Lecture 11: Group Assignment 1 Review, Procrustes Intro

COMPSCI/MATH 290-04

Chris Tralie, Duke University

2/18/2016

Table of Contents

- ► Assignment Concepts Review

Code Layout: Recursive Scene Graph Traversal

Call this function with "scene" to start the recursion

Code Layout: Meshes (What Is A Mesh??)


```
var mesh = node.mesh;
//Loop through faces
for (var f = 0; f < mesh.faces.length; f++) {
    //"Pointer" to face
    var face = mesh.faces[f];
    //For each face get vertices in CCW order
    var verts = face.getVerticesPos();
    //Do stuff with the vertices...
}</pre>
```

Code Layout: Image Sources

Reflections / Projections

Reflections / Projections

Plane: (\vec{q}, \vec{n})

Point: \vec{p}

Reflection: $\vec{p} - 2((\vec{p} - \vec{q}) \cdot n)\vec{n}$

Ray Intersect Plane

Ray Intersect Plane

$$(\vec{p_0} + t\vec{v} - \vec{q}) \cdot \vec{n} = 0$$

Ray Intersect Plane

$$(\vec{p_0} + t\vec{v} - \vec{q}) \cdot \vec{n} = 0$$

$$t = \frac{(\vec{q} - \vec{p_0}) \cdot n}{\vec{v} \cdot \vec{n}}$$

Point Inside Convex Polygon: Area Test

Convex Polygon Area?

Convex Polygon Area: Triangle Fan

Extra Stuff: Binaural Sound

Extra Stuff: Transmission

Extra Stuff: Transmission (Raffle Point)

Regular expressions

Extra Stuff: Transmission (Raffle Point)

Regular expressions (r|t)*

Extra Stuff: Frequency dependent transmission

Extra Stuff: Bounding Box Speedup

Table of Contents

- ▶ PCA New Convention

Organize point cloud into $d \times N$ matrix, each point along a column

$$X = \left[\begin{array}{ccc} | & | & \dots & | \\ \vec{v_1} & \vec{v_2} & \vdots & \vec{v_N} \\ | & | & \dots & | \end{array} \right]$$

Choose a unit column vector direction $u \in \mathbb{R}^{d \times 1}$ Then

$$d = u^T X$$

gives projections onto u

Organize point cloud into $d \times N$ matrix, each point along a column

$$X = \left[\begin{array}{ccc} | & | & \dots & | \\ \vec{v_1} & \vec{v_2} & \vdots & \vec{v_N} \\ | & | & \dots & | \end{array} \right]$$

Choose a unit column vector direction $u \in \mathbb{R}^{d \times 1}$ Then

$$d = u^T X$$

gives projections onto u

$$d = u^T X$$

$$d = u^T X$$

→ How to express the sum of the squares of the dot products?

$$d = u^T X$$

→ How to express the sum of the squares of the dot products?

 dd^T

$$d = u^T X$$

How to express the sum of the squares of the dot products?

$$dd^{T}$$

$$dd^T = (u^T X)(u^T X)^T = u^T X X^T u$$

Want to find *u* that maximizes the above quadratic form

Use eigenvectors of $A = XX^T$ to find principal directions maximizing u^TAu

$$\lambda_1 = 422$$

Use eigenvectors of $A = XX^T$ to find principal directions maximizing u^TAu

$$\lambda_2 = 21.6$$

Table of Contents

- ▶ Procrustes Distance

Procrustes Distance

http://www.procrustes.nl/gif/illustr.gif

Procrustes Alignment

Procrustes Distance

Given two point clouds $\{\vec{x_i}\}_{i=1}^N$ and $\{\vec{y_i}\}_{i=1}^N$ where x_i and y_i are in correspondence Seek to minimize

$$\sum_{i=1}^{N} ||R(\vec{x_i} + \vec{t}) - \vec{y_i}||_2^2$$

over all orthogonal matrices R and translation vectors t. $||.||^2$ is squared distance