

RANS Test Suite of High-Fidelity CFD Verification Workshop (Hi-Fi CFDVW) 2024:

Summary of Test Case 3 Solutions for Common Research Model High-Lift Wing-Body (CRM-HL-WB) Configuration with SA-neg-QCR2000-R(C_{rot}=1) Turbulence Model

Boris Diskin

Marshall Galbraith

NASA Langley Research Center

Massachusetts Institute of Technology

AIAA High-Fidelity CFD Verification Workshop 2024

Orlando, Florida

January 6-7, 2024

Outline

- Statistics of Submitted Solutions
- Convergence Requirements
- Overview of Solutions
- Separation patterns
- Summary

CRM High-Lift Wing-Body (CRM-HL-WB) Configuration

 $M_{\infty} = 0.2$, $\alpha = 11^{\circ}$, $Re_{c} = 5.6 \times 10^{6}$

- Hi-Fi CFDVW Test Case 3:
 - Common case with Fifth High-Lift Prediction Workshop (HLPW-5) https://hiliftpw.larc.nasa.gov/Workshop5/
- 8 groups submitted solutions with SA-neg-QCR2000-R(Crot=1)
 - Government labs, major aerospace companies, academic institutions, commercial software developers, and small businesses
 - 12 independent sets of solutions

Discretizations and Grids

Discretization approaches

- Node-centered, finite-volume, 2nd order (3 groups, 6 sets)
- o Cell-centered, finite-volume, 2nd order (3 solvers, 4 sets)
- Node-centered, continuous finite-element, 2nd order (1 solver, 1 set)
- Node-centered, continuous finite-element, high order (1 solver, 1 set)

Fixed-grid families

- 1.R.01 POINTWISE (PW), mixed-element (3 solvers, 3 sets)
- 1.R.03, 1.R.05, 1.R.07 HELDENMESH (HM), mixed-element (4 solvers, 5 sets)
- 1.L.01(2) ANSA hex dominant (1 solver, 1 set)
- 1.H.04(4) ANSA high-order grids (1 solver, 1 set)
- Solution adapted grids (2 solvers, 2 sets)

Fixed-Grid Statistics

TO THE OTHER PROPERTY.

Pointwise 1.R.01 Family

Grid Identifier	Nodes	Cells
1v	956.2K	2.6M
3v	5.3M	12.8M
5v	15.4M	36.1M
7v	34.0M	78.0M
9v	63.4M	143.9M
11v	106.5M	239.8M
13v	165.4M	370.5M
15v	242.6M	541.4M
17v	340.6M	757.9M

ANSA 1.H.04(4) Family

Grid Identifier	DOFs	Cells
Α	7.0M	5.0M
В	19.8M	14.2M

HeldenMesh 1.R.03 Family

Grid Identifier	Nodes	Cells
С	1.1M	2.7M
М	7.6M	18.4M
F	58.1M	136.0M

HeldenMesh 1.R.05 Family

Grid Identifier	Nodes	Cells
С	0.9M	2.6M
M	5.8M	17.8M
F	42.9M	131.0M
R	331.2M	1.01B

HeldenMesh 1.R.07 Family

Grid Identifier	Nodes	Cells
Coarse	5.0M	12.0M
Medium	13.4M	31.2M
Fine	38.9M	87.1M
XFine	105.6M	232.4M
UFine	191.0M	415.1M

ANSA 1.L.01(2) Family

Grid Identifier	Nodes	Cells
Α	5.8M	7.0M
В	14.0M	16.1M
С	37.5M	42.0M
D	73.1M	80.5M
Е	187.5	202.4M

- 1.R.01 is initial grid family, an improved PW family
 1.R.08 has been generated later
- 1.R.03 and 1.R.05 generated by Helden Aerospace,
 1.R.07 independently generated at NASA LaRC
- 1.H.04(4) is a high-order (Q2) tetrahedral grids
- 1.L.01(2) is hex-dominated grid generated for HRLES solutions

