Introducción a Hilos Práctica 2

Espinal Cruces Martin Felipe Fernandez Romero Adrian Felipe Sánchez de la Rosa César Gustavo Velázquez Caballero Ixchel

26 de septiembre de 2022

Pruebas

A continuación se muestra una tabla con su gráfica sobre los datos de la ejecución del programa que calcula la suma de matrices. El $Ejemplo\ 10$ refiere a la suma de matrices de 10x10. El $Ejemplo\ 100$ refiere a la suma de matrices de 100x100. Y $Ejemplo\ 1000$ refiere a la suma de matrices de 1000x1000.

Cada uno se ejecuto con 1, 5, 10 y 100 hilos. El tiempo mostrado se saco con System.nanoTime() que nos da el resultado en nanosegundos.

Hilos	Ejemplo 10	Ejemplo 100	Ejemplo 1000
1	104253115	439985585	11997192415
5	109815895	417259515	12402395900
10	108169795	429797160	12147244890
100	108639685	432270130	12034210590

Figura 1: Gráfica

Forma Secuencial

Las Especificaciones de mi Computadora son:

Suma Matrices

Tiempo Obtenido:

tamaño:	10	100	1000
_	79362950	373211055	13826151895

Filtros

Tiempo Obtenido: 952106715

Sopa de Letras

Tiempo Obtenido: 120537135

Forma Concurrente

Matrices

# Hilos	Aceleración Teórica	Aceleración Obtenida	% Código en Paralelo
1	2.5	2.3	50
5	2.1	1.9	75
10	2.05	2	90
100	2.005	2	95

Filtros

Resultados Tiempo de Ejecución:

Hilos	_
1	864112935
5	768961810
10	756355100

Hilos	_
100	919351060

# Hilos	Aceleración Teórica	Aceleración Obtenida	% Código en Paralelo
1	2.5	2.1	50
5	2.1	1.7	75
10	2.05	2	90
100	2.005	2	95

Sopa de Letras

Resultados Tiempo de Ejecución:

Hilos	_
1	240091825
5	242650120
10	239867275
100	238572190

# Hilos	Aceleración Teórica	Aceleración Obtenida	% Código en Paralelo
1	2.5	2	50
5	2.1	1.9	75
10	2.05	2.04	90
100	2.005	2.01	95

1. ¿Hubo una mejora significativa?

Sí, al principio no es muy notable la mejora pero conforme se agregan más operaciones se va haciendo más remarcada la diferencia entre uno y otro.

2. ¿Crees que si agregamos mas núcleos a nuestro CPU mejore el rendimiento o sera mejor aumentar la frecuencia de reloj? Justifica.

En mi caso sería mejor agregar más núcleos al CPU, cuento con una computadora ya con el aumento en la frecuencia del reloj y si quisiera hacer operaciones más pesadas tendría que agregar más núcleos.

3. ¿Qué pasaría si tuviéramos una cantidad infinita de hilos, mejoraría la ejecución o no? ¿Hasta que nivel de mejora obtendremos?

Aunque se tuviera una cantidad infinita de hilos, La mejora obtenida en el rendimiento de un sistema debido a la alteración de uno de sus componentes

está limitada por la fracción de tiempo que se utiliza dicho componente. Lo que quiere decir es que es el algoritmo el que decide la mejora de velocidad, no el número de procesadores/hilos.

Referencias

Camazón, Jesús Niño. 2011. Sistemas Operativos Monopuesto. Editex. Tanenbaum, Andrew S, and Juan Carlos Vega Fogoaga. 1988. Sistemas Operativos. Prentice Hall.