Devoir surveillé nº 6 : corrigé

SOLUTION 1.

1. On trouve

$d_0 = 123$	$\varepsilon_0 = 0,456$
$d_1 = 4$	$\varepsilon_1 = 0,56$
$d_2 = 5$	$\varepsilon_2 = 0, 6$
$d_3 = 6$	$\varepsilon_3 = 0$

On montre alors par récurrence que $d_n = \epsilon_n = 0$ pour tout $n \geqslant 4$. En effet, $d_4 = \lfloor 10\epsilon_3 \rfloor = 0$ et $\epsilon_4 = 10\epsilon_3 - d_4 = 0$ puisque $\epsilon_3 = 0$. Supposons que $d_n = 0$ pour un certain $n \geqslant 4$. Alors $d_{n+1} = \lfloor 10\epsilon_n \rfloor = 0$ et $\epsilon_{n+1} = 10\epsilon_n - d_{n+1} = 0$. Par récurrence, $d_n = 0$ pour tout $n \geqslant 4$.

- **2. a.** Soit $n \in \mathbb{N}$. Si n = 0, $\varepsilon_0 = x \lfloor x \rfloor \in [0, 1[$ puisque $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$. Sinon $\varepsilon_n = 10\varepsilon_{n-1} \lfloor 10\varepsilon_{n-1} \rfloor \in [0, 1[$ car $\lfloor 10\varepsilon_{n-1} \rfloor \leqslant 10\varepsilon_{n-1} < \lfloor 10\varepsilon_{n-1} \rfloor + 1$.
 - **b.** Soit $n \in \mathbb{N}^*$. Alors $\varepsilon_{n-1} \in [0,1[$ d'après la question **2.a** et donc $10\varepsilon_{n-1} \in [0,10[$. On en déduit que $d_n = |10\varepsilon_{n-1}| \in [0,9]$.
 - **c.** Pour tout $n \in \mathbb{N}$,

$$\left(S_{n+1} + \frac{\epsilon_{n+1}}{10^{n+1}}\right) - \left(S_n + \frac{\epsilon_n}{10^n}\right) = S_{n+1} - S_n + \frac{\epsilon_{n+1} - 10\epsilon_n}{10^{n+1}} = \frac{d_{n+1}}{10^{n+1}} - \frac{\lfloor 10\epsilon_n \rfloor}{10^{n+1}} = 0$$

La suite de terme général $S_n + \frac{\varepsilon_n}{10^n}$ est donc constante égale à son premier terme $S_0 + \frac{\varepsilon_0}{10^0} = d_0 + \varepsilon_0 = x$.

d. Puisque $\varepsilon_n \in [0,1[$ pour tout $n \in \mathbb{N}$, on déduit de la question précédente que pour tout $n \in \mathbb{N}$

$$x - \frac{1}{10^n} < S_n \leqslant x$$

Puisque $\lim_{n\to+\infty}\frac{1}{10^n}=0$, on obtient $\lim_{n\to+\infty}S_n=x$ d'après le théorème des gendarmes.

3. a. Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1} &= 10^{N+T} S_{n+N+T+1} - 10^N S_{N+n+1} = 10^{N+T} \left(S_{n+N+T} + \frac{d_{n+N+T+1}}{10^{n+N+T+1}} \right) - 10^N \left(S_{n+N} + \frac{d_{n+N+1}}{10^{n+N+1}} \right) \\ &= u_n + \frac{d_{n+N+T+1} - d_{n+N+1}}{10^{n+1}} = u_n \end{split}$$

car (d_n) est T-périodique à partir du rang N. On en déduit que (u_n) est constante.

b. Comme (u_n) est constante, $u_n = u_0$ pour tout $n \in \mathbb{N}$.

$$u_0 = 10^{N+T} S_{N+T} - 10^N S_N = \sum_{k=0}^{N+T} d_k 10^{N+T-k} - \sum_{k=0}^{N} d_k 10^{N-k}$$

