Coronal Seismology ASTR 598

Laurel Farris

Spring 2016

Coronal seismology

Technique and motivation

Motivation:

- Mystery of coronal heating
- Space weather prediction

Properties of the solar corona that are difficult to measure: [why?

And why do we need them?]

- magnetic field strength, \vec{B}
- density
- Alfvén velocity

Solution: coronal seismology

- 1. Observe disturbances (triggered by flares, footpoint motions, etc.) [insert eye candy here?]
- 2. Measure, e.g. period, velocities, timescales
- 3. Identify the type of wave or mode (MHD theory; stay tuned)
- 4. Extract coronal parameters from equations

Other questions:

- How are these disturbances initiated?
- How are they damped, and what determines the timescales? =

Magnetohydrodynamics (MHD)

Theory

[Something about Asc, TRACE, etc.]

- Corona should support MHD oscillations
- Loop modeled by straight flux tube in uniform magnetic field.
- Characteristic speeds are determined by the environment
- Density, temperature inside loop different from outside loop
- Non-ideal effects: gravitational stratification, loop curvature, inhomogeneity in magnetic field strength (considered negligible).

Dispersion diagram

Solutions to dispersion relation

Magnetohydrodynamics (MHD)

Two mode categories

- 1. Magnetoacoustic $C_s = \sqrt{\frac{\gamma P}{\rho}}$
 - Fast $k_{A_0} < C_{fast} < C_{A_e}$
 - Slow $C_{T_0} < C_{slow} < C_{s_0}$
- 2. Alfvén $V_A = \frac{B}{\sqrt{\mu_0 \rho}}$

Fast standing oscillations

Kinks vs. Sausages

Kink

- loop spatial displacement
- Asymmetric
- No intensity change
- $k\sigma \ll 1$, or $\sigma \ll \lambda$

Sausage

- No loop spatial displacement
- Symmetric
- Intensity change
 → density change
- $\lambda \sim \sigma$
- long-wavelength limit

Kink modes

general characteristics

•
$$c_k = \sqrt{rac{
ho_o V_{Ao}^2 +
ho_c V_{Ac}^2}{
ho_o +
ho_c}} pprox V_A \sqrt{rac{2}{1 + rac{
ho_e}{
ho_o}}}$$
 in the low- eta plasma.

•
$$V_{ph} = \frac{\omega}{k} \approx C_k \gtrsim V_A$$

- Period $P=\frac{2L}{V_A}\sqrt{\frac{1+\rho_e/\rho_o}{2}}$ where $\lambda=2L$ (L is the loop length). Typically, $L\approx 60-600$ Mm in the corona.
- Derive magnetic field!
- Not just a single, global mode.
- Plasma motions around footpoints of coronal loops
- Rapidly damped

Sausage modes

The basics

Trapped fast modes supported by thick, dense loops because of the cutoff wavenumber (pfw_2). Observe spatially resolved radio (see sources in pfw_2).

Standing acoustic oscillations

[Insert movie here?] Characteristics:

- Pressure forces in opposition
- Period = 7–31 minutes (20 minutes from another source)
- Decay times = 5.7–36.8 minutes
- Peak velocity = 200 km/sec

Standing oscillations vs. propagating waves

- In loops, propagating waves damp before reaching opposite footpoint.
- Velocity and intensity are 90° out of phase for standing oscillations, and are in phase for propagating acoustic waves.
- Frequencies less than the cutoff are standing oscillations, waves with frequency greater than the cutoff propagate into the chromosphere.
- no loop shape change or displacement
- near footpoints.

Propagating acoustic waves

Slow

- $v_{ph} < 150 \text{ km s}^{-1} \rightarrow \text{slow}$
- longitudinal, compressive, anisotropic
- Parallel to \vec{B} , perturbation of \vec{B} is negligible.
- Generated impulsively at one end of a footpoint.
- \bullet Only penetrate \sim 10% into loop before damped by thermal conduction
- ullet weak dispersion in coronal conditions $(V_A\gg c_{
 m s})$
- 3 phases: periodic, QP, decay
- period = 3, 5, 10 minutes? Or 2–22 seconds? (see kink $_{-}$ 1),
- velocity: 50-200 km s⁻¹
- $c_T = \sqrt{\frac{c_s^2 v_A^2}{c_s^2 + v_A^2}}$ propagate sub-sonically at c_T , which is less than c_s
- "large" amplitude, max in top of chromosphere
- Observed using spectroscopy (intensity variations in EUV emission and Doppler shifts)

Propagating acoustic waves

Fast

- $v_{ph} > 150 \text{ km s}^{-1} \rightarrow \text{fast (or transverse standing waves)}$.
- Quasi-isotropic
- Driven by magnetic forces + plasma pressure forces
- Compressive (magnetic sound wave)
- Speed: $c_F = \sqrt{c_s^2 + v_A^2}$
- Moreton waves in the chromosphere
- Fast EUV waves in the corona

Torsional modes

aka. Alfvén wave

Properties:

- m=0 (Axisymmetric, or azimuthally symmetric)
- transverse (shear) perturbations
- Parallel to \vec{B}
- Driving force: magnetic tensioin
- incompressible
- velocity: $v_A = \frac{B}{\mu_0 \rho}$; $\sim 1000 \text{ km s}^{-1}$ in the corona

How to observe:

- Only get Doppler shifts from long-period waves (> a few minutes).
- Measure additional (i.e. non-thermal) broadening of coronal emission lines; indirect way to observe short-period waves.
- Spatial variation in Doppler shift for long periods.
 Gyrosynchrotron emission in radio regime.

Effects of twisting:

Coupling of various MHD modes

Important Properties

	period	wavelength	velocity
kink osc	value	value	value
sausage osc	value	value	value
acoustic osc	value	value	value
acoustic waves	value	value	value
fast waves	value	value	value
torsional modes	10 m	value	$1000 \; { m km \; s^{-1}}$

Research AIA/SDO

[Looks nicer than white background]

Acknowledgements