Chapter 1: What is Excel?

Introduction to Excel

Microsoft Excel is a **powerful spreadsheet application** developed by Microsoft that allows users to:

- Organize and manipulate data.
- Perform calculations using formulas and functions.
- Visualize data through charts and graphs.
- Create interactive dashboards and reports.
- Perform statistical, financial, and logical analysis.

Excel is used across industries such as business, finance, data analysis, engineering, marketing, education, and more.

★ Key Concepts in Excel

√ 1. Workbook

- A workbook is an Excel file that contains one or more worksheets.
- File extension: .xlsx (modern) or .xls (older).
- Think of it as a container or folder for your entire project.

⊘ 2. Worksheet

- A worksheet is a single spreadsheet (grid of rows and columns) within a workbook.
- Each worksheet has a name (Sheet1, Sheet2...) and can be renamed (e.g., "Sales2024").
- You can have multiple worksheets in one workbook.

⊘ 3. Cell

- A **cell** is the basic unit of a worksheet where you enter data.
- It is identified by a **cell reference**, such as A1 (Column A, Row 1).
- Data types: Text, Numbers, Formulas, Dates, etc.

∜ 4. Range

- A range is a group of two or more cells. It can be:
 - Vertical: A1:A5Horizontal: A1:E1
 - o Rectangular block: A1:C5

- A **formula** is a user-defined equation in Excel.
- Every formula starts with an equals sign =
- Example: =A1+B1 adds the values in cells A1 and B1.

♦ 6. Function

- A **function** is a predefined formula that simplifies complex calculations.
- Common functions include:
 - \circ =SUM (A1:A5) Adds values from A1 to A5.
 - o =AVERAGE (B1:B5) Finds the mean.
 - \circ =MAX (C1:C5) Finds the highest value.
 - \circ =MIN(D1:D5) Finds the lowest value.

♦ 7. Charts

- Excel allows you to create visual representations of your data like:
 - Bar/Column Chart
 - o Pie Chart
 - o Line Chart

% 8. Pivot Table

- A powerful tool to **summarize**, **group**, **and analyze** large datasets.
- Allows drag-and-drop analysis without changing the original data.

\checkmark 9. Conditional Formatting

- Automatically format cells based on rules.
- Example: Highlight all values above 100 in green.

<a>✓ 10. Data Validation

- Restrict the type of data that can be entered in a cell.
- Example: Allow only dates or only numbers between 1–100.

Practical Exercises

► Exercise 1: Explore the Excel Interface

Objective: Understand the structure of Excel.

- 1. Open Microsoft Excel.
- 2. Observe the **Workbook** name on the top (e.g., Book1.xlsx).
- 3. Look at the **Worksheet tabs** at the bottom (Sheet1, Sheet2...).
- 4. Click on any **cell** (e.g., A1) and observe the row and column headers.

- 5. Identify:
 - Active Cell (highlighted box)
 - o Column Labels (A, B, C...)
 - o Row Numbers (1, 2, 3...)

Exercise 2: Write a Simple Formula

Objective: Learn how to write a basic formula.

- 1. In cell A1, type 10
- 2. In cell B1, type 20
- 3. In cell C1, type the formula: =A1+B1
- 4. Press Enter
- 5. Observe that Excel calculates the sum and displays 30 in cell C1.

Tip: You can also use subtraction =A1-B1, multiplication =A1*B1, or division =A1/B1.

Exercise 3: Use the SUM Function

Objective: Practice using a built-in function.

- 1. In cells A2 to A6, enter: 5, 15, 20, 10, 25
- 2. In cell A7, enter: =SUM (A2:A6)
- 3. Press Enter
- 4. Excel will display the total: 75

Bonus:

- Try =AVERAGE (A2:A6) to find the average.
- Try = MAX(A2:A6) and = MIN(A2:A6).

Knowledge Check Questions

- 1. What is the difference between a workbook and a worksheet?
- 2. What symbol must every formula start with in Excel?
- 3. What function would you use to calculate the total of a column?
- 4. Which Excel tool allows you to visually analyze trends?
- 5. How would you reference a range of cells from A1 to A10?

Chapter 2: Manage Data in Cells and Ranges

Overview

In Excel, **managing data** involves entering, formatting, sorting, filtering, and performing calculations on values stored in cells and ranges. These foundational skills allow users to analyze and extract insights from datasets efficiently.

***** Key Concepts

∜ 1. Entering Data

- You can type text or numbers directly into cells.
- Press **Tab** to move right and **Enter** to move down.

⊘ 2. Selecting a Range

- Click and drag to select a group of cells.
- Use Shift + Arrow Keys or Ctrl + Click for advanced selections.

⊘ 3. Sorting Data

Sorting helps arrange your data in a meaningful order.

- Ascending (A-Z or smallest to largest)
- Descending (Z-A or largest to smallest)

Example: Sort employees by Age or sales by amount.

Steps to Sort:

- 1. Select your data (include column headers).
- 2. Go to the Home tab \rightarrow Click Sort & Filter \rightarrow Choose Sort A to Z or Sort Z to A.
- 3. For custom sorting (e.g., multiple columns), choose **Custom Sort**.

4. Filtering Data

Filtering allows you to display only rows that meet specific criteria.

Example: View only rows where Score > 70.

Steps to Apply Filter:

- 1. Select your data range (with headers).
- 2. Go to the **Data** tab \rightarrow Click on **Filter**.
- 3. Click the drop-down arrow in the score column.
- 4. Choose Number Filters > Greater Than... \rightarrow Enter 70.

♦ 5. Calculating with Formulas

Excel formulas perform calculations using cell references.

Example Formulas:

- =A1+B1 \rightarrow Adds values in A1 and B1.
- = $A1*B1 \rightarrow Multiplies values$.
- =AVERAGE (C2:C6) \rightarrow Finds the average of scores.

Commonly Used Functions:

- SUM(range) \rightarrow Adds all values.
- AVERAGE (range) \rightarrow Finds the mean.
- MAX(range) \rightarrow Largest value.
- MIN (range) \rightarrow Smallest value.

Practical Hands-On Exercises

► Exercise 1: Create a Simple Dataset

Objective: Enter and manage tabular data.

- 1. Open a new worksheet.
- 2. In cell A1, type Name
- 3. In **B1**, type Age
- 4. In C1, type Score
- 5. Fill the table like this:

Name Age Score

Alice 24 88

Brian 21 67

Carol 23 73

Daniel 25 91

Name Age Score

Esther 22 64

Exercise 2: Sort by Age

Objective: Organize data by a numerical field.

- 1. Select the full table (A1:C6).
- 2. Go to **Home > Sort & Filter > Sort A to Z** (on Age column).
- 3. The table should now show the youngest to oldest.

Extension: Try Sort Z to A for descending order.

► Exercise 3: Filter for Scores Above 70

Objective: Use filters to extract relevant information.

- 1. Select A1:C6
- 2. Go to the **Data** tab \rightarrow Click **Filter**
- 3. Click the drop-down arrow on **Score**
- 4. Choose Number Filters > Greater Than
- 5. Enter $70 \rightarrow \text{Click OK}$

 \checkmark Now only students with scores above 70 are shown.

► Exercise 4: Calculate Average Score

Objective: Use the AVERAGE function to analyze data.

1. Below the data (e.g., in cell C8), type:

```
=AVERAGE (C2:C6)
```

- 2. Press Enter.
- 3. Excel returns the average of all the student scores.

Bonus Calculations:

- Highest Score: =MAX (C2:C6)
- Lowest Score: =MIN(C2:C6)
- Total Score: =SUM (C2:C6)

Knowledge Check Questions

- 1. What's the difference between sorting and filtering?
- 2. How do you apply a filter to view only high-performing students?
- 3. Write the formula to calculate the average age.

4. How would you highlight all students younger than 23?

Chapter 3: Excel Functions (Trainer Notes)

Overview

Excel **functions** are **predefined formulas** that perform specific calculations or operations. They save time and reduce errors when working with repetitive or complex calculations.

