

Claims

1 1. A soft metal conductor for use in a semiconductor device comprising grains
2 having grain sizes sufficiently large so as to provide a substantially scratch-free surface upon
3 polishing in a subsequent chemical mechanical polishing step.

1 2. A soft metal conductor having improved hardness in its uppermost layer
2 for use in a semiconductor device wherein said uppermost layer consists of grains having grain
3 sizes not smaller than about 20% of the thickness of said soft metal conductor.

1 3. A soft metal conductor according to claim 2, wherein said conductor is a
2 member selected from the group consisting of a via, an interconnect and a line.

1 4. A soft metal conductor according to claim 2, wherein said soft metal is
2 selected from the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and CuAgAl.

1 5. An electrically conducting soft metal structure for use in a semiconductor
2 device comprising:

3 an uppermost layer consisting of grains having grain sizes not smaller than about
4 20% of the thickness of said soft metal structure, and

5 a second layer contiguous with and immediately adjacent to said uppermost layer
6 consisting of grains having grain sizes not larger than about 20% of the thickness of said soft
7 metal structure.

1 6. An electrically conducting soft metal structure according to claim 5,
2 wherein said uppermost layer having a thickness sufficiently large to provide a substantially
3 scratch-free and erosion-free surface upon polishing in a chemical mechanical polishing method.

1 7. An electrically conducting soft metal structure according to claim 5,
2 wherein said structure being made of a metal selected from the group consisting of aluminum,
3 copper, silver, ternary and binary alloys of aluminum, copper, silver and any other low resistance
4 metal.

1 8. An electrically conducting soft metal structure according to claim 5,
2 wherein said structure being a member selected from the group consisting of a via, an
3 interconnect and a line.

1 9. A soft metal conductor according to claim 2, wherein said uppermost layer
2 consisting of grains of metal not less than 200 nm in grain size.

1 10. An electrically conducting soft metal structure according to claim 5,
2 wherein said uppermost layer having grains of metal not less than 200 nm in grain size and a
3 thickness of at least 100 nm.

1 11. An electrically conducting soft metal structure according to claim 5.
2 wherein said uppermost layer having grains of metal not less than 200 nm in grain size and said
3 second layer having grains of metal not more than 100 nm in grain size.

1 12. An electrically conducting soft metal structure according to claim 5.
2 wherein said second layer having grains of metal not more than 100 nm in grain size and a
3 thickness of not less than 600 nm.

13. An electrically conducting soft metal structure according to claim 5 further comprising a bottom layer contiguous with and immediately adjacent to said second layer, said bottom layer consisting of grain of metal not less than 200 nm in grain size.

14. A soft metal conductor for use in a semiconductor device comprising:
a first metal layer;
a Ti layer of less than 30 nm thick on top of said first soft metal layer,
a second metal layer on top of said Ti layer having in its uppermost surface metal grains of grain sizes not smaller than about 20% of the thickness of said second soft metal layer.
and
whereby said Ti layer sandwiched between two soft metal layers is converted to TiAl, upon annealing at a temperature higher than room temperature such that diffusion of atoms of said soft metal through said Ti Al_x film occurs upon the passage of an electrical current therethrough and thus improving the electromigration resistance of said soft metal conductor.

1 15. A soft metal conductor according to claim 14, wherein said soft metal is
2 a member selected from the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and CuAgAl.

1 16. A soft metal conductor according to claim 14, wherein said Ti layer further
2 comprising composite layers of Ti and Ti alloys including Ti/TiN.

1 17. A soft metal conductor according to claim 14, wherein said Ti layer is
2 situated at the bottom of a via having portions of said layer in extremely small thickness or
3 portions of said layer in voids so as to allow the existence of a continuous phase of said soft
4 metal material or diffusion of said soft metal atoms across a TiAl_x layer subsequently formed and
5 a resulting improvement in the electromigration resistance of said soft metal conductor.

1 18. A soft metal conductor according to claim 14 further comprising an
2 annealing step at a predetermined temperature and for a predetermined length of time sufficient
3 to convert said Ti layer to TiAl_x when said soft metal used is Al or AlCu.

1 19. A soft metal conductor according to claim 18, wherein said predetermined
2 temperature is not less than 300°C and said predetermined length of time is not less than 10 min.

1 20. A soft metal conductor according to claim 18, wherein said predetermined
2 temperature is 400°C and said predetermined length of time is 30 min.

1 21. A method of making a soft metal conductor for use in a semiconductor
2 device comprising the step of depositing a first layer of said soft metal consisting of grains
3 having grain sizes sufficiently large such that a substantially scratch-free surface upon polishing
4 in a subsequently conducted chemical mechanical polishing step is obtained.

1 22. A method according to claim 21, wherein said first soft metal layer is
2 deposited by a technique selected from the group consisting of physical vapor deposition,
3 chemical vapor deposition, evaporation and collimation.

