CS294-112 Deep Reinforcement Learning HW1 Q3 Behavioral Cloning

Yifat Amir

Libraries

```
In [1]: %matplotlib inline
import pickle
import tensorflow as tf
import numpy as np
import tf_util
import gym
import load_policy
import datetime
import argparse
import sklearn.utils as sku
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import normalize, StandardScaler
import matplotlib.pyplot as plt
from IPython.display import HTML, display
```

Preparing the Data

```
In [2]: def get_train_test_splits(obs_file, act_file, train_amount = None):
    print('loading expert observations and actions data')

    obs = np.load(obs_file).astype(np.float32)
    scaler = StandardScaler().fit(obs)
    obs = scaler.transform(obs).astype(np.float32)

    act = np.squeeze(np.load(act_file).astype(np.float32))

    if train_amount == None:
        return obs, None, act, None, scaler
        n_samples = obs.shape[0]
        obs_train, obs_test = train_test_split(obs, train_size = train_amoun t)
        act_train, act_test = train_test_split(act, train_size = train_amoun t)
    return obs_train, obs_test, act_train, act_test, scaler
```

Hyperparameters

9/11/2017 behavioral_cloning

Train My Policy

```
In [4]: sess = tf.InteractiveSession()
        obs train, obs test, act train, act test, scaler =
        get_train_test_splits(obs_file, act_file)
        print obs_train.shape
        print act_train.shape
        num_obs_features = obs_train.shape[1]
        num_act_features = act_train.shape[1]
        x = tf.placeholder(tf.float32, shape=[None, num obs features])
        y = tf.placeholder(tf.float32, shape=[None, num act features])
        layer1 = tf.contrib.layers.fully_connected(x, num_obs_features, activati
        on fn = tf.nn.tanh, weights initializer=tf.contrib.layers.xavier initial
        izer())
        layer2 = tf.contrib.layers.fully connected(layer1, num obs features, act
        ivation_fn = tf.nn.tanh, weights_initializer=tf.contrib.layers.xavier_in
        itializer())
        y = tf.contrib.layers.fully connected(layer2, num act features, activati
        on fn = None,
        weights initializer=tf.contrib.layers.xavier initializer())
        policy_fn = tf_util.function([x], y)
        loss = tf.nn.12_loss(y_ - y) / batch_size
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
        tf.global_variables_initializer().run()
        losses = []
        for i in range(num iters):
            x batch, y batch = sku.shuffle(obs train, act train, n samples = bat
        ch_size)
            a, loss now = sess.run(fetches=[train step, loss], feed dict={x: x b
        atch, y : y batch})
            if (i % (num iters/10) == 0):
                print "iter #", i
                losses.append(loss now)
        loading expert observations and actions data
        (20000, 111)
        (20000, 8)
        iter # 0
        iter # 2000
        iter # 4000
        iter # 6000
```

```
iter # 8000
iter # 10000
iter # 12000
iter # 14000
iter # 16000
iter # 18000
```

```
In [5]: print losses
```

```
[1.5730798, 0.0041882098, 0.0021985422, 0.0022251981, 0.0017148277, 0.0
018956367, 0.0014221952, 0.0012696092, 0.0014165604, 0.0014482593]
```

```
In [6]: # correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# print sess.run(accuracy, feed_dict={x: obs_test, y_: act_test})
```

Run My Policy

```
In [7]: env = gym.make(creature + "-v1")
        max_steps = env.spec.timestep_limit
        returns = []
        observations = []
        actions = []
        for i in range(20):
              print('iter', i)
            obs = env.reset()
            done = False
            totalr = 0.
            steps = 0
            while not done:
                action = policy fn(scaler.transform(obs[None,:]).astype('float3)
        2'))
                observations.append(obs)
                actions.append(action)
                obs, r, done, = env.step(action)
                totalr += r
                steps += 1
                  env.render()
                  if steps % 100 == 0: print("%i/%i"%(steps, max steps))
                if steps >= max steps:
                    break
            returns.append(totalr)
        print('returns', returns)
        print('mean return', np.mean(returns))
        print('std of return', np.std(returns))
        my data = {'observations': np.array(observations),
                        'actions': np.array(actions)}
```

```
[2017-09-10 23:40:06,247] Making new env: Ant-v1

('returns', [4828.8983074055695, 4831.0657919480209, 4871.588131238344
4, 4690.9101505301323, 5021.2595768729643, 4928.2746530856039, 4880.835
6549256059, 4812.5590721329954, 4754.5010128405293, 4637.6080232776903,
4770.1393127355605, 4861.814041478503, 4828.4675562487946, 4758.5004617
430013, 4855.9849644054375, 4758.8032705891728, 4731.8348826969859, 491
1.3045144043472, 4776.8819480952661, 5009.3720312597798])
('mean return', 4826.0301678957157)
('std of return', 94.683920861485731)
```

