

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	_ИНФОРМАТИКА И СИ	СТЕМЫ УПРАВЛЕНИЯ	·
КАФЕДРА	_КОМПЬЮТЕРНЫЕ СИС	ТЕМЫ И СЕТИ	
НАПРАВЛЕНИЕ	ПОДГОТОВКИ 09.04.01	Информатика и вычис.	пительная техника
МАГИСТЕРСКА	.Я ПРОГРАММА 09.04.01 /	05 Современные интел программно-аппара	•
		Отчет	
	по домаш	ней работе №1	
Название ра	юты: Дескриптивн	ный анализ данных	ζ
Дисциплина	а: Методы машинно	го обучения	
Студенты гр. ИУ	6-21M	(Подпись, дата)	<u>Минайчев А.А.</u> (Фамилия И.О.)
Преподаватель		(Подпись, дата)	(Фамилия И.О.)

Д31 Минайчев Антон

Задание 1

Для выполнения ДЗ используется набор данных за 2021 год с сайта http://info.worldbank.org/governance/wgi/

```
In [2]: import pandas as pd
```

Пункт 1

Загрузим данные из EXCEL файла в dataframe, пропустив 14 первых строк, т.к. они не значимой информации и мешают правильному отображению df

```
In [3]:
         #прочитаем excel файл при помощи функции read excel библиотеки pandas
         df = pd.read excel('wgidataset.xlsx', skiprows=14, sheet name="ControlofCorruption")
         1_a = ['NumSrc','Lower','Upper','StdErr']
         #создам список с годами, которые отображены в excel файле
         years = ['1996', '1998', '2000', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2006', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021']
         # заполним список L_а наименованием столбцов, которые можно удалить и которые не понадобятся
         for i in range (1, 23):
             l a.append('NumSrc.'+str(i))
             1_a.append('Lower.'+str(i))
             l_a.append('Upper.'+str(i))
             l_a.append('StdErr.'+str(i))
         df = df.drop(columns = l_a)
         # в цикле изменим название столбцов, начиная с 3
         for i in range(2,len(df.columns)):
             if i % 2 ==0:
                  df = df.rename(columns = {df.columns[i]:years[0] + ' ' + 'Estimate'})
                  df = df.rename(columns = {df.columns[i]:years[0] + ' ' + 'Rank'})
                  years.pop(0)
         df
```

Out[3]:		Country/Territory	Code	1996 Estimate	1996 Rank	1998 Estimate	1998 Rank	2000 Estimate	2000 Rank	2002 Estimate	
	0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	1	Andorra	ADO	1.318143	87.096771	1.334759	89.304810	1.313404	88.297874	1.310744	87.8
	2	Afghanistan	AFG	-1.291705	4.301075	-1.176012	8.021390	-1.271724	4.787234	-1.251137	4.7
	3	Angola	AGO	-1.167702	9.677420	-1.180451	7.486631	-1.197514	8.510638	-1.155493	7.9
	4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	•••										
	209	Serbia	SRB	-1.140072	11.827957	-1.195605	6.417112	-1.156671	9.042553	-0.895785	23.2
	210	South Africa	ZAF	0.732927	76.344086	0.638809	72.727272	0.550270	70.212769	0.332902	67.1
	211	Congo, Dem. Rep.	ZAR	-1.647852	0.000000	-1.416679	1.069519	-1.459175	0.531915	-1.449971	1.0
	212	Zambia	ZMB	-0.840641	24.731182	-0.853156	26.737968	-0.818261	26.595745	-0.758519	29.6
	213	Zimbabwe	ZWE	-0.278847	47.849461	-0.504802	37.433155	-1.127275	10.638298	-1.156760	7.4

214 rows × 48 columns

Пункт 2

Сортируем данные по убыванию индекса

In [4]: df = df.sort_index(ascending=False)
 df

Out[4]:

	Country/Territory	Code	1996 Estimate	1996 Rank	1998 Estimate	1998 Rank	2000 Estimate	2000 Rank	2002 Estimate	
213	Zimbabwe	ZWE	-0.278847	47.849461	-0.504802	37.433155	-1.127275	10.638298	-1.156760	7.4
212	Zambia	ZMB	-0.840641	24.731182	-0.853156	26.737968	-0.818261	26.595745	-0.758519	29.6
211	Congo, Dem. Rep.	ZAR	-1.647852	0.000000	-1.416679	1.069519	-1.459175	0.531915	-1.449971	1.0
210	South Africa	ZAF	0.732927	76.344086	0.638809	72.727272	0.550270	70.212769	0.332902	67.1
209	Serbia	SRB	-1.140072	11.827957	-1.195605	6.417112	-1.156671	9.042553	-0.895785	23.2
•••										
4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	Angola	AGO	-1.167702	9.677420	-1.180451	7.486631	-1.197514	8.510638	-1.155493	7.9
2	Afghanistan	AFG	-1.291705	4.301075	-1.176012	8.021390	-1.271724	4.787234	-1.251137	4.7
1	Andorra	ADO	1.318143	87.096771	1.334759	89.304810	1.313404	88.297874	1.310744	87.8
0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

214 rows × 48 columns

In [5]: import matplotlib.pyplot as plt
%matplotlib inline

Отобразим данные по индексу СРІ за 2021 год в виде горизонтального столбчатого графика.

```
In [6]:
        # удалим NAN значения для корректного отображения столбчатого графика и отсортируем по рангу
        df_cpi = df[["Country/Territory","2021 Rank"]].dropna()
        df_sorted = df_cpi.sort_values("2021 Rank", ascending=False)
        countries = []
        pos = 1
        # цикл для добавления места страны в её наименование для отображения на графике
        for i in df_sorted['Country/Territory']:
            countries.append(str(pos)+'.'+i)
            pos += 1
        countries.reverse()
        df_sorted.sort_values('2021 Rank',inplace=True)
        # создадим столбчатый график согласно примеру в задании
        plt.figure("Corruption Perceptions Index",figsize=[6, 30])
        ax = plt.subplot(1,1,1)
        #основные параметры графика
        plt.barh(countries,color="green", width = df_sorted['2021 Rank'], height = 0.8)
        #отображения значений оси х наверху графика
        ax.xaxis.tick_top()
        #изменение шрифта наименования стран
        for label in (ax.get_yticklabels()):
            label.set_fontsize(8)
        #включаем сетку х и у
        plt.grid(True)
        #убираем пустые поля в верхней и нижней частях графика
        plt.margins(y=0)
```


