Assignment 3: Due Friday 2018-09-19

Main Assignment

Chapter 14.4:

- 17. Suppose $X_j = Z_j Z_{j-1}$, where j = 1, 2, ..., n and $Z_0, Z_1, ..., Z_n$ are independent and identically distributed with common variance σ^2 . What is the variance of the random variable $\frac{1}{n} \sum_{j=1}^n X_j$?
- 19. Let $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_n$ be two random sample from the independent normal distributions with $Var[X_i] = \sigma^2$ and $Var[Y_i] = 2\sigma^2$, for i = 1, 2, ..., n and $\sigma^2 > 0$. If $U = \sum_{i=1}^n \left(X_i \overline{X}\right)^2$ and $V = \sum_{i=1}^n \left(Y_i \overline{Y}\right)^2$, then what is the sampling distribution of the statistic $\frac{2U+V}{2\sigma^2}$?

Chapter 15.4:

2. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with a probability density function

$$f(x; \theta) = \begin{cases} (\theta + 1) x^{-\theta - 2} & \text{if } 1 < x < \infty \\ 0 & \text{otherwise,} \end{cases}$$

where $0 < \theta$ is a parameter. Using the moment method find an estimator for

5. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with a probability density function

$$f(x; \theta) = \begin{cases} (\theta + 1) x^{-\theta - 2} & \text{if } 1 < x < \infty \\ 0 & \text{otherwise,} \end{cases}$$

where $0 < \theta$ is a parameter. Using the maximum likelihood method find an estimator for the parameter θ .

6. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with a probability density function

$$f(x; \theta) = \begin{cases} \theta^2 x e^{-\theta x} & \text{if } 0 < x < \infty \\ 0 & \text{otherwise,} \end{cases}$$

where $0 < \theta$ is a parameter. Using the maximum likelihood method find an estimator for the parameter θ .

Extra Credit:

Chapter 14.4:

16. Let X and Y be joint normal random variables with common mean 0, common variance 1, and covariance $\frac{1}{2}$. What is the probability of the event $(X + Y \le \sqrt{3})$, that is $P(X + Y \le \sqrt{3})$?

20. Suppose $X_1, X_2, ..., X_6$ and $Y_1, Y_2, ..., Y_9$ are independent, identically distributed normal random variables, each with mean zero and variance $\sigma^2 >$

0. What is the 95th percentile of the statistics
$$W = \left[\sum_{i=1}^{6} X_i^2\right] / \left[\sum_{j=1}^{9} Y_j^2\right]$$
?

Chapter 15.4:

3. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with a probability density function

$$f(x; \theta) = \begin{cases} \theta^2 x e^{-\theta x} & \text{if } 0 < x < \infty \\ 0 & \text{otherwise,} \end{cases}$$

where $0 < \theta$ is a parameter. Using the moment method find an estimator for the parameter θ .