Q# 0.10 Language Quick Reference

Primitive Types	
64-bit integers	Int
Double-precision floats	Double
Booleans	Bool
	e.g.: true or false
Qubits	Qubit
Pauli basis	Pauli
	e.g.: PauliI, PauliX, PauliY, or PauliZ
Measurement	Result
results	e.g.: Zero or One
Sequences of	Range
integers	e.g.: 110 or 510
Strings	String
	e.g.: "Hello Quantum!"
"Return no	Unit
information" type	e.g.: ()

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.: (Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Type	pes		
Declare UDT with anonymous items	<pre>newtype Name = (Type, Type); e.g.: newtype Pair = (Int, Int);</pre>		
Define UDT literal	3 71 1 7		
Define ODT interal	<pre>Name(baseTupleLiteral) e.g.: let origin = Pair(0, 0);</pre>		
Unwrap operator!	VarName!		
(convert UDT to	<pre>e.g.: let originTuple = origin!;</pre>		
underlying type)	(now originTuple = (0, 0))		
Declare UDT with	newtype Name =		
named items	(Name1: Type, Name2: Type);		
	e.g.: newtype Complex =		
	(Re : Double, Im : Double);		
Accessing named	VarName::ItemName		
items of UDTs	e.g.: complexVariable::Re		
Update-and-	set VarName w/= ItemName <- val;		
reassign for named e.g.: $mutable p = Complex(0., 6)$			
UDT items	set p w/= Re <- 1.0;		

Symbols and Variables				
Declare immutable symbol	let varName = value			
Declare mutable symbol (variable)	mutable varName = initialValue			
Update mutable symbol (variable)	set varName = newValue			
Apply-and-reassign	<pre>set varName operator= expression e.g.: set counter += 1;</pre>			

```
Functions and Operations
                    function Name(in0 : type0, ...)
Define function
(classical routine)
                    : returnType {
                        // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
                    operation Name(in0 : type0, ...)
Define operation
(quantum routine)
                    : returnType {
with explicitly
                        body { ... }
specified body,
                        adjoint { ... }
                        controlled { ... }
controlled and
adjoint variants
                        adjoint controlled { ... }
Define operation
                    operation Name(in0 : type0, ...)
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                        parameters)
                    e.g.: Controlled Ry(controls,
                        (0.5 * PI(), target));
```

```
Control Flow
Iterate over
                    for (index in range) {
a range of numbers
                         // Use integer index
                    e.g.: for (i in 0..N-1) { ... }
While loop
                    while (condition) {
(within functions)
Iterate over
                    for (val in array) {
an array
                         // Use value val
                    e.g.: for (q in register) { ... }
Repeat-until-
                    repeat { ... }
success loop
                    until (condition)
                    fixup { ... }
Conditional
                    if (cond1) { ... }
statement
                    elif (cond2) { ... }
                    else { ... }
                    condition ? caseTrue | caseFalse
Ternary operator
Return a value
                     return value
Stop with an error
                    fail "Error message"
Conjugations
                     within { ... }
(ABA^{\dagger} \text{ pattern})
                    apply { ... }
```

Arrays				
Allocate array	<pre>mutable name = new Type[length] e.g.: mutable b = new Bool[2];</pre>			
Get array length	Length(name)			
Access k-th element	name[k] NB: indices are 0-based			
Assign k-th element (copy-and-update)	set name w/= k <- value e.g.: set b w/= 0 <- true;			
Array literal	[value0, value1,] e.g.: let b = [true, false, true];			
Array concatenation	array1 + array2 e.g.: let t = [1, 2, 3] + [4, 5];			
Slicing (subarray)	name[sliceRange] e.g.: if t = [1, 2, 3, 4, 5], then t[1 3] is [2, 3, 4] t[3] is [4, 5] t[1] is [1, 2] t[0 2] is [1, 3, 5] t[1] is [5, 4, 3, 2, 1]			

Debugging (cla	ssical)
Print a string	Message("Hello Quantum!")
Print an	<pre>Message(\$"Value = {val}")</pre>
interpolated string	

