

汇报人: 康志清 时间: 2020.12.24

目 录 页

01 风格迁移介绍

02 CartoonGAN

03 实验

04 感想和未来工作

style constrain

p (content image)

a (style image)

 \boldsymbol{x} (output image)

- 传统基于非参数的图像风格迁移:基于物理模型的绘制和纹理的合成。单一、提取底层特征,而非高层的抽象特征。
- Galys等人2015年提出基于卷积神经网络的图像风格迁移。内容和风格分离
- 基于图像迭代:最大均值差异、基于马尔可夫随机场、基于深度图像类比
- 基于模型迭代:基于生成模型、基于图像重构解码器

Texture Synthesis Using Convolutional Neural Networks

Gatys, Leon, Alexander S. Ecker, and Matthias Bethge. "Texture synthesis using convolutional neural networks." Advances in neural information processing systems 28 (2015): 262-270.

A Neural Algorithm of Artistic Style

Gatys LA, Ecker AS, Bethge M. A neural algorithm of artistic style[J]. arXiv preprint arXiv:1508.06576, 2015.

Image Style Transfer Using Convolutional Neural Networks(CVPR 2016)

Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2414-2423.

基于图像迭代

- 2015 Gatys L A, Ecker A S, Bethge M. A neural algorithm of artistic style (第一篇,用CNN完成风格迁移)
- 2016 Gatys L A, Bethge M, Hertzmann A, et al. Preserving color in neuralartistic style transfer
- 2016 Li Chuan, Wand M. Combining Markov random fields and convolutional neural networks for image synthesis
- 2017 Liao Jing, Yao Yuan, Yuan Lu, et al. Visual attribute transfer through deep image analogy
- **□**

基于模型迭代

- 2016 Justin J, Alexandre A, Li Feifei. Perceptual losses for real-time style transfer and super-resolution (为某种特定风格生成模型-基于Gatys 的文章-感知损失=内容+风格+平滑)
- 2016 Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: the missing ingredient for fast stylization (使用实例归一化代替批量归一化)
- 2016 Wang Xin, Oxholm G, Zhang Da, et al. Multimodal transfer: a hierarchical deep convolutional neural network for fast artistic style transfer [J] (多尺度风格迁移颜色亮度生成高清图片)
- 2017 Huang Haozhi, Wang Hao, Luo Wenhan, et al. Real-time neural style transfer for videos (自适应实例归一化)
- 2018 Chen Y, Lai Y K, Liu Y J. Cartoongan: Generative adversarial networks for photo cartoonization

CartoonGAN (2018年CVPR)

使用不成对的图片集训练GAN (单向Cycle)

基于GAN的架构中提出了两个简单而有效的损失函数

$$\mathcal{L}(G,D) = \mathcal{L}_{adv}(G,D) + \omega \mathcal{L}_{con}(G,D)$$

引入一个预训练过程,先用 $\mathcal{L}_{\text{con}}(G,D)$ 单独一个损失来训练 G,大概训练10个epoch,目的是使生成的图片初始后就能 保证原真实场景的内容

Cartoo

CartoonGAN网络结构

Figure 2. Architecture of the generator and discriminator networks in the proposed CartoonGAN, in which k is the kernel size, n is the number of feature maps and s is the stride in each convolutional layer, 'norm' indicates a normalization layer and 'ES' indicates elementwise sum.

损失函数

$$L(G,D) = L_{adv}(G,D) + \omega L_{con}(G,D)$$

$$L_{adv}(G, D) = \mathbb{E}_{c_i \sim S_{data}(c)} [log D(c_i)]$$

$$+ \mathbb{E}_{e_j \sim S_{data}(e)} [1 - log D(e_j)]$$

$$+ \mathbb{E}_{p_k \sim S_{data}(p)} [log (1 - D(G(p_k)))]$$

$$L_{con}(G,D) = \mathbb{E}_{p_i \sim S_{data}(p)} [||VGG_l(G(p_i) - VGG_l(p_i)||_1]$$

- > python 3.6.5
- > pytorch 1.7.0
- > opency 4.4.0
- ➤ GPU: NVIDIA DGX工作站 4核Tesla单卡V100 (32G显存)

1 目录结构

```
. src_data
— test
— train
— tgt_data
— train
```

2 数据来源

- 1、其他论文提供的数据集
- 2、爬虫 (自己编写的)
- 3、其他类型的数据集

https://kangzhiqing.com/post/datashow/

OHAZEBIG_30_2000_16_results	2020-12-22	root	root	drwxr-xr-x
OHAZE_30_2000_16_results	2020-12-21	root	root	drwxr-xr-x
deHaze_20_2000_16_results	2020-12-20	root	root	drwxr-xr-x
sword_20_2000_16_results	2020-12-20	root	root	drwxr-xr-x
sword_20_400_16_results	2020-12-19	root	root	drwxr-xr-x
Paprika_20_400_16_res8_res	2020-12-19	root	root	drwxr-xr-x
HayaoBig_20_200_32_0.0005	2020-12-18	root	root	drwxr-xr-x
Paprika_15_200_32_0.001_re	2020-12-18	root	root	drwxr-xr-x
HayaoBig_20_200_32_0.0005	2020-12-17	root	root	drwxr-xr-x
HayaoBig_15_200_32_0.0004	2020-12-17	root	root	drwxr-xr-x
Paprika_20_400_16_results	2020-12-16	root	root	drwxr-xr-x
Paprika_1000_results	2020-12-15	root	root	drwxr-xr-x
kzq_100_3000_results	2020-12-15	root	root	drwxr-xr-x
kzq_1000_results	2020-12-14	root	root	drwxr-xr-x
HaYao_10000_results	2020-12-13	root	root	drwxr-xr-x
HaYao_1000_results	2020-12-13	root	root	drwxr-xr-x
kiwato_10000_results	2020-12-13	root	root	drwxr-xr-x
kiwato2_results	2020-12-12	root	root	drwxr-xr-x
kiwato_results	2020-12-12	root	root	drwxr-xr-x
			-	

