Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Γραφήματα

- Μοντελοποίηση πολλών σημαντικών προβλημάτων
 (π.χ. τηλεπικοινωνιακά, οδικά, ηλεκτρικά, κοινωνικά δίκτυα συνεκτικότητα, διαδρομές, δρομολόγηση, ανάθεση πόρων, layouts, ...).
- Γράφημα G(V, E): V κορυφέςΕ ακμές (ζεύγη σχετιζόμενων κορυφών)
 - Tάξη |V| = |V(G)| = n και μέγεθος |E| = |E(G)| = m.
 - Κατευθυνόμενα και μη-κατευθυνόμενα γραφήματα.
 - Bάρη (μήκη) στις ακμές $G(V,E,w)\,,\; w:E\mapsto {\rm I\!R}$

Γραφήματα

- □ Δεδομένου γραφήματος G(V, E):
 - lacksquare Γειτονιά κορυφής ν: $N(v)=\{u\in V:\{v,u\}\in E\}$
 - □ Επεκταμένη γειτονιά κορυφής ν: N+(v) = N(v)+v
 - Γειτονιά συνόλου κορυφών X:

$$N(X) = \{u \in V \setminus X : \{v, u\} \in E$$
 για κάποια κορυφή $v \in X\}$

- Απλό γράφημα: χωρίς ανακυκλώσεις ή παράλληλες ακμές.
 - Θεωρούμε απλά μη κατευθυνόμενα γραφήματα, εκτός αν αναφέρεται διαφορετικά.

Βαθμός Κορυφής

- Βαθμός κορυφής v: deg(v) = |N(v)| (#ακμών που προσπίπτουν στη v).
 - Κατευθυνόμενα: ἐσω-βαθμός και ἑξω-βαθμός.
 - Μη-κατευθυνόμενο G(V, Ε): $\sum_{v \in V} \deg(v) = 2 |E|$
 - Κάθε γράφημα έχει άρτιο πλήθος κορυφών περιττού βαθμού.
 - δ(G) / Δ(G): ελάχιστος (μέγιστος) βαθμός κορυφής στο G.
 - k-κανονικό γράφημα: όλες οι κορυφές βαθμού k.
- □ Νδο σε κάθε απλό γράφημα, δύο κορυφές έχουν ίδιο βαθμό.
 - "Εχουμε η κορυφές και η-1 πιθανές τιμές βαθμού για κάθε κορυφή.
 - Πιθανές τιμές είτε {0, 1, ..., n-2} είτε {1, 2, ..., n-1}.

Παραδείγματα

- Υπάρχει(;) απλό μη κατευθυνόμενο γράφημα με:
 - 8 κορυφές: 1 βαθμού 2, 2 βαθμού 3, 4 βαθμού 4, και 1 βαθμού 5.
 - Όχι, ἀθροισμα βαθμών περιττός (ἡ ισοδύναμα, περιττό πλήθος κορυφών με περιττό βαθμό).
 - 6 κορυφές: 2 βαθμού 2, 2 βαθμού 3, 1 βαθμού 4, και 1 βαθμού 6.
 - □ Όχι, σε κάθε απλό γράφημα G με n κορυφές, Δ(G) ≤ n − 1.
 - 5 κορυφές: 1 βαθμού 2 και 4 βαθμού 4.
 - Όχι, αφού οι 4 κορυφές με βαθμό 4 συνδέονται με όλες τις άλλες, ο ελάχιστος βαθμός κορυφής πρέπει να είναι 4.
 - 9 κορυφές: 1 βαθμού 1, 2 βαθμού 3, 2 βαθμού 4, 1 βαθμού 5,
 1 βαθμού 6, και 2 βαθμού 8.
 - Όχι, αφού οι 2 κορυφές με βαθμό 8 συνδέονται με όλες τις άλλες, ελάχιστος βαθμός κορυφής πρέπει να είναι 2.

Πλήρες και Συμπληρωματικό Γράφημα

- Πλήρες γράφημα η κορυφών: Κ_n
 - □ Όλα τα ζεύγη κορυφών συνδέονται με ακμή: n(n-1)/2 ακμές.