1 23. A method according to claim 21, wherein said first soft metal layer
2 consisting of grains of metal not less than 0.3 μm in grain size.

1 24. A method according to claim 21, wherein said first soft metal layer having
2 a thickness of at least 100 nm.

1 25. A method according to claim 21 further comprising the step of depositing
2 a layer of said soft metal consisting of grains having a grain size of not more than 200 nm and
3 a layer thickness of not less than 400 nm prior to said deposition process of said first layer of
4 soft metal having grains sufficiently large so as to provide a substantially scratch-free surface
5 upon polishing in a subsequent CMP step.

1 26. A method according to claim 21 further comprising the steps of sequentially

1 depositing a layer of Ti of less than 30 nm thick and a second layer of soft metal on top of said
2 first soft metal layer such that the anti-electromigration property of said soft metal conductor is
3 improved when said Ti layer is converted to a TiAl_x layer in a subsequent annealing process.

1 27. A method according to claim 21, wherein said soft metal is selected from
2 the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and CuAgAl.

1 28. A method of making a soft metal conductor in a semiconductor device
2 comprising the steps of:

3 filling a cavity for conductor with a soft metal at a first temperature between
4 about 100°C and about 300°C, said soft metal consisting of metal grains having a first grain
5 size, and

6 heating said conductor to a second temperature and for a length of time sufficient
7 to grow said metal grains to a second grain size larger than said first grain size.

1 29. A method according to claim 28, wherein said conductor is a member
2 selected from the group consisting of a via, an interconnect and a line.

1 30. A method according to claim 28, wherein said soft metal is selected from
2 the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and CuAgAl.

1 31. A method according to claim 28, wherein said second temperature is not
2 less than 300°C and said length of time is 2 min.

1 32. A method according to claim 28, wherein said second grain size is larger
2 than said first grain size such that the polishing characteristics of said soft metal conductor is
3 improved.

1 33. A method according to claim 28, wherein said second grain size is not
2 smaller than 200 nm.

1 34. A method according to claim 28, wherein said first grain size is not larger
2 than 200 nm and said second grain size is not smaller than 200 nm.

1 35. A method of polishing a soft metal structure according to a predetermined
2 polishing process defined by the equation of:

$$\frac{dV}{dt} = \frac{KAR_{pd}H_pV_cG_p}{H_mG_m}$$

6 wherein dV/dt is the rate the volume of metal is removed, H_m is the hardness of
7 the metal, H_p is the hardness of the particles in the slurry, A is the area of metal exposed, G_m
8 is the grain size of metal, G_p is the grain size of the particles in the slurry, R_{pd} is the roughness
9 of the polishing pad, K is a constant that depends on the chemical bonds between particles, metal,

10 pad, and pH factor, and V_c is the speed of the chuck, whereby said method allows an optimum
11 volume of metal to be removed without scratching or R_{pd} erosion occurring in the metal.

1 36. A method according to claim 35, wherein the soft metal structure is a
2 member selected from the group consisting of a via, an interconnect and a line.

1 37. A method according to claim 35, wherein said soft metal is selected from
2 the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and CuAgAl.

38. A method according to claim 35, wherein G_m is not smaller than 200 nm.

39. A dual-step deposition method for making a soft metal conductor for use
in an electronic device comprising the steps of:

depositing a first layer of metal by a physical vapor deposition process to a first
thickness, and

depositing a second layer of metal on top of said first layer of metal to a second
thickness larger than said first thickness by a method selected from the group consisting of
chemical vapor deposition, electroplating and electroless plating.

40. A dual-step deposition method for making a soft metal conductor according
to claim 39, wherein said first and said second metal layer are deposited of a material selected
from the group consisting of Al, Cu, Ag, CuAl, CuAg, AgAl and CuAgAl.

1 41. A dual-step deposition method for making a soft metal conductor according
2 to claim 39, wherein said second metal layer deposited has an average grain size of not smaller
3 than $0.1\mu\text{m}$.

1 42. A dual-step deposition method for making a soft metal conductor according
2 to claim 39, wherein said first thickness of said first layer of metal is at least 100 nm and said
3 second thickness of said second layer of metal is at least 600 nm.

43. A dual-step deposition method for making a soft metal conductor according
to claim 39, wherein the second layer of metal is deposited by a chemical vapor deposition
technique at a reaction temperature of not less than 300°C .

44. A dual-step deposition method for making a soft metal conductor according
to claim 39, wherein the first layer of metal deposited by a physical vapor deposition process
comprises large grain Cu alloyed with an element selected from C, B, N or an element from the
Periodic Table Group IIIA, IVA, VA for improved wear and electromigration resistance.

1 45. A dual-step deposition method for making a soft metal conductor according
2 to claim 39, wherein said second layer of metal deposited has a sheet resistance of not higher
3 than $0.1 \Omega/\square$.

