6.1. On dit que $x \in \mathbf{R}$ est un **point d'accumulation** de la suite $(x_n)_{n=0}^{\infty}$ si de celle-ci on peut extraire une sous-suite qui converge vers x.

Soit $(x_n)_{n=0}^{\infty}$ une suite bornée et désignons par E l'ensemble de ses points d'accumulation. Montrer que

$$\sup E = \limsup_{n \to \infty} x_n.$$

Indications

- 1.) Montrer que $E \neq \emptyset$.
- 2.) Si $\alpha = \sup E, \beta = \limsup_{n \to \infty} x_n$, montrer que $\beta \leq \alpha$.
- 3.) Soit $\lambda \in E$, limite de la sous-suite $(x_{n_j})_{j=0}^{\infty}$ de $(x_n)_{n=0}^{\infty}$; montrer que $\beta \geq \lambda$.
- **6.2**. On considère la suite $(x_n)_{n=0}^{\infty}$ donnée par

$$x_0 = 0,$$
 $x_{\frac{q(q-1)}{2} + p} = \frac{p}{q},$

pour
$$1 \le p \le q$$
, $q = 1, 2, ...$

Réfléchissez pourquoi ceci est une définition correcte: a-t-on bien défini x_n pour tout n, et de façon non ambiguë?

- (a) Écrire les 20 premiers termes de cette suite.
- (b) Trouver tous les points d'accumulation de cette suite.