

Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Currently Amended) A compound of formula (I),

the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl

R² is hydrogen, hydroxy, C₁₋₆alkyl, or C₃₋₆alkynyl ~~or taken together with R³ may form =O;~~

R³ is a radical selected from

- (CH₂)_s- NR⁸R⁹ (a-1),
- O-H (a-2), or
- O-R¹⁰ (a-3),

wherein

s is 0, 1, 2 or 3;

R⁸ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl; and

R¹⁰ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
or R³ is a group of formula

wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

(c-1)

(c-2)

(c-3)

(c-4)

(c-5)

(c-6)

(c-7)

(c-8)

(c-11)

wherein each R¹² independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; and
each R¹³ independently is hydrogen, piperidinyl or aryl;

R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl; or when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

- O-CH₂-O- (d-1),
- O-(CH₂)₂-O- (d-2),
- CH=CH-CH=CH- (d-3), or
- NH-C(O)-NR¹⁴=CH- (d-4),

wherein R^{14} is C_{1-6} alkyl;

aryl is phenyl or phenyl substituted with halo, C_{1-6} alkyl or C_{1-6} alkyloxy;

with the proviso that when

n is 0, X is N, R^1 is C_{1-6} alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen; then at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, C_{1-6} alkyl or C_{1-6} alkyloxy and that ~~7-benzoyl-3-methyl-2(1H)-quinoxalinone is excluded.~~

2. (Original) A compound as claimed in claim 1 wherein

n is 0 or 1; X is N or CR⁷, wherein R^7 is hydrogen; R^1 is C_{1-6} alkyl; R^2 is hydrogen; R^3 is a radical selected from (a-1) or (a-2) or is group of formula (b-1); s is 0, 1 or 2; R^8 is C_{1-6} alkyl or aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; t is 0, 1 or 2; Z is a heterocyclic ring system selected from (c-1), (c-2), (c-3), (c-4), (c-5) or (c-11); each R^{12} independently is hydrogen or C_{1-6} alkyloxy C_{1-6} alkylamino; each R^{13} independently is hydrogen; and R^4 , R^5 and R^6 are each independently selected from hydrogen, halo or C_{1-6} alkyl.

3. (Previously Presented) A compound according to claim 1 wherein

n is 0 or 1; X is N; R^1 is C_{1-6} alkyl; R^2 is hydrogen; R^3 is a radical of formula (a-1) or is a group of formula (b-1); s is 0; R^8 is aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; t is 0; Z is a heterocyclic ring system selected from (c-1) or (c-2); each R^{12} independently is hydrogen or C_{1-6} alkyloxy C_{1-6} alkylamino; each R^{13} independently is hydrogen; and R^4 , R^5 and R^6 are each independently selected from hydrogen or halo.

4. (Previously Presented) A compound selected from compound No 5, compound No 9, compound No 2 and compound No 1:

and the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof.

5. (Cancelled)

6. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as an active ingredient a therapeutically effective amount of a compound according to claim 1.

7. (Cancelled)

8. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of formula (I)

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

- (CH₂)_s - NR⁸R⁹ (a-1),
- O - H (a-2), or
- O - R¹⁰ (a-3),

wherein

s is 0, 1, 2 or 3;

R⁸ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl; and

R¹⁰ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or R³ is a group of formula

- (CH₂)_t - Z - (b-1),

wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

(c-1)

(c-2)

(c-3)

(c-4)

(c-5)

(c-6)

(c-7)

(c-8)

(c-11)

wherein each R^{12} independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; and
each R^{13} independently is hydrogen, piperidinyl or aryl;

R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl; or

when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1),
 -O-(CH₂)₂-O- (d-2),
 -CH=CH-CH=CH- (d-3), or
 -NH-C(O)-NR¹⁴=CH- (d-4),
 wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

9. (Cancelled)

10. (Withdrawn) A method for enhancing the effectiveness of chemotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy .

11. (Withdrawn) A method for enhancing the effectiveness of radiotherapy of comprising administration of a compound accordnng to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy .

12. (Withdrawn) A combination of a compound of formula (I) with a chemotherapeutic agent

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl or thienyl;

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

- (CH₂)_s- NR⁸R⁹ (a-1),
- O-H (a-2), or
- O-R¹⁰ (a-3),

wherein

s is 0, 1, 2 or 3;

R⁸-and_R¹⁰ are each independently selected from -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; and

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

- (CH₂)_t-Z- (b-1),

wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

(c-1)

(c-2)

(c-3)

(c-4)

(c-11)

wherein each R¹² independently is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino,

R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, amino, amino C_{1-6} alkyl, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl, or C_{1-6} alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C_{1-6} alkyloxy, or amino C_{1-6} alkyloxy; or

when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

- O-CH₂-O (d-1),
 - O-(CH₂)₂-O- (d-2),
 - CH=CH-CH=CH- (d-3), or
 - NH-C(O)-NR¹⁴=CH- (d-4),

wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

13. (Withdrawn) A process for preparation of a compound as claimed in claim 1, comprising

a) hydrolysis of intermediates of formula (VIII),

b) cyclization of intermediates of formula (X), into compounds of formula (I) wherein X is CH, herein referred to as compounds of formula (I-j), and s.

c) condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) wherein R^h is C₁₋₆alkyl, into compounds of formula (I), wherein X is N, herein referred to as compounds of formula (I-i), in the presence of a carboxylic acid.

14. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 2.
15. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 3.
16. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 4.
17. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 2.
18. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy .
19. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound accordnng to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
20. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 3.
21. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy .

22. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
23. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 4.
24. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy .
25. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
26. (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 2.
27. (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 3.
28. (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 4.
29. (Previously Presented) A product made by the process of claim 13.
30. (Cancelled)