 $\begin{array}{l} \mathrm{Pour}\ k \in \llbracket 0,N+T \rrbracket,\ 10^{N+T-k} \in \mathbb{Z}\ \mathrm{et}\ d_k \in \mathbb{Z}\ \mathrm{donc}\ \textstyle\sum_{k=0}^{N+T} d_k 10^{N+T-k} \in \mathbb{Z}. \\ \mathrm{De}\ \mathrm{m\^{e}me},\ \mathrm{pour}\ k \in \llbracket 0,N \rrbracket,\ 10^{N-k} \in \mathbb{Z}\ \mathrm{et}\ d_k \in \mathbb{Z}\ \mathrm{donc}\ \textstyle\sum_{k=0}^{N} d_k 10^{N-k} \in \mathbb{Z}. \\ \mathrm{On\ en\ d\^{e}duit\ que}\ u_0 \in \mathbb{Z}.\ \mathrm{En\ posant}\ p = u_0,\ \mathrm{on\ a\ donc\ bien\ pour\ tout}\ n \in \mathbb{N} \end{array}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- c. Puisque (S_{n+N}) et (S_{n+N+T}) convergent toutes deux vers x (en tant que suites extraites de (S_n)), on obtient par unicité de la limite $10^{N+T}x 10^Nx = p$ et donc $x = \frac{p}{10^N(10^T-1)}$ puisque $10^T \ge 10 > 1$. Ceci prouve que x est rationnel.
- **4.** On remarque que $10^6x 10^3x = 123333$. Ainsi $x = \frac{123333}{999000} = \frac{41111}{333000}$.
- 5. a. La suite (r_n) est à valeurs dans l'ensemble fini [0, q-1]. Elle ne peut donc être injective. Ainsi il existe des entiers N et M distincts tels que $r_N = r_M$.

b. Pour simplifier, supposons N < M et posons T = M - N. On va montrer par récurrence que (r_n) est T-périodique à partir du rang N.

On a bien $r_{N+T} = r_N$.

Supposons que $r_{n+T} = r_n$ pour un certain entier $n \ge N$. On sait que r_{n+1} et r_{n+1+T} sont les restes respectifs des divisions euclidiennes de $10r_n$ et $10r_{n+T}$ par b. Mais puisque $10r_n = 10r_{n+T}$, on a $r_{n+1} = r_{n+1+T}$ par unicité du reste dans la division euclidienne.

Par récurrence, $r_{n+T} = r_n$ pour tout $n \ge N$. Ainsi (r_n) est T-périodique à partir du rang N.

c. Soit $n \ge N+1$. On sait que \mathfrak{q}_n et \mathfrak{q}_{n+T} sont les quotients respectifs de $10r_{n-1}$ et $10r_{n-1+T}$ par b. Puisque $n-1 \ge N$ et que (r_n) est T-périodique à partir du rang N, $r_{n-1}=r_{n-1+T}$ et donc $10r_{n-1}=10r_{n-1+T}$. Par unicité du quotient dans la division euclidienne, $\mathfrak{q}_n=\mathfrak{q}_{n+T}$.

On a donc prouvé que (q_n) était T-périodique à partir du rang N+1.

 $\mathbf{d}.$ Tout d'abord, $\mathfrak{a} = \mathfrak{b} q_0 + r_0$ avec $0 \leqslant r_0 < b.$ On en déduit que

$$x-1=\frac{a}{b}-1< q_0\leqslant \frac{a}{b}=x$$

et donc que $q_0 = \lfloor x \rfloor = d_0$. Par ailleurs,

$$r_0 = a - bq_0 = b\left(\frac{a}{b} - q_0\right) = b\left(x - \lfloor x \rfloor\right) = b\epsilon_0$$

Supposons que $\mathfrak{q}_{\mathfrak{n}}=d_{\mathfrak{n}}$ et $\mathfrak{r}_{\mathfrak{n}}=b\epsilon_{\mathfrak{n}}$ pour un certain $\mathfrak{n}\in\mathbb{N}.$ Par définition,

$$10\varepsilon_n = d_{n+1} + \varepsilon_{n+1}$$

et donc

$$10b\varepsilon_n = bd_{n+1} + b\varepsilon_{n+1}$$

ou encore

$$10r_n = bd_{n+1} + b\varepsilon_{n+1}$$

On sait que $d_{n+1} \in \mathbb{Z}$ d'après la question **2.b**. De plus, $b\epsilon_{n+1} = 10r_n - bd_{n+1} \in \mathbb{Z}$. Enfin, $\epsilon_{n+1} \in [0,1[$ d'après la question **2.a** donc $0 \le b\epsilon_{n+1} < b$. On en déduit que d_{n+1} et $q\epsilon_{n+1}$ sont le quotient et le reste de la division euclidienne de $10r_n$ par b. Par unicité du quotient et du reste dans la division euclidienne, $q_{n+1} = d_{n+1}$ et $r_{n+1} = b\epsilon_{n+1}$.

Par récurrence, $q_n = d_n$ et $r_n = b\epsilon_n$ pour tout $n \in \mathbb{N}$.

