

### INVERSÃO RADIAL 3D DE DADOS MAGNÉTICOS

#### Leonardo Beserra Vital

Tese apresentada ao Programa de Pósgraduação em Geofísica do Observatório Nacional, como parte dos requisitos necessários à obtenção do título de Doutor em Geofísica.

Orientador(a): Dr. Vanderlei Coelho

Oliveira Junior

Co-orientador(a): Dra. Valéria Cristina

Ferreira Barbosa

Rio de Janeiro Outubro de 2020

# Sumário

| 1                | Met             | codologia              | 1  |
|------------------|-----------------|------------------------|----|
|                  | 1.1             | Problema direto        | 1  |
|                  | 1.2             | Problema inverso       | 3  |
|                  |                 | 1.2.1 Vínculos         | 4  |
|                  | 1.3             | Algoritmo de inversão  | 10 |
|                  | 1.4             | Considerações práticas | 13 |
| $\mathbf{R}_{0}$ | e <b>ferê</b> : | ncias Bibliográficas   | 16 |

# Lista de Figuras

| 1.1 | Representação esquemática do modelo interpretativo. (a) Anomalia                                          |   |
|-----|-----------------------------------------------------------------------------------------------------------|---|
|     | de campo total produzida por uma fonte magnética 3D localizada em                                         |   |
|     | subsuperfície (volume cinza escuro em b). (b) Modelo interpretativo                                       |   |
|     | formado por $L$ prismas retos, verticalmente justapostos e com seção                                      |   |
|     | horizontal descrita por um polígono. A profundidade do topo $z_0$ do                                      |   |
|     | modelo interpretativo coincide com a da fonte magnética (volume                                           |   |
|     | cinza escuro)                                                                                             | 2 |
| 1.2 | Representação esquemática do $k$ -ésimo prisma $P^k$ , $k=1,\ldots,L$ , que                               |   |
|     | compõe o modelo interpretativo (Figura 1b). Este prisma tem es-                                           |   |
|     | pessura dz, profundidade do topo $z_1^k$ e seção horizontal descrita por                                  |   |
|     | um polígono com $V$ vértices igualmente espaçados entre $0^{\circ}$ e $360^{\circ}$ .                     |   |
|     | A posição dos vértices é descrita em termos das coordenadas polares                                       |   |
|     | $r_j^k$ e $\theta_j$ , $j=1,\ldots,V$ , em relação a uma origem $O^k$ com coordenadas                     |   |
|     | Cartesianas $(x_0^k, y_0^k)$                                                                              | Ş |
| 1.3 | Desenho esquemático do vínculo de suavidade sobre distâncias ad-                                          |   |
|     | jacentes dentro de um mesmo prisma $\varphi_1$ . A figura exibe o k-ésimo                                 |   |
|     | prisma $P^k$ e as distâncias radiais adjacentes $r^k_j$ e $r^k_{j+1}$ relacionadas ao                     |   |
|     | vínculo.                                                                                                  | 5 |
| 1.4 | Desenho esquemático do vínculo de suavidade sobre distâncias adja-                                        |   |
|     | centes pertencentes a prismas adjacentes $\varphi_2$ . A figura exibe o k-ésimo                           |   |
|     | prisma $P^k$ e seu adjacente $P^{k+1}$ , assim como as distâncias radiais ad-                             |   |
|     | jacentes $r_j^k$ e $r_j^{k+1}$ relacionadas ao vínculo                                                    | 6 |
| 1.5 | Desenho esquemático do vínculo de suavidade nas coordenadas das                                           |   |
|     | origens pertencentes a prismas adjacentes $\varphi_3$ . A figura exibe os                                 |   |
|     | prisma $P^k$ e $P^{k+1}$ e suas respectivas as coordenadas Cartesianas                                    |   |
|     | $(x_0^k, y_0^k)$ , referidas à origem $O^k$ , e $(x_0^{k+1}, y_0^{k+1})$ , referidas à origem $O^{k+1}$ . |   |
|     | A posição entre as origens deve ser a mínima posível                                                      | 7 |

LISTA DE FIGURAS

| 1.6 | Desenho esquemático do vínculo de Tikhonov de ordem zero nas                      |    |
|-----|-----------------------------------------------------------------------------------|----|
|     | distâncias radiais de um prisma $\varphi_4$ . A figura exibe os prisma $P^k$ e    |    |
|     | suas respectivas distâncias radiais $r_j^k$ referidas à origem $O^k$ . O vínculo  |    |
|     | atua sobre as distâncias radiais do prismas, levando-as próximas a zero.          | 8  |
| 1.7 | Desenho esquemático do vínculo de Tikhonov de ordem zero $\varphi_5$ na           |    |
|     | espessura dos prismas $dz$ . A figura exibe os prisma $P^k$ e sua espessura.      |    |
|     | O vínculo atua sobre a espessura de todos prismas levando-a próxima               |    |
|     | a zero, uma vez que $dz$ é igual para todos os prismas                            | 9  |
| 1.8 | Desenho esquemático dos vínculos de desigualdade. A figura exibe os               |    |
|     | prisma $P^k$ e os intervalos de máximo e mínimo de $r_j^k$ , $x_0$ , $y_0$ e $dz$ | 14 |
|     |                                                                                   |    |

# Capítulo 1

# Metodologia

### 1.1 Problema direto

Seja  $\mathbf{d}^o$  o vetor de dados observados, cujo i-ésimo elemento  $d_i^o$ ,  $i=1,\ldots,N$ , é a anomalia de campo total observada no ponto  $(x_i,y_i,z_i)$  em um sistema de coordenadas Cartesiano com os eixos x,y e z apontando para Norte, para Leste e para baixo, respectivamente. Considere que as anomalias de campo total produzidas por pequenas fontes magnéticas interferências distorcem localmente a anomalia causada por uma fonte alvo 3-D principal. Por simplicidade, podemos assumir que o campo geomagnético principal é constante na área de estudo, com declinação  $D_0$  e inclinação  $I_0$ . Este trabalho segue a mesma abordagem apresentada por OLIVEIRA JR. et al. (2011), OLIVEIRA JR. e BARBOSA (2013), e VITAL et al. (2019) para definir o modelo interpretativo que aproxima a geometria da fonte alvo. Esse modelo é formado por um conjunto de L prismas retos verticalmente justapostos tendo a mesma espessura dz e o mesmo vetor de magnetização total com intensidade  $m_0$ , declinação D e inclinação I (Figura 1.1).

