Design and Analysis of Algorithms Part II: Dynamic Programming

Lecture 5: 0-1 Knapsack and Rod Cutting Problems

Ke Xu and Yongxin Tong (许可 与 童咏昕)

School of CSE, Beihang University

Outline

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

Outline

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

 Dynamic Programming (DP) is similar to Divide and Conquer (D&C)

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one
- Main idea of DP

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one
- Main idea of DP
 - Analyze the structure of an optimal solution

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one
- Main idea of DP
 - Analyze the structure of an optimal solution
 - Recursively define the value of an optimal solution

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one
- Main idea of DP
 - Analyze the structure of an optimal solution
 - Recursively define the value of an optimal solution
 - Compute the value of an optimal solution (usually bottom-up)

- In Part II, we will illustrate Dynamic Programming (DP) using several examples:
 - 0-1 Knapsack (0-1背包)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)
 - Longest Common Subsequences (最长公共子序列)
 - Minimum Edit Distance (最小编辑距离)
 - All-Pairs Shortest Paths (所有结点对的最短路径)

- In Part II, we will illustrate Dynamic Programming (DP) using several examples:
 - 0-1 Knapsack (0-1背包)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)
 - Longest Common Subsequences (最长公共子序列)
 - Minimum Edit Distance (最小编辑距离)
 - All-Pairs Shortest Paths (所有结点对的最短路径)

Outline

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

We have n items.

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

Goal: Use the knapsack to carry items, such that the total value is maximum.

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

- We want to find a subset of items to carry such that
 - The total weight is at most W .

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

- We want to find a subset of items to carry such that
 - The total weight is at most W .
 - The total value of the items is as large as possible.

We have n items.

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

- We want to find a subset of items to carry such that
 - The total weight is at most W .
 - The total value of the items is as large as possible.

We cannot take parts of items, we take the whole item or nothing.

We have n items.

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

- We want to find a subset of items to carry such that
 - The total weight is at most W .
 - The total value of the items is as large as possible.

We cannot take parts of items, we take the whole item or nothing. (This is why it is called 0-1.)

We have n items.

- v_i denotes the value of the i-th item
- w_i denotes the weight of the i-th item
- You are given a knapsack capable of holding total weight W.

Goal: Use the knapsack to carry items, such that the total value is maximum.

- We want to find a subset of items to carry such that
 - The total weight is at most W .
 - The total value of the items is as large as possible.

We cannot take parts of items, we take the whole item or nothing. (This is why it is called 0-1.)

Question

How should we select the items?

Definition Given W > 0,

Definition

Given W > 0, and two *n*-tuples of positive numbers $\langle v_1, v_2, \dots, v_n \rangle$ and $\langle w_1, w_2, \dots, w_n \rangle$,

Definition

```
Given W > 0, and two n-tuples of positive numbers \langle v_1, v_2, \ldots, v_n \rangle and \langle w_1, w_2, \ldots, w_n \rangle, we wish to determine the subset T \subseteq \{1, 2, \ldots, n\} (of items to carry)
```

Definition

```
Given W > 0, and two n-tuples of positive numbers \langle v_1, v_2, \ldots, v_n \rangle and \langle w_1, w_2, \ldots, w_n \rangle, we wish to determine the subset T \subseteq \{1, 2, \ldots, n\} (of items to carry) that
```

maximizes

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$

subject to

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i$

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \leq W$.

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \leq W$.

Remark: This is an optimization problem.

Definition

Given W > 0, and two n-tuples of positive numbers $\langle v_1, v_2, \ldots, v_n \rangle$ and $\langle w_1, w_2, \ldots, w_n \rangle$, we wish to determine the subset $T \subseteq \{1, 2, \ldots, n\}$ (of items to carry) that

maximizes
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \leq W$.

Remark: This is an optimization problem. The brute force solution is to try all 2ⁿ possible subsets T.

Outline

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

Simple Recursion

Let V [i, w] denote the maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Let V [i, w] denote the maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

We can either leave the i-th item or take it. If we take it, we gain value v_i , but only $w - w_i$ space remains. Therefore:

Let V [i, w] denote the maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

We can either leave the i-th item or take it. If we take it, we gain value v_i , but only $w - w_i$ space remains. Therefore:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

KnapsackSR(i,w)

Input: Candidate item set $\{1, 2, ..., i\}$, allowed maximum weight of items w.

Output: Maximum value of any subset of items $\{1, 2, ..., i\}$ of weight at most w.

-

```
Input: Candidate item set \{1, 2, ..., i\}, allowed maximum weight of items
        \boldsymbol{w}.
Output: Maximum value of any subset of items \{1, 2, ..., i\} of weight at
          most w.
if W < 0 then
   return -\infty;
end
```

```
Input: Candidate item set \{1, 2, ..., i\}, allowed maximum weight of items w.

Output: Maximum value of any subset of items \{1, 2, ..., i\} of weight at most w.

if W < 0 then

| \text{ return } -\infty;
end

if i is equal to 0 then

| \text{ return } 0;
end
```

```
Input: Candidate item set \{1, 2, ..., i\}, allowed maximum weight of items
         \boldsymbol{w}.
Output: Maximum value of any subset of items \{1, 2, ..., i\} of weight at
           most w.
if W < 0 then
   return -\infty;
end
if i is equal to 0 then
   return 0;
end
V_1 \leftarrow \text{KnapsackSR}(i-1, w);
```

```
Input: Candidate item set \{1, 2, ..., i\}, allowed maximum weight of items
         \boldsymbol{w}.
Output: Maximum value of any subset of items \{1, 2, ..., i\} of weight at
           most w.
if W < 0 then
   return -\infty;
end
if i is equal to 0 then
   return 0;
end
V_1 \leftarrow \text{KnapsackSR}(i-1, w);
V_2 \leftarrow \text{KnapsackSR}(i-1, w-w_i);
```

```
Input: Candidate item set \{1, 2, ..., i\}, allowed maximum weight of items
         \boldsymbol{w}.
Output: Maximum value of any subset of items \{1, 2, ..., i\} of weight at
           most w.
if W < 0 then
   return -\infty;
end
if i is equal to 0 then
   return 0;
end
V_1 \leftarrow \text{KnapsackSR}(i-1, w);
V_2 \leftarrow \text{KnapsackSR}(i-1, w-w_i);
return max\{V_1, v_i + V_2\};
```

Consider the simple case w[i] = 1 for all i.