Πλήρες και Συμπληρωματικό Γράφημα

- Πλήρες γράφημα η κορυφών: Κ_n
 - Όλα τα ζεύγη κορυφών συνδέονται με ακμή: n(n-1)/2 ακμές.
- \square Συμπληρωματικό γράφημα \overline{G} γραφήματος G.
 - Ίδιο σύνολο κορυφών. Ακμές: όσες δεν υπάρχουν στο G.
 - lacksquare Συμπληρωματικό του \overline{G} : αρχικό γράφημα ${\sf G.}$

Διμερές Γράφημα

- Ανεξάρτητο σύνολο: σύνολο κορυφών που δεν συνδέονται με ακμή.
- Διμερές γράφημα: υπάρχει διαμέριση κορυφών σε δύο ανεξάρτητα σύνολα.
 - G(X, Y, E): X και Y ανεξάρτητα σύνολα, ακμές μόνο μεταξύ κορυφών X και Y.
 - G διμερές ανν δεν έχει κύκλους περιττού μήκους.
 - Κύκλος η κορυφών C_n: διμερές ανν η άρτιος.

Διμερές Γράφημα

- Ανεξάρτητο σύνολο: σύνολο κορυφών που δεν συνδέονται με ακμή.
- Διμερές γράφημα: υπάρχει διαμέριση κορυφών σε δύο ανεξάρτητα σύνολα.
 - G(X, Y, E): X και Y ανεξάρτητα σύνολα, ακμές μόνο μεταξύ κορυφών X και Y.
 - G διμερές ανν δεν έχει κύκλους περιττού μήκους.
 - Κύκλος η κορυφών C_n: διμερές ανν η άρτιος.
- □ Πλήρες διμερές γράφημα K_{n,m}:
 - Δύο ανεξάρτητα σύνολα με η και m κορυφές.
 - 'Ολες οι n·m ακμές μεταξύ τους.
 - Π.χ. K_{3,3} έχει 9 ακμές.

Χαρακτηρισμός Διμερών Γραφημάτων

- Γράφημα G(V, E) είναι διμερές ανν το G δεν έχει κύκλους περιττού μήκους.
 - Αν G διμερές με ανεξάρτητα σύνολα X και Y, κάθε κύκλος C έχει τόσες κορυφές του Χ όσες και του Υ: άρα C άρτιου μήκους.
 - Αντίστροφο: έστω ότι G δεν έχει κύκλους περιττού μήκους.
 - Αυθαίρετη κορυφή s και αποστάσεις d(s, u) προς κάθε κορυφή u.
 - $X = \{ u : d(s, u) ἀρτιος \} και Y = \{ u : d(s, v) περιττός \}$
 - Έστω ότι δύο κορυφές x, y στο X συνδέονται με ακμή.
 - Έστω w πρώτη κοινή κορυφή συντομότερων x s και y s μονοπατιών (υπάρχει πάντα, αφού μονοπάτια καταλήγουν στην s).
 - Αμφότερα συντομότερα μονοπάτια: τμήματα w s μήκους d(s, w).
 - Άρα d(w, x)+d(w, y) είναι άρτιος και (w, ..., x, y, ..., w) είναι κύκλος περιττού μήκους - άτοπο!
- Κατασκευαστική απόδειξη με «πιστοποιητικό ορθότητας»!

Παραδείγματα

- Έστω διμερές γράφημα G(X, Y, E) με η κορυφές. Νδο:
 - - Κάθε ακμή έχει το ένα άκρο της στο X και το άλλο στο Y.
 - $\Delta(G) + \delta(G) \le n$.
 - \square Υποθέτουμε ότι $|X| \le |Y|$.
 - Τότε $\Delta(G)$ ≤ |Y|.
 - Έστω κορυφή u ∈ Y. Τότε δ(G) ≤ deg(u) ≤ |X|.
- Να δείξετε (με γραφοθεωρητικά $\binom{n+m}{2} = \binom{n}{2} + \binom{m}{2} + mn$ επιχειρήματα) ότι:

Ειδικά Γραφήματα

- Πλήρες γράφημα n κορυφών: K_n
- Πλήρες διμερές γράφημα με n και m κορυφές: K_{n,m}
 - Αστέρας: Κ_{1,n}
- Απλό μονοπάτι με η κορυφές: Ρη
- Απλός κύκλος με n κορυφές: C_n
- Τροχός τάξης n (n+1 κορυφές): W_n
- Υπερκύβος διάστασης n (2ⁿ κορυφές): Q_n (ή Q(n))
 - Μια κορυφή για κάθε δυαδική συμβολοσειρά μήκους η
 - Κορυφές συνδέονται μεταξύ τους αν αντίστοιχες δυαδικές συμβ/ρες διαφέρουν μόνο σε ένα bit
 - Ιδιότητες: κανονικό, διμερές, διάμετρος, ...
 - Αναδρομικός ορισμός (για απόδειξη ιδιοτήτων με επαγωγή).

