Exercices classification binaire

Geneviève Robin

28 Septembre 2021

Exercice 1

On définit r^* comme le rectangle $[l,r] \times [b,t]$. On considèrent des données $\mathcal{D}_n = \{(X_i,Y_i), i=1,\ldots,n\}$ avec des couples features/label (X_i,Y_i) i.i.d., $X_i \in \mathbb{R}^2$ et $Y_i \in \{1=\text{rouge}, -1=\text{bleu}\}$ dont la loi vérifie

$$\begin{split} \mathbb{P}(Y_i = 1 | X_i \in r^\star) &= 1 \\ \mathbb{P}(Y_i = 1 | X_i \notin r^\star) &= 0 \\ \mathbb{P}(X_i \in r^\star) &> \epsilon \text{ pour un } \epsilon > 0 \text{ fixé }. \end{split}$$

On construit un classifieur en se restreignant à la classe des classifieurs indexés par des rectangles $\{c_r, r = [a, b] \times [c, d], a < b, c < d\}$ et définis par

$$\begin{cases} c_r(x) = 1 & \text{si } x \in r \\ c_r(x) = 0 & \text{si } x \notin r. \end{cases}$$

- 1. Quelle est l'erreur empirique (associée à la perte 0/1) du rectangle vert dessiné sur la figure 1 que l'on note ici \hat{r} ?
- 2. Soit un classifieur c_r . On considère une nouvelle observation (X_+, Y_+) . Dans quelle zone du plan doit être X_+ pour que cette observation soit mal classée par le classifieur c_r ?
- 3. On définit quatre rectangles $r_l^{\star}, r_t^{\star}, r_r^{\star}, r_b^{\star}$ (l pour "left", t pour "top", r pour "right" et b pour "bottom"), les rectangles r_l^{\star}, r_t^{\star} ont été représentés sur la figure 2. Chacun de ces rectangles vérifie

$$\mathbb{P}(X_+ \in r_k^*) = \epsilon/4 \ (k \in \{l, t, r, b\}).$$

Montrer que l'erreur de généralisation du classifieur $c_{r_{\text{minus}}}$ associé au rectangle (représenté sur la figure 3) $r_{\text{minus}}^{\star} = r^{\star} \setminus \cup_{k \in \{l,t,r,b\}} r_k^{\star}$ vérifie

$$R(c_{r_{\mathrm{minus}}^{\star}}) \leq \sum_{k \in \{l,t,r,b\}} \mathbb{P}(X_{+} \in r_{k}^{\star}) = \epsilon.$$

- 4. On cherche maintenant à borner l'erreur de généralisation de $c_{\hat{r}}$.
 - (a) Montrer que si $r_{\text{minus}}^{\star} \subset \hat{r}$ alors $R(c_{r_{\text{minus}}^{\star}}) \geq R(c_{\hat{r}})$.
 - (b) En déduire que

$$\mathbb{P}\left(R(c_{\hat{r}}) > \epsilon\right) \leq \mathbb{P}\left(r_{\text{minus}}^{\star} \not\subset \hat{r}\right).$$

(c) Montrer que

$$\mathbb{P}\left(r_{\text{minus}}^{\star} \not\subset \hat{r}\right) \leq \sum_{k \in \{l,t,r,b\}} \mathbb{P}(\hat{r} \cap r_k^{\star} = \emptyset) \leq 4\left(1 - \frac{\epsilon}{4}\right)^n.$$

(d) Que doit valoir n pour que le risque de $c_{\hat{r}}$ dépasse ϵ avec une probabilité inférieure à $\delta>0$.

Exercice 2

On veut étudier l'algorithme des k plus proches voisins dans le cas où k=1. On se place dans le cas où

- les covariables $X_i \in \mathcal{X} \subset [0,1]^d$
- les $Y_i \in \{0, 1\}$.
- les couples (X_i, Y_i) sont i.i.d. de loi inconnue \mathcal{L}
- on note $\mathcal{D}_n = \{(X_i, Y_i), i = 1, \dots, n\}.$

On considère de plus la perte 0/1 de sorte que le risque d'un classifieur est donné par

$$R(c) = \mathbb{E}_{\mathcal{L}} \left(\ell(Y_+, c(X_+)) | \mathcal{D}_n \right) = \mathbb{E}_{\mathcal{L}} \left(\mathbbm{1}_{Y_+ \neq c(X_+)} | \mathcal{D}_n \right)$$

où (X_+, Y_+) est indépendant des (X_i, Y_i) et de même loi.

