CHM102A, General Chemistry, 2016-17 (II) End Semester Examination Date: 25-04-2017 Time: 9:00-11:00 Total Marks: 80 Roll #: Sect.: Name: Answer Key

Instructions:

- This is a closed book exam. Answer ALL the questions.
- The answers should strictly be given in the space provided after each question.
- ➤ All rough works should be done on extra sheets provided. These should not be submitted after the examination.
- Mobile phones or any other digital gadgets are STRICTLY NOT ALLOWED during the examination.
- > Sharing calculator is not allowed.
- The answers will not be graded if name, roll no. and section are not correctly filled in.
- ➤ I PLEDGE MY HONOUR AS A GENTLEMAN/LADY THAT DURING THE EXAMINATION I HAVE NEITHER GIVEN ASSISTANCE NOR RECEIVED ASSISTANCE.

Q. No.	Marks
1	
2	
3	
4	
5	
6	
7	
8	
Total	

The Periodic Table of the Elements

170 150	He Holium 4.003 10 Ne Neon 20,1797
100794	10 Ne Noon 20,1797
Li Be B C N O F	Ne Noon 20,1797
Reprint Repr	Noon 20,1797
10.811 12.0107 14.00674 15.9994 18.9984013 2 11 12 13 14 15 16 17	20,1797
	18
	Ar
	Argon 39.948
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	36
	Kr
	Krypton 83.80
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	54
	Xe
	Xenon 131,29
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85	86
	Rn
Coine Ruisso Lardhaum Hullium Tungion Rosium Omisson Indiana Fairman Gold Mercury Thallium Lead Bossuth Priorism Anation 132,00454 \$173,37 138,49055 178,49 130,9479 \$183,84 136,207 190,23 102,217 105,078 190,04655 200,59 204,3833 2072 208,39338 (209) (210)	Radon (222)
87 88 89 104 105 106 107 108 109 110 111 112 113 114	
Fr Ra Ac Rf Db Sg Bh Hs Mt	
Fraction Radium Actinium Ratherferdum Dubnium Scalorgum Bidrium Hassium Minimium (225) (227) (261) (262) (263) (265) (265) (265) (277)	
58 59 60 61 62 63 64 65 66 67 68 69 70	71
	Lu
	Laterium 174,967
90 91 92 93 94 95 96 97 98 99 100 101 102	103
	Lr
	(262)

1. (a) Draw the Newman projections of the (i) most stable conformation and the (ii) least stable conformation of 2,3-dimethylbutane looking down the C2-C3 bond. [2]

Calculate the strain energy corresponding to each of these conformers. Energy cost for various interactions are given below: [2]

Interaction	H-H eclipsed	H-CH ₃ eclipsed	CH ₃ -CH ₃ eclipsed	CH ₃ -CH ₃ gauche
Energy cost	1 kcal/mol	1.4 kcal/mol	2.6 kcal/mol	0.9 kcal/mol

Most stable conformer	Least stable conformer
CH ₃ CH ₃ CH ₃ CH ₃	H ₃ C H ₃ C H ₄ C
Calculation of strain energy:	Calculation of strain energy:
2 CH ₃ -CH ₃ Gauche interactions = $2 \times 0.9 = 1.8$	2 CH ₃ -CH ₃ eclipsed + 1 H-H eclipsed
kcal/mol	interactions = $[2 \times 2.6 + 1] = 6.2 \text{ kcal/mol}$

(b) Draw the Newman projection of the lowest energy conformation of (i) 2,5-dimethylhexane looking down the C3-C4 bond. (ii) 1,2-difluoroethane (iii) ethane 1,2-diol [3]

(c) Draw the most stable chair conformation of following molecules:

[3]

2. Assign the priorities of the atoms/groups attached to each asymmetric carbon centre(s) and <u>THEN</u> deduce the absolute configuration (\mathbf{R} or \mathbf{S}) to the chiral centre of each molecules given below: No marks will be awarded unless you show your work out and then arriving respective configuration. [2 x 5 = 10]

- **3.** Identify the relationship between the following pair of molecules from the following options:
- (i) enantiomers, (ii) diastereomers, (iii) conformers, (iv) atropisomers, (v) identical molecules.