6. On trouve successivement

$q_0 = 0$	$r_0 = 13$
$q_1 = 3$	$r_1 = 25$
$q_2 = 7$	$r_2 = 5$
$q_3 = 1$	$r_3 = 15$
$q_4 = 4$	$r_4 = 10$
$q_5 = 2$	$r_5 = 30$
$q_6 = 8$	$r_6 = 20$
$q_7 = 5$	$r_7 = 25$

On a $r_1 = r_7$ donc (r_n) est 6-périodique à partir du rang 1 d'après la question **5.b**. Toujours d'après la question **5.b**, (q_n) est 6-périodique à partir du rang 2. Mais puisque les suites (d_n) et (q_n) sont identiques, (d_n) est également 6-périodique à partir du rang 2.

SOLUTION 2.

1.

$$\begin{split} \mathbb{U}_4 &= \{1, \mathfrak{i}, -1, -\mathfrak{i}\} \\ \mathbb{U}_6 &= \left\{1, e^{\frac{\mathfrak{i}\pi}{3}}, e^{\frac{2\mathfrak{i}\pi}{3}}, -1, e^{\frac{4\mathfrak{i}\pi}{3}}, e^{\frac{5\mathfrak{i}\pi}{3}}\right\} \\ \mathbb{U}_4 \cap \mathbb{U}_6 &= \{-1, 1\} = \mathbb{U}_2 \\ G &= \left\{1, e^{\frac{\mathfrak{i}\pi}{6}}, e^{\frac{\mathfrak{i}\pi}{3}}, \mathfrak{i}, e^{\frac{2\mathfrak{i}\pi}{3}}, e^{\frac{5\mathfrak{i}\pi}{6}}, -1, e^{\frac{7\mathfrak{i}\pi}{6}}, e^{\frac{4\mathfrak{i}\pi}{3}}, -\mathfrak{i}, e^{\frac{5\mathfrak{i}\pi}{3}}, e^{\frac{11\mathfrak{i}\pi}{6}}\right\} = \mathbb{U}_{12} \end{split}$$

Ainsi card $\mathbb{U}_4 = 4$, card $\mathbb{U}_6 = 6$, card $\mathbb{U}_4 \cap \mathbb{U}_6 = 2$ et card G = 12.

- **2.** Soit $z \in \mathbb{U}_{m \wedge n}$. On a donc $z^{m \wedge n} = 1$. Puisque m et n sont des multiples de $m \wedge n$, on a également $z^m = 1$ et $z^n = 1$. Donc $z \in \mathbb{U}_m \cap \mathbb{U}_n$. Ainsi $\mathbb{U}_{m \wedge n} \subset \mathbb{U}_m \cap \mathbb{U}_n$.
- 3. Soit $z \in \mathbb{U}_m \cap \mathbb{U}_n$. On a donc $z^m = 1$ et $z^m = 1$. D'après le théorème de Bezout, il existe $(\mathfrak{u}, \mathfrak{v}) \in \mathbb{Z}^2$ tel que $\mathfrak{m}\mathfrak{u} + \mathfrak{n}\mathfrak{v} = \mathfrak{m} \wedge \mathfrak{n}$. Ainsi $z^{\mathfrak{m} \wedge \mathfrak{n}} = (z^{\mathfrak{m}})^{\mathfrak{u}}(z^{\mathfrak{n}})^{\mathfrak{v}} = 1$ et $z \in \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$. Ainsi $\mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}} \subset \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$.
- **4.** Soit $z \in G$. Il existe donc $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$ tels que $z = z_1 z_2$. Dans ce cas, $z^{m \vee n} = z_1^{m \vee n} z_2^{m \vee n}$. Mais comme $m \vee n$ est un multiple de m, $z_1^{m \vee n} = 1$. De même, $m \vee n$ étant un multiple de n, $z_2^{m \vee n} = 1$. Ainsi $z^{m \vee n} = 1$ et $z \in \mathbb{U}_{m \vee n}$. Ainsi $G \subset \mathbb{U}_{m \vee n}$.
- 5. Soit $z \in \mathbb{U}_{m \vee n}$. Par le théorème de Bezout, il existe $(u, v) \in \mathbb{Z}^2$ tel que $um + vn = m \wedge n$. Posons $m' = \frac{m}{m \wedge n}$ et $n' = \frac{n}{m \wedge n}$. Remarquons que m' et n' sont entiers. On peut alors poser $z_1 = z^{vn'}$ et $z_2 = z^{um'}$. On a bien $z = z_1 z_2$ puisque um' + vn' = 1. De plus, $\frac{mn}{m \wedge n} = m \vee n$ donc $z_1^m = z^{v(m \vee n)} = 1$ et $z_2^n = z^{u(p \vee n)} = 1$. Ainsi $z = z_1 z_2$ avec $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$. Donc $z \in G$. Ainsi $\mathbb{U}_{m \vee n} \subset G$.

SOLUTION 3.

