- The Influence of Temperature on Ozone Production under
- varying NO<sub>x</sub> Conditions a modelling study: Supplementary
- 3 Material

1

8

- J. Coates<sup>1</sup>, K. Mar<sup>1</sup>, N. Ojha<sup>2</sup> and T. Butler<sup>1</sup>
- <sup>1</sup>Institute for Advanced Sustainability Studies, Potsdam, Germany
- <sup>2</sup>Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz,
- 7 Germany

March 24, 2016

## S1 Vertical Mixing with Diurnal Boundary Layer Height

 $_{10}$  The MECCA box model used in Coates and Butler (2015) included a constant boundary layer

height of 1 km and no interactions (vertical mixing) with the free troposphere. In reality,

the planetary boundary layer (PBL) height varies diurnally and affects chemistry by diluting

emissions after sunrise when the PBL rises.

The evolution of the PBL leads to vertical mixing of the near surface air with the free

 $_{15}$  tropospheric air mass. When the PBL collapses in the evening, pollutants are trapped in the

6 PBL. The mixing layer height was measured as part of the BAERLIN campaign (Bonn et al.,

2016) over Berlin, Germany. The profile of mean mixing layer height during the campaign period

18 (June – August 2014) was used in the box model to represent the diurnal cycle of the mixing layer

19 height. We implemented the vertical mixing scheme into the boxmodel following the approach of

20 Lourens et al. (2016).

21

The mixing ratios of O<sub>3</sub>, CO and CH<sub>4</sub> in the free troposphere were respectively set to

50 ppbv, 116 ppbv and 1.8 ppmv. These conditions were taken from the MATCH-MPIC chemical

weather forecast model on the 21st March (the start date of the simulations). The model results

(http://cwf.iass-potsdam.de/) at the 700 hPa height were chosen and the daily average was

used as input into the boxmodel.

## Secondary Species Secondary Species Allocation of Benelux AVOC emissions to Mechanism

Anthropogenic NMVOC emissions over Benelux specified by the TNO\_MACCIII emission inventory (Kuenen et al., 2014) were translated to MCM v3.2 emissions (Table S1). The MCM v3.2 emissions for each initial species were translated to emissions of mechanism species into CRI v2, MOZART-4 and RADM2 chemical mechanisms by weighting with the carbon numbers (Tables S2 – S4). The allocation of MCM v3.2 emissions into CB05 species followed the recommendations of Yarwood et al. (2005) (Table S5).

Table S1: Speciated TNO\_MACCIII emissions for Benelux AVOC and BVOC emissions (molecules cm<sup> $^{-2}$ </sup> s<sup> $^{-1}$ </sup>) mapped to MCM v3.2 species (Kuenen et al., 2014).

| Type     | MCM.Species | SNAP.1      | SNAP.2     | SNAP.34     | SNAP.5      | SNAP.6      | SNAP.71     | SNAP.72     | SNAP.73   | SNAP.74    | SNAP.8      | SNAP.9    | BVOC | Total           |
|----------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-----------|------------|-------------|-----------|------|-----------------|
| Ethane   | C2H6        | 9.85e + 08  | 1668300000 | 9.18e + 09  |             |             | 9.67e + 08  | 2.96e + 08  | 63860000  |            | 3.45e + 08  | 210200000 |      | 1.3728e + 10    |
| Propane  | С3Н8        | 2.886e+09   | 1086600000 | 2.573e+09   | 1.041e+11   | 9.72e+08    | 47090000    | 202400000   | 038600000 | 62710000   | 249700000   | 75200000  |      | 1.129e+11       |
| r.       | NC4H10      | 2.127e+09   | 882870000  | 949270000   | 6.11e+11    | 3.61e+09    | 1.048e + 09 | 209500000   |           | 1037800000 | 315300000   | 42200000  |      | 6.21e+11        |
| Duranes  | IC4H10      | 258600000   | 309660000  | 232311000   | 1.486e + 11 | 163700000   | 489100000   | 97500000    |           | 483900000  | 157900000   | 42200000  |      | 1.509e + 11     |
|          | NC5H12      | 1.783e + 09 | 1014960000 |             | 4.548e + 11 |             | 6.27e + 08  | 8.4e+07     |           | 521500000  | 118200000   | 14890000  |      | 4.589e+11       |
| Pentanes | IC5H12      | 7.52e+08    | 544340000  |             | 2.718e + 11 |             | 1.216e + 09 | 163500000   |           | 1011700000 | 225600000   | 14890000  |      | 2.762e + 11     |
|          | NEOP        |             |            |             |             |             |             |             |           |            |             | 14890000  |      | 14890000        |
|          | NC6H14      | 954100000   | 57390000   | 1.211e+09   | 6.49e+10    | 3.162e+09   | 2.207e+09   | 1.246e+09   |           | 193450000  | 4.26e+08    | 5160000   |      | 7.44e+10        |
|          | M2PE        |             |            | 156600000   | 9.98e + 09  | 6.66e + 08  |             |             |           |            | 7.08e + 08  | 2215000   |      | 1.151e+10       |
|          | M3PE        |             |            | 117100000   | 4.989e + 09 | 6.66e + 08  |             |             |           |            | 4.26e + 08  |           |      | 6.2e + 09       |
| səu      | NC7H16      | 409520000   | 98740000   | 5.71e+08    | 6.97e + 10  | 1.146e + 09 | 363500000   | 205300000   |           | 31790000   | 121900000   | 26040000  |      | 7.28e + 10      |
| rjks     | M2HEX       |             |            |             |             | 4.3e + 08   | 2.83e + 08  | 159500000   |           | 24710000   | 182900000   |           |      | 1.08e + 09      |
| √ 19     | M3HEX       |             |            |             |             | 4.3e + 08   | 2.02e + 08  | 1.14e + 08  |           | 17634000   | 121900000   |           |      | 8.86e + 08      |
| dgi.     | M22C4       |             |            |             |             |             |             |             |           |            | 141800000   |           |      | 141800000       |
| ΗР       | M23C4       |             |            |             |             |             |             |             |           |            | 141800000   |           |      | 141800000       |
| une a    | NC8H18      |             |            | 235300000   | 5.18e + 10  | 125600000   | 319500000   | 179700000   |           | 27890000   | 6.95e + 08  | 8900000   |      | 5.33e + 10      |
| csne     | NC9H20      |             |            | 131200000   |             | 3.02e + 09  |             |             |           |            |             | 2969000   |      | 3.148e + 09     |
| кән      | NC10H22     |             |            | 1.66e + 08  |             | 5.85e + 09  | 142200000   | 80300000    |           | 12458000   |             | 4460000   |      | 6.25e+09        |
|          | NC11H24     |             |            | 64600000    |             | 2.387e+09   | 51830000    | 29280000    |           | 4536000    | 78100000    | 1625000   |      | 2.617e+09       |
|          | NC12H26     |             |            |             |             | 168500000   | 8.45e + 08  | 476900000   |           | 74100000   | 71700000    |           |      | 1.637e+09       |
|          | CHEX        |             | 91490000   | 4e+07       |             | 6.82e + 08  |             |             |           |            |             | 1506000   |      | 8.15e + 08      |
| Ethene   | C2H4        | 212300000   | 3695700000 | 3.368e + 10 |             |             | 5.341e + 09 | 3.807e + 09 | 342500000 |            | 4.62e+09    | 1.9e + 08 |      | 5.188e + 10     |
| Propene  | С3Н6        | 141700000   | 868200000  | 6.59e+08    |             |             | 1.876e+09   | 634800000   | 151810000 |            | 7.86e+08    | 54500000  |      | 5.18e+09        |
|          | HEXIENE     | 21050000    | 15773000   |             |             |             |             |             |           |            |             | 21810000  |      | 58703000        |
|          | BUTIENE     |             | 22154000   | 240400000   |             |             |             |             |           |            | 24510000    |           |      | 286604000       |
|          | MEPROPENE   |             |            |             |             |             |             |             |           |            | 12260000    |           |      | 12260000        |
| sət      | TBUT2ENE    |             |            |             |             |             |             |             |           |            | 12260000    |           |      | 12260000        |
| Ікет     | CBUT2ENE    |             |            |             |             |             |             |             |           |            | 12260000    |           |      | 12260000        |
| A 1:     | CPENT2ENE   |             | 6961000    |             |             |             |             |             |           |            | 4902000     |           |      | 11861000        |
| эцЗі     | TPENT2ENE   |             | 6961000    |             |             |             |             |             |           |            | 4902000     |           |      | 11861000        |
| ΙΗ       | PENTIENE    |             | 6328000    | 6186000     |             |             |             |             |           |            | 19630000    |           |      | 32171000        |
|          | ME2BUT2ENE  |             | 3793000    |             |             |             |             |             |           |            | 9800000     |           |      | 13581000        |
|          | ME3BUT1ENE  |             | 3793000    |             |             |             |             |             |           |            | 0000086     |           |      | 13581000        |
|          | ME2BUT1ENE  |             | 2525500    |             |             |             |             |             |           |            |             |           |      | 2525500         |
| Ethyne   | C2H2        | 2697000     | 1252200000 | 426600000   |             |             | 4.975e + 09 | 1.795e + 09 | 134690000 | 252500000  | 1.614e + 09 | 71500000  |      | 1.051e + 10     |
| Benzene  | BENZENE     | 269600000   | 1.006e±09  | 8.3e+08     | 1 6916+10   |             | 1 1976±09   | 000000866   |           | 25280000   | 00 - 60 6   | 00000     |      | 0 0 1 4 - 1 1 0 |

Table S1: Speciated TNO\_MACCIII emissions for Benelux AVOC and BVOC emissions (molecules cm<sup> $^{-2}$ </sup> s<sup> $^{-1}$ </sup>) mapped to MCM v3.2 species (Kuenen et al., 2014).

| Type MCM.Species Toluene TOLUENE MXYL  Xylenes MXYL  MXYL  PXYL  TM123B  TM124B  TM124B  TM135B  EBENZ  PBENZ  PBENZ  PBENZ  PPETHTOL  METHTOL  METHTOL  ACCOUNTY  OUTHTOL  OU |             | SNAP.2     | SNAP.34   | SNAP.5<br>1.375e+10 | SNAP.6     | SNAP.71     | SNAP.72    | SNAP.73   | SNAP.74   | SNAP.8     | SNAP.9   | BVOC        | Total       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------|---------------------|------------|-------------|------------|-----------|-----------|------------|----------|-------------|-------------|
| ylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 252700000   |            |           | 1.375e+10           |            |             | 3          |           |           |            |          |             |             |
| ylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           | 372760000  | 84400000  |                     | 6.8e + 09  | 2.708e + 09 | 1.45e + 08 |           | 30030000  | 193900000  | 24100000 |             | 2.435e + 10 |
| ylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.05e + 0.8 | 21179000   | 1669300   | 1.994e+09           | 3.93e+09   | 5.77e+08    | 61040000   |           | 4735000   | 70200000   | 4880000  |             | 6.78e+09    |
| imethylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23330000    | 21179000   | 002699    | 1.994e + 09         | 9.84e + 08 | 5.77e + 08  | 61040000   |           | 4735000   | 57100000   | 2924000  |             | 3.717e + 09 |
| imethylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 21179000   | 002699    | 1.994e + 09         | 9.84e + 08 | 432900000   | 45800000   |           | 3551000   | 70200000   | 3909000  |             | 3.556e + 09 |
| imethylbenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18550       | 1304500    |           |                     | 6.6e+07    | 99200000    |            |           |           | 3330000    | 441000   |             | 170200000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18550       | 1304500    | 56100000  |                     | 224600000  | 4.16e + 08  |            |           |           | 0000944    | 589000   |             | 7.06e+08    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18550       | 1304500    |           |                     | 6.6e + 07  | 158600000   |            |           |           | 3330000    | 589000   |             | 229900000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35100000    |            | 63400000  |                     | 179400000  | 430600000   | 341600000  | 119530    |           | 8e+08      | 5250000  |             | 1.856e+09   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     | 39600000   | 380600000   | 301500000  | 105570    |           | 128500000  | 2311000  |             | 8.53e + 08  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     | 145300000  |             |            |           |           | 128500000  | 2311000  |             | 276300000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     | 13210000   |             |            |           |           | 257500000  |          |             | 270300000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     | 39600000   |             |            |           |           | 257500000  |          |             | 296300000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     |            |             |            |           |           | 192800000  |          |             | 192800000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |           |                     |            | 8.05e + 08  | 637600000  | 223800    |           |            |          |             | 1.443e + 09 |
| DIME35EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |            |           |                     | 224700000  | 000000866   | 78700000   | 27540     |           |            |          |             | 4.03e+08    |
| STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            | 64600000  |                     | 45700000   | 91500000    | 72500000   | 25440     |           |            |          |             | 275100000   |
| BENZAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |           |                     |            | 153900000   | 121900000  | 42690     |           |            |          |             | 275900000   |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            | 71500000  |                     |            |             |            |           |           |            |          |             | 71500000    |
| Formaldehyde HCHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 611400000   | 2195300000 |           |                     |            | 1.177e + 09 | 1.781e+09  | 85260000  |           | 2.9e+09    | 29490000 |             | 8.77e+09    |
| СНЗСНО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11780000    | 130090000  | 73750000  |                     |            | 318400000   | 7.39e+08   | 16383000  |           | 6.8e + 08  | 0000989  |             | 1.976e + 09 |
| С2Н5СНО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6710000     | 00008986   |           |                     |            | 53670000    | 124600000  | 2752000   |           | 257700000  | 5200000  |             | 5.49e + 08  |
| de C3H7CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38630       | 79420000   |           |                     |            |             |            |           |           | 207600000  | 4190000  |             | 292100000   |
| еру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38630       | 79420000   |           |                     |            |             |            |           |           | 138400000  | 4190000  |             | 222100000   |
| A C4H9CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32340       | 66550000   |           |                     |            |             |            |           |           |            | 3504000  |             | 70050000    |
| ACR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49770       | 102260000  |           |                     |            | 83300000    | 193800000  | 4282000   |           |            | 5390000  |             | 388800000   |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39730       | 81710000   |           |                     |            |             |            |           |           |            | 4310000  |             | 86110000    |
| C4ALDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39730       | 81710000   |           |                     |            | 44510000    | 103300000  | 2287000   |           |            | 4310000  |             | 236100000   |
| MGLYOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |           |                     |            |             |            |           |           | 138500000  |          |             | 138500000   |
| Alkadienes and C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67600000    | 771300000  | 4.74e+09  | 2.221e + 11         |            | 2.505e + 09 | 7.78e + 08 | 245800000 | 458800000 | 1.033e+09  | 52800000 |             | 2.332e + 11 |
| Other Alkynes C5H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            |           |                     |            |             |            |           |           |            |          | 1.435e + 10 | 1.435e + 10 |
| нсоон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4660000     | 1201400000 |           |                     |            |             |            |           |           | 1.67e + 08 | 69400000 |             | 1442400000  |
| CH3CO2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3572000     | 9.21e + 08 | 167700000 |                     |            |             |            |           |           | 1.28e + 08 | 53200000 |             | 1.274e + 09 |
| Organic Actus PROPACID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2898000     | 746100000  |           |                     |            |             |            |           |           | 1.04e + 08 | 43100000 |             | 897100000   |
| ACO2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |            | 140400000 |                     |            |             |            |           |           |            |          |             | 140400000   |

Table S1: Speciated TNO\_MACCIII emissions for Benelux AVOC and BVOC emissions (molecules cm<sup> $^{-2}$ </sup> s<sup> $^{-1}$ </sup>) mapped to MCM v3.2 species (Kuenen et al., 2014).

| et al., 2014 | 1.          |        |             |            |        |             |          |           |         |         |           |          |             |             |
|--------------|-------------|--------|-------------|------------|--------|-------------|----------|-----------|---------|---------|-----------|----------|-------------|-------------|
| Type         | MCM.Species | SNAP.1 | SNAP.2      | SNAP.34    | SNAP.5 | SNAP.6      | SNAP.71  | SNAP.72   | SNAP.73 | SNAP.74 | SNAP.8    | SNAP.9   | BVOC        | Total       |
|              | СНЗОН       | 140000 |             | 3200000    |        | 6.38e + 09  |          |           |         |         | 40419000  | 24020000 |             | 6.45e + 09  |
|              | С2Н5ОН      | 97400  | 1.687e + 09 | 90300000   |        | 6.52e + 09  |          |           |         |         | 28082900  | 63300000 |             | 8.39e + 09  |
|              | NPROPOL     | 74600  |             |            |        | 5.31e + 08  |          |           |         |         | 21563500  | 7670000  |             | 5.61e + 08  |
|              | IPROPOL     | 74600  |             | 1135000    |        | 8.49e + 08  |          |           |         |         | 21563500  |          |             | 8.73e + 08  |
|              | NBUTOL      | 60500  |             |            |        | 5.17e + 08  |          |           |         |         | 17451500  |          |             | 5.34e + 08  |
|              | BUT2OL      | 60500  |             |            |        | 345400000   |          |           |         |         | 17451500  | 10360000 |             | 3.73e + 08  |
|              | IBUTOL      | 60500  |             |            |        | 215300000   |          |           |         |         | 17451500  |          |             | 232800000   |
|              | TBUTOL      | 60500  |             |            |        |             |          |           |         |         | 17451500  |          |             | 17489700    |
| slo          | PECOH       | 50900  |             |            |        |             |          |           |         |         | 14643300  |          |             | 14775400    |
| оцоэ         | IPEAOH      | 50900  |             |            |        |             |          |           |         |         | 14643300  |          |             | 14775400    |
| ÞΙΨ          | ME3BUOL     | 20900  |             |            |        |             |          |           |         |         | 14643300  |          |             | 14775400    |
|              | IPECOH      | 50900  |             |            |        |             |          |           |         |         | 14643300  |          |             | 14775400    |
|              | IPEBOH      | 50900  |             |            |        |             |          |           |         |         | 14643300  |          |             | 14775400    |
|              | CYHEXOL     | 44800  |             |            |        |             |          |           |         |         | 12938100  |          |             | 12966400    |
|              | MIBKAOH     | 38600  |             |            |        | 109900000   |          |           |         |         | 11132900  |          |             | 121100000   |
|              | ETHGLY      | 72300  |             |            |        | 154300000   |          |           |         |         | 20861500  |          |             | 175200000   |
|              | PROPGLY     | 59000  |             |            |        | 307800000   |          |           |         |         | 16950200  |          |             | 324800000   |
|              | С6Н5СН2ОН   |        |             |            |        | 88500000    |          |           |         |         |           |          |             | 88500000    |
|              | MBO         | 52100  |             |            |        |             |          |           |         |         | 15044300  |          |             | 15077200    |
|              | СНЗСОСНЗ    | 384100 | 15896000    | 6.38e + 08 |        | 60+999.9    | 35750000 | 229900000 |         |         | 382100000 | 1414000  |             | 7.96e+09    |
|              | MEK         |        | 12828000    |            |        | 3.212e + 09 |          |           |         |         |           | 1139000  |             | 3.236e + 09 |
|              | MPRK        |        | 10745000    |            |        |             |          |           |         |         |           | 954000   |             | 11705000    |
| S            | DIEK        |        | 10745000    |            |        |             |          |           |         |         |           | 954000   |             | 11705000    |
| səuo         | MIPK        |        | 10745000    |            |        |             |          |           |         |         |           | 954000   |             | 11705000    |
| Ket          | HEX2ONE     |        | 9242000     |            |        |             |          |           |         |         |           | 820000   |             | 10062000    |
|              | HEX3ONE     |        | 9242000     |            |        |             |          |           |         |         |           | 820000   |             | 10062000    |
|              | MIBK        |        | 9242000     |            |        | 1.93e + 09  |          |           |         |         |           | 820000   |             | 1.94e + 09  |
|              | MTBK        |        | 9242000     |            |        |             |          |           |         |         |           | 820000   |             | 10062000    |
|              | CYHEXONE    |        | 9439000     | 34310000   |        | 157500000   |          |           |         |         |           | 837000   |             | 202200000   |
|              | APINENE     |        |             |            |        |             |          |           |         |         |           | 3050000  | 1.835e + 09 | 1.839e+09   |
| Terpenes     | BPINENE     |        |             |            |        |             |          |           |         |         |           | 3050000  | 1.835e + 09 | 1.839e + 09 |
|              | LIMONENE    |        |             |            |        | 209500000   |          |           |         |         |           | 4580000  | 1.835e + 09 | 2.046e+09   |
|              | METHACET    |        |             | 64470000   |        |             |          |           |         |         |           |          |             | 64470000    |
|              | ETHACET     |        |             | 7386000    |        | 4.44e + 09  |          |           |         |         |           |          |             | 4.45e + 09  |
| pers.        | NBUTACET    |        |             |            |        | 3.113e + 09 |          |           |         |         |           |          |             | 3.113e + 09 |
| Est          | IPROACET    |        |             |            |        | 1.095e+09   |          |           |         |         |           |          |             | 1.095e + 09 |

Table S1: Speciated TNO\_MACCIII emissions for Benelux AVOC and BVOC emissions (molecules cm<sup>-2</sup> s<sup>-1</sup>) mapped to MCM v3.2 species (Kuenen et al., 2014).

| C Car., 2011). |             |             |            |            |             |             |          |           |            |           |           |             |            |             |
|----------------|-------------|-------------|------------|------------|-------------|-------------|----------|-----------|------------|-----------|-----------|-------------|------------|-------------|
| Type           | MCM.Species | SNAP.1      | SNAP.2     | SNAP.34    | SNAP.5      | SNAP.6      | SNAP.71  | SNAP.72   | SNAP.73    | SNAP.74   | SNAP.8    | SNAP.9      | BVOC       | Total       |
|                | СНЗОСНО     |             |            | 7229000    |             |             |          |           |            |           |           |             |            | 7229000     |
|                | NPROACET    |             |            |            |             | 4.1e+08     |          |           |            |           |           | 7950000     |            | 4.18e + 08  |
|                | СНЗОСНЗ     |             | 61750000   | 253500000  |             | 244300000   |          |           |            |           |           |             |            | 5.59e+08    |
|                | DIETETHER   |             | 38360000   | 94510000   |             |             |          |           |            |           |           |             |            | 132360000   |
|                | MTBE        |             | 32330000   |            |             |             |          |           |            |           |           |             |            | 32330000    |
|                | DIIPRETHER  |             | 27860000   | 68540000   |             |             |          |           |            |           |           | 19520000    |            | 115960000   |
| IGLS           | ETBE        |             | 27860000   |            |             |             |          |           |            |           |           |             |            | 27860000    |
| ЕФ             | MO2EOL      |             | 37420000   |            |             | 295700000   |          |           |            |           |           |             |            | 3.33e + 08  |
|                | EOX2EOL     |             | 31600000   |            |             | 249900000   |          |           |            |           |           |             |            | 281500000   |
|                | PR2OHMOX    |             | 31600000   |            |             | 5e+08       |          |           |            |           |           |             |            | 5.32e + 08  |
|                | BUOX2ETOH   |             | 24117000   |            |             | 2.398e+09   |          |           |            |           |           |             |            | 2.422e+09   |
|                | BOX2PROL    |             | 21510000   |            |             |             |          |           |            |           |           |             |            | 21510000    |
|                | CH2CL2      |             |            | 6.74e+08   |             | 1.589e+09   |          |           |            |           |           | 1458000     |            | 2.262e+09   |
|                | CH3CH2CL    |             |            | 5.22e+08   |             |             |          |           |            |           |           |             |            | 5.22e + 08  |
| suc            | CH3CCL3     |             |            |            |             | 1.113e+09   |          |           |            |           |           | 464000      |            | 1.114e+09   |
| r.pc           | TRICLETH    |             |            | 256600000  |             | 2.516e + 09 |          |           |            |           |           | 471000      |            | 2.776e + 09 |
| rocs           | CDICLETH    |             |            | 173100000  |             |             |          |           |            |           |           | 951000      |            | 174800000   |
| Įλq            | TDICLETH    |             |            | 173100000  |             |             |          |           |            |           |           | 634000      |            | 174600000   |
| I þa           | CH3CL       |             |            | 5.34e + 08 |             |             |          |           |            |           |           |             |            | 5.34e + 08  |
| nsten          | CCL2CH2     |             |            | 173100000  |             |             |          |           |            |           |           |             |            | 173100000   |
| irol           | CHCL2CH3    |             |            |            |             |             |          |           |            |           |           | 715000      |            | 715000      |
| СР             | VINCL       |             |            | 1.62e + 08 |             |             |          |           |            |           |           |             |            | 1.62e + 08  |
|                | TCE         |             |            | 40500000   |             | 6.11e + 08  |          |           |            |           |           | 927000      |            | 6.53e + 08  |
|                | CHCL3       |             |            | 112800000  |             |             |          |           |            |           |           |             |            | 112800000   |
| I              | Total       | 1.192e + 10 | 2.1806e+10 | 6.11e+10   | 2.049e + 12 | 8.39e+10    | 3.33e+10 | 1.581e+10 | 1688300000 | 4.285e+09 | 2.059e+10 | 1.333e + 09 | 1.9847e+10 | 2.32e+12    |

Table S2: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to CRIv2 species by weighting with the carbon numbers of the respective species.

| Trumo                     | MCMv3.2    | CRIv2      | Belgium      | Nothonlondo  | Turromborra  | Total        |
|---------------------------|------------|------------|--------------|--------------|--------------|--------------|
| Type                      | Species    | Species    | Deigium      | Netherlands  | Luxembourg   | Total        |
| Ethane                    | C2H6       | C2H6       | 4.91E+09     | 8.58E+08     | 7.96E+09     | 1.37E + 10   |
| Propane                   | С3Н8       | С3Н8       | 3.35E+10     | 4.00E+10     | 3.94E+10     | 1.13E+11     |
| Darkanaa                  | NC4H10     | NC4H10     | 1.25E+11     | 3.49E+11     | 1.47E+11     | 6.21E+11     |
| Butanes                   | IC4H10     | IC4H10     | $3.03E{+}10$ | $8.50E{+}10$ | $3.56E{+}10$ | $1.51E{+}11$ |
|                           | NC5H12     | NC5H12     | 8.89E+10     | 2.65E+11     | 1.05E+11     | 4.59E+11     |
| Pentanes                  | IC5H12     | IC5H12     | $5.33E{+}10$ | 1.60E + 11   | 6.29E+10     | 2.76E+11     |
|                           | NEOP       | NEOP       | 1.11E+07     | 0.00E+00     | 3.79E + 06   | 1.49E+07     |
|                           | NC6H14     | NC6H14     | 1.52E+10     | 4.10E+10     | 1.82E+10     | 7.44E+10     |
|                           | M2PE       | M2PE       | 2.39E+09     | 6.28E + 09   | 2.84E+09     | 1.15E+10     |
|                           | M3PE       | M3PE       | 1.34E+09     | 3.29E+09     | 1.57E + 09   | 6.20E+09     |
| ω                         | NC7H16     | NC7H16     | $1.45E{+}10$ | 4.12E + 10   | 1.71E+10     | 7.28E+10     |
| Hexane and Higher Alkanes | M2HEX      | M2HEX      | 2.74E + 08   | 4.89E + 08   | 3.17E + 08   | 1.08E+09     |
| r All                     | M3HEX      | M3HEX      | 2.37E + 08   | 3.90E + 08   | 2.59E+08     | 8.86E + 08   |
| lighe                     | M22C4      | M22C4      | 3.47E + 07   | 5.29E+07     | 5.42E+07     | 1.42E+08     |
| H pu                      | M23C4      | M23C4      | 3.47E + 07   | 5.29E+07     | 5.42E+07     | 1.42E + 08   |
| ne a                      | NC8H18     | NC8H18     | $1.04E{+}10$ | $3.06E{+}10$ | 1.23E+10     | 5.33E+10     |
| Hexa                      | NC9H20     | NC9H20     | 1.10E + 09   | 1.07E + 09   | 9.78E + 08   | 3.15E+09     |
|                           | NC10H22    | NC10H22    | 2.15E+09     | 2.21E+09     | 1.89E+09     | 6.25E + 09   |
|                           | NC11H24    | NC11H24    | 8.95E + 08   | 9.26E + 08   | 7.96E + 08   | 2.62E+09     |
|                           | NC12H26    | NC12H26    | 3.07E + 08   | 8.88E + 08   | 4.42E + 08   | 1.64E + 09   |
|                           | CHEX       | CHEX       | 2.91E+08     | 2.44E+08     | 2.80E+08     | 8.15E+08     |
| Ethene                    | C2H4       | C2H4       | $3.66E{+}10$ | 7.03E+09     | 8.25E+09     | 5.19E+10     |
| Propene                   | С3Н6       | С3Н6       | 1.82E+09     | 1.68E+09     | 1.68E+09     | 5.18E+09     |
|                           | HEX1ENE    | HEX1ENE    | 3.42E + 07   | 5.03E + 05   | 2.40E+07     | 5.87E + 07   |
|                           | BUT1ENE    | BUT1ENE    | 9.99E + 07   | 7.04E + 05   | 1.86E + 08   | 2.87E + 08   |
|                           | MEPROPENE  | MEPROPENE  | 9.80E + 06   | 0.00E+00     | 2.46E+06     | 1.23E+07     |
| δ.                        | TBUT2ENE   | TBUT2ENE   | 9.80E + 06   | 0.00E+00     | 2.46E+06     | 1.23E+07     |
| Higher Alkenes            | CBUT2ENE   | CBUT2ENE   | 9.80E + 06   | 0.00E+00     | 2.46E+06     | 1.23E+07     |
| er Al                     | CPENT2ENE  | CPENT2ENE  | 9.57E + 06   | 2.21E + 05   | 2.07E+06     | 1.19E+07     |
| lighe                     | TPENT2ENE  | TPENT2ENE  | 9.57E + 06   | 2.21E + 05   | 2.07E + 06   | 1.19E+07     |
| <u> </u>                  | PENT1ENE   | PENT1ENE   | 2.68E+07     | 2.01E + 05   | 5.17E + 06   | 3.22E+07     |
|                           | ME2BUT2ENE | ME2BUT2ENE | 1.09E+07     | 1.21E + 05   | 2.56E + 06   | 1.36E+07     |
|                           | ME3BUT1ENE | ME3BUT1ENE | 1.09E+07     | 1.21E + 05   | 2.56E+06     | 1.36E+07     |
|                           | ME2BUT1ENE | ME2BUT1ENE | 2.05E+06     | 8.05E + 04   | 3.95E + 05   | 2.53E+06     |
| Ethyne                    | C2H2       | C2H2       | 2.78E+09     | 4.51E+09     | 3.22E+09     | 1.05E+10     |

Table S2: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to CRIv2 species by weighting with the carbon numbers of the respective species.

| Type              | MCMv3.2   | CRIv2     | Belgium      | Netherlands | Luxembourg   | Total      |
|-------------------|-----------|-----------|--------------|-------------|--------------|------------|
| Туре              | Species   | Species   | Deigium      | retherlands | Luxembourg   | Total      |
| Benzene           | BENZENE   | BENZENE   | 4.52E+09     | 1.06E + 10  | 5.02E+09     | 2.01E+10   |
| Toluene           | TOLUENE   | TOLUENE   | 5.78E + 09   | 1.22E + 10  | 6.37E+09     | 2.44E+10   |
|                   | MXYL      | MXYL      | 1.90E+09     | 3.00E+09    | 1.88E+09     | 6.78E + 09 |
| Xylenes           | OXYL      | OXYL      | 8.61E + 08   | 1.89E + 09  | 9.66E + 08   | 3.72E + 09 |
|                   | PXYL      | PXYL      | 8.28E + 08   | 1.82E + 09  | 9.08E + 08   | 3.56E + 09 |
|                   | TM123B    | TM123B    | 4.49E + 07   | 7.36E + 07  | 5.17E + 07   | 1.70E + 08 |
| Trimethylbenzenes | TM124B    | TM124B    | 1.75E + 08   | 2.89E + 08  | 2.42E+08     | 7.06E + 08 |
|                   | TM135B    | TM135B    | 5.58E + 07   | 1.03E+08    | 7.11E+07     | 2.30E+08   |
|                   | EBENZ     | EBENZ     | 3.99E + 08   | 8.28E + 08  | 6.29E + 08   | 1.86E + 09 |
|                   | PBENZ     | PBENZ     | 1.59E + 08   | 4.63E + 08  | 2.31E+08     | 8.53E + 08 |
|                   | IPBENZ    | IPBENZ    | 7.88E + 07   | 1.04E + 08  | 9.35E + 07   | 2.76E + 08 |
| CS                | PETHTOL   | PETHTOL   | 6.03E + 07   | 1.05E + 08  | 1.05E+08     | 2.70E + 08 |
| mati              | METHTOL   | METHTOL   | 6.93E + 07   | 1.14E + 08  | 1.13E+08     | 2.96E + 08 |
| Other Aromatics   | OETHTOL   | OETHTOL   | 4.19E + 07   | 7.47E + 07  | 7.62E+07     | 1.93E+08   |
| ther              | DIET35TOL | DIET35TOL | 2.45E + 08   | 8.42E + 08  | 3.56E + 08   | 1.44E+09   |
| 0                 | DIME35EB  | DIME35EB  | 1.06E + 08   | 1.88E + 08  | 1.09E+08     | 4.03E + 08 |
|                   | STYRENE   | STYRENE   | 6.01E + 07   | 1.13E + 08  | 1.02E + 08   | 2.75E + 08 |
|                   | BENZAL    | BENZAL    | 4.68E + 07   | 1.61E + 08  | 6.81E + 07   | 2.76E + 08 |
|                   | PHENOL    | AROH14    | 1.86E + 07   | 0.00E+00    | 5.29E+07     | 7.15E+07   |
| Formaldehyde      | НСНО      | НСНО      | 2.35E+09     | 3.04E+09    | 3.38E+09     | 8.77E+09   |
|                   | СНЗСНО    | СНЗСНО    | 5.53E + 08   | 8.88E + 08  | 5.35E + 08   | 1.98E + 09 |
|                   | С2Н5СНО   | C2H5CHO   | 1.78E + 08   | 1.97E + 08  | 1.74E + 08   | 5.49E + 08 |
| es                | СЗН7СНО   | СЗН7СНО   | 1.19E + 08   | 6.71E + 07  | 1.06E + 08   | 2.92E + 08 |
| Other Aldehydes   | IPRCHO    | IPRCHO    | 9.60E + 07   | 4.57E + 07  | 8.04E+07     | 2.22E + 08 |
| Ald               | С4Н9СНО   | С4Н9СНО   | 4.25E + 07   | 2.45E + 06  | 2.51E+07     | 7.01E+07   |
| ther              | ACR       | UCARB10   | 8.33E + 07   | 1.35E + 08  | 7.33E+07     | 2.92E + 08 |
| 0                 | MACR      | UCARB10   | 5.23E + 07   | 3.01E + 06  | 3.08E+07     | 8.61E + 07 |
|                   | C4ALDB    | UCARB10   | 7.67E + 07   | 9.70E + 07  | 6.24E+07     | 2.36E + 08 |
|                   | MGLYOX    | CARB6     | 4.52E + 07   | 2.85E + 07  | 3.36E+07     | 1.07E + 08 |
| Alkadienes and    | C4H6      | C4H6      | $4.36E{+}10$ | 1.34E + 11  | $5.56E{+}10$ | 2.33E+11   |
| Other Alkynes     | C5H8      | C5H8      | 3.35E+09     | 1.10E+10    | 0.00E+00     | 1.44E+10   |
|                   | НСООН     | НСООН     | 9.28E+08     | 4.04E+07    | 4.74E+08     | 1.44E+09   |
| Organia Asida     | СН3СО2Н   | СН3СО2Н   | 7.55E + 08   | 3.10E + 07  | 4.88E + 08   | 1.27E+09   |
| Organic Acids     | PROPACID  | PROPACID  | 5.77E + 08   | 2.51E+07    | 2.95E + 08   | 8.97E + 08 |
|                   | THOTHER   |           |              |             |              |            |

Table S2: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to CRIv2 species by weighting with the carbon numbers of the respective species.

| Trung    | MCMv3.2   | CRIv2    | Belgium    | Netherlands | Luxembourg | Total      |
|----------|-----------|----------|------------|-------------|------------|------------|
| Type     | Species   | Species  | Deigium    | Netherlands | Luxembourg | Total      |
|          | СНЗОН     | СНЗОН    | 2.20E+09   | 2.40E+09    | 1.85E+09   | 6.45E + 09 |
|          | С2Н5ОН    | С2Н5ОН   | 3.30E + 09 | 2.51E + 09  | 2.58E + 09 | 8.39E + 09 |
|          | NPROPOL   | NPROPOL  | 2.06E + 08 | 2.00E + 08  | 1.55E + 08 | 5.61E + 08 |
|          | IPROPOL   | IPROPOL  | 3.08E + 08 | 3.19E + 08  | 2.46E + 08 | 8.73E + 08 |
|          | NBUTOL    | NBUTOL   | 1.91E + 08 | 1.94E + 08  | 1.49E + 08 | 5.34E + 08 |
|          | BUT2OL    | BUT2OL   | 1.41E + 08 | 1.30E + 08  | 1.02E + 08 | 3.73E + 08 |
|          | IBUTOL    | IBUTOL   | 8.97E + 07 | 8.09E + 07  | 6.22E+07   | 2.33E + 08 |
|          | TBUTOL    | TBUTOL   | 1.74E + 07 | 0.00E+00    | 8.97E + 04 | 1.75E + 07 |
| slo      | PECOH     | PECOH    | 1.47E + 07 | 0.00E+00    | 7.54E + 04 | 1.48E + 07 |
| Alcohols | IPEAOH    | IPEAOH   | 1.47E + 07 | 0.00E+00    | 7.54E + 04 | 1.48E + 07 |
| A        | ME3BUOL   | ME3BUOL  | 1.47E + 07 | 0.00E+00    | 7.54E + 04 | 1.48E + 07 |
|          | IPECOH    | IPECOH   | 1.47E + 07 | 0.00E+00    | 7.54E + 04 | 1.48E + 07 |
|          | IPEBOH    | IPEBOH   | 1.47E + 07 | 0.00E+00    | 7.54E + 04 | 1.48E + 07 |
|          | CYHEXOL   | CYHEXOL  | 1.29E+07   | 0.00E+00    | 6.64E + 04 | 1.30E + 07 |
|          | MIBKAOH   | MIBKAOH  | 4.80E + 07 | 4.13E+07    | 3.18E + 07 | 1.21E + 08 |
|          | ETHGLY    | ETHGLY   | 7.26E + 07 | 5.80E + 07  | 4.46E + 07 | 1.75E + 08 |
|          | PROPGLY   | PROPGLY  | 1.20E + 08 | 1.16E + 08  | 8.88E + 07 | 3.25E + 08 |
|          | С6Н5СН2ОН | BENZAL   | 2.31E+07   | 2.59E + 07  | 1.99E+07   | 6.89E + 07 |
|          | MBO       | PENT1ENE | 1.50E + 07 | 0.00E+00    | 7.72E + 04 | 1.51E + 07 |
| nes      | СНЗСОСНЗ  | СНЗСОСНЗ | 2.67E + 09 | 2.75E+09    | 2.54E+09   | 7.96E+09   |
|          | MEK       | MEK      | 1.11E+09   | 1.20E+09    | 9.26E + 08 | 3.24E+09   |
|          | MPRK      | MPRK     | 8.03E + 06 | 3.75E + 05  | 3.30E + 06 | 1.17E + 07 |
|          | DIEK      | DIEK     | 8.03E + 06 | 3.75E + 05  | 3.30E + 06 | 1.17E + 07 |
|          | MIPK      | MIPK     | 8.03E + 06 | 3.75E + 05  | 3.30E + 06 | 1.17E + 07 |
| Ketones  | HEX2ONE   | HEX2ONE  | 6.90E + 06 | 3.22E + 05  | 2.84E + 06 | 1.01E+07   |
|          | HEX3ONE   | HEX3ONE  | 6.90E + 06 | 3.22E + 05  | 2.84E + 06 | 1.01E+07   |
|          | MIBK      | MIBK     | 6.67E + 08 | 7.17E + 08  | 5.56E + 08 | 1.94E + 09 |
|          | MTBK      | MTBK     | 6.90E + 06 | 3.22E + 05  | 2.84E + 06 | 1.01E + 07 |
|          | CYHEXONE  | CYHEXONE | 6.99E + 07 | 5.89E + 07  | 7.34E+07   | 2.02E+08   |
|          | METHACET  | METHACET | 6.18E+07   | 0.00E+00    | 2.67E+06   | 6.45E+07   |
|          | ETHACET   | ETHACET  | 1.48E + 09 | 1.68E + 09  | 1.29E+09   | 4.45E+09   |
| ers      | NBUTACET  | NBUTACET | 1.03E+09   | 1.18E + 09  | 9.03E + 08 | 3.11E+09   |
| Esters   | IPROACET  | IPROACET | 3.63E + 08 | 4.14E + 08  | 3.18E + 08 | 1.10E+09   |
|          | СНЗОСНО   | СНЗОСНО  | 6.93E + 06 | 0.00E+00    | 2.99E+05   | 7.23E+06   |
|          | NPROACET  | NPROACET | 1.42E + 08 | 1.55E + 08  | 1.21E+08   | 4.18E+08   |

Table S2: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to CRIv2 species by weighting with the carbon numbers of the respective species.

|                          | MCMv3.2    | CRIv2      | D.I.       | NT /1 1 1   | т 1        |            |
|--------------------------|------------|------------|------------|-------------|------------|------------|
| Type                     | Species    | Species    | Belgium    | Netherlands | Luxembourg | Total      |
|                          | СНЗОСНЗ    | СНЗОСНЗ    | 3.59E + 08 | 9.30E + 07  | 1.07E+08   | 5.59E+08   |
|                          | DIETETHER  | DIETETHER  | 1.11E+08   | 1.46E + 06  | 1.99E+07   | 1.32E + 08 |
|                          | MTBE       | MTBE       | 1.76E + 07 | 1.23E + 06  | 1.35E+07   | 3.23E+07   |
|                          | DIIPRETHER | DIIPRETHER | 9.56E + 07 | 1.06E + 06  | 1.93E+07   | 1.16E + 08 |
| Ethers                   | ETBE       | ETBE       | 1.52E + 07 | 1.06E + 06  | 1.16E + 07 | 2.79E+07   |
| Eth                      | MO2EOL     | MO2EOL     | 1.21E + 08 | 1.11E+08    | 1.01E+08   | 3.33E+08   |
|                          | EOX2EOL    | EOX2EOL    | 1.02E + 08 | 9.39E + 07  | 8.56E + 07 | 2.82E + 08 |
|                          | PR2OHMOX   | PR2OHMOX   | 1.87E + 08 | 1.87E + 08  | 1.58E + 08 | 5.32E + 08 |
|                          | BUOX2ETOH  | BUOX2ETOH  | 8.27E + 08 | 8.90E + 08  | 7.05E+08   | 2.42E+09   |
|                          | BOX2PROL   | BOX2PROL   | 1.17E + 07 | 8.20E + 05  | 8.99E+06   | 2.15E+07   |
|                          | CH2CL2     | C2H2       | 4.17E + 08 | 2.04E+08    | 5.12E + 08 | 1.13E+09   |
|                          | CH3CH2CL   | C2H2       | 1.36E + 08 | 0.00E+00    | 3.86E + 08 | 5.22E + 08 |
| _                        | CH3CCL3    | C2H2       | 4.61E + 08 | 2.86E + 08  | 3.67E + 08 | 1.11E+09   |
| bons                     | TRICLETH   | C2H4       | 1.11E+09   | 6.46E + 08  | 1.02E+09   | 2.78E+09   |
| ocar                     | CDICLETH   | C2H4       | 4.58E + 07 | 0.00E+00    | 1.29E+08   | 1.75E + 08 |
| Chlorinated Hydrocarbons | TDICLETH   | C2H4       | 4.56E + 07 | 0.00E+00    | 1.29E+08   | 1.75E + 08 |
|                          | CH3CL      | C2H2       | 6.93E+07   | 0.00E+00    | 1.97E + 08 | 2.66E + 08 |
| rina                     | CCL2CH2    | C2H4       | 4.51E+07   | 0.00E+00    | 1.28E + 08 | 1.73E + 08 |
| Chlo                     | CHCL2CH3   | C2H2       | 5.35E + 05 | 0.00E+00    | 1.80E + 05 | 7.15E + 05 |
|                          | VINCL      | C2H4       | 4.20E + 07 | 0.00E+00    | 1.20E + 08 | 1.62E + 08 |
|                          | TCE        | C2H4       | 2.64E + 08 | 1.57E + 08  | 2.32E+08   | 6.53E + 08 |
|                          | CHCL3      | C2H4       | 1.47E + 07 | 0.00E+00    | 4.17E+07   | 5.64E+07   |
|                          | APINENE    | APINENE    | 4.22E+08   | 1.27E+09    | 1.47E+08   | 1.84E+09   |
| Terpenes                 | BPINENE    | BPINENE    | 4.22E+08   | 1.27E + 09  | 1.47E + 08 | 1.84E + 09 |
|                          | LIMONENE   | APINENE    | 4.96E + 08 | 1.34E+09    | 2.10E+08   | 2.05E+09   |
| Tot                      | al         |            | 5.15E+11   | 1.25E+12    | 5.64E+11   | 2.32E+12   |

Table S3: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to MOZART-4 species by weighting with the carbon numbers of the respective species.

| m.                        | MCMv3.2    | MOZART-4 | D.1.       | NT 41 1 1   | T 1        | m . 1     |
|---------------------------|------------|----------|------------|-------------|------------|-----------|
| Type                      | Species    | Species  | Belgium    | Netherlands | Luxembourg | Total     |
| Ethane                    | C2H6       | C2H6     | 4.91E+09   | 8.58E+08    | 7.96E+09   | 1.37E+10  |
| Propane                   | С3Н8       | С3Н8     | 3.35E+10   | 4.00E+10    | 3.94E+10   | 1.13E+11  |
| D. /                      | NC4H10     | BIGALK   | 1.00E+11   | 2.79E+11    | 1.17E+11   | 4.96E+11  |
| Butanes                   | IC4H10     | BIGALK   | 2.42E+10   | 6.80E + 10  | 2.85E+10   | 1.21E+11  |
|                           | NC5H12     | BIGALK   | 8.89E+10   | 2.65E+11    | 1.05E+11   | 4.59E+11  |
| Pentanes                  | IC5H12     | BIGALK   | 5.33E+10   | 1.60E + 11  | 6.29E + 10 | 2.76E+11  |
|                           | NEOP       | BIGALK   | 1.11E+07   | 0.00E+00    | 3.79E + 06 | 1.49E+07  |
|                           | NC6H14     | BIGALK   | 1.82E+10   | 4.92E+10    | 2.18E+10   | 8.92E+10  |
|                           | M2PE       | BIGALK   | 2.87E + 09 | 7.54E + 09  | 3.41E+09   | 1.38E+10  |
|                           | M3PE       | BIGALK   | 1.61E+09   | 3.94E + 09  | 1.89E+09   | 7.44E+09  |
| σ.                        | NC7H16     | BIGALK   | 2.02E+10   | 5.77E + 10  | 2.39E+10   | 1.02E+1   |
| kanes                     | M2HEX      | BIGALK   | 3.83E + 08 | 6.84E + 08  | 4.44E+08   | 1.51E+09  |
| r All                     | M3HEX      | BIGALK   | 3.31E + 08 | 5.45E + 08  | 3.63E + 08 | 1.24E+0   |
| ighe                      | M22C4      | BIGALK   | 4.16E+07   | 6.34E + 07  | 6.51E+07   | 1.70E + 0 |
| H pu                      | M23C4      | BIGALK   | 4.16E + 07 | 6.34E + 07  | 6.51E+07   | 1.70E + 0 |
| ne aı                     | NC8H18     | BIGALK   | 1.67E + 10 | 4.89E + 10  | 1.97E + 10 | 8.53E+1   |
| Hexane and Higher Alkanes | NC9H20     | BIGALK   | 1.99E+09   | 1.93E+09    | 1.76E + 09 | 5.68E + 0 |
| Η.                        | NC10H22    | BIGALK   | 4.31E+09   | 4.42E+09    | 3.78E + 09 | 1.25E+1   |
|                           | NC11H24    | BIGALK   | 1.97E + 09 | 2.04E+09    | 1.75E+09   | 5.76E + 0 |
|                           | NC12H26    | BIGALK   | 7.37E + 08 | 2.13E+09    | 1.06E+09   | 3.93E+0   |
|                           | CHEX       | BIGALK   | 3.49E + 08 | 2.93E+08    | 3.36E + 08 | 9.78E + 0 |
| Ethene                    | C2H4       | C2H4     | 3.66E + 10 | 7.03E+09    | 8.25E+09   | 5.19E+1   |
| Propene                   | С3Н6       | С3Н6     | 1.82E+09   | 1.68E+09    | 1.68E+09   | 5.18E+0   |
|                           | HEX1ENE    | BIGENE   | 5.13E+07   | 7.55E + 05  | 3.60E+07   | 8.81E+0   |
|                           | BUT1ENE    | BIGENE   | 9.99E + 07 | 7.04E + 05  | 1.86E + 08 | 2.87E + 0 |
|                           | MEPROPENE  | BIGENE   | 9.80E + 06 | 0.00E+00    | 2.46E+06   | 1.23E+0   |
| ω                         | TBUT2ENE   | BIGENE   | 9.80E + 06 | 0.00E+00    | 2.46E+06   | 1.23E+0   |
| kene                      | CBUT2ENE   | BIGENE   | 9.80E + 06 | 0.00E+00    | 2.46E+06   | 1.23E+0   |
| ır Al                     | CPENT2ENE  | BIGENE   | 1.20E+07   | 2.77E + 05  | 2.58E + 06 | 1.49E + 0 |
| Higher Alkenes            | TPENT2ENE  | BIGENE   | 1.20E+07   | 2.77E + 05  | 2.58E + 06 | 1.49E + 0 |
| <u> </u>                  | PENT1ENE   | BIGENE   | 3.34E+07   | 2.52E + 05  | 6.47E + 06 | 4.01E+0   |
|                           | ME2BUT2ENE | BIGENE   | 1.37E + 07 | 1.51E + 05  | 3.20E+06   | 1.71E+0   |
|                           | ME3BUT1ENE | BIGENE   | 1.37E+07   | 1.51E+05    | 3.20E + 06 | 1.71E+0   |
|                           | ME2BUT1ENE | BIGENE   | 2.57E + 06 | 1.01E+05    | 4.93E + 05 | 3.16E+0   |
| Ethyne                    | C2H2       | C2H2     | 2.78E+09   | 4.51E+09    | 3.22E+09   | 1.05E+1   |

Table S3: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to MOZART-4 species by weighting with the carbon numbers of the respective species.

| Туре              | MCMv3.2   | MOZART-4 | Belgium    | Netherlands | Luxembourg | Total      |
|-------------------|-----------|----------|------------|-------------|------------|------------|
|                   | Species   | Species  | Deigium    | Netherlands | Luxembourg | Total      |
| Benzene           | BENZENE   | TOLUENE  | 3.87E + 09 | 9.05E+09    | 4.30E + 09 | 1.72E + 10 |
| Toluene           | TOLUENE   | TOLUENE  | 5.78E + 09 | 1.22E+10    | 6.37E+09   | 2.44E+10   |
|                   | MXYL      | TOLUENE  | 2.17E+09   | 3.43E+09    | 2.14E+09   | 7.74E+09   |
| Xylenes           | OXYL      | TOLUENE  | 9.85E + 08 | 2.16E + 09  | 1.10E+09   | 4.25E+09   |
|                   | PXYL      | TOLUENE  | 9.46E + 08 | 2.08E+09    | 1.04E+09   | 4.07E + 09 |
|                   | TM123B    | TOLUENE  | 5.78E+07   | 9.47E+07    | 6.65E+07   | 2.19E+08   |
| Trimethylbenzenes | TM124B    | TOLUENE  | 2.25E + 08 | 3.72E + 08  | 3.12E + 08 | 9.09E + 08 |
|                   | TM135B    | TOLUENE  | 7.17E + 07 | 1.32E + 08  | 9.14E + 07 | 2.95E+08   |
|                   | EBENZ     | TOLUENE  | 4.57E+08   | 9.46E+08    | 7.19E+08   | 2.12E+09   |
|                   | PBENZ     | TOLUENE  | 2.04E+08   | 5.95E + 08  | 2.97E + 08 | 1.10E+09   |
|                   | IPBENZ    | TOLUENE  | 1.01E+08   | 1.34E + 08  | 1.20E + 08 | 3.55E + 08 |
| SS<br>SS          | PETHTOL   | TOLUENE  | 7.76E + 07 | 1.34E + 08  | 1.36E + 08 | 3.48E + 08 |
| Other Aromatics   | METHTOL   | TOLUENE  | 8.90E + 07 | 1.47E + 08  | 1.45E + 08 | 3.81E + 08 |
| Aro               | OETHTOL   | TOLUENE  | 5.39E+07   | 9.61E + 07  | 9.80E + 07 | 2.48E + 08 |
| ther              | DIET35TOL | TOLUENE  | 3.84E + 08 | 1.32E+09    | 5.60E + 08 | 2.26E+09   |
| Ō                 | DIME35EB  | TOLUENE  | 1.52E + 08 | 2.68E + 08  | 1.56E + 08 | 5.76E + 08 |
|                   | STYRENE   | TOLUENE  | 7.72E+07   | 1.45E + 08  | 1.31E + 08 | 3.53E + 08 |
|                   | BENZAL    | TOLUENE  | 6.01E+07   | 2.07E + 08  | 8.76E + 07 | 3.55E + 08 |
|                   | PHENOL    | TOLUENE  | 1.59E+07   | 0.00E+00    | 4.54E+07   | 6.13E + 07 |
| Formaldehyde      | НСНО      | CH2O     | 2.35E+09   | 3.04E+09    | 3.38E+09   | 8.77E+09   |
|                   | СНЗСНО    | СНЗСНО   | 5.53E+08   | 8.88E+08    | 5.35E+08   | 1.98E+09   |
|                   | С2Н5СНО   | СНЗСНО   | 2.67E + 08 | 2.95E + 08  | 2.61E + 08 | 8.23E + 08 |
| Se                | СЗН7СНО   | СНЗСНО   | 2.37E + 08 | 1.34E + 08  | 2.11E+08   | 5.82E + 08 |
| Other Aldehydes   | IPRCHO    | СНЗСНО   | 1.92E + 08 | 9.14E + 07  | 1.61E + 08 | 4.44E+08   |
| Alde              | С4Н9СНО   | СНЗСНО   | 1.06E + 08 | 6.13E + 06  | 6.27E + 07 | 1.75E + 08 |
| ther              | ACR       | MACR     | 8.33E+07   | 1.35E + 08  | 7.33E+07   | 2.92E + 08 |
| Ó                 | MACR      | MACR     | 5.23E+07   | 3.01E + 06  | 3.08E+07   | 8.61E + 07 |
|                   | C4ALDB    | MACR     | 7.67E + 07 | 9.70E + 07  | 6.24E + 07 | 2.36E + 08 |
|                   | MGLYOX    | СНЗСОСНО | 4.52E + 07 | 4.28E + 07  | 5.05E+07   | 1.39E + 08 |
| Alkadienes and    | C4H6      | BIGENE   | 4.36E+10   | 1.34E+11    | 4.45E+10   | 2.22E+11   |
| Other Alkynes     | С5Н8      | ISOP     | 3.35E+09   | 1.10E + 10  | 0.00E+00   | 1.44E+10   |
|                   | НСООН     | НСООН    | 9.28E+08   | 4.04E+07    | 4.74E+08   | 1.44E+09   |
|                   | СН3СО2Н   | СН3СООН  | 7.55E+08   | 3.10E+07    | 4.88E + 08 | 1.27E+09   |
| Organic Acids     | PROPACID  | СН3СООН  | 8.65E+08   | 3.77E + 07  | 4.42E + 08 | 1.34E+09   |
|                   | ACO2H     | СН3СООН  | 5.46E+07   | 0.00E+00    | 1.56E + 08 | 2.11E+08   |

Table S3: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to MOZART-4 species by weighting with the carbon numbers of the respective species.

| Type     | MCMv3.2   | MOZART-4 | Belgium    | Netherlands | Luxembourg | Total      |
|----------|-----------|----------|------------|-------------|------------|------------|
| Type     | Species   | Species  | Беідішіі   | Netherlands | Luxembourg | Iotai      |
|          | СНЗОН     | СНЗОН    | 2.20E+09   | 2.40E+09    | 1.85E+09   | 6.45E+09   |
|          | С2Н5ОН    | С2Н5ОН   | 3.30E+09   | 2.51E+09    | 2.58E+09   | 8.39E+09   |
|          | NPROPOL   | С2Н5ОН   | 3.08E + 08 | 3.00E + 08  | 2.33E+08   | 8.41E + 08 |
|          | IPROPOL   | С2Н5ОН   | 4.61E + 08 | 4.79E + 08  | 3.69E + 08 | 1.31E+09   |
|          | NBUTOL    | С2Н5ОН   | 3.82E + 08 | 3.89E + 08  | 2.98E + 08 | 1.07E+09   |
|          | BUT2OL    | С2Н5ОН   | 2.82E + 08 | 2.59E + 08  | 2.04E+08   | 7.45E+08   |
|          | IBUTOL    | С2Н5ОН   | 1.79E + 08 | 1.62E + 08  | 1.24E + 08 | 4.65E + 08 |
|          | TBUTOL    | С2Н5ОН   | 3.48E+07   | 0.00E+00    | 1.79E + 05 | 3.50E+07   |
| slo      | PECOH     | С2Н5ОН   | 3.66E + 07 | 0.00E+00    | 1.88E + 05 | 3.68E + 07 |
| Alcohols | IPEAOH    | С2Н5ОН   | 3.66E+07   | 0.00E+00    | 1.88E + 05 | 3.68E+07   |
| Al       | ME3BUOL   | С2Н5ОН   | 3.66E + 07 | 0.00E+00    | 1.88E + 05 | 3.68E + 07 |
|          | IPECOH    | С2Н5ОН   | 3.66E + 07 | 0.00E+00    | 1.88E + 05 | 3.68E + 07 |
|          | IPEBOH    | С2Н5ОН   | 3.66E + 07 | 0.00E+00    | 1.88E + 05 | 3.68E + 07 |
|          | CYHEXOL   | С2Н5ОН   | 3.87E + 07 | 0.00E+00    | 1.99E+05   | 3.89E+07   |
|          | MIBKAOH   | С2Н5ОН   | 1.44E+08   | 1.24E + 08  | 9.53E+07   | 3.63E + 08 |
|          | ETHGLY    | С2Н5ОН   | 7.26E+07   | 5.80E + 07  | 4.46E+07   | 1.75E + 08 |
|          | PROPGLY   | С2Н5ОН   | 1.80E + 08 | 1.73E + 08  | 1.33E+08   | 4.86E + 08 |
|          | С6Н5СН2ОН | С2Н5ОН   | 1.04E+08   | 1.17E + 08  | 8.94E+07   | 3.10E + 08 |
|          | MBO       | С2Н5ОН   | 3.75E+07   | 0.00E+00    | 1.93E+05   | 3.77E+07   |
|          | СН3СОСН3  | СН3СОСН3 | 2.67E+09   | 2.75E+09    | 2.54E+09   | 7.96E+09   |
|          | MEK       | MEK      | 1.11E+09   | 1.20E+09    | 9.26E + 08 | 3.24E+09   |
|          | MPRK      | MEK      | 1.00E+07   | 4.69E + 05  | 4.12E+06   | 1.46E+07   |
|          | DIEK      | MEK      | 1.00E+07   | 4.69E + 05  | 4.12E+06   | 1.46E+07   |
| ones     | MIPK      | MEK      | 1.00E+07   | 4.69E + 05  | 4.12E+06   | 1.46E+07   |
| Ketones  | HEX2ONE   | MEK      | 1.04E+07   | 4.84E + 05  | 4.25E+06   | 1.51E+07   |
|          | HEX3ONE   | MEK      | 1.04E+07   | 4.84E + 05  | 4.25E+06   | 1.51E+07   |
|          | MIBK      | MEK      | 1.00E+09   | 1.08E+09    | 8.34E + 08 | 2.91E+09   |
|          | MTBK      | MEK      | 1.04E+07   | 4.84E + 05  | 4.25E+06   | 1.51E+07   |
|          | CYHEXONE  | MEK      | 1.05E+08   | 8.83E + 07  | 1.10E+08   | 3.03E+08   |
|          | METHACET  | BIGALK   | 3.71E+07   | 0.00E+00    | 4.08E+08   | 4.45E+08   |
|          | ETHACET   | BIGALK   | 1.18E+09   | 1.35E+09    | 5.15E+07   | 2.58E+09   |
| ers      | NBUTACET  | BIGALK   | 1.24E+09   | 1.41E+09    | 5.15E+07   | 2.70E+09   |
| Esters   | IPROACET  | BIGALK   | 3.63E+08   | 4.14E+08    | 7.90E+07   | 8.56E+08   |
|          | СНЗОСНО   | BIGALK   | 6.93E+06   | 0.00E+00    | 5.14E+07   | 5.83E+07   |
|          | NPROACET  | BIGALK   | 1.42E+08   | 1.55E + 08  | 7.22E+04   | 2.97E+08   |

Table S3: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to MOZART-4 species by weighting with the carbon numbers of the respective species.

|                          | MCMv3.2    | MOZART-4 | <b>-</b>   |             |            |            |
|--------------------------|------------|----------|------------|-------------|------------|------------|
| $\mathbf{Type}$          | Species    | Species  | Belgium    | Netherlands | Luxembourg | Total      |
|                          | СНЗОСНЗ    | BIGALK   | 1.44E+08   | 3.72E+07    | 1.47E+08   | 3.28E+08   |
|                          | DIETETHER  | BIGALK   | 8.92E+07   | 1.17E + 06  | 1.47E + 08 | 2.37E + 08 |
|                          | MTBE       | BIGALK   | 1.76E + 07 | 1.23E + 06  | 2.10E+08   | 2.29E+08   |
|                          | DIIPRETHER | BIGALK   | 1.15E+08   | 1.27E + 06  | 1.60E + 06 | 1.18E + 08 |
| Ethers                   | ETBE       | BIGALK   | 1.82E + 07 | 1.27E + 06  | 1.03E+09   | 1.05E+09   |
| Eth                      | MO2EOL     | BIGALK   | 7.25E+07   | 6.67E + 07  | 1.08E+09   | 1.22E+09   |
|                          | EOX2EOL    | BIGALK   | 8.16E + 07 | 7.51E + 07  | 3.18E + 08 | 4.75E + 08 |
|                          | PR2OHMOX   | BIGALK   | 1.49E + 08 | 1.49E + 08  | 2.99E+05   | 2.98E + 08 |
|                          | BUOX2ETOH  | BIGALK   | 9.92E + 08 | 1.07E + 09  | 1.21E+08   | 2.18E+09   |
|                          | BOX2PROL   | BIGALK   | 1.64E+07   | 1.15E+06    | 4.28E+07   | 6.04E+07   |
|                          | CH2CL2     | BIGALK   | 1.67E + 08 | 8.16E + 07  | 1.60E + 07 | 2.65E + 08 |
|                          | CH3CH2CL   | BIGALK   | 5.42E + 07 | 0.00E+00    | 1.35E+07   | 6.77E + 07 |
| <b>70</b>                | CH3CCL3    | BIGALK   | 1.84E + 08 | 1.14E + 08  | 2.32E+07   | 3.21E + 08 |
| bons                     | TRICLETH   | BIGALK   | 4.43E + 08 | 2.58E + 08  | 1.40E+07   | 7.15E + 08 |
| ocar.                    | CDICLETH   | BIGALK   | 1.83E + 07 | 0.00E+00    | 6.08E + 07 | 7.91E + 07 |
| Chlorinated Hydrocarbons | TDICLETH   | BIGALK   | 1.82E + 07 | 0.00E+00    | 6.85E + 07 | 8.67E + 07 |
| ted ]                    | CH3CL      | BIGALK   | 2.77E+07   | 0.00E+00    | 1.26E + 08 | 1.54E + 08 |
| orina                    | CCL2CH2    | BIGALK   | 1.80E + 07 | 0.00E+00    | 8.46E + 08 | 8.64E + 08 |
| Chlc                     | CHCL2CH3   | BIGALK   | 2.14E + 05 | 0.00E+00    | 1.26E + 07 | 1.28E + 07 |
|                          | VINCL      | BIGALK   | 1.68E + 07 | 0.00E+00    | 2.05E+08   | 2.22E + 08 |
|                          | TCE        | BIGALK   | 1.06E + 08 | 6.27E + 07  | 1.54E + 08 | 3.23E + 08 |
|                          | CHCL3      | BIGALK   | 5.86E + 06 | 0.00E+00    | 1.47E + 08 | 1.53E+08   |
|                          | APINENE    | C10H16   | 4.22E + 08 | 1.27E + 09  | 4.78E + 07 | 1.74E + 09 |
| Terpenes                 | BPINENE    | C10H16   | 4.22E + 08 | 1.27E + 09  | 9.26E + 07 | 1.78E + 09 |
|                          | LIMONENE   | C10H16   | 4.96E + 08 | 1.34E+09    | 1.67E+07   | 1.85E+09   |
| Tot                      | al         |          | 5.05E+11   | 1.21E+12    | 5.39E+11   | 2.25E+12   |

Table S4: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to RADM2 species by weighting with the carbon numbers of the respective species.

| Type                      | MCMv3.2    | RADM2   | <b>-</b>     | Netherlands | Luxembourg   | Total      |
|---------------------------|------------|---------|--------------|-------------|--------------|------------|
|                           | Species    | Species | Belgium      |             |              |            |
| Ethane                    | С2Н6       | ETH     | 4.91E+09     | 8.58E+08    | 7.96E+09     | 1.37E+10   |
| Propane                   | С3Н8       | HC3     | 3.47E+10     | 4.13E+10    | 4.08E+10     | 1.17E+11   |
| Butanes                   | NC4H10     | HC3     | 1.73E+11     | 4.81E+11    | 2.02E+11     | 8.56E+11   |
|                           | IC4H10     | HC3     | 4.18E+10     | 1.17E + 11  | 4.91E+10     | 2.08E+11   |
|                           | NC5H12     | HC5     | 9.26E+10     | 2.76E+11    | 1.09E+11     | 4.78E+11   |
| Pentanes                  | IC5H12     | HC5     | $5.55E{+}10$ | 1.66E + 11  | $6.55E{+}10$ | 2.87E + 11 |
|                           | NEOP       | HC3     | 1.91E+07     | 0.00E+00    | 6.54E + 06   | 2.56E+07   |
|                           | NC6H14     | HC5     | 1.89E+10     | 5.12E+10    | 2.28E+10     | 9.29E+10   |
|                           | M2PE       | HC5     | 2.99E+09     | 7.85E + 09  | 3.55E+09     | 1.44E+10   |
|                           | M3PE       | HC5     | 1.67E + 09   | 4.11E+09    | 1.97E + 09   | 7.75E+09   |
| 10                        | NC7H16     | HC5     | 2.11E+10     | 6.01E+10    | 2.49E+10     | 1.06E + 11 |
| sanes                     | M2HEX      | HC8     | 2.42E + 08   | 4.33E + 08  | 2.81E + 08   | 9.56E + 08 |
| Hexane and Higher Alkanes | M3HEX      | HC8     | 2.10E+08     | 3.45E + 08  | 2.30E + 08   | 7.85E+08   |
| ighe                      | M22C4      | HC3     | 7.18E+07     | 1.09E + 08  | 1.12E + 08   | 2.93E + 08 |
| н рг                      | M23C4      | HC5     | 4.34E+07     | 6.61E + 07  | 6.78E + 07   | 1.77E + 08 |
| ne aı                     | NC8H18     | HC8     | 1.06E + 10   | 3.10E + 10  | 1.25E+10     | 5.41E+10   |
| Iexa                      | NC9H20     | HC8     | 1.26E+09     | 1.22E+09    | 1.11E+09     | 3.59E+09   |
| <b>н</b>                  | NC10H22    | HC8     | 2.73E+09     | 2.80E+09    | 2.39E+09     | 7.92E+09   |
|                           | NC11H24    | HC8     | 1.25E+09     | 1.29E+09    | 1.11E+09     | 3.65E+09   |
|                           | NC12H26    | HC8     | 4.66E + 08   | 1.35E+09    | 6.71E + 08   | 2.49E+09   |
|                           | CHEX       | HC8     | 2.21E+08     | 1.85E + 08  | 2.13E+08     | 6.19E + 08 |
| Ethene                    | C2H4       | OL2     | 3.66E+10     | 7.03E+09    | 8.25E+09     | 5.19E+10   |
| Propene                   | СЗН6       | OLT     | 1.43E+09     | 1.32E+09    | 1.32E+09     | 4.07E+09   |
|                           | HEX1ENE    | OLT     | 5.40E+07     | 7.94E+05    | 3.79E+07     | 9.27E+07   |
|                           | BUT1ENE    | OLT     | 1.05E+08     | 7.41E + 05  | 1.96E + 08   | 3.02E+08   |
| Higher Alkenes            | MEPROPENE  | OLI     | 8.17E + 06   | 0.00E+00    | 2.05E+06     | 1.02E+07   |
|                           | TBUT2ENE   | OLI     | 8.17E + 06   | 0.00E+00    | 2.05E+06     | 1.02E + 07 |
|                           | CBUT2ENE   | OLI     | 8.17E + 06   | 0.00E+00    | 2.05E+06     | 1.02E + 07 |
|                           | CPENT2ENE  | OLI     | 9.97E + 06   | 2.31E + 05  | 2.15E+06     | 1.24E + 07 |
|                           | TPENT2ENE  | OLI     | 9.97E + 06   | 2.31E + 05  | 2.15E+06     | 1.24E + 07 |
|                           | PENT1ENE   | OLT     | 3.52E+07     | 2.65E + 05  | 6.81E + 06   | 4.23E+07   |
|                           | ME2BUT2ENE | OLI     | 1.14E+07     | 1.26E + 05  | 2.66E + 06   | 1.42E+07   |
|                           | ME3BUT1ENE | OLT     | 1.44E+07     | 1.59E + 05  | 3.36E + 06   | 1.79E+07   |
|                           | ME2BUT1ENE | OLI     | 2.14E+06     | 8.39E + 04  | 4.11E+05     | 2.63E+06   |
| Ethyne                    | C2H2       | НС3     | 1.92E+09     | 3.11E+09    | 2.22E+09     | 7.25E+09   |
|                           |            |         |              |             |              |            |

Table S4: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to RADM2 species by weighting with the carbon numbers of the respective species.

| m                 | MCMv3.2   | RADM2   | Belgium    | Netherlands |            |            |
|-------------------|-----------|---------|------------|-------------|------------|------------|
| Type              | Species   | Species |            |             | Luxembourg | Total      |
| Benzene           | BENZENE   | TOL     | 3.82E+09   | 8.93E+09    | 4.24E+09   | 1.70E + 10 |
| Toluene           | TOLUENE   | TOL     | 5.69E+09   | 1.21E+10    | 6.28E+09   | 2.41E+10   |
|                   | MXYL      | XYL     | 1.71E+09   | 2.69E+09    | 1.69E+09   | 6.09E+09   |
| Xylenes           | OXYL      | XYL     | 7.74E + 08 | 1.70E + 09  | 8.68E + 08 | 3.34E+09   |
|                   | PXYL      | XYL     | 7.44E+08   | 1.63E+09    | 8.16E + 08 | 3.19E+09   |
|                   | TM123B    | XYL     | 4.54E+07   | 7.45E+07    | 5.23E+07   | 1.72E+08   |
| Trimethylbenzenes | TM124B    | XYL     | 1.77E + 08 | 2.93E + 08  | 2.45E + 08 | 7.15E+08   |
|                   | TM135B    | XYL     | 5.64E + 07 | 1.04E + 08  | 7.19E+07   | 2.32E+08   |
|                   | EBENZ     | TOL     | 4.50E+08   | 9.33E+08    | 7.08E+08   | 2.09E+09   |
|                   | PBENZ     | TOL     | 2.01E+08   | 5.86E + 08  | 2.93E+08   | 1.08E+09   |
|                   | IPBENZ    | TOL     | 9.99E+07   | 1.32E + 08  | 1.18E + 08 | 3.50E + 08 |
| S                 | PETHTOL   | XYL     | 6.10E + 07 | 1.06E + 08  | 1.07E + 08 | 2.74E + 08 |
| Other Aromatics   | METHTOL   | XYL     | 7.00E+07   | 1.16E + 08  | 1.14E+08   | 3.00E+08   |
| Aro               | OETHTOL   | XYL     | 4.24E+07   | 7.56E + 07  | 7.71E+07   | 1.95E + 08 |
| ther              | DIET35TOL | XYL     | 3.02E + 08 | 1.04E+09    | 4.41E+08   | 1.78E + 09 |
| Ó                 | DIME35EB  | XYL     | 1.19E+08   | 2.11E + 08  | 1.23E+08   | 4.53E+08   |
|                   | STYRENE   | TOL     | 7.61E+07   | 1.43E + 08  | 1.29E+08   | 3.48E + 08 |
|                   | BENZAL    | CSL     | 6.38E + 07 | 2.20E + 08  | 9.29E+07   | 3.77E + 08 |
|                   | PHENOL    | CSL     | 1.69E+07   | 0.00E+00    | 4.81E+07   | 6.50E + 07 |
| Formaldehyde      | НСНО      | НСНО    | 2.35E+09   | 3.04E+09    | 3.38E+09   | 8.77E+09   |
|                   | СНЗСНО    | ALD     | 4.61E+08   | 7.40E+08    | 4.46E+08   | 1.65E+09   |
|                   | С2Н5СНО   | ALD     | 2.23E+08   | 2.46E + 08  | 2.18E + 08 | 6.87E + 08 |
| S G               | СЗН7СНО   | ALD     | 1.98E + 08 | 1.12E + 08  | 1.76E + 08 | 4.86E + 08 |
| ehy de            | IPRCHO    | ALD     | 1.60E + 08 | 7.62E + 07  | 1.34E + 08 | 3.70E + 08 |
| Alde              | С4Н9СНО   | ALD     | 8.86E + 07 | 5.10E + 06  | 5.23E+07   | 1.46E + 08 |
| Other Aldehydes   | ACR       | ALD     | 1.39E + 08 | 2.25E + 08  | 1.22E + 08 | 4.86E + 08 |
| 0                 | MACR      | ALD     | 8.71E + 07 | 5.02E + 06  | 5.14E+07   | 1.44E + 08 |
|                   | C4ALDB    | ALD     | 1.28E + 08 | 1.62E + 08  | 1.04E + 08 | 3.94E + 08 |
|                   | MGLYOX    | MGLY    | 4.52E + 07 | 2.85E + 07  | 3.36E+07   | 1.07E + 08 |
| Alkadienes and    | C4H6      | OLI     | 3.64E+10   | 1.12E+11    | 4.63E+10   | 1.95E+11   |
| Other Alkynes     | C5H8      | ISO     | 3.35E+09   | 1.10E+10    | 0.00E+00   | 1.44E+10   |
|                   | НСООН     | ORA1    | 9.28E+08   | 4.04E+07    | 4.74E+08   | 1.44E+09   |
| Ommonie A.: 1     | СН3СО2Н   | ORA2    | 7.55E+08   | 3.10E+07    | 4.88E + 08 | 1.27E+09   |
| Organic Acids     | PROPACID  | ORA2    | 8.65E + 08 | 3.77E + 07  | 4.42E + 08 | 1.34E+09   |
|                   | ACO2H     | OLT     | 2.87E + 07 | 0.00E+00    | 8.19E + 07 | 1.11E+08   |

Table S4: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to RADM2 species by weighting with the carbon numbers of the respective species.

| Species   Spec | Type  | MCMv3.2   | RADM2   | D.I.       | Netherlands | Luxembourg | Total      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------|------------|-------------|------------|------------|
| C2H5OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Species   | Species | Beigium    |             |            |            |
| NPROPOL   HC5   1.29E+08   1.25E+08   9.70E+07   3.51E+08     IPROPOL   HC5   1.92E+08   2.00E+08   1.54E+08   5.46E+08     NBUTOL   HC8   9.67E+07   9.84E+07   7.55E+07   2.71E+08     BUT2QL   HC8   7.14E+07   6.56E+07   5.17E+07   1.89E+08     IBUTOL   HC8   4.54E+07   4.10E+07   3.15E+07   1.18E+08     TBUTOL   HC3   2.40E+07   0.00E+00   1.24E+05   2.41E+07     IPEAOH   HC8   9.27E+06   0.00E+00   4.77E+04   9.32E+06     IPEAOH   HC8   9.27E+06   0.00E+00   4.77E+04   9.32E+06     IPECOH   HC8   9.79E+06   0.00E+00   4.77E+04   9.32E+06     IPECOH   HC8   9.79E+06   0.00E+00   4.77E+04   9.32E+06     IPEGOH   HC8   9.79E+06   0.00E+00   4.77E+04   9.32E+06     CYHEXOL   HC8   9.79E+06   0.00E+00   4.77E+04   9.32E+06     ETHGLY   HC8   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HC8   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HC8   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   7.00E+00   2.76E+06   6.67 |       | СНЗОН     | HC3     | 7.59E + 08 | 8.27E + 08  | 6.37E + 08 | 2.22E+09   |
| PROPOL   P |       | С2Н5ОН    | HC3     | 2.27E + 09 | 1.73E + 09  | 1.78E + 09 | 5.78E + 09 |
| NBUTOL   HCS   9.67E+07   9.84E+07   7.55E+07   1.89E+08   BUT2OL   HCS   7.14E+07   6.56E+07   5.17E+07   1.89E+08   1BUTOL   HCS   4.54E+07   4.10E+07   3.15E+07   1.18E+08   TBUTOL   HCS   2.40E+07   0.00E+00   1.24E+05   2.41E+07   PECOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   1PEAOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   1PECOH   HCS   9.79E+06   0.00E+00   4.77E+04   9.32E+06   0.00E+00   0.00E+00   4.77E+04   9.32E+06   0.00E+00   0.0 |       | NPROPOL   | HC5     | 1.29E+08   | 1.25E + 08  | 9.70E + 07 | 3.51E + 08 |
| BUT2OL   HC8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | IPROPOL   | HC5     | 1.92E + 08 | 2.00E + 08  | 1.54E + 08 | 5.46E + 08 |
| BUTOL   HCS   4.54E+07   4.10E+07   3.15E+07   1.18E+08     TBUTOL   HC3   2.40E+07   0.00E+00   1.24E+05   2.41E+07     PECOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06     IPEAOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06     IPEAOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06     IPECOH   HC3   2.53E+07   0.00E+00   4.77E+04   9.32E+06     IPECOH   HC3   2.53E+07   0.00E+00   4.77E+04   9.32E+06     IPEBOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06     CYHEXOL   HCS   9.79E+06   0.00E+00   4.77E+04   9.32E+06     CYHEXOL   HCS   9.79E+06   0.00E+00   5.04E+04   9.84E+06     MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HCS   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HCS   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HCS   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     MBO   MEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MBC   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MBC   HCS   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MBK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MBK   HCS   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MBK   HCS   8.73E+07   7.36E+07   9.18E+07   2.53E+08     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   6.67E+07     MBK   HCS   8.73E+07   7.36E+07   9.18E+07   2.53E+08     MTBK   KET   1.06E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     NBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     PROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     NBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+ |       | NBUTOL    | HC8     | 9.67E + 07 | 9.84E + 07  | 7.55E+07   | 2.71E + 08 |
| TBUTOL HCS 2.40E+07 0.00E+00 1.24E+05 2.41E+07 PECOH HCS 9.27E+06 0.00E+00 4.77E+04 9.32E+06 IPEAOII HCS 9.27E+06 0.00E+00 4.77E+04 9.32E+06 IPEAOII HCS 9.27E+06 0.00E+00 4.77E+04 9.32E+06 IPECOH HCS 9.27E+06 0.00E+00 4.77E+04 9.32E+06 IPECOH HCS 2.53E+07 0.00E+00 1.30E+05 2.54E+07 IPEBOH HCS 9.27E+06 0.00E+00 4.77E+04 9.32E+06 CYHEXOL HCS 9.79E+06 0.00E+00 4.77E+04 9.32E+06 CYHEXOL HCS 9.79E+06 0.00E+00 5.04E+04 9.84E+06 MIBKAOH KET 7.39E+07 6.36E+07 4.89E+07 1.86E+08 ETHGLY HCS 1.84E+07 1.47E+07 1.13E+07 4.44E+07 PROPGLY HCS 4.57E+07 4.39E+07 3.37E+07 1.23E+08 C6H5CH2OH HCS 2.64E+07 2.95E+07 2.26E+07 7.85E+07 MBO OLT 1.97E+07 0.00E+00 1.02E+05 1.98E+07 MBO NEK KET 1.14E+09 1.23E+09 9.49E+08 3.32E+09 MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 MIBK HCS 8.34E+08 8.96E+08 6.95E+08 2.43E+09 MTBK KET 1.06E+07 4.96E+05 3.55E+06 1.26E+07 MIBK HCS 8.34E+08 8.96E+08 6.95E+08 2.43E+09 MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07 CYHEXONE HCS 8.73E+07 7.36E+07 9.18E+07 2.53E+08 METHACET HC3 6.39E+07 0.00E+00 1.78E+09 6.14E+09  METHACET HC3 6.39E+07 0.00E+00 1.78E+09 6.14E+09  NBUTACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09 CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | BUT2OL    | HC8     | 7.14E + 07 | 6.56E + 07  | 5.17E + 07 | 1.89E + 08 |
| PECOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   IPEAOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   IPEAOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   IPECOH   HCS   2.53E+07   0.00E+00   1.30E+05   2.54E+07   IPEBOH   HCS   9.27E+06   0.00E+00   4.77E+04   9.32E+06   CYHEXOL   HCS   9.79E+06   0.00E+00   5.04E+04   9.84E+06   MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08   ETHGLY   HCS   1.84E+07   1.47E+07   1.13E+07   4.44E+07   PROPGLY   HCS   4.57E+07   4.39E+07   3.37E+07   1.23E+08   C6H5CH2OH   HCS   2.64E+07   2.95E+07   2.26E+07   7.85E+07   MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07   CH3COCH3   KET   2.05E+09   2.11E+09   9.49E+08   3.32E+09   MPRK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07   DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07   DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07   DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07   MIPK   KET   1.06E+07   4.81E+05   4.23E+06   1.50E+07   MIPK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07   MIPK   MIP |       | IBUTOL    | HC8     | 4.54E + 07 | 4.10E + 07  | 3.15E+07   | 1.18E + 08 |
| IPEAOH   HCS   9.2TE+06   0.00E+00   4.7TE+04   9.32E+06     ME3BUOL   HCS   9.2TE+06   0.00E+00   4.7TE+04   9.32E+06     IPECOH   HC3   2.53E+07   0.00E+00   1.30E+05   2.54E+07     IPEBOH   HCS   9.2TE+06   0.00E+00   4.7TE+04   9.32E+06     CYHEXOL   HCS   9.79E+06   0.00E+00   4.7TE+04   9.32E+06     CYHEXOL   HCS   9.79E+06   0.00E+00   5.04E+04   9.84E+06     MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HCS   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HCS   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HCS   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     MEK   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MIBK   HC5   8.34E+08   8.96E+08   6.95E+08   2.43E+09     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     NBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     IPROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     L24E+07   L24E+07   1.19E+07   0.00E+00   5.16E+05   1.24E+09     L24E+07   L24E+07   1.19E+07   0.00E+00   5.16E+05   1.24E+09     L24E+07   L24E+07   1.19E+07   0.00E+00   5.16E+05   1.24E+07     L24E+07   L24E+07   1.19E+07   0.00E+00   5.16E+05   1.24E+07     L24E+07   L24E+07   1.19E+07   0.00E+00   5.16E+05   1.24E+07     L24E+07   L24E+07   1.19E+07   1.19E+07   1.19E+07     L24E+07 |       | TBUTOL    | HC3     | 2.40E + 07 | 0.00E+00    | 1.24E + 05 | 2.41E+07   |
| PECOH   HC3   2.53E+06   0.00E+00   1.30E+05   2.54E+06     IPECOH   HC3   2.53E+07   0.00E+00   1.30E+05   2.54E+06     IPEBOH   HC8   9.27E+06   0.00E+00   4.77E+04   9.32E+06     CYHEXOL   HC8   9.79E+06   0.00E+00   5.04E+04   9.84E+06     MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HC8   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HC8   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HC8   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   2.04E+09   2.32E+09   1.78E+09   6.14E+09     NBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     IPROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     CH3OCHO   HC3  | slo   | PECOH     | HC8     | 9.27E + 06 | 0.00E+00    | 4.77E + 04 | 9.32E + 06 |
| PECOH   HC3   2.53E+06   0.00E+00   1.30E+05   2.54E+06     IPECOH   HC3   2.53E+07   0.00E+00   1.30E+05   2.54E+06     IPEBOH   HC8   9.27E+06   0.00E+00   4.77E+04   9.32E+06     CYHEXOL   HC8   9.79E+06   0.00E+00   5.04E+04   9.84E+06     MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HC8   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HC8   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HC8   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   2.04E+09   2.32E+09   1.78E+09   6.14E+09     NBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     IPROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     CH3OCHO   HC3  | lcohc | IPEAOH    | HC8     | 9.27E + 06 | 0.00E+00    | 4.77E + 04 | 9.32E + 06 |
| IPEBOH   HC8   9.79E+06   0.00E+00   4.77E+04   9.32E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Al    | ME3BUOL   | HC8     | 9.27E + 06 | 0.00E+00    | 4.77E + 04 | 9.32E + 06 |
| CYHEXOL   HCS   9.79E+06   0.00E+00   5.04E+04   9.84E+06     MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HCS   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HCS   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HCS   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.14E+09   1.23E+09   9.49E+08   3.32E+09     MPRK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MIBK   HC5   8.34E+08   8.96E+08   6.95E+08   2.43E+09     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   7.36E+07   9.18E+07   2.53E+08     MBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     LES   L |       | IPECOH    | HC3     | 2.53E + 07 | 0.00E+00    | 1.30E + 05 | 2.54E+07   |
| MIBKAOH   KET   7.39E+07   6.36E+07   4.89E+07   1.86E+08     ETHGLY   HC8   1.84E+07   1.47E+07   1.13E+07   4.44E+07     PROPGLY   HC8   4.57E+07   4.39E+07   3.37E+07   1.23E+08     C6H5CH2OH   HC8   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.14E+09   1.23E+09   9.49E+08   3.32E+09     MPRK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MIBK   HC5   8.34E+08   8.96E+08   6.95E+08   2.43E+09     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   6.26E+08   7.14E+09   1.13E+09   3.89E+09     MBUTACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     ETHACET   HC3    |       | IPEBOH    | HC8     | 9.27E + 06 | 0.00E+00    | 4.77E + 04 | 9.32E + 06 |
| ### BETHGLY HC8   1.84E+07   1.47E+07   1.13E+07   4.44E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | CYHEXOL   | HC8     | 9.79E + 06 | 0.00E+00    | 5.04E+04   | 9.84E + 06 |
| PROPGLY HC8 4.57E+07 4.39E+07 2.26E+07 7.85E+07  MBO OLT 1.97E+07 0.00E+00 1.02E+05 1.98E+07  CH3COCH3 KET 2.05E+09 2.11E+09 1.95E+09 6.11E+09  MEK KET 1.14E+09 1.23E+09 9.49E+08 3.32E+09  MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | MIBKAOH   | KET     | 7.39E+07   | 6.36E + 07  | 4.89E + 07 | 1.86E + 08 |
| C6H5CH2OH   HC8   2.64E+07   2.95E+07   2.26E+07   7.85E+07     MBO   OLT   1.97E+07   0.00E+00   1.02E+05   1.98E+07     CH3COCH3   KET   2.05E+09   2.11E+09   1.95E+09   6.11E+09     MEK   KET   1.14E+09   1.23E+09   9.49E+08   3.32E+09     MPRK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MIBK   HC5   8.34E+08   8.96E+08   6.95E+08   2.43E+09     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   2.04E+09   2.32E+09   1.78E+09   6.14E+09     MBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     IPROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07     CH3OCHO   HC3     |       | ETHGLY    | HC8     | 1.84E + 07 | 1.47E + 07  | 1.13E+07   | 4.44E+07   |
| MBO OLT 1.97E+07 0.00E+00 1.02E+05 1.98E+07  CH3COCH3 KET 2.05E+09 2.11E+09 1.95E+09 6.11E+09  MEK KET 1.14E+09 1.23E+09 9.49E+08 3.32E+09  MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | PROPGLY   | HC8     | 4.57E + 07 | 4.39E + 07  | 3.37E + 07 | 1.23E+08   |
| CH3COCH3 KET 2.05E+09 2.11E+09 1.95E+09 6.11E+09  MEK KET 1.14E+09 1.23E+09 9.49E+08 3.32E+09  MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | С6Н5СН2ОН | HC8     | 2.64E + 07 | 2.95E + 07  | 2.26E+07   | 7.85E+07   |
| MEK KET 1.14E+09 1.23E+09 9.49E+08 3.32E+09  MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07  HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | MBO       | OLT     | 1.97E + 07 | 0.00E+00    | 1.02E + 05 | 1.98E+07   |
| MPRK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 DIEK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07 HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07 MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09 MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07 CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07 ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09 NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09 IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09 CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | СНЗСОСНЗ  | KET     | 2.05E+09   | 2.11E+09    | 1.95E+09   | 6.11E+09   |
| DIEK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     MIPK   KET   1.03E+07   4.81E+05   4.23E+06   1.50E+07     HEX2ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     HEX3ONE   HC5   8.63E+06   4.03E+05   3.55E+06   1.26E+07     MIBK   HC5   8.34E+08   8.96E+08   6.95E+08   2.43E+09     MTBK   KET   1.06E+07   4.96E+05   4.36E+06   1.55E+07     CYHEXONE   HC5   8.73E+07   7.36E+07   9.18E+07   2.53E+08     METHACET   HC3   6.39E+07   0.00E+00   2.76E+06   6.67E+07     ETHACET   HC3   2.04E+09   2.32E+09   1.78E+09   6.14E+09     MBUTACET   HC5   1.29E+09   1.47E+09   1.13E+09   3.89E+09     IPROACET   HC3   6.26E+08   7.14E+08   5.48E+08   1.89E+09     CH3OCHO   HC3   1.19E+07   0.00E+00   5.16E+05   1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | MEK       | KET     | 1.14E+09   | 1.23E+09    | 9.49E + 08 | 3.32E+09   |
| MIPK KET 1.03E+07 4.81E+05 4.23E+06 1.50E+07 HEX2ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07 HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07 MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09 MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07 CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07 ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09 NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09 IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09 CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | MPRK      | KET     | 1.03E+07   | 4.81E + 05  | 4.23E+06   | 1.50E+07   |
| HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | DIEK      | KET     | 1.03E+07   | 4.81E + 05  | 4.23E+06   | 1.50E+07   |
| HEX3ONE HC5 8.63E+06 4.03E+05 3.55E+06 1.26E+07  MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ones  | MIPK      | KET     | 1.03E+07   | 4.81E + 05  | 4.23E + 06 | 1.50E+07   |
| MIBK HC5 8.34E+08 8.96E+08 6.95E+08 2.43E+09  MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Keto  | HEX2ONE   | HC5     | 8.63E + 06 | 4.03E + 05  | 3.55E + 06 | 1.26E+07   |
| MTBK KET 1.06E+07 4.96E+05 4.36E+06 1.55E+07  CYHEXONE HC5 8.73E+07 7.36E+07 9.18E+07 2.53E+08  METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07  ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | HEX3ONE   | HC5     | 8.63E + 06 | 4.03E + 05  | 3.55E + 06 | 1.26E+07   |
| CYHEXONE         HC5         8.73E+07         7.36E+07         9.18E+07         2.53E+08           METHACET         HC3         6.39E+07         0.00E+00         2.76E+06         6.67E+07           ETHACET         HC3         2.04E+09         2.32E+09         1.78E+09         6.14E+09           NBUTACET         HC5         1.29E+09         1.47E+09         1.13E+09         3.89E+09           IPROACET         HC3         6.26E+08         7.14E+08         5.48E+08         1.89E+09           CH3OCHO         HC3         1.19E+07         0.00E+00         5.16E+05         1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | MIBK      | HC5     | 8.34E + 08 | 8.96E + 08  | 6.95E + 08 | 2.43E+09   |
| METHACET HC3 6.39E+07 0.00E+00 2.76E+06 6.67E+07 ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09  NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09  IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09  CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | MTBK      | KET     | 1.06E + 07 | 4.96E + 05  | 4.36E + 06 | 1.55E+07   |
| ETHACET HC3 2.04E+09 2.32E+09 1.78E+09 6.14E+09 NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09 IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09 CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | CYHEXONE  | HC5     | 8.73E + 07 | 7.36E + 07  | 9.18E + 07 | 2.53E+08   |
| NBUTACET HC5 1.29E+09 1.47E+09 1.13E+09 3.89E+09 IPROACET HC3 6.26E+08 7.14E+08 5.48E+08 1.89E+09 CH3OCHO HC3 1.19E+07 0.00E+00 5.16E+05 1.24E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | METHACET  | HC3     | 6.39E+07   | 0.00E+00    | 2.76E+06   | 6.67E+07   |
| CH3OCHO HC3 $1.19E+07 0.00E+00 5.16E+05 1.24E+07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | ETHACET   | HC3     | 2.04E+09   | 2.32E+09    | 1.78E + 09 | 6.14E+09   |
| CH3OCHO HC3 $1.19E+07 0.00E+00 5.16E+05 1.24E+07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ers   | NBUTACET  | HC5     | 1.29E+09   | 1.47E + 09  | 1.13E+09   | 3.89E+09   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Est   | IPROACET  | HC3     | 6.26E + 08 | 7.14E + 08  | 5.48E + 08 | 1.89E+09   |
| NPROACET HC3 $2.45E+08$ $2.68E+08$ $2.09E+08$ $7.22E+08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | СНЗОСНО   | HC3     | 1.19E+07   | 0.00E+00    | 5.16E + 05 | 1.24E+07   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | NPROACET  | HC3     | 2.45E+08   | 2.68E + 08  | 2.09E+08   | 7.22E+08   |

Table S4: Benelux AVOC and BVOC emissions (molecules  $\rm cm^{-2}~s^{-1}$ ) mapped from MCMv3.2 species to RADM2 species by weighting with the carbon numbers of the respective species.

| Turno                    | MCMv3.2    | RADM2   | Belgium               | Netherlands | Luxembourg | Total      |
|--------------------------|------------|---------|-----------------------|-------------|------------|------------|
| Type                     | Species    | Species |                       |             |            |            |
|                          | СНЗОСНЗ    | НС3     | 2.48E+08              | 6.41E+07    | 7.38E+07   | 3.86E+08   |
|                          | DIETETHER  | HC8     | 5.64E + 07            | 7.40E + 05  | 1.01E+07   | 6.72E + 07 |
|                          | MTBE       | HC3     | 3.03E+07              | 2.12E + 06  | 2.32E+07   | 5.56E + 07 |
|                          | DIIPRETHER | HC8     | 7.26E + 07            | 8.06E + 05  | 1.47E + 07 | 8.81E + 07 |
| Ethers                   | ETBE       | HC8     | 1.15E+07              | 8.06E + 05  | 8.83E + 06 | 2.11E+07   |
| Eth                      | MO2EOL     | HC8     | 4.59E + 07            | 4.22E+07    | 3.85E+07   | 1.27E + 08 |
|                          | EOX2EOL    | HC8     | 5.16E + 07            | 4.75E + 07  | 4.33E+07   | 1.42E + 08 |
|                          | PR2OHMOX   | HC8     | 9.46E + 07            | 9.45E + 07  | 8.00E + 07 | 2.69E + 08 |
|                          | BUOX2ETOH  | HC8     | 6.28E + 08            | 6.76E + 08  | 5.35E + 08 | 1.84E + 09 |
|                          | BOX2PROL   | HC8     | 1.04E+07              | 7.26E+05    | 7.97E+06   | 1.91E+07   |
|                          | CH2CL2     | HC3     | 2.87E + 08            | 1.41E + 08  | 3.53E + 08 | 7.81E + 08 |
|                          | CH3CH2CL   | HC3     | 9.35E + 07            | 0.00E+00    | 2.66E + 08 | 3.60E + 08 |
|                          | CH3CCL3    | HC3     | 3.18E + 08            | 1.97E + 08  | 2.53E + 08 | 7.68E + 08 |
| Chlorinated Hydrocarbons | TRICLETH   | HC3     | 7.64E + 08            | 4.45E + 08  | 7.03E+08   | 1.91E + 09 |
| ocar                     | CDICLETH   | HC3     | 3.16E + 07            | 0.00E+00    | 8.88E + 07 | 1.20E + 08 |
| Hydr                     | TDICLETH   | HC3     | $3.14\mathrm{E}{+07}$ | 0.00E+00    | 8.87E + 07 | 1.20E + 08 |
| ted l                    | CH3CL      | HC3     | 4.78E + 07            | 0.00E + 00  | 1.36E + 08 | 1.84E + 08 |
| orina                    | CCL2CH2    | HC8     | $1.14\mathrm{E}{+07}$ | 0.00E+00    | 3.25E + 07 | 4.39E + 07 |
| Chlc                     | CHCL2CH3   | HC3     | 3.69E + 05            | 0.00E+00    | 1.24E + 05 | 4.93E + 05 |
|                          | VINCL      | HC8     | 1.06E + 07            | 0.00E + 00  | 3.03E+07   | 4.09E+07   |
|                          | TCE        | HC3     | 1.82E + 08            | 1.08E + 08  | 1.60E + 08 | 4.50E + 08 |
|                          | CHCL3      | HC3     | 1.01E+07              | 0.00E+00    | 2.88E+07   | 3.89E+07   |
|                          | APINENE    | OLI     | 8.78E + 08            | 2.65E + 09  | 3.05E+08   | 3.83E+09   |
| Terpenes                 | BPINENE    | OLI     | 8.78E + 08            | 2.65E + 09  | 3.05E+08   | 3.83E+09   |
|                          | LIMONENE   | OLI     | 1.03E+09              | 2.80E+09    | 4.38E+08   | 4.27E+09   |
| Tot                      | Total      |         |                       | 1.44E+12    | 6.42E+11   | 2.66E+12   |

Table S5: Benelux emissions (molecules  $cm^{-2}$  s<sup>-1</sup>) of AVOC and BVOC species in CB05. determined by translating the MCMv3.2 emissions from Table S1 into CB05 species using Yarwood et al. (2005).

| CB05 Species | Belgium    | Luxembourg | Netherlands | Total        |
|--------------|------------|------------|-------------|--------------|
| PAR          | 1.80E + 12 | 4.90E+12   | 2.10E+12    | 8.80E+12     |
| OLE          | 8.96E + 10 | 2.70E + 11 | 1.13E + 11  | $4.73E{+}11$ |
| TOL          | 6.55E + 09 | 1.39E + 10 | 7.51E + 09  | 2.80E + 10   |
| XYL          | 4.39E+09   | 8.50E + 09 | 4.87E + 09  | 1.78E + 10   |
| FORM         | 2.41E+09   | 3.09E+09   | 3.44E+09    | 8.94E + 09   |
| ALD2         | 5.64E + 08 | 8.88E + 08 | 5.37E + 08  | 1.99E+09     |
| ALDX         | 7.21E + 08 | 6.35E + 08 | 6.27E + 08  | 1.98E + 09   |
| MEOH         | 2.20E+09   | 2.40E+09   | 1.85E + 09  | 6.45E + 09   |
| ETOH         | 3.30E+09   | 2.51E+09   | 2.58E + 09  | 8.39E + 09   |
| FACD         | 9.28E + 08 | 4.04E+07   | 4.74E + 08  | 1.44E+09     |
| AACD         | 1.33E+09   | 5.61E + 07 | 7.83E + 08  | 2.17E + 09   |
| ETH          | 3.78E + 10 | 7.68E + 09 | 9.39E + 09  | 5.49E + 10   |
| ETHA         | 4.91E+09   | 8.58E + 08 | 7.96E + 09  | 1.37E + 10   |
| IOLE         | 3.87E + 07 | 4.43E + 05 | 9.05E + 06  | 4.82E + 07   |
| ISOP         | 3.35E+09   | 1.10E + 10 | 0.00E+00    | 1.44E + 10   |
| TERP         | 1.34E+09   | 3.89E + 09 | 5.03E + 08  | 5.73E + 09   |
| Total        | 1.96E+12   | 5.23E+12   | 2.25E+12    | 9.44E+12     |

Section 3.2 of the research article analysed the  $O_x$  production and consumption budgets normalised

## S3 Ozone Production and Consumption Budgets

by the total loss rate of the emitted VOCs. The absolute  $O_x$  production and consumption budgets are included to support the conclusion that the increased OH-reactivity of the emitted VOCs 37 caused the increase of ozone with temperature in our study. As in Fig. 4 of the research article 38 the production and consumption of  $O_x$  are allocated to the net contributions of major categories: 39 'ARO2', 'RO2' and 'HO2' represent the reaction of acyl peroxy radicals, alkyl peroxy radicals and HO<sub>2</sub> with NO. 'Inorganic' represents the net contribution of inorganic reactions, 'RO2NO2' the net contribution of peroxy nitrates and any other reactions were allocated to the 'Other Organic' category. Figure S1a represents the absolute production and consumption budgets of O<sub>x</sub> for each chemical mechanism, each NO<sub>x</sub>-regime and using a temperature-independent and temperature-dependent source of isoprene emissions. The absolute production and consumption budgets of  $O_x$  in the box model simulations 46 without mixing, described in Section 3.3 of the research article, are illustrated in Fig. S1b. 47 Similar to Fig. S1a, the increase in O<sub>x</sub> with temperature is due to the increased OH-reactivity of 48 emitted VOCs. The increased  $O_x$  with temperature led to the faster rate of increase in ozone with temperature than the original box model setup that included mixing, this is presented in Sect. 3.3 of the research article.

Figure S1: Day-time budgets of  $O_x$  allocated to the  $NO_x$ -regimes allocated to the net contribution of reactions to  $O_x$  budgets are allocated to categories of inorganic reactions, peroxy nitrates (RO2NO2), reactions of NO with HO2, alkyl peroxy radicals (RO2) and acyl peroxy radicals (ARO2). All other reactions are allocated to the 'Other Organic' category.

(a)  $O_x$  production and consumption budgets with box model setup including mixing.



(b)  $O_x$  production and consumption budgets with box model setup without including mixing.



## 52 References

- B. Bonn, E. von Schneidemesser, D. Andrich, J. Quedenau, H. Gerwig, A. Lüdecke, J. Kura,
- <sup>54</sup> A. Pietsch, C. Ehlers, D. Klemp, C. Kofahl, R. Nothard, A. Kerschbaumer, W. Junkermann,
- 85 R. Grote, T. Pohl, K. Weber, B. Lode, P. Schönberger, G. Churkina, T. M. Butler, and M. G.
- Lawrence. BAERLIN2014 The influence of land surface types on and the horizontal heterogeneity
- of air pollutant levels in Berlin. Atmospheric Chemistry and Physics Discussions, 2016:1–62,
- 58 2016.
- 59 J. Coates and T. M. Butler. A comparison of chemical mechanisms using tagged ozone production
- potential (TOPP) analysis. Atmospheric Chemistry and Physics, 15(15):8795–8808, 2015.
- J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon.
- 62 TNO-MACC II emission inventory; a multi-year (2003–2009) consistent high-resolution european
- emission inventory for air quality modelling. Atmospheric Chemistry and Physics, 14(20):
- 64 10963-10976, 2014.
- <sup>65</sup> A. S. M. Lourens, T. M. Butler, J. P. Beukes, P. G. van Zyl, G. D. Fourie, and M. G. Lawrence.
- 66 Investigating atmospheric photochemistry in the Johennesburg-Pretoria megacity using a box
- 67 model. South African Journal of Science, 112(1/2), 2016.
- 68 G. Yarwood, S. Rao, M. Yocke, and G. Z. Whitten. Updates to the Carbon Bond Chemical
- 69 Mechanism: CB05. Technical report, U. S Environmental Protection Agency, 2005.