Önnur laugardagsæfingin í eðlisfræði 2019-2020

Nafn:

Bekkur:

Fastar

Nafn	Tákn	Gildi			
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$			
Þyngdarhröðun við yfirborð jarðar	g	$9.82\mathrm{ms^{-2}}$			
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$			
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$			
Gasfastinn	R	$8,3145\mathrm{Jmol^{-1}K^{-1}}$			
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N m^2 C^{-2}}$			
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C^2 s^2 m^{-3} kg^{-1}}$			
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$			
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$			
Geisli sólarinnar	R_{\odot}	$6.96 \cdot 10^8 \mathrm{m}$			
Massi jarðarinnar	M_{\oplus}	$5.97 \cdot 10^{24} \mathrm{kg}$			
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$			
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$			

Svarblað

Krossar

Hver kross gildir 3 stig. Vinsamlegast skráið svörin ykkar við tilheyrandi krossi hér fyrir neðan:

K 1	K2	K 3	K 4	K 5	K 6	K7	K8	K 9	K10	K11	K12	K13	K14	K15
В	E	E	С	E	С	E	D	E	С	В	E	D	С	D

Krossar (45 stig)

K1. Eitt ljósár er skilgreint sem sú vegalengd sem ljósið ferðast á einu ári. Hvað er eitt ljósár langt?

(A) $3.43 \cdot 10^{14} \,\mathrm{m}$

(B) $9.46 \cdot 10^{15} \,\mathrm{m}$ (C) $2.94 \cdot 10^{16} \,\mathrm{m}$ (D) $4.39 \cdot 10^{17} \,\mathrm{m}$ (E) $7.53 \cdot 10^{18} \,\mathrm{m}$

Lausn: Höfum að vegalengdin, s, sem ljósið ferðast á einu ári er gefin með:

$$s = ct = (3,00 \cdot 10^8) \cdot (365 \cdot 24 \cdot 60^2) = 9,46 \cdot 10^{15} \,\mathrm{m}.$$

K2. Snæfríður stendur á lestarstöð og er að veifa frænku sinni, Ragnheiði, á sama tíma og lestin er að taka af stað úr kyrrstöðu með jafnri hröðun $0.25\,\mathrm{m/s^2}$. Hversu langur tími líður þar til að lestin hefur náð hámarkshraða sínum, 108 km/klst?

(A) $12 \,\mathrm{s}$ (B) $45 \,\mathrm{s}$ (C) $72 \,\mathrm{s}$ (D) $99 \,\mathrm{s}$ (E) $120 \,\mathrm{s}$

Lausn: Við höfum að:

$$v = at \implies t = \frac{v}{a} = \frac{\left(\frac{108}{3.6}\right)}{0.25} = 120 \,\mathrm{s}.$$

K3. Jörmunrekur stendur á vog og heldur á þungri eðlisfræðibók sem er kyrrstæð við tímann t=0 s. Við tímann t=1s byrjar hann að lyfta bókinni upp þannig að við tímann t=2s hefur hún færst upp um hálfan metra og er aftur kyrr. Hvert eftirfarandi grafa sýnir best hvað stóð á voginni sem fall af tíma?

Lausn: Vogin mælir þverkraftinn sem hún verður fyrir. Fyrstu og síðustu sekúnduna er allt kyrrt svo að $\Phi_0 = (M_J + m_b)g$ þar sem M_J er massi Jörmunreks og m_b er massi bókarinnar. Til þess að byrja að færa bókina þarf Jörmunrekur að beita krafti á bókina og til að láta hana stöðvast aftur þarf að beita krafti á bókina í stefnu niður. Látum a vera hröðun bókarinnar. Pá er a > 0 þegar bókinni er lyft upp og a < 0 þegar bókin stöðvast. Vogin les þá:

$$P_a = M_J g + m_b (a + g).$$

Ef a > 0 þá er $P_a > P_0$. En ef a < 0 er $P_a < P_0$. Því er ljóst að rétt svar er (E).

- K4. Vésteinn og Hálfdán sitja á löngum sleða sem stendur á núningslausum ís. Vésteinn situr vinstra meginn á sleðanum en Hálfdan situr hægra meginn. Hálfdan kastar bolta til Vésteins, sem grípur boltann. Hvað gerist við sleðann?
 - (A) Hann byrjar á að fara til vinstri en endar á því að vera kyrr.
 - (B) Hann byrjar á að fara til vinstri en endar á því að fara til hægri.
 - (C) Hann byrjar á að fara til hægri en endar á því að vera kyrr.
 - (D) Hann byrjar á að fara til hægri en endar á því að fara til vinstri.
 - (E) Hann er kyrr allan tímann.

Lausn: Látum M vera samanlagðan massa sleðans, Vésteins og Hálfdáns. Látum m vera massa boltans. Þegar Hálfdan kastar boltanum gildir samkvæmt skriðþungavarðveislu að:

$$(M+m)\cdot 0 = -mv + Mu \implies u = \frac{m}{M}v$$

í stefnuna til hægri. Hinsvegar þegar að Vésteinn grípur boltann þá gefur skriðþungavarðveisla aftur að hraði sleðans er 0 svo rétt svar er (C).

K5. Myndin hér til hægri sýnir fætur spýtukalls. Fæturnir eru einsleitir og jafn langir, af lengd L. Hann stendur þannig að fætur hans mynda hornið θ . Núningsstuðullinn milli jarðarinnar og fóta spýtukallsins er μ . Hvert er stærsta hornið, θ , þannig að spýtukallinn detti ekki niður í spíkat. [Ath. Munið eftir öllum kröftunum]

- (A) $\arcsin(2\mu)$
- (B) $2\arcsin\left(\frac{\mu}{2}\right)$
- (C) $2\arctan(\mu)$
- (D) $\arctan(2\mu)$
- (E) $2\arctan(2\mu)$

Lausn: Kraftarnir sem verka á spýtuna eru þyngdarkrafturinn, núningskrafturinn (til vinstri) og þverkrafturinn. Við höfum þá vægisjöfnuna:

$$0 = \tau_{\text{heild}} = \frac{1}{2} mgL \sin\left(\frac{\theta}{2}\right) + \mu mgL \cos\left(\frac{\theta}{2}\right) - mgL \sin\left(\frac{\theta}{2}\right)$$

sem gefur að:

$$\tan\!\left(\frac{\theta}{2}\right) = 2\mu \implies \theta = 2\arctan(2\mu).$$

K6. Bolta er sleppt úr hæð h yfir jörðu. Í hæð y < h er búið að koma fyrir planka sem hallar um 45° miðað við lárétt þannig að boltinn skoppar lárétt af plankanum. Finnið y þannig að boltinn lendi í sem mestri láréttri fjarlægð frá plankanum. Gera má ráð fyrir að áreksturinn sé fjaðrandi.

(A) $\frac{1}{10}h$ (B) $\frac{1}{5}h$ (C) $\frac{1}{2}h$ (D) $\frac{1}{\sqrt{2}}h$ (E) Boltinn lendir alltaf á sama stað óháð y.

Lausn: Hraði boltans þegar hann lendir á plankanum er fenginn með $v=\sqrt{2g(h-y)}$. Svo er:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} vt \\ \frac{1}{2}gt^2 \end{pmatrix}$$

Leysum tímann úr neðri jöfnunni, $t=\sqrt{\frac{2y}{g}}$, og stingum inn í efri og fáum $x=2\sqrt{y(h-y)}$. Við hámörkum síðan fallið $x(y)=2\sqrt{y(h-y)}$ með tilliti til y. Fáum:

$$\frac{dx}{dy} = \frac{h - 2y}{\sqrt{y(h - y)}} = 0 \implies y = \frac{1}{2}h.$$

K7. Kubbur með massa m liggur á núningslausu skábretti sem hallar um horn θ miðað við lárétt. Skábrettið hefur hröðun a til hægri sem er þannig að kubburinn helst kyrr miðað við skábrettið. Hver er þverkrafturinn á kubbinn?

(A) mg (B) $mg\sin\theta$ (C) $\frac{mg}{\sin\theta}$ (D) $mg\cos\theta$ (E) $\frac{mg}{\cos\theta}$

Lausn: Hér er flóknara að snúa hnitakerfinu! Höfum:

$$\begin{pmatrix} ma \\ 0 \end{pmatrix} = \begin{pmatrix} P\sin\theta \\ P\cos\theta - mg \end{pmatrix} \implies P = \frac{mg}{\cos\theta}.$$

K8. Íó er tungl Júpíters. Umferðartími tunglsins er 1,769 dagar og meðalgeisli sporbrautarinnar er 421 800 km. Látum M_J tákna massa Júpíters og m_J tákna massa Jarðarinnar. Hvert er hlutfallið M_J/m_J ?

(A) 51 (B) 94 (C) 141 (D) 318 (E) 637

Lausn: Samkvæmt þriðja lögmáli Keplers er:

$$\frac{a^3}{T^2} = \frac{GM_J}{4\pi^2} \implies M_J = \frac{4\pi^2 a^3}{GT^2} = 1.9 \cdot 10^{27} \,\mathrm{kg}$$

Massi jarðarinnar er gefinn á forsíðunni þannig að $\frac{M_J}{m_J}=318.$

K9. Tveir gormar hafa sama gormstuðul k og óstrekkt lengd þeirra er svo gott sem núll. Nú er teygt á þeim um lengd ℓ og tveir massar festir við gormana sem og veggur eins og sjá má á myndinni hér til hægri. Mössunum er sleppt úr kyrrstöðu á sama tíma. Látum a_v tákna stærðina á hröðun vinstri massans og a_h hægri massans. Hver eru gildi a_v og a_h á augnablikinu eftir að mössunum hefur verið sleppt?

- (A) $a_v = 2k\ell/m$ og $a_h = k\ell/m$.
- (B) $a_v = k\ell/m \text{ og } a_h = 2k\ell/m$
- (C) $a_v = k\ell/m \text{ og } a_h = k\ell/m$.
- (D) $a_v = 0 \text{ og } a_h = 2k\ell/m$.
- (E) $a_v = 0$ og $a_h = k\ell/m$.

Lausn: Fyrir vinstri massann höfum við: $ma_v = k\ell - k\ell = 0$ svo $a_v = 0$. Fyrir hægri massann höfum við: $ma_h = k\ell$ svo $a_h = \frac{k\ell}{m}$

- **K10.** Pláneta hefur einsleitan eðlismassa, ρ , geisla R og þyngdarhröðunin við yfirborð plánetunnar er g. Hver er lausnarhraðinn frá yfirborði plánetunnar?

- (A) $\frac{1}{2}\sqrt{gR}$ (B) \sqrt{gR} (C) $\sqrt{2gR}$ (D) $2\sqrt{gR}$ (E) $\sqrt{\frac{1}{2}gR}$

Lausn: Látum $M = \frac{4\pi}{3}\rho R^3$ vera massa plánetunnar. Fyrir hlut með massa m fæst þá:

$$\frac{1}{2}mv^2 - \frac{GMm}{R} = \frac{1}{2}mv_{\infty}^2 - \frac{GMm}{R_{\infty}} = 0$$

því $R_{\infty}=\infty$ og $v_{\infty}=0$. Þetta gefur að $v=\sqrt{\frac{2GM}{R}}$. Þyngdarlögmálið gefur síðan að $mg=\frac{GMm}{R^2}$ þannig $gR=\frac{GM}{R}$ og því $v=\sqrt{2gR}$.

K11. Fjórum ögnum, hver með hleðslu +q er komið fyrir á x-ásnum (samhverft um upphafspunktinn). Fimmtu hleðslunni, með hleðslu-Q, er komið fyrir á jákvæðum y-ásnum eins og sést á myndinni. Í hvaða stefnu er heildarkrafturinn sem verkar á fimmtu hleðsluna?

