Notes on Anomaly Detection

Sameer Kesava PhD

April 26, 2020

Contents

1	Sup	pervised Learning Algorithms
	1.1	Univariate Data
	1.2	Multivariate Data
	1.3	Random Cut Forest
	1.4	XGBoost
2	2.1	Supervised Learning Algorithms MeanShift Clustering
3	Imp	proving the Accuracy
		Hyperparameter Tuning

Supervised Learning Algorithms

1.1 Univariate Data

- Boxplot
- Grubbs test

1.2 Multivariate Data

1.3 Random Cut Forest

From Amazon SageMaker

1.4 XGBoost

- Gradient boosting method
- Absolute loss and Huber loss more robust to outliers.
- Hyperparameters
 - $1. \text{Max_depth}$
 - 2. Colsample_bytree
 - 3. Eta
 - 4. train-test split: 60-40/70-30/80-20.

Unsupervised Learning Algorithms

- 2.1 MeanShift Clustering
- 2.2 DBSCAN

Improving the Accuracy

3.1 Hyperparameter Tuning

- Hyperparameter optimization based on Gaussian Process Regression and Bayesian Optimization
- keras tuner in keras
- GridSearchCV or RandomSearchCV in scikit-learn
- RandomSearch can be used as the baseline against which optimization algorithms can be evaluated.

Bibliography

[1] Pankaj Malhotra et al., Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.