# Projekt 8. Przestępstwa w Chicago po raz drugi.

## Nikola Girszewska

Pierwszym krokiem jest załadowanie wszystkich potrzebnych bibliotek i modułów:

```
import pandas as pd
from datetime import datetime
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.linear_model import LinearRegression
```

Następnie ładuje dane potrzebne do wykonywania zadań:

| t[3]: |     | ID       | Case<br>Number | Date                         | Block                      | IUCR | Primary<br>Type      | Description                                                | Location<br>Description | Arrest | Domestic | <br>Longitude  | Location                         | Historica<br>Wards<br>2003-2015 |
|-------|-----|----------|----------------|------------------------------|----------------------------|------|----------------------|------------------------------------------------------------|-------------------------|--------|----------|----------------|----------------------------------|---------------------------------|
| C     | ) 1 | 1677548  | JC251390       | 05/05/2019<br>11:55:00<br>PM | 013XX N<br>DAMEN<br>AVE    | 041A | BATTERY              | AGGRAVATED:<br>HANDGUN                                     | STREET                  | False  | False    | <br>-87.677323 | (41.905475526,<br>-87.677323168) | 24.                             |
| 1     | l 1 | 1677416  | JC251398       | 05/05/2019<br>11:53:00<br>PM | 050XX W<br>VAN<br>BUREN ST | 143A | WEAPONS<br>VIOLATION | UNLAWFUL POSS<br>OF HANDGUN                                | STREET                  | True   | False    | <br>-87.750290 | (41.874908618,<br>-87.750289695) | 52.                             |
| 2     | 2 1 | 1677463  | JC251408       | 05/05/2019<br>11:46:00<br>PM | 024XX E<br>77TH ST         | 502P | OTHER<br>OFFENSE     | FALSE/STOLEN<br>/ALTERED TRP                               | STREET                  | True   | False    | <br>-87.564785 | (41.755379832,<br>-87.564785446) | 43.                             |
| 3     | 3 1 | 1677501  | JC251378       | 05/05/2019<br>11:44:00<br>PM | 057XX S<br>WOLCOTT<br>AVE  | 041A | BATTERY              | AGGRAVATED:<br>HANDGUN                                     | SIDEWALK                | False  | False    | <br>-87.671746 | (41.789399707,<br>-87.671746191) | 44.                             |
| 4     | l 1 | 11677483 | JC251406       | 05/05/2019<br>11:40:00<br>PM | 092XX S<br>KINGSTON<br>AVE | 0498 | BATTERY              | AGGRAVATED<br>DOMESTIC<br>BATTERY:<br>HANDS/FIST/FEET<br>S | RESIDENCE               | False  | True     | <br>-87.562088 | (41.727526285,<br>-87.562087901) | 43.                             |

