

Competitive Programming From Problem 2 Solution in O(1)

Greedy Algorithms

Exchange Argument Technique

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Recall: Proving Greedy

- We may prove greedy properties directly
 - Done
- 2 popular techniques can be used for proving
 - Stay Ahead [Last Session]
 - Exchange Argument [Today Session]
- And some other ways (e.g. Matroids)

Recall: General guidelines

- Have to do it Greedy?
 - Brainstorm on all possible heuristics...put in ur ideas' pool
 - Don't think/verify....just brainstorm
- Pick most promising idea
 - Find some example that breaks it...think hard
 - Wrong? think what to fix generally...push idea to the pool
- Good heuristic so far? Can you prove? or informal strong intuition? Yes => do it

Proof technique: Exchange Argument

- Goal: Convert your greedy solution to an optimal solution with same value!
- Assume we have Optimal Solution O
- And Greedy algorithm solution is A
- Do series of <u>exchanges</u> to O to convert it to A such that both have same min/max answer
- You will need to analyze your greedy properties/nature to determine what to exchange in O

Proof technique: Exchange Argument

- 1) Describe the 2 solutions
 - E.g. $O = \{o1, o2...ok\}$ and $A = \{a1, a2, ak\}$
- 2) Compare them and see how to convert
 - E.g. Element in O not in A and the reverse
 - E.g. Same elements but in different order. Assume A is sorted. Then e.g. swap 2 consecutive elements in O that are not sorted
- 3) Do Exchange: E.g. Swap in/out elements or swap consecutives as noted before. Show that exchange step doesn't affect overall answer

Proof technique: Exchange Argument

- You need to do the exchange several times to fully convert. Argue that this is possible
- You need to argue about the **existence** of what you are exchanging (e.g. do this case really exists: e.g. in/out or unordered elements)
- Some Greedy solutions uses this technique such as <u>lateness problem</u>, caching and MST

Exchange Argument Vs Greedy properties

- Exchange argument depends on the output of your greedy
- Greedy properties proving style depends on your first step and nature of sub-problem
- Exchange argument is nice to consider when different outputs of optimal solutions have same length (e.g. every MST have same cost, but every shortest path may have different edges)

Exchange Argument: MST

- This is not prove...just big picture outline
- Assume Kruskal gives MST = TK
- And one optimal solution is MST = TO
- Assume edge e1 in TO but not in TK
- We can show that e1 of TO can be swapped with some e2 in TK without increasing cost
- Then # of common edges increase
- Keep applying the method to fully convert TO to TK with same cost

Scheduling to minimize lateness

- Jobs: each job = <Processing time, Deadline>
 - J1 (5, 20). If started it at 9, it ends at 14 < 20 (no penalty)
 - J1 (5, 20). If started it at 18, it ends at 23. Penalty 3
 - Penalty (lateness): Extra time used after deadline
- Processing is in non-overlapping manner
- Goal: Schedule them with min lateness
 - Find start time of each task / no overlap in processing time
 - Such that minimize maximum lateness

Scheduling to minimize lateness

10

Brainstorm

Sort incrementally based on **processing time** (logic: removing smaller jobs gives space for next jobs)

5

Sort incrementally based on **deadline** (logic: earlier deadline should be done first)

Scheduling: Investigate heuristics

Processing time heuristics

- Think for breaking examples
- Algorithm picks first (1, 100), finish at 100
- 2nd start at 100 and finish 110. Penalty 100
- The reverse caused 0 lateness
- Why wrong? Ignored deadline Can we fix?
- New idea: Sort based on difference |Deadline Processing|

Difference heuristics

- Fails too
- Why? Lost Deadline positions as constraints.

