Lecture 6: k-Fold Cross-Validation STAT 452, Spring 2021

Review

- Last time we discussed the validation set approach or holdout method for doing cross-validation.
- For this approach, the data is randomly split into two parts: a training set and test set.¹
- The regression model is fit on the training set, and then the fitted model is used to make predictions for the response variable on the test set.
- ► The performance of the model on the test set is evaluated using the MSE, or some other metric.

¹Note that the test set is also sometimes called the **validation set**. We'll use these terms interchangeably in this class.

Drawbacks

The holdout method is conceptually simple, but it has two potential drawbacks:

- 1. The test set MSE can be highly variable, depending on which observations are included in the training set and which observations are included in the test set.
 - For example, each random 70% training / 30% test set split of the data set can result in substantially different values for the MSE.
- A relatively large portion of the data (e.g., 30%) is usually used for the test set. For smaller data sets, this might not be feasible. Statistical models also tend to perform better when using more training data.

k-fold cross-validation is a more robust approach, that overcomes these drawbacks

k-Fold Cross-Validation (CV)

- 1. Randomly divide the data into k groups, or folds, of approximately equal size.
- 2. For $i = 1, \dots, k$:
 - (a) Hold out fold i as a validation set, and fit the model to the other k-1 folds.
 - (b) Calculate the mean squared error, MSE_i, on the observations in the validation set.
- 3. Compute the average MSE over the k folds:

$$\frac{1}{k} \sum_{i=1}^{k} \mathsf{MSE}_{k}$$

		Fold 1	Fold 2	Fold 3	Fold 4	Fold 5			
Full set of training data	→ → → →	Test	Train	Train	Train	Train	→	Fold 1 performance	Averaged performance
		Train	Test	Train	Train	Train	→	Fold 2 performance	
		Train	Train	Test	Train	Train	→	Fold 3 performance	
		Train	Train	Train	Test	Train	→	Fold 4 performance	
		Train	Train	Train	Train	Test	→	Fold 5 performance	

Remarks

- ▶ In practice, one typically uses k = 5 or k = 10 folds.
- ▶ One advantage of k-fold CV over the holdout method is that k-fold CV uses the entire data set to compute the test set MSE.
- ▶ *k*-fold CV requires re-fitting the statistical model *k* times, and can therefore be computationally intensive. However, for linear regression, and many other statistical learning methods, this is usually not an issue (since the models run fast).
- ► The train() function from the caret package can be used to implement k-fold CV in R (much easier than manually coding!)