Contents

Генеративные модели								2
Лекция 1: Генеративные модели								2
Superresolution								3
Inpainting								3
Лекция 2: Вариационные автокодировщики								4
Лекция 3: GAN								6
Лекция 4: Нормализационные потоки								7
Нормализационные потоки							•	8
Обработка звука								11
Лекция 5: Диалоговые системы								11
Вопросно-ответные системы, задача SQuAD								12
Лекция 6: Обработка звука								14
Listen, Attend, Spell								17
Лекция 7: Обработка звука 2								17
Connectionist Temporal Classification								17
Jasper								18
Аугментации								19
Синтезация голоса								19
Пайплайн TTS								19
Как измерять качество								19
Wave-Net								20
Mel-GAN								21
Рекомендательные системы								23
Лекция 8: Рекомендательные системы								23
Лекция 9: Рекомендательные системы	2	•		•	•			25
Продуктовая аналитика								29
Π екция 10: A/B -тестирование								29
Лекция 11: A/B тестирование (2)								31
Временные ряды								34
Модели экспоненциального сглаживания								34
Теоретический байесовский подход								37
Цепи Маркова в байесовском подходе								

Генеративные модели

Лекция 1: Генеративные модели

- Выход модели = Изображение
 - Увеличение четкости
 - Перенесение стиля

— . . .

Евклидово расстояние

- - Сумма разниц между і-ми пикселями
 - Не измеряет расстояние содержательно
- Perceptual loss
 - Сравнивается контент изображений
 - Content loss

$$L^{l}_{\text{content}} = \sum_{ij} (A_{ij} - B_{ij})^{2}$$

- Берем і свертку на l слое и сравниваем отклики, j отдельный элемент свертки
- Лучше брать последние слои
- Style loss

$$G^l_{ij}(A) = A^l_{ik}A^l_{jk}$$

• Сравниваем похожесть каналов

$$L^{l}_{\text{style}} = (G^{l}_{ij}(A) - G_{ij}^{l}(B))^{2}$$

$$L_{\mathrm{style}} = \sum_{l} L^{l}_{\mathrm{style}}$$

Perceptual loss

$$L(C, S, X) = \alpha L_{\text{content}}(C, X) + \beta L_{\text{style}}(S, X) \rightarrow \min_{X}$$

С - исходное изображение

S - стилевое изображение

Х - выходное изображение

Обучаемые параметры = пиксели выходной картинки

Недостатки

• Очень долгая обработка

Ускорение

- Фиксируем стилевое изображение
- Обучим модель $\alpha(C)$, которая оптимизирует Perceptual loss
- Теперь подбираем не пиксели, а обучаем модель
- ullet Оптимизируем по параметрам модели lpha
- ECCV16
- Image Transform Network похожа на U-Net

Superresolution

- Повысить разрешение картинки
- Подход в лоб
 - Расширяем картинку
 - Сетка выучивает дополнение к исходной картинке, чтобы MSE был минимальный между результатом и правильной картинкой
 - The deeper, the better

Можно использовать perceptual loss

• — Но тогда появляются артефакты

Inpainting

• Восстановить кусок картинки

Лекция 2: Вариационные автокодировщики

• Denoising autoencoder

Figure 1: Denoising

Если берем случайную точку, на которой модель не обучалась \rightarrow Получаем бред

Вероятностные методы

- Иногда проще описать в терминах вероятности
- Подбираем параметры распределений так, чтобы обучающая выборка имела высокую вероятность
- Тематическое моделирование
 - PLSA, LDA
 - Данные набор текстов
 - Каждая тема = распределение N слов
 - Каждый текст = распределение на темах
 - Генерация
 - * Выбираем тему
 - * Выбираем слова и добавляем в текст

Изображения

- — Хотим построить пространство представлений
 - Каждая картинка != точка, а распределение

- Возьмем нормальное распределение

$$encoder(x) = (\mu(x), \sigma(x))$$

- МО и Дисперсия вектор размера d
- ullet Сэмплируем вектор Z из распределения с μ и σ
- Декодировщик вектор разворачивает в картинку
- Раскодированная картинка должна быть как можно ближе к исходной
- Позволяет получить непрерывное пространство представлений
- q(z|x)- кодировщик
- \bullet p(x|z)- декодировщик $decoder(z) + \epsilon$
- $(E_{q(z|x_i)}log \ p(x_i|z) KL(q(z|x) \mid\mid N(0, 1))) \rightarrow \max$
- KL Дивергенция Кульбака Лейблера
 - Мера расстояния между распределениями

