Lecture 7b: SAT Based Planning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

Week	30000D	30282R	Topics	Chapters
1	1/7	1/8	Intelligent Agents	[Ch 1.1-1.4 and 2.1-2.4]
	1/9	1/10	Problem Solving and Search	[Ch 3.1-3.3]
2	1/14	1/15	Uninformed Search	[Ch 3.3-3.4]
	1/16	1/17	Heuristic Search (A*)	[Ch 3.5]
3	1/21	1/22	Heuristic Functions	[Ch 3.6]
	1/23	1/24	Local Search	[Ch 4.1-4.2]
	1/25		Project 1 Out	
4	1/28	1/29	Adversarial Search	[Ch 5.1-5.3]
	1/30	1/31	Knowledge Based Agents	[Ch 7.1-7.3]
5	2/4	2/5	Propositional Logic Inference	[Ch 7.4-7.5]
	2/6	2/7	First-Order Logic	[Ch 8.1-8.4]
	2/8		Project 1 Due	
	2/8		Homework 1 Out	
6	2/11	2/12	Rule-Based Systems	[Ch 9.3-9.4]
	2/13	2/14	Search-Based Planning	[Ch 10.1-10.3]
	2/15		Homework 1 Due	
7	2/18	2/19	SAT-Based Planning	[Ch 10.4]
,	2/20	2/21	Knowledge Representation	[Ch 12.1-12.5]
8	2/25	2/26	Midterm Review	
	2/27	2/28	Midterm Exam	

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Graph-based Planning
- SAT-based Planning
 - Modern SAT Solvers
 - SAT-based Planning

Recap: Difference between "search" and "planning"

- Problem-solving agent can find a sequence of actions that result in a goal state
 - it deals with "atomic" representations of states
 - Needs "domain-specific" heuristics to perform well in search
- Planning agent can also find a sequence of actions that result in a goal state
 - But it uses a "factored" representations of states
 - Can have "generic" heuristics for search

Logic formulas in a restricted format

Recap: Search vs. planning

Planning opens up action and goal representations

	Search	Planning
States		
Actions		
Goal		
Plan		

Recap: Search vs. planning

Planning opens up action and goal representations

	Search	Planning
States	data structures	Logical sentences
Actions	code	Preconditions/outcomes
\mathbf{Goal}	code	Logical sentence (conjunction)
Plan	Sequence from S_0	Constraints on actions

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

```
Poor \wedge Unknown At(Truck_1, Melbourne) \wedge At(Truck_2, Sydney) At(x,y) \bigcirc \text{ cannot have variables (x,y)} At(Father(Fred), Sydney) \bigcirc \text{ cannot have function symbol}
```

Goal: a conjunction of literals, but may have variables

$$At(Home) \land Have(Milk) \land Have(Bananas) \land Have(Drill)$$

 $At(x) \land Sells(x, Milk)$

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

Action name

Conjunction of **positive** literals

```
Action(Fly(p, from, to),

PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)

EFFECT: \neg At(p, from) \land At(p, to))
```

Conjunction of literals (positive or negative)

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

Action(Fly(p, from, to),

 $\mathsf{PRECOND} : At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$

EFFECT: $\neg At(p, from) \wedge At(p, to)$

Negative literal

DEL this lieteral from the new state

Positive literal

ADD this lieteral into the new state

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

 $Action(Fly(p, from, to), \\ \mathsf{PRECOND}: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to) \\ \mathsf{Effect}: \neg At(p, from) \land At(p, to))$

Transition model:

$$\mathsf{RESULT}(s,a) = (s - \overline{\mathsf{DEL}(a)}) \cup \overline{\mathsf{ADD}(a)}$$


```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \wedge At(C_2, JFK) \wedge At(P_1, SFO) \wedge At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
 Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(0, p, a), \_
   PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
   EFFECT: \neg At(c, a) \land In(c, p)
 Action(Unload(c, p, a),
   PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
   EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly)(p, from, to),
   PRECOND: At(p, from) \wedge Plane(p) \wedge Airport(from) \wedge Airport(to)
   EFFECT: \neg At(p, from) \land At(p, to)
                                                                                    Unload
The following plan is a solution to the problem:
         [Load(C_1, P_1, SFO), Fly(P_1, SFO, JFK), Unload(C_1, P_1, JFK),
          Load(C_2, P_2, JFK), Fly(P_2, JFK, SFO), Unload(C_2, P_2, SFO).
```

