STA 141B Final Project

Fall 2018

Xavier Hung

Weiyi Chen

Problem: Is there a correlation between speeding and red light camera violations?

Case study: Chicago

Many people are likely to speed up as they approach an intersection when the traffic light turns yellow. It is dangerous and can sometimes lead to a fatal crash. The red light camera is intended to increase public safety by preventing people from running a red light, but is it really effective?

This common occurrence brought us to analyze the association between red light violations and speeding.

Data Extraction

We obtained our data from the City of Chicago. There are four CSV files: red light camera locations, red light camera violations, speed camera locations, and speed camera violations (details of these data can be found at https://data.cityofchicago.org/browse?q=red+light+camera&sortBy=relevance).

```
In [1]:
        import os
        import pandas as pd
        import numpy as np
        import math
        from ast import literal eval
        from bokeh.plotting import figure, show, output notebook
        from bokeh.models.annotations import Title
        from bokeh.tile_providers import CARTODBPOSITRON
        import numpy
        from scipy.stats import linregress
        from scipy.stats import spearmanr
        from plotnine import *
        import warnings
        warnings.filterwarnings('ignore')
        redlight loc = pd.read csv('red-light-camera-locations.csv')
        redlight_violations = pd.read_csv('red-light-camera-violations.csv')
        speed loc = pd.read csv('speed-camera-locations.csv')
        speed violations = pd.read csv('speed-camera-violations.csv')
```

speed_loc and redlight_loc have columns, latitude and longitude. We use Mercator projection to convert latitude and longitude into coordinates, and plot the locations of red light cameras and speed cameras.

```
In [2]: # plot red light cameras and speed cameras locations
        speed loc["COORDINATES"] = '('+ speed loc["LATITUDE"].astype(str) +','
        + speed loc["LONGITUDE"].astype(str) + ')'
        redlight loc["COORDINATES"] = '('+ redlight loc["LATITUDE"].astype(str
        ) +','+ redlight_loc["LONGITUDE"].astype(str) + ')'
        def merc(Coords):
            Coordinates = literal eval(Coords)
            lat = Coordinates[0]
            lon = Coordinates[1]
            r major = 6378137.000
            x = r major * math.radians(lon)
            scale = x/lon
            y = 180.0/math.pi * math.log(math.tan(math.pi/4.0 +
                lat * (math.pi/180.0)/2.0)) * scale
            return (x, y)
        speed loc['coords x'] = speed loc['COORDINATES'].apply(lambda x: merc(
        speed loc['coords y'] = speed loc['COORDINATES'].apply(lambda x: merc(
        x)[1])
        redlight loc['coords x'] = redlight loc['COORDINATES'].apply(lambda x:
        merc(x)[0]
        redlight loc['coords y'] = redlight loc['COORDINATES'].apply(lambda x:
        merc(x)[1]
        p = figure(x range=(-9790000, -9735000), y range=(5105000, 5165000),
                   x axis type="mercator", y axis type="mercator")
        p.add tile(CARTODBPOSITRON)
        p.circle(x = redlight loc['coords x'], y = redlight loc['coords y'], l
        egend = "Red Light Camera", fill color="#FF0000")
        p.circle(x = speed_loc['coords_x'], y = speed_loc['coords_y'], legend
        = "Speed Camera")
        t = Title()
        t.text = 'Locations of All Speed Cameras and Red Light Cameras'
        p.title = t
        p.legend.location = "top right"
        p.legend.click policy="hide"
        output notebook()
        show(p)
```

(https://oadinghBokehuSorg)

In Chicago, 0.0001 latitude is about 111.2 meters when longitude is constant. When latitude is constant, 0.001 longitude is about 82.69 meters. link: https://www.movable-type.co.uk/scripts/latlong.html)
https://www.movable-type.co.uk/scripts/latlong.html)

