• 令 $A = (a_{ij})_{i,j \geq 1}$ 表示包含有限个非零元素的 \mathbb{N} -矩阵。

- 令 $A = (a_{ii})_{i,i \ge 1}$ 表示包含有限个非零元素的 \mathbb{N} -矩阵。
- 对每个 A 定义一个广义排列(generalized permutation)w_A 为

$$w_{\mathcal{A}} = \begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_m \\ j_1 & j_2 & j_3 & \cdots & j_m \end{pmatrix},$$

其中

- $\mathbf{a} \ i_1 \leq i_2 \leq \cdots \leq i_m,$
- b 如果 $i_r = i_s$ 且 $r \le s$,那么 $j_r \le j_s$,
- c 对每个数对 (i,j), 恰有 a_{ij} 个 r 满足 $(i_r,j_r)=(i,j)$ 。

● 容易看出,A 确定唯一一个两行阵列 w_A 满足 (a) – (c),反过来任何一个这样的阵列对应到唯一一个 A。

● 容易看出,A 确定唯一一个两行阵列 w_A 满足 (a) - (c),反过来任何一个这样的阵列对应到唯一一个 A。

•

$$A = \left[\begin{array}{cccc} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{array} \right] \Leftrightarrow w_A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{array} \right).$$

• 我们可以把 A(或 w_A)与一对半标准 Young 表 (P,Q) 按照如下方式对应起来。

- 我们可以把 A(或 w_A)与一对半标准 Young 表 (P,Q) 按照如下方式对应起来。
- 以 $(P(0), Q(0)) = (\emptyset, \emptyset)$ (这里 \emptyset 表示空半标准 Young 表) 为出发点。如果当 t < m 时 (P(t), Q(t)) 都已定义,那么令
 - (a) $P(t+1) = P(t) \leftarrow j_{t+1}$ (Schensted"碰撞"算法);
 - (b) Q(t+1) 通过从 Q(t) 插入 i_{t+1} 得到(保留 Q(t) 的所有部分不变)使得 P(t+1) 和 Q(t+1) 具有相同的形状。

- 我们可以把 A(或 w_A)与一对半标准 Young 表 (P,Q) 按照如下方式对应起来。
- 以 $(P(0), Q(0)) = (\emptyset, \emptyset)$ (这里 \emptyset 表示空半标准 Young 表) 为出发点。如果当 t < m 时 (P(t), Q(t)) 都已定义,那么令
 - (a) $P(t+1) = P(t) \leftarrow j_{t+1}$ (Schensted "碰撞"算法);
 - (b) Q(t+1) 通过从 Q(t) 插入 i_{t+1} 得到(保留 Q(t) 的所有部分不变)使得 P(t+1) 和 Q(t+1) 具有相同的形状。
- 该过程终止于 (P(m), Q(m)), 我们定义 (P, Q) = (P(m), Q(m))。 记这个对应为 $A \stackrel{\text{RSK}}{\longrightarrow} (P, Q)$, 称为RSK 算法(RSK algorithm)。

- 我们可以把 A(或 w_A)与一对半标准 Young 表 (P,Q) 按照如下方式对应起来。
- 以 $(P(0), Q(0)) = (\emptyset, \emptyset)$ (这里 \emptyset 表示空半标准 Young 表) 为出发点。如果当 t < m 时 (P(t), Q(t)) 都已定义,那么令
 - (a) $P(t+1) = P(t) \leftarrow j_{t+1}$ (Schensted "碰撞" 算法);
 - (b) Q(t+1) 通过从 Q(t) 插入 i_{t+1} 得到(保留 Q(t) 的所有部分不变)使得 P(t+1) 和 Q(t+1) 具有相同的形状。
- 该过程终止于 (P(m), Q(m)), 我们定义 (P, Q) = (P(m), Q(m))。 记这个对应为 $A \stackrel{\text{RSK}}{\longrightarrow} (P, Q)$, 称为RSK 算法(RSK algorithm)。
- 我们称 P 为 A 或 w_A 的插入表(insertion tableau),称 Q 为记录 表(recording tableau)。

$$\begin{array}{c|c} P(i) & Q(i) \\ \hline \hline 1 & \hline \end{array}$$

$$w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}.$$

P(i)	Q(i)				
1	1				
1 3	1 1				

$$w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}.$$

P(i)	Q(i)				
1	1				
1 3	1 1				
1 3 3	1 1 1				

$$w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}.$$

$$w_{A} = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}.$$

$$\frac{P(i)}{1} & \frac{Q(i)}{1}$$

$$\frac{1}{3} & \frac{1}{3} & \frac{1}{1} & \frac{1}{1}$$

$$\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{1} & \frac{1}{1}$$

$$w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}.$$

 P(i)			Q(Q(i)			
1	1	2		1	1	1	
2	3		•	2	2		
3				3			
1	1	2	2	1	1	1 3	
2	3			2	2		
3				3		-	

