Math 457: Honros Algebra 4

Jacob Reznikov

January 24, 2021

Abstract

My course notes for Math 457

1 Rings

1.1 Ring basics

Definition 1.1.1. A set R with operations + and \cdot is called a Ring if:

- (R, +) is an abelian group
- (R, \cdot) is a semigroup (an associative operation). we write $a \cdot b = ab$
- · distributes over + I.e:

$$a(b+c) = ab + ac$$

$$(b+c)a = ba + ca$$

Remark 1.1.2. In most cases, (R, +) is finitely generated and so we have

$$R \cong \mathbb{Z}^n \times \mathbb{Z} / n_1 \mathbb{Z} \dots$$

This comes from a fundamental theorem for abelian groups. If

$$R \cong \mathbb{Z}^n$$

We call *R* 'torsion free'. In that case giving *R* a multiplication is equivalent to bestowing an integer tuple, a distributive multiplication.

Remark 1.1.3. If n = 1, i.e $R \cong \mathbb{Z}$ then the ring structure is essential unique, this is not true in general.

We now list some useful properties

• 0 is absoring, in that $0 \cdot r = r \cdot 0 = 0$

Definition 1.1.4. A ring R is unital if (R, \cdot) has a unit 1 (was assume $1 \neq 0$)

Remark 1.1.5. In a ring, (R, +) is necessarily abelian (proof requires a unit)

Definition 1.1.6. A ring is commutative if (R, \times) is abelian, i.e. $rs = sr, \forall r, s \in R$

Example 1.1.7. The Gaussian integers:

$$\mathbb{Z}[i] = \{a + ib, a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$$

Example 1.1.8. The Eisenstein's integers:

$$\mathbb{Z}[w] = \{a + bw, a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$$

where w solves $w^3 = 1$ and $w \neq 1$

These aer two *different* examples of ring structures \mathbb{Z}^2 . An interesting question about these could be if they have Euclidean division (later).

Example 1.1.9. We also have

$$H_{\mathbb{Z}} = \{a + bi + cj + dk, a, b, c, d \in \mathbb{Z}\}\$$

where i, j, k are quaternions.

Example 1.1.10. Let K be a field and G a group, then R = KG is a group ring.

$$KG = f : G \rightarrow K$$
 f has finite support

We can then define the operation on this ring as

$$(f \cdot g)(z) = \sum_{xy \in z} f(x)g(y)$$

This operation is called a convolution.

1.2 Group Ring

Recall the previous definition of a group ring KG.

We often denote an element of this ring as

$$f = \sum_{s \in G} a_s s$$

Where this means $f(s) = a_s$.

The strength of this notation is that multiplication of the polynomials matches multiplication of the elements

Example 1.2.1. Take for an example $e - s \in KG$ where $s \in G$ and e is the identity. Now suppose that s is of finite order, i.e. $\exists n : s^n = e$. We can then see that

$$(e-s)(e+s+s^2+...+s^{n-1})=e-s^n=e-e=0$$

Then (e - s) is a zero divisor.

This then presents us with an open problem:

Conjecture 1.2.2. Suppose G is torsion free (no elements of finite order) then KG has no nonzero zero divsiors.

1.3 Ring Homomorphism

Remark 1.3.1. Rings may not be unital. However, you can always add a unit formally to every ring.

Example 1.3.2. Let $R = C_0(\mathbb{R})$ which are the continuous functions on \mathbb{R} which converge to 0 at ∞ .

Now clearly R does not have a unit since the multiplicative 1 does not converge to 0 at ∞ . So if we do add a unit to R what does that give us?

$$\hat{R} = \mathbb{R}1 \oplus C_0(\mathbb{R})$$

And it turns out that \hat{R} is equivalent to C(S') which are the continuous functions over a circle.

Now we define a Homomorphism on Rings

Definition 1.3.3. Let R, S be rings. A map $f: R \to S$ is a ring homomorphism if it preserves and multiplication:

$$f(r \pm s) = f(r) \pm f(s)$$
$$f(rs) = f(r)f(s)$$

Remark 1.3.4. f may or may not preserve the units. However, if we assume R has a unit then f(1) is indempotent since $f(1)f(1) = f(1 \cdot 1) = f(1)$.