_

$$KL(q, p) = q(x)log\frac{q(x)}{p(x)}$$

Выполняет функцию регуляризации - чтобы не было узких распределений

Оптимизация - Reparametrization Trick

Лекция 3: GAN

- Дано: выборка $x_i = p_x(x)$, распределение неизвестно
- Задача: генерировать новые объекты с таким же распределением
- Генерируем z из двумерного нормального распределения \to пространство Z называется скрытым \to Пропускаем через генератор $G(Z) \to$ получаем $\widehat{X} = G(Z)$
- ullet Как посчитать сходство между X и \widehat{X}
 - Строим задачу бинарной классификации X и $\widehat{X} \to \mathcal{A}$ Дискриминатор
 - Используем значения log-loss для обучения дискриминатора

 $L = -\frac{1}{n} y_i log D(x_i) + (1 - y_i) log (1 - D(x_i))$

 $L(D, G) = -\frac{1}{n}logD(x_i) - \frac{1}{n}log(1 - D(G(z_i)))$

– Обучение дискриминатора и генератора

*

 $\max_{G} \min_{D} L(D, G)$

Проблемы GAN

- * Затухание градиентов
 - · Дискриминатор идеально разделяет выборки \rightarrow Loss = 0

Схлопывание мод

- * · Несколько мод в распределении \rightarrow получается выучить не все
 - \cdot Для некоторых мод дискриминатор возвращает $1 \to \mathbf{B}$ окрестности нет градиентов

- Wasserstein GAN

- * Меняем функцию потерь
- * Расстояние Вассерштейна

- $\cdot EMD(P_r, P_{\theta}) = inf..$
- · Дуальная форма:

$$EMD(P_r, P_\theta) = sup_{||f||L<1}$$

- * Нет проблемы затухания градиентов
- * Схлопывание мод

- Conditional GAN

* Подаем дополнительно класс

- Cycle GAN

- * Есть дополнительная нейросеть, которая может переводить генерированные картинки обратно
- Bidirectional GAN

Лекция 4: Нормализационные потоки

Flow-based generative models

- Не 2 сети, а одна \to Декодируем представление с помощью обратной функции
- Не используем х' для обучения
- VAE и GAN преобразуют скрытое пространство в данные необратимо
- Нормализационные потоки выучивают обратимое преобразование
- Позволяют рассчитать плотность вероятности для распределения
 - Можно обнаружить аномалии / редкость

Теорема о замене переменных

- Пространство признаков х
- Скрытое пространство z
 - Знаем функцию распределения

•

$$(z = f(x))$$

• Находим p_x

• Знаем $p_z(z)$, z = f(x)

$$p_x(x_i) = p_z(f(x_i))|det \frac{\partial f(x_i)}{\partial x_i}|$$

$$p_z(z_i) = p_x(f^{-1}(z_i))|\det \frac{\partial f^{-1}(z_i)}{\partial z_i}|$$

Нормализационные потоки

- Есть признаки х не знаем их распределение
- Надо найти z = f(x), чтобы z имело известное распределение
- Используем метод градиентного спуска
 - Подбираем f с помощью логарифмической функции правдоподобия

$$L = -\frac{1}{n} \log p_x(x_i)$$

$$p_x(x_i) = p_z(f(x_i)) |det \frac{\partial f(x_i)}{\partial x_i}|$$

$$L = -\frac{1}{n} \log (p_z(f(x_i)) |det \frac{\partial f(x_i)}{\partial x_i}|)$$

$$L = -\frac{1}{n}\log p_z(f(x_i) + \log(|\det \frac{\partial f(x_i)}{\partial x_i}|) \to \min$$

- Прямая функция используется для переведения входных данных в случайный шум \rightarrow Обратная функция генерирует картинки из полученного шума
- Алгоритм обучения
 - Берем минибатч
 - Считаем лосс

*
$$L = -\frac{1}{n}\log p_z(f(x_i) + log(|det \frac{\partial f(x_i)}{\partial x_i}|)$$

– Обновляем параметры функции f

- Алгоритм генерации
 - Сэмплим точки из распределения z
 - Генерируем объекты, используя обратную функцию $f^{-1}(z)$

Можно сделать несколько слоев

- — Несколько промежуточных скрытых представлений
 - За счет этого можно научиться генерировать более сложные объекты

$$-z_i = f_2(y_i), y_i = f_1(x_i)$$

$$p_x(x_i) = p_y(f_1(x_i))|det \frac{\partial f_1(x_i)}{\partial x_i}|$$

$$p_y(y_i) = p_z(f_2(y_i))|det \frac{\partial f_2(y_i)}{\partial y_i}|$$

$$p_x(x_i) = p_z(f_2(y_i))|\det \frac{\partial f_2(y_i)}{\partial y_i}||\det \frac{\partial f_1(x_i)}{\partial x_i}|$$

- Выбор функции
 - Дифференцируема?
 - Обратима?