Name	Size (KB)	▼ Last m	Owner	Group	Access	^
1						
394_epoch_Paprika_20_400	193	2020-12-16	root	root	-rw-rr	1
394_epoch_Paprika_20_400	265	2020-12-16	root	root	-rw-rr	-
394_epoch_Paprika_20_400	249	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	298	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	232	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	245	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	290	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	234	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	338	2020-12-16	root	root	-rw-rr	
394_epoch_Paprika_20_400	239	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	244	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	265	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	307	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	289	2020-12-16	root	394 epoch P	aprika 20 400 16	test !
392_epoch_Paprika_20_400	239	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	193	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	277	2020-12-16	root	root	-rw-rr	
392 epoch Paprika 20 400	337	2020-12-16	root	root	-rw-rr	
392 epoch Paprika 20 400	187	2020-12-16	root	root	-rw-rr	
392_epoch_Paprika_20_400	199	2020-12-16	root	root	-rw-rr	
390 epoch Paprika 20 400	265	2020-12-16	root	root	-rw-rr	
390 epoch Paprika 20 400	232	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	245	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	250	2020-12-16	root	root	-rw-rr	
390 epoch Paprika 20 400	264	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	293	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	296	2020-12-16	root	root	-rw-rr	
390 epoch Paprika 20 400	254	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	248	2020-12-16	root	root	-rw-rr	
390_epoch_Paprika_20_400	202	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	193	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	308	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	249	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	239	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	277	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	279	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	268	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	345	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	205	2020-12-16	root	root	-rw-rr	
388_epoch_Paprika_20_400	183	2020-12-16	root	root	-rw-rr	
386_epoch_Paprika_20_400	193	2020-12-16	root	root	-rw-rr	
386_epoch_Paprika_20_400	268	2020-12-16	root	root	-rw-rr	
386_epoch_Paprika_20_400	296	2020-12-16	root	root	-rw-rr	

实验— (Hayao100 10000epoch)

数据集特别小,无论是原图还是风格图,都只有100张左右。训练很快。训练了10000次。1s/epoch

训练原图 1000epoch 3000epoch

实验— (Hayao100 10000epoch)

测试原图 1000epoch 3000epoch

实验二 (Hayao 2000 200epoch)

数据集扩充,无论是原图还是风格图,都增加到2000张左右。但训练很慢。训练了200个epoch。300s/epoch

测试原图 预训练结束 100epoch 200epoch

实验二 (Hayao 2000 200epoch)

我们修改了预训练的次数10->20,并扩充了数据集

- 1、只用内容损失预训练20次的重建图比再用对抗训练200次后的结果似乎看上去好一些
- 2、训练太慢, 迭代200次, 动漫风格不够抽象
- 3、训练过程种出现棋盘效应:最后上采样过程中,选用反卷积进行上采样当卷积核大小不能被步长整除时,反卷积就会出现重叠问题,插零的时候,输出结果会出现一些数值效应,就像棋盘一样

实验二 (Paprika 2000 1000epoch)

原图 预训练之后 250个epoch 500个epoch 论文给的模型

实验三 (Paprika 2000 1000epoch 修改残差块的结构和数量)

两层恒等残差结构改成三层,将残差块的数目由8个改成10个

```
self.conv1 = nn.Conv2d(channel, channel, kernel, stride, padding)
self.conv1_norm = nn.InstanceNorm2d(channel)
self.conv2 = nn.Conv2d(channel, channel, kernel, stride, padding)
self.conv2_norm = nn.InstanceNorm2d(channel)
# 新加一层
# self.conv3 = nn.Conv2d(channel, channel, kernel, stride, padding)
# self.conv3_norm = nn.InstanceNorm2d(channel)
```

```
# nb = 8 ==> 10

def __init__(self, in_nc, out_nc, nf=32, nb=10):
    super(generator, self).__init__()
    self.input_nc = in_nc
    self.output_nc = out_nc
    self.nf = nf
    self.nb = nb
```


实验三 (Paprika 2000 1000epoch 修改残差块的结构和数量)

上面为没修改,下面为修改过的

实验四 (SwordArtOnLine 2000epoch)

实验五 (RESIDE 去雾 薄)

原图 预训练 500 1000

实验六 (OHAZE 去雾 浓)

原图 预训练 500 1000

实验七 (Reside 生成雾 薄)

原图 预训练 500 1000

1、要想实验做得出来做得快做得好,还得看GPU的算力,只有迭代得快,我们才能在短周期内对整个网络进行调整,不然参数调整一下,训练需要很多天,才能知道参数调整对于整个网络的影响,实验的周期就会比较长。

- 2、对于网络的理解还是不太够,感觉调整网络结构比较困难和盲目,需要实验结果来验证想法,所以第一点真的很重要。调参真是门技术活!!!
- 3、每次实验一定要好好记录下,实验做多了容易混淆
- 4、数据集的选取和处理对于实验结果有很大的影响,要迁移的目标风格的图片尽可能风格一致
- 5、实践出真知,做了实验才能更好地理解论文所讲的内容

未来工作(基于风格迁移的图像去雾)

- **采用灰度图去雾验证网络去雾的效果**
- 基于该模型,增加风格损失函数
- 采用CycleGAN

....