定理

RSK 算法是有限支集 №-矩阵 $A = (a_{ij})_{i,j \ge 1}$ 和同形状的有序对半标准 *Young* 表 (P,Q) 之间的双射。在这个对应下

$$\operatorname{type}(P) = \operatorname{col}(A), \quad \operatorname{type}(Q) = \operatorname{row}(A).$$

定理

RSK 算法是有限支集 №-矩阵 $A = (a_{ij})_{i,j \ge 1}$ 和同形状的有序对半标准 *Young* 表 (P,Q) 之间的双射。在这个对应下

$$type(P) = col(A), type(Q) = row(A).$$

• Cauchy 公式:

$$\prod_{i,j} (1 - x_i y_j)^{-1} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y).$$

定理

RSK 算法是有限支集 №-矩阵 $A = (a_{ij})_{i,j \ge 1}$ 和同形状的有序对半标准 *Young* 表 (P,Q) 之间的双射。在这个对应下

$$type(P) = col(A), type(Q) = row(A).$$

• Cauchy 公式:

$$\prod_{i,j} (1 - x_i y_j)^{-1} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y).$$

• 正交性: $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda \mu}$.

$$\prod_{i,j}(1+x_iy_j)=\sum_{\lambda}s_{\lambda}(x)s_{\lambda'}(y).$$

$$\prod_{i,j}(1+x_iy_j)=\sum_{\lambda}s_{\lambda}(x)s_{\lambda'}(y).$$

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y) = \sum_{\lambda} s_{\lambda}(x) \omega_{y}(s_{\lambda}(y))$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y).$$

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y) = \sum_{\lambda} s_{\lambda}(x) \omega_y(s_{\lambda}(y))$$

$$= \omega_y \prod (1 - x_i y_i)^{-1}$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y).$$

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y) = \sum_{\lambda} s_{\lambda}(x) \omega_{y}(s_{\lambda}(y))$$

$$= \omega_{y} \prod_{\lambda} (1 - x_i y_j)^{-1}$$

$$= \omega_{y} \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y).$$

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y) = \sum_{\lambda} s_{\lambda}(x) \omega_{y}(s_{\lambda}(y))$$

$$= \omega_{y} \prod (1 - x_i y_j)^{-1}$$

$$= \omega_{y} \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$$

$$= \sum_{\lambda} m_{\lambda}(x) e_{\lambda}(y)$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y).$$

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y) = \sum_{\lambda} s_{\lambda}(x) \omega_{y}(s_{\lambda}(y))$$

$$= \omega_{y} \prod_{\lambda} (1 - x_i y_j)^{-1}$$

$$= \omega_{y} \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$$

$$= \sum_{\lambda} m_{\lambda}(x) e_{\lambda}(y)$$

$$= \prod_{\lambda} (1 + x_i y_j)$$

提纲

① RSK 算法对称性

• 如果 A 是一个置换矩阵,那么由 RSK 算法得到的杨表对 (P, Q) 具有什么性质呢?

- 如果 A 是一个置换矩阵,那么由 RSK 算法得到的杨表对 (P, Q) 具有什么性质呢?
- 显然,若 $sh(P) = \lambda \vdash n$,那么 1, 2, ..., n 在 P 中出现并且恰好出现一次。我们称这样的杨表为标准杨表(standard Young tableaux)。

- 如果 A 是一个置换矩阵,那么由 RSK 算法得到的杨表对 (P, Q) 具有什么性质呢?
- 显然,若 $sh(P) = \lambda \vdash n$,那么 1, 2, ..., n 在 P 中出现并且恰好出现一次。我们称这样的杨表为标准杨表(standard Young tableaux)。同样 Q 也是标准杨表。

- 如果 A 是一个置换矩阵,那么由 RSK 算法得到的杨表对 (P, Q) 具有什么性质呢?
- 显然,若 $sh(P) = \lambda \vdash n$,那么 1, 2, ..., n 在 P 中出现并且恰好出现一次。我们称这样的杨表为标准杨表(standard Young tableaux)。同样 Q 也是标准杨表。
- 记 f_{λ} 为形状为 λ 的标准杨表的个数。那么

$$\sum_{\lambda \vdash n} f_{\lambda}^2 = n!.$$

• 对任意 №-矩阵 A 的 RSK 算法可以简化到置换矩阵的情况。

● 对任意 N-矩阵 A 的 RSK 算法可以简化到置换矩阵的情况。

•

- 对任意 N-矩阵 A 的 RSK 算法可以简化到置换矩阵的情况。
- •

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 0 \end{bmatrix} , \quad w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 \\ 1 & 1 & 3 & 2 & 3 & 1 & 2 & 2 & 2 \end{pmatrix}.$$

