$E_2 = 2{,}19882 \frac{{\,}^{235}U + {\,}^{1}_0n}{92}$

الموضوع رقم07

التمرين رقم01

يستعمل اليورانيوم 235 أساسا كوقود نووي لإنتاج الطاقة الكهربائية ، حيث تتم عملية الانشطار النوويI $L^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{137}_{53}I + {}^{97}_{2}Y + x_{0}^{1}n$ لأنوية اليورانيوم 235 وفق معادلة التفاعل التالية :

1_أ_عرف تفاعل الانشطار النووي.

 $E(10^5 MeV)$ Z و X ب= جد قيمة كل من E_3 92 P + 144 n

2_ المخطط الموضح في الشكل _ 1 يمثل الحصيلة الطاقوية لتفاعل الانشطار النووي السابق:

 E_3 أ_ماذا تمثل كل من E_1 و E_2 و E_2 ، ثم احسب قيمت

 E_{lib} ب-جد قيمة الطاقة المحررة E_{lib} عن انشطار نواة واحدة لنوا جـ ـ استنتج كتلة نواة اليورانيوم 235.

 U_{2}^{97} د. جد طاقة الربط لـكل من النواتين U_{2}^{235} و U_{2}^{97} .

 $E_1 = 2,19697 \frac{{}^{137}I + {}^{97}Y + x_0^1 n}{53}$ هــرتب الأنوية U_{53}^{235} و U_{53}^{137} و U_{53}^{137} و التبرير.

ي إن نواة اليود 137 الناتجة عن التفاعل النووي السابق مشعة تتفكك تلقائيا لتنتج نواة السيزيوم $^A_{55}$ المسعة مع انبعاث y من الجسيمات eta^- ، وتتفكك نواة السيزيوم $A^{A'}Ba$ مع انبعاث المسعة مع انبعاث المسعة مع انبعاث المستعدد المستعد . eta^- الجسيمة

> . y و A مع تحديد قيمة كل اليود A الى السيزيوم A مع تحديد قيمة كل من A و A. Z'ب معادلة تفكك السيزيوم C_{55} مع تحديد قيمة كل من A'

ينة من السيزيوم $m(t_1)=rac{m_0}{8}$ عند اللحظة t=0 ، تصبح الكتلة و m_0 لهذه العينة بعد m_0 . $t_1 = 90 ans$ مدة زمنية قدرها

. (ans) من نصف العمر $t_{1/2}$ ، ثم احسب أمن نصف العمر لنواة السيزيوم أمن نصف العمر $t_{1/2}$ بوحدة $t_{1/2}$ 3_وجدت زجاجة الخل في أحد المصانع القديمة كتب عليها تاريخ الصنع: جانفي 1950 ، تم قياس نشاط $A(t_2) = 400mBq$ فوجد وغير السيزيوم عن السيزيوم السيزيوم الفي الفي 1017 السيزيوم

. جد قيمة m_0 كتلة السيزيوم m_0 في زجاجة الخل لحظة صنعها .

الموضوع رقم 07-

 $\frac{E_l\binom{137}{53}I}{A} = 8,13 \frac{MeV}{nucl\acute{e}on}$ ، $m\binom{1}{1}p) = 1,00728u$ ، $m\binom{1}{0}n) = 1,00866u$ $.1an = 3.15 \times 10^7 \, s$, $N_A = 6.02 \times 10^{23} \, mol^{-1}$, $1u = 931.5 \, MeV.c^{-2}$

التمرين رقم02:

(L,r)للوشيعة (L,r) للوشيعة (L,r) للوشيعة لتحديد السعة (L,r)والذي يتكون من:

_مولد توتر مثالي قوته المحركة الكهربائية E ثابتة.

C مکثفت غیر مشحونت سعتها.

rوشيعت (b) ذاتيتها Lو مقاومتها الداخليت c

 $R_1 = R_2 = 40\Omega$ ناقلان أوميان R_2 و R_2 متماثلان حيث

_بادلة كهربائية K وأسلاك توصيل.

ينضع البادلة K عند اللحظة t=0 نضع البادلة K عند اللحظة t=0

1 _ أعد رسم الدارة المدروسة مع تحديد جهة كل من التيار الكهربائي وتمثيل بأسهم جهة التوتر الكهربائي بين طرفى المولد والمستقبلات.

