第二章

练习. 设 $f(x) = 3x^3 + x^2|x|$, 求使 $f^{(n)}(0)$ 存在的最高

阶数
$$n = 2$$

分析: $f(x) = \begin{cases} 4x^3, & x \ge 0 \\ 2x^3, & x < 0 \end{cases}$

分析:
$$\overline{f}(x) = \begin{cases} 4x^3, & x \ge 0 \\ 2x^3, & x < 0 \end{cases}$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{2x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

$$f''_{+}(0) = \lim_{x \to 0^{+}} \frac{12x^{2}}{x} = 0$$

但是
$$f_{-}'''(0) = 12$$
, $f_{+}'''(0) = 24$, $f'''(0)$ 不存在.

$$f'(x) = \begin{cases} 12x^2, & x \ge 0 \\ 6x^2, & x < 0 \end{cases}$$

$$f''(x) = \begin{cases} 24x, & x \ge 0 \\ 12x, & x < 0 \end{cases}$$

7. 设 f(x) 在x = 0 处连续,且 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,证明: f(x)在 x = 0处可导.

证: 因为 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则有 $\lim_{x\to 0} f(x) = 0$

又 f(x)在 x = 0 处连续, 故 f(0) = 0

所以
$$\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = f'(0)$$

即 f(x) 在 x=0 处可导.

8 设 g'(x) 连续,且 $f(x) = (x-a)^2 g(x)$,求 f''(a).

解答

: g(x) 可导

$$\therefore f'(x) = 2(x-a)g(x) + (x-a)^2 g'(x)$$

$$: g''(x)$$
 不一定存在 故用定义求 $f''(a)$

$$f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a}$$
 $f'(a) = 0$

$$= \lim_{x \to a} \frac{f'(x)}{x - a} = \lim_{x \to a} [2g(x) + (x - a)g'(x)] = 2g(a)$$

1. (1) 设
$$f(x) = (x^2 - 3x + 2)^n \cos \frac{\pi x^2}{16}$$
,则
$$f^{(n)}(2) = n! \frac{\sqrt{2}}{2}$$

提示:
$$f(x) = (x-2)^n (x-1)^n \cos \frac{\pi x^2}{16}$$
 各项均含因子 $(x-2)$ $f^{(n)}(x) = n! (x-1)^n \cos \frac{\pi x^2}{16} + \cdots$

(2) 已知 f(x) 任意阶可导,且 $f'(x) = [f(x)]^2$,则当 $n \ge 2$ 时 $f^{(n)}(x) = \underline{n![f(x)]^{n+1}}$ 提示: $f''(x) = 2f(x)f'(x) = 2![f(x)]^3$

 $f'''(x) = 2! \cdot 3[f(x)]^2 f'(x) = 3! [f(x)]^4$

2. 设 $y = \arctan x$, 求 $y^{(n)}(0)$.

提示: 分别用对数求导法求 y'_1, y'_2 .

答案:

$$y' = y'_1 + y'_2$$
$$= (\sin x)^{\tan x} (\sec^2 x \cdot \ln \sin x + 1)$$

$$+\frac{1}{x^{\ln x}} \sqrt[3]{\frac{3-x}{(2+x)^2}} \left[1 - 2\ln x - \frac{x}{3(2-x)} - \frac{2x}{3(2+x)}\right]$$

2. 设
$$\begin{cases} x = 3t^2 + 2t \\ e^y \sin t - y + 1 = 0 \end{cases}, \stackrel{\text{R}}{\Rightarrow} \frac{\mathrm{d}y}{\mathrm{d}x} \Big|_{t=0}.$$

解 方程组两边同时对t求导,得

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 6t + 2 \\ e^{y} \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \sin t + e^{y} \cos t - \frac{\mathrm{d}y}{\mathrm{d}t} = 0 \\ \implies \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{e^{y} \cos t}{1 - e^{y} \sin t} \end{cases}$$

3. 求螺线 $r = \theta$ 在对应于 $\theta = \frac{\pi}{2}$ 的点处的切线方程.

解: 化为参数方程 $\begin{cases} x = r \cos \theta = \theta \cos \theta \\ y = r \sin \theta = \theta \sin \theta \end{cases}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} / \frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{\sin\theta + \theta\cos\theta}{\cos\theta - \theta\sin\theta}$$

当
$$\theta = \frac{\pi}{2}$$
 时对应点 $M(0, \frac{\pi}{2})$,

斜率
$$k = \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\theta = \frac{\pi}{2}} = -\frac{2}{\pi}$$

4. 设 $y = x + e^x$, 求其反函数的导数.

解: 方法1 ::
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + e^x$$

$$\therefore \frac{\mathrm{d} x}{\mathrm{d} y} = \frac{1}{y'} = \frac{1}{1 + e^x}$$

方法2 等式两边同时对 少求导

$$1 = \frac{\mathrm{d}x}{\mathrm{d}y} + e^{x} \cdot \frac{\mathrm{d}x}{\mathrm{d}y} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{1 + e^{x}}$$

设
$$f(x)$$
在 $x = 1$ 处可导, $\lim_{x \to 0} \frac{f(\cos x) - f(1)}{x^2} = 2$,则 $f'(1) = ()$.

【参考答案】 D

【对应考点】导数的定义

【试题解答】

$$\lim_{x \to 0} \frac{f(\cos x) - f(1)}{x^2} = \lim_{x \to 0} \frac{f(\cos x) - f(1)}{\cos x - 1} \cdot \frac{\cos x - 1}{x^2}$$
$$= f'(1) \lim_{x \to 0} \frac{\cos x - 1}{x^2} = -\frac{f'(1)}{2} = 2,$$

所以 f'(1) = -4.