- Consider the simple case w[i] = 1 for all i.
- Function calls:

- Consider the simple case w[i] = 1 for all i.
- Function calls:
 - Entry Level: V (n, W)

- Consider the simple case w[i] = 1 for all i.
- Function calls:
 - Entry Level: V (n, W)
 - Level 1:V(n-1, W), V(n-1, W-1)

- Consider the simple case w[i] = 1 for all i.
- Function calls:
 - Entry Level: V (n, W)
 - Level 1:V(n-1, W), V(n-1, W-1)
 - Level 2:V(n-2, W), V(n-2, W-1); V(n-2, W-1), V(n-2, W-2)

- Consider the simple case w[i] = 1 for all i.
- Function calls:
 - Entry Level: V (n, W)
 - Level 1:V(n-1, W), V(n-1, W-1)
 - Level 2:V(n-2, W), V(n-2, W-1); V(n-2, W-1), V(n-2, W-2)
 - ...
- Running time: At least Ω(2^W)!

- Consider the simple case w[i] = 1 for all i.
- Function calls:
 - Entry Level: V (n, W)
 - Level 1:V(n-1, W), V(n-1, W-1)
 - Level 2:V(n-2, W), V(n-2, W-1); V(n-2, W-1),V(n-2, W-2)
 - ...
- Running time: At least Ω(2^W)!
- Why? We invoke the same function call too many times!

Outline

Introduction to Part II

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

Step 1: Space of Subproblems (State)

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, \dots, i\}, \sum_{j \in T} w_j \le w\}$$

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is:

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is: find V[n, W]

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is: find V[n, W]

Terms:

• T is a solution for [i, w] if $T \subseteq \{1,2,...,i\}$ and $\sum_{j \in T} w_j \leq w$

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is: find V[n, W]

Terms:

- T is a solution for [i, w] if $T \subseteq \{1,2,...,i\}$ and $\sum_{j \in T} w_j \le w$
- T is an optimal solution for [i, w] if

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is: find V[n, W]

Terms:

- T is a solution for [i, w] if $T \subseteq \{1,2,...,i\}$ and $\sum_{j \in T} w_j \leq w$
- T is an optimal solution for [i, w] if T is a solution and

Step 1: Space of Subproblems (State)

• For $1 \le i \le n$, and $0 \le w \le W$, define

$$V[i, w] = \max\{\sum_{j \in T} v_j : T \subseteq \{1, 2, ..., i\}, \sum_{j \in T} w_j \le w\}$$

The maximum (combined) value of any subset of items {1,2,...,i} of (combined) weight at most w.

Note that our problem is: find V[n, W]

Terms:

- T is a solution for [i, w] if $T \subseteq \{1,2,...,i\}$ and $\sum_{j \in T} w_j \leq w$
- T is an optimal solution for [i, w] if T is a solution and $\sum_{i \in T} v_i = V[i, w]$.

Step 2: Relating a problem to its subproblems

Step 2: Relating a problem to its subproblems

$$V[i, w] =$$

Step 2: Relating a problem to its subproblems

$$V[i, w] =$$

$$v_i + V[i-1, w-w_i]$$

Step 2: Relating a problem to its subproblems

$$V[i, w] = V[i-1, w], v_i + V[i-1, w-w_i]$$

Step 2: Relating a problem to its subproblems

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

Step 2: Relating a problem to its subproblems

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n, 0 \le w \le W$.

Step 2: Relating a problem to its subproblems

Recursion:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

 Optimal structure: optimal solution for problem contains optimal solutions to subproblems. (Indication that DP might apply)

Step 2: Relating a problem to its subproblems

Recursion:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

- Optimal structure: optimal solution for problem contains optimal solutions to subproblems. (Indication that DP might apply)
- The recursion is why we chose the problem space $\{V[i, w]: 1 \le i \le n; 0 \le w \le W\}$ at the first place.

Step 2: Relating a problem to its subproblems

Recursion:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

- Optimal structure: optimal solution for problem contains optimal solutions to subproblems. (Indication that DP might apply)
- The recursion is why we chose the problem space $\{V[i, w]: 1 \le i \le n; 0 \le w \le W\}$ at the first place.

Boundary cases:

Step 2: Relating a problem to its subproblems

Recursion:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

- Optimal structure: optimal solution for problem contains optimal solutions to subproblems. (Indication that DP might apply)
- The recursion is why we chose the problem space $\{V[i, w]: 1 \le i \le n; 0 \le w \le W\}$ at the first place.

Boundary cases:

Set

$$V[0, w] = 0$$
 for $0 \le w \le W$, no item

Step 2: Relating a problem to its subproblems

Recursion:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

for $1 \le i \le n$, $0 \le w \le W$.

- Optimal structure: optimal solution for problem contains optimal solutions to subproblems. (Indication that DP might apply)
- The recursion is why we chose the problem space $\{V[i, w]: 1 \le i \le n; 0 \le w \le W\}$ at the first place.

Boundary cases:

Set

$$V [0, w] = 0 \text{ for } 0 \le w \le W$$
, no item
 $V [i, w] = -\infty \text{ for } w < 0$, illegal

Step 3: Bottom-up computation of V [i, w]

Recurrence:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

Step 3: Bottom-up computation of V [i, w]

Recurrence:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

We compute and save $V[i, w](0 \le i \le n, 0 \le w \le W)$ in such an order that:

Step 3: Bottom-up computation of V [i, w]

Recurrence:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

We compute and save $V[i, w](0 \le i \le n, 0 \le w \le W)$ in such an order that: When it is time to compute V[i, w], the values of V[i - 1, w] and $V[i - 1, w - w_i]$ are available.

Step 3: Bottom-up computation of V [i, w]

Recurrence:

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

We compute and save $V[i, w](0 \le i \le n, 0 \le w \le W)$ in such an order that: When it is time to compute V[i, w], the values of V[i - 1, w] and $V[i - 1, w - w_i]$ are available.

So, we fill the following table row by row and left to right.

