Mathématique - Séance de TD 16 mars 2020

TD 15 - Espaces vectoriels et applications linéaires

Exercice 1 : Déterminer si les sous-ensembles suivants sont des sous-espaces vectoriels. Le cas échéant, en donner une famille génératrice.

$$E_{1} = \{(x, y) \in \mathbb{R}^{2} \mid x + y = 0\} E_{2} = \{(x, 0) \mid x \in \mathbb{R}\} E_{3} = \{(0, y) \mid y \in \mathbb{R}\} E_{4} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} = xy\} E_{5} = \{(x, y) \in \mathbb{R}^{2} \mid x - y \ge 0\} E_{6} = \{(x, y, z, t) \in \mathbb{R}^{4} \mid x + y + z - t = 0\}$$

Correction:

On montre que chaque ensemble est une partie d'un autre ev, non vide et stable par combinaison linéaire.

Pour
$$E_1 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$$
:

On a d'abord : $E_1 \subset \mathbb{R}^2$

le vecteur nul (0,0) est solution de l'équation x + y = 0, alors $\overrightarrow{0}_{\mathbb{R}^2} \in E_1$.

Soit deux vecteurs $u = (x_u, y_u) \in E_1$ et $v = (x_v, y_v) \in E_1$, on a

$$u + v = (x_u + x_v, y_u + y_v) = (X, Y)$$
 et ce vecteur vérifie $X + Y = (x_u + x_v) + (y_u + y_v) = x_u + x_v + y_u + y_v = 0$

donc $u + v \in E_1 : E_1$ est stable par l'addition.

Soit $\alpha \in \mathbb{R}$.

 $\alpha u = (\alpha x_u, \alpha y_u)$ vérifie $\alpha x_u + \alpha y_u = 0$ donc $\alpha u \in E_1 : E_1$ est stable par multiplication par un scalaire.

On en déduit que E_1 est une partie de \mathbb{R}^2 , stable par combinaison linéaire et non vide

donc
$$E_1$$
 est un sous-espace vectoriel de \mathbb{R}^2

Autre méthode:

 $(x, y) \in E_1$ si et seulement si x + y = 0

si et seulement si y = -x si et seulement si (x, y) = x(1, -1) avec $x \in \mathbb{R}$

Résumons :

 $(x, y) \in E_1$ si et seulement si $(x, y) = \alpha(1, -1)$ avec $\alpha \in \mathbb{R}$

C'est à dire qu'un vecteur $(x, y) \in E_1$ si et seulement si il est combinaison linéaire de (1, -1)

Alors, E_1 est la droite vectorielle engendrée par (1,-1) donc $E_1 = Vect((1,-1))$ et c'est un sev de \mathbb{R}^2 .

Bonus : on a trouvé une famille génératrice de E_1 : ((1,-1))

Pour E_2 , on a $E_2 = Vect((1,0))$ car (x,0) = x(1,0) avec $x \in \mathbb{R}$ ou encore $(x,y) = \frac{x}{4}(4,-4)$

ce qui prouve que E_2 est un sev de \mathbb{R}^2 et le vecteur (1,0) est une famille génératrice à un seul vecteur.

Attention, Vect(0) = 0

Pour
$$E_6 = \{(x, y, z, t) \in \mathbb{R}^4 | x + y + z - t = 0 \}$$
:

Exercice 2: Parmi les sous-ensembles suivants de $\mathbb{R}[X]$ lesquels sont des sous-espaces vectoriels?

$$A = \{ P \in \mathbb{R}[X] \mid P(0) = 1 \} \qquad B = \{ P \in \mathbb{R}[X] \mid P(2) = 0 \} \qquad C = \{ P \in \mathbb{R}[X] \mid \deg P \geqslant 8 \} \qquad D = \{ P \in \mathbb{R}[X] \mid P(1) = P(2) \}$$

Correction:

Le polynôme $R = X^2 - 3X + 1$ est dans $A \operatorname{car} R(0) = 1$.

Dans cet exercice, le vecteur nul est le polynôme nul.

Le polynôme nul N ne vérifie pas N(0) = 1 mais N(0) = 0 donc $N \notin A$.