#### Zadanie 1.

Oblicz, ile przestępstw popełniono w każdym miesiącu każdego roku (od 2001 do 2019). Narysuj wykres liniowy prezentujący te liczby.

```
In [4]: #ZADANIE 1
         daty = dane.Date
#print(daty)
In [6]: dat1 = [datetime.strptime(daty[i][:10], '%m/%d/%Y') for i in range(len(daty))]
         dat2 = [(dat1[i].year, dat1[i].month) for i in range(len(dat1))]
         tabela = pd.value_counts(dat2) #tworzymy zbiór danych zawierający liczbe przestępstw w każdym roku każdego miesiąca
         print(tabela)
         (2002, 7)
(2001, 7)
                        46013
         (2003, 8)
                        44268
         (2002, 8)
                        44210
         (2001, 8)
                        44032
         (2003, 7)
                        43415
         (2003, 10)
                        43327
         (2004, 7)
                        43236
         (2002, 10)
                        43145
         (2004, 8)
                        43044
         (2001, 10)
         (2002, 5)
         (2002, 6)
                        42834
         (2002, 9)
                        42388
         (2001, 5)
                        41821
         (2005, 7)
                        41806
         (2001, 6)
                        41725
         (2006, 7)
                        41547
         (2005, 8)
                        41543
In [7]: #z powyższych danych tworzymy ramke danych
         RM_t = tabela.index.tolist()
LP_t = []
         for i in range(len(tabela)):
             LP_t.append(tabela[i])
         ramka_t = pd.DataFrame([RM_t,LP_t],index=['RM','LP'])
ramka_n = ramka_t.T
         print(ramka_n)
                (2002, 7) 46013
         0
                (2001, 7)
                           44692
                (2003, 8)
                           44268
                (2002, 8)
                           44210
                (2001, 8)
                           44032
                (2003, 7)
               (2003, 10)
                (2004, 7)
                           43236
               (2002, 10)
                           43145
                (2004, 8)
                           43044
              (2001, 10)
(2002, 5)
         10
                           43029
         11
                           42913
                (2002, 6)
                           42834
         12
         13
               (2002, 9)
                           42388
                (2001, 5)
         15
                (2005, 7)
         16
                (2001, 6)
                           41725
         17
                (2006, 7)
                           41547
```

```
In [8]: #tworzymy posortowana według dat ramke danych
           one = ramka_n['RM'].sort_values()
two = ramka_n['LP']
           R = pd.concat([one,two],axis=1)
           ramka_S=R.sort_values(by=['RM'])
          print(ramka S)
                  (2001, 1)
                              38100
                  (2001, 2)
                              33779
           91
           28
                  (2001, 3)
                              40552
                  (2001, 4)
                  (2001, 5)
                              41821
          16
                  (2001, 6)
                              41725
                  (2001, 7)
                              44692
                  (2001, 8)
                              44032
          20
                  (2001, 9)
                              41502
                 (2001, 10)
          10
