الأعداد العقدية - الجزء الاول-

\mathbb{C} المجموعة \mathbb{C}

أ/مبرهنة

:توجد مجموعة ${\mathbb C}$ تتضمن ${\mathbb R}$ و تحقق

$$i^2 = -1$$
 على عنصر غير حقيقي i و يحقق \mathbb{C} يحتوي $(i$

$$(a;b)\in\mathbb{R}^2$$
 بحيث $a+ib$:کل عنصر من \mathbb{C} يکتب بکيفية و حيدة على الشـکل (ii

المجموعة $\mathbb R$ مزودة بعمليتي الجمع و الضرب تمددان نفس العمليتين في $\mathbb R$ و لهما نفس الخاصيات (iii

$\mathbb{N}\subset\mathbb{Z}\subset \mathbb{ID}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$ * ملاحظة:

ب/ تساوي عددين عقديين

$$b = b'$$
 و $a = a' \Leftrightarrow a + ib = a' + ib'$

$$ig(a';b'ig)$$
و $ig(a;big)\in\mathbb{R}^2$ ية ليكن $ig(a;big)\in\mathbb{R}^2$

برهان

و '
$$a+ib=a'+ib' \Leftarrow b=b$$
 استلزام صحیح $a=a'$

$$i(b-b')=a'-a$$
 و منه $a+ib=a'+ib'$ نعتبر*

$$i = \frac{a' - a}{b - b'}$$
 ومنه $b \neq b'$ لنفترض أن

$$\frac{a'-a}{b-b'} \in \mathbb{R}$$
 فان $(a';b') \in \mathbb{R}^2$ و حيث أن $(a;b) \in \mathbb{R}^2$ و حيث أن

و بالتالي $i\in\mathbb{R}$ و هذا غير صحيح لان i عدد غير حقيقي a'=a و منه a'=a و بالتالي a'-a=0 إذن افتراضنا خاطئ و منه b=b'

ج/ اصطلاحات و تعاریف

$$(a;b) \in \mathbb{R}^2$$
 حيث $z = a + ib$ ليكن عدد عقدي *

.
$$Re(z) = a$$
 يسمى الجزء الحقيقي نكتب a

$$Im(z) = b$$
 العدد b يسمى الجزء التخيلي نكتب

$$z$$
 تسمى الكتابة الجبرية للعدد العقدي $z=a+ib$ تسمى الكتابة العدد العقدي

- نقول إن عددا عقديا عدد تخيلي صرف إذا وفقط إذا كان جزئه الحقيقي منعدما و جزئه تخيلي غير منعدم
 - نقول إن عددا عقديا عدد حقيقي إذا وفقط إذا كان جزئه التخيلي منعدما

أمثلة

حدد الجزء الحقيقي و الجزء التخيلي للعدد العقدي z في الحالات التالية

$$z = 17$$
 / $z = 2\sqrt{3}i$ / $z = 5i - 3$ / $z = \sqrt{2} - 3i$ / $z = \sqrt{2} - 3i$ / $z = \sqrt{2} - 3i$

د/ العمليات

$$(a';b') \in \mathbb{R}^2$$
 و $(a;b) \in \mathbb{R}^2$ حيث $z = a' + ib'$ و $z = a + ib$

$$z + z' = (a + a') + (b + b')i$$

$$z \cdot z' = (aa' - bb') + (ab' + a'b)i$$
 * الضرب

$$(a+ib)(a-ib) = a^2 + b^2$$
 $(a-ib)^2 = (a^2 - b^2) - 2abi$ $(a+ib)^2 = (a^2 - b^2) + 2abi$ *

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{bi}{a^2+b^2}$$
 مقلوب عدد عقدي غير منعدم *

$$z' \neq 0$$
 حيث $\frac{z}{z'} = \frac{a - bi}{a' + b'i} = \frac{(a + bi)(a' - b'i)}{{a'}^2 + {b'}^2}$ حيث *

i خاصيات العدد العقدي *

 $n \in \mathbb{Z}$ ليكن

$$k\in\mathbb{Z}$$
 حيث $n=4k+1$ إذا كان $n=4k+1$ حيث $n=4k+1$ حيث $n=4k+1$ حيث $n=4k+1$ حيث $n=4k+1$ عند $n=4k+1$ عند

تمرين

$$\frac{2i}{3-i} + \frac{\left(1-2i\right)^2}{i} \quad ; \quad \frac{3-2i}{2+i} \quad ; \quad \frac{1}{2-3i}$$

$$\frac{1}{2-3i} = \frac{2+3i}{\left(2-3i\right)\left(2+3i\right)} = \frac{2+3i}{4+9} = \frac{2}{13} + \frac{3}{13}i$$

$$\frac{3-2i}{2+i} = \frac{\left(3-2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)} = \frac{6-2-3i-4i}{5} = \frac{4}{5} - \frac{7}{5}i$$

$$\frac{2i}{3-i} + \frac{\left(1-2i\right)^2}{i} = \frac{2i\left(3+i\right)}{10} - i\left(1-4-4i\right) = \frac{3}{5}i - \frac{1}{5} + 3i - 4 = -\frac{21}{5} + \frac{18}{5}i$$

$$(1+i)^{230} = (2i)^{115} = 2^{115}i^{4\times28+3} = -2^{115}i$$

$$z \in \mathbb{C} \quad 2iz - 3i + 2 = z + i \Leftrightarrow (1+2i)z = -2 + 4i$$

$$\Leftrightarrow z = \frac{-2+4i}{1+2i} = \frac{-2\left(1-2i\right)\left(1-2i\right)}{5} = \frac{6}{5} + \frac{8}{5}i$$

$$S = \left\{\frac{6}{5} + \frac{8}{5}i\right\}$$

$$0 \neq 0$$

M(z)كل نقطة M(a;b) من المستوى (P) هي صورة عدد عقدي وحيد

z = aff(M) يسمى لحق M(a;b) يسمى لحق z = a + ib

 $\vec{u}(z)$ كل متجهة $\vec{u}(a;b)$ من المستوى هي صورة عدد عقدي وحيد

 $z=a\!f\!f\left(ec{u}
ight)$ العدد العقدي $ec{u}\left(a;b
ight)$ حيث z=a+ib يسمى لحق المتجهة

ملاحظة و مصطلحات

- * الأعداد الحقيقية هي ألحاق نِقط محور الافاصيل الذي يسمى المحور الحقيقي
- * الاعداد التخيلية الصرفة هي ألحاق نقط محور الأراتيب الذي يسمي المحور التخيلي

*- لحق *

$$B\left(z_{_B}
ight)$$
لحق $\overrightarrow{A}\left(z_{_A}
ight)$ هو $z_{_B}-z_{_A}$ حيث

 $\alpha \vec{u}$ و $\vec{u} + \vec{v}$ لحق *

 $aff\left(\vec{u}+\vec{v}\right)=aff\left(\vec{u}\right)+aff\left(\vec{v}\right)$ ومنه $\vec{u}+\vec{v}\left(a+a';b+b'\right)$ فان $\vec{v}(a';b')$ ومنه $\vec{u}\left(a;b\right)$ وعلم أن اذا كان

$$aff(\vec{u} + \vec{v}) = aff(\vec{u}) + aff(\vec{v})$$

lpha لتكن $ec{v}$ و $ec{v}$ متجهتين من المستوى و لكل عدد حقيقي

$$aff(\alpha \vec{u}) = \alpha aff(\vec{u})$$

<u>تمرين</u>

 $z_A=2$ في المستوى العقدي أنشئ النقط A و B و B و A الحاقها_على التوالي $z_B=-1+3i$ و المتجهة \vec{u} التي لحقها $z_B=-1+4i$ و

