לוגיקה ותורת הקבוצות ־ תרגול 7

 $ext{.WFF}_{\{\neg,
ightarrow\}}$ מעל נגדיר מערכת הוכחה חדשה לתחשיב הפסוקים מעל בנגדיר מערכת ו

• קבוצת האקסיומות מכילה את הפסוקים מהצורה הבאה:

,
$$\alpha,\beta,\gamma\in\mathrm{WFF}_{\{\lnot,\to\}}$$
 לכל

$$\alpha \to (\beta \to \alpha) : A_1$$
 -

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) : A_2$$
 -

• כללי היסק:

$$MP(\alpha, \alpha \to \beta) = \beta$$
 -

(יוגדר בהמשך) MV –

. במערכת בערכת מתוך במערכת יכיח את $\Sigma \underset{N}{\vdash} \alpha$ במערכת בסמן ב

$$MV\left(lpha
ightarrow(eta
ightarrowlpha)
ight)=\left((\lnotlpha)
ightarrow(\lnoteta)
ight)
ightarrow(eta
ightarrowlpha)$$
 נגדיר

הוכיחו/ הפריכו: המערכת החדשה שלמה.

 $ext{WFF}_{\{\wedge,\neg\}}$ נגדיר מערכת הוכחה חדשה לתחשיב הפסוקים מעל בנגדיר מערכת ו

• קבוצת האקסיומות מכילה את הפסוקים מהצורה הבאה:

$$\neg (\alpha \land (\beta \land \neg \alpha)) : A_1 -$$

• קבוצת כללי ההיסק:

$$M_1(\alpha, \neg(\alpha \land \beta)) = \neg\beta$$
 -

נסמן בי α יכיח שפסוק הטענה הטענה בי נסמן בי את הטענה לכח נסמן בי

 $. {\displaystyle \vdash \limits_{N}} \, \alpha$ אז , ${\displaystyle \models } \, \alpha$ הוכיחו/ הפריכו:

גדירות

 Σ הגדרה 1: השמה המספקת קבוצת פסוקים וקראת מודל של

 $M\left(\Sigma\right)=\left\{ v\in\mathrm{Ass}\mid v\models\Sigma\right\}$ היא הקבוצה. Σ של של המודלים קבוצת המודלים היא

 $\left(Ass\left(\Sigma\right) ,Mod\left(\Sigma\right) ,M_{\Sigma}\right. :$ סימונים נוספים לקבוצת המודלים של

 $M\left(\Sigma
ight)$ מגדירה את מודלים לראות יחידה, כלומר מתאימה בוצת מתאימה מתאימה מתאימה לראות שלכל קבוצת מחדלים ליחוד מתאימה בוצת מחדלים בייעו

דוגמאות ללא הוכחה:

Σ קבוצת המודלים של - $M\left(\Sigma ight)$	קבוצת פסוקים $^{ au}$
$\{v_{ m T}\}$	$\{p_i \mid i \in \mathbb{N}\}$
(קבוצת כל הההשמות) Ass	$\{p_1ee eg p_1\}$, \emptyset ,קבוצת כל הטאוטולוגיות,
Ø	WFF קבוצת סתירות
$\{v_{\mathrm{T}}, \mathrm{FTTT} \ldots\}$	$\{p_i \mid i > 0\}$
$\{v \in \mathrm{Ass} \mid v(p_{15}) = \mathrm{T}\}$	$\{p_{15}\}$
$\{v \in \text{Ass } v(p_{15}) = T\} \cap \{v \in \text{Ass } v(p_1) = T \text{ or } v(p_2) = T\}$	$\{p_{15},p_1\vee p_2\}$

נקראת אחרת אK האחרת השמות כך בי פסוקים מטוקים אם קיימת האחרת נקראת נקראת לא נקראת נקראת לא נקראת לא נקראת אחרת אחרת מטוקים לא נקראת ל

הוכחת גדירות

איך מוכיחים שקבוצת השמות K היא גדירה?

- בורשת. $\underline{\Sigma}$ מפורשת קבוצת מחאים מפורשת.
- .2 מוכיחים כי $M\left(\Sigma\right)=K$ על ידי הכלה דו־כיוונית.

$M(\Sigma)$	Σ
$\{v_r\}$	$\{P_0,P_1,\ldots\}$
$\{v_f\}$	$\{\neg p_0, \neg p_1, \ldots\}$
Ass	$\{p_0 \vee \neg p_0\}$
Ass	
Ass	Ø
Ø	$\{p_0 \land \neg p_0\}$
Ø	
Ø	WFF
$\{v_T, \mathbf{FTT}, \ldots\}$	$\{p_i i>0\}$
$K_1 = \{v v(p_{15}) = T\}$	$\Sigma_1 = \{p_{15}\}$
$K_2 = \{v v(p_1) \lor v(p_2)\}$	$\Sigma_2 = \{ p_1 \vee p_2 \}$
$K_1 \cap K_2$	$\Sigma_1 \bigcup \Sigma_2$

$$M(\Sigma_1 \bigcup \Sigma_2) = K_1 \bigcap K_2 \iff M(\Sigma_2) = K_2 \text{ and } M(\Sigma_1) = K_1$$