Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Assignment 3

We use the notations and conventions from the course, e,g. a map refers to a continuous map, a space refers to a topological space, S^1 denotes the unit circle, and D^2 the unit disc.

Exercise 1.

- (a) Let $[v_0, v_1, v_2]$ be a 2-simplex. Define $X = [v_0, v_1, v_2]/_{\sim}$ with the equivalence relation given by $v_0 \sim v_1 \sim v_2$. Compute the simplicial homology of X.
- (b) Let $[v_0, v_1, \ldots, v_n]$ be an *n*-simplex. For $1 \le k \le n$ and $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$ denote by $\varphi_{\underline{i}} : \Delta^k \to [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ the canonical homeomorphism from the standard *k*-simplex to $[v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ (as defined in the course).

Now define $X = [v_0, v_1, \ldots, v_n]/_{\sim}$ where for any $\underline{i} = (0 \le i_1 < i_2 < \ldots < i_k \le n)$, $\underline{j} = (0 \le j_1 < j_2 < \ldots < j_k \le n)$, and $x \in [v_{i_1}, v_{i_2}, \ldots, v_{i_k}]$ we set $x \sim \varphi_{\underline{j}} \circ \varphi_{\underline{i}}^{-1}(x)$, i.e. we identify all k-simplices contained as iterative faces in $[v_0, v_1, \ldots, v_n]$ via the canonical homeomorphisms. Compute the simplicial homology of X.

Exercise 2. Let $r: X \to A$ be a retraction of a space X to a subspace A and $i: A \to X$ the inclusion. Show that $i_*: H_n(A) \to H_n(X)$ is injective and $r_*: H_n(X) \to H_n(A)$ is surjective for all $n \ge 0$.

Exercise 3. Let $A = S^2$ and $D = \{(x, 0, 0) \mid -1 \le x \le 1\}$ inside \mathbb{R}^3 .

- (a) Compute the simplicial homology of $X = A \cup D$.
- (b) Compute the simplicial homology of the simply-connected covering space \widetilde{X} of X.

As a reminder: There is an explicit construction of \widetilde{X} in Assignment 2 - Solutions, Exercise 4(c). Let $\Theta_k : \mathbb{R}^3 \to \mathbb{R}^3$ be the translation defined by $\Theta_k(x,y,z) = (x+k,y,z)$. Define $A_k = \Theta_{2k}(A)$, for $k \in \mathbb{Z}$ even, and $A_k = \Theta_{2k}(D)$, for k odd, and set

$$\widetilde{X} = \bigcup_{k \in \mathbb{Z}} A_k \subset \mathbb{R}^3.$$