^ب- استقامية النقط

 $\exists \lambda \in \mathbb{R}$ / $\overrightarrow{AB} = \lambda \overrightarrow{AC} \Leftrightarrow$ النقط المختلفة $A\left(z_{A}\right)$ و $B\left(z_{B}\right)$ و $A\left(z_{A}\right)$

$$\exists \lambda \in \mathbb{R} \quad / \quad aff\left(\overrightarrow{AB}\right) = aff\left(\lambda \overrightarrow{AC}\right) \Leftrightarrow$$

$$\exists \lambda \in \mathbb{R} \ / \ z_B - z_A = \lambda (z_C - z_A) \Leftrightarrow$$

$$\exists \lambda \in \mathbb{R} \quad / \quad \frac{z_B - z_A}{z_C - z_A} = \lambda \iff$$

$$\frac{z_B - z_A}{z_C - z_A} \in \mathbb{R} \Leftrightarrow$$

 $rac{z_B-z_A}{z_C-z_A}\in\mathbb{R}$ تكون النقط المختلفة $B\left(z_B
ight)$ و $B\left(z_B
ight)$ و $B\left(z_B
ight)$ مستقيمية إذا و فقط إذا كان

*- المرجح

 $lpha+eta\neq0$ لتكن $A\left(z_{_{B}}
ight)$ و $B\left(z_{_{B}}
ight)$ نقط من المستوى العقدي و lpha و $A\left(z_{_{A}}
ight)$ و $A\left(z_{_{A}}
ight)$ إذا و فقط إذا كان $A\left(z_{_{A}}
ight)$ عرجح $A\left(z_{_{A}}
ight)$ و $A\left(z_{_{A}}
ight)$ إذا و فقط إذا كان $A\left(z_{_{A}}
ight)$

بنفس الطريقة نعرف مرجح ثلاث نقط أو أكثر *- منتصف ق<mark>طعة</mark>

 $I(z_I)$ نقط من المستوى العقدي $B(z_B)$ و $B(z_B)$ نقط من المستوى العقدي

$$z_I = \frac{z_A + z_B}{2}$$
 منتصف $[A; B]$ إذا و فقط إذا كان

تمرين

بين أن النقط
$$C\left(\frac{-1}{2}-2i\right)$$
 و $B\left(1+3i\right)$ و $A\left(1+i\right)$ مستقيمية

الجواب

إذن A و B و B مستقيمية

<u>3- المرافق و المعيار</u>

 $(a;b)\in\mathbb{R}^2$ ليكن عدد عقدي z=a+ib حيث

z=a-i ونرمز له بـ z=a+i يسمى مرافق العدد العقدي z=a-i

$$|z|=\sqrt{z\overline{z}}=\sqrt{a^2+b^2}$$
 يسمى معيار العدد العقدي $z=a+ib$ يسمى معيار العدد العقدي العدد الحقيقي

النقطتان $M'(\overline{z})$ و $M'(\overline{z})$ متماثلتان بالنسبة لمحو الافاصيل *

$$z \cdot \overline{z} = a^2 + b^2$$
 فان $z = a + ib$ پذا کان *

$$(a';b') \in \mathbb{R}^2$$
 و $(a;b) \in \mathbb{R}^2$ و $z = a' + ib'$ و $z = a + ib$ و $z = a + ib$ ليكن عددين عقديين $z = a + ib$ و $z = a + ib'$ و $z = a + ib'$ ليكن عددين عقديين

$$\overline{z \cdot z'} = \overline{\left(aa' - bb'\right) + \left(ab' + a'b\right)i} = aa' - bb' - ab'i - a'bi = a\left(a' - b'i\right) - bi\left(a' - b'i\right) = \left(a - bi\right)\left(a' - b'i\right) = \overline{z} \cdot \overline{z'}$$

$$\frac{1}{\left(\frac{1}{z}\right)} = \overline{\left(\frac{1}{a+bi}\right)} = \overline{\left(\frac{a}{a^2+b^2} - \frac{bi}{a^2+b^2}\right)} = \frac{a}{a^2+b^2} + \frac{b}{a^2+b^2}i$$

$$\frac{1}{z} = \frac{1}{a - ib} = \frac{a}{a^2 + b^2} + \frac{b}{a^2 + b^2}i$$

$$\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$
 ومنه

$$\overline{\left(\frac{z}{z'}\right)} = \overline{\left(z \times \frac{1}{z'}\right)} = \overline{z} \times \overline{\left(\frac{1}{z'}\right)} = \overline{z} \times \frac{1}{\overline{z'}} = \frac{\overline{z}}{\overline{z'}}$$

خاصيات

$$n\in\mathbb{Z}^*$$
لتكن $z;z'\in\mathbb{C}^2$ و $z;z'\in\mathbb{C}^2$

$$\frac{\overline{z}}{z} = z$$

$$z + \overline{z} = 2 \operatorname{Re}(z)$$
 ; $z - \overline{z} = 2 \operatorname{Im}(z)i$ *

$$z \in \mathbb{R} \Leftrightarrow \overline{z} = z$$
 *

$$z \in i \mathbb{R} \Leftrightarrow \overline{z} = -z$$

$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z}'} \qquad z' \neq 0 \qquad \overline{\alpha z} = \alpha.\overline{z} \qquad \overline{z^n} = \left(\overline{z}\right)^n \qquad \overline{z}.\overline{z}' = \overline{z.z'} \qquad \overline{z+z'} = \overline{z} + \overline{z'} *$$

خاصیات

$$.(O;ec{e}_1;ec{e}_2)$$
 لتكن $A\left(z_{_A}
ight)$ و نقطتين من المستوى العقدي منسوب إلى المعلم $B\left(z_{_B}
ight)$ لتكن

$$OA = |z_A| \qquad \qquad \left\| \overrightarrow{AB} \right\| = AB = |z_B - z_A|$$

$$n\in\mathbb{Z}^*$$
لتكن $(z;z')\in\mathbb{C}^2$ و

$$|z| = 0 \Leftrightarrow z = 0 *$$

$$|z| = |-z| = |\overline{z}| *$$

$$z' \neq 0$$
 $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ $\left| z^n \right| = |z|^n$ $\left| z.z' \right| = |z||z'| *$

$$|z+z'| \le |z|+|z'| *$$

<u>تمرين</u>

ملاحظة

في المستوى العقدي حدد مجموعة النقط
$$M(z)$$
 في كــل حالة من الحالتين التاليتين

$$|z-2| = |z+2i|$$
 -2 $|z-1+i| = |2-i\sqrt{5}|$ -1

المستوى (P) منسوب إلى معلم متعامد ممنظم مباشر $(O; \vec{e}_1; \vec{e}_2)$

لیکن z=a+ib عددا عقدیا غیر منعدم و

. $\widehat{\left(ec{e}_{ ext{l}}, \overrightarrow{OM}
ight)}$ مورته , وليكن lpha قياسا للزاوية M النقطة

z يسمى عمدة للعدد العقدي lpha

$$arg z \equiv \alpha$$
 [2 π] نکتب

$$\forall a \in \mathbb{R}^{-*} \quad \arg a \equiv \pi \quad [2\pi]$$

$$\forall a \in \mathbb{R}^{+*} \quad \arg a \equiv 0 \quad [2\pi]$$

$$\forall b \in i\mathbb{R}^{+*} \quad \arg b \equiv \frac{\pi}{2} \quad [2\pi] \quad *$$

