Introduction
Une définition de l'IA
Applications de l'IA
Outils informatiques pour l'IA
Outils mathématiques pour l'IA

Éléments de base

Houcine Senoussi

April 18, 2016

- Introduction
- 2 Une définition de l'IA
- 3 Applications de l'IA
- Outils informatiques pour l'IA
 - Rappels d'algorithmique
- 5 Outils mathématiques pour l'IA
 - Éléments de logique
 - Logique propositionnelle
 - Logique des prédicats

Contenu du chapitre

Le chapitre se compose de 4 paragraphes :

- Qu'est-ce que l'intelligence artificielle ?
- Applications de l'IA.
- 3 Rappels d'algorithmique.
- Éléments de logique.

L'objet de l'IA est double :

- comprendre les entités intelligentes.
- 2 construire des entités intelligentes.

Plusieurs définitions ont été données de l'IA. Dans ce cours nous allons lister un ensemble de tâches et nous poser les deux questions suivantes :

- Est-ce que cela suppose de l'intelligence ?
- 2 Est-ce que la machine peut les exécuter efficacement ?
 - Mieux ou aussi bien que l'homme ?

Considérons les deux groupes de tâches suivantes :

- Groupe 1 :
 - Faire des calculs longs, compliqués et précis :
 - Calcul du nombre Π avec un grand nombre de décimales.
 - Résoudre de grands systèmes d'équations.
 - o . . .
 - Rechercher toutes les occurences d'un mot ou d'une phrase dans un grand nombre de documents (pages web par exemple).
 - Trier un tableau de plusieurs centaines de milliers d'éléments (bacheliers par exemple).

- Groupe 2:
 - Jouer aux échecs.
 - 2 Conduire un véhicule.
 - 3 Reconnaître un visage dans une image.
 - Oiscuter avec un humain.
 - Trouver son chemin sans avoir à l'apprendre par coeur.

- Il est clair que pour le premier groupe de tâches la réponse aux deux questions est la suivante :
 - 1 La machine excelle dans ce genre de tâches.
 - ② Ces tâches ne supposent aucune intelligence. La machine se contente d'exécuter des ordres de l'homme (le programmeur).
 - Ces tâches supposent de la puissance. La machine en dispose grâce à ses composants électroniques.
- En revanche pour les tâches du deuxième groupe :
 - 1 Il y a besoin de : comprendre, raisonner, anticiper, analyser, être autonome, déduire, généraliser, comprendre, ...
 - 2 Ces facultés réunies forment ce qu'on appelle **l'intelligence**.

- Nous caractériserons donc un programme (ou une machine) intelligent(e) par la possession de certaines de ces facultés.
- L'IA est la branche de l'informatique dont l'objectif principal est de construire des entités possédant ces facultés.
- La liste des facultés donnée ci-dessus non exhaustive.

- Compte tenu de l'étendu du domaine, l'IA s'est décomposée en plusieurs sous-domaines :
 - 1 l'apprentissage automatique.
 - 2 la reconnaissance des formes (visages, écriture, scènes, ...).
 - Ie traitement automatique du langage naturel.
 - la planification.
 - **6**
- Ces sous-domaines ne s'excluent pas mutuellement. On les retrouve ensemble dans certaines applications (véhicule intelligent ou jeux par exemple).

Quelques applications de l'IA

- Véhicule intelligent.
- Jeux d'échecs (et autres jeux).
- Reconnaissance des mots manuscrits (et autres types de formes).

Rappels d'algorithmique

- Un algorithme est une suite d'instructions servant à résoudre un problème.
- Complexité d'un algorithme : le nombre d'opérations élémentaires le composant.
- On calcule la complexité en fonction de la taille du problème (notée n).
- On présente la complexité sous la forme O(f(n))
 - Exemples : $O(n^2)$, $O(\log(n))$, $O(2^n)$.

Rappels d'algorithmique-2

- Une bonne complexité est logarithmique ou polynomiale (de degré faible).
- Un algorithme ayant une complexité exponentielle est inutilisable dans la pratique.
- Exercices :
 - Calculer la complexité du tri à bulles.
 - Calculer la complexité de la recherche dichotomique dans un tableau trié.
 - 3 Calculer le temps d'exécution d'un algorithme dont la complexité est n! pour différentes valeurs de n.

