РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

УТ	BEP	ЖЛ	ΑЮ

	Заведующий кафедрой
	прикладной информатики и
	теории вероятностей
	д.т.н., профессор
_	К. Е. Самуйлов
« _	»20 г.

КУРСОВАЯ РАБОТА

на тему

«Модель "Хищник-жертва" на загрязненной территории» по дисциплине «Учебная практика (научно-исследовательская работа)»

Выполнила
Студент группы НФИбд-03-19
Студенческий билет № 1032196705
В. М. Шутенко
»20 r
уководитель
профессор кафедры прикладной ин рорматики и теории вероятностей п.фм.н., профессор
Д. С. Кулябов

Содержание

Сп	исок используемых сокращений	5
	Русскоязычные сокращения	5
Вв	едение	6
	Актуальность работы	6
	Цель работы	6
	Задачи работы	6
	Методы исследования	6
	Структура работы	7
1.	Теоретическая часть курсовой работы	8
	1.1. Модель Лотки-Вольтерра	8
	1.2. Устойчивость системы по Ляпунову	9
	1.3. Модель антропогенного давления	9
	1.4. Литературный обзор	10
2.	Аналитическая часть курсовой работы	13
	2.1. Проектирование структуры и компонентов программного комплекса	13
	2.2. Подготовка тестовых данных	13
3.	Практическая часть курсовой работы	16
3a	ключение	19
Α.	Код программы	20

Список таблиц

1.1.	Выброс в атмосферу главных загрязнителей (поллютантов) в мире	
	и в России	ç

Список иллюстраций

2.1.	Схема программы	15
3.1.	Изменение численности хищников и жертв при антропогенном	
	давлении в случае $P=0$	17
3.2.	Фазовый портрет в случае $P=0$	17
3.3.	Изменение численности хищников и жертв при антропогенном	
	давлении в случае $P=5$	18
3.4.	Фазовый портрет в случае $P=5$	18

Список используемых сокращений

Русскоязычные сокращения

ДУ — дифференциальные уравнения

СДУ — система дифференциальных уравнений

АКАР — аналитическое конструирование агрегированных регуляторов

ИСР — идеальное свободное распределение

ОДУ — обыкновенные дифференциальные уравнения

Введение

Математическая модель Лотки-Вольтерры (модель «хищник-жертва») используется для описания различных процессов в биологии, экологии, медицине и многих других процессах. Антропогенное воздействие на популяции также можно описать этой моделью с использованием специального коэффициента.

Актуальность работы

Актуальность данной работы обусловлена широким применением модели в экологии, биологии, медицине и других науках.

Цель работы

Целью курсовой работы является реализация модели "Хищник-жертва" на загрязненной территории на языке программирования Julia с построением графиков.

Задачи работы

Основными задачами работы являются:

- 1. Изучение научной литературы по теме модель "Хищник-жертва".
- 2. Изучение языка программирования Julia.

Методы исследования

Методом исследования является анализ научной литературы.

Структура работы

Курсовая работа состоит из введения, трех разделов, заключения и списка используемой литературы. Во введении перечислены актуальность работы, цель работы задачи работы, методы исследования и структура работы

В первом разделе рассматриваются теоретические аспекты курсовой работы.

Во втором разделе аналитическая часть курсовой работы, включающая в себя проектирование структуры и компонентов, а также подготовка тестовых данных программного комплекса.

Во третьем разделе практическая часть курсовой.

В заключении подведены общие итоги курсовой работы, изложены основные выводы.

