Real numbers

Lesson 11

Binary operator

Definition

A binary operator on a set S is a function from $S \times S$ to S. A binary operator F is commutative provided

$$(\forall a, b \in S)(F(a, b) = F(b, a)).$$

It is associative provided

$$(\forall a, b, c \in S)(F(a, F(b, c)) = F(F(a, b), c)).$$

It has an left identity element provided

$$(\exists \ \theta \in S)((\forall a \in S)(F(\theta, a) = a).$$

And it has an right identity element provided

$$(\exists \theta \in S)((\forall a \in S)(F(a, \theta) = a).$$

- Addition and multiplication of real numbers are examples of binary operators; these operators are commutative and associative.
- In this context, binary means that the function takes two members of the same set; the use of binary has nothing to do with base two representation of a number.
- Usually binary operators are expressed in infix notation; that is, the operator is in between its arguments.
- **⑤** For example, we write 1 + 107 = 108, not +(1, 107) = 108.
- For a commutative binary operator, every right identity element is a left identity element; so we'll call them collectively an identity element.

Examples

- Addition + is a binary operator on R. Since x + 0 = x for all real x, the unit for addition is zero. Further we know that addition is commutative and associative.
- Function composition ∘ is a binary operator on the set of functions from R to R. The function $x \in R \mapsto x$ is the unit for function composition . Function composition is associative, but not commutative.

Unique elements

Theorem

Let S be a set and let F be a commutative binary operator on S. Then F has at most one identity element.

Proof

Let θ and θ' be identity element. for F. We'll show that $\theta = \theta'$. We have

$$\theta = F(\theta', \theta),$$
 (because θ is an identity element.)
= $F(\theta, \theta'),$ (because F is commutative)
= θ' . (because θ' is an identity element.)

So $\theta = \theta'$.

Fields

We would like to capture the important features of the real numbers and give all such structures a name. This object is a *field*.

Definition

A field is an ordered triple $(\mathcal{F},+,\times)$ where \mathcal{F} is a set and both + and \times are commutative and associative binary operators on \mathcal{F} that have identity elements; the identity element for + is 0 and the identity element for \times is 1.

- For all $a, b, c \in \mathcal{F}$, we have $a \times (b + c) = a \times b + a \times c$.
- ② For all $a \in \mathcal{F}$ there is $-a \in \mathcal{F}$ such that a + -a = 0.
- **3** For all $a \in \mathcal{F}_{\neq 0}$ there is $a^{-1} \in \mathcal{F}$ such that $aa^{-1} = 1$.
- We say that -a is an additive inverse of a.
- ② We say that a^{-1} is a multiplicative inverse of a.

Unique inverses

Theorem

Let $(\mathcal{F},+,\times)$ be a field. The additive and multiplicative inverses are unique.

Proof

Let $a \in \mathcal{F}$ and suppose a+b=0 and a+b'=0. We'll show that b=b'. We have

$$b = b + 0,$$

$$= b + (a + b'),$$

$$= (b + a) + b',$$

$$= (a + b) + b',$$

$$= 0 + b',$$

$$= b'.$$

The proof for the multiplicative inverse is similar and left as an exercise for the willing.

Why is the product of negative numbers positive?

Theorem

Let $(\mathcal{F}, +, \times)$ be a field. For all $a, b \in \mathcal{F}$, we have

- 0 a = a0 = 0.
- a(-b) = (-a)b = -(ab)
- (-a) = a
- (-a)(-b) = ab

The last is the most mysterious for grade school students. A proof follows from replacing $a \to -a$ in a(-b) = (-a)b and using -(-a) = a.

Let's prove a(-b) = (-a)b = -(ab).

Proof

Let $(\mathcal{F}, +, \times)$ be a field. For all $a, b \in \mathcal{F}$, we have

$$0 = a0 = a(b + -b) = ab + a(-b).$$

So -(ab) = a(-b). Interchanging a and b and using commutativity gives -(ab) = (-a)b.

Famous fields

Let + and \times be ordinary number addition and multiplication, respectively. Then

- $(R, +, \times)$ is the real field.
- $(Q, +, \times)$ is the rational field. Certainly the sum and product of rational numbers is a rational number so indeed, $+: Q \times Q \to Q$ and similarly for \times . The other required conditions are "inherited" from the properties of the real field.
- (2, +, \times) isn't a field because, for example, there is no $x \in Z$ such that 2x = 1.

Ordered Fields

Definition

A field $(\mathcal{F}, +, \times)$ is ordered provided there is a subset P of \mathcal{F} such that

- ⑤ For all $a \in \mathcal{F}$ exactly one of the following is true: (i) $a \in P$, (ii) $-a \in P$, (iii) a = 0.
- ① $[b a \in P] \equiv [a < b].$

Assume the reals

We will assume that there is a set R with members called *real numbers* along with functions $+: R \times R \to R$ and $\times: R \times R \to R$. Further we'll assume that this field is ordered by the positive numbers.

Theorem

Let $(\mathcal{F}, +, \times)$ be an ordered field. For all $a, b, c \in \mathcal{F}$ we have