

Multilevel Bivariate Areal Modelling for School Data

an application with R-INLA

Leonardo Cefalo *Università degli Studi di Bari Aldo Moro*Virgilio Gómez – Rubio, *Universidad de Castilla – La Mancha*

Scope

- Study how the Invalsi scores at the 2nd year of high schools in Italian and Mathematics are driven by:
 - 1) The infrastructural state of municipalities
 - 2) Unobservable spatial effects → areal modelling
- Observation period: school year 2022/23

Covariates

Choice: forward selection

- 1. Share of high schools served by **urban public transport**
- 2. Share of high schools served by ultra-broadband connection
- 3. ISTAT inner areas municipality taxonomy:
 - A B: Central (infrastructural poles) → model: Central
 - C D: Intermediate → model: 1 Central Peripheral
 - E F: Peripheral → model: Peripheral

Spatial structure – random effects

- Data observed only in 874 municipalities over ab. 7900:
 few links between municipalities
- How to define the adjacency structure?
 - > Spatial random effects at a higher level:
 - a) Provinces: 105 areas
 - b) Catchment areas of infrastructural poles (ISTAT inner areas taxonomy): 206 areas

Model outline

Generic score for j-th municipality of i-th province:

$$\begin{pmatrix} y_{1,i,j} \\ y_{2,i,j} \end{pmatrix} = x_{1,i,j} \begin{pmatrix} \beta_{11} \\ \beta_{12} \end{pmatrix} + \dots + x_{p,i,j} \begin{pmatrix} \beta_{p1} \\ \beta_{p2} \end{pmatrix} + \begin{pmatrix} z_{1,i} \\ z_{2,i} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,i,j} \\ \varepsilon_{2,i,j} \end{pmatrix}$$

- y: Invalsi score; x: covariates; β: fixed effects; z: random effects; ε: error term
- Dependence is accounted for by the random effect
- Mathematics: Normal model; Italian: skew-Normal model

IMCAR model (Mardia, 1988)

$$\begin{cases} \mathbf{z}(s) \sim N(\mathbf{0}, [\mathbf{\Lambda} \otimes (\mathbf{D} - \mathbf{W})]^{-1}) \\ \mathbf{\Lambda}^{-1} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{cases}$$

- W: binary neighbourhood matrix (1: neighbours; 0: not neighbours)
- D: diagonal matrix of the number of neighbours of each area
- Λ: global precision parameter:
 - dense $\Lambda \rightarrow$ correlated z processes
 - diagonal $\Lambda \rightarrow$ independent z processes

IMCAR model (Mardia, 1988)

- Multivariate extension of the popular Besag model (1974)
- Singular precision matrix → improper model
 - Sum-to-zero constraint on all connected components
- Then, each connected component needs a specific intercept

Besag, J.: Spatial Interaction and the Statistical Analysis of Lattice Systems. J. R. Stat. Soc. Ser. B 36(2), 192–236 (1974)

Mardia, K.V.: Multi-dimensional multivariate Gaussian Markov random fields with application to image processing. JMA 24, 265-284 (1988)

PMCAR model (Gelfand, 2003)

$$\mathbf{z}(s) \sim N(\mathbf{0}, [\mathbf{\Lambda} \otimes (\mathbf{D} - \boldsymbol{\alpha} \mathbf{W})]^{-1})$$

- Proper model: the precision matrix now has full rank
- Implies an additional hyperparameter $\alpha \in [0; 1]$
- The improper model can be seen as the limit case for $\alpha \to 1$

Gelfand A.E., Vounatsou P.: Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4(1), 11-25 (2003)

Restricted Regression (Reich et al. 2006)

- ullet Spatial confounding: linear dependence between x and z
 - > Restriction on z
 - > z is **projected** onto the **orthogonal** space to the column space of x
- Very strong hypothesis → shrinks the posterior variance of fixed effects → questioned in literature

Reich BJ, Hodges JS, Zadnik V.: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics; 62(4):1197-1206 (2006)

Model implementation

- Multivariate CAR models can be easily implemented with R-INLA
- Specific R package: INLAMSM
- A number of models is supported, both as correlated and independent ones

