## Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Информатика и вычислительная техника Дисциплина «Функциональная схемотехника»

### Отчет

По лабораторной работе №3 "Проектирование цифровых схем с использованием ПЛИС" Вариант 5

> Выполнил: Степанов М.А. Преподаватель: Салонина Е. А.

## Оглавление

| Цель работы                                   | 3 |
|-----------------------------------------------|---|
| Задание                                       |   |
| Зариант                                       |   |
| Зыполнение                                    |   |
| Схема разработанного блока вычисления функции |   |
| Описание работы модуля                        |   |
| Алгоритм работы пользователя                  |   |
| Результат тестирования разработанного блока   |   |
| Зыволы                                        |   |

### Цель работы

Получить навыки разработки цифровых устройств на базе программируемых логических интегральных схем (ПЛИС).

### Задание

- 1. Доработайте схему функционального блока, разработанного в лабораторной работе №2, в соответствии с рисунком 3.1. Необходимо добавить возможность работы с блоком посредством дискретных портов ввода/вывода, подключенных к переключателям, светодиодам и кнопкам платы Nexys 4 DDR:52
  - значения операндов должны вводиться с помощью переключателей (SW);
  - результат должен выводиться на светодиоды (LEDS);
- с целью повышения удобства работы пользователя допускается использование дополнительных кнопок, переключателей и светодиодов;
- интерфейс пользователя должен обеспечивать возможность многократного проведения вычислений без постоянного нажатия на кнопку сброса.
- 2. Разработайте тестовое окружение и проведите моделирование.
- 3. Проведите синтез и размещение схемы для ПЛИС XC7A100T-1CSG324C, входящей в состав отладочной платы Nexys 4 DDR.
- 4. Определите количество и тип используемых ресурсов ПЛИС после размещения схемы.
- 5. Проверьте работоспособность схемы на отладочной плате Nexys 4 DDR.
- 6. Составьте отчет по результатам выполнения работы.

### Вариант

Номер: 5

Функция:  $y = 3a + 2 * \sqrt[3]{b}$ 

Ограничение: 1 сумматор и 2 умножителя

# Выполнение Схема разработанного блока вычисления функции



Рисунок 1



Рисунок 2

### Описание работы модуля

На вход модуля подаются сигналы:

- start подается с кнопки BTNC (N17)
- rst подается с кнопки BTNR (M17)
- синхросигнал clk подключен к пину E3
- С переключателей SW0-SW15 считываются значения аргументов На выходе из модуля подключены
- Выбор номера индикатора AN0-AN7
- Значение, которое будет выведено на выбранном сегменте СА-DP
- Сигнал занятости модуля busy LD0

По сигналу старт начинается вычисление значения функции и выводится на семисегментные индикаторы.

### Алгоритм работы пользователя

- Пользователь вводит первый аргумент на переключателях SW8-SW15.
- Пользователь вводит второй аргумент на переключателях SW0-SW7
- Пользователь нажимает на кнопку ВТNС
- Результат будет выведен на семисегментные индикаторы
- Если пользователь хочет вернуть модуль в исходное состояние, он нажимает кнопку BTNR
- Если пользователь хочет повторно выполнить вычисления, то он он должен вернуться к первому пункту

### Результат тестирования разработанного блока

Временная диаграмма на частоте 100 МГц (1470 нс):



Рисунок 3



Рисунок 4

### Выводы

- Следует внимательно выбирать размерность шин при работе с внешними портами, иначе можно получить неопределенное поведение схемы.
- Комбинаторный блок always должен реагировать на один синхронный сигнал, иначе невозможно будет синтезировать данную схему.
- Смогу перенести разработанный мною блок в ПЛИС и выполнить тестирование на физической модели.