

Lecture Main Quistions/ key terms

- Financial Analyses
- Benefits (inflow)
- Costs (outflow)
- Cash Flow (= benefits costs)
- Net Present Value NPV
- Return on Investment ROI
- Internal rate of return IRR
- Payback period

- A dollar earned today is worth more than a dollar earned five years from now
 - That's called "Time value of money principle"
- What is Present Value (PV)?
- we discount the money from the future to the present to see how much it is worth today using an appropriate discount rate
- Discount rate is called opportunity cost of cost of capital

Let

PV: Present Value

k: Discount Rate

FV: Future Value

n: time (years)

Discount Factor =
$$\frac{1}{(1+k)^n}$$

PV = FV * Discount Factor

Let

PV: Present Value ?

k: Discount Rate = 10% **n**: time (years) = 3

FV: Future Value = 2000\$

Discount Factor =
$$\frac{1}{(1+k)^n} = \frac{1}{(1+0.1)^3}$$

PV = FV * Discount Factor

Let

PV: Present Value ?

k: Discount Rate = 10% **n**: time (years) = 3

FV: Future Value = 2000\$

Discount Factor =
$$\frac{1}{(1+k)^n} = \frac{1}{(1+0.1)^3}$$

PV = FV * Discount Factor

$$PV = \frac{2000}{(1+0.1)^3} = 1502.6$$
\$

Discounted value

Performing Financial Analyses

- Financial considerations are often an important consideration in selecting projects
 - Regardless of current economics
- Primary methods for determining the projected financial value of projects
 - Net present value (NPV) analysis
 - Return on investment (ROI)
 - Payback analysis

Net Present Value Analysis (NPV) (Definition)

- Method of calculating the expected net monetary gain or loss from a project by discounting all expected future cash inflows and outflows to the present point in time
 - NPV (discounted cash flow: time value of money)
 - Projects with a **positive** NPV should be considered if financial value is a key criterion
 - Projects with higher NPVs are preferred

Net Present Value Analysis

(Concept with example)

	Α	В	С	D	Е	F	G		'
1	Discount rate	10%							
2									
3	PROJECT 1	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	TOTAL		
4	Benefits	\$0	\$2,000	\$3,000	\$4,000	\$5,000	\$14,000		
5	Costs	\$5,000	\$1,000	\$1,000	\$1,000	\$1,000	\$9,000		
6	Cash flow	(\$5,000)	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000		
7	NPV	\$2,316							
8		Formula	=npv(b1,	b6:f6)				Note that totals are	
9								equal, but NPVs are	
10	PROJECT 2	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	TOTAL	not because of the time value of money	
11	Benefits	\$1,000	\$2,000	\$4,000	\$4,000	\$4,000	\$15,000	/ time value of money	
12	Costs	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$10,000		
13	Cash flow	(\$1,000)	\$0	\$2,000	\$2,000	\$2,000	\$5,000		
14	NPV	\$3,201							
15		Formula	=npv(b1,	b13:f13)					
16									
17									

FIGURE 4-4 Net present value example

Net Present Value Analysis (calculations)

- NPV calculations
 - 1. Determine estimated **costs** and **benefits** for the life of the project and the products it produces
 - 2. Determine the discount rate
 - 3. Calculate the net present value
- Important considerations
 - Some organizations refer to the investment year or years for project costs as Year 0 and do not discount costs in Year 0
 - Discount rate can vary, often based on the **prime rate** and other economic considerations
 - Costs can be entered as negative numbers and can be listed first (and then benefits)

$$NPV = \sum_{t=1}^{n} \frac{NCF_t}{(1+k)^t} - NCF_0$$

NCF₀ = initial cash outlay on project NCF_t = net cash flow generated by project at time t n = life of the project k = required rate of return

Net Present Value Analysis (NPV) (**Calculations –** Example 1)

 $\frac{1}{t-1}(1+k)^t$ NCF₀ = initial cash outlay on project NCF₁ = net cash flow generated by project at time t

n = life of the project k = required rate of return

	Initial	Anni	ual Cash	Net Income	
Alternative	Investment	1	2	3	for 3 Years
A	-2000	0	0	4500	2500
В	-2000	2000	2000	100	2100

Assume a 10% interest rate.
 (AKA discount rate; hurdle rate; cost of capital)

$$NPV_A = -2000 + 4500 / 1.1^3$$

= -2000 + 3380.85 = 1380.85

Net Present Value Analysis (**Calculations -** Example 2)

