Calcul de la décomposition en éléments simples

Méthodes de détermination des coefficients 6

La notation suivante sera très utile pour la suite.

Notation

Soient $F \in \mathbb{K}(X)$ et $a \in \mathbb{K}$. Lorsque l'on évalue F pour X = a, on note

$$[F(X)]_{X=a}$$
.

Autrement dit, $[F(X)]_{X=a} = F(a)$.

6.1La méthode d'identification

Il s'agit de la méthode la plus basique. Celle-ci devient rapidement inutilisable.

Exemples

 \triangleright La décomposition en éléments simples de $\frac{1}{X(X-1)}$ s'écrit

$$\frac{1}{X(X-1)} = \frac{a}{X} + \frac{b}{(X-1)}.$$

En mettant les termes de droite sous le même dénominateur, on obtient

$$\frac{1}{X(X-1)} = \frac{a(X-1) + bX}{X(X-1)} = \frac{-a + (a+b)X}{X(X-1)},$$

puis par identification, on en déduit -a = 1 et a + b = 0. Donc a = -1 et b = 1, d'où

$$F(X) = -\frac{1}{X} + \frac{1}{(X-1)}.$$

▶ La même méthode appliquée à la fraction rationnelle :

$$\frac{2X+1}{(X-3)(X^2+1)^2} = \frac{c}{X-3} + \frac{a_1X+b_1}{X^2+1} + \frac{a_2X+b_2}{(X^2+1)^2},$$

donne

$$\frac{2X+1}{(X-3)(X^2+1)^2} = \frac{c(X^2+1)^2 + (a_1X+b_1)(X^2+1) + a_2X+b_2}{(X-3)(X^2+1)^2}$$

ce qui amène à de nombreux calculs et à la résolution d'un système à 5 inconnues.

Comme on le voit avec le deuxième exemple, cette méthode devient très rapidement fastidieuse. Elle est à éviter.

6.2 Méthode des pôles simples

Cette méthode permet d'obtenir un coefficient pour un élément simple de première espèce.

Soit $F \in \mathbb{K}(X)$ une fraction rationnelle irréductible ayant $\alpha \in \mathbb{K}$ pour pôle simple. Alors, on a :

$$F(X) = \frac{P(X)}{(X - \alpha)Q_1(X)},$$

où $(P,Q_1) \in (\mathbb{K}[X])^2$ et $Q_1(\alpha) \neq 0$. La forme de F en produit d'éléments simples s'écrit :

$$F(X) = \underbrace{E(X)}_{\text{partie entière}} + \underbrace{\underbrace{\frac{c}{X - \alpha}}_{\text{partie polaire associée à } \alpha}} + \underbrace{\underbrace{\mathcal{P}(X)}_{\text{parties polaires associées aux autres pôles}}}_{\text{partie polaire associée à } \alpha}.$$

En multipliant F par $(X - \alpha)$, on a

$$(X - \alpha)F(X) = \frac{P(X)}{Q_1(X)}$$
 et $(X - \alpha)F(X) = (X - \alpha)E(X) + c + (X - \alpha)P(X)$.

Donc

$$\frac{P(X)}{Q_1(X)} = (X - \alpha)E(X) + c + (X - \alpha)P(X).$$

1. On multiplie F par $(X - \alpha)$:

$$\frac{P(X)}{Q_1(X)} = (X - \alpha)E(X) + c + (X - \alpha)P(X).$$

2. On évalue pour $X = \alpha$:

$$\frac{P(\alpha)}{Q_1(\alpha)} = [(X - \alpha)F(x)]_{X=\alpha} = c + \underbrace{[(X - \alpha)]_{X=\alpha}}_{=0} \mathcal{P}(\alpha) = c.$$

Exemples

On reprend les exemples vus précédemment

⊳ On a

$$\frac{1}{X(X-1)} = \frac{a}{X} + \frac{b}{(X-1)}.$$

Les pôles 0 et 1 sont simples, on peut donc appliquer la méthode précédente.

 \bullet On multiplie par X:

$$\frac{1}{X-1} = a + X \frac{b}{(X-1)},$$

puis on évalue en X=0:

$$\underbrace{\left[\frac{1}{X-1}\right]_{X=0}}_{=-1} = a + \underbrace{\left[X\frac{b}{(X-1)}\right]_{X=0}}_{=0},$$

ce qui donne -1 = a.

• On multiplie par X-1:

$$\frac{1}{X} = (X-1)\frac{a}{X} + b,$$

puis on évalue en X=1:

$$\underbrace{\left[\frac{1}{X}\right]_{X=1}}_{=1} = \underbrace{\left[(X-1)\frac{a}{X}\right]_{X=1}}_{=0} + b,$$

ce qui donne 1 = b.

$$F(X) = \frac{1}{X - 1} - \frac{1}{X}.$$

On remarquera qu'il n'a pas été nécessaire de faire le moindre calcul.