V[i,w]	w=0	1	2	3	 	W	
i= 0	0	0	0	0	 	0	bottom
1						>	
2						>	
:						>	
n						>	↓

i	1	2	3	4	
v_i	10	40	30	50	
$\overline{w_i}$	5	4	6	3	W=10

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0

	i		1	2		3		4		
	v	i	10	40		30		50		
	w	i	5	4		6		3		W=10
V[i w] 0	1	2	3	1	5	6	7	R	9	10

V[i, w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

Intialization

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i		5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	_0_	0	0	0	0	0	0
1					l 					
	w[i]>w									

	i		1	2		3		4		
	v_i	i	10	40		30		50		
	w	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

0

1 0

$$V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])$$

	<i>l</i>		1			3		4		
	v_i	i	10	40		30		50		
	W	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10					

=10
0

	i	,	1	2		3		4		
	v_{i}	i	10	40		30		50		
	W	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	, 0	0	0
1 0	0	0	0	0	10	10	10			

	i		1	2		3		4		
	v_i	i	10	4	0	30		50		
	w	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10		

	<u> </u>	1			2		3		4		
	v_i	_i 1	0		40		30		50		
	W	_i 5)		4		6		3		W=10
V[i,w] 0	1	2	3	4		5	6	7	8	9	10
i = 0 0	0	0	0	C		0	0	0	0	0	0
1 0	0	0	0	C		10	10	10	10	10	

	i		1	2		3	4	4		
	v_i	i	10	40		30	;	50		
	W	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10

	i	•	1	2		3	4	4		
	v	i	10	40		30		50		
	w	i !	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0							

	i		1	2	_	3		4		
	v_i		10	40		30		50		
	w_i	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0_	10	10	10	10	10	10
2 0	0	0	0	40						

	i		1	2	_	3		4		
	v_i	į.	10	40		30		50		
	\boldsymbol{w}_i	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0_	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40					

		1	2		3		4		
v	i	10	40	Ţ	30		50		
w	'i	5	4		6		3		W=10
V[i,w] 0 1	2	3	4	5	6	7	8	9	10
i = 0 0 0	0	0	0	0	0	0	0	0	0
1 0 0	0	0	0	10	10	10	10	10	10
2 0 0	0	0	40	40	40				

	i	•	1	2		3	1	4		
	v_i		10	40	Ţ	30		50		
	W_i	; !	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40		

	i	1		2		3	4	4		
	v_i	. 1	10	40		30	Į!	50		
	w_i	i 5	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	

	i	1	2	3	4
	v_i	10	40	30	50
-	w_i	5	4	6	3

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10] 10	10	10	10
2 0		0					40			

	i		1	2		3		4		
	v_i	Į.	10	40		30		50		
	W	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40					

	i		1	2		3	1	4		
	v_i	į.	10	40		30		50		
	\boldsymbol{w}_i	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40					
					V[i]	+V[i]	$\overline{-1,j}$	$-\overline{w[i]}$	< V[[i-1,j]

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i		5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	•			

	i		1	2		3		4		
	v_i		10	40		30	,	50		
	W_i		5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40			

	i		1	2		3		4		
	v_i	i	10	40		30		50		
	w	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10_	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40		

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	

	i		1	2		3		4		
	v_i	i	10	40		30		50		
	w	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10_
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70

		i		1	2		3		4		
		v_i	!	10	40		30		50		
		w_i	i	5	4		6		3		W=10
V[i, w]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0								

	i		1	2		3	4	4		
	v_i		10	40		30	!	50		
	w_i		5	4		6	;	3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 ₁ 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50							

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i		5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0_	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50						

	i	1		2		3	4	4		
	v	i 1	0	40		30	į	50		
	w	<i>i</i> 5	,)	4		6	(3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0_	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50					

	i		1	2		3	ı	4		
	v_i	i	10	40		30		50		
	W	i	5	4		6		3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0_	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50				

	i		1	2		3	4	4		
	v_i	i	10	40		30	ļ	50		
	w	i	5	4		6	(3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40_	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50	90			

	i		1	2		3	,	4		
	v_i	ļ	10	40		30		50		
	W	i	5	4		6	;	3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50	90	90		

	i		1	2		3		4		
	\boldsymbol{v}_i	i	10	40		30		50		
	W	i	5	4		6	;	3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50	90	90	90	

	i		1	2		3	4	4		
	v_i	ļ.	10	40		30	ļ	50		
	w	i	5	4		6	(3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50	90	90	90	90

3

2

	\boldsymbol{v}	i 1	0	40		30		00		
	W	<i>i</i> 5	5	4		6	;	3		W=10
V[i,w] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40	50	70
4 0	0	0	50	50	50	50	90	90	90	90

Max value = 90

Knapsack(v,w,n,W)

Input: \boldsymbol{v} and \boldsymbol{w} are values and weights of \boldsymbol{n} items, \boldsymbol{W} is the allowed maximum weight of items.

Output: Maximum value of any subset of items $\{1, 2, ..., n\}$ of weight at most W.

Knapsack(v,w,n,W)

Input: \boldsymbol{v} and \boldsymbol{w} are values and weights of \boldsymbol{n} items, \boldsymbol{W} is the allowed maximum weight of items.

Output: Maximum value of any subset of items $\{1, 2, ..., n\}$ of weight at most W.

Let V[0..n, 0..W] be a new 2-dimension array;

Knapsack(v,w,n,W)

```
Input: \boldsymbol{v} and \boldsymbol{w} are values and weights of \boldsymbol{n} items, \boldsymbol{W} is the allowed maximum weight of items.
```

Output: Maximum value of any subset of items $\{1, 2, ..., n\}$ of weight at most W.

```
Let V[0..n, 0..W] be a new 2-dimension array;
```

for $i \leftarrow 0$ to W do $\mid V[0,i] \leftarrow 0$; end

Knapsack(v,w,n,W)

```
Input: \boldsymbol{v} and \boldsymbol{w} are values and weights of \boldsymbol{n} items, \boldsymbol{W} is the allowed
        maximum weight of items.
Output: Maximum value of any subset of items \{1, 2, ..., n\} of weight at
          most W.
Let V[0..n, 0..W] be a new 2-dimension array;
for w = 0 to W do
    V[0, w] = 0
end
for i = 1 to n do
    for w = 0 to W do
        if w[i] \leq w then
             V[i, w] = \max\{V[i-1, w], v[i] + V[i-1, w-w[i]]\}
        else
             V[i, w] = V[i - 1, w]
        end
    end
end
return V[n, W]
```

 The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.

- The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.
- To compute the actual subset, we can

- The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.
- To compute the actual subset, we can add an auxiliary boolean array keep[i, w]

- The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.
- To compute the actual subset, we can add an auxiliary boolean array keep[i, w] which is
 - 1 if we choose item i in V [i, w] and

- The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.
- To compute the actual subset, we can add an auxiliary boolean array keep[i, w] which is
 - 1 if we choose item i in V [i, w] and
 - 0 otherwise.

- The algorithm for computing V [i, w] described in the previous slide does not record which subset of items gives the optimal solution.
- To compute the actual subset, we can add an auxiliary boolean array keep[i, w] which is
 - 1 if we choose item i in V [i, w] and
 - 0 otherwise.

