Titanic Survival Prediction

Project Overview

This project applies machine learning techniques to predict passenger survival on the Titanic. We explore classification, resampling, and clustering methods to determine the best approach for prediction.

Dataset

- **Source:** Kaggle https://www.kaggle.com/datasets/shuofxz/titanic-machine-learning-from-disaster
- **Description:** Passenger demographic and ticket information, along with survival outcomes.

? Key Questions

- What factors influenced passenger survival the most?
- How accurately can machine learning predict survival?
- How do different models compare in performance?

Methods Used

Data Preprocessing

- Handled missing values (Age, Embarked)
- Feature engineering (FamilySize, categorical encoding)
- Normalized numerical features

Machine Learning Models

- 1. Logistic Regression Baseline classification model
- 2. Random Forest Ensemble learning for better accuracy
- 3. K-Means Clustering Unsupervised learning for pattern discovery

♦ Model Evaluation

- Metrics: Accuracy, Precision, Recall, F1-score
- Feature importance analysis
- Clustering visualization

Results Summary

- Random Forest performed best (81% accuracy)
- Key survival factors: Gender, class, fare
- K-Means clustering showed passenger groupings by ticket class and fare
 - Limitations: Dataset size, historical bias

★ Installation & Usage

```
# Clone the repository
git clone https://github.com/

# Navigate to the project directory
cd Titanic-ML-Project

# Install dependencies
pip install -r requirements.txt

# Run Jupyter Notebook
jupyter notebook
```

Open Titanic_Analysis.ipynb and execute all cells.

Project Structure

```
/ Titanic-ML-Project

├── data/  # Dataset files

├── notebooks/  # Jupyter Notebooks

├── results/  # Graphs, reports, visualizations

├── README.md  # Project overview & instructions
```

Future Improvements

- Implement deep learning models for higher accuracy
- Use hyperparameter tuning for better Random Forest performance
- Incorporate external datasets for a more comprehensive analysis

22 Contributors

Musa Malhi

This project is licensed under the MIT License.