Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A method for selecting and executing inverse discrete cosine transform (iDCT) algorithms, said method comprising the steps of:
- a) examining the coefficients of a DCT block to determine the position of the End of Block (EOB) coefficient;
- b) selecting an iDCT algorithm to be an iDCT_low algorithm or an iDCT_high algorithm according to the position of said EOB coefficient and using an EOB histogram for B-frames; and
 - c) executing said iDCT algorithm.
- 2. (Currently Amended) The method of claim 1, wherein said <u>iDCT algorithm is an</u> iDCT_high algorithm available to said method <u>is determined by creating and selected using an</u> EOB histogram of the first B-frame of a shot.
- 3. (Currently Amended) The method of claim 1, wherein said <u>iDCT algorithm is an</u> iDCT low algorithm available to said method is determined by creating and selected using an EOB histogram of the first B-frame of a shot.
- 4. (Currently Amended) A system for reducing iDCT execution time, said system comprising:
- a) determination means for determining the position of an End of Block (EOB) coefficient in a DCT block;

- b) selection means for selecting an iDCT algorithm to be an iDCT_low algorithm or an iDCT_high algorithm based upon the position of said EOB coefficient and using an EOB histogram for B-frames; and
 - c) execution means for executing said iDCT algorithm.
- 5. (Previously Presented) A system for reducing iDCT execution time, said system comprising:
- a) determination means for determining the position of an End of Block (EOB) coefficient in a DCT block;
- b) selection means for selecting an iDCT algorithm based upon the position of said EOB coefficient; and
- c) execution means for executing said iDCT algorithm; wherein said iDCT algorithm is determined by creating an EOB histogram of the first B-frame of a shot.
- 6. (Currently Amended) A computer readable medium containing instructions for selecting and executing inverse discrete cosine transform (iDCT) algorithms, said instructions performing the steps of:
- a) examining the coefficients of a DCT block to determine the position of the End of Block (EOB) coefficient;
- b) selecting an iDCT algorithm to be an iDCT_low algorithm or an iDCT_high algorithm according to the position of said EOB coefficient and using an EOB histogram for B-frames; and
 - c) executing said iDCT algorithm.

- 7. (original) The method of claim 2 wherein said iDCT_high algorithm is based upon an EOB coefficient of 39 or 40.
- 8. (original) The method of claim 3 wherein said iDCT_low algorithm is based upon an EOB coefficient of 14 or 25.
- 9. (original) The medium of claim 6 wherein said iDCT_high algorithm is based upon an EOB coefficient of 39 or 40.
- 10. (original) The medium of claim 6 wherein said iDCT_low algorithm is based upon an EOB coefficient of 14 or 25.
- 11. (Currently Amended) A system for reducing <u>inverse discrete cosine transform (iDCT)</u> execution time, said system comprising:
- a) a plurality of iDCT algorithms comprising an iDCT_high algorithm and an iDCT_low algorithm;
- b) a switch for selecting a selected algorithm from said plurality of iDCT algorithms and using an End of Block histogram for B-frames; and
 - c) a computer processor for executing said selected algorithm.
- 12. (Currently Amended) The system of claim 11 wherein said switch accepts as input:
 - a) a block of DCT coefficients;
 - b) an End of Block (EOB) address; and
 - c) a picture type rate.

13. (Previously Presented) The system of claim 11 wherein said plurality of iDCT algorithms further comprises:

iDCT_Normal, iDCT AC and iDCT DC.

- 14. (Previously Presented) A system for reducing iDCT execution time, said system comprising:
- a) a plurality of iDCT algorithms comprising iDCT_Normal, iDCT_high, iDCT low, iDCT AC and iDCT DC;
 - b) a switch for selecting a selected algorithm from said plurality of iDCT algorithms, wherein said switch accepts as input:
 - 1) a block of DCT coefficients;
 - 2) an End of Block (EOB) address; and
 - 3) a picture type rate; and
 - c) a computer processor for executing said selected algorithm; wherein said iDCT high algorithm is selected based on an EOB value of 39 or 50.
- 15. (Previously Presented) A system for reducing iDCT execution time, said system comprising:
- a) a plurality of iDCT algorithms comprising iDCT_Normal, iDCT_high, iDCT_low, iDCT_AC and iDCT_DC;
 - d) a switch for selecting a selected algorithm from said plurality of iDCT algorithms, wherein said switch accepts as input:
 - 1) a block of DCT coefficients;
 - 2) an End of Block (EOB) address; and
 - 3) a picture type rate; and

- c) a computer processor for executing said selected algorithm; wherein said iDCT low algorithm is selected based upon an EOB value of 14 or 25.
- 16. (Previously Presented) A system for reducing iDCT execution time, said system comprising:
- a) a plurality of iDCT algorithms comprising iDCT_Normal, iDCT_high, iDCT low, iDCT AC and iDCT DC;
 - e) a switch for selecting a selected algorithm from said plurality of iDCT algorithms, wherein said switch accepts as input:
 - 1) a block of DCT coefficients;
 - 2) an End of Block (EOB) address; and
 - 3) a picture type rate; and
 - c) a computer processor for executing said selected algorithm; wherein said iDCT_low and iDCT_high algorithms are determined based upon an EOB histogram of the first B-Frame of a shot.
- 17. (New) A method for selecting and executing a plurality of inverse discrete cosine transform (iDCT) algorithms, said method comprising the steps of:

examining the coefficients of a discrete cosine transform (DCT) block to determine a position of the End of Block (EOB) coefficient;

selecting an iDCT algorithm from the plurality of iDCT algorithms according to the position of said EOB coefficient and using an EOB histogram for B-frames in a shot; and executing the selected iDCT algorithm.

- 18. (New) The method of claim 17 wherein the shot includes a sequence of frames bounded on each side by a video transition.
- 19. (New) The method of claim 18 wherein the video transition includes one of a cut frame, a dissolve, or a cross-dissolve.
- 20. (New) The method of claim 17 wherein the plurality of iDCT algorithms includes one of: iDCT_Normal, iDCT_AC, iDCT_high, iDCT_low and iDCT_DC.