Elektronika - Laboratórium Gyakorlat-

Jegyzőkönyv

5. gyakorlat

2023. október 30.

Elméleti összefoglaló

Az ötödik laboron az előző labor tematikáját, témáját visszük tovább, azzal ez az óra szorosan összefügg, ugyan is újra integráló és deriváló áramkörökkel foglalkozunk, pontosabban szűrő körökkel. Ezek a szűrőkörök különböző összeállításban/kapcsolásban tartalmaznak integráló és deriváló áramköröket.

Ezen a laboron az első áramkör, amit vizsgálunk az a **proporcionális integráló** áramkör, vagy más néven **szelektív feszültség osztó**. Ennek az áramkörnek olyan tulajdonsága van, hogy az integráló áramkör kondenzátora előtt, vagy után van egy plusz ellenállás. Ennek eredménye az, hogy az integráló áramkörhöz hasonlóan magas frekvencián már nem roncsolja a jelet, de a tompítása az áramkörnek adott marad.

Fontos elmondani, hogy ennek az áramkörnek két speciális "saját" frekvenciája van. Az egyik az pólus frekvencia (levágási frekvencia), ami ugyan úgy viselkedik, mint a sima integráló áramkörben, csak a két ellenállás eredőjét kell venni. Emellett az új frekvencia, ami szigorúan nagyobb, mint a pólus frekvencia, azért felelős, hogy azután kezd újra "lineárisan" tompítani az áramkörünk. A kettő frekvencia mértani közepe egy speciális hely, mivel ott vesz fel maximumot a frekvencia eltolás, viszont a "két oldalt" végtelenbe tartásnál láthatjuk, hogy nullába tart a frekvencia eltolás. Ezen túl még a karakterisztikájáról fontos megemlíteni, hogy a két frekvencián kívül meglepően lineáris ez az áramkör.

Ennek az átmeneti függvényét hasonló módon kell ábrázolni és kiszámolni az előző gyakorlaton látott módhoz, de az ismétlés sosem árt. A kiszámoláshoz nem egyenesen integrálással állunk neki a végtelen lehetőségre tekintettel (amennyi frekvencia van), hanem az erős Laplace transzformáció eszközt vesszük igénybe. Gyakorlatban ez azt jelenti, hogy áttérünk phasorok számítására. Ez elsőre, esetünkbe másodjára még mindig ijesztő lehet, de nem kell aggódni. Ez lényegében csak azt jelenti, hogy komplex számokkal dolgozunk, ahol az átmeneti függvényünk az a kimeneti függvény és a bemeneti függvény hányadosa. Ennek a hossza (abszolút értéke) a tompítás mértéke, és a szög, amit bezár (emlékeztető: minden komplex szám ábrázolható egy vektorral) a fáziseltolás, amit "elszenved" a bejövő jel. A számolásnál, ha ezt a függvényt, az átviteli függvényt ismerjük, akkor tudjuk a viselkedését pontosan, így előre kiszámíthatjuk. A mérés menete az előző órán vázolt mintavételezési (logaritmikusan lineáris) rendszerrel végezhető.

A másik áramkör, amivel ezen a gyakorlaton foglalkozunk az a **Wien-osztó**. Ez egy összetettebb áramkör már, amely egy integráló és deriváló áramkört tartalmaz, de speciális megkötésekkel rendelkezik, mivel egy osztó: a két ellenállás és a két kondenzátor értéke azonos. Ez az áramkör úgy veszi magára mindkét építő áramkörének a tulajdonságát, hogy alsó frekvenciáknál a deriváló áramkör miatt roncsolja a jelet, a magas frekvenciáknál az integráló áramkör miatt. Viszont a kettő között lévő frekvenciákat átengedi, így ez egy **sáv áteresztő** szűrőkör. Mivel két RC áramkörből áll ez, így nem meglepő, hogy itt is az $\frac{1}{RC}$ speciális értéket fog felvenni. Ezen a frekvencián lesz a legkisebb a tompítási hatása, és ilyenkor a fáziseltolás nem létező tényező, az eredeti jel "fázisban van" a kimeneti jellel.

