العلامة		عناصر الإجابة (الموضوع الأوّل)								
مجموعة	مجزأة				(0)	وصوع الاو	رائم	مر الإجابة	عداه	
									اط):	التمرين الأوّل (05 نقا
	کل									(1
	بيانين 0.25	ء ليتوسفيري	5 . ردا	قشرة	. 4	3 . ليتوسفير		2 . رداء	1 . قشرة	
	x11)			طية	محيم	قار <i>ي</i>		(برنس)	قارية	
	(0.25	7 1 1 1 2 1 1	10	-1 -	0	1,11 0		ليتوسفيري	: -16	أسماء البيانات المرقمة
	ملاحظة:	نواة داخلية	. 10	. نواة رجية		 الرّداء السّفلي 	مير	7 . أستينوسه	 6. ليتوسفير محيطي 	
2.75	بالنسبة للبيانين			 5	_	، ــــــــــــــــــــــــــــــــــــ			٠٠٠ ي	
	ین 3 و 6	. 10 مىلىب	سائل	. 9	. صلب	. لدن 8	7	6 . صلب	3 . صلب	الحالة الفيزيائية
	تمنح									(صلب، لدن، سائل)
	0.25	غابرو			ت	2 . بيريدوتيا		رانیت	1. غ	الصّخر الاندساسي
	لكليهما إذا ذكر	صخر ممیز								المميز
	فقط	ه لیس	ة رغم أنا سي)							
	ليتوسفير	يمان	سي) C . لا	,	<u> </u>	B . غوتتبر		وهو	Α. Α	اسم الانقطاع
										2) النّص العلمى:
										*
										المعايير
		الأرضية	ل الكرة	٤) داخا	S) و (S	الموجات (تشار	(ف سرعة ان	• اختلا	المعايير
						ia.		رف سرعة ان ي يتوقف عل		المعايير الأساسية
						ia.			والذو	المعايير
			ميزيائية ا	عالة الف	بائية والح	لبيعة الكيمب	ی الم	ي يتوقف عل	والذع التي	المعايير الموارد الأساسية التي يتضمنها
2.25	×8 0.125		ميزيائية ا	عالة الف والصّل	بائية والح السّائلة	لَّبيعة الكيمب أي الأوساط	ى الم	ي يتوقف عل تخترقها.	والذو التي • تنتش	المعايير الموارد الأساسية التي يتضمنها
2.25			ميزيائية ا	عالة الف والصّل	بائية والح السّائلة	لَّبيعة الكيمب أي الأوساط	ى الم	ي يتوقف علـ تخترقها. ر الموجات ر الموجات	والذو التي • تنتش	المعايير الموارد الأساسية التي يتضمنها
2.25			ميزيائية ا	عالة الف والصّل	ائية والح والسّائلة وساط الم	لَّبيعة الكيمب في الأوساط فقط في الأو	ی الع (P) (S)	ي يتوقف علـ تخترقها. ر الموجات ر الموجات	والذو التي • تنتش • تنتش . وجود 5 انق	المعايير الموارد الأساسية التي يتضمنها
2.25			سزیائیة به	مالة الفا والصّل صّلبة	ائية والح السّائلة ساط الم البرنس	نَّبيعة الكيمب في الأوساط فقط في الأو ين القشرة و	ی الط (P) (S) مىل ب	ي يتوقف علا تخترقها. ر الموجات ر الموجات طاعات:	والذي التي • تنتش • تنتش . وجود 5 انقط	المعايير الموارد الأساسية التي يتضمنها
2.25			میزیائیة به	مالة الف والصّل صّلبة نوسفير	ائية والح السّائلة ساط الم البرنس والأستيا	لَّبيعة الكيمب في الأوساط فقط في الأو ين القشرة و أن الليتوسفير	ی الع (P) ف (S) ر صل ب	ي يتوقف علا تخترقها. ر الموجات ر الموجات طاعات: اع موهو يفح	والذي التي • تنتش • تنتش • انقش • انقط • طبقا	المعايير الموارد الأساسية التي يتضمنها