 $du_{C}=f\left(t\right)$ الموضح في الشكل - 2 - الدراسة التجريبية مكنتنا من رسم المنحنى البياني - 3 الموضح في الشكل - 3 الدراسة التجريبية م

أ ـ بين أن المعادلة التفاضلية التي يحققها التوتر الكهربائي $u_{C}\left(t
ight)$ بين طرفي المكثفة تكتب بالشكل :

. عبارته بدلالة مميزات الدارة . ثابت الزمن يطلب إيجاد عبارته بدلالة مميزات الدارة . $\frac{du_{C}\left(t\right)}{dt}+\frac{1}{\tau_{+}}u_{C}\left(t\right)=\frac{E}{\tau_{+}}$

E و τ_1 :ب-اعتمادا على بيان الشكل 0 جد قيمة كل من

جـ استنتج قيمة السعة C للمكثفة.

(2)عند لحظة نعتبرها مبدأ جديد للأزمنة t=0 نؤرجح البادلة K إلى الوضع I

التوتر (b) بين طرفي الوشيعة (u_b (t) التوتر الكهربائي التوتر الكهربائي التوادلة التفاضلية التي يحققها التوتر الكهربائي التوتر الكهربائي التوتر الكهربائي التوتر الكهربائي التوتر التوتر

بالشكل: $\frac{du_b(t)}{dt} + \frac{1}{\tau}u_b(t) = \frac{rE}{I}$ عيث: τ_2 ثابت الزمن الميز للدارة.

ب حل المعادلة التفاضلية هو $u_b\left(t\right) = A + B \; e^{-\frac{\tau_2}{\tau_2}}$ عبارتيهما بدلالة بالمعادلة التفاضلية و $u_b\left(t\right) = A + B \; e^{-\frac{\tau_2}{\tau_2}}$ مميزات الدارة.

4 ـ الدراسة التجريبية مكنتنا من رسم المنحنى البياني $u_b = g(t)$ الموضح في الشكل $u_b = 2$

 $u_{h}=g\left(t\right)$ أ استنتج سلما مناسبا لمحور التراتيب للمنحنى البياني

ب_اعتمادا على البيان جد:

ـ شدة التيار الأعظمي I_0 المار في الدارة .

Lو من au_2 قيمة والزمن والزمن الزمن والمنافقة وال

لدينا كتلة P من مسحوق الزنك P غير النقي درجة نقاوته P (أي يحتوي على شوائب لا تتفاعل ولا تؤثر على التحول الكيميائي) ،عند درجة حرارة ثابتة وفي اللحظة P نضيفه إلى حوجلة تحتوي محلول مائي لثنائي اليود P لونه بني مسمر حجمه P وتركيزه المولي P لونه بني مسمر حجمه المتحدة وتركيزه المولي لثنائي اليود المتابعة الزمنية للتحول الكيميائي التام مكنتنا من رسم المنحنى البياني لتغيرات التركيز المولي لثنائي اليود بدلالة الزمن P الموضح في الشكل P .

1_أ_حدد المؤشر الدال على تطور الجملة الكيميائية المدروسة.

ب_هل نعتبر التحول الكيميائي المدروس سريعا؟ علل.

2 أ ـ اكتب معادلة التحول الكيميائي الحادث مبينا نوعه.

ب_أنشئ جدول تقدم التفاعل ،ثم استنتج المتفاعل المحد .

 $[I_2] = f(t)$ جـ جد سلم لمحور التراتيب للمنحنى

m النقى التقدم الأعظمى x_{max} ، ثم احسب كتلة الزنك النقى x

 P_{-} أ=عرف درحة النقاوة

ب_بين أن عبارة درجة النقاوة P تكتب بالشكل: $P = \frac{m}{m} \times 100$ ، استنتج قيمتها.

حيث $\left[I_{2}\right]_{f}$: التركيز المولي النهائي لثنائي اليود.

ب_عرف زمن نصف التفاعل $t_{1/2}$ ، استنتج قيمته.

