

Sequence Listing

- <110> Baker, Kevin Botstein; David Eaton, Dan Ferrara, Napoleone Filvaroff, Ellen Gerritsen, Mary Goddard, Audrey Godowski, Paul Grimaldi, Christopher Gurney, Austin Hillan, Kenneth Kljavin, Ivar Napier, Mary Roy, Margaret Tumas, Daniel Wood, William
- <120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME
- <130> P2548P1C1
- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334

- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021
- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

<150> PCT/US00/08439 <151> March 30, 2000

<150> PCT/US00/14042 <151> May 22, 2000

<150> PCT/US00/20710 <151> July 28, 2000

<150> PCT/US00/32678 <151> December 1, 2000

<150> PCT/US01/06520 <151> February 28, 2001

<160> 120

<210> 1 <211> 2454

<212> DNA

<213> Homo Sapien

ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 <400> 1 caccaggact gtgttgaagg gtgtttttt tcttttaaat gtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 gtagtacatg gtggataact tctactttta ggaggactac tctcttctga 200 cagtcctaga ctggtcttct acactaagac accatgaagg agtatgtgct 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acatcgcact gaagaatatg atgctgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400 tccaacaaga gagccaagaa gccatttttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attcacccaa aagcctttct aaccacaaag aagttgcgaa ggctgtatct 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

cetttggaag acettgettg gaagageetg gacactaaca attetacace 2250

<210> 2 <211> 379 <212> PRT <213> Homo Sapien

Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met 20 25 30

Leu Lys Asp Met Glu Asp Thr Asp Asp Asp Asp Asp Asp Asp 45

Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu 50 55

Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro 75

Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 85

Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met
95 100

Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 115 120

Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn 135

Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 150

Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro 155 160 165

Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn 170 175 180

Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 185 190 195

Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly 200 205 210

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg 225 215
Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro 230 235
Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val 255 245
Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly 260 265 270
Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala 275 280 285
Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu 290 295 300
Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile 305 310 315
Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp 320 325 330
Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala 345
Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro 350 355
Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly 375 365
Asn Phe Gly Met
<pre></pre>
<220> <223> Synthetic Oligonucleotide Probe
<400> 3 ggaaatgagt gcaaaccete 20
<210> 4 <211> 24 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Oligonucleotide Probe
<400> 4 teccaagetg aacaeteatt etge 24

- <210> 5 <211> 50 <212> DNA
- <213> Artificial Sequence
- <220> <223> Synthetic Oligonucleotide Probe
- <400> 5 gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
- <210> 6 <211> 3441 <212> DNA
- <213> Homo Sapien
- <400> 6 eggacgegtg ggeggacgeg tgggeceges geacegeece eggeceggee 50 ctccgccctc cgcactcgcg cctccctccc tccgcccgct cccgcgccct 100 cetecetece tectececag etgtecegtt egegteatge egageetece 150 ggcccgccg gccccgctgc tgctcctcgg gctgctgctg ctcggctccc 200 ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250 gagaaggage egetgeeegt teggggageg geaggetgea eetteggegg 300 gaaggtctat gccttggacg agacgtggca cccggaccta gggcagccat 350 teggggtgat gegetgegtg etgtgegeet gegaggegee teagtggggt 400 cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450 gtgcccaacc ccggcctgtg ggcagccgcg ccagctgccg ggacactgct 500 gccagacctg cccccaggag cgcagcagtt cggagcggca gccgagcggc 550 ctgtccttcg agtatecgcg ggacccggag catcgcagtt atagcgaccg 600 cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650 tegtggeget getgaeaggg eegaggtege aggeggtgge aegageeega 700 gtetegetge tgegetetag eeteegette tetateteet acaggegget 750 ggacegeeet accaggatee getteteaga etecaatgge agtgteetgt 800 ttgagcaccc tgcagccccc acccaagatg gcctggtctg tggggtgtgg 850 egggeagtge eteggttgte tetgeggete ettagggeag aacagetgea 900 tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950 teateeggea eegggeeetg getgeagaga eetteagtge cateetgaet 1000 ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050

gaccggaget ggcgggcage gggtacgcgg tggcaccccg ttgtgccccc 2550 ctttggctta attaagtgtg ctgtctgcac ctgcaagggg ggcactggag 2600 aggtgcactg tgagaaggtg cagtgtcccc ggctggcctg tgcccagcct 2650 gtgcgtgtca accccaccga ctgctgcaaa cagtgtccag tggggtcggg 2700 ggcccacccc cagctggggg accccatgca ggctgatggg ccccggggct 2750 geogttttgc tgggcagtgg ttcccagaga gtcagagctg gcacccctca 2800 gtgccccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850 ggtgcctcac tgtgagcggg atgactgttc actgccactg tcctgtggct 2900 cggggaagga gagtcgatgc tgttcccgct gcacggccca ccggcggccc 2950 ccagagacca gaactgatcc agagctggag aaagaagccg aaggctctta 3000 gggagcagcc agagggccaa gtgaccaaga ggatggggcc tgagctgggg 3050 aaggggtggc atcgaggacc ttcttgcatt ctcctgtggg aagcccagtg 3100 cetttgetee tetgteetge etetaeteee acceccacta cetetgggaa 3150 ccacagetee acaaggggga gaggeagetg ggccagaceg aggteacage 3200 cactccaagt cetgeeetge caccetegge etetgteetg gaageeecac 3250 ccctttcctc ctgtacataa tgtcactggc ttgttgggat ttttaattta 3300 tettcactca gcaccaaggg cecegacae tecaeteetg etgeceetga 3350 gctgagcaga gtcattattg gagagttttg tatttattaa aacatttctt 3400 tttcagtcaa aaaaaaaaa aaaaaaaaaa a 3441

<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met

					365					370					37	5
	Leu G	ly (Glu	Leu	Gln 380	Met	Ala	Leu	Glu	Trp 385	Ala	Gl	y Ar	g Pro	o Gl 39	У 0
	Leu A	Arg :	Ile	Ser	Gly 395	His	Ile	Ala	Ala	Arg 400	Lys	s Se	r Cy	s As	p Va 40	.1
	Leu (Gln	Ser	Val	Leu 410	Cys	Gly	Ala	Asp	Ala 415	Lev	ıIl	e Pr	o Va	1 Gl 42	.n !0
	Thr	Gly	Ala	Ala	Gly 425	Ser	Ala	Ser	Leu	Thr 430	Lei	u Le	u Gl	y As	n Gl 43	Ly 35
	Ser	Leu	Ile	Туr	Gln 440	Val	Gln	Val	Val	. Gly	y Th	r Se	r Se	er Gl	u Va 45	al 50
	Val	Ala	Met	Thr	Leu 455	Glu	Thr	Lys	; Pro	Gli 46	n Ar O	g Aı	rg As	sp G	ln A	rg 65
	Thr	Val	Leu	Суз		: Met	: Ala	a Gly	/ Le	u Gl: 47	n Pr 5	o G	ly G	ly H	is T 4	hr 80
	Ala	Val	Gly	/ Ile	e Cys	s Pro	Gly	y Le	u Gl	y Al 49	a Ar O	rg G	ly A	la H	is M 4	et 95
	Leu	Leu	Glı	n Ası	n Gli 50	ı Le	u Pho	e Le	u As	n Va 50	1 G	ly T	hr L	ys A	sp F	he 10
	Pro	Asp	Gl	y Gl	u Le 51	u Ar	g Gl	у Ні	s Va	1 Al 52	.a A	la I	eu E	Pro I	yr (Cys 525
	Gly	His	Se	r Al	a Ar 53	g Hi O	s As	p Th	ır Le	eu Pi 50	co V 35	al E	ro l	Leu A	Ala (Gly 540
	Ala	Leu	ı Va	l Le	u Pr 54	o Pr	o Va	ıl Ly	s Se	er G:	ln A 50	la l	Ala (Gly I	His .	Ala 555
	Trp	Leu	ı Se	r Le	eu As 56	p Th	ır Hi	s Cy	ys H	is L	eu H 65	lis '	Tyr	Glu '	Val	Leu 570
•	Lev	ı Ala	a Gl	y L€	eu Gl	ly G1 75	Ly Se	er G	lu G	ln G 5	ly 1 80	Thr	Val	Thr	Ala	His 585
	Lev	ı Lei	u G	ly Pi	ro Pi	ro Gi	ly Tì	hr P	ro G	ly P	ro <i>l</i> 95	Arg	Arg	Leu	Leu	Lys 600
	Gl	y Ph	e T	yr G	ly S	er G 05	lu A	la G	ln G	ly V	al '	Val	Lys	Asp	Leu	Glu 615
	Pr	o Gl	u L	eu L	eu A 6	rg H 20	is L	eu A	la L	ys C	Sly :	Met	Ala	Ser	Leu	Met 630
	Il	e Th	ır T	hr L	ys G 6	ly S 35	er P	ro A	rg (Gly (Glu 540	Leu	Arg	Gly	Gln	Val 645
	Ні	s Il	.e A	la A	sn G		ys G	Slu V	/al (Gly (Gly 655	Leu	Arg	Leu	Glu	Ala

c,


```
<210> 8
  <211> 44
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic Oligonucleotide probe
   gactagttct agategegag eggeegeet ttttttttt tttt 44
  <210> 9
   <211> 28
   <212> DNA
   <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
   <400> 9
   eggacgegtg gggeetgege acceaget 28
  <210> 10
Д
   <211> 36
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 10
   geegeteece gaaegggeag eggeteette teagaa 36
   <210> 11
   <211> 36
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
    <400> 11
    ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
    <210> 12
    <211> 26
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic Oligonucleotide Probe
    <400> 12
     gtgctgccca tccgttctga gaagga 26
    <210> 13
```

