Contents

4	Syn	thetic Lethal Analysis of Gene Expression Data	5
	4.1	Synthetic lethal genes in breast cancer	7
		4.1.1 Synthetic lethal pathways in breast cancer	10
		4.1.2 Expression profiles of synthetic lethal partners	10
		4.1.2.1 Subgroup pathway analysis	11
	4.2	Comparison of synthetic lethal gene candidates	16
		4.2.1 Comparison with differential expression	16
		4.2.2 Comparison with correlation	16
		4.2.3 Comparison with primary siRNA screen candidates	16
		4.2.3.1 Comparison of screen at pathway level	18
		4.2.3.1.1 Resampling of genes for pathway enrichment	18
		4.2.4 Comparison with secondary screen siRNA screen candidates	23
		4.2.4.1 Comparison of candidate SL Pathways	23
	4.3	Mutation, Copy Number, and Methylation	23
		4.3.1 Synthetic lethality by DNA copy number	27
		4.3.2 Synthetic lethality by somatic mutation	27
		4.3.2.1 Mutation analysis	27
		4.3.3 ANOVA of Expression Predictors	27
	4.4	Global Synthetic Lethality	28
		4.4.1 Hub Genes	28
	4.5	Metagene Analysis	28
		4.5.1 Pathway expression	28
		4.5.2 Somatic mutation	28
		4.5.3 Synthetic lethal metagenes	28
	4.6	Replication in stomach cancer	28
	4.7	Replication in cell line encyclopaedia	30
	4.8	Summary	32
	Refe	erences	52
\mathbf{A}	San	aple Correlation	54
В	Soft	tware Used for Thesis	56
\mathbf{C}	Seco	ondary Screen Data	65

List of Figures

4.1	Synthetic lethal expression profiles of analysed samples	12
4.2	Comparison of SLIPT to siRNA	16
4.3	Comparison of mtSLIPT to siRNA	17
4.4	Resampled intersection of SLIPT and siRNA candidates	21
4.5	Comparison of SLIPT in stomach to siRNA	42
4.6	Comparison of mtSLIPT in stomach to siRNA	43
A.1	Correlation profiles of removed samples	54
A.2	Correlation analysis and sample removal	55

List of Tables

4.1	Candidate synthetic lethal genes against E-cadherin from SLIPT	8
4.2	Candidate synthetic lethal genes against E-cadherin from mtSLIPT	Ć
4.3	Pathways for <i>CDH1</i> partners from SLIPT	10
4.4	Pathways for <i>CDH1</i> partners from mtSLIPT	11
4.5	Pathway composition for clusters of <i>CDH1</i> partners from SLIPT	14
4.6	Pathway composition for clusters of $CDH1$ partners from mtSLIPT	15
4.7	Pathway composition for CDH1 partners from SLIPT and siRNA screen-	
	ing	19
4.8	Pathway composition for $CDH1$ partners from mtSLIPT and siRNA	20
4.9	Pathways for <i>CDH1</i> partners from SLIPT	22
4.10	Pathways for $CDH1$ partners from SLIPT and siRNA primary screen .	24
4.11	Pathways for <i>CDH1</i> partners from mtSLIPT	25
4.12	Pathways for <i>CDH1</i> partners from mtSLIPT and siRNA primary screen	26
4.13	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from SLIPT	29
4.14	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT	29
4.15	Candidate synthetic lethal genes against E-cadherin from SLIPT in	
	stomach cancer	30
4.16	Candidate synthetic lethal genes against E-cadherin from mtSLIPT in	
	stomach cancer	31
	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	32
	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach cancer	33
	Pathway composition for clusters of <i>CDH1</i> partners in stomach SLIPT	34
	Pathway composition for clusters of <i>CDH1</i> partners in stomach mtSLIPT	35
4.21	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	36
	Pathway composition for $CDH1$ partners from mtSLIPT and siRNA	37
	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	38
	Pathways for <i>CDH1</i> partners from SLIPT in stomach and siRNA screen	36
	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach cancer	40
	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach and siRNA screen	41
4.27	Candidate synthetic lethal metagenes against <i>CDH1</i> from SLIPT in	
	stomach cancer	44
4.28	Candidate synthetic lethal metagenes against <i>CDH1</i> from mtSLIPT in	
	stomach cancer	45
	Candidate synthetic lethal genes against E-cadherin from SLIPT in CCLE	
4.30	Pathways for <i>CDH1</i> partners from SLIPT in CCLE	47

4.31	Candidate synthetic lethal genes against E-cadherin from SLIPT in breast CCLE	48
4.32	Pathways for <i>CDH1</i> partners from SLIPT in breast CCLE	49
4.33	Candidate synthetic lethal genes against E-cadherin from SLIPT in	
	stomach CCLE	50
4.34	Pathways for <i>CDH1</i> partners from SLIPT in stomach CCLE	51
В.1	R Packages used during Thesis	56
C.1	Comparing SLIPT genes against Secondary siRNA Screen in breast cancer	65
C.2	Comparing mtSLIPT genes against Secondary siRNA Screen in breast	
	cancer	66
C.3	Comparing SLIPT genes against Secondary siRNA Screen in stomach	
	cancer	66

Chapter 4

Synthetic Lethal Analysis of Gene Expression Data

Aims

- Pathway Structure of Candidate Synthetic Lethal Genes for *CDH1* from TCGA breast data
- Comparisons to Experimental siRNA Screen Candidates
- Replication of Pathways across in TCGA Stomach data

Summary

- We have developed a Synthetic Lethal detection method that generates a high number of synthetic lethal candidates
- Pathways in cell signalling, extracellular matrix, and cytoskeletal functions were supported with experimental candidates and the known functions of E-cadherin
- Several candidate pathways were supported by mutation analysis and replicated across breast and stomach cancer
- Translation and immune functions were uniquely detected by the computational approach which may be explained by differences between patient samples and cell line models

 There remains the need to identify actionable genes within these pathways, relationships with experimental candidates, and how these pathways may affect viability when lost

Having developed a statistical synthetic lethal detection methodology (SLIPT), it was applied to empirical (publicly avialable) cancer gene expression datasets in this chapter. The analysis largely focuses findings from the TCGA breast cancer data which covers a range of clinical subtypes and is more closely modelled by siRNA data (Telford et al., 2015) generated from screening experiments conducted in MCF10A breast cells. Although stomach cancer data will also be considered to replicate findings in an independent dataset and for it's relevance to syndromic hereditary diffuse gastric cancer. The TCGA data also has the advantages of other clinical and molecular profiles (e.g., somatic mutation and DNA copy number) for many of the same samples, in addition to a considerable sample size for RNASeq expression data, treated with a rigourous procedure to minimise batch effects. Some findings will be replicated in the Cancer Cell Line Encyclopaedia which may be more comparable to the cell line experiments.

Synthetic lethal candidate partners for *CDH1* will be described at both the gene and pathway level. SLIPT gene candidates will be analysed by cluster analysis for common expression profiles across samples and relationships with clinical factors and mutations in key breast cancer genes. These genes will also be compared to the gene candidates from a primary and secondary (validation) screens conducted by Telford *et al.* (2015) on isogenic cell lines. For comparison, an alternative SLIPT methodology which uses mutation data for *CDH1* against expression of candidate partners will also be presented which may better represent the null mutations in HDGC patients and the experiment cell model (Chen *et al.*, 2014). Pathways will be analysed by over-representation analysis (with resampling for comparisons with siRNA data) and supported by a metagene analysis of pathway gene signatures. The pathway metagene expression profiles will be used to replicate known relationships between clinical and molecular characteristics for breast cancer and to demonstrate application of SLIPT directly on metagenes to detect synthetic lethal pathways.

Together these results will demonstrate the wide range of applications for SLIPT analysis and examine the synthetic lethal partners of *CDH1* in breast and stomach cancer. These synthetic lethal genes and pathways will be described in both context of the functional implications of novel synthetic lethal relationships and as potential actionable targets against *CDH1* deficient tumours, in addition to replication of es-

tablished functions of E-cadherin. In particular, the focus of these analysis will be in comparisons with experimental screening data to explore the potential for SLIPT to augment such triage of candidate partners and support further experimental investigations. The key synthetic lethal partner pathways for *CDH1*, supported by both approaches, will be examined in more detail at the gene and pathway structure level in Chapter 5.

Some of the findings presented in this Chapter have also been included in manuscripts submitted for publication (Kelly et al., 2017a,b) and may bear similarity to them, although the results in this thesis have been edited to cohesively fit with additional findings. These findings are the result of investigations conducted throughout this thesis project and only these contributions to the articles are included in this chapter, not that conducted by co-authors.

4.1 Synthetic lethal genes in breast cancer

- exprSL
- mtSL
- heatmap

The SLIPT methodology (as described in section ??) was applied to the normalised TCGA breast cancer gene expression dataset (n=1168). As shown in Table 4.1, the most significant genes had strong evidence of expression-based association with CDH1 (high χ^2 values) with fewer samples exhibiting low expression of both genes than expected statistically. Eukaryotic translation gene were among the highest gene candidates, including initiation factors, elongation factors, and ribosomal proteins. These are clearly neccessary for cancer cells to grow and proliferate, with sustained gene expression needed to maintain growth signaling pathways and resist apoptosis or immune factors translation may be subject to non-oncogene addiction for CDH1-deficient cells.

While these are among the strongest synthetic lethal candidates, translational genes are cruicial to the viability of healthy cells and dosing for a selective synthetic lethal effect against these may be difficult compared to other biological functions which may also be supported among the SLIPT candidate genes. Furthermore, few known biological functions of *CDH1* were among the strongest SL candidates so the remaining candidate genes may also be informative since they are likely to contain these expected

functions in addition to novel relationships for *CDH1*. Thus further pathway level analyses were also conducted to examine biological functions over-represented among synthetic candidate genes and identify synthetic lethal pathways.

Table 4.1: Candidate synthetic lethal genes against E-cadherin from SLIPT

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
TRIP10	62	130	162	5.65×10^{-34}	1.84×10^{-31}
EEF1B2	56	130	158	3.10×10^{-33}	9.45×10^{-31}
GBGT1	61	131	156	1.08×10^{-32}	3.14×10^{-30}
ELN	81	130	149	3.46×10^{-31}	8.82×10^{-29}
TSPAN4	78	130	146	1.63×10^{-30}	3.79×10^{-28}
GLIPR2	72	130	146	1.68×10^{-30}	3.86×10^{-28}
RPS20	73	131	145	1.89×10^{-30}	4.28×10^{-28}
RPS27A	80	130	143	5.53×10^{-30}	1.18×10^{-27}
EEF1A1P9	63	130	141	1.91×10^{-29}	3.74×10^{-27}
C1R	73	130	141	2.05×10^{-29}	3.97×10^{-27}
LYL1	73	130	140	2.99×10^{-29}	5.74×10^{-27}
RPLP2	71	130	139	4.88×10^{-29}	9.07×10^{-27}
C10 or f10	73	130	138	6.72×10^{-29}	1.20×10^{-26}
DULLARD	74	131	138	9.29×10^{-29}	1.61×10^{-26}
PPM1F	64	130	136	1.61×10^{-28}	2.65×10^{-26}
OBFC2A	69	130	136	2.49×10^{-28}	3.93×10^{-26}
RPL11	70	130	136	2.56×10^{-28}	3.97×10^{-26}
RPL18A	70	130	135	3.08×10^{-28}	4.70×10^{-26}
MFNG	76	131	133	7.73×10^{-28}	1.12×10^{-25}
RPS17	77	131	133	8.94×10^{-28}	1.29×10^{-25}
MGAT1	73	130	132	1.44×10^{-27}	2.03×10^{-25}
RPS12	72	130	128	8.57×10^{-27}	1.12×10^{-24}
C10 orf 54	73	130	127	1.37×10^{-26}	1.75×10^{-24}
LOC 286367	72	130	126	2.20×10^{-26}	2.70×10^{-24}
GMFG	70	130	126	2.20×10^{-26}	2.70×10^{-24}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

The modified mtSLIPT methodology (as described in section ??) was also applied to the normalised TCGA breast cancer gene expression dataset, against somatic loss of function mutations in CDH1. As shown in Table 4.2, the most significant genes also had strong evidence of expression associated with CDH1 mutations (high χ^2 values) with fewer samples exhibiting both low expression and mutations of each gene than expected statistically. Although, these were not a strongly supported as the expression analysis (in Table 4.1) nor were as many genes detected. This is unsurprising due to

the lower sample size with matching somatic mutation data and the lower frequency of CDH1 mutations compared to low expression by 1/3 quantiles.

The mtSLIPT candidates had more genes involved in cell and gene regulation, particularly DNA and RNA binding factors. The strongest candidates also include microtubule (KIF12), microfibril (MFAP4), and cell adhesion (TENC1) genes consistent with the established cytoskeletal role of CDH1. The elastin gene (ELN) was notably strongly supported by both expression and mutation SLIPT analysis of CDH1 supporting a interactions with extracellular proteins and the tumour microenvironment.

Table 4.2: Candidate synthetic lethal genes against E-cadherin from mtSLIPT

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
TFAP2B	8	36.7	89.5	3.60×10^{-20}	8.37×10^{-17}
ZNF423	15	36.7	78.8	7.89×10^{-18}	1.22×10^{-14}
CALCOCO1	11	36.7	76.8	2.09×10^{-17}	2.59×10^{-14}
RBM5	13	36.7	75.7	3.65×10^{-17}	4.00×10^{-14}
BTG2	7	36.7	71.7	2.72×10^{-16}	1.81×10^{-13}
RXRA	6	36.7	70.5	5.00×10^{-16}	2.97×10^{-13}
SLC27A1	11	36.7	70.3	5.42×10^{-16}	2.97×10^{-13}
MEF2D	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
NISCH	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
AVPR2	9	36.7	69.2	9.36×10^{-16}	4.58×10^{-13}
CRY2	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
RAPGEF3	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
NRIP2	10	36.7	68.2	1.58×10^{-15}	7.18×10^{-13}
DARC	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
SFRS5	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
NOSTRIN	5	36.7	65.1	7.40×10^{-15}	2.70×10^{-12}
KIF13B	12	36.7	63.4	1.69×10^{-14}	5.16×10^{-12}
TENC1	10	36.7	62.5	2.67×10^{-14}	7.40×10^{-12}
MFAP4	12	36.7	60.5	7.17×10^{-14}	1.67×10^{-11}
ELN	13	36.7	59.7	1.07×10^{-13}	2.32×10^{-11}
SGK223	14	36.7	59	1.51×10^{-13}	3.05×10^{-11}
KIF12	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
SELP	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
CIRBP	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}
CTDSP1	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected mutant samples with low expression of partner genes

Table 4.3: Pathways for *CDH1* partners from SLIPT

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Eukaryotic Translation Elongation	86	81	1.3×10^{-207}
Peptide chain elongation	83	78	5.6×10^{-201}
Eukaryotic Translation Termination	83	77	1.2×10^{-196}
Viral mRNA Translation	81	76	1.2×10^{-196}
Formation of a pool of free 40S subunits	93	81	3.7×10^{-194}
Nonsense Mediated Decay independent of the Exon Junction Complex	88	77	5.3×10^{-187}
L13a-mediated translational silencing of Ceruloplasmin expression	103	82	9.6×10^{-183}
3' -UTR-mediated translational regulation	103	82	9.6×10^{-183}
GTP hydrolysis and joining of the 60S ribosomal subunit	104	82	1.9×10^{-181}
Nonsense-Mediated Decay	103	80	6.2×10^{-176}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	80	6.2×10^{-176}
Adaptive Immune System	412	167	6.5×10^{-174}
Eukaryotic Translation Initiation	111	82	5.7×10^{-173}
Cap-dependent Translation Initiation	111	82	5.7×10^{-173}
SRP-dependent cotranslational protein targeting to membrane	104	79	2.0×10^{-171}
Translation	141	91	6.1×10^{-170}
Infectious disease	347	146	1.6×10^{-166}
Influenza Infection	117	81	1.9×10^{-163}
Influenza Viral RNA Transcription and Replication	108	77	1.9×10^{-160}
Influenza Life Cycle	112	77	2.5×10^{-156}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for CDH1

4.1.1 Synthetic lethal pathways in breast cancer

4.1.2 Expression profiles of synthetic lethal partners

Due to the sheer number of gene candidates, investigations proceeded into correlation structure and pathway over-representation to explore the functional similarity of the synthetic lethal partners of *CDH1*, with the eventual aim to assess their utility as drug targets. As shown in Figure 4.1, there were several large clusters of genes among the expression profiles of the *CDH1* synthetic lethal candidate partners, which suggests co-regulation of genes or pathway correlation. A number of candidates from an experimental RNAi screen study performed by Telford *et al.* Telford *et al.* (2015) were also identified by this approach. In addition, we identified novel gene candidates, which had little effect on viability in isogenic cell line experiments.

In these expression profiles, a gene with a moderate or high signal across samples exhibiting low *CDH1* expression would represent a potential drug target. However, it appears that several molecular subtypes of cancer have elevation of different clusters of synthetic lethal candidates in samples with low *CDH1*. This clustering suggests that different targets or combinations could be effective in different patients suggest-

Table 4.4: Pathways for *CDH1* partners from mtSLIPT

	Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
	Eukaryotic Translation Elongation	86	60	2.0×10^{-128}
	Peptide chain elongation	83	59	2.0×10^{-128}
	Eukaryotic Translation Termination	83	58	2.3×10^{-125}
	Viral mRNA Translation	81	57	2.5×10^{-124}
	Nonsense Mediated Decay independent of the Exon Junction Complex	88	59	8.6×10^{-124}
	Nonsense-Mediated Decay	103	61	5.2×10^{-117}
	Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	61	5.2×10^{-117}
	Formation of a pool of free 40S subunits	93	58	1.6×10^{-116}
	L13a-mediated translational silencing of Ceruloplasmin expression	103	59	1.3×10^{-111}
ay_perm	3' -UTR-mediated translational regulation	103	59	1.3×10^{-111}
	GTP hydrolysis and joining of the 60S ribosomal subunit	104	59	6.2×10^{-111}
	SRP-dependent cotranslational protein targeting to membrane	104	58	2.9×10^{-108}
	Eukaryotic Translation Initiation	111	59	3.0×10^{-106}
	Cap-dependent Translation Initiation	111	59	3.0×10^{-106}
	Influenza Viral RNA Transcription and Replication	108	57	5.1×10^{-103}
	Influenza Infection	117	59	1.5×10^{-102}
	Translation	141	64	3.7×10^{-101}
	Influenza Life Cycle	112	57	1.4×10^{-100}
	GPCR downstream signaling	472	116	1.0×10^{-80}
	Hemostasis	422	105	1.4×10^{-78}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in mtSLIPT partners for $\mathit{CDH1}$

ing potential utility for stratification. In particular, estrogen receptor negative, basal subtype, and "normal-like" samples Dai et al. (2015); Eroles et al. (2012); Parker et al. (2009) have elevation of genes specific to particular clusters which is indicative of some synthetic lethal interactions being specific to a particular molecular subtype or genetic background. Thus synthetic lethal drug therapy against these subtypes may be ineffective if it were designed against genes in another cluster.

Table 5. Gene set enrichment results for subgroups of *CDH1* SL partners shows functional variation.

Figure 3. Heatmap of RNASeq gene expression in predicted SL partners of *CDH1* showing distinct subgroups of SL partners and links between SL partner expression and clinical variables.

4.1.2.1 Subgroup pathway analysis

Synthetic lethal gene candidates for CDH1 from SLIPT performed on RNA-Seq expression data were also used for pathway over-representation analyses (as described in section ??). The correlation structure in the expression of candidates synthetic lethal genes in CDH1 low tumours (lowest $1/3^{rd}$ quantile of expression) was examined for dis-

Figure 4.1: Synthetic lethal expression profiles of analysed samples. Gene expression profile heatmap (correlation distance) of all samples (separated by the 1 /3 quantile of CDH1 expression) analysed in TCGA breast cancer dataset for gene expression of 4,629 candidate partners of E-cadherin (CDH1) from SLIPT prediction (with significant FDR adjusted p < 0.05). Deeply clustered, inter-correlated genes form several main groups, each containing genes that were SL candidates or toxic in an siRNA screen Telford $et\ al.\ (2015)$. Clusters had different sample groups highly expressing the synthetic lethal candidates in CDH1 low samples, notably 'normal-like', basal, and estrogen receptor negative samples have elevated expression in one or more distinct clusters showing complexity and variation among candidate synthetic lethal partners. CDH1 low samples also contained most of samples with CDH1 mutations.

tinct biological pathways in subgroups of genes elevated in different clusters of samples including some by clinical factors such as estrogen receptor status, intrinsic (PAM50) subtype (Parker *et al.*, 2009), and somatic mutation (of highest impact genes) against these gene clusters.

As shown by the most over-represented pathways in Table 4.5, each correlated cluster of candidate synthetic lethal partners of CDH1 contains functionally different genes. Cluster 1 contains genes with less evidence of over-represented pathways than other clusters, corresponding to less correlation between genes within the cluster, and to it being a relatively small group. While there is some indication that collagen biosynthesis, microfibril elastic fibres, extracellular matrix, and metabolic pathways may be overrepresented in Cluster 1, these results are mainly based on small pathways containing few synthetic lethal genes. Genes in Cluster 2 exhibited low expression in normal tissue samples compared to tumour samples (see Figure 4.1) and show compelling evidence of over-representation of post-transcriptional gene regulation and protein translation processes. Similarly, Cluster 3 has over-representation of immune signalling pathways (including chemokines, secondary messenger, and TCR signaling) and downstream intracellular signalling cascades such as G protein coupled receptor (GPCR) and $G_{\alpha i}$ signalling events. While pathway over-representation was weaker among genes in Cluster 4, they contained intracellular signalling pathways and were highly expressed in normal samples (in contrast to Cluster 2). Cluster 4 also involved extracellular factors and stimuli such as extracellular matrix, platelet activation, ligand receptors, and retinoic acid signalling.

Based on these results, potential synthetic lethal partners of *CDH1* include processes known to be dysregulated in cancer, such as translational, cytoskeletal, and immune processes. Intracellular signalling cascades such as the GPCRs and extracellular stimuli for these pathways were also implicated in potential synthetic lethality with *CDH1*.

Table 4.5: Pathway composition for clusters of $\mathit{CDH1}$ partners from SLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	p-value (FDR)
Collagen formation	67	10	4.0×10^{-11}
Extracellular matrix organisation	238	21	1.8×10^{-9}
Collagen biosynthesis and modifying enzymes	56	8	1.8×10^{-9}
Uptake and actions of bacterial toxins	22	5	9.5×10^{-9}
Elastic fibre formation	37	6	1.9×10^{-8}
Muscle contraction	62	7	2.4×10^{-7}
Fatty acid, triacylglycerol, and ketone body metabolism	117	10	4.9×10^{-7}
XBP1(S) activates chaperone genes	51	6	6.6×10^{-7}
IRE1alpha activates chaperones	54	6	1.2×10^{-6}
Neurotoxicity of clostridium toxins	10	3	1.3×10^{-6}
Retrograde neurotrophin signalling	10	3	1.3×10^{-6}
Assembly of collagen fibrils and other multimeric structures	40	5	1.9×10^{-6}
Collagen degradation	58	6	2.0×10^{-6}
Arachidonic acid metabolism	41	5	2.1×10^{-6}
Synthesis of PA	26	4	3.0×10^{-6}
Signaling by NOTCH	80	7	3.3×10^{-6}
Signalling to RAS	27	4	3.7×10^{-6}
Integrin cell surface interactions	82	7	4.2×10^{-6}
Smooth Muscle Contraction	28	4	4.4×10^{-6}
ECM proteoglycans	66	6	6.3×10^{-6}

Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR)
Eukaryotic Translation Elongation	86	75	1.1×10^{-181}
Viral mRNA Translation	81	72	9.8×10^{-179}
Peptide chain elongation	83	72	1.9×10^{-175}
Eukaryotic Translation Termination	83	72	1.9×10^{-175}
Formation of a pool of free 40S subunits	93	75	1.9×10^{-171}
Nonsense Mediated Decay independent of the Exon Junction Complex	88	72	9.9×10^{-168}
L13a-mediated translational silencing of Ceruloplasmin expression	103	75	3.0×10^{-159}
3' -UTR-mediated translational regulation	103	75	3.0×10^{-159}
Nonsense-Mediated Decay	103	75	3.0×10^{-159}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	75	3.0×10^{-159}
SRP-dependent cotranslational protein targeting to membrane	104	75	3.2×10^{-158}
GTP hydrolysis and joining of the 60S ribosomal subunit	104	75	3.2×10^{-158}
Eukaryotic Translation Initiation	111	75	4.5×10^{-151}
Cap-dependent Translation Initiation	111	75	4.5×10^{-151}
Influenza Infection	117	75	1.4×10^{-145}
Influenza Viral RNA Transcription and Replication	108	72	5.7×10^{-145}
Translation	141	81	8.0×10^{-143}
Influenza Life Cycle	112	72	2.3×10^{-141}
Infectious disease	347	103	2.2×10^{-95}
Formation of the ternary complex, and subsequently, the 43S complex	47	33	6.8×10^{-80}

Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDR)
Adaptive Immune System	412	90	6.1×10^{-61}
Chemokine receptors bind chemokines	52	27	6.7×10^{-56}
Generation of second messenger molecules	29	21	6.5×10^{-55}
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	64	29	6.5×10^{-55}
TCR signalling	62	27	8.9×10^{-51}
Peptide ligand-binding receptors	161	40	1.5×10^{-45}
Translocation of ZAP-70 to Immunological synapse	16	14	3.1×10^{-43}
Costimulation by the CD28 family	51	22	4.0×10^{-43}
PD-1 signalling	21	15	4.0×10^{-41}
Class A/1 (Rhodopsin-like receptors)	258	50	6.7×10^{-41}
Phosphorylation of CD3 and TCR zeta chains	18	14	1.3×10^{-40}
Interferon gamma signalling	74	24	5.0×10^{-39}
GPCR ligand binding	326	57	1.8×10^{-38}
Cytokine Signaling in Immune system	268	48	8.9×10^{-37}
Downstream TCR signalling	45	18	1.8×10^{-35}
$G_{\alpha i}$ signalling events	167	33	2.2×10^{-33}
Cell surface interactions at the vascular wall	99	21	1.3×10^{-26}
Interferon Signalling	164	28	1.7×10^{-26}
Extracellular matrix organisation	238	35	2.7×10^{-25}
Antigen activates B Cell Receptor leading to generation of second messengers	32	12	7.2×10^{-25}

Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes	p-value (FDR)
Extracellular matrix organisation	238	48	8.0×10^{-41}
Class A/1 (Rhodopsin-like receptors)	258	47	2.8×10^{-36}
GPCR ligand binding	326	54	2.1×10^{-34}
$G_{\alpha s}$ signalling events	83	22	1.4×10^{-31}
GPCR downstream signalling	472	68	1.1×10^{-29}
Haemostasis	423	61	3.3×10^{-29}
Platelet activation, signalling and aggregation	180	31	7.1×10^{-28}
Binding and Uptake of Ligands by Scavenger Receptors	40	14	9.9×10^{-27}
RA biosynthesis pathway	22	11	2.5×10^{-26}
Response to elevated platelet cytosolic Ca ²⁺	82	19	3.0×10^{-26}
Developmental Biology	420	57	3.5×10^{-26}
$G_{\alpha i}$ signalling events	167	28	7.3×10^{-26}
Platelet degranulation	77	18	1.6×10^{-25}
Gastrin-CREB signalling pathway via PKC and MAPK	171	28	2.5×10^{-25}
Muscle contraction	62	16	4.7×10^{-25}
$G_{\alpha q}$ signalling events	150	25	3.2×10^{-24}
Retinoid metabolism and transport	34	12	5.0×10^{-24}
Phase 1 - Functionalisation of compounds	67	16	6.5×10^{-24}
Signalling by Retinoic Acid	42	13	6.7×10^{-24}
Degradation of the extracellular matrix	102	19	1.4×10^{-22}

Table 4.6: Pathway composition for clusters of $\mathit{CDH1}$ partners from mtSLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	p-value (FDR)
$G_{\alpha s}$ signalling events	83	19	5.1×10^{-25}
Extracellular matrix organization	238	30	1.4×10^{-18}
Hemostasis	422	46	2.7×10^{-16}
Aquaporin-mediated transport	32	9	2.7×10^{-16}
Transcriptional regulation of white adipocyte differentiation	56	11	1.7×10^{-15}
Degradation of the extracellular matrix	102	15	1.7×10^{-15}
Integration of energy metabolism	84	13	8.8×10^{-15}
GPCR downstream signaling	472	48	2.8×10^{-14}
$G_{\alpha z}$ signalling events	15	6	5×10^{-14}
Molecules associated with elastic fibres	33	8	5.4×10^{-14}
Phase 1 - Functionalization of compounds	67	11	5.6×10^{-14}
Platelet activation, signaling and aggregation	179	20	5.6×10^{-14}
Vasopressin regulates renal water homeostasis via Aquaporins	24	7	6.1×10^{-14}
Elastic fibre formation	37	8	3×10^{-13}
Calmodulin induced events	27	7	3.3×10^{-13}
CaM pathway	27	7	3.3×10^{-13}
cGMP effects	18	6	3.6×10^{-13}
$G_{\alpha i}$ signalling events	167	18	6.3×10^{-13}
Ca-dependent events	29	7	8.2×10^{-13}
Binding and Uptake of Ligands by Scavenger Receptors	40	8	8.2×10^{-13}

Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR)
Olfactory Signaling Pathway	57	8	7.1×10^{-9}
Assembly of the primary cilium	149	14	8×10^{-9}
Sphingolipid metabolism	62	8	9.6×10^{-9}
Signaling by ERBB4	133	12	5.1×10^{-8}
PI3K Cascade	65	7	4.9×10^{-7}
Circadian Clock	33	5	4.9×10^{-7}
Nuclear signaling by ERBB4	34	5	4.9×10^{-7}
Intraflagellar transport	35	5	4.9×10^{-7}
PI3K events in ERBB4 signaling	87	8	4.9×10^{-7}
PIP3 activates AKT signaling	87	8	4.9×10^{-7}
PI3K events in ERBB2 signaling	87	8	4.9×10^{-7}
PI-3K cascade:FGFR1	87	8	4.9×10^{-7}
PI-3K cascade:FGFR2	87	8	4.9×10^{-7}
PI-3K cascade:FGFR3	87	8	4.9×10^{-7}
PI-3K cascade:FGFR4	87	8	4.9×10^{-7}
Deadenylation of mRNA	22	4	5.6×10^{-7}
PI3K/AKT activation	90	8	5.6×10^{-7}
Cargo trafficking to the periciliary membrane	38	5	5.6×10^{-7}
Signaling by Hedgehog	108	9	5.6×10^{-7}
Downstream signal transduction	143	11	5.6×10^{-7}

Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDR)
Eukaryotic Translation Elongation	86	55	1.1×10^{-112}
Peptide chain elongation	83	54	1.3×10^{-112}
Viral mRNA Translation	81	53	1.6×10^{-111}
Eukaryotic Translation Termination	83	53	7.1×10^{-110}
Nonsense Mediated Decay independent of the Exon Junction Complex	88	54	1×10^{-108}
Formation of a pool of free 40S subunits	93	53	4.1×10^{-102}
Nonsense-Mediated Decay	103	54	3.9×10^{-98}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	54	3.9×10^{-98}
L13a-mediated translational silencing of Ceruloplasmin expression	103	53	1.2×10^{-95}
3' -UTR-mediated translational regulation	103	53	1.2×10^{-95}
SRP-dependent cotranslational protein targeting to membrane	104	53	4.3×10^{-95}
GTP hydrolysis and joining of the 60S ribosomal subunit	104	53	4.3×10^{-95}
Influenza Viral RNA Transcription and Replication	108	53	9.6×10^{-93}
Eukaryotic Translation Initiation	111	53	4.2×10^{-91}
Cap-dependent Translation Initiation	111	53	4.2×10^{-91}
Influenza Life Cycle	112	53	1.4×10^{-90}
Influenza Infection	117	53	6.2×10^{-88}
Translation	141	55	3×10^{-81}
Formation of the ternary complex, and subsequently, the 43S complex	47	23	2.3×10^{-48}
Translation initiation complex formation	54	23	9.1×10^{-45}

Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes	p-value (FDR)
ECM proteoglycans	66	10	2.9×10^{-11}
deactivation of the beta-catenin transactivating complex	38	7	5.1×10^{-10}
Arachidonic acid metabolism	41	7	1.1×10^{-9}
$G\alpha q$ signalling events	149	14	4×10^{-9}
HS-GAG degradation	21	5	4.5×10^{-9}
Uptake and actions of bacterial toxins	22	5	6.1×10^{-9}
Gastrin-CREB signalling pathway via PKC and MAPK	170	15	6.1×10^{-9}
RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription	64	8	6.1×10^{-9}
Non-integrin membrane-ECM interactions	53	7	1.5×10^{-8}
Syndecan interactions	25	5	1.5×10^{-8}
NOTCH1 Intracellular Domain Regulates Transcription	40	6	2.3×10^{-8}
Synthesis of Leukotrienes and Eoxins	15	4	3.2×10^{-8}
Signaling by NOTCH1	59	7	5.3×10^{-8}
Regulation of insulin secretion	44	6	6×10^{-8}
Metabolism of lipids and lipoproteins	471	37	8.2×10^{-8}
Signaling by NOTCH	80	8	1.2×10^{-7}
Platelet activation, signaling and aggregation	179	14	1.2×10^{-7}
Recruitment of mitotic centrosome proteins and complexes	64	7	1.2×10^{-7}
Centrosome maturation	64	7	1.2×10^{-7}
Biological oxidations	133	11	1.5×10^{-7}

4.2 Comparison of synthetic lethal gene candidates

4.2.1 Comparison with differential expression

4.2.2 Comparison with correlation

4.2.3 Comparison with primary siRNA screen candidates

Gene candidates were compared between computational and experimental screening approaches in Figure 4.2. The number of genes detected by both methods did not produce a significant overlap but these may be difficult to compare due to vast differences between the detection methods. These intersecting genes could be useful in drug triage as they were replicated across both methods and pathway over-representation differed between the sections of the Venn diagram (see Figure 4.2).

Figure 4.2: Comparison of SLIPT to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

The overlap between synthetic lethal from bioinformatics SLIPT predictions and siRNA screening has raised other questions including whether the number of genes and pathways enriched would be expected by chance. This of particular concern since the

Figure 4.3: Comparison of mtSLIPT to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

siRNA candidate genes themselves are highly enriched for particular pathways so selecting any intersect with them would be enriched for these pathways. The siRNA data is also based on cell line models which have limitations in application to a genetically variable patient population with a complex tumour microenvironment interacting with immune cells. One approach is to compare the candidate genes is to exclude genes that were not tested in both systems, such as those not expressed in cell lines or those with more than ½ of TCGA patients without any RNA Seq reads so the lowest quantile cannot be defined for SLIPT analysis. Another approach is to test whether pathways are enriched in randomly sampled genes, comparing many resampled or permutations of these genes to the enrichment statistics observed for these pathways in the SLIPT candidates and their intersection with the siRNA hits shows whether we detect these pathways more than we expect by chance.

Both of these are being applied with developing a method and overcoming technical challenges for the latter being the focus of recent work. The main challenge at the moment is to compare SLIPT results to experimental candidates and explain why so few genes (and so many pathways) overlap.

As discussed above, comparing genes between experimental screen candidates and prediction from TCGA expression data has been difficult. Figure 3 summarises the approaches to comparing genes accounting for some of the differences between the datasets. Of particular concern are the over-represented pathways in genes detected by both methods. There is no statistical evidence that SLIPT predicted genes or siRNA candidates are enriched in with each other. The siRNA candidates themselves are over-represented with many pathways including GPCRs so any intersection with these would contain some of these pathways. Whether these pathways are contained in the intersection more than expected by chance is the problem the two approaches below were designed to tackle.

4.2.3.1 Comparison of screen at pathway level

These pathway analyses correspond to genes separated into SLIPT or siRNA screen candidates unique to either method or detected by both (Table 4.7). The SLIPT-specific gene candidates were involved most strongly with translational and immune regulatory pathways, which were also identified in the clustering analysis (Table 4.5). The genes detected only by the siRNA screen had over-representation of cell signalling pathways, including many containing genes known to be involved in cancer (e.g., MAPK, PDGF, ERBB2, and FGFR), with the detection of Class A GPCRs supporting the independent analyses by Telford et al. (2015).

The intersection of computational and experimental synthetic lethal partners of *CDH1* has stronger evidence for over-representation of GPCR pathways and more specific subclasses, such as visual phototransduction ($p = 6.9 \times 10^{-10}$) and $G_{\alpha s}$ signalling events ($p = 1.7 \times 10^{-7}$), than other signalling pathways

4.2.3.1.1 Resampling of genes for pathway enrichment

As shown in Figure 4.4, resampling did not find evidence of significant depletion or over-representation for experimental synthetic lethal candidates in the computationally predicted synthetic lethal partners of *CDH1*, which suggested that the overlap across the two methods was no better than by chance.

A permutation analysis was performed to resample the genes tested by both approaches to investigate whether the observed pathway over-representation could have occurred in a randomly selected sample of genes from the experimental candidates, that is, whether the pathway predictions from SLIPT could be expected by chance. While the number of siRNA candidate genes detected by SLIPT was not statistically signifi-

Table 4.7: Pathway composition for CDH1 partners from SLIPT and siRNA screening

Predicted only by SLIPT (4025 genes)	Pathway Size	Genes Identified	p-value (FDR)
Eukaryotic Translation Elongation	80	75	1.5×10^{-182}
Peptide chain elongation	77	72	2.9×10^{-176}
Viral mRNA Translation	75	70	4.9×10^{-172}
Eukaryotic Translation Termination	76	70	5.9×10^{-170}
Formation of a pool of free 40S subunits	87	74	9.5×10^{-166}
Nonsense Mediated Decay independent of the Exon Junction Complex	81	70	1.2×10^{-160}
L13a-mediated translational silencing of Ceruloplasmin expression	97	75	3.8×10^{-155}
3' -UTR-mediated translational regulation	97	75	3.8×10^{-155}
GTP hydrolysis and joining of the 60S ribosomal subunit	98	75	6.0×10^{-154}
Nonsense-Mediated Decay	96	73	5.2×10^{-150}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	96	73	5.2×10^{-150}
SRP-dependent cotranslational protein targeting to membrane	97	73	7.8×10^{-149}
Eukaryotic Translation Initiation	105	75	4.7×10^{-146}
Cap-dependent Translation Initiation	105	75	4.7×10^{-146}
Translation	133	83	4.0×10^{-142}
Influenza Viral RNA Transcription and Replication	102	71	2.9×10^{-137}
Influenza Infection	111	74	3.7×10^{-137}
Influenza Life Cycle	106	71	2.3×10^{-133}
Infectious disease	326	125	4.2×10^{-120}
Extracellular matrix organisation	189	77	5.4×10^{-95}
Detected only by siRNA screen (1599 genes)	Pathway Size	Genes Identified	p-value (FDR
Class A/1 (Rhodopsin-like receptors)	282	44	1.3×10^{-27}

Detected only by siRNA screen (1599 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	44	1.3×10^{-27}
GPCR ligand binding	363	52	5.8×10^{-26}
$G_{\alpha q}$ signalling events	159	26	6.7×10^{-23}
Gastrin-CREB signalling pathway via PKC and MAPK	180	27	2.0×10^{-21}
$G_{\alpha i}$ signalling events	184	27	5.3×10^{-21}
Downstream signal transduction	146	23	7.6×10^{-21}
Signalling by PDGF	172	25	4.0×10^{-20}
Peptide ligand-binding receptors	175	25	8.5×10^{-20}
Signalling by ERBB2	146	22	1.3×10^{-19}
DAP12 interactions	159	23	2.6×10^{-19}
DAP12 signalling	149	22	2.7×10^{-19}
Organelle biogenesis and maintenance	264	33	5.5×10^{-19}
Signalling by NGF	266	33	8.2×10^{-19}
Downstream signalling of activated FGFR1	134	20	1.1×10^{-18}
Downstream signalling of activated FGFR2	134	20	1.1×10^{-18}
Downstream signalling of activated FGFR3	134	20	1.1×10^{-18}
Downstream signalling of activated FGFR4	134	20	1.1×10^{-18}
Signalling by FGFR	146	21	1.3×10^{-18}
Signalling by FGFR1	146	21	1.3×10^{-18}
Signalling by FGFR2	146	21	1.3×10^{-18}

Intersection of SLIPT and siRNA screen (604 genes)	Pathway Size	Genes Identified	p-value (FDR)
Visual phototransduction	54	9	6.9×10^{-10}
$G_{\alpha s}$ signalling events	48	7	1.6×10^{-7}
Retinoid metabolism and transport	24	5	1.7×10^{-7}
Acyl chain remodelling of PS	10	3	6.5×10^{-6}
Transcriptional regulation of white adipocyte differentiation	51	6	6.5×10^{-6}
Chemokine receptors bind chemokines	22	4	6.5×10^{-6}
Signalling by NOTCH4	11	3	6.9×10^{-6}
Defective EXT2 causes exostoses 2	11	3	6.9×10^{-6}
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	11	3	6.9×10^{-6}
Platelet activation, signalling and aggregation	146	12	6.9×10^{-6}
Phase 1 - Functionalisation of compounds	41	5	1.3×10^{-5}
Amine ligand-binding receptors	13	3	1.7×10^{-5}
Acyl chain remodelling of PE	14	3	2.4×10^{-5}
Signalling by GPCR	300	23	2.4×10^{-5}
Molecules associated with elastic fibres	29	4	2.6×10^{-5}
DAP12 interactions	128	10	2.6×10^{-5}
Cytochrome P_{450} - arranged by substrate type	30	4	3.2×10^{-5}
GPCR ligand binding	147	11	3.8×10^{-5}
Acyl chain remodelling of PC	16	3	4.0×10^{-5}
Response to elevated platelet cytosolic $\mathrm{Ca^{2+}}$	66	6	4.2×10^{-5}

