PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-373653

(43)Date of publication of application: 26.12.2002

(51)Int.CI.

CO1B 33/113 H01M 4/02 H01M 4/04 H01₩ 10/40

(21)Application number: 2001-181830

(71)Applicant:

SHIN ETSU CHEM CO LTD

(22)Date of filing:

15.06.2001

(72)Inventor:

MIYAWAKI SATORU

ARAMATA MIKIO **FUKUOKA HIROFUMI UENO SUSUMU**

(54) NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a negative electrode material for nonaqueous electrolyte second battery, capable of providing a nonaqueous electrolyte secondary battery having a high capacity and showing superior cycle properties. SOLUTION: This negative electrode material for nonaqueous electrolyte secondary battery comprises a conductive SiOX powder, whose surface is covered with a conductive material having SiOX as a nucleus, by mechanically surface- fusing the conductive material of an average particle size d50(B) of 20 nm-30 µm to the SiOX powder of an average particle size d50(A) of 0.2-20 μ m where the average particle size ratio d50(A)/d50(B) is 1.5 or larger.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 / 特開2002-373653 (P2002-373653A)

(43)公開日 平成14年12月26日(2002.12.26)

(51) Int.Cl. ⁷		識別記号	FI		· -	テーマコート*(参	考)
H01M	4/58		H01M 4	/58		4G07	2
C01B	33/113		C01B 33	/113		A 5H02	9
H01M	4/02		H01M 4	/02		D 5H05	0
	4/04		4	/04		A	
	10/40		10	/40		Z	
			審查請求	未請求	請求項の数 5	OL (全	6 頁)
(21)出願番号	+	特顧2001-181830(P2001-181830)	(71)出顧人	0000020	60 学工業株式会社		
(22)出願日		平成13年6月15日(2001.6.15)			F代田区大手町	二丁目6番1年	
			(72)発明者		唇 安中市磯部2丁 株式会社群馬事		討越化
			(72)発明者	群馬県安	幹夫 女中市磯部2丁 株式会社群馬事		建越化
			(74)代理人		04 小島 隆司	(外1名)	
·						最終頁	に続く

(54) 【発明の名称】 非水電解質二次電池用負極材

(57)【要約】

【解決手段】 平均粒子径 d_{50} (A) が $0.2\sim20\mu$ mの SiO_x 粉末に平均粒子径 d_{50} (B) が $20nm\sim13\mu$ mの導電材物質 [但し、平均粒子径比 d_{50} (A) $/d_{50}$ (B) は1.5以上である] を機械的表面融合処理することにより SiO_x を核として表面を導電材物質で覆った導電性 SiO_x 粉末を含むことを特徴とする非水電解質二次電池用負極材。

【効果】 本発明によれば、高容量かつ優れたサイクル性を示す非水電解質二次電池を与える非水電解質二次電池用負極材が得られる。

【特許請求の範囲】

【請求項1】 平均粒子径 d_{50} (A)が $0.2\sim20\mu$ mの S_iO_x 粉末に平均粒子径 d_{50} (B)が $20nm\sim13\mu$ mの導電材物質 [但し、平均粒子径比 d_{50} (A)/ d_{50} (B)は1.5以上である] を機械的表面融合処理することにより S_iO_x を核として表面を導電材物質で覆った導電性 S_iO_x 粉末を含むことを特徴とする非水電解質二次電池用負極材。

【請求項2】 請求項1記載の導電性SiOx粉末と炭素粒子との混合物を含み、導電性SiOx粉末中の導電材物質の畳が、SiOx粉末と導電材物質の合計に対し1~50重畳%であり、導電性SiOx粉末と炭素粒子との混合物中の炭素量が30~90重量%であることを特徴とする非水電解質二次電池用負極材。

【請求項3】 SiO_x粉末表面を覆う導電材物質層の 厚さが20nm~13μmであることを特徴とする請求 項1記載の非水電解質二次電池用負極材。

【請求項4】 SiO_x粉末が、その固体NMR(29 SiDD/MAS)により測定されるスペクトルが、-70ppmを中心としたブロードなピーク(A1)と、-110ppmを中心としたブロードなピーク(A2)の2つのピークとに分離しており、かつこれらのピークの面積比(A1)/(A2)が0. $1 \le (A1)$ /(A2) ≤ 1 . 0の範囲であることを特徴とする請求項1記載の非水電解質二次電池用負極材。

