```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
file= pd.ExcelFile('Bank_Personal_Loan_Modelling.xlsx')
description=pd.read excel(file, 'Description')
df=pd.read_excel(file, 'Data')
description.head(10)
₹
        Unnamed · 0
                        Unnamed: 1
                                                          Unnamed: 2
      0
               NaN
                               NaN
                                                                NaN
      1
               NaN
                               NaN
                                                                NaN
      2
               NaN
                               NaN
                                                                NaN
      3
               NaN
                               NaN
                                                                NaN
      4
               NaN Data Description:
                                                                NaN
      5
               NaN
                               NaN
                                                                NaN
      6
               NaN
                                 ID
                                                          Customer ID
               NaN
                                       Customer's age in completed years
      7
                               Age
      8
               NaN
                         Experience
                                        #years of professional experience
      9
               NaN
                             Income Annual income of the customer ($000)
description.drop('Unnamed: 0',axis=1,inplace=True)
description.drop(axis=0,index=[0,1,2,3,4],inplace=True)
description.rename(columns={'Unnamed: 1':'Column Name','Unnamed: 2':'Column Description'}, inplace=True)
pd.set_option('display.max_colwidth', 0)
print(description)
₹
                Column Name \
        NaN
     6
        ID
        Age
        Experience
     8
         Income
     10 ZIPCode
     11 Family
     12
        CCAvg
     13
        Education
         Mortgage
     14
        Personal Loan
         Securities Account
     17
        CD Account
     18
        Online
     19
        CreditCard
                                                                   Column Description
     5
        NaN
         Customer ID
         Customer's age in completed years
     8
         #years of professional experience
        Annual income of the customer ($000)
     10 Home Address ZIP code.
     11 Family size of the customer
        Avg. spending on credit cards per month ($000)
     12
     13 Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/Professional
     14 Value of house mortgage if any. ($000)
     15 Did this customer accept the personal loan offered in the last campaign?
     16 Does the customer have a securities account with the bank?
     17 Does the customer have a certificate of deposit (CD) account with the bank?
     18 Does the customer use internet banking facilities?
```

Does the customer use a credit card issued by UniversalBank?

df.head()

df.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	ID	5000 non-null	int64
1	Age	5000 non-null	int64
2	Experience	5000 non-null	int64
3	Income	5000 non-null	int64
4	ZIP Code	5000 non-null	int64
5	Family	5000 non-null	int64
6	CCAvg	5000 non-null	float64
7	Education	5000 non-null	int64
8	Mortgage	5000 non-null	int64
9	Personal Loan	5000 non-null	int64
10	Securities Account	5000 non-null	int64
11	CD Account	5000 non-null	int64
12	Online	5000 non-null	int64
13	CreditCard	5000 non-null	int64

dtypes: float64(1), int64(13)
memory usage: 547.0 KB

df.describe()

•	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal Loan
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000
mean	2500.500000	45.338400	20.104600	73.774200	93152.503000	2.396400	1.937913	1.881000	56.498800	0.096000
std	1443.520003	11.463166	11.467954	46.033729	2121.852197	1.147663	1.747666	0.839869	101.713802	0.294621
min	1.000000	23.000000	-3.000000	8.000000	9307.000000	1.000000	0.000000	1.000000	0.000000	0.000000
25%	1250.750000	35.000000	10.000000	39.000000	91911.000000	1.000000	0.700000	1.000000	0.000000	0.000000
50%	2500.500000	45.000000	20.000000	64.000000	93437.000000	2.000000	1.500000	2.000000	0.000000	0.000000
75%	3750.250000	55.000000	30.000000	98.000000	94608.000000	3.000000	2.500000	3.000000	101.000000	0.000000
max	5000.000000	67.000000	43.000000	224.000000	96651.000000	4.000000	10.000000	3.000000	635.000000	1.000000
4										

df_loan_accept=df[df['Personal Loan']==1]

```
sns.set_style('darkgrid')
g=sns.FacetGrid(df,row='Education',col='Family',hue='Personal Loan',palette='Set2')
g=g.map(plt.hist, 'CCAvg', alpha=0.5)
plt.legend(bbox_to_anchor=(1.7,3))
```


It can be inferred that usually Undergraduates with a small family do not tend apply for a loan.

sns.set_style('white')
sns.countplot(data=df,x='Education',hue='Personal Loan',palette='RdBu_r')

Most of the loan applicants are Professionals

The value of house mortagage for the non-applicants is much lower than that of applicants. This could be a possible reason for them not applying for a loan or not finding a policy based on there need.

sns.set_style('white')
sns.countplot(data=df,x='Securities Account',hue='Personal Loan',palette='Set2')

<Axes: xlabel='Securities Account', ylabel='count'>

It is clear that very few loan applicants have a securities account.

Using Decision Tree algorithm to predict the nature of loan acceptance

```
df.columns
```

```
☐ Index(['ID', 'Age', 'Experience', 'Income', 'ZIP Code', 'Family', 'CCAvg', 'Education', 'Mortgage', 'Personal Loan', 'Securities Account', 'CD Account', 'Online', 'CreditCard'], dtype='object')
```

X=pd.DataFrame(columns=['Age','Experience','Income','Family','CCAvg','Education','Mortgage','Securities Account','CD Account','CreditCar

y=df['Personal Loan']

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test= train_test_split(X,y)

from sklearn.tree import DecisionTreeClassifier

dtree= DecisionTreeClassifier(max_leaf_nodes=3)

 ${\tt dtree.fit}({\tt X_train,y_train})$

 $predictions = dtree.predict(X_test)$

 $from \ sklearn.metrics \ import \ classification_report, \ confusion_matrix$

print(classification_report(y_test,predictions))

→*			precision	recall	f1-score	support
		0	0.97	0.99	0.98	1119
		1	0.92	0.76	0.83	131
	accura	асу			0.97	1250
	macro a	avg	0.95	0.88	0.91	1250
	weighted a	avg	0.97	0.97	0.97	1250

print(confusion_matrix(y_test,predictions))

```
→ [[1110
           9]
    [ 31 100]]
```

plt.figure(figsize=(9,7)) sns.distplot(y_test-predictions)

<ipython-input-31-629d0160bc60>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(y_test-predictions)
<Axes: xlabel='Personal Loan', ylabel='Density'>

