Université Mohamed Khider Biskra Faculté des SESNV Module: Prob Approf Contrôle $N^{\circ -1}$

Département de Mathématiques Master-1. Mathématiques Appliquées 2019/2020

Exercice 1. .03 points

Soit (Ω, \mathcal{F}, P) un espace de probabilité, \mathcal{G} sous tribu de \mathcal{F} et X une variable aléatoire.

- (1) Montrer que l'esperance conditionnelle $X \longmapsto E(X \mid \mathcal{G})$ est une application lineaire croissante.
- (2) Montrer que $E(E(X \mid \mathcal{G})) = E(X)$.

Exercice 2 04 points

Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$. $(\mathcal{B}(n,p))$: loi binomiale de parametre n et p.) On définit Z=X+Y.

- (1) Quelle est la distribution de Z.
- (2) Quelle est la distribution de $X \mid Z$.
- (3) Trouver $E(X \mid Z)$.

Exercice 3___ .07 points

Soit (X,Y) un couple aléatoire de densité jointe:

$$f_{(X,Y)}(x,y) = \begin{cases} 2xy + \frac{3}{2}y^2 & : & 0 < x < 1, \quad 0 < y < 1, \\ 0 & : & \text{sinon.} \end{cases}$$

- (1) Vérifier que $f(\cdot,\cdot)$ est une densité.
- (2) Trouver les densités marginales $f_Y(y)$, $f_X(x)$ et les densités conditionnelles $f_{X|Y=y}(x)$ et $f_{Y|X=x}(y)$.
- (3) Calculer $P\{(X,Y) \in [0,\frac{1}{2}] \times [0,\frac{1}{2}]\}, P(X < Y).$
- (4) Déterminer $E(Y \mid X = x)$.
- (5) Soit Z une variable aléatoire définie par $Z = E(Y \mid X)$. Quelle est la distribution de Z. Déterminer E(Z).

Exercice 4 _ .06 points

- (1) Montrer au moyen d'un contre exemple qu'une suite de variable aléatoire:

 - (a) $X_n \xrightarrow{P} X$ n'implique pas $X_n \xrightarrow{p.s} X$, (b) $X_n \xrightarrow{Loi} X$ n'implique pas $X_n \xrightarrow{P} X$.
 - (c) $X_n \xrightarrow{L^1} X$ n'implique pas $X_n \xrightarrow{L^2} X$.
- (2) Soit X_n une suite de variable aléatoire de densite de probabilité

$$f_n(x) = n^2 x \exp\left[-\frac{n^2 x^2}{2}\right] \mathbf{I}_{\mathbb{R}^+}.$$

Montrer que X_n converge en probabilité vers 0.

- (3) Soit X_n une suite de variables aléatoires indépendantes suivant toutes la loi uniforme \mathcal{U} sur [0,1]. On note par $Y_n = \max(X_1, X_2, ..., X_n)$ et $Z_n = n(1 - Y_n)$
 - (a) Déterminer la fonction de répartition de Z_n .
 - (b) Etudier la convergence en loi de la suite Z_n .