【請求項5】 SiO_x のxの値が $0.6 \le x \le 1.5$ の範囲の正数であることを特徴とする請求項1記載の非水電解質二次電池用負極材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水電解質二次電池の容量の向上と、サイクル性の向上を達成できる非水電解質二次電池用負極材に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】リチウムイオン二次電池用負極材として SiO_x 粉末を用いた場合には、初期容量は大幅に向上するものの、繰り返しの充放電によりその容量が低下するというサイクル性低下の問題があった。

【0003】特開2000-243396号公報には、 SiOを黒鉛とメカニカルアロイング後炭化処理することにより、サイクル性が向上するという報告がなされているが、この方法は、焼成設備が必要なことやコスト面から工業的規模の生産には不向きである。

【0004】本発明は、上記事情に鑑みなされたものであり、非水電解質二次電池に用いた場合、サイクル性を低下することなく高容量を維持でき、かつ工業的生産に適した非水電解質二次電池用負極材を提供することを目的とする。

[0005]

【課題を解決するための手段及び発明の実施の形態】本発明者は、上記目的を達成するため鋭意検討を重ねた結果、負極材としてSiOx粉末を用いた場合にサイクル性が低下する原因が、SiOx粉末は導電性が低いため、導電材として黒鉛や非晶質の炭素材料を混合し、導電材と負極活物質(SiOx)を点又は面で接触させることにより導電性を持たせているが、充放電に伴い負極活物質の膨張収縮が繰り返されることにより、導電材と負極活物質との接触面積が減少し、導通が次第にとれなり、なるためであることを見出すと共に、導電性の高い材料を表面融合装置等の機械的な方法で、負極活物質の表面に担持又は被殺し、負極活物質と融合させることで、密着性が向上し、負極活物質の膨張収縮による電極の崩壊が抑制され、サイクル性が向上することを知見し本発明をなすに至った。

2

【0006】即ち、本発明は、平均粒子径 d_{50} (A)が $0.2\sim20\mu$ mのSiOx粉末に平均粒子径 d_{50} (B)が20nm $\sim13\mu$ mの導電材物質 [但し、平均粒子径比 d_{50} (A)/ d_{50} (B)は1.5以上である]を機械的表面融合処理することによりSiOxを核として表面を導電材物質で覆った導電性SiOx粉末を含むことを特徴とする非水電解質二次電池用負極材を提供する。

【0007】以下、本発明につき更に詳しく説明する。本発明では、機械的表面融合処理によりSiOxを核として表面を導電材物質で覆った導電性SiOx粉末を非水電解質二次電池用負極材に使用する。

【0008】本発明においてSiOxとは通常、二酸化 ケイ素 (SiO₂) と金属ケイ素 (Si) とを原料とし 30 て得られる、 SiO_xO_xO 値が0< x<2で示される 非晶質のケイ素酸化物の総称であり、本発明で用いられ るSiOxは、活性な原子状ケイ素を含むケイ素酸化物 が好ましく、SiOx粉末の固体NMR(²⁹SiDD/ MAS) により測定されるスペクトルが、-70ppm を中心としたプロードなピーク、特にピークの頂点が一 65~-.85ppmの範囲にあるプロードなピーク(A 1) と、-110ppmを中心としたプロードなピー ク、特にピークの頂点が-100~-120ppmの範 囲にあるプロードなピーク(A2)の2つのピークに分 40 離しており、かつこれらのピークの面積比(A1)/ (A2) が0. 1≤(A1) / (A2) ≤1. 0、特に 0. 2≤ (A1) / (A2) ≤ 0. 8の範囲であること· が好ましい。面積比(A1)/(A2)の値が1.0よ りも大きくなると、高活性な非晶質Siの割合が大きく なり、高容量の非水電解質二次電池は得られるものの、 サイクル性が低下してしまう恐れがある。

【0009】一方、SiOxのxの範囲はx=0.6~ 1.5、特に0.67~1.30の正数であることが好ましい。xの値が0.6より小さいと高活性な非晶質S iの割合が大きくなり、高容量の非水電解質二次電池は 得られるもの、サイクル性が低下してしまう恐れがある。逆にxの値が1.5より大きいと、不活性なSiO2の割合が増加し、目的とする高容量の非水電解質二次電池の作製ができなくなる恐れがある。

