# HNCO

# Comparison of various black box optimization algorithms

#### October 26, 2018

#### Contents

| 1  | Ranking               | 2          |
|----|-----------------------|------------|
| 2  | Function one-max      | 3          |
| 3  | Function lin          | 4          |
| 4  | Function leading-ones | 5          |
| 5  | Function ridge        | 6          |
| 6  | Function jmp-5        | 7          |
| 7  | Function jmp-10       | 8          |
| 8  | Function djmp-5       | g          |
| 9  | Function djmp-10      | 10         |
| 10 | Function fp-5         | 11         |
| 11 | Function fp-10        | 12         |
| 12 | Function nk           | 13         |
| 13 | Function max-sat      | <b>1</b> 4 |
| 14 | Function labs         | 15         |
| 15 | Function ep           | 16         |
| 16 | Function cancel       | 17         |
| 17 | Function trap         | 18         |
| 18 | Function hiff         | 19         |
| 19 | Function plateau      | 20         |
| 20 | Function walsh2       | 21         |
| A  | Plan                  | 21         |
| В  | Default parameters    | 25         |

#### 1 Ranking

| algorithm             | ran | k di | strik | outio | n |   |   |   |        |    |
|-----------------------|-----|------|-------|-------|---|---|---|---|--------|----|
|                       | 1   | 2    | 3     | 4     | 5 | 6 | 7 | 8 | 9      | 10 |
| pbil                  | 10  | 0    | 0     | 2     | 1 | 1 | 2 | 0 | 2      | 1  |
| sa                    | 8   | 3    | 2     | 2     | 1 | 0 | 0 | 2 | 0      | 1  |
| $\operatorname{umda}$ | 7   | 2    | 0     | 1     | 1 | 0 | 4 | 0 | $^{2}$ | 2  |
| ga                    | 6   | 4    | 1     | 2     | 2 | 1 | 0 | 0 | 1      | 2  |
| rls                   | 5   | 5    | 1     | 3     | 0 | 1 | 1 | 1 | 1      | 1  |
| ea-10p1               | 5   | 3    | 3     | 4     | 2 | 2 | 0 | 0 | 0      | 0  |
| hc                    | 5   | 3    | 1     | 4     | 1 | 0 | 0 | 1 | 1      | 3  |
| ea-1p10               | 5   | 2    | 2     | 2     | 0 | 2 | 2 | 1 | 2      | 1  |
| ea-1p1                | 5   | 2    | 1     | 2     | 0 | 1 | 3 | 4 | 1      | 0  |
| ea-1c10               | 4   | 3    | 3     | 6     | 0 | 0 | 2 | 1 | 0      | 0  |

one-max: (sa, ga, umda, ea-1p1, ea-1p10, pbil, ea-1c10, rls, ea-10p1, hc) lin: (rls, ea-1c10, pbil, hc, ea-10p1, ga, umda, ea-1p1, sa, ea-1p10) leading-ones: (hc, ea-10p1, pbil, rls, ea-1c10, ea-1p10, sa, umda, ea-1p1), ga ridge: (ea-1p1, umda, sa, ea-1p10, hc, ea-10p1), pbil, ea-1c10, rls, ga jmp-5: (umda, ga, pbil), (ea-1p10, ea-1p1, sa, hc, ea-10p1, ea-1c10, rls) jmp-10: pbil, (ga, umda, ea-1p1, sa, ea-1p10, ea-1c10, rls, ea-10p1, hc) djmp-5: (umda, ga, pbil), (ea-1p1, sa, ea-1p10, rls, ea-1c10, ea-10p1, hc) djmp-10: pbil, (ea-1p10, umda, ga, ea-1p1, sa, ea-10p1, hc, ea-1c10, rls) fp-5: (ea-1p1, umda, pbil, ea-1c10, rls, ea-10p1), ea-1p10, sa, ga, hc fp-10: pbil, rls, (ea-1c10, ea-10p1), umda, ga, ea-1p1, sa, ea-1p10, hc nk: sa, ga, ea-1c10, ea-10p1, hc, pbil, rls, ea-1p1, ea-1p10, umda max-sat: sa, rls, ea-1c10, ga, ea-10p1, ea-1p10, umda, ea-1p1, pbil, hc labs: ga, ea-1c10, sa, hc, ea-10p1, rls, ea-1p10, ea-1p1, pbil, umda ep: rls, ga, hc, pbil, sa, ea-10p1, ea-1c10, ea-1p1, umda, ea-1p10 cancel: pbil, ea-10p1, ea-1p10, ea-1c10, ga, ea-1p1, umda, rls, hc, sa trap: hc, rls, (ga, sa, ea-1p10, ea-10p1), (umda, ea-1p1, ea-1c10, pbil) hiff: ga, sa, ea-10p1, ea-1c10, pbil, ea-1p10, umda, hc, ea-1p1, rls plateau: (ea-1p10, sa), ea-1p1, (hc, ea-10p1, pbil, ea-1c10, rls, ga, umda) walsh2: sa, hc, rls, ea-1c10, ga, ea-10p1, ea-1p1, ea-1p10, umda, pbil

