[IrisToolbox] for Macroeconomic Modeling

Adaptive Random-Walk Metropolis (ARWM) Posterior Simulator

jaromir.benes@iris-toolbox.com

<u>Initialization</u>

Initial vector of parameters $heta_0$ poster.InitParam

Initial proposal covariance matrix Σ_0 poster.InitProposalCov

Initial scale σ_0 poster.InitScale=1/3

Factorize $\Sigma_0=P_0P_0'$

Burn-in

Run a total $N_{
m burn} + N$

 $\mathsf{Return}\ N$

Discard $N_{
m burn}$

Parameter	Range	IrisT default
$N_{ m burn}$	(0, 1)	burnIn=0.10

n-th proposal

$$\hat{ heta}_n = heta_{n-1} + w_n = heta_{n-1} + \sigma_{n-1} \, P_{n-1} \, u_n \ w_n \sim N(0,\, \sigma_{n-1}^2 \Sigma_{n-1}) \ u_n \sim N(0,1)$$

Acceptance or rejection

Accept $\hat{ heta}_n$ with probability $lpha_n$

$$lpha_n = \min \left\{ 1, rac{poster(\hat{ heta}_n)}{poster(heta_{n-1})}
ight\}$$

If accepted ($a_n=1$): $heta_n=\hat{ heta}_n$

If rejected ($a_n=0$): $heta_n= heta_{n-1}$

Adaptation to target acceptance ratio

Adapt the scale and shape of the proposal covariance matrix to force acceptance ratio towards target $lpha^*$

Adaptation

$$\propto egin{cases} n^{-\gamma} \left(lpha_n - lpha^*
ight) & ext{if} \quad n \leq \overline{n}_{ ext{adapt}} \ 0 & ext{if} \quad n > \overline{n}_{ ext{adapt}} \end{cases}$$

Parameter	Range	IrisT default
γ	(0.5, 1)	gamma=0.8
$\overline{n}_{ m adapt}$	$\{2,3,4,\ldots\}$	lastAdapt=Inf

Adaptation needs to be vanishing to preserve ergodicity

Scale adaptation

For $n \leq \overline{n}_{\mathrm{adapt}}$:

$$\log \sigma_n = \log \sigma_{n-1} + \kappa_{ ext{scale}} \, n^{-\gamma} \, (lpha_n - lpha^*)$$

Parameter	Range	IrisT default
$\kappa_{ m scale}$	$(0,\infty)$	adaptScale=1

Shape adaptation

For $n \leq \overline{n}_{\mathrm{adapt}}$:

$$\Sigma_n = P_n P_n' = P_{n-1} \left[I + \kappa_{ ext{shape}} n^{-\gamma} \left(lpha_n - lpha^*
ight) rac{u_n u_n'}{\|u_n\|^2}
ight] P_{n-1}'$$

Parameter	Range	IrisT default
$\kappa_{ m shape}$	$(0,\infty)$	adaptShape=0.5

Output arguments for diagnostics

Chain of log posteriors $poster(\theta_n)$

Cumulative acceptance ratio $\sum_{k=1}^n a_k/n$

Chain of scale factors σ_n

Final proposal covariance matrix Σ_N