Если прочитать описание данных, можно увидеть следующее:

shift - на сколько недель значения признаков отстают от недели, записанной в week (отставание признаков нужно чтобы научиться прогнозировать продажи на 2 или 3 недели вперед)

Действительно направгивается какое-то преобразование датасета, так как в данный момент, если посмотреть на датасет train, видно, что у нас одинаковые целевые переменные, например 110776, разные shift, и абсолютно разный набор f-ок.

Довольно странно ожидать хорошего качества регрессии, если у нас при абсолютно разных наборах X одинаковые значения у. Можно сдвинуть признаки к соответствующим неделям, чтобы не было запоздания, но это получится сделать не у всех, их мы в данный момент просто выкинем. В тестовом датасете получится сделать такой сдвиг у 2/3 записей, я обучал отдельно модель1 для записей со сдвигом (2/3) (конечно же на преобразованном датасете) и отдельно модель2 для предсказания записей без сдвига (1/3). Я не очень заморачивался с подбором параметром, возможно, при хорошем переборе, можно добиться улучшения на 0.5-1.0 по метрике smape. Мой финальный результат 9.7130.

```
In [1]: import numpy as np
        import pandas as pd
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean absolute error
        from sklearn.linear model import LinearRegression, Lasso
        from collections import Counter
        import xqboost
        import matplotlib.pyplot as plt
        from sklearn import cross validation, grid search
        import seaborn as sns
        from tqdm import tqdm
        from sklearn.utils import shuffle
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
```

/Users/daniilkorbut/anaconda/lib/python3.5/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refacto red classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

/Users/daniilkorbut/anaconda/lib/python3.5/site-packages/sklearn/grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored c lasses and functions are moved. This module will be removed in 0.20.

DeprecationWarning)

```
In [2]: train = pd.read_csv("train.tsv")
    test = pd.read_csv("test.tsv")
    sample_submission = pd.read_csv("sample_submission.tsv")
```

In [3]: test.head()

Out[3]:

	Num	year	week	shift	item_id	f1	f2	f3	f4	f5	 f51	f52	f53	f54	f55
0	348622	2015	3	3	20447918	960.0	820.0	1128.0	1801.0	1045.0	 1510.0	580.0	969.0	1635.0	895
1	348623	2015	3	3	20447902	9086.0	12585.0	11595.0	9685.0	12917.0	 22055.0	14235.0	21195.0	18280.0	182
2	348624	2015	3	3	20447732	115087.0	147287.0	176065.0	143105.0	202069.0	 302165.0	162232.0	221622.0	256605.0	240
3	348625	2015	3	3	20443951	20900.0	24420.0	27068.0	20460.0	25580.0	 39055.0	14445.0	22450.0	22093.0	311
4	348626	2015	3	3	20443944	4430.0	5864.0	3310.0	1853.0	2836.0	 120.0	130.0	60.0	30.0	50.

5 rows × 65 columns

In [4]: train.head()

Out[4]:

:		Num	у	year	week	shift	item_id	f1	f2	f3	f4		f51	f52	f53	f54	f55	f56
	0	0	123438	2012	52	1	20442076	4915.0	38056.0	40185.0	45733.0	•••	39423.0	41765.0	52590.0	31452.0	44420.0	41865.0
	1	1	58410	2012	52	1	20441997	2230.0	18817.0	20110.0	26368.0		22830.0	25230.0	27850.0	21390.0	27090.0	23170.0
	2	2	163930	2012	52	1	20441990	5695.0	47480.0	47619.0	89708.0		14930.0	44290.0	46412.0	29320.0	21140.0	28406.0
	3	3	53902	2012	52	1	20441989	1995.0	17146.0	20066.0	27070.0		15120.0	12480.0	19780.0	7990.0	8230.0	10650.0
	4	4	105970	2012	52	1	20441988	6515.0	49262.0	50045.0	95167.0		18872.0	19328.0	37168.0	13570.0	19760.0	20208.0

5 rows × 66 columns

```
In [5]: def smape(y_pred, y_true):
    return (100 / y_pred.shape[0]) * np.sum(np.abs(y_pred - y_true) / ((np.abs(y_pred) + np.abs(y_true)) / 2))
```

