Ferienkurs Experimentalphysik 2

Übungsblatt 3:

Zeitlich veränderliche Felder und Wechselstromkreise

Tutoren: Katharina HIRSCHMANN und Gabriele SEMINO

4 Zeitlich veränderliche Felder

4.1 Induktion im Drahtrahmen

Ein waagrecht angeordneter und auf der rechten Seite offener Drahtrahmen der Breite $l=10\mathrm{cm}$ wird von einem homogenen Magnetfeld der Flussdichte $B=0,90\mathrm{T}$ senkrecht durchsetzt (s. Abbildung). Ein Leiterstück liegt auf dem Drahtrahmen und wird durch eine äußere Kraft F mit der konstanten Geschwindigkeit $v=25\mathrm{cm/s}$ nach rechts bewegt. Der Widerstand im linken Teil des Drahtbügels besitzt den Wert $R=0,50\Omega,$ der Widerstand des restlichen Drahtbügels und des Leiterstücks sowie Kontaktwiderstände sind vernachlässigbar.

- 1. Bestimmen Sie unter Verwendung des Induktionsgesetzes die Spannung U_i , die zwischen den beiden Auflagepunkten des Leiterstücks induziert wird, sowie die Stärke I des im geschlossenen Kreis fließenden Stroms.
- 2. Berechnen Sie die Kraft F, mit der am Leiterstück gezogen werden muss. Reibungskräfte sollen unberücksichtigt bleiben.
- 3. Bestimmen Sie die mechanische Arbeit W_m , die während der Zeitspanne $\Delta t = 10$ s verrichtet wird und die im Widerstand R umgesetzte elektrische Energie ΔW_{el} für diese Zeitspanne unter Verwendung der Ergebnisse der vorigen Teilaufgaben. Vergleichen Sie die beiden Werte und interpretieren Sie das Ergebnis.
- 4. Der sich mit $v_0 = 25 \text{cm/s}$ bewegende Leiter wird nun (t = 0s) losgelassen. Bestimmen Sie v(t) und skizzieren Sie die zugehörige Funktion.

4.2 Drahtschleife

Eine quadratische, ebene Drahtschleife (Seitenlänge l=1m, Windungszahl n=10) liege in einem homogenen Magnetfeld ($|\vec{B}|=0,6\mathrm{V}\,\mathrm{s/m^2}$); die Richtung der magnetischen Induktion stehe senkrecht auf der Fläche der Schleife. Eine Seite der Schleife falle mit dem Magnetfeldrand zusammen. Die Schleife werde nun mit der konstanten Beschleunigung $|\vec{a}|=2\mathrm{m/s^2}$ aus dem Feld herausgezogen. Die Richtung der Beschleunigung liege in der Schleifenebene und stehe senkrecht zur Begrenzung des Feldes. Welche Wärmemenge W wird insgesamt in dem an die Schleife angeschlossenen Widerstand $R=6\Omega$ erzeugt?

4.3 Exponentielles Magnetfeld in Metallring

Ein Metallring mit Radius $r=10 \mathrm{cm}$ wird in ein räumlich homogenes Magnetfeld gehalten, wobei die Normale des Kreisrings parallel zum Magnetfeld \vec{B} gerichtet ist. Der Widerstand des Metallrings beträgt $R=0,1\Omega$. Das Magnetfeld hat die Zeitabhängigkeit $B=B_0 \exp{(-t/\tau)}$ mit $B_0=1,5\mathrm{T}$ und $\tau=3\mathrm{s}$.

- 1. Geben Sie einen Ausdruck für den magnetischen Fluss durch den Metallring als Funktion der Zeit an.
- 2. Geben Sie einen Ausdruck für die im Metallring induzierte Spannung als Funktion der Zeit an.
- 3. Wie groß ist die maximale induzierte Spannung?
- 4. Der Ring wird nun geschlossen. Berechnen Sie den durch den Ring fließenden Strom. Wie groß ist der maximale Wert?
- 5. In welcher Richtung fließt der Strom? Markieren Sie diese in einer von Ihnen angefertigten Zeichnung des Versuchsaufbaus und begründen Sie Ihre Antwort.

