Lad $f(x) = \frac{1}{x} - \frac{\cos x}{\sin x}$ for alle $x \in \mathbb{R}$ med $x \neq n\pi, n \in \mathbb{Z}$. 3.1

Til følgende opgaver defineres følgende erklæres følgende udsagn i Maple.

$$f := x \rightarrow (1/x) - \cos(x)/\sin(x)$$

a) Find grænseværdierne $\lim_{x\to 0+} f(x)$, $\lim_{x\to \pi^-} f(x)$ først med og dernæst uden

I Maple skriver vi følgende og får resultaterne 0 hhv. $\frac{1}{\pi} - \frac{\cos \pi}{\sin \pi}$

$$limit(f(x), x=0, right);$$

 $limit(f(x), x=pi, left);$

Ved håndregning af $\lim_{x\to 0^+} f(x)$ omfor- For $\lim_{x\to \pi^-} f(x)$ har igen vi, at

mulerer vi
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0^+} \left(\frac{\sin x - x \cos x}{x \sin x} \right) \quad \lim_{x \to \pi^-} \left(\frac{1}{x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to \pi^-} \left(\frac{\sin x - x \cos x}{x \sin x} \right) \tag{5}$$

Vi kan se, at (1) er et $\frac{0}{0}$ -udtryk, når $x \to 0$ 0+, og benytter derfor L'Hôpital's regel, indtil vi har en grænseværdi, der giver mening.

$$\lim_{x \to 0^+} \left(\frac{\sin x - x \cos x}{x \sin x} \right) \tag{2}$$

$$= \lim_{x \to 0^+} \left(\frac{x \sin x}{\sin x + x \cos x} \right) \tag{3}$$

$$= \lim_{x \to 0^+} \left(\frac{\sin x + x \cos x}{2 \cos x - \sin x} \right) = \frac{0}{2} = 0 \tag{4}$$

Altså, er
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{\cos x}{\sin x}\right) = 0.$$

$$\lim_{x \to \pi^{-}} \left(\frac{1}{x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to \pi^{-}} \left(\frac{\sin x - x \cos x}{x \sin x} \right)$$
 (5)

Vi bemærker at $\lim_{x\to\pi^-} x \sin x = 0$, medens $\lim_{x\to\pi^-} \sin x - x \cos x = -\pi(-1) =$ π . Nævneren er altså 0 i $x = \pi$, men da $\sin x > 0, \ \forall x \in (2n\pi, (2n+1)\pi), \ \text{hvor } n \in \mathbb{Z}$ ved vi, at $\frac{\sin x - x \cos x}{x \sin x} > 0$, $\forall x \in (2n\pi, (2n + 1)\pi)$, hvor $n \in \mathbb{Z}$. Nævneren bliver altså $\lim_{x \to 0^{+}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) \qquad \text{ved vi, at } \frac{\sin x - x \cos x}{x \sin x} > 0, \ \forall x \in (2nx)$ $= \lim_{x \to 0^{+}} \left(\frac{x \sin x}{\sin x + x \cos x} \right) \qquad (2) \qquad 1)\pi), \text{ hvor } n \in \mathbb{Z}. \text{ Nævneren bliv meget lille, men er fortsat positiv. Definition of the problem of the problem$ meget lille, men er fortsat positiv. Derfor har

$$\lim_{x \to \pi^{-}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) = \infty \tag{6}$$

Vis, at f er strengt voksende i hvert interval $(n\pi, (n+1)\pi)$. Uligheden $|\sin x| < |x|$ for $x \neq 0$ kan benyttes uden bevis (den er vist i TLO side 240).

Lad os først differentiere f, da denne vil give os mulighed for at undersøge væksten af funktionen.

$$f'(x) = \left(\frac{1}{x}\right)' - \left(\frac{\cos x}{\sin x}\right)' = \frac{\cos(x)^2}{\sin(x)^2} - \frac{1}{x^2} + 1 \tag{7}$$

Konstanten kan vi ignorere. Vi bemærker at de nævnerne i de øvrige led er kvadrerede, og dermed altid positive. For at f kan vises at være strengt voksende i intervallet, må vi da vise, at $\frac{\cos(x)^2}{\sin(x)^2} > \frac{1}{x^2}$. Siden $|\sin x| < |x|$ og $0 \le \cos(x)^2 \le 1$ holder dette udsagn. I tilfældet, hvor $x = n\pi$, hvor $n \in \mathbb{Z}$, er funktionen ikke defineret pga. division med nul og ekskluderes derfor fra D_f . Uligheden holder derfor kun i $x \in (n\pi, (n+1)\pi), n \in \mathbb{Z}$.

