Analyse

Table des matières

I	Relation d'équivalence et relation d'ordre	2
1	Relation d'équivalence	2
2	Relations d'ordre	3
3	Construction de \mathbb{R}	5
4	Caractérisation de $\mathbb R$	5
II	Suites réelles	6
5	Théorèmes fondamentaux	6
6	Valeurs d'adhérence	7
7	Suites de Cauchy	9
8	Équivalence de suites	10
II	I Théorie d'intégration au sens de Riemann	10
9	Intégration des fonctions constantes par morceaux	10
10	Fonctions Riemann-intégrables	13
11	Propriétés des fonctions Riemann-intégrables	16
12	Intégration sur un intervalle quelconque	17

Première partie

Relation d'équivalence et relation d'ordre

1 Relation d'équivalence

Soit E un ensemble (théorie ZF).

Définition 1 (Produit cartésien). *On définit le produit cartésien de deux ensembles A et B tel que :*

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Définition 2 (Relation d'équivalence). *Une relation d'équivalence sur E est une partie du produit cartésien E* \times *E, notée* \mathcal{R} .

Lorsqu'un couple $(x, y) \in E$ est en relation par \mathcal{R} , on écrit $x\mathcal{R}y$.

Une relation d'équivalence répond aux conditions suivantes :

- \mathcal{R} est réflexive : $\forall x \in E$, $x\mathcal{R}x$
- \Re est symétrique : $\forall (x, y) \in E^2$, $x\Re y \Rightarrow y\Re x$
- \mathscr{R} est transitive: $\forall (x, y, z) \in E^3$, $x\mathscr{R}y$ et $y\mathscr{R}z \Rightarrow x\mathscr{R}z$

Exemple.

- Sur n'importe quel ensemble, la relation d'égalité est une relation d'équivalence.
- Dans l'ensemble des entiers relatifs, $\forall (x, y) \in \mathbb{Z}^2$, on pose la relation d'équivalence suivante : $x \mathcal{R} y \Leftrightarrow 2|x-y|$.

Démonstration.

Soit $x \in \mathbb{Z}$.

x - x = 0 est divisible par 2.

 \mathcal{R} est donc réflexive.

Soient $x, y \in \mathbb{Z}$ tels que $x \mathcal{R} y$,

On a donc x - y divisible par 2.

 $\exists k \in \mathbb{Z} / x - y = 2k$

Donc, y - x = -(y - x) = -2k

Donc, 2|y-x

Donc, $y\Re x$

Donc, $\mathcal R$ est donc symétrique

Soient $x, y, z \in \mathbb{Z}$ tels que $x \mathcal{R} y$ et $y \mathcal{R} z$

$$x-z=x-y+y-z$$

Or,
$$\exists k \in \mathbb{Z}, \ x - y = 2k$$

et,
$$\exists k' \in \mathbb{Z}, \ y - z = 2k'$$

Donc, x - y + y - z = 2(k + k') est divisible par 2, par conséquent, $x\mathcal{R}z$ et \mathcal{R} est transitive.

Définition 3 (Classe d'équivalence). Soit \mathcal{R} une relation d'équivalence sur E.

Soit $x \in E$, on appelle classe d'équivalence l'ensemble $\mathscr{C}(x) = \{y \in E \mid x \mathscr{R} y\}$

Exemple. $Sur \mathbb{Z}$, $x \mathcal{R} y \Leftrightarrow 2|x-y|$

$$\mathscr{C}(0) = \{ y \in \mathbb{Z} \mid 0 \mathcal{R} y \}$$

- $\mathscr{C}(0) = \{ y \in \mathbb{Z} \mid -y \text{ divisible par 2} \}$
- $\mathscr{C}(0) = \{nombres\ pairs\}$
- $--\mathscr{C}(2) = \{ y \in \mathbb{Z} \mid 2\mathscr{R}y \}$
- $\mathscr{C}(2) = \{ y \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, \ 2 y = 2k \}$
- $\mathscr{C}(2) = \{nombres \ pairs\}$
- $--\mathscr{C}(1) = \{ y \in \mathbb{Z} \mid 1\mathscr{R}y \}$
- $\mathscr{C}(1) = \{ y \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, 1 y = 2k \}$
- $\mathscr{C}(1) = \{nombres impairs\}$

Proposition 1. $\forall (x, y) \in E^2$,

$$--x\mathcal{R}y \Rightarrow \mathcal{C}(x) = \mathcal{C}(y)$$

Démonstration. Supposons xRy,

Montrons que $\mathscr{C}(x) \cap \mathscr{C}(y)$

Soit $z \in \mathcal{C}(x)$, on a donc $x\mathcal{R}z$

Or $y\Re x$ (par symétrie de \Re)

Donc $y\Re z$ (par transitivité de \Re)

Donc $z \in \mathscr{C}(y)$

Donc $\mathscr{C}(x) \subset \mathscr{C}(y)$

On montre de la même manière que $\mathscr{C}(y) \subset \mathscr{C}(x)$ Par conséquent, $x\mathscr{R}y \Rightarrow \mathscr{C}(x) = \mathscr{C}(y)$

$$(\mathscr{C}(x) \cup \mathscr{C}(y) = \emptyset) \Rightarrow \mathscr{C}(x) = \mathscr{C}(y)$$

Démonstration. Soit $z \in \mathcal{C}(x) \cup \mathcal{C}(y)$

On a $x\Re z$ et $z\Re y$

Donc, par transitivité, $x\Re y$

Par conséquent, $\mathscr{C}(x) = \mathscr{C}(y)$

— Les classes d'équivalence forment une partition de E.

Définition 4 (Ensemble quotient). *Soit* \mathcal{R} , *une relation d'équivalence sur* E.

L'ensemble quotient, noté $\frac{E}{\mathcal{R}}$ est l'ensemble dont les éléments sont les classes d'équivalence.

