Problem Setup

Let $g \in C^n[a,b]$, and consider n+1 distinct points $x_0, x_1, \ldots, x_n \in [a,b]$ such that

$$x_0 < x_1 < \dots < x_n.$$

Assume further that

$$g(x_0) = g(x_1) = \dots = g(x_n) = 0.$$

We aim to prove that there exists a point $\xi \in [x_0, x_n]$ such that $g^{(n)}(\xi) = 0$.

Auxiliary Function

Define the polynomial

$$h(x) = \prod_{i=0}^{n} (x - x_i),$$

which is of degree n+1 and satisfies $h(x_i)=0$ for all $i=0,1,\ldots,n$. Next, define the quotient function

$$f(x) = \frac{g(x)}{h(x)}.$$

Step 1: First Application

Since $g(x_0) = g(x_1) = 0$, by Rolle's Theorem there exists a point $c_1 \in (x_0, x_1)$ such that

$$q'(c_1) = 0.$$

Similarly, $g(x_1) = g(x_2) = 0$ implies there exists a point $c_2 \in (x_1, x_2)$ such that

$$g'(c_2) = 0.$$

Continuing this, we find that g'(x) has zeros in $(x_0, x_1), (x_1, x_2), \dots, (x_{n-1}, x_n)$.

Step 2: Second Application

For each interval where g'(x) has a zero, apply Rolle's Theorem again to g'(x). For example, in (x_0, x_1) , there exists a point $d_1 \in (c_1, c_2)$ such that

$$g''(d_1) = 0.$$

Similarly, zeros of g''(x) can be found in $(c_2, c_3), (c_3, c_4), \ldots, (c_{n-1}, c_n)$.

Step 3: Repeated Applications

By iteratively applying Rolle's Theorem, we find that:

- g'(x) has zeros in $(x_0, x_1), \dots, (x_{n-1}, x_n),$
- g''(x) has zeros in the intervals formed by zeros of g'(x),
- \bullet This process continues until the n-th derivative.

After n applications of Rolle's Theorem, there exists a point $\xi \in [x_0,x_n]$ such that

$$g^{(n)}(\xi) = 0.$$