- Logique propositionnelle.
- Logique des prédicats.

Pour les distinguer considérons les énoncés suivants :

- Tout homme est mortel.
- Il y a une matière que tous les élèves ont réussi sauf Pierre.
- En été il fait chaud.
- S'il pleut on va au cinéma.

On constate que ce qui fait la différence entre les énoncés 3 et 4 et les énoncés 1 et 2 est l'existence d'éléments variables (homme, matière, élève) dans les seconds.

Logique propositionnelle

- Symbôles ayant une valeur de vérité : **propositions**.
- On a l'habitude de noter les propositions : p, q, r, · · ·
- Formation des formules bien formées :
 - Une proposition est une fbf (un atome).
 - Utilisation des connecteurs : \neg , \lor , \land , \Longrightarrow , \Longleftrightarrow :
 - ① Si F est une fbf alors $\neg F$ est une fbf.
 - 2 Si F et G sont des fbf alors $F \vee G$ est une fbf.
 - **3** Si F et G sont des fbf alors $F \wedge G$ est une fbf.
 - **4** Si F et G sont des fbf alors $F \Longrightarrow G$ est une fbf.
 - **5** Si F et G sont des fbf alors $F \iff G$ est une fbf.

Logique propositionnelle-Exemples

$$\bullet (p_1 \wedge p_2 \wedge p_3) \Longrightarrow q.$$

•
$$(p \wedge \neg q) \vee (\neg p \wedge q)$$
.

•
$$(\neg p \lor q) \land (\neg q \lor p)$$
.

- Nous avons un ensemble V de variables et un ensemble C de constantes.
- Nous avons des fonctions :
 - $p: (V \cup C) \times \cdots \times (V \cup C) \longrightarrow \{Vrai, Faux\}.$
 - p s'appelle un **prédicat**.
 - n est l'arité du prédicat.
- Nous avons des fonctions :
 - $f: (V \cup C) \times \cdots \times (V \cup C) \longrightarrow (V \cup C)$.
 - f s'appelle un foncteur.
 - n est l'arité du foncteur.

Logique des prédicats-Exemples

- Si on considère l'ensemble des écrivains et des livres, nous avons :
 - les foncteurs auteur, premier_livre, · · ·
 - les prédicats même_auteur
- Si on considère l'ensemble des étudiants, des matières et des enseignants, nous avons :
 - les foncteurs définis à partir de "Le prof de telle matière est tel enseignant" "Tel étudiant suit les cours de tel prof dans telle matière"....
 - les prédicats définis à partir de "Tel étudiant a validé telle matière", "Tel prof a enseigné telle matière à tel étudiant",

Logique des prédicats-Formules bien formées

- Nous définissons un terme de la manière suivante :
 - Toute variable est un terme.
 - Toute constante est un terme.
 - Pour tout foncteur f d'arité n, pour tout n-uplet $t_1, ..., t_n$, $f(t_1, ..., t_n)$ est un terme.
- Nous définissons les fbf de la manière suivante :
 - Pour tout prédicat p d'arité n, pour tout n-uplet $t_1, ..., t_n$, $f(t_1, ..., t_n)$ est une fbf (formule atomique).
 - Si F est une fbf alors $\neg F$ est une fbf.
 - Si F et G sont des fbf alors $F \vee G$, $F \wedge G$, $F \Longrightarrow G$ et $F \Longleftrightarrow G$ sont des fbfs.
 - Si F est une fbf et x une variable, alors ∀xF et ∃xF sont des fbfs.

Logique des prédicats-Exemples

- Traduisons à l'aide de la logique des prédicats les énoncés suivants :
 - Tous les hommes sont mortels.
 - Socrate est un homme.
 - Il y a un étudiant qui n'a pas validé l'intelligence artificielle.
 - Tous les étudiants qui ont suivi les cours d'IA ont validé la matière.
 - Si la note obtenue par un étudiant dans une matière donnée est supérieure à 10 alors il valide la matière.
 - S'il y a un chemin entre la ville x et la ville y et qu'il existe un chemin entre y et une ville z alors il existe un chemin entre x et z.
 - Les liens de parenté du type grand père, grand mère, oncle, tante, cousin, · · ·

Importance de la logique en IA

- C'est la base du raisonnement.
- Importance particulière des règles "SI Alors"
- Première illustration : Langage PROLOG.