> Considérons la fraction rationnelle :

$$\frac{2X+1}{(X-3)(X^2+1)^2} = \frac{c}{X-3} + \frac{a_1X+b_1}{X^2+1} + \frac{a_2X+b_2}{(X^2+1)^2}.$$

Alors 3 est un pôle simple. En multipliant par X-3 et en évaluant en X=3, on

$$\frac{7}{100} = c.$$

Ainsi, on a pu facilement déterminer le coefficient c.

伐 Remarque

Cette méthode est aussi efficace pour déterminer le coefficient c de l'élément simple d'ordre maximal associé à un pôle multiple. Au lieu de multiplier par $(X - \alpha)$, on multiplie par $(X - \alpha)^m$, où α est un pôle d'ordre m et on évalue en $X = \alpha$.

Soit
$$F(X) = \frac{1}{X^2(X-1)^3} \in \mathbb{R}(X)$$
. Sa décomposition en éléments simples est
$$F(X) = \frac{1}{X^2(X-1)^3} = \underbrace{\frac{c_1}{X} + \frac{c_2}{X^2}}_{\text{partie polaire associée à 0}} + \underbrace{\frac{c_3}{X-1} + \frac{c_4}{(X-1)^2} + \frac{c_5}{(X-1)^3}}_{\text{partie polaire associée à 1}},$$

où $c_k \in \mathbb{R}$, pour $k \in [1; 5]$, sont à déterminer. \triangleright On multiplie par X^2 puis on évalue en $X = 0 : c_2 = -1$. \triangleright On multiplie par $(X - 1)^3$ puis on évalue en $X = 1 : 1 = c_5$.

$$F(X) = \frac{c_1}{X} - \frac{1}{X^2} + \frac{c_3}{(X-1)} + \frac{c_4}{(X-1)^2} + \frac{1}{(X-1)^3},$$

et les coefficients c_1 , c_3 et c_4 sont à déterminer par d'autres méthodes.

Méthode des limites infinies 6.3

🔁 Rappel

On rappelle que la limite à l'infini d'une fraction rationnelle est égale à la limite à l'infini du quotient des termes de plus haut degré.

\bigcirc Exemples

$$| \sum_{X \to +\infty} \frac{X^3 + X^2 + 1}{X^2 + X + 1} = \lim_{X \to +\infty} \frac{X^3}{X^2} = \lim_{X \to +\infty} X = +\infty.$$

$$| \sum_{X \to +\infty} \frac{2X^2 + 1}{-3X^2 + X + 1} = \lim_{X \to +\infty} \frac{2X^2}{-3X^2} = \lim_{X \to +\infty} -\frac{2}{3} = -\frac{2}{3}.$$

$$| \sum_{X \to +\infty} \frac{X + 1}{-X^4 + X + 1} = \lim_{X \to +\infty} \frac{X}{-X^4} = \lim_{X \to +\infty} -\frac{1}{X^3} = 0.$$

$$\geqslant \lim_{X \to +\infty} \frac{2X^2 + 1}{-3X^2 + X + 1} = \lim_{X \to +\infty} \frac{2X^2}{-3X^2} = \lim_{X \to +\infty} -\frac{2}{3} = -\frac{2}{3}.$$

Soit $F \in \mathbb{K}(X)$ telle que sa partie entière est nulle.

On écrit la décomposition en éléments simples de F, puis on calcule la limite :

$$\lim_{X \to \infty} XF(X).$$

Exemple

La forme de la décomposition en éléments simples de $F(X) = \frac{X+1}{(X-1)^2}$ est

$$\frac{X+1}{(X-1)^2} = \frac{a}{X-1} + \frac{b}{(X-1)^2}.$$

Par la méthode des pôles simples, on obtient b = 2.

En multipliant par X, on a

$$\frac{X^2 + X}{(X-1)^2} = \frac{aX}{X-1} + \frac{bX}{(X-1)^2}.$$

En prenant la limite pour $X \to \infty$, on obtient

$$\underbrace{\lim_{X \to \infty} \frac{X^2 + X}{(X - 1)^2}}_{=1} = \underbrace{\lim_{X \to \infty} \frac{aX}{X - 1}}_{=a} + \underbrace{\lim_{X \to \infty} \frac{bX}{(X - 1)^2}}_{=0}.$$

$$F(X) = \frac{1}{X - 1} + \frac{2}{(X - 1)^2}.$$

0 Remarque

Lorsque F admet une partie entière E non nulle, on peut appliquer la méthode à F-Ec'est-à-dire on calcule la limite

$$\lim_{X \to \infty} X \left(F(X) - E(X) \right).$$

Exemple

La fraction rationnelle

$$F(X) = \frac{2X^2 + 1}{(X - 1)^2}$$

a une partie entière non nulle. En faisant la division euclidienne, on a $2X^2+1=2(X-1)^2+4X-1,$ d'où :

$$F(X) = \underbrace{2}_{E(X)} + \underbrace{\frac{4X - 1}{(X - 1)^2}}_{F_2(X)}.$$

La décomposition en élément simples de $F_2(X) = F(X) - E(X)$ est :

$$F_2(X) = \frac{4X-1}{(X-1)^2} = \frac{a}{X-1} + \frac{b}{(X-1)^2}.$$

Par la méthode des pôles simples, on obtient b=3.

