## Inteligência Artificial - 2023 Lista 3

Entrega: dia 29 de junho

1. O planejador STRIPS original foi projetado para controlar o robô Shakey. A figura abaixo mostra uma versão do mundo de Shakey que consiste em quatro salas dispostas ao longo de um corredor, onde cada sala tem uma porta e um interruptor de luz. As ações no mundo de Shakey incluem movimentar-se de um lugar para outro, empurrar objetos móveis (como caixas), subir e descer de objetos rígidos (como caixas) e ligar e desligar interruptores. O robô propriamente dito nunca chegou a conseguir subir em uma caixa ou acionar um interruptor, mas o planejador de STRIPS era capaz de descobrir e imprimir planos que estavam além das habilidades do robô.



As seis ações de Shakey são as seguintes:

- Ir(x, y, r), que exige que Shakey esteja em x e que x e y sejam posições na mesma sala r. Por convenção, uma porta entre duas salas está em ambas as salas.
- Empurrar uma caixa b da posição x para a posição y dentro da mesma sala: Empurrar(b, x, y, r). Precisaremos do predicado Caixa e de constantes relativas às caixas.
- Subir em uma caixa de posição x: Subir(x, b); descer de uma caixa para a posição x: Descer(b, x). Precisaremos do predicado Sobre e da constante Piso.
- Ligar ou desligar um interruptor: Ligar(s, b); Desligar(s, b). Para ligar ou desligar um interruptor de luz, Shakey tem de estar em cima de uma caixa na posição do interruptor de luz.

Descreva as seis ações de Shakey e o estado inicial da figura. Construa um plano para Shakey colocar Caixa<sub>2</sub> em Sala<sub>2</sub>.

2. Considere um MDP com 3 estados (A, B e C) e 2 ações (Clockwise e CounterClockwise). Não sabemos a função de transição nem a função de recompensa para o problema. Em vez disso, são fornecidas amostras do que acontece quando o agente interage com o meio ambiente. Neste problema, vamos primeiro estimar o modelo (i.e., a função de transição e a função de recompensa), e então usar o modelo estimado para encontrar as ações ideais.

Considere as seguintes amostras que o agente encontrou:

| S | a                | s' | r   | S | a                | s' | r    | S | а                | s' | r    |
|---|------------------|----|-----|---|------------------|----|------|---|------------------|----|------|
| Α | Clockwise        | В  | 0.0 | В | Clockwise        | С  | 0.0  | C | Clockwise        | Α  | 0.0  |
| Α | Clockwise        | С  | 1.0 | В | Clockwise        | С  | 0.0  | C | Clockwise        | Α  | 0.0  |
| Α | Clockwise        | С  | 1.0 | В | Clockwise        | С  | 0.0  | C | Clockwise        | Α  | 0.0  |
| Α | Clockwise        | В  | 0.0 | В | Clockwise        | С  | 0.0  | C | Clockwise        | В  | -6.0 |
| Α | Clockwise        | В  | 0.0 | В | Clockwise        | С  | 0.0  | C | Clockwise        | Α  | 0.0  |
| Α | Counterclockwise | С  | 9.0 | В | Counterclockwise | Α  | -2.0 | C | Counterclockwise | В  | 6.0  |
| Α | Counterclockwise | С  | 9.0 | В | Counterclockwise | Α  | -2.0 | C | Counterclockwise | В  | 6.0  |
| Α | Counterclockwise | В  | 0.0 | В | Counterclockwise | Α  | -2.0 | C | Counterclockwise | В  | 6.0  |
| Α | Counterclockwise | В  | 0.0 | В | Counterclockwise | Α  | -2.0 | C | Counterclockwise | В  | 6.0  |
| Α | Counterclockwise | В  | 0.0 | В | Counterclockwise | Α  | -2.0 | C | Counterclockwise | В  | 6.0  |

(a). Vamos começar obtendo estimativas para as funções de transição T(s,a,s') e de recompensa R(s,a,s') para esse MDP. Preencha os valores que faltam na tabela abaixo:

Discount Factor,  $\gamma$  = 0.5

| S | a                | s' | T(s,a,s') | R(s,a,s') |
|---|------------------|----|-----------|-----------|
| Α | Clockwise        | В  | M         | N         |
| Α | Clockwise        | С  | 0         | P         |
| Α | Counterclockwise | В  | 0.600     | 0.000     |
| Α | Counterclockwise | C  | 0.400     | 9.000     |
| В | Clockwise        | C  | 1.000     | 0.000     |
| В | Counterclockwise | Α  | 1.000     | -2.000    |
| С | Clockwise        | Α  | 0.800     | 0.000     |
| С | Clockwise        | В  | 0.200     | -6.000    |
| С | Counterclockwise | В  | 1.000     | 6.000     |

(b). Agora execute uma iteração do algoritmo Q-learning usando as funções estimadas T e R, calculando os valores de  $Q_{k+1}(s,a)$ . Os valores de  $Q_k(s,a)$  são:

|                  | Α   | В    | С    |
|------------------|-----|------|------|
| Clockwise        | 1.6 | 3.0  | 0.24 |
| Counterclockwise | 4.8 | -0.2 | 6.0  |

3. No mundo apresentado na figura, o Pacman está tentando aprender a política ótima. Todos os estados coloridos são estados terminais, ou seja, neles, a única ação possível é Sair, o agente recebe a recompensa correspondente, vai para um estado D fora do tabuleiro e o MDP termina. Os outros estados têm as ações disponíveis North, East, South, West, que deterministicamente movem o Pacman para o estado vizinho correspondente (ou fazem com que o Pacman permaneça no lugar se não houver a posição vizinha). Considere que o fator de

desconto é  $\gamma = 0,5$  e que a taxa de aprendizagem do Q-learning é  $\alpha = 0,5$  para todos os cálculos. O Pacman começa no estado (1,3).



(a). Considere que o agente começa no canto superior esquerdo. Considere também que são dados os seguintes episódios de execuções, em que cada linha em um episódio é uma tupla contendo (s, a, s', r):

| Episode 1             | Episode 2             | Episode 3             | Episode 4             | Episode 5             |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| (1,3), S, $(1,2)$ , 0 | (1,3), S, (1,2), 0    | (1,3), S, (1,2), 0    | (1,3), S, (1,2), 0    | (1,3), S, (1,2), 0    |
| (1,2), E, $(2,2)$ , 0 | (1,2), E, $(2,2)$ , 0 | (1,2), E, $(2,2)$ , 0 | (1,2), E, (2,2), 0    | (1,2), E, $(2,2)$ , 0 |
| (2,2), E, $(3,2)$ , 0 | (2,2), S, (2,1), 0    | (2,2), E, $(3,2)$ , 0 | (2,2), E, $(3,2)$ , 0 | (2,2), E, $(3,2)$ , 0 |
| (3,2), N, $(3,3)$ , 0 | (2,1), Exit, D, -100  | (3,2), S, (3,1), 0    | (3,2), N, (3,3), 0    | (3,2), S, (3,1), 0    |
| (3,3), Exit, D, $+50$ |                       | (3,1), Exit, D, $+30$ | (3,3), Exit, D, +50   | (3,1), Exit, D, +30   |

Dê os valores abaixo após os 5 episódios:

$$Q((3,2), N) =$$

$$Q((3,2), S) =$$

$$Q((2,2), E) =$$

(b). Considere uma representação baseada em características:

$$Q_f(s,a) = w_1.f_1(s) + w_2.f_2(s) + w_3.f_3(a)$$

onde

 $f_1(s)$ : A coordenada x do estado

 $f_2(s)$ : A coordenada y do estado

$$f_3(N) = 1$$
,  $f_3(S) = 2$ ,  $f_3(E) = 3$ ,  $f_3(W) = 4$ 

(i) Dado que todos os  $w_i$  são inicialmente iguais a 0, quais são seus valores após o primeiro episódio?

(ii) Considere que o vetor de pesos w é igual a  $(1,\,1,\,1)$ . Qual a ação recomendada pela função Q no estado (2,2) ?