

Adaptive Beamforming for future ITS

A neural network approach to antenna beam steering for mmWave Systems

Clifford Beta Anne Okemwa October 11, 2017

mmWave Communication Potential

multi-gigabit-per second communication

mmWave Communication Potential

- multi-gigabit-per second communication
- very low latency

Increased vehicular mobility

Need for constant beam realignment.

Increased vehicular mobility

Need for constant beam realignment.

Model

Neural networks have been proven to have the ability to compute any function, even

{Sequence prediction problems}

at which LSTMs shine . . .

Neuron

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}$$

• Feed forward Neural Networks

- Feed forward Neural Networks
- Recurrent Neural Networks

- Feed forward Neural Networks
- Recurrent Neural Networks
 - Long short term memory RNN (LSTM)

Implementation

Model LSTM

Training data GPS co-ordinates

Testing

Verification

Beam forming algorithm - selection of an appropriate beam forming algorithm

Deployment

Merits

Higher SNR Interference avoidance and rejection Higher network efficiency **Questions?**