Übungsblatt 3

Aufgabe 1. Wir betrachten die beiden Merkmale X: $K\"{o}rpergewicht$ (in kg) und Y: $K\"{o}rpergr\"{o}eta e$ (in cm). Eine Untersuchung von 10 zufällig ausgewählten erwachsenen Personen lieferte folgendes Ergebnis:

k	1	2	3	4	5	6	7	8	9	10
X	80	86	47	64	72	102	106	66	79	82
Y	173	192	166	153	184	202	176	178	174	171

- a) Ermitteln Sie den Bravais-Pearson-Korrelationkoeffizienten und den Spearman-Korrelationskoeffizienten und interpretieren Sie die Ergebnisse.
- b) Bestimmen Sie die Regressionsgerade für das Merkmal $Y=K\ddot{o}rpergr\ddot{o}\beta e$ in Abhängigkeit von $X=K\ddot{o}rpergewicht$.

Aufgabe 2. Wir betrachten eine Grundgesamtheit Ω . Für $A, B \subseteq \Omega$ bezeichnen wir mit

$$A \setminus B = \{ \omega \in \Omega | (\omega \in A) \land (\omega \notin B) \}$$

die Differenz von A und B. Zeigen Sie, dass für Teilmengen $A, B, C \subseteq \Omega$ gilt:

- a) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.
- b) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.

Aufgabe 3. Wir betrachten eine Grundgesamtheit Ω . Für $B \subseteq \Omega$ bezeichnen wir mit

$$\overline{B} = \Omega \setminus B = \{\omega \in \Omega | \, \omega \not\in B\}$$

a) Zeigen Sie die **de Morganschen Gesetze** der Mengenlehre

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

b) Zeigen Sie, dass für Teilmengen $A_n \subseteq \Omega \ (n \in \mathbb{N})$ gilt:

$$\overline{\bigcup_{n\in\mathbb{N}} A_n} = \bigcap_{n\in\mathbb{N}} \overline{A_n}$$

Aufgabe 4. Wir betrachten die Grundgesamtheit $\Omega = \mathbb{N}$. Bestimmen Sie die kleinste σ -Algebra \mathfrak{A} auf Ω , für die gilt:

Ist $n \in \mathbb{N}$ eine gerade Zahl, so ist $\{n\} \in \mathfrak{A}$.