How Dietary Intake Has Been Assessed In African Countries? A Systematic Review
Author Information
Dr Catarina Vila-Real Masters (Corresponding Author)
Email: cvreal@porto.ucp.pt
Affiliation 1:
Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina –
Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado
2511, 4202-401 Porto, Portugal, Porto, Portugal
Dr Ana Pimenta-Martins
Email: apimenta@porto.ucp.pt
Affiliation 1:
Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina –
Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado
2511, 4202-401 Porto, Portugal, Porto, Portugal
Professor Ana Maria Gomes
1 10105501 Ana Mata Offics

Email: amgomes@porto.ucp.pt
Affiliation 1:
Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina –
Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado
2511, 4202-401 Porto, Portugal, Porto, Portugal
Professor Elisabete Pinto
Email: epinto@porto.ucp.pt
Affiliation 1:
Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina –
Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado
2511, 4202-401 Porto, Portugal, Porto, Portugal
Affiliation 2:
Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto,
Portugal, Porto, Portugal
Dr Ndegwa Henry Maina
Email: henry.maina@helsinki.fi

Affiliation 1:

University of Helsinki, Department of Food and Environmental Sciences, Division of Food Technology, Agnes Sjöbergin tie 2, P.O. Box 66, FIN-00014 Helsinki, Finland, Helsinki, Finland

INTRODUCTION

Over the last years, we have witnessed a shift in demographics in developing countries, namely in what concerns the lifetime expectancy and the organization of the societies, since there has been a growth in urbanization. This reality has led to changes in people's lifestyles, resulting in a transition from traditional to modern realities, subsequently leading to an epidemiological transition. Developing countries, especially in Africa have shown an increase in the prevalence of Non-Communicable Diseases (NCDs), while Communicable Diseases are still a major challenge, despite the success of vaccination programs (Islam et al. 2014; Haregu et al. 2014; Boutayeb 2006; World Health Organization - Reginal Office for Africa 2006). According to the World Health Organization (WHO) Global Status Report (2011), NCDs are responsible for almost 80% of deaths in low and middle-income countries. Although the major cause of deaths in African countries are communicable, maternal, perinatal, and nutritional diseases, NCDs are emerging in an exponential rate, being foreseen a switch of trends a switch of trends in 2030 (World Health Organization 2011).

Dietary patterns are often considered as one of the main causes of NCDs, so it is of utmost importance to describe the expectable nutritional transition, in order to quantify the impact of diet in this group of diseases. However, in developing countries this work is scarce or insufficiently documented, probably due to logistic and financial constraints. According to Pisa et al. (2014), another reason that justifies the scarcity of this work is the lack of reliable dietary assessment methodologies, which upholds the emergent need for the development, validation and standardization of tools for measuring and monitoring food intake in different countries (Pisa et al. 2014). In this regard some work has been done, namely by the Dietary Exposure (DEX) assessment group (Pisa et al. 2014), which addresses its research to studies on diet and cancer and other NCDs. Its main goal is to develop and to validate dietary methods to assess dietary exposures.

The assessment of dietary intake is imperative to know population's food habits, including the inadequacy prevalence of different nutrients, as well as the study of the relationships between dietary patterns and disease. Dietary assessment may be done at national, household and individual level, when approaching food supply and production, food purchases or food consumption, respectively (Gibson 2005; Thompson & Byers 1994). At the individual level, several methodologies may be used, and these may be divided into two major groups: retrospective and prospective methods. Retrospective methods comprise the twenty four hour Recall (24hR), the Food-Frequency Questionnaire (FFQ) and the Dietary History (DH), while prospective methods include Food/Weighed Records (WR) (Gibson 2005; Thompson & Byers 1994). Ideally these tools need to be reproducible and valid in order to assure the consistency and

⁴ ACCEPTED MANUSCRIPT

accuracy of measurements (Willet 1998). The choice of an appropriate method will depend on the aims of the study, the population approached as well as the research team's experience.

This systematic review intends to summarize the most recent research conducted in this field in African countries, specifically in what concerns the most used methodologies and tools.

METHODS

The literature search was conducted on MEDLINE®/PubMed in order to identify scientific papers focused on studies about dietary intake of different populations, among African countries. This research considers several African countries, from North, East, West, Central and South Africa. In order to narrow down and systematize the search in more recent literature, only original papers published between January 2005 and December 2014 were considered and specific key MeSH terms were used: *dietary intake*; *Africa*.

Several papers were identified but not all were considered for the systematic review. The inclusion criteria established were related to: the objective of the study: only studies intending to assess dietary intake; the methodology: only studies with a suitably described methodology; and the language: only papers written in English, Portuguese and Spanish. The exclusion criteria were: studies carried out among African people but not in African countries (for example, African immigrants in other countries); assessment of a particular nutrient or a specific food or food toxin; non-quantitative assessment of the diet; dietary assessment among children; and studies performed at household level. Studies that were focused on micronutrient assessment but

further evaluated the contribution of macronutrients were also considered. Figure 1 shows a flowchart representing the paper's selection procedure.

[Figure 1]

A total of 761 studies were identified in the initial search by using the combination of the key terms mentioned above. Out of these, 221 were excluded by reading the abstract while 72 were reviews that were not included in the present study. After applying exclusion criteria, 68 papers were excluded because they did not involve a quantitative analysis or they did not comply to the established objective, 127 studies were related to a single nutrient or food, 119 investigated only children, 12 were not performed at an individual level, 29 were carried out outside Africa, 14 were written in other languages than English, Portuguese or Spanish, six did not have a suitable description of the methodology or were carried out in very small and characteristic samples. By checking the reference lists of each of these papers, another six papers, which complied with the inclusion criteria, were identified. Thus, the final number of papers was 99. Tables 1, 2, 3 and 4 summarize the main methodological issues of the included studies, allowing a comprehensive comparison between them. Papers were divided in the four tables according to the method used for dietary assessment: 24hR (table 1) FFQ (table 2), both 24hR and FFQ (table 3) and WR (table 4). In each table, in addition to information about the country where the study was conducted and the year of publication, information about methodological issues, such as the study design, studied sample, dietary assessment methods and particularities are presented. Besides these aspects, the sampling methodology and main limitations of the studies were summarized in order to understand the most difficult challenges that researchers found in the

field. Furthermore, the application of innovative technologies on dietary assessment in African countries was explored.

RESULTS

The research retrieved 99 papers (102 studies) carried out among different African populations, namely adults (men and/or women), adolescents and elderly people.

The included papers describe studies from twenty-two different countries, located in different African regions: Algeria (n=1), Egypt (n=1), Morocco (n=2), Sudan (n=1) and Tunisia (n=5) (Northern Africa), Ethiopia (n=6), Kenya (n=10), Malawi (n=1), Mozambique (n=3), Uganda (n=3), Tanzania (n=7), Zambia (n=2) and Zimbabwe (n=1) (Eastern Africa), Benin (n=4), Burkina Faso (n=4), Ghana (n=4), Mali (n=1) and Nigeria (n=2) (Western Africa), Botswana (n=2) and South Africa (n=38), (Southern Africa), Cameroon (n=3) and Democratic Republic of the Congo (n=1) (Central Africa), each region representing 10% (n=10), 32% (n=33), 15% (n=15) and 39% (n=40) and 4% (n=4) of the total sample, respectively. The huge representation of Southern Africa is caused by the high number of studies developed in South Africa, representing 37% (n=38) of the included papers. This division of African regions is based on United Nation (UN) Statistics Division.

Dietary Assessment Methods

Almost all of these studies are cross-sectional studies, which capture the dietary practices in a specific population, at a particular point in time (Thompson & Byers 1994; Gibson 2005).

Overall, the two most used dietary assessment tools were the 24hR and the FFQ, which were applied separately or together. Among the studies, most of them (n=54) only used 24hR and in some cases the authors chose a single day of recall (n=20) (May et al. 2014; Mupere et al. 2012; Nyuar et al. 2012; Irvine et al. 2011; Huybregts et al. 2009; Ijarotimi & Keshinro 2008; Maruapula & Chapman-Novakofski 2008; Mounir et al. 2007; Charlton et al. 2005; Wiig & Smith 2007; Kamau-Mbuthia & Elmadfa 2007; Steyn & Nel 2006; Alemayehu et al. 2011; Gewa et al. 2008; Tesfaye et al. 2008; Walton et al. 2012; Steyn et al. 2011; Steyn et al. 2012; Scarcella et al. 2011; Wiesmann et al. 2009), whilst others utilized multiple recalls (n=34) (Zeba et al. 2014; Changamire et al. 2014; Oldewage-Theron et al. 2014; Koethe et al. 2013; Kolahdooz et al. 2013; Papathakis & Pearson 2012; Hansen et al. 2011; Luke et al. 2011; Becquey & Martin-Prevel 2010; Oldewage-Theron et al. 2010; Nago et al. 2010; Dapi et al. 2010; Sodjinou et al. 2009; Alaofè et al. 2009; Mostert et al. 2005; Addo et al. 2011; Kim et al. 2014; Rankin et al. 2011; Powell et al. 2013; Termote et al. 2012; Pereko et al. 2012; López et al. 2012; Heimburger et al. 2010; Naude et al. 2011; Gibson et al. 2011; Lamri-Senhadji et al. 2009; Sodjinou et al. 2008; O'Keefe et al. 2007; Boumaiza et al. 2012; Oldewage-Theron et al. 2008; Kennedy et al. 2009; Becquey et al. 2009; Oldewage-Theron et al. 2008; Oldewage-Theron et al. 2008), covering a range of two to eight recalls. One study did not mention the use of a 24hR, however the described procedure allows us to conclude that this was the methodology followed (Tesfaye et al. 2008). Some studies (Sodjinou et al. 2009; Luke et al. 2011; Maruapula & Chapman-Novakofski 2008; Zeba et al. 2014; Becquey & Martin-Prevel 2010; Alaofè et al. 2009; Kim et al. 2014; Alemayehu et al. 2011; Termote et al. 2012; Powell et al. 2013; Sodjinou et al. 2008; Wiesmann et al. 2009; Becquey et al. 2009) followed a validated method for collecting

interviewer-administered 24hR, the so called United States Department of Agriculture (USDA) Automated Multiple-Pass Method (AMPM), which is a computerized method that can be applied in person or by telephone. Five other studies (Oldewage-Theron et al. 2014; Namugumya & Muyanja 2011; Walton et al. 2012; Oldewage-Theron et al. 2008; Oldewage-Theron et al. 2008) mentioned other validated methods, one based on four steps developed by Gibson and Ferguson (Gibson & Ferguson 1999; Gibson 2005), and another one which is a 24hR questionnaire developed and validated by Oldewage-Theron et al. (Oldewage-theron et al. 2005). All the dietary information collected from these studies using the 24hR reference tool is summarized in table 1.

[Table 1]

In some papers (n=30), authors selected only the FFQ for the dietary assessment (Wrottesley et al. 2014; Lukmanji et al. 2013; Pretorius et al. 2012; Anderson et al. 2011; Joffe et al. 2011; Aounallah-Skhiri et al. 2011; Kruger et al. 2011; Joffe et al. 2010; Baroudi et al. 2014; Zingoni et al. 2009; Oguntibeju et al. 2007; Jackson et al. 2007; Belgnaoui & Belahsen 2006; Jordan et al. 2013; Kesa & Oldewage-Theron 2005; Sheehy et al. 2013; Merchant et al. 2005; Jackson et al. 2012; Wentzel-Viljoen et al. 2011; Botha et al. 2014; MacKeown et al. 2007; Kruger et al. 2012; Pisa et al. 2012; Joffe et al. 2012; Delport et al. 2011; Goedecke et al. 2009; Hogenkamp et al. 2008; Tessier et al. 2008; Vorster et al. 2007; Hattingh et al. 2010; Zingoni et al. 2009; Oguntibeju et al. 2007; Kruger et al. 2011; Wentzel-Viljoen et al. 2011; Botha et al. 2014; Kruger et al. 2012; Pisa et al. 2012; Joffe et al. 2012; Goedecke et al. 2009; Hogenkamp et al. 2014; Kruger et al. 2014; Pisa et al. 2012; Joffe et al. 2011; Goedecke et al. 2009; Hogenkamp et al. 2008; Wrottesley et al. 2014; Anderson et al. 2011; Jackson et al. 2007; Belgnaoui &

Belahsen 2006; Kesa & Oldewage-Theron 2005; Sheehy et al. 2013; Jackson et al. 2012; Tessier et al. 2008; Vorster et al. 2007; Hattingh et al. 2006) or semi-quantitative FFQ (n=7) (Delport et al. 2011; Merchant et al. 2005; Jordan et al. 2013; Baroudi et al. 2014; Aounallah-Skhiri et al. 2011; Lukmanji et al. 2013; MacKeown et al. 2007). Several studies (Pretorius et al. 2012; Joffe et al. 2011; Joffe et al. 2010; Zingoni et al. 2009; Oguntibeju et al. 2007; Kruger et al. 2011; Wentzel-Viljoen et al. 2011; Botha et al. 2014; Kruger et al. 2012; Pisa et al. 2012; Joffe et al. 2012; Goedecke et al. 2009; Hogenkamp et al. 2008; Wrottesley et al. 2014; Vorster et al. 2007) developed in South Africa used a quantitative FFQ specific for the South African population, retrieved from two sources, namely the Transition Health and Urbanization in South Africa (THUSA) questionnaire, design by MacIntyre et al. (MacIntyre et al. 2001a; MacIntyre et al. 2001b) and the Dietary Assessment and Education Kit (DAEK) questionnaire, developed by Steyn & Senekal and launched by the Medical Research Council (MRC) (Steyn & Senekal 2005; de Villiers et al. 2006). Within the employment of quantitative food frequency questionnaires (FFQs), Jackson et al. (2007) and Anderson et al. (2011), used the questionnaire of Sharma et al. (1996), which was developed specifically for Cameroonian people, but no information about its validation was reported. Kesa & Oldewage-Theron Kesa & Oldewage-Theron (2005) and Hattingh et al. (2006) also mentioned that they used a previously validated questionnaire, but no reference was made to any paper where the validation study was published. Belgnaoui & Belahsen (2006) did not specify if the used FFQ was validated or not. Within semi-quantitative FFQs, a study carried out in Tunisia (Baroudi et al. 2014) used a validated FFQ developed in Italy, which was designed for a population with similar characteristics; both populations had cancer (Decarli et al. 1996; Franceschi et al. 1993). The study of MacKeown et al. (2007) used a

FFQ based on the one used in the Birth-To-Twenty study (Richter et al. 2007). Two other Tunisian studies (Aounallah-Skhiri et al. 2011; Tessier et al. 2008) used an already validated questionnaire (El Ati et al. 2004) with few modifications according to the studied population. There were other cases in which the authors developed their own quantitative questionnaires for implementation (Lukmanji et al. 2013; Jordan et al. 2013; Merchant et al. 2005; Jackson et al. 2012; Sheehy et al. 2013). For example, Sheehy et al. (2013) developed a specific FFQ for use among rural South Africans and Jackson et al. (2012) developed, validated and tested for reproducibility a FFQ for use among adults in Botswana. Jordan et al. (2013) and Merchant et al. (2005) developed semi-quantitative FFQs to assess dietary intake in Tanzanian women and in Zimbabwean population, respectively. Lukmanji et al. (2013), authors of a Tanzanian study, also developed their own semi-quantitative FFQ but gave no information about a validation study. It is possible to observe that there are few recent validated dietary assessment instruments for African populations. As mentioned, some of the studies described so far utilized questionnaires published before 2005 have been used for dietary assessment (Sharma et al. 1996; El Ati et al. 2004), in the reviewed studies. In other cases, questionnaires were obtained from the Demographic and Health Surveys in the correspondent country. Table 2 summarizes characteristics of all the studies which used an FFQ to measure the dietary intake.

