Unmanned Ground Vehicle (UGV) kit User Guide

Table of Contents

1.	Com	ponents	and Specifications	3
	1.1.	Vaman	ı (Pygmy BB4)	3
	1.2.	ESP 32		4
	1.3.	Arduin	o Uno Error! Bookmark not	defined.
	1.4.	Dual-M	Notor Driver IC on breadboard Error! Bookmark not	defined.
	1.1.	DC mot	tors	5
	1.2.	Ultraso	onic sensor	6
	1.3.	UGV fr	ame/chassis	7
	1.4.	Batteri	les for powering various equipment	7
2.	Asse	mbling t	he UGV kit	8
3.	Exer	cise Prog	grams	11
	3.1.	Naviga	tion using ESP32 and Android Phone	11
		3.1.1.	Connection diagram:	11
		3.1.2.	Wiring description	12
		3.1.3.	Codes (GitHub link)	12
	3.2.	Beacor	n tracking using ESP32	13
		3.2.1.	Connection diagram:	13
		3.2.2.	Wiring description	13
		3.2.3.	Codes (GitHub link)	14

1. Components and Specifications

1.1. Vaman (Pygmy BB4)

	SPECIFICATION FOR VAMAN CONTROLLER			
Make	Optimus Logic			
Model	Vaman (Pygmy BB4)			
Sr No Description		Description		
	General Data			
1	Processors	E0SS3 SoM (ARM + FPGA dual processor)		
2	Connectivity	Wi-Fi/BT/BLE connectivity with onboard ESP32		
3	Battery option	Yes		
4	μSD card support	Yes (Connected to ESP32)		
5	Onboard sensors	 BMX160 smart 9-Axis IMU BNO055 smart fusion sensor DPS310 provides Pressure, Humidity, and Temperature monitoring. PDM MIC (L) & (R) 		
6	Buttons	User and reset button for programming the board		
7	Connector	Micro-USB Type-B connector for connection to PC during programming and debugging.		

1.2. ESP 32

	SPECIFICATION FOR ESP32 CONTROLLER			
Make	Espressif Systems			
Model	ESP-WROOM-32			
Sr No	Description			
	General Data			
1	Processors	 CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, operating at 160 or 240 MHz and performing at up to 600 DMIPS Ultra-low-power (ULP) co-processor 		
2	Memory	• 320 KiB RAM, 448 KiB ROM		
3	Connectivity	 Wi-Fi: 802.11 b/g/n Bluetooth: v4.2 BR/EDR and BLE (shares the radio with Wi-Fi) 		
4	Peripheral interfaces	 34 × programmable GPIOs 12-bit SAR ADC up to 18 channels 2 × 8-bit DACs 10 × touch sensors (capacitive sensing GPIOs) 4 × SPI 2 × I²S interfaces 2 × I²C interfaces 3 × UART 		
4	Onboard sensors	 BMX160 smart 9-Axis IMU BNO055 smart fusion sensor DPS310 provides Pressure, Humidity, and Temperature monitoring. PDM MIC (L) & (R) 		
6	Power management	 Internal low-dropout regulator Individual power domain for RTC 5 μA deep sleep current Wake up from GPIO interrupt, timer, ADC measurements, capacitive touch sensor interrupt 		
7	Other features	 Motor PWM LED PWM (up to 16 channels) Hall effect sensor Ultra-low-power analog pre-amplifier 		

DC motors

	SPECIFICATION FOR DC MOTORS			
Make	Robo India			
Model	del DC motor			
Sr No	Description			
	General Data			
1	Supply Voltage	9V DC		
1	Туре	Brushed motor		
2	Operating speed	Up to 300 RPM		
3	Efficiency	60-75 % with high starting torque		

1.3. Ultrasonic sensor

	SPECIFICATION FOR ULTRASONIC CONTROLLER			
Make	Arduino			
Model	HCSR04			
Sr No		Description		
		General Data		
1.	Input Voltage	5V		
2.	Current Draw	20mA (Max)		
3.	Digital Output	5V		
4.	Digital Output	OV (Low)		
5.	Working Temperature	-15°C to 70°C		
6.	Sensing Angle	30° Cone		
7.	Angle of Effect	15° Cone		
8.	Ultrasonic Frequency	40kHz		
9.	Range	2cm - 400cm		
	Dimensions			
10.	Length	43mm		
11.	Width	20mm		
12.	Height (with transmitters)	15mm		
13.	Centre screw hole distance	40mm x 15mm		
14.	Screw hole diameter	1mm (M1)		
15.	Transmitter diameter	8mm		

1.4. UGV frame/chassis

SPECIFICATION FOR CHASIS		
General Data		
 High-quality acrylic material Suitable for 2-wheel design. Supports universal Castor wheel All necessary screws & nuts 		