                              43029
           43
                 (2001, 11)
                              39596
                 (2001, 12)
(2002, 1)
           65
                              36846
           51
                              38401
           88
                  (2002, 2)
                              33909
           50
                  (2002, 3)
                              38584
                  (2002, 4)
                  (2002, 5)
           12
                  (2002, 6)
                              42834
In [13]: #tworzymy ramke tanych tak, aby data była indeksem
y_lab=ramka_S['LP'].tolist()
           ramka_nowa=pd.DataFrame(y_lab,index=ramka_S['RM'])
           ramka_nowa
Out[13]:
                 RM
            (2001, 1) 38100
            (2001, 2) 33779
            (2001, 3) 40552
             (2001, 4) 40080
            (2001, 5) 41821
             (2001, 6) 41725
            (2001, 7) 44692
            (2001, 8) 44032
            (2001, 9) 41502
           (2001, 10) 43029
```

Tak przygotowane dane można przedstawić na wykresie.



Wykres ten przedstawia, sposób w jaki zmieniały się liczby przestępstw w każdym miesiącu od 2001 do 2019 roku. Możemy zauważyć na nim znaczny spadek liczby przestępstw.

By móc dokładnie odczytywać ile przestępstw popełniono w każdym miesiącu każdego roku, stworzyłam ramkę danych zawierającą te dane. Wygląda ona tak:

|             | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| STYCZEŃ     | 38100 | 38401 | 36713 | 35105 | 33861 | 36752 | 34100 | 33366 | 30236 | 29210 | 27192 | 26265 | 25461 | 19994 | 20867 | 20630 | 22018 | 20337 | 19143 |
| LUTY        | 33779 | 33909 | 32509 | 34066 | 31985 | 31298 | 27138 | 29044 | 28227 | 24942 | 22228 | 23869 | 21394 | 18014 | 16359 | 18694 | 19264 | 17263 | 17995 |
| MARZEC      | 40552 | 38584 | 38650 | 39855 | 36906 | 36983 | 36348 | 33977 | 33683 | 32335 | 28694 | 28562 | 24958 | 22175 | 21645 | 22011 | 20509 | 21157 | 19975 |
| KWIECIEŃ    | 40080 | 40035 | 39789 | 38268 | 38870 | 36475 | 35631 | 35592 | 32566 | 31668 | 29101 | 27178 | 25521 | 22900 | 21689 | 21118 | 21646 | 21061 | 20238 |
| MAJ         | 41821 | 42913 | 41191 | 40779 | 40467 | 39613 | 40085 | 38063 | 35238 | 33397 | 31583 | 30088 | 27981 | 24853 | 23663 | 23490 | 23336 | 24623 | 3455  |
| CZERWIEC    | 41725 | 42834 | 40815 | 41134 | 40050 | 38812 | 38993 | 37698 | 34266 | 32712 | 32310 | 31075 | 27362 | 25416 | 23136 | 24016 | 23800 | 24094 | 0     |
| LIPIEC      | 44692 | 46013 | 43415 | 43236 | 41806 | 41547 | 40987 | 40491 | 35675 | 33510 | 33253 | 31969 | 28621 | 26538 | 24192 | 24824 | 24805 | 25122 | 0     |
| SIERPIEŃ    | 44032 | 44210 | 44268 | 43044 | 41543 | 40496 | 39848 | 40538 | 35826 | 34147 | 32582 | 30034 | 28640 | 25863 | 24769 | 24856 | 24666 | 25273 | 0     |
| WRZESIEŃ    | 41502 | 42388 | 41423 | 41213 | 39623 | 37771 | 38264 | 37444 | 33869 | 31887 | 29927 | 27750 | 26327 | 23874 | 23074 | 23639 | 22777 | 22863 | 0     |
| PAŹDZIERNIK | 43029 | 43145 | 43327 | 41523 | 39961 | 38659 | 39590 | 37884 | 33530 | 32390 | 30270 | 27958 | 25459 | 23979 | 23052 | 23705 | 22858 | 22631 | 0     |
| LISTOPAD    | 39596 | 37152 | 38055 | 36838 | 35977 | 35567 | 34422 | 33555 | 31388 | 28883 | 27632 | 26025 | 23551 | 20743 | 20552 | 21711 | 21462 | 20468 | 0     |
| GRUDZIEŃ    | 36846 | 37172 | 35791 | 34322 | 32668 | 34140 | 31609 | 29412 | 28185 | 25237 | 27018 | 25207 | 21849 | 20964 | 21118 | 20347 | 21040 | 21748 | 0     |