We subset the data by red light cameras and speed cameras that are near each other by 0.001 latitude and longitude.

```
In [3]: # redlight loc copy is a subset of redlight loc and contains the locat
        ions of red light cameras near speed cameras
        # speed loc copy is a subset of speed loc and contains the locations o
        f speed cameras near red light cameras
        redlight loc copy = pd.DataFrame(columns = redlight loc.columns.values
        )
        speed loc copy = pd.DataFrame(columns = speed loc.columns.values)
        pairs = pd.DataFrame(columns = ['speed', 'redlight'])
        # find red light cameras near speed cameras
        for i in range(0, speed loc.shape[0]):
            for j in range(0,redlight loc.shape[0]):
                if abs(speed loc.iloc[i,4] - redlight loc.iloc[j,5]) < 0.001 a</pre>
        nd abs(speed loc.iloc[i,5] - redlight loc.iloc[j,6]) < 0.001:</pre>
                     #if pd.to datetime(speed loc['GO-LIVE DATE']).dt.year[i] <</pre>
        pd.to datetime(redlight loc['GO LIVE DATE']).dt.year[j]:
                     redlight loc copy = redlight loc copy.append(redlight loc.
        iloc[j], ignore index = True)
                     speed loc copy = speed loc copy.append(speed loc.iloc[i],
        ignore index = True)
                     temp = pd.DataFrame({'speed': [speed loc.iloc[i,0]], 'redl
        ight': [redlight loc.iloc[j,0]]})
                     pairs = pairs.append(temp)
        pairs = pairs.reset index(drop = True)
```

```
In [4]: # plot red light cameras near speed cameras
        redlight_loc_copy["COORDINATES"] = '('+ redlight_loc_copy["LATITUDE"].
        astype(str) +','+ redlight_loc_copy["LONGITUDE"].astype(str) + ')'
        speed loc_copy["COORDINATES"] = '('+ speed_loc_copy["LATITUDE"].astype
        (str) +','+ speed_loc_copy["LONGITUDE"].astype(str) + ')'
        speed loc copy['coords x'] = speed loc copy['COORDINATES'].apply(lambd
        a x: merc(x)[0])
        speed_loc_copy['coords_y'] = speed_loc_copy['COORDINATES'].apply(lambd
        \mathbf{a} \times \mathbf{merc}(\mathbf{x})[1]
        redlight loc copy['coords x'] = redlight loc copy['COORDINATES'].apply
        (lambda x: merc(x)[0])
        redlight_loc_copy['coords_y'] = redlight_loc_copy['COORDINATES'].apply
        (lambda x: merc(x)[1])
        p = figure(x range=(-9780000, -9745000), y range=(5120000, 5160000),
                    x_axis_type="mercator", y_axis type="mercator")
        p.add tile(CARTODBPOSITRON)
        p.circle(x = redlight_loc_copy['coords_x'], y = redlight_loc_copy['coo
        rds_y'], legend = "Red Light Camera", fill_color="#FF0000")
        p.circle(x = speed loc copy['coords x'], y = speed loc copy['coords y'
        ], legend = "Speed Camera",)
        t = Title()
        t.text = 'Speed Cameras in Close Proximity to Red Light Cameras'
        p.title = t
        p.legend.location = "top_right"
        p.legend.click policy="hide"
        output notebook()
        show(p)
```