设
$$y = 3\sin\sqrt{x}$$
, $0 < x < \frac{\pi^2}{4}$, 则其反函数 $x = x(y)$ 的导数 $x'(y) = ()$.

$$\mathbf{A.} \ \frac{3\sqrt{x}}{2\cot\sqrt{x}}$$

A.
$$\frac{3\sqrt{x}}{2\cot\sqrt{x}}$$
 B. $\frac{3\sqrt{x}}{2\cos\sqrt{x}}$ C. $\frac{2\sqrt{x}}{3\cot\sqrt{x}}$ D. $\frac{2\sqrt{x}}{3\cos\sqrt{x}}$

C.
$$\frac{2\sqrt{x}}{3\cot\sqrt{x}}$$

$$\mathbf{D}. \ \frac{2\sqrt{x}}{3\cos\sqrt{x}}$$

【参考答案】 D

【对应考点】 反函数的导数

【试题解答】

对 y 求导得
$$1 = 3\cos\sqrt{x} \cdot \frac{x'}{2\sqrt{x}}$$
,所以 $x'(y) = \frac{2\sqrt{x}}{3\cos\sqrt{x}}$ $(0 < x < \frac{\pi^2}{4})$.

设函数
$$f(x) = \begin{cases} x^{\frac{5}{3}} \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 在 $x = 0$ 处 $f(x)$ ().

A. 不连续

C. 可导, 但导数不连续

【参考答案】 C

【对应考点】 函数的可导性与连续性

【试题解答】 $\lim_{x\to 0} x^{\frac{5}{3}} \sin \frac{1}{x} = 0 \Rightarrow$ 连续

B. 连续,但不可导

D. 可导, 且导数连续

$$\lim_{x \to 0^{+}} \frac{x^{\frac{5}{3}} \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0^{+}} x^{\frac{2}{3}} \sin \frac{1}{x} = 0$$

$$\lim_{x \to 0} \frac{0 - x^{\frac{5}{3}} \sin \frac{1}{x}}{-x} = \lim_{x \to 0} x^{\frac{2}{3}} \sin \frac{1}{x} = 0$$

 $\therefore f(x)$ 可导.

$$f'(x) = \begin{cases} \frac{5}{3} x^{\frac{2}{3}} \sin \frac{1}{x} - x^{-\frac{1}{3}} \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 $\therefore \lim_{x\to 0} f'(x)$ 不存在

:. f'(x)不连续,选C.

设函数 f(x)在其定义域上可导,下列说法正确的是().

- **A**. 若 f(x) 是偶函数, f'(x) 是偶函数;若 f(x) 是奇函数,则 f'(x) 是奇函数
- **B**. 若 f(x) 是偶函数, f'(x) 是奇函数;若 f(x) 是奇函数,则 f'(x) 是奇函数
- \mathbf{C} . 若 f(x) 是偶函数, f'(x) 是偶函数;若 f(x) 是奇函数,则 f'(x) 是偶函数
- \mathbf{D} . 若 f(x) 是偶函数, f'(x) 是奇函数;若 f(x) 是奇函数,则 f'(x) 是偶函数

【参考答案】 D

【对应考点】 导数的概念

【试题解答】

利用导数的概念进行判断.

(1)若 f(x)是偶函数,即

$$f(-x) = f(x)$$
, $f(-x - \Delta x) = f(x + \Delta x)$,

则由导数的定义,有

即 f'(x) 是奇函数.

(2)若 f(x)是奇函数,即

$$f(-x) = -f(x), \quad f(-x - \Delta x) = -f(x + \Delta x),$$

则由导数的定义,有

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-\left[f(-x - \Delta x) - f(x)\right]}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(-x - \Delta x) - f(-x)}{-\Delta x}$$

$$= f'(-x)$$

所以求导改变奇偶性.

已知函数 f(x)在区间 $(1 - \delta, 1 + \delta)$ 内具有二阶导数, f'(x) 严格单调减少,且 f(1) = f'(1) = 1,则 ().

$$A$$
.在 $(1-\delta, 1)$ 和 $(1,1+\delta)$ 内均有 $f(x) < x$

B.在
$$(1 - \delta, 1)$$
和 $(1, 1 + \delta)$ 内均有 $f(x) > x$

C.在
$$(1 - \delta, 1)$$
内 $f(x) < x$,在 $(1, 1 + \delta)$ 内有 $f(x) > x$

D.在
$$(1 - \delta, 1)$$
内 $f(x) > x$,在 $(1, 1 + \delta)$ 内有 $f(x) < x$

【参考答案】 A

【对应考点】 函数的单调性

【试题解答】

令 h(x) = x - f(x),则 h'(x) = 1 - f'(x);因为 f'(1) = 1,又 f'(x)严格单调减少,知 当 x < 1时, f'(x) > 1 > 0,从而单调递增,此时 f(x) < x; 当 x > 1时, f'(x) < 1,从而函数 h(x)单调递增,此时 h(x) > h(1),即 f(x) < x.

第三章

隐函数的极值

设y = y(x)由方程 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 确定, 求y = y(x)的极值点.

解 将方程
$$2y^3 - 2y^2 + 2xy - x^2 = 1$$
两边对 x 求导,得
$$6y^2y' - 4yy' + 2y + 2xy' - 2x = 0$$
 (1)

$$\phi y' = 0$$
, 得 $x = y$
代入原方程得唯一驻点 $x = 1$

对(1)式两边再求导,得

$$12yy'^2 + 6y^2y'' - 4y'^2 - 4y'' + 2y' + 2y' + 2xy'' - 2 = 0$$

将
$$x = y = 1$$
, $y'(1) = 0$ 代入上式,得 $y''(1) = \frac{1}{2} > 0$

因此函数有极值点x=1,它是极小值点.

中值公式用于求极限

求极限
$$\lim_{x\to +\infty} (\sin\sqrt{x+1} - \sin\sqrt{x})$$

提示 利用拉格朗日中值公式

设
$$\lim_{x\to\infty} f'(x) = k$$
, 则 $\lim_{x\to\infty} [f(x+a) - f(x)] = ()$.

