

Methods of Artificial Intelligence: Lecture

8. Session: Vagueness and Uncertainty I

Kai-Uwe Kühnberger, Nohayr Muhammad Winter Term 2022/2023 December 23rd, 2022

Overview

Remaining from Last Time: Description Logics - Inferences

- Fuzzy Logic: Introduction / Motivation
- Fuzzy Logic: Fuzzy Set Theory
- Fuzzy Logic: t-norms and s-norms
- Probabilistic Logic

Description Logics: Inferences

The Tableaux Algorithm

- Two types of algorithms
 - Structural subsumption algorithms (for weak DLs)
 - Tableau-based algorithms (general technique)
- Remarks:
 - Relation of DLs to 2-variable logic
 - Most DLs can be reduced to 2-variable logic
 - Problematic cases are role composition and number restrictions: these operations cannot be expressed by 2-variable logic in general (why?)

- Structural subsumption algorithms try to test subsumption of concept descriptions
 - This works only if no disjunction is available
 - Compare Baader & Nutt: "Basic Description Logic"
- Tableau-based algorithms reduce subsumption to the unsatisfiability of concept descriptions:

 $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable (by checking if a (finite) model exists)

- We explain Tableau-based algorithms using an example
 - Assume we want to know whether (∃R.A) □ (∃R.B) is subsumed by ∃R.(A □ B)
 - We must check whether $C = (\exists R.A) \sqcap (\exists R.B) \sqcap \neg (\exists R.(A \sqcap B))$ is unsatisfiable

- Tableau-based algorithms: an example
 - Check for $(\exists R.A) \sqcap (\exists R.B) \sqsubseteq \exists R.(A \sqcap B)$
 - We must check whether

$$C = (\exists R.A) \sqcap (\exists R.B) \sqcap \neg (\exists R.(A \sqcap B))$$

is unsatisfiable

- Push all negations as far as possible into the description (negation normal form)
 - $C' = (\exists R.A) \sqcap (\exists R.B) \sqcap (\forall R.(\neg A \sqcup \neg B))$
 - Assume that there exists a $b^I \in (C')^I$
 - This corresponds to finding a model for an A-box: b : C'

Try to construct a finite interpretation I such that $(C')^I \neq \emptyset$

1.
$$b^{I} \in (C')^{I}$$

2.
$$b^I \in ((\exists R.A) \sqcap (\exists R.B) \sqcap (\forall R.(\neg A \sqcup \neg B)))^I$$
 (1., def)

$$3. \quad b^I \in (\exists R.A)^I \tag{2., } \Box$$

$$4. b^{I} \in (\exists R.B)^{I} (2., \sqcap)$$

$$5. \quad b^{I} \in (\forall R.(\neg A \sqcup \neg B))^{I}$$
 (2., \sqcap)

6.
$$\langle b^I, c^I \rangle \in R^I$$
 (3., skolemization)

7.
$$c^I \in A^I$$

8.
$$\langle b^I, d^I \rangle \in R^I$$
 (4., skolemization)

9.
$$d^{I} \in B^{I}$$

10.
$$c^I \in (\neg A \sqcup \neg B)^I$$
 (5., 6., \forall)

11.
$$d^{I} \in (\neg A \sqcup \neg B)^{I}$$
 (5., 8., \forall)

12.
$$c^I \in (\neg B)^I$$
 (10., $c^I \in (\neg A)^I$ clashes with 7.: $c^I \in A$)

13.
$$d^I \in (\neg A)^I$$
 (11., $d^I \in (\neg B)^I$ clashes with 9.: $d^I \in B$)

$$\Delta^{I} = \{b^{I}, c^{I}, d^{I}\}, R^{I} = \{\langle b^{I}, c^{I} \rangle, \langle b^{I}, d^{I} \rangle\}, A^{I} = \{c^{I}\}, B^{I} = \{d^{I}\} \text{ is a finite model for } b : C'$$

- We found a model for b : C'
- $C' = (\exists R.A) \sqcap (\exists R.B) \sqcap (\forall R.(\neg A \sqcup \neg B))$ is satisfiable
- $C = (\exists R.A) \sqcap (\exists R.B) \sqcap \neg (\exists R.(A \sqcap B))$ is not unsatisfiable
- $(\exists R.A) \sqcap (\exists R.B) \sqsubseteq \exists R.(A \sqcap B)$ does not hold!

Fuzzy Logic: Introduction / Motivation

Vagueness and Its Modeling

Vagueness and Uncertainty

- In Classical Logics, statements are either true or false
- We cannot capture
 - Partial Truth: the ball is reddish (the ball is red to a certain degree)

 Uncertainty: we probably pick a red ball (most balls are red)

- Fuzzy Logics address partial truth (vagueness)
- Probabilistic Logics address uncertainty

- 1,000,000 grains of sand is a heap of sand (Premise 1)
- A heap of sand minus one grain is still a heap (Premise 2)

But then 999,999 is still a heap

If we iterate the argument...

