Calculus A(1): Homework 6

November 19, 2021

3.1.

58.

a. Let f(x) be a function satisfying $|f(x)| \le x^2$ for $-1 \le x \le 1$. Show that f is differentiable at x = 0 and find f'(0).

b. Show that

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is differentiable at x = 0 and find f'(0).

Solution.

a. f(x) satisfies $|f(x)| \le x^2$, so $|f(0)| \le 0 \Rightarrow f(0) = 0$. Also,

$$0 \le \lim_{x \to 0} |f(x)| \le \lim_{x \to 0} x^2 = 0$$

Hence f is continuous at x = 0. f is differentiable at x = 0 iff

$$\lim_{h\to 0}\frac{f(h)-f(0)}{h}$$

exists.

$$\Leftrightarrow (\exists A)(\forall \epsilon > 0)(\exists \delta > 0)(\forall h)(0 < |h| < \delta \to \left| \frac{f(h) - f(0)}{h} - A \right| < \epsilon)$$

We also have

$$\left|\frac{f(h) - f(0)}{h}\right| \le |h^2/h| = |h| < \delta$$

by choosing A = 0. Set $\delta = \epsilon$ proves the existence of δ , and hence f'(0) = 0.

b.

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0 \Rightarrow f'(0) = 0$$

3.2.

53.

Generalizing the Product Rule The product Rule gives the formula

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

for derivative of the product uv of two differentaible functions of x.

a. What is the analogous formula for the derivative of the product uvw of three differentiable functions of x?

- **b.** What is the formula for the derivative of the product $u_1u_2u_3u_4$ of four differentiable functions of x?
- **c.** What is the formula for the derivative of a product $u_1u_2u_3...u_n$ of a finite number n of differentiable functions of x?

Solution.

a.

$$\frac{d}{dx}(uvw) = \frac{d}{dx}((uv)w) = w\frac{d}{dx}(uv) + uv\frac{dw}{dx} = w(u\frac{dv}{dx} + v\frac{du}{dx}) + uv\frac{dw}{dx} = wu\frac{dv}{dx} + vw\frac{du}{dx} + uv\frac{dw}{dx}$$

b.

$$\frac{d}{dx}(u_1u_2u_3u_4) = \frac{d}{dx}((u_1u_2u_3)u_4)$$

$$= u_4(u_1u_2\frac{du_3}{dx} + u_2u_3\frac{du_1}{dx} + u_3u_1\frac{du_2}{dx}) + u_1u_2u_3\frac{du_4}{dx} = \frac{du_1}{dx}u_2u_3u_4 + \frac{du_2}{dx}u_1u_3u_4 + \frac{du_3}{dx}u_1u_2u_4 + \frac{du_4}{dx}u_2u_3u_1$$

c. The following proves

$$\frac{d}{dx}\left(\prod_{i=1}^{n} u_i\right) = \sum_{i=1}^{n} \left(\prod_{\substack{j=1\\j\neq i}}^{n} u_j\right) \frac{du_i}{dx}$$

by induction.

Let predicate P(n) defined for all $n \in \mathbb{N}^*$ where

$$P(n): \frac{d}{dx} \left(\prod_{i=1}^{n} u_i \right) = \sum_{i=1}^{n} \left(\prod_{\substack{j=1\\j\neq i}}^{n} u_j \right) \frac{du_i}{dx}$$

Then $(\forall n)(n \in \mathbb{N}^* \to P(n))$.

