Precalculus Cubic inequality

Todor Milev

2019

Todor Milev Cubic inequality 2019

Example

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

 $x \in (-\frac{1}{2}, 1) \cup (2, \infty)$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2. The two roots split the real line into four intervals: $\left(-\infty, -\frac{1}{2}\right), \left(-\frac{1}{2}, 1\right), (1, 2), (2, \infty)$.

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+