PROJECT REPORT

A NOVEL METHORD FOR HAND WRITTEN DIGIT RECOGONITION SYSTEM

TEAM ID - PNT2022TMID47347

TEAM LEADER : KOWSHALYA S

TEAM MEMBER : KHAVYA PRIYA S

TEAM MEMBER : KAVYA M

TEAM MEMBER : SAVITHIRI R

TEAM MEMBER : GAYATHIRI T

TABLE OF CONTENTS

CHAPTER	TITLE
1	INTRODUCTION
	1.1 Project Overview
	1.2 Purpose
2	LITERATURE SURVEY
	2.1 Existing problem
	2.2 References
	2.2 Problem Statement Definition
3	IDEATION & PROPOSED SOLUTION
	3.1 Empathy Map Canvas
	3.2 Ideation & Brainstorming
	3.3 Proposed Solution
	3.4 Problem Solution fit
4	REQUIREMENT ANALYSIS
	4.1 Functional requirement
	4.2 Non-Functional requirements
5	PROJECT DESIGN
	5.1 Data Flow Diagrams
	5.2 Solution & Technical Architecture
	5.3 User Stories
6	PROJECT PLANNING & SCHEDULING
	6.1 Sprint Planning & Estimation
	6.2 Sprint Delivery Schedule
7	CODING & SOLUTIONING
	7.1 Feature
	7.2 Feature 2
	7.3 Database Schema
8	TESTING
	8.1 Test Cases
	8.2 User Acceptance Testing

9	RESULTS
	9.1 Performance Metrics
10	ADVANTAGES & DISADVANTAGES
11	CONCLUSION
12	FUTURE SCOPE
13	APPENDIX
	13.1 Source Code

1.1 Project Overview

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Handwritten Digit Recognition is the ability of computer systems to recognize handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

1.2 Purpose

Digit recognition systems are capable of recognizing the digits from different sources like emails, bank quench, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank quench amounts, numeric entries in forms filled up by hand (tax forms) and so on.

LITERATURE SURVEY

2.1 Existing problem

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 References

S. NO	TITLE	AUTHOR	YEAR	ABOUT
1	A Novel	Ali Abdullah	2019	The handwritten digit recognition
	Handwritten Digit	Yahya , Jieqing		problem is a topic of heated debate
	Classification	Tan and Min Hu		in recent years. Despite that there
	System Based on			are enormous convolution al neural
	Convolution al			network algorithms proposed for
	Neural Network			handwritten digit recognition, issues
	Approach			such as recognition accuracy and
				computation time still require
				further improvement.
2	Handwritten	Mayur Bhargab	2020	The OCR is a process of classifying
	Character	Bora,		the optical patterns present in a
	Recognition from	Dinthisrang		digital image to the corresponding
	Images using	Daimary,		characters.he OCR is a process of
	CNN-ECOC	Khwairakpam		classifying the optical patterns
		Amitab,		present in a digital image to the
		Debdatta		corresponding characters.The
		Kandar		character recognition is achieved
				through important steps of feature
				extraction and classification. The

				OCR system simulates the human
				capability to recognize.
3	Handwritten Digit	Ritik Dixit,	2021	Digit recognition has many
	Recognition using	Rishika		applications like number plate
	Machine and	Kushwah,		recognition, postal mail sorting,
	Deep Learning	Samay Pashine		bank check processing, etc. In
	Algorithms			Handwritten digit recognition, we
				face many challenges because of
				different styles of writing of
				different peoples as it is not an
				Optical character recognition. This
				research provides a comprehensive
				comparison between different
				machine learning and deep learning
				algorithms for the purpose of
				handwritten digit recognition.
4	Deep Convolution	Saleh Ally,	2020	Deep Convolution Self-Organizing
	Self-Organizing	Sultan Almotairi		Map Network for Robust
	Map Network for			Handwritten Digit Recognition
	Robust			
	Handwritten Digit			
	Recognition			

2.3 Problem Statement Definition

The problem is recognizing the human handwritten digits by system. The goal is to upload the image of the handwritten digit and identify the digit with accuracy. Digits' are a part of our everyday life, be it License plates on our cars or bikes, the price of a product, speed limit on a road, or details associated with a bank account. The recognition of digits is important because humans can't remember all these numbers ,so there is a need for a system to recognize them.