A jegyzet végére fontos megemlíteni, hogy az átviteli függvények számunkra előre ismertek voltak a jegyeztek alapján, viszont azok kiszámítása két módon is elvégezhető. Egyszerűbb módon, speciálisabb esetben a különböző szűrőköröknél a tompítás szorozható és a fázis késleltetés összeadód. Viszont általánosabb módszer a mátrixos lánckiszámítás módszer.

Feladatok

1. Feladat

Állítsa össze a proporcionális integráló kör kapcsolását! A kiadott R_1 és C értékekhez állítson be olyan R_2 értéket, hogy nagy frekvencián az erősítés értéke -20dB legyen! (A választott csillapításhoz R_2 értékét számítással határozza meg!) Mérje ki az a(f) és $\varphi(f)$ karakterisztikákat 0,1 f_p és $10f_z$ (!) között logaritmikus léptékben! (A frekvenciákat úgy válassza meg, hogy lg f, illetve lg ω ábrázolásánál a mérési pontok egyenlő távolságra legyenek, dekádonként legalább 10 mérési pont legyen! Figyelem: 3 dekád van!)

 R_1 legyen $10k\Omega$, C legyen 22nF.

Adatok

$$R_1 = 10000\Omega$$

$$C = 22 \cdot 10^{-9} F$$

$$f_p = 0.1 Hz$$

$$f_z = 10 Hz$$

Számolás

Ellenállás meghatározása

$$\omega_z = \frac{1}{R_2 \cdot C}$$

$$\omega_p = \frac{1}{(R_1 + R_2) \cdot C}$$

$$a(\omega) = \frac{1 + j\frac{\omega}{\omega_z}}{1 + j\frac{\omega}{\omega_n}}$$

Ebből látjuk, hogy R_2 kiszámítása egy adott frekvencián, mondjuk $\omega_t=10000Hz$ lehetséges, mivel tudjuk, hogy

$$20 \cdot \log(a(\omega_t)) \approx -20dB$$

2023. október 30.

$$20 \cdot \log \left(\left| \frac{1 + j \frac{\omega_t}{\omega_z}}{1 + j \frac{\omega_t}{\omega_p}} \right| \right) = -20 dB$$

A jegyzet alapján ezt átalakítható a következő formára:

$$20 \cdot \log \left(\sqrt{\frac{1 + j\frac{\omega_t^2}{\omega_z^2}}{1 + j\frac{\omega_t^2}{\omega_p^2}}} \right) = -20dB$$

Ez az egyenlet innentől megoldható a logaritmus függvény tulajdonságainak, a hatványozás tulajdonságainak és a mérlegelv használatával. Az eredmény visszahelyettesítve, adódik, hogy:

 $R_2 \approx 1111,1\Omega$

Az alábbi táblázat tartalmazza az elméleti értékeket.

	Mérési frenvencia (Hz)	Átvitel (dB)	Szög (°)
1	65.1089	-0.0428	-5.1377
2	81.9673	-0.0676	-6.4541
3	103.1907	-0.1067	-8.0979
4	129.9095	-0.1678	-10.1408
5	163.5464	-0.2630	-12.6614
6	205.8927	-0.4096	-15.7372
7	259.2037	-0.6320	-19.4281
8	326.3182	-0.9623	-23.7503
9	410.8104	-1.4382	-28.6399
10	517.1798	-2.0971	-33.9196
11	651.0910	-2.9671	-39.2895
12	819.6753	-4.0562	-44.3637
13	1.0319e+03	-5.3477	-48.7441
14	1.2991e+03	-6.8037	-52.0969
15	1.6355e+03	-8.3732	-54.1920
16	2.0589e+03	-10	-54.9033
17	2.5920e+03	-11.6268	-54.1920
18	3.2632e+03	-13.1964	-52.0969
19	4.1081e+03	-14.6524	-48.7441
20	5.1718e+03	-15.9439	-44.3637
21	6.5109e+03	-17.0330	-39.2895
22	8.1968e+03	-17.9030	-33.9196
23	1.0319e+04	-18.5619	-28.6399
24	1.2991e+04	-19.0377	-23.7503
25	1.6355e+04	-19.3680	-19.4281
26	2.0589e+04	-19.5905	-15.7372
27	2.5921e+04	-19.7371	-12.6614
28	3.2632e+04	-19.8323	-10.1408
29	4.1081e+04	-19.8934	-8.0979
30	5.1718e+04	-19.9325	-6.4541
31	6.5109e+04	-19.9573	-5.1377