- <211> 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 13
- gcagggtgct caaacaggac ac 22
- <210> 14
- <211> 3231
- <212> DNA
- <213> Homo Sapien
- <400> 14
- ggeggageag cectageege cacegteget etegeagete tegtegeeae 50 tgccaccgcc gccgccgtca ctgcgtcctg gctccggctc ccgcgccctc 100 ccggccggcc atgcagcccc gccgcgccca ggcgcccggt gcgcagctgc 150 tgcccgcgct ggccctgctg ctgctgctgc tcggagcggg gccccgaggc 200 agetecetgg ccaaceeggt geeegeegg ceettgtetg egeeegggee 250 gtgcgccgcg cagccctgcc ggaatggggg tgtgtgcacc tcgcgccctg 300 ageoggaeee geageaeeeg geeceegeeg gegageetgg etacagetge 350 acctgccccg ccgggatete cggcgccaac tgccagettg ttgcagatec 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 gcagcagcga tggctacctc tgcatttgca atgaaggcta tgaaggtccc 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagette agectgttee tgetacteag gageetgaca 600 aaatcctgcc tcgctctcag gcaacggtga cactgcctac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacagtgc teceteatag atggacgaag tgtgaceeec etteaggett 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950 tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000 cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

gaaatttaaa atgctagctg ctcaagagtt ttcagtagaa tatttaagaa 2450

ctaattttct gcagctttta gtttggaaaa aatattttaa aaacaaaatt 2500

tgtgaaacct atagacgatg ttttaatgta ccttcagctc tctaaactgt 2550 gtgcttctac tagtgtgtgc tcttttcact gtagacacta tcacgagacc 2600 cagattaatt tctgtggttg ttacagaata agtctaatca aggagaagtt 2650 tetgtttgae gtttgagtge eggetttetg agtagagtta ggaaaaccae 2700 gtaacgtagc atatgatgta taatagagta tacccgttac ttaaaaagaa 2750 gtctgaaatg ttcgttttgt ggaaaagaaa ctagttaaat ttactattcc 2800 taacccgaat gaaattagcc tttgccttat tctgtgcatg ggtaagtaac 2850 ttatttctgc actgttttgt tgaactttgt ggaaacattc tttcgagttt 2900 gtttttgtca ttttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950 taacgaaaag gcctagcgag gcaaattctg attgatttga atctatattt 3000 ttctttaaaa agtcaagggt tctatattgt gagtaaatta aatttacatt 3050 tgagttgttt gttgctaaga ggtagtaaat gtaagagagt actggttcct 3100 teagtagtga gtatttetea tagtgeaget ttatttatet eeaggatgtt 3150 tttgtggctg tatttgattg atatgtgctt cttctgattc ttgctaattt 3200 ccaaccatat tgaataaatg tgatcaagtc a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu 65

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

				110					115				3	120
Cys	Ile	Cys	Asn	Glu 125	Gly	Tyr	Glu	Gly	Pro 130	Asn	Cys (Glu (Gln A	Ala 135
Leu	Pro	Ser	Leu	Pro 140	Ala	Thr	Gly	Trp	Thr 145	Glu	Ser	Met i	Ala :	Pro 150
Arg	Gln	Leu	Gln	Pro 155	Val	Pro	Ala	Thr	Gln 160	Glu	Pro	Asp	Lys	Ile 165
Leu	Pro	Arg	Ser	Gln 170	Ala	Thr	Val	Thr	Leu 175	Pro	Thr	Trp	Gln	Pro 180
Lys	Thr	Gly	Gln	Lys 185	Val	Val	Glu	Met	Lys 190	Trp	Asp	Gln	Val	Glu 195
Val	Ile	Pro	Asp	Ile 200	Ala	Cys	Gly	Asn	Ala 205	Ser	Ser	Asn	Ser	Ser 210
Ala	Gly	Gly	Arg	Leu 215	Val	Ser	Phe	Glu	Val 220	Pro	Gln	Asn	Thr	Ser 225
Val	Lys	Ile	Arg	Gln 230	Asp	Ala	Thr	Ala	Ser 235	Leu	Ile	Leu	Leu	Trp 240
Lys	Val	Thr	: Ala	Thr 245	Gly	Phe	Glr	ı Glr	250	s Ser	Leu	Ile	Asp	Gly 255
Arg	ser	val	LThi	260	Lev	Glr	n Ala	a Sei	c Gly 269	y Gly	Leu	Val	Leu	Leu 270
Glu	ı Glu	ı Met	t Lev	ı Ala 27!	a Lev	ı Gly	y Ası	n Ası	n Hi: 28	s Phe	lle	Gly	Phe	Val 285
Ası	n Asj	p Se	r Va	1 Th:	r Lys	s Sei	r Il	e Va	1 Al- 29	a Leu 5	ı Arç	, Leu	Thr	Leu 300
Va:	l Va	l Ly	s Va	1 Se	r Th	r Cy	s Va	l Pr	o Gl 31	y Glu O	ı Ser	His	Ala	Asn 315
Asj	p Le	u Gl	u Cy	s Se 32	r Gl	у Lу	s Gl	у Ьу	s Cy 32	s Th	r Thi	r Lys	Pro	330
Gl	u Al	a Th	r Ph	e Se	r Cy 5	s Th	r Cy	s Gl	u Gl 34	u Gl:	n Ty:	r Val	l Gly	7 Thr 345
Ph	е Су	s Gl	u Gl	u Ty 35	r As	p Al	а Су	s Gl	n Ar 35	g Ly	s Pr	o Cys	s Gli	n Asn 360
As	n Al	.a S∈	er Cy	's Il	e As	p Al	a As	sn Gl	u Ly 37	rs Gl 70	n As	p Gl	y Se	r Asn 375
Ph	ie Th	ır Cy	/s Va	al Cy 38	rs Le 30	eu Pr	o G]	Lу Ту	/r Th 38	ır Gl 35	y Gl	u Le	u Cy	s Gln 390
Se	er Ly	/s I	le As	sp Ty 39	/r Cy 95	/s I]	le Le	eu As	sp Pr 40	ro Cy 00	s Ar	g As	n Gl	y Ala 405

 Ser Arg Pro Ala Met 710
 Tyr Asp Val Ser Pro 715
 Pro 715
 Tyr Ser Pro Asp 725
 Pro 11e Ala Tyr Glu Asp 720
 Asp 735

 Tyr Ser Pro Asp 725
 Pro 12e Val Thr Leu Ile Lys Thr Lys 730
 Pro 735
 Pro 735

Asp Leu

Œ.

