Síntesis

Circuitos Lógicos Programables

Temario

- Elaboración
- Síntesis
- Restricciones de tiempo básicas
- Reportes de Síntesis
- Resumen

Elaboración

- > En la Elaboración se optimiza el diseño RTL para una tecnologia FPGA especifica.
- **▶** El código fuente RTL puede estar en distintos formatos
 - Verilog, System Verilog, VHDL, NGC, o archivos de prueba
- Vistas del codigo fuente
 - Vista jerarquica: Muestra los modulos del sistema segun su jerarquia
 - Vista de librerias: Muestra el codigo fuente por categorias

Elaboración y Análisis

- En un sistema basado en RTL, la elaboración es el primer paso
- Presionando en Open Elaborated Design dentro de "RTL Analysis"
 - Se compilan los archivos fuente
 - Se carga la netlist RTL para su analisis

- Se puede verificar la estructura, la sintaxis, y las definiciones lógicas
- ➤ El analisis y los reportes permiten:
 - Compilar el sistema RTL, validarlo y hacer un chequeo de sintaxis
 - Explorar la Netlist en forma de diagrama esquemático
 - Realizar verificaciones DRC (Design Rule Check)
 - Planificar la ubicacion de los pines de I/O a traves de la lista de puertos
 - Seleccionar un objeto en una vista y verlo en las otras vistas, incluyendo instancias y definiciones lógicas dentro de los archivos fuente (cross probing)

Analisis de un sistema Elaborado

> Cuando se abre un sistema elaborado, hay disponibles tres opciones:

- Reporte DRC
 - Ejecuta el chequeo de reglas de diseño
- Reporte Noise
 - Realiza el analisis de ruido SSO en el sistema
 - Simultaneous Switching Output SSO: es el ruido producido por cambios bruscos de corriente a traves de la inductancia de los circuitos de alimentacion/tierra de la FPGA, lo que produce variaciones transitorias de la tension de alimentación o de la tierra de referencia
- Schematic
 - · Genera un diagrama esquematico del sistema

Diagrama esquematico de un sistema Elaborado

- ➤ En el diagrama esquemático se ve la jerarquia de bloques y su interconexion
 - En esta etapa no se infieren buffers de I/O
 - Cada bloque se puede explorar y ver su lógica interna y submodulos

Cross Probing

➤ Al seleccionar un objjeto en el diagrama esquematico, se puede ir al archivo fuente donde este está definido.


```
114 BEGIN
     JO : c counter binary v12 0
       GENERIC MAP (
116
117
         C IMPLEMENTATION => 0,
118
         C VERBOSITY => 0,
119
         C XDEVICEFAMILY => "artix7",
120
         C WIDTH => 4,
121
         C HAS CE => 1,
122
         C_HAS_SCLR => 1,
123
         C RESTRICT COUNT => 1,
124
         C_COUNT_TO => "1001",
125
         C COUNT BY => "1",
126
         C_COUNT_MODE => 0,
127
         C_THRESHO_VALUE => "1001",
128
         C_CE_OVERRIDES_SYNC => 0,
129
         C HAS THRESHO => 1,
130
         C HAS LOAD => 0,
131
         C_LOAD_LOW => 0,
132
         C LATENCY => 1,
133
         C_FB_LATENCY => 0,
134
         C AINIT VAL => "0",
135
         C_SINIT_VAL => "0",
136
         C SCLR OVERRIDES SSET => 1,
137
         C_HAS_SSET => 0,
138
         C HAS SINIT => 0
139
```

Temario

- Elaboración
- Síntesis
- Restricciones de tiempo básicas
- Reportes de Síntesis
- Resumen

Proceso de Síntesis: Optimización de la lógica y mapeo a componentes del dispositivo FPGA

> Síntesis de un sistema RTL

- Se optimiza el sistema a nivel compuertas
- Se mapea la netlist a elementos físicos dentro de la FPGA cuando esto es posible
 - A esto tambien se lo denomina "technology mapping"
- ➤ En la figura se ve una memoria FIFO generica, la cual se mapea a una memoria FIFO física dentro de la FPGA

Proceso de Síntesis

- > Se aplica a sistemas RTL (descriptos mediante HDL)
 - Los componentes descriptos en EDIF se integran al diseño en una etapa posterior
- ➤ La herramienta de síntesis usa restricciones para controlar las optimizaciones
 - Es necesario un archivo XDC
- > Restricciones de temporizacion
 - El sistema primero debe sintetizarse antes de agregar las restricciones
 - Se puede utilizar un asistente para restricciones simples
- Luego de sintetizado, se agrega la opcion de "Set Up Debug" para agregar caracteristicas de depuracion

- ➤ Las opciones de sintesis forman parte de las opciones de proyecto
- ➤ Se puede seleccionar el "Default Constraint Set" como el conjunto de restricciones activas para la mayoria de los proyectos. Hay 2 tipos de restricciones
 - Restricciones físicas (Physical constraints): definen la ubicacion de los pines y la ubicacion absoluta o relativa de block RAMs, LUTs, Flip-Flops, etc.
 - Restriciones de temporizacion (Timing constraints): se describen en formato estandard (SDC), y definene los requisitos de temporizacion del sistema (frecuencia de trabajo, retardos, etc).