Table 4.8: Pathway composition for CDH1 partners from mtSLIPT and siRNA

Predicted only by SLIPT (2901 genes)	Pathway Size	Genes Identified	p-value (FDR)
Eukaryotic Translation Elongation	87	57	2.8×10^{-120}
Peptide chain elongation	84	56	3.1×10^{-120}
Eukaryotic Translation Termination	84	55	2.8×10^{-117}
Viral mRNA Translation	82	54	4.1×10^{-116}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	55	3.7×10^{-113}
Formation of a pool of free 40S subunits	94	55	2.8×10^{-109}
Nonsense-Mediated Decay	104	57	8.4×10^{-108}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	57	8.4×10^{-108}
L13a-mediated translational silencing of Ceruloplasmin expression	104	56	3.4×10^{-105}
3' -UTR-mediated translational regulation	104	56	3.4×10^{-105}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	56	1.4×10^{-104}
Eukaryotic Translation Initiation	112	56	2.8×10^{-100}
Cap-dependent Translation Initiation	112	56	2.8×10^{-100}
SRP-dependent cotranslational protein targeting to membrane	105	54	2.2×10^{-99}
Influenza Viral RNA Transcription and Replication	109	54	5.3×10^{-97}
Influenza Life Cycle	113	54	9.6×10^{-95}
Influenza Infection	118	55	1.7×10^{-94}
Translation	142	60	3.5×10^{-94}
Infectious disease	349	77	5.9×10^{-62}
Extracellular matrix organization	241	54	3.0×10^{-52}
Detected only by siRNA screen (1752 genes)	Pathway Size	Genes Identified	
Class A/1 (Rhodopsin-like receptors)	282	69	1.9×10^{-59}
GPCR ligand binding	363	78	2.7×10^{-54}
Peptide ligand-binding receptors	175	41	1.5×10^{-42}
$G_{\alpha i}$ signalling events	184	41	1.1×10^{-40}
Gastrin-CREB signalling pathway via PKC and MAPK	180	37	1.5×10^{-35}
$G_{\alpha q}$ signalling events	159	34	3.7×10^{-35}
DAP12 interactions	159	27	1.1×10^{-24}
VEGFA-VEGFR2 Pathway	91	19	1.0×10^{-23}
Downstream signal transduction	146	24	1.9×10^{-22}
Signaling by VEGF	99	19	2.6×10^{-22}
DAP12 signaling	149	24	4.2×10^{-22}
Organelle biogenesis and maintenance	264	34	4.3×10^{-20}
Downstream signaling of activated FGFR1	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR2	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR3	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR4	134	21	4.3×10^{-20}
Signaling by ERBB2			
Cimalian La ECED	146	22	5.3×10^{-20}
Signaling by FGFR	146	22	5.3×10^{-20}
Signaling by FGFR1	146 146	22 22	5.3×10^{-20} 5.3×10^{-20}
	146	22	5.3×10^{-20}
Signaling by FGFR1 Signaling by FGFR2	146 146 146	22 22 22	5.3×10^{-20} 5.3×10^{-20} 5.3×10^{-20}
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes)	146 146 146 Pathway Size	22 22 22 22 Genes Identified	5.3×10^{-20} 5.3×10^{-20} 5.3×10^{-20} p-value (FDR)
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation	146 146 146 Pathway Size 21	22 22 22 22 Genes Identified 4	5.3×10^{-20} 5.3×10^{-20} 5.3×10^{-20} p-value (FDR) 4.9×10^{-6}
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport	146 146 146 Pathway Size 21 39	22 22 22 22 Genes Identified 4 5	5.3×10^{-20} 5.3×10^{-20} 5.3×10^{-20} p-value (FDR) 4.9×10^{-6} 4.9×10^{-6}
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation	146 146 146 Pathway Size 21 39 186	22 22 22 22 Genes Identified 4 5 13	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value (FDR)}}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4	146 146 146 Pathway Size 21 39 186 11	22 22 22 22 Genes Identified 4 5 13 3	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}}\text{ (FDR)}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events	146 146 146 Pathway Size 21 39 186 11 100	22 22 22 Genes Identified 4 5 13 3 8	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}}\text{ (FDR)}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &5.0\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2	146 146 146 Pathway Size 21 39 186 11 100	22 22 22 Genes Identified 4 5 13 3 8 3	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}} \ &(\mathbf{FDR})\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS	146 146 146 Pathway Size 21 39 186 11 100 12	22 22 22 Genes Identified 4 5 13 3 8 3 8	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}} \ \mathbf{(FDR)}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2	146 146 146 Pathway Size 21 39 186 11 100	22 22 22 Genes Identified 4 5 13 3 8 3	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}} \ (\mathbf{FDR})\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors)	146 146 146 Pathway Size 21 39 186 11 100 12 12 289	22 22 22 Genes Identified 4 5 13 3 8 3 18	$\begin{aligned} &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ &5.3\times10^{-20}\\ \end{aligned}$ $\mathbf{p\text{-value}} \ (\mathbf{FDR})\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &4.9\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ &5.0\times10^{-6}\\ &2.2\times10^{-5}\\ \end{aligned}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 G_{as} signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock	146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173	22 22 22 22 Genes Identified 4 5 13 3 8 3 8 3 18 11	$\begin{array}{c} 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ \hline \\ 5.3\times10^{-20}\\ \hline \end{array}$ $\begin{array}{c} \textbf{p-value (FDR)}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 2.2\times10^{-5}\\ 2.9\times10^{-5}\\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF	146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34	22 22 22 22 Genes Identified 4 5 13 3 8 3 8 3 18 11 4	$\begin{array}{c} 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ \\ \end{array}$ $\begin{array}{c} \textbf{p-value (FDR)}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 2.2\times10^{-5}\\ 2.9\times10^{-5}\\ 2.9\times10^{-5}\\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4 Role of LAT2/NTAL/LAB on calcium mobilization	146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139	22 22 22 22 Genes Identified 4 5 13 3 8 3 8 3 18 11 4 9	$\begin{array}{c} 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ 5.3\times10^{-20}\\ \hline \end{array}$ $\begin{array}{c} 5.3\times10^{-20}\\ \hline \end{array}$ $\begin{array}{c} \mathbf{p-value} \ (\mathbf{FDR})\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 4.9\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 5.0\times10^{-6}\\ 2.2\times10^{-5}\\ 2.9\times10^{-5}\\ 4.3\times10^{-5}\\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 $G_{\alpha s}$ signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4	146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139 99	22 22 22 22 Genes Identified 4 5 13 3 8 3 8 3 18 11 4 9 7	$\begin{array}{c} 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ \hline \\ 5.3\times10^{-20} \\ \hline \end{array}$ $\begin{array}{c} \mathbf{p\text{-value}} \ (\mathbf{FDR}) \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 2.2\times10^{-5} \\ 2.9\times10^{-5} \\ 4.3\times10^{-5} \\ 4.4\times10^{-5} \\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 Gas signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4 Role of LAT2/NTAL/LAB on calcium mobilization Peptide ligand-binding receptors	146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139 99 181	22 22 22 22 Genes Identified 4 5 13 3 8 3 3 18 11 4 9 7	$\begin{array}{c} 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ \hline \\ 5.3\times10^{-20} \\ \hline \end{array}$ $\begin{array}{c} \mathbf{p\text{-value}} \ (\mathbf{FDR}) \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 2.2\times10^{-5} \\ 2.9\times10^{-5} \\ 2.9\times10^{-5} \\ 4.3\times10^{-5} \\ 4.4\times10^{-5} \\ 4.5\times10^{-5} \\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 Gas signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4 Role of LAT2/NTAL/LAB on calcium mobilization Peptide ligand-binding receptors Defective B4GALT7 causes EDS, progeroid type	146 146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139 99 181 19	22 22 22 Genes Identified 4 5 13 3 8 3 18 11 4 9 7 11 3	$\begin{array}{c} 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ \hline \\ 5.3\times10^{-20} \\ \hline \end{array}$ $\begin{array}{c} \textbf{p-value (FDR)} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 2.2\times10^{-5} \\ 2.9\times10^{-5} \\ 2.9\times10^{-5} \\ 4.3\times10^{-5} \\ 4.5\times10^{-5} \\ 4.5\times10^{-5} \\ 4.5\times10^{-5} \\ 4.5\times10^{-5} \\ \end{array}$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 Gas signalling events Defective EXT2 causes exostoses 2 Defective EXT2 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4 Role of LAT2/NTAL/LAB on calcium mobilization Peptide ligand-binding receptors Defective B4GALT7 causes EDS, progeroid type Defective B3GAT3 causes JDSSDHD Signaling by NOTCH	146 146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139 99 181 19	22 22 22 Genes Identified 4 5 13 3 8 3 18 11 4 9 7 11 3 3 3	$\begin{array}{c} 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ \end{array}$ $\begin{array}{c} \mathbf{p\text{-value (FDR)}} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 2.2\times10^{-5} \\ 2.9\times10^{-5} \\ 4.3\times10^{-5} \\ 4.5\times10^{-5} \\ 4.$
Signaling by FGFR1 Signaling by FGFR2 Intersection of SLIPT and siRNA screen (450 genes) HS-GAG degradation Retinoid metabolism and transport Platelet activation, signaling and aggregation Signaling by NOTCH4 Gas signalling events Defective EXT2 causes exostoses 2 Defective EXT1 causes exostoses 1, TRPS2 and CHDS Class A/1 (Rhodopsin-like receptors) Signaling by PDGF Circadian Clock Signaling by ERBB4 Role of LAT2/NTAL/LAB on calcium mobilization Peptide ligand-binding receptors Defective B4GALT7 causes EDS, progeroid type Defective B3GAT3 causes JDSSDHD	146 146 146 146 Pathway Size 21 39 186 11 100 12 12 289 173 34 139 99 181 19 19 80	22 22 22 Genes Identified 4 5 13 3 8 3 18 11 4 9 7 11 3 3 3 6	$\begin{array}{c} 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ 5.3\times10^{-20} \\ \end{array}$ $\begin{array}{c} \mathbf{p\text{-value (FDR)}} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 4.9\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-6} \\ 5.0\times10^{-5} \\ 2.2\times10^{-5} \\ 2.9\times10^{-5} \\ 4.3\times10^{-5} \\ 4.4\times10^{-5} \\ 4.5\times10^{-5} \\ \end{array}$

148

129

9

Signaling by ERBB2

Signaling by SCF-KIT

 7.1×10^{-5}

 8.3×10^{-5}

Figure 4.4: Resampled intersection of SLIPT and siRNA candidates. Resampling analysis of intersect size from genes detected by SLIPT and siRNA screening approaches over 1 million replicates. The proportion of expected intersection sizes for random samples below or above the observed intersection size respectively, lacking significant over-representation or depletion of siRNA screen candidates within the SLIPT predictions for *CDH1*.

cant (p=0.281), this may be due to the vastly different limitations of the approaches and the correlation structure of gene expression not being independent (as assumed for multiple testing procedures). The intersection may still be functionally relevant to CDH1-deficient cancers, such as the pathway data in Table 4.7. The resampling analysis for pathways was compared to the pathway over-representation for SLIPT predicted synthetic lethal partners in Table 4.9. Similarly, the pathway resampling for intersection between SLIPT predictions and experimental screen candidates was compared to pathway over-representation in Table 4.10 for intersection with siRNA data.

The pathway resampling approach for SLIPT-specific gene candidates (Table 4.9) replicates the gene set over-representation analysis for all SLIPT genes, detecting evidence of synthetic lethal pathways for CDH1 in translational, immune, and cell signalling pathways including $G_{\alpha i}$ signalling, GPCR downstream signalling, and chemokine

Table 4.9: Pathways for *CDH1* partners from SLIPT

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	1.3×10^{-207}	$< 1.241 \times 10^{-5}$
Peptide chain elongation	5.6×10^{-201}	$< 1.241 \times 10^{-5}$
Viral mRNA Translation	1.2×10^{-196}	$< 1.241 \times 10^{-5}$
Eukaryotic Translation Termination	1.2×10^{-196}	$< 1.241 \times 10^{-5}$
Formation of a pool of free 40S subunits	3.7×10^{-194}	$< 1.241 \times 10^{-5}$
Nonsense Mediated Decay independent of the Exon Junction Complex	5.3×10^{-187}	$< 1.241 \times 10^{-5}$
L13a-mediated translational silencing of Ceruloplasmin expression	9.6×10^{-183}	$<1.241\times10^{-5}$
3' -UTR-mediated translational regulation	9.6×10^{-183}	$< 1.241 \times 10^{-5}$
GTP hydrolysis and joining of the 60S ribosomal subunit	1.9×10^{-181}	$<1.241\times10^{-5}$
Nonsense-Mediated Decay	6.2×10^{-176}	$< 1.241 \times 10^{-5}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	6.2×10^{-176}	$< 1.241 \times 10^{-5}$
Adaptive Immune System	6.5×10^{-174}	0.15753
Eukaryotic Translation Initiation	5.7×10^{-173}	$< 1.241 \times 10^{-5}$
Cap-dependent Translation Initiation	5.7×10^{-173}	$< 1.241 \times 10^{-5}$
SRP-dependent cotranslational protein targeting to membrane	2.0×10^{-171}	$< 1.241 \times 10^{-5}$
Translation	6.1×10^{-170}	$< 1.241 \times 10^{-5}$
Infectious disease	1.6×10^{-166}	0.23231
Influenza Infection	1.9×10^{-163}	$< 1.241 \times 10^{-5}$
Influenza Viral RNA Transcription and Replication	1.9×10^{-160}	$< 1.241 \times 10^{-5}$
Influenza Life Cycle	2.5×10^{-156}	$< 1.241 \times 10^{-5}$
Extracellular matrix organisation	1.1×10^{-152}	0.071761
GPCR ligand binding	1.1×10^{-143}	0.55801
Class A/1 (Rhodopsin-like receptors)	1.5×10^{-142}	0.58901
GPCR downstream signalling	7.6×10^{-140}	0.098357
Haemostasis	1.9×10^{-134}	0.27059
Developmental Biology	2.0×10^{-123}	0.52737
Metabolism of lipids and lipoproteins	3.3×10^{-120}	0.724
Cytokine Signalling in Immune system	2.6×10^{-119}	0.39661
Peptide ligand-binding receptors	3.7×10^{-109}	0.61102
$G_{\alpha i}$ signalling events	8.9×10^{-100}	$<1.241\times10^{-5}$

receptor binding. While the immune and signal transduction pathways were not significantly over-represented in the resampling analysis, the results for the two approaches were largely consistent for translation and post-transcriptional gene regulation, supporting gene set over-representation of the SLIPT-specific pathways in Table 4.9. In particular, some of the most significantly over-represented pathways had higher observed χ^2 values than any of the 1 million random permutations.

The intersection between computational and experimental candidates (in Table 4.10) differed between over-representation and resampling analyses. Namely, many of the over-represented pathways were not significant in the resampling analysis, including visual phototransduction and retinoic acid signalling, although pathways involving defective EXT1 or EXT2 genes approach significance after FDR adjustment for multiple tests. Of the highest over-represented pathways in the intersection, only $G_{\alpha s}$ signalling events were supported by both over-representation and resampling analyses. Other pathways supported by both analyses were cytoplasmic elastic fibre formation, associated protein modification pathways, energy metabolism, and the fibrin clotting

cascade.

While this indicates that $G_{\alpha s}$ and GPCR class A/1 signalling events were significantly detected by both approaches, GPCR signalling pathways overall were not. It is likely that GPCRs were primarily over-represented in the intersection with the experimental candidates due to strong over-representation of these pathways in experimental candidates, rather than detection by SLIPT, which may be driven by these more specific constituent pathways.

However, we note that several pathways, including some immune functions and neurotransmitters, were supported by the resampling analysis (in Table 4.10) when the initial pathway over-representation test was not significant. These functions appear to have been detected by both approaches more than expected by chance but must be interpreted with caution since they were still not common enough to be detected in pathway over-representation analysis.

4.2.4 Comparison with secondary screen siRNA screen candidates

4.2.4.1 Comparison of candidate SL Pathways

Thus we have identified candidate synthetic lethal pathways by gene set over-representation, metagene synthetic lethality, and re-sampled empirical pathway over-representation. The challenge currently under consideration is whether these methods can be compared and which may lead to biologically meaningful or clinically relevant synthetic lethal candidate pathways.

4.3 Mutation, Copy Number, and Methylation

Due to promising synthetic lethal data on mutation and DNA copy number analyses (Jerby-Arnon et al., 2014; Lu et al., 2015), these were also investigated to compare genes for synthetic lethality in an analogous manner to expression analyses in the TCGA data. Due to the low somatic mutation rate (and lack of available) germline mutations for many genes, it was not possible to detect many double mutations with significantly under-representation in cancers. There were also concerns about using rare mutations with unknown significance or excluding functional mutations by only using those in the exons. It was possible to compare deletion and duplication of DNA copy number in a manner analogous to expression quantiles. However, these overlapped poorly with

Table 4.10: Pathways for CDH1 partners from SLIPT and siRNA primary screen

Reactome Pathway	Over-representation	Permutation
Visual phototransduction	6.9×10^{-10}	0.91116
${ m G}_{lpha s}$ signalling events	1.6×10^{-7}	0.012988
Retinoid metabolism and transport	1.7×10^{-7}	0.20487
Transcriptional regulation of white adipocyte differentiation	6.5×10^{-6}	0.38197
Acyl chain remodelling of PS	6.5×10^{-6}	0.58485
Chemokine receptors bind chemokines	6.5×10^{-6}	0.97255
Defective EXT2 causes exostoses 2	6.9×10^{-6}	0.056437
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	6.9×10^{-6}	0.056437
Signalling by NOTCH4	6.9×10^{-6}	0.15497
Platelet activation, signalling and aggregation	6.9×10^{-6}	0.53358
Phase 1 - Functionalisation of compounds	1.3×10^{-5}	0.24836
Amine ligand-binding receptors	1.7×10^{-5}	0.3195
Acyl chain remodelling of PE	2.4×10^{-5}	0.7307
Signalling by GPCR	2.4×10^{-5}	0.9939
Molecules associated with elastic fibres	2.6×10^{-5}	0.0072929
DAP12 interactions	2.6×10^{-5}	0.78273
Cytochrome P ₄₅₀ - arranged by substrate type	3.2×10^{-5}	0.87019
GPCR ligand binding	3.8×10^{-5}	0.99417
Acyl chain remodelling of PC	4.0×10^{-5}	0.65415
Response to elevated platelet cytosolic Ca ²⁺	4.2×10^{-5}	0.55461
Arachidonic acid metabolism	4.4×10^{-5}	0.060298
Defective B4GALT7 causes EDS, progeroid type	4.4×10 4.9×10^{-5}	0.000298
Defective B3GAT3 causes JDSSDHD	4.9×10^{-5} 4.9×10^{-5}	0.15497
Elastic fibre formation	4.9×10^{-5} 4.9×10^{-5}	0.13497
HS-GAG degradation	4.9×10 6.2×10^{-5}	0.0019227
Bile acid and bile salt metabolism	6.2×10^{-5}	0.017747
Netrin-1 signalling	7.1×10^{-5}	0.15457
Integration of energy metabolism	7.1×10^{-5} 7.1×10^{-5}	0.93030
DAP12 signalling	7.1×10 7.9×10^{-5}	0.0019287
	8.1×10^{-5}	0.07655
GPCR downstream signalling	8.7×10^{-5}	0.0076
Diseases associated with glycosaminoglycan metabolism Diseases of glycosylation	8.7×10^{-5}	0.017747
Signalling by Retinoic Acid		0.017747
	8.7×10^{-5}	
Signalling by Leptin	8.7×10^{-5}	0.15497
Signalling by SCF-KIT	8.7×10^{-5}	0.73399
Opioid Signalling	8.7×10^{-5}	0.99417
Signalling by NOTCH	0.0001	0.26453
Platelet homeostasis	0.0001	0.55912
Signalling by NOTCH1	0.00011	0.13797
Class B/2 (Secretin family receptors)	0.00011	0.4659
Diseases of Immune System	0.00013	0.15497
Diseases associated with the TLR signalling cascade	0.00013	0.15497
A tetrasaccharide linker sequence is required for GAG synthesis	0.00013	0.33566
Nuclear Receptor transcription pathway	0.00016	0.22735
Formation of Fibrin Clot (Clotting Cascade)	0.00016	0.0054639
Syndecan interactions	0.00016	0.3974
Class A/1 (Rhodopsin-like receptors)	0.00016	0.99454
HS-GAG biosynthesis	0.0002	0.37199
Platelet degranulation	0.0002	0.39003
EPH-ephrin mediated repulsion of cells	0.00021	0.6193

