COMP3411 Week 07 Tutorial

Yifan He

z5173587@unsw.edu.au

https://github.com/hharryyf/COMP3411-24T1-tutoring

Probability Revision

Bayes Rule

- $P(\theta)$: Prior distribution of parameters
- D is the set of data (observations)
- $P(\theta|D)$: Posterior distribution
- $P(D|\theta)$: likelihood

Probability Revision

Bayes Rule

- $P(\theta)$: Prior distribution of parameters
- D is the set of data (observations)
- $P(\theta|D)$: Posterior distribution
- $P(D|\theta)$: likelihood
- $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

Conditionally Independent

Suppose A, B, C are events, A is conditionally independent of B given C iff P(C) > 0 and P(A|B,C) = P(A|(B∧C)) = P(A|C)

Q₁

Assume 50% of the population are men and 50% are women. Only 4% of the population are color blind, but 7% of men are color blind. What percentage of color blind people are men?

- Formulate the question mathematically
- P(men) = 50%, P(women) = 50%
- P(color_blind) = 4%

Assume 50% of the population are men and 50% are women. Only 4% of the population are color blind, but 7% of men are color blind. What percentage of color blind people are men?

- Formulate the question mathematically
- P(men) = 50%, P(women) = 50%
- P(color_blind) = 4%
- $P(color_blind|men) = 7\%$

Assume 50% of the population are men and 50% are women. Only 4% of the population are color blind, but 7% of men are color blind. What percentage of color blind people are men?

- Formulate the question mathematically
- P(men) = 50%, P(women) = 50%
- P(color_blind) = 4%
- P(color_blind|men) = 7%
- P(men|color_blind) =?

- P(men) = 50%, P(women) = 50%
- $P(color_blind) = 4\%$, $P(color_blind|men) = 7\%$
- P(men|color_blind) =?
- We apply Bayes Rule
- $P(men|color_blind) = \frac{P(color_blind|men)P(men)}{P(color_blind)}$
- $P(men|color_blind) = \frac{7\%.50\%}{4\%} = 87.5\%$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• Example: P(toothache, catch, cavity) = 0.108

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• (i) Calculate $P(toothache \land \neg catch)$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (i) Calculate *P*(*toothache* ∧ ¬*catch*)
- Just see which entry in the table satisfies toothache ∧ ¬catch, and sum up the probability

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• (i) Calculate $P(toothache \land \neg catch)$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (i) Calculate P(toothache ∧ ¬catch)
- Just see which entry in the table satisfies toothache ∧ ¬catch, and sum up the probability

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (i) Calculate P(toothache ∧ ¬catch)
- Just see which entry in the table satisfies toothache ∧ ¬catch, and sum up the probability
- $P(toothache \land \neg catch) = 0.012 + 0.064 = 0.076$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• (ii) Calculate P(catch)

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (ii) Calculate P(catch)
- Just see which entry in the table satisfies catch, and sum up the probability

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• (ii) Calculate P(catch)

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (ii) Calculate *P*(*catch*)
- Just see which entry in the table satisfies catch, and sum up the probability
- P(catch) = 0.108 + 0.016 + 0.072 + 0.144 = 0.34

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

(iii) Calculate P(cavity | catch)

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (iii) Calculate P(cavity | catch)
- Use the definition of conditional probability
- $P(cavity|catch) = \frac{P(cavity \land catch)}{P(catch)}$
- $P(cavity|catch) = \frac{0.108+0.072}{0.108+0.072+0.016+0.144} = 0.53$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (iii) Calculate P(cavity | catch)
- Use the definition of conditional probability
- $P(cavity|catch) = \frac{P(cavity \land catch)}{P(catch)}$
- $P(cavity|catch) = \frac{0.108+0.072}{0.108+0.072+0.016+0.144} = 0.53$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

• (iv) Calculate *P*(*cavity*|*toothache* ∨ *catch*)

