Copyrighted Material FIFTH EDITION

MECHANISMS MECHANICAL DEVICES

SOURCEBOOK

NEIL SCLATER

Copyrighted Material

CONTENTS

PREFACE		v
CHAPTER 1	BASICS OF MECHANISMS	- 1
	Introduction	,
	Physical Principles	
	Efficiency of Machines	
	Mechanical Advantage	
	Velocity Ratio	
	Indired Plane	
	Pulley Systems	
	Screw-Type Jack	
	Lovers and Machanisms	
	Lever	
	Winches, Windlasses, and Capstans	
	Linkagos	
	Simple Planer Linkages	
	Specialized Linkages	
	Straight-Line Generators	
	Rotary/Linear Linkages	
	Specialized Mechanisms	
	George and Georing	
	Simple Gear Trains	
	Compound Gear Trains	- 11
	Gear Classification	-
	Practical Gear Configurations	12
	Gear Tooth Geometry	1
	Gerr Terminology	15
	Gest Danamics Terminology	- 13
	Pulleys and Belts	14
	Sprockets and Chains	14
	Cum Mechanisms	
	Classification of Cam Mechanisms	10
	Com Terminology	1
	Clutch Machanisma	17
	Externally Controlled Friction Clutches	- 17
	Externally Controlled Positive Clutches	17
	Internally Controlled Clutches	- 11
	Glossery of Common Mechanical Terms	- 11
CHAPTER 2	MOTION CONTROL SYSTEMS	21
	Motion Control Systems Overview	
	Glassaw of Motion Control Tenno	21
	Machanical Components Form Specialized Motion Control Systems	
	Servenotes, Stepper Motors, and Astraton for Motion Control	7/
	Servogastern Foodback Servors	
	Solenoids and Their Applications	

	соругідіней імаленаі	
CHAPTER 3	STATIONARY AND MOBILE ROBOTS	49
	The Robot Defined	30
	Stationary Autonomous Industrial Robots	- 50
	Stritonary Autonomous Industrial Robots Some Robot History	70
	Some Robot History The Worldwide Robot Market	
	Industrial Robots	
	Industrial Robot Advantages Industrial Robot Characteristics	57
	Industrial Robot Geometry	53
	Four Different ABB Industrial Robots	5.0
	IRB 2400	
	IRR 6100RE	
	IRB 6640	
	IRB 2600	
	Autonomous and Seminatenomous Mobile Robots	
	Ontions for Communication and Control	
	Lend based Mobile Robots Car Scort and Retrieve	
	Land Need Mebile Robots Can Scott and Retrieve	38
	Submersible Mobile Robots Can Search and Explore Robotic Aircraft (Dropes) Can Search and Descrey	38
	Robotic Ascendt (Drones) Can Search and Destroy	58
	Planetary Exploration Robots Can Examine and Report	10
	Planetary Exploration Robots Can Examine and Report Laboratory/Scientific Robots Can Mimic Human Behavior Commercial Robots Can Deliver and Retrieve Goods	39
	Commercial Robots Class Floors and Mon Laws:	- 50
	Some Robots Entertain or Educate	59
	Seven Mobile Autonomous and Somiastenomous Robots	- 99
	Two Robote Have Explored Mure for Six Years This Robot Will Carry on the Work of Spirit and Opportunity	- 50
	This Robot Will Corry on the Work of Spert and Opportunity	- 61
	This Robot Responds to Civil Emergencies Robot Delivers Hospital Supplies	62
	Robot Delivers Hospital Supplies	6/2
	A Military Remotely-Piloted Aircraft Can Observe and Altack the Enemy	- 63
	Submarine Robot Searches for Underwater Mines and Obstructions This System Offers Less Intrusive Surgery and Finite Recovery Glassery of Robotic Terms Modified Four Limbed Robot Is a Better Climber	- 64
	This System Offers Less Intrusine Surgery and Faster Recovery	65
	Glassory of Robotic Terms	56
	Modified Four Limbed Robot Is a Botter Climber	68
	Six Logged Robot Crawle on Much in Lunar Gravity	60
	Turn Robots Anchor Another Traversing Steep Shapes Six-Legged Robot Can Be Steeped While Hopping	70
CHAPTER 4	MECHANISMS FOR RENEWARI E POWER	
	GENERATION	
	Overview of Renewable Energy Sources	74
	Nuclear: The Unlikely Prime Renewable	74
	Alternative Renewable Farray Sources Buschool and Buschool Deceard Force Plants	75
	Buschard and Buschard Donnard Foreir Plants	75
	Window Ple: Fauls Panemable Paner Sources	75
	Wind Turbines: Descendents of Windmills	76
	Hilbert A. W. Willed Turkings I amount 12	22
	Concontrating Solar Thomas (CST) Systems Parabolic Trough Misror Solar Thomas (CST) Flusts	78
	Parabolic Trough Mirror Solar Thannal (CST) Plants	79
	Power Tower Soler Thomas (CST) Plants	70
	Linear Eracual Roflector Thermal (CST) Plants	80
	Bombolio Dich Stieling Salas Thomas (CST) Bloots	91
	How a Stirling Espire Works	82
	The Outlook for CST Reservable Energy	93
	The content of ear town early thinks	-

