Elliptic Curves

Harry Armitage

December 29, 2020

Contents

1	Fermat's Method of Infinite Descent 1.1 A Variant for Polynomials	3 4
2	Some Remarks on Algebraic Curves 2.1 Order of Vanishing	4 6 6 8
3	Weierstrass Equations	8
4	Group Law4.1Explicit Formulae for the Group Law4.2Elliptic Curves over \mathbb{C}	11 12 14
5	Isogenies	15
6	The Invariant Differential	20
7	Elliptic Curves over Finite Fields 7.1 Zeta Functions	22 23
8	Formal Groups	25
9	Elliptic Curves over Local Fields	29
10	Elliptic Curves over Number Fields 10.1 The Torsion Subgroup	34 34
11	Kummer Theory	37
12	Elliptic Curves over Number Fields II 12.1 The Mordell-Weil Theorem	39 39
13	Heights	41
14	Dual Isogenies & The Weil Pairing 14.1 The Weil Pairing	44 45

15	Galois Cohomology	47
	Descent by cyclic isogeny 16.1 Descent by 2-isogeny	50 51

1 Fermat's Method of Infinite Descent

Suppose we have a right-angled triangle Δ with side lengths a, b, c, so that by Pythagoras we have $a^2 + b^2 = c^2$, and area $(\Delta) = \frac{1}{2}ab$.

Definition 1.1. Δ *is* **rational** *if* a, b, $c \in \mathbb{Q}$, and **primitive** *if* a, b, $c \in \mathbb{Z}$ *coprime*.

Lemma 1.2. Every primitive triangle is of the form $a = u^2 - v^2$, b = 2uv, $c = u^2 + v^2$ for coprime integers u > v > 0.

Proof. If a, b were both odd, then $a^2 + b^2 \equiv 2 \mod 4$, and we have no solutions for c. If a, b both even, then they are not coprime. So we may assume a is odd, b is even, c is odd.

Then $(\frac{b}{2})^2 = \frac{c+a}{2} \frac{c-a}{2}$, and the right hand side is a product of coprime positive integers. So by unique prime factorisation in the integers, $\frac{c+a}{2} = u^2$, $\frac{c-a}{2} = v^2$ for some coprime integers u, v. Rearranging, we have the lemma.

Definition 1.3. $D \in \mathbb{Q}_{>0}$ *is a* **congruent number** *if it is the area of a rational triangle.*

Note that, by scaling the triangle, it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

For example, D = 5, 6 are congruent numbers. $6 = \frac{1}{2} \cdot 3 \cdot 4$, and $3^2 + 4^2 = 5^2$, and 5 is left as an exercise.

Lemma 1.4. $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}, y \neq 0$.

Proof. Lemma **1.2** shows that *D* is congruent if and only if $Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{Q}$, $w \neq 0$.

Setting
$$x = \frac{u}{v}$$
, $y = \frac{w}{v^2}$ finishes the proof.

Fermat showed that 1 is not a congruent number.

Theorem 1.5. There is no solution to

$$w^2 = uv(u+v)(u-v) \tag{*}$$

in integers u, v, w with $w \neq 0$.

Proof. Without loss of generality, u,v are coprime with u>0,w>0. If v<0 then replace (u,v,w) by (-v,u,w). If u,v are both odd, then replace (u,v,w) by $(\frac{u+v}{2},\frac{u-v}{2},\frac{w}{2})$. So we may assume that all of u,v,u+v,u-v are coprime positive integers whose product is a square, and hence are all squares, say a^2,b^2,c^2,d^2 respectively, where $a,b,c,d\in\mathbb{Z}_{>0}$.

Since $u \not\equiv v \mod 2$, both c, d are odd. Consider the right angled triangle with side lengths, $\frac{c+d}{2}$, $\frac{c-d}{2}$, a. This is a primitive triangle, and it has area $\frac{c^2-d^2}{8} = \frac{v}{4} = (\frac{b}{2})^2$.

Let $w_1 = \frac{b}{2}$. Then lemma **1.2** gives $w_1^2 = u_1 v_1 (u_1^2 - v_1^2)$ for some $u_1, v_1 \in \mathbb{Z}$, giving a new solution to (*). But $4w_1^2 = b^2 = v | w^2$, and so $w_1 \le \frac{1}{2}w$.

So by Fermat's method of infinite descent, if there were a solution we would have a strictly decreasing infinite sequence of positive integers $\frac{1}{2}$. Hence there is no solution to (*).

1.1 A Variant for Polynomials

Here, *K* is a field with char $K \neq 2$. The algebraic closure of *K* will be \overline{K} .

Lemma 1.6. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. Without loss of generality we may assume $K = \overline{K}$, as that doesn't change the degree of polynomials, and every square is still a square.

Changing coordinates on \mathbb{P}^1 , we may assume the ratios $\alpha:\beta$ are $(1:0),(0:1),(1:-1),(1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$, with $\mu = \sqrt{\lambda}$.

Then $u = a^2$, $v = b^2$, u - v = (a + b)(a - b), $u - \lambda v = (a + \mu b)(a - \mu b)$ are all squares. They are also coprime, and so by unique factorisation in K[t], (a + b), (a - b), $(a + \mu b)$, $(a - \mu b)$ are all squares.

But $\max\{\deg a, \deg b\} \le \frac{1}{2} \max\{\deg u, \deg v\}$. So by Fermat's method of infinite descent, we get that the original $u, v \in K$.

Now we have some important definitions:

Definition 1.7.

- 1. An elliptic curve E over a field K is the projective closure of the affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polynomial with distinct roots.
- 2. For L/K any field extension, $E(L) = \{(x,y) \in L^2 : y^2 = f(x)\} \cup \{0\}$. 0 is called the **point at infinity**.

We call the point at infinity 0 because we will see that E(L) is naturally an abelian group under an operation we will denote by +, and 0 will be the identity for that group. In this course we will study E(L) for L a finite field, a local field, and a number field.

Lemma **1.4** and theorem **1.5** together imply that, if E is given by $y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{0, (0, 0), (\pm 1, 0)\}$, which we will see is the group $C_2 \times C_2$.

Corollary 1.8. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality, $K = \overline{K}$. By a change of coordinates we may assume $E: y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ with $u,v \in K[t]$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$.

Unique factorisation in K[t] gives u, v, u – v, u – λv are all squares, and so by lemma **1.6**, u, $v \in K$, and so x, $y \in K$.

2 Some Remarks on Algebraic Curves

We will be working over an algebraically closed field *K*.

Definition 2.1. An (irreducible) plane algebraic curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ is **rational** if it has a rational parametrization, i.e. there are $\phi, \psi \in K(t)$ such that:

- 1. $\mathbb{A}^1 \to \mathbb{A}^2$; $t \mapsto (\phi(t), \psi(t))$ is injective on $\mathbb{A}^1 \setminus \{\text{finite set}\}$.
- 2. $f(\phi(t), \psi(t)) = 0$.

Examples 2.2.

1. Any nonsingular plane conic is rational. For example, take a circle $x^2 + y^2 = 1$. Pick a point on it, (-1,0). Now draw a line through it with slope t, and solve for the points of intersection between the curve and the line.

Solving for the coordinates of p, we get the quadratic $x^2 + t^2(x+1)^2 = 1$, i.e. x = -1 or $\frac{1-t^2}{1+t^2}$. So we have the rational parametrization $(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$

2. Any singular plane cubic is rational.

3. Corollary **1.8** shows that elliptic curves are *not* rational.

Definition 2.3. *The* **genus** $g(C) \in \mathbb{Z}_{\geq 0}$ *is an invariant of a smooth projective curve.*

• If $K = \mathbb{C}$, then g(C) = genus of the Riemann surface C.

• A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus $g(C) = \frac{(d-1)(d-2)}{2}$.

Proposition 2.4. *Let C be a smooth projective curve over K*, *an algebraically closed field. Then:*

- 1. C is rational \iff g(C) = 0.
- 2. C is an elliptic curve \iff g(C) = 1.

Proof. A proof of 1 is omitted from this course. For 2, we check (on the first example sheet) that elliptic curves are smooth plane curves. Then they have degree 3, so genus $\frac{2\cdot 1}{2} = 1$. For the other direction, see later on in the course.

2.1 Order of Vanishing

C will be an algebraic curve, and K(C) its function field, with $P \in C$ a smooth point. Write $\operatorname{ord}_P(f)$ to mean the order of vanishing of $f \in K(C)$ at P (negative if f has a pole).

Fact: $\operatorname{ord}_P : K(C)^{\times} \to \mathbb{Z}$ is a discrete valuation, i.e. $\operatorname{ord}_P(f_1 f_2) = \operatorname{ord}_P(f_1) + \operatorname{ord}_P(f_2)$ and $\operatorname{ord}_P(f_1 + f_2) \ge \min\{\operatorname{ord}_P(f_1), \operatorname{ord}_P(f_2)\}.$

We say $t \in K(C)^{\times}$ is a *uniformizer* at the point *P* if $\operatorname{ord}_{P}(t) = 1$.

Example 2.5. Let $C = \{g(x,y) = 0\} \subseteq \mathbb{A}^2$, where $g \in K[x,y]$ is irreducible. Then $K(C) = \operatorname{Frac} \frac{K[x,y]}{g}$, with $g = g_0 + g_1(x,y) + g_2(x,y) + \dots$, g_i homogeneous of degree i.

Suppose $P = (0,0) \in C$ is a smooth point, i.e. $g_0 = 0$, $g_1(x,y) = \alpha x + \beta y$ with α, β not both zero.

Let $\gamma, \delta \in K$. It is a fact that $\gamma x + \delta y \in K(C)$ is a uniformizer at P if and only if $\frac{\gamma}{\delta} \neq \frac{\alpha}{\beta}$, i.e. $\alpha \delta - \beta \gamma \neq 0$.

Example 2.6. $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2, \lambda \neq 0, 1$. We take the projective closure, i.e. homogenize the equation as $\{Y^2Z = X(X-Z)(X-\lambda Z)\} \subset \mathbb{P}^2$ by setting x = X/Z, y = Y/Z.

Have we got new points by taking projective closure? We only get these when Z=0, i.e. $0=X^3 \implies X=0, Y\neq 0$. Since we're in projective space, this is just one point: P=(0:1:0). We compute $\operatorname{ord}_P(x)$ and $\operatorname{ord}_P(y)$. Put t=X/Y, w=Z/Y (since we can't return to the original affine piece, as it doesn't contain Z=0). Then we get $w=t(t-w)(t-\lambda w)$. Now P is the point (t,w)=(0,0). This is a smooth point, as there are linear terms at that point (namely w). So $\operatorname{ord}_P(t)=\operatorname{ord}_P(t-2)=\operatorname{ord}_P(t-\lambda w)=1$, and $\operatorname{ord}_P(w)=1+1+1=3$.

Then:

$$\operatorname{ord}_{P}(x) = \operatorname{ord}_{P}(X/Z) = \operatorname{ord}_{P}(t/w) = 1 - 3 = -2$$

 $\operatorname{ord}_{P}(y) = \operatorname{ord}_{P}(Y/Z) = \operatorname{ord}_{P}(1/w) = -3$

2.2 Riemann Roch Spaces

Let C be a smooth projective curve. Then a *divisor* is a formal sum of points on C, say $D = \sum_{P \in C} n_P P$ where $n_P \in \mathbb{Z}$, and only finitely many n_P are nonzero, and let deg $D = \sum_{P \in C} n_P$. These divisors form a group under addition, denoted Div(C).

D is said to be *effective*, written $D \ge 0$ if $n_p \ge 0$ for all $P \in C$.

If $f \in K(C)^{\times}$, we write $\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_{P}(f)P$.

The Riemann Roch space of $D \in Div(C)$ is:

$$\mathcal{L}(D) = \{ f \in K(C) : \text{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D."

Theorem 2.7 (Riemann Roch for genus 1).

$$\dim \mathcal{L}(D) = \begin{cases} 0 & \deg D < 0 \\ 0 \text{ or } 1 & \deg D = 0 \\ \deg D & \deg D > 0 \end{cases}$$

Example 2.6 (revisited). Our curve is $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$, together with P = (0:1:0), the point at infinity. Recall $\operatorname{ord}_P(x) = -2$, $\operatorname{ord}_P(x) = -3$.

We thus deduce that $\mathcal{L}(2P) = \langle 1, x \rangle$, $\mathcal{L}(3P) = \langle 1, x, y \rangle$.

Proposition 2.8. Let K be an algebraically closed field not of characteristic 2. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic, and that $P \in C$ is a point of inflection. Then we may change coordinates such that:

$$C: Y^2Z = X(X - Z)(X - \lambda Z), \quad \lambda \neq 0, 1$$

 $P = (0:1:0)$

Proof. We make a change of coordinates such that P = (0:1:0) and the tangent line to C at P, $T_P(C) = \{Z = 0\}$. Now let $C = \{F(X, Y, Z) = 0\}$.

Since $P \in C$ is a point of inflection, F(t, 1, 0) has a triple root at t = 0. But F is degree 3, so we have $F(t, 1, 0) = kt^3$ for k some constant. I.e., there are no terms in F of the form X^2Y , XY^2 , Y^3 .

So $F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle$. The coefficient of Y^2Z is nonzero, as otherwise P would be singular. The coefficient of X^3 is also nonzero, as C is irreducible and otherwise $\{Z=0\} \subset C$.

We are free to rescale X, Y, Z, F, and so wlog C is defined by

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$

We call this Weierstrass form.

Since our field doesn't have characteristic 2, we may complete the square by substituting $Y = Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$, we may assume $a_1 = a_3 = 0$.

Now $C: Y^2Z = Z^3f(X/Z)$, where f is a monic cubic polynomial. Since C is smooth, f has distinct roots, which are $wlog 0, 1, \lambda$. So

$$C: Y^2Z = X(X-Z)(X-\lambda Z)$$

which we call the Legendre form.

It may be shown that the points of inflection on $C = \{F = 0\} \subset \mathbb{P}^2$ are given by $F = \det\left(\frac{\partial^2 f}{\partial X_i \partial X_j}\right) = 0$

2.3 The Degree of a Morphism

Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Let $\phi^*: K(C_2) \to K(C_1)$, $f \mapsto f \circ \phi$.

Definition.

- 1. $\deg \phi = [K(C_1) : \phi^*K(C_2)]$
- 2. ϕ is separable if $K(C_1)/\phi^*K(C_2)$ is a separable field extension (which by Galois theory is automatic if char K=0)

Suppose $P \in C_1$, $Q \in C_2$, $\phi : P \to Q$. Let $t \in K(C_2)$ be a uniformizer at Q. We then define $e_{\phi}(p) = \operatorname{ord}_P(\phi^*t)$, which is always ≥ 1 , and independent of t. $e_{\phi}(P)$ is called the *ramification index* of ϕ at p.

Theorem 2.9. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then

$$\sum_{p \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi$$

for any point $Q \in C_2$. Moreover, if ϕ is separable then $e_{\phi}(P) = 1$ with at most finitely many exceptions. In particular:

- 1. ϕ is surjective
- 2. If ϕ is separable, $\#\phi^{-1}(Q) \leq \deg \phi$, with equality for all but finitely many choices of Q.

Remark 2.10. Let *C* be an algebraic curve. A rational map is given by $\phi : C \to \mathbb{P}^n$, $P \mapsto (f_0(P) : \dots : f_n(P))$, where $f_0, \dots, f_n \in K(C)$ are not all zero. If *C* is smooth then ϕ is a morphism.

3 Weierstrass Equations

In this section, K is a perfect field (so that all finite extensions of K are separable), with algebraic closure \bar{K} .

Definition. An elliptic curve E over K is a smooth projective curve of genus 1 defined over K with a specified K-rational point O_E .

Example: Take $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$ for p prime. This is not an elliptic curve over \mathbb{Q} since there is no \mathbb{Q} -points.

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstrass form via an isomorphism taking O_E to (0:1:0).

Proposition **2.8** treated the special case where E is a smooth plane cubic and O_E is a point of inflection.

If $D \in \text{Div}(E)$ is defined over K (i.e. fixed by the natural action of $\text{Gal}(\bar{K}/K)$, then $\mathcal{L}(D)$ has a basis in K(E), not just in $\bar{K}(E)$).

Proof. Note that

$$\mathcal{L}(2O_E) \subset \mathcal{L}(3O_E)$$

Pick bases of these spaces, say $\{1, x\}$ and $\{1, x, y\}$.

Note that $\operatorname{ord}_{O_E}(x) = -2$, $\operatorname{ord}_{O_E}(y) = -3$. The 7 elements $\{1, x, y, x^2, xy, x^3, y^2\}$ are rational functions with no pole except at O_E , where they have poles of degree at most 6, so they all lie in $\mathcal{L}(6O_E)$. Riemann-Roch tells us this space has dimension 6, so there is a dependence relation between these elements.

Leaving out x^3 or y^2 gives a basis for $\mathcal{L}(6O_E)$ since each term has a different order pole at O_E , so they are independent.

Therefore this dependence relation *must* involve both x^3 and y^2 . Rescaling x, y we get

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Let *E'* be the curve defined by this equation (or rather its projective closure).

There is a morphism

$$\phi: E \to E'$$

$$P \mapsto (x(P): y(P): 1) = \left(\frac{x}{y}(P): 1: \frac{1}{y}(P)\right)$$

$$O_E \mapsto (0: 1: 0)$$

$$[K(E):K(x)] = \deg(E \xrightarrow{x} \mathbb{P}^1) = \operatorname{ord}_{O_E} \left(\frac{1}{x}\right) = 2$$
$$[K(E):K(y)] = \deg(E \xrightarrow{y} \mathbb{P}^1) = \operatorname{ord}_{O_E} \left(\frac{1}{y}\right) = 3$$

This gives us a diagram of field extensions

So [K(E):K(x,y)] divides both 2 and 3 by the tower law, and hence K(E)=K(x,y), and hence $\deg(E \xrightarrow{\phi} E')=1$, and ϕ is birational. If E' is singular, then it is rational, and so E is also rational ξ . So E' is not singular and hence smooth, and we may use remark **2.10** to ϕ^{-1} to see that ϕ^{-1} is a morphism, and hence ϕ is an isomorphism.

Proposition 3.2. Let E, E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over K if and only if the Weierstrass equations are related by a change of variables of the form

$$x = u^2x' + r$$
$$y = u^3y' + u^2sx' + t$$

for $u, r, s, t \in K, u \neq 0$.

Proof. Using the notation of the previous proof,

$$\begin{split} \langle 1, x \rangle &= \mathcal{L}(2O_E) = \langle 1, x' \rangle \\ \langle 1, x, y \rangle &= \mathcal{L}(3O_E) = \langle 1, x', y' \rangle \\ &\Longrightarrow \begin{cases} x = \lambda x' + r & \lambda_1 r \in K, \lambda \neq 0 \\ y = \mu y' + \sigma x' + t & \mu, \sigma, t \in K, \mu \neq 0 \end{cases} \end{split}$$

Looking at the coefficients of x^3 and y^2 , $\lambda^3 = \mu^2 \implies (\lambda, \mu) = (u^2, u^3)$ for $u \in K^{\times}$.

Put
$$s = \sigma/u^2$$

The effect of this transformation on the coefficients a_i is on the formula sheet for this course. A Weierstrass equation defines an elliptic curve if and only if defines a smooth curve, if and only if $\Delta(a_1, \ldots, a_6) \neq 0$ where Δ is as follows:

$$b_2 := a_1^2 + 4a_2$$

$$b_4 := 2a_4 + a_1a_3$$

$$b_6 := a_3^2 + 4a_6$$

$$b_8 := a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$$

$$\Delta := -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6$$

If char $K \neq 2, 3$, then we can reduce to the case

$$E: y^2 = x^3 + ax + b$$
$$\Delta = -16(4a^3 + 26b^2)$$

Corollary 3.3. Assume char $K \neq 2,3$. If we have two elliptic curves

$$E: y^2 = x^3 + ax + b$$

 $E': y^2 = x^3 + a'x + b'$

then they are isomorphic over K if and only if

$$a' = u^4 a$$
$$b' = u^6 b$$

for some $u \in K^{\times}$.

