Best Available Copy

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-303755

(43)Date of publication of application: 28.10.1994

(51)Int.CI.

H02K 33/16

(21)Application number: 05-084642

(71)Applicant : FOSTER ELECTRIC CO LTD

(22)Date of filing: 12.04.1993

(72)Inventor: OGUSU MINORU **KUBOTA TOYOHIKO**

(54) LINEAR MOTOR

(57)Abstract:

PURPOSE: To provide a linear motor which has less magnetic reluctance, has a simple structure, is inexpensive, generates magnetic vibration less frequently, has a high cooling effect, and has an improved output linearity in small vibration.

CONSTITUTION: First and second diaphragms 22 and 24 which are flexible in the center axis direction of a housing 20 of a hollow cylindrical magnetic body, a cylindrical yoke 27 whose outer cylinder surface opposes the inner cylinder surface of the housing 20 via a space, and a first magnet 40 which is mounted on the outer cylinder surface of the yoke 27 and is magnetized in radius direction are mounted adjacently with a spacing in axial direction of the first amagnet 40 and the yoke 27 on the outer cylinder surface of the yoke 27. Then, the title motor is constituted of a second magnet 41 whose magnetization direction is opposite to that of the first magnet 40, a first coil 43 provided at the opposing part of the first magnet 40, and a second coil 44 provided at the opposing part of the second magnet 41.

LEGAL STATUS

[Date of request for examination]

17.03.2000

[Date of sending the examiner's decision of rejection]

05.02.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-303755

(43)公開日 平成6年(1994)10月28日

(51) Int.Cl.⁵

餓別記号

庁内整理番号

FΙ

技術表示箇所

H 0 2 K 33/16

A 7227-5H

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号

特願平5-84642

(22)出願日

平成5年(1993)4月12日

(71)出願人 000112565

フォスター電機株式会社

東京都昭島市宮沢町512番地

(72)発明者 小楠 実

東京都昭島市宮沢町512番地 フォスター

電機株式会社内

(72)発明者 久保田 豊彦

東京都昭島市宮沢町512番地 フォスター

電機株式会社内

(74)代理人 弁理士 井島 藤治 (外1名)

(54)【発明の名称】 リニアモータ

(57)【要約】

(修正有)

【目的】 磁気抵抗を少なく、構造が簡単で、低コスト で、磁気振動が発生しにくく、放熱効果が高く、微小振 動での出力のリニアリティが良好なリニアモータを提供 する。

【構成】 中空円筒状の磁性体のハウジング20の中心 軸方向に可撓可能な第1及び第2のダイアフラム22. 24と、外筒面がハウジング20の内筒面と空間を介し て対向する円筒状のヨーク27と、ヨーク27の外筒面 上に取付けられ、半径方向に着磁された第1のマグネッ ト40と、ヨーク27の外筒面上に、第1のマグネット 40とヨーク27の軸方向に間隔を持って隣り合うよう に取付けられ、第1のマグネット40と着磁方向が逆の 第2のマグネット41と、ハウジング20の内筒面上 で、第1のマグネット40の対向部に設けられた第1の コイル43と、ハウジング20の内筒面上で、第2のマ グネット41の対向部に設けられた第2のコイル44と から構成する。

1

【特許請求の範囲】

【請求項1】 中空円筒状の磁性体のハウジング (20)と、

該ハウジング(20)の両方の開放端面に周縁部が固着され、前記ハウジング(20)のそれぞれの開放面を覆うように設けられ、前記ハウジング(20)の中心軸方向に可撓可能な第1及び第2のダイアフラム(22,24)と、

両端部が前記第1及び第2のダイアフラム(22,24)の中心部にそれぞれ固着され、外筒面が前記ハウジ 10ング(20)の内筒面と空間を介して対向する円筒状のョーク(27)と、

該ヨーク (27) の外筒面上に取付けられ、半径方向に 着磁された第1のマグネット (40) と、

前記ヨーク(27)の外筒面上に、前記第1のマグネット(40)と前記ヨーク(27)の軸方向に間隔を持って隣り合うように取付けられ、前記第1のマグネット(40)と着磁方向が逆の第2のマグネット(41)と、

前記ハウジング(20)の内筒面上で、前記第1のマグネット(40)の対向部に設けられた第1のコイル(43)と、

前記ハウジング(20)の内筒面上で、前記第2のマグネット(41)の対向部に設けられた第2のコイル(44)と、

からなることを特徴とするリニアモータ。

【請求項2】 前記第1及び第2のコイル(44)は、 前記ハウジング(20)内に配設される中空円筒状のボ ビン(42)の外筒面上に巻回され、

前記第1及び第2のコイル(44)と前記ハウジング (20)内筒面との空間には、熱伝導性の高い物質を介 在させたことを特徴とする請求項1記載のリニアモー タ。

【請求項3】 前記物質は、

磁性流体 (57) であることを特徴とする請求項1又は 2記載のリニアモータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ムービングマグネットタイプのリニアモータに関し、更に詳しくは、振動キャンセラー用アクチュエータ、電子ミシン、変位計、計測器のペン駆動源、振動を用いて選別を行なう選別器の駆動源等に好適なリニアモータに関する。

[0002]

【従来の技術】ムービングコイル型のリニアモータとして、実開平 1-171578 号公報に開示されたものがある。 【0003】図4は実開平 1-171578 号公報に記載されたリニアモータの構成図である。図において、1は中空円筒状のサイドヨーク、2はサイドヨークの内壁面に対して、外筒面が一定の間隔を持って配粉される中空円筒 状のセンターヨークである。

【0004】サイドヨーク1の内壁面には、第1及び第2のコイル3,4が所定の間隔を持って設けられている。又、センターヨークの外筒面には、第1のコイル3に対向する第3のコイル5と、第2のコイル4に対向する第4のコイル6とが設けられている。

2

【0005】8はサイドヨーク1の内筒面とセンターヨーク2の外筒面との間の空間で、軸方向に移動可能に支持された非磁性体の可動子である。第1のコイル3と第3のコイル5との間の可動子8の円筒部には、実質的には可動子の8の円筒面を構成する第1のマグネット9が、第2のコイル4と第4のコイル6との間の可動子8の円筒部には、実質的には可動子8の円筒面を構成し、第1のマグネット9とは着磁方向が逆の第2のマグネット10がそれぞれ設けられている。

【0006】そして、図において、破線で示すように、 第1のコイル3→第1のマグネット9→第3のコイル5 →センターヨーク2→第4のコイル6→第2のマグネット10→第2のコイル4→サイドヨーク1を経由して一 巡する磁東流を有する磁気回路が形成されている。

【0007】次に、上記構成の作動を説明する。図に示すような磁気極性になるように第1のコイル3、第2のコイル4、第3のコイル5及び第4のコイル6に電流を流すと、第1~第4のコイル3~6に発生する推力の反作用によって、可動子8が矢印A方向に移動する。

[0008]

【発明が解決しようとする課題】しかし、上記構成のリニアモータには、下記のような問題点がある。

① 磁気回路の磁気ギャップが2ヵ所あり、磁気ギャッ30 プの長さが長く、しかも、第1及び第2のマグネット9,10はサイドヨーク1及びセンターヨーク2に対して空間を介して配散されているので、磁気抵抗が大きい。

【0009】② 可動子8の内部に配設される第3のコイル5及び第4のコイル6へ電流を供給するリード線の引出し方法が難しく、又、コイルが4つ必要であり、マグネット9,10が設けられる可動子8は樹脂等で成形する必要が有り、構造が複雑となり、コストも高くなる。

【0010】③ 第2のマグネット10は可動子8の支 持点より距離が離れているので、磁気振動を発生しやすい。

④ 第3のコイル5及び第4のコイル6は、可動子8の内部に設けられているので、放熱が難しい。

【0011】本発明は、上記問題点に鑑みて成されたもので、その目的は、磁気抵抗を少なく、構造が簡単で、低コストで、磁気振動が発生しにくく、放熱効果が高いリニアモータを提供することにある。

円筒状のサイドヨーク、2はサイドヨークの内壁面に対 【0012】又、本発明の別の目的は、微小振動での出して、外筒面が一定の間隔を持って配設される中空円筒 50 力のリニアリティが良好なリニアモータを提供すること

にある。

[0013]

