# **EECE 5430 Theory of Communication Instructor: Prof.Dr. Jay Weitzen**

**Programming Project 1: AM Modulation and Demodulation** 

By

Pranav Bala Chandran ,M

# OUTPUT GRAPHS MESSAGE AND CARRIER SIGNAL



Fig1:Message signal





Fig3: Modulated signal with a)m=0.5 b)m=1 c)m=1.5

# SPECTRUM ANALYZER OUTPUT FOR THE MODULATED SIGNAL:



Fig 4 Modulated signal in the frequency domain with a)m=0.5 b)m=1 c)m=1

# %B.Coherent demodulation



Fig.5 Coherent demodulation in time and frequency domain with modulation index (a) m=0.5,(b)m=1 (c) m=1.5





**(b)** 



Fig.6 Envelop detection output before passing to a LPF in time and frequency domain with modulation index (a) m=0.5,(b)m=1 (c) m=1.5

# ENVELOPE DETECTOR OUTPUT IN TIME AXIS AFTER PASSING LPF:







Fig.7 Envelop detection output after passing to a LPF in time and frequency domain with modulation index (a) m=0.5,(b)m=1 (c) m=1.5

#### SPECTRUM ANALYZER OUTPUT FOR THE ENVELOP DETECTOR:



Fig.8 Envelop detection output after passing to a LPF in time and frequency domain with modulation index (a) m=0.5,(b)m=1 (c) m=1.5

# D.USE REAL WAVEFORMS OUTPUT GRAPHS:





Fig9:a) Modualted Wave b) Carrier Wave

#### **COHERENT DETECTION OUTPUT:**



Fig10: Coherent detection output in (a) time domain (b)Frequency domain

# **IDEAL DIODE OUTPUT**



**(b)** 

Fig11: Ideal diode output in (a) time domain (b)Frequency domain

# FINAL DEMODULATETED OUTPUT:



(a)



Fig12: Demodulated signal in (a) time domain (b)Frequency domain