TECHNICAL MEMORANDUM

Lafayette College

Title: ECE 491 Lab 1
Author(s): Kemal Dilsiz

Date: September 9, 2016

Abstract

This lab is to explain the logic behind the code & testing.

1. Introduction

This design makes it possible to have Seven Segment display sections to be used individually by implementing a separate active-low "anode enable" signal. Every segment can count from 0 to 16 with hex system. Also can individually add a decimal point or not.

This makes it possible to control a lot of information with only 15 switches! Each number can be individually assigned and can be modified with a decimal point.

2. The Design

The design was provided in the lab report. I have simply connected the modules.

First I'm going to provide the figures again and then explain the connections.

Figure 5 - Suggested Approach for dispctl Circuit

General design is exactly the same as the diagrams, where 8 **reg5** modules and a **dispctl** module is used and the **dispctl** module includes the modules included in figure 5.

Switches are passed through **reg_parm** module to get **d** and **dp** outputs which are passed through **muxes** inside the **dispctl** module.

Clock is provided to **3-bit counter** for the **3-8 decoder** which determines the specific anode to be enabled and also the same counter provides states into the **muxes** which will pull in the specific **d** and **dp** values for the seven segment. Therefore we can use this clock counter to determine how long each segment is going to stay lit up.

3. Design Verification

I only used Nexys 4 to physically test the code, I did not have a simulation module.

Description		Test Method	Detailed Results
1.	Module Interface	Code Inspection	Code works, some of the input parameters had to be changed.
2.	Module function: accepts four 4-bit inputs and four 1-bit "decimal point" inputs and displays 4 7-segment outputs without noticeable flicker.	Demonstration in hardware using Nexys 4 DDR board: Proper display of all 8 digits and 16 digit symbols. Proper display of 4 decimal points Free of noticeable flicker	Was demonstrated to Professor Nadovich with the following methods: >Ascending & Descending number combinations >Decimal points at random locations >Reset button functionality >Displaying both hex and decimal digits
3.	Uses Nexys4 board 100Mhz clock; all flip-flop clock inputs tied directly to this signal	Code inspection (Providing both the clkenb module code and the instance of the module)	//module code module clkenb(input logic clk, reset, output logic enb); parameter DIVFREQ = 100; // desired frequency in Hz (change as needed) parameter CLKFREQ = 100_000_000; //instance of the module clkenb #(.DIVFREQ(1000)) CLKENB(clk,reset, enb);
4.	Contains no latches	Inspection of Synthesis Report	No muxes without default, or flip flops functionality with missing input
5.	Test circuit – show test that test circuit functions properly to exercises circuit.	Demonstration in hardware	The demonstration was accepted by Prof Nadovich

In submitting this checklist as part of our report, I/We certify that the tests described above were conducted and that the results of these tests are accurately described and represented. I/We understand that any misrepresentation of the tests or the results constitutes a violation of the College policy on academic dishonesty.

Name(s):Kemal Dilsiz Date:9/6/2016

4. Conclusion

We accomplished increasing the amount of data presented in seven segments with only 15 input switches. Our design works well and can be easily connected to other projects/modules for a seven segment that could have higher level use.

References

[1] ECE Department. Lab 1 - 7-Segment LED Controller. ECE Department, Lafayette College. Revised August 25, 2016