CS 1675

Spring 2020

Cathedral of Learning: G24

Week 03

Normal with unknown standard deviation: Introduction

Last week, we walked through all the details of the normal-normal model...

• Our goal was to learn the unknown mean, μ , given N observations, \mathbf{x} , and ASSUMING the likelihood noise, σ , was known.

We compared the MLE to the Bayesian approach.

• Discussed asymptotic behavior, when the prior standard deviation, τ_0 , approaches infinity and when the sample size, N, approaches infinity.

Normal-normal model with known σ

$$p(\mu|\mathbf{x},\sigma) \propto \prod_{n=1}^{N} \{\text{normal}(x_n|\mu,\sigma)\} \times \text{normal}(\mu|\mu_0,\tau_0)$$

But now...let's relax the assumption on a known σ ...

 Perhaps instead of weighing a 25 dumbbell, I want to weigh myself.

• I no longer feel as confident in being able to just assume a fixed value for σ .

• We now have TWO unknown parameters to learn: μ and σ

The posterior is now a joint distribution between μ and σ conditioned on ${\bf x}$

We denote the joint posterior distribution as:

$$p(\mu, \sigma \mid \mathbf{x})$$

Does the likelihood change?

• The measurement process is essentially the same. I'm still weighing something.

So a Gaussian still seems appropriate as the likelihood for this case:

$$p(\mathbf{x} \mid \mu, \sigma) = \prod_{n=1}^{N} (\text{normal}(x_n \mid \mu, \sigma))$$

What about the prior?

• We now have to encode our belief not just about μ or not just about $\sigma...$

 We have to encode our prior belief about their joint distribution!

$$p(\mu, \sigma)$$

The joint posterior is proportional to the likelihood times the prior

 Bayesian formulation for the unknown mean and unknown likelihood noise:

$$p(\mu, \sigma | \mathbf{x}) \propto \prod_{n=1}^{N} \{\text{normal}(x_n | \mu, \sigma)\} \times p(\mu, \sigma)$$

How do we handle the joint prior?

• Most statistics textbooks focus on factoring the prior as:

$$p(\mu|\sigma)p(\sigma)$$

• Allows making use of a conjugate prior on σ .

• Makes use of the math presented last time, and leads to analytic solutions for the marginal posterior on σ .

However, let's consider a different formulation

• We will assume a-priori the parameters are independent:

$$p(\mu, \sigma) = p(\mu)p(\sigma)$$

• Represents that knowing something about σ does not tell me anything about μ .

The un-normalized posterior distribution can then be written:

$$p(\mu, \sigma | \mathbf{x}) \propto \prod_{n=1}^{N} \{ \text{normal}(x_n | \mu, \sigma) \} \times p(\mu) p(\sigma)$$

• Even though a-priori the parameters are assumed independent, the posterior may have a relationship between the parameters via the observations!

Independent prior specification

• We will continue to use a normal prior on the unknown mean:

$$p(\mu \mid \mu_0, \tau_0) = \text{normal}(\mu \mid \mu_0, \tau_0)$$

• For σ let's use a uniform prior defined between a lower bound, l, and an upper bound, u:

$$p(\sigma \mid l, u) = \text{uniform}(\sigma \mid l, u)$$

The un-normalized joint posterior:

$$p(\mu, \sigma | \mathbf{x}) \propto \prod_{n=1}^{N} \{ \text{normal}(x_n | \mu, \sigma) \} \times \text{normal}(\mu | \mu_0, \tau_0) \times \text{uniform}(\sigma | l, u) \}$$

The joint posterior distribution does **NOT** have an analytic or closed form expression!

Let's start putting some numbers to this problem

- For the prior on my unknown mean weight...
 - I will use $\mu_0=250$ and $\tau_0=2$.
 - Thus, a-priori there is a ≈99% probability that I weigh less than 255 pounds!

- For the prior on the unknown likelihood noise:
 - Set the lower bound to l=0.5 and the upper bound to u=5.5.
 - The units on the bounds are pounds.

Why those bounds on σ ?

• In this example, σ is the sampling noise or measurement error...remember the likelihood!

$$x_n \mid \mu, \sigma \sim \text{normal}(x_n \mid \mu, \sigma)$$

ullet σ is the lack of repeatability of a measurement.

Why those bounds on σ ?

• We are not considering day-to-day variation in my weight.

The noise represents variability in repeated measurements.
 For example, I step on the scale 10 times in a row.

• If I would weigh 250 pounds, $\sigma = 5$ pounds means that there's \approx 95% chance that the scale would read between 240 and 260 across those 10 measurements!

What do the marginal log-prior densities look like?

a-priori μ is centered at $\mu_0=250$ with $au_0=2$

a-priori σ favors no interval in particular between l=0.5 and u=5.5

But, σ is constrained to exist ONLY between the assumed lower and upper bounds!

Putting the two together reveals the log-prior surface

Let's take a look at 10 measurements

Without an analytic expression...how can we proceed?

• Since we have just two unknowns, we can actually visualize the posterior, or rather the log-posterior, surface!

• We know how to write down the un-normalized log-posterior:

$$\log[p(\mu, \sigma \mid \mathbf{x})] \propto \sum_{n=1}^{N} (\log[\operatorname{normal}(x_n \mid \mu, \sigma)]) + \log[\operatorname{normal}(\mu \mid \mu_0, \tau_0)] + \log[\operatorname{uniform}(\sigma \mid l, u)]$$

• So if we specify some candidate values for (μ, σ) we can just calculate the unnormalized log-posterior!