【0010】なお、 SiO_x 中の酸素量は、例えば、セラミック中酸素分析装置(不活性気流下溶融法)により分析することができる。上記のxの範囲 $0.6\sim1.5$ は、酸素量として約 $25\sim$ 約46重量%に相当する。

【0011】機械的表面融合処理に用いる SiO_x 粉体の平均粒子径 d_{50} (A)は $0.2\sim20\mu$ m、好ましくは $0.5\sim10\mu$ mである。 0.2μ mより小さい平均粒子径では、粒子の表面酸化の影響が表れ、負極活物質の充放電容量が減少し、 20μ mを超える平均粒子径では電極作製時の塗布性が悪くなる。この平均粒子径では、例えばレーザー光回折法による粒度分布測定における重量平均値(或いはメジアン径)として求めることができる。

【0012】一方、導電材物質は、構成された電池にお いて、分解や変質を起こさない電子伝導性の材料であれ ばよく、具体的には、Al、Ti、Fe、Ni、Cu、 Zn、Ag、Sn、Si等の金属粉末や金属繊維、又は 天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェー ズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN 系炭素繊維、各種の樹脂焼成体等の黒鉛等が用いられ、 これらは単独で用いても、2種類以上で用いてもよい が、機械的表面融合のしやすさ及び負極活物質単位重量 当たりの充放電容量の増大のため、特に黒鉛が好適に用 いられる。また、導電材物質の形状についても特に限定 されず、球状、塊状、鱗片状、繊維状等が使用できる。 【0013】これら導電材物質の粉末は、平均粒子径 d 50 (B) が20 nm~13 μ m、好ましくは35 nm~ 10μmである。20nmより小さい平均粒子径では、 粒子の表面酸化の影響が表れ、導電性が低下し、13μ mを超える平均粒子径では電極作製時の塗布性が悪くな る。なお、これらの導電材物質の粉末は、通常入手可能 なものが使用できるが、適宜粉砕して上記平均粒子径範

【0014】本発明においては、導電材物質の平均粒子径d50(B)に対する、 SiO_x の平均粒子径d50(A)の比 [d50(A)/d50(B)]を1.5以上、好ましくは2.0以上とする。d50(A)/d50(B)を1.5以上とすることで、 SiO_x と接触する導電材物質の表面積が大きくなり、その結果、強固な表面融合化が可能となる。従って、充放電時に膨張収縮が起こっても、導電材物質の負極活物質からの剥離が防止でき、導電性を維持することでサイクル性が飛躍的に向上することができる。ここでd50(A)/d50(B)が1.5より小さいと SiO_x に接触する導電材物質の表面積が小さく、機械的表面融合の効果が小さくなってしまう。

囲としたものを用いてもよい。

【0015】なお、導電材物質の平均粒子径 d_{50} (B)に対する、 SiO_x の平均粒子径 d_{50} (A)の比 [d_{50} (A) $/d_{50}$ (B)] の上限は適宜選定されるが、[d_{50} (A) $/d_{50}$ (B)] の値を500以下、特に20以下にすることが好ましい。平均粒子径比の値が500を超えると導電材物質の粒子径が細かくなりすぎ、機械的表面融合処理中に飛散しやすくなり、機械的表面融合化の効果が小さくなってしまう場合がある。

4

【0016】機械的表面融合処理に用いる導電材物質の添加量は、好ましくは1~50重量%、特に好ましくは5~40重量%である。導電材物質の量を50重量%より多くした場合、導電材物質同士の衝突による粒子の微細化が起こる場合があり、導電性に関与しない面の出現により導電材物質の導電性が低下する恐れがある。導電材物質の添加量を1重量%未満とした場合、負極活物質への被覆が不十分となる場合があり、導電性の低下からサイクル性が悪化する恐れがある。

【0017】ここで、機械的表面融合処理の具体的な方法としては、原料粉体を運動する気体にのせて粒子同士 20 をぶつける方法、又は粉体を強固な壁にぶつける方法があり、例えばジェットミル、ハイブリダイゼーション等が挙げられる。また、狭い空間を大きな力で通す等の方法により、粉体にせん断力を与えて、その際のエネルギーを利用する方法を採ることもできる。この方法としては、例えばメカノヒュージョン [ホソカワミクロン