Handwritten digit recognition is the ability of computers to recognize human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different flavors. The main objective is to compare the accuracy of the models stated above along with their execution time to get the best possible model for digit recognitio

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Group ideas

The common idea among the individual idea

Φ.

DATA SET

STORAGE

LANGUAGE 🖄

Prioritize

The classification of the idea is based on the important and feasibility.

Φ.

Feasibility

Regardless of their importance, which tacks are more leasible than others? (Cost, time, effort, complexity, etc.)

3.3 Proposed Solution

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement	The problem is recognizing the human
		handwritten digits by system. The goal is to
		upload the image of the handwritten digit and
		identify the digit with accuracy
2	Idea/Solution Description	The training and testing has been conducted
		from publicly available MNIST handwritten
		databases. Web based, offline and online
		handwritten digit recognition system is
		developed by using Convolutional Neural
		Network.
3	Novelty/Uniqueness	OCR technology provides higher than 99%
		accuracy with typed characters in high-quality
		images. However, the diversity in human
		writing, spacing differences, and irregularities
		of handwriting causes less accurate character
		recognition, as you can see in the featured
		image.
4	Social Impact/Customer	Handwritten Digit Recognition has various
	Satisfaction	uses such as less time consumption. It is used
		in the detection of vehicle numbers, banks for
		reading cheques, post offices for arranging
		letters, and other tasks.
5	Business Model	The main objective of this work is to ensure
		effective and reliable approaches for
		recognition of handwritten digits and make
		banking operations easier and error free.
6	Scalability of Solution	Recently handwritten digit recognition
		becomes vital scope and it is appealing many
		researchers because of its using in variety of
		machine learning and computer vision
		applications

3.4 Problem Solution fit

CC 1. CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS Which solutions are available to the customers when they face the problem or need to get the job done? What have they tried in the past? What pros & cons do Who is your customer? i.e. working parents of 0-5 y.o. kids *Government employees *There are existing alternative solutions for this problem *banker connections, inavailability of devices such as mobiles and laptops but these approaches are rather inaccurate and are not *people working with hand-written textual data that It is a hard task for the machine because handwritten digits are robust or invariant to rotations and variations. want to recognize and process hand-written digits not perfect and can be made with many different flavors. automatically. *The capability of a computer to fete the mortal The handwritten digit recognition is the solution to this problem *A person who needs to read postal addresses, bank handwritten integers from different sources like images, which uses the image of a digit and recognizes the digit present check amounts, and forms papers, touch defence. in the image. 2. JOBS-TO-BE-DONE / PROBLEMS 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR *Jobs: Recognizing and ascertaining the Customer seeks quality cameras and Hand-written digits are in varying fonts and sizes, thus they are becoming increasingly stable internet connection services. handwritten digits difficult to ascertain due to various factors Customer may also obtain devices such *Problems: Hard to recognize digits, dim such as weakening eye-sight, time as mobiles and laptops lighting, weak eyesight constraints, etc. TR 10. YOUR SOLUTION SL 8. CHANNELS of BEHAVIOUR СН Extract online & offline CH of BE The live recognition rate highly depends Stable internet connection is required for on the digit skew, as automatic de-skewing uploading and processing of the images. was not implemented, but manually performed The proposed solution aims to accurately recognize hand-written digits using deep learning and computer 4. EMOTIONS: BEFORE / AFTER low do customers feel when they face a problem or a job and afterwards? ■ lost, insecure > confident, in control - use it in your communication strategy & design Customers will be able to increase productivity and reduce time taken vision techniques thereby saving costs to the organization and improving employee productivity. Procure modern electronic devices and for tasks. Recognition reveals more information therefore provides more opportunities for personal characteristics estimation, particularly, ensure they're working emotional state

