# **Chapter 3: Data Preprocessing**

#### **Dong-Kyu Chae**

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University





### **Contents: Major Tasks in Data Preprocessing**

- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization



### Why Pre-process the Data?

#### A multidimensional view

- Accuracy: your data mining/machine learning results are not accurate, despite multiple trials...
- Completeness: not recorded, unavailable, ...
- □ **Consistency**: some modified but some not, ....
- □ **Timeliness**: timely updated? →
- Believability: how trustable the data are?
- Interpretability: how easily the data can be understood?

preprocessing of Test 99



#### **Overview**

Data cleaning

- dinty sen Mg 7
- □ Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration

- Scorter SIOT 25 intargrate
- Integration of multiple databases, data cubes, or files
- Data reduction
  - Dimensionality reduction
  - Numerosity reduction
  - Data compression

- eryCHS data &
- Data transformation and data discretization
  - Normalization
  - Concept hierarchy generation



### **Data Cleaning**

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
  - incomplete: lacking feature values, lacking certain features of interest, or containing only aggregate data
    - e.g., Occupation= " " (missing data) ກໍໄຮເຄື່ອງ ທາໃນຄ
  - noisy: containing noise, errors, or outliers
    - e.g., *Salary*= "−10" (an error)
  - inconsistent: containing discrepancies in codes or names, e.g.,
    - Age= "42", Birthday= "03/07/2000" In chistothe
    - In some DBs, rating is "1, 2, 3", but some other DBS, "A, B, C"
    - discrepancy between duplicate records



### **Missing Data**

Missing Valuez ignote
au

- □ **Remove the object:** usually done when class label is missing—not effective when the % of missing values is large
- □ Fill in the missing value manually: might be accurate, but

tedious + infeasible

- □ Fill in it automatically with
  - a simple constant (default value, or "unknown")
  - □ the feature mean
  - □ the feature mean for all samples belonging to the same group (e.g., same class, same cluster, etc...)
  - □ the inferred value: such as based on some regression or classification model

rature 2 to 22 2

## **Noisy & Inconsistent Data**

- □ **Noise:** random error or variance in a measured feature
  - Mainly due to faulty data collection instruments
  - Noisy data is often expressed as an outlier
    - Outlier detection -> delete outliers -> find missing values
  - □ Thus we can apply an **outlier detection** method (will learn it

4666

```
later) 31 (my 90000)
= -10 10 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
```

- □ *Age*= "42" , but *Birthday*= "03/07/2000"
- □ For a duplicate records, one name is "cm" but the other is "inch" | group & day \_\_\_\_ Convert Eas. (nch ) cm
- - Computer performs outlier detection, then human will inspect it



#### **Contents**

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration



- Data Reduction
- Data Transformation and Data Discretization
- Summary



## **Data Integration**

- **□** Data integration:
  - Combines multiple datasets from multiple sources into a coherent store
- **Schema integration: e.g., A.cust-id ≡ B.cust-#** 
  - Integrate metadata from different sources

Meaning of they



- □ For the same real world entity, feature values from different sources are different
- e.g., cm vs. inch, meter vs. mile

Holled mile Bolled KM Olygo Conflict



# Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
  - □ Derivable data: One feature may be a "derived" feature in another table, e.g., birthdate vs. age นูปแกปกก่ะ 資意のは利け ない。
- Redundant features can be automatically detected by correlation analysis and covariance analysis
- Reducing/avoiding redundancies and inconsistencies improves mining speed and quality





### **Correlation Analysis (Nominal Features)**

We want to know that "like\_science\_fiction" and "play chess" are correlated

|                  |                          | Play chess(  | )Not play chess(N         | Sum (row) |                   |  |  |
|------------------|--------------------------|--------------|---------------------------|-----------|-------------------|--|--|
|                  | Like science fiction (Y) | 250(90)      | 200(360)                  | 450 1:4   |                   |  |  |
|                  | Not like science fiction | )50(210) vgh | <mark>:/</mark> 1000(840) | 1050 1:4  | ्रेट हैं।<br>सुरु |  |  |
|                  | Sum(col.)                | 300          | 1200                      | 1500  :4  |                   |  |  |
| independent ELTH |                          |              |                           |           |                   |  |  |
|                  |                          |              |                           |           |                   |  |  |
| NY (C            | ni-square) test          | each ce      | <sub>II</sub> Expected    | d         | 9 > correlated    |  |  |

- □ The larger the X² value, the more likely the features are corelated
- □ The cells that contribute the most to the X<sup>2</sup> value are those whose actual count is very different from the expected count
- Expected value is estimated under the independence assumption



#### **Correlation Analysis (Nominal Features)**

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     | 250(90)    | 200(360)       | 450       |
| Not like science fiction | 50(210)    | 1000(840)      | 1050      |
| Sum(col.)                | 300        | 1200           | 1500      |

#### □X² (chi-square) calculation

In parenthesis are expected counts calculated based on the data distribution in the two categories

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like\_science\_fiction and play\_chess are correlated in the group

#### **Correlation Analysis (Numeric Features)**

Correlation coefficient (also called Pearson's correlation coefficient, PCC) among features A and B:

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

n is the number of data, B and A are the respective means of A and B,  $\sigma_A$  and  $\sigma_B$  are the respective standard deviation of A and B, and  $\Sigma(a_ib_i)$  is the sum of the AB cross-product.

 $\Box$  If  $r_{A,B} > 0$ : A and B are positively correlated

A) Langue 65 tand to be in creased

- □ A's values increase as B's). The higher, the stronger correlation
- = r<sub>A,B</sub> = 0: independent completely independent
- $\Box \mathbf{r}_{AB} < \mathbf{0}$ : negatively correlated



### **Visually Evaluating Correlation**



Scatter plots showing the correlation from -1 to 1.

Correlation(상관관계) does not imply causality(인과관계)

=> "# of hospitals" and "# of car-theft" in a city are correlated. However, both may be causally linked to another feature: population



#### **Covariance (Numeric Features)**

Covariance is similar to correlation

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

Correlation coefficient: 
$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$

where n is the number of data,  $\overline{A}$  and  $\overline{B}$  are the respective mean or expected values of A and B,  $\sigma_A$  and  $\sigma_B$  are the respective standard deviation of A and B.

- □ **Positive covariance:** If  $Cov_{A,B} > 0$ , then A and B both tend to be larger than their expected values.
- □ **Negative covariance:** If Cov<sub>A,B</sub> < 0 then if A is larger than its expected value, B is likely to be smaller than its expected value.
- □ Independence:  $Cov_{A,B} = 0$

#### **Covariance: An Example**

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- □ Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?

$$\Box$$
 E(A) =  $(2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$ 

$$\Box$$
 E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

$$\square$$
 Cov(A,B) =  $(2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 - 4 \times 9.6 = 4$ 

□ Thus, A and B rise together since Cov(A, B) > 0.



#### **Covariance/Correlation Matrix Visualization**





- 0.0

- -0.2



#### **Contents**

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction



- Data Transformation and Data Discretization
- Summary

### Thank You

