INTELIGÊNCIA ARTIFICIAL

Parte 11

Introdução às

Redes Neurais

Prof. Me. Celso Gallão - 2014

1.1 – Introdução:

 O cérebro humano é mais fascinante processador baseado em carbono existente, sendo composto por quase 100 bilhões neurônios e possivelmente cerca de 100 trilhões de conexões.

 Todas as funções do organismo estão relacionados ao funcionamento destas pequenas células.

1.1 – Introdução:

- Neurônios se conectam uns aos outros através de sinapses.
- As sinapses transmitem estímulos elétricos (≅ 0,07 volts) gerados por reações químicas através de diferentes concentrações de sódio e potássio.
- Sinais entram pelos dentritos.
- Após processados, sinais saem pelo axônio.

Constituíntes da célula:

1.1 – Introdução:

 Uma substância neurotransmissora controla os potenciais elétricos de saída, fluindo do corpo celular para o axônio, diminuindo ou aumentando a polaridade da membrana pós-sináptica, inibindo ou excitando os pulsos elétricos.

 Após vivenciar novas experiência, o cérebro altera as conexões (aprendizado);

 Experiências repetidas várias vezes reforçam as ligações.

1.1 – Introdução:

 Uma rede neural é um modelo computacional que compartilha algumas das propriedades do cérebro.

 Consiste em muitas unidades simples trabalhando em paralelo sem nenhum controle central.

• As conexões entre as unidades têm pesos numéricos que podem ser modificados pelo aprendizado.

1.1 – Introdução:

 Microprocessadores digitais processam a uma velocidade 1 milhão de <u>vezes mais rápida</u> do que o cérebro humano, no que se refere à sequência de instruções.

 No entanto, o cérebro faz processamento extremamente mais rápido no reconhecimento de padrões, por exemplo.

 Busca-se estudar a teoria e a implementação de sistemas <u>massivamente paralelos</u> que possam processar informações com eficiência comparável ao cérebro humano.

1.1 – Introdução:

• Comparação entre o computador de *von Neumann* e o sistema neural biológico [JAIN e MAO, 1996].

	Computador de von Neumann	Sistema Neural Biológico	
Processador	Complexo	Simples	
	Alta velocidade	Baixa Velocidade	
	Um ou poucos	Um grande número	
Memória	Separado do processador	Integrada ao processador	
	Localizado	Distribuída	
	Não endereçável pelo conteúdo	Endereçável pelo conteúdo	
Computação	Centralizada	Distribuída	
	Sequencial	Paralela	
	Programas armazenados	Autoaprendizado	
Confiabilidade	Muito vulnerável	Robusta	
Especialidade	Manipulações numéricas e simbólica	Problemas perceptuais	
Ambiente Operacional	Bem definido, bem restrito Pobremente definido, irrestrito		

1.1 – Introdução:

Em quais problemas deve-se usar Redes Neurais?

 Geralmente em problemas de reconhecimento de padrões onde os dados são ruidosos (ou incompletos) e/ou quando regras claras não podem ser facilmente formuladas.

1.1 – Introdução:

Vantagens

- Permite modelagem de sistemas não lineares;
- Aprendizado automático;
- Tolerante a dados ruidosos ou incompletos;
- Resposta rápida e precisa;
- Modelos compactos.

1.1 – Introdução:

Desvantagens

- Ausência de explicações explícitas (subsistema de explanação);
- Sensível à quantidade disponível de dados;
- Processo de treinamento (aprendizado) pode ser lento.

1.2 – Histórico:

 1943: Trabalho pioneiro de *McCulloh* (psiquiatra e neuroanatomista) e *Pitts* (matemático) - Descrição do modelo formal de um neurônio.

1.2 – Histórico:

 1949: Hebb publica o livro "The Organization of Behavior" - formulação da primeira regra de aprendizado (Hebbian Learning Rule).

• **1957**: *Rosenblatt* propõe o modelo *Perceptron* como um método inovador de aprendizado supervisionado.

1.2 – Histórico:

• 1969, o ano fatídico: *Minsky* e *Papert* (*MIT*) demonstram as limitações do *Perceptron* provando matematicamente que são incapazes de solucionar problemas simples tipo o **Xor** (aplicável apenas a problemas linearmente separáveis).

XOR

<i>x</i> ₁	<i>x</i> ₂	$x_1 \otimes x_2$
0	0	0
0	1	1
1	0	1
1	1	0

1.2 – Histórico:

• Anos **1970**, a **década da hibernação**: adormecimento generalizado das pesquisas em Redes Neurais, com a publicação do livro de *Minsky* e *Papert*.

