Cheat Sheet

isakhammer

2020

- 1 Introduction
- 2 Continious maps
- 3 Topological spaces

Definition 3.1 (Topological spaces.). Recall that a topological space is a set X together with a collection Y of subsets of X that are open in X s.t.

- $T1. \emptyset, X \in \tau$
- **T2.** τ is closed under union if $U_{\lambda} \in \tau$ for all $\lambda \in \Lambda$, then

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$$

• **T3.** τ is under finite intersections if $U_1, U_2, \dots, U_n \in \tau$, then

$$U_1 \cap U_2 \cap \ldots \cap U_n \in \tau$$

Definition 3.2 (Open and closed sets). Let (X, τ) , $U \subseteq X$

- Open set. If $U \in \tau$, then is U open.
- Closed set. If $U^c = X U \in \tau$, then is U closed

Remark. Let $X = \{a, b, c\}$ and let $U = \{a, b\}$. Then if $\tau = \{X, \emptyset\}$, U is not open nor closed.

Definition 3.3 (Neighbourhoods). Let X be a topological space, U a subset

of X and $x \in X$. We say U is a neighborhood of x if $x \in U$ and U is open in X.

Theorem 3.1. Continuity between topological spaces. Let X, Y be topological spaces. A map $f: X \to Y$ is said to be continious if preimages of open sats are open, i.e., if V is an open set in Y then the preimage $f^{-1}(V)$ of V is open in X.

4 Generating topologies

Definition 4.1 (Basis). A basis for a topology on X is a collection of subsets of X s.t.

- **B1.** For each $x \in X$ there is a $B \in \mathfrak{B}$ s.t. $x \in B$.
- **B2.** $B_1, B_2 \text{ and } x \in B_1 \cap B_2 \text{ there is a } B_3 \in \mathfrak{B} \text{ s.t. } x \in B_3 \subseteq B_1 \cap B_2$

5 Constructing topological spaces

6 Topological properties

Definition 6.1 (Connected space). Let X be a topological space. A **seperation** of X is a pair of non-empty subsets U and V that are open in X, disjoint and whose union equal X. We say that X is **connected** if there are no seperations of X. Otherwise it is **disconnected**.

Theorem 6.1 (Connectivity). Let X be a topological space. Then X is connected if and only if the are no non-empty proper subsets of X that are both open and closed.

7 The fundamental group

8 The fundamental group of the circle

9 References