【課題を解決するための手段】上記課題を解決する請求 項1記載の発明は、中空円筒状の磁性体のハウジング と、該ハウジングの両方の開放端面に周縁部が固着さ れ、前記ハウジングのそれぞれの開放面を覆うように設 けら、前記ハウジングの中心軸方向に可撓可能な第1及 び第2のダイアフラムと、両端部が前記第1及び第2の ダイアフラムの中心部にそれぞれ固着され、外筒面が前 記ハウジングの内筒面と空間を介して対向する円筒状の ヨークと、該ヨークの外筒面上に取付けられ、半径方向 に着磁された第1のマグネットと、前記ヨークの外筒面 上に、前記第1のマグネットと前記ヨークの軸方向に間 隔を持って隣り合うように取付けられ、前記第1のマグ ネットと着磁方向が逆の第2のマグネットと、前記ハウ ジングの内筒面上で、前記第1のマグネットの対向部に 設けられた第1のコイルと、前記ハウジングの内筒面上 で、前記第2のマグネットの対向部に設けられた第2の コイルとからなるものである。

【0014】請求項2記載の発明は、請求項1記載の発 20 明における第1及び第2のコイルは、前記ハウジング内 に配設される中空円筒状のボビンの外筒面上に巻回さ れ、前記第1及び第2のコイルと前記ハウジング内筒面 との空間には、熱伝導性の高い物質を介在させたもので

【0015】請求項3記載の発明は、請求項1又は2記 載の発明における物質は、磁性流体である。

[0016]

【作用】請求項1記載の発明のリニアモータにおいて、 ハウジング, 第1のマグネット, ヨーク, 第2のマグネッ ト,ハウジング間に磁気回路が形成され、この磁気回路 の磁気ギャップに配設される第1のコイル及び第2のコ イルに電流を流すと、これらコイルに作用する力の反作 用として、ヨークに推力が発生する。

【0017】ヨークは、ハウジングの中心軸方向に可撓 可能な第1及び第2のダイアフラムに支持されているの で、ハウジングの中心軸方向へ移動する。請求項2記載 の発明のリニアモータにおいて、第1及び第2のコイル とハウジングの内筒面との間の空間に介在している熱伝 導性の高い物質は、第1及び第2のコイルより発生する 40 熱をスームズにハウジングに伝達する。

【0018】請求項3記載の発明のリニアモータにおい て、第1及び第2のコイルとハウジングとの間の空間に 介在している磁性流体は、第1及び第2のコイルより発 生する熱をスームズにハウジングに伝達するとともに、 磁気回路の磁束損失を小さくする。

[0019]

【実施例】次に図面を用いて本発明の一実施例を説明す る。図1は本発明の一実施例の断面図、図2は図1にお 成図である。

【0020】先ず、図1及び図2において、20は両方 の端面が開放された中空円筒状で、磁性体を用いて作ら れたハウジングである。この<u>ハウジング20</u>の一方の開 放された端面には、スペーサ21を介してハウジング2 0の中心軸方向に可撓可能な第1のダイアフラム22 が、他方の開放された端面には、スペーサ23を介して ハウジング20の中心軸方向に可撓可能な第2のダイア フラム24が設けられ、これらダイアフラムがそれぞ れ、第3及び第4の圧着リング36,37を介してねじ 25,26を用いて取付けられている。尚、本実施例で は、ダイアフラム22,24の材質は、ベリリウム鍋.リ ン青銅等を選択した。

【0021】第1のダイアフラム22及び第2のダイア フラム24の中央部には、それぞれ穴22a,24aが 穿設されている27は外筒面がハウ<u>ジング</u>20の内筒面 と空間を介して対向する両端面が開放された中空円筒状 のヨークである。このヨーク27の両方の開放端面に は、第1及び第2のサポート部材28,29の基部がね じ30,31を用いて取り付けられている。

【0022】そして、第1及び第2のサポート部材2 8,29の先端部には、ダイアフラム22,24の穴22 a,24aを介して外部に突出する凸部28a,29aが 形成され、中間部は第1及び第2の圧着リング32.3 3を介してねじ34,35を用いて、第1及び第2のダ イアフラム22,24に固着されている。

【0023】ヨーク27の外筒面上には、半径方向に着 磁(ハウジング20の内筒面側が S極) された第1のマ グネット40と、この第1のマグネット40にヨーク2 7の軸方向に間隔を持って隣り合うように取付けられ、 第1のマグネット40と着磁方向が逆(ハウジング20 の内筒面側が N極) の第2のマグネット41とが設けら れている。/

【0024】42は非磁性体で作られ、ハウジング20 の内筒面近傍に配設される中空円筒状のボビンである。 このボビン42のハウジング20の内筒面に対向する円 筒面上には、第1のマグネット40の対向部に設けられ た第1のコイル43と、第2のマグネット41の対向部 に設けられた第2のコイル44とが設けられている。

