Brac University

Department of Electrical & Electronic Engineering

Semester: Summer 2024

Inspiring Excellence

Course Title: Electrical Circuits II Laboratory

Section: 1

Project

Ensuring maximum power transfer to a load at resonant frequency.

Prepared by:

Name: Pragya Pratim Debnath_ ID: _23121085___

Group Number: 02

Other Group members:

Sl.	ID	Name
1.	Md. Fardin khan	23121094
2.	Maliha Rahman	23121023
3.	Munim Mahmud	22321044

Objective: We need to find a load component which will consume maximum average power in a circuit and also, we need to ensure there will be resonance for an input frequency of 1kHz.

Circuit Diagram:

From Calculations, **Zth= 183-338.6j**

 $V_{th} = 1.67 \angle 0$

From Zth (Zth= 183-338.6j), we can get the value of Capacitor, as -338.6j

Or, C = 0.47uF

From the formula of resonance frequency, **fr= 1/2** π \sqrt{LC}

We get L=0.054H, here f=1kHz

Again for load resistance,

Load resistance, **rL**= $\sqrt{((183)^2+(339.29-338.6)^2)}$

 $rL=183\Omega$

Simplified RLC circuit:

Setup Analysis:

Frequency Response Graph:

Reconstructing the circuit:

Graph we get:

Maximum Power Transfer:

For maximum power transfer, the formula is

$$P_{\text{max}} = V_{\text{Th}}^2 / 4R_{\text{Th}}$$

Here only the magnitude of V_{Th} and R_{Th} matters. So, we can construct a DC circuit to find the R which will consume maximum power ignoring the capacitive and inductive components as their reactance in AC was zero.

Circuit Diagram:

Setup analysis:

Data Table:

R (kΩ)	P _{max} (mW)	$P_{avg} = P_{max}/2$ (mW)
183Ω	3.8099 mW	1.90495

Calculation: According to the formula of P_{max} , we get P_{max} =3.8099 mW which is the same as the simulation result.(Rth=183 ohm).

By analyzing the graph we get that power becomes maximum when load resistance is **181.980** (182) ohm .

Now, let's take a lower value of R_L to calculate the power,

Let, $R_L = 160\Omega$

Then,
$$P_{\text{max}} = \frac{VTh^2}{(RTh + RL)^2} RL$$

$$P_{max} = 3.7928 \text{ mW}$$

Again, Let, $R_L = 200 \Omega$

Then, **P**_{max}= **3.8024 mW**

In both cases, the power is lesser than the simulation result. Which means our calculation is right.

Graph:

