Finding Extreme Points: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved © 2020

Concepts

•	A	derivative	is	the	slope	of	the	tangent	line :	at any	point	along	a	curve.
---	---	------------	----	-----	-------	----	-----	---------	--------	--------	-------	-------	---	--------

•	Let	be a point on the curve	and be the	distance	between	two	points,	then	the
	math	ematical formula for the	slope as h a	pproaches	zero is g	given	as:		

•	Differentiation is the process of finding a function's	s derivative.
•	Finding the derivative of:	:

- •
- •
- •
- •
- Three ways of notating a curve's derivative:

•

*Only use if derivative is a function

•

- A critical point is a point where the slope changes direction from negative slope to positive slope or vice-versa. Critical points represent extreme values, which can be classified as a minimum or extreme value.
- Critical points are found by setting the derivative function to and solving for
- Critical point classification:
 - When the slope changes direction from positive to negative it can be a maximum value
 - When the slope changes direction from negative to positive, it can be a minimum value.
 - If the slope doesn't change direction, like at for , then it can't be a minimum or maximum value.

- Each maximum or minimum value points are known as local extrema.
- Classifying local extrema:
 - A point is a relative minimum if a critical point is the lowest point in a given interval.
 - A point is a relative maximum if a critical point is the highest point in a given interval.
- Instead of using the definition of the derivative, we can apply derivative rules to easily calculate the derivative functions.
- Derivative rules:
 - Power rule: Let be some power, then
 - Example: Let In our function, would be 2. Using the power rule, it's derivative would be or
 - Sum rule:
 - Example:
 - Constant factor rule:
- Derivative of is always and derivative of is always .
- Once you found the critical points of a function, you can analyze the direction of the slope around the points using a sign chart to classify the point as a minimum or maximum. We can test points around our points of interest to see if there is a sign change as well as what the change is.

Resources

- Derivative rules
- Sign chart

