东南大学数字逻辑电路

实 验 报 告

学号: 04022212

姓名: __ 钟 源___

2023年12月1日

实验名称:实验5 触发器时序逻辑电路设计

实验类型:综合性

成绩:

一、实验内容提要

用两个 D 触发器设计一流水灯,流水灯有四个 LED 组成:

- 1.熟悉 D 触发器芯片
- 2.列出状态转移真值表和转换图
- 3.给出电路实现方案
- 4.调试电路, 实现始终 3 亮一暗, 右移

二、实验仪器与元器件

1.ADALM2000 1 台

2.面包板 1 块

3.集成芯片:

1) SN74HC138N 1片

2) SN74HC74N 1片

4.杜邦线 8 条,导线若干。

三、设计过程及步骤

(一)原始方案

1.状态转移真值表:

Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

2. 状态转移图:

3.卡诺图化简并得到表达式:

(二) 改进方案

我后来发现,如果改变编码方式,可以将逻辑表达式简化,改进之后如下:

1.状态转移真值表:

Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}
0	0	0	1
0	1	1	1
1	1	1	0
1	0	0	0

2. 状态转移图:

3.卡诺图化简并得到表达式:

4.电路设计图:

5.实现方法:

1) 使用 SN74HC74N:

得到相应的 Q_1 和 Q_0 ,具体接法如下引脚图所示:

2) 使用 SN74HC1138N:

由译码器的功能表,得到相应的 F_0 , F_1 , F_2 , F_3 , 具体接法如下引脚图所示:

6.电路照片:

原图:

注解:

注: 接线中红线接高电平, 蓝线接地。

四、结果分析

原图:

注解:

得到实验结论:

输出结果与实验要求真值表一致,4个 LED 灯始终保持三亮一暗,并不断右移。

五、另一种实现方案

后来学习了移位寄存器之后,我发现只需要一片 74HC194N 即可实现以上电路功能。

1. 原理图:

2. 实现方案:

3. 电路照片:

原图:

注解:

注: 接线中红线接高电平, 蓝线接地。

4. 结果分析:

原图:

注解:

得到实验结论:

输出结果与实验要求真值表一致,4个 LED 灯始终保持三亮一暗,并不断右移。