Biyoistatistik Lecture 7

Msc.Ali Mertcan KÖSE

İstanbul Kent Üniversitesi

Normal Dağılım Testi

Normal dağılım bir çok istatistiksel testin kullanımı için ön şarttır.

• İstatistikte doğru tanıtıcı istatistiğe ve doğru test yöntemine karar verebilmek için verilerin dağılımının normal dağılıma uygunluğunun test edilmesi gereklidir.

- Veriye ilişkin Histogram grafiği çizilir. Grafiksel olarak Normal dağılım sağladığı kontrol edilir.
- ② Ortalama, medyan ve tepe değeleri hesaplanır ve karşılaştırılır(Mod = Medyan = Aritmetik Ortalama).
- Verilerin 2/3'ü ortalama etrafındaki 1 standart sapmalık alanda yer alması gerekir.
- Verilerin %95'i ortalama etrafında 2 standart sapma alanında yer almalıdır.
- Normal dağılım için Q-Q ve P-P grafiklerine bakılır. Bu grafiklerin doğrusal olması beklenir.
- Normal dağılıma uygunluk testleri kontrol sağlanır(Kolmogorov-Smirnov Testi ve Shapiro wilk testi).

Sayısal ifade edilen değişkenler için ilk aşama normal dağılıma uygunluk testidir. Bir değişken normal dağılıma sahipse test sonucunda p değeri 0.05'den büyük çıkar

Birden fazla grup varsa her grupta ayrı ayrı normal dağılım kontrolü yapılır.

Bir değişken normal dağılama uygun değilse test sonucunda p değer 0.05'den küçük olur.

Birden fazla grup varsa her grupta ayrı ayrı normal dağılım kontrolü yapılır.

Non-Normal


```
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
##
## data: a
## D = 0.046585, p-value = 0.8569
##
##
    Shapiro-Wilk normality test
##
## data: a
## W = 0.99348, p-value = 0.9155
```

```
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
##
## data: b
## D = 0.062277, p-value = 0.444
##
##
    Shapiro-Wilk normality test
##
## data: b
## W = 0.96683, p-value = 0.0127
```

Hem ilişkinin hem de farkın araştırıldığı çalışmalarda veri analizine başlamadan önce bir araştırmacının ilke belirlemesi gereken araştırmadaki bağımlı ve bağımsız değişkenlerdir.

Bağımlı Değişkenler: Diğer değişkenlerden etkilendiği düşünülen birincil olarak ilgilenilen değişkenlerdir.

Bağımsız Değişkenler: Bağımsız değişken bir risk faktörü, maruziyet ya da bağımlı değişken üzerine etkisi olabileceği düşünülen, gözlemlenen veya ölçülen değişkenlerdir.

İstatistiksel test seçimini etkileyen en önemli faktörler şöyle sıralanabilir;

- Hipotezin türü: İlişki mi, fark mı araştırılıyor?
- Bağımlı değişkenin ölçme düzeyi: Nicel veya Nitel değişken mi?
- Bağımsız değişkenin ölçme düzeyi: Nicel ya da Nitel değişken mi?
- Sayısal değişkenlerin Normal dağılıma uygunluğu test edilir.

Figure 1: İstatistiksel Yöntemler.

Hipotez: Parametreler hakkındaki iddalardır. Hipotezler Araştırma ve İstatistiksel hipotezler olmak üzere ikiye ayrılır. **Araştırma Hipotezi:** Herhangi bir araştırmacı tarafından ortaya atılan bir hipotezdir.

İstatistiksel Hipotez: Araştırma hipotezinin rotasyonlara dökülmüş halidir. Ve istatistik bilen birisi tarafından ifade edilir.

Hipotez Testi: Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte "*Hipotez*" denir.

Orneklem dağılımlarından elde edilen istatistiklere bağlı olarak, örneklem dağılımının, parametresi bilinen kitleye ait olup olmadığı araştırılır. Hipotezlerin örneklem yardımıyla incelenmesi "Hipotez testi" denir.