Пункты 4, 5

Для последующего выполнения заданий создадим ещё один DF из другого EXCEL файла с соотношением регионов и стран. Используя этот DF добавим фильтр региона SSA (5 вариант задания), а также сбросим индексы, чтобы отсчёт начался с нуля.

```
In [7]: #считываем данные в df2
df2 = pd.read_excel('regions.xlsx')
#в новом df2_ssa оставляем только данные, которые относятся к региону SSA из df2
df2_ssa = df2.loc[df2['Region'] == "SSA"]
#создаем ещё один df2_ssa1, на основе df с основными данными, в котором будут только те стран
df2_ssa1 = df.loc[df['Code'].isin(df2_ssa.Code)].reset_index().drop(columns = ['index'])
df2_ssa1
```

	Country/Territory	Code	1996 Estimate	1996 Rank	1998 Estimate	1998 Rank	2000 Estimate	2000 Rank	2002 Estimate	;
0	Zimbabwe	ZWE	-0.278847	47.849461	-0.504802	37.433155	-1.127275	10.638298	-1.156760	7.40
1	Zambia	ZMB	-0.840641	24.731182	-0.853156	26.737968	-0.818261	26.595745	-0.758519	29.62
2	South Africa	ZAF	0.732927	76.344086	0.638809	72.727272	0.550270	70.212769	0.332902	67.19
3	Uganda	UGA	-0.723757	27.956989	-0.989971	18.716578	-1.028190	14.361702	-1.025739	14.28
4	Tanzania	TZA	-0.702762	29.569893	-0.803638	27.807487	-0.810984	27.127659	-0.840932	24.86
5	Togo	TGO	-0.842621	24.193548	-0.831448	27.272728	-0.751899	29.255320	-0.758070	30.15
6	Chad	TCD	-1.380424	3.225806	-1.336609	1.604278	-1.325014	2.659575	-1.270306	3.70
7	Seychelles	SYC	0.545952	72.580643	0.570708	71.657753	0.592291	71.808510	0.694715	75.66
8	Eswatini	SWZ	0.037314	58.602150	0.054524	56.684490	-0.045108	55.319149	-0.060140	55.55
9	São Tomé and Principe	STP	0.401667	66.666664	0.401506	66.310158	0.346064	64.893616	0.237328	63.49
10	Somalia	SOM	-1.273832	5.376344	-1.169290	8.556149	-1.231536	5.851064	-1.032931	13.22
11	Sierra Leone	SLE	-0.756474	26.344086	-0.724984	30.481283	-0.736802	30.319149	-0.789459	27.51
12	Senegal	SEN	-0.142715	52.150539	-0.122647	52.406418	-0.094586	53.723404	0.247914	64.55
13	Sudan	SDN	-1.240006	6.989247	-1.119795	12.834225	-1.018885	14.893617	-1.035823	12.16
14	Rwanda	RWA	-0.745140	26.881720	-0.729861	29.946524	-0.733605	30.851065	-0.716066	31.74
15	Nigeria	NGA	-1.189009	8.602151	-1.160613	10.160428	-1.324634	3.191489	-1.502068	0.52
16	Niger	NER	-0.865590	20.967741	-1.073254	14.973262	-0.945642	19.148935	-1.020487	15.34
17	Namibia	NAM	0.808773	76.881721	0.735703	75.935829	0.773133	76.595741	0.114023	59.25
18	Malawi	MWI	-0.316063	47.311829	-0.260301	49.197861	-0.228705	48.936169	-1.021618	14.81
19	Mauritius	MUS	0.034662	58.064518	0.221582	60.962566	0.198928	61.702129	0.328717	66.66
20	Mauritania	MRT	-0.555694	34.408604	-0.515584	36.898396	-0.486817	39.893616	-0.083034	52.91
21	Mozambique	MOZ	-0.424003	40.860214	-0.390382	43.315510	-0.534364	37.234043	-0.499133	38.62
22	Mali	MLI	-0.782562	25.806452	-0.899157	25.133690	-0.878510	23.404255	-0.724598	30.68
23	Madagascar	MDG	-0.371094	44.086021	-0.560736	35.828876	-0.478630	40.957447	0.001223	56.61
24	Lesotho	LSO	0.086545	59.677418	-0.110705	52.941177	-0.165395	52.659573	-0.173949	50.79
25	Liberia	LBR	-1.500141	2.150538	-1.536518	0.000000	-1.098915	11.702127	-1.034289	12.69
26	Kenya	KEN	-1.158849	10.752688	-1.165813	9.625669	-1.144364	10.106383	-1.003751	16.93
27	Equatorial Guinea	GNQ	-1.264369	6.451613	-1.187925	6.951872	-1.212375	6.382979	-1.222883	5.29
28	Guinea-Bissau	GNB	-1.194655	8.064516	-1.122083	12.299465	-0.915325	21.276596	-1.044214	11.64
29	Gambia, The	GMB	-0.374195	43.548386	-0.364896	44.919785	-0.377791	45.212765	-0.233313	48.67
30	Guinea	GIN	-0.939942	18.279570	-1.075010	14.438502	-1.050161	13.297873	-0.767054	28.57
31	Ghana	GHA	-0.339950	46.236561	-0.329743	47.058823	-0.095986	53.191490	-0.342790	43.91
32	Gabon	GAB	-1.102377	13.978495	-0.995288	17.647058	-0.592372	35.638298	-0.520379	37.56
33	Ethiopia	ETH	-0.930546	18.817204	-0.903204	24.598930	-0.906757	22.340425	-0.717909	31.21
34	Eritrea	ERI	0.505685	72.043015	0.516642	69.518715	0.496909	69.148933	0.125430	60.31
35	Djibouti	DJI	-0.719981	29.032259	-0.682330	32.085560	-0.636604	34.042553	-0.628374	34.39
36	Cape Verde	CPV	1.143337	83.333336	1.155066	83.957222	1.127157	84.042557	0.495939	71.95