ب/ الكتابة المثلثية لعدد عقدي

$$lpha$$
 عددا عقدیا غیر منعدم و r عددا حقیقیا موجبا قطعا و $z=a+ib$ لیکن $z=a+ib$ لیکن $z=a+ib$

$$|z|=r=\sqrt{a^2+b^2}$$
 عددا حقیقیا نضع

$$\cos \alpha = \frac{a}{r}$$
 ; $\sin \alpha = \frac{b}{r}$ حیث $z = r(\cos \alpha + i \sin \alpha)$ و منه

$$\arg z \equiv \alpha$$
 [2 π] إذن

$$z=[r,lpha]$$
 الكتابة $z=r(\coslpha+i\sinlpha)$ تسمى الشكل المثلثي للعدد العقدي $z=r(\coslpha+i\sinlpha)$

أمثلة

$$1+i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \left[\sqrt{2}; \frac{\pi}{4} \right]$$

$$15 = \left[15; 0 \right] \qquad -2i = \left[2; -\frac{\pi}{2} \right]$$

$$-\sqrt{3} - i = 2 \left(-\frac{\sqrt{3}}{2} - i \frac{1}{2} \right) = \sqrt{2} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = \left[2; \frac{5\pi}{6} \right]$$

لیکن z=[r,lpha'] و z=[r,lpha'] عددین عقدیین غیر منعدمین

 $(\cos\alpha + i\sin\alpha)(\cos\alpha' + i\sin\alpha') = (\cos\alpha\cos\alpha' - \sin\alpha\sin\alpha') + i(\sin\alpha\cos\alpha' + \cos\alpha\sin\alpha')$

 $(\cos \alpha + i \sin \alpha)(\cos \alpha' + i \sin \alpha') = \cos(\alpha + \alpha') + i \sin(\alpha + \alpha')$

 $z \times z' = r(\cos \alpha + i \sin \alpha) \times r'(\cos \alpha' + i \sin \alpha') = rr'(\cos(\alpha + \alpha') + i \sin(\alpha + \alpha')) = [rr'; \alpha + \alpha']$

$$\frac{1}{z} = \frac{1}{r} \left(\frac{1}{\cos \alpha + i \sin \alpha} \right) = \frac{1}{r} \left(\frac{\cos \alpha - i \sin \alpha}{\cos^2 \alpha + \sin^2 \alpha} \right) = \frac{1}{r} \left(\cos \left(-\alpha \right) + i \sin \left(-\alpha \right) \right) = \left[\frac{1}{r}; -\alpha \right]$$

$$\frac{z}{z'} == z \times \frac{1}{z'} = \left[r; \alpha\right] \times \left[\frac{1}{r'}; -\alpha'\right] = \left[\frac{r}{r'}; \alpha - \alpha'\right]$$

 $\overline{z} = r(c \cos \alpha + i \sin \alpha) = r(c \cos \alpha - i \sin \alpha) = r(\cos(-\alpha) + i \sin(-\alpha)) = [r, -\alpha]$

 $-z = r(-c \cos \alpha - i \sin \alpha) r(c \cos(\alpha + \pi) + i \sin(\alpha + \pi)) = [r, \alpha + \pi]$

$$orall \left(z;n
ight) \in \mathbb{C}^* imes \mathbb{Z}$$
 $z^n = \left\lceil r^n; nlpha
ight
ceil$ نبين أن

ليكن $z = [r; \alpha]$ عدد عقدي غير منعدم

 $\forall (z;n) \in \mathbb{C}^* \times \mathbb{N}$ $z^n = \lceil r^n; n\alpha \rceil$ لنبين أولا

n=0 من أجل n=0 لدينا $z^0=1$ و $z^0=1$ و $z^0=1$ اذن العبارة صحيحة من أجل

 $z^{n+1} = \lceil r^{n+1}; (n+1)\alpha \rceil$ نفترض أن $z^n = \lceil r^n; n\alpha \rceil$ نفترض أن

$$z^{n+1} = z \times z^{n} = [r; \alpha] \times [r^{n}; n\alpha] = [r \times r^{n}; \alpha + n\alpha] = [r^{n+1}; (n+1)\alpha]$$

$$\forall (z;n) \in \mathbb{C}^* \times \mathbb{N}$$
 $z^n = \lceil r^n; n\alpha \rceil$ إذن

 $-n\in\mathbb{N}$ ومنه $n\in\mathbb{Z}^-$

$$z^{n} = \frac{1}{z^{-n}} = \frac{1}{\left[r^{-n}; -n\alpha\right]} = \left[\frac{1}{r^{-n}}; -(-n\alpha)\right] = \left[r^{n}; n\alpha\right]$$

$$\forall (z;n) \in \mathbb{C}^* \times \mathbb{Z}$$
 $z^n = \lceil r^n; n\alpha \rceil$ إذن

خاصیات $z'=[r',\alpha']$ و $z'=[r',\alpha']$ عددین عقدیین غیر منعدمین $z=z'\Leftrightarrow r=r'$ et $\alpha=\alpha'$

$$z = z' \Leftrightarrow r = r'$$
 et $\alpha = \alpha'$

$$\arg\left(\frac{z}{z'}\right) \equiv \arg z - \arg z' \qquad \left[2\pi\right] \quad \arg\left(\frac{1}{z}\right) \equiv -\arg z \qquad \left[2\pi\right] \quad \arg\left(zz'\right) \equiv \arg z + \arg z' \qquad \left[2\pi\right] \quad *$$

$$\frac{z}{z'} = \left[\frac{r}{r'}, \alpha - \alpha'\right] \quad \text{g} \quad \frac{1}{z} = \left[\frac{1}{r}; -\alpha\right] \quad \text{g} \quad zz' = \left[rr', \alpha + \alpha'\right]$$

$$-z = [r, \alpha + \pi]$$
 $z = [r, -\alpha]$ $\arg(-z) \equiv \pi + \arg z$ $[2\pi]$ $\arg(\overline{z}) \equiv -\arg z$ $[2\pi]$ *

$$\forall (z; n) \in \mathbb{C}^* \times \mathbb{Z} \quad \arg(z^n) \equiv n \arg z \quad [2\pi]$$

$$\forall (z;n) \in \mathbb{C}^* \times \mathbb{Z} \qquad z^n = \lceil r^n; n\alpha \rceil$$

u=2-2i ي $v=\sqrt{6}+i\sqrt{2}$ نعتبر العددين العقدين

v و u احسب معیار وعمدة کل من u

 $\cos\frac{7\pi}{12}$; $\sin\frac{7\pi}{12}$ جدد الكتابة الجبرية والكتابة المثلثية ل $\frac{u}{v}$ ثم استنتج

$$D(z_D) \neq C(z_C)$$
و $A(z_A) \neq B(z_B)$ ليكن

 $M(z_R - z_A)$ ومنه $\overrightarrow{OM} = \overrightarrow{AB}$ حيث M = -*

$$\operatorname{arg}\left(z_{B}-z_{A}\right)=\overline{\left(\overrightarrow{e_{1}};\overrightarrow{AB}\right)}$$
 [2π] إذن $\operatorname{arg}\left(z_{B}-z_{A}\right)=\overline{\left(\overrightarrow{e_{1}};\overrightarrow{OM}\right)}$ [2π] و بالتالي
$$\overline{\left(\overrightarrow{AB};\overrightarrow{CD}\right)}\equiv\overline{\left(\overrightarrow{e_{1}};\overrightarrow{CD}\right)}-\overline{\left(\overrightarrow{e_{1}};\overrightarrow{AB}\right)}\equiv\operatorname{arg}\left(z_{D}-z_{C}\right)-\operatorname{arg}\left(z_{B}-z_{A}\right)\equiv\operatorname{arg}\left(\frac{z_{D}-z_{C}}{z_{B}-z_{A}}\right)$$
 [2π] -*

$$\arg(z_B - z_A) = \overline{\left(\vec{e}_1; \overrightarrow{AB}\right)}$$
 [2π] فان $D(z_D) \neq C(z_C)$ و $A(z_A) \neq B(z_B)$ إذا كان $\overline{\left(\overrightarrow{AB}; \overrightarrow{CD}\right)} \equiv \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$ [2π] و

$$\operatorname{arg}\left(\frac{z_C-z_A}{z_B-z_A}\right) \equiv \overline{\left(\overline{AB};\overline{AC}\right)}$$
 [2 π] فان $A \neq C(z_C)$ و $A(z_A) \neq B(z_B)$