Palmí-Perales, F., Gómez-Rubio, V., Martinez-Beneito, M. A.: Bayesian Multivariate Spatial Models for Lattice Data with INLA. J. Stat. Softw. 98(2), 1–29 (2021)

Model comparison

Model	z level	Resti
ICAR	Prov	Unr
ICAR	Prov	Restr
ICAR	Pole	Unr
ICAR	Pole	Restr
PCAR	Prov	Unr
PCAR	Prov	Restr
PCAR	Pole	Unr
PCAR	Pole	Restr
NULL	_	_

Independent		Dependent			
СРО	DIC	MSE	СРО	DIC	MSE
6.720,84	13.439,36	239,03	6.688,50	13.376,42	235,09
6.809,53	13.613,08	254,59	6.763,20	13.524,43	251,58
6.729,47	13.456,59	237,90	6.693,44	13.386,56	232,08
6.814,89	13.623,89	246,81	6.753,73	13.506,98	239,22
6.721,18	13.439,41	238,51	6.688,52	13.376,46	233,77
6.869,74	13.732,62	269,53	6.819,30	13.636,30	265,98
6.730,24	13.458,00	237,35	6.694,18	13.388,09	230,39
6.876,65	13.746,51	260,24	6.808,12	13.615,77	250,75
6.979,62	13.959.54	346,1			

- Correlated models outperform independent ones
- All spatial models outperform the null one
- Unrestricted models are preferable

Fixed effects summary

Subj	Covariate:	mean	q0.025	q0.975	sd	signif.
MAT	Intercept	-0,948	-8,073	6,208	3,546	
MAT	Central	2,726	0,942	4,510	0,910	*
MAT	Peripheral	-2,297	-4,270	-0,324	1,006	*
MAT	Broadband activ.	3,304	1,193	5,414	1,076	*
MAT	Urban public tpt	2,527	0,459	4,596	1,055	*
ITA	Intercept	-1,485	-7,450	4,483	2,965	
ITA	Central	2,421	0,477	4,379	0,995	*
ITA	Peripheral	-1,896	-3,949	0,162	1,048	
ITA	Broadband activ.	2,344	0,136	4,560	1,128	*
ITA	Urban public tpt	2,905	0,809	5,007	1,070	*

- Model: unrestricted PCAR with province-level correlated random effects
- Flat prior used for all random effects
- All covariates range [0, 1]
- The ISTAT inner areas taxonomy seems to be the strongest driver

Hyperparameters summary

Subj	Hyperparameter	Median	q0.025	q0.975	sd
-	alpha	0,987792	0,954111	0,996503	0,011304
MAT	Random eff. variance	48,17235	29,7795	78,66275	12,51115
ITA	Random eff. variance	31,36284	18,62418	53,20078	8,857486
-	Random eff. correlation	0,967596	0,8789	0,99278	0,030281
MAT	Error variance	110,4913	100,4776	121,681	5,399837
ITA	Error scale param.	131,3615	118,9709	145,085	6,650431
ITA	Error skewness	-0,36348	-0,48862	-0,22397	0,067343

- Model: unrestricted PCAR with correlated province-level random effects
- Wishart prior on random effects precision
- Flat prior on the square roots of error scale parameters
- High within provinces
 variability unexplained by covariates

Preliminary findingss

- Assuming that x and z are independent leads to poor model accuracy → spatial confounding should not be removed via restricted regression
- Both the infrastructural datum (covariates) and the territorial structure are necessary to explain disparities in Invalsi scores
- Skewness in Italian scores cannot be explained by existing information and cannot be ignored

Fitted values - Mathematics

Model:
unrestricted
PCAR with
correlated
province-level
random effects

Fitted values - Italian

Model:
unrestricted
PCAR with
correlated
province-level
random effects

Possible future developments

- Implementing scaled IMCAR model
- > Implementing more recent de-confounding methodologies
- Studying the accuracy of the Laplace approximation for Skew-Normal data
- Extending the analysis to other school grades

Thank you for your attention

