CONTENIDO PARCIAL 2 MICRO

Servicios de Interrupción	2
Procedimientos y cadenas	4
Ensambladores en la actualidad	8
Macros	12

Servicios de Interrupción

Interrupción: evento que altera la secuencia en el ejecución de un programa para llevar a cabo acciones específicas.

Una interrupción hace un alto en la ejecución secuencial para ejecutar una serie de instrucciones específicas y finalmente reanudar la ejecución detenida.

Tipos de interrupciones:

De hardware:

Internas

Externas

De software:

Por BIOS

Por DOS

Interrupciones de hardware:

Interna: generadas por ciertos eventos durante la ejecución de un programa. Manejadas y requeridas por la UC. No son modificables

Externa: generadas por los dispositivos periféricos. Dependen de las señales de los periféricos.

Interrupciones de software:

Por BIOS: rutina de entrada/salida y tablas que indican los estados de los dispositivos del sistema. No tiene protección respecto al equipo. Rango: 0h – 19h.

Por DOS: emplea las funciones del sistema operativo para la manipulación del hardware. Se montan sobre las interrupciones por BIOS facilitándolas. Rango: 20h – 3fh.

Interrupciones de software por DOS:

Generadas por el ensamblador. Invocadas con la palabra reservada int, según un numero especifico asignado. Requieren condiciones previas a su invocación para ejecutar las instrucciones específicas.

Tabla de servicios:

Tabla de servicios de interrupción:

Ocupa los primero 1024 bytes de la memoria (0000h – 03FFh). Contiene 256 interrupciones con desplazamiento y posición relativa. Constituye un vector de interrupciones que apuntan al ISR.

ISR: (interrupt service routine)conjunto de instrucciones que le dan tratamiento a una interrupción.

Eventos:

Eventos en una interrupción:

Finalización de la ejecución de la instrucción previa a la interrupción.

Almacenamiento de todos los registros internos en la pila (Push CS, IP,Banderas).

IP recibe la dirección del ISR.

Ejecución las instrucciones del ISR, hasta encontrar IRET.

Devolución de los registros internos al momento de la interrupción (Pop CS, IP, Banderas).

Procedimientos y cadenas

Métodos conceptualización:

Secuencia de instrucciones encapsuladas que cambian el flujo de control de ejecución del programa para posteriormente retornar al punto inmediato siguiente de donde fue llamado.

Los métodos:

Permiten la reutilización de código. Reducen la cantidad de código. Permiten la organización y modularización del programa. Simplifican el mantenimiento del código.

Tipos de procedimiento:

NEAR: es el procedimiento que esta dentro del mismo segmento de código donde está la llamada.

FAR: el procedimiento y la llamada no están en el mismo segmento de código.

Procedimientos definición:

SINTAXIS:

DEFINICION:

<id proc>proc near|far

<secuencia de instrucciones>

Ret

<id_proc>endp

Uso:

Call <id_proc>

EJEMPLO:

PROC EJ proc near

MOV AX,BX

RET

PROC_EJ ENDP

CALL PROC EJ

Procedimientos: palabras reservadas

PROC: palabra reservada para definición de procedimientos.

ENDP: palabra reservada para designar el fin de la definición del procedimiento.

RET: palabra reservada para indicar al ensamblador el momento de salto al punto de llamado al procedimiento.

IRET: Retorno de interrupción. Restaura los indicadores del stack.

CALL: palabra reservada para hacer la llamada a los procedimientos.

Cadenas:

LEA: transfiere la dirección efectiva es decir el desplazamiento del operando fuente al destino.

OFFSET: asigna el desplazamiento de un operando o variable.

Con ambas cargamos las direcciones de memoria:

LEA destino, fuente: el operando fuente debe estar ubicado en memoria y se coloca su desplazamiento en el registro índice o apuntador especificado en destino.

Ejemplo:

LEA DX,TEXTO ; cargamos en DX la dirección efectiva del texto.

