

École de technologie supérieure Département de génie logiciel et des technologies de l'information Neuro-IX

Presentation of a Paper For Lab-Meet

DDM²: SELF-SUPERVISED DIFFUSION MRI DENOISING WITH GENERATIVE DIFFUSION MODELS

Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop & Akshay Chaudhari Stanford University

Published as a conference paper at ICLR 2023

Prepared by: Ahmed REKIK

Supervised by: M.Sylvain BOUIX

Session Automne 2025

Prerequisites / Recap : Diffusion Models

- Generative models that can create new data.
- Process: gradually add noise until the signal is destroyed.
- Learning: train a network to reverse the process and reconstruct data.

1/ Forward Process (Diffusion / Noise Addition)

- Start from a clean image x₀.
- Gradually add Gaussian noise across T steps : $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$
- After many steps → the image becomes pure noise.

2/ Reverse Process (Denoising / Generation)

- Train a neural network F_{θ} to predict and remove the noise at each step.
- Sampling: start from noise and progressively denoise → generate a realistic image.

3/ Training Objective

• Learn to predict the added noise ϵ : $L(heta) = \mathbb{E}_{x_0,t,\epsilon}ig[\|\epsilon - \epsilon_{ heta}(x_t,t)\|^2ig]$

Context:

Diffusion MRI and the issue of noise

- MRI: A non-invasive medical imaging modality, essential for diagnosis.
- Diffusion MRI (dMRI):
 - Allows the analysis of tissue microstructure (brain, oncology).
 - Produces 4D images: 3D spatial + <u>diffusion directions</u>.
- Problem;
 - Low SNR (= $\frac{\text{Useful signal amplitude}}{\text{Noise standard deviation}}$) \rightarrow diagnostic losses.
 - Long acquisition times → patient discomfort + higher costs.
 - Difficult to acquire paired low/high SNR scans in clinical practice.
 - Target Solution :
 - Self-supervised denoising (no ground truth required).
 - Combination of noise statistical models and diffusion models.
 - Robust generalization across diverse MRI protocols.

Vue d'ensemble de la méthode : DDM²

1. **Stage I** – Noise Model Learning

Learning a function Φ to estimate noise.

2. Stage II – Markov State Matching

Associating each noisy image with an intermediate state of the diffusion Markov chain.

3. **Stage III** – Diffusion Model Training

Generation of clean images using a diffusion model F.

DDM²: Stage I

Noise Model Learning

Physical acquisition:

$$\mathbf{x} = \lambda_1 \mathbf{y} + \epsilon$$

Denoised image

Estimated noise $\ arepsilon \sim \mathcal{N}(0,\lambda_2^2 I)$

Predictive model Φ (denoising function with: $\lambda_1 = 1$)

☐ Principle of J-Invariance :

A denoising network can be trained using only noisy images, by predicting a clean approximation \overline{y} from the other noisy slices $\{x'\}$.

$$y\approx \bar{y}=\Phi(\{x'\})$$

$$\mathcal{L}(\Phi(\mathbf{x}'),\mathbf{x}) = ||\Phi(\mathbf{x}') - \mathbf{x}||^2 \approx ||\Phi(\mathbf{x}') - \mathbf{y}||^2 + \text{const.}$$

DDM²: Stage II

Markov State Matching

1. Centering of residual noise :

$$ararepsilon:=ararepsilon-\mu_{ararepsilon} \ ar y:=ar y+rac{\lambda_2\mu_{ararepsilon}}{\lambda_1} \qquad \qquad ararepsilon\sim\mathcal{N}(0,\sigma^2I)$$

- 2. Matching to a state in the diffusion chain:
 - Compare the measured noise σ with the posteriors $p(S_t)$, associated with the noise level β_t .

• Find the time step $m{t}$ that minimizes the $m{p}$ -norm distance: $t^* = \arg\min_t \|\sqrt{eta_t} - \sigma\|_p$

Since t is discrete $(1,...,T) \rightarrow$ the problem becomes one of searching for the best corresponding state.