- (B) ↓ $(C) \rightarrow$
- $(D) \leftarrow$
- (E) Heildarkrafturinn er núll.

Lausn: Vegna samhverfu þá er heildarkrafturinn beint niður.

- **K12.** Loftmótstöðu sem verkar á bolta er gjarnan lýst með dragakrafti, F_d . Dragakrafturinn er háður eðlismassa loftsins, ρ , geisla boltans, R og hraða boltans, v. Hver af eftirfarandi stærðum hefur réttar einingar og gæti því hugsanlega verið jöfn dragakraftinum?
- (A) ρv (B) $\rho R v$ (C) $\rho R v^2$
- (D) $\rho R^2 v$
- (E) $\rho R^2 v^2$

Lausn: Beitum víddargreiningu. Setjum $F_D = \rho^{\alpha} R^{\beta} v^{\gamma}$ og ákvörðum α, β og γ . Nú er:

$$\left[F_{D}\right] = \frac{kgm}{s^{2}} = \left[\rho^{\alpha}R^{\beta}v^{\gamma}\right] = \left(\frac{kg}{m^{3}}\right)^{\alpha}\left(m\right)^{\beta}\left(\frac{m}{s}\right)^{\gamma}$$

því er ljóst að $\alpha=1,\ \gamma=2$ og því $\beta=2.$ Því er $F_D=\kappa\rho R^2v^2$ þar sem κ er fasti.

- K13. Lögmálið um svarthlutsgeislun segir að aflið, P, sem svarthlutur með yfirborðsflatarmál A geislar frá sér er háð hitastigi svarthlutarins, T, samkvæmt Stefan-Boltzman lögmálinu $P = \sigma A T^4$ þar sem $\sigma = 5,67 \cdot 10^{-8} \, \mathrm{Wm}^{-2} \mathrm{K}^{-4}$ er fasti. Því er spáð að eftir 5 milljarða ára muni sólin byrja að þenjast út þar til hún gleypir jörðina. Núna er hitastig sólarinnar 5778 K og geisli hennar $R_{\odot} = 6,96 \cdot 10^8 \, \mathrm{m}$. Því er spáð að hitastigið muni lækka niður í 5000 K. Hvert verður afl sólarinnar eftir þennsluna?
 - $\text{(A)} \quad 3.6 \cdot 10^{26} \, \text{W} \quad \text{(B)} \quad 9.4 \cdot 10^{27} \, \text{W} \quad \text{(C)} \quad 4.7 \cdot 10^{29} \, \text{W} \quad \text{(D)} \quad 1.0 \cdot 10^{31} \, \text{W} \quad \text{(E)} \quad 2.2 \cdot 10^{32} \, \text{W}$

Lausn: Höfum: $P = \sigma A T^4 = 4\pi \sigma R^2 T^4 = 1.0 \cdot 10^{31} \text{ W}.$

- **K14.** Hvert af eftirfarandi mælitækjum er **EKKI** hægt að nota til að mæla þyngdarhröðun jarðar, q?
 - (A) Gormvog (sem mælir þyngd) og þekktan massa.
 - (B) Pendúl af þekktri lengd og skeiðklukku.
 - (C) Skábretti sem hallar um þekkt horn, misþunga vagna með þekktan massa og skeiðklukku.
 - (D) Fallbyssu sem skýtur byssukúlum, af þekktum massa, með þekktum upphafshraða og málband.
 - (E) Hús af þekktri hæð H, skeiðklukku og óþekktan massa.