A. 2a

B. 2ka

C. ka

D. 0

证明不等式的方法

- (1)函数的单调性;
- (2)函数的最大最小值方法;
- (3)拉格朗日中值公式
- (4)函数的凹凸性

(1) 证明当
$$x > 1$$
时, $\frac{2x \ln x}{x^2 - 1} < 1$

(2) 设
$$b > a > 0$$
,证明: $\frac{2a}{a^2 + b^2} < \frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}$.

证明当
$$x > 1$$
时, $\frac{2x \ln x}{x^2 - 1} < 1$

证 等价于证明当x > 1时, $2x \ln x < x^2 - 1$ 设 $f(x) = 2x \ln x - x^2 + 1$,

则
$$f'(x) = 2 + 2 \ln x - 2x$$

则
$$f''(x) = \frac{2}{x} - 2 < 0$$

- :: f'(x)在[1,+ ∞)上连续,且(1,+ ∞)可导,f''(x) < 0,
- $\therefore f'(x)$ 在 $[1,+\infty)$ 上 单 调 减 少 ;

故当
$$x > 1$$
时, $f'(x) < f'(1) = 0$,

:: f(x)在[1,+ ∞)上连续,且(1,+ ∞)可导,f'(x) < 0,

∴ f(x)在[1,+∞)上单调减少;

故当x > 1时,f(x) < f(1) = 0,

即当x > 1时, $2x \ln x < x^2 - 1$ $\mathbb{P}\frac{2x\ln x}{x^2-1}<1.$

$$\frac{1}{x^2-1} < 1.$$

(2) 设
$$b > a > 0$$
,证明:
$$\frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}.$$

(1)
$$\frac{2a}{a^2+b^2} < \frac{\ln b - \ln a}{b-a}$$
 中值公式

(2) 等价于证明当
$$x > a > 0$$
时, $\frac{\ln x - \ln a}{x - a} < \frac{1}{\sqrt{ax}}$.

设 f(x) 在 [a, b] 上连续,在 (a, b) 内可导,且 f(a) = f(b) = 0. 下面命题成立的是().

A. 存在 $\xi \in (a, b)$,使 $f'(\xi) = f(\xi)$ 成立 **B**. 存在 $\xi \in (a, b)$,使 $f'(\xi) = -f(\xi)$ 成立

 \mathbf{C} . 存在 $\xi \in (a, b)$,使 $f'(\xi) = 2f(\xi)$ 成立

D. 存在 $\xi \in (a, b)$,使 $f'(\xi) = \frac{1}{2} f(\xi)$ 成立

【参考答案】

【对应考点】 罗尔中值定理应用

【试题解答】 分析:应用辅助函数.

引进辅助函数 $\varphi(x) = f(x)e^{-x}$,

由于 $\varphi(a) = \varphi(b) = 0$, 易知 $\varphi(x)$ 在[a, b]上满足罗尔定理条件,且 $|\varphi'(x)| = f'(x)e^{-x} - f(x)e^{-x}$

因此,在(a,b)内至少存在一点 $\xi \in (a,b)$,使 $\varphi'(\xi) = 0$,即 $f'(\xi)e^{-\xi} - f(\xi)e^{-\xi} = 0$, 因 $e^{-\xi} \neq 0$,所以 $f'(\xi) = f(\xi)$.

汗。。。四个选项都是对的。

$$(A)g(x) = f(x)e^{-x}$$
 $(B)g(x) = f(x)e^{x}$ $(C)g(x) = f(x)e^{\frac{1}{2}x}$ $(D)g(x) = f(x)e^{2x}$

常用的辅助函数

1) 欲证 $\xi f'(\xi) + nf(\xi) = 0$, $\diamondsuit F(x) = x^n f(x)$;

2) 欲证
$$\xi f'(\xi) - nf(\xi) = 0$$
, 令 $F(x) = \frac{f(x)}{x^n}$; 这里 n 为正整数。

3) 欲证
$$f'(\xi) + \lambda f(\xi) = 0$$
, 令 $F(x) = e^{\lambda x} f(x)$;

特别地:

欲证
$$f'(\xi) + f(\xi) = 0$$
, 令 $F(x) = e^x f(x)$;

欲证
$$f'(\xi) - f(\xi) = 0$$
, $\diamondsuit F(x) = e^{-x} f(x)$;

4) 欲证
$$\alpha f'(\xi) + \beta f(\xi) = 0$$
, $\diamondsuit F(x) = e^{\frac{\beta}{\alpha}x} f(x) (\alpha \neq 0)$;

5) 欲证
$$f'(\xi) + g'(\xi)f(\xi) = 0$$
, $\diamondsuit F(x) = e^{g(x)}f(x)$;

6) 欲证
$$f'(\xi) + g(\xi)f(\xi) = 0$$
, 令 $F(x) = e^{\int_a^x g(t)dt} f(x)$;

设
$$f(x)$$
在 $x = 0$ 处存在二阶导数,且 $\lim_{x \to 0} \frac{\sin x + xf(x)}{x^3} = 0$,

求
$$f(0), f'(0), f''(0).$$

解
$$\sin x \Omega f(x)$$
在 $x = 0$ 处的麦克劳林公式为

$$\sin x = x - \frac{1}{6}x^3 + o_1(x^3)$$

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + o_2(x^2)$$

$$\lim_{x\to 0} \frac{\sin x + xf(x)}{x^3}$$

$$= \lim_{x \to 0} \frac{x - \frac{1}{6}x^3 + o_1(x^3) + f(0)x + f'(0)x^2 + \frac{1}{2}f''(0)x^3 + xo_2(x^2)}{x^3}$$

$$= \lim_{x \to 0} \frac{(1+f(0))x + f'(0)x^2 + (\frac{1}{2}f''(0) - \frac{1}{6})x^3 + o(x^3)}{x^3}$$

所以
$$f(0) = -1$$
, $f'(0) = 0$, $f''(0) = \frac{1}{3}$

若 $a^2-3b<0$,则方程 $f(x)=x^3+ax^2+bx+c=0$ ().

