

RESISTENCIA DE MATERIALES

ELEMENTOS DE MÁQUINAS

Mondragon Goi Eskola Politeknikoa Mondragon Unibertsitatea Introducción

1. Introducción

Hasta ahora, se ha trabajado ESTÁTICA DE SOLIDO RÍGIDO.

Pero nuestros elementos no sufren deformaciones?

1. Introducción

Politeknikoa

4 TIPOS:

- 1. Tracción/Compresión
- 2. Cortadura
- 3. Torsión
- 4. Flexión

Goi Eskola Politeknikoa

¿Qué pasa en estas vigas?

¿Cuál es la deformación que sufren?

2

Tracción y compresión

TRACCIÓN

- Una barra está sometida a una fuerza externa F.
- Esta fuerza interna N que se distribuye uniformemente en toda la sección (x-x) → Tensión de tracción

$$\sigma_t = \frac{N}{A} = \frac{F}{A}$$

F: Fuerza externa (N)

A: Sección transversal de la barra (mm²)

 σ_t : Tensión de tracción (MPa)

COMPRESIÓN

- Una barra está sometida a una fuerza externa F.
- Esta fuerza interna N que se distribuye uniformemente en toda la sección (x-x) → Tensión de tracción

$$\sigma_t = \frac{N}{A} = \frac{F}{A}$$

F: Fuerza externa (N)

A: Sección transversal de la barra (mm²)

 σ_t : Tensión de tracción (MPa)

2. Tracción y compresión

Goi Eskola Politeknikoa

TRACCIÓN Y COMPRESIÓN

Ley de Hook:

$$\sigma = E \ \varepsilon$$

Curva de tracción

Módulo de Young, E:

$$E = \frac{\sigma}{\varepsilon} = \frac{F/A}{\Delta l/L} \longrightarrow \Delta l = \delta = \frac{FL}{EA}$$

 ε = deformación unitaria

δ: Elongación o alargamiento [mm]

F: Fuerza externa [N]

L: Longitud inicial [mm]

A: Sección transversal de la barra [mm²]

E: Módulo de elasticidad [MPa]

2. Tracción y compresión

TRACCIÓN Y COMPRESIÓN

- **EJEMPLO.** Una varilla cilíndrica de 1m de largo y 3cm de diámetro, se somete a una fuerza de tracción de 15 kN. Siendo la varilla de acero, su tensión de tracción proporcional es de σ = 2400 MPa y el mçodulo de elasticidad E = 2.10 6 MPa. Calcular:
 - a) $\Delta l = \delta$ Alargamiento total y ϵ deformación unitaria (o alargamiento unitario)
 - b) Siendo la fuerza de 78kN, el alargamiento total ($\Delta l = \delta$)

Cortadura

- La dirección de la fuerza es perpendicular a la barra
- Cuando se aplica la fuerza en la dirección de la sección de la unión (remache, tornillo...) que conecta las dos piezas, internamente se genera una tensión de cortadura (Q). No está uniformemente distribuida, también sufre flexión (M), pero se considera que está distribuido uniformemente.

$$\tau = \frac{F}{A} = \frac{F}{\pi r^2} = \frac{4F}{\pi d^2}$$

$$\tau_c$$
: Tensión de cortadura [MPa]

F: Fuerza externa [N]

$$F = A \cdot \tau \cdot n$$

n: Número de secciones resistentes

A: Sección de la unión (tornillo/remache)[mm²]

• Si se conoce la tensión máxima que puede soportar un elemento, $au_{\rm max}$, se puede calcular el área mínima que debe tener.

$$d = \sqrt{\frac{4F}{\pi \tau_{max}}}$$

• Cuando se unen 3 piezas, aparecen dos secciones críticas y con esto se genera una fuerza a cortadura en cada sección.

$$\tau = \frac{F/2}{\pi r^2} = \frac{2F}{\pi d^2}$$

$$F = A \cdot \tau \cdot n$$

F: Fuerza externa [N]

A: Sección de la unión (tornillo/remache)[mm²]

 τ_c : Tensión de cortadura [MPa]

n: Número de secciones resistentes

• Si se conoce la tensión máxima que puede soportar un elemento, $au_{\rm max}$, se puede calcular el área mínima que debe tener.

$$d = \sqrt{\frac{2F}{\pi \tau_{max}}}$$

3. Cortadura

EJEMPLO. Calcule el giámetro del remache en la unión que se indica a continuació, siendo F = 6000 N y $\tau = 30 \text{ MPa}.$

4 Flexión

4. Flexión

- Las cargas externas y las reacciones de las uniones flexionan la barra.
- Las fibras superiores se acortan y las inferiores se estiran.
- Las vigas trabajan a flexión

- Cuando una fuera actua sobre un elemento a flexión, las fuerzas internas se oponen a la flexión generando un momento flector.
- En la mayoría de casos aparece una fuerza cortante.

$$\Sigma F = 0 \rightarrow Q = A_y$$

$$\Sigma M = 0 \rightarrow M_t = A_y \cdot x$$

Variables para calcular la flexión.

TABLAS

EI: Rigidez a la flexión[Nmm²]

θ: ángulo de flexión[rad]

L: longitud de viga [mm]

F: carga puntual [N]

M: momento flector [Nmm]

 δ : deformación [mm]

E: módulo elasticidad[MPa]

I: momento de inercia[mm⁴]

4. Flexión

Momento inercia [mm⁴]

Rectángulo

$$I_y = \frac{bh^3}{12} \qquad I_z = \frac{hb^3}{12}$$

<u>Círculo</u>

$$I_y = I_z = \frac{\pi d^4}{64}$$

4. Flexión

EJEMPLO. Calcula el desplazamiento en el punto B. Datos:

- Lado de la barra cuadrada 30mm
- E = 200 GPa
- L = 1000 mm
- P = 1 kN

Torsión

- Cuando una sección de un cuerpo permanece estática y otra sección adyacente tiende a girar, se produce un momento de torsión M_t , torciendo el elemento.
- En ejes de máquinas, tornillos, etc.

- Si se aplica un momento M a una pieza empotrada, en el extremo opuesto aparecen:
 - Tensiones de cortadura
 - Ángulos de torsión
- Los puntos más alejados del centro son los que más se deforman.
- El centro no se deforma: fibra neutra

Tensión de cortadura en la torsión

$$\tau = \frac{M \cdot r}{I_p}$$

 τ = Tensión de cortadura [MPa] M = momento [Nmm] r = radio del eje [mm] I_p = inercia polar [mm⁴]

 Inercia polar: lo que impide deformarse o cambiar el estado natural.

$$I_p = \frac{\pi \cdot r^4}{2} = \frac{\pi \cdot d^4}{32}$$

$$I_p = \frac{\pi}{2} (R^4 - r^4)$$

• Deformación en la torsión:

$$\theta = \frac{M \cdot L}{G \cdot I_p}$$

M = momento [Nmm]

 I_p = inercia polar[mm⁴]

G = módulo de cortadura [MPa]

L = longitud del eje[mm]

 θ = ángulo de torsión [rad]

 EJEMPLO: Calcule la tensión de la tubería (τ), en el punto interior y en el punto exterior, y la deformación (ángulo de torsión, θ).

R = 60 mm

r = 20 mm

M = 4 kNm

L = 2 m

G = 100 GPa

Olatz Insausti
oinsausti@mondragon.edu
Iraitz Ferreira
iferreira@mondragon.edu
Aitor Urzelai
aurzelaib@mondragon.edu

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu Eskerrik asko Muchas gracias Thank you