An Investigation of Clustering: *k*-means and GMM

Emma Grossman

April 6, 2021

Clustering

(Jeffares 2019)

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (cont.)

$$P(X|\mu,\Sigma,\pi) = \sum_{k=1}^K \pi_k N(X|\mu_k,\Sigma_k)$$

- π_k is the mixing probability for cluster k
- $N(X|\mu_k,\Sigma_k)$ is the multivariate Gaussian density for the $k^{ ext{th}}$ cluster with mean vector μ_k , and variance-covariance matrix Σ_k
- K is the number of clusters

Expectation Maximization (EM)

- Initialize data with k-means.
- 2. E-step: creates "soft labels" for each observation
- 3. M-step: uses soft labels from E-step to estimate parameters
- 4. Repeat until convergence

Expectation Maximization for Gaussian Mixture Models

Mclust{mclust}

$$\Sigma_k = \lambda_k \mathbf{D}_k \mathbf{A}_k \mathbf{D}_k^T$$

- λ_k determines the volume of each cluster
- \mathbf{A}_k is a diagonal matrix that controls the shape of each cluster with the requirement that the determinant equals to one;
- \mathbf{D}_k determines the orientation of each cluster, so whether the clusters are aligned with the coordinate axes, not aligned with coordinate axes, or allowed to vary in their orientation; it is an orthogonal matrix

Model examples:

(Scrucca et al. 2016)

Model	Σ_k	Distribution	Volume	Shape	Orientation
VII	$\lambda_k I$	Spherical	Variable	Equal	_
VVI	$\lambda_k \mathbf{A}_k$	Diagonal	Variable	Variable	Coordinate axes
EEE	$\lambda \mathbf{D} \mathbf{A} \mathbf{D}^T$	Ellipsoidal	Equal	Equal	Equal
EVE	$\lambda \mathbf{D} \mathbf{A}_k \mathbf{D}^T$	Ellipsoidal	Equal	Variable	Equal
VEE	$\lambda_k \mathbf{D} \mathbf{A} \mathbf{D}^T$	Ellipsoidal	Variable	Equal	Equal

k-means vs. EM for GMM

k-means

- Not model based
- Primary goal is to identify clusters
- Highly sensitive to initial centroids
- Data needs to be standardized

- Iterative process
- Results in clusters

EM for GMM

- Model based
- Primary goals are to estimate parameters (mean, variance, etc.) and identify clusters

(Horst, Hill, and Gorman 2020)

		k-means			GMM	
	Cluster 1	Cluster 2	Cluster 3	Cluster 1	Cluster 2	Cluster 3
Adelie	127	24	0	151	0	0
Chinstrap	5	63	0	5	63	0
Gentoo	0	0	123	0	0	123

- Average misclassification for k-means: 100*(24+5)/342 = 8.48%
- Average misclassification for GMM: 100*(5)/342 = 1.46%

Simulation study:

- Generated data according to two multivariate Gaussian distributions
- 50 datasets per scenario

Simulation study: Scenario 1

Table 1: Scenario 1 - Model VII with $\Sigma_k = \lambda_k I$				
Parameter	Cluster 1	Cluster 2		
$\mu_k = \left[\begin{array}{c} \mu_{kx} \\ \mu_{ky} \end{array}\right]$	$\left[\begin{array}{c} 0 \\ 0 \end{array}\right]$	$\left[\begin{array}{c} 5 \\ 5 \end{array}\right]$		
Σ_k	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$	$\left[\begin{array}{cc} 1.5 & 0 \\ 0 & 1.5 \end{array}\right]$		
n_k	250	250		

Simulation study: Scenario 1 results

Simulation study: Scenario 1 results

	<i>k</i> -me	eans	GMM	
	Cluster 1	Cluster 2	Cluster 1	Cluster 2
Group A	249.98	0.02	249.82	0.18
Group B	0.8	249.2	0.36	249.64

- Average misclassification for *k*-means: 0.164%
- Average misclassification for GMM: 0.108%

Simulation study: Scenario 2

Table 2: Scenario 2 -	Model VVI w	with $\Sigma_k = \lambda_k A_k$	
Parameter	Cluster 1	Cluster 2	
$\mu_k = \left[egin{array}{c} \mu_{kx} \ \mu_{ky} \end{array} ight]$	$\left[\begin{array}{c} 0 \\ 0 \end{array}\right]$	$\left[\begin{array}{c}1\\1\end{array}\right]$	
Σ_k	$\left[\begin{array}{cc} 2 & 0 \\ 0 & 0.1 \end{array}\right]$	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right]$	
n_k	250	250	

Simulation study: Scenario 2 results

Simulation study: Scenario 2 results

	<i>k</i> -m	eans	GMM	
	Cluster 1	Cluster 2	Cluster 1	Cluster 2
Group A	217.98	32.02	234.7	15.3
Group B	107.98	142.02	52.48	197.52

- Average misclassification for *k*-means: 28%
- Average misclassification for GMM: 13.56%

Conclusion and Future Work

- Both scenarios indicated that GMM classified data more accurately than
 k-means but as mentioned before, k-means is more widely used than EM for
 GMM
- Some limitations: only two models out of the fourteen possible models were tried and the data were simulated according to a Gaussian distribution
- Scenario in which *k*-means classified data more accurately than GMM

References

Carrasco, Oscar Contreras. 2019. "Gaussian Mixture Models Explained." *Towards Data Science*. https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a9.

Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. *Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data*. https://allisonhorst.github.io/palmerpenguins/

Jeffares, Alan. 2019. "K-Means: A Complete Introduction." *Towards Data Science*. https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c.

Scrucca, Luca, Michael Fop, T. Brendan Murphy, and Adrian E. Raftery. 2016. "mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models." *The R Journal* 8 (1): 289–317. https://doi.org/10.32614/RJ-2016-021

Questions?

All code & the paper can be found at my Github: https://github.com/emmaleda/MS-project-kmeans-and-GMM

Simulation study: unusual parameter estimates

$\hat{\mu}_1$	$\hat{\mu}_2$	Confusion Matrix
1.03	[-0.43]	[149 144]
_ [-0.22]	[1.21]	[101 106]
[1.32]	[-0.46]	$\begin{bmatrix} 130 & 146 \end{bmatrix}$
$\begin{bmatrix} -0.01 \end{bmatrix}$	[1.11]	[120 104]
	[]	[~ -~-]