MP Programme de colle n° 3

Au programme:

Chapitre 3

Réduction des endomorphismes

- 4. Polynôme caractéristique
- 5. Endomorphismes diagonalisables
- 6. Endomorphismes trigonalisables

Les démos à connaître (en rouge les plus conséquentes)

<u>4.1a</u>

Propriétés:

❖ Deux matrices semblables ont même polynôme caractéristique.

<u>4.2.a</u>

Théorème : Soient $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(K)$

Les valeurs propres de u (resp. A) sont les racines de son polynôme caractéristique : $\mathrm{Sp}_{\mathbb{K}}(u) = \mathrm{Rac}(\chi_u)$ (resp. $\mathrm{Sp}_{\mathbb{K}}(u) = \mathrm{Rac}(\chi_A)$.

4.2.c

Théorème : Si λ est valeur propre d'ordre m, alors $1 \leq \dim(E_{\lambda}) \leq m$

<u>5.2.a</u>

Proposition : Soit $u \in \mathcal{L}(E)$. Alors

u est diagonalisable $\Leftrightarrow E$ possède une base de vecteurs propres.

 \Leftrightarrow E est la somme directe de ses sous-espaces propres.

$$\Leftrightarrow \sum_{i=1}^{r} \dim(E_{\lambda_i}) = n$$
 où $r = \operatorname{card}(Sp(u))$

 $\Leftrightarrow \ \chi_u \text{ est scind\'e et } \forall i \in [\![\ 1,r \]\!] : \dim(E_{\lambda_i}) = m_i$ $(m_i \text{ ordre de multiplicit\'e de } \lambda_i)$

Corollaire : Si χ_u est scindé à racines simples, u est diagonalisable.

Lemme : Soit $u \in \mathcal{L}(E)$ un endomorphisme diagonalisable et $P \in \mathbb{K}[X]$. Soit $Sp(u) = \{\lambda_1, \lambda_2, ... \lambda_r\}$ où r = card(Sp(u)) et soit p_i la projection de E sur E_{λ_i} parallèlement à $\bigoplus_{j \neq i} E_{\lambda_j}$. Alors $\boxed{P(u) = \sum_{i=1}^r P(\lambda_i) p_i}$

<u>5.3.a</u>

Théorème : Soit $u \in \mathcal{L}(E)$. u est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.

Corollaire : Soit $u \in \mathcal{L}(E)$. u est diagonalisable si et seulement s'il admet un polynôme annulateur scindé à racines simples.

<u>6.2. a</u>

Proposition : Soit $u \in \mathcal{L}(E)$.

u est trigonalisable $\Leftrightarrow \chi_u$ est scindé

 \Leftrightarrow Il existe un polynôme annulateur scindé

 $\Leftrightarrow \mu_{\scriptscriptstyle \! u} \,$ est scindé

Attention : (iv) \Rightarrow (i) est admis