S0804.

- (i) We have $a \le a$ for all a so \sim is reflexive. We have $1 \le 2$ but $2 \not\le 1$, so \sim is not symmetric. If $a \le b$ and $b \le c$ then $a \le c$, so \sim is transitive.
- (ii) $a-a=0=0^2$, so \sim is reflexive. We have $2\sim 1$ as $2-1=1^2$, but $1\not\sim 2$ as -1 is not a square, so the relation is not symmetric. Finally we have $3\sim 2$ and $2\sim 1$ but $3\not\sim 1$ as 2 is not a square, so \sim is not transitive either.
- (iii) $2 \neq 2^2$ so $2 \not\sim 2$, and \sim is not reflexive. We have $4 \sim 2$ but $2 \not\sim 4$ as $2 \neq 4^2$, so the relationship is not symmetric. We have $4 \sim 2$ and $16 \sim 4$ but $16 \not\sim 2$ so the relation is not transitive.
- (iv) We have $1 \not\sim 1$ so \sim is not reflexive. If $a \sim b$ then a+b=0, so b+a=0, so $b \sim a$, hence \sim is symmetric. Finally we have $1 \sim -1$ and $-1 \sim 1$ but $1 \not\sim 1$ so \sim is not transitive.
- (v) We have a-a=0 is an integer, so \sim is reflexive. If a-b is an integer then so is b-a, so \sim is symmetric. Finally if a-b and b-c are integers, then their sum is a-c which is also an integer. So $a\sim b$ and $b\sim c$ implies $a\sim c$, and in particular \sim is also transitive. So in fact this relation is an equivalence relation.
- (vi) $2 \not\sim 2$ so \sim is not reflexive. We know $1 \sim 3$ but $3 \not\sim 1$ so \sim is not symmetric. It is however impossible to find $a,b,c \in S$ with $a \sim b$ and $b \sim c$ (because b would have to be 1 and 3) so the statement " $a \sim b$ and $b \sim c$ implies $a \sim c$ " is true, as if P is false then "P implies Q" is always true whatever the truth value of Q. So this relation is transitive.
- (vii) This relation is reflexive, symmetric and transitive, because it is impossible to find any counterexamples to these statements as S is empty (for example for \sim not to be reflexive we would have to find $a \in S$ with $a \not\sim a$, but we can't find any $a \in S$ at all, so \sim is reflexive etc etc).