

第五章齿轮齿条式电动助力转向系

1、EPS 系统概述

统 (EPS) 检修

EPS (Electric Power-assistant Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统和其他控制系统一样,是由传感器(扭矩转角传感器、车速传感器)、控制器 (EPS 电子控制单元)、执行器 (EPS 电机)以及相关机械部件组成。

1.1、EPS系统的功能:

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分:EPS 电子控制单元、扭矩及转角传感器、EPS 电机等。系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统通常由以下几部分组成: (a) 扭矩及转角传感器、(b) 车速传感器、(c) EPS 电子控制单元、(d) EPS 电机、(e) 相关机械结构。EPS 系统由 EPS 电机提供助力,助力大小由 EPS 电子控制单元实时调节与控制。根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

1.1.1、助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。 EPS 的助力特性采用分段型助力特性。EPS 电机 根据转向盘偏离方向施加助力转矩。以保证低速时转向轻便,高速时操作稳定并获得较好的路感。

1.1.2、回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。EPS系统在机械转向机构的基础上,增加了 EPS 电机和减速机构。EPS系统通过 EPS 电子控制单元对 EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转矩沿某一方向使转向轮返回到中间位置。

1.1.3、阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进行阻尼控制,增强驾驶员路感,改善车辆高速行驶情况下转向的稳定性。

1.2、EPS系统工作原理

汽车转向时,扭矩及转角传感器把检测到的 扭矩及角度信号的大小、方向经处理后传给 EPS 电子控制单元,EPS 电子控制单元同时接收车速 传感器检测到的车速信号,然后根据车速传感器 和扭矩及转角传感器的信号决定电机的旋转方向 和助力扭矩的大小。同时电流传感器检测电路的 电流,对驱动电路实施监控,最后由驱动电路驱动电机工作,实施助力转向。其工作原理如图 1-1 所示。

图 1-1 EPS 系统工作原理

2、维护注意事项

2.1、检修注意事项

2.1.1、无钥匙启动按钮如右图所示。其灯光颜色定义如表3-1所示。

图2-1 点火开关档位示意图

表3-1 点火开关状态

+ ET 1/12 - 1/- 3/- ET	车辆状态	
按钮状态说明	批示灯颜色	车辆状态
车内检测到智能钥匙,可以启动车辆	绿色	OFF
车内检测不到智能钥匙,无法启动车辆	无灯光, 熄灭	OFF
ACC档/ON档	橙色	OFF
车辆起动	无灯光, 熄灭	起动

2.1.2、电动助力转向器总成检修注意事项

(1) SRS气囊系统操作注意事项

本车配备有安全气囊(SRS),包括前排双安全气囊、侧安全气囊和侧安全气帘。如果不按正确的次序操作,可能会引起安全气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定要阅读安全气囊系统的注意事项。

(2) 本车电动助力转向系统带有主动回正控制功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆

四轮定位,并标定扭矩转角信号,同时标定ESP转角信号。标定扭矩、转角以后,车辆重新上ON档电源清除残留故障码(标定流程如图2-2、2-3、2-4所示)。

注意:

转角信号标定前,禁止进行遥控驾驶操作,否则可能会引起严重损坏故障;

用诊断仪进行标定操作时,把手离开转向盘, 转向盘不能受外在力的影响,否则可能会引起严 重损坏故障。

图2-2、扭矩信号标定流程

图2-3、转向盘转角信号标定流程

图2-4、故障码消除流程

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,EPS电子控制单元,EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
- ②移动电动助力转向器总成时,请勿拉拽线束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
 - ④断开转向管柱或者中间轴之前,车辆处于 表3-2 转向系统故障排查表

断电状态。断开上述部件后,不要移动车轮。不遵循这些程序会使某些部件在安装过程中定位不准。

⑤转向盘打到极限位置的持续时间不要超过 5秒钟,否则可能会损坏助力电机。

3.2、故障排除表

故障排除表有助于找到故障的原因,表中数字表明了引起故障的可能顺序,请按顺序检查每一个零件。必要时,请修理或更换有故障的零件或进行调整。

转向系统故障排除如表3-2所示。

症状	可能原因	症状	可能原因
转向沉重	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向节(磨损) 5) 转向管柱总成(有故障)	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨损) 3)转向器(有故障)
	6) 电动助力转向器总成(有故	异常噪声	1)减速机构(磨损) 2)转向节(磨损)
	1) 轮胎(充气不当) 2) 前轮定位(不正确)	201010101000000000000000000000000000000	3) 电动助力转向器总成(有故障)
回位不足	3)转向管柱总成(弯曲) 4)电动助力转向器总成(有故	转向盘抖动	1) 电动助力转向器总成(有故障)
	障)		2)转向管柱总成(有故障)

需检查转向系统。

2.3、一般故障检修信息

EPS指示灯

当启动发动机后, EPS指示灯会点亮, 并保持 2~3秒后熄灭,此时说明EPS指示灯及系统运行正

发动机起动后,如果系统有任何问题,则故 障报警灯应立即显示。

2.4、转向盘自由行程的检查

检查转向盘自由行程的方法如下:

- 1) 停车且轮胎朝向正前方;
- 2) 向左或向右轻轻转动转向盘, 检查转向 盘的自由行程。如图3-5所示,转向盘最大自由 行程不大于30mm。如果自由行程超过最大值,

3.1、转向盘及转向管柱的检修

3.1.1、转向盘及转向管柱总成的结构

图2-5 转向盘自由行程示意图

转向盘及转向管柱总成结构图 (高配)

转向盘及转向管柱总成结构图 (低配)

3.1.2、转向盘及转向管柱总成的拆装

1) 拆卸

部分维修操作会影响SRS气囊系统。维修转向管柱前,请阅读SRS气囊系统的注意事项。

- 1、确认前轮朝向正前方;
- 2、断开蓄电池的负极端子:
- 3、拆下DAB模块(主驾安全气囊模块)。 注意:当安全气囊电子控制单元监控到任何一个 气囊部件和气囊系统电路上的问题时,它将故障 代码存储在它的存储器中,并将信息送到组合仪 表,以点亮气囊故障指示灯。如果在点火开关处 于ON档状态时断开安全气囊接插件,故障代码 将会被记录。

①通过转向盘两侧的小圆孔用工具松开两个 内六角螺钉。如图 4-2 所示。

- ②从转向盘中取出 DAB 模块总成。
- ③使用拨片松开安全气囊接头的卡扣,拔下 安全气囊接头。

注意: 当拆下 DAB 模块总成时,不要拉扯安全气囊线束,当放置 DAB 模块总成时,保证其上表面向上: 请勿分解 DAB 模块总成。

- 4、拆下转向盘总成。
- ①拔出其余线束接插件:
- ②松开固定转向盘的六角法兰面螺栓。如图 4-3所示。

- ③在转向盘总成和转向管柱总成的转向轴上 做好配合标记,如图4-4所示。
 - ④使用专用工具,拆下转向盘总成。

- 5、拆下组合开关护罩。
- ①用十字起松开下护罩的三个安装螺钉,然后分离上下护罩。如图 4-5 所示。

注意:上下组合开关护罩由塑料卡扣配合,由 下往上将上护罩拉开并取下。

- 6、拆下时钟弹簧与组合开关。
- ①拔下所有连接在时钟弹簧、组合开关上的接插件。
- ②用十字起松开组合开关的三个安装螺钉 (两个位于正面、一个位于背面),如图 4-6 所示,

- 7、拔下转向轴锁上的接插件。
- 8、拆下万向节防尘罩总成I

将固定防尘罩Ⅱ总成的蜗杆环箍拆卸,之后 将防尘罩Ⅱ总成和防尘罩Ⅰ分离。

9、拆除下万向节安装螺栓,然后从转向器 小齿轮轴上断开下万向节。

- 10、拆下转向管柱及万向节总成。
- ① 从转向管柱上脱开接插件和线束卡扣。
- ② 拆下 1个安装螺栓和2个安装螺母,取下转向管柱及万向节总成。如图所示。

高配转向管柱拆卸

低配转向管柱拆卸

- 11、拆下转向管柱上转向轴锁。
 - ① 使用中心冲子 , 在两个防盗螺栓上做中心标记。
 - ② 使用 3~4mm 的钻头, 钻入这 2 个螺栓。
 - ③ 使用螺丝刀 , 拆下 2 个螺栓和转向管柱上轴锁总成。如图所示。

拆卸轴锁

- 12、拆下转向轴锁总成。
 - 2) 安装
- 1. 按与拆卸相反的顺序安装转向管柱。

- 2. 连接下万向节:将转向齿条置于行程中间。
- 3. 安装下万向节, 使螺栓在图示范围内。

- 4. 使车轮位于<mark>正前方</mark>的行驶位置,将下万向节的 下端装配到转向器小齿轮轴上。
- 5. 让下万向节上的螺栓孔与小齿轮轴上的凹槽 对准,安装螺栓。确认下万向节安装螺栓<mark>能准 确地</mark>装入小齿轮轴的凹槽里。沿小齿轮轴向拉 动下万向节,确保下万向节安装到位。将安装 螺栓<mark>打紧</mark>到规定力矩。
- 6. 将防尘罩Ⅱ总成安装到防尘罩Ⅰ内,并将环箍 打紧。

- 7. 安装完毕,注意以下事项:
 - ●确认接插件接插正确。重新安装转向盘。
 - ●重新连接蓄电池. 执行怠速判断程序。
 - ●确认已知音响防盗密码,记录客户电台预置

钮频率。

- ●设置时钟
- ●执行电动车窗控制装置的复位程序。
- 验证巡航控制、音响遥控和转向信号开关的 操作。
- ●在平坦的道路上直线行驶一段距离,确认转向盘已对中。

3.2 转向防尘罩 I 的拆装

- 1. 将防尘罩 I 和防尘罩 II 总成分离(参考管柱拆装过程中的相关步骤)。
- 2. 拆卸防尘罩 I 的固定螺栓和螺母。
- 3. 将防尘罩 I 和固定支架取下。

3.3、电动助力转向器带横拉杆总成的检修 3.3.1、电动助力转向器带横拉杆总成的结构

1 转向器本体; 2 转向内拉杆球头; 3 转向内拉杆; 4 转向外拉杆; 5 外拉杆球销防尘罩; 6 外拉杆球销; 7 六角螺母; 8 小卡箍; 9 大卡箍; 10 防尘罩; 11 控制器与电机总成; 12 隔热在总成; 13 开口销; 14 六角法兰面防转螺母; 15 六角头螺母和平垫圈组合件;

3.3.2 拆卸

拆卸过程中, 请注意以下事项:

断开万向节前,必须拆除转向盘。否则,可能会损坏时钟弹簧。

- 1、 拆转向盘。
- 2、 拆卸万向节。

拆除处安装螺栓

- 3、 分离中间轴总成。
- 4、拆卸前轮。
- 5、拆掉摆臂与摆臂球头销总成的安装螺栓和螺母。
- 6、分离左侧外拉杆总成与转向节的连接。
- (a) 拆下开口销和六角开槽螺母。
- (b) 从转向节上分离左侧外拉杆总成。

- 7、分离右侧外拉杆总成与转向节的连接。 提示: 执行与左侧相同的操作流程。
- 8、 拔下电源接插件及 CAN 信号接插件; 注意:拔接插件前,先用平口起撬开接插件倒扣;
- 9、用举升设备顶住副车架主体总成,拆掉副车架主体以及前副车架前、后安装支架与车身的八个连接螺栓。(参考前副车架总成拆卸流程)
- 10、降落举升设备,副车架随之落下。
- 11、拆掉稳定杆及拉杆球头总成。

- 12、拆卸电动助力转向器带横拉杆总成。
 - (a) 从前副车架总成拆下2个螺栓、2个螺母 和电动助力转向器带横拉杆总成。

- 13、固定电动助力转向器带横拉杆总成。
- 14、拆卸电动助力转向器隔热罩。
 - (a) 拆除隔热罩上5处螺栓螺母。
 - (b) 从转向器上分离隔热罩。

- 15、拆卸左侧外拉杆总成。
 - (a) 在左外拉杆总成与内拉杆上做好装配标记。
 - (b) 拆卸左外拉杆总成与拉杆锁紧螺母。

16、拆卸左侧外拉杆总成。 提示: 执行与左侧相同的操作流程。

3.3.3 检查

- 1、检查左侧横拉杆外部接头分总成。
 - (a) 将左侧外拉杆接头分总成固定在台钳上。 小心: 不要过度紧固台钳!
 - (b) 将螺母安装至双头螺栓。
 - (c) 前后晃动螺栓5次。

