Processamento de Sinal

2º Ano Discrete Fourier Series

Resumo

- Série de Fourier de sinais discretos
- Propriedades da série de Fourier discreta

Série de Fourier Discreta

Representação de sinais discretos

- Sinal discreto periódico:
 - Um sinal discreto diz-se periódico sse:

$$x[n] = x[n+N]$$

onde N será o período do sinal e Ω a sua frequência angular fundamental.

- · Sinais harmónicos.
 - Analogamente ao caso contínuo, podemos definir uma família de sinais que são harmónicos de um sinal fundamental

$$\Phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots, N-1.$$

Sinais harmónicos discretos

$$\Phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots, N-1.$$

- Considerações:
 - Qual é a frequência do harmónico fundamental ?
 - A frequência fundamental será Ω_0 =2 π /N.
 - Qual será o efeito de escolher um número de harmónicos maior que N?

Sinais harmónicos discretos

$$\Phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots, N-1.$$

- Qual será o efeito de escolher um número de harmónicos maior que N?

$$\begin{split} e^{\jmath k(2\pi/N)n} \wedge k > N & \Rightarrow e^{\jmath k(2\pi/N)n} = e^{\jmath (rN+m)(2\pi/N)n} \\ &= e^{\jmath rN(2\pi/N)n + \jmath m(2\pi/N)n} \\ &= e^{\jmath rN(2\pi/N)n} e^{\jmath m(2\pi/N)n} \\ &= e^{\jmath 2\pi rn} e^{\jmath m(2\pi/N)n} \\ &= e^{\jmath m(2\pi/N)n} \end{split}$$

- Quando k > N, a frequência do harmónico será igual a um dos harmónicos de ordem inferior.
- Este efeito deve-se ao comportamento cíclico das funções seno/coseno discretas.

 $\mbox{logo teremos} \quad \Phi_k[n] = \Phi_{k+rN}[n]$

Decomposição de um sinal discreto

- · Decomposição:
 - Como no caso contínuo, um sinal discreto periódico pode ser representado como:

$$x[n] = \sum_k a_k \Phi_k[n] = \sum_k a_k e^{jk\omega_0 n} = \sum_k a_k e^{jk(2\pi/N)n}$$

 Como apenas existem N harmónicos distintos podemos simplificar a equação anterior:

$$x[n] = \sum_{k = < N>} a_k \Phi_k[n] = \sum_{k = < N>} a_k e^{\jmath k \omega_0 n} = \sum_{k = < N>} a_k e^{\jmath k (2\pi/N) n}$$

A esta equação chamaremos de série de Fourier para sinais discretos ou Série de Fourier Discreta.

Determinação de a_k

- Qual será a expressão dos coeficientes ak?
 - Consideremos a equação de x[n]:

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

se multiplicarmos ambos os lados da equação por: $e^{-\jmath r(2\pi/N)n}$ teremos

$$x[n]e^{-\jmath r(2\pi/N)n} = \sum_{k = < N>} a_k e^{\jmath k(2\pi/N)n} e^{-\jmath r(2\pi/N)n}$$

Determinação de a_k

Se somarmos num período em ordem a n:

$$\sum_{n = < N >} x[n] e^{-\jmath r(2\pi/N)n} = \sum_{n = < N >} \sum_{k = < N >} a_k e^{\jmath(k-r)(2\pi/N)n}$$

invertendo a ordem dos somatórios

$$\sum_{n=< N>} x[n] e^{-\jmath r(2\pi/N)n} = \sum_{k=< N>} a_k \sum_{n=< N>} e^{\jmath (k-r)(2\pi/N)n}$$

Qual é valor deste somatório ?

Determinação de ak

Representação das exponenciais para diferentes valores de (k-r) quando N= 6: $e^{\jmath(k-r)(2\pi/N)n}$

 $e^{j(k-r)(2\pi/6)n}$, onde k-r=1

O que acontecerá quando (k-r) > N ?

$$e^{j(k-r)(2\pi/N)n} \Rightarrow e^{j(rN+m)(2\pi/N)n}$$

 $=e^{\jmath rN(2\pi/N)n+\jmath m(2\pi/N)n}$

 $=e^{\jmath rN(2\pi/N)n}e^{\jmath m(2\pi/N)n}$

 $=e^{\jmath 2\pi rn}e^{\jmath m(2\pi/N)n}$

 $=e^{jm(2\pi/N)n}$

Determinação de a_k

$$\sum_{n=< N>} e^{j(k-r)(2\pi/N)n} = \begin{cases} N &, & (k-r) = 0, \pm N, \pm 2N, \dots \\ 0 &, & \text{outros valores} \end{cases}$$

O valor do somatório será nulo a não ser que (k-r) seja 0.

- Substituindo na expressão anterior teremos:

$$\sum_{n=< N>} x[n] e^{-\jmath r(2\pi/N)n} = a_k N$$

portanto teremos

$$a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jr(2\pi/N)n}$$

Série de Fourier Discreta

· Ao par de equações

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jr(2\pi/N)n}$$

chamamos de equação de síntese e de análise da série de Fourier discreta.

Propriedades da Série de Fourier

Periodic signal	Fourier series coefficients
x[n]) periodic with	ak) periodic with
y[n] period N	b _k period N
Ax[n] + By[n]	$Aa_k + Bb_k$
$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$
$e^{jM(2\pi/N)\pi_X[n]}$	- a _{k-M}
x*[n]	a_{-k}^*
x[-n]	a_k
$x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n \text{ is a multiple of } m \\ 0 & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k$ (viewed as periodic with period mN)
$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
x[n]y[n]	$\sum_{l=(N)} a_l b_{k-l}$
x[n] - x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
$\sum_{k=-\infty}^{n} x[k]$ (finite-valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{1-e^{-jk(2\pi/N)}}\right)a_k$
x[n] real	$\begin{cases} a_k = a_k^* \\ \mathfrak{Re}(a_k) = \mathfrak{Re}(a_k) \\ \mathfrak{Im}(a_k) = -\mathfrak{Im}(a_{-k}) \\ a_k = a_{-k} \\ \langle a_k = -\langle a_{-k} \rangle \end{cases}$
$x_{\bullet}[n] := \mathcal{E}\nu\{x[n]\}$ [x[n] real]	$\Re e(a_k)$
$x_o[n] = 0d\{x[n]\} [x[n] \text{ real}]$	$j sm\{a_k\}$
Parseval's Relation for	or Periodic Signals
$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2$	$\frac{1}{2} = \sum_{k = \langle N \rangle} a_k ^2$