1. Introduction

Definition 1. Let $X \subset \mathbb{R}^d$ be a convex set. We say that $f: X \to \mathbb{R}$ is log-convex if

$$\log f(tx + (1 - t)y) \le t \log f(x) + (1 - t) \log f(y),$$

 $\iiint_V \mu(u, v, w) \, du \, dv \, dw \, for all x, y \in X \text{ and } 0 \le t \le 1.$

Theorem 1. Let $I \subseteq \mathbb{R}$ be an interval. Suppose that $T: I \to \mathbb{R}^{n \times n}$ is entrywise log-convex. Then, $r(T): I \to \mathbb{R}$ is log-convex.

2. Main result

The purpose of this note is to extend Theorem 1 to higher dimensions. In particular, we will prove the following corollary.

Corollary 1 (Extension to \mathbb{R}^d). Suppose that $X \subseteq \mathbb{R}^d$ is a convex set. Suppose that $T: X \to \mathbb{R}^{n \times n}$ is entrywise log-convex. Then, $r(T): X \to \mathbb{R}$ is log-convex.

Proof of Corollary 1. Suppose not, that is, suppose that r(T) is not log-convex. Then, there exists $x_0, y_0 \in X$ and $t_0 \in [0, 1]$ such that

(1)
$$\log r(T)(t_0x_0 + (1-t_0)y_0) > t_0\log r(T)(x_0) + (1-t_0)\log r(T)(y_0).$$

Define the function $g:[0,1]\to\mathbb{R}$ by

$$g(u) = r(T)(ux_0 + (1 - u)y_0).$$

We claim that the function g is log-convex. Indeed, define $h:[0,1]\to\mathbb{R}^{n\times n}$ by $h(u)=T(ux_0+(1-u)y_0)$. By assumption, T is entrywise log-convex, so it follows from Lemma 1 that the function h is entrywise log-convex. Thus, by Theorem 1, the function g is log-convex. Thus,

$$\log g(t_0) \le t_0 \log g(1) + (1 - t_1) \log g(0),$$

which by the definition of g is equivalent to

$$\log r(T)(t_0x_0 + (1-t_0)y_0) \le t_0 \log r(T)(x_0) + (1-t_0) \log r(T)(y_0),$$

which contradicts (1). This completes the proof.

Lemma 1. Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is log-convex. Fix any $x, y \in \mathbb{R}^n$ and define $g: [0,1] \to \mathbb{R}$ by

$$g(u) = f(ux + (1 - u)y).$$

Then, g is log-convex

Proof of Lemma 1. We want to show that

$$\log g(tu + (1-t)v) \le t \log g(u) + (1-t) \log g(v),$$

for all $v, u \in \mathbb{R}$ and $t \in [0, 1]$. Observe that

$$\log g(tu + (1-t)v) = \log f((tu + (1-t)v)x + (1-(tu + (1-t)v))y),$$

$$= \log f((ux + (1-u)y)t + (vx + (1-v)y)(1-t)),$$

$$\leq (t \log f(ux + (1-u)y) + (1-t)\log f(vx + (1-v)y),$$

$$= (t \log g(u) + (1-t)\log g(v),$$

where the inequality follows from the fact that f is log-convex.