Bayesian model selection & averaging

Klaas Enno Stephan

Bayes' theorem

The Reverend Thomas Bayes (1702-1761)

$$p(\theta \mid y, m) = \frac{p(y \mid \theta, m) p(\theta \mid m)}{p(y \mid m)}$$

posterior = likelihood • prior / evidence

Posterior mean & variance of univariate Gaussians

Likelihood & Prior

$$p(y | \theta) = N(\theta, \sigma_e^2)$$
$$p(\theta) = N(\mu_p, \sigma_p^2)$$

Posterior:
$$p(\theta | y) = N(\mu, \sigma^2)$$

$$\frac{1}{\sigma^2} = \frac{1}{\sigma_e^2} + \frac{1}{\sigma_p^2}$$

$$\mu = \sigma^2 \left(\frac{1}{\sigma_e^2} \theta + \frac{1}{\sigma_p^2} \mu_p \right)$$

Posterior mean = variance-weighted combination of prior mean and data mean

$$y = \theta + \varepsilon$$

Same thing – but expressed as precision weighting

Likelihood & prior

$$p(y \mid \theta) = N(\theta, \lambda_e^{-1})$$

$$p(\theta) = N(\mu_p, \lambda_p^{-1})$$

Posterior: $p(\theta | y) = N(\mu, \lambda^{-1})$

$$\lambda = \lambda_e + \lambda_p$$

$$\mu = \frac{\lambda_e}{\lambda} \theta + \frac{\lambda_p}{\lambda} \mu_p$$

Relative precision weighting

$$y = \theta + \varepsilon$$

Generative model

- 1. enforces mechanistic thinking: how could the data have been caused?
- 2. generate synthetic data (observations) by sampling from the prior can model explain certain phenomena at all?
- 3. inference about parameters $\rightarrow p(\theta|y)$
- 4. inference about model structure: formal approach to disambiguating mechanisms $\rightarrow p(y|m)$ or p(m|y)

Model inversion

Neural dynamics

 $y = g(x, \theta) + \varepsilon$

Observer function

$$p(y | \theta, m) = N(g(\theta), \Sigma(\theta))$$

u(t)

 $dx/dt = f(x, u, \theta)$

Inference on model structure

Inference on parameters

$$p(y \mid m) = \int p(y \mid \theta, m) p(\theta) d\theta$$
$$p(\theta \mid y, m) = \frac{p(y \mid \theta, m) p(\theta, m)}{p(y \mid m)}$$

 $p(\theta, m) = N(\mu_{\theta}, \Sigma_{\theta})$

Model comparison and selection

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

Which model represents the best balance between model fit and model complexity?

For which model m does p(y|m) become maximal?

Pitt & Miyung (2002) TICS

Bayesian model selection (BMS)

Model evidence (marginal likelihood):

$$p(y | m) = \int p(y | \theta, m) p(\theta | m) d\theta$$

accounts for both accuracy and complexity of the model

Various approximations, e.g.:

- negative free energy, AIC, BIC

Model space (hypothesis set) M

Model space M is defined by prior on models.

Usual choice: flat prior over a small set of models.

$$p(m) = \begin{cases} 1/|M| & \text{if } m \in M \\ 0 & \text{if } m \notin M \end{cases}$$

In this case, the posterior probability of model i is:

$$p(m_i \mid y) = \frac{p(y \mid m_i)p(m_i)}{\sum_{j=1}^{|M|} p(y \mid m_j)p(m_j)} = \frac{p(y \mid m_i)}{\sum_{j=1}^{|M|} p(y \mid m_j)}$$

Long-term goal: Differential diagnosis based on generative models of disease symptoms

Approximations to the log evidence

Logarithm is a monotonic function

Maximizing log model evidence

= Maximizing model evidence

Log model evidence = balance between fit and complexity

$$\log p(y|m) = accuracy(m) - complexity(m)$$
$$= \log p(y|\theta,m) - complexity(m)$$

No. of parameters

$$AIC = \log p(y \mid \theta, m) - p$$

data points

Akaike Information Criterion:
$$AIC = \log p(y \mid \theta, m) - p$$
Bayesian Information Criterion: $BIC = \log p(y \mid \theta, m) - \frac{p}{2} \log N$

Variational Bayes (VB)

Idea: find an approximate density $q(\theta)$ that is maximally similar to the true posterior $p(\theta|y)$.

