Problem Set 5, Tips

Vikram Damani Analysis I

October 18, 2024

Aufgaben in rot markiert, Tipps & Tricks in blau.

Aufgabe 1. Berechnen Sie mit Hilfe der Bernoulli-de l'Hôpital-Regel die folgenden Grenzwerte:

(a)
$$(\heartsuit) \lim_{x\to 0} \frac{1+\sin(x)+\cos(x)}{\tan(x)};$$

(b)
$$\lim_{x\to 1} \frac{\arctan\frac{1-x}{1+x}}{1-x}$$
;

(c)
$$\lim_{x\to 0} \frac{\left(\frac{1}{\cos^2(x)} - \cos(x)\right)^2}{x\cos(x) - \sin(x)}.$$

Tipps & Tricks zu 1. Bernoulli-de l'Hôpital-Regel:

Definition [Bernoulli-de l'Hôpital-Regel]. Seien f und g zwei Funktionen, die in einer Umgebung von x_0 definiert sind und in x_0 differenzierbar sind. Falls $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ oder $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$ gilt, sofern $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert, dann gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

ACHTUNG: Die Regel gilt nur, wenn alle fünf Bedingungen erfüllt sind.

- $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ oder $\pm \infty$,
- f und g sind in einer Umgebung $[a, b] \subseteq \mathbb{R}$, $a < x_0 < b$ von x_0 definiert,
- f und g sind in [a, b] differenzierbar, ausser evtl. in x_0 ,
- $g'(x) \neq 0$ in $[a, b] \setminus \{x_0\}$

• $\lim_{x\to x_0} \frac{f'(x)}{q'(x)}$ existiert.

Aufgabe 2. (a) Bestimmen Sie die Werte der Konstanten $a \in \mathbb{R}$ und $b \in \mathbb{R}$ so, dass

$$f: \mathbb{R} \to \mathbb{R}, \ x \to ax^2 + bx$$

im Punkt (1,2) ein globales Maximum hat.

(b) Seien $c, d \in \mathbb{R}$ so, dass c < d. Bestimmen Sie in Abhängigkeit von c und d das Maximum der Funktion

$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

auf dem Intervall [c, d].

Tipps & Tricks zu 2. Ein globales Maximum ist ein Punkt, an dem die Funktion f(x) für alle $x \in \mathcal{D}(f)$ den größten Funktionswert annimmt. Ein lokales Maximum ist ein Punkt, an dem die Funktion f(x) für alle $x \in [a,b] \subseteq \mathcal{D}(f)$ den größten Funktionswert annimmt, jedoch nicht unbedingt den größten Funktionswert im gesamten Definitionsbereich.

Definition [Extremalstellen]. Eine Funktion f(x) hat eine Extremalstelle an der Stelle x_0 , falls $f'(x_0) = 0$.

Definition [Globales Maximum]. Eine Funktion f(x) hat ein globales Maximum an der Stelle x_0 , falls $f(x_0) \ge f(x)$ für alle $x \in \mathcal{D}(f)$.

Definition [Lokales Maximum]. Eine Funktion f(x) hat ein lokales Maximum an der Stelle x_0 , falls $f(x_0) \ge f(x)$ für alle $x \in [a,b] \subseteq \mathcal{D}(f)$ in einer Umgebung von x_0 .

Theorem [Bedingungen für Extremalstellen]. Sei f(x) eine Funktion, die in $[a,b] \subseteq \mathcal{D}(f)$ differenzierbar ist. Die Funktion hat in $x_0 \in [a,b]$ eine Extremalstelle, falls:

- $\bullet \ f'(x_0) = 0,$
- $x_0 = a \text{ oder } x_0 = b \text{ wenn } f(a) \ge f(x) \text{ bzw. } f(b) \ge f(x) \quad \forall x \in [a, b],$

Falls f nicht auf [a, b] differenzierbar, dann ist x_0 eine Extremalstelle, falls f in x_0 definiert ist und $f(x) \leq f(x_0)$ bzw. $f(x) \geq f(x_0)$ für alle $x \in [a, b]$.

Definition [Höhere Ableitungen]. Die n-te Ableitung einer Funktion f(x) ist definiert als:

$$f^{(n)}(x) = \frac{d^n}{dx^n} f(x) = \underbrace{\frac{d}{dx} (\frac{d}{dx} (\dots \frac{d}{dx}) f(x))}_{\text{n mal}} f(x)$$

Definition [Maxima und Minima mit höheren Ableitungen]. Sei f(x) eine Funktion, die in x_0 zweimal differenzierbar ist. Falls $f'(x_0) = 0$ und $f''(x_0) > 0$, dann hat f(x) in x_0 ein lokales Minimum. Falls $f'(x_0) = 0$ und $f''(x_0) < 0$, dann hat f(x) in x_0 ein lokales Maximum.