- ➤ Los archivos tcl.pre y tcl.post se ejecutan antes y despues del proceso de sintesis y sirven para la ejecucion de comandos TCL antes y despues de la síntesis
- flatten_hierarchy: Determina como afecta la jerarquia al proceso de sintesis
 - none: no se aplana el sistema.
 - Se mantiene la jerarquia con la misma estructura que los archivos fuente RTL
 - full: Se aplana la jerarquia antes del proceso de sintesis a nivel del top level
 - rebuilt: Se aplana la jerarquia, se realiza la sintesis, y se reconstruye la estructura original RTL
 - Permite una optimizacion por encima de la jerarquia, permitiendo una estructura final similar al codigo fuente RTL
- ▶ gated_clock_conversion: habilita o no la opcion de generar automaticamente lógica de reloj con habilitaciones

- **bufg**: Controla cuantos BUFGs se pueden inferir para el sistema
 - Esta opcion se utiliza cuando otros BUFGs en la netlist no son visibles al proceso de sintesis
- ▶ fsm_extraction: Codifica las maquinas de estado con una codificacion especifica: one_hot, secuencial, johnson, gray, o auto
- keep_equivalent_registers: Evita que los registros con la misma logica de entrada se integren (se utiliza cuando se necesita mayor velocidad en el sistema)
- resource_sharing: Configura el uso compartido de operadores aritmeticos entre distintas señales
 - Los valores posibles son auto, on y off

- control_set_opt_threshold: configura la optimizacion de la logica de habilitacion de reloj
- ➤ no_lc: Evita que se combinen LUTs
- shreg_min_size: es el minimo de registros para inferir un SRL
- max_bram: Limita la cantidad máxima de BRAM permitida en el sistema
 - El valor -1 establece que se toma tanta BRAM como se pueda, limitada solo por la cantidad disponible en el dispsitivo
- max_dsp: Limita la cantidad máxima de DSP permitida en el sistema.

Atributos de Síntesis que se pueden incorporar en el codigo HDL

Attribute	Description
translate_off/_on	Tells the tool to ignore blocks of code
full_case	Tells that all possible case values are specified
parallel_case	Case statement should be built as a parallel structure
keep	Tells tool to keep the signal the attribute is placed on
keep_hierarchy	Used to prevent optimizations along the hierarchy boundaries
buffer_type	Tells tool what buffer type to use on an input
max_fanout	Tells the tool the limits for fanout on registers and signals
ram_style	Tells the tool how to infer memory
rom_style	Tells the tool how to infer ROM memory
use_dsp48	Tells the tool how to deal synthesis arithmetic structures
black_box	Turns a whole level of hierarchy off and enables synthesis to create a black box for that module/entity
gated_clock	Allows the conversion of gated clocks; must be enabled
shreg_extract	Tells the tool on whether to infer structures
iob	Not a synthesis attribute but is passed to the implementation tool indicating if a register should be in IOB

Atributos de Síntesis que se pueden incorporar en el codigo HDL

Attribute	Description
async_reg	Tells the tool that a register can receive asynchronous data at D input
srl_style	Specifies how SRL is inferred in design
clock_buffer_type	Specifies a buffer other than the (default) BUFG for synthesis
dont_touch	Similar to KEEP attribute, use in place of KEEP. Attribute is forward-annotated to place & route
fsm_encoding	Specifies a specific FSM encoding scheme: one_hot, sequential, johnson, gray, auto (default), none
fsm_safe_state	Place on state machine state registers, used to define a safe state in the machine
IOB	Not a synthesis attribute, used by Vivado implementation. Specifies if a register is packed into IOB
io_buffer_type	Instructs the tool to not automatically infer I/O buffers for a specific top-level port.
MARK_DEBUG	Specifies that a net to be marked for debug.