REQUIREMENT ANALYSIS

4.1 Functional requirement

FR NO	FUNCTIONAL REQUIREMENT AND DESCRIPTION
FR-1	Image Data: Handwritten digit recognition is the ability of a computer to
	recognize the human handwritten digits from different sources like images,
	papers, touch screens, etc, and classify them into 10 predefined classes (0-
	9). This has been a topic of boundless-research in the field of deep learning.
FR-2	Website: Web hosting makes the files that comprise a website (code,
	images, etc.) available for viewing online. Every website you've ever visited
	is hosted on a server. The amount of space allocated on a server to a website
	depends on the type of hosting. The main types of hosting are shared,
	dedicated, VPS and reseller.
FR-3	Digit_Classifier_Model: Use the MNIST database of handwritten digits to
	train a convolutional network to predict the digit given an image. First
	obtain the training and validation data.
FR-4	MNIST dataset: The MNIST dataset is an acronym that stands for the
	Modified National Institute of Standards and Technology dataset
FR-5	databases, software, virtual storage, and networking, among others. In
	layman's terms, Cloud Computing is defined as a virtual platform that
	allows you to store and access your data over the internet without any
	limitations.

4.2 Non-Functional requirements

NFR NO	NON-FUNCTIONAL REQUIREMENT
NFR-1	Usability: Handwritten character recognition is one of the practically
	important issues in pattern recognition applications. The applications of digit
	recognition include postal mail sorting, bank check processing, form data
	entry, etc.
NFR-2	Reliability: 1) The system not only produces a classification of the digit but
	also a rich description of the instantiation parameters which can yield
	information such as the writing style. 2)The generative models can perform
	recognition driven segmentation. 3) The method involves a relative.
NFR-3	Performance: The neural network uses the examples to automatically infer
	rules for recognizing handwritten digits. Furthermore, by increasing the
	number of training examples, the network can learn more about handwriting,
	and so improve its accuracy. There are a number of ways and algorithms to
	recognize handwritten digits, including Deep Learning/CNN, SVM,
	Gaussian Naive Bayes, KNN, Decision Trees, Random Forests, etc.
NFR-4	Accuracy: Optical Character Recognition (OCR) technology provides higher
	than 99% accuracy with typed characters in high quality images. However,
	the diversity in human writing types, spacing differences, and irregularities
	of handwriting causes less accurate character recognition.

PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story		Points		Members
		Number				
Sprint-1	Data	USN-1	Import the required	2	High	Kowshalya S,
	Collection		libraries and			Khavya priya
			Collect Dataset .			S
Sprint-1		USN-2	Reshape the data	1	Medium	Savithri R,
			and apply one hot			Kavya M
			encoding			
Sprint-2	Model	USN-3	Add the necessary	2	High	KIavya M,
	Building		layers and compile			Khavya priya
			the model			S
Sprint-2		USN-4	Training the image	1	Medium	Savithri R,
			classification model			Gayathri T
			using CNN			
Sprint-3	Training and	USN-5	Building Python	2	High	Kowshalya S,
	Testing		code and run the			Kavya M,
			application			Savithri R,
						Gayathri T,
						Khavya priya
						S
Sprint-4	Implementati	USN-5	Training the model	2	High	Kowshalya S,
	on of the		on IBM cloud.			Kavya M,
	application					Savithri R,
	and					Gayathri T,
	deployment					Khavya priya
	on cloud					S

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprint	
	Story		Start	Date	Completed	Release	
	Points		Date	(Planned)	(as on	Date	
					Planned End	(Actual)	
					Date)		
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2	022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05	Nov
						2022	
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12	Nov
						2022	
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19	Nov
						2022	