En multipliant par X, puis en passant à la limite, on obtient :

$$\underbrace{\lim_{x \to +\infty} \frac{4X^2 - X}{(X - 1)^2}}_{=4} = \underbrace{\lim_{x \to +\infty} \frac{aX}{X - 1}}_{=a} + \underbrace{\lim_{x \to +\infty} \frac{bX}{(X - 1)^2}}_{=0}.$$

d'où a = 4. Finalement, on a $F(X) = 2 + \frac{4}{X-1} + \frac{3}{(X-1)^2}$

Méthode d'évaluations 6.4

Lorsqu'il ne reste qu'un ou deux coefficients de la décomposition en éléments simples à déterminer, il suffit d'évaluer la fraction rationnelle et sa décomposition en éléments simples en des valeurs adéquates de X.

Exemple

Soit
$$F(X) = \frac{X^3 + X + 1}{(X - 1)^2(X + 1)^2}$$

Soit $F(X) = \frac{X^3 + X + 1}{(X - 1)^2(X + 1)^2}$. La décomposition en élément simples de F est de la forme (le faire en exercice) :

$$F(X) = \frac{a}{(X-1)} + \frac{b}{(X-1)^2} + \frac{c}{(X+1)} + \frac{d}{(X+1)^2}.$$

La méthode des pôles simples permet d'obtenir : $b = \frac{3}{4}$ et $d = -\frac{1}{4}$.

La méthode des limites infinies donne 1 = a + c.

On évalue F(X) en X=0:

$$\underbrace{\left[\frac{X^3 + X + 1}{(X - 1)^2(X + 1)^2}\right]_{X = 0}}_{= 1} = \underbrace{\left[\frac{a}{X - 1}\right]_{X = 0}}_{= -a} + \underbrace{\left[\frac{3}{4(X - 1)^2}\right]_{X = 0}}_{= \frac{3}{4}} + \underbrace{\left[\frac{c}{(X + 1)}\right]_{X = 0}}_{= c} - \underbrace{\left[\frac{1}{4(X + 1)^2}\right]_{X = 0}}_{= \frac{1}{4}},$$

ce qui donne $1 = -a + \frac{3}{4} + c - \frac{1}{4}$, d'où $-a + c = \frac{1}{2}$. Les deux équations : a + c = 1 et $-a + c = \frac{1}{2}$ permettent d'obtenir $a = \frac{1}{4}$ et $c = \frac{3}{4}$. Finalement, on a $F(X) = \frac{1}{4(X-1)} + \frac{3}{4(X-1)^2} + \frac{3}{4(X+1)} - \frac{1}{4(X+1)^2}$.

6.5Pôles complexes

La méthode des pôles complexes conjugués s'applique lorsque la décomposition en éléments simples contient un élément simple de seconde espèce. Pour l'employer nous aurons besoin du résultat suivant:

Proposition

Soit $\rho \in \mathbb{C}$ tel que $\mathcal{I}m(\rho) \neq 0$. Alors, pour tout $(a,b,c,d) \in \mathbb{R}^4$, on a

$$a\rho + b = c\rho + d \iff a = c \text{ et } b = d.$$

On dit qu'on procède par identification.

🔥 Remarque

Soit $X^2 + \beta X + \gamma \in \mathbb{R}(X)$ un polynôme du second degré à discriminant négatif et soit $\rho \in \mathbb{C}$ une de ses racines complexes. Alors :

$$\mathcal{I}m(\rho) \neq 0$$
 et $\rho^2 = -\beta \rho - \gamma$.

Cette dernière relation est très utile pour évaluer un polynôme en ρ plutôt que d'avoir explicitement l'expression de ρ .

Exemples

Soit $\rho \in \mathbb{C}$ une racine du polynôme $X^2 - X + 1$: $\Delta = (-1)^2 - 4 \times 1 = -3 < 0$. Donc

ightharpoonup On cherche $(a,b)\in\mathbb{R}^2$ tel que $(a-5)\rho+(b+1)=3\rho+2.$ Par identification, on a :

$$(2a-5)\rho + (b+1) = 3\rho + 2) \iff \begin{cases} 2a-5 = 3, \\ b+1 = 2, \end{cases} \iff \begin{cases} a = 4, \\ b = 1. \end{cases}$$

 \triangleright Grâce à l'égalité $\rho^2 - \rho + 1 = 0$, on a $\rho^2 = \rho - 1$ et les évaluations suivantes sont plus faciles à calculer et cela sans connaître l'expression exacte de ρ :

$$[X^2 + X + 2]_{X=\rho} = \rho^2 + \rho + 2 = (\rho - 1) + \rho + 2 = 2\rho + 1,$$

$$[X^3 + X^2 + 1]_{X=\rho} = \rho^3 + \rho^2 + 1 = \rho \underbrace{(\rho - 1)}_{=\rho^2} + \underbrace{(\rho - 1)}_{\rho^2} + 1 = \underbrace{\rho^2 - \rho}_{=\rho(\rho - 1)} + \rho = \rho^2 = \rho - 1.$$

Soit $F \in \mathbb{R}(X)$ une fraction rationnelle irréductible et contenant un pôle de seconde espèce d'ordre 1:

$$F(X) = \frac{P(X)}{(X^2 + \beta X + \gamma)Q_1(X)},$$

où $(P,Q_1) \in (\mathbb{R}[X])^2$, $(\beta,\gamma) \in \mathbb{R}^2$, $\beta^2 - 4\gamma < 0$ et $X^2 + \beta X + \gamma$ ne divise ni P, ni Q_1 . La décomposition de F en éléments simples est :

$$F(X) = \underbrace{E(X)}_{\text{partie entière}} + \underbrace{\frac{aX+b}{X^2+\beta X+\gamma}}_{\text{partie polaire associée à } X^2+\beta X+\gamma} + \underbrace{\underbrace{\mathcal{P}(X)}_{\text{parties polaires associées aux autres pôles}}_{\text{partie polaire}}$$

où a et b sont à déterminer.

Multiplions F par $X^2 + \beta X + \gamma$. On a d'une part :

$$(X^2 + \beta X + \gamma)F(X) = \frac{P(X)}{Q_1(X)},$$

et d'autre part :

$$(X^{2} + \beta X + \gamma)F(X) = (E(X) + \mathcal{P}(X))(X^{2} + \beta X + \gamma) + (aX + b),$$

d'où:

$$\frac{P(X)}{Q_1(X)} = (E(X) + \mathcal{P}(X))(X^2 + \beta X + \gamma) + aX + b.$$

Pour déterminer a et b, on procède comme avec la méthode des pôles simples :

f M'ethode — $P\^oles$ complexes

ightharpoonup Soit $\rho \in \mathbb{C}$ une racine de $X^2 + \beta X + \gamma$. On ne calcule pas ρ , par contre on a :

$$\rho^2 = -\beta \rho - \gamma.$$

 \triangleright On multiplie F(X) par $(X^2 + \beta X + \gamma)$:

$$\frac{P(X)}{Q_1(X)} = \left(E(X) + \mathcal{P}(X)\right) \underbrace{\left(X^2 + \beta X + \gamma\right)}_{=0 \text{ pour } X = \rho} + aX + b.$$

 $\,\rhd\,$ On évalue l'expression précédente en $X=\rho$:

$$\frac{P(\rho)}{Q_1(\rho)} = a\rho + b \Longleftrightarrow P(\rho) = (a\rho + b)Q_1(\rho).$$

ightharpoonup En utilisant $\rho^2 = -\beta \rho - \gamma$, on évalue $P(\rho)$ et $Q_1(\rho)$ et on réécrit :

- $P(\rho)$ sous la forme $c\rho + d$;
- $(a\rho + b)Q_1(\rho)$ sous la forme $\hat{a}\rho + \hat{b}$, où \hat{a} et \hat{b} dépendent de a et b.
- \triangleright Par identification, on a $\hat{a} = c$ et $\hat{b} = d$ ce qui nous permet d'obtenir a et b.

Exemple

Considérons la fraction rationnelle suivante :

$$\frac{X^2}{(X^2+X+1)(X-1)(X+1)} = \frac{aX+b}{X^2+X+1} + \frac{c}{X-1} + \frac{d}{X+1}.$$

La méthode des pôles simples donne $c = \frac{1}{6}$ et $d = -\frac{1}{2}$. Il reste les coefficients a et b à déterminer.

Soit $\rho \in \mathbb{C}$ une racine de $X^2 + X + 1$. En multipliant par $X^2 + X + 1$, on a

$$\frac{X^2}{(X-1)(X+1)} = aX + b + (X^2 + X + 1) \left(\frac{c}{X-1} + \frac{d}{X+1}\right).$$

En évaluant en ρ , on obtient

$$\underbrace{\left[\frac{X^2}{(X-1)(X+1)}\right]_{X=\rho}}_{=\frac{\rho^2}{\rho^2-1}} = \underbrace{\left[aX+b\right]_{X=\rho}}_{=a\rho+b} + \underbrace{\left[(X^2+X+1)\left(\frac{c}{X-1}+\frac{d}{X+1}\right)\right]_{X=\rho}}_{=0},$$

ce qui donne

$$\frac{\rho^2}{\rho^2 - 1} = a\rho + b \iff \rho^2 = (a\rho + b)(\rho^2 - 1).$$

Puisque ρ est une racine de $X^2+X+1,$ on a $\rho^2=-\rho-1,$ d'où

$$-\rho - 1 = (a\rho + b)(-\rho - 2) = -a\rho^2 + (-2a - b)\rho - 2b = -a(-\rho - 1) + (-2a - b)\rho - 2b = -a\rho + a - 2b.$$

