CHEM 343 – Organic Chemistry I

- Dr. Ive Hermans CHEM 343/345 instructor and Professor of Chemistry
- Dr. Brian Esselman CHEM 343/344/345 instructor and Associate
 Organic Laboratory Director
- Dr. Kimberly DeGlopper CHEM 343/345 instructor
- Dr. Mary Beth Anzovino CHEM 343/344/345 instructor and Associate Organic Laboratory Director
- Teaching Assistants
 - John Mannone
 - Lizzy Sielaff
 - Jacob Kailing
 - Liza Ryutov

- Rashi Bhatnagar
- Pete Verardi
- Niall Ellias
- Julia Fraser
- Sara Simonson

Lecture 1 9:55 AM

Lecture 6 12:05 PM

Lecture 5 1:20 PM

Lecture 3 2:25 PM

*All in S413 Chem

August 31, 2024

-1

Useful resources

- Undergraduate Chemistry Office (<u>undergrad@chem.wisc.edu</u>)
 - Handles all <u>registration-related issues</u> for organic chemistry
 - Be sure to include in your email
 - Your ID number
 - Which section you are currently enrolled in
 - Which section you want to switch into
- Canvas course page Lots of information
 - Office hours
 - Link to piazza for Q&A
 - Please check to see if your question has already been asked

Chem 343

- Fast paced
 - New concepts build on what you've learned previously
 - Keep a <u>consistent</u> pace in learning
- You need to learn the material in depth
 - Discussions
 - Textbook
 - Problem sets
- Do NOT rely on memorization
- Work together
- Course is out of 575 pts
 - 3 quizzes (25 pts each), 3 exams (100 pts each), 1 final exam (200 pts)

Chapter 1 – chemical bonding and chemical structure

- Learning Goals
 - Lewis structures
 - How to draw
 - Help you understand and keep track of molecular changes
 - Resonance structures
 - Chemical bonds
 - Have a better understanding of electrons and chemical bonds
 - Know the different types of bonds in an organic molecule
- Extra reading material on Canvas
 - Modules → Supplemental Materials & Handouts → "Chem 343 Structure and Bonding"

Chemical Bonding (Ch 1.3)

<u>Table 1.1</u> – Pauling electronegativity values

Ionic Bonds

- A BIG difference in EN between atoms leading to ionization
- Dominated by electrostatic attraction
- No Lewis structures to draw
- Soluble in polar protic solvents (Ch 8)

- Covalent Bonds (polar and nonpolar)
 - Smaller or no EN difference between atoms
 - Formed by sharing electrons
 - Leads to molecular compounds
 - Well-represented by Lewis structures

How to draw good Lewis structures

- Obey octet rule (mostly)
- Tend to reduce formal charges
- Match formal charge to EN (when there is a choice)

Insert Web Page

This app allows you to insert secure web pages starting with https:// into the slide deck. Non-secure web pages are not supported for security reasons.

Please enter the URL below.

https:// www.chem.wisc.edu/deptfiles/OrgL

Preview

Web Viewer Terms |

Privacy & Cookies

 \cdot $\dot{\mathbf{C}}$ Methane H. (CH_4)

phosgene (COCl₂)

CI.

:CI·

hydrogen cyanide (HCN)

Н٠

·N

Formal charge (Ch 1.4)

- * Bookkeeping tool
- * NOT real charge

 $formal\ charge = \#\ valence\ e^- - \#\ nonbonded\ e^- - \#\ bonds$

hydroxide (OH⁻)

methyl cation (CH₃⁺)

ethoxide (CH₃CH₂O⁻)

ammonium (NH₄+)

carbon monoxide (CO)

carbonate (CO₃²⁻)

Electron configuration of carbon (ch 1.9)

<u>Acetylene</u>

Resonance and conjugation (Ch 1.5)

Allyl cation

π conjugation

Acrolein (α , β -unsaturated carbonyl compound)

Resonance structures:

- Atoms do not move
- Hybridizations do not change
- Same number of electrons and atoms in all depictions

Molecular orbital theory (Ch 1.8)

- From atomic orbitals \rightarrow generate molecular orbitals
 - Can have bonding, antibonding, or non-bonding molecular orbitals
- Application of quantum mechanics to calculate molecule properties
 - Ex: bond length, relative energies, real charge, etc.
- Easier to understand description of delocalized systems

• Ex: π -conjugation

$MO - \sigma$ -bond ($\underline{H}_{\underline{2}}$)

MO – π -bond (<u>ethylene</u>, C₂H₄)

MO – π -conjugation (allyl cation, $C_3H_5^{\pm}$)

Resonance structures and π -conjugation (Ch 1.5)