**Zadanie 2.**Spośród przestępstw, w których doszło do aresztowania (Arrest), wybierz najczęściej popełniane w każdym roku.

| In [15]: | aresz  |           | =dane[dane.head(10) |                              | r']=True]            | #wyb. | ieram do da          | lszej analiz                   | y przestęps | stwa, w | których | doszło do d | aresztowania                     |     |
|----------|--------|-----------|---------------------|------------------------------|----------------------|-------|----------------------|--------------------------------|-------------|---------|---------|-------------|----------------------------------|-----|
|          | 21 11  | 1677437   | JC251381            | 05/05/2019<br>11:13:00<br>PM | 023XX S<br>DRAKE AVE | 143A  | WEAPONS<br>VIOLATION | UNLAWFUL<br>POSS OF<br>HANDGUN | STREET      | True    | False   | 87.713698   | (41.848888074,<br>-87.713698143) | 14. |
|          | 22 11  | 1677430   | JC251365            | 05/05/2019<br>11:12:00<br>PM | 026XX W<br>51ST ST   | 143A  | WEAPONS<br>VIOLATION | UNLAWFUL<br>POSS OF<br>HANDGUN | STREET      | True    | False   | 87.689660   | (41.801063154,<br>-87.689659697) | 49. |
|          | 25 11  | 1677366   | JC251357            | 05/05/2019<br>11:05:00<br>PM | 012XX S<br>AVERS AVE | 2027  | NARCOTICS            | POSS: CRACK                    | STREET      | True    | False   | 87.721502   | (41.865763196,<br>-87.721501887) | 36. |
|          | 36 11  | 1677445   | JC251395            | 05/05/2019<br>11:00:00<br>PM | 077XX S<br>ESSEX AVE | 0486  | BATTERY              | DOMESTIC<br>BATTERY<br>SIMPLE  | APARTMENT   | True    | False   | 87.563865   | (41.754808347,<br>-87.563865036) | 43. |
|          | 37 11  | 1677422   | JC251362            | 05/05/2019<br>10:58:00<br>PM | 007XX W<br>66TH PL   | 143A  | WEAPONS<br>VIOLATION | UNLAWFUL<br>POSS OF<br>HANDGUN | SIDEWALK    | True    | False   | 87.643440   | (41.773406885,<br>-87.643440433) | 31. |
|          | 10 row | s × 30 cc | olumns              |                              |                      |       |                      |                                |             |         |         |             |                                  |     |
|          |        |           |                     |                              |                      |       |                      |                                |             |         |         |             |                                  | >   |

```
In [16]: for i in range(0,19): #tworze petle
             areszt=aresztowania[aresztowania['Year']==2001+i]
             a=pd.value_counts(areszt['Description']) #licze wystapienia poszczególnych przestępstw w danym roku (od najczęściej popeł
             b=areszt['Description'].value_counts().keys() #wyodrębniam nazwy przestępstw w danym roku (od najczęściej popełnianych)
print("Najcześciej popełnianym przestępstwem w roku", 2001+i, "było:",b[0], "w liczbie", a[0])
         Najcześciej popełnianym przestępstwem w roku 2001 było: SIMPLE w liczbie 20614
         Najcześciej popełnianym przestępstwem w roku 2002 było: SIMPLE w liczbie 16535
         Najcześciej popełnianym przestępstwem w roku 2003 było: POSS: CANNABIS 30GMS OR LESS w liczbie 17556
         Najcześciej popełnianym przestępstwem w roku 2004 było: POSS: CANNABIS 30GMS OR LESS w liczbie 18780
         Najcześciej popełnianym przestępstwem w roku 2005 było: POSS: CANNABIS 30GMS OR LESS w liczbie 19210
         Najcześciej popełnianym przestępstwem w roku 2006 było: POSS: CANNABIS 30GMS OR LESS w liczbie 20403
         Najcześciej popełnianym przestępstwem w roku 2007 było: POSS: CANNABIS 30GMS OR LESS w liczbie 22819
         Najcześciej popełnianym przestępstwem w roku 2008 było: POSS: CANNABIS 30GMS OR LESS w liczbie 20405
         Najcześciej popełnianym przestępstwem w roku 2009 było: POSS: CANNABIS 30GMS OR LESS w liczbie 21177
         Najcześciej popełnianym przestępstwem w roku 2010 było: POSS: CANNABIS 30GMS OR LESS w liczbie 21979
         Najcześciej popełnianym przestępstwem w roku 2011 było: POSS: CANNABIS 30GMS OR LESS w liczbie 20103
         Najcześciej popełnianym przestępstwem w roku 2012 było: POSS: CANNABIS 30GMS OR LESS w liczbie 17689
         Najcześciej popełnianym przestępstwem w roku 2013 było: POSS: CANNABIS 30GMS OR LESS w liczbie 15944
         Najcześciej popełnianym przestępstwem w roku 2014 było: POSS: CANNABIS 30GMS OR LESS w liczbie 12876
         Najcześciej popełnianym przestępstwem w roku 2015 było: POSS: CANNABIS 30GMS OR LESS w liczbie 9896
         Najcześciej popełnianym przestępstwem w roku 2016 było: DOMESTIC BATTERY SIMPLE w liczbie 5126
         Najcześciej popełnianym przestępstwem w roku 2017 było: RETAIL THEFT w liczbie 4920
         Najcześciej popełnianym przestępstwem w roku 2018 było: DOMESTIC BATTERY SIMPLE w liczbie 5088
         Najcześciej popełnianym przestępstwem w roku 2019 było: DOMESTIC BATTERY SIMPLE w liczbie 1660
```

