

Mateus Alencar Ferreira

U7 - Projetos Práticos

PROJETO DE SISTEMA EMBARCADO

1. Escopo do Projeto

1.1 Apresentação do Projeto

O projeto desenvolvido consiste em um sistema embarcado para monitoramento e controle remoto utilizando a plataforma BitDogLab. O sistema coleta dados ambientais, como temperatura e umidade, processa essas informações e permite interação remota via IoT.

1.2 Título do Projeto

Sistema de Monitoramento simulando DHT11 com BitDogLab.

1.2.1 Link do repositório

Para acessar o link do repositório, acesse: https://github.com/ferreiramateusalencar/final_project_embarcatech .

1.3 Objetivos do Projeto

- Criar um sistema embarcado eficiente e de baixo custo;
- Integrar sensores e atuadores para automação de processos;
- Implementar um firmware otimizado para controle do sistema;
- Permitir acesso e controle remoto via comunicação sem fio.

1.4 Descrição do Funcionamento

O sistema utiliza sensores para coletar dados ambientais, que são processados por um microcontrolador. Esses dados podem ser acessados remotamente por meio de uma interface IoT, permitindo monitoramento e controle em tempo real. Os atuadores podem ser acionados conforme parâmetros definidos pelo usuário.

1.5 Justificativa

Com a crescente demanda por automação e monitoramento remoto, este projeto se justifica por sua aplicabilidade em setores como agricultura, indústria e domótica, proporcionando eficiência e redução de custos operacionais.

1.6 Originalidade

Existem projetos similares, porém, a integração específica com a plataforma BitDogLab e o enfoque modular deste sistema garantem maior flexibilidade e facilidade de implementação em diferentes cenários.

2. Especificação do Hardware

2.1 Diagrama

2.2 Função de Cada Bloco

- Microcontrolador: Processa os dados coletados e controla os atuadores;
- Sensores: Captam informações ambientais como temperatura e umidade;
- Atuadores: Executam ações baseadas nos dados processados;
- Módulo de Comunicação: Permite a transmissão e recepção de dados.

2.3 Configuração de Cada Bloco

- Microcontrolador configurado para leitura periódica dos sensores;
- Sensores calibrados para medição precisa;
- Comunicação sem fio habilitada para envio e recebimento de dados.

2.4 Comandos e Registros Utilizados

- Registro de temperatura e umidade;
- Comandos para acionamento dos atuadores conforme limites estabelecidos;
- Protocolo de comunicação para envio de dados ao sistema remoto.

3. Especificação do Firmware

3.1 Descrição das Funcionalidades

- Leitura periódica dos sensores;
- Processamento de dados e acionamento de atuadores;
- Comunicação remota via Uart e Wifi.

3.2 Definição das Variáveis

- temp: Armazena a temperatura lida pelo sensor;
- umid: Armazena a umidade relativa do ar;

3.3 Inicialização

- Configuração dos sensores e atuadores;
- Inicialização da comunicação sem fio;
- Verificação do estado inicial do sistema.

3.4 Configuração dos Registros

- Configuração de interrupções para leitura eficiente dos sensores;
- Habilitação da comunicação sem fio para monitoramento remoto, com protocolo HTTP.

3.5 Protocolo de Comunicação

Utilização do protocolo HTTP para transmissão de dados em tempo real.

4. Execução do Projeto

4.1 Metodologia

- Definição do escopo e requisitos;
- Seleção e configuração do hardware;
- Desenvolvimento do firmware;
- Testes e validação.

4.2 Testes de Validação

- Testes de funcionamento dos sensores e atuadores;
- Validação da comunicação remota;
- Teste de estabilidade e confiabilidade.

4.3 Discussão dos Resultados

Os testes demonstraram que o sistema opera de forma eficiente, garantindo monitoramento e controle remoto confiáveis. O protocolo de comunicação apresentou baixa latência e alta precisão nos dados transmitidos.

5. Referências

BITDOGLAB. Documentação oficial da plataforma BitDogLab. Disponível em: https://github.com/BitDogLab/BitDogLab-C. Acesso em: 21 fev. 2025.