FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION FOR THE HIGHER EDUCATION NATIONAL RESEARCH UNIVERSITY "HIGHER SCHOOL OF ECONOMICS" FACULTY OF MATHEMATICS

Grachev Denis Vadimovich

Clustering of Multidimensional Random Variables to Improve HMM Sequence Alignment Accuracy

Project proposal

Scientific supervisor: Prodanov Timofey Petrovich

Contents

1	Introduction															3							
	1.1	Clustering																				,	3
	1.2	Strings																					3
2	Tasl	k																					4

1 Introduction

1.1 Clustering

Given $X = \{x_i | x_i \in \mathbb{R}^d, i \in (1...n)\}$ and $m \in \mathbb{N}$, where n is the number of points, m - number of clusters.

Clustering algorithm takes X and m and outputs $C = \{c_i | c_i \in (1 \dots m), i \in (1 \dots n)\}.$

Figure 1: Example of clustering for d = 2, m = 2, color represents class.

1.2 Strings

Definition 1.1. String of length l over alphabet $A = \{1 \dots m\}$ is a map $s : \{1 \dots l\} \to A$. Usually elements of A are denoted as characters for convenience.

Definition 1.2. Alignment of strings s_1 and s_2 of lengths l_1 and l_2 respectively, over alphabet A is a pair of strings \hat{s}_1 and \hat{s}_2 of length l over alphabet $A \sqcup \{-\}$, such that there exists increasing functions $f_i : \{1 \dots l_i\} \to \{1 \dots l\}$ such that $\hat{s}_i|_{\hat{s}_i^{-1}(A)} \circ f_i = s_i$.

Remark. $\operatorname{Im}(f_i) = \hat{s}_i^{-1}(A)$

Example 1.1. Alignment of strings $s_1 = CABCAABA$ and $s_2 = ABADBBAD$ over alphabet $\{A, B, C, D\}$.

Definition 1.3. For given matrix $G \in \mathbb{R}^{|A| \times |A|}$ and $p \in \mathbb{R}$ score of alignment \hat{s}_1, \hat{s}_2 is

$$S(\hat{s}_1, \hat{s}_2) = \sum_{i=1}^{l} \delta_i, \text{ where } \delta_i = \begin{cases} g_{\hat{s}_1(i)\hat{s}_2(i)}, & \hat{s}_1(i) \neq - \text{ and } \hat{s}_2(i) \neq - \\ p, & \end{cases}$$

Theorem 1. If G is symmetric and $g_{ij} = \begin{cases} 0, & i = j \\ > 0, & \text{and } p > 0, \text{ then we can define } \end{cases}$ metric for strings over alphabet A as

$$d(s_1, s_2) = \min\{S(\hat{s}_1, \hat{s}_2)\}\$$

Proof.

Definition 1.4. For a string s of length l, sub-string s_s is a string of length l_s , such that there exists an function

$$f: \{1 \dots l_s\} \to \{1 \dots l\}$$
$$f(i) = i + d$$
$$s \circ f = s_s$$

Definition 1.5. For a string s_1 and s_2 of lengths l_1, l_2 correspondingly, define string-substring score as

$$S_s(s_1, s_2) = \min\{S(s_s, s_2) | s_s \text{ is a sub-string of } s\}$$

and corresponding alignment \hat{s}_1 , \hat{s}_2 are pair of strings of lengths l over alphabet $A \sqcup \{-\}$ such that there exists increasing functions $f_1 : \{1 \dots l_1\} \to \{1 \dots l\}$

Definition 1.6. For a string s of length l and set of strings $R = \{s_1 \dots s_n\}$ of lengths $\{l_1 \dots l_n\}$ correspondingly, multiple alignment is tuple $\hat{s}, \hat{s}_1 \dots \hat{s}_n$, of strings of length l over alphabet $A \sqcup \{-\}$, such that $\sum_{i=1}^n S(\hat{s}, \hat{s}_i)$ is minimal.

Definition 1.7. Set of reads R for string s of length l and rate r is

$$R = \{s_s | \text{length of } s_s > l, S_s(s, s_s) < r\}$$

2 Task

Given reference string s_r and reads R for an unknown target string s_t , we know that $S(s_r, s_t) < D$ and whant to find s_t .

Plan:

- 1. Make multiple alignment of R over s_r .
- 2. Estimate most likely difference between s_r and s_t .

Figure 2: Example of reference string, target string and reads.