- i) P(1) is clearly true.
- ii) Assume P(k) is true for some $k \in \mathbb{N}^*$, i.e.

$$\frac{d}{dx} \left(\prod_{i=1}^{k} u_i \right) = \sum_{i=1}^{k} \left(\prod_{\substack{j=1\\j \neq i}}^{k} u_j \right) \frac{du_i}{dx}$$

P(k+1):

$$\begin{split} \frac{d}{dx} \left(\prod_{i=1}^{k+1} u_i \right) &= \frac{d}{dx} \left(\left(\prod_{i=1}^k u_i \right) u_{k+1} \right) = u_{k+1} \frac{d}{dx} \left(\prod_{i=1}^k u_i \right) + \left(\prod_{i=1}^k u_i \right) \frac{du_{k+1}}{dx} \\ &= u_{k+1} \sum_{i=1}^k \left(\prod_{\substack{j=1 \\ j \neq i}}^k u_j \right) \frac{du_i}{dx} + \left(\prod_{i=1}^k u_i \right) \frac{du_{k+1}}{dx} = \sum_{i=1}^k \left(\prod_{\substack{j=1 \\ j \neq i}}^{k+1} u_j \right) \frac{du_i}{dx} + \left(\prod_{i=1}^k u_i \right) \frac{du_{k+1}}{dx} \\ &= \sum_{i=1}^{k+1} \left(\prod_{\substack{j=1 \\ j \neq i}}^{k+1} u_j \right) \frac{du_i}{dx} \end{split}$$

Hence, $P(k) \Rightarrow P(k+1)$.

By i),ii) and the principle of the first mathematical induction, $(\forall n)(n \in \mathbb{N}^* \to P(n))$.

3.4.

47.

Is there a value of c that will make

$$f(x) = \begin{cases} \frac{\sin^2 3x}{x^2}, & x \neq 0 \\ c, & x = 0 \end{cases}$$

continuous at x = 0? Give reasons for your answer.

Solution.

c = 9 works.

x = 0 is the removable discontinuity of $\frac{\sin^2 3x}{x^2}$, as

$$\lim_{x \to 0} \frac{\sin^2 3x}{x^2} = \lim_{x \to 0} 9 \left(\frac{\sin 3x}{3x} \right)^2 = 9.$$

If c = 9, then

$$\lim_{x \to 0} f(x) = f(0) = 9.$$

48.

Is there a value of b that will make

$$g(x) = \begin{cases} x+b, & x<0\\ \cos x, & x \ge 0 \end{cases}$$

continuous at x = 0? Differentiable at x = 0? Give reasons for your answers.

Solution.

g(x) is continuous at x = 0 iff

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^-} g(x) = g(0)$$

By definition, g(0) = 1, and $\lim_{x\to 0^+} g(x) = 1$. Hence g(x) is continuous at x = 0 iff

$$\lim_{x\to 0^{-}} g(x) = \lim_{x\to 0^{-}} (x+b) = 1 \Leftrightarrow b = 1$$

g(x) is not differentiable at x = 0, since

$$\lim_{h \to 0^{-}} \frac{g(h) - g(0)}{h} = \lim_{h \to 0^{-}} \frac{h + b - b}{h} = 1$$

But

$$\lim_{h \to 0^+} \frac{g(h) - g(0)}{h} = \lim_{h \to 0^+} \frac{\cos h - 1}{h} = \lim_{h \to 0^+} \frac{\cos^2 h - 1}{h(\cos h + 1)} = \lim_{h \to 0^+} -\frac{\sin h}{h} \cdot \frac{\sin h}{\cos h + 1} = 0$$

Hence g(x) is continuous at x = 0 iff b = 1, and such value of b making g(x) differentiable at x = 0 does not exist.

3.5.

80.

Find parametric equations and a parameter interval for the motion of a particle that starts at (a,0) and traces the ellipse $(x^2/a^2) + (y^2/b^2) = 1$

- a. once clockwise.
- **b.** once counterclockwise.
- c. twice clockwise.
- **d.** twice counterclockwise.

Solution.

In this solution, $t \in \mathbb{R}$ is the parameter.

$$\mathbf{a.} \left\{ \begin{array}{l} \cos t \\ -\sin t \end{array}, t \in [0, 2\pi] \right.$$

b.
$$\begin{cases} \cos t \\ \sin t \end{cases}, t \in [0, 2\pi]$$

$$\mathbf{c.} \left\{ \begin{array}{l} \cos t \\ -\sin t \end{array}, t \in [0, 4\pi] \right.$$

$$\mathbf{d.} \left\{ \begin{array}{l} \cos t \\ \sin t \end{array}, t \in [0, 4\pi] \right.$$

3.6.