Par identification, on obtient:

$$-a\rho + (a-2b) = -\rho - 1) \iff \left\{ \begin{array}{rcl} -a & = & -1, \\ a-2b & = & -1, \end{array} \right. \iff \left\{ \begin{array}{rcl} a & = & 1, \\ b & = & 1. \end{array} \right.$$

$$F(X) = \frac{X^2 + X + 1}{(X^2 + 1)(X^2 - 1)} = \frac{X + 1}{X^2 + 1} + \frac{\frac{1}{6}}{X - 1} - \frac{\frac{1}{2}}{X + 1}.$$

0 Remarque

Tout comme la méthode des pôles simples, cette méthode est aussi efficace pour déterminer les coefficients a_m et b_m de l'élément simple associé à un pôle multiple de seconde espèce d'ordre maximal m:

$$\frac{a_m X + b_m}{(X^2 + \beta X + \gamma)^m}.$$

Au lieu de multiplier par $X^2 + \beta X + \gamma$, on multiplie par $(X^2 + \beta X + \gamma)^m$ et on évalue en $X = \rho$, une racine de $X^2 + \beta X + \gamma$.

Exemple

Soit
$$F(X) = \frac{1}{X^2(X^2 + X + 1)^3} \in \mathbb{R}(X)$$
. Sa décomposition en éléments simples est
$$F(X) = \frac{1}{X^2(X^2 + X + 1)^3} = \underbrace{\frac{c_1}{X} + \frac{c_2}{X^2}}_{\text{partie polaire associée à 0}} + \underbrace{\frac{a_1X + b_1}{X^2 + X + 1} + \frac{a_2X + b_2}{(X^2 + X + 1)^2} + \frac{a_3X + b_3}{(X^2 + X + 1)^3}}_{\text{partie polaire associée à } X^2 + X + 1}$$

où $(c_1, c_2) \in \mathbb{R}^2$ sont à déterminer ainsi que $(a_k, b_k) \in \mathbb{R}^2$, pour $k \in [1; 3]$.

 \triangleright On multiplie par X^2 puis on évalue en X=0: $c_2=-1$.

ightharpoonup On multiplie par $(X^2+X+1)^3$ puis on évalue en $X=\rho,$ avec $\rho^2=-\rho-1$:

$$\frac{1}{\rho^2} = a_3 \rho + b_3 \iff 1 = (a_3 \rho + b_3)(-\rho - 1)$$

$$\iff 1 = -a_3 \rho^2 + (-a_3 - b_3)\rho - b_3,$$

$$\iff 1 = -a_3(-\rho - 1) + (-a_3 - b_3)\rho - b_3,$$

$$\iff 1 = -b_3 \rho - a_3 - b_3,$$

$$\iff \begin{cases} 0 = -b_3, \\ 1 = -a_3 - b_3, \end{cases} \iff \begin{cases} b_3 = 0, \\ a_3 = -1, \end{cases}$$

Au final, on a:

$$F(X) = \frac{c_1}{X} - \frac{1}{X^2} + \frac{a_1X + b_1}{X^2 + X + 1} + \frac{a_2X + b_2}{(X^2 + X + 1)^2} - \frac{X}{(X^2 + X + 1)^3},$$

et les coefficients c_1 , c_3 et c_4 sont à déterminer par d'autres méthodes.

Chapitre 9

Feuille d'Exercices : Séquence 3

S Exercice 1.

Décomposer en éléments simples les fractions rationnelles de $\mathbb{R}[X]$ ci-dessous en utilisant, suivant les cas, les méthodes :

1)
$$F_1(X) = \frac{X+3}{X(X-1)}$$
,

2)
$$F_2(X) = \frac{X^3 - 2X^2 - X + 3}{(X+1)(X+2)},$$

3)
$$F_3(X) = \frac{X+3}{X(X-1)^3}$$
,

4)
$$F_4(X) = \frac{X^3 - 3X^2 + 7X - 3}{(X - 1)(X^2 - 2X + 3)}.$$

S Exercice 2.

Décomposer en éléments simples les fractions rationnelles de $\mathbb{R}(X)$ ci-dessous en utilisant la méthode des pôles complexes.

39

1)
$$F_1(X) = \frac{X^3 - 3X^2 + 7X - 3}{(X - 1)(X^2 - 2X + 3)}$$

3)
$$F_3(X) = \frac{2X+4}{(X+1)^2(X^2+1)}$$
.

2)
$$F_2(X) = \frac{X^2 + 2X - 1}{(X^2 + X + 1)^2(X - 2)},$$

4)
$$F_4(X) = \frac{X^2 + X + 4}{(X+1)^2(X^2+1)^2}$$
.

Exercice 3.

Décomposer en éléments simples les fractions rationnelles de $\mathbb{R}(X)$ ci-dessous.

1)
$$F_1(X) = \frac{X^2 - X - 2}{(X - 1)(X - 2)^3(X^2 - 4X + 5)}$$

2)
$$F_2(X) = \frac{10X^6 + 7X^5 - X^4 - 66X^3 + 82X^2 - 24X + 184}{(X^2 + 3X + 4)^2(X^2 - 3X + 2)(X - 2)}$$

Intégration des fractions rationnelles

Intégration des fractions rationnelles 7

La décomposition en éléments simples permet d'intégrer toutes les fractions rationnelles.

