МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

- 1. Способы задания двумерных СВ
- 2. Критерии независимости двух СВ
- 3. Числовые характеристики системы СВ
- 4. Двумерное нормальное распределение

1. Способы задания двумерных СВ

Пусть имеется некоторое вероятностное пространство $(\Omega, \mathfrak{F}, P)$. **Двумерной СВ** $(\xi; \eta)$ называется совокупность двух числовых функций, заданных на одном и том же пространстве элементарных исходов Ω , если для любых действительных чисел x, y существует $P(\xi < x, \eta < y)$.

Двумерная СВ (ξ ; η) называется *дискретной*, если обе ее составляющие ξ и η являются дискретными СВ.

Двумерная СВ (ξ ; η) называется *непрерывной*, если обе ее составляющие ξ и η являются непрерывными СВ.

Если одна из CB дискретная, а другая непрерывная, то двумерная CB относится к смешанному типу.

Универсальным способом задания двумерной СВ является функция распределения.

Функция распределения двумерной СВ (ξ ; η) — это функция двух действительных переменных x и y, которая определяется с помощью равенства

$$F_{\xi; \eta}(x; y) = P(\xi < x; \eta < y).$$
 (1)

Отметим, что для наглядности значения двумерной СВ (ξ ; η) могут изображаться точками на плоскости *Оху*. Геометрически (1) означает вероятность попадания значения СВ в четверть плоскости левее и ниже точки с координатами (x; y) (рис. 1).

Рис. 1. К понятию функции распределения двумерной СВ

Свойства функции распределения двумерной СВ.

- **1.** $0 \le F(x; y) \le 1$ при всех (x; y).
- **2.** Функция распределения является неубывающей по каждому из своих аргументов:

$$F(x_1; y) \le F(x_2; y)$$
, если $x_1 < x_2$; $F(x; y_1) \le F(x; y_2)$, если $y_1 < y_2$.

- **3.** $F(-\infty; y) = F(x; -\infty) = F(-\infty; -\infty) = 0.$
- **4.** $F(+\infty; +\infty) = 1$.
- **5.** $F_{\xi;\,\eta}(x;+\infty) = F_{\xi}(x)$ функция распределения СВ ξ ; $F_{\xi;\,\eta}(+\infty;\,y) = F_{\eta}(y)$ функция распределения СВ η .
- **6.** Функция распределения непрерывна слева по каждому из своих аргументов.

Рис. 2. К вычислению вероятности попадания двумерной СВ в прямоугольник

Можно показать, что вероятность попадания двумерной СВ (ξ ; η) в прямоугольник (рис. 2) равна

$$P(x_1 \le \xi < x_2; y_1 \le \eta < y_2) = F(x_2; y_2) - F(x_1; y_2) - F(x_2; y_1) + F(x_1; y_1).$$

Распределение *дискретной* двумерной СВ (ξ ; η) проще задать, перечислив все возможные значения этой СВ, т. е. пары чисел $(x_i; y_j), 1 \le i \le n, 1 \le j \le m$, и соответствующие им вероятности $P(\xi = x_i; \eta = y_j) = p_{ij}$, причем сумма всех вероятностей равна 1:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} = 1.$$

Распределение двумерной дискретной СВ (ξ ; η) удобно записывать в виде таблицы.

ξη	y_1	\mathcal{Y}_2	 \mathcal{Y}_m	$P(\xi = x_i)$
x_1	p_{11}	p_{12}	 p_{1m}	p_1^*
x_2	p_{12}	p_{22}	 p_{2m}	p_2^*
	• • •	•••	 •••	•••
\mathcal{X}_n	p_{n1}	p_{n2}	 p_{nm}	p_n^*
$P(\xi = y_j)$	p_1^{**}	p_{2}^{**}	 p_m^{**}	$\sum p_{ij} = 1$

Здесь

$$p_i^* = P(\xi = x_i) = \sum_{j=1}^m P(\xi = x_i; \eta = y_j) = \sum_{j=1}^m p_{ij};$$

$$p_j^{**} = P(\eta = y_j) = \sum_{i=1}^n P(\xi = x_i; \eta = y_j) = \sum_{i=1}^n p_{ij}.$$

Таким образом, чтобы по таблице двумерного распределения найти законы распределения составляющих, нужно просуммировать вероятности по строкам – для одной СВ, по столбцам – для другой СВ.

Распределение непрерывной двумерной случайной величины может быть задано с помощью плотности распределения.