Proof. E and E' are related as in **3.2** with r = s = t = 0.

Definition. The *j-invariant* is $j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}$. Note that the denominator is nonzero since the discriminant is nonzero.

Corollary 3.4. $E \cong E' \implies j(E) = j(E')$, and the converse holds if $K = \overline{K}$.

Proof.

$$E \cong E' \iff a' = u^4 a; b' = u^6 b \text{ for some } u \in K^{\times}$$

 $\implies (a^3 : b^2) = ((a')^3 : (b')^2)$
 $\iff j(E) = j(E')$

and the reverse implication holds in the second line if $K = \bar{K}$.

4 Group Law

Let $E \subset \mathbb{P}^2$ be a smooth plane cubic, and $O_E \in E(K)$. Since E is of degree 3, it meets each line in 3 points counted with multiplicity. Hence, given two points P, Q on E, the line \overline{PQ} meets E at a third point S. Then the line $\overline{O_ES}$ meets E at a third point S. We then define $P \oplus Q = R$.

If P = Q, then we take the tangent line at P, likewise if $S = O_E$. We can view this diagrammatically as follows:

Figure 2: Illustration of the group operation on an elliptic curve

We call this the "chord and tangent process".

Theorem 4.1. (E, \oplus) *is an abelian group.*

Proof.

- (i) $P \oplus Q = Q \oplus P$ by construction.
- (ii) O_E is the identity.
- (iii) For inverses, let *S* be the third point of intersection of T_{O_E} and *E*, and *Q* be the third point of intersection of \overline{PS} and *E*. Then $P \oplus Q = O_E$.
- (iv) Associativity is much harder.

Definition. $D_1, D_2 \in Div(E)$ are *linearly equivalent* (written $D_1 \sim D_2$) if there is $f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) = D_1 - D_2$. Then we will let $[D] = \{D' : D' \sim D\}$.

Definition. The *Picard group of E*, $Pic(E) = Div(E)/\sim$. We write $Div^0(E) := ker \left(Div(E) \xrightarrow{\deg} \mathbb{Z}\right)$ for the group of degree 0 divisors on *E*, and then $Pic^0(E) = Div^0(E)/\sim$. Sometimes Pic^0 is called

the Jacobian. **Proposition 4.2.** Let $\psi : E \to \operatorname{Pic}^0(E); P \mapsto [(P) - (O_E)]$. Then:

1.
$$\psi(P \oplus Q) = \psi(P) + \psi(Q)$$

2. ψ is a bijection

Proof.

1. Referring back to Fig. 2, let $\{\ell = 0\}$ be the line \overline{PQ} , and $\{m = 0\}$ be the line $\overline{O_ER}$. Then:

$$\operatorname{div}(\ell/m) = (P) + (S) + (Q) - (R) - (S) - (O_E)$$

$$= (P) + (Q) - (O_E) - (P \oplus Q)$$

$$\Longrightarrow (P \oplus Q) + (O_E) \sim (P) + (Q)$$

$$\Longrightarrow (P \oplus Q) - (O_E) \sim (P) - (O_E) + (Q) - (O_E)$$

$$\Longrightarrow \psi(P \oplus Q) = \psi(P) + \psi(Q)$$

2. For injectivity, suppose $\psi(P) = \psi(Q)$. Then there is $f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) = P - Q$. Then $\operatorname{deg}\left(E \xrightarrow{f} \mathbb{P}^1\right) = \operatorname{ord}_P(f) = 1$. But then f is a birational morphism, so an isomorphism, and $E \cong \mathbb{P}^1 \nleq$.

For surjectivity, let $[D] \in \operatorname{Pic}^0(E)$. Then $D + (O_E)$ has degree 1 (as D had degree 0). Then Riemann-Roch tells us $\dim \mathcal{L}(D + (O_E)) = 1$, and so there exists some $f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) + D + (O_E) \geq 0$. Since f is rational, deg $\operatorname{div}(f) = 0$, and deg D = 0. So the coefficients of $\operatorname{div}(f) + D + (O_E)$ are non-negative and sum to 1, hence one of them is 1 and the rest are 0. So $\operatorname{div}(f) + D + (O_E) = (P)$ for some $P \in E$. But then $(P) - (O_E) \sim D$, i.e. $\psi(P) = [D]$.

So ψ is a bijection respecting the group law, and so we deduce that \oplus is associative, and then $(E, \oplus) \stackrel{\psi}{\cong} (\operatorname{Pic}^0 E, +)$.

4.1 Explicit Formulae for the Group Law

We consider E in Weierstrass form, with O_E the point at infinity:

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
 (*)

Note that O_E is a point of inflection. Now $P_1 \oplus P_2 \oplus P_3 = O_E \iff P_1, P_2, P_3$ are collinear. We will use the following notation:

and put $P_i = (x_i, y_i), P' = (x', y').$

Now $\Theta P_1 = (x_1, -(a_1x_1 + a_3) - y_1)$, just by setting $y = -y_1$ in (*).

The line through P_1 , P_2 has equation say $y = \lambda x + \nu$. Substituting into (*) and looking at the coefficient of x^2 , we get:

$$\lambda^2 + a_1 \lambda - a_2 = x_1 + x_2 + x'$$

Since $x_3 = x'$, we have:

$$x_3 = \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$$

$$y_3 = -(a_1x' + a_3) - y'$$

$$= -(\lambda + a_1)x_3 - \nu - a_3$$

It remains to find λ and ν . There are 3 cases:

1. $x_1 = x_2, P_1 \neq P_2$.

Then $P_1 \oplus P_2 = O_E$.

2. $x_1 \neq x_2$.

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \ \nu = y_1 - \lambda x_1 = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

3. $P_1 = P_2$.

Here we have to compute the equation of the tangent line etc. The solutions are:

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \quad \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}$$

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup of $E (= E(\overline{K}))$.

Identity: $O_E \in E(K)$ by definition.

Closure: See formulae above.

Inverses: See formulae above.

Associativity: Inherited from $E(\bar{K})$.

Commutativity: Inherited from $E(\bar{K})$.

If there is no ambiguity (i.e. we are not also adding numbers at the same time), the circles will be dropped from the group operation.

Theorem 4.4. Elliptic curves are group varieties.

$$i.e., [-1]: E \rightarrow E; P \mapsto -P \text{ and } +: E \times E \rightarrow E; (P,Q) \mapsto P + Q \text{ are morphisms of algebraic varieties.}$$

Proof. The above formulae show that [-1] and + are rational maps. We know immediately that [-1] is a morphism, as it is a rational map from a smooth curve to a projective variety.

The formulae also show that + is regular on the set

$$U = \{(P,Q) \in E \times E \mid P,Q,P+Q,P-Q \neq O_E\}$$

For $P \in E$, let $\tau_P : E \to E$; $X \mapsto P + X$ be the "translation by P" map.

Then τ_P is a rational map from a smooth curve to a projective variety, so is a morphism.

We factor + as:

$$E \times E \xrightarrow[\tau_{-A} \times \tau_{-B}]{} E \times E \xrightarrow[\tau_{A+B}]{} E \xrightarrow[\tau_{A+B}]{} E$$

Now + is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$, and so + is regular on $E \times E$.

<u>Definition.</u> For any $n \in \mathbb{Z}_{>0}$, let $[n]: E \to E; P \mapsto P + \ldots + P$, n times, and $[-n] = [-1] \circ [n]$, $[0]: P \mapsto O_E$ (i.e., the standard way of turning an abelian group into \mathbb{Z} module).

Definition. The *n*-torsion subgroup of *E* is $E[n] = \ker([n] : E \to E)$.

Lemma 4.5. If char(K) \neq 2, and E: $y^2 = (x - e_1)(x - e_2)(x - e_3)$.

Then $E[2] = (0, (e_1, 0), (e_2, 0), (e_3 0)) \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Proof. Let
$$P = (x, y) \in E$$
. Then $[2]P = 0 \iff P = -P \iff (x, y) = (x, -y) \iff y = 0$.

4.2 Elliptic Curves over \mathbb{C}

Let $\Lambda = \{a\omega_1 + b\omega_2 : a, b \in \mathbb{Z}\}$, where ω_1, ω_2 form a basis for \mathbb{C} over \mathbb{R} .

Then the meromorphic functions on the Riemann surface (or lattice) \mathbb{C}/Λ are the same as the Λ -invariant meromorphic functions on \mathbb{C} (i.e. $f(z) = f(z + \lambda)$ for $\lambda \in \Lambda$).

This set of functions is a field, and is generated by $\wp(z)$ and $\wp'(z)$, where:

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right)$$

They satisfy $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$, for some $g_1, g_3 \in \mathbb{C}$ depending on λ . We call \wp the *Weierstrass p-function*.

One can show that $\mathbb{C}/\Lambda \cong E(\mathbb{C})$, where E is the elliptic curve $y^2 = 4x^3 - g_2x - g_3$. This is an isomorphism, not only of Riemann surfaces, but moreover of groups

Theorem 4.6 (Uniformisation Theorem). *Every elliptic curve over* \mathbb{C} *arises in this way.*

Thus, for elliptic curves E/\mathbb{C} , we have:

- $(1) \ E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$
- (2) deg $[n] = n^2$

We will show that (2) holds over any field K, and (1) holds if char $K \nmid n$.

Summary of Results (N.B. the isomorphisms in 1, 2, 4 respect the relevant topologies)

1.
$$K = \mathbb{C}$$
 $E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$

2.
$$K = \mathbb{R}$$

$$E(\mathbb{R}) \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{R}/\mathbb{Z} & \Delta > 0 \\ \mathbb{R}/\mathbb{Z} & \Delta < 0 \end{cases}$$

3.
$$K = \mathbb{F}_q$$
 $|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$

4.
$$[K:\mathbb{Q}_p]<\infty$$
 $E(K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$

5.
$$[K:\mathbb{Q}]<\infty$$
 $E(K)$ is a finitely generated abelian group.

5 Isogenies

Let E_1 , E_2 be elliptic curves.

Definition. An *isogeny* $\phi : E_1 \to E_2$ is a non-constant morphism taking O_{E_1} to O_{E_2} , and we say E_1 and E_2 are *isogenous* if there is an isogeny $E_1 \to E_2$.

Definition. Hom(E_1, E_2) = {isogenies $E_1 \rightarrow E_2$ } \cup {0}. This is a group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$.

If $E_1 \xrightarrow{\phi} E_2 \xrightarrow{\psi} E_3$ are isogenies, then $\psi \phi$ is an isogeny. The tower law tells us that $\deg(\psi \phi) = \deg(\phi) \deg(\psi)$.

Lemma 5.1. *If* $0 \neq n \in \mathbb{Z}$, then $[n] : E \rightarrow E$ is an isogeny.

Proof. Theorem **4.4** tells us that [n] is a morphism. We must show that $[n] \neq 0$.

Assume char $K \neq 2$, then we can use Lemma 4.5. If n = 2, then #E[2] = 4, and so $[2] \neq 0$.

If *n* is odd, then there is $0 \neq T \in E[2]$. Then $nT = T \neq 0$, so [n] is not the zero map.

Now $[m][n] = [m] \circ [n]$, and any $n = 2^k m$ for m odd, so [n] is not the zero map for any $n \neq 0$.

If char K = 2, then replace **4.5** with a lemma computing E[3].

Corollary. Hom(E_1 , E_2) is torsion-free as a \mathbb{Z} -module.

Lemma 5.2. Let $\phi: E_1 \to E_2$ be an isogeny. Then $\phi(P+Q) = \phi(P) + \phi(Q)$ for all $P, Q \in E_1$.

Sketch proof. ϕ induces a map $\phi_* : \mathrm{Div}^0(E_1) \to \mathrm{Div}^0(E_2)$ given by $\sum_{P \in E_1} n_P P \mapsto \sum_{P \in E_1} n_P \phi(P)$.

Recall that, via a pullback, $\phi^* : K(E_2) \hookrightarrow K(E_1)$.

If $f \in K(E_1)^*$, then $\phi_*(\text{div } f) = \text{div}(N_{K(E_1)/K(E_2)}f)$ - this is a fact that we'll take for granted.

So ϕ_* takes principal divisors to principal divisors. Since $\phi(O_{E_1}) = O_{E_2}$, the following diagram

commutes:

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$\downarrow \psi_{1} \qquad \downarrow \psi_{2} \quad \text{,where } \psi_{1} : P \mapsto [(P) - (O_{E_{1}})], \psi_{2} : Q \mapsto [(Q) - (O_{E_{2}})].$$

$$Pic^{0}(E_{1}) \xrightarrow{\phi_{*}} Pic^{0}(E_{2})$$

Since ϕ_* is a group homomorphism, ϕ is also a group homomorphism.

Lemma 5.3. Let $\phi: E_1 \to E_2$ be an isogeny. Then there is a morphism ξ making the following diagram commute:

$$E_1 \xrightarrow{\phi} E_2$$

$$\downarrow^{x_1} \qquad \downarrow^{x_2}$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

where x_i is the x-coordinate in a Weierstrass equation for E_i .

Moreover, if $\xi(t) = \frac{r(t)}{s(t)}$ for $r, s \in K[t]$ coprime, then $\deg \phi = \deg \xi = \max(\deg r, \deg s)$.

Proof. For i = 1, 2, $K(E_i)/K(x_i)$ is a degree 2 extension, since the extension is given by adjoining y_i , which satisfies a quadratic (see the Weierstrass equation). Moreover, it is Galois, as $[-1]^*$ is a non-trivial automorphism of $K(E_i)$ fixing $K(x_i)$.

Since ϕ is a group homomorphism, we have that $\phi(-P) = -\phi(P)$, i.e. $\phi \circ [-1] = [-1] \circ \phi$.

If $f \in K(x_2)$, then $[-1]^*f = f$, and $[-1]^*(\phi^*f) = \phi^*([-1]^*f) = \phi^*f$. Hence ϕ^*f is fixed by [-1], so is in $K(x_1)$, and $K(x_2) \le K(x_1)$.

Taking $f = x_2$, then $\phi^* x_2 \in K(x_1)$, say $\xi(x_1)$ for some rational function ξ . Then ξ is as required.

Since $[K(E_1):K(x_1)] = [K(E_2):K(x_2)] = 2$, we have the following diagram of field extensions:

Using the tower law, deg $\phi = \deg \xi$. Now, $K(x_2) \hookrightarrow K(x_1)$ via $x_2 \mapsto \xi(x_1) = \frac{r(x_1)}{s(x_2)}$ for $r, s \in K[t]$ coprime.

The minimal polynomial of x_1 over $K(x_2)$ is $f(t) = r(t) - s(t)x_2 \in K(x_2)[t]$ - this is clearly a polynomial for x_1 , but we need to check it's irreducible.

f is irreducible in $K[t][x_2] = K[x_2][t]$ as it is of degree 1 in x_2 , so one of the factors must be constant in x_2 , so divide both r and s which are coprime. Then we can use Gauss's lemma, and it is irreducible in $K(x_2)[t]$.

Hence
$$\deg \phi = \deg \xi = [K(x_1) : K(x_2)] = \deg(r(t) - s(t)x_2) = \max(\deg r, \deg s).$$

Lemma 5.4. deg[2] = 4

Proof. Assume char $K \neq 2, 3$. Then $E: y^2 = x^3 + ax + b = f(x)$.

If
$$P = (x, y)$$
, then $x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{(3x^2 + a)^2 - 8xf(x)}{4f(x)} = \frac{x^4 + \dots}{4f(x)}$.

The numerator and denominator are coprime - suppose there was a common factor. Then $\exists \ \theta \in \overline{K}$ with $f(\theta) = (3\theta^2 + a)^2 = f'(\theta) = 0$, and so f has a multiple root. But E is an elliptic curve so f doesn't have multiple roots.

Hence
$$\deg[2] = \max(\deg x^4 + \dots, \deg 4f(x)) = \max(4,3) = 4.$$

Definition. Let A be an abelian group. We say that $q:A\to\mathbb{Z}$ is a *quadratic form* if it satisfies

- 1. $q(nx) = n^2 q(x) \ \forall n \in \mathbb{Z}, x \in A$.
- 2. $(x, y) \rightarrow q(x + y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.5. $q:A\to\mathbb{Z}$ is a quadratic form if and only if it satisfies the parallelogram law:

$$q(x+y) + q(x-y) = 2q(x) + 2q(y) \ \forall x, y \in A$$

Proof. For the forwards direction, let $\langle x, y \rangle = q(x + y) - q(x) - q(y)$.

Then $\langle x, x \rangle = q(2x) - 2q(x) = 2q(x)$.

Then $\frac{1}{2}\langle x+y, x+y\rangle + \frac{1}{2}\langle x-y, x-y\rangle = \langle x, x\rangle + \langle y, y\rangle$ by bilinearity, and hence q(x+y) + q(x-y) = 2q(x) + 2q(y).

The reverse direction is left as an exercise on example sheet 2.

Theorem 5.6.

$$deg: Hom(E_1, E_2) \rightarrow \mathbb{Z}$$

is a quadratic form.

Proof. For the proof, we will assume char $K \neq 2,3$ for simplicity - the result still holds in those characteristics.

We write $E_2 : y^2 = x^3 + ax + b$.

Let $P,Q \in E_2$ with $P,Q,P+Q,P-Q \neq 0$, and let x_1,\ldots,x_4 be the *x*-coordinates of these 4 points. Then we have:

Lemma 5.7. There exists $w_0, w_1, w_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree ≤ 2 in x_1 and in x_2 such that $(1 : x_3 + x_4 : x_3x_4) = (w_0 : w_1 : w_2)$.

Proof. We could prove this by direct calculation, leading to the formulae:

$$w_0 = (x_1 - x_2)^2$$

$$w_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$$

$$w_2 = x_1^2x_2^2 - 2ax_1x_2 - 4b(x_1 + x_2) + a^2$$

As an alternative proof, let $y = \lambda x + v$ be the line through P and Q. Then

$$x^3 + ax + b - (\lambda x + \nu)^2 = (x - x_1)(x - x_2)(x - x_3) = x^3 - s_1 x^2 + s_2 x - s_3$$

where s_i is the i^{th} symmetric polynomial in (x_1, x_2, x_3) .

Comparing coefficients:

$$\lambda^{2} = s_{1}$$
$$-2\lambda \nu + a = s_{2}$$
$$\nu^{2} - b = s_{3}$$

Eliminating λ , ν , we have $F(x_1, x_2, x_3) := (s_2 - a)^2 - 4s_1(s_3 + b) = 0$. Then F has degree at most 2 in each x_i .

 x_3 is a root of the quadratic polynomial $W(t) = F(x_1, x_2, t)$, and repeating this for the line through P and -Q shows that x_4 is the other root. Hence

$$w_0(t - x_3)(t - x_4) = W(t) = w_0t^2 - w_1t + w_2$$

And so
$$(1: x_3 + x_4 : x_3x_4) = (w_0 : w_1 : w_2)$$
.

We then show that, if ϕ , $\psi \in \text{Hom}(E_1, E_2)$, then

$$deg(\phi + \psi) + deg(\phi - \psi) \le 2 deg(\phi) + 2 deg(\psi)$$

We may assume ϕ , ψ , $\phi + \psi$, $\phi - \psi! = 0$, as otherwise the result is trivial.

$$\phi: (x,y) \mapsto (\xi_1(x), \ldots)$$

$$\psi: (x,y) \mapsto (\xi_2(x), \ldots)$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \ldots)$$

$$\phi - \psi: (x,y) \mapsto (\xi_4(x), \ldots)$$

Then **5.7** gives $(1:\xi_3+\xi_4:\xi_3\xi_4)=((\xi_1-\xi_2)^2:\ldots:\ldots)$.