(d) 将扭矩扳手放置螺母上、以3-5秒种一圈的 速度连续转动球节、并检查转动过程中是否 有卡滞等异常现象。

提示:如果转动过程中有卡滞等异常现象,换上新的左侧横拉杆外部接头分总。

- 检查右侧横拉杆外部接头分总成。
 提示:执行与左侧相同的操作程序。
- 3、检查转向器空载力矩。

用扭矩扳手检查转向器空载力矩是否有卡滞等异常现象。

小心: 检查转向器齿条中心位置附近。

提示:如果转向器空载力矩有卡滞等异常现象, 换上新的转向器总成。

4、波纹防尘罩的检验。

用专用工具,转动小齿轮,检查左右防尘罩是 否有龟裂或者损伤。

提示:如果齿条波纹防尘罩有龟裂或者损伤, 更换新的齿条波纹防尘罩及卡筛。

5、转向横拉杆球头端防尘罩的检查

用手指用力压防尘罩,检查在防尘罩上是否有 龟裂或者损伤。

提示:如果防尘罩上有龟裂或者损伤,则要更 换转向横拉杆外部接头。

3.3.4 安装

- 1、安装左外拉杆总成。
 - (a) 将拉杆锁紧螺母和左外拉杆总成连接 到电动助力转向器上,直至装配标记 对齐。

提示:

调整前束后拧紧锁紧螺母。

2、安装右外拉杆总成。

提示:

执行与左侧相同的操作流程。

- 3、安装电动助力转向器隔热罩。
 - (a) 用5个螺栓将隔热罩安装到转向器上。

- 3、安装电动助力转向器带横拉杆总成。
- (a) 用2个螺栓和2个螺母将电动助力转向器带横拉杆总成安装至前副车架总成上。

预紧力矩: 100 N·m

- 4、安装稳定杆及拉杆球头总成。
- 5、安装前副车架总成。(参考前副车架总成装 配流程)
- 6、安装电源及CAN信号接插件:
- 7、连接左外拉杆总成。
 - (a) 用六角开槽螺母将左外拉杆总成连接支 转向节。

预紧力矩: 49 N·m

小心:如果开口销孔未对齐,将螺母进一步 拧60°。

- (b) 安装新的开口销。
- 8、连接右外拉杆总成。

提示: 执行与左侧相同的操作流程。

- 9、安装摆臂与摆臂球头销总成。
- 12、连接万向节总成。
- 13、安装万向节防尘罩 I。
- 14、安装转向盘总成。
- 15、安装前轮。

预紧力矩: 120 N·m

16、调整四轮定位。

提示: 四轮定位完成后, 拧紧拉杆锁紧螺 母。

预紧力矩: 74 N·m

17、进行扭矩信号及转角信号标定。

提示:参考"3.1.2、电动助力转向器总成检

修注意事项"步骤进行

4 EPS 系统自诊断及故障排除

4.1 诊断仪故障排除方法:

当 EPS 系统发生故障时,用手持式专用故障诊断仪(ED400)读取故障代码,根据诊断仪读出故障类型。

- 将故障诊断仪连接到汽车故障诊断接口 (DLC3)。
- ●按照诊断仪上的提示读出故障代码 (DTC)

对故障排查方法如下:

4.1.1 故障码故障排除方法

表 4-2 各故障码故障排除方法

DTC NO.	故障类型	故障分析	故障排除流程
C1B0200	ECU 故障	EPS 电子控制单元 内部故障	更换转向器总成。
C1B0400	扭矩信号故 障	扭矩传感器故障、 线束开路或短路、 EPS 电子控制单元 内部故障	1.接插件是否松动、脱落。是: 重新固定好; 否: 2 2.线束是否开路或短路。是: 修复线束; 否: 3 3.扭矩传感器是否故障。是: 更换转向器总成; 否: 4 4. EPS 控制单元故障, 更换转向器总成。
C1B0900	扭矩传感器 未校准	没有进行扭矩传感器出厂校准	1.接插件是否松动、脱落。是: 重新 固定好; 否: 2 2.扭矩信号是否已标定。是: 3; 否: 用诊断仪标定 3 扭矩传感器是否故障。是: 更换转 向器总成, 否: 4 4.EPS 控制单元故障, 更换转向器总成。
C1B0A00	转角传感器 未校准	没有进行转角信号标定	1.接插件是否松动、脱落。是: 重新 固定好; 否: 2 2.转角信号是否已标定。是: 3; 否: 用诊断仪标定 3 转角传感器是否故障。是: 更换转 向器总成, 否: 4 4.EPS 控制单元故障, 更换转向器总 成

			加亚迪 SUDM 水用十
C1B0B00	转角信号故 障	转角传感器故障、 线束开路或短路、 EPS 电子控制单元 内部故障	1.接插件是否松动、脱落。是: 重新 固定好; 否: 2 2.线束是否开路或短路。是: 修复线 束; 否: 3 3.扭矩传感器是否故障。是: 更换转 向器总成; 否: 4 4. EPS 控制单元故障, 更换转向器总 成。
C1B0D00	电源电压高	EPS 供电异常、 EPS 电子控制单元 内部故障	1.测试 EPS 电源电压是否异常 (>16V)。是:检查供电系统;否:2 2. EPS 控制单元故障,更换转向器总成
C1B0E00	电源电压低	EPS 供电异常、电源线束连接异常、 EPS 电子控制单元 内部故障	1.测试 EPS 电源电压是否异常 (<9V)。是:检查供电系统;否:2 2.检查 EPS 与蓄电池之间的搭铁片, 端子是否未连接到位。是:修复; 否:3 3.EPS 控制单元故障,更换转向器总成。
C1B0F00	电源正极断路	EPS 电源线束连接 异常、EPS 电源保 险烧坏、EPS 电控 单元故障	1.检查 EPS 与蓄电池之间的搭铁片, 线束是否连接异常。是:修复;否:2 2.检查 EPS 保险是否烧坏。是:更换 保险;否:3 3.EPS 控制单元故障,更换转向器总成。
C1B1000	车速信号错误	车速传感器故障、 EPS 电控单元故障	1.检查动力网中车速信号报文(ID:121) 第 2.7 位报文值是否为 1: 失效。是: 检查 ESP 系统; 否: 2 2.EPS 控制单元故障,更换转向器总成
C1B1200	电机旋变信 号错误	EPS 电控单元故障	EPS 电机故障,更换转向器总成
C1B1300	电机温度过 高	长时间转动转向 盘、EPS 电机、电 控单元故障	1.停止转动转向盘等待十分钟再检测 当前故障是否消失。是:属于系统正 常的温度保护;否:2 2.EPS 电机信号故障、EPS 电控单元 故障,更换转向器总成

