

| ) | Project<br>1155 SAIN | T LOUIS GALLERI | Job Ref.       | Job Ref.       |          |      |  |
|---|----------------------|-----------------|----------------|----------------|----------|------|--|
|   | Section              |                 | Sheet no./rev. | Sheet no./rev. |          |      |  |
|   | Calc. by             | Date 13/02/2025 | Chk'd by       | Date           | App'd by | Date |  |

# **WALL DESIGN (NDS)**

# In accordance with NDS2018 and SDPWS2021 allowable stress design

Tedds calculation version 1.2.11

#### Panel details

Structural wood panel sheathing on one side

Panel height h = 12 ftPanel length b = 20 ft

Total area of wall  $A = h \times b = 240 \text{ ft}^2$ 



#### **Panel construction**

2" x 8" Nominal stud size 1.5" x 7.25" Dressed stud size Cross-sectional area of studs  $A_s = 10.875 \text{ in}^2$ Stud spacing s = 16 inNominal end post size 2" x 8" Dressed end post size 1.5" x 7.25" Cross-sectional area of end posts  $A_e = 10.875 \text{ in}^2$ Hole diameter Dia = 1 in Net cross-sectional area of end posts  $A_{en} = 9.375 \text{ in}^2$ Nominal collector size 2 x 2" x 8" Dressed collector size 2 x 1.5" x 7.25" Service condition Dry

Temperature 100 degF or less
Anchor location Inside face
Anchor offset eanchor = **0** in





| Project       | ject<br>55 SAINT LOUIS GALLERIA #1147 ST. LOUIS, MO 63117 |               |               |                |      |   |  |  |
|---------------|-----------------------------------------------------------|---------------|---------------|----------------|------|---|--|--|
| 1155 SAINT LO | OUIS GALLERIA                                             | #1147 ST. LOU | JIS, MO 63117 |                |      |   |  |  |
| Section       |                                                           |               |               | Sheet no./rev. |      |   |  |  |
|               |                                                           | 2             |               |                |      |   |  |  |
| Calc. by      | Date<br>13/02/2025                                        | Chk'd by      | Date          | App'd by       | Date | 1 |  |  |

Vertical anchor stiffness k<sub>a</sub> = **30000** lb/in

# From NDS Supplement Table 4B - Reference design values for visually graded Southern Pine dimension lumber (2" -

4" thick)

Species, grade and size classification Southern Pine, stud grade, 8" wide

 $\begin{tabular}{lll} Specific gravity & G = 0.55 \\ Tension parallel to grain & F_t = 325 \ lb/in^2 \\ Compression parallel to grain & F_c = 775 \ lb/in^2 \\ Compression perpendicular to grain & F_{c\_perp} = 565 \ lb/in^2 \\ Modulus of elasticity & E = 1300000 \ lb/in^2 \\ Minimum modulus of elasticity & E_{min} = 470000 \ lb/in^2 \\ \end{tabular}$ 

**Sheathing details** 

Sheathing material 5/16" wood panel oriented strandboard sheathing

Fastener type 6d common nails at 6"centers

#### From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity  $v_n = 505 \text{ lb/ft}$ Apparent shear wall shear stiffness  $G_a = 13 \text{ kips/in}$ 

Loading details

Dead load acting on top of panel D = 21 lb/ft Floor live load acting on top of panel  $L_f$  = 150 lb/ft Self weight of panel  $S_{wt}$  = 12 lb/ft² In plane seismic load acting at head of panel  $E_q$  = 1000 lbs Design spectral response accel. par., short periods  $S_{DS}$  = 1

#### From ASCE 7-22 - cl.2.4.1 and cl. 2.4.5 Basic combinations

Load combination no.7 0.6D + 0.6WLoad combination no.8 0.6D + 0.7E

# **Adjustment factors**

 $\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous$ 

Wet service factor for modulus of elasticity - Table 4B

 $C_{ME} = 1.00$ 

Temperature factor for tension – Table 2.3.3  $C_{tt} = 1.00$ 

Temperature factor for compression – Table 2.3.3

C<sub>tc</sub> = **1.00** 

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$ 



|  | Project<br>1155 SAINT | LOUIS GALLERI   | Job Ref.       |      |          |      |
|--|-----------------------|-----------------|----------------|------|----------|------|
|  | Section               |                 | Sheet no./rev. |      |          |      |
|  | Calc. by              | Date 13/02/2025 | Chk'd by       | Date | App'd by | Date |

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8} & \text{$C_{\text{i}}$ = 1.00} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2} & \text{$C_{\text{T}}$ = 1.00} \\ \text{Bearing area factor} - \text{cl. 3.10.4} & \text{$C_{\text{b}}$ = 1.0} \\ \end{array}$ 