Question

How do we use all the values keep[i, w] to determine the subset T of items having the maximum value?

If keep[n, W] is 1, then $n \in T$.

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 1, then $n \in T$. We can now repeat this argument for keep[n-1, W-w_n].

If keep[n, W] is 0, then $n \notin T$.

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

getResult(W,V)

Input: Allowed maximum weight \boldsymbol{W} , intermediate array from Knapsack \boldsymbol{V}

Output: Maximum value of any subset of items $\{1, 2, ..., n\}$ of weight at most W.

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

getResult(W,V)

Input: Allowed maximum weight \boldsymbol{W} , intermediate array from Knapsack \boldsymbol{V}

Output: Maximum value of any subset of items $\{1, 2, ..., n\}$ of weight at most W.

 $K \leftarrow W$;

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

getResult(W,V)

```
Input: Allowed maximum weight W, intermediate array from Knapsack V

Output: Maximum value of any subset of items \{1, 2, ..., n\} of weight at most W.

K \leftarrow W;

for i \leftarrow n \ to \ 1 \ do

if keep[i, K] is equal to 1 then
```

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

getResult(W,V)

```
Input: Allowed maximum weight W, intermediate array from Knapsack V

Output: Maximum value of any subset of items \{1, 2, ..., n\} of weight at most W.

K \leftarrow W;

for i \leftarrow n \ to \ 1 \ do

| if keep[i, K] is equal to 1 then

| Output i;

| K \leftarrow
```

If keep[n, W] is 1, then $n \in T$.

We can now repeat this argument for keep $[n-1, W-w_n]$.

If keep[n, W] is 0, then $n \notin T$.

We repeat the argument for keep[n-1, W].

 Therefore, the following partial program will output the elements of T:

getResult(W,V)

```
Input: Allowed maximum weight W, intermediate array from Knapsack V

Output: Maximum value of any subset of items \{1, 2, ..., n\} of weight at most W.

K \leftarrow W;

for i \leftarrow n \ to \ 1 do

| if keep[i, K] is equal to \ 1 then

| Output i;
| K \leftarrow K - w[i];
| end

end
```

The Complete Algorithm for the Knapsack Problem

The Complete Algorithm for the Knapsack Problem

```
Let V[0..n, 0..W] and keep[0..n, 0..W] be two new 2-dimension arrays;
for w = 0 to W do V[0, w] = 0;
for i = 1 to n do
    for w = 0 to W do
        if (w[i] \le w) and (v[i] + V[i-1, w-w[i]] > V[i-1, w]) then
             V[i, w] = v[i] + V[i - 1, w - w[i]];
            \text{keep}[i, w] = 1;
        else
            V[i,w] = V[i-1,w];
            \text{keep}[i, w] = 0;
        end
    end
end
K = W:
for i = n downto 1 do
    if keep[i, K] == 1 then
        output i;
        K = K - w[i]:
    end
end
return V[n, W]
```

i	1	2	3	4	
v_i	10	40	30	50	
$\overline{w_i}$	5	4	6	3	W=10

	i		1	2		3		4		
	v_i	i	10	40		30		50		
	w	i	5	4		6		3	_	W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10

keep 0	1	2	3	4	5	6	7	8	9	10

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0 1 2 3 4 5 6 7 8 9 10

i = 0

keep 0 1 2 3 4 5 6 7 8 9 10

_	i	1	2	3	4	
	v_i	10	40	30	50	
	w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

keep 0	1	2	3	4	5	6	7	8	9	10

i	1	2	3	4	
v_i	10	40	30	50	
W_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

Intialization

keep 0 1 2 3 4 5 6 7 8 9 10	keep u	1	2	3	4	5	6	7	8	9	10
-----------------------------	--------	---	---	---	---	---	---	---	---	---	----

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0

keep 0	1	2	3	4	5	6	7	8	9	10
1										

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i		5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	_0	0	_ 0	_0_	0	0	0	0	0	0
1					! 					
						V	v[i]>j			
keep 0	1	2	3	4	5	6	7	8	9	10
i = 1										

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0						

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0						

		i		I	2		3		4		
		v_i		10	40		30		50		
		w_i	5	5	V[i]		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	V[i	-1,j	0	0	0
1	0	V[i -	- 1, <i>j</i> -	-w[i]	0	<u>′</u>		- , ,			
								_			
					V[i]	+V[i-	- 1, <i>j</i> —	w[i]	> V[i -	- 1, j]	
keep		1	2	3	4	5	6		8	9	10
kaan		1		2		E		7	0		

i = 1 0

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6 7	8	9	10
i = 0 0	0	0	0	0	0	0 0	0	0	0
1 0	0	0	0	0	10				

keep 0	1	2	3	4	5	6	7	8	9	10
$\mathbf{i} = 1 0$	0	0	0	0	1					

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10				

keep 0	1	2	3	4	5	6	7	8	9	10
$\mathbf{i} = 1 0$	0	0	0	0	1	1				

	i		1		2		3		4		
	v_i		10	l ,	40		30		50		
	w_i	Ī	5		4		6		3		W=10
V[; ;] 0	1	2	2		1	5	6	7		0	10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10			

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1			

	i	1	2	3	4	
	v_i	10	40	30	50	
	w_i	5	4	6	3	W=10
**************************************	4 0		4 F		7 0	0 40

V[i,j] 0										
i = 0 0	0	0	0	0	0	0	0	0	0	0
	_	_	_	_	10					

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1		

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
					10					

keep 0	1	2	3	4	5	6	7	8	9	10
$\mathbf{i} = 1 0$	0	0	0	0	1	1	1	1	1	

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0										
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0										

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1

	i		1	2	3		4		
	v_i	į	10	40	30		50		
	W	i	5	4	6		3	_	W=10
W[: :] 0	1		2	1	 6	7	0		10

V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0							

keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0							

	i		1	2	_	3		4		
	v_i	i	10	40	I	30		50		
	w	i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40						

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1						

	i		1	2	_	3		4		_
	\boldsymbol{v}	i	10	40	Ī	30		50		
	w	i	5	4		6	;	3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1					

	į	į ·	1	2	_	3		4		
	v	i '	10	40	I	30		50		
	w	'i !	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40				

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1	1				

	i		1	2	_	3		4		
	v_i	i	10	40		30		50		
	W	i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0_	0	10	10	10	10	10	10