Recap: Planning as state-space search (forward)

 $At(P_1, A)$

 $At(P_2, A)$

Recap: Planning as state-space search (forward)

Recap: Planning as state-space search (forward)

Recap: Heuristics for planning

- Neither forward nor backward search is efficient without a good heuristic function
 - Need an admissible heuristic
 - i.e., never overestimate the distance from state (s) to the goal

Question: Instead of designing a different heuristic function for each and every planning problem that you may encounter, can you design a "generic" heuristic that works for all planning problems?

Recap: Planning graph

- It is a generic data structure that can be used to give an admissible heuristic estimate for any planning problem
 - Will never overestimate; and often accurate

```
Init(Have(Cake))
Goal(Have(Cake) \land Eaten(Cake))
Action(Eat(Cake)
PRECOND: Have(Cake)
EFFECT: \neg Have(Cake) \land Eaten(Cake))
Action(Bake(Cake))
PRECOND: \neg Have(Cake)
EFFECT: Have(Cake))
```

Recap: Planning graph

- S0, S1, S2 states
 - Literals may be reached at each time step
 - Mutual exclusion links
- A0, A1 actions
 - Mutual exclusion links

 S_0

 A_0

 S_1

Init(Have(Cake))

Action(Eat(Cake)

Action(Bake(Cake))

 $Goal(Have(Cake) \land Eaten(Cake))$

EFFECT: $\neg Have(Cake) \land Eaten(Cake)$

PRECOND: Have(Cake)

PRECOND: $\neg Have(Cake)$

EFFECT: Have(Cake))

 S_2

Have(Cake)

¬ Eaten(Cake)

Recap: Planning graph

Planning graph: mutex actions

- Actions: Effects contradict each other
 - Eat(Cake).effect vs. Have(Cake).effect
- Actions: Preconditions contradict each other
 - Bake(Cake).precond vs Eat(Cake).precond

 $Init(Have(Cake)) \\ Goal(Have(Cake) \land Eaten(Cake)) \\ Action(Eat(Cake) \\ PRECOND: Have(Cake) \\ Effect: \neg Have(Cake) \land Eaten(Cake)) \\ Action(Bake(Cake) \\ PRECOND: \neg Have(Cake) \\ Effect: Have(Cake))$

Properties of a planning graph

- Polynomial in the size of the planning problem
 - Instead of being "exponential" in size

- If any <u>goal literal</u> fails to appear in the final level of the graph, then the problem is **unsolvable**
 - Sound conclusion

- The cost of achieving any goal (g) can be estimated as the level at which (g) first appears in the planning graph constructed from (s) as the initial state
 - Never over-estimate

Example planning graph (spare tire)

At(Flat,Axle)

¬ At(Spare,Axle)

¬ At(Flat,Ground)

¬ At(Spare,Ground)

Example planning graph (spare tire)

Reached more states that actually possible

Outline for today

- Solving AI Planning Problems using SAT
 - What is SAT?
 - How to implement a SAT solver?
 - How to reduce an Al planning problem to SAT?

History...

- 1969 Plan synthesis as theorem proving (Green IJCAI-69)
- 1971 STRIPS (Fikes & Nilsson AlJ-71)
 - Decades of work on "specialized theorem provers"...
- 1992 SatPlan approach (Kautz & Selman ECAI-92)
 - Encoding STRIPS-style linear planning;
 - Didn't appear practical...
- 1996 (Kautz & Selman AAAI-96) (Kautz, McAllester, Selman KR-96)
 - Electrifying results (hand translated formulas)
 - 1997 MEDIC (Ernst et al, IJCAI-97)
 - First complete implementation of SatPlan (with compiler)
- 2001 and beyond
 - Rapid progress on SAT solving techniques
 - 2004 SatPlan was clear winner of "optimal planners"
 - Due to huge advances in SAT solvers (e.g., zChaff, miniSAT,...)

