Sentiment Analysis with Neural Network Transformers

Tweet 1: My birthday cake was awful

Tweet 1: My birthday cake was awful

Tweet 2: My birthday cake was great

Sentiment is conveyed by specific words

Sentiment is conveyed by specific words

 Maybe we could use a word frequency approach to measure sentiment

Sentiment is conveyed by specific words

- Maybe we could use a word frequency approach to measure sentiment
- Naïve Bayes classifier measure sentiment using term frequency embeddings

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Sentiment is conveyed by specific words

Sentiment is conveyed by specific words

We also need to know the context of the words

- Sentiment is conveyed by specific words
- We also need to know the context of the words

 Context = which words pay attention to which words

Embeddings

 We have seen how embeddings make clustering text easy

 A clustering type of embedding may cluster tweets with similar words, but different sentiment

 Context dependent embedding can cluster by sentiment

My birthday cake was **great**, if you want my honest **opinion**

My birthday cake was great

My birthday cake was **great**, if you want me to get **diabetes**

My birthday cake was awful

 We need a model that allows words in a sentence to pay "attention" to other words

 We need a model that allows words in a sentence to pay "attention" to other words

Words can pay attention in different ways

- We need a model that allows words in a sentence to pay "attention" to other words
- Words can pay attention in different ways

 We can choose the type of "attention" that captures sentiment

- We need a model that allows words in a sentence to pay "attention" to other words
- Words can pay attention in different ways
- We can choose the type of "attention" that captures sentiment

Solution: Neural Network Transformers

Neural Networks

- Neural networks let you learn very complex embeddings
- You can classify data using these embeddings

Neurons

 Neurons are the core building block of a neural network is the neuron

Activation Function

Common activation function - sigmoid

Deep Neural Network

We can have multiple layers of neurons

Classification Problem

Build a neural network to classify these points

Classification Problem

2 classification regions – the 2 triangles

Neural Network Solution

- 2 classification regions the 2 triangles
- 6 features one for each side of the triangles

Neural Network Solution

Classify using a neural network

Neural Network Embedding

Hidden layer can act as an embedding

Neural Network Embedding

Neural Network Embedding

NEURAL NETWORK HISTORY

Origins of Neural Networks

 1943 – Walter Pitts and Warren McCullough propose "nervous nets"

Haters

 1969 – Marvin Minsky and Seymour Papert say single layer neural network cant do that much AND computers are too slow to use neural nets

Haters

Neural Nets in the 1980s

 1986 – Geoffrey Hinton and co-authors use backpropagation to train a neural network

 1989 – Yann LeCun creates convolutional neural networks to read zipcodes

Neural Nets in the 2000s

The Beginning of Deep Learning

 2012 – Hinton and his students win a drug discovery contest held by Merck – using a deep neural network trained using the "dropout" technique he invented

Long-term Short-Term Recurrent Neural Networks

 1987 – Long-term short-term recurrent neural networks (LTSM RNN) invented

 2010s – breakthroughs in speech recognition achieved using LTSM RNNs

 Google voice search uses LTSM RNNs

Residual Nets

- 2015 Residual Networks (ResNets) proposed
- Revolutionizes object recognition
- Error rates near 5%

Transformers

- Developed in 2017 by Google
- Revolutionized natural language processing

Attention Is All You Need

Ashish Vaswani* Google Brain

Google Brain avaswani@google.com noam@google.com

Noam Shazeer* Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention

What Can Transformers Do?

- Measure sentiment
- Translation
- Web search
- Text summarization
- Question answering
- Generate text

Transformer Architecture

Transformer Architecture

The transformer has many layers

Transformer Layers

Each layer has many self-attention heads

Self-Attention Head

 Each self-attention head contains attention weights from each word to each other word

Visualizing the Brain of a Transformer

Popular Transformers

Popular Transformers

BERT

- BERT = Bi-directional Encoder Representations From Transformers
- Released in 2018 by Google
- Base BERT has 100 million parameters
 - 12 layers
 - 12 attention heads
 - 768 dimensional word embedding
- Trained on books and Wikipedia (3.3 billion words)

Training BERT

Masked Language Model Task

- BERT is trained to learn a masked language model
 - Guess [MASK] words in a sentence

Data	Prediction
I went to the [MASK] to buy milk.	[MASK] = store
I graduated from [MASK] and got a degree.	[MASK] = college
I had a [MASK] and it tasted [MASK]!	[MASK] = hamburger [MASK] = amazing

Pre-Trained Transformers: Hugging Face

Evaluating Language Models: GLUE

- GLUE = general language understanding and evaluation
- GLUE is a set of benchmark tasks to evaluate language models like BERT

GLUE Tasks

Task type	Description
Acceptability	Is the sentence grammatically correct
Sentiment	Can you predict the sentiment of the sentence
Question answering	Does the second sentence answer the question in the first sentence
Natural language inference	Does the second sentence entail the hypothesis in the first sentence
Pronoun referral	To what does the pronoun in a sentence refer
Sentence similarity	Are the two sentences paraphrases of each other

GLUE Leaders

- Human GLUE score = 87.1
- GLUE leaderboard: https://gluebenchmark.com/leaderboard

	Rank	(Name	Model	URL	Score
	1	ERNIE Team - Baidu	ERNIE	♂	90.9
	2	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8
	3	HFL IFLYTEK	MacALBERT + DKM		90.7
+	4	Alibaba DAMO NLP	StructBERT + TAPT		90.6
+	5	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
	6	T5 Team - Google	T5	☑	90.3
	7	Microsoft D365 AI & MSR AI & GATEC	HMT-DNN-SMART		89.9
+	8	Huawei Noah's Ark Lab	NEZHA-Large		89.8
+	9	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)	☑	89.7
+	10	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4

SuperGLUE Leaders

- Human SuperGLUE score = 89.8
- SuperGLUE leaderboard: https://super.gluebenchmark.com/leaderboard

	Rank	Name	Model	URL	Score
+	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	Z	90.3
+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.2
	3	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8
+	4	T5 Team - Google	T5		89.3
+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7
+	6	Alibaba PAI&ICBU	PAI Albert		86.1
+	7	Tencent Jarvis Lab	RoBERTa (ensemble)		85.9
+	8	Infosys : DAWN : AI Research	RoBERTa-iCETS		85.8
	9	Zhuiyi Technology	RoBERTa-mtl-adv		85.7
	10	Facebook Al	RoBERTa		84.6

SuperGLUE Leaders

- Human SuperGLUE score = 89.8
- SuperGLUE leaderboard: https://super.gluebenchmark.com/leaderboard

Next Time: Coding Session

 Use a pre-trained BERT sentiment classifier to measure tweet sentiment

- Learn how to use any model in the huggingface library
- Need to install some neural network packages – please try this before class because there might be issues