Real-NVP

• X и Z - d-мерные вектора

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

где

- z_{1:d} первые d компонент вектора z;
- $lacktriangledown s(x_{1:d})$ и $t(x_{1:d})$ нейронные сети с d входами и D-d выходами;
- О поэлементное умножение.

Матрица первых производных:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \mathbb{I}_d & 0\\ \frac{\partial z_{1:d}}{\partial x_{1:d}} & diag\left(\exp(s(x_{1:d}))\right) \end{pmatrix}$$

Значение Якобиана:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp\left(\sum_{j=d+1}^{D} s(x_{1:d})_{j} \right)$$

$$x = f^{-1}(z) = \begin{cases} x_{1:d} = z_{1:d} \\ x_{d+1:D} = (z_{d+1:D} - t(x_{1:d})) \odot \exp(-s(x_{1:d})) \end{cases}$$

Masked Autoregressive Flow (MAF)

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_d = (x_d - \mu_d(x_{1:d-1})) \odot \exp(-s_d(x_{1:d-1})) \end{cases}$$

где:

- z_{1:d} первые d компонент вектора z;
- $ightharpoonup \mu_d(x_{1:d-1})$ и $s_d(x_{1:d-1})$ нейронные сети с d-1 входами и 1 выходом;
- О поэлементное умножение.
 - Матрица первых производных нижнетреугольная:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \exp(-s_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial z_D}{\partial x_1} & \cdots & \exp(-s_D(x_{1:D-1})) \end{pmatrix}$$

Значение Якобиана:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp(-\sum_{j=1}^{D} s_d(x_{1:d-1}))$$

$$x = f^{-1}(z) = \begin{cases} z_1 = z_1 \exp(s_1) + \mu_1 \\ z_d = z_d \exp(s_d(x_{1:d-1})) + \mu_d(x_{1:d-1}) \end{cases}$$

ullet Каждая компонента использует предыдущую o Дольше

Inverse Autoregressive Flow (IAF)

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_d = (x_d - \mu_d(z_{1:d-1})) \exp(-s_d(z_{1:d-1})) \end{cases}$$

$$x = \mathbf{f}^{-1}(z) = \begin{cases} x_1 = z_1 \exp(s_1) + \mu_1 \\ x_d = z_d \exp(s_d(\mathbf{z}_{1:d-1})) + \mu_d(z_{1:d-1}) \end{cases}$$

- Генерация быстрее, так как используем компоненты вектора z, который мы и так знаем
- Обучение дольше, так как z обучается попиксельно

Обработка звука

Лекция 5: Диалоговые системы

- Прежде всего интересен текстовый формат
 - Большинство данных в диалоговых системах переводится в текст

Чат-боты

- — Task-oriented \rightarrow Узко специализированный
 - Голосовые помощники = большое количество task-oriented скиллов
- Типы ответов в диалоговых системах
 - Системы с готовыми ответами (Retrieval-based)
 - * Работает с пулом реплик

Generative-based

- Основные компатенты чат-бота
 - Intent Detection

- * Как обработать входную реплику, определить намерение пользователя
- * Задача классификации \rightarrow Какому приложению отправить реплику
- * Выбор классификатора интента
 - \cdot В облаке o Можно использовать сложную модель
 - \cdot На устройстве \to Поменьше
 - · Bert, Distilled Bert
 - · Можно даже не использовать машинное обучение \to Ищем ключевые слова в предложениях

Slot Filling

- * Выделить из сообщения параметры
 - * "Поставить будильник на 7 утра"
 - * Слоты определяются на основе задачи
 - * Извлечение именованных сущностей
 - · Относится ли текущее слово к одному из классов, задающих слоты
 - · Рекуррентные нейронные сети \to Извлекаем скрытое состояние для каждого отдельного слова
 - * Можно делать последовательно \rightarrow Сначала определяем интент \rightarrow Выделяем слоты
 - * Можно решать задачи одновременно
- Граф сценария
 - * Какие вещи нужно доспросить, какие слоты заполнить