	Country/Territory	Code	1996 Estimate	1996 Rank	1998 Estimate	1998 Rank	2000 Estimate	2000 Rank	2002 Estimate	1
37	Comoros	СОМ	-0.998565	16.666666	-0.970211	20.320856	-0.962092	18.617022	-0.674768	32.27
38	Congo, Rep.	COG	-0.860740	23.118280	-1.198797	5.882353	-0.943887	19.680851	-1.009018	16.40
39	Cameroon	CMR	-1.334985	3.763441	-1.313289	3.208556	-1.325292	2.127660	-1.209112	5.82
40	Côte d'Ivoire	CIV	-0.260567	49.462364	-0.497032	37.967915	-0.777199	28.723404	-0.801531	26.45
41	Central African Republic	CAF	-1.140931	11.290322	-1.122684	11.764706	-1.198896	7.978724	-0.979823	18.51
42	Botswana	BWA	0.817961	77.419357	0.824314	78.074867	0.858369	78.191490	0.624538	74.60
43	South Sudan	SSD	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
44	Burkina Faso	BFA	0.111519	60.215054	0.095590	57.754009	0.124697	60.106384	0.120320	59.78
45	Benin	BEN	-0.548115	34.946236	-0.649413	33.689838	-0.700918	31.382978	-0.795710	26.98
46	Burundi	BDI	-0.680635	30.645161	-0.681750	32.620319	-0.824704	26.063829	-0.759897	29.10
47	Angola	AGO	-1.167702	9.677420	-1.180451	7.486631	-1.197514	8.510638	-1.155493	7.93

Для построения графика индекса CPI за года с 1996 до 2021 необходимо транспонировать исходный DF, легенду убираем для читаемости.

```
In [8]:
           plt.figure("SSA",figsize=[12, 12])
           ax1 = plt.subplot()
           #указываем колонки по которым будет строиться график
           plt.plot(df2_ssa1[["1996 Estimate", "1998 Estimate","2000 Estimate","2002 Estimate", "2003 Estimate", "2004 Estimate", "2005 Estimate", "2006 Estimate",
                                     "2007 Estimate", "2008 Estimate", "2009 Estimate", "2010 Estimate",
                                     "2011 Estimate", "2012 Estimate", "2013 Estimate", "2014 Estimate",
                                     '2015 Estimate', '2016 Estimate', '2017 Estimate', '2018 Estimate', '2019 Estimate', '2020 Estimate', '2021 Estimate']].transpose(),'o-', colo
           #указываем наименование каждого значения по оси х
           ax1.set_xticklabels(["1996 Estimate", "1998 Estimate","2000 Estimate",
                                       "2002 Estimate", "2003 Estimate", "2004 Estimate",
                                       "2005 Estimate", "2006 Estimate", "2007 Estimate", "2008 Estimate",
                                       "2009 Estimate", "2010 Estimate", "2011 Estimate", "2012 Estimate", "2013 Estimate", "2014 Estimate", '2015 Estimate', '2016 Estimate', '2017 Estimate', '2018 Estimate', '2019 Estimate', '2020 Estimate', '202
           #вкл. сетку
           plt.grid(True)
           C:\Users\User\AppData\Local\Temp\ipykernel_616\2250511806.py:11: UserWarning: FixedFormatter
           should only be used together with FixedLocator
```

ax1.set_xticklabels(["1996 Estimate", "1998 Estimate","2000 Estimate",

Найдем страны с наименьшим и наибольшим индексом коррупкции за 2021 год

```
In [9]: #находим id строки с наименьшим и наибольшим значение 2021 estimate
min_cpi = df2_ssa1['2021 Estimate'].idxmin()
max_cpi = df2_ssa1['2021 Estimate'].idxmax()
#по данным id выводим таблицу с данными по двум странам
df2_ssa1.loc[[min_cpi, max_cpi],['Country/Territory', '2021 Estimate']]
```

Out[9]: Country/Territory 2021 Estimate

43	South Sudan	-1.817446
7	Seychelles	1.633352

Как видно - самая большая коррупция в Сомали, а наименьшая в рассматриваемом регионе - на Сейшелах.

Пункт 8

Определим средние значения за каждый год в период с 1996 по 2021 и занесем их в колонку "Среднее значение"