... we can conclude that 1 grain of heap is still a heap

Fuzzy Approach to the Heap Paradox

 Instead of classical Boolean truth values, quantify degree of truth by an arbitrary value between 0 and 1

Fuzzy Logic: Fuzzy Set Theory

Modified Membership Relation

Membership Functions

- Classical sets can be represented by a characteristic function (also called indicator function)
- A characteristic function yields 1 for all elements that belong to the set $I_A(x) = 1$ iff $x \in A$ (and 0 otherwise)

Some fuzzy membership functions (y-value = degree of membership)

Fuzzy Set Theory

- A fuzzy set $A = (U, \mu_A)$ is defined by
 - some universe U and
 - a membership function $\mu_A: U \to [0, 1]$
- Intuitively, $\mu_A(x) = d$ means that x belongs to degree d to A
- For example, we could have $\mu_{red}(ball) = 0.6$

- Classical (crisp) sets are special membership functions $\mu_A: U \to \{0,1\}$
 - $\mu_A(x) = 1$ iff $x \in A$.
 - $\mu_A(x) = 0$ iff $x \notin A$.

(characteristic function)

Standard Fuzzy Set Theory

We can generalize classical set relations

•
$$A = B$$
 iff $\forall x. \ \mu_A(x) = \mu_B(x)$

•
$$A \subset B$$
 iff $\forall x. \ \mu_A(x) \leq \mu_B(x)$

(equality)

(subsethood)

- One way to generalize set operations is as follows
 - $A \cap B$: $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$
 - $A \cup B$: $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$
 - A^{C} : $\mu_{A^{C}}(x) = 1 \mu_{A}(x)$

(intersection)

(union)

(complement)

Example

- Suppose, we have fuzzy sets red, round s.t.
 - $\mu_{red}(ball) = 0.6$
 - $\mu_{round}(ball) = 1.0$

- Then, we have
 - For S = red \cap round : μ_S (ball) = min(0.6,1.0) = 0.6
 - Ball is both red and round to degree 0.6
 - For S = red \cup round : $\mu_S(\text{ball}) = \max(0.6, 1.0) = 1.0$
 - Ball is red or round (to degree 1.0; ~ classical truth)
 - For S = red^C: $\mu_S(\text{ball}) = 1.0 0.6 = 0.4$
 - Ball is not red to the degree 0.4

Some Other Properties

- Using the previous definitions, we maintain many classical properties of sets
 - Neutral elements:

•
$$\forall x$$
. min(1, $\mu_A(x)$) = $\mu_A(x)$

$$(U \cap A = A)$$

•
$$\forall x$$
. $\max(0, \mu_A(x)) = \mu_A(x)$

$$(\varnothing \cup A = A)$$

Commutativity:

•
$$\forall x$$
. $\min(\mu_A(x), \mu_B(x)) = \min(\mu_B(x), \mu_A(x))$

$$(A \cap B = B \cap A)$$

•
$$\forall x$$
. $\max(\mu_A(x), \mu_B(x)) = \max(\mu_B(x), \mu_A(x))$

$$(A \cup B = B \cup A)$$

- Similarly, other properties remain true like
 - Associativity, distributivity, deMorgan's Laws, ...

Fuzzy vs. Classical Sets

- The intersection of non-crisp fuzzy sets and their complement can be 'non-empty'
 - For classical sets, we have

$$A \cap A^c = \emptyset$$

For fuzzy sets, we have

$$\mu_{A \cap A}^{c}(x) = \min(\mu_{A}(x), 1 - \mu_{A}(x))$$

• Example: let $S = \text{red} \cap \text{red}^{C}$ Then $\mu_{S}(x) = \min(0.6, 1.0 - 0.6) = 0.4$

Of course, this makes only sense for 'vague predicates'

Fuzzy vs. Classical Sets

- The union of fuzzy sets and their complement can be different from the universe U
 - For classical sets, we have

$$A \cup A^c = U$$

For fuzzy sets, we have

$$\mu_{A \cup A}^{c}(x) = \max(\mu_{A}(x), 1 - \mu_{A}(x))$$

• Example: let $S = \text{red} \cup \text{red}^C$ Then $\mu_S(x) = \max(0.6, 1.0 - 0.6) = 0.6$

Of course, this makes only sense for 'vague predicates'

Fuzzy Logic

t-norms and s-norms

Fuzzy Logic

- We can define a propositional Fuzzy Logic as follows:
 - Interpretations I assign a membership value from [0,1] to all atoms
 - we interpret conjunctions using min:
 - $I(F \wedge G) = min(I(F),I(G))$
 - we interpret disjunction using max:
 - $I(F \vee G) = max(I(F),I(G))$
 - we interpret negation similarly to the fuzzy set calculation of complement
 - $I(\neg F) = 1 I(F)$