 $t = t_{1/2}$ التركيب المولي للمزيج عند اللحظة

. أعرف السرعة الحجمية للتفاعل ($v_{vol}\left(t
ight)$ ، ثم احسب قيمتها الأعظمية -6

 (Zn^{2+}) بـ استنتج السرعة الحجمية الأعظمية لتشكل شوارد الزنك الثنائي

7_ نعيد نفس التجربة وفي نفس الشروط ولكن نستعمل نفس كتلة الزنك السابقة على شكل صفيحة $[I_2](m\ mol.L^{-1})$

أ_حدد العامل الحركي المدروس.

ب_أعد رسم المنحنى في هذه الحالة في نفس المعلم للمنحنى السابق مع التعليل.

العطيات:

_الثنائيتان الداخلتان في التفاعل هما:

$$.(I_2/I^-).(Zn^{2+}/Zn)$$

_الكتلة المولية الذرية للزنك:

$$M(Zn) = 65,4g.mol^{-1}$$

إرقى الناس هم إقلهم حديثا عن الناس و إنقى الناس هم إحسنهم ظنا بالناس.

تصحيح الموضوع رقم07

لتمرين رقم01:

 I_- أ_تعريف الانشطار النووي : هو تفاعل نووي مفتعل يتم فيه قذف نواة قابلة للشطر بنية ون فتنشطر لنواتين أخف مع انبعاث عدد من النية ونات وتحرير طاقة .

Z و X ب= ايجاد قيمة كل من

$$\begin{cases} 235 + 1 = 137 + 97 + x \\ 92 + 0 = 53 + Z + 0 \end{cases}$$
 لدينا حسب قانوني الانحفاظ لصودي:

$$\begin{cases} x = 236 - 234 = 2 \\ 235U + {}_{0}^{1}n \rightarrow {}_{53}^{137}I + {}_{39}^{97}Y + 2{}_{0}^{1}n \end{cases}$$
 اي $\begin{cases} x = 236 - 234 = 2 \\ Z = 92 - 53 = 39 \end{cases}$

2_ أ_تمثل:

. تمثل طاقة كتلة النواتج . E_2 . تمثل طاقة كتلة المتفاعلات . E_1

. تمثل طاقة كتلة نية رونات وبروتونات المتفاعلات وهي متفرقة وساكنة: E_3

 $_{:}E_{3}$ تحساب قيمت

$$E_3 = (92m({}_0^1n) + 144m({}_1^1P)) \times 931,5$$
 نعلم أن:

$$E_3 = (92 \times 1,00866 + 144 \times 1,00728) \times 931,5 = 221619 MeV$$
 يق ع $E_3 = (92 \times 1,00866 + 144 \times 1,00728) \times 931,5 = 221619 MeV$ يذن $E_3 = 221619 MeV$

 $^{235}_{-92}U$ عن انشطار نواة واحدة لنواة E_{lib} عن انشطار نواة واحدة لنواة

$$E_{lib} = \left| \Delta E_3 \right| = \left| E_1 - E_2 \right|$$
 نعلم أن:

.
$$E_{lib} = 185 MeV$$
يت يا $E_{lib} = |2,19697 - 2,19882| imes 10^5 = 185 MeV$ يت يا باذن يا بادن يا

جـ _استنتاج كتلة نواة اليورانيوم 235:

$$E_2 = \left(m({}_{92}^{235}U) + m({}_{0}^{1}n)\right) \times 931,5$$
 نعلم أن

.
$$m(^{235}_{92}U) = 235,0427u$$

 $_{_{1}}^{97}Y$ د $_{_{1}}^{235}U$ د ايجاد طاقة الربط لكل من النواتين $_{_{1}}^{235}U$

$$E_linom{235}{92}Uig)=221619-219882=1737 MeV$$
 ت-ع:
$$E_linom{235}{92}Uig)=E_3-E_2$$
نعلم أن:
$$E_linom{235}{92}Uig)=1737 MeV$$
 إذن:

$$E_{l}\binom{97}{39}Y) = -(E_{3} - E_{1}) - E_{l}\binom{135}{53}I)$$
 ومنه:
$$E_{l}\binom{97}{39}Y) + E_{l}\binom{135}{53}I) = -(E_{3} - E_{1})$$
 ينها في:
$$E_{l}\binom{97}{39}Y) = -(219697 - 221619) - (8,13 \times 137) = 808,19 MeV$$
 ينها
$$E_{l}\binom{92}{39}Y) = 808,19 MeV$$
 إذن:
$$E_{l}\binom{92}{39}Y = 808,19 MeV$$