Results

All tasks were run on a NN with two hidden layers, tanh activation, 20000 sample points, 20000 training iterations, batch size of 100, and learning rate of 0.001.

```
In [8]:
        data = [["Task", "My Mean of Returns", "My SD of Returns", "Expert Mean
        of Returns", "Expert SD of Returns"],
                ["Ant", 4852.5017230854846, 74.23980300289098, 4782.16091724215
        13, 132.55560311907271],
                ["Walker2d", 4995.4266902009167, 1242.6555393075696, 5534.92655
        19203136, 44.500248612112557],
                ["Hopper", 1722.4381911703872, 1216.7809772698199, 3777.9972139
        025776, 3.2057125353927498],
                ["Reacher", -4.8619283516599729, 1.6960560957721855, -3.8987745
        270062617, 1.8182523276231009],
                ["Humanoid", 10385.595408411633, 52.941800608114725, 10411.3670
        06191223, 64.386553835708511],
                ["HalfCheetah", 4049.217485821292, 92.03040403417107, 4158.3969
        968545998, 46.971685827755344],
        display(HTML(
            '{}'.format(''.join('{}'.f
        ormat(''.join(str(_) for _ in row)) for row in data))))
```

Task	My Mean of Returns	My SD of Returns	Expert Mean of Returns	Expert SD of Returns
Ant	4852.50172309	74.2398030029	4782.16091724	132.555603119
Walker2d	4995.4266902	1242.65553931	5534.92655192	44.5002486121
Hopper	1722.43819117	1216.78097727	3777.9972139	3.20571253539
Reacher	-4.86192835166	1.69605609577	-3.89877452701	1.81825232762
Humanoid	10385.5954084	52.9418006081	10411.3670062	64.3865538357
HalfCheetah	4049.21748582	92.0304040342	4158.39699685	46.9716858278

```
In [11]: mean_returns = []
   obs_train, obs_test, act_train, act_test, scaler =
        get_train_test_splits(obs_file, act_file)
        num_obs_features = obs_train.shape[1]
        num_act_features = act_train.shape[1]

lr_list = [0.00001, 0.0001, 0.001, 0.01, 0.01]

for learning_rate in lr_list:
        print "training with learning rate:", learning_rate
        sess = tf.InteractiveSession()

        x = tf.placeholder(tf.float32, shape=[None, num_obs_features])
        y_ = tf.placeholder(tf.float32, shape=[None, num_act_features])

        layer1 = tf.contrib.layers.fully_connected(x, num_obs_features, acti
        vation_fn = tf.nn.tanh, weights_initializer=tf.contrib.layers.xavier_ini
        tializer())
        layer2 = tf.contrib.layers.fully_connected(layer1, num_obs_features,
```

```
activation fn = tf.nn.tanh, weights initializer=tf.contrib.layers.xavie
r initializer())
    y = tf.contrib.layers.fully connected(layer2, num act features, acti
vation fn = None, weights initializer=tf.contrib.layers.xavier initializ
er())
    policy fn = tf util.function([x], y)
    loss = tf.nn.l2_loss(y_ - y) / batch_size
    train step = tf.train.AdamOptimizer(learning rate).minimize(loss)
    tf.global_variables_initializer().run()
    for i in range(num iters):
        x batch, y batch = sku.shuffle(obs train, act train, n samples =
 batch size)
        a, loss_now = sess.run(fetches=[train_step, loss], feed_dict={x:
 x_batch, y_: y_batch})
    env = gym.make(creature + "-v1")
    max steps = env.spec.timestep limit
    returns = []
    observations = []
    actions = []
    for i in range(20):
        obs = env.reset()
        done = False
        totalr = 0.
        steps = 0
        while not done:
            action = policy_fn(scaler.transform(obs[None,:]).astype('flo
at32'))
            observations.append(obs)
            actions.append(action)
            obs, r, done, _ = env.step(action)
            totalr += r
            steps += 1
            if steps >= max steps:
                break
        returns.append(totalr)
    mean returns.append(np.mean(returns))
    sess.close()
plt.plot(lr_list, mean_returns)
plt.ylabel('Mean Return')
plt.xlabel('Learning Rate')
plt.xscale('log')
plt.show()
```