A. 无实根

B. 有唯一的实根

C.有三个实根

D. 有重实根

【参考答案】 B

【对应考点】 函数的单调性;介值定理

【试题解答】 考查其导函数
$$f'(x) = 3x^2 + 2ax + b = 3(x + \frac{a}{3})^2 + \frac{1}{3}(3b - a^2) > 0$$
,

因此函数单调增;

另一方面,当 $x \rightarrow -\infty$ 时 $f(x) \rightarrow -\infty$,

而当 $x \rightarrow + \infty$ 时 $f(x) \rightarrow + \infty$;

由介值定理可知方程有唯一实根.

对任意实数,下列不等式恒成立的是().

A.
$$e^{-x} \le 1 - x$$

B.
$$e^{-x} \ge 1 - x$$

C.
$$e^{-x} \le 1 + x$$

A.
$$e^{-x} \le 1 - x$$
 B. $e^{-x} \ge 1 - x$ **C.** $e^{-x} \le 1 + x$ **D.** $e^{-x} \ge 1 + x$

【参考答案】 B

【对应考点】

函数的单调性

【试题解答】

$$\Leftrightarrow f(x) = e^{-x} + x - 1,$$

在 $x \le 0$ 时,导函数 $f'(x) = 1 - e^{-x} \le 0$,因此单调递减,于是 f(x) > f(0) = 0;

在 $0 \le x \le 1$ 时,导函数 $f'(x) = 1 - e^{-x} \ge 0$,因此单调增,于是 f(x) > f(0) = 0;

在 $x \ge 1$ 时,函数 $f(x) \ge e^{-x} \ge 0$;

因此都有 $f(x) \ge 0$,此即 $e^{-x} \ge 1 - x$.

常用函数的麦克劳林公式

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}).$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + o(x^{2m-1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{m} \frac{x^{2m}}{(2m)!} + o(x^{2m})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n} \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha (\alpha - 1)}{2!} x^{2} + \dots$$

$$+ \frac{\alpha (\alpha - 1) \dots (\alpha - n + 1)}{n!} x^{n} + o(x^{n})$$

对于下列不等式: (1) 当
$$x > 0$$
时, $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$; (2) 当 $x > 0$ 时,
$$x - \frac{1}{3}x^3 < \sin x < x$$
 说法正确的是().

B. (1) 正确 (2) 不正确

D. (1)(2)都不正确

【参考答案】 A

【对应考点】 利用函数单调性判断不等式.

【试题解答】

(1)
$$i\exists f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$$
,

$$f'(x) = \ln\left(x + \sqrt{1 + x^2}\right) + \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1 + x^2}}$$
$$= \ln\left(x + \sqrt{1 + x^2}\right) > \ln 1 = 0 \ (x > 0),$$

故当 $x \ge 0$ 时,f(x)单调增加,而f(0) = 0,

∴
$$f(x) > f(0)$$
 $(x > 0)$,
 $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$.

设 f(x) 和 g(x) 都在 x = a 处取得极大值,则 F(x) = f(x)g(x) 在 x = a 处().

 \mathbf{A} . 必取极大值

 ${f B}$. 必取极小值 ${f C}$. 不可能取极值 ${f D}$. 是否取极值不能确定

【参考答案】 D

【对应考点】

函数极值的定义

【试题解答】

考查函数 $f(x) = -x^2 \pi g(x) = -x^2$, 他们都在x = 0 取极大值, 但 $F(x) = f(x)g(x) = x^4$ 在 x = 0 处取极小值:

考查函数 $f(x) = -x^2 + 4 (-2 < x < 2)$ 和 $g(x) = -x^2 + 4 (-2 < x < 2)$,他们都在 x = 0 取极大值,但 $F(x) = f(x)g(x) = (x^2 - 4)^2$ 仍在 x = 0 处取极大值;因此是否极值不 能确定.

设偶函数 f(x) 具有连续的二阶导数,且 $f''(0) \neq 0$,则 x = 0().

A. 不是函数 f(x) 的驻点

C. 一定不是函数 f(x) 的极值点

B. 一定是函数 f(x) 的极值点

 \mathbf{D} . 是否为函数 f(x) 的极值点,还不能确定

【参考答案】 B

【对应考点】 函数极值点判断的第二充分条件

【试题解答】

因为 f(x) 为偶函数,根据左右导数及偶函数的性质可以得出 f'(0) = 0,从而无论是 f''(0) > 0还是 f''(0) < 0,从函数极值点判断的第二充分条件来看, x = 0都是原函数的极值点.

函数
$$y = x^x$$
在区间 $\left[1/e, +\infty\right]$ 上().

A. 不存在最大值和最小值

$$\mathbf{C}$$
. 最大值 $\left(\frac{1}{e}\right)^{1/e}$

 \mathbf{B} . 最大值是 $e^{1/e}$

D. 最小值是
$$\left(\frac{1}{e}\right)^{1/e}$$

【参考答案】 [

【对应考点】 函数的极值与最值

【试题解答】

对函数取对数得 $\ln y = x \ln x$,两边求导可得 $\frac{y'}{y} = 1 + \ln x$,从而 $y' = (1 + \ln x) x^x$,导函数 在区间 $\left[1/e, +\infty \right]$ 上恒有 $y' \geq 0$,因此原函数单调增,故在所选区间上的最小值为 $y\left(\frac{1}{e}\right) = \left(\frac{1}{e}\right)^{1/e}$.

若直角三角形的一直角边与斜边之和为常数,则有最大面积的直角三角形有一锐角为().

A. 30°

B. 45°

C. 15°

D. 22.5°

【参考答案】 A

【对应考点】 函数的最值; 函数的单调性

【试题解答】

设三边为x, y, z, 其中z为斜边,设x+z=c为常数,又有勾股定理 $x^2+y^2=z^2$,为使函数F=xy最大;

化为F只和z和c有关的函数为 $F=\sqrt{c(2z-c)}(c-z)$,求导令其导函数为零解得 $z=\frac{2}{3}c$,容易验证该点为 $F=\sqrt{c(2z-c)}(c-z)$ 的极大值点;从而可得 $x=\frac{1}{3}c$ 和

 $y = \frac{\sqrt{3}}{3}c$,因此锐角为边y和x分别所对的角,易知为 30° 和 60° .