انقط مختلفة $C\left(z_{C}
ight)$ و $B\left(z_{B}
ight)$ انقط مختلفة $B\left(z_{B}
ight)$ انقط مختلفة $A\left(z_{A}
ight)$

 $D(z_D) \neq C(z_C)$ و $A(z_A) \neq B(z_R)$ ٹالتعامد: لتکن *

 $(o; \overrightarrow{e_1}; \overrightarrow{e_2})$ م.م.م.م.ميا المنسوب العقدي المنسوب العقدي المنسوب العقدي المنسوب العقدي

$$\left(\widehat{\overline{\mathrm{BA}};\overline{\mathrm{BC}}}\right)$$
 و $\mathrm{B}\left(-1+3\mathrm{i}\right)$ و $\mathrm{B}\left(-1+3\mathrm{i}\right)$ حدد قياس للزاوية الموجهة (1).نعتبر النقط

 $(\widetilde{\mathrm{FE}};\widetilde{\mathrm{FG}})$ و $\mathrm{F}(1+2\mathrm{i})$ و $\mathrm{E}(2+3\mathrm{i})$ عتبر النقط ($\mathrm{E}(2+3\mathrm{i})$ و أو $\mathrm{E}(2+3\mathrm{i})$

 $u_2 = \frac{\sqrt{6} - i\sqrt{2}}{2}$; $u_1 = 1 - i$ نضع

 u_2 و معیار u_1 و عمدة و معیار -1

 $\sin\frac{\pi}{12}$ و $\cos\frac{\pi}{12}$ و استنتج -2

$$\left(\frac{\sqrt{6}+\sqrt{2}}{4}+\frac{\sqrt{6}-\sqrt{2}}{4}i\right)^{24}=1$$
 نین أن -3

 $egin{aligned} u_2 & u_1 \\ u_2 & -1 \end{aligned}$ نحدد عمدة و معيار -1

$$u_1 = 1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \left[\sqrt{2}; \frac{-\pi}{4} \right]$$

$$u_2 = \frac{\sqrt{6} - i\sqrt{2}}{2} = \sqrt{2} \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = \left[\sqrt{2}; \frac{-\pi}{6}\right]$$

$$\sin \frac{\pi}{12} \circ \cos \frac{\pi}{12} \cos \frac{\pi}{12} \circ \frac{u_1}{u_2} = \frac{u_1}{\sqrt{2}; \frac{-\pi}{4}} = \left[\frac{\sqrt{2}}{\sqrt{2}}; \frac{-\pi}{4} + \frac{\pi}{6}\right] = \left[1; \frac{-\pi}{12}\right]$$

$$\frac{u_1}{u_2} = \frac{1 - i}{\sqrt{6 - i\sqrt{2}}} = \frac{(2 - 2i)(\sqrt{6} + i\sqrt{2})}{(\sqrt{6} - i\sqrt{2})(\sqrt{6} + i\sqrt{2})}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4} - (\frac{\sqrt{6} - \sqrt{2}}{4})i$$

$$\left[1; \frac{-\pi}{12}\right] = \frac{\sqrt{6} + \sqrt{2}}{2} - (\frac{\sqrt{6} - \sqrt{2}}{2})i$$

$$\sin \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{24} = \left[1; \frac{\pi}{12}\right]^{24} = \left[1; \frac{24\pi}{12}\right] = \left[1; 2\pi\right] = 1$$

: ليكن $\theta \in \mathbb{R}$ ، حدد معيار وعمدة الأعداد العقدية

 $a = -\cos\theta + i\sin\theta$; $b = \cos\theta - i\sin\theta$; $c = -\cos\theta - i\sin\theta$ $b' = \sin \theta - i \cos \theta \qquad ;$ $c' = -\sin\theta - i\cos\theta$ $a' = \sin \theta + i \cos \theta$ $d = -\sin\theta + i\cos\theta$

$$a = -\cos\theta + i\sin\theta = \cos(\pi - \theta) + i\sin(\pi - \theta) = [1; \pi - \theta]$$

$$b = \cos\theta - i\sin\theta = \cos(-\theta) + i\sin(-\theta) = [1; -\theta]$$

$$c = -\cos\theta - i\sin\theta = \cos(\pi + \theta) + i\sin(\pi + \theta) = [1; \pi + \theta]$$

$$d = -\sin\theta + i\cos\theta = \cos\left(\frac{\pi}{2} + \theta\right) + i\sin\left(\frac{\pi}{2} + \theta\right) = \left[1; \frac{\pi}{2} + \theta\right]$$

$$a' = \sin\theta + i\cos\theta = \cos\left(\frac{\pi}{2} - \theta\right) + i\sin\left(\frac{\pi}{2} - \theta\right) = \left[1; \frac{\pi}{2} - \theta\right]$$

$$b' = \sin\theta - i\cos\theta = \cos\left(-\frac{\pi}{2} + \theta\right) + i\sin\left(-\frac{\pi}{2} + \theta\right) = \left[1; -\frac{\pi}{2} + \theta\right]$$

$$c' = -\sin\theta - i\cos\theta = \sin(\pi + \theta) + i\cos(\pi + \theta) = \cos\left(\frac{\pi}{2} - (\pi + \theta)\right) + i\sin\left(\frac{\pi}{2} - (\pi + \theta)\right)$$

$$= \cos\left(-\frac{\pi}{2} - \theta\right) + i\sin\left(-\frac{\pi}{2} - \theta\right) = \left[1; -\frac{\pi}{2} - \theta\right]$$

$$z_1 = 2 - 2i$$
 و $z_1 = 2i$ ه نعتبر

 z_2 و z_1 و حدد الشكل المثلثي لـ a

$$a + z_1^2 + z_2^4 = -72$$
 تحقق أن –2

 $C(z_2)$ و $B(z_1)$ و معلم متعامد ممنظم نعتبر A(a) و في المستوى العقدي المنسوب إلى معلم متعامد ممنظم

B قائم الزاوية و متساوي الساقين في BAC بين أن BAC 3-3

$$(F) = \{M(z)/|z+1+i| = \sqrt{10}\}$$
 حدد المجموعة (F) حيث (F)

$$(F)$$
و BAC و B و A تنتمي إلى (F) ثم أنشئ A و A و A (3.3)

