Parsing

Sujit Kumar Chakrabarti

IIITB

Example

```
\begin{array}{ccc} \mathbf{Grammar} \\ E & \rightarrow & E+T|T \\ T & \rightarrow & T*F|F \\ F & \rightarrow & (E) \\ & | & \mathbf{id} \end{array}
```

Input: 1 * 2

Example

 $\begin{array}{ccc} & \mathbf{Grammar} \\ E & \rightarrow & E + T | T \\ T & \rightarrow & T * F | F \\ F & \rightarrow & (E) \end{array}$ id

Input:

4□ > 4□ > 4 = > 4 = > 9 < 0</p>

Example

 $\begin{array}{ccc} & \mathbf{Grammar} \\ E & \rightarrow & E + T | T \\ T & \rightarrow & T * F | F \\ F & \rightarrow & (E) \end{array}$

id

Input:

Example

$\begin{array}{ccc} & \mathbf{Grammar} \\ E & \rightarrow & E + T | T \\ T & \rightarrow & T * F | F \\ F & \rightarrow & (E) \end{array}$

id

Input:

Example

Grammar

 $E \rightarrow E + T|T$ $T \rightarrow T * F|F$ $F \rightarrow (E)$ $\mid \mathbf{id}$

Input:

Example

Grammar

 $E \rightarrow E + T|T$ $T \rightarrow T * F|F$ $F \rightarrow (E)$ $\mid \mathbf{id}$

Input: 1 *

Example

Grammar

 $E \rightarrow E + T|T$ $T \rightarrow T * F|F$ $F \rightarrow (E)$ $\mid \mathbf{id}$

Input: 1 * 5

Example

Derivation

$$E \Rightarrow T \Rightarrow T * F \Rightarrow T * id \Rightarrow F * id \Rightarrow id * id$$

Example

Derivation

$$E \Rightarrow T \Rightarrow T * F \Rightarrow T * id \Rightarrow F * id \Rightarrow id * id$$

■ Rightmost derivation

Example

Derivation

$$E \Rightarrow T \Rightarrow T * F \Rightarrow T * id \Rightarrow F * id \Rightarrow id * id$$

- 1 Rightmost derivation
- 2 Reverse rightmost derivation Reduction

Right Sentential Form

- Right Sentential Form. Strings of grammar symbols that occur anytime during a rightmost derivation from a grammar *G*
- All *frontiers* during a bottom-up parse are right sentential forms.

Handle

- **Handle.** A sub-string of a right-sentential form that appears as a right hand side of a grammar production, and which can be used to reduce the string to its *previous* right-sentential form
- $S \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta w$ with a production $A \to \beta$, then $A \to \beta$ is a handle.

Handle

- **Handle.** A sub-string of a right-sentential form that appears as a right hand side of a grammar production, and which can be used to reduce the string to its *previous* right-sentential form
- $S \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta w$ with a production $A \to \beta$, then $A \to \beta$ is a handle.
- Bottom-up parsing can be viewed as the process of locating a handle in the n-th right-sentential form of S, and replacing that with the LHS of the production to get the (n-1)th right-sentential form.

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2$ \$	reduce by $F \to \mathbf{id}$

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2$ \$	reduce by $T \to F$

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2$ \$	reduce by $T \to F$
T	$*id_2$ \$	shift

Stack	Input	Action
-\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2$ \$	reduce by $F \to \mathbf{id}$
F	$*id_2$ \$	reduce by $T \to F$
T	$*id_2$ \$	shift
T*	id_2 \$	shift

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2\$$	reduce by $T \to F$
T	$*id_2\$$	shift
T*	$\mathbf{id}_2\$$	shift
$T * id_2$	\$	reduce by $F \to \mathbf{id}$

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2\$$	reduce by $T \to F$
T	$*id_2\$$	shift
T*	$\mathbf{id}_2\$$	shift
$T * id_2$	\$	reduce by $F \to \mathbf{id}$
T * F	\$	reduce by $T \to +T * F$

Stack	Input	Action
-\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2\$$	reduce by $T \to F$
T	$*id_2\$$	shift
T*	$\mathbf{id}_2\$$	shift
$T * id_2$	\$	reduce by $F \to \mathbf{id}$
T * F	\$	reduce by $T \to +T * F$
T	\$	reduce by $E \to T$

Stack	Input	Action
\$	$\mathbf{id}_1 * \mathbf{id}_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
F	$*id_2\$$	reduce by $T \to F$
T	$*id_2\$$	shift
T*	$\mathbf{id}_2\$$	shift
$T * id_2$	\$	reduce by $F \to \mathbf{id}$
T * F	\$	reduce by $T \to +T * F$
T	\$	reduce by $E \to T$
\$E	\$	

Parser Actions

- **I** Shift: Shift the next input symbol onto the stack.
- **2 Reduce:** Reduce a contiguous portion of the stack content including the top-of-stack by the LHS of an appropriate grammar production.

Parser Actions

- **I** Shift: Shift the next input symbol onto the stack.
- **2 Reduce:** Reduce a contiguous portion of the stack content including the top-of-stack by the LHS of an appropriate grammar production.
- **3** Accept: Declare success.
- 4 Error: Discover a syntax error.

Reductions happen only at the top of the stack

- 1 $S \underset{rm}{\overset{*}{\Rightarrow}} \alpha Az \Rightarrow \alpha \beta Byz \underset{rm}{\overset{\Rightarrow}{\Rightarrow}} \alpha \beta \gamma yz$ 2 $S \underset{rm}{\overset{*}{\Rightarrow}} \alpha BxAz \Rightarrow \alpha Bxyz \underset{rm}{\overset{\Rightarrow}{\Rightarrow}} \alpha \gamma xyz$

Reductions happen only at the top of the stack

- 1 $S \underset{rm}{\overset{*}{\Rightarrow}} \alpha Az \Rightarrow \alpha \beta Byz \underset{rm}{\overset{\Rightarrow}{\Rightarrow}} \alpha \beta \gamma yz$ 2 $S \underset{rm}{\overset{*}{\Rightarrow}} \alpha BxAz \Rightarrow \alpha Bxyz \underset{rm}{\overset{\Rightarrow}{\Rightarrow}} \alpha \gamma xyz$

Derivations to the left happen later. Reductions to the left happen earlier.

Condition for a Successful Parse

Condition for a Successful Parse

Viable Prefix

A prefix of a right-sentential form.

Condition for a Successful Parse

Viable Prefix

A prefix of a right-sentential form.

Conflicts

- Shift-Reduce
- 2 Reduce-Reduce

Conflicts

```
stmt \rightarrow if expr then stmt | if expr then stmt else stmt | other
```

Conflict - Example

input: if E_1 then if E_2 then S_1 else S_2

Conflict - Example

input: if E_1 then if E_2 then S_1 else S_2

Conflict - Example

input: if E_1 then if E_2 then S_1 else S_2

- if E_1 then if E_2 then S_1 else S_2
- if E_1 then if E_2 then S_1 else S_2

Properties

- Table driven
- LR grammars

Bottom-up Parsing LR Parsing

Properties

- Table driven
- LR grammars

Advantages

- LR grammars are quite general.
- Syntax errors are detected early.
- $\blacksquare LR(k) \supset LL(k)$

Bottom-up Parsing LR Parsing

Properties

- Table driven
- LR grammars

Advantages

- LR grammars are quite general.
- Syntax errors are detected early.
- $\blacksquare LR(k) \supset LL(k)$

SLR Parsing Parser Architecture

