Digital literacy 2024 © Tomas Palenik. 2022

Lab 2- MATLAB basics

Exercise 1: variables and expresions basics

- a) Define a variable **a** as a scalar with value 2π .
- **b)** Define a variable **v** as a vector of integer values 1,2, ... 8.
- c) Define a variable A of size 2x2 as a matrix of any integer values.
- d) Copy variable a to a new variable b. Also copy v to a new variable u. Also copy A to a new matrix B.
- e) Create a new variable c = a + 2b, and a new variable w = v + 2u, and a new var. C = A + 2B.
- f) Display a list of worskpace variables along with their sizes.
- g) Try evaluating the expressions: a + v, a + A, a * v, a * A, A + v, v + u', explain what's happening.
- h) Delete variable a from workspace.

Exercise 2: calculate the value of various expressions

a) Given the theoretical formula and table of values of X_i and p_i (alternative notation for $p(X_i)$):

$$H(X) = -\sum_{i=1}^{N} p(X_i) \log_2(p(X_i))$$

Xi	0	1	2
pi	1/2	1/4	1/4

calculate the value of H(X).

Alternative notation – same meaning:

$$H(X) = \sum_{\forall X_i} p(X_i) \cdot \log_2(p(X_i))$$

Xi	0	1	2
p(Xi)	1/2	1/4	1/4

b) Evaluate the following expression for x = 1, 2, and π :

$$f(x) = \sqrt{\frac{e^{-2\left(\frac{x-3}{x-2}\right)}}{2\pi i}}$$

Exercise 3: play with display formats and precision:

Try the following commands:

Explain what's wrong. Hint: try changing the output format.

What are all the supported formats?

Exercise 4: Compare with tolerance

Write expressions that compare $sin(\pi)$ and $tan(\pi/2)$ with their theoretical values

Exercise 5: various versions of transpose

Create a complex matrix B and compare various transpose options:

Which one is true: C == D? D == E? E == C? Is it easy to compare matrices this way?

Use the documentation online to find the proper function for simple test of matrix equality.

Exercise 6: Solving systems of linear equations:

Find the solution of the following system using one line of code:

$$3x + 2y - z = 1$$

 $2x - 2y + 4z = -2$
 $-x + \frac{1}{2}y - z = 0$

Digital literacy 2024 © Tomas Palenik. 2022

Cvičenie 2 - základy práce so systémom MATLAB

Úloha 1: premenné a výrazy

- a) Definujte premennú a ako skalárne číslo s hodnotou 2π .
- b) Definujte premennú v ako vektor celočíselných hodnôt 1,2, ... 8.
- c) Definujte premennú A ako maticu ľubovoľných celých čísel rozmerov 2x2
- d) Skopírujte premennú a do novej premennej b. Skopírujte aj v do novej premennej u, ako aj A do B.
- e) Vytvorte novú premennú c = a + 2b, a novú premennú w = v + 2u, ako aj C = A + 2B.
- f) Zobrazte zoznam premenných v pracovnom priestore (workspace) spolu s ich rozmermi.
- g) Vyskúšajte vyhodnotiť nasledujúce výrazy: a + v, a + A, a * v, a * A, A + v, v + u', vysvetlite, čo sa deje.
- h) Zmažte premennú a z pracovného priestoru.

Úloha 2: vypočítajte hodnotu výrazov

a) Podľa daného vzorca a tabuľky hodnôt Xi a p_i (iné označenie pre p(Xi)):

$$H(X) = -\sum_{i=1}^{N} p(X_i) \log_2(p(X_i))$$

Xi	0	1	2
pi	1/2	1/4	1/4

Vypočítajte hodnotu *H(X)*.

Doplnenie: Alternatívne označenie:

$$H(X) = \sum_{\forall X_i} p(X_i) \cdot \log_2(p(X_i))$$

Xi	0	1	2
$p(X_i)$	1/2	1/4	1/4

c) Vyhodnoť te nasledujúci vzorec pre $x = 1, 2, a \pi$:

$$f(x) = \sqrt{\frac{e^{-2\left(\frac{x-3}{x-2}\right)}}{2\pi i}}$$

Úloha 3: pohrajte sa s formátom výstupu a presnosťou zobrazenia desatinných čísel

Použite nasledujúce príkazy:

Vysvetlite, kde je problém. Pomôcka: skúste zmeniť formát zobrazovania.

Aké sú všetky dostupné formáty?

Úloha 4: Porovnajte s toleranciou

Napíšte výraz pre porovnanie $sin(\pi)$ and $tan(\pi/2)$ s ich teoretickými hodnotami.

Úloha 5: rôzne formy transpozície

Vytvorte maticu komplexných čísel B a porovnajte rôzne možnosti transpozície:

Ktoré z uvedených platí: C == D ? D == E ? E == C ? Je jednoduché porovnávať matice takto ?

>>format short

Použite dokumentáciu online na nájdenie správnej funkcie pre jednoduché porovnanie rovnosti matíc.

Úloha 6: Riešenie systému lineárnych rovníc

Nájdite riešenie nasledujúceho systému pomocou jediného riadku kódu:

$$3x + 2y - z = 1$$

 $2x - 2y + 4z = -2$
 $-x + \frac{1}{2}y - z = 0$