Семинар 8. Эффект Зеемана. Правила отбора

Клименок Кирилл Леонидович

30.09.2020

1 Теоретическая часть

На данный момент мы с вами разобрались с устройством уровней энергии в разных сложных атомах, поняли, что такое спин и даже научились (надеюсь) писать термы различных энергетических состояний атома. Пришло время перейти к переходам между различными уровнями и поведению этих уровней энергии во внешнем магнитном поле.

Мне кажется, уже становится понятно, что если мы включим внешнее магнитное поле в выделенном направлении, то из-за проекции полного магнитного момента атома на это направление каждый уровень начнет расщепляться по энергиям, и это приведет к еще большей сложности в строении уровней (эффект Зеемана) и к куче разных переходов между ними. А вот тут оказывается, что всё не совсем однозначно. Некоторые переходы оказываются невозможны в силу правил отбора. Давайте про них и поговорим перед эффектом Зеемана.

1.1 Правила отбора

Четность Начнем с понятия четности и ее оператора. Вы, конечно, знаете про правые и левые тройки векторов в трехмерном пространстве, и что одна из них является зеркальным отражением другой. Можно ли тогда ввести оператор инверсии, который бы зеркально транслировал наше обычное пространство в зеркальное? Да, разумеется, это делается очень легко, такой оператор называется оператором четности: $\hat{\mathbf{p}}$ (я буду использовать готическое начертание, чтобы не путать с импульсом). Всё, что он делает — это изменение вектора координаты $\mathbf{r} \to -\mathbf{r}$. Давайте найдем собственные значения этого оператора, просто применив его 2 раза подряд:

$$\hat{\mathfrak{p}}\psi(r) = \mathfrak{p}\psi(r) = \psi(-r)$$
$$\hat{\mathfrak{p}}^2\psi(r) = \mathfrak{p}^2\psi(r) = \psi(r)$$
$$\mathfrak{p} = \pm 1$$

То есть, собственные значения это или 1, или -1, а собственные функции это любые четные или не четные волновые функции.

Но в физике мы встречались не только с нормальными (истинными) векторами, которые при изменении четности меняют направление, но и другими векторами, которые называются аксиальными или псевдовекторами (например момент импульса или магнитный момент). Этот вектор не меняется с преобразованием инверсии. Почему это так, можно проследить на рисунке 1.

Теперь скажем про знакомые нам системы, где появляется момент импульса l, например атом. Что тогда будет с четностью? Ответ можно получить строго, подставив известные нам решения уравнения Шредингера для случая сферически симметричного случая. Это я опущу и скажу,

Рис. 1: Постоянство аксиального вектора при инверсии

что для такой системы $\mathfrak{p}=(-1)^l$. Если же система состоит из нескольких частей, то помимо простого произведения четности каждой из компонент этой системы, нужно учесть еще четность из относительного движения: $\mathfrak{p}=\mathfrak{p}_A\cdot\mathfrak{p}_B\cdot(-1)^{(l_A+l_B)}$. Более того, для всех типов взаимодействия, кроме слабого, работает закон сохранения четности.

Золотое правило Ферми. Вероятности переходов Рассмотрим вот такую задачу:

$$\begin{cases} \hat{H_0}\psi_i = E_i\psi_i\\ \hat{H} = \hat{H_0} + \hat{A}\xi\cos\omega t \end{cases}$$

Пусть у нас есть задача на поиск стационарных решений для известного оператора Гамильтона с индексом 0, и все уровни энергии E_i мы знаем. Тогда, теперь, добавим переменное по времени и слабое по сравнению с остальным воздействие на систему. Это будет переменное поле, с которым наша система взаимодействует. Под действием такого вот воздействия система может поменять свое состояние с вероятностью:

$$\rho_{ij} \sim \left| \int \psi_i^* \hat{A} \xi \psi_j dV \right|^2 \delta(E_i - E_j \pm \hbar \omega)$$

Это и есть золотое правило Ферми. Дельта-функция здесь просто говорит нам о законе сохранения энергии и подборе частоты так, чтобы расстояние между известными уровнями точно соблюдалось, а вот с интегралом надо бы разобраться подробнее. Во-первых, что же такое оператор \hat{A} и какой смысл он в себе несет? Это оператор физической величины системы, который обеспечивает связь с переменным воздействием. Если говорить об атоме, то это может быть, например, оператор дипольного момента атома, как электрического, так и магнитного, или просто заряд атома или что-то более сложное. А что это за состояния и что означает этот интеграл? Мы знаем, что і и ј состояния это собственные состояния системы, и они являются независимыми. То есть получается, что наш оператор \hat{A} должен «перепутать» наши состояния, иначе перехода не произойдет. Более

того, мы можем переставить і и ј местами и вероятность от этого никак не изменится. То есть неважно, переход идет снизу вверх или сверху вниз.