[Table 2]

Several studies used a combination of both methods (n=11), (Korkalo et al. 2014; Mala et al. 2012; Namugumya & Muyanja 2011; Oldewage-Theron & Kruger 2011; Amare et al. 2012; Mbochi et al. 2012; Oldewage-theron et al. 2005; Baroudi et al. 2010; Oldewage-Theron et al. 2006; Waudo et al. 2005; Faber & Kruger 2005), as synthesized in table 3. Namugumya &

Muyanja (2011), applied 24hR aiming to study meal patterns and to assess meal quality, whereas with the application of a FFQ they intended to gather information on food selection patterns and portion sizes. Oldewage-theron et al. (2005) used the FFQ to study both quantitative and qualitative food consumption patterns and dietary intake of the respondents and they validated this FFQ using 24-hour recalls as a gold standard. This questionnaire was later used in 2006 by Oldewage-Theron et al. (2006). Korkalo et al. (2014) developed their own questionnaire and Mala et al. (2012) used a pre-existent FFQ (without mentioning its source) to gather information about frequency of food consumption while the 24hR was used to quantify the dietary intake. Amare et al. (2012), Mbochi et al. (2012), Faber & Kruger (2005) used a qualitative FFQ and 24hR to determine nutritional intake, while Oldewage-Theron & Kruger (2011) used a quantitative FFQ to assess dietary intake and food consumption patterns and a 24hR to confirm food variety and dietary intake. The questionnaire used by Amare et al. (2012) was based on the Hellen Keller International FFQ, previously used in Ethiopia. Baroudi et al. (2010) assessed dietary intake using a quantitative FFQ and performed 24hR in order to obtain more qualitative information, related to food brand names and food preparation methods. Waudo et al. (2005) used 24hR to assess what mothers had eaten in the preceding 24h and then applied an FFQ in order to obtain information about the types of foods commonly consumed.

[Table 3]

Besides these two retrospective methods, weighed records were also utilized, but in a much smaller number; only four studies. Haileslassie et al. (2013) and Gibson et al. (2008) used only a single day as a measuring unit while Olayiwola et al. (2012) and Abebe et al. (2008)

applied food records for three and two non-consecutive days, respectively. More detailed information about these studies is compiled in table 4.

[Table 4]

Methods for the Analysis of Food Intake Data

A large range of software tools for the analysis of dietary data were mentioned in these studies. According to table 5 it can be observed that there is a preferential selection of food databases of the countries within the same African region. For instance, in Western Africa the *Software for Intake Distribution Estimation* (C-SIDE) developed by Iowa State University is commonly used, while in Eastern Africa, NutriSurvey is the mainly chosen software. In the Northern African countries, Bilnut Software was used for the majority and in the South, FoodFinder® (Grant et al. 1992) was clearly the most utilized software. Several countries had to update these tools with their own typical foods or recipes of composite dishes, when these were not available.

In Western African countries the most used nutritional programs were ESHA Food Processor® (Food Processor Diet Analysis & Fitness Software) (Addo et al. 2011; Wiig & Smith 2007; Huybregts et al. 2009; Pereko et al. 2012) and C-SIDE (Zeba et al. 2014; Becquey & Martin-Prevel 2010; Sodjinou et al. 2009; Sodjinou et al. 2008). Several authors used other softwares, such as *NutriData*, developed in California (Olayiwola et al. 2012), *Nutrition Data System for Research* (NDSR), developed by University of Minnesota (Luke et al. 2011) and *Nutrifiq*, based on the Canadian Nutrient File (Alaofè et al. 2009). A very comprehensive software system, named VBS Food Calculation System, was chosen for the Women's Dietary Diversity Project (in Burkina Faso and Mali) (Becquey et al. 2009; Kennedy et al. 2009). VBS

Food Calculation System is a set of three softwares, which include KOMEET (for food intake analysis), VBS MANAGER (nutrient composition information), ORION and FOOD GROUPS (both for nutrient intake by food group analysis).

In East Africa, almost all the studies performed therein used the *NutriSurvey Program*, which has seventeen different food databases (food composition tables from Tanzania, Kenya, Senegal, Mali and Germany among others) (Mbochi et al. 2012; Mala et al. 2012; Jordan et al. 2013; Mupere et al. 2012; Namugumya & Muyanja 2011; Kamau-Mbuthia & Elmadfa 2007; Korkalo et al. 2014). *ESHA Food Processor*® (Irvine et al. 2011; Haileslassie et al. 2013; Merchant et al. 2005), *FoodFinder*® (Steyn & Nel 2006; Steyn et al. 2011; Steyn et al. 2012), which includes the latest version of the South African Food Composition Database, NDSR (Koethe et al. 2013; Heimburger et al. 2010), and WorldFood Dietary Assessment System (Gewa et al. 2008; Walton et al. 2012) were also used. Softwares such as Programme CANDAT (Powell et al. 2013), Food Meter UK 07 (Waudo et al. 2005) and *General Intake Estimation System*, developed by The National Food Institute, in Denmark (Hansen et al. 2011) (linked with Composition of Foods Commonly Eaten in East Africa, the UK Nutrient Databank and National Food Composition Tables and The Planning of Satisfactory Diets in Kenya), were also chosen for nutrient analysis.

Northern African countries based their nutrient analysis on *Bilnut Software* (Baroudi et al. 2010; Baroudi et al. 2014; Belgnaoui & Belahsen 2006). However, other softwares such as *ESHA Food Processor*® (Aounallah-Skhiri et al. 2011), DIAL Programme (López et al. 2012), developed by several authors from Alce Ingenieria, *Tableaux des valeurs nutritives* (Lamri-Senhadji et al. 2009), built by Souci and colleagues (2000), Dietetik®, designed for Tunisian

foods, Nutrilog®, a software with eleven different databases (Boumaiza et al. 2012) and *FoodBase Nutritional Program* (Nyuar et al. 2012) were also used in some studies.

Investigations carried out in South African countries mainly used *FoodFinder*® software(Wrottesley et al. 2014; Oldewage-Theron et al. 2014; Papathakis & Pearson 2012; Pretorius et al. 2012; Joffe et al. 2011; Oldewage-Theron et al. 2010; Zingoni et al. 2009; Oldewage-Theron et al. 2008; Oguntibeju et al. 2007; Charlton et al. 2005; Rankin et al. 2011; Oldewage-Theron & Kruger 2011; Joffe et al. 2010; Faber & Kruger 2005; Wentzel-Viljoen et al. 2011; Kruger et al. 2011; Mostert et al. 2005; O'Keefe et al. 2007; Naude et al. 2011; Kruger et al. 2012; Jackson et al. 2012; Hattingh et al. 2006; Vorster et al. 2007; Oldewage-Theron et al. 2008; Oldewage-Theron et al. 2008).

Other software databases such as NDSR (May et al. 2014), *NutriBase* (Kolahdooz et al. 2013; Sheehy et al. 2013), developed by CyberSoft (both based on USDA National Nutrient Database for Standard Reference), *Dietary Manager* Program® (Kesa & Oldewage-Theron 2005; Oldewage-Theron et al. 2006) managed by Oskar Scharf of Dietetic Services/Rand Software and Nutritionist Five (Maruapula & Chapman-Novakofski 2008) were also used.

In Central Africa, the used software tools in Cameroon were *Microdiet* (Anderson et al. 2011) and *Becel Institute Nutrition Software* (Dapi et al. 2010) and Lucille food analysis software (Termote et al. 2012) in Democratic Republic of Congo.

Some studies did not mention the use of specific software, only referring the use of food composition databases, as source of information for the nutrient analysis, whose analysis was performed with a tool, such as Microsoft® Office Excel or IBM SPSS software for example, to compute dietary data.

Generally in African countries, there is a lack of country-specific Food Composition Tables (FCTs), and the ones that have their own FCT, do not have it updated. For this reason some countries use FCTs from neighboring countries or use global databases. Examples of cited databases are: USDA Nutrient Database for Standard Reference and others developed by Food and Agriculture Organization (FAO), such as Food Composition Table for Use in Africa, West African Food Composition Table and Composition of Selected Foods from West Africa. USDA Database was the most cited database, in countries such as Burkina Faso, Cameroon, Ethiopia, Uganda, Zimbabwe, Cameroon or Botswana. All of these databases could be accessed on the International Network of Food Data Systems (INFOODS) directory.

[Table 5]

Sampling Methodology

Sampling can be done using different methodologies, depending on the aim of the investigation, on the sample size, among other factors.

According to the range of studied papers, random and non-random sampling methods were used, random sampling being the most common. Some authors did not describe how the recruitment of subjects was done. Within random sampling the main methods used were stratified sampling, multi-stage sampling and simple random sampling. Non-random convenience sampling was also used.

In studies using a multi-stage sampling approach, probability proportionate to size method was frequently used in the first selection stage, i.e. in the selection of areas (rural/urban), districts, villages, communities or even quarters. Consequently households were simply randomly selected (Amare et al. 2012; Olayiwola et al. 2012; Nago et al. 2010; Sodjinou et al.

¹⁶ ACCEPTED MANUSCRIPT

2009; Ijarotimi & Keshinro 2008; Oldewage-theron et al. 2005) or the walk method was used (Korkalo et al. 2014; Alemayehu et al. 2011), for the identification of the subject that fulfilled the inclusion criteria, within each household. Besides these walk methods, the usage of township maps to more easily select residential areas was also utilized as one of the initial methodologies of the sampling procedure (Oldewage-Theron et al. 2014; Kolahdooz et al. 2013; Oldewage-Theron & Kruger 2011; Hattingh et al. 2006). Few studies (Powell et al. 2013; Nago et al. 2010; Becquey et al. 2009) mentioned the possibility to access residential information in the studied city, which were provided by state agencies, such as the village government, Ministry of Education or the Higher Institute of Population Science. Since it was possible to differentiate segments in populations, in several cases creation of clusters (Aounallah-Skhiri et al. 2011; Kennedy et al. 2009; Jackson et al. 2012; Tessier et al. 2008; Waudo et al. 2005) or stratification of the sample (Haileslassie et al. 2013; Mbochi et al. 2012; Dapi et al. 2010; Maruapula & Chapman-Novakofski 2008; Mounir et al. 2007; Jackson et al. 2007; Steyn & Nel 2006; Kesa & Oldewage-Theron 2005; Luke et al. 2011; Anderson et al. 2011; Hogenkamp et al. 2008; Steyn et al. 2011; Powell et al. 2013; Steyn et al. 2012; Vorster et al. 2007) by environmental or individual factors, such as social strata, income, living in rural or urban area, age or sex, was performed. In some cases, participants were randomly recruited using advertisements which were placed in different and strategic locations, such as church groups, community centers and universities or even in local newspapers (Goedecke et al. 2009; O'Keefe et al. 2007; Charlton et al. 2005). Subjects were recruited in medical clinics, health centers or day care centers; in some papers random sampling was cited (Mostert et al. 2005; Lukmanji et al. 2013; Jordan et al. 2013; Oldewage-Theron et al. 2006) and in others no sampling method was mentioned (Wiig & Smith

2007; Oldewage-Theron et al. 2010; Kim et al. 2014; Heimburger et al. 2010; Gibson et al. 2011; Oldewage-Theron et al. 2008; Belgnaoui & Belahsen 2006; Baroudi et al. 2010).

Convenience sampling was applied in several studies (Walton et al. 2012; Joffe et al. 2012; Gibson et al. 2008; Abebe et al. 2008; Termote et al. 2012). In other cases, authors only mention that the sampling method was not random (Wrottesley et al. 2014; Alaofè et al. 2009).

DISCUSSION

The purpose of this review was to summarize the methodologies and tools used in dietary intake assessment in African countries, in a ten year period, covering steps from the sampling to dietary data analysis.

When we seek to describe the dietary intake of a population, the first required step is to establish a representative sample. Many sampling and subject recruitment methods can be used and these were indeed reflected in the analyzed studies. The major part of the studies applied random recruitment. In the cases in which convenience sampling was performed, various segments of the population were not included and since it is not possible to calculate the total number of excluded people, it is also not possible to determine bias caused by the absence of these individuals in the sample (Gouveia de Oliveira 2009). Ideally, random methods should be used when the aim is to characterize a population. In the recruitment process, the selected approaches have to be adapted to the population socio-economical and educational capabilities in order to assure adequate response rates and to avoid constraints in participation. The authors of the studies included in this review used some strategies, such as: the description of the study objectives in the population's native language, overcoming language limitations; the possibility to give oral consent for participation in the investigation, overlapping limitations related to high rates of illiteracy; and picking enumerators or volunteers that understood very well the population and their habits aiming to reach their confidence, reducing the possibility of anxiety or suspicion that could be present in such situations (Ngo et al. 2009).

Dietary Assessment Methods

Implementation of dietary assessment methods may be done in several ways, for instance face-to-face interviews, by telephone, by email, self-administrated or observation when using the weighing method. The selected implementation method is related mainly with social and economic context of the studied areas and the resources available for the research. In this review the majority of the included studies were performed with face-to-face interviews and in two cases, i.e. in South Africa and Cameroon, self-administration was used.

To understand which is the best methodology to choose according to the population and the purpose of the study, and considering that 24hR and FFQ methods rely on respondents' memory, it is important to evaluate the accuracy of memory-based reports. There is cognitive research that confirms that for general people it is easier to describe generic dietary patterns than to describe a specific dietary meal (Wirfalt 1998). According to Thompson & Byers (1994), in cross-sectional studies generally the most used methodology is the 24hR, as corroborated by this review. Furthermore, as shown in the analysis performed herein, FFQ was the second most used tool. Both have advantages and disadvantages and should be applicable in specific situations. In their review Pisa et al. (2014) also identified the same top chosen dietary assessment tools.

