

Escuela de Ingeniería y Ciencias Departamento de Mecatrónica Campus Ciudad de México

HERMES Exoskeleton

Lower limb exoskeleton for improved movement in sarcopenia patients

Design in Biomedical Engineering Project

IMD Ma. Fernanda Hdez Mondragón A01650524 IMD Rafael Tinajero Ayala G. A A01650520

IMD Andrés Gómez Esquivel

Advisors

A01332532

Dr. Martín Rogelio Bustamante Bello Ing. Javier Alberto de la Tejera May 2019

CENTRO DE INVESTIGACIÓN EN MICROSISTEMAS Y BIODISEÑO

Objectives

General Objective:

Develop an exoskeleton/exosuit through which normal gait can be enhanced and assisted in the case of elderly patients who have struggled with unassisted walking due to muscle weakness caused by sarcopenia.

Specific Objectives:

> To create a purely mechanical system which can increase torque in leg joints during normal movement

Development

- > Designing a light, ergonomic, easy to equip, and affordable system
- > Creating a highly durable exosuit in order to walk medium to long distances on a regular basis

Problematic People with gait struggles experience issues with: A Walk long distances 38,9% B Mantain balance during the gait C Move specific parts of the lower extremity D Get up stairs E Sit down/Stand up When performing these activities, they feel: Pain during leg movement Lack of strength 16,7% Lack of pain Fatigue 44,4%

Source: Survey conducted on respondents aged 21 to 67

Prototype

Initial Designs

Results

Target populations prefer designs that are soft and easy to manipulate in order to maintain as much as possible their 3 Pieces Included habits and lifestyle.

> Physicians claim the that exoskeleton/exosuit mostly needed are those that help with torsion of movement, where the user still needs to execute force, in order to avoid sarcopenia acceleration.

Biomechanical analysis shows that a good section of the lower extremities to use as support for the force generation are the hips, reducing the torque required for knee flexion, saving the need for a stronger spring which may cause lesion on the user during knee extension.

UPCOMING TEST:

Electromyography Test: Using EMG analyze the muscle leg activity (like leg biceps and semitendinosus muscles) while using the prototype, to ensure the user doesn't need more muscle activity while using the device.

Conclusions

- ☐ Dimensions of suit alongside force exerted by springs should be personalized for each user with a biomechanical analysis of his(her) needs
- ☐ Outer structure of exoskeleton should be comprised of a slightly rigid yet flexible material in order to allow movement while maintaining intended shape

Future Work

- Perform motion analysis to ensure system does not negatively affect normal gait pattern
- Perform force analysis to gauge system effectiveness and energy output by user
- ☐ Calorimetry Test: Determine the energy consumed during gait using the mechanism in comparison with normal movement, to determine the percentage of energy saved thanks to the prototype.