Ch. 29 The Magnetic Field

Magnet (from an iron ore in Magnesia, Turkey)

Pierre de Maricourt (1269): Used magnetized needle to trace the "line of force" around a spherical lodestone and found magnetic poles.

William Gilbert (1600): Earth is a giant magnet; defined north seeking pole of a magnet.

Coulomb (1785): $F_e \propto q_1 q_2/r^2$, $F_m \propto m_1 m_2/r^2$ between magnetic poles.

Oersted (1820):演講結束時發現電流I產生 \vec{B} (他先前已知閃電使磁針振動); 磁鐵的 \vec{B} 對帶電流I的導線有作用力。

Biot and Savart (1820): 直導線產生 $B \propto I/r$ (曲導線 $d\vec{B} \propto Id\vec{\ell} \times \hat{r}/r^2$)。

Ampere (1825): 導線在 \vec{B} 中受力 $d\vec{F} = Id\vec{\ell} \times \vec{B}$ 。

Faraday's induction (1831): 磁通量改變率 $d\phi_{\scriptscriptstyle R}/dt$ 產生 \vec{E} 。

Maxwell's induction (and Maxwell's eqs., 1864): 電通量改變率 $d\phi_{\scriptscriptstyle E}/dt$ 產生 \vec{B} 。

 \vec{B} 的定義: 方向 $\hat{B} \equiv ($ 磁針的指向); 強度 $|\vec{B}| \propto$ 磁針在其中振動的頻率的平方。 (註: 力矩 $I d^2 \theta / dt^2 = \tau = -mB \sin \theta \implies \omega^2 = mB/I$ 。)

實驗發現:當電荷q以速度 \vec{v} 在 \vec{B} 中運動時受力 $\vec{F} = q\vec{v} \times \vec{B}$,

unit of \vec{B} in MKSC: 1 tesla $(T) \equiv (1 N)/[(1 C)(1 m/s)] = 1 N/A \cdot m$.

但常用 1 gauss (G) $\equiv 10^{-4}T$ °

地磁~1 G,磁鐵~100 G,原子內~10T,實驗室最高 30T,中子星 10^8T 。

 $:: \vec{F} \perp \vec{v} \, ::$ 功率 $\vec{F} \cdot \vec{v} = 0 \, \cdot \,$ 磁力不作功, $|\vec{v}|$ 不變。

No magnetic

淤泥中的

monopole msgmsgmsgm 細菌:

Force on a current wire

 $\vec{F} = (nA\ell)(q\vec{v}_d \times \vec{B}) \cdot \underline{\Box} nq\vec{v}_d A\ell = (\vec{J}A)\ell = \vec{I}\ell \cdot .$ $\vec{F} = \vec{I} \ell \times \vec{B} \cdot \underline{\Box} (\Rightarrow \vec{F} = q\vec{v} \times \vec{B} \text{ historically.})$ 任何曲導線與磁場 $\vec{F} = \int d\vec{F} = \int \vec{I} d\ell \times \vec{B} \cdot \underline{\Box}$

例:

$$dF = Id\ell B = I(Rd\theta)B$$

$$F_x = \int dF \cos\theta = IRB \int_0^{\pi} d\theta \cos\theta = IRB(\sin\pi - \sin\theta) = 0$$

$$F_x = \int dF \sin\theta = IRB \int_0^{\pi} d\theta \sin\theta = IRB(\cos\pi + \cos\theta)$$

$$F_{y} = \int dF \sin \theta = IRB \int_{0}^{\pi} d\theta \sin \theta = IRB(-\cos \pi + \cos \theta)$$

=I(2R)B · 與長 2R 的直線受力相同。

In fact, for any wire in an uniform \vec{B} , $\vec{F} = \int I \, d\vec{\ell} \times \vec{B} = I(\int_{-1}^{1} d\vec{\ell}) \times \vec{B}$ = $I(\vec{r}_f - \vec{r}_i) \times \vec{B}$, same as for a straight wire, ind. of shape.