Функция $f_{\xi;n}(x;y)$ называется *плотностью распределения* двумерной CB (ξ ; η), если

$$F_{\xi;\eta}(x;y) = P(\xi < x; \eta < y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi;\eta}(x;y) dx dy.$$

Следовательно, плотность распределения двумерной CB $(\xi; \eta)$ может быть найдена по формуле

$$f_{\xi;\eta}(x;y) = \frac{\partial^2 F_{\xi;\eta}(x;y)}{\partial x \partial y}.$$
 (2)

Свойства плотности распределения.

1.
$$f(x; y) \ge 0$$
.
2.
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x; y) dx dy = 1.$$

3. Вероятность попадания СВ (ξ ; η) в область D равна

$$P((\xi; \eta) \in D) = \iint_D f(x; y) dx dy.$$
 (3)

4. Плотности распределения составляющих двумерной $CB(\xi; \eta)$:

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi;\,\eta}(x;y)dy; \quad f_{\eta}(y) = \int_{-\infty}^{+\infty} f_{\xi;\,\eta}(x;y)dx.$$

Говорят, что двумерная СВ (ξ ; η) *распределена равномерно в области* D, если ее плотность распределения постоянна внутри области D и равна 0 вне ее:

$$f_{\xi;\,\eta}(x;\,y) = \begin{cases} \frac{1}{S_D}, & \text{если } (x;\,y) \in D, \\ 0, & \text{если } (x;\,y) \notin D, \end{cases}$$

где S_D – площадь области D.

2. Критерии независимости двух СВ

Две СВ ξ и η называются *независимыми*, если для любых числовых множеств X и Y события $\{\xi \in X\}$ и $\{\eta \in Y\}$ независимы, т. е. $P(\xi \in X, \eta \in Y) = P(\xi \in X)P(\eta \in Y)$.

Критерий независимости двух произвольных СВ: СВ ξ и η независимы тогда и только тогда, когда

$$F_{\xi,\eta}(x;y) = F_{\xi}(x)F_{\eta}(y)$$

для всех действительных x и y, т. е. их совместная функция распределения представима в виде произведения функций распределения этих CB.

Критерий независимости двух дискретных СВ: дискретные СВ ξ и η независимы тогда и только тогда, когда

$$P(\xi = x_i; \eta = y_j) = P(\xi = x_i)P(\eta = y_j)$$

для всех возможных пар значений $(x_i; y_j), 1 \le i \le n, 1 \le j \le m,$ этих CB.

Критерий независимости двух независимых СВ: Если двумерная CB $(\xi;\eta)$ имеет плотность распределения, то CB ξ и η независимы тогда и только тогда, когда их совместная плотность распределения представима в виде произведения плотностей распределения этих CB:

$$f_{\xi;\,\eta}(x;\,y) = f_{\xi}(x)f_{\eta}(y)$$

для всех х и у.

3. Числовые характеристики системы СВ

Основными *числовыми характеристиками* двумерной СВ $(\xi; \eta)$ являются математические ожидания и дисперсии ее составляющих, т. е. СВ ξ и η , а также корреляционный момент и коэффициент корреляции.

Для *дискретной* двумерной СВ $(\xi; \eta)$ с $p_{ij} = P(\xi = x_i; \eta = y_j)$, $1 \le i \le n, 1 \le j \le m$, математические ожидания СВ ξ и η равны

$$M\xi = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij};$$
 $M\eta = \sum_{i=1}^{n} \sum_{j=1}^{m} y_j p_{ij}.$

Более того, при некоторых ограничениях на функцию g(x; y) для математического ожидания от функции двух дискретных СВ имеет место формула

$$Mg(\xi; \eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_i; y_j) p_{ij}.$$

Аналогично, для *непрерывной* двумерной СВ (ξ ; η) с плотностью распределения $f_{\xi;\,\eta}(x;y)$ при некоторых ограничениях на функцию g(x;y) для математического ожидания от функции двух непрерывных СВ имеет место формула

$$Mg(\xi;\eta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x;y) f_{\xi;\eta}(x;y) dx dy.$$

Следовательно.

$$M\xi = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{\xi;\eta}(x;y) dx dy; \qquad M\eta = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f_{\xi;\eta}(x;y) dx dy.$$

Дисперсии $D\xi$ и $D\eta$ можно найти по формулам $D\xi = M(\xi - M\xi)^2$ или $D\xi = M(\xi^2) - (M\xi)^2$.

Математические ожидания $M\xi$, $M\eta$ и дисперсии $D\xi$, $D\eta$ характеризуют среднее значение и рассеяние каждой из составляющих двумерной CB.