$[2 \times 5 = 10]$

4. (a) Draw the structures of the organic products, with appropriate stereochemistry, in the following reactions. Also indicate which type of reaction it is in the box provided below the arrow. $[4 \times 1 = 4]$

(b) Tick ($\sqrt{}$) which potential energy diagram best describes the substitution reaction of 1-bromo-1-methylcyclohexane with a cyanide ion? [Tick only one choice] [1]

[3]

(d) Draw the structure of the <u>major product</u> formed when the following compound is subjected to dehydrochlorination with sodium ethoxide in ethanol. [2]

$$\begin{array}{c|c} & & & \\ &$$

5. IF ANSWER IS CORRECT AWARD MARK, NO WORKOUT NEEDED

(i) Calculate the spin-only magnetic moment for K₃[Fe(CN)₆].

 $[1 \times 10 = 10]$

Ans: 1.73 B.M. [Fe(III), d⁵ low-spin complex, electronic config. with one unpaired electron.

$$\mu s.o = [n(n+2)]^{1/2} \ B.M. = [(1(1+2)]^{1/2} \ B.M. = 1.73 \ B.M.]$$

(ii) Magnetic moment of $K_3[Mn(NO_2)_6]$ is 2.87 B.M. Predict whether it is high-spin or los-spin complex.

Ans: Low-spin (2.87 BM = 2 ur)

(2.87 BM = 2 unpaired electrons , $Mn^{3+},\,d^4$ low spin $(t_{2g}{}^4e_g{}^0))$

(iii) Which among the following metal carbonyl will dimerize: Cr(CO)6, Mn(CO)5, Ni(CO)4.

Ans: Mn(CO)₅ (17 e- system, stabilize by getting 1 e- from Mn-Mn bond). All other 18 e⁻ system.

(iv) Which of the following metal ions will show regular octahedral structure? Ni(II) and Mn(III) Ans: Ni(II)

Ni(II)- d^8 system, $t_{2g}{}^6e_g{}^2$, no orbital degeneracy, no J.T. distortion, regular octahedral structure. Mn(III)- d^4 system, h.s: $t_{2g}{}^3e_g{}^1$, l.s.: $t_{2g}{}^4e_g{}^0$, both cases having orbital degeneracy, show J.T. distortion.

(v) Identify the first-row transition metal (M) for the following 18-electron species: $(\eta^4\text{-C}_8\text{H}_8)\text{M(CO)}_3$ Ans: Fe $(\eta^4\text{-C}_8\text{H}_8)\text{M(CO)}_3$: 3 CO = 6, $\eta^4\text{-C}_8\text{H}_8$ = 4; Total = 10, need (18-10) = 8 e⁻ from M, M = Fe)

(vi) Draw the shape of the most destabilized d-orbital in square planar geometry with appropriate phase sign and axes.

Ans:

(no phase sign, zero mark)

(vii) Arrange the following octahedral complex ions in increasing order of their crystal field splitting parameter (Δ_0) : $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$, $[Cr(CN)_6]^{3-}$, $[Cr(NH_3)]_6]^{3+}$ Ans: $[CrF_6]^{3-} < [Cr(H_2O)_6]^{3+} < [Cr(NH_3)]_6]^{3+} < [Cr(CN)_6]^{3-}$

 $\label{eq:continuous} \begin{tabular}{ll} \textbf{(viii)} Which among the following complex will have maximum value for molar extinction coefficient? \\ [Cu(MeCN)_4](BF_4), & [Mn(H_2O)_6]Cl_2, & K_2Cr_2O_7, & K_2[CoCl_4], & [Ti(H_2O)_6]Cl_3 \\ \end{tabular}$

Ans. K₂Cr₂O₇, LMCT transition, Spin and Laporte selection rule allowed.

(ix) Write down the electronic distribution in d-orbitals of gold for [Au(SCN)4]

Ans: Au(III), d^8 square planar complex, electron distribution: $(\mathbf{d}_{xz}, \mathbf{d}_{yz})^4$, $(\mathbf{d}\mathbf{z}^2)^2$, $(\mathbf{d}_{xy})^2$, $(\mathbf{d}_{x^2-y^2})^0$ or $(\mathbf{d}_{xz})^2$, $(\mathbf{d}_{yz})^2$, $(\mathbf{d}_{z^2})^2$, $(\mathbf{d}_{xy})^2$, $(\mathbf{d}_{x^2-y^2})^0$

(x) Calculate the CFSE of [NiCl₄]²-

Ans: $\mathbf{0.8}\Delta_t$ or $\mathbf{0.35}\Delta_0$ (Ni(II) in tetrahedral geometry, config. $e^4t_2^4$, CFSE = (4×0.6) - (4×0.4) $\Delta_t = \mathbf{0.8}\Delta_t$ = $-0.8 \times 4/9$ $\Delta_0 = \mathbf{0.35}\Delta_0$) (Ignore sign of CFSE)

6 (a) Draw the structures of the missing species in the following catalytic cycle for Wilkinson catalyst and also write the type of respective reactions within the given boxes beside arrow. [1x 6 = 6]

[Award 1 mark for each correct answer in the box]

(b) Consider the following migratory insertion reaction in presence of isotopically labelled CO (¹³CO).

