Week 10 Documentation

Brent Oil Price Analysis - Change Point Detection & Forecasting

Project Overview

This project examines **Brent oil prices** over time, detecting major **change points** and correlating them with significant events such as **political decisions**, **economic policies**, **and global conflicts**. The goal is to provide **data-driven insights** for investors, policymakers, and analysts.

Project Structure

```
BrentOilPriceAnalysis/
– backend/
                      # Flask API for data processing & ML models
                      # Main API to serve results
  — app.py
 — data_processing.py
                            # Data preprocessing functions
 --- models.py
                        # ARIMA, GARCH, LSTM implementations
  — requirements.txt
                          # Dependencies for backend
                      # React Frontend Dashboard
- frontend/
 — src/
                          # UI elements for charts, tables, etc.
    — components/
    — pages/
                        # Main dashboard pages
                        # API calls to backend
    — services/
    — App.js
                       # Root component
    · package.json
                         # Frontend dependencies
– notebooks/
                       # Jupyter Notebooks for analysis
— eda.ipynb
                        # Exploratory Data Analysis

 changepoint detection.ipynb # Change point detection & visualization

 — model_training.ipynb
                            # Time series forecasting
— README.md
                           # Project documentation
```

▼ Task 1: Data Analysis & Understanding

1 Workflow & Data Understanding

- Dataset: Historical Brent oil prices (May 1987 Sept 2022).
- Preprocessing: Cleaned missing values and normalized date format.

- Exploratory Data Analysis (EDA):
 - o Trends and seasonality examined.
 - Price distributions visualized.
- Time Series Modeling:
 - ARIMA (forecasting).
 - GARCH (volatility analysis).
 - o LSTM (deep learning).

2 Understanding Models

- ARIMA: Captures trend and seasonality in time series.
- GARCH: Detects price volatility and risk.
- LSTM: Uses neural networks to model long-term dependencies.

Task 2: Advanced Statistical Analysis & Machine Learning

1 Additional Models & Techniques

- VAR (Vector Autoregression): Multivariate time series analysis.
- Markov-Switching ARIMA: Identifies market condition shifts.
- LSTM: Captures non-linear dependencies in oil price movement.

2 External Influences on Oil Prices

- **Economic Indicators**: GDP, inflation, unemployment, exchange rates.
- **Technological Innovations**: Fracking, renewable energy impact.
- Political & Regulatory Factors: OPEC policies, trade sanctions.

3 Model Validation

- Backtesting: Assesses model accuracy on past data.
- Performance Metrics: RMSE, MAE, R².

Task 3: Interactive Dashboard Development

1 Backend (Flask)

- API Endpoints:
 - /api/prices: Serves historical price data.
 - /api/events: Provides significant global events.
 - o /api/forecast: Returns future price predictions.

2 Frontend (React)

- Visualizations:
 - Interactive line charts for oil prices.
 - Event markers highlighting historical impacts.
- User Controls:
 - o Date range filters.
 - Event comparison tools.

✓ Installation & Execution

1 Prerequisites

- Backend: Python 3.8+, Flask, Pandas, Scikit-learn.
- Frontend: Node.js 14+, React, Recharts.

2 Running the Project

Backend

cd backend pip install -r requirements.txt python app.py

Frontend

cd frontend npm install npm start

Access Dashboard

Visit http://localhost:3000

★ Future Enhancements

- Real-time Data Updates
- Transformer-based Forecasting Models
- User-customizable Dashboards

Solution Contributors

- Data Analysis & ML Models
- Backend API Development
- Interactive Dashboard UI

License

MIT License

🔥 Developed for 10 Academy Al Mastery Challenge | Brent Oil Price Analysis 📊