Задача А. Запросы Таро на дереве

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 10 секунд Ограничение по памяти: 256 мегабайт

У кота Таро есть подвешенное дерево из n вершин. Вершины пронумерованы от 0 до n-1, включительно. Вершина с номером 0 является корнем дерева. На каждом ребре написан целый положительный вес.

Таро хочет выполнить m запросов. Каждый запрос состоит из двух вершин u и v. Запросы следует выполнить следующим образом:

- Если u равно v, выведите -1.
- Иначе, если вершина v лежит в поддереве вершины u, выведите максимальный вес на ребрах на простом пути из v в u.
- Иначе, удалите ребро, соединяющее вершину u и ее родителя. Вместо него добавьте новое ребро (с таким же весом), которое сделает вершину u ребенком вершины v. (Обратите внимание, что все поддерево вершины u теперь часть поддерева вершины v.) Ничего выводить не нужно.

Формат входных данных

В первой строке содержатся два целых числа n и m $(1 \leqslant n, m \leqslant 200\,000)$ — количество вершин и запросов, соответственно.

Во второй строке содержится n-1 целое число p_i $(1 \leqslant i \leqslant n-1, 0 \leqslant p_i < i)$ — родитель i-й вершины.

В третьей строке содержится n-1 целое число w_i $(1 \leqslant i \leqslant n-1, 0 \leqslant w_i \leqslant 1\,000\,003)$ — вес ребра из вершины i в ее родителя.

В следующих m строках содержится по два целых числа u_i и v_i ($0 \le v_i, u_i \le n-1$)—запросы.

Формат выходных данных

Выведите ответы на запросы.

Примеры

стандартный ввод	стандартный вывод
4 4	4
0 1 1	0
2 4 0	4
0 2	
1 3	
2 3	
0 2	
7 10	5
0 1 1 2 4 4	-1
5 4 0 2 4 6	6
0 1	2
1 1	4
2 6	5
2 4	5
2 5	4
0 2	4
0 2	6
1 5	
1 5	
2 6	
10 4	59
0 0 1 2 3 5 6 7 8	59
14 24 25 65 13 59 19 37 58	65
1 9	37
5 6	
2 4	
6 8	

Замечание

Пояснение к первому примеру.

Задача В. Прямоугольники

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.5 секунд Ограничение по памяти: 256 мегабайт

Когда-то тут была легенда про вёдра, но её съели.

Жюри олимпиады

Есть таблица T размера $N \times M$. Элементами таблицы являются прямоугольники T_{ij} , где $0 \leqslant i < N$ и $0 \leqslant j < M$. Прямоугольник T_{ij} задаётся четвёркой чисел $(x_1^{ij}, y_1^{ij}, x_2^{ij}, y_2^{ij})$, где (x_1^{ij}, y_1^{ij}) и (x_2^{ij}, y_2^{ij}) — координаты противоположных углов прямоугльника. Стороны прямоугольника параллельны осям координат.

Далее вам поступают запросы. Каждый запрос состоит из четырёх чисел: (r_1, c_1, r_2, c_2) . Ответом на такой запрос является площадь фигуры, являющейся пересечением всех прямоугольников T_{ij} таких, что $\min(r_1, r_2) \leqslant i \leqslant \max(r_1, r_2)$ и $\min(c_1, c_2) \leqslant j \leqslant \max(c_1, c_2)$. Запросов очень много, поэтому мы просим вас вывести сумму ответов на все запросы по модулю $10^9 + 7$.

Формат входных данных

В первой строке записаны два целых числа N и M—размеры таблицы T ($1 \le N, M \le 127$). Далее в N строках описывается таблица T: в (i+1)-й строке (j+1)-я четвёрка чисел $x_1^{ij} \ y_1^{ij} \ x_2^{ij} \ y_2^{ij}$ описывает прямоугольник T_{ij} . Гаранируется, что $|x_k^{ij}|, |y_k^{ij}| \le 10^6$.

Дальше в отдельной строке записано четыре числа. Первое из них, число Q — количество запросов $(1 \le Q \le 5 \cdot 10^6)$. Следующие три числа — это $A, B, v_0 \ (0 \le A, B, v_0 < 10^9 + 7)$. При помощи этих чисел генерируется бесконечная последовательность $\{v_i\}$ по правилу $v_i = (A \cdot v_{i-1} + B) \mod (10^9 + 7)$.

После этого k-й запрос (запросы нумеруются с единицы) задаётся следующей четвёркой чисел: $(v_{4k-3} \mod N, v_{4k-2} \mod M, v_{4k-1} \mod N, v_{4k} \mod M)$.