#### 2 Function one-max

| algorithm | $\operatorname{funct}$ | ion va |                        | time (s) |     |    |      |      |
|-----------|------------------------|--------|------------------------|----------|-----|----|------|------|
|           | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk | mean | dev. |
| rls       | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| hc        | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| sa        | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| ea-1p1    | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| ea-1p10   | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| ea-10p1   | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.01 | 0.01 |
| ea-1c10   | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |
| ga        | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.01 | 0.00 |
| pbil      | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.06 | 0.01 |
| umda      | 100                    | 100    | 100                    | 100      | 100 | 1  | 0.00 | 0.00 |



Figure 1: one-max



Figure 2: one-max

#### 3 Function lin

| algorithm | function | on value |                        |       |       |    | time (s | s)   |
|-----------|----------|----------|------------------------|-------|-------|----|---------|------|
|           | min      | $Q_1$    | $\operatorname{med}$ . | $Q_3$ | max   | rk | mean    | dev. |
| rls       | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.19    | 0.01 |
| hc        | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.16    | 0.01 |
| sa        | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.18    | 0.01 |
| ea-1p1    | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.29    | 0.01 |
| ea-1p10   | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.31    | 0.01 |
| ea-10p1   | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.39    | 0.03 |
| ea-1c10   | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 0.26    | 0.00 |
| ga        | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 1.23    | 0.02 |
| pbil      | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 1.25    | 0.02 |
| umda      | 45.03    | 45.03    | 45.03                  | 45.03 | 45.03 | 1  | 1.24    | 0.04 |



Figure 3: lin



Figure 4: lin

### 4 Function leading-ones

| algorithm | $\operatorname{funct}$ | unction value |                        |       |     |    |      | s)   |
|-----------|------------------------|---------------|------------------------|-------|-----|----|------|------|
|           | min                    | $Q_1$         | $\operatorname{med}$ . | $Q_3$ | max | rk | mean | dev. |
| rls       | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.01 | 0.01 |
| hc        | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.00 | 0.00 |
| sa        | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.00 | 0.00 |
| ea-1p1    | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.01 | 0.01 |
| ea-1p10   | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.00 | 0.00 |
| ea-10p1   | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.05 | 0.01 |
| ea-1c10   | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.01 | 0.01 |
| ga        | 94                     | 95            | 98                     | 99    | 100 | 10 | 1.29 | 0.25 |
| pbil      | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.39 | 0.05 |
| umda      | 100                    | 100           | 100                    | 100   | 100 | 1  | 0.05 | 0.01 |



Figure 5: leading-ones



Figure 6: leading-ones

# 5 Function ridge

| ${\rm algorithm}$     | $\operatorname{funct}$ | ion va | lue                    |       |     |    | time (s | s)   |
|-----------------------|------------------------|--------|------------------------|-------|-----|----|---------|------|
|                       | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$ | max | rk | mean    | dev. |
| rls                   | 104                    | 104    | 105                    | 107   | 110 | 9  | 0.16    | 0.02 |
| hc                    | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.00    | 0.01 |
| sa                    | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.01    | 0.00 |
| ea-1p1                | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.01    | 0.00 |
| ea-1p10               | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.02    | 0.00 |
| ea-10p1               | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.20    | 0.03 |
| ea-1c10               | 118                    | 120    | 125                    | 130   | 144 | 8  | 0.24    | 0.01 |
| ga                    | 102                    | 102    | 103                    | 103   | 104 | 10 | 1.22    | 0.07 |
| pbil                  | 152                    | 153    | 154                    | 155   | 156 | 7  | 1.24    | 0.04 |
| $\operatorname{umda}$ | 200                    | 200    | 200                    | 200   | 200 | 1  | 0.20    | 0.02 |



