

SEMICONDUCTOR TECHNICAL DATA

KIA6225P/S BIPOLAR LINEAR INTEGRATED CIRCUIT

DUAL PRE-AMPLIFIER

- · Dual pre amplifier for car or home stereo use.
- High voltage gain : G_{VO}=100dB(Typ.) at f=1kHz.
- · Excellent channel separation and high ripple rejection.
 - : CHsep=65dB(Typ.)

(f=10kHz, Rg= $2.2k\Omega$, Vout=0dBm)

- : R.R=50dB(Typ.)
- Low noise : V_{NI} =1.0 μV_{rms} (Typ.)

at Rg= $2.2k\Omega$, Bw= $20Hz\sim20kHz$.

· Wide operating supply voltage range.

: $V_{CC}=6\sim16V \text{ (Ta=25}^{\circ}\text{C)}$

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		Vcc	16	V	
Power Dissipation (Note)	KIA6225P	D	600	mW	
	KIA6225S	P_{D}	700		
Operating Temperature		T_{opr}	T _{opr} -30~85		
Storage temperature		T_{stg}	-55~150	°C	

Note; Derated above Ta=25°C in the proportion of 5.6mW/°C2 for KIA6225S, and of 4.8mW/°C for KIA6225P.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, Vcc=6V, f=1kHz, Rg=600Ω, R_L=10kΩ, Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	ТҮР.	MAX.	UNIT
Supply Current	Icc	-	$ m V_{IN}$ =0	1	3	6	mA
Voltage Gain	Gvo	_	V _{OUT} =0dBm	75	100	_	dB
	Gv	-	V _{OUT} =0dBm	38.5	41.5	44.5	
Maximum Output Voltage	V_{OM}	-	THD=1%	1.0	1.8	-	V_{rms}
Equivalent Input Noise Voltage	$V_{ m NI}$	-	Rg=2.2kΩ, BPF=20Hz~20kHz	İ	1.0	1.7	$\mu m V_{rms}$
Input Resistance	R _{IN}	_	-	50	150	-	kΩ
Channel Separation	CHsep	-	f=10kHz, V _{OUT} =0dBm	-	65	_	dB
Ripple Rejection	R.R	_	f=100Hz, Rg=2.2kΩ	-	50	_	dB
Total Harmonic Distortion	THD	_	V_{OUT} =0dBm	-	0.04	0.25	%

APPLICATION CIRCUIT

