(Abstract) GSOS for Trace Equivalence – Early Ideas

CALCO 2025 - Glasgow

Robin Jourde*, Pouya Partow†, Jonas Forster‡, in collaboration with Stelios Tsampas§, Sergey Goncharov†, Henning Urbat‡

16 June 2025

*ENS de Lyon, Université Savoie Mont Blanc

‡Friedrich-Alexander-Universität Erlangen-Nürnberg

 \S Syddansk Universitet

[†]University of Birmingham

1 (Abstract) GSOS

• a **framework** for specifying reduction rules and semantics of systems \rightarrow rule format

- a **framework** for specifying reduction rules and semantics of systems \rightarrow rule format
- **syntax**: operations with arities

- a **framework** for specifying reduction rules and semantics of systems \rightarrow rule format
- **syntax**: operations with arities
- **behaviour** (LTS): $x \stackrel{a}{\rightarrow} x'$ ($a \in L$ for some fixed set L)

- a **framework** for specifying reduction rules and semantics of systems \rightarrow rule format
- **syntax**: operations with arities
- **behaviour** (LTS): $x \stackrel{a}{\rightarrow} x'$ ($a \in L$ for some fixed set L)
- GSOS rules

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_1}{\rightarrow} y_k \quad x_1 \stackrel{a_2}{\rightarrow} y_{k+1} \quad \dots \quad x_2 \stackrel{a_1}{\rightarrow} y_l \quad \dots \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

- $ightharpoonup x_i, y_i$ distinct variables
- \triangleright u term with variables x_i, y_j

- a **framework** for specifying reduction rules and semantics of systems \rightarrow rule format
- **syntax**: operations with arities
- **behaviour** (LTS): $x \stackrel{a}{\rightarrow} x'$ ($a \in L$ for some fixed set L)
- GSOS rules

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_1}{\rightarrow} y_k \quad x_1 \stackrel{a_2}{\rightarrow} y_{k+1} \quad \dots \quad x_2 \stackrel{a_1}{\rightarrow} y_l \quad \dots \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

- $ightharpoonup x_i, y_i$ distinct variables
- \triangleright u term with variables x_i, y_j
- set of GSOS rules \Rightarrow behaviour of terms

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t + t$$

$$\frac{t \stackrel{a}{\rightarrow} t'}{a.t \stackrel{a}{\rightarrow} t} \forall a \qquad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \qquad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a$$

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t + t$$

$$\frac{t \stackrel{a}{\rightarrow} t'}{a.t \stackrel{a}{\rightarrow} t} \forall a \qquad \frac{t \stackrel{a}{\rightarrow} t'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \qquad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a$$

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t + t$$

$$\frac{t \stackrel{a}{\rightarrow} t'}{a.t \stackrel{a}{\rightarrow} t} \forall a \qquad \frac{t \stackrel{a}{\rightarrow} t'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \qquad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a$$

• syntax functor Σ and behaviour functor H (on a category \mathbb{C})

• syntax functor Σ and behaviour functor H (on a category \mathbb{C})

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t+t \quad \text{on} \quad \Sigma X = 1 + A \times X + X^2$$

$$x \xrightarrow{a} x' \quad \text{on} \quad x' \in k(x)(a) \text{ with } k : X \to HX = \mathcal{P}(X)^L$$

• rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

• syntax functor Σ and behaviour functor H (on a category \mathbb{C})

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t+t \quad \text{on} \quad \Sigma X = 1 + A \times X + X^2$$

$$x \xrightarrow{a} x' \quad \text{on} \quad x' \in k(x)(a) \text{ with } k: X \to HX = \mathcal{P}(X)^L$$

• rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(X)^L) + (X \times \mathcal{P}(X)^L)^2 \to \mathcal{P}(\Sigma^*X)^L$$

• syntax functor Σ and behaviour functor H (on a category \mathbb{C})

$$t \coloneqq 0 \mid a.t \quad \forall a \in L \mid t+t \quad \text{on} \quad \Sigma X = 1 + A \times X + X^2$$

$$x \xrightarrow{a} x' \quad \text{on} \quad x' \in k(x)(a) \text{ with } k : X \to HX = \mathcal{P}(X)^L$$

• rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(X)^L) + (X \times \mathcal{P}(X)^L)^2 \to \mathcal{P}(\Sigma^*X)^L$$

•
$$\rho(*)(a) = \emptyset$$

- syntax functor Σ and behaviour functor H (on a category \mathbb{C})
- rules \rightsquigarrow a natural transformation $\rho_X: \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times \left(X \times \mathcal{P}(X)^L\right) + \left(X \times \mathcal{P}(X)^L\right)^2 \to \mathcal{P}(\Sigma^{\star}X)^L$$

- $\rho(*)(a) = \emptyset$
- $\rho((a',t,T))(a) = \{t\}$ if a = a' and \emptyset otherwise

$$\frac{}{a.t \stackrel{a}{\rightarrow} t} \forall a$$

- syntax functor Σ and behaviour functor H (on a category \mathbb{C})
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times \left(X \times \mathcal{P}(X)^L\right) + \left(X \times \mathcal{P}(X)^L\right)^2 \to \mathcal{P}(\Sigma^{\star}X)^L$$

- $\rho(*)(a) = \emptyset$
- $\rho((a', t, T))(a) = \{t\}$ if a = a' and \emptyset otherwise
- $\quad \quad \rho((t,T),(u,U))(a) = \{t' \mid t' \in T(a)\} \cup \{u' \mid u' \in U(a)\} = T \cup U$

$$\frac{t \xrightarrow{a} t'}{t + u \xrightarrow{a} t'} \forall a \qquad \frac{u \xrightarrow{a} u'}{t + u \xrightarrow{a} u'} \forall a$$

2 Trace equivalence

• many different notions (linear-time branching-time spectrum), eg. bisimilarity, trace equivalence

- many different notions (linear-time branching-time spectrum), eg. bisimilarity, trace equivalence
- important property: congruence

$$\forall \sigma \in \mathcal{O}, (\forall i, x_i \sim y_i) \Rightarrow \sigma(x_1..x_n) \sim \sigma(y_1...y_n)$$

- many different notions (linear-time branching-time spectrum), eg. bisimilarity, trace equivalence
- important property: congruence

$$\forall \sigma \in \mathcal{O}, (\forall i, x_i \sim y_i) \Rightarrow \sigma(x_1..x_n) \sim \sigma(y_1...y_n)$$

Theorem. (D. Turi and G. Plotkin, 1997)

abstract GSOS \Rightarrow bisimilarity is a congruence

- many different notions (linear-time branching-time spectrum), eg. bisimilarity, trace equivalence
- important property: congruence

$$\forall \sigma \in \mathcal{O}, (\forall i, x_i \sim y_i) \Rightarrow \sigma(x_1..x_n) \sim \sigma(y_1...y_n)$$

Theorem. (D. Turi and G. Plotkin, 1997)

abstract GSOS \Rightarrow bisimilarity is a congruence

what about trace equivalence?

• partial finite traces

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \ \Big| \ x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

• partial finite traces

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \left\{ w \in L^n \,\middle|\, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \right\}$$

• $\operatorname{tr}(x) \in \mathfrak{T} := \{ A \subseteq L^* \mid \varepsilon \in A \land A \text{ prefix-closed} \}$

• partial finite traces

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \left\{ w \in L^n \,\middle|\, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \right\}$$

• $\operatorname{tr}(x) \in \mathfrak{T} := \{ A \subseteq L^{\star} \mid \varepsilon \in A \land A \text{ prefix-closed} \}$

Remark. tr is the unique map $X \to \mathfrak{T}$ such that $a.w \in \operatorname{tr}(x) \Leftrightarrow x \stackrel{a}{\to} y \land w \in \operatorname{tr}(y)$ ("coalgebra morphism")

• partial finite traces

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \left\{ w \in L^n \,\middle|\, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \right\}$$