58.

Tangents parallel to the coordinate axes Find points on the curve $x^2 + xy + y^2 = 7$

- a. where the tangent is parallel to the x-axis and
- **b.** where the tangent is parallel to the y-axis.

In the latter case, dy/dx is not defined, but dx/dy is. What value does dx/dy have at these points?

Solution.

Denote y' as $\frac{dy}{dx}$.

$$(x^2 + xy + y^2)' = (7)' = 0 \Rightarrow 2x + y + xy' + 2yy' = 0 \Rightarrow y' = -\frac{2x + y}{x + 2y}$$

Let $P(x_0, y_0)$ be a point of the locus of the curve.

a. Tangent at P is parallel to the x-axis iff y' = 0. As the origin does not belong to the locus, we have

$$\begin{cases} x_0^2 + x_0 y_0 + y_0^2 = 7 \\ 2x_0 + y_0 = 0 \end{cases}$$

By substitution, $x_0^2 + x_0(-2x_0) + (-2x_0)^2 = 3x_0^2 = 7$ Hence, $\left(\pm \frac{\sqrt{21}}{3}, \mp \frac{2\sqrt{21}}{3}\right)$ are points that its tangent to the curve is parallel to the x-axis.

b. Tangent at P is parallel to the y-axis iff y' is not defined. As the origin does not belong to the locus, we have

$$\begin{cases} x_0^2 + x_0 y_0 + y_0^2 = 7 \\ x_0 + 2y_0 = 0 \end{cases}$$

By substitution, $(-2y_0)^2 + (-2y_0)y_0 + y_0^2 = 3y_0^2 = 7$ Hence, $\left(\pm \frac{2\sqrt{21}}{3}, \mp \frac{\sqrt{21}}{3}\right)$ are points that its tangent to the curve is parallel to the y-axis. At these two points, 1/y' = 0.

71.

Normals to a parabola Show that if it is possible to draw three normals from the point (a,0) to the prabola $x = y^2$, then a must be greater than 1/2. One of the normals is the x-axis. For what value of a are the other two normals perpendicular?

4

Solution.

$$x = y^2 \Rightarrow \frac{dx}{dx} = \frac{d}{dx}(y^2) \Leftrightarrow 2y\frac{dy}{dx} = 1 \Leftrightarrow \frac{dy}{dx} = \frac{1}{2y}$$

For any point (x_0, y_0) that satisfies $x_0 = y_0^2$, its normal to the curve is the locus of

$$y = y_0 - \left(\frac{dy}{dx}\Big|_{(x,y)=(x_0,y_0)}\right)^{-1} (x - x_0)$$
$$= y_0 - 2y_0(x - x_0)$$
$$= -2y_0x + 2x_0y_0 + y_0$$

The normal of the point intersects x-axis at a, so

$$0 = -2y_0a + 2x_0y_0 + y_0 = y_0(-2a + 2x_0 + 1)$$
$$\Rightarrow y_0 = 0 \lor -2a + 2x_0 + 1 = 0$$

As (x_0, y_0) is on the parabola, $x_0 = y_0^2 \ge 0$

$$-2a + 2x_0 + 1 = 0 \Leftrightarrow 2x_0 = 2a - 1 \ge 0 \Rightarrow a \ge 1/2.$$

The parabola is symmetric on x-axis, thus if (a,0) is on the normal of (x_0,y_0) to the curve, then (a,0) is on the normal of $(x_0,-y_0)$ to the curve.

The normals of (x_0, y_0) and $(x_0, -y_0)$ are perpendicular if $(-2y_0)(2y_0) = -1 \Rightarrow y_0 = \pm \frac{1}{2}$ So, $0 = \frac{1}{2}(-2a + \frac{1}{2} + 1) \Rightarrow a = \frac{3}{4}$.