Ejercicios del tema y su valor:

1-primeras derivadas numéricas (1p), 2-diferencias centradas: tabla (2p), 3-más diferencias centradas (1p), 4-diferencias hacia adelante (3p), 5-más derivadas numéricas (3p)

Entrega: un ejercicio obligatorio: el núm. 1; un ejercicio optativo: a elegir entre los restantes

Derivación numérica.

1. Cómo aproximar la **derivada** de una función, de la que se conoce su forma analítica, en un punto cualquiera x_0 .

diferencias hacia adelante

El desarrollo de Taylor de $f(x_0 + h)$ en el entorno de x_0 puede escribirse en la forma

$$f(x_0 + h) = f(x_0) + hf^{(1)}(x_0) + \frac{h^2}{2!}f^{(2)}(x_0) + \frac{h^3}{3!}f^{(3)}(x_0) + \frac{h^4}{4!}f^{(4)}(x_0) + \cdots$$
 (1)

y despejando de la ecuación anterior $f^{(1)}(x_0)$ resulta

$$f^{(1)}(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f^{(2)}(x_0) - \frac{h^2}{6}f^{(3)}(x_0) - \frac{h^3}{24}f^{(4)}(x_0) - \cdots$$
 (2)

Si en (2) despreciamos los términos en que h aparece elevado a potencias iguales a o mayores que dos, resulta que la aproximación de la primera derivada puede llevarse a cabo por

$$f^{(1)}(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + E(h)$$
(3)

donde E(h) es el error de truncamiento y viene dado por

$$E(h) \approx -\frac{h}{2}f^{(2)}(x_0) \tag{4}$$

• diferencias hacia atrás

Procediendo de forma análoga para $f(x_0 - h)$, resulta

$$f(x_o - h) = f(x_0) - hf^{(1)}(x_0) + \frac{h^2}{2!}f^{(2)}(x_0) - \frac{h^3}{3!}f^{(3)}(x_0) + \frac{h^4}{4!}f^{(4)}(x_0) + \cdots$$
 (5)

por lo tanto,

$$f^{(1)}(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \frac{h}{2}f^{(2)}(x_0) - \frac{h^2}{6}f^{(3)}(x_0) + \frac{h^3}{24}f^{(4)}(x_0) - \cdots$$
 (6)

despreciando en (6) los términos h^2 y superiores, nos queda

$$f^{(1)}(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + E(h)$$
(7)

con un error de truncamiento

$$E(h) \approx \frac{h}{2} f^{(2)}(x_0) \tag{8}$$

diferencias centradas

Si a la ecuación (1) le restamos la ecuación (5), obtenemos

$$f(x_o + h) - f(x_o - h) = 2hf^{(1)}(x_0) + \frac{2h^3}{3!}f^{(3)}(x_0) + \cdots$$
(9)

con lo que

$$f^{(1)}(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + E(h^2)$$
(10)

donde el error de truncamiento es

$$E(h) \approx \frac{h^2}{6} f^{(3)}(x_0) \tag{11}$$

EJERCICIO 1:

Implementar un programa que realice la derivación numérica de la función

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

en $x_0 = 0.5$, con h = 0.25 y haciendo uso de las ecs. (3), (7) y (10), obteniéndose asimismo los correspondientes errores¹.

RESULTADO:

ec. 3: -1.1547 error 0.2422 ec. 7: -0.7141 error 0.1984 ec. 10: -0.9344 error 0.0219

Las expresiones (3), (7) y (10) proporcionan el valor de la derivada $f^{(1)}(x_0)$ calculando la función en dos puntos. Sin embargo, a medida que h decrece, el error de truncamiento es menor en la fórmula centrada: dentro de las fórmulas del mismo número puntos, la mayor precisión en los resultados corresponde al proporcionado por las fórmulas centradas.

Es posible deducir expresiones de $f^{(1)}(x_0)$ con un error de truncamiento menor que el indicado en (11). Procedamos para ello como sigue, considerando:

$$f(x_o + 2h) = f(x_0) + 2hf^{(1)}(x_0) + \frac{4h^2}{2!}f^{(2)}(x_0) + \frac{8h^3}{3!}f^{(3)}(x_0) + \frac{16h^4}{4!}f^{(4)}(x_0) + \cdots$$
 (12)

$$f(x_o - 2h) = f(x_0) - 2hf^{(1)}(x_0) + \frac{4h^2}{2!}f^{(2)}(x_0) - \frac{8h^3}{3!}f^{(3)}(x_0) + \frac{16h^4}{4!}f^{(4)}(x_0) + \cdots$$
 (13)

¹ Valor *exacto* de la derivada: -0.9125

de forma que al restar las dos ecuaciones anteriores, se llega a que

$$f(x_o + 2h) - f(x_o - 2h) = 4hf^{(1)}(x_0) + \frac{16h^3}{3!}f^{(3)}(x_0) + \frac{64h^5}{5!}f^{(5)}(x_0) + \cdots$$
 (14)