	0	1	2	3	4	5	6	7	8	
1996 Estimate	-0.278847	-0.840641	0.732927	-0.723757	-0.702762	-0.842621	-1.380424	0.545952	0.037314	0.40
1998 Estimate	-0.504802	-0.853156	0.638809	-0.989971	-0.803638	-0.831448	-1.336609	0.570708	0.054524	0.40
2000 Estimate	-1.127275	-0.818261	0.550270	-1.028190	-0.810984	-0.751899	-1.325014	0.592291	-0.045108	0.34
2002 Estimate	-1.156760	-0.758519	0.332902	-1.025739	-0.840932	-0.758070	-1.270306	0.694715	-0.060140	0.23
2003 Estimate	-1.188868	-0.641859	0.275541	-0.948509	-0.734542	-0.902239	-1.465014	0.791488	-0.073140	-0.10
2004 Estimate	-1.253563	-0.604488	0.397753	-0.811879	-0.565570	-0.943994	-1.448346	0.549317	-0.242530	-0.46
2005 Estimate	-1.314617	-0.592440	0.483857	-0.833649	-0.607606	-0.873771	-1.531993	0.374255	-0.275532	-0.54
2006 Estimate	-1.372949	-0.551736	0.378271	-0.787619	-0.228577	-1.049607	-1.361009	0.334429	-0.044869	-0.27
2007 Estimate	-1.404758	-0.398109	0.197672	-0.825755	-0.335751	-0.997273	-1.388993	0.336277	-0.045250	-0.28
2008 Estimate	-1.348838	-0.389601	0.153829	-0.840164	-0.416348	-0.975758	-1.534189	0.562799	0.036358	-0.29
2009 Estimate	-1.357875	-0.469498	0.125427	-0.909787	-0.447849	-1.032310	-1.412184	0.575691	-0.011177	-0.18
2010 Estimate	-1.373287	-0.518319	0.065393	-0.923494	-0.542279	-0.967423	-1.394239	0.600198	-0.041858	-0.23
2011 Estimate	-1.425627	-0.410753	-0.004234	-0.936402	-0.603360	-1.026531	-1.355161	0.606024	-0.184127	-0.18
2012 Estimate	-1.381803	-0.291441	-0.184171	-1.001575	-0.764620	-1.007718	-1.330997	0.579943	-0.224430	-0.17
2013 Estimate	-1.419667	-0.315543	-0.137832	-1.055946	-0.780951	-1.034692	-1.370108	0.600916	-0.228339	-0.17
2014 Estimate	-1.404367	-0.347683	-0.124875	-1.097377	-0.761074	-0.899913	-1.329005	0.577941	-0.256666	0.01
2015 Estimate	-1.317811	-0.346599	-0.043699	-1.063391	-0.686202	-0.733910	-1.353646	1.181637	-0.187602	-0.04
2016 Estimate	-1.271258	-0.405702	0.044075	-1.070588	-0.509641	-0.688368	-1.484633	1.143864	-0.203669	-0.05
2017 Estimate	-1.281081	-0.545036	-0.101496	-1.052901	-0.464720	-0.712416	-1.433871	0.888518	-0.044150	0.18
2018 Estimate	-1.227581	-0.657134	-0.112126	-1.032128	-0.453522	-0.727730	-1.385962	0.894634	-0.205999	0.18
2019 Estimate	-1.273280	-0.662320	0.020065	-1.140858	-0.371587	-0.725558	-1.400778	1.211095	-0.281041	0.16
2020 Estimate	-1.289440	-0.723668	-0.010780	-1.032168	-0.357577	-0.707525	-1.405847	1.420243	-0.250072	0.14
2021 Estimate	-1.257897	-0.753424	0.022103	-0.998557	-0.355093	-0.668003	-1.477722	1.633352	-0.650570	0.25
22	40									

23 rows × 49 columns

2016 Estimate -0.817593

2017 Estimate -0.893895

2018 Estimate -0.848471

2019 Estimate -0.802163

2020 Estimate -0.909426

2021 Estimate -0.900474

Выделим столбец с данными СРІ по России за года с 1996 по 2021

```
#выделяем данные из df c значением Russian Federation в поле Country/Territory, индексы сбрас
In [11]:
          df_russia = df.loc[df['Country/Territory'] == "Russian Federation"].reset_index().drop(column
          #из этих данных нас интересуют те же столбцы, что и в предыдущем пункте
          column_russia = df_russia[list].transpose()
          column_russia
Out[11]:
                               0
          1996 Estimate -1.053342
          1998 Estimate -0.954374
          2000 Estimate -0.943414
          2002 Estimate -0.954848
          2003 Estimate -0.783092
          2004 Estimate -0.825626
          2005 Estimate -0.847121
          2006 Estimate -0.940848
          2007 Estimate -1.017581
          2008 Estimate -1.125229
          2009 Estimate -1.141307
          2010 Estimate -1.099215
          2011 Estimate -1.074377
          2012 Estimate -1.051572
          2013 Estimate -1.020387
          2014 Estimate -0.918525
          2015 Estimate -0.952243
```

Добавим выделенный столбец в исходный df2_ssa_transposed под названием "RUS"

