Mathematics 172

Quiz #2

Name: Key

You must show your work to get full credit.

A cell has volume $V = 5.2 \times 10^{-6} \text{mm}^3$ and surface area $A = 7.5 \times 10^{-3} \text{mm}^2$. Assume that oxygen, O_2 , passes through the cell membrane at a rate of $.38(\text{mg/mm}^2)/\text{hr}$.

1. What is the total amount of O_2 that is coming into the cell per hour?

Amount of
$$O_2$$
/hour is O_2 /hr = O_2 /hr

2. What is the amount of O_2 per volume coming into the cell per hour?

Amount of
$$O_2$$
 per volume per hour is $548.1 \text{ (mg/hr)/mm}^3$

Pivide an, way to 1 my volume
$$\frac{60285}{5.2 \times 106} = 548.1 \text{ (mg/hr)/mm}^3$$

3. If the cell needs $58(\text{mg/mm}^3)/\text{hr}$ of O_2 to survive, then how much can it be magnified before it dies from lack of oxygen?

Let
$$a = magnifican$$
 to our function by a factor of 9.45.

As above

 $V_{mag} = 5.2 \times 10^{-6} a^{3} \text{ m/m}^{3}$

A mag = 7.5 $\times 10^{-3} a^{2} \text{ m/m}^{2}$

(Amount of 0_{2} /vol) mag = $\frac{-0025 a^{2}}{5.2 \times 10^{-6} a^{3}} = \frac{548 \text{ l}}{a} (\text{mg/mm}^{3})/\text{hr}$

The cut off is

 $\frac{548 \text{ l}}{a} = 58$ so $a = \frac{548 \text{ l}}{5} = 9.45$