• $\operatorname{tr}(x) \in \mathfrak{T} := \{ A \subseteq L^* \mid \varepsilon \in A \land A \text{ prefix-closed} \}$

Remark. tr is the unique map $X \to \mathfrak{T}$ such that $a.w \in \operatorname{tr}(x) \Leftrightarrow x \xrightarrow{a} y \land w \in \operatorname{tr}(y)$ ("coalgebra morphism")

• trace equivalence: $x \sim y \Leftrightarrow \operatorname{tr}(x) = \operatorname{tr}(y)$

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr a(b+c) =

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr $a(b+c) = \{\varepsilon, a, ab, ac\},\$

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr
$$a(b+c) = \{\varepsilon, a, ab, ac\}$$
, tr $(ab+ac) =$

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr $a(b+c) = \{\varepsilon, a, ab, ac\}$, tr $(ab+ac) = \{\varepsilon, a, ab, ac\}$,

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr $a(b+c)=\{\varepsilon,a,ab,ac\}$, tr $(ab+ac)=\{\varepsilon,a,ab,ac\}$, tr x=

$$\operatorname{tr}(x) = \bigcup_{n \in \mathbb{N}} \Big\{ w \in L^n \, \Big| \, x \overset{w_1}{\to} x_1 \overset{w_2}{\to} \dots \overset{w_n}{\to} x_n \Big\}$$

Example. tr $a(b+c)=\{\varepsilon,a,ab,ac\}$, tr $(ab+ac)=\{\varepsilon,a,ab,ac\}$, tr $x=\{\varepsilon,a,ab,abb,abbb,...\}$

• De Simone rule format (R. de Simone, 1985):

- De Simone rule format (R. de Simone, 1985):
 - no negative premise
 - at most one premise per variable
 - linearity: each variable at most once in u + no x_i such that $x_i \to y_i$ in u

$$\frac{x_i \overset{a_i}{\rightarrow} y_i \quad \dots \quad x_j \overset{a_j}{\rightarrow} y_j}{\sigma(x_1 \dots x_n) \overset{c}{\rightarrow} u}$$

- De Simone rule format (R. de Simone, 1985):
 - no negative premise
 - at most one premise per variable
 - linearity: each variable at most once in u + no x_i such that $x_i \to y_i$ in u

$$\frac{x_i \stackrel{a_i}{\rightarrow} y_i \dots x_j \stackrel{a_j}{\rightarrow} y_j}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

Theorem. (B. Bloom, 1994, restricted to GSOS)

De Simone ⇒ trace equivalence is a congruence

Example. (With negative premises)

$$\dots + \frac{x \xrightarrow{a} y}{f(x) \xrightarrow{a} g(y)} \forall a \qquad \frac{x \xrightarrow{b}}{g(x) \xrightarrow{b} x}$$

Example. (With negative premises)

2.3 De Simone Format

Example. (With more than one premise per variable)

$$\dots + \frac{x \xrightarrow{a} y}{f'(x) \xrightarrow{a} g'(y)} \forall a \qquad \frac{x \xrightarrow{b} x' \quad x \xrightarrow{c} x''}{g'(x) \xrightarrow{a} x' + x''}$$

2.3 De Simone Format

Example. (With more than one premise per variable)

• abstract?

abstract?

• abstract?

Remark. (B. Klin, 2005 and 2009) test suites and logical distributive laws

• recall behaviour $k: X \to HX = \mathcal{P}(X)^L$

abstract?

- recall behaviour $k: X \to HX = \mathcal{P}(X)^L \cong (\mathcal{P}_{pe}(X) + 1)^L = BTX$
 - $ightharpoonup T = \mathcal{P}_{ne}$: effectful/branching behaviour (non-determinism)
 - $B = (-+1)^L$: pure behaviour (labels and termination)

• abstract?

- recall behaviour $k: X \to HX = \mathcal{P}(X)^L \cong (\mathcal{P}_{pe}(X) + 1)^L = BTX$
 - $ightharpoonup T = \mathcal{P}_{ne}$: effectful/branching behaviour (non-determinism)
 - $B = (-+1)^L$: pure behaviour (labels and termination)
- $\nu B = \mathfrak{T}$ set of (partial finite) traces: final B-coalgebra

• abstract?