Вопросно-ответные системы, задача SQuAD

- Нейросетевая модель ищет ответ на вопрос
- Должна:
 - Понять вопрос на естественном языке
 - Найти ответ в массиве данных

- Выдать ответ на естественном языке

Типы вопросов

- — Фактологические вопросы
 - * Легкие вопросы для нейронных сетей

Вопросы на понимание здравого смысла

- * Сложны для нейросетей
- Сравнительные вопросы
 - * Тоже сложно

Подходы к построению QA систем

- – Информационный поиск
 - * Текстовая коллекция, разбитая на фрагменты

Поиск по базе знаний

- * Формируем запрос к базе знаний как функцию ightarrow Она выдает ответ
 - * Более сложный подход
- Задача SQuAD
 - Ищем ответ на вопрос в тексте
 - Stanford Question Answering Dataset
 - * Текст вопроса
 - * Текстовый фрагмент, содержащий ответ
 - * Текст ответа

Решение задачи SQuAD

- * Отбор параграфов, которые могут содержать ответ на вопрос
 - Обычно используют грубые и быстрые методы
 - · Косинусное расстояние между TF-IDF / FastText вопроса и параграфа

Поиск подстрок фрагмента с ответом

- * · Трансформеры
 - · Ищем максимальное произведение вероятностей, что первый токен последовательности начало ответа, а последний токен конец ответа

Лекция 6: Обработка звука

- Звук колебания воздуха
- Аналоговый сигнал подвергается дискретизации, квантованию, кодированию
 - Квантование
 - * Сигнал разбивается на N уровней
 - * Для каждой точки берется ближайший уровень

Дискретизация

- * Сигнал представляется в виде последовательных значений, взятых в дискретные моменты времени t с шагом d
 - * В виде точек, а не функции

• Характеристики

- Частота дискретизации количество отсчетов амплитуды в секунду
- Количество каналов
- Почему плохо работать со звуком в таком формате
 - Один звук состоит из 2000-4000 амплитуд дорого хранить и обрабатывать
 - Нет инварианта относительно шума и трансформаций \rightarrow лучше использовать спектрограмму

Дискретное преобразование Фурье

$$X = Mx$$

$$Mmn = exp(-2\pi i \frac{(m-1)(n-1)}{N})$$

- Спектрограмма
 - Нарезаем сигнал на окна с пересечением
 - Применяем оконную функцию к вырезанному окну
 - Применяем дискретное преобразование Фурье
 - Считаем квадрат комплексной нормы
 - Берем половину вектора + 1 в силу его симметричности
 - * Свойство преобразования Фурье

Мелспектрограмма

$$egin{aligned} m &= 2595 \log_{10}\!\left(1 + rac{f}{700}
ight) = 1127 \ln\!\left(1 + rac{f}{700}
ight) \ f &= 700 \!\left(10^{rac{m}{2590}} - 1
ight) = 700 \!\left(e^{rac{m}{1127}} - 1
ight) \end{aligned}$$

- В конце берем логарифм от спектрограммы
- Из нее хуже звук восстанавливается
- Обратимость операции не точная

• Метрики

Word Error Rate =
$$\frac{S + D + I}{S + D + C}$$

- S кол-во замен
- D кол-во удалений
- І кол-во вставок

- С кол-во совпадений
- СЕК посимвольное совпадение

• Listen, Attend, Spell

– Listener = пирамидальный LSTM-encoder

Выходы для каждого слоя конкатенируем и подаем в следующую лстм

- Speller = LSTM декодер
- Attention
- Минимизируем кросс-энтропию с правильными буквами
- Учим с помощью teach-forcing'a
- Декодируем с помощью beam search
- Добавляем языковую модель для улучшения результата
- Second pass fusing

- Shallow fusing
 - Добавляем языковую модель в beam search

Лекция 7: Обработка звука 2 Connectionist Temporal Classification

- Вход и выход разной длины и они не выровнены
- Алгоритм
 - Для каждого фрейма делаем предсказание буквы
 - Склеиваем соседние одинаковые предсказания
 - Для поиска пробелов используют эпсилон-токены