2.25		للمادة	ميزيائية بة لي	مالة الف والصّا صلبة نوسفير السف	ائية والح السّائلة ساط الم البرنس والأستيا	نبيعة الكيمب في الأوساط فقط في الأو ين القشرة و الليتوسفير ستينوسفير	ى الح (P) i (S) ر مىل ب ىل بير ن الا	ي يتوقف علا تخترقها. ر الموجات طاعات: اع موهو يفط تفصد للكلك تفصد	والذي التي • تنتش • تنتش • وجود 5 انقط • انقط • انقط	المعايير الموارد الأساسية التي يتضمنها
2.25		للمادة	ميزيائية بة لي	مالة الف والصّا صلبة نوسفير السف	ائية والح السّائلة ساط الم البرنس والأستيا	لبيعة الكيمب في الأوساط فقط في الأو ين القشرة و ساليتوسفير ستينوسفير بين برنس	ى الح (P) ف (S) ب صل ب ل بير ن الا يفصل	ي يتوقف علا تخترقها. ر الموجات طاعات: اع موهو يفد ت LVZ تفصد اع يفصل بي	والذي التي • تنتش • تنتش • وجود 5 انقط • انقط • انقط • انقط	المعايير الموارد الأساسية التي يتضمنها
2.25		للمادة	ميزيائية ببة لي إة (طبقة	مالة الف والصّا صلبة نوسفير السف) والنو	ائية والح السّائلة إلبرنس والأستيا والمعطف (صلب	تبيعة الكيمب في الأوساط فقط في الأو ين القشرة و ستينوسفير ستينوسفير بين برنس مائلة).	ى الم (P) ف (S) ب مل بين ن الا يفصل لأقل س	ي يتوقف علا تخترقها. ر الموجات طاعات: ناع موهو يفد ت LVZ تفصد ناع يفصل بيا	والذي التي • تنتش • تنتش • وجود 5 انقط • انقط • انقط • انقط الخار	المعايير الموارد الأساسية التي يتضمنها

تابع للإجابة النموذجية لموضوع اختبار مادة: علوم الطبيعة والحياة/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

	. تتزايد سرعة الموجات الزلزالية بزيادة كثافة الوسط الذي تخترقه .	الربط بين الموارد
025.×2	. كل تغير في سرعة الموجات الزلزالية يدل على وجود انقطاع	
	مقدمة تتضمن مشكلا.	التنظيم والهيكلة
0.75	العرض يتضمن الموارد الأساسية	
	الخاتمة: سمحت هذه الدراسات ببناء نموذج تصوري يعرض لبنية الكرة	
	الأرضية مكونة من عدة أغلفة متحدة المركز تفصلها انقطاعات.	

رمة	العا	(täht co in a th ä do Nt die		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)		
		التّمرين الثّاني (07 نقاط):		
		الجزء الأوّل:		
		1) تحليل الشّكل (أ) من الوثيقة (1): نكتفي بالتحليل بذكر ما يلي:		
		يُمثل الشّكل (أ) مخطط يوضح تأثير الأنزيمين (Cox-1) و(Cox-2) بحيث:		
1.5	0.5	م يُحوّل انزيم Cox-1 حمض أراشيدونيك إلى برستاغلوندين من النّمط الأوّل الذي يُحفز على		
		افراز المخاط لحماية الجدار الدّاخلي للمعدة.		
	0.5	- يُحَوّل أنزيم Cox-2 حمض أراشيدونيك إلى برستا غلوندين من النّمط الثّاني الذي يُسبِبُ الحمى والألم.		
	0.5	. الاستنتاج: الأنزيمين (Cox-1) و (Cox-2) يؤثران على نفس الرّكيزة ويختلفان في نوعية التّأثير		
	0.5	عليها (التّأثير النّوعي المزدوج).		
		2) توضيح دور دواء إيبوبروفان وإبراز أعراضه الجانبية:		
02	1	- يستعمل دواء إيبوبروفان كمضاد للاتهاب لأنه يُثبط أنزيم Cox-2 مسببا اختفاء الحمى والألم.		