7.1 Primitives des éléments simples de première espèce

🔞 Rappel

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, la fonction $x \mapsto \frac{1}{(x-\alpha)^n}$ admet sur $]-\infty; \alpha[$ et sur $]\alpha; +\infty[$ les primitives suivantes :

1.
$$x \mapsto \ln|x - \alpha| \text{ si } n = 1$$
,

2.
$$x \mapsto \frac{-1}{(n-1)(x-\alpha)^{n-1}}$$
 si $n \ge 2$.

Exemple

Calculons l'intégrale :

$$I = \int_0^1 \frac{1}{(x-2)(x+1)^3} \, dx.$$

La décomposition en éléments simples de $\frac{1}{(X-2)(X+1)^3} \in \mathbb{R}(X)$ est donnée par

$$\frac{1}{(X-2)(X+1)^3} = \frac{a}{X-2} + \frac{b}{X+1} + \frac{c}{(X+1)^2} + \frac{d}{(X+1)^3},$$

où $(a, b, c) \in \mathbb{R}^3$.

La méthode des pôles simples donne : $a = \frac{1}{27}$ et $d = -\frac{1}{3}$. La méthode des limites infinies donne : 0 = a + b donc $b = -\frac{1}{27}$.

En évaluant en X=0 on obtient : -1=-a+2b+2c+2d donc $c=-\frac{1}{9}$.

On en déduit

$$\begin{split} I &= \int_0^1 \frac{1}{27(x-2)} - \frac{1}{27(x+1)} - \frac{1}{9(x+1)^2} - \frac{1}{3(x+1)^3} \, dx \\ &= \frac{1}{27} \int_0^1 \frac{1}{x-2} \, dx - \frac{1}{27} \int_0^1 \frac{1}{x+1} \, dx - \frac{1}{9} \int_0^1 \frac{1}{(x+1)^2} \, dx - \frac{1}{3} \int_0^1 \frac{1}{(x+1)^3} \, dx \\ &= \frac{1}{27} \Big[\ln|x-2| \Big]_0^1 - \frac{1}{27} \Big[\ln|x+1| \Big]_0^1 - \frac{1}{9} \left[\frac{-1}{x+1} \right]_0^1 - \frac{1}{3} \left[\frac{-1}{2(x+1)^2} \right]_0^1 \, dx \\ &= -\frac{1}{27} \ln 2 - \frac{1}{27} \ln 2 - \frac{1}{18} - \frac{1}{8} = -\frac{2}{27} \ln 2 - \frac{13}{72}. \end{split}$$

L'exemple précédent n'a posé aucun problème car la décomposition en éléments simples ne contenaient que des éléments simples de première espèce. Il n'en est pas de même lorsque celle-ci contient un élément simple de seconde espèce.

41

7.2 Intégration des éléments simples de seconde espèce d'ordre 1

Exemple

Soit l'intégrale suivante :

$$I = \int_0^1 \frac{x+1}{x^2 - 2x + 2} \, dx.$$

Puisque le polynôme $X^2 - 2X + 2$ a pour discriminant 4 - 8 = -4 < 0, la fraction rationnelle $\frac{X+1}{X^2-2X+2}$ est déjà décomposée en éléments simples et ne contient qu'un élément simple de seconde espèce. Calculons cette intégrale.

1. On fait apparaître le terme de la forme $\frac{u'}{u}$, où $u(x) = x^2 - 2x + 2$. On a alors u'(x) = 2x - 2.

$$\frac{x+1}{x^2-2x+2} = \frac{1}{2} \frac{2x+2}{x^2-2x+2} = \frac{1}{2} \frac{2x-2+4}{x^2-2x+2} = \frac{1}{2} \underbrace{\frac{2x-2}{x^2-2x+2}}_{=\frac{u'(x)}{u(x)}} + 2\frac{1}{x^2-2x+2}$$

2. On transforme $\frac{1}{x^2-2x+2}$ sous la forme $\frac{1}{t^2+1}$.

Pour cela, on détermine la forme canonique du polynôme $x^2 - 2x + 2$:

$$x^{2} - 2x + 2 = \underbrace{(x-1)^{2}}_{=t^{2}} + 1.$$

3. On calcule l'intégrale :

$$\int_0^1 \frac{x+1}{x^2 - 2x + 2} \, dx = \frac{1}{2} \int_0^1 \frac{2x - 2}{x^2 - 2x + 2} \, dx + 2 \int_0^1 \frac{1}{x^2 - 2x + 2} \, dx$$

$$= \frac{1}{2} \left[\ln|x^2 - 2x + 2| \right]_0^1 + 2 \int_0^1 \frac{1}{(x-1)^2 + 1} \, dx$$

$$= -\frac{1}{2} \ln(2) + 2 \left[\arctan(x-1) \right]_0^1.$$

Finalement, $I = -\frac{1}{2}\ln(2) - \frac{\pi}{2}$.