设 f(x) 在 [a, b] 上连续,在 (a, b) 内可导,且 f(a) = f(b) = 0. 下面命题成立的是().

A. 存在 $\xi \in (a, b)$,使 $f'(\xi) = f(\xi)$ 成立 **B**. 存在 $\xi \in (a, b)$,使 $f'(\xi) = -f(\xi)$ 成立

 \mathbf{C} . 存在 $\xi \in (a, b)$,使 $f'(\xi) = 2f(\xi)$ 成立

D. 存在 $\xi \in (a, b)$,使 $f'(\xi) = \frac{1}{2}f(\xi)$ 成立

【参考答案】 A

【对应考点】 罗尔中值定理应用

【试题解答】 分析:应用辅助函数.

引进辅助函数 $\varphi(x) = f(x)e^{-x}$,

由于 $\varphi(a) = \varphi(b) = 0$,易知 $\varphi(x)$ 在[a, b]上满足罗尔定理条件,且 $|\varphi'(x)| = f'(x)e^{-x} - f(x)e^{-x}$

因此,在(a,b)内至少存在一点 $\xi \in (a,b)$,使 $\varphi'(\xi) = 0$,即 $f'(\xi)e^{-\xi} - f(\xi)e^{-\xi} = 0$, 因 $e^{-\xi} \neq 0$,所以 $f'(\xi) = f(\xi)$.

若 a < b 时,可微函数 f(x) 有 f(a) = f(b) = 0, f'(a) < 0, f'(b) < 0, 则方程 f'(x) = 0 在 (a, b) 内().

A. 无实根

B. 有且仅有一实根

C.有且仅有二实根

 \mathbf{D} . 至少有二实根

【参考答案】 D

【对应考点】 罗尔定理

【试题解答】

依罗尔定理,由 f(a) = f(b) = 0,方程 f'(x) = 0在 (a, b) 内至少有一实根,故不是无实根.

依保号性定理知, $\exists \delta_1 > 0$,当 $x \in (a, a + \delta_1)$ 时,f(x) < 0,

$$\mathbb{X} f'(b) = \lim_{x \to b} \frac{f(x) - f(b)}{x - b} = \lim_{x \to b} \frac{f(x)}{x - b} = \lim_{x \to b} \frac{f(x)}{x - b} < 0,$$

同理, $\exists \delta_2 > 0$, $\exists x \in (b - \delta_2, b)$ 时, f(x) > 0, 由此可见有

$$a^* \in (a, a + \delta_1), b^* \in (b - \delta_2, b),$$
 使得 $f(a^*) f(b^*) < 0$,

由介值定理可知,必有 $c \in (a^*, b^*) \subset (a, b)$,使f(c) = 0

依罗尔定理可知, f'(x)在(a, c), (c, b)上应各有一零点,故

f'(x) = 0至少应有二实根. 因缺乏依据判定 f'(x) = 0有且仅有二实根.

故正确选项是至少有二实根.

 $\exists x \in [-1,1]$, $\arcsin x + \arccos x = ()$.

Α. π

 \mathbf{B} . 2π

 $\mathbf{C}.\ \frac{1}{2}\pi$

D. 0

【参考答案】 C

【对应考点】 拉格朗日中值定理.

【试题解答】

设 $f(x) = \arcsin x + \arccos x$, $x \in [-1, 1]$,

:
$$f'(x) = \frac{1}{\sqrt{1-x^2}} + \left(-\frac{1}{\sqrt{1-x^2}}\right) = 0$$
,

$$\therefore f(x) \equiv C, \ x \in [-1, 1].$$

$$\mathbb{Z} : f(0) = \arcsin 0 + \arccos 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2},$$

即
$$C=\frac{\pi}{2}$$
,

$$\therefore \arcsin x + \arccos x = \frac{\pi}{2}.$$

对函数 $y=px^2+qx+r$ 应用拉格朗日中值定理时所求得的点 ξ 总是().

A. 位于区间的正中间

$$\mathbf{B}$$
. 位于区间的 $\frac{1}{3}$ 处

C. 位于区间的 $\frac{2}{3}$ 处

 \mathbf{D} . 位于区间的 $\frac{1}{4}$ 处

【参考答案】 A

【对应考点】 拉格朗日中值定理

【试题解答】

易见本题的多项式函数在 [a, b] \subset $(-\infty, +\infty)$ 上连续,在 (a, b) 内可导,即它满足拉格朗日定理的条件,故 $\exists \xi \in (a, b)$,使得

$$y'(\xi)\cdot(b-a)=f(b)-f(a),$$

而 y'(x) = 2px + q,即有

$$(2px+q)|_{x=\xi} = \frac{pb^2 + qb + r - (pa^2 + qa + r)}{b-a}$$

亦即 $2p\xi + q = p(b+q) + q$, 所以 $\xi = \frac{a+b}{2}$. 证毕.

,

设
$$f(x) = \begin{cases} \frac{1}{2}(3-x^2), & 0 \le x \le 1 \\ \frac{1}{x}, & 1 < x < +\infty \end{cases}$$
 ,则在 $(0, 2)$ 内满足 $f(2) - f(0) = 2f'(\xi)$ 的中值

 $\xi = ()$.

A.
$$\xi_1 = \frac{1}{2}$$
 \vec{x} $\xi_2 = \sqrt{2}$

C.
$$\xi_2 = \pm \sqrt{2}$$

B.
$$\xi_1 = \pm \frac{1}{2}$$

D.
$$\xi_1 = \frac{1}{2}$$

【参考答案】 A

【对应考点】

柯西中值定理与导数

【试题解答】 0 < x < 1时, f'(x) = -x; 1 < x < 2时, $f'(x) = -\frac{1}{x^2}$.

