

Profesionales con Valor

Inteligencia computacional Ingeniería en sistemas computacionales y cibernética

Dr. Roberto Antonio Vázquez Espinoza de los Monteros Semana V, VI y VII

¿Qué es el espacio de búsqueda?

Conceptos básicos

Generación de números aleatorios

- 1. Definir una probabilidad pC [0-1]
- 2. Genera número aleatorio r entre [0-1]
- 3. Si r<pC

Realizar operación

Transformación binario a real

$$r = \frac{r_{max} - r_{min}}{2^l - 1}z + r_{min}$$

Suponga que 2.2 < x < 3.9 y usando cadenas de 5 bits obtenga el valor en número real de x=10101

¿Cómo determinar el número de genes?

$$l = log_2((r_{max} - r_{min}) * 10^p)$$

Donde p es la precisión (número de decimales) que se desea.

Suponga que se quiere codificar la variable x con una precisión de 2 decimales, la cual se encuentra en el rango 0.35 < x < 1.4. ¿Cuántos bits se necesitan?

$$log_2(n) = \frac{log_{10}(n)}{log_{10}(2)}$$

Criterios de paro

- Determinar un número máximo de generaciones
- Hasta que el promedio de las soluciones en la población se estabilice por un cierto número de generaciones.

Evaluando las soluciones

- Al ser un algoritmo heurístico requiere que los resultados se validen estadísticamente.
- Una estrategia es realizar 30
 experimentos usando los mismo
 parámetros y encontrar los siguientes
 datos: media, desviación estándar,
 máximo y mínimo.

Ejercicio.

Maximizar la siguiente función

$$f(x) = x^3 - 4x^2 + x$$

donde -2 < x < 3

Cálculo de la función de aptitud

Población inicial:

1:	011010	1:	-
2:	101011	2:	2
3:	010110	3:	
4:	110101	4:	
5:	100101	5:	
6:	100010	6:	
7:	100101	7:	
8:	110011	8:	

Operador de elitismo:
Selecciona a los mejores
individuos y los copia
directamente a la nueva
población
Aplicar operador
selección, cruza y

selección, cruza y mutación:

Selección por torneo

Población inicial:

1:	011010	1:	1:
2:	101011	2:	2:
3:	010110	3:	
4:	110101	4:	
5:	100101	5:	
6:	100010	6:	
7:	100101	7:	
8:	110011	8:	

Selecciona dos individuos de manera aleatoria (A y B) y determina quien tiene mejor aptitud (G1).

Selecciona dos individuos de manera aleatoria (C y D) y determina quien tiene mejor aptitud (G2).

Cruza

Población inicial:

1:	011010	1:	1:
2:	101011	2:	2:
3:	010110	3:	
4:	110101	4:	
5:	100101	5:	
6:	100010	6:	
7:	100101	7:	
8:	110011	8:	

Aplica operador de cruza al P1 y M1 y construye los individuos resultantes H1 y H2.

Cruza

Población inicial:

1: 011010 1: 26 1: 676

2: 101011 | 2: 43 | 2: 1849

3: 010110 3:

4: 110101 4:

5: 100101 5:

6: 100010 6:

7: 100101 7:

8: 110011 8:

Aplica operador de mutación a los individuos resultantes.

Práctica II

Primera parte

Objetivo: Implementar un algoritmo genético simple, entender las partes que componen un algoritmo genético y aplicarlo a diferentes problemas de optimización.

- 1. Programar un algoritmo genético simple considerando diferentes porcentajes de selección, cruza y mutación.
- 2. Implementar el esquema de codificación para trabajar con números reales.
- 3. Programar la función objetivo descrita en el problema 2 y encontrar la solución.
- 4. Evaluar el desempeño del algoritmo propuesto.
- 5. Elaborar reporte, el cual debe incluir: las secciones revisadas en clase
- 6. Subir a la actividad programa computacional y reporte.

