Доп. задачи из книг "Сборник задач по математическому анализу". Том 3. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упраженениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Метрические пространства

Часто факты, верные в метрических пространствах, противоречат интуиции. Примеры рассматривались на лекции, а в задаче 2 приведён пример ещё одного такого факта. Попробуйте привести примеры таких, на первый взгляд, парадоксальных фактов для тех случаев из задачи 1, где получается метрика.

- **1.** Является ли метрикой на числовой прямой функция ρ , если:
- a) $\rho_1(x,y) = \text{arctg } |x-y|;$ 6) $\rho_2(x,y) = (x-y)^2;$ B) $\rho_3(x,y) = |xy|.$ Cm. maxime c. 12, Nº1 Nº3 [1], NºT8.8 [2].
- **2.** Существует ли в пространстве (\mathbb{R} , ρ_1) ограниченное и замкнутое множество, в котором найдётся последовательность, не содержащая ни одной сходящейся подпоследовательности?

Нормированные пространства

Часть фактов о нормированных пространствах будет в вопросах к коллоквиуму, но ниже мы встретим задачи, опирающиеся на эти факты.

3. Докажите, что при любом $p \ge 1$ отображение

$$||\cdot||_p:\mathbb{R}^d\to[0,+\infty),$$

задаваемое формулой $||v|| = \sqrt[p]{\sum_{k=1}^d |u_k|^p} \ \forall v \in \mathbb{R}^d$, является нормой на \mathbb{R}^d , но только при p=2 эта норма задаётся скалярным произведением.

4. На линейном пространстве \mathbb{R}^2 рассматриваются нормы

$$||\boldsymbol{v}||_1 = |v_1| + |v_2|, \ ||\boldsymbol{v}||_2 = \sqrt{v_1^2 + v_2^2}, \ ||\boldsymbol{v}||_{+\infty} = \max\{|v_1|, |v_2|\},$$

где $\boldsymbol{v}=(v_1,v_2)$. Изобразите единичный круг с центром в точке (0,0) для каждой из этих норм. См. также с. 12, №3 – №7 [1], №T8.1 – №T8.5 [2].

Множество уровня

Множество уровня функции $f: E \to \mathbb{R}, \ E \subset \mathbb{R}^d$ – это множество точек $(x_1, ..., x_d) \in E$, удовлетворяющих уравнению вида $f(x_1, ..., x_d) = c$, где c является фиксированной постоянной. Если d=2, то множество уровня называется линией уровня. В этом случае геометрически эти линии представляют собой ортогональные проекции на плоскость Oxy сечений поверхности z=f(x,y) горизонтальными плоскостями вида z=c.

- **5.** Для любого ли множества $M \subset \mathbb{R}^2$ существует функция z = f(x, y), для которой это множество является множеством уровня?
 - 6. Найти и изобразить множества уровня функций:

a)
$$f(x,y) = x^2 - y^2$$
; 6) $f(x,y) = 4x^2 + 4y^2$; B) $f(x,y) = \frac{y^2}{x}$. Cm. c. 33, No 19 - No 20 [1].

Пределы

Предел вида $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ называют двойным, так как в нём переменные x и y стремятся к значениям x_0 и y_0 одновременно, а предел вида $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ называются

повторными, так как здесь сначала переходят к пределу при $y \to y_0$, а затем уже находят предел при $x \to x_0$. Аналогично, в повторном пределе $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ переходят к пределу сначала по x, а потом – по y.

Справедливо следующее утверждение. Если при всех x из некоторой проколотой окрестности точки x_0 существует предел $\lim_{y\to y_0} f(x,y)$ и существует двойной предел $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$, то существует повторный предел

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{(x,y) \to (x_0, y_0)} f(x, y).$$

В этом утверждении можно поменять ролями переменные x и y.

Запись $\lim_{y \to x_0, x \to y_0} f(x, y)$ означает, что x и y одновременно стремятся к x_0 и y_0 соответственно. В пунктах г и д видна разница между пределами вида $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ и $\lim_{y \to x_0, x \to y_0} f(x, y).$

Если оба повторных предела существуют, но не равны друг другу, то двойной предел в соответствующей точке не существует.

Если повторные пределы равны, то двойной предел существовать не обязан. Бывают ситуации, когда есть двойной предел и один из повторных, а другой повторный не существует.

7. Найти следующие пределы:

7. Наити следующие пределы:
a)
$$\lim_{x\to 0+} \lim_{y\to +\infty} \frac{y^x}{2-y^x}$$
; б) $\lim_{y\to +\infty} \lim_{x\to 0+} \frac{y^x}{2-y^x}$; в) $\lim_{x\to \infty} \lim_{y\to \infty} \frac{\sqrt{x^2+y^2}}{xy}$; г) $\lim_{y\to \infty, x\to \infty} \frac{\sqrt{x^2+y^2}}{xy}$; д) $\lim_{(x,y)\to \infty} \frac{\sqrt{x^2+y^2}}{xy}$. См. с. 35 – с. 37, №37 – №48 /1].

Непрерывность и специфика функций двух переменных

В задачах ниже рассматриваются важные примеры, помогающие развить нужную интуицию, необходимую при работе с многомерными отображениями. Будет полезно рассматривать поведение функций вдоль некоторых кривых. При решении задач будет полезна полярная замена.

8. Покажите, что в любой окрестности точки (0,0) функция

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x = y = 0 \end{cases}$$

принимает все значения из отрезка [-1,1]. См. с. 31, №10 – №11 [1], №T8.30 [2].

9. Покажите, что следующие функции непрерывны в точке
$$(0,0)$$
:
a) $f(x,y) = \begin{cases} \frac{\sin xy}{x}, & x \neq 0, \\ y, & x = 0, \end{cases}$ 6) $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x = y = 0. \end{cases}$

См. с. 37 - c. 38, №51 - №<math>59 [1], №T8.32 [2].

10. Покажите, что следующие функции разрывны в точке
$$(0,0)$$
: **a)** $f(x,y) = \begin{cases} \frac{x^3+y^2}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x=y=0, \end{cases}$ **6)** $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x=y=0. \end{cases}$ *См. с. 37 – с. 38, №51 – №59 [1], №T8.33 [2].*

Домашнее задание 14

1. Является ли метрикой на числовой прямой функция:

a)
$$\rho(x,y) = \sin^2(xy)$$
; 6) $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$?

2. Найти и изобразить множества уровня функций:

a)
$$f(x,y) = \sqrt{x} + \sqrt{y}$$
; 6) $f(x,y) = xy$.

3. Найти оба повторных предела и двойной предел функции f в точке (0,0) или доказать, что их нет, если:

a)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0; \end{cases}$$
 6) $f(x,y) = \begin{cases} x + y \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

4. а) Покажите, что в любой окрестности точки (0,0) функция

$$f(x,y) = \begin{cases} e^{\frac{x}{x^2 + y^2}}, \ x^2 + y^2 \neq 0, \\ 0, \ x = y = 0 \end{cases}$$

принимает все положительные значения.

б) Покажите, что функция:

$$f(x,y) = \begin{cases} x^2 \ln(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 0, & x = y = 0 \end{cases}$$

непрерывна в точке (0,0).

5. Покажите, что функция f разрывна в точке (0,0), если:

a)
$$f(x,y) = \begin{cases} \sin\frac{y}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
 . 6) $f(x,y) = \begin{cases} \frac{x^3 + y^2}{x^2 + y}, & x^2 + y \neq 0, \\ 0, & x^2 + y = 0 \end{cases}$

Дополнительные вопросы к коллоквиуму

(Метрические и нормированные пространства, многомерные отображения)

- **1.** $(0.5 \, \text{балла}) \, \text{Докажите, что:}$
- а) (0.5 балла) функция $\|\cdot\|: V \to [0, +\infty)$ является непрерывной;
- **б**) $(1,5 \ балла)$ нормированное пространство $(V, ||\cdot||)$ является евклидовым тогда и только тогда, когда для любых векторов \mathbf{u} и \mathbf{v} , принадлежащих V, выполнено тождество параллелограмма:

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$

- **2. а)** $(0.5 \, \text{балла})$ Приведите пример метрического пространства с евклидовой метрикой, в котором существуют два таких шара различных радиусов, что шар с большим радиусом содержится в шаре с меньшим радиусом.
- **б)** $(1,5 \ banna)$ Докажите, что в нормированном пространстве шаров с таким свойством не существует.
- **3.** (1.5 балла) Докажите, что на конечномерном векторном пространстве все нормы эквивалентны.
- **4.** $(1,5 \, \text{балла})$ Можно ли расположить в пространстве \mathbb{R}^k двумерную сферу S^2 и окружность S^1 так, чтобы расстояние от любой точки сферы до любой точки окружности было одно и то же?
- **5.** (2 балла) Верно ли, что всякий многочлен от двух переменных, принимающий только положительные значения, достигает своей точной нижней грани на плоскости?