02	1	. غير أن له أعراضا جانبية ناتجة عن تثبيطه لأنزيم Cox-1 مما يُنقص من إفراز المخاط الواقي		
		للجدار الدّاخلي للمعدة.		

العلامة		/ t " £ t
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		الجزء الثّاني:
		1) التّعليل:
1.5	0.75	- تأثير الأنزيمين (Cox-1) و (Cox-2) على نفس الرّكيزة يُعلَّل بتشابه االبنية الفراغية للموقع
1.5		الفعال للأنزيمين مما يسمح بتثبيت نفس الرّكيزة (حمض أراشيدونيك).
	0.75	 يُؤثر إيبوبروفان على نفس الأنزيمين لأن له بنية فراغية شبيهة ببنية الرّكيزة تُمَكِّنُهُ من الارتباط بالموقع
		الفعال لكلا الأنزيمين.
		2) تفسير منحنى الشّكل (ب) من الوثيقة (2):
	0.5	ا يكون نشاط أنزيم $\frac{1}{\cos^{-1}}$ بطيءا إذ يصل $\frac{1}{\cos^{-1}}$ عند $\frac{9}{\cos^{-1}}$ عند $\frac{1}{\cos^{-1}}$
0.4		ميكرو مول/ل، يرجع ذلك لضعف ارتباط هذا الدواء مع الموقع الفعال للأنزيم.
01	0.5	غيرَ أن نشاط أنزيم Cox-2 ينخفض بشكل سريع وشديد، إذ يصل 0,9 = CI ₅₀ ميكرو مول/ل
		إلى أن يكاد ينعدم ابتداءا من2 ميكرو مول/ل و يرجع ذلك إلى قوة ارتباط دواء سلكوكزيب
		بالموقع الفعال لوجود تكامل بنيوي عال معه.
		3) الحل المقترح:
	1 في الحالة	· - أن تكون الأدوية المُستهدِفة لنّشاط أنزيم ما لا تؤثر على نشاط أنزيم آخر
	في الحالة الحلول	حلول أخرى مثلا:
01	الأخري	- عدم تناول الدواء إلا باستشارة الطبيب
	تمنح 	- التقليل من استهلاك الأدوية، الخ.
	نصف العلامة	ملاحظة: يقبل كل حل مرتبط بالسياق (دواء ناجع مع أعراض جانبية محدودة)
		التّمرين الثّالث (08 نقاط):
		الجزء الأوّل:
		1) استخراج علاقة بروتين (Her 2) بتطور الخلايا السرطانية للثّدي:
	0.25	من الشّعل (أ): تُركِّب الخلايا (A) كميات كبيرة من بروتين (Her 2) بينما تُركِب الخلايا (B)
0.1		كميات ضئيلة منه.
01	0.25	من الشّكل (ب): بعد سبعة أيام من الزّرع يلاحظ تزايدا كبيرا في عدد الخلايا (A) مقارنة بعدد
	0.25	الخلايا (B).
	0.5	العلاقة: زيادة إنتاج بروتين (Her 2) يرفع من سرعة تكاثر الخلايا (A) السّرطانية.

		2) اقتراح فرضية تُبيّن طريقة علاجية:
01	01	للحد من تكاثر خلايا هذا النمط من سرطان الثّدي تستعمل مواد تثبط بروتين (Her 2)
		ملاحظة: تُقبل كلّ فرضية تُشير إلى استهداف بروتين (Her 2).

		الجزء الثّاني:
		1) تحليل النّتائج الموضحة في الجدول (أ) من الوثيقة (2):
		تمثل الوثيقة نتائج تطور عدد الخلايا السرطانية A و B في غياب وفي وجود تراكز مختلفة
		لتراستوزوماب.
		. في غياب تراستوزوماب يكون عدد الخلايا السرطانية A مرتفعا إذ يصل إلى 600 مليون بينما
	0.7	عدد الخلايا B يكون منخفضا جدا ، مما يدل على وجود إفراط في تكاثر الخلايا السرطانية A.