Satisfiability (SAT)

 SAT is the problem of determining if the variables of a Propositional logic (Boolean) formula can be assigned (to true/false) such that the formula evaluates to TRUE.

Theoretical Complexity

- The first NP-complete problem (Stephen Cook, 1971)
 - All currently known algorithms are exponential-time
 - Not clear if a polynomial-time algorithm exists
- One of the seven Millennium Prize Problems
 - US\$ 1,000,000 prize for the first correct solution

P versus NP problem:

Informally, it asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. It was introduced in 1971 by <u>Stephen Cook</u>.

Conjunctive Normal Form (re-cap)

- Boolean Variable
- Literal
- Clause
- CNF

Examples

Unit Propagation

- Remove "unit (one-literal) clauses"
 - Find them → set them to TRUE → remove clauses → propagate values
 → ...

Examples

$$(b) \land (\neg b \lor c) \land (\neg c \lor d) \land (\neg d)$$

What is DPLL?

- A Classic SAT Algorithm
 - by Davis, Putnam, Logemann, Loveland [DP60, DLL62]

Making a Decision

Pick a free variable and set it to either true or false

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

Deducing a Conflict → (Chronological) Backtracking

Two Key Ideas in Modern SAT Solvers

- Conflict Driven Clause Learning (CDCL) [MS96]
- Fast Deduction and Backtracking [MMZ+01]

TimeLine

```
1960
DP
≈10 var
```


CDCL: The GRASP Story (1996)

GRASP—a new search algorithm for satisfiability

Full Text: Pdf Buy this Article

Authors: João P. Marques Silva Cadence European Laboratories IST/INESC, 1000

Lisboa, Portugal

Karem A. Sakallah Department of EECS, University of Michigan, Ann Arbor,

Michigan

1997 Article

Bibliometrics

Search Tree

Backtracking

Chronological, or non-chronological

Decision Stack

- Main data structures of a SAT solver
 - Clause database
 - Assignment stack

Decision level

- Pick a variable, set it to true or false, and derive all the implications
- All these variables are assigned at the same "decision level"

Decision → Implication → Conflict

 $(\neg a \lor b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d)$

Decision stack

Level 0

Level 1

Level 2

a@1 c@2 d@2 conflict b@2 conflict

$$\gamma_2 = (a \vee \neg b \vee c)$$

$$\gamma_3 = (\neg c \lor d)$$

$$\gamma_4 = (\neg c \vee \neg d)$$

Conflict Analysis → New (Learned) Clause

New (Learned) Clause

Non-chronological Backtracking

Augment the "clause database":

Without you making any decision, the newly added clause will trigger implications at Decision Level 0

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

 $\wedge (\neg c)$

Decision stack

Level 0

Level 1

$$\gamma_2 = (a \lor \neg b \lor c)$$

$$\gamma_7 = (b \lor c \lor \neg d)$$

$$\gamma_8 = (a \lor b \lor d)$$

$$\gamma_9 = (\neg c)$$

 $\gamma_{10} = (a \vee c)$

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

 $\wedge (\neg c)$

Decision stack

Level 0

Level 1

$$\gamma_2 = (a \vee \neg b \vee c)$$

$$\gamma_7 = (b \lor c \lor \neg d)$$

$$\gamma_8 = (a \lor b \lor d)$$

$$\gamma_9 = (\neg c)$$

In theory, this clause may also be derived using "resolution" – it's a resolvent!

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\wedge (\neg c)$$

Decision stack

Level 0

Level 1

$$\gamma_2 = (a \lor \neg b \lor c)$$

$$\gamma_7 = (b \lor c \lor \neg d)$$

$$\gamma_8 = (a \lor b \lor d)$$

$$\gamma_9 = (\neg c)$$

Augment the "clause database"

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\wedge (\neg c)$$

Decision stack

Level 0

Level 1

$$\gamma_1 = (\neg a \lor \neg b \lor c)$$

$$\gamma_5 = (\neg a \lor c \lor d)$$

$$\gamma_6 = (\neg a \lor b \lor \neg d)$$

$$\gamma_9 = (\neg c)$$

$$\gamma_{10} = (a \lor c)$$

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\wedge (\neg c)$$

$\land (a \lor c)$

Decision stack

Level 0

Level 1

$$\gamma_1 = (\neg a \lor \neg b \lor c)$$

$$\gamma_5 = (\neg a \lor c \lor d)$$

$$\gamma_6 = (\neg a \lor b \lor \neg d)$$

$$\gamma_9 = (\neg c)$$

$$\gamma_{10} = (a \lor c)$$

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

 $\wedge (\neg c)$

 $\land (a \lor c)$

 \wedge (c)