Формат выходных данных

Выведите сумму ответов на все запросы по модулю $10^9 + 7$.

Примеры

стандартный ввод	стандартный вывод
2 2	1
0 0 2 2 1 1 3 3	
0 3 2 1 1 2 3 0	
1 500000003 4 2	
3 2	85
8 -1 -7 6 6 8 9 10	
-4 -10 4 9 -3 -8 6 9	
-2 -9 3 8 -5 7 7 3	
5 303164476 273973578 65779139	

Замечание

В первом примере запрос имеет вид (1,0,0,1), то есть это запрос ко всей таблице. Пересечением всех прямоугольников является квадрат с углами в точках (1,1) и (2,2). Его площадь равна 1.

Во втором примере запросы имеют вид (0,1,1,1), (1,0,2,0), (0,0,2,1), (0,1,1,1), (0,1,0,0). На второй запрос ответ -85, на остальные -0.

Задача С. Двумерные запросы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам задан массив размера 2^{17} . Требуется ответить на запросы: сколько есть элементов f[i] таких, что $l \leqslant i \leqslant r$ и $x \leqslant f[i] \leqslant y$.

Формат входных данных

На первой строке число q ($1 \leqslant q \leqslant 2^{17}$). На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
0. unsigned int a, b; // даны во входных данных
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand17() {
3.
       cur = cur * a + b; // вычисляется с переполнениями
       return cur » 15; // число от 0 до 2^{17}-1.
4.
5. }
6. unsigned int nextRand24() {
       cur = cur * a + b; // вычисляется с переполнениями
7.
       return cur » 8; // число от 0 до 2^{24}-1.
8.
9. }
   Сначала массив генерируется следующим образом:
1. for (int i = 0; i < 1 < 17; i++)
       f[i] = nextRand24();
   Потом генерируются запросы следующим образом:
1. l = nextRand17();
2. r = nextRand17();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
4. x = nextRand24();
5. y = nextRand24();
6. if (x > y) swap(x, y); // получили отрезок [x..y]
7. b += c; // c -- ответ на данный запрос, для ответа на запросы в online
```

Формат выходных данных

Выведите сумму ответов на все запросы второго типа по модулю 2^{32} .

Примеры

стандартный ввод	стандартный вывод
5	111139
13 239	

Задача D. Жадность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В этой задаче вам придется решить одну из разновидностей известной задачи о рюкзаке. К сожалению, она не NP-полная.

У вас есть n предметов, каждый из которых имеет размер s_i и стоимость c_i . Также у вас q рюкзаков, каждый из которых описывается своим размером x_i . Рюкзак размера x может содержать набор предметов суммарным размером не более x.

Чтобы заполнить рюкзак, используется следующий алгоритм:

- 1. Сортируются все предметы по невозрастанию их размеров.
- 2. Предметы просматриваются в полученном порядке.
- 3. Предмет кладётся в рюкзак, если в рюкзаке достаточно свободного места.

Для каждого из q рюкзаков выведите суммарную стоимость предметов в этом рюкзаке после запуска алгоритма, описанного выше.

Формат входных данных

Первая строка входного файла содержит одно целое число n: число предметов $(1 \le n \le 10^5)$.

Вторая строка содержит n целых чисел $s_1, s_2, ..., s_n$: размеры предметов $(1 \le s_i \le 10^6)$.

Третья строка содержит n целых чисел c_1, c_2, \ldots, c_n : стоимости предметов $(1 \le c_i \le 10^4)$.

Четвертая строка содержит одно целое число q: количество рюкзаков ($1 \le q \le 10^5$).

Пятая строка содержит q целых чисел x_1, x_2, \ldots, x_q : вместимости рюкзаков $(1 \le x_i \le 10^6)$.

Предметы даны в порядке невозрастания их размеров. Вы не должны менять их порядок.

Формат выходных данных

Для каждого рюкзака выведите суммарную стоимость предметов внутри него в отдельной строке.

Решать задачу для каждого рюкзака вы должны независимо от других.

Пример

стандартный ввод	стандартный вывод
5	1
5 4 4 2 1	70
10 1 100 20 40	171
3	
4 8 100	

Задача Е. Бенни и сумма

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Вероятно, вы уже поняли, что Бенни очень любит различные типы запросов.

Иногда, когда она идет гулять с друзьями, они иду в кино. Но каждый раз, когда она идет куда-то, она не может расслабиться, если ее домашняя работа еще не выполнена.

Она любезно просит вас снова помочь ей с домашним заданием.

