By: Kabir Yadav Roll No - 200123027

Ques 1:

X0 -	a,b,m	numbers	distinct values before repitition
0	6,0,11	(0,)	1
1	6,0,11	(6, 3, 7, 9, 10, 5, 8, 4, 2, 1)	10
2	6,0,11	(1, 6, 3, 7, 9, 10, 5, 8, 4, 2)	10
3	6,0,11	(7, 9, 10, 5, 8, 4, 2, 1, 6, 3)	10
4	6,0,11	(2, 1, 6, 3, 7, 9, 10, 5, 8, 4)	10
5	6,0,11	(8, 4, 2, 1, 6, 3, 7, 9, 10, 5)	10
6	6,0,11	(3, 7, 9, 10, 5, 8, 4, 2, 1, 6)	10
7	6,0,11	(9, 10, 5, 8, 4, 2, 1, 6, 3, 7)	10
8	6,0,11	(4, 2, 1, 6, 3, 7, 9, 10, 5, 8)	10
9	6,0,11	(10, 5, 8, 4, 2, 1, 6, 3, 7, 9)	10
10	6,0,11	(5, 8, 4, 2, 1, 6, 3, 7, 9, 10)	10
0	3,0,11	(0,)	1
1	3,0,11	(3, 9, 5, 4, 1)	5
2	3,0,11	(6, 7, 10, 8, 2)	5
3	3,0,11	(9, 5, 4, 1, 3)	5
4	3,0,11	(1, 3, 9, 5, 4)	5
5	3,0,11	(4, 1, 3, 9, 5)	5
6	3,0,11	(7, 10, 8, 2, 6)	5
7	3,0,11	(10, 8, 2, 6, 7)	5
8	3,0,11	(2, 6, 7, 10, 8)	5
9	3,0,11	(5, 4, 1, 3, 9)	5
10	3,0,11	(8, 2, 6, 7, 10)	5.

Observation:

Initially as both x0 and b are zero so we only get one number that is 0, but as We increase x0 we start to get 10 numbers (period length = m - 1 = 10) for every value of x0 till 10 when (a, b, m) = (6, 0, 11).

For (a, b, m) = (3, 0, 11) but as x0 go beyond 0 we start to get 5 distinct values before repetition starts. We can also observe that when (a, b, m) = (6, 0, 11) when we go from x0 = 1 10 we are getting the same sequence but it starts from different numbers.

Best Choice:

• The largest possible period length of linear congruence generator is m-1. This value is achieved when a=6 (full period), while period length for a=3 is only 5. So the linear congruence generator with a=6 is preferred over a=3 as it has higher period length. This is because there will be more randomness in the generated numbers as there are more numbers in the sequence. And x0 (seed) should be a non-zero value, as x0=0 has no randomness in it.

By: Kabir Yadav Roll No - 200123027

Ques 2:

By: Kabir Yadav Roll No - 200123027

| Colu |
|------|------|------|------|------|------|------|------|------|------|------|------|
| mn1 | mn2 | mn3 | mn4 | mn5 | mn6 | mn7 | mn8 | mn9 | mn10 | mn11 | mn12 |

For (a, b, m) = (1597, 0, For (a, b, m) = (51749, 0, 244944)

	Dana	FOR	Fam. (0	Fam. (0	F0						
	Rang	x0 =	For x0	For x0	For x0						
	е	10	21	3	8	51	10	21	= 3	= 8	= 51
	0.0-										
0	0.05	499	504	500	508	502	516	522	463	514	464
	0.05-										
1	0.1	501	505	509	494	493	497	496	523	511	556
	0.1-										
2	0.15	498	491	497	515	502	512	493	524	490	495
	0.15-										
3	0.2	502	501	502	498	504	494	494	462	492	463
	0.2-										
4	0.25	502	493	493	503	495	513	493	493	493	525
	0.25-										
5	0.3	504	500	512	496	499	488	494	525	496	495

By: Kabir Yadav Roll No - 200123027

	0.3-										
6	0.35	501	505	500	507	493	493	493	493	497	495
_	0.35-		400								40=
7	***	502	493	491	496	501	492	525	495	517	495
8	0.4- 0.45	507	502	499	506	500	496	493	527	495	495
0	0.45	307	302	499	300	300	490	493	327	495	495
9		492	493	494	498	496	498	494	495	499	525
	0.5-										
10	0.55	502	503	505	493	504	517	525	464	489	463
	0.55-										
11	0.6	504	498	503	507	492	492	494	524	491	556
	0.6-										
12		501	496	493	495	509	516	493	525	513	491
12	0.65-	F.0.1	F00	544	F07	F04	402	404	464	402	460
13	0.7 0.7-	501	508	511	507	504	493	494	464	492	460
14		496	498	490	496	498	513	495	492	493	521
17	0.75-	730	730	430	730	730	313	755	732	733	321
15	0.8	491	508	502	501	510	493	494	524	496	493
	0.8-										
16		498	508	505	489	498	489	494	494	495	494
	0.85-										
17	0.9	499	495	495	506	506	496	525	494	496	494
	0.9-										
18	0.95	506	507	504	494	507	498	494	525	517	494
10	0.95-	404	402	405	401	407	404	405	404	F14	F26
19	1.0	494	492	495	491	487	494	495	494	514	526

• Observations:

- 1. The numbers are uniformly generated between 0-1. The frequency of different numbers lying in same length intervals are almost same. So, the random number generator follows the property of generation of numbers uniformly.
- 2. For different value of seed (x0), the frequencies are almost identical, and so the nature of bar graphs is same.

By: Kabir Yadav Roll No - 200123027

Ques 3:

• Observations:

- 1. The scatter plot contains 5 almost parallel lines originating at different y coordinates.
- 2. There is an outlier present at x = 1.0 (approx.). I believe this is present due to the precision issues while taking modulus in Python code (which is a bit different from the standard notion of modulus operation in other programming languages).
- 3. I found that this plot helps in what is known as "Spectral Test". LCGs have a property that when plotted in 2 dimensions, lines will form, on which all possible outputs can be found. The spectral test compares the distance between these planes; the further apart they are, the worse the generator is.