### Zadanie 3.

Zaimplementuj samodzielnie funkcje wyznaczającą współczynniki prostej do regresji liniowej. Z wykorzystaniem tej funkcji zbuduj model regresji liniowej przewidujący liczbę przestępstw w kolejnych latach. Dokładniej - zbuduj kilka modeli (dokonując różnego podziału na zbiór uczący i testowy) i wybierz najkorzystniejszy. Na tej podstawie oszacuj liczbę aresztowań w 2019 roku. Ponadto, na podstawie danych z pliku oraz przewidywań, oblicz ile średnio aresztowań zostanie przeprowadzonych w każdym pozostałym miesiącu 2019 roku.

Poniższy model przedstawia liczbę oszacowaną liczbę przestępstw dla 2020 roku, jednak program działa tak, że możemy podać dowolny rok.

```
In [17]: # ZADANIE 3
          #piszsemy funkcję wyznaczającą współczynniki regresji liniowej
          def regresja(X,Y):
             suma1=0
              suma 2=0
              sr_X=np.mean(X)
              sr_Y=np.mean(Y)
              for i in range(0,len(X)):
                  S1=(X[i]-sr_X)*(Y[i]-sr_Y)
                  suma1=suma1+S1
              for j in range(0,len(X)):
                  S2=(X[j]-sr_X)**2
                  suma2=suma2+S2
              a=suma1/suma2
              b=sr Y-(a*sr X)
              return(a,b)
In [18]: nowe_dane=pd.DataFrame(dane['Year'],index=dane.index)
In [19]: X=[] #tworzymy liste która zawierać będzie roki
          for i in range(2001,2019):
            X.append(i)
          print(X)
          Y=[] #tworzymy liste, która zawiera ilości popełnionych przestępstw od roku 2001 do 2018
          for i in range(2001,2019):
             N=nowe_dane[nowe_dane['Year']==i]
              Y.append(len(N))
          print(Y)
          [2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018]
          [485754, 486756, 475946, 469383, 453717, 448113, 437015, 427064, 392689, 370318, 351790, 335980, 307124, 275313, 264116,
          269041, 268181, 266640]
In [22]: print(regresja(X,Y))
          (-15786.575851393189, 32100065.284485724)
In [79]: def R2(x, y, deg=1):
              wynik = {}
              C = np.corrcoef(x, y)[0,1]
              wynik['R2'] = C**2
              return wynik['R2']
In [171]: proby = []
          n= int(input("Podaj liczbę testów: "))
          for i in range(0,n):
              X_uczacy, X_testowy, Y_uczacy, Y_testowy = train_test_split(X, Y, test_size = 0.2)
              reg = regresja(X_uczacy,Y_uczacy)
R_2 = R2(X_testowy,Y_testowy)
              Z=[R \ 2,reg]
              proby.append(Z)
          M=(max(proby))
          print("Najkorzystniejszy model ma współczynnik determinacji i współczynniki regresji liniowej równe: ",M)
          rok = int(input("Podaj rok, w którym chcesz przewidzieć liczbę przestępstw: "))
          print("Na podstawie tych danych w ",rok, "roku dojdzie do", round(M[1][0]*rok+M[1][1]), "przestępstw.")
          Podaj liczbę testów: 10
          Najkorzystniejszy model ma współczynnik determinacji i współczynniki regresji liniowej równe: [0.9965672343817935,
          (-16651.1520979021, 33833386.59265735)]
          Podaj rok, w którym chcesz przewidzieć liczbę przestępstw: 2020
          Na podstawie tych danych w 2020 roku dojdzie do 198059.0 przestępstw.
```

Poniższy kod szacuje liczbę aresztowań, do których dojdzie w 2019 roku.

```
In [231]: #oszacujemy liczbę aresztowań w 2019
          ar_liczba=pd.value_counts(aresztowania['Year'])
In [238]: X_a = ar_liczba.index.tolist()
          del X_a[18]
          Y_a = ar_liczba.tolist()
          del Y_a[18]
In [239]: proby_ar = []
          n_a= int(input("Podaj liczbę testów: "))
          for i in range(0,n_a):
             X_uczacy, X_testowy, Y_uczacy, Y_testowy = train_test_split(X_a, Y_a, test_size = 0.2)
              reg = regresja(X_uczacy,Y_uczacy)
             R_2 = R2(X_testowy, Y_testowy)
             Z=[R_2,reg]
             proby_ar.append(Z)
          M_a=(max(proby_ar))
          print("Na podstawie danych w 2019 roku dojdzie do", round(M_a[1][0]*2019+M_a[1][1]), "arezstowań.")
          Podaj liczbę testów: 10
          Na podstawie danych w 2019 roku dojdzie do 47660.0 arezstowań.
```

Podjęłam również próbę przewidzenia ile średnio aresztowań zostanie przeprowadzonych w każdym pozostałym miesiącu 2019 roku.

```
l_arest_2019.head(5)
Out[34]:
                        Date month
         1 05/05/2019 11:53:00 PM 5
         2 05/05/2019 11:46:00 PM
        8 05/05/2019 11:33:00 PM 5
         15 05/05/2019 11:29:00 PM
        18 05/05/2019 11:20:00 PM 5
In [35]: T = pd.value_counts(l_arest_2019['month'])
Out[35]: 3 4479
             4225
          4225
4111
3931
        Name: month, dtype: int64
In [36]: T_m = T.index.tolist()
       print(T_m)
T_l = T.tolist()
print(T_l)
        [3, 1, 4, 2, 5]
[4479, 4225, 4111, 3931, 648]
```