	1	2
tj	1	10
dj	100	10

Scheduling: Investigate heuristics

- Earliest Deadline heuristics (right one)
 - But, it ignores processing time...you should be afraid:)

```
EARLIEST-DEADLINE-FIRST (n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)

SORT n jobs so that d_1 \le d_2 \le ... \le d_n.

t \leftarrow 0

FOR j = 1 TO n

Assign job j to interval [t, t + t_j].

s_j \leftarrow t; f_j \leftarrow t + t_j

t \leftarrow t + t_j

RETURN intervals [s_1, f_1], [s_2, f_2], ..., [s_n, f_n].
```


Scheduling to minimize lateness

Observe that

- Our optimal solution just stacks the jobs, e.g. no idle time
- Any optimal solution with idle time can be compressed

- Our algorithm has k items sorted by deadline
- Optimal answer will have SAME k items, NOT ordered
- So one can think in doing series of swaps to prove

Scheduling to minimize lateness

- If we can do series of swaps that don't affect overall answer, then greedy is optimal
 - Swap = Exchange
- Sorting on unsorted arrays <=> inversions
- Array Inversion: if j < i and A[j] > A[i]
 - A = [2, 4, 1, 3, 5] has 3 inversions (2, 1), (4, 1), (4, 3).
 - If swapping consecutive elements only, we can do maximum nC2 swaps (e.g. for A = [5, 4, 3, 2, 1])

Schedules & Inversions

- \blacksquare Recall we have d1 <= d2 <= ... dn
- Schedule has an inversion if job j before i
 AND Dj > Di
 - \blacksquare assume: d1 = 5, d2 = **10**, d3 = **10**, d4 = 20
 - \blacksquare S1 = {d1, d2, d3, d4} => No inversions .. our greedy
 - $S2 = \{d1, d3, d2, d4\} => No inversions, duplicates sorted$
 - $S3 = \{d4, d1, d2, d3\} => Has Inversion$
- Q: given set of deadlines, how many schedules with no inversions?

Schedules & Inversions

- Assume our greedy solution is A and one of Optimal schedules is O (no idle time)
 - \blacksquare Either A = O, we are ok
 - \blacksquare A != O, but both has no inversions
 - A != O, but O has inversions
- We need to prove the last 2 cases: E.g. O can be converted to A with same final lateness

Schedules with no inversion

- Lemma: All schedules with no inversions and no idle time have the same maximum lateness
 - Such schedules have different jobs order
 - But they differ only in the order of identical deadlines
 - $\blacksquare \text{ E.g. } \{d1, \, \mathbf{d2}, \, \mathbf{d3}, \, \mathbf{d4}\} = \{d1, \, \mathbf{d3}, \, \mathbf{d2}, \, \mathbf{d4}\} = \{5, \, \mathbf{10}, \, \mathbf{10}, \, 20\}$
 - Assume k tasks with deadline d in some permutation
 - The last one will have **maximum** lateness
 - its lateness will be based on accumulation of t jobs,
 regardless of their order

Schedules with inversions

- Can we prove that swapping consecutives inverted jobs doesn't increase max lateness?
- Assume: job j before i AND Dj > Di [inversio]

Swapping doesn't affect next jobs deadlines

Schedules with inversions

- Observe: i now is shifted earlier.
 - Then it can't have bigger lateness
- If j has no lateness, we are ok…otherwise
- Let lateness Li = F Di and Lj = F Dj
 - Recall: Di <= Dj, then</p>
 - L $\mathbf{j} = \mathbf{F} \mathbf{D}\mathbf{j} \le \mathbf{F} \mathbf{D}\mathbf{i} \le \mathbf{L}\mathbf{i}$
 - As Lj <= Li, swap won't increase lateness
- Q: Can we find example of 2 jobs where
 - D1 != D2, Optimal lateness > 0, Schedule {1, 2} as optimal as {2, 1}

Summary

- Our last intuition (first deadline) was good,
 but suspicious ... prove was critical
- Exchange argument in lateness problem
 - Consecutive swaps to convert unsorted array to sorted one
 - We put limit on # of swaps (nC2)
 - Proved a consecutive swap doesn't worse solution
- Visualization helps
- Some Exchange argument problems are challenging and need much analysis for its differnt cases (e.g. Optimal Offline Caching)

Your turn

- In a marathon, each of n players will swim Si minutes, then run Ri minutes.
- One player can be at swimming pool at a time
- Find permutations of the players to minimize the marathon finish time
- E.g. p1 = <10, 5> and p2 = <12, 7>.
 - Use order P2 P1
 - P2: swim for 12 m, then run for 7 m. Finish 19 m
 - P1: start at 12, swim for 10 min, run for 5 m. Finish 27 m
- Find algorithm. Prove it.

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