Deep Learning Assignment 3

Anonymous Author(s)

Affiliation Address email

1 1 General Questions

2 (a) Say if the first module is:

$$max(W_1X) \tag{1}$$

- where the W input layer maybe doing summation and summation just like matrix mutiplication does
- 4 WX, and the max function is a non-linear active function modifying the value like a neuron does
- 5 before entering the next module:

$$W_2(max(W_2X)) \tag{2}$$

6 If now we don't have the active function then the formula will looks like:

$$W_2(W_1X) \to \bar{W}X$$
 (3)

7 which eventually all W_i can become a single module \bar{W}

8 2 Softmax regression gradient calculation

9 Given

$$\hat{y} = \sigma(Wx + b)$$
, where $x \in \mathbb{R}^d$, $W \in \mathbb{R}^{k \times d}$, $b \in \mathbb{R}^k$ (4)

where d is the input dimension, k is the number of classes, σ is the softmax function:

$$\sigma(a)_i = \frac{exp(a_i)}{\sum_j exp(a_j)} \tag{5}$$

Which means a given input x will output y with probability of each class

12 **2.1 Derive** $\frac{\partial l}{\partial W_{ij}}$

13 If the given cross-entropy loss defined as followed:

$$l(y, \hat{y}) = -\sum_{i} y_i \log \hat{y_i} \tag{6}$$

As W_{ij} will affect the prediction of class i by multipling index j in x, therefore we can derive:

$$\frac{\partial l}{\partial W_{ij}} = \frac{\partial l}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial W_{ij}} \tag{7}$$

15 where:

$$l(y, \hat{y}) = -\sum_{i} y_{i} \log \hat{y}_{i} = -(y_{i} \log \hat{y}_{1} + y_{2} \log \hat{y}_{2} + \dots + y_{i} \log \hat{y}_{i} + \dots)$$
 (8)

16 and therefore

$$\frac{\partial l}{\partial \hat{y}_i} = \frac{-y_i}{\hat{y}_i} \tag{9}$$

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

And we can rewrite for only for \hat{y}_i :

$$\hat{y_i} = \frac{exp(a_i)}{\Sigma_j exp(a_j)} = \frac{exp(a_i)}{C + exp(a_i)}, \text{ where } C = \sum_{k \neq i} exp(a_k)$$
 (10)

Since 18

$$\frac{\partial exp(a_i)}{\partial W_{ij}} = X_j exp(a_i) \tag{11}$$

Therefore

$$\frac{\partial \hat{y}_i}{\partial W_{ij}} = X_j \hat{y}_i (1 - \hat{y}_i) \tag{12}$$

Finally, we will get the result of $\frac{\partial l}{\partial W_{ij}}$:

$$\frac{\partial l}{\partial W_{ij}} = \frac{\partial l}{\partial \hat{y_i}} \frac{\partial \hat{y_i}}{\partial W_{ij}} = -X_j y_i (1 - \hat{y_i}) \tag{13}$$

2.2 What happen when $y_{c_1} = 1, \hat{y}_{c_2} = 1, c_1 \neq c_2$

- This means something like $y = [1, 0, 0]^T$ and $\hat{y} = [0, 0, 1]^T$, and the predict is far different from true lable. This will cause the log part in loss (3) become negative infinity. We may not need to worry this 22
- 23
- because before one of the class predicted close to 1 and everything else close to 0, it will generate a 24
- great positive loss the class that is miss-predicted trying to make the predict right to true label.

3 Chain rule 26

Variants of pooling

Convolution 28

- (a) As it is using 3x3 kernal along x and y axis of input, which is 5 and 5 respectively. The output of this layer will be $(5-3+1) \times (5-3+1)$ which is 3x3.
- (b) Assuming the kernel operation is point-point multiplication and summation, then the output of

33
$$\begin{pmatrix} 109 & 92 & 72 \\ 108 & 85 & 74 \\ 110 & 74 & 79 \end{pmatrix}$$
34 (c)
$$\begin{pmatrix} 4 & 7 & 10 & 6 & 3 \\ 9 & 17 & 25 & 16 & 8 \\ 11 & 23 & 34 & 23 & 11 \\ 7 & 16 & 24 & 17 & 8 \\ 2 & 6 & 9 & 7 & 3 \end{pmatrix}$$

6 Optimization

(a) say the encoder and decoder is defined as:

$$z = W_1 x + b_1$$

$$\tilde{x} = W_2 z + b_2$$
(14)

And therefore the reconstruction loss J will be:

$$J(W_1, b_1, W_2, b_2) = (\tilde{x} - x)^2 = (W_2(W_1x + b_1) + b_2 - x)^2$$
(15)

(b) To have the gradient of reconstruction loss respective to the parameters, we take the derivative of each parameters:

$$\frac{\partial J}{\partial W_1} = W_2 x$$

$$\frac{\partial J}{\partial W_2} = W_1 x + b_1$$
(16)

