- 1. El objetivo de este reto es crear modelos de aprendizaje automático que utilicen datos de emisiones de código abierto (procedentes de observaciones por satélite Sentinel-5P) para predecir las emisiones de carbono.
- 2. Vamos a usar el dataset de kaggle esta competición (https://www.kaggle.com/competitions/playground-series-s3e20/overview), que tiene 79024 número de muestras (emisiones) y tales columnas (ID_LAT_LON_YEAR_WEEK,latitude,longitude,year,week_no,SulphurDioxide_S O2_column_number_density,SulphurDioxide_SO2_column_number_density_a mf,SulphurDioxide_SO2_slant_column_number_density,SulphurDioxide_clou d_fraction,SulphurDioxide_sensor_azimuth_angle,SulphurDioxide_sensor_zen ith_angle,SulphurDioxide_solar_azimuth_angle,SulphurDioxide_solar_zenith_a ngle, Sulphur Dioxide_SO2_column_number_density_15km, Carbon Monoxide_ CO_column_number_density, CarbonMonoxide_H2O_column_number_densit y, Carbon Monoxide_cloud_height, Carbon Monoxide_sensor_altitude, Carbon M onoxide_sensor_azimuth_angle,CarbonMonoxide_sensor_zenith_angle,Carbo nMonoxide_solar_azimuth_angle,CarbonMonoxide_solar_zenith_angle,Nitrog enDioxide_NO2_column_number_density, NitrogenDioxide_tropospheric_NO 2_column_number_density, NitrogenDioxide_stratospheric_NO2_column_nu mber_density, NitrogenDioxide_NO2_slant_column_number_density, Nitrogen Dioxide_tropopause_pressure, Nitrogen Dioxide_absorbing_aerosol_index, Nitr ogenDioxide_cloud_fraction,NitrogenDioxide_sensor_altitude,NitrogenDioxid e_sensor_azimuth_angle,NitrogenDioxide_sensor_zenith_angle,NitrogenDioxi de_solar_azimuth_angle,NitrogenDioxide_solar_zenith_angle,Formaldehyde_t ropospheric HCHO column number density, Formaldehyde tropospheric H CHO_column_number_density_amf,Formaldehyde_HCHO_slant_column_num ber_density,Formaldehyde_cloud_fraction,Formaldehyde_solar_zenith_angle, Formaldehyde_solar_azimuth_angle,Formaldehyde_sensor_zenith_angle,For maldehyde_sensor_azimuth_angle,UvAerosolIndex_absorbing_aerosol_index, UvAerosolIndex_sensor_altitude,UvAerosolIndex_sensor_azimuth_angle,UvAe rosolIndex_sensor_zenith_angle,UvAerosolIndex_solar_azimuth_angle,UvAero solIndex_solar_zenith_angle,Ozone_O3_column_number_density,Ozone_O3_c olumn_number_density_amf,Ozone_O3_slant_column_number_density,Ozon e_O3_effective_temperature,Ozone_cloud_fraction,Ozone_sensor_azimuth_an gle,Ozone_sensor_zenith_angle,Ozone_solar_azimuth_angle,Ozone_solar_zen ith_angle,UvAerosolLayerHeight_aerosol_height,UvAerosolLayerHeight_aeros ol_pressure,UvAerosolLayerHeight_aerosol_optical_depth,UvAerosolLayerHei ght_sensor_zenith_angle,UvAerosolLayerHeight_sensor_azimuth_angle,UvAer osolLayerHeight_solar_azimuth_angle,UvAerosolLayerHeight_solar_zenith_an

- gle, Cloud_cloud_fraction, Cloud_cloud_top_pressure, Cloud_cloud_top_height, Cloud_cloud_base_pressure, Cloud_cloud_base_height, Cloud_cloud_optical_d epth, Cloud_surface_albedo, Cloud_sensor_azimuth_angle, Cloud_sensor_zenit h_angle, Cloud_solar_azimuth_angle, Cloud_solar_zenith_angle, emission).
- 3. Como métrica de machine learning vamos a usar el Root Mean Squared Error (RMSE) que es el define la propia competencia. Como métrica de negocio se podría estimar los niveles de emisiones de carbono en África, incluso en lugares donde no es posible el seguimiento sobre el terreno.
- 4. Si las partes por millón de CO2 que se encuentran en la atmosfera no aumentan o disminuyen en mas del 10%, el proyecto es sostenible debido a que contribuiría a la mejora del cambio climático.