Laboratory 6

Deadline: 15-19 April 2024

Least square approximation

1. Let us consider the following table

Time	9	10	11	12	13	14	15
Temperature	12	10	8	11	15	17	13

- Find the best linear least squares function f(x) = ax + b that approximate the table (find a and b based on the formulas from Lecture 6).
- Use your result to predict the temperature at 16:00.
- Find the minimum value E(a, b) for the coefficients a and b obtained above (see the formula for E(a, b) in Lecture 6).
- In the same figure, plot the points (time, temperature) and the least squares function.
- 2. Let us consider the following table related to the concentration of the oxygen (percentage) as a function of altitude (in meters).

Altitude (m)	0	500	1000	2500	5000	8500
Location	Sea level	Cluj-Napoca	Chamonix	Aspen	Mont Blanc	Everest
Oxygen	20.9	19.6	18.4	15.3	11.2	7.2

- Obtain two least square approximations for the given data (using *polyfit*) for 2 different degrees of polynomials. Find the concentration of the oxygen at 753m, respectively at 6000m.
- Compute the approximation error knowing that at 6000m (Kilimanjaro) the concentration of oxygen is 9.9
- Plot the interpolation points and the interpolation polynomials from the previous point (in the same figure).
- 3. Consider 10 random points in the plane $[0,5] \times [0,4]$ using MatLab function *ginput*. Plot the points and the least square polynomial of 2nd degree that best fits these points.

Remark: 1-2 (1p), 3 (0.5p)