Il existe une application de passage au quotient :

$$\Pi: \left\{ \begin{array}{l} E \to \frac{E}{\mathcal{R}} \\ x \mapsto \mathscr{C}(x) \end{array} \right.$$

Exemple.
$$(x, y) \in \mathbb{Z}^2$$
, $x \mathcal{R} y \Leftrightarrow 2 \mid x - y$
 $\frac{\mathbb{Z}}{\mathcal{R}} = \{\mathscr{C}(0), \mathscr{C}(1)\} = \{\bar{0}, \bar{1}\} = \frac{\mathbb{Z}}{2\mathbb{Z}}$

2 Relations d'ordre

Définition 5 (Relation d'ordre). *Une* <u>relation d'ordre</u> \prec sur E est une partie de $E \times E$ qui vérifie les propriétés suivantes :

- Réflexivité : $\forall x \in E, x < x$
- Anti-symétrie: $\forall x, y \in E$, (x < y) et $(y < x) \Rightarrow x = y$
- Transitivité: $\forall x, y, z \in E$, (x < y) et $(y < z) \Rightarrow (x < z)$

Définition 6. Une relation d'ordre est dite totale lorsque $\forall (x, y) \in E^2$, x < y ou y < x

Définition 7. *Soit A une partie de* (E, \prec) *,*

- Un majorant de A est un élément $M \in E$ tel que $\forall a \in A$, a < M
- Un minorant de A est un élément $m \in E$ tel que $\forall a \in A$, m < a
- A est bornée lorsqu'elle admet à la fois un majorant et un minorant.

- On dit que A admet un plus grand élément (ou maximum) s'il existe un majorant M de A tel que $M \in A$.
- On dit que A admet un plus petit élément (ou minimum) s'il existe un minorant m de A tel que $m \in A$.
- A admet une <u>borne supérieure</u> $B \in E$ si B est un majorant de A et si pour tout majorant de A, on a B < M Remarque 1. Quand il existe, B est le plus petit des majorants.
- A admet une <u>borne inférieure</u> $b \in E$ si b est un minorant de A et si pour tout minorant de A, on a m < b Remarque 2. Quand il existe, b est le plus grand des minorants.

Exemple.

 $E = \mathbb{R}$, doté de l'ordre standard \leq A = [0; 1]

A est bornée par -42 (en tant que minorant) et 1,1 (en tant que majorant)

A admet un plus petit élément 0

A n'admet pas de plus grand élément mais admet en revanche une borne supérieure 1.

 $E=\mathbb{Q}$, doté de l'ordre standard \leq $A=\{x\in\mathbb{Q}|\ x^2<2\}$ A est majorée par 24 mais n'a pas de borne supérieure car $\sqrt{2}\notin\mathbb{Q}$

 $E = \mathbb{N}^*$, doté de la relation d'ordre \prec telle que $\forall a \prec b \Leftrightarrow a | b$ On montre qu'il s'agit d'une relation d'ordre :

 $-\forall a \in \mathbb{N}^{*2}, a|a$

Par conséquent, a < a et < est transitive.

— Soient $a \in \mathbb{N}^*$ et $b \in \mathbb{N}^*$

 $a|b \Rightarrow \exists k \in \mathbb{N}, ka = b$

 $b|a \Rightarrow \exists k' \in \mathbb{N}, kb = a$

Donc, a = kk'a

Donc, kk' = 1

Donc, k = k' = 1

Donc, a = b

Par conséquent, < est anti-symétrique.

— Soient $a, b, c \in \mathbb{N}^*$

 $a|b \Rightarrow \exists k \in \mathbb{N}, ka = b$

 $b|c \Rightarrow \exists k' \in \mathbb{N}, \ k'b = c$

Donc, c = k'ka

Donc a|c,

< est par conséquent transitive.

Pour cette même relation d'ordre,

On pose $A = \{2; 3; 5\}$. 120 est un majorant de A.

A n'a pas de plus grand élément.

A admet 30 comme borne supérieure (avec 30 = PPCM(2;3;5)) A admet pour minorant 1. A admet aussi 1 comme borne inférieure

Remarque 3. < *n'est pas un ordre total.*

3 Construction de \mathbb{R}

Axiome 1. *Il existe un ensemble* \mathbb{N} *muni d'une relation d'ordre* \leq *telle que* :

- 1. \leq est totale.
- 2. Toute partie non vide admet un plus petit élément.
- 3. Toute partie majorée non vide admet un plus grand élément.
- 4. L'ensemble n'a pas de plus grand élément.

Théorème 1. Soit (\mathcal{N}, \prec) , un ensemble munit d'une relation d'ordre vérifiant les propriétés précédentes, alors, il existe une bijection croissante de \mathcal{N} dans \mathbb{N} .

$$(\forall x, y \in \mathcal{N}, x < y \Rightarrow f(x) \le f(y))$$

Qui est \mathbb{Z} ? On définit sur \mathbb{N}^2 la relation d'équivalence \mathcal{R} définie par

$$(m,n)\mathcal{R}(m',n') \Leftrightarrow m+n'=m'+n$$

Ainsi, on définit alors l'ensemble des entiers relatifs tel que :

$$\mathbb{Z} = \frac{\mathbb{N} \times \mathbb{N}}{\mathscr{R}}$$

Qui est \mathbb{Q} ? On définit sur $\mathbb{Z} \times \mathbb{Z}^*$ la relation d'équivalence \mathscr{R}' définie par :

$$(p,q)\mathcal{R}'(p',q') \Leftrightarrow pq' = p'q$$

Ainsi, on définit alors l'ensemble des rationnels tel que :

$$\mathbb{Q} = \frac{\mathbb{Z} \times \mathbb{Z}^*}{\mathscr{R}'}$$

Qui est \mathbb{R} ? Soit $\mathcal{P}_M(\mathbb{Q})$, l'ensemble des parties majorées non vides de \mathbb{Q} . On le munit de la relation d'équivalence \mathcal{R}'' définie par :

 $A\mathcal{R}''B \Leftrightarrow A$ et B ont le même ensemble de majorants dans \mathbb{Q}

Ainsi, on définit alors l'ensemble des réels tel que :

$$\mathbb{R} = \frac{\mathbb{Q} \times \mathbb{Q}}{\mathscr{R}''}$$

Exemple.

$$A = \{1\}$$

$$B = \{-2, 0, 1\}$$

$$A\mathcal{R}''B$$

$$A = \{x \in \mathbb{Q} | x^2 \le 2\}$$

On appelle $\sqrt{2}$ la classe d'équivalence de A

4 Caractérisation de \mathbb{R}

Théorème 2. Tout corps totalement ordonné, complet et archémédien est isomorphe à \mathbb{R} .