0.75	0.5	. في وجود تراستوزوماب بتركيز 2 ملغ/مل نسجل انخفاضا كبيرا في عدد الخلايا السرطانية A
		إلى 200 مليون خلية وعند تركيز 20 ملغ /مل ينخفض عدد الخلايا A إلى 50 مليون خلية
		أي كلما زاد تركيز تراستوزوماب نق <mark>ص عدد الخلايا ا</mark> لسرطانية.
		بينما يبقى عدد الخلايا B ثابتا، مما يدل على أن تراستوزوماب يؤثر على الخلايا السرطانية A
	0.25	ولا يؤثر على الخلايا السرطانية B.
		ومنه نستنتج أن تراستوزوماب يحد من تكاثر الخلايا السرطانية A.
		2) تفسير آلية تأثير جزيئة (Trastuzumab) على الخلايا السّرطانية مع تعليل صحة
	0.5	الفرضية المقترحة:
	0.5	- من الشّكل (ب): ترتبط مادة تراستوزوماب نوعيا بالبروتين الغشائي (Her 2) وتوقف تحفيزه
		للخلايا السّرطانية على التكاثر.
		- من الشّكل (ج): - من الشّكل (ج):
	0.5	
	0.5	. بعد المعالجة بالأجسام المضادة: نلاحظ انخفاضا تدريجيا في عدد الخلايا السّرطانية (A).
2.25		نتيجة الارتباط النوعي للأجسام المضادة بـ(Her 2) فيقل عدد (Her 2) الحر مما يُخَفِّضُ من
	0.5	سرعة تكاثر الخلايا السرطانية A.
	0.3	. بعد المعالجة بالبالعات نسجل انخفاضا سريعا في عدد الخلايا السّرطانية (A) حتى ينعدم
		نتيجة تنشيط البالعات التي تملك مستقبلات غشائية نوعية ترتبط مع الأجسام المضادة
	0.25	لتسهيل بلعمة الخلايا السرطانية.
	0.25	. ومنه يمكن المصادقة على صحة الفرضية التي تنص على استهداف الأجسام المضادة لـ (Her
		(2

		3) تقديم مقترح حول إمكانية استغلال نتائج هذه الدّراسة في الكشف المبكّر عن سرطان الثّدي:
		يمكن الكشف المبكر عن سرطان الثّدي بتحديد كمية (Her 2) في الخلايا السّرطانية بتقنية الوسم
01	01	المناعي عن طريق الأجسام المضادة (أو تراستوزوماب) المفلورة.
		تقبل الاقتراحات:
		. استغلال المؤشر الذات على كثافة (Her 2)، وذلك لتغير كميته خلال مراحل المرض.
		الجزء الثّالث: تتضمن الإجابة تركيبا للمعلومات الأساسية التالية:
	0.25	. تدخل الأجسام المضادة في القضاء على الاجسام الغريبة بشكل عام.
		- تستجيب العضوية بإنتاج أجسام مضادة للأجسام الغريبة قصد القضاء عليها، فكيف تساهم هذه
		الجزيئات في إقصاء الأجسام الغربية بما في ذلك سرطان الثّدي؟
		- الأجسام المضادة جزيئات ذات طبيعة بروتينية تنتمي إلى مجموعة الغلوبيلينات المناعية من نوع
	0.25×4	(γ) غلوبيلين.
		- يرتبط الجسم المضاد بالمستضد ارتباطا نوعيا نتيجة التكامل البنيوي بين محددات المستضد وموقع
		تثبيت خاص بها على مستوى الجسم المضاد، يؤدي تشكل المعقد المناعي إلى إبطال مفعول
		المستضد.
02		- يتم التّخلص من المعقدات المناعية بعملية البلعمة حيث يتثبت المعقد المناعي على المستقبلات
		الغشائية النّوعية للبالعات الكبيرة بفضل التّكامل البنيوي بين هذه المستقبلات وموقع تثبيت خاص
		يوجد في مستوى الجزء التّابت من الجسم المضاد مما يسمح باقتناص المعقد المناعي وتخريبه
		" بواسطة الأنزيمات الحالّة فَتَشَكُل المعقد المناعي يُسَرّع من عملية الاقتناص.
