

Outlines

1 – Reminder of flight management, guidance and control functions

2 - Useful sensors

3 – AP/FD outer loops examples

4 - Flight control laws design

- Stability and performance requirements... and success criteria
- Flight control laws tuning issues
- Flight control laws development before and during flight tests

5 – Automatic landing (autoland) specificities

- Performances requirements and demonstration
- Performances robustness improvement based on estimators

AP: AutoPilot ATHR: AutoTHRust

1 – Reminder of flight management, guidance and control functions

Integration of navigation, guidance & control functions

Autoflight control laws principles

- The inner loop is dedicated to control
 - Control the A/C attitude (same scope as EFCS)
 - Limit the outer loop targets in amplitude and speed to limit the effects of a failure
 - Use A/C accelerations, attitude and attitude rates as main feedbacks
 - Compute orders: surfaces deflection
- The outer loop is dedicated to guidance
 - Control the center of gravity position to follow the flight plan
 - Limit FCU or FMS targets in amplitude and speed to limit the effects of a failure
 - Use A/C position and speed vector as main feedbacks to compute orders
 - Send them to the inner loop (AP) or displays (FD): load factor, bank angle
- A control law is associated to each mode
 - The link between modes and control laws is defined in « operational logic »
 - Different feedbacks are used at guidance level and control level

Autopilot orders are executed via inner loops, in charge of controlling the surfaces to their commanded deflections

Functional breakdown of Flight Control Laws

Vertical control laws breakdown

Lateral control laws breakdown

Thrust control laws breakdown

2 - Useful sensors

Sensors needed: ADIRU

Calibrated airspeed CAS
True airspeed TAS
Mach number M

Baro-inertial vertical speed V_{ZBI}
Baro-inertial altitude Z_{BI}

Sensor	Measurement	Notation	Unit	What for?
Air Data Reference	Static pressure	Ps	mbar	
	Total pressure	P_{T}	mbar	Computation of airspeed
	Total air temperature	TAT	°C	
	Angle of attack	α	deg	α protection
	Angle of sideslip	β	deg	Lateral inner loop
	Accelerations	N_X , N_Y	g	
Inertial	Rotation rates	p, q, r	deg/s	Longitudinal & lateral inner loops
Reference	Attitudes	θ, φ, ψ	deg	
System	Ground speed	V _{GND}	kts	Speed control laws
	Track angle	TRK	deg	Track control law

Flight path angle γ

Sensors needed

0-	Sensor	Measurement	Notation	Unit	What for?	
Radio altimeter		Radio altitude height	HRA	ft	Approach and flare Anti tail strike	
	Multi Mode Receiver	ILS deviations	GS _{DEV} , LOC _{DEV}	μΑ	Take-off roll (LOC only) Approach, align & rollout	
	Tanks, fuel flow, flight mechanics	A/C weight	WGT	Т	Longitudinal & lateral	
	equations	CG position	CG	%	inner loops	
	Position sensors	Primary and secondary control surfaces	THS, ELEV, AIL, SP, RUD, S/F	deg	Longitudinal & lateral inner loops	
		Landing gear position		up or down		
	Engine	Engine control parameter	N1 EPR	% wu	Auto thrust control	
W		Ground speed	V _{GND GPS}	kts		
	GPS	Altitude	Z_{GPS}	ft	Backup display	
		Track angle	TRK _{GPS}	deg		

And many others, especially estimated parameters from raw data...

3 – AP/FD outer loops examples

Example 1: Acquire & hold a track angle target

- Considering a unique feedback (K_r=0)
- Assuming a first order dynamics for inner loop
- And simplified flight dynamics equations
- Comes the transfer function

$$\phi_{c}^{(\text{deg})} = K_{\psi} \cdot \Delta \psi^{(\text{deg})}$$

$$\frac{\phi}{\phi} = \frac{1}{1 + \tau_{\phi} p}$$

$$\phi = \frac{V_{ground}^{(m/s)}}{g} \dot{\Psi}^{(\text{deg/s})}$$

$$\frac{\psi}{\psi_{c}} = \frac{1}{\left(\frac{\tau_{\phi} \cdot V_{ground}}{K_{\psi} \cdot g}\right) \cdot p^{2} + \left(\frac{V_{ground}}{K_{\psi} \cdot g}\right) \cdot p + 1}$$