Figure 7: ridge



Figure 8: ridge

# 6 Function jmp-5

| algorithm | funct | ion va | lue                    |       |     |    | time (s | s)   |
|-----------|-------|--------|------------------------|-------|-----|----|---------|------|
|           | min   | $Q_1$  | $\operatorname{med}$ . | $Q_3$ | max | rk | mean    | dev. |
| rls       | 95    | 95     | 95                     | 95    | 95  | 4  | 0.15    | 0.01 |
| hc        | 95    | 95     | 95                     | 95    | 95  | 4  | 0.13    | 0.01 |
| sa        | 95    | 95     | 95                     | 95    | 95  | 4  | 0.16    | 0.01 |
| ea-1p1    | 95    | 95     | 95                     | 95    | 95  | 4  | 0.26    | 0.02 |
| ea-1p10   | 95    | 95     | 95                     | 95    | 95  | 4  | 0.29    | 0.04 |
| ea-10p1   | 95    | 95     | 95                     | 95    | 95  | 4  | 0.38    | 0.09 |
| ea-1c10   | 95    | 95     | 95                     | 95    | 95  | 4  | 0.30    | 0.06 |
| ga        | 100   | 100    | 100                    | 100   | 100 | 1  | 0.39    | 0.33 |
| pbil      | 100   | 100    | 100                    | 100   | 100 | 1  | 0.08    | 0.01 |
| umda      | 100   | 100    | 100                    | 100   | 100 | 1  | 0.20    | 0.22 |



Figure 9: jmp-5



Figure 10: jmp-5

# 7 Function jmp-10

| $\overline{	ext{algorithm}}$ | ${ m funct}$ | ion va |                        | time (s) |     |        |      |      |
|------------------------------|--------------|--------|------------------------|----------|-----|--------|------|------|
|                              | min          | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk     | mean | dev. |
| rls                          | 90           | 90     | 90                     | 90       | 90  | 2      | 0.16 | 0.01 |
| hc                           | 90           | 90     | 90                     | 90       | 90  | 2      | 0.12 | 0.00 |
| $\mathbf{sa}$                | 90           | 90     | 90                     | 90       | 90  | 2      | 0.17 | 0.03 |
| ea-1p1                       | 90           | 90     | 90                     | 90       | 90  | $^{2}$ | 0.28 | 0.06 |
| ea-1p10                      | 90           | 90     | 90                     | 90       | 90  | $^{2}$ | 0.28 | 0.01 |
| ea-10p1                      | 90           | 90     | 90                     | 90       | 90  | $^{2}$ | 0.35 | 0.04 |
| ea-1c10                      | 90           | 90     | 90                     | 90       | 90  | $^{2}$ | 0.24 | 0.04 |
| ga                           | 90           | 90     | 90                     | 90       | 90  | $^{2}$ | 1.19 | 0.05 |
| pbil                         | 90           | 90     | 90                     | 100      | 100 | 1      | 0.94 | 0.50 |
| $\underline{\text{umda}}$    | 90           | 90     | 90                     | 90       | 90  | 2      | 1.27 | 0.07 |



Figure 11: jmp-10



Figure 12: jmp-10

# 8 Function djmp-5

| $\overline{ m algorithm}$ | $\operatorname{funct}$ | ion va |                        | time (s) |     |      |      |      |
|---------------------------|------------------------|--------|------------------------|----------|-----|------|------|------|
|                           | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk   | mean | dev. |
| rls                       | 100                    | 100    | 100                    | 100      | 100 | 4    | 0.17 | 0.02 |
| hc                        | 100                    | 100    | 100                    | 100      | 100 | 4    | 0.16 | 0.04 |
| sa                        | 100                    | 100    | 100                    | 100      | 100 | 4    | 0.19 | 0.03 |
| ea-1p1                    | 100                    | 100    | 100                    | 100      | 100 | $_4$ | 0.35 | 0.08 |
| ea-1p10                   | 100                    | 100    | 100                    | 100      | 100 | $_4$ | 0.28 | 0.01 |
| ea-10p1                   | 100                    | 100    | 100                    | 100      | 100 | $_4$ | 0.34 | 0.01 |
| ea-1c10                   | 100                    | 100    | 100                    | 100      | 100 | $_4$ | 0.26 | 0.06 |
| ga                        | 105                    | 105    | 105                    | 105      | 105 | 1    | 0.54 | 0.40 |
| pbil                      | 105                    | 105    | 105                    | 105      | 105 | 1    | 0.08 | 0.02 |
| $\operatorname{umda}$     | 105                    | 105    | 105                    | 105      | 105 | 1    | 0.19 | 0.16 |



