Lecture-5 Main Points

- λ notation for higher order functions
 - BHK interpretation involves higher order functions naturally as constructions.
 - Standard mathematics does not have adequate notation to deal with such functions.
 - We use λ notation invented by A. Church in λ calculus.
 - Meaning of λ abstraction.
 - All functions are functions of one variable only.
 - Free variables, bound variables and closed terms.
- Examples of constructions using λ -notation.

$$-\lambda x : A.\lambda y : B.x : A \to (B \to A)$$

$$-\lambda x : A.\lambda y : \neg A.yx : A \to \neg \neg A$$

$$-\lambda x : A \to B.\lambda y : \neg B.\lambda z : A.y(xz) : (A \to B) \to (\neg B \to \neg A)$$

• Example of building the construction along the deduction tree.

$$-\frac{Ax}{y:\neg B\vdash y:\neg B} \frac{Ax}{x:A\rightarrow B\vdash x:A\rightarrow B} \frac{Ax}{z:A\vdash z:A}$$

$$\frac{x:A\rightarrow B,y:\neg B,z:A\vdash xz:B}{x:A\rightarrow B,y:\neg B,z:A\vdash y(xz):\bot}$$

$$\frac{x:A\rightarrow B,y:\neg B\vdash \lambda z:A.y(xz):\neg A}{x:A\rightarrow B\vdash \lambda y:\neg B.\lambda z:A.y(xz):\neg B\rightarrow \neg A}$$

$$\vdash \lambda x:A\rightarrow B.\lambda y:\neg B.\lambda z:A.y(xz):(A\rightarrow B)\rightarrow (\neg B\rightarrow \neg A)$$

- Remarks

1. We have used function application of constructions in ' \rightarrow e' rule.

- 2. For other elimination rules we need to introduce new syntactic constructs to manipulate constructions.
- Correspondence between logic and functional programming.

	Minimal Logic	Functional Programming
	Propositions	Types
_	Construction terms	Programs
	Annotated Derivations	Type assignment
	Proof Normalization	Program Evaluation

- This correspondence is known as Curry-Howard correspondence.
- Proof normalization is not part of this course. Last row of the table is shown for completeness.
- 'Construction terms' refers to representation of constructions annotating propositions in a minimal logic derivation as shown in example above.
- 'Construction terms' when simplified/evaluated yield 'canonical constructions' given in the definition of BHK interpretation.

• Main Theorem

- **Theorem:** For every Nm derivable judgement $A_1, \ldots, A_m \vdash A$, there is a construction which on input constructions a_1, \ldots, a_m (with $a_i : A_i$) outputs a construction of A.
- **Proof:** The proof is by induction on the depth of judgement $A_1, \ldots, A_m \vdash A$. Induction step considers various cases depending on the last rule in the derivation of judgement $A_1, \ldots, A_m \vdash A$. We treat only one such case here, when the last rule applied in the derivation is \vee - elimination as shown below.

Let
$$c_k$$
 be the constructions obtained by I.H. on \mathcal{D}_k , for $1 \leq k \leq 3$.

Following is the description of the desired construction.

- * Let input to this construction be $a_i : A_i$, for $1 \le i \le m$.
- * Evaluate $c_1 a_1 \dots a_i$, it is either inl(t) or inr(t).

- * In the first case our construction outputs $c_2 \ a_{j+1} \dots a_m \ t$ in the second case it outputs $c_3 \ a_{j+1} \dots a_m \ t$. \square
- As a corollary, we get that for any derivable judgement $\vdash A$ in minimal logic, A admits BHK interpretation.

• Remarks

- 1. In proof of the main theorem, we have treated constructions as semantic idea rather than a concrete representation of it.
- 2. In general, throughout the lecture, we have not made a clear distinction between constructions and representation of a construction. This distinction is important for treating evaluation of our construction terms (programs).