Example 2 : Acquire & hold a flight path angle target

$$\Delta \gamma_c^{(deg)} = \gamma_{tgt} - \gamma$$
 K_{γ} $Nz_c^{(g)}$

- Considering a unique feedback
- Assuming a first order dynamics for inner loop
- And simplified flight dynamics equations
- Comes the transfer function

$$Nz_c^{(g)} = K_{\gamma} \cdot \Delta \gamma^{(\text{deg})}$$

$$\frac{Nz}{Nz_c} = \frac{1}{1 + \tau_{Nz}p}$$

$$Nz^{(g)} = \frac{V_{inertial}^{(m/s)} \cdot \pi \cdot \dot{\gamma}^{(\text{deg/s})}}{g \cdot 180}$$

$$\frac{\gamma}{\gamma_c} = \frac{1}{\left(\frac{\tau_{Nz} \cdot V_{inertial}}{K_{\gamma} \cdot g \cdot 57.3}\right) \cdot p^2 + \left(\frac{V_{inertial}}{K_{\gamma} \cdot g \cdot 57.3}\right) \cdot p + 1}$$

Example 3: Acquire & hold a horizontal path target

Example 4: Acquire & hold a vertical path target

Vertical deviation between the A/C and the path, estimated from sensors (GPS, IRS, ILS...) $\Delta \mathbf{z}_{c}^{(ft)} \qquad \qquad \mathbf{K}_{\mathbf{z}} \qquad \qquad \mathbf{N} \mathbf{z}_{c}^{(g)}$ $\mathbf{v}_{\mathbf{z}}^{(ft/min)} \qquad \qquad \mathbf{v}_{\mathbf{z}}^{(g)}$ Estimated vertical speed error

- Vertical speed error estimation (Vz)
 - From inertial data

... possible bias if reference is inaccurate

$$Vz_{IRS} = V_{3D}.sin(slope_{IRS} - slope_{Reference})$$

- From measured vertical deviation
 - ... poor result when deriving a noisy signal

Example 5: Flare outer loop dedicated to autoland function

3 – Flight control laws design

Flight Control Laws requirements

- Based on stability, performance, comfort and safety objectives
- Nominal performance
 - Expected within the operational flight envelope and out of failures
 - Objective: robustness with respect to every day disturbances
 - Wind & turbulence
 - Sensors characteristics: biases and noise
 - Known events from in-service fleet or previous flight tests campaigns
 - Wind gradient, ILS beam noises, particular terrain profiles
- Marginal performance
 - Objective: reassuring behaviour further to severe disturbances
 - Outside the operational flight envelope of the system
 - Abnormal procedures
 - Failures: engine, sensor or control surface
 - Severe gusts or turbulence
 - ... so that the crew can analyse the situation before potentially take over

Performance criteria

- General criteria in stabilized phase and in manœuvre
 - Lateral axis: focused on sideslip, bank angle & lateral load factor Ny
 - Vertical axis: focused on normal load factor Nz, pitch angle & pitch rate
- Criteria specific to each control law
 - Capture dynamics following a target change

- Target recovery dynamics after disturbances
 - Wind gradients and turbulence
 - Change in configuration (gears, speedbrakes, slats/flaps)
 - Failures

Flight control laws tuning issues (1)

- Knowledge of the aircraft and representativeness of its models
 - Aerodynamics: needs a good identification from wind tunnel and flight tests
 - Actuators & sensors: needs accurate data from suppliers
- Loads & aeroelasticity constraints
 - Limit loads in manœuvre or in turbulence ⇒ limit gains
 - Avoid exciting structural modes (flutter) ⇒ filter, limit gains
- Sensors contraints
 - Process noisy or biased signals ⇒ filter, merge data (complementary filter)
 - Limit the effects of failures ⇒ limit and rate-limit FCL orders
 - Manage the signal loss ⇒ reconfigure on a different source, data or law

Flight control laws tuning issues (2)

- Actuators constraints
 - Set a time response of control loop compatible with actuators' one
 - Make sure that our orders can be followed by the actuators
 - Find an appropriate trade-off between fatigue and performance
- Architecture constraints
 - Consider the global delay: own delay of each system, acquisition/emission...
- Pilot constraints
 - Make autoflight behaviour close to what a pilot would do
 - Converge towards a FD satisfying a heterogeneous pilots community
 - For a given FD demand, pilots actions on the sidestick can be very different
 - Find an appropriate trade-off between comfort and performance

Flight control laws (FCL) development before the first flight

FCL development during the flight tests campaign

4 – Automatic landing specificities

Autoland guidance references (1/2)

1 – ILS: Instruments Landing System

"Historical" mean

Autoland guidance references (2/2)

2 – GLS: GNSS Landing System based on GPS & DGPS

Autoland categories: definitions

DH: Decision Height
 Height at which the pilot must have the visual references (runway, lights...)
 Else the approach must be interrupted and a go-around must be performed

RVR: Runway Visual Range (horizontal visibility)

Autoland categories: definitions

Fail passive system

The system can not ensure its function if a failure occurs but there will not induce a consequence on the flight safety (the failure is passivated).

