THE FOUR	BASIC S-L	BVP's
E RUATION:	f + Af = 0,	$f_{\varepsilon}f(x)$, of $x \in L$
(1) BOUNDARY CONDS.	f(o)=0	f(L) = 0
e-values.	$\lambda_{y} = \frac{v^{2} \pi^{2}}{L^{2}}$	И = 1, 2,
e-Fuctions	Fy ~ sin TY	
2) BOUNDARY CONDS.	5%=0	5'(4) = 0
e-values	14= 42 m2	ц=0,1,2,
e-Fuctions	Fy~ coz HTX	* mote in stouts at o
	f(o) = 0	f'(L) = 0
BOUNDARY CONDS.	$A_{N} = \begin{bmatrix} (2n-1) & T \\ 2 & L \end{bmatrix}^{2}$	N=1,2,
e-fuctions	fn~ sm (24+)#	• ×
BOUNDAY CONDS.	f (0) =0	f(U)= 0
t-values	du = (24-1) T]2	
2- fuctions	fy~ cos (24+18 =	X

Regular S-L problems (p5) + qf + 10f=0 $a < \chi < b$ $\begin{cases} K, f(a) + K_2 f'(a) = 0 \\ K_3 f(b) + K_2 f'(b) = 0 \end{cases}$ P, 9,0 are fuctions of x p, q, o are required to be count on [a, b] p and or are required to be positive K, Kz, Kz, Ky are constacts S-L Theny says 1) There are always an infinite number of real e-vals

for the prolem dicde ... < du - so that lim di= 00. Eigenfution corresponding to distinct e-values are orthogonal with respect to σ or [a,b]. This means $\int_{-\infty}^{b} f_i(x) f_j(x) \sigma(x) dx = 0 \quad \text{for all } i \neq j.$ Every p.w. differentiable function g(s) on [a, b] can be untilen as a sum of a complete set of e-futions:

g(x) ~ \(\sum_{n=1}^{\infty} a_n \, \frac{f_n(x)}{n} - a \, \text{generalized F.S. of } \(\frac{f_n(x)}{n} \) The arefliciant are conjuted as follows: $A_n = \frac{\int_a^b g(x) \cdot f_n(x) \, \sigma(x) \, dx}{\int_a^b \sigma(x) \, f_n^2(x) \, dx}$