1. 实验项目名称

生产计划问题(线性规划模型)

2. 实验目的

通过对线性规划问题和单纯形法的学习,掌握在经营管理中如何有效地利用现有人力、物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力、物力去实现目标。并通过实验加深对线性规划问题的理解与应用。

3. 实验内容与实验步骤

3.1 实验内容

某厂按合同规定须于当年每个季度末分别提供 10,15,25,20 台同一规格的柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如下表所示,又如果生产出来的柴油机当季不交货的,每台每积压一个季度需储存、维护等费用 0.15 万元。要求在完成合同的情况下,作出使该厂全年生产(包括储存、维护)费用最小的决策?

季度	生产能力/台	单位成本/万元
I	25	10.8
II	35	11.1
III	30	11.0
IV	10	11.3

3.2 实验步骤

3.2.1 模型的假设

假设该厂每年只按照合同完成相应的生产,不造成库存积压。

3.2.2 模型的建立

在对模型假设的基础上,设变量 x_j 为第j季度的柴油机产量,j=1,2,3,4而且 x_j 为非负整数。按合同规定的任务,有

$$x_1 + x_2 + x_3 + x_4 = 10 + 12 + 25 + 20 = 70$$

根据题意,我们知道,柴油机的产量要受该厂在各季度的生产能力的制约。

对于第一季度,最多可以生产 25 台,而且,由于上年无积压库存,该季度必须完成合同规定的计划,至少生产 10 台。我们可以得到不等式

$$10 \le x_1 \le 25$$
 ②

对于第二季度,最多可以生产35台,我们可以得到不等式

$$x_2 \leq 35$$
 3

对于第三季度, 最多可以生产 30 台, 我们可以得到不等式

$$x_3 \le 30$$
 ④

对于第四季度, 最多可以生产 10 台, 我们可以得到不等式

$$x_4 \leq 10$$
 \bigcirc

在满足上述制约条件且完成的生产任务一定的情况下,我们希望该厂全年生产(包括存储、维护)费用最小。

由题意, 我们知道一年单纯的成本费用为

$$10.8x_1 + 11.1x_2 + 11.0x_3 + 11.3x_4$$

由于第一季度的库存积压为 x_1-10 台,第二季度可能产生的存储、维护费用为

$$0.15(x_1-10)$$

由于第二季度的库存积压为 $x_1 - 10 + x_2 - 15$ 台,第三度可能产生的存储、维护费用为

$$0.15(x_1-10+x_2-15) = 0.15(x_1+x_2-25)$$

由于第三季度的库存积压为 x_1 -10+ x_2 -15+ x_3 -25台,第四季度可能产生的存储、维护费用为

$$0.15(x_1 - 10 + x_2 - 15 + x_3 - 25) = 0.15(x_1 + x_2 + x_3 - 50)$$

综上所述,有

$$\min f = (10.8x_1 + 11.1x_2 + 11.0x_3 + 11.3x_4) + 0.15(x_1 - 10) + 0.15(x_1 + x_2 - 25) + 0.15(x_1 + x_2 - 25)$$

化简得

$$\min f = 11.25x_1 + 11.4x_2 + 11.15x_3 + 11.3x_4 - 12.75 \qquad \textcircled{6}$$

我们将上述结果写成规范形式,就建立了一个运筹学模型,如下

$$\min f = 11.25x_1 + 11.4x_2 + 11.15x_3 + 11.3x_4 - 12.75$$

$$\begin{cases}
 x_1 + x_2 + x_3 + x_4 = 70 \\
 10 \le x_1 \le 25 \\
 x_2 \le 35 \\
 x_3 \le 30 \\
 x_4 \le 10
\end{cases}$$

3.2.3 模型的求解

本问题是线性规划问题模型,而我们求解线性规划问题一般采用单纯形方法。 运用 Lingo 进行求解。

4. 实验环境

Windows 10 操作系统、Lingo 软件、MathType

5. 实验过程与分析

5.1 实验过程

5.1.1 输入模型

在 Lingo 编辑界面输入带求解模型对应的代码,如图 5.1.1 所示。

min=11.25*x1+11.4*x2+11.15*x3+11.3*x4-12.75:

x1 > = 10;

 $x1 \le 25$;

x2 < =35;

x3 < =30;

x4 <= 10;

x1+x2+x3+x4=70;

@gin(x1) : @gin(x2) : @gin(x3) : @gin(x4) :

5.1.2 运行求解

点击求解按钮进行求解如图 5.1.2 所示。

5.1.3 运行结果

运行结果如图 5.1.3 所示。

```
Lingo 18.0 - Lingo Model - Lingo1
File Edit Solver Window Help
 Lingo Model - Lingo1
   min=11.25*x1+11.4*x2+11.15*x3+11.3*x4-12.75;
   x1 >= 10;
   x1<=25;
   x2<=35;
   x3<=30;
   x4<=10;
   x1+x2+x3+x4=70;
   @gin(x1);@gin(x2);@gin(x3);@gin(x4);
```

图 5.1.1 输入模型代码

图 5.1.2 运行

图 5.1.3 运行结果

5.2 实验结果分析

如图 5.1.3,观察运行状态窗口可知问题的类型为线性规划问题模型,求解得到的为全局最优解,最优结果为 773。如图 5.1.3,观察求解报告窗口可知求解结果如下 Global optimal solution found.

Objective value:	773.0000
Objective bound:	773.0000
Infeasibilities:	0.000000
Extended solver steps:	0
Total solver iterations:	0
Elapsed runtime seconds:	0.05

Model Class: PILP

Total variables: 4
Nonlinear variables: 0
Integer variables: 4

Total constraints: 7
Nonlinear constraints: 0

Total nonzeros: 13
Nonlinear nonzeros: 0

Variable	Value	Reduced Cost
X1	25.00000	11.25000
X2	5.000000	11.40000
х3	30.00000	11.15000
X4	10.00000	11.30000
Row	Slack or Surplus	Dual Price
1	773.0000	-1.000000
2	15.00000	0.000000
3	0.000000	0.000000
4	30.00000	0.000000
5	0.000000	0.000000
6	0.000000	0.000000
7	0.000000	0.000000

由以上运行结果可知使该厂全年生产(包括存储、维护)费用最小的决策是:第一季度生产 25 台柴油机,第二季度生产 5 台柴油机,第三季度生产 30 台柴油机,第四季度生产 10 台柴油机,最小费用为 773 万元。

6. 实验结果总结

本次实验结果与预期一致。通过这次实验,我熟悉了 Lingo 的操作,同时进一步加强了对线性规划问题的理解,也体会到了运用软件进行模型求解的便利性。