Example 1.3.5. Define a function $f: M_2(K) \to M_4(K)$ that maps

$$M \mapsto \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix}$$

This function is unital.

Let R, S be a unital ring and $f: R \to S$ be a unital homorphism. Then f is an isomorphism if it is bijective. **Definition 1.3.6.** *The kernal of f* : $R \rightarrow S$ *is*

$$\ker(f) := \{ r \in R, f(r) = 0 \}$$

ker(f) is an ideal

Definition 1.3.7. A left ideal is a subring $I \subseteq R$ such that $rI \subseteq I$ for every $r \in R$. Similarly a right ideal is a subring $I \subseteq R$ such that $Ir \subseteq I$ for every $r \in R$.

We then get a smiliar concept to a quotient group called a quotient ring

Definition 1.3.8. Let R be a ring and I be an ideal of this ring then if we think of (R, +) and (I, +) as a groups. This gives us R / I as a quotient group.

Now elements of this group can be written as s + I for $s \in R$ and so we can define a multiplication on this quotient group,

$$(s+I)(t+I) = st + I$$

This defines a new ring which we call the quotient ring.

Now in order to really check this multiplication is well defined we need to check that if $s' \in s+I$ and $t' \in t+I$ then

$$(s' + I)(t' + I) = (s + I)(t + I)$$

And we get this by

$$(s'+I)(t'+I) = s't'+I = (s+i_1)(t+i_2)+I = st+si_1+i_2t+i_1i_2+I$$

And since *I* is a two sided ideal then si_1 , i_2t , i_1i_2 are all in *I* and so

$$(s'+I)(t'+I) = st + I = (s+I)(t+I)$$

1.4 Isomorphisms Theorem

Theorem 1.4.1 (First Isomorphism Theorem). $f: R \rightarrow S$ then $\ker f$ is an ideal, and f induces an isomorphism

$$\Phi: R / \ker f \to S$$

Where

$$s + I \mapsto f(s)$$

Theorem 1.4.2 (Second Isomorphism Theorem). Let R be a ring with $S \subseteq R$ a subring and $I \subseteq R$ an ideal then

$$S+I=\left\{ s+r,s\in S,r\in R\right\}$$

Is a subring, and I is an ideal in S + I.

On top of that

$$S \rightarrow S + I / I$$

Is surjective with kernal $S \cap I$ *and so*

$$S/S \cap I \cong S + I/I$$

Theorem 1.4.3 (Third Isomorphism Theorem). Let $I \subseteq J \subseteq R$ and I, J are ideals then

$$R/I \rightarrow R/J$$

With kernal J / I

$$R/J \cong \frac{(R/I)}{(J/I)}$$

Theorem 1.4.4 (Fourth Isomorphism Theorem). Let $f: R \rightarrow S$ be a surjective homorphism, then there is a bijection between Subrings of R containing ker f and Subrings of S.

1.5 Characteristic Ring

Theorem 1.5.1. Let R be a unital ring then there exists a unique homomorphism $f: \mathbb{Z} \to R$

$$f(n) = f(1 + 1 + \dots + 1) = f(1) + f(1) + \dots + f(1) = n \cdot 1$$

Definition 1.5.2. The non negative integer such that ker $f \cong n\mathbb{Z}$ is called the Characteristic of R.

Definition 1.5.3. Im f is called the Characteristic subring of \mathbb{Z}

Example 1.5.4. Char($\mathbb{Z} / n\mathbb{Z}$) = n

Remark 1.5.5. Suppose that every subring of R is an ideal, then $R \cong \mathbb{Z}$ or $R \cong \mathbb{Z} / n\mathbb{Z}$. Notice that if the characteristic subring is an ideal, then since it contains 1 then $x \cdot 1$ is in the Characteristic subring for any x and so R is its own characteristic ideal, which means it is generated by 1 additively and so it is isomorphic to \mathbb{Z} or $\mathbb{Z} / n\mathbb{Z}$.

Proposition 1.5.6. Suppose that R contains no zero divisors. Then Char(R) = 0 or a prime number.