1. Теоретическая часть курсовой работы

1.1. Модель Лотки-Вольтерра

Модель Лотки-Вольтерра "хищник-жертва" задает описание взаимодействия двух популяций. Модель представляет собой систему двух нелинейных дифференциальных уравнений [1]:

$$\begin{cases} \frac{dx}{dt} = ax(1 - \frac{x}{K}) - b\frac{xy}{1 + Ax}, \\ \frac{dy}{dt} = -cy + d\frac{xy}{1 + Ax}. \end{cases}$$

где x - количество жертв;

y - количество хищников;

a,b,c,d,A - коэффициенты, описывающие скорости гибели и размножения хищников и жертв;

K - емкость среды;

В превом уравнении систмы слагаемое $ax(1-\frac{x}{K})$ обозначает скорость роста количества жертв при отсутствии хищников, а второе - $b\frac{xy}{1+Ax}$ скорость, с которой уничтожается популяция жертв хищниками. В свою очередь, слогаемые из второго уравнения cy - скорость гибели популяции хишников и $d\frac{xy}{1+Ax}$ - скорось, с которой жертвы уничтажаются хищниками.

Используя метод замены переменных $t= au, x=Ku, y=rac{va}{b}$ уравнение сводится к виду:

$$\begin{cases} \frac{du}{d\tau} = u(1-u) - \frac{uv}{1+\alpha u}, \\ \frac{dv}{d\tau} = \gamma(-v + \beta \frac{uv}{1+\alpha u}). \end{cases}$$

где
$$\gamma = \frac{c}{a}$$
; $\beta = \frac{d}{c}K$; $\alpha = AK$;

Эту систему дополняют условия: $au=0: u=u_0, v=v_0$ - емкость среды;

1.2. Устойчивость системы по Ляпунову

1. Функция Ляпунова второго порядка

$$V(u,v) = zu^2 + v^2$$

2. Частные производные

$$\frac{\partial V}{\partial u} = 2zu$$

$$\frac{\partial V}{\partial v} = 2v$$

3. Производная функции

$$\tfrac{dV(\bar{v})}{dt} = 2zu*(u(1-u) - \tfrac{uv}{1+\alpha u}) + 2v*\gamma(-v + \beta \tfrac{uv}{1+\alpha u}) = \tfrac{-2u^2 + 2u^3 - 4u^4 - 2v^2 + 6uv^2)}{1+2u} \leq 0$$

- система устойчива

1.3. Модель антропогенного давления

Данная модель основывается на том факте, что популяции страдают от вмешательства человека в окружающую природу. В силу того, что человек занимается добычей полезных ископаемых, производством разного рода веществ и многим другим, природе наносится огромный вред. От загрязнения страдает и атмосфера, и мировой океан, и популяции животных.

В табл. 1.1 приведенно количество выбросов вредных веществ в атмосферу.

Таблица 1.1. Выброс в атмосферу главных загрязнителей (поллютантов) в мире и в России

	Диоксид	Оксиды	Оксид	Твердые	Bce-
Вещества, млн т	серы	азота	углерода	частицы	го
Суммарный мировой выброс	99	68	177	57	401
Россия (только стационарные	9,2	3	7,6	6,4	26,2
источники)					

	Диоксид	Оксиды	Оксид	Твердые	Bce-
Вещества, млн т	серы	азота	углерода	частицы	ГО
%	9,2	4,4	4,3	11,2	6,5
Россия (с учетом всех	12	5,8	5,6	12,2	13,2
источников)					

Все это приводит к тому, что одна часть флоры и фауны погибает, но другая часть может сохраниться. Из-за различных веществ накапливающихся в организмах происходят изменения в рождаемости, продолжительности жизни, появлением специфических заболеваний, как у всей популяции так и отдельных особей. В модели предполагается, что это не приводит к гибели особей, а ведет к уменьшению их рождаемости [1]. С учетом этого принимается, что удельная скорость роста численности жертв изменяется на величину:

$$\frac{1+a_1P}{1+a_2P}$$
, $a_1 < a_2$

а скорость естественной гибели хищников на величину:

$$\frac{1+c_1P}{1+c_2P}$$
, $c_2 < c_1$

При этом предполагается, что емкость среды уменьшается на величину:

$$\frac{1+b_1P}{1+b_2P}$$
, $b_1 < b_2$

Учитывая все эти предположения, модель принимает следующий вид:

$$\begin{cases} \frac{du}{d\tau} = u(\frac{1+a_1P}{1+a_2P} - u\frac{1+b_1P}{1+b_2P}) - \frac{uv}{1+\alpha u}, \\ \frac{dv}{d\tau} = \gamma(-v\frac{1+b_1P}{1+b_2P} + \beta\frac{uv}{1+\alpha u}). \end{cases}$$

1.4. Литературный обзор

1. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АНТРОПОГЕННОГО ДАВЛЕНИЯ НА ПОПУЛЯ-ЦИЮ Колпак Е.П., Столбовая М.В., Селицкая Е.А. Приволжский научный вестник. Индивидуальный предприниматель Самохвалов Антон Витальевич (Ижевск). Номер: 10 (50) Год: 2015.

Статья предлагает математическая модель антропогенного воздействия на свободную популяцию. Принимается во внимание, стратегии выживания в условиях стресса. Модель реализована задачей Коши для системы нелинейных обыкновенных ДУ. Опасность токсикантов заключается в их постепенном накоплении в организмах живых существ, приводящих к разным последствиям. Даже если популяция не вымирает, то происходят изменения в ее удельной скорости роста. В статье рассматриваются 3 вида антропогенного давления – фоновая, буферная и импактная зоны.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КОНКУРЕНТНЫХ ПРОЦЕССОВ НА БАЗЕ МО-ДЕЛИ ДИНАМИКИ ПОПУЛЯЦИЙ ЛОТКИ - ВОЛЬТЕРРЫ (МОДЕЛЬ "ХИЩНИК - ЖЕРТВА") Петухова Н.А. Контентус. 2016. № 8 (49). С. 36-39.

В данной статье разбирается модель динамики биологических популяций Лотки - Вольтерры, случай для двух конкурирующих видов. Ключевым является метод запаздывания: скорость рождения новых особей зависит от предшествующего состояния популяции. В случаи малого объема популяции, то вероятность найти особь противоположного пола крайне мала. Если же наоборот объем этой популяции будет велик, то появляется большая вероятность заболеваний внутри популяции, нехватки пищи и воды и т.д.

3. МОДЕЛЬ "ХИЩНИК-ЖЕРТВА С ПИТАНИЕМ" Щеголева А.А., Поляк М.Д. В книге: Обработка, передача и защита информации в компьютерных системах '21. Международная научная конференция: сборник докладов. Санкт-Петербург, 2021. С. 86-91.

Статья рассматривает синтез управления по методу АКАР. В этой модели 3 ДУ, взаимодействующие с функцией, задающей управляющее значение. Решается такая система по методу Эйлера.

4. ИДЕАЛЬНОЕ СВОБОДНОЕ РАСПРЕДЕЛЕНИЕ В МОДЕЛИ «ХИЩНИК-ЖЕРТВА» С ТРОФИЧЕСКОЙ ФУНКЦИЕЙ ХОЛЛИНГА ВТОРОГО РОДА Зеленчук П.А. Экологический вестник научных центров Черноморского экономического сотрудничества. 2022. Т. 19. № 1. С. 6-15.

В статье модель «хищник-жертва» с трофической функцией Холлинга второго рода делается с использованием системы уравнений типа диффузия—адвекция—реакция описание взаимодействия видов на неоднородном ареале. Выполняется стационарное решение, которое отвечает за сосуществование хищников и жертв, использующее метод идеального свободного распределения (ИСР). Исследование влияния параметра Холлинга с на модель показало, что с его ростом интервал устойчивости стационарного решения $\Delta \gamma$ сокращается.

5. ОБ ОЦЕНКАХ РЕШЕНИЙ В МОДЕЛИ ХИЩНИК-ЖЕРТВА С ДВУМЯ ЗАПАЗ-ДЫВАНИЯМИ Скворцова М.А. Сибирские электронные математические известия. 2018. Т. 15. С. 1697-1718.

