计算机科学基础 C

两种代码

*结构描述

*行为级RTL描述

结构描述


```
module muxtwo (out, a, b, sl);
        input a,b,sl;
        output out;
    not u1 (ns1, sl);
 and u2 (sela, a, nsl);
  and u3 (selb, b, sl);
or u4 (out, sela, selb);
        endmodule
```


行为描述


```
module muxtwo (out, a, b, sl);
         input a,b,sl;
         output out;
           Reg out;
     always @(sl or a or b)
           if (!sl) out = a;
              else out = b;
         endmodule
```


Verilog、股头

*Module八股

*Testbench八股

Module八股

- 1. module 名字 (出入口声明);
- 2. 出入口方向位宽声明;

//用于指定input/output

3. reg/wire;

//always中被赋值的为reg, 连线用wire;

- 4. always块列写时序或组合电路块;
- 5. assign列写连线或组合电路块
- 6. endmodule

QuartusII 设计流程

QuartusII 设计流程

设计一个二选一电路

c为0输出a, c为1输出b

设计一个二选一电路

c为0输出a, c为1输出b


```
module mux21 (a,b,c,y);
input a,b,c;
output y;
```

```
assign y=(a&~c)|(b&c);
```

endmodule

module mux21 (a,b,c,y);
input a,b,c;
output y;

```
\begin{bmatrix} \mathbf{a} & \mathbf{U}_1 & \mathbf{x}_1 \\ \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \\ \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_4 \\ \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ \mathbf{v}_4 & \mathbf{v}_5 & \mathbf{v}_6 \\ \mathbf{v}_5 & \mathbf{v}_6 & \mathbf{v}_6 & \mathbf{v}_6 \\ \mathbf{v}_6 & \mathbf{v}_7 & \mathbf{v}_8 & \mathbf{v}_8 \\ \mathbf{v}_7 & \mathbf{v}_8 & \mathbf{v}_8 & \mathbf{v}_8 \\ \mathbf{v}_8 &
```

wire x1,x2,x3;
and U1 (x1,a,x3);
not U2 (x3,c);
and U3 (x2,c,b);
or U4 (y,x1,x2);

endmodule

新建工程和设计文件

建立工作文件夹和设计工程的文件夹。

新建工程向导。

- 新建原理图文件。
 - 1.添加元件、输入输出引脚
 - 2.连线

功能仿真

对设计文件进行逻辑功能的测试。

通过观察输入输出波形的关系来检查是否满足设计要求。

- 对设计文件执行分析与综合
 Processing → Start → Start Analysis and Sythesis
- 建立波形文件,添加待观测信号节点
- 输入激励信号
- 在Simulator Tool中指定功能仿真模式 Generate Functional Simulation Netlist
- 执行仿真、观察仿真结果

全编译

Processing → Start Compilation

■ 将设计项目适配到指定的目标器件中。

■ 产生多种用途的输出文件。如功能和时序信息文件、器件编程的目标文件等。

■ 编译成功后,可以读取硬件耗用统计报告、布局 布线报告及时序特性报告等信息。

时序仿真

在全编译之后验证设计的时序性能。

- 建立波形文件,添加待观测信号节点
- 输入激励信号
- 在Simulator Tool中指定时序仿真模式。
- 执行仿真、观察仿真结果

	Name	Value at O ps	0 ps 80.0 ns 160.0 ns 240.0 ns 320.0 ns 400.0 : 0 ps
■ 0	A	A 0	
<u></u> 1	В	A O	
<u></u> 2	С	A O	
⊚ 3	ч	A 0	
			n = 00 0 == 150 0 == 240 0 == 220 0 == 400 0 =
	Name	Value at O ps	0 ps 80.0 ns 160.0 ns 240.0 ns 320.0 ns 400.0 n
₽ 0	Name A		
→ 0		0 ps	
□ 0□ 1□ 2	A	0 ps	

管脚分配

将设计文件中的输入输出引脚与FPGA芯片的实际引脚相对应起来。

Top View-Wire Bond

DE2EP2C35672有475个可用引脚

分配后, 再进行一次全编译, 管脚信息写入位流文件

Signal Name	FPGA Pin No.	Description
SW[0]	PIN_N25	Toggle Switch[0]
SW[1]	PIN_N26	Toggle Switch[1]
SW[2]	PIN_P25	Toggle Switch[2]
SW[3]	PIN_AE14	Toggle Switch[3]
SW[4]	PIN_AF14	Toggle Switch[4]
SW[5]	PIN_AD13	Toggle Switch[5]
SW[6]	PIN_AC13	Toggle Switch[6]
SW[7]	PIN_C13	Toggle Switch[7]
SW[8]	PIN_B13	Toggle Switch[8]
SW[9]	PIN_A13	Toggle Switch[9]
SW[10]	PIN_N1	Toggle Switch[10]
SW[11]	PIN_P1	Toggle Switch[11]
SW[12]	PIN_P2	Toggle Switch[12]
SW[13]	PIN_T7	Toggle Switch[13]
SW[14]	PIN_U3	Toggle Switch[14]
SW[15]	PIN_U4	Toggle Switch[15]
SW[16]	PIN_V1	Toggle Switch[16]
SW[17]	PIN_V2	Toggle Switch[17]
100		

Signal Name	FPGA Pin No.	Description
LEDR[0]	PIN_AE23	LED Red[0]
LEDR[1]	PIN_AF23	LED Red[1]
LEDR[2]	PIN_AB21	LED Red[2]
LEDR[3]	PIN_AC22	LED Red[3]
LEDR[4]	PIN_AD22	LED Red[4]
LEDR[5]	PIN_AD23	LED Red[5]
LEDR[6]	PIN_AD21	LED Red[6]
LEDR[7]	PIN_AC21	LED Red[7]
LEDR[8]	PIN_AA14	LED Red[8]
LEDR[9]	PIN_Y13	LED Red[9]
LEDR[10]	PIN_AA13	LED Red[10]
LEDR[15]	PIN_AE13	LED Red[15]
LEDR[16]	PIN_AE12	LED Red[16]
LEDR[17]	PIN_AD12	LED Red[17]
LEDG[0]	PIN_AE22	LED Green[0]
LEDG[1]	PIN_AF22	LED Green[1]
LEDG[2]	PIN_W19	LED Green[2]
LEDG[3]	PIN_V18	LED Green[3]
LEDG[4]	PIN_U18	LED Green[4]
LEDG[5]	PIN_U17	LED Green[5]
LEDG[6]	PIN_AA20	LED Green[6]
LEDG[7]	PIN_Y18	LED Green[7]
LEDG[8]	PIN_Y12	LED Green[8]

2选1数据选择器管脚分配

Assignments Assignment Editor Category: Pin

下载

■ 下载电缆一端连接PC机的并口,另一端连接 实验板JTAG口。

- 连接电源线,打开电源。
- Tools → Programmer 下载SOF文件。

■ 验证设计。

知识点小结

₩要求掌握 QuartusII 设计流程

*学会原理图输入

*学会HDL输入

*学会电路仿真,下载,原型测试