Proof. If Char(R) = n and n is composite then

$$\mathbb{Z} / n \mathbb{Z} \hookrightarrow R$$

And so since $\mathbb{Z} / n\mathbb{Z}$ contains zero divisors for *n* composite then so does *R*

1.6 Algebra over a ring

Definition 1.6.1. Let R be a commutative ring. An Algebra over R is a ring A together with a ring homomorphism $\eta: R \to A$ such that $\eta(s)$ commutes multiplicatively with all elements of A.

We think of this as scalar multiplication of A by R as it acts exactly like it (mainly the commutativity part).

To further cement this, notice that if R is a field then this is exactly a vector space, with scalar multiplication being

$$R \times A \longrightarrow A : (s, a) \longmapsto \eta(s) \cdot a$$

Remark 1.6.2. A ring can always be viewed as an algebra over \mathbb{Z} (add multiple times) or over its Characteristic subring, or over its center.

Example 1.6.3. $A = Map(X, \mathbb{R})$ which is the sets of all functions from \mathbb{R} , it is an algebra over \mathbb{R} using $\eta(n) = n$

Example 1.6.4. The group ring KG is an algebra over K.

2 Units and Zero divisors

2.1 Invertible elements

Definition 2.1.1. An element $r \in R$ is invertible if there exists $s \in R$ such that

$$rs = sr = 1$$

the set of invertible elements is a group R^* called, the group of units

Example 2.1.2. Recall the Gaussian integers $\mathbb{Z}[i]$, then its group of units is

$$\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\} \cong \mathbb{Z} / 4\mathbb{Z}$$

Example 2.1.3. Recall the Eisenstein integers $\mathbb{Z}[w]$, its group of units is

$$\mathbb{Z}[w]^{\times} = \{\pm w, 1\} \cong \mathbb{Z} / 3\mathbb{Z}$$

Notice that this proves that these two rings are not isomorphic

Example 2.1.4. If $R = M_n(K)$ then $R^* = GL_n(K)$

Now the main point of this chapter is to adjoin inveres to certain elements in a ring

Example 2.1.5. $n \in \mathbb{Z}$ and we can find its inverse in $\frac{1}{n} \in \mathbb{Q}$

Fields are the rings with the largest possible set of invertible elements, i.e. in a field \mathbb{F} we have

$$F^{\times} = F \setminus \{0\}$$

2.2 Adding inverses to non invertible elements

Let R = K[X] where k is a field be the ring of polynomials over this field, we have two constructions of the inverse for the elements of R.

We have $K[x] \subseteq K(x)$ where

$$K(x) = \left\{ \frac{f}{g}, f, g \in K[x] \land g \neq 0 \right\}$$

But we also have

$$K[x] \subseteq K[[x]]$$

Where K[[x]] is called the ring of formal power series.

Definition 2.2.1. Let K be a field then K[[x]] is called the ring of formal power series. An element of this ring is of the form

$$f = \sum_{n=0}^{\infty} a_n x^n$$

Remark 2.2.2. This addition is not real addition, we never compute the value at a certain input x. We only treat this as a construct for a sequence of coefficients a_n

Where addition is

$$(a_n)_n + (b_n)_n = (a_n + b_n)_n$$

And multiplication is

$$(a_n)(b_n) = \left(\sum_{k=0}^n a_k b_{n-k}\right)_n$$

We can see then that $\sum x^n$ is the inverse of 1 - x in this wrong and so this ring does add extra inverses we didn't have before. However, this is not a field, since x doesn't have an inverse in this ring (a simple proof of this is noticing that x shifts all coefficients by 1).

An interesting question then, is what is the group $K[[x]]^{\times}$ this is left as a question

Definition 2.2.3. We define K((x)), the field of formal laurent series to be

$$K((x)) = \{(a_n)_{n \in \mathbb{Z}} \text{ such that } a_n = 0 \text{ if } n < N \text{ for some } N \in \mathbb{Z}\}$$

2.3 Zero Divisors

For a ring to be embed into a field, it should not contain zero divisors.

Definition 2.3.1. An element $r \in R$ is a zero divisor if $\exists s \neq 0$ such that rs = 0

Proposition 2.3.2. If $R \hookrightarrow K$ where K is a field, then R does not contain nonzero zero divisors.