Для характеристики степени зависимости двух СВ ξ и η вводится новая числовая характеристика — *ковариация* (*корреляционный момент*), которая определяется формулой

$$cov(\xi; \eta) = K_{\xi; \eta} = M(\xi - M\xi)(\eta - M\eta).$$

Для вычисления ковариации на практике, как правило, удобнее пользоваться следующей формулой:

$$\cot(\xi; \eta) = M(\xi \eta) - M\xi M\eta.$$

Если $cov(\xi; \eta) = 0$, то CB ξ и η называются *некоррелированными*.

Если СВ ξ и η независимы, то $\text{cov}(\xi;\eta) = 0$. Обратное, вообще говоря, неверно: если $\text{cov}(\xi;\eta) = 0$, то это не означает, что СВ ξ и η независимы.

Следует помнить, что:

$$\xi$$
 и η независимы \Rightarrow ξ и η некоррелированы ($cov(\xi;\eta)=0$); ξ и η зависимы \Leftarrow ξ и η коррелированы ($cov(\xi;\eta)\neq 0$).

Поскольку ковариация имеет размерность, равную произведению размерностей СВ ξ и η , то для удобства анализа степени зависимости двух СВ вводят безразмерную характеристику – коэффициент корреляции.

Коэффициентом корреляции двух CB ξ и η – это число, равное

$$r_{\xi;\,\eta} = \frac{\text{cov}(\xi;\,\eta)}{\sqrt{D\xi D\eta}}.$$

Свойства коэффициента корреляции. 1. $\frac{-1 \le r_{\xi;\,\eta} \le 1.}{}$

- **2.** Если СВ ξ и η независимы, то $r_{\xi;\,\eta} = 0$.

Обратное утверждение неверно: если $r_{\xi;\,\eta} = 0$, то CB ξ и η могут быть как зависимыми, так и независимыми.

3. СВ ξ и η связаны линейной зависимостью в том и только том случае, если $r_{\xi;\,\eta} = \pm 1$:

$$\eta = k\xi + b, k > 0 \quad \Leftrightarrow \quad r_{\xi; \, \eta} = +1;$$

$$\eta = k\xi + b, k < 0 \quad \Leftrightarrow \quad r_{\xi; \, \eta} = -1.$$

Итак, коэ $\phi\phi$ ициент корреляции $r_{\xi;\,\eta}$ показывает степень линейной зависимости между СВ ξ и η .

4. Двумерное нормальное распределение

Двумерная СВ (ξ; η) имеет нормальный (гауссовский) закон распределения, если ее плотность распределения

$$f_{\xi;\eta}(x;y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)} \left(\frac{(x-a_1)^2}{\sigma_1^2} - 2r\frac{(x-a_1)(y-a_2)}{\sigma_1\sigma_2} + \frac{(y-a_2)^2}{\sigma_2^2}\right)\right\}.$$

Параметры двумерного нормального распределения имеют следующий смысл:

$$a_1 = M\xi; a_2 = M\eta; \sigma_1^2 = D\xi; \sigma_2^2 = D\eta; r = r_{\xi; \eta}.$$

Свойства двумерного нормального распределения.

- **1.** Если СВ (ξ ; η) имеет двумерное нормальное распределение, то $\xi \sim \mathcal{N}(a_1; \sigma_1), \ \eta \sim \mathcal{N}(a_2; \sigma_2).$
- **2.** Если СВ (ξ ; η) имеет двумерное нормальное распределение, то СВ ξ и η независимы тогда и только тогда, когда они некоррелированы, т. е. $r_{\xi;\,\eta}=0$.
- 3. Если СВ $(\xi; \eta)$ имеет двумерное нормальное распределение, то условное распределение одной компоненты при фиксированном значении другой также является нормальным:

распределение СВ ξ при условии $\eta = y$ является нормальным с

$$M(\xi \mid \eta = y) = a_1 + r \frac{\sigma_1}{\sigma_2} (y - a_2),$$
 $D(\xi \mid \eta = y) = \sigma_1^2 (1 - r^2);$

распределение СВ η при условии $\xi = x$ является нормальным с

$$M(\eta \mid \xi = x) = a_2 + r \frac{\sigma_2}{\sigma_1} (x - a_1),$$
 $D(\eta \mid \xi = x) = \sigma_2^2 (1 - r^2).$

Зависимость между значениями одной СВ и условным математическим ожиданием другой СВ называется *регрессионной*, а функции, выражающие эту зависимость, называются *функциями регрессии*:

$$M(\xi | \eta = y) = \psi(y) - \phi$$
ункция регрессии ξ на η ;

$$M(\eta \mid \xi = x) = \varphi(x) - \varphi$$
ункция регрессии η на ξ .

Таким образом, если СВ $(\xi; \eta)$ имеет двумерное нормальное распределение, то обе функции регрессии $(\xi$ на η и η на ξ) являются линейными.