2 0

i = 1 0 0 0 0 1 1 1 1		9	8	7	6	5	4	3	2	1	keep 0
	1	1	1	1	1	1	0	0	0	0	1 = 1 0
2 0 0 0 0 1 1 1 1				1	1	1	1	0	0	0	2 0

		i		1	2	_	3		4		
		v_i	i	10	40	I	30		50		
		W	i	5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40		

keep 0	1	2	3	4	5	6	7	8	9	10
$\mathbf{i} = 1 0$	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1	1	1	1		

	i		1	2	_	3		4		
	v	i	10	40	ı	30		50		
	w	'i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0					0					
1 0	0	0	0	0	10	10	10	10	10	10
2 0					40			40		

keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	

i	1	2	3	4
v_i	10	40	30	50
w_i	5	4	6	3

V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0			0			40				

			3	4	5	6	/	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1	1	1	1	1	1

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3										

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1	1	1	1	1	1
3										

i	1	2	3	4	
v_i	10	40	30	50	
w_i	5	4	6	3	W=10

V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40					

keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0					

		i		1	2		3		4		
		v_i		10	40		30	 	50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40					
						V[i]	+V[i]	– 1, <i>j</i>	-w[i]	< V[[i-1,j]
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0					

	i		1	2		3		4		
	v_i		10	40		30		50		
	w_i	i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40				

keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0				

	i		1	2		3		4		
	v_i		10	40		30	,	50		
	w_i	i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40			

keep 0	1	2	3	4	5	6	7	8	9	10
i = 1 0	0	0	0	0	1	1	1	1	1	1
2 0	0	0	0	1	1	1	1	1	1	1
3 0	0	0	0	0	0	0	0			

	ι		1			3		4		
	v_i		10	40		30		50		
	\boldsymbol{w}_i	i	5	4		6		3		W=10
V[i,j] 0	1	2	3	4	5	6	7	8	9	10
i = 0 0	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	10	10	10	10_	10	10
2 0	0	0	0	40	40	40	40	40	50	50
3 0	0	0	0	40	40	40	40	40		

keep (0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2 (0	0	0	0	1	1	1	1	1	1	1
3 (0	0	0	0	0	0	0	0	0		

		i		1	2		3		4		
		v_i		10	40	i	30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0_	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	
		4			4						40
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1

		i		1	2	1	3		4		
		v_i		10	4	.0	30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10_
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	\cap	0	Ω	Λ	1	1	1	1	1	1	1

		i		1	2		3	4	4		
		v_i	į.	10	40		30		50		
		\boldsymbol{w}_i	i	5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4											
					4						
keep	<u> </u>	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4											

		i		1	2		3		4		
		v_i		10	40		30		50		
		W_i	į.	5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0								
							•	7			
keep	<u> </u>	<u> 1</u>	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0								

		i		1	2		3	4	4		
		v_i		10	40		30		50		
		w_i		5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0_	40	40	40	40	40	50	70
4	0	0	0	50							
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1							

		i		1	2		3	4	4		
		v_i		10	40		30	ļ	50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0_	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	4 0	40	40	40	50	70
4	0	0	0	50	50						
		_			_						
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1						

		i	,	1	2		3	4	4		
		v_i		10	40		30	ļ	50		
		w_i		5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0_	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50					
					_						
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1					

		i		1	2		3	4	4		
		v_i		10	40		30	į	50		
		w_i		5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0_	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50				
	_		_	_	_						
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1				

		i		1	2		3	4	4		
		v_i		10	40		30	ļ	50		
		w_i		5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40_	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90			
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1			

		i		1	2		3		4		
		v_i		10	40)	30	Į.	50		
		w_i		5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40_	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90		
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1		

		i		1	2		3	4	4		
		v_i		10	40		30	ļ	50		
		w_i	į	5	4		6	(3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	

		i		1	2		3	4			
		v_i		10	40		30	5	0		
		w_i		5	4		6	3			W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
	_		_	_	_		_			_	
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
7									Ma	x valu	e = 90
keep	0	1	2	3	4	5	6	7	IVIG	X Vara	C - 30
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
1					4			7			40
keep	<u> </u>	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	<u>i</u> 1

W=10 Item set = {}

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
kaan		1	2	3	4	5	6	7	8	9	10
keep								_			
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1_
4	0	0	0	1	1	1	1	1	1	1	1 1

W=7 Item set = {4,}

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

W=7 Item set = $\{4,\}$

		i		1	2		3		4		
		v_i		10	40		30	;	50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	<u> </u>	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

W=7 Item set = $\{4,\}$

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1_	<u></u> 1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

W=3 Item set = {4,2}

		i		1	2		3		4		
		v_i		10	40		30		50		
		w_i		5	4		6		3		W=10
V[i,j]	0	1	2	3	4	5	6	7	8	9	10
i = 0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90
keep	0	1	2	3	4	5	6	7	8	9	10
i = 1	0	0	0	0_	0	1	1	1	1	1	1
2	0	0	0	0	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	0	0	0	1
4	0	0	0	1	1	1	1	1	1	1	1

W=3 Item set = $\{4,2\}$

Outline

Introduction to Part II

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

Dynamic Programming vs. Simple Recursion

- Dynamic programming saves us from having to recompute
- previously calculated subsolutions!
- The DP algorithm runs in O() time.

Dynamic Programming vs. Simple Recursion

- Dynamic programming saves us from having to recompute
- Previously calculated subsolutions!
- The DP algorithm runs in O(nW) time.

Dynamic Programming vs. Simple Recursion

- Dynamic programming saves us from having to recompute
- Previously calculated subsolutions!
- The DP algorithm runs in O(nW) time.
- The simple recursion algorithm runs in $\Omega(2^n)$ time.

How to develop a dynamic programming?

How to develop a dynamic programming? Four steps

 Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems
- Bottom-up computation:
 - Compute the optimal values of the smallest subproblems first, save them in the table,

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems
- Bottom-up computation:
 - Compute the optimal values of the smallest subproblems first, save them in the table,
 - Then compute optimal values of larger subproblems, and so on, until the optimal value of the original problem is computed.

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems
- Bottom-up computation:
 - Compute the optimal values of the smallest subproblems first, save them in the table,
 - Then compute optimal values of larger subproblems, and so on, until the optimal value of the original problem is computed.
- Construction of optimal solution: Assemble optimal solution by tracing the computation at the previous step.

How to develop a dynamic programming? Four steps

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems
- Bottom-up computation:
 - Compute the optimal values of the smallest subproblems first, save them in the table,
 - Then compute optimal values of larger subproblems, and so on, until the optimal value of the original problem is computed.
- Construction of optimal solution: Assemble optimal solution by tracing the computation at the previous step.

Notes:

Steps 1 and 2 are related.

