

lerarhia de memorii

	Capacitate	Latență	Cost/GB	Controlat de
Regiștri	x 1 B	1ns <	-	Compilator
Cache (SRAM)	x 10MB	1-10ns	\$5000	Hardware
RAM (DRAM)	x 100GB	70-100ns	\$50	Hardware/Kernel
SSD (Flash)	x 1TB	7-150µs	\$1	Kernel
HDD (Magnetic)	x 19TB	1-10ms	\$0.1	Kernel

Principiul "locality"

Dacă avem un acces asupra unei date de la locaţia X, un acces la locaţia X+ΔX la un moment de timp t+Δt devine mai probabil cu cât ΔX şi Δt se apropie de 0.

- Localitate spaţială: Două zone de memorie apropiate vor fi accesate la un interval de timp apropiat.
- Localitate temporală: Dacă o zonă de memorie e accesată, sunt șanse mari să fie accesată din nou.

Pattern acces la memorie

Utilizare – Cache Hit

Utilizare – Cache Hit

Hit/Miss Ratio

• Hit Ratio:
$$HR = \frac{hits}{hits + misses} = 1 - MR$$

• Miss Ratio:
$$MR = \frac{misses}{hits+misses} = 1 - HR$$

• Average Memory Access Time: AMAT = HitTime + MissRatio * MissPenalty

Direct-Mapped Cache

Problemă: Cache Thrashing

Se vor scrie în aceeași zonă din Cache

Matrici - Utilizare Cache Bună

Matrici - Utilizare Cache Rea

Fully-Associative Cache

N (20) Way-Associative Cache

Associativity Implies Choices

Direct-mapped

address

N-way set-associative

address

N

Fully associative

- Compare addr with only one tag
- Location A can be stored in exactly one cache line

- Compare addr with N tags simultaneously
- Location A can be stored in exactly one set, but in any of the N cache lines belonging to that set
- Compare addr with each tag simultaneously
- Location A can be stored in any cache line

Cache replacement policies

- Random
- FIFO/LIFO
- Least Recently Used/Most recently used
- Least Frequently Used <<<< LRU approximations
- Bélády (clairvoyant)

Write Policy

Write-through: CPU writes are cached, but also written to main memory immediately (stalling the CPU until write is completed). Memory always holds current contents

Simple, slow, wastes bandwidth

Write-behind: CPU writes are cached; writes to main memory may be buffered. CPU keeps executing while writes are completed in the background

Faster, still uses lots of bandwidth

Write-back: CPU writes are cached, but not written to main memory until we replace the block. Memory contents can be "stale"

- Fastest, low bandwidth, more complex
- Commonly implemented in current systems

False sharing

False sharing – gets worse – cache lines

False sharing