A single 24hR is an indepth-interview that must be administered by trained people. In some of the studies under revision the interviewer was either a nutritionist, a dietitian or a nutrition student who had been previously trained by experts to collect dietary data. Such extensive expert training of the interviewer in state-of-the-science methodology is of extreme importance for obtaining valid and reliable assessments and analyses of dietary intakes. Furthermore, the need for a broad perception and issue awareness is needed to successfully fulfill

collection of dietary data using this method which is dependent on the subject's memory. A welltrained interviewer will create the need and relaxed atmosphere for the subject, as well as ask key questions that help subjects remember their intake easily (Willet 1998). According to Wirfalt (1998), and also Smith and colleagues (Smith et al. 1991; Smith 1991), more important than closeness of time or number of assessed days are the cues presented to the respondent, which influence aspects of the memory structure that are accessed or activated. There is evidence that the presence of cues prior to method implementation and probes during the assessment, two strategies that were done in the majority of the reviewed interviews, may increase reliability given by individual dietary reports (Thompson & Byers 1994; Wirfalt 1998; Smith et al. 1991; Smith 1991). This was one of the reasons why experts in the area were selected to duly perform the analysis of dietary intake. However, not all studies across different countries could guarantee the collection of data by an expert, probably due to availability of these professionals. Another review, carried out in Africa, also pointed out this limitation (Pisa et al. 2014), referring that in some African countries there is a lack of well-trained nutritionists and dieticians, which makes it challenging, perhaps compromising, the transfer of knowledge and training of interviewers.

The Automated Multiple Pass Method (AMPM), cited by some authors as the reference tool to apply the 24hR, has been tested in different types of populations (Conway et al. 2003; Johnson et al. 1996; Conway et al. 2004; Johnson et al. 2000) and it has been used in the continuing National Health and Nutrition Examination Survey (NHANES). A single day does not represent the usual consumption because of day-to-day variation and for that reason several studies conducted multiple recalls. The more recalls are conducted, the greater similitude to usual consumption is obtained and, consequently, better accuracy is achieved. According to

Thompson & Byers (1994), the 24hR and the WR, usually done multiple times, estimate with quantitative accuracy daily food and nutrients intake, while frequency methods, such as FFQ, are limited by their lack of quantitative accuracy. In the reviewed studies, when multiple recalls were applied, they were distributed in non-consecutive days, in order to include week-days and weekend. Ideally all the 7 days of the week should be assessed in order to better represent usual consumption and to avoid possible systematic differences on dietary intake in different days of the week (Willet 1998). However, the chosen number of days should be considered and decided considering the size of the sample, the purpose of the study, the accuracy desired, the monotony or variety of the diet, as well as the variability of nutrients and foods being assessed (Willet 1998). Yunsheng and colleagues (Ma et al. 2009) studied how many 24hR are required to describe an individual's intake and they concluded that three is the sufficient number of recalls, since with less than three significant differences in energy estimation were observed and with more than three this parameter did not significantly improve. In some cases there was no possibility of conducting a multiple recall. According to the perception of some authors, the monotony of the diet (Nyuar et al. 2012; Steyn et al. 2011) or the large number of respondents (Kamau-Mbuthia & Elmadfa 2007) meant that a single recall was enough. In other cases the lack of time and other resources, such as labour and finances were the main causes (Maruapula & Chapman-Novakofski 2008; Wiig & Smith 2007).

Validity of the 24hR is usually done by comparison between the reports of the respondents in the recall and the measures recorded or weighed by trained and expert observers. An experiment carried out in Ethiopia (Alemayehu et al. 2011) concluded that in the evaluated setting the 24hR was not an accurate substitute of WR. They concluded that the lack of

agreement regarding the number and type of foods between the two methods, caused by memory lapses, and inaccuracies in portion size estimation were the main sources of error. Nevertheless, Gewa et al. (2008) used a to a similar comparison and got different conclusions, supported by higher values of agreement coefficients. In this case, 24hR could be an acceptable alternative to weighing method, however they considered that it was necessary to improve the recall procedure.

Twenty-four hours recall does not cause a huge burden to the respondents as the food records do. Besides, the recall is less likely to modify eating behavior of the respondents, because it is implemented after they have eaten and it does not require literacy, which is necessary to perform a correct, informative and complete food record. In the studied populations this was the major strength of the 24hR and a common reason cited by authors for choosing the recalls rather than the food records. Notwithstanding, when compared with frequency methods these two methods have weaknesses in common, since they are not likely to represent the usual consumption of individuals as reflected in frequency methods.

Therefore, FFQ gives a better idea about the usual consumption because the retrospective period is larger. This period could be since the preceding seven days to the preceding year, for instance. The decision about the ideal time frame is related with two issues, the metabolism of the dietary factor being studied and the physiology/pathophysiology of the outcome (Willet 1998). If the preceding year is used as time frame the researchers assess the dietary intake throughout the whole year, covering both seasons usually referred as dry season and harvest season. When the reference time frame is shorter, the effect of seasonality is not considered,

²³ ACCEPTED MANUSCRIPT

which was a limitation mentioned by several authors. Nevertheless, some of them mentioned that seasonality probably does not induce major dietary modifications, even though seasonality is believed to have significant effects on the diet and nutritional status. In the context of Africa, especially in rural areas, seasonality is in fact an important issue since the production and consequent consumption of some foods, such as fruit, vegetables and cereals, are directly affected by weather conditions that characterize both dry and wet seasons (Savy et al. 2006; Asombang et al. 2013; Msaki & Hendriks 2014). These diet modifications can lead to different intake in some nutrients such as vitamins and fat (Mitchikpe et al. 2008; Wiesmann et al. 2009; Masibo 2013; Faber & Laubscher 2008). More than half of the studies that used FFQ as dietary assessment tool did not specify FFQ's time frame, although the preceding year was the most cited.

Some of the FFQ utilized by the reviewed authors were specifically created for those studies, hence they included the elaboration of the food list besides other steps. Regarding the food list, the way of organizing food items in a questionnaire determines the answer of the respondent. Wirfalt (1998) cited some studies that had better results regarding reproducibility and validity when food items were organized according to the type of meals they usually consumed rather than when they were organized according to food groups. Most of the reviewed studies that used FFQ organized their dietary information in terms of food groups.

As it is possible to observe from the results section, among the studies developed in other countries besides South Africa, few of them used FFQ as one of the selected tools. In these studies authors had to create a new FFQ because in countries such as Kenya, Mozambique, Uganda, Tanzania, Botswana, Morocco or Ethiopia there is no population-specific FFQ. This

²⁴ ACCEPTED MANUSCRIPT

shows the need for developing new food frequency tools within the majority of African countries.

Validity of a FFQ is not a very practical and easy process to perform, because it requires a noninvasive observation of total diet of the respondents during a long period, and these validation studies have not yet been done (Thompson & Byers 1994). What is currently and usually done is the comparison of results from FFQ with that from recalls and records (Thompson & Byers 1994), a process which for some authors should be called calibration instead of validation (Willet 1998).

Some of the presented studies were also tested for reproducibility. The previous referred THUSA questionnaire was tested for reproducibility by other authors (Wentzel-Viljoen et al. 2011) in a different population, with Seatswana-speaking adults. They concluded that this questionnaire was reproducible.

Besides these reported cases there is still a lack of validated methods for use in a specific population, and thus the need of updating the validated dietary assessment methods across African countries is emergent. When a validation study is performed, researchers have more confidence in their method since it means that it can actually measure the aspects of diet that it was designed for (Willet 1998), as long as the study is well-performed.

Estimation of Food Portion Size

Estimation of foods portion size is one of the challenging aspects of the recall tools (Willet 1998; Thompson & Byers 1994; Venter et al. 2000). In several households within rural settings it is common that all the family eat from a shared bowl, hampering the estimation process (Hudson 1995; Huybregts et al. 2008; Pisa et al. 2014). There are visual aids which are

²⁵ ACCEPTED MANUSCRIPT

used to help respondents to accurately report the amounts of food items consumed. In the reviewed studies several tools were used, such as household measures, food models (twodimension or three-dimension), food photographs and pictures, containers, real food items, among others. Within the studies that used 24hR, some did not mention how this estimation was done leaving less margin to evaluate the associated effectiveness (May et al. 2014; Changamire et al. 2014; Oldewage-Theron et al. 2008; Maruapula & Chapman-Novakofski 2008; Mounir et al. 2007; Mostert et al. 2005; Pereko et al. 2012; López et al. 2012; Heimburger et al. 2010; O'Keefe et al. 2007; Gibson et al. 2011). In fact, there is little data concerning the accuracy of portion size estimation tools. A study of Byrd-Bredbenner & Schwartz (2004) evaluated if using portion size measurement aids (PSMAs) had effect on portion size estimation accuracy, in a group of young adults. The PSMAs were two: one was a life-size card containing pictures of both tennis and golf balls and the other one were both real tennis and golf balls. They concluded that even if the estimation accuracy was improved by the use of PSMAs, estimation errors still remain. In Burkina Faso an album of food photographs was validated for use on food portion size estimation of frequently consumed food items (Huybregts et al. 2008). This validated album, with four photos per one of the eight evaluated food items, could be used in 24hR as a valuable and accurate tool in West African rural settings. Another example of advances in this area is the book of food photographs developed and tested by Venter et al. (2000), with the purpose to be used in the THUSA study. A more recent work (Lombard et al. 2013), also carried out in rural areas of South Africa, focused on the development of a food photography series, mainly geared toward oesophageal cancer patients.

In FFQs, portion size of the food items may either be or not be assessed; in this latter option it can be assumed a common portion size for all subjects. There were few papers among the many reviewed in which authors, having collected the amounts consumed by the respondents, did not report how it was done (Baroudi et al. 2014; Belgnaoui & Belahsen 2006; Botha et al. 2014; Delport et al. 2011; Tessier et al. 2008; Jackson et al. 2007; Vorster et al. 2007). The most used tools to estimate portion size were household measures, food models (two-dimension or three-dimension) and food photographs, including the validated food photo manual (Venter et al. 2000). Implementation of the FFQ by mail or by telephone was not used in the reviewed studies. Although these possibilities are considered or applied many times in European or American dietary surveys, the socio-economical, political or geophysical conditions found in many African countries may entail natural communication barriers.

Food Composition Databases

To convert the dietary intake into nutrient intake some components are needed, such as a food composition database, a coding system for matching foods listed with the entries in the food composition database and a software for calculating the nutrients' composition (Willet 1998; Thompson & Byers 1994). The right choice of the nutrient database is very important because the estimation of nutrient intake is affected by it. Parameters such as the completeness regarding the included food items and evaluated nutrients are related to the constant updating of the database, so it is imperative to support the analysis on the most recent updated version available (Thompson & Byers 1994). These nutrient databases are commonly included in computer software programs that process data and calculate individual dietary intake. The choice of the software should be based on the level of specification and detail needed, on the type of foods that

are usually consumed by the studied population and on the hardware and software requirements. As mentioned above, and also noted by other reviews (Pisa et al. 2014; Ochola & Masibo 2014; Ngo et al. 2009), there are few African countries with their own FCT, and countries without their own food table need to use either FCTs from neighboring countries or FAO's FCTs, which decreases reliability of the results. This was one of the most cited limitations by the authors. In this review several softwares were mentioned by the authors, however most of them are composed by the same FCTs, which makes imperative the need of creating updated tools. An example of an effort to improve this lack of country-specific databases is the study of Becquey et al. (2009), who developed a FCT for Burkina Faso bringing together the information of three sources, namely the FCT for Mali, supplemented by the WorldFood FCT for Senegal and the USDA database. This table was complete for energy, macronutrients and eleven micronutrients. The variability within the same continent is huge, and different lifestyles and typical food patterns are found even within the same country, which makes the finding of uniformity in the FCTs quite challenging, and eventually impossible, and so the countries find themselves obliged to create their own tools. In order to fight against the current lack of updating of these tools it is necessary to join forces geared towards the development of both new and country-specific FCTs or at least to complete the existing ones.

Besides the limitations that were mentioned along this discussion, limitations related to the adopted methodologies, to self-reporting, to small size sample were also cited. Furthermore, the traditional way of cooking is another challenging question too, because household's women resort to memory and taste rather than follow standard recipes or measurements to cook their dishes, which may hamper a reliable assessment (Wojtusiak et al. 2011).

Concerning improvements in developed countries according to new-technology based dietary assessment methods, it is envisaged that, in the coming years, these innovative tools could be used in African countries. Examples of these methods are a mobile device food record (Zhu et al. 2008) and a system based on images of foods (Schap et al. 2014). Although Wojtusiak and colleagues (Wojtusiak et al. 2011) defend that some methods based on automated analysis of photos, voice recognition and use of simple graphical symbols representing food could be applied in dietary assessment in African countries, there is still a long way to go before that may become a reality. Africa is comprised by a large part of rural areas, some of which even do not have sanitation or electricity and food insecurity is one of the major problems. Africa has a particular social organization characterized by the co-existence of several ethnic groups and societies each one with its own traditions and habits, hampering its conjoint growth and balanced development.

CONCLUSIONS AND RECOMMENDATIONS

Globally, African countries are crossing a challenging public health crisis, which coupled to both weak and poor social and governmental structure leads to major concerns related to health, food security and socio-economic issues. Aiming to counteract the double health burden, characterized by both communicable and non-communicable diseases, a major effort is emerging toward development of health policies and the planning, development and evaluation of nutritional interventional programs.

Data obtained from this review provided a better knowledge of the research works that have been developed in African countries concerning food habits of individuals, strengthening the need to apply a bigger effort in these many nations. As shown in this review, in African countries, there is a lack of periodical, accurate, reliable and country-specific methodologies to assess dietary intake in adults. Major limitations on dietary assessment in Africa were, on the one hand, the deficiency in validated and standardized methodologies to perform the dietary assessment and, on the other, the usage of country-unspecific food composition databases. So, related to the first it is necessary to proceed with validation studies and test for reliability of the used methods, in order to assure the consistency and accuracy of measurements, as well as the confidence therein. Regarding the second cited limitation there is an emergent need to improve the already existing databases by updating food data and to develop suitable country-specific ones for those countries that don't have their own food composition table.

Countries with better social, financial and health resources evidenced more activity in this field and performed more investigations, providing greater data availability. Due to distinct

social organization of the continent, with major problems, such as high rates of inadequate education, illiteracy, food insecurity and a frail global health system, the work on this field should be continued and widened to include other African countries. Once surpassed some of these basic challenges it will be desired to follow developed countries' trends in what concerns the usage of innovative tools.

