Deep Learning

Chapter 1 딥러닝 개요(intro)

START

- 딥러닝의 개념을 이해해보자.
- 딥러닝의 역사를 알아보자.
- <u>■ 딥러닝</u> 개발환경을 구축해보자.

Artificial Intelligence (AI)

인공지능 : 인간이 가지는 지적 능력들을 컴퓨터를 통해 구현하는 기술들의 집합

 Machine Learning (ML)

 머신러닝: 데이터를 기반으로 컴퓨터 스스로 규칙을 찾아 예측하는 기술

 선형 회귀

 Deep Learning (DL)

 딥러닝: 인간의 신경망을 모방하여 학습하고 예측하는 기술

(MLP)

합성곱 신경망 (CNN) 전이학습 다층퍼셉트론

순환 신경망 (RNN)

결정 트리

인공 신경망 (Artificial Neural Network) 사람의 신경계 (Nervous System)

기계는 판단하절정 본에 병택되는 정해져있다 하지만 사람은 대상을 판단하는 경계가 느슨하다(추

많은 뉴런의 결과를 종합하여 판단을 한다.

많은 모델(전문가)들의 의견을 종합적으로 판단 하여 학습하고 예측한다.

대량의 데이터에서 복잡한 패턴이나 규칙을 찾아내는 능력이 뛰어나다.

딥러닝 활용 사례

ChatGPT (자연어처리)

가상인물 목소리 생성 (음성합성)<u>◀</u> ◀

얼굴/객체 인식 (이미지인식)

Deep Learning

세기의 대결 Al vs 인간

https://www.youtube.com/watch?v=7JR2ehHia04

기존 머신러닝과 딥러닝의 차이점

규칙 기반 전문가 시스템(Rule-based expert system)

기존 머신러닝

딥러닝: feature engineering이 거의 필요 없음 (사람의 개입 최소화)

기존 머신러닝과 딥러닝의 차이점

집 앞 편의점

딥러닝(Deep Learning)

컴퓨터비젼, 음성인식, 자연어처리, 신호처리 등의 분야에 적용

모든 문제를 딥러닝으로 해결하지는 않는다. 기존 머신러닝 모델이 잘 동작하는 경우도 있다.

Part 1.

퍼셉트론 (Perceptron) 다층 퍼셉트론 (Multi Layer Perceptron) 오차 역전파 (Backpropagation)

Part 2.

합성곱 신경망 (Convolutional Neural Network) 순환 신경망 (Recurrent Neural Network)

Part 3.

이미지/영상 데이터 관련 알고리즘

음성 데이터 관련 알고리즘 텍스트 데이터 관련 알고리즘

생산적 적대 신경망 (Generative Adversarial Networks) 심층 강화 학습 (Deep Reinforcement Learning)

- Theano
- Tensorflow
- Caffe
- Keras
- Pytorch
- DeepLearning4J
- Mxnet

Keras

- 사용자들이 어떻게 하면 코딩을 쉽게 할 수 있을까 고민하며 만들어진 라이브 러리
- 실제로 Keras에서는 다양한 뉴럴 네트워크 모델을 미리 지원해주고 있으므로, 그냥 블록을 조립하듯이 네트워크를 만들면 되는 식이라, 전반적인 네트워크 구조를 생각하고 작성한다면 빠른 시간 내에 코딩을 할 수 있는 엄청난 장점
- 현재는 tensorflow 위에서 keras가 동작하도록 설계되어 있고, keras를 tensorflow 안에 포함시켜 표준 라이브러리로 지원하고 있음

Deep Learning

colab

구글에서 제공하는 클라우드 기반의 개발환경 제공 서비스

딥러닝 개발환경 구축 – colab

🗰 Colaboratory란?

sample_data

줄여서 'Colab'이라고도 하는 Colaboratory를 사용하면 브라우저에서 Python을 작성하고 실행할 수 있습니다. Co

전을 자랑합니다. 2. 파일 버튼 클 구성이 필요하지 않음 GPU 무료 액세스

• 간편한 공유

학생이든, 데이터 과학자든, AI 연구원이든 Colab으로 업무를 더욱 간편하게 처리할 수 있습니다. Colab 소개 영상 인하거나 아래에서 시작해 보세요.

시작하기 지금 읽고 계신 문서는 정적 웹페이지가 아니라 코드를 작성하고 실행할 수 있는 대화형 환경인 Colab 메모장입니 예를 들어 다음은 값을 계산하여 변수로 저장하고 결과를 출력하는 간단한 Python 스크립트가 포함된 코드 셀입

Learning

keras 맛보기 : 학생 성적데이터 예측 (성별, 나이, 부모의 교육수준/직업, 결석 횟수 등)

https://www.kaggle.com/janiobachmann/math-students

keras 맛보기 : 학생 성적데이터 예측 모델 만들기 (입력 특성 1개)

x1(study)	y(score)	
9 ^X 1	90	
8	80	4
4	40	
2	20	
 시험성적 데이터		

 $y = 100 \times 1 + 10$ $y = 100 \times 1 + 10$

코드 실습

keras 맛보기 : 학생 성적데이터 예측 모델 만들기 (입력 특성 2개 이상)

90
80
40
20