JTT

<210> 16 <211> 43 <212> DNA

<213> Artificial Sequence

<220> <223> Synthetic Oligonucleotide Probe

<400> 16 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

<210> 17 <211> 41 <212> DNA <213> Artificial Sequence

<220> <223> Synthetic Oligonucleotide Probe

<400> 17 caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

<210> 18 <211> 508 <212> DNA <213> Homo Sapien

400> 18
ctctggaagg tcacggccac aggattcaa cagtgctcc tcatagatgg 50
acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctctgg 100
aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
tctgtgacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgatga aatgaaaagc 400
aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

taggggag 508 <210> 19 <211> 508 <212> DNA <213> Homo Sapien <400> 19 ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50 acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100 aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150 tetgtgaeta agtetattgt ggetttgege ttaaetetgg tggtgaaggt 200 cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250 gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300 tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350 gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400 aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450 ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500 taggggag 508 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 20 ctctggaagg tcacggccac agg 23 <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 21 ctcagttcgg ttggcaaagc tctc 24 <210> 22 <211> 69 <212> DNA <213> Artificial Sequence <220>

<223> Synthetic oligonucleotide probe

<400> 22
cagtgctccc tcatagatgg acgaaagtgt gacccccctt tcaggcgaga 50
gctttgccaa ccgaactga 69

<210> 23 <211> 1520 <212> DNA <213> Homo Sapien

<400> 23 getgagtetg etgeteetge tgetgetget ceageetgta acetgtgeet 50 acaccacgee aggeeeeee agageeetea eeaegetggg egeeeeeaga 100 geccaeacea tgeegggeae etaegeteee tegaecaeae teagtagtee 150 cagcacccag ggcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 egetegtgga eggeeacaac gaeetgeece tggteetaag geaggtttae 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cagcctggac aggcttagag atggcctcgt gggcgcccag ttctggtcag 350 cctatgtgcc atgccagacc caggaccggg atgccctgcg cctcaccctg 400 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 450 gettgtgace teggetaaag etetgaaega caeteagaaa ttggeetgee 500 teateggtgt agagggtgge cactegetgg acaatageet etecatetta 550 egtacettet acatgetggg agtgegetae etgaegetea eccaeacetg 600 caacacaccc tgggcagaga gctccgctaa gggcgtccac tccttctaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggcgggcc ctggaagtgt cacaggcacc tgtgatcttc tcccactcgg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagcttctga agaagaacgg tggcgtcgtg atggtgtctt tgtccatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tegaceaeat caaggetgte attggateea agtteategg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100

agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150

<210> 24 <211> 433 <212> PRT <213> Homo Sapien

<400> 24
Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe 20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 35 40 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser 50 60

Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly 65 70 75

Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg 80 85 90

Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg 95 100 105

Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys 110 115 120

Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu 125 130 135

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe 140 145

Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn 155 160 165

Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr 170 175 180

Asn	Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230	Ala	Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245	Ile	Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	Met	Val	Ser 260	Leu	Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	Pro 270
Ser	Ala	Asn	Val	Ser 275	Thr	Val	Ala	Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala	Val	Ile	Gly	Ser 290	Lys	Phe	Ile	Gly	Ile 295	Gly	Gly	Asp	Tyr	Asp 300
Gly	Ala	Gly	· Lys	Phe	Pro	Gln	Gly	Leu	Glu 310	Asp	Val	Ser	Thr	Tyr 315
Pro	val	Leu	ılle	Glu 320		Leu	Leu	Ser	Arg 325	Gly	Trp	Ser	Glu	Glu 330
Glu	ı Lev	ı Glr	ı Gly	Val		Arg	Gly	Asn	1 Leu 340	Leu)	Arg	Val	Phe	Arg 345
Glr	n Val	l Glu	ı Lys	Val		ı Glu	Glu	ı Asr	1 Lys 355	s Trp	Gln	Ser	Pro	Leu 360
Glu	ı Ası	p Lys	s Phe	Pro 365		o Glu	ı Glr	ı Lev	1 Se1	c Ser	Ser	Cys	His	s Ser 375
Asj	p Lei	u Se:	r Arg	g Leu 380		g Glr	n Arg	g Glr	n Sei 389	r Leu 5	ı Thr	Ser	Gly	7 Gln 390
Gl	u Le	u Th	r Glu	ı Ile 395		o Ile	e His	s Trj	p Th:	r Ala	a Lys	Lev	ı Pro	Ala 405
Ly	s Tr	p Se	r Vai	l Sei 410		u Sei	r Se:	r Pr	o Hi	s Met 5	t Ala	a Pro	o Va	l Leu 420
Al	a Va	l Va	l Ala	a Th:		e Pro	o Va	l Le	u Il 43	e Lei 0	u Trp	p Le	ı	
<21 <21	0 > 2 1 > 2 2 > D 3 > A	2 NA	icia	l Se	quen	ce								
<22 <22	0 > 3 > S	ynth	etic	oli	gonu	cleo	tide	pro	be					

<400> 25 agttctggtc agcctatgtg cc 22 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 26 cgtgatggtg tctttgtcca tggg 24 <210> 27 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 27 ctccaccaat cccgatgaac ttgg 24 <210> 28 C. 4. 4. 4. C. <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 28 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50 <210> 29 IJ <211> 1416 <212> DNA <213> Homo Sapien <400> 29 aaaacctata aatatteegg attatteata eegteecace ategggegeg 50 gateegegge egegaattet aaaccaacat geegggeace taegeteeet 100 cgaccacact cagtagtece ageacceagg geetgeaaga geaggeaegg 150 geoetgatge gggaettece getegtggae ggccaeaaeg acetgeecet 200 ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250 atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgtg 300 ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350 tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400

2

cetectatte tgagetggag ettgtgacet eggetaaage tetgaacgae 450 actcagaaat tggcctgcct catcggtgta gagggtggcc actcgctgga 500 caatageete tecatettae gtaeetteta eatgetggga gtgegetaee 550 tgacgctcac ccacacctgc aacacacct gggcagagag ctccgctaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750 gtgatettet eccaetegge tgeeeggggt gtgtgeaaca gtgeteggaa 800 tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850 tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900 tecaetgtgg cagateaett egaecaeate aaggetgtea ttggateeaa 950 gttcatcggg attggtggag attatgatgg ggccggcaaa ttccctcagg 1000 ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gegggtette agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 geceettgga ggacaagtte eeggatgage agetgageag tteetgeeae 1200 teegaeetet eaegtetgeg teagagaeag agtetgaett eaggeeagga 1250 actcactgag attcccatac actggacagc caagttacca gccaagtggt 1300 cagteteaga gteeteece caecetgaca aaacteacac atgeecaceg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaag gacacc 1416

- <210> 30
- <211> 446
- <212> PRT
- <213> Homo Sapien
- <400> 30
- Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
- Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
- Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 40 35
- Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

						50					55						6	0
	Tyr	Gly	Gln	Th	r S	er 1 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gl	y L	eu '	Val	Gl ₂	У 5
	Ala	Gln	Phe	Tr	p S	Ser 2	Ala	Tyr	Val	Pro	Cys 85	Gln	Th	r G	Sln	Asp	Ar 9	g 0
	Asp .	Ala	Leu	Ar	g I	Seu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	. Le	eu I	[le	Arg	Ar 10	g 15
	Met	Cys	Ala	. S∈		Гуг 110	Ser	Glu	Leu	Glu	Leu 115	Va]	LTì	nr S	Ser	Ala	Ly 12	's ?0
	Ala	Leu	Asr	n As	sp 1	Thr 125	Gln	Lys	Leu	Alā	Cys 130	Lei	ı I	le (Gly	Val	G]	lu 35
	Gly	Gly	His	s Se	er :	Leu 140	Asp	Asn	Ser	Leu	1 Ser	c Il	e L	eu .	Arg	Thr	Pl 15	ne 50
	Tyr	Met	Le	u G	ly	Val 155	Arg	Tyr	Lev	Th:	Let 160	ı Th	r H	is	Thr	Cys	A:	sn 65
	Thr	Pro	Tr	рΑ	la	Glu 170	Ser	Ser	Ala	a Ly	s Gl	y Va 5	1 н	is	Ser	Phe	1	yr 80
	Asn	Asr	ı Il	e S	er	Gly 185	Leu	Thi	As _l	p Ph	e Gl 19	y Gl O	u L	'ns	Val	Va]	. A	1a 95
2 H	Glu	Met	: As	n A	ırg	Leu 200	Gly	/ Met	c Me	t Va	l As 20	p Le 5	eu S	Ser	His	Va]	1 S	er 10
	Asp	Ala	a Va	ıl P	Ala	Arg 215	Arg	g Ala	a Le	u Gl	u Va 22	11 Se 10	er (Gln	Alā	Pro	o V 2	/al 225
Erroff Track Grave Court Saudi	Ile	Ph	e Se	er F	lis	Ser 230	Ala	a Al	a Ar	g Gl	y Va 23	11 C	ys i	Asn	Sei	Al	a <i>I</i>	Arg 240
	Asn	ı Va	1 Pi	ro I	Asp	Asp 245	o Il	e Le	u Gl	n Le	eu Le 25	eu L 50	ys :	Lys	Ası	n Gl	у (Gly 255
	Val	. Va	1 M	et '	Val	Se:		u Se	r Me	et G	ly Va 20	al I 65	le ·	Gln	Су	s As	n i	Pro 270
	Sei	Al	a A	sn	Val	Se:	r Th 5	r Va	ıl Al	la A	sp H	is P 80	he	Asp	Hi	s Il	e	Lys 285
	Ala	a Va	ıl I	le	Gly	29	r Ly O	s Ph	ne I	le G	ly I 2	le G 95	ly	Gly	/ As	р Ту	r	Asp 300
						30	5					10						
						32	0					23						
	Gl	u Le	eu G	ln	Gly	y Va 33	1 Le	eu A	rg G	ly A	sn L 3	eu 1 40	Leu	Arg	g Va	al P	he	Arg 345