هـ ـ ترتيب الأنوية U_{92}^{235} و U_{53}^{77} و U_{53}^{77} حسب تزايد استقرارها مع التبرير :

ولدينا:
$$\frac{E_l\binom{235}{92}U}{A} = \frac{1737}{235} = 7,39 \frac{MeV}{nucl\acute{e}on}$$
 الدينا:
$$\frac{E_l\binom{137}{53}I}{A} = 8,13 \frac{MeV}{nucl\acute{e}on}$$
 ولدينا:
$$\frac{E_l\binom{97}{39}Y}{A} = \frac{808,19}{97} = 8,33 \frac{MeV}{nucl\acute{e}on}$$

$$\frac{E_l\binom{235}{92}U}{A} < \frac{E_l\binom{137}{53}I}{A} < \frac{E_l\binom{97}{39}Y}{A}$$
 ومنه:
$$\frac{E_l\binom{235}{92}U}{A} < \frac{E_l\binom{137}{53}I}{A} < \frac{E_l\binom{97}{39}Y}{A}$$

اذن: تزايد الاستقرار،
$${}^{97}_{92}U$$
 ${}^{137}_{53}I$ ${}^{97}_{39}Y$ اذن:

$$\begin{cases} A=137 \\ y=-(53-55)=2 \end{cases}$$
 لدينا: $y=-(53-55)=2^{137}I$ وحسب قانوني الانحفاظ لصودي نجد: $y=-(53-55)=2^{137}I$

Z'ب معادلة تفكك السيزيوم Z^A مع تحديد قيمة كل من Z'

$$^{137}_{55}Cs \rightarrow^{A'}_{Z'}Ba +^{0}_{-1}e$$
 لدينا:

$$A = 137$$
 $Z' = 55 + 1 = 56$ وحسب قانوني الانحفاظ لصودي نجد:

$$\int_{55}^{137} Cs \rightarrow_{56}^{137} Ba + \beta^{-}$$
اذن:

 $m(t_1)=rac{m_0}{8}$ يهذه العينة بعد m_0 عند اللحظة m_0 عند اللحظة $m(t_1)=rac{m_0}{8}$ الهذه العينة بعد عينة من السيزيوم $m(t_1)=\frac{m_0}{8}$. $m(t_1)=\frac{m_0}{8}$

 N_0 عدد الأنوية المسعة الابتدائية الخرورية لتفكك نصف عدد الأنوية المسعة الابتدائية الخرورية لتفكك نصف عدد الأنوية المسعة الابتدائية الخرورية ونكتب: $N(t_{1/2}) = \frac{N_0}{2}$

 $t_{1/2}$ نصف العمر العمر $t_{1/2}$ لنواة السيزيوم يوحدة العمر يوحدة العمر يوحدة العمر يوحدة العمر يوحد العمر

$$m(t)=m_0e^{-\lambda t}$$
 : لدينا قانون التناقص الاشعاعي $N(t)=N_0e^{-\lambda t}$. ومنه $N(t)=N_0e^{-\lambda t}$ أي

$$.\frac{m_0}{8}=m_0e^{rac{-\ln(2) imes 90}{t_{1/2}}}$$
 . ومنه: $\lambda=rac{\ln(2)}{t_{1/2}}$. حيث: $m(t_1)=m_0e^{rac{-\ln(2)}{t_{1/2}}t_1}$. $t=t_1$ المنا $t=t_{1/2}$. $t=t_{1/2}$

د إيجاد قيمة m_0 كتلة السيزيوم m_0^{137} في زجاجة الخل لحظة صنعها:

$$M_0 = rac{A_0 imes M imes t_{1/2}}{N_A imes \ln(2)}$$
...(1) ومنه: $N_0 = rac{A_0}{\lambda} = rac{A_0 imes \ln(2)}{t_{1/2}}$ ومنه: $m_0 = rac{N_0}{N_A} M$ ومنه: $m_0 = A(t_2)e^{\lambda t_2}$ ومنه: $t = t_2$ ولينا: $t = t_2$ ومنه: $A(t) = A_0 e^{-\lambda t}$ ومنه: $A(t) = A_0 e^{-\lambda t}$ ومنه: $A_0 = A(t)e^{\lambda t}$ ومنه:

لتمرين رقم02

1 _ تحديد جهة كل من التيار الكهربائي وتمثيل بأسهم جهة التوتر الكهربائي بين طرفي المولد المستقبلات:

. $\frac{du_C}{dt} + \frac{1}{\tau_1}u_C = \frac{E}{\tau_1}$ ب $u_C(t)$ ب $u_C(t)$

 $u_C + R_1 i = E$ حسب قانون جمع التوترات الكهربائية نجد: $u_C + u_R = E$ حسب قانون جمع

$$u_C + R_1 C \frac{du_C}{dt} = E$$
 . ومنه

.
$$au_1=R_1C$$
 بالمطابقة نجد:
$$\frac{du_C}{dt}+\frac{1}{R_1C}u_C=\frac{E}{R_1C}$$
 بالمطابقة نجد: وبالضرب في $\left(\frac{1}{R_1C}\right)$

E و τ_1 و عاد قيمت

البيان خط مستقيم مائل لا يمرمن المبدأ معادلته: $du_{C}=a.u_{C}+b$ ، حيث a معامل توجيه البيان:

.
$$b = 2500 V.s^{-1}$$
 . و $b = 2500 V.s^{-1}$. و $a = \frac{2500 - 0}{0 - 10} = -250 s^{-1}$

$$\dfrac{du_C}{dt} = -\dfrac{1}{ au_1}u_C + \dfrac{E}{ au_1}...(2)$$
 ولدينا من العلاقة النظرية السابقة: $\dfrac{du_C}{dt} = -250u_C + 2500...(1)$ أي:

$$au_1 = \frac{1}{250} = 0.004s$$
 ومنه: $au_1 = 250$ ومنه: $au_2 = 250$ ومنه: $au_3 = 250$

$$E = 2500 \times \tau_1 = 2500 \times 0,004 = 10V$$
 . ومنه: $\frac{E}{\tau_1} = 2500$

$$[E = 10V]$$
 و $[\tau_1 = 0.004s = 4ms]$

الموضوع رقم 07 ————————————————————— **مراجعة الفصل الأول**

حــاستنتاج قيمة السعة C للمكثفة:

$$C=rac{ au_1}{R_1}=rac{0.004}{40}=0.0001F$$
 نعلم أن: $au_1=R_1C$ ومنه: $C=10^{-4}F=100\mu F$ أي:

: تكتب $u_b(t)$ التوتر الكهريائي التوادلة التفاضلية التي يحققها التوتر الكهريائي $u_b(t)$ تكتب 1-II

$$\frac{du_b(t)}{dt} + \frac{1}{\tau_2} u_b(t) = \frac{r E}{L}$$

 $u_b(t) + R_2 i(t) = E$. ومنه $u_b(t) + u_{R_2}(t) = E$. ومنه التوترات نجد

ومنه:
$$I(I)$$
 ومنه: $i(t) = \frac{E - u_b(t)}{R_2} ...(I)$ ومنه:

$$\frac{di(t)}{dt} = -\frac{1}{R_2} \times \frac{du_b(t)}{dt} ...(II)$$

$$u_b(t) = L \frac{di(t)}{dt} + ri(t)...(III)$$
 ونعلم أن:

$$u_b(t) = L \left(-rac{1}{R_2} imes rac{du_b(t)}{dt}
ight) + r \left(rac{E-u_b(t)}{R_2}
ight)$$
 بتعویض (II) و (III) نجد:

$$u_b(t) = -\frac{L}{R_2} \times \frac{du_b(t)}{dt} + r\frac{E}{R_2} - \frac{r}{R_2}u_b(t)$$
 ومنه:

$$\frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{(r+R_2)}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) + \frac{L}{R_2} \times \frac{du_b(t)}{dt} + \frac{r}{R_2}u_b(t) = r\frac{E}{R_2} : \underline{u}_b(t) = r\frac{E}{R_2} :$$

$$T_2=rac{L}{(R_2+r)}$$
: بالمطابقة نجد:
$$rac{du_b(t)}{dt}+rac{(r+R_2)}{L}u_b(t)=rrac{E}{L}$$
 بالمطابقة نجد: بالمطابقة نجد: $\left(rac{R_2}{L}
ight)$