Cadenas de caracteres:

Asignar valores:

LEA DX, variable

MOV DX,OFFSET variable

Índices:

[SI]

[DI]

[BP]

[SP]

```
SINTAXIS:

Definición:

<id_cad> db <cantidad> dup (<contenido>)

Uso:

[<index>]

Ejemplo:

CAD1 db 5 dup($)

LEA SI , CAD1

MOV AH, 'A'

MOV [SI], AH

INC SI
```

MOV AH, 'B'

MOV [SI],AH

Ensambladores en la actualidad

En la actualidad

El lenguaje ensamblador y los ensambladores han evolucionado conforme las necesidades y las implementaciones de hardware lo han hecho.

Algunas iniciativas dieron como resultado:

```
-macro assembler (Microsoft)
```

-RISC V (libre)

Macro assembler:

Historia

1981 introducido por Microsoft

1981 – 1990 conocidos como MASM.EXE

1991. V6.0 cambia de nombre a "ML.EXE"

2000. V 7.0 compatibiliza con Microsoft visual C++

2005. V8.0 comienza el soporte x64

2017. V14.16.27023 versión actual

Los procesadores Intel 8086 – 80286 permitían programas con datos 8 – 16 bits (Turbo assembler etc.), el procesador Intel 80386 fue el primer procesador en permitir programas con datos de 8, 16, 32 bits con set de instrucciones x 86 (macro assembler). A partir de Windows NT las palabras convierten su tamaño oficial a 32 bits comienza el set de instrucciones x64.

Registros:

Modelos:

Tiny	Datos y código en el mismo segmento. 64K bytes en total
Small	Datos y código en segmentos independientes. 64K bytes c/u
Compact	Datos crean nuevos segmentos al llenar, código en segmento único. 64K bytes c/u
Medium	Datos en segmento único, código crea nuevos segmentos al llenar. 64K bytes c/u
Large	Datos y código crean nuevos segmentos al llenar. 64K bytes c/u
Huge	Esencialmente igual a Large, pero permite manejo de datos mayores a un segmento. Lo define el programador. 64K bytes c/u
Flat	Datos y código en el mismo segmento. Segmento 32-bits

.MODEL memory-model [, language-type] [, stack-option]

Parámetro	32-bit	16-bit
memory-model	FLAT	TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE, FLAT
language-type	C, STDCALL	C, BASIC, FORTRAN, PASCAL, SYSCALL, STDCALL
stack-option	Not used	NEARSTACK, FARSTACK

Consideraciones:

Debe definirse el procesador con el que se trabajara (.386)

Por defecto el sistema numérico es hexadecimal pero se puede modificar.

La pila (.STACK) por defecto el tamaño es de 1024 bytes pero se puede modificar.

Segmento de datos (.DATA) y datos no inicializados (.DATA?)

RISC V

Historia:

Las ISA existentes eran complejas y con derechos de propiedad intelectual. Partiendo del Intel 8086 el set x86 parte con 80 instrucciones en 1978 para el 2014 alcanzo las 1338 en su versión x86 32 bits.

RISC (reduced intruction set computer) inicio como Proyecto temporal en UC Berkeley.

Surge de las necesidades de una ISA libre y cambiando la tendencia incremental de las ISAs existentes a un modular con un núcleo fundamental y adaptándolo a las necesidades específicas.

El núcleo fundamental del ISA de RISC – V es llamado RV32I

Las extensiones se indican mediante banderas representadas mediante concatenación al núcleo fundamental (ejemplo RV32IMF agrega multiplicación RV32M y punto flotante precisión simple RV32F a las instrucciones base obligatorias RV32I).

Macros

Conceptualización:

Colección de instrucciones que se repiten frecuentemente durante la ejecución de un programa escrito en lenguaje ensamblador

Características:

Al referenciar una macro en tiempo de ensamblaje se sustituye por el conjunto de instrucciones que representa.

Siempre deben de estar definidas previamente a ser referenciadas.

Manejan etiquetas locales y parámetros.

Sintaxis:

```
<identificador>MACRO<parámetros>
(LOCAL <etiqueta>)?
<instrucciones>
ENDM
```

Parámetros:

```
PUSH AX

MOV AX,a

ADD AX,b

MOV total ,AX

POP AX
```

ENDM

Etiquetas:

```
Dividir MACRO a,b,cociente,resto
```

LOCAL FIN

PUSH AX

CMP b,0h

JE FIN

MOV AX,a

DIV b

MOV cociente,AL

MOV resto,AH

FIN:

POP AX

ENDM

Ventajas de macros:

Reducen en forma lógica la cantidad de código.