 $H_0 o yokluk hipotezi$

 $H_1 yada H_s
ightarrow ext{altertatif ya da seçenek hipotez}$

- Tek yönlü seçenek hipotez
- İki yönlü seçenek hipotez

Tek yönlü hipotez

 H_0 : p= 0.65

 H_1 : p< 0.65

ya da

 H_0 : p= 0.65

 H_1 : p> 0.65

Çift yönlü hipotez

 H_0 : p= 0.65

 H_1 : p $\neq 0.65$

Sonuç

Gerçek

	H_0 doğru	H_0 yanlış
H_0 red	I.Tip hata (α)	Doğru karar
H ₀ red edilememesi	Doğru karar	II. Tip hata (β)

Figure 2: Hipotez testi.

P(I.Tip Hata)=
$$P(H_0Red|H_0Do\S ru)=\alpha$$

1- $\alpha=$ Güven düzeyi = 1- $P(I.$ Tip Hata) = $P(H_0Rededilmiyor|H_0Do\S ru)$
= 1- α
P(II.Tip Hata)= $P(H_0Rededilmiyor|H_0Yanli\S)=\beta$
1- $\beta=$ Testin gücü = 1- $P(II.$ Tip Hata) = $P(H_0Red|H_0Yanli\S)=1-\beta$

Hipotez Testinin Adımları

- Hipotezler kurulur
- Tip I. hata olasılığı belirlenir
- Uygun test istatistiği belirlenir
- Test istatistiğinin sonucuna göre karar verilir.

Hipotez Testinin Adımları

Hiptez testi yardımı ile;

- Bir özelliğe ait parametrenin nokta tahmini
- Bir özelliğe ait parametrenin aralık tahmini yapılabilir.

I. Tip Hata

- Gerçekte anlamlı fark yok iken anlamlı fark bulma olasılığıdır.
- Hipotez testinde anlamlılık seviyesinin belirlenmesi için kullanılır.
- Her hipotez testinin sonucunda bir p değeri hesaplanır.
- Hesaplanan değer kabul edilen I. tip hatadan küçük ise anlamlı fark olduğuna karar verilir.

Testin Gücü

- Bir denemenin aynı koşullar altında tekrarlanması halinde reddedilen kontrol hipotezi sayısının göreli frekansı olarak tanımlanabilir.
- Yani kontrol hipotezini redderken doğru karar verme olasılığıdır.
- Bir araştırmanın planlanma aşamasında hesaplanır.

Testin Gücü

- Gruplar arasında istatistiksel olarak anlamlı fark bulmak için en az kaç kişi ile çalışmalıyım sorusu sorulur.
- Böylelikle testin gücünü koruyabilmek için hedeflenen gerekli örnek genişliğine karar verilir.
- Çünkü bazen iki grup arasında farklılık olsa bile yeterli sayıda birey çalışmaya dahil edilmediğinde gerçek farklılık saptanamaz.

Testin Gücünü Neler Etkiler?

- I. tip hata azaltıldığında testin gücü düşer
- Bir çalışmada örnek genişliği arttırıldıkça testin gücü artar.
- İki grup arasındaki farklar belirginleştikçe testin gücü yükselir.

P Değeri

p değeri: istatistiğin hesaplanan değerden daha uçta değer alma olasılığıdır.

- I. tip hatanın maksimum katlanılabilirlik düzeyi olan p değeri, Fİsher tarafından %5 olarak önerilmiştir. Ama kesin bir kesim noktası yoktur.
- p değerinin 0.05 den küçük olması tıp literatüründe " istatistiksel olarak anlamlı" kabul edilir.
- Ne kadar küçük olursa H₀ hipotezini reddetmek için elimizde kanıt o kadar yüksek olur.