Functions are categorized into:

- **Mathematical functions**: Perform arithmetic.
- Statistical functions: Analyze data sets.
- **Text functions**: Manipulate and format text.
- Logical functions: Make decisions.
- **Lookup functions**: Search and return values from tables.

***** Key Excel Functions Explained

♦ 1. Mathematical & Statistical Functions

SUM (range)

Adds all numbers in a range.

Example: =SUM (B2:B6) totals values from B2 to B6.

AVERAGE (range)

Calculates the mean of a group of numbers.

Example: =AVERAGE (C2:C6)

COUNT (range)

Counts how many cells in a range contain numbers.

Example: =COUNT (B2:B6)

MAX (range) / MIN (range)

Returns the highest or lowest number in a range.

Example: =MAX(B2:B6) or =MIN(B2:B6)

2. Text Functions

```
CONCATENATE (text1, text2,...) (or TEXTJOIN / & operator)
```

Combines text from multiple cells into one.

Example: =CONCATENATE (A2, " ", B2) \rightarrow joins first and last name.

```
LEFT(text, num chars) / RIGHT(text, num chars)
```

Extracts a specific number of characters from the beginning or end of a string.

=LEFT (A2, 3) returns the first 3 characters of cell A2.

3. Logical Functions

```
IF(logical_test, value_if_true, value_if_false)
```

Makes a decision based on a condition.

```
Example: =IF(C2>=50, "Pass", "Fail")
```

```
AND (condition1, condition2,...)
```

Returns TRUE if all conditions are true.

```
=AND(B2>20, C2>60)
```

OR(condition1, condition2,...)

Returns TRUE if any condition is true.

```
=OR(B2>20, C2>90)
```

4. Lookup Functions

```
VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
```

Searches for a value in the first column of a table and returns a value from a specified column.

```
=VLOOKUP("Pen", A2:C6, 2, FALSE) \rightarrow finds "Pen" and returns its price.
```

```
XLOOKUP(lookup_value, lookup_array, return_array)
```

Newer, flexible lookup replacing VLOOKUP.

```
=XLOOKUP("Pen", A2:A6, B2:B6)
```

Hands-On Practical Exercises

▶ Dataset Preparation

Enter the following data into Excel:

Product Price Stock First Name Last Name

Pen	25	100	Alice	Mumo
Pencil	15	50	Brian	Kiptoo
Book	120	30	Carol	Otieno
Ruler	10	80	Daniel	Mwangi
Eraser	5	70	Esther	Wanjiru

Exercise 1: Use MAX and MIN

Objective: Analyze the extremes in your dataset.

- 1. In cell F1, type: Highest Price
- 2. In cell F2, enter:

```
=MAX (B2:B6)
```

- 3. In cell G1, type: Lowest Stock
- 4. In cell G2, enter:

```
=MIN(C2:C6)
```

✓ Result: Returns the highest price and lowest stock value.

Exercise 2: Join First and Last Names

Objective: Use CONCATENATE to form full names.

1. In cell E2, enter:

```
=CONCATENATE(D2, " ", E2)
```

- 2. Press **Enter** and drag the formula down.
- ✓ Result: Full names like "Alice Mumo", "Brian Kiptoo"...

```
Alternative: Use =D2 & " " & E2 or =TEXTJOIN(" ", TRUE, D2, E2)
```

► Exercise 3: Lookup Price using VLOOKUP

Objective: Search for a product and return its price.

- 1. In cell H1, type: Enter Product
- 2. In H2, type a product name like Book
- 3. In I1, type: Price
- 4. In I2, enter:

```
excel
CopyEdit
=VLOOKUP(H2, A2:C6, 2, FALSE)
```

✓ Result: Returns the price of the product typed in H2.

