Süre: 110 dakika

PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

CENG 103 Bilgisayar Mühendisliğine Giriş Dersi Vize Sınay Soruları

Sınav kağıtları dışında kaynak, ek kağıt veya elektronik cihaz kullanılmayacaktır.

1. 10 adet soru aldığınızdan emin olunuz. **2.** Adınızı her sayfanın üstüne yazınız. **3.** Toplam 100 puanlık soru bulunmaktadır. **4.** Soruları İngilizce veya Türkçe cevaplayabilirsiniz.

Başarılar dilerim. Doç. Dr.Sezai Tokat

Aşağıdaki tablo ders kitabının Ekler-C bölümünden alınmıştır. Sınavda LDT olarak kısaltılan ifade bu tabloda verilen "dil tanımlama tablosu"dur.

On-Code Operand Description

Op-Code	Operand	Description
1	RXY	LOAD the register R with bit pattern found in the memory cell whose address is XY.
2	RXY	LOAD the register R with the bit pattern XY.
3	RXY	STORE the bit pattern found in register R in the memory cell whose address is XY.
4	0RS	MOVE the bit pattern found in register R to register S.
5	RST	ADD the bit patterns in registers S and T as though they were two's complement
		representations and leave the result in register R.
6	RST	ADD bit patterns in registers S and T as though they represented values in floating-point
		notation and leave the floating-point result in register R.
7	RST	OR the bit patterns in registers S and T and place the result in register R.
8	RST	AND the bit patterns in register S and T and place the result in register R.
9	RST	EXCLUSIVE OR the bit patterns in registers S and T and place the result in register R.
A	R0X	ROTATE the bit pattern in register R one bit to the right X times. Each time place the
		bit that started at the low-order end at the high-order end.
В	RXY	JUMP to the instruction located in memory cell at address XY if bit pattern in register
		R is equal to the bit pattern in register number 0. Otherwise, continue with the
		normal sequence of execution. (The jump is implemented by copying XY into the
		program counter during the execute phase.)
C	000	HALT execution.

SORU 1

A) Onluk tabandaki (-11) işaretli sayısını 8 bitlik ikiye tümleyen sayı gösterilimi ile yazınız.

CEVAP 1.A:

B) İkiye tümleyen aritmetiğini kullanarak aşağıdaki çıkarma işlemini gerçekleştiriniz.

00001111 10101010

CEVAP 1.B:

SORU 2:

Adım 3: Print "En büyük sayı=", MAX

A) Yukarıdaki programın akış diyagramını boş kutucuğa çiziniz.

B) John von Neumann tarafından Penslyvania Üniversitesinde incelenen ve Von Neumann mimarisinin gelişmesine önemli katkıları olan makine hakkında aşağıda bildiklerinizi yazınız:

Makine adı:

Ait olduğu nesil:

Tasarım amacı:

SORU 3:

Bu soru için LDT'yi inceleyiniz. PC=0 ile makine çalışmaya başladığına göre

a) Makine sonlanmadan önce kaç komut çalıştırılır?

b) Makine sonlandığında PC'nin içeriği ne olur

address content address content 00 B0 07 C₀ 01 00 03 80 02 25 09 23 03 B0 0Α B0 03 04 0C 0B 05 C0 0C B₀ 06 00 0D 07

Ad-Soyad_				

Öğrenci No	

Tek duyarlıklı sayı gösteriliminde sayı 32 bitle ifade edilir. Bu bitlerden ilki işaret (sign), sonraki 8'i üs (exponent) ve son 23 tanesi ise taban (mantissa) kısmının gösterimi için kullanılır. Tek duyarlıklı gösterimde üs için kaydırma değeri 2^{8-1} -1 = 127 olarak hesaplanır.

Örneğin; tek duyarlıklı gösterimde 6,375 sayısını göstermek istersek;

 $6 = (110)_2 \text{ ve } 0.375 = (0.011)_2 \rightarrow 6.375 = (110.011)_2 \text{ elde ederiz.}$

Sayı her zaman 1,XXXX şekline gelecek şekilde ifade edilir ve sadece XXXX kısmı gösterilimde yer alır. Buna normalize durum denir. Sayıyı normalize duruma getirirsek: 110,011 \rightarrow 1,10011x2 2 elde edilir.