Put $\xi_i = \frac{r_i}{s_i}$ where $r_i, s_i \in K[x]$ are coprime:

$$(s_3s_4:r_3s_4+r_4s_3:r_3r_4)=((r_1s_2-r_2s_2)^2:\ldots:\ldots)$$

So we have:

$$\deg(\phi + \psi) + \deg(\phi - \psi) = \max(\deg r_3, \deg s_3) + \max(\deg r_4, \deg s_4)$$
$$= \max(\deg(s_3s_4), \deg(r_3s_4 + r_4s_3), \deg(r_3r_4))$$

Suppose $(s_3s_4, r_3s_4 + r_4s_3, r_3r_4)$ are not coprime, so that p irreducible divides all 3. Then p divides one of r_3 , r_4 , and one of s_3 , s_4 . p can't divide both s_i and r_i as they are coprime, so wlog p divides r_3 and s_4 and not r_4 nor s_3 . Then p doesn't divide $r_3s_4 + r_4s_3 \not$. Hence these polynomials are coprime.

Hence the polynomials on RHS of (*) must be multiples of polynomials on the LHS by some irreducible polynomial, and hence each have degree \geq their corresponding polynomial on LHS, and thus, as w_i are of degree \leq 2 in r_1, s_1, r_2, s_2 ,

$$\deg(\phi + \psi) + \deg(\phi - \psi) \le \max(\deg(w_0), \deg(w_1), \deg(w_2))$$

$$\le 2 \max(\deg r_1, \deg s_1) + 2 \max(\deg r_2, \deg s_2)$$

$$= 2 \deg \phi + 2 \deg \psi$$
(1)

Now replace ϕ and ψ by $\phi + \psi$ and $\phi - \psi$ to get

$$\deg(2\phi) + \deg(2\psi) \le 2\deg(\phi + \psi) + 2\deg(\phi - \psi)$$

Since deg[2] = 4,

$$2\deg(\phi) + 2\deg(\psi) \le \deg(\phi + \psi) + \deg(\phi - \psi) \tag{2}$$

(1) and (2) together give

$$2\deg(\phi) + 2\deg(\psi) = \deg(\phi + \psi) + \deg(\phi - \psi)$$

so deg satisfies the parallelogram law, and hence is a quadratic form.

Corollary 5.8.

$$deg(n\phi) = n^2 \deg(\phi) \ \forall n \in \mathbb{Z}, \phi \in \operatorname{Hom}(E_1, E_2)$$

In particular, $deg[n] = n^2$.

Example 5.9. Let E/K be an elliptic curve, suppose char $K \neq 2$, and let $O_E \neq T \in E(K)[2]$.

Then we may take $E: y^2 = x(x^2 + ax + b), a, b \in K, b(a^2 - 4b) \neq 0, T = (0, 0)$

Then if P = (x, y) and P' = P + T = (x', y'), then:

$$x' = (y/x)^{2} - a - x = \frac{x^{2} + ax + b}{x} - x - a - a = \frac{b}{x}$$
$$y' = -(y/x)x' = \frac{-by}{x^{2}}$$

Then let $\xi = x + x' + a = \frac{x^2 + ax + b}{x} = (\frac{y}{x})^2$, and $\eta = y + y' = \frac{y}{x}(x - \frac{b}{x})$

Then
$$\eta^2 = \left(\frac{y}{x}\right)^2 \left[\left(x + \frac{b}{x} \right)^2 - 4b \right] = \xi \left((\xi - a)^2 - 4b \right) = \xi (\xi^2 - 2a\xi + a^2 - 4b)$$

Let $E': y^2 = x(x^2 + a'x + b')$ where $a' = -2a, b' = a^2 - 4b$. Then there is an isogeny $\phi: E \to E'$ given by $(x, y) \mapsto \left(\left(\frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right)$; $O_E \mapsto (0:1:0)$

5.3 tells us, as $x' = \left(\frac{y}{x}\right)^2 = \frac{x^2 + ax + b}{x}$, that $\deg(\phi) = \max(2, 1) = 2$, and we say ϕ is a 2-isogeny.

6 The Invariant Differential

Let *C* be an algebraic curve over an algebraically closed field. Then the *space of differentials* Ω_C is a vector space over the function field of the curve K(C), generated by df for $f \in K(C)$ subject to the relations

- 1. d(f + g) = df + dg
- 2. d(fg) = fdg + gdf
- 3. da = 0 for $a \in K$

It turns out that dim $\Omega_C = \dim C$, and since C is a curve, Ω_C is a 1-dimensional K(C)-vector space.

Let $0 \neq \omega \in \Omega_C$, and let $P \in C$ be a smooth point, with $t \in K(C)$ a uniformizer at P (has order of vanishing 1 at P). Then $\omega = f dt$ for some $f \in K(C)$.

We define $\operatorname{ord}_P(\omega) = \operatorname{ord}_P(f)$. This does not depend on the choice of uniformizer.

Suppose we have $f \in K(C)^*$, and $\operatorname{ord}_P(f) = n \neq 0$. Then, if char $K \nmid n$, $\operatorname{ord}_P(df) = n - 1$.

If *C* is now a smooth projective curve, we define the divisor of $\omega \in \Omega_C$ to be

$$\operatorname{div}(\omega) = \sum_{P \in C} \operatorname{ord}_{P}(\omega) P \in \operatorname{Div}(C)$$

using the fact that $\operatorname{ord}_P(\omega)$ is zero at all but finitely many points $P \in C$.

The *space of regular differentials* is the finite dimensional vector space over K of all $\omega \in \Omega_{\mathbb{C}}$ for which $\operatorname{div}(\omega)$ is effective, i.e. there are no poles. The dimension of this space is called the *genus* of C, g(C).

As a consequence of Riemann-Roch, we have, for $0 \neq \omega \in \Omega_C$, $\deg(\operatorname{div}(\omega)) = 2g(C) - 2$.

Lemma 6.1. Assume char $K \neq 2$. Take an elliptic curve $E: y^2 = (x - e_1)(x - e_2)(x - e_3)$, where e_1, e_2, e_3 distinct.

Then $\omega = \frac{dx}{y}$ is a differential on E, and has no zeros and no poles, and so g(E) = 1.

Moreover, the space of regular differentials is just $\langle \omega \rangle$ *.*

Proof. Let $T_i = (e_i, 0)$, so that $E[2] = \{O, T_1, T_2, T_3\}$.

Then $\operatorname{div}(y) = (T_1) + (T_2) + (T_2) - 3(O)$ - we know the zeros at T_i are simple as y is rational, so $\operatorname{deg}\operatorname{div}(y) = 0$.

Then for $P \in E$, $\operatorname{div}(x - x_P) = (P) + (-P) - 2(O)$, in the same way as above.

If $P \in E \setminus E[2]$, then $\operatorname{ord}_P(x - x_P) = 1$, so $\operatorname{ord}_P(d(x - x_P)) = \operatorname{ord}_P(dx) = 1 - 1 = 0$.

If $P = T_i$, then P = -P, and $\operatorname{ord}_P(x - x_p) = 2$, so $\operatorname{ord}_P(dx) = 2 - 1 = 1$

If P = O, then $\operatorname{ord}_P(x) = -2$, so $\operatorname{ord}_P(dx) = -3$.

Hence $\operatorname{div}(dx) = (T_1) + (T_2) + (T_3) - 3(O) = \operatorname{div}(y)$.

So $\operatorname{div}(dx/y) = \operatorname{div}(dx) - \operatorname{div}(y) = 0$. Then Riemann-Roch gives g(E) = 1, and so the space of regular differentials is 1-dimensional, so generated by ω .

Definition. If $\phi: C_1 \to C_2$ is a non-constant morphism, then we can pull back to

$$\phi^*: \Omega_{C_1} \to \Omega_{C_2}; fdg \mapsto \phi^* fd(\phi^*g)$$

Lemma 6.2. Let $P \in E$, $\tau_P : E \to E$; $X \mapsto P + X$, and $\omega = dx/y$ be as above.

Then $\tau_p^* \omega = \omega$, and so ω is called the **invariant differential**.

Proof. Since ω had no poles, $\tau_p^*\omega$ is again a regular differential, and hence equal to $\lambda_P\omega$ for some $\lambda_P \in K$, as the regular differentials are a 1-dimensional vector space over K.

The map $E \to \mathbb{P}^1$; $P \mapsto \lambda_P$ is a morphism of smooth projective curves, but is not surjective as it misses 0 and ∞ , and so this morphism is constant, by **2.8**.

So λ is independent of P. Take $P = O_E$, then τ_P is the identity map, and so λ is 1.

If $K = \mathbb{C}$, then $\mathbb{C}/\Lambda \cong E(\mathbb{C})$, via $z \mapsto (\wp(z), \wp'(z))$. Then $\frac{dx}{y} = \frac{\wp'(z)dz}{\wp'(z)} = dz$, which is invariant under $z \mapsto z + \text{const.}$.

Lemma 6.3. Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, ω the invariant differential on E_2 . Then

$$(\phi + \psi)^*(\omega) = \phi^* \omega + \psi^* \omega$$

Proof. Write $E = E_2$, and consider the maps:

$$E \times E \to E$$

$$\mu : (P,Q) \mapsto P + Q$$

$$\operatorname{pr}_1 : (P,Q) \mapsto P$$

$$\operatorname{pr}_2 : (P,Q) \mapsto Q$$

 $\Omega_{E\times E}$ is a 2-dimensional $K(E\times E)$ vector space with basis $\operatorname{pr}_1^*\omega$ and $\operatorname{pr}_2^*\omega$.

Then $\mu^* \omega = f \operatorname{pr}_1^* \omega + g \operatorname{pr}_2^* \omega$ for some $f, g \in K(E \times E)$.

For $Q \in E$, let $\iota_{Q} : E \to E \times E$; $P \mapsto (P, Q)$. Then

$$\begin{split} \iota_Q^*(\mu^*\omega) &= (\mu \circ \iota_Q)^*\omega = \iota_Q^*f(\mathrm{pr}_1 \circ \iota_Q)^*\omega + \iota_Q^*g(\mathrm{pr}_2 \circ \iota_Q)^*\omega \\ \tau_Q^*\omega &= \iota_Q^*f\omega + 0 \\ \omega &= \iota_Q^*f\omega \end{split}$$

So $\iota_O^* f = 1$ for all $Q \in E$, so f(P,Q) = 1 for all $P,Q \in E$.

Similarly, g(P, Q) = 1.

So $\mu^*\omega = \operatorname{pr}_1^*\omega + \operatorname{pr}_2^*\omega$. Now pull back by $E \to E \times E$; $P \mapsto (\phi(P), \psi(P))$ to get $(\phi + \psi)^*\omega = \phi^*\omega + \psi^*\omega$.

Lemma 6.4. If $\phi: C_1 \to C_2$ is a non-constant morphism, then ϕ is separable if and only if $\phi^*: \Omega_{C_2} \to \Omega_{C_1}$ is nonzero

Proof. Omitted.

Example: Let $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\} = \mathbb{P}^1 \setminus \{0, \infty\}$, with group law $\mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m$; $(x, y) \mapsto xy$.

Let $n \ge 2$ be an integer, $\alpha : \mathbb{G}_m \to \mathbb{G}_m$; $x \mapsto x^n$.

Then $\alpha^*(dx) = d(\alpha x) = d(x^n) = nx^{n-1}dx$. So if char $K \nmid n$, then α is separable. So $\#\alpha^{-1}(Q) = \deg \alpha$ for all but finitely many $Q \in \mathbb{G}_m$.

But α is group homomorphism, so all fibres have the same size, and $\#\alpha^{-1}(Q) = \#\ker\alpha$, hence $\#\ker\alpha = \deg\alpha = n$. So $K(=\bar{K})$ contains exactly n n^{th} roots of unity.

Theorem 6.5. *If* char $K \nmid n$, then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By **6.3** and induction, $[n]^*\omega = n\omega$. So if char $K \nmid n$, [n] is separable. So all but finitely many fibres of [n] have size $\deg[n]$, and since [n] is a group homomorphism, all fibres have the same size, and hence $\#[n]^{-1}(O_E) = \#E[n] = \deg[n] = n^2$.

By the structure theorem for finite abelian groups, $E[n] \cong \mathbb{Z}/d_1\mathbb{Z} \times ... \mathbb{Z}/d_t\mathbb{Z}$ with $d_i|d_{i+1}$. Since this group is killed by multiplication by n, all $d_i|n$ as well, and $\prod_{i=1}^t d_i = n^2$ by the previous paragraph.

If p is a prime with $p|d_1$, then $E[p] \cong (\mathbb{Z}/p\mathbb{Z})^t$, and by the first paragraph, t = 2. Then $d_1|d_2|n$, and $d_1d_2 = n^2$, hence $d_1 = d_2 = n$.

Remark (not to be used on example sheet 2). If char K = p, then [p] is not separable. It can be shown that $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \ge 1$ or E[p] = 0. The first case is described as "ordinary", and the second case is "supersingular".

7 Elliptic Curves over Finite Fields

Lemma 7.1. Let A be an abelian group and $q: A \to \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$ then $\langle x, y \rangle := |q(x + y) - q(x) - q(y)| \le 2\sqrt{q(x)q(y)}$.

Proof. We may assume $x \neq 0$ otherwise the result is clear. Let $m, n \in \mathbb{Z}$.

$$0 \le q(mx + ny)$$

$$= \frac{1}{2} \langle mx + ny, mx + ny \rangle$$

$$= m^2 q(x) + mn \langle x, y \rangle + n^2 q(y)$$

$$= q(x) \left(m + \frac{\langle x, y \rangle}{2q(x)} n \right)^2 + n^2 \left(q(y) - \frac{\langle x, y \rangle^2}{4q(x)} \right)$$

Take $m = \langle x, y \rangle$, n = -2q(x), we deduce $\langle x, y \rangle^2 \le 4q(x)q(y)$, so $|anglex, y| \le 2\sqrt{q(x)q(y)}$.

Recall that $Gal(\mathbb{F}_{q^r}/\mathbb{F}_q)$ is cyclic of order r generated by the Frobenius map $x \mapsto x^q$.

Theorem 7.2 (Hasse). Let E/\mathbb{F}_q be an elliptic curve. Then $|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$

Proof. Let *E* have Weierstrass equation with coefficients $a_1, \ldots, a_6 \in \mathbb{F}_q$. Define the Frobenius endomorphism $\phi : E \to E; (x, y) \mapsto (x^q, y^q)$, which is an isogeny of degree q.

Then $E(\mathbb{F}_q) = \{ P \in E : \phi(P) = P \} = \ker(1 - \phi).$

$$\phi^*\omega = \phi^*\left(\frac{dx}{y}\right) = \frac{dx^q}{y^q} = \frac{qx^{q-1}dx}{y^q} = 0$$
, since $q \equiv 0 \mod p$.

So
$$(1 - \phi)^* \omega = 1^* \omega - \phi^* \omega = \omega - 0 = \omega \neq 0$$
, so $1 - \phi$ is separable.

Hence the size of all but finitely many fibres is deg $1-\phi$, and $1-\phi$ is a group homomorphism, so $\#E[\mathbb{F}_q] = \#\ker(1-\phi) = \deg(1-\phi)$.

By **5.6**, deg : End(E) := Hom(E, E) $\rightarrow \mathbb{Z}$ is a positive definite quadratic form.

By 7.1,
$$|\deg(1-\phi)-1-\deg\phi| \le 2\sqrt{\deg\phi}$$
, and hence $|\#E(\mathbb{F}_q)-(q+1)| \le 2\sqrt{q}$.

7.1 Zeta Functions

For *K* a number field:

$$\zeta_K(s) = \sum_{\mathfrak{a} \subset O_K} \frac{1}{(N_{\mathfrak{a}})^s} = \prod_{\mathfrak{p} \subset O_K \text{ prime}} \left(1 - \frac{1}{(N_{\mathfrak{p}})^s}\right)^{-1}$$

For *K* a function field, e.g. $K = \mathbb{F}_q(C)$ for C/\mathbb{F}_q a smooth projective curve:

$$\zeta_K(s) = \prod_{x \in |C|} \left(1 - \frac{1}{(Nx)^s} \right)^{-1}$$

where |C| is the set of closed points (i.e. orbit of action of $Gal(\bar{\mathbb{F}}_q/\mathbb{F}_q)$) on $C(\bar{\mathbb{F}}_q)$, and $Nx = q^{\deg x}$, where $\deg x$ is the size of the orbit.

We have that $\zeta_K(s) = F(q^{-s})$ for $F \in Q[[T]]$, where

$$F(T) = \prod_{x \in |C|} (1 - T^{\deg x})^{-1}$$

$$\log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \frac{1}{m} T^m \deg^x$$

$$\frac{d}{dT} \log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \deg^x T^m \deg^x$$

$$= \sum_{n=1}^{\infty} \left(\sum_{\substack{x \in |C| \\ \deg^x | n}} \deg^x \right) T^n$$

$$= \sum_{n=1}^{\infty} \#C(\mathbb{F}_{q^n}) T^n$$

$$\implies F(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n \right) =: Z_C(T)$$

For ϕ , $\psi \in \text{Hom}(E_1, E_2)$, we put:

$$\langle \phi, \psi \rangle = \deg(\phi + \psi) - \deg(\phi) - \deg(\psi)$$

We define the *trace map* tr : End(E) $\rightarrow \mathbb{Z}$; $\psi \mapsto \langle \psi, 1 \rangle$.

Lemma 7.3. If $\psi \in \text{End}(E)$ then $\psi^2 - [\text{tr } \psi]\psi + [\text{deg } \psi] = 0$, where [n] means the multiplication by n endomorphism.

Proof. Example sheet 2.

Definition. The *zeta function of a variety* V/\mathbb{F}_a is

$$Z_v(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#V(\mathbb{F}_{q^n})}{n} T^n\right)$$

Lemma 7.4. Let E/\mathbb{F}_q be an elliptic curve, with $\#E(\mathbb{F}_q) = q + 1 - a$. Then

$$Z_E(T) = \frac{1 + aT + qT^2}{(1 - T)(1 - qT)}$$

Proof. Let $\phi: E \to E$ be the *q*-power Frobenius map. By the proof of Hasse's theorem,

$$#E(\mathbb{F}_q) = \deg(1 - \phi) = q + 1 - \operatorname{tr}(\phi)$$

Then $tr(\phi) = a, deg(\phi) = q$.

Then lemma 7.3 gives $\phi^2 - a\phi + q = 0$. Composing with ϕ^n for $n \ge 0$ gives

$$\phi^{n+2} - a\phi^{n+1} + q\phi^n = 0$$

$$tr(\phi^{n+2}) - a tr(\phi^{n+1}) + q tr(\phi^n) = 0$$

This second-order difference equation with initial conditions $tr(\phi^0) = tr(1) = 2$, $tr(\phi^1) = a$ has solutions

$$tr(\phi^n) = \alpha^n + \beta^n$$

where α , β are the roots of $x^2 - ax + q = 0$.

Hence $\#E(\mathbb{F}_{q^n}) = \deg(1 - \phi^n) = 1 + \deg(\phi^n) - \operatorname{tr}(\phi^n) = 1 + q^n - \alpha^n - \beta^n$.

Substituting, we have:

$$Z_E(T) = \exp\left(\sum_{n=1}^{\infty} \frac{T^n}{n} + \frac{(qT)^n}{n} - \frac{(\alpha T)^n}{n} - \frac{(\beta T)^n}{n}\right)$$

Since $-\log(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$, this can be simplified to:

$$Z_E(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}$$
$$= \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

Note that Hasse's theorem gives us $|a| \le 2\sqrt{q}$, and so the discriminant of $x^2 - aT + q$ is negative, and so $\alpha = \bar{\beta}$, $|\alpha| = |\beta| = \sqrt{q}$.

