Electrostatics Center for Engineering Studies

Q-1. Find electric field intensity at point P (4,0,0) due to a finite leggth uniform charge distribution as shown below

$$\frac{f_{1} = 10^{8} c/m}{(0,0,0)} \qquad f(4,0,0) \qquad \hat{x}$$

B-3. In copper material whose conductive is $\sigma = 5.8 \times 10^7$ s/m and $E_7 = 1 \cdot 1f$ some charge density f_{10} is placed at some point inside copper natural. Find time in the which 60% of charge density vanish from the interior point and appear at the surface. — $\times 10^{-19}$ sec.

Q-4. A dielectric interface is defined by 3x+4y=12 is shown below origin lies in free space; where

origin lies in free space; where $E = \lambda \hat{1} - 4\hat{1} + 7\hat{k}$. In other region $E_r = 2$. Final energy within a cube of side 2.5 m centre lies on the plane 3x + 4y = 12 as shown centre of cube is f(2, 1.5, 4)

Q.5.

P. Medium-1

Boundary

Medium-2

Conductivity of copper is 5.7×10⁷ v/m Conductivity of Corbon is 3×10⁴ v/m find d, — degrees. Medium-1 be corbon and medium-2 is copper.

If $x_2 = 89.8^{\circ}$

Two conducting plates of capacitor are at $7=10\,\text{cm}$ and $f=20\,\text{cm}$. The medium between the plates is 2.5. Determine the capacitorice between the plates.

- Q-7. A posablet-plate copacitor whose plates are 10cm squre and 0.2 cm aport contains a medium with &= 2.5 and o= 4×10 5 s/m. To maintain a steady current through the medium a potential difference of 120V is applied between the plates. The resistance of the medium between the plates will be ____ KR
- Q-8. A tourcated circular cone is shown below is made of 1701

 10 cm

 resishvily of 1701 is

 8.9×10-8 12.11.

And resistance of the cone between its flat ends - - 1

Q-9.

No. of image changes will be —

- Q-10. Given that $J = \frac{5e^{-10^4t}}{7} \hat{r}$ A/m² at t = 0.1 msec. And charge clensity

 P: on that surface _____ c/m³ (r = 2m)
- Q-11. for a medium. $\begin{bmatrix}
 D_n \\
 D_y \\
 D_y
 \end{bmatrix} = \begin{bmatrix}
 260 & 0 & 0 \\
 0 & 260 & 0 \\
 0 & 0 & 260
 \end{bmatrix} \begin{bmatrix}
 E_n \\
 E_y \\
 E_y
 \end{bmatrix}$ which of the same shifts are this total seconds is

which of the following statement is Not true

(a) $\nabla D = \int_{L}$ (b) $\oint \overline{E} \cdot d\overline{s} = \frac{\text{Clenclosed}}{260}$ (a) $\oint \overline{E} \cdot d\overline{s} = \frac{\text{Clenclosed}}{E_0}$

(c) \$ 5.cis = Qenclosed