【0025】よって、図1に示すように、ハウジング2 0→第1のコイル43→第1のマグネット40→ヨーク 27→第2のマグネット41→第2のコイル44を経由 して一巡する磁東流を有する磁気回路が形成されてい る。/

【0026】次に、図3を用いて、ボビン42の更に詳 しい説明を行なう。ボビン35のハウジング20の内筒 面に対向する円筒面上には、第1のコイル43が巻回さ れる第1の凹部51と、第2のコイル44が巻回される 第2の凹部52と、第1の凹部51の第2の凹部52と ける右側面図、図3は図1におけるボビン近傍の拡大機 50 反対側の円筒面に形成され、ハウジング20の外部より

第1のコイル43へ電流を供給するリード線53が配設される第1の小溝54と、第2の凹部52の第1の凹部51と反対側の円筒面に形成され、ハウジング20の外部より第2のコイル44へ電流を供給するリード線55が配設される第2の小溝56とが形成されている。

【0027】そして、第1のコイル43,第2のコイル44とハウジング20の内筒面との間の空間には、熱伝導性の高い物質が充填されている。本実施例では、磁性流体57を充填した。

【0028】次に、上記構成の作動を説明する。リード 10線53,55を用いて第1のコイル43及び第2のコイル44に電流を流すと、磁気回路の磁気ギャップに配設されている第1のコイル43及び第2のコイル44に発生する推力の反作用によって、ヨーク27に推力が発生する

【0029】ヨーク27は、ハウジング20の中心軸方向に可撓可能な第1及び第2のダイアフラム22,24に支持されているので、ハウジング20の中心軸方向へ移動する。

【0030】上記構成によれば、

① 磁気回路の磁気ギャップがコイル43,44とマグネット40,41との間の1ヵ所であり、2ヵ所ある従来例よりも磁気ギャップの距離が短く、しかも、第1及び第2のマグネット40,41はマグネット自身の磁気吸着力でヨーク27に直に取付けられているので、磁気抵抗が遙かに小さくなっている。

【0031】② 第1のコイル43及び第2のコイル44は、固定側であるハウジング20の内筒面にボビン42を用いて取付けられているので、リード線53,55の引出しも容易である。

【0032】更に、コイル及びマグネットはそれぞれ2つですみ、マグネット40,41は自身の磁気吸着力によって、ヨーク27に取付けられているので、構造が簡単で、コストも安くなる。

【0033】 ③ 第1のマグネット40及び第2のマグネット41は、それぞれダイアフラム22,24の近傍に配置されるので、磁気振動も発生しにくい。

④ 第1のコイル43及び第2のコイル44で発生する 熱は、磁性流体57を介してハウジング20ヘスームズ に伝達されるので、放熱性が良好となる。

【0034】⑤ 第1のコイル43、第2のコイル44とハウジング20の内筒面との間の空間に磁性流体57を充填することにより、磁気回路の磁束損失を小さくすることができる。

【0035】⑥ ヨーク27は第1及び第2のダイアフラム22,24にて支持されているので、微小振動での出力のリニアリティが良好である。

本発明は、上記実施例に限るものではない。例えば、第 1のコイル43,第2のコイル44とハウジング20の 内筒面との間の空間に充填する物質は、磁性流体に限定 するものでなく、他に、樹脂又は接着剤に磁性体(粉 末)を混入したもの,熱伝導性の高い材料(例えば、ア ルミ粉)を含む樹脂或いは接着剤,熱伝導率の高い樹脂 或いは接着剤等であってもよい。

[0036]

【発明の効果】以上述べたように本発明によれば、磁気 抵抗を少なく、構造が簡単で、低コストで、磁気振動が 発生しにくく、放熱効果が高く、微小振動での出力のリ ニアリティが良好なリニアモータを実現することができ る。

【図面の簡単な説明】

- 【図1】本発明の一実施例の断面図である。
- 【図2】図1における右側面図である。
- 【図3】図1におけるボビン近傍の拡大構成図である。
- 【図4】実開平 1-171578 号公報に記載されたリニアモータの構成図である。

【符号の説明】

- 20 ハウジング
- 30 22 第1のダイアフラム
 - 24 第2のダイアフラム
 - 27 ヨーク
 - 40 第1のマグネット
 - 41 第2のマグネット
 - 42 ボビン
 - 43 第1のコイル
 - 44 第2のコイル
 - 57 磁性流体

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.