(c) Say now we are at stage t and would like to compute W_1^{t+1} and W_2^{t+1} :

$$W_1^{t+1} = W_1^t - \mu_1^t \frac{\partial J}{\partial W_1^t} = W_1^t - \mu_1^t (W_2 x)$$

$$W_2^{t+1} = W_2^t - \mu_2^t \frac{\partial J}{\partial W_2^t} = W_2^t - \mu_2^t (W_1 x + b_1)$$
(17)

where μ_1^t and μ_2^t are the step size at stage t

(d) The updates during stochastic gradient descent usually involves Move-Forward and Correction stages and this oscillation may delay the efficiency of convergence, and therefore adding a momentum term may make the update toward the good direction as well as with the previous update history considered:

$$W_{1}^{t+1} = W_{1}^{t} - \mu_{1}^{t} \frac{\partial J}{\partial W_{1}^{t}} + \Delta W_{1}^{t}$$

$$W_{2}^{t+1} = W_{2}^{t} - \mu_{2}^{t} \frac{\partial J}{\partial W_{2}^{t}} + \Delta W_{2}^{t}$$
(18)

47 Top-k error

For image classification, sometime the class is ambiguous, and the loss during is being modified to consider multiple label. The top-k error rate is the fraction of test images for which the correct label is not among the top-k labels considered most probable. The reason why ImageNet using both top-5 and top-1 is due to sometimes only looking at top-1 error cannot be objective enought to evaluate the model because the image itself contains multi-label, and therefore evaluating top-5 error is important too.

54 **8 t-SNE**

55 9 Proximal gradient descent

56 (a) Since Proximal operator is defined as:

$$prox_{h,t}(x) = argmin_z \frac{1}{2} ||z - x||_2^2 + th(z)$$
 (19)

which the optimal condition is to have the gradient w.r.t z equal to 0:

$$0 \in z - x + t\partial h(z) \tag{20}$$

if function $h(z) = ||z||_1$ and $z_i \neq 0$, then:

$$\partial h(z) = sign(z) \tag{21}$$

59 And therefore the optimal solution z^* will be:

$$z^* = x - t \cdot sign(z^*) \tag{22}$$

(23)

Noted that if $z_i^* < 0$, then $x_i < -t$, and if $z_i^* > 0$, then $x_i > t$. This implies $|x_i| > t$ and $sign(z_i^*) = sign(x_i)$, and we can rewrite formula to:

$$z_i^* = x_i - t \cdot sign(x_i)$$

Then if the solution $z_i^*=0$, the subgradient of 11-norm is in the interval of [-1, 1], and we can write:

$$0 \in -x_i + t \cdot [-1, 1] \implies x_i \in [-t, t] \implies |x_i| \le t \tag{24}$$

Therefore the solution of Proximal operator will be:

$$z_i^* = \begin{cases} 0 & \text{if } |x_i| \le t \\ x_i - t \cdot sign(x_i) & \text{if } |x_i| > t \end{cases}$$
 (25)

64 which is

$$prox_{h,t}(x) = S_t(x) = (|x| - t)_+ \odot sign(x)$$
 (element-wise) (26)

which is a soft-threshold fuction with t as threshold value

66

67 **(b)** In the field of signal processing, the true signal usually will be blurred as followed:

$$Ax = b (27)$$

where A is the blur operation, b is the known observed blured-signal. The way to solve true signal x is called deblurring problem:

$$min_x\{F(x) \equiv \frac{1}{2}||b - Ax||_2^2 + \lambda||x||_1\}$$
(28)

- This is ISTA problem, and as we can see the first term is convex and differentiable, and the second term is convex and simple 11-norm function. Then the ISTA is become one example of proximal gradient descent
- (c) From the definition of Proximal operator the optimal solution is where $\frac{\partial prox_{h,t}}{\partial z} = 0$, and therefore we will have:

$$0 \in z - x + t\partial h(z) \tag{29}$$

76 After we rewrite the function and replace z by u which is the optimal result from Proximal function:

$$\frac{x-u}{t} \in \partial h(u) \tag{30}$$

- which means the calculated result from proximal function will be within the interval proportional to the subgradient of the simple-nonDerentiable function h(x)
- 80 (d) From definition of Proximal operator, the optimal solution x_{k+1} will be:

$$x_{k+1} = prox_{h,\alpha_k}(x_k - \alpha_k \nabla g(x_k)) = x_k - \alpha_k \nabla g(x_k) - \alpha_k \partial h(x_{k+1})$$
(31)

81 and from definition:

$$G_{\alpha_k}(x_k) = \frac{x_k - prox_{h,\alpha_k}(x_k - \alpha_k \nabla g(x_k))}{\alpha_k}$$
(32)

82 after rewite:

73

$$x_k - \alpha_k \nabla g(x_k) - \alpha_k \partial h(x_{k+1}) = x_k - \alpha_k G_{\alpha_k}(x_k)$$
(33)

83 Therefore

$$G_{\alpha_k}(x_k) - \nabla g(x_k) \in \partial h(x_{k+1}) \tag{34}$$

which is because h is not differentiable and the result will within the range of subgradient of $\partial h(x_{k+1})$