	0.25	. تدخل الأجسام المضادة في القضاء على الخلايا السرطانية (من هذا النمط من سرطانات الثدي)
		. تمنع الأجسام المضادة تكاثر خلايا سرطان الثّدي نتيجة تعطيل (Her2) حيث تُشكّل معقدات مناعية
	0.25	تسرع تدخل البالعات في القضاء على الخلايا السّرطانية.
	0.25	- إذن يمكن تطوير أجسام مضادة تستهدف أنواعاً أخرى من البروتينات الغشائية التي تُميّز مختلف
		السرطانات.

رمة	العا	عناص الإجابة (الممضوع الثّان)		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)		
		0 نقاط):	رين الأوّل (5	التّمر
	6x0.25	ت المرقمة من 01 إلى 06:	- كتابة البيانا	(1
		ىدى، 2: مستضد، 3: معقد (CMHI – بيبتيد مستضدي)		
		C – بيبتيد مستضدي) ، 1: LT4 في LT4 نام		
2.50			- التعرف على	-
	2x0.25	خلية مصابة (مستهدفة).	` ,	
		ة أوبالعة كبيرة (ماكروفاج أو CPA)	ι Ο /	
	2x0.25	نمطي الاستجابة:		
	2XU.23	بة (أ): استجابة من <mark>اع</mark> ية ذات وساطة خلوية. بة (ب): استجابة مناعية ذات وساطة خلطية		
			النص العلمي:	
		المعايير		(-
		. تركيب جزيئات CMHI على على مستوى الشّبكة الهيولية الفعالة	الموارد التي	
		. تُقدم البروتينات الفيروسية، بروتينات الخلايا ال <mark>سر</mark> طانية على سطح	يتضمنها	
	×7	أغشية الخلايا العارضة مرتبطة بجزيئات الـ CMHI إلى الخلايا LT8.	النص	
	0.25	. تنشيط الاستجابة المناعية ذات وساطة خلوية	العلمي	
		. بلعمة المستضد، هضمه جزئيا، تركيب بجزيئات الـCMHII ا		
		ـ يرتبط محدد المستضد بجزيئات CMHII على مستوى الليزوزوم		
2.50		- تقدم البيبتيدات مرتبطة بجزيئات CMHII إلى الخلايا LT4 تنشيط الاستجابة المناعية ذات وساطة خلطية.		
	0.05	. الربط بين نوع CMH و الخلايا المنشطة وطبيعة الاستجابة المناعية	الربط بين	
	0.25		الموارد	
		مقدمة تتضمن مشكلا.	التنظيم التنظيم	
		يتسبب دخول مولد الضد في الخلايا المصابة أو في الخلايا العارضة في	والهيكلة	
	0.5	اختيار نمط الاستجابة المناعية النوعية. العرض يتضمن الموارد الأساسية		
		الغرص ينصم الموارد الاساسية الخاتمة: عرض الببتيد المستضى يحدد نمط الاستجابة المناعية التي		
		المحالفة. عروض الببية المستضعي يحدد للمحاد السجاب المعاطية الدي		

لامة	العا	/ •, 5 • • • • • • • • • • • • • • • • •
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		التّمرين الثّاني: (07 نقاط)
		الجزء الأقل:
		تحليل الوثيقة
	0.5	يمثل الشَّكل(أ) تطور الخلايا السّرطانية في غياب وفي وجود مادة الرّيسين بتركيز 10 ميكروغرام/مل
	0.5	- في غياب مادة الرّيسين نلاحظ تكاثر الخلايا السّرطانية بشكل كثيف وعشوائي.
		- في وجود مادة الرّبسين بتركيز 10 ميكروغرام/مل نلاحظ تكاثر الخلايا السّرطانية بشكل ضعيف
		ومنتظم.
	0.5	الاستنتاج: مادة الرّيسين تثبط (أو يحد) تكاثر الخلايا السّرطانية.
		يمثل الشّكل (ب) نتائج متابعة نسبة إدماج كل من التّايمدين واللوسين المشعين لعينات من الخلايا
3.50		السّرطانية تم حضنها في غياب وفي وجود تراكيز متزايدة من مادة الرّيسين.
