Signal Analysis, Design of Experiments and System Identification WiSe 2023/2024

6^{th} Computer Exercise

Signal Processing 02

Z. Jaouadi, R. Raj Das, T. Lahmer

1. Real Signals

- (a) Load the signals (Signal_01, and Signal_02). Plot the data as time signals, identify one as input x and one as output y of a system.
- (b) Compute the Spectral Power Density (SPD) S_{xx} as the average of the squared Fourier Transforms. Consider the sampling frequency as 4096 Hz.
- (c) Compute and plot the auto-correlation function ϕ_{xx} of the input signal, and ϕ_{yy} of the output signal, (Hint: try the function autocorr).
- (d) Compute and plot the cross-correlation ϕ_{xy} of input and output signal (Hint: try the function xcorr). Then, compute and plot the cross-spectral density S_{yx} .
- (e) Having cross and power spectral density, the coherence function, is easily obtained and plotted. The coherence function is defined such that

$$\gamma^{2}(\omega) = \frac{|S_{yx}(\omega)|^{2}}{S_{yy}(\omega)S_{xx}(\omega)}$$

(f) Could you now specify the fundamental frequencies of the given signals?

2. Coherence function in ordinary differential equation

- (a) Consider at first two noisy sinusoidal functions, and compute the Magnitude-Squared Coherence while considering one of them as input and the second as output (hint: demo_coherence).
- (b) Compute the coherence function while considering a sinusoidal function as input and the solutions obtained from the linear/non-linear Equation of Motion as output (hint: ODE_FFT_Coherence).

3. Wavelet Transformation:

- (a) Consider a chirp signal $cos(4x^2)$. Perform discrete wavelet transform (DWT) at level 5 using the Haar/db1 wavelet.
- (b) Expand discrete wavelet coefficient.
- (c) Plot the signal and the expanded discrete wavelet coefficient.
- (d) Apply the same previous instructions for added and concatenated sine signals.

4. Filters

- (a) Apply low pass filter on a highly noisy sinusoidal signal (hint: filterOfNoisySine). Change the value of N and interpret the results.
- 5. Document observations, findings and conclusions carefully.