1.2 – Histórico:

Anos 1980, entusiasmo renovado:

• **1982**: *Hopfield* publica estudo sobre propriedades associativas das Redes Neurais.

 1986: Rumelhart, Hinton e Williams desenvolvem o algoritmo Backpropagation que supera os problemas dos Perceptrons.

1.3 – Características Similares ao Cérebro Humano:

Busca paralela e endereçamento pelo conteúdo:

O cérebro não possui endereço de memória e não procura a informação sequencialmente.

• Aprendizado por experiências:

Analisando seus "erros", não necessitando explicitar os algoritmos (ou funções analíticas) para executar uma determinada tarefa.

1.3 - Características Similares ao Cérebro Humano:

Capacidade de generalizar o seu conhecimento:

Habilidade de lidar com ruídos e distorções, a partir de exemplos anteriores, e respondendo corretamente aos novos padrões.

Abstração:

Capacidade de extrair a informação de padrões sem ruído, a partir de padrões ruidosos de entrada, abstraindo a essência do conjunto de entradas.

1.3 – Características Similares ao Cérebro Humano:

Robustez:

A perda de alguns elementos processadores ou conexões sinápticas não causa o mal funcionamento da rede neural.

 A característica fundamental das Redes Neurais é a habilidade de aprender a partir de seu ambiente. O processo de aprendizado é <u>iterativo</u> e tende a melhorar o desempenho gradativamente, à medida que <u>interage</u> com o meio ambiente.

1.3 - Características Similares ao Cérebro Humano:

"Aprendizagem é um processo pelo qual os parâmetros livres (ou pesos) de uma rede neural <u>são adaptados</u> através de <u>estímulos do ambiente</u> no qual a rede está inserida. O tipo de aprendizagem é determinado pela maneira como ocorre a modificação dos parâmetros."

[Haykin, 2003]

2.1 – Modelo Matemático (McCulloch & Pitts):

2.1 - Modelo Matemático (McCulloch & Pitts):

• Conjunto de Sinapses ou Elos de Conexão, onde cada elo de conexão é caracterizado por um estímulo de entrada (x_m) e por um peso (w_{km}) .

2.1 - Modelo Matemático (McCulloch & Pitts):

• **Bias** (viés): uma entrada extra, opcional, com valor sempre igual a **1**. Não é identificada nos neurônios biológicos, mas sua aplicação vem produzindo resultados muito úteis em Redes Neurais artificiais.

2.1 – Modelo Matemático (McCulloch & Pitts):

 Combinador Linear (Σ): efetua a somatória dos sinais ponderados de entrada no neurônio. Representada pela variável *net*, dada por:

2.1 - Modelo Matemático (McCulloch & Pitts):

• **Função de Ativação:** determina o novo valor do estado de ativação do processador, utilizando a função aditiva como parâmetro de entrada para produzir a saída do neurônio. Podem ser aplicados diferentes tipos de funções.

2.1 - Modelo Matemático (McCulloch & Pitts):

• **Saída do Neurônio**: apresenta o <u>resultado de 1 iteração</u> no processamento da rede neural. É calculada por:

$$y_k = f(net) = f(\sum w_{km} x_m + b_k)$$

2.2 – Funções de Ativação:

Degrau

Pseudo-Linear

Sigmoid

$$f(net) = \begin{cases} 1 & \text{se net} > 0 \\ 0 & \text{se net} \le 0 \end{cases}$$

$$f(net) = \begin{cases} 1 & \text{se net} > x \\ net & \text{se } 0 < net \le x \\ 0 & \text{se net} \le 0 \end{cases}$$

$$f(net) = \frac{1}{1 + e^{-net}}$$

Linear: f(net) = a.net + b

3.1 – Topologias:

Redes *Feed-Forward*: (alimentação à diante)

- São redes de uma ou mais camadas de processadores cujo fluxo de dados é sempre em uma única direção, isto é, não existe realimentação.
- Possui camadas intermediárias (<u>ocultas</u>).

3.1 – Topologias:

Redes Recorrentes:

(realimentação)

 São redes com conexões entre processadores da mesma camada e/ou processadores das camadas anteriores (feedback ou realimentação).

REDE NEURAL - Topologia Recorrente

3.1 – Topologias:

Totalmente Conectadas:

 Quando todos os neurônios de uma camada estão conectados a todos os neurônios da camada imediatamente a frente.

Parcialmente Conectadas:

Quando não são totalmente conectadas.

3.1 – Topologias:

Multicamadas:

- Quando há mais de uma camada com neurônios processadores. A primeira camada se chama de entrada, a última se chama de saída e as camadas intermediárias são chamadas de ocultas.
- A quantidade de camadas, a quantidade de neurônios em cada camada e a forma de conexão entre os neurônios devem ser definidos antes do treinamento e dependem do problema a ser definido.