الحل

 z_2 و z_1 و رحد الشكل المثلثي لـ a

$$z_2 = 2 - 2i = 2\sqrt{2}(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}) = \left[2\sqrt{2}; -\frac{\pi}{4}\right]$$
 g $z_1 = 2i = \left[2; \frac{\pi}{2}\right]$ g $a = -4 = \left[4; \pi\right]$

$$a + z_1^2 + z_2^4 = -72$$
 نتحقق أن - 4.2

$$a + {z_1}^2 + {z_2}^4 = \left[4; \pi\right] + \left[2; \frac{\pi}{2}\right]^2 + \left[2\sqrt{2}; -\frac{\pi}{4}\right]^4 = \left[4; \pi\right] + \left[2; \pi\right]^2 + \left[\left(2\sqrt{2}\right)^4; -\pi\right] = -4 - 4 - \left(2\sqrt{2}\right)^4 = -4 - 4 - 64 = -72$$

B قائم الزاوية و متساوي الساقين في BAC نبين أن BAC و C(2-2i) و B(2i) و A(-4)

$$(\widehat{BA}; \widehat{BC}) \equiv \arg\left(\frac{2-2i-2i}{-4-2i}\right) \equiv \arg\left(\frac{2-4i}{-4-2i}\right)$$
$$\equiv \arg\left(\frac{i(-2i-4)}{-4-2i}\right) \equiv \arg\left(i\right) \equiv \frac{\pi}{2} \quad [2\pi]$$
$$BA = |-4-2i| = \sqrt{20} \quad BC = |2-4i| = \sqrt{20}$$

B قائم الزاوية و متساوي الساقين في الذن المثلث BAC قائم الزاوية و متساوي المجموعة (F) نحدد المجموعة

$$M(z) \in (F) \Leftrightarrow |z+1+i| = \sqrt{10}$$

$$M(z) \in (F) \Leftrightarrow \Omega M = \sqrt{10} \qquad /\Omega(1+i)$$

$$M(z) \in (F) \Leftrightarrow M \in C(\Omega; \sqrt{10}) \qquad /\Omega(-1; -1)$$

$$(F) = C(\Omega; \sqrt{10}) \qquad /\Omega(-1; -1)$$

ig(Fig)و ننشئ B(2i) و B(2i) و B(4i) و ننشئ B(4i) و ننشئ B(4i) و B(4i)

$$\Omega A = \left| -4 + 1 + i \right| = \left| -3 + i \right| = \sqrt{10}$$

$$\Omega B = \left| 2i + 1 + i \right| = \left| 1 + 3i \right| = \sqrt{10}$$

$$\Omega A = \left| 2 - 2i + 1 + i \right| = \left| 3 - i \right| = \sqrt{10}$$

$$(F)$$
اذن $A \in B \in A$ تنتمي إلى (F)

$$\overline{(\overrightarrow{OA},\overrightarrow{OB})} \equiv \frac{\pi}{3}$$
 [2 π] و $OA = OB$: في المستوى العقدي نعتبر النقط $A(1+i)$: في المستوى العقدي نعتبر النقط

- z_B اعط الشكل الجبري ل z_B (1
 - . AB احسب المسافة (2)
- $\widehat{(\overrightarrow{e_1},\overrightarrow{AB})}$: حدد القياس الرئبسي للزاوية الموجهة

 z_R نعطي الشكل الجبري ل z_R نعطي الشكا

$$|z_B| = OB = OA = |1 + i| = \sqrt{2}$$

$$\arg\left(1+i\right)\equiv\frac{\pi}{4}\qquad\left[2\pi\right]\text{ and }1+i=\sqrt{2}\left(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)=\left[\sqrt{2};\frac{\pi}{4}\right]$$

$$\arg(z_B) \equiv \overline{\left(\vec{e}_1; \overrightarrow{OB}\right)} \equiv \overline{\left(\vec{e}_1; \overrightarrow{OA}\right)} + \overline{\left(\overrightarrow{OA}; \overrightarrow{OB}\right)} \equiv \arg(1+i) + \frac{\pi}{3} = \frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12} \qquad \left[2\pi\right]$$

$$z_B = \sqrt{2} \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right) \text{ along}$$

$$\cos\frac{7\pi}{12} = \cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \cos\frac{\pi}{4}\cos\frac{\pi}{3} - \sin\frac{\pi}{4}\sin\frac{\pi}{3} = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}$$

$$\sin\frac{7\pi}{12} = \sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \sin\frac{\pi}{4}\cos\frac{\pi}{3} + \cos\frac{\pi}{4}\sin\frac{\pi}{3} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}$$

$$z_B = \sqrt{2} \left(\frac{\sqrt{2} - \sqrt{6}}{4} + i\frac{\sqrt{2} + \sqrt{6}}{4}\right) = \frac{1 - \sqrt{3}}{2} + i\frac{1 + \sqrt{3}}{2} \text{ vision}$$

نحسب المسافة
$$AB = \sqrt{\left(\frac{1-\sqrt{3}}{2}-1\right)^2 + \left(\frac{1+\sqrt{3}}{2}-1\right)^2} = \sqrt{\left(\frac{1+\sqrt{3}}{2}\right)^2 + \left(\frac{-1+\sqrt{3}}{2}\right)^2} = \sqrt{2}$$

 $(\overrightarrow{e_1}, \overrightarrow{AB})$: نحدد القياس الرئيسي للزاوية الموجهة (3

$$\left(\vec{e}_1; \overrightarrow{AB}\right) \equiv \arg\left(z_B - z_A\right) \equiv \arg\left(\frac{1 - \sqrt{3}}{2} + i\frac{1 + \sqrt{3}}{2} - 1 - i\right) \equiv \arg\left(-\frac{1 + \sqrt{3}}{2} + i\frac{-1 + \sqrt{3}}{2}\right) \quad [2\pi]$$

$$\left(\vec{e}_{1}; \overrightarrow{AB}\right) = \arg\left(\sqrt{2}\left[\left(-\frac{\sqrt{2}+\sqrt{6}}{4}\right) + i\left(\frac{-\sqrt{2}+\sqrt{6}}{4}\right)\right]\right) = \arg\left(\sqrt{2}\left[-\sin\frac{7\pi}{12} - i\cos\frac{7\pi}{12}\right]\right) \quad [2\pi]$$

$$(\vec{e}_1; \overrightarrow{AB}) \equiv \arg\left(\left[\sqrt{2}; -\frac{\pi}{2} - \frac{7\pi}{12}\right]\right) \equiv \arg\left(\left[\sqrt{2}; -\frac{13\pi}{12}\right]\right) \equiv -\frac{13\pi}{12} \equiv \frac{11\pi}{12}$$
 [2\pi]

 $\frac{11\pi}{12}$ هو $\widehat{(e_1,AB)}$ اذن القياس الرئيسي لـ

ىمرين نعتبر المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر

$$f(z) = \frac{\overline{z} + i}{z}$$
 ب \mathbb{C}^* المعرف على f المعرف على

$$|f(z)|$$
 = 1 حدد مجموعة النقط M التي لحقها z بحيث -1

$$\theta \in \left[0; \frac{\pi}{2}\right]$$
 حیث $z = \cos \theta + i \sin \theta$ -2

$$D(\overline{z}+i)$$
و $C(\overline{z})$ و $B(z)$ و $A(i)$ مثل النقط أ-

hetaب- تحقق أن OCDA معين و استنتج عمدة $\overline{z}+i$ بدلالة \overline{t} ثم عمدة OCDA بدلالة t- حدد معيار t- بدلالة t- بدلالة t- بدلالة t- بدلالة t- حدد معيار t- بدلالة t- ب