* Тишина

Удаляем эпсилон-токены и склеиваем предложение

Как считать и пробрасывать градиенты

- - Импортировать из торча
 - Динамическое программирование

Jasper

• Сверточная модель

- Из-за skip-connections быстро сходится
- Функция потерь СТС
- 1-D convolutions
 - Одномерный сигнал с большим количеством каналов
 - Канал = частота
 - Размерность 1 = время

Аугментации

- Данных не очень много
- Помогают с нехваткой данных и улучшают робастность
- Либо по времени, либо по частотам вырезаем кусок спектрограммы, заменяя нулевыми амплитудами

Синтезация голоса

Пайплайн TTS

- Hello
- Text Frontend
 - Нормализация текста
 - * Убираем специальные символы

Транскрибируем фонемы

- * Переводит буквы в звукы (написание не совпадает с произношением)
- Mel Synthesis
 - Синтезируем частоты

WAV Synthesis

Как измерять качество

- Сложно оценить качество
- Нет правильного ответа
- Субъективность правильности
- Синтез оценивается с помощью краудсорса

Wave-Net

• Causal Conv

— Не используем паддинг

Mu law encoding

- $\bullet \quad f(x_t) = sign(x_t) \frac{ln(1 + \mu|x_t|)}{ln(1 + \mu)}$
 - В высоком разрешении храним низкие амплитуды, в низком высокие

(Condition) Gated Mechanism

- $-\ W_{f,k},\ W_{j,k}$ некоторые свертки
- Gated Mechanism выучивает на какие куски аудио смотреть (как LSTM)
- $V_{f,\;k}*y,\;V_{g,\;k}*y$ генерируем с помощью сверток, у уже сгенерированная Мел-спектрограмма
- х Все предыдущие предсказанные сэмплы
- Функция потерь
 - Категориальное распределение
 - Нормальное распределение
 - Логистическое распределение

Модель выдает распределение

• Skip-connections идут к выводу

Mel-GAN

- Получаем Mel из предыдущей системы
- Генератор:

• Дискриминатор:

- · Multiscale discriminator
- · Feature Matching

$$\mathcal{L}_{FM}(G, D_k) = \mathbb{E}_{r, r \sim p_{blak}} \left[\sum_{i=1}^{T} \frac{1}{N_i} \|D_k^{(i)}(x) - D_k^{(i)}(G(s))\|_1 \right]$$

Hinge Loss

$$\begin{aligned} \min_{D_k} \mathbb{E}_x[\min(0, 1 - D_k(x))] + \\ \mathbb{E}_{s,z}[\min(0, 1 + D_k(G(s, z)))], \forall k = 1, 2, 3 \\ \min_G \mathbb{E}_{s,z} \Big[\sum_{k=1,2,3} - D_k(G(s, z)) \Big] \end{aligned}$$

•

Рекомендательные системы

Лекция 8: Рекомендательные системы

. . .

User-based рекомендации

Оцениваем сходство с другими пользователями \to Рекомендуем пользователю то, что нравится похожим на него, но он не видел

Проблемы Memory-based

- Долго
- Нет обучения, алгоритм не подкручивается
- Проблема холодного старта \to Новые объекты и пользователи = проблема

Item-based рекомендации

 \bullet Считаем сходства по тому, как объекты понравились разным пользователям \to находим ближайшие

Модели со скрытыми переменными

(Latent factor model)

Строим векторы p, q \rightarrow <p, q> \approx рейтинг

d - число жанров видео

 p_u - как каждому пользователю нравятся жанры

q- распределение жанров в видео

<р, q> отражает совпадение интересов

- ullet $b_u,\ b_i$ сдвиги
- Можно добавлять рекомендацию
- $P = (p_1 | p_2 | \dots | p_n)$
- $Q = (q_1|q_2| \dots |q_m)$
- $(P^TQ)_{ui} = \langle p_u, q_i \rangle$
- Приближение матрицы матрицей меньшего ранга

Как обучать?

- Просто стохастическим спуском \rightarrow выбираем u, i \rightarrow работает не очень
- ALS (alternating least squares)

-a

- * Матрицы Р, Q инициализируем
- * Фиксируем матрицу Q

- * q_i теперь фиксированное, а р нужно найти
- * Получается задача обучения линейной модели

b)

* Фиксируем матрицу Р

* ...