3.2 – Aprendizagem Supervisionada:

- Redes cujo treinamento de aprendizagem depende da inserção dos valores de entrada e de saída desejada.
- Durante o treinamento, a rede deve compreender o padrão embutido nos dados de entrada e saída.
- O treinamento ocorre através da **minimização do erro** encontrado na saída.
- Após o treinamento a rede deve ser capaz de generalizar o que aprendeu, estendendo os conceitos para os registros que não foram usados no treinamento.
- Indicada para classificação dos dados.

3.3 – Aprendizagem Não Supervisionada:

- Redes cujo treinamento de aprendizagem depende da inserção apenas dos valores de entrada, sendo a saída definida pela própria rede.
- O sistema **extrai as características** do conjunto de padrões, agrupando-os em classes inerentes aos dados.
- Indicada para agrupamento dos dados (clusterização).

3.4 – Aprendizagem por Reforço:

- Redes semelhantes ao treinamento supervisionado, no entanto, não contém um target para cada padrão de entrada.
- Possui um processo de realimentação com sinal de reforço (positivo ou negativo) que avalia a resposta como boa ou ruim.
- O objetivo é maximizar a quantidade de reforço positivo.
- O sistema aprende somente com base nos resultados de sua **interação com o ambiente**.
- Indicada para automação.

4.1 – O Modelo *Perceptron* (Rosemblat, 1957):

• **Objetivo principal:** é classificar corretamente padrões de entrada em uma das duas classes possíveis.

Arquitetura básica de um neurônio artificial Perceptron:

4.1 – O Modelo *Perceptron* (Rosemblat, 1957):

- Representação binária: valores de entrada/saída {-1,1}.
- Topologia: uma única camada de pesos ajustáveis.
- Função de ativação: degrau.
- Apesar de n\u00e3o oferecer grande potencial seu estudo justifica-se por sua simplicidade e por ser historicamente importante.
- Cálculo da variável *net* é dado da forma como já vista anteriormente:

$$net = \sum w_{km} x_m + b_k$$

4.1 – O Modelo *Perceptron* (Rosemblat, 1957):

 O aprendizado ocorre alterando os valores dos pesos à cada iteração, a partir do erro da rede dado por:

$$\delta = d - y$$

- d é o valor de saída desejado.
- Y é o valor de saída obtido pela rede.

4.1 – O Modelo *Perceptron* (Rosemblat, 1957):

Os pesos são alterados da seguinte forma:

$$\Delta x_i = \eta \cdot \delta x_i$$

$$W_{i(k+1)} = w_{i(k)} + \Delta x_i$$

- η = taxa de aprendizado: valor próximo a zero que controla a velocidade com que os pesos são ajustados.
- δ = erro da rede na iteração atual.
- x_i = valor da entrada.

4.2 – O Algoritmo *Perceptron*:

- 1. Iniciar os pesos sinápticos (w_i) com valores randômicos e pequenos;
- 2. Aplicar um padrão de entrada com seu respectivo valor desejado de saída (d)
- 3. Calcular a saída da rede (y);
- 4. Calcular o erro na saída ($\delta = d y$);
- 5. Se $\delta \neq 0$ então atualizar os pesos $(w_{i(k+1)} = w_{i(k)} + \eta. \delta x_i)$ e voltar ao passo 3.
 - Se $\delta = \theta$ mas treinamento não acabou voltar ao passo 2.
- 6. Encerrar treinamento.

4.3 – O problema do *Xor* no *Perceptron*:

• É impossível encontrar uma reta que separe os pontos corretamente, no caso do ou exclusivo:

4.3 - O problema do Xor no Perceptron:

• É impossível encontrar uma reta que separe os pontos corretamente, no caso do ou exclusivo:

4.4 – Exemplo de Rede *Perceptron*:

Livro Arte	ero, pag	131		_											
Taxa de a	aprendiz	agem =	0,2												
			En	ntradas			Valor		Saída	Diferença				X	Y
	x1	x2	Bias	w1	w2	wBias	esperado	f(net)	у	δ	∆ w1	⊿w2	∆wBias	20	10
1ª	20	10	0	0,1	0,1	0,1	0	3	1	-1	-4,0	-2,0	0,0	80	60
	80	60	0	-3,9	-1,9	0,1	1	-426	0	1	16,0	12,0	0,0	-20	10
	-20	10	1	12,1	10,1	0,1	1	-140,9	0	1	-4,0	2,0	0,2	20	50
2ª	20	10	1	8,1	12,1	0,3	0	283,3	1	-1	-4,0	-2,0	-0,2	20	0
	80	60	1	4,1	10,1	0,1	1	934,1	1	0	0,0	0,0	0,0	20	20
	-20	10	1	4,1	10,1	0,1	1	19,1	1	0	0,0	0,0	0,0	40	30
3 <u>ª</u>	20	10	1	4,1	10,1	0,1	0	183,1	1	-1	-4,0	-2,0	-0,2	40	40
	80	60	1	0,1	8,1	-0,1	1	493,9	1	0	0,0	0,0	0,0	40	20
	-20	10	1	0,1	8,1	-0,1	1	78,9	1	0	0,0	0,0	0,0	60	10
4 ª	20	10	1	0,1	8,1	-0,1	0	82,9	1	-1	-4,0	-2,0	-0,2	100	20
	80	60	1	-3,9	6,1	-0,3	1	53,7	1	0	0,0	0,0	0,0	100	80
	-20	10	1	-3,9	6,1	-0,3	1	138,7	1	0	0,0	0,0	0,0	0	20
5 <u>ª</u>	20	10	1	-3,9	6,1	-0,3	0	-17,3	0	0	0,0	0,0	0,0	-20	40
	80	60	1	-3,9	6,1	-0,3	1	53,7	1	0	0,0	0,0	0,0	60	60
	-20	10	1	-39	6.1	-0.3	1	138 7	1	0	0.0	0.0	0.0	80	30

Treinamento encerrado, pois os pesos se estabilizaram, ou seja, a rede convergiu.

A partir de agora, utilize os pesos encontrados no treinamento:

A partir de agora, utilize os pesos encontrados no treinamento:											
	20	50	1	-3,9	6,1	-0,3		226,7	1		
	20	0	1	-3,9	6,1	-0,3		-78,3	0		
	20	20	1	-3,9	6,1	-0,3		43,7	1		
	40	30	1	-3,9	6,1	-0,3		26,7	1		
Reais	40	40	1	-3,9	6,1	-0,3		87,7	1		
	40	20	1	-3,9	6,1	-0,3		-34,3	0		
	80	30	1	-3,9	6,1	-0,3		-129,3	0		
	100	20	1	-3,9	6,1	-0,3		-268,3	0		
	100	80	1	-3,9	6,1	-0,3		97,7	1		

Rede Perceptron Backpropagation

4.4 – A Rede *Perceptron Backpropagation*:

- Aprendizado supervisionado;
- Valores de entrada/saída binários ou contínuos;
- Topologia: múltiplas camadas;
- Função de ativação: sigmóide ou linear;
- Executa 2 estágios de processamento para cada padrão apresentado:
 - Feed-Forward: as entradas se propagam pela rede, indo da camada de entrada até a camada de saída;
 - Feed-Backward: os erros se propagam na direção contrária ao fluxo de dados, indo da camada de saída até a primeira camada escondida.

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

$$\Delta w_{mk} = \eta \cdot e_m \cdot s_k$$

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

4.4 – A Rede *Perceptron Backpropagation*:

- Este procedimento de aprendizado é repetido diversas vezes até que, para todos os processadores da camada de saída e para todos os padrões de treinamento, o erro seja menor do que o especificado como tolerância.
- Originalmente, esta rede é completamente conectada e a utilização de bias é opcional.
- Resolveu o problema do Xor.

Bibliografias

- 1. HAYKIN, Simon. **Redes Neurais: Princípios e Prática**. 2ª ed. traduzida, Porto Alegre: Bookman, 2001.
- 2. ROSA, João Luis Garcia. **Fundamentos da Inteligência Artificial**. 1ª ed. Rio de Janeiro: LTC, 2011, *Capítulo 9 Redes Neurais Artificiais*.
- 3. ARTERO, Almir Olivette. **Inteligência Artificial: Teórica e Prática**. 1ª ed. São Paulo: Livraria da Física, 2009, *Capítulo 7 Redes Neurais*.
- 4. SIMÕES, Marcelo Godoy; SHAW, Ian S. Controle e Modelagem Fuzzy. 2^a ed. São Paulo: Blusher Fapesp, 2007, *Capítulo 14 Controladores Neurofuzzy*.

Outras Referências

- 1. THOMAZ, Carlos E. **Inteligência Computacional**. Departamento de Engenharia Elétrica do Centro Universitário da FEI, 2010.
- 2. BARRETO, Guilherme de Alencar. **Redes Neurais Artificiais: Conjuntos Fuzzy e Redes RBF**. Departamento de Engenharia de Teleinformática da Universidade Federal do Ceará, 2008.
- 3. http://timedicina.blogspot.com.br/2009/10/redes-neurais-neurociencia-e.html