7. CODING & SOLUTIONING

```
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32')
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32')
number_of_classes = 10
Y_train = np_utils.to_categorical(y_train, number_of_classes)
Y_test = np_utils.to_categorical(y_test, number_of_classes)
Y train[0]
array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], dtype=float32)
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(28, 28, 1), activation="relu"))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(Flatten())
model.add(Dense(number of classes, activation="softmax"))
model.compile(loss='categorical_crossentropy', optimizer="Adam", metrics=["accuracy"])
model.fit(X_train, Y_train, batch_size=32, epochs=5, validation_data=(X_test,Y_test))
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from keras.utils import np utils
 from tensorflow.keras.datasets import mnist
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Conv2D, Dense, Flatten
 from tensorflow.keras.optimizers import Adam
 from tensorflow.keras.models import load model
 from PIL import Image, ImageOps
 import numpy
```

```
metrics = model.evaluate(X_test, Y_test, verbose=0)
print("Metrics (Test Loss & Test Accuracy): ")
print(metrics)
Metrics (Test Loss & Test Accuracy):
[0.10052110999822617, 0.9764000177383423]
prediction = model.predict(X test[:4])
print(prediction)
1/1 [======] - 0s 92ms/step
[[1.5678695e-09 1.6640128e-14 2.0494097e-12 1.5698962e-08 5.4015579e-15
 3.6338055e-13 2.2240399e-20 1.0000000e+00 2.9577885e-08 1.9005494e-08]
 [5.8188578e-09 1.2512093e-10 9.9999821e-01 7.4831279e-09 1.0770124e-10
 2.9252167e-18 1.6483800e-06 1.5410843e-14 1.2811967e-07 3.3103555e-12]
 [1.2689595e-09 9.9028254e-01 3.9091717e-08 1.3732340e-10 9.6216686e-03
 2.9094124e-07 1.9340013e-10 4.5208512e-07 9.5003670e-05 2.4108826e-10]
 [1.0000000e+00 7.3556976e-16 3.5439882e-12 4.7910155e-14 3.2022885e-12
 1.5000925e-12 1.5939531e-11 4.1566353e-14 7.7353792e-12 1.2456662e-09]]
print(numpy.argmax(prediction, axis=1))
print(Y_test[:4])
```

8. TESTING

8.1 Test Cases

8.2 User Acceptance Testing

Test Case ID	Feature Type	Component	Test Scenario	Steps To Execute	Test Data	Expected Result	Actual flesuit	Status
tornePage_T C_001	Functional	Home Page	Verify user is able to see the Login/Signup popup when user clicked on My account button	Enter URL and click go Click on My Account icon Nerify login/Signup popup displayed or not	(4)	Logist/Sigmup popup should display	Working as expected	Pans
RegisterPage _1C_003	1.H	Registration Page	Verify the UI elements in flagister/Sigmup page	1.Enter URL and click go 2.Click on My Account dropdown button 3. Verify Ringister/Signup popup with below UR elements: a.name test box b. email text box c. phone number text box d. password text box e. gender test box f. Aiready have an account? Click login		Application should show below UI elements: a.ruams text box b. email text box c. phone number text box d. password text box e. gender text box f. Already have an account? Click login	Working as expected	Pant
legisterPage _TC_002	Functional	Registration Page	Verify the users entering the unique email	1.Enter URL and click go 2.Click on My Account dropdown button 1.Verify Register/Signup page accepts only unique email		Application should allow only unique email address	Working as expected	Pass
RegisterPage _TC_002	Functional	Registration Page	Verify that the user can able to register with valid credentials	1. Enter URL and click go 2. Click on My Account dropdown button 3. Click Register/Signup popup A. Enter name b. Enter email c. Enter phone number d. Enter password e. Enter gender f. Click Register button	19	User should navigate to sign in page	Working as expected	Pass

8.2.1 Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	20	4	2	10	36
Duplicate	1	0	0	1	2
External	2	4	1	2	9
Fixed	3	6	4	10	23
Not Reproduced	1	2	1	1	5
Skipped	1	1	0	1	3
Won't Fix	0	5	3	7	15
Totals	28	22	11	32	99

8.2.2 Testcase Analysis

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	10	0	0	10
Client Application	20	0	0	20
Security	2	0	0	2
Exception Reporting	9	0	0	9
Final Report Output	7	0	0	7
Version Control	2	0	0	2

