Club utilisateur MFRONT

Utilisation de MFRONT pour l'implémentation des lois de comportement mécaniques dans le code CYRANO3

Charles Pétry – EDF R&D

Le code CYRANO3

Principe: un solveur EF "1,5D"

- Discrétisation axiale en « tranches »
- Transmission des efforts axiaux moyens d'une tranche à l'autre
- Maillage radial 1D + résolution axisymétrique + hyp. de contrainte plane généralisée

Le code CYRANO3 (2)

Problèmes multi-physiques fortement couplés

MECHANICAL ANALYSIS

Fuel:

- poro-elasticity & visco-plasticity
- μ and macro cracking
- fragments relocation
- dishing
- hourglass
- hooking conditions (axial friction)
- PCI
- cladding : elasto-visco-plascity
- external corrosion effect

NEUTRONIC

Radial power distribution Fission products evaluation

INTERNAL PRESSURE

Free volume areas:

- Pellet-cladding gap
- plenum
- macro cracking
- open porosity
- chamfer
- dishing

THERMAL ANALYSIS

Radial temperature distribution
Gap conductivity
Cladding conductivity
Corroded alloy conductivity

THERMIC-HYDRAULIC

Heat transfert
Oxydation effects
Cooling's temperature

PHYSICAL-CHEMICAL

Hydruration
Irradiated cladding behavior
Pellet: irradiated local properties
- density, solid and fission gas
swelling

- fission gas released
- thermal conductivity
- stoechiometry variation
- grain size

Corrosion

Le code CYRANO3 (3)

Résolution mécanique : principes

- L'équilibre mécanique global est résolu par un algorithme de Newton implicite
- L'équilibre mécanique local aussi -> la résolution locale fournit l'opérateur tangent cohérent nécessaire au calcul de l'équilibre global
- L'hypothèse de contrainte plane généralisée peut être traitée de 2 façons différentes
 - 1. Prise en compte directement dans les équations de la loi de comportement
 - 2. Vérification de l'hypothèse a posteriori via une boucle de convergence supplémentaire

Comparaison des temps d'exécution sur la base de plusieurs lois gaine

Temps CPU (s)	LEMAITRE IRRA	CARASSOU	STANDARD	
Solution 1	11,95	14,89	14,10	
Solution 2	62,50	70,07	60,61	

Utilisation des lois MFRONT dans CYRANO3

Avantages

- L'implémentation d'une nouvelle loi demande très peu de développements
- L'implémentation est réalisée une fois pour toutes (identification, validation etc.)
- Les algorithmes de résolutions sont optimisés
- Mutualisation possible avec :
 - 1. Castem (applications PLEIADES)
 - 2. Code_Aster
 - 3.
- MFRONT passé en open source en 2014

Quelques adaptations nécessaires

- Développement d'une interface spécifique pour CYRANO3
- Renvoi de **l'opérateur tangent cohérent** (nécessaire pour C3)
- Prise en compte de l'hypothèse de **contrainte plane généralisée** pour éviter la boucle externe qui ralentit la convergence générale

Quelques réalisations

Identification d'une loi d'écrouissage/relaxation pour le matériau de gainage

- Principe : chargement mécanique en pression interne (avec effet de fond)

L'état de contrainte est imposé par la géométrie...

$$\sigma_r \approx 0$$

$$\sigma_{_{ heta}} pprox rac{PR}{e}$$

$$\sigma_z \approx \frac{\sigma_\theta}{2}$$

Quelques réalisations (2)

Identification d'une loi d'écrouissage/relaxation pour le matériau de gainage (2)

- loi élasto-viscoplastique implémentée de façon indépendante dans MFRONT
- état de contrainte imposé via MTEST
- **surcouche python** pour déterminer l'incrément de pression interne compatible avec l'évolution du déplacement radial souhaitée (dichotomie) et effectuer l'optimisation des paramètres de la loi (simplex)

Quelques réalisations (3)

Implémentation dans CYRANO3 de lois de fluage pour le matériau de gainage

- lois de type élasto-viscoplastique
- élasticité isotrope / (visco)plasticité isotrope ou orthortrope
- schéma d'intégration implicite

Plasticité isotrope

- formalisme de type Von Mises
- mécanismes de déformation additifs

Utilisation des analyseurs spécifiques (MultiplelsotropicMisesFlows...)

