Section 2.3 – Orthogonality

Definition

Two nonzero vectors \vec{u} and \vec{v} in \mathbb{R}^n are said to be *orthogonal* (or *perpendicular*) if their dot product is zero $\vec{u} \cdot \vec{v} = 0$.

We will also agree that he zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n . A nonempty set of vectors \mathbb{R}^n is called an *orthogonal set* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is called an *orthonormal set*.

Example

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal. Every vector up the meeting line is perpendicular to every vector on the floor. The origin (0, 0, 0) is in the corner.

Example

Show that $\vec{u} = (-2, 3, 1, 4)$ and $\vec{v} = (1, 2, 0, -1)$ are orthogonal in \mathbb{R}^4

Solution

$$\vec{u} \cdot \vec{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1)$$

= -2 + 6 + 0 -4
= 0

These vectors are orthogonal in \mathbb{R}^4

Standard Unit Vectors

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = \mathbf{0}$$

Proof

$$\hat{i} \bullet \hat{j} = (1, 0, 0) \bullet (0, 1, 0)$$

$$= 0$$

Normal

To specify slope and inclination is to use a nonzero vector \vec{n} , called a *normal*, that is orthogonal to the line or plane.

The line passes through a point $P_0(x_0, y_0)$ that has a normal $\vec{n} = (a, b)$

The plane through $P_0(x_0, y_0, z_0)$ that has a normal $\vec{n} = (a, b, c)$.

Both the line and the plane are represented by the vector equation

$$\vec{n} \cdot \overrightarrow{P_0 P} = 0$$

The line equation: $a(x-x_0)+b(y-y_0)=0$

The plane equation: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

Projections

Theorem Projection onto a line

If \vec{u} and \vec{a} are vectors in \mathbb{R}^n , and if $\vec{a} \neq 0$, then \vec{u} can be expressed in exactly one way in the form $\vec{u} = \vec{w} + \vec{e}$, where \vec{w} is a scalar multiple of \vec{a} and \vec{e} is orthogonal to \vec{a} .

The vector \vec{w} is called the *orthogonal projection* of \vec{u} on \vec{a} or sometimes *component* of \vec{u} along \vec{a} . The vector \vec{e} is called the vector *component* of \vec{u} *orthogonal* to \vec{a} (error vector and should be perpendicular to \vec{a})

$$proj_{\vec{a}}\vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a} = \vec{p}$$
 (vector component of \vec{u} along \vec{a})

$$\vec{u} - proj_{\vec{a}}\vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a}$$
 (vector component of \vec{u} orthogonal to \vec{a})

The length is $\|proj_{\vec{a}}\vec{u}\| = \|\vec{u}\| |\cos \theta|$

$$\|proj_{\vec{a}}\vec{u}\| = \frac{|\vec{u} \cdot \vec{a}|}{\|\vec{a}\|}$$

Special case: If $\vec{u} = \vec{a}$ then $\frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} = 1$. The projection of \vec{a} onto \vec{a} is itself.

Special case: If \vec{u} is perpendicular to \vec{a} then $\vec{u} \cdot \vec{a} = 0$. The projection is $\vec{p} = \vec{0}$.

Example

Find the orthogonal projections of the vectors $\hat{e}_1 = (1, 0)$ and $\hat{e}_2 = (0, 1)$ on the line L that makes an angle θ with the positive x-axis in \mathbb{R}^2

Solution

Let $\vec{a} = (\cos \theta, \sin \theta)$ be the unit vector along the line L.

$$\|\vec{a}\| = \sqrt{\cos^2 \theta + \sin^2 \theta}$$

$$= 1$$

$$\hat{e}_1 \cdot \vec{a} = (1,0)(\cos \theta, \sin \theta)$$

$$= (1)\cos \theta + (0)\sin \theta$$

$$= \cos \theta$$

$$proj_{\vec{a}} \hat{e}_1 = \frac{\hat{e}_1 \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

$$= \frac{\cos \theta}{1}(\cos \theta, \sin \theta)$$

$$= \left(\cos^2 \theta, \cos \theta \sin \theta\right)$$

$$proj_{\vec{a}} \hat{e}_{2} = \frac{\hat{e}_{2} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}$$

$$= \frac{(0, 1)(\cos \theta, \sin \theta)}{1} (\cos \theta, \sin \theta)$$

$$= \sin \theta (\cos \theta, \sin \theta)$$

$$= \left(\sin \theta \cos \theta, \sin^{2} \theta\right)$$

Example

Let $\vec{u} = (2, -1, 3)$ and $\vec{a} = (4, -1, 2)$. Find the vector component of \vec{u} along \vec{a} and the vector component of \vec{u} orthogonal to \vec{a} .

