## <sup>35</sup>Si β<sup>-</sup> decay (0.78 s) 1988DuZS,1986Du07,1988DuZT

Parent: <sup>35</sup>Si: E=0;  $J^{\pi}=7/2^{-}$ ;  $T_{1/2}=0.78$  s 12;  $Q(\beta^{-})=10470$  40;  $\%\beta^{-}$  decay=100

 $^{35}\text{Si-J}^{\pi}$ ,  $T_{1/2}$ : From Adopted Levels of  $^{35}\text{Si}$ .

<sup>35</sup>Si-Q( $\beta$ <sup>-</sup>): From 2021Wa16.

1988DuZS, 1986Du07, 1988DuZT:  $^{35}$ Si produced by fragmentation of  $^{40}$ Ar beam of  $2x10^{11}$  particles/s at 60 MeV/nucleon on a 190 mg/cm<sup>2</sup> Be target at GANIL. Decay observed with a 1 mm thick plastic scintillator and a 174 cm<sup>3</sup> intrinsic Ge detector (1.2% absolute efficiency at 1.33 MeV). Measured  $\beta \gamma(t)$ ,  $E\gamma$ ,  $I\gamma$ . Deduced levels,  $I\gamma$ ,  $I\gamma$ , parent  $I\gamma$ .

1987Wa10: shell-model calculations for  $^{35}$ Si  $\beta^-$  decay scheme,  $^{35}$ P levels, decay branching ratios, log ft, and Gamow-Teller transition strengths.

2007Ne14: measured  $^{35}$ Si ground state g-factor using the  $\beta$ -NMR method.

The decay scheme is considered incomplete due to a large gap of about 4.9 MeV between the highest observed level at E=5561 and  $Q(\beta^-)$  value=10470 40 (2021Wa16). There may be missing transitions from unobserved levels in the gap.

## <sup>35</sup>P Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | $T_{1/2}^{\ddagger}$ |                                  |
|-----------------------|--------------------|----------------------|----------------------------------|
| 0                     | $1/2^{+}$          | 47.3 s 8             |                                  |
| 2386.5 5              | 3/2+               |                      |                                  |
| 3859.7 <i>5</i>       | $5/2^{+}$          |                      | J $\pi$ , T1/2, MUL from adopted |
| 4101.2 5              | $(7/2^{-})$        |                      |                                  |
| 4381.3? 8             |                    |                      |                                  |
| 4493.5 6              | $(7/2^{-})$        |                      |                                  |
| 4869.4 <i>6</i>       |                    |                      |                                  |
| 4962.4? 7             | $(9/2^{-})$        |                      |                                  |
| 5560.7 7              |                    |                      |                                  |

<sup>&</sup>lt;sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies.

### $\beta^-$ radiations

| E(decay)                 | E(level) | $I\beta^{-\dagger\ddagger}$ | Log ft <sup>†</sup> | Comments                                                                                                                                                                 |
|--------------------------|----------|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(4.91 \times 10^3 \ 4)$ | 5560.7   | 12.7                        | 4.6                 | $I\beta$ =12.4(18) and log $ft$ =4.6 from 1988DuZS.                                                                                                                      |
| $(5.51 \times 10^3 \ 4)$ | 4962.4?  | 5.1                         | 5.2                 | Placed based on the 4959–>4493 transition observed in $^{208}$ Pb( $^{36}$ S,X $\gamma$ ) (2008Wi09) and adopted 468.9I $\gamma$ from 1988DuZS to deduce its I $\beta$ . |
| $(5.60 \times 10^3 \ 4)$ | 4869.4   | 10.8                        | 4.9                 | $I\beta=10.8(16)$ and $\log ft=4.9$ from 1988DuZS.                                                                                                                       |
| $(5.98 \times 10^3 \ 4)$ | 4493.5   | 16.6                        | 4.9                 | I $\beta$ =21.4(11) and log $f$ t=4.8 from 1988DuZS. 468.9I $\gamma$ feeding this level is deducted from its I $\beta$ .                                                 |
| $(6.09 \times 10^3 \ 4)$ | 4381.3?  | 9.7                         | 5.1                 | $I\beta$ =9.4(13) and log $ft$ =5.1 from 1988DuZS.                                                                                                                       |
| $(6.37 \times 10^3 \ 4)$ | 4101.2   | 46.1                        | 4.6                 | $I\beta=45.9(31)$ and $\log ft=4.5$ from 1988DuZS.                                                                                                                       |
| $(8.08 \times 10^3 \ 4)$ | 2386.5   | 1.9                         | $8.6^{1u}$          |                                                                                                                                                                          |

 $<sup>^{\</sup>dagger}$  β-feeding from  $\gamma$ -ray intensity balance at each level. Quoted I $\beta$ <sup>-</sup> values are considered upper limits due to the incomplete decay scheme, and the associated log ft values are considered lower limits.

$$\gamma(^{35}P)$$

Iy normalization: From  $\Sigma\%I(\gamma \text{ to g.s.})=100$ . The deduced normalization factor of 0.27 should be considered an upper limit due to potential missing  $\gamma$  transitions from unobserved levels in the gap to the ground state.

<sup>‡</sup> From Adopted Levels.

<sup>‡</sup> Absolute intensity per 100 decays.

#### $^{35}$ Si $\beta^-$ decay (0.78 s) 1988DuZS,1986Du07,1988DuZT (continued)

# $\gamma$ (35P) (continued)

| a                |
|------------------|
| a                |
| я                |
| я                |
| ia               |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
| 3Wi09)<br>blaced |
|                  |
|                  |
| the<br>4101      |
|                  |
|                  |
|                  |
| t                |

 $<sup>^{\</sup>dagger}$  From 1988DuZS, unless otherwise noted.  $^{\ddagger}$  From 1986Du07. 1988Or01 tentatively suggested that these  $\gamma$  rays de-excite a level at 7450, but this suggestion has not been experimentally confirmed.

<sup>#</sup> For absolute intensity per 100 decays, multiply by 0.27. 

© Placement of transition in the level scheme is uncertain.  $x \gamma$  ray not placed in level scheme.

# <sup>35</sup>Si $\beta$ <sup>-</sup> decay (0.78 s) 1988DuZS,1986Du07,1988DuZT

 $^{35}_{15}P_{20}$ -3

