МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

з курсу «Ймовірнісні моделі та статистичне оцінювання в інформаційно-управляючих системах»

Викладач: Вєчерковська А.С.

Виконав: студент 2 курсу групи IП-15 ФІОТ Мєшков Андрій Ігорович

Розрахунково-графічна робота Завдання 1

Завдання:

- За вибіркою з нормальної генеральної сукупності критерієм χ^2 перевірити гіпотезу про нормальний розподіл;
- Побудувати довірчі інтервали для: математичного сподівання при відомій дисперсії; математичного сподівання при невідомій дисперсії; для дисперсії;
- Задати структуру та параметри (кожному індивідуально) ідеальної багатовимірної лінійної регресії, реалізувати віртуальний активний експеримент і за його результатами методом найменших квадратів знайти оцінки її коефіцієнтів.

Хід розрахунків показаний у табличному файлі.

Хід роботи:

1. За вибіркою з нормальної генеральної сукупності критерієм χ^2 перевірити гіпотезу про нормальний розподіл;

Індивідуально було створена вибірка з нормальною генеральною сукупністю з n=60 елементів.

18	20	14	11	8	12
12	15	11	12	21	14
12	11	6	9	13	12
18	11	13	12	11	16
13	13	9	18	17	20
7	19	10	8	12	12
11	16	26	18	15	18
8	21	15	13	12	14
13	16	15	12	14	14
13	12	17	13	15	15

Для розрахунків був побудований варіаційний ряд. Були знайдені кількість інтервалів $m=\sqrt{n}$, та крок інтервалу $h=\frac{x_{max}-x_{min}}{m}$, де в чисельнику різниця максимального та мінімального елементів вибірки. Були побудовані інтервали $[x_1, x_2),...,[x_m, x_{m+1}]$. Були знайдені центри частинних інтервалів $x_i^*=x_{i-1}+\frac{h}{2}=\frac{x_m+x_{m+1}}{2}$.

Нульова гіпотеза H_0 — вибірка розподілена за нормальним законом, H_1 — вибірка не розподілена за нормальним законом, при рівні значущості $\alpha = 0.05$.

Обчислюємо вибіркову середню(х* average), $\overline{x_B} = \frac{1}{n} \sum_{i=1}^k x_i n_i$. Обчислюємо виправлену дисперсію $s^2 = (\overline{x_B}^2 - (\overline{x_B})^2) * \frac{n}{n-1}$, де $\overline{x_B}^2 = \frac{1}{n} \sum_{i=1}^k x_i^2 n_i$. Знаходимо правлене вибіркове середнє квадратичне відхилення $\sigma = \sqrt{s^2}$.

$$\overline{x_B}$$
 =13,9166667
 $\overline{x_B}^2$ =207,354167
 s^2 = 13,9124294
 σ =3,72993691

Нам необхідно знайти критерій χ^2 -Пірсона, для цього з припущенням, що розподіл нормальним шукаємо теоретичні частоти n' за таблицею. Маючи необхідні параметри, нормалізуємо випадкову величину X – переходимо до величини Z і обчислюємо інтервали ($z_i; z_{i+1}$), де $z_i = \frac{(x_i - \overline{x^*})}{\sigma^*}, z_{i+1} = \frac{(x_{i+1} - \overline{x^*})}{\sigma^*}, z_1 = -\infty, z_l = \infty$. Обчислюємо теоретичні ймовірності потрапляння

Z з інтервалами ($z_i; z_{i+1}$), $P_i = \Phi(z_{i+1}) - \Phi(z_i)$, де $\Phi(x)$ – функція Лапласа, значення якої ми знаходимо з таблиці. Знаходимо теоретичні частоти $n'_i = nP_i$.

Маючи теоретичні частоти знаходимо спостережуване значення критерію $\chi^2_{\text{сп}} = \sum_{i=1}^l \frac{(n_i - n_i')^2}{n_i'}$.

Область прийняття нульової гіпотези визначаємо нерівністю: $\chi^2_{cn} = \chi^2_{kp}(\alpha, k)$, k=1-3=m-3, критичну точку знаходимо в таблиці.

За нашими даними $\chi^2_{\text{сп}}=15,3994748>\chi^2_{\text{кp}}(0,05,5)=11,07$, тому ми маємо підстави відкинути нульову гіпотезу.

2. Побудувати довірчі інтервали для: математичного сподівання при відомій дисперсії; математичного сподівання при невідомій дисперсії; для дисперсії;

Для обчислень ми будемо використовувати дані з попереднього завдання.