	· ·	•	2	3	-	,	U	,	0	
1996 Estimate	-0.278847	-0.840641	0.732927	-0.723757	-0.702762	-0.842621	-1.380424	0.545952	0.037314	0.40
1998 Estimate	-0.504802	-0.853156	0.638809	-0.989971	-0.803638	-0.831448	-1.336609	0.570708	0.054524	0.40
2000 Estimate	-1.127275	-0.818261	0.550270	-1.028190	-0.810984	-0.751899	-1.325014	0.592291	-0.045108	0.34
2002 Estimate	-1.156760	-0.758519	0.332902	-1.025739	-0.840932	-0.758070	-1.270306	0.694715	-0.060140	0.23
2003 Estimate	-1.188868	-0.641859	0.275541	-0.948509	-0.734542	-0.902239	-1.465014	0.791488	-0.073140	-0.10
2004 Estimate	-1.253563	-0.604488	0.397753	-0.811879	-0.565570	-0.943994	-1.448346	0.549317	-0.242530	-0.46
2005 Estimate	-1.314617	-0.592440	0.483857	-0.833649	-0.607606	-0.873771	-1.531993	0.374255	-0.275532	-0.54
2006 Estimate	-1.372949	-0.551736	0.378271	-0.787619	-0.228577	-1.049607	-1.361009	0.334429	-0.044869	-0.27
2007 Estimate	-1.404758	-0.398109	0.197672	-0.825755	-0.335751	-0.997273	-1.388993	0.336277	-0.045250	-0.28
2008 Estimate	-1.348838	-0.389601	0.153829	-0.840164	-0.416348	-0.975758	-1.534189	0.562799	0.036358	-0.29
2009 Estimate	-1.357875	-0.469498	0.125427	-0.909787	-0.447849	-1.032310	-1.412184	0.575691	-0.011177	-0.18 ₋
2010 Estimate	-1.373287	-0.518319	0.065393	-0.923494	-0.542279	-0.967423	-1.394239	0.600198	-0.041858	-0.23
2011 Estimate	-1.425627	-0.410753	-0.004234	-0.936402	-0.603360	-1.026531	-1.355161	0.606024	-0.184127	-0.18
2012 Estimate	-1.381803	-0.291441	-0.184171	-1.001575	-0.764620	-1.007718	-1.330997	0.579943	-0.224430	-0.17
2013 Estimate	-1.419667	-0.315543	-0.137832	-1.055946	-0.780951	-1.034692	-1.370108	0.600916	-0.228339	-0.17
2014 Estimate	-1.404367	-0.347683	-0.124875	-1.097377	-0.761074	-0.899913	-1.329005	0.577941	-0.256666	0.01
2015 Estimate	-1.317811	-0.346599	-0.043699	-1.063391	-0.686202	-0.733910	-1.353646	1.181637	-0.187602	-0.04
2016 Estimate	-1.271258	-0.405702	0.044075	-1.070588	-0.509641	-0.688368	-1.484633	1.143864	-0.203669	-0.05
2017 Estimate	-1.281081	-0.545036	-0.101496	-1.052901	-0.464720	-0.712416	-1.433871	0.888518	-0.044150	0.18
2018 Estimate	-1.227581	-0.657134	-0.112126	-1.032128	-0.453522	-0.727730	-1.385962	0.894634	-0.205999	0.18
2019 Estimate	-1.273280	-0.662320	0.020065	-1.140858	-0.371587	-0.725558	-1.400778	1.211095	-0.281041	0.16
2020 Estimate	-1.289440	-0.723668	-0.010780	-1.032168	-0.357577	-0.707525	-1.405847	1.420243	-0.250072	0.14
2021 Estimate	-1.257897	-0.753424	0.022103	-0.998557	-0.355093	-0.668003	-1.477722	1.633352	-0.650570	0.25
0.0	F0 1									

23 rows × 50 columns

Построим график индекса CPI за 1996-2021 для стран SSA и выделим страны с наибольшим и наименьшим значением CPI за 2021 год, а также отобразим среднее значение по региону и РФ.

```
In [13]: plt.figure("CPI",figsize=[16, 16])
    plt.plot(df2_ssa_transposed,"o-", color = 'grey')
    plt.plot(df2_ssa_transposed['RUS'],'o-', label="RUS", color = 'yellow', linewidth=5)
    plt.plot(df2_ssa_transposed['Cpeднее значение'],'o-', label="MEAN", color = 'blue', linewidth
    plt.plot(df2_ssa_transposed[min_cpi],'o-', label="MIN", color = 'red', linewidth=5)
    plt.plot(df2_ssa_transposed[max_cpi],'o-', label="MAX", color = 'green', linewidth=5)
    plt.legend(loc=1, title="Легенда", fontsize=12)
    plt.xticks(rotation=45)
    plt.grid(True, axis="y")
```


Как видно на графике - показатели России - ниже чем стран Африки, а на Сейшелах в 2016 - данных нет.

Пункт 11

Определим, как изменилось значение показателя в процентах с 1996 по 2021 для максимального, минимального, среднего значения и России. Использовать будем для этого df - так как он включает в себя все страны всех регионов.

```
#найдём минимальное значение на 2021 год и минимальное значение этой же страны на ближайший г
In [14]:
          min_2021 = df.loc[df["2021 Estimate"].idxmin(), "2021 Estimate"]
          min_1996 = df.loc[df["2021 Estimate"].idxmin(), "2010 Estimate"]
          #посчитаем изменение значений в %
          change_min = (min_2021 - min_1996) / abs(min_1996) * 100
          #найдём максимальное значение на 2021 год и максимальное значение этой же страны на 1996 год
          max_2021 = df.loc[df["2021 Estimate"].idxmax(), "2021 Estimate"]
          max_1996 = df.loc[df["2021 Estimate"].idxmax(), "1996 Estimate"]
          #посчитаем изменение значений в %
          change_max = (max_2021 - max_1996) / abs(max_1996) * 100
          #найдём среднее значение на 2021 год и среднее значение 1996 год
          mean_2021 = df["2021 Estimate"].mean()
          mean_1996 = df["1996 Estimate"].mean()
          #посчитаем изменение значений в %
          change mean = (mean 2021 - mean 1996) / abs(mean 1996) * 100
          #найдём значение России на 2021 год и значение России на 1996 год
          rus_1996 = df.loc[df.index[df['Country/Territory']=='Russian Federation'][0],"1996 Estimate"]
          rus_2021 = df.loc[df.index[df['Country/Territory']=='Russian Federation'][0],"2021 Estimate"]
          #посчитаем изменение значений в %
          change_rus = (rus_2021 - rus_1996) / abs(rus_1996) * 100
          print("Изменение значения WGI score в России составило: " + str(change rus) + '%.')
          print("Изменение минимального значения WGI score составило: " + str(change_min) + '%.')
          print("Изменение максимального значения WGI score составило: " + str(change max) + '%.')
          print("Изменение среднего значения WGI score составило: " + str(change_mean) + '%.')
          Изменение значения WGI score в России составило: 14.512662303490126%.
          Изменение минимального значения WGI score составило: -121.78705519027898%.
          Изменение максимального значения WGI score составило: 6.0443108848329015%.
          Изменение среднего значения WGI score составило: 42.2565999663696%.
          #для более удобного пользования, создадим df3 в котором при помощи Left join(merge) добавим в
In [15]:
          df3 = pd.read_excel('regions.xlsx')
          df = df.merge(df3, how='left')
          df
Out[15]:
                                         1996
                                                   1996
                                                            1998
                                                                      1998
                                                                               2000
                                                                                         2000
                                                                                                   2002
               Country/Territory Code
                                      Estimate
                                                                                                Estimate
                                                   Rank
                                                         Estimate
                                                                      Rank
                                                                            Estimate
                                                                                         Rank
            0
                                              47.849461
                                                        -0.504802
                                                                  37.433155
                                                                                                         7.4
                     Zimbabwe
                                ZWE
                                     -0.278847
                                                                            -1.127275
                                                                                     10.638298
                                                                                               -1.156760
            1
                        Zambia
                                ZMB
                                     -0.840641
                                               24.731182
                                                        -0.853156
                                                                  26.737968
                                                                            -0.818261
                                                                                     26.595745
                                                                                               -0.758519
                                                                                                         29.6
               Congo, Dem. Rep.
            2
                                ZAR
                                     -1.647852
                                                0.000000
                                                        -1.416679
                                                                   1.069519
                                                                            -1.459175
                                                                                      0.531915
                                                                                               -1 449971
                                                                                                          10
            3
                    South Africa
                                ZAF
                                      0.732927
                                               76.344086
                                                         0.638809
                                                                  72.727272
                                                                             0.550270
                                                                                     70.212769
                                                                                                0.332902
                                                                                                         67.1
            4
                         Serbia
                                SRB
                                     -1.140072 11.827957
                                                        -1.195605
                                                                   6.417112 -1.156671
                                                                                      9.042553
                                                                                               -0.895785
                                                                                                        23.2
```