P Değeri

- P değeri bir çalışmanın klinik anlamlılığı hakkında bilgi vermez
- Büyük örneklemle yapılmış bir çalışmadan elde edilmiş bir küçük p değeri belki klinik olarak hiç bir anlam ifade etmiyordur.
- Bu nedenle çalışmanın etki büyüklüğüne ve güven aralığına da bakmak önem taşır.

P Değeri

p değeri	Yorumu
0.01 <= p < 0.05	İstatistiksel olarak anlamlı
0.001 < = p < 0.01	Yüksek düzeyde anlamlı
p<0.001	Çok yüksek düzeyde anlamlı
0.05 <= p < 0.10	Anlamlılık eğilimi sınırda anlamlılık

Klinik Anlamlılık ve Etki Büyüklüğü

- Bir bulgunun klinik olarak anlamlı olması için öncelikle istatistiksel olarak anlamlı olması gerekir.
- Fakat istatistiksel olarak anlamlı her bulgu klinik olarak anlamlı olmayabilir.
- İki grup ortalaması veya oranları arasında klinik olarak önemli kabul edilebilecek minimum fark etki büyüklüğü olarak adlandırılır.

Klinik Anlamlılık ve Etki Büyüklüğü

- Araştırma sonucunda bulunan fark etki büyüklüğünden büyükse bulgunun klinik olarak anlamlı olduğu söylenebilir.
- A tedavisi ile B tedavisi arasında kolestrolü düşürme başarısı bakımından klinik olarak önemli kabul edilecek en düşük fark 30 mg/dl'dir.

Tahmin

- Nokta Tahmini
 - Yansızlık
 - Yeterlilik
 - Etkinlik
 - Tutarlılık
- Aralık Tahmini
 - Hata payı hakkında bilgi verir.

Güven Aralığı

Tahmin edici: Kitle parametresini tahmin etmek için kullanılan örnek istatistiğine tahmin edici adı verilir.

Tahmin: Tahmin edicinin almış olduğu değere tahmin denir.

- Nokta tahmini: Bir kitle parametresini tahmin etmek için kullanılan örnek istatistiğinin değerine nokta tahmini adı verilir.
- Aralık tahmini: Bir parametrenin aralık tahmini, parametreyi tahmin etmek için kullanılan değerleri içeren bir aralıktır.

Güven Aralığı

Bir parametrenin bir aralık tahminin güven düzeyi, parametreyi kapsama olasılığıdır. 1- α ile gösterilir. Burada α anlamlılık düzeyi adını alır.

Tahminin güven düzeyini kullanarak bir parametre için belirlenen aralığa güven aralığı denir.

Not

En çok kullanılan güven aralıkları %90, %95 ve %99'dur

Güven Aralığı

$$S_{ ilde{x}}=s/\sqrt{n}$$
 (istatistiğin varyansının karekökü)
$$t=\frac{ ilde{x}-\mu}{s/\sqrt{n}}$$
 $P(-t_{T(lpha/2,n-1)}\leq t\leq t_{T(lpha/2,n-1)})=1$ - $lpha$ $P(-t_{T(lpha/2,n-1)}\leq \frac{ ilde{x}-\mu}{s/\sqrt{n}}\leq t_{T(lpha/2,n-1)})=1$ - $lpha$ $P(ilde{x}-t_{T(lpha/2,n-1)}s/\sqrt{n}\leq \mu\leq ilde{x}+t_{T(lpha/2,n-1)}s/\sqrt{n})=1$ - $lpha$ (1- $lpha$) $ightarrow$ güven düzeyinde μ için güven aralığıdır.

Not

n>30 olduğunda t istatistiği yerine z istatistiği kullanılır.