Théorème 3 (de la borne supérieure). *Toutes parties de* \mathbb{R} *majorée et non vide admet une borne supérieure.*

Deuxième partie

Suites réelles

Définition 8. *Une suite numérique est une fonction de* \mathbb{N} *dans* \mathbb{R} .

Notation. On la note $(u_n)_{n\in\mathbb{N}}$ plutôt que

$$f: \mathbb{N} \to \mathbb{R}$$
$$f: n \mapsto f(n)$$

Définition 9. L'ensemble $\{u_n, n \in \mathbb{N}\}$ est appelé ensemble image de la suite.

Définition 10. Lorsque l'ensemble image est majoré, minoré, ou borné dans une partie de (\mathcal{R}, \leq) , on dit que la suite est majorée, minorée, ou bornée.

Définition 11. On dit de plus que (u_n) est convergente si :

$$\exists \lambda \in \mathbb{R} / \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ n \geq N \Rightarrow |u_n - \lambda| < \varepsilon$$

5 Théorèmes fondamentaux

Théorème 4. Toute suite convergente est bornée.

Démonstration. On sait qu'il existe un réel l tel que :

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ n \geq N_{\varepsilon}$$

Prenons $\varepsilon = 1$

 $\exists N_1 \in \mathbb{N}, \ n \ge N_1 \Rightarrow |u_n - l| < 1$

Posons $M = \max\{\{u_0, ..., u_{N_{\varepsilon}-1}\} \cup \{1+l\}\}\$

et $m = \max\{\{u_0, ..., u_{N_{\varepsilon}}\} \cup \{l-1\}\}$

Soit $n \in \mathbb{N}$

Nous procédons alors par disjonction de cas.

— Pour $n < N_1$,

Alors $u_n \le \max\{u_0, ..., u_{N_1-1}\}$

Par conséquent, $u_n \leq M$.

— pour $n \ge N_1$,

 $|u_n - l| \le 1$

 $|u_n|$ |u| = 1

Donc, $-1 \le u_n - l \le 1$ $\Rightarrow l - 1 \le u_n \le l + 1 \le M$

Par conséquent, $\forall n \in \mathbb{N}$, $u_n \leq M$, et (u_n) est majorée par M.

On montre de la même manière que (u_n) est minorée par m. Ainsi, la suite (u_n) est bornée.

Théorème 5. Si la limite existe, elle est unique.

Démonstration. On démontre ce théorème par l'absurde.

Soit l et l' deux limites distinctes.

Prenons $\varepsilon = \frac{|l-l'|}{4}$

 $\exists N_l \in \mathbb{N}, \ n \ge N_l \Rightarrow |u_n - l| \le \varepsilon$

 $\exists N_{l'} \in \mathbb{N}, \ n \geq N_{l'} \Rightarrow |u_n - l'| \leq \varepsilon$

Soit $N = \max\{N_l, N_{l'}\}$

$$|l - l'| = |l - u_N + u_N - l'| \tag{1}$$

$$\leq |l - u_N| + |u_N - l'| \tag{2}$$

$$\leq \varepsilon + \varepsilon$$
 (3)

$$\leq 2\varepsilon$$
 (4)

$$=\frac{|l-l'|}{2}\tag{5}$$

$$\Rightarrow |l-l'| \leq \frac{|l-l'|}{2}$$

Cette affirmation étant absurde, la limite d'une suite ne peut être qu'unique.

Théorème 6. Toute suite croissante et majorée converge.

Démonstration. Soit $A = \{u_n | n \in \mathbb{N}\} \subset \mathbb{R}$

A est majorée et non vide, par conséquent elle admet une borne supérieure que nous noterons l. Soit $\varepsilon > 0$,

 $l - \varepsilon$ n'est donc pas un majorant de A,

$$\exists N \in \mathbb{N}, \ l - \varepsilon \leq u_N$$

$$\forall n > N, \ u_n \geq u_N$$

$$\forall n > N, \ l + \varepsilon \geq l \geq u_n \geq u_N \geq l - \varepsilon$$

$$\forall n > N, \ \varepsilon \geq u_n - l \geq -\varepsilon$$

$$\forall n > N, \ |u_n - l| \leq \varepsilon$$

Par conséquent, (u_n) converge vers l.

6 Valeurs d'adhérence

Définition 12. *Une extraction* Φ *est une fonction strictement croissante de* \mathbb{N} *dans* \mathbb{N} . *Soit* (u_n) , *une suite. On appelle suite extraite (ou sous-suite) de* (u_n) , *une suite* (v_n) *de la forme :*

$$\forall n \in \mathbb{N}, \ v_n = u_{\Phi(n)}$$

Exemple.

Définition 13. *Soit* (u_n) *une suite.*

On dit qu'un réel λ est une valeur d'adhérence de (u_n) s'il existe une suite extraite de (u_n) convergeant vers λ .

Exemple. $(u_n = (-1)^n)_{n \in \mathbb{N}}$ admet deux valeurs d'adhérence 1 et -1

$$\forall n \in \mathbb{N}, \ v_n = u_{2n} = 1 \Rightarrow \lim_{n \to +\infty} v_n = 1$$
 $\forall n \in \mathbb{N}, \ w_n = u_{2n+1} = -1 \Rightarrow \lim_{n \to +\infty} w_n = -1$

Théorème 7. Si (u_n) converge vers $l \in \mathbb{R}$, alors toute suite extraite converge vers l.

Proposition 2 (Contraposée du théorème précédent). *Si une suite admet deux valeurs d'adhérence distinctes, alors elle diverge.*

Théorème 8 (de Bolzano-Weierstrass). *Toute suite* (u_n) *bornée admet au moins une valeur d'adhérence.*

Démonstration. Soient m et M respectivement un minorant et un majorant de (u_n) .