REFERENCES

Abebe, Y. et al. (2008). Inadequate intakes of dietary zinc among pregnant women from subsistence households in Sidama, Southern Ethiopia. *Public health nutrition*. **11**: 379–386.

Addo, A. et al. (2011). Food insecurity and perceived stress but not HIV infection are independently associated with lower energy intakes among lactating Ghanaian women. *Maten Child Nutr.*. **7**: 80–91.

Alaofè, H. et al. (2009). Education and improved iron intakes for treatment of mild iron-deficiency anemia in adolescent girls in southern Benin. *Food and Nutrition Bulletin*. **30**: 24–36.

Alemayehu, A., Abebe, Y. and Gibson, R.S. (2011). A 24-h recall does not provide a valid estimate of absolute nutrient intakes for rural women in southern Ethiopia. *Nutrition*. **27**: 919–924.

Amare, B. et al. (2012). Nutritional status and dietary intake of urban residents in Gondar, Northwest Ethiopia. *BMC Public Health*. **12**: 752.

Anderson, S.G. et al. (2011). Nutrient intakes and dysglycaemia in populations of West African

origin. The British journal of nutrition. 105: 297–306.

Aounallah-Skhiri, H. et al. (2011). Nutrition transition among adolescents of a south-Mediterranean country: dietary patterns, association with socio-economic factors, overweight and blood pressure. A cross-sectional study in Tunisia. *Nutrition journal.* **10**: 38.

Asombang, A.W. et al. (2013). Gastric cancer in Zambian adults: A prospective case-control study that assessed dietary intake and antioxidant status by using urinary isoprostane excretion. *American Journal of Clinical Nutrition*. **97**: 1029–1035.

El Ati, J. et al. (2004). Food Frequency Questionnaire for Tunisian dietary intakes: development, reproducibility and validity. *Arab Journal for Food and Nutrition*. **5**: 10–30.

Baroudi, O. et al. (2014). Impact of lifestyle factors and nutrients intake on occurrence of gastrointestinal cancer in Tunisian population. *Tumor Biology*, **35**: 5815–5822.

Baroudi, T. et al. (2010). Dietary intakes of essential nutrients among Arab and Berber ethnic groups on rural Tunisian island. *Nutrition*. **26**: 75–81.

Becquey, E., Capon, G. and Martin-Prével, Y. (2009). Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou Burkina Faso Site. Food And Nutrition Technic Al A Ssistance, Technical Report.

Becquey, E. and Martin-Prevel, Y. (2010). Micronutrient Adequacy of Women's Diet in Urban Burkina Faso Is Low. *The Journal of Nutrition*. 2079–2085.

Belgnaoui, S. and Belahsen, R. (2006). Nutrient intake and food consumption among pregnant women from an agricultural region of Morocco. *International journal of food sciences and*

nutrition. **57**: 19–27.

Botha, S. et al. (2014). Associations of suPAR with lifestyle and cardiometabolic risk factors. European Journal of Clinical Investigation. **44**: 619–626.

Boumaiza, I. et al. (2012). Relationship Between Leptin G2548A and Leptin Receptor Q223R Gene Polymorphisms and Obesity and Metabolic Syndrome Risk in Tunisian Volunteers. *Genetic Testing and Molecular Biomarkers*. **16**: 726–733.

Boutayeb, A. (2006). The double burden of communicable and non-communicable diseases in developing countries. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. **100**: 191–199.

Bunch S., Murphy, S. (1997). WorldFood Dietary Assessment System. Available at: http://www.fao.org/infoods/infoods/software-tools/en/.

Byrd-Bredbenner, C. and Schwartz, J. (2004). The effect of practical portion size measurement aids on the accuracy of portion size estimates made by young adults. *Journal of Human Nutrition and Dietetics*. **17**: 351–357.

Changamire, F.T. et al. (2014). Macronutrient and sociodemographic determinants of gestational weight gain among HIV-negative women in Tanzania. *Food and nutrition bulletin.* **35**: 43–50.

Charlton, K.E., Kolbe-Alexander, T.L. and Nel, J.H. (2005). Micronutrient dilution associated with added sugar intake in elderly black South African women. *European journal of clinical nutrition*, **59**: 1030–1042.

Conway, J., Ingwersen, L. and Moshfegh, A. (2003). Effectiveness of the USDA 5-step

Multiple-Pass Method to assess food intake in obese and non-obese women. *American Journal of Clinical Nutrition*. **77**: 71–78.

Conway, J.M., Ingwersen, L.A. and Moshfegh, A.J. (2004). Accuracy of Dietary Recall Using the USDA Five-Step Multiple-Pass Method in Men: An Observational Validation Study. *Journal of the American Dietetic Association*. **104**: 595–603.

CyberSoft, I. (1986). NutriBase Professional Nutrition and Fitness Software Site. Available at: http://www.nutribase.com/.

Dapi, L.N. et al. (2010). Energy and nutrient intakes in relation to sex and socio-economic status among school adolescents in urban Cameroon, Africa. *Public health nutrition*. **14**: 904–913.

Davison, S. and Mandible, D. (1994). The Food Processor Plus 6.02. Available at: http://www.esha.com/products/food-processor/.

Decarli, A. et al. (1996). Validation of a Food-Frequency Questionnaire Dietary Intakes in Cancer Studies in Italy. *AEP*. **6**: 110–118.

Delport, R. et al. (2011). Changes in retinol-binding protein concentrations and thyroid homeostasis with nonoccupational exposure to DDT. *Environmental Health Perspectives*. **119**: 647–651.

Erhardt, J. and Gross, R. (2007). NutriSurvey. Available at: http://www.nutrisurvey.de/.

Faber, M. and Kruger, S. (2005). Dietary Intake, Perceptions Regarding Body Weight, and Attitudes Toward Weight Control of Normal Weight, Overweight, and Obese Black Females. *Ethnicity*. **15**: 238-245.

Faber, M. and Laubscher, R. (2008). Seasonal availability and dietary intake of beta-carotenerich vegetables and fruit of 2-year-old to 5-year-old children in a rural South African setting growing these crops at household level. *International journal of food sciences and nutrition*. **59**: 46–60.

Fletcher, L. (1994). Microdiet. Available at: http://www.microdiet.co.uk/.

Franceschi, S. et al. (1993). Reproducibility of an Italian food frequency questionnaire for cancer studies: results for specific food items. *European journal of cancer*. **29A**: 2298–2305.

Gewa, C., Murphy, S.P. and Neumann, C.G. (2008). A comparison of weighed and recalled intakes for schoolchildren and mothers in rural Kenya. *Public health nutrition*. 12: 1197–1204.

Gibson, R.S. et al. (2011). Plasma selenium concentrations in pregnant women in two countries with contrasting soil selenium levels. *Journal of Trace Elements in Medicine and Biology*. **25**: 230–235.

Gibson, R.S. (2005). Principles of Nutrition Assessment. Second Edition, Oxford University Press, New York.

Gibson, R.S. et al. (2008). Zinc, Gravida, Infection, and Iron, but nor Vitamin B-12 or Folate Status, Predict Hemoglobin during Pregnancy in Southern Ethiopia. *J Nutr.*. **138**: 581–586.

Gibson, R.S. and Ferguson, E.L. (1999). An interactive 24-Hour recall for assessing the adequacy of iron and zinc intakes in developing countries. International Life Science Institute Press, Washington DC.

Godin, G. (2007). CANDAT. Available at: http://www.foodresearch.ca/.

Goedecke, J.H. et al. (2009). Differential effects of abdominal adipose tissue distribution on insulin sensitivity in black and white South African women. *Obesity (Silver Spring, Md.)*. **17**: 1506–1512.

Gouveia de Oliveira, A. (2009). Bioestatística, Epidemiologia e Investigação: Teoria e Aplicações Lidel, Lisboa.

Grant, K., Langenhoven, M. and Stockton, M. (1992). Foodfinder dietary analysis software. Available at: http://safoods.mrc.ac.za/FoodfinderDEMO.pdf

Haileslassie, K., Mulugeta, A. and Girma, M. (2013). Feeding practices, nutritional status and associated factors of lactating women in Samre Woreda, South Eastern Zone of Tigray, Ethiopia. *Nutrition journal*. **12**: 28.

Hansen, A.W. et al. (2011). Dietary patterns, food and macronutrient intakes among adults in three ethnic groups in rural Kenya. *Public health nutrition*. **14**: 1671–1679.

Haregu, T.N. et al. (2014). National Responses to HIV / AIDS and Non-Communicable Diseases in Developing Countries: Analysis of Strategic Parallels and Differences. *Journal of Public Health Research*. **3**: 25–42.

Hattingh, Z. et al. (2006). Macronutrient intake of HIV-seropositive women in Mangaung, South Africa. *Nutrition Research*. **26**: 53–58.

Heimburger, D.C. et al. (2010). Serum phosphate predicts early mortality in adults starting antiretroviral therapy in lusaka, zambia: A prospective cohort study. *PLoS ONE*. **5**:1-7.

Hogenkamp, P.S. et al. (2008). Association between consumption of black tea and iron status in

³⁶ ACCEPTED MANUSCRIPT

adult Africans in the North West Province: the THUSA study. *The British journal of nutrition*. **100**: 430–437.

Hudson, G.J. (1995). Food intake in a west African village. Estimation of food intake from a shared bowl. *The British journal of nutrition*. **73**: 551–569.

Huybregts, L. et al. (2008). Validity of photographs for food portion estimation in a rural West African setting. *Public health nutrition*. **11**: 581–587.

Huybregts, L.F. et al. (2009). Dietary behaviour, food and nutrient intake of pregnant women in a rural community in Burkina Faso. *Maternal & child nutrition*. **5**: 211–222.

Ijarotimi, O.S. and Keshinro, O.O. (2008). Nutritional knowledge, nutrients intake and nutritional status of hypertensive patients in Ondo State, Nigeria. *Tanzania journal of health research*. **10**: 59–67.

Iowa State University. (1996). A user's guide to C-Side: software for intake distribution estimation. Available at: http://www.card.iastate.edu/publications/synopsis.aspx?id=168

Irvine, S.L., Hummelen, R. and Hekmat, S. (2011). Probiotic yogurt consumption may improve gastrointestinal symptoms, productivity, and nutritional intake of people living with human immunodeficiency virus in Mwanza, Tanzania. *Nutrition Research.* **31**: 875–881.

Islam, S. et al. (2014). Non Communicable Diseases (NCDs) in developing countries: a symposium report. *Globalization and Health*, **10**.

Jackson, M. et al. (2007). Diet and overweight and obesity in populations of African origin: Cameroon, Jamaica and the UK. *Public health nutrition*. **10**: 122–130.

Jackson, M.D. et al. (2012). Validation and reproducibility of an FFQ for use among adults in Botswana. *Public health nutrition*. **16**: 1995–2004.

Joffe, Y.T. et al. (2011). The -308 G/A polymorphism of the tumour necrosis factor-α gene modifies the association between saturated fat intake and serum total cholesterol levels in white South African women. *Genes and Nutrition*. **6**: 353–359.

Joffe, Y.T. et al. (2012). The tumor necrosis factor-α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. *European Journal of Clinical Nutrition*. **66**: 1295–1302.

Joffe, Y.T. et al. (2010). Tumor Necrosis Factor-a Gene -308 G / A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women 1, 2. *The Journal of Nutrition*. 901–907.

Johnson, R.K., Driscoll, P. and Goran, M.I. (1996). Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children. *Journal of the American Dietetic Association*. **96**: 1140–1144.

Jonnalagadda, S.S. et al. (2000). Accuracy of energy intake data estimated by a multiple-pass, 24-hour dietary recall technique. *Journal of the American Dietetic Association*. **100**: 303–311.

Jordan, I. et al. (2013). Dietary patterns and breast cancer risk among women in northern Tanzania: A case-control study. *European Journal of Nutrition*. **52**: 905–915.

Kamau-Mbuthia, E. and Elmadfa, I. (2007). Diet quality of pregnant women attending an antenatal clinic in Nakuru, Kenya. *Annals of Nutrition and Metabolism*. **51**: 324–330.

Kennedy, G., Fanou, N. and Brouwer, I.D. (2009). Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Bamako, Mali Site. Food And Nutrition Technic Al A Ssistance, Technical Report.

Kesa, H. and Oldewage-Theron, W. (2005). Anthropometric indications and nutritional intake of women in the Vaal Triangle, South Africa. *Public Health.* **119**: 294–300.

Kim, F. et al. (2014). Deficiencies of Macronutrient Intake Among HIV-Positive Breastfeeding Women in Dar es Salaam, Tanzania. **67**: 569–572.

Koethe, J.R. et al. (2013). Self-reported Dietary Intake and Appetite Predict Early Treatment Outcome among Low Body Mass Index Adults Initiating HIV Treatment in sub-Saharan Africa. *Public Helath Nutr.*. **16**: 549–558.

Kolahdooz, F., Spearing, K. & Sharma, S. (2013). Dietary Adequacies among South African Adults in Rural KwaZulu-Natal. *PLoS ONE*. **8**: 1-6.

Korkalo, L. et al. (2014). A cross-sectional study on the diet and nutritional status of adolescent girls in zambia province, mozambique (the zane study): Design, methods, and population characteristics. *Journal of Medical Internet Research*. **16**: 1–13.

Kruger, A. et al. (2012). Sex differences independent of other psycho-sociodemographic factors as a predictor of body mass index in black South African adults. *Journal of Health, Population and Nutrition*. **30**: 56–65.

Kruger, A., Lekalakalamokgela, S.E. and Wentzel-Viljoen, E. (2011). Rural and Urban Older African Caregivers Coping With HIV/AIDS are Nutritionally Compromised. *Journal of nutrition*

in gerontology and geriatrics. 30: 274–290.

Lamri-Senhadji, M.Y. et al. (2009). Assessment of dietary consumption and time-course of changes in serum lipids and lipoproteins before, during and after Ramadan in young Algerian adults. *Singapore Medical Journal*. **50**: 288–294.

Lombard, M. et al. (2013). A Food Photograph Series for Identifying Portion Sizes of Culturally Specific Dishes in Rural Areas with High Incidence of Oesophageal Cancer. *Nutrients*. **5**: 3118–3130.

López, P.M. et al. (2012). Nutritional Status of Adolescents in the Context of the Moroccan Nutritional Transition: the Role of Parental Education. *Journal of Biosocial Science*, **44**: 481–494.

Luke, A. et al. (2011). Protocol for the modeling the epidemiologic transition study: a longitudinal observational study of energy balance and change in body weight, diabetes and cardiovascular disease risk. *BMC Public Health*, **11**: 927.