This is often done by assuming a particular form for q (fixed form VB) and then optimizing its sufficient statistics.

The (negative) free energy approximation $oldsymbol{F}$

$$\ln p(y) = \text{KL}[q||p] + F(q,y)$$
divergence
 ≥ 0
energy
(unknown) (easy to evaluate for a given q)

Maximizing F(q, y)

- minimises KL[q||p]
- obtains a lower bound approximation to the log evidence
- obtains $q(\theta)$ as our best estimate of the posterior

The (negative) free energy approximation F

F is a lower bound on the log model evidence:

$$\log p(y | m) = F + KL[q(\theta), p(\theta | y, m)]$$

Like AIC/BIC, F is an accuracy/complexity tradeoff:

$$F = \left\langle \log p(y \mid \theta, m) \right\rangle - KL \left[q(\theta), p(\theta \mid m) \right]$$
accuracy complexity

The complexity term in *F*

In contrast to AIC & BIC, the complexity term of the negative free energy F
accounts for parameter interdependencies.

$$KL[q(\theta), p(\theta \mid m)]$$

$$= \frac{1}{2} \ln |C_{\theta}| - \frac{1}{2} \ln |C_{\theta|y}| + \frac{1}{2} \left(\mu_{\theta|y} - \mu_{\theta}\right)^T C_{\theta}^{-1} \left(\mu_{\theta|y} - \mu_{\theta}\right)$$

- determinant = measure of "volume" (space spanned by the eigenvectors of the matrix)
- The complexity term of F is higher
 - the more independent the prior parameters (↑ effective DFs)
 - the more dependent the posterior parameters (i.e., poor identifiability is penalised!)
 - the more the posterior mean deviates from the prior mean

Bayes factors

To compare two models, we could just compare their log evidences.

But: the log evidence is just some number – not very intuitive!

A more intuitive interpretation of model comparisons is made possible by Bayes factors:

positive value, $[0; \infty[$

$$B_{12} = \frac{p(y | m_1)}{p(y | m_2)}$$

Kass & Raftery classification:

B ₁₂	p(m₁ y)	Evidence
1 to 3	50-75%	weak
3 to 20	75-95%	positive
20 to 150	95-99%	strong
≥ 150	≥ 99%	Very strong

Fixed effects BMS at group level

Group Bayes factor (GBF) for 1... K subjects:

$$GBF_{ij} = \prod_{k} BF_{ij}^{(k)}$$

Average Bayes factor (ABF):

$$ABF_{ij} = \sqrt{\prod_{k} BF_{ij}^{(k)}}$$

Problems:

- blind with regard to group heterogeneity
- sensitive to outliers

Random effects BMS for heterogeneous groups

Random effects BMS for heterogeneous groups

Four equivalent options for reporting model ranking by random effects BMS

1. Dirichlet parameter estimates

 α

2. **expected posterior probability** of obtaining the k-th model for any randomly selected subject

$$\langle r_k \rangle_q = \alpha_k / (\alpha_1 + \ldots + \alpha_K)$$

3. **exceedance probability** that a particular model *k* is more likely than any other model (of the *K* models tested), given the group data

$$\exists k \in \{1...K\}, \forall j \in \{1...K \mid j \neq k\}:$$

$$\varphi_k = p(r_k > r_j \mid y; \alpha)$$

4. **protected exceedance probability**: see below

Overfitting at the level of models

- ↑ #models ⇒ ↑ risk of overfitting
- solutions:
 - regularisation: definition of model space = choosing priors p(m)
 - family-level BMS
 - Bayesian model averaging (BMA)

too simple

"just right"

too complex

posterior model probability:

$$p(m|y)$$

$$= \frac{p(y|m)p(m)}{\sum_{m} p(y|m)p(m)}$$

$$p(\theta | y)$$

$$= \sum_{m} p(\theta | y, m) p(m | y)$$

Model space partitioning: comparing model families

- partitioning model space into K subsets or families:
- pooling information over all models in these subsets allows one to compute the probability of a model family, given the data
- effectively removes uncertainty about any aspect of model structure, other than the attribute of interest (which defines the partition)

$$M = \left\{ f_1, ..., f_K \right\}$$

$$p(f_k)$$

Family-level inference: fixed effects

- We wish to have a uniform prior at the family level:
- This is related to the model level via the sum of the priors on models:
- Hence the uniform prior at the family level is:
- The probability of each family is then obtained by summing the posterior probabilities of the models it includes:

$$p(f_k) = \frac{1}{K}$$

$$p(f_k) = \sum_{m \in f_k} p(m)$$

$$\forall m \in f_k : p(m) = \frac{1}{K|f_k|}$$

$$p(f_k \mid y_{1..N}) = \sum_{m \in f_k} p(m \mid y_{1..N})$$

Family-level inference: random effects

 The frequency of a family in the population is given by:

$$S_k = \sum_{m \in f_k} r_m$$

• In RFX-BMS, this follows a Dirichlet distribution, with a uniform prior on the parameters α (see above).

$$p(s) = Dir(\alpha)$$

 A uniform prior over family probabilities can be obtained by setting:

$$\forall m \in f_k : \alpha_{prior}(m) = \frac{1}{|f_k|}$$

Family-level inference: random effects – a special case

 When the families are of equal size, one can simply sum the posterior model probabilities within families by exploiting the agglomerative property of the Dirichlet distribution:

$$(r_{1}, r_{2}, ..., r_{K}) \sim Dir(\alpha_{1}, \alpha_{2}, ..., \alpha_{K})$$

$$\Rightarrow r_{1}^{*} = \sum_{k \in N_{1}} r_{k}, r_{2}^{*} = \sum_{k \in N_{2}} r_{k}, ..., r_{J}^{*} = \sum_{k \in N_{J}} r_{k}$$

$$\sim Dir(\alpha_{1}^{*} = \sum_{k \in N_{1}} \alpha_{k}, \alpha_{2}^{*} = \sum_{k \in N_{2}} \alpha_{k}, ..., \alpha_{J}^{*} = \sum_{k \in N_{J}} \alpha_{k})$$

Model space partitioning: comparing model families

Stephan et al. 2009, NeuroImage

Modelling Trial-by-Trial Changes of the Mismatch Negativity (MMN)

MMN model comparison at multiple levels

Comparing MMN theories

Change Detection

Lieder et al. 2013, PLoS Comput. Biol.

Comparing

Bayesian Model Averaging (BMA)

- abandons dependence of parameter inference on a single model and takes into account model uncertainty
- uses the entire model space considered (or an optimal family of models)
- averages parameter estimates, weighted by posterior model probabilities
- represents a particularly useful alternative
 - when none of the models (or model subspaces) considered clearly outperforms all others
 - when comparing groups for which the optimal model differs

single-subject BMA:

$$p(\theta | y)$$

$$= \sum_{m} p(\theta | y, m) p(m | y)$$

group-level BMA:

$$p(\theta_n | y_{1..N})$$

$$= \sum_{m} p(\theta_n | y_n, m) p(m | y_{1..N})$$

NB: $p(m|y_{1..N})$ can be obtained by either FFX or RFX BMS

Prefrontal-parietal connectivity during working memory in schizophrenia

- 17 at-risk mental state (ARMS) individuals
- 21 first-episode patients (13 non-treated)
- 20 controls

