## 3D Arts

Month 2, Lecture 5

## PHOTOMETRIC LIGHTING

### What You Will Learn Today:

- Photometric vs. Standard Light
- Physics-Based Light Terminology
- Photometric Light Applications
- Daylight system
- Mental Ray Overview
- Indirect Illumination Overview
- Exposure Control Overview

## Standard Lights

Review

## Qualities of light: Intensity

Copyright © 2006 Jesus Selvera



# Qualities of light: Throw



# Qualities of light: Motivation



Copyright © 2006 Jean Christophe Boujon

## Environment Lighting

1 or 2 default lights



# Standard Light Types



# Directional Lights



# Omni Lights



### Intensity/Color/Attenuation

- Intensity
  - Multiplier
  - Brightness of light
  - Multiplied against Global Light Level in Environment Dialog
- Color
- Attenuation (Falloff)



### Near / Far Attenuation

- Near
- sets the distance at which the light begins (fades in)



- Far
- sets the distance at which the light drops off to zero (fade out)



## Attenuation



## Volumetric Light

 Light effects based on interaction between light and atmosphere







#### Shadows

- Check the Box
- Select Shadow type
  - Shadow Mapped
  - Ray Traced Shadows



# Shadow Maps

Check the Box



### Ray-Traced Shadows

 Sharp, defined shadows created by bouncing light rays around a scene



### Photometric vs. Standard Lights



• Destaid the Byth State in State in the Register



### Terminology

Since Photometric lights are considered "real world" lights, real world terminology applies

The terminology is culled from the photography and scientific fields

- Kelvin
- Lumens
- Lux
- Candelas
- f/stops

### Photometric Properties

- Photometric values that enable you to define lights as they would be in the real world.
- Color (Kelvin)
- Luminous Flux (lumens)
- Illuminance (lux)
- Luminance (candelas)
- Luminous Intensity



Luminous Flux (lm)



#### Illuminance

- Luminous Flux the total incident on a surface per unit area
- Describes "Effect" of Luminous Flux
- International System (SI) measure is Lux (Ix)
- Lux = 1 Lumen per square meter
- Layman's term: how bright the luminous flux appears per square unit (meter, inch etc...)

#### Luminance

- Part of light "Effect" that reflected back into the environment
- Measured in candelas per square meter or inch.
- Candela was originally defined as the luminous intensity emitted by a single wax candle.
- Layman's terms: value of light reflected off a surface. a measure of how bright or dark we perceive the surface

### Luminous Intensity

Intensity a certain

Measure

Describe source valuedirection

"Uneven



a point source in

tensity of a light he outgoing

- Uniform Spherical
- Completely even distribution



- Uniform Diffuse
- Emits from only one hemisphere



- Spotlight Distribution
- Like a flashlight or headlights



- Photometric Web Distribution
- Available from light manufacturers (.ies files)
- http://genet.gelighting.com/LightProducts/Dispatcher?REQUEST=IESCATEGORYPAGE (or just Google .ies files)



## Photometric Light Types

- Target Light
- Free Light
- Mr Sky Portal





### Core Tools

- **Presets**
- Shadow Type
  - Distribution Type
- Color
  - Intensity
- Shape
  - **Shadow Parameters**



# Shadows: A Critical Eye



## Affecting Shadows

- Shadow type
- Light shapes
- Samples
- Density



# Shadow Type



# Light Shapes





Samples (Shadow Map Only)



# Density



- How dark / solid the shadow is.
- If set to 1, the shadow will appear pure black, which is usually too dark



# Bias





# Daylight System

• Uses light that follows the geographically correct angle and movement of the sun over the earth at a given location.

✓ Active

✓ Active

Date, Time and Location

Setup...

Weather Data File

Sunlight

mr Sun

Skylight

mr Sky

Position—

Manual



#### Daylight System + mr Physical Sky

- mr Physical Sky
  - Material type that mimics sky conditions including
    - Haze
    - Color
    - Horizon
    - Sunlight



# What is a rendering engine?

- Scanline Renderer
  - No advanced lighting calculation
  - All lighting quality is determined by you and your ability to control the lights
  - Pros: Quick results, easy to use, all controls on the lights
  - Cons: realism harder to achieve, requires experience to master

#### Mental Ray

- Advanced lighting calculations and effects (HDR)
- Quality is a balance of light control and rendering controls
- MR is a DEEP "sub program"
- Pros: Great looking lighting with some ease.
- Cons: Time, complex, requires deeper understanding of physics of light

# Mental Ray vs. Scanline

- Don't need to simulate lighting effects "by hand"
- Replaced by googolplex (buttload?) of parameters
- Renders rectangle blocks (buckets)

# Mental Ray Core Areas

- Indirect Illumination (Final Gather)
- Exposure Control

#### Indirect Illumination

 controls for rendering bounced light within an environment, including final gathering, caustics, and photons



### Exposure Control

- Adjust the output levels of rendering, as if you were adjusting film exposure.
- compensates for the limited dynamic range of computer displays



### Final Gather

- Why?
  - More physically accurate than any other technique
  - Calculates indirect diffuse, glossy and specular inter-reflection
- Diffuse reflections- effects of the reflected light bouncing off diffuse surfaces.
- Mental Ray offers a method that allows to make more accurate renderings: Final Gather.

#### Indirect Illumination Tab

- Final Gather
- controls for rendering bounced light within an environment



#### Indirect Illumination Tab

- Final Gather
- controls for rendering bounced light within an environment



# Understanding Final Gather

 Direct Illumination- light directly from the source to the object





# Understanding Final Gather

 Indirect Illumination - illumination created by bouncing light rays







### Final Gather

- With Final Gather the calculations of light are divided in two components:
- Direct Illumination
- Indirect Illumination
  - Indirect Illumination from other surfaces (light bounces of direct light)
  - Indirect Illumination from the environment (eg: skydome)



### Exposure Control

- Adjust the output levels of rendering, as if you were adjusting film exposure.
- Use to adjust light balance
- Use mrPhotographic



# Exposure Value (EV)

A combination of the three Photographic Exposure values

- Exposure Values are:
  - •Shutter Speed- duration, in fractions of a second, that the speed open. High exposure.
  - Aparture-Vslize of the opening of the "camera iris," expressed as a ratio (f/stop). Higher value = lower exposure
  - •Film Speed (ISO)- sensitivity of the film, expressed as an index. Higher value = greater exposure.
- Goes from -6 to 16. (higher values are Darker)

Exposure Value: 5.0

Exposure Value: 10.0

# What You Learned Today:

- Photometric vs. Standard Light
- Physics-Based Light Terminology
- Photometric Light Applications
- Daylight system
- Mental Ray Overview
- Indirect Illumination Overview
- Exposure Control Overview