ب حل المعادلة التفاضلية هو $u_b(t) = A + Be^{\frac{\overline{\tau_2}}{\tau_2}}$ ب حل المعادلة التفاضلية هو $u_b(t) = A + Be^{\frac{\overline{\tau_2}}{\tau_2}}$

الدارة: باشتقاق الحل بالنسبة للزمن نجد: $\frac{du_b(t)}{dt}=-rac{B}{ au_z}e^{rac{-t}{ au_z}}$: باشتقاق الحل بالنسبة للزمن نجد: باشتقاق الحل بالنسبة للزمن نجد نجد

$$A= au_2 rac{rE}{L}$$
 المعادلة التفاضلية نجد: $A= au_2 rac{rE}{L}$ ومنه: $A= au_2 = rac{rE}{L}$ ومنه: $A= au_2 = rac{rE}{L}$ وعليه: المعادلة التفاضلية نجد

$$A = \frac{rE}{R_2 + r}$$

$$B=E-A=E-rac{rE}{R_2+r}$$
 . من الشروط الابتدائية $u_b(0)=A+B=E$ نجد نجد $t=0$ نجد

$$u_b(t) = rac{rE}{R_2 + r} + rac{R_2 E}{R_2 + r} e^{rac{-t}{ au_2}}$$
 اي: $B = rac{R_2 E}{R_2 + r}$ ونڪتب عبارة الحل:

$$I_0 = \frac{E}{R_2 + r}$$
انو: $u_b(t) = rI_0 + R_2I_0e^{rac{-t}{ au_2}}$

 $u_b = g(t)$. أـجد سلم مناسب لمحور التراتيب للمنحنى البياني 2

 $1cm \rightarrow 2V$ وعليه: $u_b(0) = E = 10V$

ب_اعتمادا على البيان جد:

شدة التيار الأعظمي $I_{
m max}$ المار في الدارة:

لدينا من قانون جمع التوترات في النظام الدائم : $u_b(\infty) + u_{R_2}(\infty) = E$ ومنه:

$$u_{R_2}(\infty) = E - u_b(\infty) = 10 - 2 = 8V$$

. $u_b(\infty) = 2V$: حيث من البيان نجد

$$I_0 = 0.2A$$
ومن قانون أوم نجد: $I_0 = \frac{u_{R_2}(\infty)}{R_2} = \frac{8}{40} = 0.2A$ ومن قانون أوم نجد: $u_{R_2}(\infty) = R_2I_0$ ومن

_قيمة $au_b=g(t)$ عند اللحظة و الماس المنعني الماس المنعني $u_b=g(t)$ عند اللحظة و المعالمة المتقيم المتقيم المتقيم $au_b=2t$ وبالاسقاط نجد: $au_b=2ms$.

 $L \circ r$ قيمت ڪل منr

.
$$r=10\Omega$$
 : أي: $r=\frac{u_b(\infty)}{I_0}=\frac{2}{0.2}=10\Omega$ ومنه: $u_b(\infty)=rI_0$ أي: أي: $u_b(\infty)=r$

.
$$L = 0.1H$$
 . أي: $L = \tau_2(R_2 + r) = 2 \times 10^{-3}(40 + 10) = 0.1H$. أي: $\tau_2 = \frac{L}{(R_2 + r)}$

لتمرين رقم03:

ا_1_ أ_المؤشر الدال على تطور الجملة الكيميائية المدروسة هو الاختفاء التدريجي للون البني المسمر الميز لثنائي اليود

ب_ التحول الكيميائي المدروس ليس سريعا ، بل بطيئ لأنه استغرق مدة زمنية معتبرة للوصول لحالته النهائية . $(t_f=17.5\,\mathrm{min})$

2 أ_ كتابة معادلة التحول الكيميائي الحادث:

$$\left(Zn^{2+}(aq)/Zn(s)\right): Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

$$(I_2(aq)/I^-(aq)): I_2(aq) + 2e \to 2I^-(aq)$$

$$Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$$
:

Zn(s) التحول الكيميائي الحادث نوعه أكسدة ارجاع: لأن حدث فيه تبادل الكترونين بين المؤكسد $I_2(aq)$.

