Joint Extraction of Entity Mentions and Relations without Dependency Trees

胡伟龙

武汉大学计算机学院

2017年12月14日

Table of Content

- Introduction
- 2 Related Work
- 3 Model
 - 1 Multi-layer Bi-directional Recurrent Network
 - 2 Entity detection
 - 3 Attentin Model
 - 4 Relation detection
 - 5 Bi-directional Encoding
- 4 Training
- **5** Experiment
- 6 Error Analysis

- 现存的句子级别的实体和关系抽取方法有两种:
 - pipeline 模型:看做两个单独的任务
 - 联合模型:同时识别实体和关系,表现更好。
- 2 Minwa and Bansal(2016) 提出利用基于序列的 LSTM 进行实体抽取和单独的基于依赖树的 LSTM 层进行关系分类。
- 3 本文提出的实体与关系联合抽取模型:
 - 基于 RNNs 的模型,一个多层双向 LSTM
 - 在每一个时间步,对先前的解码序列使用一个类似 attention 的模型
 - 使用额外的一层 LSTM 对输出序列进行从右往左编码

- RNNs 已经应用于很多序列建模和预测任务, 但这些模型都假设输出层元素间是条件独立的
- 对于实体和关系的联合抽取,有基于特征的结构预测模型(Li and Ji,2014;),联合推理整数线性规划模型(Yang and Cardie,2013), card-pyramid parsing(Kate and Mooney,2010)和概率图模型(Singh et al.,2013)
- Miwa and Bansal(2016)提出端到端基于序列 LSTM 和树结构模型, 通过序列层抽取实体并通过最短依赖路径网络识别实体间关系
- Pointer networks(Vinyals et al., 2015)是 attention 的变体,将 token 级别的权重作为指针指向输入元素。比如 Zhai et al. (2017) 利用 Pn 做 neural chunking, Cheng and Lapata(2016) 做 summarization

Figure 1: Gold standard annotation for an example sentence from ACE05 dataset.

- 关系标签从实体级别转换到了 token 级别
- 分别建模 "ITV" 和 "News" 与 "Martin Geissler" 的关系

3.1 Multi-layer Bi-directional Recurrent Network

$$\overrightarrow{h}_{t} = LSTM(x_{t}, \overrightarrow{h}_{t-1})$$

$$\overleftarrow{h}_{t} = LSTM(x_{t}, \overleftarrow{h}_{t-1})$$

最顶层 L 的输出计算如下: $z_t' = \overrightarrow{V} \overrightarrow{h}_t^{(L)} + \overleftarrow{V} \overleftarrow{h}_t^{(L)} + c$

3.2 Entity detection

$$y_{t} = softmax(Uz_{t}^{'} + b)$$

$$z_{t} = LSTM([z_{t}^{'}; b_{t-1}^{k}], h_{t-1})$$

$$y_{t} = softmax(Uz_{t} + b^{'})$$

$$y_{t} = softmax(Uz_{t} + b^{'})$$

3.3 Attention Model

 $u_t^i = v^T tanh(W_1 z + W_2 d_i)$ $p_t^i = softmax(u_t^i)$ 其中 d_i 是 decoder 序列中第 i^{th} 个 token,v 是隐含表示转换为 attention score 的权重矩阵

3.4 Relation detection

 $egin{aligned} u_{\leq t}^t &= v^T anh(W_1[z_{\leq t};b_{\leq t}] + W_2[z_t;d_t]) \\ p_{\leq t}^t &= softmax(u_{\leq t}^t) & p_{\leq t}^t \ ext{对应了之前所有 token 与当前 token 相关的概率} \end{aligned}$

3.5 Bi-directional Encoding

在上图的的基础上加了另一层 Bi-LSTM 从右向左编码。两种编码共享多层双向 LSTM,除了顶层的隐含层。因此,模型有两个输出层,单独输出 entity tag和 relation tag。在推断过程中,本文运用启发式从两个方向结合两个输出。

给定正确的 entity E 和 relation R, 序列 S, 网络学习的目标是最大化如下对数概率:

$$logp(E, R|S, \theta)$$
=\frac{1}{|S|} \sum_{i \in |S|} logp(e_i, r_i | e_{< i}, r_{< i}, S, \theta)
=\frac{1}{|S|} \sum_{i \in |S|} [logp(e_i | e_{< i}, r_{< i}) + logp(r_i | e_{\leq i}, r_{< i})]

在推断时:
$$(\hat{E}, \hat{R}) = \underset{E,R}{\operatorname{arg max}} p(E, R)$$

Multiple Relations

$$\sum_{\substack{j:r'_{i,j}>0|\\r'_{i}}} r'_{i,j} logp(r_{i,j}|e_{\leq i},r_{< i},S,\theta)$$

 r'_{i} 是关系的真实分布, r_{i} 是模型 softmax 输出值

数据集: ACE04, ACE05 (Automatic Content Extraction)

