MATH211: Linear Methods I

Matthew Burke

Tuesday 20th November, 2018

Lecture on Tuesday 20th November, 2018

Examples

Multiplication

Complex roots

Summary of previous work

$$i^2 = -1$$

Last time

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

$$(a+bi)(c+di)=(ac-bd)+(ad+bc)i$$

graphical interpretation

$$a + bi \leftrightarrow (a, b)$$

 $\mathbb{C} \leftrightarrow \mathbb{R}^2$

polar form

$$a + ib \leftrightarrow Re^{i\theta}$$

where R is the *modulus* and θ the *angle*.

Examples

Example

Convert the following to polar form:-

- ► $-2 + 2\sqrt{3}i$
- **▶** 3*i*
- ightharpoonup -1 i
- ► $\sqrt{3} + 3i$

Example

Convert the following to standard form:-

- ► $2e^{\frac{2\pi i}{3}}$
- ▶ 3e^{-iπ}
- $ightharpoonup 2e^{\frac{3i\pi}{4}}$

Multiplication

Multiplication using polar form

If
$$z=Re^{i\theta}$$
 and $w=Qe^{i\phi}$ then
$$zw=Re^{i\theta}Qe^{i\phi} = (RQ)e^{i(\theta+\phi)}$$

Slogan: To multiply two complex numbers we multiply the moduli and add the angles.

Powers using polar form

Theorem (De Moivre Theorem)

$$(\cos\theta + i\sin\theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$$

Questions?

Questions?

Examples

Example

Express $(1-i)^6(\sqrt{3}+i)^3$ in the form a+bi.

Example

Express $(\frac{1}{2} - \frac{\sqrt{3}}{2}i)^{17}$ in the form a + bi.

Complex roots

Principal roots

If $w = Re^{i\theta}$ then one solution to the equation

$$z^n = w$$

is

$$z = \sqrt[n]{R} \cdot e^{\frac{i\theta}{n}}$$

although there will in fact be n-1 more solutions.

Square roots

The solutions to

$$z^2 = 25$$

are

$$z = +5$$
 and $z = -5$

Square roots

The solutions to

$$z^2 = i$$

are

$$z = e^{\frac{\pi}{4}}$$
 and $z = e^{\frac{-3\pi i}{4}}$

Square roots

In general if $w = Re^{i\theta}$ then all of

$$\sqrt{R}e^{i\left(\frac{\theta}{2}+k\pi\right)}$$

will be square roots of w because

$$\left(\sqrt{R}e^{i\left(\frac{\theta}{2}+k\pi\right)}\right)^2=Re^{i(\theta+2k\pi)}=Re^{i\theta}$$

and then we need to find the values of

$$\frac{\theta}{2} + k\pi$$

that are between $-\pi$ and $+\pi$.

Questions?

Questions?

Examples

Example

Find all solutions to the following equations:

- $z^2 = 25$.
- Find all solutions to $z^2 = -1$
- Find all solutions to $z^2 = e^{\frac{i\pi}{4}}$
- Find all solutions to $z^3 = i$. (Write in Cartesian form.)
- ► Find all solutions to $z^4 = 2(\sqrt{3}i 1)$. (Write in Cartesian form.)

Example

Find all sixth roots of unity.