	0.50	- في غياب مادة الرّيسين نلاحظ دمج كل من التّايمدين واللوسين المشعين بنسبة 100% من طرف
		الخلايا السّرطانية.
	0.50	– في وجود مادة الرّيسين وبتركيز متزايدة حتى 10 م <mark>يك</mark> روغرام /مل، تقل نسبة دمج التّايمدين المشع
	0.50	في الـ ADN إلى55% واللوسين المشع في البروتين المتشكل إلى20% من طرف الخلايا
		السرطانية .
	0.50	الاستنتاج: مادة الرّيسين تثبط تركيب البروتين وبالتالي تَضاعُف الـ ADN في الخلايا السّرطانية.
	0.1	الرّبط بين تكاثر الخلايا السّرطانية والظّواهر الحيوية:
	01	. تركيب البروتين يسمح بتضاعف الـ ADN وبالتالي تتكاثر الخلايا السّرطانية.
		الجزء الثّاني:
		1) تحليل المنحنيات وإبراز المشكلة:
	0.25	*يمثل الشَّكل (أ) تطور نسبة دمج اليوريدين بدلالة تغر تركيز مادة الرّيسين حيث نلاحظ ثبات
	0.50	نسبة دمج اليوريدين المشع عند قيمة أعظمية بنسبة 100% مهما زاد تركيز الرّيسين.
	0.50	الاستنتاج: الرّيسين لا يؤثر على دمج اليوريدين وبالتّالي لا يمنع عملية الاستنساخ.
	0.25	*يمثل الشَّكل (ب) تطور ادماج الحمض الأميني فينيل ألانين المشع بدلالة الزّمن حيث:
		في غياب مادة الرّيسين وإضافة متعدد اليوريدين مع الفينيل ألانين المشع نلاحظ دمج الفينيل الانين

	0.25	في متعدد الفينيل ألانين وتزداد كمية الدّمج مع الزّمن.
		- في وجود مادة الرّيسين وإضافة متعدد اليوريدين مع الفينيل ألانين نلاحظ دمج طفيف للفينيل
2.5	0.50	الانين يمكن إهماله.
	0.50	الاستنتاج: تعيق مادة الرّيسين تركيب البروتين من خلال إعاقة عملية التّرجمة.
	0.75	*إبراز المشكل: إذا كانت مادة الرّيسين لا تؤثر على عملية الاستنساخ وتعيق عملية التّرجمة فما
		مستوى تأثيرها؟
		. كيف يؤثر الريسين على ألية الترجمة؟
		2) تقديم حل للمشكلة باستغلال الوثيقة (3)
01	0.25	 في غياب مادة الرّيسين يتشكل ريبوزوم وظيفي وتتم عملية التّرجمة ويتركب البروتين.
		- في وجود مادة الرّبسين لا يتشكل رببوزوم وظيفي فلا تتم عملية التّرجمة ولا يتم تركيب البروتين
	0.75	حيث تتثبت مادة الرّبسين على اله ARNr (28s) التحت الوحدة الرّببوزومية الكبرى مما يمنع
		تشكل ريبوزوم وظيفي وهذا يعيق عملية الترجمة فلا يتم تركيب البروتين.
		التّمرين الثّالثّ: (08 نقاط)
		الجزء الأوّل:
		(1) تحليل الوثيقة (1):
		تمثل الوثيقة رسومات تخطيطية لمشبك مثبط ونتائج قياس تغيرات التيار الأيوني والكمون
		الغشائي للغشاء بعد المشبكي في اليوم الأوّل وبعد 60 يوم من الولادة حيث:
		. في اليوم الأوّل من الولادة: يؤدي تنبيه النهاية قبل المشبكية إلى تحرير الـ GABA وتثبته على
		المستقبلات القنوية فتتدفق شوارد الـ Cl نحو الخارج فنسجّل تيارا أيونيا خارجا يؤدي إلى زوال
	01	استقطاب الغشاء بعد المشبكي (توليد PPSE).
