Наблюдение. $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ является тождеством в S_k тогда и только тогда, когда для каждого z - порядка k-перестановки выполняется хотя бы одно из следующих правил:

$$z|a \quad \text{if } z|(b-c) \tag{1}$$

$$z|c$$
 и $z|(b-a)$ (2)

$$z|b$$
 и $z|(a+c)$ (3)

 $\operatorname{lcm}(k)$ - наименьшее общее кратное всех чисел, меньших либо равных k.

Теорема 1. Пусть $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ - тождество в S_k и $a+b+c \le \operatorname{lcm}(k)$. Тогда b=a+c.

Доказательство. Пусть L_1 , L_2 , L_3 - наименьшие общие кратные порядков, для которых выполняются правила (1), (2) и (3) из наблюдения соответственно. Тогда, в соответствии с правилами из наблюдения

$$a = x_1 L_1$$
$$c = x_2 L_2$$
$$b = x_3 L_3$$

а также

$$x_3L_3 - x_2L_2 = y_1L_1 \tag{4}$$

$$x_3L_3 - x_1L_1 = y_2L_2 (5)$$

$$x_1L_1 + x_2L_2 = y_3L_3 \tag{6}$$

где $x_1, x_2, x_3, y_2 \in \mathbb{N}, y_1, y_3 \in \mathbb{Z}.$

Выразим x_3L_3 из (4) и (5):

$$x_2L_2 + y_1L_1 = x_1L_1 + y_2L_2$$

скомпонуем

$$(y_1 - x_1)L_1 = (y_2 - x_2)L_2 \tag{7}$$

и рассмотрим решения получившегося уравнения (7).

1. $y_1 = x_1$. Тогда

$$(y_1 - x_1)L_1 = (y_2 - x_2)L_2 = 0$$

откуда $y_2=x_2$. Подставив получившееся в равенства (4) - (6) получим $y_3=x_3$, откуда следует, что b=a+c.

2. $y_1 > x_1$. Тогда из (7) $y_2 > x_2$.

$$x_3L_3 = x_2L_2 + y_1L_1 > x_2L_2 + x_1L_1 = y_3L_3$$

т.е. $x_3 > y_3$. Пусть

$$y_1 = x_1 + t_1$$

 $y_2 = x_2 + t_2$
 $x_3 = y_3 + t_3$

где $t_1, t_2, t_3 \in \mathbb{N}$. Подставим в (4) - (6):

$$(y_3 + t_3)L_3 - x_2L_2 = (x_1 + t_1)L_1$$

$$(y_3 + t_3)L_3 - x_1L_1 = (x_2 + t_2)L_2$$

$$x_1L_1 + x_2L_2 = y_3L_3$$

Сложив первое и третье равенства, получим

$$t_3L_3 = t_1L_1$$

Сложив второе и третье равенства, получим

$$t_3L_3 = t_2L_2$$

Т.е. каждое из чисел t_1L_1, t_2L_2, t_3L_3 должно делиться на $L_1, L_2, L_3.$ Значит

$$t_1L_1 = t_2L_2 = t_3L_3 \ge \operatorname{lcm}(L_1, L_2, L_3) = \operatorname{lcm}(k)$$

Получается

$$b = x_3L_3 = (y_3 + t_3)L_3 = y_3L_3 + t_3L_3 \ge y_3L_3 + \operatorname{lcm}(k) > \operatorname{lcm}(k)$$

Но $a+b+c \leq \operatorname{lcm}(k)$ по условию. Противоречие.

3. $y_1 < x_1$ (все аналогично 2 пункту). Тогда из (7) $y_2 < x_2$

$$x_3L_3 = x_2L_2 + y_1L_1 < x_2L_2 + x_1L_1 = y_3L_3$$

т.е. $x_3 < y_3$. Пусть

$$x_1 = y_1 + t_1$$

 $x_2 = y_2 + t_2$
 $y_3 = x_3 + t_3$

где $t_1, t_2, t_3 \in \mathbb{N}$. Подставим в (4) - (6):

$$x_3L_3 - (y_2 + t_2)L_2 = y_1L_1$$

$$x_3L_3 - (y_1 + t_1)L_1 = y_2L_2$$

$$(y_1 + t_1)L_1 + (y_2 + t_2)L_2 = (x_3 + t_3)L_3$$

Сложив первое и третье равенства, получим

$$t_1L_1 = t_3L_3$$

Сложив второе и третье равенства, получим

$$t_2L_2 = t_3L_3$$

Т.е. каждое из чисел t_1L_1, t_2L_2, t_3L_3 должно делиться на L_1, L_2, L_3 . Значит

$$t_1L_1 = t_2L_2 = t_3L_3 \ge \operatorname{lcm}(L_1, L_2, L_3) = \operatorname{lcm}(k)$$

Получается

$$a = x_1 L_1 = (y_1 + t_1)L_1 = y_1 L_1 + t_1 L_1 \ge y_1 L_1 + \operatorname{lcm}(k) > \operatorname{lcm}(k)$$

Но $a + b + c \le lcm(k)$ по условию. Противоречие.

Следствие 1. Для кратчайшего тож дества вида $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ выполняется b = a + c.

Доказательство. Достаточно показать, что существуют тождества, для которых $a+b+c \le \text{lcm}(k)$ (тогда кратчайшее тождество также удовлетворяет этому условию, а по теореме для всех тождеств с таким свойством выполняется b = a + c).

Пусть $b:=\frac{\mathrm{lcm}(k)}{2}$. Тогда из всех возможных порядков b не делится на порядки, кратные $x=2^m$, где $m=\max\{i\in\mathbb{N}\mid 2^i\leq k\}$ и только на них. Если x=k, то $a=k\leq\frac{\mathrm{lcm}(k)}{2}$.

Пусть x < k и a := lcm(x, lcm(k - x)).

 $x>rac{k}{2}$ (т.к. максимальная степень двойки, не превосходящая k), значит $k-x<rac{k}{2}$. По теореме Чебышёва (постулат Бертрана) между $rac{k}{2}$ и k всегда найдется простое число. Обозначим его за p. Тогда p не делит $a=\mathrm{lcm}(x,\mathrm{lcm}(k-x)),$ но делит $\mathrm{lcm}(k).$ Значит $a\leq\frac{\mathrm{lcm}(k)}{p}\leq\frac{\mathrm{lcm}(k)}{2}.$

c := b - a. Искомое тождество построено.

3