

Teorema de Gliven les

THA vale en légica clésica (NK) (Proposicional). 5. 4 80 b Si TH77A vale en lógica intuitivaiste (NJ) Den. (() Si THOTA vale en NJ entonce) THOTA vale en NK. -LEM T HAVJA Entonies FFA vale en NK. (⇒) Por inducción en la derivación del juicio T+A en NK, Veams que THOTA en NJ. $\Gamma_{A}, \gamma_{A} \vdash \gamma_{A} \qquad \overline{\Gamma_{A}, \gamma_{A} \vdash A} \qquad A^{\times}$ TIA HOTA 2) NI T+B r+7 THAMB <u>ALA</u> $\frac{A}{\Gamma, \gamma(A \wedge B), A, B + \gamma(A \wedge B)} \qquad \frac{A}{\Gamma, \gamma(A \wedge B), A, B + A}$ $\frac{A}{\Gamma, \gamma(A \wedge B), A, B + 1}$ $\frac{A}{\Gamma, \gamma(A \wedge B), A, B + 1}$ HI TIT(ANB), A F7B T 177B TITIANBIA HTOB HI T,7(AAB),A HI T L JJA T, 7(AAB) - 77A W T, 7(AAB) H 7A () (AVB) +T [- 77 (ANB)

Semantica de Kripke

Inportancia de la sendatica:
1) Ver que la teoria tiene un modelo.
2) Dar un nétodo para refuter una proposición.
- Uno podría enumerar teoremos (juicios [HA] demostrable).
es recursivamente enumerall
- Si una tuviera una nación de modela,
Podría enumerar posibles interpretaciónes
· · · · · · · · · · · · · · · · · · ·
y si encuentra una donde [#A, sabría que [HA.
audin que III.
Teorena. Si HA en NJ proposicional,
existenun algebra do Heyting y una relucción
26 1 v
tg.
Tolo, v \ A. (Contranodelo)
Més aun, el Contromodelo tiene Cardinal a lo suno
2 ^(A)
Z''''

Def. Un mode la de Kriphe es una tripla M=(W, K, V)

- . W es un cjto, de elementos que se llaman "mundos"
- € ⊆ WxW ej un a relación de orden (refl, sym, trans).
- $V: W \longrightarrow \mathcal{P}(Var)$. $V_w \subseteq Var$

Tal que cample:

Monotonía w & w' -> Vw = Vw'.

Ej.

Def. Si Mes un modelo de Kriphe, y w un mundo, definimos: M, w H-A así:

M, w H d \Leftrightarrow d \in V_w

M, w H A AB \Leftrightarrow M, w H A y M, w H B

M, w H A AB \Leftrightarrow Yw' > w . S: M, w H A entonces M, w' H B

M, w H A AB \Leftrightarrow Yw' > w . S: M, w' H A entonces M, w' H B

M, w H I No vale en ningún mundo.

Lema (Monotonía generalizada). Si W € W'

y M, W H A entonces M, W' H A.

Den. Por ind. en A.

1) M, W H A Si of E V E V W,

per la tento

M, W' H A.

2) M, W H A A B Si M, W H A Y M, W H B

Luego por HI M, W' H A Y M, W' H B

Luego M, W' H A A B.

3) M, W H A Y B Si V W' ≥ W. Si M, W' H A

4) M, w H A >B & Yw" > w. x. M, w" H A

entonce, M, w" H B.

Entine Min" HA AB, porque si w" > w' también w" > w.

5) M, WHI nonce vale.

M, WHA

N	ota	10 U

· MHA Si Yw. M, WHA.

- · M, WHT in YAET, M, WHA.
- · THA Si YM YW. h. M, WHT entonce M, w HA.

Teorema (Correctitud). Si THA en NJ proposicional entonces THA.

Den. Sea M un modelo de Kripke fijo.

y vecmor que si THA
estoneu Yw(M, wHT implica M, wHA),

por inducción en la derivación de FFA.