A profundidade do topo do prisma mais raso é definida por  $z_0$ . Cada prisma possui a seção horizontal definida por um polígono com V vértices igualmente espaçados de 0° a 360°. As posições horizontais dos vértices que formam o k-ésimo prisma são definidas por distâncias radiais (ou apenas raios)  $r_j^k$ , com respeito a uma origem  $(x_0^k, y_0^k)$  localizada dentro do prisma, k = 1, ..., L, j = 1, ..., V (Figura 1.2). A anomalia de campo total predita pelo modelo interpretativo no ponto  $(x_i, y_i, z_i)$ , i = 1, ..., N, é dada por:

$$d_i(\mathbf{p}) \equiv \sum_{k=1}^{L} f_i^k(\mathbf{r}^k, x_0^k, y_0^k, dz, z_1^k, m_0, D, I, D_0, I_0), \qquad (1.1)$$

onde  $\mathbf{r}^k$  é um vetor de dimensão  $V \times 1$  que contém os raios  $r_j^k$  dos vértices pertencentes ao k-ésimo prisma, que possui origem no ponto  $(x_0^k, y_0^k)$  e profundidade do topo em

 $z_1^k = z_0 + (k-1)dz$ . Na Equação 1.1, **p** é um vetor de parâmetros de dimensão  $M \times 1$ , M = L(V+2) + 1, que define a geometria do modelo interpretativo:

$$\mathbf{p} = \begin{bmatrix} \mathbf{r}^{1\top} & x_0^1 & y_0^1 & \dots & \mathbf{r}^{L\top} & x_0^L & y_0^L & dz \end{bmatrix}^{\top}, \tag{1.2}$$

onde o sobre-escrito "T"indica transposição. A anomalia de campo total  $d_i(\mathbf{p})$  (Equação 1.1) é computada por meio das fórmulas de Plouff (PLOUFF, 1976) implementadas no pacote de Python Fatiando a Terra (UIEDA *et al.*, 2013).



Figura 1.1: Representação esquemática do modelo interpretativo. (a) Anomalia de campo total produzida por uma fonte magnética 3D localizada em subsuperfície (volume cinza escuro em b). (b) Modelo interpretativo formado por L prismas retos, verticalmente justapostos e com seção horizontal descrita por um polígono. A profundidade do topo  $z_0$  do modelo interpretativo coincide com a da fonte magnética (volume cinza escuro).



Figura 1.2: Representação esquemática do k-ésimo prisma  $P^k$ ,  $k=1,\ldots,L$ , que compõe o modelo interpretativo (Figura 1b). Este prisma tem espessura dz, profundidade do topo  $z_1^k$  e seção horizontal descrita por um polígono com V vértices igualmente espaçados entre  $0^\circ$  e  $360^\circ$ . A posição dos vértices é descrita em termos das coordenadas polares  $r_j^k$  e  $\theta_j$ ,  $j=1,\ldots,V$ , em relação a uma origem  $O^k$  com coordenadas Cartesianas  $(x_0^k, y_0^k)$ 

### 1.2 Problema inverso

Este trabalho propõe um método robusto de inversão magnética para estimar a posição e a forma de uma fonte magnética alvo 3D na presença de fontes interferentes. A formulação do problema consiste em um problema de otimização não-linear vinculado para estimar um vetor de parâmetros **p** (Equação 1.2) minimizando a função objetivo

$$\Gamma(\mathbf{p}) = \phi(\mathbf{p}) + \sum_{\ell=1}^{5} \alpha_{\ell} \, \varphi_{\ell}(\mathbf{p}) \,, \tag{1.3}$$

sujeito aos vínculos de desigualdade

$$p_l^{min} < p_l < p_l^{max}, \quad l = 1, \dots, M,$$
 (1.4)

onde  $p_l^{min}$  e  $p_l^{max}$  definem, respectivamente, os limites inferior e superior para o lésimo elemento  $p_l$  do vetor de parâmetros  $\mathbf{p}$ ,  $\varphi_{\ell}(\mathbf{p})$  são as funções que representam
os vínculos que impõem informação a priori sobre a forma da estimativa do corpo
3D, e  $\phi(\mathbf{p})$  é a função desajuste dos dados ou data-misfit. Podemos definir  $\phi(\mathbf{p})$ 

através de duas abordagens diferentes com o propósito de comparar os resultados. Na primeira abordagem,  $\phi(\mathbf{p})$  é definida de acordo com o trabalho de VITAL *et al.* (2019) como

$$\phi(\mathbf{p}) = \frac{1}{N} \|\mathbf{d}^o - \mathbf{d}(\mathbf{p})\|_2^2 \quad , \tag{1.5}$$

a qual é a norma-2 quadrática (e.g., ASTER et al., 2019, p. 331) dos resíduos entre o vetor de dados observados  $\mathbf{d}^o$ , cujo *i*-ésimo elemento  $d_i^o$  representa a anomalia de campo total observada no ponto  $(x_i, y_i, z_i)$ , e o vetor de dados preditos  $\mathbf{d}(\mathbf{p})$ , cujo *i*-ésimo elemento  $d_i(\mathbf{p})$  é definido pela Equação 1.1. Alternativamente, podemos definir a função data-misfit como

$$\phi(\mathbf{p}) = \frac{1}{N} \|\mathbf{d}^o - \mathbf{d}(\mathbf{p})\|_1 \quad , \tag{1.6}$$

que representa a norma-1 (e.g., ASTER et al., 2019, p. 331) dos resíduos entre os vetores de dados observados do e preditos d(p). É de amplo conhecimento que o vetor de parâmetros que minimiza a norma-2 quadrática (Equação 1.5) pode ser muito afetado negativamente pela presença de pontos espúrios ou outliers e também pelo efeito causado por fontes não-alvos (e.g., ASTER et al., 2019; CLA-ERBOUT e MUIR, 1973; FARQUHARSON e OLDENBURG, 1998; OLIVEIRA JR. et al., 2015; SCALES e GERSZTENKORN, 1988; SILVA e CUTRIM, 1989; SILVA e HOHMANN, 1983; UIEDA e BARBOSA, 2012). Através da estimativa do vetor de parâmetros obtida pela minimização da norma-1 Equação 1.6), espera-se que a posição e a forma estimadas do corpo 3D durante a inversão ajustem a anomalia de campo total produzida pela fonte alvo e ignorem a causada pelas fontes interferentes.

Na Equação 1.3,  $\alpha_{\ell}$ ,  $\ell = 1, ..., 5$ , são escalares positivos que definem o peso relativo das funções dos vínculos  $\varphi_{\ell}(\mathbf{p})$ . Essas funções são definidas seguindo a mesma abordagem utilizada por OLIVEIRA JR. et al. (2011), OLIVEIRA JR. e BARBOSA (2013), and VITAL et al. (2019).

#### 1.2.1 Vínculos

As funções dos vínculos  $\varphi_{\ell}(\mathbf{p})$  (Equação 1.3),  $\ell = 1, ..., 5$ , utilizadas aqui para obter soluções estáveis e introduzir informação a priori sobre o corpo estimado, foram organizadas em dois grupos.

#### Vínculos de suavidade

Esse grupo é formado pelas variações da regularização de Tikhonov de primeira ordem (ASTER et al., 2019, p. 103) que impõe suavidade sobre os raios  $r_j^k$  e sobre as coordenadas Cartesianas  $x_0^k$  e  $y_0^k$  da origem  $O^k$ ,  $j=1,\ldots,V$ ,  $k=1,\ldots,L$ , que define a seção horizontal de cada prisma (Fig.1.1b). Elas foram propostas por

OLIVEIRA JR. et al. (2011) e OLIVEIRA JR. e BARBOSA (2013) e possuem um papel muito importante em introduzir informação a prior sobre a forma da fonte alvo.

O primeiro vínculo desse grupo é a suavidade sobre os raios adjacentes que definem a seção horizontal de cada prisma. Esse vínculo impõe que os raios adjacentes  $r_j^k$  e  $r_{j+1}^k$  dentro do mesmo prisma devem ser próximos entre si. Isso força que o prisma estimado terá uma forma aproximadamente cilíndrica, que evita descontinuidades abruptas entre as estimativas das distâncias radiais dentro de um mesmo prisma. Sua representação esquemática é mostrada na Figura 1.3.



Figura 1.3: Desenho esquemático do vínculo de suavidade sobre distâncias adjacentes dentro de um mesmo prisma  $\varphi_1$ . A figura exibe o k-ésimo prisma  $P^k$  e as distâncias radiais adjacentes  $r_j^k$  e  $r_{j+1}^k$  relacionadas ao vínculo.

Matematicamente, o vínculo é dado por

$$\varphi_1(\mathbf{p}) = \sum_{k=1}^{L} \left[ \left( r_V^k - r_1^k \right)^2 + \sum_{j=1}^{V-1} \left( r_j^k - r_{j+1}^k \right)^2 \right]$$
$$= \mathbf{p}^\mathsf{T} \mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \mathbf{p} \quad , \tag{1.7}$$

onde

$$\mathbf{R}_1 = \mathbf{I}_L \otimes \left[ \begin{pmatrix} \mathbf{I}_V - \mathbf{D}_V^\mathsf{T} \end{pmatrix} \quad \mathbf{0}_{V \times 2} \right]_{(L-1)V \times M} \quad , \tag{1.8}$$

 $\mathbf{I}_L$  é a matriz identidade de ordem L, " $\otimes$ " indica o produto de Kronecker (HORN e JOHNSON, 1991, p. 243),  $\mathbf{0}_{V\times 2}$  é uma matriz de ordem  $V\times 2$  com elementos nulos,  $\mathbf{I}_V$  é a matriz identidade de ordem V e  $\mathbf{D}_V^\mathsf{T}$  é a matriz de permutação superior de ordem V (GOLUB e LOAN, 2013, p. 20). O vetor gradiente e a matriz Hessiana

da função  $\varphi_1(\mathbf{p})$  (Equação 1.7) são dados por:

$$\nabla \varphi_1(\mathbf{p}) = 2\mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \mathbf{p} \quad ,$$

$$\mathbf{H}_1(\mathbf{p}) = 2\mathbf{R}_1^\mathsf{T} \mathbf{R}_1 \quad .$$
(1.9)

O segundo vínculo do grupo é a suavidade sobre os raios adjacentes de prismas adjacentes, o qual impõe que os raios adjacentes  $r_j^k$  e  $r_j^{k+1}$  entre prismas verticalmente adjacentes sejam próximos entre si. Esse vínculo força que a forma de prismas verticalmente adjacentes seja similar. Uma representação esquemática do vínculo é apresentada na Figura 1.4.



Figura 1.4: Desenho esquemático do vínculo de suavidade sobre distâncias adjacentes pertencentes a prismas adjacentes  $\varphi_2$ . A figura exibe o k-ésimo prisma  $P^k$  e seu adjacente  $P^{k+1}$ , assim como as distâncias radiais adjacentes  $r_j^k$  e  $r_j^{k+1}$  relacionadas ao vínculo.

