2.10 1) Choisissons a = 0, b = 2 et m = 4.

On constate alors que

- (a) $2a \equiv 2b \mod m$
- (b) $a \not\equiv b \mod m$

Il est faux de conclure que $2 a \equiv 2 b \mod m$ implique $a \equiv b \mod m$.

2) Supposons à présent m impair.

Si $2a \equiv 2b \mod m$, alors $m \mid (2a-2b)$, c'est-à-dire $m \mid 2(a-b)$.

Il existe donc $q \in \mathbb{Z}$ tel que mq = 2(a - b).

Ainsi $2 \mid m q$.

Mais, comme m est impair, cela signifie que $2 \mid q$; en particulier $\frac{q}{2} \in \mathbb{Z}$.

En résumé, $m\,q=2\,(a-b)$ implique $m\,\frac{q}{2}=a-b$ avec $\frac{q}{2}\in\mathbb{Z}\,.$

En d'autres termes, $m \mid (a - b)$, d'où l'on conclut $a \equiv b \mod m$.