2022 年电磁场与电磁波英文班回忆卷

Problem 1 (20%)

Consider a rectangular waveguide as shown in Fig.1(A) and a rectangular cavity resonator as shown in Fig.1(B).

Suppose a=20mm, b=15mm and d=10mm.

The velocity of light in the air is $c = 3 \times 10^8 m/s$.

Figure1

- (1) List the three lowest distinct cutoff frequencies (in the unit of Hz) of the rectangular waveguide and their corresponding mode designations (TE_{mn}, TM_{mn}) .
- (2) In the rectangular waveguide, what is the frequency range (in the unit of Hz) in which only the fundamental mode can propagate?
- (3) List the three lowest distinct resonator frequencies (in the unit of Hz) of the cavity resonator and their corresponding mode designations (TE_{mnp}, TM_{mnp}) .

Problem 2 (20%)

Consider a plane wave incident on a planar boundary at x=0 as shown in Fig.2, where ϵ_0 is the permittivity in the air and μ_0 is the permeability in the air. Suppose the incident electric field is:

$$\vec{E}_i = (-\hat{x} + \sqrt{2}i\hat{y} + \hat{z})E_0e^{i(k_x x + k_z z)}$$

where E_0 is a real constant. The incident wave vector \vec{k}_i is on the x-z plane.

Figure2

- (1) Prove that the incident angle is 45° .
- (2) Suppose $k_z = \pi m^{-1}$, the velocity of light in the air $c = 3 \times 10^8 m/s$. Find the wavelength (in the unit of m) and the frequency (in the unit of Hz) in region 0.
- (3) When the incident angle is equal to the critical angle, calculate the value of ϵ_t (0 < $\epsilon_t/\epsilon_0 < \infty$), find the reflected electric field \vec{E}_r and compare the handedness of polarization of \vec{E}_i and \vec{E}_r . (Hint: Decompose \vec{E}_i into the TM and TE components)

Problem 3 (20%)

Consider a three-layer structure as shown in Fig.3.

Figure3

The permittivity in each region is given as follows: $\epsilon_1 = 3\epsilon_0, \epsilon_2 = 9\epsilon_0$, and $\epsilon_3 = \epsilon_0$, where ϵ_0 is the permittivity in the air and μ_0 is the permeability in the air.

In region 1, the incident magnetic field vector is

$$\vec{H}_i = \hat{y} H_1 e^{i(k_{1x}x + k_{1z}z)}$$

where H_1 is real constant. $R_{l(l+1)}$ denotes the reflection coefficient in region l, caused by the boundary separating region l and region l+1. $R_{(l+1)l}$ is equal to the negative of the reflection coefficient $R_{l(l+1)}$.

Suppose $R_{12} = 0$.

- (1) What is the value of incident angle θ_i ? (Hint: The Brewster angle)
- (2) Calculate the reflection coefficient R_{23} .

Problem 4 (20%)

- (1) Name at least 5 types of media with different constitutive relations.
- (2) Consider a medium with the permittivity and the permeability

where μ_0 is the permeability in the air.

In the kDB system, suppose the wave vector \vec{k} is on the y-z plane. (Hint: $\phi = \pi/2$ in the kDB system)

- (2.1) Let $\vec{E} = \bar{\kappa} \cdot \vec{D}$ and $\vec{H} = \bar{\nu} \cdot \vec{B}$, find $\bar{\kappa}$ and $\bar{\nu}$.
- (2.2) Suppose \bar{T} is the transformation matrix, calculate $\bar{\kappa_k} = \bar{T}\bar{\bar{\kappa}}\bar{\bar{T}}^{-1}$.
- (2.3) Calculate the dispersion relation for type I wave with $\vec{D} = \hat{e}_1 D_1$ and type II wave with $\vec{D}_2 = \hat{e}_2 D_2$ respectively. Among these two types of waves, which one corresponds to the ordinary wave and which one corresponds to the extraordinary wave?

Problem 5 (20%)

A Hertzian dipole is located at the origin of corrdinates with the dipole momentum along the \hat{z} direction. In the far field, the electric field is

$$\vec{E}(\vec{r}) = -\hat{\theta}i\omega\mu Il\frac{e^{ikr}}{4\pi r}sin\theta$$

where r is the distance between the source and observation point.

- (1) Sketch the radiation field pattern on the x-z plane.
- (2) Find the magnetic field $\vec{H}(\vec{r})$, the time-average Poynting's power density $\langle \vec{S} \rangle$, and the total radiated power P_r .
- (3) Consider an antenna array of 4 elements, pointing in the \hat{z} direction and placed along the x axis with equal spacing d. Each element has a progressive phase shift α relative to its adjacent element. Suppose $d = 5\lambda/6$ and $\alpha = 5\pi/3$. Calculate the array factor F(u) and draw the radiation pattern on the x-y plane.