De forma matemática é dado por

$$\varphi_2(\mathbf{p}) = \sum_{k=1}^{L-1} \left[ \sum_{j=1}^{V} \left( r_j^{k+1} - r_j^k \right)^2 \right] ,$$

$$= \mathbf{p}^\mathsf{T} \mathbf{R}_2^\mathsf{T} \mathbf{R}_2 \mathbf{p}$$

$$(1.10)$$

onde

$$\mathbf{R}_2 = \begin{bmatrix} \mathbf{S}_2 & \mathbf{0}_{(L-1)V \times 1} \end{bmatrix}_{(L-1)V \times M} , \qquad (1.11)$$

$$\mathbf{S}_{2} = \left( \begin{bmatrix} \mathbf{I}_{L-1} & \mathbf{0}_{(L-1)\times 1} \end{bmatrix} - \begin{bmatrix} \mathbf{0}_{(L-1)\times 1} & \mathbf{I}_{L-1} \end{bmatrix} \right) \otimes \begin{bmatrix} \mathbf{I}_{V} & \mathbf{0}_{V\times 2} \end{bmatrix} , \qquad (1.12)$$

 $\mathbf{0}_{(L-1)V\times 1}$  é um vetor de ordem  $(L-1)V\times 1$  com elementos nulos,  $\mathbf{0}_{(L-1)\times 1}$  é um

vetor de ordem  $(L-1) \times 1$  com elementos nulos e  $\mathbf{I}_{L-1}$  é a matriz identidade de ordem L-1. O vetor gradiente e a matriz Hessiana da função  $\varphi_2(\mathbf{p})$  (Equação 1.10) são dados por:

$$\nabla \varphi_2(\mathbf{p}) = 2\mathbf{R}_2^{\mathsf{T}} \mathbf{R}_2 \mathbf{p} \quad ,$$

$$\mathbf{H}_2(\mathbf{p}) = 2\mathbf{R}_2^{\mathsf{T}} \mathbf{R}_2 \quad .$$
(1.13)

O último vínculo deste grupo é a suavidade sobre a posição horizontal das origens arbitrárias de prismas verticalmente adjacentes. Esse vínculo impõe que as coordenadas Cartesianas horizontais estimadas  $(x_0^k, y_0^k)$  e  $(x_0^{k+1}, y_0^{k+1})$  das origens  $O^k$  e  $O^{k+1}$  de prismas verticalmente adjacentes devem ser próximas entre si. Isso controla o mergulho do corpo estimado através da regularização do deslocamento horizontal de prismas verticalmente adjacentes (Figura 1.5).



Figura 1.5: Desenho esquemático do vínculo de suavidade nas coordenadas das origens pertencentes a prismas adjacentes  $\varphi_3$ . A figura exibe os prisma  $P^k$  e  $P^{k+1}$  e suas respectivas as coordenadas Cartesianas  $(x_0^k, y_0^k)$ , referidas à origem  $O^k$ , e  $(x_0^{k+1}, y_0^{k+1})$ , referidas à origem  $O^{k+1}$ . A posição entre as origens deve ser a mínima posível.

Algebricamente o vínculo é dado por

$$\varphi_{3}(\mathbf{p}) = \sum_{k=1}^{L-1} \left[ \left( x_{0}^{k+1} - x_{0}^{k} \right)^{2} + \left( y_{0}^{k+1} - y_{0}^{k} \right)^{2} \right]$$

$$= \mathbf{p}^{\mathsf{T}} \mathbf{R}_{3}^{\mathsf{T}} \mathbf{R}_{3} \mathbf{p}$$
(1.14)

onde

$$\mathbf{R}_3 = \begin{bmatrix} \mathbf{S}_3 & \mathbf{0}_{(L-1)2\times 1} \end{bmatrix}_{(L-1)2\times M} , \qquad (1.15)$$

$$\mathbf{S}_{3} = \left( \begin{bmatrix} \mathbf{I}_{L-1} & \mathbf{0}_{(L-1)\times 1} \end{bmatrix} - \begin{bmatrix} \mathbf{0}_{(L-1)\times 1} & \mathbf{I}_{L-1} \end{bmatrix} \right) \otimes \begin{bmatrix} \mathbf{0}_{2\times V} & \mathbf{I}_{2} \end{bmatrix} , \qquad (1.16)$$

 $\mathbf{0}_{(L-1)2\times 1}$  é um vetor de ordem  $(L-1)2\times 1$  com elementos nulos,  $\mathbf{0}_{2\times V}$  é uma matrix de ordem  $2\times V$  com elementos nulos e  $\mathbf{I}_2$  é uma matriz identidade de ordem 2. O vetor gradiente e a matriz Hessiana da função  $\varphi_3(\mathbf{p})$  (Equação 1.14) são dados por:

$$\nabla \varphi_3(\mathbf{p}) = 2\mathbf{R}_3^\mathsf{T} \mathbf{R}_3 \mathbf{p} \quad ,$$

$$\mathbf{H}_3(\mathbf{p}) = 2\mathbf{R}_3^\mathsf{T} \mathbf{R}_3 \quad .$$
(1.17)

#### Vínculos de norma Euclidiana mínima

Dois vínculos utilizam a regularização Tikhonov de ordem zero com o propósito de estabilizar o problema inverso sem necessariamente introduzir informação a priori com significado físico significante sobre a fonte.

A norma Euclidiana mínima dos raios impões que todos os raios estimados dentro de um prisma devem ser próximos de zero (Figura 1.6).



Figura 1.6: Desenho esquemático do vínculo de Tikhonov de ordem zero nas distâncias radiais de um prisma  $\varphi_4$ . A figura exibe os prisma  $P^k$  e suas respectivas distâncias radiais  $r_j^k$  referidas à origem  $O^k$ . O vínculo atua sobre as distâncias radiais do prismas, levando-as próximas a zero.