Table 4.11: Pathways for CDH1 partners from mtSLIPT

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	3.2×10^{-128}	$<7.035\times 10^{-4}$
Peptide chain elongation	3.2×10^{-128}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Termination	3.7×10^{-125}	$<7.035 \times 10^{-4}$
Viral mRNA Translation	4.1×10^{-124}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay independent of the Exon Junction Complex	1.4×10^{-123}	$<7.035 \times 10^{-4}$
Nonsense-Mediated Decay	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Formation of a pool of free 40S subunits	2.6×10^{-116}	$<7.035 \times 10^{-4}$
L13a-mediated translational silencing of Ceruloplasmin expression	2.0×10^{-111}	$<7.035 \times 10^{-4}$
3' -UTR-mediated translational regulation	2.0×10^{-111}	$<7.035 \times 10^{-4}$
GTP hydrolysis and joining of the 60S ribosomal subunit	9.9×10^{-111}	$<7.035 \times 10^{-4}$
SRP-dependent cotranslational protein targeting to membrane	4.7×10^{-108}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Initiation	4.8×10^{-106}	$<7.035 \times 10^{-4}$
Cap-dependent Translation Initiation	4.8×10^{-106}	$<7.035 \times 10^{-4}$
Influenza Viral RNA Transcription and Replication	8.1×10^{-103}	$<7.035 \times 10^{-4}$
Influenza Infection	2.4×10^{-102}	$<7.035 \times 10^{-4}$
Translation	6.0×10^{-101}	$<7.035 \times 10^{-4}$
Influenza Life Cycle	2.2×10^{-100}	$<7.035 \times 10^{-4}$
Disease	2.1×10^{-90}	0.013347
GPCR downstream signaling	1.6×10^{-80}	0.095478
Hemostasis	2.1×10^{-78}	0.2671
Signaling by GPCR	1.2×10^{-73}	0.44939
Extracellular matrix organization	2.2×10^{-67}	0.054008
Metabolism of proteins	1.4×10^{-66}	0.9607
Signal Transduction	2.1×10^{-66}	0.48184
Developmental Biology	2.5×10^{-66}	0.54075
Innate Immune System	5.3×10^{-66}	0.9589
Infectious disease	9.6×10^{-66}	0.21075
Signalling by NGF	1.1×10^{-62}	0.43356
Immune System	2.8×10^{-62}	0.23052

Table 4.12: Pathways for CDH1 partners from mtSLIPT and siRNA primary screen

Reactome Pathway	Over-representation	Permutation
Visual phototransduction	1.2×10^{-9}	0.86279
$\mathbf{G}_{lpha s}$ signalling events	2.9×10^{-7}	0.023066
Retinoid metabolism and transport	2.9×10^{-7}	0.299
Acyl chain remodelling of PS	1.1×10^{-5}	0.42584
Transcriptional regulation of white adipocyte differentiation	1.1×10^{-5}	0.53928
Chemokine receptors bind chemokines	1.1×10^{-5}	0.95259
Signaling by NOTCH4	1.2×10^{-5}	0.079229
Defective EXT2 causes exostoses 2	1.2×10^{-5}	0.22292
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	1.2×10^{-5}	0.22292
Platelet activation, signaling and aggregation	1.2×10^{-5}	0.48853
Serotonin receptors	1.4×10^{-5}	0.34596
Nicotinamide salvaging	1.4×10^{-5}	0.70881
Phase 1 - Functionalization of compounds	2×10^{-5}	0.31142
Amine ligand-binding receptors	2.5×10^{-5}	0.34934
Acyl chain remodelling of PE	3.8×10^{-5}	0.42615
Signaling by GPCR	3.8×10^{-5}	0.93888
Molecules associated with elastic fibres	3.9×10^{-5}	0.017982
DAP12 interactions	3.9×10^{-5}	0.71983
Beta defensins	3.9×10^{-5}	0.91458
Cytochrome P_{450} - arranged by substrate type	4.7×10^{-5}	0.83493
GPCR ligand binding	5.7×10^{-5}	0.95258
Acyl chain remodelling of PC	6.1×10^{-5}	0.42584
Response to elevated platelet cytosolic Ca ²⁺	6.4×10^{-5}	0.54046
Arachidonic acid metabolism	6.7×10^{-5}	0.026696
Defective B4GALT7 causes EDS, progeroid type	7.3×10^{-5}	0.24921
Defective B3GAT3 causes JDSSDHD	7.3×10^{-5}	0.24921
Hydrolysis of LPC	7.3×10^{-5}	0.80663
Elastic fibre formation	7.4×10^{-5}	0.0058768
HS-GAG degradation	9.4×10^{-5}	0.0083179
Bile acid and bile salt metabolism	9.4×10^{-5}	0.079905
Netrin-1 signaling	0.00011	0.92216
Integration of energy metabolism	0.00011	0.011152
Dectin-2 family	0.00011	0.10385
Platelet sensitization by LDL	0.00012	0.10505
V		0.62787
DAP12 signaling Defensins	0.00012 0.00012	0.02787
GPCR downstream signaling	0.00012	0.79454
Diseases associated with glycosaminoglycan metabolism	0.00013	0.065927
Diseases of glycosylation	0.00013	0.065927
Signaling by Retinoic Acid	0.00013	0.22292
Signaling by Leptin	0.00013	0.34596
Signaling by SCF-KIT	0.00013	0.70881
Opioid Signalling	0.00013	0.96053
Signaling by NOTCH	0.00015	0.26884
Platelet homeostasis	0.00015	0.4878
Signaling by NOTCH1	0.00016	0.13043
Class B/2 (Secretin family receptors)	0.00016	0.13994
Diseases of Immune System	0.0002	0.0795
Diseases associated with the TLR signaling cascade	0.0002	0.0795
A tetrasaccharide linker sequence is required for GAG synthesis	0.0002	0.42615

candidate interacting partners from expression analyses and concerns were raised that they may not be relevant to *CDH1* which is typically inactivated in tumours by loss of function mutations or DNA methylation (PJ Guilford, personal communication).

DNA methylation data was also prepared for synthetic lethal analysis but was discontinued due to computational challenges, expected similarity to expression results, difficulty defining loss of function methylation at a gene level across CpG sites, and the concerns raised in the next section.

4.3.1 Synthetic lethality by DNA copy number

4.3.2 Synthetic lethality by somatic mutation

4.3.2.1 Mutation analysis

4.3.3 ANOVA of Expression Predictors

[include?]

Another approach was to only use copy number, mutation, or hyper-methylation data for genes in which they would impact on gene function and occur frequently in tumours. Before investigating whether these impact on gene function, they were investigated as predictors of variation in gene expression. If these are not giving variation independent of gene expression, expression would be a more suitable measure of gene function as it is widely generated in studies and useful as a clinical biomarker.

Globally predicting gene expression across all genes from DNA copy number and somatic mutation was attempted by ANOVA. However, this was computationally challenging and gene-specific analyses would be more informative. Gene specific ANOVA and linear regression was performed but was raised more issues than it addressed. There were issues with interaction terms and mutation data, many genes were not tested for these since there were so few mutations for these genes in the dataset. It was possible to include DNA methylation in gene-specific analyses (despite the concerns raised above) but the R^2 values for each gene were still generally very low and issues with insufficient mutant samples for interaction terms became worse. This means that the approach used differs for each gene making it difficult to compare them. The challenges raised here suggested that expression is very difficult to predict with other factors but including these other factors would be difficult and plagued by multiple-testing, particularly comparing between them with the current synthetic lethal prediction method. This led to investigations into the simulation of synthetic lethality.

4.4 Global Synthetic Lethality

[include?]

Global levels of synthetic lethality were analysed as part of my Honours project (Kelly, 2013) to address concerns of high numbers of synthetic lethal candidates for *CDH1*. This turned out to be typical for most genes in the microarray dataset. Due to newer samples and concerns about sample quality in TCGA microarrays, RNA-Seq datasets were used here. The focus of this thesis is gene expression data generated by RNA-Seq, this was replicated using the TCGA breast cancer RNA-Seq dataset on the New Zealand eScience Infrastructure Intel Pan supercomputer.

4.4.1 Hub Genes

Table 1. Hub gene function in TCGA breast cancer microarray expression SL predictions (n=600).

Table 2 Hub gene function in TCGA breast cancer RNA-Seq expression SL predictions (n=878). [revise for n=1168]

Table 3. Hub gene function in BC2116 breast cancer microarray expression SL predictions (n=2116).

4.5 Metagene Analysis

[include?]

4.5.1 Pathway expression

4.5.2 Somatic mutation

4.5.3 Synthetic lethal metagenes

4.6 Replication in stomach cancer

- exprSL
- mtSL
- heatmap

Table 4.13: Candidate synthetic lethal metagenes against $\it CDH1$ from SLIPT

Pathway	ID	Observed	Expected	$\chi^2 {\bf value}$	p-value	p-value (FDR)
Activation of BMF and translocation to mitochondria	139910	213	130.22	205.32	2.6909×10^{-43}	4.4373×10^{-40}
Downregulation of ERBB2:ERBB3 signaling	1358803	197	130.22	189.57	6.5577×10^{-40}	5.4069×10^{-370}
Activation of PKB	165158	209	130.22	188.57	1.0771×10^{-39}	5.9203×10^{-370}
Glycogen storage diseases	3229121	68	130.22	175.58	6.6178×10^{-37}	1.8188×10^{-340}
Myoclonic epilepsy of Lafora	3785653	68	130.22	175.58	6.6178×10^{-37}	1.8188×10^{-340}
Diseases of carbohydrate metabolism	5663084	68	130.22	175.58	6.6178×10^{-37}	1.8188×10^{-340}
HSF1 activation	3371511	212	130.22	171.21	5.7399×10^{-36}	1.3522×10^{-330}
Downregulation of ERBB4 signaling	1253288	192	130.22	161.77	6.0875×10^{-34}	1.2548×10^{-310}
Arachidonic acid metabolism	2142753	81	130.22	156.53	8.1254×10^{-33}	1.4888×10^{-300}
Translation initiation complex formation	72649	70	130.22	152.14	7.0837×10^{-32}	1.1681×10^{-290}
Synthesis of 5-eicosatetraenoic acids	2142688	68	130.22	150.98	1.2533×10^{-31}	1.8787×10^{-290}
SRP-dependent cotranslational protein targeting to membrane	1799339	69	130.22	150.03	2.0095×10^{-31}	2.7613×10^{-290}
L13a-mediated translational silencing of Ceruloplasmin expression	156827	72	130.22	147.84	5.9094×10^{-31}	6.4389×10^{-290}
3' -UTR-mediated translational regulation	157279	72	130.22	147.84	5.9094×10^{-31}	6.4389×10^{-290}
Trafficking of AMPA receptors	399719	198	130.22	147.73	6.2476×10^{-31}	6.4389×10^{-290}
Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity	399721	198	130.22	147.73	6.2476×10^{-31}	6.4389×10^{-290}
Scavenging by Class F Receptors	3000484	202	130.22	146.85	9.6215×10^{-31}	9.2823×10^{-290}
Activation of the mRNA upon binding of the cap-binding complex and eIFs,	72662	70	130.22	146.51	1.1365×10^{-30}	9.2823×10^{-290}
and subsequent binding to 43S	12002	10	130.22	140.51	1.1303 × 10	9.2023 × 10
Formation of the ternary complex, and subsequently, the 43S complex	72695	70	130.22	146.51	1.1365×10^{-30}	9.2823×10^{-290}
Ribosomal scanning and start codon recognition	72702	70	130.22	146.51	1.1365×10^{-30}	9.2823×10^{-290}
Eukaryotic Translation Elongation	156842	72	130.22	146.42	1.192×10^{-30}	9.2823×10^{-290}
Nonsense Mediated Decay independent of the Exon Junction Complex	975956	71	130.22	146.34	1.2384×10^{-30}	9.2823×10^{-290}
Viral mRNA Translation	192823	70	130.22	145.93	1.5135×10^{-30}	1.0399×10^{-280}
Eukaryotic Translation Termination	72764	70	130.22	145.93	1.5135×10^{-30}	1.0399×10^{-280}
NF-kB is activated and signals survival	209560	71	130.22	145.48	1.8975×10^{-30}	1.1857×10^{-280}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

Table 4.14: Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value (FDR)
Linoleic acid (LA) metabolism	2046105	79	36.70	87.03	1.2637×10^{-19}	2.0839×10^{-160}
ATF6-alpha activates chaperone genes	381183	78	36.70	80.25	3.7449×10^{-18}	3.0877×10^{-150}
Neurotoxicity of clostridium toxins	168799	8	36.70	79.41	5.7092×10^{-18}	3.1382×10^{-150}
Aquaporin-mediated transport	445717	8	36.70	76.28	2.7327×10^{-17}	9.0124×10^{-150}
Toxicity of botulinum toxin type G (BoNTG)	5250989	8	36.70	76.278	2.7327×10^{-17}	9.0124×10^{-150}
Purine metabolism	73847	75	36.70	75.86	3.3623×10^{-17}	9.2407×10^{-150}
Chk1Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex	75035	74	36.70	71.68	2.7211×10^{-16}	6.41×10^{-140}
Scavenging by Class F Receptors	3000484	75	36.70	69.56	7.8573×10^{-16}	1.4396×10^{-130}
Cytosolic tRNA aminoacylation	379716	75	36.70	69.56	7.8573×10^{-16}	1.4396×10^{-130}
G1S Transition	69206	74	36.70	69.21	9.3593×10^{-16}	1.5433×10^{-130}
ABC-family proteins mediated transport	382556	10	36.70	68.16	1.5826×10^{-15}	1.8641×10^{-130}
MG1 Transition	68874	74	36.70	68.16	1.5826×10^{-15}	1.8641×10^{-130}
DNA Replication Pre-Initiation	69002	74	36.70	68.16	1.5826×10^{-15}	1.8641×10^{-130}
Cell Cycle Checkpoints	69620	74	36.70	68.16	1.5826×10^{-15}	1.8641×10^{-130}
Basigin interactions	210991	74	36.70	67.23	2.5162×10^{-15}	2.7661×10^{-130}
Mitotic G1-G1S phases	453279	72	36.70	64.98	7.7471×10^{-15}	7.9843×10^{-130}
Metabolism of folate and pterines	196757	73	36.70	63.42	1.6932×10^{-14}	1.6424×10^{-120}
Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation	1474151	73	36.70	62.68	2.4547×10^{-14}	2.0427×10^{-120}
DNA Replication	69306	72	36.70	62.51	2.6652×10^{-14}	2.0427×10^{-120}
Separation of Sister Chromatids	2467813	71	36.70	62.47	2.7252×10^{-14}	2.0427×10^{-120}
M Phase	68886	71	36.70	62.47	2.7252×10^{-14}	2.0427×10^{-120}
Cell Cycle, Mitotic	69278	71	36.70	62.47	2.7252×10^{-14}	2.0427×10^{-120}
G0 and Early G1	1538133	70	36.70	61.62	4.1658×10^{-14}	2.8623×10^{-120}
Regulation of PLK1 Activity at G2M Transition	2565942	70	36.70	61.62	4.1658×10^{-14}	2.8623×10^{-120}
alpha-linolenic (omega3) and linoleic (omega6) acid metabolism	2046104	70	36.70	60.07	9.0139×10^{-14}	5.1255×10^{-120}

 $Strongest\ candidate\ SL\ partners\ for\ \textit{CDH1}\ \ by\ mtSLIPT\ \ with\ observed\ \ and\ expected\ \ mutant\ samples\ \ with\ low\ \ expression\ \ of\ partner\ \ metagenes$

• Venn

- Pathway enrichment
- Permutations

Table 4.15: Candidate synthetic lethal genes against E-cadherin from SLIPT in stomach cancer

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
PRAF2	17	50.4	121	3.54×10^{-25}	1.45×10^{-21}
EMP3	17	50.4	115	5.06×10^{-24}	1.48×10^{-20}
PLEKHO1	22	50.4	112	2.14×10^{-23}	4.75×10^{-20}
SELM	20	50.4	111	5.13×10^{-23}	8.09×10^{-20}
GYPC	20	50.4	110	5.77×10^{-23}	8.45×10^{-20}
COX7A1	18	50.4	109	1.15×10^{-22}	1.39×10^{-19}
TNFSF12	20	50.4	106	4.06×10^{-22}	4.38×10^{-19}
SEPT4	17	50.4	106	6.58×10^{-22}	5.91×10^{-19}
LGALS1	19	50.4	105	6.64×10^{-22}	5.91×10^{-19}
RARRES2	27	50.4	105	8.02×10^{-22}	6.85×10^{-19}
VEGFB	16	50.4	104	1.19×10^{-21}	9.74×10^{-19}
PRR24	22	50.4	102	2.96×10^{-21}	2.02×10^{-18}
SYNC	19	50.4	102	3.73×10^{-21}	2.39×10^{-18}
MAGEH1	17	50.4	100	9.52×10^{-21}	5.01×10^{-18}
HSPB2	23	50.4	99.6	1.19×10^{-20}	5.82×10^{-18}
SMARCD3	19	50.4	99	1.59×10^{-20}	7.57×10^{-18}
CREM	13	50.4	98.1	2.48×10^{-20}	1.13×10^{-17}
GNG11	20	50.4	97.3	3.68×10^{-20}	1.59×10^{-17}
GNAI2	17	50.4	96.4	5.75×10^{-20}	2.36×10^{-17}
FUNDC2	22	50.4	95.9	7.39×10^{-20}	2.91×10^{-17}
CNRIP1	21	50.4	95.3	1×10^{-19}	3.66×10^{-17}
CALHM2	22	50.4	93.1	2.94×10^{-19}	1.06×10^{-16}
ARID5A	18	50.4	92.7	3.47×10^{-19}	1.22×10^{-16}
ST3GAL3	27	50.4	92.2	4.49×10^{-19}	1.56×10^{-16}
LOC339524	21	50.4	92.1	4.8×10^{-19}	1.59×10^{-16}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

4.7 Replication in cell line encyclopaedia

As breast cancer cell lines are the experimental system in which many cancer genetics and drug targets are investigated, these were analysed in addition to patient samples from TCGA. The cancer cell line encyclopaedia (CCLE) is a resource for genomics

Table 4.16: Candidate synthetic lethal genes against E-cadherin from mtSLIPT in stomach cancer

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
OLFML1	5	10.1	29.2	4.53×10^{-7}	0.0031
NRIP2	6	10.1	25.4	3.11×10^{-6}	0.00706
VIM	3	10.1	24.7	4.29×10^{-6}	0.00706
TCF4	5	10.1	24.7	4.33×10^{-6}	0.00706
ZEB2	5	10.1	24.7	4.33×10^{-6}	0.00706
BCL2	2	10.1	22	1.66×10^{-5}	0.0155
SMARCA2	2	10.1	22	1.66×10^{-5}	0.0155
CCND2	3	10.1	21.1	2.61×10^{-5}	0.0155
MMP19	3	10.1	21.1	2.61×10^{-5}	0.0155
NEURL1B	3	10.1	21.1	2.61×10^{-5}	0.0155
IGFBP6	6	10.1	21.1	2.65×10^{-5}	0.0155
OGN	6	10.1	21.1	2.65×10^{-5}	0.0155
THY1	6	10.2	21	2.7×10^{-5}	0.0155
DZIP1	4	10.1	20.6	3.29×10^{-5}	0.0155
LOC650368	4	10.1	20.6	3.29×10^{-5}	0.0155
PCOLCE	4	10.1	20.6	3.29×10^{-5}	0.0155
PTGFR	4	10.1	20.6	3.29×10^{-5}	0.0155
RUNX1T1	4	10.1	20.6	3.29×10^{-5}	0.0155
CLEC2B	5	10.1	20.6	3.3×10^{-5}	0.0155
MSC	5	10.1	20.6	3.3×10^{-5}	0.0155
NISCH	5	10.1	20.6	3.3×10^{-5}	0.0155
TSPAN11	5	10.1	20.6	3.3×10^{-5}	0.0155
KCTD12	2	10.1	19.1	7.19×10^{-5}	0.0246
LRRC55	2	10.1	19.1	7.19×10^{-5}	0.0246
PCBP3	2	10.1	19.1	7.19×10^{-5}	0.0246

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected mutant samples with low expression of partner genes

profiles across a range of cell lines. These have also been used to generate synthetic lethal candidates for comparison to those in experimental screen and predictions from TCGA expression data. A transcriptome experiment has been conducted by the Cancer Genetics Laboratory to test their $CDH1^{-/-}$ null MCF10A cell lines compared to an otherwise isogenic wildtype (Chen $et\ al.,\ 2014$). While differential expression analysis was inconclusive due to few technical replicates, this data was also useful to determine genes which were not detectable in MCF10A cell lines which would not be expected to detect synthetic lethality in siRNA screen data even if they were predicted to be synthetic lethal in expression data.