(Απλή) Άσκηση

- Nα δείξετε (με επαγωγή) ότι για κάθε n ≥ 1, ο υπερκύβος Q(n) διάστασης η είναι διμερές γράφημα.
 - Βάση: Q(1) έχει δύο κορυφές, διμερές γράφημα.
 - Επαγ. Υπόθεση: Για αυθαίρετο $n \ge 1$, υποθέτουμε ότι Q(n) διμερές γράφημα.
 - Επαγ. Βήμα: Θδο Q(n+1) είναι διμερές γράφημα.
 - Θεωρούμε δύο αντίγραφα $Q_0(n)$ και $Q_1(n)$ του υπερκύβου διάστασης η.
 - Επαγ. υπόθεση: $Q_0(n)$ και $Q_1(n)$ διμερή γραφήματα.
 - A_0 και B_0 διαμέριση κορυφών του $Q_0(n)$.
 - Α₁ και Β₁ αντίστοιχη διαμέριση κορυφών του $Q_1(n)$.
 - Από αναδρ. ορισμό, Q(n+1) προκύπτει συνδέοντας αντίστοιχες κορυφές (και μόνο) των $Q_0(n)$ και $Q_1(n)$.
 - Άρα $A_0 \cup B_1$ και $B_0 \cup A_1$ ανεξάρτητα σύνολα, και Q(n+1) είναι διμερές γράφημα.

Υπο-Γραφήματα

- Υπογράφημα G'(V', E') του G(V, E) όταν V' ⊆ V και E' ⊆ E.
 - Επικαλύπτον (spanning) όταν V' = V, δηλ. έχει όλες τις κορυφές του αρχικού γραφήματος, επιλέγουμε τις ακμές που τις συνδέουν.
 - Επαγόμενο (induced) όταν $E' = \{(u,v) \in E : u,v \in V'\}$ δηλ. έχει όλες τις ακμές του αρχικού μεταξύ των επιλεγμένων κορυφών.

Διμερή Υπογραφήματα

- Κάθε γράφημα G(V, E) με m ακμές περιέχει διμερές υπογράφημα G'(X, Y, E') με τουλάχιστον m/2 ακμές.
 - Βλ. και πρόβλημα ΜΑΧ CUT. Ισχύει και για πολυγραφήματα χωρίς ανακυκλώσεις.
- Απόδειξη με πιθανοτική μέθοδο:
 - Κάθε κορυφή στο Χ με πιθανότητα 1/2, διαφορετικά στο Υ.
 - \forall ακμή {u, v}, Prob[{u, v} μεταξύ X και Y] = 1/2.
 - Γραμμικότητα μέσης τιμής: Exp[#ακμών μεταξύ X και Y] = m/2
 - Άρα υπάρχει διαμέριση (X, Y) ώστε #ακμών μεταξύ X και Y ≥ m/2
- Κατασκευαστική απόδειξη:
 - Εξετάζουμε κορυφές μία-μία με τη σειρά. Κορυφή υ στο Χ αν έχει πιο πολλούς γείτονες στο Υ από ότι στο Χ, διαφορετικά στο Υ.
 - «Κρατάμε» μεταξύ Χ και Υ τουλάχιστον τόσες ακμές όσες «διώχνουμε». Τυπική απόδειξη με επαγωγή στον #κορυφών.

Μεγάλα Ανεξάρτητα Σύνολα

- Κάθε γράφημα G(V, E) με n κορυφές και m = nd/2 ακμές, για κάποιο $d \ge 1$, έχει ανεξάρτητο σύνολο μεγέθους $\ge n/(2d)$
- Απόδειξη με πιθανοτική μέθοδο:
 - Τυχαίο υποσύνολο V_1 ⊆ V: κάθε κορυφή u στο V_1 με πιθανότητα p.

 - $G[V_1]$ (πιθανότατα) **δεν** είναι ανεξάρτητο σύνολο.
 - Αλλά αφαιρώντας αναμενόμενο #κορυφών $\le ndp^2/2$ από V_1 (το ένα άκρο κάθε ακμής στο G[V₁]) παίρνουμε ανεξάρτητο σύνολο.
 - Exp[#κορυφών που μένουν] ≥ np ndp²/2 = np(1 dp/2).
 - Αυτό μεγιστοποιείται για p = 1/d, και έχουμε $Exp[#κορυφών που απομένουν σε ανεξάρτητο σύνολο] <math>\geq n/(2d)$
 - Άρα υπάρχει ανεξάρτητο σύνολο με $\geq n/(2d)$ κορυφές.