Мультипольное разложение. Е и М фотоны Теперь давайте посмотрим и запишем более подробно, какие у нас могут быть физические величины у разных систем, которые взаимодействуют с электромагнитным полем. Начнем с электрической составляющей. Первое, что приходит на ум, это просто записать положение каждого конкретного заряда в системе и закончить с этим. Это может быть совершенно нерационально, особенно если мы говорим о сложном атоме, где десятки протонов и электронов, которые как-то живут вокруг ядра. Более того, не факт, что наше поле, которое взаимодействует с атомом, существенно меняется с положением внутри атома. Поэтому мы можем воспользоваться трюком, который носит название «мультипольное разложение». В чем его суть? Давайте объединим все эти зарядики, которые сидят в атоме, и представим их как один — простая сумма зарядов (скаляр $q = \sum q_i$). Это первый член такого разложения. Обычно нам везет, и атом нейтрален, поэтому суммарный заряд равен 0. Но ведь атом с полем взаимодействуют! Тогда можем заменить нашу систему зарядов диполем с известным положением плюса и минуса (вектор $\mathbf{d} = \sum q_i \mathbf{r}_i$). А вот такая штука совершенно не обязательно равна нулю. Если нам этого не хватает, можем пойти дальше и сделать из зарядов квадруполь (тензор второго ранга, или, проще, матрица $Q_{\alpha\beta} = \sum q_i (3r_{i\alpha}r_{i\beta} - r^2\delta_{\alpha\beta})$, см. 2) и так далее. Тогда суммарная энергия взаимодействия с таким вот разложением:

$$\varepsilon = q\phi - (\mathbf{d} \cdot \mathbf{E}) - \frac{1}{2} \sum Q_{\alpha\beta} \frac{\partial E_{\alpha}}{\partial r_{\beta}} + \dots$$

Рис. 2: Квадруполь

Для магнитного поля обычно достаточно рассмотреть магнитный момент и все, но тоже можно извратиться и двинуться в сторону квадруполей.

А теперь, наконец, давайте попытаемся сформулировать правила отбора по четности. Для этого еще раз смотрим на вероятность перехода между состояниями из золотого правила Ферми на примере электрического дипольного момента:

$$\rho_{ij} \sim \left| \int \psi_i^* \hat{d} \psi_j dV \right|^2$$

Электрический дипольный момент это истинный вектор, и при преобразовании инверсии его знак меняется на противоположенный. Но ведь инверсия — это просто выбор правой или левой системы

координат, а природа не знает различий между ними, и переход, если он возможен, будет в любой из систем. Тогда смотрим на этот интеграл и видим, что если состояния обладают одинаковой четностью к инверсии, то под интегралом стоит нечетная функция, и такой интеграл равен нулю. То есть для дипольного электрического перехода необходимо изменение четности состояния. Мы уже показали, что четность определяется как $(-1)^l$, что означает, что такие переходы разрешены между S и P состояниями, но запрещены между, например, S и S состояниями. Аналогично это работает и с другими электрическими компонентами мультипольного разложения. Все такие фотоны называются электрическими, или, как обычно пишут, Ej фотоны, где j=1 — диполь, j=2 — квадруполь и т.д. Для них пространственная четность — $(-1)^j$.

Теперь рассмотрим в качестве «запутывающего» оператора оператор магнитного момента. Опять смотрим на золотое правило Ферми и видим: магнитный момент — аксиальный вектор, не меняется при инверсии, значит, чтобы этот интеграл не занулился, нам нужна одинаковая пространственная четность наших состояний. Это означает, что магнитные фотоны появляются при переходах между S и S или S и D состояниями. И по аналогии такие фотоны обозначаются Mj, где j также показывает «-польность» фотона. Для них пространственная четность — $(-1)^{j+1}$.

Теперь пару слов о вероятности излучения тех или иных фотонов. Вопрос вполне ожидаемый: а каких больше? Давайте ограничимся только случаем диполей. Вспомним из электричества, что интенсивности, излучаемые диполем, пропорциональны квадрату второй производной от дипольного момента:

$$I_e \sim \ddot{p_e}^2 \sim \left(\sum_i e_i r_i\right)^2$$

$$I_\mu \sim \ddot{p_\mu}^2 \sim \left(\frac{1}{2c} \sum_i e_i [r_i v_i]\right)^2$$

Тут сразу же становится видно, что $I_{\mu} \sim I_{e} \left(\frac{v}{c}\right)^{2} \approx I_{e} \cdot 10^{-7}$, то есть электрических фотонов много больше. Аналогично можно посмотреть на более страшные формулы для квадрупольного излучения и получить похожие результаты.