Esse vínculo foi proposto por OLIVEIRA JR. et al. (2011) e OLIVEIRA JR. e

BARBOSA (2013) e pode ser reescrito como

$$\varphi_4(\mathbf{p}) = \sum_{k=1}^{L} \sum_{j=1}^{V} (r_j^k)^2$$

$$= \mathbf{p}^\mathsf{T} \mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \mathbf{p}$$
(1.18)

onde

$$\mathbf{R}_4 = \begin{bmatrix} \mathbf{S}_4 & \mathbf{0}_{(M-1)\times 1} \\ \mathbf{0}_{1\times (M-1)} & 0 \end{bmatrix}_{M\times M} , \qquad (1.19)$$

е

$$\mathbf{S}_4 = \begin{bmatrix} \mathbf{I}_V & \mathbf{0}_{V \times 2} \\ \mathbf{0}_{2 \times V} & \mathbf{I}_2 \end{bmatrix}_{(V+2) \times (V+2)} . \tag{1.20}$$

O vetor gradiente e a matriz Hessiana da função  $\varphi_4(\mathbf{p})$  (Equação 1.18) são:

$$\nabla \varphi_4(\mathbf{p}) = 2\mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \mathbf{p} \quad ,$$

$$\mathbf{H}_4(\mathbf{p}) = 2\mathbf{R}_4^\mathsf{T} \mathbf{R}_4 \quad .$$
(1.21)

Finalmente, o último vínculo é a norma Euclidiana mínima da espessura, que impõe que a espessura comum dz de todos os prismas seja próxima de zero. Esse vínculo força que a profundidade da base do modelo seja o mais rasa possível (Figura 1.7)



Figura 1.7: Desenho esquemático do vínculo de Tikhonov de ordem zero  $\varphi_5$  na espessura dos prismas dz. A figura exibe os prisma  $P^k$  e sua espessura. O vínculo atua sobre a espessura de todos prismas levando-a próxima a zero, uma vez que dz é igual para todos os prismas.

Esse vínculo pode ser escrito matematicamente como

$$\varphi_5(\mathbf{p}) = dz^2 = \mathbf{p}^\mathsf{T} \mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \mathbf{p}$$
(1.22)

onde

$$\mathbf{R}_{5} = \begin{bmatrix} \mathbf{0}_{(M-1)\times(M-1)} & \mathbf{0}_{(M-1)\times1} \\ \mathbf{0}_{1\times(M-1)} & 1 \end{bmatrix}_{M\times M} . \tag{1.23}$$

O vetor gradiente e a matriz Hessiana da função  $\varphi_5(\mathbf{p})$  (Equação 1.22) são:

$$\nabla \varphi_5(\mathbf{p}) = 2\mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \mathbf{p} \quad ,$$

$$\mathbf{H}_5(\mathbf{p}) = 2\mathbf{R}_5^\mathsf{T} \mathbf{R}_5 \quad .$$
(1.24)

## 1.3 Algoritmo de inversão

Dada um profundidade do top  $z_0$  do prisma mais raso, a intensidade de magnetização total  $m_0$  de todos os prismas, uma aproximação inicial  $\hat{\mathbf{p}}_{(0)}$  para o vetor de parâmetros  $\mathbf{p}$  (Equação 1.2), e os limites  $p_l^{min}$  e  $p_l^{max}$  (Equação 1.4), o método de Levenberg-Marquardt (e.g., SEBER e WILD, 2003, p. 624) é utilizado para estimar o vetor de parâmetros  $\hat{\mathbf{p}}^*$  que minimiza a função objetivo  $\Gamma(\mathbf{p})$  (Equação 1.3), sujeita aos vínculos de desigualdade definidos pela Equação 1.4. Para incorporar esses vínculos de desigualdade, foi empregada a mesma abordagem apresentada por BARBOSA et al. (1999), OLIVEIRA JR. et al. (2011) e OLIVEIRA JR. e BARBOSA (2013). Abaixo, segue o algoritmo de inversão aqui proposto:

entrada d°,  $D_0$ ,  $I_0$ ,  $z_0$ ,  $m_0$ , D, I,  $p_l^{min}$  e  $p_l^{max}$  (Equação 1.4), k = 0,  $\hat{\mathbf{p}}_{(k)}$ , e  $\mathbf{W}_{(k)} = \mathbf{I}$ , onde  $\mathbf{I}$  é a matriz identidade de ordem M.

- (1) Computa a matriz  $N \times M$   $\mathbf{G}(\hat{\mathbf{p}}_{(k)})$ , cujo elemento ij é a derivada do dado  $d_i(\hat{\mathbf{p}}_{(k)})$  (Equação 1.1) com respeito ao j-ésimo elemento  $p_j$  do vetor de parâmetros  $\mathbf{p}$  (Equação 1.2).
- (2) Computa o vetor gradiente

$$\nabla \phi(\hat{\mathbf{p}}_{(k)}) = -\frac{2}{N} \mathbf{G}(\hat{\mathbf{p}}_{(k)})^{\top} \mathbf{W}_{(k)} \left[ \mathbf{d}^o - \mathbf{d}(\hat{\mathbf{p}}_{(k)}) \right]$$

e a matriz Hessiana

$$\mathbf{H}_{\phi}(\hat{\mathbf{p}}_{(k)}) = \frac{2}{N} \mathbf{G}(\hat{\mathbf{p}}_{(k)})^{\top} \mathbf{W}_{(k)} \mathbf{G}(\hat{\mathbf{p}}_{(k)})$$

da função data-misfit  $\phi(\mathbf{p})$  (Equação 1.5), quando  $\mathbf{W}_{(k)} = \mathbf{I}$ , ou  $\phi(\mathbf{p})$  (Equação 1.6), quando  $\mathbf{W}_{(k)} \neq \mathbf{I}$ . Na próxima seção, será discutido como usar a matriz

Hessiana  $\mathbf{H}_{\phi}(\hat{\mathbf{p}}_{(0)})$  (computada na iteração k=0) para definir os pesos  $\alpha_{\ell}$  (Equação 1.3) das funções de vínculos  $\varphi_{\ell}(\mathbf{p})$  (Equações 1.7, 1.10, 1.14, 1.18, 1.22).

(3) Computa o vetor gradiente

$$\boldsymbol{\nabla} \Gamma(\hat{\mathbf{p}}_{(k)}) = \boldsymbol{\nabla} \phi(\hat{\mathbf{p}}_{(k)}) + \sum_{\ell=1}^{5} \alpha_{\ell} \, \boldsymbol{\nabla} \varphi_{\ell}(\hat{\mathbf{p}}_{(k)})$$

e a matriz Hessiana

$$\mathbf{H}(\hat{\mathbf{p}}_{(k)}) = \mathbf{H}_{\phi}(\hat{\mathbf{p}}_{(k)}) + \sum_{\ell=1}^{5} \alpha_{\ell} \, \mathbf{H}_{\ell}$$

da função objetivo  $\Gamma(\mathbf{p})$  (Equação 1.3), onde  $\nabla \varphi_{\ell}(\hat{\mathbf{p}}_{(k)})$  e  $\mathbf{H}_{\ell}$  são, respectivamente, o vetor gradiente e a matriz Hessiana (Equações 1.9, 1.13, 1.17, 1.21, 1.24) das funções dos vínculos  $\varphi_{\ell}(\mathbf{p})$  (Equações 1.7, 1.10, 1.14, 1.18, 1.22).

(4) Computa o *l*-ésimo elemento  $\hat{p}_l^{\dagger}$  de um vetor  $\hat{\mathbf{p}}_{(k)}^{\dagger}$  como:

$$\hat{p}_l^{\dagger} = -\ln\left(\frac{p_l^{max} - \hat{p}_l}{\hat{p}_l - p_l^{min}}\right) ,$$

onde  $\hat{p}_l$  é o *l*-ésimo elemento de  $\hat{\mathbf{p}}_{(k)}$ .

(5) Computa uma matriz diagonal  $\mathbf{T}(\hat{\mathbf{p}}_{(k)})$  com o elemento ll dado por

$$t(\hat{p}_l) = \frac{(p_l^{max} - \hat{p}_l)(\hat{p}_l - p_l^{min})}{p_l^{max} - p_l^{min}},$$

onde  $p_l$  é o l-ésimo elemento do vetor  $\hat{\mathbf{p}}_{(k)}$ .

(6) Computa uma matriz

$$\mathbf{H}^{\dagger}(\hat{\mathbf{p}}_{(k)}) = \mathbf{H}(\hat{\mathbf{p}}_{(k)}) \mathbf{T}(\hat{\mathbf{p}}_{(k)})$$
 .

(7) Compute uma matriz diagonal  $\mathbf{Q}_{(k)}$  com elemento ll dado por

$$q_{ll} = \frac{1}{\sqrt{h_{ll}^{\dagger}}} \,,$$

onde  $h_{ll}^{\dagger}$  é o elemento ll da matriz  $\mathbf{H}^{\dagger}(\hat{\mathbf{p}}_{(k)})$  .

(8) Computa uma correção  $\Delta \hat{\mathbf{p}}_{(k)}^{\dagger}$  para o vetor  $\hat{\mathbf{p}}_{(k)}^{\dagger}$  pela solução do sistema linear

$$\mathbf{Q}_{(k)}^{-1} \left[ \mathbf{Q}_{(k)} \mathbf{H}^{\dagger} (\hat{\mathbf{p}}_{(k)}) \mathbf{Q}_{(k)} + \lambda_{(k)} \mathbf{I}_{M} \right] \mathbf{Q}_{(k)}^{-1} \Delta \hat{\mathbf{p}}_{(k)}^{\dagger} = - \boldsymbol{\nabla} \Gamma(\hat{\mathbf{p}}_{(k)}) ,$$

onde  $\lambda_{(k)}$  é um escalar positivo ajustado à cada iteração (e.g., SEBER e WILD, 2003, p. 624).

(9) Computa um novo vetor

$$\hat{\mathbf{p}}_{(k+1)}^\dagger = \hat{\mathbf{p}}_{(k)}^\dagger + oldsymbol{\Delta}\hat{\mathbf{p}}_{(k)}^\dagger$$
 .

(10) Computa o *l*-ésimo elemento do novo vetor  $\hat{\mathbf{p}}_{(k+1)}$  como:

$$\hat{p}_l = p_l^{min} + \left(\frac{p_l^{max} - p_l^{min}}{1 + e^{-\hat{p}_l^{\dagger}}}\right) .$$

(11) Se o seguinte critério de convergência for satisfeito,

$$\left| \frac{\Gamma(\hat{\mathbf{p}}_{(k+1)}) - \Gamma(\hat{\mathbf{p}}_{(k)})}{\Gamma(\hat{\mathbf{p}}_{(k)})} \right| \le \tau ,$$

onde  $\tau$  é um número positivo pequeno, que varia de  $\approx 10^{-3}$  a  $10^{-4}$ , que controla a convergência, o vetor de parâmetros  $\hat{\mathbf{p}}_{(k+1)}$  é a solução. Senão, atualiza o vetor de parâmetros

$$\hat{\mathbf{p}}_{(k)} \leftarrow \hat{\mathbf{p}}_{(k+1)}$$
,

atualiza o elemento ii da matriz  $\mathbf{W}_{(k)}$ 

$$w_{ii} = \frac{1}{\mid d_i^o - d_i(\hat{\mathbf{p}}_{(k)}) \mid + \varepsilon} ,$$

onde  $\varepsilon$  possui um valor positivo pequeno ( $\approx 10^{-10}$ ) usado para prevenir uma divisão por zero, atualiza o contador da iteração k

$$k \leftarrow k + 1$$
.

e retorna à etapa (1).

Nesse algoritmo, os elementos da matriz  $\mathbf{G}(\hat{\mathbf{p}}_{(k)})$  (etapa 1) são computados pelo uso das diferenças finitas centradas. É importante notar que na etapa 3 as matrizes Hessianas  $\mathbf{H}_{\ell}$  (Equações 1.9, 1.13, 1.17, 1.21, 1.24) das funções dos vínculos  $\varphi_{\ell}(\mathbf{p})$  (Equações 1.7, 1.10, 1.14, 1.18, 1.22) não dependem do vetor de parâmetros. Por essa razão, eles são computados apenas uma vez antes da primeira iteração e armazenados para serem usados até a convergência ser alcançada (etapa 11).

