

Das Auswahlaxiom (AC) besagt:

"Für **jedes** System bewohnter Mengen gibt es eine **Auswahlfunktion**, die jeder dieser Mengen einen **Repräsentanten** zuordnet."

Das Auswahlaxiom (AC) besagt:

"Für **jedes** System bewohnter Mengen gibt es eine **Auswahlfunktion**, die jeder dieser Mengen einen **Repräsentanten** zuordnet."

Beispiele für Funktionen:

- **I** Sinusfunktion: $x \mapsto \sin(x)$
- 2 Quadrierungsfunktion: $x \mapsto x^2$, so $1 \mapsto 1$, $2 \mapsto 4$, $3 \mapsto 9$, ...
- **3** computeAreaOfCircle: $r \mapsto \pi r^2$, so $1 \mapsto \pi$, $2 \mapsto 4\pi$, . . .

Das Auswahlaxiom (AC) besagt:

"Für **jedes** System bewohnter Mengen gibt es eine **Auswahlfunktion**, die jeder dieser Mengen einen **Repräsentanten** zuordnet."

Beispiele für Funktionen:

- **I** Sinusfunktion: $x \mapsto \sin(x)$
- 2 Quadrierungsfunktion: $x \mapsto x^2$, so $1 \mapsto 1$, $2 \mapsto 4$, $3 \mapsto 9$, ...
- **3** computeAreaOfCircle: $r \mapsto \pi r^2$, so $1 \mapsto \pi$, $2 \mapsto 4\pi$, . . .
- IookupMayorOfCity
- ${\color{red} \underline{\sf 5}} \hspace{0.1cm} \textbf{getYoungestStudentOfClass}$

"Auswahlfunktionen"

Das Auswahlaxiom (AC) besagt:

"Für jedes System bewohnter Mengen gibt es eine Auswahlfunktion, die jeder dieser Mengen einen Repräsentanten zuordnet."

Beispiele für Funktionen:

- Sinusfunktion: $x \mapsto \sin(x)$
- Ouadrierungsfunktion: $x \mapsto x^2$, so $1 \mapsto 1$, $2 \mapsto 4$, $3 \mapsto 9$, ...
- computeAreaOfCircle: $r \mapsto \pi r^2$, so $1 \mapsto \pi$, $2 \mapsto 4\pi$, ...
- lookupMayorOfCity
- "Auswahlfunktionen" 5 getYoungestStudentOfClass

A endliche Systeme bewohnter Mengen Systeme von bewohnten herauslösbaren Mengen natürlicher Zahlen

Aus Auswahlfunktion mach Gewinnstrategie

Für das System der Mengen nahezu-identischer Szenarien könnte eine Auswahlfunktion sein:

(und viele weitere Repräsentanten)

Wenn die Zwerge eine gemeinsame Auswahlfunktion nutzen, um ihre Vermutungen abzugeben, werden nur endlich viele falsch liegen.

Folgerungen aus dem Auswahlaxiom

"Seltsame":

Vitali-Fraktal

Banach-Tarski-Paradoxon

Weissagung

"Gut/prokrastinatorisch":

Jeder Körper hat einen algebraischen Abschluss.

Jeder Vektorraum hat eine Basis.

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	✓	✓
${\color{red} 3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	×	?
5 Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.	×	?
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	✓	✓
${\color{red}3}$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$ullet$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	×	?
${ t 5}$ Jede Abbildung ${\mathbb R} o {\mathbb R}$ ist stetig.	×	?
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

[&]quot;1" im effektiven Topos bedeutet: Es gibt eine Maschine, die von einer beliebigen Zahl bestimmt, ob sie prim ist oder nicht.

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	√	✓
${\color{red} 3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	X	?
5 Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.	X	?
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

[&]quot; \mathbb{Z} " im effektiven Topos bedeutet: Es gibt eine Maschine, die eine beliebige Zahl n einliest und eine Primzahl größer als n ausgibt.

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	√	✓
${\color{red} 3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	X	?
5 Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.	X	?
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

"3" im effektiven Topos bedeutet: Es gibt eine Maschine, die eine beliebige Maschine einliest, die eine Funktion $f: \mathbb{N} \to \mathbb{N}$ berechnet, und bestimmt, ob f eine Nullstelle hat oder nicht.

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	✓	✓
${\color{red} 3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	X	✓ (trivial)
5 Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.	X	?
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

"•" im effektiven Topos bedeutet: Es gibt eine Maschine, die eine beliebige Maschine einliest, die eine Funktion $f: \mathbb{N} \to \mathbb{N}$ berechnet, und eine Maschine ausgibt, die f berechnet. cat!

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	✓	✓
${\color{red}3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	×
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	×	✓ (trivial)
${\color{red} { t 5}}$ Jede Abbildung $\mathbb{R} o \mathbb{R}$ ist stetig.	X	✓ (falls MP)
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	?
hat eine Nullstelle.		

Aussage	in Set	in Eff
Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
Nach jeder Zahl kommt eine Primzahl.	✓	✓
${\color{red} 3}$ Jede Abbildung $\mathbb{N} \to \mathbb{N}$ hat eine Nullstelle oder nicht.	✓ (trivial)	X
$lacksquare$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	×	✓ (trivial)
5 Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.	×	✓ (falls MP)
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	✓ (falls MP)
hat eine Nullstelle.		