How to develop a dynamic programming? Four steps

- Structure: Analyze structure of an optimal solution, and thereby choose a space of subproblems (states).
- Recursion: Establish relationship between the optimal value the problem and those of some subproblems
- Bottom-up computation:
 - Compute the optimal values of the smallest subproblems first, save them in the table,
 - Then compute optimal values of larger subproblems, and so on, until the optimal value of the original problem is computed.
- Construction of optimal solution: Assemble optimal solution by tracing the computation at the previous step.

Notes:

- Steps 1 and 2 are related.
- Step 4 is not always necessary: we sometimes need only the optimal value.

- Commonalities:
 - Partition the problem into particular subproblems.

- Commonalities:
 - Partition the problem into particular subproblems.
 - Solve the subproblems.

- Commonalities:
 - Partition the problem into particular subproblems.
 - Solve the subproblems.
 - Combine the solutions to solve the original one.

- Commonalities:
 - Partition the problem into particular subproblems.
 - Solve the subproblems.
 - Combine the solutions to solve the original one.
- Differences:
 - DC:
 - Efficient when the subproblems are independent.

- Commonalities:
 - Partition the problem into particular subproblems.
 - Solve the subproblems.
 - Combine the solutions to solve the original one.
- Differences:
 - DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.

Dynamic programming (DP) vs Divide-and-Conquer (DC)

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

Differences:

- DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.
 - Some subproblems might be solved many times.

Dynamic programming (DP) vs Divide-and-Conquer (DC)

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

• Differences:

- DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.
 - Some subproblems might be solved many times.
- DP:
 - Suitable when subproblems share subsubproblems.

Dynamic programming (DP) vs Divide-and-Conquer (DC)

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

• Differences:

- DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.
 - Some subproblems might be solved many times.

DP:

- Suitable when subproblems share subsubproblems.
- Do each subproblem only once.

Dynamic programming (DP) vs Divide-and-Conquer (DC)

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

Differences:

- DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.
 - Some subproblems might be solved many times.

DP:

- Suitable when subproblems share subsubproblems.
- Do each subproblem only once.
- The result is stored in a table in case it is needed elsewhere.
- DP trades space for

Dynamic programming (DP) vs Divide-and-Conquer (DC)

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

Differences:

- DC:
 - Efficient when the subproblems are independent.
 - Not efficient when subproblems share subsubproblems.
 - Some subproblems might be solved many times.

DP:

- Suitable when subproblems share subsubproblems.
- Do each subproblem only once.
- The result is stored in a table in case it is needed elsewhere.
- DP trades space for time.

Outline

Introduction to Part II

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

• Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1 = 1$, $p_2 = 5$, $p_3 = 8$, $p_4 = 9$

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1 = 1$, $p_2 = 5$, $p_3 = 8$, $p_4 = 9$
 - If we do not cut the rod, we can earn $p_4 = 9$

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1 = 1$, $p_2 = 5$, $p_3 = 8$, $p_4 = 9$
 - If we do not cut the rod, we can earn $p_4 = 9$
 - If we cut it into 4 pieces of length 1 each, we can earn $4 \cdot p_1 = 4$

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1=1$, $p_2=5$, $p_3=8$, $p_4=9$
 - If we do not cut the rod, we can earn $p_4 = 9$
 - If we cut it into 4 pieces of length 1 each, we can earn $4 \cdot p_1 = 4$
 - If we cut it into 2 pieces of length 2 each, we can earn $2 \cdot p_2 = 10$

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1=1$, $p_2=5$, $p_3=8$, $p_4=9$
 - If we do not cut the rod, we can earn $p_4 = 9$
 - If we cut it into 4 pieces of length 1 each, we can earn $4 \cdot p_1 = 4$
 - If we cut it into 2 pieces of length 2 each, we can earn $2 \cdot p_2 = 10$
 - There are more options, but the maximum revenue is 10

Rod Cutting

- Input: We are given a rod of length n and a table of prices p_i for i = 1,..., n, where p_i is the price of a rod of length i
- Goal: to determine the maximum revenue r_n, obtainable by cutting up the rod and selling the pieces
- Example: Consider n = 4 and $p_1 = 1$, $p_2 = 5$, $p_3 = 8$, $p_4 = 9$
 - If we do not cut the rod, we can earn $p_4 = 9$
 - If we cut it into 4 pieces of length 1 each, we can earn $4 \cdot p_1 = 4$
 - If we cut it into 2 pieces of length 2 each, we can earn $2 \cdot p_2 = 10$
 - There are more options, but the maximum revenue is 10
- In general, we can cut the rod of length n in 2^{n-1} different ways, since we have an independent option of cutting, or not cutting, at distance i $(1 \le i \le n 1)$ from the left end

Outline

Introduction to Part II

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

 We can define the maximum revenue r_n in terms of optimal revenues for shorter rods

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

p_n if we do not cut at all

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- p_n if we do not cut at all
- $r_1 + r_{n-1}$ if we take the sum of optimal revenues for 1 and n-1

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- p_n if we do not cut at all
- $r_1 + r_{n-1}$ if we take the sum of optimal revenues for 1 and n-1
- $r_2 + r_{n-2}$ if we take the sum of optimal revenues for 2 and n-2
- . . .

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- p_n if we do not cut at all
- $r_1 + r_{n-1}$ if we take the sum of optimal revenues for 1 and n-1
- $r_2 + r_{n-2}$ if we take the sum of optimal revenues for 2 and n-2
- . . .
- Simpler definition

$$\mathbf{r}_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

 We can define the maximum revenue r_n in terms of optimal revenues for shorter rods

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- p_n if we do not cut at all
- $r_1 + r_{n-1}$ if we take the sum of optimal revenues for 1 and n-1
- $r_2 + r_{n-2}$ if we take the sum of optimal revenues for 2 and n-2
- . . .
- Simpler definition

$$\mathbf{r}_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

We cut a piece of length i, and a remainder of length n- i

$$\mathbf{r}_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- p_n if we do not cut at all
- $r_1 + r_{n-1}$ if we take the sum of optimal revenues for 1 and n-1
- $r_2 + r_{n-2}$ if we take the sum of optimal revenues for 2 and n-2
- . . .
- Simpler definition

$$\mathbf{r}_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

- We cut a piece of length i, and a remainder of length n- i
- Only the remainder, and not the first piece, may be further divided

 $\operatorname{Cut-Rod}(p,n)$

```
Input: Price list p, a rod of length n.

Output: Maximum revenue q.

if n is equal to 0 then

\mid return 0;

end

q \leftarrow -\infty; for i \leftarrow 1 to n do

\mid q \leftarrow \max(q, p[i] + \operatorname{Cut-Rod}(p, n - i));

end

return q;
```

