Recap: Pulse-Amplitude Modulation (PAM)

- ullet Pulse-Amplitude Modulation (PAM): sample with period T and hold for duration Δ
- Questions:
 - Without channel distortion, how to demodulate?
 - ► Can we use pulse with other shape in PAM?

Recap: Inter-Symbol Interference (ISI)

- Wired communication channels are usually low-pass filters
- E.g., optical fiber, twisted pair
- Rectangular wave will disperse and overlap with each other

Wireless channel has multipath effect

Handle ISI at Rx

Receiver recovers the modulating signal with an LTI system

• When using rectangular wave in PAM, the bandwidth is infinity

Summary on PAM

- Modulation ↔ Sampling (zero-order hold); Demodulation ↔ Recovery
- In additional to rectangular wave, other pulses can be used for PAM
- Demodulation without channel distortion
- Demodulation with channel distortion (ISI)
 - Recover modulating signal: make sure pulse shaping + channel + receiver's detector = ideal low-pass filter

Time-Division Multiplexing

AM signals with pulse-train carrier or PAM signals can be multiplexed in time domain

Discussion on TDM

- The number of multiplexed signals is determined by T and Δ
- Can T be as large as we want?
 - T is the sampling period
 - Let ω_M be the bandwidth of modulating signal
 - $ightharpoonup \frac{2\pi}{T} > 2\omega_M \Rightarrow T < \frac{\pi}{\omega_M}$
- Can Δ be as short as we want?
 - ► Shorter pulse ⇒ larger bandwidth consumption

What is more ...

Angle Modulation

Angle Modulation: Information is carried by the angle of the carrier

$$y(t) = Acos(\underbrace{\omega_c}_{ ext{Carrier Frequency}} t + \underbrace{\theta_c(t)}_{ ext{Information}})$$

• Phase Modulation (PM):

$$\theta_c(t) = \theta_0 + k_p \underbrace{x(t)}_{ ext{Modulating Signal}}$$

Frequency Modulation (FM):

$$\frac{d\theta_c(t)}{dt} = k_f x(t) \text{ or } \theta_c(t) = k_f \int_0^t x(t) dt$$

• Instantaneous frequency: $\omega_i(t) = \omega_c + rac{d heta_c(t)}{dt}$

Narrowband FM

- Modulating signal: x(t) = As(t), where $max_t|s(t)| = 1$
- Narrowband condition: $|\theta_c(t)| = |k_f A \int_0^t s(t) dt| \to 0$
- Modulated signal:

$$y(t) = \cos\left[\omega_c t + k_f A \int_0^t s(t) dt\right]$$

$$= \cos\omega_c t \cos\left(k_f A \int_0^t s(t) dt\right) - \sin\omega_c t \sin\left(k_f A \int_0^t s(t) dt\right)$$

$$\approx \cos\omega_c t - \left(k_f A \int_0^t s(t) dt\right) \sin\omega_c t$$

- Observation: Narrowband FM is similar to AM
- How is the power efficiency of narrowband FM?

Narrowband FM Example

- Let $x(t) = A\cos\omega_m t$, $\theta_c(t) = \frac{k_f A}{\omega_m} (\sin\omega_m t)$
- Narrowband Condition: modulation index $m = \frac{k_f A}{\omega_m} \to 0$
- $y(t) \approx cos\omega_c t m(sin\omega_m t)(sin\omega_c t)$
- Observation: Bandwidth $(2\omega_m)$ of narrowband FM signal is determined by the bandwidth of modulating signal, independent of its amplitude

Wideband FM

- Example: $x(t) = A\cos\omega_m t$
- Modulated signal: $y(t) = cos(\omega_c t + \frac{k_f A}{\omega_m} sin\omega_m t) = cos(\omega_c t + m sin\omega_m t)$
- Using Bessel functions J_n , we have

$$cos(\omega_{c}t + msin\omega_{m}t) = J_{0}(m)cos\omega_{c}t$$

$$-J_{1}(m)(cos(\omega_{c} - \omega_{m})t - cos(\omega_{c} + \omega_{m})t)$$

$$+J_{2}(m)(cos(\omega_{c} - 2\omega_{m})t + cos(\omega_{c} + 2\omega_{m})t)$$

$$-...$$

$$= \sum_{n=-\infty}^{\infty} J_{n}(m)cos(\omega_{c}t + n\omega_{m}t)$$

Bandwidth of Wideband FM

m	J0	J1	J2	J3	J4	J5	J6	J7	J8
0	1								
0.25	0.98	0.12							
0.5	0.94	0.24	0.03						
1.0	0.77	0.44	0.11	0.02					
2.0	0.22	0.58	0.35	0.13	0.03				
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01		
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02

- If m = 0.25, the bandwidth is $2\omega_m$
- If m=0.5, the bandwidth is $4\omega_m$
- ullet Carson's rule: the bandwidth of FM signal is approximated to be $2(m+1)\omega_m$

