MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2014 SOLUTION KEY

Round 3

A)
$$\cos\left(Sin^{-1}\left(-.5\right)\right) + \cot\left(Tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\right) + Cos^{-1}\left(\cos\frac{\pi}{6}\right)$$

Let $A = Sin^{-1}\left(-0.5\right)$, $B = Tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$ and $C = Cos^{-1}\left(\cos\frac{\pi}{6}\right)$. Then:
 $\sin A = -0.5$ and $-\frac{\pi}{2} < A < 0$ (Q4) $\Rightarrow A = -\frac{\pi}{6}$
 $\tan B = -\frac{\sqrt{3}}{3}$ and $-\frac{\pi}{2} < B < 0$ (Q4) $\Rightarrow B = -\frac{\pi}{6}$
 Cos^{-1} and cos are inverse functions and $\frac{\pi}{6}$ is in the domain of $Cos^{-1} \Rightarrow C = \frac{\pi}{6}$
Thus, $\cos\left(Sin^{-1}\left(-.5\right)\right) + \cot\left(Tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\right) + Cos^{-1}\left(\cos\frac{\pi}{6}\right) = \cos\left(-\frac{\pi}{6}\right) + \cot\left(-\frac{\pi}{6}\right) + \frac{\pi}{6}$
 $= \cos\left(-\frac{\pi}{6}\right) + \cot\left(-\frac{\pi}{6}\right) + \frac{\pi}{6} = \frac{\sqrt{3}}{2} - \sqrt{3} + \frac{\pi}{6} = \frac{\pi - 3\sqrt{3}}{6} \Rightarrow (A, B) = \left(3\sqrt{3}, 6\right)$.

B)
$$\cos 290^{\circ} = \cos (360^{\circ} - 70^{\circ}) = \cos (-70^{\circ}) = \cos (70^{\circ})$$

Expanding using $\cos (A + B) = \cos A \cos B - \sin A \sin B$,
 $\cos (x + 150^{\circ}) + \cos (x + 30^{\circ}) = (\cos x \cos 150^{\circ} - \sin x \sin 150^{\circ}) + (\cos x \cos 30^{\circ} - \sin x \sin 30^{\circ})$
 $= \left(\cos x \cdot -\frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2}\right) + \left(\cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2}\right) = -\sin x$

Thus, we have $\sin x = -\cos 70^\circ = -\sin 20^\circ$. We require related angles in quadrants 3 and 4, $\begin{cases} 180^\circ + 20^\circ \Rightarrow \mathbf{200}^\circ \\ 360^\circ - 20^\circ \Rightarrow \mathbf{340}^\circ \end{cases}$

C) Let
$$B = Sin^{-1} \left(-\frac{4}{5} \right)$$
.

$$\sin \left(2B + \frac{\pi}{2} \right) = \sin 2B \cos \left(\frac{\pi}{2} \right) + \cos 2B \sin \left(\frac{\pi}{2} \right) = (\sin 2B)(0) + (\cos 2B)(1) = \cos 2B$$

$$= 1 - 2\sin^2 B = 1 - 2\left(-\frac{4}{5} \right)^2 = -\frac{7}{25}.$$