

Compiladores

Autómatos finitos

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2023-2024

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 1 / 84

Sumário

- 1 Autómato finito determinista (AFD)
- 2 Redução de autómato finito determinista
- 3 Autómato finito não determinista (AFND)
- 4 Equivalência entre AFD e AFND
- Operações sobre autómatos finitos (AF)
- 6 Equivalência entre ER e AF
- 7 Equivalência entre GR e AF

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 2/84

Autómato finito

Um autómato finito é um mecanismo reconhecedor das palavras de uma linguagem regular

- A unidade de controlo é baseada nas noções de estado e de transição entre estados
 - número finito de estados
- A fita de entrada é só de leitura, com acesso sequencial
- A saída indica se a palavra é ou não aceite (reconhecida)
- Os autómatos finitos podem ser deterministas, não deterministas ou generalizados

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 4/84

Autómato finito determinista

Um autómato finito determinista é um autómato finito

onde

- as transições estão associadas a símbolos individuais do alfabeto;
- de cada estado sai uma e uma só transição por cada símbolo do alfabeto;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 5/84

Autómato finito determinista: exemplo (1)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

- ${\cal R}$ Todas as palavras terminadas em 11.
- ${\mathcal E}$ Obtenha uma expressão regular que represente a mesma linguagem.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 6/8

Autómato finito determinista: exemplo (2)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

- $\ensuremath{\mathcal{R}}$ Todas as palavras com apenas 1 ou 2 zeros.
- $\ensuremath{\mathcal{E}}$ Obtenha uma expressão regular que represente a mesma linguagem.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 7/84

Autómato finito determinista: exemplo (3)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

- ${\cal R}\,$ as sequências binárias com um número par de zeros.
- ${\mathcal E}$ Obtenha uma expressão regular que represente a mesma linguagem.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 8/8

Definição de autómato finito determinista

- ${\cal D}$ Um autómato finito determinista (AFD) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - ullet Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta: Q \times A \rightarrow Q$ é uma função que determina a transição entre estados; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.
- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{B, C\}$
- Como representar δ ?

Definição de autómato finito determinista

D Um autómato finito determinista (AFD) é um quíntuplo

 $M=(A,Q,q_0,\delta,F)$, em que:

- A é o alfabeto de entrada;
- Q é um conjunto finito não vazio de estados;
- $q_0 \in Q$ é o estado inicial;
- $\delta: Q \times A \rightarrow Q$ é uma função que determina a transição entre estados; e
- $F \subseteq Q$ é o conjunto dos estados de aceitação.

$\mathcal Q$ Como representar a função δ ?

- Matriz de |Q| linhas por |A| colunas. As células contêm elementos de Q.
- Conjunto de pares $((q, a), q) \in (Q \times A) \times Q$
 - ou equivalentemente conjunto de triplos $(q, a, q) \in Q \times A \times Q$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 10/84

Autómato finito determinista: exemplo (4)

Q Represente textualmente o AFD seguinte.

 \mathcal{R}

$$M = (A, Q, q_0, \delta, F)$$
 com

•
$$A = \{0, 1\}$$

$$Q = \{A, B, C, D\}$$

$$q_0 = A$$

•
$$F = \{B, C\}$$

	0	1
A	B	A
B	C	В
C	D	C
D	D	D

Autómato finito determinista: exemplo (5)

Q Represente textualmente o AFD seguinte.

 \mathcal{R}

$$M = (A, Q, q_0, \delta, F)$$
 com

- $A = \{0, 1\}$
- $\bullet \ Q = \{A, B, C\}$
- $q_0 = A$
- $F = \{C\}$

•	δ	=	{
---	----------	---	---

(A, 0, A), (A, 1, B),

(B, 0, A), (B, 1, C),

(C, 0, A), (C, 1, C),

o =			
		0	1
	A	A	B
	B	A	C
	C	Δ	C

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 12/84

Linguagem reconhecida por um AFD (1)

- Diz-se que um AFD $M=(A,Q,q_0,\delta,F)$, **aceita** uma palavra $u\in A^*$ se u se puder escrever na forma $u=u_1u_2\cdots u_n$ e existir uma sequência de estados s_0,s_1,\cdots,s_n , que satisfaça as seguintes condições:
 - $\mathbf{1}$ $s_0 = q_0;$
 - 2 qualquer que seja o $i=1,\cdots,n,\quad s_i=\delta(s_{i-1},u_i);$
 - $s_n \in F$.

Caso contrário diz-se que M rejeita a sequência de entrada.

- A palavra $\omega_1 = 0101$ faz o caminho $A \xrightarrow{0} A \xrightarrow{1} B \xrightarrow{0} A \xrightarrow{1} B$
 - como B não é de aceitação, ω_1 não pertence à linguagem
- A palavra $\omega_2=0011$ faz o caminho $A\stackrel{0}{\longrightarrow} A\stackrel{0}{\longrightarrow} A\stackrel{1}{\longrightarrow} B\stackrel{1}{\longrightarrow} C$
 - como C é de aceitação, ω_2 pertence à linguagem

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 13/84

Linguagem reconhecida por um AFD (2)

- Seja $\delta^*: Q \times A^* \to Q$ a extensão de δ definida indutivamente por
 - $\bullet \delta^*(q,\varepsilon) = q$
 - $2 \delta^*(q,av) = \delta^*(\delta(q,a),v), \quad \text{com} \quad a \in A \land v \in A^*$
- M aceita u se $\delta^*(q_0, u) \in F$.
- $L(M) = \{u \in A^* : M \text{ aceita } u\} = \{u \in A^* : \delta^*(q_0, u) \in F\}$
- $\delta^*(A,0101) = \delta^*(\delta(A,0),101) = \delta^*(A,101)$ = $\delta^*(\delta(A,1),01) = \delta^*(B,01)$ = $\delta^*(\delta(B,0),1) = \delta^*(A,1) = \delta^*(B,\varepsilon) = B$
- $\delta^*(A,0011) = \delta^*(\delta(A,0),011) = \delta^*(A,011)$ = $\delta^*(\delta(A,0),11) = \delta^*(A,11)$ = $\delta^*(\delta(A,1),1) = \delta^*(B,1) = \delta^*(C,\varepsilon) = C$

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

14/84

Autómato finito determinista: exemplo (6)

Q Sobre o alfabeto $A = \{a, b, c\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = b) \Rightarrow ((\omega_{i-1} = a) \land (\omega_{i+1} = c)) \}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 15/8

Autómato finito determinista: exemplo (7)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} \neq \mathbf{b}) \}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

16/84

Autómato finito determinista: exemplo (8)

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{\omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} = \mathbf{b})\}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

777

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 17/84

Redução de autómato finito determinista (1)

 ${\mathcal Q}$ Considere o autómato seguinte (o do exemplo 6) e compare os estados A e D. Que pode concluir ?

São equivalentes. Por conseguinte, podem ser fundidos

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

19/84

Redução de autómato finito determinista (2)

• O que resulta em

- Este, pode provar-se, n\u00e3o tem estados redundantes.
- Está no estado reduzido

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 20 / 84

Algoritmo de Redução de AFD (1)

• Como proceder para reduzir um AFD?

 Primeiro, dividem-se os estados em dois conjuntos, um contendo os estados de aceitação e outro os de não-aceitação.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 21/84

Algoritmo de Redução de AFD (2)

• Obtêm-se $C_1 = \{A, B, C, D, E, F\}$ e $C_2 = \{G\}$.

• Em C_1 , as transições em 0 são todas internas, mas as em 1 podem ser internas ou provocar uma ida para C_2 . Logo, não representa uma classe de equivalência e tem de ser dividido.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 22/84

Algoritmo de Redução de AFD (3)

• Dividindo C_1 em $C_{1,1}=\{A,B,C,F\}$ e $C_{1,2}=\{D,E\}$ obtem-se

• Pode verificar-se que $C_{1,1}$, $C_{1,2}$ e C_2 são classes de equivalência, pelo que se chegou à versão reduzida do autómato.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 23/84

Algoritmo de Redução de AFD (4)

Autómato reduzido

Nos apontamentos encontra uma versão não gráfica do algoritmo.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 24/84

Autómato finito não determinista

Um autómato finito não determinista é um autómato finito

$$\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

onde

- as transições estão associadas a símbolos individuais do alfabeto ou à palavra vazia (ε);
- de cada estado saem *zero ou mais* transições por cada símbolo do **alfabeto ou** ε ;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.
- As transições múltiplas ou com ε permitem alternativas de reconhecimento.
- As transições ausentes representam quedas num estado de morte (estado não representado).

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 26/84

AFND: caminhos alternativos

• Analise o processo de reconhecimento da palavra abab?

Há 3 caminhos alternativos

$$2 A \xrightarrow{a} A \xrightarrow{b} A \xrightarrow{a} A \xrightarrow{b} A$$

 Como há um caminho que conduz a um estado de aceitação a palavra é reconhecida pelo autómato

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 27/84

AFND: caminhos alternativos

• Analise o processo de reconhecimento da palavra abab?

• Que se podem representar de forma arbórea

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

27/84

AFND: exemplo

Q Que palavras são reconhecidas pelo autómato seguinte?

 ${\cal R}$ Todas as palavras que terminarem em ab ou ac

$$L=\{\omega \mathtt{a} x \,:\, \omega \in A^* \,\wedge\, x \in \{\mathtt{b},\mathtt{c}\}\}.$$

 Percebe-se uma grande analogia entre este autómato e a expressão regular (a|b|c)*a(b|c)

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 28/8

AFND com transições- ε

• Considere o AFND seguinte que contém uma transição- ε .

A palavra 101 é reconhecida pelo autómato através do caminho

$$A \xrightarrow{1} B \xrightarrow{0} C \xrightarrow{1} D$$

A palavra 11 é reconhecida pelo autómato através do caminho

$$A \xrightarrow{1} B \xrightarrow{\varepsilon} C \xrightarrow{1} D$$

porque $11 = 1\varepsilon 1$

• Este autómato reconhece todas as palavras terminadas em 11 ou 101

$$L = \{ \omega_1 \omega_2 : \omega_1 \in A^* \land \omega_2 \in \{11, 101\} \}.$$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 29 / 84

AFND: definição

- ${\cal D}$ Um **autómato finito não determinista** (AFND) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta \subseteq (Q \times A_{\varepsilon} \times Q)$ é a relação de transição entre estados, com $A_{\varepsilon} = A \cup \{\varepsilon\}$;
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- Apenas a definição de δ difere em relação aos AFD.
- Se se representar δ na forma de uma tabela, as células são preenchidas com elementos de $\wp(Q)$, ou seja, sub-conjuntos de Q.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 30 / 84

AFND: Exemplo (2)

Q Represente textualmente o AFND

 \mathcal{R} $M = (A, Q, q_0, \delta, F)$ com

- $A = \{0, 1\}$
- *δ* = { (A, 0, A), (A, 1, A),

- $Q = \{A, B, C, D\}$
- (A, 1, B), (B, 0, C),

 $q_0 = A$

 $(B, \varepsilon, C), (C, 1, D)$

• $F = \{D\}$

- $\{\overline{A}, \overline{B}\}$ A $\{A\}$ \overline{B} $\{C\}$ {} $\{C\}$ \overline{C} {} $\{D\}$ {} D
- O par (A, 1, A), (A, 1, B) faz com que δ não seja uma função

ACP (DETI/UA)

Abril de 2024

1

AFND: linguagem reconhecida

- Diz-se que um AFND $M=(A,Q,q_0,\delta,F)$, aceita uma palavra $u\in A^*$ se use puder escrever na forma $u = u_1 u_2 \cdots u_n$, com $u_i \in A_{\varepsilon}$, e existir uma sequência de estados s_0, s_1, \dots, s_n , que satisfaça as seguintes condições:
 - $\mathbf{1}$ $s_0 = q_0$;
 - 2 qualquer que seja o $i=1,\cdots,n, (s_{i-1},u_i,s_i)\in \delta;$
 - $s_n \in F$.
- Caso contrário diz-se que M rejeita a entrada.
- Note que n pode ser maior que |u|, porque alguns dos u_i podem ser ε .
- Usar-se-á a notação $q_i \xrightarrow{u} q_j$ para indicar que a palavra u permite ir do estado q_i ao estado q_i .
- Usando esta notação tem-se $L(M) = \{u : q_0 \xrightarrow{u} q_f \land q_f \in F\}.$

AFND: Exemplo de aplicação

 $\mathcal Q$ Sobre o alfabeto $A = \{0, 1\}$, considere o AFND M seguinte

e a linguagem $L=\{\omega\in A^*\,:\,\omega=(\operatorname{Ol})^n,n>1\}.$ Mostre que $L\subset L(M).$

 \mathcal{R}

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 33/8

Equivalência entre AFD e AFND

- A classe das linguagens cobertas por um AFD é a mesma que a classe das linguagens cobertas por um AFND
- Isto significa que:
 - Se M é um AFD, então $\exists_{M' \in \mathsf{AFND}} \, : \, L(M') = L(M).$
 - Se M é um AFND, então $\exists_{M' \in \mathsf{AFD}} \, : \, L(M') = L(M).$
- Como determinar um AFND equivalente a um AFD dado ?
- Pelas definições de AFD e AFND, um AFD é um AFND. Porquê?
 - Q, q_0 e F têm a mesma definição.
 - Nos AFD $\delta: Q \times A \rightarrow Q$.
 - Nos AFND $\delta \subset Q \times A_{\varepsilon} \times Q$
 - Mas, se $\delta:Q\times A\to Q$ então $\delta\subseteq Q\times A\times Q\subset Q\times A_{\varepsilon}\times Q$
 - Logo, um AFD é um AFND

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 35/84

Equivalente AFD de um AFND (1)

- Como determinar um AFD equivalente a um AFND dado ?
- No AFND

a árvore de reconhecimento da palavra 1011 sugere que a evolução se faz de sub-conjunto em sub-conjunto de estados

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 36/84

Equivalente AFD de um AFND (2)

- Dado um AFND $M=(A,Q,q_0,\delta,F)$, considere o AFD $M'=(A,Q',q'_0,\delta',F')$ onde:
 - $Q' = \wp(Q)$
 - $q_0' = \varepsilon$ -closure (q_0)
 - $F' = \{ f' \in \wp(Q) : f' \cap F \neq \emptyset \}$
 - $$\begin{split} \bullet \ \ \delta' &= \wp(Q) \times A \to \wp(Q), \\ & \operatorname{com} \ \delta'(q',a) = \bigcup_{a \in a'} \{ s \ : \ s \in \varepsilon \text{-closure}(s') \ \land \ (q,a,s') \in \delta \} \end{split}$$
- M e M' reconhecem a mesma linguagem.
- ε -closure(q) é o conjunto de estados constituído por q mais todos os direta ou indiretamente alcançáveis a partir de q apenas por transições- ε
- Note que:
 - O estado inicial (q_0') pode conter 1 ou mais elementos de Q
 - Cada elemento do conjunto de chegada ($f' \in F'$) por conter elementos de F e Q-F

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 37/84

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

 $\bullet \ \ Q' = \{X_0, X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, x_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}, \\ \mathsf{com}$

$$X_0 = \{\}$$
 $X_1 = \{A\}$ $X_2 = \{B\}$ $X_3 = \{A, B\}$
 $X_4 = \{C\}$ $X_5 = \{A, C\}$ $X_6 = \{B, C\}$ $X_7 = \{A, B, C\}$
 $X_8 = \{D\}$ $X_9 = \{A, D\}$ $X_{10} = \{B, D\}$ $X_{11} = \{A, B, D\}$
 $X_{12} = \{C, D\}$ $X_{13} = \{A, C, D\}$ $X_{14} = \{B, C, D\}$ $X_{15} = \{A, B, C, D\}$

- $q_0' = \varepsilon$ -closure $(A) = \{A\} = X_1$
- $F' = \{X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 38 / 84

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta' =$$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

Serão todos estes estados necessários?

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta' =$$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

• Analisemos a evolução a partir do estado inicial (X_1) : vai para X_7

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

38/84

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta' =$$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

• De X_7 vai para X_5 e X_{15}

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta' =$$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

• E é tudo. Os restantes estados são inúteis, podendo ser descartados

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

38/84

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$M' =$$

Sendo não alcançáveis, os estados a cinzento podem ser removidos.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 38/84

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• Consegue-se o mesmo resultado através de um processo construtivo.

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

39/84

Equivalente AFD de um AFND: exemplo (2)

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• Comece-se com o estado inicial $(X_1 = \{A\})$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

• $\delta'(X_1,0) = \varepsilon$ -closure $(A) = \{A\}$

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

39/84

Equivalente AFD de um AFND: exemplo (2)

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$
$$X_7 = \{A, B, C\}$$

$$\bullet \ \ \delta'(X_1,1) = \varepsilon \text{-closure}(A) \cup \varepsilon \text{-closure}(B) = \{A\} \cup \{B,C\} = \{A,B,C\}$$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 39/84

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• $\delta'(X_7,0) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(C) = \{A\} \cup \{C\} = \{A,C\}$

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

39/84

Equivalente AFD de um AFND: exemplo (2)

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

$$X_7 = \{A, B, C\}$$

$$X_5 = \{A, C\}$$

$$X_{15} = \{A, B, C, D\}$$

- $\delta'(X_7,1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{A,B,C,D\}$
- É de aceitação porque $\{A,B,C,D\} \cap \{D\} \neq \emptyset$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

- $\delta'(X_5,0) = \varepsilon$ -closure $(A) = \{A\}$
- $\delta'(X_5,1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{B,C\} \cup \{D\} = \{B,C\} \cup \{B\} = \{B\} \cup \{B\} \cup \{B\} \cup \{B\} = \{B\} \cup \{B\} \cup$ $\{A,B,C,D\}$ ACP (DETI/UA)

Equivalente AFD de um AFND: exemplo (2)

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

- $\delta'(X_{15},0) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(C) = \{A\} \cup \{C\} = \{A,C\}$
- $\delta'(X_{15},1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{A\} \cup \{B,C\} \cup \{B\} = \{B\} \cup \{B\} \cup \{B\} = \{B\} \cup \{B\} \cup \{B\} \cup \{B\} = \{B\} \cup \{B\}$ $\{A, B, C, D\}$

Operações sobre AFD e AFND

- Os automátos finitos (AF) são fechados sobre as operações de:
 - Reunião
 - Concatenação
 - Fecho
 - Intersecção
 - Complementação

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 41/84

Reunião de AF

• Como criar um AF que represente a reunião destes dois AF?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 42/84

Reunião de AF

- acrescenta-se um novo estado que passa a ser o inicial
- e acrescentam-se transições- ε deste novo estado para os estados iniciais originais

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 42/84

Reunião de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer.

O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$Q=Q_1\cup Q_2\cup \{q_0\}, \quad \text{com } q_0\not\in Q_1\wedge q_0\not\in Q_2$$

$$F = F_1 \cup F_2$$

$$\delta = \delta_1 \cup \delta_2 \cup \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_2)\}$$

implementa a reunião de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cup L(M_2)$.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 43/84

Reunião de AF: exemplo (1)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \, | \, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \, | \, \omega \in A^* \}$$

Determine um AF que reconheça $L=L_1\cup L_2$.

 \mathcal{R}

• Como criar um AF que represente a reunião de L_1 e L_2 ?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 44/84

Reunião de AF: exemplo (1)

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

$$\longrightarrow S_3 \longrightarrow X_2$$

- ullet Constroi-se um AF para a linguagem L_1
- ullet Constroi-se um AF para a linguagem L_2

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 44/8

Reunião de AF: exemplo (1)

 \mathcal{Q} Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

- Acrescenta-se um novo estado (S_0) , que passa a ser o inicial
- E acrescentam-se transições- ε de S_0 (novo estado inicial) para S_1 e S_2 (os estados iniciais originais)

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 44/84

Reunião de AF: exemplo (1)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega a \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

$$\label{eq:matter} \begin{split} \mathcal{R} \\ M_1 &= (A,Q_1,q_1,\delta_1,F_1) \text{ com} \\ Q_1 &= \{S_1,X_1\}, \quad q_1 = S_1, \quad F_1 = \{X_1\} \\ \delta_1 &= \{(S_1,\mathtt{a},S_1),(S_1,\mathtt{b},S_1),(S_1,\mathtt{c},S_1),(S_1,\mathtt{a},X_1) \\ M_2 &= (A,Q_2,q_2,\delta_2,F_2) \text{ com} \end{split}$$

$$Q_2 = \{S_2, X_2\}, \quad q_2 = S_2, \quad F_2 = \{X_2\}$$

$$\delta_2 = \{(S_2, \mathbf{a}, X_2), (X_2, \mathbf{a}, X_2), (X_2, \mathbf{b}, X_2), (X_2, \mathbf{c}, X_2)$$

$$\begin{split} M &= M_1 \cup M_2 = (A,Q,q_0,\delta,F) \text{ com} \\ Q &= \{S_0,S_1,X_1,S_2,X_2\}, \quad q_0 = S_0, \quad F = \{X_1,X_2\}, \\ \delta &= \{(S_0,\varepsilon,S_1),(S_0,\varepsilon,S_2),(S_1,\mathtt{a},S_1),(S_1,\mathtt{b},S_1),(S_1,\mathtt{c},S_1),\\ &\quad (S_1,\mathtt{a},X_1),(S_2,\mathtt{a},X_2),(X_2,\mathtt{a},X_2),(X_2,\mathtt{b},X_2),(X_2,\mathtt{c},X_2)\} \end{split}$$

Alternativamente, pode ser escrito de forma textual

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 45 / 84

Concatenação de AF

Como criar um AF que represente a concatenação destes dois AF?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 46/84

Concatenação de AF

- O estado inicial passa a ser o estado inicial do AF da esquerda
- Os estados de aceitação são apenas os estados de aceitação do AF da direita
- acrescentam-se transições-ε dos (antigos) estados de aceitação do AF da esquerda para o estado inicial do AF da direita

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 46/8

Concatenação de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer.

O AFND $M = (A, Q, q_0, \delta, F)$, onde

$$Q = Q_1 \cup Q_2$$

$$q_0 = q_1$$

$$F = F_2$$

$$\delta = \delta_1 \cup \delta_2 \cup (F_1 \times \{\varepsilon\} \times \{q_2\})$$

implementa a concatenação de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cdot L(M_2)$.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 47/8

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L=L_1\cdot L_2.$

 \mathcal{R}

• Como criar um AF que represente a concatenação de L_1 com L_2 ?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 48/84

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

ullet Constroi-se AF para as linguagens L_1 e L_2

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

48/84

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega a \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L=L_1\cdot L_2.$

 \mathcal{R}

- X_1 deixa de ser de aceitação; S_2 deixa de ser de entrada
- acrescenta-se uma transição- ε de X_1 para S_2

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 48/8

Fecho de AF

• Como criar um AF que represente o fecho deste AF?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 49/8

Fecho de AF

- acrescenta-se um novo estado que passa a ser o inicial
- o novo estado inicial é de aceitação
- acrescentam-se transições- ε dos estados de aceitação do AF para o estado inicial original

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 49/84

Fecho de AF

- acrescenta-se um novo estado que passa a ser o inicial
- o novo estado inicial é de aceitação
- ou acrescentam-se transições-ε dos estados de aceitação do AF para o novo estado inicial (caso em que antigos estados de aceitação podem deixar de o ser)
- Note que em geral n\u00e3o se pode fundir o novo estado inicial com o antigo

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

49/84

Fecho de AF: definição

 \mathcal{D} Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ um autómato (AFD ou AFND) qualquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$Q = Q_1 \cup \{q_0\}$$
$$F = \{q_0\}$$

$$\delta = \delta_1 \cup (F_1 \times \{\varepsilon\} \times \{q_0\}) \cup \{(q_0, \varepsilon, q_1)\}$$

implementa o fecho de M_1 , ou seja, $L(M) = L(M_1)^*$.

• Em alternativa poder-se-á considerar que $F=F_1\cup\{q_0\}$ e que de F_1 as novas transições- ε se dirigem a q_1

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 50/8

Fecho de AF: exemplo

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

• Como criar um AF que represente o fecho de L_1 ?

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

51/84

Fecho de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

• Constroi-se um AF para L_1

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 51/84

Fecho de AF: exemplo

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

- acrescenta-se um novo estado (S_0) , que passa a ser o inicial e é de aceitação
- liga-se este estado ao S_1 (inicial anterior) por uma transição- ε
- liga-se o estado X_1 (aceitação anterior) ao S_0 (novo inicial)
- X₁ deixa (pode deixar) de ser de aceitação

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

51/84

Intersecção de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=L_1\cap L_2$.

 \mathcal{R}

• Como criar um AF que represente a intersecção de L_1 e L_2 ?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 52/84

Intersecção de AF: exemplo

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

• Constroi-se AF para as linguagens L_1 e L_2

ACP (DETI/UA)

Comp 2023/202

Ahril de 2024

52/84

Intersecção de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=L_1\cap L_2$.

 \mathcal{R}

- Definem-se os estados que resultam do produto cartesiano $\{S_1,X_1\} imes \{S_2,X_2\}$
- Mas, alguns podem não ser alcançáveis

Intersecção de AF: exemplo

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega a \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

• Pelo que comecemos apenas pelo S_1S_2 , que corresponde ao estado inicial

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 52/84

Intersecção de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=L_1\cap L_2$.

 \mathcal{R}

- de $S_1 \stackrel{\text{a}}{\longrightarrow} S_1$ e $S_2 \stackrel{\text{a}}{\longrightarrow} X_2$ aparece $S_1S_2 \stackrel{\text{a}}{\longrightarrow} S_1X_2$
- de $S_1 \stackrel{\text{a}}{\longrightarrow} X_1$ e $S_2 \stackrel{\text{a}}{\longrightarrow} X_2$ aparece $S_1S_2 \stackrel{\text{a}}{\longrightarrow} X_1X_2$

Intersecção de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega a \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- de $S_1 \xrightarrow{x} S_1$ e $X_2 \xrightarrow{x} X_2$ aparece $S_1X_2 \xrightarrow{x} S_1X_2$, para $x \in \{a,b,c\}$
- de $S_1 \stackrel{a}{\longrightarrow} X_1$ e $X_2 \stackrel{a}{\longrightarrow} X_2$ aparece $S_1 X_2 \stackrel{a}{\longrightarrow} X_1 X_2$

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

52/84

Intersecção de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer.

O AFND
$$M=(A,Q,q_0,\delta,F)$$
, onde

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

$$F = F_1 \times F_2$$

$$\delta \subseteq (Q_1 \times Q_2) \times A_{\varepsilon} \times (Q_1 \times Q_2)$$

sendo δ definido de modo que

 $((q_i,q_j),a,(q_i',q_j'))\in \delta$ se e só se $(q_i,a,q_i')\in \delta_1$ e $(q_j,a,q_j')\in \delta_2$, implementa intersecção de M_1 e M_2 , ie., $L(M)=L(M_1)\cap L(M_2)$.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 53/8

Complementação de AF

Q Sobre o alfabeto $A = \{a,b,c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AF que reconheça a linguagem $\overline{L_1}$.

 \mathcal{R}

- Para se obter o complementar de um autómato finito determinista (em sentido estrito, ie. com todos os estados representados) basta complementar o conjunto de aceitação
- Para o caso de um autómato finito não determinista é preciso calcular o determinista equivalente e complementá-lo.

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 54/8

Complementação de AF: exemplo

 \mathcal{Q} Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

• Como criar um AF que represente a intersecção de L_1 e L_2 ?

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 55/84

Complementação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=\overline{L_1}.$

 \mathcal{R}

• Considere-se um AFND para a linguagem L_1

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

55/84

Complementação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Obtenha-se um determinista equivalente

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 55/84

Complementação de AF: exemplo

 \mathcal{Q} Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Complemente-se os estados de aceitação

ACP (DETI/UA)

Operações sobre AF: exercício

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{v\omega \ | \ v \in \{ exttt{a}, exttt{b}\} \ \wedge \ \omega \in A^*\}$$
 (palavras começadas por a ou b)

$$L_2 = \{\omega \in A^* \ | \ \#(\mathtt{a},\omega) \mod 2 = 0 \}$$
 (palavras com um número par de a)

Determine AF que reconheça a linguagem

- $L_3 = L_1 \cup L_2$
- $L_4 = L_1 \cdot L_2$

- $L_6 = L_1 \cap L_2$ $L_7 = \overline{L_2}$ $L_8 = (L_4 \cup L_3)^*$

Equivalência entre ER e AF

- A classe das linguagens cobertas por expressões regulares (ER) é a mesma que a classe das linguagens cobertas por autómatos finitos (AF)
- Logo:
 - Se e é uma ER, então $\exists_{M \in AF} : L(M) = L(e)$
 - Se M é um AF, então $\exists_{e \in ER} : L(e) = L(M)$
- Isto introduz duas operações:
 - Como converter uma ER num AF equivalente
 - Como converter um AF numa ER equivalente

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 58/8

Conversão de uma ER num AF Abordagem

- Já se viu anteriormente que uma expressão regular qualquer é:
 - ou um elemento primitivo;
 - ou uma expressão do tipo $e_1 | e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer
 - ou uma expressão do tipo e_1e_2 , sendo e_1 e e_2 duas expressões regulares quaisquer
 - ullet ou uma expressão do tipo e^* , sendo e uma expressão regular qualquer
- Já se viu anteriormente como realizar a reunião, a concatenação e o fecho de autómatos finitos
- Então, se se identificar autómatos finitos equivalentes às expressões regulares primitivas, tem-se o problema da conversão de uma expressão regular para um autómato finito resolvido