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Reposit	tories
QDK Samples	https://github.com/microsoft/
	quantum
QDK Libraries	https://github.com/microsoft/
	QuantumLibraries
Quantum Katas	https://github.com/microsoft/
(tutorials)	QuantumKatas
Q# compiler and	https://github.com/microsoft/
extensions	qsharp-compiler
Simulation	https://github.com/microsoft/
framework	qsharp-runtime
Jupyter kernel and	https://github.com/microsoft/
Python host	iqsharp
Source code for	https://github.com/
the documentation	MicrosoftDocs/quantum-docs-pr

Debugging (quantum)

Print amplitudes of wave function Assert that a qubit is in $|0\rangle$ or $|1\rangle$ state DumpMachine("dump.txt") AssertQubit(Zero, zeroQubit) AssertQubit(One, oneQubit)

Measurements

Measure qubit in M(oneQubit) yields a Result (Zero or One) Reset qubit to $|0\rangle$ Reset an array of qubits to $|0..0\rangle$ Reset in M(oneQubit) ResetAll(register)

Working with Q# from command line

Command Line Basics

Change directory cd dirname
Go to home cd ~
Go up one directory cd ..
Make new directory mkdir dirname
Open current code .

Working with Q# Projects

onsole -lang Q# ject-dir
ir

Math reference

Complex Arithmetic			
i^2	-1		
(a+bi) + (c+di)	(a+c) + (b+d)i		
(a+bi)(c+di)	$a \cdot b + a \cdot di + c \cdot bi + (b \cdot d)i^2$		
	$a \cdot b + a \cdot di + c \cdot bi - (b \cdot d)$		
Complex Conjugate	$\overline{x} = a - bi$		
x = a + bi			
Complex division $\frac{a+bi}{c+di}$	$\frac{x}{y} = \frac{x}{y} \cdot 1 = \frac{x}{y} \cdot \frac{\overline{y}}{\overline{y}}$ $= \frac{(a+bi)(c-di)}{c+di)(c-di)} = \frac{(a+bi)(c+di)}{c^2+d^2}$		
Modulus	$ x = \sqrt{a^2 + b^2}$		
x = a + bi			
$e^{i\theta}$	$\cos(\theta) + i\sin(\theta)$		
e^{a+bi}	$e^a + e^{bi} = e^a(\cos(b) + i\sin(b))$		
r^{a+bi}	$c^a \cdot c^{bi} = c^a \cdot e^{bi \ln(c)}$		
	$= c^a((\cos(b\ln(c)) + i\sin(b\ln(c)))$		
Polar form	$re^{i\theta} = r(\cos(\theta) + i\sin(\theta))$		
a + bi	$r = \sqrt{a^2 + b^2}$		
	$\theta = \tan^{-1}(\frac{b}{a})$		

Linear Algebra Addition $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \qquad \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$ Scalar multiplication $a \cdot \begin{bmatrix} b & c \\ d & e \end{bmatrix} \qquad \begin{bmatrix} a \cdot b & a \cdot c \\ a \cdot d & a \cdot e \end{bmatrix}$

Matrix multiplication $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$\begin{bmatrix} a \cdot x & b \cdot y & c \cdot z \\ d \cdot x & e \cdot y & f \cdot z \end{bmatrix}$$

Transpose

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}^T \qquad \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$
 Adjoint

$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}^{\dagger}$

$$\begin{bmatrix} \overline{a} & \overline{c} & \overline{e} \\ \overline{b} & \overline{d} & \overline{f} \end{bmatrix}$$
$$\begin{bmatrix} a \end{bmatrix}^{\dagger} \begin{bmatrix} c \end{bmatrix} = -$$

Inner Product
$$\langle \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rangle$$

$$\begin{bmatrix} a \\ b \end{bmatrix}^{\dagger} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \overline{a} * c + b * d$$

Outer Product
$$[x]$$

$$\begin{bmatrix} a \\ b \end{bmatrix} \text{ and } \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} \overline{x} & \overline{y} & \overline{z} \end{bmatrix} = \begin{bmatrix} a \cdot \overline{x} & a \cdot \overline{y} & a \cdot \overline{z} \\ b \cdot \overline{x} & b \cdot \overline{y} & b \cdot \overline{z} \end{bmatrix}$$

