An introduction to Homotopy Type Theory

Dan Saattrup Nielsen & Martin Speirs

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- What is homotopy type theory?
- Basic type theory
- A proof of the axiom of choice
- Isomorphic objects are equal
- Higher inductive types
- Fundamental group of the circle is the integers

- It's a synthetic approach to homotopy theory
- It's a foundational theory
- Connections with category theory, topology and logic
- Propositions as types
- HoTT = ITT + UA + HITs

- It's a synthetic approach to homotopy theory
- It's a foundational theory
- Connections with category theory, topology and logic
- Propositions as types
- HoTT = ITT + UA + HITs

- It's a synthetic approach to homotopy theory
- It's a foundational theory
- Connections with category theory, topology and logic
- Propositions as types
- HoTT = ITT + UA + HITs

- It's a synthetic approach to homotopy theory
- It's a foundational theory
- Connections with category theory, topology and logic
- Propositions as types
- HoTT = ITT + UA + HITs

- It's a synthetic approach to homotopy theory
- It's a foundational theory
- Connections with category theory, topology and logic
- Propositions as types
- HoTT = ITT + UA + HITs

- Type theory is syntactical
- Type theory is an independent foundation no logica foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logica foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a: A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a: A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a: A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$,
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x):A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$,
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \to B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, .
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a: A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \rightarrow B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Type theory is syntactical
- Type theory is an independent foundation no logical foundation is needed
- Type theory structure:
 - Types A
 - Terms a : A
 - Dependent types A(x)
 - Dependent terms a(x) : A(x)
 - $A \times B$, $A \rightarrow B$, $\Sigma_{(a:A)}B(a)$, $\Pi_{(a:A)}B(a)$, ...
- Type theory builds on rules rather than axioms

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice $\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice
$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

Take λf . (X) fstf(X). λX sndf(X).

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

Take $\lambda f.(\lambda X.stf(X).\lambda X.sndf(X))$.

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

Take $\lambda f.\langle \lambda X. fst f(X), \lambda X. snd f(X) \rangle$.

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

- Regular AC: "Given a family of non-empty sets F, there exists a choice function g with domain F, satisfying $g(X) \in X$ for all $X \in F$."
- In regular logic: $(\forall X \in F)(\exists x \in X) \Rightarrow$ $(\exists g)("g \text{ function"} \land \text{dom } g = F \land (\forall X \in F)(g(X) \in X))$

Theorem of Choice

$$\left(\prod_{(X:F)} \sum_{(x:X)} P(x,X)\right) \to \left(\sum_{(g:\prod_{(X:F)} X)} \prod_{(X:F)} P(g(X),X)\right)$$

Proof

- The identity type $Id_A(x, y)$ (also written $x =_A y$) for x, y : A
- $p: Id_A(x, y)$ is a proof of x = y, or a path from x to y
- Special element, $refl_x : Id_A(x,x)$ ("constant path at x")
- What is $Id_{Id_A}(p,q)$?

- The identity type $Id_A(x, y)$ (also written $x =_A y$) for x, y : A
- $p: Id_A(x, y)$ is a proof of x = y, or a path from x to y
- Special element, $refl_x : Id_A(x,x)$ ("constant path at x")
- What is $Id_{Id_A}(p,q)$?

- The identity type $Id_A(x, y)$ (also written $x =_A y$) for x, y : A
- $p: Id_A(x, y)$ is a proof of x = y, or a path from x to y
- Special element, $refl_x : Id_A(x,x)$ ("constant path at x")
- What is $Id_{Id_A}(p,q)$?

- The identity type $Id_A(x, y)$ (also written $x =_A y$) for x, y : A
- $p: Id_A(x, y)$ is a proof of x = y, or a path from x to y
- Special element, $refl_x : Id_A(x,x)$ ("constant path at x")
- What is $Id_{Id_A}(p,q)$?

- The identity type $Id_A(x, y)$ (also written $x =_A y$) for x, y : A
- $p: Id_A(x, y)$ is a proof of x = y, or a path from x to y
- Special element, $refl_x : Id_A(x,x)$ ("constant path at x")
- What is $Id_{Id_A}(p,q)$?

• Isomorphism type $X \cong Y$ for X, Y types

$$\sum_{(f:X\to Y)} \sum_{(g:Y\to X)} \left(\prod_{(y:Y)} f(g(y)) = y\right)$$

• $p: X \cong Y$ is a proof of $X \cong Y$

Univalence axiom

For all types X,Y it holds that $(X=Y)\cong (X\cong Y)$; i.e. "isomorphic objects are equal".

• Isomorphism type $X \cong Y$ for X, Y types:

$$\sum_{(f:X\to Y)} \sum_{(g:Y\to X)} \left(\prod_{(x:X)} g(f(x)) = x\right) \times \left(\prod_{(y:Y)} f(g(y)) = y\right)$$

• $p: X \cong Y$ is a proof of $X \cong Y$

Univalence axiom

For all types X,Y it holds that $(X=Y)\cong (X\cong Y);$ i.e. "isomorphic objects are equal".

• Isomorphism type $X \cong Y$ for X, Y types:

$$\sum_{(f:X\to Y)} \sum_{(g:Y\to X)} \left(\prod_{(x:X)} g(f(x)) = x\right) \times \left(\prod_{(y:Y)} f(g(y)) = y\right)$$

• $p: X \cong Y$ is a proof of $X \cong Y$

Univalence axiom

For all types X, Y it holds that $(X = Y) \cong (X \cong Y)$; i.e. "isomorphic objects are equal".

• Isomorphism type $X \cong Y$ for X, Y types:

$$\sum_{(f:X\to Y)} \sum_{(g:Y\to X)} \left(\prod_{(x:X)} g(f(x)) = x\right) \times \left(\prod_{(y:Y)} f(g(y)) = y\right)$$

• $p: X \cong Y$ is a proof of $X \cong Y$

Univalence axiom

For all types X, Y it holds that $(X = Y) \cong (X \cong Y)$; i.e. "isomorphic objects are equal".

