

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Automatización Industrial

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS	
Noveno	3111091PA	102	

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Que el alumno diseñe modelos utilizando especificación de sistemas secuenciales para, posteriormente, realizarlos mediante lenguajes de programación de autómata programable industrial (PLC).

TEMAS Y SUBTEMAS

1. La Automatización Industrial

- 1.1. Historia
- 1.2. Objetivos
- 1.3. Automatismos cableados y programables
- 1.4. El autómata Lógico Programable (PLC)
- 1.5. Fundamentos de Diagrama en Escalera

2. Los Controladores Lógicos Programables

- 2.1. Componentes de un PLC
- 2.2. Configuraciones
- 2.3. Familias de los PLC
- 2.4. El SCAN de un PLC
- 2.5. Conexiones de entradas y salidas

3. Sistemas de programación de los Autómatas Programables

- 3.1. Características generales del ambiente de desarrollo integrado (IDE) (STEP7)
- 3.2. Simulador PLC
- 3.3. Lenguaje de esquema de contactos (LADDER)
- 3.4. Conceptos generales
- 3.5. Operaciones con contactos
- 3.6. Operaciones con bloques
- 3.7. Diseño de sistemas secuenciales
- 3.8. Subrutinas e Interrupciones
- 3.9. Aplicaciones
- 3.10. Lenguaje de lista de instrucciones
- 3.11. Conceptos generales
- 3.12. Instrucciones que operan con variables lógicas
- 3.13. Instrucciones que operan con combinaciones binarias
- 3.14. Instrucciones de temporización y contaje
- 3.15. Instrucciones de control del programa
- 3.16. Aplicaciones

4. El Autómata Programable y las comunicaciones industriales

- 4.1. El computador y el ciclo de proceso de un producto
- 4.2. Diseño asistido por computador
- 4.3. Ingeniería asistida por computador
- 4.4. Fabricación asistida por computador
- 4.5. Fabricación integrada por computador: pirámide CIM
- 4.6. Comunicaciones Industriales
- 4.7. Introducción
- 4.8. Redes de comunicaciones industriales
- 4.9. El autómata programable y las comunicaciones industriales
- 4.10. Comunicación entre el PLC y los dispositivos de campo
- 4.11. Comunicación entre el PLC y otros sistemas electrónicos de control

4.12. Sistemas de control distribuidos

ACTIVIDADES DE APRENDIZAJE

Teoría en el salón de clases.

Simulación utilizando herramientas computacionales.

Realización de prácticas de laboratorio con dispositivos PLC.

Investigación por parte de los estudiantes de temas selectos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Tres exámenes parciales y un final, proyecto final de investigación y aplicación

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Autómatas programables y sistemas de automatización, Enrique Mandado Pérez, Alfaomega 2010 Programmable Controllers. An engineer's guide., E. A. Parr, Newnes Elsevier, 3a edición 2003 Automatización de Procesos Industriales. García Moreno, Emilio. Alfaomega. 2004.

Consulta:

Ingeniería de la automatización industrial. Piedrafita Moreno, Ramón. Alfaomega. 2004

PLC: Automation with Programmable Logic Controllers: A Textbook for Engineers and Technicians. Rohner, Peter. University of New South Wales Press, 1996

Programmable logic controllers, W. Bolton, Elsevier 5a edición 2009

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en automatización.

Vo. Bo.

M.C. VÍCTOR-MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA

DR. AGUSTÍN SANTIAGO ALVARADO VICE! RECTOR ACADEMICO

AUTORIZÓ

JEFATURA DE CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