Ahora, si la ecuación (9) la multiplicamos por 8 y al resultado obtenido le restamos la ecuación (14), nos queda

$$-f(x_o+2h)+8f(x_o+h)-8f(x_o-h)+f(x_o-2h)=12hf^{(1)}(x_0)-\frac{48h^5}{120}f^{(5)}(x_0)+\cdots (15)$$

Ello finalmente nos conduce a

$$f^{(1)}(x_0) = \frac{-f(x_o + 2h) + 8f(x_o + h) - 8f(x_o - h) + f(x_o - 2h)}{12h} + E(h^4)$$
 (16)

siendo ahora el error de truncamiento

$$E(h^4) \approx \frac{h^4}{30} f^{(5)}(x_0) \tag{17}$$

Tanto la expresión (10) como la (16) proporcionan el valor de $f^{(1)}(x_0)$; sin embargo, el valor obtenido por esta última converge más rápidamente a la solución, como puede verse en la tabla 1.

h	ecuación (10)	ecuación (16)
1.0000000000	-2.88000000	-3.88000000
0.1000000000	-3.87000000	-3.88000000
0.0100000000	-3.87990000	-3.88000000
0.0010000000	-3.87999900	-3.88000000
0.0001000000	-3.87999999	-3.88000000
0.0000100000	-3.87999999	-3.88000000
0.0000010000	-3.87999999	-3.87999999
0.0000001000	-3.87999999	-3.87999999
0.0000000100	-3.88000001	-3.88000000
0.0000000010	-3.88000032	-3.88000054
0.0000000001	-3.87999854	-3.87999780

Tab. 1: Comparación de los resultados de $f^{(1)}$ obtenidos mediante las ecuaciones (10) y (16)

EJERCICIO 2:

Implementar un programa que realice la derivación numérica de la función

$$f(x) = x^3 - 3x^2 - x + 3$$

en el punto $x_0 = 1.2$ mediante las ecs. (10) y (16) y muestre los resultados obtenidos por ambos métodos (ver tab. 1). Los resultados serán mostrados en pantalla de modo ordenado y claro.

2. Cómo aproximar la **derivada de orden k** de una función, de la que se conoce su forma analítica, en un punto cualquiera x_0 .

El mismo procedimiento que se ha seguido al deducir fórmulas para calcular numéricamente las derivadas primeras puede usarse para construir derivadas de orden superior partiendo del desarrollo de Taylor y eliminando las derivadas primeras. Por ejemplo, para la segunda derivada podríamos obtener

con tres puntos:

$$f^{(2)}(x_0) = \frac{f(x_o + h) - 2f(x_o) + f(x_o - h)}{h^2}$$
(18)

con cinco puntos:

$$f^{(2)}(x_0) = \frac{-f(x_o + 2h) + 16f(x_o + h) - 30f(x_o) + 16f(x_o - h) - f(x_o - 2h)}{12h^2}$$
(19)

EJERCICIO 3:

La siguiente tabla corresponde a una función desconocida $\varphi = \varphi(x)$.

$x_1 = 0.6$	$\varphi(x_1) = 1.24110$
$x_2 = 0.7$	$\varphi(x_2) = 1.40917$
$x_3 = 0.8$	$\varphi(x_3) = 1.66863$
$x_4 = 0.9$	$\varphi(x_4) = 2.07301$
$x_5 = 1.0$	$\varphi(x_5) = 2.71828$

Aproxímese la derivada $\varphi'(x)$ en x = 0.8 usando la fórmula de derivación centrada de dos puntos, ec. (10), y usando los únicos dos valores de h posibles si **solo se dispone** de la información recogida en dicha tabla.

Usando esa misma información de la función, aproxímese también dicha derivada usando la fórmula (16) de derivación centrada de cuatro puntos.

RESULTADO:

ec.10, h=0.2: 3.69295 ec.10, h=0.1: 3.31919 ec.16, h=0.1: 3.19460

EJERCICIO 4:

Sea la función $f(x) = x\sqrt{9-x^2} + 9 \ arc sen \frac{x}{3}$.

Considérese h = 0.15 para obtener su derivada hacia adelante, ec. (3), en $x = x_0$ y siendo $x_0 \in \{-2.5, -2.0, -1.5, -1.0\}$.

Obténgase el error cometido en cada caso.

Represéntense gráficamente los cuatro puntos encontrados, junto a (compartiendo unos mismos ejes~X~e~Y) la gráfica de la función derivada exacta en el intervalo comprendido entre -2.75 y 2.75.

EJERCICIO 5:

Aproximar la derivada de la función $f(x) = x^5 - 3x^4 - 11x^3 + 19x^2 + 10x - 24$ mediante la fórmula (10) de derivación centrada de dos puntos y también mediante las fórmulas (3) y (7), considerándose siempre h = 0.1: se mostrará en pantalla la gráfica de la función f (atención: efe), acompañándose de la representación gráfica de las tres derivadas numéricas indicadas (combinándolas en los $mismos\ ejes\ X\ e\ Y$). Pedimos tres figuras separadas:

- en el intervalo de extremos -2.5, 2.5 ("figura a")
- en el intervalo de extremos -1.5, 1.5 ("figura b")
- en el intervalo de extremos -1.0, 1.0 ("figura c")