On a $\forall n \in \mathbb{N}, u_n \in [m; M]$

On va construire deux suites (a_n) et (b_n) telles que $\forall n \in \mathbb{N}[a_n,b_n]$ contient une infinité de termes de la suite.

- On prend $a_0 = m$ et $b_0 = M$.
- Soit $n \in \mathbb{N}$, supposons a_n et b_n construites.

Comme $[a_n, b_n]$ contient une infinité de termes de la suite, alors l'un des intervalles $[a_n, \frac{a_n + b_n}{2}]$ ou $[\frac{a_n + b_n}{2}, b_n]$ contient une infinité de termes :

S'il s'agit de $[a_n, \frac{a_n+b_n}{2}]$, on pose :

$$\begin{cases} a_{n+1} = a_n \\ b_{n+1} = \frac{a_n + b_n}{2} \end{cases}$$

Sinon, on prend:

$$\begin{cases} a_{n+1} = \frac{a_n + b_n}{2} \\ b_{n+1} = b_n \end{cases}$$

On a : $\forall n \in \mathbb{N}$, $a_n \le b_n \le b_0$

donc (a_n) est majorée.

De plus, $\forall n \in NN$, $a_0 \le a_n \le b_n$

donc, (b_n) est minorée.

Ainsi, (a_n) converge vers l et (b_n) converge vers l'.

Mais
$$\lim_{n \to \infty} (a_n - b_n) = 0$$

Mais
$$\lim_{n \to +\infty} (a_n - b_n) = 0$$

et $\lim_{n \to +\infty} a_n - \lim_{n \to +\infty} b_n = l - l'$

Par conséquent, l = l'

On montre maintenant que *l* est une valeur d'adhérence.

On pose $\Phi(0) = 0$, puis on suppose $\Phi(n)$ construit.

$$\exists k \in \mathbb{N}, \ k > \Phi(n) \text{ et } u_k \in [a_{n+1}, b_n + 1]$$

On pose $\Phi(n+1) = k$

$$\forall n \in \mathbb{N}, \ a_n \leq u_{\Phi(n)} \leq b_n$$

Comme (a_n) et (b_n) tendent toutes les deux vers l, par le théorème des gendarmes, on a :

$$\lim_{n \to +\infty} u_{\Phi(n)} = l$$

La suite (u_n) admet donc une valeur d'adhérence.

Proposition 3.

- \forall *n* ∈ \mathbb{N} , $a_n \leq b_n$
- (a_n) est croissante.

Démonstration. Soit $n \in \mathbb{N}$,

$$a_{n+1} - a_n = \begin{cases} 0 \ge 0 \\ \frac{a_n + b_n}{2} \ge 0 \end{cases}$$

—
$$(b_n)$$
 est décroissante.
— $\forall n \in \mathbb{N}, |a_n - b_n| = \frac{|m - M|}{2^n}$

Démonstration.

$$- |a_0 - b_0| = |m - M| = \frac{|m - M|}{2^0}$$

$$- |a_{n+1} - b_{n+1}| = \begin{cases} |a_n - \frac{a_n + b_n}{2}| = |\frac{a_n - b_n}{2}| \\ |\frac{a_n + b_n}{2} - b_n| = |\frac{a_n - b_n}{2}| \end{cases}$$
Par conséquent, $|a_{n+1} - b_{n+1}| = |\frac{m - M}{2^n}|$

$$-\lim_{n\to+\infty}a_n-b_n=0$$

7 Suites de Cauchy

Définition 14. Une suite est dite de Cauchy si :

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$, $(\forall p \ge N \ et \ \forall q \mathbb{N})$, $|u_p - u_q| < \varepsilon$

Théorème 9. Toute suite réelle de Cauchy est convergente.

Démonstration. Soit λ , la limite de (u_n) Soit $\varepsilon > 0$

$$\exists N \in \mathbb{N}, \ \forall n > N, \ |u_n - \lambda| < \frac{\varepsilon}{2}$$

Soient $p, q \in \mathbb{N}$ tels que p > N et q > N.

$$\begin{split} |u_p - u_q| &= |u_p - \lambda - u_q + \lambda| \\ &\leq |u_p - \lambda| + |u_q - \lambda| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \\ \Rightarrow |u_p - u_q| \leq \varepsilon \end{split}$$

 (u_n) est donc convergente.

Théorème 10. Toute suite convergente est de Cauchy.

 $D\acute{e}monstration. \ \ \text{Pour } \varepsilon=1, \ \exists N_1 \in \mathbb{N}, \ \forall \, p,q \geq N_1, \ |u_p-u_q| \leq 1$

D'où $|u_p| - |u_q| \le 1$

ou encore $|u_p| \le 1 + |u_q|$

On a donc, $\forall p \ge N_1$, $|u_p| \le 1 + |u_{N_1}|$

On pose $M = \max(\{|u_k|; 0 \le k \le N_1; 1 + |u_{N_1}|\})$

Donc $\forall n \in \mathbb{N}, |u_n| \leq M$

Du fait qu'elle soit bornée et d'après le théorème de Bolzano-Weirstrass, la suite (u_n) admet au moins une valeur d'adhérence.

Par conséquent, il existe une extraction ϕ telle que : $\lim_{n\to +\infty}u_{\phi(n)}=\lambda$ Soit $\varepsilon>0$,

$$\exists N_2 \in \mathbb{N}, \ \forall n \geq N_2, \ |u_{\Phi(n)} - \lambda| \leq \frac{\varepsilon}{2}$$

$$\exists N_3 \in \mathbb{N}, \ \forall p, q \ge N_3, \ |u_p - u_q| \le \frac{\varepsilon}{2}$$

On pose $N = \max(N_2, N_3)$ Alors, pour $n \ge N$,

$$\begin{aligned} |u_p - \lambda| &= |u_n - u_{\Phi(N)} + u_{\Phi(N)} - \lambda| \\ &\leq |u_n - u_{\Phi(N)}| + |u_{\Phi(N)} - \lambda| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{aligned}$$

 (u_n) est donc de Cauchy.

