AΑ

BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2003-255103

(43) Date of publication of application: 10.09.2003

(51)Int.Cl.

GO2B **B32B** 7/02 GO2B 5/02 GO2B 5/30 G02F 1/1335

(21)Application number: 2002-054179

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

28.02.2002

(72)Inventor: SOTOZONO HIROHISA

(54) ANTIREFLECTION FILM, POLARIZING PLATE AND IMAGE DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an antireflection film having low reflectance and excellent scratch resistance and to provide an image display device using the film.

SOLUTION: The antireflection film comprises a transparent supporting body and a low refractive index layer having a lower refractive index than that of the transparent supporting body. The low refractive index layer contains inorganic fine particles, with the inorganic fine particles forming a two-dimensional mesh structure.

LEGAL STATUS

[Date of request for examination]

16.03.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The acid-resisting film characterized by having the low refractive-index layer which has a refractive index lower than a transparence base material, for a low refractive-index layer containing a non-subtlety particle, and a non-subtlety particle forming 2-dimensional network structure on a transparence base material.

[Claim 2] The acid-resisting film characterized by having the low refractive-index layer which has a refractive index lower than a transparence base material, and a low refractive-index layer containing a non-subtlety particle and a coupling agent on a transparence base material.

[Claim 3] The polarizing plate characterized by having an acid-resisting film according to claim 1 or 2 at least on one side [claim 4] The image display device characterized by using claim 1, an acid-resisting film given in 2, or a polarizing plate according to claim 3 so that a low refractive-index layer may become in the outermost layer of a display.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] This invention relates to an acid-resisting film. Especially this invention relates to the acid-resisting film which can be used in favor of a polarizing plate or a liquid crystal display.

[Description of the Prior Art] An acid-resisting film is [0003] generally arranged in the outermost surface of the display which uses the principle of optical interference and reduces a reflection factor in a cathode-ray tube indicating equipment (CRT) and an image display device like a plasma display panel (PDP) or a liquid crystal display (LCD) in order to prevent reflected [the contrast fall by reflection of outdoor daylight or an image]. Generally as a method of forming an acid-resisting film, the approach of forming the optical stratum functionale by spreading on a transparence base material is learned. For acid resisting, a reflection factor can be lowered by methods of preparing the layer (low refractive-index layer) which has a refractive index lower than the refractive index of a transparence base material, such as preparing a high refractive-index layer on a transparence base material, and preparing a low refractive-index layer on it. Since the acid-resisting film by such spreading is continuously producible, it is fit for mass production method.

[0004] Moreover, generally how to apply the anti-dazzle technique of reducing reflected [an image] using dispersion by surface irregularity to the acid-resisting film by spreading is also learned. As an approach, there are an approach of applying an acid-resisting layer on the base material which has surface irregularity, the approach of introducing the mat particle for forming surface irregularity into an acid-resisting layer, the approach of forming surface irregularity by carrying out embossing of the acid-resisting film, etc.

[0005]

[Problem(s) to be Solved by the Invention] In the acid-resisting film which has only the layer (low refractive-index layer) which has a refractive index lower than the refractive index of a transparence base material on a transparence base material, in order to reduce a reflection factor, it will be necessary to fully form a low refractive-index layer into a low refractive index. For example, a refractive index must be made or less into 1.40 in order to make average reflectance in 450nm to 650nm 1.6% or less with the acid-resisting film which uses triacetyl cellulose as a base material and uses UV hardening coat of dipentaerythritol hexaacrylate as a rebound ace court layer. As a with a refractive index of 1.40 or less material, damage resistance is insufficient with an inorganic substance as a film arranged to the outermost surface of a display in magnesium fluoride, a calcium fluoride, and the organic substance since the lack of cohesive force and the adhesion of these fluorine compounds with a base material are insufficient although a fluorine-containing compound with a large fluorine content is mentioned.

[0006] The purpose of this invention has a low reflection factor, and is offering the acid-resisting film excellent in damage resistance, or the image display device using the acid-resisting film.

[Means for Solving the Problem] The purpose of this invention was attained by the image display device which used the acid-resisting film of following the (1) - (13), the polarizing plate of (14), and the acid-resisting film of (15).

[0008] (1) The acid-resisting film characterized by having the low refractive-index layer which has a refractive index lower than a transparence base material, for a low refractive-index layer containing a non-subtlety particle, and a non-subtlety particle forming 2-dimensional network structure on a transparence base material.

- (2) The acid-resisting film characterized by having the low refractive-index layer which has a refractive index lower than a transparence base material, and a low refractive-index layer containing a non-subtlety particle and a coupling agent on a transparence base material.
- (3) An acid-resisting film given in the above (1) characterized by a low refractive-index layer containing the compound expressed with a general formula (1).
- General formula (1) (R1) m-Si(OR2) n (R1 expresses the alkyl group or aryl group which is not permuted [a permutation or] among general formula (1) type.) R2 expresses the alkyl group or acyl group which is not permuted [a permutation or]. m expresses the integer of 0-3. n expresses the integer of 1-4. The sum total of m and n is 4.
- (4) The acid-resisting film of the aforementioned (2) publication characterized by a silane coupling agent being the compound expressed with the above-mentioned general formula (1).
- (5) aforementioned (1) (4) characterized by a low refractive-index layer consisting of a fluorine compound which constructs a bridge by said non-subtlety particle and heat, or ionizing radiation -- an acid-resisting film given in either.
- (6) An acid-resisting film given in either of aforementioned (1) (5) characterized by being the silica whose non-subtlety particle is the mean particle diameter of 0.001-0.2 micrometers.
- (7) low -- a refractive index -- a layer -- a lower layer -- high -- a refractive index -- a layer -- it is -- and -- high -- a refractive index -- a layer -- a base material -- between -- one ten -- micrometer -- thickness -- having -- a rebound ace court -- a layer -- preparing -- having -- **** -- the above -- (-- one --) (-- six --) -- either -- a publication -- acid resisting -- a film.
- (8) The acid-resisting film of the aforementioned (7) publication with which the medium refractive index layer with it is prepared between the high refractive-index layer and the rebound ace court layer. [a refractive index higher than a low refractive-index

layer and and] [lower than a high refractive-index layer]

- (9) An acid-resisting film given in any 1 term of aforementioned (1) (6) which is the rebound ace court layer which has the thickness whose lower layer of a low refractive-index layer is 1-10 micrometers.
- (10) low -- a refractive index -- a layer -- a rebound ace court -- a layer -- between -- high -- a refractive index -- a rebound ace court -- a layer -- having -- high -- a refractive index -- a rebound ace court -- a layer -- 1.57 2.00 -- a refractive index -- having -- and -- mean particle diameter -- 0.3 20 -- micrometer -- a mat -- an agent -- a particle -- having -- anti-dazzle property -- having -- things -- the description -- ** -- carrying out -- the above -- (-- nine --) -- a publication -- acid resisting -- a film .
- (11) The acid-resisting film of the aforementioned (9) publication characterized by having the mat agent particle whose rebound ace court layer is the mean particle diameter of 0.3-20 micrometers, and having anti-dazzle property.
- (12) The above (9) characterized by a rebound ace court layer having the refractive index of 1.57-2.00, or an acid-resisting film given in (11).

A transparence base material (13) Triacetyl cellulose, polyethylene terephthalate, That or it is polyethylenenaphthalate The above by which it is characterized (1) - acid-resisting film (14) given in either of (12) above (1) Polarizing plate characterized by having an acid-resisting film given in any 1 term of - (13) at least on one side (15) The above (1) an acid-resisting film given in any 1 term of - (13), or a polarizing plate given in the above (14) The image display device characterized by using so that a low refractive-index layer may turn into the outermost layer of a display.

[Embodiment of the Invention] [Configuration of acid-resisting film] drawing 1 is the cross section showing the configuration of the most fundamental acid-resisting film. As for the acid-resisting film shown in drawing 1 is the cross section showing another configuration of an acid-resisting film. As for the acid-resisting film shown in drawing 2 is the cross section showing another configuration of an acid-resisting film. As for the acid-resisting film shown in drawing 2 of this invention are prepared one by one on the transparence base material (1). Drawing 3 is the cross section showing configuration of an acid-resisting film another again. As for the acid-resisting film shown in drawing 3 , the rebound ace court layer (4), the anti-glare layer (3), and the low refractive-index layer (2) of this invention are prepared one by one on the transparence base material (1).

[0010] Drawing 4 is the cross section showing still more nearly another configuration of an acid-resisting film. As for the acidresisting film shown in drawing 4, the rebound ace court layer (4) and the low refractive-index layer (2) of this invention are prepared one by one on the transparence base material (1). Drawing 5 is the cross section showing configuration of an acidresisting film another further again. As for the acid-resisting film shown in drawing 5, the rebound ace court layer (4), the high refractive-index layer (5), and the low refractive-index layer (2) of this invention are prepared one by one on the transparence base material (1). Drawing 6 is the cross section showing other configurations of an acid-resisting film. As for the acid-resisting film shown in drawing 6, the rebound ace court layer (4), the medium refractive index layer (6), the high refractive-index layer (5), and the low refractive-index layer (2) of this invention are prepared one by one on the transparence base material (1). [0011] In [network structure] this invention, a non-subtlety particle has the 2-dimensional network structure in the low refractiveindex layer containing a non-subtlety particle. The example which looked at the 2-dimensional network structure from the layer was shown in drawing 7. The primary particle of the non-subtlety particle 8 maldistribution-izes the 2-dimensional network structure of this invention in a field in the desiccation process of the spreading film, and it points out what the hole part 7 as shown in drawing 7 produced. Even if the non-subtlety particle 8 does not exist at all within a low refractive-index layer or the hole 7 here exists, it means the field where an inorganic particle consistency is small 50 or more times as compared with a meshlike part. The mesh of the 2-dimensional network structure may break off and showed the example to drawing 8. This structure can be checked by the optical microscope, SEM, etc.

[0012] 0.3-1000 micrometers of average hole area are 2, and 1-100 micrometers of desirable modes of the 2-dimensional network structure of this invention are 2 more preferably. Hole area % (hole area to a whole surface product comparatively) is 40 - 90%, and is 50 - 80% more preferably. It can ask for average hole area and hole area % by analyzing an optical microscope photograph or a SEM photograph. Like <u>drawing 8</u>, when a mesh breaks off and breaks off, it can ask for a near average hole area on extension of the mesh which broke off supposing the mesh of imagination.

[0013] In this invention, abrasion-proof nature was able to be remarkably improved by forming the 2-dimensional network structure of a non-subtlety particle. A device is not clear although it is thought that abrasion-proof nature is improving remarkably by achieving a duty like a mat agent with the minute 2-dimensional network structure of the formed non-subtlety particle. Moreover, the device which forms the 2-dimensional network structure of the non-subtlety particle of this invention should just also form this structure as a result rather than is clear. A desirable mode is explained to forming this structure in below. [0014] As a non-subtlety particle used for the low refractive-index layer of this invention, the thing of a low refractive index is used preferably, 1.30-1.49 are desirable as a refractive index, the desirable things of a non-subtlety particle are a silica and magnesium fluoride, and especially its silica is desirable. As for the mean particle diameter of this non-subtlety particle, it is desirable that it is 0.001-0.2 micrometers, and it is more desirable that it is 0.001-0.05 micrometers. As for the particle size of a particle, it is desirable that it is homogeneity (mono dispersion) if possible.

[0015] It is desirable that it is five to 90 mass [of the total weight of a low refractive-index layer] %, the addition of this non-subtlety particle is still more desirable in it being ten to 70 mass %, and especially its 10 - 50 mass % is desirable. [0016] Especially the thing for which surface treatment is performed and this non-subtlety particle is used in this invention is desirable. Although physical surface treatment like plasma electrodischarge treatment or corona discharge treatment as a surface treatment recalled and the chemical cleaning which uses a coupling agent occur, use of a coupling agent is desirable. As a coupling agent, an ORGANO alkoxy metal compound (an example, a titanium coupling agent, silane coupling agent) also including the compound of a general formula (1) is used preferably. Especially when this non-subtlety particle is a silica, silane coupling processing is effective, and the compound of a general formula (1) is desirable. [0017] General formula (1)

(R1) R1 expresses the alkyl group or aryl group which is not permuted [a permutation or] among m-Si(OR2) n general formula (1) type. R2 expresses the alkyl group or acyl group which is not permuted [a permutation or], m expresses the integer of 0-3, n expresses the integer of 1-4. The sum total of m and n is 4.

[0018] The compound expressed with a general formula (1) is explained. In a general formula (1), R1 expresses the alkyl group or aryl group which is not permuted [a permutation or]. As an alkyl group, methyl, ethyl, propyl, isopropyl, hexyl, t-butyl, secbutyl, hexyl, DESHIRU, hexadecyl, etc. are mentioned. as an alkyl group -- desirable -- carbon numbers 1-30 -- more -- desirable -- carbon numbers 1-16 -- it is the thing of 1-6 especially preferably. Phenyl, naphthyl, etc. are mentioned as an aryl group and it is a phenyl group preferably. Although there is especially no limit as a substituent, a halogen (a fluorine, chlorine, bromine, etc.), a hydroxyl group, a sulfhydryl group, a carboxyl group, an epoxy group, and an alkyl group (methyl --) aryl groups (phenyl --), such as ethyl, i propyl, propyl, and t-butyl Aromatic series heterocycle radicals, such as naphthyl (a furil, pyrazolyl, pyridyl, etc.), An alkoxy group (methoxy and ethoxy **i-propoxy, hexyloxy, etc.), Aryloxy (phenoxy etc.); an alkylthio group (a methylthio, ethyl thio, etc.), Aryl thio radicals (phenylthio etc.), an alkenyl radical (vinyl, 1-propenyl, etc.), An alkoxy silyl radical (trimethoxysilyl) triethoxy silyl, etc.), An acyloxy radical (acetoxy, acryloyloxy, methacryloyloxy, etc.), An alkoxy carbonyl group (methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy carbonyl groups (phenoxy carbonyl etc.) and a carbamoyl group (catbamoyl --) N-methyl carbamoyl, N, and N-dimethyl carbamoyl, the N-methyl-N-octyl carbamoyl of the acylamino radicals (acetylamino, benzoylamino, acrylic amino, methacrylamino, etc.), etc. are desirable. It is a hydroxyl group, a sulfhydryl group, a carboxyl group, an epoxy group, an alkyl group, an alkoxy silyl radical, an acyloxy radical, and the acylamino radical among these still more preferably, and they are an epoxy group, the acyloxy radical (acryloyloxy, methacryloyloxy) of polymerization nature, and the acylamino radical (acrylic amino, methacrylamino) of polymerization nature especially preferably. Moreover, these substituents may be permuted further. R2 expresses the alkyl group or acyl group which is not permuted [a permutation or]. Explanation of an alkyl group, an acyl group, and a substituent is the same as R1. It is a non-permuted alkyl group or a nonpermuted acyl group preferably as R2, and is a non-permuted alkyl group especially preferably. m expresses the integer of 0-3. n expresses the integer of 1-4. The sum total of m and n is 4. When two or more R1 or R2 exists, even if two or more R1 or R2 is the same respectively, it may differ. It is 0, 1, and 2 preferably as m, and is 1 especially preferably. [0019] Although the example of a compound expressed with a general formula (1) below is shown, this invention is not limited to [0020]

[Formula 1]

- (1) $(C_2H_5O)_4-S_i$
- (2) $(C_3H_7O)_4-S_1$
- (3) $(i \cdot C_3H_7O)_4 Si$
- (4) $(CH_3CO_2)_4-S_1$
- (5) $(CH_3CO_2)_2 Si (OC_2H_5)_2$
- (6) $CH_3-S_1-(OC_2H_5)_3$
- (7) $C_2H_5-Si-(OC_2H_5)_3$
- (8) \hat{t} -C₄H₉-S₁-(OCH₃)₃

$$\begin{array}{c} \text{(10)} \\ \hline \\ \text{O} \\ \end{array}$$

$$\begin{array}{c} \text{(11)} \\ \hline \\ \text{OCH}_2\text{OCH}_2\text{CH}_2\text{-Si-(OCH}_3)_3 \end{array}$$

$$\begin{array}{c} \text{(12)} \\ \hline \\ \text{O} \\ \end{array}$$

[0021] [Formula 2]

$$\begin{array}{c} \text{C}_{2}\text{H}_{5} \\ \\ \text{O} \end{array}$$

(16)
$$C_3F_7CH_2CH_2-S_1-(OC_2H_5)_3$$

(17)
$$C_6F_{13}CH_2CH_2-Si-(OC_2H_6)_3$$

$$= CO_2CH_2CH_2CH_2-Si-(OCH_3)_3$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{-Si-(OCH}_{3})_{3} \end{array}$$

$$= CO_2CH_2CH_2-Si-(OCH_3)_3$$

$$= \underbrace{\text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{-Si}-\left(0\text{C}_{2}\text{H}_{5}\right)_{3}}$$

$$= CH2CH2-Si-(OCH3)3$$

[0022] [Formula 3] (23)

(24)

(25) HO-C-CH₂CH₂-Si-(OCH₃)₃ || 0

(26) NH₂CH₂CH₂CH₂-Si-(OCH₃)₃

(27) HS-CH₂CH₂CH₂-Si-(OCH₃)₃

$$\begin{array}{c} \text{(29)} \\ \hline \\ \text{CH}_2\text{OCH}_2\text{CH}_2\text{-Si-(OCH}_3)_3 \end{array}$$

(30) $(CH_3O)_3 - Si - CH_2CH_2CH_2CH_2 - Si - (OCH_3)_3 \\ [0023] \\ [Formula 4]$

(31) (CH₃O)₃-Si-CH₂CH₂CH₂CH₂CH₂CH₂-Si-(OCH₃)₃

(32) (CH₃O)₂-Si-CH₂CH₂CH₂CH₂-Si-(OCH₃)₃ | | | CH₃

= CONHCH₂CH₂CH₂-Si-(OCH₃)₃

$$(34)$$

$$CH_{3}$$

$$CONHCH_{2}CH_{2}CH_{2}-Si-(OCH_{3})_{3}$$

$$\begin{array}{c} = & \\ & = \\ & \text{CO-N--CH}_2\text{CH}_2\text{CH}_2\text{-Si--(OCH}_3)_3} \\ & \text{CH}_3 \end{array}$$

$$= CO-NHCH2CH2CH2CH2-Si-(OCH3)3$$

(38)
$$CH_2OCH_2CH_2)_2$$
—Si- $(OCH_3)_2$

[0024] [Formula 5]

$$\begin{array}{c} \text{HO-C-CH}_2\text{CH}_2\text{CH}_2\text{-Si-(OCH}_3)_2 \\ || & | \\ \text{O} & \text{CH}_3 \end{array}$$

(41)
$$(H_2OCH_2CH_2)_2$$
—Si- $(OCH_3)_2$

$$\begin{array}{c} (42) \\ = \\ (& CO_2CH_2CH_2CH_2)_2 - Si-(0CH_3)_2 \end{array}$$

(43)
$$CH_2=CH-Si-(OCH_3)_3$$

$$(44)$$
 $CH_2=CH-S_i-(OCH_3)_3$
|
 CH_3

$$\begin{array}{c} \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ \text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{-Si-(OCH}_3)_2 \\ \\ \\ \text{CH}_3 \end{array}$$

[0025] [Formula 6]

[0026] In these examples, especially (1), (12), (18), (19), etc. are desirable.

[0027] Although the compound of a general formula (1) may be used in order to perform surface treatment beforehand as a finishing agent of the non-subtlety particle of a low refractive-index layer before this layer coating liquid preparation, it is desirable to add and use into coating liquid especially in this invention at the time of this layer coating liquid preparation. as a desirable addition -- a non-subtlety particle -- receiving -- 0.5 to 1000 mass % -- more -- desirable -- five to 900 mass % -- it is 50 to 700 mass % still more preferably. As for a superfluous silane coupling agent, at this time, it is desirable to make it evaporate in process of spreading desiccation.

[0028] The low refractive-index layer of [low refractive-index layer] this invention is explained below. The refractive index of the low refractive-index layer of the acid-resisting film of this invention is lower than the refractive index of a transparence base material, and as for the refractive index of the low refractive-index layer of the acid-resisting film of this invention, 1.38-1.49 are desirable, and are in the range of 1.38-1.44 more preferably. Furthermore, as for a low refractive-index layer, it is desirable to fill following formula (I) in respect of the reduction in a reflection factor.

mlambda/4x0.7<n1d1<mlambda / 4x1.3 Formula (I)

[0030] The number of m is odd [forward] among a formula, and n1 is the refractive index of a low refractive-index layer, and d1 is the thickness (nm) of a low refractive-index layer. Moreover, lambda is wavelength and is the value of the range of 500-550nm. in addition, it means that m (forward odd number -- it is usually 1) which fills a formula (I) in the range of the above-mentioned wavelength as filling the above-mentioned formula (I) exists.

[0031] Materials other than the above-mentioned non-subtlety particle are explained below among the materials which form the low refractive-index layer of this invention.

[0032] The low refractive-index layer of this invention is formed from the mixture of a polymer with a low refractive index, or a compound and a polymer with a low refractive index. Moreover, a low refractive index can also be attained by forming in homogeneity the micro void which consists of the air or the vacuum of size below the wavelength of light as indicated by JP,9-288201,A.

[0033] A fluorine compound or a silicon compound is used as a compound with a low refractive index. A fluorine compound and a silicon compound may be used together. It is a fluorine compound preferably.

[0034] The organic permutation silicon system compound of a silicon compound expressed with the following type is desirable. [0035] the substituent which R3 and R4 are an alkyl group, an alkenyl radical, an aryl group, or a fluoro alkyl group, respectively, and is chosen from the group which;X becomes from an alkoxy group, an alkoxy alkoxy group, a halogen atom, and an acyloxy radical among an R3aR4bSiX4-(a+b) type and which can be hydrolyzed -- it is --; -- a and b are 0, 1, or 2, respectively, and a+b is 1 or 2. The alkyl group, the alkenyl radical, the aryl group, and the fluoro alkyl group may have the substituent (an example, a halogen atom, an epoxy group, amino, mercapto, metacryloxy, cyano). The hydrolysis product of the above-mentioned silicon compound may be used.

[0036] The fluorine-containing polymer which carried out the polymerization of the monomer which has a fluorine atom, and formed it as a fluorine compound used for a low refractive-index layer is desirable. It is still more desirable that a fluorine-containing polymer has a cross-linking functional group, and constructs a bridge after spreading. As the bridge formation approach, it is desirable to construct a bridge by heat or ionizing radiation. As an example of the fluorine-containing polymer of heat cross-linking, there is OPUSUTA JN7228 (a trade name, the heat cross-linking fluorine-containing polymer of a refractive index 1.42, fluorine content about 36 mass %, product made from JSR) etc. As a fluorine-containing polymer of ionizing-radiation cross-linking, the polymer which has an ethylene nature partial saturation radical in a side chain is desirable. The exposure of ionizing radiation can perform bridge formation of the polymer which has these ethylene nature partial saturation radicals. It is still more desirable when an optical radical initiator is added at this time. As an optical radical polymerization initiator, acetophenones, benzophenones, the benzoyl benzoate of MIHIRA, - AMIROKI SIMM ester, tetramethylthiuram monosulfide, and thioxan tons are mentioned, for example. Especially, the optical radical polymerization initiator of an optical cleavage mold is desirable. About the optical radical polymerization initiator of an optical cleavage mold, the Ciba-Geigy Japan IRUGA cure

(651,184,907) etc. is mentioned as an optical radical polymerization initiator of the optical cleavage mold of marketing indicated by the newest UV hardening technique (P.159, issuer; quantity Kazuhiro Usu, a publishing office; TECHNICAL INFORMATION INSTITUTE CO., LTD., 1991 issue). As for a photopolymerization initiator, it is desirable to use it in the range of 0.1 - 15 mass section to the fluorine-containing polymer 100 mass section, and it is the range of 1 - 10 mass section more preferably. In addition to a photopolymerization initiator, a photosensitizer may be used. As an example of a photosensitizer, n butylamine, triethylamine, tri-n-butyl phosphine, Michler's ketone, and a thioxan ton can be mentioned. They are the approach of combining with an ionizing-radiation acid generator the polymer which has the functional group of acid-catalyst cross-linking in a side chain as another example of the fluorine-containing polymer of ionizing-radiation cross-linking and the approach of combining an ionizing-radiation base generating agent with a side chain for the polymer which has the functional group of base catalyst reactivity, and ******. The former is more desirable and an epoxy group is desirable as a functional group of acidcatalyst cross-linking. As an ionizing-radiation acid generator, a photo-oxide generating agent is desirable, and triarylsulfonium salts and diaryl iodonium salts are specifically desirable. As for a photo-oxide generating agent, it is desirable to use it in the range of 0.1 - 15 mass section to the fluorine-containing polymer 100 mass section, and it is the range of 1 - 10 mass section more preferably. Light is desirable although UV, light, an electron ray, a radiation, etc. can be used as ionizing radiation. UV is desirable also in light. As the light source of UV, a metal halide lamp, a high-pressure mercury lamp, etc. are desirable, and a metal halide lamp is more desirable. As long as there is no bad influence to the base, as large the one of the illuminance and dose of UV as possible is desirable, illuminance:50 - 1000 mW/cm2 and its dose:200 - 1000 mJ/cm2 are desirable, and they are illuminance:150 - 600 mW/cm2 and dose:250 - 900 mJ/cm2 more preferably. It is still more desirable to distribute the particle of an inorganic compound in a fluorine-containing polymer for film amelioration on the strength.

[0037] It is desirable to have 90-120 degrees of contact angles over a dynamic friction coefficient 0.03 to 0.15 and water as physical properties of a fluorine-containing polymer.

[0038] As an example of a monomeric unit of having a fluorine atom, they are the parts of fluoro olefins and acrylic acids (for example, fluoro ethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoro ethylene, hexafluoropropylene, perfluoro -2, the 2-dimethyl -1, 3-JIOKI SOL, etc.) (meta) or full fluorination alkyl ester derivatives, completeness, or partial fluorination vinyl ether, for example (for example, bis-coat 6FM (product made from the Osaka organic chemistry), M-2020, etc. (Daikin make)). The acrylate monomers (for example, (meta), an acrylic acid, methylol (meta) acrylate, hydroxyalkyl (meta) acrylate, allyl compound acrylate, etc.) which have others, a carboxyl group and hydroxyl, an amino group, a sulfonic group, etc. (meta) are mentioned to intramolecular like glycidyl methacrylate as a monomer for cross-linking radical grant. [monomer / which has a cross-linking functional group beforehand (meta) / acrylate] It is known by JP,10-25388,A and JP,10-147739,A that the latter can introduce the structure of cross linkage after copolymerization.

[0039] Moreover, a copolymer with the monomer which does not contain not only the polymer that makes the above-mentioned fluorine-containing monomer a configuration unit but a fluorine atom may be used. the monomeric unit which can be used together -- especially -- limitation -- there is nothing -- for example, olefins (ethylene --) acrylic ester (a methyl acrylate --), such as a propylene, an isoprene, a vinyl chloride, and a vinylidene chloride A methyl acrylate, an ethyl acrylate, 2-ethylhexyl acrylate, methacrylic ester (a methyl methacrylate and ethyl methacrylate --) a styrene derivative (styrene --), such as methacrylic-acid butyl and ethylene glycol dimethacrylate Vinyl ether (methyl vinyl ether etc.), such as a divinylbenzene, vinyltoluene, and alpha methyl styrene Vinyl ester, acrylamides (vinyl acetate, propionic-acid vinyl, cinnamic acid vinyl, etc.), methacrylamide (N-tert butyl acrylamide, N-cyclohexyl acrylamide, etc.), an AKURIRO 2 tolyl derivative, etc. can be mentioned.