Let $K = \mathbb{F}_q(E)$. Then $\zeta_K(s) = 0 \implies Z_E(q^{-s}) = 0 \implies q^2 = \alpha$ or β , and hence $\Re(s) = \frac{1}{2}$.

8 Formal Groups

Here, R will be a ring with $I \subset R$ an ideal. The *I-adic topology* on R is the topology with basis $\{r + I^n : r \in R, n \ge 1\}$.

A sequence (x_n) in R is *Cauchy* if, for all k there is some N with $x_m - x_n \in I^k$ for all $m, n \ge k$.

R is *complete* if

- 1. $\bigcap_{n>0} I^n = \{0\}$ and
- 2. every Cauchy sequence converges.

Note that, if $x \in I$ then $\frac{1}{1-x} = 1 + x + x^2 + \dots$, and the sequence of partial sums is Cauchy, and hence converges. So $1 - x \in R^{\times}$.

For example, we could have:

- $R = \mathbb{Z}_p$, $I = p\mathbb{Z}_p$
- $R = \mathbb{Z}[[t]], I = (t).$

Lemma 8.1 (Hensel's Lemma). Let R be an integral domain, complete with respect to I. Let $F \in R[x]$, $s \ge 1$. Suppose $a \in R$ satisfies $F(a) \equiv 0 \mod I^s$, and $F'(a) \in R^{\times}$.

Then there is a unique $b \in R$ with F(b) = 0 and $b \equiv a \mod I^s$.

Proof. Let $u \in R^{\times}$ with $F'(a) \equiv u \mod I$, e.g. u = f'(a).

Replacing F(x) by $\frac{F(x+a)}{u}$, we may assume a = 0 and $F'(0) \equiv 1 \mod I$.

We put $x_0 = 0$, $x_{n+1} = x_n - F(x_n)$.

By induction, $x_n \in I_s$ for all n.

F(x) - F(y) = (x - y)(F'(0) + xG(x, y) + yH(x, y)) for some polynomials $G, H \in R[x, y]$.

Now we claim $x_{n+1} \equiv x_n \mod I^{n+s}$ for all $n \ge 0$.

This can be proven by induction on n: in the case where n = 0, and $x_1 \in I^s$.

Suppose $x_n \equiv x_{n-1} \mod I^{n+s-1}$. Then

$$F(x_n) - F(x_{n-1}) = (x_n - x_{n-1})(1+c)$$

for some $c \in I$, and hence

$$F(x_n) - F(x_{n-1}) \equiv x_n - x_{n-1} \mod I^{n+s}$$

Rearranging, we have $x_{n+1} \equiv x_n \mod I^{n+s}$, which proves the claim.

Hence (x_n) is Cauchy, and by completeness converges to some $b \in R$. Taking the limit as $n \to \infty$, we have b = b - F(b), and so F(b) = 0, with $b \in I^s$.

For uniqueness, we can use the expression for F(x) - F(y) and the assumption that R is an integral domain.

For example, take $E: Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$

We pass to the affine piece $Y \neq 0$, t = X/Y, w = -Z/Y: Then

$$E: w = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3 = f(t, w)$$

We can apply Hensel's lemma with $R = \mathbb{Z}[a_1, \dots, a_6][[t]]$, I = (t), and $F(x) = x - f(t, x) \in R[x]$. Taking s = 3, a = 0, we have:

$$F(0) = -f(t, 0) = -t^3 \equiv 0 \mod I^3$$
 $F'(0) = 1 - a_t - a_2 t^2 \in \mathbb{R}^{\times}$

So there is a unique root of F, $w(t) \in \mathbb{Z}[a_1, \dots, a_6][[t]]$ such that w(t) = f(t, w(t)) and $w(t) \equiv 0$ mod t^3 .

Following the proof of Hensel's lemma with u=1 gives $w(t)=\lim_{n\to\infty}w_n(t)$ where $w_0(t)=0$, $w_{n+1}(t)=f(t,w_n(t))$.

In fact, we may write $w(t) = \sum_{n=2}^{\infty} A_{n-2}t^{n-1}$ with $A_1 = a_1$, $A_2 = a_1^2 + a_2$, $A_3 = a_1^3 + 2a_1a_2 + a_3$, ...

Lemma 8.2. *Let* R *be an integral domain, complete with respect to* $I \subseteq R$ *, and let* $a_1, \ldots, a_6 \in R$ *,* K = Frac(R).

Then $\widehat{E}(I) = \{(t, w) \in E(K) : t, w \in I\} = \{(t, w(t)) \in E(K) : t \in I\}$ is a subgroup of E(K).

Proof. The two descriptions of $\widehat{E}(I)$ agree, since given $t \in I$ we can solve for a unique $w \in I$ such that the pair $(t, w) \in E(K)$.

Taking (t, w) = (0, 0) shows that $O_E \in \widehat{E}(I)$. So it suffices to show that, if $P_1, P_2 \in \widehat{E}(I)$, then $-P_1 - P_2 \in \widehat{E}(I)$.

If $P_1 = (t_1, w_1)$, $P_2 = (t_2, w_2)$ lie on the straight line $\lambda t + \nu$, then $-P_1 - P_2$ is the third point of intersection of this line with E.

Then $\lambda = \frac{w(t_2) - w(t_1)}{t_2 - t_1}$ if $t_1 \neq t_2$, and $w'(t_1)$ if $t_1 = t_2$.

 $P_1, P_2 \in \widehat{E}(I) \implies t_1, t_2 \in I.$

Thus $\lambda = \sum_{n=2}^{\infty} A_{n-2}(t_1^n + t_1^{n-1}t_2 + \ldots + t_2^n) \in I$, and $\nu = w_1 - \lambda t_1 \in I$.

Substituting $w = \lambda t + \nu$ into w = f(t, w) gives $\lambda t + \nu = t^3 + a_1 t (\lambda t + \nu) + a_2 t^2 (\lambda t + \nu) + a_3 (\lambda t + \nu)^2 + a_4 t (\lambda t + \nu)^3 + a_6 (\lambda t + \nu)^3$.

Let *A* be the coefficient of t^3 , so $A = 1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3$.

Let *B* be the coefficient of t^2 , so $B = a_1\lambda + a_2\nu + a_3\lambda^2 + 2a_4\lambda\nu + 3a_6\lambda^2\nu$.

Then $A \in R^{\times}$, $B \in I$, and $t_3 = -B/A - t_2 - t_2 \in I$, and $w_3 = \lambda t_3 + \nu \in I$.

Hence $-P_1 - P_2 \in \widehat{E}(I)$, and so $\widehat{E}(I)$ is a subgroup.

Taking $R = \mathbb{Z}[a_1, \dots, a_6][[t]]$, and I = (t), then the previous lemma tells us there is some power series $\iota \in \mathbb{Z}[a_1, \dots, a_6][[t]]$ with $\iota(0) = 0$ such that $[-1](t, w(t)) = (\iota(t), w(\iota(t)))$

Taking $R = \mathbb{Z}[a_1, ..., a_6][[t]]$, and $I = (t_1, t_2)$, then we get that there is some power series $F \in I$ such that $(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2)).$

In fact, we can compute

$$\iota(x) = -x - a_1 x^2 - a_2 x^3 - (a_1^3 + a_3) x^4 + \dots$$

$$F(x, y) = x + y - a_1 x y - a_2 (x^2 y + x y^2) + \dots$$

By properties of the group law, we can deduce:

- 1. F(x, y) = F(y, x)
- 2. F(x,0) = x, F(0,y) = y
- 3. F(x, F(y, z)) = F(F(x, y), z)
- 4. $F(x, \iota(x)) = 0$

This then motivates the following definition:

Definition. Let R be a ring. A *formal group* over R is a power series $F(x, y) \in R[[x, y]]$ satisfying the properties 1, 2, and 3 above.

Exercise. Show that, for any formal group, there is a unique $\iota(x) \in R[[x]]$ such that $F(x, \iota(x)) = 0$.

Examples:

- 1. F(x, y) = x + y
- 2. F(x, y) = x + y + xy = (1 + x)(1 + y) 1
- 3. *F* as above.

We label these formal groups by $\widehat{\mathbb{G}}_a$, $\widehat{\mathbb{G}}_m$, and \widehat{E} respectively.

Definition. Let \mathcal{F} , \mathcal{G} be formal groups over R given by power series F, G respectively. Then:

- 1. A *morphism* $f: \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[[t]]$ such that f(0) = 0 satisfying f(F(x,y)) = G(f(x),f(y)).
- 2. $\mathcal{F} \cong \mathcal{G}$ if there is some morphism $f : \mathcal{F} \to \mathcal{G}$, and $g : \mathcal{G} \to \mathcal{F}$ with f(g(x)) = g(f(x)) = x.

Theorem 8.3. If char(R) = 0, then any formal group \mathcal{F} over R is isomorphic to $\widehat{\mathbb{G}}_a$ over $R \otimes \mathbb{Q}$. More precisely:

1. There is a unique power series $\log : T \mapsto T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$ with $a_i \in R$, such that

$$\log(F(x,y)) = \log(x) + \log(y) \tag{*}$$

2. There is a unique power series $\exp: T \mapsto T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$ with $b_i \in R$ such that

$$\exp(\log(T)) = \log(\exp(T)) = T$$

Proof.

1. Notation: $F_1(x,y) = \frac{\partial F}{\partial x}(x,y)$ (via formal differentiation).

For uniqueness, let $p(T) = \frac{d}{dT} \log(T) = 1 + a_2T + a_3T^2 + \dots$

Differentiating (*) with respect to x, we get: $p(F(x,y))F_1(x,y) = p(x) + 0$ Setting x = 0, we get $p(y)F_1(0,y) = 1$, and hence $p(y) = F_1(0,y)^{-1}$, and hence p is uniquely determined, so a_2, a_3, \ldots are uniquely determined. But then log is uniquely determined.

For existence, let $p(T) = F_1(0, T)^{-1} = 1 + a_2T + a_3T^2 + ...$, where $a_i \in R$.

Integrating up, we let $\log(T) = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$ We now check it satisfied (*).

$$F(F(x,y),z) = F(x,F(y,z))$$

$$\frac{\partial}{\partial x}F(F(x,y),z) = \frac{\partial}{\partial x}F(x,F(y,z))$$

$$F_1(F(x,y),z)F_1(x,y) = F_1(x,F(y,z))$$

$$F_1(F(0,y),z)F_1(0,y) = F_1(0,F(y,z))$$

$$F_1(y,z)F_1(0,y) = F_1(0,F(y,z))$$

$$F_1(y,z)p(y)^{-1} = p(F(y,z))^{-1}$$

$$F_1(y,z)p(F(y,z)) = p(y)$$

$$\log(F(y,z)) = \log(y) + h(z)$$

By symmetry between y, z we see that the constant of integration h(z) must be $\log(z)$. For the second part, we will need the following lemma, which is a generalisation of the statement:

Lemma 8.4. Let $f(T) = aT + ... \in R[[T]]$ with $a \in R^{\times}$. Then there is a unique $g(T) = a^{-1}T + ... \in R[[t]]$ such that f(g(T)) = g(f(T)) = T.

Proof. We construct polynomials $g_n(T) \in R[T]$ such that $f(g_n(T)) \equiv T \mod T^{n+1}$ and $g_{n+1}(T) \equiv g_n(T) \mod T^{n+1}$. Then we will set $g(T) = \lim_{n \to \infty} g_n(T)$, satisfying f(g(T)) = T.

This is done inductively. To start with, $g_1(T) = a^{-1}T$. Then $f(g_1(T)) = T + T^2(...) \equiv T \mod T^2$.

Now suppose $n \ge 1$ and $g_{n-1}(T)$ exists.

Then $f(g_{n-1}(T)) \equiv T + bT^n \mod T^{n+1}$. Let $g_n(T) = g_{n-1}(T) + \lambda T^n$, where $\lambda \in R$ to be chosen later

Then $f(g_n(T)) = f(g_{n-1}(T) + \lambda T^n) \equiv f(g_{n-1}(T)) + \lambda a T^n \mod T^{n+1} \equiv T + (b + \lambda a) T^n \mod T^{n+1}$. So pick $\lambda = -ba^{-1}$.

This gives g(T) with f(g(T)) = T.

Applying the same argument, we get h(T) such that g(h(T)) = T.

Then f(T) = f(g(h(T))) = h(T), and so g is as required.

2. We now only have to show that the $b_n \in R$ (not just in $R \otimes \mathbb{Q}$). See example sheet 2 for this.

Let \mathscr{F} be a formal group (e.g. $\widehat{\mathbb{G}}_a$, $\widehat{\mathbb{G}}_m$, \widehat{E}), given by a power series $F \in R[x,y]$, and suppose that R is I-adically complete. Then for $x,y \in I$, put $x \oplus_{\mathscr{F}} y = F(x,y) \in I$. Then $\mathscr{F} = (I, \oplus_{\mathscr{F}})$ is an abelian group.

For example, $\widehat{\mathbb{G}}_a(I) = (I, +)$, $\widehat{\mathbb{G}}_m(I) = (1 + I, \times)$, and in **8.2**, we saw $\widehat{E}(I) \leq E(K)$.

Corollary 8.5. Let \mathscr{F} be a formal group over R, and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$. Then:

- 1. $[n]: \mathcal{F} \to \mathcal{F}$ is an isomorphism.
- 2. If R is complete with respect to I, then $\mathcal{F}(I) \xrightarrow{\times n} \mathcal{F}(I)$ is an isomorphism.

In particular, $\mathcal{F}(I)$ *has no n-torsion.*

Proof. We have [1](T) = T, [n](T) = F([n-1]T, T) for $n \ge 2$. For n < 0, use $[-1](T) = \iota(T)$. Induction gives us $[n](T) = nT + \ldots$, and so by **8.4**, [n] is an isomorphism.

9 Elliptic Curves over Local Fields

Let *K* be a field, complete with respect to the discrete valuation $v: K^{\times} \to \mathbb{Z}$. Then we define the valuation ring, or ring of integers, the set:

$$O_K = \{x \in K^\times : v(x) \ge 0\} \cup \{0\}$$

Then $O_K^{\times} = \{x \in K^{\times} : v(x) = 0\}$. There is a unique maximal ideal πO_K , where $v(\pi) = 1$, and we define the residue field to be $k = O_K/\pi O_K$.

We assume char K = 0, char k = p.

For example, if $K = \mathbb{Q}_p$, $O_K = \mathbb{Z}_p$, $\pi = p$, $k = \mathbb{F}_p$.

Let E/K be an elliptic curve. Then a Weierstrass equation for E with coefficients $a_1, \ldots, a_6 \in K$ is *integral* if $a_i \in O_K$, and minimal if $v(\Delta)$ is minimal among all integral Weierstrass equations for E.

Putting $x = u^2x'$, $y = u^3y'$ give $a_i = u^ia'_i$. So we can clear denominators, and hence every elliptic curve has an integral Weierstrass equation. Moreover, since $a_i \in O_K$, $\Delta \in O_K$, and so $v(\Delta) \ge 0$, and hence we can pick a minimal Weierstrass equation.

If char $k \neq 2,3$ then there is a minimal Weierstrass equation of the form $y^2 = x^3 + ax + b$.

Lemma 9.1. *Let E*/*K have integral Weierstrass equation*

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Let $0 \neq P = (x, y) \in E(K)$. Then either $x, y \in O_K$ or v(x) = -2s, v(y) = -3s for some $s \ge 1$.

Compare this to example sheet 1, question 5.

Proof. If $v(x) \ge 0$, then consider y.

If v(y) < 0, then v(LHS) < 0, but $v(RHS) \ge 0$, and hence $x, y \in O_K$.

Now if v(x) < 0, then $v(LHS) \ge \min(2v(y), v(x) + v(y), v(y))$ $v(RHS) = v(x^3) = 3v(x)$.

Hence
$$v(y) < v(x)$$
. But then $v(LHS) = 2v(y)$, and hence $3v(x) = 2v(y)$.

If *K* is complete, then O_K is complete with respect to the ideal $\pi^r O_K$ for any $r \ge 1$.

Fix a minimal Weierstrass equation for E/K, and hence a formal group \widehat{E} over O_K .

Take $I = \pi^r O_K$ in **8.2**, we have

$$\begin{split} \widehat{E}(\pi^r O_K) &= \left\{ (x,y) \in E(K) : -\frac{x}{y}, -\frac{1}{y} \in \pi^r O_K \right\} \cup \{0\} \\ &= \left\{ (x,y) \in E(K) : v\left(\frac{x}{y}\right) \ge r \& v\left(\frac{1}{y}\right) \ge r \right\} \cup \{0\} \\ &= \{ (x,y) \in E(K) : v(x) = -2s, v(y) = -3s, s \ge r \} \cup \{0\} \\ &= \{ (x,y) \in E(K) : v(x) \le -2r, v(y) \le -3r \} \cup \{0\} \end{split}$$

By **8.2**, this is a subgroup of E(K), say $E_r(K)$. We have a chain

$$\ldots \subset E_3(K) \subset E_2(K) \subset E_1(K)$$

More generally, for \mathcal{F} a formal group over O_K , we get

$$\ldots \subset \mathcal{F}(\pi^3 O_K) \subset \mathcal{F}(\pi^2 O_K) \subset \mathcal{F}(\pi O_K)$$

We will show that $\mathscr{F}(\pi^r O_K) \cong (O_K, +)$ for r sufficiently large, and $\mathscr{F}(\pi^r O_K)/\mathscr{F}(\pi^{r+1} O_K) \cong (k, +)$.

Theorem 9.2. Let \mathscr{F} be a formal group over O_K , and let e = v(p). If $r > \frac{e}{v-1}$, then:

$$\mathcal{F}(\pi^r O_K) \cong \widehat{\mathbb{G}}_a(\pi^r O_K)$$

via the log map, with inverse given by exp.

Note that $\widehat{\mathbb{G}}_a(\pi^r O_K) = (\pi^r O_K, +) \cong (O_k, +)$.

Proof. For $x \in \pi^r O_K$, we must check that the power series exp, log converge.

Recall $\exp(T) = T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$, where $b_i \in O_K$.

Claim: $v_p(n!) \leq \frac{n-1}{\nu-1}$.

To see this: $v_p(n!) = \sum_{r=1}^{\infty} \lfloor \frac{n}{p^r} \rfloor < \sum_{r=1}^{\infty} \frac{n}{p^r} = \frac{n}{p-1}$.

So $(p-1)v_p(n!) < n$, and as both are integers, $(p-1)v_p(n!) \le n-1$.

Now
$$v(\frac{b_n x^n}{n!}) \ge nr - e \frac{n-1}{p-1} = (n-1) \left(r - \frac{e}{p-1}\right) + r$$

This is always $\geq r$ as $r > \frac{e}{p-1}$, and goes to infinity as $n \to \infty$.

Hence $\exp(x)$ converges, and belongs to $\pi^r O_K$. A similar argument applies for log.

Lemma 9.3. We have $\frac{\mathscr{F}(\pi^r O_K)}{\mathscr{F}(\pi^{r+1}O_K)} \cong (k,+)$ for all $r \geq 1$.

Proof. By definition of a formal group, F(x, y) = x + y + xy(...). So if $x, y \in O_K$, then:

$$F(\pi^r x, \pi^r y) = \pi^r (x + y) + \pi^{2r} (xy) (\dots) \equiv \pi^r (x + y) \mod \pi^{r+1}$$

So $\mathscr{F}(\pi^r O_K) \to (k,+); (\pi^r x) \mapsto (x \mod \pi)$ is a surjective group homomorphism, with kernel $\mathscr{F}(\pi^{r+1}O_K)$, and so apply the first isomorphism theorem.

