Answers - Combinations and permutations (page ??)

1.
$${}^{10}C_2 = \frac{10!}{2! \times 8!} = \frac{10 \times 9}{2} = 45$$

2. (a)
$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

(b) Visualise this with the girls effectively being a sixth member of the group. There are 6! ways of arranging them.

Then, within the girls, there are 3! ways of arranging them.

This means there are $6! \times 3! = 720 \times 6 = 4320$ possible photos.

3. (a)
$$6 \times^5 C_2 \times^3 C_3 = 6 \times 10 \times 1 = 60$$

(b)
$${}^{6}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{2} = 15 \times 6 \times 1 = 90$$

4.
$${}^{20}C_3 \times {}^{30}C_2 = 1140 \times 435 = 495,900$$

5. 2 candidates:
$${}^{8}C_{2} = 28$$

1 candidate:
$${}^8C_1 = 8$$

$$0 \text{ candidates} = 1$$

$$Total = 37$$

6.
$${}^{15}C_3 \times {}^9 C_1 \times {}^7 C_1 = 28,665$$

7. Consider the two situations: first, where all 6 people are from the same college. Second, where 4 are from the same college and 2 are from the other one.

6 from same college: ${}^{8}C_{6} = 28$

4 from same college:
$${}^{8}C_{4} = 70$$

Total is 98

8.

$$\frac{p!}{q!(p-q)!} = \frac{p!}{r!(p-r)!}$$
$$\frac{1}{q!(p-q)!} = \frac{1}{r!(p-r)!}$$

There are 2 solutions to consider here. The first gives us the solution q=r, which we are told is not a solution.

$$\frac{r!}{(p-q)!} = \frac{q!}{(p-r)!}$$

Here we can equate the numerators and the denominators, giving us r = q. The other way is to cross-multiply different terms:

$$\frac{r!}{q!} = \frac{(p-q)!}{(p-r)!}$$

When we equate the numerators and denominators we get:

$$p - q = r$$
 and $p - r = q$

Both of which can be rearranged to give the solution p = q + r

$$\frac{n!}{r!(n-r)!} = \frac{(n+1)!}{(r-1)!((n+1)-(r-1))!}$$

$$\frac{n!}{r!(n-r)!} = \frac{(n+1)!}{(r-1)!(n-r+2)!}$$

$$\frac{n!}{r!(n-r)!} = \frac{(n+1)n!}{(r-1)!(n-r+2)(n-r+1)(n-r)!}$$

$$\frac{1}{r!} = \frac{n+1}{(r-1)!(n-r+2)(n-r+1)}$$

$$\frac{(r-1)!}{r(r-1)!} = \frac{n+1}{(n-r+2)(n-r+1)}$$

$$\frac{1}{r} = \frac{n+1}{(n-r+2)(n-r+1)}$$

$$(n-r+2)(n-r+1) = r(n+1)$$

$$+r^2-r+2n-2r+2 = rn+r$$

$$3rn+3n+r^2-4r+2 = 0$$

$$n^{2} - rn + n - rn + r^{2} - r + 2n - 2r + 2 = rn + r$$

$$n^{2} - 3rn + 3n + r^{2} - 4r + 2 = 0$$

$$n^{2} + (3 - 3r)n + (r^{2} - 4r + 2) = 0$$

$$n = \frac{3r - 3 \pm \sqrt{(3 - 3r)^2 - 4(r^2 - 4r + 2)}}{2}$$

$$n = \frac{3r - 3 \pm \sqrt{5r^2 - 2r + 1}}{2}$$

Now we try different values for r to see which gives an integer value for n.

$$r = 1; n = 1$$

$$r = 2; n = \frac{3 \pm \sqrt{17}}{2}$$

$$r = 3; n = \frac{6 \pm \sqrt{40}}{2}$$

$$r = 4; n = \frac{9 \pm \sqrt{73}}{2}$$

$$r = 5; n = \frac{12 \pm \sqrt{112}}{2}$$

$$r = 6; n = \frac{15 \pm \sqrt{169}}{2} = \frac{15 \pm 13}{2} = 1,14$$