	Entity		Relation			Entity+Relation			
Method	P	R	F1	P	R	F1	P	R	F1
Li and Ji (2014)	.852	.769	.808	.689	.419	.521	.654	.398	.495
SPTree	.829	.839	.834	-	-	-	.572	.540	.556
SPTree ¹	.823	.839	.831	.605	.553	.578	.578	.529	.553
Our Model	.840	.813	.826	.579	.540	.559	.555	.518	.536

Table 1: Performance on ACE05 test dataset. The dashed ("-") performance numbers were missing in the original paper (Miwa and Bansal, 2016).

	Entity			Relation			Entity+Relation		
Encoding	P	R	F1	P	R	F1	P	R	F1
Left-to-Right	.821	.812	.817	.622	.449	.522	.601	.434	.504
+Multiple Relations	.835	.811	.823	.560	.492	.524	.539	.473	.504
+Bi-directional (Our Model)	.840	.813	.826	.579	.540	.559	.555	.518	.536

Table 2: Performance of different encoding methods on ACE05 dataset.

		Entity		Relation			Entity+Relation		
Method	P	R	F1	P	R	F1	P	R	F1
Li and Ji (2014)	.835	.762	.797	.647	.385	.483	.608	.361	.453
SPTree	.808	.829	.818	-	-	-	.487	.481	.484
Our Model	.812	.781	.796	.502	.488	.493	.464	.453	.457

Table 3: Performance on ACE04 test dataset. The dashed ("-") performance numbers were missing in the original paper (Miwa and Bansal, 2016).

6.Error Analysis

Relation Type	Method	R	P	F1
ART	SPTree	.363	.552	.438
	Our model	.431	.611	.505
PART-WHOLE	SPTree	.560	.538	.548
	Our model	.520	.538	.528
PER-SOC	SPTree	.671	.671	.671
	Our model	.657	.648	.652
PHYS	SPTree	.489	.513	. 500
	Our model	.388	.426	.406
GEN-AFF	SPTree	.414	.640	.502
	Our model	.484	.516	.500
Org-Aff	SPTree	.692	.704	.697
	Our model	.706	.700	.703

			Relation				
Distance	Method	R	P	F1			
≤ 7	SPTree Our model	.589 .591	.628 .605	.608 .598			
> 7	SPTree Our model	.275 .153	.375 .259	.267 .192			

Table 5: Performance based on the distance between entity arguments in relations for ACE05 test dataset.

S1:	the [men] _{Per:Art-1} held on the sinking [vessel] _{Veh:Art-1} until the [passenger] _{Per:Art-2} [ship] _{Veh:Art-2} was able
SPTree:	the [men] _{PER} held on the sinking [vessel] _{VEH} until the [passenger] _{PER} [ship] _{VEH} was able to reach them.
Our Model:	the [men] _{PER:ART-1} held on the sinking [vessel] _{VEH:ART-1} until the [passenger] _{PER:ART-2} [ship] _{VEH:ART-2} was able
S2:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
SPTree :	[her] Per research was conducted [here] Ger at a location Loc:Phys1 well-known to u.n. arms Weal Inspectors Per:Phys1, Phy2. 300 miles west of baghdad Ger:Phys2.
Our Model :	$ \begin{array}{l} [\text{her}]_{\text{PER}} \text{ research was conducted } [\text{here}]_{\text{FAC-PHYS1}} \text{ at a } [\text{location}]_{\text{GPE}} \text{ well-known to } [\overline{\text{u.n.}}]_{\text{ORG-ORG-AFF1}} [\overline{\text{arms}}]_{\text{WEA}} \\ [\text{inspectors}]_{\text{PER-ORG-AFF1}}. 300 \text{ miles west of } [\text{baghdad}]_{\text{GPE-PHYS1}}. \end{array} $
S3:	[Abigail Fletcher] PER: PHYS1 , a [marcher] FAC: GEN-AHF2 from [Florida] FAC: GEN-AHF2, said outside the [president] PER: ART3 'S [[residence]] FAC: ART3, PHYS1.
SPTree :	[Abigail Fletcher] PFR:PHYS1 , a [marcher] FAC:GEN-AH2 from [Florida] FAC:GEN-AH2, said outside the [president] PFR:ART3 'S [[residence]] FAC:ART3, PHYS1.
Our Model:	[Abigail Fletcher] _{PER} , a [marcher] _{FAC:GEN-AFF2} from [Florida] _{FAC:GEN-AFF2} , said outside the [president] _{PER} 's residence.

◆□▶◆□▶◆■▶◆■▶ ■ 900