Deliverable exercise FC: Compound Pendulum

Mauro VÁZQUEZ CHAS, Dániel MÁCSAI

Master in Artificial Intelligence

Planning and Approximate Reasoning $\operatorname{Work} 4$

10th January 2024

Contents

1	Introduction	1
2	Design of the Fuzzy Controller	1
	2.1 Membership functions	1
	2.2 Rules	1
3	Results	2
4	More complex controller	2
5	Conclusions	2

1 Introduction

2 Design of the Fuzzy Controller

2.1 Membership functions

- Error:
- Error Derivative: TODO comment on how we changed the error derivative to $[-15\ 15]$ from $[-5\ 5]$ Reason: it was out of bounds, and the fuzzy controller returned 0 in the Simulink simulation

- Thrust:

Maybe comment about that defining the lowest (and highest) membership function as a triangle (which decreases after reaching its maximum, if we further decrease it: see screenshot) is not a good idea in our opinion as it is not realistic, but we did it this way to follow the instructions since, it was defined as a triangle in the exercise.

2.2 Rules

Rule	
If Error is Negative and ErrorDerivative is Decreasing then Thrust is	1
Negative	
If Error is Zero and ErrorDerivative is Decreasing then Thrust is	1
Negative	
If Error is Positive and ErrorDerivative is Decreasing then Thrust is	1
Positive	
If Error is Negative and ErrorDerivative is Stationary then Thrust is	1
Negative	
If Error is Zero and ErrorDerivative is Stationary then Thrust is Zero	1
If Error is Positive and ErrorDerivative is Stationary then Thrust is	1
Positive	
If Error is Negative and ErrorDerivative is Increasing then Thrust is	1
Negative	
If Error is Zero and ErrorDerivative is Increasing then Thrust is	1
Positive	
If Error is Positive and ErrorDerivative is Increasing then Thrust is	1
Positive	

Table 1: Rules and Corresponding Weights

3 Results

4 More complex controller

(with at least 7 membership functions)

TODO: "Explain and reason what happens if you increase the number of membership functions (7 or more) of the output?"

It doesn't talk about it, but if we design the 7 membership functions and the rules, we can implement it in another controller, and run the simulation to see what happens. I've created pendulum-fuzzy-complex.fis, but so far it is the copy of the original, nothing is modified.

5 Conclusions

References