Lukmanji, Z. et al. (2013). Dietary patterns, nutrient intake, and sociodemographic characteristics in HIV-infected Tanzanian pregnant women. *Ecology of food and nutrition*. **52**: 34–62.

Ma, Y. et al. (2009). Number of 24-Hour Diet Recalls Neede to Estimate Energy Intake. *Ann Epidemiol.*, **19**: 553–559.

MacIntyre, U.E., Venter, C.S. and Vorster, H.H. (2001)a. A culture-sensitive quantitative food frequency questionnaire used in an African population: 1. Development and reproducibility.

⁴⁰ ACCEPTED MANUSCRIPT

Public health nutrition. **4**: 53–62.

MacIntyre, U.E., Venter, C.S. and Vorster, H.H. (2001)b. A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighted records and biomarkers. *Public health nutrition*. **4**: 63–71.

MacKeown, J.M., Pedro, T.M. and Norris, S. (2007). Energy, macro- and micronutrient intake among a true longitudinal group of South African adolescents at two interceptions (2000 and 2003): the Birth-to-Twenty (Bt20) Study. *Public health nutrition*, **10**: 635–643.

Mala, J., Tuitoek P.J. and Odhiambo R.A. (2012). Effect of Dietary Intakes on Pregnancy Outcomes: A Comparative Study among HIV-Infected and Uninfected Women at Nyanza Provincial General Hospital, Kenya. *African Joural of Food, Agriculture, Nutrition and Development.* **12**: 6776-6793.

Maruapula, S.D. and Chapman-Novakofski, K.M. (2008). Poor Intake of Milk, Vegetables, and Fruit with Limited DIetary Variety y Botswana's Elderly. *Journal of nutrition for the elderly*. **25**: 3–22.

Masibo, P.K. (2013). Effects of Initial Nutritional Status on the Responses to a School Feeding Programme among School Children Aged 6 to 13 Years in the Millennium Villages Project, Siaya, Kenya. Dissertation presented for the degree of Doctor of Philosophy (Nutritional Sciences) in the Faculty of Medicine and Health Sciences at Stellenbosch University Supervisor: Stellenbosch University.

May, P. a et al. (2014). Dietary intake, nutrition, and fetal alcohol spectrum disorders in the Western Cape Province of South Africa. *Reproductive toxicology (Elmsford, N.Y.)*, **46C**: 31–39.

⁴¹ ACCEPTED MANUSCRIPT

Mbochi, R.W. et al. (2012). Predictors of overweight and obesity in adult women in Nairobi Province, Kenya. *BMC public health*, **12**: 823.

Merchant, A.T. et al. (2005). Nutrient estimation from an FFQ developed for a Black Zimbabwean population. *Nutrition journal.* **4**:37.

Mitchikpe, C.E.S. et al. (2008). Seasonal variation in food pattern but not in energy and nutrient intakes of rural Beninese school-aged children. *Public health nutrition*: **12**: 414–422.

Mostert, D. et al. (2005). Dietary intake of pregnant women and their infants in a poor black South African community. *Curationis*. **28**: 12–19.

Mounir, G.M. et al. (2007). Nutritional factors affecting the menarcheal state of adolescent school girls in Alexandria. *The Journal of the Egyptian Public Health Association*, **82**: 239–260.

Msaki, M.M. and Hendriks, S.L. (2014). Measuring Household Food Security Using Food Intake Indicators in Rural Kwazulu. *Ecology of Food Nutrition*. **53**: 193–213.

Mupere, E. et al. (2012). Low nutrient intake among adult women and patients with severe tuberculosis disease in Uganda: a cross-sectional study. *BMC public health*. **12**: 1050–1050.

Nago, E.S. et al. (2010). Food, energy and macronutrient contribution of out-of-home foods in school-going adolescents in Cotonou, Benin. *The British journal of nutrition*. **103**: 281–288.

Namugumya, B.S. and Muyanja, C. (2011). Contribution of street foods to the dietary needs of street food vendors in Kampala, Jinja and Masaka districts, Uganda. *Public Health Nutrition*. **15**: 1503–1511.

Naude, C.E. et al. (2011). Growth and weight status in treatment-naïve 12-16 year old

adolescents with Alcohol Use Disorders in Cape Town, South Africa. Nutrition journal. 10: 87.

Ngo, J. et al. (2009). How dietary intake methodology is adapted for use in European immigrant population groups - a review. *The British journal of nutrition*. **101 Suppl**: S86–S94.

Nutrition Coordinating Center's University of Minnesota, Nutrition Data System for Research.

Available at: www.ncc.umn.edu.

Nyuar, K.B., Khalil, A.K.H. and Crawford, M.A. (2012). Dietary intake of Sudanese women: a comparative assessment of nutrient intake of displaced and non-displaced women. *Nutrition and health*. **21**: 131–44.

O'Keefe, S.J.D. et al. (2007). Why do African Americans get more colon cancer than Native Africans? *The Journal of nutrition*. **137**: 175S–182S.

Ochola, S. and Masibo, P.K. (2014). Dietary intake of schoolchildren and adolescents in developing countries. *Annals of nutrition & metabolism.* **64**: 24–40.

Oguntibeju, O.O., Van der Heever, W.M.J. and Van Schalkwyk, F.E. (2007). The Interplay Between Socio-demographic Variables, Nutritional and Immune Status of HIV-positive/AIDS Patients. *Pakistan Journal of Biological Sciences*. **10**: 3592–3598.

Olayiwola, I.O. et al. (2012). Serum micronutrient status and nutrient intake of elderly Yoruba people in a slum of Ibadan, Nigeria. *Public Health Nutrition*. **17**: 455–461.

Oldewage-Theron, W. et al. (2008). Anaemia prevalence and dietary intake of elderly persons living in a peri-urban settlement in South Africa. *Journal of Family Ecology and Consumer Sciences /Tydskrif vir Gesinsekologie en Verbruikerswetenskappe*. **36**: 22–29.

Oldewage-Theron, W. et al. (2008). Health Status of an Elderly Population in Sharpeville, South Africa. *Health SA Gesondheid*, **13**: 3–17.

Oldewage-Theron, W. and Kruger, R. (2011). Dietary diversity and adequacy of women caregivers in a peri-urban informal settlement in South Africa. *Nutrition*. **27**: 420–427.

Oldewage-theron, W.H. et al. (2005). Situation analysis of an informal settlement in the Vaal Triangle. *Development Southern Africa*. **22**: 13–26.

Oldewage-Theron, W.H., Dicks, E.G. and Napier, C.E. (2006). Poverty, household food insecurity and nutrition: Coping strategies in an informal settlement in the Vaal Triangle, South Africa. *Public Health.* **120**: 795–804.

Oldewage-Theron, W.H., Kruger, R. and Egal, A.A., (2014). Socio-Economic Variables and Nutrient Adequacy of Women in the Vaal Region of South Africa. *Ecology of Food and Nutrition*. **53**: 514–527.

Oldewage-Theron, W.H., Samuel, F.O. and Djoulde, R.D. (2010). Serum concentration and dietary intake of vitamins A and E in low-income South African elderly. *Clinical Nutrition*, **29**: 119–123.

Oldewage-Theron, W.H., Samuel, F.O. and Venter, C.S. (2008). Zinc deficiency among the elderly attending a care centre in Sharpeville, South Africa. *Journal of Human Nutrition and Dietetics*, **21**: 566–574.

Ortega, R.M. et al. (2008). DIAL 1.0: Programa para evaluación de dietas y gestión de datos de alimentación. Available at: http://www.alceingenieria.net.

Papathakis, P.C. and Pearson, K.E. (2012). Food fortification improves the intake of all fortified nutrients, but fails to meet the estimated dietary requirements for vitamins A and B6, riboflavin and zinc, in lactating South African women. *Public Health Nutrition*. **15**: 1810–1817.

Pereko, K.K. et al. (2012). Overnutrition and associated factors among adults aged 20 years and above in fishing communities in the urban Cape Coast Metropolis, Ghana. *Public Health Nutrition*. **16**: 1–5.

Pirone, C. et al. (1993).

Nutridata Nutrition Services For The Food Industry. Available at: www.nutridata.com.

Pisa, P. et al. (2012). Social drift of cardiovascular disease risk factors in Africans from the North West Province of South Africa: the PURE study: cardiovascular topics. *Cardiovascular Journal Of Africa*. **23**: 371–378.

Pisa, P.T. et al. (2014). Inventory on the dietary assessment tools available and needed in Africa: a prerequisite for setting up a common methodological research infrastructure for nutritional surveillance, research and prevention of diet-related non-communicable diseases. *Critical Reviews in Food Science and Nutrition*.

Powell, B. et al. (2013). Wild foods from farm and forest in the East Usambara Mountains, Tanzania. *Ecology of food and nutrition*. **52:** 451–78.

Pretorius, S. et al. (2012). Feeding the emergence of advanced heart disease in Soweto: a nutritional survey of black African patients with heart failure. *Cardiovascular Journal of Africa*. **23**: 245–251.

Rankin, D. et al. (2011). Dietary intakes assessed by 24-h recalls in peri-urban African adolescents: validity of energy intake compared with estimated energy expenditure. *European journal of clinical nutrition*. **65**: 910–919.

Richter, L. et al. (2007). Cohort Profile: Mandela's children: The 1990 birth to twenty study in South Africa. *J Epidemiol.*. **36**: 504–511.

SAS, N. (2007). NutriLog Nutrition Software for Professionals. Available at: www.nutrilog.com.

Savy, M. et al. (2006). Dietary diversity scores and nutritional status of women change during the seasonal food shortage in rural Burkina Faso. *The Journal of nutrition*. **136**: 2625–32.

Scarcella, P. et al. (2011). The impact of integrating food supplementation, nutritional education and HAART (Highly Active Antiretroviral Therapy) on the Nutritional Status of Patients living with HIV / AIDS in Mozambique: Results from the DREAM Programme. *Igiene e Sanita Pubblica - Parte Scientifica e Pratica*. **67**:41–53.

Schap, T.E. et al. (2014). Merging dietary assessment with the adolescent lifestyle. *Journal of Human Nutrition and Dietetics*. **27(SUPPL.1)**: 82–88.

Sehmi, J. (1993). National Food Composition Tables and The Planning of Satisfactory Diets in Kenya.

Sharma, S. et al. (1996). Development of food frequency questionnaires in three population samples of African origin from Cameroon, Jamaica and Caribbean migrants to the UK. *European Journal of Clinical Nutrition*. **50**: 479–486.

Sheehy, T. et al. (2013). Development of a quantitative food frequency questionnaire for use

⁴⁶ ACCEPTED MANUSCRIPT

among rural South Africans in KwaZulu-Natal. *Journal of human nutrition and dietetics*. **27**: 443-449

Smith, A.F. (1991). Cognitive Processes in Long-Term Dietary Recall. **In**: *Vital Center for Healh Statistics*.

Smith, A.F., Jobe, J.B. and Mingay, D.J. (1991). Retrieval from memory of dietary information. *Applied Cognitive Psychology*. **5**: 269–296.

Sodjinou, R. et al. (2009). Dietary patterns of urban adults in Benin: relationship with overall diet quality and socio-demographic characteristics. *European journal of clinical nutrition*. **63**: 222–228.

Sodjinou, R. et al. (2008). Obesity and cardio-metabolic risk factors in urban adults of Benin: relationship with socio-economic status, urbanisation, and lifestyle patterns. *BMC public health*. **8**:84.

Steyn, N. and Senekal, M. (2005). A guide for the use of the dietary assessment and education kit (DAEK). Cape Town, South Africa.

Steyn, N.P. et al. (2011). Dietary, social, and environmental determinants of obesity in Kenyan women. *Scandinavian journal of public health*. **39**: 88–97.

Steyn, N.P. et al. (2012). Urbanisation and the nutrition transition: A comparison of diet and weight status of South African and Kenyan women. *Scandinavian Journal of Public Health.* **40**: 229–238.

Steyn, N.P. and Nel, J.H. (2006). Dietary Intake of Adult Women in South Africa and Nigeria

⁴⁷ ACCEPTED MANUSCRIPT

with a Focus on the Use of Spreads.

Termote, C. et al. (2012). A biodiverse rich environment does not contribute to a better diet: A case study from DR Congo. *PLoS ONE*. **7**.

Tesfaye, F., Byass, P. and Wall, S. (2008). Concurrent comparison of energy intake and expenditure among adults in Butajira District, Ethiopia. *Public health nutrition*. **11**: 675–683.

Tessier, S. et al. (2008). Regular users of supermarkets in Greater Tunis have a slightly improved diet quality. *The Journal of nutrition*. **138**: 768–774.

Thompson, F.E. and Byers, T. (1994). Dietary Assessment Resource Manual. *The Journal of Nutrition*. **124**:2245S–2317S.

Research Group Food Chemistry and Human Nutrition and Medicine, Universiteit Gent and Nutrition and Child Health Unit of the Institute of Tropical Medicine. (n.a.) Lucille food analysis software. Belgium.

US Department of Agriculture, Agricultural Research Service, N.D.L. (1996). USDA National Nutrient Database for Standard Reference, Release 28.

Venter, C.S., MacIntyre, U.E. and Vorster, H.H. (2000). The development and testing of a food portion photograph book for use in an African population. *Journal of Human Nutrition and Dietetics*. **13**: 205–218.

de Villiers, A. et al. (2006). Relative validity of a quantified food frequency questionnaire in Black South African women. University of Cape Town.

Vorster, H.H. et al. (2007). Cardiovascular disease risk factors and socio-economic position of

Africans in transition: the THUSA study. Cardiovascular journal of Africa. 18: 282–9.

Walton, C. et al. (2012). Associations of diet quality with dairy group membership, membership duration and non-membership for Kenyan farm women and children: a comparative study. *Public health nutrition*, **17**: 1–10.

Waudo, J. et al. (2005). Food Consumption Patterns and Nutrient Intake By Women And Under Five Year Old Children In Wetlands Of Lake VIctoria Basin. In: Food & Nutrition Security for Health and Development. Proceedings of the Inaugural National Nutrition Congress [INNC]. Nairobi, Kenya.

Wentzel-Viljoen, E., Laubscher, R. and Kruger, A. (2011). Using different approaches to assess the reproducibility of a culturally sensitive quantified food frequency questionnaire. *South African Journal of Clinical Nutrition*. **24**: 143–148.

Wiesmann, D., Arimond, M. and Loechi, C. (2009). Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Rural Mozambique Site. Food And Nutrition Technic Al A Ssistance, Technical Report.