[0040] As a solvent presentation of the coating liquid used in order to form the low refractive-index layer concerning this invention, any of independent and mixing are sufficient. Since nonuniformity will arise in spreading thickness and a reflection factor will become high if the rate of drying of a solvent becomes slow too much when it has an anti-glare layer in a lower layer, it is desirable that the boiling point is [a solvent 100 degrees C or less] 50 - 100%, and it is 90 - 100% more preferably 80 to 100%.

[0041] The boiling point as a solvent 100 degrees C or less, for example A hexane (68.7 degrees C of boiling points), Hydrocarbons, such as a heptane (98.4), a cyclohexane (80.7), and benzene (80.1) Dichloromethane (39.8), chloroform (61.2), a carbon tetrachloride (76.8), Halogenated hydrocarbon, such as 1,2-dichloroethane (83.5) and a trichloroethylene (87.2) Diethylether (34.6), diisopropyl ether (68.5), Ether, such as dipropyl ether (90.5) and a tetrahydrofuran (66), An ethyl formate (54.2), methyl acetate (57.8), ethyl acetate (77.1), Ester, such as isopropyl acetate (89), an acetone (56.1), Ketones, such as 2-butanone (= methyl ethyl ketone, 79.6) There are cyano compounds, such as alcohols, such as a methanol (64.5), ethanol (78.3), 2-propanol (82.4), and 1-propanol (97.2), an acetonitrile (81.6), and propionitrile (97.4), a carbon disulfide (46.2), etc. Among these, ketones and ester are ketones desirable especially preferably. Especially in ketones, 2-butanone is desirable. [0042] As the above solvent, the boiling point 100 degrees C, for example An octane (125.7), Toluene (110.6), a xylene (138), tetrachloroethylene (121.2), A chlorobenzene (131.7), dioxane (101.3), dibutyl ether (142.4), Isobutyl acetate (118), a cyclohexanone (155.7), 2-methyl-4-pentanone (it MIBK(s)) [=] 115.9, 1-butanol (117.7), and N.N-dimethylformamide (153), There are N,N-dimethylacetamide (166), dimethyl sulfoxide (189), etc. desirable -- a cyclohexanone and 2-methyl-4-pentanone -- it comes out.

[0043] The coating liquid for low refractive-index layers of this invention is prepared by diluting with the solvent of a presentation of the above-mentioned [the low refractive-index layer component concerning this invention]. Although it is desirable to be suitably adjusted in consideration of the viscosity of coating liquid, the specific gravity of a low refractive-index layer material, etc. as for coating liquid concentration, its 0.1 - 20 mass % is desirable, and it is one to 10 mass % more preferably.

[0044] The acid-resisting film of [anti-glare layer] this invention can prepare the anti-glare layer which has detailed irregularity in a front face rather than a low refractive-index layer at a lower layer if needed. Moreover, a smooth rebound ace court layer can be repeated in the lower layer of an anti-dazzle property rebound ace court layer if needed.

[0045] It is desirable to add a non-subtlety particle on each class in order to raise film reinforcement with the acid-resisting film of this invention. even if the non-subtlety particle added on each class is the same respectively, they may differ, and it is desirable a class, an addition, and that ** proper accommodation is carried out according to requirements, such as a refractive index of each class, film reinforcement, thickness, and spreading nature. Especially the non-subtlety particle shape used for this invention has

[the shape of a ball] more desirable dispersibility well, although it is not restricted and both a globular shape, tabular, fibrous a cylinder an indeterminate form hollow, etc. are used preferably. Moreover, although not restricted especially about the class of non-subtlety particle, either, it is desirable that an amorphous thing is used preferably and consists of an oxide, a nitride, a metaled sulfide, or a metaled halogenide, and especially a metallic oxide is desirable. As a metal atom, Na, K, Mg, calcium, Ba, aluminum, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B, Bi, Mo, Ce, Cd, Be, Pb, nickel, etc. are mentioned. In order to obtain the transparent hardening film, 0.001-0.1 micrometers of mean particle diameter of a non-subtlety particle are 0.001-0.06 micrometers still more preferably preferably [considering as the value within the limits of 0.001-0.2 micrometers], and more preferably. Here, the mean particle diameter of a particle is measured by the Coulter counter. [0046] Although especially the operation of the non-subtlety particle in this invention is not restricted, it can also be used in the condition of could use it by dryness or, for example, having distributed to water or an organic solvent. In this invention, it is also desirable to use a distributed stabilizing agent together in order to control condensation of a non-subtlety particle, and sedimentation. As a distributed stabilizing agent, a silane coupling agent, titanium coupling agents also including polyvinyl alcohol, a polyvinyl pyrrolidone, a cellulosic, a polyamide, phosphoric ester, a polyether, a surface active agent, and the compound of a general formula (1), etc. can be used. Since the coat after a silane coupling agent hardening is especially strong, it is desirable. Although especially the addition of the silane coupling agent as a distributed stabilizing agent is not restricted, it is desirable to consider as the value more than 1 mass section to the non-subtlety particle 100 mass section for example. Moreover, latter one is more desirable although the approach of hydrolyzing and condensing further can be taken after not restricting especially the addition approach of a distributed stabilizing agent, and also being able to add what was hydrolyzed beforehand or mixing the silane coupling agent and non-subtlety particle which are a distributed stabilizing agent. Moreover, as for the compound of a general formula (1), it is still more desirable besides being used as a distributed stabilizing agent of an inorganic filler to use also as an additive at the time of coating liquid preparation as a part of binder constituent of each class. [0047] The anti-dazzle property rebound ace court layer of this invention is explained below. the non-subtlety particle for the mat particle for giving a binder for an anti-dazzle property rebound ace court layer giving rebound ace court nature and anti-dazzle property and a raise in a refractive index, bridge formation shrinkproofing, and high-intensity-izing -- since -- it is formed. It is desirable that it is the polymer which has a saturated hydrocarbon chain or a polyether chain as a principal chain as a binder, and it is still more desirable that it is the polymer which has a saturated hydrocarbon chain as a principal chain. Moreover, as for a binder polymer, it is desirable to have the structure of cross linkage. As a binder polymer which has a saturated hydrocarbon chain as a principal chain, the polymer of an ethylene nature partial saturation monomer is desirable. As a binder polymer which has a saturated hydrocarbon chain as a principal chain, and has the structure of cross linkage, the polymer (**) of the monomer which has two or more ethylene nature partial saturation radicals is desirable. In order to make it a high refractive index, it is desirable that at least one sort of atoms chosen from an aromatic series ring, halogen atoms other than a fluorine, the sulfur atom, the Lynn atom, and the nitrogen atom into the structure of this monomer are included. [0048] As a monomer which has two or more ethylene nature partial saturation radicals the ester (an example and ethylene

[0048] As a monomer which has two or more ethylene nature partial saturation radicals the ester (an example and ethylene GURIKORUJI (meta) acrylate --) of polyhydric alcohol and an acrylic acid (meta) 1, 4-JIKURO hexane diacrylate, pentaerythritol tetrapod (meta) acrylate, Pen TAERISURITORUTORI (meta) acrylate, ToRIMECHI roll pro pantry (meta) acrylate, Trimethylolethane tri(metha)acrylate, dipentaerythritol tetrapod (meta) acrylate, Dipentaerythritol PENTA (meta) acrylate, pentaerythritol hexa (meta) acrylate, 1, 2, 3-cyclohexane tetra-methacrylate, polyurethane polyacrylate, polyester polyacrylate, vinylbenzene, and its derivative (an example --) 1, 4-divinylbenzene, 4-vinyl benzoic-acid-2-acryloyl ethyl ester, 1, 4-divinyl cyclohexanone, a vinyl sulfone (an example, divinyl sulfone), acrylamide (an example, methylenebis acrylamide), and methacrylamide are mentioned. Two or more sorts of above-mentioned monomers may be used together.

[0049] Ås an example of a high refractive-index monomer, a bis(4-methacryloyl thiophenyl) sulfide, vinyl naphthalene, a vinyl phenyl sulfide, a 4-meta-chestnut ROKISHI phenyl-4'-methoxypheny thioether, etc. are mentioned. Two or more sorts of these monomers may be used together.

[0050] An exposure or heating of ionizing radiation can perform the polymerization of the monomer which has these ethylene nature partial saturation radicals under existence of an optical radical initiator or a heat radical initiator. Therefore, the coating liquid containing the monomer which has an ethylene nature partial saturation radical, an optical radical initiator or a heat radical initiator, a mat particle, and an inorganic filler is prepared, it can harden by the polymerization reaction according this coating liquid to after [spreading] ionizing radiation, or heat to a transparence base material top, and an anti-dazzle property acid-resisting film can be formed. As an optical radical polymerization initiator, acetophenones, benzophenones, the benzoyl benzoate of MIHIRA, - AMIROKI SIMM ester, tetramethylthiuram monosulfide, and thioxan tons are mentioned, for example. Especially, the optical radical polymerization initiator of an optical cleavage mold is desirable. About the optical radical polymerization initiator of an optical cleavage mold of marketing indicated by the newest UV hardening technique (P.159, issuer; quantity Kazuhiro Usu, a publishing office; TECHNICAL INFORMATION INSTITUTE CO., LTD., 1991 issue). As for a photopolymerization initiator, it is desirable to use it in the range of 0.1 - 15 mass section to the polyfunctional monomer 100 mass section, and it is the range of 1 - 10 mass section more preferably. In addition to a photopolymerization initiator, a photosensitizer may be used. As an example of a photosensitizer, n butylamine, triethylamine, tri-n-butyl phosphine, Michler's ketone, and a thioxan ton can be mentioned.

[0051] The polymer which has a polyether as a principal chain has the desirable ring-opening-polymerization object of a polyfunctional EPO SHIKISHI compound. An exposure or heating of ionizing radiation can perform ring opening polymerization of a polyfunctional EPOSHIKI compound under existence of a photo-oxide generating agent or a heat acid generator. Therefore, the coating liquid containing a polyfunctional EPO SHIKISHI compound, a photo-oxide generating agent or a heat acid generator, a mat particle, and an inorganic filler is prepared, it can harden by the polymerization reaction according this coating liquid to after [spreading] ionizing radiation, or heat to a transparence base material top, and an anti-dazzle property acid-resisting film can be formed.

[0052] A cross-linking functional group may be introduced into a polymer using the monomer of the monomer which has two or more ethylene nature partial saturation radicals which is instead alike or has a cross-linking functional group in addition to it, and the structure of cross linkage may be introduced into a binder polymer by the reaction of this cross-linking functional group. An

isocyanate radical, an epoxy group, an aziridine radical, an oxazoline radical, an aldehyde group, a carbonyl group, a hydrazine radical, a carboxyl group, a methylol radical, and an activity methylene group are contained in the example of a cross-linking functional group. A metal alkoxide like a vinyl sulfonic acid, an acid anhydride, a cyanoacrylate derivative, a melamine, the etherification methylol, ester and urethane, and a tetramethoxy silane can also be used as a monomer for introducing the structure of cross linkage. Like a block isocyanate radical, the functional group which shows cross-linking as a result of a decomposition reaction may be used. That is, even if a cross-linking functional group does not immediately show a reaction in this invention, reactivity may be shown as a result of decomposing. The binder polymer which has these cross-linking functional group can form the structure of cross linkage by heating after spreading.

[0053] In an anti-dazzle property rebound ace court layer, a 1.5-7.0-micrometer mat particle, for example, the particle of an inorganic compound, or a resin particle contains [mean particle diameter] more preferably 1-10-micrometer 0.3-20 micrometers for the purpose of anti-dazzle property grant. If too large, surface texture will get worse, and if a mat particle is too small, the anti-glare effect of it will be lost. As an example of the above-mentioned mat particle, resin particles, such as a particle; bridge formation acrylic particle of inorganic compounds, such as a silica particle and TiO2 particle, a bridge formation styrene particle, amelamine resin particle, and a benzoguanamine resin particle, are mentioned preferably, for example. A bridge formation styrene particle is desirable especially. Either a real ball or an indeterminate form can be used for the configuration of a mat particle. Moreover, two or more sorts of different mat particles may be used together and used. the mat particle weight in the antidazzle property rebound ace court layer in which the above-mentioned mat particle was formed -- desirable -- 10 - 1000 mg/m2 -- it contains in an anti-dazzle property rebound ace court layer so that it may become 30 - 100 mg/m2 more preferably. Moreover, especially a desirable mode is a mode in which the larger bridge formation styrene particle of particle size than 1/2 of the thickness of an anti-dazzle property rebound ace court layer occupies this 40 - 100% of whole bridge formation styrene particle, using a bridge formation styrene particle as a mat particle. Here, the particle size distribution of a mat particle are measured by the Coulter counter method, and convert the measured distribution into particle number distribution.

[0054] In order to raise the refractive index of a layer to an anti-dazzle property rebound ace court layer, it is desirable that consist of an oxide of at least one sort of metals chosen from the inside of titanium, a zirconium, aluminum, an indium, zinc, tin, and antimony in addition to the above-mentioned mat particle, and the non-subtlety particle 0.2 micrometers or less of 0.1 micrometers or less of whose mean particle diameter are 0.06 micrometers or less more preferably contains. Moreover, in order to maintain the refractive index of a layer at a low eye in the anti-dazzle property rebound ace court layer which used the high refractive-index mat particle conversely in order to enlarge a refractive-index difference with a mat particle, it is also desirable to use the oxide of silicon. A desirable particle size is the same as the above-mentioned non-subtlety particle. As an example of the non-subtlety particle used for an anti-dazzle property rebound ace court layer, TiO2, ZrO2, aluminum 2O3, In2O3, ZnO and SnO2, Sb2O3, and ITO and SiO2 grade are mentioned. TiO2 and ZrO2 are desirable especially in respect of a raise in a refractive index. As for this non-subtlety particle, it is also desirable to silane-coupling-process or titanium coupling process a front face, and the finishing agent which has the functional group which can react to a particle front face with a binder kind is used preferably. It is desirable that it is 10 - 90% of the total mass of an anti-dazzle property rebound ace court layer, it is 20 - 80% more preferably, and the addition of these non-subtlety particles is 30 - 75% especially preferably. In addition, since such a particle has a particle size sufficiently smaller than the wavelength of light, dispersion does not arise, but the dispersing element which this particle distributed to the binder polymer is optically served as uniform matter.

[0055] As for the refractive index of the sum total of the binder of the anti-dazzle property rebound ace court layer of this invention, and the mixture of a non-subtlety particle, it is desirable that it is 1.48-2.00, and it is 1.57-2.00 preferably [it is more desirable and] to 1.50-2.00, and a pan. If the refractive index of the binder of an anti-dazzle property rebound ace court layer is too low, the acid-resisting effectiveness will get worse, and if too high, the tint of the reflected light will get worse. What is necessary is just to choose suitably the class and amount rate of a binder and a non-subtlety particle, in order to make a refractive index into the above-mentioned range. It can know beforehand how it will choose easily experimentally.

[0056] Especially the anti-dazzle property rebound ace court layer of this invention contains which surfactant of a fluorine system and a silicone system, or its both in the spreading constituent for anti-glare layer formation, in order to secure field-like homogeneity, such as spreading nonuniformity, desiccation nonuniformity, and a point defect. In a smaller addition, since the effectiveness of improving field-like failure of the spreading nonuniformity of the anti-dazzle property acid-resisting film of this invention, desiccation nonuniformity, a point defect, etc. shows up, especially the surfactant of a fluorine system is used preferably. As a desirable example of the surfactant of a fluorine system, perfluoroalkyl radical content oligomer, such as perfluoroalkyl sulfonic-acid amide group content Nonion of the Fluorad FC-431 grade by the three em company, the Dainippon Ink fuck [megger] F-171, F-172, F-173, and F-176PF, etc. is mentioned. The poly dimethylsiloxane to which the end of a side chain or a principal chain denaturalized by various kinds of substituents, such as oligomer, such as ethylene glycol and propylene glycol, as a surface active agent of a silicone system is mentioned.

[0057] However, by using the above surfactants, when the functional group which has the functional group and/or Si atom which contain F atom on an anti-glare layer front face segregates, the surface energy of an anti-glare layer falls and the overcoat of the low refractive-index layer is carried out on the above-mentioned anti-glare layer, the problem on which acid resistibility ability gets worse arises. Since the wettability of the spreading constituent used in order to form a low refractive-index layer gets worse, this is presumed for undetectable minute nonuniformity to get worse by viewing of the thickness of a low refractive-index layer. In order to solve such a problem, by adjusting the structure and the addition of a surfactant of a fluorine system and/or a silicone system Preferably the surface energy of an anti-glare layer to 25 mN-m -1 - 70 mN-m -1 It found out that it was effective to control more preferably to 35 mN-m -1 - 70 mN-m -1, and it was effective that 50 to 100 percent by mass shall have the boiling point 100 degrees C or less for the spreading solvent of a low refractive-index layer so that it may mention later further. Moreover, in order to realize the above surface energy, it is, It is required for Si/C whose F/C which is the ratio of the peak of the fluorine atom origin and the peak of the carbon atom origin measured by X-ray photoelectron spectroscopy is the ratio of the peak of 0.40 or less and the silicon atom origin and the peak of the carbon atom origin to be 0.30 or less. The thickness of an anti-dazzle property rebound ace court layer has desirable 1-10 micrometers, and its 1.2-6 micrometers are more desirable. [0058] When the acid-resisting film of [rebound ace court layer which does not have anti-dazzle property for the purpose of the improvement

in film on the strength further is also used preferably, and is painted between a transparence base material and an anti-dazzle property rebound ace court layer. Moreover, in the acid-resisting film of this invention, also when anti-dazzle property is unnecessary, a smooth rebound ace court layer is used. Except not using the mat particle for anti-dazzle property grant, the material used for a smooth rebound ace court layer is the same as that of what was mentioned in the above-mentioned anti-dazzle property rebound ace court layer, and is preferably formed from a binder and a non-subtlety particle. As a non-subtlety particle, a silica and an alumina are desirable in respect of reinforcement and versatility, and especially a silica is desirable in the smooth rebound ace court layer of this invention. Moreover, as for this non-subtlety particle, it is desirable to carry out silane coupling processing of the front face, and the finishing agent which has the functional group which can react to a particle front face with a binder kind is used preferably. It is desirable that it is 10 - 90% of the total mass of a rebound ace court layer, it is 20 - 80% more preferably, and the addition of these non-subtlety particles is 30 - 75% especially preferably. The thickness of a smooth rebound ace court layer has desirable 1-10 micrometers, and its 1.2-6 micrometers are more desirable.

[0059] As for the refractive index of a [quantity and medium refractive index layer] quantity refractive-index layer, it is desirable that it is 1.65-2.40, and it is still more desirable that it is 1.70-2.20. The refractive index of a medium refractive index layer is adjusted so that it may become a value between the refractive index of a low refractive-index layer, and the refractive index of a high refractive-index layer, and it is desirable that it is 1.55-1.80. As for Hayes of a high refractive-index layer and a medium refractive index layer, it is desirable that it is 3% or less.

[0060] <u>Drawing 5</u> is the sectional view showing typically the lamination of the protection film for polarizing plates which has the outstanding acid resistibility ability. In the mode shown in drawing 5, the transparence base material 1, the high refractive-index layer 5, and the low refractive-index layer 2 have the refractive index with which are satisfied of the following relation. The refractive index of the refractive-index > low refractive-index layer of the refractive-index > transparence base material 1 of the high refractive-index layer 5 [0061] A high refractive-index layer is desirable at the point that the following formula (II) and a low refractive-index layer can produce the acid-resisting film which has the acid resistibility ability in which it was further excellent to satisfy the following formula (III), respectively as indicated by JP,59-50401,A by lamination like drawing 5. [0062]

(nlambda/4) x0.7<n2d2<(nlambda/4) x1.3 Formula (II)

[0063] n is a positive integer (generally 1, 2, or 3) among a formula (II), and n2 is the refractive index of a high refractive-index layer, and d2 is the thickness (nm) of a high refractive-index layer. lambda is the wavelength of a visible ray and is the value of the range of 380-680 (nm).

(hlambda/4) x0.7<n3d3<(hlambda/4) x1.3 Formula (III)

[0065] The number of h is odd [forward] (generally 1) among a formula (III), and n3 is the refractive index of a low refractiveindex layer, and d3 is the thickness (nm) of a low refractive-index layer. lambda is the wavelength of a visible ray and is the value of the range of 380-680 (nm). in addition, it means that n (the positive integer -- it is generally 1, 2, or 3) and h (the forward odd number -- it is generally 1) which fill a formula (II) in the range of each above-mentioned wavelength like the case of a formula (I) as filling the above-mentioned formula (II) and a formula (III) exist. The same is said of following and formula (IV)- (IX). [0066] The mode shown in drawing 6 has the lamination of the sequence of the transparence base material 1, the rebound ace court layer 4, a medium refractive index layer 6, the high refractive-index layer 5, and the low refractive-index layer 2. The transparence base material 1, a medium refractive index layer 6, the high refractive-index layer 5, and the low refractive-index layer 2 have the refractive index with which are satisfied of the following relation. high -- a refractive index -- a layer -- five -- a refractive index -- > -- a medium refractive index layer -- six -- a refractive index -- > -- transparence -- a base material -- one -- a refractive index -- > -- low -- a refractive index -- a layer -- two -- a refractive index -- drawing 6 -- like -- lamination -- **** --JP,59-50401,A -- indicating -- having -- **** -- as -- a medium refractive index layer -- the following -- a formula -- (-- IV --) -high -- a refractive index -- a layer -- the following -- a formula -- (-- V --) -- low -- a refractive index -- a layer -- the following -- a formula -- (-- VI --) -- respectively -- being satisfied -- things -- more -- having excelled -- acid resistibility -- ability -- having -acid resisting -- a film -- being producible -- a point -- being desirable. [0067]

(ilambda/4) x0.7<n4d4<(ilambda/4) x1.3 Formula (IV)

[0068] i is a positive integer (generally 1, 2, or 3) among a formula (IV), and n4 is the refractive index of a medium refractive index layer, and d4 is the thickness (nm) of a medium refractive index layer. lambda is the wavelength of a visible ray and is the value of the range of 380-680 (nm).

[0069]

(jlambda/4) x0.7<n5d5<(jlambda/4) x1.3 Formula (V)

[0070] j is a positive integer (generally 1, 2, or 3) among a formula (V), and n5 is the refractive index of a high refractive-index layer, and d5 is the thickness (nm) of a high refractive-index layer. lambda is the wavelength of a visible ray and is the value of the range of 380-680 (nm).

[0071]

(klambda/4) x0.7<n6d6<(klambda/4) x1.3 Formula (VI)

[0072] The number of k is odd [forward] (generally 1) among a formula (VI), and n6 is the refractive index of a low refractiveindex layer, and d6 is the thickness (nm) of a low refractive-index layer. lambda is the wavelength of a visible ray and is the value of the range of 380-680 (nm). In lamination like drawing 2 (b), it is especially desirable that the following formula (VIII) and a low refractive-index layer satisfy [a medium refractive index layer / the following formula (VII) and a high refractive-index layer] the following formula (IX), respectively. Here, for lambda, 500nm and i are [2 and k of 1 and j] 1. [0073]

(ilambda/4) x0.80<n4d4<(ilambda/4) x1.00 Formula (VII)

[0074]

(jlambda/4) x0.75<n5d5<(jlambda/4) x0.95 Formula (VIII)

[0075]

(klambda/4) x0.95<n6d6<(klambda/4) x1.05 Formula (IX)

[0076] In addition, the high refractive index indicated here, medium refractive index, and a low refractive index mean the height of the relative refractive index between layers. It is also desirable in a rebound ace court layer, a medium refractive index layer, and a high refractive-index layer to produce the anti-dazzle property acid-resisting film which is made to contain the particle whose mean particle diameter is 0.2-10 micrometers, and has an anti-dazzle function.

[0077] As for a medium refractive index layer and a high refractive-index layer, it is desirable to form using a polymer with a comparatively high refractive index. The polyurethane obtained at the reaction of polystyrene, a styrene copolymer, a polycarbonate, melamine resin, phenol resin, an epoxy resin and annular (alicyclic or aromatic series) isocyanate, and polyol is contained in the example of a polymer with a high refractive index. The polymer which has other annular (aromatic series, heterocycle type, alicyclic) radicals, and the polymer which has halogen atoms other than a fluorine as substituents also have a high refractive index. A polymer may be formed by the polymerization reaction of the monomer which introduced the double bond and enabled radical hardening.

[0078] A non-subtlety particle with a high refractive index may be distributed in the above-mentioned monomer, an initiator, the silicon compound by which the organic permutation was carried out, or the above-mentioned polymer. As a non-subtlety particle, a metaled (an example, aluminum, titanium, a zirconium, antimony) oxide is desirable. When using a monomer and an initiator, it is stiffening a monomer by the polymerization reaction by ionizing radiation or heat after spreading, and the medium refractive index layer and high refractive-index layer which are excellent in damage resistance or adhesion can be formed. As for the mean particle diameter of a non-subtlety particle, it is desirable that it is 0.01-0.1 micrometers.

[0079] From the organometallic compound which has coat organization potency, a high refractive-index layer or a medium refractive index layer may be formed. It can distribute to a suitable medium or the liquefied thing of an organometallic compound is desirable. the example of an organometallic compound -- metal alcoholate (an example and titanium tetra-ethoxide --) Titanium tetra-i-propoxide, titanium tetra-n-propoxide, Titanium tetra--n-butoxide, aluminum NIUMUTORI ethoxide, Aluminum tree i-propoxide, aluminum tributoxide, Anti MONTORI ethoxide, antimony tributoxide, zirconium tetra-ethoxide, Zirconium tetra--i-propoxide, zirconium tetra--n-propoxide, zirconium tetra--n-butoxide, zirconium tetra--tert-butoxide and a chelate compound (an example --) G isopropoxy titanium bisacetylacetonate, G butoxy titanium bisacetylacetonate, a bis-acetylacetone zirconium, Aluminum acetylacetonate, aluminum di-n-btoxidemonoethylacetoacetate, The activity inorganic polymer which uses aluminum di-i-propoxydemonomethylacetoacetate, tree n-butoxide zirconium monoethyl acetoacetate, an organic-acid salt (an example, zirconyl ammonium carbonate), and a zirconium as a principal component is contained.

[0080] A damp proof course, an antistatic layer, and a protective layer may be further prepared in an acid-resisting film. It is desirable to prepare a protective layer on a low refractive-index layer especially. A protective layer functions as a slipping layer or a dirt prevention layer. the example of the slipping agent used for a slipping layer -- polyorganosiloxane (an example and poly dimethylsiloxane --) The poly diethyl siloxane, a poly diphenyl siloxane, a poly methylphenyl siloxane, alkyl denaturation poly dimethylsiloxane and a natural wax (an example and carnauba wax --) A candelilla wax, jojoba oil, a rice wax, haze wax, the beeswax, lanolin, a spermaceti, a montan wax, and a petroleum wax (an example and paraffin wax --) a micro crystallin wax and a synthetic wax (an example and polyethylene wax --) the Fischer Tropsch wax and a high-class fat fatty-acid amide (an example --) Steer RAMIDO, olein amide, N, and N'-methylenebis steer RAMIDO, higher-fatty-acid ester (an example, methyl stearate, and butyl stearate --) glycerol monostearate, sorbitan monooleate, and a higher-fatty-acid metal salt (an example --) Zinc stearate and a fluorine content polymer (an example, a perfluoro principal chain mold perfluoro polyether, a perfluoro side-chain mold perfluoro polyether, an alcoholic denaturation perfluoro polyether, isocyanate denaturation perfluoro polyether) are contained. In a dirt prevention layer, a fluorine-containing hydrophobic compound (an example, a fluorine-containing polymer, a fluorine-containing surfactant, fluorine-containing oil) is added. In order to make it protection layer thickness not influence an acid-resisting function, it is desirable that it is 0.02 micrometers or less, and it is still more desirable in it being 0.01 micrometers or less.

