Mein Titel

Tim Jaschik

May 22, 2025

Abstract. – Kurze Beschreibung ...

Contents

1	TestTitel	2
	1.1 Untertopic	2
	1.2 test4	2
2	Topic 2	2
	2.1 test3	9

1 TestTitel

1.1 Untertopic

Definition A-T15-03-03 (Körper als abelscher Schiefkörper).

Example A-T15-03-04 (Quaternionen als nichtkommutativer Schiefkörper).

- 1.2 test4
- 2 Topic 2
- 2.1 test3

Definition A-T15-04-01 (Potenzreihenring mit Koeffizienten in Ring).

Definition A-T15-04-02 (Polynomring mit Koeffizienten in Ring als Unterring von Potenzreihenring).

Proposition A-T15-03-01 (Ringhomomorphismen bilden Einheiten auf Einheiten ab und induzieren G-Hom auf Einheitsgruppen).

Definition A-T15-03-02 (Schiefkörper als Ring mit Einheitsgruppe = R ohne 0).

Definition TEST-T25-01-09 (TESTBeispiel10). a) Sei (E, π, M) eine lokal triviale Faserung wie in 1.1. Dann heißt E Totalraum, M Basis, π Bündelprojektion und F typische Faser. Für jedes $x \in M$ heißt $E_x = \pi^{-1}(x)$ reale Faser an der Stelle x.

Für $U\subset M$ offen heißt $\varphi:E\mid U\to U\times F$ Bündelkarte und

$$\left\{ (U_{\lambda}, \varphi_{\lambda}) \mid (U_{\lambda}, \varphi_{\lambda}) \text{ Bündelkarte }, \bigcup_{\lambda \in \Lambda} U_{\lambda} = M \right\}$$

heißt Bündelatlas.

Die Abbildung $\varphi_x : E_x \to F, \varphi_x := pr_2 \circ \varphi \mid E_x$ heißt Faserkarte. Sind (U, φ) und (V, ψ) Bündelkarten, so heißt die Abbildung

$$\omega: U \cap V \to \mathrm{Diffeo}(F), x \mapsto \psi_x \circ \varphi_x^{-1}$$

der Bündelkartenwechsel zwischen φ und ψ .

b) Ist G eine Liegruppe und $G \times F \to F$ eine G-Aktion, und gibt es zu jedem Bündelkartenwechsel ω eine differenzierbare Abbildung

$$g: U \cap V \to G \text{ mit } \omega(x)(f) = g(x)f$$

so heißt (E, π, M) ein G-Faserbündel mit Strukturgruppe G.

c) Ist (E, π, M) ein G-Faserbündel mit typischer Faser G und der durch die Linksmultiplikation mit G gegebenen G-Aktion, so heißt (E, π, M) ein Prinzipalbündel oder Hauptfaserbündel.