Surveying the Hoard by Pandiculator

All entries are distinct and none starts with zero. Factors and multiples are non-trivial and clued arithmetic progressions have non-zero common differences. Instructions are encoded within sets of entries:

 $\alpha = \{b, h, A, G, M, W, Z\}, \beta = \{h, z, Q, S, W, X, Z\}, \gamma = \{n, p, z, C, E, P\}, \delta = \{k, p, F\}, \epsilon = \{m, n, t, x, W\}.$

To decode, calculate the product of the set's entries and translate each pair of its digits modulo r as A=1, B=2, etc. For example, if r were 22, decoding a set $\{713, 966\}$ would give BUN, since the product of 42 and 713 is 688758, whose pairs, modulo 22, are 02, 21, and 14. Set α states how certain cells should be presented and which cells these are. Set β states what the resulting grid represents, while γ contains an instruction to improve the representation. Finally, one digit must be replaced with an object δ in position described by ϵ .

1	2	3	4	5	6	7	8	9	
а	b	Α	С	B <i>d</i>	е	C f	g		A
D		E h			F		G		В
Н			K	k	L /		m	n	с
М р	q		N r			P <i>s</i>			D
	Q	t		R	и	S	ν		E
Т	W	U	х	V y			W	Z	F
Х			Υ		Z				G

ACROSS

- A Fibonacci (2)
- **B** n-a(2)
- C prime (3)
- **D** factor of F (2)
- **E** Prime, anagram of a power of 2 (3)
- **F** has digit sum that is a factor of f(2)
- **G** sum of squares of digits of g(2)
- H palindrome (3)
- K square (2)
- L double a cube (3)
- **M** one more than a multiple of D (3)
- **N** same digit product as k (3)
- **P** multiple of the digit product of t (3)
- Q composite (3)
- R has same digit product as V (2)
- **S** prime, less than V (3)
- T prime (2)
- U square (2)
- V mean of a pair of twin primes (3)
- **W** prime, U + z(2)
- **X** prime with digit product 5w (3)
- Y greater than a (2)
- **Z** greater than U, same digit sum as E (2)

DOWN

- a anagram of G (2)
- **b** has prime digit sum, is one more than another entry (3)
- c each digit greater than or equal to the previous (3)
- d composite (2)
- e has composite digit sum (2)
- f palindrome with square digit sum (3)
- g divisible by its digit sum (2)
- **h** M + z X (3)
- k 2T (3)
- I triangular (2)
- m t 2U(2)
- n prime whose reverse is prime (2)
- **p** prime with square digit sum (2)
- q has digit product g(2)
- r factor of e (2)
- **s** digits form an arithmetic progression (3)
- t prime, strictly increasing (3)
- **u** digits form an arithmetic progression (3)
- v = 2az 5W(3)
- w anagram of T (2)
- **x** prime (2)
- y digit product of x(2)
- z prime, anagram of W (2)