

Applied Statistics

Discrete Random Variables

Release FS24

Learning objectives

- Know the definition of a random variable
- Model a measurement correctly with a discrete random variable
- Know how to specify the distribution of a discrete random variable:
 - cdf, pmf
 - expected value, variance
- Recognize situations that must be modeled by a discrete uniform, Bernoulli, binomial or Poisson distribution

Random variables

A **random variable** is a variable that takes numerical values which depend on the outcome of a random experiment. It is an assignment of an event to a real number.

A more mathematical definition:

Definition (Random variable)

A **random variable** X is a function mapping a sample space Ω to $\mathbb R$ (or a subset), i.e. $X:\Omega\to\mathbb R$.

A random variable X induces a probability measure on \mathbb{R} .

Random variables: examples

- 1. **Family size**: choose a family at random from a population, let *X* be the number of children. Possible values:
 - $X\in\mathbb{N}_0=\{0,1,2,3,\ldots\}$. If e.g. 23% of the families have 2 children, then $\mathrm{P}(X=2)=0.23;$ if 72% of the families have at most 2 children, then $\mathrm{P}(X\in\{0,1,2\})=\mathrm{P}(X\leq 2)=0.72.$
- 2. **Length of fish**: measure the length of a fish randomly sampled from a population, let X be the length in cm. If e.g. 64% of the fish have a length between $11.5 \, \text{cm}$ and $16.2 \, \text{cm}$, then $P(X \in [11.5, 16.2]) = P(11.5 \le X \le 16.2) = 0.64$.

What's the probability that the fish has *exactly* a length of 14 cm?

Random variables: notation

- ► Capital letter, e.g. X: random variable; lower case letter, e.g. x: realized value.
- $\{X = x\}$: elementary event that random variable X takes value x (with induced probability measure).

In words:

- Capital letter: description of an experiment (e.g., "measurement of the length of a fish")
- ▶ Lower case letter: outcome of the experiment (e.g., 13.5 cm)

2 types of random variables

Discrete random variable: random variable with finite (or countable) image (i.e. set of possible values):

 $X:\Omega\to\{x_1,x_2,\dots\}$

Continuous random variable: random variable whose image contains an interval, or \mathbb{R} .

The statement P(X = x) only makes sense for a discrete random variable X.

Describing the distribution

Next goal: describe probability "distribution" of a discrete random variable X including its characteristics.

Several quantities of interest:

- cumulative distribution function (cdf)
- probability mass function (pmf)
- ightharpoonup expected value E(X)
- variance Var(X)
- ****

Cumulative distribution function

Definition (Cumulative distribution function)

The **cumulative distribution function** (cdf) of a random variable X is defined as $F_X(x) := P(X \le x)$.

Properties of a cdf F_X :

- \triangleright F_X is monotonically increasing
- $\lim_{x \to -\infty} F_X(x) = 0, \lim_{x \to \infty} F_X(x) = 1$
- ► $P(a < X \le b) = F_X(b) F_X(a)$

In fact this definition also holds for continuous random variables.

Quantile function

Definition (Quantile function)

Let X be a random variable with distribution function F_X and let $\alpha \in (0,1)$. The α -quantile of X fulfills

$$P(X \le q) \ge \alpha$$
 and $P(X \ge q) \ge 1 - \alpha$.

 \hookrightarrow There is an inverse relation between the quantiles and the values of the cdf.

Discrete random variables

- Discrete random variable: random variable with finite (or countable) image (i.e. set of possible values):
 X: Ω → {x₁, x₂,...}
- Characterized by **probability mass function** (pmf) $p(x_k) := P(X = x_k)$ with the following properties:
 - ► For each set $A \subset \{x_1, x_2, \ldots\}$, we have

$$P(X \in A) = \sum_{k: x_k \in A} P(X = x_k)$$

- Normalization: $\sum_{k} P(X = x_k) = 1$
- Connection to CDF: $F_X(x) = P(X \le x) = \sum_{k:x_k \le x} P(X = x_k)$

Example: fair die

A die can take values in $\{1, 2, ..., 6\}$; if it is fair, it takes all values with the same probability. Its probability mass function and cumulative distribution function look as follows:

Expected value

What do we expect on average?

Fair die:

$$x_k$$
 | 1 2 3 4 5 6
 $P(X = x_k)$ | 1/6 1/6 1/6 1/6 1/6 1/6

On average we expect the mean number of spots, i.e. 3.5.

Non-fair die:

On average we expect the *weighted* mean number of spots, i.e. $0.1 \cdot (1+2+3+4+5) + 0.5 \cdot 6 = 4.5$.

Expected value

Definition (Expected value)

The **expected value** of a discrete random variable X is defined as

$$\mathsf{E}(X) := \sum_k x_k \cdot \mathrm{P}(X = x_k) \ .$$

Interpretation: The expected value E(X) corresponds to the weighted mean of all possible values of the random variable X. The weights are determined by the probability mass function.

Variance

How strong does X vary around E(X)?

Definition (Variance)

The **variance** of a discrete random variable *X* is defined as

$$\operatorname{Var}(X) := \sum_{k} (x_k - \operatorname{E}(X))^2 \cdot \operatorname{P}(X = x_k) .$$

Example fair die: Let X be the result of a fair die. X has expected value E(X) = 3.5 and variance Var(X) = 2.917.

Transformations of random variables

Let X and Y be (continuous or discrete) random variables, and a and b two real numbers.

- ightharpoonup E(aX + b) = aE(X) + b

Furthermore,

- ightharpoonup E(X + Y) = E(X) + E(Y)
- Var(X + Y) ≠ Var(X) + Var(Y) (only true, if X and Y are independent)

Discrete probability distributions

We will now consider three discrete probability distributions widely used:

- ▶ (Discrete uniform distribution \(\to \) dice)
- Bernoulli distribution
- Binomial distribution
- Poisson distribution

Bernoulli distribution

The Bernoulli distribution is the simplest non-trivial discrete probability distribution.

Definition (Bernoulli distribution)

A discrete random variable X that can only take the values 0 and 1 is said to have **Bernoulli distribution**. The distribution is specified by the probability $\pi := P(X = 1)$. We write $X \sim \text{Bernoulli}(\pi)$.

Binomial distribution

- Distribution of the sum of independent, identically distributed (iid) Bernoulli random variables
- Distribution of the number of "successes" of n independent trials with individual success probability π

Definition (Binomial distribution)

A discrete random variable $X \in \{0, 1, ..., n\}$ has **binomial** distribution, if

$$P(X=x) = \binom{n}{x} \pi^{x} (1-\pi)^{n-x} .$$

We write $X \sim \text{Bin}(n, \pi), n \in \mathbb{N}, \pi \in (0, 1).$

Binomial distribution

What is the expected value of X?

Expected value: $E(X) = n\pi$ **Variance**: $Var(X) = n\pi(1 - \pi)$

Binomial distribution

Probability mass function of binomial distributions $Bin(30, \pi)$ for different probabilities π :

What would the corresponding cdf's look like?

Example: test of a new drug

- A new drug is tested on n=200 patients. Subjects with a rare genetic disposition (incidence of $\pi=\frac{1}{1000}$) may have severe side effects.
- What's the probability that one patient in the study has this genetic disposition? Let X be the number of patients with this genetic disposition: $X \sim \text{Bin}(200, 0.001)$

$$P(X = 1)200 \cdot 0.001 \cdot 0.999^{199} = 0.1639$$

► What's the probability that at least 3 patients have the disposition?

Python functions

In the library scipy.stats many useful functions are implemented

```
# import libraries
from scipy.stats import binom, poisson
#-----
>>> n, p = 200, 0.001
>>> binom.pmf(1,n,p)
0.16389365955527033
\rightarrow > 1-(binom.pmf(0,n,p)+binom.pmf(1,n,p)+binom.pmf(2,n,p))
0.0011337680974732312
>> 1-binom.cdf(2,n,p)
0.001133768097462684
```

Poisson process

- Events occur independently of each other at random times
- Occurrence at a constant rate $\bar{\lambda}$ (expected number of events per time unit)
- Continuous time, not single discrete "trials" are considered
- Applications: Failure of a component of a machine; new customer joining the back of the queue; mutations on a chromosome; accidents on a certain stretch of road; etc.

Poisson distribution

Counting number of events in a given time interval d of a Poisson process, leads to a Poisson distributed random variable with parameter $\lambda = \bar{\lambda} \cdot d$ (expected value).

Definition (Poisson distribution)

A discrete random variable $X \in \mathbb{N}$ has **Poisson distribution** with parameter λ if

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!} .$$

We write $X \sim Po(\lambda)$, $\lambda > 0$.

Expected value: $E(X) = \lambda$

Variance: $Var(X) = \lambda$

Link to binomial distribution

- Binomial distribution: range of possible values is limited
- Poisson distribution: number of successes in potentially infinitely many trials
- Poisson distribution as approximation of the binomial distribution: $E(X) = n\pi = \lambda$, a constant, as $n \to \infty$

Example: Complaints

- # complaints in a ward was 2, 5, 4, 3 in the last 4 months
- \blacktriangleright # complaints \sim Po(3.5)
- A new ward manager arrived and the number of complaints was 6 last month.

Are these surprisingly many complaints?

```
>>> poisson.pmf(6,3.5)
0.07709834987526801
>>> poisson.pmf(5,3.5)
0.13216859978617376
>>> 1-poisson.cdf(5,3.5)
0.14238644690422175
```

The probability htat there are at least 6 complaints (given Po(3.5)) is 14% – so my answer would be **no**.

Properties of Poisson distributions

Proposition (Sum of Poisson random variables)

Let
$$X \sim Po(\lambda_1)$$
 and $Y \sim Po(\lambda_2)$ be independent. Then, $X + Y \sim Po(\lambda_1 + \lambda_2)$.

Is $\frac{1}{2}(X + Y)$ also Poisson distributed?