 $\vec{F} = 0$ for a current loop, $\because \vec{r}_f = \vec{r}_i$ 。鐵原子或電子都可看成是電流圈。把鐵塊放在均勻 \vec{B} 中不會受力,磁鐵能吸引鐵是因為它的 \vec{B} 不均勻。

Torque on a current loop by uniform \vec{B} $\sum \vec{F_i} = 0$, but $\sum \vec{\tau}_i \neq 0$, ind. of origin.

 $\tau = (IaB)b\sin\theta = IAB\sin\theta$, $A \equiv ab$.

定義 magnetic dipole $\vec{\mu} \equiv I\vec{A}$

$$(\leftrightarrow \vec{p} \equiv q\vec{d}) \cdot \bowtie \tau = \mu B \sin \theta \circ$$

含方向: $\vec{\tau} = \vec{\mu} \times \vec{B}$ ($\leftrightarrow \vec{\tau}_E = \vec{p} \times \vec{E}$)。

位能 $U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \theta$ ($\leftrightarrow U_F = -\vec{p} \cdot \vec{E}$) · 喜歡 $\vec{\mu} // \vec{B}$ 。

Planar loop of any shape (右圖):

$$\vec{\tau} = \sum \vec{\tau}_i = \sum \vec{\mu}_i \times \vec{B} = (\sum \vec{\mu}_i) \times \vec{B} = I(\sum \vec{a}_i) \times \vec{B} = I\vec{A} \times \vec{B}.$$

::曲面可由小平面組成,:上式也適用於任意曲面。

面積向量: $\int d\vec{A} = \vec{A} = (A_x, A_y, A_z)$ $= A \oplus (yz, zx, xy)$ 平面的投影。

例: Galvanometer (d'Arsonval's)

Torque due to \vec{B} : $\tau_B = \mu B \sin \theta = \mu B = (NIA)B$.

 $(\vec{B} \text{ radial} \cdot \vec{\mu} \perp \vec{B} \text{ always} \cdot$ 效果等同均勻 \vec{B})

Torque due to spring: $\tau_S = \kappa \phi$, $\phi = \text{rotation angle}$.

 $\tau_B = \tau_S \implies NIAB = \kappa \phi \implies \phi = (NAB/\kappa)I$.

Motion of Charged Particles

(a) In uniform \vec{B} : $F = qv_{\perp}B = mv_{\perp}^2/r$, circular or helical.

 $r = mv_{\perp}/qB$, period $T = 2\pi r/v_{\perp} = 2\pi m/qB$,

 $f = 1/T = qB/2\pi m$, cyclotron freq., ind. of r & v.

Cyclotron (右圖, E. Lawrence & M.S. Livingston,

1930 (hand size) and 1934 (27-inch)):

中空銅 D 內 $\vec{E} = 0 \cdot q$ 只在 gap 被加速。

但只適用於低速粒子(p^+ 最高 25 Mev). 高速時需用 synchrocyclotron (用

 $m = m_0 / \sqrt{1 - v^2 / c^2}$)、能量可達 200 Mev。

現代 Synchrotron 則可達 1 TeV 以上。

(b) In non-uniform \vec{B} (e.g. magnetic bottle 左下圖)

應用例:核融合

Van Allen (1958)
radiation belts: p^+ 離地面 3,000 km; e^- 離地面 20,000 km。
逃逸入大氣層造成極光。

Lorentz force $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$, \mathbb{E} :

(a) Velocity selector

No deflection $\vec{F}_E + \vec{F}_B = 0$, i.e. qE = qvB, $\therefore v = E/B$.

