$12a_{0803} (K12a_{0803})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{10} + u^9 + 9u^8 + 8u^7 + 28u^6 + 21u^5 + 35u^4 + 20u^3 + 15u^2 + 5u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^{10} + u^9 + 9u^8 + 8u^7 + 28u^6 + 21u^5 + 35u^4 + 20u^3 + 15u^2 + 5u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + 3u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{10} - (u^{3} + u)$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ u^{6} + 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - 4u^{3} - 3u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^3 + 2u \\ u^5 + 3u^3 + u \end{pmatrix}$$

$$a_8 = \left(u^4 + 3u^2 + 1 \\ u^6 + 4u^4 + 3u^2 \right)$$

$$a_2 = \begin{pmatrix} -u^5 - 4u^3 - 3u \\ u^5 + 3u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= -4u^9 - 4u^8 - 36u^7 - 32u^6 - 112u^5 - 84u^4 - 140u^3 - 80u^2 - 60u - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$u^{10} + u^9 + 9u^8 + 8u^7 + 28u^6 + 21u^5 + 35u^4 + 20u^3 + 15u^2 + 5u + 1$
c_2, c_8	$u^{10} - u^9 + u^8 + 4u^6 - 3u^5 + 3u^4 + 3u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^{10} + 17y^9 + \dots + 5y + 1$
c_2, c_8	$y^{10} + y^9 + 9y^8 + 8y^7 + 28y^6 + 21y^5 + 35y^4 + 20y^3 + 15y^2 + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.143160 + 0.750904I	2.80855 + 2.01562I	1.02004 - 5.14009I
u = -0.143160 - 0.750904I	2.80855 - 2.01562I	1.02004 + 5.14009I
u = -0.077356 + 1.254400I	9.46500 + 2.79918I	1.80410 - 3.17670I
u = -0.077356 - 1.254400I	9.46500 - 2.79918I	1.80410 + 3.17670I
u = -0.03400 + 1.65519I	-19.6410 + 3.2955I	1.95039 - 2.41562I
u = -0.03400 - 1.65519I	-19.6410 - 3.2955I	1.95039 + 2.41562I
u = -0.237002 + 0.228003I	-0.265356 + 0.793433I	-6.76524 - 8.43244I
u = -0.237002 - 0.228003I	-0.265356 - 0.793433I	-6.76524 + 8.43244I
u = -0.00849 + 1.91177I	-5.52666 + 3.57388I	1.99071 - 2.09226I
u = -0.00849 - 1.91177I	-5.52666 - 3.57388I	1.99071 + 2.09226I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$u^{10} + u^9 + 9u^8 + 8u^7 + 28u^6 + 21u^5 + 35u^4 + 20u^3 + 15u^2 + 5u + 1$
c_2, c_8	$u^{10} - u^9 + u^8 + 4u^6 - 3u^5 + 3u^4 + 3u^2 - u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^{10} + 17y^9 + \dots + 5y + 1$	
c_2, c_8	$y^{10} + y^9 + 9y^8 + 8y^7 + 28y^6 + 21y^5 + 35y^4 + 20y^3 + 15y^2 + 5y + 1$	