Lausn:

- (A) Pá les gormvogin w = mg þar sem m er þekkt er $g = \frac{w}{m}$.
- (B) Þá er sveiflutíminn gefinn með: $T=2\pi\sqrt{\frac{\ell}{g}}$ svo $g=\frac{4\pi^2\ell}{T^2}.$
- (C) Þetta er ekki hægt því það vantar einhverja leið til að mæla lengdina sem vagnarnir fara. Vagnarnir koma allir niður á sama tíma óháð massa.
- (D) Skjótum beint upp í loftið. Þá er $2gh = v_0^2$ svo $g = \frac{v_0^2}{2h}$.
- (E) Hendum massanum niður: $H = \frac{1}{2}gt^2$ svo $g = \frac{2H}{t^2}$.
- **K15.** Sporbraut halastjörnu sker sporbraut jarðar undir horni $\alpha = 45^{\circ}$. Gerum ráð fyrir að sporbraut jarðar sé hringlaga með geisla R_0 , sólfirð halastjörnunnar, R_{max} sé mun meiri en R_0 og að sporbrautirnar liggja í sama plani. Hver er sólnánd halastjörnunnar, R_{min} ?
 - (A) $1.9 R_0$ (B) $1.0 R_0$ (C) $0.71 R_0$ (D) $0.50 R_0$ (E) $0.28 R_0$

Lausn: Við notum orkuvarðveislu og hverfiþungavarðveislu. Látum r_0, v_0 tákna fjarlægð og hraða halastjörnunnar þegar hún sker sporbraut jarðar. Látum r_1 og v_1 tákna fjarlægð og hraða halastjörnunnar þegar hún er í nándarstöðu. Látum M vera massa sólarinnar og m massa halastjörnunnar. Viljum ákvarða r_1 . Höfum að:

$$a = \frac{R_{\min} + R_{\max}}{2} = \infty,$$
 því $R_{\max} = \infty.$

En þar með er heildarorka halastjörnunnar $E=-\frac{GMm}{2a}=0$. Höfum að:

$$0 = \frac{1}{2}mv_1^2 - \frac{GMm}{r_1} = \frac{1}{2}mv_0^2 - \frac{GMm}{r_0}$$

Hverfiþungavarðveisla gefur síðan að: $mv_1r_1 = mv_0r_0\sin(45^\circ)$ sem gefur því að:

$$v_1^2 = \frac{v_0^2 r_0^2}{2r_1^2} = GM \frac{r_0}{r_1^2} \implies \frac{GMm}{r_1} = \frac{1}{2} m v_1^2 = \frac{GMm}{r_1} \cdot \frac{r_0}{2r_1} \implies r_1 = \frac{1}{2} r_0.$$

Dæmi 1: Tjarnarbolti? (USAPhO 2016) [15 stig]

Varmaflæði frá einu efni í annað er lýst með

$$P = \frac{\kappa A \Delta T}{d}$$

þar sem P er varmaaflið, A er þverskurðarflatarmálið þar sem fletirnir snertast, ΔT er hitastigsmunurinn á flötunum, d er þykktin á fletinum sem varminn flæðir í og κ er fasti sem kallast varmaleiðnistuðullinn.

Á vetrardegi nokkrum í Reykjavík er hitastigið $-5\,^{\circ}$ C. Tjörnin í miðbæ Reykjavíkur hefur flatarmál $A=0.25\,\mathrm{km^2}$ og dýpt $d_0=1.3\,\mathrm{m}$. Ofan á vatninu hefur myndast íslag af þykkt þ $_0=1.0\,\mathrm{cm}$. Botn vatnsins er við fast hitastig $4.0\,^{\circ}$ C (snerting við jörð). Markmið okkar er að finna lokaþykktina sem ísinn mun hafa.

Nokkrir fastar sem gætu komið að gagni í þessu dæmi:

Nafn	Tákn	Gildi
Eðlisvarmi vatns	$c_{ m vatn}$	$4200\mathrm{J/(kgK)}$
Eðlisvarmi íss	$c_{ m is}$	$2100\mathrm{J/(kgK)}$
Varmaleiðni vatns	$\kappa_{ m vatn}$	$0.57\mathrm{W/(mK)}$
Varmaleiðni íss	$\kappa_{ m is}$	$2.2\mathrm{W/(mK)}$
Eðlismassi vatns	$ ho_{ m vatn}$	$1000\mathrm{kg/m^3}$
Eðlismassi íss	$ ho_{ m is}$	$920\mathrm{kg/m^3}$

- (a) Vatn þennst út þegar það frýs. Finnið upphaflega dýpt tjarnarinnar, d, áður en íslagið myndaðist.
- (b) Látum h_b tákna dýpt vatnsins þegar þykkt ísins er þ. Ákvarðið h_b sem fall af d, þ og þekktum föstum.
- (c) Finnið lokaþykktina, þ, sem ísinn mun hafa.

