Языковые модели

Гусев Илья

Московский физико-технический институт

Москва, 2018

Содержание

- 🚺 Языковые модели
- П-граммы
 - Наивные N-граммы
 - Сглаживание, backoff и интерполяция
- 🗿 Сравнение

Языковые модели

Статистичская языковая модель (statistical language model) - вероятностное распределение над последовательностями слов $P(w_1,...,w_m)$. Применения:

- Распознвание речи (ASR)
- Машинный перевод (МТ)
- PoS-tagging
- OCR
- Распознавание рукописных текстов
- Классификация текстов

В целом, нужны везде, где речь идёт о последовательностях слов. Мы рассматриваем языковые модели именно на уровне слов, но бывают ещё и char-level и subword модели.

Train, validation(dev), test

- Для обучения практически любой языковой модели нужен большой корпус. Достаточно иметь тексты, разбитые на токены.
- Train выборка собираем статистику или учим модель.
- Validation(dev) выборка выбираем гиперпараметры модели, таким образом, чтобы языковая модель лучше работала на этой выборке.
- Test выборка оцениваем качество языковой модели.

Перплексия

$$PP(W) = P(w_1 w_2...w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1 w_2...w_N)}}$$

Средневзвешенное количество слов, которые могут следовать за данным словом.

Пример: язык из 9 символов 0,2,...,9, для каждого из них $P=\frac{1}{10}$.

$$PP(W) = (\frac{1}{10}^{N})^{-\frac{1}{N}} = 10$$

Наивные N-граммы

$$P(w_1^n) = P(w_1)P(w_2|w_1)P(w_3|w_1^2)...P(w_n|w_1^{n-1}) = \prod_{k=1}^n P(w_k|w_1^{k-1})$$

Биграммная модель:

$$P(w_n|w_1^{n-1})\approx P(w_n|w_{n-1})$$

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)} = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

N-граммная модель:

$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$$

Наивные N-граммы

Пример

$$P(I|\langle s \rangle) = 2/3 = .67$$

 $P(Sam|\langle s \rangle) = 1/3 = .33$
 $P(am|I) = 2/3 = .67$
 $P(\langle /s \rangle|Sam) = 1/2 = 0.5$
 $P(Sam|am) = 1/2 = .5$
 $P(do|I) = 1/3 = .33$

Наивные N-граммы

Проблемы

- OOV out of vocabulary: слова, которых не было в словаре обучающей выборки
 - Выбор размера словаря влияет на перплексию
- Нули в test выборке: n-граммы встретились в test, но не встретились в train
- Недооценка не встретившихся п-грамм
- Переоценка низкочастотных п-грамм

Add-k сглаживание

$$P_{Add-k}^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + k}{C(w_{n-1}) + kV}$$

Частный случай: сглаживание Лапласа

$$P_{Laplace}^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

$$c^*(w_n|w_{n-1}) = \frac{(C(w_{n-1}w_n) + 1) \times C(w_{n-1})}{C(w_{n-1}) + V}$$

Интерполяция

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n) \ \sum_i \lambda_i = 1$$

Усложнённый вариант:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1}) + \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1}) + \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Katz backoff

$$P_{BO}(w_n|w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n|w_{n-N+1}^{n-1}), & \text{if } C(w_{n-N+1}^n) > 0\\ \lambda(w_{n-N+1}^{n-1})P_{BO}(w_n|w_{n-N+2}^{n-1}), & \text{otherwise} \end{cases}$$

Не затронуты, но важны

- Good-Turing сглаживание и backoff
- Kneser-Ney сглаживание
- Modified Kneser-Ney сглаживание
- Stupid backoff

Сравнение

MODEL	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JI ET AL., 2015A)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013)	67.6	1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)	52.9	33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)	51.3	20
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX	39.8	0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION	35.8	0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS	47.9	0.23

Полезные ссылки І

Exploring the Limits of Language Modeling https://arxiv.org/pdf/1602.02410.pdf