Draw the structure of most probable isolable product indicating position of ¹³CO. [2]

(c) Show the electron count around Cr in the following complex.

Ionic method

Cr(III) = 3 e η^5 - $C_5Me_5 = 6 e$ Terminal $CH_3 = 2 e$ $2 \text{ bridging } CH_3 = 2 \text{ x } 1e = 2 e$ Cr-Cr bond = 1 e $Total = 14 e^{-1}$

[2]

7 (a) Draw the crystal field splitting diagram of iron present in deoxymyoglobin and oxymyoglobin with appropriate labelling of d-orbitals and filling up of the d-electrons of iron centre. [2x2=4]

deoxymyoglobin	oxymyoglobin
dd _{x²-y²} d _{z²}	—— d _{x²-y²} —— d _{z²}
$\frac{1}{d_{xz}} \frac{d_{xy}}{d_{yz}}$	$\frac{1}{d_{xz}} \frac{d_{xy}}{d_{yz}}$

Note: Reverse order of d_{xz}/d_{yz} and d_{xy} in oxymyoglobin is also correct option.

Note: Ignored order splitting of d_{xz}/d_{yz} *and* d_{xy} *in oxymb, even if all are degenerate is also correct option.*

(b) Calculate the spin-only magnetic moment ($\mu_{\text{s.o.}}$) for deoxymyoglobin. [2]

Ans. In deoxyMb, Fe(II): d^6 high-spin, 4 unpaired electrons (n), $\mu_{S.O} = [n(n+2)]^{1/2} = 4.89$ B.M.

(c) Consider the binding of O₂ and CO with given substrates. Write down which of these molecules will have higher binding affinity with the given substrates. [2]

Substrate	Higher binding affinity
Free heam group	CO
Myoglobin	СО

(d) Briefly explain the role of distal histidine present in the active site of myoglobin during binding of CO with myoglobin. [2]

Distal histidine reduces the affinity of CO towards binding to iron centre in Mb by enforcing bending of otherwise favourable linear Fe-C-O bond.

8. (a) Draw the optical isomer and it's mirror image of the complex ion [Cr(en)(NH₃)₂Cl₂]⁺. The dashed line represents mirror plane. [2]

- (b) Which among the following complexes will absorb radiation of shortest wavelength. **ONLY** Tick the correct option. [2]
- (A) $[Co(H_2O)_6]^{3+}$
- **(B)** [CoI₆]³⁻

(C) $[Co(NH_3)_6]^{3+}$

- $\sqrt{(D)} [Co(en)_3]^{3+}$
- **(E)** $[Co(H_2O)_6]^{2+}$
- **(F)** $[Co(NH_3)_4]^{2+}$
- (c) Which of the following compounds will exhibit lower stretching frequency for C-O bond (vco): [Ni(CO)₃(PF₃)] and [Ni(CO)₃P(*t*-Bu)₃]. Briefly explain your answer. [2]

[Ni(CO)₃P(t-Bu)₃] will exhibit lower v_{CO}. P(t-Bu)₃ is a better σ -donor ligand the PF₃, so more electron density will be donated to π^* anti-bonding orbital of CO, thus C-O bond strength will decrease and thus lower stretching frequency for C-O bond.

(d) Deduce the structure of [HFe₂(CO)₈]⁻ which obeys 18-electron rule and bothe the Fe have identical coordination environment. Draw the structure and clearly show your electron count per Fe in this molecule. [2+2]

Draw the structure in this box

Show your electron count in this box

Option –A
Fe (0) = 8 e
3 terminal CO = 3 x 2e = 6 e
2- μ -CO = 2 x 1e per Fe
Fe-Fe bond = 1e per Fe μ -H = $\frac{1}{2}$ e per Fe
Negative charge (-1) = $\frac{1}{2}$ e

Total = 18 e per Fe
Option-B:
Fe (0) = 8e, 4 terminal CO = 8 e, Fe-Fe bond = 1 e, μ -H = $\frac{1}{2}$ e per Fe, Negative charge (-1) = $\frac{1}{2}$ e

Total = 18 e