Primjena konstruktivnog optimizacijskog algoritma na problem rasporeda studenata Završni rad br. 6297

Martin Čekada

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Zagreb, Srpanj 2019

Sadržaj

- Opis algoritma
- Opis problema
- Nadogradnje algoritma
 - Inicijalna distribucija
 - Heuristike
 - Prioritetni red
- 4 Rezultati

Opis algoritma

- Konstruktivni algoritam
- Optimizacijski problem
- Temeljen na radu Asymptotic Properties of a Generalized Cross-Entropy Optimization Algorithm (Wu, Kolonko; 2014)

Primjer

	Student 1	Student 2	Student 3
T1	0.5	0.5	0.5
T2	0.5	0.5	0.5

Generirana rješenja: (T1, T1, T2); (T2, T1, T2); (T2, T2, T2)

	Student 1	Student 2	Student 3
T1	0.33	0.67	0
T2	0.67	0.33	1

Nova distribucija:

	Student 1	Student 1 Student 2	
T1	0.415	0.585	0.75
T2	0.585	0.415	0.25

Opis problema

- Skup studenata
- Skup termina
- Funkcija dodjeljivanja kazne
 - Tvrda ograničenja
 - Meka ograničenja

Inicijalna distribucija

- Želja: spriječiti nastajanje kolizija
- Pri inicijalizaciji rada algoritma je poznat skup studenata i skup termina
- Umjesto uniformne distribucije, smanjiti vjerojatnost pridjeljivanja u kojima nastaju kolizije

Heuristike

- Rebalansiranje trenutne distribucije
- Redistribucija vjerojatnosti prepunjenih termina

Prioritetni red

- Želja: smanjiti specijalizaciju algoritma
- Koeficijent i veličina
- Periodičko pražnjenje reda

Rezultati

Tablica: Imenovanje problema

Ime	Opis
Problem 1	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 2	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 3	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 4	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 5	Laboratorijske vježbe iz Objektno orijentiranog programiranje 2018./ 2019.
Problem 6	Laboratorijske vježbe iz Objektno orijentiranog programiranje 2018./ 2019.

Tablica: Podaci o problemima

Broj	Problem1	Problem2	Problem3	Problem4	Problem5	Problem6	
Studenata	371	372	372	372	515	515	
Termina	27	27	27	27	32	32	
Maksimalno	14	14	14	14	19	19	Ù
Minimalno	0	0	0	0	17	17 F	7

9/12

Rezultati rasporeda za kolegij Digitalne logike

- Veličina uzorka = 300
- Broj najboljih rješenja = 50
- Duljina prioritetnog reda = 50
- Koeficijent prioritetnog reda = 0.3
- Koeficijent zaglađivanja = 0.6

Tablica: Rezultati rasporeda za kolegij Digitalne logike

Ime problema	Broj studenata kojima je pridružen optimalan termin	Broj studenata za koje postoji optimalan termin
Problem1	73	207
Problem2	61	210
Problem3	59	204
Problem4	63	216

Zaključak i daljnji rad

- Algoritam je uspješno zadovoljio tvrda ograničenja za sve primjere
- Paraleliziranje postupka uzorkovanja i ocjenjivanja
- Redistribucija vjerojatnosti prepunjenih termina

Kraj

Hvala na pažnji!

Primjena na problem vodećih jedinica

Problem vodećih jedinica (engl. LeadingOne problem)

Problem se sastoji od generiranja niza nula i jedinica s ciljem maksimiziranja broja početnih jedinica. Optimalno rješenje je ono u kojem se niz sastoji isključivo od jedinica.

Teorem

Uz odabir konstantnog parametra izglađivanja $\rho_t = \rho$, veličine uzorka $N = L^{(2+\epsilon)}$, uz $\epsilon > 0$ i $N_b = |(\beta N)|$ za $0 < \beta < \frac{1}{3\epsilon} \prod_{m=1}^{\infty} (1 - (1-\varrho)^m)$. Uz početnu distribuciju $\prod_{0}(1,i) \equiv \frac{1}{2}$, odnosno jednoliku distribuciju, za prethodno definirani problem vodeće jedinice vrijedi $\mathbb{P}(\tau < L) \to 1$ kada $L \to \infty$. Pri čemu je $\tau := min\{t \ge 0 | X_t \cap S^* \ne \emptyset\}$

Vrednovanje

Tablica: Utjecaj duljine uzorka L na broj iteracija ($\epsilon=0.5,~\beta=0.09$)

L	Ν	N_b	ϱ	i
10	316	28	0.8	6
20	1788	160	0.8	9
30	4929	443	0.8	13
40	10119	910	0.8	16
50	17677	1590	0.8	20
60	27885	2509	0.8	23
70	40996	3689	0.8	26
80	57243	5151	0.8	30
90	76843	6915	0.8	33
100	100000	9000	0.8	37

Tablica: Utjecaj parametra izglađivanja ϱ_t na broj iteracija ($\epsilon = 0.5, \beta = 0.09$)

L	N	N_b	ϱ	i
50	17677	6	0.2	43
50	17677	82	0.3	33
50	17677	279	0.4	29
50	17677	563	0.5	25
50	17677	881	0.6	23
50	17677	1195	0.7	21
50	17677	1483	0.8	19
50	17677	1736	0.9	18
50	17677	1950	1.0	15

Rezultati rasporeda za kolegij Objektno orijentiranog programiranja

- Veličina uzorka = 300
- Broj najboljih rješenja = 50
- Duljina prioritetnog reda = 50
- Koeficijent prioritetnog reda = 0.3
- Koeficijent zaglađivanja = 0.6

Tablica: Rezultati rasporeda za kolegij Objektno orijentiranog programiranja

Ime problema	Broj dodjeljenih optimalnih termina	Ukupan broj mogućih optimalnih dodjeljivanja
Problem5	77	278
Problem6	76	219

Funkcija dodjeljivanja kazne

- Za svaku koliziju: 8000
- Za svaki prepunjeni (analogno i potpunjeni) termin: 5000 + koeficijentPrepunjenja · (popunjenost – maksimalanBrojStudenataZaTermin)²
- Za svako produljivanje trajanja dana studentu: 50
- Za svako pridjeljivanje koje je studentu na slobodan dan: 50

Utjecaj nadogradnji na rad algoritma

Tablica: Utjecaj nadogradnji algoritma

Inicijalna dist.	Prior. red	Rebalansiranje	Redistribuiranje	Prepunjenost	Kolizije	Medijan	Srednja vrijednost	Najmanji	Najveći
	1	1	1	0	2	346000	425990	346000	676700
Т	1	1	1	0	0	20400	20315	20050	20950
Т	Т	1	1	0	0	19350	19265	18250	20650
Т	Т	Т	1	0	0	21250	24250	21250	36250
Т	Т	Т	Т	1	0	50800	49295	35550	51000

Zagreb, Srpanj 2019

Opis algoritma

- Parametri
 - $oldsymbol{\varrho}$ faktor zaglađivanja
 - N veličina uzorka
 - N_b broj najboljih uzoraka

- Rad algoritma
 - Početak
 - Uzorkovanje
 - Ocjenjivanje
 - Ažuriranje