Tenemol que ver que si

M, w H T, A extonce M, w H A.

Por HI sobre TT:

Por HI sobre TI:

 $(M_1WH\Gamma \Rightarrow M_1WHB).$ $(M_1WH\Gamma \Rightarrow M_1WHAAB).$

Sip. que M, WHT.

Par hi. Vale M, WHA.

Per hii Vale MIWHB.

Por lo tento MIW HAAB.

M, W, H+ XY7X

· M, wy H+ d pues & + Vwz · M, W, H+ 7d pues M, W, H-7d significa que Fre Tw' > W1 . M1 W' H X => M, W' H L er dear +w'=w. M. w' H. d. Pero M, wz H d. Completitud. no necesariamente finito Def. Un cito. T de térmulas es una teoria prima a: 1) Cerrado por deducción. Si THA en NJ proposicional entonics AET. 2) Disyuntiva. S: AUBET entonus AET & BET. 3) Consistente. THI (equivolontemente JA. THA).

Lema (Saturación). Si THA entonces existe T'2T
tq. T' es una teoría prima
γ Γ' H-A-
,
Dem. Vamos a Construir una sucesión
$\Gamma = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$
· · · · · · · · · · · · · · · · · · ·
tal gue th. Th HA.
· Sup. que The ya esté construido y construyamos Thas:
Consideremos una enumeración de todas las formulas Az, Az, Az, Az,
Elegimos una formula de la pinta BVC
tal que To + B v C
Ly que no haya sido el egida en un paso anterior.
Afinno: O bien To, BHA o bien To, CHA.
Den. Si Th, B + A y Th, C + A tendrianos:
15/01 mus?
Th + BVC Th, B+A Th, C+A EV
Abs. (Sablamos Th HA).
HOS, (SAULAMOS IN FFA).
S: []
- Si la, B ++ A, tonamos The := Th, B.
De la contrario, tomamos These:= Theo.
$h_{+1} := h_{1}C.$

Ahora tomamos $\Gamma' := \bigcup \Gamma_k$.

Veamos que comple con la reguerido:

1) T' HA, pues si T' HA, tendríamos que Th HA
Para algun h.

(Imposible).

2) [es corrada por deducción.

. Sup. que T'+B y veamos que B ET'.

· Como l'HB entonces The B pura algún & EW.

Entonces Th + B V B.

Entonces en algún nomento la Gostrucción elige BVB. (En algún paso jeIN).

Tita = Ti, B.

Por la tenta BET'.

3) T' es disquntiva.

Sip. T'HBVC y veamos que BET' & CET'.

Entonles To + BUC pura algún k.

Entonce la construcción elige BUC en algún poso jEIN.

Enbrug

Titz := } Ti, B

Con b and BET & CET.

4) T' es consistente. Facil, porque ya saliams que T'HA. hego T'HI. Def. (Modelo de Kripke conónico). $M_o = (W_o, \subseteq, V)$ Wo = { T | T es una teoría prima }. V= { a | T + a } Observación Ma es un modelo de Kripke. es decir, vale inpropiedad de monotonía: Si boldre 8. That entinces T'ha. Lena (Main Semantic Lemma). Si T es una tenría prima, para toda firmula A. Mo, THA siysbosi AET. Den Por inducción en A MO, THO WEVE STED WET. 2) Mo, THBAC > Mo, THB y Mo, THC BEL A CEL Pon MI TH BAC BACET THONC THANK

tescen	a (complet	ritud).							
			-A ento	nces T H	-A.				
Dem.	Por la (contracte c	iproca.						
	Sp. gcm.	1 gre	Γ	yv	emul que	T #+	. Д.		
	Por el la	enc de sa	ración, 37	-1 <u> </u>		+ A .			
	1561155 133100								
	Pero	Mo, T	·/ H-r'	\mathcal{M}_{ϵ}	, r'H+	Α.			
		M ₈ , Γ	-′ H-A		(Porel Mai	n Semantk	Lenna).		
			AET'						
			ne t						