$\emptyset ving~13$ Induksjon. Forskyvningsstrøm. Vekselstrømskretser.

Veiledning: 23. og 24. april ifølge nettsider. Innlevering: Onsdag 25. april 14:00

Oppgave 1. Induktans for koaksialkabel.

Vi ser på samme koaksialkabel (med strøm I og -I) som i oppgave 3 i øving 11. Både ledermaterialet og isolasjonsmaterialet mellom lederne har permeabilitet μ_0 .

Vi skal beregne selvinduktansen til koaksialkabelen. Dette kan gjøres på to måter:

- A) Fra beregning av asimutal (sirkulær) fluks Φ_B mellom lederne og bruk av Faradays lov $\mathcal{E} = -\mathrm{d}\Phi_B/\mathrm{d}t = -L \cdot \mathrm{d}I/\mathrm{d}t$.
- B) Fra beregning av energiinnhold mellom lederne og formelen $U' = \frac{1}{2}L'I^2$, der U'er magnetisk energiinnhold og L' er selvinduktans, begge per lengdeenhet av kabelen (' betyr per lengdeenhet). Magnetisk energitetthet (per volumenhet) er $u = \frac{1}{2}\vec{H} \cdot \vec{B}$.

Det kan bli litt arbeid å beregne fluks og/eller energi innvendig i lederne, og du kan derfor forenkle ved å anta at all strøm går på overflata av innerleder og innerflate av ytterleder. (Så er tilfelle for vekselstrøm med høy frekvens.)

- a) Skissér magnetfeltet B(r) som funksjon av avstand r fra aksen.
- b) Bruk metode A) til å vise at selvinduktans per lengdeenhet kan uttrykkes $L' = \frac{\mu_0}{2\pi} \cdot \ln \frac{b}{a}$ (må løse et flateintegral).
- c) Hva er selvinduktansen L for en 10 m lang kabel med a=0,50 mm og b=3,0 mm?
- d) Finn uttrykk for den magnetiske energitettheten $u = \frac{1}{2} \vec{H} \cdot \vec{B}$ som funksjon av avstand r fra aksen. Bruk deretter metode B) til å finne L' (må løse et volumintegral).
- e) For kabelen gitt i c), anta I=2,0 A og beregn u numerisk ved r=b. Merk deg enheten! Dette vil være lik et (magnetisk) trykk som ytterlederen presses utover med.

Oppgave 2. Induksjon ved rotasjon.

Gitt en uendelig lang, rett leder som fører strømmen I_1 . En kvadratisk, tynn ledersløyfe med sidekant a plasseres med venstre sidekant i avstand c fra den rette lederen (se figur). Sløyfa ligger i et plan gjennom den rette lederen og ligger så langt fra lederen $(c \gg a)$ slik at vi kan anta at magnetfeltet som I_1 setter opp inni strømsløyfa er homogent og lik verdien i sentrum. Sløyfa roterer om en akse som går parallelt med I_1 og gjennom midtpunktet av sløyfa, som vist i figuren. Rotasjonsfrekvensen er f.

Finn uttrykk for indusert elektromotorisk spenning i ledersløyfa. Sett inn tallsvar med oppgitte tallverdier: $a = 0.100 \text{ m}, c = 1.00 \text{ m}, I_1 = 50 \text{ A}, f = 1.00 \text{ kHz}.$

Oppgave 3. Forskyvningsstrøm.

En parallellplatekondensator har plateareal $A=3,00\,\mathrm{cm}^2$ i en avstand $d=2,50\,\mathrm{mm}$. Området mellom platene er fylt av et dielektrikum med $\epsilon_{\rm r}=4,70.$ Se bort fra randeffekter.

- a) Ved et bestemt tidspunkt er potensialforskjellen mellom platene 120 V og ledningsstrømmen $I_c = 6,00$ mA. På dette tidspunktet, hva er (i) ladningen på hver plate, (ii) ladningsendring per tidsenhet, (iii) forskyvningsstrømmen $I_{\rm d}$ i dielektrikumet?
- b) Anta nå at dielektrikumet i kondensatoren ikke er en perfekt isolator men har endelig resistivitet ρ . Kondensatoren ikke er en perfekt isolator men har endelig resistivitet ρ . satoren har ved t=0 ladningen Q_0 funnet over og tilførselsledninger koples da fra. Ladningen lekker så gradvis ved ledning gjennom dielektrikumet.
 - (i) Finn friladningsstrømtettheten $J_c(t)$ i dielektrikumet som funksjon av tida (ikke sett inn tallverdier).
 - (ii) Finn forskyvningsstrømtet
theten $J_{\rm d}(t)$ i dielektrikumet som funksjon av tida.
 - (iii) Vis at $J_{\rm d} = -J_{\rm c}$, dvs. at total strømtetthet er lik null. Kommentarer?