Decision stack

Level 0

Level 1

$$\gamma_1 = (\neg a \lor \neg b \lor c)$$

$$\gamma_5 = (\neg a \lor c \lor d)$$

$$\gamma_6 = (\neg a \lor b \lor \neg d)$$

$$\gamma_9 = (\neg c)$$

$$\gamma_{10} = (a \lor c)$$

Impact of CDCL (conflict-driven clause learning)

 In practice, it has made many important SAT problems "polynomial-time solvable"

TimeLine

1960 DP ≈10 var 1996 GRASP ≈1k var

TimeLine

1960 DP ≈10 var 1996 GRASP ≈1k var

Key Ideas in Modern SAT Solvers

- Conflict Driven Clause Learning (CDCL) [MS96]
- Fast Deduction and Backtracking [MMZ+01]

The Chaff Story (Spring 2000)

- Conflict Driven Clause Learning (CDCL) [MS96]
- Fast Deduction [MMZ+01]

Prof. Shard Malik Princeton University

M. Moskewicz Student (senior)

C. Madigan Student (senior)

Y. Zhao

L. Zhang Grad. student

http://www.princeton.edu/pr/pwb/01/0305/1b.shtml

The Chaff Story (2009)

Chaff: engineering an efficient SAT solver

Full Text: Pdf Buy this Article

Authors: Matthew W. Moskewicz Department of EECS, UC Berkeley

> Conor F. Madigan Department of EECS, MIT

Ying Zhao Department of Electrical Engineering, Princeton

University

Lintao Zhang Department of Electrical Engineering, Princeton

Sharad Malik Department of Electrical Engineering, Princeton

- Downloads (6 Weeks): 22
- Downloads (12 Months): 126
- Citation Count: 820

CAV Award 2009 (\$10,000)

http://www.prlog.org/10326322-michigan-and-princeton-researchers-recognized-for-work-on-boolean-satisfiability-sat-solvers.html

TimeLine

What's Next? ... Parallel SAT???

Some Applications of SAT Solvers

- Formal methods :
 - ► Hardware model checking; Software model checking; Termination analysis of term-rewrite systems; Test pattern generation (testing of software & hardware); etc.
- Artificial intelligence :
 - Planning; Knowledge representation; Games (n-queens, sudoku, social golpher's, etc.)
- Bioinformatics:
 - Haplotype inference; Pedigree checking; Analysis of Genetic Regulatory Networks; etc.
- Design automation :
 - Equivalence checking; Delay computation; Fault diagnosis;
 Noise analysis; etc.
- Security :
 - Cryptanalysis; Inversion attacks on hash functions; etc.

Outline for today

- Solving Al Planning Problem using SAT
 - What is SAT?
 - How to implement a SAT solver?
 - How to reduce Al planning to SAT?

High-level Procedure

- Initial state: where do we start?
- Goal state: where do we want to go?
- Transition: which action at time 0, time 1, and so on

SAT encoding of the planning problem

- Construct a propositional formula

 for (P,n) such that
 - The propositional formula Φ is satisfiable if and only if there exists a plan $\pi = (a_0, a_1, ..., a_{n-1})$ for (P,n)
 - Every model of the formula Φ corresponds to a solution plan π

Constructing the CNF formulas

- Initial state
 - True at time 0 $\bigwedge\{I_0 \mid I \in S_0\} \land \bigwedge\{\neg I_0 \mid I \in L S_0\}$
- Goal state
 - True at time n $\bigwedge\{I_n \mid I \in g^+\} \land \bigwedge\{\neg I_n \mid I \in g^-\}$