即满足 $f(2) - f(0) = 2f'(\xi)$ 的中间值 $\xi_1 = \frac{1}{2}$ 或 $\xi_2 = \sqrt{2}$.

$$\lim_{x \to 2\pi} \frac{(x - 2\pi)^2}{\tan(\cos x - 1)} = ().$$

A. -2 **B**. -1

C. 0

D. 1

【参考答案】

【对应考点】 洛必达法则

【试题解答】 原式 =
$$\lim_{x \to 2\pi} \frac{(x - 2\pi)^2}{\cos x - 1} = \lim_{x \to 2\pi} \frac{2(x - 2\pi)}{-\sin x} = \lim_{x \to 2\pi x} \frac{2}{-\cos x} = -2.$$

下列各运算过程中使用罗必塔法则正确的是().

A. 数列极限
$$\lim_{n\to\infty} \sqrt[n]{n} = e^{\lim_{n\to\infty} \frac{\ln n}{n}} = e^{\lim_{n\to\infty} \frac{(\ln n)'}{(n)'}} = e^{\lim_{n\to\infty} \frac{1}{n}} = 1$$

B.
$$\lim_{x \to 0} \frac{x + \sin x}{x - \sin x} = \lim_{x \to 0} \frac{1 + \cos x}{1 - \cos x} = \infty$$

$$\mathbf{C}. \lim_{x\to 0} \frac{1}{\sin x} = \lim_{x\to 0} \frac{2x\sin\frac{1}{x} - \cos\frac{1}{x}}{\cos x}, \text{ 由于 } \lim_{x\to 0} \frac{2x\sin\frac{1}{x} - \cos\frac{1}{x}}{\cos x}$$
不存在,故原极限

不存在

D.
$$\lim_{x \to 1} \frac{x^2 - 1}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{2x}{6x - 2} = \lim_{x \to 1} \frac{2}{6} = \frac{1}{3}$$
 【参考答案】 B 【对应考点】 洛比达法则 【试题解答】

$$\lim_{n \to \infty} \sqrt[n]{n} = e^{\lim_{n \to \infty} \frac{\ln n}{n}} = e^{\lim_{x \to +\infty} \frac{(\ln x)'}{(x)'}} = e^{\lim_{x \to +\infty} \frac{1}{x}} = 1$$

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

$$\lim_{x \to 1} \frac{x^2 - 1}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{2x}{6x - 2} = \lim_{x \to 1} \frac{2}{4} = \frac{1}{2}.$$

 $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ 的值等于().

A. 0

B. 1

C. 2

D. −1

【参考答案】 A

【对应考点】

∞-∞型洛必达法则

【试题解答】

对于 $\infty - \infty$ 型,可利用通分化为 $\frac{0}{0}$ 型的未定式来计算.

$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x}$$
$$= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = \frac{0}{1} = 0.$$

设
$$a > 0, b > 0$$
,则 $\lim_{x \to 0} (\frac{a^x + b^x}{2})^{\frac{1}{x}} = ($).

A. *ab*

B. \sqrt{ab}

 \mathbf{C} . $\ln ab$

D. $\ln \sqrt{ab}$

【参考答案】 B

【对应考点】 $\frac{0}{0}$ 型

【试题解答】

$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{\ln \frac{a^x + b^x}{2}}{x}} = e^{\lim_{x \to 0} \frac{\ln (a^x + b^x) - \ln 2}{x}}$$

$$= e^{\lim_{x \to 0} \frac{a^{x} \ln a + b^{x} \ln b}{a^{x} + b^{x}}} = e^{\frac{\ln a + \ln b}{2}} = e^{\ln(ab)^{\frac{1}{2}}} = \sqrt{ab}.$$

$$\sin x = x - \frac{1}{6}x^3 + R_4(x)$$
其中 $R_4(x) = ($). (式中 ξ 介于0与 x 之间)

A.
$$\frac{-\cos\xi}{5!}x^5$$
 B. $\frac{\cos\xi}{5!}x^5$ C. $\frac{\sin\xi}{5!}x^5$ D. $\frac{-\sin\xi}{5!}x^5$

$$\mathbf{B}.\ \frac{\cos\xi}{5!}x^5$$

C.
$$\frac{\sin \xi}{5!} x^5$$

D.
$$\frac{-\sin\xi}{5!}x^{\frac{1}{2}}$$

【参考答案】 B

【对应考点】 泰勒中值定理

【试题解答】

$$R_n(x) = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}$$
, 所以 $R_4(x) = \frac{\cos \xi}{5!} x^5$.

函数 $f(x) = \frac{1}{x} + \frac{1$

A.
$$-[1+(x+1)+(1+1)^2+\cdots+(x+1)^n]+(-1)^{n+1}\frac{(x+1)^{n+1}}{[-1+\theta(x+1)]^{n+2}}$$

 $(0 < \theta < 1)$

B.
$$1 + (x+1) + (1+1)^2 + \dots + (x+1)^n + (-1)^{n+1} \frac{(x+1)^{n+1}}{[-1+\theta(x+1)]^{n+2}}$$

 $(0 < \theta < 1)$

C.
$$-[(x+1)+(1+1)^2+\cdots+(x+1)^n]+(-1)^{n+1}\frac{(x+1)^{n+1}}{[-1+\theta(x+1)]^{n+2}}$$

 $(0 < \theta < 1)$

D.
$$(x+1)+(1+1)^2+\cdots+(x+1)^n+(-1)^{n+1}\frac{(x+1)^{n+1}}{[-1+\theta(x+1)]^{n+2}}$$
 $(0<\theta<1)$ 【参考答案】

【试题解答】
$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}, \quad f^{(n)}(x_0) = f^{(n)}(-1) = \frac{(-1)^n n!}{(-1)^{n+1}} = -n!,$$

$$\mathbb{P} \frac{f^{(n)}(x_0)}{n!} = -1,$$

$$\frac{1}{x} = -\left[1 + (x+1) + (1+1)^2 + \dots + (x+1)^n\right] + (-1)^{n+1} \frac{(x+1)^{n+1}}{\left[-1 + \theta(x+1)\right]^{n+2}}$$

$$(0 < \theta < 1)$$

设
$$I = \int \frac{1}{x(1+x^8)} dx$$
,下列等式中不成立的是().