[0081] As a transparence base material of the acid-resisting film of [transparence base material] this invention, it is desirable to use plastic film. As a polymer which forms plastic film, cellulose ester (an example, triacetyl cellulose, diacetyl cellulose, typically Fuji Photo Film TAC-TD80 U, TD80 UF etc.), a polyamide, a polycarbonate, polyester (an example, polyethylene terephthalate, polyethylenenaphthalate), polystyrene, polyolefine, norbomene system resin (ATON: a trade name, product made from JSR), amorphous polyolefine (ZEONEKKUSU: a trade name, Nippon Zeon Co., Ltd. make), etc. are mentioned. Among these, triacetyl cellulose, polyethylene terephthalate, and polyethylenenaphthalate ** is desirable, and especially triacetyl cellulose (refractive index: 1.49) is desirable.

[0082] When using the acid-resisting film of this invention for a liquid crystal display, it carries out preparing an adhesive layer in one side etc., and arranges to the outermost surface of a display. Since triacetyl cellulose is used as a protection film which cost to use the acid-resisting film of this invention for a protection film as it is.

[0083] A triacetyl cellulose film has the desirable triacetyl cellulose film which produced the triacetyl cellulose dope which adjusted triacetyl cellulose by dissolving in a solvent by which flow casting approach of monolayer flow casting and two or more layer co-casting.

[0084] The triacetyl cellulose film which produced triacetyl cellulose from a viewpoint of environmental preservation especially using the triacetyl cellulose dope adjusted by dissolving dichloromethane in the solvent which is not included substantially with the cold melting method or the elevated-temperature solution process is desirable. The triacetyl cellulose film of a monolayer is produced by the drum flow casting currently indicated by JP,7-11055,A of a open patent official report etc., or band flow casting, and the triacetyl cellulose film which consists of two or more latter layers is produced by the so-called co-casting method currently indicated by JP,61-94725,A of a open patent official report, JP,62-43846,B, etc.

[0085] A raw material flake For example, halogenated hydrocarbon (dichloromethane etc.) alcohols and ester (a methanol, ethanol, butanol, etc.) (methyl formate --) Methyl acetate etc. is dissolved with solvents, such as ether (dioxane, dioxolane, diethylether, etc.). The solution (a dope is called) which added various kinds of additives, such as a plasticizer, an ultraviolet ray absorbent, a degradation inhibitor, a slipping agent, and an exfoliation accelerator, to this if needed is cast with a dope supply means (a die is called) on the base material which consists of level-type an endless metal belt or the rotating endless drum. If it is a monolayer, monolayer flow casting of the single dope will be carried out, if it is two or more layers, co-casting of the low

concentration dope will be carried out to the both sides of a high-concentration cellulose ester dope, the film which it is on a base material and with which extent desiccation was carried out and rigidity was given is exfoliated from a base material, subsequently a dryer part is passed with various kinds of conveyance means, and a solvent is removed.

[0086] As above solvents for dissolving triacetyl cellulose, dichloromethane is typical. However, as for a solvent, in the viewpoint of earth environment or work environment, it is desirable that halogenated hydrocarbon, such as dichloromethane, is not included substantially. It means that the rate of the halogenated hydrocarbon in an organic solvent is under 5 mass % (preferably under 2 mass %) with "it does not contain substantially." When adjusting the dope of triacetyl cellulose using the solvent which does not contain dichloromethane etc. substantially, it is desirable to use a special solution process which is mentioned later.
[0087] A primary method is called a cooling solution process and explained below. It adds gradually, agitating triacetyl cellulose in a solvent first at the temperature near a room temperature (-10-40 degrees C). Next, mixture is cooled at -100--10 degree C (preferably - 80- -10 degrees C, still more preferably - 50- -20 degrees C, most preferably - 50- -30 degrees C). Cooling can be carried out in for example, a dry ice methanol bath (-75 degrees C) or the cooled diethylene-glycol solution (-30--20 degree C). Thus, if it cools, the mixture of triacetyl cellulose and a solvent will be solidified. Furthermore, if this is warmed at 0-200 degrees C (preferably 0-150 degrees C, still more preferably 0-120 degrees C, most preferably 0-50 degrees C), it will become the solution with which triacetyl cellulose flows in a solvent. It may also be good to leave it in a room temperature, it may be taking a hot bath, and may warm a temperature up.

[0088] The second approach is called an elevated-temperature solution process, and is explained below. It adds gradually, agitating triacetyl cellulose in a solvent first at the temperature near a room temperature (-10-40 degrees C). As for the triacetyl cellulose solution of this invention, it is desirable to add triacetyl cellulose and to make it swell beforehand in the partially aromatic solvent containing various solvents. In this method, although below 30 mass % of the dissolution concentration of triacetyl cellulose is desirable, it is desirable from the point of the drying efficiency at the time of film film production that it is high concentration if possible. Next, organic solvent mixed liquor is heated by 70-240 degrees C under the pressurization of 0.2MPa-30MPa (preferably 80-220 degrees C, still more preferably 100-200 degrees C, most preferably 100-190 degrees C). Next, since these heating solutions cannot be applied if they remain as they are, it is necessary to cool them below to the lowest boiling point of the used solvent. In that case, it is common to cool at -10-50 degrees C, and to return to ordinary pressure. It is also at best still more desirable to leave the high-pressure elevated-temperature container with which the triacetyl cellulose solution is built in, and Rhine in a room temperature, and cooling may cool this equipment using refrigerants, such as cooling water. The cellulose cellulose acetate film which does not contain halogenated hydrocarbon, such as dichloromethane, substantially, and its manufacturing method are indicated by the Japan Institute of Invention and Innovation public presentation technical report (it abbreviates to **** number 2001. March 15, 2001 [1745 or] issue and the following public presentation technical report 2001.No. 1745).

[0089] Although especially the thickness of the above-mentioned triacetyl cellulose film is not limited, 1-300 micrometers of thickness are good, and 30-150 micrometers is 50-120 micrometers especially preferably preferably.

[0090] saponification processing of a [saponification processing] transparence base material is appropriate in a cellulose ester film in well-known technique, for example, lye, -- time amount immersion is carried out and it carries out. By carrying out saponification processing, hydrophilization of the front face of a transparence base material is carried out. The front face where hydrophilization of the transparence base material was carried out is used for the protection film for polarizing plates, making it paste up with the polarization film. The front face by which hydrophilization was carried out is effective in improving an adhesive property with the polarization film which uses polyvinyl alcohol as a principal component. As for saponification processing, it is desirable to carry out so that the contact angle over the water of the front face of a transparence base material may become 40 degrees or less. Furthermore, 30 degrees or less are 20 degrees or less especially preferably preferably. It can choose from following two as a concrete means of saponification processing. Although (1) is excellent in the point which can be processed at the same process as a general-purpose triacetyl cellulose film, since saponification processing is carried out to an antireflection film side, if the point that alkali hydrolysis of the front face is carried out, and the film deteriorates, and saponification processing liquid remain, the point which becomes dirt can become a problem. In that case, (2) is excellent although it becomes a special process.

(1) [0091] which is applying to the field of the opposite side the field which forms the acid-resisting film of this acid-resisting film, and heating, rinsing and/or neutralizing lye, and carries out saponification processing only of the rear face of this film by being immersed once [at least] into lye behind before forming an acid-resisting layer on (2) transparence base material which carries out saponification processing of the rear face of this film after forming an acid-resisting layer on a transparence base material Well-known technique can be used as the corona discharge treatment and glow discharge processing in which it uses for the cellulose ester film which carried out [surface treatment] saponification processing, and flame processing. glow discharge processing -- for example, JP,35-7578,B, 36-10336, 45-22004, 45-22005, 45-24040, 46-43480, and a U.S. Pat. No. 3,057,792 number -- said -- No. 3,057,795 -- said -- No. 3,179,482 -- said -- No. 3,288,638 -- said -- No. 3,309,299 -- said -- No. 3,424,735 -- said -- No. 3,462,335 -- said -- No. 3,475,307 -- said -- the technique of a publication can be used for No. 3,761,299, British JP,997,093,B, JP,53-129262,A, etc.

[0092] As for the pressure at the time of glow discharge processing, it is desirable to be referred to as 0.005 - 20Torr. It is 0.02 - 2Torr more preferably. If a pressure is too low, a support surface cannot fully be reformed and sufficient adhesive property cannot be acquired. On the other hand, if a pressure is too high, stable discharge will not take place. Moreover, as for an electrical potential difference, between 500-5000V is desirable. It is 500-3000V more preferably. If an electrical potential difference is too low, a support surface cannot fully be reformed and sufficient adhesive property cannot be acquired. Several 1000MHz of 50Hz - 20MHz of discharge frequencies to be used is 1kHz - 1MHz still more preferably preferably from a direct current. 0.01 kV-A and a part / m2 - 5 kV-A and a part / m2 is desirable still more desirable, and electrodischarge treatment reinforcement is 0.15 kV-A and a part / m2 - 1 kV-A and a part / m2. As for the base material which performed glow discharge processing, it is desirable to lower temperature using a cooling roller immediately after glow discharge processing, carrying out glow discharge processing. As flame processing, a liquefaction liquefied petroleum gas, natural gas, etc. can be used, for example. Processing is desirable, mixing with air, by the liquefaction liquefied petroleum gas, 1/of mixing ratios of desirable gas/air is depended 14 - 1/22 by the volume ratio, and they are 1 / 16 - 1/19 preferably. In natural gas, 1/is depended 6 - 1/10, and it is 1 / 7 - 1/9 preferably. As for

flame processing, it is desirable to carry out by 1 - 50 Kcal/m2, and it is 3 - 20 Kcal/m2 more preferably. Moreover, it is more effective to set the tip of the inner flame of a burner and distance of a base material to less than 4cm.

[0093] Although each class of the acid-resisting film of this invention can be formed by the following approaches, it is not restricted to this approach. First, the coating liquid containing the component for forming each class is prepared. Next, each class is formed by applying, drying and hardening the coating liquid of each class one by one on a transparence base material by a dip coating method, the Ayr knife coat method, the curtain coat method, the roller coat method, the wire bar coat method, the gravure coat method, or the extrusion coat method (referring to U.S. Pat. No. 2681294 number specification). Especially the micro gravure coat method is desirable.

[0094] With the micro gravure coat method used by this invention the gravure roll on which the gravure pattern was stamped for the diameter on the perimeter by about 20-50mm -- a base material -- caudad -- and, while carrying out inverse rotation of the gravure roll to the conveyance direction of a base material It is the coat method characterized by failing to scratch excessive coating liquid with a doctor blade from the front face of this gravure roll, making the inferior surface of tongue of the base material in the location which has the top face of said base material in a free condition in the coating liquid of a quantum imprint coating liquid, and carrying out coating.

[0095] When the acid-resisting film of this invention has anti-dazzle property, 3 - 50% of Hayes values is in 4 - 45% of range preferably, and the average reflectance of 450 to 650nm is 1.9% or less preferably 2.2% or less. When the acid-resisting film of this invention has anti-dazzle property, anti-dazzle property and acid resistibility good [without being accompanied by degradation of a transparency image] are obtained by being the Hayes value and average reflectance of the above-mentioned range.

[0096] The polarizing plate of this invention comes to use the above-mentioned acid-resisting film to at least one in the protection film of two sheets of a polarization layer. By using the acid-resisting film of this invention for the outermost layer, reflected [outdoor daylight] etc. is prevented and it can consider as the polarizing plate which was excellent in damage resistance, antifouling property, etc. Moreover, a manufacturing cost can be reduced because an acid-resisting film serves as a protection film in the polarizing plate of this invention.

[0097] The acid-resisting film of this invention is applicable to an image display device like a liquid crystal display (LCD), a plasma display panel (PDP), and an electroluminescence display (ELD) and a cathode-ray tube display (CRT). Since the acidresisting film of this invention has the transparence base material, a transparence base material side is pasted up on the image display side of an image display device, and it is used. Moreover, as for the acid-resisting film of this invention, it is desirable to be used for the optical compensation film which consists of optical anisotropic layers which fixed the orientation of a polarizer, a transparence base material, and discotheque liquid crystal, and a list combining the polarizing plate which consists of a lightscattering layer. The polarizing plate which consists of a light-scattering layer has a publication in JP,11-305010,A etc. [0098] the case where the acid-resisting film of this invention is used as one side of the surface-protection film of a polarizer when furthermore explained in full detail -- TSUISUTETTO -- nematic -- (TN) and sault parts ISUTETTO -- it can use for the transparency mold in the modes, such as nematic (STN), vertical alignment (VA), in plane switching (IPS), and an OPUTIKARIKOMPENSEITETTO bend cel (OCB), a reflective mold, or a transflective type liquid crystal display preferably. The polarizing plate which has the acid-resisting effectiveness and the angle-of-visibility expansion effectiveness by the thickness of one polarizing plate especially by using for the field of the opposite side the optical compensation film which has the angle-ofvisibility expansion effectiveness with the acid-resisting film of this invention of the protection films of two both sides of a polarizer as indicated by JP,2001-100043,A etc. to the liquid crystal display in TN mode or IPS mode can be obtained, and it is especially desirable.

[0099] As polarization film, any polarization film is applicable. In case tension is given and extended, supplying a polyvinyl alcohol system film continuously and holding the both ends with a maintenance means, on the other hand, a film For example, the locus L1 of the maintenance means from the real maintenance start point of an edge to the point canceling [real maintenance], While having the relation of the following formula (2) to the distance W of the point on either side canceling [real maintenance], the locus L2 of the maintenance means from the real maintenance start point of an end to the point canceling [real maintenance] already The straight line which the straight line which connects a real maintenance start point on either side shall carry out an abbreviation rectangular cross with the center line of the film introduced into a maintenance process, and connects the point on either side canceling [real maintenance] As an abbreviation rectangular cross is carried out with the center line of the film sent out to degree process, you may extend (refer to United States patent public presentation No. 8840 [2002 to]). Formula (2) |L2-L1|>0.4W[0100] Moreover, when using for a transparency mold or a transflective type liquid crystal display, a display with still higher visibility can be obtained by combining with commercial improvement films in brightness, such as the polarization separation film which has a polarization selection layer, for example, D-BEF made from Sumitomo 3M etc., and using. Moreover, it can use for reducing the reflected light from a front face and the interior as the polarizing plate for high reflective liquid crystal, and a surface guard plate for organic electroluminescence displays by combining with lambda/4 plate. Furthermore, the acid-resisting layer of this invention is formed on transparence base materials, such as PET and PEN, and it can apply to an image display device like a plasma display panel (PDP) or a cathode-ray tube display (CRT). [0101] Although an example is given and explained below in order to explain this invention to a detail, this invention is not limited to these.

[0102]

[Example] (Preparation of the coating liquid A for rebound ace court layers) 150g (DPHA, Nippon Kayaku Co., Ltd. make) of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate was dissolved in a methyl ethyl ketone / cyclohexanone =50 / 206g of 50% of mixed solvents. The solution which dissolved 333g (MEK-ST, the Nissan chemistry company make, about 15nm of mean diameters) of silica sol 30% methyl-ethyl-ketone distribution objects, 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators, and 5.0g (kaya KYUA DETX, Nippon Kayaku Co., Ltd. make) of photosensitizers in the 49g methyl ethyl ketone was added to the obtained solution, and it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0103] (Preparation of the coating liquid B for rebound ace court layers) 347g (DESORAITO Z7526, the product made from JSR, 72% of solid content concentration, 38% of silica contents, about 20nm of mean diameters) of commercial silica content UV

hardening mold rebound ace court liquid was diluted with a methyl ethyl ketone / cyclohexanone =50 / 403g of 50% of mixed solvents, and it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0104] (Preparation of the coating liquid C for rebound ace court layers) 500g (DESORAITO, the product made from JSR, a solvent: isopropanol, 50% of solid content concentration, 50% of alumina contents, about 20nm of mean diameters) of commercial alumina content UV hardening mold rebound ace court liquid was diluted with a methyl ethyl ketone / cyclohexanone =50 / 250g of 50% of mixed solvents, and it filtered with the filter made from polypropylene of 1 micrometer of apertures. [0105] (Preparation of the coating liquid D for rebound ace court layers) 250g (DPHA, Nippon Kayaku Co., Ltd. make) of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate was dissolved in a methyl ethyl ketone / cyclohexanone =50 / 439g of 50% of mixed solvents. The solution which dissolved 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators and 5.0g (kaya KYUA DETX, Nippon Kayaku Co., Ltd. make) of photosensitizers in the 49g methyl ethyl ketone was added to the obtained solution, and it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0106] (Preparation of the coating liquid E for rebound ace court layers) 36g (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of gamma-acryloxyprophyltrimethoxysilane was added to 450g (DESORAITO Z7526, the product made from JSR, 72% of solid content concentration, the silica content of 38%, mean particle diameter of about 20nm) of commercial silica content UV hardening mold rebound ace court liquid, this liquid was diluted with a methyl ethyl ketone / cyclohexanone =50 / 264g of 50% of mixed solvents, and it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0107] (Preparation of the coating liquid F for rebound ace court layers) 135g (DPHA, Nippon Kayaku Co., Ltd. make) of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate was dissolved in a methyl ethyl ketone / cyclohexanone =50 / 196g of 50% of mixed solvents. 300g (MEK-ST, the Nissan chemistry company make, mean particle diameter of about 15nm) of silica sol 30% methyl-ethyl-ketone distribution objects and 25g (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of gamma-acryloxyprophyltrimethoxysilane were added to the obtained solution, 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators and 5.0g (kaya KYUA DETX, Nippon Kayaku Co., Ltd. make) of photosensitizers were dissolved in the 82g methyl ethyl ketone, and it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0108] (Preparation of the coating liquid G for rebound ace court layers) zirconia content UV hardening mold rebound ace court liquid (DESORAITO Z7401 and the product made from JSR --) It is the mixture (it DPHA(s)) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in 48% of solid content concentration, 71% of zirconia contents, and 278g of about 20nm mean diameters. the Nippon Kayaku Co., Ltd. make -- 120g and 7.7g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators were added, and after adding and stirring a methyl ethyl ketone / cyclohexanone =50 / 355g of 50% of mixed solvents, it filtered with the filter made from polypropylene of 1 micrometer of apertures.

(Preparation of the coating liquid H for rebound ace court layers) zirconia content UV hardening mold rebound ace court liquid (DESORAITO Z7401 and the product made from JSR --) It is the mixture (it DPHA(s)) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in 48% of solid content concentration, 71% of zirconia contents, and 278g of about 20nm mean diameters. 120by Nippon Kayaku Co., Ltd. g, 7.7g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators, 28g was added for gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make), and after adding and stirring a methyl ethyl ketone / cyclohexanone =50 / 355g of 50% of mixed solvents, it filtered with the filter made from polypropylene of 1 micrometer of apertures.

[0109] (Preparation of the coating liquid A for anti-dazzle property rebound ace court layers) 117g (DPHA, Nippon Kayaku Co., Ltd. make) of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate and 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators were diluted with a methyl ethyl ketone / cyclohexanone =50 / 355g of 50% of mixed solvents in 278g (DESORAITO Z7401, the product made from JSR, 48% of solid content concentration, 71% of zirconia contents, about 20nm of mean diameters) of commercial zirconia content UV hardening mold rebound ace court liquid. The furthermore added 10g (trade name: SX-200H, Soken Chemical & Engineering make) of bridge formation polystyrene particles of 2 micrometers of mean diameters in this solution and high-speed Despa stirred and distributed by 5000rpm for 1 hour, it filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid A of an anti-dazzle property rebound ace court layer was prepared.

[0110] (Preparation of the coating liquid B for anti-dazzle property rebound ace court layers) 521g (DESORAITO Z7401, the product made from JSR, 048% of solid content concentration, 71% of zirconia contents, about 20nm of mean diameters) of commercial zirconia content UV hardening mold rebound ace court liquid and 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators were diluted with a methyl ethyl ketone / cyclohexanone =50 / 229g of 50% of mixed solvents. The furthermore added 10g (trade name: the EPO star MS, NIPPON SHOKUBAI Co., Ltd. make) of benzoguanamine-formaldehyderesins particles of 2 micrometers of mean diameters in this solution and high-speed Despa stirred and distributed by 5000rpm for 1 hour, it filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid B of an anti-dazzle property rebound ace court layer was prepared.

[0111] (Preparation of the coating liquid C for anti-dazzle property rebound ace court layers) commercial silica content UV hardening mold rebound ace court liquid (solvent presentation modification of DESORAITO Z7401, and an initiator addition article --) The product made from JSR, a solvent presentation: Methyl isobutyl ketone / methyl-ethyl-ketone =10/90 mass ratio, 65% of solid content concentration, about 68% of ZrO2 in solid content contents, a polymerization nature monomer, It is the mixture (it DPHA(s)) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in 174g of polymerization initiator content. the Nippon Kayaku Co., Ltd. make -- 56.4g and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 18.8g were added, and it diluted with methyl-ethyl-ketone 12.0g and methyl-isobutyl-ketone 29.8g further. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.62 about this solution. Furthermore, 29.4g of dispersion liquid which distributed 25% methyl-isobutyl-ketone dispersion liquid of a bridge formation acrylic particle (trade name: MX-300, Soken Chemical & Engineering make) with a mean particle diameter of 3.0 micrometers by 10000rpm in the poly TRON disperser for 30 minutes was added to this solution, and, subsequently 80.0g of dispersion liquid which distributed 30% methyl-isobutyl-ketone dispersion liquid of a bridge formation acrylic particle (trade

name: MXS-150CF, Soken Chemical & Engineering make) with a mean particle diameter of 1.5 micrometers by 10000rpm in the poly TRON disperser for 30 minutes was added. The above-mentioned mixed liquor was filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid C of an anti-dazzle property rebound ace court layer was prepared.

[0112] (Preparation of the coating liquid D for anti-dazzle property rebound ace court layers) 125g [of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate] (DPHA, Nippon Kayaku Co., Ltd. make) and bis(4-methacryloyl thiophenyl) sulfide (MPSMA, Sumitomo Seika Chemicals Co., Ltd. make) 125g was dissolved in 439g a methyl ethyl ketone / cyclohexanone =50 / 50% of mixed solvent. The solution which dissolved 5.0g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators and 3.0g (kaya KYUA DETX, Nippon Kayaku Co., Ltd. make) of photosensitizers in the 49g methyl ethyl ketone was added to the obtained solution. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.60 about this solution. After it furthermore added 10g (trade name: SX-200H, Soken Chemical & Engineering make) of bridge formation polystyrene particles of 2 micrometers of mean diameters in this solution and high-speed Despa stirred and distributed by 5000rpm for 1 hour, it filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid D of a rebound ace court layer was prepared.

[0113] (Preparation of the coating liquid E for anti-dazzle property rebound ace court layers) commercial zirconia content UV hardening mold rebound ace court liquid (DESORAITO Z7401 and the product made from JSR --) It is the mixture (it DPHA(s)) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in 48% of solid content concentration, 71% of zirconia contents, and 195g of about 20nm mean diameters. the Nippon Kayaku Co., Ltd. make -- 82g and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 45.8g -- 7.5g (the IRUGA cure 907, product made from Ciba-Geigy -) of photopolymerization initiators was diluted with a methyl ethyl ketone / cyclohexanone =50 / 348g of 50% of mixed solvents. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.59

about this solution. After it furthermore added 10g (trade name: SX-200H, Soken Chemical & Engineering make) of bridge formation polystyrene particles of 2 micrometers of mean diameters in this solution and high-speed Despa stirred and distributed by 5000rpm for 1 hour, it filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid E of an anti-dazzle property rebound ace court layer was prepared.

[0114] (Preparation of the coating liquid F for anti-dazzle property rebound ace court layers) commercial zirconia content UV hardening mold rebound ace court liquid (DESORAITO Z7401 and the product made from JSR --) It is the mixture (it DPHA(s)) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in 48% of solid content concentration, 71% of zirconia contents, and 250g of about 20nm mean diameters. the Nippon Kayaku Co., Ltd. make -- 105g and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 25.8g -- 7.5g (the IRUGA cure 907, Ciba-Geigy make) of photopolymerization initiators was diluted with a methyl ethyl ketone / cyclohexanone =50 / 384g of 50% of mixed solvents. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.61 about this solution. After it furthermore added 10g (trade name: SX-200H, Soken Chemical & Engineering make) of bridge formation polystyrene particles of 2 micrometers of mean diameters in this solution and high-speed Despa stirred and distributed by 5000rpm for 1 hour, it filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid F of an anti-dazzle property rebound ace court layer was prepared.

[0115] (Preparation of the coating liquid G for anti-dazzle property rebound ace court layers) 272g (the solvent presentation modification article of DESORAITO Z7526, the product made from JSR, a solvent presentation: methyl isobutyl ketone / methyl-ethyl-ketone =57/43 mass ratio, about 72% of solid content concentration, about 38% of SiO2 in solid content contents, a polymerization nature monomer, polymerization initiator content) of commercial silica content UV hardening mold rebound ace court liquid was diluted with methyl-isobutyl-ketone 26.2g. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.51 about this solution. further -- this solution -- the bridge formation polystyrene particle (trade name: -- SX-350H --) of 3.5 micrometers of mean diameters 44g of dispersion liquid which distributed Soken Chemical & Engineering 25% methyl-isobutyl-ketone dispersion liquid by 10000rpm in the poly TRON disperser for 30 minutes is added. Subsequently 57.8g of dispersion liquid which distributed 25% methyl-isobutyl-ketone dispersion liquid of the bridge formation polystyrene particle (trade name: SX-500H, Soken Chemical & Engineering make) of 5 micrometers of mean diameters by 10000rpm in the poly TRON disperser for 30 minutes was added. The above-mentioned mixed liquor was filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid G of an anti-dazzle property rebound ace court layer was prepared.

[0116] (Preparation of the coating liquid H for anti-dazzle property rebound ace court layers) gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 19.6g was added to 245g (the solvent presentation modification article of DESORAITO Z7526, the product made from JSR, a solvent presentation: methyl isobutyl ketone / methyl-ethyl-ketone =57/43 mass ratio, about 72% of solid content concentration, about 38% of SiO2 in solid content contents, a polymerization nature monomer, polymerization initiator content) of commercial silica content UV hardening mold rebound ace court liquid, and it diluted with methyl-isobutyl-ketone 33.6g further. The refractive index of spreading and the paint film obtained by carrying out ultraviolet curing was 1.51 about this solution. further -- this solution -- the bridge formation polystyrene particle (trade name: -- SX-350H --) of 3.5 micrometers of mean diameters 44g of dispersion liquid which distributed Soken Chemical & Engineering 25% methyl-isobutyl-ketone dispersion liquid by 10000rpm in the poly TRON disperser for 30 minutes is added. Subsequently 57.8g of dispersion liquid which distributed 25% methyl-isobutyl-ketone dispersion liquid of the bridge formation polystyrene particle (trade name: SX-500H, Soken Chemical & Engineering make) of 5 micrometers of mean diameters by 10000rpm in the poly TRON disperser for 30 minutes was added. The above-mentioned mixed liquor was filtered with the filter made from polypropylene of 30 micrometers of apertures, and the coating liquid H of an anti-dazzle property rebound ace court layer was prepared.