- recall behaviour $k: X \to HX = \mathcal{P}(X)^L \cong (\mathcal{P}_{ne}(X) + 1)^L = BTX$
 - $ightharpoonup T = \mathcal{P}_{ne}$: effectful/branching behaviour (non-determinism)
 - $B = (-+1)^L$: pure behaviour (labels and termination)
- $\nu B = \mathfrak{T}$ set of (partial finite) traces: final B-coalgebra
- categories of algebras (Eilenberg-Moore) $\mathbf{Set}^T = \mathbf{CSLat}$ category of unbounded complete semi-lattices

• abstract?

- recall behaviour $k: X \to HX = \mathcal{P}(X)^L \cong (\mathcal{P}_{pe}(X) + 1)^L = BTX$
 - $ightharpoonup T = \mathcal{P}_{ne}$: effectful/branching behaviour (non-determinism)
 - $B = (-+1)^L$: pure behaviour (labels and termination)
- $\nu B = \mathfrak{T}$ set of (partial finite) traces: final B-coalgebra
- categories of algebras (Eilenberg-Moore) $\mathbf{Set}^T = \mathbf{CSLat}$ category of unbounded complete semi-lattices
- B lifts (with $\delta^B:TB\to BT$) and $\nu\overline{B}=\nu B$

• abstract GSOS theory in **CSLat**:

$$\overline{\rho}: \overline{\Sigma} (X \times \overline{B}X) \to \overline{B} (\overline{\Sigma}^* X)$$

abstract GSOS theory in CSLat:

$$\overline{\rho}: \overline{\Sigma} (X \times \overline{B}X) \to \overline{B} (\overline{\Sigma}^* X)$$

• universal semantics $\tau: \mu \overline{\Sigma} \to \nu \overline{B}$

• abstract GSOS theory in **CSLat**:

$$\overline{\rho}: \overline{\Sigma} \left(X \times \overline{B} X \right) \to \overline{B} \left(\overline{\Sigma}^{\star} X \right)$$

• universal semantics $\tau: \mu \overline{\Sigma} \to \nu \overline{B}$

• $\operatorname{tr}: \mu \Sigma \xrightarrow{\xi} \mu \overline{\Sigma} \xrightarrow{\tau} \nu B$

• abstract GSOS theory in **CSLat**:

$$\overline{\rho}: \overline{\Sigma} \left(X \times \overline{B} X \right) \to \overline{B} \left(\overline{\Sigma}^{\star} X \right)$$

• universal semantics $\tau: \mu \overline{\Sigma} \to \nu \overline{B}$

- $\operatorname{tr}: \mu\Sigma \xrightarrow{\xi} \mu\overline{\Sigma} \xrightarrow{\tau} \nu B$
- left square \Rightarrow tr is a congruence \rightleftharpoons

• abstract GSOS theory in **CSLat**:

$$\overline{\rho}: \overline{\Sigma} \left(X \times \overline{B}X\right) \to \overline{B} \left(\overline{\Sigma}^{\star}X\right)$$

• universal semantics $\tau: \mu \overline{\Sigma} \to \nu \overline{B}$

- $\operatorname{tr}: \mu \Sigma \xrightarrow{\xi} \mu \overline{\Sigma} \xrightarrow{\tau} \nu B$
- left square \Rightarrow tr is a congruence \rightleftharpoons
- how to get $\overline{\rho}$ natural transformation in **CSLat**?

