Homework 3

Kevin Martin CIS675 - Syracuse University

February 9, 2020

1. Question 3

(a) Pseudocode for a greedy algorithm to compute optimal order and minimize wait time:

Sort the service time in ascending order, and serve them in order of increasing scheduling times.

Let n be the list of customers that need to be solved, with each time required t_i as the relevent index in the array:

```
def greedySort(n [])

sort(n); // in ascending order

currentJob = n[1]

for i = 1 to n:

currentJob = currentJob + t_i
```

(b) Claim: the running time of the proposed algorithm is O(nlog n)

Proof. Sorting the list to get the algorithm started is where most of the time is required. Sorting a list of n elements takes O(nlogn) time. The rest of the algorithm can be completed in constant time, O(1). Because the algorithm can be written as $c_1 + (c_1 + c_2) + (c_1 + c_2 + ...c_n)\frac{1}{n}$, we can see that c_1 repeats itself the most times. As such, because it is the shortest time, then no other ordering could be correct. Therefore the greedy strategy holds true.

2. Question 5

(a) To represent the situation as a linear problem, we formulate as follows, letting x_1 be coffee mugs and x_2 be milk glasses:

Objective function $\max 25x_1 + 20x_2$ Constraints $20x_1 + 12x_2 \le 1800$ $x_1/15 + x_2/15 \le 8$ $x_1, x_2 \ge 0$

- (b) Graph of feasible region:
- (c) The coordinates of all vertices of the feasible region are: (0, 0), (90, 0), (45, 75), (0, 120)
- (d) The optimal product mix to maximize daily proift is: 45 coffee mugs at \$ 25 each and 90 milk glasses at \$ 20 each gives a total profit of \$2,625 per day. This is represented on the graph but the furthest out point on on the feasible region, represented by the tangential dotted line.
- 3. Question 3
 - (a) The adjacency matrix representation:

	Α	В	С	D	Ε	F	G	Н	
Α	0	1	0	0	0	1	0	0	
В	0	0	1	0	1	0	0	0	
С	0	0	0	1	0	0	0	0	
D	0	1	0	0	0	0	0	1	
Е	0	0	0	1	0	0	1	0	
F	0	0	0	0	1	0	1	0	
G	0	0	0	0	0	1	0	0	
Н	0	0	0	0	0	0	1	0	

- (b) The adjacency list representation:
 - $A:B\to F$
 - $B:C\to E$
 - C:D
 - $D:B\to H$
 - $E:D\to G$
 - $F:E\to G$
 - G:F
 - H:G
- (c) Table for intermediate visited, pre, and post values of all nodes:

	VISI	ted	(v),	pre(v),	pos	t(v) :	arra	iys																
	٧	٧	pr	ро	V	pr	ро	٧	pr	ро	٧	pr	ро	ν	pr	ро	٧	pr	ро	٧	pr	ро	ν	pr	pc
Α	0	1	1	16																					
В	0					2	15																		
С	0								3	14															
D	0											4	13												
Н	0														5	12									
G	0																	6	11						
F	0																		1		7	10			
Е	0							3															7	8	9
	tim	e	_																						-

(d) Final DFS tree:

4. Question 4

Pseudocode of an efficient algorithm to take in graph G(V, E), represented by an adjacency list, and two vertices $x, y \in V$, where the output is the different paths from x to y in G:

```
//wrapper function to set empty path
def diffPathsWrap(x, y, G)
for i = 1 to (size-1) do
      visited[i] = False
      path = [] //empty array for each path
diffPaths(x, y, G, path)
def diffPaths(x,y, visited, path)
visited[x]=True
if x == y
      return path
else
      for j in G[x] do
             if visited[j] == False
                    return diffPaths(x, y, visited, path)
             path[j].remove //remove current vertex from path
             visited[j] = False
```

- 5. Question 5
 - (a) The order of the strongly connected componets is:

$$\begin{split} A \to B \to E \\ C \\ D \to H \to F \to I \to H \to D \end{split}$$

(b) The source SCC is $A\to B\to E$ and the sink SCC is $D\to H\to F\to I\to H\to D$

(c) Metagraph:

(d) The minimum number of edges one must add to make the graph strongly connected is just one: from $D \to G$. If that edge were added, then we could get to any vertex from any other.