Table 4.17: Pathways for CDH1 partners from SLIPT in stomach cancer

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Extracellular matrix organization	241	104	7.5×10^{-140}
Hemostasis	445	138	1.8×10^{-121}
Developmental Biology	432	125	9.2×10^{-107}
Axon guidance	289	94	1.5×10^{-102}
Eukaryotic Translation Termination	84	49	1.9×10^{-99}
GPCR ligand binding	373	108	3.8×10^{-99}
Viral mRNA Translation	82	48	3.3×10^{-98}
Formation of a pool of free 40S subunits	94	51	3.3×10^{-98}
Eukaryotic Translation Elongation	87	49	1.6×10^{-97}
Peptide chain elongation	84	48	7.2×10^{-97}
Class A/1 (Rhodopsin-like receptors)	289	90	2.7×10^{-96}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	49	3.0×10^{-96}
Infectious disease	349	100	2.6×10^{-94}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	52	3.4×10^{-94}
L13a-mediated translational silencing of Ceruloplasmin expression	104	51	2.8×10^{-92}
3' -UTR-mediated translational regulation	104	51	2.8×10^{-92}
Neuronal System	272	84	8.4×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	9.5×10^{-92}
Eukaryotic Translation Initiation	112	52	2.0×10^{-90}
Cap-dependent Translation Initiation	112	52	2.0×10^{-90}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for CDH1

4.8 Summary

We have developed a simple, interpretable, computational approach to predict synthetic lethal partners from genomics data. Originally developed for microarray gene expression data, it has been expanded to test DNA copy number, or RNA-Seq gene expression data which are both also supported by the TCGA dataset. DNA copy number was included for comparison with the DAISY tool of Jerby-Arnon et al. (2014). Predictions based on microarray data were inconclusive when compared with an RNAi screen for CDH1 in MCF10A breast cells as performed by Telford et al. (2015), few predictions replicated between BC2116, CCLE, or TCGA microarray datasets, results with gene expression and DNA copy number were vastly different, and predictions from TCGA microarray and RNA-Seq datasets for the same samples differed were inconsistent. The Aligent TCGA microarray data in particular is difficult to compare to other datasets and will in the future use Affymetrix microarrays or RNA-Seq platforms for predictions from gene expression data. The analyses focus on gene expression data as it is widely available for applications in other cancers and current attempts to use gene expression data for synthetic lethal discovery vary widely (Jerby-Arnon et al., 2014;

Table 4.18: Pathways for CDH1 partners from mtSLIPT in stomach cancer

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Extracellular matrix organization	241	20	9.6×10^{-9}
Elastic fibre formation	38	6	3.7×10^{-8}
Diseases associated with glycosaminoglycan metabolism	26	5	3.7×10^{-8}
Diseases of glycosylation	26	5	3.7×10^{-8}
Nitric oxide stimulates guanylate cyclase	24	4	3.1×10^{-6}
Molecules associated with elastic fibres	34	4	3.7×10^{-5}
Platelet homeostasis	54	5	3.7×10^{-5}
Initial triggering of complement	17	3	3.7×10^{-5}
Regulation of IGF transport and uptake by IGFBPs	17	3	3.7×10^{-5}
Collagen degradation	58	5	5.6×10^{-5}
Defective B4GALT7 causes EDS, progeroid type	19	3	5.6×10^{-5}
Defective B3GAT3 causes JDSSDHD	19	3	5.6×10^{-5}
Degradation of the extracellular matrix	104	7	8.0×10^{-5}
ECM proteoglycans	66	5	0.00017
A tetrasaccharide linker sequence is required for GAG synthesis	25	3	0.00025
RHO GTPases Activate WASPs and WAVEs	29	3	0.00059
Non-integrin membrane-ECM interactions	53	4	0.00065
Creation of C4 and C2 activators	11	2	0.00079
Dermatan sulfate biosynthesis	11	2	0.00079
Integrin cell surface interactions	82	5	0.00098

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in mtSLIPT partners for CDH1

Lu et al., 2015; Tiong et al., 2014). There is no consensus for which approach is more appropriate since they lack much a basis on biological experimental data or statistical modelling and often use difficult to interpret machine learning methodology.

Genomics analyses are prone to false-positives and require statistical caution, particularly where working with gene-pairs scale up the number of multiple tests drastically, at the expense of statistical power. Experimental SGA and RNAi screens for synthetic lethality are also error-prone, especially with false-positives, raising the need for understanding the expected behaviour and number of functional relationships and genetic interactions in the genome, or in discovery of synthetic lethal partners of a particular query gene. A characteristic of gene interaction networks is a scale-free topology leading to highly interacting hub genes, these represent important genes in a functional network. As shown in Tables 1-3, Gene Ontology terms for genes important in cancer proliferation, progression, and drug response were enriched in hub genes, showing that synthetic lethal interactions are among important genes in cancer cells. Gene functions replicated across the breast cancer datasets are highlighted in bold, despite differences in particular hits, gene expression platforms, and only correcting for multiple tests for each gene query separately, there are many gene functions replicated across breast

Table 4.19: Pathway composition for clusters of $\mathit{CDH1}$ partners in stomach SLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	p-value (FDR)
Extracellular matrix organization	241	97	8.8×10^{-126}
Axon guidance	289	75	8.3×10^{-72}
Hemostasis	445	101	8.3×10^{-72}
Developmental Biology	432	95	3.0×10^{-67}
Response to elevated platelet cytosolic Ca ²⁺	84	37	5.8×10^{-67}
Platelet degranulation	79	36	5.8×10^{-67}
Degradation of the extracellular matrix	104	39	6.7×10^{-63}
Platelet activation, signaling and aggregation	186	52	6.6×10^{-62}
ECM proteoglycans	66	31	8.1×10^{-61}
Neuronal System	272	64	5.1×10^{-60}
Signaling by PDGF	173	47	9.7×10^{-57}
Integrin cell surface interactions	82	31	1.9×10^{-53}
Collagen biosynthesis and modifying enzymes	56	26	1.1×10^{-52}
Collagen formation	67	28	1.4×10^{-52}
Class A/1 (Rhodopsin-like receptors)	289	61	2.3×10^{-52}
GPCR ligand binding	373	73	2.8×10^{-52}
Elastic fibre formation	38	22	4.7×10^{-52}
Non-integrin membrane-ECM interactions	53	24	7.0×10^{-49}
Glycosaminoglycan metabolism	114	33	4.7×10^{-47}
Platelet homeostasis	54	23	1.0×10^{-45}

Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR)
Viral mRNA Translation	82	48	1.3×10^{-97}
Formation of a pool of free 40S subunits	94	51	1.3×10^{-97}
Eukaryotic Translation Elongation	87	49	4.8×10^{-97}
Peptide chain elongation	84	48	1.4×10^{-96}
Eukaryotic Translation Termination	84	48	1.4×10^{-96}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	52	7.9×10^{-94}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	48	3.1×10^{-93}
L13a-mediated translational silencing of Ceruloplasmin expression	104	51	5.1×10^{-92}
3' -UTR-mediated translational regulation	104	51	5.1×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	1.7×10^{-91}
Eukaryotic Translation Initiation	112	52	3.3×10^{-90}
Cap-dependent Translation Initiation	112	52	3.3×10^{-90}
Translation	142	56	3.6×10^{-85}
Nonsense-Mediated Decay	104	48	1.2×10^{-84}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	48	1.2×10^{-84}
Influenza Viral RNA Transcription and Replication	109	48	4.1×10^{-82}
Influenza Life Cycle	113	48	3.4×10^{-80}
Influenza Infection	118	48	6.4×10^{-78}
Infectious disease	349	68	1.8×10^{-50}
Formation of the ternary complex, and subsequently, the 43S complex	48	21	3.7×10^{-43}

Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDR)
Uptake and actions of bacterial toxins	22	4	3.5×10^{-6}
Neurotoxicity of clostridium toxins	10	3	3.5×10^{-6}
Activation of PPARGC1A (PGC-1alpha) by phosphorylation	10	3	3.5×10^{-6}
SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription	28	4	1.4×10^{-5}
Assembly of the primary cilium	149	10	2.5×10^{-5}
Serotonin Neurotransmitter Release Cycle	15	3	2.5×10^{-5}
Glycosaminoglycan metabolism	114	8	3.3×10^{-5}
Platelet homeostasis	54	5	3.3×10^{-5}
Norepinephrine Neurotransmitter Release Cycle	17	3	3.3×10^{-5}
Acetylcholine Neurotransmitter Release Cycle	17	3	3.3×10^{-5}
$G\alpha s$ signalling events	100	7	5.5×10^{-5}
GABA synthesis, release, reuptake and degradation	19	3	5.6×10^{-5}
deactivation of the beta-catenin transactivating complex	39	4	6.7×10^{-5}
Dopamine Neurotransmitter Release Cycle	20	3	6.7×10^{-5}
IRS-related events triggered by IGF1R	83	6	7.1×10^{-5}
Generic Transcription Pathway	186	11	7.1×10^{-5}
Termination of O-glycan biosynthesis	21	3	7.4×10^{-5}
Kinesins	22	3	8.5×10^{-5}
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)	86	6	8.5×10^{-5}
IGF1R signaling cascade	86	6	8.5×10^{-5}

Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes	p-value (FDR)
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	65	12	1.3×10^{-15}
Phosphorylation of CD3 and TCR zeta chains	18	6	1.7×10^{-12}
Generation of second messenger molecules	29	7	2.7×10^{-12}
PD-1 signaling	21	6	7.4×10^{-12}
TCR signaling	62	9	4.3×10^{-11}
Translocation of ZAP-70 to Immunological synapse	16	5	1.1×10^{-10}
Interferon alpha/beta signaling	68	9	1.6×10^{-10}
Initial triggering of complement	17	5	1.6×10^{-10}
IKK complex recruitment mediated by RIP1	19	5	5.1×10^{-10}
TRIF-mediated programmed cell death	10	4	6.2×10^{-10}
Creation of C4 and C2 activators	11	4	1.3×10^{-9}
RHO GTPases Activate NADPH Oxidases	11	4	1.3×10^{-9}
Interferon Signaling	175	15	2.3×10^{-9}
Chemokine receptors bind chemokines	52	7	4.0×10^{-9}
Interferon gamma signaling	74	8	1.6×10^{-8}
TRAF6 mediated induction of TAK1 complex	15	4	1.6×10^{-8}
Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon	16	4	2.7×10^{-8}
Downstream TCR signaling	45	6	3.5×10^{-8}
Ligand-dependent caspase activation	17	4	4.2×10^{-8}
Complement cascade	34	5	1.3×10^{-7}

Table 4.20: Pathway composition for clusters of $\mathit{CDH1}$ partners in stomach mtSLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	p-value (FDR)
cGMP effects	18	2	0.11
Nitric oxide stimulates guanylate cyclase	24	2	0.19
Neurotoxicity of clostridium toxins	10	1	1
Platelet homeostasis	54	2	1
Eicosanoid ligand-binding receptors	14	1	1
Prolactin receptor signaling	15	1	1
Acyl chain remodelling of PI	15	1	1
Signaling by FGFR1 fusion mutants	15	1	1
PKA activation	16	1	1
PKA-mediated phosphorylation of CREB	17	1	1
Synthesis of glycosylphosphatidylinositol (GPI)	17	1	1
PKA activation in glucagon signalling	17	1	1
Butyrate Response Factor 1 (BRF1) destabilizes mRNA	17	1	1
Other semaphorin interactions	19	1	1
Acyl chain remodelling of PE	21	1	1
Signaling by Leptin	21	1	1
DARPP-32 events	22	1	1
Glucagon-like Peptide-1 (GLP1) regulates insulin secretion	22	1	1
Uptake and actions of bacterial toxins	22	1	1
Acyl chain remodelling of PC	23	1	1

Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR)
CD28 dependent PI3K/Akt signaling	15	1	1
Hormone-sensitive lipase (HSL)-mediated triacylglycerol hydrolysis	19	1	1
CD28 co-stimulation	26	1	1
Lipid digestion, mobilization, and transport	48	1	1
Costimulation by the CD28 family	51	1	1
Dectin-1 mediated noncanonical NF-kB signaling	58	1	1
CLEC7A (Dectin-1) signaling	99	1	1
C-type lectin receptors (CLRs)	123	1	1
Adaptive Immune System	418	1	1
Metabolism of lipids and lipoproteins	494	1	1
Interleukin-6 signaling	10	0	1
Apoptosis	150	0	1
Hemostasis	445	0	1
Intrinsic Pathway for Apoptosis	36	0	1
Cleavage of Growing Transcript in the Termination Region	33	0	1
PKB-mediated events	28	0	1
PI3K Cascade	68	0	1
RAF/MAP kinase cascade	10	0	1
Global Genomic NER (GG-NER)	35	0	1
Repair synthesis for gap-filling by DNA polymerase in TC-NER	15	0	1

Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDR)
Kinesins	22	1	1
O-linked glycosylation of mucins	49	1	1
O-linked glycosylation	59	1	1
MHC class II antigen presentation	85	1	1
Factors involved in megakaryocyte development and platelet production	120	1	1
Post-translational protein modification	303	1	1
Adaptive Immune System	418	1	1
Hemostasis	445	1	1
Interleukin-6 signaling	10	0	1
Apoptosis	150	0	1
Intrinsic Pathway for Apoptosis	36	0	1
Cleavage of Growing Transcript in the Termination Region	33	0	1
PKB-mediated events	28	0	1
PI3K Cascade	68	0	1
RAF/MAP kinase cascade	10	0	1
Global Genomic NER (GG-NER)	35	0	1
Repair synthesis for gap-filling by DNA polymerase in TC-NER	15	0	1
Gap-filling DNA repair synthesis and ligation in TC-NER	17	0	1
Formation of transcription-coupled NER (TC-NER) repair complex	29	0	1
Dual incision reaction in TC-NER	29	0	1

Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes	p-value (FDR)
Extracellular matrix organization	241	20	9.6×10^{-9}
Elastic fibre formation	38	6	3.7×10^{-8}
Diseases associated with glycosaminoglycan metabolism	26	5	3.7×10^{-8}
Diseases of glycosylation	26	5	3.7×10^{-8}
Molecules associated with elastic fibres	34	4	4.8×10^{-5}
Initial triggering of complement	17	3	4.8×10^{-5}
Regulation of IGF transport and uptake by IGFBPs	17	3	4.8×10^{-5}
Collagen degradation	58	5	6.7×10^{-5}
Defective B4GALT7 causes EDS, progeroid type	19	3	6.7×10^{-5}
Defective B3GAT3 causes JDSSDHD	19	3	6.7×10^{-5}
Degradation of the extracellular matrix	104	7	9.5×10^{-5}
ECM proteoglycans	66	5	0.0002
A tetrasaccharide linker sequence is required for GAG synthesis	25	5 3	0.00029
Non-integrin membrane-ECM interactions	53	4	0.00079
Creation of C4 and C2 activators	11	2	0.00093
Dermatan sulfate biosynthesis	11	2	0.00093
Integrin cell surface interactions	82	5	0.0012
Keratan sulfate degradation	12	2	0.0012
Complement cascade	34	3	0.0013
CS/DS degradation	13	2	0.0015

Table 4.21: Pathway composition for CDH1 partners from SLIPT and siRNA screening

Predicted only by SLIPT (3392 genes)	Pathway Size	Genes Identified	p-value (FDR)
Eukaryotic Translation Elongation	87	76	3.5×10^{-187}
Peptide chain elongation	84	73	1.6×10^{-180}
Eukaryotic Translation Termination	84	72	1.1×10^{-176}
Viral mRNA Translation	82	71	3.6×10^{-176}
Formation of a pool of free 40S subunits	94	75	3.1×10^{-173}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	72	2.4×10^{-169}
L13a-mediated translational silencing of Ceruloplasmin expression	104	76	1.8×10^{-164}
3' -UTR-mediated translational regulation	104	76	1.8×10^{-164}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	76	2×10^{-163}
Nonsense-Mediated Decay	104	75	2.4×10^{-161}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	75	2.4×10^{-161}
SRP-dependent cotranslational protein targeting to membrane	105	74	4.2×10^{-157}
Eukaryotic Translation Initiation	112	76	2.4×10^{-156}
Cap-dependent Translation Initiation	112	76	2.4×10^{-156}
Translation	142	85	3.5×10^{-156}
Influenza Infection	118	75	6.8×10^{-148}
Influenza Viral RNA Transcription and Replication	109	72	4.2×10^{-147}
Infectious disease	349	131	7.9×10^{-145}
Influenza Life Cycle	113	72	1.5×10^{-143}
Adaptive Immune System	418	144	1.6×10^{-140}
Detected only by siRNA screen (1803 genes)	Pathway Size	Genes Identified	p-value (FDR
Class A/1 (Rhodopsin-like receptors)	282	58	1.5×10^{-44}
GPCR ligand binding	363	66	2×10^{-40}
$G_{\alpha i}$ signalling events	184	36	4.2×10^{-33}
Peptide ligand-binding receptors	175	33	1.8×10^{-30}
$G_{\alpha g}$ signalling events	159	29	1.9×10^{-27}
Gastrin-CREB signalling pathway via PKC and MAPK	180	30	1.3×10^{-25}

Detected only by siRNA screen (1803 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	58	1.5×10^{-44}
GPCR ligand binding	363	66	2×10^{-40}
$G_{\alpha i}$ signalling events	184	36	4.2×10^{-33}
Peptide ligand-binding receptors	175	33	1.8×10^{-30}
$G_{\alpha q}$ signalling events	159	29	1.9×10^{-27}
Gastrin-CREB signalling pathway via PKC and MAPK	180	30	1.3×10^{-25}
Olfactory Signaling Pathway	348	46	1.6×10^{-22}
Downstream signal transduction	146	24	2.1×10^{-22}
Signaling by PDGF	172	26	1.5×10^{-21}
Signaling by ERBB2	146	23	4.6×10^{-21}
DAP12 interactions	159	24	1.0×10^{-20}
DAP12 signaling	149	23	1.0×10^{-20}
Downstream signaling of activated FGFR1	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR2	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR3	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR4	134	21	4.3×10^{-20}
Signalling by NGF	266	34	5.3×10^{-20}
Signaling by FGFR	146	22	5.3×10^{-20}
Signaling by FGFR1	146	22	5.3×10^{-20}
Signaling by FGFR2	146	22	5.3×10^{-20}

Intersection of SLIPT and siRNA screen (547 genes)	Pathway Size	Genes Identified	p-value (FDR)
Chemokine receptors bind chemokines	52	11	5.2×10^{-16}
Class A/1 (Rhodopsin-like receptors)	289	29	6.4×10^{-14}
Peptide ligand-binding receptors	181	19	8.8×10^{-13}
Visual phototransduction	86	11	1.8×10^{-11}
GPCR ligand binding	373	32	8.1×10^{-11}
Retinoid metabolism and transport	39	7	1.3×10^{-10}
Gastrin-CREB signalling pathway via PKC and MAPK	185	17	1.5×10^{-10}
$G_{\alpha q}$ signalling events	164	15	5.6×10^{-10}
Platelet activation, signaling and aggregation	186	16	1.7×10^{-9}
$G_{\alpha i}$ signalling events	191	15	3.5×10^{-8}
Response to elevated platelet cytosolic $\mathrm{Ca^{2+}}$	84	8	1.8×10^{-7}
HS-GAG degradation	21	4	4.2×10^{-7}
Platelet homeostasis	54	6	4.7×10^{-7}
VEGFA-VEGFR2 Pathway	91	8	5.1×10^{-7}
Transcriptional regulation of white adipocyte differentiation	56	6	6.4×10^{-7}
Signaling by NOTCH4	11	3	1.2×10^{-6}
Signaling by VEGF	99	8	1.5×10^{-6}
Signaling by NOTCH	80	7	1.5×10^{-6}
$G_{\alpha s}$ signalling events	100	8	1.7×10^{-6}
Defective EXT2 causes exostoses 2	12	3	1.7×10^{-6}