[0117] (Preparation of the coating liquid I for anti-dazzle property rebound ace court layers) The coating liquid I for anti-dazzle property rebound ace court layers also including an addition as well as [completely] coating liquid H was prepared except having changed the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid H for anti-dazzle property rebound ace court layers into gamma-glycidoxypropyltrimetoxysilane (KBM-403 Shin-Etsu Chemical Co., Ltd. make).

[0118] (Preparation of the coating liquid J for anti-dazzle property rebound ace court layers) The coating liquid J for anti-dazzle property rebound ace court layers also including an addition as well as [completely] coating liquid H was prepared except having changed the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid H for anti-dazzle property rebound ace court layers into alt.silicic-acid tetraethyl (product made from Wako Pure Chem Industry).

[0119] (Preparation of the coating liquid K for anti-dazzle property rebound ace court layers) The coating liquid K for anti-dazzle property rebound ace court layers also including an addition as well as [completely] coating liquid H was prepared except having changed the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid H for anti-dazzle property rebound ace court layers into gamma-methacryloxpropyl trimethoxy silane (KBM-503 Shin-Etsu Chemical Co., Ltd. make).

[0120] (Preparation of the coating liquid A for low refractive-index layers) The heat cross-linking fluorine-containing polymer of a refractive index 1.42 (JN-7228 and 6% of solid content concentration) It is a silica sol (MEK-ST and the mean particle diameter of 10-20nm) to 177made from JSR g. 30% of solid content concentration, and the Nissan chemistry company make -- 15.2g, gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 29.3g, and methyl-ethyl-ketone 95g -- Cyclohexanone 9.0g was filtered with the filter made from polypropylene of 1 micrometer of apertures after addition and stirring, and the coating liquid A for low refractive-index layers was prepared.

[0121] (Preparation of the coating liquid B for low refractive-index layers) 4.6g [of magnesium fluoride particles with a mean particle diameter of 30nm] and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 29.3g and methyl-ethyl-ketone 106g, and cyclohexanone 9.0g were filtered with the filter made from polypropylene of 5 micrometers of apertures after addition and stirring to heat cross-linking fluorine-containing polymer (JN-7223, 6% [of solid content concentration], product made from JSR) 177g of a refractive index 1.40, and the coating liquid B for low refractive-index layers was prepared.

[0122] (Preparation of the coating liquid C for low refractive-index layers) The coating liquid C for low refractive-index layers as well as [completely] the coating liquid A for low refractive-index layers was prepared except having changed the amount of the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid A for low refractive-index layers into 19.5g.

[0123] (Preparation of the coating liquid D for low refractive-index layers) The coating liquid D for low refractive-index layers also including an addition as well as [completely] the coating liquid A for low refractive-index layers was prepared except having changed the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid A for low refractive-index layers into gamma-glycidoxypropyltrimetoxysilane (KBM-403 Shin-Etsu Chemical Co., Ltd. make).

[0124] (Preparation of the coating liquid E for low refractive-index layers) The coating liquid E for low refractive-index layers also including an addition as well as [completely] the coating liquid A for low refractive-index layers was prepared except having changed ***** and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid A for low refractive-index layers into alt.silicic-acid tetraethyl (Wako Pure Chem make).

[0125] (Preparation of the coating liquid F for low refractive-index layers) The coating liquid F for low refractive-index layers also including an addition as well as [completely] the coating liquid A for low refractive-index layers was prepared except having changed the above and gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) of the coating liquid A for low refractive-index layers into gamma-methacryloxpropyl trimethoxy silane (KBM-503 Shin-Etsu Chemical Co., Ltd. make).

[0126] (Preparation of the coating liquid G for low refractive-index layers) the heat cross-linking fluorine-containing polymer (the solvent presentation modification article of JN7228 --) of a refractive index 1.42 Solvent presentation: Methyl-isobutyl-ketone / 1-butanol =85/15 mass ratio, It is a silica sol (MEK-ST) to 10% of solid content concentration, and 106made from JSR g. The mean particle diameter of 10-20nm, 30% of solid content concentration, 15.2by Nissan chemistry company g, gamma-acryloxyprophyltrimethoxysilane (KBM-5103 Shin-Etsu Chemical Co., Ltd. make) 29.3g and methyl-isobutyl-ketone 166g, Cyclohexanone 9.0g was filtered with the filter made from polypropylene of 1 micrometer of apertures after addition and stirring, and the coating liquid G for low refractive-index layers was prepared.

[0127] (Preparation of the coating liquid H for low refractive-index layers for a comparison) Silica sol (MEK-ST, 10-20nm [of mean diameters], 30% [of solid content concentration], Nissan chemistry company make) 15.2g and methyl-ethyl-ketone 116g, and cyclohexanone 9.0g were filtered with the filter made from polypropylene of 1 micrometer of apertures after addition and stirring to heat cross-linking fluorine-containing polymer (JN-7228, 6% [of solid content concentration], product made from JSR) 177g of a refractive index 1.42, and the coating liquid for low refractive-index layers was prepared.

[0128] (Preparation of the coating liquid I for low refractive-index layers for a comparison) 4.6g [of magnesium fluoride particles of 30nm of mean diameters] and methyl-ethyl-ketone 126.6g and cyclohexanone 9.0g were filtered with the filter made from polypropylene of 5 micrometers of apertures after addition and stirring to heat cross-linking fluorine-containing polymer (JN-7223, 6% [of solid content concentration], product made from JSR) 177g of a refractive index 1.40, and the coating liquid I for low refractive-index layers was prepared.

[0129] (Preparation of the coating liquid J for low refractive-index layers for a comparison) the heat cross-linking fluorine-containing polymer (the solvent presentation modification article of JN7228 --) of a refractive index 1.42 Solvent presentation: Methyl-isobutyl-ketone / 1-butanol =85/15 mass ratio, It is a silica sol (MEK-ST) to 10% of solid content concentration, and 106made from JSR g. 10-20nm of mean diameters, 30% of solid content concentration, and the Nissan chemistry company make - 15.2g and methyl-isobutyl-ketone 187g, and cyclohexanone 9.0g were filtered with the filter made from polypropylene of 1 micrometer of apertures after addition and stirring, and the coating liquid J for low refractive-index layers was prepared. [0130] (Preparation of the coating liquid for medium refractive index layers, and high refractive-index layer coating liquid) (Preparation of titanium-dioxide dispersion liquid) Dynomill distributed 250g [of titanium-dioxide particles] (trade name: TTO-55B, Ishihara Sangyo Kaisha, Ltd. make), and crosslinking reaction nature machine content anionic polymer (** 7) 37.5g, cationic monomer (trade name: DMAEA, Kohjin Co., Ltd. make) 2.5g, and cyclohexanone 710g, and titanium-dioxide dispersion liquid with a weight mean diameter of 65nm were prepared.

[O131]
[Formula 7]
$$CH_3$$
 CH_3
 CH_2
 CH

[0132] (Preparation of the coating liquid A for medium refractive index layers) To the 155.2g of the above-mentioned titanium-dioxide dispersion liquid, 89.5g [of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate] (DPHA, Nippon Kayaku Co., Ltd. make), 4.68g [of photopolymerization initiators] (IRUGA cure 907, Ciba-Geigy Japan make), 1.56g [of photosensitizers] (kaya KYUA DETX, Nippon Kayaku Co., Ltd. make), and methyl-ethyl-ketone 770.4g and a 2983.0 g cyclohexanone were added and stirred. It filtered with the filter made from polypropylene of 0.4 micrometers of apertures, and the coating liquid A for medium refractive index layers was prepared.

[0133] (Preparation of the coating liquid A for high refractive-index layers) To the 985.7g of the above-mentioned titanium-dioxide dispersion liquid, 48.8g [of mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate] (DPHA, Nippon Kayaku Co., Ltd. make), 4.03g [of photopolymerization initiators] (IRUGA cure 907, Ciba-Geigy Japan make), 1.35g [of photosensitizers] (kaya cure-DETX, Nippon Kayaku Co., Ltd. make), and methyl-ethyl-ketone 622.5g and a 1865.0 g cyclohexanone were added and stirred. It filtered with the filter made from polypropylene of 0.4 micrometers of apertures, and the coating liquid A for high refractive-index layers was prepared.

[0134] (Preparation of the coating liquid B for high refractive-index layers) To the 985.7g of the above-mentioned titanium-dioxide dispersion liquid Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (it DPHA(s)) 48.8by Nippon Kayaku Co., Ltd. g, 33.5g (KBM-5103, Shin-Etsu Chemical Co., Ltd. make) of acrylic radical content silane coupling agents, 4.03g [of photopolymerization initiators] (IRUGA cure 907, Ciba-Geigy Japan make), 1.35g [of photosensitizers] (kaya cure-DETX, Nippon Kayaku Co., Ltd. make), and methyl-ethyl-ketone 622.5g and a 1865.0 g cyclohexanone were added and stirred. It filtered with the filter made from polypropylene of 0.4 micrometers of apertures, and the coating liquid B for high refractive-index layers was prepared.

[0135] It is the following, each was made, [example 1] rebound ace court layer A-H, anti-dazzle property rebound ace court layer A-K, low refractive-index layer A-G, a medium refractive index layer A, and the high refractive-index layers A and B were painted, and the acid-resisting film of this invention was produced. Moreover, the low refractive-index layer for a comparison was painted, and the acid-resisting film for a comparison was produced. The combination of a laminating went as the publication to Table 1.

[0136] (Samples 1-19, examples 30-33 of a comparison)

(1) It is being begun with a roll gestalt to roll the triacetyl cellulose film (TAC-TD80U, Fuji Photo Film Co., Ltd. make) of the thickness of 80 micrometers of painting of a rebound ace court layer. The micro gravure roll with a diameter of 50mm and doctor blade which have a gravure pattern with a 180 [/inch] and a depth of 40 micrometers are used. the above-mentioned coating liquid for rebound ace court layers -- the number of lines -- It applies the condition for gravure roll rotational frequency 30rpm and 10m/of bearer rates. 120 degrees C and after drying for 2 minutes, the air-cooling metal halide lamp (product made from Eye Graphics) of 160 W/cm is used under the nitrogen purge of 0.1% or less of oxygen densities. The ultraviolet rays of illuminance 400 mW/cm2 and exposure 300 mJ/cm2 were irradiated, the spreading layer was stiffened, and the rebound ace court layer with a thickness of 2.5 micrometers was formed and rolled round.

(2) It is being begun again to roll the triacetyl cellulose film which painted the painting this rebound ace court layer of an antidazzle property rebound ace court layer. The micro gravure roll with a diameter of 50mm and doctor blade which have a gravure pattern with a 180 [/inch] and a depth of 40 micrometers are used. the above-mentioned coating liquid for anti-dazzle property rebound ace court layers -- the number of lines -- It applies the condition for gravure roll rotational frequency 30rpm and 5m/of bearer rates. The air-cooling metal halide lamp (product made from Eye Graphics) of 160 W/cm is used under a nitrogen purge after 4-minute desiccation at 120 degrees C. The ultraviolet rays of 2 and exposure 300 mJ/cm2 were irradiated the illuminance of 400mW/cm, the spreading layer was stiffened, and the anti-dazzle property rebound ace court layer with a thickness of 2.5 micrometers was formed and rolled round.

(3) It is being begun again to roll the triacetyl cellulose film which painted the painting this rebound ace court layer of a low refractive-index layer, and the anti-dazzle property rebound ace court layer. The micro gravure roll with a diameter of 50mm and doctor blade which have a gravure pattern with a 180 [/inch] and a depth of 40 micrometers are used. the above-mentioned coating liquid for low refractive-index layers -- the number of lines -- It applies the condition for gravure roll rotational frequency under a nitrogen purge after 2-minute desiccation at 80 degrees C. The ultraviolet rays of 2 and exposure 300 mJ/cm2 were irradiated the illuminance of 400mW/cm, heat bridge formation was carried out for 10 minutes at 140 degrees C, and the low refractive-index layer with a thickness of 0.096 micrometers was formed and rolled round.

(1) The above-mentioned coating liquid for rebound ace court layers was used for the triacetyl cellulose film (TAC-TD80U, Fuji Photo Film Co., Ltd. make) of the thickness of 80 micrometers of painting of a rebound ace court layer, and the gravure coating machine was applied to it. After drying at 100 degrees C, using the air-cooling metal halide lamp (product made from Eye Graphics) of 160 W/cm, the ultraviolet rays of illuminance 400 mW/cm2 and exposure 300 mJ/cm2 were irradiated, the spreading layer was stiffened, carrying out a nitrogen purge so that an oxygen density may become an ambient atmosphere below 0.1 volume %, and the rebound ace court layer with a thickness of 3.5 micrometers was formed.

(2) On the painting rebound ace court layer of a medium refractive index layer, the coating liquid for medium refractive index layers was used, and the gravure coating machine was applied. After drying at 100 degrees C, using the air-cooling metal halide lamp (product made from Eye Graphics) of 240 W/cm, the ultraviolet rays of illuminance 550 mW/cm2 and exposure 600 mJ/cm2 were irradiated, the spreading layer was stiffened, carrying out a nitrogen purge so that an oxygen density may become an ambient

atmosphere below 0.1 volume %, and the medium refractive index layer (a refractive index 1.63, 67nm of thickness) was formed. (3) On the painting medium refractive index layer of a high refractive-index layer, the coating liquid for high refractive-index layers was used, and the gravure coating machine was applied. After drying at 100 degrees C, using the air-cooling metal halide lamp (product made from Eye Graphics) of 240 W/cm, the ultraviolet rays of illuminance 550 mW/cm2 and exposure 600 mJ/cm2 were irradiated, the spreading layer was stiffened, carrying out a nitrogen purge so that an oxygen density may become an ambient atmosphere below 0.1 volume %, and the high refractive-index layer (a refractive index 1.90, 107nm of thickness) was formed. (4) On the painting quantity refractive-index layer of a low refractive-index layer, the coating liquid for low refractive-index layers was used, and the gravure coating machine was applied. Carrying out a nitrogen purge so that an oxygen density may become an ambient atmosphere below 2 volume %, after drying at 80 degrees C, using the air-cooling metal halide lamp (product made from Eye Graphics) of 160 W/cm, the ultraviolet rays of illuminance 400 mW/cm2 and exposure 300 mJ/cm2 were irradiated, it heated for 10 minutes at 120 degrees C, and the low refractive-index layer (a refractive index 1.43, 86nm of thickness) was formed.

Table 11

L	Table I					
	试料No.	ハートコート層	防眩性ハートコート	中屈折率層	高屈折率層	低屈折塞層
	1(本発明)	なし	Α	なし	なし	A
L	2(本発明)	なし	В	なし	なし	A
L	3(本発明)	なし	С	なし	なし	A
I	4(本発明)	なし	D	なし	なし	C
	4(本発明) 5(本発明)	なし	E	なし	なし	D
L	6(本発明)	なし	F	なし	なし	E
L	7(本発明)	なし	G	なし	なし	Ā
	8(本発明)	なし	Н	なし	なし	A
	9(本発明)	なし	I	なし	なし	A
L	10(本発明)	なし	J	なし	なし	A
Ŀ	ロ(本発明)	なし	К	なし	なし	A
	2(本発明)	A	A	なし	なし	A
	3(本発明)	В	Α	なし	なし	A
	4(本発明)	C	Α	なし	なし	Α
L	5(本発明)	D	Α	なし	なし	A
	6(本発明)	E	F	なし	なし	A
Ц	7(本発明)	F	F	なし	なし	A
	8(本発明)	G	なし	なし	なし	A
	9(本発明)	н	なし	なし	なし	_ A
12	0(本発明)	Α	なし	Α	A	G
12	1(本発明)	В	なし	A	Α	G
12	2(本発明)	E	なし	A	В	G
12	3(本発明)	F	なし	Α	В	G
13	4(本発明)	Α	なし	Α	Α	Α
12	5(本発明)	_ A	なし	Α	A	В
Ę	6(本発明)	_ A	なし	Α	Α	С
12	7(本発明)	. A	なし	Α	A	D
Ķ	8(本発明)	A	なし	Α	A	E
Ľ	9(本発明)	A	なし	Α	Α	F
Ę	0(比較例)	なし	Н	なし	なし	н
Ķ	1(比較例)	なし	Н	なし	なし	
ř	2(比較例)	A	Α	なし	なし	Н
13	3(比較例) 4(比較例)	A	A	なし	なし	1
3	4(戊穀例)	Α	なし	A	Α	J

[0139] (Evaluation of an antireflection film) The following items were evaluated about the obtained film.

(1) In the 380-780nm wavelength field, the spectral reflectance in 5 degrees of incident angles was measured using the average reflectance spectrophotometer (Jasco Corp. make). The average reflectance of 450-650nm was used for the result.

(2) Hayes of the Hayes profit **** film -- hazemeter MODEL It measured using 1001DP (Nippon Denshoku Industries Co., Ltd.

(3) It is JIS as an index of pencil degree-of-hardness evaluation damage resistance. K Pencil degree-of-hardness evaluation of a publication was performed to 5400. JIS after carrying out gas conditioning of the antireflection film at the temperature of 25 degrees C, and 60% of humidity RH for 2 hours S In evaluation of n= 5, a blemish is not accepted at all using the pencil for a trial of 3H specified to 6006 by the 1kg load. : In evaluation of On=5 a blemish 1 or two -- evaluation of :**n=5 -- setting -- a blemish -- three or more: As a contamination-resistant index of x (4) contact angle and a fingerprint adhesion evaluation front face, after carrying out gas conditioning of the optical material at the temperature of 25 degrees C, and 60% of humidity RH for 2 hours, the contact angle over water was measured. Moreover, after making the fingerprint adhere to this sample front face, the condition when wiping it off by the cleaning cross was observed, and fingerprint adhesion was evaluated as follows.

A fingerprint can be wiped off completely.: O fingerprint can be a little seen.: ** fingerprint can hardly be wiped off.: x [0140] (5) The dynamic friction coefficient estimated as an index of dynamic friction coefficient measurement surface slipping nature. The dynamic friction coefficient used the value measured with the HEIDON-14 dynamical-friction measurement machine in 5mmphi stainless steel ball, 100g of loads, and rate 60 cm/min, after carrying out gas conditioning of the sample at 25 degrees C and 60% of relative humidity for 2 hours.

(6) The unreserved fluorescent lamp (8000 cds/m2) without a louver was projected on the anti-dazzle property film which carried out anti-dazzle property evaluation creation, and the following criteria estimated extent of dotage of the reflected image. The profile of a fluorescent lamp is not known at all.: The profile of O fluorescent lamp is known slightly.: A profile is discriminable although O fluorescent lamp is fading.: ** fluorescent lamp hardly fades.: The fluorescent lamp diffused light with a louver was projected on the anti-dazzle property film which carried out x (7) flash evaluation creation, and the following criteria

estimated the surface flash.

a flash is hardly seen: O -- there is a flash slightly: There is a flash of size discriminable by ** eye.: x [0141] (8) It tested by rubbing on condition that the following using the steel wool ****** resistance evaluation rubbing circuit tester. Sample gas conditioning conditions: 25 degrees C, 60%RH, 2 hours or more.

It rubs and is **.: The circuit tester in contact with a sample rubbed, steel wool (the product made from Japanese steel wool, GEREDO No.0000) was wound around the point (1cmx1cm), and band immobilization was carried out so that it might not move. migration length (one way): -- 13cm -- rubbing -- rate:13cm/second and load:200 g/cm2 and point touch-area:1cmx1cm -- rubbing -- count:10 round trip.

Oily black ink was applied to the background of the sample which it finished rubbing, and by the reflected light, visual observation was carried out, it rubbed, and the following criteria estimated the blemish of a part.

Even if it sees very carefully, a blemish is not in sight at all.: O When it sees very carefully, a slightly weak blemish is in sight.: O A weak blemish is in sight.: The blemish of whenever [middle / of O**] is in sight.: A strong blemish is in sight only by ** Having a look.: x [0142] (9) The water cotton-swab ****** resistance evaluation rubbing circuit tester rubbed, the cotton swab was fixed to the point, and the upper and lower sides of a sample were fixed with a clip in the smooth pan, and at the room temperature of 25 degrees C, the sample and the cotton swab were dipped in 25-degree C water, it rubbed to the cotton swab, having applied the 300g load, the count was changed and rubbed, and it tested. It rubs and conditions are as follows. It rubs and is distance (one way):1cm. It rubbed and rate:about 2 round trips /, and **** grinding ****** sample was observed, it rubbed and the count to which film peeling took place estimated resistance as follows.

It is film peeling by zero to 10 round trip.: It is film peeling by ten to x30 round trip.: It is film peeling by 30 to **x50 round trip.: It is film peeling by 50 to **100 round trip.: It is film peeling by 100 to O**150 round trip.: O150 round trip also has no film peeling.: O [0143] (10) Golden vacuum evaporationo processing of the evaluation sample front face of the 2-dimensional network structure was carried out, the surface photograph was taken by SEM, and the existence of the 2-dimensional network structure was checked. About the sample which has the 2-dimensional network structure, it asked for average hole area (micrometer2) and hole area % (%) using the SEM photograph. SEM photography was performed on condition that one 5,000 times the scale factor of this, and area of 17.4x23.0 micrometers 2**, and was made into the evaluation value with the average of ten visual fields.

[0144] A result is shown in Table 2 and 3. The samples 1-29 of this invention all had the 2-dimensional network structure by the non-subtlety particle in the low refractive-index layer of the outermost layer, and, for this reason, were excellent in abrasion-proof nature, such as steel wool ****** resistance and water cotton-swab ****** resistance, and its other engine performance was also good. On the other hand, the examples 30-34 of a comparison all do not form the 2-dimensional network structure, but, for this reason, are insufficient of abrasion-proof nature, such as steel wool ****** resistance and water cotton-swab ****** resistance.

[Table 2]

成料No.	網目構造の有無	平均空孔面積	空孔面積%
L		(µm)2	%
1(本発明)	有り	3.1	60
2(本発明)	有り	2.0	48
3(本発明)	有り	3.8	55
4(本発明)	有り	3.8	64
5(本発明)	有り	4.5	55
6(本発明)	有り	5.3	62
7(本発明)	有り	4.5	65
8(本発明)	有り	4.5	60
9(本発明)	有り	5.3	68
10(本発明)	有り	4.5	55
11(本発明)	有り	4.5	63
12(本発明)	有り	3.8	58
13(本発明)	有り	7.1	68
14(本発明)	有り	6.2	66
15(本発明)	有り	4.5	63
16(本発明)	有り	3.1	56
17(本発明)	有り	3.8	60
18(本発明)	有り	4.5	70
19(本発明)	有り	7.1	72
20(本発明)	有り 有り	6.2	68
21(本発明)	有り	3.1	63
22(本発明)	有り	3.1	66
23(本発明)	有り	4.5	70
24(本発明)	有り	3.1	58
25(本発明)	有り	2.0	48
26(本発明)	有り	6.2	66
27(本発明)	有り	4.5	67
28(本発明)	有り	4.5	66
29(本発明)	有り	7.1	68
30(比較例)	無し		-
31(比較例)	無し		_
32(比較例)	無し	-	-
33(比較例)	無し	-	-
34(比較例)	無し		

[0146] [Table 3]

試料No.	平均反射率%	<u>^</u> 47 %	的口板度	接触角	指紋付倉修	विश्वास्त्रका	防液性	11 571	スチールウールこすり耐性	1 ± 10 18 = ± 11 × 18
1(卒盛明)	1.5	13	0	102	0	0.09	6	16	O	NAME A AMILE
2(卒筦明)	1.3	13	0	102	Ó	0.09	8	1 8	8	8
3(本発明)	1.3	55	0	103	Ö	0.09	ő	1 8	- ŏ -	ŏ
4(本舞明)	1.5	13	Ö	102	8	0.09	6	18	- X	8
5(本発明)	1.6	13	0	102	Ö	0.09	8	ŏ	⊗	6
6(本発明)	1.5	13	0	102	Ö	0.09	8	 75 	8	8
7(卒発明)	1.9	41	0	102	0	0.09		ið	Ö	Ö
8(卒発明)	1.9	41	0	102	Ö	0.09	6	ŏ	<u> </u>	*
9(本舜明)	2	42	0	102	Ö	0.09	6	18	- Ö	8
10(本発明)	2	42	0	102	0	0.09	6	181	0	6
11(交髡明)	1.9	42	0	102	Ŏ	0.09	8	l ŏ l	<u> </u>	0
12(本発明)	1.5	13	0	102	Ö	0.09	6	1 8		Ö
13(本発明)	1.6	12	0	102	Ó	0.09	6	l ŏ l	- 8 -	8
14(卒発明)	1.5	13	0	102	Ô	0.09	ő	ŏ	- 8	8
15(本発明)	1.6	12	_0	102	Ó	0.09	0	ŏ	ŏ	ŏ
16(本発明)	1.6	14	0	102	Ö	0.09	Ö	l ŏ l	<u> </u>	<u> </u>
17(本発明)	1.6	14	0	102	Ô	0.09	<u></u>	ŏ	0	6
18(本発明)	1.8	0.2	0	102	0	0.09	_	<u> </u>	Ö	Ö
19(本発明)	1.8	0.2	0	102	Ô	0.09			Ó	8
20(本発明)	0.3	0.3	0	102	0	0.08		_	ő	ŏ
21(本発明)	0.3	0.3	0	102	0	0.09			ŏ	ŏ
22(本発明)	0.3	0.3	Ö	102	Ö	0.09			<u> </u>	60
23(本発明)	0.3	0.3	0	102	0	0.09	_	_	<u> </u>	6
24(本発明)	0.3	0.3	0	102	0	0.09	_	_	Ö	ð
25(本発明)	0.3	0.3	0	102	0	0.09	_	_	ŏ	ŏ
26(本発明)	0.3	0.3	0	102	0	0.09	_		Ŏ	ŏ
27(本発明)	0.3	0.3	Ö	102	Q	0.09		_	ŏ	ŏ
28(交発明)	0.3	0.3	0	102	0	0.09	_	_	ŏ	ŏ
28(本発明)	0.3	0.3	0	102	0	0.09		_	ŏ	ŏ
30(比較例)	1.9	41	0	103	0	0.08	0	0	ΟΔ	ж
31(比較例)	1.7	41	0	104	0	0.08	0	ŏ	ÖΔ	×
32(比较例)	1.5	14	0	103	0	0.08	Ó	Õ	ŎΔ	×
33(比较例)	1.3	14	0	104	0	0.08	Õ	Ö	$-\frac{\delta \overline{\Delta}}{\overline{\Delta}}$	×
34(比较例)	0.3	0.2	0	103	0	0.08			ÖΔ	×

[0147] Next, the polarizing plate with acid resisting was created using the film of the samples 1-29 of this invention. When the liquid crystal display which has arranged the acid-resisting layer to the outermost layer using this polarizing plate was produced, the contrast which was excellent since there was reflected [little / outdoor daylight] was acquired, and samples 1-17 had further the visibility which was not conspicuous with anti-dazzle property, and was excellent. [of a reflected image] When the liquid crystal display was produced combining the optical compensation film which consists of optical anisotropic layers which fixed the orientation of a polarizer, a transparence base material, and discotheque liquid crystal in the sample of above-mentioned this invention still more nearly similarly, and the polarizing plate which becomes a list from a light-scattering layer and visibility was evaluated, there was reflected [little / outdoor daylight], the outstanding contrast was acquired and samples 1-17 had further the visibility which was not conspicuous with anti-dazzle property, and was excellent. [of a reflected image] [0148] (Saponification processing of an acid-resisting film) The following processings were performed about said samples 1-29. The 1.5-N sodium-hydroxide water solution was prepared. After the produced acid-resisting film was immersed in the above-mentioned sodium-hydroxide water solution for 2 minutes, it was immersed in water and the sodium-hydroxide water solution was fully flushed. Subsequently, after being immersed in the above-mentioned dilute-sulfuric-acid water solution for 1 minute, it was immersed in water and the dilute-

sulfuric-acid water solution was fully flushed. Furthermore, the acid-resisting film was fully dried by 100#C. Thus, the processed [saponification] acid-resisting film was produced.

