Logica en de Linguistic Turn 2013

Reducties & distributie

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

September 17, 2013

Plan voor vandaag

- Reducties tot perfecte syllogismen: Reductio ad absurdum (1.4.4)
- Redeneringen met meer dan twee premissen (1.4.5)
- Geldigheid via distributie (1.4.6)

Huiswerk:

- ► Syllabus 1.4.4, 1.4.5 en 1.4.6. Opg. 10–13
- ► Russell en Carnap + tekstvragen
- Proeftentamen
- Participatieopdracht (voor woensdag): Bedenk twee vragen, een over de tekst van Russell en een over de tekst van Carnap.
 - Email onderwerp: PO3: Russell en Carnap
 - Vragen als email tekst (geen attachment)
- Participatieopdracht: oefenvraag (voor vrijdag)

Reducties tot perfecte syllogismen

Stelling 1 (Aristoteles) De geldigheid van elk syllogisme kan worden aangetoond door gebruik te maken van de volgende principes.

- 1. de vier perfect syllogismen: aaa-1, eae-1, aii-1, eio-1
- conversie: XiY/YiX en XeY/YeX
- 3. subalternatie: XaY/XiY en XeY/XoY
- 4. de reductio ad absurdum regel.

Opgave 7 Leidt de geldigheid van het syllogisme (aii-3) af onder gebruikmaking van het perfecte syllogisme (aii-1).

Opgave 8 Leidt de geldigheid van het syllogisme (aee-4) af onder gebruikmaking van het perfecte syllogisme (eae-1).

Opgave 9 iai-3 (vanuit aii-1) en eao-3 (vanuit eio-1).

Reductio ad absurdum

- Algemene vorm:
 - (1) Als $\phi_1, ..., \phi_n, \neg \psi \Rightarrow \bot$, dan $\phi_1, ..., \phi_n \Rightarrow \psi$
- In woorden:
 - (2) Te bewijzen ψ vanuit $\phi_1, ..., \phi_n$:
 - a. Stel $\phi_1, ..., \phi_n$ en $\neg \psi$ (niet ψ).
 - b. Stel nu dat we uit $\phi_1, ..., \phi_n$ en $\neg \psi$ zowel χ als $\neg \chi$ kunnen afleiden (een tegenspraak, \bot).
 - c. **Gevolg**: $\phi_1, ..., \phi_n \& \neg \psi$ kunnen niet allebei waar zijn: dus $\phi_1, ..., \phi_n \Rightarrow \psi$
- Aangenomen:
 elke zin moet ofwel waar ofwel onwaar zijn (tertium non datur)

Voorbeeld: Bocardo₃ vanuit Barbara₁

Afleiding van oao-3 vanuit aaa-1

1.	MoP	major	
1.	МоР	majoi	^

- 2. MaS minor
- 3. SoP middels reductio ad absurdum + aaa-1

Reductio

- a. SaP negatie van 3. (a. en 3. zijn contradictoir)
- b. MaP aaa-1 met a. (major) en 2 (minor)
- c. \perp (b. en 1. zijn contradictoir)
- d. Dus, SoP reductio

Opgave: Barocco₂ vanuit Barbara₁

Voorbeeld: Barocco₂ vanuit Barbara₁

Afleiding van aoo-2 vanuit aaa-1

1. PaM	major
1. I alvi	IIIajui

- 2. SoM minor
- 3. SoP middels reductio ad absurdum + aaa-1

Reductio

- a. SaP negatie van 3. (a. en 3. zijn contradictoir)
- b. SaM aaa-1 met 1 (major) en a (minor)
- c. \perp (b. en 2. zijn contradictoir)
- d. Dus, SoP reductio

Middeleeuws ezelsbruggetje

Alle geldige syllogistische vormen hebben een naam:

Barocco2	Bocardo3	Camenes4
Camestres2	Datisi3	Dimaris4
Cesare2	Disamis3	Fresison4
Festino2	Ferison3	(Bramantip4)
(Camestrop2)	(Darapti3)	(Camenop4)
(Cesaro2)	(Felapton3)	(Fesapo4)
	Camestres2 Cesare2 Festino2 (Camestrop2)	Camestres2 Datisi3 Cesare2 Disamis3 Festino2 Ferison3 (Camestrop2) (Darapti3)