Mantissa= $(10011)_2$ Üs= $(2)_{10}$

Sayı sıfırdan büyük olduğu için işaret biti: 0 (Küçük olsaydı -1)

Sayının üs değerinin kaydırılmış hali: 2 (üs'ten)+127(sabit) = 129 \rightarrow (129)₁₀ = (10000001)₂

 $(0\ 10000001\ 1001100000000000000000000)2 \rightarrow (40C0000)_{16}$ şeklinde ifade edilir.

Bu bilgiden yararlanarak Onaltılık (Hexadecimal) tabanda verilen IEEE formatındaki (40200000)₁₆ kayan noktalı sayısının ondalık (decimal) karşılığını bulunuz.

CEVAP 4:

SORU 5

Bir Turing Makinası (TM) (("durum", "şeritteki sembol", "yazılacak sembol", hareket yönü, "sonraki durum")) beşlisi ile tanımlanmaktadır. TM için aşağıdaki program verilmiştir.

```
Program={
```

```
(("S",'0','1',Right,"T")),
(("S",'1','0',Right,"R")),
(("S",'X','X',NoMove,"H")),
(("R",'0','X',Left,"Q")),
(("R",'1','0',Right,"R")),
(("Q",'0','1',Right,"S")),
(("Q",'1','1',Left,"R")),
(("T",'0','0',Right,"T")),
(("T",'1','1',Right,"R")) }
```

Teyp okuma/yazma kafası her zaman en soldaki sembolün üzerinde varsayılacaktır. **00101** katarı ile çalıştırıldığında Teypteki son katar, teyp kafasının konumu ve son durumu aşağıdaki şematik gösterilimi tamamlayarak çiziniz.

CEVAP 5:

Kontrol Birimi

SORU 6

Aşağıda verilen PST prosedürü N=1 için çalıştırılmaktadır.

```
procedure PST(N)
    print the value of N;
    if (N < 3) then
    {
        Call the procedure PST(N+1)
    }
    print the value of N.</pre>
```

İşlem sonucunda oluşan ekran çıktısını yazınız.

CEVAP 6:

SORU 7:

CEVAP 7:

Aşağıda verilen sentaks diyagramına göre XXYXX katarına ait türetim ağacını (parse tree) çiziniz.

Ad-Soyad	Öğrenci No
SORU 8:	
RSA algoritması ile kodlanmış (encyrption) $(11)_2$ bit keys) kullanarak çözmek (decyrption) istiyoruz. Kod	· · · · · · · · · · · · · · · · · · ·
CEVAP 8:	
SORU 9:	
Functional (fonksiyonel), Declarative (bildiren), Fo	ormal (biçimsel), Imperative (buyurucu) programlama
paradigmalarını aşağıdaki boşluklara uygun şekilde d	loldurunuz. Birden fazla kullanabilirsiniz.
(a) Çoğu programlama dili	programlama paradigmasını temel alır. ama motoru ile çözer. Bu yüzden
	klı olarak kesin tanımlanmış gramerlere sahip
	olemin bilgisayara tanıtılması gerekir. ması önceden tanımlı daha küçük program
parçalarının toplam giriş-çıkış ilişkisini elde ilgilenir.	e edecek şekilde bir araya getirilmesi ile
SORU 10:	
Boşlukları doğru kelimeler ile doldurunuz: kiritik böl ölümcül kilitlenme (deadlock), semafor,	ge, kernel, karşılıklı dışlama (mutual exclusion),
: Bir anda sadece tek bir proses kullanılan bir teknik.	s tarafından yürütülebilecek bölgeye erişim için
: Bir başka süreç bir blok komı çalışmasını tamamlamasının ge	
: Eylemlerin kendilerini, birbir : İşletim sisteminin en önemli p	lerini bekler şekilde buldukları durum.
: Bir anda sadece tek bir proses	