(株) 製] を用いる方法が挙げられる。更に、ポット中に原料粉体と反応に関しない運動体を入れて、これに振動、回転又はこれらが組み合わされた動きを与える方法、例えばボールミル、振動ボールミル、遊星ボールミル、転動ボールミル等を用いることもできる。

【0018】なお、これらの処理を用いる場合には、導電材物質を過度に粉砕してしまわないように、原料粉体の投入順序や混合方法に工夫が必要である。

【0019】被覆する導電材物質層の厚さは、導電材物質の大きさによって異なるが、通常 $20nm\sim13\mu$ mが好ましく、特に $35nm\sim10\mu$ mである。被覆する導電材物質の厚さが20nmより薄いと、電子伝導性が低下する場合があり、 13μ mより厚いと、負極活物質である SiO_x へのリチウムイオン等の電解質カチオンの拡散性が低下する恐れがある。

【0020】本発明の負極材は、上述の導電性SiOx粉末と共に、炭素粒子を含んでいることが好ましい。この場合炭素粒子としては、特に限定されるものではなく、負極全体の充放電容量向上のため、リチウムイオン等の電解質カチオンをドーピング、脱ドーピング可能なものであればよいが、特に黒鉛が好ましく、具体的には、天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛が使用可能50であり、それぞれ非晶質のものから高結晶性のものまで

使用可能である。

【0021】この場合、導電性SiOx粉末に対する炭素粒子の混合割合は、導電性SiOx粉末と炭素粒子との混合物中の炭素量が30~90重量%、特に30~70重量%となる量であることが好ましく、上記混合物中の炭素量が少なすぎると、サイクル性が悪化する場合があり、多すぎると、充放電容量が減少する場合がある。【0022】本発明において、非水電解質二次電池の負極は、上記導電性SiOx粉末、好ましくはこれと炭素粒子との混合物を含む以外に、ボリフッ化ビニリデン等の結着材、その他公知の添加剤を用いて常法により製造することができる。

【0023】また、本発明の負極材を用いた非水電解質 二次電池においては、正極(正極活物質等)、電解質、非水溶媒、セパレータ等の材料及び電池形状等は限定されず、例えば、正極活物質としては、 $LiCoO_2$ 、 $LiNiO_2$ 、 $LiMn_2O_4$ 、 V_2O_5 、 MnO_2 、 TiS_2 、 MoS_2 等の遷移金属の酸化物又はカルコゲン化合物等を用いることができる。電解質としては、例えば過塩素酸リチウム等のリチウム塩を含む非水溶液を用いることができ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、 γ -ブチルラクトン、2-メチルテトラヒドロフラン等の溶媒を1種又は2種以上を組み合わせて用いることができる。また、それ以外の種々の非水電解質や固体電解質も使用できる。

[0024]

【実施例】以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。

【0025】 [実施例1] 二酸化珪素粉末(BET比表面積= $200m^2/g$)とセラミックグレード用金属ケイ素粉末(BET比表面積= $4m^2/g$)を等モルの割合で混合した。この混合物を反応器に充填し、0.1T or r以下に減圧し、1,350℃に昇温、保持してSiO_xガスを発生させ、水冷してあるSUS製の基体にSiO_xガスを当てて冷却析出させた。

【0026】この析出物を回収した後、ボールミルで5時間粉砕し、Si O_x 粉末を製造した。得られたSi O_x 粉末は、BET比表面積25 m^2/g 、平均粒子径8 μ mであり、Si O_x (x=1.0)で表される非晶質粉末であった。

【0027】得られた SiO_x 粉末の固体NMR(^{29}S iDD/MAS)により測定されたスペクトルは、-70 ppmを中心としたプロードなピーク(A1)と、-110ppmを中心としたプロードなピーク(A2)の2つのピークに分離して測定され、これらのピークの面積比(A1)/(A2)は0.65であった。

【0028】上記 SiO_x 粉末 [平均粒子径 d_{50} (A) = 8μ m] を80g、人造黒鉛 [平均粒子径 d_{50} (B)