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\not\rightarrow}$

a_1		a_{k}	b_1		
$x_1 \to y_1$	• • •	$x_1 \to y_k$	$x_1 \not\rightarrow \dots$	x_2	• • •
$\sigma(x_1x_n) \xrightarrow{c} u$					

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\leftrightarrow}$

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_k}{\rightarrow} y_k \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots \qquad x_2 \dots \qquad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

Remark. Only pure premises: observe each variable at each label once and only once

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\leftrightarrow}$

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_k}{\rightarrow} y_k \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots \qquad x_2 \dots \qquad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

Remark. Only pure premises: observe each variable at each label once and only once

natural transformation

$$\rho: \Sigma(X \times HX) \to H\Sigma^*X$$

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\leftrightarrow}$

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_k}{\rightarrow} y_k \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots \qquad x_2 \dots \qquad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

Remark. Only pure premises: observe each variable at each label once and only once

natural transformation

$$\rho: \Sigma(X \times BTX) \to BT\Sigma^{\star}X$$

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\leftrightarrow}$

$$\frac{x_1 \stackrel{a_1}{\rightarrow} y_1 \quad \dots \quad x_1 \stackrel{a_k}{\rightarrow} y_k \quad x_1 \stackrel{b_1}{\rightarrow} \quad \dots \qquad x_2 \dots \qquad \dots}{\sigma(x_1 \dots x_n) \stackrel{c}{\rightarrow} u}$$

Remark. Only pure premises: observe each variable at each label once and only once

natural transformation

$$\rho: \Sigma(X \times BX) \to BT\Sigma^*X$$

- rule format
 - for each x_i and for each a, either $x_i \stackrel{a}{\rightarrow} y$ or $x_i \stackrel{a}{\leftrightarrow}$

$$\frac{x_1 \xrightarrow{a_1} y_1 \dots x_1 \xrightarrow{a_k} y_k x_1 \xrightarrow{b_1} \dots x_2 \dots}{\sigma(x_1 \dots x_n) \xrightarrow{c} u}$$

Remark. Only pure premises: observe each variable at each label once and only once

natural transformation

$$\rho: \Sigma(X \times BX) \to BT\Sigma^{\star}X$$

De Simone rules → Trace-GSOS rules:

$$S(r) = \{r' \text{ Trace-GSOS rule} \mid \text{ each premise of } r \text{ is a premise of } r'\}$$

• characterize "good" Trace-GSOS specifications: smooth and minimally linear

• characterize "good" Trace-GSOS specifications: smooth and minimally linear

Theorem. "good" Trace-GSOS specifications \iff De Simone specifications

• characterize "good" Trace-GSOS specifications: smooth and minimally linear

Theorem. "good" Trace-GSOS specifications \iff De Simone specifications

Theorem. "good" Trace-GSOS specifications $\Longrightarrow \rho$ yields a **natural** transformation $\overline{\rho}$ in **CSLat**

$$\overline{\rho}: \Sigma(X \times BX) \xrightarrow{\rho} BT\Sigma^{\star}X \xrightarrow{BT\xi_X} BT\overline{\Sigma}^{\star}X \xrightarrow{B\sigma_X} B\overline{\Sigma}^{\star}X$$

• characterize "good" Trace-GSOS specifications: smooth and minimally linear

Theorem. "good" Trace-GSOS specifications \iff De Simone specifications

Theorem. "good" Trace-GSOS specifications $\Longrightarrow \rho$ yields a **natural** transformation $\overline{\rho}$ in **CSLat**

$$\overline{\rho}: \Sigma(X \times BX) \overset{\rho}{\to} BT\Sigma^{\star}X \overset{BT\xi_X}{\longrightarrow} BT\overline{\Sigma}^{\star}X \overset{B\sigma_X}{\longrightarrow} B\overline{\Sigma}^{\star}X$$

• 🚧 find an easy/better abstract characterization of "good" Trace-GSOS

• Eilenberg-Moore trace semantics

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category
- works for LTSs

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category
- works for LTSs
- 🚧 easier to check abstract condition

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category
- works for LTSs
- 🚧 easier to check abstract condition
- w other monads: probabilistic distributions

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category
- works for LTSs
- we easier to check abstract condition
- w other monads: probabilistic distributions
- was adequacy of operational models

- Eilenberg-Moore trace semantics
- abstract GSOS in Eilenberg-Moore category
- works for LTSs
- we easier to check abstract condition
- w other monads: probabilistic distributions
- adequacy of operational models

~ Thank you for your attention ~