8 Équivalence de suites

Définition 15. Soient (a_n) et (b_n) , deux suites. On dit que (a_n) et (b_n) sont équivalentes lorsque $a_n - b_n = o(a_n)$

Remarque 4. $Si(a_n)$ ne s'annule pas, on peut remplacer cette définitions par la vérification de la condition suivante :

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = 1$$

Notation. Lorsque deux suites (a_n) et (b_n) sont équivalentes, on note $(a_n) \sim (b_n)$

Exemple.

$$n + 34 \sim n$$

$$\frac{n^2 + e^n}{n \ln(n) + \sqrt{n}} \sim \frac{e^n}{n \ln(n)}$$

$$n! \sim \left(\frac{n}{e}\right) \sqrt{2\pi n}$$

Remarque 5.

- Rien n'est équivalent à 0.
- On ne peut pas ajouter les équivalences entre elles :

$$n + 1 \sim n \ et - n + 1 \sim -n$$

Mais on n'a pas $2 \sim 0$

— On ne peut pas composer les équivalences entre elles :

$$n+1 \sim n$$

Mais on n'a pas $e^{n+1} \sim e^n$
 $car \lim_{n \to +\infty} \frac{e^{n+1}}{e^n} = e \neq 1$

Théorème 11.

Si,
$$a_n \sim b_n$$
 et $c_n \sim d_n$,
alors, $a_n c_n \sim b_n d_n$

Troisième partie

Théorie d'intégration au sens de Riemann

9 Intégration des fonctions constantes par morceaux

Soit I = [a, b] un intervalle compact (i.e. fermé borné) de \mathbb{R} .

Définition 16. Une subdivision de I est la donnée d'un N+1-uplet $(t_0, t_1, ..., t_N)$ tel que : $a = t_0 < t_1 < ... < t_{N-1} < t_N = b$

Définition 17. Une fonction $g: I \to \mathbb{R}$ est dite constante par morceaux lorsqu'il existe une subdivision de I en $(t_0, t_1, ..., t_N)$ adaptée à g telle que :

$$\forall i \in [0, N-1], \exists k \in \mathbb{R}, g_{|[t_i, t_{i+1}]}(x) = g_i(x) = k$$

Remarque 6. Dès qu'il y a une subdivision adaptée à g, on a la certitude que g admet plusieurs subdivisions adaptées.

Définition 18. Si g est une fonction constante par morceaux dans I, la quantité $\sum g_i \cdot (t_{i+1} - t_i)$ est notée :

$$\int_{a}^{b} g(x) dx$$

Preuve de la consistence de la définition. On doit s'assurer que $\sum g_i \cdot (t_{i+1} - t_i)$ ne dépende pas de la subdivision choisie.

On raisonne alors par récurrence sur N.

Soit $n \in \mathbb{N}$.

On souhaite montrer $\mathcal{P}(n)$ vraie :

 $\mathcal{P}(n)$: S'il existe une subdivision de I en n intervalles, alors, $\sum_{i=0}^{n-1} g_i \cdot (t_{i+1} - t_i)$ ne dépend pas de l'intervalle choisi de la subdivision.

Pour n = 1,

On a $t_0 = a$ et $t_1 = b$,

Par conséquent la fonction *g* est constante sur [*a*, *b*[,

Soit $k \in \mathbb{R}$ tel g(x) = k,

$$\sum_{i=0}^{0} g_i(a-b) = k(a-b)$$

Considérons une autre subdivision adaptée à g :

$$a = \tau_0 < \tau_1 < ... < \tau_p = b$$

$$\begin{split} \sum_{i=0}^{p-1} g_{|[\tau_i,\tau_{i+1}[} \cdot (\tau_{i+1} - \tau_i) &= \sum_{i=0}^{p-1} k \cdot (\tau_{i+1} - \tau_i) \\ &= k \cdot \sum_{i=0}^{p-1} (\tau_{i+1} - \tau_i) \\ &= k \cdot (\tau_p - \tau_0) \text{ la somme \'etant t\'elescopique} \\ &= k \cdot (b - a) \end{split}$$

 $\mathcal{P}(1)$ est donc vraie.

Supposons maintenant, pour un N fixé, la propriété $\mathcal{P}(N-1)$ vraie. On considère une subdivision adaptée à g:

$$(a = t_0 < t_1 < ... < t_{N-1} < t_N = b)$$

Soit $(a=\tau_0<\tau_1<...<\tau_{N-1}<\tau_N=b)$, une autre subdivision adaptée à g. Il existe un indice $0\le i_0\le p-1$ tel que : $\tau_{i_0}\le t_{N-1}<\tau_{i_0+1}$

La fonction $g_{|[a,t_{N-1}]}$ étant constante par morceaux, les subdivision $(a=t_0 < t_1 < ... < t_{N-1})$ et $(a=\tau_0 < \tau_1 < ... < \tau_{i_0} < t_{N-1})$ ou $(a=\tau_0 < \tau_1 < ... < \tau_{i_0} = t_{N-1})$ sont adaptées.

La fonction $g_{|[t_{N-1},t_N]}$ étant constante par morceaux, les subdivision $(t_{N-1} < t_N)$ et $(t_{N-1} < \tau_{i_0} < ... < \tau_p = b)$ ou $(t_{N-1} < \tau_{i_0} = \tau_p = b)$ sont adaptées.