5 Wechselstromkreise

5.1 Differentialgleichungen von Schaltungen

Eine Wechselspannungsquelle liefert die Effektivspannung U=6 V mit der Frequenz $\nu=50$ Hz ($\omega=2\pi\nu$). Zunächst wird ein Kondensator der Kapazität C angeschlossen und es fließt ein Effektivstrom $I_1=96$ mA. Dann wird statt des Kondensators eine Spule mit Induktivität L und Ohmschen Widerstand R angeschlossen, der Effektivstrom beträgt dann $I_2=34$ mA. Schließlich werden Kondensator und Spule hintereinandergeschaltet und es fließen $I_3=46$ mA.

- 1. Setzen Sie die Spannung der Stromquelle in komplexer Form als $U(t) = \hat{U}e^{i\omega t}$ an und leiten Sie aus den Differentialgleichungen allgemein den Scheinwiderstand (d.h. den Absolutbetrag des komplexen Widerstandes) her von:
 - (a) einer Kapazität C,
 - (b) einer reinen Induktivität L,
 - (c) einer Spule mit L und R,
 - (d) einer Reihenschaltung aus einer Kapazität C und einer Spule mit L und R.
- 2. Berechnen Sie die Kapazität des Kondensators sowie die Induktivität und den Ohmschen Widerstand der Spule aus den oben angegebenen experimentellen Werten.

5.2 Induktivität

Betrachten Sie den abgebildeten Stromkreis aus einer Gleichspannungsquelle $U=10\mathrm{V}$, einer Induktivität $L=0,1\mathrm{H}$ und zwei Widerständen $R_1=50\Omega$ und $R_2=150\Omega$.

- 1. Zum Zeitpunkt t=0 wird der Schalter S geschlossen. Bestimmen Sie die Ströme I_1 und I_2 in den beiden Ästen des Stromkreises als Funktionen von t.
- 2. Nachdem sich der stationäre Zustand eingestellt hat, wird der Schalter wieder geöffnet. Wie groß ist die Spannung zwischen den Punkten A und B als Funktionen der Zeit und wie groß ist ihr Maximum? Wie groß wäre die Maximalspannung zwischen A und B, wenn $R_1 = 500\Omega$ wäre?

Hinweis

Überlegen Sie sich, wodurch unmittelbar nach dem Öffnen des Schalters die Stromstärke im verbleibenden Stromkreis festgelegt wird.

5.3 Komplexe Widerstände

- 1. Zwei Kondensatoren werden in Reihe geschaltet. Geben Sie deren Gesamtkapazität an.
- 2. Jetzt wird der zweite Kondensator durch einen Widerstand und eine Spule ersetzt (siehe Abbildung). Die angegebene Schaltung ist an eine sinusförmige Spannung U(t) mit der Amplitude U_0 und der Kreisfrequenz ω angeschlossen. Wie groß sind Real- und Imaginärteil der gesamten Impedanz der Schaltung? Das Problem lässt sich in zwei Zwischenschritten lösen.

3. Geben Sie für die Werte $U_0=1,2{\rm V},\omega=9,42\cdot 10^4{\rm I/s},C=0,22{\rm nF},R=68{\rm k}\Omega$ und $L=0,47{\rm H}$ den durch C fließenden Strom I_C über seine Amplitude und Phase bezüglich der Spannung U(t) an.

5.4 Allpass-Filter

In der folgenden Abbildung ist ein sogenannter Allpass-Filter dargestellt:

1. Berechnen Sie die Übertragungsfunktion $H(\omega) = \hat{U}_{out}/\hat{U}_{in}$.

Hinweis: Durch genaues Hinsehen erkennt man, dass die Schaltung auch in einer etwas einfacheren Form gezeichnet werden kann. Verwenden Sie den komplexen Ansatz $U_{\rm in}(t) = \hat{U}_{\rm in}e^{i\omega t}$ und rechnen Sie mit komplexen Widerständen, um die komplexen Amplituden \hat{I}_1 und \hat{I}_2 der Ströme $I_1(t) = \hat{I}_1e^{i\omega t}$ und $I_2(t) = \hat{I}_2e^{i\omega t}$ und daraus $\hat{U}_{\rm out}$ zu bestimmen. Das Endergebnis lautet: $H(\omega) = (1 - i\omega RC)/(1 + i\omega RC)$.

2. Wie groß ist der Verstärkungsfaktor und die Phasenverschiebung als Funktionen von ω ? Warum heißt die Schaltung 'Allpass-Filter'?