Convocatoria Oficial – Sistemas Operativos

Ordinaria del 30 enero de 2021

Departamento de Ingeniería de Computadores

Escuela Politécnica Superior de Elche

Para los resultados del test y el ejercicio de planificación utilizar la plantilla recibida o una similar. Hay tres rejillas por si necesitáis rectificar o usar como borrador. **Marca claramente cuál es la definitiva.**

Test

(1.5 puntos, 0.15 cada una)

1.-En un sistema con planificación expulsiva SRTF llegan los procesos en los momentos indicados en la tabla para ejecutarse, y cada uno necesita la cantidad de tiempo indicada para ejecutarse.

Proceso Momento de llegada Necesidad de CPU

llegada/cpu

P1 0/7

P2 4/4 P3 9/3

El tiempo de retorno de cada proceso es:

- a) T1=7 T2=7 T3=7
- b) T1=8 T2=4 T3=7
- c) T1=7 T2=7 T3=4
- d) T1=7 T2=7 T3=5
- 2.- El repartidor (dispatcher) se encarga de:
- a) Planificar los distintos trabajos
- b) Definir las políticas de planificación
- c) Realizar el cambio de contexto.
- d) Desbloquear los procesos que están esperando una E/S cuando ésta finaliza
- 3.- El planificador (scheduler) es la parte del sistema operativo encargada de:
- a) Realizar el cambio de contexto entre los procesos.
- b) Determinar el orden de ejecución entre los procesos
- c) Mantener la tabla de procesos
- d) Descargar los procesos a disco cuando la memoria del sistema escasea.
- 4.- El cambio de contexto:
- a) Lo realiza el scheduler.
- b) Modifica la entrada en la tabla de procesos del proceso desalojado
- c) Siempre se origina por una interrupción
- d) Se produce siempre que el proceso abandona la cola de procesos en espera y pasa a la cola de procesos preparados

- 5.- ¿Cuándo puede un proceso entrar en un monitor?
- a) Sólo cuando tiene definidas variables de condición.
- b) Sólo es necesario que el monitor se encuentre "vacío".
- c) Hace falta que el monitor esté vacío y no haya procesos esperando en ninguna cola de condición.
- d) Ninguna del resto de las contestaciones es correcta.
- 6.- El semaforo elimina la espera activa porque:
- a) Se inicializa al número máximo de recursos que se comparten
- b) Las operaciones de wait y signal se implementan como acciones indivisibles
- c) El semaforo no elimina la espera activa
- d) Se implementa con una cola de tareas a la cual se añaden los procesos que estan en espera del recurso.
- 7.- Los monitores proporcionan exclusion mutua porque:
- a) Sólo un proceso puede estar activo cada vez para ejecutar un procedimiento del monitor
- b) Para ello utilizan variables de condición
- c) No proporcionan exclusión mútua sólo garantizan la sincronización
- d) Se diseñan como procedimientos encapsulados en un módulo
- 8.- El algoritmo de Peterson corresponde a:
- a) Una estrategia de sincronización de procesos
- b) Un método para mantener el grado de multiprogamación a un valor dado
- c) Un algoritmo que evita la espera activa
- d) Una solución al problema de la exclusión mutua
- 9.- Si se usa un semáforo para lograr la sincronización de procesos
- a) Éste debe inicilizarse al número de procesos que se desean sincronizar
- b) Se deben incluir variables de condición, pues el semaforo sólo proporciona exclusión mutua
- c) Las operaciones wait y signal se utilizan dentro del mismo proceso
- d) Las operaciones wait y signal se utilizan en procesos separados
- 10.- La operacion wait de un semáforo y la cwait (delay) de una varialbe de condición de un monitor se diferencian en:
- a) que en el caso de la variable de condición siempre se suspende el proceso que la invoca
- b) que en el caso de la variable de condición no se elimina la espera activa
- c) No existe diferencia pues en ambos casos siempre sirve para lograr la exclusión mutua de la sección crítica
- d) No existe diferencia pues en ambos casos siempre sirve como mecanismo de sincronización

Contestar utilizando esta plantilla del pdf que habéis recibido vía anuncio de la asignatura.

