Feature Engineering

Contents

- Types of Variables
- The measure of Central Tendency
- Encoding Techniques
- Handle NaN Value
- Implementing using Python

1

Types of Attributes

Two different views:

- Qualitative measurements describe an attribute without providing a size or quantity.
- Quantitative measurements, often also called numerical attributes, are quantitatively measured and
 often represented in integers or real values.

Nominal:

- Categories, states, or "names of things".
- E.g. hair_color = {auburn, black, blond, brown, grey, red, white}.
- Other examples: marital_status, occupation, ID, ZIP code.

Binary:

- Nominal attribute with only two states (0 and 1).
- Symmetric binaries: both outcomes equally important, such as sex.
- Asymmetric binary: outcomes not equally important.

E.g. medical test (positive vs. negative).

Convention: assign 1 to most important outcome (e.g. diabetes, HIV positive).

Ordinal:

- Values have a meaningful order (ranking), but magnitude between successive values is not known.
- E.g. size = {small, medium, large}, grades, army rankings.

Continuous Attributes

- Has real numbers as attribute values.
 E.g. temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Discrete Attributes

- Has finite or countably infinite elements.
 E.g. ZIP code, profession, or the set of words in a collection of documents.
- Sometimes represented as integer variables.

Note

Binary attributes are a special case of discrete attributes.

Measures of Central Tendency

Mean, Median, Mode

Mean: The mean is the most popular and well known measure of central tendency. $x_1 + x_2 + \cdots + x_n$

 Median: The median is the middle score for a set of data that has been arranged in order of magnitude.

a first wood to recurrence that data into order of magnitude	nge that data into order of magnit	nitude ((smalles	st first):	
a first panel to vacy and a that data into order of magnitude	nge that data into order of magnit	nitude ((smalles	st first):	
a tiret panel to recoverage that data into order of magnitude	nge that data into order of magnit	nitude ((smalle:	st first):	
HIST need to rearrange that data into order of madhitude	.ge and data into order or mag.iii				
a to rearrange that data into order or magnitude			•		

 Mode: The mode is the most frequent score in our data set.

Encoding is a technique of *converting categorical variables into numerical values* so that they can be easily fitted to a machine learning model. Since *most algorithms work better with numerical inputs*, encoding is a crucial step for preparing and representing data, especially when dealing with non-numerical data types like *categorical or textual data*.

Original Data

Team	Points
Α	25
Α	12
В	1 5
В	14
В	19
В	23
С	25
С	29

Label Encoded Data

Team	Points
0	25
0	12
1	1 5
1	14
1	19
1	23
2	25
2	29

Encoding is a technique of *converting categorical variables into numerical values* so that they can be easily fitted to a machine learning model. Since *most algorithms work better with numerical inputs*, encoding is a crucial step for preparing and representing data, especially when dealing with non-numerical data types like *categorical or textual data*.

Green	Red	Blue
0	1	1
1	1	1
1	0	1
0	0	0
0	1	0

Some common encoding techniques in machine learning:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Binary Encoding
- 4. Ordinal Encoding
- 5. Frequency Encoding
- 6. Mean Encoding
- 7. Embedding

A Label Encoding:

Label encoding assigns each **unique category value a numerical code**. It is straightforward but introduces a new problem: the model might infer a natural ordering in categories, which might not be intended. For example: ["red" < "blue" < "green"] to [0, 1, 2]

Advantages:

- Simple to implement and keeps the dataset's dimensionality unchanged.
- Useful for ordinal data or tree-based models that can handle ordinality.

Disadvantages:

- Imposes an ordinal relationship where it might not exist, potentially leading to poor model performance for non-ordinal data.
- Not suitable for linear models unless the data is ordinal.

Types of Encoder

***** Label Encoding:

Label encoding assigns each **unique category value a numerical code**. It is straightforward but introduces a new problem: the model might infer a natural ordering in categories, which might not be intended. For example: ["red" < "blue" < "green"] to [0, 1, 2]

Original Data

Team	Points	
Α	25	
Α	12	
В	15	*
В	14	
В	19	\$ 28 <u></u>
В	23	
С	25	
С	29	

Label Encoded Data

Team	Points
0	25
0	12
1	1 5
1	14
1	19
1	23
2	25
2	29

Types of Encoding

Some common encoding techniques in machine learning:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Binary Encoding
- 4. Ordinal Encoding
- 5. Frequency Encoding
- 6. Mean Encoding
- 7. Embedding

12

❖ One-Hot Encoding:

One-hot encoding transforms **each category value into a new binary column and assigns a 1 or 0** (presence or absence) value to the column. This method is widely used for nominal categories without intrinsic ordering.

One Hot Encoded Vecto	r
[1,00]	
[0,1,0]	
[0,0,1]	
[0,1,0]	
[1,00]	

Red	Green	Yellow
1	0	0
0	1	0
0	0	1
0	1	0
1	0	0

Types of Encoder

❖ One-Hot Encoding:

One-hot encoding transforms **each category value into a new binary column and assigns a 1 or 0** (presence or absence) value to the column. This method is widely used for nominal categories without intrinsic ordering.

Yellow Column dropped to avoid the Dummy Variable Trap

Types of Encoder

❖ One-Hot Encoding:

One-hot encoding transforms **each category value into a new binary column and assigns a 1 or 0** (presence or absence) value to the column. This method is widely used for nominal categories without intrinsic ordering.

Advantages:

- Eliminates any ordinal relationship, making it suitable for nominal data.
- Easy to understand and implement.

Disadvantages:

- Can lead to a high-dimensional feature space, increasing memory and computational costs.
- Not suitable for high cardinality features (many unique values).