Ejemplo de uso de atributos en codigo HDL

- > No se pueden agregar atributos de temporizacion
- > Ejemplo del atributo KEEP (mantener una señal aunque pueda ser optimizada)

VHDL

```
signal sig1 : std_logic;
attribute KEEP : string;
attribute KEEP of sig1 : signal is "true";
sig1 <= in1 and in2;
out1 <= sig1 and in3;

Verilog

(* KEEP = "true" *) wire sig1;
assign sig1 = in1 & in2;
assign out1 = sig1 & in3;

// Sin el atributo, la señal sig1 seria optimizada
```

Atributo Mark_Debug

MARK_DEBUG se puede utilizar en el proceso de sintesis

- Marca la señal en el codigo HDL
- Las redes correspondientes se preservan en la netlist (comportamiento similar a DONT_TOUCH)
- Las señales marcadas aparecen en el analizador lógico

Apply attribute in HDL

```
6 module two_digits_counter_on_2_7segment_display(
7     input clkin,
8     input reset,
9     input enable,
10     output locked,
11     output [7:0] an,
12     output [6:0] seg
13     );
14
15     (* mark_debug = "TRUE" *) wire [3:0] m_lsn, m_msn;
16     (* mark_debug = "TRUE" *) wire clk_lhz;
17     (* mark_debug = "TRUE" *) wire Clk, thresh0;
```

After Synthesis

Temario

- Elaboración
- Síntesis
- Restricciones de tiempo básicas
- o Reportes de Síntesis
- Resumen

Restricciones de tiempo basicas

> En un circuito secuencial se pueden aplicar tres restricciones basicas

- Period
 - · Afecta al camino entre elementos sincronicos que utilizan el reloj de referencia del sistema
 - Los elementos sincronicos pueden ser flip-flops, latches, RAM sincronica, y bloques DSP
 - Se usa create clock para crear la restriccion
- Input Delay
 - Afecta al camino entre un pin de entrada y un elemento sincronico
 - Se usa set input delay para crear la restriccion
- Output delay
 - Afecta al camino entre un elemento sincronico y un pin de salida
 - Se usa set output delay para crear la restriccion

Visor de restricciones (Constraints Viewer)

- ➤ El visor de restricciones permite ver/editar las restricciones de tiempo establecidas en el archivo XDC
 - Todas las restricciones pueden agregarse a traves de la interface grafica (GUI)
 - Presionando el boton derecho sobre la restriccion permite modificarla o borrarla
 - Cada restriccion puede editarse en forma individual en la ventana All Constraints
 - Se crea una restriccion seleccionando su tipo en la interface grafica
- Una vez que se agrego la restriccion, se guarda la misma para que se agregue al archivo XDC
 - Los cambios se agregan al archivo XDC especifico (en proyectos con mas de una implementacion)

Creación de restricciones básicas de temporización con la interface gráfica

- Ejecutar el proceso de sintesis
- > Abrir el sistema sintetizado
- > Ejecutar el editor de restricciones

Ejemplo de retardos

Asistente de restricciones (Constraints Wizard)

- Permite a las herramientas sugerir restricciones que puedan faltar en el sistema
 - Recomendado para proyectos que no tienen restricciones iniciales
 - Se pueden ignorar las restricciones recomendas
 - Es posible desactivar las restricciones sugeridas en cada etapa del asistente
 - Abre el editor de restricciones con las restricciones recomendadas
 - Se pueden modificar o agregar restricciones adicionales al archivo XDC

Temario

- Elaboración
- Síntesis
- Restricciones de tiempo básicas
- Reportes de Síntesis
- Resumen

Luego del proceso de sintesis:

En la vista de sistema sintetizado:

- La pestaña Sources no cambia
 - La pestaña RTL Netlist (Elaborated Design) cambia a Netlist (Synthesized Design)
- El menu Flow Navigator ahora incluye:
 - Asistente de restricciones; Editor de restricciones,
 Configurar depuracion, Report e de temporizacion,
 Reporte de redes de reloj, Reporte de interaccion
 de relojes, Reporte DRC, Reporte de ruido,
 Reporte de Utilizacion, Reporte de consumo,
 Diagrama esquemático
 - Toda la informacion de temporizacion es estimada (hasta que se complete la implementacion)

Sistema sintetizado

- > Se accede en el menu Flow Navigator a traves de Open Synthesized Design
- Representacion del sistema despues de la sintesis
 - Netlist con las inteconexiones y jerarquia de BELs (Basic ELementS)
 - Instancias de modulos/entitdades
 - BELs:
 - LUTs, flip-flops, carry chain elements, wide MUXes
 - Block RAMs, DSP cells
 - Elemento de la logica de reloj (BUFG, BUFR, MMCM, ...)
 - Elementos de I/O (IBUF, OBUF, I/O flip-flops)
- ➤ Los nombres de los objetos son los mismos que en la netlist del sistema elaborado, cuando esto es posible

Reportes de sintesis

- ➤ En el menu *Flow Navigator* estan los reportes mas representativos, y en la pestaña *Reports* hay mas reportes
 - El reporte *Synthesis Report* muestra:
 - Archivos fuente HDL sintetizados, progreso del proceso de sintesis, restricciones de tiempo aplicadas, y primitivas del sistema
 - Restricciones de tiempo obtenidas, mapeo a componentes de la FPGA (technology mapping), pines/puertos removidos, uso de bloques (technology-mapped cell usage)
 - El reporte *Utilization* muestra
 - Uso de bloques (Technology-mapped cell usage) en un formato tabular resumido

Reporte de sintesis

Muestra el uso de slices, memoria, bloques DSP, bloques de I/O, reloj y otros recursos utilizados por el sistema

Reporte Timing Summary

> Pestaña Options

- Maximo número de caminos

Pestaña Advanced

 Configuracion especifica del reporte

> Pestaña Timer Settings

- Estimacion de tiempos de inteconexion
- Estimacion de retardos de propagacion

Comando Tcl: report_timing_summary report_timing_summary -delay_type max -report_unconstrained - check_timing_verbose -max_paths 10 -input_pins -name timing_1

Reporte Timing Summary

Design Timing Summary

 Worst Negative Slack (WNS), peor retardo; Total Negative Slack (TNS), suma de todos los retardos,

Clock Summary

 Resultados relativos al reloj principal del sistema y sus derivados

Check Timing

 Numero de puntos internos del sistema que no tienen restricciones

Reporte Clock Networks

- > Se puede generar mediante comandos Tcl:
 - -report_clock_networks
 - Crea una vista de arbol de todas las señales de reloj del sistema, junto con sus definiciones
- > Tambien se puede crear desde el entorno grafico

Reporte Clock Interaction

- Se puede generar mediante comandos Tcl:
 - -report_clock_interaction significant_digits 3 -name
 timing 1
- Muestra los caminos que cruzan dominios de reloj y registros sin señal de reloj
 - Usea una matriz para mostrar la relacion entre dominios de reloj
 - Permite ver si la temporizacion es sincronica y si se cumplen las restricciones
 - Usa el peor valor de retardo para cada dominio de reloj

Reporte DRC

> Se puede generar mediante comandos Tcl:

```
-report drc -name drc 1
```

- ➤ Realizar chequeos DRCs en las primeras etapas permite realizar correcciones antes de la implementacion
 - Los objetos que no cumplen las reglas se pueden ver en sus archivos fuente HDL
 - Se puede elegir cuales reglas DRC verificar
 - Este chequeo es mas estricto que el que chequeo DRC de I/O que se realiza durante la planificacion de la ubicacion de los pines de I/O
 - Cualquier problema genera una ventana DRC en la parte inferior del entorno grafico
 - Se debe realizar el proceso de implementacion para la verificacion final de las reglas DRC
- > En el IDE:

Reporte Noise

> Se puede generar mediante comandos Tcl:

```
-report ssn -name ssn 1
```

- > Realiza un analisis SSN en los pines de I/O definidos
 - Este reporte analiza el numero de pines, estandard de I/O, y consumo en cada banco de I/O del dispositivo
 - Los bancos que exceden el consumo recomendado se pueden ver en la pestaña Summary
 - El analisis SSN se realiza sobre pines de salida o bidireccionales
- > En el entorno grafico:

Reporte Power

> Se puede generar mediante comandos Tcl:

-report_power -results {power_1}

> Estimacion de consumo y generacion de calor

Estimaciones de consumo en cada etapa despues del proceso de sintesis Realiza analisis variando la actividad de conmutacion de cada pin

Exporta datos a la herramienta de estimacion de consumos (Xilins Power

Estimator – XPE)

Detalles del consumo

➤ Al seleccionar distintos componentes/bloques, se puede tener mayores detalles acerca del consumo

Temario

- Elaboración
- Síntesis
- Restricciones de tiempo básicas
- Reportes de Síntesis
- Resumen

Resumen

- ➤ Un sistema "Elaborado" permite realizar chequeos DRC, analisis de ruido SSN, y ver las relaciones entre los elementos de los archivos fuente y la jerarquia del sistema
- ➤ El proceso de sintesis realizar optimizaciones en la logica y mapeo a elementos especificos de la FPGA
- El codigo fuente puede estar en VHDL, Verilog, y SystemVerilog
- ➤ Las restricciones (definidas en un archivo XDC) determinan las optimizaciones aplicadas al sistema
- ➤ El reporte *check_timing* es el que permite verificar si se cumplieron las restricciones del sistema
- Hay distintos tipos de reportes que permiten mejorar el desempeño del sistema y evitar los errores mas comunes