Permutaciones en algoritmos genéticos

Order cross over:

- Seleccionar aleatoriamente una subcadena P1
- Producir un hijo copiando la sub-cadena en las posiciones correspondientes a P1. Las posiciones restantes se dejan en blanco.
- 3. Borrar los valores que ya se encuentran en la sub-cadena P2. La secuencia resultante tiene los valores faltantes.
- 4. Colocar los valores en posiciones no conocidas del hijo de izquierda a derecha.
- 5. Para obtener el segundo hijo, repite los pasos del 1 al 4, pero tomando ahora la sub-cadena de P2

Ejemplo

P1: 9 8 4 5 6 7 1 2 3 10 P2: 8 7 1 2 3 10 9 5 4 6

Sub-cadena: 5 6 7 1 (P1)
H1: X X X 5 6 7 1 X X X

Borrar de P2 Sub-cadena
P2': 8 X X 2 3 10 9 X 4 X

Determinar valores faltantes de H1 sustituyendo con P2'
H1: 8 2 3 5 6 7 1 10 9 4

Permutaciones en algoritmos genéticos

Mutación por intercambio reciproco:

1. Se seleccionan al azar dos puntos y se intercambian estos valores de posición.

Ejemplo

P: 9 8 4 5 6 7 1 2 3 10

* *

H: 9 8 4 1 6 7 5 2 3 10

Problemas que se resuelven con permutaciones

Problema de las N-reinas 2. Problema de Sudoku

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ന	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	80	5	6
9	6	1	5	ര	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Ejercicio

Diseñar una función de aptitud que permita resolver el problema de las N- Reinas y el problema del Sudoku

Práctica II

Segunda Parte

Objetivo: Implementar un algoritmo genético con permutaciones y aplicarlo a diferentes problemas de optimización.

En esta práctica el estudiante resolverá el juego del sudoku o el problema de las N-reinas mediante el algoritmo genético por permutaciones:

- 1. Implementar una función que aplique una operación de cruza para permutaciones.
- 2. Implementar una función que aplique el operador de mutación para permutaciones.
- 3. Implementar un algoritmo genético con por permutaciones
- Implementar una función de aptitud que permita resolver el problema seleccionado
- 5. Evaluar el desempeño del algoritmo propuesto.
- 6. Elaborar reporte, el cual debe incluir: las secciones revisadas en clase
- 7. Subir a la actividad programa computacional y reporte.

Dinámica de grupo (Lunes 5 de marzo)

Esta actividad se divide en cuatro etapas y se realizará en equipos:

- 1. En la primera etapa, cada equipo estudiará los temas asignados relacionados con la cruza y mutación de números reales con base en la información descrita en el Libro del Dr. Coello (Introducción a la computación evolutiva) (15 min).
- 2. En la segunda fase se harán nuevos equipos donde compuestos por un miembro de los equipos previamente formados y cada miembro explicará a su equipo como funciona el tema revisado (30 min).
- 3. En la tercera etapa, se volverán a integrar los equipos originales, seleccionarán un tema, prepararan una presentación y seleccionaran un representante, quien realizará la presentación ante el grupo.(15 min)
- 4. Presentación de los 3 equipos (30 min.)

Equipo 1. Temas 7.6.1, 7.6.2, 7.6.3, 7.6.4,

Equipo 2. Tema 7.6.5, 7.6.6, 7.6.7

Equipo 3 Tema 8.3.1, 8.3.2

Equipo 4 Tema 8.3.3, 8.3.4

Práctica II

Tercera parte

Objetivo: Seleccionar un problema real y resolverlo mediante algoritmos genéticos.

- 1. Describir con detalle cual es el problema a resolver, que información me va generar como resultado el individuo y la función objetivo que se podría plantear para resolver el problema.
- 2. Implementar la función de aptitud que resuelve el problema
- 3. Evaluar el desempeño del algoritmo propuesto.
- 4. Elaborar reporte, el cual debe incluir: las secciones revisadas en clase
- 5. Subir a la actividad programa computacional y reporte.

Benjamín Franklin No. 47 Col. Condesa, 06140, México, D.F.

01800 LASALLE +52 (55) 5278 9500 lasalle.mx

Integrante de :

lasalle.mx