Table 4.22: Pathway composition for CDH1 partners from mtSLIPT and siRNA

4.22: Pathway composition for <i>CDH</i> .	<i>I</i> partners	from mtSI	JPT and
Predicted only by SLIPT (217 genes)	Pathway Size	Genes Identified	p-value (FDR)
Eukaryotic Translation Elongation	87	57	2.8×10^{-120}
Peptide chain elongation	84	56	3.1×10^{-120}
Eukaryotic Translation Termination	84	55	2.8×10^{-117}
Viral mRNA Translation	82	54	4.1×10^{-116}
Nonsense Mediated Decay independent of the Exon Junction Complex	x 89	55	3.7×10^{-113}
Formation of a pool of free 40S subunits	94	55	2.8×10^{-109}
Nonsense-Mediated Decay	104	57	8.4×10^{-108}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	57	8.4×10^{-108}
L13a-mediated translational silencing of Ceruloplasmin expression	104	56	3.4×10^{-105}
3' -UTR-mediated translational regulation	104	56	3.4×10^{-105}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	56	1.4×10^{-104}
Eukaryotic Translation Initiation	112	56	2.8×10^{-100}
Cap-dependent Translation Initiation	112	56	2.8×10^{-100}
SRP-dependent cotranslational protein targeting to membrane	105	54	2.2×10^{-99}
Influenza Viral RNA Transcription and Replication	109	54	5.3×10^{-97}
Influenza Life Cycle	113	54	9.6×10^{-95}
Influenza Infection	118	55	1.7×10^{-94}
Translation	142	60	3.5×10^{-94}
Infectious disease	349	77	5.9×10^{-62}
Extracellular matrix organization	241	54	3×10^{-52}
Detected only by siRNA screen (2323 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	69	1.9×10^{-59}
GPCR ligand binding	363	78	2.7×10^{-54}
Peptide ligand-binding receptors	175	41	1.5×10^{-42}
$G_{\alpha i}$ signalling events	184	41	1.1×10^{-40}
Gastrin-CREB signalling pathway via PKC and MAPK	180	37	1.5×10^{-35}
C simpalling arounds	150	24	2.7×10^{-35}

Detected only by siRNA screen (2323 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	69	1.9×10^{-59}
GPCR ligand binding	363	78	2.7×10^{-54}
Peptide ligand-binding receptors	175	41	1.5×10^{-42}
$G_{\alpha i}$ signalling events	184	41	1.1×10^{-40}
Gastrin-CREB signalling pathway via PKC and MAPK	180	37	1.5×10^{-35}
$G_{\alpha q}$ signalling events	159	34	3.7×10^{-35}
DAP12 interactions	159	27	1.1×10^{-24}
VEGFA-VEGFR2 Pathway	91	19	1.0×10^{-23}
Downstream signal transduction	146	24	1.9×10^{-22}
Signaling by VEGF	99	19	2.6×10^{-22}
DAP12 signaling	149	24	4.2×10^{-22}
Organelle biogenesis and maintenance	264	34	4.3×10^{-20}
Downstream signaling of activated FGFR1	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR2	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR3	134	21	4.3×10^{-20}
Downstream signaling of activated FGFR4	134	21	4.3×10^{-20}
Signaling by ERBB2	146	22	5.3×10^{-20}
Signaling by FGFR	146	22	5.3×10^{-20}
Signaling by FGFR1	146	22	5.3×10^{-20}
Signaling by FGFR2	146	22	5.3×10^{-20}

Intersection of SLIPT and siRNA screen (23 genes)	Pathway Size	Genes Identified	p-value (FDR)
HS-GAG degradation	21	4	4.9×10^{-6}
Retinoid metabolism and transport	39	5	4.9×10^{-6}
Platelet activation, signaling and aggregation	186	13	4.9×10^{-6}
Signaling by NOTCH4	11	3	4.9×10^{-6}
$G_{\alpha s}$ signalling events	100	8	5×10^{-6}
Defective EXT2 causes exostoses 2	12	3	5×10^{-6}
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	12	3	5×10^{-6}
Class A/1 (Rhodopsin-like receptors)	289	18	2.2×10^{-5}
Signaling by PDGF	173	11	2.9×10^{-5}
Circadian Clock	34	4	2.9×10^{-5}
Signaling by ERBB4	139	9	4.3×10^{-5}
Role of LAT2/NTAL/LAB on calcium mobilization	99	7	4.4×10^{-5}
Peptide ligand-binding receptors	181	11	4.5×10^{-5}
Defective B4GALT7 causes EDS, progeroid type	19	3	4.5×10^{-5}
Defective B3GAT3 causes JDSSDHD	19	3	4.5×10^{-5}
Signaling by NOTCH	80	6	4.5×10^{-5}
$G_{\alpha q}$ signalling events	164	10	5.1×10^{-5}
Response to elevated platelet cytosolic Ca ²⁺	84	6	7.1×10^{-5}
Signaling by ERBB2	148	9	7.1×10^{-5}
Signaling by SCF-KIT	129	8	8.3×10^{-5}

Table 4.23: Pathways for CDH1 partners from SLIPT in stomach cancer

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	1.3×10^{-207}	$< 1.001 \times 10^{-3}$
Peptide chain elongation	5.6×10^{-201}	$< 1.001 \times 10^{-3}$
Viral mRNA Translation	1.2×10^{-196}	$< 1.001 \times 10^{-3}$
Eukaryotic Translation Termination	1.2×10^{-196}	$< 1.001 \times 10^{-3}$
Formation of a pool of free 40S subunits	3.7×10^{-194}	$< 1.001 \times 10^{-3}$
Nonsense Mediated Decay independent of the Exon Junction Complex	5.3×10^{-187}	$< 1.001 \times 10^{-3}$
L13a-mediated translational silencing of Ceruloplasmin expression	9.6×10^{-183}	$< 1.001 \times 10^{-3}$
3' -UTR-mediated translational regulation	9.6×10^{-183}	$< 1.001 \times 10^{-3}$
GTP hydrolysis and joining of the 60S ribosomal subunit	1.9×10^{-181}	$< 1.001 \times 10^{-3}$
Nonsense-Mediated Decay	6.2×10^{-176}	$< 1.001 \times 10^{-3}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	6.2×10^{-176}	$< 1.001 \times 10^{-3}$
Adaptive Immune System	6.5×10^{-174}	0.11122
Eukaryotic Translation Initiation	5.7×10^{-173}	$< 1.001 \times 10^{-3}$
Cap-dependent Translation Initiation	5.7×10^{-173}	$< 1.001 \times 10^{-3}$
SRP-dependent cotranslational protein targeting to membrane	2×10^{-171}	$< 1.001 \times 10^{-3}$
Translation	6.1×10^{-170}	$< 1.001 \times 10^{-3}$
Infectious disease	1.6×10^{-166}	0.1467
Influenza Infection	1.9×10^{-163}	$< 1.001 \times 10^{-3}$
Influenza Viral RNA Transcription and Replication	1.9×10^{-160}	$< 1.001 \times 10^{-3}$
Influenza Life Cycle	2.5×10^{-156}	$< 1.001 \times 10^{-3}$
Extracellular matrix organization	1.1×10^{-152}	0.054712
GPCR ligand binding	1.1×10^{-143}	0.50343
Class A/1 (Rhodopsin-like receptors)	1.5×10^{-142}	0.51419
GPCR downstream signaling	7.6×10^{-140}	0.087065
Hemostasis	1.9×10^{-134}	0.18151
Developmental Biology	2×10^{-123}	0.42551
Metabolism of lipids and lipoproteins	3.3×10^{-120}	0.6772
Cytokine Signaling in Immune system	2.6×10^{-119}	0.27238
Peptide ligand-binding receptors	3.7×10^{-109}	0.46952
G αi signalling events	8.9×10^{-100}	$< 1.001 \times 10^{-3}$
Axon guidance	1.4×10^{-96}	0.63789
Platelet activation, signaling and aggregation	3.7×10^{-94}	0.17679
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	1.4×10^{-93}	$< 1.001 \times 10^{-3}$
Formation of the ternary complex, and subsequently, the 43S complex	7×10^{-91}	$< 1.001 \times 10$ $< 1.001 \times 10^{-3}$
Translation initiation complex formation	9.6×10^{-87}	0.001001
•	9.6×10^{-87}	
Ribosomal scanning and start codon recognition	9.0 × 10	0.001001
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S	8.7×10^{-86}	0.001001
Chemokine receptors bind chemokines	5.1×10^{-82}	0.77614
Signalling by NGF	1.2×10^{-81}	0.25326
Toll-Like Receptors Cascades	5.3×10^{-80}	0.52118
Interferon gamma signaling	6.3×10^{-80}	0.45042
Transmembrane transport of small molecules	5.3×10^{-78}	0.13759
Signaling by Rho GTPases	1.1×10^{-77}	0.055108
Degradation of the extracellular matrix	7.3×10^{-77} 1.1×10^{-76}	0.63362
Interferon Signaling		0.12689
NGF signalling via TRKA from the plasma membrane	1.4×10^{-74}	0.53792
Gastrin-CREB signalling pathway via PKC and MAPK	3.1×10^{-74}	$< 1.001 \times 10^{-3}$
Rho GTPase cycle	3.2×10^{-73}	0.091991
DAP12 interactions	2×10^{-71}	0.44074
Cell surface interactions at the vascular wall	3.3×10^{-71}	0.63362

Table 4.24: Pathways for CDH1 partners from SLIPT in stomach and siRNA screen

Reactome Pathway	Over-representation	Permutation
Chemokine receptors bind chemokines	5.2×10^{-16}	0.0026524
Class A/1 (Rhodopsin-like receptors)	6.4×10^{-14}	0.05974
Peptide ligand-binding receptors	8.8×10^{-13}	0.10988
Visual phototransduction	1.8×10^{-11}	0.30639
GPCR ligand binding	8.1×10^{-11}	0.17895
Retinoid metabolism and transport	1.3×10^{-10}	0.17481
Gastrin-CREB signalling pathway via PKC and MAPK	1.5×10^{-10}	0.52377
$G\alpha q$ signalling events	5.6×10^{-10}	0.57601
Platelet activation, signaling and aggregation	1.7×10^{-9}	0.34977
$G\alpha i$ signalling events	3.5×10^{-8}	0.23131
Response to elevated platelet cytosolic Ca ²⁺	1.8×10^{-7}	0.18637
HS-GAG degradation	4.2×10^{-7}	0.24605
Platelet homeostasis	4.2×10^{-7} 4.7×10^{-7}	0.18996
VEGFA-VEGFR2 Pathway	5.1×10^{-7}	0.87816
Transcriptional regulation of white adipocyte differentiation	6.4×10^{-7}	0.37510
	0.4×10^{-6} 1.2×10^{-6}	
Signaling by NOTCH4		0.36495
Signaling by NOTCH	1.5×10^{-6}	0.76112
Signaling by VEGF	1.5×10^{-6}	0.52553
Defective EXT2 causes exostoses 2	1.7×10^{-6}	0.24605
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	1.7×10^{-6}	0.24605
$G\alpha s$ signalling events	1.7×10^{-6}	0.31637
Generation of second messenger molecules	3.5×10^{-6}	0.032952
DAP12 interactions	3.5×10^{-6}	0.8492
Mitochondrial Fatty Acid Beta-Oxidation	4×10^{-6}	0.033295
Acyl chain remodelling of PS	6×10^{-6}	0.46799
Phase 1 - Functionalization of compounds	6.5×10^{-6}	0.068729
Costimulation by the CD28 family	6.5×10^{-6}	0.031427
Translocation of ZAP-70 to Immunological synapse	8.1×10^{-6}	$< 2.299 \times 10^{-4}$
Complement cascade	9.8×10^{-6}	$< 2.299 \times 10^{-4}$
Molecules associated with elastic fibres	9.8×10^{-6}	0.025491
Signal amplification	1.1×10^{-5}	0.36204
Phosphorylation of CD3 and TCR zeta chains	1.5×10^{-5}	$< 2.299 \times 10^{-4}$
Cell surface interactions at the vascular wall	1.6×10^{-5}	0.039572
Hemostasis	1.7×10^{-5}	0.22035
FCERI mediated MAPK activation	1.7×10^{-5}	0.35433
Defective B4GALT7 causes EDS, progeroid type	1.8×10^{-5}	0.36204
Defective B3GAT3 causes JDSSDHD	1.8×10^{-5}	0.36204
Elastic fibre formation	1.9×10^{-5}	0.0026524
Signaling by NOTCH1	1.9×10^{-5}	0.52553
Acyl chain remodelling of PE	2.9×10^{-5}	0.46799
TCR signaling	2.9×10^{-5}	0.1269
Signaling by Leptin	2.9×10^{-5}	0.36091
PD-1 signaling	2.9×10^{-5}	$< 2.299 \times 10^{-4}$
Opioid Signalling	3.3×10^{-5}	0.81326
Signaling by SCF-KIT	3.4×10^{-5}	0.79924
Arachidonic acid metabolism	3.4×10^{-5}	0.0033013
DAP12 signaling	3.4×10^{-5}	0.9366
Netrin-1 signaling	3.4×10^{-5}	0.76768
Signaling by Retinoic Acid	3.4×10^{-5}	0.011724
	4×10^{-5}	
Respiratory electron transport	4 × 10 °	0.28245

Table 4.25: Pathways for CDH1 partners from mtSLIPT in stomach cancer

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	2×10^{-128}	$< 8.802 \times 10^{-4}$
Peptide chain elongation	2×10^{-128}	$< 8.802 \times 10^{-4}$
Eukaryotic Translation Termination	2.3×10^{-125}	$< 8.802 \times 10^{-4}$
Viral mRNA Translation	2.5×10^{-124}	$< 8.802 \times 10^{-4}$
Nonsense Mediated Decay independent of the Exon Junction Complex	8.6×10^{-124}	$< 8.802 \times 10^{-4}$
Nonsense-Mediated Decay	5.2×10^{-117}	$< 8.802 \times 10^{-4}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	5.2×10^{-117}	$< 8.802 \times 10^{-4}$
Formation of a pool of free 40S subunits	1.6×10^{-116}	$< 8.802 \times 10^{-4}$
L13a-mediated translational silencing of Ceruloplasmin expression	1.3×10^{-111}	$< 8.802 \times 10^{-4}$
3' -UTR-mediated translational regulation	1.3×10^{-111}	$< 8.802 \times 10^{-4}$
GTP hydrolysis and joining of the 60S ribosomal subunit	6.2×10^{-111}	$< 8.802 \times 10^{-4}$
SRP-dependent cotranslational protein targeting to membrane	2.9×10^{-108}	$< 8.802 \times 10^{-4}$
Eukaryotic Translation Initiation	3×10^{-106}	$< 8.802 \times 10^{-4}$
Cap-dependent Translation Initiation	3×10^{-106}	$< 8.802 \times 10^{-4}$
Influenza Viral RNA Transcription and Replication	5.1×10^{-103}	$< 8.802 \times 10^{-4}$
Influenza Infection	1.5×10^{-102}	$< 8.802 \times 10^{-4}$
Translation	3.7×10^{-101}	$< 8.802 \times 10^{-4}$
Influenza Life Cycle	1.4×10^{-100}	$< 8.802 \times 10^{-4}$
GPCR downstream signaling	1×10^{-80}	0.034498
Hemostasis	1.4×10^{-78}	0.086519
Extracellular matrix organization	1.5×10^{-67}	0.040016
Developmental Biology	1.8×10^{-66}	0.18385
Infectious disease	7.3×10^{-66}	0.068426
Signalling by NGF	8.5×10^{-63}	0.16798
Metabolism of lipids and lipoproteins	4.9×10^{-58}	0.51411
Platelet activation, signaling and aggregation	2.7×10^{-55}	0.081717
GPCR ligand binding	7.3×10^{-55}	0.28898
Signaling by PDGF	8.4×10^{-55}	0.16025
Class A/1 (Rhodopsin-like receptors)	3.2×10^{-54}	0.22801
Fc epsilon receptor (FCERI) signaling	6.2×10^{-53}	0.15229
Adaptive Immune System	5.1×10^{-52}	0.037698
Signaling by ERBB4	5.9×10^{-52}	0.10088
Axon guidance	8.8×10^{-52}	0.40234
Formation of the ternary complex, and subsequently, the 43S complex	1.6×10^{-51}	0.00088017
Ribosomal scanning and start codon recognition	2.2×10^{-50}	0.00088017
Translation initiation complex formation	2.2×10^{-50}	0.0017305
NGF signalling via TRKA from the plasma membrane	6.7×10^{-50}	0.28811
Activation of the mRNA upon binding of the cap-binding complex and eIFs,		0.20011
and subsequent binding to 43S	7.1×10^{-50}	0.0017305
Transmembrane transport of small molecules	1.8×10^{-49}	0.081229
Signaling by ERBB2	5.9×10^{-49}	0.11896
Rho GTPase cycle	3.6×10^{-48}	0.035735
$G\alpha s$ signalling events	1.1×10^{-47}	0.0088487
Downstream signal transduction	1.7×10^{-47}	0.11909
Signaling by FGFR	1.7×10^{-47}	0.11896
Signaling by FGFR1	1.7×10^{-47}	0.11896
Signaling by FGFR2	1.7×10^{-47}	0.11896
Signaling by FGFR2 Signaling by FGFR3	1.7×10^{-47} 1.7×10^{-47}	0.11896
Signaling by FGFR4	1.7×10^{-47} 1.7×10^{-47}	0.11896
DAP12 interactions	1.7×10^{-47} 1.9×10^{-47}	0.11890
	1.9×10^{-46} 1×10^{-46}	0.28811
DAP12 signaling	1 × 10	0.12442

Table 4.26: Pathways for CDH1 partners from mtSLIPT in stomach and siRNA screen

Reactome Pathway	Over-representation	Permutation
Signaling by NOTCH4	4.9×10^{-6}	0.050121
HS-GAG degradation	4.9×10^{-6}	0.013193
Platelet activation, signaling and aggregation	4.9×10^{-6}	0.28053
Retinoid metabolism and transport	4.9×10^{-6}	0.0927
Defective EXT2 causes exostoses 2	5×10^{-6}	0.14898
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	5×10^{-6}	0.14898
$G\alpha s$ signalling events	5×10^{-6}	0.048426
Class A/1 (Rhodopsin-like receptors)	2.2×10^{-5}	0.60435
Signaling by PDGF	2.9×10^{-5}	0.43907
Circadian Clock	2.9×10^{-5}	0.012519
Signaling by ERBB4	4.3×10^{-5}	0.12835
Role of LAT2/NTAL/LAB on calcium mobilization	4.4×10^{-5}	0.27344
Defective B4GALT7 causes EDS, progeroid type	4.5×10^{-5}	0.23536
Defective B3GAT3 causes JDSSDHD	4.5×10^{-5}	0.23536
Peptide ligand-binding receptors	4.5×10^{-5}	0.41193
Signaling by NOTCH	4.5×10^{-5}	0.10912
$G\alpha q$ signalling events	5.1×10^{-5}	0.28937
Signaling by ERBB2	7.1×10^{-5}	0.50797
Response to elevated platelet cytosolic Ca ²⁺	7.1×10^{-5}	0.38513
Signaling by SCF-KIT	8.3×10^{-5}	0.55412
PI3K events in ERBB4 signaling	0.0001	0.24486
PIP3 activates AKT signaling	0.0001	0.24486
Collagen formation	0.0001	0.15296
PI3K events in ERBB2 signaling	0.0001	0.24486
PI-3K cascade:FGFR1	0.0001	0.24486
PI-3K cascade:FGFR2	0.0001	0.24486
PI-3K cascade:FGFR3	0.0001	0.24486
PI-3K cascade:FGFR4	0.0001	0.24486
Growth hormone receptor signaling	0.0001	0.057494
PI3K Cascade	0.0001	0.20906
Effects of PIP2 hydrolysis	0.00011	0.14898
A tetrasaccharide linker sequence is required for GAG synthesis	0.00012	0.29766
PI3K/AKT activation	0.00012	0.24486
GAB1 signalosome	0.00013	0.4648
Diseases associated with glycosaminoglycan metabolism	0.00013	0.050121
Diseases of glycosylation	0.00013	0.050121
Heparan sulfate/heparin (HS-GAG) metabolism	0.00016	0.19
HS-GAG biosynthesis	0.00016	0.19
Integrin alphaIIb beta3 signaling	0.00016	0.63007
Interferon gamma signaling	0.00018	0.43088
Gastrin-CREB signalling pathway via PKC and MAPK	0.00018	0.43088
Chemokine receptors bind chemokines	0.00018	0.62702
Downstream signal transduction	0.00023	0.54921
Platelet homeostasis	0.00027	0.34921
IRS-mediated signalling	0.00029	0.24377
$G_{\alpha i}$ signalling events	0.00029	$< 2.749 \times 10^{-4}$
Diseases of signal transduction	0.00029	0.65733
Signaling by activated point mutants of FGFR1	0.00029	0.05755
FGFR1c ligand binding and activation	0.00029	
		0.24892
Signaling by NOTCH3	0.00029	0.017419

Figure 4.5: Comparison of SLIPT in stomach to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

cancer gene expression analyses. TCGA microarray data was less consistent with the other datasets, as expected from lower sample size, lower concordance of particular hits for the example query of *CDH1*, and suspected lower quality of data on the Aligent microarray platform.

As specific genes were difficult to replicate across experiments, gene expression profiles for synthetic lethal partners must be more complex than originally expected to directly compensate for loss of query gene or completely lack (or clearly under-represent) co-loss (Jerby-Arnon et al., 2014; Kelly, 2013; Lu et al., 2015). The predicted synthetic lethal partners of CDH1 (with FDR correction) were investigated with gene expression profiles and clinical variables to find relationships in gene expression, gene function, and clinical characteristics. The large number of hits indicate that synthetic lethality is error-prone and identifying genes or pathways relevant for clinical application will be difficult.