Um in (b) das Maximum zu bestimmen ist eine Fallunterscheidung notwendig, da das Intervall [c, d] nicht spezifiziert ist (also beliebig gewählt werden kann). Wenn d kleiner als die Extremalstelle ist, dann ist das Maximum in d. Was passiert wenn c größer als die Extremalstelle ist? (Gebrauch von der $\max(x, y)^1$ Funktion erlaubt).

Aufgabe 3. (\heartsuit) Die Funktion $m(t) = m_0 e^{-\alpha t}$ beschreibt einen exponentiellen Zerfall der Anfangsmasse m_0 mit Zerfallsrate α . Anhand einer Messung soll bestimmt werden, wie gross α für ein neues Material ist.

Zum Zeitpunkt $t_0 = 0$ beträgt die Masse $m_0 = 1024$ Gramm. Es wird gemessen, wann die Restmasse unter 1 Gramm fällt: Dies passiert nach t_1 Sekunden, also $m(t_1) = 1$.

- (a) Bestimmen Sie $\alpha(t_1)$ als Funktion des Zeitpunkts t_1 .
- (b) Ab jetzt sei $t_1 = 10$ Sekunden gemessen, wobei der Messfehler Δt maximal ± 0.1 Sekunden betrage. Man bestimme die maximal und minimal möglichen Werte von $\alpha(t_1 + \Delta t)$.
- (c) Bestimmen Sie den absoluten Fehler $\Delta \alpha$ exakt (d.h. ohne Linearisierung!) und folgern Sie aus der Annahme $t_1 + \Delta t \approx t_1$, dass $\Delta \alpha$ ungefähr proportional zu Δt und zu $\frac{1}{t_1^2}$ ist.
- (d) Bestimmen Sie den relativen Fehler $\frac{\Delta \alpha}{\alpha}$ exakt (d.h. ohne Linearisierung!) und folgern Sie aus der Annahme $t_1 + \Delta t \approx t_1$, dass $\frac{\Delta \alpha}{\alpha}$ ungefähr proportional zum relativen Messfehler der Zeit ist.
- (e) Berechnen Sie die Näherungen $d\alpha$ und $\frac{d\alpha}{\alpha}$ durch die lineare Ersatzfunktion, d.h. $d\alpha = \alpha' dt$. Vergleichen Sie das Resultat mit den echten Fehlern. Was stellen Sie fest?

Tipps & Tricks zu 3. Fehlerrechnung:

Definition [Absoluter Fehler]. Der absolute Fehler Δf einer Funktion f(x) ist definiert als:

$$\Delta f = f(x + \Delta x) - f(x)$$

 $^{^{1}}$ max(x,y) gibt den grösseren Wert zurück.

Definition [Relativer Fehler]. Der relative Fehler $\frac{\Delta f}{f}$ einer Funktion f(x) ist definiert als:

$$\frac{\Delta f}{f} = \frac{f(x + \Delta x) - f(x)}{f(x)}$$

Definition [Linearisierung]. Die Linearisierung einer Funktion f(x) um den Punkt x_0 ist definiert als:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Definition [Linearisierter Fehler]. Sei f(x) eine Funktion, die in x_0 differenzierbar ist. Der Fehler Δf der Funktion f(x) ist definiert als:

$$df = f'(x_0)dx$$

BEACHTE: $t + \Delta t \approx t$ darf man als Approximation jeweils verwenden, aber $\Delta t \approx 0$ selbst muss immer eine Grenzwertbetrachtung sein.

Aufgabe 4. In dieser Aufgabe wollen wir folgenden Satz beweisen und verwenden:

Theorem []. Eine stetige, in (a,b) differenzierbare Funktion $f:[a,b] \to \mathbb{R}$ ist genau dann konstant, wenn f'(x) = 0 für alle $x \in (a,b)$.

- (a) (\heartsuit) Zeigen Sie mittels expliziter Berechnung des Differentialquotienten, dass eine konstante Funktion überall die Ableitung 0 hat.
- (b) Zeigen Sie: Wenn f'(x) = 0 für alle $x \in (a, b)$ gilt, dann ist $f : [a, b] \to \mathbb{R}$ konstant. Verwenden Sie dafür den Mittelwertsatz.
- (c) (\heartsuit) Beweisen Sie mit dem nun bewiesenen Satz die Relation

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

für alle $x \in [-1, 1]$.

Tipps & Tricks zu 4. Mittelwertsatz:

Definition [Mittelwertsatz]. Sei f(x) eine Funktion, die in [a, b] stetig ist und in (a, b) differenzierbar ist. Dann existiert ein $c \in (a, b)$, so dass:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Einsetzen von f'(x) = 0 in den Mittelwertsatz, ergibt f(b) - f(a) = 0, also f(b) = f(a). Wieso muss f dann konstant sein?

Bemerkung [Ableitungen von inversen Funktionen]. Sei f(x) eine Funktion, die in [a, b] stetig ist und in (a, b) differenzierbar ist mit inverse f^{-1} . Dann gilt:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Die Ableitungen der trigonometrischen Funktionen können so berechnet werden, oder man kann in der Formelsammmlung nachschauen.