人工智能基础编程作业2 — 对青蛙进行聚类

姓名: 张劲暾

学号: PB16111485

目录

人工智能基础编程作业2 — 对青蛙进行聚类

目录

Kmeans 聚类

算法伪代码

实验结果图表

Kmeans_PCA 聚类

PCA计算

PCA降维后的散点图

使用PCA之后的Kmeans聚类结果

DBSCAN 聚类

算法伪代码

实验结果图表

Kmeans 聚类

算法伪代码

```
    pseudocode
    创建 k 个点作为起始质心 (随机选择):
    当任意一个点的簇分配结果发生改变的时候:
    对数据集中的每个数据点:
    对每个质心:
    计算质心与数据点之间的距离
    将数据点分配到距其最近的簇
    对每一个簇:
    求出均值并将其更新为质心
```

实验结果图表

选用 Species 聚类(原来是10个类),不同K值下聚类结果:

对于K值得选择,隐含认为是10,但是,实际上K=7时的兰德系数和K=19时的纯度都很大程度上好于K=10的情况,这说明也许还有一些"亚结构"存在于原来给出的10个分类中,或者说这十个分类还可以进一步分裂或者组合

k	:	purity	RI
1		0.4833912439193885	.2806709547061144

k	purity	RI
2	0.6361362056984017	0.7755380468928456
3	0.636275191104934	0.8702382793239649
4	0.7270326615705351	0.8895555316240092
5	0.6347463516330786	0.6204129865877633
6	0.758443363446838	0.7797900151686297
7	0.804864489228631	0.9373379223951465
8	0.809728978457262	0.7894756077713995
9	0.828353022932592	0.7786795227362836
10	0.8073662265462126	0.763572514114649
11	0.8693537178596248	0.7891690865162424
12	0.8375260597637249	0.7771071621913334
13	0.7945795691452398	0.7606786042156332
14	0.8015288394718555	0.7536366125615185
15	0.8706045865184155	0.7716779034935175
16	0.8068102849200834	0.7592539410186114
17	0.8854760250173732	0.7720108503270117
18	0.8875608061153579	0.7678242505871143
19	0.9121612230715774	0.8102163256179852
20	0.9081306462821404	0.7709735691095034

Kmeans_PCA 聚类

PCA计算

```
python

def PCA(data, threshold):

'''

covMatrix = np.cov(data, rowvar = 0)

eigenValues, eigenVectors = np.linalg.eig(np.mat(covMatrix))

eigenValuesSortedIndex = np.argsort(eigenValues)

m = 1

while float(np.sum(eigenValues[eigenValuesSortedIndex[-1:-(m+1):-1]]) /

np.sum(eigenValues)) < threshold:

print(float(np.sum(eigenValues[eigenValuesSortedIndex[-1:-(m+1):-1]]) /

np.sum(eigenValues)))

m += 1

newData = data * eigenVectors[:, eigenValuesSortedIndex[-1:-(m+1):-1]]

return newData</pre>
```

PCA降维后的散点图

使用PCA之后的Kmeans聚类结果

选用 Species 聚类(原来是10个类),不同参数组合下聚类结果:

然而并没有看到使用PCA之后结果有所提升,可能是因为KMeans聚类完全依赖于欧氏距离,降维反而会导致区分度 降低而导致的,之后的DBSCAN不完全依赖于欧氏距离,使用PCA的结果就相对好一点

