Sprawozdanie

gramatyk bezkontekstowych

Szymon Półtorak

Spis treści

1	Treść Zadania	2
2	Instrukcja Obsługi Programu	3
3	Przykładowe wywołania dla m = 2 i n = 1 oraz m = 1 i n = 2 $\dots \dots \dots$	4
4	Bibliografia	5

1 Treść Zadania

Napisać emulator maszyny Turinga obliczającą różnicę właściwą:

$$m-n = \begin{cases} m-n & dla & m \ge n \\ 0 & dla & m < n \end{cases}$$

dla parametrów zakodowanych unamie.

Postać MT

 $M\!\!=\!\!(\{q_0,q_1,q_2,q_3,q_4,q_5,q_6\},\{0,\!1\},\{0,\!1,\!B\},\delta,q_0,B,0)$

dla

I	ô	0	1	В
Ì	90	$(q_I,\! \mathbf{B},\! \mathbf{P})$	$(q_{5},\mathbf{B},\mathbf{P})$	
Ì	q_I	$(q_I,0,\mathbf{P})$	(q ₂ ,1, P)	
Ì	<i>q</i> ₂	$(q_{\beta},1,\mathbf{L})$	$(q_2,1,\mathbf{P})$	$(q_4,\!\mathrm{B},\!\mathbf{L})$
Ì	<i>q</i> ₃	$(q_j,0,\mathbf{L})$	$(q_j, 1, \mathbf{L})$	$(q_0,\mathbf{B},\mathbf{P})$
Ì	94	$(q_d,0,\mathbf{L})$	$(q_4,\!\mathrm{B},\!\mathbf{L})$	$(q_6, 0, P)$
Ì	95	$(q_{\mathcal{I}}, \mathbb{B}, \mathbf{P})$	$(q_{\mathcal{I}}.\mathrm{B.P})$	$(q_6, \mathbf{B}, \mathbf{P})$
Ì	96	(4)		

Program powinien:

- Wyświetlić opis MT.
- Dla wczytanych dwóch liczb całkowitych generować taśmę wejściową zakodowaną unarnie.
- Wyświetlać ciąg opisów chwilowych MT dla zadanej taśmy wejściowej,
- Po zatrzymaniu automatu zinterpretować otrzymany wynik.

Rysunek 1: Treść zadania

2 Instrukcja Obsługi Programu

Żeby uruchomić program trzeba wejść w program Visual Studio 2019 Enterprise i po załadowaniu projektu trzeba wybrać opcję "Local Windows Debugger".

Rysunek 2: mportowanie Projektu

Po uruchomieniu programu wyświetli nam się opis Maszyny Turinga. Poprosi on nas o podanie liczb potrzebnych do wykonania (m i n). Po podaniu tych informacji program wyświetli ciąg opisów chwilowych oraz wynik odejmowania. Maszyna Turinga nie obsługuje liczb ujemny, dlatego dla każdego m ; n wypisze wynik równy 0. Program poczeka na użycie dowolnego przycisku i zakończy działanie.

Rysunek 3: Przykładowe wywołanie

3 Przykładowe wywołania dla m = 2 i n = 1 oraz m = 1 i n = 2

a) m = 2, n = 1 Właściwe działanie Maszyny Turinga:

```
Q0 0 0 1 0 \mid B Q1 0 1 0 \mid B Q 0 1 1 0 \mid B 0 Q1 1 0 \mid B 0 1 Q2 0 \mid B 0 Q3 1 1 \mid B Q3 0 1 1 \mid B Q3 0 1 1 \mid B Q0 0 1 1 \mid B B Q1 1 1 \mid B B 1 Q2 1 \mid B B 1 1 Q2 B \mid B B 1 Q4 1 B \mid B Q4 B B B B \mid B 0 Q6 B B B
```

```
Program symuluje dzialanie Maszyny Turinga obliczajaca roznice wlasciwa liczb m - n.

M = ( {q0, q1, q2, q3, q4, q5, q6}, {0, 1, 8}, DELTA, q0, 8, PUSTY)

DELTA 0 1 B

q0 (q1,8,P) (q5, 8, P) -

q1 (q1,0,P) (q2, 1, P) -

q2 (q3,1,L) (q2, 1, P) (q4, 8, L)

q3 (q3,0,L) (q3, 1, L) (q0, 8, P)

q4 (q4,0,L) (q4, 8, L) (q6, 0, P)

q5 (q5,8,P) (q5, 8, P) (q6, 8, P)

q6 - - -

Podaj m: 2

Podaj n: 1

Ciag opisow chwilowych :

Q0 0 0 1 0 | - B Q1 0 1 0 | - B 0 Q1 1 0 | - B 0 1 Q2 0 | - B 0 Q3 1 1 | - B Q3 0 1 1 | -

Q3 B 0 1 1 | - B Q0 0 1 1 | - B B Q6

Wynikiem odejmowania jest : 1
```

Rysunek 4: Wyświetlony wynik działania programu

Wynik odejmowania podany przez program: 1

b) m = 1, n = 2 Właściwe działanie Maszyny Turinga:

```
Progress symbolic dislante Macrymy Tweings oblications counter viancium licat m - n.

* = ( {q0, q1, q2, q3, q4, q5, q6}, {0, 1, 8}), DelTA, q0, 8, PUSTY)

* (q1, 8, P) (q5, 8, P)

* (q1, 8, P) (q5, 8, P)

* (q1, 8, P) (q5, 1, P) (q4, 8, L)

* (q3, 1, L) (q3, 1, L) (q6, 8, P)

* (q4, 8, L) (q6, 8, P) (q6, 8, P)

* (q5, 8, P) (q6, 8, P) (q6, 8, P)

* (q5, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, L) (q6, 8, P) (q6, 8, P)

* (q6, 8, L) (q6, 8, P) (q6, 8, P)

* (q6, 8, L) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P)

* (q7, 8, L) (q6, 8, P)

* (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P)

* (q6, 8, P) (q6, 8, P)

* (q7, 8, L) (q6, 8, P)

* (q8, 8, P) (q6, 8,
```

Rysunek 5: Wyświetlony wynik działania programu

Wynik odejmowania podany przez program: 0

4 Bibliografia

- 1. Język ANSI C, Brian W. Kernighan, Dennis M. Ritchie,
- 2. Wprowadzenie do teorii automatów, języków i obliczeń, John Hopcroft, Jeffrey Ullman.