Projet M31:

<u>Sujet:</u> Simulations montrant la convergence de certaines lois binomiales vers des lois de Poisson.

Analyse du sujet:

Problèmes:

Le principal problème ici est que la loi binomiale B(n, ρ) doit remplir certaines conditions pour qu'elle puisse converger vers une loi de Poisson. En effet, n \geq 30, $\rho \leq$ 0.1 et n $\rho \leq$ 15.

Fonctionnalités:

- Création d'une loi binomiale selon les données saisies par l'utilisateur.
- Création d'une loi de Poisson avec lambda = np.
- Sauvegarde des coordonnées de chaque point dans un fichier afin de représenter graphiquement les fonctions des deux lois.

Solutions retenues:

Pour répondre au sujet, nous prévoyons de stocker les valeurs correspondant à la loi binomiale P(X=k) ainsi que k avant de les sauvegarder dans un fichier .csv. Pour obtenir les valeurs de

P(X=k), nous appliquerons la formule:
$$\binom{n}{k} p^k (1-p)^{n-k}$$
.

Puis, nous ferons de même avec la loi de Poisson en stockant à nouveau P(X=k) et k mais cette fois ci P(X=k) sera calculé avec la

formule:
$$\frac{\mathrm{e}^{-\lambda}\lambda^k}{k!}$$
 où λ = n* ρ .

Pour finir, nous allons créer des graphiques en fonction des données sauvegardées afin de montrer la convergence des deux lois.

Mise en oeuvre:

Entrées - sorties:

L'utilisateur saisit les valeurs n et ρ de la loi Binomiale en entrée. Les données sont stockées dans un fichier .csv en sortie.

Découpage fonctionnel:

factorielle(): fonction retournant le factorielle d'un nombre car la librairie "math.h" ne contient pas de telle méthode.

createPoisson(): méthode permettant de récupérer les coordonnées de tous les points de la loi de Poisson à représenter.

createBinomiale(): méthode permettant de récupérer les coordonnées de tous les points de la loi Binomiale à représenter.

sauvegarde(): méthode qui stocke les différentes coordonnées dans un fichier .csv.

Types:

La probabilité p est un double, le nombre n d'expériences est un int.

Pour stocker les coordonnées des points à représenter, nous avons choisi d'utiliser une structure contenant un tableau de int ainsi qu'un tableau de double. Le premier tableau stockera les coordonnées en abscisse et le second, celles en ordonnées.

Stratégie de Test:

Afin de tester nos fonctions, nous avons réalisé des graphiques avec différentes valeurs ci-dessous. Nous avons testé avec des valeurs ne respectant pas les conditions, puis avec des valeurs classiques et enfin un test avec des valeurs extrêmes.

n = 35 ρ = 0.5 -> valeurs ne respectant ρ as les conditions

 $n = 37 \rho = 0.1$

 $n = 45 \rho = 0.05$

 $n = 60 \quad \rho = 0.004$

Conclusion:

Les différents tests nous confirment bien que lorsque les conditions évoquées précédemment ($n \ge 30$, $\rho \le 0.1$ et $n\rho \le 15$) sont respectées, une loi Binomiale converge vers une loi de Poisson. De ce fait, dans le premier graphiques, les 2 lois ne convergent pas puisque ρ =0.5 > 0.1. Ces résultats sont donc limités par les conditions à réunir.