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 59/84

Conversão de uma ER num AF

Autómatos dos elementos primitivos

expressão regular	autómato finito
Ø	
ε	→
a	$\longrightarrow \bigcirc \longrightarrow \bigcirc$

• Na realidade, o autómato referente a ε pode ser obtido aplicando o fecho ao autómato de \emptyset

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 60 / 84

Conversão de uma ER num AF Algoritmo de conversão

- Se a expressão regular é do tipo primitivo, o autómato correspondente pode ser obtido da tabela anterior
- Se é do tipo e*, aplica-se este mesmo algoritmo na obtenção de um autómato equivalente à expressão regular e e, de seguida, aplica-se o fecho de autómatos
- Se é do tipo e_1e_2 , aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a concatenação de autómatos
- Finalmente, se é do tipo $e_1|e_2$, aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a reunião de autómatos
- Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 61/84

Conversão de uma ER num AF Exemplo

 $\mathcal Q$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a$

 \mathcal{R}

Decomposição

ACP (DETI/UA)

Comp 2023/202

Abril de 2024

62/84

Conversão de uma ER num AF Exemplo

 ${\mathcal Q}$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a$

 \mathcal{R}

Decomposição

2 Autómatos primitivos

 $\operatorname{com} x = \{\mathtt{a},\mathtt{b},\mathtt{c}\}$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 62/84

Conversão de uma ER num AF Exemplo

3 Reunião para obter (a|b|c)

4 Simplificando

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

63/84

Conversão de uma ER num AF Exemplo

5 Fecho para obter $(a|b|c)^*$

6 Simplificando

7 Concatenação (já com simplificação) para obter $a(a|b|c)^*a$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 64/84

Conversão de uma ER num AF Exemplo

8 Finalmente obtenção de $a|a(a|b|c)^*a$

Simplificando

ACP (DETI/UA)

Comp 2023/2024

Abril de 2024

65/84

Autómato finito generalizado (AFG) Definição

- \mathcal{D} Um **autómato finito generalizado** (AFG) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada
 - Q é um conjunto finito n\u00e3o vazio de estados
 - $q_0 \in Q$ é o estado inicial
 - $\delta\subseteq (Q\times E\times Q)$ é a relação de transição entre estados, sendo E o conjunto das expressões regulares definidas sobre A
 - $F \subseteq Q$ é o conjunto dos estados de aceitação

- A diferença em relação ao AFD e AFND está na definição da relação δ . Neste caso as etiquetas são *expressões regulares*
- Com base nesta definição os AFD e os AFND são autómatos finitos generalizados

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 66/8

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa o conjunto das palavras, definidas sobre o alfabeto $A=\{a,b,c\}$, que contêm a sub-palavra aba

• Note que a etiqueta das transições $A \to A$ e $B \to B$ é a|b|c (uma expressão regular) e não a,b,c (que representa 3 transições, uma em a, uma em b e uma em c)

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 67/84

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa as constantes reais em C

• Note que se usou '.' e não ., porque o último é uma expressão regular que representa qualquer letra do alfabeto

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 68/84

Conversão de um AFG numa ER Abordagem

UM AFG com a forma

designa-se por autómato finito generalizado reduzido

- Note que:
 - O estado A não é de aceitação e não tem transições a chegar
 - O estado B é de aceitação e não tem transições a sair
- Se se reduzir um AFG à forma anterior, e é uma expressão regular equivalente ao autómato
- O processo de conversão resume-se assim à conversão de AFG à forma reduzida

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 69/84

Conversão de um AFG numa ER Algoritmo de conversão

- 1 transformação de um AFG noutro cujo estado inicial não tenha transições a chegar
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo
- 2 transformação de um AFG noutro com um único estado de aceitação, sem transições de saída
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser
- 3 Eliminação dos estados intermédios
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 70 / 84

Conversão de um AFG numa ER

Ilustração com um exemplo

- transformação de um AFG noutro cujo estado inicial não tenha transições a chegar
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 71/84

Conversão de um AFG numa ER

Ilustração com um exemplo

- 2 transformação de um AFG noutro com um único estado de aceitação e sem transições de saída
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 72/84

Conversão de um AFG numa ER

Ilustração com um exemplo

- 3 Eliminação dos restantes estados
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência
 - Comece-se pelo estado A

antes

depois da eliminação de A

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 73/84

Conversão de um AFG numa ER

Ilustração com um exemplo

- 3 Eliminação dos restantes estados
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência
 - Remova-se agora o estado B

depois da eliminação de A

$$\xrightarrow{\alpha} \underbrace{(a|b|c)^*aba}_{} \underbrace{B} \xrightarrow{\varepsilon} \underbrace{\beta}$$

depois da eliminação de A, seguido da eliminação de B

• Sendo $(a|b|c)^*aba(a|b|c)^*$ a expressão regular pretendida

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 74/84

Conversão de um AFG numa ER

Algoritmo de eliminação de um estado

Caso em que o estado a eliminar (B) não tem transições de si para si

- Pode acontecer que haja $A_i = C_i$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_{b,j})$
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja, com a etiqueta $(e_{a,i})(e_{b,j})$
- Esta transição fica em paralelo com uma que já exista