1.5. L298 N motor driver

General Data	
Driver Model: L298N 2A	
Driver Chip: Double H Bridge L298N	
Motor Supply Voltage (Maximum): 46V	
Motor Supply Current (Maximum): 2A	
Logic Voltage: 5V	
Driver Voltage: 5-35V	
Driver Current:2A	
Logical Current:0-36mA	
Maximum Power (W): 25W	
Current Sense for each motor	
Heatsink for better performance	
Power-On LED indicator	

1.6. Batteries for powering various equipment

SPECIFICATION FOR BATTERIES			
	Li-Po Battery		
1	Voltage supply	11.2 V	
2	Rechargeable	Yes	
3	Relevant components	For DC motors	

2. Assembling the UGV kit

• Step 1: Assemble the Chassis using the provided nuts/screws, Wheels, and parts.

• Step 2:

- o Fix the Vaman controller and ESP32 on the chassis.
- o Fix the Dual motor driver IC along with a small breadboard on the chassis.
- o Fix the Li-Po battery on the chassis and insert AA batteries in the battery holder.

• Step 5:

- Refer to the Exercise programs (section 3) for guide on wiring connection and programming of the controllers for the desired application.
- o Connect the battery supply and turn on the power to various equipment.

Step 6:

- o Download the "dabble" application from the play store on an Android phone.
- Using dabble application, connect to the ESP32 on the UGV kit using Bluetooth connection.
- o Control the navigation of the UGV kit using the GUI controls on the dabble application.

3. Exercise Programs

3.1. Navigation using ESP32 and Android Phone

3.1.1. Connection diagram:

Figure 1 - Connection diagram

Figure 2 - Pin diagram of L298 N Motor driver

3.1.2. Wiring description

- Refer the pin diagram of L298 N motor driver
- Connect VCC1 pin to Vin pin on ESP32.
- The input and enable pins (ENA, IN1, IN2, IN3, IN4 and ENB) of the L298 N are connected to six ESP32 digital output pins (14, 16, 17, 18, 19 and 15).
- Connect one motor across the OUT1 & OUT2 pins of driver and the other motor across the OUT3 & OUT4 pins of driver.
- Connect external 9V battery to the VCC2 pin of L298N motor driver.
- Connect external GND pin battery to the GND pin of L298 N motor driver
- Go to Arduino IDE and Write the following code:

https://github.com/sachinomdubey/Projects/blob/main/Autonomous%20Navigation/E SP32/IDE/UGV_navigation_using_android_phone/Codes/UGV_navigation_using_android_phone.ino

- Click on Compile and Upload the code to" DOIT ESP32 DEVKITV1".
- Now open Dabble app search for Bluetooth devices and Select" MyEsp32" and connect it.
- After connecting click on Gamepad Icon and you will get control panel.

3.1.3. Codes (GitHub link)

https://github.com/sachinomdubey/Projects/tree/main/Autonomous%20Navigation/ESP32/IDE/UGV navigation using android phone/Codes

3.2. Beacon tracking using ESP32

3.2.1. Connection diagram:

Figure 1 - Connection diagram

Figure 2 - Pin diagram of L298 N Motor driver

3.2.2. Wiring description

- Refer the pin diagram of L298N motor driver
- Connect VCC1 pin to 5V pin on ESP32.
- The input and enable pins (IN1, IN2, IN3, IN4) of the L298N are connected to six ESP32 digital output pins (16, 17, 18, 19).
- Connect the ENA and ENB to the 5V pin of EPS32
- Connect one motor across the OUT1 & OUT2 pins of driver and the other motor across the OUT3 & OUT4 pins of driver.

- Connect external 9V battery to the VCC2 pin of L298 N motor driver .
- Connect external GND pin battery to the GND pin of L298 N motor driver .
- Go to Arduino IDE and Write the following code:

https://github.com/sachinomdubey/Projects/blob/main/Autonomous%20Navigation/ESP32/IDE/Beacon tracking/navsuccess edit.ino

- Note: Before compiling the code remember to modify the code in order to connect to your mobile hotspot. For this, change the SSID and password to desired values in the code.
- Click on Compile and Upload the code to "DOIT ESP32 DEVKITV1".
- Turn on the mobile hotspot on your android phone whose SSID was entered in the code. Keep the mobile phone at a particular location.
- The ESP32 will connect with the hotspot over Wi-Fi and the subsequent code will guide allow ESP32 to navigate to the mobile phone's location by measuring the received signal strength.

3.2.3. Codes (GitHub link)

https://github.com/sachinomdubey/Projects/blob/main/Autonomous%20Navigation/ES P32/IDE/Beacon tracking/navsuccess edit.ino