209 Anguilla AIA NaN NaN NaN NaN NaN NaN NaN 210 -1.167702 9.677420 -1.180451 7.486631 -1.197514 7.9 Angola AGO 8.510638 -1.155493 211 Afghanistan -1.291705 -1.176012 AFG 4.301075 8.021390 -1.271724 4.787234 -1.251137 4.7 212 Andorra ADO 1.318143 87.096771 1.334759 89.304810 1.313404 88.297874 1.310744 87.8 213 Aruba ABW NaN NaN NaN NaN NaN NaN NaN

214 rows × 50 columns

Out[16]:

	Регион		CPI 1996	CPI 2021	Изменение, %
mean_2021	-	-	-1.558845e-09	-9.001300e-10	42.256600
max_2021	WE/EU	Denmark	2.231308e+00	2.366175e+00	6.044311
min_2021	SSA	South Sudan	-8.194555e-01	-1.817446e+00	-121.787055
Russia_2021	ECA	Russian Federation	-1.053342e+00	-9.004737e-01	14.512662

Пункт 13

Отображу диаграмму размаха индекса коррупции для всех стран и каждого региона в отдельности на одном графике

Out[17]: <function matplotlib.pyplot.show(close=None, block=None)>

Corruption index

Задание 2

Пункт 1

Загрузим данные в один dataframe из всех файлов в папке /data/stock. Будем использовать только колонки Date и Close, т.к. только они нас интересуют, а после добавления соответсвующих колонок по названию удалим колонку Close. Также удалим две строки "2015-07-06" и "2016-03-02", можем считать их выбросами, т.к. на данные даты имеется стоимость только для компании BIDU и отсортируем в хронологическом расположении дат.

```
In [18]:
         import glob
          import os
         #создадим переменную с наименованием всех .csv файлов в директории
          path = r'C:\Users\User\Documents\Assignments-master\data\A1 Descriptive Analysis\stock'
          csv_files = glob.glob(path + "/*.csv")
          1 = []
          #прочитаем каждый файл и создадим соответствущий dataframe, который добавим в список l
          for filename in csv_files:
             df_csv = pd.read_csv(filename, index_col="Date", header=0, usecols = ["Date", "Close"])
             df_csv[os.path.splitext(os.path.basename(filename))[0]] = df_csv["Close"]
              df_csv.drop('Close',inplace=True, axis=1)
              1.append(df_csv)
          #объединим все датафреймы из списка L в один - frame
         frame = pd.concat(l, axis=1)
         frame = frame.sort_values("Date").drop("2015-07-06",axis=0).drop("2016-03-02",axis=0)
          frame
```

Out[18]:

•	ADBE	ADSK	AKAM	BABA	BIDU	CA	СНКР	CRM	СТЅН	
Date										_
2015- 03-02	73 940002	58.639999	71.050003	83.239998	NaN	32.610001	81.970001	66.809998	62.389999	5
2015- 04-01	76.059998	56.830002	73.779999	81.290001	NaN	31.770000	83.480003	72.820000	58.540001	5
2015- 05-01	79 089996	54.150002	76.269997	89.320000	NaN	30.450001	84.720001	72.750000	64.720001	6
2015- 06-01	81 010002	50.080002	69.820000	82.269997	NaN	29.290001	79.550003	69.629997	61.090000	6
2015- 07-01	81 989998	50.580002	76.709999	78.339996	NaN	29.139999	80.769997	73.300003	63.099998	2
2015- 08-03	78.570000	46.750000	71.309998	66.120003	NaN	27.290001	78.010002	69.360001	62.939999	2
2015- 09-01	82 220001	44.139999	69.059998	58.970001	NaN	27.299999	79.330002	69.430000	62.610001	2
2015- 10-01	88 660004	55.189999	60.820000	83.830002	NaN	27.709999	84.940002	77.709999	68.110001	2
2015- 11-02	91 459999	63.470001	57.610001	84.080002	NaN	28.110001	87.290001	79.690002	64.580002	2
2015- 12-01	93 940002	60.930000	52.630001	81.269997	NaN	28.559999	81.379997	78.400002	60.020000	2
2016- 01-04	89 129997	46.820000	45.619999	67.029999	NaN	28.730000	78.809998	68.059998	63.310001	2
2016- 02-01	85.150002	51.740002	53.970001	68.809998	NaN	29.290001	83.070000	67.750000	56.980000	2
2016- 03-01	93 800003	58.310001	55.570000	79.029999	NaN	30.790001	87.470001	73.830002	62.700001	2
2016- 04-01	94.220001	59.820000	50.990002	76.940002	194.300003	29.660000	82.870003	75.800003	58.369999	2
2016- 05-02	99.470001	58.270000	54.580002	82.000000	178.539993	32.320000	84.970001	83.709999	61.439999	2
2016- 06-01	95.790001	54.139999	55.930000	79.529999	165.149994	32.830002	79.680000	79.410004	57.240002	2
2016- 07-01	97 860001	59.450001	50.529999	82.480003	159.600006	34.650002	76.879997	81.800003	57.490002	3
2016- 08-01	102 309998	67.400002	54.900002	97.190002	171.070007	33.910000	76.739998	79.419998	57.439999	3
2016- 09-01	108 540001	72.330002	52.990002	105.790001	182.070007	33.080002	77.610001	71.330002	47.709999	3
2016- 10-03	107 510002	72.279999	69.470001	101.690002	176.860001	30.740000	84.559998	75.160004	51.349998	2
2016- 11-01	102 809998	72.610001	66.699997	94.019997	166.949997	31.959999	82.330002	72.000000	55.080002	2
2016- 12-01	102 949997	74.010002	66.680000	87.809998	164.410004	31.770000	84.459999	68.459999	56.029999	2
2017- 01-03	113 379997	81.339996	68.589996	101.309998	175.070007	31.270000	98.769997	79.099998	52.590000	3
2017- 02-01	110 220006	86.300003	62.599998	102.900002	174.130005	32.270000	98.910004	81.349998	59.270000	3

Пункт 2

Рассчитаем корреляцию данного DF

In [19]: corr_matrix = frame.corr()
 corr_matrix

Out[19]:

•		ADBE	ADSK	AKAM	BABA	BIDU	CA	СНКР	CRM	СТЅН	E
	ADBE	1.000000	0.853387	-0.351316	0.714708	0.032627	0.470015	0.472383	0.534918	-0.639420	-0.438
	ADSK	0.853387	1.000000	-0.018722	0.873751	0.016605	0.527015	0.625147	0.387552	-0.617152	-0.053
	AKAM	-0.351316	-0.018722	1.000000	0.087536	-0.215394	-0.161597	0.183522	-0.332294	0.121645	0.562
	BABA	0.714708	0.873751	0.087536	1.000000	0.056031	0.594163	0.429195	0.387174	-0.589198	0.198
	BIDU	0.032627	0.016605	-0.215394	0.056031	1.000000	-0.652263	0.159641	-0.046956	-0.110644	-0.190
	CA	0.470015	0.527015	-0.161597	0.594163	-0.652263	1.000000	0.019126	0.335133	-0.556713	0.176
	СНКР	0.472383	0.625147	0.183522	0.429195	0.159641	0.019126	1.000000	0.349589	-0.044107	0.010
	CRM	0.534918	0.387552	-0.332294	0.387174	-0.046956	0.335133	0.349589	1.000000	-0.032611	-0.264
	СТЅН	-0.639420	-0.617152	0.121645	-0.589198	-0.110644	-0.556713	-0.044107	-0.032611	1.000000	0.125
	EBAY	-0.438998	-0.053116	0.562100	0.198884	-0.190022	0.176644	0.010033	-0.264918	0.125003	1.000
	FB	0.945377	0.710084	-0.546147	0.566607	0.160983	0.471026	0.315623	0.518872	-0.618488	-0.591
	GOOGL	0.882737	0.655533	-0.567284	0.452358	-0.203350	0.258513	0.317104	0.490075	-0.457821	-0.714
	INFY	-0.644775	-0.322194	0.377319	-0.168569	0.378583	0.085652	-0.083422	-0.280892	0.361764	0.703
	INTU	0.805904	0.832712	-0.034693	0.800199	-0.461108	0.718292	0.509061	0.492148	-0.546619	-0.029
	MSFT	0.918658	0.829889	-0.341101	0.661599	-0.318064	0.403205	0.496578	0.453572	-0.555838	-0.40€
	NTES	0.945812	0.880215	-0.169440	0.806564	-0.228890	0.525692	0.460174	0.484870	-0.665497	-0.226
	NVDA	0.887010	0.892613	-0.054151	0.699008	-0.335238	0.517295	0.504884	0.286524	-0.667971	-0.249
	PYPL	0.815057	0.798648	0.015839	0.783197	0.389159	0.563574	0.459489	0.148632	-0.666766	0.451
	RHT	0.295120	0.422972	0.123779	0.556812	0.226945	0.065133	0.310665	0.493769	0.017098	0.161
	SAP	0.903788	0.874067	-0.365017	0.805775	-0.055597	0.609354	0.430469	0.484253	-0.625570	-0.217
	TWTR	-0.744648	-0.374832	0.634183	-0.139319	-0.027082	-0.177609	-0.190570	-0.437294	0.392820	0.801
	VMW	0.007322	0.317948	0.827930	0.411332	-0.287513	0.216074	0.220590	-0.103050	-0.179236	0.587
	YHOO	0.394537	0.690366	0.337245	0.845418	0.017444	0.719633	0.386979	0.231736	-0.445205	0.543

23 rows × 23 columns

Пункт 3

Отобразим корреляционную матрицу в виде диаграммы.