[0149] a [example 2] PVA film -- the water solution of iodine 2.0 g/l and potassium iodide 4.0 g/l -- 25 degrees C -- 240 seconds -- being immersed -- further -- the water solution of boric-acid 10 g/l -- 25 degrees C -- the tenter drawing machine of the gestalt of Fig.2 of the United States patent public presentation No. 8840 [2002 to] after 60-second immersion -- introducing -- 5.3 times -extending -- a tenter -- the extension direction -- receiving -- said -- like Fig.2, you made it crooked and width of face was kept constant after that. It seceded from the back tenter dried in 80-degree-C ambient atmosphere. The bearer rate difference of a tenter clip on either side was less than 0.05%, and the angle which the center line of the film introduced and the center line of the film sent to degree process make was 46 degrees. |L1-L2| is 0.7m, W is 0.7m, and the relation of |L1-L2|=W was suited here. 45 degree of real extension direction Ax-Cx in a tenter outlet inclined to the center line 22 of the film sent to degree process. Siwa in a tenter outlet and film deformation were not observed. Furthermore, it dried at Fuji Photo Film FUJITAKKU (cellulose triacetate, retardation value of 3.0nm) which carried out saponification processing, lamination, and 80 more degrees C by having used the PVA(PVA[by Kuraray Co., Ltd.]- 117 H)3% water solution as adhesives, and the polarizing plate with an effective width of 650mm was obtained. 45 degrees of absorption shaft orientations of the obtained polarizing plate inclined to the longitudinal direction. The permeability in 550nm of this polarizing plate was 43.7%, and degree of polarization was 99.97%. When it furthermore judged in 310x233mm size like Fig.8 of U.S. Pat. No. 2002 -8840 [No.], the polarizing plate with which 45-degree absorption shaft inclined to the side at 91.5% of area effectiveness was obtained. Next, the film in which the samples 1-29 of this invention of an example 1 carried out saponification processing was stuck with the above-mentioned polarizing plate, and the polarizing plate with acid resisting was produced. When the liquid crystal display which has arranged the acid-resisting layer to the outermost layer using this polarizing plate was produced, the contrast which was excellent since there was reflected [no / outdoor daylight] was acquired, and samples 1-17 had further the visibility which was not conspicuous with anti-dazzle property, and was excellent. [of a reflected image]

[0150] Instead of being "Fuji Photo Film FUJITAKKU (cellulose triacetate, retardation value of 3.0nm)" in polarizing plate production toward which 45-degree absorption shaft of the [example 3] above-mentioned example 2 inclined, the film in which the samples 1-29 of this invention of an example 1 carried out saponification processing was made to rival, and the polarizing

plate with acid resisting was produced. When the liquid crystal display which has arranged the acid-resisting layer to the outermost layer using this polarizing plate was produced, the contrast which was excellent like the example 2 since there was reflected [no / outdoor daylight] was acquired, and samples 1-17 had further the visibility which was not conspicuous with anti-dazzle property, and was excellent. [of a reflected image]

[0151] The samples 1-29 of this invention produced in the [example 4] example 1 1.5 conventions, After being immersed for 2 minutes into a 55-degree C NaOH water solution, neutralize and rinse and saponification processing of the triacetyl cellulose side of the rear face of a film is carried out. Both sides of the polarizer which extended [was made to adsorb it and] and produced iodine at polyvinyl alcohol were pasted up and protected on the film which carried out saponification processing of the triacetyl cellulose film (TAC-TD80U, Fuji Photo Film Co., Ltd. make) with a thickness of 80 micrometers on these conditions, and the polarizing plate was produced. Thus, when it stuck with the polarizing plate by the side of a check by looking of the liquid crystal display (it has D-BEF made from Sumitomo 3M which has a polarization selection layer and which is a polarization separation film between a back light and a liquid crystal cell) of the notebook computer of transparency mold TN liquid crystal display loading and the produced polarizing plate was replaced with so that an antireflection film side might serve as the outermost surface, there was reflected [very little / a background] and the very high display of display grace was obtained. [0152] The protection film by the side of the liquid crystal cell of the polarizing plate by the side of a check by looking of the transparency mold TN liquid crystal cell which stuck the samples 1-29 of this invention produced in the [example 5] example 1, And the disk side of a discotheque structural unit leans to the protection film by the side of the liquid crystal cell of the polarizing plate by the side of a back light to the transparence base material side. And the include angle of the disk side of this discotheque structural unit and a transparence base material side to make the angle-of-visibility expansion film (wide view film SA-12B --) which has the optical compensation layer which is changing in the depth direction of an optical anisotropic layer When the Fuji Photo Film Co., Ltd. make was used, it excelled in the contrast in a ** room, and the vertical and horizontal angle of visibility was very large, it excelled in visibility extremely, and the high liquid crystal display of display grace was obtained. [0153] When sticking the samples 1-29 of this invention produced in the [example 6] example 1 through the binder on the glass plate of the front face of an organic electroluminescence display, reflection in a glass front face is suppressed and the display with high visibility might be obtained.

[0154] The polarizing plate with an one side acid-resisting film was produced using the samples 1-29 of this invention produced in the [example 7] example 1, when lambda/4 plate was stuck on the opposite side of the side which has the antireflection film of a polarizing plate at the glass plate of the front face of lamination and an organic electroluminescence display, surface reflection and the reflection from the interior of surface glass were cut, and the high display of visibility was obtained extremely.

[Effect of the Invention] By making the 2-dimensional network structure by the non-subtlety particle of this invention form, the acid-resisting film which has good abrasion-proof nature and acid resistibility was able to be obtained. By using this acid-resisting film for the outermost layer of a polarizing plate protection film and an image display device, it excelled in abrasion-proof nature and visibility, and the high display of display grace was able to be obtained.

[Translation done.]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特期2003-255103 (P2003-255103A)

(43)公開日 平成15年9月10日(2003.9.10)

(51) Int.Cl. ⁷		識別記号		F I			Ť	-7]-ド(参考)
G 0 2 B	1/11		I	3 3 2 B	7/02		1.03	2H042
B32B	7/02	103		02B	5/02		В	2H049
G 0 2 B	5/02				5/30			2H091
	5/30		(002F	1/1335		500	2 K 0 0 9
G02F	1/1335	500					510	4F100
			審査請求 未請求	₹ 請求項	頁の数 4	OL	(全 77 頁)	最終頁に続く

(21) 出願番号

特願2002-54179(P2002-54179)

(22) 出顧日

平成14年2月28日(2002.2.28)

(71)出願人 000005201

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 外園 裕久

神奈川県南足柄市中羽210番地 富士写真

フイルム株式会社内

(74)代理人 100105647

弁理士 小栗 昌平 (外4名)

最終頁に続く

(54) 【発明の名称】 反射防止フィルム、偏光板および画像表示装置

(57)【要約】

【課題】 反射率が低く、耐傷性に優れた、反射防止フ ィルムもしくはそれを用いた画像表示装置を提供する。 【解決手段】 透明支持体上に、透明支持体よりも低い 屈折率を有する低屈折率層を有し、低屈折率層が無機微 粒子を含有し、無機微粒子が二次元網目状構造を形成す ることを特徴とする反射防止フィルム。

【特許請求の範囲】

【請求項1】 透明支持体上に、透明支持体よりも低い 屈折率を有する低屈折率層を有し、低屈折率層が無機微 粒子を含有し、無機微粒子が二次元網目状構造を形成す ることを特徴とする反射防止フィルム。

【請求項2】 透明支持体上に、透明支持体よりも低い 屈折率を有する低屈折率層を有し、低屈折率層が無機微 粒子とカップリング剤を含有することを特徴とする反射 防止フィルム。

【請求項3】 請求項1または2に記載の反射防止フィルムを少なくとも片面に有することを特徴とする偏光板【請求項4】 請求項1もしくは2に記載の反射防止フィルム、または請求項3に記載の偏光板を低屈折率層がディスプレイの最表層になるように用いたことを特徴とする画像表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、反射防止フイルム に関する。特に本発明は、偏光板あるいは液晶表示装置 に有利に用いることができる反射防止フイルムに関す ス

[0002]

【従来の技術】反射防止フィルムは一般に、陰極管表示装置(CRT)、プラズマディスプレイパネル(PDP)や液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減するディスプレイの最表面に配置される

【0003】反射防止フィルムの形成法として、透明支持体上に光学的機能層を塗布により形成する方法は、一般に知られている。反射防止のためには、透明支持体の屈折率よりも低い屈折率を有する層(低屈折率層)を設ける、透明支持体上に高屈折率層を設け、その上に低屈折率層を設ける、等の方法により反射率を下げることができる。このような塗布による反射防止フィルムは、連続で生産できるため、大量生産に向いている。

【0004】また、像の映り込みを表面凹凸による散乱を利用して低下させる防眩技術を塗布による反射防止フィルムに適用する方法も一般に知られている。方法としては、表面凹凸を有する支持体上に反射防止層を塗布する方法や、表面凹凸を形成するためのマット粒子を反射防止層に導入する方法、および、反射防止フィルムをエンボス加工することにより表面凹凸を形成する方法、などがある。

[0005]

【発明が解決しようとする課題】透明支持体上に透明支持体の屈折率よりも低い屈折率を有する層(低屈折率層)のみを有する反射防止フィルムにおいて、反射率を低減するためには低屈折率層を十分に低屈折率化する必要が生じる。例えばトリアセチルセルロースを支持体と

し、ジペンタエリスリトールへキサアクリレートのUV 硬化被膜をハードコート層とする反射防止フィルムで450 nmから650 nmにおける平均反射率を1.6%以下にするためには屈折率を1.40以下にしなければならない。屈折率1.40以下の素材としては無機物ではフッ化マグネシウムやフッ化カルシウム、有機物ではフッ素含率の大きい含フッ素化合物が挙げられるが、これらフッ素化合物は凝集力不足および基材との密着不足のためディスプレイの最表面に配置するフィルムとしては耐傷性が不足していた。

【0006】本発明の目的は、反射率が低く、耐傷性に 優れた、反射防止フィルムもしくはその反射防止フィル ムを用いた画像表示装置を提供することである。

[0007]

【課題を解決するための手段】本発明の目的は、下記 (1)~(13)の反射防止フィルムおよび(14)の 偏光板および(15)の反射防止フィルムを用いた画像 表示装置により達成された。

【0008】(1) 透明支持体上に、透明支持体より も低い屈折率を有する低屈折率層を有し、低屈折率層が 無機微粒子を含有し、無機微粒子が二次元網目状構造を 形成することを特徴とする反射防止フィルム。

- (2) 透明支持体上に、透明支持体よりも低い屈折率 を有する低屈折率層を有し、低屈折率層が無機微粒子と カップリング剤を含有することを特徴とする反射防止フィルム。
- (3) 低屈折率層が一般式(1)で表される化合物を 含有することを特徴とする前記(1)に記載の反射防止 フィルム。

一般式(1) (R^1) m $- Si(OR^2)$ n

- (一般式(1)式中、 R^1 は置換もしくは無置換のアルキル基もしくは、アリール基を表す。 R^2 は置換もしくは無置換のアルキル基もしくはアシル基を表す。mは0~3の整数を表す。nは1~4の整数を表す。mとnの合計は4である。)
- (4) シランカップリング剤が上記一般式(1)で表される化合物であることを特徴とする前記(2)記載の反射防止フィルム。
- (5) 低屈折率層が前記無機微粒子と熱または電離放射線により架橋するフッ素化合物からなることを特徴とする前記(1)~(4)いずれかに記載の反射防止フィルム。
- (6) 無機微粒子が平均粒径 $0.001\sim0.2\mu m$ のシリカであることを特徴とする前記(1) \sim (5)のいずれかに記載の反射防止フィルム。
- (7) 低屈折率層の下層が高屈折率層であり、かつ高屈折率層と支持体の間に $1\sim10\mu$ mの厚さを有するハードコート層が設けられている前記(1) \sim (6)のいずれかに記載の反射防止フィルム。
- (8) 高屈折率層とハードコート層の間に、屈折率が

低屈折率層よりも高く、かつ高屈折率層よりは低い中屈 折率層が設けられている前記(7)記載の反射防止フィ ルム。

- (9) 低屈折率層の下層が $1 \sim 10 \mu$ mの厚さを有するハードコート層である前記(1) \sim (6)のいずれか1項に記載の反射防止フィルム。
- (10) 低屈折率層とハードコート層の間に、高屈折率ハードコート層を有し、高屈折率ハードコート層が、1.57~2.00の屈折率を有し、かつ平均粒径0.3~20μmのマット剤粒子を有し、防眩性を有することを特徴とする前記(9)記載の反射防止フィルム。
- (11) ハードコート層が平均粒径0.3~20μm のマット剤粒子を有し、防眩性を有することを特徴とす る前記(9)記載の反射防止フィルム。
- (12) ハードコート層が1.57~2.00の屈折率を有することを特徴とする前記(9)または(11)記載の反射防止フィルム。
- (13) 透明支持体がトリアセチルセルロース、ポリエチレンテレフタレート、またはポリエチレンナフタレートであることを特徴とする前記(1)~(12)のいずれかに記載の反射防止フィルム
- (14) 前記(1)~(13)のいずれか1項に記載の反射防止フィルムを少なくとも片面に有することを特徴とする偏光板
- (15) 前記(1)~(13)のいずれか1項に記載の反射防止フィルムまたは前記(14)に記載の偏光板を低屈折率層がディスプレイの最表層になるように用いたことを特徴とする画像表示装置。

[0009]

【発明の実施の形態】 [反射防止フィルムの構成] 図1は、最も基本的な反射防止フィルムの構成を示す断面模式図である。図1に示す反射防止フィルムは、透明支持体(1)上に、本発明の低屈折率層(2)が設けられている。図2は、反射防止フィルムの別の構成を示す断面模式図である。図2に示す反射防止フィルムは、透明支持体(1)上に、防眩層(3)、本発明の低屈折率層

(2)が順次設けられている。図3は、反射防止フィルムのまた別の構成を示す断面模式図である。図3に示す反射防止フィルムは、透明支持体(1)上に、ハードコート層(4)、防眩層(3)、本発明の低屈折率層(2)が順次設けられている。

【0010】図4は、反射防止フィルムのさらに別の構成を示す断面模式図である。図4に示す反射防止フィルムは、透明支持体(1)上に、ハードコート層(4)、本発明の低屈折率層(2)が順次設けられている。図5は、反射防止フィルムのさらにまた別の構成を示す断面模式図である。図5に示す反射防止フィルムは、透明支持体(1)上に、ハードコート層(4)、高屈折率層(5)、本発明の低屈折率層(2)が順次設けられている。図6は、反射防止フィルムの他の構成を示す断面模

式図である。図6に示す反射防止フィルムは、透明支持体(1)上に、ハードコート層(4)、中屈折率層(6)、高屈折率層(5)、本発明の低屈折率層(2)が順次設けられている。

【0011】[網目構造]本発明では、無機微粒子を含有する低屈折率層において、無機微粒子が二次元網目構造を有する。二次元網目構造を層の上から見た例を図7に示した。本発明の二次元網目構造は、無機微粒子8の1次粒子が塗布膜の乾燥過程で面内で偏在化し、図7に示すような空孔部分7が生じたものを指す。ここでいう空孔7は無機微粒子8が低屈折率層内で全く存在しないか、存在したとしても、網目状部分と比較して50倍以上無機微粒子密度が小さい領域を意味する。二次元網目構造の網目は途切れていても良く、例を図8に示した。この構造は、光学顕微鏡、SEM、などで確認することができる。

【0012】本発明の二次元網目構造の好ましい態様は、平均空孔面積が0.3~1000μm²であり、より好ましくは1~100μm²である。空孔面積%(全面積に対する空孔面積の割合)は40~90%であり、より好ましくは50~80%である。平均空孔面積と空孔面積%は光学顕微鏡写真あるいはSEM写真を解析することにより求めることができる。図8のように、網目が途切れ途切れの場合は、途切れた網目の延長上に仮想の網目を想定し、およその平均空孔面積を求めることができる。

【0013】本発明では、無機微粒子の二次元網目構造が形成されることにより、著しく耐擦傷性が良化することができた。形成された無機微粒子の二次元網目状構造が微小なマット剤のような役目を果たすことにより耐擦傷性が著しく良化していると考えられるが、機構は明らかではない。また、本発明の無機微粒子の二次元網目構造を形成する機構も明らかではなく、結果的に該構造を形成すれば良い。以下に該構造を形成するのに好ましい態様を説明する。

【0014】本発明の低屈折率層に用いられる無機微粒子としては低屈折率のものが好ましく用いられ、屈折率としては1.30~1.49が好ましく、無機微粒子の好ましいものは、シリカ、フッ化マグネシウムであり、特にシリカが好ましい。該無機微粒子の平均粒径は0.001~0.2 μ mであることが好ましく、0.001~0.05 μ mであることがより好ましい。微粒子の粒径はなるべく均一(単分散)であることが好ましい。【0015】該無機微粒子の添加量は、低屈折率層の全重量の5~90質量%であることが好ましく、10~70質量%であると更に好ましく、10~50質量%が特

【0016】本発明では該無機微粒子を表面処理を施して用いることが特に好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理

に好ましい。

とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、一般式(1)の化合物も含めたオルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。該無機做粒子がシリカの場合はシランカップリング処理が特に有効であり、一般式(1)の化合物が好ましい。

【0017】一般式(1)

 (R^1) m-Si (OR^2) n

一般式(1)式中、 R^1 は置換もしくは無置換のアルキル基もしくは、アリール基を表す。 R^2 は置換もしくは無置換のアルキル基もしくはアシル基を表す。mは0~3の整数を表す。nは1~4の整数を表す。mとnの合計は4である。

【0018】 一般式(1)で表される化合物について説 明する。一般式(1)においてR1は置換もしくは無置 換のアルキル基もしくはアリール基を表す。アルキル基 としてはメチル、エチル、プロピル、イソプロピル、ヘ キシル、tーブチル、secーブチル、ヘキシル、デシ ル、ヘキサデシル等が挙げられる。アルキル基として好 ましくは炭素数1~30、より好ましくは炭素数1~1 6、特に好ましくは1~6のものである。アリール基と してはフェニル、ナフチル等が挙げられ、好ましくはフ ェニル基である。置換基としては特に制限はないが、ハ ロゲン(フッ素、塩素、臭素等)、水酸基、メルカプト 基、カルボキシル基、エポキシ基、アルキル基(メチ ル、エチル、iープロピル、プロピル、tーブチル · 等)、アリール基(フェニル、ナフチル等)、芳香族へ テロ環基(フリル、ピラゾリル、ピリジル等)、アルコ キシ基 (メトキシ、エトキシ、i-プロポキシ、ヘキシ ルオキシ等)、アリールオキシ(フェノキシ等)、アル キルチオ基 (メチルチオ、エチルチオ等)、アリールチ オ基(フェニルチオ等)、アルケニル基(ビニル、1-プロペニル等)、アルコキシシリル基(トリメトキシシ リル、トリエトキシシリル等)、アシルオキシ基(アセ トキシ、アクリロイルオキシ、メタクリロイルオキシ 等)、アルコキシカルボニル基(メトキシカルボニル、 エトキシカルボニル等)、アリールオキシカルボニル基 (フェノキシカルボニル等)、カルバモイル基(カルバ モイル、Nーメチルカルバモイル、N、Nージメチルカ ルバモイル、N-メチル-N-オクチルカルバモイル 等)、アシルアミノ基(アセチルアミノ、ベンゾイルア ミノ、アクリルアミノ、メタクリルアミノ等)等が好ま しい。これらのうちで更に好ましくは水酸基、メルカプ ト基、カルボキシル基、エポキシ基、アルキル基、アル コキシシリル基、アシルオキシ基、アシルアミノ基であ り、特に好ましくはエポキシ基、重合性のアシルオキシ 基(アクリロイルオキシ、メタクリロイルオキシ)、重 合性のアシルアミノ基 (アクリルアミノ、メタクリルア ミノ)である。またこれら置換基は更に置換されていて

も良い。 R^2 は置換もしくは無置換のアルキル基もしくはアシル基を表す。アルキル基、アシル基ならびに置換基の説明は R^1 と同じである。 R^2 として好ましくは無置換のアルキル基もしくは無置換のアシル基であり、特に好ましくは無置換のアルキル基である。mは $0\sim3$ の整数を表す。nは $1\sim4$ の整数を表す。mとnの合計は4である。 R^1 もしくは R^2 が複数存在するとき、複数の R^1 もしくは R^2 はそれぞれ同じであっても異なっていても良い。mとして好ましくは0、1、2であり、特に好ましくは1である。

【0019】以下に一般式(1)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。

【0020】 【化1】

(1)
$$(C_2H_5O)_4-Si$$

(2)
$$(C_3H_7O)_4-S_1$$

(3)
$$(i-C_3H_7O)_4-Si$$

(5)
$$(CH_3CO_2)_2 - Si - (OC_2H_6)_2$$

(6)
$$CH_3-Si-(OC_2H_5)_3$$

(7)
$$C_2H_5-S_1-(OC_2H_5)_3$$

(8)
$$t-C_4H_9-S_1-(OCH_3)_3$$

$$CH_2-Si-(OCH_3)$$

$$\begin{array}{c} \text{(11)} \\ \hline \\ \text{O} \\ \end{array} \\ \text{CH}_{2} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{-Si-(OCH}_{3})_{3} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{-Si-}(\text{OC}_2\text{H}_5) \\ \end{array}$$

$$C_{2}H_{5} \longrightarrow CH_{2}OCH_{2}CH_{2}CH_{2}-Si-(OC_{2}H_{5})_{3}$$

(16)
$$C_3F_7CH_2CH_2-Si-(OC_2H_5)_3$$

$$(17) C_6F_{13}CH_2CH_2-Si-(OC_2H_6)_3$$

$$= \underbrace{\text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{-Si}-(\text{OCH}_{3})_{3}}$$

$$= CO_2CH_2CH_2-Si-(OCH_3)_3$$

$$= \underbrace{\text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2} \cdot \text{Si-(OC}_{2}\text{H}_{5})_{3}}$$

 $\begin{array}{c} \text{CH}_2\text{CH}_2\text{-Si-(OC}_2\text{H}_5)_3 \end{array}$

$$\begin{array}{c} \text{(25)} \\ \text{HO-C-CH}_2\text{CH}_2\text{-Si-(OCH}_3)_3 \\ ||\\ 0 \end{array}$$

(26) NH₂CH₂CH₂CH₂-Si-(OCH₃)₃

(27) HS-CH₂CH₂CH₂-Si -(OCH₃)₃

$$\begin{array}{c} \text{CH}_2\text{OCH}_2\text{CH}_2\text{-Si-(OCH}_3)_3 \end{array}$$

(30) (CH₃O)₈-Si-CH₂CH₂CH₂CH₂-Si -(OCH₃)₃

【0023】 【化4】

$$(3\ 4)$$

$$= CIH_3$$

$$CONHCH_2CH_2CH_2-Si-(0CH_3)_3$$

$$= CO-N-CH2CH2CH2-Si-(OCH3)3$$

$$CH3$$

[0024]

$$\begin{array}{c} \text{CH}_2\text{OCII}_2\text{CH}_2\text{-Si-(OCH}_3)_2 \\ \text{CH}_3 \end{array}$$

(40)
$$\begin{array}{c} \text{HO-C-CH}_2\text{CH}_2\text{CH}_2\text{-Si-(OCH}_3)_2 \\ || &|| \\ \text{O} &\text{CH}_3 \end{array}$$

$$= \begin{array}{c} (42) \\ = \\ (\text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_2)_2 - \text{Si-(OCH}_3)_2 \end{array}$$

$$= \begin{array}{c} (45) \\ = \\ \text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CII}_{2}\text{-Si-}(0\text{CH}_{3})_{2} \\ | \\ \text{CH}_{3} \end{array}$$

【0025】 【化6】

【0026】これらの具体例の中で、(1)、(1

【0030】式中、mは正の奇数であり、 n_1 は低屈折率層の屈折率であり、そして、 d_1 は低屈折率層の膜厚 (nm)である。また、 λ は波長であり、 $500\sim55$ 0nmの範囲の値である。なお、上記数式 (I)を満たすとは、上記波長の範囲において数式 (I)を満たすm (I)を満たすか、通常 Iである)が存在することを意味している。

【0031】本発明の低屈折率層を形成する素材のうち、前述の無機微粒子以外の素材について以下に説明する。

【0032】本発明の低屈折率層は、屈折率の低いポリマー、あるいは屈折率の低い化合物とポリマーとの混合物から形成する。また、特開平9-288201号公報に記載されているように、光の波長以下のサイズの空気または真空からなるミクロボイドを均一に形成することによって、低屈折率を達成することもできる。

【0033】屈折率の低い化合物としては、フッ素化合物あるいはケイ素化合物が用いられる。フッ素化合物とケイ素化合物とを併用してもよい。好ましくはフッ素化合物である。

【0034】ケイ素化合物は、下記式で表される有機置換ケイ素系化合物が好ましい。

【0035】R3aR4bSiX_{4-(a+b)} 式中、R3およびR4は、それぞれ、アルキル基、アルケニル基、アリール基またはフルオロアルキル基であり;Xは、アルコキシ基、アルコキシアルコキシ基、ハロゲン原子およびアシルオキシ基からなる群より選ばれる加水分解可能な置換基であり;a、bは、それぞれ、0、1または2であって、a+bは1または2である。アルキル基、アルケニル基、アリール基およびフルオロアルキル基は、置換基(例、ハロゲン原子、エポキシ 2)、(18)、(19)等が特に好ましい。

【0027】一般式(1)の化合物は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いてもよいが、本発明では特に、該層塗布液調製時に塗布液中に添加して用いることが好ましい。好ましい添加量としては、無機微粒子に対して0.5~1000質量%、より好ましくは5~900質量%、さらに好ましくは50~700質量%である。このとき、過剰なシランカップリング剤は塗布乾燥の過程で蒸発させる事が好ましい。

【0028】 [低屈折率層] 本発明の低屈折率層について以下に説明する。本発明の反射防止フィルムの低屈折率層の屈折率は透明支持体の屈折率より低く、本発明の反射防止フィルムの低屈折率層の屈折率は、1.38~1.49が好ましく、より好ましくは1.38~1.44の範囲にある。さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。

[0029]

 $m\lambda/4\times0.7 < n_1d_1 < m\lambda/4\times1.3$ ……数式(I)