"o" im effektiven Topos bedeutet: Es gibt eine Maschine, die eine beliebige Maschine, die eine Funktion $f: \mathbb{N} \to \mathbb{N}$ berechnet, sowie ein bloßes Versprechen, dass es *nicht nicht* nicht der Fall ist, dass f eine Nullstelle hat, einliest, und eine Nullstelle von f bestimmt. unbeschränkte Suche!

Aussage	in Set	in Eff
■ Jede Zahl ist prim oder nicht prim.	✓ (trivial)	✓
2 Nach jeder Zahl kommt eine Primzahl.	1	✓
${\color{red}3}$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ hat eine Nullstelle oder nicht.	🗸 (trivial)	X
$ullet$ Jede Abbildung $\mathbb{N} o \mathbb{N}$ ist berechenbar.	×	✓ (trivial)
${ t 5}$ Jede Abbildung ${\mathbb R} o {\mathbb R}$ ist stetig.	×	✓ (falls MP)
6 Jede Abbildung $\mathbb{N} \to \mathbb{N}$, die <i>nicht nicht</i> eine Nullstelle hat,	✓ (trivial)	✓ (falls MP)
hat eine Nullstelle.		

In Eff gibt es keine Auswahlfunktion für das System der Mengen verhaltensgleicher Programme.

Ein Gegenbeispiel zum Auswahlaxiom

Eine Auswahlfunktion für das System der Mengen verhaltensgleicher Programme könnte so aussehen:

$$\begin{cases} \text{ while True: pass} \\ \text{ while } 2 == 1 + 1 \text{: pass} \\ \text{ s = 'a'; while len(s) > 0 : s = s + 'a'} \end{cases} \qquad \longmapsto \qquad \text{while True: pass} \\ \vdots \\ \begin{cases} \text{ print(2+2)} \\ \text{ print(4)} \\ \text{ print(len('37c3'))} \\ \vdots \end{cases} \qquad \longmapsto \qquad \text{print(4)} \\ \vdots \end{cases}$$

Mit solch einer Auswahlfunktion c ließe sich ein Halteorakel bauen:

Ein Programm p divergiert genau dann, wenn c(p) = c ('while True: pass').

Eine nuancierte Perspektive

Es gibt ein Gegen-Axiom, das **Determiniertheitsaxiom** (AD): "Jede Instanz des **Folgenspiels** ist **determiniert**."

Wie auch bei AC folgt die finitäre Version von AD aus unbestrittenen grundlegenden Axiomen. AC und AD sind zwei verschiedene Extrapolierungen des Endlichen ins Unendliche.

Eine nuancierte Perspektive

- Es gibt ein Gegen-Axiom, das **Determiniertheitsaxiom** (AD): "Jede Instanz des **Folgenspiels** ist **determiniert**."
 Wie auch bei AC folgt die finitäre Version von AD aus unbestrittenen grundlegenden Axiomen. AC und AD sind zwei verschiedene Extrapolierungen des Endlichen ins Unendliche.
- Das Auswahlaxiom zieht definitiv keine neuen Inkonsistenzen mit sich (falls zfc inkonsistent sein sollte, so auch zf bewiesenermaßen in IPRA).
 Befürchtungen über Inkonsistenz des Auswahlaxioms sind folglich unbegründet.

Eine nuancierte Perspektive

- I Es gibt ein Gegen-Axiom, das **Determiniertheitsaxiom** (AD): "Jede Instanz des **Folgenspiels** ist **determiniert**."
 Wie auch bei AC folgt die finitäre Version von AD aus unbestrittenen grundlegenden Axiomen. AC und AD sind zwei verschiedene Extrapolierungen des Endlichen ins Unendliche.
- Das Auswahlaxiom zieht definitiv keine neuen Inkonsistenzen mit sich (falls zfc inkonsistent sein sollte, so auch zf bewiesenermaßen in IPRA).
 Befürchtungen über Inkonsistenz des Auswahlaxioms sind folglich unbegründet.
- Sogar falls ac in der Metatheorie nicht verfügbar ist, gilt ac immer noch in L, Gödels Sandbox. Wunderbarerweise haben Set und L dasselbe \mathbb{N} . Daher gelten in Set und L dieselben arithmetischen Wahrheiten. Von jedem ZFC-Beweis einer solchen Wahrheit lässt sich ac maschinell eliminieren.

solchen Wahrheit lässt sich AC maschinell eliminieren.

Das Auswahlaxiom kann dadurch als nützliche Fiktion betrachtet werden, ähnlich wie negative Zahlen nützlich sind, aber man auch damit vorlieb nehmen könnte, separat Guthaben und Schulden aufzuführen. Das Auswahlaxiom wird für gewisse infrastrukturelle Werkzeuge benötigt, ist aber für arithmetische Konsequenzen dieser Werkzeuge überflüssig.

6/6

Tough choices

The constructivist's trolley dilemma

Oh no! A trolley is heading towards 5 people. There is an infinite collection of infinite clusters of indistinguisable levers, Each infinite cluster countains so many levers that you cannot enumerate them all. Likewise, there are so many clusters that you cannot enumerate them all.

You can redirect the trolley to an empty track by pulling 1 lever in each cluster. Any lever will work. Fortunately, your abilities allow you to pull a lever in every cluster at once, provided you can come up in advance with a way to chose which levers you'll pull.

Which levers will you pull?