 $m{ ilde{\mu}}$ ${f M\acute{e}thode}$ — Intégration d'un élément simple de seconde espèce d'ordre 1

Soit $(a, b, \beta, \gamma) \in \mathbb{R}^4$ avec $\beta^2 - 4\gamma < 0$. On souhaite calculer une primitive de la fonction suivante :

$$x \mapsto \frac{ax+b}{x^2+\beta x+\gamma}.$$

1. On pose $u(x) = x^2 + \beta x + \gamma$, puis on détermine $(c, d) \in \mathbb{R}^2$ tel que

$$\frac{ax+b}{x^2+\beta x+\gamma} = c\underbrace{\frac{u'(x)}{u(x)}}_{\text{primitive connue}} + \underbrace{\frac{d}{x^2+\beta x+\gamma}}_{}.$$

2. On réécrit $\frac{d}{x^2 + \beta x + \gamma}$ sous la forme

$$\frac{d}{x^2 + \beta x + \gamma} = \frac{e}{t^2 + 1},$$

42

où $e \in \mathbb{R}$.

3. On calcule l'intégrale en sachant qu'une primitive de $\frac{u'}{u}$ est $\ln |u|$ et qu'une primitive de $t\mapsto \frac{1}{1+t^2}$ est $t\mapsto \arctan(t)$.

Exemple

Calculons l'intégrale

$$I = \int_{1}^{2} \frac{2x+3}{x^2+x+1} \, dx.$$

On a

$$\frac{2X+3}{X^2+X+1} = \frac{2X+1+2}{X^2+X+1} = \frac{2X+1}{X^2+X+1} + 2\frac{1}{X^2+X+1}.$$

De plus, la forme canonique de $X^2 + X + 1$ est

$$X^2 + X + 1 = \left(X - \frac{1}{2}\right)^2 + \frac{3}{4} = \frac{3}{4} \left(\frac{4}{3} \left(X - \frac{1}{2}\right)^2 + 1\right).$$

On note $\alpha = \sqrt{\frac{4}{3}} = \frac{2\sqrt{3}}{3}$, alors

$$X^{2} + X + 1 = \frac{3}{4} \left(\left(\alpha X - \frac{\sqrt{3}}{3} \right)^{2} + 1 \right).$$

On en déduit

$$I = \int_{1}^{2} \frac{2x+1}{x^{2}+x+1} dx + 2 \int_{1}^{2} \frac{1}{x^{2}+x+1} dx$$

$$= \left[\ln|x^{2}+x+1| \right]_{1}^{2} + \frac{8}{3} \int_{1}^{2} \frac{1}{\left(\alpha x - \frac{\sqrt{3}}{3}\right)^{2} + 1} dx$$

$$= \left[\ln|x^{2}+x+1| \right]_{1}^{2} + \frac{8}{3\alpha} \left[\arctan\left(\alpha x - \frac{\sqrt{3}}{3}\right) \right]_{1}^{2}$$

$$= \ln 7 - \ln 3 + \frac{8}{3\alpha} \left(\arctan\left(\sqrt{3}\right) - \arctan\left(\frac{\sqrt{3}}{3}\right) \right).$$

7.3 Intégration des éléments simples de seconde espèce d'ordre n

On a vu précédemment comment intégrer un élément simple de seconde espèce d'ordre 1, c'est-àdire de la forme

$$\frac{aX+b}{X^2+\beta X+\gamma},$$

où $(a, b, \beta, \gamma) \in \mathbb{R}^4$. Or une décomposition en éléments simples peut contenir des éléments simples de seconde espèce d'ordre $n \in \mathbb{N}$ avec $n \geq 2$, c'est-à-dire de la forme

$$\frac{aX+b}{(X^2+\beta X+\gamma)^n}.$$

où $(a, b, \beta, \gamma) \in \mathbb{R}^4$.

 ${f M\acute{e}thode}-{\it Int\'egration}$ d'un élément simple de seconde espèce d'ordre n

Soit $(a, b, \beta, \gamma) \in \mathbb{R}^4$ avec $\beta^2 - 4\gamma < 0$ et soit $n \in \mathbb{N}$ avec $n \ge 2$.

Pour intégrer la fonction

$$x \mapsto \frac{ax+b}{(x^2+\beta x+\gamma)^n},$$

on procède de la manière suivante :

1. On décompose en deux fractions rationnelles :

$$\frac{aX+b}{(X^2+\beta X+\gamma)^n} = a_1 \underbrace{\frac{2X+\beta}{(X^2+\beta X+\gamma)^n}}_{\frac{u'}{2n}} + a_2 \frac{1}{(X^2+\beta X+\gamma)^n},$$

où a_1 et a_2 sont des réels à déterminer. Le premier terme admet une primitive usuelle.