● 广义排列 wa 的标准化为

$$\tilde{w}_A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 8 & 4 & 9 & 3 & 5 & 6 & 7 \end{pmatrix}.$$

$$w_A = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 \\ 1 & 1 & 3 & 2 & 3 & 1 & 2 & 2 & 2 \end{pmatrix}. \qquad \tilde{w}_A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 8 & 4 & 9 & 3 & 5 & 6 & 7 \end{pmatrix}.$$

w₄ 的 RSK 算法结果:

1	1	1	2	3	3
2	3				
3					

● w̃_A 的 RSK 算法结果:

分解步骤

$$w_{A} = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 \\ 1 & 1 & 3 & 2 & 3 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 8 & 4 & 9 & 3 & 5 & 6 & 7 \end{pmatrix} \mapsto \boxed{1} \boxed{1}$$

分解步骤

分解步骤

$$w_A = \begin{pmatrix}
 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 \\
 1 & 1 & 3 & 2 & 3 & 1 & 2 & 2 & 2 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 1 & 2 & 8 & 4 & 9 & 3 & 5 & 6 & 7
 \end{pmatrix}
 \mapsto
 \begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1
 \end{bmatrix}$$

 \mapsto

广义排列标准化

定理 (交换引理)

设

$$w_A = \begin{pmatrix} i_1 & i_2 & \cdots & i_n \\ j_1 & j_2 & \cdots & j_n \end{pmatrix}$$

是一个两行阵列,且令

$$\widetilde{w}_A = \begin{pmatrix} 1 & 2 & \cdots & n \\ \widetilde{j}_1 & \widetilde{j}_2 & \cdots & \widetilde{j}_n \end{pmatrix}.$$

假设 $\tilde{w}_A \stackrel{\text{RSK}}{\longrightarrow} (\tilde{P}, \tilde{Q})$ 。令 (P, Q) 表示把 \tilde{Q} 中 k 替换为 i_k ,把 \tilde{P} 中 $\tilde{j_k}$ 替换为 j_k 所得到的杨表。那么 $w_A \stackrel{\text{RSK}}{\longrightarrow} (P, Q)$ 。换句话说,运算 $w_A \mapsto \tilde{w}_A$ 和 RSK 算法 "可交换"。

定理 (对称性)

设 A 是一个有限支集 \mathbb{N} -矩阵,且 $A \overset{\mathrm{RSK}}{\longrightarrow} (P, Q)$ 。那么 $A^t \overset{\mathrm{RSK}}{\longrightarrow} (Q, P)$,这 里 t 表示转置。

给定

$$w_A = \begin{pmatrix} u_1 & \cdots & u_n \\ v_1 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix},$$

这里 u_i 和 v_j 是互不相同的,定义逆序偏序集(inversion poset) $I = I(A) = I(\stackrel{u}{v})$ 如下: I 的顶点由 $\binom{u}{v}$ 的列构成。为了记号方便起见,把列 $\frac{a}{b}$ 记成 ab。在 I 中定义 ab < cd 如果 a < c 且 b < d。

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$$

• 给定逆序偏序集 I = I(A),定义 I_1 为 I 的极小元集合,定义 I_2 为 $I = I_1$ 中的极小元集合,定义 I_3 为 $I = I_1 = I_2$ 中的极小元集合,等等。

- 给定逆序偏序集 *I* = *I*(*A*),定义 *I*₁为 *I* 的极小元集合,定义 *I*₂为
 I − *I*₁ 中的极小元集合,定义 *I*₃为 *I* − *I*₁ − *I*₂ 中的极小元集合,等等。
- 注意到既然每个 I; 是 I 的一个反链,它的元可以标号为

$$(u_{i1}, v_{i1}), (u_{i2}, v_{i2}), \ldots, (u_{in_i}, v_{in_i}),$$

其中 $n_i = \#I_i$,使得

$$u_{i1} < u_{i2} < \cdots < u_{in_i}$$

 $v_{i1} > v_{i2} > \cdots > v_{in_i}$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$$

$$\textit{I}_1 = \{13,41\}\,,\;\; \textit{I}_2 = \{27,36,54,62\}\,,\;\; \textit{I}_3 = \{75\}\,\text{o}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$$

$$I_1 = \{13,41\}, \ I_2 = \{27,36,54,62\}, \ I_3 = \{75\}_{\circ}$$

• 如果 $(u_k, v_k \in I_i)$, 那么 v_k 在 RSK 算法中被插入 P(k-1) 第一行的第 i-列。

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$$

$$I_1 = \{13,41\}, \ I_2 = \{27,36,54,62\}, \ I_3 = \{75\}_{\circ}$$

- 如果 $(u_k, v_k \in I_i)$, 那么 v_k 在 RSK 算法中被插入 P(k-1) 第一行的第 i-列。
- 设 I_1, \ldots, I_d 是如上定义的(非空)反链。令 $A \to (P, Q)$ 。那么 P 的第一行为 $v_{1n_1}v_{2n_2}\cdots v_{dn_d}$, Q 的第一行为 $u_{11}u_{21}\cdots u_{d1}$ 。

