 800(0.9)^{t}$ $\Gamma(t) = 600(1.1)^{t} + 400(0.9)^{t}$

(300

As time progresses, the (0.9) to (209) term goes to O, both populations (recall $\vec{x}_0 = \begin{bmatrix} 1000 \\ 1000 \end{bmatrix}$) grow at 10% per year. The ratio of road runners to coyotes goes to $\frac{\Gamma(t)}{c(t)} = \frac{600(1.1)^t}{200(1.1)^t} = 3$ The 3 is the slope of the stendy State vector, X(+). reigenvector [300] with > = 1.1 (quater than roadrunner axis eigenvector [200]
with $\lambda_0 = 0$ (less than i Coyote axis * Any Starting Population vectors Xo go to the C(t) = 3 ratio. * Any Starting in region III will go extinct. [Eigenvectors govern the system!

With Xo = [1000] We get				
Tt	((t)	r(+)	clt)	
0	1000	1000	/	
	940	1020	1.09	
5	794	1203	1.5/	
10	798	1696	2.13	
20	1443	4085	2.83	
50	23482	70437	7 2.99	
500) 1.E+2	3 3. E+2	3 3	
·				

Another starting at
$$X_0 = \begin{bmatrix} 400 & \text{Coyotes} \\ 100 & \text{Roadrunners} \end{bmatrix}$$

Find closed-form solutions for $C(t)$, $r(t)$.

Matrix A Still same > and V1, V2!

Write
$$[400] = C_1V_1 + C_2V_2 = C_1[300] + C_2[200]$$

So
$$c_1 = -0.4$$
 and $c_2 = 2.2$

$$\overrightarrow{X}_o = \begin{bmatrix} 400 \\ 100 \end{bmatrix} = -0.4 \begin{bmatrix} 100 \\ 300 \end{bmatrix} + 2.2 \begin{bmatrix} 200 \\ 100 \end{bmatrix}$$
And $\overrightarrow{X}(t) = A^t (-0.4\overrightarrow{V}_1 + 2.2\overrightarrow{V}_2)$

$$= -0.4 A^t \overrightarrow{V}_1 + 2.2 A^t \overrightarrow{V}_2$$

$$= -0.4 (1.1)^t \begin{bmatrix} 100 \\ 300 \end{bmatrix} + 2.2 (0.9)^t \begin{bmatrix} 200 \\ 100 \end{bmatrix}$$
And $c(t) = -120(1.1)^t + 440(0.9)^t$

$$r(t) = -120(1.1)^t + 220(0.9)^t$$

		A STATE OF THE PROPERTY OF THE	
t	C(t)	r(t)	<u>r(t)</u> <u>c(t)</u>
0	400	100	0.25
1	352	66	0.19
2	308	33	0.11
3	268	1	0.002
4	230	-31	-0.14
500	-2 E+22	16E+22	3?
		A STATE OF THE PARTY OF THE PAR	Control of the Contro

Mathmatically, populations gravitate to eigenvector [100] in negative direction.

(207)

208

Strang 6,4 Symmetric Matrices

- · All >; will be real
- · Zi can be chosen to be orthonormal
- · Spectral Theorem

$$S=QAQ^{T}, Q^{T}=Q^{-1}$$

$$S = \lambda_{1} \vec{q}_{1} \vec{q}_{1}^{T} + \dots + \lambda_{2} \vec{q}_{2} \vec{q}_{2}^{T} + \dots + \lambda_{n} \vec{q}_{n} \vec{q}_{n}^{T}$$

If Aisreal, batnot symmetric, the eigenvalues ξ eigenvectors come in conjugate pairs.

If $A \neq \Rightarrow \Rightarrow \Rightarrow$, then $A \neq \Rightarrow \Rightarrow \Rightarrow$ with $\Rightarrow = a + ib$

with
$$y = a + ib$$

 $y = a - ib$

Similar Matrices (Back to 6.2) We have A = XAX' OR S=QAQT If we change X or Q, but Keep 1 fixed, that family of matrices is called "similar". This extends to non-diagonalizable matrices Fix matrix C, allow all invertible B. A = BCB will have A similar to C A and C share the same >.

(210)

Example: We know $\lambda_1 = 4$, $\lambda_2 = 4$, $\lambda_3 = 7$.

Matrix A is

Inventible? yes. No x=0.

Diagonalizable? MAYBE. Repeated > may or may not have a full set of eigenvectors.

Example: We know all eigenvectors of A are multiples of $\vec{\chi} = (4,7)$.

Is A invertible? No way to tell. \20 is possible.

Is > repeated? Yes. Missing eigenvector, so yes, repeated >.

IS X 1 X possible? No. Need a second indep. eigenvector.

$$A = \begin{bmatrix} 83 \\ -32 \end{bmatrix} \quad B = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}$$

$$det(A) = 1b - bc = 25$$

$$det(B) = 9 - 4c = 25$$

$$det(c) = 10d + 25 = 25$$

For all 3 matrices,
$$\lambda_1 = \lambda_2 = 5$$

$$A-5I = \begin{bmatrix} 3 & 3 \\ -3 & -3 \end{bmatrix}$$

$$C-5I = \begin{bmatrix} 5 & 5 \\ -5 & -5 \end{bmatrix}$$

Proof:
$$det(A) = det(XAX')$$

= $det(X) det(A) det(X')$
= $det(A) = \lambda, \lambda_2 \cdot \lambda_1$

(212) Example Let AX = > X Kecall, A is nxn. If h=0, x EN(A). 17 x +0, x & C(A). dim(C(A))+dim(N(A))= ++ (n-r)=n Explain: Why doesn't every square matrix A have n independent eigenvectors. Problem 1: N(A) and C(A) can overlap. Problem 2: We might not have I indep.

Cigenvectors in ((A).

Example: If all $||\lambda_i|| < 1$, $|A^k| \rightarrow 0$ If any $||\lambda_i|| > 1$, $|A^k| \rightarrow 8$ low $||A^k|| > 8$ low

$$\frac{d+(A-NI)}{d+(A-NI)} = \frac{3-N}{3-N} = \frac{2}{3-N} = \frac{3-N}{3-N} = \frac{3-N$$

$$\lambda_1 = 0$$
 has $\lambda_1 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$

$$\lambda_2 = 1$$
 has $\overline{X}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\lambda_3 = -1$$
 has $\overline{X}_3 = \begin{bmatrix} 33 \\ -1 \\ 22 \end{bmatrix}$

$$A = \begin{bmatrix} -1 & 1 & 33 & 0 & 0 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 22 & 0 & 0 & -1 & -2 & -1 & 3 \\ 0 & 1 & 22 & 0 & 0 & -1 & -2 & -1 & 3 \end{bmatrix}$$

$$A^{2017} = \begin{bmatrix} -1 & 1 & 33 & 0 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 22 & 0 & 0 & -1 \\ 0 & 1 & 22 & 0 & 0 & -1 \\ 0 & 1 & 22 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -23 & -11 & 34 \\ 44 & 22 & -65 \\ 44 & 22 & -65 \\ -2 & 1 & 3 \end{bmatrix}$$

$$A^{2017} = \begin{bmatrix} 0 & 1 - 33 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -23 - 11 & 34 \\ 44 & 22 - 65 \end{bmatrix} = \begin{bmatrix} 110 & 55 - 164 \\ 42 & 21 - 62 \end{bmatrix} = A$$

$$\begin{bmatrix} 0 & 1 - 22 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 - 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 - 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 - 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 188 & 44 - 131 \\ 88 & 44 - 131 \end{bmatrix}$$

Example: Find Q to diagonalize
$$A = \begin{bmatrix} -2 & 6 \\ 6 & 7 \end{bmatrix}$$
.

 $\lambda_1 = -5$

has $\hat{x}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ has $\hat{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\lambda_{1} = -5$$

$$has \overrightarrow{X}_{1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$has \overrightarrow{X}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$||\vec{x}_1|| = \sqrt{5}$$
 $||\vec{x}_2|| = \sqrt{5}$
 $||\vec{x}_2|| = \sqrt{5}$

(216-Example: We have S= 1 b (a) How do we know S does not have two negative eigenvalues? Trace(S) = Z and $X_1 + \lambda_2 = Z$ can't both be negative (b) Give the two pivots: $S\sim \begin{bmatrix} 1 & b \\ 0 & 1-b^2 \end{bmatrix}$ has pivots $1, 1-b^2$ 6. When will S have two positive eigenvalues! For symmetric S, pivots & \(\) have same signs. So, if 1-62>0 or 1>62<1 We get two positive Di Then if $b^2 > 1$, we will get $\lambda_1 > 0$ $\lambda_2 < 0$

Example: Why does a 3×3 real matrix (217) always have at least one real eigenvalue?

If $\lambda_1 = a + bi$, then $\lambda_2 = a - bi$ $\lambda_1 + \lambda_2 = 2a$ trace (A) = real, so λ_3 must be real.