基、アミノ、メルカプト、メタクリルオキシ、シアノ) を有していてもよい。上記ケイ素化合物の加水分解生成 物を用いてもよい。

【0036】低屈折率層に用いられるフッ素化合物とし ては、フッ素原子を有するモノマーを重合して形成した 含フッ素ポリマーが好ましい。含フッ素ポリマーが架橋 性官能基を有し、塗布後に架橋することがさらに好まし い。架橋方法としては、熱または電離放射線により架橋 することが好ましい。熱架橋性の含フッ素ポリマーの具 体例としてはオプスターJN7228(商品名、屈折率 1.42の熱架橋性含フッ素ポリマー、フッ素含率約3 6質量%、JSR (株)製)などがある。電離放射線架 橋性の含フッ素ポリマーとしては、側鎖にエチレン性不 飽和基を有するポリマーが好ましい。これらのエチレン 性不飽和基を有するポリマーの架橋は電離放射線の照射 により行うことができる。このとき光ラジカル開始剤を 添加するとさらに好ましい。光ラジカル重合開始剤とし ては、例えば、アセトフェノン類、ベンゾフェノン類、 ミヒラーのベンゾイルベンゾエート、一アミロキシムエ ステル、テトラメチルチウラムモノサルファイドおよび チオキサントン類等が挙げられる。特に、光開裂型の光 ラジカル重合開始剤が好ましい。光開裂型の光ラジカル 重合開始剤については、最新UV硬化技術 (P. 159, 発 行人;高薄一弘,発行所;(株)技術情報協会,199 1年発行) に記載されている市販の光開裂型の光ラジカ ル重合開始剤としては、日本チバガイギー (株)製のイ ルガキュア (651, 184, 907) 等が挙げられ る。光重合開始剤は、含フッ素ポリマー100質量部に 対して、0.1~15質量部の範囲で使用することが好 ましく、より好ましくは1~10質量部の範囲である。 光重合開始剤に加えて、光増感剤を用いてもよい。光増 感剤の具体例として、n-ブチルアミン、トリエチルア ミン、トリーnーブチルホスフィン、ミヒラーのケトン およびチオキサントンを挙げることができる。電離放射 線架橋性の含フッ素ポリマーの別の例としては、側鎖に 酸触媒架橋性の官能基を有するポリマーを電離放射線酸 発生剤と組み合わせる方法、および側鎖に塩基触媒反応 性の官能基を有するポリマーを電離放射線塩基発生剤と を組み合わせる方法、がある。前者がより好ましく、酸 触媒架橋性の官能基としてはエポキシ基が好ましい。電 離放射線酸発生剤としては光酸発生剤が好ましく、具体 的にはトリアリールスルホニウム塩類およびジアリール ヨードニウム塩類が好ましい。光酸発生剤は、含フッ素 ポリマー100質量部に対して、0.1~15質量部の 範囲で使用することが好ましく、より好ましくは1~1 O質量部の範囲である。電離放射線としてはUV、光、 電子線、放射線などが利用できるが、光が好ましい。光 のなかでもUVが好ましい。UVの光源としてはメタル ハライドランプ、高圧水銀ランプ、などが好ましく、メ タルハライドランプがより好ましい。UVの照度および 照射量は、ベースへの悪影響がない限りはなるべく大き い方が好ましく、照度:50~1000mW/cm²、 照射量:200~1000mJ/cm2が好ましく、よ り好ましくは照度: 150~600mW/cm²、照射 量:250~900mJ/cmタである。膜強度改良の ために、無機化合物の微粒子を含フッ素ポリマー中に分 散させることがさらに好ましい。

【0037】含フッ素ポリマーの物性としては、動摩擦係数0.03~0.15、水に対する接触角90~120°を有する事が好ましい。

【0038】フッ素原子を有するモノマー単位の具体例 としては、例えばフルオロオレフィン類(例えばフルオ ロエチレン、ビニリデンフルオライド、テトラフルオロ エチレン、ヘキサフルオロエチレン、ヘキサフルオロプ ロピレン、パーフルオロー2,2ージメチルー1,3-ジオキソール等)、(メタ)アクリル酸の部分または完 全フッ素化アルキルエステル誘導体類(例えばビスコー ト6FM (大阪有機化学製) やM-2020 (ダイキン 製)等)、完全または部分フッ素化ビニルエーテル類等 である。架橋性基付与のためのモノマーとしてはグリシ ジルメタクリレートのように分子内にあらかじめ架橋性 官能基を有する (メタ) アクリレートモノマーの他、カ ルボキシル基やヒドロキシル基、アミノ基、スルホン酸 基等を有する (メタ) アクリレートモノマー (例えば (メタ) アクリル酸、メチロール (メタ) アクリレー ト、ヒドロキシアルキル (メタ) アクリレート、アリル アクリレート等)が挙げられる。後者は共重合の後、架 橋構造を導入できることが特開平10-25388号お よび特開平10-147739号に知られている。 【0039】また上記含フッ素モノマーを構成単位とす

るポリマーだけでなく、フッ素原子を含有しないモノマ

ーとの共重合体を用いてもよい。併用可能なモノマー単 位には特に限定はなく、例えばオレフィン類(エチレ ン、プロピレン、イソプレン、塩化ビニル、塩化ビニリ デン等)、アクリル酸エステル類(アクリル酸メチル、 アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリ ル酸メチル、メタクリル酸エチル、メタクリル酸ブチ ル、エチレングリコールジメタクリレート等)、スチレ ン誘導体(スチレン、ジビニルベンゼン、ビニルトルエ ン、α-メチルスチレン等)、ビニルエーテル類(メチ ルビニルエーテル等)、ビニルエステル類(酢酸ビニ ル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリル アミド類(N-tertブチルアクリルアミド、N-シ クロヘキシルアクリルアミド等)、メタクリルアミド 類、アクリロニトリル誘導体等を挙げることができる。 【0040】本発明に係る低屈折率層を形成するために 用いる塗布液の溶媒組成としては、単独および混合のい ずれでもよい。下層に防眩層を有する場合は、溶媒の乾 燥速度が遅くなりすぎると塗布膜厚にムラが生じ、反射 率が高くなってしまうため、沸点が100℃以下の溶媒 が50~100%であることが好ましく、より好ましく は80~100%、より好ましくは90~100%であ

【0041】沸点が100℃以下の溶媒としては、例え ば、ヘキサン (沸点68.7℃)、ヘプタン(98. 4)、シクロヘキサン(80.7)、ベンゼン(80. 1)などの炭化水素類、ジクロロメタン(39.8)、 クロロホルム (61.2)、四塩化炭素 (76.8)、 1,2-ジクロロエタン(83.5)、トリクロロエチ レン(87.2)などのハロゲン化炭化水素類、ジエチ ルエーテル(34.6)、ジイソプロピルエーテル(6 8.5)、ジプロピルエーテル(90.5)、テトラヒ ドロフラン(66)などのエーテル類、ギ酸エチル(5 4.2)、酢酸メチル(57.8)、酢酸エチル(7 7.1)、酢酸イソプロピル(89)などのエステル 類、アセトン(56.1)、2-ブタノン(=メチルエ チルケトン、79.6)などのケトン類、メタノール (64.5)、エタノール(78.3)、2ープロパノ ール(82.4)、1ープロパノール(97.2)など のアルコール類、アセトニトリル(81.6)、プロピ オニトリル(97.4)などのシアノ化合物類、二硫化 炭素(46.2)、などがある。 このうちケトン類、エ ステル類が好ましく、特に好ましくはケトン類である。 ケトン類の中では2-ブタノンが特に好ましい。

【0042】沸点が100℃を以上の溶媒としては、例 えば、オクタン(125.7)、トルエン(110. 6)、キシレン(138)、テトラクロロエチレン(1 21.2)、クロロベンゼン(131.7)、ジオキサン(101.3)、ジブチルエーテル(142.4)、 酢酸イソブチル(118)、シクロヘキサノン(15 5.7)、2-メチル-4-ペンタノン(=MIBK、115.9)、1-ブタノール(117.7)、N,N ージメチルホルムアミド(153)、N,Nージメチルアセトアミド(166)、ジメチルスルホキシド(189)、などがある。好ましくは、シクロヘキサノン、2-メチル-4-ペンタノン、である。

【0043】本発明に係る低屈折率層成分を前述の組成の溶媒で希釈することにより本発明の低屈折率層用塗布液が調製される。塗布液濃度は、塗布液の粘度、低屈折率層素材の比重などを考慮して適宜調節される事が好ましいが、0.1~20質量%が好ましく、より好ましくは1~10質量%である。

【0044】[防眩層] 本発明の反射防止フィルムは必要に応じ、低屈折率層よりも下層に、表面に微細な凹凸を有する防眩層を設けることができる。また、必要に応じ、防眩性ハードコート層の下層に平滑なハードコート層を設けることができる。

【0045】本発明の反射防止フィルムでは膜強度を向 上させる目的で各層に無機微粒子を添加することが好ま しい。各層に添加する無機微粒子はそれぞれ同じでも異 なっていても良く、各層の屈折率、膜強度、膜厚、塗布 性などの必要性能に応じて、種類、添加量、は適宜調節 されることが好ましい。本発明に使用する無機微粒子形 状は特に制限されるものではなく、例えば、球状、板 状、繊維状、棒状、不定形、中空等のいずれも好ましく 用いられるが、球状が分散性がよくより好ましい。ま た、無機做粒子の種類についても特に制限されるもので はないが、非晶質のものが好ましく用いられ、金属の酸 化物、窒化物、硫化物またはハロゲン化物からなること が好ましく、金属酸化物が特に好ましい。金属原子とし ては、Na、K、Mg、Ca、Ba、Al、Zn、F e, Cu, Ti, Sn, In, W, Y, Sb, Mn, G a, V, Nb, Ta, Ag, Si, B, Bi, Mo, C e、Cd、Be、PbおよびNi等が挙げられる。無機 微粒子の平均粒子径は、透明な硬化膜を得るためには、 0.001~ 0.2μ mの範囲内の値とするのが好まし く、より好ましくは0.001~0.1 μm、さらに好 ましくは0.001~0.06μmである。ここで、粒 子の平均粒径はコールターカウンターにより測定され る。

【0046】本発明における無機微粒子の使用方法は特に制限されるものではないが、例えば、乾燥状態で使用することができるし、あるいは水もしくは有機溶媒に分散した状態で使用することもできる。本発明において、無機微粒子の凝集、沈降を抑制する目的で、分散安定化剤を併用することも好ましい。分散安定化剤としては、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、ポリアミド、リン酸エステル、ポリエーテル、界面活性剤および、一般式(1)の化合物も含め、シランカップリング剤、チタンカップリング剤、等を使

用することができる。特にシランカップリング剤が硬化後の皮膜が強いため好ましい。分散安定化剤としてのシランカップリング剤の添加量は特に制限されるものではないが、例えば、無機微粒子100質量部に対して、1質量部以上の値とするのが好ましい。また、分散安定化剤の添加方法も特に制限されるものではないが、予め加水分解したものを添加することもできるし、あるいは、分散安定化剤であるシランカップリング剤と無機微粒子とを混合後、さらに加水分解および縮合する方法を採ることができるが、後者の方がより好ましい。また一般式(1)の化合物は、無機フィラーの分散安定化剤として用いられる以外に、さらに各層のバインダー構成成分の一部として、塗布液調製時の添加剤としても用いることが好ましい。

【0047】本発明の防眩性ハードコート層について以 下に説明する。防眩性ハードコート層はハードコート性 を付与するためのバインダー、防眩性を付与するための マット粒子、および高屈折率化、架橋収縮防止、高強度 化のための無機微粒子、から形成される。バインダーと しては、飽和炭化水素鎖またはポリエーテル鎖を主鎖と して有するポリマーであることが好ましく、飽和炭化水 素鎖を主鎖として有するポリマーであることがさらに好 ましい。また、バインダーポリマーは架橋構造を有する ことが好ましい。飽和炭化水素鎖を主鎖として有するバ インダーポリマーとしては、エチレン性不飽和モノマー の重合体が好ましい。飽和炭化水素鎖を主鎖として有 し、かつ架橋構造を有するバインダーポリマーとして は、二個以上のエチレン性不飽和基を有するモノマーの (共) 重合体が好ましい。高屈折率にするには、このモ ノマーの構造中に芳香族環や、フッ素以外のハロゲン原 子、硫黄原子、リン原子、及び窒素原子から選ばれた少 なくとも1種の原子を含むことが好ましい。

【0048】二個以上のエチレン性不飽和基を有するモ ノマーとしては、多価アルコールと(メタ)アクリル酸 とのエステル (例、エチレングリコールジ (メタ) アク リレート、1,4-ジクロヘキサンジアクリレート、ペ ンタエリスリトールテトラ (メタ) アクリレート)、ペ ンタエリスリトールトリ (メタ) アクリレート、トリメ チロールプロパントリ (メタ) アクリレート、トリメチ ロールエタントリ (メタ) アクリレート、ジペンタエリ スリトールテトラ (メタ) アクリレート、ジペンタエリ スリトールペンタ (メタ) アクリレート、ペンタエリス リトールヘキサ (メタ) アクリレート、1,2,3-シ クロヘキサンテトラメタクリレート、ポリウレタンポリ アクリレート、ポリエステルポリアクリレート)、ビニ ルベンゼンおよびその誘導体(例、1、4-ジビニルベ ンゼン、4-ビニル安息香酸-2-アクリロイルエチル エステル、1,4-ジビニルシクロヘキサノン)、ビニ ルスルホン (例、ジビニルスルホン)、アクリルアミド (例、メチレンビスアクリルアミド) およびメタクリル アミドが挙げられる。上記モノマーは2種以上併用してもよい。

【0049】高屈折率モノマーの具体例としては、ビス (4-メタクリロイルチオフェニル)スルフィド、ビニ ルナフタレン、ビニルフェニルスルフィド、4-メタク リロキシフェニルー4'-メトキシフェニルチオエーテ ル等が挙げられる。これらのモノマーも2種以上併用し てもよい。

【0050】これらのエチレン性不飽和基を有するモノ マーの重合は、光ラジカル開始剤あるいは熱ラジカル開 始剤の存在下、電離放射線の照射または加熱により行う ことができる。従って、エチレン性不飽和基を有するモ ノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、 マット粒子および無機フィラーを含有する塗液を調製 し、該塗液を透明支持体上に塗布後電離放射線または熱 による重合反応により硬化して防眩性反射防止フィルム を形成することができる。光ラジカル重合開始剤として は、例えば、アセトフェノン類、ベンゾフェノン類、ミ ヒラーのベンゾイルベンゾエート、-アミロキシムエス テル、テトラメチルチウラムモノサルファイドおよびチ オキサントン類等が挙げられる。特に、光開裂型の光ラ ジカル重合開始剤が好ましい。光開裂型の光ラジカル重 合開始剤については、最新UV硬化技術 (P. 159, 発行 人;高薄一弘,発行所;(株)技術情報協会,1991 年発行) に記載されている市販の光開裂型の光ラジカル 重合開始剤としては、日本チバガイギー(株)製のイル ガキュア(651, 184, 907) 等が挙げられる。 光重合開始剤は、多官能モノマー100質量部に対し て、0.1~15質量部の範囲で使用することが好まし く、より好ましくは1~10質量部の範囲である。光重 合開始剤に加えて、光増感剤を用いてもよい。光増感剤 の具体例として、n-ブチルアミン、トリエチルアミ ン、トリーnーブチルホスフィン、ミヒラーのケトンお よびチオキサントンを挙げることができる。

【0051】ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。 多官能エポシキ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して防眩性反射防止フィルムを形成することができる。

【0052】二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーボリマーに導入してもよい。架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オ

キサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。

【0053】防眩性ハードコート層には、防眩性付与の 目的で、平均粒径が0.3~20μm、好ましくは1~ 10μm、より好ましくは1.5~7.0μmのマット 粒子、例えば無機化合物の粒子または樹脂粒子が含有さ れる。マット粒子は大きすぎると表面の質感が悪化し、 小さすぎると防眩効果がなくなってしまう。上記マット 粒子の具体例としては、例えばシリカ粒子、TiO₂粒 子等の無機化合物の粒子;架橋アクリル粒子、架橋スチ レン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒 子等の樹脂粒子が好ましく挙げられる。なかでも架橋ス チレン粒子が好ましい。マット粒子の形状は、真球ある いは不定形のいずれも使用できる。また、異なる2種以 上のマット粒子を併用して用いてもよい。上記マット粒 子は、形成された防眩性ハードコート層中のマット粒子 量が好ましくは10~1000mg/m²、より好まし くは30~100mg/m²となるように防眩性ハード コート層に含有される。また、特に好ましい態様は、マ ット粒子として架橋スチレン粒子を用い、防眩性ハード コート層の膜厚の2分の1よりも大きい粒径の架橋スチ レン粒子が、該架橋スチレン粒子全体の40~100% を占める態様である。ここで、マット粒子の粒度分布は コールターカウンター法により測定し、測定された分布 を粒子数分布に換算する。

【0054】防眩性ハードコート層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が 0.2μ m以下、好ましくは 0.1μ m以下、より好ましくは 0.06μ m以下である無機微粒子が含有されることが好ましい。また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた防眩性ハードコート層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機微粒子と同じである。防眩性ハードコート層に用いられる無機微粒子の具体例としては、 TiO_2 、 ZrO_2 、 Al_2O_3 、 In_2O_3 、ZnO、 SnO_2 、 Sb_2O_3 、ITOと SiO_2 等

が挙げられる。 TiO_2 および ZrO_2 が高屈折率化の点で特に好ましい。該無機微粒子は表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、微粒子表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。これらの無機微粒子の添加量は、防眩性ハードコート層の全質量の $10\sim90\%$ であることが好ましく、より好ましくは $20\sim80\%$ であり、特に好ましくは $30\sim75\%$ である。なお、このような微粒子は、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーボリマーに該微粒子が分散した分散体は光学的に均一な物質として振舞う。

【0055】本発明の防眩性ハードコート層のバインダーおよび無機微粒子の混合物の合計の屈折率は、1.48~2.00であることが好ましく、より好ましくは1.50~2.00である。防眩性ハードコート層のバインダーの屈折率は低すぎると反射防止効果が悪化し、高すぎると反射光の色味が悪化する。屈折率を上記範囲とするには、バインダー及び無機微粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。

【0056】本発明の防眩性ハードコート層は、特に塗 布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するた めに、フッ素系、シリコーン系の何れかの界面活性剤、 あるいはその両者を防眩層形成用の塗布組成物中に含有 する。特にフッ素系の界面活性剤は、より少ない添加量 において、本発明の防眩性反射防止フィルムの塗布ム ラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現 れるため、好ましく用いられる。フッ素系の界面活性剤 の好ましい例としては、スリーエム社製のフロラードF C-431等のパーフルオロアルキルスルホン酸アミド 基含有ノニオン、大日本インキ社製のメガファックF-171、F-172、F-173、F-176PF等の パーフルオロアルキル基含有オリゴマー等が挙げられ る。シリコーン系の界面活性剤としては、エチレングリ コール、プロピレングリコール等のオリゴマー等の各種 の置換基で側鎖や主鎖の末端が変性されたポリジメチル シロキサン等が挙げられる。

【0057】しかしながら、上記のような界面活性剤を使用することにより、防眩層表面にF原子を含有する官能基および/またはSi原子を有する官能基が偏析することにより防眩層の表面エネルギーが低下し、上記防眩層上に低屈折率層をオーバーコートしたときに反射防止性能が悪化する問題が生じる。これは低屈折率層を形成するために用いられる塗布組成物の濡れ性が悪化するために低屈折率層の膜厚の目視では検知できない微小なムラが悪化するためと推定される。このような問題を解決するためには、フッ素系および/またはシリコーン系の界面活性剤の構造と添加量を調整することにより、防眩

層の表面エネルギーを好ましくは25mN・m⁻¹~70mN・m⁻¹に、より好ましくは35mN・m⁻¹~70mN・m⁻¹に、より好ましくは35mN・m⁻¹~70mN・m⁻¹に制御することが効果的であり、さらに後述するように低屈折率層の塗布溶剤を50~100質量パーセントが100℃以下の沸点を有するものとすることが効果的であることを見出した。また、上記のような表面エネルギーを実現するためには、 X線光電子分光法で測定したフッ素原子由来のピークと炭素原子由来のピークの比であるF/Cが0.40以下、および/またはシリコン原子由来のピークと炭素原子由来のピークの比であるSi/Cが0.30以下であることが必要である。防眩性ハードコート層の膜厚は1~10μmが好ましく、1.2~6μmがより好ましい。

【0058】[ハードコート層] 本発明の反射防止フィ ルムが防眩性ハードコート層を有する場合、さらにフィ ルム強度向上の目的で防眩性を持たないいわゆる平滑な ハードコート層も好ましく用いられ、透明支持体と防眩 性ハードコート層の間に塗設される。また本発明の反射 防止フィルムにおいて、防眩性が不要である場合にも、 平滑なハードコート層が用いられる。平滑なハードコー ト層に用いる素材は防眩性付与のためのマット粒子を用 いないこと以外は上記防眩性ハードコート層において挙 げたものと同様であり、好ましくはバインダーと無機微 粒子から形成される。本発明の平滑なハードコート層で は無機微粒子としては強度および汎用性の点でシリカ、 アルミナが好ましく、特にシリカが好ましい。また該無 機微粒子は表面をシランカップリング処理されることが 好ましく、微粒子表面にバインダー種と反応できる官能 基を有する表面処理剤が好ましく用いられる。これらの 無機微粒子の添加量は、ハードコート層の全質量の10 ~90%であることが好ましく、より好ましくは20~ 80%であり、特に好ましくは30~75%である。平 滑なハードコート層の膜厚は1~10μmが好ましく、 $1.2\sim6\mu m$ がより好ましい。

【0059】[高、中屈折率層]高屈折率層の屈折率は、1.65~2.40であることが好ましく、1.70~2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整され、1.55~1.80であることが好ましい。高屈折率層および中屈折率層のヘイズは、3%以下であることが好ましい。

【0060】図5は、優れた反射防止性能を有する偏光 板用保護フィルムの層構成を模式的に示す断面図であ る。図5に示す態様では、透明支持体1と高屈折率層5 と低屈折率層2は以下の関係を満足する屈折率を有す る。高屈折率層5の屈折率>透明支持体1の屈折率>低 屈折率層の屈折率

【0061】図5のような層構成では、特開昭59-5 0401号公報に記載されているように、高屈折率層が 下記数式(II)、低屈折率層が下記数式(III)をそれ

入は可視光線の波長であり、380~680 (nm)の

2の順序の層構成を有する。透明支持体1、中屈折率層

6、高屈折率層5および低屈折率層2は、以下の関係を

満足する屈折率を有する。高屈折率層5の屈折率>中屈

折率層6の屈折率>透明支持体1の屈折率>低屈折率層

2の屈折率図6のような層構成では、特開昭59-50

401号公報に記載されているように、中屈折率層が下

記数式 (IV)、高屈折率層が下記数式 (V)、低屈折率

層が下記数式 (VI) をそれぞれ満足することがより優れ

た反射防止性能を有する反射防止フィルムを作製できる

入は可視光線の波長であり、380~680 (nm)の

λは可視光線の波長であり、380~680 (nm)の

ぞれ満足することがさらに優れた反射防止性能を有する 反射防止フィルムを作製できる点で好ましい。

 $(n\lambda/4)\times 0.7 < n_2 d_2 < (n\lambda/4)\times 1.3$ 数式(II)

【0063】数式(II)中、nは正の整数(一般に1、 2または3)であり、 n_2 は高屈折率層の屈折率であ り、そして、d₂は高屈折率層の層厚(nm)である。

範囲の値である。 [0064]

点で好ましい。

[0067]

範囲の値である。

範囲の値である。

[0071]

[0062]

 $(h\lambda/4)\times0.7< n_3d_3< (h\lambda/4)\times1.3$ 数式 (III)

【0065】数式 (III) 中、hは正の奇数 (一般に 1)であり、n₃は低屈折率層の屈折率であり、そし て、d3は低屈折率層の層厚(nm)である。入は可視 光線の波長であり、380~680 (nm) の範囲の値 である。なお、上記数式 (II) および数式 (III) を満 たすとは、数式(I)の場合と同様に、上記各波長の範 である)が存在することを意味している。以下、数式

囲において数式(II)を満たすn(正の整数、一般に 1、2または3である) およびh (正の奇数、一般に1 (IV)~(IX)についても同様である。

【0066】図6に示す態様は、透明支持体1、ハード コート層4、中屈折率層6、高屈折率層5、低屈折率層

 $(i\lambda/4)\times0.7<$ n₄d₄< $(i\lambda/4)\times1.3$ 数式(IV)

【0068】数式(IV)中、iは正の整数(一般に1、 2または3)であり、n₄は中屈折率層の屈折率であ り、そして、daは中屈折率層の層厚(nm)である。

[0069] $(j\lambda/4)\times 0.7 < n_5 d_5 < (j\lambda/4)\times 1.3$ 数式(V)

【0070】数式(V)中、jは正の整数(一般に1、 2または3)であり、 n_5 は高屈折率層の屈折率であ り、そして、 d_5 は高屈折率層の層厚 (nm) である。

 $(k\lambda/4)\times0.7<$ n₆d₆< $(k\lambda/4)\times1.3$ 数式(VI)

【0072】数式(VI)中、kは正の奇数(一般に1) であり、ngは低屈折率層の屈折率であり、そして、dg は低屈折率層の層厚 (nm)である。 Aは可視光線の波 長であり、380~680 (nm) の範囲の値である。 図2(b)のような層構成では、中屈折率層が下記数式

(VII)、高屈折率層が下記数式(VIII)、低屈折率 層が下記数式(IX)をそれぞれ満足することが、特に 好ましい。ここで、λは500nm、iは1、jは2、 kは1である。

[0073]

(iλ/4)×0.80<n₄d₄<(iλ/4)×1.00 数式(VII)

[0074]

(jλ/4)×0.75<n₅d₅<(jλ/4)×0.95 数式(VIII

)

[0075]

 $(k\lambda/4)\times0.95<$ n₆d₆< $(k\lambda/4)\times1.05$ 数式(IX)

【0076】なお、ここで記載した高屈折率、中屈折 率、低屈折率とは層相互の相対的な屈折率の高低をい う。ハードコート層、中屈折率層、高屈折率層に、平均 粒径が0.2~10μmの粒子を含有させて、防眩機能 を有する防眩性反射防止フィルムを作製することも好ま しい。

【0077】中屈折率層および高屈折率層は、比較的屈 折率が高いポリマーを用いて形成することが好ましい。 屈折率が高いポリマーの例には、ポリスチレン、スチレ ン共重合体、ポリカーボネート、メラミン樹脂、フェノ ール樹脂、エポキシ樹脂および環状(脂環式または芳香 族) イソシアネートとポリオールとの反応で得られるポ リウレタンが含まれる。その他の環状(芳香族、複素環 式、脂環式)基を有するポリマーや、フッ素以外のハロ ゲン原子を置換基として有するポリマーも、屈折率が高 い。二重結合を導入してラジカル硬化を可能にしたモノ マーの重合反応によりポリマーを形成してもよい。

【0078】屈折率の高い無機微粒子を前述のモノマー と開始剤、有機置換されたケイ素化合物、または上記ポ リマー中に分散してもよい。無機微粒子としては、金属 (例、アルミニウム、チタニウム、ジルコニウム、アン チモン)の酸化物が好ましい。モノマーと開始剤を用い