9/11/2017 behavioral_cloning

```
loading expert observations and actions data training with learning rate: 1e-05

[2017-09-10 23:47:42,828] Making new env: Ant-v1 training with learning rate: 0.0001

[2017-09-10 23:49:12,298] Making new env: Ant-v1 training with learning rate: 0.001

[2017-09-10 23:50:35,083] Making new env: Ant-v1 training with learning rate: 0.01

[2017-09-10 23:52:00,258] Making new env: Ant-v1 training with learning rate: 0.1

[2017-09-10 23:53:28,583] Making new env: Ant-v1
```


In [10]: print creature
Ant

The graph above shows how performance varies with the value of the learning rate. I chose to experiment with this hyperparameter because it can greatly affect the optimization of the loss function. If the learning rate is too high, it is easy to overshoot a local optimum in the cost function. If the learning rate is too low, then it is hard to learn anything given a fixed number of training iterations.

Appendix of Expert Returns

Hopper expert returns:

('returns', [3771.9336598726591, 3774.6625045070514, 3779.9935082891625, 3771.5253685435282, 3777.3681930911616, 3778.839472656417, 3778.72690636986, 3780.420514438782, 3778.5508451495007, 3777.3928509435241, 3780.6255379793006, 3775.5027294050469, 3776.7569006634217, 3780.9128980517853, 3782.9810844516765, 3773.5071795005179, 3782.8216694611729, 3778.8721318571479, 3781.2896818439012, 3777.2606409759246])

('mean return', 3777.9972139025776) ('std of return', 3.2057125353927498)

Humanoid expert returns:

('returns', [10426.901581297876, 10354.999386314665, 10518.526981022384, 10362.961354650473, 10397.952862427941, 10446.38337188637, 10430.008532411424, 10393.84011458044, 10354.894427755571, 10462.98034042896, 10478.465784041504, 10294.904552806682, 10486.55218058908, 10467.231468828335, 10418.502544063733, 10508.646297411087, 10427.947459059114, 10364.952755875134, 10331.624674666315, 10299.063453707358])

('mean return', 10411.367006191223) ('std of return', 64.386553835708511)

Reacher expert returns:

('returns', [-4.186911948636455, -5.2678239265846116, -6.0242261321475707, -3.372837307792369,

- -4.1526844029394097, -4.8800377997838567, -3.7797431463669269, -1.7708528883578709,
- -7.7285160804080837, -1.9489484559423917, -6.678527275516446, -4.1668850712442085,
- -5.0495028527687227, -1.43408737401054, -0.82961070795971548, -3.5888372914308166,
- -1.5595323005597548, -2.5248902640517321, -5.6329022633401271, -3.3981330502836196])

('mean return', -3.8987745270062617) ('std of return', 1.8182523276231009)

Ant expert returns:

('returns', [4634.3406190538553, 4679.9912036002106, 4953.8808445439299, 4990.3345743233913, 4890.1763907943932, 4707.2176554932867, 4829.1796412666581, 4666.6558116610486, 4849.3110733590174, 4724.8338142283865, 4740.5009526333615, 4833.1880590325636, 4682.7170248359034, 4761.0720917128101, 4462.971570585778, 4938.5729851855885, 4712.6437039011062, 4748.6394716855511, 4814.7542912273575, 5022.2365657188247])

('mean return', 4782.1609172421513) ('std of return', 132.55560311907271)