(http:BokehdS_b)0datsuccessfully loaded.


```
In [7]: # change format of addresses in speed_loc_copy to match format of addr
        esses in speed violations
        remove = ["(Speed", "Camera)", "Ave", "ST", "Rd", "St", "Blvd"]
        for i in range(0, speed loc copy.shape[0]):
            speed_loc_copy.iloc[i,0] = " ".join([word for word in speed_loc_co
        py.iloc[i,0].split() if word not in remove])
        for i in range(0, pairs.shape[0]):
            pairs.iloc[i,0] = " ".join([word for word in pairs.iloc[i,0].split
        () if word not in remove]).upper()
            pairs.iloc[i,1] = pairs.iloc[i,1].upper()
        speed violations copy = pd.DataFrame(columns = speed violations.column
        s.values)
        # subset speed violations where speed cameras are near red light camer
        as
        for i in range(0, speed loc copy.shape[0]):
            address = speed violations[speed violations['ADDRESS'].str.contain
        s(speed loc copy.iloc[i,0].upper())]
            speed violations copy = speed violations copy.append(address, igno
        re index = True)
            if len(address.index) > 0:
                pairs.iloc[i,0] = address.iloc[0,0]
```

```
In [8]: redlight_violations_copy = pd.DataFrame(columns = redlight_violations.
        columns.values)
        # subset red light violations where speed cameras are near red light c
        ameras
        # this will take a while
        for i in range (0, redlight_violations.shape[0]):
            for j in range(0, redlight loc copy.shape[0]):
                intersection1 = redlight violations.iloc[i,0].replace(' AND ',
        '/').replace(' and ', '/').split('/')
                intersection2 = redlight loc copy.iloc[j,0].split('-')
                if len(intersection1) > 1 and len(intersection2) > 1:
                    if intersection1[0] == intersection2[0].upper() or interse
        ction1[0] == intersection2[1].upper():
                        if intersection1[1] == intersection2[0].upper() or int
        ersection1[1] == intersection2[1].upper():
                            redlight violations copy = redlight violations cop
        y.append(redlight violations.iloc[i], ignore index = True)
                            pairs.iloc[j,1] = redlight violations.iloc[i,0]
```

```
# output in order of most red light violations to least red light viol
ations
for i in range(0, len(redlight)):
    rlc violation intersection = redlight violations copy.loc[redlight
violations copy['INTERSECTION'].str.contains(redlight.axes[0][i])].re
set index(drop = True)
    rlc_speed = pd.DataFrame()
    temp = pairs.loc[pairs['redlight'] == rlc_violation_intersection.i
loc[0,0]].reset index(drop = True).iloc[:, 0].tolist()
    for j in range(0, len(temp)):
        rlc speed = rlc speed.append(speed violations copy.loc[speed v
iolations_copy['ADDRESS'].str.contains(temp[j])].reset_index(drop = Tr
ue))
    temp1 = rlc speed
    temp1['VIOLATION DATE'] = pd.to datetime(temp1['VIOLATION DATE'])
    temp2 = rlc violation intersection
    temp2['VIOLATION DATE'] = pd.to_datetime(temp2['VIOLATION DATE'])
    for k in range(0, len(temp1['ADDRESS'].value_counts())):
        temp = temp1.loc[temp1['ADDRESS'] == temp1['ADDRESS'].value co
unts().index[k]]
        x1 = pd.DataFrame()
        x2 = pd.DataFrame()
        for 1 in range(0, len(temp)):
            for m in range(0, len(temp2)):
                if(temp['VIOLATION DATE'][1] == temp2['VIOLATION DATE'
] [m]):
                    x1 = x1.append(temp.iloc[1])
                    x2 = x2.append(temp2.iloc[m])
       #print('The Pearson correlation coefficient for speed violatio
ns at ', temp.iloc[0,0], ' and red light violations at ', x2.iloc[0,2]
, ' is ', numpy.corrcoef(x1['VIOLATIONS'], x2['VIOLATIONS'])[0,1], '.'
, sep = '')
       print('The Spearman correlation coefficient and p-value for sp
eed violations at ', temp.iloc[0,0], ' and red light violations at ',
x2.iloc[0,2], ' are ', spearmanr(x1['VIOLATIONS'], x2['VIOLATIONS'])[0
], ' and ', spearmanr(x1['VIOLATIONS'], x2['VIOLATIONS'])[1], ', respe
ctively.', sep = '')
        #print('R-squared for speed violations at ', temp.iloc[0,0], '
and red light violations at ', x2.iloc[0,2], ' is ', linregress(x1['VI
OLATIONS'], x2['VIOLATIONS'])[2] ** 2, '.', sep = '')
    rlc_speed['date'] = pd.to_datetime(rlc_speed['VIOLATION DATE']).ap
ply(lambda x: x.strftime('%Y-%m'))
    rlc_speed['date'] = pd.to_datetime(rlc_speed['date'])
    temp = rlc_speed.groupby(['ADDRESS', 'date'])['VIOLATIONS'].sum()
    plotdata_speed = pd.DataFrame({'ADDRESS': temp.index.get_level_val
ues('ADDRESS'), 'date': temp.index.get level values('date'),'count': t
```

```
emp.values})
    plotdata speed['camera type'] = 'Speed Camera'
    rlc violation intersection['date'] = pd.to datetime(rlc violation
intersection['VIOLATION DATE']).apply(lambda x: x.strftime('%Y-%m'))
    rlc violation intersection['date'] = pd.to datetime(rlc violation
intersection['date'])
    temp = rlc violation intersection.groupby('date')['VIOLATIONS'].su
m()
    plotdata redlight = pd.DataFrame({'date': temp.index.get level val
ues('date'), 'count': temp.values, 'ADDRESS': rlc violation intersectio
n.iloc[0,0]})
    plotdata redlight['camera type'] = 'Red Light Camera'
   plotdata speed = plotdata speed.loc[plotdata speed['count'] != 0]
   plotdata redlight = plotdata redlight.loc[plotdata redlight['count
'] != 0]
   plotdata_speed['ADDRESS'] += ' (Speed Camera)'
    plotdata redlight['ADDRESS'] += ' (Red Light Camera)'
   print(ggplot(aes(x = 'date', y = 'count', color = 'ADDRESS', linet
ype = 'camera type'), data = plotdata redlight)
     + geom line()
     + geom line(aes(x = 'date', y = 'count', color = 'ADDRESS', line
type = 'camera type'), data = plotdata speed)
     + labs(x = 'Violation Date', y = 'Number of Violations')
      + theme(axis_text_x = element_text(angle = 90, hjust = 1))
     + ggtitle('Violations Over Time Near ' + rlc violation intersect
ion.iloc[0,0]))
```