В данной статье рассматривается взаимодействие популяций хищников и жертв, обитающих на одной территории. Здесь применяется СДУ с запаздывающим аргументом. В статье используется система состоит из трех ДУ. Параметр запаздывания предполагается постоянным и отвечает за время взросления хищников. При получении результатов применяется метод функционалов Ляпунова Красовского, который аналогичен функций Ляпунова для ОДУ.

2. Аналитическая часть курсовой работы

2.1. Проектирование структуры и компонентов программного комплекса

При реализации прогаммы на языке Julia используются библиотеки:

- Plots, помогающая построить графики;
- DifferentialEquations решающая ДУ;
- ParametrizedFunctions, задающая ДУ.

Сначала задаются основные параметры модели - коэффициенты системы ДУ и начальные значения. Далее формируется система ДУ с этими параметрами. Также задается промежуток времени исследования. Затем программа находит решение СДУ. А в конце строится два графика. На превом о тображается изменение количества хищников и жертв во времени, а второй график является фазовым отображением модели.

2.2. Подготовка тестовых данных

Модель описывается системой ДУ:

$$\begin{cases} \frac{du}{d\tau} = u(\frac{1+0.51*0}{1+1.2*0} - u\frac{1+0.51*0}{1+1.2*0}) - \frac{uv}{1+2*u}, \\ \frac{dv}{d\tau} = 1 * (-v\frac{1+0.510}{1+1.2*0} + 5 * \frac{uv}{1+2*u}). \end{cases}$$

Начальные условия: $u_0 = 1, v_0 = 1$.

При P=0, получается модель аналогичная исходной системе.

$$\begin{cases} \frac{du}{d\tau} = u(\frac{1+0.51*5}{1+1.2*5} - u\frac{1+0.51*5}{1+1.2*5}) - \frac{uv}{1+2*u}, \\ \frac{dv}{d\tau} = 1*(-v\frac{1+0.51*5}{1+1.2*5} + 5*\frac{uv}{1+2*u}). \end{cases}$$

Начальные условия: $u_0 = 1, v_0 = 1$.

При P=5, получается новая модель.

Рис. 2.1. Схема программы

3. Практическая часть курсовой работы

Результаты моделирования, проведённого в работе, четыре графика.

Первый и второй графики относятся к случаю P=0 - Изменение численности хищников и жертв при антропогенном давлении и фазовый портрет.

Третий и четвертый графики относятся к случаю P=5 - Изменение численности хищников и жертв при антропогенном давлении и фазовый портрет. Графические результаты (рис. 3.1, 3.2, 3.3, 3.4).

Рис. 3.1. Изменение численности хищников и жертв при антропогенном давлении в случае P=0

Рис. 3.2. Фазовый портрет в случае P=0

Рис. 3.3. Изменение численности хищников и жертв при антропогенном давлении в случае P=5

Рис. 3.4. Фазовый портрет в случае P=5

Заключение

В работе рассматривалась система дифференциальных уравнений, описывающих взаимодействие двух популяций на загрязненной территории. Проводился анализ системы на устойчивость методом Ляпунова. Построено четыре графика, два из которых фазовые портреты.

А. Код программы

```
1 using Pkg
2 using Plots
using DifferentialEquations
using ParameterizedFunctions
  a = 2
  b = 5
  g = 1
  a1 = 0.51
  a2 = 1.2
 b1 = 0.51
b2 = 1.2
  c1 = 1.2
c2 = 0.51
_{14} P = 0
 u0 = 1
  v0 = 1
  pp! = @ode_def PP begin
      du = u*((1+a1*P)/(1+a2*P) - u*(1+b2*P)/(1+b1*P)) - u*v/(1+a*u)
18
      dv = g^*(-v^*(1+c1*P)/(1+c2*P) + b^*u^*v/(1+a^*u))
19
  end a1 a2 b1 b2 c1 c2
  u = [u0, v0]
  param=[a1, a2, b1, b2, c1, c2, a, b, g, P]
  timespan = (0.0, 100.0)
  problem = ODEProblem(pp!, u, timespan, param)
  solution = solve(problem)
```