Universidade Federal de Minas Gerais Departamento de Computação

Projeto e Análise de Algoritmos – 2024.2

Professor: Marcio Costa Santos Lista 6

Exercício 1. Escreva uma função graph_check_flow() que verifique se um suposto fluxo é de fato um fluxo. A função deve receber um grafo G, a fonte s, o sumidouro t, e um suposto fluxo representado por uma matriz f.

Exercício 2. Determine o fluxo máximo na rede abaixo.

Exercício 3. Considere uma rede G = (V, E) com capacidades c(v, u) e dois fluxos f_1 e f_2 . Defina a soma dos fluxos $f = f_1 + f_2$ como sendo:

$$f(u,v) = f_1(u,v) + f_2(u,v)$$

. Prove ou refute: A soma de dois fluxos é um fluxo. Caso não seja um fluxo, qual propriedade de fluxo é violada?

Exercício 4. Considere uma rede G = (V, E) com capacidades c(v, u), um fluxo f e um real positivo β . Defina o produto do fluxo f por β , βf , como sendo:

$$(\beta f)(u,v) = \beta f(u,v)$$

. Prove ou refute: O produto de um fluxo por um real positivo β é um fluxo. Caso não seja, o que ocorre se $\beta \leq 1$?

Exercício 5. Mostre que dado uma rede G = (V, E) com capacidades c(u, v), o conjunto de todos os fluxos nesta rede é um conjunto convexo. Ou seja, dados dois fluxos válidos f_1 e f_2 e $0 \le \alpha \le 1$ temos que $\alpha f_1 + (1 - \alpha) f_2$ é um fluxo válido.

Exercício 6. Considere o seguinte problema: Temos um conjunto professores P e um conjunto de disciplinas D. Cada professor p pode dar um conjunto de disciplinas $D(p) \subseteq D$. Desejamos atribuir a cada professor uma disciplina de maneira a maximizar o número de disciplinas com professores para ministra-las. Como podemos modelar esse problema como um problema em grafos?

Exercício 7. Considere que temos uma rede G = (V, E) com k fontes s_1, \ldots, s_k e p sumidouros t_1, \ldots, t_p . Apresente um algoritmo para determinar o fluxo máximo nesta rede, assumindo que o fluxo é o mesmo e que o fluxo originado em uma fonte pode ser consumido em qualquer sumidouro.

Exercício 8. Considere o seguinte problema: Dado um grafo G = (V, E) e dois vértices v e u, desejamos determinar se existe um ciclo (não necessariamente induzido) contendo v e u. É possível adaptar o Algoritmo de Ford-Fulkerson para responder essa pergunta?