Wiig, K. and Smith, C. (2007). An Exploratory Investigation of Dietary Intake and Weight in Human Immunodeficiency Virus-Seropositive Individuals in Accra, Ghana. *Journal of the American Dietetic Association*. **107**: 1008–1013.

Willet, W. (1998). Nutrition Epidemiology 2nd edition. Oxford University Press, New York.

Wirfalt, E. (1998). Cognitive aspects of dietary assessment. *Scandinavian Journal of Nutrition*. **42**: 56–59.

⁴⁹ ACCEPTED MANUSCRIPT

Wojtusiak, J., Gewa, C.A. and Pawloski, L.R. (2011). Dietary Assessment in Africa: Integration with Innovative Technology. *African Journal of Food, Agriculture, Nutrition and Development*. **11:** 5629–5645.

World Health Organization. (2011). Global status report on noncommunicable diseases 2010. Available at: http://www.who.int/nmh/publications/ncd_report_full_en.pdf.

World Health Organization - Reginal Office for Africa. (2006). *The African Regional Health Report: The Health of the People*. Available at: http://www.who.int/bulletin/africanhealth/en/.

Wrottesley, S. V et al. (2014). Europe PMC Funders Group Dietary intake and body composition in HIV-positive and - negative South African women. *Public Helath Nutr.*. **17**: 1603–1613.

Zeba, N.A., Delisle, H.F. and Renier G. (2014). Dietary patterns and physical inactivity, two contributing factors to the double burden of malnutrition among adults in Burkina Faso, West AFrica. *Journal of Nutritional Science*. **3**: 1–14.

Zhu, F. et al. (2008). Technology-Assisted Dietary Assessment. *National Institute of Health.* **20**: 6814–681411.

Zingoni, C. et al. (2009). Studying a Population Undergoing Nutrition Transition: A Practical Case Study of Dietary Assessment in Urban South African Adolescents. *Ecology of Food and Nutrition*. **48**: 178–198.

<u>Table 1:</u> Selected studies (n=54) which assessed dietary intake of different African populations using 24-hour recall [from 2005 to 2014].

⁵⁰ ACCEPTED MANUSCRIPT

Author	Country	Study Design	Study Population	Number of recalls	Determination of Portion Sizes	Tools for Dietary Analysis
2014						
(Zeba et al. 2014) (Kim et al. 2014)	Burkina Faso Tanzania	Cross-sectional study Cross-sectional study	110 Adults (25-6 years- old) 80 Pregnant and/or Lactating Women (>18	2 non- consecutive 2 non- consecutive	Local kitchen utensils Standardized food models	Malian FCT ¹ ; C-SIDE ² (Iowa State University 1996) Tanzanian FCT Harvard University School of
(May et al. 2014)	South Africa	Case Control Study	years-old) 128 Women (Mean age of 35 years-old)		Photographs of local alcoholic beverage	Public Health Nutrition Data System for Research (Nutrition Coordinating Center's University of

-

¹ FCT: Food Composition Table

 $^{^{\}rm 2}$ C-SIDE: Software for Intake Distribution Estimation

						Minnesota n.d.)
(Changamir e et al. 2014)	Tanzania	Cohort	8428 Pregnant and/or Lactating Women (>18 years-old)	3	N.A. ³	Tanzanian FCT Harvard University School of Public Health
(Oldewage-	South	Cross-	722 Women		Food models,	FoodFinder®
Theron et		sectional	(19-90 years-	≥3	household	(Grant et al.
al. 2014)		study	old)		utensils	1992)
2013	l					
(Powell et al. 2013)	Tanzania	Cross- sectional study	274 Women		Local serving sizes aids	Programme CANDAT(Godi n 2007); Tanzanian FCT, FAO FTC, USDA Database (US Department of Agriculture,

³ N.A.: Information not available

						Agricultural
						Research
						Service 1996)
						and scientific
						literature ⁴ .
						FCT published
						by the Zambian
		Prospective nbia Cohort I			Artificial food models and serving	National Food
						and Nutrition
						Commission;
(Koethe et	Zambia		142 Adults	4 non-		Nutrition Data
						System for
		study			utensils	Research
					utensns	(Nutrition
						Coordinating
						Center's
						University of
						Minnesota n.d.)
(Kolahdooz	South	Cross-	137 Adults	2 non-	3D food	Nutribase
et al. 2013)	Africa	sectional	(>19 years-	consecutive	models; local	(CyberSoft

⁴ Lukmanji et al. 2008; Wu Leung 1968

		study	old)		household	1986)
					utensils	
2012						
						WorldFood
						Dietary
						Assessment
						System (Bunch
						& Murphy
	Kenya	Cross-sectional		Single	Placing dried	1997) and the
			111 Women		beans into the	Kenyan food
(Walton et					individual	composition
al. 2012)					bowl to	database (Sehmi
		study			represent the	1993); USDA
					serving	database ⁵ (US
						Department of
						Agriculture,
						Agricultural
						Research
						Service 1996)
(Termote et	Democratic	Cross-	492 Women	2 non-	1) a booklet	Lucille food

⁵ US Department of Agriculture-Agriculture Research Service (2007) USDA National Nutrient Database for Standard Reference

al. 2012)	Republic of	sectional		consecutive	with	analysis
	Congo	study			photographs	software
					of different	(UGent
					calibrated	Research Group
					portion sizes;	Food Chemistry
					2) an	and Human
					extensive	Nutrition &
					price-weight-	Medicine n.d.)
					conversion list	
					covering all	
					foods or	
					ingredients	
					reported	
					during the 24	
					h recalls; and	
					3) direct	
					measurements	
					of estimated	
					leftovers	
(Steyn et al.		Cross-	1008		Dietary	FoodFinder®
	Kenya	sectional	Women (15-	Single	assessment kit	(Grant et al.
2012)		study	60 years-old)		comprising	1992)

					drawings and generic food models.	
(Pereko et al. 2012)	Ghana	sectional		3 non-consecutive	N.A.	ESHA Food Processor® (Davison & Mandible 1994) and the Ghanaian FCT
(López et al. 2012)	Morocco	Cross- sectional study	327 Adolescents (15-20 years-old)	3 non-consecutive	N.A.	DIAL 1.0 (Ortega et al. 2008); FCT for use in Africa, from FAO.
(Mupere et al. 2012)	Uganda	sectional	131 Adults (>18 years- old)	Single	Local food photographs, portion-size images, volumetric vessels	East African FCT and African FCT; USDA database (US Department of Agriculture,

						Agricultural
						Research
						Service 1996);
						NutriSurvey
						Program
						(Erhardt &
						Gross 2007)
(Papathakis	South	Cohort	142 Pregnant and/or	4 non-	Volume of	FoodFinder®
& Pearson 2012)	Africa	Study	Lactating Women	consecutive	cups, bowls and plates	(Grant et al. 1992)
(Nyuar et al. 2012)	Sudan	N.A.	113 Women (18-42 years- old)	Single	Household measures	Foodbase Nutritional Program ⁶
(Boumaiza et al. 2012)	Tunisia	Cross- sectional study	329 Adults (Mean age of 44,9 years- old)	3 non-consecutive	Household measures	Dietetik® and Nutrilog®(SAS 2007)
2011					1	1
(Steyn et al.	Kenya	Cross-	1050	Single	Photographs,	FoodFinder®

⁶ version 4, Institute of Brain Chemistry and Human Nutrition, London Metropolitan University

2011)		sectional	Women (15-		life-size	(Grant et al.
		study	60 years-old)		drawings food models.	1992)
(Naude et al. 2011)	South Africa	Cross- sectional study	162 Adolescents (12-16 years-old)	3 non-consecutive	Household measures; Pictures from the Dietary Asessment and Educacioal Kit ⁷ ; MRC Food Quantities Manual.	FoodFinder® (Grant et al. 1992)
(Gibson et al. 2011)	Malawi	Cross- sectional study	80 Pregnant Women (14- 45 years-old)	3 non-consecutive	N.A.	Malawian FCT
(Hansen et al. 2011)	Kenya	Cross- sectional study	1163 Adults (18-68 years- old)	2	Real food items/Paper models,	GIES ⁸

⁷ Steyn and Senekal, 2002

 $^{^{\}rm 8}$ GIES: General Intake Estimation System Program, GIES; National Food Institute, Søborg, Denmark

					utensils from	
					the local	
					market	
						ESHA Food Processor®
			70 Pregnant	3 non-	Household measures, weigh portion made at home or bought	(Davison &
(Addo et al.	Ghana	Cross- sectional	and/or Lactating			Mandible 1994)
2011)	Gilana	study	Women (18-	consecutive		and published food
			42 years-old)			composition
						information
		Case	171 Adults		Real food items; Kitchen	ESHA Food
(Irvine et al.	Tanzania			Processor®		
2011)		Study	38 years-old) Serving	_	(Davison & Mandible 1994)	
	CI	T '. 1'			dishes.	N. C. D.
	Ghana,	Longitudina	2500 1 1 1			Nutrition Data
(Luke et al.	South	l channetian	2500 Adults	2		System for
2011)	Africa, Seychelles,		(25-45 years- old)	<u>Z</u>	usual portions of local foods	
	Jamaica and	study				Coordinating

	United					Center's
	States					University of
						Minnesota n.d.)
					Weigh of the estimated portion	Ethiopian FCT
				consumed	and USDA	
(Alemayeh u et al. 2011)	1	sectional	68 Women (15-49 years- old)	Single	(using a spoon); households measures and actual food samples purchased in markets.	database (US Department of Agriculture, Agricultural Research Service 1996)
,	Africa	Cross- sectional study	131 Adolescents	7 non-consecutive	Validated food portion photograph book (Venter et al. 2000)	FoodFinder® (Grant et al. 1992)
2010					1	

(Scarcella	Mozambiqu	Cohort			Food models	FAO FCT for
			106 Adults	Single	and images of	Africa and
et al. 2011)	e	Study			portion sizes	Mozambique ⁹
(Becquey & Martin-Prevel 2010)	Burkina Faso	Cross- sectional study	182 Women (19-49 years- old)	3	Household measures	Mozambique ⁹ C-SIDE Software (Iowa State University 1996); Malian FCT, INFOODS ¹⁰ database (Senegal), USDA Database (US Department of Agriculture, Agricultural Research
						Service 1996)
(Oldewage-	South	Cross-	235 Elderly	2 non-	Food M- J-1	FoodFinder®
Theron et	Africa	sectional	(≥60 years-	consecutive:	Food Models	III (Grant et al.

⁹ Repartição de Nutrição (1991) Tabela de Composição de Alimentos Maputo:MISAU

 $^{^{\}rm 10}$ INFOODS: International Network of Food Data Systems

al. 2010)		study	old)	2nd 59% of		1992)
				the sample		
(Nago et al. 2010)	Benin	Cross- sectional study		2 non-consecutive	Household utensils.	Malian FCT; FCT for use in Africa; East African FCT.
(Dapi et al. 2010)	Cameroon	Cross- sectional study	227 Adolescents (12-16 years-old)	3 non-consecutive	Household measures, real food portions and information about the amount of money spent on some foods. Colour picture booklet	Becel Institution Nutrition Software
(Heimburge r et al. 2010)	Zambia	Cohort Study	874 Adults	4 non-consecutive	N.A.	Nutrition Data System for Research

						(Nutrition
						Coordinating
						Center's
						University of
						Minnesota n.d.)
2009						
					Small,	
					medium or	
					large	La composition
(Lamri-		Cross-	46 Adults	5 weeks of	(graduated	des aliments
Senhadji et	Algeria	sectional	(Mean age:	measurement	measure, soup	Tableaux des
al. 2009)		study	24 years-old)	s	and coffee	valeurs
					spoons, dinner	nutritives*
					and soup	
					plates, etc).	
						WorldFood
		Cuosa	200 Adults		Local cups,	Dietary
(Sodjinou et al. 2009)					bowls,	Assessment
			(25-60 years-		spoons, plates	System(Bunch
		study	old)		and glasses	& Murphy
						1997); FCT of

						neighboring
						countries; C-
						SIDE Software
						(Iowa State
						University
						1996)
			394 Pregnant		Validated	Malian FCT;
(Huybregts		urkina sectional La aso	and/or		booklet with	ESHA Food
	Faso		Lactating	Single		Processor®
ct ai. 2007)			Women (15-			(Davison &
			45 years-old)			Mandible 1994)
					Food models,	Nutrifiq®
		Quasi	68	48hR	portion-size	software,
(Alaofè et	Benin		Adolescents	(single)	models,	DANA-INFRE
al. 2009)		1	(12-17 years-	24hR (3)	containers and	FCT used in
			old)			Benin ¹¹
					of foods	
(Wiesmann	Mozambiqu	Cross-	409 Women	Single and 2	Direct	Specific FCT
et al. 2009)	e	sectional	(15-49 years-	non-	weighing,	based on USDA
		study	old)	consecutive	volume	Database (US

¹¹ DANA-INFRE: Direction de l'alimentation et de la nutrition-Institut national pour la formation et la recherche en education

					containers,	Department of
					photographs.	Agriculture,
						Agricultural
						Research
						Service 1996)
						VBS Food
						Calculation
						System
		Mali sectional ((15-49 years-		Household measures	(KOMEET,
	Mali					VBS
al. 2009)						MANAGER,
						ORION and
						FOOD
						GROUPS) ¹²
					Weighing of a	Malian FCT;
		C	10 2 W		replica,	Worldfood FCT
(Becquey et al. 2009)	Burkina			3 non	measure of	for Senegal;
	Faso	Faso			the volume,	USDA
			old)		use of	Database (US
					calibrated	Department of

 $^{^{\}rm 12}$ Bas Nutrition Software, Arnhem, The Netherlands, www.bware.nl.