Спин фотона. Правила отбора для Е1-фотонов. Кажется, куда уж дальше?! Но на самом деле, самая забавная штука ждет нас именно здесь. Оказывается, у фотонов есть спин. Вот тут точно у последних из вас окончательно вскипел мозг. Спин это же собственный магнитный момент (и связанный с ним момент импульса) для частицы (так по крайней мере было у электрона), но говорить об этом мы можем только, если мы сядем в систему отсчета частицы, где она покоится, а фотон движется со скоростью света в любой системе. Совсем грустно стало? Это нормально. Но вот тут нам на помощь придет оптика прошлого семестра. Помните, мы говорили о разных поляризациях электромагнитных волн? В том числе среди прочих была и круговая. Вот к спину фотона надо относится именно как к круговой поляризации, только не волны в целом, а конкретного фотона. Так а какие значения он может принимать? Во-первых, для фотонов работает принцип суперпозиции, и нет принципа Паули, значит спин целый или 0. Во-вторых, есть эффект Садовского, когда мы светим поляризованным по кругу светом на мишень, и она начинает крутиться, то есть момент импульса фотоны все-таки переносят. Окончательно, спин фотона целый и не нулевой. При этом спин однозначно связан с «-польностью» фотона, т.е. у дипольных фотонов он равен 1, у квадрупольных 2 и т.д.

Ну и теперь, поскольку самым распространенным в природе являются E1- фотоны (дипольные электрические), то для них мы и запишем правила отбора, которые по своей сути являются законами сохранения момента импульса и четности:

- $\Delta S = 0$. Действительно, ведь фотоны электрические, а изменение спина связано с магнитным моментом.
- $\Delta J = \pm 1, 0$. Ноль возможен, если проекция на выделенное направление сохраняется, а фотон уносит полный момент в другой проекции.
- $\Delta L = \pm 1, 0$. По сути, закон сохранения четности.

1.2 Эффект Зеемана

А вот теперь можно поговорить и об атоме в магнитном поле, и об эффекте Зеемана, который описывает расщепление уровней энергии атома в этом внешнем магнитном поле.

Что мы уже знаем/помним из прошлой недели? Есть тонкое расщепление уровней, связанное со спин-орбитальным взаимодействием, которое легко объясняется, если мы «пересаживаемся» на электрон, ядро начинает вращаться вокруг него, и спин электрона начинает с магнитным полем этого ядра взаимодействовать. Теперь же у нас есть еще и внешнее магнитное поле, и мы должны рассмотреть случай, когда это внешнее поле много меньше поля от этого «движущегося» ядра, то есть спин-орбитальное взаимодействие превалирует (слабое поле, $\mu B_{ext} \ll E_{LS}$), и альтернативный случай, когда на спин-орбитальное взаимодействие мы можем забить (сильное поле, $\mu B_{ext} \gg E_{LS}$).

Слабое поле Тут у нас определяющим является спин-орбитальное взаимодействие, а магнитный момент атома будет определяться через полный механический момент атома и его g-фактор: $\mu_J = -g\mu_{\rm B}J$, и тогда энергия во внешнем поле будет определяться проекцией полного момента на внешнее поле: $U_B = -(\mu_J B) = g\mu_{\rm B}m_J B$, а проекции могут быть: $m_J = \pm J, \pm (J-1), \ldots$ Пример для стандартного дуплета натрия представлен на рис. 3.

Сильное поле Тут у нас спин-орбитальное взаимодействие вообще не играет роли, и никакого тонкого расщепления нет, а магнитный момент атома будет определяться независимо через механический и спиновый моменты L и S. Я напомню, что вклад спиного момента в магнитный момент в 2 раза больше, чем у механического, и это надо будет учесть. Опять рассматриваем переход между 2P и 2S . Расщепление уровней состояний представлены в таблице 1.

1.3 ЭПР и ЯМР

Тут особенно много я рассказывать не буду, а просто расскажу классическую интерпретацию этих резонансных явлений. У нас есть спин (в случае электронного парамагнитного резонанса у электрона, в случае ядерного — у ядра), у нас есть внешнее постоянное магнитное поле. Спин может быть направлен по или против этого поля, в зависимости от этого энергия у такого спина будет разной. Но под действием внешнего переменного поля мы можем заставить спин поворачиваться. Это соответствует обычному переходу в двухуровневой системе. В качестве альтернативы можно сказать, что этот переход соответствует M1 фотонам.

