Relational Operators

COURSE 8: Databases

Relational model

Relational model

• Codd rules 1985 → Is DBMS relational? If yes, to what degree?

Relational Integrity constraints

RELATIONS

OPERATORS

Relational model

- Database = collection of RELATIONS
 - relation in relational model ≠ relationship in ERD.
 - relation in relation model < -- > table with lines and columns
- Relation Schema: A relation schema represents the name of the relation with its attributes.

Attribute domain – Each attribute has some pre-defined values.

Relational Integrity constraints

RELATIONS

OPERATORS

- Relational schema $R(A_1, A_2, ..., A_n)$
- $R \subset D_1 \times D_2 \times \cdots \times D_n$, D_i domain

Example

Participant(participant_id, last_name, first_name)

• A1 - - participant_id D1 - - integer size 6

• A2 - - last_name D2 - - string, length 20

• A3 - - first name D3 - - string, length 20

Relational Integrity constraints

RELATIONS

OPERATORS

- Domain constraints
 - "the value of each attribute must be unique", specifies data types: integers, real numbers, characters, Booleans; variable length for strings, numbers etc.
- Key constraint
 - Unique + not null -- PK
- Referential integrity constraints
 - the value of a FK is null or it corresponds to the value of a PK.

Relational Integrity constraints

RELATIONS

OPERATORS

• UNION, INTERSECT, PRODUCT, DIFFERENCE

- PROJECT
- SELECT
- JOIN
- DIVISION

Relational operators

Relational algebra

Relational algebra

- Operands → relations (tables)
- Operators → operate on a relation/combine two relations
 and obtain as a result a new relation
 - → compositional

PROJECT, SELECT, DIFFERENCE, PRODUCT, UNION Derived operators: JOIN, DIVISION, INTERSECT

Project

- Unary operator
- Notations: PROJECT(R, X) or Π_X (R)
 - R is a relation; X is a set of attributes of R

The result is a relation with a subset of the attributes X.

• Eliminating attributes from R may lead to duplicate rows. Hence after eliminating attributes, project also eliminates duplicate lines.

PROJECT(R, X) $\Pi_X(R)$

PROJECT(R, X) $\Pi_X(R)$

SQL

select distinct last_name, first_name
from employees;

select last_name, first_name from employees group by last_name, first_name;

Usually needs a temporary table. Optimizations use indexes [1].

Relational algebra properties Π_X (R)

Rule 1: Project composition:

$$\Pi_{\{A_1,\ldots,A_n\}}\left(\Pi_{\{B_1,\ldots,B_m\}}(R)\right)=\Pi_{\{A_1,\ldots,A_n\}}(R),$$

$$\{A_1, \dots, A_n\} \subseteq \{B_1, \dots, B_m\}$$

```
select last_name, first_name, salary
from
  (select last_name, first_name, salary, job_id
    from employees);
```

select last_name, first_name, salary
from employees;

Select

- Unary operator
- Notations: SELECT(R, C) or $\sigma_C(R)$
- R is a relation; C is a logical formula with attributes of R, constants and operators: AND, OR, NOT, <, =, >, <=, >=, !=

• The result is a relation with all the attributes of R but with only those lines satisfying C.

SELECT(R, C) $\sigma_C(R)$

 $\sigma_{\mathcal{C}}(R)$ R В В z2 **x**1 z1 x1 $\sigma_{B='y2'or\ C='z2'}(R)$ **z**2 x1 z2 x2 **z**2 **z**1 **z**1

SELECT(R, C) $\sigma_C(R)$

SQL

```
select * from employees
where last_name = 'King' or first_name = 'Steven';
```

Optimizations use indexes.

Relational algebra properties $\sigma_{\mathcal{C}}(R)$

Rule 2: Selection composition:

$$\sigma_{C_1}(\sigma_{C_2}(R)) = \sigma_{C_2}(\sigma_{C_1}(R)) = \sigma_{C_1 \wedge C_2}(R)$$

```
select job_id, job_title, min_salary, max_salary
from
    (select job_id, job_title, min_salary, max_salary
    from jobs
    where min_salary > 8000)
where min_salary < 10000;</pre>
```

select job_id, job_title, min_salary, max_salary from jobs where min_salary > 8000 and min_salary < 10000;

Relational algebra properties $\Pi_X(R)$ and $\sigma_C(R)$

Rule 3a: Selection and projection commute:

$$\Pi_{\{A_1,\ldots,A_n\}}(\sigma_C(R)) = \sigma_C(\Pi_{\{A_1,\ldots,A_n\}}(R)), \quad C \text{ operands are in } \{A_1,\ldots,A_n\}$$

```
select job_title, min_salary
from
  (select job_id, job_title, min_salary, max_salary
  from jobs
  where min_salary > 8000);
```

```
select job_title, min_salary
from
   (select job_title, min_salary
   from jobs)
where min_salary > 8000;
```

