PROVA (PARTE 2)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

04 de setembro de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.EA + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova,
- EA é a pontuação total dos exercícios de aquecimentos, e
- $-\ EB$ é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis, (4) Problemas Indecidíveis e (5) Complexidade de Tempo.

3.7		
NT		
IN Om O'		
T TOTTIO.		

Terceiro Teste

- 1. (5,0 pt) Seja $A = \{\langle R \rangle \mid R$ é uma expressão regular que descreve uma linguagem contendo pelo menos uma cadeia ω que tem 111 como uma subcadeia (i.e., $\omega = x111y$ para alguma x e para alguma y em Σ^*). Mostre que A é decidível.
- 2. (5,0 pt) Seja $T = \{(i,j,k) \mid i,j,k \in \mathbb{N}\}$. Mostre que T é contável.

Quarto Teste

- 3. (5,0 pt) Mostre que \mathbf{P} é fechada sob operação de complemento.
- 4. (5,0 pt) Seja CONEXO = $\{\langle G \rangle \mid G \text{ \'e um grafo simples conexo } \}$. Mostre que CONEXO está em **NP**.

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.

Teorema 4.15: \mathbb{Q} é contável.

Teorema 4.17: \mathbb{R} é incontável.

Corolário 4.18: Algumas linguagens não são Turing-reconhecíveis.

Teorema 4.22: Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Corolário 4.23: $\overline{A_{MT}}$ não é Turing-reconhecível.

Teorema 7.8: Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $O(t^2(n))$.

Teorema 7.11: Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing não-determinística de uma única fita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $2^{O(t(n))}$.

Definição 7.12: P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras, $\mathbf{P} = \bigcup_k \mathbf{TIME} \ (n^k)$.

Definição 7.19: \mathbf{NP} é a classe das linguagens que têm verificadores de tempo polinomial.

Teorema 7.20: Uma linguagem está em \mathbf{NP} sse ela é decidida por alguma máquina de Turing não-determinística de tempo polinomial. Em outras palavras, $\mathbf{NP} = \bigcup_k \mathbf{NTIME} \ (n^k)$.