Машинное обучение (Machine Learning) Обучение на одном примере (One-shot learning)

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

Презентация является переводом и заимствованием материалов из замечательного блога

https://sorenbouma.github.io/blog/oneshot/

One-Shot Learning

Пример

Формальная постановка задачи

Дано:

• малое "помеченное" обучающее множество S из N примеров одинковой размерности с метками y

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$$

- тестовый пример $\hat{\mathbf{x}}$, который нужно классифицировать Цель:
- ullet так как ровно один пример имеет "правильный" класс, то необходимо определить $y\in S$ такое же как метка \widehat{y} примера $\widehat{\mathbf{x}}$

Что нужно учесть при решении

- В реальности не всегда есть ограничение, что только одно изображение имеет правильный класс
- Просто обобщить эту ситуацию на случай k-shot, если есть не один, а k примеров для каждого y_i , а не один.
- Когда N большое, есть большее число возможных классов, к которым может принадлежать $\widehat{\mathbf{x}}$, поэтому сложнее предсказать правильный класс.
- Случайное угадывание будет иметь $\frac{100}{N}\%$ точность в среднем

Примеры

Датасет Omniglot N=9

Датасет Omniglot представляет собой набор из 1623 рисованных символов в разрешении 105х105 из 50 алфавитов.

Примеры

Датасет Omniglot N=25

Примеры

Датасет Omniglot N=36

Support Set

Support Set					
न्	3 0	त	ţ	あ	7
×	મ		K	1	لكا
4	ጋ	テ	٢	R	પ
Я	מ	7	cr	ナ	σ
य	U	4	⋠.	3T	ス
ゃ	F	لبز	7	<u>ح</u>	[ح،

Omniglot

Sanskrit C) म आ ठ क ध्य ज स Ţ J 311 ओ य $\overline{\mathcal{E}}$ भ ਰ ₹ ন্ত ਫ মে च ৰ ₹ श 乖

Greek

4 L β S L

μ α κ χ ν

υ θ γ Ι σ

ω π η ο ε

Ρ ξ ζ ψ

Bengali 欬 ব অ ন द्ध প ভ স a ज ા শ্ব જ 5_ ট ল ড 5] N ফ 8

Простейший метод классификации - 1 ближайший сосед

- Простейший способ классификации это k ближайших соседей, но поскольку для каждого класса есть только один пример, используем 1 ближайшего соседа.
- Евклидово расстояние от тестового примера до обучающего:

$$C(\widehat{\mathbf{x}}) = \arg\min_{c \in S} \|\widehat{\mathbf{x}} - \mathbf{x}_c\|$$

- ullet Точность (Koch и др.): $\sim 28\%$ при N=20 omniglot
- Это примерно в 6 раз больше, чем просто случайное угадывание (5%)
- ullet У людей точность 95.5% при ${\it N}=20$ omniglot
- Hierarchical Bayesian Program Learning (Lake и др.)
 дает 95.2%

Неронные сети для обучения

- Как обучить нейронную сеть на единичных примерах?
 Переобучение!
- Многие подходы используют Transfer Learning
- Вспомним 1 ближайшего соседа просто классифицирует путем поиска ближайшего примера на расстоянии L_2 (Евклидово расстояние)
- Но эта метрика плоха для большой размерности

Сиамские сети

Сиамские сети

Идея: Сиамская сеть может сравнивать тестовое изображение с каждым изображением в наборе и выбирать, какое из них, имеет один и тот же класс - наиболее близко.

Глубокая сиамская сеть

Глубокая сиамская сеть

- Используем t=1, если два изображения одного класса и t=0 иначе
- Функция потерь

$$egin{aligned} L(\mathbf{x}_1, \mathbf{x}_2, t) &= t \cdot \log(p(\mathbf{x}_1 \circ \mathbf{x}_2)) \ &+ (1 - t) \cdot \log(1 - p(\mathbf{x}_1 \circ \mathbf{x}_2)) \ &+ \lambda \cdot \|w\|_2 \end{aligned}$$

• Решение

$$C(\hat{\mathbf{x}}, S) = \arg\max_{c} P(\hat{\mathbf{x}} \circ x_c), \ x_c \in S$$

Глубокая сиамская сеть - обучение

- Почему нет переобучения
- ullet Если есть C примеров в E классах, то число пар среди $C \cdot E$ примеров $N_{\mathsf{nap}} = C \cdot E \cdot (1 C \cdot E)/2$
- 20 примеров Omniglot из 964 классов 185 849 560 пар!
- Но число примеров одного класса $N_{\text{одинак}} = {E \choose 2} C$.
 Это 183 160 пар.
- Важно: для обучения сиамской сети необходимо соотношение 1:1 примеров одного и разных классов

Характеристики

https://sorenbouma.github.io/blog/oneshot/

Вопросы

?