BMS results for all groups

BMA results: PFC → PPC connectivity

17 ARMS, 21 first-episode (13 non-treated), 20 controls

Protected exceedance probability: Using BMA to protect against chance findings

- EPs express our confidence that the posterior probabilities of models are different under the hypothesis H_1 that models differ in probability: $r_k \neq 1/K$
- does not account for possibility "null hypothesis" H₀: r_k=1/K
- Bayesian omnibus risk (BOR) of wrongly accepting H₁ over H₀:

$$P_{o} = \frac{1}{1 + \frac{p(m|H_{1})}{p(m|H_{0})}}$$

protected EP: Bayesian model averaging over H₀ and H₁:

$$\begin{split} \widetilde{\varphi}_k &= P(r_k \! \geq \! r_{k' \neq k} | y) \\ &= P(r_k \! \geq \! r_{k' \neq k} | y, H_1) P(H_1 | y) + P(r_k \! \geq \! r_{k' \neq k} | y, H_0) P(H_0 | y) \\ &= \varphi_k (1 \! - \! P_0) + \frac{1}{K} P_0 \end{split}$$

Random effects BMS software

SPM

- function spm bms
- simple to use: only needs a log evidence matrix (subjects × models)
- works with any log evidence approximation (F, AIC, BIC)
- model inversion by VB or MCMC
- http://www.fil.ion.ucl.ac.uk/spm/

VBA Toolbox

- VB only (not MCMC), but additional tests for group differences in model structure
- http://mbb-team.github.io/VBA-toolbox/

Some examples of empirical BMS/BMA applications

Behavioral/Systems/Cognitive

Effective Connectivity Determines the Nature of Subjective Experience in Grapheme-Color Synesthesia

Tessa M. van Leeuwen, Hanneke E. M. den Ouden, and Peter Hagoort^{1,2}

¹Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6500 HB, Nijmegen, the Netherlands, and ²Max Planck Institute for Psycholinguistics, 6500 AH, Nijmegen, the Netherlands

Original Investigation

Brain Connectivity Abnormalities
Predating the Onset of Psychosis
Correlation With the Effect of Medication

André Schmidt, PhD; Renata Smieskova, PhD; Jacqueline Aston, MD; Andor Simon, MD; Paul Allen, PhD; Paolo Fusar-Poli, MD, PhD; Philip K. McGuire, MD, PhD; Anita Riecher-Rössler, MD, PhD; Klaas E. Stephan, MD, PhD; Stefan Borgwardt, MD, PhD

van Leeuwen et al. 2011, *J. Neurosci*.

Breakspear et al. 2015, *Brain*

Schmidt et al. 2013, JAMA Psychiatry

Application: Synaesthesia

- "projectors" experience color externally colocalized with a presented grapheme
- "associators" report an internally evoked association
- across all subjects: no evidence for either model
- but BMS results map precisely onto projectors (bottom-up mechanisms) and associators (top-down)

Go/No-Go task to emotional faces (bipolar patients, at-risk individuals, controls)

- interaction of motor inhibition and fear perception
- hypoactivation of left IFG in the at-risk group during fearful distractor trials
- What is the most likely circuit mechanism explaining the fear x inhibition interaction in IFG?

Model space

 models of serial (1-3), parallel (4) and hierarchical (5-8) processes

A: Bilinear models DLPFC Inhibition **B**: Non-linear models 5 6 DLPFC

Family-level BMS

- family-level comparison: nonlinear models more likely than bilinear ones in both healthy controls and bipolar patients
- at-risk group: bilinear models more likely
- significant group difference in ACC modulation of DLPFC→IFG interaction

Prefrontal-parietal connectivity during working memory in schizophrenia

- 17 at-risk mental state (ARMS) individuals
- 21 first-episode patients (13 non-treated)
- 20 controls

BMS results for all groups

BMA results: PFC → PPC connectivity

17 ARMS, 21 first-episode (13 non-treated), 20 controls

Further reading on BMS

- Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models.
 Neurolmage 22:1157-1172.
- Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e1000709.
- Penny WD (2012) Comparing dynamic causal models using AIC, BIC and free energy.
 Neuroimage 59: 319-330.
- Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies – revisited. Neurolmage 84: 971-985.
- Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.
- Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neurolmage 46:1004-1017.
- Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109.

Thank you