So we have a filtration:

$$(O_{K,r}+) \cong \mathscr{F}(\pi^r O_K) \supseteq \ldots \supseteq \mathscr{F}(\pi^2 O_K) \supseteq \mathscr{F}(\pi O_K)$$

where we have equality on the left is $r > \frac{e}{n-1}$, and each quotient is (k, +).

Corollary. If $|k| < \infty$, then $\mathcal{F}(\pi O_K)$ has a subgroup of finite index isomorphic to O_K under addition.

As a point of notation, when we have the map $O_K \to O_K/\pi O_K$, we write $x \mapsto \widetilde{x}$, and call this reduction mod π .

Proposition 9.4. Let E/K be an elliptic curve. The reduction mod π of any two minimal Weierstrass equations for E define isomorphic curves over k.

Proof. Say the Weierstrass equations are related by [u;r,s,t]; $u \in K^{\times}$; $r,s,t \in K$.

Then $\Delta_1 = u^{12}\Delta_2$. Both equations are minimal, so $v(\Delta_1) = v(\Delta_2)$, and hence v(u) = 0, $u \in O_K^{\times}$.

Transformation formulae for a_i and b_i , together with the fact that the valuation ring is integrally closed, give that $r, s, t \in O_K$. The Weierstrass equations for the reduction mod π are related by $[\widetilde{u}; \widetilde{r}, \widetilde{s}, \widetilde{t}]$.

Definition. The reduction \widetilde{E}/k of E/K is defined by the reduction of a minimal Weierstrass equation, and hence is well-defined up to isomorphism by the previous proposition.

We say E has **good reduction** if \widetilde{E} is non-singular, i.e. is an elliptic curve. Otherwise, it is **had**

For an integral Weierstrass equation, $v(\Delta) = 0 \implies \text{good reduction}$.

If $0 < v(\Delta) < 12$, then we must have a minimal Weierstrass equation, and we get bad reduction.

If $v(\Delta) \ge 12$, beware that the equation might not be minimal.

There is a well defined map from $\mathbb{P}^2(K) \to \mathbb{P}^2(k); (x:y:z) \mapsto (\widetilde{x}:\widetilde{y}:\widetilde{z})$, when we choose representatives of (x:y:z) with $\min(v(x),v(y),v(z))=0$.

We restrict this map to give a map $E(K) \to \widetilde{E}(k)$; $P \to \widetilde{P}$. If $P = (x, y) \in E(K)$, then by **9.1**, either $x, y \in O_K$ or v(x) = -2s, v(y) = -3s. In the first case $\widetilde{P} = (\widetilde{x}, \widetilde{y})$. In the second, we write $P = (\pi^{3s}x : \pi^{3s}y : \pi^{3s})$, so $\widetilde{P} = (0 : 1 : 0)$.

Therefore $E_1(K) = \widehat{E}(\pi O_K) = \{P \in E(K) : \widetilde{P} = 0\}$, and we call it the *kernel of reduction*.

Let
$$\widetilde{E}_{ns} = \begin{cases} \widetilde{E} & \text{if } E \text{ has good reduction} \\ \widetilde{E} \setminus \{p\} & \text{if } \widetilde{E} \text{ has a singular point } p \end{cases}$$

The chord and tangent process still defines a group law on \widetilde{E}_{ns} . In cases of bad reduction, we get $\widetilde{E}_{ns} \cong \mathbb{G}_a$ or \mathbb{G}_m over k, or possibly only over a quadratic extension of k. We call these cases additive and multiplicative reduction.

For simplicity, suppose $\operatorname{char}(k) \neq 2$. Then $\widetilde{E}: y^2 = f(x)$ for f monic cubic. Then \widetilde{E} singular $\iff f$ has a repeated root. The cases of double root, triple root correspond to multiplicative, additive reduction respectively.

For multiplicative case, see example sheet 3. Here, we'll illustrate the additive case. We have a triple root, so take $y^2 = x^3$. Then we have an isomorphism

$$\widetilde{E}_{ns} \to \mathbb{G}_a$$

$$(x,y) \mapsto \frac{x}{y}$$

$$(t^{-2}, t^{-3}) \longleftrightarrow t$$

$$\infty \longleftrightarrow 0$$

Let P_1 , P_2 , P_3 lie on the line ax + by = 1. Write $P_i = (x_i, y_i)$, $t_i = \frac{x_i}{y_i}$. Then $x_i^3 = y_i^2 = y_i^2 (ax_i + by_i)$, and so t_1 , t_2 , t_3 are the roots of $X^3 - aX - b = 0$. Looking at the coefficient of X^2 , we have $t_1 + t_2 + t_3 = 0$.

Definition. $E_0(K) := \{ P \in E(K) : \widetilde{P} \in \widetilde{E}_{ns}(k) \}.$

Proposition 9.5. $E_0(K)$ is a subgroup of E(K), and reduction mod π is a surjective group homomorphism from $E_0(k) \to \widetilde{E}_{ns}(k)$.

Proof. For the group homomorphism part, a line ℓ in \mathbb{P}^2 defined over K has equation

$$\ell: aX + bY + cZ = 0 \qquad a, b, c \in K$$

We may assume $\min(v(a), v(b), v(c)) = 0$. Reduction mod π gives the line $\tilde{\ell}$ with equation

$$\widetilde{\ell}: \widetilde{a}X + \widetilde{b}Y + \widetilde{c}Z = 0$$

If $P_1, P_2, P_3 \in E(K)$ with $P_1 + P_2 + P_3 = 0$, then these points lie on a line ℓ , and then $\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \widetilde{E}(k)$ lie on the line $\widetilde{\ell}$.

If \widetilde{P}_1 , $\widetilde{P}_2 \in \widetilde{E}_{ns}(k)$, then $\widetilde{P}_3 \in \widetilde{E}_{ns}(k)$, and if P_1 , $P_2 \in E_0(k)$, then $P_3 \in E_0(k)$, and $\widetilde{P}_1 + \widetilde{P}_2 + \widetilde{P}_3 = 0$.

As an exercise, check this still works if the points are not all distinct.

For surjectivity, let $f(x, y) = y^2 + a_1xy + a_3y - (x^3 + ...)$. Let $\widetilde{P} \in \widetilde{E}_{ns}(k) \setminus \{0\}$, say $(\widetilde{x}_0, \widetilde{y}_0)$ for some x_0, y_0 in O_K .

Since \widetilde{P} is non-singular, either

(i)
$$\frac{\partial f}{\partial x}(x_0, y_0) \not\equiv 0 \mod \pi$$

(ii)
$$\frac{\partial f}{\partial y}(x_0, y_0) \not\equiv 0 \mod \pi$$

If (i), we put $g(t) = f(t, y_0) \in O_K[t]$. Then $g(x_0) \equiv 0 \mod \pi$, $g'(x_0) \in O_K^{\times}$. Then Hensel's lemma tells us there is some $b \in O_K$ with g(b) = 0, $b \equiv x_0 \mod \pi$.

Then $P = (b, y_0) \in E(K)$ has reduction \widetilde{P} .

Case
$$(ii)$$
 is similar.

Recall for $r \ge 1$, we have $E_r(K) = \{(x, y) \in E(K) : v(x) \le -2r, v(y) \le -3r\} \cup \{0\}$. Then:

$$O_K \cong E_{\lceil e/(p-1) \rceil}(K) \supset \cdots \supset E_2(K) \supset E_1(K) \cong \widehat{E}(\pi O_K) \subset E_0(K) \subset E(K)$$

We know the quotients $E_i(K)/E_{i+1}(K) \cong (k, +)$ for $i \geq 1$. The above gives $E_0(K)/E_1(K) \cong \widetilde{E}_{ns}(k)$. The only quotient left to understand is $E(K)/E_0(K)$.

Lemma 9.6. *If* $|k| < \infty$, then $E_0(K) \subset E(K)$ has finite index.

Proof. A compactness argument - see below.

Theorem 9.7. *If* $[K : \mathbb{Q}_p] < \infty$, then E(K) contains a subgroup of finite index, isomorphic as a group to $(O_K, +)$.

П

Proof. $|k| < \infty$, so this follows from the above.

Lemma 9.8. If $|k| < \infty$, then $\mathbb{P}^n(K)$ is compact with respect to the π -adic topology.

Proof. $|k| < \infty$, so $O_K/\pi^r O_K$ is also finite for $r \ge 1$. Hence

$$O_K \cong \lim_{\stackrel{\longleftarrow}{\leftarrow}} O_K / \pi^r O_K$$

is compact.

 $\mathbb{P}^n(K)$ is the union of compact sets of the form

$$\{(a_0: a_1: \ldots: a_{i-1}: 1: a_{i+1}: \ldots: a_n): a_i \in O_K\}$$

and hence is compact.

Proof of **9.6**. $E(K) \subset \mathbb{P}^2(K)$ is a closed subset, so (E(K), +) is a compact topological group.

If \widetilde{E} has a singular point $(\widetilde{x}_0, \widetilde{y}_0)$ then $E(K) \setminus E_0(K) = \{(x, y) \in E(K) : v(x - x_0) \ge 1, v(y - y_0) \ge 1\}$, is a closed subset of E(K), and so $E_0(K)$ is an open subgroup of E(K), so any coset is also open.

The cosets of $E_0(K)$ form an open cover of E(K), hence have a finite subcover, and so there are only finitely many cosets.

Hence
$$[E(K): E_0(K)] < \infty$$
.

We call this index $c_K(E)$, the *Tamagawa number*.

Remarks.

- 1. Good reduction $\implies c_K(E) = 1$, but the converse is false.
- 2. It can be shown that either $c_K(E) = v(\Delta)$ or $c_K(E) \le 4$, as long as we work with a minimal Weierstrass equation.

Let $[K : \mathbb{Q}_p]$ be finite, and L/K finite, with residue fields k', k (corresponding to L, K respectively), with f = [k' : k] and ramification index e. From local fields, we know [L : K] = ef.

If L/K is Galois then there is a natural group homomorphism $Gal(L/K) \to Gal(k'/k)$, and this map is surjective, with kernel of order e. We say the extension is *unramified* if e = 1, so if these Galois groups are isomorphic.

For each $m \ge 1$, k has a unique extension of degree m, called k_m (not standard notation). K has a unique unramified extension of degree m, called K_m . Note that then the residue field of K_m is k_m . These extensions are Galois with cyclic Galois group.

We then define $K^{nr} = \bigcup_{m>1} K_m$ inside \bar{K} , the maximal unramified extension.

Theorem 9.9. Suppose $[K : \mathbb{Q}_p] < \infty$, and E/K has good reduction and $p \nmid n$. If $P \in E(K)$ then $K([n]^{-1}P)/K$ is unramified.

Notation: $[n]^{-1}P = \{Q \in E(\bar{K}) : nQ = P\}$, and $K(P_1, ..., P_r) = K(x_1, ..., x_r, y_1, ..., y_r), P_i = (x_i, y_i)$.

Proof. For each $m \ge 1$, there is a short exact sequence $0 \to E_1(K_m) \to E(K_m) \to \widetilde{E}(k_m) \to 0$.

Taking union over all *m* gives a commutative diagram:

$$0 \longrightarrow E_{1}(K^{nr}) \longrightarrow E(K^{nr}) \longrightarrow \widetilde{E}(\bar{k}) \longrightarrow 0$$

$$\downarrow^{\times n} \qquad \downarrow^{\times n} \qquad \downarrow^{\times n}$$

$$0 \longrightarrow E_{1}(K^{nr}) \longrightarrow E(K^{nr}) \longrightarrow \widetilde{E}(\bar{k}) \longrightarrow 0$$

The first vertical arrow is an isomorphism by **8.5**, as $n \in O_K^{\times}$.

The last vertical arrow is surjective by **2.8**, with kernel $(\mathbb{Z}/n\mathbb{Z})^2$ by **6.5**, as $p \nmid n$.

The snake lemma tells us $E(K^{nr})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$, $E(K^{nr})/nE(K^{nr}) = 0$.

So if $P \in E(K)$, then multiplication by n is surjective, and there is Q in $E(K^{nr})$ with nQ = P, and $[n]^{-1}P = \{Q + T : T \in E[n]\} \subset E(K^{nr})$.

So
$$K([n]^{-1}P) \subset K^{nr}$$
, and $K([n]^{-1}P)/K$ is unramified.

Corollary 9.10. *Let* E/K *be an elliptic curve with* $[K : \mathbb{Q}_p] < \infty$ *Then* $E(K)_{tors}$ *is finite.*

Proof. In **9.7** we saw that E(K) has a subgroup $E_r(K)$ of finite index isomorphic to $(O_K, +)$. Since $E_r(K)$ is torsion free, $E(K)_{\text{tors}} \hookrightarrow E(K)/E_r(K)$, an injection into a finite group.

10 Elliptic Curves over Number Fields

10.1 The Torsion Subgroup

Let $[K : \mathbb{Q}] < \infty$ and E/K an elliptic curve.

Let \mathfrak{p} be a prime of K (i.e. a prime ideal in O_K). We write $K_{\mathfrak{p}}$ for the \mathfrak{p} -adic completion of K, and $k_{\mathfrak{p}}$ for O_K/\mathfrak{p} . Note that, upon taking completions, the residue field doesn't change.

Definition. \mathfrak{p} is a prime of good reduction for E/K if $E/K_{\mathfrak{p}}$ is has good reduction.

Lemma 10.1. *E/K has only finitely many primes of bad reduction.*

Proof. Take any Weierstrass equation for E, with coefficients in O_K . E is non-singular, so $0 \neq \Delta \in O_K$. We can thus write $\Delta = \mathfrak{p}_1^{\alpha_1} \dots \mathfrak{p}_r^{\alpha_r}$ as a unique factorisation into prime ideals, and let $S = \{\mathfrak{p}_i\}$ in this factorisation.

If $\mathfrak{p} \notin S$, then $v_{\mathfrak{p}}(\Delta) = 0$, so $E/K_{\mathfrak{p}}$ has good reduction.

Hence the set of bad primes for *E* is a subset of *S*, which is finite.

Note that we'd like to say that S is the set of bad primes. If K has class number 1, e.g. $K = \mathbb{Q}$, then we can always find Weierstrass equation for E with the coefficients in O_K minimal at all primes \mathfrak{p} , and then S will be all the bad primes.

Lemma 10.2. $E(K)_{tors}$ is finite.

Proof. Take any prime $\mathfrak p$ and complete at $\mathfrak p$. Then $K \subseteq K_{\mathfrak p}$, so $E(K)_{\mathrm{tors}} \subseteq E(K_{\mathfrak p})_{\mathrm{tors}}$ is finite by **9.10**.

Lemma 10.3. Let $\mathfrak p$ be a prime of good reduction, with $\mathfrak p \nmid n$. Then reduction mod $\mathfrak p$ gives an injective group homomorphism

$$E(K)[n] \hookrightarrow \widetilde{E}(k_{\mathfrak{p}})[n]$$

Proof. **9.5** tells us that $E(K_{\mathfrak{p}}) \to \widetilde{E}(k_{\mathfrak{p}})$ is a group homomorphism. Hence it takes n-torsion points to n-torsion points, as needed. It has kernel $E_1(K_{\mathfrak{p}})$. Since $\mathfrak{p} \nmid n$, **8.5** tells us $E_1(K_{\mathfrak{p}})$ has no n-torsion, and so the map is injective.

Examples.

1. $E/\mathbb{Q}: y^2+y=x^3-x^2, \Delta=-11$. E has good reduction at all primes $p \neq 11$.

By **10.3** looking at p = 2, $\#E(\mathbb{Q})_{\text{tors}}|5 \cdot 2^a$ for some $a \ge 0$.

Looking at p = 3, $\#E(\mathbb{Q})_{\text{tors}}|5 \cdot 3^b$ for some $b \ge 0$.

Hence $\#E(\mathbb{Q})_{tors}|5$, so is 1 or 5.

Let $T = (0,0) \in E(\mathbb{Q})$. Calculation gives that $5T = O_E$, and so $E(\mathbb{Q})_{tors} \cong \mathbb{Z}/5\mathbb{Z}$.

2. $E/\mathbb{Q}: y^2 + y = x^3 + x^2, \Delta = -43$. E has good reduction at all primes $p \neq 43$.

So $\#E(\mathbb{Q})_{\text{tors}}|5\cdot 2^a$, some $a\geq 0$, and $\#E(\mathbb{Q})_{\text{tors}}|9\cdot 11^b$, some $b\geq 0$.

So $\#E(\mathbb{Q})_{tors} = 1$, and $E(\mathbb{Q})_{tors} = \{O_E\}$.

Now, since $P = (0,0) \in E(\mathbb{Q})$, it has infinite order, and hence infinitely many rational points on $E(\mathbb{Q})$. This is an example where rank $E(\mathbb{Q}) \ge 1$.

3. $E_D: y^2 = x^3 - D^2x$ for $D \in \mathbb{Z}$ a squarefree integer. Then $\Delta = 2^6D^6$.

$$E_D(\mathbb{Q})_{\text{tors}} \supset \{0, (0, 0), (\pm D, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

Let $f(x) = x^3 - D^2x$. Then if p is prime not dividing 2D, then it is a prime of good reduction.

$$\#\widetilde{E}(\mathbb{F}_p) = 1 + \sum_{x \in \mathbb{F}_p} \left(\left(\frac{f(x)}{p} \right) + 1 \right)$$
, where $\left(\frac{f(x)}{p} \right)$ is the Legendre symbol.

If $p \equiv 3 \mod 4$, then since f(x) is an odd function:

$$\left(\frac{f(-x)}{p}\right) = \left(\frac{-f(x)}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{f(x)}{p}\right) = -\left(\frac{f(x)}{p}\right)$$

and so $\#\widetilde{E}_D(\mathbb{F}_p) = p + 1$.

Let $m = \#E(\mathbb{Q})_{\text{tors}}$. We have 4|m|p+1 for all sufficiently large primes p congruent to 3 mod 4, and hence m = 4, since otherwise this contradicts Dirichlet's theorem on primes in arithmetic progression.

Hence $E_D(\mathbb{Q})_{\text{tors}} \cong (\mathbb{Z}/2\mathbb{Z})^2$. So rank $E_D(\mathbb{Q}) \geq 1$ if and only if there are $x, y \in \mathbb{Q}$ with $y \neq 0$ such that $y^2 = x^3 - Dx$, which by the first lecture is equivalent to D being a congruent number

Lemma 10.4. Let E/\mathbb{Q} be given by a Weierstrass equation with coefficients in \mathbb{Z} . Let $0 \neq T \in E(\mathbb{Q})_{tors}$. Then:

- 1. $4x, 8y \in \mathbb{Z}$.
- 2. If $2|a_1$ or $2T \neq O_E$, then $x, y \in \mathbb{Z}$.

Proof. The Weierstrass equation defines a formal group \widehat{E} over \mathbb{Z} . For $r \geq 1$, we have $\widehat{E}(p^r\mathbb{Z}_p) = \{(x,y) \in E(\mathbb{Q}_p) : v_p(x) \leq -2r, v_p(y) \leq -3r\} \cup \{0\}.$

9.2 gives $\widehat{E}(p^r\mathbb{Z}_p) \cong (\mathbb{Z}_p, +)$ if $r > \frac{1}{p-1}$, and hence $\widehat{E}(4\mathbb{Z}_2)$ and $\widehat{E}(p\mathbb{Z}_p)$ are torsion free.

Since T is a nonzero torsion point, it follows that $v_p(x), v_p(y) \ge 0$ for all odd primes p, and $v_2(x) \ge -2, v_2(y) \ge -3$. This proves part 1.

For the second part, suppose that $T \in \widehat{E}(2\mathbb{Z}_2)$, i.e. $v_2(x) = -2$, $v_2(y) = -3$.

Since $\frac{\widehat{E}(2\mathbb{Z}_2)}{\widehat{E}(4\mathbb{Z}_2)} \cong (\mathbb{F}_2, +)$ and $\widehat{E}(4\mathbb{Z}_2)$ is torsion free, we get 2T = 0. Also, $(x, y) = T = -T = (x, -y - a_1x - a_3)$, and hence $2y + a_1x + a_3 = 0$, $8y + 4xa_1 + 4a_3 = 0$.