る場合は、塗布後に電離放射線または熱による重合反応 によりモノマーを硬化させることで、耐傷性や密着性に 優れる中屈折率層や高屈折率層が形成できる。無機微粒子の平均粒径は、 $0.01\sim0.1\mu m$ であることが好ましい。

【0079】被膜形成能を有する有機金属化合物から、 高屈折率層または中屈折率層を形成してもよい。有機金 属化合物は、適当な媒体に分散できるか、あるいは液状 であることが好ましい。有機金属化合物の例には、金属 アルコレート (例、チタンテトラエトキシド、チタンテ トラーi-プロポキシド、チタンテトラーn-プロポキ シド、チタンテトラーローブトキシド、チタンテトラー sec-ブトキシド、チタンテトラーtertーブトキ シド、アルミニウムトリエトキシド、アルミニウムトリ - i - プロポキシド、アルミニウムトリブトキシド、ア ンチモントリエトキシド、アンチモントリプトキシド、 ジルコニウムテトラエトキシド、ジルコニウムテトラー iープロポキシド、ジルコニウムテトラーnープロポキ シド、ジルコニウムテトラーnーブトキシド、ジルコニ ウムテトラ-sec-ブトキシド、ジルコニウムテトラー t ertーブトキシド)、キレート化合物(例、ジーイソ プロポキシチタニウムビスアセチルアセトネート、ジー ブトキシチタニウムビスアセチルアセトネート、ジーエ トキシチタニウムビスアセチルアセトネート、ビスアセ チルアセトンジルコニウム、アルミニウムアセチルアセ トネート、アルミニウムジーn-ブトキシドモノエチル アセトアセテート、アルミニウムジーi-プロポキシド モノメチルアセトアセテート、トリーn-ブトキシドジ ルコニウムモノエチルアセトアセテート)、有機酸塩 (例、炭酸ジルコニールアンモニウム) およびジルコニ ウムを主成分とする活性無機ポリマーが含まれる。

【0080】反射防止フィルムには、さらに、防湿層、 帯電防止層や保護層を設けてもよい。特に低屈折率層の 上に、保護層を設けることが好ましい。保護層は、滑り 層または汚れ防止層として機能する。滑り層に用いる滑 り剤の例には、ポリオルガノシロキサン(例、ポリジメ チルシロキサン、ポリジエチルシロキサン、ポリジフェ ニルシロキサン、ポリメチルフェニルシロキサン、アル キル変性ポリジメチルシロキサン)、天然ワックス (例、カルナウバワックス、キャンデリラワックス、ホ ホバ油、ライスワックス、木ろう、蜜ろう、ラノリン、 鯨ろう、モンタンワックス)、石油ワックス(例、パラ フィンワックス、マイクロクリスタリンワックス)、合 成ワックス(例、ポリエチレンワックス、フィッシャー ・・トロプシュワックス)、高級脂肪脂肪酸アミド(例、 ステアラミド、オレインアミド、N, N'-メチレンビ スステアラミド)、高級脂肪酸エステル(例、ステアリ ン酸メチル、ステアリン酸ブチル、グリセリンモノステ アレート、ソルビタンモノオレエート)、高級脂肪酸金

属塩(例、ステアリン酸亜鉛)およびフッ素含有ポリマ

ー (例、パーフルオロ主鎖型パーフルオロポリエーテル、パーフルオロ側鎖型パーフルオロポリエーテル、アルコール変性パーフルオロポリエーテル、イソシアネート変性パーフルオロポリエーテル)が含まれる。汚れ防止層には、含フッ素疎水性化合物(例、含フッ素ポリマー、含フッ素界面活性剤、含フッ素オイル)を添加する。保護層の厚さは、反射防止機能に影響しないようにするため、0.02μm以下であることが好ましく、0.01μm以下であると更に好ましい。

【0081】 [透明支持体] 本発明の反射防止フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士写真フィルム社製TAC-TD80U, TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロース(屈折率:1.49)が好ましい。

【0082】本発明の反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。該透明支持体がトリアセチルセルロースの場合は偏光板の偏光層を保護する保護フィルムとしてトリアセチルセルロースが用いられるため、本発明の反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。

【0083】トリアセチルセルロースフィルムは、トリアセチルセルロースを溶剤に溶解することで調整したトリアセチルセルロースドープを単層流延、複数層共流延の何れかの流延方法により作製したトリアセチルセルロースフィルムが好ましい。

【0084】特に、環境保全の観点から、トリアセチルセルロースを低温溶解法あるいは高温溶解法によってジクロロメタンを実質的に含まない溶剤に溶解することで調整したトリアセチルセルロースドープを用いて作製したトリアセチルセルロースフィルムが好ましい。単層のトリアセチルセルロースフィルムは、公開特許公報の特開平7-11055号等で開示されているドラム流延、あるいはバンド流延等により作製され、後者の複数の層からなるトリアセチルセルロースフィルムは、公開特許公報の特開昭61-94725号、特公昭62-43846号等で開示されている、いわゆる共流延法により作製される。

【0085】例えば、原料フレークをハロゲン化炭化水素類(ジクロロメタン等)、アルコール類(メタノー

ル、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えた溶液(ドープと称する)を、水平式のエンドレスの金属ベルトまたは回転するドラムからなる支持体の上に、ドープ供給手段(ダイと称する)により流延する。単層ならば単一のドープを単層流延し、複数の層ならば高濃度のセルロースエステルドープの両側に低濃度ドープを共流延し、支持体上である程度乾燥して剛性が付与されたフィルムを支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶剤を除去する。

【0086】上記のような、トリアセチルセルロースを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし、地球環境や作業環境の観点では、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。ジクロロメタン等を実質的に含まない溶剤を用いてトリア

クロロメタン等を実質的に含まない溶剤を用いてトリアセチルセルロースのドープを調整する場合には、後述するような特殊な溶解法を用いることが好ましい。 【0087】第一の方法は、冷却溶解法と称され、以下に説明する。まず容別は近の別度(-10240%)で

「100871第一の方法は、冷却溶解法と称され、以下に説明する。まず室温付近の温度(-10~40℃)で溶剤中にトリアセチルセルロースを撹拌しながら徐々に添加する。次に、混合物は-100~-10℃(好ましくは-80~-10℃、さらに好ましくは-50~-20℃、最も好ましくは-50~-30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(-75℃)や冷却したジエチレングリコール溶液(-30~-20℃)中で実施できる。このように冷却すると、トリアセチルセルロースと溶剤の混合物は固化する。さらに、これを0~200℃(好ましくは0~150℃、さらに好ましくは0~120℃、最も好ましくは0~50℃)に加温すると、溶剤中にトリアセチルセルロースが流動する溶液となる。昇温は、室温中に放置するだけでもよいし、温浴中で加温してもよい。

【0088】第二の方法は、高温溶解法と称され、以下に説明する。まず室温付近の温度(-10~40℃)で溶剤中にトリアセチルセルロースを撹拌しながら徐々に添加する。本発明のトリアセチルセルロース溶液は、各種溶剤を含有する混合溶剤中にトリアセチルセルロースを添加し予め膨潤させることが好ましい。本法において、トリアセチルセルロースの溶解濃度は30質量%以下が好ましいが、フィルム製膜時の乾燥効率の点から、なるべく高濃度であることが好ましい。次に有機溶剤混合液は、0.2MPa~30MPaの加圧下で70~240℃に加熱される(好ましくは80~220℃、更に好ましく100~200℃、最も好ましくは100~1

90℃)。次にこれらの加熱溶液はそのままでは塗布できないため、使用された溶剤の最も低い沸点以下に冷却する必要がある。その場合、-10~50℃に冷却して常圧に戻すことが一般的である。冷却はトリアセチルセルロース溶液が内蔵されている高圧高温容器やラインを、室温に放置するだけでもよく、更に好ましくは冷却水などの冷媒を用いて該装置を冷却してもよい。ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアセテートフィルムおよびその製造法については発明協会公開技報(公技番号2001.1745、2001年3月15日発行、以下公開技報2001.17

【0089】上記のトリアセチルセルロースフィルムの 膜厚は特に限定されるものではないが、膜厚は $1\sim30$ 0μ mがよく、好ましくは $30\sim150\mu$ m、特に好ましくは $50\sim120\mu$ mである。

【0090】 [鹸化処理] 透明支持体の鹸化処理は、公 知の手法、例えば、アルカリ液の中にセルロースエステ ルフィルムを適切な時間浸漬して実施される。鹸化処理 することにより、透明支持体の表面が親水化される。 偏光板用保護フィルムは、透明支持体の親水化された表 面を偏光膜と接着させて使用する。親水化された表面 は、ポリビニルアルコールを主成分とする偏光膜との接 着性を改良するのに有効である。鹸化処理は、透明支持 体の表面の水に対する接触角が40°以下になるように 実施することが好ましい。更に好ましくは30°以下、 特に好ましくは20°以下である。鹸化処理の具体的手 段としては、以下の2つから選択することができる。汎 用のトリアセチルセルロースフィルムと同一の工程で処 理できる点で(1)が優れているが、反射防止膜面まで 酸化処理されるため、表面がアルカリ加水分解されて膜 が劣化する点、鹸化処理液が残ると汚れになる点が問題 になり得る。その場合には、特別な工程となるが、

- (2)が優れる。
- (1)透明支持体上に反射防止層を形成後に、アルカリ 液中に少なくとも1回浸漬することで、該フィルムの裏 面を鹸化処理する
- (2)透明支持体上に反射防止層を形成する前または後に、アルカリ液を該反射防止フィルムの反射防止フィルムを形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを 酸化処理する

【0091】[表面処理] 鹸化処理したセルロースエステルフィルムに用いるコロナ放電処理, グロー放電処理, 火焔処理としては、公知の手法を用いることが出来る。グロー放電処理は、例えば、特公昭35-7578号、同36-10336号、同45-22004号、同45-22005号、同45-24040号、同46-43480号、米国特許3,057,792号、同3,057,795号、同3,179,482号、同3,2

88,638号、同3,309,299号、同3,42 4,735号、同3,462,335号、同3,47 5,307号、同3,761,299号、英国特許99 7,093号、特開昭53-129262号等に記載の 手法を用いることができる。

【0092】グロー放電処理時の圧力は0.005~2 OTorrとするのが好ましい。より好ましくはO. O2~ 2Torrである。圧力が低すぎると支持体表面を十分に改 質することができず、充分な接着性を得ることができな い。一方、圧力が高すぎると安定な放電が起こらない。 また、電圧は、500~5000 Vの間が好ましい。よ り好ましくは500~3000Vである。電圧が低過ぎ ると支持体表面を十分に改質することができず、十分な 接着性を得ることができない。使用する放電周波数は、 直流から数1000MHz、好ましくは50Hz~20 MHz、更に好ましくは1KHz~1MHzである。放 電処理強度は、O.O1KV·A·分/m²~5KV·A ·分/m²が好ましく、更に好ましくはO. 15KV·A ・分/m²~1KV・A・分/m²である。グロー放電処理 を施した支持体は、グロー放電処理しながら、又は、グ ロー放電処理後直ちに冷却ロールを用いて温度を下げる ことが好ましい。火焔処理としては、例えば、液化プロ パンガス、天然ガスなどを利用できる。空気と混合しな がら処理することが好ましく、好ましいガス/空気の混 合比は、液化プロパンガスでは容積比で1/14~1/ 22、より好ましくは $1/16\sim1/19$ である。天然 ガスでは1/6~1/10、より好ましくは1/7~1 /9である。火焔処理は1~50Kca1/m2で実施 することが好ましく、より好ましくは3~20Kcal /m²である。またバーナーの内炎の先端と支持体の距 離を4 c m未満とすることがより効果的である。

【0093】本発明の反射防止フィルムの各層は以下の方法で形成することができるが、この方法に制限されない。まず、各層を形成するための成分を含有した塗布液が調製される。次に、各層の塗布液を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書参照)により透明支持体上に順次、塗布、乾燥、硬化することにより各層を形成する。マイクログラビアコート法が特に好ましい。

【0094】本発明で用いられるマイクログラビアコート法とは、直径が約20~50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。

【0095】本発明の反射防止フィルムが防眩性を有する場合、ヘイズ値は3~50%、好ましくは4~45%の範囲にあり、そして450nmから650nmの平均反射率が2.2%以下、好ましくは1.9%以下である。本発明の反射防止フィルムが防眩性を有する場合、上記範囲のヘイズ値及び平均反射率であることにより、透過画像の劣化を伴なわずに良好な防眩性および反射防止性が得られる。

【0096】本発明の偏光板は、偏光層の2枚の保護フ ィルムのうち少なくとも1枚に上記反射防止フィルムを 用いてなる。本発明の反射防止フィルムを最表層に使用 することにより、外光の映り込み等が防止され、耐傷 性、防汚性等も優れた偏光板とすることができる。ま た、本発明の偏光板において反射防止フィルムが保護フ ィルムを兼ねることで、製造コストを低減できる。 【0097】本発明の反射防止フィルムは、液晶表示装 置(LCD)、プラズマディスプレイパネル(PD P)、エレクトロルミネッセンスディスプレイ(EL D)や陰極管表示装置 (CRT) のような画像表示装置 に適用することができる。本発明の反射防止フィルムは 透明支持体を有しているので、透明支持体側を画像表示 装置の画像表示面に接着して用いられる。また、本発明 の反射防止フィルムは、偏光子、透明支持体およびディ スコティック液晶の配向を固定した光学異方層から構成 される光学補償フィルム、並びに光散乱層からなる偏光 板と組み合わせて用いられることが好ましい。光散乱層 からなる偏光板は、例えば特開平11-305010号 公報等に記載がある。

【0098】さらに詳述すると、本発明の反射防止フィルムは、偏光子の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。特にTNモードやIPSモードの液晶表示装置に対しては、特開2001-100043号等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光子の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。

【0099】偏光膜としては、いかなる偏光膜をも適用することができる。例えばポリビニルアルコール系フィルムを連続的に供給し、その両端を保持手段により保持しつつ張力を付与して延伸する際、フィルムの一方端の実質保持開始点から実質保持解除点までの保持手段の軌跡し1と、もう一端の実質保持開始点から実質保持解除点までの保持手段の軌跡し2が、左右の実質保持解除点

の距離Wに対し、下記式(2)の関係にあると共に、左右の実質保持開始点を結ぶ直線は、保持工程に導入されるフィルムの中心線と略直交するものとし、左右の実質保持解除点を結ぶ直線は、次工程に送り出されるフィルムの中心線と略直交するようにして延伸したものであってもよい(米国特許公開2002-8840号参照)。式(2) | L2-L1|>0.4W

【0100】また、透過型または半透過型の液晶表示装置に用いる場合には、市販の輝度向上フィルム(偏光選択層を有する偏光分離フィルム、例えば住友3M(株)製のD-BEFなど)と併せて用いることにより、さらに視認性の高い表示装置を得ることができる。また、入/4板と組み合わせることで、反射型液晶用の偏光板や、有機ELディスプレイ用表面保護板として表面および内部からの反射光を低減するのに用いることができる。さらに、PET、PEN等の透明支持体上に本発明の反射防止層を形成して、プラズマディスプレイパネル(PDP)や陰極管表示装置(CRT)のような画像表示装置に適用できる。

【0101】本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。

[0102]

【実施例】(ハードコート層用塗布液Aの調製)ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)150gをメチルエチルケトン/シクロへキサノン=50/50%の混合溶媒206gに溶解した。得られた溶液に、シリカブル30%メチルエチルケトン分散物(MEK-ST、日産化学社製、平均粒径約15nm)333g、光重合開始剤(イルガキュア907、チバガイギー社製)7.5gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)5.0gを49gのメチルエチルケトンに溶解した溶液を加え、孔径1μmのポリプロピレン製フィルターでろ過した。

【0103】(ハードコート層用塗布液Bの調製) 市販シリカ含有UV硬化型ハードコート液(デソライトZ7526、JSR社製、固形分濃度72%、シリカ含率38%、平均粒径約20nm)347gをメチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒403gで希釈し、孔径1μmのポリプロピレン製フィルターでろ過した。

【0104】(ハードコート層用塗布液Cの調製) 市販アルミナ含有UV硬化型ハードコート液(デソライト、JSR社製、溶剤:イソプロパノール、固形分濃度50%、アルミナ含率50%、平均粒径約20nm)500gをメチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒250gで希釈し、孔径1μmのポリプロピレン製フィルターでろ過した。

【0105】(ハードコート層用塗布液Dの調製)ジペ

ンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)250gをメチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒439gに溶解した。得られた溶液に、光重合開始剤(イルガキュア907、チバガイギー社製)7.5gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)5.0gを49gのメチルエチルケトンに溶解した溶液を加え、孔径1μmのポリプロピレン製フィルターでろ過した。

【0106】(ハードコート層用塗布液Eの調製)市販シリカ含有UV硬化型ハードコート液(デソライト27526、JSR社製、固形分濃度72%、シリカ含率38%、平均粒径約20nm)450gにアーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を36g加え、この液をメチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒264gで希釈し、孔径1μmのポリプロピレン製フィルターでろ過した。

【0107】(ハードコート層用塗布液Fの調製)ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールペナサアクリレートの混合物(DPHA、日本化薬(株)製)135gをメチルエチルケトン/シクロペキサノン=50/50%の混合溶媒196gに溶解した。得られた溶液に、シリカゾル30%メチルエチルケトン分散物(MEK-ST、日産化学社製、平均粒径約15nm)300g、ケーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を25g加え、光重合開始剤(イルガキュア907、チバガイギー社製)7.5gおよび光増感剤(カヤキュアーDETX、日本化薬(株)製)5.0gを82gのメチルエチルケトンに溶解し、孔径1μmのポリプロピレン製フィルターでろ過した。

【0108】(ハードコート層用塗布液Gの調製)ジルコニア含有UV硬化型ハードコート液(デソライトZ7401、JSR社製、固形分濃度48%、ジルコニア含率71%、平均粒径約20nm)278gにジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)120g、光重合開始剤(イルガキュア907、チバガイギー社製)7.7gを加え、メチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒355gを加え、攪拌した後、孔径1μmのポリプロピレン製フィルターでろ過した。

(ハードコート層用塗布液Hの調製) ジルコニア含有U V硬化型ハードコート液 (デソライトZ7401、JS R社製、固形分濃度48%、ジルコニア含率71%、平均粒径約20nm) 278gにジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物 (DPHA、日本化薬(株)製)120g、光重合開始剤 (イルガキュア907、チバガイ

ギー社製)7.7g、r-rクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を28gを加え、メチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒355gを加え、撹拌した後、孔径1 μ mのポリプロピレン製フィルターでろ過した

【0109】(防眩性ハードコート層用塗布液Aの調 製)市販ジルコニア含有UV硬化型ハードコート液(デ ソライトZ7401、JSR社製、固形分濃度48%、 ジルコニア含率71%、平均粒径約20nm)278g にジペンタエリスリトールペンタアクリレートとジペン タエリスリトールヘキサアクリレートの混合物(DPH A、日本化薬(株)製)117g、光重合開始剤(イル ガキュア907、チバガイギー社製)7.5g、をメチ ルエチルケトン/シクロヘキサノン=50/50%の混 合溶媒355gで希釈した。この溶液を塗布、紫外線硬 化して得られた塗膜の屈折率は1.61であった。さら にこの溶液に平均粒径2μmの架橋ポリスチレン粒子 (商品名: SX-200H、綜研化学(株)製)10g を添加して、高速ディスパにて5000 rpmで1時間 攪拌、分散した後、孔径30μmのポリプロピレン製フ ィルターでろ過して防眩性ハードコート層の塗布液Aを 調製した。

【0110】(防眩性ハードコート層用塗布液 Bの調製)市販ジルコニア含有UV硬化型ハードコート液(デソライトZ7401、JSR社製、固形分濃度048%、ジルコニア含率71%、平均粒径約20nm)521g、光重合開始剤(イルガキュア907、チバガイギー社製)7.5g、をメチルエチルケトン/シクロヘキサノン=50/50%の混合溶媒229gで希釈した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.73であった。さらにこの溶液に平均粒径2μmのベンゾグアナミンーホルムアルデヒド樹脂粒子(商品名:エボスターMS、日本触媒(株)製)10gを添加して、高速ディスパにて5000rpmで1時間攪拌、分散した後、孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート層の塗布液Bを調製した。

ブチルケトン29.8gで希釈した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.62であった。さらにこの溶液に平均粒径3.0μmの架橋アクリル粒子(商品名:MX-300、綜研化学(株)製)の25%メチルイソブチルケトン分散液をボリトロン分散機にて10000rpmで30分分散した分散液を29.4g加え、次いで、平均粒径1.5μmの架橋アクリル粒子(商品名:MXS-150CF、綜研化学(株)製)の30%メチルイソブチルケトン分散液をポリトロン分散機にて10000rpmで30分分散した分散液を80.0g加えた。上記混合液を孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート層の塗布液Cを調製した。

【0112】(防眩性ハードコート層用塗布液Dの調 製) ジペンタエリスリトールペンタアクリレートとジペ ンタエリスリトールヘキサアクリレートの混合物(DP HA、日本化薬(株)製)125g、ビス(4-メタク リロイルチオフェニル)スルフィド (MPSMA、住友 精化(株)製)125gを、439gのメチルエチルケ トン/シクロヘキサノン=50/50%の混合溶媒に溶 解した。得られた溶液に、光重合開始剤(イルガキュア 907、チバガイギー社製) 5.0gおよび光増感剤 (カヤキュアーDETX、日本化薬(株)製)3.0g を49gのメチルエチルケトンに溶解した溶液を加え た。この溶液を塗布、紫外線硬化して得られた塗膜の屈 折率は1.60であった。さらにこの溶液に平均粒径2 μmの架橋ポリスチレン粒子(商品名:SX-200 H、綜研化学(株)製)10gを添加して、高速ディス パにて5000rpmで1時間攪拌、分散した後、孔径 30μmのポリプロピレン製フィルターでろ過してハー ドコート層の塗布液Dを調製した。

【0113】(防眩性ハードコート層用塗布液Eの調 製) 市販ジルコニア含有UV硬化型ハードコート液(デ ソライト27401、JSR社製、固形分濃度48%、 ジルコニア含率71%、平均粒径約20nm)195g にジペンタエリスリトールペンタアクリレートとジペン タエリスリトールヘキサアクリレートの混合物(DPH A、日本化薬 (株) 製) 82g、ァーアクリロキシプロ ピルトリメトキシシラン (KBM-5103信越化学工 業 (株) 製) 45.8g、光重合開始剤 (イルガキュア 907、チバガイギー社-製)7.5g、をメチルエチ ルケトン/シクロヘキサノン=50/50%の混合溶媒 348gで希釈した。この溶液を塗布、紫外線硬化して 得られた塗膜の屈折率は1.59であった。さらにこの 溶液に平均粒径2μmの架橋ポリスチレン粒子(商品 名:SX-200H、粽研化学(株)製)10gを添加 して、高速ディスパにて5000 rpmで1時間攪拌、 分散した後、孔径30μmのポリプロピレン製フィルタ ーでろ過して防眩性ハードコート層の塗布液Eを調製し た。

【0114】(防眩性ハードコート層用塗布液Fの調 製) 市販ジルコニア含有UV硬化型ハードコート液 (デ ソライト27401、JSR社製、固形分濃度48%、 ジルコニア含率71%、平均粒径約20nm)250g にジペンタエリスリトールペンタアクリレートとジペン タエリスリトールヘキサアクリレートの混合物(DPH A、日本化薬(株)製)105g、r-アクリロキシプ ロピルトリメトキシシラン(KBM-5103信越化学 工業(株)製)25.8g、光重合開始剤(イルガキュ ア907、チバガイギー社製) 7.5g、をメチルエチ ルケトン/シクロヘキサノン=50/50%の混合溶媒 384gで希釈した。この溶液を塗布、紫外線硬化して 得られた塗膜の屈折率は1.61であった。さらにこの 溶液に平均粒径 2 μ m の架橋ポリスチレン粒子 (商品 名:SX-200H、綜研化学(株)製)10gを添加 して、高速ディスパにて5000rpmで1時間攪拌、 分散した後、孔径30µmのポリプロピレン製フィルタ ーでろ過して防眩性ハードコート層の塗布液Fを調製し た。

【0115】(防眩性ハードコート層用塗布液Gの調 製) 市販シリカ含有UV硬化型ハードコート液 (デソラ イト27526の溶剤組成変更品、JSR社製、溶剤組 成:メチルイソブチルケトン/メチルエチルケトン=5 7/43質量比、固形分濃度約72%、固形分中SiO 2含率約38%、重合性モノマー、重合開始剤含有)2 72gをメチルイソブチルケトン26.2gで希釈し た。この溶液を塗布、紫外線硬化して得られた塗膜の屈 折率は1.51であった。さらにこの溶液に平均粒径 5μmの架橋ポリスチレン粒子(商品名:SX-3) 50H、綜研化学(株)製)の25%メチルイソブチル ケトン分散液をポリトロン分散機にて10000rpm で30分分散した分散液を44g加え、次いで、平均粒 径5μmの架橋ポリスチレン粒子(商品名:SX-50 OH、綜研化学(株)製)の25%メチルイソブチルケ トン分散液をポリトロン分散機にて10000rpmで 30分分散した分散液を57.8g加えた。上記混合液 を孔径30μmのポリプロピレン製フィルターでろ過し て防眩性ハードコート層の塗布液Gを調製した。

【0116】(防眩性ハードコート層用塗布液Hの調製)市販シリカ含有UV硬化型ハードコート液(デソライトZ7526の溶剤組成変更品、JSR社製、溶剤組成:メチルイソブチルケトン/メチルエチルケトン=57/43質量比、固形分濃度約72%、固形分中SiO2含率約38%、重合性モノマー、重合開始剤含有)245gに γ -アクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)19.6gを加え、さらにメチルイソブチルケトン33.6gで希釈した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。さらにこの溶液に平均粒径3.5μmの架橋ポリスチレン粒子(商品名:SX-

350H、綜研化学(株)製)の25%メチルイソブチルケトン分散液をポリトロン分散機にて10000rpmで30分分散した分散液を44g加え、次いで、平均粒径5μmの架橋ポリスチレン粒子(商品名:SX-500H、綜研化学(株)製)の25%メチルイソブチルケトン分散液をポリトロン分散機にて10000rpmで30分分散した分散液を57.8g加えた。上記混合液を孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート層の塗布液Hを調製した。

【0117】(防眩性ハードコート層用塗布液 I の調製)上記、防眩性ハードコート層用塗布液 H の アーアクリロキシプロピルトリメトキシシラン(K B M - 5103信越化学工業(株)製)を、アーグリシドキシプロピルトリメトキシシラン(K B M - 403信越化学工業(株)製)に変更した以外は、添加量も含め塗布液 H と全く同様にして防眩性ハードコート層用塗布液 I を調製した。

【0118】(防眩性ハードコート層用塗布液 J の調製)上記、防眩性ハードコート層用塗布液 H の γ ー アクリロキシプロピルトリメトキシシラン (KBM - 5103信越化学工業(株)製)を、オルトけい酸テトラエチル (和光純薬工業(株)製)に変更した以外は、添加量も含め塗布液 H と全く同様にして防眩性ハードコート層用塗布液 J を調製した。

