Chapter 7 Digital filters

Digital Filtering

- Introduction
- Frequency response
- Fir Filters
- Fir design

Introduction

Digital filters are commonplace and an essential elements of everyday electronics such as digital radios, MP3 players, cellphones, and stereo receivers.

3

Type of filters

- There are two types of filters:
 - 1. Analogue filters.
 - 2. Digital filters.

Analogue filters use discrete components such as resistors, capacitors and inductors.

Analogue filters

There are also two types of analogue filters:

- 1. Passive filters: analogue filters that use discrete components such as resistors, capacitors and inductors.
- 2. Active filters: analogue filters that uses resistors, capacitors and operational amplifiers, (op-amp).

ţ

Analogue filters, examples

Digital Filters

Digital filters use digital processors to perform numerical operations on the sampled waveform.

Types of digital filters

There are two main types of digital filters, recursive and non-recursive:

- 1. FIR filters (Finite Impulse Response Filters): These are mainly used for there linear phase response. (non-recursive).
- 2. IIR Filters (Infinite Impulse Response Filters): These are mainly used for the low number of "tapes" but have non linear phase response. (recursive).

Advantage of an FIR filter

- Amongst all the obvious advantages that digital filters offer, the FIR filter can guarantee linear phase characteristics.
- Neither analogue or IIR filters can achieve this.
- There are many commercially available software packages for filter design. However, without basic theoretical knowledge of digital filters, it will be difficult to use them.

9

Type of digital filters

Phase response of an FIR filter:

Phase response of an IIR filter:

Advantages and disadvantages in using Digital Filters

- Can have linear phase response.
- Digital filters can be reprogrammable.
- They are low cost.
- They consume low power.
- The have small size (implemented in software)
- Easy to design.
- Have a very precise transfer function.
- Unlike the analogue filters, digital Filters don't:
 - Drift
 - Age
 - Change with temperature

11

How non-recursive digital filters work

$$X_i: X_0, X_1, X_2, X_3, X_4, \dots X_N$$

T: the sampling period

Γhese digital filter has no effect on he input signal

$$y_0 = x_0,$$

$$y_1 = x_1$$

$$y_2 = x_2,$$

$$y_3 = x_3,$$

$$y_4 = x_4$$

...

$$y_N = x_{N,2}$$

How digital filters work

Filter with a gain, K

$$X_i: X_0, X_1, X_2, X_3, X_4, \dots, X_N$$

The digital filter act as an amplifier

$$y_0 = K x_0,$$

 $y_1 = K x_1,$
 $y_2 = K x_2,$
 $y_3 = K x_3,$
 $y_4 = K x_4,$
...
 $y_N = K x_N$

13

How digital filters work

Filter with a gain, K

K value	Effect of the digital filter
0 or 1	Switch
-1	Inverter
0 < K < 1	Attenuator
-1< K<0	Inverting attenuator
K > 1	Amplificator
K < -1	Inverting amplificator

$$y_0 = K x_0,$$

 $y_1 = K x_1,$
 $y_2 = K x_2,$
 $y_3 = K x_3,$
 $y_4 = K x_4,$
...
 $y_N = K x_N$

How digital filters work

Eq 2: Two-term filter

$$y_{i} = \frac{x_{i} + x_{i-1}}{2}$$

$$y_{0} = \frac{x_{0} + x_{-1}}{2}$$

$$y_{1} = \frac{x_{1} + x_{0}}{2}$$

$$y_{2} = \frac{x_{1} + x_{0}}{2}$$

$$y_{3} = \frac{x_{3} + x_{2}}{2}$$

$$y_{4} = \frac{x_{4} + x_{2}}{2}$$

$$y_{5} = \frac{x_{5} + x_{3}}{2}$$

15

How digital filters work

Eg 3: Three-term filter

$$y_{i} = \frac{x_{i} + x_{i-1} + x_{i-2}}{3}$$

$$y_{0} = \frac{x_{0} + x_{-1} + x_{-2}}{3}$$

$$y_{1} = \frac{x_{1} + x_{0} + x_{-1}}{3}$$

$$y_{2} = \frac{x_{2} + x_{1} + x_{0}}{3}$$

$$y_{3} = \frac{x_{3} + x_{2} + x_{1}}{3}$$

$$y_{4} = \frac{x_{4} + x_{3} + x_{2}}{3}$$

$$y_{5} = \frac{x_{5} + x_{4} + x_{3}}{3}$$

How digital filters work

■ N-term filter

$$y_i = \frac{x_i + x_{i-1} + \dots + x_{i-(N-1)}}{N}$$

17

Digital filter coefficients

■ General form of a digital filter:

$$y_i = a_0 x_i + a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_N x_{i-(N-1)}$$

Eg:

$$y_i = 3x_i - x_{i-1} + 2x_{i-6} + 5x_{i-(106)}$$

What is the order of this filter?

Order of digital filters

The order of digital filter is the number of previous inputs that need to be stored in memory

Zero Order:

$$y_i = a_0 x_i$$

First order

$$y_i = a_0 x_i + a_1 x_{i-1}$$

Second order

$$y_i = a_0 x_i + a_1 x_{i-1} + a_2 x_{i-2}$$

N order

$$y_i = a_0 x_i + a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_N x_{i-(N-1)}$$

19

How recursive digital filters work?

General form

$$y_i = b_0 x_i + b_1 x_{i-1} + \dots + b_N x_{i-N} + a_0 y_i + a_1 y_i + \dots + a_N y_{i-N}$$

Eg:

$$y_i = 2x_i - x_{i-1} + 3x_{i-2} + y_{i-1}$$

What is digital filter design?

- The design of a digital filter is carried out in three steps:
 - 1. **Specifications:** they are determined by the applications
 - 2. Approximations: once the specification are defined, we use various concepts and mathematics that we studied so far to come up with a filter description that approximates the given set of specifications.
 - **3. Implementation:** The product of the above step is a filter description in the form of either a difference equation, or a system function H(z), or an impulse response h(n). From this description we implement the filter in hardware or through software on a computer.

21

Specifications

- Specifications are required in the frequencydomain in terms of the desired magnitude and phase response of the filter.
- Generally a **linear phase response** in the passband is desirable.
 - In the case of FIR filters, It is possible to have exact linear phase.
 - In the case of IIR filters, a linear phase in the passband is not achievable.

Properties of an FIR Filter

■ Filter coefficients:

$$y[n] = \sum_{k=0}^{N-1} b_k \cdot x[n-k]$$

x[n] represents the filter input,

b_k represents the filter coefficients,

y[n] represents the filter output,

N is the number of filter coefficients

(order of the filter).

Frequency Response of an FIR Filter Frequency response: $H(e^{j\omega+2k\pi})=H(e^{j\omega})$ $x[n] \longrightarrow FIR \longrightarrow y[n]$ Frequency response: Freq Freq Figure Freq F

Design Procedure

- To fully design and implement a filter five steps are required:
 - (1) Filter specification.
 - (2) Coefficient calculation.
 - (3) Structure selection.
 - (4) Simulation (optional).
 - (5) Implementation.

29

Filter Specification - Step 1

Coefficient Calculation - Step 2

- There are several different methods available, the most popular are:
 - Window method.
 - Frequency sampling.
 - Parks-McClellan.
- We will just consider the window method.

31

Realisation Structure Selection - Step 3

Implementation - Step 5

$$y0 = b0*x0 + b1*x1 + b2*x2 + b3*x3$$

33

Implementation - Step 5

$$y0 = b0*x0 + b1*x1 + b2*x2 + b3*x3$$

 $y1 = b0*x4 + b1*x1 + b2*x2 + b3*x3$

Implementation - Step 5

$$y0 = b0*x0 + b1*x1 + b2*x2 + b3*x3$$

 $y1 = b0*x4 + b1*x1 + b2*x2 + b3*x3$
 $y2 = b0*x4 + b1*x5 + b2*x2 + b3*x3$

35

Digital filters

- End -