Metoda HUFFMAN neadaptiva de compresie/decompresie

- Fazele de compresie si decompresie trec prin aceleasi etape ca in cazul alg. Shannon-Fano.
- Constructia arborelui pleaca de la frunze spre radacina => codurile simbolilor sunt construite de la bitul cel mai putin semnificativ la bitul cel mai semnificativ.

<u>Pas 1:</u> Se parcurge secvential D si se construieste $A^0 \implies N(s)$ pentru fiecare $s \in A^0$

Pas 2: Rearanjarea simbolilor alfabetului: $A^0 = \{s_1, s_2,s_N\}$ cu $N(s_1) \ge N(s_2) \ge \ge N(s_N)$ Se renoteaza si reindexeaza elementele alfabetului astfel: $A^0 = \{t_{N+k-1} = s_k\}_{k \in \overline{l,N}}$

Simbolii t_N , t_{N+1} ,, t_{2N-1} sunt utilizati pentru etichetarea frunzelor arborelui binar, iar alfabetul A^0 devine *primul alfabet curent* al algoritmului si va fi renotat prin $A^{0,N}$. Fiecare alfabet curent al algoritmului se va nota prin $A^{0,(N-k)}$, k=0 N-1

k=0 => frunzele arborelui sunt etichetate cu simbolii primului alfabet curent

Pas 3: Constructia arborelui binare se realizeaza simultan cu formarea noului alfabet curent.

Noul alfabet curent, $A^{0,(N-k-1)}$ cu k=0 N-2, se construieste din vechiul alfabet $A^{0,(N-k)}$, aplicanduse urmatoarea regula: se elimina 2 dintre simbolii cu cele mai mici contoare din vechiul alfabet curent, inlocuindu-le cu un simbol virtual, notat prin ", " si care are contorul egal cu suma contoarelor celor doi simboli. Daca exista mai mult de doi simboli slabi avand acelasi contor, se aleg ultimii doi din alfabet => cardinalul noului alfabet scade cu o unitate fata de cardinalul alfabetului precedent.

$$\begin{split} \mathbf{A}^{0,(\text{N-k-1})} &= \left[A^{0,(N-k)} \setminus \{t_p, t_q\} \right] \cup \{t_{N-k-1}\} \\ t_{N-k-1} &= simbol \ virtual \\ N(t_{N-k-1}) &= N(t_p) + N(t_q) \\ \# A^{0,(N-k-1)} &= \# A^{0,(N-k)} - 1 = N-k-1 \end{split}$$

- Simbolul virtual eticheteaza un nod intermediar al arborelui, avand ca descendenti cele doua noduri etichetate de simbolii eliminati.
- Fiecare nod intermediar din arbore are cate 2 descendenti, contorul fiului din stanga fiind <u>cel putin</u> <u>egal</u> cu cel al fiului din dreapta.

Pas 4: Se repeta Pas 3 de N-I ori pentru fiecare alfabet curent $A^{0,(N-k)}$ pana cand se eticheteaza si radacina arborelui (t_1) .

<u>Pas 5:</u> Se reindexeaza nodurile arborelui astfel incat fiii oricarui nod sa fie etichetati cu indici consecutivi, de la stanga la dreapta, incepand de la radacina.

Constructia arborelui binar

k = 1

Setul de date D: IT IS BETTER LATER THAN NEVER. => N = 13 elem., nr. noduri=25, k=12

Nod	t ₁₃	t ₁₄	t ₁₅	t ₁₆	t ₁₇	t ₁₈	t ₁₉	t ₂₀	t ₂₁	t_{22}	t ₂₃	t ₂₄	t ₂₅
A^{0}		Е	T	R	A	I	N		В	Н	L	S	V
N(s)	5	5	5	3	2	2	2	1	1	1	1	1	1