Давайте посмотрим на забавную матрицу корреляций признаков

```
In [6]: corrmat = train.corr()
    f, ax = plt.subplots(figsize=(12, 9))
    sns.heatmap(corrmat, vmax=.8, square=True)
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x115dcc5f8>

Также стоит зметить, что признаки f1 и f31 полностью совпадают, f2 и f32 и тд., нет смысла включать их в модель

```
In [7]: print (np.array(train["f1"]))
        print (np.array(train["f31"]))
        print (np.array(train["f2"]))
        print (np.array(train["f32"]))
        res = 0
        for i in range(1, 31):
            if (np.sum(np.array(train["f"+str(i)]) == np.array(train["f"+str(i+30)])) == train.shape[0]):
                res += 1
        print(res)
        [ 4915. 2230. 5695. ..., 515. 5597.
                                                   10.]
        [ 4915. 2230. 5695. ..., 515. 5597.
                                                   10.]
        [ 38056. 18817. 47480. ...,
                                        795.
                                                          0.]
                                               5595.
        [ 38056. 18817. 47480. ...,
                                        795.
                                               5595.
                                                          0.1
        30
In [8]: for i in range(31, 61):
            del train["f" + str(i)]
            del test["f" + str(i)]
In [9]: print (train.shape)
        train.head()
```

(72457, 36)

Out[9]:

: [Num	у	year	week	shift	item_id	f1	f2	f3	f4	 f21	f22	f23	f24	f25	f26
	0	0	123438	2012	52	1	20442076	4915.0	38056.0	40185.0	45733.0	 39423.0	41765.0	52590.0	31452.0	44420.0	41865.0
	1	1	58410	2012	52	1	20441997	2230.0	18817.0	20110.0	26368.0	 22830.0	25230.0	27850.0	21390.0	27090.0	23170.0
	2	2	163930	2012	52	1	20441990	5695.0	47480.0	47619.0	89708.0	 14930.0	44290.0	46412.0	29320.0	21140.0	28406.0
	3	3	53902	2012	52	1	20441989	1995.0	17146.0	20066.0	27070.0	 15120.0	12480.0	19780.0	7990.0	8230.0	10650.0
	4	4	105970	2012	52	1	20441988	6515.0	49262.0	50045.0	95167.0	 18872.0	19328.0	37168.0	13570.0	19760.0	20208.0

5 rows × 36 columns

```
In [10]: print (test.shape)
test.head()
```

(2016, 35)

Out[10]:

	Num	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24	f25
0	348622	2015	3	3	20447918	960.0	820.0	1128.0	1801.0	1045.0	 1510.0	580.0	969.0	1635.0	895
1	348623	2015	3	3	20447902	9086.0	12585.0	11595.0	9685.0	12917.0	 22055.0	14235.0	21195.0	18280.0	182
2	348624	2015	3	3	20447732	115087.0	147287.0	176065.0	143105.0	202069.0	 302165.0	162232.0	221622.0	256605.0	240
3	348625	2015	3	3	20443951	20900.0	24420.0	27068.0	20460.0	25580.0	 39055.0	14445.0	22450.0	22093.0	311
4	348626	2015	3	3	20443944	4430.0	5864.0	3310.0	1853.0	2836.0	 120.0	130.0	60.0	30.0	50.

5 rows × 35 columns

Я уже знаю, что ждёт нас дальше, так что давайте просто обучим RandomForest на неизменённом датасете (именно он показал самое хорошое качество из первых 3 посылок)

