Université Pierre et Marie Curie 2005–2006

LM223 groupes 1, 2, 5 et 6

Feuille 1

1 Généralités

Exercice 1. Plans dans l'espace.

- 1. Dans \mathbf{R}^3 , on considère l'ensemble $\mathcal{P} = \{(x, y, z) | x + 3y + 5z = 0\}$. Montrer que c'est un sous-espace vectoriel de \mathbf{R}^3 et en donner une base.
- 2. On pose $v_1 = (-1,0,3)$ et $v_2 = (1,1,2)$. Montrer que c'est une famille libre, non génératrice. Déterminer une équation du sous-espace qu'elle engendre.

Exercice 2. Dites si la famille \mathcal{F} est libre, génératrice, et si elle forme une base de E dans les cas suivants :

1.
$$\mathcal{F} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix} \right\} \text{ et } E = \mathbf{R}^3.$$

2.
$$\mathcal{F} = \{X^3 - 2X^2 + X + 3, 2X^3 - 2X^2 + 5X, -X^3 + X^2 + 1\} \text{ et}^1 E = \mathbf{R}_3[X].$$

3.
$$\mathcal{F} = \left\{ \mathbf{I}_2, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 4 \\ -1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & -4 \\ 3 & 1 \end{pmatrix} \right\} \text{ et } E = M_2(\mathbf{R}).$$

Exercice 3. Deux espaces de dimension infinie.

- 1. On considère $\mathcal{C} = \mathcal{C}^0([0;1]; \mathbf{R})$ l'espace des fonctions continues de [0;1] dans \mathbf{R} . Montrer que l'application $l: \mathcal{C} \to \mathbf{R}, \ f \mapsto \int_0^1 f(t) \, dt$ est linéaire et surjective.
- 2. On considère V le \mathbf{C} -espace vectoriel des suites à coefficients complexes, indexées par \mathbf{N} , muni de l'application $\Delta: V \to V$, $(u_n)_{n\geqslant 0} \mapsto (u_{n+1})_{n\geqslant 0}$. Montrer que c'est un endomorphisme; calculer son image et son noyau. Observer.

2 Applications linéaires et matrices

Exercice 4. On considère $E = \mathbf{R}_3[X]$, muni de l'opération de dérivation $D: P \mapsto P'$.

- 1. Vérifier que D est linéaire, calculer son noyau et son image.
- 2. Énoncer le théorème du rang et le vérifier sur cet exemple.
- 3. Écrire la matrice M de D dans la base canonique $(1, X, X^2, X^3)$.

 $^{{}^{1}}$ On rappelle que $\mathbf{R}_{n}[X]$ est l'espace des polynômes de degré au plus n.

- 4. On considère $D^2: E \to E, \ P \mapsto P''$; écrire sa matrice dans la même base.
- 5. Donner sans calculs la valeur de M^4 .

Exercice 5. Soit E un **C**-espace vectoriel de dimension finie, et $f \in \mathcal{L}(E)$. Montrer que :

$$E = \operatorname{im} f \oplus \ker f \Leftrightarrow \operatorname{im} f = \operatorname{im} f^2$$
.

Constater en particulier l'équivalence sur les cas suivants :

- $-\Pi: \mathbf{R}^3 \to \mathbf{R}^3, (x, y, z) \mapsto (x, y, x y),$
- $-D: \mathbf{R}_3[X] \to \mathbf{R}_3[X], P \mapsto P'.$

Exercice 6. On considère l'application $f: \mathbf{R}^3 \to \mathbf{R}, (x, y, z) \mapsto x + 3y + 5z$. Montrer qu'elle est surjective. En déduire que l'ensemble de la question 1.1 est un sous-espace de dimension 2.

Exercice 7. Soient E un espace vectoriel et $f \in \mathcal{L}(E)$ telle que, pour tout $x \in E$, la famille (x, f(x)) est liée. Autrement dit, pour tout $x \in E$, il existe un scalaire, noté λ_x , tel que $f(x) = \lambda_x \cdot x$. Soient x et y deux vecteurs non nuls; montrer que $\lambda_x = \lambda_y$ en considérant les deux cas suivants :

- x et y sont liés,
- -x et y sont indépendants.

En déduire que f est une homothétie.

Exercice 8. Soient $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; on rappelle $(E_{11}, E_{12}, E_{21}, E_{22})$ est une base, dite canonique, de $M_2(\mathbf{C})$. On pose $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ et on considère l'application $f: M_2(\mathbf{C}) \to M_2(\mathbf{C})$, $M \mapsto AM$.

- 1. Montrer que f est linéaire et calculer sa matrice dans la base canonique.
- 2. Prouver que f est inversible et calculer son inverse.

3 Changement de base

Exercice 9. On considère $D: \mathbf{R}_3[X] \to \mathbf{R}_2[X]$, $P \mapsto P'$ et $i: \mathbf{R}_2[X] \to \mathbf{R}_3[X]$, $P \mapsto \int_0^X P(t) dt$. On pose par ailleurs $\mathcal{B}_2 = (1, 1 - X, 1 - 2X + X^2)$ et $\mathcal{B}_3 = (1, 1 - X, 1 - 2X + X^2, 1 - 3X + 3X^2 - X^3)$.

- 1. Les applications D et i sont-elles injectives, surjectives? Calculer $D \circ i$ et $i \circ D$, observer.
- 2. Justifier brièvement que \mathcal{B}_2 (resp. \mathcal{B}_3) est une base de $\mathbf{R}_2[X]$ (resp. $\mathbf{R}_3[X]$) et écrire les matrices de D et de i dans ces bases.
- 3. Calculer les matrices de passages de ces bases aux bases canoniques, en déduire par les formules de changement de base les matrices de D et i dans les bases canoniques. Vérifier ce dernier résultat.

LM223 UPMC 2005–2006 Feuille 1

Exercice 10. Soit $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$, et f l'endomorphisme de \mathbf{R}^2 qui a pour matrice A dans la base canonique. Trouver une base dans laquelle f admet pour matrice $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Calculer la matrice de passage.

4 Opérations élémentaires

Exercice 11. Les matrices
$$A = \begin{pmatrix} 2 & 1 & 3 & -3 \\ -1 & 2 & 1 & 4 \\ 1 & 1 & 2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 2 & -1 & 2 \\ 1 & -2 & 5 & 6 \\ 5 & 1 & 3 & 8 \end{pmatrix}$ sont-elles équivalentes?

Exercice 12. À l'aide des opérations élémentaires sur les lignes et/ou les colonnes, déterminer le rang des matrices suivantes et donner leur inverse éventuel.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 3 \\ 1 & 2 & 0 \end{pmatrix} B = \begin{pmatrix} 3 & -1 & 1 \\ -3 & 3 & 0 \\ 2 & 2 & 2 \end{pmatrix} C = \begin{pmatrix} 2 & 6 & 12 & 20 \\ 0 & 2 & 6 & 12 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2 \end{pmatrix} D = \begin{pmatrix} 1 & -2 & 3 & 4 \\ 1 & 2 & 3 & 2 \\ 0 & 1 & 0 & -2 \\ 2 & -4 & 6 & 5 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & -3 & 1/2 & -1/3 \\ 2 & 4 & -6 & 1 & -2/3 \\ -3 & -6 & 9 & -3/2 & 1 \\ -1 & -2 & 3 & -1/2 & 1/3 \\ 5 & 12 & -18 & 3 & -2 \end{pmatrix}$$