NanoMapper: An Efficient Read Mapping Algorithm Using Gapped Minimizer and FM-indexing for Oxford Nanopore Long Noisy Reads

Supervisor:

EAMIN RAHMAN
Assistant Professor,
Department of Computer Science and Engineering
Shahjalal University of Science and Technology

Presenters

ENAMUL HASSAN Reg. No.: 2011331051 4th year, 2nd Semester

MD. KHAIRULLAH GAURAB Reg. No.: 2011331063 4th year, 2nd Semester

Department of Computer Science and Engineering Shahjalal University of Science and Technology

Table of Contents

- Human Cell To Mapper
- Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- Future Work
- Onclusion

Table of Contents

- Human Cell To Mapper
- 2 Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- Future Work
- Onclusion

Human Cell To DNA Sequence

Mutation

6 / 55

Figure: Random mutations and Segment mutation.

Mapper

Reference

Read

Figure: Mapping is just indicating the clusters of a large segment of the read in reference.

Aligner

Figure: Three possible alignments based on the read mapping.

Table of Contents

- Human Cell To Mapper
- 2 Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Alignment Needs Mapping

- Variant Calling
 - Identification of causative genes , candidate genes, passenger and driver genes in many complex diseases, disorders and cancers.

Alignment Needs Mapping

- Variant Calling
 - Identification of causative genes, candidate genes, passenger and driver genes in many complex diseases, disorders and cancers.
- DNA Binding
 - Finding DNA-Binding sites on specific reference genome sequence.

Alignment Needs Mapping

- Variant Calling
 - Identification of causative genes, candidate genes, passenger and driver genes in many complex diseases, disorders and cancers.
- DNA Binding
 - Finding DNA-Binding sites on specific reference genome sequence.
- Gene Expression
 - Classification of human tumors, profiling breast cancer, Ontological analysis.

Table of Contents

- Human Cell To Mapper
- 2 Why Mapper Is Needed?
- 3 What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Challenges Developing Mapper

• Illumina/Solexa Technologies Produces Short Reads – 30 - 300 BP

Challenge

Very Repetitive for Long Reference Like 3 billion BP

Challenges Developing Mapper

• Illumina/Solexa Technologies Produces Short Reads – 30 - 300 BP

Challenge

Very Repetitive for Long Reference Like 3 billion BP

 PacBio's Oxford Nanopore Technology Produces Long Reads – 10K -60K

Challenge

The More The Length, The More The Noise

Challenges Developing Mapper

• Illumina/Solexa Technologies Produces Short Reads – 30 - 300 BP

Challenge

Very Repetitive for Long Reference Like 3 billion BP

 PacBio's Oxford Nanopore Technology Produces Long Reads – 10K -60K

Challenge

The More The Length, The More The Noise

Needs Huge Memory To Index Reference Sequence

Table of Contents

- Human Cell To Mapper
- Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Minimap

- Used Minimizer and Min-sketch
- Tweaked for Miniasm
- Multi-threaded
- Not Tested Enough Yet

Output Format

The output format is PFA which is different than other tools.

BWA

- Two versions:
 - BWA / BWA-MEM for Illumina/Solexa reads
 - BWA-SW for Oxford Nanopore Reads of MinION instrument
- Used BWT
- Used Prefix-Trie Traversing Top-Down Fashion
- Applied Smith-Waterman-like Dynamic Programming
- Multi-threaded

Bowtie

- Two versions:
 - Bowtie
 - Bowtie 2
- Used BWT FM-index
- Quality-aware Backtracking Algorithms Enabling Mismatches
- Double Indexing To Avoid the Excessive Use of Backtracking

16 / 55

Enam & Gaurab (SUST) NanoMapper October 24, 2016

MUMmer

- Three versions: 1, 2, 3
- Used Suffix-Tree

NanoBLASTer

- Used "seed-and-extend" Technique
- Dynamic Programming Based Extension Mechanism
- Faster than Leading Alignment Tools
- Less False Positive Rate

Limitation

Could not Handle Long Insertion or Deletion

Long Insertion

Figure: Mapping Two Long K-mers with Long Deletion in Read.

Long Deletion

Reference

Read

Figure: Mapping Two Long K-mer with Long Insertion in Read.

Table of Contents

- Human Cell To Mapper
- Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Minimizer Approach

There are two versions of this approach:

- Naive Window Technique
- Efficient Window Traversing Technique

Minimizer Approach

Figure: Mapping Minimizers.

Minimizer Approach: Result

Table: Minimizer Hits For Increasing Error Rate.

Error (%)	Found In	Found In	Found Both In
	Reference	Range	and Out of Range
	(%)	(%)	(%)
0	99.96	69.2	30.7
5	71.8	62.4	27.2
10	53.8	52.8	25.5
15	43.5	47.4	21.7
20	34.8	39.8	17.9
45	0.2	40	40

Gapped Minimizer

Problem

The More The Error, The More The Mismatches

Gapped Minimizer

Problem

The More The Error, The More The Mismatches

Solution

Insert Gap in Both Reads and Reference To Neutralize Mismatches At Every Certain Number of Bases.

Gapped Minimizer

Problem

The More The Error, The More The Mismatches

Solution

Insert Gap in Both Reads and Reference To Neutralize Mismatches At Every Certain Number of Bases.

Remark

In NanoMapper, Gaps are Added Every Third Base Assuming 33% Error.