В этой задаче вам дан массив p, состоящий из n элементов.

Вам нужно ответить на m запросов.

Каждый запрос имеет следующий формат: 1 г х. Ответ на запрос — $\sum_{i=l}^{r} (p_i \mod x)$.

Для каждого запроса выведите ответ на отдельной строке.

Формат входных данных

В первой строке содержатся два целых числа n и m $(1 \le n, m \le 2 \cdot 10^5)$.

Во второй строке содержится n целых чисел p_i ($0 \le p_i \le 2 \cdot 10^5$).

В следующих m строках содержится по три целых числа: l, r и x $(1 \leqslant l \leqslant r \leqslant n, 1 \leqslant x \leqslant 2 \cdot 10^5)$.

Формат выходных данных

Для каждого запроса выведите ответ на отдельной строке.

Пример

стандартный ввод	стандартный вывод
10 5	11
23 32 42 50 2 33 41 5 100 3	75
2 10 3	36
1 9 23	9
3 10 12	13
2 8 4	
2 10 5	

Замечание

1.
$$2+0+2+2+0+2+2+1+0=11$$

$$2. \ 0+9+19+4+2+10+18+5+8=75$$

$$3. 6 + 2 + 2 + 9 + 5 + 5 + 4 + 3 = 36$$

4.
$$0+2+2+2+1+1+1=9$$

5.
$$2+2+0+2+3+1+0+0+3=13$$

Задача F. Visits

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 12 секунд Ограничение по памяти: 256 мегабайт

Сергей — замечательный человек, за последние 21 год он был почтальоном, банкиром, конькобежцем, и даже королем! Неудивительно, что у него много друзей. Но разносторонние профессии и различные места работы, к сожалению, заставили его потерять связь с большинством старых друзей... Настало время это изменить! Сергей начинает грандиозный тур по Сергеотии для восстановлению дружеских связей.

В Сергеотии n городов, соединенных в сеть двухсторонними дорогами (n-1 дорог). Наш герой хочет посетить каждый город и уже установил для себя порядок их посещения. Из каждого города к другому он будет перемещаться на автомобиле, арендованным у компании SRC (Sergeoti Rental Company). Каждая аренда является абсолютно бесплатной, но автомобили нуждаются в заправке — автомобиль с емкостью бака k должен заправляться в самом начале, а затем снова после каждых k пройденных дорог.

SRC хорошо знает плана Сергея и тот факт, что он намерен завершить свое путешествие как можно скорее. Поэтому они ловко выбрали объемы баков арендованных автомобилей, что в каждом городе Сергей будет (пере)заливать две машины: прибывающую и уезжающую (за исключением начального и конечного городов, где лишь только по одному автомобилю, нуждающихся в заправке.).

Зная маршрут Сергея, цены на топливо и объемы баков, определить стоимость каждого сегмента маршрута.

Формат входных данных

Первая строка входного файла содержит целое число n ($2 \le n \le 50\,000$) — количество городов в Сергеотии. Города пронумерованы от 1 до n. На следующей строке находится последовательность из n целых чисел c_1,\ldots,c_n ($1 \le c_i \le 10\,000$), разделенных пробелами, которая задает цены топлива для любого автомобиля в городах Сергеотии: c_i — стоимость заправки топливом в городе с номером i. (Заправиться вы можете только, отдав c_i и никак не меньше).

Последующие n-1 строк задают дорожную сеть в Сергеотии. Каждая строка содержит по два целых числа a и b ($1 \le a, b \le n$), которые указывают на существование двухсторонней дороги между городами a и b. После этого содержится строка с последовательностью из n целых чисел t_1, \ldots, t_n , которые определяют порядок, в котором Сергей собирается посещать города (гарантируется, что каждый город в последовательности появляется ровно по одному разу).

И наконец, последняя строка содержит последовательность из n-1 целых чисел k_1, \ldots, k_{n-1} , описывающих объемы баков арендованных машин: k_i соответствует поездке из города t_i в город t_{i+1} . Сергей должен перезаправить свою машину после каждых k_i пройденных дорог. Гарантируется, что расстояние между этими городами всегда делится на k_i .

Формат выходных данных

Выведите n-1 строк, в каждой строке по одному целому числу. Число в i-й строке должно соответствовать суммарной стоимость перезаправки на пути из города t_i в город t_{i+1} .

Пример

стандартный ввод	стандартный вывод
5	10
1 2 3 4 5	6
1 2	10
2 3	5
3 4	
3 5	
4 1 5 2 3	
1 3 1 1	