	Copyrighted Material	
	Harnessing Moving-Water Power	84
	Tidal Flectric Power Generation	8.4
	Ocean, Water Power Generation	84
	Another Possible Mechanical Hydropower Solution	84
	The Relative Costs of Renewable Energy	85
	Glossary of Wind Turbine Terms	86
	Renewable Energy Resources	87
CHAPTER 5	LINKAGES: DRIVES AND MECHANISMS	89
CHAP ILLI		
	Four-Bar Linkages and Typical Industrial Applications	90
	Seven Linkages for Transport Mechanisms	92
	Five Linkages for Straight-Line Motion	95
	Six Expanding and Contracting Linkages	97
	Four Linkages for Different Motions	98
	Nine Linkages for Accelerating and Decelerating Linear Motions	90
	Twelve Linkages for Multiplying Short Motions	101
	Four Parallel-Link Mechanisms	103
	Seven Stroke Multiplier Linkages	103
	Nine Force and Stroke Multiplier Linkages	105
	Eighteen Variations of Differential Linkage	107
	Four-Bar Space Mechanisms	109
	Seven Three-Dimensional Linkage Drives	111
	Thirteen Different Toggle Linkage Applications	116
	Hinged Links and Torsion Bushings Soft-Start Drives	118
	Eight Linkages for Band Clutches and Brakes	119
	Design of Crark-and-Rocker Links for Optimum Force Transmission	121
	Design of Four-Bur Linkages for Angular Motion	124
	Multihur Linkages for Curvilinear Motions	125
	Roberts' Law Helps to Design Alternate Four-Bar Linkages	128
	Design of Slider-Crank Mechanisms	129

CHAPTER 6 GEARS: DEVICES, DRIVES, AND MECHANISMS 131 Gears and Eccestric Disk Provide Quick Indexing 132 Dish Shaped Planning Gears Senoath Step and Ge 133 Cycloid Gear Mechanism Controls Pamp Stroke 136

Goare Connert Retary to Linear Motion	137
Twin-Motor Planetury Geam Offer Safety and Dual-Speed	137
Eleven Cycloid Gear Mechanisms	138
Five Curden Goor Mechanisms	141
Controlled Differential Gear Drives	143
Flexible Face-Georg Are Efficient High-Ratio Speed Reducers	144
Rotary Sequencer Gener Turn Consistly	145
Planetury Gear Systems	146
Noncircular Gears Ara Balanced for Speed	153
Sheet-Metal Gears, Sprockets, Worms, and Ratchets for Light Loads	157
Thirtoon Ways Gours and Clutches Can Chango Spood Portice	159
Gear and Clutch Shifting Mechanisms	161
Twinworm Gear Drive Offers Bidirectional Output	163
Bevel and Hypoid Gees Design Prevents Undercutting	164
Machining Method to Improve Worm Geor Meching	165
General Speed Reshause Office One Way Output	166
Design of Genred Five-Bur Mechanisms	167
Equations for Designing Genred Cycloid Mechanisms	171