 $\operatorname{Cut-Rod}(p,n)$

```
Input: Price list p, a rod of length n.

Output: Maximum revenue q.

if n is equal to 0 then

\mid return 0;

end

q \leftarrow -\infty; for i \leftarrow 1 to n do

\mid q \leftarrow \max(q, p[i] + \operatorname{Cut-Rod}(p, n - i));

end

return q;
```

Cost

$\operatorname{Cut-Rod}(p,n)$

```
Input: Price list p, a rod of length n.

Output: Maximum revenue q.

if n is equal to 0 then

| return 0;

end

q \leftarrow -\infty; for i \leftarrow 1 to n do

| q \leftarrow \max(q, p[i] + \operatorname{Cut-Rod}(p, n - i));

end

return q;
```

Cost

 T(n): the total number of calls made to Cut-Rod when called with rod length n

$\operatorname{Cut-Rod}(p,n)$

```
Input: Price list p, a rod of length n.

Output: Maximum revenue q.

if n is equal to 0 then

\mid return 0;

end

q \leftarrow -\infty; for i \leftarrow 1 to n do

\mid q \leftarrow \max(q, p[i] + \operatorname{Cut-Rod}(p, n - i));

end

return q;
```

Cost

 T(n): the total number of calls made to Cut-Rod when called with rod length n

$$T(n) = \begin{cases} 1 + \sum_{0 \le j \le n-1} T(j), & \text{if } n > 0 \\ 1, & \text{if } n = 0 \end{cases}$$

$\operatorname{Cut-Rod}(p,n)$

```
Input: Price list p, a rod of length n.

Output: Maximum revenue q.

if n is equal to 0 then

\mid return 0;

end

q \leftarrow -\infty; for i \leftarrow 1 to n do

\mid q \leftarrow \max(q, p[i] + \operatorname{Cut-Rod}(p, n - i));

end

return q;
```

Cost

 T(n): the total number of calls made to Cut-Rod when called with rod length n

$$T(n) = \begin{cases} 1 + \sum_{0 \le j \le n-1} T(j), & \text{if } n > 0 \\ 1, & \text{if } n = 0 \end{cases}$$

By induction, we have T(n)=2ⁿ

Explanation of Exponential Cost

We solve the same subproblem many times

Outline

Introduction to Part II

- 0-1 Knapsack Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm
 - Analysis of DP Algorithm
- Rod Cutting Problem
 - Problem Definition
 - A Bruteforce Algorithm
 - A Dynamic Programming Algorithm

Concept of DP

- When you solve a subproblem, store the solution
 - Next time you find the same subproblem, lookup the solution, instead
 of solving it again
 - Use space to save time

- Two main methodologies: top-down and bottom-up
 - Corresponding algorithms have the same asymptotic cost, but bottomup is usually faster in practice

- Main idea of bottom-up DP
 - We sort the subproblems in size and solve the smallest subproblem first

Bottom-Up-Cut-Rod(p,n)

```
Input: Price list p, a rod of length n.
Output: Maximum revenue q.
Let r[0..n] be a new array;// Array stores the computed optimal values.
r[0] \leftarrow 0;
for j \leftarrow 0 to n do
    // Consider problems in increasing order of size.
    q \leftarrow -\infty;
   for i \leftarrow 1 to j do
        // To solve a problem of size j, we need to consider all
       decompositions into i and j - i.
       q \leftarrow \max(q, p[i] + r[j - i]);
    end
   r[j] \leftarrow q;
end
return r[n];
```

Bottom-Up-Cut-Rod(p,n)

```
Input: Price list p, a rod of length n.
Output: Maximum revenue q.
Let r[0..n] be a new array;// Array stores the computed optimal values.
r[0] \leftarrow 0;
for j \leftarrow 0 to n do
    // Consider problems in increasing order of size.
    q \leftarrow -\infty;
   for i \leftarrow 1 to j do
        // To solve a problem of size j, we need to consider all
       decompositions into i and j - i.
       q \leftarrow \max(q, p[i] + r[j - i]);
    end
   r[j] \leftarrow q;
end
return r[n];
```

Cost: O(n²)

Bottom-Up-Cut-Rod(p,n)

```
Input: Price list p, a rod of length n.
Output: Maximum revenue q.
Let r[0..n] be a new array;// Array stores the computed optimal values.
r[0] \leftarrow 0;
for j \leftarrow 0 to n do
    // Consider problems in increasing order of size.
    q \leftarrow -\infty;
   for i \leftarrow 1 to j do
        // To solve a problem of size j, we need to consider all
       decompositions into i and j - i.
       q \leftarrow \max(q, p[i] + r[j - i]);
    end
   r[j] \leftarrow q;
end
return r[n];
```

- Cost: O(n²)
 - The outer loop computes r[1], r[2],..., r[n] in this order

Bottom-Up-Cut-Rod(p,n)

```
Input: Price list p, a rod of length n.
Output: Maximum revenue q.
Let r[0..n] be a new array;// Array stores the computed optimal values.
r[0] \leftarrow 0;
for j \leftarrow 0 to n do
    // Consider problems in increasing order of size.
    q \leftarrow -\infty;
   for i \leftarrow 1 to j do
        // To solve a problem of size j, we need to consider all
       decompositions into i and j - i.
       q \leftarrow \max(q, p[i] + r[j-i]);
   end
   r[j] \leftarrow q;
end
return r[n];
```

- Cost: O(n²)
 - The outer loop computes r[1], r[2],..., r[n] in this order
 - To compute r[j], the inner loop uses all values r[0], r[1],..., r[j 1] (i.e., r[j i] for 1 ≤ i ≤ j)

Extended Implementation

Extended-Bottom-Up-Cut-Rod(p,n)

```
Input: Price list p, a rod of length n.
Output: Maximum revenue q and sizes of pieces.
Let r[0..n] and s[0..n] be two new arrays;
r[0] \leftarrow 0;
for j \leftarrow 0 to n do
    q \leftarrow -\infty;
    for i \leftarrow 1 to j do
       // Solve problem of size j.
       if q < p[i] + r[j-i] then
        q \leftarrow p[i] + r[j-i];
         s[j] \leftarrow i; Store the size of the first piece.
        end
    end
    r[j] \leftarrow q;
end
while n>0 do
    Output s[n];
   n \leftarrow n - s[n];
end
```

