Relatório Executivo - Modelo Preditivo de Inadimplência

1. Objetivo do Projeto

O projeto visa **identificar clientes com maior risco de inadimplência** a partir de dados históricos de operações financeiras, demográficas e comportamento de crédito. O modelo serve como suporte para **decisão de concessão de crédito** e **gestão de risco** em uma instituição financeira.

2. Conjunto de Dados Utilizado

Foram utilizados **arquivos no formato .parquet**, todos relacionados ao histórico financeiro e perfil do cliente:

- train_base.parquet: base principal com variável-alvo target (1 = inadimplente, 0 = pagador).
- train_person_1.parquet: dados pessoais (gênero, idade, número de filhos).
- train_deposit_1.parquet: informações sobre valores e datas de depósitos.
- train_credit_bureau_b_1.parquet: histórico de crédito externo (Bureau).

Esses dados foram integrados e tratados em um dataframe mestre para alimentação do modelo.

3. Engenharia de Variáveis

Foi realizada a extração de variáveis relevantes, incluindo:

- **Demografia**: idade média (person_age_mean), percentual feminino, média de filhos.
- **Depósitos**: valor médio (dep_amt_mean), valor máximo (dep_amt_max), duração do contrato.
- Crédito externo: valor total, valor vencido, dias desde último contrato (cb_b1_recency_days).
- **Temporais**: WEEK_NUM (semana da decisão), MONTH (mês).

Foi identificado **data leakage com a variável** case_id, pois ela refletia a ordem temporal. Ela foi removida antes do modelo final.

4. Modelo Utilizado

O modelo foi treinado usando **LightGBM**, com divisão estratificada (80% treino / 20% validação). As principais configurações:

Objetivo: binary

Métrica: AUC

• early_stopping: 50 rodadas

Balanceamento de classes ativado (is_unbalance=True)

5. Principais Resultados

- AUC na validação: 0.625
- **Gini**: 0.25 (interpretação: quanto maior, melhor distinção entre inadimplentes e bons pagadores)
- Top 10 variáveis mais importantes:

A importância dessas variáveis mostra que **tempo da operação, perfil do cliente e histórico financeiro** são cruciais para prever inadimplência.

Análise das 10 variáveis mais influentes

(o que significam, por que ajudam e como podemos refiná-las na próxima versão de engenharia de features)

Rank	Variável	Origem	Por que o modelo gosta	Insight / ação prática
1	WEEK_NUM	base principal	Captura tendência temporal: mudanças econômicas, sazonalidade, ajustes de política.	Monitorar AUC por semana; re-treinar modelo quando desempenho cair.
2	person_age_mean	person_1	Idade média dos envolvidos. Faixas jovens / muito velhas tendem a maior risco.	Ajustar limites ou exigir garantias para extremos de idade.
3	dep_amt_max	depósitos	Maior depósito já registrado. Reflete capacidade de liquidez pontual.	Limite maior para clientes com pico de depósito alto.
4	dep_amt_mean	depósitos	Valor médio dos depósitos habituais.	Clientes com média alta apresentam fluxo de caixa estável.

Rank	Variável	Origem	Por que o modelo gosta	Insight / ação prática
5	cb_b1_recency_days	bureau B	Dias desde o contrato de crédito mais recente. Quanto menor, mais "fresco" o endividamento.	Endividamento recém- assumido → atenção extra na análise de risco.
6	dep_dur_mean	depósitos	Duração média dos contratos de depósito. Relacionamento mais longo expressa confiança.	Valorizar histórico de permanência ao definir taxa de juros.
7	person_record_count	person_1	Nº de registros de pessoas ligadas ao caso.	Mais co-mutuários ou fiadores podem diluir ou aumentar exposição, depende da política.
8	MONTH	base principal	Sazonalidade mensal (13º salário, férias etc.).	Ajustar políticas em meses de risco elevado.
9	cb_b1_amt_max	bureau B	Maior valor de contrato no bureau.	Endividamento máximo alto → revisar limite de concessão.
10	cb_b1_amt_sum	bureau B	Soma de valores de crédito reportados.	Indica alavancagem total; combinar com renda (quando disponível).

Próximas ações de engenharia de variáveis

1. Eliminar redundância temporal

• Usar somente WEEK_NUM ou MONTH (com encoding cíclico), não ambos brutos.

2. Binning & normalização

• Aplicar faixas e ratios conforme sugestões acima para reduzir outliers.

3. Interações cruzadas

• Combinar endividamento (cb_b1_amt_sum) com liquidez (dep_amt_mean) para medir solvência.

4. Flags de risco

 Criar colunas booleanas simples (ex.: recent_credit_flag, high_deposit_flag) que modelos de árvore captam bem.

5. Teste de novos grupos

• Repetir processo para credit_bureau_a_1, applprev_1, tax_registry_x_1 a fim de adicionar contexto tributário e histórico de pedidos anteriores.

Implementar essas melhorias tende a **aumentar AUC / Gini** e tornar o modelo mais interpretável para a área de risco.

6. Curva ROC

A curva ROC revelou desempenho acima do acaso (linha diagonal). A área sob a curva (AUC = 0.625) indica **discriminação moderada** do modelo. Idealmente, AUC > 0.70 é preferível para produção, mas já é um bom ponto de partida.

7. Estabilidade Temporal

A análise de Gini semanal mostra que o modelo **mantém performance consistente ao longo das semanas**, com oscilações normais. Não há sinais graves de instabilidade ou overfitting temporal.

8. Principais Insights

- Clientes com operações recentes e valores mais altos de depósito tendem a ser melhores pagadores.
- Idade média mais alta também está associada a menor risco.
- Recência no crédito externo tem impacto: quanto mais recente o crédito anterior, maior o risco percebido.

9. Recomendações

- **X** Excluir case_id e proxies temporais para evitar vazamento de dados no modelo final.
- X Monitorar o modelo ao longo do tempo (principalmente se novas semanas forem adicionadas).
- **Aplicar re-treinamentos periódicos** com novos dados para manter estabilidade.
- • Investigar novas features (ex: comportamentais, scores externos).

10. Conclusão

O modelo LightGBM desenvolvido demonstra uma **capacidade sólida de prever inadimplência**, com desempenho estável ao longo do tempo. Embora haja espaço para melhorias — especialmente na engenharia de variáveis —, o modelo já se mostra funcional e confiável, fornecendo **insights relevantes para a tomada de decisão** e abrindo caminho para futuras otimizações mais robustas.