<210> 31 <211> 1790 <212> DNA <213> Homo Sapien

cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 <400> 31 gegtecegeg ecetgegeea eegeegeega geegeageee geegegegee 100 cccggcagcg ccggccccat gcccgccggc cgccggggcc ccgccgccca 150 atecgegegg eggeegeege egttgetgee eetgetgetg etgetetgeg 200 teetegggge geegegagee ggateaggag eecacacage tgtgateagt 250 ccccaggate ccaegettet categgetee tecetgetgg ccaectgete 300 agtgcacgga gacccaccag gagccaccgc cgagggcctc tactggaccc 350 tcaacgggcg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 accttggctc tggccctggc caacctcaat gggtccaggc agcggtcggg 450 ggacaacete gtgtgccacg eccgtgacgg cagcatectg getggeteet 500 gcctctatgt tggcctgccc ccagagaaac ccgtcaacat cagctgctgg 550 tccaagaaca tgaaggactt gacctgccgc tggacgccag gggcccacgg 600 ggagacette etecacacea actaeteeet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750 ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800

<210> 32

<211> 422

<212> PRT

<213> Homo Sapien

<400> 32

Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg

Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly

Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys 60

				350					355					360
	Gly Pro	Val	Arg	Arg 365	Glu	Leu	Lys	Gln	Phe 370	Leu	Gly	Trp	Leu	Lys 375
	Lys His	Ala	Tyr	Cys 380	Ser	Asn	Leu	Ser	Phe 385	Arg	Leu	Tyr	Asp	Gln 390
	Trp Arg	Ala	Trp	Me t 395	Gln	Lys	Ser	His	Lys 400	Thr	Arg	Asn	Gln	Asp 405
	Glu Gly	lle	Leu	Pro 410	Ser	Gly	Arg	Arg	Gly 415	Thr	Ala	Arg	Gly	Pro 420
	Ala Arg	I												
	<210> 33 <211> 23 <212> Di <213> Ai	3 NA	cial	Seg	uenc	e								
	<220> <223> S	ynthe	etic	olig	jonuc	leot	ide	prob	e					
	<pre>400> 33 cccgcccgac gtgcacgtga gcc 23</pre>													
	<pre><223> Synthetic oligonucleotide probe <pre></pre></pre>													
i M	<220> <223> S	ynth	etic	oli	gonu	cleo	tide	prol	be					
	<400> 3	4 agcc	cag	gaac	tgc	ttg	23							
	<210 > 3 <211 > 5 <212 > 1 <213 > A	0 ANC	icia	l Se	quen	ce								
	<220> <223> \$	Syntl	netic	oli	gonu	clec	tide	pro	be					
	<400>	35 gcgct	gca	acco	ctt	tggc	atct	at g	gcto	caaç	ja aa	agcc	gggat	50
	<210><211><211><212><213>	1771 DNA	Sap:	ien										
	<400> cccac	36 gcgt	c cg	ctgg	tgtt	agal	tcga	gca a	accci	tcta	aa a	gcag	ttta	g 50

agtggtaaaa aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100 atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150 ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200 tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250 ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350 gtgccaaggt tcatacettt gtggtagact gcagcaaccg agaagatatt 400 tacagetetg caaagaaggt gaaggeagaa attggagatg ttagtatttt 450 agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500 atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550 actacaaagg catttettee tgeaatgaeg aagaataace atggeeatat 600 tgtcactgtg getteggeag etggaeatgt eteggteece ttettaetgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tectaattte gtaaacaetg getteateaa aaateeaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggatcette etgagegttt eetggeagtt ttaaaacgaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatatttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatgaa ggactatatc tagtggtatt 1450 tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500

<210> 37 <211> 300 <212> PRT <213> Homo Sapien

Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg

Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly 35 40 45

His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys 50 55 60

Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu 65 70 75

Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe 80 85 90

Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys 95 100 105

Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 110 115 120

Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro 125 130 135

Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp 140 145 150

Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 165

His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 175 180

Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe 185 190 195

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

					200					205					210
	Val	Lys	Thr	Thr	Cys 215	Leu	Cys	Pro	Asn	Phe 220	Val	Asn	Thr	Gly	Phe 225
	Ile	Lys	Asn	Pro	Ser 230	Thr	Ser	Leu	Gly	Pro 235	Thr	Leu	Glu	Pro	Glu 240
	Glu	Val	Val	Asn	Arg 245	Leu	Met	His	Gly	Ile 250	Leu	Thr	Glu	Gln	Lys 255
	Met	Ile	Phe	Ile	Pro 260	Ser	Ser	Ile	Ala	Phe 265	Leu	Thr	Thr	Leu	Glu 270
	Arg	Ile	Leu	Pro	Glu 275	Arg	Phe	Leu	Ala	Val 280	Leu	Lys	Arg	Lys	Ile 285
	Ser	Val	Lys	Phe	Asp 290	Ala	Val	Ile	Gly	Tyr 295	Lys	Met	Lys	Ala	Gln 300
E.J	<212	> 23 > DN	3	cial	. Sec	luenc	ce								
The state of the s	<220 <223	<220> <223> Synthetic oligonucleotide probe													
		0> 30 cgaaq		gaaa	attg	gag (atg 2	23							
s Lai	<213	<210> 39 <211> 24 <212> DNA <213> Artificial Sequence													
C. C. L.	<22 <22	0> 3> S	ynth	etic	oli	gonu	cleo	tide	pro	be					
	<40 at	0> 3 ccca	9 itgca	tca	gcct	gtt	tacc	24							
	<210> 40 <211> 48 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe															
	<40 gc	00> 4 etggt	10 cgtag	g tot	atac	catc	agat	ttgt	tt g	gctad	acaa	ig at	ccto	cag 4	18
	<21 <21	10> 4 11> 3 12> 1 13> 1	1377	Sap:	ien										

<210> 42

Val Phe Ala

<210> 43 <211> 24

```
<212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 43
   tacaggccca gtcaggacca gggg 24
  <210> 44
  <211> 18
  <212> DNA
  <213> Artificial Sequence
   <220>
  <223> Synthetic oligonucleotide probe
   <400> 44
   agccagcctc gctctcgg 18
   <210> 45
   <211> 18
   <212> DNA
< <213> Artificial Sequence
1
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 45
    gtctgcgatc aggtctgg 18
   <210> 46
   <211> 20
   <212> DNA
   <213> Artificial Sequence
M
<220>
   <223> Synthetic oligonucleotide probe
<400> 46
    gaaagaggca atggattcgc 20
    <210> 47
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 47
     gacttacact tgccagcaca gcac 24
    <210> 48
```

<211> 45 <212> DNA

<213> Artificial Sequence

- <220> <223> Synthetic oligonucleotide probe
- <400> 48
 ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45
- <210> 49
- <211> 1876
- <212> DNA
- <213> Homo Sapien
- <400> 49 ctcttttgtc caccagecca geetgaetee tggagattgt gaatagetee 50 atccagcctg agaaacaagc cgggtggctg agccaggctg tgcacggagc 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatet cetggetgtg etectggeee teettggeae caeetgggea 200 gaggtgtggc caccecaget gcaggagcag getecgatgg eeggageeet 250 gaacaggaag gagagtttct tgctcctctc cctgcacaac cgcctgcgca 300 gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350 agectggeec aactggetea agecagggea gecetetgtg gaateceaae 400 cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450 tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500 tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550 caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600 agetgggetg tgggeggeae etgtgetetg caggeeagae agegatagaa 650 geetttgtet gtgeetaete eeceggagge aactgggagg teaacgggaa 700 gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750 gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800 gtccccagga atccttgtcg catgagctgc cagaaccatg gacgtctcaa 850 catcagcacc tgccactgcc actgtccccc tggctacacg ggcagatact 900 gccaagtgag gtgcagcctg cagtgtgtgc acggccggtt ccgggaggag 950 gagtgetegt gegtetgtga categgetae gggggageee agtgtgeeae 1000 caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050 gcttcatggt gtcttcagag gcagacacct attacagagc caggatgaaa 1100 tgtcagagga aaggcggggt gctggcccag atcaagagcc agaaagtgca 1150

ggacatecte geettetate tgggeegeet ggagaceace aacgaggtga 1200 ctgacagtga cttcgagacc aggaacttct ggatcgggct cacctacaag 1250 accgccaagg actccttccg ctgggccaca ggggagcacc aggccttcac 1300 cagttttgcc tttgggcagc ctgacaacca cgggctggtg tggctgagtg 1350 ctgccatggg gtttggcaac tgcgtggagc tgcaggcttc agctgccttc 1400 aactggaacg accagcgctg caaaacccga aaccgttaca tctgccagtt 1450 tgcccaggag cacatetece ggtggggeee agggteetga ggeetgaeea 1500 catggetece tegeetgeee tgggageace ggetetgett acetgtetge 1550 ccacctgtct ggaacaaggg ccaggttaag accacatgcc tcatgtccaa 1600 agaggtetea gaeettgeae aatgeeagaa gttgggeaga gagaggeagg 1650 gaggccagtg agggccaggg agtgagtgtt agaagaagct ggggcccttc 1700 gcctgctttt gattgggaag atgggcttca attagatggc gaaggagagg 1750 acaccgccag tggtccaaaa aggctgctct cttccacctg gcccagaccc 1800 tgtggggcag cggagcttcc ctgtggcatg aaccccacgg ggtattaaat 1850 tatgaatcag ctgaaaaaaa aaaaaa 1876

