

Grades

davidcorzo@ufm.edu (Sign OUt)

Communication

Home My Assignments
Calendar

My eBooks

← MC 006, section B, Fall 2019

7.8 Integrales Impropias (Homework)

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score https://www.webassign.net/web/Student/Assignment-Responses/last?dep=21548012

Tour last subtilission is ascaller your score.

1. 3/3 points Previous Answers SCalcET8 7.8.005.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

	 5 -	
		//

2. 3/3 points Previous Answers SCalcET8 7.8.006.

- My Notes
- **Ask Your Teacher**

Determine whether the integral is convergent or divergent.

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

DIVERGES

3. 3/3 points Previous Answers SCalcET8 7.8.009.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{2}^{\infty} e^{-7p} dp$$

convergent
divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

17e14

4.

3/3 points Previous Answers SCalcET8 7.8.014.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{1}^{\infty} \frac{e^{-1/x}}{x^2} dx$$
convergentdivergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

	 •	
		_/1− <i>e</i> −1
~//		

5.

3/3 points Previous Answers SCalcET8 7.8.023.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{-\infty}^{0} \frac{z}{z^4 + 4} dz$$

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

⊿−п8

6. 3/3 points Previous Answers SCalcET8 7.8.041.

My Notes

Ask Your Teacher

Sketch the region.

$$S = \left\{ (x, y) \mid x \ge 1, \, 0 \le y \le e^{-x} \right\}$$

Find its area (if the area is finite). (If the area is not finite, enter ∞ .)

_____e−1

7. 3/3 points Previous Answers SCalcET8 7.8.055.

My Notes

Ask Your Teacher

The integral

$$\int_0^\infty \frac{4}{\sqrt{x}(1+x)} \, dx$$

is improper for two reasons: The interval $[0, \infty)$ is infinite and the integrand has an infinite discontinuity at 0. Evaluate it by expressing it as a sum of improper integrals of $\underline{\text{Type 2}}$ and $\underline{\text{Type 1}}$ as follows.

8. 3/3 points Previous Answers SCa

SCalcET8 7.8.501.XP.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Determine whether the integral is convergent or divergent. If it is convergent, evaluate it.

$$\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

Step 1

$$\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx \text{ can be evaluated using the substitution } u = \sqrt{x} \text{ and } \checkmark \left[\frac{1}{2\sqrt{x}}\right] dx.$$

Step 2

When x = 1 we have u =

\$\$1

 $\sqrt{1}$, and when x = b, we have $u = \$\\sqrt{b}

Step 3

So
$$\lim_{b \to \infty} \int_{1}^{b} 23 \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \lim_{b \to \infty} \int_{1}^{\frac{23e}{b}} \frac{u}{2} du.$$

Step 4

$$\lim_{b \to \infty} 2 \int_{1}^{\sqrt{b}} 23e^{-u} du = \lim_{b \to \infty} \left[\frac{1}{23e^{-u}} \right]_{1}^{\sqrt{b}}$$

$$2 \left[\frac{1}{23e^{-u}} \right]_{1}^{\sqrt{b}}$$

$$2 \left[\frac{1}{23e^{-u}} \right]_{1}^{\sqrt{b}}$$

$$2 \left[\frac{1}{23e^{-u}} \right]_{1}^{\sqrt{b}}$$

$$2 \left[\frac{1}{23e^{-\sqrt{b}} + 23e^{-1}} \right]$$

Step 5

Finally, we have

$$\int_{1}^{\infty} \frac{23e^{-\sqrt{x}}}{\sqrt{x}} dx = \lim_{b \to \infty} 2\left[-23e^{-\sqrt{b}} + 23e^{-1}\right]$$

$$= \frac{46e^{-1}}{\sqrt{x}}$$
Thus the integral is convergent convergent and equals \$\$46e-1\$

You have now completed the Master It.

Submit Assignment

Save Assignment Progress

<u>Home</u> <u>My Assignments</u>

Copyright 2019 Cengage Learning, Inc. All Rights Reserved