XYZ-like file format for molecular structure and properties.

The XYZ format (originally developed for the XMol program by the Minnesota Supercomputer Center) is a widespread plain text format for encoding Cartesian coordinates of molecules, with no formal specification. It contains a header line specifying the number of atoms n_a , a comment line, and n_a lines containing element type and atomic coordinates, one atom per line. We have extended this format as indicated in Table 2. Now, the comment line is used to store all scalar properties, Mulliken charges are added as a fifth column. Harmonic vibrational frequencies, SMILES and InChI are appended as respective additional lines

https://www.nature.com/articles/sdata201422/tables/2

From: Quantum chemistry structures and properties of 134 kilo molecules

Line	Content
1	Number of atoms n_a
2	Scalar properties (see <u>Table 3</u>)
$3,,n_a+2$	Element type, coordinate $(x, y, z, \text{ in Å})$, Mulliken partial charges (in e) on atoms
n_a+3	Harmonic vibrational frequencies $(3n_a-5 \text{ or } 3n_a-6, \text{ in cm}^{-1})$
n_a+4	SMILES strings from GDB-17 and from B3LYP relaxation
n_a+5	InChI strings for Corina and B3LYP geometries

 n_a =number of atoms.

Table 3: Calculated properties.

https://www.nature.com/articles/sdata201422/tables/3

From: Quantum chemistry structures and properties of 134 kilo molecules

No.	Property	Unit	Description	
1	tag		'gdb9' string to	
			facilitate extraction	
2	i	_	Consecutive, 1-based	
			integer identifier	
3	A	GHz	Rotational constant	
4	В	GHz	Rotational constant	
5	С	GHz	Rotational constant	
6	μ	D	Dipole moment	
7	α	alpha_0^3	Isotropic	
			polarizability	

8	€НОМО	На	Energy of HOMO
9	€LUMO	Ha	Energy of LUMO
10	€gap	Ha	Gap
			(€LUMO−€HOMO)
11	⟨R 2⟩	alpha_0^2	Electronic spatial
			extent
12	zpve	На	Zero point vibrational
			energy
13	U 0	На	Internal energy at 0 K
14	U	На	Internal energy at
			298.15 K
15	Н	На	Enthalpy at 298.15 K
16	G	Ha	Free energy at
			298.15 K
17	C v	Cal/molK	Heat capacity at
			298.15 K

File example: dsgdb9nsd_000001.xyz

5

gdb 1	157.7118 35.3641 6.469	157.70997 0.044749	157.70699 -40.47893	0. 13.21 -40.476062	-0.3877 -40.475117	0.1171 0.5048 -40.498597
C	-0.012698135	9 1.085	8041578	0.008000995	8 -0.535	6689
Н	0.002150416	-0.006031317	76 0.001	9761204	0.133921	
Н	1.011730843	3 1.463	37511618	0.000276574	8 0.133	922
Н	-0.540815069	1.447526613	-0.876	66437152	0.133923	
Н	-0.523813634	5 1.437	9326443	0.9063972942	2 0.133	923
1341.3	307 1341.3 3151.6034	3284 1341. 3151.6788	365 1562.6 3151.7078	5731 1562.7	453 3038.3	3205
C	С					

InChI=1S/CH4/h1H4 InChI=1S/CH4/h1H4

The **number of vibrational modes** (different types of vibrations) in a molecule is 3N-5 for linear molecules and 3N-6 for nonlinear molecules, where N is the **number** of atoms. So the diatomic molecule we just discussed has $3 \times 2 - 5 = 1$ **vibration**: the stretching of the bond between the atoms.

GDB-9 is a database of molecular quantum calculations which includes computed geometric, energetic, electronic, and thermodynamic properties for 134k stable small organic molecules made up of carbon, hydrogen, nitrogen, oxygen, and fluorine.