A drug company sells a skui cream
through drug stores in 15 districts.
It would like to predict district
Sales, and collects some data.

Distri	ich Sales (gross o jars)	Farget Fopulation (1000s persons	Per Capita Income (euro)
i	9:	$\infty_{\mathcal{C}_1}$	x; z
1 2 3 4 5	162 120 223 131 67	274 130 375 205 36	2450 3254 3802 2833 2347
678910	169 81 192 116 55	265 98 330 195	3782 3008 2450 2137 2560
11 12 13 14	252 232 144 103 212	430 372 236 157 370	4026 4427 2666 2088 2605

M=15 A 3-d plot suggests a linear relationship

y: = Bo + B, x: + B2 x: 2 + E. where Z. ii an "error herm" So we should determine the plans y = bo + b, x, + b2 x2 where bo, b, bz are chosen to musumize the quantity Q = E (4: - (bo+ b, x; + b, x; 2)) Hene @ = @ (bo, b, bz), and for a

B =
$$(x \times x)^{-1} \times y$$
 (*)

where

B = $\begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix}$ $\times = \begin{pmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{pmatrix} \times - \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$

Equation (#) Com be solved to yield

bo = 3.4526127 b, = 0.4960049 b, = 0.0091990

and plane

y = 3.45 + 0.496 x, +0.00920 x2.

This can be used to predict

sales (y) in a new district
of Size x1, and income x2.

independet General Case: P-1 variables Gioen points (yi, xiz, ..., xip.,) e RP for i 21, ..., m the least squares estimator ni tho 1 = bo+ b, oc, + b2 x2 + -- + bp-1 2(p-) gian ty B = (bo) $(x^{t}x)^{-1}x^{t}Y$ $X = \begin{cases} 1 & x_{11} & x_{12} & \dots & x_{1} & p_{-1} \\ 1 & x_{12} & x_{12} & \dots & x_{1} & p_{-1} \\ 1 & x_{11} & x_{12} & \dots & x_{1} & p_{-1} \\ 1 & x_{12} & \dots & x_{1} & p_{-1} \\ 1 & x_{12} & \dots & x_{1} & p_{-1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{1} & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{12} & \dots & x_{1} \\ 1 & x_{12} & \dots & x_{12} & \dots & x_{1} \\ 1 & x_{12$

Non-luieur data Suppose we have points (s(1, y1), (212, y2),... (x2, yn) whose plot looks like

we could try finding a quadration

y = bo + b, x + b, x²
which is a best dit, in the
least squares sense, to the
data.

to do this, we construct Perios (y,x,x,2), (y2,x2,x2), ER3 Now find the hyperplano y 2 bo + b, x + bz } which in the deast squares git to the data. This ensures that y = 60+6,01+62002 in the quadratic which best Jits, in the Leust squares Seuse, the data points in 12?

How good is the deast squares best git. for simplicity consider P=2, and data (4,,29), ... (4,134) EIRZ and least squares dit y = bo+ b, oc. Deline the fitted value y: = bo + b, xi and the residual e: = y: - ŷ: . Lemmal i) \tilde{z} $e_i = 0$, ii) \tilde{z} \hat{y} , $e_i = 0$

Proch Zasy escercie using normal equations, Delvie the Sample mean $\ddot{y} = \frac{1}{n} (4, +42 + \cdots + 4n)$,

we can measure the variation in the data yi by

SSTO = \(\frac{M}{2} (y_i - \frac{M}{2})^2 \)

the total sum of squares

we can measure the variation
between the data and the

1 that him by

SSE = 5 (11)

SSE = \(\frac{\gamma}{i \text{21}} \left(\gamma_i - \frac{\gamma_i}{4} \right)^2

the error sam of squares.

Another quantity to consider SSR= = (ý: - y)2 the regression sum of squares, 4 tho line y = ho+ 6, x 1 thed the data perfectly we'd have SSR = SSTO To measure how close to perfection vo are:

Dety the coethicient of determination is

 $R^2 = \frac{SSR}{SSTO}$

Mustrations

rypically R2 close to 1 suggests a good dit.

But we can have a good lit with R2 close to 0 in degenerate case.