No utilizan saltos para su ejecución.

Permiten el manejo de "parámetros".

Son reutilizables en "librerías".

-verdadero

5. La Arquitectura Clásica del Computador enfoca sus características en el pro	ocesamiento,
almacenamiento	
y transferencia de datos	
-verdadero	
 La diferencia entre un Procedimiento y un Macro es que el primero copia l se continua 	a porción de cóidgo y
la ejecución secuencia, mientras que el segundo modifica el IP para ejecuta código específico	r la posición de
y luego retomar el punto en que se interrumpio la secuencia.	
-Falso	
7. La portabilidad es una ventaja del lenguaje ensamblador	
-Falso	
8. Empareje cada palabra reservada, en Lenguaje Ensambaldor, con su funció	in respectiva:
-Utilizada para hacer llamada a procedimientos definidos	CALL
-Utilizada para declarar el fin de la definición de un programa	END
-Utilizada para indicar, al ensamblador, el momento de salto al	
punto donde fue llamado del procedimiento y continuar con la	
ejecución secuencial	RET
-Utilizada para indicar, al ensamblador, el momento de salto al	
punto de ejecución de interrupción y continuar con la ejecución	
secuencial	IRET
-Utilizada para la definición de procedimientos	PROC
-Utilizada para declarar el fin de la definición de un proce-	
dimiento.	ENDP

9. A la agrupación de instrucciones que se repiten constantemente a lo largo de un programa, en Lenguaje
de Maquina, se le denomina "Macros"
-Falso
10. Los Registros trabajan directamente con la CU y se mueven a la velocidad del ALU, teniendo capaci-
dades de almacenamiento permanente
-Falso
11. Cada posición de una cadena de caracteres, equivale a una posición en un vector de bajo nivel
y no un espacio reservado de memoria
-Falso
12. La arquitectura Harvard se le conoce como la arquitectura Clásica de Computador.
-Falso
13. En Lenguaje Ensamblador, podemos definir parámetros en los Procedimientos, pero para los Macros no,
con los últimos se debe modificar previamente el entorno.
-Falso
14. El instructor Pointer no es visible al usuario, pero si modificable por el mismo, siendo un
registro
de control y estado
-Verdadero
15. Cada segmento definido es de 64 bytes de memoria
-Falso

16. La diferencia entre un Macro y un procedimie	nto os que el primer senia la	norción do código v
se	ito es que el primer copia la	porcion de codigo y
continua la ejecución secuencia, mientras que e	el segundo modifica el IP para	ejecutar la porción
de código específico y luego retornar al punto e	n que se interrumpió la secu	encia
-Verdadero		
17. Ordene secuencialmente los eventos que se d Ensamblador	an al ejecutar una interrupció	ón en Lenguaje
-MOver la dirección del ISR, que correspo	nde a la interrupción,	
al IP		Tercer evento
-Ejecutar instrucciones del ISR hasta enco	ntrar la palabra	
reservada "IRET"		Cuarto evento
-Finalizar la instrucción previa al detectar	la interrupción	Primer evento
-Sacar de Pila el CS, IP y Banderas		Quinto evento
-Insertar en Pila el CS, IP y Banderas		Segundo evento
18. El ensamblador traduce lo programado en Ler	guaje de Maquina a Lenguajo	e Ensamblador
-Falso		
19. Un nemónico es una cadena de "0", "1"		
-Falso		
20. El instruction Register contiene la siguiente in:	strucción a ejecutar	
-Falso		
21. Los lenguajes más cercanos a la arquitectura o	le hardware se denominan le	nguajes de alto