NPV= Discounted **benefits**- Discounted **costs**

Discount rate	8%					
Assume the project is comp	leted in Ye	ear 0	Year			
	0	1	2	3	Total	
Costs	140,000	40,000	40,000	40,000		
Discount factor	1	0.93	0.86	0.79		
Discounted costs	140,000	37,200	34,400	31,600	243,200	
Benefits	0	200,000	200,000	200,000		
Discount factor	1	0.93	0.86	0.79		
Discounted benefits	0	186,000	172,000	158,000	516,000	
Discounted benefits - costs	(140,000)	148,800	137,600	126,400	272,800	← NP\
Cumulative benefits - costs	(140,000)	8,800	146,400	272,800		
		A				
ROI —	→ 112%					
	Payk	oack in Yo	ear 1		V	r 0 : discoun

FIGURE 4-5 JWD Consulting net present value and return on investment exa

Year 0: discount factor = $1/(1+0.08)^0 = 1$

Year 1: discount factor = $1/(1+0.08)^1 = 0.93$

Year 2: discount factor = $1/(1+0.08)^2 = 0.86$

Year 3: discount factor = $1/(1+0.08)^3 = 0.79$

Return on Investment ROI

 Calculated by subtracting the project costs from the benefits and then dividing by the costs

 $ROI = (total \, discounted \, benefits\text{-}total \, discounted \, costs)/discounted \, costs$ ROI = (516,000-243,200)/243,200=112%

- The higher the ROI, the better
- Many organizations have a required rate of return
 - Minimum acceptable rate of ROI for projects
- Internal rate of return (IRR) can be calculated by finding the discount rate that makes the NPV equal to zero.

Return on Investment ROI

ROI = (total discounted benefits-total discounted costs)/discounted costs

ROI = (516,000 - 243,200)/243,200 = 112%

Discount rate	8%					
Assume the project is comp	leted in Ye	ear 0	Year			
	0	1	2	3	Total	
Costs	140,000	40,000	40,000	40,000		
Discount factor	1	0.93	0.86	0.79		
Discounted costs	140,000	37,200	34,400	31,600	243,200	
Benefits	0	200,000	200,000	200,000		
Discount factor	1	0.93	0.86	0.79		
Discounted benefits	0	186,000	172,000	158,000	516,000	
Discounted benefits - costs	(140,000)	148,800	137,600	126,400	272,800	← NPV
Cumulative benefits - costs	(140,000)	8,800	146,400	272,800		
						
ROI -	→ 112%					
	Payk	oack in Y	ear 1			

JWD Consulting net present value and return on investment example

جامعة جدة University of Jeddah

Payback Analysis (1 of 3)

- Payback period is the amount of time it will take to recoup, in the form of net cash inflows, the total dollars invested in a project
 - Determines how much time will elapse before accrued benefits overtake accrued and continuing costs
 - Payback occurs when the net cumulative discounted benefits equals the costs
 - Many organizations have requirements for the length of the payback period of an investment

Payback Analysis (2 of 3)

FIGURE 4-6 Charting the payback period for the JWD Consulting project

Payback Analysis (3 of 3)

Discount rate	8%					
Assume the project is comp	leted in Ye	ear 0	Year			
	0	1	2	3	Total	
Costs	140,000	40,000	40,000	40,000		
Discount factor	1	0.93	0.86	0.79		
Discounted costs	140,000	37,200	34,400	31,600	243,200	
Benefits	0	200,000	200,000	200,000		
Discount factor	1	0.93	0.86	0.79		
Discounted benefits	0	186,000	172,000	158,000	516,000	
Discounted benefits - costs	(140,000)	148,800	137,600	126,400	272,800	← NPV
Cumulative benefits - costs	(140,000)	8,800	146,400	272,800		
		A				
ROI —	→ 112%					
	Pavk	ack in Y	ear 1			

FIGURE 4-5 JWD Consulting net present value and return on investment example

Test your understanding

Finan	cial Anal	ysis fo	or Proj	ect		
Discount rate	8.00%					
Assume the project is completed in Ye	ear 0		Year			
	0	1	2	3	Total	
Costs	140,000	40,000	40,000	40,000		
Discount factor						
Discounted costs						
Benefits	0	200,000	200,000	200,000		
Discount factor						
Discounted benefits						
Discounted benefits - costs						← NPV
Cumulative benefits - costs						
		A				
ROI -						
	Payba	ack in Year	r 1			