→ No significant effect on A/C trajectory

Fail operative system

The system keeps on ensuring its function after the 1st failure. It stays operational: the **safety** and the performance are maintained.

→ Operations carried on normally (thanks to redundancy...)

Autoland categories

Categories	Navigation means	Operational Limitations (DH, RVR)	Automatic guidance modes required	Failures effect	
ı	RNAV ILS CAT I	DH > 200 ft	Display of ILS signals (no automatic guidance required)		
П	ILS CAT II	DH > 100 ft	Fail passive automatic approach & go-around	Fail Passive	
III A		DH < 100 ft or « no DH » & RVR > 200 m	Autoland Automatic thrust control		
III B	ILS CAT III	DH < 50 ft or « no DH » & RVR > 50 m	Fail operative autoland Fail passive rollout	Fail Operative	
III C		« no DH » & « no RVR »	Fail operative rollout	Tall Operative	

Performances demonstration: simulations & flight tests

- Simulation performance
 - Reduction of the volume of certification flight tests
 - Wide range of autoland conditions can be covered by simulation
 - Performances must be compliant with the regulations
 - Results to be compared to certification requirements
 - Methods & means must be approved by airworthiness authorities
 - Simulation means, wind models, results processing...
 - Simulation representativeness demonstrated by flight test matching
- Flight tests performance
 - Touch down: 100 autolands in various conditions, for certification only
 - Aircraft loading envelope (WGT & CG)
 - Wind conditions (calm or windy: head, cross, tail)
 - Runway profiles: specific profiles and high altitude terrain
 - Roll-out: 20 autolands where the AP is kept engaged after touchdown
 - Go-around: ~10 go-arounds, with or without engine failure

Flight tests matching with the simulation

ure 1-3 Flight $301/4 - \alpha/c$ 12 - Longitudinal axis

Touch down performance: statistical demonstration (1)

- Assess the probability of occurrence of some events
 - Landing too short, too long, too far from the runway centre line
 - Structural damages (hard landings)
 - Runway exit during the roll-out
- Considering various approach conditions
 - Aircraft parameters: weight, CG position, configuration...
 - Atmospheric parameters: wind and turbulence
 - Airport parameters: temperature, terrain elevation, runway profile, runway state (wet/dry), ILS slope, noise...
- To demonstrate the compliance with the regulations
 - Average risk: all parameters are distributed (random process)
 - Limit risks: one of them is set to its most adverse value
 - Limit probability of occurrence is then relaxed
 - Examples of limit risks: max crosswind, heaviest weight, one engine failed...

Touch down performance: statistical demonstration (2)

Limit probabilities set by the regulations

		Risks		
		Average	Limit	
Main landing gear position at touch down				
XTP	Less than 60m beyond runway threshold	10-6	10 ⁻⁵	
XTP	More than 823m beyond runway threshold	10-6	10 ⁻⁵	
YTP	More than 21m from centre line (outer wheel)	10-6	10 ⁻⁵	
Structural limits				
VZ_{IMP}	Sink rate beyond the maximum value	10-6	10 ⁻⁵	
β_{NW}	Wheel sideslip beyond the maximum value	10-6	10 ⁻⁵	
φ	Bank angle beyond the maximum value	10-8	10-7	
Maximum lateral deviation during the roll-out				
YTP	More than 21m from centre line (outer wheel)	10-6	10 ⁻⁵	

Touch down performance: example

	Average	Std deviation	Min	Max
XTP (m)	378	71	186	624
VZTP (ft/s)	-3.7	1.3	-9.1	0.3
YTP (m)	0.1	2.5	-10.1	10.5
PHI (deg)	0	0.8	-3	3.8
BETA (deg)	-0.1	1.4	-7.2	6.7

Performance robustness to runway profiles

Lack of robustness due to the trajectory estimator in Flare

THE END!

- Contact information:
 - Priteche VENILAL, Flight Control Laws Engineer
 - Product Leader of BelugaXL Manual and Auto-Pilot Laws
 - Airbus Operations, Toulouse
 - Mail: priteche.venilal@airbus.com