Lausn:

(a) Höfum þá að $\rho_{\text{is}}V_{\text{is}} = \rho_{\text{vatn}}V_{\text{vatn}}$ og $V_{\text{is}} = A$ þ₀ en $V_{\text{vatn}} = A\delta$ svo $\delta = \frac{\rho_{\text{is}}}{\rho_{\text{vatn}}}$ þ₀. Því er:

$$d = d_0 + \delta = d_0 + \frac{\rho_{\text{fs}}}{\rho_{\text{vatn}}} p_0 = 1,300 92 \,\text{m}.$$

(b) Pá er $(d - h_{\rm p})\rho_{\rm vatn} = {\rm p}\rho_{\rm is}$ svo

$$h_{\rm p} = \frac{d\rho_{\rm vatn} - {\rm p}\rho_{\rm is}}{\rho_{\rm vatn}}.$$

(c) Ísinn hættir að stækka þegar varmaflæðið frá vatninu í ísinn er jafnt varmaflæðinu frá loftinu í ísinn. Höfum því:

$$\frac{\kappa_{\rm vatn} A \Delta T_{\rm vatn}}{h_{\rm b}} = \frac{\kappa_{\rm is} A \Delta T_{\rm is}}{\rm b}$$

Notum síðan niðurstöðuna í (b)-lið og fáum:

$$\frac{\rho_{\rm vatn}\kappa_{\rm vatn}\Delta T_{\rm vatn}}{d\rho_{\rm vatn}-\mathbf{b}\rho_{\rm fs}}=\frac{\kappa_{\rm fs}\Delta T_{\rm fs}}{\mathbf{b}}$$

b.e.
$$\rho_{\text{vatn}} \kappa_{\text{vatn}} \Delta T_{\text{vatn}} b = \kappa_{\text{is}} \Delta T_{\text{is}} \left(d\rho_{\text{vatn}} - b\rho_{\text{is}} \right)$$

$$\text{b.e.} \qquad \text{b} = \frac{\rho_{\text{vatn}} \kappa_{\text{is}} \Delta T_{\text{is}}}{\rho_{\text{vatn}} \kappa_{\text{vatn}} \Delta T_{\text{vatn}} + \rho_{\text{is}} \kappa_{\text{is}} \Delta T_{\text{is}}} d = 1{,}154\,\text{m.}$$

Dæmi 2: Martröð! Skábretti ofan á skábretti [20 stig]

Tveim skábrettum er komið fyrir á láréttum fleti. Núningsstuðullinn milli skábrettanna er μ og núningsstuðullinn milli neðra skábrettisins, B, og lárétta flatarins er μ . Neðra skábrettið hallar um θ gráður miðað við lárétt. Massi skábrettis A er m og massi skábrettis B er M=2m. Láréttur kraftur F verkar á skábretti B eins og sést á myndinni.

Ákvarðið þau gildi á F (sem fall af m, g, θ og μ) þannig að efra skábrettið helst kyrrt miðað við neðra skábrettið (rennur semsagt hvorki upp né niður).

 $[\acute{A}bending:$ Ekki snúa hnitakerfinu! Skrifið niður kraftajöfnu fyrir öllu kerfinu og síðan fyrir kubb A.]