						Agriculture, Agricultural Research Service 1996).
(Sodjinou et al. 2008)	Benin	Cross- sectional study	200 Adults (25-60 years- old)	3 non consecutive	Local cups, bowls, spoons, plates	WorldFood Dietary Assessment System (Bunch & Murphy 1997). FCT of neighboring countries; C- SIDE Software (Iowa State University 1996).
(Ijarotimi & Keshinro 2008)	Nigeria	sectional	452 Adults (≥20 years- old)	Single	Household measures	Food analysis: AOAC ¹³ method

¹³ AOAC: Association of Official Agricultural Chemists

(W. H.		Cross-	170 Elderly			FoodFinder®
	South Africa	sectional descriptive	(≥60 years-	2	N.A.	III (Grant et al.
al. 2008)		study				1992)
(Maruapula						
&		Cross-	99 Elderly			Nutritionist
Chapman-	Botswana	sectional	(60-95 years-	Single	N.A.	Five ¹⁴
Novakofski		study	old)			
2008)						
	Kenya	Cross-	44 Women		Food models,	WorldFood
(Gewa et al.				Single	measuring cylinders,	Dietary Assessment
2008)		sectional study			local	System (Bunch
		study			household	& Murphy
					measures	1997)
					Household	
(Tesfaye et		Cross-	619 Adults		measures,	FCT for Ethiopia
	_	sectional	(18-64 years-	Single	described as	
		study	old)		S, M, L.,	Бапоріа
					pictures of	

 $^{^{\}rm 14}$ Nutritionist Five, Version 2.3; First DataBank, San Bruno, CA 2000.

					foods and utensils	
(Oldewage- Theron et al. 2008) (WH Oldewage- Theron et al. 2008)	South Africa South Africa	Cross- sectional	(60-93 years- old) 101 Elderly (60-110	2 non- consecutive 2 non- consecutive	Food Models Food Models	FoodFinder® (Grant et al. 1992) FoodFinder® (Grant et al. 1992)
2007						
(Kamau- Mbuthia & Elmadfa 2007)	Kenya	Cross- sectional study	716 Pregnant and/or Lactating Women (Reproductiv e age)	Single	Household measures (cups, tea and tablespoons and bowls) and also preparation methods for the different foods.	NutriSurvey Program (Erhardt & Gross 2007)

						ESHA Food
						Processor®
(Wija &		Cross-	50 Adults		Food models;	(Davison &
(Wiig & Smith	Ghana			Single		Mandible 1994)
2007)	Gilalia	study	(18-65 years- old)	Siligie		and published
2007)		study	Old)		images	food
						composition
						information
		Cross-	1606			Egyptian FCT,
(Mounir et	Egypt	ot sectional	Adolescents	Single	N.A.	National
al. 2007)			(Menarcheal			Nutritional
		soud	age)			Institute
						South African
(O'Keefe et	South		52 Adults	3-		Food
al. 2007)	Africa	sectional	(50-60 years-	consecutive	N.A.	Composition
,		study	old)			Database of the
						MRC
2006						
(Steyn &		Cross-	1008		Household	Kenyan FCT
Nel 2006)		enya sectional		Single	utensils, life-	and
		study	60 years-old)		size drawings	FoodFinder®

					and food	(Grant et al.
					models.	1992).
2005		I	l	I		
			46 Pregnant			South African
(Mostert et	South	Cohort	and/or			Food
,			Lactating	2	N.A.	Composition
al. 2005)	Africa	Study	Women (<40			Database of the
			years-old)			MRC
					Standard	
					household	
		Cross-	285 Elderly		measuring	FoodFinder®
(Charlton et al. 2005)	Africa	sectional	(>60 years-	Single	utensils, rulers	III (Grant et al.
		study	old)		and validated	1992)
					food	
					photographs	

<u>Table 2:</u> Selected studies (n=30) which assessed dietary intake of different African populations using food frequency questionnaires [from 2005 to 2014].

Author s	Coun try	Study Design	Study Popul ation	y Assess ment Metho d (Sourc	Num ber of food item s	Refere nce time frame	Validatio n/ Reprodu cibility	Determi nation of Portion Sizes	Tools for Dietary Data Analysi s
(Wrotte sley et al. 2014)	South Africa	Cross-section al study	247 Wome n (23-39 years-old)	QFFQ	214	Precedi ng 7 days	N.A. ¹⁵	Househo ld measures ,2D life- size drawings of foods and utensils,	FoodFi nder® III (Grant et al. 1992)

¹⁵ N.A.: Information not available

								3D food models	
(Barou di et al. 2014)	Tunisi a	Case Control Study	348 Adults (20-89 years- old)	sFFQ (Decar li et al. 1996; France schi et al. 1993)	77	Precedi ng year	Tested for reproduci bility and validated against 7- day WR	N.A.	Binult logiciel
(Botha et al. 2014)	South Africa	Cross-section al Study	1068 Adults (Mean age: 56.4 years-old)	QFFQ (MacI ntyre et al. 2001b; MacInt yre et al. 2001a)	145	N.A.	Tested for reproduci bility and validated against 7- day WR and biomarke rs	N.A.	FoodFi nder® (Grant et al. 1992)

¹⁶ Binult logiciel,2.01 version

2013									
(Sheeh y et al. 2013)	South Africa	Cross-section al study	81 Adults (19-79 years- old)	QFFQ	71	N.A.	Not tested for reproduci bility or validated	Househo ld units/3D models; weighed portions	Nutriba se (Cyber Soft 1986)
(Lukm anji et al. 2013)	Tanza nia	Longit udinal clinical trial	1078 Pregna nt and/or Lactati ng Wome n	SQFF Q	85	Precedi ng 3 months	Not tested for reproduci bility or validated	Standard utensils and Food Models	Tanzani an FCT ¹⁷
(Jordan et al. 2013)	Tanza nia	Case Control Study and a validati	345 Wome n (26- 85 years-	SQFF Q	65	N.A.	Validated against 2 non- consecuti ve 24hR	Househo ld measures and solid foods in	NutriSu rvey Progra m (Erhard

¹⁷ FCT: Food Composition Table

2012		on	old)					pieces or slices (in the validatio n study)	t & Gross 2007)
(Jackso n et al. 2012)	Botsw	Validat ion study	79 Adults (18-75 years- old)	QFFQ	122	Precedi ng year	Validated against 4 non- consecuti ve 24hR	Food models; househol d utensils; measurin g cups and measurin g tape.	FoodFi nder® (Grant et al. 1992)
(Pretori us et al. 2012)	South Africa	Nutriti onal Survey	50 Adults (Mean age: 47± 18	QFFQ (MacI ntyre et al. 2001b;	139	Usual intake (daily, weekly and	for reproduci bility and validated	Standard ized Portions pictures and	FoodFi nder® (Grant et al. 1992)

			years-	MacInt		monthl	against 7-	utensils	
			old)	yre et		y basis)	day WR	(cups,	
				al.			and	teaspoon	
				2001a)			biomarke	s)	
							rs		
(Kruge r et al. 2012)	South	Cross-section al study	1325 Adults (25-64 years- old)	QFFQ (MacI ntyre et al. 2001b; MacInt yre et al. 2001a)	145	N.A.	Tested for reproduci bility and validated against 7- day WR and biomarke rs	Food portion photogra ph book ¹⁸ ; Househo ld measures	South African Food Compo sition Databas e _MRC
(Pisa et	South	Cross-	2010	QFFQ	1.45	N.A.	Tested	Food	FoodFi
al.	Africa	section	Adults	(MacI	145	IV.A.	for	models	nder®

_

¹⁸ Venter CS, MacIntyre UE, Vorster HH. The development and testing of a food portion photograph book for use in an African population. J Hum Nutr Dietet. 2000; 13:205–18.

¹⁹ Langenhoven, ML, Kruger, M, Gouws, E, Faber, M. MRC Food Composition Tables. 3rd edition. Parow Valley: Medical Research Council; 1991.; Kruger M, Sayed N, Langenhoven ML, Holing F. Composition of South African foods: vegetables and fruit. Supplement to the MRC Food Composition Tables 1991. Parow Valley: Medical Research Council; 1998; Sayed N, Frans Y, Schönfeldt HC. Composition of South African foods: milk and milk products, eggs, meat and meat products. Supplement to the MRC Food Composition Tables 1991. Parow Valley: Medical Research Council; 1999.

2012)		al	(≥ 35	ntyre			reproduci	and food	(Grant
		study	years-	et al.			bility and	photogra	et al.
			old)	2001b;			validated	phs	1992)
				MacInt			against 7-		
				yre et			day WR		
				al.			and		
				2001a)			biomarke		
							rs		
				QFFQ					
				(Steyn					
		Cross-	256	&					FoodFi
(Joffe	South	section	Adults	Seneka			Relative-	Food	nder®
et al.	Africa	al	(18-45	1 2005;	129	N.A.	validated	Photogra	(Grant
2012)	Tillea	study	years-	de			vandated	phs	et al.
		study	old)	Villier					1992)
				s et al.					
				2006)					
2011		I	ı				ı		
(Wentz		Cross-	175	QFFQ		Precedi	Tested	Food	South
el-	South	section	Adults	(MacI	145		for	models,	African
Viljoen	Africa	al	(35-70	ntyre	143	ng month	reproduci	food	Food
et al.		study	years-	et al.		monu	bility and	pictures,	Compo

MacInt against 7- food, day WR food	Databas e
yre et day WR food	e
al. and dishes,	_MRC,
2001a) biomarke utensils	USDA
rs	databas
	e (US
	Depart
	ment of
	Agricul
	ture,
	Agricul
	tural
	Researc
	h
	Service
	1996)
(Ander Came Cross- 1790 QFFQ Precedi Wooden	Several
son et roon section Adults (Shar 76 ng year N.A. food	FCT ²⁰

-

²⁰ Tan S, Wenlock R & Buss D (1985) Immigrant Foods: Second Supplement to McCance and Widdowson's The Composition of foods. London: HMSO.; Ngosom J & Abono A (1989) Les resources alimentaires du Cameroun: Re´partition Ecologique, classification et valeur nutritive (The Food Resources of Cameroon: Ecological Distribution, Classification and Nutritional Value). Yaounde´: Institut de Recherche Me´dicinale et d'e´tudes de

al.		al	(24-74	ma et				models	and
2011)		study	years-	al.				and	Microdi
			old)	1996)				cutlery	et
									Softwar
									e
									(Fletch
									er
									1994)
				QFFQ					
(Joffe et al. 2011)	South Africa	Case Control Study	148 Wome n (18- 45 years- old)	(Steyn & Seneka 1 2005; de Villier s et al. 2006)	129	N.A.	Relative- validated	Food photogra phs	FoodFi nder® III (Grant et al. 1992)
(Aouna	Tunisi	Cross-	1019	SQFF	134	Precedi	Tested	Visual	Tunisia
llah-	a	section	Adoles	Q		ng	for	tools	n Food

plantes me'dicinales. Holland B, Welch A, Unwin I, et al. (1991) McCance and Widdowson's The Composition of Foods. London: The Royal Society of Chemistry.

Skhiri		al	cents	(El Ati		month	reproduci		Compo
et al.		study	(15-19	et al.			bility and		sition
2011)			years-	2004)			validated		Databas
			old)						e;
									ESHA
									Food
									Process
									or®
									(Daviso
									n &
									Mandib
									le
									1994)
		Cross-		QFFQ			Tested	Validate	South
		section	330	(MacI			for	d food	African
(Kruge	South	al	Adults	ntyre			reproduci	portion	Food
r et al.	Africa	descrip	(> 30	et al.	145	N.A.	bility and	photogra	Compo
2011)	Anica	tive	years-	2001b;			validated	ph	sition
		study	old)	MacInt			against 7-	book ²¹ ,	Databas
		study		yre et			day WR	common	e

_

²¹ Venter CS, MacIntyre UE, Vorster HH. The development and testing of a food portion photograph book for use in an African population. J Hum Nutr Dietet. 2000; 13:205–18.

				al.			and	utensils	_MRC
				2001a)			biomarke	and	USDA
							rs	container	databas
								S	e (US
									Depart
									ment of
									Agricul
									ture,
									Agricul
									tural
									Researc
									h
									Service
									1996)
(Delpor t et al. 2011)	South Africa	Cross-section al study	318 Men (18-40 years- old)	SQFF Q (MacI ntyre et al. 2001a)	food grou ps	N.A.	Tested for reproduci bility and validated against four 24hR	N.A.	FoodFi nder® (Grant et al. 1992)

2010									
(Joffe et al. 2010)	South Africa	Case Control Study	233 Wome n (18- 45 years- old)	QFFQ (Steyn & Seneka 1 2005; de Villier s et al. 2006)	129	N.A.	Relative- validated	Food Photogra phs	FoodFi nder® III (Grant et al. 1992)
2009									
(Zingo ni et al. 2009)	South Africa	Cohort	83 Adoles cents	QFFQ (Steyn & Seneka 1 2005; de Villier s et al. 2006)	N.A.	Usual intake (daily, weekly and monthl y basis)	Not validated or tested for reproduci bility	Food Photo Manual; FoOd flour models; Househo ld utensils	FoodFi nder® (Grant et al. 1992)

(Goede cke et al. 2009)	South Africa	Cross-section al study	57 Adults (18-45 years- old)	QFFQ (Steyn & Seneka 1 2005; de Villier s et al. 2006)	129	N.A.	Relative- validated	Food Photogra phs	FoodFi nder® (Grant et al. 1992)
(Tessie r et al. 2008)	Tunisi	Cross-section al study	724 Adults	QFFQ (El Ati et al. 2004)	146	N.A.	Tested for reproduci bility and validated	N.A.	ESHA Food Process or® (Daviso n & Mandib le 1994)

(Hogen kamp et al. 2008)	South Africa	Cross-section al study	1605 Adults (15-65 years- old)	QFFQ (95)	145	N.A.	Relative- validated	Validate d photogra phs ²² ; Househo ld measures ; Food models.	FoodFi nder® (Grant et al. 1992)
(Ogunti beju et al. 2007)	South Africa	Cross-section al study	35 Adults (18-65 years- old)	QFFQ (MacI ntyre et al. 2001b; MacInt yre et al. 2001a)	145	Precedi ng 6 months	Tested for reproduci bility and validated against 7- day WR and biomarke rs	Food models; Househo ld measures ; MRC Food Quantitie s Manual	FoodFi nder® (Grant et al. 1992)

2

²² Venter CS, MacIntyre UE, Vorster HH. The development and testing of a food portion photograph book for use in an African population. J Hum Nutr Dietet. 2000; 13:205–18.

									South
(MacK eown et al. 2007)	South Africa	Cohort	143 Adoles cents (10 and 13 years- old)	SQFF Q (Richt er et al. 2007)	145	N.A.	Tested for Reproduc ibility and validated	NRPNI ²³ ; Food quantitie s manual; Househo ld measures	African Food Compo sition Databas e _MRC ²⁴ ; SAS softwar e
(Vorste r et al. 2007)	South Africa	Cross-section al study	1854 Adults (≥15 years- old)	QFFQ (MacI ntyre et al. 2001b; MacInt yre et	145	N.A.	for reproduci bility and validated against 7-day WR	N.A.	FoodFi nder® (Grant et al. 1992)

_

 $^{^{\}rm 23}$ National Research Programme for Nutritional Intervention

²⁴ Langenhoven, ML, Kruger, M, Gouws, E, Faber, M. MRC Food Composition Tables. 3rd edition. Parow Valley: Medical Research Council; 1991.; Kruger M, Sayed N, Langenhoven ML, Holing F. Composition of South African foods: vegetables and fruit. Supplement to the MRC Food Composition Tables 1991. Parow Valley: Medical Research Council; 1998; Sayed N, Frans Y, Schönfeldt HC. Composition of South African foods: milk and milk products, eggs, meat and meat products. Supplement to the MRC Food Composition Tables 1991. Parow Valley: Medical Research Council; 1999.