Figure 13: djmp-5



Figure 14: djmp-5

# 9 Function djmp-10

| ${\rm algorithm}$ | $\operatorname{funct}$ | ion va |                        | time (s) |     |        |      |      |
|-------------------|------------------------|--------|------------------------|----------|-----|--------|------|------|
|                   | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk     | mean | dev. |
| rls               | 100                    | 100    | 100                    | 100      | 100 | 2      | 0.16 | 0.02 |
| hc                | 100                    | 100    | 100                    | 100      | 100 | $^2$   | 0.12 | 0.01 |
| $\mathbf{sa}$     | 100                    | 100    | 100                    | 100      | 100 | 2      | 0.15 | 0.00 |
| ea-1p1            | 100                    | 100    | 100                    | 100      | 100 | $^{2}$ | 0.25 | 0.01 |
| ea-1p10           | 100                    | 100    | 100                    | 100      | 100 | $^{2}$ | 0.28 | 0.00 |
| ea-10p1           | 100                    | 100    | 100                    | 100      | 100 | $^{2}$ | 0.34 | 0.01 |
| ea-1c10           | 100                    | 100    | 100                    | 100      | 100 | $^{2}$ | 0.28 | 0.03 |
| ga                | 100                    | 100    | 100                    | 100      | 100 | $^{2}$ | 1.40 | 0.09 |
| pbil              | 100                    | 100    | 110                    | 110      | 110 | 1      | 0.60 | 0.59 |
| umda              | 100                    | 100    | 100                    | 100      | 100 | 2      | 1.23 | 0.02 |



Figure 15: djmp-10



Figure 16: djmp-10

# 10 Function fp-5

| $\overline{ m algorithm}$ | $\operatorname{funct}$ | ion va |                        | time (s) |     |    |      |      |
|---------------------------|------------------------|--------|------------------------|----------|-----|----|------|------|
|                           | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk | mean | dev. |
| rls                       | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.00 | 0.01 |
| hc                        | 100                    | 100    | 100                    | 194      | 194 | 10 | 0.09 | 0.04 |
| $\mathbf{sa}$             | 4                      | 100    | 194                    | 194      | 194 | 8  | 0.06 | 0.07 |
| ea-1p1                    | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.00 | 0.00 |
| ea-1p10                   | 100                    | 194    | 194                    | 194      | 194 | 7  | 0.02 | 0.07 |
| ea-10p1                   | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.04 | 0.01 |
| ea-1c10                   | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.00 | 0.01 |
| ga                        | 187                    | 189    | 190                    | 191      | 194 | 9  | 1.08 | 0.27 |
| pbil                      | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.37 | 0.04 |
| $\operatorname{umda}$     | 194                    | 194    | 194                    | 194      | 194 | 1  | 0.04 | 0.01 |



Figure 17: fp-5



Figure 18: fp-5

# 11 Function fp-10

| $\overline{ m algorithm}$ | ${ m funct}$ | ion va |                        | time (s) |     |    |      |      |
|---------------------------|--------------|--------|------------------------|----------|-----|----|------|------|
|                           | min          | $Q_1$  | $\operatorname{med}$ . | $Q_3$    | max | rk | mean | dev. |
| rls                       | 187          | 189    | 189                    | 189      | 189 | 2  | 0.05 | 0.05 |
| hc                        | 100          | 100    | 100                    | 100      | 100 | 10 | 0.12 | 0.00 |
| sa                        | 3            | 100    | 100                    | 189      | 189 | 8  | 0.11 | 0.07 |
| ea-1p1                    | 100          | 100    | 100                    | 189      | 189 | 7  | 0.17 | 0.13 |
| ea-1p10                   | 100          | 100    | 100                    | 100      | 189 | 9  | 0.23 | 0.12 |
| ea-10p1                   | 100          | 189    | 189                    | 189      | 189 | 3  | 0.08 | 0.09 |
| ea-1c10                   | 100          | 189    | 189                    | 189      | 189 | 3  | 0.12 | 0.09 |
| ga                        | 182          | 184    | 186                    | 186      | 189 | 6  | 1.15 | 0.22 |
| pbil                      | 189          | 189    | 189                    | 189      | 189 | 1  | 0.33 | 0.03 |
| umda                      | 100          | 167    | 189                    | 189      | 189 | 5  | 0.34 | 0.52 |



Figure 19: fp-10



Figure 20: fp-10

### 12 Function nk

| algorithm | funct | ion val | ue                     |       |      |        | time (s | s)   |
|-----------|-------|---------|------------------------|-------|------|--------|---------|------|
|           | min   | $Q_1$   | $\operatorname{med}$ . | $Q_3$ | max  | rk     | mean    | dev. |
| rls       | 0.97  | 0.98    | 0.99                   | 1.01  | 1.03 | 7      | 0.63    | 0.01 |
| hc        | 0.96  | 0.97    | 1.00                   | 1.02  | 1.05 | 5      | 0.58    | 0.01 |
| sa        | 1.01  | 1.03    | 1.04                   | 1.06  | 1.10 | 1      | 0.71    | 0.08 |
| ea-1p1    | 0.87  | 0.92    | 0.95                   | 0.98  | 1.04 | 8      | 0.89    | 0.05 |
| ea-1p10   | 0.82  | 0.90    | 0.94                   | 0.98  | 1.10 | 9      | 0.78    | 0.03 |
| ea-10p1   | 0.95  | 0.98    | 1.00                   | 1.01  | 1.06 | 4      | 0.86    | 0.03 |
| ea-1c10   | 0.96  | 0.98    | 1.02                   | 1.04  | 1.08 | 3      | 0.67    | 0.01 |
| ga        | 0.96  | 1.01    | 1.02                   | 1.05  | 1.09 | $^{2}$ | 2.09    | 0.15 |
| pbil      | 0.92  | 0.98    | 1.00                   | 1.01  | 1.05 | 6      | 1.70    | 0.03 |
| umda      | 0.84  | 0.91    | 0.94                   | 0.96  | 1.01 | 10     | 1.64    | 0.03 |