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (iv) Calculate *P*(*cavity*|*toothache* ∨ *catch*)
- Use the definition of conditional probability
- P(cavity | toothache ∨ catch) = P(cavity ∧ (toothache ∨ catch)) P(toothache ∨ catch)

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (iv) Calculate P(cavity toothache v catch)
- Use the definition of conditional probability
- P(cavity | toothache \times catch) = P(cavity \times (toothache \times catch)) P(toothache \times catch)
- P(cavity ∧ (toothache ∨ catch)) = 0.108 + 0.012 + 0.072 = 0.192

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- (iv) Calculate P(cavity toothache v catch)
- Use the definition of conditional probability
- P(cavity | toothache ∨ catch) = P(cavity ∧ (toothache ∨ catch)) P(toothache ∨ catch)
- $P(cavity \land (toothache \lor catch)) = 0.192$
- $P(toothache \lor catch) = 0.416$
- $P(cavity | toothache \lor catch) = \frac{0.192}{0.416} = 0.46$

	toothache		¬toothache	
	catch ¬catch		catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- Verify the conditional independence claim: catch is conditionally independent of toothache given cavity.
- P(catch|toothache,cavity) = P(catch|cavity)

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- Verify the conditional independence claim: catch is conditionally independent of toothache given cavity.
- P(catch|toothache,cavity) = P(catch|cavity)
- $LHS = \frac{P(catch \land toothache \land cavity)}{P(toothache \land cavity)} = \frac{0.108}{0.108 + 0.012} = 0.9$

•
$$RHS = \frac{P(catch \land cavity)}{P(cavity)} = \frac{0.108 + 0.072}{0.108 + 0.072 + 0.012 + 0.008} = 0.9$$

Q-learning Revision

- Given an environment with a set of states, find the optimal policy at each state that will give you the highest expected reward
- $\delta(S, a)$, the transition function
- r(S,a), the reward of performing a at S
- V*(S), the optimal expected reward at state S
- Q(S, a), the Q function
 - $Q(S,a) = r(S,a) + \gamma V^*(\delta(S,a))$
- $\pi^*(S)$, the optimal policy at S
 - $V^*(S) = r(S, \pi^*(S)) + \gamma V^*(\delta(S, \pi^*(S)))$

$$a_2$$
 a_2
 a_2
 a_2
 a_2
 a_3
 a_4
 a_1
 a_2
 a_3
 a_4
 a_4
 a_4
 a_4
 a_5
 a_5
 a_5
 a_5
 a_5
 a_5
 a_5
 a_7
 a_8
 a_8

•
$$\delta(S_1, a_1) = S_1, r(S_1, a_1) = +1$$

•
$$\delta(S_1, a_2) = S_2, r(S_1, a_2) = -2$$

•
$$\delta(S_2, a_1) = S_1, r(S_2, a_1) = +7$$

•
$$\delta(S_2, a_2) = S_2, r(S_2, a_2) = +3$$

• Determine $\pi^*(S_1)$ and $\pi^*(S_2)$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Two possibilities $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - Or, $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$

• Determine $\pi^*(S_1)$ and $\pi^*(S_2)$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$
 - $V(S_1) = 3.33$ and $V(S_2) = 10$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$
 - $V(S_1) = 3.33$ and $V(S_2) = 10$
 - Suppose $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$
 - $V(S_1) = 3.33$ and $V(S_2) = 10$
 - Suppose $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$
 - $V(S_1) = -2 + \gamma V(S_2)$
 - $V(S_2) = 7 + \gamma V(S_1)$

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$
 - $V(S_1) = 3.33$ and $V(S_2) = 10$
 - Suppose $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$
 - $V(S_1) = -2 + \gamma V(S_2)$
 - $V(S_2) = 7 + \gamma V(S_1)$
 - $V(S_1) = 5.69$ and $V(S_2) = 10.98$

$$a_2$$
 a_2
 a_1
 a_2
 a_2
 a_3
 a_4
 a_1
 a_2
 a_3
 a_4
 a_4
 a_4
 a_4
 a_5
 a_5
 a_5
 a_5
 a_5
 a_5
 a_5
 a_7
 a_7
 a_7
 a_8
 a_8

