

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

Coma(cos)Coma(sin)SphericalHO Coma(cos) 0.7 **Even Aberrations** 9.0 Intensity Change vs. Match Factor 0.5 abs(MF) **Odd Aberrations** 0.3 0.2 (ib)eds 0.15 0.05 0.1 0.25 0.3

Generic Pattern Matching Code

- 1. Divide input shapes (polygons) into geometric primitives
- 2. Spatially organize primitives by x, y, etc.
- add contribution of G on P at X,Y to MF for each geom. Primitive G overlapping P for each X,Y match location for each match type T 3. Compute Match Factor (MF): for each orientation of P for each pattern P

Time dominated by #3: #patterns x #orientations x #types x #locations x #primitives_overlap_pattern time(primitive)

F/G. 6

Data Structures

Input = polygons, rectangles (special case of a polygon), paths (can be converted to polygons), and circles (can be approximated by many-sided polygons) = polygons

Geometric Primitives:

Туре	Number in layout Operations to add to MF (tir	Operations to add to MF (time)
Pixel (Bitmap Alg.)	Very Large (area)	Ţ
Edge Intersection	Large (perimeter) 2	2
Rectangle	Medium	4
Triangle	Small (or none)	4 to 12 (if split)

Higher-level primitives (lower in table) are much more efficient to store and use

FIG. 7

Polygon Splitting (Bitmap)

- Manhattan Polygon => Bitmap
- Too many pixels to store large blocks of the same value

Polygon Splitting (Edges)

Manhattan Polygon => Edges

Well, actually rectangle strips between 2 edges

F/G. 9

Polygon Splitting (Rectangles)

Manhattan Polygon => Rectangles

Non-Manhattan Polygon => Rectangles

Polygon Splitting (Triangles)

Non-Manhattan Polygon => Rectangles + Right Triangles

Primary Goal: Min # Triangles

Secondary Goal: Min # Rectangles

Pattern Pre-Integration

1D Pre-Integration

Can be horizontal or vertical, either will work

Pre-integrated value = sum of all pattern values at and to the right

Pattern values	0	-	2	1	3	0	1
Pre-int values	8	8	7	5	4	Ţ	Ţ

2D Pre-Integration

Typical PM pattern is 128x128

Starts with 1D pre-integration

Pre-integrated value = sum of all pattern values at and to the right AND above (top right = orientation P0)

1D Pre-Int to the right 2 right 2 | 1 | PV Pattern Values

4	1(18	ŗ
IR (IU)	above		
-	2	2	0
n	3	3	C
4	3	4	C

S S 0 9 σ |22|13| 8 11 4

2D Pre-Int top right

FIG. 12

Algorithm 1: Bitmap

- Entire layout represented as one huge bitmap of layers (like images on a computer screen)
 - One rectangle is added at a time to the bitmap
- At every match location (edge, corner, etc.), each pattern pixel is multiplied by the layout pixel and summed:

$$MF(i + \frac{X}{2}, j + \frac{Y}{2}) = norm * \sum_{Y} \sum_{X} Layout(x + i, y + j) * Pat(x, y)$$

Pattern size (X by Y) is typically 128x128

= 16384 ops

F/G. 13

Algorithm 2: Edge Intersections

- Store only the pixels along edges
- Run-length encoding in 1D skip large runs of the same pixel value (rectangle strips)
- Pre-integrate pattern in 1D: $val(i,j) = \sum_{k=i}^{X} pat(k,j)$ for x intersection case
- Add MF contributions from each rectangle strip between two edges (either X or Y dir)

ے	3 *	-1
Ţ		
0		T -
3	4	
1	5	
2	7	
-	8	
0	∞	1)
pat(,j)	val(,j)	r strip (weight

Contribution: 1*8 + (-1)*1 = 7

FIG. 14

edges

Algorithm 3: Rectangles

- Simplest data structure: Store only the rectangles and pointers to them
- 2D encoding only rectangle corners are needed
- Pattern integrated in 2D, rectangle LL corner clipped to pattern area
- Integrated pattern value is sum of values above and to the right: $val(i,j) = \sum_{k=i}^{X} \sum_{l=j}^{X} pat(k,l)$

Contribution from rect at (x1,y1), (x2,y2) = val(x1,y1) - val(x2,y1) - val(x1,y2) + val(x2,y2)

Only process LL corner and other 3 if inside pattern

FIG. 15

Algorithm 3b: Triangles

- Extension of rectangle algorithm
- Pre-integration time/storage proportional to the number of unique angles
- Limited to multiples of 45-degree angles in practice
- 0, 45, 90, 135, 180, 225, 270, 315 deg => 8 preintegrations

RH = rectangle height (3) RL = rectangle length (3)

TL = triangle length (3) TH = triangle height (3)

Edge Intersection

Bitmap Algorithm

Pattern Values

1D Pre-Int to the right 4

-Integrate

<u></u>	Pre		
T	2	2	0
2	Ţ	1	0
<u> </u>	0		2
0	3	4	2

$$(6-2) + (8-2) + (4-0) = 14$$

 $2*RH = 6$ Operations

FIG. 18A

(3+0+1) + (4+1+1) + (2+2+0) = 14RL*RH = **9** Operations

FIG. 18B

Examples

Rectangle Algorithm

right	P0			
top	1	\sim	5	5
	3	9	9	6
Pre-Int	4	7	11	13
D P	4	10	18	22
7				

45-Triangle Algorithm

P0 from rect algorithm 8-way Pre-Int—Precomputed:

O1(C) = 0/2 = 0

$$O1(C) = 0/2 = 0$$

$$LLC - ULC - LLC + URC =$$

 $22 - 4 - 5 + 1 = 14$
Always **4** Operations

$$PO(A) - PO(B) - O1(B) + O1(C) = 11 - 4 - 5.5 + 0 = 1.5$$
4 Operations/Shape (12 max)

FIG. 19

Examples

1D Pre-Int to the right

1	2) 2	0
3	3	(3)	0
4	(3)	4	2
4	9	8	4

2D Pre-Int top right

P0			
	3	5	2
3	9	9	6
4	7	11	13
4	10	18	22

Non-45 degree Triangle (Proposed)

P0(A) - P0(B) - IR(B...C) = 18 - 0 - (4 + 3 + 3) = 8TH + 2 = **5** Operations Similar to edge intersection algorithm but reduced storage

F/G. 20

Data Structures and Algorithms

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.