Figure 21: nk



Figure 22: nk

#### 13 Function max-sat

| algorithm     | $_{ m funct}$ | ion va | lue                    |       |     |    | time (s | s)   |
|---------------|---------------|--------|------------------------|-------|-----|----|---------|------|
|               | min           | $Q_1$  | $\operatorname{med}$ . | $Q_3$ | max | rk | mean    | dev. |
| rls           | 970           | 971    | 972                    | 972   | 972 | 2  | 3.51    | 0.05 |
| hc            | 964           | 966    | 967                    | 968   | 971 | 10 | 3.41    | 0.27 |
| $\mathbf{sa}$ | 969           | 972    | 972                    | 972   | 972 | 1  | 2.99    | 0.08 |
| ea-1p1        | 963           | 965    | 968                    | 970   | 972 | 8  | 3.50    | 0.35 |
| ea-1p10       | 961           | 967    | 968                    | 969   | 972 | 6  | 3.51    | 0.32 |
| ea-10p1       | 960           | 968    | 969                    | 971   | 972 | 5  | 4.37    | 0.37 |
| ea-1c10       | 964           | 969    | 970                    | 972   | 972 | 3  | 2.96    | 0.14 |
| ga            | 964           | 968    | 969                    | 972   | 972 | 4  | 5.35    | 0.13 |
| pbil          | 965           | 967    | 967                    | 967   | 969 | 9  | 4.62    | 0.35 |
| umda          | 953           | 965    | 968                    | 970   | 972 | 7  | 4.46    | 0.36 |



Figure 23: max-sat



Figure 24: max-sat

### 14 Function labs

| $\overline{	ext{algorithm}}$ | funct | ion val | ue                     |       |      |    | time (s) |      |  |  |
|------------------------------|-------|---------|------------------------|-------|------|----|----------|------|--|--|
|                              | min   | $Q_1$   | $\operatorname{med}$ . | $Q_3$ | max  | rk | mean     | dev. |  |  |
| rls                          | 4.20  | 4.44    | 4.50                   | 4.66  | 4.99 | 6  | 3.54     | 0.15 |  |  |
| hc                           | 4.50  | 4.60    | 4.69                   | 5.00  | 5.45 | 4  | 3.51     | 0.21 |  |  |
| sa                           | 4.35  | 4.63    | 4.78                   | 4.92  | 5.29 | 3  | 3.62     | 0.27 |  |  |
| ea-1p1                       | 3.84  | 4.03    | 4.15                   | 4.34  | 4.97 | 8  | 3.55     | 0.31 |  |  |
| ea-1p10                      | 3.61  | 4.00    | 4.19                   | 4.32  | 4.52 | 7  | 3.62     | 0.24 |  |  |
| ea-10p1                      | 4.33  | 4.55    | 4.65                   | 4.75  | 5.26 | 5  | 3.70     | 0.31 |  |  |
| ea-1c10                      | 4.55  | 4.71    | 4.87                   | 5.14  | 5.67 | 2  | 3.63     | 0.35 |  |  |
| ga                           | 4.62  | 4.85    | 4.93                   | 5.09  | 5.59 | 1  | 4.51     | 0.41 |  |  |
| pbil                         | 3.14  | 3.85    | 4.04                   | 4.19  | 4.35 | 9  | 4.76     | 0.33 |  |  |
| umda                         | 3.36  | 3.73    | 3.98                   | 4.28  | 4.82 | 10 | 4.61     | 0.33 |  |  |