- De klinkers geven de modus aan.
- Aan de medeklinkers kan zien hoe ze tot een perfect syllogisme gereduceerd kunnen worden
 - 1ste medeklinker ⇒ 1ste medeklinker van het perfecte syllogisme waartoe de reductie leidt;
 - m ⇒ premissen moeten verwisseld worden;
 - s ⇒ conversie;
 - p ⇒ subalternatie en conversie;
 - c ⇒ reductio ad absurdum

Redeneringen met meer dan twee premissen

- Geldige redeneringen met meer dan twee premissen kunnen altijd gereduceerd worden tot redeneringen die bestaan uit redeneerstappen die elk twee of minder premissen behelzen.
- ▶ Voorbeeld: Herschrijf de volgende categorische redenering als een keten van drie geldige syllogistische vormen:
 - (3) MaP, SaM, NeP, RiS/RoN
- Geldige syllogismen:

```
aaa-1
        a00-2
                020-3
                         aee-4
eae-1 aee-2
                aii-3
                         iai-4
aii-1 eae-2
                iai-3
                         eio-4
eio-1 eio-2 eio-3
                         (aai-4)
(aai-1) (aeo-2) (aai-3)
                         (aeo-4)
        (eao-2)
(eao-1)
                (eao-3)
                         (eao-4)
```

Bottom Up Strategy

▶ 1. MaP

Write down argument

- 2. SaM
- 3. NeP
- 4. *RiS*
- 5. RoN
- Build 1st syllogism:
 - 1. Take 5. as conclusion
 - 2. Choose one possible premise out of 1–4 (here 3. or 4.)
 - 3. Fill in 2nd premise looking at list of valid syllogisms, call it (a)
- ▶ Build 2nd syllogism:
 - 1. Take (a) as conclusion
 - 2. Choose one possible premise out of the remaining 1–4
 - 3. Fill in the second premise as above, call it (b)
- Build 3rd syllogism:
 - 1. Take (b) as conclusion
 - 2. and the two remaining premises as premises
- Write down solution (top down)

Distributie

- De scholastische logici wilden graag weten aan welke formele eigenschappen een syllogisme moet voldoen om haar geldig te maken.
- Een belangrijk begrip in dit verband betreft het al of niet gedistribueerd zijn van een term in een categorische zin.
- Volgens de scholastici is
 - de subjectterm gedistribueerd in (universele) a- en e-zinnen, en
 - de predikaatterm in de (negatieve) e- en o-zinnen.

	universeel	particulier
affirmatief	S aP	SiP
negatief	<u>S</u> e <u>P</u>	So <u>P</u>

▶ In moderne termen: een term is gedistribueerd als deze in een monotoon dalend (downward entailing, DE) context voorkomt.

Geldigheid in termen van distributie

Stelling 2 Een syllogisme is geldig desda het voldoet aan de volgende vier voorwaarden.

- (i) De middenterm is gedistribueerd in minstens één van de premissen.
- (ii) Elke term die gedistribueerd is in de conclusie is ook gedistribueerd in één van de premissen.
- (iii) Minstens één van de premissen is affirmatief.
- (iv) De conclusie is negatief desda één van de premissen negatief is.

Wanneer we het postulaat van existentiële import laten vallen, dan moeten we de bovenstaande voorwaarden nog aanvullen met een vijfde:

(v) Als de conclusie particulier is, dan is ook minstens één van de premissen particulier.

Derde methode om (on)geldigheid te bewijzen

Opgave: Onderzoek met behulp van stelling 2 of

- (i) de volgende syllogismen geldig zijn, en
- (ii) zij geldig blijven als wij El laten vallen.
- (4) aao-1 a.
 - b. aeo-2
 - c. eio-4

Nog een opgave

Bewijs de volgende stelling met behulp van stelling 2:

(5) Een geldig syllogisme van de 4de figuur kan geen a-zin als conclusie hebben.

Bewijs: Stel (5) onwaar, i.e. er is een geldige syllogisme met vorm

\Rightarrow S is gedistribueerd in conclusie	(distributie)
\Rightarrow S moet gedistribueerd zijn in minorpremisse	volgens (ii)
⇒ Minorpremisse moet negatief zijn	distributie en 4-fig
⇒ Conclusie moet ook negatief zijn	volgens (iv)
\Rightarrow \perp (a-	zinnen zijn niet negatief)
\Rightarrow (5) is waar	(reductio)