•
$$H_0: \mu = \mu_0$$
 hipotezinin testi (σ^2 biliniyorsa)

$$H_0: \mu = \mu_0$$

$$Z_h = rac{ ilde{x} - \mu}{\sigma/\sqrt{n}} \sim \mathsf{N}(0,1)$$

$$H_1: \mu > \mu_0, z_h > z_k H_0 \text{ red}$$

$$H_1: \mu < \mu_0, z_h < z_k H_0 \text{ red}$$

$$H_1: \mu \neq \mu_0, z_h < -z_k, \alpha/2 z_h > z_k, \alpha/2$$

Güven aralığı

$$\begin{split} &\mathsf{P}\big(\tilde{x} - z_{\alpha/2} \ \sigma_{\tilde{x}} \leq \mu \leq \tilde{x} + z_{\alpha/2} \ \sigma_{\tilde{x}} \ \big) = 1 - \alpha \\ &\sigma_{\tilde{x}} = \sigma/\sqrt{n} \\ &z_{\alpha/2} = \mathsf{kritik} \ \mathsf{de\check{g}er}(\mathsf{tablo} \ \mathsf{de\check{g}eri}) \end{split}$$

②
$$H_0: \mu = \mu_0$$
 hipotezinin testi (σ^2 bilinmiyorsa)

$$H_0: \mu = \mu_0$$

$$t = rac{ ilde{x} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

$$H_1: \mu > \mu_0, \ t_h > t_{n-1}, \alpha \ H_0 \ {
m red}$$

$$H_1: \mu < \mu_0, \ t_h < t_{n-1}, \alpha \ H_0 \ {
m red}$$

$$H_1: \mu \neq \mu_0, \ t_h < -t_{n-1}, \alpha/2 \ t_h > t_{n-1}, \alpha/2$$

Güven aralığı

$$\begin{split} &\mathsf{P}\big(\tilde{\mathbf{x}} - t_{n-1,\alpha/2} \ \mathbf{s}_{\tilde{\mathbf{x}}} \le \mu \le \tilde{\mathbf{x}} + t_{n-1,\alpha/2} \ \mathbf{s}_{\tilde{\mathbf{x}}}\big) = 1 - \alpha \\ &\mathbf{s}_{\tilde{\mathbf{x}}} = \mathbf{s}/\sqrt{n} \\ &t_{\alpha/2} = \mathsf{kritik} \ \mathsf{de\check{\mathsf{g}}\mathsf{e}\mathsf{r}}(\mathsf{tablo} \ \mathsf{de\check{\mathsf{g}}\mathsf{e}\mathsf{r}}\mathsf{i}) \end{split}$$

Oran Testi

3 $H_0: \pi = \pi_0$ hipotezinin testi

$$H_0: \pi = \pi_0$$

$$Z = \frac{p-\pi}{\sigma_p} \sim N(0,1) = z_{\alpha}$$

$$\sigma_p = \sqrt{\frac{\pi \times 1 - \pi}{n}}$$

$$H_1: \pi > \pi_0$$
, $z_h > z_\alpha H_0$ red

$$H_1: \pi < \pi_0$$
, $z_h < z_\alpha H_0$ red

$$H_1$$
 : $\pi \neq \pi_0$, $z_h < -z_{lpha/2}$ $z_h > z_{lpha/2}$

Oran Testi

Güven aralığı

$$\begin{split} \mathsf{P} \big(p - \mathsf{z}_{\alpha/2} \ \sigma_{p} \leq \pi \leq p + \mathsf{z}_{\alpha/2} \ \sigma_{p} \big) &= 1 \text{ - } \alpha \\ \\ \sigma_{p} &= \sqrt{\frac{\pi \times 1 - \pi}{n}} \\ \\ \mathsf{z}_{\alpha/2} &= \mathsf{kritik \ de\check{g}er(tablo \ de\check{g}eri)} \end{split}$$

Not

p'yi hesapladığımız için varyans biliniyor. alt sınırı negatif olarak çıkarsa 0 olarak alınır.