- Практический нюанс:
 - * Делаем ALS

- * Храним только Q
- * Приходит новый пользователь
- * Делаем один шаг ALS при фиксированной матрице Q
- * Делаем <p, q>

Модификация для учета неявной информации

- * Ситуация, когда рейтинги очень специфичные
 - * Для (u, i) мы либо знаем, что взаимодействие было, либо не знаем ничего
 - Не знаем понравилось ли пользователю

IALS

- · Все объекты, с которыми пользователь взаимодействовал = положительный пример
- \cdot Пользователь не взаимодействовал o Ставим маленький вес при помощи Сиі

Лекция 9: Рекомендательные системы 2

Метрики качества рекомендаций

- 1. Насколько рекомендации подходят
 - а. На чем измерять качество
 - і. Оффлайн измеряем на исторических данных
 - 1. Режем по событиям юзера
 - 2. Режем по времени

Онлайн - А/В тестирование

- Берем две группы пользователей, рандомно, чтобы они не отличались
 - 2. В одной группе делаем рекомендации старым методом, а в другой новым методом
 - 3. Сравниваем метрики

Регрессия

- b. i. MSE, MAE, ...
- с. Классификация
 - i. F-мера, AUC-ROC, ...

Качество ранжирования

- d. і. Система выдает ранжированный список
 - іі. Показываем пользователю top-k айтемов
 - ііі. $R_u(K)$ top-k рекомендаций
 - iv. L_u айтемы, которые пользователю понравились
 - v. hitrate@k = $[R_u(K) \cap L_u \neq pustomu \ mnozhestvu]$
 - vi. precision@k = $|R_u(K)$ \cap $L_u|$ / K- не учитывает ранжирование
 - vii. recall@k = $|R_u(K) \cap L_u| / |L_u|$

viii. DCG

- 1. $a_{ui} = a(u, i)$
- 2. Сортируем айтемы по невозрастанию $a_{\rm ui}$
- 3. $r_{ui1}, ..., r_{uip}$ истинные рейтинги
- 4. DCG@k = $g(r_{uip}) \times d(p)$
- 5. d штраф за позицию
- 6. $g(r) = 2^r 1$ или g(r) = r
- 7. $d(p) = \frac{1}{\log(p+1)}$

nDCG@k - нормализованный

ix. 1. DCG(u) / maxDCG(u)

Другие метрики

- 2. a. Новизна (novelty)
 - і. Число айтемов, которые раньше не рекомендовались
 - іі. Опросы (никто не отвечает)

Разнообразие (diversity)

- b. i. Измеряем попарное расстояние между эмбеддингами айтемов
 - іі. Смотреть на дисперсию метаданных
 - ііі. Предсказания модели для каждого айтема независимы, но в реальности это не так → Разнообразие повышает пользовательские метрики
- с. Serendipity умение рекомендовать очень редкие айтемы, которые понравятся пользователю
 - i. b новая
 - іі. В мн-во книг, которые пользователь оценил
 - ііі. $C_{\rm Bw}$ число книг автора w в множестве В
 - iv. S_B максимальное число книг одного автора в В

v.
$$d(b, B) = \frac{1 + C_B - C_{B,w}}{1 + C_B}$$

Что с этим всем делать?

- d. і. Подход 1
 - 1. Есть бизнес-метрика M, есть остальные метрики f, . . . , f
 - 2. Ищем веса при метриках, чтобы они приближали М Подход 2 (Ухудшающие эксперименты)
 - іі. 1. Рандом, предлагать только популярное, ...
 - 2. Подбираем веса так, чтобы во всех ухудшающих экспериментах взвешенная сумма уменьшалась

О разном

• Как делать отбор кандидатов

- Сократить всю базу до более маленькой выборки
- Простые методы
 - * Те же жанры, исполнители, ...
 - * Самое популярное сейчас

На основе матричных разложений

- * Пользователь-исполнитель
- На основе сходства
 - * Уже есть эмбеддинги для пользователей и айтемов

Холодный старт

- Новый пользователь
 - * Самое популярное?
 - * Опрос об интересах

Новый айтем

- * Показать фанатам этого же исполнителя
 - * Exploration случайным пользователям показывать
- Контентные рекомендации
 - Можно делать факторы из эмбеддингов
 - Факторы:
 - * Расстояние между контентным эмбеддингом этого айтемы и айтемов, которые нравились до этого
 - * DSSM
 - · Deep semantic similarity model
 - · Сеть с двумя половинами (user / item)
 - \cdot Item
 - Строим эмбеддинг по контенту
 - \cdot User
 - · Строим эмбеддинг по контенту всех айтемов, которые раньше понравились пользователю