Convrighted Material

	Copyrighted Material	
CHAPTER 7	CAM, GENEVA, AND RATCHET DRIVES AND MECHANISMS	179
	Cun-Controlled Planetary Gear System	180
	Five Cam-Stroke-Amplifying Mechanisms	181
	Cam-Curve-Generating Mechanisms	183
	Fifteen Different Cam Mechanisms	190
	Ten Special-Function Cams	190
	Twenty Geneva Drives	193
	Six Modified Geneva Drives	190
	Kinematics of External Geneva Wheels	199
	Kinematics of Internal Geneva Wheels	201
		200
	Star Wheels Challenge Geneva Drives for Indexing	200
	Ratchel-Tooth Speed-Change Drive Modified Ratchet Drive	200
		3.0
	Eight Toothless Ratchets	200
	Analysis of Ratchet Wheels	210
CHAPTER 8	CLUTCHES AND BRAKES	211
	Twelve Clutches with External or Internal Control	213
	Spring-Wrapped Clutch Slips at Preset Torque	214
	Controlled-Slip Expands Spring Clutch Applications	216
	Spring Bands Improve Overrunning Clerch	217
	Slip and Bidirectional Clutches Combine to Control Torque	288
	Slip Clutches Serve Many Design Functions	215
	Walking Pressure Plate Delivers Constant Torque	220
	Seven Overranning Clatches	22
	One-Way Clatch Has Spring-Loaded Pins and Sprags	223
	Roller Clutch Provides Two Output Speeds	221
	Seven Overriding Clutches	221
	Ten Applications for Overrunning Clutches	225
	Eight Sprag Clutch Applications	221
	Six Small Clutches Perform Precise Tasks	225
	Twelve Different Station Clutches	231
	Twelve Applications for Electromagnetic Clutches and Brakes	234
CHAPTER 9	LATCHING, FASTENING, AND CLAMPING	
OTHER TELLS	DEVICES AND MECHANISMS	237
	Sixteen Lutch, Toggle, and Trigger Devices	238
	Fourteen Snap-Action Devices	240
	Remote Controlled Latch	244
	Toggle Fastener Inserts, Locks, and Releases Easily	245
	Grapple Frees Loads Automatically	245
	Quick-Release Lock Pin Hax a Ball Detent	246
	Automatic Brake Locks Hoist When Driving Torque Ceases	246
	Lift-Tong Mechanism Firmly Grips Objects	247
	Perpendicular-Force Latch	241
	Two Quick-Release Mechanisms	248
	Shape-Memory Alloy Devices Release Latches	249
	Ring Springs Clamp Platform Elevator into Position	250
	Cammed Jews in Hydraulic Cylinder Grip Sheet Metal	250
	Quick-Acting Clamps for Machines and Fixtures	25
		25
	Nine Friction Clamping Devices Potents for Streeting Mechanical Measurements	255
	Detests for Stopping Mechanical Movements Twelve Clamping Methods for Aligning Adjustable Parts	257
		259
	Spring-Louded Chucks and Holding Fistures	235