Relational algebra properties $\Pi_X(R)$ and $\sigma_C(R)$

Rule 3b: Selection and projection commute:

$$\Pi_{\{A_1,\ldots,A_n\}}(\sigma_C(R)) = \Pi_{\{A_1,\ldots,A_n,B_1,\ldots,B_m\}}(\sigma_C(\Pi_{\{A_1,\ldots,A_n,B_1,\ldots,B_m\}}(R))),$$
C operands are in $\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$

UNION

- Binary operator
- Notations: UNION(R, S) or $R \cup S$
- R and S relations; the result of union is the set of all tuples in R or S. -- union on set of tuples.

- R and S must have compatibles relational schemas, i.e., the same number of attributes and the same attributes types.
- $R \cup S = S \cup R$

UNION(R, S) $R \cup S$

R

Α	В	C
x1	y1	3
x1	y2	10
x2	y2	7

S

Е	F	G
x1	z1	1
x1	z2	4
x1	y2	10
x2	z1	7

union, remove duplicates $R \cup S$

Α	В	С
x1	у1	3
x1	y2	10
x2	y2	7
x1	z1	1
x1	z2	4
x2	z1	7

UNION(R, S) $R \cup S$

SQL

select employee_id, start_date from job_history
union /*sorts the result*/
select employee_id, hire_date from employees;

select employee_id, start_date from job_history
union all /* keeps duplicates */
select employee_id, hire_date from employees;

Optimizations: AVOID union, use temporary tables, see QueryOptimization.sql

UNION(R, S) $R \cup S$

SQL

```
select id, uuid, random_number from no_index union select id, uuid, random_number from no_index;

/* ~210sec
```

```
select id, uuid, random_number
from no_index
union all
select id, uuid, random_number
from no_index;

/* ~15sec
```

Optimizations: AVOID union, use temporary tables.

Relational algebra properties UNION and $\sigma_{\mathcal{C}}(R)$

Rule 4: Selection and union commute:

$$\sigma_C(R_1 \cup R_2) = \sigma_C(R_1) \cup \sigma_C(R_1)$$

select employee_id, start_date from job_history where employee_id > 110 union all select employee_id, hire_date from employees where employee_id > 110;

```
select employee_id, start_date from (
select employee_id, start_date from job_history
union all
select employee_id, hire_date from employees
)
where employee_id > 110; /*see exec. plans*/
```

Relational algebra properties UNION and Π_X (R)

Rule 5: Projection and union commute:

$$\Pi_{\{A_1,\ldots,A_n\}}(R_1 \cup R_2) = \Pi_{\{A_1,\ldots,A_n\}}(R_1) \cup \Pi_{\{A_1,\ldots,A_n\}}(R_2)$$

```
select start_date from (
select employee_id, start_date from job_history
union all
select employee_id, hire_date from employees
);
```

select start_date from job_history union all select hire_date from employees

DIFFERENCE

- Binary operator
- Notations: DIFFERENCE(R, S), MINUS(R,S) or R S
- R and S relations; the result of difference is the set of all tuples in R that are not found in S.
 - -- difference on set of tuples.
- R and S must have compatibles relational schemas, i.e., the same number of attributes and the same attributes types.

DIFFERENCE(R, S) R - S

DIFFERENCE(R, S) R-S

SQL

select department_id from departments minus select department_id from employees; select department_id
from departments d
where d.department_id not in
(select department_id
from employees
where department_id is not null);

Optimizations: *not in* or *not exists*.

Relational algebra properties UNION and R-S

Rule 6: Selection and difference commute:

$$\sigma_C(R_1 - R_2) = \sigma_C(R_1) - \sigma_C(R_1)$$

```
select department_id
from departments
where department_id > 120
minus
select department_id
from employees
where department_id > 120
```

```
select * from (
   select department_id
   from departments
     minus
   select department_id
   from employees
)
where department_id > 120; /*see exec. plans*/
```

INTERSECT

- Binary operator
- Notations: INTERSECT(R, S) or $R \cap S$
- R and S relations; the result of intersection is the set of all tuples that are both in R and in S. --- intersection on set of tuples.
- R and S must have compatibles relational schemas, i.e., the same number of attributes and the same attributes types.
- $R \cap S = S \cap R$
- $R \cap S = R (R S) = S (S R)$

INTERSECT(R, S) $R \cap S$

Α	В	С
x1	y1	3
x1	y2	10
x2	y1	7

S

Е	F	G
x1	z1	1
x1	z2	4
x1	y2	10
x2	y1	7

intersect

$R \cup S$

Α	В	С
x1	y2	10
x2	y1	7

INTERSECT(R, S) $R \cap S$

SQL

select department_id
from employees
intersect
select department_id
from job_history;

Optimizations: in or exists.