Esse algoritmo é executado para obter um corpo estimado para cada ponto  $(m_0, z_0)$  em uma malha de valores de profundidade do topo  $z_0$  e intensidade de magnetização total  $m_0$  definida pelo usuário. Todos os corpos estimados são obtidos através da utilização de uma aproximação inicial  $\hat{\mathbf{p}}_{(0)}$  para o vetor de parâmetros  $\mathbf{p}$  (Equação 1.2), dos mesmos valores para os pesos  $\alpha_{\ell}$  (Equação 1.3) e dos limites  $p_l^{min}$  e  $p_l^{max}$  (Eq. 1.4) para os parâmetros estimados. Os valores ótimos da profundidade do topo  $z_0$  e intensidade de magnetização total  $m_0$  são escolhidos como aqueles associados aos corpos estimados que produzem valores pequenos da função objetivo  $\Gamma(\mathbf{p})$  (Equação 1.3).

Note, que ao manter a matriz  $\mathbf{W}_{(k)}$  (etapa 2 e 10) igual à identidade ao longo das iterações, o corpo estimado minimiza a norma-2 quadrática dos resíduos entro os dados observados e preditos (Equação 1.5). Nesse caso, os corpos estimados são convenientemente denominados solução L2. A atualização iterativa dos elementos da matriz  $\mathbf{W}_{(k)}$  com os valores absolutos dos resíduos de acordo com a etapa 10 é feita através do método Mínimos Quadrados Reponderados Iterativamente Iteratively Reweighted Least Squares (ASTER et al., 2019; SCALES e GERSZTENKORN, 1988, p. 46) para obter um corpo estimado que minimiza a norma-1 dos resíduos entre os dados observados e preditos (Equação 1.6). Nesse caso, o corpo estimado é convenientemente chamado de solução L1.

## 1.4 Considerações práticas

Nesta seção são apresentados alguns aspectos práticos de como definir o conjunto de valores de profundidade do topo  $z_0$  do prisma mais raso, a intensidade de magnetização total  $m_0$ , a aproximação inicial  $\hat{\mathbf{p}}_{(0)}$  para o vetor de parâmetros  $\mathbf{p}$  (Equação 1.2), os pesos  $\alpha_{\ell}$  (Equação 1.3) das funções de vínculos  $\varphi_{\ell}(\mathbf{p})$  (Equações 1.7, 1.10, 1.14, 1.18, 1.22) e os limites  $p_l^{min}$  e  $p_l^{max}$  dos vínculos de desigualdade (Equação 1.4).

Inicialmente, se calcula a redução ao polo da anomalia de campo total observada. Essa é uma etapa dupla: ele permite a verificação dos valores usados para a direção de magnetização total (declinação D e inclinação I) e é utilizado para estimar as dimensões horizontais da fonte alvo. Se a fonte alvo possui uma direção de magnetização uniforme com valores de declinação e inclinação próximos daqueles escolhidos para D e I, a anomalia reduzida ao polo (anomalia RTP) é predominantemente positiva sobre a fonte alvo e decai a zero perto de seus limites laterais. Através da anomalia RTP, é possível definir os limites  $p_l^{min}$  e  $p_l^{max}$  (Figura 1.8) dos vínculos de desigualdade (Equação 1.4) e uma aproximação inicial cilíndrica  $\hat{\mathbf{p}}_{(0)}$ , isto é, todos os prismas que formam  $\hat{\mathbf{p}}_{(0)}$  possuem os vértices definidos por uma mesma distância radial constante  $r_0$  e a mesma origem  $(x_0, y_0)$ . Nessa etapa, os pesos são  $\alpha_\ell$  (Equação 1.3) estabelecidos iguais a zero e se define uma malha de

valores para a profundidade do topo  $z_0$ , intensidade de magnetização total  $m_0$  e espessura dz que produz, sem grande rigor, um ajuste entre dados observados  $\mathbf{d}^o$  e dados preditos  $\mathbf{d}(\hat{\mathbf{p}}_{(0)})$ .



Figura 1.8: Desenho esquemático dos vínculos de desigualdade. A figura exibe os prisma  $P^k$  e os intervalos de máximo e mínimo de  $r_j^k$ ,  $x_0$ ,  $y_0$  e dz.

Um segundo aspecto crucial desse algoritmo consiste em definir os valores dos pesos  $\alpha_{\ell}$  (Equação 1.3). Não existe uma regra analítica para defini-los e seus valores podem depender nas particularidades da área de estudo e do conjunto de dados observados. Para contornar esse problema, os pesos  $\alpha_{\ell}$  são definidos da seguinte maneira:

$$\alpha_{\ell} = \tilde{\alpha}_{\ell} \frac{E_{\phi}}{E_{\ell}}, \quad \ell = 1, \dots, 5,$$

$$(1.25)$$

onde  $\tilde{\alpha}_{\ell}$  é um escalar positivo e  $E_{\phi}/E_{\ell}$  é o fator de normalização. Nessa equação,  $E_{\ell}$  representa o traço da matriz Hessiana  $\mathbf{H}_{\ell}$  (Equações 1.9, 1.13, 1.17, 1.21, 1.24) da  $\ell$ -ésima função de vínculo  $\varphi_{\ell}(\mathbf{p})$  (Equações 1.7, 1.10, 1.14, 1.18, 1.22). A constante  $E_{\phi}$  é o traço da matriz Hessiana  $\mathbf{H}_{\phi}(\hat{\mathbf{p}}_{(0)})$  (etapa 2 do algoritmo) da função data-misfit  $\phi(\mathbf{p})$  (Equação 1.6) computada na iteração k=0, com a aproximação inicial  $\hat{\mathbf{p}}_{(0)}$  para o vetor de parâmetros  $\mathbf{p}$  (Equação 1.2). Essa estratégia empírica permite definir indiretamente os pesos  $\alpha_{\ell}$  (Equação 1.3) pela utilização dos pesos normalizados  $\tilde{\alpha}_{\ell}$  (Equação 1.25), o quais são dependem menos das características particulares do