Αριθμοί Ramsey

- Σε κάθε σύνολο 6 ανθρώπων, είτε 3 φίλοι είτε 3 άγνωστοι.
 - Για κάθε χρωματισμό ακμών στο K₆ με μπλε και κόκκινο, υπάρχει μονοχρωματικό Κ₃.
 - Ισοδύναμα, κάθε γράφημα 6 κορυφών έχει είτε τρίγωνο είτε ανεξάρτητο σύνολο μεγέθους 3.
 - **Δεν** ισχύει για το K_5 (κύκλος C_5 δεν έχει ούτε τρίγωνο ούτε ανεξάρτητο σύνολο μεγέθους 3).

Αριθμοί Ramsey

- Σε κάθε σύνολο 6 ανθρώπων, είτε 3 φίλοι είτε 3 άγνωστοι.
 - Για κάθε χρωματισμό ακμών στο K₆ με μπλε και κόκκινο, υπάρχει μονοχρωματικό Κ₃.
- Υπάρχει άνθρωπος α που έχει είτε 3 φίλους είτε 3 αγνώστους.
 - Χβτγ. υποθέτουμε ότι α έχει 3 φίλους: β, γ, δ.
 - Αν στους β, γ, δ δύο φίλοι (π.χ. β. γ): έχουμε 3 φίλους (α, β, γ).
 - Αν στους β, γ, δ όλοι άγνωστοι: έχουμε 3 άγνωστους (α, β, γ).
- $R(m, s) = ελάχιστο η τω για κάθε χρωματισμό ακμών του <math>K_n$ με μπλε και κόκκινο, υπάρχει είτε μπλε K_m είτε κόκκινο K_s.
 - $R(m, s) = R(s, m) \text{ kai } R(m, s) \le R(m 1, s) + R(m, s 1).$
 - Αντίστοιχα για περισσότερα από 2 χρώματα.
 - ∀ χρωματισμό ακμών ενός μεγάλου πλήρους γραφήματος, υπάρχει μονοχρωματικό πλήρες υπογράφημα επιθυμητού μεγέθους.

Διαδρομές, Μονοπάτια, και Κύκλοι

- Διαδρομή Μονοκονδυλιά Μονοπάτι Κύκλος
 - Διαδρομή: ακολουθία «διαδοχικών» ακμών.
 - \square $\Pi.\chi. \{2, 1\}, \{1, 3\}, \{3, 4\}, \{4, 1\}, \{1, 5\}, \{5, 3\}, \{3, 6\}.$
 - Μονοκονδυλιά: διαδρομή χωρίς επανάληψη ακμών.
 - (Απλό) μονοπάτι: διαδρομή χωρίς επανάληψη κορυφών (και ακμών).
 - Υπάρχει διαδρομή u v ανν υπάρχει μονοπάτι u v.
 - Απόσταση d(u, v) (χωρίς και με βάρη): μήκος συντομότερου u - ν μονοπατιού.
 - Διάμετρος D(G): μέγιστη απόσταση μεταξύ δύο κορυφών του G.
 - Κλειστή διαδρομή όταν άκρα της ταυτίζονται.
 - Κλειστή μονοκονδυλιά ή κύκλωμα.
 - (Απλός) κύκλος: μονοπάτι που άκρα του ταυτίζονται («κλειστό» μονοπάτι).

Παρατηρήσεις και Ιδιότητες

- (Απλό) γράφημα G έχει μονοπάτι μήκους $\geq \delta(G)$.
 - Ξεκινώντας από μια κορυφή, ακολουθούμε ακμή προς κορυφή που δεν έχουμε επισκεφθεί ήδη.
 - Τουλάχιστον $\delta(G)+1$ κορυφές: μονοπάτι μήκους ≥ $\delta(G)$.
- \square Av G απλό και $\delta(G) \ge 2$, τότε έχει κύκλο μήκους $\ge \delta(G) + 1$.
 - Αντίστοιχα με μονοπάτι, αλλά επιστρέφουμε σε «πιο απομακρυσμένη» κορυφή που έχουμε ήδη επισκεφθεί.
- Αποστάσεις (με ή χωρίς βάρη) ικανοποιούν την τριγωνική ανισότητα: d(u, v) ≤ d(u, w)+d(w, v), για κάθε u, v, w.
 - d(u, v): μήκος συντομότερου u v μονοπατιού (από όλα).
 - d(u, w)+d(w, v): μήκος συντομότερου u v μονοπατιού που διέρχεται από ω.

Συνεκτικότητα

- (Μη-κατευθυνόμενο) γράφημα G(V, E) συνεκτικό αν για κάθε ζευγάρι κορυφών u, ν ∈ V, υπάρχει u − ν μονοπάτι.
 - Μη-συνεκτικό γράφημα αποτελείται από συνεκτικές συνιστώσες: μεγιστοτικά συνεκτικά υπογραφήματα.
 - Γέφυρα (ακμή τομής): ακμή που αν αφαιρεθεί, έχουμε αύξηση στο πλήθος των συνεκτικών συνιστωσών.
 - Ακμή γέφυρα ανν δεν ανήκει σε κύκλο.
 - Σημείο κοπής (σημείο άρθρωσης): κορυφή που αν αφαιρεθεί, έχουμε αύξηση στο πλήθος των συνεκτικών συνιστωσών.