8y is odd, 4x is odd, $4a_3$ is even, and hence a_1 is odd.

So if $2T \neq 0$ or a_1 is even, then $T \notin \widehat{E}(2\mathbb{Z}_2)$, so $x, y \in \mathbb{Z}$.

For example, if $y^2 + xy = x^3 + 4x + 1$, then $(-\frac{1}{4}, \frac{1}{8}) \in E(\mathbb{Q})[2]$.

Theorem 10.5 (Lutz-Nagell). Let E/\mathbb{Q} be given by $y^2 = x^3 + ax + b$, for $a, b \in \mathbb{Z}$.

Suppose $0 \neq T = (x, y) \in E(\mathbb{Q})_{tors}$. Then $x, y \in \mathbb{Z}$, and either y = 0 or $y^2 | 4a^3 + 27b^2$.

Note that this is not an if and only if - we still have to check the answers we get.

Proof. **10.4** gave us $x, y \in \mathbb{Z}$. If 2T = 0, then y = 0.

Otherwise, $0 \neq 2T = (x_2, y_2) \in E(\mathbb{Q})_{\text{tors}}$, and so **10.4** gives $x_2, y_2 \in \mathbb{Z}$.

But
$$x_2 = \left(\frac{f'(x)}{2y}\right)^2 - 2x$$
, and so $y|f'(x)$.

E non-singular, so f(x) and f'(x) are coprime, and so f(x) and $(f'(x))^2$ are coprime, hence $1 = g(x)f(x) + h(x)(f'(x))^2$ for some $g, h \in \mathbb{Q}[x]$.

Doing this calculation and clearing denominators, we get

$$(3x^2 + 4a)f'(x)^2 - 27(x^3 + ax - b)f(x) = 4a^3 + 27b^2$$

Since y|f'(x), $y^2 = f(x)$, so y^2 divides LHS, hence $y^2|4a^3 + 27b^2$.

Mazur showed that, if E/\mathbb{Q} is an elliptic curve, then $E(\mathbb{Q})_{\text{tors}} \cong \begin{cases} \mathbb{Z}/n\mathbb{Z} & 1 \leq n \leq 12, n \neq 11 \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} & 1 \leq n \leq 4 \end{cases}$. Moreover, all 15 possibilities occur.

11 Kummer Theory

K is a field, char $K \nmid n$, and $\mu_n \subset K$, where μ_n is the set of n^{th} roots of unity.

Lemma 11.1. Let $\Delta \subset K^{\times}/(K^{\times})^n$ be a finite subgroup, and let $L = K(\sqrt[n]{\Delta})$. Then L/K is Galois, and $Gal(L/K) \cong Hom(\Delta, \mu_n)$.

Proof. L/K is Galois since $\mu_n \subset K$, and char $K \nmid n$.

Define the Kummer pairing

$$\langle \cdot, \cdot \rangle : \operatorname{Gal}(L/K) \times \Delta \to \mu_n$$

$$(\sigma, x) \mapsto \frac{\sigma(\sqrt[q]{x})}{\sqrt[q]{x}}$$

It is well defined: suppose $\alpha, \beta \in L$ are two different choices of $\sqrt[n]{x}$. Then $(\alpha/\beta)^n = 1$, so $\alpha/\beta \in \mu_n \subset K$, so $\sigma(\alpha/\beta) = \alpha/\beta$. Hence $\sigma(\alpha)/\alpha = \sigma(\beta)/\beta$.

It is bilinear: $\langle \sigma \tau, x \rangle = \frac{\sigma \tau \sqrt[q]{x}}{\tau \sqrt[q]{x}} \frac{\tau \sqrt[q]{x}}{\sqrt[q]{x}} = \langle \sigma, x \rangle \langle \tau, x \rangle$, as $\tau \sqrt[q]{x}$ is another choice of $\sqrt[q]{x}$, and $\langle \sigma, xy \rangle = \frac{\sigma \sqrt[q]{xy}}{\sqrt[q]{xy}} = \frac{\sigma \sqrt[q]{x}}{\sqrt[q]{x}} \frac{\sigma \sqrt[q]{y}}{\sqrt[q]{y}} = \langle \sigma, x \rangle \langle \sigma, y \rangle$.

It is non-degenerate: Let $\sigma \in \operatorname{Gal}(L/K)$. If $\langle \sigma, x \rangle = 1$ for all $x \in \Delta$, then $\sigma(\sqrt[q]{x}) = \sqrt[q]{x}$ for all $x \in \Delta$, and so σ fixes L pointwise. Hence $\sigma = \operatorname{id}$. Now fix $x \in \Delta$, and suppose $\langle \sigma, x \rangle = 1$ for all $\sigma \in \operatorname{Gal}(L/K)$. Then $\sigma(\sqrt[q]{x}) = \sqrt[q]{x}$ for all $\sigma \in \operatorname{Gal}(L/K)$, and hence $\sqrt[q]{x} \in K$, and so $x \in (K^{\times})^n$, i.e. $x(K^{\times})^n$ is trivial in Δ .

We thus get injective group homomorphisms $Gal(L/K) \hookrightarrow Hom(\Delta, \mu_n)$, $\Delta \hookrightarrow Hom(Gal(L/K), \mu_n)$. Hence Gal(L/K) is abelian of exponent dividing n.

If *G* is a finite abelian group of exponent dividing *n*, then $Hom(G, \mu_n) = G$ (non-canonically).

So $|\operatorname{Gal}(L/K)| \le |\Delta| \le |\operatorname{Gal}(L/K)$, and so $|\Delta| = |\operatorname{Gal}(L/K)|$, and hence the injective homomorphisms are surjective as well, so isomorphisms.

For example $Gal(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Theorem 11.2. There is a bijection

 $\{ \text{finite subgroups } \Delta \subseteq K^{\times}/(K^{\times})^n \} \leftrightarrow \{ \text{finite abelian extensions } L/K \text{ of exponent dividing } n \}$ $\Delta \mapsto K(\sqrt[n]{\Delta})$ $\frac{(L^{\times})^n \cap K^{\times}}{(K^{\times})^n} \leftrightarrow L$

Proof. Let L/K be a finite abelian extension of exponent dividing n. Let $\Delta = \frac{(L^{\times})^n \cap K^{\times}}{(K^{\times})^n}$. Then $K(\sqrt[q]{\Delta}) \subset L$ and we aim to show equality.

Let G = Gal(L/K).

The Kummer pairing gives an injection $\Delta \hookrightarrow \text{Hom}(G, \mu_n)$. We claim this is a surjection.

Given the claim, we will then have $\Delta \cong \operatorname{Hom}(G, \mu_n)$, so $[K(\sqrt[n]{\Delta}) : K] = |\Delta|$ by **11.1** = |G| = [L : K], and hence we have the equality.

To prove the claim, let $\chi: G \to \mu_n$ be a member of $\text{Hom}(G, \mu_n)$. Distinct automorphisms are linearly independent. Then

$$\exists \ a \in L \text{ s.t. } \underbrace{\sum_{\tau \in G} \chi(\tau)^{-1} \tau(a) \neq 0}_{y}$$

Let $\sigma \in G$. Then

$$\sigma(y) = \sum_{\tau \in G} \chi(\tau)^{-1} \sigma \tau(a)$$
$$= \sum_{\tau \in G} \chi(\sigma^{-1}\tau)^{-1} \tau(a)$$
$$= \chi(\sigma) y$$

So $\sigma(y^n) = y^n$ for all $\sigma \in G$. Then if $x := y^n$, we have $x \in K^{\times}$, and $x \in (L^{\times})^n$.

So $x \in \Delta$, and $\chi(\sigma) = \frac{\sigma(\sqrt[q]{x})}{\sqrt[q]{x}}$, and so χ is the image of x under the injection, and hence it is a surjection.

For the other direction, we start with $\Delta \subset K^{\times}/(K^{\times})^n$ a finite subgroup. Let $L = K(\sqrt[n]{\Delta})$, and $\Delta' = \frac{(L^{\times})^n \cap K^{\times}}{(K^{\times})^n}$, and we must show that $\Delta' = \Delta$.

Clearly $\Delta \subseteq \Delta'$. We then compute sizes.

 $L = K(\sqrt[3]{\Delta}) \subset K(\sqrt[3]{\Delta'}) \subset L$, and we have equality throughout. So $K(\sqrt[3]{\Delta}) = K(\sqrt[3]{\Delta'})$.

11.1 gives
$$|\Delta| = |\Delta'|$$
, and so $\Delta = \Delta'$.

Proposition 11.3. *Let* K *be a number field containing* μ_n . *Let* S *be a finite set of primes of* K. *Then there are only finitely many extensions* L/K *such that:*

- 1. L/K is abelian of exponent dividing n.
- 2. L/K is unramified at all primes outside S.

Proof. **11.2** gives us $L = K(\sqrt[n]{\Delta})$ for some $\Delta \in K^{\times}/(K^{\times})^n$ a finite subgroup. Let \mathfrak{p} be a prime of K. Then $\mathfrak{p}O_L = \mathcal{P}_1^{e_1} \dots \mathcal{P}_r^{e_r}$, where \mathcal{P}_i are primes in O_L .

If $x \in K^{\times}$ represents an element of Δ . If $x \in K^{\times}$ represents an element of Δ , then

$$nv_{\mathcal{P}_i}(\sqrt[n]{x}) = v_{\mathcal{P}_i}(x) = e_i v_{\mathfrak{p}}(x)$$

If $p \notin S$, then all $e_i = 1$, so $v_p(x) \equiv 0 \mod n$, and so $\Delta \subset K(S, n)$, where

$$K(S, n) := \{x \in K^{\times}/(K^{\times})^n : v_{\mathfrak{p}}(x) \equiv 0 \mod n \ \forall \mathfrak{p} \in S\}$$

The proof is completed by the following lemma.

Lemma 11.4. K(S, n) is finite.

Proof. The map $K(S, n) \to (\mathbb{Z}/n\mathbb{Z})^{|S|}$, $x \mapsto (v_{\mathfrak{p}}(x) \mod n)$ for $\mathfrak{p} \in S$ is group homomorphism with kernel $K(\emptyset, n)$.

Since $|S| < \infty$, it suffices to prove the lemma with $S = \emptyset$.

If $x \in K^{\times}$ represents an element of $K(\emptyset, n)$, then $(x) = \mathfrak{a}^n$ for some ideal \mathfrak{a} .

There is then an exact sequence:

$$0 \longrightarrow \frac{O_K^{\times}}{(O_K^{\times})^n} \longrightarrow K(\emptyset, n) \longrightarrow Cl_K[n] \longrightarrow 0$$
$$x(K^{\times})^n \longmapsto [\mathfrak{a}]$$

Now $|Cl_K| < \infty$ and O_K^{\times} is finitely generated by Dirichlet's unit theorem, so $K(\emptyset, n)$ is finite. \square

12 Elliptic Curves over Number Fields II

12.1 The Mordell-Weil Theorem

Lemma 12.1. Let E/K be an elliptic curve. Let L/K be a finite Galois extension. Then the map

$$E(K)/nE(K) \rightarrow E(L)/nE(L)$$

has finite kernel.

Proof. For each element in the kernel, we pick a coset representative $P \in E(K)$, and then $Q \in E(L)$ with nQ = P.

Note that, for any $\sigma \in \operatorname{Gal}(L/K)$, $n(\sigma(Q) - Q) = \sigma(P) - P = 0$.

Gal(L/K) is finite and E[n] is finite, so there are only finitely many possibilities for the map $Gal(L/K) \rightarrow E[n]$, $\sigma \mapsto \sigma Q - Q$.

But if $P_1, P_2 \in E(K)$ then $P_i = nQ_i$ for $Q_1, Q_2 \in E(L)$, and $\sigma Q_1 - Q_2 = \sigma Q_2 - Q_2$, and so $\sigma(Q_1 - Q_2) = Q_1 - Q_2$ for all $\sigma \in Gal(L/K)$.

But then $Q_1 - Q_2 \in E(K)$, and so $P_1 - P_2 \in nE(K)$.

Theorem 12.2 (Weak Mordell-Weil). *If* K *is a number field and* E/K *is an elliptic curve, with* $n \ge 2$ *an integer, then* E(K)/nE(K) *is finite.*

Proof. **12.1** tells us we may replace K by a finite Galois extension. So without loss of generality, $\mu_n \subset K$ and $E[n] \subset E(K)$.

Let $S = \{p|n\} \cup \{primes \text{ of bad reduction for } E/K\}.$

For each $P \in E(K)$, the extension $K([n]^{-1}P)/K$ is unramified outside S, by **9.9**.

Let $Q \in [n]^{-1}P$. Since $E[n] \subseteq E(K)$, $K(Q) = K([n]^{-1}P)$, and this is a Galois extension of K.

Then we claim that we have an injective group homomorphism:

$$Gal(K(Q)/K) \hookrightarrow E[n]$$

 $\sigma \mapsto \sigma Q - Q$

This is a group homomorphism as $\sigma \tau Q - Q = \sigma(\tau Q - Q) + (\sigma Q - Q)$. But $\tau Q - Q$ is an n-torsion point, so lies in K, so this is $\tau Q - Q + \sigma Q - Q$.

It is injective, as if $\sigma Q = Q$ then σ fixes K(Q), and so σ is the identity.

So K(Q)/K is an abelian extension of exponent dividing n, unramified outside of S, so **11.3** tells us there are only finitely many possibilities for K(Q)/K as we vary P.

Let L be the composite of all such extensions of K. Then L/K is a finite Galois extension, and

$$E(K)/nE(K) \rightarrow E(L)/nE(L)$$

is the zero map.

12.1 implies that this has finite kernel, and so $|E(K)/nE(K)| < \infty$.

If $K = \mathbb{R}$ or \mathbb{C} or $[K : \mathbb{Q}_p] < \infty$, then $|E(K)/nE(K)| < \infty$, yet E(K) is uncountable. Hence E(K) is not finitely generated.

It is a fact that there is a quadratic form called the *canonical height* $\widehat{h}: E(K) \to \mathbb{R}_{\geq 0}$ with the property that, for any $B \geq 0$, the set $\{P \in E(K) : \widehat{h}(P) \leq B\}$ is finite.

Theorem 12.3 (Mordell-Weil). Let K be a number field with E/K an elliptic curve. Then E(K) is a finitely generated abelian group.

Proof. Fix any integer $n \ge 2$. Weak Mordell-Weil gives $|E(K)/nE(K)| < \infty$. Pick coset representatives for E(K)/nE(K), say P_1, \ldots, P_m .

Then let $\Sigma = \{ P \in E(K) : \widehat{h}(P) \le \max_{1 \le i \le m} \widehat{h}(P_i) \}.$

We claim Σ generates E(K).

If not, then there is $P \in E(K) \setminus \{\text{subgroup generated by } \Sigma\}$ of minimal point (this exists because there are only finitely many "small points that are too big").

Then $P = P_i + nQ$ for some $1 \le i \le m$, and $Q \in E(K)$.

Note that $Q \in E(K) \setminus \langle \Sigma \rangle$. The minimal choice of P tells us that $4\widehat{h}(P) \leq 4\widehat{h}(Q) \leq n^2\widehat{h}(Q) = \widehat{h}(PQ) = \widehat{h}(P-P_i) \leq \widehat{h}(P-P_i) + \widehat{h}(P+P_i) = 2\widehat{h}(P) + 2\widehat{h}(P_i)$. Hence $\widehat{h}(P) \leq \widehat{h}(P_i)$, and so $P \in \Sigma_{\frac{1}{4}}$.

Hence Σ generates E(K), and is finite, so E(K) is finitely generated.

Note that the structure theorem for finitely generated abelian groups shows that E(K) is of the form

$$E(K) \cong E(K)_{tors} \times \mathbb{Z}^r$$

for some non-negative integer r, called the rank. There is no known algorithm for computing the rank of E(K) in all cases.

13 Heights

For simplicity, we will take $K = \mathbb{Q}$. Write $P \in \mathbb{P}^n(\mathbb{Q})$ as $P = (a_0 : \ldots : a_n)$ are (not necessarily pairwise) coprime integers.

We define the *height* of P, $H(P) = \max_{0 \le i \le n} |a_i|$.

Lemma 13.1. Let $f_1, f_2 \in \mathbb{Q}[x_1, x_2]$ be coprime homogeneous polynomials of the same degree d. Let $F : \mathbb{P}^1 \to \mathbb{P}^1$; $(x_1 : x_2) \mapsto (f_1(x_1, x_2) : f_2(x_1, x_2))$.

Then there are constants c_1 , $c_2 > 0$ such that

$$c_1H(P)^d \le H(F(P)) \le c_2H(P)^d$$

for all points $P \in \mathbb{P}^1(\mathbb{Q})$.

Proof. Without loss of generality, $f_1, f_2 \in \mathbb{Z}[x_1, x_2]$. For the upper bound, write P = (a : b), coprime. Then

$$H(F(P)) \le \max(|f_1(a,b)|, |f_2(a,b)|)$$

 $\le c_2 \max(|a|^d, |b|^d)$

where $c_2 = \max(\text{ sum of abs. values of coeffs of } f_i)$. So $H(F(P)) \le c_2 H(P)^d$.

For lower bound, we claim there are $g_{ij} \in \mathbb{Z}[x_1, x_2]$ homogeneous polynomials of degree d-1 and $\kappa \in \mathbb{Z}_{>0}$ such that

$$\sum_{j=1}^{2} g_{ij} f_j = \kappa x_i^{2d-1} \qquad i = 1, 2 \tag{*}$$

Indeed, running Euclid's algorithm on $f_1(x, 1)$, $f_2(x, 1)$ give $r, s \in \mathbb{Q}[x]$ of degree < d such that

$$r(x) f_1(x, 1) + s(x) f_2(x, 1) = 1$$

Homogenising and clearing denominators gives (*) for i = 2, and likewise for i = 1.

Write $P = (a_1 : a_2)$ for integers a_1, a_2 coprime. Then (*) gives that

$$\sum_{j=1}^{2} g_{ij}(a_1, a_2) f_j(a_1, a_2) = \kappa a_i^{2d-1}$$

and so $gcd(f_1(a_1, a_2), f_2(a_1, a_2))$ divides $gcd(\kappa a_1^{2d-1}, \kappa a_2^{2d-1}) = \kappa$.

But also $|\kappa a_i^{2d-1}| \leq \max_{j=1,2} |f_j(a_1,a_2)| \sum_{j=1}^2 |g_{ij}(a_1,a_2)|$ where $\gamma_i = \sum_{j=1}^2 (\text{sum of absolute values of } \sum_{j=1}^2 |g_{ij}(a_1,a_2)|$

coefficients of g_{ij}). Hence we have

$$\kappa |a_i|^{2d-1} \le \gamma_i H(F(P)) H(P)^{d-1}$$

and so

$$\frac{1}{\max(\gamma_1, \gamma_2)} H(P)^d \le H(F(P))$$

Notation: for $x \in \mathbb{Q}$, we write $H(x) = H((x : 1)) = \max(|u|, |v|)$ where $x = \frac{u}{v}$, u, v coprime.

Let E/\mathbb{Q} be an elliptic curve, given by $y^2 = x^3 + ax + b$.

Then we define the height function:

$$H: E(\mathbb{Q}) \to \mathbb{R}_{\geq 1}$$

$$P \mapsto \begin{cases} H(x) & P = (x, y) \\ 1 & P = Q \end{cases}$$

and the *logarithmic height*

$$h: E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}$$
$$P \mapsto \log(H(P))$$

Lemma 13.2. Let E, E' be elliptic curves over \mathbb{Q} , and $\phi : E \to E'$ an isogeny defined over \mathbb{Q} .