- 1. a. On a évidemment $\varphi = \frac{1+\sqrt{5}}{2}$.
 - **b.** On procède par récurrence. Tout d'abord, $F_3=2>\phi$. En effet, 5<9 donc $\sqrt{5}<3$ puis $\frac{1+\sqrt{5}}{2}<2$. Ensuite, $F_4=3>\phi^2$. En effet, $\phi^2=\phi+1=\frac{3+\sqrt{5}}{2}$ et il suffit alors de remarquer que $\sqrt{5}<3$. Supposons $F_{n+2}>\phi^n$ et $F_{n+3}>\phi^{n+1}$ pour un certain $n\in\mathbb{N}^*$. Alors

$$F_{n+4} = F_{n+2} + F_{n+3} > \varphi^n + \varphi^{n+1} = \varphi^n(1+\varphi) = \varphi^{n+2}$$

puisque $\varphi^2 = 1 + \varphi$.

Par récurrence double, $F_{n+2} > \phi^n$ pour tout $n \in \mathbb{N}^*$.

2. Posons $d_1 = a \wedge b$ et $d_2 = b \wedge r$. Puisque d_1 divise a et b, il divise également b et a - bq = r donc il divise d_2 . Puisque d_2 divise b et r, il divise également bq + r = a et b donc il divise d_1 . Puisque d_1 et d_2 sont positifs, $d_1 = d_2$.

On en déduit notamment que si r est le reste de la division euclidienne de a par b, alors $a \wedge b = b \wedge r$.

3. a.

$$154 = 48 \times 3 + 10$$

$$48 = 10 \times 4 + 8$$

$$10 = 8 \times 1 + 2$$

$$8 = 2 \times 4 + 0$$

Ainsi N = 4.

b. D'après la question 2, $r_k \wedge r_{k+1} = r_{k+1} \wedge r_{k+2}$ pour tout $k \in [0, N-1]$. En particulier,

$$a \wedge b = r_0 \wedge r_1 = r_N \wedge r_{N+1} = r_N \wedge 0 = r_N$$

- c. Soit $k \in [0, N-1]$. Notons q_k le quotient de la division euclidienne de r_k par r_k+1 . Alors $r_k = q_k r_{k+1} + r_{k+2}$. Par définition de l'algorithme d'Euclide $r_{k+2} < r_{k+1} < r_k$ et, puisque $k \le N-1$, $r_{k+1} > 0$. Donc $q_k = \frac{r_k r_{k+2}}{r_{k+1}} > 0$. Puisque q_k est entier, $q_k \ge 1$. Finalement $r_k = q_k r_{k+1} + r_{k+2} \ge r_{k+1} + r_{k+2}$ car $q_k \ge 1$ et $r_{k+1} \ge 0$.
- d. On procède par récurrence double descendante finie. On note HR(k) la proposition $r_k \geqslant F_{N+2-k}$. Initialisation. On sait que $r_N > 0$ donc $r_N \geqslant 1 = F_2$. De plus, $r_{N-1} > r_n \geqslant 1$ donc $r_{N-1} \geqslant 2 = F_3$. Ainsi HR(N) et HR(N-1) sont vraies.

Hérédité. Supposons HR(k+1) et HR(k+2) vraies pour un certain $k \in [0, N-2]$ et montrons que HR(k) est vraie. On a alors $r_{k+1} \ge F_{N-k}$ et $r_{k+2} \ge F_{N-k-1}$. D'après la question précédente,

$$r_k \ge r_{k+1} + r_{k+2} \ge F_{N-k} + F_{N-k-1} = F_{N-k+1}$$

de sorte que HR(k) est vraie.

Conclusion. Par récurrence descendante double finie, HR(k) est vraie pour tout $k \in [0, N]$.

e. On a en particulier, $b = r_1 \geqslant F_{N+1}$. Puisque $N \geqslant 2$, on peut utiliser la question 1.b pour affirmer que $F_{N+1} > \phi^{N-1}$. On a donc $b > \phi^{N-1}$ puis le résultat voulu par stricte croissance du logarithme.

f. Supposons d'abord $N \ge 2$. Puisque b s'écrit avec au plus k chiffres en base 10, $b < 10^k$. La question précédente, montre alors que

$$b < k \frac{\ln 10}{\ln \phi} + 1$$

On utilise alors l'indication de l'énoncé pour affirmer que b < 5k+1. Mais puisque b et 5k+1 sont des entiers, ceci donne $b \le 5k$.

Remarquons maintenant que $k \geqslant 1$ de sorte que, si $N \leqslant 2$, on a encore $N \leqslant 5 \leqslant 5k$.

```
4. a. def pgcd(a,b):
    while b!=0:
        a,b=b,a%b
    return a
b. def nb_pgcd(a,b):
        n=0
    while b!=0:
        a,b=b,a%b
        n+=1
    return n
```