Διακριτά Μαθηματικά (Άνοιξη 2022)

(Απλή) Άσκηση

- Κάθε απλό γράφημα G με n κορυφές και $\delta(G) ≥ (n-1)/2$ είναι συνεκτικό (και έχει διάμετρο ≤ 2).
 - Έστω u, v κορυφές που δεν συνδέονται με ακμή. Θδο u, v έχουν κοινό γείτονα (άρα συνδέονται με μονοπάτι μήκους 2).
 - Έστω ότι u, v **δεν** έχουν καμία γειτονική κορυφή κοινή:
 - u έχει τουλ. (n 1)/2 γείτονες, και
 - □ ν έχει τουλ. (n − 1)/2 γείτονες, όλοι διαφορετικοί.
 - Άρα έχουμε συνολικά:
 - 2 κορυφές (οι u και v) +
 - (n 1)/2 κορυφές (οι γείτονες του u) +
 - \Box (n 1)/2 κορυφές (οι γείτονες του ν) =
 - ... = n+1 κορυφές, **άτοπο**!

(Απλή) Άσκηση

- Κάθε απλό γράφημα G με n ≥ 3 κορυφές και $\delta(G)$ ≥ (n+1)/2 περιέχει τρίγωνο.
 - Εστω u, v κορυφές που συνδέονται με ακμή (υπάρχει τουλάχιστον μια ακμή στο γράφημα).
 - Θδο u, v έχουν κοινό γείτονα w (άρα τρίγωνο u w v).
 - Έστω ότι u, v δεν έχουν καμία κοινή γειτονική κορυφή:
 - □ u έχει τουλ. (n+1)/2 γείτονες, και
 - □ ν έχει τουλ. (n+1)/2 γείτονες, όλοι διαφορετικοί.
 - Άρα έχουμε συνολικά:
 - **2** κορυφές (οι u και v) +
 - \Box (n+1)/2 1 κορυφές (οι γείτονες του u εκτός της v) +
 - \Box (n+1)/2 1 κορυφές (οι γείτονες του ν εκτός της u) =
 - ... = n+1 κορυφές, **άτοπο**!

Άσκηση

- G μη συνεκτικό γράφημα. Στο συμπληρωματικό του G, κάθε ζεύγος κορυφών μ, ν συνδέεται μονοπάτι μήκους ≤ 2.
 - Αν μ και ν σε διαφορετική συνεκτική συνιστώσα του G, συνδέονται με ακμή στο συμπληρωματικό.
 - Αν μ και ν σε ίδια συνεκτική συνιστώσα, έστω κορυφή w σε άλλη συνιστώσα. Στο συμπληρωματικό, υπάρχουν ακμές {u, w}, {w, v}.
- G γράφημα με κορυφές x, y μεταξύ των οποίων το συντομότερο μονοπάτι έχει μήκος τουλ. 4. Στο συμπληρωματικό του G, κάθε ζεύγος κορυφών μ, ν συνδέεται με μονοπάτι μήκους ≤ 2.
 - Έστω **u, v συνδέονται** με ακμή στο G και κάποια, έστω η υ, συνδέεται με ακμή με κάποια από τις x, y, έστω με την χ (διαφορετικά;).
 - Τότε ακμές {u, y} και {v, y} δεν υπάρχουν στο G. Διαφορετικά x - y μονοπάτι μήκους ≤ 3 στο G.
 - Στο συμπληρωματικό, υπάρχουν ακμές {u, y}, {y, v}.

Συνεκτικότητα

- (Μη-κατευθυνόμενο) γράφημα G(V, E) συνεκτικό αν για κάθε ζευγάρι κορυφών u, ν ∈ V, υπάρχει u − ν μονοπάτι.
- Γράφημα G συνεκτικό ανν έχει επικαλύπτον υπογράφημα που είναι δέντρο (spanning tree, συνδετικό δέντρο).
 - Δέντρο: συνεκτικό γράφημα χωρίς κύκλους.
- Γράφημα G(V, E) συνεκτικό ανν για κάθε μη κενό $S \subset V$, υπάρχει ακμή που συνδέει κορυφή του S με κορυφή του V \ S.