nive,

debido a su nivel de complejidad

-Falso

22. Las computadoras únicamente pueden interpretar el paso o interrupción d	le corriente eléctrica
por lo cual, el sistema hexadecimal se ajusta a las necesidades de la program	nación
-Falso	
23. Tomando la formula de Mapeo Lexicográfico.	
Dirección efectiva = Dirección de Memoria + (fila i * tamaño de un elemento	o) + (columa j *
número de elementos por columna * tamaño de elemento)	
El almacenamiento en memoria, de una Matriz bidemensional M[i,j], se dio	por:
-Columnas	
24. La simplicidad de programación es una caracteristica del Lenguaje Ensamb	lador
-Falso	iadoi
-raisu	
25. El lenguaje de Maquina evolucióno en el Lenguaje Ensamblador	
-Verdadero	
26. Empareje cada concepto con el elemento básico correspondiente a un Pro Ensambaldor	grama en Lenguaje
-Dan nicio a los segmentos, indican al Ensamblador la estructura	Directivas
del programa	
-Indican los tamaños del programa, es decir, la cantidad máxima de	Modelos
código y datos	
-Conjuntos de nemónicos e identificadores válidos que ejecutan una	Instrucciones
acción	
-Nombres que se le dan a los elementos de un programa, indicados	Identificadores
por el programados	

-Interrupcion prvocada por el ensamblador, emplea las Interrupción de DOS de software
funciones del Sistema Operativo para la manipulación
de Hardware
-Interrupción generada por dispositivos periféricos Interrupción Externa de Hardware
-Interrupción generada por eventos ocurridos durante Interrupción interna de Hardware
la ejecución del programa, manejados completamente
por el hardware
-Interrupción provocada por el ensamblador, contiene Interrupción de BIOS de Software
las rutinas de I/O y tablas que indican los estados
de los dispositivos del sistema
28. El caché y la Memoria Principa(RAM) son los elementos mas veloces de la computadora
-Falso
29. A la colección de instrucciones que le dan tratamiento a una interrupción, se le conoce como
-ISR
30. Un método lleva un salto en forma implicita, indicando el retorno al punto de salto inicial
por medio de la palabra reservada RET
-Verdadero

31. Tomando la formula de Mapeo Lexicográfico.	
Dirección efectiva = Dirección de Memoria + (fila i * tamaño de elementos por fila * tamaño	
de elementos) + (columa j * tamaño de elemento)	
El almacenamiento en memoria, de una Matriz bidemensional M[i,j], se dio por:	
-Filas	
32. A la colección ordenada de datos de cualquier tipo, que poseen el mismo formato en sus datos	
consecutivos se le conoce como Arreglo	
-Falso	
33. Lo programado en Lenguaje Ensamblador se traduce en Lenguaje de Máquina por medio de un	
Ensamblador	
-Verdadero	
 Selecciones algunas de las ventajas que proporcionan los Métodos al utilizarse en la programación 	
en Lenguaje Ensamblador	
-Reducen la cantidad de código	
-Permiten la reutilización de código	
-Permiten la organización y modlarización del programa	
-Simplifican el mantenimiento de codigo	
•	
35. A la obtención de elementos en un arreglo multidimensional por medio de una fórmula	
matemática	
definida se le conoce como Mapeo Lexicográfico	
-Verdadero	
36. El ensamblador traduce lo programado en Lenguaje de Máquina a Lenguaje Ensamblador	
-Falso	
37. Al referenciar un Macro, en tiempo de ensamblaje, se sustituye la llamada por conjunto	
de instrucciones que contiene	
-Verdadero	
38. Elija los componentes de la unidad central de proceso	
-Registros	
-Unidad Aritmético-Lógica	
Unidad de control	

39. Empareje cada especificacipon con el Registro correspondiente

-Usualmente conserva la base de los Registro Base(BX, EBX)

datos que hay en la memoria

-Usualmente conserva el resultado Registro Acumulador(AX, EAX)

temporal después de una operación

aritmética o lógica

-Usualmente contiene el conteo de Registro Contador(CX, ECX)

ciertas instrucciones para corri-

mientos y rotaciones del número

de bytes o contador LOOP

-Usulamente contiene la parte mas Registro de Datos(DX, EDX)

significativa del producto luego

de una multiplicación o del di-

vidento antes de una división; de

uso general

 Cada posición de una cadena de caracteres, equívale a una posición en un vector de bajo nivel y no un espacio reservado en memoria

-Falso