Once β_t is identified;

- The reverse denoising process can be started from S_t in the Markov chain.
- The final denoised image S_0 is then progressively obtained via this process;

$$p(S_0 \mid S_t)$$

DDM²: Stage III

Diffusion Model Training

Train the generative diffusion model F to produce clean images;

Problem:

• If F is trained directly on $\overline{y} \rightarrow F$ may collapse into simply reproducing Φ.

→ Leads to suboptimal performance.

Solution:

a) Noise Shuffle:

$$q(S_t \mid \bar{y}) = \sqrt{\bar{lpha}_t} \, \bar{y} + \mathrm{shuffle}(ar{arepsilon})$$
 ;

 $shuffle(\cdot) = spatial shuffling of the$ residual noise ε estimated by Φ .

- Forces F to learn the true implicit noise distribution of Φ . Reduces the gap with the explicit noise model G.
- b) **J-Invariance Optimization** (loss toward x);

$$\min_F \|F(S_t,arlpha_t) - x\|^2$$

- Instead of constraining F to copy $\overline{y}(\Phi)$; reconstruct an image that reverts back to x after noise is re-added.;
 - - Corrects approximation errors from Stage I.
 Allows F to explore a broader and more accurate solution space.

$$ar{lpha}_t = \prod_{i=1}^t lpha_i, \quad lpha_t = 1 - eta_i$$

Experiments and Results

Qualitative Results :

- DDM² removes noise without over-smoothing anatomical structures.
- No hallucinated lesions, as confirmed by two neuroradiologists.

Dataset	Dims $(X \times Y \times Z)$	Dirs	Res.	b-values	Reference
gSlider (in-house)	$128 \times 128 \times 160$	50	0.5 mm iso	1000	In-house
Sherbrooke 3-Shell	$128{\times}128{\times}64$	193 (eval at b= 1000)	_	1000, 2000, 3000	Garyfallidis et al. (2014)
Stanford HARDI	$106 \times 81 \times 76$	150	_	2000	Rokem (2016)
PPMI (Parkinson)	$116{\times}116{\times}72$	64	_	2000	Marek et al. (2011)

Quantitative Results :

- SNR/CNR higher than all competing methods
- Average improvement: +0.95 SNR / +0.93 CNR par compared to N2S

Key Advantages :

- DDM² = better detail preservation than Patch2Self
- 5 to 10× **faster than** standard DDPM (thanks to Markov State Matching).

$$ext{SNR} = rac{\mu_{ ext{signal}}}{\sigma_{ ext{bruit}}} \quad ext{CNR} = rac{|\mu_{ ext{foreground}} - \mu_{ ext{background}}|}{\sigma_{ ext{bruit}}}$$

Foreground := corpus callosum

- DIP (Deep Image Prior)
- Noise2Noise (N2N)
- Patch2Self (P2S)
- Noise2Score (N2S)

ABLATION STUDIES

n = 1

n=2

- Stage I:
- Produces clean images even with **n** = **1** or **2**
- Maintains **high SNR/CNR** across all settings
- Patch2Self:
- Fails when **n** is small (images remain noisy)
- Needs large n (~63) to reach acceptable performance

Relative SNR Relative CNR 20_T 20 -Patch2Self n=63 Patch2Self n=63 - Ours

Patch2Self

n (size of $\{x'\}$, # input volumes)

Vary number of input volumes

- Stage I (A) \rightarrow good denoising but too smooth, loss of fine details
- w/o State Matching (B) \rightarrow hallucinations, false anatomical details
- w/o Noise Shuffle (C) \rightarrow structural degradation, loss of robustness
- w/o J-Invariance (D) \rightarrow blurrier results, accumulated errors

Conclusion et Discussion

Summary of the article: DDM2: Self-supervised denoising in 3 stages

- Noise estimation (Stage I)
- Matching to a Markov state (Stage II)
- Denoised image generation via diffusion (Stage III)

- Achieves higher SNR/CNR with preserved anatomical details.
- Inference time is longer compared to conventional CNNs/MLPs.

Thanks for your attention!