Constructing the CNF formulas

- Initial state
 - True at time 0 $\bigwedge\{I_0 \mid I \in s_0\} \land \bigwedge\{\neg I_0 \mid I \in L s_0\}$
- Goal state
 - True at time n $\bigwedge\{I_n \mid I \in g^+\} \land \bigwedge\{\neg I_n \mid I \in g^-\}$
- Transition model
 - Actions and effects at time 0, time 1, and so on

$$a_i \Rightarrow \bigwedge \{p_i \mid p \in \mathsf{Precond}(a)\} \land \bigwedge \{e_{i+1} \mid e \in \mathsf{Effects}(a)\}$$

- Complete exclusion axioms
- Frame axioms
- Formula Φ is the conjunction of these formulas
 - The solution plan $\pi = (a_0, a_1, ..., a_{n-1})$ is a sequence of actions

Complete exclusion axiom

- There can be "one and only one" action at each time step
 - Any two actions (a) and (b) cannot occur at the same time

$$\neg a_i \lor \neg b_i$$

There must be "at least one" action at each time step

$$a_i \lor b_i$$

Note: assume that they are the only two actions

Frame axiom

- Formulas describing "what doesn't change" between time steps (i) and (i+1)
 - There are several ways to write frame axioms
- One way: explanatory
 - One axiom for each literal (l): which actions must be responsible for the change between time steps (i) and (i+1)

$$(\neg I_i \land I_{i+1} \Rightarrow \bigvee_{a \text{ in } A} \{a_i \mid I \in \text{effects}^+(a)\})$$

 $\land (I_i \land \neg I_{i+1} \Rightarrow \bigvee_{a \text{ in } A} \{a_i \mid I \in \text{effects}^-(a)\})$

Example

- Robot planning
 - Robot (r1) and two locations (l1,l2)
 - One action at a time

```
move(r : robot, I : location, I' : location)
precond: at(r,I)
effects: at(r,I'), ¬at(r,I)
```

Example

- Robot planning
 - Robot (r1) and two locations (l1,l2)
 - One action at a time

```
move(r : robot, I : location, I' : location)
precond: at(r,I)
effects: at(r,I'), ¬at(r,I)
```

- Encoding (P,n) where n=1
 - Initial state:

$$at(r1,l1,0) \land \neg at(r1,l2,0)$$

– Goal state:

$$at(r1,l2,1) \land \neg at(r1,l1,1)$$

– Transition model:

```
move(r1,l1,l2,0) \Rightarrow at(r1,l1,0) \wedge at(r1,l2,1) \wedge \negat(r1,l1,1) move(r1,l2,l1,0) \Rightarrow at(r1,l2,0) \wedge at(r1,l1,1) \wedge \negat(r1,l2,1)
```

Example (continued)

– Initial state:

$$at(r1,l1,0) \land \neg at(r1,l2,0)$$

– Goal state:

$$at(r1,l2,1) \land \neg at(r1,l1,1)$$

– Transition model:

move(r1,l1,l2,0)
$$\Rightarrow$$
 at(r1,l1,0) \land at(r1,l2,1) \land \neg at(r1,l1,1) move(r1,l2,l1,0) \Rightarrow at(r1,l2,0) \land at(r1,l1,1) \land \neg at(r1,l2,1)

Complete exclusion axiom:

```
\negmove(r1,l1,l2,0) \lor \negmove(r1,l2,l1,0)
move(r1,l1,l2,0) \lor move(r1,l2,l1,0)
```

– Explanatory frame axiom:

$$\neg at(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0)$$

 $\neg at(r1,l2,0) \land at(r1,l2,1) \Rightarrow move(r1,l1,l2,0)$
 $at(r1,l1,0) \land \neg at(r1,l1,1) \Rightarrow move(r1,l1,l2,0)$
 $at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0)$

High-level Procedure

```
function Satplan (problem, T_{max})
returns a solution, or failure
inputs: problem, a planning problem
T_{max}, an upper limit for plan length

for T=0 to T_{max} do

cnf, mapping \leftarrow Translate-To-Sat(problem, T)
assignment \leftarrow Sat-Solver(cnf)
if assignment is not null then
return Extract-Solution(assignment, mapping)
return failure
```

Outline for today

- Solving Al Planning Problem using SAT
 - What is SAT?
 - How to implement a SAT solver?
 - How to reduce an Al planning problem to SAT?