- Determine $\pi^*(S_1)$ and $\pi^*(S_2)$
 - Suppose $\pi^*(S_1) = a_1$ and $\pi^*(S_2) = a_2$
 - $V(S_1) = 1 + \gamma V(S_1)$
 - $V(S_2) = 3 + \gamma V(S_2)$
 - $V(S_1) = 3.33$ and $V(S_2) = 10$
 - Suppose $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$
 - $V(S_1) = -2 + \gamma V(S_2)$
 - $V(S_2) = 7 + \gamma V(S_1)$
 - $V(S_1) = 5.69$ and $V(S_2) = 10.98$
- $\pi^*(S_1) = a_2$ and $\pi^*(S_2) = a_1$

- Determine the value function V*
 - The expected reward when following the optimal policy

- Determine the value function V*
 - The expected reward when following the optimal policy
 - $V^*(S_1) = 5.69$ and $V^*(S_2) = 10.98$

- Determine the Q-function
 - $Q(S_1, a_1)$
 - $Q(S_1, a_2)$
 - $Q(S_2, a_1)$ $Q(S_2, a_2)$

- Determine the Q-function
 - $Q(S_1, a_1) = 1 + \gamma V^*(S_1)$
 - $Q(S_1, a_2) = -2 + \gamma V^*(S_2)$
 - $Q(S_2, a_1) = 7 + \gamma V^*(S_1)$
 - $Q(S_2, a_2) = 3 + \gamma V^*(S_2)$

- Determine the Q-function
 - $Q(S_1, a_1) = 1 + \gamma V^*(S_1) = 1 + 0.7 \cdot 5.69 = 4.98$
 - $Q(S_1, a_2) = -2 + \gamma V^*(S_2) = -2 + 0.7 \cdot 10.98 = 5.69$
 - $Q(S_2, a_1) = 7 + \gamma V^*(S_1) = 7 + 0.7 \cdot 5.69 = 10.98$
 - $Q(S_2, a_2) = 3 + \gamma V^*(S_2) = 3 + 0.7 \cdot 10.98 = 10.69$

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	0	-2
S_2	0	0

Current state	action	new Q value
S_1	a_2	$-2+\gamma\cdot 0=-2$
S_2		

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	0	-2
S_2	7	0

Current state	action	new Q value
S_1	a_2	$-2+\gamma\cdot 0=-2$
S_2	a ₁	$7 + \gamma \cdot 0 = 7$

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	0	-2
S_2	7	0

Current state	action	new Q value
S_1	a_2	$-2+\gamma\cdot 0=-2$
S_2	a ₁	$7 + \gamma \cdot 0 = 7$
S_1	a ₁	$1 + \gamma \cdot 0 = 1$

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	1	-2
S_2	7	0

Current state	action	new Q value
S ₁	a ₂	$-2+\gamma\cdot 0=-2$
S_2	a ₁	$7 + \gamma \cdot 0 = 7$
S ₁	a ₁	$1 + \gamma \cdot 0 = 1$
S_1		

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	1	-2
S_2	7	0

Current state	action	new Q value
S_1	a_2	$-2+\gamma\cdot 0=-2$
S_2	a ₁	$7 + \gamma \cdot 0 = 7$
S_1	a ₁	$1 + \gamma \cdot 0 = 1$
S_1	a_2	$-2 + \gamma \cdot 7 = 4.3$

- Trace the Q-learning algorithm (initial state S_1)
- $Q(S,a) = r(S,a) + \gamma max_b Q(\delta(S,a),b)$

Q	a ₁	a_2
S_1	1	4.3
S_2	7	0

Current state	action	new Q value
S_1	a_2	$-2+\gamma\cdot 0=-2$
S_2	a ₁	$7 + \gamma \cdot 0 = 7$
S_1	a ₁	$1 + \gamma \cdot 0 = 1$
S_1	a_2	$-2 + \gamma \cdot 7 = 4.3$