T Tablosu

	TEK YÖNLÜ (BİR YANLI) TEST İÇİN α											
	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
	İKİ YÖNLÜ (İKİ YANLI) TEST İÇİN α											
	0.50	0.40	0.30	0.20	0.10	0.05	0.04	0.02	0.01	0.005	0.002	0.001
sd												
1	1.000	1.376	1.963	3.078	6.314	12.710	15.890	31.820	63.660	127.300	318.300	
2	0.816	1.061	1,386	1,886	2.920	4.303	4.849	6.965	9.925	14.090	22,330	31,600
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.210	12.920
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1,119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
9	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041 4.781
10	0.703	0.883	1.100	1,383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
11	0.700	0.876	1.093	1.363	1.796	2.228	2.339	2.764	3.106	3.497	4.144	4.437
12	0.695	0.873	1.083	1,356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.003	1.350	1.771	2.179	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1,330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	0.688	0.861	1.066	1,328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.663	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.150	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.614
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30 40	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
50	0.631	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
60	0.679	0.849	1.047	1,295	1.676	2.009	2.109	2.403	2.660	2.937	3.261	3,496
80	0.679	0.848	1.045	1.296	1.664	1.990	2.099	2.390	2.689	2.915	3.232	3.460
100	0.677	0.845	1.043	1.292	1.660	1.990	2.088	2.364	2.639	2.887	3.174	3,416
1000	0.675	0.842	1.042	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
000	0.674	0.841	1.036	1.282	1.640	1.960	2.054	2.326	2.576	2.807	3.091	3.291

Figure 3: T tablosu.

- Kitle ortalamasının anlamlılık testinin parametrik olmayan karşılığıdır.
- Kitle Ortancası üzerine kurulmuş hipotezlerin test edilmesinde yararlanılır.
- Çalışılan örneklemin çekildiği kitlenin normal dağılım göstermemesi halinde kullanılır.
- Test işlemleri örneklemdeki denek sayısının n<25 ve n \geq 25 olmasına göre iki farklı biçimde yapılır.

```
n>25;
```

$$H_0: M = M_0$$

$$H_1: M > M_0$$

$$H_0: M = M_0$$

$$H_1 : M < M_0$$

$$H_0: M = M_0$$

$$H_1: M \neq M_0$$

İşlemler: Örneklemdeki değerler X_i olmak üzere her değer için $X_i - M_i > 0$ için (+) $X_i - M_i < 0$ için (-) işareti verilir $X_i - M_i = 0$ olanlar analizden çıkarılır ve denek sayısı o kadar azaltılır.

Test İşlemi: k, en az sayıda gözlenen işaret sayısı ve n, denek sayısı olmak üzere işaret test tablosundan, n ve k değerine karşılık gelen olasılık değeri bulunur.

Karar

$$p < \alpha$$
 ya da $p < \alpha/2 = H_0$ red

$${\sf p}>\alpha$$
 ya da ${\sf p}>\alpha/2={\it H}_0$ kabul

n/k	0	1	2	3	4	5	6	7	8	9	10	11	
5	.031	.188	.500										
6	.016	.109	.344	.656									
7	.008	.062	.227	.500									
8	.004	.035	.145	.363	.637					. 1			
9	.002	.020	.090	.254	.500								
10	.001	.011	.055	.172	377	.623							
11		.006	.033	.113	.274	.500							
12		.003	.019	.073	.194	.387	.613						
13		.002	.011	.046	.133	.291	.500						
14		.001	.006	.029	.090	.212	.395	.605					
15			.004	.018	.059	.151	.304	.500					
16			.002	.011	.038	.105	.227	.402	.598				
17			.001	.006	.025	.072	.166	.315	.500				
18			.001	.004	.015	.048	.119	.240	.407	.593			
19				.002	.010	.032	.084	.180	.324	.500			
20				.001	.006	.021	.058	.132	.252	.412	.588		
21				.001	.004	.013	.039	.095	.192	.332	.500		
22					.002	.008	.026	.067	.143	262	.416	.584	
23					.001	.005	.017	.047	.105	.202	.339	.500	
24					.001	.003	.011	.032	.076	.154	.271	.419	3
25						.002	.007	.022	.054	.115	.212	.345	5