DIVISION

- Binary operator
- Notations: DIVISION(R, S) or $R \div S$
- R and S relations; the result of difference is the set of all tuples to which any of the tuples in S can be added to obtain a tuple in R
- $R \div S = \{t^{n-m} | \forall s \in S, (t,s) \in R\}$

 If R has n attributes and S has m < n attribute the result of DIVISION has n – m attributes.

DIVISION(R, S) $R \div S$

S t1 t1 x1 q1 q1 y1 $R \div S$ t2 q2 q2 t2 x1 y1 t1 x2 y2 q1 q2 t2 **x**3 y3 t1 q1 x4 y4 q2 t2 x4 y4

DIVISION(R, S) $R \div S$

x1, y1 are "associated" with all tuples in S (R is the "associative" table):

R

X	Υ	Q	Т
x1	у1	q1	t1
x1	у1	q2	t2
x2	y2	q1	t1
x3	уЗ	q2	t2
x4	y4	q1	t1
x4	y4	q2	t2

S

Q	Т
q1	t1
q2	t2

$$R \div S$$

_		_
1)	•	('
ĸ		
<i>1</i>	•	

Q	Т		
x1	у1	q1	t1
x4	y4		

$$R \div S = \{t^{n-m} | \forall s \in S, (t,s) \in R\}$$
$$t = (x1, y1); s = (q1, t1) (x1, y1, q1, t1) \in R$$

DIVISION(R, S) $R \div S$

x1, y1 are associated with all tuples in S (R is the "associative" table):

 $R \div S$

R

X	Υ	Q	Т
x1	у1	q1	t1
x1	у1	q2	t2
x2	y2	q1	t1
x3	уЗ	q2	t2
x4	y4	q1	t1
x4	y4	q2	t2

S

Q	Т
q1	t1
q2	t2

 $R \div S$

$$R \div S = \{t^{n-m} | \forall s \in S, (t,s) \in R\}$$
$$t = (x1, y1); s = (q2, t2) (x1, y1, q2, t2) \in R$$

DIVISION(R, S) $R \div S$

x1, y1 are "associated" with all tuples in S (R is the "associative" table):

R

X	Υ	Q	Т
x1	у1	q1	t1
x1	у1	q2	t2
x2	y2	q1	t1
x3	уЗ	q2	t2
x4	y4	q1	t1
x4	y4	q2	t2

S

Q	Т
q1	t1
q2	t2

 $R \div S$

Q	Т		
x1	у1	q2	t2
x4	y4		

$$R \div S = \{t^{n-m} | \forall s \in S, (t,s) \in R\}$$

 $\nexists s \ such \ as \ (t,s) \notin R$

DIVISION(R, S) $R \div S$

(x2, y2) is not "associated" with all tuples in S:

R

X	Υ	Q	Т
x1	y1	q1	t1
x1	y1	q2	t2
x2	y2	q1	t1
x3	уЗ	q2	t2
x4	y4	q1	t1
x4	y4	q2	t2

S

Q	Т
q1	t1
q2	t2

 $R \div S$

$$R \div S$$

Q	Т		
x1	у1		
x4	y4		
×2	y2	q2	t2

DIVISION(R, S) SQL NOT EXISTS/COUNT

Code for employees working on all projects with a budget < 10000

R

EMPLOYEE_ID	PROJECT_ID
125	1
136	2
125	2
200	2
148	1
148	2
200	3
148	3

S

PROJECT_ID
2
3

 $R \div S$

EMPLOYEE_ID
200
148

S = PROJECT(SELECT(PROJECTS, budget < 10000), project_id)
R = PROJECT(WORKS_ON, project_id, employee_id)

DIVISION(R, S) SQL NOT EXISTS/COUNT

Code for customers buying tickets to all comedies < 10000

R

CUSTOMER_ID	MOVIE_ID
100	10
101	7
101	10
100	5
102	1
101	2
102	5
100	7
102	10

S

MOVIE_ID
5
7
10

 $R \div S$

	_	
v	<u>.</u>	
/\	•	
_		_

	CUSTOMER_ID
l	

S = PROJECT(SELECT(MOVIES, genre = comedies), movie_id)
R = PROJECT(BUY, customer_id, movie_id)