Figure 25: labs



Figure 26: labs

#### 15 Function ep

| algorithm | function valu         | ıe                    |                       |                       |                       |        | time (s | time (s) |  |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|---------|----------|--|
|           | min                   | $Q_1$                 | med.                  | $Q_3$                 | max                   | rk     | mean    | dev.     |  |
| rls       | $1.5 \times 10^{-32}$ | $9.9 \times 10^{-31}$ | $1.5 \times 10^{-30}$ | $2.8 \times 10^{-30}$ | $9.3 \times 10^{-30}$ | 1      | 0.21    | 0.01     |  |
| hc        | $1.3 \times 10^{-31}$ | $2.1 \times 10^{-30}$ | $3.7 \times 10^{-30}$ | $8.4 \times 10^{-30}$ | $1.2 \times 10^{-29}$ | 3      | 0.16    | 0.00     |  |
| sa        | $4.2 \times 10^{-31}$ | $3.6 \times 10^{-30}$ | $4.5 \times 10^{-30}$ | $9.3 \times 10^{-30}$ | $2.9 \times 10^{-25}$ | 5      | 0.18    | 0.01     |  |
| ea-1p1    | $2.1 \times 10^{-31}$ | $6.9 \times 10^{-30}$ | $1.4 \times 10^{-29}$ | $1.7 \times 10^{-29}$ | $5.0 \times 10^{-29}$ | 8      | 0.29    | 0.01     |  |
| ea-1p10   | $2.6 \times 10^{-31}$ | $7.3 \times 10^{-30}$ | $3.0 \times 10^{-29}$ | $4.2 \times 10^{-29}$ | $6.8 \times 10^{-29}$ | 10     | 0.32    | 0.00     |  |
| ea-10p1   | $8.0\times10^{-31}$   | $4.0\times10^{-30}$   | $7.3 \times 10^{-30}$ | $1.1\times10^{-29}$   | $2.1\times10^{-29}$   | 6      | 0.40    | 0.01     |  |
| ea-1c10   | $4.0\times10^{-31}$   | $2.1\times10^{-30}$   | $7.3 \times 10^{-30}$ | $1.2 \times 10^{-29}$ | $2.2\times10^{-29}$   | 7      | 0.35    | 0.01     |  |
| ga        | $2.7\times10^{-31}$   | $1.5 \times 10^{-30}$ | $2.4 \times 10^{-30}$ | $3.4 \times 10^{-30}$ | $1.4 \times 10^{-29}$ | $^{2}$ | 1.49    | 0.12     |  |
| pbil      | $4.6 \times 10^{-31}$ | $2.0 \times 10^{-30}$ | $4.4 \times 10^{-30}$ | $8.6 \times 10^{-30}$ | $2.1 \times 10^{-29}$ | 4      | 1.46    | 0.04     |  |
| umda      | $1.4 \times 10^{-30}$ | $1.3 \times 10^{-29}$ | $2.6 \times 10^{-29}$ | $5.5 \times 10^{-29}$ | $1.4 \times 10^{-28}$ | 9      | 1.25    | 0.02     |  |



Figure 27: ep



Figure 28: ep

### 16 Function cancel

| algorithm     | funct | function value |                        |       |      |        |      | time (s) |  |
|---------------|-------|----------------|------------------------|-------|------|--------|------|----------|--|
|               | min   | $Q_1$          | $\operatorname{med}$ . | $Q_3$ | max  | rk     | mean | dev.     |  |
| rls           | 0.72  | 1.35           | 1.52                   | 1.79  | 2.39 | 8      | 0.19 | 0.00     |  |
| hc            | 1.29  | 1.52           | 2.03                   | 2.21  | 2.68 | 9      | 0.20 | 0.01     |  |
| $\mathbf{sa}$ | 0.11  | 1.61           | 2.29                   | 2.60  | 2.95 | 10     | 0.24 | 0.00     |  |
| ea-1p1        | 0.05  | 0.25           | 0.74                   | 1.04  | 1.65 | 6      | 0.38 | 0.01     |  |
| ea-1p10       | 0.05  | 0.33           | 0.50                   | 0.88  | 2.05 | 3      | 0.36 | 0.01     |  |
| ea-10p1       | 0.05  | 0.20           | 0.37                   | 0.73  | 1.67 | $^{2}$ | 0.43 | 0.02     |  |
| ea-1c10       | 0.07  | 0.34           | 0.69                   | 0.96  | 2.61 | 4      | 0.27 | 0.00     |  |
| ga            | 0.06  | 0.39           | 0.69                   | 1.33  | 2.64 | 5      | 1.22 | 0.02     |  |
| pbil          | 0.05  | 0.06           | 0.07                   | 0.11  | 1.31 | 1      | 1.30 | 0.02     |  |
| umda          | 0.16  | 1.01           | 1.44                   | 1.73  | 2.93 | 7      | 1.28 | 0.09     |  |