problema. Baseado em experiência prática, os valores iniciais propostos aqui para os pesos normalizados  $\tilde{\alpha}_{\ell}$  se a função data-misfit é definida pela Equação 1.5 são:  $\tilde{\alpha}_1 = 10^{-4}$ ,  $\tilde{\alpha}_2 = 10^{-4}$ ,  $\tilde{\alpha}_3 = 10^{-4}$ ,  $\tilde{\alpha}_4 = 10^{-7}$ , e  $\tilde{\alpha}_5 = 10^{-5}$ . Para o caso no qual a função data-misfit é definida pela Equação 1.6, a recomendação é:  $\tilde{\alpha}_1 = 10^{-3}$ ,  $\tilde{\alpha}_2 = 10^{-4}$ ,  $\tilde{\alpha}_3 = 10^{-4}$ ,  $\tilde{\alpha}_4 = 10^{-6}$ , é  $\tilde{\alpha}_5 = 10^{-5}$ . Esses valores são comumente refinados de acordo com a informação a priori sobre a complexidade da fonte alvo. Por exemplo, ao aumentar ou diminuir valor de  $\tilde{\alpha}_1$ , força-se que o corpo estimado tenha fatias horizontais mais ou menos suaves; ao aumentar ou diminuir o valor de  $\tilde{\alpha}_3$ , força-se que o corpo estimado seja mais ou menos vertical. Os pesos normalizados  $\tilde{\alpha}_1$ ,  $\tilde{\alpha}_2$ , e  $\tilde{\alpha}_3$  são comumente usados para introduzir informação a priori sobre o formato da fonte alvo. O peso normalizado  $\tilde{\alpha}_4$  é geralmente usado como um parâmetro de regularização puramente matemática para obter soluções estáveis. Finalmente, o peso normalizado  $\tilde{\alpha}_5$  é usualmente escolhido com o propósito de obter um corpo estimado com a profundidade da base mais raso o possível.

## Referências Bibliográficas

- ASTER, R. C., BORCHERS, B., THURBER, C. H., 2019, Parameter Estimation and Inverse Problems. Elsevier. ISBN: 978-0-12-804651-7.
- BARBOSA, V. C. F., SILVA, J. B. C., MEDEIROS, W. E., 1999, "Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations", *Geophysics*, v. 64, n. 3, pp. 754–764. doi: 10.1190/1.1444585.
- CLAERBOUT, J. F., MUIR, F., 1973, "ROBUST MODELING WITH ERRATIC DATA", *Geophysics*, v. 38, n. 5, pp. 826–844. doi: 10.1190/1.1440378.
- FARQUHARSON, C. G., OLDENBURG, D. W., 1998, "Non-linear inversion using general measures of data misfit and model structure", *Geophysical Journal International*, v. 134, n. 1 (07), pp. 213–227. ISSN: 0956-540X. doi: 10.1046/j.1365-246x.1998.00555.x.
- GOLUB, G. H., LOAN, C. F. V., 2013, Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences). Johns Hopkins University Press. ISBN: 978-1-4214-0794-4.
- HORN, R. A., JOHNSON, C. R., 1991, *Topics in Matrix Analysis*. Cambridge University Press. ISBN: 0-521-30587-X.
- OLIVEIRA JR., V. C., SALES, D. P., BARBOSA, V. C. F., et al., 2015, "Estimation of the total magnetization direction of approximately spherical bodies", *Nonlinear Processes in Geophysics*, v. 22, n. 2, pp. 215–232. doi: 10.5194/npg-22-215-2015.
- OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2013, "3-D radial gravity gradient inversion", *Geophysical Journal International*, v. 195, n. 2, pp. 883–902. ISSN: 0956-540X. doi: 10.1093/gji/ggt307.
- OLIVEIRA JR., V. C., BARBOSA, V. C. F., SILVA, J. B. C., 2011, "Source geometry estimation using the mass excess criterion to constrain 3-D radial

- inversion of gravity data", *Geophysical Journal International*, v. 187, n. 2, pp. 754–772. ISSN: 0956-540X. doi: 10.1111/j.1365-246X.2011.05172.x.
- PLOUFF, D., 1976, "Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections", *Geophysics*, v. 41, n. 4, pp. 727–741. ISSN: 0016-8033. doi: 10.1190/1.1440645.
- SCALES, J. A., GERSZTENKORN, A., 1988, "Robust methods in inverse theory", *Inverse Problems*, v. 4, n. 4 (oct), pp. 1071–1091. doi: 10.1088/0266-5611/4/010.
- SEBER, G. A. F., WILD, C. J., 2003, Nonlinear regression. John Wiley & Sons, Inc. ISBN: 0-471-47135-6.
- SILVA, J. B., CUTRIM, A. O., 1989, "A robust maximum likelihood method for gravity and magnetic interpretation", *Geoexploration*, v. 26, n. 1, pp. 1 31. ISSN: 0016-7142. doi: 10.1016/0016-7142(89)90017-3.
- SILVA, J. B., HOHMANN, G. W., 1983, "Nonlinear magnetic inversion using a random search method", *Geophysics*, v. 48, n. 12, pp. 1645–1658. doi: 10.1190/1.1441445.
- UIEDA, L., BARBOSA, V. C. F., 2012, "Robust 3D gravity gradient inversion by planting anomalous densities", *Geophysics*, v. 77, n. 4, pp. G55–G66. doi: 10.1190/geo2011-0388.1.
- UIEDA, L., OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2013, "Modeling the Earth with Fatiando a Terra". In: van der Walt, S., Millman, J., Huff, K. (Eds.), *Proceedings of the 12th Python in Science Conference*, pp. 96–103. doi: 10.25080/Majora-8b375195-010.
- VITAL, L. B., OLIVEIRA JR., V. C., BARBOSA, V. C. F., 2019, "Radial magnetic inversion to retrieve the geometry of 3D sources". In: *SEG Technical Program Expanded Abstracts 2019*, pp. 1754–1758. doi: 10.1190/segam2019-3215805.1.