PRODUCT

- Binary operator
- Notations: PRODUCT(R, S) or $R \times S$
- R and S relations; the result of difference is the set of all tuples with m + n attributes, first m attributes form a tuple of R, last n attributes form a tuple of S
- $R \times S = \{(t,s)|t \in R, s \in S\}$

PRODUCT(R, S) $R \times S$

R

X	Υ	Q
x1	у1	q1
x2	у2	q2
х3	уЗ	q3
x4	y4	q4

S

U	>
u1	v1
u2	v2

 $R \times S$

 $R \times S$

X	Υ	Q	U	V
x1	у1	q1	u1	v1
x2	y2	q2	u1	v1
хЗ	уЗ	q3	u1	v1
x4	y4	q4	u1	v1
x1	у1	q1	u2	v2
x2	y2	q2	u2	v2
хЗ	уЗ	q3	u2	v2
x4	y4	q4	u2	v2

PRODUCT(R, S) $R \times S$

SQL

```
select e.*, d.*
from employees e, departments d;
select e.*, d.*
from employees e cross join departments d;
```

JOIN

- Binary operator
- Notations: JOIN(R, S)

Natural Join:

$$JOIN(R,S) = \Pi_{\{i_1,\dots,i_m\}} (\sigma_{R.A1=S.A1 \ \land \dots R.An=S.An}(R \times S))$$

A1, ... An are the intersection of attributes of R and S, i1, ... im is the union of attributes of R and S minus A1, ... An.

JOIN

- Binary operator
- Notations: JOIN(R, S)

Semi Join:

SEMIJOIN
$$(R,S) = \Pi_{\{r_1,\ldots,r_m\}}(\text{JOIN}(R,S))$$

r1, ... rm is the union of attributes of R.

JOIN

- Binary operator
- Notations: JOIN(R, S)

Θ join:

$$\Theta$$
 - JOIN $(R, S, \sigma_{cond}) = \sigma_{cond}(R \times S)$

Relational algebra properties $\Pi_X(R)$ and $\sigma_C(R)$

Rule 6: JOIN/PRODUCT commute:

$$JOIN(R,S) = JOIN(S,R),$$

 $R \times S = S \times R$

select last_name, department_name
from employees e join departments d
 on (e.department_id = d.department_id);

select last_name, department_name
from departments d join employees e
 on (e.department_id = d.department_id)

Query execution

select p1.prod_name, p2.prod_name, p1.prod_min_price from products p1 join products p2 on p1.prod_min_price = p2.prod_min_price

check syntax, table names, view names, column names

relations + operators

JOIN(p1,p2)

select p1.prod_name, p2.prod_name, p1.min_price from products p1 join products p2 on p1.prod_min_price = p2.prod_min_price

relations + operators

$$JOIN(\prod_{name,minprice} p1, \prod_{name,minprice} p2)$$

NESTED-LOOPS

```
for each tuple t_r in r for each tuple t_s in s if join condition \theta for pair (t_r, t_s) = true result = result U (t_r, t_s); end end
```

- Optimizations:
 - Block nested loops: each block in s is loaded in memory once for each block on r.
 - Index nested loops: if an index is present on s, it can be used to search for tuples satisfying join condition.

MERGE-JOIN

```
sort R
sort S
r = R.first
s = S.first
while r <> nill and s <> nill
   if r.id > s.id
       s = next tuple in S
    else if r.id < s.id
       r = next tuple in R
   else
       result = result U(r,s)
    r' = next tuple in R
   while r'<>nill and r'.id = s.id
       result = result U (r',s)
   s' = next tuple in S
   while s'<>nill and r.id = s'.id
       result = result U(r,s')
    r = next tuple in R
   s = next tuple in S
```

HASH-JOIN

```
partition R based on hash(key) -> Rn_1,...,Rn_p partition S based on hash(key) -> Sn_1,...,Sn_p for each n_{key} build in-memory hash index for Rn_{key}-partition for each tuple t_s in Sn_{key}-partition probe t_s, add matching tuples
```


• Probabilistic data structure, check membership for a value in a set.

How it works: S, set of n values → const * n bits calculate hash(v) ∈ [1, const * n] set bit hash(v) to 1

Test $w \in S \rightarrow hash(w) = 1$?

Small probability of false positive.
 w1 ∈ S, w2 ∉ S hash(w1) = hash(w2)

• To reduce the probability of false positives, use k > 1 independent hash functions.