Figure 29: cancel



Figure 30: cancel

#### 17 Function trap

| $\overline{ m algorithm}$ | function value time (s |       |                        |       |     | s) |      |      |
|---------------------------|------------------------|-------|------------------------|-------|-----|----|------|------|
|                           | min                    | $Q_1$ | $\operatorname{med}$ . | $Q_3$ | max | rk | mean | dev. |
| $\overline{\mathrm{rls}}$ | 90                     | 91    | 91                     | 91    | 92  | 2  | 0.23 | 0.01 |
| hc                        | 91                     | 91    | 91                     | 92    | 92  | 1  | 0.20 | 0.00 |
| sa                        | 90                     | 90    | 90                     | 90    | 91  | 3  | 0.23 | 0.01 |
| ea-1p1                    | 90                     | 90    | 90                     | 90    | 90  | 7  | 0.33 | 0.00 |
| ea-1p10                   | 90                     | 90    | 90                     | 90    | 91  | 3  | 0.35 | 0.00 |
| ea-10p1                   | 90                     | 90    | 90                     | 90    | 91  | 3  | 0.39 | 0.01 |
| ea-1c10                   | 90                     | 90    | 90                     | 90    | 90  | 7  | 0.27 | 0.00 |
| ga                        | 90                     | 90    | 90                     | 90    | 91  | 3  | 1.21 | 0.02 |
| pbil                      | 90                     | 90    | 90                     | 90    | 90  | 7  | 1.46 | 0.14 |
| $\operatorname{umda}$     | 90                     | 90    | 90                     | 90    | 90  | 7  | 1.32 | 0.07 |



Figure 31: trap



Figure 32: trap

# 18 Function hiff

| algorithm | $\operatorname{funct}$ | ion va | lue                    |       |     |        | time (s) |      |  |  |
|-----------|------------------------|--------|------------------------|-------|-----|--------|----------|------|--|--|
|           | min                    | $Q_1$  | $\operatorname{med}$ . | $Q_3$ | max | rk     | mean     | dev. |  |  |
| rls       | 400                    | 410    | 415                    | 428   | 464 | 10     | 0.51     | 0.01 |  |  |
| hc        | 472                    | 487    | 498                    | 510   | 540 | 8      | 0.49     | 0.01 |  |  |
| sa        | 640                    | 672    | 704                    | 752   | 832 | $^{2}$ | 0.64     | 0.02 |  |  |
| ea-1p1    | 448                    | 470    | 492                    | 520   | 568 | 9      | 0.67     | 0.01 |  |  |
| ea-1p10   | 432                    | 478    | 504                    | 530   | 576 | 6      | 0.71     | 0.02 |  |  |
| ea-10p1   | 544                    | 640    | 704                    | 736   | 832 | 3      | 0.99     | 0.10 |  |  |
| ea-1c10   | 600                    | 632    | 656                    | 682   | 776 | 4      | 0.77     | 0.02 |  |  |
| ga        | 708                    | 720    | 770                    | 776   | 832 | 1      | 1.87     | 0.03 |  |  |
| pbil      | 476                    | 520    | 544                    | 578   | 648 | 5      | 2.24     | 0.17 |  |  |
| umda      | 440                    | 484    | 502                    | 524   | 560 | 7      | 1.90     | 0.03 |  |  |



Figure 33: hiff



Figure 34: hiff

#### 19 Function plateau

| $\overline{ m algorithm}$ | ${ m funct}$ | ion va | lue                    |       |     |    | time (s | s)   |
|---------------------------|--------------|--------|------------------------|-------|-----|----|---------|------|
|                           | min          | $Q_1$  | $\operatorname{med}$ . | $Q_3$ | max | rk | mean    | dev. |
| rls                       | 101          | 101    | 101                    | 101   | 101 | 4  | 0.15    | 0.00 |
| hc                        | 101          | 101    | 101                    | 101   | 101 | 4  | 0.13    | 0.00 |
| sa                        | 101          | 101    | 101                    | 101   | 102 | 1  | 0.17    | 0.04 |
| ea-1p1                    | 101          | 101    | 101                    | 101   | 102 | 3  | 0.33    | 0.05 |
| ea-1p10                   | 101          | 101    | 101                    | 101   | 102 | 1  | 0.34    | 0.07 |
| ea-10p1                   | 101          | 101    | 101                    | 101   | 101 | 4  | 0.40    | 0.01 |
| ea-1c10                   | 101          | 101    | 101                    | 101   | 101 | 4  | 0.28    | 0.00 |
| ga                        | 101          | 101    | 101                    | 101   | 101 | 4  | 1.21    | 0.03 |
| pbil                      | 101          | 101    | 101                    | 101   | 101 | 4  | 1.24    | 0.02 |
| $\operatorname{umda}$     | 101          | 101    | 101                    | 101   | 101 | 4  | 1.21    | 0.02 |