On a ainsi,

$$\begin{split} &\sum_{i=0}^{n-1} g_{|[t_i,t_{i+1}[} \cdot (t_{i+1} - t_i) \\ &= \left(\sum_{i=0}^{n-1} g_{|[t_i,t_{i+1}[} \cdot (t_{i+1} - t_i) \right) + \left(g_{|[t_{n-1},t_n[} \cdot (t_n - t_{n-1}) \right) \end{split}$$

Où le premier terme découle de l'hypothèse de récurrence tandis que le second découle de l'initialisation

$$= \left(\sum_{i=0}^{i_0-1} g_{|[\tau_i,\tau_{i+1}[} \cdot (\tau_{i+1} - \tau_i))\right) + \left(g_{|[\tau_{i_0},t_{n-1}[} \cdot (t_{n-1} - \tau_{i_0}))\right) + \left(g_{|[t_{n-1},\tau_{i_0+1}[} \cdot (\tau_{i_0+1} - t_{n-1}))\right) + \left(\sum_{i=i_0+1}^{p-1} g_{|[\tau_{i_0},\tau_{i_0+1}[} \cdot (\tau_{i_0+1} - \tau_{i_0}))\right) + \left(\sum_{i=i_0+1}^{p-1} g_{|[\tau_{i_0},\tau_{i_0+1}[} \cdot (\tau_{i_0+1} - \tau_{i_0})]\right) + \left(\sum_{i=i_0+1}^{p-1} g_{|[\tau_{i_0},\tau_{i_0+1}[} \cdot (\tau_{i_0+1} - \tau_{i_0})]\right) + \left(\sum_{i=i_0+1}^{p-1} g_{$$

Le second terme découlant du fait que g est constante sur $[\tau_{i_0}, \tau_{i_0+1}]$

$$= \sum_{i=0}^{p-1} g_{|[\tau_i,\tau_{i+1}[} \cdot (\tau_{i+1} - \tau_i)$$

 $\mathcal{P}(N)$ est donc vraie.

Par récurrence, $\mathcal{P}(n)$ est vraie pour tout entier n non nul, la quantité $\int_a^b g(x) dx$ est donc bien définie.

Théorème 12. *Soient f et g, deux fonctions constantes par morceaux et soit* $\alpha \in \mathbb{R}$ *, la fonction* α *f* + *g est alors constante par morceaux, et :*

$$\int_{a}^{b} \alpha f + g = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

L'opérateur intégral est donc un opérateur linéaire.

Démonstration. Soient $\{a = t_0 < t_1 < ... < t_n = b\}$ et $\{autresubdivision\}$, deux subdivisions adaptées respectivement à f et g.

On considère la subdivision suivante :

$${a = T_0 < T_1 < ... < T - n}$$

obtenue en superposant les deux subdivisions précédentes.

Cette subdivision est alors adaptée à la fois à f et à g.

 $\forall i \in [0, n[, f_{|[T_i, T_{i+1}]}] \text{ et } g_{|[T_i, T_{i+1}]} \text{ sont constantes}$

 αf + g est donc constant par morceaux sur [a, b].

$$\int_{a}^{b} \alpha f + g = \sum_{i} (\alpha f + g)_{|[T_{i}, T_{i+1}[} \cdot (T_{i+1} - T_{i})$$

$$= \alpha \sum_{i} (f_{[T_{i}, T_{i+1}[} + g_{|[T_{i}, T_{i+1}[}) \cdot (T_{i+1} - T_{i}))$$

$$= \alpha \sum_{i} f_{|[T_{i}, T_{i+1}[} \cdot (T_{i+1} - T_{i}) + g_{|[T_{i}, T_{i+1}[} \cdot (T_{i+1} - T_{i}))$$

$$= \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

10 Fonctions Riemann-intégrables

Notation. Soit f, une fonction sur[a,b] à valeurs $dans \mathbb{R}$. Soient, de plus, $\mathscr{C}^+(f) = \{\Phi : [a,b] \to \mathbb{R}$, constante par morceaux $| \forall x \in [a,b], f(x) \leq \Phi(x) \}$ et, $\mathscr{C}^-(f) = \{\Phi : [a,b] \to \mathbb{R}$, constante par morceaux $| \forall x \in [a,b], f(x) \geq \Phi(x) \}$

Définition 19. f est Riemann-intégrable si et seulement si :

1. $\mathscr{C}^+(f)$ et $\mathscr{C}^-(f)$ sont non vides.

2.
$$\sup_{a} \int_{a}^{b} \Phi^{-} = \inf_{a} \int_{a}^{b} \Phi^{+}$$

 $Avec \Phi^{-} \in \mathcal{C}^{-}(f) \ et \Phi^{+} \in \mathcal{C}^{+}(f)$

Quand elle est définie, on note cette grandeur $\int_a^b f$

Exemple (de fonctions non Riemann-intégrables).

$$\begin{split} \mathbb{I}_{\mathbb{Q}} : [0,1] &\to \{0,1\} \\ : x &\mapsto \left\{ \begin{array}{l} 1 \ si \ x \in \mathbb{Q} \\ 0 \ si \ x \notin \mathbb{Q} \end{array} \right. \end{split}$$

$$\Phi \in \mathscr{C}^-(\mathbb{1}_{\mathbb{O}})$$

Démonstration.

On montre maintenant l'autre implication.

Soit $\varepsilon > 0$,

Soient $\Phi^+ \in \mathscr{C}^+$ et $\Phi^- \in \mathscr{C}^-$ telles que

$$\int_{a}^{b} \Phi^{+} - \Phi^{-} \leq \varepsilon$$

$$\forall \Phi \in \mathscr{C}^-(f),$$

$$\Phi \le f \le \Phi^+$$

Donc, $\int \Phi \le \int \Phi^+$ L'ensemble $\{\int \Phi : \Phi \in \mathscr{C}^-(f)\}$ est une partie majorée de \mathbb{R} . Cet ensemble admet donc une borne supérieure :

$$B = \sup\{ \int \Phi : \Phi \in \mathscr{C}^{-}(f) \}$$

De la même manière,

 $\forall \Phi \in \mathcal{C}^+(f)$,

 $\int \Phi \ge \int \Phi^-$ L'ensemble $\{\int \Phi : \Phi \in \mathscr{C}^+(f)\}\$ est une partie minorée de \mathbb{R} .

Cet ensemble admet donc une borne inférieure :

$$b = \inf\{ \int \Phi : \Phi \in \mathscr{C}^+(f) \}$$

Comme $\int \Phi^+ \ge B$ et $\int \Phi^- \le b$ On a : $\int \Phi^+ \int \Phi^- = B - b$

D'où: $B - b \le \int \Phi^+ - \Phi^- \le \varepsilon$

Cette assertion étant valable pour tout $\varepsilon > 0$, on a b = B. f est donc Riemann-intégrable.

