Série 5 : Dipôle RL

EXERCICE 1:

Un circuit électrique comporte les composantes suivantes placées en série : un générateur idéal de tension continue de f.é.m. E=6,00 V, un interrupteur K, une bobine d'inductance L et de résistance interne r=10 Ω et un conducteur ohmique de résistance R=200 Ω .

Un ordinateur relié au montage par une interface appropriée permet de visualiser au cours du temps les variations des deux tensions UAB et UBC.

Le schéma du circuit ci-contre précise l'orientation du circuit et les tensions étudiées.

A t=0, on ferme l'interrupteur K. On obtient les deux courbes suivantes, notées courbe-1 et courbe-2.

I - Etude du montage.

- 1. Quel type d'appareil peut-on utiliser pour visualiser le phénomène étudié à la place d'un ordinateur
- **2**. Donner l'expression de U_{AB} en fonction de i et de $\frac{di}{dt}$
- 3. Donner l'expression de U_{BC} en fonction de i.
- **4**. Associer les courbes 1 et 2 aux tensions U_{AB} et U_{BC}. Justifier.

II - Détermination de l'intensité du courant en régime permanent.

- **1**. En appliquant la loi d'additivité des tensions, déterminer l'expression de l'intensité du courant qui traverse le circuit lorsque le régime permanent est établi. Calculer la valeur de I_p.
- **2**. Exploiter l'une des deux courbes pour retrouver cette valeur de I_p.

III. Calcul de l'inductance L de la bobine.

- **1**. Exploiter l'une des deux courbes pour déterminer la constante de temps τ du montage. Expliciter votre méthode.
- **2**. Rappeler l'expression de la constante de temps τ en fonction des grandeurs caractéristiques du circuit. Montrer que cette expression est homogène à un temps.
- **3**. À partir de la valeur de τ mesurée, calculer l'inductance L de la bobine

EXERCICE 2:

On se propose d'étudier l'établissement du courant dans un dipôle série comportant une bobine d'inductance L et d'une résistance interne r et un conducteur ohmique de résistance $R_0 = 30 \Omega$, lorsque celui-ci est soumis à un échelon de tension de valeur E délivrée par un générateur de tension idéal. Un

oscilloscope à mémoire, branché comme l'indique la figure 1, permet d'enregistrer au cours du temps la variation des tensions.

1. A l'instant t=0, on ferme l'interrupteur K, et on procède à l'enregistrement. On obtient les courbes $Y_1=f(t)$ et $Y_2=g(t)$ (figure 2)

- a- Quelles sont les grandeurs électriques observées sur les voies A et B? Identifier Y1 et Y2. Justifier
- **b** Quelle est la courbe qui permet de déduire la variation de l'intensité de courant i au cours du temps ? Expliquer brièvement le comportement électrique de la bobine.
- c- Prélever du graphe de la figure 2 la valeur de la force électromotrice du générateur.
- **2**. Lorsque le régime permanent est établi, l'intensité i prend la valeur I_P , tandis que Y_2 prend la valeur Y_P .
 - a-Donner dans ces conditions, les expressions littérales des tensions UAM, UAB et UBM.
 - **b** Montrer, en utilisant les courbes de la figure 2, que la bobine a une résistance r non nulle.
 - **c** Calculer, l'intensité I_P et la résistance r de la bobine.
- 3. Le circuit étudié peut être caractérisé par une constante de temps τ , qui permet d'évaluer la durée nécessaire à l'établissement d'un régime permanent dans ce circuit. on pose $\tau = L/R$.
- **a** Montrer que τ est homogène à un temps.
- **b** Que représente R dans le circuit étudié ? Quelle est sa valeur numérique ?
- **4**. On admet que l'intensité du courant dans le circuit à un instant t, est alors : i = A. $(1 e^{-\frac{t}{\tau}})$, montrer que A=I_P.

5.

- **a** Déterminer graphiquement τ.
- **b** En déduire la valeur de l'inductance L de la bobine,
- c- Calculer l'énergie emmagasinée par la bobine quand le régime permanent est établi

EXERCICE 3 : Influence de R et L lors de la disparition du courant

On réalise le montage schématisé ci-dessous dans lequel on trouve un conducteur ohmique de résistance réglable \mathbf{R} , une bobine (\mathbf{L}, \mathbf{r}) , un interrupteur et un générateur de tension continue \mathbf{E} égale à 6 V . À l'ouverture du circuit on visualise l'évolution de l'intensité du courant dans le circuit au cours du temps, à l'aide d'un système informatisé.

La diode se comporte comme un interrupteur fermé lorsqu'elle est passante, et comme un interrupteur ouvert lorsqu'elle est bloquée.

- 1. Quelle est l'expression de la constante de temps τ de l'association de cette bobine et du conducteur ohmique ?
- 2. Par une analyse dimensionnelle, montrer que l'expression de τ en fonction de L, r et R est bien homogène à un temps.

la même. on obtient i_1t pour une valeur de R_1 , i_2t pour R_2 et i_3t pour R_3 . Comparer les valeurs R_1 , R_2 et R_3 : (Voir le graphe ci-contre)

- a. à partir de l'intensité du régime permanente initiale ;
- b. à partir des constantes de temps ;
- 4. Lors d'une seconde série d'acquisition, on place successivement dans le montage trois bobines d'inductance L_1, L_2 et L_3 différentes et même résistance r, la résistance R ne varie pas. On obtient respectivement les intensités $i_1(t), i_2(t)$ et $i_3(t)$. Comparer les valeurs de L_1, L_2 et L_3 . (Voir le graphe ci-contre)