Solution

$$proj_{\vec{a}} \vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}$$

$$= \frac{(2, -1, 3) \cdot (4, -1, 2)}{\left(\sqrt{4^2 + (-1)^2 + 2^2}\right)^2} (4, -1, 2)$$

$$= \frac{8 + 1 + 6}{21} (4, -1, 2)$$

$$= \frac{15}{21} (4, -1, 2)$$

$$= \frac{5}{7} (4, -1, 2)$$

$$= \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$

The vector component of \vec{u} orthogonal to \vec{a} is

$$\vec{u} - proj_{\vec{a}}\vec{u} = (2, -1, 3) - (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7})$$

$$= (-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7})$$

Theorem of Pythagoras in \mathbb{R}^n

If \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$$

Proof

Since \vec{u} and \vec{v} are orthogonal, then $\vec{u} \cdot \vec{v} = 0$

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

$$= \|\vec{u}\|^2 + 2(\vec{u} \cdot \vec{v}) + \|\vec{v}\|^2$$

$$= \|\vec{u}\|^2 + \|\vec{v}\|^2$$

Distance

Theorem

In \mathbb{R}^2 the distance *D* between the point $P_0 = (x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

In \mathbb{R}^3 the distance *D* between the point $P_0 = (x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

Exercises Section 2.3 – Orthogonality

- 1. Determine whether \vec{u} and \vec{v} are orthogonal

 - a) $\vec{u} = (-6, -2), \quad \vec{v} = (5, -7)$ c) $\vec{u} = (1, -5, 4), \quad \vec{v} = (3, 3, 3)$
 - b) $\vec{u} = (6, 1, 4), \quad \vec{v} = (2, 0, -3)$
- d) $\vec{u} = (-2, 2, 3), \vec{v} = (1, 7, -4)$
- 2. Determine whether the vectors form an orthogonal set
 - a) $\vec{v}_1 = (2, 3), \quad \vec{v}_2 = (3, 2)$
 - b) $\vec{v}_1 = (1, -2), \quad \vec{v}_2 = (-2, 1)$
 - c) $\vec{u} = (-4, 6, -10, 1)$ $\vec{v} = (2, 1, -2, 9)$
 - d) $\vec{u} = (a, b)$ $\vec{v} = (-b, a)$
 - e) $\vec{v}_1 = (-2, 1, 1), \vec{v}_2 = (1, 0, 2), \vec{v}_3 = (-2, -5, 1)$
 - f) $\vec{v}_1 = (1, 0, 1), \vec{v}_2 = (1, 1, 1), \vec{v}_3 = (-1, 0, 1)$
 - g) $\vec{v}_1 = (2, -2, 1), \quad \vec{v}_2 = (2, 1, -2), \quad \vec{v}_3 = (1, 2, 2)$
- Find a unit vector that is orthogonal to both $\vec{u} = (1, 0, 1)$ and $\vec{v} = (0, 1, 1)$ 3.
- a) Show that $\vec{v} = (a, b)$ and $\vec{w} = (-b, a)$ are orthogonal vectors. 4.
 - b) Use the result to find two vectors that are orthogonal to $\vec{v} = (2, -3)$.
 - c) Find two unit vectors that are orthogonal to (-3, 4)
- 5. Find the vector component of \vec{u} along \vec{a} and the vector component of \vec{u} orthogonal to \vec{a} .
 - a) $\vec{u} = (6, 2), \vec{a} = (3, -9)$

- d) $\vec{u} = (1, 1, 1), \vec{a} = (0, 2, -1)$
- b) $\vec{u} = (3, 1, -7), \quad \vec{a} = (1, 0, 5)$ e) $\vec{u} = (2, 1, 1, 2), \quad \vec{a} = (4, -4, 2, -2)$
- c) $\vec{u} = (1, 0, 0), \vec{a} = (4, 3, 8)$
- f) $\vec{u} = (5, 0, -3, 7), \vec{a} = (2, 1, -1, -1)$
- Project the vector \vec{v} onto the line through \vec{a} , check that $\vec{e} = \vec{u} proj_{\vec{a}}\vec{u}$ is perpendicular to \vec{a} : **6.**

 - a) $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ and $\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ b) $\vec{v} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ and $\vec{a} = \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$ c) $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$
- Find the projection matrix $proj_{\vec{a}}\vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a}$ onto the line through $\vec{a} = \begin{vmatrix} \vec{a} \\ 2 \end{vmatrix}$

(8 – 9) Draw the projection of \vec{b} onto \vec{a} and also compute it from $proj_{\vec{a}}\vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a}$

8.
$$\vec{b} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ **9.** $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{a} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

9.
$$\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{a} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