الحل

|f(z)| -1 نحدد مجموعة النقط M التي لحقها z بحيث -1

$$(x;y) \neq (0;0)$$
 و $(x;y) \in \mathbb{R}^2$ حيث $z = x + iy$ و $z \in \mathbb{C}^*$ ليكن $z = x + iy$ نضع $z \in \mathbb{C}^*$ ليكن $z = x + iy$

$$\left| f(z) \right| = 1 \Leftrightarrow \left| \frac{\overline{z} + i}{z} \right| = 1 \Leftrightarrow \left| \overline{z} + i \right| = \left| z \right| \Leftrightarrow x^2 + (1 - y)^2 = x^2 + y^2 \Leftrightarrow 2y - 1 = 0$$

 $y=rac{1}{2}$ التي لحقها z بحيث $\left| f\left(z
ight)
ight| =1$ هي المستقم الذي معادلته إذن مجموعة النقط M

$$\theta \in \left[0; \frac{\pi}{2}\right]$$
 حيث $z = \cos \theta + i \sin \theta$ -2

 $D(\overline{z}+i)$ اً -نمثل النقط A(i) و B(z) و B(z)

و $C(\overline{z})$ و مثماتلان بالنسبة لمحور الافاصيل $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OC}$

hetaبدلالة θ ثمر عمدة $f\left(z
ight)$ بدلالة $\overline{z}+i$ بدلالة $\overline{z}+i$ بدلالة OCDA معين OCDA معين OCDA معين $OC = \left|\overline{z}\right| = 1$; $OA = \left|i\right| = 1$; $CD = \left|i\right| = 1$; $AD = \left|\overline{z}\right| = 1$ $\left(\overline{\overrightarrow{OA}}; \overline{\overrightarrow{OD}}\right) \equiv \frac{1}{2} \left(\overline{\overrightarrow{OA}}; \overline{\overrightarrow{OC}}\right)$ $\left[2\pi\right]$ و منه: $\left[\widehat{COA}\right]$ منصف $\left[\widehat{COA}\right]$ منصف $\left[\widehat{COA}\right]$ د منه: $\left[\widehat{COA}\right]$

$$(\overrightarrow{\overrightarrow{OA}}, \overrightarrow{\overrightarrow{OD}}) \equiv \frac{1}{2} (\arg(\overline{z}) - \arg(i)) \equiv \frac{1}{2} (-\theta - \frac{\pi}{2})$$
 [2 π]

$$\arg\left(\overline{z}+i\right) \equiv \left(\vec{e}_1; \overrightarrow{OD}\right) \equiv \left(\vec{e}_1; \overrightarrow{OA}\right) + \left(\overrightarrow{OA}; \overrightarrow{OD}\right) \qquad \left[2\pi\right]$$

$$\arg(\overline{z}+i) \equiv \arg(i) + \frac{1}{2}\left(-\theta - \frac{\pi}{2}\right) \equiv \frac{\pi}{2} + \frac{1}{2}\left(-\theta - \frac{\pi}{2}\right)$$
 [2 π]

$$\arg(\overline{z}+i) = -\frac{\theta}{2} + \frac{\pi}{4}$$
 [2 π]

$$rg(f(z)) \equiv rg(\overline{z} + i) - rg(z)$$
 ومنه $rg(f(z)) = rg(\overline{z} + i)$ لدينا $-\theta$ π π -3θ π π π π

$$\arg(f(z)) \equiv \frac{-\theta}{2} + \frac{\pi}{4} - \theta \equiv \frac{-3\theta}{2} + \frac{\pi}{4}$$
 [2\pi]

hetaج- نحدد معيار fig(zig) بدلالة

$$\left|z\right|=1$$
 ومنه $z=\cos heta+i\sin heta$ لدينا
$$\left|f\left(z\right)\right|=\left|\overline{z}+i\right|=\sqrt{\left(\cos^2 heta+\left(1-\sin heta
ight)^2
ight)}=\sqrt{2-2\sin heta}$$
 و بالتالي

4 - الإزاحة و التحاكي و الاعداد العقدية أ/ الداحة

M '(z') و M(z) و $af\!f\left(\vec{u}
ight)=a$ نعتبر t إزاحة متجهتها u حيث u حيث u الكن $t\left(M\right)=M$ ' $\Leftrightarrow \overrightarrow{MM}$ ' $= \vec{u} \Leftrightarrow af\!f\left(\overrightarrow{MM}\right)=af\!f\left(\vec{u}\right) \Leftrightarrow z'-z=a \Leftrightarrow z'=z+a$

خاصية

التحويل الذي يحول كل نقطة M(z) من المستوى M(z) الى النقطة M(z) من المستوى الذي يحول كل نقطة $aff(\vec{u})=a$ حيث \vec{u} حيث الازاحة التي متجهتها الازاحة التي متجهتها العربية على المستوى المستوى

تمرين

 $\vec{u}(1;2)$ نعتبر الازاحة $t_{\vec{u}}$ حيث -1

 $t_{ec{u}}\left(M
ight) = M'$ لتكن $M\left(z
ight)$ و $M\left(z
ight)$ نقطتين من المستوى العقدي بحيث

z أ/ حدد z' بدلالة

z'=z+1-i حيث $M'\left(z'\right)$ بنقطة بنقطة كل بنقطة كي المستوى العقدي نربط

بین ان M' صورة M بإزاحة و حدد متجهتها

ب/ التحاكي

نشاط

لتكن (z) و M'(z') و M'(z') نقط من من المستوى M(z) منسوب إلى معلم متعامد ممنظم مباشر M(z) و M(z) و M(z) عددا حقیقیا غیر منعدم

 $z'-\omega=k\left(z-\omega
ight)$ نربط النقطة $M\left(z'
ight)$ من المستوى بالنقطة و $M\left(z'
ight)$ بالتحويل

hحدد النقط الصامدة ب+

h ثم حدد طبیعة M و M ثم حدد طبیعة /2

<u> تاصية</u>

لتكن M(z) و M'(z') و $\Omega(\omega)$ نقط من من المستوى M(z) منسوب إلى معلم متعامد ممنظم مباشر M(z) و M(z) و M(z) عددا حقیقیا غیر منعدم M(z)

(P) من المستوى M'(z) الى النقطة M(z) من المستوى التحويل الذي يحول كل نقطة

k حيث $\Omega(\omega)$ و نسبته $z'-\omega=k(z-\omega)$ حيث $z'-\omega=k$

تمرين

 $z'=rac{1}{2}z+-2i$ في المستوى العقدي نربط كل $M\left(z
ight)$ بنقطة ولي المستوى العقدي نربط

 $\omega = \frac{1}{2}\omega + -2i$ حدد ω لحق النقطة Ω حيث /1

محددا عناصرم المميزة M بين ان M صورة M بتحاك M

الأعداد العقدية - الجزء الثاني-

1- المعادلات من الدرجة الثانية

$$\forall a \in \mathbb{R}^{+*} \quad \left(\sqrt{a}\right)^2 = a \quad ; \quad \left(-\sqrt{a}\right)^2 = a$$

$$\forall a \in \mathbb{R}^{-*} \quad \left(i\sqrt{-a}\right)^2 = i^2 \times -a = a \quad ; \quad \left(-i\sqrt{-a}\right)^2 = \left(-i\right)^2 \times -a = a$$