Nod	t ₁₃	t ₁₄	t_{15}	t ₁₆	t ₁₇	t ₁₈	t_{19}	t ₂₀	t_{21}	t_{22}	t_{23}	t ₁₂
$\mathcal{A}^{0,12}$	L	Е	Т	R	A	I	N		В	Н	L	
$\mathcal{N}(s)$	5	5	5	3	2	2	2	1	1	1	1	2

k = 2

$t_{11}(2)$	$t_{12}(2)$
0/\1	0/\1
/ \ H L	
$t_{22}(1) t_{23}(1)$	$t_{24}(1)$ $t_{25}(1)$

Nod	t ₁₃	t14	115	t16	117	t ₁₈	t ₁₉	t20	t ₂₁	t ₁₁	112
$\mathcal{A}^{0,11}$	u	Е	Т	R	A	I	N		В	0	D
$\mathcal{N}(s)$	5	5	5	3	2	2	2	1	1	2	2

k = 3

Nod	t13	114	115	116	117	t18	t19	t10	t ₁₁	t12
$A^{0.10}$	<u>u</u>	Е	T	R	A	1	N		0	
$\mathcal{N}(s)$	5	5	5	3	2	2	2	2	2	2

k = 4

Nod	t13	t14	t15	116	t17	t18	t_{19}	t_{10}	tg
$\mathcal{A}^{0,9}$	ш	E	т	R	A	I	N		0
$\mathcal{N}(s)$	5	5	5	3	2	2	2	2	4

k = 5

Nod	t13	t14	t15	t16	t 1.7	118	tg	to
$A^{0,8}$	u	E	т	R	A	1	0	
$\mathcal{N}(s)$	5	5	5	3	2	2	4	4

k = 6

$0/\sqrt[t_7(4)]{1}$	$0/\sqrt[t_8(4)]{1}$	0/	1
$ \begin{array}{c c} I & \downarrow \\ \hline A & I \\ t_{17}(2) & t_{18}(2) \end{array} $	$t_{19}(2) $	0/1	0 / 1
	$ \begin{array}{c c} & & \\$	H L t23(1)	$ \begin{array}{c c} & \\ \hline S & V \\ t_{24}(1) & t_{25}(1) \end{array} $

Nod	t ₁₃	t14	t ₁₅	t_{16}	t7	t ₈	t_9
$\mathcal{A}^{0,7}$	u	E	Т	R			
$\mathcal{N}(s)$	5	5	5	3	4	4	4

k = 8

Nod	t13	t14	125	t5	te
$\mathcal{A}^{0,5}$	د	E	J.		
$\mathcal{N}(s)$	5	5	5	8	7

k = 9

Nod	t13	t.4	15	te
$A^{0,4}$	ų	0		
$\mathcal{N}(s)$	5	10	8	7

k = 10

Nod	ta	15	t3
A0.3	o o	0	ם
$\mathcal{N}(s)$	10	8	12

Structura setului de date comprimate

$\mathcal{D}\colon \mathbf{IT}_{\sqcup}\mathbf{IS}_{\sqcup}\mathbf{BETTER}_{\sqcup}\mathbf{LATER}_{\sqcup}\mathbf{THAN}_{\sqcup}\mathbf{NEVER}.$

Un arbore binar de tip HUFFMAN (alfabet static de ordin 0).

Informatia obtinuta pe fluxul de iesire este:

- Informatia auxiliara (identica cu cea de la alg. Shannon-Fano)
- Informatia utila:

Cod	0101	001	11	0101	10010	11	01111	000	001	001
Info	I	T	⊔	I	S	u	B	E	T	T
Nr. biţi	4	3	2	4	5	2	5	3	3	3
Cod	i 000	101	11	10001	0100	000	000	101	11	001
Info	E	R	u	L	A	T	E	R	u	T
Nr. biţ	3	3	2	5	4	3	3	3	2	3
Cod I	10000 H	0100 A	0110 N	11	0110 N	000 E	10011 V	000 E	101 R	

Obs:

- Noile coduri ale simbolilor nu depasesc 5 biti in lungime
- Codurile simbolilor difera de cele obtinute prin metoda Shannon-Fano
- Analiza performantelor este similara cu cea de la algoritmul Shannon-Fano
- Pentru seturi mai lungi de date, metoda Huffman ofera o compresie mai mare decat metoda Shannon-Fano