Example: Write S= [9 12] as

\(\frac{12}{12}\) Ib \(\frac{16}{16}\)
\(\frac{1}{2}\) \(\frac{1}

For S, we have: $\lambda_1 = 0$, $x_1 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ or $x_1 = \frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ (unit) $\lambda_2 = 25$, $x_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ or $x_2 = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ (unit)

 $S = 0.5 = \frac{-47[43]}{3} + 25.5 = \frac{37[34]}{5007 + \frac{9}{12}}$

See handout -

(219)

Positive Definite Matrices - Why Important

From Anonymous on math.stackexchange

There are many uses for definite and semi-definite matrices. I can give just a few examples although undoubtedly I will be missing many.

- 1. Positive-definite matrices are the matrix analogues to positive *numbers*. It is generally not possible to define a consistent notion of "positive" for matrices other than symmetric matrices. As a consequence, positive definite matrices are a special class of symmetric matrices (which themselves are another very important, special class of matrices). It turns out that many useful matrices fall under this class such the covariance matrix, overlap matrices used in quantum chemistry and dynamical matrices used in calculation of molecular vibrations (which is positive semi-definite).
- 2. Definiteness is a useful measure for optimization. Quadratic forms on positive definite matrices are always positive for non-zero x and are convex. Analogous results hold for negative-definite matrices. This is a very desirable property for optimization since it guarantees the existences of maxima and minima. It is properties like these for example, that allow you to use the Hessian matrix to optimize multivariate functions.
- 3. Perhaps equally (or more) important, especially to a mathematician, is the fact that the theory of (semi)definite matrices is an incredibly rich and beautiful field. There are chains of elegant results concerning these matrices, especially for positive-definite matrices. That is motivation enough.

From AlephZero on www.physicsforum.com

Numerical algorithms on positive definite matrices are usually well behaved. The underlying reason is that all the eigenvalues are positive, so the sort of operations that occur in numerical methods don't lose precision when positive and negative quantities are added and cancel out. (Of course individual elements of a positive definite matrix can be negative, but in a sense they can't be "negative enough" to cause numerical problems.) This means there are usually faster and simpler numerical algorithms for positive definite matrices than for general matrices. In physics, matrices are often Hermitian (which includes real symmetric matrices) as well as positive definite, and the product x^t A x represents some kind of work or energy.

(220. Example: Positive definite or not? $S_{1} = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix}$ det $\begin{bmatrix} 5 \\ 3 \end{bmatrix} = 35 - 36 = -1$ $S_2 = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}$, No! First pirot is -1Positive $S_3 = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix}$, det $\begin{bmatrix} S_3 \end{bmatrix} = 0$ Semi -. Definite $\overrightarrow{X}^{T}S_{3}\overrightarrow{X} = [X_1 \times 2]_{10}^{10}[X_1]_{10}$ $= \left[X_{1} \times 2 \right] \left[\begin{array}{c} X_{1} + 10 \times 2 \\ 10 \times_{1} + 100 \times 2 \end{array} \right] = X_{1}^{2} + 10 \times_{1} \times_{2} + 100 \times_{2}^{2} + 100 \times_{2}^{2}$ $= x_1^2 + 20 \times_1 \times_2 + 100 \times_2^2$ = ax1+2bx1xz+Cx2 SH = [10 10] has pivot, = 1
pivot 2 = 1 So yes. 7,=0.0098 72 = 101,99 X,2+20x,72+101x270+ X1, X2 +1

221 Example: Find b,c so that S= | b 9 is positive definite. Strategy 1: det(S) = 9-62 70 9>62 -3 4 6 4 3 S2 = [2 4] Strategy Z > Write Sz = LDLT $\begin{bmatrix} 2 & 4 \\ 4 & C \end{bmatrix} \sim \begin{bmatrix} 2 & 4 \\ 0 & C-8 \end{bmatrix} \text{ has } l_{z_1} = Z$ $S_2 = LDL^T = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ $S_3 = \begin{bmatrix} c & b \\ b & c \end{bmatrix} \sim \begin{bmatrix} c & b \\ 0 & c - \frac{b^2}{c} \end{bmatrix} = \begin{bmatrix} c & \frac{b^2}{c^2 - b^2} \end{bmatrix} = U$ $S_3 = LDL^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & \frac{1}{c^2 - b^2} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{c^2 - b$

Example: f(x,y) = 2xy has a saddle point (222) and not a minimum at (0,0).

What matrix S produced this f(x,y)? Give >1,>2. $S = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \implies f(x,y) = ax^2 + 2bxy + cy^2$ $S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow f(xy) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ f(x,y) = 2xy $det(S-\lambda I) = det \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} = \lambda^{2} - 1$ $\lambda_{1} = 1$ $\lambda_{2} = -1$

Test that S=ATA is positive definite for A= \[\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} \] (independent columns!)

S=ATA=\[\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} = \begin{array}{c} 6 & 5 \\ 2 & 1 \