<u>أ/ الحدر المربع لعدد حقيقي</u>

 α عدد حقیقی غیر منعدم

 $-\sqrt{a}$ و \sqrt{a} اذا كان a موجبا فان للعدد a جدرين مربعين هما

 $-i\sqrt{-a}$ و $i\sqrt{-a}$ اذا كان a سالبا فان للعدد a جدرين مربعين هما

لكل عدد حقيقي جدرين مربعي متقابلين

الجدر مربع صفر هو صفر

أمثلة

 $-\sqrt{3}$ و $\sqrt{3}$ هو الجدران المربعان للعدد 3 هو

-i و i هو أ

-5i الجدران المربعان للعدد 25- هو 5i و

 $-i\sqrt{3}$ و $i\sqrt{3}$ هو ألجدران المربعان للعدد 3- هو

ب/ **المعادلات من الدرجة الثانية**

. معدم غير منعدم a عير منعدم b و b و b

$$z \in \mathbb{C}$$
 $az^2 + bz + c = 0$ نحل

$$\Delta = b^2 - 4ac$$
 حيث $az^2 + bz + c = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$

$$az^2 + bz + c = 0 \Leftrightarrow \left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0$$

$$az^2 + bz + c = 0 \Leftrightarrow \left(z + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(z + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) = 0$$
 فان $\Delta \ge 0$ فان $\Delta \ge 0$

$$z=rac{-b+\sqrt{\Delta}}{2a}$$
 ومنه $z=rac{-b-\sqrt{\Delta}}{2a}$

 $-\Delta \succ 0$ اذا کان $\Delta \prec 0$ فان

$$az^{2} + bz + c = 0 \Leftrightarrow \left(z + \frac{b}{2a}\right)^{2} + i^{2} \frac{-\Delta}{4a^{2}} = 0 \Leftrightarrow \left(z + \frac{b}{2a}\right)^{2} + i^{2} \frac{\sqrt{-\Delta^{2}}}{4a^{2}} = 0$$

$$az^{2} + bz + c = 0 \Leftrightarrow \left(z + \frac{b}{2a} - \frac{i\sqrt{-\Delta}}{2a}\right)\left(z + \frac{b}{2a} + i\frac{\sqrt{-\Delta}}{2a}\right) = 0$$

$$z = \frac{-b + -\sqrt{-\Delta}}{2a}$$
 منه $z = \frac{-b - i\sqrt{-\Delta}}{2a}$ منه

 Δ في كلتا الحاليتين يمكن كتابة $z=\frac{-b-d}{2a}$; $z=\frac{-b+d}{2a}$ في كلتا الحاليتين يمكن كتابة

a لتكن a و b و c أعدادا حقيقية بحيث a غير منعدم

$$az^2+bz+c=0$$
 العدد $\Delta=b^2-4ac$ يسمى مميز المعادلة

 Δ ليكن d جدر مربع للعدد

$$z=rac{-b-d}{2a}$$
 ; $z=rac{-b+d}{2a}$ إذا كان $\Delta
eq 0$ نان للمعادلة $az^2+bz+c=0$ تقبل حلين مختلفين هما $\Delta \neq 0$

$$z=rac{-b}{2a}$$
 إذا كان $\Delta=0$ حل وحيد هو $\Delta=0$ خان للمعادلة $\Delta=0$

حل في ℂ المعادلات التالية

$$-2z^{2} + 2z + 3 = 0 -2z^{2} - 3z + 2 = 0 2z^{2} - \left(2 + 2\sqrt{2}\right)z + \frac{3}{2} + \sqrt{2} = 0$$

الحل

$$2z^2-\left(2+2\sqrt{2}\right)z+rac{3}{2}+\sqrt{2}=0$$
 ليكن Δ مميز المعادلة $\Delta=\left(-\left(2+2\sqrt{2}\right)\right)^2-8\left(rac{3}{2}+\sqrt{2}\right)=4+8\sqrt{2}+8-12-8\sqrt{2}=0$
$$S=\left\{rac{1+\sqrt{2}}{2}\right\}$$
 ومنه $z=rac{2+2\sqrt{2}}{4}=rac{1+\sqrt{2}}{2}$ إذن

 $-2z^2-3z+2=0$ ليكن Δ مميز المعادلة $\Delta=9+16=25$

$$\Delta = 9 + 16 = 25$$

 $-2z^2 + 2z + 3 = 0$ ليكن Δ مميز المعادلة

$$\Delta = 4 - 12 = -8 = \left(i2\sqrt{2}\right)^2$$

$$z = \frac{-2 - i2\sqrt{2}}{-4} = \frac{1}{2} + i\frac{\sqrt{2}}{2} \text{ gis } z = \frac{-2 + i2\sqrt{2}}{-4} = \frac{1}{2} - i\frac{\sqrt{2}}{2}$$

$$S = \left\{ \frac{1}{2} + i\frac{\sqrt{2}}{2}; \frac{1}{2} - i\frac{\sqrt{2}}{2} \right\}$$
 إذن

المعادلتين $\mathbb C$ المعادلتين -1

$$z^2 + 2\sqrt{3}z + 12 = 0$$
 $z^2 - 6z + 12 = 0$

و أكتب العددين $z_1=3+i\sqrt{3}$ و $z_1=3+i\sqrt{3}$ في شكلهما المثلثي -2

و $B(z_2)$ و $A(z_1)$ أنشئ $A(z_1)$ و $B(z_2)$ و $B(z_2)$ و علم معلم معامد ممنظم مباشر $B(z_1)$ ، و و -3 ثم حدد طبيعة الرباعي OAEB معللا جوابك $E(z_1 + z_2)$

2/ صبغة موافر و تطبيقاتها

$$(\cos\alpha + i\sin\alpha)^n = ([1;\alpha])^n = [1^n; n\alpha] = [1; n\alpha] = \cos(n\alpha) + i\sin(n\alpha)$$

 $(\cos\alpha + i\sin\alpha)^n = \cos n\alpha + i\sin n\alpha$ $\forall n \in \mathbb{Z}^*$ هذه الصيغة تسمى هذه ب صيغة موافر $\forall \alpha \in \mathbb{R}$

 $\sin n\theta$ ب/ حساب $\cos n\theta$ و $\sin n\theta$ بدلالة $\cos n\theta$

أنشطة

$$(\cos\theta + i\sin\theta)^3$$
 أنشر

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
 $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ و استنتج أن

$$(\cos\theta + i\sin\theta)^3 = \cos^3\theta + 3i(\cos^2\theta)\sin\theta - 3(\cos\theta)(\sin^2\theta) - i\sin^3\theta$$
$$= \cos^3\theta - 3(\cos\theta)(\sin^2\theta) + i(3(\cos^2\theta)\sin\theta - \sin^3\theta)$$

$$(\cos\theta + i\sin\theta)^3 = \cos 3\theta + \sin 3\theta$$
 لدينا

$$\cos 3\theta = \cos^3 \theta - 3(\cos \theta)(\sin^2 \theta) = \cos^3 \theta - 3\cos \theta(1 - \cos^2 \theta) = 4\cos^3 \theta - 3\cos \theta$$
 εquip (1 - cos² θ) = 4 cos³ θ - 3 cos θ

 $\sin 3\theta = 3(\cos^2 \theta)\sin \theta - \sin^3 \theta = 3\sin \theta (1 - \sin^2 \theta) - \sin^3 \theta = 3\sin \theta - 4\sin^3 \theta$

لتكن (P) منسوب إلى معلم متعامد ممنظم $D(z_D) \neq C(z_C)$ و $A(z_A) \neq B(z_B)$ لتكن * $(O; \vec{e}_1; \vec{e}_2)$ مباشر

3- الترميز الاسبة و تطبيقاته مثلثية

نرمز بالرمز $e^{i heta}$ حيث $heta\in\mathbb{R}$ ، لكل عدد عقدي معياره 1 و عمدته $e^{i\theta} = [1; \theta] = \cos \theta + i \sin \theta$