Vi har altså, at

$$f'(x) = \frac{\cos(x)^2}{\sin(x)^2} - \frac{1}{x^2} + 1 > 0, \forall x \in (n\pi, (n+1)\pi)$$
(8)

Bevis, at ligningen f(x) = 0 ikke har nogen løsninger i $(0, \pi)$, og at den har præcis én løsning i $(\pi, 2\pi)$. Benyt Maple til at finde en approksimering til denne løsning.

Siden vi ved, at f er strengt voksende (se opgave 3.1b)) i $(n\pi, (n+1)\pi)$ og at $\lim_{x\to 0+} f(x) = 0$ gælder, at $0 < f(x), \forall x \in (n\pi, (n+1)\pi)$. Hvis vi lader n = 0 har vi, at $0 < f(x), \forall x \in (0, \pi)$ og dermed også $f(x) \neq 0, \forall x \in (0,\pi)$ — ligningen f(x) = 0 har altså ingen løsninger i $(0,\pi)$.

Igen, idet vi ved at f er strengt voksende i intervaller $(n\pi, (n+1)\pi)$, skal vi blot argumentere at $\lim_{x\to\pi^+} f(x) < 0 < \lim_{x\to2\pi^-}$, hvilket ville medføre, at f nødvendigvis må skære x-aksen i intervallet.

I opgave (a) dragede vi følgende udsagn; $\sin x > 0$, $\forall x \in (2n\pi, (2n+1)\pi)$. Tilsvarende gælder det, at $\sin x < 0$, $\forall x \in ((2n+1)\pi, 2n\pi)$, derfor har vi, at

$$\lim_{x \to \pi^{+}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) = -\lim_{x \to \pi^{-}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) = -\infty \tag{9}$$

Ligeledes, observerer vi, at $\sin(2\pi) = \sin(\pi)$ og $\cos(2\pi) = -\cos\pi$. Dette minder meget om $\lim_{x\to\pi^-} f(x)$, men vi skal huske at vende fortegnet, da det nu gælder at $\sin x < 0$ i intervallet, som påvist tidligere. Altså, idet $\cos(2\pi) = -\cos\pi$, skal vi vende fortegnet, men siden $\sin x < 0$ i intervallet, skal vi igen vende det. Vi har derfor, at

$$\lim_{x \to 2\pi^{-}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) = \lim_{x \to \pi^{-}} \left(\frac{\sin x - x \cos x}{x \sin x} \right) = \infty$$
 (10)

Ud fra dette, kan vi slutte, at $\lim_{x \to \pi^+} < 0 < \lim_{x \to 2\pi^-}$, og siden $f(a) < f(b), \forall a < b \in \mathbb{R}$ $(\pi, 2\pi)$ ved vi, at der findes en og kun én løsning til ligningen f(x) = 0 i $x \in (\pi, 2\pi)$.

I Maple finder jeg approksimeringen af $f(x) = 0, x \in (\pi, 2\pi)$ ved

$$fsolve(f(x)=0,x=Pi...2Pi)$$

hvilket giver mig en approksimation på $x \approx 4.493409457909064175308$

En funktion $f: \mathbb{R} \to \mathbb{R}$ defineres ved (11) 3.2

$$f(x) = \begin{cases} \frac{1-x^2}{(x-1)(x-3)} & x \in (-\infty; 1) \cup (3; \infty) \\ x & x \in [1; 3] \end{cases}$$
 (11)

I Maple har jeg erklæret funktionen, som følger

$$c1 := x -> x < 1 \text{ or } x > 3$$

$$c2 := x \rightarrow 1 <= x <= 3$$

$$f2 := x \rightarrow x$$

$$f := x \rightarrow piecewise(c1(x), f1(x), c2(x), f2(x))$$

a) Lav i Maple et plot af et udsnit af **b**) grafen for f, der giver et retvisende og oplysende billede af funktionens overordnede opførsel.