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 1$$

$$i \qquad 1$$

$$p[i] + r[j - i]$$

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 1$$

$$i \quad 1$$

$$1$$

$$1$$

$$max\{p[i] + r[j - i]\}$$

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 1$$

$$i \quad 1$$

$$1$$

$$max{p[i] + r[j - i]}$$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1									
s[k]		1									

$$j = 2$$

$$\begin{array}{c|cc}
i & 1 & 2 \\
\hline
& 2 & 5 \\
\end{array}$$

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 2$$
 $i \quad 1$
 2
 $max{p[i] + r[j - i]}$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1									
s[k]		1									

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 2$$

$$i \quad 1$$

$$2 \quad b$$

$$2 \quad b$$

$$max\{p[i] + r[j - i]\}$$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5								
s[k]		1	2								

1	k	1	2	3	4	5	6	7	8	9	10
p[[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3
	6	6	8

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 3$$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5								
s[k]		1	2								

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	
	6	6	8	

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8							
s[k]	1	2	3							

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	I 10	17	17	20	24	26

j = 4

i	1	2	3	4
	9	10	9	9

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 4$$
 $i \quad 1 \quad 2 \quad 3 \quad 4$
 $9 \quad 10 \quad 9 \quad max\{p[i] + r[j - i]\}$

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8							
s[k]	1	2	3							

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 4$$
 $i \quad 1 \quad 2 \quad 3 \quad 4$
 $9 \quad 10 \quad 9 \quad max\{p[i] + r[j - i]\}$

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10						
s[k]	1	2	3	2						

n=10

_ k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5
	11	13	13	10	10

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5	8	10						
s[k]		1	2	3	2						

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 5$$
 $i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $11 \quad 13 \quad max\{p[i] + r[j - i]\}$

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10						
s[k]	1	2	3	2						

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 5$$
 $i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $11 \quad 13 \quad 15 \quad max\{p[i] + r[j - i]\}$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5	8	10	13					
s[k]		1	2	3	2	2					

n=10

_ k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6
	14	15	16	14	11	17

k 0	1	2	3	4	5 6	7	8	9	10
r[k] 0	1	5	8	10	_ 13				
s[k]	1	2	3	2	2				

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	
	14	15	16	14	11	17	

 $max\{p[i] + r[j-i]\}$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5	8	10	13					
s[k]		1	2	3	2	2					

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	
	14	15	16	14	11	17	

 $max\{p[i] + r[j-i]\}$

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5	8	10	13	17				
s[k]		1	2	3	2	2	6				

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	
	18	18	18	17	15	18	17	

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17				
s[k]	1	2	3	2	2	6				

 k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 7$$
 $i = 1$
 $i =$

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17				
s[k]	1	2	3	2	2	6				

 k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 7$$
 $i = 1$
 $2 = 3$
 $4 = 5$
 $6 = 7$
 $18 = 10$
 $max{p[i] + r[j - i]}$
 17

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18			
s[k]	1	2	3	2	2	6	1			

n = 10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8
	19	22	21	19	18	22	18	20

k 0	1	2	3	4	5	6	7 8	9	10
$r[k] \mid 0$	1	5	8	10	13	17	18		
s[k]	1	2	3	2	2	6	1		

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18			
s[k]	1	2	3	2	2	6	1			

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18	22		
s[k]	1	2	3	2	2	6	1	2		

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	ĺ
	23	23	25	22	20	25	22	21	24	

k	0	1	2	3	4	5	6	7	8	9	10
r[k]	0	1	5	8	10	13	17	18	22		
s[k]		1	2	3	2	2	6	1	2		

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 9$$

i	1	2	3	4	5	6	7	8	9
	23	23	25	$\leq m$	$ax\{v[$	[i] + r	[i-i]	}	24

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18	22		
s[k]	1	2	3	2	2	6	1	2		

 k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9
	23	23	25	24 m	$ax\{p[$	i] + r	[i-i]	}	24

k 0	1	2	3	4	5	6	7	8	9	10
r[k] = 0	1	5	8	10	13	17	18	22	25	
s[k]	1	2	3	2	2	6	1	2	3	

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k 0	1	2	3	4	5	6	7	8	9 1	0
$r[k] \mid 0$	1	5	8	10	13	17	18	22	25	
s[k]	1	2	3	2	2	6	1	2	3	

 k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 10$$

<i>i</i> 1	2	3	4	5	6	7	8	9	10
26	27	$\geq m$	$ax\{p[$	[i] + r	[j-i]	}	25	25	26

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18	22	25	
s[k]	1	2	3	2	2	6	1	2	3	

_ k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

$$j = 10$$

i 1	2	3	4	5	6	7	8	9	10
26	27	Zo m	$ax\{p[$	[i] + r	[j-i]]}	25	25	26

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18	22	25	27
s[k]	1	2	3	2	2	6	1	2	3	2

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	0	10	17	17	20	24	26

j = 10

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k 0	1	2	3	4	5	6	7	8	9	10
r[k] 0	1	5	8	10	13	17	18	22	25	27
s[k]	1	2	3	2	2	6	1	2	3	2

Max revenue = r[10] = 27

n=10

 k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k	0	1	2	3	4	5	6	7	8	9	10	1
r[k]	0	1	5	8	10	13	17	18	22	25	27	
s[k]										•		

Max revenue = r[10] = 27

Pieces of rods = $\{2,$

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	0	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k	0	1	2	3	4	5	6	7	8	1 9	10
r[k]	0	1	5	8	10	13	17	18	22	25	27
s[k]		1	2	3	2	2	6	1	2	3	2

Max revenue = r[10] = 27

Pieces of rods = $\{2, 2\}$

n=10

k	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	0	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k	0	1	2	3	4	5	6	17	8	9	10
r[k]	0	1	5	8	10	13	17	18	22	25	27
s[k]		1	2	3	2	2	6	j 1	2	3	2

Max revenue = r[10] = 27

Pieces of rods = $\{2, 2, 6\}$

n=10

\boldsymbol{k}	1	2	3	4	5	6	7	8	9	10
p[k]	1	5	8	9	10	17	17	20	24	26

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	26

k = 0										10
r[k] 0	1	5	8	10	13	17	18	22	25	27
<u>-</u>				2	2	6	1	2	3	2

Max revenue = r[10] = 27

Pieces of rods = $\{2, 2, 6\}$

dank u Tack ju faleminderit Asante ipi Tak mulţumesc

Salamat! Gracias
Terima kasih Aliquam

Merci Dankie Obrigado
köszönöm Grazie

Aliquam Go raibh maith agat
děkuii Thank you

gam