Συνεκτικότητα

- (Κατευθυνόμενο) γράφημα G(V, E) ισχυρά συνεκτικό αν \forall u, $v \in V$, υπάρχουν u - v και v - u μονοπάτια.
 - Για κάθε ζευγάρι κορυφών ισχυρά συνεκτικού γραφήματος, υπάρχει κυκλική διαδρομή που τις περιλαμβάνει.
 - Αν ένα κατευθυνόμενο γράφημα δεν είναι ισχυρά συνεκτικό, διαμερίζεται σε ισχυρά συνεκτικές συνιστώσες:
 - Μεγιστοτικά ισχυρά συνεκτικά υπογραφήματα.

Κύκλωμα (Κύκλος) Euler

- Κλειστή μονοκονδυλιά που διέρχεται:
 - από κάθε ακμή 1 φορά, και
 - από κάθε κορυφή τουλάχιστον 1 φορά.
- Συνεκτικό (μη-κατευθ.) γράφημα έχει κύκλωμα Euler (Eulerian γράφημα) ανν όλες οι κορυφές άρτιου βαθμού.

Κύκλωμα (Κύκλος) Euler

- Συνεκτικό (μη-κατευθ.) γράφημα έχει κύκλωμα Euler ανν όλες οι κορυφές άρτιου βαθμού.
 - Τα πλήρη γραφήματα K_n έχουν κύκλωμα Euler avv *n* περιττός
 - Τα πλήρη διμερή γραφήματα K_{p,a} έχουν κύκλωμα Euler avv p και q άρτιοι

- Απόδειξη άρτιος βαθμός \Rightarrow Eulerian με επαγωγή σε #ακμών m.
 - Κατασκευαστική απόδειξη ⇒ υπολογισμός του κυκλώματος Euler
 - Εφαρμογή ακόλουθης πράξης:
 - □ Έστω $u, v, w : \{u,v\} \in E(G)$ και $\{v,w\} \in E(G)$ □ «Αντικατάσταση» των $\{u,v\}$, $\{v,w\}$ από $\{u,w\}$

 \square Αντίστροφη «αντικατάσταση» της $\{u,w\}$ από $\{u,v\}$, $\{v,w\}$

Κύκλωμα (Κύκλος) Euler

- Συνεκτικό (μη-κατευθ.) γράφημα έχει κύκλωμα Euler ανν όλες οι κορυφές άρτιου βαθμού.
 - Κύκλος Euler C ⇒ άρτιος βαθμός κορυφών: συνεκτικότητα (περνά από όλες τις κορυφές). C «επισκέπτεται» κορυφή ν: με νέα ακμή «φτάνει» στη ν και με άλλη ακμή «φεύγει» από ν.
 - G συνεκτικό (μπορεί όχι απλό) και όλες οι κορυφές άρτιου βαθμού. Βρίσκουμε κύκλο Euler με επαγωγή σε #ακμών.
 - Βάση: ισχύει όταν γράφημα ανακύκλωση ή απλός κύκλος.
 - Bήμα: G ἐχει ακμές και ἀρτιος βαθμός, ἀρα <math>δ(G) ≥ 2 και κὑκλος.
 - «Αφαιρούμε» έναν οποιοδήποτε κύκλο C του G (διαγράφουμε τις ακμές του C και αγνοούμε όσες κορυφές μένουν απομονωμένες).
 - Κορυφές που μένουν (αν υπάρχουν) έχουν άρτιο βαθμό: κάθε συνεκτική συνιστώσα έχει κύκλο Euler, λόγω επαγ. υπόθεσης.
 - Κύκλος C συνδέει επιμέρους κύκλους Euler σε κύκλο Euler για G.

Κύκλωμα Euler: Παράδειγμα

Μονοπάτι (Ίχνος) Euler

- Μονοκονδυλιά (με διαφορετικά άκρα) που διέρχεται:
 - από κάθε ακμή 1 φορά, και
 - περιλαμβάνει κάθε κορυφή τουλάχιστον 1 φορά.
- □ Συνεκτικό (μη-κατευθ.) γράφημα έχει μονοπάτι Euler (semi-Eulerian γράφημα) ανν δύο κορυφές έχουν περιττό βαθμό και όλες οι υπόλοιπες άρτιο.
 - Συνεκτικό γράφημα G με κορυφές u και v περιττού βαθμού.
 - G sival semi-Eulerian avv $G + \{u, v\}$ sival Eulerian.