Proof.

$$\frac{1}{r} = \frac{s}{rs} = \frac{s}{0}$$

Remark 2.3.3. The set of zero divisors is not a subring, for example take two fields K, L then $K \times L$ has the following zero divisors

$$\{(0,0)\} \cup \{(k,0), k \in K\} \cup \{(0,l), l \in L\}$$

On the other hand the complement of this set, the set of non zero divisors is multiplicative and is stable under product, and is thus a submonoid of (R, \cdot)

A nilpotenent element ($s^n = 0, n \ge 1$) is a zero divisor.

Proposition 2.3.4. An element $r \in R$ is not a zero divisor iff it can be cancelled,

$$rs = rt \implies s = t$$

Definition 2.3.5. A ring is *left cancellative* if it does not contain *left zero divisors*.

Definition 2.3.6. An integral domain is a ring which is unital, commutative, and cancellative.

Proposition 2.3.7. Every integral domain R embeds naturally into a field K called the field of fractions of R which is denoted Q = Frac(R).

2.4 Field of fractions

Definition 2.4.1. *Let R be an integral domain then we define*

$$Frac(R) = \left\{ \frac{p}{q}, p, q \in \mathbb{R} : q \neq 0 \right\}$$

Where a fraction $\frac{p}{q}$ is an equivalence calls of pairs (p, q) where

$$(p,q) \sim (p',q') \iff p'q = q'p$$

Proof. Now we need to check that this is an equivalence relationship. Transitivity is the only non trivial property

$$p_1q_2 = p_2q_1 \implies p_1q_3q_2 = p_2q_1q_3 = p_3q_2q_1$$

Now since *R* is cancellative we can write

$$p_1q_3q_2 = p_3q_2q_1 \implies p_1q_3 = p_3q_1$$

And thus this relation is transitive.

We can then define addition and multiplication on this new set

$$\frac{p}{q} + \frac{p'}{q'} = \frac{pq' + p'q}{qq'}$$

$$p \quad p' \quad pp'$$

 $\frac{p}{q} \cdot \frac{p'}{q'} = \frac{pp'}{qq'}$

There is a canonical embedding $R \hookrightarrow Frac(R) : r \mapsto \frac{r}{1}$

A similar construction works if R is commutative. In fact, we can always embed a ring R into a larger ring in which every nonzero divisor is invertible.

We can describe this in a more general fashion

Definition 2.4.2. Let S be a multiplicative subset of R (submonoid). We construct

$$S^{-1}R = \left\{ \frac{p}{q} : p \in R, q \in S \right\}$$

With all elements of S inverted. This is a ring.

Proof. We first define a new equivalence relation on pairs

$$(r,s) \sim (r',s') \iff \exists t \in S : t(rs'-r's) = 0$$

The equivalence class is denoted

 $\frac{r}{s}$

We still have a homomorphism

$$R \to S^{-1}R$$
$$r \mapsto \frac{r}{1}$$

Remark 2.4.3. Suppose S contains a zero divisor, i.e. $\exists s \in S : \exists r \in R : rs = 0$ then

$$r \mapsto \frac{r}{1} = \frac{rs}{s} = 0$$

So this map is no longer injective.

If S contains 0 then the condition of equivalence is always true and so there is only 1 equivalence class and so this is the zero ring 1 = 0.

$$\ker(R \to S^{-1}R) = \{ r \in R : \exists s \in S : rs = 0 \}$$

And so $R \mapsto S^{-1}R$ is injective if *S* does not contain zero divisors of *R*.

Proposition 2.4.4. Let *S* be a multiplicative set of nonzero divsiors in *R*. Then there exists a natural ring $S^{-1}R$ and an embedding $R \hookrightarrow S^{-1}R$ in which every element in *S* becomes a unit in $S^{-1}R$

Example 2.4.5. We want to adjoin an inverse for 2 in the ring $\mathbb{Z}/6\mathbb{Z}$ but then since $3 \cdot 2 = 0$ then the homomorphism between then $\langle 2 \rangle^{-1} \mathbb{Z}/6\mathbb{Z}$ does not have an injection from $\mathbb{Z}/6\mathbb{Z}$. This also becomes clear since $\frac{1}{1} = \frac{3}{1}$ in this ring.