Adjusted modulus of elasticity  $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 470000 \text{ psi}$ 

Critical buckling design value  $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 979 \text{ psi}$ 

Reference compression design value  $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 1240 \text{ psi}$ 

For sawn lumber c = 0.8

Column stability factor – eqn.3.7-1  $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$ 

0.60

#### From SDPWS Table 4.3.3 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio 3.5
Shear wall length b = 20 ftShear wall aspect ratio h/b = 0.6

## Segmented shear wall capacity

Maximum shear force under seismic loading  $V_{s_max} = 0.7 \times E_q = 0.7$  kips Shear capacity for seismic loading  $V_s = v_s \times b / 2.8 = 3.607$  kips

 $V_{s max} / V_{s} = 0.194$ 

PASS - Shear capacity for seismic load exceeds maximum shear force

#### Chord capacity for chords 1 and 2

Shear wall aspect ratio h/b = 0.6

Effective length for chord forces  $b_{eff} = b - 3 / 2 \times b_{EndPost} - e_{anchor} = 19.81 \text{ ft}$ 

Load combination 8

Shear force for maximum tension  $V = 0.7 \times E_q = 0.7$  kips

Axial force for maximum tension  $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.051 \text{ kips}$ 

Maximum tensile force in chord  $T = V \times h / b_{eff} - P = 0.373 \text{ kips}$ 

Maximum applied tensile stress  $f_t = T / A_{en} = 40 \text{ lb/in}^2$ 

Design tensile stress  $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{520 lb/in}^2$ 

 $f_t / F_t' = 0.077$ 

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 2

Shear force for maximum compression  $V = 0.7 \times E_q = 0.7 \text{ kips}$ 

Axial force for maximum compression  $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = \textbf{0.125} \text{ kips}$ 

Maximum compressive force in chord  $C = V \times h / b_{eff} + P = 0.549 \text{ kips}$ 

Maximum applied compressive stress  $f_c = C / A_e = 51 \text{ lb/in}^2$ 

Design compressive stress  $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 750 \text{ lb/in}^2$ 

 $f_c / F_c' = 0.067$ 

## PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate  $F_{c\_perp}' = F_{c\_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 565 \text{ lb/in}^{2}$ 

 $f_c / F_{c perp}' = 0.089$ 

# PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

#### Hold down force

Chord 1  $T_1 = 0.373$  kips Chord 2  $T_2 = 0.373$  kips



| Project<br>1155 SAINT LO | DUIS GALLERIA      | .#1147 ST. LOU | JIS, MO 63117 | Job Ref.       |       |  |  |
|--------------------------|--------------------|----------------|---------------|----------------|-------|--|--|
| Section                  |                    |                |               | Sheet no./rev. | /rev. |  |  |
| Calc. by                 | Date<br>13/02/2025 | Chk'd by       | Date          | App'd by       | Date  |  |  |

### Seismic deflection

Design shear force  $V_{\delta s} = E_q = 1$  kips

Deflection limit  $\Delta_{s \text{ allow}} = 0.020 \times h = 2.88 \text{ in}$ 

Induced unit shear  $v_{\delta s} = V_{\delta s} / b = 50 \text{ lb/ft}$ 

Anchor tension force  $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h \times b \text{ / } b_{\text{eff}} \text{ - } (0.6 \text{ - } 0.2 \times S_{DS}) \times (D \text{ + } S_{\text{wt}} \times h) \times s \text{ / } 2) \text{ = }$ 

**0.562** kips

Chord compression force  $C_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h \times b \text{ / } b_{eff} + (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times s \text{ / } 2) = 0.00 \times 10^{-5} \text{ cm}$ 

**0.650** kips

Vertical elongation at anchor  $\Delta_T = T_\delta / k_a = 0.019$  in

 $\Delta_{\text{C}} = 0.04 \text{ in} \times C_{\delta} / \left(A_{\text{e}} \times F_{\text{c\_perp}}\right) = \textbf{0.004} \text{ in}$ 

Total vertical deflection  $\Delta_a = (\Delta_T + \Delta_C) \times (b / b_{eff}) = 0.023$  in

Shear wall elastic deflection – Eqn. 4.3-1  $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.062} \text{ in}$ 

Deflection ampification factor  $C_{\text{d}\delta}$  = 4 Seismic importance factor  $I_{\text{e}}$  = 1.25

Amp. seis. deflection – ASCE7 Eqn. 12.8-15  $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.2} \text{ in}$ 

 $\delta_{\text{sws}}$  /  $\Delta_{\text{s\_allow}}$  = 0.069

PASS - Shear wall deflection is less than deflection limit