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala

Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg

Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

110 115)
Val Glu Val Val Ser Leu Trp Phe Ala Glu Gly Gln Arg Tyr Ser 125 130 130	r 5
His Ala Ala Gly Glu Cys Ala Arg Asn Ala Thr Cys Thr His Ty 140 145 15	r 0
Thr Gln Leu Val Trp Ala Thr Ser Ser Gln Leu Gly Cys Gly Ar 155 160 16	
His Leu Cys Ser Ala Gly Gln Thr Ala Ile Glu Ala Phe Val Cy 170 175	
Ala Tyr Ser Pro Gly Gly Asn Trp Glu Val Asn Gly Lys Thr II	
Ile Pro Tyr Lys Lys Gly Ala Trp Cys Ser Leu Cys Thr Ala Se 200 205	
Val Ser Gly Cys Phe Lys Ala Trp Asp His Ala Gly Gly Leu C 215 220	ys 25
Glu Val Pro Arg Asn Pro Cys Arg Met Ser Cys Gln Asn His G 230 235 2	ly 40
Arg Leu Asn Ile Ser Thr Cys His Cys His Cys Pro Pro Gly T	yr 55
Thr Gly Arg Tyr Cys Gln Val Arg Cys Ser Leu Gln Cys Val F 260 265	lis 270
Gly Arg Phe Arg Glu Glu Glu Cys Ser Cys Val Cys Asp Ile C 275	
Tyr Gly Gly Ala Gln Cys Ala Thr Lys Val His Phe Pro Phe I 295	
Thr Cys Asp Leu Arg Ile Asp Gly Asp Cys Phe Met Val Ser 305	
Glu Ala Asp Thr Tyr Tyr Arg Ala Arg Met Lys Cys Gln Arg 320 325	
Gly Gly Val Leu Ala Gln Ile Lys Ser Gln Lys Val Gln Asp 335	
Leu Ala Phe Tyr Leu Gly Arg Leu Glu Thr Thr Asn Glu Val 350 355	
Asp Ser Asp Phe Glu Thr Arg Asn Phe Trp Ile Gly Leu Thr 365	
Lys Thr Ala Lys Asp Ser Phe Arg Trp Ala Thr Gly Glu His 380 385	
Ala Phe Thr Ser Phe Ala Phe Gly Gln Pro Asp Asn His Gly 395 400	Leu 405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu 410 Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr 425 Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg 440 Trp Gly Pro Gly Ser 455 <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 Ü <211> 45 <212> DNA W <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe gccaaggact cetteegetg ggccacaggg gagcaccagg cette 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgccgg gtccccgagc 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100 gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150

ñ

cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

aggctgaaaa ccaaaccttt gatgacagaa ttctcagtga agtctaccat 250 catttcccgt tatgccttca ctacggtttc ctgcagaatg ctgaacagag 300 cttctgaaga ccaggacatt gagttccaga tgcagattcc agctgcagct 350 ttcatcacca acttcactat gcttattgga gacaaggtgt atcagggcga 400 aattacagag agagaaaaga agagtggtga tagggtaaaa gagaaaagga 450 ataaaaccac agaagaaaat ggagagaagg ggactgaaat attcagagct 500 tetgeagtga tteecageaa ggacaaagee geetttttee tgagttatga 550 ggagcttctg cagaggcgcc tgggcaagta cgagcacagc atcagcgtgc 600 ggccccagca gctgtccggg aggctgagcg tggacgtgaa tatcctggag 650 agegegggea tegeateeet ggaggtgetg eegetteaea acageaggea 700 gaggggcagt gggcgcgggg aagatgattc tgggcctccc ccatctactg 750 tcattaacca aaatgaaaca tttgccaaca taatttttaa acctactgta 800 gtacaacaag ccaggattgc ccagaatgga attttgggag actttatcat 850 tagatatgac gtcaatagag aacagagcat tggggacatc caggttctaa 900 atggctattt tgtgcactac tttgctccta aagaccttcc tcctttaccc 950 aagaatgtgg tattegtget tgacageagt gettetatgg tgggaaceaa 1000 actocggoag accaaggatg coctettoac aattotocat gacotocgac 1050 cccaggaccg tttcagtatc attggatttt ccaaccggat caaagtatgg 1100 aaggaccact tgatatcagt cactccagac agcatcaggg atgggaaagt 1150 gtacattcac catatgtcac ccactggagg cacagacatc aacggggccc 1200 tgcagagggc catcaggctc ctcaacaagt acgtggccca cagtggcatt 1250 ggagaccgga gcgtgtccct catcgtcttc ctgacggatg ggaagcccac 1300 ggtcggggag acgcacaccc tcaagatcct caacaacacc cgagaggccg 1350 cccgaggcca agtctgcatc ttcaccattg gcatcggcaa cgacgtggac 1400 ttcaggctgc tggagaaact gtcgctggag aactgtggcc tcacacggcg 1450 cgtgcacgag gaggaggacg caggctcgca gctcatcggg ttctacgatg 1500 aaatcaggac cccgctcctc tctgacatcc gcatcgatta tccccccagc 1550 tcagtggtgc aggccaccaa gaccctgttc cccaactact tcaacggctc 1600 ggagatcatc attgcgggga agctggtgga caggaagctg gatcacctgc 1650

<210> 55 <211> 694

<212> PRT

<213> Homo Sapien

<400> 55

Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val 1 5 10 15

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln 20 25 30

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu
35 40 45

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn 65 70 75

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro 80 85 90

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95 100 105

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 110 115 120

				410					415					420
Asn	Asn	Thr	Arg	Glu 425	Ala	Ala	Arg	Gly	Gln 430	Val	Cys	Ile	Phe	Thr 435
Ile	Gly	Ile	Gly	Asn 440	Asp	Val	Asp	Phe	Arg 445	Leu	Leu	Glu	Lys	Leu 450
Ser	Leu	Glu	Asn	Cys 455	Gly	Leu	Thr	Arg	Arg 460	Val	His	Glu	Glu	Glu 465
Asp	Ala	Gly	Ser	Gln 470	Leu	Ile	Gly	Phe	Tyr 475	Asp	Glu	Ile	Arg	Thr 480
Pro	Leu	Leu	Ser	Asp 485	Ile	Arg	Ile	Asp	Tyr 490	Pro	Pro	Ser	Ser	Val 495
Val	Gln	Ala	Thr	Lys 500	Thr	Leu	Phe	Pro	Asn 505	Tyr	Phe	Asn	Gly	Ser 510
Glu	Ile	Ile	Ile	Ala 515	Gly	Lys	Leu	Val	Asp 520	Arg	Lys	Leu	Asp	His 525
Leu	His	Val	Glu	Val 530	Thr	Ala	Ser	Asn	Ser 535	Lys	Lys	Phe	Ile	Ile 540
Leu	Lys	Thr	Asp	Val 545	Pro	Val	Arg	Pro	Gln 550	Lys	Ala	Gly	Lys	Asp 555
Val	Thr	Gly	Ser	Pro 560	Arg	Pro	Gly	Gly	Asp 565	Gly	Glu	Gly	Asp	Thr 570
Asn	His	Ile	Glu	Arg 575	Leu	Trp	Ser	Tyr	Leu 580	Thr	Thr	Lys	Glu	Leu 585
Leu	Ser	Ser	Trp	Leu 590	Gln	Ser	Asp	Asp	Glu 595	Pro	Glu	Lys	Glu	Arg 600
Leu	Arg	Gln	Arg	Ala 605	Gln	Ala	Leu	Ala	Val 610	Ser	Tyr	Arg	Phe	Leu 615
Thr	Pro	Phe	Thr	Ser 620		Lys	Leu	Arg	Gly 625	Pro	Val	Pro	Arg	Met 630
Asp	Gly	Leu	Glu	Glu 635	Ala	His	Gly	Met	Ser 640	Ala	Ala	Met	Gly	Pro 645
Glu	Pro	Val	Val	Gln 650		Val	Arg	Gly	Ala 655	Gly	Thr	Gln	Pro	Gly 660
Pro	Leu	Leu	Lys	Lys 665		Asn	Ser	Val	Lys 670	Lys	Lys	Gln	Asn	Lys 675
Thr	Lys	Lys	Arg	His 680		Arg	Asp	Gly	Val 685	Phe	Pro	Leu	His	His 690
Leu	Gly	Ile	Arg											

```
<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 56
gtgggaacca aactccggca gacc 24
<210> 57
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 57
cacategage gtetetgg 18
<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 58
ageogeteet teteoggtte ateg 24
<210> 59
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 59
tgqaaqqacc acttgatatc agtcactcca gacagcatca gggatggg 48
<210> 60
<211> 1413
<212> DNA
<213> Homo Sapien
<400> 60
 cggacgcgtg gggtgcccga catggcgagt gtagtgctgc cgagcggatc 50
 ccagtgtgcg gcggcagcgg cggcggcggc gcctcccggg ctccggcttc 100
 tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
 aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200
```

cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250 ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggtttcagt tgctgaattt ttctagcagt gaactcaaag tatcattgac 350 aaacgtctca atttctgatg aaggaagata cttttgccag ctctataccg 400 atoccccaca ggaaagttac accaccatca cagteetggt eccaccacgt 450 aatctgatga tcgatatcca gaaagacact gcggtggaag gtgaggagat 500 tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550 ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650 ggacgatggg gtcccagtga tctgccaggt ggagcaccct gcggtcactg 700 gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750 cacatteaga tgaettatee tetacaagge ttaaceeggg aaggggaege 800 gcttgagtta acatgtgaag ccatcgggaa gccccagcct gtgatggtaa 850 cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950 ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000 atgtatacga tecceccaca actatecete eteccacaac aaccaccace 1050 accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100 agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150 gcgtcgtggc ggtggtggtg ttcgccatgc tgtgcttgct catcattctg 1200 gggcgctatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250 aggagccgat gacgcagcag acgcagacac agctataatc aatgcagaag 1300 gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350 ctttttgttt caatgaggtg tccaactggc cctatttaga tgataaagag 1400 acagtgatat tgg 1413

<210> 61

<211> 440

<212> PRT

<213> Homo Sapien

<400> 61

Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala 1 5 10 15

Ala Ala Ala Ala Pro Pro Gly Leu Arg Leu Leu Leu Leu Leu Phe Ser Ala Ala Ala Leu Ile Pro Thr Gly Asp Gly Gln Asn Leu Phe Thr Lys Asp Val Thr Val Ile Glu Gly Glu Val Ala Thr Ile Ser Cys Gln Val Asn Lys Ser Asp Asp Ser Val Ile Gln Leu Leu Asn Pro Asn Arg Gln Thr Ile Tyr Phe Arg Asp Phe Arg Pro Leu Lys Asp Ser Arg Phe Gln Leu Leu Asn Phe Ser Ser Ser Glu Leu Lys Val Ser Leu Thr Asn Val Ser Ile Ser Asp Glu Gly Arg Tyr 120 Phe Cys Gln Leu Tyr Thr Asp Pro Pro Gln Glu Ser Tyr Thr Thr 130 125 Ile Thr Val Leu Val Pro Pro Arg Asn Leu Met Ile Asp Ile Gln Lys Asp Thr Ala Val Glu Glu Glu Ile Glu Val Asn Cys Thr Ala Met Ala Ser Lys Pro Ala Thr Thr Ile Arg Trp Phe Lys Gly 175 Asn Thr Glu Leu Lys Gly Lys Ser Glu Val Glu Glu Trp Ser Asp 190 Met Tyr Thr Val Thr Ser Gln Leu Met Leu Lys Val His Lys Glu 205 Asp Asp Gly Val Pro Val Ile Cys Gln Val Glu His Pro Ala Val Thr Gly Asn Leu Gln Thr Gln Arg Tyr Leu Glu Val Gln Tyr Lys Pro Gln Val His Ile Gln Met Thr Tyr Pro Leu Gln Gly Leu Thr Arg Glu Gly Asp Ala Leu Glu Leu Thr Cys Glu Ala Ile Gly Lys Pro Gln Pro Val Met Val Thr Trp Val Arg Val Asp Asp Glu Met 275 Pro Gln His Ala Val Leu Ser Gly Pro Asn Leu Phe Ile Asn Asn Leu Asn Lys Thr Asp Asn Gly Thr Tyr Arg Cys Glu Ala Ser Asn

	Ile
	Thi
	Ala
	Lys
	<210 <211 <212
á	<213
5 000	<220 <220
C C	<400 gg
<u>L</u>	<210 <210

				305					310					315
Ile	Val	Gly	Lys	Ala 320	His	Ser	Asp	Tyr	Met 325	Leu	Tyr	Val	Tyr	Asp 330
Pro	Pro	Thr	Thr	Ile 335	Pro	Pro	Pro	Thr	Thr 340	Thr	Thr	Thr	Thr	Thr 345
Thr	Thr	Thr	Thr	Thr 350	Thr	Ile	Leu	Thr	Ile 355	Ile	Thr	Asp	Ser	Arg 360
Ala	Gly	Glu	Glu	Gly 365	Ser	Ile	Arg	Ala	Val 370	Asp	His	Ala	Val	Ile 375
Gly	Gly	Val	Val	Ala 380	Val	Val	Val	Phe	Ala 385	Met	Leu	Cys	Leu	Leu 390
Ile	Ile	Leu	Gly	Arg 395	Tyr	Phe	Ala	Arg	His 400	Lys	Gly	Thr	Tyr	Phe 405
Thr	His	Glu	Ala	Lys 410	Gly	Ala	Asp	Asp	Ala 415	Ala	Asp	Ala	Asp	Thr 420
Ala	Ile	Ile	Asn	Ala 425	Glu	Gly	Gly	Gln	Asn 430	Asn	Ser	Glu	Glu	Lys 435
Lys	Glu	Tyr	Phe	Ile 440										
<211:	<210> 62 <211> 24 <212> DNA <213> Artificial Sequence													
<220						_								
<223	> Sy	nthe	tic	olig	onuc.	leot	ide ;	prob	e					
<400: ggc		gct	gttg	ctct	tc t	ccg	24							
<210														
<211 <212		א												
<213			cial	Seq	uenc	e								
<220														
<223	> Sy	nthe	tic	olig	onuc	leot	ide	prob	e					
<400 gta		gtg	acca	gtca	gc 2	0								
<210	> 64													
<211														
<212 <213			cial	Seq	uenc	e								
<220 <223		nthe	tic	oliq	onuc	leot	ide	prob	e					

<400> 64 atcatcacag attcccgage 20 <210> 65 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 65 ttcaatctcc tcaccttcca ccgc 24 <210> 66 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 66 atagctgtgt ctgcgtctgc tgcg 24 <210> 67 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 67 cgcggcactg atccccacag gtgatgggca gaatctgttt acgaaagacg 50 <210> 68 <211> 2555 <212> DNA <213> Homo Sapien <400> 68 ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50 cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100 ggctccctgc gccgccgccg cctcccggga cagaagatgt gctccagggt 150 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200 agggctgccc atccggctgc cagtgcagcc agccacagac agtcttctgc 250 actgecegee aggggaceae ggtgeeeega gaegtgeeae eegaeaeggt 300 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350

ttgccggcct gccgggcctg cagctcctgg acctgtcaca gaaccagatc 400

gegggtetga gtgtgaggtg ceaeteatgg getteceagg geetggeete 1900 cagteacece tecaegeaaa geectacate taageeagaa agagacaggg 1950 cagetgggge egggetetea geeagtgaga tggecageee ceteetgetg 2000 ceaeaceaceag taagttetea gteecaacet eggggatgtg tgeagacagg 2050 getgtgtgae cacagetggg eeetgteee tetggacete ggteteetea 2100 tetgtgagat getgtggeee agetgacgag eeetaacgte eecagaaceg 2150 agtgeetatg aggacagtgt eegeeetgee eteegeaacg tgeagteeet 2200 gggeaeggeg ggeeetgeea tgtgetggta acgeatgeet gggeeetget 2250 gggeteteee aeteeaggeg gaceetggg geeagtgaag gaageteeeg 2300 gaaagageag agggaacga ggtaggegge tgtgtgaete tagtettgge 2350 eeeaggaage gaaggaacaa aagaaactgg aaaggaagat getttaggaa 2400 catgtttge tttttaaaa tatatata tttataagag ateetteee 2450 atttattetg ggaagatgt ttteaaacte agagacaagg actttggtt 2500 ttgtaagaca aacgatgata tgaaggeett ttgtaagaaa aaataaaaaa 2550 aaaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys
20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr 35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu
65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser

Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser 95 100 105

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

	110					115					120
Ala Leu Arg	Leu Ala 125	-	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu	Gly 135
Leu Phe Ser	Arg Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn Gln Leu	Glu Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu Thr Arg	Leu Arg 170		Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg Pro Glu	Asp Leu 185		Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val Ser Asn	Leu Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu Phe Pro	Arg Leu 215		Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn Cys Val	Cys Pro 230		Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser His Val	Thr Leu 245		Ser	Pro	Glu	Glu 250	Thr	Arg	Cys	His	Phe 255
Pro Pro Lys	Asn Ala 260	_	Arg	Leu	Leu	Leu 265	Glu	Leu	Asp	Tyr	Ala 270
Asp Phe Gly	Cys Pro 275		Thr	Thr	Thr	Thr 280	Ala	Thr	Val	Pro	Thr 285
Thr Arg Pro	Val Val 290		Glu	Pro	Thr	Ala 295	Leu	Ser	Ser	Ser	Leu 300
Ala Pro Thr	Trp Leu 305		Pro	Thr	Ala	Pro 310	Ala	Thr	Glu	Ala	Pro 315
Ser Pro Pro	Ser Thr 320		Pro	Pro	Thr	Val 325	Gly	Pro	Val	Pro	Gln 330
Pro Gln Asp	Cys Pro		Ser	Thr	Cys	Leu 340	Asn	Gly	Gly	Thr	Cys 345
His Leu Gly	Thr Arg		His	Leu	Ala	Cys 355	Leu	Cys	Pro	Glu	Gly 360
Phe Thr Gly	Leu Tyr 365		Glu	Ser	Gln	Met 370	Gly	Gln	Gly	Thr	Arg 375
Pro Ser Pro	Thr Pro		Thr	Pro	Arg	Pro 385	Pro	Arg	Ser	Leu	Thr 390
Leu Gly Ile	Glu Pro		Ser	Pro	Thr	Ser 400	Leu	Arg	Val	Gly	Leu 405

<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe

```
<400> 71
 cggttctggg gacgttaggg ctcg 24
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 72
ctgcccaccg tccacctgcc tcaat 25
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 73
aggactgccc accgtccacc tgcctcaatg ggggcacatg ccacc 45
<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 74
acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45
<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien
<400> 75
ggcactagga caacettett ceettetgea ceaetgeeeg taceettace 50
 egeceegeea ceteettget acceeactet tgaaaceaca getgttggea 100
 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
 ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
 gccctctggt tgagttgggg ggcagctctg ggggccgtgg cttgtgccat 250
ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300
```

ر

gccggctgca ggggacagga ggcccctccc agaatgggga agggtatccc 350

tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400

tggggagaga tcccggaaaa ggagagcagt gctcaccaa aaacagaaga 450 agcagcactc tgtcctgcac ctggttccca ttaacgccac ctccaaggat 500 gactccgatg tgacagaggt gatgtggcaa ccagctctta ggcgtgggag 550 aggcctacag gcccaaggat atggtgtccg aatccaggat gctggagttt 600 atctgctgta tagccaggtc ctgtttcaag acgtgacttt caccatgggt 650 caggtggtgt ctcgagaagg ccaaggaagg caggagactc tattccgatg 700 tataaagaagt atgccctcc acccaggac ggcctacaac agctgctata 750 gcgcaggtgt cttccattta caccaagggg atattctgag tgtcataatt 800 ccccgggcaa gggcgaaact taacctctct ccacatggaa ccttcctggg 850 gtttgtgaaa ctgtgattgt gttataaaaa gtggctccca gcttggaaga 900 ccagggtggg tacatactgg agacagccaa gagctgagta tataaaggag 950 agggaaatgtg caggaacaga ggcatcttcc tgggtttggc tccccgttcc 1000 tcacttttcc ctttcattc ccaccccta gactttgat ttacggatat 1050 cttgcttctg ttccccatgg agctccca gactttgat ttacggatat ttccccatgg tccccatttcc

<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala 20 25 30

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala
35 40 45

Met Ala Leu Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg
50 55 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly
65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala 80 85 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Arg Ala 95 100 105

Val Leu Thr Gln Lys Gln Lys Gln His Ser Val Leu His Leu 110 115 120

<210> 77

<211> 2849

<212> DNA

<400> 77

<213> Homo Sapien

caetttetee etetetteet ttaetttega gaaacegege tteegettet 50 ggtcgcagag acctcggaga ccgcgccggg gagacggagg tgctgtgggt 100 gggggggacc tgtggctgct cgtaccgccc cccaccctcc tcttctgcac 150 tgccgtcctc cggaagacct tttcccctqc tctqtttcct tcaccqagtc 200 tgtgcatcgc cccggacctg gccgggagga ggcttggccg gcgggagatg 250 ctctaggggc ggcgcgggag gagcggccgg cgggacggag ggcccggcag 300 gaagatgggc tcccgtggac agggactctt gctggcgtac tgcctgctcc 350 ttgcctttgc ctctggcctg gtcctgagtc gtgtgcccca tgtccagggg 400 gaacagcagg agtgggaggg gactgaggag ctgccgtcgc ctccggacca 450 tgccgagagg gctgaagaac aacatgaaaa atacaggccc agtcaggacc 500 aggggetece tgetteeegg tgettgeget getgtgaeee eggtaeetee 550 atgtaccegg cgaccgccgt gccccagatc aacatcacta tcttgaaagg 600 ggagaagggt gaccgcggag atcgaggcct ccaagggaaa tatggcaaaa 650

caggeteage aggggeeagg ggeeacaetg gaeecaaagg geagaaggge 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaec 850 ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatettgtte gegeaggtgg gegaeegeag cateatgeaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cctctacaag ggcgaacgtg agaacgccat cttcagcgag gagctggaca 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 ctggccggcc acctcctttc ctctcgccac cttccacccc tgcgctgtgc 1200 tgaccccacc gcctcttccc cgatccctgg actccgactc cctggctttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatece geagestetg gagagagetg aeggeagatg aaateaceag 1350 ggcggggcac ccgcgagaac cctctgggac cttccgcggc cctctctgca 1400 cacatectea agtgaceeeg caeggegaga egegggtgge ggeagggegt 1450 cccagggtgc ggcaccgcgg ctccagtcct tggaaataat taggcaaatt 1500 ctaaaggtct caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttett gagggatagg tggaccetga catecetgtg 1750 gccttgccca agggctctgc tggtctttct gagtcacagc tgcgaggtga 1800 tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteetigg tacatecatg tgtggetetg etecacecet gtgccacece 2000 agageeetgg ggggtggtet ceatgeetge caccetggea teggetttet 2050 gtgccgcctc ccacacaat cagccccaga aggccccggg gccttggctt 2100

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu

1 5 10 15

Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val
20 25 30

Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser 35 40 45

Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
50 55 60

Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
65 70 75

Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro

Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly
95 100 105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

C
ű
Ü
uliu jes
uğu. İsa
U
*
,ę
 ≅
-
B
e E

				110					115					120
Ala	Arg	Gly	His	Thr 125	Gly	Pro	Lys	Gly	Gln 130	Lys	Gly	Ser	Met	Gly 135
Ala	Pro	Gly	Glu	Arg 140	Cys	Lys	Ser	His	Tyr 145	Ala	Ala	Phe	Ser	Val 150
Gly	Arg	Lys	Lys	Pro 155	Met	His	Ser	Asn	His 160	Tyr	Tyr	Gln	Thr	Val 165
Ile	Phe	Asp	Thr	Glu 170	Phe	Val	Asn	Leu	Туг 175	Asp	His	Phe	Asn	Met 180
Phe	Thr	Gly	Lys	Phe 185	Tyr	Cys	Tyr	Val	Pro 190	Gly	Leu	Tyr	Phe	Phe 195
Ser	Leu	Asn	Val	His 200	Thr	Trp	Asn	Gln	Lys 205	Glu	Thr	Tyr	Leu	His 210
Ile	Met	Lys	Asn	Glu 215	Glu	Glu	Val	Val	Ile 220	Leu	Phe	Ala	Gln	Val 225
Gly	Asp	Arg	Ser	Ile 230	Met	Gln	Ser	Gln	Ser 235	Leu	Met	Leu	Glu	Leu 240
Arg	Glu	Gln	Asp	Gln 245	Val	Trp	Val	Arg	Leu 250	Tyr	Lys	Gly	Glu	Arg 255
Glu	Asn	Ala	Ile	Phe 260	Ser	Glu	Glu	Leu	Asp 265	Thr	Tyr	Ile	Thr	Phe 270
Ser	Gly	Tyr	Leu	Val 275	Lys	His	Ala	Thr	Glu 280	Pro				
<210: <211: <212: <213:	> 24 > DNA		cial	Sequ	uence	9								
<220:		nthet	ic o	oliga	onuc]	leoti	ide r	orobe	2					
<223> Synthetic oligonucleotide probe <400> 79 tacaggccca gtcaggacca gggg 24														
<210: <211: <212: <213:	> 80 > 24 > DNA	ł.		-										
<220 <223		nthet	ic o	oligo	onuc]	leoti	ide p	orobe	9					
<400 ctga		agt a	agago	geegg	gg ca	acg 2	24							
<210	81													

