MULTIPLE DES: 2DES 3DES

2DES

In this approach, we use two instances of DES ciphers for encryption and two instances of reverse ciphers for decryption.

Each instances use a different key.
The size of the key is doubled.
There are issues of reduction to a single stage.
However, double DES is vulnerable to meet in the middle attack

Given a plaintext P and two encryption keys K1 and K2, a cipher text can be generated as,

C=E(K2,E(K1,P))
Decryption requires that the keys be applied in reverse order,

P=D(K1,D(K2,C))

2DES (ENCRYPTION PROCESS)

Double DES is represented as : C1=E(K1,P)

C1=FIRST CIPHER TEXT

C2=FINAL CIPHER TEXT

E=ENCRYPTION PROCESS

K2=KEY2

2DES (Decryption process)

Double DES decryption process is represented as:

C1=D(K2,C2)

P=D(K1,C1)

There for:

P=D(K1,D(K2,C2))

Where:

K1=KEY1

K2=KEY2

C1=FIRST CIPHER TEXT

C2=FINAL CIPHER TEXT

D=DECRYPTION PROCESS

The middle text, the text created by the first encryption or the first decryption, M, should be same

M=EK1(P) and M=DK2(C)

Encrypt P using all possible values of K1 and records all values obtained for M.

Decrypt C using all possible values of K2 and records all values obtained for M.

Create two tables sorted by M values.

Now compares the values for M until we finds those pairs of K1 & K2 for which the value of M is same in both tables

NOTE:

Double DES uses 112 bit key but gives security level of 2^56 not 2^112 and this is because of meet-in-the middle attack which can be used to break through double DES.

Note:

Instead of using 2112 key search tests, we have to use 256 key search tests two times.

Moving from a Single DES to Double DES, we have to increase the strength from 2^56 to 2^57