

**FIG. 1. MEMBRANE DESICCATION HEAT PUMP
GENERAL CONCEPT**

FIG. 2A. MIXED PERMEATE FLOW

FIG. 2B. COCURRENT PERMEATE FLOW

FIG. 2C. COUNTERCURRENT PERMEATE FLOW

FIG. 3A
VACUUM

FIG. 3B
REFLUX

FIG. 3C
SWEEPING

FIG. 4. HEAT PUMP - OPEN CYCLES

FIG. 5. OPEN CYCLE GAS CHILLING / AIR CONDITIONING

FIG. 6. LIQUID CHILLING - OPEN CYCLE

FIG. 7. GAS CHILLING - CLOSED CYCLE

21

FIG. 8. CLOSED CYCLE LIQUID CHILLING

FIG. 9. GAS CHILLING/AIR CONDITIONING + VAPOR CONTENT CONTROL

FIG. 10. LIQUID CHILLING - OPEN CYCLE Q IN

FIG. 11. LIQUID CHILLING - OPEN CYCLE + REFLUX

FIG. 12. AIR CONDITIONING - DETAILED

**FIG. 13. MEMBRANE HEAT PUMP
HEATING MODE**

**FIG. 14. MEMBRANE HEAT PUMP
HEATING MODE**

**FIG. 15. MEMBRANE HEAT PUMP
RECOVERING HEAT FROM A COOLING TOWER**

**FIG. 16. MEMBRANE HEAT PUMP
RECOVERING HEAT FROM A COOLING TOWER**

FIG. 17. HEAT PUMP PERFORMANCE
 t_2 HEAT TAKING TEMPERATURE = 40 DEG C

FIG. 18. HEAT PUMP PERFORMANCE
 t_1 HEAT SOURCE TEMPERATURE = 120 DEG C

**FIG. 19. MEMBRANE HEAT PUMP PROCESS
SHOWN ON A PSYCHOMETRIC CHART**

**FIG. 20. CLOSED AIR CYCLE
SHOWN ON A PSYCHOMETRIC CHART**

FIG. 22. OPEN CYCLE MEMBRANE HEAT PUMP PROCESS FOR
WASTE HEAT RECOVERY SHOWN ON A PSYCHOMETRIC CHART