1 46. A dual-step deposition method for making a soft metal conductor for use
2 in an electronic device comprising the steps of:

3 depositing a first layer of metal by a chemical vapor deposition technique to a first
4 thickness, and

5 depositing a second layer of metal by a technique selected from the group
6 consisting of electroplating, electroless plating and high temperature physical vapor deposition
7 process.

1 47. A dual-step deposition method for making a soft metal conductor according
2 to claim 46, wherein said first metal layer deposited has an average grain size of not smaller than
3 $0.3\mu\text{m}$.

1 48. A dual-step deposition method for making a soft metal conductor according
2 to claim 46, wherein said first layer of metal deposited by a chemical vapor deposition technique
3 has a sheet resistance of not higher than $0.1 \Omega/\square$.

1 49. A method for forming an interconnect in a logic or memory device by at
2 least two levels of metals comprising the steps of:

3 depositing at least one layer of metal into a line or via hole of a material selected
4 from the group consisting of Cu, Ag, Al, CuAg, CuAl, AgAl and CuAgAl, and

5 depositing a final layer of Cu having an average grain size of not smaller than 0.3
6 μm on top of said at least one layer of metal into said line or via hole.

1 50. A method for forming an interconnect in a logic or memory device
2 according to claim 49, wherein said at least one layer of metal comprising two layers of metal
3 deposited into a line or via hole.

1 51. A method for forming an interconnect in a logic or memory device
2 according to claim 49, wherein said final layer of Cu has a sheet resistance of not higher than
3 0.1 Ω/□.

52. A method for forming an interconnect surrounded at least on three sides by an amorphous barrier layer comprising the steps of:

depositing an amorphous barrier layer of refractory metal nitride or carbide into a line or via hole by a vapor deposition technique, and

depositing a layer of a conductive metal having an average grain size of not smaller than 0.3 μm on top of said amorphous barrier layer filling said line or via hole.

1 53. A method for forming an interconnect encapsulated in an amorphous barrier
2 layer according to claim 52, wherein said refractory metal in said refractory metal nitride or
3 carbide is selected from the group consisting of W, Ta and Ti.

1 54. A method for forming an interconnect encapsulated in an amorphous barrier
2 layer according to claim 52, wherein said conductive metal is selected from the group consisting
3 of Cu, Ag, Al, CuAg, CuAl, AgAl and CuAgAl.

4 55. A method for forming an interconnect encapsulated in an amorphous barrier
5 layer according to claim 52, wherein said vapor deposition technique is a chemical vapor
6 deposition or a physical vapor deposition technique.

1 56. A method for forming an interconnect encapsulated in an amorphous barrier
2 layer according to claim 52, wherein said refractory metal nitride is deposited by a chemical
3 vapor deposition technique conducted at a reaction temperature between about 300°C and about
4 400°C.

1 57. A method for forming an interconnect surrounded in an amorphous barrier
2 layer according to claim 52, wherein said refractory metal nitride is deposited by a sputtering
3 technique by using a composite target.

1 58. A method for forming an interconnect encapsulated in an amorphous barrier
2 layer according to claim 52 further comprising the step of annealing said amorphous barrier layer
3 at a temperature of not lower than 400°C for at least ½ hour prior to the conductive metal
4 deposition step.

1 59. A method for forming an interconnect encapsulated in an amorphous barrier
2 layer according to claim 52 further comprising the step of depositing a seed layer of said
3 conductive layer prior to the conductive metal deposition step.

1 60. A method for forming an interconnect surrounded at least on three sides
2 by an amorphous barrier layer according to claim 52 further comprising the step of depositing
3 a hard dielectric layer between said amorphous barrier layer and said conductive metal.

1 61. An electronic structure formed by the method of claim 59.

1 62. A method for forming a large grain interconnect encapsulated in an
2 amorphous barrier layer according to claim 59, wherein said hard dielectric layer is deposited of
3 a material selected from the group consisting of fluorinated oxide and amorphous or porous oxide
4 treated with SiH₄ or CH₄.

1 63. A method for fabricating a single damascene structure having an
2 interconnect formed of a metal selected from the group consisting of Al, Cu, Ag, CuAg, CuAl,
3 AgAl and CuAgAl, said metal having substantially number of grains of a size larger than 0.3 μm

1 64. A method for fabricating a dual damascene structure having an interconnect
2 formed of a metal selected from the group consisting of Al, Cu, Ag, CuAg, CuAl, AgAl and
3 CuAgAl, said metal having substantially number of grains of a size larger than 0.3 μm.

1 65. A method for forming an interconnect in an on-chip logic and memory
2 (SRAM or DRAM) device by at least two levels of metals comprising the step of:
3 depositing at least one layer of metal into a line or via hole of a material selected
4 from the group consisting of Cu, Ag, Al, and alloys of these elements, with average grain size
5 of not smaller than 0.3 μ m.

1 66. A semiconductor structure comprising logic and memory (SRAM or
2 DRAM) devices interconnected through at least a via and one metal level,
3 the metal level and via comprising copper with grains of not smaller than 0.3 μ m.

43
10052454 011602