

Echoes Beyond Points: Unleashing the Power of Raw Radar Data in Multi-modality Fusion

王峰 算法研究员 图森未来

传统4D radar信号处理流程

距离:

Figure 5. Multiple IF tones for multiple-object detection.

速度:

Figure 6. Two-chirp velocity measurement.

传统4D radar信号处理流程

角度:

CFAR选点:

4D radar原始数据信号处理流程

纯Radar目标检测的缺陷 – 角度分辨率不足

纯视觉目标检测的缺陷 - 缺乏深度信息

蓝点: LiDAR点 红点: 4D Radar点

红框: 真值 紫框: 纯图像BEV检测 蓝框: 图像与radar点融合 绿框: 图像与radar原始数据融合

深度不准确是纯视觉目标检测最常见的错误。

BEV视角下的纯视觉目标检测

Source: Tesla Al Day 2021

4D原始数据融合带来巨大性能提升

评测数据集

• RADlal: 图像+4D Radar原始ADC数据,只有物体中心的标注。

• RADlal+: 增加了旋转框标注。

• KRadar: 图像+4D Radar RA map数据,有旋转框标注。数据集难以下载。

Dataset	Data	Other Sensors	Scenarios	Annotations	Classes	Size
Astyx [28]	PC	CL	SH	3D	7	500
View-of-Delft [37]	PC	C_s LO	U	3D,T	13	8693
RADIal [39]	ADC,RA,PC	CLO	USH	P_o ,M	1	8252
TJ4DRadSet [56]	PC	CLO	U	3D,T	5	7757
Radatron [26]	ADC,RA	C_s	U	BEV	1	16K
KRadar [35]	RA, PC	CLO	USH	3D, T	5	17K

4D原始数据融合带来巨大性能提升

和图像融合后,在目标检测任务中接近 LiDAR性能,大幅超越原始Radar效果。

相比于点云,原始数据在远距离的表现 更好。

Modality					BEV AP@0.7(%)↑					LET-BEV-AP@0.7(%)↑				
C	RT	RA	RP	L	Overall		0 - 50)m	50 -	- 100m	Ov	erall	0 - 50m	50 - 100m
√					10.07±	1.10	21.68	3±3.11	2.2	1±0.59	56.	.92±3.91	78.98±1.41	36.20±5.81
	\checkmark				48.26 ± 0	0.92	62.33	± 4.00	45.0	05 ± 0.98	55.	$.04\pm1.25$	68.56 ± 4.11	52.30 ± 1.82
		✓			50.67±	1.03	65.05	± 1.59	42.9	98 ± 0.51	58.	$.53\pm0.13$	72.95 ± 0.78	51.41 ± 0.54
			✓		53.55±	0.70	66.19	± 1.72	47.4	41 ± 1.06	62.	$.59{\pm}1.14$	76.45 ± 2.06	56.73 ± 1.33
				\checkmark	84.47±0	0.15	86.92	2±0.61	91.9	91±0.13	86.	$.07\pm0.44$	88.55±0.79	93.17 ± 0.10
√	✓				84.92±			5±1.58		06±1.18			92.81±1.37	94.81±0.52
\checkmark		\checkmark			84.77 ± 0	0.65	87.93	± 0.60	91.4	$48 {\pm} 0.28$	89.	$.54 {\pm} 0.54$	93.83 ± 0.56	94.87 ± 0.58
\checkmark			\checkmark		82.35 ± 0	0.93	86.97	± 1.01	86	39 ± 0.74	88.	$.35\pm0.78$	93.07 ± 0.80	92.77 ± 0.69
\checkmark				\checkmark	86.35±	1.15	88.81	± 1.40	94.2	25 ± 1.68	88.	$.44\pm0.79$	91.63 ± 1.34	95.31 ± 1.28
Traini	ng Da	taset	Vehicle	e AP/C	Conf@0.3	AP_BE	/@0.3	AP_3D@	0.3	AP_BEV@0.	5	AP_3D@0.5	AP_BEV@0.7	AP_3D@0.7
KRada	ar		RTHN-	Pretrai	ined	58.04		49.65		42.60		17.87	10.69	0.45
KRada	ar-20-tr	ainval	RTHN-S	Scratch	n	61.38		53.05		46.47		17.98	10.47	3.03
KRada	ar-20-tr	ainval	EchoFu	ısion-r	a+img	69.95(+	8.63)	68.35(+1	5.30)	57.28(+10.8	1) 4	43.87(+25.89)	33.07(+22.60)	14.00(+10.97)
KRada	ar-20-tr	ain	EchoFu	ısion-r	pcd	55.74		53.40		43.94		29.21	20.56	2.90
KRada	ar-20-tr	ain	EchoFu	ısion-r	a	54.45		51.75		42.28	- 1	24.65	17.97	3.85
KRada	ar-20-tr	ain	EchoFu	ısion-r	pcd+img	66.46		58.62		54.17	- 3	34.67	26.39	3.96
KRada	ar-20-tr	ain	EchoFu	ısion-r	a+img	68.70		66.68		55.90	-	34.33	29.65	5.34

原始ADC信号

RADIal-Test-	<u>mAP</u> (%)↑	<u>mAP</u> (%) ↑	<u>mAP</u> (%) ↑	let-mAP(%)↑	let-mAP(%) ↑	let-mAP(%) ↑
BEV@0.7		[0, 50]	[50, 100]		[0, 50]	[50, 100]
rt_radarformer_r50 _da, 21e	48.03	58.96	46.43	55.19	66.13	54.87
adc_fourier_range_ embed_0.1lr_MP, 14e	47.68	58.29	46.74	54.42	65.72	53.68
rt_img_radarformer _r50_da_small_hea d_3layer, 16e	83.07	89.42	92.65	86.93	90.79	93.22
adc_img_radarform er_r50_da_MP_3lay er, 16e	82.86	87.26	88.70	87.38 5057 6826	92.57	93.49

即使不做Range-FFT,网络依然可以学到类似的变换。

小结

• 原始数据相比于点云,没有信息损失,在远距离检测中优势明显。

• FFT等效于一个linear layer,网络可以隐式学习到传统雷达信号处理 的过程。

- 图像缺乏深度,Radar角度分辨率较低,两者刚好互补。
- 原始数据的数据量较大,需要很强的系统设计和集成能力。

全栈自研智能驾驶解决方案

"节油领航"系列产品

搭载在自研 TS-BOX 上

集成传感器输入、高性能中间件、车辆控制单元(VCU)和自动驾驶应用软件

采用自研自动驾驶算法,通过 ETA (预计到达时间)计算实现最高效的节油

节油、安全,满足高速点到点领航

"节油领航"传感器布局(可选配前向LiDAR)

已获两家OEM量产项目定点,24年底SOP

域控集中式4D Radar性能更好

感知方案总包,减少○EM烦恼

工具链友好,研发更高效

整套方案成本更低: GNSS / INS系统成本更低

商用车和乘用车都支持

谢谢大家!

文章链接: https://arxiv.org/abs/2307.16532

开源代码: https://github.com/tusen-ai/EchoFusion