Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Tutorato 1 (10 Marzo 2011) Spazi metrici e topologici

- 1. Sia (X, d) uno spazio metrico e sia A un sottoinsieme di X. Verificare che le seguenti condizioni sono equivalenti:
 - (a) A è aperto;
 - (b) $\forall x \in A$, esiste un disco $D_{\epsilon}(x)$ tale che $D_{\epsilon}(x) \subseteq A$;
 - (c) $\forall x \in A$, esiste un aperto V_x tale che $x \in V_x \subseteq A$.
- 2. Sia (X,d) uno spazio metrico discreto. Determinare l'insieme dei suoi aperti \mathcal{A} e per ogni $x \in X$ l'insieme $\mathfrak{D}(x)$ dei dischi aventi centro in x.
- 3. Sia (X, d) uno spazio metrico. Si considerino le tre applicazioni $d_r, \delta, \epsilon: X \times X \to \mathbb{R}$ così definite:
 - (a) $d_r(x,y) := rd(x,y), \forall x,y \in X$ (dove r > 0 è un numero reale fissato);
 - (b) $\delta(x,y) := \frac{d(x,y)}{1+d(x,y)}, \, \forall \, x,y \in X;$
 - (c) $\epsilon(x, y) := \min\{1, d(x, y)\}, \forall x, y \in X.$

Verificare che d_r , δ , ϵ sono distanze su X.

4. (a) Due metriche d e d' su X sono dette topologicamente equivalenti [e si scrive $d \sim d'$] se hanno gli stessi aperti.

Per ogni $x \in X$ si indichi con $\mathfrak{D}(x)$ [risp. $\mathfrak{D}'(x)$] l'insieme dei dischi di centro x in (X, d) [risp. (X, d')].

Dimostrare che vale il seguente criterio di equivalenza topologica:

 $d \sim d' \Leftrightarrow \forall x \in X$, sono verificate le due condizioni:

- i. $\forall D \in \mathfrak{D}(x), \exists D' \in \mathfrak{D}'(x) \text{ tale che } D' \subseteq D;$
- ii. $\forall D' \in \mathfrak{D}'(x), \exists D \in \mathfrak{D}(x) \text{ tale che } D \subseteq D'.$
- (b) Sia (X, d) un fissato spazio metrico. Verificare che le metriche d_r, δ, ϵ definite nell'esercizio 3 sono topologicamente equivalenti [alla metrica d e quindi tra loro].
- 5. Dimostrare che ogni spazio metrizzabile e finito è discreto.
- 6. Assegnata una famiglia $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in I}$ di topologie su un insieme X, verificare che $\bigcap_{{\alpha}\in I}\mathcal{T}_{\alpha}$ è una topologia su X.

Dare invece un esempio di due topologie $\mathcal{T}_1, \mathcal{T}_2$ su un insieme X tali che $\mathcal{T}_1 \cup \mathcal{T}_2$ non sia una topologia.

- 7. Siano \mathcal{T} e \mathcal{T}' due topologie su un insieme X, con \mathcal{T} strettamente meno fine di \mathcal{T}' . Dimostrare che \mathcal{T} non è una base della topologia \mathcal{T}' .
- 8. Sia $S := \{\mathbb{R}; \emptyset; (-\infty, a], \forall a \in \mathbb{R}\}.$
 - (a) Verificare che \mathcal{S} non è una topologia su \mathbb{R} .
 - (b) Determinare la topologia $\mathcal{T}(\mathcal{S})$ generata da \mathcal{S} e confrontarla con la topologia $\mathfrak{i}_S = \{(-\infty, b) : b \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$

- 9. Sia $S := \{(-\infty, 1); (a, b), \forall a, b \in \mathbb{R} : 0 < a < b\}.$
 - (a) Verificare che S è base di una topologia su \mathbb{R} .
 - (b) Verificare che la topologia \mathcal{T} su \mathbb{R} generata da \mathcal{S} è strettamente meno fine della topologia euclidea su \mathbb{R} .
 - (c) Per quali $a \in \mathbb{R}$, $(-\infty, a)$ è un aperto di \mathcal{T} ?
- 10. Trovare uno spazio topologico (X, \mathcal{T}) in cui ogni aperto sia anche chiuso, con \mathcal{T} diversa dalla topologia banale o discreta. Se in uno spazio topologico ogni aperto è anche chiuso è altresì vero che ogni chiuso è anche aperto?
- 11. Sia (X, d) uno spazio metrico discreto e $\{x_n\}$ una successione in X. Verificare che $\{x_n\}$ converge in $X \Leftrightarrow \{x_n\}$ è definitivamente costante.
- 12. \underline{Def} : Un punto $x \in X$ si dice punto di accumulazione dell'insieme $S \subseteq X$ se ogni intorno di x contiene almeno un punto di S diverso da x, cioè se $(N \setminus \{x\}) \cap S \neq \emptyset$ per ogni intorno N di x. L'insieme dei punti di accumulazione di S si chiama derivato di S e si denota con D(S).
 - Sia X uno spazio topologico. Dimostrare che X è discreto se e solo se per ogni sottoinsieme A di X, $D(A) = \emptyset$.