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 75/84

Conversão de um AFG numa ER

Algoritmo de eliminação de um estado

Caso em que o estado a eliminar (B) tem transições de si para si

- Pode acontecer que haja $A_i = C_j$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_c)^*(e_{b,j})$
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja com etiqueta $(e_{a,i})(e_c)^*(e_{b,j})$
- Esta transição fica em paralelo com uma que já exista

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 76/84

Conversão de um AFG numa ER Exercício

Q Obtenha uma ER equivalente ao AF seguinte

- ${\cal R}\,$ Aplique-se passo a passo o algoritmo de conversão
- Porque o estado inicial possui uma transição a entrar, deve substituir-se o estado inicial, de acordo com o passo 1 do algoritmo

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 77/84

Exemplo de conversão de um AFG numa ER Exercício

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

• Elimine-se o estado *A*. Para isso é preciso ver os segmentos de caminhos que passam por *A*.

• Note que B aparece à esquerda e à direita

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 78/84

Exemplo de conversão de um AFG numa ER

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

• Eliminando o estado A obtém-se

• Finalmente, eliminando o estado B obtém-se a ER 0*1(0|10*1)*

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 78 / 84

Equivalência entre GR e AF

- A classe das linguagens cobertas por gramáticas regulares (ER) é a mesma que a classe das linguagens cobertas por autómatos finitos (AF)
- Logo:
 - Se G é uma ER, então $\exists_{M \in AF} : L(M) = L(G)$
 - Se M é um AF, então $\exists_{G \in ER} \, : \, L(G) = L(M)$
- Isto introduz duas operações:
 - Como converter um AF numa GR equivalente
 - Como converter uma GR num AF equivalente

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 80/84

Conversão de um AF numa GR

Procedimento de conversão

 ${\cal A}\;$ Seja $M=(A,Q,q_0,\delta,F)$ um autómato finito qualquer. A GR G=(T,N,P,S), onde

$$T = A$$

$$N = Q$$

$$S = q_0$$

$$P = \{ p \to a \, q \, : \, p, q \in Q \, \land \, a \in T \, \land \, (p, a, q) \in \delta \}$$

$$\cup \, \{ p \to \varepsilon \, : \, p \in F \}$$

representa a mesma linguagem que M, isto é, L(G) = L(M).

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 81/8

Conversão de um AF numa GR Exemplo

Q Determine uma GR equivalente ao AF

 \mathcal{R}

$$A \to 0 \ C \mid 1 \ B$$

$$B \rightarrow 0 D \mid 1 A \mid \varepsilon$$

$$C \rightarrow 0 A \mid 1 D \mid \varepsilon$$

$$D \rightarrow 0 B \mid 1 C$$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 82/84

Conversão de uma GR num AFG

Procedimento de conversão

 ${\cal A}\ \mbox{Seja}\ G=(T,N,P,S)$ uma gramática regular qualquer. O AF $M=(A,Q,q_0,\delta,F),$ onde

$$\begin{split} A &= T \\ Q &= N \cup \{q_f\}, \quad \operatorname{com} \, q_f \not\in N \\ q_0 &= S \\ F &= \{q_f\} \\ \delta &= \{(q_i, e, q_j) \, : \, q_i, q_j \in N \, \wedge \, e \in T^* \, \wedge \, q_i \rightarrow e \, q_j \in P\} \\ &\quad \cup \, \{(q, e, q_f) \, : \, q \in N \, \wedge \, e \in T^* \, \wedge \, q \rightarrow e \in P\} \end{split}$$

representa a mesma linguagem que G, isto é, L(M) = L(G).

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 83/84

Conversão de uma GR num AFG Exemplo

Q Determine um AFG equivalente à GR

$$S \to \mathsf{a}\ S \mid \mathsf{b}\ S \mid \mathsf{c}\ S \mid \mathsf{aba}\ X \\ X \to \mathsf{a}\ X \mid \mathsf{b}\ X \mid \mathsf{c}\ X \mid \varepsilon$$

 \mathcal{R}

Sendo $M=(A,Q,q_0,\delta,F)$ o AFG equivalente, tem-se

$$\begin{split} A &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \} \\ Q &= \{ S, X, q_f \} \\ q_0 &= S \\ \delta &= \{ (S, \mathtt{a}, S), (S, \mathtt{b}, S), (S, \mathtt{c}, S), (S, \mathtt{aba}, X), \\ (X, \mathtt{a}, X), (X, \mathtt{b}, X), (X, \mathtt{c}, X), (X, \varepsilon, q_f) \} \\ F &= \{ q_f \} \end{split}$$

ACP (DETI/UA) Comp 2023/2024 Abril de 2024 84/84