注意到反链 I_i(^v_i) 恰为

$$(v_{im_i}, u_{im_i}), \ldots, (v_{i2}, u_{i2}), (v_{i1}, u_{i1}),$$

其中

$$v_{im_i} < \cdots < v_{i2} < v_{i1}$$

 $u_{im_i} > \cdots > u_{i2} > u_{i1}$.

注意到反链 I_i(^v_µ) 恰为

$$(v_{im_i}, u_{im_i}), \ldots, (v_{i2}, u_{i2}), (v_{i1}, u_{i1}),$$

其中

$$v_{im_i} < \cdots < v_{i2} < v_{i1} $u_{im_i} > \cdots > u_{i2} > u_{i1}.$$$

• P' 的第一行是 $u_{11}u_{21}\cdots u_{d1}$, Q' 的第一行是 $v_{1m_1}v_{2m_2}\cdots v_{dm_d}$; 分别和 Q 和 P 的第一行是一致的。

注意到反链 I_i(^v_µ) 恰为

$$(v_{im_i}, u_{im_i}), \ldots, (v_{i2}, u_{i2}), (v_{i1}, u_{i1}),$$

其中

$$v_{im_i} < \cdots < v_{i2} < v_{i1} $u_{im_i} > \cdots > u_{i2} > u_{i1}.$$$

- P' 的第一行是 $u_{11}u_{21}\cdots u_{d1}$, Q' 的第一行是 $v_{1m_1}v_{2m_2}\cdots v_{dm_d}$; 分别和 Q 和 P 的第一行是一致的。
- 设 \bar{P} 和 \bar{Q} 表示 P 和 \bar{Q} 的第一行被去除掉后得到的 Young 表,则

$$\begin{pmatrix} a \\ b \end{pmatrix} := \begin{pmatrix} u_{12} \cdots u_{1m_1} & u_{22} \cdots u_{2m_2} & \cdots u_{d2} \cdots u_{dm_d} \\ v_{11} \cdots v_{1,m_1-1} & v_{21} \cdots v_{2,m_2-1} & \cdots v_{d1} \cdots v_{d,m_d-1} \end{pmatrix}_{\exists}$$

$$\xrightarrow{\text{RSK}} (\bar{P}, \bar{Q}).$$

• 类似地,令 (\bar{P}, \bar{Q}') 表示 P' 和 Q' 去除首行后得到的 Young 表。应用同样的推理到 $\binom{V}{V}$ 得到

$$\begin{pmatrix} a \\ b \end{pmatrix} := \begin{pmatrix} v_{1,m_1-1} & \cdots & v_{11} & v_{2,m_2-1} & \cdots & v_{21} & \cdots & v_{d,m_d-1} & \cdots & v_{d1} \\ u_{1m_1} & \cdots & u_{12} & u_{2m_2} & \cdots & u_{22} & \cdots & u_{dm_d} & \cdots & u_{d2} \end{pmatrix}_{\bar{q}}$$

$$\xrightarrow{\mathrm{RSK}} (\bar{P}', \bar{Q}').$$

• 类似地,令 (\bar{P},\bar{Q}') 表示 P' 和 Q' 去除首行后得到的 Young 表。应用同样的推理到 $\binom{V}{V}$ 得到

$$\begin{pmatrix} a \\ b \end{pmatrix} := \begin{pmatrix} v_{1,m_1-1} & \cdots & v_{11} & v_{2,m_2-1} & \cdots & v_{21} \cdots & v_{d,m_d-1} & \cdots & v_{d1} \\ u_{1m_1} & \cdots & u_{12} & u_{2m_2} & \cdots & u_{22} \cdots & u_{dm_d} & \cdots & u_{d2} \end{pmatrix}_{\bar{q}}$$

$$\xrightarrow{\mathrm{RSK}} (\bar{P}', \bar{Q}').$$

• 但是, $\binom{a}{b}=\binom{b'}{a'}_{\Box \# P b}$,因此根据归纳假设我们有 $(\bar{P}',\bar{Q}')=(\bar{Q},\bar{P})$,