Repaso Ciclos Brayton

11.2. Ciclo simple: CBT

- · Notación de Haywood:
 - C: compresor
 - B: Quemador (cámara de combustión)

T: Turbina

R: recalentador (postcombustión)

I: interrefrigerador

X: regenerador

$$\theta = \frac{T_3}{T_1} = \frac{T_{entradaT}[K]}{T_{entradaC}[K]}$$

[Adaptado de : Treviño, Tecnologías de gasificación integrada en ciclo combinado: GICC, Elcogas & Club español de la energía, 2003]

$$\eta_c = \eta_t = 0.85$$

Relación de retroceso

- A diferencia del Rankine, en Brayton se comprime un gas: elevado consumo del compresor
- $\cdot r_{t} = W_{c} / W_{T}$
- · es elevada, debido al gran volumen específico del gas
- · establece una relación de presiones máxima

 \cdot el trabajo neto presenta un máximo para T_1 y T_3 fijas: compromiso entre rendimiento y tamaño

$$\theta = 3.5$$

$$\eta_c = \eta_t = 0.85$$

- Si r es muy pequeña (1,5) o muy grande (28) el trabajo neto es pequeño (no hay área en el ciclo)
- En rojo se ilustra el ciclo de máximo trabajo neto (r = 5,01)

11.3. Ciclo regenerativo: CBTX

- · El rendimiento del ciclo CBT es bajo
- · A bajas r la temperatura de escape es muy superior a la de impulsión del compresor
- · Se puede utilizar un intercambiador para aprovechar los gases de escape precalentando el aire antes de entrar al quemador
- Con esto se mejora el rendimiento ; el trabajo neto no varía $\varepsilon = \frac{h_5 h_2}{h_2}$

11.4. Ciclo regenerativo con interrefrigeración y recalentamiento: CICBTRTX

- · Para aumentar el área del ciclo (mayor trabajo neto) se puede:
 - · realizar una compresión escalonada con refrigeración intermedia. La temperatura media de aporte de calor se reduce (salida del compresor más fría)
 - · realizar una expansión escalonada con recalentamientos intermedios (postcombustión). La temperatura media de rechazo de calor aumenta (gases de escape más calientes)
- · Para evitar la caída de rendimiento se utiliza la regeneración

Resumen