(b) Mass spectrometer (for isotope isolation)

(a) Bainbridge's (v被選出,適合大樣本) $r = mv/qB_2 = m(E/B_1)/qB_2$ $= mE/qB_1B_2 \Rightarrow m/q = (B_1B_2/E)r$ 。 (b) Dempster's (v被造出,適合小樣本)

 $mv^{2}/2 = qV \implies v = \sqrt{2qV/m}$ $r = mv/qB = (m/qB)\sqrt{2qV/m}$ $= \sqrt{2mV/qB^{2}} \implies m/q = (B^{2}/2V)r^{2}$

(c) 電子的e/m 實驗 (m 太小 r 太小 r 太小 r 不適合用質譜儀)

現在的方法:以高壓造出 $v = \sqrt{2eV/m}$; 再調E & B 使 e^- 走直線,使v = E/B。

 $\therefore \sqrt{2eV/m} = E/B \cdot e/m = E^2/2VB^2 \circ e/m = 1.75881062(+52) \times 10^{11} C/kg (10)$

 $e/m = 1.75881962(\pm 53) \times 10^{11} \, C/kg$ (1990) °

e 由油滴實驗決定,得 $m = 9.1093897(\pm 54) \times 10^{-31} kg$ 。

Thomson 的方法 (右圖): 根據偏轉角 θ 量出v。

先令
$$B = 0$$
 · $\tan \theta = v_y/v_x = at/v = (eE/m)(\ell/v)/v$
= $eE\ell/mv^2$ · 得 $v^2 = eE\ell/m \tan \theta$ 。

再調B使走直線 · v = E/B 。 故 $e/m = E \tan \theta/B^2 \ell$ 。

Hall Effect (Oct. 1879)

Maxwell 的書上說: \vec{B} 作用在導体上而非電流上,有無 \vec{B} 對電流分布無影響。 Hall 在 1877 年開始當 H. Rowland 的研究生。他懷疑上述說法,他想電流應被推到 導線的一側而降低有效截面積使電阻增加,但他無法測得此效應。Rowland 早先已 發現電線兩側間有微弱電壓,便建議 Hall 用金箔重作此實驗,而發現了 Hall effect。

$$\begin{split} \vec{v}_d &= v_d \hat{x} \;, \; \; \vec{B} = B \hat{y} \;, \\ \vec{E}_H &= E_H \hat{z} \;. \end{split}$$

I 穩定時q走直線,

 $\therefore ec{v}_d$ ($\&ec{J},ec{E}$)均勻。

(b)
$$nq = J/v_d = J(-B/E_H) = (I/wt)(Bw/V_H) = IB/V_H t$$
.

 \therefore 量 V_H 可知 v_d & nq · 若 $V_H > 0$ · 則q > 0 。

Most metals: e^- . Metals Co, Zn, Pb, Fe & semiconductors $Si, Ge : h^+$ (hole).

Force on a wire: e^- cloud 受磁力向上而拉正離子, 或說正離子受到向上 \vec{E}_μ 的作用。

H.W.: Ex. 54; Prob. 1, 2, 4, 5, 6.

Ch. 30 Sources of the Magnetic Field

Oersted described his work ($I \Rightarrow \vec{B}$) to Paris Academy of Science in Sept. 1820. Biot-Savart announced in Oct. 1820 that $B \propto I/r$ for a long straight wire. (They measured the period of oscillation of a magnetized needle in \vec{B} field.)

Force between parallel wires

 $F_{21} = I_2 L B_1 = I_2 L (\mu_0 I_1 / 2\pi D) = (\mu_0 / 2\pi) I_1 I_2 L / D$.

: force per unit length $F/L = (\mu_0/2\pi)(I_1I_2/D)$.

Definition of 1 A: Let D = 1m & L = 1m,

when $I_1 = I_2 = 1A$, $F = 2 \times 10^{-7} N$.

 $2 \times 10^{-7} N = (\mu_0/2\pi)(1A)^2(1m)/(1m)$, $\mu_0 = 4\pi \times 10^{-7} N/A^2$ exact.

(If D = 1 cm, L = 1 m, $I_1 = I_2 = 1A$, then $F = 2 \times 10^{-5} N = 2 \text{ dyne}$.)

 $1C \equiv 1A \cdot 1 \text{ sec}$, and the charge of electron was found to be $1.6 \times 10^{-19} C$.

 $1/4\pi \in 0$ was measured to be $9.0 \times 10^9 N \cdot m^2/C^2$.