Copyrighted Material

CHAPTER 10	CHAIN AND BELT DEVICES AND MECHANISMS	26
	Twelve Variable-Speed Belt and Chain Drives	26
	Belts and Chains Are Available in Many Different Forms	26
	Change Center Distance without Altering Speed Ratio	26
	Motor Mount Prvots to Control Belt Tension	26
	Ten Roller Chains and Their Adaptations	27
	Twelve Applications for Roller Chain	27
	Six Mechanisms for Reducing Palsations in Chain Drives	27
CHAPTER 11	SPRING AND SCREW DEVICES AND MECHANISMS	27
	Flut Springs in Mechanisms	28
	Twelve Ways to Use Metal Springs	28
	Seven Overriding Spring Mechanisms for Low-Torque Drives	28
	Six Spring Motors and Associated Mechanisms	28
	Twelve Air Spring Applications	28
	Novel Applications for Different Springs	29
	Applications for Belleville Springs	29
	Vibration Control with Spring Linkage	29
	Twenty Screw Devices	29
	Ton Applications for Screw Mechanisms	29
	Seven Special Screw Arrangements	29
	Founteen Spring and Screw Adjusting Devices	29
	A Long-Stroke, High-Resolution Linear Actuator	29
CHAPTER 12	SHAFT COUPLINGS AND CONNECTIONS	30
	Four Couplings for Parallel Shafts	30
	Links and Disks Couple Offset Shafts	30
	Disk-and-Link Couplings Simplify Torque Transmission	30
	Interlocking Space-Frames Flex as They Transmit Shaft Torque	30
	Coupling with Off-Center Pins Connects Misuligned Shafts	38
	Universal Joint Transmiss Torque 45° at Constant Speed	30
	Ten Universal Shaft Couplings	30
	Nineteen Methods for Coupling Rotating Shafts	31
	Five Different Pin-end-Link Couplings	31
	Tou Different Splined Connections	31
	Fourteen Ways to Fasten Habs to Shafts	31
	Polygon Shapes Provide Superior Connections	32
CHAPTER 13	MOTION-SPECIFIC DEVICES, MECHANISMS,	
	AND MACHINES	32
	Timing Belts, Four-Bar Linkage Team Up for Smooth Indexing	32
	Ten Indexing and Intermittent Mechanisms	32
	Twenty-Seven Rotary-to-Reciprocating Motion and Dwell Mechanisms	32
	Five Friction Mechanisms for Intermittent Rotary Motion	33
	Nine Different Ball Slides for Linear Motion	33
	Bull-Bearing Screws Consert Rotary to Linear Motion	33
	Nineteen Arrangements for Changing Linear Motion	33
	Fight Adjustable-Output Mechanisms	34
	Four Different Revening Mechanisms	34
	Ten Mechanical Computing Mechanisms	34
	Nine Different Mechanical Power Amplifiers	35
	Forty-Three Variable-Speed Drives and Transmissions	35
	Ton Variable-Speed Friction Drives	36
	Four Drives Convert Oscillating Motion to One-Way Rotation	36
	Eighteen Different Liquid and Vacuum Pumps	36
	Copyrighted Material	v