Exercise

- Suppose, we have atoms {red, round} and
 - I(red) = 0.6
 - I(round) = 1
- We get
 - $I(red \land round) = min(I(red), I(round)) = min(0.6, 1) = 0.6$
 - $I(\neg red) = 1.0 I(red) = 1.0 0.6 = 0.4$
 - $I(red \lor \neg red) = max(I(red), I(\neg red)) = max(0.6, 1.0 0.6) = 0.6$
 - $I(red \land \neg red) = min(I(red), I(\neg red)) = min(0.6, 1.0 0.6) = 0.4$
 - $I(red \lor \neg round) = max(0.6, 1.0 1.0) = 0.6$

Fuzzy Set Theory and Fuzzy Logic

- The semantics for Fuzzy Logic operators can be defined in many different ways
- t-norms and s-norms generalize conjunction and disjunction
- A two-place operation t, resp. s on [0,1] is called t-norm, resp. s-norm if it holds:
 - 1 (for t) and 0 (for s) are neutral elements.
 - t and s are commutative.
 - t and s are associative.
 - t and s are monotone increasing:
 - Meaning: $x \le x' \land y \le y' \rightarrow t(x,y) \le t(x',y')$
- Example: Multiplication of natural numbers has a neural element, is commutative, associative, and is monotonic increasing.

Fuzzy Set Theory and Fuzzy Logic

- Examples of t-norms and s-norms are
 - min is a t-norm and max is a s-norm
 - $alg_t(x,y) = x \cdot y$ is a t-norm and $alg_s(x,y) = x + y (x \cdot y)$ is an s-norm.
 - $quo_t(x,y) = (xy) / (x + y xy)$ is a *t*-norm and $quo_s(x,y) = (x + y 2xy) / (1.0 xy)$ is a s-norm.
- There are infinitely many possible t-norms and s-norms.
- Nevertheless, there is, for example, a smallest (non-trivial) t-norm and a largest (non-trivial) t-norm:
- Smallest *t*-norm: t(x,y) = 1.0 iff x = 1.0 and y = 1.0, else t(x,y) = 0
- Largest t-norm: $t(x,y) = \min(x,y)$

Applications of Fuzzy Logic

- Fuzzy logic is widely used for controlling dynamical systems.
 - Temperature control in air-conditioning systems (Mitsubishi, Sharp).
 - Stable control of car engines (Nissan).
 - Recognition of handwritten symbols (Sony).
 - Motor control of vacuum cleaners with recognition of surface conditions and degree of soiling (Matsushita).
 - Efficiency of elevator control (Fujitec, Hitachi, Toshiba).
- A recent book on applications is
 - Carter et al. (2021): Fuzzy Logic: Recent Applications and Developments, Springer Nature.

Summary

- Fuzzy Theory allows us to express vagueness
- Vague statements can be true to a certain degree
- This is accomplished by means of membership functions
- Fuzzy logics can be defined in many different ways
- However, usually we try to extend classical logics
 - For membership 0 and 1, behaviour like classical logic
 - In between, novel things can happen (e.g. $I(F \lor \neg F)$)

Probabilistic Logic: Introduction / Motivation

Modeling Uncertainty

Weather Example

Probability Space

- A (simple finite) probability space is a triple $\langle \Omega, \Sigma, P \rangle$
 - Ω is a finite non-empty set
 - Σ is the set of all subsets of Ω
 - P: $\Sigma \to \mathbf{R}$ is a 'probability measure'
- Ω is the set of elementary events (in other fields also called "possible worlds" or "states")
- Σ is the set of events
 - Each event E in Σ is a subset of Ω
 - Intuitively, each event E corresponds to a set of possible worlds that satisfy some statement

Possible Worlds

Events

Event: Dry Weather

Events

Event: Humid Weather

Events

Probabilistic Logic: Probability Measures

Some more Formal Stuff

Probability Measures

- Probability measures assign probabilities to events
- They are characterized by Kolmogorov's axioms (finite version)
 - 1. $P(E) \ge 0$ (Non-negativity)
 - 2. $P(\Omega) = 1$ (Normalization)
 - 3. If the events E_1, E_2, \dots, E_n are disjoint, then (Finite Additivity)

$$P(E_1 \cup E_2 \cup ... \cup E_n) = P(E_1) + P(E_2) + ... + P(E_n).$$

The infinite version of Kolmogorov's axioms replaces the last axiom with:

The countable sequence of disjoint sets $E_1, E_2, ...$ satisfies:

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

Probability of Events

0.5 + 0.28 = 0.78

Probability of Events

Event: Humid Weather

0.21 + 0.01 = 0.22

Probability of Events

Additivity

P(Dry or Humid) = P(Dry) + P(Humid)

Additivity

 $P(Dry \text{ or Non-sunny}) \neq P(Dry) + P(Non-sunny)$

Have a Nice Break and a Happy New Year !!!