Figure 4: İşaret tablosu.

$$n \ge 25$$
;

Test işlemleri için Z=
$$\frac{|k-n/2|}{\sqrt{n}/2}$$

Karar

$${\sf Z} < {\sf Z}_{lpha/2}$$
 yaa da ${\sf Z} < {\sf Z}_lpha$ ${\sf H}_0$ kabul

$$Z>Z_{lpha/2}$$
 yaa da $Z>Z_lpha$ H_0 red

3-6 yaş arasında 14 çocuk için elde edilen ebeveynden bağımsız yemek yiyebilme testinde ilişkin skorlar aşağıdadır. Bağımsız yemek yeme yönünden orta kategoriye ilşkin kitle ortancası 7 olduğuna göre bu grup orta kategoride kabul edilebilir mi?

3,3,3,4,4,5,6,6,6,7,7,8,8,8

 $H_0: M = 7$

 $H_1: M \neq 7$ (örneklem ortancası=6)

(-) sayısı =9 (+) sayısı =3 Denek sayısı(n) =14-2 =12

k=3, n=12 için tabloya bakılır => p=0.073 buna göre; 3-6 yaş arasında ebeveynden bağımsız yemek yiyebilme testine ilişkin kitle ortancasının 7 olduğunu söyleyebiliriz.

örnek1'deki problemde 25 kişi incelenmiş olsaydı ebeveyneden bağımsız yemek yiyebilme yönünden orta kategoriye ilişkin kitle ortancası 7 olduğuna göre bu grup orta kategoride kabul edilebilir mi?

3,3,3,3,3,4,4,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,8,9

örneklem ortancası=7

$$Z = \frac{|5-22/2|}{\sqrt{22}/2} = 2.558$$

p=0.0013 < 0.025 Kitle ortancası 7 kabul edilemez.

Belirli bir tür hastalığın tedavisi için yeni bir tür ilaç geliştirilmiştir. Bu ilaçla tedavi edilen hastaların ortalama iyileşme süresinin 10 günden az olduğu iddia edilmektedir.

Rasgele olarak seçilen 7 hasta sözü edilen ilaçla tedavi edilmiş ve kaç günde iyileştikleri aşağıdaki gibi saptanmıştır.

 X_i : 2, 4, 11, 3, 4, 6, 8

 $\sigma^2=$ 4 ve $\alpha=0.01$ ise kararınız ne olur? %99 güven düzeyinde kitle ortalaması için güven aralığı oluşturunuz.

Hipotez kurulur

$$H_0: \mu = 10$$

$$H_1: \mu < 10$$

• Test istatistiği hesaplanır.

$$Z_h = \frac{5.43 - 10}{2/\sqrt{7}} = -6.046$$

 $z_h = -6.046 < -z_{T(0.01)} = -2.33~H_0$ red edilir, yani bu ilaçla tedavi edilen hastaların ortalama iyileşme süresinin 10 günden az olduğu %99 güvenle söylenebilir.

Güven aralığı

$$P(\tilde{x} - z_{\alpha/2} \ \sigma_{\tilde{x}} \le \mu \le \tilde{x} + z_{\alpha/2} \ \sigma_{\tilde{x}} \) = 0.99$$

$$\tilde{x} \pm z_{\alpha/2} \ \sigma_{\tilde{x}} = 5.43 \pm 2.575 \ \frac{2}{\sqrt{7}}$$

 μ : [3.482,7.375] ightarrow Bu aralığın μ 'yü içeren aralıklardan biri olması olasılığı %99'dur.