TIPS: Bruk Ohms lov på punktform: $J_c = E/\rho$ og finn diff.likning for Q(t).

Oppgave 4. Kompleks impedans.

a) Skriv påtrykt spenning V og resulterende strøm I på kompleks form,

$$V(t) = V_0 e^{i\omega t}, \quad I(t) = I_0 e^{i\omega t} = |I_0| e^{i\omega t - i\alpha},$$

og bruk Kirchhoffs spenningsregel til å vise at kompleks impedans til en motstand R, en induktans L og en kapasitans C (figuren) er hhv.

$$Z_R = R$$
 $Z_L = i\omega L$ $Z_C = 1/i\omega C$

(Merk: Standard notasjon er at $1/i\omega C$ betyr $1/(i\omega C)$ og ikke $(1/i)\cdot \omega C$.)

b) Anta at påtrykt spenning er $V_0 \cos \omega t$ med V_0 reell og fast frekvens ω . Skisser V(t) mellom t=0 og $t=T=2\pi/\omega$. Velg f.eks. $V_0=1,0$ V. Tegn i samme grafen de tre

$$I(t) = |I_0|\cos(\omega t - \alpha)$$

for hver av de tre kretsene til høyre. Bruk samme verdi for $|I_0|$ i alle tre tilfeller, dvs. velg f.eks. $|Z| = 0,50 \Omega$ for alle.

c) Figuren viser fire ulike AC-kretser.

Bruk reglene for serie- og parallellkobling av komplekse impedanser til å skrive ned den totale komplekse impedansen til hver av kretsene i figuren.

Oppgave 5. Resonanskrets.

Figuren viser en resonanskrets, i form av en seriekobling av R, C og L. Det er resonans i kretsen ved den frekvensen der strømamplituden er maksimal, dvs. |Z| er minimum.

- a) Bruk regelen for seriekobling av komplekse impedanser til å skrive ned den komplekse impedansen Z til denne kretsen. Finn uttrykk for impedansens absoluttverdi |Z| og fasevinkel α .
- b) Hva er kretsens resonansfrekvens? Finn tallverdi når impedansverdiene er $L=\frac{1}{100\pi}$ H og $C=\frac{1}{100\pi}$ F.
- c) Påtrykt spenning og resulterende strøm er som angitt i oppgavene over med spenningsamplitude $V_0=330$ V og impedansverdiene som gitt i b). Tegn opp strømamplituden $|I_0(\omega)|$ som funksjon av vinkelfrekvensen ω til spenningskilden for tre ulike verdier av resistansen: $R=1/100\,\Omega$, $R=1/10\,\Omega$ og $R=1,00\,\Omega$.
- d) Kontaktene i veggen der du bor tilsvarer en spenningskilde med amplitude omtrent 330 V og frekvens f=50 Hz. Ville det ha vært smart å koble en slik RCL-krets med angitte verdier for R, C og L til husets nettspenning? Hvor stor resistans bør du bruke for å unngå at sikringen ryker? Anta at det er snakk om en "kurs" med en 10-ampere sikring. Det betyr at strømamplitudens såkalte "rms-verdi" $|I_0|/\sqrt{2}$ ikke må overskride 10 A.

Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum. Lykke til med eksamenslesing, eksamen og videre studier! Husk at du må ha 8 av 13 øvinger godkjent for å gå opp til eksamen.

Utvalgte fasitsvar:

1c) 3,6 μ H; 1e) 7,1 mPa. 2) $\mathcal{E}_0 = 0,60$ mV. 3a) 599 pC. 5a) $|Z| = \sqrt{R^2 + (\omega L - 1/\omega C)^2}$ 5b) 50 Hz, 5d) 24 Ω .