

LOGARITHMESChangement de base / Conversion

Comment passer d'une base de <u>logarithme</u> à une autre. Notamment des logarithmes népériens aux logarithmes décimaux.

Réciprocité des fonctions logarithmes et exponetielles:

Anglais: The logarithm of **x** to the base **a**The logarithm of the base itself is **1**

CHANGEMENT DE BASE

Changement de base

Formule base quelconque

$$\log_a N = \frac{\log_b N}{\log_b a}$$

Formule base décimale (a = 10) et népérienne (b = e = 2,718182...)

$$\log_{10} N = \frac{\ln N}{\ln 10} = \frac{\ln N}{2,3026...}$$

Voir Types de logarithmes / Constante e

Explications

	Base a	В	ase b
Soit le log en base a à exprimer en base b	log _a N = L		
Ce qui veut dire que (fonction réciproque)	N = a ^L		
Reprenons en base b		log _b N	
Remplaçons N par sa nouvelle valeur			= log _b a ^L
Propriété des log			= L . log _b a
Soit la valeur de L		L	= log _b N / log _b a
Et, la passerelle entre les deux bases	log _a N		= log _b N / log _b a

Exemple de calcul

• Ma table (ma <u>calculette</u>) me donne bien les logarithmes népériens (In base e = 2,718...), mais je cherche un nombre dont je ne connais que le logarithme décimal (log base 10). Comment s'y prendre?

Exemple: calculer 100 x 1000 avec les logarithmes

(Exemple volotairement simpliste pour se concentrer sur la méthode)

A = 100 B = 1000 P = A . B	log A = 2 log B = 3 log P = log A log P = 2 + 3			
P = ?		Dans ce cas simple évidemment log 5 donne 100 000. Mais supposons que ce nombre soit plus compliqué. Que vaut P? Sachant que nous sommes en base 10. Et que nous n'avons que la table de la base "e" disponible.		
	log P = In P / In P = log P		Changement de base selon la formule cidessus. On connaît logP on veut calculer ln10.	
	log P = 5 In 10 = 2,302	585093	On connaît la valeur du premier facteur Valeur de ln 10 selon notre table.	
P = exp (5 x 2,30) logari		logarithme).	exponentielles (fonction réciproque du log P par sa valeur connue.	
•		Recherche de calculette).	e la valeur de cette exponentielle (table ou	

TRAVAUX PRATIQUES

Base en racine

Comment démontrer cette curiosité?

$$\log_{5\sqrt{5}}(5)=2$$

Voici les outils en deux formules équivalentes:

Calcul

$$a^{X} = N$$
$$\log_a N = x$$

$$\begin{aligned}
\log_{5\sqrt{5}} 125 &= X \\
(5\sqrt{5})^{X} &= 125 \\
(5^{1} \times 5^{\frac{1}{2}})^{X} &= 5^{3} \\
(5^{\frac{3}{2}})^{X} &= 5^{3} \\
5^{\frac{3}{2}} &= 5^{3} \\
\frac{3}{2} &= 3 \\
X &= 3 \times \frac{2}{3} \\
X &= 2
\end{aligned}$$

Équation

Il faut calculer x:

$$3^{x-1} \cdot 5^{2x-1} = 375$$

Voici les outils:

$$\log a^b = b \cdot \log a$$

$$log(a.b) = log a + log b$$

Calcul

$$\log (3^{x-1} \cdot 5^{2x-1}) = \log 375$$

$$\log (3^{x-1}) + \log (5^{2x-1}) = \log (3 \times 5^3)$$

$$(x-1)\log 3 + (2x-1)\log 5 = \log 3 + 3\log 5$$

$$x \cdot \log 3 + 2x \cdot \log 5 = 2\log 3 + 4\log 5$$

$$x (\log 3 + 2\log 5) = 2(\log 3 + 2\log 5)$$

$$x = 2$$

La division de chaque côté par (log 3 + 2 log 5) est légitime car cette quatité est strictement positive.

Voir Nombre 2

VARIATIONS sur les LOG

Bases a / a ^m	2 / 22	e = 2,71
log a a = 1	$\log_2 2 = 1$	ln(1) = 0
$\log_a a^2 = 2$	$\log_2 4 = 2$	ln(e) = 1
$\log_a a^3 = 3$	$\log_2 8 = 3$	ln(10) = 2,302585093
$\log_a\left(a^n\right)=n$	$\log_2 2^n = n$	$ln(10^2) = 2 ln(10)$ = 4,605170186
$\log_{a^n}\left(a^n\right)=1$	$\log_2\left(a^2\right) = \frac{2\ln(a)}{\ln(2)}$	$ \ln(10)^2 = 5,301898111 $
$\log_{a^2}(a^3) = \frac{3}{2}$	$\log_{2^2}(a^3) = \frac{3 \ln(a)}{2 \ln(2)}$	$ln(a^n) = n \cdot ln(a)$
$\log_{a^m}(a^n) = \frac{n}{m}$		

5 / 25	10 / 100	17
\log_5 $5=1$	log 10 10 = 1	log 17 17 = 1
log_5 $25=2$	log 10 100 = 2	$\log_{17} 17^2 = 2$
$\log 5 125 = 3$	log 10 1000 = 3	$\log_{17} 17^{17} = 17$
$\log_5 5^n = n$	$\log_{10} 10^n = n$	$\log_{17} 17^n = n$
$\log_{5^2}(5^3) = \frac{3}{2}$ $\log_{5^2}(5^4) = \frac{4}{2} = 2$	$\log_{100} 1000 = 3/2$	
$\log_{5^2}(5^4) = \frac{4}{2} = 2$	$\log_{100} 10000 = 4/2 = 2$	$\log_{17^{17}}(17^{17}) = \frac{17}{17} = 1$
$\log_{5^{1/2}}(5) = \frac{1}{1/2} = 2$	$ \log \sqrt{10} 10 \\ = \log_{10^{1}/2} 10 \\ = 1 \times 2/1 = 2 $	$\log_{17^{1/2}}(17^{17}) = \frac{17}{1/2} = 34$
$\log_{5^{3/2}}(5^3) = \frac{3}{3/2} = 2$	$\log_{10\sqrt{10}} 1000$ $= \log_{10^{3}/2} 1000$ $= 3 \times \frac{2}{3} = 2$	

Logarithme et Maple

 Le calcul littéral impliquant des logarithmes sur un logiciel de calcul symbolique comme <u>Maple</u> nécessite de petites précautions. En effet, le logarithme n'est pas défini avec des nombres négatifs (sauf avec des <u>nombres complexes</u>).

$$assume(a > 0);$$

$$assume(n > 0);$$

$$assume(m > 0);$$

$$log[a](a^n);$$

$$n \sim$$

$$A := a^2;$$

$$log[A](a^3);$$

$$a \sim^2$$

$$\frac{3}{2}$$

Ces instructions avec "assume" (supposez en anglais) indique au programme que les nombres a, n et m sont positifs tout au long des calculs.

[a] indique qu'il s'agit d'un logarithme en base a.

La réponse est n avec une tilde (~) qui indique que ce nombre est lié à des hypothèses.

La base doit être un nombre sans puissance (pourquoi?). Pour contourner cette interdiction, on calcule préalablement la base (ici en a²)

La réponse est 3/2 avec le 3 de la puissance du nombre et le 2 de la puissance de la base.

Identités pratiques pour n > 1

$$\begin{aligned} \log_n\left(n\right) &= 1 \text{ et } \log_n\left(\frac{1}{n}\right) &= -1\\ \log_2\left(2^n\right) &= n \text{ et } \log_2\left(\frac{1}{2^n}\right) &= -n\\ \log_2\left(2^{\frac{1}{n}}\right) &= \frac{1}{n}\\ \log_2\left(\frac{2}{2^{\frac{1}{n}}}\right) &= \frac{n-1}{n} \end{aligned}$$

Voir Solution universelle au problème des quatre 4

Suite Logarithmes – Calcul Logarithmes – Historique - Balle qui rebondit Logarithmes et tout nombre Changement de base en exponentielle Voir Arrondis avec logarithmes Calcul des factorielles avec les logs Croissance Constantes Mathématiques Courbes élémentaires - Échelle de Richter - Exponentielle Exposants – Index Exposants et puissances Morphisme DicoNombre- Nombre 1 - Ln 2 = 0,693... - Ln 10 = 2,302 http://villemin.gerard.free.fr/Wwwgvmm/Analyse/Logabase.htm Cette page