Belli bir ilaç kullanılarak yapılan diş dolgularının ortalama dayanma süresinin 5 yıldan farklı olduğu iddia edilmektedir. İlgili ilaç kullanılarak yapılan diş dolgularından rasgele olarak 41 tanesi rasgele olarak seçilmiş ve örnek ortalaması 5.9 yıl, standart sapması da 1.74 olarak hesaplanmıştır. α =0.01 anlamlılık düzeyinde iddiayı test ediniz. Kitle ortalamasının %99 güven düzeyinde sınırlarını oluşturunuz.(σ^2 bilinmiyor)

Hipotez kurulur

$$H_0: \mu = 5$$

$$H_1: \mu \neq 5$$

• Test istatistiği hesaplanır.

$$t = \frac{5.9 - 5}{1.74/\sqrt{41}} = 3.33$$

 $t_h=3.33 < t_{n-1,\alpha/2}=2.704~H_0$ red edilir, yani belli bir ilaç kullanılarak yapılan diş dolgularının ortalama dayanma süresinin 5 yıldan farklı olduğu %99 güvenle söylenebilir.

• Güven aralığı

$$P(\tilde{x} - t_{n-1,\alpha/2} s_{\tilde{x}} \le \mu \le \tilde{x} + t_{n-1,\alpha/2} s_{\tilde{x}}) = 0.99$$

$$\tilde{x} \pm t_{n-1,\alpha/2} s_{\tilde{x}} = 5.9 \pm 2.704 \frac{1.74}{\sqrt{41}}$$

 μ [5.164,6.635] ightarrow Bu aralığın μ 'yü içeren aralıklardan biri olması olasılığı %99'dur.

A ilaç firmasının piyasaya sürdüğü yeni bir ilacın belirli bir çeşit alerjiyi iyileştimede 24 saatta %90 etkili olduğu iddia edilmektedir. İlaç alerjisi olan 300 kişilik hasta grubuna uygulandıktan 24 saat sonra 246 kişinin, yani hastalardan %82'sinin (246/300=0.82) iyileştiği belirlenmiştir. Örneklem sonucu ile varsayılı oran arasındaki %8'lik farkın istatistiksel olarak anlamlı olup olmadığını belirleyiniz.(%95 güvenle analizleri yorumlayınız)

Hipotez kurulur

$$H_0: \pi = 0.90$$

$$H_1: \pi < 0.90$$

• Test istatistiği hesaplanır.

$$\sigma_p = \frac{\sqrt{0.90 \times 0.10}}{\sqrt{300}} = 0.017$$

$$Z = \frac{0.82 - 0.90}{0.017} = -4.62$$

 $z_h=-4.62 < z_\alpha=-1.645~H_0$ red edilir, yani A firması yeni ilacın %90 etkili olmadığını(%90'dan az olduğu) %5 anlamlılık düzetinde veya 95% güvenirlikle söylenebilir.

• Güven aralığı

$$P(p - z_{\alpha/2} \sigma_p \le \pi \le p + z_{\alpha/2} \sigma_p) = 0.95$$

p
$$\pm$$
 $z_{lpha/2}$ $\sigma_p =$ 0.82 \pm 1.96 $\frac{0.3}{\sqrt{300}}$

 $\pi[0.79,0.85] o \mathsf{Bu}$ aralığın μ 'yü içeren aralıklardan biri olması olasılığı %95'dir

ÖDEV 1

Belirli bir şehirdeki 24 aylık çocukların ortalama ağırlığının 12.5 kg. dan küçük olduğu öne sürülmektedir. Rasgele seçilen 5 tane 24 aylık çocuğun ağırlıkları aşağıda verilmiştir.

 X_i : 13, 11, 10, 10.5, 10.5

lpha=0.10 anlamlılık düzeyinde kararınız ne olur? %90 güven düzeyinde kitle ortalaması için güven aralığını oluşturunuz.

ÖDEV 2

Bir bölgeden rasgele seçilen 125 yetişkenin 10'unda beslenme bozukluğu görüldüğüne göre bu bölgede beslenme bozukluğu görülme sıklığı 0.06 dan büyük olarak kabul edilebilir mi?(%95 güvenle yorumlarınızı yapınız)