 $=3 \, \mu \, m$] を $20 \, g$ [SiO_x: C=8:2 (重量 比)] 用い、窒素努囲気中で $30 \, d$ 間、機械的表面融合処理を行った。機械的表面融合処理には、ホソカワミクロン (株) 製のメカノヒュージョンAM-15Fを用いた。遠心力で内壁に粉体を固定する回転ケーシングと、ケーシング内面に固定された粉体に、機械的エネルギーを付与するインナーピースからなり、ケーシングの回転数は 2, $500 \, r$ pm、ケーシングとインナーピースとの間隙は $2 \, mm$ とした。処理時の酸素濃度は 0. 1%以下であり、温度は最高 $127 \, C$ であった。

【0029】機械的表面融合処理して得られた導電性 SiO_x 粉末に、人造黒鉛(平均粒子径 5μ m)を炭素の割合が50% [$SiO_x:C=5:5$ (重量比)] となるように加え導電性 SiO_x 粉末と黒鉛との混合物を得た

【0030】この導電性SiO $_{x}$ 粉末と黒鉛との混合物に、ポリフッ化ピニリデンを、導電性SiO $_{x}$ 粉末と黒鉛との混合物:ポリフッ化ピニリデン=9:1(重量比)の割合になるように加え、更にN-メチルピロリドンを加えスラリーとし、このスラリーを厚さ20 μ mの銅箔に塗布し、120 $\mathbb C$ で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には直径20 μ mに打ち抜き負極とした。

【0031】ここで得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2-ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルム30を用いた評価用リチウムイオン二次電池を作製した。

【0032】作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置 [(株) ナガノ製]を用い、テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で充電を終了とした。放電は1mAの定電流で放電を行い、セル電圧が1.8Vを上回った時点で放電を終了し、放電容量を求めた。上記の操作を繰り返し、評価用リチウムイオン二次電池の10サイクルの充放電試験を行った。結果を表1に示す。

【0033】 [実施例2] 実施例1で得られた析出物のポールミルでの粉砕時間を3時間として、SiOx粉末 [平均粒子径 d_{50} (A) $=12\mu$ m] を4、この5iOx 大力末を10x を10x 大力 を10x を10x

【0034】機械的表面融合処理して得られた導電性S iOx粉末に、天然黒鉛(平均粒子径5μm)を炭素の 割合が50% [SiO_X: C=5:5 (重**無比**)]となるように加え導電性SiO_X粉末と黒鉛との混合物を得た。この導電性SiO_x粉末と黒鉛との混合物を用いて、実施例1と同様の方法にて負極及び評価用リチウムイオン二次電池を作製し、充放電試験を行った。結果を表1に示す。

【0035】 [実施例3] 二酸化珪素粉末(BET比表面積= $200 \,\mathrm{m}^2/\mathrm{g}$)とセラミックグレード用金属ケイ素粉末(BET比表面積= $4 \,\mathrm{m}^2/\mathrm{g}$)を等モルの割合で混合した。この混合物を反応器に充填し、 $0.1 \,\mathrm{T}$ or r以下に減圧し、20%の酸素を混合したアルゴンガスを反応器に流しながら反応器の温度を1,350%に昇温、保持して SiO_x ガスを発生させ、水冷してあるSUS製の基体に SiO_x ガスを当てて冷却析出させた。

【0036】この析出物を回収した後、ポールミルで5時間粉砕し、Si O_x 粉末を製造した。得られたSi O_x 粉末は、BET比表面積210m 2 /g、平均粒子径8 μ mであり、Si O_x (x=1.22)で表される非晶質粉末であった。

[0037] 得られた SiO_x 粉末の固体NMR (^{29}S iDD/MAS) により測定されたスペクトルは、-7 0 p p m e 中心としたプロードなピーク(A1)と、-110 p p m e 中心としたプロードなピーク(A2)の2つのピークに分離して測定され、これらのピークの面積比(A1)/ (A2) は 0. 27 であった。

【0038】上記SiO_x粉末[平均粒子径d₅₀(A)=8μm]を80g、人造黒鉛[平均粒子径d₅₀(B)=3μm]を20g[SiO_x:C=8:2(重量比)]用い、実施例1と同様の方法で機械的表面融合処理を行った。処理時の酸素濃度は0.1%以下であり、温度は最高121℃であった。

