Math 76 Exercises - 6.2B Differentiation and Integration of Power Series

1. Use integration or differentiation to find a power series centered at 0 for each function.

(a)
$$f(x) = \ln(1-x)$$

$$f'(x) = -\frac{1}{1-x} = -\sum_{n=0}^{\infty} x^{n} \quad \text{(for } -1 < x < 1)$$

So $f(x) > C - \int \sum_{n=0}^{\infty} x^{n} \quad \text{d}x = C - \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = 0$

Note that $f(\mathbf{0}) = \ln 1 = 0 = C - 0 = C$.

So $C = 0$ Thus $f(x) = -\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = -\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$

(b) $g(x) = \tan^{-1}(x)$

$$g(x) = \frac{1}{1+x^{2}} = \frac{1}{1-(-x^{2})} = \sum_{n=0}^{\infty} (-x^{2})^{n} = \sum_{n=0}^{\infty} (-1)^{n} x^{2n}$$

(for $-1 < x < 1$)

So $g(x) = \int_{n=0}^{\infty} (-1)^{n} x^{1} dx = C + \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n+1} x^{2n+1}$

(for $-1 < x < 1$)

Note that $g(x) = -1 = -1 = 0$

(c) $h(x) = \frac{2}{(1+x)^{2}}$

$$f(x) = \frac{2}{(1+x)^{2}}$$

76 6.2B solutions, p. 2

(d)
$$j(x) = 5x^{2} \tan^{-1}(2x)$$

From part (b), $\tan^{-1}(2x) = -\sum_{n=1}^{\infty} \frac{1}{n} (2x)^{n}$, so
$$j(x) = -5x^{2} \sum_{n=1}^{\infty} \frac{1}{n} 2^{n} x^{n}$$

$$= \sum_{n=1}^{\infty} \frac{-5 \cdot 2^{n}}{n} x^{n+2}$$

2. For each power series above, find the interval of convergence.

(a) We know
$$f(x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n$$
 for at least $-1 < x < 1$.

Now check the endpoints: $x = 1$: $-\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

$$x = -1 : -\sum_{n=1}^{\infty} \frac{1}{n} (-1)^n \text{ converges}.$$

So the interval of convergence is $[-1,1]$.

(b) We know $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ for at least $-1 < x < 1$.

Now check the endpoints: $x = 1$: $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot 1$ converges

$$x = -1$$
: $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot (-1)^{2n+1}$ converges

So the interval of convergence is $[-1, 1]$

(c) We know $h(x) = 2\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n-1}$ for at least -1 < x < 1. Now check endpoints: $x = 1 = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot n$ diverges

So we get (-1,1) $x = -1 = \sum_{n=1}^{\infty} (-1)^{n+1} n (-1)^{n-1} = \sum_{n=1}^{\infty} n$ diverge

(d) Wring Ratio Test, we have
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{5 \cdot 2^{n+1}}{x^{n+3}} \right| \frac{n}{n+1}$$

$$= \lim_{n\to\infty} \frac{2^n}{n+1} |x| = 2^n |x| < 1 \quad |x| < \frac{1}{2} \cdot \frac{1}{2} < x < \frac{1}{2} \cdot \frac{1}{2}$$
Check endpoints: $x = \frac{1}{2} : \sum_{n=1}^{\infty} \frac{-5 \cdot 2^n}{n} \left(\frac{1}{2} \right)^{n+2} = \sum_{n=1}^{\infty} \frac{-5}{4^n} \frac{1}{2^n} \frac{1}{2^n}$
3. Given that $e^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$ for all x , find a power series that equals $\int e^{x^2} dx$.

So interval is $\left| \frac{1}{2} \cdot \frac{1}{2^n} \right| = \frac{1}{2^n} \left| \frac{1$

4. Given that $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ for all x, find a power series that equals $\cos x$.

$$\cos x = \frac{d}{dx}(\sin x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (2n+1) x^{2n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (2n+1) x^{2n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$