Homework Assignment N°4

BML36 Thibault Douzon Rajavarman Mathivanan

September 26th, 2018

Contents

1 Exercise 1: Decision Trees																						
	1.1	Part a																				
	1.2	Part b																				
	1.3	$Part\ c$																				
	1.4	Part d																				
	1.5	Part e																				
	1.6	Part f																				

1 Exercise 1: Decision Trees

1.1 Part a

0.51996

1.2 Part b

entropy of the dataset: 0.991

Feature a_1	+	-	p_+	<i>p</i> _	entropy
T	3	1	$\frac{3}{4}$	$\frac{1}{4}$	0.811
F	1	4	$\frac{1}{5}$	$\frac{4}{5}$	0.722

new entropy for a_1 : $0.811 \times \frac{4}{9} + 0.722 \times \frac{5}{9} = 0.762$ information gain of al = 0.229

	Feature a_2	+	-	p_+	$p_{\text{-}}$	entropy
	T	2	3	$\frac{2}{5}$	$\frac{3}{5}$	0.971
ĺ	F	2	2	$\frac{2}{4}$	$\frac{2}{4}$	1

new entropy for a_2 : $0.971 \times \frac{5}{9} + 1 \times \frac{4}{9} = 0.762$ information gain of $a_2 = 0.007$

1.3 Part c

Entropy for 0.5 split is: 0.9910760598382223, information gain: -1.1102230246251565e-16

Entropy for 1.5 split is: 0.8483857803777466, information gain: 0.14269027946047563 Entropy for 2.5 split is: 0.8483857803777466, information gain: 0.14269027946047563 Entropy for 3.5 split is: 0.9885107724710845, information gain: 0.002565287367137681 Entropy for 4.5 split is: 0.9182958340544896, information gain: 0.07278022578373267 Entropy for 5.5 split is: 0.9838614413637048, information gain: 0.007214618474517431 Entropy for 6.5 split is: 0.9727652780181631, information gain: 0.018310781820059074 Entropy for 7.5 split is: 0.888888888888888, information gain: 0.10218717094933338 Entropy for 8.5 split is: 0.9910760598382223, information gain: -1.1102230246251565e-16

1.4 Part d

best split is a1 (information gain is 0.229)

1.5 Part e

Error rate:

$$error = 1 - max_i[p(i|t)]$$

a1:

error on T node: 1 - 3/4 error on F node: 1 - 4/5

global classification error on a 1 split: (1-3/4)*4/9+(1-4/5)*5/9=2/9

```
a2: error on T node: 1-3/5 error on F node: 1-2/4 global classification error on a1 split: (1-3/5)*5/9+(1-2/4)*4/9=4/9 Best split is the one with fewer global classification error -> a1
```

1.6 Part f