Bjørnar's assignment in Gretl

Henrik Georg Jacobsen

Table of contents

Exercise 1	1
Exercise 2	3
Exercise 3	4
Age:	4
WinterRain:	4
Temperature:	5
HarvestRain	5
Exercise 4	5
Exercise 5	6

Bjørnar's assignment

In line equations $\theta=2+2$

Exercise 1

ob	ວຣ	pri	ice	$\mathtt{Wint}\epsilon$	erRain	t€	emp	Harves	stRain	Αş	ge
Min.	:1952	Min.	: 495.2	Min.	:376.0	Min.	:14.98	Min.	: 38.0	Min.	: 3.0
1st Qu.	:1959	1st Qu	.: 670.8	1st Qu.	.:543.5	1st Qu.	.:16.15	1st Qu	.: 88.0	1st Qu.	.: 9.!
Median	:1966	Median	:1079.8	Median	:600.0	Median	:16.42	Median	:123.0	Median	:16.0
Mean	:1966	Mean	:1405.8	Mean	:608.4	Mean	:16.48	Mean	:144.8	Mean	:16.
3rd Qu.	:1973	3rd Qu	.:1707.7	3rd Qu.	.:705.5	3rd Qu.	.:17.01	3rd Qu	.:185.5	3rd Qu.	.:22.
Max.	:1980	Max.	:4883.9	Max.	:830.0	Max.	:17.65	Max.	:292.0	Max.	:31.0
		NA's	:2	NA's	:2	NA's	:2	NA's	:2	NA's	:2

Histogram of Wine Prices

Scatterplot: Wine Price vs Temperature

Exercise 2

Model 1

$$price_i = \beta_0 + \beta_1 Age_i + u_i$$

a.

Model 3: OLS, using observations 1-29

Dependent variable: price

	Coefficient	Std. Error	t-ratio	p-value
const	494.278	402.112	1.229	0.2304
Age	56.318	22.222	2.534	0.0179 **

R-squared: 0.2043

Adjusted R-squared: 0.1728

F-statistic: 6.420 P-value (F): 0.0179

b.

For each year the wine gets older, its price is expected to increase by 56.318 units.

c.

P-value (0.0179) > (0.01)

Significance level () = 0.01 (1%)

 $H_0: \beta = 0$

 $H_1: \beta \neq 0$

P-value is higher than 0.01, that means age is not statistically significant.

d.

Age Predicted_Price

 1
 3.00000
 663.23

 2
 16.18519
 1405.80

 3
 31.00000
 2240.15

Exercise 3

Model 2

$$price_i = \beta_0 + \beta_1 A g e_i + \beta_2 Winter Rain_i + \beta_3 temp_i + \beta_3 Harvest Rain_i + u_i$$

a.

Model 4: OLS, using observations 1952-1980 (T = 27) Missing or incomplete observations dropped: 2

Dependent variable: price

	coefficient 	std. error	t-ratio	p-value	
const	-15509,0	3379,87	-4,589	0,0001	***
Age	39,2126	14,3490	2,733	0,0121	**
WinterRain	2,75098	0,965119	2,850	0,0093	***
temp	930,787	190,557	4,885	6,97e-05	***
HarvestRain	-5,04694	1,61682	-3,122	0,0050	***
Mean dependent von Sum squared resident R-squared F(4, 22) Log-likelihood Schwarz criterion	7238994 0,736141 15,34443 -207,0499	S.D. depende S.E. of regr Adjusted R-s P-value(F) Akaike crite Hannan-Quin	ression squared erion	1027,226 573,6246 0,688166 3,93e-06 424,0999 426,0265	

b.

Age:

Coefficient = 39.21

P-value = 0.0121

Wine price increases by 39.21 each year.

WinterRain:

Coefficient = 2.75

P-value = 0.0093

Wine price increases by 2.75 each mm winter rainfall.

Temperature:

Coefficient = 930.79

P-value = 0.00007

Wine price increases by 930.79 every 1 degree.

HarvestRain

Coefficient = -5.05

P-value = 0.0050

Wine price decreases by 5.05 each additional 1 mm Harvest Rain

c.

Adding more variables improves the model to explain the wine prices.

Exercise 4

Model 3

$$price_i = \beta_0 + \beta_1 Dheavyraint_i + \beta_2 tempt_i + \beta_3 temp_i \cdot Dheavyrain_i + u_i$$

a.

Model 2: OLS, using observations 1952-1980 (T = 27)

Missing or incomplete observations dropped: 2

Dependent variable: price

	coefficient	std. error	t-rati	o p-value	
const	-16289,5	4395,18	-3,706	0,0012	***
Dheavyrain	11634,1	8990,38	1,294	0,2085	
temp	1082,95	266,391	4,065	0,0005	***
temp_Dheavyrain	-756,902	546,064	-1,386	0,1790	
Mean dependent var	1405,800	S.D. dependent	var	1027,226	
Sum squared resid	14038659	S.E. of regres	sion	781,2660	
R-squared	0,488295	Adjusted R-squ	ıared	0,421550	
F(3, 23)	7,315911	P-value(F)		0,001294	
Log-likelihood	-215,9914	Akaike criteri	on	439,9829	

Schwarz criterion 445,1662 Hannan-Quinn 441,5242

Excluding the constant, p-value was highest for variable 6 (Dheavyrain)

b.

Temp * Dheavyrain captures whether the impact of temperature on price depends on harvest rainfall. Dheavyrain captures the shift in wine price when harvest rainfall is very high, regardless of temperature.

Exercise 5

a.

				Predicted Price	
1					
	Model	1	4883.90	1733.28	3150.62
	Model	2	4883.90	3578.80	1305.10
	Model	3	4883.90	2481.70	2402.20

b.

Model 2 is the best model for predicting Bordeaux wine price.

It hast multiple significant variables and is a better fit.