Figure 35: plateau



Figure 36: plateau

#### 20 Function walsh2

| algorithm | function | time (s) |                        |        |        |        |      |      |
|-----------|----------|----------|------------------------|--------|--------|--------|------|------|
|           | min      | $Q_1$    | $\operatorname{med}$ . | $Q_3$  | max    | rk     | mean | dev. |
| rls       | 694.42   | 700.64   | 706.00                 | 712.74 | 720.04 | 3      | 3.35 | 0.21 |
| hc        | 700.78   | 709.84   | 714.58                 | 720.39 | 721.22 | $^{2}$ | 3.03 | 0.12 |
| sa        | 698.68   | 713.69   | 716.97                 | 720.24 | 721.22 | 1      | 3.53 | 0.22 |
| ea-1p1    | 611.34   | 651.46   | 673.43                 | 688.51 | 705.43 | 7      | 3.62 | 0.20 |
| ea-1p10   | 596.31   | 649.75   | 669.56                 | 688.04 | 716.57 | 8      | 3.59 | 0.17 |
| ea-10p1   | 653.24   | 686.42   | 696.83                 | 703.15 | 715.23 | 6      | 4.13 | 0.30 |
| ea-1c10   | 658.55   | 688.13   | 703.12                 | 714.08 | 720.24 | 4      | 3.35 | 0.12 |
| ga        | 682.78   | 698.23   | 702.22                 | 713.69 | 721.22 | 5      | 5.15 | 0.15 |
| pbil      | 623.15   | 659.15   | 664.80                 | 686.26 | 710.76 | 10     | 4.59 | 0.18 |
| umda      | 604.84   | 646.33   | 667.65                 | 682.12 | 699.03 | 9      | 4.27 | 0.16 |



Figure 37: walsh2



Figure 38: walsh2

#### A Plan

```
{
   "exec": "hnco",
   "opt": "--print-performance --map 1 --map-random -s 100 -i 0",
```

```
"budget": 300000,
"num_runs": 20,
"parallel": true,
"functions": [
   {
        "id": "one-max",
        "opt": "-F 0 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "lin",
        "opt": "-F 1 -p instances/lin.100",
        "rounding": {
            "value": { "before": 2, "after": 2 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "leading-ones",
        "opt": "-F 10 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "ridge",
        "opt": "-F 11 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "jmp-5",
        "opt": "-F 30 --stop-on-maximum -t 5",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "jmp-10",
        "opt": "-F 30 --stop-on-maximum -t 10",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
    {
        "id": "djmp-5",
        "opt": "-F 31 --stop-on-maximum -t 5",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "djmp-10",
        "opt": "-F 31 --stop-on-maximum -t 10",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
   },
        "id": "fp-5",
        "opt": "-F 40 --stop-on-maximum -t 5",
```

```
"rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "fp-10",
    "opt": "-F 40 --stop-on-maximum -t 10",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "nk",
    "opt": "-F 60 -p instances/nk.100.4",
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.100.3.1000",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "labs",
    "opt": "-F 81",
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.100",
    "reverse": true,
    "logscale": true,
    "rounding": {
        "value": { "before": 1, "after": 1 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "cancel",
    "opt": "-F 100 -s 99",
    "reverse": true,
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "trap",
    "opt": "-F 110 --stop-on-maximum --fn-num-traps 10",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "hiff",
    "opt": "-F 120 --stop-on-maximum -s 128",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
```

```
{
        "id": "plateau",
        "opt": "-F 130 --stop-on-maximum",
        "rounding": {
            "value": { "before": 3, "after": 0 },
            "time": { "before": 1, "after": 2 } }
    },
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100",
        "rounding": {
            "value": { "before": 3, "after": 2 },
            "time": { "before": 1, "after": 2 } }
    }
],
"algorithms": [
    {
        "id": "rls",
        "opt": "-A 100 --restart"
    },
        "id": "hc",
        "opt": "-A 150 --restart"
    },
        "id": "sa",
        "opt": "-A 200 --sa-beta-ratio 1.05 --sa-num-trials 10"
    },
        "id": "ea-1p1",
        "opt": "-A 300"
    },
        "id": "ea-1p10",
        "opt": "-A 310 --ea-mu 1 --ea-lambda 10"
    },
        "id": "ea-10p1",
        "opt": "-A 310 --ea-mu 10 --ea-lambda 1"
    },
        "id": "ea-1c10",
        "opt": "-A 320 --ea-mu 1 --ea-lambda 10 --allow-stay"
    },
        "id": "ga",
        "opt": "-A 400 --ea-mu 100"
    },
        "id": "pbil",
        "opt": "-A 500 -r 5e-3"
    },
        "id": "umda",
        "opt": "-A 600 -x 100 -y 10"
    }
]
```

}

#### B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
# cache_budget = 0
\# ea_lambda = 100
\# ea_mu = 10
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# mutation_probability = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation_probability = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
\# exec_name = hnco
\# version = 0.10
# Generated from hnco.json
```