	Copyrighted Material	
	Ten Different Pump Designs Explained	373
	Glossary of Pump Terms	.376
	Bearingless Motor-Generators Have Higher Speed and Longer Life	377
	Energy Exchange in Seawater Desalination Boosts Efficiency	378
	Two-Cycle Engine Improves Efficiency and Performance	380
CHAPTER 14	PACKAGING, CONVEYING, HANDLING, AND SAFETY MECHANISMS AND MACHINES	381
		382
	Fifteen Devices That Sort, Feed, or Weigh	386
	Seven Cutting Mechanisms Two Flipping Mechanisms	388
	One Vibrating Mechanism	388
	Seven Basic Parts Selectors	389
	Eleven Parts-Handling Mechanisms	390
	Seven Automatic-Feed Mechanisms	397
	Fifteen Conveyor Systems for Production Machines	395
	Seven Traversing Mechanisms for Winding Machines	399
	Vacuum Pickup for Positioning Pills	401
	Machine Applies Labels from Stacks or Rollers	401
	Twenty High-Speed Machines for Applying Adhesives	402
	Twenty-Four Automatic Mechanisms for Stopping Unsafe Machines	409
	Six Automatic Electrical Circuits for Stopping Textile Machines	414
	Six Automatic Mechanisms for Assuring Safe Machine Operation	410
CHAPTER 15	TORQUE, SPEED, TENSION, AND LIMIT	1205
	CONTROL SYSTEMS	419
	Applications of the Differential Winch to Centrol Systems	420
	Six Ways to Prevent Reverse Rotation	422
	Caliper Brakes Keep Paper Tension in Web Presses	423
	Control System for Paper Cutting	423
	Warning System Prevents Overloading of Boom	424
	Lever System Monitors Cable Tension	424
	Eight Torque-Limiters Protect Light-Duty Drives	425
	Thirteen Limiters Prevent Overloading	426
	Seven Ways to Limit Shaft Rotation	429
	Mechanical Systems for Controlling Tension and Speed	431
	Nine Drives for Controlling Tension	435
	Limit Switches in Machinery	438
	Nine Automatic Speed Governors	442
	Eight Speed Control Devices for Mechanisms Cable-Braking System Limits Descent Rate	444
CHAPTER 16	INSTRUMENTS AND CONTROLS: PNEUMATIC.	
CHAPTER 10	HYDRAULIC, ELECTRIC, AND ELECTRONIC	447
	Twenty-Four Mechanisms Actuated by Proximatic or Hydraulic Cylinders	448
	Foot-Controlled Braking System	450
	Fifteen Tasks for Presentatic Power	450
	Ten Applications for Metal Diaphragms and Capsules	452
	Nine Differential Transformer Sensors	454
	High-Speed Electronic Counters	456
	Applications for Permanent Magnets	457
	Nine Electrically Driven Hammers	460
	Sixteen Thermostatic Instruments and Controls	462
	Eight Temperature-Regulating Controls	466
	Seven Photoelectric Controls	468

viii

	Copyrighted Material Liquid Level Indicators and Controllers	470
	Applications for Explosive-Carridge Devices	472
	Centrifugal, Pneumatic, Hydraulic, and Electric Governors	474
CHAPTER 17	3D DIGITAL PROTOTYPES AND SIMULATION	477
	Introduction to 3D Digital Prototypes and Simulation	478
	A Short History of Engineering Drawing	478
	Transition from Board to Screen	479
	CAD Product Features	480
	3D Digital Prototypes vs. Rapid Prototyping The Occasion Radio of 3D December.	480
	The Orgoing Role of 2D Drawings Functions of Tools in 2D Digital Protetype Software	481
	File Types for 3D Digital Prototypes	481
	Computer-Aided Engineering (CAE)	482
	Simulation Software	482
	Simulated Stress Analysis	483
	Glossary of Computer-Aided Design Terms	484
CHAPTER 18	RAPID PROTOTYPING	487
	Rapid Prototyping Focuses on Building Functional Parts	488
	Rapid Prototyping Steps	489
	Commercial Rapid Prototyping Choices	490
	Commucial Additive RP Processes	491
	Subtractive and R&D Laboratory Processes	498
CHAPTER 19	NEW DIRECTIONS IN MECHANICAL	75207
	ENGINEERING	501
	The Role of Microtechnology in Mechanical Engineering	502
	Micromachines Open a New Frontier for Machine Design	504
	Multileval Fabrication Permits More Complex and Functional MEMS	508
	Electron Microscopes: Key Tools in Micro- and Nanotechnology	509
	Gallery of MEMS Electron-Microscope Images	512
	MEMS Actuators—Thermal and Electrostatic	516
	MEMS Chips Become Integrated Microcontrol Systems	517
	Alternative Materials for Building MEMS	519
	LIGA: An Alternative Method for Making Microminiance Parts	520
	The Role of Nanotechnology in Science and Engineering	521 523
	Carbon: An Engineering Material with a Future Nanoactuators Based on Electrostatic Forces on Dielectrics	528
	The Linar Electric Rover: A New Concept for Moon Travel	530
	THE CHIEF CHARLE IS NOT A CARROLL OF SHARE ITEMS	330
INDEX		533