The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260 Data Security

GAME 10

23th May 2019

Number of Questions: 5 Time allowed: 50min Total mark: 5

	Student Number	Student Name
Student 1		
Student 2		
Student 3		
Student 4		
Student 5		
Student 6		
Student 7		

Question 1	Question 2	Question 3	Question 4	Question 5	TOTAL

1.	With the aid of diagrams explain in what ways a hash value can be secured so as to provide message authentication.

2.	What types of attacks are addressed by message authentication?	

5. The following is a version of the Neuman-Stubblebine protocol for key exchange proposed in 1993 that employs a trusted third party and symmetric encryption.

A, B, T	Alice, Bob and the trusted third party (TTP), respectively	
Na, NB	Nonce created by Alice and Bob, respectively	
T _B	Timestamp create by Bob	
K _{AT} , K _{BT} , K _{AB}	Key shared by Alice and TTP, Bob and TTP, and Alice	
	and Bob, respectively	

1. $A \rightarrow B$: A, N_A

2. $B \rightarrow T$: $B, \{A, N_A, T_B\}_{KBT}, N_B$

3. $T \rightarrow A$: {B, N_A, K_{AB}, T_B}_{KAT}, {A, K_{AB}, T_B}_{KBT}, N_B

4. $A \rightarrow B$: $\{A, K_{AB}, T_B\}_{KBT}, \{N_B\}_{KAB}$

Show how an intruder can subvert the protocol if the following two conditions are satisfied:

- the keys and the nonces have the same number of bits, and
- the intruder can eavesdrop on messages 1 and 2, intercept message 4, and send his own message 4 to Bob, pretending it is from Alice.