ب_جدول تقدم التفاعل:

الحالة	تقدم التفاعل بـ (mol)	Zn(s) +	$I_2(aq) =$	$Zn^{2+}(aq)$	$+2I^{-}(aq)$
الابتدائية	x(0) = 0	n_{01}	n_{02}	0	0
الانتقالية	x(t)	$n_{01} - x(t)$	$n_{02}-x(t)$	x(t)	2x(t)
النهائية.	$\mathcal{X}_{ ext{max}}$	$n_{01} - x_{\text{max}}$	$n_{02} - x_{\text{max}}$	$\mathcal{X}_{ ext{max}}$	$2x_{\text{max}}$

ستنتاج المتفاعل المحد:

من خلال المنحنى البياني
$$I_2 = f(t)$$
 نجد: $I_2 = I_2$ وعليه الزنك $I_3 = I_2$ هو المتفاعل المحد. حد البحاد سلم المجود التراتيب للمنحنى $I_2 = f(t)$ وعليه الزنك $I_3 = f(t)$

الدينا:
$$\begin{split} [I_2]_0 &= 0.2 \times 10^3 \times 10^{-3} mo/L : \\ [I_2]_0 &= c = 0.2 mo/L : \\ [I_2]_0 &= 0.2 \times 10^3 m.mo/L \end{split}$$

.
$$x=\frac{200\times 1}{8}=25m.mol/L$$
 ولدينا: $I_2]_0 o 8cm$ ولدينا: $I_2]_0 o 8cm$ وعليه: $I_2]_0 o 8cm$ وعليه: $I_2 o 1cm o 25m.mol/L$

X_{max} عظمى التقدم الأعظمى X_{max}

$$x_{\max} = n_{02} - n_f \, (I_2)$$
 ومنه: $n_f \, (I_2) = n_{02} - x_{\max}$: لدينا من جدول تقدم التفاعل عند الحالة النهائية $x_{\max} = (c - \begin{bmatrix} I_2 \end{bmatrix}_f) V$ ومنه: $x_{\max} = cV - \begin{bmatrix} I_2 \end{bmatrix}_f .V$ ومنه: $x_{\max} = (c - \begin{bmatrix} I_2 \end{bmatrix}_f) V$. ولدينا من البيان $x_{\max} = \frac{1}{2} \left[\frac{1}{2} \right]_f = \frac{1}{2} \left[\frac{1}{2} \right]_f + \frac{1}{2} \left$

$$x_{\max} = (200-50) \times 10^{-3} \times 100 \times 10^{-3} = 15 mmol$$
 وعليه $m_{\min} = 15 mmol$. حساب ڪتلۃ الزنك النقي

$$m=x_{\max}.M(Zn)$$
 . ومنه $\frac{m}{M(Zn)}=x_{\max}=n_{01}-x_{\max}=0$ ومنه $m=x_{\max}.M(Zn)$. $m=15\times 10^{-3}\times 65, 4=0,981$ ومنه $m=15\times 10^{-3}\times 65, 4=0,981$ تـ ع

مادة نقية.
$$p(g)$$
 مادة نقية. $p(g)$ مادة نقية. $p(g)$ مادة نقية. $p(g)$ مادة نقية.

$$p = \frac{m}{m'} \times 100$$
 . ب-تبيان أن عبارة درجة النقاوة p تكتب بالشكل

$$p = \frac{m}{m'} \times 100$$
 ومنه:
$$\begin{cases} 100g \to p \\ m' \to m \end{cases}$$

$$p = \frac{0.981}{1.3} \times 100 = 75,46\%$$
 تـع: $p = \frac{m}{m'} \times 100$ تـع:

$$x(t_{1/2})=rac{n_{02}-n_f(I_2)}{2}......(2)$$
 ومنه: $n_f(I_2)=n_{02}-2x(t_{1/2})$

$$\begin{split} n_{I_2}(t_{1/2}) &= \frac{n_{02} + n_f(I_2)}{2} \text{ eash } n_{I_2}(t_{1/2}) = n_{02} - \frac{n_{02} - n_f(I_2)}{2} \text{ eash } (1) \text{ eash } (2) \\ &\cdot \left[I_2 \right]_{t_{1/2}} = \frac{c + \left[I_2 \right]_f}{2} \text{ essh } \left[I_2 \right]_{t_{1/2}} = \frac{cV + \left[I_2 \right]_f V}{2V} \text{ essh } \left[I_2 \right]_{t_{1/2}} V = \frac{cV + \left[I_2 \right]_f V}{2} \text{ eash } (1) \text{ eas$$

