IIT Jodhpur

Biological Vision and Applications Module 02-02: Edge detection

Hiranmay Ghosh

Why edge detection is important

- Most of the objects are identified by their shapes
 - How are the shapes detected ?

Machband Effect

Bars of uniform illumination

Machband Effect

Adds contrast to vision

The Horizontal cells

- Connects nearby photo-receptors of the same kind
- Carries a Lateral Inhibition signal
 - proportional to the response level

Computational Model

This example assumes $\frac{1}{10} {\rm th}$ of response to be transmitted as inhibition signal

The Bipolar cells

- Photo-receptors are connected to Ganglions through bipolar cells
- 10 million bipolar cells connects to 125 million photo-receptors
 - Connects to few cones (even 1)
 - Connects to many rods
- Data reduction

Center-Surround effect

The ganglion output is a weighted linear combination of excitation levels of the photoreceptors in the receptive field.

Center-Surround effect

... continued

On-center configuration "On" bipolar cell at center

Off-center configuration "Off" bipolar cell at center

Generic model of signal processing in early vision

Digital Convolution (2D)

 Compute weighted average of surrounding pixels

Inputs:

Image
$$I = [[I_{xy}]], x = 1 : W, y = 1 : H$$

Mask $M = [[M_{xy}]], x, y = -m : +m \quad (m << W, H)$

Output:

Transformed Image
$$I' = [[I'_{xy}]], x = 1 : W, y = 1 : H$$

where $I'_{x,y} = \sum_{i=-m}^{+m} \sum_{j=-m}^{+m} M_{x+i,y+j} . I_{x-i,y-j}$

No data reduction at this stage

Fundamental operation in a Convolutional Neural Network (CNN)

Image filters

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

- Integrating filters
 - Gaussian filter (with $\sigma = 1$)
 - Used for noise reduction

Laplacian filters

- Differentiating filters
 - Implements center-surround operation
 - Used for contrast enhancement

In classical image processing, the filters used to be hand-crafted In CNN, they are machine learnt

Difference of Gaussian

Approximates Laplacian of Gaussian (LoG)

- Gaussian smoothing (noise reduction) precedes differentiation
- DoG is an approximation of LoG

Edge detection

Zero-Crossing of LoG/DoG

• Orientation ?

Detection of Edge Orientations

- It has been observed that
 - 1. Some cells in the visual cortex respond to edge orientations
 - 2. Different cells respond to different orientations
 - 3. The cells that responds to same orientation are grouped together

Oriented Filter Banks

- Ganglions connect to orientation detection cells in different combinations
- Results in edges with different orientations to be detected
- Motivates design of Gabor filters

Convolution filters for edge detection

Sobel filters

+1	+2	+1	
0	0	0	
-1	-2	-1	

-1	0	+1
-2	0	+2
-1	0	+1

Integration and Differentiation

$$\mathbf{G_x} = [1\ 2\ 1]^T * ([+1\ 0\ -1] * \mathbf{I})$$

$$\mathbf{G_x} = \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}^T * (\begin{bmatrix} +1 \ 0 \ -1 \end{bmatrix} * \mathbf{I})$$

$$\mathbf{G_y} = \begin{bmatrix} +1 \ 0 \ -1 \end{bmatrix}^T * (\begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} * \mathbf{I})$$

$$|\mathbf{G}| = \sqrt{\mathbf{G_x}^2 + \mathbf{G_y}^2}$$

$$\theta = tan^{-1} \frac{\mathbf{G_y}}{\mathbf{G_x}}$$

$$\mid \mathbf{G} \mid = \sqrt{\mathbf{G_x}^2 + \mathbf{G_y}^2}$$

$$\theta = tan^{-1} \frac{\mathbf{G_y}}{\mathbf{G_x}}$$

Does not happen this way in brain

Winner Take All (WTA) and Normalization

Applicable to all sensory signals

- The output of the filter with strongest output is transmitted
 - ► The strongest oriented edge is detected
- Output is normalized by the average response
 - ► The winner needs to stand out to produce strong response

Transformation in the eye

Retinal image

Neural image

- Human vision is sensitive to contrast, and not to brightness
- There is huge data reduction
 - ▶ 126 mn photo-receptor \rightarrow 10 mn bipolar cells \rightarrow 1 mn optic nerves (approx)

The amacrine and the ganglion cells

- Ganglions connect to the brain
- Amacrine cells contribute to motion detection

Quiz 02-02

End of Module 02-02