Practical 3 – Recursion

Fibonacci and Tower of Hanoi

Warm-up questions

1.	What are t	the two	principal	characteristics of	of a	recursive algo	rithm?
	vviiat aic	CITC CVV	principal	cital acteristics (<i>)</i>	i ccai si ve aige	,, , c, , , , , , , , , , , , , , , , ,

- <u>A recursive algorithm must have a base case and must change its</u> state and move toward the base case.
- A recursive algorithm must call itself recursively.
- 2. Recursion is.. theoretically powerful and often used in algorithms that could benefit from recursive methods
- 3. <u>True</u> or false: All recursive functions can be implemented iteratively.
- **4.** True or **false**: if a recursive algorithm does NOT have a base case, the compiler will detect this and throw a compile error?
- 5. True or **false**: a recursive function must have a void return type.
- 6. True or False: Recursive calls are usually contained within a loop.
- 7. <u>True</u> or False: Infinite recursion can occur when a recursive algorithm does not contain a base case.

^{*}timing results and excel graph sheets can be found in the practical-Resources folder in subfolder wk3.

8. Which of these statements is true about the following code?

```
int mystery(int n)
{
     if (n>0) return n + mystery(n-1);
     return 0;
}
```

Your answer	
	The base case for this recursive method is an argument with any value which is greater than zero.
	The base case for this recursive function is an argument with the value zero.
Answer	There is no base case.

9. List common bugs associated with recursion?

No base case
Function dosen't change its state recursively to reach the base case.
Does not call recursive method properly
Incorrect base cases

10. What method can be used to address recursive algorithms that excessively recompute?

Graphing - Fibonacci

Time complexity for Fibonnaci Recursive solution – $O(2^n)$ Space Complexity – O(n)

<u>Time complextity for Fibonacci Iterative solution – O(n)</u>

Graphing - Tower of Hanoi

<u>Time complextity for Tower of Hanoi Recursive solution – O(2^n)</u> <u>Space complextity for Tower of Hanoi Recursive solution</u>