9. RESULTS

9.1 Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Model: "sequential" Layer (type) Output Shape Param #	from tensorflow.keras.models import load_model modelsload_model("digit.kt") model.summary()
			Model: "sequential"
		conv2d (Conv2D) (None, 26, 26, 64)	Layer (type) Dutput Shape Param *
		640	conv2d (Conv20) (None, 26, 26, 66) 640
		conv2d_1 (Conv2D) (None, 24, 24, 32)	com/2d_1 (Conv20) (None, 24, 34, 32) 18464
		18464	flatten (Flatten) (None, 18432) 0
		flatten (Flatten) (None, 18432) 0	dense (Dense) (fone, 10) 184118
		dense (Dense) (None, 10) 184330 Total params: 203,434 Trainable params: 203,434 Non-trainable params: 0	Total pureme: 200,636 Trainoide pareme: 1993,634 Non-trainphle pareme: 0
2.	Accuracy	Training Accuracy -0.9979166388511658	metrics = model.evaluate(% testi, y testi, verbose=0)
		Training Accuracy -0.5575100308311030	print("Metrics (Test Loss & Test Accuracy): ") print(metrics)
		W-11-1-1 A 0.00000000000000	Metrics (Test Loss & Test Accuracy):
		Validation Accuracy -0.98089998960495	[0.14363985787467957, 0.98889998980495]
			<pre>setrics = model.evaluate(X_train1, y_train1, verbose=0) print("Netrics (Train ioss & Train Accuracy): ") print(metrics)</pre>
			Petrics (Train toss & Train Accuracy): [8.007269436806887388, 0.0979166388511618]
3.	Metrics	Classification Model:	
		precision,recall,f1-score,support	Classification report for classifier: precision result fi-come export
			0 1.00 0.00 0.00 0.00 00 00 0 0.00 00 0 0.00 00

4.	Metrics	Confusion Matrix	Combusion matrix 0
5.	Metrics	Precision-Recall or PR curve	Personal de la califación de la califaci
6.	Metrics	ROC (Receiver Operating Characteristics) curve	The same of the sa

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions
- Prone to occasional errors

11. CONCLUSION

This project demonstrated a web application that uses machine learning to recognize handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 98% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

12. FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- Add support to detect digits from manual writing in canvas
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

13. APPENDIX

DEMO LINK - https://drive.google.com/file/d/1q54LR063baXH4EIPgeh9PS2-pfrSq5L2/view?usp=drivesdk

13.1 Source Code

MODEL CREATION:

```
from keras.datasets import mnist
from matplotlib import pyplot
(X_train,y_train),(X_test,y_test)=mnist.load_data()
print('X_train:' +str(X_train.shape))
print('y_train:' +str(y_train.shape))
print('X_test:' +str(X_test.shape))
print('y_test:' +str(y_test.shape))
from matplotlib import pyplot
for i in range(9):
    pyplot.subplot(330+1+i)
    pyplot.imshow(X_train[i],cmap=pyplot.get_cmap('gray'))
    pyplot.show()
```

RECOGNIZER(PYTHON):