 $t_{1/2}$ ب استنتج قیمت

$$egin{aligned} \left[I_2
ight]_{t_{1/2}} = rac{c + \left[I_2
ight]_f}{2} = rac{200 + 50}{2} = 125 mmol/L$$
يوافق فاصلة الترتيبة: $t_{1/2} = 1,35 imes 10^2 s$ يوافق فاصلة نجد: $t_{1/2} = 1,35 imes 10^2 s$

 $t = t_{1/2}$ جـ التركيب المولي للمزيج عند اللحظة

.
$$x(t_{1/2}) = \left(c - \left[I_2\right]_{t_{1/2}}\right)$$
 ولدينا: I_2 ولدينا: I_2 $I_{t_{1/2}} = 125 mmol/L$ نجد: $t = t_{1/2}$ نجد: t

$$\begin{split} n_{Zn}(t_{1/2}) &= n_{01} - x(t_{1/2}) = \frac{0.981}{65.4} - 0.0075 = 7.5.10^{-3} \, mol \\ n_{Zn^{2+}}(t_{1/2}) &= x(t_{1/2}) = 7.5.10^{-3} \, mol \\ n_{I^-}(t_{1/2}) &= 2x(t_{1/2}) = 15.10^{-3} \, mol \\ &: v_{vol}(t) \, \text{disiple parallel p$$

. $v_{vol}(t)=rac{v(t)}{V}=rac{1}{V} imesrac{dx(t)}{dt}$ و حجم الوسط التفاعلي V ونكتب: $V_{vol}(t)=\frac{v(t)}{V}=\frac{1}{V}$ و حجم الوسط التفاعلي ونكتب:

. $x(t)=n_{02}-n_{I_2}(t)$ ومنه: $n_{I_2}(t)=n_{02}-x(t)$. لدينا من جدول تقدم التفاعل

وبالتعويض في علاقة $\mathcal{V}_{vol}(t)$ نجد:

$$v_{vol}(t) = -\frac{1}{V} \times \frac{dn_{I_2}(t)}{dt} \text{ gains: } v_{vol}(t) = \frac{1}{V} \times \frac{d\left(n_{02} - n_{I_2}(t)\right)}{dt}$$

$$v_{vol}(t) = -rac{digl[I_2igr](t)}{dt}$$
 اي: $v_{vol}(t) = -rac{1}{V} imes rac{digl(igl[I_2igr](t).Vigr)}{dt}$.

$$v_{vol}(t) = -\frac{d\big[I_2\big](t)}{dt} :_{vol}(t) = -\frac{1}{V} \times \frac{d\big(\big[I_2\big](t).V\big)}{dt} :_{vol}(t) = -\frac{1}{V} \times \frac{d\big(\big[I_2\big](t).V\big)}{dt} :_{vol}(t) = -\frac{1}{V} \times \frac{d\big(\big[I_2\big](t).V\big)}{dt} :_{vol}(t) = -\frac{d\big[I_2\big](t)}{dt} = -\frac{(200-0).10^{-3}}{(0-2,7).10^2} = 7,4.10^{-4} \, mol/L.s$$

$$\frac{1}{V}\frac{dn_{Zn^{2+}}(t)}{dt} = \frac{1}{V}\frac{dx(t)}{dt}$$
 ومنه:
$$\frac{dn_{Zn^{2+}}(t)}{dt} = \frac{dx(t)}{dt}$$
 ومنه:
$$n_{Zn^{2+}}(t) = x(t)$$
 ابن:
$$v_{vol,Zn^{2+}}(0) = v_{vol}(0) = 7,4.10^{-4} \ mol/L.s$$
 ابن:
$$v_{vol,Zn^{2+}}(t) = v_{vol}(t)$$

أ_تحديد العامل الحركي المدروس: هو سطح التلامس بين المتفاعلات. (II)

ب_ رسم المنحنى في هذه الحالة في نفس المعلم للمنحنى السابق مع التعليل:

نقص مساحة التلامس بين المتفاعلات يؤدي إلى تناقص عدد التصادمات في وحدة الحجم وعليه تنقص سرعة التفاعل إذن مدة وصول التحول لنهايته تزداد مقارنة بالتحول السابق.

ملاحظة: البيان (2) خاص بصفيحة الزنك المستطيلة الشكل.