

WHY WE CHOSE THIS TOPIC?

- The FOMC's decisions on whether to raise or lower interest rates have far-reaching effects on the economy.
- We aim to provide a framework that allows investors to time their investments more effectively around the FOMC's scheduled meetings.
- Connection between the changes in interest rates brought on by FOMC meetings on the stock market and bonds.

DATASET

- Federal Open Market Committee (FOMC)
- S&P 500 indicator for stock correlation
- Vanguard Intermdiate Long-Term Bond Index Fund (VBILX) -bond sample
- Vanguard Short-Term Bond Index Fund Admiral Shares (VBIRX) bond sample

Data: From 2015 to 2023 daily market return data on days t-10 to t+10, where t represents the date of the reserve requirement change.

Hypothesis

We suspect that large increases in interest rates would lead to negative or lower returns in the days before and after an FOMC meeting and vice versa.

1. Create Data Frame & EDA

- Put each individual CSV into their own individual dataframes
- EDA:
- Describe()
- Missing values
- Convert object variables to numeric values
- Outliers
- visualizations
- Dtype

2. Merged Individual Index DFs Together

3. Create Dummy Variable

```
fomc_rates
fomc_rates['Change'] = np.where(fomc_rates['Increase'] > 0,1,0)
```


4. Create Event Variable

```
event time rets = (
    final_data2.merge(fomc_rates[['Date']], on = ["Date"], how = 'left',
                      validate = 'm:1', indicator = True)
   # create event flag, then use this to create event id
    .assign(event = lambda x: (x[' merge'] == 'both').astype(int))
    .assign(event id = lambda x: x['event'].cumsum(),
            date2 = lambda x: x['Date'])
   # reduce dataframe to [-10,+10] around event
   # event id starts 10 days before event and goes to 10 days after
    .assign(event_id = lambda x: x['event_id'].shift(-10))
    .query('event id > 0')
    .groupby('event id').head(20)
    # helper columns
    .assign(increment =lambda x: np.arange(len(x)),
            inc at e = lambda x: x['event']*x['increment'])
   #inc at e always equal to increment # at firms event
    .assign(inc at e = lambda x: x.groupby('event id')['inc at e'].transform(sum))
   #compute event time
    .assign(event time = lambda x: x['increment'] -x['inc at e'])
    # clear out useless columns
    .drop([' merge', 'date2', 'increment', 'inc at e'], axis=1)
   # .query('event id == 13')
    # .iloc[:,-8:1
    .query('event_id != 13 & event_id != 14')
```

5. Merge in the FOMC Rate DF & . Create "Change" Variable

```
# we need a new var = the date of the event so that we can merge in fomc rate vars
# Create a new column 'date_when_var2_is_1' and set it to NaN initially
event time rets['event id date'] = np.nan
# Find the date from 'var1' when 'var2' is equal to 1 for each 'event id'
date when var2 is 1 = event time rets[event time rets['event'] == 1].groupby('event id')['Date'].first()
# Iterate through the unique event ids and set the 'date when var2 is 1' value for each event id
for event id, date value in date when var2 is 1.items():
   event time rets.loc[event time rets['event id'] == event id, 'event id date'] = date value
# now merge in fomc rate date
event time rets = event time rets.merge(fomc rates,
                     left on = 'event id date',
                     right on = 'Date',
                     how = 'left',
                     validate = 'm:1').drop('Date y',axis=1)
event time rets.eval('change = Increase - Decrease', inplace = True)
event time rets.eval('Increase = Increase > 0',inplace=True)
```

Cleaning and exploratory analysis

- We used the describe function to understand find count, mean, std, among other key factors.
- Missing values in the data; we found the missing data was minimum.
- Explored the outliers and discussed the findings.
- Pairplot to visualize the relationships between the variables in the dataset.

Date_x

1.0

1.0

1.0

1.0

S&P_500

-9

-8

-7

-6

-0.0019081971316328	9.156682968139648	-0.0078877316716358	-0.0143735783910634	2049.62	2015-12-03	1
0.0	9.172859191894531	0.0017666030167438	0.0205257559937941	2091.69	2015-12-04	2
0.0009557157450186	9.197117805480955	0.0026446076494732	-0.006989563463037	2077.07	2015-12-07	3
0.0	9.197117805480955	0.0	-0.0064899112692398	2063.59	2015-12-08	4
0.0	9.205217361450195	0.0008806624140893	-0.0077389403902908	2047.62	2015-12-09	5
change	Increase	id_date	e event_	event_time	event_id	
change 25.0	Increase True	id_date 5-12-17		event_time	event_id	

2015-12-17

2015-12-17

2015-12-17

2015-12-17

sp500_ret

VBLIX_daily_ret

VBILX_daily_price

True

True

True

True

VBIRX_daily_ret

25.0

25.0

25.0

25.0

Correlation Matrix

- Confusing correlation between rate increases and sp500 index
- Both the VBLIX and VBLAX correlations align with common assumptions about bond prices

Increase vs Decrease on Indexes

Increase

Shows similar findings to the correlation matrix: increase in rate = lower bond prices
Super volatile in surrounding days

Decrease

sp500 returns make more sense in this graph inverse of last graph in terms of bonds Slightly less volatile in surrounding days

Index Reponses to Increase vs Decrease

Conclusions

- The correlations between the rate hikes and returns were not as clear cut as expected
- S&P 500 experienced significantly more volatility in the periods we studied than the two bond indexes
- Predicting FOMC decisions is more difficult than expected- investors having trouble timing the market
- Different methods could be used to further the study (implementing a categorical variable, seasonality)

DATASET

- https://www.federalreserve.gov/monetarypolicy/openmarket.htm
- https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
- https://ycharts.com/indicators/cboe_spx_volume