The expression profiles of the SL partners of *CDH1* predicted from the TCGA breast cancer RNA-Seq data in *CDH1* low tumours (where synthetic lethal partners are expected to have compensating high or stable expression) are shown in Figure 7

Figure 4.6: Comparison of mtSLIPT in stomach to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

and their corresponding functional enrichment is given below in Table 5, computed as WikiPathways in GeneSetDB (Araki et al., 2012). The 3 subgroups of genes are showed functional organisation of expression profiles in CDH1 low breast tumours. The first group is enriched for G protein coupled receptors, an established drug target and supported in cell line experiments (Telford et al., 2015). The second group contains genes involved in development and metabolism consistent with cancer cells showing stem cell properties and the Warburg hypothesis (Merlos-Suarez et al., 2011; Warburg, 1956). The third group contains cell signalling and focal adhesion functions, including pathways involved in cancer proliferation, metastasis, and consistent with internal synthetic lethality within the pathways containing CDH1 (Barabási and Oltvai, 2004).

Ductal breast cancers show higher expression of synthetic lethal partners suggesting treatment would be more effective in this tumour subtype. However, there is consistently low expression of SL partners in ER negative tumours, although this is independent of tumour stage and consistent with poor prognosis in these patients and could inform other treatment strategies or prevent ineffective treatment further impacting quality of life in these patients. These results suggest that synthetic lethal partner

Table 4.27: Candidate synthetic lethal metagenes against *CDH1* from SLIPT in stomach cancer

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value (FDR)
Apoptotic cleavage of cell adhesion proteins	351906	106	50.45	160.39	1.205×10^{-33}	1.9906×10^{-300}
Nef mediated downregulation of MHC class I complex cell surface expression	164940	100	50.45	128.73	7.2777×10^{-27}	6.0114×10^{-240}
Cell-cell junction organization	421270	94	50.45	125.26	4.0251×10^{-26}	2.2165×10^{-230}
Cytochrome P450 - arranged by substrate type	211897	96	50.45	116.16	3.5335×10^{-24}	1.2741×10^{-210}
Cell junction organization	446728	93	50.45	115.98	3.8563×10^{-24}	1.2741×10^{-210}
N-Glycan antennae elongation	975577	98	50.45	115.26	5.5032×10^{-24}	1.5152×10^{-210}
N-glycan antennae elongation in the medialtrans-Golgi	975576	95	50.45	113.42	1.3541×10^{-23}	3.1958×10^{-210}
Cell-Cell communication	1500931	18	50.45	109.96	7.426×10^{-23}	1.5335×10^{-200}
VEGFR2 mediated vascular permeability	5218920	19	50.45	108.73	1.3555×10^{-22}	2.4882×10^{-200}
Synthesis of PE	1483213	93	50.45	108.33	1.6505×10^{-22}	2.7266×10^{-200}
Lysosome Vesicle Biogenesis	432720	92	50.45	105.43	6.8635×10^{-22}	1.0308×10^{-190}
Sema4D in semaphorin signaling	400685	20	50.45	103.68	1.6182×10^{-21}	2.1167×10^{-190}
Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds $ \\$	425366	83	50.45	103.62	1.6657×10^{-21}	2.1167×10^{-190}
Phase 1 - Functionalization of compounds	211945	93	50.45	102.76	2.5461×10^{-21}	3.0044×10^{-190}
Sphingolipid de novo biosynthesis	1660661	94	50.45	102.39	3.0471×10^{-21}	3.3558×10^{-190}
Transport of nucleotide sugars	727802	91	50.45	101.47	4.7818×10^{-21}	4.9372×10^{-190}
Ion transport by P-type ATPases	936837	17	50.45	100.35	8.2923×10^{-21}	8.0581×10^{-190}
PPARA activates gene expression	1989781	93	50.45	99.78	1.0972×10^{-20}	1.007×10^{-180}
Adherens junctions interactions	418990	93	50.45	99.09	1.5361×10^{-20}	1.3356×10^{-180}
Tight junction interactions	420029	92	50.45	98.35	2.2075×10^{-20}	1.8234×10^{-180}
Sialic acid metabolism	4085001	19	50.45	95.28	9.947×10^{-20}	7.8249×10^{-180}
Transport of inorganic cations anions and amino acidsoligopeptides	425393	89	50.45	94.10	1.7698×10^{-19}	1.2268×10^{-170}
Biological oxidations	211859	87	50.45	94.05	1.8182×10^{-19}	1.2268×10^{-170}
GRB7 events in ERBB2 signaling	1306955	92	50.45	94.01	1.8492×10^{-19}	1.2268×10^{-170}
Synthesis of pyrophosphates in the cytosol	1855167	26	50.45	94.00	1.8566×10^{-19}	1.2268×10^{-170}

 $Strongest\ candidate\ SL\ partners\ for\ \textit{CDH1}\ by\ SLIPT\ with\ observed\ and\ expected\ samples\ with\ low\ expression\ of\ both\ genes$

expression varies between patients; that these different tumour classes would react differently to the same treatment; that treatment of different pathways and combinations in different patients is the most effective approach to target genes compensating for CDH1 gene loss; and the expression of synthetic partners could be a clinically important biomarker. While these are important clinical implications, the synthetic lethal predictions lack enough confidence for direct translation into pre-clinical models or clinical applications leading to a need for statistical modelling and simulation of synthetic lethality in genomics expression data.

Table 4.28: Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT in stomach cancer

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value (FDR)
Prostacyclin signalling through prostacyclin receptor	392851	1	10.07	26.53	1.7307×10^{-6}	0.0028590
Cell surface interactions at the vascular wall	202733	3	10.07	21.11	2.6107×10^{-5}	0.00642330
The NLRP1 inflammasome	844455	3	10.07	21.11	2.6107×10^{-5}	0.00642330
Innate Immune System	168249	6	10.07	21.07	2.6548×10^{-5}	0.00642330
Keratan sulfatekeratin metabolism	1638074	4	10.07	20.65	3.2861×10^{-5}	0.00642330
Keratan sulfate biosynthesis	2022854	4	10.07	20.65	3.2861×10^{-5}	0.00642330
Signaling by SCF-KIT	1433557	5	10.07	20.64	$3.3045 imes 10^{-5}$	0.00642330
VEGFA-VEGFR2 Pathway	4420097	5	10.07	20.64	3.3045×10^{-5}	0.00642330
ERK1 activation	110056	21	10.07	20.12	4.277×10^{-5}	0.00642330
Cholesterol biosynthesis	191273	21	10.07	20.12	4.277×10^{-5}	0.00642330
G2 Phase	68911	21	10.07	20.12	4.277×10^{-5}	0.00642330
p130Cas linkage to MAPK signaling for integrins	372708	2	10.07	19.08	7.1872×10^{-5}	0.00651340
cGMP effects	418457	8	10.07	19.01	7.4597×10^{-5}	0.00651340
Regulation of cytoskeletal remodeling and cell spreading by IPP complex components	446388	8	10.07	19.01	7.4597×10^{-5}	0.00651340
Post-translational modification: synthesis of GPI-anchored proteins	163125	20	10.07	18.59	9.1878×10^{-5}	0.00651340
Fcgamma receptor (FCGR) dependent phagocytosis	2029480	3	10.07	17.95	0.00012676	0.00651340
A third proteolytic cleavage releases NICD	157212	7	10.07	17.90	0.00012995	0.00651340
Signalling by NGF	166520	7	10.07	17.90	0.00012995	0.00651340
Signaling by VEGF	194138	7	10.07	17.90	0.00012995	0.00651340
Regulation of thyroid hormone activity	350864	7	10.07	17.90	0.00012995	0.00651340
Nitric oxide stimulates guanylate cyclase	392154	7	10.07	17.90	0.00012995	0.00651340
Platelet homeostasis	418346	7	10.07	17.90	0.00012995	0.00651340
Termination of translesion DNA synthesis	5656169	20	10.07	17.46	0.00016155	0.00651340
PI3K events in ERBB4 signaling	1250342	4	10.07	17.26	0.00017862	0.00651340
PIP3 activates AKT signaling	1257604	4	10.07	17.26	0.00017862	0.00651340

 $Strongest\ candidate\ SL\ partners\ for\ \textit{CDH1}\ by\ mtSLIPT\ with\ observed\ and\ expected\ mutant\ samples\ with\ low\ expression\ of\ partner\ metagenes$

Table 4.29: Candidate synthetic lethal genes against E-cadherin from SLIPT in CCLE

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
ZEB1	24	115	555	7.84×10^{-119}	3.62×10^{-116}
RP11-620J15.3	17	115	471	1.54×10^{-100}	3.68×10^{-98}
AP1S2	20	115	462	1.38×10^{-98}	3.07×10^{-96}
VIM	24	115	424	1.73×10^{-90}	3.06×10^{-88}
CCDC88A	24	115	418	3.94×10^{-89}	6.86×10^{-87}
RECK	28	115	416	8.23×10^{-89}	1.42×10^{-86}
AP1M1	16	115	414	2.42×10^{-88}	4.06×10^{-86}
ZEB2	23	115	396	2.32×10^{-84}	3.4×10^{-82}
WIPF1	25	115	390	4.9×10^{-83}	6.74×10^{-81}
SLC35B4	29	115	386	3.2×10^{-82}	4.38×10^{-80}
SACS	28	115	373	2.13×10^{-79}	2.7×10^{-77}
ST3GAL2	25	115	351	9.7×10^{-75}	1.08×10^{-72}
ATP8B2	38	115	341	1.53×10^{-72}	1.61×10^{-70}
IFFO1	39	115	332	1.66×10^{-70}	1.65×10^{-68}
EMP3	38	115	329	5.04×10^{-70}	4.95×10^{-68}
LEPRE1	40	115	325	5.4×10^{-69}	5.22×10^{-67}
STARD9	39	115	311	4.52×10^{-66}	3.96×10^{-64}
DENND5A	48	115	304	1.89×10^{-64}	1.59×10^{-62}
SYT11	38	115	300	1.21×10^{-63}	9.89×10^{-62}
EID2B	38	115	299	1.99×10^{-63}	1.61×10^{-61}
NXPE3	35	115	294	1.71×10^{-62}	1.35×10^{-60}
STX2	49	115	293	3.83×10^{-62}	3×10^{-60}
ARHGEF6	43	115	289	2.2×10^{-61}	1.71×10^{-59}
KATNAL1	50	115	283	4.45×10^{-60}	3.38×10^{-58}
ANXA6	37	115	282	8.92×10^{-60}	6.67×10^{-58}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

Table 4.30: Pathways for CDH1 partners from SLIPT in CCLE

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Cell Cycle	442	207	1.2×10^{-215}
Cell Cycle, Mitotic	365	180	2.9×10^{-209}
Signaling by Rho GTPases	311	136	9.4×10^{-156}
M Phase	212	104	8.8×10^{-145}
Infectious disease	289	123	1.3×10^{-142}
RHO GTPase Effectors	207	98	5.3×10^{-135}
HIV Infection	200	94	2×10^{-130}
Separation of Sister Chromatids	140	77	5.6×10^{-128}
Organelle biogenesis and maintenance	258	107	1.4×10^{-127}
Chromatin modifying enzymes	181	87	4.7×10^{-126}
Chromatin organization	181	87	4.7×10^{-126}
Mitotic Metaphase and Anaphase	149	78	1.2×10^{-124}
Mitotic Anaphase	148	77	6.3×10^{-123}
Developmental Biology	421	142	1.6×10^{-121}
RHO GTPases Activate Formins	94	60	5.3×10^{-118}
Mitotic Prometaphase	93	59	5.4×10^{-116}
Hemostasis	421	138	7.2×10^{-116}
Adaptive Immune System	397	132	3.2×10^{-115}
Assembly of the primary cilium	143	72	2.4×10^{-114}
Transcription	133	68	6.2×10^{-111}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for CDH1

Table 4.31: Candidate synthetic lethal genes against E-cadherin from SLIPT in breast CCLE

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
MIR155HG	1	6.78	31.5	2.41×10^{-6}	0.00371
ENPP2	1	6.78	30.7	3.47×10^{-6}	0.00383
DCLK2	3	6.78	28.3	1.08×10^{-5}	0.0071
PID1	1	6.78	27.8	1.34×10^{-5}	0.00791
SCFD2	5	6.78	27.7	1.42×10^{-5}	0.00791
FAT4	4	6.78	27.3	1.69×10^{-5}	0.00865
ILK	1	6.78	26.9	2.04×10^{-5}	0.00884
RWDD1	0	6.78	26.8	2.15×10^{-5}	0.00884
RIC8A	2	6.78	26.8	2.2×10^{-5}	0.00884
F2RL2	1	6.78	26.6	2.34×10^{-5}	0.00901
SDCBP	5	6.78	25.9	3.26×10^{-5}	0.0108
PPM1F	4	6.78	25.8	3.41×10^{-5}	0.0108
IKBIP	5	6.78	25.8	3.49×10^{-5}	0.0108
SPRED1	3	6.78	25.5	3.97×10^{-5}	0.0108
RNH1	1	6.78	25.4	4.22×10^{-5}	0.0108
SYDE1	3	6.78	25.4	4.22×10^{-5}	0.0108
LINC 00968	1	6.78	25.2	4.63×10^{-5}	0.0109
ARHGEF10	5	6.78	24.5	6.22×10^{-5}	0.0116
P4HA1	0	6.78	24.5	6.34×10^{-5}	0.0116
AZI2	2	6.78	24.5	6.34×10^{-5}	0.0116
TNFAIP6	2	6.78	24.5	6.34×10^{-5}	0.0116
CD200	4	6.78	24.5	6.37×10^{-5}	0.0116
SMPD1	1	6.78	24.4	6.67×10^{-5}	0.0116
ATP6V1G2	3	6.78	24.2	7.33×10^{-5}	0.0123
FGF2	4	6.78	24.1	7.49×10^{-5}	0.0123

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

Table 4.32: Pathways for CDH1 partners from SLIPT in breast CCLE

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Cell junction organization	71	5	0.006
Adherens junctions interactions	29	3	0.006
Dermatan sulfate biosynthesis	11	2	0.006
Non-integrin membrane-ECM interactions	52	4	0.006
Regulation of pyruvate dehydrogenase (PDH) complex	12	2	0.0069
Cell-extracellular matrix interactions	17	2	0.021
Pyruvate metabolism	17	2	0.021
Cell-cell junction organization	46	3	0.039
Synthesis of substrates in N-glycan biosythesis	50	3	0.057
Detoxification of Reactive Oxygen Species	26	2	0.082
Keratan sulfate biosynthesis	28	2	0.092
Laminin interactions	28	2	0.092
Cell-Cell communication	118	5	0.12
Keratan sulfate/keratin metabolism	32	2	0.12
Opioid Signalling	63	3	0.12
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide)	63	3	0.12
and transfer to a nascent protein	05	3	0.12
Intraflagellar transport	34	2	0.14
Signaling by Retinoic Acid	36	2	0.16
Pyruvate metabolism and Citric Acid (TCA) cycle	36	2	0.16
Nef mediated downregulation of MHC class I complex cell surface expression	10	1	0.22

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for CDH1

Table 4.33: Candidate synthetic lethal genes against E-cadherin from SLIPT in stomach CCLE

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
ZEB1	1	4.45	36	2.84×10^{-07}	0.00175
WDR47	0	4.45	26.7	2.3×10^{-05}	0.013
KANK2	1	4.45	25.1	4.81×10^{-05}	0.0222
LEPRE1	0	4.45	24.5	6.26×10^{-05}	0.0228
KATNAL1	0	4.45	24.3	6.88×10^{-05}	0.0231
TET1	0	4.45	23.9	8.23×10^{-05}	0.0249
AP1S2	1	4.45	23.1	0.00012	0.0273
CDKN2C	1	4.45	22.8	0.000136	0.0292
ARMC4	1	4.45	22.4	0.000164	0.0315
CSTF3	1	4.45	22.4	0.000166	0.0315
FAM216A	1	4.45	22.4	0.000166	0.0315
ANKRD32	1	4.45	22.4	0.000166	0.0315
WDR35	1	4.45	22.4	0.000169	0.0315
ECI2	0	4.45	21.7	0.000232	0.0378
SAMD8	0	4.45	21.7	0.000232	0.0378
CHST12	0	4.45	21.7	0.000232	0.0378
RPL23AP32	0	4.45	21.7	0.000232	0.0378
STARD9	1	4.45	21.7	0.000232	0.0378
MCM8	0	4.45	21.5	0.000255	0.0379

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected samples with low expression of both genes

Table 4.34: Pathways for CDH1 partners from SLIPT in stomach CCLE

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Nef mediated downregulation of MHC class I complex cell surface expression	10	1	1
Unwinding of DNA	11	1	1
Processing of Intronless Pre-mRNAs	13	1	1
E2F mediated regulation of DNA replication	20	1	1
Chondroitin sulfate biosynthesis	20	1	1
Post-Elongation Processing of Intronless pre-mRNA	21	1	1
Nef-mediates down modulation of cell surface receptors by recruiting them	21	1	1
to clathrin adapters	21	1	1
Processing of Capped Intronless Pre-mRNA	21	1	1
Post-Elongation Processing of Intron-Containing pre-mRNA	23	1	1
Activation of the pre-replicative complex	23	1	1
mRNA 3'-end processing	23	1	1
Golgi Associated Vesicle Biogenesis	24	1	1
Lysosome Vesicle Biogenesis	25	1	1
Oncogene Induced Senescence	27	1	1
The role of Nef in HIV-1 replication and disease pathogenesis	28	1	1
Cyclin D associated events in G1	29	1	1
G1 Phase	29	1	1
Cleavage of Growing Transcript in the Termination Region	31	1	1
Activation of ATR in response to replication stress	31	1	1
DNA strand elongation	31	1	1

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in SLIPT partners for $\mathit{CDH1}$

References

- Araki, H., Knapp, C., Tsai, P., and Print, C. (2012) Genesetdb: A comprehensive meta-database, statistical and visualisation framework for gene set analysis. *FEBS Open Bio*, **2**: 76–82.
- Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. *Nat Rev Genet*, **5**(2): 101–13.
- Chen, A., Beetham, H., Black, M.A., Priya, R., Telford, B.J., Guest, J., Wiggins, G.A.R., Godwin, T.D., Yap, A.S., and Guilford, P.J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer, 14(1): 552.
- Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. *Am J Cancer Res*, **5**(10): 2929–2943.
- Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A. (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. *Cancer Treat Rev*, **38**(6): 698–707.
- Jerby-Arnon, L., Pfetzer, N., Waldman, Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P., et al. (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 158(5): 1199–1209.
- Kelly, S., Chen, A., Guilford, P., and Black, M. (2017a) Synthetic lethal interaction prediction of target pathways in E-cadherin deficient breast cancers. Submitted to BMC Genomics.
- Kelly, S.T. (2013) Statistical Predictions of Synthetic Lethal Interactions in Cancer. Dissertation, University of Otago.

- Kelly, S.T., Single, A.B., Telford, B.J., Beetham, H.G., Godwin, T.D., Chen, A., Black, M.A., and Guilford, P.J. (2017b) Towards HDGC chemoprevention: vulnerabilities in e-cadherin-negative cells identified by genome-wide interrogation of isogenic cell lines and whole tumors. Submitted to Cancer Prev Res.
- Lu, X., Megchelenbrink, W., Notebaart, R.A., and Huynen, M.A. (2015) Predicting human genetic interactions from cancer genome evolution. *PLoS One*, **10**(5): e0125795.
- Merlos-Suarez, A., Barriga, F.M., Jung, P., Iglesias, M., Cespedes, M.V., Rossell, D., Sevillano, M., Hernando-Momblona, X., da Silva-Diz, V., Munoz, P., et al. (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell, 8(5): 511–524.
- Parker, J., Mullins, M., Cheung, M., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of Clinical Oncology*, 27(8): 1160–1167.
- Telford, B.J., Chen, A., Beetham, H., Frick, J., Brew, T.P., Gould, C.M., Single, A., Godwin, T., Simpson, K.J., and Guilford, P. (2015) Synthetic lethal screens identify vulnerabilities in gpcr signalling and cytoskeletal organization in e-cadherin-deficient cells. *Mol Cancer Ther*, **14**(5): 1213–1223.
- Tiong, K.L., Chang, K.C., Yeh, K.T., Liu, T.Y., Wu, J.H., Hsieh, P.H., Lin, S.H., Lai, W.Y., Hsu, Y.C., Chen, J.Y., et al. (2014) Csnk1e/ctnnb1 are synthetic lethal to tp53 in colorectal cancer and are markers for prognosis. Neoplasia, 16(5): 441–50.
- Warburg, O. (1956) On the origin of cancer cells. *Science*, **123**(3191): 390–314.