k throshold numitus	RI
---------------------	----

k	threshold	purity	RI
1	0.1	0.4833912439193885	0.2806709547061144
2	0.1	0.6364141765114663	0.7755969249358073
3	0.1	0.7157748436414176	0.8856724396961252
4	0.1	0.7149409312022238	0.7827521525111302
5	0.1	0.7148019457956915	0.7673751702909276
6	0.1	0.7248088950660181	0.7768600598535486
7	0.1	0.7317581653926337	0.8153868531781925
8	0.1	0.7303683113273106	0.7910766346601015
9	0.1	0.7302293259207783	0.7724051864060876
10	0.1	0.7273106323835997	0.7878310791265458
11	0.1	0.7396803335649756	0.7643042399241616
12	0.1	0.7378735232800556	0.7565568707710986
13	0.1	0.7364836692147324	0.7748396234934595
14	0.1	0.7405142460041696	0.751409948515517
15	0.1	0.7396803335649756	0.7550758407337348
16	0.1	0.7391243919388464	0.7513963107535975
17	0.1	0.7416261292564281	0.7386151393645015
18	0.1	0.7388464211257818	0.7514754329530632
19	0.1	0.7410701876302989	0.7308225299303962
20	0.1	0.742460041695622	0.7575118231765651
1	0.2	0.4833912439193885	0.2806709547061144
2	0.2	0.6364141765114663	0.7756032608931864
3	0.2	0.7157748436414176	0.8856724396961252
4	0.2	0.7149409312022238	0.7827521525111302
5	0.2	0.7148019457956915	0.7673751702909276
6	0.2	0.7248088950660181	0.7767766879265724
7	0.2	0.7216122307157748	0.7822550502940763
8	0.2	0.7303683113273106	0.7908317344538448
9	0.2	0.7402362751911049	0.7918265570301358
10	0.2	0.7388464211257818	0.7726758940484981
11	0.2	0.7360667129951355	0.7613189608836729

k	threshold	purity	RI
12	0.2	0.7406532314107018	0.7623737818856331
13	0.2	0.7394023627519111	0.7581009513111616
14	0.2	0.7388464211257818	0.7598913615112803
15	0.2	0.7385684503127171	0.7548453509671269
16	0.2	0.7396803335649756	0.7493909416092269
17	0.2	0.7407922168172342	0.7407624880416048
18	0.2	0.7396803335649756	0.7437449081744958
19	0.2	0.7430159833217512	0.7458839119321241
20	0.2	0.744683808200139	0.7526909322888018
1	0.3	0.4833912439193885	0.2806709547061144
2	0.3	0.6364141765114663	0.7756032608931864
3	0.3	0.7157748436414176	0.8856724396961252
4	0.3	0.7149409312022238	0.7827521525111302
5	0.3	0.7148019457956915	0.7673751702909276
6	0.3	0.7248088950660181	0.7772587615617942
7	0.3	0.7270326615705351	0.7795385472016751
8	0.3	0.7263377345378735	0.761501969603824
9	0.3	0.7402362751911049	0.7916671536146106
10	0.3	0.7257817929117443	0.7608889657273964
11	0.3	0.7396803335649756	0.7644406175433581
12	0.3	0.7364836692147324	0.7561944849161234
13	0.3	0.732314107018763	0.763860645639852
14	0.3	0.739819318971508	0.7660906708339752
15	0.3	0.742043085476025	0.7718893467541016
16	0.3	0.7432939541348158	0.7438237599367563
17	0.3	0.7432939541348158	0.7574631058457416
18	0.3	0.7370396108408617	0.7563886588294608
19	0.3	0.739819318971508	0.7634038772002602
20	0.3	0.7428769979152189	0.7422252056167876
1	0.4	0.4833912439193885	0.2806709547061144
2	0.4	0.6361362056984017	0.7754866638238566

k	threshold	purity	RI
3	0.4	0.6350243224461432	0.6701707279734933
4	0.4	0.6348853370396108	0.7592945452332787
5	0.4	0.746907574704656	0.8085909593808147
6	0.4	0.7883252258512856	0.9347881631566975
7	0.4	0.7280055594162613	0.79064571229055
8	0.4	0.7820708825573315	0.8212436730974381
9	0.4	0.7824878387769284	0.7977414050468412
10	0.4	0.8454482279360667	0.8344698295907561
11	0.4	0.7507991660875608	0.7537818373407137
12	0.4	0.8569840166782488	0.8375818664127133
13	0.4	0.800416956219597	0.7549221551334052
14	0.4	0.830993745656706	0.7597550225259704
15	0.4	0.8006949270326615	0.7465749176253103
16	0.4	0.8307157748436415	0.7508861116490343
17	0.4	0.8416956219596943	0.7629578876149902
18	0.4	0.8405837387074357	0.7529855156730434
19	0.4	0.830993745656706	0.7473786956330669
20	0.4	0.8497567755385684	0.7732982859593349
1	0.5	0.4833912439193885	0.2806709547061144
2	0.5	0.6361362056984017	0.7754866638238566
3	0.5	0.6355802640722724	0.8692880402526463
4	0.5	0.7471855455177207	0.9210585298550601
5	0.5	0.7467685892981237	0.8085394217762799
6	0.5	0.746907574704656	0.791456598933415
7	0.5	0.7959694232105629	0.8061193178607837
8	0.5	0.7271716469770674	0.7673388930715437
9	0.5	0.8056984016678249	0.7835615710663097
10	0.5	0.7256428075052119	0.7468153749346242
11	0.5	0.7815149409312022	0.7597160795684208
12	0.5	0.7763724808895066	0.748955421807187
13	0.5	0.776511466296039	0.7429356827887484