Alors, A n'est pas un sev de $\mathbb{R}[X]$

Pour *B*, le polynôme nul *N* vérifie N(2) = 0 donc $N \in B$ et *B* est non vide.

Soit $P, Q \in B$. On a P(2) = 0 et Q(2) = 0 donc (P + Q)(2) = P(2) + Q(2) = 0 alors $P + Q \in B$ et $P \in$

On en déduit que B est un sev de $\mathbb{R}[X]$

C n'est pas un sev car $0 \notin C$

Pour *D*, le polynôme nul *N* vérifie N(1) = 0 et N(2) = 0, alors N(1) = N(2) donc $N \in D$.

Soit P_1 et P_2 dans D, ...

Exercice 4: Non traité

TD 14 - Intégration

Exercice 4 : Soit g une fonction de classe \mathscr{C}^1 sur un segment [a,b]. Montrer que $\lim_{n\to+\infty}\int_a^b g(t)\cos(nt)\,dt=0$.

Correction : Comme g est de classe \mathscr{C}^1 et comme l'intégrale contient un produit, on a l'idée d'intégrer par parties :

On pose u(t) = g(t) (il n'y a pas vraiment le choix) et $v(t) = \frac{\sin(nt)}{n}$

qui donnent u'(t) = g'(t) et $v'(t) = \cos(nt)$

Les fonctions u et v sont de classe \mathcal{C}^1 sur [a,b] donc on peut intégrer par parties :

$$\int_{a}^{b} g(t)\cos(nt) dt = \left[g(t)\frac{\sin(nt)}{n}\right]_{a}^{b} - \frac{1}{n}\int_{a}^{b} g'(t)\sin(nt) dt$$

Fausse Piste : La fonction $t \mapsto g'(t)\sin(nt)$ est continue sur [a, b] donc elle est bornée : il existe M(n) telle que $|g'(t)\sin(nt)| \le M(n)$ et c'est raté!!!

Il faut utiliser $|\sin(nt)| \le 1$ qui est une majoration **indépendante** de n

On calcule le crochet
$$\left[g(t)\frac{\sin(nt)}{n}\right]_a^b = g(b)\frac{\sin(nb)}{n} - g(a)\frac{\sin(na)}{n}$$

On encadre l'intégrale:

Pour $t \in [a, b]$, $|\sin(nt)| \le 1$

D'où

$$|g'(t)\sin(nt)| \leq |g'(t)|$$

L'intégrale est croissante et a < b

$$\left| \frac{1}{n} \int_{a}^{b} g'(t) \sin(nt) dt \right| \leq \frac{1}{n} \int_{a}^{b} \left| g'(t) \sin(nt) \right| dt$$

$$\left| \frac{1}{n} \int_{a}^{b} g'(t) \sin(nt) dt \right| \leq \frac{1}{n} \int_{a}^{b} \left| g'(t) \right| dt$$

Comme $\frac{1}{n}$ tend vers 0, on a $\lim_{n\to+\infty} \int_a^b g(t) \cos(nt) dt = 0$.

Autre version :

Pour $t \in [a, b]$,

$$|\sin(nt)| \le 1$$

Et g est \mathscr{C}^1 sur [a,b] donc g' est continue sur [a,b] alors elle est bornée sur [a,b]: pour $t \in [a,b]$, on a $|g'(t)| \leq M$ avec M réel fixé.

Alors:

$$|g'(t)\sin(nt)| \leq M$$

L'intégrale est croissante et

$$\left| \frac{1}{n} \int_{a}^{b} g'(t) \sin(nt) dt \right| \leq \frac{1}{n} \int_{a}^{b} \left| g'(t) \sin(nt) \right| dt$$

$$\left| \frac{1}{n} \int_{a}^{b} g'(t) \sin(nt) dt \right| \leq \frac{1}{n} \int_{a}^{b} M dt = \frac{M(b-a)}{n}$$
Comme $\frac{1}{n}$ tend vers 0, on a $\lim_{n \to +\infty} \int_{a}^{b} g(t) \cos(nt) dt = 0$.

Exercice 5 : Non traité