Appendix A

Sample Correlation

Figure A.1: Correlation profiles of removed samples. Correlation matrix heatmap (Euclidean distance) of all samples in TCGA breast cancer dataset (left) clustered for all samples against removed samples (top): tissue source site (TSS), sample type with reds for tumour and greens for normal, patient (A2QH in pink), with varied analyte and plate (corresponding to batch in Table ??). Excluded samples cluster at the bottom and annotation (left) show shared properties between samples in the dataset.

Figure A.2: Correlation analysis and sample removal. Correlation matrix heatmap (Euclidean distance) of all samples in TCGA breast cancer dataset against each other annotated for sample clinical data: sample type, tissue type, tumour stage, Estrogen receptor (IHC) and intrinsic subtype (from the PAM50 method). CDH1 somatic mutation, gene expression, and status for SLIPT prediction are also annotated. Discrete variables are coloured as displayed in the legend and continuous variables on a blue-red scale as shown in the colour key. Trimmed samples cluster at the bottom of the heatmap and the colour bars of the left show which were removed for quality concerns.

Appendix B

Software Used for Thesis

Table B.1: R Packages used during Thesis

Package	Repository	Laptop	Lab	Server	NeSI
base	base	3.3.2	3.3.2	3.3.1	3.3.0
abind	CRAN		1.4-5		1.4-3
acepack	CRAN		1.4.1		1.3-3.3
ade4	CRAN		1.7-5		
annaffy	Bioconductor		1.46.0		
AnnotationDbi	Bioconductor		1.36.0	1.36.0	1.34.4
apComplex	CRAN		2.40.0		
ape	CRAN		4		3.4
arm	CRAN		1.9-3		
assertthat	CRAN	0.1	0.1	0.1	0.1
backports	CRAN	1.0.5	1.0.4	1.0.5	1.0.2
base64	CRAN			2	2
base64enc	CRAN		0.1-3		0.1-3
beanplot	CRAN		1.2	1.2	1.2
ВН	CRAN	1.60.0-2	1.62.0-1	1.62.0-1	1.60.0-2
Biobase	Bioconductor		2.34.0	2.34.0	2.32.0
BiocGenerics	Bioconductor		0.20.0	0.20.0	0.18.0
BiocInstaller	Bioconductor		1.24.0	1.20.3	1.22.3
BiocParallel	Bioconductor		1.8.1	1.8.1	
Biostrings	Bioconductor		2.42.1	2.42.0	
BiSEp	Bioconductor		2.0.1	2.0.1	2.0.1

bitops	CRAN	1.0-6	1.0-6	1.0-6	1.0-6
boot	base	1.3-18	1.3-18	1.3-18	1.3-18
brew	CRAN	1.0-6	1.0-6	1.0-6	1.0-6
broom	CRAN	0.4.1			
caTools	CRAN	1.17.1	1.17.1	1.17.1	1.17.1
cgdsr	CRAN		1.2.5		
checkmate	CRAN		1.8.2		1.7.4
chron	CRAN	2.3-47	2.3-48	2.3-50	2.3-47
class	base	7.3-14	7.3-14	7.3-14	7.3-14
cluster	base	2.0.5	2.0.5	2.0.5	2.0.4
coda	CRAN		0.19-1		0.18-1
codetools	base	0.2-15	0.2-15	0.2-15	0.2-14
colorRamps	CRAN		2.3		
colorspace	CRAN	1.2-6	1.3-2	1.3-2	1.2-6
commonmark	CRAN	1.1		1.2	
compiler	base	3.3.2	3.3.2	3.3.1	3.3.0
corpcor	CRAN		1.6.8	1.6.8	1.6.8
Cprob	CRAN		1.2.4		
crayon	CRAN	1.3.2	1.3.2	1.3.2	1.3.2
crop	CRAN		0.0-2	0.0-2	
curl	CRAN	1.2	2.3	2.3	0.9.7
d3Network	CRAN		0.5.2.1		
data.table	CRAN	1.9.6	1.10.0	1.10.1	1.9.6
data.tree	CRAN		0.7.0	0.7.0	
datasets	base	3.3.2	3.3.2	3.3.1	3.3.0
DBI	CRAN	0.5-1	0.5-1	0.5-1	0.5-1
dendextend	CRAN	1.4.0	1.4.0	1.4.0	
DEoptimR	CRAN	1.0-8	1.0-8	1.0-8	1.0-4
desc	CRAN	1.1.0		1.1.0	
devtools	CRAN	1.12.0	1.12.0	1.12.0	1.12.0
DiagrammeR	CRAN		0.9.0	0.9.0	
dichromat	CRAN	2.0-0	2.0-0	2.0-0	2.0-0
digest	CRAN	0.6.10	0.6.11	0.6.12	0.6.9
diptest	CRAN	0.75-7	0.75-7	0.75-7	
doParallel	CRAN	1.0.10	1.0.10	1.0.10	1.0.10

dplyr	CRAN	0.5.0	0.5.0	0.5.0	0.5.0
ellipse	CRAN		0.3-8	0.3-8	0.3-8
evaluate	CRAN		0.1	0.1	0.9
fdrtool	CRAN		1.2.15		
fields	CRAN		8.1		
flexmix	CRAN	2.3-13	2.3-13	2.3-13	
forcats	CRAN	0.2.0			
foreach	CRAN	1.4.3	1.4.3	1.4.3	1.4.3
foreign	base	0.8-67	0.8-67	0.8-67	0.8-66
formatR	CRAN		1.4	1.4	1.4
Formula	CRAN		1.2-1		1.2-1
fpc	CRAN	2.1-10	2.1-10	2.1-10	
futile.logger	CRAN		1.4.3	1.4.3	1.4.1
futile.options	CRAN		1.0.0	1.0.0	1.0.0
gdata	CRAN	2.17.0	2.17.0	2.17.0	2.17.0
geepack	CRAN		1.2-1		
GenomeInfoDb	Bioconductor		1.10.2	1.10.1	
GenomicAlignments	Bioconductor		1.10.0	1.10.0	
GenomicRanges	Bioconductor		1.26.2	1.26.1	
ggm	CRAN		2.3		
ggplot2	CRAN	2.1.0	2.2.1	2.2.1	2.1.0
git2r	CRAN	0.15.0	0.18.0	0.16.0	0.15.0
glasso	CRAN		1.8		
GO.db	Bioconductor		3.4.0	3.2.2	3.3.0
GOSemSim	Bioconductor		2.0.3	1.28.2	1.30.3
gplots	CRAN	3.0.1	3.0.1	3.0.1	3.0.1
graph	Bioconductor		1.52.0		
graphics	base	3.3.2	3.3.2	3.3.1	3.3.0
1	GitHub	0.1.0	0.1.0	0.1.0	0.1.0
graphsim	TomKellyGenetics	0.1.0	0.1.0	0.1.0	0.1.0
grDevices	base	3.3.2	3.3.2	3.3.1	3.3.0
grid	base	3.3.2	3.3.2	3.3.1	3.3.0
gridBase	CRAN	0.4-7	0.4-7	0.4-7	0.4-7
gridExtra	CRAN	2.2.1	2.2.1	2.2.1	2.2.1
gridGraphics	CRAN		0.1-5		

gtable	CRAN	0.2.0	0.2.0	0.2.0	0.2.0
gtools	CRAN	3.5.0	3.5.0	3.5.0	3.5.0
haven	CRAN	1.0.0			
heatmap.2x	GitHub TomKellyGenetics	0.0.0.9000	0.0.0.9000	0.0.0.9000	0.0.0.9000
hgu133plus2.db	Bioconductor		3.2.3		
highr	CRAN		0.6	0.6	0.6
Hmisc	CRAN		4.0-2	4.0-2	3.17-4
hms	CRAN	0.2	0.3		
htmlTable	CRAN		1.8	1.9	
htmltools	CRAN	0.3.5	0.3.5	0.3.5	0.3.5
htmlwidgets	CRAN		0.8	0.8	
httpuv	CRAN	1.3.3		1.3.3	
httr	CRAN	1.2.1	1.2.1	1.2.1	1.1.0
huge	CRAN		1.2.7		
hunspell	CRAN		2.3		2
hypergraph	CRAN		1.46.0		
igraph	CRAN	1.0.1	1.0.1	1.0.1	1.0.1
igraph.extensions	GitHub TomKellyGenetics	0.1.0.9001	0.1.0.9001	0.1.0.9001	0.1.0.9001
influenceR	CRAN		0.1.0	0.1.0	
info.centrality	GitHub TomKellyGenetics	0.1.0	0.1.0	0.1.0	0.1.0
IRanges	Bioconductor		2.8.1	2.8.1	2.6.1
irlba	CRAN	2.1.1	2.1.2	2.1.2	2.0.0
iterators	CRAN	1.0.8	1.0.8	1.0.8	1.0.8
jpeg	CRAN		0.1-8		
jsonlite	CRAN	1.1	1.2	1.3	0.9.20
KEGG.db	Bioconductor		3.2.3		
kernlab	CRAN	0.9 - 25	0.9 - 25	0.9-25	
KernSmooth	base	2.23-15	2.23-15	2.23-15	2.23-15
knitr	CRAN		1.15.1	1.15.1	1.14
labeling	CRAN	0.3	0.3	0.3	0.3
lambda.r	CRAN		1.1.9	1.1.9	1.1.7
lattice	base	0.20-34	0.20 - 34	0.20-34	0.20-33

latticeExtra	CRAN		0.6 - 28		0.6 - 28
lava	CRAN		1.4.6		
lavaan	CRAN		0.5 - 22		
lazyeval	CRAN	0.2.0	0.2.0	0.2.0	0.2.0
les	CRAN		1.24.0		
lgtdl	CRAN		1.1.3		
limma	Bioconductor		3.30.7	3.30.3	
lme4	CRAN		1.1-12		1.1-12
lubridate	CRAN	1.6.0			
magrittr	CRAN	1.5	1.5	1.5	1.5
maps	CRAN		3.1.1		
markdown	CRAN		0.7.7	0.7.7	0.7.7
MASS	base	7.3-45	7.3-45	7.3-45	7.3-45
Matrix	base	1.2-7.1	1.2-7.1	1.2-8	1.2-6
matrixcalc	CRAN	1.0-3	1.0-3	1.0-3	1.0-3
mclust	CRAN	5.2	5.2.1	5.2.2	5.2
memoise	CRAN	1.0.0	1.0.0	1.0.0	1.0.0
methods	base	3.3.2	3.3.2	3.3.1	3.3.0
mgcv	base	1.8-16	1.8-16	1.8-17	1.8-12
mi	CRAN		1		
mime	CRAN	0.5	0.5	0.5	0.4
minqa	CRAN		1.2.4		1.2.4
mnormt	CRAN	1.5-5	1.5-5		1.5-4
modelr	CRAN	0.1.0			
modeltools	CRAN	0.2-21	0.2-21	0.2-21	
multtest	Bioconductor		2.30.0	2.30.0	
munsell	CRAN	0.4.3	0.4.3	0.4.3	0.4.3
mvtnorm	CRAN	1.0-5	1.0-5	1.0-6	1.0-5
network	CRAN		1.13.0		
nlme	base	3.1-128	3.1-128	3.1-131	3.1-128
nloptr	CRAN		1.0.4		1.0.4
NMF	CRAN	0.20.6	0.20.6	0.20.6	0.20.6
nnet	base	7.3-12	7.3-12	7.3-12	7.3-12
numDeriv	CRAN		2016.8-1		2014.2-1
openssl	CRAN	0.9.4	0.9.6	0.9.6	0.9.4

org.Hs.eg.db	Bioconductor		3.1.2		3.3.0
org.Sc.sgd.db	Bioconductor		3.4.0		
parallel	base	3.3.2	3.3.2	3.3.1	3.3.0
pathway.structure	GitHub	0.1.0	0.1.0	0.1.0	0.1.0
.permutation	TomKellyGenetics	0.1.0	0.1.0	0.1.0	0.1.0
pbivnorm	CRAN		0.6.0		
PGSEA	Bioconductor		1.48.0		
pkgmaker	CRAN	0.22	0.22	0.22	0.22
PKI	CRAN		0.1-3		
plogr	CRAN		0.1-1	0.1-1	
plot.igraph	GitHub	0.0.0.9001	0.0.0.9001	0.0.0.9001	0.0.0.9001
piot.igrapii	TomKellyGenetics	0.0.0.9001	0.0.0.9001	0.0.0.9001	0.0.0.9001
plotrix	CRAN		3.6-4		
plyr	CRAN	1.8.4	1.8.4	1.8.4	1.8.3
png	CRAN		0.1-7		0.1-7
prabclus	CRAN	2.2-6	2.2-6	2.2-6	
praise	CRAN	1.0.0	1.0.0		1.0.0
pROC	CRAN		1.8	1.9.1	
prodlim	CRAN		1.5.7		
prof.tree	CRAN		0.1.0		
proftools	CRAN		0.99-2		
progress	CRAN			1.1.2	
psych	CRAN	1.6.12	1.6.12		
purrr	CRAN	0.2.2	0.2.2	0.2.2	0.2.2
qgraph	CRAN		1.4.1		
quadprog	CRAN		1.5-5	1.5-5	1.5-5
R.methodsS3	CRAN		1.7.1		1.7.1
R.oo	CRAN		1.21.0		1.20.0
R.utils	CRAN		2.5.0		
R6	CRAN	2.1.3	2.2.0	2.2.0	2.1.3
RBGL	CRAN		1.50.0		
RColorBrewer	CRAN	1.1-2	1.1-2	1.1-2	1.1-2
Rcpp	CRAN	0.12.7	0.12.9	0.12.9	0.12.7
RcppArmadillo	CRAN			0.7.700.0.0	0.6.700.6.0
RcppEigen	CRAN		0.3.2.9.0		0.3.2.8.1

RCurl	CRAN		1.95-4.8	1.95-4.8	1.95-4.8
reactome.db	Bioconductor		1.52.1	1.52.1	
	GitHub				
reactometree	TomKellyGenetics		0.1		
readr	CRAN	1.0.0	1.0.0		
readxl	CRAN	0.1.1			
registry	CRAN	0.3	0.3	0.3	0.3
reshape2	CRAN	1.4.1	1.4.2	1.4.2	1.4.1
rgexf	CRAN		0.15.3	0.15.3	
rgl	CRAN			0.97.0	0.95.1441
Rgraphviz	CRAN		2.18.0		
rjson	CRAN		0.2.15		
RJSONIO	CRAN		1.3-0		
rmarkdown	CRAN		1.3	1.3	1
Rmpi	CRAN		0.6-6		0.6 - 5
rngtools	CRAN	1.2.4	1.2.4	1.2.4	1.2.4
robustbase	CRAN	0.92 - 7	0.92 - 7	0.92 - 7	0.92 - 5
ROCR	CRAN	1.0-7	1.0-7	1.0-7	1.0-7
Rook	CRAN		1.1-1	1.1-1	
roxygen2	CRAN	6.0.1	5.0.1	6.0.1	5.0.1
rpart	base	4.1-10	4.1-10	4.1-10	4.1-10
rprojroot	CRAN	1.2	1.1	1.2	
Rsamtools	Bioconductor		1.26.1	1.26.1	
rsconnect	CRAN		0.7		
RSQLite	CRAN		1.1-2	1.1-2	1.0.0
rstudioapi	CRAN	0.6	0.6	0.6	0.6
rvest	CRAN	0.3.2			
S4Vectors	Bioconductor		0.12.1	0.12.0	0.10.3
safe	Bioconductor		3.14.0	3.10.0	
scales	CRAN	0.4.0	0.4.1	0.4.1	0.4.0
selectr	CRAN	0.3-1			
sem	CRAN		3.1-8		
shiny	CRAN	0.14		1.0.0	
slipt	GitHub TomKellyGenetics	0.1.0	0.1.0	0.1.0	0.1.0

sm	CRAN	2.2 - 5.4	2.2 - 5.4		
sna	CRAN		2.4		
snow	CRAN	0.4-1	0.4-2	0.4 - 2	0.3-13
sourcetools	CRAN	0.1.5		0.1.5	
SparseM	CRAN		1.74		1.7
spatial	base	7.3-11	7.3-11	7.3-11	7.3-11
splines	base	3.3.2	3.3.2	3.3.1	3.3.0
statnet.common	CRAN		3.3.0		
stats	base	3.3.2	3.3.2	3.3.1	3.3.0
stats4	base	3.3.2	3.3.2	3.3.1	3.3.0
stringi	CRAN	1.1.1	1.1.2	1.1.2	1.0-1
stringr	CRAN	1.1.0	1.1.0	1.2.0	1.0.0
Summarized	Bioconductor		1.4.0	1.4.0	
Experiment	Bioconductor		1.4.0	1.4.0	
survival	base	2.39-4	2.40-1	2.40-1	2.39-4
tcltk	base	3.3.2	3.3.2	3.3.1	3.3.0
testthat	CRAN	1.0.2	1.0.2		1.0.2
tibble	CRAN	1.2	1.2	1.2	1.2
tidyr	CRAN	0.6.1	0.6.1	0.6.1	
4:1	GitHub	1 1 1			
tidyverse	hadley	1.1.1			
timeline	CRAN		0.9		
tools	base	3.3.2	3.3.2	3.3.1	3.3.0
tpr	CRAN		0.3-1		
trimcluster	CRAN	0.1-2	0.1-2	0.1-2	
Unicode	CRAN	9.0.0-1	9.0.0-1	9.0.0-1	
utils	base	3.3.2	3.3.2	3.3.1	3.3.0
vioplot	CRAN		0.2		
. 1.	GitHub	0.0.0.000	0.0.0.000		
vioplotx	TomKellyGenetics	0.0.0.9000	0.0.0.9000		
viridis	CRAN	0.3.4	0.3.4	0.3.4	
visNetwork	CRAN		1.0.3	1.0.3	
whisker	CRAN	0.3-2	0.3-2	0.3-2	0.3-2
withr	CRAN	1.0.2	1.0.2	1.0.2	1.0.2
XML	base	3.98-1.3	3.98-1.1	3.98-1.5	3.98-1.4

xml2	CRAN	1.1.1		1.1.1	1.0.0
xtable	CRAN	1.8-2	1.8-2	1.8-2	1.8-2
XVector	Bioconductor		0.14.0	0.14.0	
yaml	CRAN		2.1.14	2.1.14	2.1.13
zlibbioc	CRAN		1.20.0	1.20.0	
ZOO	CRAN	1.7-13	1.7-14		1.7-13

Appendix C

Secondary Screen Data

A series of experimental genome-wide siRNA screens have been performed on synthetic lethal partners of CDH1 (Telford et~al., 2015). The strongest candidates from a primary screen were subject to a further secondary screen for validation by independent replication with 4 gene knockdowns with different targeting siRNA. As shown in Table C.1, there is significant ($p = 7.49 \times 10^{-3}$ by Fisher's exact test) association between SLIPT candidates and stronger validations of siRNA candidates. Since there were more SLIPT— genes among those not validated and more SLIPT+ genes among those validated with several siRNAs, this supports the use of SLIPT as a synthetic lethal discovery procedure which may augment such screening experiments.

Table C.1: Comparing SLIPT genes against Secondary siRNA Screen in breast cancer

	Secondary Screen						
		0/4	1/4	2/4	3/4	4/4	Total
$\mathbf{SLIPT} +$	Observed	70	46	31	8	2	157
	Expected	85	44	10	4	2	197
SLIPT-	Observed	190	90	31	10	4	325
	Expected	175	91	42	12	4	323
	Total	280	136	52	18	6	482

Similar analysis with mtSLIPT, comparing SLIPT against CDH1 somatic mutation with siRNA validation results was not significant ($p = 7.02 \times 10^{-1}$ by Fisher's exact test). However, as shown in Table C.2, the observed and expected values were in a direction consistent with that observed above for SLIPT against low CDH1 expression.

It is not unexpected that this result does not have comparable statistical support due to the lower sample size for mutation data.

Table C.2: Comparing mtSLIPT genes against Secondary siRNA Screen in breast cancer

		Secondary Screen					
		0/4	1/4	2/4	3/4	4/4	Total
mtSLIPT+	Observed	54	35	17	4	6	111
IIII.SLIF I +	Expected	60	31	14	4	1	111
4CI IDT	Observed	206	101	45	14	5	371
III.SLIF I –	Expected	200	105	48	14	4	
	Total	269	143	63	19	6	482

This analysis was replicated on a (smaller) stomach cancer dataset but it was less conclusive ($p = 2.36 \times 10^{-1}$ by Fisher's exact test). As shown in Table C.3, fewer SLIPT candidates were validated than expected statistically. However, these results in stomach cancer may not be directly comparable to experiments in a breast cell line. Genes validated by 0 or 1 siRNA behave consistently with the results above.

Table C.3: Comparing SLIPT genes against Secondary siRNA Screen in stomach cancer

		Secondary Screen						
		0/4	1/4	2/4	3/4	4/4	Total	
SLIPT+	Observed	67	47	13	4	1	132	
	Expected	71	37	17	5	2	132	
SLIPT-	Observed					5	354	
	Expected	190	100	46	13	4	504	
	Total	262	137	63	19	6	486	