

合式公式语义

- 量词∀,∃解释为逻辑量词∀,∃
 - $\forall x \sigma(Q(x))$ 表示: 对于任意d, 都有 $Q^{\sigma}(x)[x/d] = 1$
 - $\exists x \, \sigma(Q(x))$ 表示: 存在d, 使得 $Q^{\sigma}(x)[x/d] = 1$
 - 取值为0的情况与之类似
- 通过指派函数,将一个合式公式的联结词符号指派 为逻辑联结词,将量词符号指派为逻辑量词,将谓 词符号指派为谓词,将函词符号指派为函数,将个 体符号指派为对象,即将合式公式逐步指派为有语 义的逻辑公式。

公式的语义

- 定义3.1.1 设 \mathbf{v} 是解释 \mathbf{I} 中的赋值,公式 \mathbf{A} 在解释 \mathbf{I} 和赋值 v 下的意义 I(A)(v) 定义如下:
 - 1. 若 A 是 P (t₁, ···, t_n), 其中 P 是 n 元谓词符号, t₁, ···, t_n 是项、则

$$I(A)(v) = P^{I}(I(t_1)(v), \dots, I(t_n)(v))$$

- 2. 若 A 是 ¬B, 其中 B 是公式,则I(A)(v) = ¬I(B)(v)。
- 3. 若 A 是 B \rightarrow C, 其中 B, C 是公式,则 $I(A)(v) = I(B)(v) \rightarrow I(C)(v)$
- 4. 若 A 是 \forall xB, 其中 B 是公式, x 是变元,则

$$I(A)(v) = \begin{cases} 1 & \text{若对于每个} \ d \in D_I, \ I(B)(v[x/d]) = 1 \\ 0 & \text{若存在} \ d \in D_I \ \text{使得} \ I(B)(v[x/d]) = 0 \end{cases}$$

被定义符号的公式的语义定理

- 定义3.1.2 设 v 是解释 I 中的赋值, A 和 B 是公式。
 - 1. $I(A \lor B)(v) = I(A)(v) \lor I(B)(v)$
 - 2. $I(A \wedge B)(v) = I(A)(v) \wedge I(B)(v)$
 - 3. $I(A \leftrightarrow B)(v) = I(A)(v) \leftrightarrow I(B)(v)$
 - 4. $I(A \oplus B)(v) = I(A)(v) \oplus I(B)(v)$

5.

$$I(\exists xA)(v) = \begin{cases} 1 & \text{若有} \ d \in D_I \ \text{使得} \ I(A)(v[x/d]) = 1 \\ 0 & \text{若对于每个} \ d \in D_I, I(A)(v[x/d]) = 0 \end{cases}$$

关键证明思路: $\exists xA = \neg \forall x \neg A$

全称和存在量词语义

■设解释 I 的论域 $D_I = \{a_1,...,a_n\}$ 是有穷集合,v 是 I 中赋值,则

- • $I(\forall xA)(v) = I(A)(v[x/a_1]) \land ... \land I(A)(v[x/a_n])$
- $\bullet \mathbf{I}(\exists \mathbf{x} \mathbf{A})(\mathbf{v}) = \mathbf{I}(\mathbf{A})(\mathbf{v}[\mathbf{x}/\mathbf{a}_1]) \vee \ldots \vee \mathbf{I}(\mathbf{A})(\mathbf{v}[\mathbf{x}/\mathbf{a}_n])$
- ■全称量词是合取的推广,存在量词是析取的推广。
- ■对于论域是有穷集合的情况, 计算公式的真值时可用这两个公式消去量词。

合式公式的语义

- 我们可以用指派函数方法证明合式公式的语义
- 例题3.1.1 判断 $\forall x Q(x) \rightarrow \exists x Q(x)$ 的真值

$$\sigma(\forall x Q(x) \to \exists x Q(x)) = \sigma(\forall x Q(x)) \to \sigma(\exists x Q(x))$$

$$= \forall x \sigma(Q(x)) \to \exists x \sigma(Q(x))$$

$$= \forall x Q^{\sigma}(x) \to \exists x Q^{\sigma}(x)$$

- $\exists x Q^{\sigma}(x) = 0, \quad \emptyset \forall x Q^{\sigma}(x) \rightarrow \exists x Q^{\sigma}(x) = 1;$
- 若 $\forall x Q^{\sigma}(x) = 1$, 则对于任意d, 都有 $Q^{\sigma}(x)[x/d] = 1$, 所以,存在d,使得 $Q^{\sigma}(x)[x/d] = 1$,即 $\exists x Q^{\sigma}(x) = 1$, 所以, $\forall x Q^{\sigma}(x) \rightarrow \exists x Q^{\sigma}(x) = 1$
- 综上, $\forall x Q^{\sigma}(x) \rightarrow \exists x Q^{\sigma}(x) = 1$, 可得 $\sigma(\forall x Q(x) \rightarrow \exists x Q(x)) = 1$