【0119】(防眩性ハードコート層用塗布液Kの調製)上記、防眩性ハードコート層用塗布液Hのアーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を、アーメタクリロキシプロピルトリメトキシシラン(KBM-503信越化学工業(株)製)に変更した以外は、添加量も含め塗布液Hと全く同様にして防眩性ハードコート層用塗布液Kを調製した。

【0120】(低屈折率層用塗布液Aの調製)屈折率 1.42の熱架橋性含フッ素ポリマー(JN-7228、固形分濃度6%、JSR(株)製)177gにシリカゾル(MEK-ST、平均粒径10~20nm、固形分濃度30%、日産化学社製)15.2g、アーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)29.3gおよびメチルエチルケトン95g、シクロヘキサノン9.0gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Aを調製した。

【0121】(低屈折率層用塗布液Bの調製)屈折率 1.40の熱架橋性含フッ素ポリマー(JN-722 3、固形分濃度6%、JSR(株)製)177gに平均 粒径30nmのフッ化マグネシウム粒子4.6g、rー アクリロキシプロピルトリメトキシシラン(KBM-5 103信越化学工業(株)製)29.3gおよびメチル エチルケトン106g、シクロヘキサノン9.0gを添加、攪拌の後、孔径5μmのポリプロピレン製フィルタ ーでろ過して、低屈折率層用塗布液Bを調製した。 【0122】(低屈折率層用塗布液Cの調製)上記、低 屈折率層用塗布液Aのケーアクリロキシプロピルトリメ トキシシラン(KBM-5103信越化学工業(株) 製)の量を19.5gに変更した以外は低屈折率層用塗 布液Aと全く同様にして低屈折率層用塗布液Cを調製し た。

【0123】(低屈折率層用塗布液Dの調製)上記、低屈折率層用塗布液Aのケーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を、ケーグリシドキシプロピルトリメトキシシラン(KBM-403信越化学工業(株)製)に変更した以外は添加量も含めて低屈折率層用塗布液Aと全く同様にして、低屈折率層用塗布液Dを調製した。

【0124】(低屈折率層用塗布液Eの調製)屈上記、低屈折率層用塗布液Aのケーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を、オルトけい酸テトラエチル(和光純薬(株)製)に変更した以外は添加量も含めて低屈折率層用塗布液Aと全く同様にして、低屈折率層用塗布液Eを調製した。

【0125】(低屈折率層用塗布液Fの調製)上記、低屈折率層用塗布液Aのケーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)を、ケーメタクリロキシプロピルトリメトキシシラン(KBM-503信越化学工業(株)製)に変更した以外は添加量も含めて低屈折率層用塗布液Aと全く同様にして、低屈折率層用塗布液Fを調製した。

【0126】(低屈折率層用塗布液Gの調製) 屈折率 1.42の熱架橋性含フッ素ポリマー(JN7228の溶剤組成変更品、溶剤組成:メチルイソブチルケトン/1ーブタノール=85/15質量比、固形分濃度10%、JSR(株)製)106gにシリカゾル(MEK-ST、平均粒径10~20nm、固形分濃度30%、日産化学社製)15.2g、アーアクリロキシプロピルトリメトキシシラン(KBM-5103信越化学工業(株)製)29.3gおよびメチルイソブチルケトン166g、シクロヘキサノン9.0gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Gを調製した。

【0127】(比較用低屈折率層用塗布液Hの調製) 屈 折率1.42の熱架橋性含フッ素ポリマー(JN-7228、固形分濃度6%、JSR(株)製)177gにシリカゾル(MEK-ST、平均粒径10~20nm、固形分濃度30%、日産化学社製)15.2gおよびメチルエチルケトン116g、シクロヘキサノン9.0gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。

【0128】(比較用低屈折率層用塗布液 I の調製) 屈 折率1.40の熱架橋性含フッ素ポリマー(JN-72 23、固形分濃度6%、JSR(株)製)177gに平均粒径30nmのフッ化マグネシウム粒子4.6gおよびメチルエチルケトン126.6g、シクロヘキサノン9.0gを添加、攪拌の後、孔径5μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Iを調製した。

【0129】(比較用低屈折率層用塗布液Jの調製)屈 折率1.42の熱架橋性含フッ素ポリマー(JN722 8の溶剤組成変更品、溶剤組成:メチルイソブチルケト ン/1-ブタノール=85/15質量比、固形分濃度1 0%、JSR(株)製)106gにシリカゾル(MEK -ST、平均粒径10~20nm、固形分濃度30%、 日産化学社製)15.2g、およびメチルイソブチルケトン187g、シクロヘキサノン9.0gを添加、攪拌の後、孔径1μmのポリプロビレン製フィルターでろ過して、低屈折率層用塗布液Jを調製した。

【 0 1 3 0 】 (中屈折率層用塗布液および高屈折率層塗 布液の調製)

(二酸化チタン分散液の調製)二酸化チタン微粒子(商品名:TTO-55B、石原産業(株)製)250g、架橋反応性基含有アニオン性ポリマー(化7)37.5g、カチオン性モノマー(商品名:DMAEA、興人(株)製)2.5gおよびシクロヘキサノン710gをダイノミルにより分散し、重量平均径65nmの二酸化チタン分散液を調製した。

【0131】 【化7】

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{CH_3} \\ -\mathsf{C} & -\mathsf{C} & -\mathsf{C} \\ \mid & \mathsf{s_0} \\ \mathsf{CO_2CH_2CH} = \mathsf{CH_2} & \mathsf{CO_2H} \end{array}$$

【0132】(中屈折率層用塗布液Aの調製)上記の二酸化チタン分散液155.2gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)89.5g、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)4.68g、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.56g、メチルエチルケトン770.4g、およびシクロヘキサノン2983.0gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで沪過して中屈折率層用の塗布液Aを調製した。

【0133】(高屈折率層用塗布液Aの調製)上記の二酸化チタン分散液985.7gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)48.8g、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)4.03g、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.35g、

メチルエチルケトン622.5g、およびシクロヘキサノン1865.0gを添加して攪拌した。孔径0.4 μ mのポリプロピレン製フィルターで沪過して高屈折率層用の塗布液Aを調製した。

【0134】(高屈折率層用塗布液Bの調製)上記の二酸化チタン分散液985.7gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製)48.8g、アクリル基含有シランカップリング剤33.5g(KBM-5103、信越化学工業(株)製)、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)4.03g、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.35g、メチルエチルケトン622.5g、およびシクロヘキサノン1865.0gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで沪過して高屈折率層用の塗布液Bを調製した。

【0135】 [実施例1] ハードコート層A〜H、防眩性ハードコート層A〜K、低屈折率層A〜G、中屈折率層A、高屈折率層AおよびBを、それぞれを以下のようにして塗設し、本発明の反射防止フィルムを作製した。また、比較用低屈折率層を塗設し、比較用反射防止フィルムを作製した。積層の組み合わせは表1に記載のとおりに行った。

【0136】(試料1~19、比較例30~33)

(1)ハードコート層の塗設

 80μ mの厚さのトリアセチルセルロースフイルム(TAC-TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、上記のハードコート層用塗布液を線数180本/インチ、深度 40μ mのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度10m/分の条件で塗布し、120C、2分で乾燥の後、酸素濃度0.1%以下の窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm²、照射量300mJ/cm²の紫外線を照射して塗布層を硬化させ、厚さ 2.5μ mのハードコート層を形成し、巻き取った。

(2) 防眩性ハードコート層の塗設

該ハードコート層を塗設したトリアセチルセルロースフィルムを再び巻き出して、上記の防眩性ハードコート層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度5m/分の条件で塗布し、120℃で4分乾燥の後、窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm²、照射量300mJ/cm²の紫外線を照射して塗布層を硬化さ

せ、厚さ2.5μmの防眩性ハードコート層を形成し、 巻き取った。

(3)低屈折率層の塗設

該ハードコート層と防眩性ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出して、上記低屈折率層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度10m/分の条件で塗布し、80℃で2分乾燥の後、さらに窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm²、照射量300mJ/cm²の紫外線を照射し、140℃で10分間熱架橋し、厚さ0.096μmの低屈折率層を形成し、巻き取った。

【0137】(実施例20~29、比較例34)

(1)ハードコート層の塗設

80μmの厚さのトリアセチルセルロースフイルム(TAC-TD80U、富士写真フイルム(株)製)に、上記のハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が0.1 体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm²、照射量300mJ/cm²の紫外線を照射して塗布層を硬化させ、厚さ3.5μmのハードコード層を形成した。

(2)中屈折率層の塗設

ハードコート層の上に、中屈折率層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度550mW/cm²、照射量600mJ/cm²の紫外線を照射して塗布層を硬化させ、中屈折率層(屈折率1.63、膜厚67nm)を形成した。

(3) 高屈折率層の塗設

中屈折率層の上に、高屈折率層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度550mW/cm²、照射量600mJ/cm²の紫外線を照射して塗布層を硬化させ、高屈折率層(屈折率1.90、膜厚107nm)を形成した。

(4)低屈折率層の塗設

高屈折率層の上に、低屈折率層用塗布液をグラビアコーターを用いて塗布した。80℃で乾燥した後、酸素濃度が2体積%以下の雰囲気になるように窒素パージしながら、160W/cmの空冷メタルハライドランプ(アイ

グラフィックス (株) 製) を用いて、照度400mW/cm²、照射量300mJ/cm²の紫外線を照射し、120℃で10分間加熱して、低屈折率層(屈折率1.4

3、膜厚86nm)を形成した。 【0138】 【表1】

試料No. V		防眩性ハートコ 十層	中屈折率温	高屈折率層	秘展折率層
1(本発明)	なし	Α	なし	なし	Α
2(本発明)	なし	Ð	なし	なし	A
3(本発明)	なし	Ç	なし	なし	A
4(本発明)	なし	D	なし	なし	С
5(本発明)	なし	E	なし	なし	D
6(本発明)	なし	F	なし	なし	E
7(本発明)	なし	G	なし	なし	A
8(本発明)	なし	Н	なし	なし	Α
9(本差明)	なし	Ī	なし	なし	A
10(本発明)	なし	J	なし	なし	A
11(本発明)	なし	K	なし	なし	Α
12(本発明)	Α	Α	なし	なし	Α
13(本発明)	B	Α	なし	なし	A
14(本発明)	C	Α	なし	なし	Α
15(本発明)	D	Α	なし	なし	A
16(本発明)	E	F	なし	なし	A
17(本発明)	F	F	なし	なし	Α
18(本発明)	G	なし	なし	なし	A
19(本発明)	H	なし	なし	なし	A
20(本発明)	Α	なし	A	Α	G
21(本発明)	В	なし	A	. A	G
22(本発明)	E	なし	Α	្ស	G
23(本発明)	F	なし	Α	В	G
24(本発明)	Α	なし	Α	A	A
25(本発明)	Α	なし	A	A	В
26(本発明)	Α	なし	A	A	С
27(本発明)	Α	なし	A	A	D
28(本発明)	Α	なし	Α	A	E
29(本発明)	Α	なし	A	A	F
30(比較例)	なし	H	なし	なし	Н
31(比較例)	なし	Н	なし	なし	1
32(比較例)	A	Α	なし	なし	H
33(比較例)	Α	A	なし	なし	Ī
34(比較例)	A	なし	Α	A	J

【0139】(反射防止膜の評価)得られたフィルムについて、以下の項目の評価を行った。

(1) 平均反射率

分光光度計(日本分光(株)製)を用いて、380~780nmの波長領域において、入射角5°における分光 反射率を測定した。結果には450~650nmの平均 反射率を用いた。

(2) ヘイズ

得られたフィルムのヘイズをヘイズメーターMODEL 1001DP(日本電色工業(株)製)を用いて測定した。

(3)鉛筆硬度評価

耐傷性の指標としてJIS K 5400に記載の鉛筆 硬度評価を行った。反射防止膜を温度25℃、湿度60 %RHで2時間調湿した後、JIS S 6006に規 定する3Hの試験用鉛筆を用いて、1kgの荷重にて

n=5の評価において傷が全く認められない : 〇

n=5の評価において傷が1または2つ : \triangle n=5の評価において傷が3つ以上 : \times

(4)接触角、指紋付着性評価

表面の耐汚染性の指標として、光学材料を温度25℃、湿度60%RHで2時間調湿した後、水に対する接触角を測定した。またこのサンプル表面に指紋を付着させてから、それをクリーニングクロスで拭き取ったときの状

態を観察して、以下のように指紋付着性を評価した。 指紋が完全に拭き取れる :○

指紋がやや見える : △

指紋がほとんど拭き取れない : ×

【0140】(5)動摩擦係数測定

表面滑り性の指標として動摩擦係数にて評価した。動摩擦係数は試料を25℃、相対湿度60%で2時間調湿した後、HEIDON-14動摩擦測定機により5mmφステンレス鋼球、荷重100g、速度60cm/minにて測定した値を用いた。

(6) 防眩性評価

作成した防眩性フィルムにルーバーなしのむき出し蛍光 灯(8000cd/m²)を映し、その反射像のボケの 程度を以下の基準で評価した。

・② 蛍光灯の輪郭が全くわからない : ◎ 蛍光灯の輪郭がわずかにわかる : ○ 蛍光灯はぼけているが、輪郭は識別できる : △ 蛍光灯がほとんどぼけない : ×

(7) ギラツキ評価

作成した防眩性フィルムにルーバーありの蛍光灯拡散光 を映し、表面のギラツキを以下の基準で評価した。

ほとんどギラツキが見られない :○ わずかにギラツキがある :△

目で識別できるサイズのギラツキがある:×

【0141】(8)スチールウールこすり耐性評価 ラビングテスターを用いて、以下の条件でこすりテスト をおこなった。

試料調湿条件: 25℃、60%RH、2時間以上。 こすり材: 試料と接触するテスターのこすり先端部 (1cm×1cm)にスチールウール(日本スチールウ ール製、ゲレードNo.0000)を巻いて、動かない ようバンド固定した。

移動距離 (片道):13cm、こすり速度:13cm/ 秒、荷重:200g/cm²、先端部接触面積:1cm ×1cm、こすり回数:10往復。

こすり終えた試料の裏側に油性黒インキを塗り、反射光 で目視観察して、こすり部分の傷を、以下の基準で評価 した。

非常に注意深く見ても、全く傷が見えない。 : ◎ 非常に注意深く見ると僅かに弱い傷が見える。 : ○ 弱い傷が見える。 : ○ 中程度の傷が見える。 : △ 一目見ただけで強い傷が見える。 : ×

【0142】(9) 水綿棒こすり耐性評価 ラビングテスターのこすり先端部に綿棒を固定し、平滑 皿中で試料の上下をクリップで固定し、室温25℃で、 試料と綿棒を25℃の水に浸し、綿棒に300gの荷重をかけて、こすり回数を変えてこすりテストを行った。こすり条件は以下のとおり。

こすり速度:約2往復/秒

こすり距離(片道):1cm、

こすり終えた試料を観察して、膜剥がれが起こった回数 で、こすり耐性を以下のように評価した。

0~10往復で膜剥がれ : × 10~30往復で膜剥がれ : △× 30~50往復で膜剥がれ : △ 50~100往復で膜剥がれ : ○△ 100~150往復で膜剥がれ : ○ 150往復でも膜剥がれなし : ◎

【0143】(10)二次元網目構造の評価

試料表面を金蒸着処理し、SEMにより表面写真を撮影し、二次元網目構造の有無を確認した。二次元網目構造を有する試料については、SEM写真を用いて、平均空孔面積(μm²)および空孔面積%(%)を求めた。SEM写真撮影を、倍率5,000倍、面積17.4×23.0μm²、の条件で行い、10視野の平均値をもって評価値とした。

【0144】結果を表2および表3に示す。本発明の試料1~29はいずれも最表層の低屈折率層に無機微粒子による二次元網目状構造を有し、このためスチールウールこすり耐性および水綿棒こすり耐性などの耐擦傷性に優れ、その他の性能も良好であった。一方、比較例30~34はいずれも二次元網目構造を形成せず、このためスチールウールこすり耐性および水綿棒こすり耐性などの耐擦傷性が不足していた。

【0145】 【表2】

武料No.	網目科造の有無	平均空孔面積	空孔面積%
		(µm)2	96
1(本発明)	海り	3.1	60
2(本発明)	有り	2.0	48
3(本発明)	有り	3.8	55
4(本発明)	有り	3.8	64
5(本発明)	有り	4.5	55
6(本発明)	有り	5.3	62
7(本発明)	有り	4.5	65
8(本発明)	有り	4.5	60
9(本発明)	割り	5.3	68
10(本発明)	有り	4.5	55
11(本発明)	有り	4.5	63
12(本発明)	有り	3.8	58
13(本発明)	有り	7.1	68
14(本発明)	有り	6.2	66
15(本発明)	有9	4.5	63
16(本発明)	有り	3.1	56
17(本発明)	有り	3.8	60
18(本発明)	有り	4.5	70
19(本発明)	有り	7.1	72
20(本発明)	有り	6.2	68
21(本発明)	有り	3.1	63
22(本発明)	有り	3.1	66
23(本発明)	有り	4.5	70
24(本発明)	有り	3.1	58
25(本発明)	有り	2.0	48
26(本発明)	有り	6.2	66
27(本発明)	有り	4.5	67
28(本発明)	有り	4.5	66
29(本発明)	有り	7.1	68
30(比較例)	無し		
31(比較例)	無し	-	•
32(比較例)	無し		·
33(比較例)	無し		
34(比較例)	無し	-	-

【0146】 【表3】

試料No.	平均反射率%	1X'96	鉛筆硬度	接触角。	指紋付着性	動摩擦係数	防眩性	キ ラッキ	ステールウールこすり耐性	水綿棒にすり耐性
1(本発明)	1.5	13	0	102	0	0.09	0	0	0	0
2(本発明)	1.3	13	0	102	0	0.09	0	0	0	0
3(本発明)	1.3	55	0	103	0	0.09	@	o	0	Q
4(本発钥)	1.5	13	0	102	0	0.09	0	0	0	0
5(本発明)	1.6	13	0	102	0	0.09	0	Q	©	0
6(本発明)	1.5	13	0	102	0	0.09	0		(9)	(
7(本発明)	1.9	41	0	102	0	0.09	0	0	Q	0
8(本発明)	1.9	41	0	102	0	0.09	Ø	0	O	©
9(本発明)	2	42	0	102	0	0.09	0	0	(0)	Q
10(本発明)	2 ·	42	0	102	0	0.09	0	Q	©	©
11(本発明)	1.9	42	0	102	0	0.09	0	0	0	©
12(本発明)	1.5	13	Q	102	0	0.09	Q	0	0	0
13(本発明)	1.6	12	0	102	0	0.09	0	0	0	0
14(本発明)	1.5	13	0	102	0	0.09	6	0	0	0
15(本発明)	1.6	12	0	102	0	0.09	0	0	· •	0
16(本発明)	1.6	14	0	102	0	0.09	Ø	0	O	•
17(本発明)	1.6	14	0	102	0	0.09	0	0	4	0
18(本発明)	1.8	0.2	0	102	0	0.09	_	_	0	0
19(本発明)		0.2	0	102	0	0.09	T =		Ø	•
20(本発明)	0.3	0.3	0	102	0	0.08		-	0	0
21(本発明)	0.3	0.3	0	102	0	0.09	_		0	Q
22(本発明)	0.3	0.3	0	102	0	0.09	1	-	Ø	©
23(本発明)	0.3	0.3	0	102	0	0.09			(a)	•
24(本発明)	0.3	0.3	0	102	0	0.09			0	<u> </u>
25(本発明)	0.3	0.3	0	102	0	0.09	<u> </u>	_	0	0
26(本発明)	0.3	0.3	0	102	0	0.09		T-	Ω	0
27(本発明)		0.3	Ő	102	Ô	0.09			O	0
28(本発明)		0.3	0	102	0	0.09			0	<u> </u>
29(本発明)		0.3	0	102	0	0.09		T —	<u> </u>	0
30(比較傷)	1.9	41	Ō	103	Ô	0.08	0	0	04	×
31(比较例)	1.7	41	Ö	104	Ô	0.08	(0)	0	QΔ	×
32(比较例)	1.5	14	Ö	103	Ō	80.0	0	0	O ₄	×
33(比较例)		14	ō	104	Ō	80.0	0	0	OA	×
34(比较例)		0.2	Ŏ	103	0	0.08	T-	_	QΔ	×

【0147】次に、本発明の試料1~29のフィルムを用いて反射防止付き偏光板を作成した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製したところ、外光の映り込みが少ないために優れたコントラストが得られ、さらに試料1~17は防眩性により反射像が目立たず優れた視認性を有していた。さらに同様にして、上記本発明の試料を偏光子、透明支持体およびディスコティック液晶の配向を固定した光学異方層から構成される光学補償フィルム、並びに光散乱層からなる偏光板と組み合わせて液晶表示装置を作製して視認性を評価したところ、外光の映り込みが少なく、優れたコントラストが得られ、さらに試料1~17は防眩性により反射像が目立たず優れた視認性を有していた。

【0148】(反射防止フィルムの酸化処理)前記試料 1~29について、以下の処理を行った。1.5Nの水酸化ナトリウム水溶液を調製し、50#にに保温した。0.01Nの希硫酸水溶液を調製した。作製した反射防止フィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。さらに反射防止フィルムを100#にで十分に乾燥させた。このようにして、酸化処理済み反射防止フィルムを作製した。

【0149】[実施例2] P V A フィルムをヨウ素2. 0g/1、ヨウ化カリウム4.0g/1の水溶液に25 ℃にて240秒浸漬し、さらにホウ酸10g/1の水溶液に25℃にて60秒浸漬後、米国特許公開2002-

8840号のFig. 2の形態のテンター延伸機に導入 し、5.3倍に延伸し、テンターを延伸方向に対し同F ig. 2の如く屈曲させ、以降幅を一定に保った。80 ℃雰囲気で乾燥させた後テンターから離脱した。左右の テンタークリップの搬送速度差は、0.05%未満であ り、導入されるフィルムの中心線と次工程に送られるフ ィルムの中心線のなす角は、46°であった。ここで| L1-L2 | は0.7m、Wは0.7mであり、 | L1 -L2 | = Wの関係にあった。テンター出口における実 質延伸方向Ax-Cxは、次工程へ送られるフィルムの 中心線22に対し45°傾斜していた。テンター出口に おけるシワ、フィルム変形は観察されなかった。さら に、PVA ((株) クラレ製PVA-117H) 3%水 溶液を接着剤としてケン化処理した富士写真フィルム (株) 製フジタック (セルローストリアセテート、レタ ーデーション値3.0nm)と貼り合わせ、さらに80 ℃で乾燥して有効幅650mmの偏光板を得た。得られ た偏光板の吸収軸方向は、長手方向に対し45°傾斜し ていた。この偏光板の550nmにおける透過率は4 3.7%、偏光度は99.97%であった。さらに米国 特許2002-8840号のFig. 8の如く310× 233mmサイズに裁断したところ、91.5%の面積 効率で辺に対し45°吸収軸が傾斜した偏光板を得た。 次に、実施例1の本発明の試料1~29の鹸化処理した フィルムを上記偏光板と貼り合わせて反射防止付き偏光 板を作製した。この偏光板を用いて反射防止層を最表層 に配置した液晶表示装置を作製したところ、外光の映り 込みがないために優れたコントラストが得られ、さらに 試料 $1\sim17$ は防眩性により反射像が目立たず優れた視認性を有していた。

【0150】[実施例3]上記実施例2の45°吸収軸 が傾斜した偏光板作製の中の、「富士写真フィルム

(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)」の代わりに実施例1の本発明の試料1~29の鹸化処理したフィルムを張り合わせて反射防止付き偏光板を作製した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製したところ、実施例2同様に、外光の映り込みがないために優れたコントラストが得られ、さらに試料1~17は防眩性により反射像が目立たず優れた視認性を有していた。

【0151】 [実施例4] 実施例1で作製した本発明の 試料1~29を、1.5規定、55℃のNaOH水溶液 中に2分間浸漬したあと中和、水洗してフィルムの裏面 のトリアセチルセルロース面を鹸化処理し、80μmの 厚さのトリアセチルセルロースフイルム(TAC-TD 80U、富士写真フイルム(株)製)を同条件で鹸化処 理したフィルムにポリビニルアルコールにヨウ素を吸着 させ、延伸して作製した偏光子の両面を接着、保護して 偏光板を作製した。このようにして作製した偏光板を、 反射防止膜側が最表面となるように透過型TN液晶表示 装置搭載のノートパソコンの液晶表示装置(偏光選択層 を有する偏光分離フィルムである住友3M(株)製のD -BEFをバックライトと液晶セルとの間に有する)の 視認側の偏光板と貼り代えたところ、背景の映りこみが 極めて少なく、表示品位の非常に高い表示装置が得られ た。

【0152】[実施例5]実施例1で作製した本発明の試料1~29を貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムに、ディスコティック構造単位の円盤面が透明支持体面に対して傾いており、且つ該ディスコティック構造単位の円盤面と透明支持体面とのなす角度が、光学異方層の深さ方向において変化している光学補償層を有する視野角拡大フィルム(ワイドビューフィルムSA-12B、富士写真フィルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ、上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。

【0153】[実施例6]実施例1で作製した本発明の 試料1~29を、有機EL表示装置の表面のガラス板に 粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られえた。

【0154】 [実施例7] 実施例1で作製した本発明の 試料1~29を用いて、片面反射防止フィルム付き偏光 板を作製し、偏光板の反射防止膜を有している側の反対 面に入/4板を張り合わせ、有機EL表示装置の表面の ガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。

[0155]

【発明の効果】本発明の無機微粒子による二次元網目構造を形成させることにより、良好な耐擦傷性および反射防止性を有する反射防止フィルムを得ることができた。この反射防止フィルムを偏光板保護フィルムおよび画像表示装置の最表層に用いることにより、耐擦傷性および視認性に優れ、表示品位の高い表示装置を得ることができた。

【図面の簡単な説明】

【図1】本発明の反射防止フィルムの一例を示す模式図 である。

【図2】本発明の反射防止フィルムの一例を示す模式図 である。

【図3】本発明の反射防止フィルムの一例を示す模式図 である。

【図4】本発明の反射防止フィルムの一例を示す模式図 である。

【図5】本発明の反射防止フィルムの一例を示す模式図である。

【図6】本発明の反射防止フィルムの一例を示す模式図 である。

【図7】本発明の低屈折率層の二次元編目状構造を示す 模式図である。

【図8】本発明の低屈折率層の二次元編目状構造を示す 模式図である。

【符号の説明】

- 1 透明支持体
- 2 低屈折率層
- 3 防眩層
- 4 ハードコート層
- 5 高屈折率層
- 6 中屈折率層
- 7 空孔
- 8 無機微粒子

【図7】

【図8】

フロントページの続き

G O 2 F 1/1335

(51) Int. Cl. 7

識別記号

510

FΙ

G 0 2 B 1/10

(参考)

Α

Fターム(参考) 2H042 BA02 BA15 BA20

2H049 BA02 BA25 BA27 BB33 BB43 BB51 BB63 BB65 BB67 BC03

DCOO DC14 DCOO DDOI DDOO DDOO DCOO

BC09 BC14 BC22

2H091 FA08X FA37X FB02 FB13

FD06 LA02 LA16

2K009 AA04 AA05 AA15 BB28 CC02

CC09 CC26 CC42 DD02 EE03

4F100 AA01B AA20 AA27 AJ05

AK12 AK25 AK52 AT00A

BA02 BA07 CA30 DE01B

GB41 JB14 JM01 JN01A

JN18B JN30

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.