CS114B Lab 12

Kenneth Lai

April 21, 2023

CS114B Lab 12

Kenneth Lai

April 21, 2023

Source 2

CS114B Lab 12

Kenneth Lai

April 21, 2023

Source 3

CS114B Lab 12

Kenneth Lai

April 21, 2023

Now with GPT and friends!

Based on a feedforward neural network language model

- Continuous bag of words (CBOW): use context to predict current word
- Skip-gram: use current word to predict context

- Training data: Google News (6 billion words)
- Skip-gram model: for each word, word2vec learns two word embeddings
 - ► Target word vector **w** (row of **W**, = output of hidden layer)
 - Context word vector c (column of C)
- Common final word embeddings
 - ightharpoonup Add $\mathbf{w} + \mathbf{c}$
 - ► Just **w** (throw away **c**)

- Training data: Google News (6 billion words)
- Skip-gram model: for each word, word2vec learns two word embeddings
 - ► Target word vector **w** (row of **W**, = output of hidden layer)
 - Context word vector c (column of C)
- Common final word embeddings
 - ► Add **w** + **c**
 - ► Just w (throw away c)

- Two issues with word2vec:
 - One vector per word type
 - ► Limited (fixed-length) context
 - ightharpoonup e.g., ± 2 words, etc.

Polysemy

- One vector per word type
- But words have multiple senses
 - ▶ a mouse¹ controlling a computer system in 1968
 - ► a quiet animal like a mouse²
- ► Should mouse¹ and mouse² have the same word embedding?

Polysemy

- One vector per word type
- But words have multiple senses
 - ... mouse¹ ... computer ...
 ... animal ... mouse² ...
- ► Should mouse¹ and mouse² have the same word embedding?
 - ► Embeddings of computer and animal wind up closer than they "should" be

Polysemy

- One vector per word type
- But words have multiple senses
 - ... mouse¹ ... computer ...
 - ► ... animal ... mouse² ...
- ► Should mouse¹ and mouse² have the same word embedding?
 - Embeddings of computer and animal wind up closer than they "should" be
- ► How can we distinguish between mouse¹ and mouse²?
 - Context!

Word Embeddings

- \triangleright **h** is an embedding of \mathbf{x}_i only
 - ► How can we embed context information in h?

Word Embeddings

- **h** is an embedding of \mathbf{x}_i only
 - ► How can we embed context information in h?

Recurrent Neural Networks

- ► Neural networks in which the output of a layer in one time step is input to a layer in the next time step
 - ▶ Here, time step = word

Recurrent Neural Networks

- ► RNNs allow for contextualized word embeddings
 - Multiple word senses
 - Arbitrary-length context
- ► Is this enough?

- \blacktriangleright **h**_i encodes the context **x**₁, ..., **x**_i
 - ▶ But mostly \mathbf{x}_i , less \mathbf{x}_{i-1} , even less \mathbf{x}_{i-2} , ..., very little \mathbf{x}_1
- Context is local

- Example: subject-verb agreement
- ► The flights the airline (was/were) cancelling (was/were) full.

- Example: subject-verb agreement
- ► The flights the airline was cancelling (was/were) full.
 - ► The context for "was" is mostly "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"
 - ► The context for "were" is mostly "cancelling", "was", "airline"
 - Very little "flights"

- Two approaches to handling long-distance dependencies:
 - Memory-based (e.g. long short-term)

- Attention-based
 - At each time step, the model explicitly computes which other words to pay attention to

- ► Embeddings from Language Models
- Based on a bidirectional long short-term memory (LSTM) language model

Long Short-Term Memory

Long Short-Term Memory

Source

- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - Each gate contains one or two neural network layers
 - State persists across time
 - May remember information from long ago
- See Christopher Olah's Understanding LSTM Networks for more details!

- ▶ Input layer: static (context-insensitive) word vectors
 - Character n-gram convolutions
- ▶ 2 bidirectional LSTM layers
- ► Output layer: softmax

- ► Training data: Billion Word Benchmark
- Word embeddings: weighted sum of outputs of input and LSTM layers (task dependent)

Embedding of "stick" in "Let's stick to" - Step #2

1- Concatenate hidden layers Forward Language Model

2- Multiply each vector by a weight based on the task

3- Sum the (now weighted) vectors

ELMo embedding of "stick" for this task in this context

stick 19

Backward Language Model

Source

- ▶ Bidirectional Encoder Representations from Transformers
- ▶ Based on a transformer ("attention is all you need") model
 - See Jay Alammar's The Illustrated Transformer for more details!

Attention

Transformers

- "Attention Is All You Need" (Vaswani et al., 2017)
- No recurrence, relies entirely on attention (and feedforward layers) to capture global dependencies
 - Recurrent neural networks are inherently sequential, processing one word at a time
 - Transformers are more parallel, looking at the entire sequence at once
 - More efficient, especially on GPUs
 - Also scores better on many NLP tasks

- ► Input layer: static WordPiece vectors
 - WordPieces: subwords generated similarly to byte-pair encoding
- ▶ 12-24 encoder layers
 - Encoder layer = (shared) attention layer + (individual) feedforward layers

× 12-24

Applying Language Models to Downstream Tasks

- ► Three general approaches:
 - Feature-based
 - Extract word embeddings from the language model, and use them as input features to a separate task-specific model
 - word2vec.

