Time series decomposition II

EC 361-001

Prof. Santetti Spring 2024

Materials

Required readings:

- Hyndman & Athanasopoulos, ch. 3
 - Sections 3.5—3.6.

Motivation

Motivation

Time series **decomposition methods** help us extracting the main *features* of time series data.

In addition to **disentangling** the variable into its trend-cycle, seasonal, and remainder components, it also allows us to obtain **seasonally adjusted** data.

The starting point is the **classical decomposition** method, which is based on *moving averages* and on a *constant seasonal* component.

Given such **limitations**, we will now explore more **robust** decomposition techniques.

A more robust decomposition method is the so-called **STL decomposition**.

STL = "Seasonal and Trend decomposition using Loess"

It was first introduced by Cleveland et al. (1990), and provides a more **robust** decomposition relative to the classical method.

For instance,

- It allows the **seasonal** component to change over time;
- It is robust to **outliers**;
- The user may easily control its parameters;
- It relies on local regressions, in addition to moving averages, to estimate the **trend-cycle** component.

Private services: Number of employed persons

STL decomposition

Classical decomposition

Australian beer production

STL decomposition

Classical decomposition

Further decomposition methods

Further decomposition methods

Time series **decomposition** methods are extensively used in statistical *offices* around the world.

Nowadays, the most common one is the X-13-ARIMA-SEATS method.

U.S. Bureau of Labor Statistics website

Next time: Time series features