- Show that if \vec{v} is orthogonal to both \vec{w}_1 and \vec{w}_2 , then \mathbf{v} is orthogonal to $k_1\vec{w}_1 + k_2\vec{w}_2$ for all scalars k_1 and k_2 .
- a) Project the vector $\vec{v} = (3, 4, 4)$ onto the line through $\vec{a} = (2, 2, 1)$ and then onto the plane that also contains $\vec{a}^* = (1, 0, 0)$.
 - b) Check that the first error vector $\vec{v} \vec{p}$ is perpendicular to \vec{a} , and the second error vector $\vec{v} \vec{p}$ * is also perpendicular to \vec{a}^* .
- 12. Compute the projection matrices $\vec{a}\vec{a}^T/\vec{a}^T\vec{a}$ onto the lines through $\vec{a}_1 = (-1, 2, 2)$ and $\vec{a}_2 = (2, 2, -1)$. Multiply those projection matrices and explain why their product $P_1 P_2$ is what it is. Project $\vec{v} = (1, 0, 0)$ onto the lines \vec{a}_1 , \vec{a}_2 , and also onto $\vec{a}_3 = (2, -1, 2)$. Add up the three projections $p_1 + p_2 + p_3$.
- 13. If $P^2 = P$ show that $(I P)^2 = I P$. When P projects onto the column space of A, I P projects onto the ____.
- What linear combination of (1, 2, -1) and (1, 0, 1) is closest to $\vec{v} = (2, 1, 1)$? 14.
- Show that $\vec{u} \vec{v}$ is orthogonal to $\vec{u} + \vec{v}$ if and only if $||\vec{u}|| = ||\vec{v}||$ 15.
- Given $\vec{u} = (3, -1, 2)$ $\vec{v} = (4, -1, 5)$ and $\vec{w} = (8, -7, -6)$
 - a) Find $3\vec{v} 4(5\vec{u} 6\vec{w})$
 - b) Find $\vec{u} \cdot \vec{v}$ and then the angle θ between \vec{u} and \vec{v} .
- **17.** Given: $\vec{u} = (3, 1, 3)$ $\vec{v} = (4, 1, -2)$
 - a) Compute the projection \vec{w} of \vec{u} on \vec{v}
 - b) Find $\vec{p} = \vec{u} \vec{v}$ and show that \vec{p} is perpendicular to \vec{v} .
- a) Show that $\vec{v} = (a, b)$ and $\vec{w} = (-b, a)$ are orthogonal vectors **18.**
 - b) Use the result in part (a) to find two vectors that are orthogonal to $\vec{v} = (2, -3)$
 - c) Find two unit vectors that are orthogonal to (-3, 4)

- **19.** Show that A(3, 0, 2), B(4, 3, 0), and C(8, 1, -1) are vertices of a right triangle. At which vertex is the right angle?
- **20.** Establish the identity: $\vec{u} \cdot \vec{v} = \frac{1}{4} ||\vec{u} + \vec{v}||^2 \frac{1}{4} ||\vec{u} \vec{v}||^2$
- **21.** Find the Euclidean inner product $\vec{u} \cdot \vec{v}$: $\vec{u} = (-1, 1, 0, 4, -3)$ $\vec{v} = (-2, -2, 0, 2, -1)$
- **22.** Find the Euclidean distance between \vec{u} and \vec{v} : $\vec{u} = (3, -3, -2, 0, -3)$ $\vec{v} = (-4, 1, -1, 5, 0)$

(Exercises 22 - 26) Find

a)
$$\vec{v} \cdot \vec{u}$$
, $|\vec{v}|$, $|\vec{u}|$

- b) The cosine of the angle between \vec{v} and \vec{u}
- c) The scalar component of \vec{u} in the direction of \vec{v}
- d) The vector $proj_{\vec{v}}\vec{u}$

$$\vec{v} = 2\hat{i} - 4\hat{j} + \sqrt{5}\hat{k}, \quad \vec{u} = -2\hat{i} + 4\hat{j} - \sqrt{5}\hat{k}$$

24.
$$\vec{v} = \frac{3}{5} \hat{i} + \frac{4}{5} \hat{k}, \quad \vec{u} = 5 \hat{i} + 12 \hat{j}$$

25.
$$\vec{v} = 2\hat{i} + 10\hat{j} - 11\hat{k}, \quad \vec{u} = 2\hat{i} + 2\hat{j} + \hat{k}$$

26.
$$\vec{v} = 5\hat{i} + \hat{j}, \quad \vec{u} = 2\hat{i} + \sqrt{17}\hat{j}$$

27.
$$\vec{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right), \quad \vec{u} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{3}}\right)$$

- **28.** Suppose Ted weighs 180 *lb*. and he is sitting on an inclined plane that drops 3 *units* for every 4 horizontal units. The gravitational force vector is $\vec{F}_g = \begin{pmatrix} 0 \\ -180 \end{pmatrix}$.
 - a) Find the force pushing Ted down the slope.
 - b) Find the force acting to hold Ted against the slope
- **29.** Prove that is two vectors \vec{u} and \vec{v} in \mathbb{R}^2 are orthogonal to nonzero vector \vec{w} in \mathbb{R}^2 , then \vec{u} and \vec{v} are scalar multiples of each other.