أمثلة

$$e^{i\frac{2\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 $e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ $e^{i\pi} = -1$ $e^0 = 1$

$$e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

$$e^{i\pi} = -1$$

$$e^{0} = 1$$

$$e^{i\frac{\pi}{2}} = i$$

ب/خاصية أساسية

$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta + \theta')}$$

hetaلكل عددين عقديين heta و 'hetaج/ الكتابة الاسية لعدد عقدي غير منعدم

$$z = [r, \alpha] = re^{i\alpha} \theta$$

لکل عدد عقدي غير منعدم z معياره r و عمدته:

الحساب باستعمال الترميز الاسي

$$z' \succ 0$$
 و $z = r'e^{i\theta'}$ و $z = re^{i\theta}$ و $z = re^{i\theta}$ ليكن z و $z = r^n e^{in\theta}$ و $z = r^n e^{i(\theta - \theta')}$

باستعمال الترميز الاسي حدد معيار و عمدة كل من الاعداد العقدية التالية.

$$z_{1} = \frac{2i(1-i)}{3+3i\sqrt{3}} \qquad z_{2} = \left(1-i\sqrt{3}\right)^{4}$$

$$2i = 2e^{i\frac{\pi}{2}} \qquad 1-i = \sqrt{2}\left(\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right) = \sqrt{2}e^{-i\frac{\pi}{4}} \qquad 3+3i\sqrt{3} = 6\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right) = 6e^{i\frac{\pi}{3}}$$

$$z_{1} = \frac{2i(1-i)}{3+3i\sqrt{3}} = \frac{2e^{i\frac{\pi}{2}} \times \sqrt{2}e^{-i\frac{\pi}{4}}}{6e^{i\frac{\pi}{3}}} = \frac{\sqrt{2}}{3}e^{i\left(\frac{\pi}{2}-\frac{\pi}{4}-\frac{\pi}{6}\right)} = \frac{\sqrt{2}}{3}e^{i\frac{\pi}{12}}$$

$$z_{2} = \left(2e^{-i\frac{\pi}{3}}\right)^{4} = 16e^{-i\frac{4\pi}{3}} \text{ eas } 1-i\sqrt{3} = 2\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right) = 2e^{-i\frac{\pi}{3}} \text{ i.i.}$$

د/ صیغتا اولیر و تطبیقاتهheta لکل عدد عقدی

$$e^{i\theta} = \cos \theta - i \sin \theta$$
$$2\cos \alpha = e^{i\theta} + e^{-i\theta}$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 و منه $\alpha = e^{i\theta} - e^{-i\theta}$ و منه θ لکل عدد عقدي θ

$$\cos \alpha = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin \alpha = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

و نسمي الصيغتين بصيغتي أولير تطبيق: اخطاط حدودية مثلثية

 $\cos^n \theta imes \sin^m \theta$ أو $\sin^n \theta$ أو $\cos^n \theta$ اخطاط حدودية مثلثية هو تحويل الجداءات التي على شكل $a\cos\alpha\theta + b\sin\alpha\theta$ الى مجموع حدود من شكل

 $\cos^4 \theta$ مثال نخطط

$$\cos^4 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^4 = \frac{1}{16} \left(e^{i4\theta} + 4e^{i3\theta} \cdot e^{-i\theta} + 6e^{i2\theta} \cdot e^{-i2\theta} + 4e^{i\theta} \cdot e^{-i3\theta} + e^{-i4\theta}\right)$$

$$\cos^{4}\theta = \frac{1}{16} \left(e^{i4\theta} + e^{-i4\theta} + 4 \left(e^{i2\theta} + e^{-i2\theta} \right) + 6 \right) = \frac{1}{8} \times \frac{e^{i4\theta} + e^{-i4\theta}}{2} + \frac{1}{2} \times \frac{e^{i2\theta} + e^{-i2\theta}}{2} + \frac{3}{8}$$
$$\cos^{4}\theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$$

 $\sin^4 \theta \times \cos^3 \theta$ تمرين أخطط -الدوران و الاعداد العقدية

لتكن M(z) و M(z) نقط من من المستوى الم $\Omega(\omega)$ لتكن M(z) و الك معلم متعامد ممنظم

 $[1;\alpha] = (\cos \alpha + i \sin \alpha)$ مباشر $(0;\vec{e}_1;\vec{e}_2)$ و α عددا حقیقیا

 $z'-\omega=[1;lpha](z-\omega)$ من المستوى بالنقطة M'(z') بالتحويل من المستوى بالنقطة

r نحدد علاقة متجهية بين النقطتين M و M' ثم نحدد طبيعة

 $r(\Omega) = \Omega$ نلاحظ أن

M'(z') و $M(z) = \Omega(\omega)$ لتكن

$$r(M) = M' \Leftrightarrow z' - \omega = [1; \alpha](z - \omega) \Leftrightarrow \frac{z' - \omega}{z - \omega} = [1; \alpha] \Leftrightarrow \begin{cases} \left| \frac{z' - \omega}{z - \omega} \right| = 1 \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \alpha \end{cases} \qquad \begin{bmatrix} 2\pi \end{bmatrix} \Leftrightarrow \begin{cases} \frac{\Omega M'}{\Omega M} = 1 \\ \left(\overline{\Omega M'}; \overline{\Omega M'}\right) = \alpha \end{cases} \qquad [2\pi] \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{\Omega M' = \Omega M}{\overline{\Omega M'}; \overline{\Omega M'}} = \frac{1}{\overline{\Omega M'}} = \frac{1}{$$

lpha و زاویته lpha الدوران الذي مركزه الدوران الذي

خاصية

لتكن M(z) و M'(z') و M(z) نقط من من المستوى $\Omega(\omega)$ الكن عددا حقيقيا غير منعدم $\Omega(z)$ تعدد α عددا حقيقيا غير منعدم

(P) الى النقطة M'(z') من المستوى M(z) الى النقطة التحويل الذي يحول كل نقطة

lpha حيث Ω و زاويته $z'-\omega=[1;lpha](z-\omega)$ حيث

 $[1;\alpha] = (\cos\alpha + i\sin\alpha)$

الدوران باستعمال الكتابة الاسية

لتكن M(z) و M'(z') و M(z) نقط من من المستوى المستوى M(z) منسوب إلى معلم متعامد ممنظم مباشى α عددا حقيقيا غير منعدم α

(P) من المستوى M(z) من المستوى الذي يحول كل نقطة M(z) من المستوى التحويل الذي الذي الذي المستوى المستو

lpha حيث $\Omega = \alpha$ و زاويته $z' - \omega = e^{ilpha} \left(z - \omega\right)$ حيث

تمرير

I.

.II

في المستوى العقدي المنسوب إلى معلم متعامد ممنظم $\left(O;\vec{e}_1;\vec{e}_2\right)$ نعتبر النقطتين B و B اللتين لحقيهما في المستوى العقدي المنسوب إلى معلم متعامد ممنظم $z_B=2$; $z_A=i$

- $\sqrt{2}$ ونسبته A ونسبته B' صورة النقطة ونسبته B_1 صورة النقطة ونسبته (1
 - $rac{\pi}{A}$ عدد لحق النقطة B' صورة النقطة B_1 بالدوران الذي مركزه و زاويته (2
 - B' مثل النقط A و B

. $z'=rac{\sqrt{2}}{2}ig(1+iig)z+1$:نعتبر التحويل z الذي يحول كل نقطة M لحقها z بالنقطة M ذات الحقz

- f الصامدة بالتحويل Ω الصامدة بالتحويل الم
- ك حدد طبيعة التحويل f و عناصره المميزة (2