· Выучиваем эмбеддинги так, чтобы эмбеддинги были близки для близких объектов \to Триплетный лосс

Нейросетевая коллаборативная фильтрация (NCF)

- — Есть эмбеддинг пользователя, есть айтема
 - Конкатенируем
 - Сверху полносвязные слои
 - Результаты лучше, чем обычное матричное разложение (LFM)
 - Steffen Rendle критиковал эту технологию \rightarrow Нейросети очень сложно аппроксимировать просто скалярное произведение

Продуктовая аналитика

Лекция 10: А/В-тестирование

Двойное слепое рандомизированное плацебо-контролируемое исследование

- Разделение на две случайные группы
- Пациент не знает и врач не знает

Тройное слепое ...

• Исследователи должны тоже не знать

Для чего нужно?

- Оценка полезности нового явления
- Исследование зависимостей
 - Ухудшающие эксперименты ightarrow подбор новых метрик

Мониторинги

- — Вечный обратный эксперимент возвращаем части пользователей то как было раньше
- Построение целей и КРІ

Из чего состоит эксперимент

• Разбиение пользователей

- Может быть сложно получить случайные группы, в программировании рандомизация работает неплохо
- Как разбивать новых пользователей?
- Несколько экспериментов одновременно? \to по 5% можно проводить 20 экспериментов за раз \to Усложняет задачу разбиения
- Как можно детектировать качество разбиения?
- Виды
 - * По пользователям cookies
 - * По визитам
 - * По действиям

Конфигурация эксперимента

- — Длительность trade-off
 - Размер выборок
 - Срез
- Метрики
- Интерпретация результата
- Корректность эксперимента

Виды экспериментов

- Одномерный / Многомерный
- Прямой / Обратный
- Временный / Вечный
- AA / AB

Конфигурация

- Размер выборок
 - Trade-off при больших выборках можно продержать пользователей на плохом продукте + невозможность тестировать большое количество экспериментов vs Состоятельность эксперимента

- При большой выборке можно использовать нормальные распределения + доверительный интервал меньше
- Чтобы доверительный интервал сократился в 2 раза надо в 4 раза увеличить размер выборки

Длительность

- - Нужно учитывать сезонность
- Срез

Метрика

- Чувствительность
- Шум
 - Большая дисперсия на среднее
 - Работает только на большом количестве пользователей

Интерпретация

- Иерархия
 - Связь с бизнес показателями
 - Интерпретируемость
 - Можно найти прокси-метрики для больших метрик и доказать влияние

Статистические тесты

- T-test
- Mann-Whitney

Лекция 11: А/В тестирование (2)

- Статистический критерий правило, которое позволяет делать вывод о том, стоит отвергать гипотезу или нет
- P-value вероятность ошибки, при условии, что нулевая гипотеза верна
- Доверительный интервал \rightarrow Если один лежит правее или левее другого, можно сделать вывод о значимости изменения

• **Z**-тест / **T**-тест

- Для гипотезы о средних
- Можем понять доверительные интервалы из этих тестов

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

$$s^2 = \frac{\sum_{t=1}^n (X_t - \overline{X})^2}{n-1}$$

 Нужно знать, что распределение среднего близко к нормальному

Критерий Mann-Whitney

- — Берем массив и сортируем
 - Смотрим какой выборке принадлежит каждое значение
 - Ранговый критерий
 - * Выписываем ранги Х и Ү

* Робастный способ + не зависит от распределения

Примеры

- Эксперимент 1
 - Ухудшение метрики через время (пользователи привыкли?)
 - * Может быть просто сезонность продлить эксперимент
 - * Взять срез для пользователей, которые пользовались с первого дня и посмотреть метрику для них
 - * Подождать 21 день и сделать обратный эксперимент
 - * Убедится, что эксперимент работает корректно

Эксперимент 2

- — По первым 4м дням видим улучшение метрик
 - * Сезонность
 - * Проверяем метрику каждый час = фактически множественная проверка гипотез

Эксперимент 3

- — По первым 4м дням ухудшение метрик
 - Поменять порог в процессе эксперимента?
 - * Нужно продлить эксперимент + переразбить пользователей

Эксперимент 4

- — Метрика растет, значимость всего 0.9
 - Можно ли считать, что метрика растет?