1.75		بعد 60 يوما من الولادة: يؤدي تنبيه النّهاية قبل المشبكية إلى تحرير الـGABA وتثبُته على
1./3		المستقبلات القنوية مسببا تدفق شوارد الـ Cl نحو الدّاخل فمُسجّل تيارا أيونيا داخلا يؤدي إلى
		فرط في استقطاب الغشاء بعد المشبكي (توليد PPSI).
		الاستنتاج: يطرأ على مشبك الـGABA تحول فيزيولوجي من مشبك منبه إلى مشبك مثبط خلال
		المراحل الأوّلي من الولادة.
	0.75	المشكلة العلمية: كيف يُفسَّر تغير اتجاه تدفق شوارد الـ Cl على مستوى المشبك قبل وبعد
		التغيرات الفيزيولوجية؟
		ملاحظة: تُقبل صياغات أخرى للمشكلة العلمية تصب في نفس السّياق.
		مثال: كيف نفسر أثر الـ GABA على تدفق شوارد الكلور على مستوى المشبك قبل وبعد التغيرات
		الفيزيولوجية؟

		2) اقتراح فرضية:
		. قبل النضج: تتدخل آلية تُحدث تراكم شوارد الـ Cl في الداخل، تثبيت GABA على المستقبلات
		المرتبطة بالكيمياء يسمح بتدفق لشوارد الـCI حسب تدرج التركيز نحو الخارج محدثا زوال
0.75	0.75	الاستقطاب.
		. بعد النضج: تتدخل آلية تُحدث تراكم شوارد الـ Cl في الخارج، تثبيت GABA على المستقبلات
		المرتبطة بالكيمياء يسمح بتّدفق لشوارد الـ Cl حسب تدرج التركيز نحو االداخل محدثا افراط في
		الاستقطاب.
		الجزء الثّاني:
	0.5	1) استخراج أهم مميزات البروتينات الغشائية الممثلة في الشّكل (أ) من الوثيقة (2):
	0.5	- مستقبلات الـ GABA المنشطة بـ GABA تعمل وفق تدرج التّركيز (ظاهرة الميز).
01	0.25	- NKCCl بروتین ضمنی یلعب دور مضخة تعمل علی إدخال شوارد(Cl ⁻) عکس تدرج الترکیز
		بظاهرة النقل الفعال.
	0.25	. KCC2 بروتین ضمني یلعب دور مضخة تعمل علی إخراج شوارد(Cl ⁻) عکس تدرج الترکیز
		بظاهرة النقل الفعال.
		2) التّاكد من صحة الفرضية المقترحة باستغلال معطيات الوثيقة (2):
		الشَّكل (أ):
		- في اليوم الأوّل من الولادة يتميز الغشاء بعد المشبكي بتواجد مضخات الـ NKCC1 التي تضخ
	0.50	شوارد (Cl-) نحو الدّاخل، تنشيط مستقبلات القنوية للـ GABA يسمح بتدفق شوارد (Cl-) نحو
		الخارج.
		- في اليوم 60 من الولادة يتميز الغشاء بعد المشبكي بتواجد مضخات الـ KCC2 التي تضخ شوارد (Cl-)
		نحو الخارج، تنشيط مستقبلات القنوية للـ GABA يسمح بتدفق شوارد (Cl-) نحو الدّاخل.
		الشّكل (ب): - من اليوم الأوّل إلى اليوم 15 بعد الولادة يتزايد التّركيز الدّاخلي لشوارد (-C1) من (2
02	0.50	وت) لتصل قيمة عظمى (3 وت).
	0.50	- من اليوم 15 إلى اليوم 40 بعد الولادة ينخفض التركيز الدّاخلي لشوارد (Cl-) تدريجيا من
		(3 وت) ليصل قيمة دنيا (1 وت)،
		- من اليوم 40 إلى اليوم 60 بعد الولادة ثبات التَّركيز الدَّاخلي لشوارد (Cl ⁻) عند القيمة (1 وت).
