

Linneuniversitetet Kalmar Växjö

Preformance Engineering's Assignment

Author: Adam Rashdan Supervisor: Diego Perez Semester: Spring 2020 Course code: 2DV608

Introduction

This report shows the results of the mathematical representation for a software system that executes web requests from users from the Internet.

Exercise A:

1. calculate the average number of visits V_k to the WinnerPaymentServer

$$Sk = 0.3s$$

Snice 20% of the user session goes to WinnerPaymentServer after the WebServer that is means

$$Ck = C . 20\% = 80 . 0.2 = 16$$

Form the formula
$$Sk = Bk/Ck \Rightarrow 0.3 = Bk / 16 \Rightarrow Bk = 4.8$$

Form the formula
$$Dk = Bk / C \Rightarrow Dk = 4.8/80 \Rightarrow Dk = 0.06$$

From the formula
$$Dk = Vk \cdot Sk = 0.06 = Vk \cdot 0.3 = Vk = 0.06/0.3$$

$$V_k = 0.2$$

2. calculate the service time S_k of the BettingServer

Snice 60% of the user session goes to BettingServer after the PlayerEngagementServer that is means

$$Ck = C . 60\% = 80 . 0.6 = 48$$

$$Bk = T \cdot 40\% \implies Bk = 60 \cdot 0.4 \implies Bk = 24s$$

From the formula $Sk = Bk/Ck \implies Sk = 24 / 48 \implies Sk = 0.5$

$$Sk = 0.5$$

i

Exercise B:

Model:

Service Time:

WebServer

WinnerPaymentServer

PlayerEngagementServer

BettingServer

Delay 15 minutes

Routing probabilities:

WebServer

PlayerEngagementServer

Resources:

PlayerEngagementServer

Utilization and Throughput of each of the four components

Activity Diagram:

