Z-Wave Protocol and Products Vulnerability Analysis

Team WYP - Best of the Best 7th

ABOUT US!

Best of the Best 7th

Sung-Bum Kim

Young-Ho Jung

Min-Seok Sung

Ji-Hwan Lim

Ki-Yoon Cho

INDEX

1. What is Z-Wave?

2. Z-Wave Vulnerability

3. Ongoing Research

WHAT IS Z-WAVE?

Z-WAVE is a much lower power alternative than Wi-Fi, but with a much bigger range than Bluetooth,

Z-Wave operates using low-energy radio waves to communicate from device to device.

2001, Non-Secure: Plain Data Transmission

2009, SO: Send Data Encrypted with Symmetric Keys

2016, S2: Complement the Problem of S0

Different frequency bands by country

920.9, 921.7, 923.1 MHz : KR

Product Category		Sample Size (# Products Purchasable in the US)		Number 2 Radio Protocol		Number 3 Radio Protocol		
4	Gateway / Hub	29	Wi-Fi	24%	Z-Wave	23%	ZigBee	17%
0	Plug	41	Z-Wave	43%	Wi-Fi	36%	Bluetooth	5%
(2)	Sensor: Door	26	Z-Wave	41%	ZigBee	24%	Wi-Fi	3%
	Thermostat	23	Wi-Fi	58%	Z-Wave	21%	ZigBee	17%
	Door Lock	19	Z-Wave	62%	Bluetooth	29%	Wi-Fi	5%

USING THE Z-WAVE IN PAN

PAN: network for interconnecting devices centered on an individual person's space.

THEN, HOW TO SEND A FRAME?

NON SECURITY ?!

Even now, Many Z-WAVE Products Use "Non Secured" ver.

<ProvisioningList />

</ViewSettings>

MAView NetworkLayoutString="0[1000,1000]:"
JseNetworkBackgroundColor="false" />

<pr

<EncryptDecryptView IsTabSDSelected="false" />

<NetworkKey Class="7" Value="B4CFF8229593689EABAD6B357B202BB3</p>

SO

Non Secured → S0 : Added new features

- Added Application Data encryption process
- Added Message Authentication Code to authenticate encrypted data

SO VULNERABILITY

However, SO also has a lot of problems

- The network key used for encryption was used symmetric Key and all nodes use one network key
- 2. There are three hard code key values used to encrypt and transfer network keys

So, We Can Remote Control SO Device!

KEY EXCHANGE METHOD

Figure 4 – Key exchange protocol

HARDCODED VALUE

Figure 4 - Key exchange protocol

```
K_c = AES - ECB_{K_n}(Passwd_c)
K_m = AES - ECB_{K_n}(Passwd_m)
public static void LoadKeys(ZWaveAES aesEngine, byte[] networkKey, out byte[] authKey, out byte[] encKey)
     System.Diagnostics.Debug.WriteLine("SecuritySOUtils.LoadKeys: " + Tools.GetHex(networkKey));
     authKey = new byte[16];
     encKey = new byte[16];
     byte[] pattern = ZWaveAES.RepeatByte16(0x55);
     aesEngine.AES ECB(networkKey, pattern, authKey); // K A = AES(K N, pattern)
     pattern = ZWaveAES.RepeatByte16(0xAA);
     aesEngine.AES ECB(networkKey, pattern, encKey); // K E = AES(K N, pattern)
                                                                           → PRE SHARED KEY
Properties Decrypted:
                  Sequence Counter: 0
                  Command Class Security
 Sequenced:
                  version: 1
 Second Frame:
                  Network Key Set
                                                                           → Exchanged
                    Network Key byte: 44 6F BA 73 B0 3A D7 45 69 20 F8 D8 0B C1 27 5D
                                                                               Symmetric KEY
Decrypted Content:
 98 06 44 6F BA 73 B0 3A D7 45 69 20 F8 D8 0B C1 27 5D
```

HOW TO STEAL THE KEY?

1. Waiting keep.... Until the pairing occurs on the target's network :-(

2. DoS attack to the target network, and make the target network do a pairing process again

3. Remote Add mode

DOS ATTACK

REMOTE CONTROL

REMOTE CONTROL

▼ Source	▼ Destination	▼ Home Ic	▼ Data	▼ Application	▼ Hex Data
001	010	FA 1E 98 A0	Singlecast 1	Security Nonce Get	FA 1E 98 A0 01 81 00 0E C9 0A 98 40 7B AE
010	001	FA 1E 98 A0	Ack	•	FA 1E 98 A0 0A 03 00 0C C9 01 B1 B8
010	001	FA 1E 98 A0	Singlecast 2	Security Nonce Report	FA 1E 98 A0 0A 81 40 16 00 01 98 80 10 5F DE 29 B8
001	010	FA 1E 98 A0	Ack		FA 1E 98 A0 01 03 00 0C 00 0A 6F BD
001	010	FA 1E 98 A0	Singlecast ③	Security Message Encapsulation	FA 1E 98 A0 01 81 00 22 CA 0A 98 81 C4 5B 8D 4E 9
010	001	FA 1E 98 A0	Ack		FA 1E 98 A0 0A 03 00 0C CA 01 E4 EB

Frame Details

Header:

Singlecast

Home ID: FA 1E 98 A0
Source Node ID: 001

Properties1:
Header Type: 01
Speed Modified: false
SUC Present: false
Low Power: false

Command Class Security
version: 1
Security Message Encapsulation

Initialization Vector: C0 AE B3 98 B4 FE 98 FA
Encrypted Data: E3 65 AA C5
Receivers nonce Identifier: C2
Message Authentication Code: 0E C8 93 52 D5 E6 DD A4

Properties Decrypted:

Sequence Counter:
Sequenced:
Second Frame:

Application Decrypted, network key: F6 CD F5 EC C8 6A D2 88 83 C8 49 1A 8C 02 D0 06

Command Class Door Lock
version: 3

Door Lock Operation Set

Door Lock Mode:

Door Unsecured=00

Decrypted Content:

FA 1E 98 AO 01 81 00 23 13 0A 98 81 CO AE B3 98 B4 FE 98 FA E3 65 AA C5 C2 0E C8 93 52 D5 E6 DD A4 51 0B

62 01 00

Z-WAVE CMD OPEN SOURCE

- 1. https://github.com/genielabs/zwave-lib-dotnet
- 2. This is similar to OpenZwave, but there is no USB crash in the KR band that occurs in OpenZwave
- 3. This code can send packets, but only in Non-Secured mode. Therefore, we developed our own spoofing tool through code modification.

Z-WAVE CMD CONTROLLER

```
C:\WINDOWS\system32\cmd.exe
    Toggle show debug (ShowDebug=False)
    List nodes
    Add node start
    Add node stop
    Remove node start
    Remove node stop
    Heal Network
    Run Node Stress Test
    Dump available ZWaveLib API commands
   Discovery (query all nodes data)
Change serial port (PortName=COM12)
Connect / Reconnect (Status=Ready)
    Run command
    Exit
 101 A Company
     B Company
Enter option and hit [enter]:
   Open DoorLock
[2] Power Bar On
[3] Power Bar Off
[4] Quit
```

- 1. Spoofing through the code modification of the PC Controller is difficult in S0 because of time constraints.
- 2. We have specified information about the products we want to spoof.
- 3. In addition, after sending Nonce Get, it is implemented so that all can be executed within 3 seconds until receiving the Nonce value and transmitting the encrypted command.

SO REMOTE CONTROL DEMO

WYP Z-Wave Spoofing Tool

ONGOING RESEARCH

FOTA
 Firmware Update Over the Air)

Using Z-Wave, control the node and upload a malicious firmware

2. Remote Add Mode Control

After analyzing TLS packet, the attacker can remotely set the hub to ADD MODE

3. S2 Research

In S2, key exchange methods and message transmission issues were Complemented.