Proposition 4. L'intégrale de Riemann :

- *est positive* : $f \ge 0 \Rightarrow \int f \ge 0$
- est linéaire : $\forall \alpha \in K$, $\int \alpha f + g = \alpha \int f + \int g$
- $v\'{e}rifie | \int f | \leq \int |f|$
- vérifie la relation de Chasle.

Théorème 13. Toute fonction continue sur l'intervalle [a, b] est Riemann-intégrable.

Rappel 1. f est continue en $x \in [a, b]$ si et seulement si

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Définition 20. f est continue sur [a, b]

$$\forall x \in [a, b], \ \forall \varepsilon > 0, \ \exists \delta > 0, \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Lemme 1. Toute fonction continue sur un compact [a, b] est uniformémeent continue sur [a, b].

Définition 21.

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in [a, b], \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Démonstration. Ce lemme est démontré par l'absurde.

$$\exists > 0, \ \forall \delta > 0, \ \exists x, y \in [a, b],$$

 $|x - y| < \delta \text{ et } |f(x) - f(y)| > \varepsilon$

Prenons un ε fixé. Soit $n \in \mathbb{N}^*$, on pose $\delta = \frac{1}{n}$, puis, $x_n \in [a, b]$ et $y_n \in [a, b]$ tels que

puls, $x_n \in [a, b]$ et $y_n \in [a, b]$ tels qu $|x_n - y_n| < \frac{1}{n}$ et $|f(x_n) - f(y_n)| > \varepsilon$

 $\forall n \in \mathbb{N}, x_n \in [a, b],$

La suite (x_n) est bornée,

donc, d'après le théorème de Bolzano-Weirstrass, il existe une suite extraite $(x_{\varphi(n)})$ qui converge vers $x_{\infty} = [a, b]$.

$$\begin{aligned} |y_{\varphi(n)-x_{\infty}}| &= |y_{\varphi(n)} - x_{\varphi(n)} + x_{\varphi}(n) - x_{\infty}| \\ &= |y_{\varphi(n)} - x_{\varphi(n)}| + |x_{\varphi}(n) - x_{\infty}| \\ &= \frac{1}{\varphi(n)} + |x_{\varphi}(n) - x_{\infty}| \end{aligned}$$

$$\begin{array}{c} \text{Comme} \lim_{n \to +\infty} \frac{1}{\varphi(n)} = 0 \\ \text{et} \lim_{n \to +\infty} |x_{\varphi(n) - x_{\infty}}| = 0 \\ \text{on a} \lim_{n \to +\infty} y_{\varphi(n)} = x_{\infty} \end{array}$$

Mais f est continue en x_{∞} ,

Donc
$$\lim_{n \to +\infty} f(y_{\varphi(n)} = f(x_{\infty}))$$

Donc
$$\lim_{n \to +\infty} f(y_{\varphi(n)} = f(x_{\infty}))$$

donc $\lim_{n \to +\infty} |f(y_{\varphi(n)}) - f(x_{\infty})| = 0$
donc $\lim_{n \to +\infty} |f(y_{\varphi(n)}) - f(x_{\varphi(n)})| = 0$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ n \ge N \Rightarrow |f(y_{\varphi(n)}) - f(x_{\varphi(n)})| < \varepsilon$$

Théorème 14. *Toute fonction continue sur* [a, b] *est Riemann-intégrable.*

Démonstration. Soit $\varepsilon > 0$,

Comme f est uniformément continue sur [a, b],

$$\exists \delta > 0, \; |x-y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \frac{\varepsilon}{b-a}$$

Soit $N\in\mathbb{N}$ tel que $\frac{b-a}{N}=\delta$ Considérons la subdivision suivante :

Représentation d'une portion de la subdivision :

On pose les deux fonctions suivantes :

$$\Phi^{+}_{|[t_{k}, t_{k+1}[} = \sup(f(x))$$

$$\Phi^{-}_{|[t_{k}, t_{k+1}[} = \inf(f(x))$$

Ainsi,

$$\int_{t_k}^{t_{k+1}} |\Phi^+ - \Phi^-| \le \frac{\varepsilon}{b - a}$$

D'où,

$$\int_a^b |\Phi^+ - \Phi^-| \leq \varepsilon$$

11 Propriétés des fonctions Riemann-intégrables

Théorème 15. Soit f, une fonction Riemann-intégrable sur [a,b], Alors, pour tout réel α , la fonction qui à t associe $\int_{\alpha}^{t} f$ est continue.

Démonstration. Soit f, une fonction Riemann-intégrable sur [a,b], $\forall \alpha \in \mathbb{R}$,

$$\varphi: [a,b] \to \mathbb{R}$$
$$t \mapsto \int_{\alpha}^{t} f$$

Soit $t_0 \in [a, b]$,

On souhaite montrer que φ est continue. i.e. : $\forall \varepsilon > 0, \ \exists \delta > 0,$

$$|t - t_0| < \delta \Rightarrow |\varphi(t) - \varphi(t_0)| < \varepsilon$$

Autrement dit:

$$|t - t_0| < \delta \Rightarrow \left| \int_{\alpha}^{t} f - \int_{\alpha}^{t_0} f \right| < \varepsilon$$

Soit $\varepsilon > 0$,

f étant Riemann-intégrable, il existe deux fonctions Φ^- et Φ^+ constantes par morceaux telles que $\Phi^- \le f \le \Phi^+$. f est donc bornée et :

$$\exists M > 0 \ / \ \forall x \in [a, b], \ f(x) < M$$

On pose alors $\delta = \frac{\varepsilon}{M}$, ainsi, $\forall t \in [a, b], |t - t_0| < \delta \Rightarrow$

$$\left| \int_{\alpha}^{t} f - \int_{\alpha}^{t_{0}} f \right| = \left| \int_{t_{0}}^{t} f \right|$$

$$\leq \left| \int_{t_{0}}^{t} M \right|$$

$$\leq M |t - t_{0}|$$

$$\leq \varepsilon$$

Théorème 16. Si f est une fonction continue sur [a, b],

Alors la fonction qui à t associe $\int_{\alpha}^{t} f$ est dérivable et sa dérivée est f. (i.e. $\int_{\alpha}^{t} f$ est une primitive de f).

Théorème 17 (théorème fondammental du calcul intégral). *Soit f*, *une fonction Riemann-intégrable sur* [a,b]. *Si f admet une primitive F sur* [a,b], *alors*,

$$\int_{a}^{b} f = F(b) - F(a)$$

Définition 22 (Somme de Riemann). *Soit* f, *une fonction définie sur* [a,b], *Soit* $\{a = t_0 < t_1 < ... < t_n = b\}$, *une subdivision de* [a,b]. *Soit* $\{c_i \in [t_i,t_{i+1}] \mid 0 \le i < n\}$.

On appelle somme de Riemann associée, le nombre $R(f) = \sum_{i=0}^{n-1} f(c_i)(t_{i+1} - t_i)$

Théorème 18. Si f est Riemann-intégrable sur [a, b], alors, $\lim_{n \to +\infty} R_n(f) = \int_a^b f(t) dt$

Intégration sur un intervalle quelconque

Définition 23. f, est localement intégrable sir $I \subset \mathbb{R}$ lorsque pour tout segment $[c,d] \subset I$, f est Riemann intégrable sur[c,d]

Définition 24. *Soit* $f : [a, b[\rightarrow \mathbb{R}, une fonction localement intégrable.$ L'intégrale impropre $\int_a^b f$ est convergente lorsque $\int_a^X f$ admet une limite finie quand X tend vers b.

Exemple. On cherche à déterminer $\int_0^{+\infty} \lambda e^{-\lambda t} dt$

$$\int_0^X \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_0^X = -e^{-\lambda X} + 1$$
$$\lim_{X \to +\infty} -e^{-\lambda X} + 1 = 1$$

Théorème 19. Soit $f:[a,b[\to\mathbb{R}^+]$, une fonction <u>positive</u> localement intégrable, alors, $\int_a^b f$ est convergente si et seulement si $\exists M \in \mathbb{R}, \ \forall c \geq a, \ \int_a^c f \leq M$

Heuristique. On pose
$$c \mapsto \int_a^c f$$
 est convergente et majorée.

Corollaire 1. Soient f et g, deux fonctions positives telles que $f \le g$, alors la convergence de $\int_a^b g$ implique la convergence de $\int_a^b f$.

Théorème 20. Si $\int_a^b |f|$ converge, alors $\int_a^b f$ converge. On dit alors que f est absolument convergente.

Contre exemple.

 $\begin{array}{l} \int_0^{+\infty} \frac{\sin(t)}{t} dt \ converge \ tand is \ que \\ \int_0^{+\infty} |\frac{\sin(t)}{t}| dt \ diverge. \end{array}$

— En 0, il n'y a pas de problème car $\lim_{t\to +\infty} \frac{\sin(t)}{t} = 0$

 $f:]0, +\infty[\to \mathbb{R}$ et la fonction $\lim_{t \to \infty} \frac{\sin(t)}{t}$ est prolongeable par continuité en 0 en posant f(0) = 0.

on integre par parties $\int_1^X \frac{\sin(t)}{t} dt$ en posant : $u = \frac{1}{t}$, $u' = -\frac{1}{t^2}$ et $v = -\cos(t)$, $v' = \sin(t)$:

$$\int_{1}^{X} \frac{\sin(t)}{t} dt = \left[-\frac{\cos(t)}{t} \right]_{1}^{X} - \int_{1}^{X} \frac{\cos(t)}{t^{2}} dt$$

 $- \int_1^X |\frac{\cos(t)}{t^2}| \, dt \leq \int_1^X \frac{1}{t^2} \, dt$

Le second membre étant convergent, on $a: \int_1^X \frac{\cos(t)}{t^2} dt$ converge. — $\frac{-1}{X} \le \frac{-\cos(X)}{X} \le \frac{1}{X}$, par conséquent :

$$\lim_{X \to +\infty} \left[\frac{-\cos(t)}{t} \right]_1^X = \cos(1)$$

— $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ étant convergente, montrons que $\int_0^{+\infty} |\frac{\sin(t)}{t}| dt$ diverge. Soit $N \ge 4$,

$$\begin{split} \int_{1}^{N} |\frac{\sin(t)}{t} dt &\geq \sum_{k=1}^{E(\frac{N-\frac{3\pi}{2}}{2})} \int_{k\pi+\frac{\pi}{4}}^{k\pi+\frac{3\pi}{4}} |\frac{\sin(t)}{t}| dt \\ &\geq \sum_{k=1}^{E(\frac{N-\frac{3\pi}{2}}{2})} \frac{\sqrt{2}}{2} \int_{k\pi+\frac{\pi}{4}}^{k\pi+\frac{3\pi}{4}} \frac{1}{t} dt \quad \lim N \to +\infty \sum_{k=1}^{E(\frac{N-\frac{3\pi}{2}}{2})} \frac{\sqrt{2}}{2} \int_{\pi+\frac{\pi}{4}}^{\pi+\frac{3\pi}{4}} \frac{1}{t} dt = +\infty \\ &\geq \sum_{k=1}^{E(\frac{N-\frac{3\pi}{2}}{2})} \frac{\sqrt{2}}{2} \int_{\pi+\frac{\pi}{4}}^{\pi+\frac{3\pi}{4}} \frac{1}{t} dt \end{split}$$

Théorème 21. Si $\int_a^b g$ converge et si $|f| \sim_b g$, (ou si $|f| =_b o(g)$) alors $\int_a^b |f|$ converge.

$$\begin{split} &D\acute{e}monstration. \ |f| \sim_b g \Rightarrow \lim_{X \to b} \frac{|f|}{g} = 1 \\ &|f| =_b o(g) \Rightarrow \lim_{X \to b} \frac{|f|}{g} = 0. \end{split}$$