```
In [14]: %%time
         model 1.fit(X1, y1)
         CPU times: user 1min 8s, sys: 954 ms, total: 1min 9s
         Wall time: 1min 15s
Out[14]: RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
                    max features='auto', max leaf nodes=None,
                    min impurity split=1e-07, min samples leaf=2,
                    min samples split=4, min weight fraction leaf=0.0,
                    n estimators=50, n jobs=1, oob score=False, random state=None,
                    verbose=0, warm start=False)
In [15]: res = model_1.predict(X2)
         smape(res, y2)
Out[15]: 28.648295586100343
In [16]: train = train.sort(['item id', 'year', 'week', 'shift'])
         print (train.shape)
         (72457, 36)
In [17]: del train['Num']
In [18]: converted train = train
```

Посмотрим, сколько недель в 2013 и 2014 годах, это нам поможет при изменении датасета

In [19]: converted_train[converted_train["year"] == 2013].tail(5)

Out[19]:

		У	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24
3	4531	223657	2013	51	2	20453563	229136.0	237506.0	295042.0	210294.0	132000.0	 270833.0	101837.0	116481.0	117941.0
3	4086	223657	2013	51	3	20453563	180591.0	229136.0	237506.0	295042.0	210294.0	 167200.0	270833.0	101837.0	116481.0
3	5655	329673	2013	52	1	20453563	295042.0	210294.0	132000.0	237890.0	218525.0	 116481.0	117941.0	212682.0	54410.0
3	5205	329673	2013	52	2	20453563	237506.0	295042.0	210294.0	132000.0	237890.0	 101837.0	116481.0	117941.0	212682.0
3	4756	329673	2013	52	3	20453563	229136.0	237506.0	295042.0	210294.0	132000.0	 270833.0	101837.0	116481.0	117941.0

5 rows × 35 columns

In [20]: converted_train[converted_train["year"] == 2014].tail(5)

Out[20]:

	у	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24
7007	7 171081	2014	52	2	20453563	125906.0	151188.0	120173.0	103150.0	128910.0	 68340.0	66660.0	76850.0	107219.0
6962	5 171081	2014	52	3	20453563	112293.0	125906.0	151188.0	120173.0	103150.0	 155135.0	68340.0	66660.0	76850.0
7119	7 168919	2014	53	1	20453563	120173.0	103150.0	128910.0	119210.0	118701.0	 76850.0	107219.0	55220.0	83429.0
7075	1 168919	2014	53	2	20453563	151188.0	120173.0	103150.0	128910.0	119210.0	 66660.0	76850.0	107219.0	55220.0
7030	168919	2014	53	3	20453563	125906.0	151188.0	120173.0	103150.0	128910.0	 68340.0	66660.0	76850.0	107219.0

5 rows × 35 columns

```
In [21]: converted train m = converted train.as matrix()
         print (converted train m.shape)
         converted train m
         (72457, 35)
Out[21]: array([[ 3.40138000e+05,
                                      2.01200000e+03,
                                                        5.20000000e+01, ...,
                   8.87890000e+04,
                                     1.08817000e+05,
                                                        1.10228000e+05],
                [ 1.10776000e+05,
                                     2.01300000e+03,
                                                        1.00000000e+00, ...,
                   1.08817000e+05,
                                     1.10228000e+05,
                                                        2.11266000e+051,
                [ 1.10776000e+05,
                                     2.01300000e+03,
                                                       1.00000000e+00, ...,
                   8.87890000e+04,
                                     1.08817000e+05,
                                                        1.10228000e+051,
                                                        2.00000000e+00, ...,
                [ 1.26618000e+05,
                                      2.01500000e+03,
                   1.06262000e+05,
                                     1.04919000e+05,
                                                        1.83820000e+04],
                [ 1.26618000e+05,
                                     2.01500000e+03,
                                                        2.00000000e+00, ...,
                   8.19260000e+04,
                                                        1.04919000e+051,
                                     1.06262000e+05,
                [ 1.26618000e+05,
                                     2.01500000e+03,
                                                        2.00000000e+00, ...,
                   7.41740000e+04,
                                      8.19260000e+04,
                                                        1.06262000e+05]])
In [22]: | modified = np.zeros(converted_train m.shape[0])
```

In [23]: train.head()

Out[23]:

: [у	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24
	150	340138	2012	52	1	20427028	9700.0	92038.0	111363.0	146522.0	174408.0	 93799.0	113945.0	156656.0	69913.0
	841	110776	2013	1	1	20427028	92038.0	111363.0	146522.0	174408.0	111337.0	 113945.0	156656.0	69913.0	96291.0
	380	110776	2013	1	2	20427028	9700.0	92038.0	111363.0	146522.0	174408.0	 93799.0	113945.0	156656.0	69913.0
	1536	70915	2013	2	1	20427028	111363.0	146522.0	174408.0	111337.0	124149.0	 156656.0	69913.0	96291.0	112953.0
	1072	70915	2013	2	2	20427028	92038.0	111363.0	146522.0	174408.0	111337.0	 113945.0	156656.0	69913.0	96291.0

5 rows × 35 columns