The Spearman correlation coefficient and p-value for speed violation s at 449 N COLUMBUS DR and red light violations at COLUMBUS AND ILLI NOIS are 0.162963453255 and 2.78044192069e-52, respectively. The Spearman correlation coefficient and p-value for speed violation s at 450 N COLUMBUS DR and red light violations at COLUMBUS AND ILLI NOIS are 0.264360762275 and 2.79546990715e-134, respectively. The Spearman correlation coefficient and p-value for speed violation s at 324 E ILLINOIS ST and red light violations at COLUMBUS AND ILLI NOIS are -0.0754133215296 and 0.00111370502749, respectively.

<ggplot: (-9223372036557937250)>

The Spearman correlation coefficient and p-value for speed violation s at 5030 S PULASKI and red light violations at PULASKI AND ARCHER a re 0.0858098835074 and 8.32305340821e-06, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 4929 S PULASKI and red light violations at PULASKI AND ARCHER a re 0.0805567849214 and 3.18889544956e-05, respectively.

<ggplot: (-9223372036541700804)>

The Spearman correlation coefficient and p-value for speed violation s at 7833 S PULASKI and red light violations at PULASKI AND 79TH are 0.0421715594408 and 0.0309514706502, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 7826 S PULASKI and red light violations at PULASKI AND 79TH are 0.0141353546134 and 0.468865265261, respectively.

<ggplot: (296454415)>

The Spearman correlation coefficient and p-value for speed violation s at 5532 S KEDZIE AVE and red light violations at 55TH AND KEDZIE a re 0.0196416695613 and 0.30387986204, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 3212 W 55TH ST and red light violations at 55TH AND KEDZIE are -0.0428981540587 and 0.065662139916, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 3217 W 55TH ST and red light violations at 55TH AND KEDZIE are 0.0192534438388 and 0.450386639939, respectively.

<ggplot: (296718095)>

The Spearman correlation coefficient and p-value for speed violation s at 819 E 71ST ST and red light violations at COTTAGE GROVE AND 71S T are -0.298144378532 and 0.0121817373417, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 7122 S SOUTH CHICAGO AVE and red light violations at COTTAGE GR OVE AND 71ST are -0.0650908855775 and 0.597942453407, respectively.

<ggplot: (-9223372036558081392)>

The Spearman correlation coefficient and p-value for speed violation s at 5433 S PULASKI and red light violations at 55TH and PULASKI are 0.0513666664902 and 0.0130290766203, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 5428 S PULASKI and red light violations at 55TH and PULASKI are 0.126406090074 and 1.19662717129e-09, respectively.

<ggplot: (-9223372036557143587)>

The Spearman correlation coefficient and p-value for speed violation s at 3534 N WESTERN and red light violations at WESTERN AND ADDISON are 0.0829683054404 and 0.0101969649149, respectively.

<ggplot: (296568475)>

The Spearman correlation coefficient and p-value for speed violation s at 2335 W CERMAK RD and red light violations at WESTERN AND CERMAK are 0.0126478366504 and 0.693407633301, respectively.

<ggplot: (294987605)>

The Spearman correlation coefficient and p-value for speed violation s at 732 N PULASKI RD and red light violations at PULASKI AND CHICAG O are -0.0305480932393 and 0.274597466049, respectively.

<ggplot: (297608989)>

The Spearman correlation coefficient and p-value for speed violation s at 4123 N CENTRAL AVE and red light violations at CENTRAL AND IRVI NG PARK are -0.0261146025436 and 0.198785140848, respectively.

<ggplot: (-9223372036557175566)>

In []:
