Non-Boolean OMv

ONE MORE REASON TO BELIEVE LOWER BOUNDS FOR DYNAMIC PROBLEMS

Bingbing Hu Adam Polak

UC San Diego Bocconi

Dynamic algorithms

= data structures, but for fancier queries

Operations:

- updatese.g., add edge, delete edge
- queries e.g., find a path from source to v, is the graph strongly connected?

Dynamic algorithms

= data structures, but for fancier queries

Operations:

- updatese.g., add edge, delete edge
- queries e.g., find a path from source to v, is the graph strongly connected?

recompute from scratch

sublinear time update/query

polylog time update/query

Dynamic algorithms

= data structures, but for fancier queries

Operations:

- updatese.g., add edge, delete edge
- queries e.g., find a path from source to v, is the graph strongly connected?

recompute from scratch

Fine-grained hypotheses

3SUM

APSP

SETH

Zero- Δ

k-Clique

OMv

k-SUM

Fine-grained hypotheses

3SUM **APSP SETH** k-Clique Zero-A many dynamic problems k-SUM **OMv** tight LBs

Fine-grained hypotheses

Can we have tight lower bounds for dynamic problems based on a hypothesis that is more believable than OMv?

(Boolean) Online Matrix-vector multiplication (OMv)

[Henzinger-Krinninger-Nanongkai-Saranurak, STOC'15]

Input:

```
Boolean n \times n matrix A, and n Boolean vectors v_1, v_2, \ldots, v_n given online
```

Output:

Boolean products $Mv_1, Mv_2, ..., Mv_n$ must output Mv_i before being able to see v_{i+1}

(Boolean) Online Matrix-vector multiplication (OMv)

[Henzinger-Krinninger-Nanongkai-Saranurak, STOC'15]

Input:

Boolean $n \times n$ matrix A, and n Boolean vectors v_1, v_2, \ldots, v_n given online

Output:

Boolean products $Mv_1, Mv_2, ..., Mv_n$ must output Mv_i before being able to see v_{i+1}

OMv Hypothesis: No $O(n^{3-\epsilon})$ time algorithm for OMv

Various matrix products (static)

Easy

$$O(n^{\omega}) < O(n^{2.372})$$

- ► Integer product
- Boolean product

Various matrix products (static)

Easy

$$O(n^{\omega}) < O(n^{2.372})$$

- ► Integer product
- Boolean product

Hard

$$n^{3-o(1)}$$

Min-plus product

Various matrix products (static)

Easy

$$O(n^{\omega}) < O(n^{2.372})$$

- Integer product
- Boolean product

Intermediate

$$O(n^{\frac{3+\omega}{2}}) < O(n^{2.686})$$

- Min-witness product
- Min-max product
- Dominance product
- Equality product
- Bounded monotone min-plus product

Hard

$$n^{3-o(1)}$$

Min-plus product

Min-Max Online Matrix-vector multiplication

```
(M \bigcirc v)[i] := \min_{j} \max(M[i][j], v[j])
```

Input:

Integer $n \times n$ matrix A, and n integer vectors v_1, v_2, \ldots, v_n given **online**

Output:

Min-Max products $M \bigcirc v_1, M \bigcirc v_2, \dots, M \bigcirc v_n$ must output $M \bigcirc v_i$ before being able to see v_{i+1}

Min-Max Online Matrix-vector multiplication

```
(M \bigcirc v)[i] := \min_{j} \max(M[i][j], v[j])
```

Input:

Integer $n \times n$ matrix A, and n integer vectors v_1, v_2, \ldots, v_n given **online**

Output:

Min-Max products $M \bigcirc v_1, M \bigcirc v_2, \dots, M \bigcirc v_n$ must output $M \bigcirc v_i$ before being able to see v_{i+1}

Min-Max-OMv Hypothesis: No $O(n^{3-\epsilon})$ time algorithm for Min-Max-OMv

Min-Max Online Matrix-vector multiplication

```
(M \bigcirc v)[i] := \min_{j} \max(M[i][j], v[j])
```

Input:

Integer $n \times n$ matrix A, and n integer vectors v_1, v_2, \ldots, v_n given **online**

Output:

Min-Max products $M \bigcirc v_1, M \bigcirc v_2, \ldots, M \bigcirc v_n$ must output $M \bigcirc v_i$ before being able to see v_{i+1}

Min-Max-OMv Hypothesis: No $O(n^{3-\epsilon})$ time algorithm for Min-Max-OMv

a priori more believable than (Boolean-)OMv Hypothesis

Can we give tight reductions from Min-Max-OMv to those dynamic problems that have known tight reductions from (Boolean-)OMv?

Our theorem

These problems either all have truly subcubic algorithms or none of them have:

- Boolean-OMv;
- ▶ ∃Equality-OMv;
- ▶ ∃Dominance-OMv;
- Min-Witness-OMv;
- Min-Max-OMv;
- Bounded Monotone Min-Plus-OMv.

$$(\exists_k M[i,k] \land v[k])$$

$$(\exists_k M[i,k] = v[k])$$

$$(\exists_k M[i,k] \leqslant v[k])$$

$$(\min\{k \mid M[i,k] \land v[k]\})$$

$$(\min_k \max\{M[i,k],v[k]\})$$

$$(\min_k M[i,k] + v[k])$$

Our theorem

These problems either all have truly subcubic algorithms or none of them have:

- Boolean-OMv;
- ▶ ∃Equality-OMv;
- ▶ ∃Dominance-OMv;
- Min-Witness-OMv;
- Min-Max-OMv;

Surprise? Not in hindsight.

Known **static** algorithms in time $O(n^{\frac{3+\omega}{2}})$

i.e.
$$O(n^{f(\omega)})$$
 s.t. $x < 3 \implies f(x) < 3$

$$(\exists_k M[i,k] \wedge v[k])$$

$$(\exists_k M[i,k] = v[k])$$

$$(\exists_k M[i,k] \leqslant v[k])$$

$$(\min\{k \mid M[i,k] \land v[k]\})$$

$$(\min_k \max\{M[i,k],v[k]\})$$

$$(\min_k M[i,k] + v[k])$$

Bounded Monotone Min-Plus-OMv.

Our theorem

These problems either all have truly subcubic algorithms or none of them have:

- Boolean-OMv;
- ▶ ∃Equality-OMv;
- ▶ ∃Dominance-OMv;
- Min-Witness-OMv;
- Min-Max-OMv;

Surprise? Not in hindsight.

Known **static** algorithms in time $O(n^{\frac{3+\omega}{2}})$

i.e.
$$O(n^{f(\omega)})$$
 s.t. $x < 3 \implies f(x) < 3$

$$(\exists_k M[i,k] \wedge v[k])$$

$$(\exists_k M[i,k] = v[k])$$

$$(\exists_k M[i,k] \leqslant v[k])$$

$$(\min\{k \mid M[i,k] \land v[k]\})$$

$$(\min_k \max\{M[i,k],v[k]\})$$

► Bounded Monotone Min-Plus-OMV $\underbrace{\text{min}_{k} M[i,k]_{+}}_{+} v[k]$

Remark: If (static) BMM has a subcubic *combinatorial* algorithm, then all these variants have such algorithms as well.

Open problem: Add a **counting** variant to the list.

Our theorem

These problems either all have truly subcubic algorithms or none of them have:

- Boolean-OMv;
- ▶ ∃Equality-OMv;
- ▶ ∃Dominance-OMv;
- Min-Witness-OMv;
- Min-Max-OMv;

Surprise? Not in hindsight.

Known **static** algorithms in time $O(n^{\frac{3+\omega}{2}})$

i.e.
$$O(n^{f(\omega)})$$
 s.t. $x < 3 \implies f(x) < 3$

$$(\exists_k M[i,k] \wedge v[k])$$

$$(\exists_k M[i,k] = v[k])$$

$$(\exists_k M[i,k] \leqslant v[k])$$

$$(\min\{k \mid M[i,k] \land v[k]\})$$

$$(\min_k \max\{M[i,k],v[k]\})$$

► Bounded Manatane Min-Plus-OMV (min

Remark: If (static) BMM has a subcubic *combinatorial* algorithm, then all these variants have such algorithms as well.

THANK YOU!