Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

DEPARTMENT OF MATHEMATICS

Course: Linear Algebra and Probability Theory	CIE-I	Maximum marks: 50
Course code: MAT231CT	Third semester 2023-2024 Branch: CS, CD, CY	Time: 10:00AM-11:30AM Date: 08-01-2024

Instructions to candidates:

Answer all questic	ons.
--------------------	------

1	011	Answer all questions.				
ŀ	Q.No QUESTIONS				СО	
		Let \mathbb{R}^2 , \mathbb{R}^3 , P_4 (set of all polynomials of degree 4 or less with real coefficients) and $M_{2\times 2}$ (set of all 2 × 2 real matrices) be vector spaces with usual addition and scalar multiplication. Verify whether the following sets forms a subspace or not. Justify your answer.	M	BT		
	1	i) $S_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \middle y = x^2 \right\} \text{ of } \mathbb{R}^2$ ii) $S_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \middle 2x = 3y \right\} \text{ of } \mathbb{R}^2$	10	2	2	
		iii) $S_3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \middle x - 4y + 5z = 0 \right\} \text{ of } \mathbb{R}^3$			2	
1		iv) $S_4 = \{f(x) \in P_4 f(1) \text{ is an integer} \}$				
		v) $S_5 = \{A \in M_{2\times 2} det(A) \neq 0\}.$				
2	2.a Let $u = (1,3,2,1), v = (2,-2,-5,4), w = (2,-1,3,6)$ be vectors in \mathbb{R}^4 . If possible					
-	-	express $t = (2,5,-4,0)$ as a linear combination of u,v and w .	5	2	2	
2	2.b Determine whether the set of vectors $S = \{1 + x - 2x^2, 2 + 5x - x^2, x + x^2\}$ in P_2 is linearly independent or linearly dependent.				2	
	1	Discrete random variable has the probability mass function as follows:				
1		x 0 1 2 3 4 5 6 7				
3.	a	$p_X(x)$ 0 k 2k 2k 3k 3k ² 2k ² 7k ² + k	6	1		
	i)	0	1	1		
	ii) iii					
2 L	A	shipment of 7 television sets contains 2 defective sets. A hotel makes a random				
3.b	purchase of 3 of the sets. If x is the number of defective sets purchased by the hotel, find the probability and cumulative distribution of X.					
	Th	e total number of hours, measured in units of 100 hours, that a family runs a vacuum				
	010	aner over a period of one year is a continuous random variable X that has the density ction				
	lun					
4.a		$p(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & elsewhere. \end{cases}$	6	2	2	
	Find the probability that over a period of one year, a family runs their vacuum cleaner					
	i) less than 120 hours;					
	ii) between 50 and 100 hours.					
	Dage	e 1 of 2				

4.b	The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution function $F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-8x}, & x \ge 0. \end{cases}$ Find the probability density function and the probability of waiting less than 12 minutes between successive speeders.						4	2	2	
5.a	i) E ii) F	or 3 till on a $p(x)$ y	imes on emetro, y) $\frac{1}{3}$ $\frac{3}{5}$ into the y	1 0.05 0.05 0.00	ven day. all. Theif $\frac{x}{2}$ 0.05 0.10 0.20 all distributes, $P(X \le 1)$, $P(X \le 1)$	3 0.1 0.35 0.10 ations of	n numerical control machine will malfunction: enote the number of times a technician is bility distribution is given as f X and Y 3).	6	3	3
5.b	less th	A fair tetrahedral die (four faced die) is rolled twice. Let X denote the sum of two tosses less than 5 and let Y denote the maximum of the two tosses. Obtain the joint probability distribution function of X and Y .						4	2	2
