Grammar Rules

Example Deterministic and Stochastic Rules from CMA DGG

Negative Intermediate Positive

Figure 3: Example of the two rules combined for our approximation of a growing microtubule.

$$(\ \bigcirc_1 \ luebox{--}lackbox$$

 $\longrightarrow (\bigcirc_1 \longrightarrow \bullet_2) \langle (\boldsymbol{x}_1, \boldsymbol{u}_1), (\boldsymbol{x}_2 + d\boldsymbol{x}_2, \boldsymbol{u}_2) \rangle$

solving $d\boldsymbol{x}_2/dt = v_{plus} \times \boldsymbol{u}_2$

Deterministic Growth Rule¹:

$$\longrightarrow$$
 (\bigcirc_1 \longrightarrow \bigcirc_3 \longrightarrow \bigcirc_2) $\langle\!\langle (\boldsymbol{x}_1, \boldsymbol{u}_1), (\boldsymbol{x}_2, \boldsymbol{u}_2), (\boldsymbol{x}_3, \boldsymbol{u}_3) \rangle\!\rangle$

 $(\bigcirc_1 \longrightarrow lackbox{lackbox{lack}}_2) \langle\!\langle (oldsymbol{x}_1, oldsymbol{u}_1), (oldsymbol{x}_2, oldsymbol{u}_2) \rangle\!\rangle$

$$\mathbf{with} \hspace{0.2cm} \hat{\rho}_{\mathrm{grow}} \times H(\|\boldsymbol{x}_2 - \boldsymbol{x}_1\|; L_{\mathrm{div}})$$

 $\mathbf{where} \quad egin{cases} oldsymbol{x}_3 = oldsymbol{x}_2 - (oldsymbol{x}_2 - oldsymbol{x}_1) \gamma \ oldsymbol{u}_3 = rac{oldsymbol{x}_3 - oldsymbol{x}_2}{\|oldsymbol{x}_3 - oldsymbol{x}_2\|} \end{cases}$

Stochastic Growth Rule¹:

1. More examples in thesis and (Medwedeff and Mjolsness, 2023)

i.e. A transforms to A with a rewrite as a label update via ODE!

i.e. A transforms to B with a rewrite as a label updates in the form of graph structure changes!

Node Type

Negative Intermediate Positive

Node Type

Negative Intermediate Positive

Grammar Rules

Example Deterministic and Stochastic Rules from CMA DGG

Deterministic Growth Rule¹:

i.e. A transforms to A with a rewrite as a label update via ODE!

$$A \longrightarrow B \longleftarrow$$

i.e. A transforms to B with a rewrite as a label updates in the form of graph structure changes!

$$(\bigcirc_1 \longrightarrow \bullet_2) \langle \langle (\boldsymbol{x}_1, \boldsymbol{u}_1)(\boldsymbol{x}_2, \boldsymbol{u}_2) \rangle \rangle$$

 $\longrightarrow (\bigcirc_1 \longrightarrow \bullet_2) \langle \langle (\boldsymbol{x}_1, \boldsymbol{u}_1), (\boldsymbol{x}_2 + d\boldsymbol{x}_2, \boldsymbol{u}_2) \rangle \rangle$
solving $d\boldsymbol{x}_2/dt = v_{plus} \times \boldsymbol{u}_2$

Stochastic Growth Rule¹:

$$egin{aligned} egin{aligned} igl(igcap_1 - iglo igl) & igl(igl(oldsymbol{x}_1, oldsymbol{u}_1), igl(oldsymbol{x}_2, oldsymbol{u}_2) igl(igl(oldsymbol{x}_1, oldsymbol{u}_1), igl(oldsymbol{x}_2, oldsymbol{u}_2), igl(oldsymbol{x}_3, oldsymbol{u}_3) igr
angle \ & ext{with} \quad \hat{
ho}_{ ext{grow}} imes H(\|oldsymbol{x}_2 - oldsymbol{x}_1\|; L_{ ext{div}}) \ & ext{where} \quad egin{cases} oldsymbol{x}_3 = oldsymbol{x}_2 - oldsymbol{x}_2 - oldsymbol{x}_1) \gamma \ & ext{where} \end{cases} \end{aligned}$$

Figure 3: Example of the two rules combined for our approximation of a growing microtubule.

Grammar Rules

Muitcomponent Rules

- The left and right side graphs may have more than one connected component.
- A set of nodes forms a connected
 component in an undirected graph if
 any node in the set can reach any other
 node in the set by traversing edges.

Figure 4: Example of two Microtubules colliding. The graphs are spatially embedded, and the collision is spatially local!

Stochastic Collision Induced Catastrophe Rule¹: