

Simulation-Based Autonomous Driving in Crowded City

Final Task - Final Presentation

Ferdinand Duetsch, Michael Sodamin

Supervisor: Liguo Zhou

Munich, 11.09.2023

Overview

- 1. General Approach
- 2. Training a Model
- 3. Deploying the Model
- 4. Evaluation
- 5. Demo

1. Collect Dataset

2. Train a model

Training

Deployment

1. Steering Model

2. Detect Surroundings

3. Follow Route

Training

Deployment

Data Collection - Manual

- Time consuming
- Mistakes in data
- Inconsistent driving behavior

Data Collection - Automated

- No mistakes
- + Consistent driving behavior
- + Speed up simulator time

Data Collection - Automated

- No mistakes
- + Consistent driving behavior
- + Speed up simulator time

But: Bad Performance!

Data Collection - Automated

Car doesn't turn?

Data Collection - Balancing

Car doesn't turn?

Data Collection - Balancing

Car doesn't turn?

Data Collection - Hybrid Data Collection

Car doesn't turn?

Data Collection - Hybrid Data Collection

Car doesn't turn?

Recover from bad situation?

As in [1]: Expert remains in the loop, Codevilla et. al.

Deployment

Steering Model - Training

Steering Model - Architecture

• CNN LSTM

Deployment

Deployment - Software Architecture

Deployment - Software Architecture

Deployment - Detection

Deployment - Detection

Deployment - Detection

How the Traffic Light Detection works.

How the Distance Detection works.

Deployment - Steering Control

Detection

Steering Control

Deployment - Steering Control

Deployment - Steering Control

How does the model know where to go?

Deployment - Navigation

Deployment - Navigation

Filter the Training Data.

Right Turn Model

Steering Angle

General Approach

Collect Dataset

Images

VehicleData

2. Train a model

Training

1. Steering Model

2. Detect Surroundings

3. Follow Route

Deployment

Evaluation

Navigations	Run 1	Run 2	Run 3
left, left	PASSED	PASSED	FAILED
left, right	PASSED	PASSED	PASSED
straight, left	PASSED	PASSED	FAILED
straight, straight	FAILED	FAILED	FAILED
straight, right	PASSED	FAILED	PASSED
right, left	PASSED	PASSED	PASSED
right, right	PASSED	PASSED	PASSED

35 intersections passed 🗸

6 intersections failed

1 not reached

Demo

On the unmodified Original Simulator

References

[1]: F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, "End-to-end driving via conditional imitation learning," 2017. [Online]. Available: http://arxiv.org/abs/1710.02410

[2]: Ultralytics, 2023. [Website]. https://ultralytics.com/

Extra Slides

How the Navigation works.

Outlook