k	threshold	purity	RI
14	0.5	0.843363446838082	0.7689217233997241
15	0.5	0.8280750521195275	0.7671007151615307
16	0.5	0.8404447533009034	0.7917637383307553
17	0.5	0.8428075052119527	0.7528339935703554
18	0.5	0.8418346073662265	0.7631270654037893
19	0.5	0.8387769284225156	0.7496517203428178
20	0.5	0.8572619874913134	0.7572882488756332
1	0.6	0.4833912439193885	0.2806709547061144
2	0.6	0.6361362056984017	0.7754753827290108
3	0.6	0.6350243224461432	0.6701707279734933
4	0.6	0.6348853370396108	0.7592945452332787
5	0.6	0.7467685892981237	0.8085394217762799
6	0.6	0.7277275886031966	0.8092144716743588
7	0.6	0.7959694232105629	0.8068301427377228
8	0.6	0.7959694232105629	0.782486699077278
9	0.6	0.8006949270326615	0.7956391421152342
10	0.6	0.7959694232105629	0.7619298012624588
11	0.6	0.7772063933287005	0.7570394466468443
12	0.6	0.7630298818624045	0.7556584783754065
13	0.6	0.8087560806115358	0.7667165397945933
14	0.6	0.8133425990271022	0.7578438814306707
15	0.6	0.8485059068797777	0.7758608716480878
16	0.6	0.8116747741487144	0.7527384906030316
17	0.6	0.8304378040305768	0.7618681029457856
18	0.6	0.8404447533009034	0.7565726720306598
19	0.6	0.8415566365531619	0.7585789683883053
20	0.6	0.8551772063933287	0.7743084075546633
1	0.7	0.4833912439193885	0.2806709547061144
2	0.7	0.6359972202918693	0.7754131821718135
3	0.7	0.6347463516330786	0.6701818931666796
4	0.7	0.6348853370396108	0.7594316955302042

k	threshold	purity	RI
5	0.7	0.7455177206393329	0.8081139854186054
6	0.7	0.6339124391938846	0.7172135116222803
7	0.7	0.7968033356497568	0.7915157087796956
8	0.7	0.7966643502432245	0.772651168361165
9	0.7	0.7963863794301599	0.7667450516027993
10	0.7	0.7961084086170952	0.7561480856184875
11	0.7	0.8271021542738013	0.780440802986013
12	0.7	0.7731758165392634	0.746356713434596
13	0.7	0.8382209867963863	0.773439106475474
14	0.7	0.8279360667129951	0.7583052859366375
15	0.7	0.8107018763029882	0.7501878427851941
16	0.7	0.799583043780403	0.7457253584621009
17	0.7	0.8768589298123697	0.7729317276446224
18	0.7	0.8831132731063238	0.7656987686897462
19	0.7	0.8490618485059068	0.7602772367692219
20	0.7	0.881445448227936	0.764360799933936
1	0.8	0.4833912439193885	0.2806709547061144
2	0.8	0.6361362056984017	0.7755011128973918
3	0.8	0.635858234885337	0.6887154957138117
4	0.8	0.6355802640722724	0.6450495069108779
5	0.8	0.7553856845031272	0.814807267613551
6	0.8	0.8152883947185545	0.9372957341911344
7	0.8	0.8113968033356498	0.8278934921701185
8	0.8	0.8155663655316192	0.7941136444745575
9	0.8	0.8347463516330785	0.8340620102853065
10	0.8	0.8186240444753301	0.7775580969140701
11	0.8	0.8533703961084086	0.7884400650787817
12	0.8	0.8112578179291174	0.7597578427996818
13	0.8	0.8633773453787352	0.7842394026042137
14	0.8	0.8321056289089646	0.7609933158547192
15	0.8	0.8279360667129951	0.7575333036174356
		'	