Before visualizing the surface, let's focus on one parameter at a time

• First, plot the log-posterior with respect to μ at a few specific values of σ .

• Then we will plot the log-posterior with respect to σ at a few specific values of μ .

• Lastly, we will examine the log-posterior surface with respect to both μ and σ .

The log-posterior with respect to μ given specific values of σ should look familiar...

The log-posterior with respect to μ given specific values of σ should look familiar...

Posterior plausible values of μ are located where?

Posterior plausible values of μ are located where?

For $\sigma = 1$, what is the MAP on μ ?

For $\sigma = 1$, what is the MAP on μ ?

σ — 1 — 2 — 3 — 4 — 5

But...is $\sigma=1$ more plausible than other values of σ ?

Zooming in, we see that the other curves have higher log-posterior values!

 $\sigma > 1$ appears to be more plausible!

 $\sigma > 1$ appears to be more plausible!

Look at the curvature!

Now consider the log-posterior with respect σ

Are all values of σ equally likely? The answer depends on μ .

Are all values of σ equally likely? The answer depends on μ .

Are all values of σ equally likely? The answer depends on μ .

Are all values of σ equally likely? The answer depends on μ .

Zooming in we can see the very low or very high μ values are not as plausible as others!

σ does not seem to have as sharply defined MAP as we saw on $\mu...$

BUT...remember the vertical scale! Zoom in further to reveal the MAP!

After all of that...let's now look at the surface

- The log-posterior surface with respect to μ and σ will be displayed similar to how the log-prior surface was displayed.
- Fill represents the value un-normalized log-posterior, bright yellow are higher values and dark blue are lower values.
- Combinations that are very implausible are greyed out.
- Contour lines represent the top 10%, 50%, 90%, 99%, and 99.99% of combinations.

We just visualized the joint posterior distribution of 2 unknown parameters!

- It was based on our prior beliefs and 10 observations.
- How did the prior morph or evolve into the posterior we just visualized?
- Let's now step through how the log-posterior surface changes as we sequentially add each data point.
- The following figures show the contours, but do not fill in the color.
- The contours represent the same iso-probability contours as the previous figure.

Now consider up to 50 measurements

How would you describe the contour shapes?

What's happening to the surface as the sample size increases?

• The contours are starting to become...more regular...or more *normal* looking...around the posterior mode.

 What if we could approximate the posterior as a Gaussian centered around the mode?

Laplace, Quadratic, or Normal approximation

 Approximate the joint posterior distribution with a <u>Multivariate Normal</u> (MVN) centered on the <u>MAP</u>.

• Benefits:

- Straightforward to implement.
- Relatively fast to execute.
- Scales to a moderate number of variables.

• Cons:

• Let's see with an example later...

First things first...what's a MVN?

Generalization of the Gaussian distribution to more than 1 dimension.

• Each dimension (variable) is a Gaussian and each subset of variables are MVN.

MVN density function

• There are D elements to the vector of variables:

$$\mathbf{x} = \{x_1, x_2, \dots x_d, \dots, x_D\}$$

 IMPORTANT: D refers to the number of variables, NOT the number of observations!

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

$$p(x_1, x_2, ..., x_d \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Vector of means associated with each element in the x-vector:

$$\mu = \{\mu_1, \mu_2, \dots, \mu_d, \dots, \mu_D\}$$

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

 $D \times D$ (variance-) covariance matrix between all elements of the x-vector.

Off-diagonal elements store the covariance between the variables.

Main-diagonal elements store the variance of each element in the x-vector

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Determinant of the covariance matrix.

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Inverse of the covariance matrix.

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
Transpose of the $(\mathbf{x} - \boldsymbol{\mu})$ vector

$$p(x_1, x_2, \dots, x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
What's this?

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

Multidimensional generalization of the 1-D Gaussian term:

$$\left(\frac{x-\mu}{\sigma}\right)^2$$

$$p(x_1, x_2, ..., x_d | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

 $\sqrt{(x-\mu)^T\Sigma^{-1}(x-\mu)} \text{ is a}$ generalized distance known as the Mahalanobis distance

Bivariate Gaussian – 2D case

- D=2 the vector of elements becomes: $\mathbf{x}=\{x_1,x_2\}$
- Define the correlation coefficient between the two variables as, ρ .
- The mean vector and covariance matrix are:

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Bivariate Gaussian – marginal distributions

• Each variable has a marginal Gaussian distribution:

$$x_1 | \mu_1, \sigma_1 \sim \text{normal}(x_1 | \mu_1, \sigma_1)$$

$$x_2 | \mu_2, \sigma_2 \sim \text{normal}(x_2 | \mu_2, \sigma_2)$$

Holds for higher dimensions!

Bivariate Gaussian – conditional distribution

 The conditional distribution of one variable given the other...is also a Gaussian!

$$x_1 | x_2, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N} \left(\mu_1 + \frac{\sigma_1}{\sigma_2} \rho(x_2 - \mu_2), (1 - \rho^2) \sigma_1^2 \right)$$

Holds for higher dimensions!

When ρ is near zero, the bivariate Gaussian density looks like circles.

As $|\rho|$ increases away from zero the circles look more and like ellipses.

As $|\rho|$ increases away from 0, knowing information about one variable changes what we think about the other!

Consider if $x_1 = 3$, the conditional mean of $x_2 \mid x_1$ depends on the correlation coefficient!

Compare the uncertainty in x_2 if $x_1 = 3$ as ρ changes.

When $|\rho| > 0$ specifying one variable reduces the uncertainty in the value of the other.

