1 Introduction

- 1. Suppose we have some sequence T, a combination with repetition of M tokens taken from a set of $W = \{w_k, 0 \le k < N\}$.
- 2. Now, we define the one hot encoding $\mathbf{e}_k \in B^N$, where \mathbf{e}_k is the k-esim column of \mathbf{I}_N , the identity matrix in $\Re^{N \times N}$. Thus, we assign the vector \mathbf{e}_k to each token w_k .
- 3. Then, we define a matrix $\mathbf{D} \in B^{N \times M}$, where $T_m = w_k$, $0 \leq m < M$ implies $\mathbf{D}_m \doteq \mathbf{e}_k$.

Note that

- 1. $\mathbf{D} \cdot \mathbf{D}^t = \mathbf{F}$, where $\mathbf{F} \in \Re^{N \times N}$ is a diagonal matrix such that $D_{i,k} \times D_{i,k} = 1$ or $D_{i,k} \times D_{i,k} = 0$, $F_{i,i} = \sum_{k=1}^{M} D_{i,k} \times D_{k,i} = F_{i,i} \neq 0$, $0 < F_{i,i} < M$, $F_{i,j} = \sum_{k=1}^{M} D_{i,k} \times D_{k,j} = F_{i,j} = 0$.
- 2. $\mathbf{D} \cdot \mathbf{u} = \mathbf{f}$, where $\mathbf{f} \in \mathbb{R}^N$ is a vector such that $f_i = \sum_k D_{i,k} = F_{i,i} \neq 0$.

We want to evaluate

$$\mathbf{D} \cdot \left(\mathbf{I}_m - \frac{\mathbf{u} \cdot \mathbf{u}^t}{m} \right) \cdot \mathbf{x} = \lambda \, \mathbf{y},\tag{1}$$

$$\left(\mathbf{I}_m - \frac{\mathbf{u} \cdot \mathbf{u}^t}{m}\right) \cdot \mathbf{D}^t \cdot \mathbf{y} = \lambda \,\mathbf{x}.\tag{2}$$