Product Classification & Verification

Computer Vision 2024 Project [SC] Team: SC_40

Team Member	ID
مارينا نادي شحاتة عوض	20201700636
مايان محمد حلمي السيد	20201700646
منة الله محمد السيد احمد الشين	20201701205
عبد الرحمن طارق سيد احمد عوض	20201700441
يوسف فتحي صابر علي الجعيدي	20191700779
عبد الحميد مجدي سالم	20191700885

Data Preparation

- The function reading_images() reads images from specified folders, resizing them, and preparing them for further processing. (Distinguishes between training and validation sets for both classify-cation and recognition tasks.)
- The extract_sift_features() function extracts SIFT descriptors from images using OpenCV's cv2.SIFT_create() function.
- The create_vocabulary() function utilizes MiniBatchKMeans from sklearn.cluster to create a BoW (Bag-of-Words) vocabulary from the extracted SIFT descriptors.
- Creating Triplets using create_trainging_triplets() & create_validation_triplets() to prepare the
 data for Siamese Network by combining anchor, positive, and negative images.

Model Training

Support Vector Machine (SVM):

- Data Preparation: Extracts histograms of BoW features for both training and validation sets.
- SVM Initialization and Training: Initializes an SVM classifier (Kernel Linear) from sklearn.svm.SVC and trains it using the training data.

Random Forest Classifier:

• Random Forest Initialization and Training: Initializes a Random Forest classifier from sklearn.ensemble.RandomForestClassifier and trains it using the training data.

AlexNet Architecture using Keras:

- Model Definition: Defines an AlexNet architecture using Keras' Sequential API with Convolutional, MaxPooling, Flatten, Dense, and Dropout layers.
- Model Compilation and Training: Compiles the model with specified loss function (categorical_crossentropy), optimizer(Adam), and metrics(accuracy). Then trains the model using the training data.

Siamese Network:

- Use a pre-trained convolutional neural network (like Xception) as the base encoder which generates the embeddings of anchor, positive and negative images.
- ullet Loss Function is the to train the network $oldsymbol{\mathcal{L}} = max(d(a,p) d(a,n) + margin, 0)$

Evaluation

- SVM and Random Forest Evaluation: Evaluates the SVM and Random Forest classifiers' accuracy on the validation set using accuracy_score from sklearn.metrics.
- AlexNet Model Evaluation: Evaluates the trained AlexNet model's accuracy on the validation set using model.evaluate() from Keras.

SVM Accuracy on Validation Set: 85%

Random Foreston Accuracy on Validation Set: 82%

AlexNet Accuracy on Validation Set: 88%

• Evaluate Siamese Model using validation triplets to compute accuracy and determine a threshold for distance between embeddings to classify similar/dissimilar images.

Siamese Accuracy on Validation Set: 95%