10) (CRT)
$$I_{x}, I_{z} \subset R$$
 s.t. $I_{x} + I_{z} = R$.
Show if $a_{x}, a_{z} \in R$ than $\exists x \in R$ s.t. $x \equiv a_{1} \mod I_{x}$ $x \equiv a_{2} \mod I_{x}$

If we
$$b_1 \in I_1$$
, $b_2 \in I_2$ s.t. $b_1 + b_2 = 1$.

Let $(b_1 + b_2)a_1$ $r'_1 + r'_2 = a_1$

$$\gamma_2' = \alpha_1 - \gamma_1'$$

$$b_1 a_2 + b_2 a_1 = b_1 a_2 \mod I_2$$

$$= b_1 a_2 + b_2 a_2 = a_2 \mod I_2,$$
Silvailur far I_1 .