Gates reference

Single	Single Qubit gates						
Gate	Matrix representation	Ket-Bra	Applying to $ \psi\rangle=\alpha 0\rangle+\beta 1\rangle$	Applying to basis states			
Χ	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle\langle 1 + 1\rangle\langle 0 $	$ \psi\rangle = \alpha 1\rangle + \beta 0\rangle$	$X 0\rangle = 1\rangle$ $X 1\rangle = 0\rangle$	$\begin{array}{l} X +\rangle = +\rangle \\ X -\rangle = - -\rangle \end{array}$	$X i\rangle = i -i\rangle \ X -i\rangle = -i i\rangle$	
Υ	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(1\rangle\langle 0 - 0\rangle\langle 1)$	$Y \psi\rangle = i(\alpha 1\rangle - \beta 0\rangle)$	$\begin{array}{l} Y 0\rangle = i 1\rangle \\ Y 1\rangle = -i 0\rangle \end{array}$	$Y +\rangle = -i -\rangle$ $Y -\rangle = i +\rangle$	$Y i\rangle = i\rangle$ $Y -i\rangle = - -i\rangle$	
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle\langle 0 - 1\rangle\langle 1 $	$Z \psi\rangle = \alpha 0\rangle - \beta 1\rangle$	$Z 0\rangle = 0\rangle$ $Z 1\rangle = - 1\rangle$	$Z +\rangle = -\rangle$ $Z -\rangle = +\rangle$	$egin{aligned} Z i angle &= -i angle \ Z -i angle &= i angle \end{aligned}$	
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$ 0\rangle\langle 0 + 1\rangle\langle 1 $	$I \psi\rangle = \psi\rangle$				
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$ 0\rangle\langle + + 1\rangle\langle - $	$\begin{array}{l} H \psi\rangle = \alpha +\rangle + \beta -\rangle = \\ \frac{\alpha+\beta}{\sqrt{2}} 0\rangle + \frac{\alpha-\beta}{\sqrt{2}} 1\rangle \end{array}$	$H 0\rangle = +\rangle$ $H 1\rangle = -\rangle$	$H +\rangle = 0\rangle$ $H -\rangle = 1\rangle$	$H i\rangle = e^{i\pi/4} -i\rangle$ $H -i\rangle = e^{-i\pi/4} i\rangle$	
S	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$ 0\rangle\langle 0 +i 1\rangle\langle 1 $	$S \psi\rangle = \alpha 0\rangle + i\beta 1\rangle$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S +\rangle = i\rangle$ $S -\rangle = -i\rangle$	$S i\rangle = -\rangle$ $S -i\rangle = +\rangle$	
T	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$ 0\rangle\langle 0 + e^{i\pi/4} 1\rangle\langle 1 $	$T \psi\rangle = \alpha 0\rangle + e^{i\pi/4}\beta 1\rangle$	$T 0\rangle = 0\rangle$ $T 1\rangle = e^{i\pi/4} 1\rangle$			
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$		$R_x(\theta) \psi\rangle = (\alpha\cos\frac{\theta}{2} - i\beta\sin\frac{\theta}{2}) 0\rangle + (\beta\cos\frac{\theta}{2} - i\alpha\sin\frac{\theta}{2}) 1\rangle$	$R_x(\theta) 0\rangle = \cos rac{ heta}{2} 0\rangle - i\sin rac{ heta}{2} 1 angle$	$R_x(\theta) 1 angle = \cosrac{ heta}{2} 1 angle - i\sinrac{ heta}{2} 0 angle$		
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$		$\begin{array}{ll} R_y(\theta) \psi\rangle &=& (\alpha\cos\frac{\theta}{2}-\beta\sin\frac{\theta}{2}) 0\rangle+\\ (\beta\cos\frac{\theta}{2}+\alpha\sin\frac{\theta}{2}) 1\rangle \end{array}$	$R_y(heta) 0 angle = \cosrac{ heta}{2} 0 angle + \sinrac{ heta}{2} 1 angle$	$R_y(heta) 1 angle = \cos rac{ heta}{2} 1 angle - \sin rac{ heta}{2} 0 angle$		
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$		$R_z(\theta) \psi\rangle = \alpha e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$		
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$		$R_1(\theta) \psi\rangle = \alpha 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$		