Κύκλος Euler

- Υπάρχει γράφημα G που όλες οι κορυφές έχουν άρτιο βαθμό και έχει γέφυρα;
 - Όχι, τέτοιο γράφημα G έχει κύκλο Euler, άρα όλες οι ακμές του ανήκουν σε κύκλο.
- Αν σε γράφημα που έχει κύκλο Euler προσθέσουμε ακμές, το γράφημα που προκύπτει έχει κύκλο Euler;
 - Όχι κατ' ανάγκη. Μπορεί προσθήκη κορυφών να κάνει τον βαθμό κάποιων κορυφών περιττό.
- (Γιατί) σε κάθε συνεκτικό (μη κατευθ.) γράφημα, υπάρχει κλειστή διαδρομή που διέρχεται από κάθε ακμή (ακριβώς) 2 φορές;
 - «Διπλασιασμός» ακμών οδηγεί σε γράφημα με κύκλο Euler (συνεκτικό και όλες οι κορυφές έχουν άρτιο βαθμό).
 - Δείτε το Κινέζικο Πρόβλημα του Ταχυδρόμου (ή Route Inspection Problem).

Κύκλος Euler

- Ποιος είναι ο μέγιστος #ακμών που μπορεί να έχει απλό γράφημα με n κορυφές και κύκλο Euler;
 - Αν η περιττός, n-1 άρτιος: K_n έχει κύκλο Euler και n(n-1)/2 ακμές.
 - Αν η άρτιος, αφαιρούμε η/2 ακμές (χωρίς κοινά άκρα) από Κ_n. Προκύπτει γράφημα με κύκλο Euler και n(n-2)/2 ακμές.
 - (Απλό) γράφημα με > n(n 2)/2 ακμές, έχει κορυφή (περιττού) βαθμού n-1.
- Κύκλος Euler σε κατευθυνόμενα γραφήματα:
 - Ισχυρά συνεκτικό γράφημα έχει κύκλο Euler avv ...
 - ... για κάθε κορυφή ν, έσω-βαθμός(ν) = έξω-βαθμός(ν).

- (Απλός) κύκλος που διέρχεται από όλες τις κορυφές.
 - Διέρχεται από κάθε κορυφή 1 φορά.
 - Μπορεί να μην διέρχεται από κάποιες ακμές.
- Δεν είναι γνωστή ικανή και αναγκαία συνθήκη!
- □ Ικανές συνθήκες ώστε G(V, E) έχει κύκλο Hamilton:
 - \forall v ∈ V, deg(v) ≥ |V|/2 (Θ. Dirac).
 - $\forall u, v \in V, deg(u) + deg(v) \ge |V|$ (Θ. Ore).

Θεωρία Γραφημάτων: Βασικές Έννοιες 34

- Αναγκαίες συνθήκες για ύπαρξη κύκλου Hamilton σε γράφημα G:
 - G δεν έχει γέφυρα ή σημείο κοπής.
 - Av G έχει γέφυρα, δεν έχει κύκλο Euler ούτε κύκλο Hamilton.
 - Κάθε κορυφή του G ανήκει σε κάποιο κύκλο.
 - Αν G διμερές, τότε G έχει άρτιο #κορυφών.
- Movonάτι Hamilton: (απλό) μονοπάτι που περιλαμβάνει όλες τις κορυφές.

- Για να δείξουμε ότι γράφημα G έχει κύκλο Hamilton, είτε κατασκευάζουμε κύκλο Hamilton (αν G έχει συγκεκριμένη δομή) είτε δείχνουμε ότι G ικανοποιεί κάποια ικανή συνθήκη.
 - Π .χ., υπερκύβος Q(n) έχει κύκλο Hamilton για κάθε n ≥ 2.
- Για να δείξουμε ότι γράφημα G δεν έχει κύκλο Hamilton, δείχνουμε ότι G παραβιάζει κάποια αναγκαία συνθήκη.
 - Π.χ., γιατί τα παρακάτω γραφήματα δεν έχουν κύκλο Hamilton;

- Αν σε γράφημα που έχει κύκλο Hamilton προσθέσουμε ακμές, το γράφημα που προκύπτει έχει κύκλο Hamilton;
- Νδο κάθε απλό γράφημα με 21 κορυφές και 208 ακμές έχει κύκλο Hamilton και δεν έχει κύκλο Euler.
 - Πρόκειται για Κ₂₁ από το οποίο έχουν αφαιρεθεί 2 ακμές.
 - Ικανοποιεί Θ. Dirac. Άρα έχει κύκλο Hamilton.
 - Όπως και αν αφαιρεθούν ακμές, προκύπτουν τουλ. 2 κορυφές με βαθμό 19. Άρα δεν έχει κύκλο Euler.