• How it works: S, set of n values \rightarrow const * n bits calculate h₁(v), h₂(v) ... h_k(v) \in [1, const * n] set bits h₁(v), h₂(v) ... h_k(v) to 1

Test $w \in S \rightarrow h_1(v) = 1$ and $h_2(v) = 1$... and $h_k(v) = 1$?

Probability of **false negative** = 0.

Probability of **false negative** = 0.

Probability of **false negative** = 0.

Probability of **false negative** = 0.

false positive. Value w: B[h1(w)] = 1 B[h2(w)] = 1 ... B[hk[w]] = 1

Each hash of w equals a hash of an element in the set

Probability of **false negative** = 0.

false positive. Value w: B[h1(w)] = 1 B[h2(w)] = 1 ... B[hk[w]] = 1

Each hash of w equals a hash of an element in the set

- Used only to add elements or the test membership.
- Once an element is added to the filter it cannot be removed. Why?

- If all bits are set to 1, the probability of false positives increases.
 More space

 more accuracy.
- More hash functions
 - Latency → more accuracy.

Bloom filters – independent hashing

• A family of hash functions $H = \{h: U \rightarrow [1..m]\}$ is k-independent if $\forall (x_1, x_2 ... x_k) \in U^k$ and $\forall (y_1, y_2 ... y_k) \in [1..m]^k$:

•
$$Pr_{h \in H} [h(x_1) = y_1 \land h(x_2) = y_2 ... \land h(x_k) = y_k] = \frac{1}{m^k}$$

- $h(x_1)$ uniformly distributed.
- $h(x_1)$, $h(x_2)$, ... $h(x_k)$ independent random variables.

- m size of array, n number of elements in S, k number of hash functions.
- Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \quad \text{or} \quad$$

$$P = \left(1 - e^{-\frac{kn}{m}}\right)^k$$

- m size of array, n number of elements in S, k number of hash functions.
 h1(w) != h1(v1)
- Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or }$$

 m size of array, n number of elements in S, k number of hash functions.

Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or } \begin{array}{c} \dots \\ h_1(w) != h_k(v1) \\ h_1(w) != h_1(v2) \end{array}$$

h₁(w) != h₁(v1)
h₁(w) != h₂(v1)
....
h₁(w) != h_k(v1)
h₁(w) != h₁(v2)
h₁(w) != h₂(v2)
...
h₁(w) != h_k(v2)
...
h₁(w) != h_k(vn)

 m size of array, n number of elements in S, k number of hash functions.

Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \quad \text{or} \quad$$

General optimization rules

General optimization rules

- Execute selections first
 - Reduce relation size (number of rows)
- Avoid cross-joins, use joins

First join to be executed is the one obtaining the smaller relation

Execute projections first

Estimating Query Cost

rule-based execution plans/optimization

cost-based execution plans

obsolite

IO-cost

CPU-cost

IO cost

CPU time

number of blocks transferred from storage - b

number of random I/O accesses - s

cost for processing a tuple

cost for processing an index entry

$$b * t_T + s * t_S$$

cost for processing comparison operators

cost for processing a function

Estimating cost

• Linear search

	COST	OBSERVATIONS
Linear search	b * t_T + t_S	Search for initial block Transfer r blocks
Linear search B-tree, Equality on key	$(h_i + 1) * (t_T + t_S)$	h _i height of the index, each operation requires a seek and a block transfer.
Linear search clustering B-tree, Equality on non-key	$h_i * (t_T + t_S) + b * tT + tS$	b blocks storing the specified search key are stored sequentially
Linear search secondary B-tree, Equality on non-key	$(h_i + n) * (t_T + t_S)$	n number of records fetched; each record may be on a different block.

Estimating cost - example

• Linear search

	COST	OBSERVATIONS
Linear search	b * t_T + t_S	Search for initial block Transfer r blocks
Linear search B-tree, Equality on key	$(h_i + 1) * (t_T + t_S)$	h _i height of the index, each operation requires a seek and a block transfer.
Linear search clustering B-tree, Equality on non-key	$h_i * (t_T + t_S) + b * tT + tS$	b blocks storing the specified search key are stored sequentially
Linear search secondary B-tree, Equality on non-key	$(h_i + n) * (t_T + t_S)$	n number of records fetched; each record may be on a different block.

• [1] https://dev.mysql.com/doc/refman/8.0/en/group-by-optimization.html

• [2] https://computing.derby.ac.uk/c/codds-twelve-rules/

- [3] https://antognini.ch/papers/BloomFilters20080620.pdf
- [4] https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/joins.html#GUID-5FCD34FE-ED04-4AB2-BC90-9752FED94F4F