Contexte: pacibilité totale

Soit $M \in \mathbb{C}^{h \times n}$, h < n. Pour $I \in \binom{n}{h} = \{I \in \{1, \dots, n\} : \#I = h\}$, $A_I(M) = \det(M_I)$

Mest totalement non-négative (TNN) si $\Delta_{I}(M) \in \mathbb{R}_{>0} \quad \forall I \in (\hat{h}).$ ry $M = k \implies$ bravée des lignes $[M] \in \mathcal{L}_{rh,n} = \mathcal{L}_{rh}(\mathcal{C}^n); la grassmannienne$

Crassmannienne - TNN Crh, n = { [M]: Mest TNN}.

pertinant à: Chévie de positivité de Luzbig pour des métés de drapenux

Camplibuedre / amplibudes de diffusion

Idée dé: pour prouver que Mest TP, suffisant que $\Delta_{\pm}(M) \in \mathbb{R}_{>0}$ pour dim $C_{r_{h,n}} = k(n-h) + 1$ valeus d'I - choisir que soin!

Pour h=2: triangulation du n-gone >> essai minimal pour paibinté > ces essaies mutent en échangeant les diagonals dans la triangulation tomin-Elleviniky: abstrate cette combinatoire aux structures ammusiées -spar une varieté X, chrisiuez dim X fonctions (un amus) dans CIX, alyébriquerent indépendentes (un'ables amassées) is une règle combinatoire permet des mutations plus d'amus, des variables amassées

(topiquement ∞)

In (P, 23+) la conjecture est vroie.
Le salution 1) Catégorfie la structure amassée abstraite (l'23) No les variables amassées deviennent des objets dans une autégorie exacte; No la combinatoire amassée est encodée dans les espaces d'Hom et d'Ext?
Résultat général ~> produit une catégorie exacte Frobénienne & avec "la bonne combinatoire".
2) Compare à la catégorie amassée de la grassmannième pur Jensen-King-Su- (Canalise-King-P, 24).
Define $C = C_{h,n}$:
~ Z= Oft]-algèbre f.y., Z-module l'bre (t=xy)
~> (M(C) = {M E red C : 2M libre + f.y.}
$T \in \binom{n}{h} \sim M_{\pm} \in CM(C)$: Zà chaque node; \varkappa_i agit comme $\{t, i \in I \}$ y_i agit comme $\{1, i \in I \}$ $\{1, i \notin I \}$
M_s <-> D_s : par exemple, morphismes () = proj-inj. Ext = l'obstruction à l'apparition dans Man Man > M_13 <- M_2s le même amas.
Thrm (s) (CMP) Pour chaque positroide PC(h), FZ-algèbre f.g. B + morphisme

$$\Rightarrow \phi^{-}X = \phi^{+}X' \xrightarrow{\phi^{+}Q}$$

$$E_{X} \qquad 0 \rightarrow M_{346} \rightarrow M_{367} \rightarrow M_{157} \rightarrow D$$

$$0 \rightarrow M_{346} \rightarrow M_{367} \rightarrow M_{357} \rightarrow D$$

$$M_{345} \rightarrow M_{357} \rightarrow D$$

$$\sim \Delta_{357} = \Delta_{157} \frac{\Delta_{167}}{\Delta_{367}}$$