1	2	3	4	5	6	7	8	9	10		

Preguntas

1 - (1 Punto)

- Explica las diferencias entre threads ULT y KLT
- Enumera las ventajas e inconvenientes de usar un esquema u otro.

Ejercicios

2 - 5 puntos

En un parking público caben 100 coches. El parking tiene un número determinado de entradas y de salidas. Por la vía publica hay circulando 200 coches, tras un periodo de circulación un coche decide entrar al parking y estacionar. Para ello comprobará primero si hay sitio en el parking. Si hay sitio entrará al parking. Si no hay sitio volverá a circular otro tiempo determinado. Cuando el coche está en el interior del parking, está estacionado durante un tiempo determinado hasta que decida salir del parking.

SE PIDE:

Gestionar mediante **semáforos y mediante paso de mensajes** el comportamiento del sistema, de tal forma que no puedan entrar más coches al parking de los permitidos y que se controle el aforo del parking correctamente.

Semáforos: utilizar sólo un semáforo binario sbMutex **Paso de mensajes**: receive bloqueante, send no bloqueante

Para cada solución se dispone de un esqueleto.

Entregar los distintos bloques TODO indicando la numeración de cada uno.

Solución con semáforos: 2.5 puntos

Solución con paso de mensajes: 2.5 puntos

```
ESQUELETO SOLUCION SEMAFOROS
int plazasLibres=100;
semaphore sbMutex;
function circulando(){
pause(random);
function estacionado(){
pause(random);
function entrar(){
//BEGIN TODO 1 -----
//END TODO 1-----
}
function salir(){
//BEGIN TODO 2 -----
//END TODO 2 -----
function Coche(){
while true(){
//BEGIN TODO 3 -----
//END TODO 3
}
}
sCreate(sbMutex);
sInit(sbMutex,1);
//Se lanzan 200 procesos coche en paralelo
parbegin
Coche[200]();
parend
end
```

```
ESQUELETO SOLUCION PASO DE MENSAJES.
int MAXPLAZAS=100;
mailbox bPlazas;
function circulando(){
pause(random);
function estacionado(){
pause(random);
function Coche(){
tMessage msg=null;
while true(){
//BEGIN TODO 2 ------
//END TODO 2
}
begin
int i:
tMessage msg=null;
//BEGIN TODO 1 -----
//Inicializamos el buzón
//END TODO 1
//Se lanzan 200 procesos coche en paralelo
parbegin
Coche[200]();
parend
end
```

3 – 2.5 puntos

PRIORIZAMOS AL QUE LLEGA FRENTE AL QUE SALE DE CF	Pυ
OPDEN EIEO SI COINCIDE LA SALIDA DE BLOQUEO	

0.152.17.11.0 0.1 00.11.01.052.01.01.152.02.00.00												
Proceso	Llegada	Carga	Carga total									
P0	0	3 (1) 3 (1)	8									
P1	1	3 (1) 3	7									
P2	2	2 (2) 3	7									
P3	3	3 (3) 2	8									
N	Ráfaga de CPU											
(N)	Ráfaga de E/S											

Rellenar correctamente el diagrama de planificación de procesos para los datos mostrados.

- (1.25 puntos) Utilizando un algoritmo Round Robin con quantum=2.
- (0.75 puntos) Rellenar una tabla de datos como la adjunta para proporcionar los tiempos medios de: Espera, Retorno y Respuesta. Calcular la Tasa media de CPU de los procesos.
- (0.5 puntos) Ante la ejecución con un quantum=2 y con la carga del sistema, explica que consecuencias tendría incrementar el quantum a 3 u.t.

teriaria incrementar el quantam a 5 d.t.																								
	Carga							Tiempo de							Tasa	CDLI								
	ı	E/S		CF	U	Т	otal		Retorno		Espera		Res	Respuesta		lasa	CFU							
P0																								
P1																								
P2																								
P3																								
						М	edias	;																
0	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	-			_					-	-	-					+	-	-	-	-	-			