- ■设P是二元谓词符号,给定解释I如下:
- $D_I = \{a, b\}, P^I(a, a) = P^I(b, b) = 0, P^I(a, b) = P^I(b, a) = 1$
- ■确定公式 $\forall x\exists yP(x,y)$ 和 $\exists y\forall xP(x,y)$ 在赋值 v下的真值。 $I(\forall x\exists yP(x,y))(v)$
- $= I(\exists y P(x, y))(v[x/a]) \wedge I(\exists y P(x, y))(v[x/b])$
- $= (I(P(x, y))(v[x/a][y/a]) \vee I(P(x, y))(v[x/a][y/b]))$
 - $\wedge (I(P(x, y))(v[x/b][y/a]) \vee I(P(x, y))(v[x/b][y/b]))$
- = $(P^{I}(a, a) \vee P^{I}(a, b)) \wedge (P^{I}(b, a) \vee P^{I}(b, b))$
- $= (0 \lor 1) \land (1 \lor 0) = 1$

全称和存在量词语义

- 计算语句∀x∃yP(x,y) 和语句∃y∀xP(x,y) 的真值时,实际上并没有用到赋值v对变元 x 和 y 的赋值,只有自由变元的值才由赋值指定。
- 展开后可以看出, $I(\forall x \exists y P(x, y))(v) \neq I(\exists y \forall x P(x, y))(v)$ 也就是说,全称量词与存在量词不能交换顺序。事实上,对于任意解释 I 和 I 中任意赋值 v,若 $I(\exists y \forall x P(x, y))(v) = 1$,则 $I(\forall x \exists y P(x, y))(v) = 1$ 。反之不一定成立。

自由变元、基项与语句

■ 定义:

- 如果变元x在公式Q中的出现不是约束出现,则称x在Q中为自由出现。
- · 在公式Q中有自由出现的变元称为Q的自由变元,将Q中自由变元的集合记为Var(Q)。
- ・ 例如变元z在公式 $\forall x (Q(x,z) \rightarrow \exists x \exists y R(x,y))$ 中是自由出现, 变元x,y都是约束出现。
- · x有两次约束出现,表示它们是同名的两个不同变元。
 - 其中一个变元x的辖域是Q(x,z) →∃x∃yR(x,y),而另一个变元x的辖域是∃yR(x,y)。
 - 辖域是Q(x,z) →∃x∃yR(x, y)的x与辖域是∃yR(x, y)的x是同名的不同变元。

基项和语句的赋值

■ 定义2.7-1: 不出现变元的项称为基项。

■ 定义2.7-2: 没有自由变元的公式称为语句。

■ 定义2.7-3: 没有约束变元的公式称为开公式。

- 基项 t 中不出现变元,所以对于解释 I 中的任意赋值 v_1 和 v_2 , $I(t)(v_1) = I(t)(v_2)$,即基项的意义与赋值无关,将 I(t)(v) 简记为 I(t)。
- 语句 A 中没有自由变元,所以对于解释 I 中的任意赋值 v_1 和 v_2 , $I(A)(v_1) = I(A)(v_2)$,即语句的意义与赋值 无关,将 I(A)(v) 简记为 I(A)。

公式代入语义

- **定理3.1.2** 设Q是合式公式,t是项,σ是指派函数,若对于公式Q中的x是可代入的,则 $\sigma(Q[x/t]) = \sigma(Q[x/\sigma(t)])$
- 代入与可代入:考虑z是公式 $\forall y \exists x Q(x, y, z)$ 的自由变元,代入 $\forall y \exists x Q(x, y, z)[z/x]$,x是项。
- ⇒ 由于公式 $\forall y \exists x Q(x, y, z)$ 中有约束变元x,因此,在公式 $\forall y \exists x Q(x, y, z)$ 中x是不可代入的。
- 》 将公式 $\forall y \exists x Q(x, y, z)$ 中不可代入的约束变元x替换为另一个未出现的变元w,即 $\forall y \exists w Q(w, y, z)$,此时, $\forall y \exists w Q(w, y, z)[z/x]$ 是可代入的。