FOTA (FIRMWARE UPDATE OVER THE AIR)

FOTA (FIRMWARE UPDATE OVER THE AIR)

S0 products should only receive S0 FOTA commands and ignore Nonce FOTA commands.

FOTA (FIRMWARE UPDATE OVER THE AIR)

But we also found a response to Nonce FOTA.

FOTA (FIRMWARE OVER THE AIR)

▼ Source	▼ Destination	▼ Home Ic	▼ Data	▼ Application	▼ Hex Data
001	028	CB C7 B8 8F	Singlecast 1	Firmware Md Get	CB C7 B8 8F 01 81 00 0E BA 1C 7A 01 C3 54
028	001	CB C7 B8 8F	Ack		CB C7 B8 8F 1C 03 00 0C BA 01 57 37
028	001	CB C7 B8 8F	Singlecast 2	Firmware Md Report	CB C7 B8 8F 1C 81 00 14 04 01 7A 02 01 8C 42 08 9E
001	028	CB C7 B8 8F	Ack		CB C7 B8 8F 01 03 00 0C 04 1C FD 6E
001	028	CB C7 B8 8F	Singlecast ③	Firmware Update Md Request Get	CB C7 B8 8F 01 81 00 16 BB 1C 7A 03 01 8C 42 08 9F
028	001	CB C7 B8 8F	Ack		CB C7 B8 8F 1C 03 00 0C BB 01 64 06
028	001	CB C7 B8 8F	Singlecast 4	Firmware Update Md Request Repo	CB C7 B8 8F 1C 81 00 0F 05 01 7A 04 FF 7D A1
001	028	CB C7 B8 8F	Ack		CB C7 B8 8F 01 03 00 0C 05 1C CE 5F
028	001	CB C7 B8 8F	Singlecast 5	Firmware Update Md Get	CB C7 B8 8F 1C 81 00 11 06 01 7A 05 01 00 01 3E 2F
001	028	CB C7 B8 8F	Ack		CB C7 B8 8F 01 03 00 0C 06 1C 9B 0C
001	028	CB C7 B8 8F	Singlecast 6	Firmware Update Md Report	CB C7 B8 8F 01 81 00 3A BC 1C 7A 06 00 01 02 02 D
028	001	CB C7 B8 8F	Ack		CB C7 B8 8F 1C 03 00 0C BC 01 FD 91
028	001	CB C7 B8 8F	Singlecast	Firmware Update Md Get	CB C7 B8 8F 1C 81 00 11 07 01 7A 05 01 00 02 B6 2E
001	028	CB C7 B8 8F	Ack		CB C7 B8 8F 01 03 00 0C 07 1C A8 3D
001	028	CB C7 B8 8F	Singlecast	Firmware Update Md Report	CB C7 B8 8F 01 81 00 3A BD 1C 7A 06 00 02 FF FF FF
028	001	CB C7 B8 8F	Ack		CB C7 B8 8F 1C 03 00 0C BD 01 CE A0

Report Number 2 is Order of the Firmware Data

Report number 2: 01

Data: 02 02 DF 02 18 03 41 00 B8 00 22 02 18 0B 22 22 22 FF FF 02 18 13 E4 FF E1 BC FF 02 18 1B 75 C8 01 22 FF 02 18 23 FF FF

Checksum: 7D 1F

Report number 2: 02

Checksum: A4 65

REMOTE ADD MODE CONTROL

REMOTE ADD MOD

Router

S2

 $S0 \rightarrow S2$: Added new features

By Exchanging the network key using ECDH, even if sniffing is performed, the key can not be taken.

However, after the key was exchanged, a symmetric key has been used, like S0

And a Vulnerability called Z-Shave was announced in May.

Z-Shave

Attacker can spoof the S2 key exchange frame with the S0 key exchange Frame to capture the network key.

S2 Key Hijacking

When a controller enters ADD mode,

Attacker can do pairing before the node.

Thank You

Team WYP - Best of the Best 7th

Thanks to - Anesra, Gilgil, Hojin