Then there is c > 0 such that

$$|h(\phi(P)) - \deg(\phi)h(P)| \le c \ \forall P \in E(\mathbb{Q})$$

Note that c depends on E, E', ϕ *but not on* P.

Proof. Recall **5.3** that the *x*-coordinate of $\phi(P)$ only depends on the *x*-coordinate of *P*, say $x(\phi(P)) = \xi(x(P))$. Then **13.1** gives $c_1, c_2 > 0$ such that

$$c_1H(P)^d \le H(\phi(P)) \le c_2H(P)^d$$

Taking logs gives the result.

For example, if $\phi = [2] : E \to E$. Then there is c > 0 such that

$$|h(2P) - 4h(P)| \le c \ \forall P \in E(\mathbb{Q})$$

definition The *canonical height* is defined as follows:

$$\widehat{h}(P) = \lim_{n \to \infty} \frac{1}{4^n} h(2^n P)$$

We check convergence: let $m \ge n$. Then

$$\left|\frac{1}{4^m}h(2^mP) - \frac{1}{4^n}h(2^nP)\right| \le \sum_{r=n}^{m-1} \left|\frac{1}{4^{r+1}}h(2^{r+1}P) - \frac{1}{4^r}h(2^rP)\right| \le \sum_{r=n}^{\infty} \frac{c}{4^{r+1}} = \frac{c}{3 \cdot 4^n} \to 0$$

So the sequence is Cauchy, and $\widehat{h}(P)$ exists.

Lemma 13.3. $|h(P) - \widehat{h}(P)|$ is bounded.

Proof. Put n=0 in the above calculation. Then $|\widehat{h}(P)-h(P)| \leq \frac{c}{3}$.

Corollary 13.4. The set $\{P \in E(\mathbb{Q}) : \widehat{h}(P) \leq B\}$ is finite.

Proof. $\widehat{h}(P)$ bounded implies that h(P) is bounded.

But then there are only finitely many possibilities for x, and so finitely many possibilities for P.

Lemma 13.5. Let $\phi: E \to E'$ be an isogeny. Then $\widehat{h}(\phi P) = (\deg \phi)\widehat{h}(P)$.

Proof. **13.2** gives c > 0 such that

$$|h(\phi P) - (\deg \phi)h(P)| \le c$$

Replace *P* by $2^n P$, divide by 4^n , and take the limit as $n \to \infty$.

Remarks.

1. *H* and *h* depend on a choice of Weierstrass equation. **13.5** applied in the case where ϕ is an isomorphism (so deg $\phi = 1$) shows that \widehat{h} does not.

П

2. Taking $\phi = [n] : E \to E$ shows $\widehat{h}(nP) = n^2 \widehat{h}(P)$.

Lemma 13.6. Let E/\mathbb{Q} be an elliptic curve, with Weierstrass equation $y^2 = x^3 + ax + b$. Then there is some c > 0 such that

$$H(P+Q)H(P-Q) \le cH(P)^2H(Q)^2 \ \forall P,Q \in E(\mathbb{Q}) \ with \ P,Q,P \pm Q \neq O_E$$

Proof. Let P, Q, P+Q, P-Q have x coordinates x_1, \ldots, x_4 respectively. By **5.7** there exist polynomials $W_0, W_1, W_2 \in \mathbb{Z}[x_1, x_2]$ of degree ≤ 2 in x_1 and of degree ≤ 2 in x_2 such that $(1:x_3+x_4:x_3x_4)=(W_0:W_1:W_2)$.

Write $x_i = r_i/s_i$ for $r_i, s_i \in \mathbb{Z}$ coprime. Then we get

$$(s_3s_4:r_3s_4+r_4s_3:r_3r_4)=((r_1s_2-r_2s_1)^2:\ldots:\ldots)$$

Note that the three integers on the left are coprime.

Then $H(P+Q)H(P-Q) = \max(|r_3|, |r_3|) \max(|r_4|, |s_4|) \le 2 \max(|s_3s_4|, |r_3s_4 + r_4s_3|, |r_3r_4|)$, and, since the three terms on the right are integers, so must be \ge the corresponding coprime terms on the left, we have:

$$H(P+Q)H(P-Q) \le 2 \max(|r_1s_2 - r_2s_1|^2, ...)$$

 $\le cH(P)^2H(Q)^2$

where c depends on E but not on P, Q.

Theorem 13.7. $\widehat{h}: E(\mathbb{Q}) \to \mathbb{R}_{\geq 0}$ is a quadratic form.

Proof. Take logs in the last lemma gives

$$h(P + Q) + h(P - Q) \le 2h(P) + 2h(Q) + c$$

for all P, Q with P, Q, P + Q, P – $Q \neq O_E$. We can remove this last restriction by using the fact that |h(2P) - 4h(P)| is bounded.

Replacing P, Q by 2^nP , 2^nQ , dividing by 4^n , and taking the limit as $n \to \infty$, we lose the constant, and so

$$\widehat{h}(P+Q)+\widehat{h}(P-Q)\leq 2\widehat{h}(P)+2\widehat{h}(Q)$$

Replacing P, Q by P+Q, P-Q and using $\widehat{h}(2P)=4\widehat{h}(P)$, we get the inequality the other way round, and so we have equality, so \widehat{h} is a quadratic form.

The places of a number field K are the finite places (=primes), so that $|x|_{\mathfrak{p}} = c^{v_{\mathfrak{p}}(x)}$ for some fixed constant c > 1, and the infinite places (=real & complex embeddings), so that $|x|_{\sigma} = |\sigma(x)|^d$ for some fixed d > 0.

For each place v we may choose a normalisation $|\cdot|_v$ (i.e. make a choice of c and d) so that

$$\prod_{v} |\lambda|_v = 1 \ \forall \lambda \in K^{\times}$$

For K a number field, consider $P = (a_0 : a_1 : \ldots : a_n) \in \mathbb{P}^n(K)$. We define $H(P) = \prod_v \max_{0 \le i \le n} |a_i|_v$, which is well defined because of the product formula.

Let $\pi_i : E \times E \times E \to E$ be the projection maps onto the i^{th} factor for i = 1, 2, 3. Let $\pi_{ij} = \pi_i + \pi_j$, and $\pi_{123} = \pi_1 + \pi_2 + \pi_3$. There is a result called the theorem of the cube which says that, if $D \in \text{Div}(E)$, then

$$\pi_{123}^*D + \pi_1^*D + \pi_2^*D \sim \pi_{12}^*D + \pi_{13}^*D + \pi_{23}^*D$$

This can be used to give alternative proofs of 5.6 and 13.7.

14 Dual Isogenies & The Weil Pairing

Let K be a perfect field and E/K an elliptic curve.

Proposition 14.1. Let $\Phi \subseteq E(\bar{K})$ be a finite $Gal(\bar{K}/K)$ -stable subgroup. Then there is an elliptic curve E'/K and a separable isogeny $\phi : E \to E'$ defined over K with kernel Φ such that every isogeny $\psi : E \to E''$ with $\Phi \subseteq \ker \psi$ factors uniquely via ϕ :

$$E \xrightarrow{\psi} E''$$

$$\downarrow^{\phi} \qquad \exists !$$

$$E'$$

Proof. Omitted, see Silvermann III.4.12.

Proposition 14.2. *Let* ϕ : $E \to E'$ *be an isogeny of degree* n. *Then there is a unique isogeny* $\widehat{\phi}$: $E' \to E$ *such that* $\widehat{\phi} \phi = [n]$.

Proof. In the case that ϕ is separable, $|\ker \phi| = n \implies \ker \phi \subseteq E[n]$. Then apply **14.1** with $\psi = [n]$.

For the case where ϕ is inseparable, see Silvermann III.6.1.

For uniqueness, suppose $\psi_1 \phi = \psi_2 \phi = [n]$. Then rearrange to get $(\psi_1 - \psi_2) \phi = 0$, and so $\psi_1 = \psi_2$ as ϕ is nonconstant.

Remarks.

- 1. $E_1 \sim E_2 \iff E_1, E_2$ isogenous. Then \sim is an equivalence relation.
- 2. $deg[n] = n^2 \implies deg \widehat{\phi} = deg \phi = n$, and $\widehat{[n]} = [n]$.
- 3. $\phi \widehat{\phi} \phi = \phi[n]_E = [n]_{E'} \phi \implies \phi \widehat{\phi} = [n]_{E'}$. In particular, $\widehat{\widehat{\phi}} = \phi$.
- 4. $\widehat{\phi\psi} = \widehat{\psi}\widehat{\phi}$.
- 5. If $\phi \in \text{End}(E)$, then $\phi^2 \text{tr}[\phi] + [\deg \phi] = 0$. Rearranging, we see $\widehat{\phi} = [\text{tr } \phi] \phi$, and so $\text{tr } \phi = \phi + \widehat{\phi}$.

Lemma 14.3. *If* ϕ , $\psi \in \text{Hom}(E, E')$, then $\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}$.

Proof. If E = E', then this follows from $tr(\phi + \psi) = tr \phi + tr \psi$.

In general, let $\alpha : E' \to E$ be any isogeny (e.g. $\widehat{\phi}$). Then the first part tells us $\alpha \widehat{\phi} + \alpha \widehat{\psi} = \widehat{\alpha} \widehat{\phi} + \widehat{\alpha} \widehat{\psi}$, so $\widehat{\alpha}(\widehat{\phi} + \widehat{\psi}) = \widehat{\alpha}(\widehat{\phi} + \widehat{\psi})$, and then cancel $\widehat{\alpha}$.

In Silvermann's book, he proves this lemma before knowing that the degree map is a quadratic form, and uses it to show that deg is a quadratic form.

14.1 The Weil Pairing

Definition. sum : $Div(E) \to E$; $\sum n_P(P) \mapsto \sum n_P P$ is the map taking a formal sum of points to the actual summation of the points using the group law on E.

Recall that $E \cong \operatorname{Pic}^0(E)$, given by $P \mapsto [(P) - (O_E)]$. Then $\sum n_P P \mapsto [\sum n_P(P) - \sum n_P(O_E)]$, and so sum $D \mapsto [D]$ for all $D \in \operatorname{Div}^0(E)$.

Lemma 14.4. Let $D \in Div(E)$. Then $D \sim 0$ if and only if deg D = 0 and sum $D = O_E$.

Let $\phi: E \to E'$ be an isogeny of degree n, with dual isogeny $\widehat{\phi}: E' \to E$. Assume that char $K \nmid n$, so that $\phi, \widehat{\phi}$ are separable.

We define the Weil pairing $e_P : E[\phi] \times E'[\widehat{\phi}] \to \mu_n$:

Let $T \in E'[\widehat{\phi}]$. Then nT = 0, and so there exists $f \in \overline{K}(E')^*$ such that div f = n(T) - n(0).

Pick $T_0 \in E(\overline{K})$ with $\phi(T_0) = T$. Then $\phi^*(T) - \phi^*(0) = \sum_{P \in E[\phi]} (P + T_0) - \sum_{P \in E[\phi]} (P)$ has sum $nT_0 = \widehat{\phi} \phi T_0 = \widehat{\phi} T = 0$.

So there is some $g \in \bar{K}(E)^*$ such that $\operatorname{div}(g) = \phi^*(T) - \phi^*(0)$.

Now $\operatorname{div}(\phi^*f) = \phi^* \operatorname{div} f = n(\phi^*(T) - \phi^*(0)) = n \operatorname{div} g = \operatorname{div}(g^n)$, so $\phi^*f = g^n$ up to multiplication by a constant $c \in \overline{K}^*$. Rescaling f, we can ignore this constant.

If $S \in E[\phi]$, then $\phi \tau_S = \phi$, i.e. $\tau_S^* \phi^* = \phi^*$, so $\tau_S^* (\operatorname{div} g) = \operatorname{div} g$, and so $\tau_S^* g = \zeta g$ for some constant ζ .

 $\zeta = g(X+S)/g(X)$ for all points X by definition for all $X \in E(\bar{K}) \setminus \{\text{zeros/poles of } g\}$. Then $\zeta^n = g(X+S)^n/g(X)^n = f(\phi(X+S))/f(\phi(X)) = 1$, since $\phi(S) = 0$ and ϕ is an isogeny.

Then we define the Weil pairing $e_{\phi}(S,T) = \zeta = g(X+S)/g(X)$ for any X not a zero or pole of g.

Proposition 14.5. e_{ϕ} *is bilinear and non-degenerate.*

Proof. For linearity in the first argument, we have

$$e_{\phi}(S_1+S_2,T) = \frac{g(X+S_1+S_2)}{g(X+S_2)} \frac{g(X+S_2)}{g(X)} = e_{\phi}(S_1,T)e_{\phi}(S_2,T)$$

For linearity in the second argument, let $T_1, T_2 \in E'[\widehat{\phi}]$. Then

$$\operatorname{div}(f_1) = n(T_1) - n(O); \operatorname{div}(f_2) = n(T_2) - n(O)$$

and then

$$\phi^* f_1 = g_1^n; \phi^* f_2 = g_2^n$$

Then there is $h \in \bar{K}(E')^*$ such that $div(h) = (T_1) + (T_2) - (T_1 + T_2) - (O)$.

Then put $f = \frac{f_1 f_2}{h^n}$ and $g = \frac{g_1 g_2}{\phi^* h}$. We then check: $\operatorname{div}(f) = n(T_1 + T_2) - n(O)$, and $\phi^* = \frac{\phi^* f_1 \phi^* f_2}{(\phi^* h)^n} = \left(\frac{g_1 g_2}{\phi^* h}\right)^n = g^n$.

So
$$e_{\phi}(S, T_1 + T_2) = \frac{g(X+S)}{g(X)} = \frac{g_1(X+S)}{g_1(X)} \frac{g_2(X+S)}{g_2(X)} \frac{h(\phi(X))}{h(\phi(X+S))} = e_{\phi}(S, T_1) e_{\phi}(S, T_2)$$
 as $S \in \ker \phi$.

Then to see that e_{ϕ} is nondegenerate, fix $T \in E'[\widehat{\phi}]$ and suppose that $e_{\phi}(S,T) = 1$ for all $S \in E[\phi]$. By definition of the Weil pairing, $\tau_S^*g = g$ for all $S \in E[\phi]$.

Then $\bar{K}(E)$ is a Galois field extension of $\phi^*\bar{K}(E')$ with Galois group $E[\phi]$ acting as τ_S^* . So $g = \phi^*h$ for some $h \in \bar{K}(E')$, and hence $\phi^*f = g^n = \phi^*(h^n)$, and so $f = h^n$. Hence $\mathrm{div}(H) = (T) - (O)$, and so T = O.

We've shown that the map $E'[\widehat{\phi}] \hookrightarrow \operatorname{Hom}(E[\phi], \mu_n); T \mapsto (S \mapsto e_{\phi}(S, T))$. This map is thus an isomorphism by counting.

Remarks.

- 1. If E, E', ϕ are defined over K, then e_{ϕ} is Galois equivariant, i.e. $e_{\phi}(\sigma S, \sigma T) = \sigma(e_{\phi}(S, T))$.
- 2. Taking $\phi = [n] : E \to E$, so that $\widehat{\phi} = [n]$, gives $e_n : E[n] \times E[n] \to \mu_{n^2}$. It can be shown, since e_n is bilinear, that we only actually have image in μ_n .

Corollary 14.6. *If* $E[n] \subseteq E(K)$, then $\mu_n \subseteq K$.

Proof. e_n non-degenerate implies that there are $S, T \in E[n]$ such that $e_n(S, T)$ is a primitive n^{th} root of unity, say ζ_n . To see this, pick $T \in E[n]$ of order n. Then the group homomorphism $E[n] \to \mu_n; S \mapsto e_n(S, T)$ has image μ_d for some d|n. Then $e_n(S, dT) = 1$ for all $S \in E[n]$, and so by nondegeneracy, dT = 0, and so d = n.

Then
$$\sigma(\zeta_n) = e_n(\sigma S, \sigma T) = e_n(S, T)$$
, and so $\zeta_n \in K$.

For example, there is no E/\mathbb{Q} with $E(\mathbb{Q})_{tors} = (\mathbb{Z}/3\mathbb{Z})^2$, since not all of the cube roots of unity are defined over \mathbb{Q} .

Remark. In fact, the Weil pairing e_n is alternating, so that $e_n(T,T) = 1$ for all T.

In particular, $e_n(S + T, S + T)$, we have $e_n(S, T) = e_n(T, S)^{-1}$.

15 Galois Cohomology

Here, G is a group and A is a G-module (an abelian group with action of G via group homomorphisms), i.e. a module over $\mathbb{Z}[G]$.

Definition 15.1. $H^0(G, A) = A^G$, the subgroup of A fixed by all of G.

 $C^1(G, A) = \{maps G \rightarrow A\}$, not necessarily group homomorphisms. We call these maps "cochains".

$$Z^1(G,A) = \{(a_\sigma)_{\sigma \in G} : a_{\sigma\tau} = \sigma(a_\tau) + a_\sigma\}$$
, the set of "cocycles".

 $B^1(G,A) = \{(\sigma b - b)_{\sigma \in G} : b \in A\}$, the set of "coboundaries".

We have $C^1(G,A) \supset Z^1(G,A) \supset B^1(G,A)$. These are all groups under the pointwise operations. We then define $H^1(G,A) = \frac{Z^1(G,A)}{R^1(G,A)}$.

Remark. If *G* acts trivially on *A*, then $H^1(G, A) = Z^1(G, A) = \text{Hom}(G, A)$. We can then go on to define H^2, H^3, \ldots , but we won't use these here.

Theorem 15.2. *A short exact sequence of G modules*

$$0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

gives rise to a long exact sequence of abelian groups:

$$0 \to A^G \xrightarrow{\phi} B^G \xrightarrow{\psi} C^G \xrightarrow{\delta} H^1(G,A) \xrightarrow{\phi_*} H^1(G,B) \xrightarrow{\psi_*} H^1(G,C) \to \dots$$

Proof. Omitted. □

Definition of δ . Let $c \in C^G$. Then there exists $b \in B$ such that $\psi(b) = c$. Then $\psi(\sigma b - b) = \sigma c - c = 0$ for all $\sigma \in G$. Hence $\sigma b - b = \psi(a_{\sigma})$ for some $a_{\sigma} \in A$.

Then $\phi(a_{\sigma\tau} - \sigma(a_{\tau}) - a_{\sigma}) = \sigma\tau b - b - \sigma(\tau b - b) - (\sigma b - b) = 0$. ϕ is injective, so $a_{\sigma\tau} = \sigma(a_{\tau}) + a_{\sigma}$, and hence $(a_{\sigma})_{\sigma\in G} \in Z^1(G,A)$.

We define $\delta(c) = \text{class of } (a_{\sigma})_{\sigma \in G} \text{ in } H^1(G, A).$

Theorem 15.3. Let A be a G-module, and $H \triangleleft G$ a normal subgroup. Then there is an **inflation-restriction** exact sequence:

$$0 \to H^1(G/H, A^H) \xrightarrow{inf} H^1(G, A) \xrightarrow{res} H^1(H, A)$$

Proof. Omitted.

Let K be a perfect field. Then $Gal(\bar{K}/K)$ is a topological group, with basis of open subgroups the $Gal(\bar{K}/L)$ for L some finite extension of K.

If $G = \operatorname{Gal}(\overline{K}/K)$, we modify the definition of $H^1(G, A)$ by insisting on:

- 1. The stabiliser of each $a \in A$ is an open subgroup of G.
- 2. All cochains $G \rightarrow A$ are continuous, where A is given the discrete topology.

Then $H^1(\operatorname{Gal}(\bar{K}/K),A) = \varinjlim_{L/K \text{ finite Galois}} H^1(\operatorname{Gal}(L/K),A^{\operatorname{Gal}(\bar{K}/L)})$. The maps used for this direct limit are the inflation maps.