P Bonus Exercises

- Use COUNT (B2:B6) to count how many prices are listed.
- Use IF(B2>50, "Expensive", "Affordable") to classify products.
- Use XLOOKUP to find stock levels:

```
=XLOOKUP("Book", A2:A6, C2:C6)
```

Knowledge Check Questions

- 1. What is the difference between MAX and MIN?
- 2. How do you merge a first name and last name into one cell?
- 3. What does FALSE do in a VLOOKUP function?
- 4. Write a formula to return "Low" if stock is <50, and "OK" otherwise.
- 5. Which function would you use to search for a value horizontally?

Chapter 4: IF, IFS, and SWITCH

Overview

Excel's **logical functions** are used to evaluate data and return results based on certain conditions. These are essential when you want Excel to "make decisions" within your spreadsheet.

This chapter focuses on:

- IF \rightarrow Handle one condition
- IFS → Handle multiple conditions
- SWITCH → Match a single expression to multiple outcomes

***** Key Concepts

⊘ 1. IF Function

Purpose: Tests a condition and returns one value if TRUE and another if FALSE.

Syntax:

```
=IF(logical test, value if true, value if false)
```

Example:

```
=IF(B2>=50, "Pass", "Fail")
```

• If B2 is greater than or equal to 50, return "Pass"; otherwise, return "Fail".

\varnothing 2. IFS Function

Purpose: Tests multiple conditions and returns a value for the first TRUE condition.

Syntax:

```
=IFS(condition1, result1, condition2, result2, ...)
```

Example (Grading):

```
=IFS(B2>=90, "A", B2>=80, "B", B2>=70, "C", B2>=60, "D", TRUE, "F")
```

• Checks the first condition that is TRUE and returns its corresponding result.

⊘ 3. SWITCH Function

Purpose: Compares **one value or expression** against a list of values and returns the matching result.

Syntax:

```
=SWITCH(expression, value1, result1, value2, result2, ..., [default])
```

Example (Department):

```
=SWITCH(A2, "HR", "Human Resources", "IT", "Information Technology", "FIN", "Finance", "Unknown")
```

• If A2 is IT, result is "Information Technology".

Practical Exercises

▶ Dataset Preparation

Enter the following into a worksheet:

Name Score Grade Code

Alice 92	IT
Brian 76	HR
Carol 45	FIN
Daniel 61	IT
Esther 89	OPS

► Exercise 1: Use IF to Classify Pass/Fail

Objective: Use the IF function to determine whether a student passed (score ≥ 50).

1. In cell D2, enter:

```
=IF(B2>=50, "Pass", "Fail")
```

2. Drag the formula down to D6.

⊘ Output:

- If Score $\geq 50 \rightarrow$ "Pass"
- If Score $< 50 \rightarrow$ "Fail"

▶ Exercise 2: Use IFS to Assign Grades

Objective: Use IFS to assign letter grades.

Grading Scheme:

- A: 90 and above
- B: 80–89
- C: 70–79
- D: 60-69
- F: Below 60
- 1. In cell E2, type:

```
=IFS(B2>=90, "A", B2>=80, "B", B2>=70, "C", B2>=60, "D", TRUE, "F")
```

2. Drag the formula down to E6.

✓ Output: Students receive grades based on scores.

► Exercise 3: Use SWITCH to Translate Department Codes

Objective: Use SWITCH to convert department codes to full names.

- 1. In cell F1, type Department
- 2. In F2, enter:

```
=SWITCH(C2, "IT", "Information Technology", "HR", "Human Resources", "FIN", "Finance", "OPS", "Operations", "Other")
```

3. Drag the formula down to F6.

 \checkmark Output: IT \rightarrow "Information Technology", HR \rightarrow "Human Resources", etc.

Knowledge Check Questions

- 1. What is the main limitation of the IF function when handling many conditions?
- 2. How is IFS more efficient than nested IF functions?
- 3. When should you use SWITCH instead of IFS?
- 4. Write an IF formula that returns "Above Average" if a score is above 70, otherwise "Below Average".
- 5. Modify the grading scale to include "A+" for scores \geq 95 using IFS.

Chapter 5: Conditional Formatting and Data Validation

Objective:

- Learn how to **visually emphasize data** using Conditional Formatting.
- Use **Data Validation** to restrict or control data input in cells.