Example 2.4.6. Let *P* be a set of only primes and $S\langle P \rangle$.

Proposition 2.4.7. The set of unital subrings in \mathbb{Q} is the cantor space of all subsets of the set of prime numbers.

2.5 A comment on the 4-th isom theorem

 $f: R \to R'$, the 4-th isomorphism theorem only works for surjective homomorphism. If f is not a surjective then f(I) may not be an ideal.

Example 2.5.1. $\mathbb{Z} \hookrightarrow \mathbb{Q}$ then $n\mathbb{Z}$ is not an ideal.

In general, $f: R \to R'$ can be decomposed:

$$R \xrightarrow{f} \operatorname{Im} f \hookrightarrow R'$$

But then this changes our problem into, what happens to ideals under inclusion?

Definition 2.5.2. Let $f: R \to R'$ be a homomorphism and $I \triangleright R$ an ideal. Then the extension of I by f is the ideal,

$$I^f = R'(f(I))$$

which is an ideal in R'.

Example 2.5.3. $f : \mathbb{Z} \hookrightarrow \mathbb{Q}$ has

$$(n\mathbb{Z})^f = \mathbb{Q}$$

Proposition 2.5.4. Suppose that $f: R \to S^{-1}R$ and S is a multiplicative set of nonzero divisors then

- 1. $I \mapsto If$ is surjective onto the set of ideals in $S^{-1}R$
- 2. $J \mapsto f^{-1}(J)$ is injective

Remark 2.5.5. If J is an ideal then the ideal $f^{-1}(J)$ is called the contraction of J. The standard notation is I^e for extension and J^c for contraction.

Remark 2.5.6. In fact every ideal J in $S^{-1}R$ is of the form I^f where

$$I = J \cap R = f^{-1}(J)$$

3 Ideals.

3.1 Dedekind.

Dedekind defined real numbers using "Dedekind cuts".

Example 3.1.1. We define $\sqrt{2}$

$$\sqrt{2}=\left\{r\in Q, r>0, r^2>2\right\}$$

Dedekind also introduced ideals in a ring, "ideal numbers" (following Kummer), They are also subsets of *R*. Kummer wanted to fix the lack of prime decomposition in rings. This also has some connections with Fermat's Last Theorem.

3.2 Ideals generated by subsets

Let *R* be a unital ring.

Definition 3.2.1. The ideal (S) generayed by a set $S \subseteq R$ is the intersection of all the ideals that contain S.

Example 3.2.2. If $r \in R$ then

$$(r) = RrR = \left\{ \sum_{i \in E} s_i r t_i, s_i, t_i \in R \right\}$$

Example 3.2.3. If *R* is commutative then

$$(r) = Rr = sr, s \in R$$

Proof. Rr is an ideal containing r. Every ideal containing r must contain Rr and so (r) = Rr. \Box These ideals are called principal ideal (simply generayted).

Definition 3.2.4. A ring is called a principal ring if it only has principal ideals.

Definition 3.2.5. A principal ideal domain, is an integral domain where every ideal is principal

Example 3.2.6. In \mathbb{Z} all ideals are $n\mathbb{Z} = (n)$. Inclusion of ideals

$$(n) \subseteq (m) \iff m|n$$

This is true for principal ideals in a general commutative ring.

Proof. In an integral domain, the principal ideals determine their generator up to a unit.

$$(r) = (s) \implies r = as \land s = br \implies r = abr \implies r(1 - ab) = 0$$

And so in an integral domain we have (1 - ab) = 0 and so ab = 1.

Definition 3.2.7. Let $r, s \in R$ then if r = as for some unit a then we call r and s unit associate.

Example 3.2.8. In \mathbb{Z} we have the set of all ideals be \mathbb{N} , through $n \mapsto n\mathbb{Z}$

Remark 3.2.9. In a principal ideal domain (PID) the set of ideals is the quotient of R by the action of the group R^* through $a: r \mapsto ar$.

This action is free on $R \setminus \{0\}$

$$(1-a)r = 0 \implies (1-a)r = 0$$

Definition 3.2.10. *Stabilisers are trivial*