How the Code works:

deviation

Main File: ETASSimulation.py

First, setup the parameters.

Set the parameters for the ETAS model

# Set the parameters for the ETAS model	
mu = 3.29	# Minimum magnitude
K = 1.0	# Aftershock productivity parameter >>>>>> Usually have K = 1
alpha = 1.0	# Exponent in the productivity relation, multiplies bval
qval = 1.5	# Spatial Omori exponent
sigma = 0.5 code)	# Could be used in the spatial dependence part (not used in this
ntmax =20500	# Number of earthquakes requested
mag_large = 7.0 aftershock plots	# Magnitude of large earthquakes for re-clustering or for stacked
rate_bg = 5.0	# Background rate
bval = 0.95	# GR b value
pval = 1.2	# Omori p-value >>>>>> Usually pval = 1.2 or so
corr_length = 100	# Parameter in the spatial Omori relation (km)
corr_time = 1	# Parameter in the temporal Omori relation (natural time)
dt_ratio_exp = 1.5	# Used in the equation that computes time to next event
t = 0.0	# Initial time
kk=0	# Counter for large earthquakes
time_main = 0.	# Used in the re-clustering
m = mu	# Initial magnitude is the minimum magnitude

scale_factor = 0.004 # Controls the (re)clustering, this is basically 2 x standard

step_factor_aftrshk = 0.04 # In degrees, controls the lat-lng steps for the random walk aftershocks

BathNumber = 1.2 # Bath's law value. Note that this can be used to determine the # the effective number of aftershocks for a given mainshock magnitude

and thus the ratio of aftershocks to mainshocks

scale_mag = 1. # Scaling the aftershocks is from mu+scale_mag up to mag_large

mag_threshold = mu + BathNumber # Only events with mags larger than this can have
aftershocks

plot_params = False # Used to display the params in the boxes on the plots

plot_USGS_data = False # If we want to plot real data, first converts the

USGS files to the correct format and file name then runs the functions

pfit_lo = 80 # Low value of the parameters to fit a line to the Omori scaling plot

High value of the parameters to fit a line to the Omori scaling plot

NSteps = 36 # Used for the Exponential Moving Average in the number-

timeseries

Next, setup the flags for running code and generating output.

generate_and_write_new_catalog = True #Creates a new random catalog

write new adjusted file = True #Creates scale invariant aftershocks

plot_magnitude_time = False #Plots the raw catalog

plot_magnitude_time_clustered = False #Plots the clustered catalog

plot_magnitude_frequency = False #GR diagram

plot_scale_invariant_omori_plot = False #Omori Plot

plot_number_events_vs_time = False #Monthly number of events vs. time for scale

invariant catalog

plot_LA_seismicity_map = True #Spatial locations of earthquakes

download_USGS_catalog = False #Input data from USGS

Last, wait for the plots and simulations with exact locations in USGS_regional.catalog.

Explanation of other Files:

ETASPlotV3.py #Files that include all the function to make the plots

ETASFileWriter.py #Files that include the function to write the data saved in text file to csv

file

ETASCalcV5.py #Files that includes functions to do various calculations such as calculating

earthquake rate function and cluster function for magnitudes

ETASFileMethods.py #Files with function that downloads catalog from USGS site

Wiring Diagram:

