Car Price Prediction Project Report

1. Introduction

Project Objective

The goal of this project is to develop a machine learning model that predicts the price of used cars based on various features such as manufacturer, model, engine volume, mileage, and fuel type. This project follows a structured data science pipeline including data preprocessing, exploratory data analysis (EDA), model training, hyperparameter tuning, API deployment, and version control.

Tools & Technologies Used

Programming Language: Python

• Libraries: Pandas, NumPy, Scikit-learn, XGBoost, FastAPI, Uvicorn

• Model Deployment: Render

• Version Control: GitHub

• Notebook: Jupyter Notebook

2. Data Preprocessing

Dataset

The dataset contains multiple features relevant to used cars. The key variables include:

• Levy: Tax-related attribute

• Manufacturer: Car brand

• Model: Specific car model

• **Production Year**: Manufacturing year of the vehicle

• Category: Type of vehicle (e.g., sedan, SUV)

• Engine Volume: Engine capacity in liters

• Mileage: Distance driven

• **Cylinders**: Number of engine cylinders

• **Doors**: Number of doors

• **Fuel Type**: Petrol, diesel, hybrid, etc.

• Gearbox Type: Automatic, manual, etc.

Data Cleaning & Transformation

• Handling Missing Values: Missing values in Levy were replaced with the median.

• Feature Engineering:

- Extracted numerical values from Engine Volume.
- o Converted categorical variables into numerical representations.
- Standardized text-based features to lowercase.
- One-Hot Encoding: Categorical features such as Drive wheels, Gearbox type, and Fuel type were converted into one-hot encoded variables.
- Label Encoding: Applied to categorical columns for better model compatibility.

3. Exploratory Data Analysis (EDA)

Correlation Heatmap

- A **correlation matrix** was plotted to identify relationships between features and the target variable (Price).
- Key Findings:
 - o Mileage and Production Year showed strong relationships with car price.
 - Fuel type and gearbox type had moderate impacts.

Feature Distributions

- Histograms and boxplots were used to visualize the distributions of key numerical variables.
- Outlier Treatment: Winsorization was applied to Mileage, Engine Volume, and Levy to limit extreme values.

4. Model Selection & Training

Models Compared

- 1. Linear Regression
- 2. Random Forest Regressor
- 3. XGBoost Regressor

Performance Metrics

- The models were evaluated using:
 - o Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - o R-Squared Score (R2)

Best Performing Model

• XGBoost Regressor achieved the highest accuracy and lowest error, making it the final model choice.

5. Hyperparameter Tuning

To optimize the XGBoost model, **GridSearchCV** was used to fine-tune hyperparameters:

```
• n_estimators: [100, 200, 300]
```

```
• max depth: [3, 5, 7]
```

• learning rate: [0.01, 0.1, 0.2]

The **best combination** found was:

```
n_estimators=200
```

- max depth=5
- learning rate=0.1

6. Model Deployment

API Development using FastAPI

A RESTful API was built using **FastAPI** to allow users to input car details and receive a predicted price.

API Endpoints

- GET / → Returns a welcome message.
- POST /predict → Takes car features as input and returns the predicted price.

Example API Request

Request:

```
{
    "Levy": 1500

    "Manufacturer": 3,

    "Model": 25,

    "Prod_year": 2018,

    "Category": 2,

    "Leather_interior": 1,

    "Engine_volume": 2.0,

    "Mileage": 45000,

    "Cylinders": 4,
```

```
"Doors": 4,
     "Wheel": 1,
     "Color": 5,
     "Airbags": 6,
     "Drive 4x4": false,
     "Drive front": true,
     "Drive_rear": false,
     "Gear box automatic": true,
     "Gear box manual": false,
     "Gear box tiptronic": false,
     "Gear_box_variator": false,
     "Fuel_cng": false,
     "Fuel diesel": false,
     "Fuel hybrid": false,
     "Fuel hydrogen": false,
     "Fuel_lpg": false,
     "Fuel_petrol": true,
     "Fuel plug in hybrid": false
Response:
{"predicted_price": 8789.5810546875}
```

7. Deployment on Render

}

- The API was deployed using Render, making it accessible online.
- The deployment included:
 - 1. Connecting the GitHub repository to Render.
 - 2. Setting up an environment with **Python 3**.
 - 3. Running uvicorn to start the FastAPI server.

Deployment URLs

- Public API URL: https://car-price-api-m4xn.onrender.com/
- API Docs URL: https://car-price-api-m4xn.onrender.com/docs
- GitHub Repository: https://github.com/Hospitas4u/DS-Project -Jinsheng-Yu-Shanyu-Wang

8. Version Control & GitHub

- The project was managed using **Git** and stored in **GitHub**.
- .gitignore was set up to exclude environment file.
- GitHub Actions can be added for automated testing and deployment.

9. Conclusion & Future Work

Summary

- Successfully built a car price prediction model with XGBoost.
- Deployed the model using **FastAPI** and hosted it on **Render**.
- The API is live and accessible.

Future Enhancements

- Improve Feature Engineering: Consider additional attributes like accident history.
- Enhance Model Performance: Try deep learning approaches.
- Improve API Security: Implement authentication and rate limiting.