Lausn: Látum a vera hröðun kerfisins til vinstri. Þá höfum við:

$$3ma = F - 3\mu mg \implies F = 3m (a + \mu g) \tag{1}$$

Tökum eftir því að ef F er lítill (og $\mu \leqslant \tan \theta$) þá byrjar kubbur A að renna niður skábrettið. Ef F er stór (og $\mu \leqslant \frac{1}{\tan \theta}$) þá byrjar kubbur A að renna upp skábrettið. Þurfum að skoða bæði þessi tilvik. Byrjum á fyrra tilvikinu: Þegar kubbur A byrjar að renna niður. Þá er núningskrafturinn upp meðfram skábrettinu. Höfum þá kraftajöfnuna:

$$\begin{pmatrix} ma \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{P}\sin\theta - F_{\mathrm{n\acute{u}n}}\cos\theta \\ -mg + \mathbf{P}\cos\theta + F_{\mathrm{n\acute{u}n}}\sin\theta \end{pmatrix}$$

Notum að $F_{\text{nún}} = \mu P$ svo að við höfum jöfnuhneppið:

$$ma = P(\sin \theta - \mu \cos \theta), \quad mg = P(\cos \theta + \mu \sin \theta)$$

þar sem a og P eru óþekktu stærðirnar. Leysum fyrir a og fáum:

$$a = \left(\frac{\sin \theta - \mu \cos \theta}{\cos \theta + \mu \sin \theta}\right) g.$$

En þar með fæst samkvæmt jöfnu (1) að:

$$F_{\min} = 3mg \left(\frac{\sin \theta - \mu \cos \theta}{\cos \theta + \mu \sin \theta} + \mu \right).$$

Skoðum síðan hitt tilvikið þegar F er svo stórt að kubburinn byrjar að fara upp - þá er núningskrafturinn niður meðfram skábrettinu. Höfum þá kraftajöfnuna fyrir kubb A:

$$\begin{pmatrix} ma \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{P}\sin\theta + F_{\mathrm{n\acute{u}n}}\cos\theta \\ -mg + \mathbf{P}\cos\theta - F_{\mathrm{n\acute{u}n}}\sin\theta \end{pmatrix}$$

Leysum fyrir a með því að nota að $F_{\text{nún}} = \mu$ Þ eins og áður og fáum að:

$$F_{\text{max}} = 3mg \left(\frac{\sin \theta + \mu \cos \theta}{\cos \theta - \mu \sin \theta} + \mu \right).$$

Dæmi 2: Rennibraut (USAPhO 2016) [20 stig]

Einsleitri kúlu er sleppt úr hæð h á rennibrautinni hér fyrir neðan. Kúlan rúllar án þess að renna á brautinni. Gerum ráð fyrir að núningur sé hverfandi lítill svo að engin orka tapast vegna núnings.

(a) Ákvarðið, h_{\min} , þ.e. minnsta mögulega gildið á hæðinni h þannig að kúlan nái að rúlla allan hringinn.

[Ábending: Skoðið þverkraftinn sem verkar á kúluna í hæsta punkti.]

(b) Kúlunni er sleppt úr hæð $h < h_{\min}$ þannig að hún nær ekki að komast í hæsta punkt í gjörðinni. Hún fellur aftur niður í punkt P. Markmið okkar er að ákvarða hæðina sem kúlunni var sleppt úr sem fall af R. Skilgreinum upphafspunkt hnitakerfisins í P. Þá má skrifa staðsetningu á gjörðinni sem:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} R \sin \theta \\ R(1 + \cos \theta) \end{pmatrix}, \qquad \theta \in [0^{\circ}, 180^{\circ}[.$$

Látum θ vera hornið þar sem ögnin losnar af gjörðinni og v vera hraða hennar þegar hún losnar. Sýnið að hæðin y þar sem hún losnar er gefin með:

$$y = R(1 + \cos \theta) = \frac{1}{2}g\left(\frac{R}{v}\frac{\sin \theta}{\cos \theta}\right)^2 - v\sin \theta\left(\frac{R}{v}\frac{\sin \theta}{\cos \theta}\right)$$

(c) Notið jöfnuna hér á undan til þess að ákvarða hornið θ þar sem ögnin losnar.

[Ábending: Þið þurfið líka að skoða þverkraftinn sem verkar á kúluna einmitt þegar hún dettur.]