Основная формула этого эффекта:

$$\hbar\omega_0 = q\mu B$$

Рис. 3: Эффект Зеемана в слабом магнитном поле

Рис. 4: Эффект Зеемана в сильном магнитном поле

^{2}P		
L_z	S_z	$L_z + 2S_z$
1	1/2	2
1	-1/2	0
0	1/2	1
0	-1/2	-1
-1	1/2	0
-1	-1/2	-2
2S		
0	1/2	1
0	-1/2	-1

Таблица 1: Расщепление уровней для эффекта Зеемана в сильном поле

2 Практическая часть

2.1 Задача 6.21

Условие При переходе $P \to S$ из возбужденного состояния атома в основное испускается дублет $\lambda_1 = 455.1$ нм и $\lambda_2 = 458.9$ нм. Какие линии, соответствующие переходу ${}^2S_{1/2} \to {}^2P_{3/2}$, будут наблюдаться в спектре поглощения газа, состоящего из таких атомов, при наложении магнитного поля 50 кГс при температуре T = 0.5 К?

Решение Первое, с чем определимся, это то, какой это эффект Зеемана — в сильном или слабом поле? Считаем характерные энергии спин-орбитального взаимодействия и взаимодействия с магнитным полем:

$$U_{LS} = \frac{hc}{\lambda^2} \Delta \lambda = 2 \cdot 10^{-2} \text{ 9B}$$
$$U_B = \mu B = 3 \cdot 10^{-4} \text{ 9B}$$
$$kT = 4 \cdot 10^{-5} \text{ 9B}$$

То есть это слабое поле, при этом все атомы сидят в нижнем положении по энергии, а сама задача стоит о поглощении, а не испускании. А дальше смотрим на известную нам из теории структуру линий для этого эффекта и просто записываем разницы энергий:

$$E_B = \mu B (g_1 m_{j1} - g_2 1 m_{j2})$$

$$E_B = \mu B \begin{cases} 4/3 \cdot 1/2 - 2 \cdot (-1/2) = 5/3 \\ 4/3 \cdot (-1/2) - 2 \cdot (-1/2) = 1/3 \\ 4/3 \cdot (-3/2) - 2 \cdot (-1/2) = -1 \end{cases}$$

Аналогично можно посчитать энергии переходов из состояния с полным моментом 1/2, но в силу маленькой температуры заселенностью этого состояния можно пренебречь.

2.2 Задача Т4

Условие Ион меди Cu^{2+} , входящий в состав многих магнитных солей, имеет электронную конфигурацию внешней незаполненной оболочки $3d^9$.

- 1) Определить квантовые числа свободного иона меди Cu^{2+} ; записать его спектроскопический символ и вычислить g-фактор.
- 2) В ионных кристаллах магнитный ион взаимодействует с электрическим полем своих соседей, поэтому его более нельзя считать свободным, и формула Ланде становится неприменимой. В соли $CuGeO_3$ (магнитным моментом в этом соединении обладает только ион Cu^{2+}) в одной из ориентаций магнитного поля относительно кристалла резонансное поглощение наблюдается на частоте $\nu=36.5~\Gamma\Gamma$ ц в поле $H=11.48~\kappa$ Э. Определить по этим данным эффективный g-фактор иона меди в этом кристалле.

Решение На самом деле, задачка очень простая, нужно лишь потренироваться переписывать электронные конфигурации в термы и определять основные параметры атома. Начнем как раз с этого. У нас есть d-орбиталь, на ней момент L=2, но из 10 возможных электронов заполнено 9, значит все, кроме одного, спарены, и спиновый момент S=1/2. Тогда полный момент J=L+S=5/2. Для нахождения g-фактора надо просто воспользоваться формулой из прошлого семинара и получить g=6/5.

Для второй части надо воспользоваться основной формулой для эффекта ЯМР/ЭПР:

$$h\nu = g\mu B \ \Rightarrow \ g = \frac{h\nu}{\mu B} = 2.27$$

2.3 Комментарии к задачам из задания

Задача 6.21 Решена.

Задача 6.34 Повторяет 6.21. Так же использовать схему из теоретической части.

Задача 6.58 Тут нужно найти разность населенности 2 уровней энергии, как для обычной двухуровневой системы с распределением Больцмана.

Задача Т3 Определить изменение четности и изменение момента 2 состояний, по этим изменениям определить фотон. Время жизни обратно пропорционально вероятности излучения, поэтому из данных задачи надо собрать что-то похожее на безразмерный $(v/c)^2$.

Задача Т4 Решена.

Задача 1.57 Опять двухуровневая система, для которой надо найти среднюю разность заселенностей, которая и будет пропорциональна вероятности поглощения.

Задача 1.59 Тут нужно записать баланс того, сколько излучилось с верхнего уровня, к тому, сколько поглотилось и ушло из резонатора.