1. Вычислить значение градиента функции в точке x = 0:

$$f(x) = tg(x^2 - 2) + exp(sin(x))$$

Градиент — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины u. Другими словами, направление градиента есть направление наибыстрейшего возрастания функции.

$$gradu = \frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j + \frac{\partial u}{\partial z}k$$

Решение:

Дано:

$$f(x) = \tan(x^2-2) + \exp(\sin(x))$$

Градиентом функции F = f(x) называется вектор, координатами которого являются частные производные данной функции, т.е.:

$$grad(z) = \frac{\partial z}{\partial x}\vec{i} + \frac{\partial z}{\partial y}\vec{j}$$

Находим частные производные:

$$\begin{split} \frac{\partial z}{\partial x} &= 2 \cdot x (tg(x^2-2)^2+1) + e^{sin(x)} \cdot cos(x) \\ \frac{\partial z}{\partial y} &= 0 \end{split}$$

Тогда величина градиента равна:

$$grad(z) = (2 \cdot x(tg(x^2-2)^2+1) + e^{sin(x)} \cdot cos(x))\vec{i} + 0\vec{j}$$

Найдем градиент в точке А(0;0)

$$grad(z)_A \!=\! (2 \cdot 0 (tg(0^2-2)^2+1) + e^{sin(0)} \cdot cos(0))\vec{\imath} + (0)\vec{\jmath}$$

или

$$grad(z)_A = \overline{i} + 0\overline{j}$$

Модуль grad(z) - наибольшая скорость возрастания функции:

$$\begin{split} |\operatorname{grad}(z)_A^{}| &= \sqrt{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} \\ |\operatorname{grad}(z)_A^{}| &= \sqrt{2 + 0^2} = 1 \end{split}$$

Направление вектора-градиента задаётся его направляющими косинусами:

$$cos(\alpha) = \frac{\frac{\partial z}{\partial x}}{|grad(z)|}; cos(\beta) = \frac{\frac{\partial z}{\partial y}}{|grad(z)|}$$
$$cos(\alpha) = \frac{1}{1}; cos(\beta) = \frac{0}{1}$$

2. Решить задачу многоклассокой классификации для нового измерения x = 2.5 с использованием модели GMM:

 $X_1 = \{1,3,5,2,1,7,8,5,1,2,3,6,5,2\}$

 $X_2 = \{11, 10, 0\}$

 $X_3 = \{0,5,3,5,1,7,8,5,4,3,5,2,1\}$

x_new	2.5			
p(x_new) - ?				
	N(mu, sigma^2) = 1/(sigma * sqrt(2 pi)) * exp(-0.5 * (x - mu)^2 / sigma^2)			
	X_1	mu_1	sigma^2_1	2000
		3.642857143	5.478021978	
	X_2	mu_2	sigma^2_2	
		7	37	
	X_3	mu_3	sigma^2_3	
		3.769230769	5.692307692	
	p(x_new X_1)	GMM(x_new mu,	sigma^2)	0.151294751
	p(x_new X_2)	GMM(x_new mu, sigma^2) GMM(x_new mu, sigma^2)		0.033824846
	p(x_new X_3)			0.016472483

Ответ: К первому классу