- \square Απλό γράφημα G με $n \ge 3$ κορυφές και u, v μη γειτονικές κορυφές με $deg(u) + deg(v) \ge n$. Το G έχει κὑκλο Hamilton ανν το $G + \{u, v\}$ έχει κὑκλο Hamilton.
 - Av G Hamiltonian, προφανώς G+ {u, v} Hamiltonian.
 - G+{u,v} Hamiltonian: βρίσκουμε HamCycle στο G χωρίς {u,v}.
 - G ἐχει μονοπάτι Hamilton P = $(u, x_2, ..., x_k, ..., x_{n-1}, v)$.
 - Υπάρχουν διαδοχικές κορυφές x_{k-1} , x_k στο P τ.ω. v συνδέεται με x_{k-1} και v συνδέεται με v
 - Διαφορετικά: για κάθε $\{u, x_k\}$, δεν υπάρχει $\{v, x_{k-1}\}$.
 - \square 'Apa deg(v) \leq (n 1) deg(u), атопо.
 - **L** Kὑκλος Hamilton C = $(u, x_k, x_{k+1}, ..., x_{n-1}, v, x_{k-1}, x_{k-2}, ..., x_2, u)$.

- Απλό γράφημα G με n≥3 κορυφές και u, v μη γειτονικές κορυφές με deg(u) + deg(v) ≥ n. To G έχει κὑκλο Hamilton ανν το $G + \{u, v\}$ έχει κύκλο Hamilton.
- Απλό γράφημα G με n ≥ 3 κορυφές. Αν κάθε δύο μη γειτονικές κορυφές u, v έχουν deg(u) + deg(v) ≥ n, G έχει κύκλο Hamilton.
 - Οποτεδήποτε μη γειτονικές κορυφές u, v έχουν deg(u) + deg(v) ≥ n, τις συνδέω απευθείας.
 - Νέο γράφημα Hamiltonian ανν το αρχικό ήταν Hamiltonian.
 - Αν γίνεται για όλες τις μη γειτονικές κορυφές, καταλήγουμε σε Κη
- Απλό γράφημα G με n ≥ 3 κορυφές. Αν κάθε κορυφή u έχει deg(u) ≥ n/2, G έχει κύκλο Hamilton.

Ασκήσεις

- Τουρνουά (tournament): πλήρες κατευθυνόμενο γράφημα.
 - Για κάθε ζευγάρι u, v, υπάρχει μία (ακριβώς) από τις ακμές (u, v) και (v, u).
- Σε ένα τουρνουά με n+1 κορυφές, έστω u κορυφή και v₁, ..., v_n μια αρίθμηση των υπόλοιπων η κορυφών. Ισχύει τουλ. ένα από τα:
 - 1. Η u συνδέεται με την v_1 .
 - 2. Η ν_n συνδέεται με την u.
 - 3. Υπάρχει δείκτης k, $1 \le k \le n 1$, ώστε η v_k συνδέεται με την u και η u συνδέεται με την v_{k+1} .
- Έστω ότι δεν ισχύουν τα (1) και (2). Θδο ισχύει το (3).
 - Έστω v_{k+1} η πρώτη κορυφή τ.ω. η u συνδέεται με την v_{k+1} .
 - Ισχύει ότι k+1 ≤ n, γιατί η u συνδέεται με την v_n (δεν ισχύει το (2)).
 - Ισχύει ότι $2 \le k+1$, γιατί η v_1 συνδέεται με την u (δεν ισχύει το (1)).
 - Ισχύει ότι $\mathbf{v}_{\mathbf{k}}$ συνδέεται με την \mathbf{u} , γιατί $\mathbf{v}_{\mathbf{k}+1}$ η πρώτη που δεν συνδέεται με \mathbf{u} .

Ασκήσεις

- Κάθε τουρνουά με n ≥ 1 κορυφές έχει μονοπάτι Hamilton.
 - Επαγωγή με χρήση προηγούμενου στο επαγωγικό βήμα.
 - Βάση: Ισχύει τετριμμένα για τουρνουά με 1 κορυφή.
 - Επαγ. υπόθεση: Κάθε τουρνουά με $n \ge 1$ κορυφές έχει μον. Hamilton.
 - Επαγ. βήμα: Θδο αυθαίρετο τουρνουά G(V, E) με n+1 κορυφές έχει μονοπάτι Hamilton.
 - Εστω G' τουρνουά που προκύπτει από G με αφαίρεση κορυφής u.
 - Θεωρούμε αρίθμηση V₁, ..., V_n των n κορυφών του G' σύμφωνα με μονοπάτι Hamilton στο G' (υπάρχει λόγω επαγ. υπόθεσης).
 - \mathbf{u} ενσωματώνεται στο μονοπάτι Hamilton \mathbf{v}_1 , ..., \mathbf{v}_n με βάση το προηγούμενο.