In [20]: plt.imshow(corr_matrix)

Out[20]: <matplotlib.image.AxesImage at 0x233499a9400>

Определим:

- 1. акцию с максимальной положительной корреляцией (max)
- 2. акцию с максимальной отрицательной корреляцией (min)
- 3. акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какойлибо корреляции (none)

в соотношении с акциями компании Facebook (FB)

```
In [21]: so = corr_matrix["FB"].sort_values(kind="quicksort")
so1 = corr_matrix["FB"].sort_values(kind="quicksort", key=abs)
print("Максимальная положительная корреляция с компанией "+so.index[-2]+ ' и составляет '+str
print("Максимальная отрицательная корреляция с компанией "+so.index[0]+ ' и составляет '+str(
print("Минимальная корреляция с компанией "+so1.index[0]+ ' и составляет '+str(so1[0]))
```

Максимальная положительная корреляция с компанией ADBE и составляет 0.9453771902371849 Максимальная отрицательная корреляция с компанией TWTR и составляет -0.8425772000601955 Минимальная корреляция с компанией RHT и составляет 0.12702014393032882

Пункт 5

Построим диаграммы разброса

```
In [22]: plt.figure(figsize=[16, 16])

plt.subplot(2,2,1)
plt.title("FB-ADBE")
plt.scatter(frame['FB'], frame[so.index[-2]], color = 'green')
plt.xlabel("FB")
plt.ylabel("ADBE")
plt.grid(True)

plt.subplot(2,2,2)
plt.title("FB-TWTR")
plt.scatter(frame['FB'], frame[so.index[0]], color = 'red')
```

```
plt.xlabel("FB")
plt.ylabel("TWTR")
plt.grid(True)

plt.subplot(2,2,3)
plt.title("FB-RHT")
plt.scatter(frame['FB'], frame[so1.index[0]], color = 'black')
plt.xlabel("FB")
plt.ylabel("RHT")
plt.grid(True)

plt.show()
FB-ADBE
FB-TWTR
```


Найдем среднее значение для каждого месяца

```
In [23]: frame['Mean value'] = frame.mean(axis=1)
    frame
```

Out[23]: ADBE ADSK AKAM

Date										
2015- 03-02	73.940002	58.639999	71.050003	83.239998	NaN	32.610001	81.970001	66.809998	62.389999	5
2015- 04-01	76.059998	56.830002	73.779999	81.290001	NaN	31.770000	83.480003	72.820000	58.540001	5
2015- 05-01	79.089996	54.150002	76.269997	89.320000	NaN	30.450001	84.720001	72.750000	64.720001	6
2015- 06-01	81.010002	50.080002	69.820000	82.269997	NaN	29.290001	79.550003	69.629997	61.090000	6
2015- 07-01	81.989998	50.580002	76.709999	78.339996	NaN	29.139999	80.769997	73.300003	63.099998	2
2015- 08-03	78.570000	46.750000	71.309998	66.120003	NaN	27.290001	78.010002	69.360001	62.939999	2
2015- 09-01	82.220001	44.139999	69.059998	58.970001	NaN	27.299999	79.330002	69.430000	62.610001	2
2015- 10-01	88.660004	55.189999	60.820000	83.830002	NaN	27.709999	84.940002	77.709999	68.110001	2
2015- 11-02	91.459999	63.470001	57.610001	84.080002	NaN	28.110001	87.290001	79.690002	64.580002	2
2015- 12-01	93.940002	60.930000	52.630001	81.269997	NaN	28.559999	81.379997	78.400002	60.020000	2
2016- 01-04	89.129997	46.820000	45.619999	67.029999	NaN	28.730000	78.809998	68.059998	63.310001	2
2016- 02-01	85.150002	51.740002	53.970001	68.809998	NaN	29.290001	83.070000	67.750000	56.980000	2
2016- 03-01	93.800003	58.310001	55.570000	79.029999	NaN	30.790001	87.470001	73.830002	62.700001	2
2016- 04-01	94.220001	59.820000	50.990002	76.940002	194.300003	29.660000	82.870003	75.800003	58.369999	2
2016- 05-02	99.470001	58.270000	54.580002	82.000000	178.539993	32.320000	84.970001	83.709999	61.439999	2
2016- 06-01	95.790001	54.139999	55.930000	79.529999	165.149994	32.830002	79.680000	79.410004	57.240002	2
2016- 07-01	97.860001	59.450001	50.529999	82.480003	159.600006	34.650002	76.879997	81.800003	57.490002	3
2016- 08-01	102.309998	67.400002	54.900002	97.190002	171.070007	33.910000	76.739998	79.419998	57.439999	3
2016- 09-01	108.540001	72.330002	52.990002	105.790001	182.070007	33.080002	77.610001	71.330002	47.709999	3
2016- 10-03	107.510002	72.279999	69.470001	101.690002	176.860001	30.740000	84.559998	75.160004	51.349998	2
2016- 11-01	102.809998	72.610001	66.699997	94.019997	166.949997	31.959999	82.330002	72.000000	55.080002	2
2016- 12-01	102.949997	74.010002	66.680000	87.809998	164.410004	31.770000	84.459999	68.459999	56.029999	2
2017- 01-03	113.379997	81.339996	68.589996	101.309998	175.070007	31.270000	98.769997	79.099998	52.590000	3

BABA

BIDU

CA

СНКР

CRM

CTSH

Date

```
2017- 02-01 118.339996 86.300003 62.599998 102.900002 174.130005 32.270000 98.910004 81.349998 59.270000 3
```

Пункт 7

Построим график для упомянутых компания и среднего значения по таблице выше

```
In [24]: plt.figure(figsize=[12, 6])

plt.title('Timelapse statistics')
plt.plot(frame.index, frame['FB'], "-o", label="Facebook")
plt.plot(frame.index, frame['RHT'], "-o", label="RHT - none")
plt.plot(frame.index, frame['ADBE'], "-o", label="ADBE - max")
plt.plot(frame.index, frame['TWTR'], "-o", label="Twitter - min")
plt.plot(frame.index, frame['Mean value'], "-o", label="Mean")
plt.grid(True)
plt.legend(loc=2, title="Legend", fontsize=12)
plt.xlabel("Date")
plt.xticks(fontsize=8, rotation=90)
plt.ylabel("Price", fontsize=12)
```

