การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

Disaster 2 (250 คะแนน)

1.5 seconds, 1024 megabytes

มีเมืองอยู่ N เมือง ระบุด้วยหมายเลข 1 ถึง N เชื่อมกันด้วยถนนสองทิศทาง N-1 เส้น โดยถนนเส้นที่ i จะเชื่อมระหว่างเมืองที่ i กับ i+1 และมีระยะทาง W_i หน่วย นอกจากนี้เมืองที่ i จะมีประชากรอยู่ P_i คน

เนื่องจากกำลังจะเกิดภัยพิบัติขึ้น จึงต้องการเลือกสร้างศูนย์อพยพในเมืองจำนวน M เมือง โดยเมืองที่ i จะมีค่าก่อสร้างศูนย์อพยพ C_i บาท เมื่อเลือกแล้วประชากรทุกคนจะเดินทางไปยังศูนย์อพยพที่ใกล้เมืองที่ตนอยู่มากที่สุดศูนย์ใดก็ได้ และทางรัฐบาลจะต้องจ่ายเงินให้ กับประชาชนแต่ละคนเป็นงบในการเดินทาง 1 บาทต่อระยะทาง 1 หน่วย คุณผู้เป็นนักวางแผนอัจฉริยะจึงถูกวานให้หาวิธีที่จะสร้างศูนย์ อพยพในเมือง M เมือง และทำให้จำนวนงบประมาณที่ทางรัฐบาลต้องเตรียมน้อยที่สุด

กล่าวคือ ให้ $S\in \mathcal{P}(\{1,2,\ldots,N\})$ แทนเซ็ตของเมืองที่จะสร้างศูนย์อพยพ และ $f\colon \mathcal{P}(\{1,2,\ldots,N\}) \to \mathbb{Z}_{\geq 0}$ แทน จำนวนงบประมาณที่จะต้องเตรียม จะได้ว่า

$$f(S) = \sum_{i \in S} C_i + \sum_{1 \le i \le N} P_i \cdot \min_{j \in S} d(i, j)$$

เมื่อ d(i,j) แทนระยะทางระหว่างเมืองที่ i และ j จงหา $\displaystyle\min_{S\colon |S|=M} f(S)$

ข้อมูลนำเข้า

ข้อมูลนำเข้ามีทั้งหมด Q+2 บรรทัด

บรรทัดแรกประกอบด้วยจำนวนเต็ม N และ M แทนจำนวนเมือง และจำนวนเมืองที่เลือกสร้างศูนย์อพยพ $(2 \leq M \leq N \leq 10^5)$

บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม N-1 จำนวน คือ W_1,W_2,\ldots,W_{N-1} โดยที่ W_i แทนระยะทางระหว่างเมือง i กับ i+1 $(1\leq W_i\leq 10^3)$

บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม N จำนวน คือ P_1,P_2,\ldots,P_N โดยที่ P_i แทนจำนวนประชากรในเมืองที่ i $(1\leq P_i\leq 10^3)$

บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม N จำนวน คือ C_1,C_2,\ldots,C_N โดยที่ C_i แทนจำนวนงบประมาณที่ต้องใช้ในการสร้างเมือง ที่ $i~(1\leq C_i\leq 10^9)$

ข้อมูลส่งออก

ตอบจำนวนเต็มเพียงหนึ่งตัว แทนจำนวนงบประมาณที่ทางรัฐบาลต้องเตรียมที่น้อยที่สุด

การแข่งขันคณิตศาสตร์และวิทยาศาสตร์ระหว่างโรงเรียนครั้งที่ 20: TUMSO 20th

วิชาคอมพิวเตอร์

เวลา 09:00 น. - 14:00 น.

วันที่ 12 มกราคม 2567

การให้คะแนน

ชุดทดสอบจะถูกแบ่งเป็น 7 ชุด จะได้คะแนนในแต่ละชุดก็ต่อเมื่อโปรแกรมให้ผลลัพธ์ถูกต้องในชุดทดสอบย่อยทั้งหมด

ชุดที่ 1 (7 คะแนน) จะมี $2 \leq N \leq 10$

ชุดที่ 2 (18 คะแนน) จะมี $2 \leq N \leq 20$

ชุดที่ 3 (35 คะแนน) จะมี $2 \le N \le 50$

ชุดที่ 4 (27 คะแนน) จะมี $2 \le N \le 500$

ชุดที่ 5 (69 คะแนน) จะมี $2 \leq N \leq 5000$

ชุดที่ 6 (85 คะแนน) จะมี $C_i=0$

ชุดที่ 7 (9 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 2	20
1 1 1 1	
1 2 3 4 5	
2 4 6 8 10	

คำอธิบาย

ถ้า $S=\{1,4\}$ จะได้ว่า

$$f(S) = \sum_{i \in S} C_i + \sum_{1 \le i \le N} P_i \cdot \min_{j \in S} d(i, j) = 10 + 2 + 3 + 5 = 20$$

ซึ่งเป็นค่าที่น้อยที่สุด