18	20	14	11	8	12
12	15	11	12	21	14
12	11	6	9	13	12
18	11	13	12	11	16
13	13	9	18	17	20
7	19	10	8	12	12
11	16	26	18	15	18
8	21	15	13	12	14
13	16	15	12	14	14
13	12	17	13	15	15

$$n = 60$$

 $\overline{x_B}$ =13,9166667 s^2 =13,9124294

$$s^2 = 13,9124294$$

$$\sigma = 3,72993691$$

Також візьмемо надійність $\gamma = 0.95$.

При відомому параметрі σ довірчим для математичного сподівання ε інтервал:

$$\left(\overline{x_B} - t \frac{\sigma}{\sqrt{n-1}}; \overline{x_B} + t \frac{\sigma}{\sqrt{n-1}}\right),$$

де t – розв'язок рівняння $2\Phi(t)$ = γ . В нашому випадку t=1,96, n-1, бо маємо вибіркову дисперсію у розподілі Стьюдента, а не популяційну у нормальному розподілі.

Довірчий інтервал для математичного сподівання при відомій дисперсії (12,9648977; 14,8684357).

При невідомому параметрі о довірчим для математичного сподівання припускається стандартний випадок нормального розподілу, де σ =1, тому можна скорегувати минулу формулу:

$$\left(\overline{x_B}-t\frac{1}{\sqrt{n-1}};\overline{x_B}+t\frac{1}{\sqrt{n-1}}\right),$$

що дає не дуже точні результати: (13,6614964; 14,1718369).

При невідомому математичному сподіванні довірчий інтервал із надійністю у для дисперсії D(X) нормального розподілу має вигляд:

$$\left(\frac{(n-1)s^2}{\chi_1^2(\gamma)};\frac{(n-1)s^2}{\chi_2^2(\gamma)}\right),$$

Де додатні числа χ_1 (γ), χ_2 (γ) визначаються з рівностей $F(\chi_1^2(\gamma)) = \frac{1-\gamma}{2}$; $F(\chi_2^2(\gamma)) = \frac{1+\gamma}{2}$;

Де F(x) — функція розподілу випадкової величини $\chi^2(xі$ -квадрат) з (n-1) ступенями свободи. Для дисперсії довірчий інтервал: (9,99590016; 20,6957121).

3. Задати структуру та параметри (кожному індивідуально) ідеальної багатовимірної лінійної регресії, реалізувати віртуальний активний експеримент і за його результатами методом найменших квадратів знайти оцінки її коефіцієнтів.

Метод найменших квадратів для багатовимірної лінійної регресії використовується для знаходження оптимальних параметрів моделі, яка описує залежність між залежною змінною і декількома незалежними змінними. Основна ідея методу найменших квадратів полягає в мінімізації суми квадратів розбіжностей між спостережуваними значеннями залежної змінної і прогнозованими значеннями, обчисленими за допомогою лінійної функції з набором незалежних змінних. У багатовимірній лінійній регресії модель може бути виражена наступним чином:

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \epsilon$, де y - залежна змінна, $x_1, x_2, ..., x_k$ - незалежні змінні (фактори), $\beta_0, \beta_1, \beta_2, ..., \beta_k$ - параметри моделі, ϵ - помилка. Y = XB + E, як матричний вигляд

Метод найменших квадратів для багатовимірної лінійної регресії полягає в знаходженні таких значень параметрів β_0 , β_1 , β_2 , ..., β_k , які мінімізують суму квадратів розбіжностей між фактичними значеннями залежної змінної і прогнозованими значеннями.

Реалізуємо віртуальний експеримент, для цього створимо дані x_1 , x_2 з результатами у. Кожна сукупність має 50 елементів. Для нашого експерименту повинна виконуватись рівняння $y=\beta_0+\beta_1x_1+\beta_2x_2$, $\varepsilon-$ можна припустити нульове значення для ідеального випадку.

Далі створимо розширену матриці предикторів, для цього додаємо одиничний масив як перший стовпець ($\beta_0 = \beta_0 * x_0, x_0 = 1$). Транспонуємо матрицю і отримуємо X^T .

Суть нашого експерименту вирішити матричне рівняння Y=X*B, $X^TY=X^T*X*B$, $B=(X^T*X)^{-1}*X^T*Y$.

Маючи X^T , побудуємо матриці X^TX , X^TY , $(X^TX)^{-1}$, $(X^TX)^{-1}*$ X^TY , використавши функції Excel та Google sheets для транспонування, обернення та множення матриць.

Знаходимо оцінки коефіцієнтів – це одномірний масив:

B=	295.3094267
	-0.1468351926
	-0.1098866551

Умовно маємо рівняння $y=295,31-0,15x_1-0,11x_2$.