C1B1400	电机过流故 障	EPS 电机故障, EPS 电控单元故障	更换转向器总成
C1B1500	电流偏离过 大	EPS 电机故障, EPS 电控单元故障	更换转向器总成
C1B1600	电流传感器 故障	EPS 电控单元故障	更换转向器总成
C1B1700	电机温度传 感器故障	EPS 电机故障, EPS 电控单元故障	更换转向器总成
C1B1800	电机继电器 故障	EPS 电机故障, EPS 电控单元故障	更换转向器总成
C1B1900	EUC 温度过高	长时间转动转向 盘、电控单元故障	1.停止转动转向盘等待十分钟再检测 当前故障是否消失。是:属于系统正 常的温度保护;否:2 2.EPS 电控单元故障,更换转向器总 成
C1B1A00	ECU 温度传 感器故障	EPS 电控单元故障	更换转向器总成
C1B1B00	ECU 继电器 故障	EPS 电子控制单元 内部故障	更换转向器总成。
C1B1C00	行驶中 ON 档电丢失	接插件松动,损 坏,ON 档电保险 松动	1. 检查 EPS 整车信号接插件是否插接不好。是:连接好接插件;否:2 2. 检查 EPS ON 档电保险是否松动、损坏。是:更换保险,否:3 3. 更换转向器总成
U029D00	与 ESP 失去 通信故障	CAN 通信系统, ESP 系统,EPS 电 控单元	1. 检查 CAN 网络通讯是否正常。 是: 2; 否: 修理 CAN 网络 1. 检查动力网中车速信号报文 (ID:121)是否不存在。是: 检查 ESP 系统; 否: 2 2. EPS 电控单元故障,更换转向器总 成
U011000	与电机控制器失去通信	CAN 通信系统,电机控制器,EPS 电控单元	1.检查 CAN 网络通讯是否正常。是: 2; 否: 修理 CAN 网络 2.检查动力网中电机控制器报文 (ID:341)是否不存在。是: 检查电机 控制器; 否: 3 3.EPS 电控单元故障,更换转向器总 成

4.1.2 电源电压低、电源电压正极断路故障检查

电路图

图 4-2

		·-		
电源电	压故障检查		730*	11.2
步骤	诊断动作	标准值	是	否
1	检查整车电压是否正常	10-16V	至步骤3	进行下步
2	修复整车电压问题	是否完成	至步骤8	
3	检查 EPS B19-2 电压是否为 10-16V, B11-1 是否和地良好 导通	是否正常	至步骤7	进行下步
4	保险 F5/1 是否正常且保险安 装螺钉是否拧紧	是否导通	至步骤 6	进行下步
5	更换保险, 拧紧螺钉	是否完成	至步骤8	
6	检查 EPS 电源线束是否存在 其它短路或开路	是否正常	检修电源系 统	进行下步
7	更换转向器总成	是否完成	进行下步	
	ļ			1

8	使用诊断仪清理诊断故障代码	故障代码是否依然 存在	至步骤1	系统 OK
	妈	存在	07-08 000V	The RESIDENT

4.1.3 扭矩、转角信号故障检查

电路图

图 4-4

步骤	诊断动作	标准值	是	否
1	检查扭矩信号(黑色 8Pin)接	是否正常	至步骤3	进行下步
	插件和 EPS 电子控制单元连			
	接是否正常			
2	固定好接插件	是否完成	至步骤 9	
3	扭矩传感器线束是否开路或	是否正常	至步骤 5	进行下步
	短路			
4	修复线束故障	是否完成	至步骤 6	
5	更换转向器总成	是否正常	至步骤 6	
6	用诊断仪清理诊断故障代码	故障代码是否复位	至步骤1	系统 OK

其他信号线束检测

电路图

图 4-5

步骤	诊断动作	标准值	是	否
1	系统自诊断过程	是否完成	进行下步	至步骤 4
2	1.蓄电池负荷测试	电压是否在	进行下步	至步骤 5
	2. 充电系统负荷测试	10~ <mark>16V</mark>		
3	1.退电至 OFF	是否正常	至步骤 6	至步骤 4
	2.断开 EPS 电子控制单元上的线束连			
	接器			
	3.检测 EPS 电子控制单元线束端 B32			
	与车身的通断			
4	检修自检电路	是否完成	至步骤 1	检修
5	修复蓄电池或充电系统	是否正常	至步骤 10	
6	车速输入信号线束检查,测线束阻	是否正常	进行下步	至步骤 9
	值			
7	故障报警信号线束检查	是否正常	进行下步	至步骤 9
8	CAN 线线束检查	是否正常	至步骤 10	至步骤 9
	拔下接插件 B32, 测线束端 B32-7、			
	B32-8 端电压			
	1.B32-7 与车身地电压是否始终在			
	2.5-3.5V			
	2.B32-8 与车身地电压是否始终在			
	1.5-2.5V			
9	更换线束	是否正常	进行下步	

比亚迪 S6DM 乘用车维修手册

10	使用诊断仪清理诊断故障代码	故障代码是	至步骤 1	系统 OK	
		否复位			