Example: ATCTGGTAATCATAGCGTAC With Gap: AT_TG_TA_TC_TA_CG_AC

BWT FM-index Approach

This approach also has two versions:

- Naive Approach
- Enhanced Approach

BWT FM-index Approach : Method

- Index the Reference Genome
- Take a Read
- Take the Next K-mer. If There is not Any, Go to Step 9

Exit

BWT FM-index Approach: Method

- Index the Reference Genome
- Take a Read
- Take the Next K-mer. If There is not Any, Go to Step 9
- If it is not in the Reference, Go to Step 3
- **5** Let i = 1
- **o** If (K + i)-mer does not Exist, Go to Step 8
- O Do i = i + 1 and Go to Step 6.
- ullet Write the Locations of (K+i-1)-mer To the Output and Go to Step 3
- Exit

BWT FM-index Approach : Method

Figure: A K-mer with Value $K = K_{min}$ is Picked Up from Read and Indicated Where The K-mer is Found in the Reference.

BWT FM-index Approach: Method

Figure: Extending One Base in K-mer, The Locations of (K+1)-mer in the Reference is Reduced.

29 / 55

BWT FM-index Approach : Method

Figure: Extending One More Base , The Locations of (K+2)-mer in the Reference is Reduced And Now It is Only 3.

30 / 55

BWT FM-index Approach: Method

Figure: Continuing the Extension, (K+3)-mer is Created. The Count in Reference is Only One.

31 /

BWT FM-index Approach: Method

Figure: (K + 4)-mer is Made By Appending One Base From Read. It has No Consequence in The Count in Reference.

BWT FM-index Approach: Method

Reference

Figure: One Base Extension in (K + 4)-mer, There is No Existence of (K + 5)-mer in Reference. So, the Locations Got From (K + 4)-mer Would be Considered as Final.

BWT FM-index Approach : Method

Figure: (K + 4)-mer is Made By Appending One Base From Read. It has No Consequence in The Count in Reference.

BWT FM-index Approach: Result

Which Length of K-mer Dominates the Mapping by What Percentage

BWT FM-index Approach: Result

of Locations Where the Final K-mers are Found VS Their Percentage

BWT FM-index Approach : Naive vs Enhanced

Exec. Time Comparison Between Naive vs Enhanced FM-index Approach

BWT FM-index Approach vs Minimap

Memory Requirement for Indexing: FM-index Approach vs Minimap

Table of Contents

- Human Cell To Mapper
- 2 Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Hotchpotch Recipe

- Minimizer
- Window Technique

Hotchpotch Recipe

- Minimizer
- Window Technique
- Gap Insertion
- Enhanced BWT FM-index

Hotchpotch Recipe

- Minimizer
- Window Technique
- Gap Insertion
- Enhanced BWT FM-index

NanoMapper

A Hot Hotchpotch having All Above Characteristics

NanoMapper

NanoMapper

NanoMapper: Result

Table: Summary of Processing Reference genome

No	Reference Name	Reference Length	# of Minimizer	Indexing Time (Mini.)	Indexing Time (FM)	Memory Usage (MB)
1	E.Coli	4639211	682246	0.46	1.76	1.67
2	Synthetic	493290	12225	0.04	0.16	0.18

NanoMapper: Result

Table: Summary of Processing Read Sequences

No	Name of Data Set	Total Length of Reads	Time to Map (Naive)	Time to Map (Enhanced)
1	20K Simulated Reads	118335765	19538.9 (5h 26m)	17051 (4h 44m)
2	25K Reads	216906558	9408.94 (2h 37m)	9869.78 (2h 45m)
3	Synthetic Reads	500000	3867.97 (1h 5m)	0.90

Table of Contents

- Human Cell To Mapper
- What are the challenges?

- Comparison

October 24, 2016

Table: Mapping Comparison While 5% Error Added in Read Data

Name of the	Right Position	Wrong Position	
Tool	(%)	(%)	
BWA-MEM	88.4	11.6	
NanoBLAST	86.55	13.45	
NanoMapper	97.42	2.58	

Right Region Mapping Percentage for 5% Error Reads

Table: Mapping Comparison While 10% Error Added in Read Data Eliminating K-mer Having Length \leq 15.

Name of the	Right Position	Wrong Position
Tool	(%)	(%)
BWA-MEM	88.82	11.18
NanoBLAST	88.72	11.28
NanoMapper	99.02	0.98

10% Error Reads Eliminating K-mers Having Length \leq 15

Table of Contents

- Human Cell To Mapper
- Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

API Enhancement

- API Enhancement
- Integration with NanoBLASTer

- API Enhancement
- Integration with NanoBLASTer
- Testing

- API Enhancement
- Integration with NanoBLASTer
- Testing
- Developing New Aligner

Table of Contents

- Human Cell To Mapper
- 2 Why Mapper Is Needed?
- What are the challenges?
- 4 Existing Tools
- Our Approaches
- 6 Gapped Minimizer and BWT FM-index Merged Approach
- Comparison
- 8 Future Work
- Onclusion

Special Thanks

Enamul Hassan

Sir, But where are we usin

n of vectors? Are not we taking t...

Md. Ruhul Amin Shajib

প্রাপক: আমাকে, Khairullah

MOHAMMAD RUHUL AMIN Assistant Professor,

Department of Computer Science and Engineering Shahjalal University of Science and Technology

Thank You

