6. Probabilities: Markov chains and statistical model checking

José Proença System Verification (CC4084) 2024/2025

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/sv2425

Where we are

Syllabus

- Introduction to model-checking
- CCS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
 - mCRL2: modelling
- Dynamic logic
 - Syntax
 - Semantics
 - Relation with equivalence
 - mCRL2: verification

- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL: modelling
- Temporal logics (LTL/CTL)
 - Syntax
 - Semantics
 - UPPAAL: verification
- Probabilistic and stochastic systems
 - Going probabilistic
 - UPPAAL: monte-carlo

Going probabilistic

Motivation

Systems can get very complex

- E.g., 5 components, 3 possible traces each
- No communication (pure interleaving)
- 5 traces (or 7 components) becomes X

Motivation

Systems can get very complex

- E.g., 5 components, 3 possible traces each
- No communication (pure interleaving)
- 5 traces (or 7 components) becomes X
- Verifying deadlock freedom (and others) requires traversing all states
- Approximation:
 - traverse only part of the states
 - give more priority to some actions
 - return (statistically) likelihood of a given property

Recall: A taxonomy of transition systems

- $\alpha: S \rightarrow N \times S$ Moore machine
- $\alpha: S \to Bool \times S^N$ deterministic automata
- $\alpha: S \to \text{Bool} \times P(S)^N$ non-deterministic automata (reactive)
- $\alpha: S \to P(N \times S)$ non deterministic LTS (generative)
- $\alpha: S \to (S+1)^N$ partial deterministic LTS
- $\alpha: S \to P(S)$ unlabelled TS
- $\alpha: S \to \mathrm{D}(S)$ Markov chain

Bringing probabilities to transition systems

Markov chains

$$\alpha: \mathcal{S} \to \mathrm{D}(\mathcal{S})$$

where D(S) is the set of all discrete probability distributions on set S

A Markov chain goes from a state s to a state s' with probability p if

$$\alpha(s) = \mu$$
 with $\mu(s') = p > 0$

Recall discrete distributions

Recall

 $\mu: \mathcal{S} \rightarrow [0,1]$ is a discrete probability distribution if

- $\{s \in S \mid \mu(s) > 0\}$, is finite (called the support of μ), and
- $\bullet \quad \sum_{s \in S} \mu(s) = 1$

Examples

- Dirac distribution: $\mu_s^1 = \{s \to 1\}$
- Product distribution: $(\mu_1 \times \mu_2)\langle s, t \rangle = \mu_1(s) \times \mu_2(t)$

Example

$$\alpha: S \to (D(S) + 1)^N$$

Ex. 6.1: Formalise the systems below as functions

Notions of bisimulation arise naturally.

Generative PTS

$$\alpha: \mathcal{S} \to \mathrm{D}((\mathcal{S} \times \mathcal{N}) + 1)$$

Ex. 6.2: Now (generative) – formalise it $\begin{array}{c}
A_1 \\
b[0.3]
\end{array}$ $\begin{array}{c}
b[0.3]\\
b[0.2]
\end{array}$

Probabilities in Uppaal

Stochastic Timed Automata – examples

Stochastic Timed automata Definition

$$\langle L, L_0, Act, C, Tr, Inv \rangle$$

where

- L is a set of locations, and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times C(C) \times Act \times P(C) \times \mathbb{N} \times L$ is the transition relation

$$\ell_1 \xrightarrow{g,a,U,w} \ell_2$$

denotes a transition from location ℓ_1 to ℓ_2 , labelled by a, enabled if guard g is valid, which, when performed, resets the set U of clocks, with a probability given by the weight w

■ $Inv: L \longrightarrow \mathcal{C}(C) \cup rate$ is the assignment of invariants or rates (of an exponential distribution) to locations

where C(C) denotes the set of clock constraints over a set C of clock variables

- Probability of $\langle A1_0, 0 \rangle \xrightarrow{0.5} \langle A1_0, 0.5 \rangle$?
- Probability of $\langle A2_0, 0 \rangle \xrightarrow{0.5} \langle A2_0, 0.5 \rangle$?

- Probability of $\langle A1_0, 0 \rangle \xrightarrow{0.5} \langle A1_0, 0.5 \rangle$?
- Probability of $\langle A2_0, 0 \rangle \xrightarrow{0.5} \langle A2_0, 0.5 \rangle$?
- Probability of $\langle A3_0, 0 \rangle \xrightarrow{0.5} \langle A3_0, 0.5 \rangle$?

- Probability of $\langle A1_0, 0 \rangle \xrightarrow{0.5} \langle A1_0, 0.5 \rangle$?
- Probability of $\langle A2_0, 0 \rangle \xrightarrow{0.5} \langle A2_0, 0.5 \rangle$?
- Probability of $\langle A3_0, 0 \rangle \xrightarrow{0.5} \langle A3_0, 0.5 \rangle$?
- Probability of reaching A1₁?
- Probability of reaching $A2_1$?

- Probability of $\langle A1_0, 0 \rangle \xrightarrow{0.5} \langle A1_0, 0.5 \rangle$?
- Probability of $\langle A2_0, 0 \rangle \xrightarrow{0.5} \langle A2_0, 0.5 \rangle$?
- Probability of $\langle A3_0, 0 \rangle \xrightarrow{0.5} \langle A3_0, 0.5 \rangle$?
- Probability of reaching A1₁?
- Probability of reaching A2₁?
- Probability of reaching A3_{END} in less than 4.3?

 $= \dots$

A1: When does it end?

- Run 102000 times
- Histogram: how many times it took [9..9.1] seconds?
- ...

A2: When does it end?

- Run 100000 times
- Histogram: how many times it took [9..9.1] seconds?
- · ...

A3: When does it end?

- Run 300000 times
- Histogram: how many times it took [9..9.1] seconds?
- ..

Generative Timed PTS

$$\alpha: S \to D((S \times N) + 1)$$

$$\alpha: S \to D(S \times (Act + R + 1))$$

Before (PTS)

Ex. 6.3: Now (Timed PTS) - formalise it

Probabilistic queries in Uppaal

. .