Plasticité orthotrope

- formalisme de type Hill
- mécanismes de déformation additifs

Utilisation de l'analyseur générique (Implicit)

Quelques réalisations (4)

Exemple de loi isotrope à écoulements multiples

$$arepsilon^{totale} = arepsilon^{thermique} + arepsilon^{élastique} + arepsilon^{viscoplast ique} + arepsilon^{viscoplast ique} = arepsilon^{fluage}_{irradiatio} + arepsilon^{fluage}_{thermique} + arepsilon^{plastique}_{ins an an ext{\'e}}$$

Dépendance à la température, flux de neutrons rapides, fluence rapide...

```
@Parser MultipleIsotropicMisesFlows;
@ExternalStateVariable real flux;
flux.setGlossaryName("FastNeutronFlux");
@ExternalStateVariable real fluence;
fluence.setGlossaryName("FastNeutronFluence");
@FlowRule StrainHardeningCreep{ // irradiation
@FlowRule StrainHardeningCreep{ // thermique
@FlowRule Plasticity{ // plastique
.....
```


Ecriture très simplifiée et "naturelle"

Quelques réalisations (5)

Exemple de loi orthotrope

$$arepsilon^{totale} = arepsilon^{thermique} + arepsilon^{élastique} + arepsilon^{viscoplast ique} = \dot{p} \, rac{H : \sigma}{\sigma_{Hill}}$$

Dépendance à la température, flux de neutrons rapides, fluence rapide...

```
@Parser Implicit;
@OrthotropicBehaviour;
H = hillTensor<N,real>(Hz,Hr,Ht,Hrt,Hrz,Htz);
// Hill Stress
  real sigeq = sqrt(sig|H*sig);
@TangentOperator{
    Stensor4 Je;
    getPartialJacobianInvert(Je);
    Dt = D*Je;
```


Ecriture très simplifiée par l'utilisation de bibliothèques dédiées

Quelques réalisations (6)

Exemple de loi orthotrope (2)

Prise en compte de l'hypothèse de contrainte plane généralisée

```
@Integrator<AxisymmetricalGeneralisedPlaneStress, Append, AtEnd>{
  const stress szz=(lambda+2*mu) * (eel(1) +deel(1)) +lambda* (eel(0))
                    +deel(0)+eel(2)+deel(2));
  fetozz = (szz-sigzz-dsigzz)/young;
  feel(1) -= detozz;
  // jacobian
  dfeel ddetozz(1) = -1;
  dfetozz ddetozz = real(0);
  dfetozz ddeel(1) = (lambda+2*mu)/young;
  dfetozz ddeel(0) = lambda/young ;
  dfetozz ddeel(2) = lambda/young ;
```


Surcharge de quelques termes spécifiques

Le formalisme reste valide quelle que soit l'hypothèse choisie par l'utilisateur final...

Quelques réalisations (7)

Exemple de loi orthotrope (3)

Benchmark entre l'implémentation native de CYRANO3 et celle utilisant MFRONT (32 cas tests = base de validation réduite CYRANO3)

Gain de temps CPU MFRONT (%)

Temps CPU comparable voire meilleur dans 60% des cas

Conclusions / Perspectives

- ➤ Le couplage CYRANO3 / MFRONT est aujourd'hui effectif et permet de mener des calculs isofonctionnels avec ceux de la version native (opérateur tangent, contrainte plane généralisée)
- > La mutualisation des lois de comportement entre les différentes applications est une réalité
- ➤ Les travaux en cours dans CYRANO3 concernent la mise en place d'une interface spécifique permettant le branchement générique des lois (UMAT++)
- Une généralisation de l'utilisation de MFRONT est envisagée à terme

