

4 Walmart Labs

Neural Compatibility Ranking for Text-based Fashion Matching

Suthee Chaidaroon

schaidaroon@scu.edu Santa Clara University Santa Clara, CA, USA

Yi Fang

yfang@scu.edu Santa Clara University Santa Clara, CA, USA

Min Xie

mxie@walmartlabs.com Walmart Labs Sunnyvale, CA, USA

Alessandro Magnani

amagnani@walmartlabs.com Walmart Labs Sunnyvale, CA, USA

Text-based Fashion Matching Problem

Given an outfit as a set of text descriptions, each represents a fashion product; we want to learn a ranking function to retrieve the top K most compatible fashion items from the candidate set. In this work, we do not use image information.

What type of information we can get from text descriptions?

- **Lexical matching information**: products that share the **same words/terms** are related, but this approach may suffer from the vocabulary gap.
- Semantic matching information: products from the same outfit are semantically similar, but the co-occurrence information pays more attention to a high-frequency cooccurrence and often ignores non-popular products.

What are our hypotheses?

- The outfits curated by professional fashion bloggers consist of compatible fashion products.
- Any **product** from the **same outfit** is **more compatible** than the products from **other** outfits.
- Product's text descriptions contain a useful compatibility signal.

Contributions

- Propose a novel **neural ranking architecture** for fashion matching by capturing both common and rare fashion concepts via semantic and lexical matching.
- Demonstrate that a **product description** contains rich information about product compatibility and has not been fully utilized by the prior works. Our work can achieve state-of-the-art results on fashion matching task and comparable performances with the models that use **both image and text** data.

Neural Compatibility Ranking model (NCR)

The model consists of three components:

- Semantic matching component: Capture common fashion concepts
 - Use pre-trained GloVe word embedding and CBOW to represent a product description. We freeze the embedding lookup table.
 - Use GRU to aggregate the product vectors from the input outfit and use the last hidden state as the output vector of 32 dimensions.
 - Use 3-layer feedforward networks with 300, 128, and 32 neurons to transform a target product into a vector of 32 dimensions.
 - Compute a Hadamard product between the outfit and target product.
- **Lexical matching component**: Capture **rare** fashion concepts
 - Concatenate all product descriptions in the outfit and represent it as a TFIDF vector.
 - Represent a target product description as a TFIDF vector.
 - Compute a cosine distance of the outfit and target product TFIDF vectors.
- **Compatibility score function**
 - Concatenate the output vectors generated by the semantic and lexical matching component. Use a 1-layer feedforward with a sigmoid function to output a compatibility score.

The Model Architecture of Neural Compatibility Ranking

Model Training

- Train the model as a **point-wise** ranking model by minimizing a **binary cross entropy** loss.
- Use **Polyvore** fashion outfit dataset, which contains **21,889 fashion outfits** (**17,316** for training, 1,497 for validation, and 3,076 for testing).
- A positive outfit-product pair is created by sampling one product from the outfit and remove it from the same outfit while a negative outfit-product pair is created by picking a product randomly from other outfits within the same training set.

Ranking Performance for Each Component

Model	MRR	HR@1	HR@5	HR@10
Semantic Matching	0.1708	0.0603	0.2584	0.4296
Lexical Matching	0.1794	0.1212	0.2104	0.2610
NCR (Combine)	0.2678	0.1547	0.3626	0.5137

The table above shows the ranking performances of all components in NCR.

Top-n Recommendation Task

Model	Data	MRR	HR@1	HR@5	HR@10
QL [1]	Text	0.1762	0.1191	0.2073	0.2610
BM25 [2]	Text	0.1649	0.1135	0.2032	0.2594
DSSM [3]	Text	0.1743	0.0846	0.2285	0.3378
K-NRM [4]	Text	0.1707	0.1150	0.1975	0.2584
SiameseNet [5]	Text+Image	0.2559	0.1320	0.3667	0.5167
BiLSTM+VSE [6]	Text+Image	0.2256	0.0975	0.3424	0.5224
NCR (Ours)	Text	0.2678	0.1547	0.3626	0.5137

The table above shows the ranking performance of our model and baseline methods on the top-n recommendation task. For each testing outfit, we leave one product out and use it as a positive item. Then, we sample 100 products from other outfits as negative items.

Conclusions

We propose a neural compatibility ranking model for fashion matching. The model takes the advantages of **semantic matching** and **lexical matching** as it significantly **outperforms** the text-based ad-hoc retrieval models while achieves comparable results with the baselines that use both product image and text descriptions. A combination of semantic and lexical matching is a crucial component for extracting product compatibility information from text data.

References

Multimedia Conference, 2017.

- [1] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied to information retrieval. SIGIR, 2001. [2] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond. Foundations and Trends in Information Retrieval, 2009.
- [3] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep structured semantic models for web
- search using clickthrough data. CIKM 2013. [4] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-end neural ad-hoc ranking with kernel pooling. SIGIR
- 2017. [5] Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and Serge Belongie. Learning visual clothing style with
- heterogeneous dyadic co-occurrences. ICCV 2015.
- [6] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis. Learning fashion compatibility with bidirectional lstms. ACM on