A New Lightweight Chaos Based Cryptosystem For IoT Devices

Presented By:

Partho Choudhury Shoumya Roll: 1807021

Supervised By:

Dr. Kazi Md. Rokibul Alam Professor

Department of Computer Science & Engineering Khulna University of Engineering & Technology Khulna -9203, Bangladesh

Outline

- Motivation
- Introduction
- Related Works
- Objectives
- Methodology
- Progress
- Discussion & Conclusion
- References

Motivation

- Data communication between IoT devices are increasing rapidly
- Techniques are required to keep transmitted data safe from outsiders
- Some existing algorithms are no longer reliable and some of the other requires more amount of resources than IoT devices may offer
- To deal with these issues, a dedicated cryptosystem is required to ensure efficient and secure IoT communication

Introduction

Why IoT?

- With growing amount of population, number of cities are also increasing
- Cities face problems such as pollution, traffic congestion and waste management.
- Experts suggest to connect these systems to internet to maintain them easily and efficiently.
- This leads to the concept of Internet of Things (IoT)

Fig 1: IoT network in a city

Introduction (Contd.)

Some Existing Algorithms

 Some well known cryptographic techniques such AES, DES, RSA etc. are being used to secure IoT communications

Limitations

Not suited for constrained devices with limited resources

Lightweight Cryptosystems

 Huge emphasis is being put into developing lightweight cryptosystems adapted to these constrained devices

Introduction (Contd.)

Why Chaos Based Cryptosystem

- Chaotic systems have good cryptographic features such as unpredictability,
 aperiodicity, nonlinearity and high sensitivity to control parameters.
- Implementation requires fewer resources than conventional approaches
- Thus making it lightweight and attractive for providing strong and efficient cryptography for resource constrained nodes.

Related Works

Table 1: Comparison of related works

Author	Approach	Problem			
Nguyen et al. [1]	Low power circuit	Hardware solution			
Nesa and Banerjee [2]	Chaos based encryption algorithm built upon a quadratic sinusoidal map	No decryption process. No implementation result			
Akgul et al. [3]	Uses three different chaos generators	Only text data can be encrypted			

Objectives

- **Dedicated cryptographic algorithm:** To design a technique that can be used by nodes having limited memory, CPU capability, power resource etc.
- Ensuring security: The lightweight technique must ensure security in communication between the nodes
- Covering all types of data: The algorithm must work for all types of data such as text, image, voice etc.

Methodology

• An overview of the proposed methodology is as follows:

8/24/2023

Fig 2: Overview of the proposed methodology

Methodology (Contd.)

- For random generator Lorenz System has been choosen.
- The equations are as below:

$$\frac{d x(t)}{dt} = a(y - x)$$

$$\frac{d y(t)}{dt} = cx - y - xz$$

$$\frac{d z(t)}{dt} = xy - bz$$

- Here a, b, c are system parameters and x, y, z are initial conditions
- Runge-Kutta method could be used to solve this

Methodology (Contd.)

Primarily the below algorithm is designed to perform encryption process:

```
Algorithm 1 Pseudo-code of the proposed permute function

Input: Data D (n bits), Mask M (n bits)

Output: Permuted data P (n bits)

Initialization: i=1, j=n

for each bit k of M do

if M_k = 0 then

P_k = D_i

i = i+1

else

P_k = D_j

j = j-1

end if

end for
```

Methodology (Contd.)

Primarily the below algorithm is designed to perform decryption process:

```
Algorithm 2 Pseudocode of the proposed inverse permute
function
Input: Permuted data P (n bits), Mask M (n bits)
Output: Data D (n bits)
Initialization: i=1, j=n
  for each bit k of M do
     if M_k = 0 then
       D_i = P_k
       i = i+1
     else
       D_i = P_k
       j = j-1
  end if
end for
```

Progress

Fig 2: Gantt chart depicting thesis progress

1st Term						2 nd Term							
Event/week 1-2 3-4 5-6 7-8 9-10 11						1 2-3 4-6 7-8 9-10 11 12							
	1-Z I	5-4	5-0	/-0	9-10			2-5	4-0	7-0	2-10		12
Topic Selection													
Thesis Planning													
Literature Review													
Learning Chaos Theory													
Implementing some existing Model													
Pre-defence Report and Presentation													
Solidify more knowledge				3									
Planning													
Implementation				Ti.									
Result Evaluation													
Thesis Report Manuscript													
Thesis Defence													
Final manuscript													

Discussion & Conclusion

Key features:

- 1. Have 3 essential components: Lorenz based random generator, Chaotic permutation XOR operation
- 2. Provides enough powerful protection against brute-force attack
- 3. Suitable to use in resource constrained IoT nodes

Future Work:

- 1. Develop a key sharing mechanism
- 2. A lightweight security protocol that involves authentication of deployed IoT devices

References

- ➤ [1] Nguyen, N., Pham-Nguyen, L., Nguyen, M.B., Kaddoum, G.: A low power circuit design for chaos-key based data encryption. IEEE Access 8, 104432–104444 (2020)
- ➤ [2] Nesa, N., Banerjee, I.: A lightweight security protocol for iot using Merkle hash tree and chaotic cryptography. In: Advanced Comput ing and Systems for Security, pp. 3–16. Springer (2020). https://doi.org/10.1007/978-981-13-8969-6_1
- ➤ [3] Akgül, A., Kaçar, S., Aricio ʻglu, B., Pehlivan, I.: Text encryption by using one-dimensional chaos generators and nonlinear equations. In: 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 320–323. IEEE (2013). https://doi.org/10.1109/ELECO.2013.6713853

Thank you

QUESTIONS?