语义与公式替换

- **定义3.1.3** 设Q是谓词合式公式, R_1 是Q的子公式,若Q中子公式 R_1 换为 R_2 ,则称 R_2 替换 R_1 ,记为 $Q[R_1/R_2]$ 。
- 例如,在公式($Q \to \exists x R(x)$) \leftrightarrow ($\exists x R(x) \to R(x)$) 中, $\exists x R(x)$ 是子公式。若 $\exists x R(x)$ 用公式 $\forall x Q(x) \land \forall x R(x)$ 替换,则有新的公式 ($Q \to \forall x Q(x) \land \forall x R(x)$) \leftrightarrow ($\forall x Q(x) \land \forall x R(x) \to R(x)$)

替换定理

- **定理3.1.3** 设 Q 是谓词合式公式, R_1 是 Q 的子公式, $R_1 \Leftrightarrow R_2$,则称 $Q \Leftrightarrow Q[R_1/R_2]$ 。
- 根据替换定理,公式中的子公式做等值替换具有保 真值性。在公式Q中,做等值替换后生成公式Q', 那么, $Q \Leftrightarrow Q'$ 。

有效式与矛盾式

- **定义3.1.4** 设Q是谓词合式公式,则对于任意指派,都有 $\sigma(Q) = 1$,则称Q为有效式,记为⊨ Q。
- 若Q是有效式,并且指派 σ 仅由联结词性质确定,则 Q也称为重言式。
- 定义3.1.5 设Q是谓词合式公式,则对于任意指派,都有 $\sigma(Q) = 0$,则称Q为矛盾式,记为 $\neq Q$ 。

永真式

- 设A是公式.
 - (1) 如果A在每个解释中为真,则称A为永真式 ,也称A为逻辑有效的公式.
 - (2) 如果A在每个解释中为假,则称A为永假式,也称A为矛盾式,不可满足式.
 - (3) 如果有解释I和I中的赋值v使I(A)(v) = 1,则称A为可满足式,并称解释I和赋值v满足A.

定义

- (1) 若对该语言的任意解释I及解释I下的任意赋值v都有I(A)(v) = 1,则称A为永真式。 也称A恒真的、逻辑有效的
- (2) 若对该语言的任意解释I及解释I下的任意赋值v都有I(A)(v) = 0,则称A为永假式。也称A为矛盾的、不可满足的
- (3) 若对该语言存在解释I及解释I下的赋值v,使 I(A)(v) = 1,则称A为可满足式。

蕴含式的永真性

■ 对给定谓词公式A,B, $A \rightarrow B$ 永真当前仅当对任意解释I及任意赋值v,都有

若
$$v^I(A) = 1 则 v^I(B) = 1$$

■ 例:
$$\forall x P(x,y) \rightarrow \forall x P(x,y)$$

 $\forall x P(x,y) \rightarrow \exists x P(x,y)$
 $\forall x Q(x,y) \rightarrow Q(x,y)$

大家发现什么规律了吗?

重言式

谓词逻辑公式永真式有两类,一类公式的永真性由 联结词的性质决定,它与量词的意义无关,这类永 真式也称为重言式,如

$$\forall x Q(x) \rightarrow (\exists x R(x) \rightarrow \forall x Q(x))$$

- 它与谓词意义无关,仅由联结词的性质决定, $Q \rightarrow (R \rightarrow Q)$ 是永真式,也是重言式;
- 另一类永真式的永真性由量词的意义决定的,如 $\forall x Q(x) \rightarrow Q(t)$,由于 $Q \rightarrow R$ 不是永真式,公式 $\forall x Q(x) \rightarrow Q(t)$ 的真值性是由谓词意义决定的,这 类永真式不是重言式。

重言式

- $\forall x P(x, y) \rightarrow \forall x P(x, y)$ 是永真式.
- 该公式的永真性是由联结词的性质决定的,与谓词和量词的意义无关. 这类永真式称为重言式.

如何判断一个公式是不是重言式?

- 把原子谓词公式P和 $\forall x$ A 统称为初等公式,把初等公式看作命题变元,不同于初等公式看作不同的命题变元
- 若该公式是命题逻辑的永真式,则该公式是重言式
- 例:

- 是重言式,因为它是命题逻辑永真式 $p \to (q \to p)$ 的替换实例.