Solution Nomenclature

Code	Discretization method	Hi-Fi ID	HLPW-5 ID	Grids
FUN3D, NASA LaRC	FV NC 2 nd order	01.1	R-001.3	1.R.01 (1v – 13v)
		01.2	R-001.2	1.R.03 (C, M, F)
GGNS-T1/EPIC, Boeing	FEM NC 2 nd order	02	A-003	Adapted
USM3D-ME, NASA LaRC	FV CC 2 nd order	03.1	R-003.4	1.R.05 (C, M, F, R)
		03.2	R-003.2	1.R.07 (Coarse – UFine)
Dragon, Bombardier	FV CC 2 nd order	04	R-008.5	1.R.01 (5v - 11v)
FUN3D, Textron	FV NC 2 nd order	05.1	R-013.1	1.R.01 (1v – 17v)
		05.2	R-013.2	1.R.05 (C, M, F)
CFD++, MetaComp	FV CC 2 nd order	06	N/A	1.L.01(2) (A, B, C, D, E)
Wolf, INRIA	FV NC 2 nd order	07.1	N/A	1.R.05 (C, M, F)
		07.2	N/A	Adapted
COFFE, CREATE-AV	FEM NC High Order P2Q2	08	N/A	1.H.04(4) (A, B)

○ FEM – finite element

○ NC – node centered

[○] FV – finite volume

[○] CC – cell centered

Convergence Requirements

Iterative convergence criteria

- Residual reduction below 1E-8 (combined meanflow and turbulence model residual)
- Residual reduction 7 orders from maximum level (combined meanflow and turbulence model residual)
- o CD, CL, and CM do not change in fourth decimal place in last 1000 iterations

Grid converged solutions

- Computed on fine enough grids
- Satisfied at least one iterative convergence criterion
- \circ Aerodynamic coefficients are plotted versus characteristic mesh size $N^{(-1/3)}$
 - ✓ *N* is grid degrees of freedom (e.g., nodes for node-centered solutions, cells for cell-centered solutions)

Overview of Solutions

All Solutions: Iterative Convergence

- Only five submissions provided quantitative iterative convergence data
- Visual assessment of plot flatness
- Focus on variation over last 20% of iterations on finest submitted grid
 - Hi-Fi-01.1, Hi-Fi-03.2, and Hi-Fi-08 plots appear as sufficiently flat
 - Hi-Fi-04 and Hi-Fi-07.1 solutions would benefit from additional iterations

Examples: Iterative Convergence

All Solutions: Grid Convergence of CL and CD

- CL variation is within 2% range [1.062, 1.081]
- CD variation is within 20 counts, 3% range [0.063, 0.065]
- Cm variation is within 24% range [-0.063, -0.051]

Grid convergence is not observed

NASA

All Solutions: Surface Pressure Cuts

Test Case geometry does not have high-lift devices, shown only for reference

Good agreement between solutions

Grid Convergence: Selected Solutions

- Selecting solutions without known deficiencies:
 - Some grid families provide insufficient leading-edge resolution (1.R.01)
 - High-order solutions (Hi-Fi-08) moving in the right direction; too coarse grids
 - Some adapted-grid solutions (Hi-Fi-07.2) insufficiently converged

Grid convergence is observed

- CL variation is within 0.5% range [1.065, 1.070] (shaded)
- CD variation is within 5 counts, 0.8% range [0.0631, 0.0636] (shaded)
- Cm variation is within 5% range [-0.060, -0.057] (shaded)

Separation Patterns

Main Trends

- Many (not all) solutions reported massive separation on coarse grids
 - o May be affected by grid inadequate resolution and insufficient iterative convergence
 - There are fully-converged, massively-separated solutions on some coarse grids
- Some solutions observed mild leading-edge separation
- Well-converged fine-grid solutions show small separation
- Four views of streamlines for separation focus
 - CFD View 1 Global view on upper-surface wing flow
 - CFD View 2 View of fuselage-wing juncture separation at trailing edge
 - CFD View 4 View of wing-tip separation
 - CFD View SP1.1 View of midspan trailing-edge separation

CFD View 1 Global view of flow over upper wing surface

CFD View 2 Focus on juncture separation bubble

CFD View 4 Focus on wing-tip separation

Summary

- Relatively close agreement between all solutions
- No grid convergence evident from totality of submissions
- Grid convergence observed for solutions on selected grid families
 - Different grid families (HM, Adapted, HRLES)
 - Generated by different groups
 - Different discretizations (FV-NC, FV-CC, FEM)
- Similar separation patterns on grids with sufficient resolution