- 1. On va étudier des classifieurs non-déterministes, c'est-à-dire qui dépendent des données. On note \hat{c} un tel classifieur. Comme on va intéger par rapport aux lois de (X_+, Y_+) et \mathcal{D}_n alternativement on va noter dans cette question
 - $\mathbb{E}_{(X_+,Y_+)\sim\mathcal{L}}$ quand on intègre par rapport à la loi de (X_+,Y_+)
 - $\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}}$ quand on intègre par rapport à la loi de \mathcal{D}_n

avec ces notations

$$R(\hat{c}) = \mathbb{E}_{(X_+, Y_+) \sim \mathcal{L}}(\ell(Y_+, \hat{c}(X_+)).$$

Vérifier que

$$\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}} (R(\hat{c})) = \mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}} (\mathbb{E}_{(X_+, Y_+) \sim \mathcal{L}} (\ell(Y_+, \hat{c}(X_+)) | \mathcal{D}_n))$$

$$= \mathbb{E}_{(X_+, Y_+) \sim \mathcal{L}} (\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}} (\ell(Y_+, \hat{c}(X_+)) | (X_+, Y_+)))$$

2. Dans toute la suite, chaque Y_i suit la loi de Bernoulli de paramètre $\pi^* = 3/4$ pour toute valeur valeur de X_i , c'est-à-dire

$$\mathbb{P}_{\mathcal{L}}(Y_i = 1 | X_i = x) = \pi^* = 3/4 \text{ pour tout } x \in \mathcal{X}.$$

Montrer que Y_i est indépendant de X_i . Proposez alors un classifieur déterministe (qui ne dépend pas de \mathcal{D}_n) c_0 , c'est-à-dire une fonction de \mathcal{X} dans $\{0,1\}$, qui vous paraît convenir au problème.

3. Montrer que le risque d'un classifeur déterministe c peut s'écrire successivement

$$R(c) = \mathbb{E}_{\mathcal{L}}(\mathbb{1}_{Y_+ \neq c(X_+)}) = \pi^* + (1 - 2\pi^*)\mathbb{E}_{\mathcal{L}}(c(X_+)).$$

(a) Montrer que, pour tout classifieur déterministe c,

$$0 \leq \mathbb{E}_{\mathcal{L}}(c(X_+)) \leq 1.$$

En déduire une borne inférieure de R(c) et la valeur de $\mathbb{E}_{\mathcal{L}}(c(X_+))$ pour laquelle elle est atteinte.

- (b) En déduire que l'oracle c^* qui vérifie $c^* = \operatorname{argmin}_c R(c)$ vaut c_0 .
- (c) Calculer le risque de l'oracle.
- 4. On considère le classifieur du plus proche voisin (1 plus proche voisin) noté \hat{c}_1 . Pour chaque $x \in \mathcal{X}$, on introduit les v.a. $Z_i(x)$ (i = 1, ..., n) définies par

$$Z_i(x) = \begin{cases} 1 & \text{si } i \text{ est le plus proche voisin de } x \\ 0 & \text{sinon.} \end{cases}$$

- (a) Vérifier que $\sum_{i=1}^{n} Z_i(x) = 1$.
- (b) Montrer que $\hat{c}_1(x) = \sum_{i=1}^n Z_i(x)Y_i$.
- (c) Déduire de la question 1 que

$$\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}}(\hat{c}_1(x)) = \sum_{i=1}^n \mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}}(Z_i(x)Y_i) = \pi^*.$$

(d) En déduire que

$$\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}}(\ell(Y_+, \hat{c}_1(X_+)) | (X_+, Y_+)) = 3/8.$$

- 5. Déduire des questions 1 et 4 que $\mathbb{E}_{\mathcal{D}_n \sim \mathcal{L}}(R(\hat{c}_1)) = 3/8$.
- 6. En déduire que le risque intégré de \hat{c}_1 ne tend pas vers celui de l'oracle c^* .
- 7. Expliquer pourquoi.