【0039】機械的表面融合処理して得られた導電性 SiO_x 粉末に、人造黒鉛(平均粒子径 5μ m)を炭素の割合が50% [SiO_x : C=5:5 (重量比)] となるように加え導電性 SiO_x 粉末と黒鉛との混合物を得た。この導電性 SiO_x 粉末と黒鉛との混合物を用い

て、実施例1と同様の方法にて負極及び評価用リチウム イオン二次電池を作製し、充放電試験を行った。結果を 表1に示す。

8

【0040】 [実施例4] 実施例1の SiO_x 粉末 [平均粒子径 d_{50} (A) $= 8 \, \mu \, m$] を $60 \, g$ 、人造黒鉛 [平均粒子径 d_{50} (B) $= 5 \, \mu \, m$] を $40 \, g$ [SiO_x : C = 6:4(重量比)] 用い、実施例1と同様の方法で機械的表面融合処理を行った。処理時の酸素濃度は0.1%以下であり、温度は最高7.8℃であった。

【0041】機械的表面融合処理して得られた導電性SiOx粉末に、人造黒鉛(平均粒子径 5μ m)を炭素の割合が50% [SiOx:C=5:5(重量比)]となるように加え導電性SiOx粉末と黒鉛との混合物を得た。この導電性SiOx粉末と黒鉛との混合物を用いて、実施例1と同様の方法にて負極及び評価用リチウムイオン二次電池を作製し、充放電試験を行った。結果を表1に示す。

【0042】 [比較例1] 実施例1の SiO_x 粉末 [平均粒子径 d_{50} (A) = 8μ m] を機械的表面融合処理せ 20 ずに用い、 SiO_x 粉末に、人造黒鉛(平均粒子径 3μ m) を炭素の割合が50% [SiO_x : C=5:5(重量比)] となるように加え SiO_x 粉末と黒鉛との混合物を得た。この SiO_x 粉末と黒鉛との混合物を得た。この SiO_x 粉末と黒鉛との混合物を用いて、実施例1と同様の方法にて負極及び評価用リチウムイオン二次電池を作製し、充放電試験を行った。結果を表1に示す。

【0043】 [比較例2] 実施例2の SiO_x 粉末 [平均粒子径 d_{50} (A) = 12μ m] を機械的表面融合処理せずに用い、 SiO_x 粉末に、人造黒鉛(平均粒子径 3μ m)を炭素の割合が50% [SiO_x : C=5:5 (重量比)] となるように加え SiO_x 粉末と黒鉛との混合物を得た。この SiO_x 粉末と黒鉛との混合物を用いて、実施例1と同様の方法にて負極及び評価用リチウムイオン二次電池を作製し、充放電試験を行った。結果を表1に示す。

【0044】 【表1】

A DOTTE - THE PARTY - THE PART									
	SiO _x /黒鉛の 平均粒子径比	最大放電容量	10サイクル目	サイクル保持率					
	$d_{50}(A)/d_{50}(B)$	[mAh/g]	[mAh/g]	[%]					
実施例1	2.67	887	867	98					
実施例2	4,00	893	857	96					
実施例3	2.67	719	698	98					
実施例4	1.60	863	723	84					
比較例1	2.67	763	511	67					
比較例2	4.00	783	556	71					

[0045]

【発明の効果】本発明によれば、高容量かつ優れたサイ

クル性を示す非水電解質二次電池を与える非水電解質二 次電池用負極材が得られる。

フロントページの続き

(72)発明者 福岡 宏文

群馬県安中市磯部2丁目13番1号 信越化

学工業株式会社群馬事業所内

(72)発明者 上野 進

群馬県安中市磯部2丁目13番1号 信越化

学工業株式会社群馬事業所内

Fターム(参考) 4G072 AA41 BB05 GG02 JJ50 QQ09

5H029 AJ03 AJ05 AK03 AK05 AL02

AL06 AL07 AL18 AM03 AM04

AM05 AM07 CJ08 HJ00 HJ01

HJ02 HJ04 HJ05

5H050 AA07 AA08 BA17 CA02 CA08

CA09 CA11 CB02 CB07 CB08

CB29 DA03 DA10 EA09 FA17

GA06 GA10 HA00 HA01 HA02

HA04 HA05