

Wumpus World Performance measure: • Gold +1000, Death -1000, -1 per step, -10 for using Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Y::1 Glitter iff gold is in the same square Shooting kills wumpus if you are facing it . Shooting uses up the only arrow Grabbing picks up gold if in same square • Releasing drops the gold in same square • Left turn, Right turn, Forward, Grab, Release, Shoot Sensors: Breeze, Glitter, Smell. 5

Exploring the Wumpus World

P?

B OK OR

D OK OR

11

12

$\frac{B_{1,1}}{false}$	$B_{2,1}$ false	$P_{1,1}$ false	$P_{1,2}$ false	$P_{2,1}$ false	$P_{2,2}$ false	$P_{3,1}$ false	R ₁	R ₂ true	R ₃ true	R ₄ true	R ₅ false	KB false
false	false	false	false	false	false	true	true	true	false	true		false
;	;	;	jacoc	;	;	:	:	:	jaioc	:	;	jaio.
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
- 1	- 1	- 1	- 1		:	1	:	:	- 1	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false
Enum	erate	rows	(differ	ent as	signm				true	false	true	fal

Inference by Enumeration

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic symbols — a list of the proposition symbols in KB and α return TT-CHECK-ALL(KB, α , symbols, [])

function TT-CHECK-ALL(KB, α , symbols, model) returns true or false if EMPTY?(symbols) then if PL-TRUE?(KB, model) then return PL-TRUE?(α , model) else return true else do $P \leftarrow \text{First}(symbols)$; rest — REST(symbols) return TT-CHECK-ALL(KB, α , rest, EXTEND(P, true, model)) and TT-CHECK-ALL(KB, α , rest, EXTEND(P, false, model)) $O(2^n)$ for n symbols; problem is co-NP-complete

32

34

 $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan

31

Validity and Satisfiability A sentence is valid if it is true in all models, e.g., True, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$ Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid → If KB is true, alpha is always true. Hence, I can say that alpha follows from A sentence is satisfiable if it is true in some model e.g., $A \vee B$, CA sentence is unsatisfiable if it is true in no models Suppose that e.g., $A \wedge \neg A$ KB=true. Then, this will become unsatisfiable only when alpha is true. Hence, I can say that alpha follows from KB Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by reductio ad absurdum

33

 $(\alpha \wedge (\beta \vee \gamma)) \, \equiv \, ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of} \ \wedge \ \text{over} \ \vee \\$

 $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of} \ \lor \ \text{over} \ \land$

Two Famous Inference Rules

Modus Pon $P\Rightarrow Q$, PGiven that P implies Q, and I know that P is true, then I can infer Q

Given that P AND Q is true, I can infer that P is true, and I can also infer that Q is true.

 $\begin{array}{c} \textbf{Resolution} \\ \textbf{Conjunctive Normal Form (CNF—universal)} \\ \textbf{conjunction of } \underbrace{\textbf{disjunctions of literals}}_{\textbf{clauses}} \\ \textbf{E.g., } (A \vee \neg B) \wedge (B \vee \neg C \vee \neg D) \\ \textbf{Resolution inference rule (for CNF): complete for propositional logic} \\ \hline & \ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n \\ \hline & \ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n \\ \hline & \text{where } \ell_i \text{ and } m_j \text{ are complementary literals. E.g.,} \\ \hline & P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2} \\ \hline & P_{1,3} & \\ \hline & Resolution \text{ is sound and complete for propositional logic} \\ \hline & \mathbf{g}^{\mathbf{g}} \\ \hline & \mathbf{g}^$

35 36

Resolution Algorithm Resolution rule: ανβ $\neg \beta \lor \gamma$ ανγ Resolution refutation: . Convert all sentences to CNF Negate the desired conclusion (converted to CNF) Apply resolution rule until either - Derive false (a contradiction) - Can't apply any more · Resolution refutation is sound and complete • If we derive a contradiction, then the conclusion follows from the If we can't apply any more, then the conclusion cannot be proved from the axioms.

38

40

37

Resolution Example $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$ $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1} \ \alpha = \neg P_{1,2}$ $\neg B_{11} \lor P_{12} \lor P_{21}$ $\neg P_1, \lor B_{11}$ $\neg B_{1,1} \lor P_{1,2} \lor B_{1,1} P_{1,2} \lor P_{2,1} \lor \neg P_{1,2} \neg B_{1,1} \lor P_{2,1} \lor B_{1,1} P_{1,2} \lor P_{2,1} \lor \neg P_{2,1}$ Add P1,2 Add P1,2 Del P2,1 Del P1,2 Add P2,1 added This returns an empty clause. So, alpha is true.