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

25	Apple	Chicken	Broccoli	Calories
100	1	0	0	95
30	0	1	0	231
32	0	0	1	50

Types of Encoding

Some common encoding techniques in machine learning:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Binary Encoding
- 4. Ordinal Encoding
- 5. Frequency Encoding
- 6. Mean Encoding
- 7. Embedding

17

Types of Encoder

***** Binary Encoding:

Binary encoding first converts categories into numerical labels and then transforms those labels into binary codes. Each binary digit gets its column. This method can be more efficient than one-hot encoding when dealing with many categories.

Temperature	Order	Binary	Temperature_0	Temperature_1	Temperature_2
Hot	1	001	0	0	1
Cold	2	010	0	1	0
Very Hot	3	011	0	1	1
Warm	4	100	1	0	0
Hot	1	001	0	0	1
Warm	4	100	1	0	0
Warm	4	100	1	0	0
Hot	1	001	0	0	1
Hot	1	001	0	0	1
Cold	2	010	0	1	0
					

***** Binary Encoding:

Binary encoding first converts categories into numerical labels and then transforms those labels into binary codes. Each binary digit gets its column. This method can be more efficient than one-hot encoding when dealing with many categories.

Advantages:

- Reduces the dimensionality compared to one-hot encoding for high cardinality features.
- Retains more information in fewer dimensions than label encoding.

Disadvantages:

- More complex and harder to interpret than one-hot or label encoding.
- Binary representation can introduce relationships that do not exist in the original categorical data.

Types of Encoding

Some common encoding techniques in machine learning:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Binary Encoding
- 4. Ordinal Encoding
- 5. Frequency Encoding
- 6. Mean Encoding
- 7. Embedding

20

Types of Encoder

❖ Ordinal Encoding:

Ordinal encoding is like label encoding but specifically applies to ordinal data where the order of categories is important (Example: "low" < "medium" < "high"). The categories are converted into an ordered numerical scale.

www.aiquest.org

Types of Encoder

Ordinal Encoding:

Ordinal encoding is like label encoding but specifically applies to ordinal data where the order of categories is important (Example: "low" < "medium" < "high"). The categories are converted into an ordered numerical scale.

Instances: [extra large -> large -> medium -> small]

Encoded data: [0, 1, 2, 3]

cost	size	size_endoced
50	large	1.0
35	small	3.0
75	extra large	0.0
42	medium	2.0
54	large	1.0
71	extra large	0.0

Types of Encoder

Ordinal Encoding:

Ordinal encoding is like label encoding but specifically applies to ordinal data where the order of categories is important (Example: "low" < "medium" < "high"). The categories are converted into an ordered numerical scale.

Advantages:

- Directly encodes the order of the categories, making it suitable for ordinal data.
- Keeps the dataset's dimensionality unchanged.

Disadvantages:

- Incorrect use on nominal data can introduce artificial ordinality, leading to misleading results.
- The choice of encoding values can impact model performance.

Types of Encoding

Some common encoding techniques in machine learning:

- 1. Label Encoding
- 2. One-Hot Encoding
- 3. Binary Encoding
- 4. Ordinal Encoding
- 5. Frequency Encoding
- 6. Mean Encoding
- 7. Embedding

24

***** Frequency Encoding:

Frequency encoding replaces categories with their frequencies or counts. This approach can help algorithms to understand the prominence of certain categories over others.

$$FrequencyEncoding = \frac{frequency(category)}{size(data)}$$

Numerical value	Animal	Frequency encoding	Numerical value	Animal_freq
1.5	cat		1.5	0.5
3.6	cat		3.6	0.5
42	dog		42	0.25
7.1	crocodile		7.1	0.25

Types of Encoder

***** Frequency Encoding:

Frequency encoding replaces categories with their frequencies or counts. This approach can help algorithms to understand the prominence of certain categories over others.

Advantages:

- Handles high cardinality data well by using frequencies, which can be more informative than labels.
- Can capture the importance of category frequency for the prediction task.

Disadvantages:

- Loses information about the category itself, only retaining frequency.
- Similar frequencies can lead to collisions where different categories are represented by the same value.

26

Types of Encoder

❖ Mean Encoding:

Mean encoding replaces categorical values with the **mean target value** for that category. Mean encoding is particularly useful for categorical features with a high number of unique categories. It's particularly useful for high cardinality data and can help in tree-based algorithms.

www.aiquest.org

Types of Encoder

❖ Mean Encoding:

Mean encoding replaces categorical values with the **mean target value** for that category. Mean encoding is particularly useful for categorical features with a **high number of unique categories**. It's particularly useful for **high cardinality data** and can help in **tree-based algorithms**.

Advantages:

- Incorporates target information, which can improve model performance.
- Efficient representation for high cardinality features.

Disadvantages:

- Prone to overfitting, especially with small dataset sizes or categories with few instances.
- Requires careful regularisation or validation techniques to prevent data leakage.

Types of Encoder

29

***** Embedding:

Embeddings are a sophisticated way to represent categories in high-dimensional spaces. This technique is often used in deep learning for handling textual data, where each word or category is represented by a dense vector of floating-point numbers.

www.aiquest.org

Types of Encoder

***** Embedding:

Embeddings are a sophisticated way to represent categories in high-dimensional spaces. This technique is often used in deep learning for handling textual data, where each word or category is represented by a dense vector of floating-point numbers.

Advantages:

- Captures complex relationships and patterns in high-dimensional space, especially useful for deep learning models and NLP.
- Reduces dimensionality while retaining the richness of data, suitable for high cardinality and textual data.

Disadvantages:

- Requires significant computational resources and data to train effectively.
- More complex and harder to interpret than other encoding techniques.

Thank you!

www.aiquest.org