1. Conditional Formatting – Highlight Scores Less Than 40

Goal:

Visually identify all scores that are less than 40 (e.g., failing scores).

Steps in Excel:

- 1. Select the range of cells containing the scores (e.g., B2:B20).
- 2. Go to the **Home** tab.
- 3. Click on Conditional Formatting > Highlight Cells Rules > Less Than.
- 4. In the dialog box:

- o Enter 40.
- o Choose a format (e.g., Light Red Fill with Dark Red Text).
- 5. Click **OK**.

≪ Result:

Any cell in your selected range with a score less than 40 will now be highlighted, helping you quickly spot low scores.

2. Data Validation – Create a Dropdown List with Yes, No, Maybe

Goal:

Restrict user input to only allow Yes, No, or Maybe in selected cells.

Steps in Excel:

- 1. Select the cells where the user should input a response (e.g., c2:c20).
- 2. Go to the **Data** tab.
- 3. Click on **Data Validation**.
- 4. In the dialog box:
 - o Under the **Settings** tab:
 - Allow: List
 - Source: Yes, No, Maybe
 - o (Optional) Under the **Input Message** tab:
 - Title: Response Required
 - Input message: Please select Yes, No, or Maybe from the list.
 - o (Optional) Under the **Error Alert** tab:
 - Style: **Stop**
 - Title: Invalid Entry
 - Error message: Only Yes, No, or Maybe are allowed.
- 5. Click **OK**.

≪ Result:

Users will now see a dropdown list in each selected cell and can only choose **Yes**, **No**, or **Maybe**—preventing invalid data entries.

Summary Table

Feature	Use Case	Key Benefit
Conditional Formatting	Highlight scores < 40	Quickly identify failing students
Data Validation	Restrict input to Yes/No/Maybe	Prevent incorrect or inconsistent data entry

Chapter 6: Working with Excel Tables

Objective:

- Understand how to convert a data range into an Excel Table.
- Use built-in features like sorting, filtering, and structured formulas for easier and more dynamic data analysis.

Why Excel Tables?

Excel Tables offer powerful advantages:

- Automatic formatting and filtering
- Structured referencing (you can use column names in formulas)
- **Dynamic range expansion** as data is added
- Better readability and usability

Exercises

1. Convert Data to a Table

⊘ Goal:

Turn your plain range of data into an Excel Table for better management and formatting.

Steps:

- 1. Select your entire data range (e.g., A1:D20).
- 2. Go to the **Insert** tab on the Ribbon.
- 3. Click **Table**.
- 4. Ensure the checkbox "My table has headers" is checked (if your data includes headers).
- 5. Click OK.

Result:

Your data is now an Excel Table with built-in filters and alternate row shading. You can now manage and analyze your data more effectively.

2. Sort and Filter Table Data

⊘ Goal:

Sort and filter the data to find relevant information quickly.

⋄ Steps:

- 1. After converting to a Table, each column header will have a dropdown arrow.
- 2. Click the dropdown on any column (e.g., "Score").
- 3. Choose:

- o Sort Smallest to Largest (for numerical columns),
- o **Sort A to Z** (for text),
- o or use **Filters** (e.g., show only rows where Score > 50).

Tip:

You can also apply multiple filters across columns. For example, filter "**Status**" = Yes and "**Score**" > 60 at the same time.

3. Use Structured Formula to Sum a Column

∜ Goal:

Use structured references to sum a specific column (e.g., the "Score" column).

⋠ Steps:

- 1. Click on a blank cell below or beside the table (outside the table area).
- 2. Type the structured formula:

```
=SUM(Table1[Score])
```

- Replace Table 1 with the actual name of your table if different (you can find it under Table Design > Table Name).
- o Score is the column header in the table.
- 3. Press Enter.

Note: ■

- Structured references use column names inside square brackets.
- Excel auto-completes table names and column headers as you type.

♦ Final Result:

Action Benefit

Convert to Table Easier formatting, filtering, and referencing Sort and Filter Quickly analyze and view specific data

Structured Formula Clean and readable formulas that update dynamically