Niestety model ten nie działa poprawnie.

```
In [41]: proby_T = []
n = int(input("Podaj liczbę testów: "))
for i in range(0,n):
    X_uczacy, X_testowy, Y_uczacy, Y_testowy = train_test_split(T_m, T_l, test_size = 0.2)
    reg = regresja(X_uczacy,Y_uczacy)
    R_2 = R2(X_testowy,Y_testowy)
    Z=[R_2,reg]
    proby_append(2)
    M_T=(max(proby))
    print(M_T,M_T[1][0],M_T[1][1])

for i in range (6,13):
    print("Na podstawie tych danych w ",i, "miesiącu roku 2019 dojdzie do", round(M_T[1][0]*i+M_T[1][1]), "aresztowań.")

Podaj liczbę testów: 14
    [0.9891305531322341, (-16563.83838150289, 33660724.248554915)] -16563.83838150289 33660724.248554915
Na podstawie tych danych w 6 miesiącu roku 2019 dojdzie do 33561341.0 aresztowań.
Na podstawie tych danych w 7 miesiącu roku 2019 dojdzie do 3354177.0 aresztowań.
Na podstawie tych danych w 8 miesiącu roku 2019 dojdzie do 33528214.0 aresztowań.
Na podstawie tych danych w 9 miesiącu roku 2019 dojdzie do 3351650.0 aresztowań.
Na podstawie tych danych w 10 miesiącu roku 2019 dojdzie do 33478522.0 aresztowań.
Na podstawie tych danych w 11 miesiącu roku 2019 dojdzie do 33478522.0 aresztowań.
Na podstawie tych danych w 11 miesiącu roku 2019 dojdzie do 33461958.0 aresztowań.
Na podstawie tych danych w 12 miesiącu roku 2019 dojdzie do 33461958.0 aresztowań.
Na podstawie tych danych w 12 miesiącu roku 2019 dojdzie do 33461958.0 aresztowań.
```

#### Zadanie 4.

Wykonaj Zadanie 3 wykorzystując bibliotekę Sklearn i wbudowana w niej możliwość wykorzystania regresji liniowej. Porównaj wyniki.

```
In [219]: # ZADANIE 4
          X1 = np.array([[2001], [2002], [2003], [2004], [2005], [2006], [2007], [2008], [2009], [2010], [2011], [2012], [2013], [2014]
          Y1 = np.array([485754, 486756, 475946, 469383, 453717, 448113, 437015, 427064, 392689, 370318, 351790, 335980, 307124, 275313
          n1= int(input("Podaj liczbę testów: "))
          for i in range(0,n1):
             X_uczacy, X_testowy, Y_uczacy, Y_testowy = train_test_split(X1, Y1, test_size = 0.2 )
              model = LinearRegression()
              model.fit(X uczacy, Y uczacy)
              Y_przewidywane = model.predict(X_testowy)
              ER2 = r2_score(Y_testowy, Y_przewidywane)
              x = model.coef
              y = model.intercept_
              W=[ER2,x,y]
              S.append(W)
          M_s = max(S)
          print("Najkorzystniejszy model ma współczynnik determinacji i współczynniki regresji liniowej równe: ",M_s)
          rok = int(input("Podaj rok, w którym chcesz przewidzieć liczbę przestępstw: "))
          print("Na podstawie tych danych w ",rok, "roku dojdzie do", M_s[1]*rok+M_s[2], "przestępstw.")
          Najkorzystniejszy model ma współczynnik determinacji i współczynniki regresji liniowej równe: [0.9866342013689939, array
          ([-16017.25343393]), 32564226.20700328]
          Podaj rok, w którym chcesz przewidzieć liczbę przestępstw: 2019
```

Na podstawie tych danych w 2019 roku dojdzie do [225391.52389244] przestępstw.

```
In [3]: X1_a = np.array([[2004], [2001], [2003], [2002], [2005], [2006], [2007], [2009], [2008], [2010], [2011], [2012], [2013], [2011]
Y1_a = np.array([144686, 141903, 141572, 141555, 140895, 135387, 131852, 110769, 109961, 100484, 96230, 90575, 86462, 79539,

J = []
n2= int(input("Podaj liczbę testów: "))
for i in range(0,n2):
    X_uczacy, X_testowy, Y_uczacy, Y_testowy = train_test_split(X1_a, Y1_a, test_size = 0.2)
    model = LinearRegression()
    model.fit(X_uczacy, Y_uczacy)
    Y_przewidywane = model.predict(X_testowy)
    ER2 = r2_score(Y_testowy, Y_przewidywane)
    x = model.coef_
    y = model.intercept_
    L=[ER2,x,y]
    J.append(L)
    M_j = max(J)
    print("Na podstawie danych w 2019 roku dojdzie do", M_j[1]*2019+M_j[2], "arezstowań.")

Fodaj liczbę testów: 10
```

Na podstawie danych w 2019 roku dojdzie do [46915.51302254] arezstowań.

Wyniki tego szacunku oraz oszacowania z zadania 3. są do siebie bardzo podobne, co wskazuje na to, że oba sposoby przewidywania są poprawne i ciężko wybrać lepszy.