Mérés

	Mérési frenvencia (Hz)	Átvitel (dB)	Szög (°)
1	65.1089	0	-5.2000
2	81.9673	0	-6.5000
3	103.1907	0	-8.1000
4	129.9095	0	-10.1000
5	163.5464	0	-12.6000
6	205.8927	-1	-15.7000
7	259.2037	-1	-19.2000
8	326.3182	-1	-23.5000
9	410.8104	-1.5000	-28.2000
10	517.1798	-2.1000	-33.2000
11	651.0910	-3	-38.4000
12	819.6753	-4	-43
13	1.0319e+03	-5.3000	-47.4000
14	1.2991e+03	-6.6000	-50.5000
15	1.6355e+03	-8.2000	-52.8000
16	2.0589e+03	-9.7000	-53.5000
17	2.5920e+03	-11.2000	-53
18	3.2632e+03	-12.7000	-50.3000
19	4.1081e+03	-14.2000	-48.1000
20	5.1718e+03	-15.8000	-42.8000
21	6.5109e+03	-16.5000	-39.5000
22	8.1968e+03	-17.7000	-32.5000
23	1.0319e+04	-18.2000	-27.8000
24	1.2991e+04	-18.7000	-23.3000
25	1.6355e+04	-19.1000	-18.2000
26	2.0589e+04	-19.1000	-17.2000
27	2.5921e+04	-19.3000	-14
28	3.2632e+04	-19.5000	-10.7000
29	4.1081e+04	0	0
30	5.1718e+04	-19.5000	-8.7000
31	6.5109e+04	0	0

Megjegyzés: A mérésnél az "extrém" alacsony és magas frekvenciáknál az eszközök limitációi miatt a pontosság, kicsit elcsúszik. Illetve, a táblázatban a 0 értékek a 29. és 31. mérési pontnál azt jelölik, hogy nem sikerült az eszközt beállítani megfelelő (vagy megközelítő) frekvenciára.

2. Feladat

Állítsa össze a Wien-osztót és mérje ki az erősítés-, valamint a fáziseltolás-frekvencia-karakterisztikákat! R legyen $10k\Omega$, C legyen 6.8nF.