(Jackso n et al. 2007)	Came	Cross-section al study	547 Adults (25-74 years-old)	al. 2001a) QFFQ (Shar ma et al. 1996)	37	Precedi ng year	and biomarke rs	N.A.	N.A.
2006									
			172						
(Belgn aoui & Belahs en 2006)	Moro cco	Cross-section al study	nt and/or Lactati ng Wome n (16- 44 years- old)	QFFQ	N.A.	Usual intake (daily, weekly and monthl y basis)	N.A.	N.A.	Bilnut Softwar e ²⁵

²⁵ Bilnut: SCDA Nutrisoft, Cerelles, France

(Hattin gh et al. 2006)	South Africa	Cross-section al study	488 Wome n (25- 44 years- old)	QFFQ	N.A.	N.A.	Validated	Food Quantitie s Manual	FoodFi nder® (Grant et al. 1992)
(Kesa & Oldewa ge- Theron 2005)	South Africa	Cross-section al study	Pregna nt and/or Lactati ng Wome n (16- 35 years- old)	QFFQ	N.A.	Habitu al consu mption	Validated	Food Models	Dietary Manage r Progra m®
(Merch ant et al. 2005)	Zimb	Cross- section al study	100 Adults (34- 93)	SQFF Q	30	Previo us year	Validated against 24hR	Standard portion sizes	ESHA Food Process or®

	n &
	Mandib
	le
	1994)

<u>Table 3:</u> Selected studies (n=11) which assessed dietary intake of different African populations using food frequency questionnaires and 24-hour recall [from 2005 to 2014].

Author	Country	Study Desig n	Study Populat ion	Numb er of food items in the FFQ	Refere nce time frame of the FFQ	Numbe r of recalls	Determin ation of Portion Sizes	Tools for Dietary Data Analysis
2014								
(Korkalo et al. 2014)	Mozamb	Cross - sectio nal study	551 Adolesc ents (14- 19 years- old)	37	Precedi ng 7 days	4 non- consecu tive (1 100%; 2 76%; 3 67%; 4 59%)	Food Photograp hs (Validated Food photograp hs in portion size estimation) , Common	Mozambi que FCT ²⁶ for NutriSur vey Program (Erhardt & Gross 2007); Collectio n and

 26 FCT: Food Composition Table

							utensils	Analysis
								of foods.
2012		•						
							FFQ: no	
							used of	
							portion	
							sizes;	NutriSur
		Cross	365				24hR:Loca	vey
(Mbochi		-	Women		Precedi		1	
et al.	Kenya	sectio	(25-54	26	ng 7	Single	household	Program
2012)		nal	years-		days		utensils;	(Erhardt
		study	old)				Real	& Gross
							foods; SA	2007)
							Food	
							Photo	
							Manual	
		Cross	356					Ethiopian
(Amare		-	Adults	8 food	Precedi	1	Household	FCT;
et al.	Ethiopia	sectio	(>18	catego	ng 7	(100%)		FCT for
2012)		nal	years-	ries	days	3 (10%)	measures	use in
		study	old)					Africa

(Mala et al. 2012)	Kenya	Cross - sectio nal study	Pregnan t and/or Lactatin g Women (15-49 years- old)	N.A.	Usual intake	Single	Calibrated list of UNICEF; Household measures.	NutriSur vey Program (Erhardt & Gross 2007)
(Oldawag		T			T			FoodFind
e-Theron & Kruger 2011)	South Africa	N.A.	375 Women	>40	Precedi ng 7 days	Single	Food models	er® (Grant et al. 1992)
(Namugu mya & Muyanja 2011)	Uganda	Cross - sectio nal	225 Adults (21-50 years- old)	55	Precedi ng week	Single	Food cost; Household utensils.	NutriSur vey Program (Erhardt & Gross 2007); USDA database

								(US
								Departm
								ent of
								Agricultu
								re,
								Agricultu
								ral
								Research
								Service
								1996);
								FAO
								FCT for
								African
								foods.
2010								
		Cross	94				FFQ:	
(Baroudi		-	Adults		Precedi		household	Bilnut
et al.	Tunisia	sectio	(32-64	168	ng	Single	measures;	Software
2010)		nal	years-		month		24hR: 3D	27
		study	old)				food	

²⁷ Bilnut: SCDA Nutrisoft, Cerelles, France

2006							models; measurem ent aids; food specific units.	
2000								
(Oldewag e-Theron et al. 2006)	South Africa	cross - sectio nal study	357 Women	N.A.	N.A.	1	Food Models	Dietary Manager Program ®
2005								
(Waudo et al. 2005)	Kenya, Tanzania e Uganda	Cross - sectio nal study	612 Women	N.A.	Previo us 7- day	1	Water and measuring cylinders	Food Meter UK 07
(Faber & Kruger 2005)	South Africa	Cross - sectio	187 Women (25-55	60	Precedi ng month	Single	24hR: Food models,	South African Food

		nal	years-				household	Composit
		study	old)				utensils,	ion
							3D sponge	Database
							models dry	of the
							oats	MRC ²⁸ .
							utensils,	
							and 3D	
							sponge	
							models	
(Oldewag		Cross						
e-theron	South	sectio	409	N.A.	N.A.	1	Food	N.A.
et al.	Africa	nal	Women	1 N.A.	1 1. A.	1	Models	1 v.A.
2005)		study						

_

²⁸ Medical Research Council

<u>Table 4:</u> Selected studies (n=4) which assessed dietary intake of different African populations using weight records [from 2005 to 2014].

Author 2013	Countr	Study Design	Study Populatio n	Number of days	Other collected informatio n	Tools for Dietary Data Analysis
(Haileslassi e et al. 2013)	Ethiopi a	Cross-sectiona	60 Pregnant and/or Lactating Women (15-49 years-old)	1 day	Description of the foods and their cooking methods	ESHA Food Processor® (Davison & Mandible 1994); Ethiopian FCT ²⁹
(Olayiwola et al. 2012)	Nigeria	Cross-sectiona	240 Elderly (>60	3 consecutiv e days	Description of the what was eaten on the day	FAO FCT; Total Dietary Assessment Software (NUTRIDATA)(Piro
			years-old)	-	before	ne & et al. 1993)

-

 $^{^{29}}$ FCT: Food Composition Table

2008						
(Gibson et al. 2008)	Ethiopi a	Cross-sectiona	99 Women (Mean age: 27,8 years-old)	1 day	N.A.	Ethiopian FCT
(Abebe et al. 2008)	Ethiopi a	Cross-sectiona	99 Women (Mean age: 27,8 years-old)	2 non- consecutiv e days	Detailed weighed recipe data for all the composite dishes	Development of a database based on the Ethiopian FCT

<u>Table 5:</u> Nutritional Tools used in dietary data analysis in the selected studies carried out between 2005-2014, organized per African Regions (Western, Eastern, Central, Northern and Southern Africa).

WESTER N AFRICA	Benin	Burkina Faso	Ghana	Mali	Nigeria
	Nutrifiq	USDA ³²	ESHA	VBS Food	Nutridata (Olayiwola
	(Alaofè et	Database	Food	Calculation System	et al. 2012)
1	al. 2009)	(Becquey	Processo	(Kennedy et al. 2009)	Food analysis
	C-SIDE ³⁰	& Martin-	r®		methods (Ijarotimi &
Nutrition al tools	(Sodjinou	Prevel	(Addo et		Keshinro 2008)
	et al.	2010)	al. 2011;		
used in	2009;	ESHA	Wiig &		
Dietary	Sodjinou	Food	Smith		
Data	et al.	Processor	2007;		
Analysis	2008)	®	Pereko et		
	FCT ³¹ for	(Huybregts	al. 2012)		
	use in	et al. 2009)	Nutrition		
	Africa	C-SIDE	Data		

 $^{^{30}}$ C-SIDE: Software for Intake Distribution Estimation

³¹ FCT: Food Composition Table

³² USDA: United States Department of Agriculture

	(Nago et	(Zeba et al.	System				
	al. 2010)	2014;	for				
		Becquey &	Research				
		Martin-	(Luke et				
		Prevel	al. 2011)				
		2010)					
		VBS Food					
		Calculatio					
		n System					
		(Becquey					
		et al. 2009)					
EASTER			Tanzani			Zimbab	Mozambi
						i Zimnan	viozambi
N	Ethiopia	Kenya		Uganda	Zambia		
N AFRICA	Ethiopia	Kenya	a	Uganda	Zambia	we	que
	Ethiopia USDA	Kenya WorldFoo		Uganda USDA	Zambia Nutrition		
		·	a	G		we	que
AFRICA	USDA	WorldFoo	a NutriSur	USDA	Nutrition	we	que NutriSurv
AFRICA Nutrition	USDA Database	WorldFoo d Dietary	a NutriSur vey	USDA database,	Nutrition Data	we USDA Databas	que NutriSurv ey
AFRICA Nutrition al tools	USDA Database (Alemaye	WorldFoo d Dietary Assessmen	NutriSur vey Program	USDA database, NutriSur	Nutrition Data System	we USDA Databas e;	que NutriSurv ey Program
AFRICA Nutrition al tools used in	USDA Database (Alemaye hu et al.	WorldFoo d Dietary Assessmen t System	NutriSur vey Program (Jordan	USDA database, NutriSur vey	Nutrition Data System for	we USDA Databas e; ESHA	que NutriSurv ey Program (Korkalo
AFRICA Nutrition al tools used in Dietary	USDA Database (Alemaye hu et al. 2011)	WorldFoo d Dietary Assessmen t System (Gewa et	NutriSur vey Program (Jordan et al.	USDA database, NutriSur vey Program	Nutrition Data System for Research	we USDA Databas e; ESHA Food	que NutriSurv ey Program (Korkalo et al.

®	NutriSurve	Processo	Namugu	2013;	nt et al.	FCT for
(Haileslas	y Program	r®	mya &	Heimbur	2005)	Mozambi
sie et al.	(Mbochi et	(Irvine et	Muyanja	ger et al.		que
2013)	al. 2012;	al. 2011)	2011)	2010)		(Scarcella
FCT for	Mala et al.	Program	Food			et al.
use in	2012;	me	Meter			2011)
Africa;	Kamau-	CANDA	UK 07			
Ethiopian	Mbuthia &	Т	(Waudo			
FCT	Elmadfa	(Powell	et al.			
(Tesfaye	2007)	et al.	2005)			
et al.	GIES ³³	2013)				
2008;	(Hansen et	Tanzania				
Gibson et	al. 2011)	n FCT				
al. 2008;	FoodFinde	(Kim et				
Abebe et	r® (Steyn	al. 2014;				
al. 2008;	& Nel	Changa				
Amare et	2006;	mire et				
al. 2012)	Steyn et al.	al. 2014;				
	2011;	Lukmanj				
	Steyn et al.	i et al.				

³³ GIES: GIES: General Intake Estimation System Program, GIES; National Food Institute, Søborg, Denmark

		2012)	2013)			
		Food	Food			
		Meter UK	Meter			
		07 (Waudo	UK			
		et al. 2005)	07(Waud			
			o et al.			
			2005)			
NORTHE						
RN	Algeria	Egypt	Morocco	Sudan	Tunisia	
AFRICA						
	Tableaux	Egyptian	Bilnut	Foodbase Nutritional	Dietetik® and	
	des	FCT_Nutri	Software	Program (Nyuar et al.	Nutrilog®	
Nutrition	valeurs	tion	(Nutrisof	2012)	(Boumaiza et al.	
al tools	nutritives	Institute	t)		2012)	
used in	(Lamri-	(Mounir et	(Baroudi		Bilnut Software	
Dietary	Senhadji	al. 2007)	et al.		(Logiciel and	
Data	et al.		2010)		Nutrisoft) (Baroudi et	
Analysis	2009)		DIAL		al. 2014; Belgnaoui	
			Program		& Belahsen 2006)	
			me ³⁴		ESHA Food	

 $[\]overline{\ \ \ \ }^{34}$ DIAL: Programa para evaluación de dietas y gestión de datos de alimentación.

			(López			Processor®	
			et al.			(Aounallah-Skhiri et	
			2012)			al. 2011; Tessier et	
						al. 2008)	
SOUTHE							
RN	Botswan	South Africa		CENTRAL Ca		meroon	D. R.
AFRICA	a			AFRICA			Congo
Nutrition	Nutritioni	FoodFinder@)	Nutritional	Micr	odiet	Lucille
al tools	st Five	(Wrottesley	et al.	tools used in	(Anderson et		food
used in	(Maruapu	2014; Oldewage-		Dietary Data	al. 2011)		analysis
Dietary	la &	Theron et al. 2014;		Analysis	Becel		software
Data	Chapman	Papathakis & Pearson			Software		(Termote
Analysis	-	2012; Pretorius et al.			(Dap	i et al.	et al.
	Novakofs	2012; Joffe et al. 2011;			2010)	2012)
	ki 2008)	Oldewage-Theron et					
	FoodFind	al. 2010; Zingoni et al.					
	er®	2009; W. H.					
	(Jackson	Oldewage-Theron et					
	et al.	al. 2008; Oguntibeju et					
	2012)	al. 2007; Cha	arlton et				
		al. 2005; Rai	nkin et al.				
		2011; Oldew	age-				

Theron & Kruger		
2011; Joffe et al. 2010;		
Faber & Kruger 2005;		
Wentzel-Viljoen et al.		
2011; Kruger et al.		
2011; Mostert et al.		
2005; O'Keefe et al.		
2007; Naude et al.		
2011; Kruger et al.		
2012; Jackson et al.		
2012; Hattingh et al.		
2006; Vorster et al.		
2007; WH Oldewage-		
Theron et al. 2008;		
Wh Oldewage-Theron		
et al. 2008)		
Nutribase (Kolahdooz		
et al. 2013; Sheehy et		
al. 2013)		
Dietary Manager		
Program® (Kesa &		
Oldewage-Theron		

2005; Oldewage-		
Theron et al. 2006)		
Nutrition Data System		
for Research (May et		
al. 2014; Luke et al.		
2011)		
South African Food		
Composition Database		
of the MRC (Mostert		
et al. 2005; Kruger et		
al. 2011; Kruger et al.		
2012; Wentzel-Viljoen		
et al. 2011;		
MacKeown et al.		
2007; Faber & Kruger		
2005)		

Figure 1: Flowchart of the paper's selection procedure.