- * Выбрать более мощный критерий
- * Продлить эксперимент
- * Взять менее шумные прокси-метрики

Аналитика ML-продукта

- Рекомендации
 - Сеть
 - * DSSM двухголовая нейросеть, которая выводит вектора для товаров
 - * Ищем соседей с помощью KNN для юзера
 - * Делаем фичи
 - * Ранжируем по фичам

Иерархия метрик

 - * Ранжируем метрики с помощью модели, оценивающей вес некоторой наиболее важной бизнес метрики

Применение А/В тестирования

- – Эксперимент перед внедрением новой формулы
 - Вечный эксперимент с отклонением
 - Вечный эксперимент со старой формулой
 - Эксперимент со случайными рекомендациями
 - Ухудшающие эксперименты

Временные ряды

Модели экспоненциального сглаживания

- Holt, Winters, 1957
 - Алгоритм прогнозирования, а не модель в статистическом смысле этого слова
 - $-\widehat{y}_1 = y_1, \ \widehat{y}_{t+1} = \alpha y_t + (1 \alpha)\widehat{y}_{t-1}$
 - Строить предиктивные интервалы нельзя

- Неплохо прогнозирует месячные / сезонные данные
- Альфа подбирается минимизацией ошибок прогнозов

• Rob Hyndman, 2002

- Формулы прогнозирования для моделей экспоненциального сглаживания следуют из статистической модели
- Добавляются возможности построения интервалов и модифицирования модель
- Классический подход модель оценивается с помощью ММП
- STAN вероятностный язык программирования для байесовского вывода
 - * Пользователь описывает модель, описывает предпосылки на неизвестные параметры

• Slavek Smyl, 2015

Оценка более сложных моделей с помощью STAN

• Sean Taylor, 2017

- Prophet
- Модификация экспоненциального сглаживания

• Orbit, 2020

- Модификация

• ETS - Error, Trend, Seasonality

- Каждая из компонент может отсутствовать (N), может входить аддитивно (A), может входить мультипликативно (H)
- Выразить текущие показатели через прошлые
- Нужны тренд и сезонность
- Наклон линии тренда

$$b_t = b_{t-1}$$

– Сезонность

$$s_t = s_{t-12}$$

– Уровень очищенный от сезонности

$$\ell_t = \ell_{t-1} + b_{t-1}$$

— Наблюдаемый показатель y_t

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-12}$$

– Существуют начальные условия

$$b_0, \ell_0, s_0, s_{-1}, s_{-2}, s_{-11},$$

– Условие идентификации

$$s_{-11} = 0$$

• ETS с учетом ошибки

– Добавляется ошибка

$$u_t \sim \mathcal{N}(0, \sigma^2)$$

- Наклон линии тренда

$$b_t = b_{t-1} + \beta u_t$$

- Сезонность

$$s_t = s_{t-12} + \gamma u_t$$

– Уровень очищенный от сезонности

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t$$

— Наблюдаемый показатель y_t

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-12} + u_t$$

– Оцениваются параметры:

$$siqma^2, \alpha, \beta, \gamma, \ell_0, s_0, s_{-1}, s_{-2}, s_{-3}, \dots$$

у разбивается на часть, которая может быть предсказуема и часть со случайными ошибками

Теоретический байесовский подход

Три типа величин:

- 1. Вообще не наблюдаемые случайные величины параметры модели
- 2. Наблюдаемые при оценивании модели прошлые у
- 3. Наблюдаемые после оценивания модели будущие у

На вход:

- 1. Изначальное априорное мнение о параметре, $f(\theta)$
- 2. Модель для данных, функция правдоподобия, $f(y_1, \dots, y_T | \theta)$

Применяем формулу условной вероятности:

$$f(\theta \mid y_t, \dots, y_T) = \frac{f(\theta)f(y_1, \dots, y_T \mid \theta)}{f(y_1, \dots, y_T)}$$

Получаем апостериорное мнение о параметре:

$$f(\theta \mid y_1, \dots, y_T)$$

С помощью θ получаем апостериорное мнение о будущих величинах:

$$f(y_{T+h} \mid y_1, \dots, y_T)$$

Цепи Маркова в байесовском подходе

Описываем:

- 1. Изначальное априорное мнение о параметре $f(\theta)$
- 2. Модель для данных, функция правдоподобия $f(y_1,\ldots,y_T\mid\theta)$

На выходе черный ящик выдает последовательность из θ

Причем:

$$\theta^k \stackrel{distr}{\longleftarrow} f(\theta \mid y)$$