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.utils import np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps import numpy
```

INDEX PAGE(HTML):

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>User Account Dropdown Menu Using Html CSS & Vanilla Javascript</title>
<link rel="stylesheet" href="style.css">
link
href="https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;600&display=swa
rel="stylesheet">
link
href="https://fonts.googleapis.com/css?family=Material+Icons|Material+Icons+Outlined|Materia
l+Icons+Two+
Tone|Material+Icons+Round|Material+Icons+Sharp" rel="stylesheet">
<style>
*{
font-family: "poppins", sans-serif;
margin: 0;
padding: 0;
}
.icons-size{
color: white;
font-size: 14px;
}
.text{
position: fixed;
right: 950px;
top:22px
}
.action{
position: fixed;
right: 1450px;
top:20px
```

```
}
.action .profile{
border-radius: 50%;
cursor: pointer;
height: 60px;
overflow: hidden;
position: relative;
width: 60px;
}
.action .profile img{
width: 100%;
top:0;
position: absolute;
object-fit: cover;
left: 0;
height: 100%;
}
.action .menu{
background-color:#FFF;
box-sizing:0 5px 25px rgba(0,0,0,0.1);
border-radius: 15px;
padding: 10px 20px;
position: absolute;
left: -10px;
width: 200px;
transition: 0.5s;
top: 120px;
visibility: hidden;
opacity: 0;
}
.action .menu.active{
opacity: 1;
top: 80px;
visibility: visible;
.action .menu::before{
background-color:#fff;
```

```
content: ";
height: 20px;
position: absolute;
right: 190px;
transform:rotate(45deg);
top:-5px;
width: 20px;
}
.action .menu h3{
color: #555;
font-size: 16px;
font-weight: 600;
line-height: 1.3em;
padding: 20px 0px;
text-align: left;
width: 100%;
}
.action .menu h3 div{
color: #818181;
font-size: 14px;
font-weight: 400;
}
.action .menu ul li{
align-items: center;
border-top:1px solid rgba(0,0,0,0.05);
display: flex;
justify-content: left;
list-style: none;
padding: 10px 0px;
}
.action .menu ul li img{
max-width: 20px;
margin-right: 10px;
opacity: 0.5;
transition:0.5s
}
.action .menu ul li a{
```

```
display: inline-block;
color: #555;
font-size: 14px;
font-weight: 600;
padding-left: 15px;
text-decoration: none;
text-transform: uppercase;
transition: 0.5s;
}
.action .menu ul li:hover img{
opacity: 1;
.action .menu ul li:hover a{
color:#ff00ff;
}
.msg{
position: fixed;
right: 950px;
left:0px;
top:250px
}
.image {
background-image: url("{{ url_for('static', filename='images/index2.jpg') }}");
background-color: #ccccc;
height: 753px;
width: 1536px;
background-position: center;
background-repeat: no-repeat;
background-size: cover;
}
</style>
</head>
<body>
<div class="image">
<div class="action">
<div class="profile" onclick="menuToggle();">
<img src="{{ url_for('static', filename='images/user.jpg') }}" alt="">
```

```
</div>
<div class="menu">
<h3>
User Account
</h3>
<span class="material-icons icons-size">person</span>
<a href="/register/">Sign-up</a>
<span class="material-icons icons-size">mode</span>
<a href="/login">Sign-in</a>
</div>
</div>
<div class="text">
<h1 style="color: white;">Handwritten digit Recognisor</h1>
</div>
<div class="msg">
<h1 style="color: white;font-size: 50px;">
Numbers
Rule
The
Universe
</h1>
</div>
</div>
<script>
function menuToggle(){
const toggleMenu = document.querySelector('.menu');
toggleMenu.classList.toggle('active')
}
</script></body>
```

HOME PAGE (HTML):

```
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet" type="text/css" href="{{ url_for('static',filename='css/style.css')}}">
<!-- Bootstrap CSS -->
<link rel="stylesheet"</pre>
href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
<title>Handwritten Digit Recognition</title>
</head>
<body>
<div class="bg-nav text-light d-flex flex-column flex-md-row align-items-center p-3 px-md-4</p>
mb-3 bg-dark
border-bottom shadow-sm" >
<h5 class="my-0 mr-md-auto" style="color: black;font-weight: bolder;">Handwritten Digit
Recognisor</h5>
<a class="btn btn-outline-primary" href="/logout" style="color: whitesmoke;">Log Out</a>
</div>
<main role="main">
<section class="album py-3 text-center">
<form action="/predictpage" method="post">
<div class="button">
<input type="submit" class="btn btn-primary btn-block btn-lg" value="Proceed to recognise the
handwritten
digits">
</div>
</form>
</section>
<div class="jumbotron py-8 bg-dark">
<div class="container">
```

```
<div class="row">
<div class="card mb-2 shadow-sm">
<div class="card-body" style="border:5px solid black;">
<h3 style="text-align: center;">Description</h3><br>
The handwritten digit recognition is the ability of
computers to recognize human handwritten digits.
It is a hard task for the machine because handwritten digits are not perfect, vary from person-to-
person
and can be made with many different flavors.
The handwritten digit recognition is the solution to this problem which uses the image of a digit
recognizes the digit present in the image.
</div>
</div><br><br>>
</div>
</div>
</div>
</main>
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-</pre>
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"</pre>
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js"</pre>
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
</body>
</html>
HOME PAGE (CSS):
.bg-nav
background: #e704c9; /* fallback for old browsers */
```

```
background: -webkit-linear-gradient(to right, #E5E5BE, #db0ac2); /* Chrome 10-25, Safari 5.1-6 */
background: linear-gradient(to right, #E5E5BE, #f104b6); /* W3C, IE 10+/ Edge, Firefox 16+,
Chrome 26+,
Opera 12+, Safari 7+ */
}
.row{
margin-top:80px;
```