Adatok

$$R = 10000\Omega$$

 $C = 6.8 \cdot 10^{-6} F$

Számítás

$$Z_1 = R + \frac{1}{jC\omega}$$

$$Z_2 = \frac{1}{\frac{1}{R} + jC\omega}$$

$$a(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

	Mérési frenvencia (Hz)	Átvitel (dB)	Szög (°)
1	234.0514	-20.2942	73.1416
2	272.8839	-19.0622	70.4758
3	318.1592	-17.8629	67.4379
4	370.9464	-16.7058	64.0006
5	432.4918	-15.6015	60.1462
6	504.2484	-14.5623	55.8709
7	587.9105	-13.6006	51.1898
8	685.4533	-12.7288	46.1388
9	799.1799	-11.9572	40.7744
10	931.7754	-11.2931	35.1683
11	1.0864e+03	-10.7398	29.3980
12	1.2666e+03	-10.2968	23.5360
13	1.4768e+03	-9.9607	17.6396
14	1.7218e+03	-9.7262	11.7448
15	2.0074e+03	-9.5880	5.8660
16	2.3405e+03	-9.5424	-0
17	2.7288e+03	-9.5880	-5.8660
18	3.1816e+03	-9.7262	-11.7448
19	3.7095e+03	-9.9607	-17.6396
20	4.3249e+03	-10.2968	-23.5360
21	5.0425e+03	-10.7398	-29.3980
22	5.8791e+03	-11.2931	-35.1683
23	6.8545e+03	-11.9572	-40.7744
24	7.9918e+03	-12.7288	-46.1388
25	9.3178e+03	-13.6006	-51.1898
26	1.0864e+04	-14.5623	-55.8709
27	1.2666e+04	-15.6015	-60.1462
28	1.4768e+04	-16.7058	-64.0006
29	1.7218e+04	-17.8629	-67.4379
30	2.0074e+04	-19.0622	-70.4758
31	2.3405e+04	-20.2942	-73.1416

Mérés

res	Mérési frenvencia (Hz)	Átvitel (dB)	Szög (°)
1	234.0514	-20.2000	72.2000
2	272.8839	-19	69.4000
3	318.1592	-17.8000	66.4000
4	370.9464	-16.8000	63.3000
5	432.4918	-15.6000	59.2000
6	504.2484	-14.6000	55.2000
7	587.9105	-13.7000	50.6000
8	685.4533	-12.8000	45.8000
9	799.1799	-12.1000	40.8000
10	931.7754	-11.4000	34.6000
11	1.0864e+03	-10.8000	29.3000
12	1.2666e+03	-10.5000	24.3000
13	1.4768e+03	-10.1000	18
14	1.7218e+03	-9.8000	11.1000
15	2.0074e+03	-9.7000	5.4000
16	2.3405e+03	-9.7000	1
17	2.7288e+03	-9.7000	-5.5000
18	3.1816e+03	-9.8000	-9.9000
19	3.7095e+03	-10.2000	-18.8000
20	4.3249e+03	-10.4000	-29
21	5.0425e+03	-11	-28.4000
22	5.8791e+03	-11.2000	-33
23	6.8545e+03	-12	-40
24	7.9918e+03	-13	-46.9000
25	9.3178e+03	-13.4000	-49
26	1.0864e+04	-14.3000	-53.5000
27	1.2666e+04	-15.1000	-57.1000
28	1.4768e+04	-16.9000	-63.5000
29	1.7218e+04	-17.3000	-64.8000
30	2.0074e+04	-18.8000	-68.9000
31	2.3405e+04	-20.8000	-73.1000

3. Feladat

Ábrázolja lg ω függvényében a vizsgált áramkörök Bode-diagramjait, továbbá az erősítés dB-ben kifejezett értékét (egy-egy grafikonon), valamint a fáziseltolódás mért értékeit!

4. Feladat

Hasonlítsa össze a Wien-osztó esetében az a_{max} , továbbá a proporcionális integráló kör esetében a φ_{min} számított és mért értékeit! Adja meg a relatív eltérést!

Elméleti válasz: A Wien-osztónál tudjuk, hogy az $\frac{1}{RC}$ értéknél találhatjuk a legnagyobb a értéket, így ott a legkisebb a tompító hatás.

$$\rho_{rel} = \frac{a_{m\acute{e}rt} - a_{n\acute{e}vleges}}{a_{n\acute{e}vleges}} \cdot 100\% = \frac{-9,7dB + 9,54dB}{-9,54dB} \cdot 100\% \approx 1,68\%$$

Elméleti válasz: A proporcionális integráló áramkörnél tudjuk, hogy a nullához tartva (integráló áramkör) és a végtelenül nagy frekvenciákhoz tartva (deriváló áramkör) lesz minimális a fázis eltolódás.

Stefán Kornél Vad Avar