Theorem 15.4 (Hilbert's Theorem 90.). Let L/K be finite Galois. Then $H^1(Gal(L/K), L^*) = 0$.

Proof. Let G = Gal(L/K). Let $(a_{\sigma})_{\sigma \in G} \in Z^1(G, L^*)$. Then distinct automorphisms are linearly independent. Then:

$$\exists \ y \in L \text{ s.t. } \underbrace{\sum_{\tau \in G} a_{\tau}^{-1} \tau(y) \neq 0}_{r}$$

Then for $\sigma \in G$, $\sigma(x) = \sum_{\tau \in G} \sigma(a_{\tau})^{-1} \sigma \tau(y) = a_{\sigma} \sum_{\tau \in G} a_{\sigma\tau}^{-1} \sigma \tau(y) = a_{\sigma} x$, using the cocycle identity, which after rearranging gives $\sigma(a_{\tau})^{-1} = a_{\sigma} a_{\sigma\tau}^{-1}$.

So
$$\sigma(x) = a_{\sigma}x$$
, and hence $a_{\sigma} = \sigma(x)/x$. So $(a_{\sigma})_{\sigma \in G} \in B^1(G, L^*)$, and so $H^1(G, L^*) = 0$.

Corollary 15.5. $H^1(Gal(\bar{K}/K), \bar{K}^*) = 0$

Application. Assume char $K \nmid n$. Then there is an exact sequence of $Gal(\bar{K}/K)$ -modules $0 \to \mu_n \to \bar{K}^* \xrightarrow{n} \bar{K}^* \to 0$.

Then when we take the long exact sequence, we get:

$$K^* \xrightarrow{\wedge_n} K^* \to H^1(Gal(\bar{K}/K), \mu_n) \to H^1(Gal(\bar{K}/K), \bar{K}^*)$$

but this last term is 0 by Hilbert 90. So:

$$H^1(\operatorname{Gal}(\bar{K}/K), \mu_n) \cong K^*/(K^*)^n$$

If $\mu_n \subset K$, then

$$H^1(\operatorname{Gal}(\bar{K}/K), \mu_n) = \operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(\bar{K}/K), \mu_n) \cong K^*/(K^*)^n$$
 (†)

if L/K is a finite Galois extension, then we have a projection map $\pi: \operatorname{Gal}(\bar{K}/K) \twoheadrightarrow \operatorname{Gal}(L/K)$, and so

$$\operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n) \hookrightarrow \operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(\bar{K}/K), \mu_n)$$

via $\chi \mapsto \chi \circ \pi$.

We then claim that every finite subgroup Ξ of $\operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(\bar{K}/K), \mu_n)$ arises uniquely in this way for L/K a finite abelian extension of exponent dividing n.

So, from t, we recover 11.2.

To prove the claim, consider the pairing $Gal(\bar{K}, K) \times \Xi \to \mu_n$ given by $(\sigma, \chi) \mapsto \chi(\sigma)$. This is bilinear, and has trivial right kernel, and the left kernel is

$$\bigcap_{\chi\in\Xi}\ker(\chi)\subset\operatorname{Gal}(\bar{K}/K)\text{ an open normal subgroup}$$

and hence $Gal(\bar{K}/L)$ for some L/K finite Galois.

We then get a nondegenerate pairing $Gal(L/K) \times \Xi \to \mu_n$. In particular,

$$Gal(L/K) \hookrightarrow Hom(\Xi, \mu_n)$$

 $\Xi \hookrightarrow Hom(Gal(L/K), \mu_n)$

The first tells us L/K is abelian of exponent dividing n and that the second is in fact surjective, so $\Xi = \text{Hom}(\text{Gal}(L/K), \mu_n)$, so we have the claim.

As a point of notation, we will write $H^1(K,\cdot)$ as shorthand for $H^1(\text{Gal}(\bar{K}/K),\cdot)$.

Lemma 15.6. Let $[K : \mathbb{Q}_p] < \infty$ with $p \nmid n$. Then:

$$\ker(H^1(K,\mu_n)) \to H^1(K^{nr},\mu_n) \cong O_K^*/(O_K^*)^n$$

Proof. By Hilbert 90, it suffices to show that the sequence

$$O_K^*/(O_K^*)^n \xrightarrow{\alpha} K^*/(K^*)^n \xrightarrow{\beta} (K^{nr})^*/(K^{nr})^{*n}$$

is exact.

For $\operatorname{im}(\alpha) \subset \ker(\beta)$, let $a \in O_K^*$. If $f(x) = x^n - a \in O_K[x]$, then $\widetilde{f}(x) = x^n - \widetilde{a} \in k[x]$ has distinct roots in \overline{k} , as $p \nmid n$.

Then $K(\sqrt[n]{a})/K$ is unramified, and so $a \in (K^{nr})^{*n}$.

For $\ker(\beta) \subseteq \operatorname{im}(\alpha)$, let $x(K^*)^n \in \ker \beta$. Write $x = u\pi^r$ with $u \in \mathcal{O}_K^*$, $r \in \mathbb{Z}$.

Since the discrete valuation on K extends to a discrete valuation on K^{nr} , we have $r \equiv 0 \mod n$, and so $x(K^*)^n = u(K^*)^n$.

Let $\phi: E \to E'$ be an isogeny of elliptic curves over K. Then there is a short exact sequence of $Gal(\bar{K}/K)$ -modules

$$0 \to E[\phi] \to E \xrightarrow{\phi} E' \to 0$$

This gives a long exact sequence

$$E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(K, E[\phi]) \to H^1(K, E) \xrightarrow{\phi_*} H^1(K, E')$$

We get a short exact sequence

$$0 \longrightarrow E'(K)/\phi(E(K)) \longrightarrow H^{1}(K, E[\phi]) \longrightarrow H^{1}(K, E)[\phi_{*}] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{res_{v}} \qquad \downarrow^{res_{v}}$$

$$0 \longrightarrow \prod_{v} E'(K_{v})/\phi(E(K_{v})) \longrightarrow \prod_{v} H^{1}(K_{v}, E[\phi]) \longrightarrow \prod_{v} H^{1}(K_{v}, E)[\phi_{*}] \longrightarrow 0$$

Now take *K* to be a number field.

For each place v, fix an embedding $\bar{K} \subset \bar{K}_v$. Then $Gal(\bar{K}_c/K_v) \subset Gal(\bar{K}/K)$.

Definition. The ϕ -Selmer group is $S^{(\phi)}(E/K) = \ker \searrow = \ker(H^1(K, E[\phi]) \to \prod_v H^1(K_v, E))$. Another way to think about it is as the elements α in $H^1(K, E[\phi])$ whose restriction $res_v(\alpha) \in \operatorname{im}(\delta_v)$.

The *Tate-Shafarevich group* is $\coprod(E/K) = \ker(H^1(K, E) \to \prod_v H^1(K_v, E))$.

We get a short exact sequence

$$0 \to E'(K)/\phi(E/K) \to S^{(\phi)}(E/K) \to \coprod (E/K)[\phi_*] \to 0$$

Taking $\phi = [n]$ gives

$$0 \to E(K)/nE(K) \to S^{(n)}(E/K) \to \coprod (E/K)[n] \to 0$$

We can then reorganise the proof of weak Mordell-Weil to get

Theorem 15.7. $S^{(n)}(E/K)$ is finite.

Proof. For L/K a finite Galois extension there is an exact sequence

$$0 \to H^1(\operatorname{Gal}(L/K), E(L)[n]) \xrightarrow{inf} H^1(K, E[n]) \xrightarrow{res} H^1(L, E[n])$$

We have $H^1(Gal(L/K), E(L)[n])$ is finite.

By extending our field we may assume that $E[n] \subset E(K)$, and hence $\mu_n \subset K$.

So $E[n] \cong \mu_n \times \mu_n$ as Galois modules. Hence $H^1(K, E[n]) \cong H^1(K, \mu_n) \times H^1(K, \mu_n) \cong K^*/(K^*)^n \times K^*/(K^*)^n$, by Hilber 90.

Let $S = \{\text{primes of bad reduction for } E/K\} \cup \{v | n\} \cup \{v \text{ infinite}\}$. Then S is finite.

The subgroup of $H^1(K, A)$ unramified outside S is $H^1(K, A; S) := \ker(H^1(K, A) \to \prod_{v \notin S} H^1(K_v^{nr}, A))$.

There is a commutative diagram with exact rows

$$E(K_v) \xrightarrow{\times n} E(K_v) \xrightarrow{\delta_v} H^1(K_v, E[n])$$

$$\downarrow \qquad \qquad \downarrow^{res}$$

$$E(K_v^{nr}) \xrightarrow{\times n} E(K_v^{nr}) \longrightarrow H^1(K_v^{nr}, E[n])$$

The bottom left $\times n$ map is surjective for all $v \notin S$ - see the proof of **9.9**. Hence $\operatorname{im}(\delta_v) \subset \ker(res)$.

Then $S^{(n)}(E/K) = \{\alpha \in H^1(K, E[n]) : res_v(\alpha) \in im(\delta_v) \ \forall v\} \subset H^1(K, E[n]; S) \cong H^1(K, \mu_n; S) \times H^1(K, \mu_n; S) \cong K(S, n) \times K(S, n)$ by **15.3**.

But K(S, n) is finite by **11.4**, and so $S^{(n)}(E/K)$ is finite.

Remark. $S^{(n)}(E/K)$ is finite and effectively computable. It is conjectured that $\coprod(E/K)$ is finite. This would imply that the rank is effectively computable.

16 Descent by cyclic isogeny

E, E' are elliptic curves over K a number field. We have $\phi: E \to E'$ an isogeny of degree n. Suppose that $E'[\widehat{\phi}] \cong \mathbb{Z}/n\mathbb{Z}$ generated by $T \in E'(K)$. Then $E[\phi] \cong \mu_n$ as Galois modules, via $S \mapsto e_{\phi}(S,T)$. We then get a short exact sequence of $\operatorname{Gal}(\overline{K}/K)$ -modules

$$0 \to \mu_n \to E \xrightarrow{\phi} E' \to 0$$

We then get a long exact sequence

$$E(K) \to E'(K) \xrightarrow{\delta} H^1(K, \mu_n) \to H^1(K, E)$$

By Hilbert 90, $H^{1}(K, \mu_{n}) \cong K^{*}/(K^{*})^{n}$.

Theorem 16.1. Let $f \in K(E')$ and $g \in K(E)$ with $\operatorname{div}(f) = n(T) - n(0)$ and $\phi^* f = g^n$.

Then $\alpha(P) = f(P) \mod (K^*)^n$ for all $P \in E'(K) \setminus \{0, T\}$.

Proof. Let $Q \in \phi^{-1}(P)$. Then $\delta(P)$ is represented by the cocycle $\sigma \mapsto \sigma(Q) - Q \in E[\phi] \cong \mu_n$.

Then $e_{\phi}(\sigma Q - Q, T) = \frac{g(\sigma Q - Q + X)}{g(X)}$ for any $X \in E$ not a zero or pole of g. Taking X = Q, we have $\frac{g(\sigma Q)}{g(Q)} = \frac{\sigma(g(Q))}{g(Q)} = \frac{\sigma(g(Q))}{\sqrt[q]{f(P)}}$. Hence $\delta(P)$ is represented by the cocycle $\sigma \mapsto \frac{\sigma\sqrt[q]{f(P)}}{\sqrt[q]{f(P)}}$

But $H^1(K, \mu_n) \cong K^*/(K^*)^n$ via $(\sigma \mapsto \frac{\sigma \sqrt[n]{x}}{\sqrt[n]{x}}) \longleftrightarrow x$.

Hence $\alpha(P) = f(P) \mod (K^*)^n$.

16.1 Descent by 2-isogeny

Given $E: y^2 = x(x^2 + ax + b)$; $E': y^2 = x(x^2 + a'x + b')$, where a' = -2a, $b' = a^2 - 4b$. Then we have $\phi: E \to E'$; $(x, y) \mapsto \left(\left(\frac{y}{x}\right)^2, \frac{y(x^2 - b)}{x^2}\right)$. We can think of E' as being the quotient of E by its 2-torsion point (0, 0).

If we repeat this procedure, we get $\widehat{\phi}: E' \to E; (x,y) \mapsto \left(\frac{1}{4} \left(\frac{y}{x}\right)^2, \frac{y(x^2-b')}{8x^2}\right)$.

It can be checked (see example sheet 4) that ϕ and $\widehat{\phi}$ are dual.

Then $E[\phi] = \{0, T\}; E'[\widehat{\phi}] = \{0, T'\}$ where T, T' are $(0, 0) \in E, E'$ respectively.

Proposition 16.2. There is a group homomorphism $E'(K) \to K^*/(K^*)^2$ given by

$$(x,y) \mapsto \begin{cases} x \mod (K^*)^2 & x \neq 0 \\ b' \mod (K^*)^2 & x = 0 \end{cases}$$

with kernel $\phi(E(K))$.

Proof. Either: apply **16.1** with $f = x \in K(E')$, $g = y/x \in K(E)$.

Or: direct calculation - see example sheet 4.

We now have an injective group homomorphism $\alpha_{E'}: \frac{E'(K)}{\phi E(K)} \hookrightarrow K^*/(K^*)^2$. By swapping E, E', we also get $\alpha_E: \frac{E(K)}{\widehat{\phi}(E'(K))} \hookrightarrow K^*/(K^*)^2$.

Lemma 16.3. $2^{rank(E(K))} = \frac{|\lim \alpha_E||\lim \alpha_{E'}|}{4}$

Proof. If $A \xrightarrow{f} B \xrightarrow{g} C$ is a homomorphism of abelian groups then there is an exact sequence

$$0 \to \ker f \to \ker(gf) \xrightarrow{f} \ker g \to \operatorname{coker} f \xrightarrow{g} \operatorname{coker}(gf) \xrightarrow{\operatorname{coker}} g \to 0$$

Since $\widehat{\phi}\phi = [2]_E$, we get an exact sequence

$$0 \to \underbrace{E(K)[\phi]}_{\mathbb{Z}/2\mathbb{Z}} \to E(K)[2] \xrightarrow{\phi} \underbrace{E'(K)[\widehat{\phi}]}_{\mathbb{Z}/2\mathbb{Z}} \to \underbrace{E'(K)/\phi E(K)}_{\text{im }\alpha_{E'}} \xrightarrow{\widehat{\phi}} E(K)/2E(K) \to \underbrace{E(K)/\widehat{\phi} E'(K)}_{\text{im }\alpha_{E}} \to 0$$

Since the alternating product of the orders of the groups along this sequence is 1, we get:

$$\frac{|E(K)/2E(K)|}{|E(K)[2]|} = \frac{|\operatorname{im} \alpha_E||\operatorname{im} \alpha_{E'}|}{4}$$

The Mordell-Weil theorem says that $E(K) \cong \Delta \times \mathbb{Z}^r$ where Δ is a finite group and r is the rank of E(K).

Then $E(K)/2E(K) \cong \Delta/2\Delta \times (\mathbb{Z}/2\mathbb{Z})^r$, and $E(K)[2] \cong \Delta[2]$. Now $|\Delta/2\Delta| = |\Delta[2]|$ by finiteness, and so the result follows.

Lemma 16.4. *If* K *is a number field and* a, $b \in O_K$ *then* im $\alpha_E \subseteq K(S,2)$ *where* $S = \{primes \ dividing \ b\}.$

Proof. We must show that, if $x, y \in K$ are coordinates of a point on E, so $y^2 = x(x^2 + ax + b)$ and \mathfrak{p} is a prime outside S, so $v_{\mathfrak{p}}(b) = 0$, then $v_{\mathfrak{p}}(x)$ is even.

Suppose first that $v_{\mathfrak{p}}(x) < 0$. Then **9.1** tells us $v_{\mathfrak{p}}(x) = -2r$, $v_{\mathfrak{p}}(y) = -3r$ for some $r \ge 1$, and so $v_{\mathfrak{p}}(x)$ is even.

If instead $v_p(x) > 0$, then $x^2 + ax + b$ is an algebraic integer and not divisible by \mathfrak{p} . Hence $v_p(x^2 + ax + b) = 0$, and so $v_p(x) = v_p(y^2) = 2v_p(y)$ is even.

Lemma 16.5. If $b_1b_2 = b$ then $b_1(K^*)^2 \in \operatorname{im}(\alpha_E)$ if and only if

$$w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4 \tag{*}$$

is soluble for $u, v, w \in K$ not all zero.

Proof. If $b_1 \in (K^*)^2$ or $b_2 \in (K^*)^2$, then both conditions are satisfied. So we may assume $b_1, b_2 \notin (K^*)^2$.

Then $b_1(K^*)^2 \in \operatorname{im}(\alpha_E)$ if and only if there are $(x,y) \in E(K)$ with $x = b_1 t^2$ for some $t \in K^*$.

Substituting into the Weierstrass equation, we get $y^2 = b_1 t^2 ((b_1 t^2)^2 + a b_1 t^2 + b)$. This can be rearranged to get

$$\left(\frac{y}{b_1 t}\right)^2 = b_1 t^4 + a t^2 + b_2$$

and so (*) has a solution. The converse follows just by reversing the steps.

Now take $K = \mathbb{Q}$.

Example 1. $E: y^2 = x^3 - x$. Here a = 0, b = -1. Then $S = \emptyset$, and so $\operatorname{im}(\alpha_E) \subseteq \mathbb{Q}(S, 2) = \langle -1 \rangle \subset \mathbb{Q}^*/(\mathbb{Q}^*)^2$. Checking the above condition for -1 gives $-1 \in \operatorname{im}(\alpha_E)$, and so we have equality.

Then $E': y^2 = x^3 + 4x$, and $\operatorname{im}(\alpha_{E'}) \subseteq \langle -1, 2 \rangle$. We then check $b_1 = -1, 2, -2$ in turn using (*) in the previous lemma.

E.g. for $b_1 = -1$, we have $w^2 = -u^4 - 4v^4$, which has no solutions in \mathbb{Q} . Checking these gives only $b_1 = 2 \in \operatorname{im}(\alpha_{E'})$, and so $\operatorname{im}(\alpha_{E'}) = \langle 2 \rangle \subseteq \mathbb{Q}^*/(\mathbb{Q}^*)^2$.

We can then use **16.3** to see that $2^r = \frac{2 \cdot 2}{4} = 1$, and so the rank of this curve $E(\mathbb{Q})$ is zero, and hence 1 is not a congruent number.

Example 2. $E: y^2 = x^3 + px$ where p is prime $\equiv 5 \mod 8$. Then $b_1 = -1$ gives $w^2 = -u^4 - pv^4$ insoluble over \mathbb{R} . $b_1 = p$ gives a soluble equation and so $\operatorname{im}(\alpha_E) = \langle p \rangle \subseteq \mathbb{Q}^*/(\mathbb{Q}^*)^2$.

$$E': y^2 = x^3 - 4px$$
. $\operatorname{im}(\alpha_{E'}) \subseteq \langle -1, 2, p \rangle \subseteq \mathbb{Q}^*/(\mathbb{Q}^*)^2$.

Note that $\alpha_{E'}(T') = (-4p)(\mathbb{Q}^*)^2 = (-p)(\mathbb{Q}^*)^2$, and so $-p \in \operatorname{im}(\alpha_{E'})$.

We then check $b_1 = 2, -2, p$. Using $\left(\frac{2}{p}\right) = -1$, we get that the equations for $b_1 = 2, -2$ have no solutions.

Hence $\operatorname{im}(\alpha_{E'}) \subseteq \langle -1, p \rangle \subseteq \mathbb{Q}^*/(\mathbb{Q}^*)^2 = -1$, including p if and only if $w^2 = pu^4 - 4v^4$ has solutions in \mathbb{Q} .

Then rank $E(\mathbb{Q}) = \begin{cases} 0 & \text{equation has solution} \\ 1 & \text{equation has no solutions} \end{cases}$