2. On calcule la forme canonique du polynôme $X^2 + \beta X + \gamma$ pour le mettre sous la forme $t^2 + 1$:

$$X^2+\beta X+\gamma=\delta^2\Big(\underbrace{\left(\frac{X+\frac{\beta}{2}}{\delta}\right)^2}_{t^2}+1\Big),\quad \text{où}\quad \delta^2=-\frac{\beta^2-4\gamma}{4}>0.$$

3. En effectuant le changement de variable $t = \frac{x + \frac{\beta}{2}}{\delta}$, on se ramène à un calcul d'intégrale de la forme:

$$\int \frac{1}{(t^2+1)^n} \, dt.$$

4. On calcule $\int \frac{1}{(t^2+1)^n} dt$ par la méthode donnée ci-dessous.

Méthode – Calcul de la primitive de $t\mapsto \frac{1}{(t^2+1)^n}$

Soit $n \in \mathbb{N}^*$. On pose

$$R_n = \int \frac{1}{(t^2+1)^n} \, dt.$$

 \triangleright Si n=1,

$$R_1 = \int \frac{1}{t^2 + 1} dt = \arctan(t) + k,$$

où $k \in \mathbb{R}$.

 \triangleright Si $n \ge 2$,

$$R_n = \int \frac{t^2 + 1 - t^2}{(t^2 + 1)^n} dt = \int \frac{1}{(t^2 + 1)^{n-1}} dt - \int \underbrace{t}_{u(t)} \underbrace{\frac{t}{(t^2 + 1)^n}}_{v'(t)} dt.$$

En faisant une intégration par parties sur le dernier terme, on obtient une expression de la forme:

$$R_n(t) = \frac{2n-3}{2(n-1)}R_{n-1}(t) + g_n(t),$$

et connaissant $R_1(t)$, on calcule de proche en proche $R_n(t)$.

Chapitre 9

Feuille d'Exercices : Séquence 4

S Exercice 1.

Calculer les intégrales suivantes :

1)
$$\int_{1}^{2} \frac{x^3 - 6x + 1}{x^2 - x - 6} dx$$
,

3)
$$\int_1^2 \frac{1}{x^2 - 2x + 5} dx$$
,

2)
$$\int_{-1}^{1} \frac{2x-8}{(x-5)^2} dx$$
,

4)
$$\int_{-3}^{-1} \frac{x}{x^2 + 4x + 5} dx$$
.

Exercice 2.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$I_n(x) = \int_0^x \frac{1}{(1+t^2)^n} dt.$$

- 1) Soit $n \in \mathbb{N}$. Donner une primitive de $t \mapsto \frac{t}{(t^2+1)^n}$.
- 2) Soit $x \in \mathbb{R}$. Calculer $I_0(x)$ et $I_1(x)$.
- 3) Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrer que

$$I_n(x) = I_{n-1}(x) - \int_0^x \frac{t^2}{(t^2+1)^n} dt.$$

En déduire, en faisant une intégration par parties, que pour $n \ge 2$:

$$I_n(x) = \frac{2n-3}{2(n-1)}I_{n-1}(x) + \frac{1}{2(n-1)}\frac{x}{(x^2+1)^{n-1}}.$$

4) Calculer, pour $x \in \mathbb{R}$, $I_2(x)$, puis $I_3(x)$.

S Exercice 3.

On rappelle que pour tout $x \in \mathbb{R}$,

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh x = \frac{e^x - e^{-x}}{2}$.

45

Calculer les intégrales suivantes en effectuant un changement de variable approprié.

1)
$$\int_0^1 \frac{1}{1+\operatorname{ch} t} dt$$
,

2)
$$\int_0^1 \frac{1+\sin t}{1+\cot t} dt$$
.

Exercice 4.

La $règle\ de\ Bioche$ est une règle pour effectuer des changements de variable dans le cas des fonctions rationnelles trigonométriques. Considérons une fonction f définie par

$$f(x) = F(\sin x, \cos x),$$

où $F(\sin x, \cos x)$ est une expression rationnelle ne dépendant que de $\sin x$ et $\cos x$. Il est possible de poser les changements de variable suivants :

$$ightharpoonup$$
 si $f(-x)=-f(x)$, poser $u(x)=\cos x$ et utiliser la relation $\cos^2 x+\sin^2 x=1$.

$$ightharpoonup$$
 si $f(\pi - x) = -f(x)$, poser $u(x) = \sin x$ et utiliser la relation $\cos^2 x + \sin^2 x = 1$.

$$\triangleright$$
 si $f(\pi + x) = f(x)$, poser $u(x) = \tan x$ et utiliser les relations

$$\cos^2 x = \frac{1}{1 + \tan^2 x}$$
 et $\sin^2 x = \frac{\tan^2 x}{1 + \tan^2 x}$.

 \triangleright sinon, poser $u(x) = \tan(\frac{x}{2})$ et utiliser les relations

$$\cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \quad \text{et} \quad \sin x = \frac{2\tan(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})}.$$

Appliquer la régle de Bioche pour calculer les intégrales suivantes :

1)
$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin^2(t) - 5\sin(t) + 6} dt$$
,

3)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos(t) - 2}{\sin(t)} dt$$
,

2)
$$\int_0^{\frac{\pi}{3}} \frac{\tan(t)}{1 + \cos(t)} dt$$
,

4)
$$\int_0^{\frac{\pi}{3}} \frac{2}{1 + \tan(t)} dt$$
,