Applying Language Models to Downstream Tasks

- ► Three general approaches:
 - 1. Feature-based
 - Extract word embeddings from the language model, and use them as input features to a separate task-specific model

- . ·
- 2. Fine-tuning
 - Replace the output layer of the language model with a different head, and continue training, updating some or all parameters
 - ▶ **I**, GPT-1 do this

- Output layer: 2 pre-training tasks
 - Masked LM (Cloze)
 - ▶ Mask 15% of input tokens at random, predict masked words
 - NSP (Next Sentence Prediction)
 - ► Given sentences A and B, does B follow A?
- ► Training data:
 - ► BookCorpus (800 million words)
 - ► English Wikipedia (2.5 billion words)

▶ Word embeddings: combinations of outputs of encoder layers

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

		Dev F1 3core
First Layer Emb	edding	91.0
Last Hidden Layer	12	94.9
Sum All 12 Layers	2 + + + + 1	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four Hidden	12	95.9
Concat Last Four Hidden	9 10 11	96.1

Dev F1 Score

- ► Generative Pre-Training, or Generative Pre-trained Transformer
- Also based on a transformer model

- Input layer: BPE vocabulary
- ▶ 12 decoder layers
 - Decoder layer = (shared) attention layer + (individual) feedforward layers

Decoders are unidirectional: mask out attention to future time steps

- Output layer:
 - Pre-training: standard language modeling
 - Fine-tuning: task-specific head, with language modeling as auxiliary objective
- Training data: BookCorpus (800 million words)

- ► GPT-2
 - lacktriangle More parameters: 117 million ightarrow up to 1.5 billion
 - ► More data: WebText (8 million documents, <19 billion tokens)
 - ► In-context learning

Applying Language Models to Downstream Tasks

- ► Three general approaches:
 - 2. Fine-tuning
 - Replace the output layer of the language model with a different head, and continue training, updating some or all parameters
 - JI , GPT-1 do this

Applying Language Models to Downstream Tasks

- Three general approaches:
 - 2. Fine-tuning
 - Replace the output layer of the language model with a different head, and continue training, updating some or all parameters
 - M , GPT-1 do this
 - 3. In-context (few-shot/one-shot/zero-shot) learning
 - At inference (test) time, the model is given a description of the task in its context window, a few/one/zero demonstations of the task, and asked to complete the text
 - ► Everything is language modeling!
 - ► GPT-2 and up do this

Applying Language Models to Downstream Tasks

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

- ► GPT-3
 - lacktriangle More parameters: 1.5 billion \rightarrow up to 175 billion
 - ► More data:
 - ► Common Crawl (filtered) (410 billion tokens)
 - WebText2 (19 billion tokens)
 - ▶ Books1 (12 billion tokens)
 - ► Books2 (55 billion tokens)
 - ► English Wikipedia (3 billion tokens)

- ► GPT-3
 - More parameters: 1.5 billion \rightarrow up to 175 billion
 - More data:
 - Common Crawl (filtered) (410 billion tokens)
 - ► WebText2 (19 billion tokens)
 - ▶ Books1 (12 billion tokens)
 - ► Books2 (55 billion tokens)
 - ► English Wikipedia (3 billion tokens)
- ► GPT-3.5 (i.e., InstructGPT, ChatGPT)
 - Reinforcement learning from human feedback (RLHF)

Reinforcement Learning from Human Feedback

- Reinforcement learning
 - Environment modeled as a Markov decision process
 - Set of states
 - Set of actions
 - Transition probabilities of going from state s from state s' by executing action a
 - ► Rewards received after going from state s from state s' by executing action a
 - ► Goal: learn an optimal policy
 - What action(s) to execute at each state

Reinforcement Learning from Human Feedback

- Reinforcement learning
 - Environment modeled as a Markov decision process
 - Set of states
 - Set of actions
 - Transition probabilities of going from state s from state s' by executing action a
 - Rewards received after going from state s from state s' by executing action a
 - Goal: learn an optimal policy
 - What action(s) to execute at each state
- For us:
 - ▶ State ≈ context (prompt)
 - ▶ Action ≈ model output
 - ▶ Policy ≈ the language model itself

Reinforcement Learning from Human Feedback

Step 1 Collect demonstration data. and train a supervised policy. A prompt is sampled from our Explain the moon prompt dataset. landing to a 6 year old A labeler demonstrates the desired output behavior. Some people went to the moon... This data is used to fine-tune GPT-3 with supervised learning.

Source

Write a story

about frogs

Once upon a time.

- ► GPT-4
 - ► More parameters (???)
 - ► More data (???)

► Multimodal (text and image) input

User What is funny about this image? Describe it panel by panel.

Source: hmmm (Reddit)

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.