A.
$$I = \int \frac{x^7}{x^8(1+x^8)} dx = \frac{1}{8} \int \frac{1}{x^8(1+x^8)} d(x^8)$$

B.
$$I = \int \frac{1 + x^8 - x^8}{x(1 + x^8)} dx = \int \frac{1}{x} dx - \int \frac{x^7}{(1 + x^8)} dx$$

C.
$$I = \int \frac{1}{x^9(1+x^{-8})} dx = -\frac{1}{8} \int \frac{d(1+x^8)}{1+x^{-8}}$$

$$\mathbf{D}. \diamondsuit x = \frac{1}{t}, I = \int \frac{1}{\left(1 + \frac{1}{t^8}\right) \frac{1}{t}} \frac{1}{t^2} dt = \int \frac{t^7}{1 + t^8} dt.$$

【参考答案】 D

【对应考点】 换元积分法

【试题解答】

第四章

1.求不定积分

$$1)\int \frac{dx}{\sin^2 x \cos^2 x}$$

$$2)\int \frac{dx}{\sin^2 x + 2\cos^2 x}.$$

$$3) \int \frac{dx}{1 + \tan x}$$

$$3) \int \frac{dx}{1 + \tan x} \qquad 4) \int \frac{dx}{1 + 2 \tan x}$$

$$5) \int \frac{dx}{1 + \sin x}$$

$$1) \int \frac{dx}{\sin^2 x \cos^2 x}$$

解注
$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx$$

$$= \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \tan x - \cot x + c$$

$$2)\int \frac{dx}{\sin^2 x + 2\cos^2 x}.$$

$$\int \frac{dx}{\sin^2 x + 2\cos^2 x} = \int \frac{1}{\cos^2 x} \frac{1}{\tan^2 x + 2} dx$$

$$= \int \frac{d \tan x}{2 + \tan^2 x}$$

$$= \frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} + C.$$

$$3)\int \frac{dx}{1+\tan x}$$

$$\int \frac{dx}{1 + \tan x} = \int \frac{\cos x}{\sin x + \cos x} dx$$

$$= \frac{1}{2} \int (1 + \frac{\cos x - \sin x}{\cos x + \sin x}) dx$$

$$= \frac{1}{2} \left[x + \int \frac{d(\cos x + \sin x)}{\cos x + \sin x} \right]$$

$$=\frac{1}{2}(x+\ln|\cos x+\sin x|)+C.$$

$$4) \int \frac{dx}{1 + 2 \tan x}$$

$$\int \frac{dx}{1+2\tan x} = \int \frac{\cos x}{2\sin x + \cos x} dx$$

$$= \frac{2}{5} \int (\frac{2}{\cos x + 2\sin x} + \frac{2\cos x - \sin x}{\cos x + 2\sin x}) dx$$

$$= \frac{2}{5} \left[\int \frac{1}{2} dx + \int \frac{d(\cos x + 2\sin x)}{\cos x + 2\sin x} \right]$$

$$=\frac{2}{5}(\frac{x}{2}+\ln|\cos x+2\sin x|)+C.$$

$$5) \int \frac{dx}{1 + \sin x}$$

$$= \int \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} dx$$

$$= \int \frac{1 - \sin x}{\cos^2 x} dx = \int \frac{1}{\cos^2 x} dx - \int \frac{\sin x}{\cos^2 x} dx = \dots$$

2.求不定积分

$$1)\int \frac{x^2}{\sqrt{9-x^2}}dx.;$$

$$2)\int \frac{3+x}{\sqrt{9-x^2}}dx.$$

$$3)\int \frac{dx}{x^2\sqrt{1-x^2}};$$

$$4)\int \frac{dx}{x\sqrt{1-x^2}};$$

$$\int \frac{x^2}{\sqrt{9-x^2}} dx.$$

解:
$$\Rightarrow x = 3\sin t$$
 $\left(-\frac{\pi}{2} < t < \frac{\pi}{2}\right)$ $dx = 3\cos t dt$

$$\sqrt{9 - x^2} = \sqrt{9 - 9\sin^2 t} = 3\cos t$$

$$= \frac{9}{2} \arcsin \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \arcsin \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \pi \cos \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \pi \cos \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \pi \cos \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \pi \cos \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$= \frac{9}{2} \pi \cos \frac{x}{3} - \frac{1}{2} x \sqrt{9 - x^2} + C$$

$$\sqrt{9-x_{56}^2}$$

$$2)\int \frac{3+x}{\sqrt{9-x^2}}dx.$$

$2)\int \frac{3+x}{\sqrt{9-x^2}} dx.$ 如果用"三角代换", 计算繁琐

$$= \int \frac{3}{\sqrt{9-x^2}} dx + \int \frac{x}{\sqrt{9-x^2}} dx$$

$$3)\int \frac{dx}{x^2\sqrt{1-x^2}};$$

解 1)三角代换:
设
$$x = \sin t, t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
,则 $dx = \cos t dt$.

$$\int \frac{dx}{x^2 \sqrt{1-x^2}} = \int \frac{\cos t dt}{\sin^2 t \cdot \cos t} = \int \csc^2 t dt$$

$$=-\cot t + c = -\frac{\sqrt{1-x^2}}{x} + c.$$

$$3)\int \frac{dx}{x^2\sqrt{1-x^2}};$$

另解:用倒代换,设 $x = \frac{1}{t}$,则 $dx = -\frac{1}{t^2}dt$,

$$\int \frac{dx}{x^2 \sqrt{1 - x^2}} = \int \frac{-\frac{1}{t^2} dt}{\frac{1}{t^2} \sqrt{1 - \frac{1}{t^2}}} = \int \frac{t}{\sqrt{t^2 - 1}} dt$$

$$= \int \frac{d(t^2 - 1)}{2\sqrt{t^2 - 1}} = \sqrt{t^2 - 1} + c = \frac{\sqrt{1 - x^2}}{x} + c.$$

$$4)\int \frac{dx}{x\sqrt{1-x^2}};$$

用三角代换或根式代换都可以

求不定积分

$$1)\int x^2\sqrt{9-x^2}\,dx.;$$

$$2) \int x^3 \sqrt{9 - x^2} dx.$$

$$\int \frac{e^{2x}}{\sqrt[4]{1+e^x}} dx = ().$$

A.
$$-\frac{1}{2}(1+e^x)^{3/4}+C$$

C.
$$\frac{4}{7}(1+e^x)^{7/4} - \frac{4}{3}(1+e^x)^{3/4} + C$$

B.
$$e^x(1+e^x)^{7/4}+C$$

D.
$$-\frac{4}{3}(1+e^x)^{-1/4}-4(1+e^x)^{3/4}+C$$

【参考答案】

【试题解答】

$$\sqrt[4]{1+e^x} = t$$
, $e^x = t^4 - 1$, $e^{2x} = (t^4 - 1)^2$, $x = \ln(t^4 - 1)$, $dx = \frac{4t^3dt}{t^4 - 1}$,

$$\int \frac{e^{2x}}{\sqrt[4]{1+e^x}} dx = \int \frac{(t^4-1)^2}{t} \cdot \frac{4t^3 dt}{t^4-1} = 4\int (t^6-t^2) dt = \frac{4}{7}t^7 - \frac{4}{3}t^3 + C$$

所以
$$\int \frac{e^{2x}}{\sqrt[4]{1+e^x}} dx = \frac{4}{7}(1+e^x)^{7/4} - \frac{4}{3}(1+e^x)^{3/4} + C.$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = (), 其中 a 为常数 (a > 0).$$

A.
$$\ln \left| x \sqrt{a^2 + x^2} \right| + C$$

C.
$$\ln |x - \sqrt{a^2 + x^2}| + C$$

B. $a\arcsin\frac{x}{a} + C$

D.
$$\ln |x + \sqrt{a^2 + x^2}| + C$$

【参考答案】

【试题解答】

$$\Rightarrow x = a \tan t \Rightarrow dx = a \sec^2 t dt, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \int \frac{1}{a \sec t} \cdot a \sec^2 t dt = \int \sec t dt$$

 $= \ln \left| \sec t + \tan t \right| + C_1$

$$= \ln \left| \frac{x}{a} + \frac{\sqrt{x^2 + a^2}}{a} \right| + C_1$$
$$= \ln \left| x + \sqrt{x^2 + a^2} \right| + C.$$

设f(x)是单调连续函数, $f^{-1}(x)$ 是它的反函数,且 $\int f(x)dx = F(x) + C$.则 $\int f^{-1}(x)dx = (\).$

A.
$$x f^{-1}(x) - F(f^{-1}(x)) + C$$

C.
$$xf^{-1}(x) + F(f^{-1}(x)) + C$$

B.
$$f^{-1}(x) - F(f^{-1}(x)) + C$$

D.
$$xf(x) - F(f^{-1}(x)) + C$$

【参考答案】 A

【对应考点】 分部积分法

【试题解答】 ::
$$x = f(f^{-1}(x))$$

$$\therefore \int f^{-1}(x)dx = xf^{-1}(x) - fxdf^{-1}(x)$$

$$= xf^{-1}(x) - \int f[f^{-1}(x)]df^{-1}(x)$$

$$= xf^{-1}(x) - F(f^{-1}(x)) + C.$$

已知
$$\frac{\sin x}{x}$$
 是 $f(x)$ 的原函数,则 $\int x f'(x) dx = ()$.

$$\mathbf{A.}\,\cos\!x - \frac{2\!\sin\!x}{x} + C$$

B.
$$\cos x - \frac{\sin x}{x} + C$$

C.
$$\sin x - \frac{2\cos x}{x} + C$$

D.
$$\sin x - \frac{\cos x}{x} + C$$

【参考答案】 A

【对应考点】 分部积分法

【试题解答】

由题设条件得

$$\int f(x)dx = \frac{\sin x}{x} + C,$$

$$f(x) = \left(\frac{\sin x}{x}\right)' = \frac{x\cos x - \sin x}{x^2},$$

$$\therefore \int x f'(x) dx = \int x df(x)$$

$$= x f(x) - \int f(x) dx$$

$$= \cos x - \frac{2\sin x}{x} + C.$$

设
$$I_n = \int \frac{dx}{\sin^n x} (2 \le n)$$
,则 $I_n = ()$.

A.
$$-\frac{1}{n-1}\frac{\cos x}{\sin^{n-1}x} + \frac{n-2}{n-1}I_{n-2}$$

C.
$$-\frac{1}{n-1}\frac{\cos x}{\sin^n x} + \frac{n-2}{n-1}I_{n-2}$$

B.
$$-\frac{1}{n}\frac{\cos x}{\sin^{n-1}x} + \frac{n-2}{n-1}I_{n-2}$$

$$\mathbf{D.} - \frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-1}{n} I_{n-2}$$

【参考答案】 A

【试题解答】
$$I_n = \int \frac{dx}{\sin^n x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^n x} dx$$

$$= \int \frac{-d\cos x}{\sin^{n-1}x} + \int \frac{\cos^2 x}{\sin^n x} dx$$

$$= -\frac{\cos x}{\sin^{n-1} x} + (2-n) \int \frac{1-\sin^2 x}{\sin^n x} dx$$

$$= -\frac{\cos x}{\sin^{n-1} x} + (2-n)I_n + (n-2)I_{n-2},$$

移项解得
$$I_n = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} I_{n-2}$$
.