■ 用谓词逻辑公式 B_1 , … B_n 分别替换命题逻辑公式A中命题变元 p_1 , …, p_n 得到的谓词逻辑公式记为 $A^* = A^{p_1,...,p_n}_{B_1,...,B_n}$, 称为A的替换实例。命题逻辑永真式的替换实例称为重言式。

永真式和重言式实例

例:
$$P(x) \rightarrow P(x)$$

 $P(x) \rightarrow (Q(x) \rightarrow P(x))$
 $P(x) \rightarrow (Q(x) \land P(x)) \rightarrow P(x)$
 $P(x) \rightarrow (Q(x) \land P(x)) \rightarrow P(x)$
 $P(x) \rightarrow (Q(x) \land P(x)) \rightarrow P(x)$
 $P(x) \rightarrow (Q(x) \rightarrow P(x)) \rightarrow P(x)$

例 全称蕴含存在

■ 例:对于一阶语言公式A,x是变元,则 $\forall x A \rightarrow \exists x A$ 是永真式

存在 $d \in D_I$,使得 $v^I(A) = 1$,因此, $v^I(\exists xA) = 1$ 。 所以 $\forall xA \rightarrow \exists xA$ 是永真式

例 存在与全称换序

- 例: A是一阶语言中的公式,x,y是不同的变元则 $\exists x \forall y A \rightarrow \forall y \exists x A$ 是永真的。
- 证明:对一阶语言中的任意解释I
 设D_I={d₁,...,d_n},若*I*(∃x∀yA)=1,则存在d∈D_I,

 $I(\forall y A_d^x) = 1.$ 因此有 $I(A_{d,d_1}^{x,y}) = 1,...,I(A_{d,d_n}^{x,y}) = 1.$

对任意 d_i , $I(A_d^x)=1$, 因此,对任意y, 存在x使得 A为真,即 $I(\forall y\exists xA)=1$ 。

思考: $\forall y \exists x P(x,y) \rightarrow \exists x \forall y P(x,y)$ 是不是永真的

(2) $\forall y \exists x P(x, y) \rightarrow \exists x \forall y P(x, y)$

分析一下,能否找到解释 $I \notin I(\exists x \forall y P(x,y)) = 0$,且 $I(\forall y \exists x P(x,y)) = 1$ 。若 $I(\forall y \exists x P(x,y)) = 1$,则对于每个 $d \in D_I$,总可找到 $c_d \in D_I$ 使 $P^I(d,c) = 1$,这里 c_d 依赖于d,对于不同的d, c_d 可能不同。因此, $I(\exists x \forall y P(x,y)) = 0$ 是可能的。根据上面的分析,给出一个是该语句为假的解释 I 如下:

 D_I 为整数集合,对任意整数 m, n, $P^I(m,n)=1$ 当且仅当m < n

则对于每个整数y ,总有y-1 < y ,但没有一个整数小于每个整数。因此 $I(\forall y \exists x P(x,y) \rightarrow \exists x \forall y P(x,y)) = 0$,因此它显然不是永真式。

(3) $\exists x (P(x) \rightarrow Q(x)) \rightarrow (\exists x P(x) \rightarrow \exists x Q(x))$

先看能否找到一个解释I,

使
$$I(\exists x(P(x) \to Q(x)) \to (\exists xP(x) \to \exists xQ(x))) = 0$$
,

即 $I(\exists x P(x) \to Q(x)) = I(\exists x P(x)) = 1$ 且 $I(\exists x Q(x)) = 0$ 。 $I(\exists x P(x)) = 1$ 表明有 $a \in D_I$ 使 $P^I(a) = 1$,而 $I(\exists x Q(x)) = 0$ 要求对每个 $x \in D_I$, $Q^I(x) = 0$ 。若 D_I 中还有一个元素 b使 $P^I(b) = 0$,则

 $I(\exists x(P(x) \to Q(x)))=1$ 。可以看出,如果 D_I 中至少有两个元素,则I有可能满足这三个条件。

可给出是该语句为假的解释 [如下:

$$D_I = \{a,b\}, P^I(a) = 1, P^I(b) = 0, Q^I(a) = Q^I(b) = 0$$

则 $I(\exists x(P(x) \rightarrow Q(x)) \rightarrow (\exists xP(x) \rightarrow \exists xQ(x))) = 0$,故该公式不是永真式。

显然该公式是可满足式。例如取解释 I 如下:

$$D_I = \{a\}, P^I(a) = Q^I(a) = 1$$