k	threshold	purity	RI
16	0.8	0.8903405142460041	0.7781766640701475
17	0.8	0.8683808200138985	0.7659319241945197
18	0.8	0.857539958304378	0.7579015618231524
19	0.8	0.8658790826963169	0.7582853894851117
20	0.8	0.8903405142460041	0.7641657760750965
1	0.9	0.4833912439193885	0.2806709547061144
2	0.9	0.6361362056984017	0.7755380468928456
3	0.9	0.635858234885337	0.68602255929215
4	0.9	0.7549687282835302	0.9051250265004315
5	0.9	0.7248088950660181	0.7810915908033965
6	0.9	0.8100069492703266	0.8404554162535658
7	0.9	0.790271021542738	0.8389104085002277
8	0.9	0.8098679638637943	0.7688517187974623
9	0.9	0.7842946490618485	0.7653634265552917
10	0.9	0.857539958304378	0.840744320456498
11	0.9	0.7780403057678944	0.7690258803576145
12	0.9	0.838915913829048	0.7741974896666427
13	0.9	0.8758860319666435	0.8412328073168718
14	0.9	0.8665740097289785	0.7799559477109663
15	0.9	0.8682418346073663	0.7667543623694356
16	0.9	0.88408617095205	0.7746177104496453
17	0.9	0.874774148714385	0.771735236181021
18	0.9	0.8539263377345379	0.7576208093702628
19	0.9	0.8485059068797777	0.761506103429675
20	0.9	0.8979847116052815	0.7678565098823067

DBSCAN 聚类

算法伪代码

· · · pseudocode

- 1 ε-邻城:对于桿本集中的xj,它的ε-邻城为桿本集中与它距离小于ε的桿本所构成的集合。 2 核心对象:若xj的ε-邻城中至少包含MinPts个桿本,则xj为一个核心对象。
- 3 密度直达: 若xj位于xi的ε-邻城中,且xi为核心对象,则xj由xi密度直达。

```
密度可达: 若桿本序列p1, p2, ....., pn。pi+1由pi密度直达,则p1由pn密度可达。
     输入: 样本集D={x1,x2,...,xm}
         邻域参数(ε,MinPts).
  8 过程:
  9 初始化核心对象集合: Ω = Ø
 10 for j=1,2,...,m do
         确定样本xj的ε-邻域N(xj);
         if |N(xj)|>=MinPts then
             将桿本xj加入核心对象集合Ω
         end if
 15 end for
 16 初始化聚类簇数: k=0
    初始化未访问样本集合: Γ =D
    while \Omega != \emptyset do
         记录当前未访问样本集合: Fold = F;
        随机选取一个核心对象 ο ∈ Ω,初始化队列Q=<o>
        \Gamma = \Gamma \setminus \{o\};
        while O != Ø do
             取出队列Q中首个样本q;
             if |N(q)|<=MinPts then
                 \triangle \Delta = N(q) \cap \Gamma;
                 将△中的样本加入队列Q;
                 \Gamma = \Gamma \backslash \Delta;
             end if
        end while
        k = k+1,生成聚类簇Ck = Fold \ \Gamma;
         \Omega = \Omega \backslash Ck
 32 end while
 33 输出:
、34 簇划分C = {C1,C2,...,Ck}
```

实验结果图表

选用 Species 聚类(原来是10个类),不同参数组合下聚类结果(因为时间不足,所以测试有限):

eps	minPts	purity	RI
0.1	5	0.840722724113968	0.9352719366829235
0.1	6	0.8373870743571925	0.9318708411224883
0.1	7	0.828769979152189	0.9284221099800505
0.1	8	0.8200138985406532	0.9247950448177229