CS 6375

ASSIGNMENT _2

DECISION TREE

Names of students in your group:

Mahasweta Sarma (mxs175831)

Maleeha Shabeer Koul (msk180001)

Number of free late days used: 0

Note: You are allowed a <u>total</u> of 4 free late days for the <u>entire semester</u>. You can use at most 2 for each assignment. After that, there will be a penalty of 10% for each late day.

Please list clearly all the sources/references that you have used in this assignment.

eLearning

ANSWER FOR QUESTION 1:

1. Representing Boolean Functions

a)
$$Y = (^A V B) ^ (C^A)$$

Truth table for the above expression :

А	В	С	~A	~A v B	C^ A	~(C^ A)	Υ
0	0	0	1	1	0	1	1
0	0	1	1	1	0	1	1
0	1	0	1	1	0	1	1
0	1	1	1	1	0	1	1
1	0	0	0	0	0	1	0
1	0	1	0	0	1	0	0
1	1	0	0	1	0	1	1
1	1	1	0	1	1	0	0

Required Decision tree with the least number of nodes:

b) Y = (A xor B) ^ C

Truth table for the above expression:

Α	В	С	A xor b	Υ
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Required Decision Tree with the least number of nodes :

c)
$$Y = (A \lor B) \land (B \lor C) \land (A \lor C)$$

Truth table for the above expression :

Α	В	С	(A v B)	(B v C)	(A v C)	Υ
0	0	0	0	0	0	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

The decision tree with least number of nodes :

d) Y= (A V B)
$$^{\wedge}$$
 $^{\sim}$ A $^{\wedge}$ $^{\sim}$ B

Truth table for the above expression :

Α	А	~A	~B	AVB	Υ
0	0	1	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	0

Required decision tree with least number of nodes :

ANSWER FOR QUESTION 2:

Class: (5+, 5-)

H: Entropy = $\sum_i -(p_i \log_2 p_i)$

I.G. : Information Gain = $H(Y) - H(Y \mid X)$

 $H(class) = -5/10 \log 5/10 - 5/10 \log 5/10 = 1$

$$H(X1 \mid 1) = -4/5 \log 4/5 - 1/5 \log 1/5 = 0.7219$$

$$H(X1 \mid 0) = -1/5 \log 1/5 - 4/5 \log 4/5 = 0.7219$$

H (Class | X1) =
$$(5/10 * 0.7219) + (5/10 * 0.7219) = 0.7219$$

$$I.G._{x1} = 1 - 0.7219 = 0.2781$$

$$H(X2 \mid 1) = -2/3 \log 2/3 - 1/3 \log 1/3 = 0.9182$$

$$H(X1 \mid 0) = -3/7 \log 3/7 - 4/7 \log 4/7 = 0.9852$$

H (Class | X2) =
$$(3/10 * 0.9182) + (7/10 * 0.9852) = 0.9651$$

$$I.G._{x2} = 1 - 0.9651 = 0.0349$$

$$H(X3 \mid 1) = -0/2 \log 0/2 - 2/2 \log 2/2 = 0$$

$$H(X3 \mid 0) = -5/8 \log 5/8 - 3/8 \log 3/8 = 0.9544$$

H (Class | X3) =
$$(2/10 * 0) + (8/10 * 0.9544) =$$
0.76352

$$I.G._{x2} = 1 - 0.76352 = 0.23648$$

Since Information Gain (I.G) is maximum for X1, we will split the gain based on X1.

For left child of X1 node:

$$H (class) = 0.7219$$

$$H (class | X2 = 0) = (0+, 3-) = 0$$

$$H (class | X2 = 1) = (1+, 1-) = 1$$

H (class | X2) =
$$(3/5 * 0) + (2/5 * 1) =$$
0.4

$$I.G._{x2} = 0.7219 - 0.4 = 0.3219$$

H (class
$$|X3 = 0\rangle = (1+, 3-) = -1/4 \log 1/4 - 3/4 \log 3/4 = 0.8112$$

$$H (class | X3 = 1) = (0+, 1-) = 0$$

H (class | X3) =
$$(4/5 * 0.8112) + (1/5 * 0) =$$
0.64896

$$I.G._{x3} = 0.7219 - 0.64896 = 0.07294$$

Since Information Gain is greater for X2, we split the data based on X2 attribute for left child of X1.

For right child of X1 node:

$$H (class) = 0.7219$$

H (class
$$|X2 = 0\rangle = (3+, 1-) = -3/4 \log 3/4 - 1/4 \log 1/4 = 0.8112$$

$$H (class | X2 = 1) = (1+, 0-) = 0$$

H (class | X2) =
$$(4/5 * 0.8112) + (1/5 * 0) =$$
0.64896

$$I.G._{x2} = 0.7219 - 0.64896 = 0.07294$$

$$H (class | X3 = 1) = (0+, 1-) = 0$$

$$H (class | X3 = 0) = (4+, 0-) = 0$$

$$H$$
 (class | X3) = 0

$$\mathbf{I.G.}_{x3} = 0.7219 - 0 = \mathbf{0.7219}$$

Since Information gain is greater for X3, we will split the data based on X3 attribute for right child of X1.