```
In [24]: year pos = 1
         week pos = 2
         shift pos = 3
         item pos = 4
         for i in tqdm(range(converted train m.shape[0])):
            year1 = converted train m[i][year pos]
            week1 = converted train m[i][week pos]
             shift1 = converted train m[i][shift pos]
             item1 = converted train m[i][item pos]
            week2 = week1 - shift1
            vear2 = vear1
            #if (i == 6):
                 print (week1, year1, item1, shift1)
             if (week2 <= 0):
                if (year1 == 2014):
                    week2 = 52 - week1
                if (year2 == 2015):
                    week2 = 53 - week1
                year2 = year1 - 1
            for j in range(i, 0, -1):
                #if (i == 6):
                     print (j, ": ", converted train m[j][year pos], converted train m[j][week pos], converted train m[j
                if (converted_train_m[j][year_pos] == year2 and converted train m[j][week pos] == week2 and
                    converted train m[j][item pos] == item1 and converted train m[j][shift pos] == shift1):
                    if (modified[j] == 0):
                        converted train_m[j][5:35] = converted_train_m[i][5:35]
                        modified[i] = 1
                    break
         In [25]: print (len(modified))
         print (np.sum(modified))
         72457
         68763.0
In [26]: corrected train m = converted train m
```

In [29]: new dataset train.head()

Out[29]:

:		у	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24
	0	340138.0	2012.0	52.0	1.0	20427028.0	9700.0	92038.0	111363.0	146522.0	174408.0	 93799.0	113945.0	156656.0	69913.0
	1	110776.0	2013.0	1.0	1.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0	 156656.0	69913.0	96291.0	112953.0
	2	110776.0	2013.0	1.0	2.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0	 156656.0	69913.0	96291.0	112953.0
	3	70915.0	2013.0	2.0	1.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0	 69913.0	96291.0	112953.0	164259.0
	4	70915.0	2013.0	2.0	2.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0	 69913.0	96291.0	112953.0	164259.0

5 rows × 35 columns

In [30]: new_dataset_train["modi"] = modified
 new_dataset_train.head()

Out[30]:

	у	year	week	shift	item_id	f1	f2	f3	f4	f5	•••	f22	f23	f24	f25
C	340138.0	2012.0	52.0	1.0	20427028.0	9700.0	92038.0	111363.0	146522.0	174408.0		113945.0	156656.0	69913.0	96291.0
1	110776.0	2013.0	1.0	1.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0		69913.0	96291.0	112953.0	164259.0
2	110776.0	2013.0	1.0	2.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0		69913.0	96291.0	112953.0	164259.0
3	70915.0	2013.0	2.0	1.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0		96291.0	112953.0	164259.0	88789.0
4	70915.0	2013.0	2.0	2.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0		96291.0	112953.0	164259.0	88789.0

5 rows × 36 columns

In [31]: new_dataset_train = new_dataset_train[new_dataset_train["modi"] == 1]
 del new_dataset_train['modi']
 new_dataset_train.head()

Out[31]:

:		У	year	week	shift	item_id	f1	f2	f3	f4	f5	•••	f21	f22	f23	f24
	1	110776.0	2013.0	1.0	1.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0		156656.0	69913.0	96291.0	112953.0
	2	110776.0	2013.0	1.0	2.0	20427028.0	111363.0	146522.0	174408.0	111337.0	124149.0		156656.0	69913.0	96291.0	112953.0
	3	70915.0	2013.0	2.0	1.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0		69913.0	96291.0	112953.0	164259.0
	4	70915.0	2013.0	2.0	2.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0		69913.0	96291.0	112953.0	164259.0
	5	70915.0	2013.0	2.0	3.0	20427028.0	146522.0	174408.0	111337.0	124149.0	119286.0		69913.0	96291.0	112953.0	164259.0

5 rows × 35 columns

Теперь поработаем с тестовым датасетом

```
In [32]: print (test.shape)
test.sort(['item_id', 'year', 'week', 'shift']).head()
```

Out[32]:

	Num	year	week	shift	item_id	f1	f2	f3	f4	f5	 f21	f22	f23	f24
822	350335	2015	3	1	20427028	112386.0	103264.0	98742.0	108584.0	102320.0	 95788.0	81425.0	105634.0	96496.0
370	349663	2015	3	2	20427028	107536.0	112386.0	103264.0	98742.0	108584.0	 61980.0	95788.0	81425.0	105634.0
144	348766	2015	3	3	20427028	92012.0	107536.0	112386.0	103264.0	98742.0	 126866.0	61980.0	95788.0	81425.0
1496	351009	2015	4	1	20427028	103264.0	98742.0	108584.0	102320.0	122395.0	 81425.0	105634.0	96496.0	82307.0
1050	350563	2015	4	2	20427028	112386.0	103264.0	98742.0	108584.0	102320.0	 95788.0	81425.0	105634.0	96496.0

5 rows × 35 columns

(2016, 35)

