0 Formalization of a CESK* machine with basic Scheme features.

```
\varsigma \in \Sigma = \operatorname{Exp} \times \operatorname{Env} \times \operatorname{Kont}
                                                            The set of primitves
                               op \in Primitive
                                       clo \in Clo = (\lambda (x...) e) \times Env
                                               Bool ::= #t | #f
                                       v \in \mathsf{AExp} = \mathit{Clo} + \mathsf{Bool} + \mathbb{Z}
                                          x \in \mathsf{Var} A set of identifiers
                                          e \in \mathsf{Exp} ::= x \mid v \mid (\lambda \ (x...) \ e)
                                                                 |(if e e e)|
                                                                 |(let (x e) e)
                                                                 | (prim op e e...) |
                                                                 |(e e ...)|
                                 a, b, c \in Addr
                                                            A set of addresses
                                         \rho \in \mathsf{Env} = \mathsf{Var} \rightharpoonup Addr
                                       \sigma \in \mathsf{Store} = Addr \rightarrow \mathsf{AExp}
                                              done = Val*
                                               todo = Exp*
                                       \kappa \in \mathsf{Kont} = \mathbf{mt} \mid \mathbf{appk}(done, todo, \rho, a)
                                                                  | ifk(e, e, \rho, a)
                                                                  | letk(x, e, \rho, a)
                                              alloc: \Sigma \to Addr
                                          alloc(\varsigma) = an unallocated address
Our transition function is of type
                                    (\Sigma \times \mathsf{Store}) \to (\Sigma \times \mathsf{Store})
```

$(\varsigma \times \sigma) \to (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

,	proceed by matching on ς	
$\langle x, \rho, a \rangle$	$\langle v, ho, a angle$	
	where $v = \sigma(\rho(x))$	
$\langle (\lambda (x) e), \rho, a \rangle$	$\langle \mathbf{clo}((\lambda\ (x)\ e), \rho), \rho, a \rangle$	
$\frac{\langle (\lambda (x) e), \rho, a \rangle}{\langle (\text{if } e_c e_t e_f), \rho, a \rangle}$	$\langle e_c, ho, b angle$	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\sigma[b\mapsto \mathbf{ifk}(e_t,e_f,\rho,a)]$	
$\langle (\text{let } (x e_x) e_b), \rho, a \rangle$	$\langle e_x, ho, b angle$	
	$\sigma[b \mapsto \mathbf{letk}(x, e_b, \rho, a)]$	
$\langle (\text{prim } op \ e_0 \ es), \rho, a \rangle$	$\langle e_0, ho, b angle$	
	$\sigma[b \mapsto \mathbf{primk}(op, [], es, \rho, a)]$	
trick for 0 arg prims?		
What would I make ctrl?		
Also should I merge		
primk and appk		
$\langle (e_f \ es), \rho, a \rangle$	$\langle e_f, ho, b angle$	
	$\sigma[b \mapsto \mathbf{appk}([], e_s, \rho, a)]$	
$\langle v, \rho, a \rangle$		
match on κ below		
mt	ς	
$\mathbf{ifk}(e_t,e_f, ho',c)$	$\frac{\varsigma}{\langle e_f, ho', c angle}$	
where $v = #f$		
$\mathbf{ifk}(e_t,e_f, ho',c)$	$\langle e_t, ho', c angle$	
where $v \neq \#f$		
$\mathbf{letk}(x, e_b, \rho', c)$	$\langle e_b, \rho'[x \mapsto b], c \rangle$	
	$\frac{\sigma[b \mapsto v]}{\langle v', \rho', c \rangle}$	
$\mathbf{primk}(op, done, [\], \rho', c)$		
	v' = op applied to $(done + [v])$	
$\mathbf{primk}(op, done, (h :: t), \rho', c)$	$\langle h, ho', b angle$	
	$\sigma[b \mapsto \mathbf{primk}(op, done + [v], t, \rho', c)]$	
$\mathbf{appk}((\mathbf{clo}((\lambda \ (xs) \ e_b), \rho'') :: vs),)$	$\langle e_b, \rho''[xs_0 \mapsto b_0xs_i \mapsto b_i], c \rangle$	
$[\], ho',c)$	vs = vs + [v]	
	$\sigma[b_0 \mapsto vs_0b_i \mapsto vs_i]$	
$\mathbf{appk}(done,h::t,\rho',c)$	$\langle h, ho', b angle$	
	$\sigma[b \mapsto \mathbf{appk}(done + [v], t, \rho', c)]$	

1 Formalization of an aCESK* machine with basic Scheme features.