Figure 1: Grafen for f i intervallet x,y \in [-5, 10]

Er f differentiabel i x = 1? Begrund dit svar uden brug af Maple.

Ja. Vi ved, at

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \implies \exists \lim_{x \to a} f(x)$$
(12)

Det er let at se, at $\lim_{x\to 1+} f(x) = 1$, så

lad os kigge på den anden side. Vi ser, at $\frac{1-x^2}{(x-1)(x-3)}$ giver et $\frac{0}{0}$ -udtryk for x=1. Derfor ganger vi først ud, for at gøre det nemmere

$$\frac{1-x^2}{(x-1)(x-3)} = \frac{1-x^2}{x^2-4x+3}$$
 (13)

og benytter os derefter af L'Hôpitals regel.

$$\lim_{x \to 1-} \frac{1 - x^2}{x^2 - 4x + 3} = \lim_{x \to 1-} \frac{-2x}{2x - 4} = 1 \quad (14)$$

Da $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} = 1$, har vi

$$\lim_{x \to 1} f(x) = 1 \tag{15}$$

Og funktionen f er derfor differentiabel i x = 1.

- (iii) Betragt funktionen $f(x) = x(\ln(x+1) \ln x), x > 0$. 3.3
- Tegn grafen for $0 < x \le 100$ og gæt på $\lim_{x \to \infty} f(x)$ ud fra denne. a)

Funktionen defineres og plottes i Maple som

$$f := x -> x (ln(x + 1) - ln(x))$$

$$plot(f(x), x=0..100)$$

Mit umiddelbare gæt er, at funktionen er asymptote med y = 1, og derfor at $\lim_{x \to \infty} f(x) = 1.$

Figure 2: Grafen for f i intervallet $x \in [0, 100]$

b) Beregn i Maple $f(10^n)$ for n = 1, ..., 10 (brug f. eks. værdien 20 af Digits=antal decimaler). Gæt igen på $\lim_{x\to\infty} f(x)$ ud fra disse tal.

I Maple angiver jeg Og får følgende resultater; Digits := 22 $f(10^1) = 0.953100179804324860044$ (16) $f(10^2) = 0.9950330853168082848$ (17)evalf (f(10^1)) evalf(f(10²)) $f(10^3) = 0.999500333083533167$ (18)evalf(f(10³)) $f(10^4) = 0.99995000333308335$ (19)evalf (f(10⁴)) $f(10^5) = 0.999995000033333$ (20)evalf(f(10⁵)) evalf(f(10⁶)) $f(10^6) = 0.9999950000033$ (21)evalf(f(10^7)) $f(10^7) = 0.99999995000000$ (22)evalf(f(10^8)) $f(10^8) = 0.9999999500000$ (23)

evalf(f(10^9))

disse resultater.

evalf (f(10^10))

Vi starter med at omformulere udtrykket

$$f(10^9) = 0.9999999950000 (24)$$

$$f(10^{10}) = 0.99999999995000 (25)$$

Hvilket stemmer meget godt overens med mit første gæt, og mit er derfor uændret, ud fra

 \mathbf{c} Bestem $\lim_{x\to\infty} f(x)$ uden brug af Maple. Kommenter resultaterne fra (a) og (b).

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left(\ln(x+1) - \ln(x) \right) = \lim_{x \to \infty} x \cdot \ln\left(\frac{x+1}{x}\right)$$
 (26)

$$= \lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{1/x} \tag{27}$$

Vi bemærker nu at $\lim_{x\to\infty} \ln\left(1+\frac{1}{x}\right)=0$, da som $\lim_{x\to\infty}\frac{1}{x}=0$ og $\ln 1=0$. Ligeledes, går nævneren imod 0 når $x\to\infty$. Vi har derfor et $\frac{0}{0}$ -udtryk, og anvender derfor L'Hôpitals

$$\frac{\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right)}{\lim_{x \to \infty} (1/x)} = \frac{\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right)'}{\lim_{x \to \infty} (1/x)'} = \lim_{x \to \infty} \frac{\frac{1}{1+1/x} \cdot \left(-\frac{1}{x^2}\right)}{-1/x^2} = \lim_{x \to \infty} \frac{1}{1+1/x} = \frac{1}{1} = 1$$
(28)