```
In [33]: test_m = test.as_matrix()
         print (test m.shape)
         test m
         (2016, 35)
Out[33]: array([[ 3.48622000e+05,
                                     2.01500000e+03,
                                                        3.00000000e+00, ...,
                                                        1.29000000e+03],
                   1.02000000e+03,
                                     1.29300000e+03,
                [ 3.48623000e+05,
                                     2.01500000e+03,
                                                        3.00000000e+00, ...,
                   1.83200000e+04,
                                     2.41160000e+04,
                                                        2.13070000e+04],
                [ 3.48624000e+05,
                                     2.01500000e+03,
                                                        3.00000000e+00, ...,
                   2.45652000e+05,
                                     2.86179000e+05,
                                                        2.85904000e+05],
                [ 3.51526000e+05,
                                      2.01500000e+03,
                                                        5.00000000e+00, ...,
                   1.13270000e+04,
                                     1.07320000e+04,
                                                        1.57090000e+04],
                [ 3.51527000e+05,
                                     2.01500000e+03,
                                                        5.00000000e+00, ...,
                   3.37000000e+02,
                                     1.95000000e+02,
                                                        2.00000000e+02],
                                     2.01500000e+03,
                [ 3.51528000e+05,
                                                        5.00000000e+00, ...,
                   2.59700000e+03,
                                      3.98100000e+03,
                                                        4.48900000e+03]])
In [34]: modified = np.zeros(test m.shape[0])
```

```
In [35]: year pos = 1
         week pos = 2
         shift pos = 3
         item pos = 4
         for i in tqdm(range(test m.shape[0])):
             year1 = test m[i][year pos]
             week1 = test m[i][week pos]
             shift1 = test m[i][shift pos]
             item1 = test m[i][item pos]
             week2 = week1 - shift1
             year2 = year1
             #if (i == 3):
                  print (week1, year1, item1, shift1)
             if (week2 <= 0):
                 if (year1 == 2014):
                     week2 = 52 - week1
                 if (year2 == 2015):
                     week2 = 53 - week1
                 year2 = year1 - 1
             for j in range(0, test m.shape[0]):
                 #if (i == 3):
                    print (j, ": ", test m[j][year pos], test m[j][week pos], test m[j][item pos])
                 if (test m[j][year pos] == year2 and test m[j][week pos] == week2 and
                     test m[j][item pos] == item1):
                     if (modified[j] == 0):
                         test_m[j][5:65] = test_m[i][5:65]
                         modified[j] = 1
```

100% 2016/2016 [00:05<00:00, 340.82it/s]

