

Asymptotically Optimal Exact Minibatch Metropolis-Hastings

Ruqi Zhang

A. Feder Cooper

Christopher De Sa

Cornell University

Metropolis-Hasting (MH)

Given: dataset $\{x_i\}_{i=1}^N$ and the prior $p(\theta)$

Goal: sample from the posterior

$$\pi(\theta) \propto \exp\left(-\sum_{i=1}^{N} U_i(\theta)\right), \text{ where } U_i(\theta) = -\log p(x_i|\theta) - \frac{1}{N}\log p(\theta)$$

Algorithm

- Generate a proposal $\theta' \sim q(\theta'|\theta)$ Accept it with probability $a(\theta, \theta') = \min\left(1, \exp\left(\sum_{i=1}^{N} (U_i(\theta) U_i(\theta'))\right) \cdot \frac{q(\theta|\theta')}{q(\theta'|\theta)}\right)$

Challenge: the accept/reject step is costly when dataset is large!

Minibatch to scale MH

Approximate $a(\theta, \theta')$ based on a minibatch of data

Two classes (whether the posterior is preserved):

Inexact methods

- Pros: mild assumptions
- Cons: asymptotic bias

[Korattikara et. al.,2014; Bardenet et.al., 2014; Seita et. al.,2017......]

Exact methods

- Pros: no bias
- Cons: strong assumptions;

low efficiency

[Maclaurin et.al., 2015; Cornish et.al.,

<mark>2010: Zh</mark>ang et.al. 2019]

Which to use?

Is it important to be exact?

Part I: Inexact methods are unreliable

Theorem: we prove that the stationary distribution of any inexact method can be arbitrarily far from the posterior (in terms of TV distance and KL divergence)

Takeaway

- Any inexact minibatch MH can be arbitrarily wrong
- We should use exact methods

Random Walk Example

- The stationary distributions of inexact methods (AustereMH and MHminibatch) diverge significantly from the true distribution
- Divergence can be arbitrarily large

So we should use exact methods for correctness guarantee But...existing methods are restrictive and inefficient

Part II: Our exact method: TunaMH

- Mild assumptions on the posterior (local bounds on the energy: $|U_i(\theta) U_i(\theta')| \le c_i M(\theta, \theta')$)
- Convergence rate guarantee: at most a constant factor slower than standard (i.e. full-batch) MH

 A tunable trade-off between scalability (batch size) and efficiency (convergence rate)

Our exact method: TunaMH

Algorithm 2 TunaMH

```
given: hyperparameter \chi \longrightarrow A dial for convergence rate and batch size trade-off
loop
   \triangleright Form minibatch \mathcal{I}
   sample B \sim \text{Poisson}\left(\chi C^2 M^2(\theta, \theta') + CM(\theta, \theta')\right) sample batch size B
   initialize minibatch indices \mathcal{I} \leftarrow \emptyset (an initially empty multiset)
   for b \in \{1, ..., B\} do
                                                                                                                         select data to
       \begin{array}{ll} \text{with probability} & \frac{\chi c_{i_b} C M^2(\theta,\theta') + \frac{1}{2} (U_{i_b}(\theta') - U_{i_b}(\theta) + c_{i_b} M(\theta,\theta'))}{\chi c_{i_b} C M^2(\theta,\theta') + c_{i_b} M(\theta,\theta')} \text{ add } i_b \text{ to } \mathcal{I} \\ \text{ad for} \end{array} 
   end for
   \triangleright Accept/reject step based on minibatch \mathcal{I}
   compute MH ratio r \leftarrow \exp\left(2\sum_{i \in \mathcal{I}} \operatorname{artanh}\left(\frac{U_i(\theta) - U_i(\theta')}{c_i M(\theta, \theta')(1 + 2\chi CM(\theta, \theta'))}\right)\right) \cdot \frac{q(\theta'|\theta)}{q(\theta|\theta')}
   with probability \min(1, r), set \theta \leftarrow \theta'
end loop
                                                 Compute acceptance rate based on the minibatch
```

Is it possible to develop a better exact method?

Part III: How efficient can an exact minibatch MH be?

Theorem: given a target convergence rate, we prove a lower bound on the required batch size for any exact minibatch MH

Takeaway

- The first theorem to provide a ceiling for the performance of exact minibatch MH
- TunaMH is asymptotically optimal in the batch size

Gaussian Mixture

Compared to SOTA exact methods, TunaMH is the fastest to converge

Robust Linear Regression

 TunaMH has the highest ESS per second, even compared to methods using MAP/control variates

Logistic Regression on MNIST

TunaMH has the highest test accuracy given time

Summary

- We should use exact methods, as any inexact minibatch MH can perform arbitrarily poorly
- TunaMH is an exact minibatch MH, with mild assumptions and convergence rate guarantees
- We provide a lower bound on the batch size of any exact methods and show TunaMH is asymptotically optimal
- Empirical demonstration on common tasks
 - arXiv.org https://arxiv.org/abs/2006.11677
 - https://github.com/ruqizhang/tunamh