On Longitudinal Emittance

W.D. Klotz, wdklotz@alecli.com

July 26, 2018

1 Emittance Conversions

The standard formula for an upright ellipse in phase-space $\Delta \phi \otimes w$ is:

$$\frac{\Delta\phi^2}{\Delta\phi_0^2} + \frac{w^2}{w_0^2} = 1\tag{1}$$

with $\Delta \phi = \phi - \phi_s$ and $w \equiv \delta \gamma = \Delta W/mc^2$.

 ϕ_s being the synchronous phase, mc^2 the rest energy, W the total energy and γ the relativistic factor. It has the emittance

$$\epsilon_w = \Delta \phi_0 w_0 \tag{2}$$

and units [rad].

The ellipse intersects the $\Delta \phi$ -axis at $\Delta \phi_0$ and the w-axis at w_0 .

Let's change to new coordinates, for instance the pair of canonical variables $\Delta z \otimes \Delta p/p$, as it is used internally in Trace 3D. The transformation from old to new coordinates is: $|\Delta z| = \kappa |\Delta \phi| = \frac{\beta \lambda}{2\pi} |\Delta \phi|$ and $\Delta p/p = \tau w = (\gamma - 1/\gamma)^{-1} w$. This gives the modified ellipse equation:

$$\frac{\Delta z^2}{(\kappa \Delta \phi_0)^2} + \frac{(\Delta p/p)^2}{(\tau w_0)^2} = 1$$
 (3)

which has the transformed emittance

$$\epsilon_z = \kappa \Delta \phi_0 \tau w_0 = \kappa \tau \epsilon_w = \frac{\beta \lambda}{2\pi} (\gamma - 1/\gamma)^{-1} \epsilon_w,$$
 (4)

with units [m].

For the $\Delta\phi\otimes\Delta W$ phase space, because $\Delta W=mc^2w$, we have $\kappa=1$ and $\tau=mc^2$. So that

$$\epsilon_W = mc^2 \epsilon_w \tag{5}$$

with units [rad * eV].

Finally for the $\Delta z \otimes \Delta W$ phase space we get the emittance

$$\epsilon_{zW} = \frac{\beta \lambda}{2\pi} mc^2 \epsilon_w \tag{6}$$

with units [m * eV].

2 Twiss Parameter Values

To simplify we assume the twiss parameter $\alpha=0$. The twiss parameter γ then reduces to $1/\beta$ and only two free parameters ϵ and β remain to describe the ellipse in phase space completely.

For the longitudinal dynamics in the passage of an rf-gap the intersection w_0 on the w-axis is given by

$$w_0 = \frac{\Delta W}{mc^2} = \sqrt{qE_0 T \beta_s^3 \gamma_s^3 \lambda sin(-\phi_s) \Delta \phi_0^2 / 2\pi mc^2}$$
 (7)

$$= \Delta \phi_0 \sqrt{qE_0 T \beta_s^3 \gamma_s^3 \lambda_s in(-\phi_s)/2\pi mc^2}$$
(8)

If w_0 is given $\Delta\phi_0$ follows from (8) and vice versa. Putting $w_0 = \epsilon_w/\Delta\phi_0$ into (8) we get

$$\Delta\phi_0 = \sqrt{\epsilon_w/\sqrt{qE_0T\beta_s^3\gamma_s^3\lambda sin(-\phi_s)/2\pi mc^2}}$$
(9)

and from (9) we get finally

$$\gamma_0 = \epsilon_w / \Delta \phi_0^2 = \sqrt{q E_0 T \beta_s^3 \gamma_s^3 \lambda sin(-\phi_s) / 2\pi mc^2}$$
(10)

and

$$\beta_0 = 1/\gamma_0 \tag{11}$$

NOTE: the two twiss parameters γ_0 and β_0 are independent from the emittance ϵ_w and completely defined by the cavity field E_0 , rf-phase ϕ_s , rf-wavelength λ and particle impuls $\sim \gamma \beta$.

3 Appendix

Table 1: SIMULAC variable names				
$\epsilon_w = \text{emitw}$	$\Delta \phi = \mathrm{Dphi}$	$\Delta \phi_0 = \mathrm{Dphi}0$	w = w	$w_0 = w_0$
$\epsilon_W = \mathrm{emitW}$	$\Delta z = z$	$\Delta W = DW$	$\Delta p/p = \mathrm{Dp2p}$	$\Delta p/p_0 = \mathrm{Dp2p0}$
$\epsilon_z = \text{emitz}$	$\beta_z = \text{betaz}$	$\gamma_z = \text{gammaz}$	$\alpha_z = \text{alphaz}$	$\lambda = lamb$
$Ez_{avg} = EzAvg$	$Ez_{peak} = EzPeak$	$\phi_+ = t phi_1$	$\phi={ t phi_2}$	$\psi = psi$
$\gamma = \text{gamma}$	$\gamma\beta = \mathrm{gb}$	$\beta = \text{beta}$	$E_0T = E0T$	$mc^3 = m0c3$
$mc^2 = m0c2$	$\epsilon_{xi} = exttt{emitx_i}$	$\epsilon_{yi} = exttt{emity_i}$	$\epsilon_{zi} = { t emitz_i}$	$eta_{xi} = \mathtt{betax_i}$
$eta_{yi} = exttt{betay_i}$	$lpha_{xi} = { t alfax_i}$	$lpha_{yi} = exttt{alfay_i}$	$\gamma_{xi} = \texttt{gamax_i}$	$\gamma_{yi} = \texttt{gamay_i}$
$\omega = \text{omg}$	$\phi = \mathrm{phi}$	$\phi_s = \text{phis}$		-