```
In [36]: test m
Out[36]: array([[ 3.48622000e+05,
                                      2.01500000e+03,
                                                         3.00000000e+00, ...,
                    4.22000000e+02,
                                      1.69000000e+03,
                                                         9.30000000e+021,
                 [ 3.48623000e+05,
                                      2.01500000e+03,
                                                         3.00000000e+00, ...,
                    6.66100000e+03.
                                      2.06100000e+04,
                                                         1.67910000e+04],
                3.48624000e+05,
                                      2.01500000e+03,
                                                         3.00000000e+00, ...,
                    5.48460000e+04,
                                      1.71320000e+05,
                                                         1.84820000e+051,
                                                         5.00000000e+00, ...,
                 [ 3.51526000e+05,
                                      2.01500000e+03,
                                                         1.57090000e+04],
                    1.13270000e+04,
                                      1.07320000e+04,
                [ 3.51527000e+05,
                                      2.01500000e+03,
                                                         5.00000000e+00, ...,
                    3.37000000e+02,
                                      1.95000000e+02,
                                                         2.00000000e+021,
                 [ 3.51528000e+05,
                                                         5.00000000e+00, ...,
                                      2.01500000e+03,
                    2.59700000e+03,
                                      3.98100000e+03,
                                                         4.48900000e+0311)
In [37]: print (len(modified))
         print (np.sum(modified))
         2016
         1335.0
         Видим, что около 2/3 мы смогли преобразовать, как мы делали это в train, но для последней недели нет следующей, из которой мы бы
         могли взять информацию
In [38]: | cols = test.columns
         cols
Out[38]: Index(['Num', 'year', 'week', 'shift', 'item id', 'f1', 'f2', 'f3', 'f4', 'f5',
                 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15', 'f16',
```

'f17', 'f18', 'f19', 'f20', 'f21', 'f22', 'f23', 'f24', 'f25', 'f26',

'f27', 'f28', 'f29', 'f30'],

In [39]: new dataset test = pd.DataFrame(test m, columns=cols)

dtype='object')

In [40]: new_dataset_test["modi"] = modified

In [41]: new_dataset_test.head()

Out[41]:

	Num	year	week	shift	item_id	f1	f2	f3	f4	f5	 f22	f23	f24	f25
0	348622.0	2015.0	3.0	3.0	20447918.0	1801.0	1045.0	1190.0	1310.0	1111.0	 895.0	2140.0	1182.0	1020.0
1	348623.0	2015.0	3.0	3.0	20447902.0	9685.0	12917.0	11157.0	12105.0	11765.0	 18270.0	15851.0	16920.0	18320.0
2	348624.0	2015.0	3.0	3.0	20447732.0	143105.0	202069.0	216920.0	236053.0	257198.0	 240047.0	236630.0	206697.0	245652.0
3	348625.0	2015.0	3.0	3.0	20443951.0	20460.0	25580.0	27135.0	24059.0	27335.0	 31175.0	23355.0	15358.0	18930.0
4	348626.0	2015.0	3.0	3.0	20443944.0	1853.0	2836.0	2807.0	2550.0	3951.0	 50.0	20.0	20.0	30.0

5 rows × 36 columns

Мы уже обучили в самом начале ноутбука модель под неизменённый датасет, и теперь необходимо обучить модель на изменённый, в тестовой выборке будем предсказывать целевую переменную для неизменённых строк с помощью первой модели, а для изменённых с помощью второй

```
In [54]: %%time
         results = []
         for n e in [10, 20, 40]:
             for m s 1 in [1, 3, 5]:
                 for m s s in [2, 3]:
                     tmp = []
                     for i in range(5):
                          trainnnnn = shuffle(new dataset train)
                          train1 = trainnnnn.head(45000)
                          train2 = trainnnnn.tail(train.shape[0]-45000)
                         X1 = train1.drop(['y'], axis=1)
                         y1 = train1['y']
                         X2 = train2.drop(['y'], axis=1)
                         y2 = train2['y']
                         y1 = np.array(y1)
                         y2 = np.array(y2)
                         model = RandomForestRegressor(n estimators=n e, min samples leaf=m s l, min samples split=m s s)
                         model.fit(X1, y1)
                          res = model.predict(X2)
                          tmp.append(smape(res, y2))
                     results.append((np.mean(tmp), n e, m s l, m s s))
         (.0)
             129
             130
                     def call (self):
         --> 131
                         return [func(*args, **kwargs) for func, args, kwargs in self.items]
             132
             133
                     def len (self):
         /Users/daniilkorbut/anaconda/lib/python3.5/site-packages/sklearn/ensemble/forest.py in
         parallel build trees(tree, forest, X, y, sample weight, tree idx, n trees, verbose, class weight)
                             curr sample weight *= compute sample weight('balanced', y, indices)
             118
             119
         --> 120
                         tree.fit(X, y, sample weight=curr sample weight, check input=False)
             121
                     else:
             122
                         tree.fit(X, y, sample weight=sample weight, check input=False)
         /Users/daniilkorbut/anaconda/lib/python3.5/site-packages/sklearn/tree/tree.py in fit(self, X, y, sample weig
         ht, check input, X idx sorted)
            1027
                             sample weight=sample weight,
            1028
                             check input=check input,
                             v ide cortod-v ide cortod)
          < 1000
```

In [48]: new_dataset_test.head()

Out[48]:

	Num	year	week	shift	item_id	f1	f2	f3	f4	f5	 f22	f23	f24	f25
0	348622.0	2015.0	3.0	3.0	20447918.0	1801.0	1045.0	1190.0	1310.0	1111.0	 895.0	2140.0	1182.0	1020.0
1	348623.0	2015.0	3.0	3.0	20447902.0	9685.0	12917.0	11157.0	12105.0	11765.0	 18270.0	15851.0	16920.0	18320.0
2	348624.0	2015.0	3.0	3.0	20447732.0	143105.0	202069.0	216920.0	236053.0	257198.0	 240047.0	236630.0	206697.0	245652.0
3	348625.0	2015.0	3.0	3.0	20443951.0	20460.0	25580.0	27135.0	24059.0	27335.0	 31175.0	23355.0	15358.0	18930.0
4	348626.0	2015.0	3.0	3.0	20443944.0	1853.0	2836.0	2807.0	2550.0	3951.0	 50.0	20.0	20.0	30.0

5 rows × 36 columns

In [49]: np.sum(new_dataset_test['modi'] == modified)

Out[49]: 2016

In [50]: del new_dataset_test['modi']

In [51]: del new dataset_test['Num']

In [52]: new_dataset_test.head()

Out[52]:

:		year	week	shift	item_id	f1	f2	f3	f4	f5	f6	 f21	f22	f23	f24
	0	2015.0	3.0	3.0	20447918.0	1801.0	1045.0	1190.0	1310.0	1111.0	870.0	 1635.0	895.0	2140.0	1182.0
	1	2015.0	3.0	3.0	20447902.0	9685.0	12917.0	11157.0	12105.0	11765.0	10823.0	 18280.0	18270.0	15851.0	16920.0
	2	2015.0	3.0	3.0	20447732.0	143105.0	202069.0	216920.0	236053.0	257198.0	267316.0	 256605.0	240047.0	236630.0	206697.0
	3	2015.0	3.0	3.0	20443951.0	20460.0	25580.0	27135.0	24059.0	27335.0	23271.0	 22093.0	31175.0	23355.0	15358.0
	4	2015.0	3.0	3.0	20443944.0	1853.0	2836.0	2807.0	2550.0	3951.0	3398.0	 30.0	50.0	20.0	20.0

5 rows × 34 columns