		الشَّكل (ج): - عند الولادة: تقدر نسبة تعبير الـ ARN _m الخاص بـ NKCC1 ب وت) بينما
	0.50	تكون نسبة تعبير الـ $ m ARN_m$ الخاص بـ $ m KCC2$ معدومة.
	0.50	- من اليوم الأوّل إلى اليوم5: تزايد نسبة تعبير الـ ARN _m الخاص بـ NKCC1 بمقدار الضِعف
		لتصل إلى قيمة عظمى ($2وت$) بينما يسجّل تزايد ضئيل في نسبة تعبير الـ ARN_m الخاص بـ
		.KCC2

	1	
		- من اليوم 5 إلى اليوم 15: انخفاض نسبة تعبير اله ARNm الخاص بـ NKCC1 من (2 وت)
		الى (0,5 وت) بينما يستمر تزايد نسبة تعبير اله ARN_m الخاص بـ $KCC2$ لتصل إلى قيمة
		عظمي تقدر بـ (1,5 وت).
		- من اليوم 15 إلى اليوم 60: استمرار انخفاض نسبة تعبير الـ ARNm الخاص بـ NKCC1 حتى
		تنعدم بينما تثبُت نسبة تعبير الـ ARNm الخاص بـ KCC2 عند القيمة الأعظمية (1,5 وت).
		ومنه: خلال الأيام الأوّلي من الولادة يكون التّعبير المورثي للـ NKCC1 عاليا مما يؤدي إلى تركيب
		مضخات NKCC1 المسؤولة عن ضخ شوارد (Cl-) نحو الدّاخل فيرتفع تركيز (Cl-) الدّاخلي، ولذا
		تثبت اله GABA على المستقبلات القنوية يُسبب خروج شوارد (Cl-) عبرها محدثة زوال في
	0.50	الاستقطاب (تأثير تنبيهي).
		في اليوم 60 بعد الولادة يكون التّعبير المورثي للـ KCC2 عاليا مما يؤدي إلى تركيب مضخات
		KCC2 المسؤولة عن ضخ شوارد (Cl) نحو الخارج فينخفض تركيز (Cl) الدّاخلي، ولذا تثبت
		اله GABA على المستقبلات القنوية يسبب دخول شوارد (Cl-) عبرها محدثة فرط في الاستقطاب
		(تأثير تثبيطي) وبذلك ينضج المشبك التتبيطي. وهذا يُؤكد صحة الفرضية المقترحة سابقا.
		3) حل مبني على أسس علمية لعلاج أشخاص بالغين يعانون من اضطرابات عصبية ناتجة عن
0.50	0.50	تراكم شوارد الـ(Cl-) في هيولى الخلية بعد مشبكية:
0.50	0.50	. استعمال مواد كيميائية مثبطة عمل مضخات NKCC
		. استعمال أدوية تنشط عمل مضخات الـKCC2
		الجزء الثّالث: النّص العلمي: تتضمن الإجابة تركيبا للمعلومات الأساسية التالية:
		للمشابك التثبيطية دور كبير في العمل المنسق للجهاز العصبي خلال مراقبته لمختلف وظائف
	0.5	الجسم وذلك بتدخل بروتينات غشائية عالية التخصص.
		فكيف تتدخل البروتينات الغشائية في آلية عمل المشبك المثبط؟
		. تخرِج مضخات الـKCC2 شوارد (Cl-) فتتراكم على سطح الخلايا العصبية
02		. وصول الرّسالة العصبية إلى الزّر المشبكي يؤدي إلى انفتاح القنوات الفولطية للكالسّيوم.
	×6 0.25	. دخول الكالسّيوم إلى هيولى الخلية قبل المشبكية يُحفز تحرير الـGABA في الشّق المشبكي.
	0.23	. تثبت الـGABA على مستقبلاته القنوية النوعية يؤدي إلى انفتاحها ودخول شوارد (Cl-).
		. يُسبب التدفق الدّاخلي للـ(Cl-) فرطا في استقطاب الخلية بعد المشبكية مولدا PPSI.
		. تُخرِج مضخات الـKCC2 من جديد شوارد (Cl) لتعيد تراكيزها الى حالتها الأصلية (تدرج
		التّركيز).