- <211> 45 <212> DNA <213> Artificial Sequence <220>
- <223> Synthetic oligonucleotide probe
- <400> 81 cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45
- <210> 82 <211> 2284 <212> DNA <213> Homo Sapien
- <400> 82 geggageate egetgeggte etegeegaga ecceegegeg gattegeegg 50 teetteeege gggegegaca gagetgteet egeacetgga tggeageagg 100 ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acceaactge tacetatttt tetgteecaa egaggaagee tgteeattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggateet cagateacet ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaageeegee accettetae eeaceaatge tteagtgaca eettetggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050

teteageete ceaegaeeet eatttetaea gtttttaeae gggetgegge 1100 tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tecaaettaa etttgaaeae agggaatgtg tataaeeeta etgeaettte 1250 tatgtcaaat gtggagtett ceactatgaa taaaactget teetgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aageecaaat geaatgagtt tetgetgaet tgetagtett 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700 tagcacgate teggetetea eegeaacete eqteteetqq qtteaaqeqa 1750 tteteetgee teageeteet aagtatetgg gattacagge atgtgeeace 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850 ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttctttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
1 5 10 15

Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile 115 Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu 125 130 Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val 140 Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp 155 Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp 170 His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu 185 Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser 200 Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala 215 Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala Thr Pro Lys Pro Ala Thr Leu Leu Pro Thr Asn Ala Ser Val Thr 255 Pro Ser Gly Thr Ser Gln Pro Gln Leu Ala Thr Thr Ala Pro Pro Val Thr Thr Val Thr Ser Gln Pro Pro Thr Thr Leu Ile Ser Thr 285 Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr Ala Val Leu Thr Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly

					305					310					315
	Ser	Leu	Glu	Thr	Ile 320	Pro	Phe	Thr	Glu	Ile 325	Ser	Asn	Leu	Thr	Leu 330
	Asn	Thr	Gly	Asn	Val 335	Tyr	Asn	Pro	Thr	Ala 340	Leu	Ser	Met	Ser	Asn 345
	Val	Glu	Ser	Ser	Thr 350	Met	Asn	Lys	Thr	Ala 355	Ser	Trp	Glu	Gly	Arg 360
	Glu	Ala	Ser	Pro	Gly 365	Ser	Ser	Ser	Gln	Gly 370	Ser	Val	Pro	Glu	Asn 375
	Gln	Tyr	Gly	Leu	Pro 380	Phe	Glu	Lys	Trp	Leu 385	Leu	Ile	Gly	Ser	Leu 390
	Leu	Phe	Gly	Val	Leu 395	Phe	Leu	Val	Ile	Gly 400	Leu	Val	Leu	Leu	Gly 405
æ	Arg	Ile	Leu	Ser	Glu 410	Ser	Leu	Arg	Arg	Lys 415	Arg	Tyr	Ser	Arg	Leu 420
	Asp	Tyr	Leu	Ile	Asn 425	Gly	Ile	Tyr	Val	Asp 430	Ile				
	<210> 84 <211> 30														
	<212> DNA <213> Artificial Sequence														
i L	<220> <223> Synthetic oligonucleotide probe														
	<400> 84 agggaggatt atccttgacc tttgaagacc 30														
	<210> 85														
þå	<211: <212: <213:	> DN		rial	Sem	1enc	.								
	<220:		CILI	, 1 a 1	Seq	<i>1</i> 01101	-								
	<223	> Sy	nthe	cic o	oligo	onuc	leot	ide 1	probe	e					
	<400: gaag		gtg (ccca	gete	18									
	<210:														
	<212	> DN		-i-1	50-	ione	_								
	<213:	> Ar	CIII(.1dl	seqi	ienc	=								

<223> Synthetic oligonucleotide probe

cgggtccctg ctctttgg 18

<220>

<400> 86

<210> 87 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 87 caccgtagct gggagcgcac tcac 24 <210> 88 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 88 agtgtaagtc aagctccc 18 <210> 89 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 89 gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49 <210> 90 <211> 957 <212> DNA <213> Homo Sapien <400> 90

cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50 gtcttcgcct ccttgtgtgc ctggtattcg gggtacctgc tcgcagagct 100 cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150 gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200 cactggactc cctgcccatc tgacacctat gcctacaggt tactcagcgg 250 aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300 tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350 aactatgtaa ctgggaatgt gacagcaaca cgatgtttg atatgtatga 400 aggcgataac tctggaccga tgacaaagtt tattcagagt gctgctccaa 450 aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500

aacgatgcca agaatgccat agaagcactt ggaagtaaag aaatcaggaa 550 catgaaattc aggtctagct gggtatttat tgcagcaaaa ggcttggaac 600 tcccttccga aattcagaga gaaaagatca accactctga tgctaagaac 650 aacagatatt ctggctggcc tgcagagatc cagatagaag gctgcatacc 700 caaagaacga agctgacact gcagggtcct gagtaaatgt gttctgtata 750 aacaaatgca gctggaatcg ctcaagaatc ttattttct aaatccaaca 800 gcccatattt gatgagtatt ttgggtttgt tgtaaaccaa tgaacatttg 850 ctagttgtat caaatcttgg tacgcagtat ttttatacca gtattttatg 900 tagtgaagat gtcaattagc aggaaactaa aatgaatgga aattcttaaa 950 aaaaaaa 957

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val 1 5 10 15

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu 20 25 30

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 65 70 75

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile 80 85 90

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val 95 100 105

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn 110 115 120

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser 125 130 135

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 140 145 150

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 155 160 165 Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg 170 175 180 Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly

Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly
185 190 195

Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser 200 205 210

Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln 215 220 225

Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230 235

<210> 92

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 92
aatgtgacca ctggactccc 20

<210> 93

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

堊

<223> Synthetic oligonucleotide probe

<400> 93

aggettggaa eteeette 18

<210> 94

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 94

aagattettg agegatteea getg 24

<210> 95

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 95

aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

```
<210> 96
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 96
 ctcaagaagc acgcgtactg c 21
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 97
 ccaacctcag cttccgcctc tacga 25
<210> 98
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 98
catccagget egecactg 18
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 99
tggcaaggaa tgggaacagt 20
<210> 100
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 100
 atgctgccag acctgatcgc agaca 25
<210> 101
<211> 19
<212> DNA
```


- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 101
- gggcagaaat ccagccact 19
- <210> 102
- <211> 18
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 102
- cccttcgcct gcttttga 18
- <210> 103
- <211> 27
- <212> DNA
- <213> Artificial Sequence
- <220>

- <223> Synthetic oligonucleotide probe
- <400> 103
- gccatctaat tgaagcccat cttccca 27
- <210> 104
- <211> 19
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 104
- ctggcggtgt cctctcctt 19
- <210> 105
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 105
- cctcggtctc ctcatctgtg a 21
- <210> 106
- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <220>

- <223> Synthetic oligonucleotide probe
- <400> 106 tggcccagct gacgagccct 20
- <210> 107
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 107
- ctcataggca ctcggttctg g 21
- <210> 108
- <211> 19
- <212> DNA
- <213> Artificial Sequence
- <220>

M

U

- <223> Synthetic oligonucleotide probe
- <400> 108
- tggctcccag cttggaaga 19
- <210> 109
- <211> 30
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 109
- cagctettgg etgtetecag tatgtaceca 30
- <210> 110
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 110
- gatgcctctg ttcctgcaca t 21
- <210> 111
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 111


```
ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48
   <210> 112
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 112
    ctatgaaatt aacceteact aaagggaceg cagetgggtg accgtgta 48
   <210> 113
   <211> 43
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 113
    ggattctaat acgactcact atagggccgc cccgccacct cct 43
   <210> 114
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 114
   ctatgaaatt aacceteact aaagggaete gagacaceae etgaeeca 48
M
   <210> 115
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 115
    ggattctaat acgactcact atagggccca aqqaaqqcaq qaqactct 48
   <210> 116
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic Oligonucleotide probe
   <400> 116
   ctatgaaatt aaccctcact aaagggacta gggggtggga atgaaaag 48
```

<210> 117

<211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 117 ggattctaat acgactcact atagggcccc cctgagctct cccgtgta 48 <210> 118 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 118 ctatgaaatt aaccctcact aaagggaagg ctcgccactg gtcgtaga 48 <210> 119 <211> 48 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 119 ggattctaat acgactcact atagggcaag gagccgggac ccaggaga 48 <210> 120 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 120 ctatgaaatt aaccctcact aaagggaggg ggcccttggt gctgagt 47