```
In [53]: new_dataset_test.iloc[0,:]
                        2015.0
Out[53]: year
         week
                            3.0
         shift
                            3.0
         item id
                    20447918.0
         f1
                        1801.0
         f2
                        1045.0
         f3
                        1190.0
         f4
                        1310.0
         f5
                        1111.0
         f6
                         870.0
         f7
                        1180.0
         f8
                         960.0
         f9
                        1301.0
         f10
                        1367.0
         f11
                        1960.0
         f12
                        6460.0
         f13
                        1272.0
         f14
                        1030.0
         f15
                        1092.0
         f16
                        1390.0
         f17
                        1710.0
         f18
                        1510.0
         f19
                          580.0
         f20
                         969.0
         f21
                        1635.0
         f22
                         895.0
         f23
                        2140.0
         f24
                        1182.0
         f25
                        1020.0
         f26
                        1293.0
         f27
                        1290.0
         f28
                         422.0
         f29
                        1690.0
         f30
                         930.0
         Name: 0, dtype: float64
In [ ]:
```

```
In [54]: %%time
         preds = []
         for i in range(len(modified)):
             if (modified[i]):
                 res = model 2.predict(np.array(new dataset test.iloc[i,:]))
                 preds.append(res)
             else:
                 res = model 2.predict(np.array(new dataset test.iloc[i,:]))
                 preds.append(res)
         print (len(preds))
         print (len(sample submission))
         2016
         2016
         CPU times: user 13.7 s, sys: 278 ms, total: 14 s
         Wall time: 15 s
In [55]: preds = np.array(preds)
         preds
Out[55]: array([[ 1497.492
                                1,
                [ 27029.30716667],
                [ 297065.0302619 ],
                 25297.52266667],
                     322.
                    7222.58766667]])
In [56]: preds = np.ravel(preds)
         preds
                            , 27029.30716667, 297065.0302619 , ...,
Out[56]: array([
                 1497.492
                                           , 7222.58766667])
                  25297.52266667,
                                     322.
In [57]: sample_submission['y'] = preds
```

```
In [58]: sample submission.head(5)
Out[58]:
            Num
                  у
          0 348622 1497.492000
            348623 27029.307167
          2 348624 297065.030262
          3 348625 29172.000286
          4 348626 15.993333
In [59]: print (sample_submission[sample_submission['y'] < 0])</pre>
         Empty DataFrame
         Columns: [Num, y]
         Index: []
In [60]: sample_submission['y'] = sample_submission['y'].map(lambda x: x if x > 0 else 0.0)
In [61]: sample_submission.to_csv("my_submission6.tsv", sep=',', index=False)
```