(d) Notið niðurstöðuna á undan og orkuvarðveislu til að finna hæðina h, þannig að kúlan lendi í P.

Lausn: Látum kúluna hafa massa m og geisla r. Hverfitregða kúlunnar er þá $I=\frac{2}{5}mr^2$.

(a) Pá er þverkrafturinn efst P > 0. Ef þverkrafturinn væri 0 myndi kúlan detta. Höfum þá samkvæmt orkuvarðveislu (notum einnig að kúlan rúllar án þess að renna svo $v_{\rm cm}=r\omega$)

$$mgh = 2mgR + \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = 2mgR + \frac{1}{2}mv^2\left(1+\gamma\right), \qquad \text{ par sem } \gamma = \frac{2}{5}.$$

Kraftajafnan og hringhreyfingin gefur síðan í efsta punkti að: $m \frac{v^2}{R} = mg$ svo við fáum:

9

$$mgh = 2mgR + \frac{mgR(1+\gamma)}{2} \implies h = \frac{(5+\gamma)}{2}R = \frac{27}{10}R.$$

(b) Þurfum aðeins að sýna seinna jafnaðarmerkið. Hraði agnarinnar þegar hún losnar er:

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} v\cos\theta \\ v\sin\theta \end{pmatrix}$$

Stöðujöfnurnar gefa síðan að:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} v_x t \\ \frac{1}{2}gt^2 - v_y t \end{pmatrix}$$

Efri jafnan gefur að $t=\frac{x}{v_x}=\frac{R}{v}\frac{\sin\theta}{\cos\theta}$ sem við stingum inn í neðri jöfnuna og höfum fáum:

$$y = \frac{1}{2}gt^2 - v_y t = \frac{1}{2}g\left(\frac{R}{v}\frac{\sin\theta}{\cos\theta}\right)^2 - v\sin\theta\left(\frac{R}{v}\frac{\sin\theta}{\cos\theta}\right).$$

(c) Notum niðurstöðuna í liðnum á undan:

$$R(1 + \cos \theta) = \frac{gR^2 \sin^2 \theta}{2v^2 \cos^2 \theta} - \frac{R \sin^2 \theta}{\cos \theta}$$

Styttum út R og margföldum í gegn með $\cos\theta$ þá fæst:

$$(1 + \cos \theta)\cos \theta + \sin^2 \theta = \frac{gR\sin^2 \theta}{2v^2\cos \theta}$$

Notum $\cos^2\theta+\sin^2\theta=1$ vinstra meginn. Þar sem P = 0 þegar kúlan losnar þá gefur kraftajafnan að: $m\frac{v^2}{R}=mg\cos\theta$ en þá er $\frac{gR}{v^2}=\frac{1}{\cos\theta}$ svo:

$$1 + \cos \theta = \frac{\sin^2 \theta}{2\cos^2 \theta} = \frac{1 - \cos^2 \theta}{2\cos^2 \theta} = \frac{(1 - \cos \theta)(1 + \cos \theta)}{2\cos^2 \theta}$$

sem gefur að:

$$2\cos^2\theta = 1 - \cos\theta \implies \cos\theta = \frac{-1 \pm \sqrt{1+8}}{4} = \begin{cases} \frac{1}{2} \\ -1 \end{cases}$$

Efri lausnin gefur $\theta = 60^{\circ}$, neðri lausnin gefur $\theta = 180^{\circ}$ sem við hunsum því $\theta \in [0^{\circ}, 180^{\circ}]$.

(d) Hraði agnarinnar þegar hún losnar finnst með orkuvarðveislu:

$$mgh = mgy + \frac{1}{2}mv^{2}(1+\gamma) \implies h = y + \frac{v^{2}}{2q}(1+\gamma)$$

En nú vitum við að $y = R(1 + \cos \theta) = \frac{3}{2}R$ þar að auki sem $v^2 = gr\cos \theta = \frac{1}{2}gR$ svo:

$$h = \frac{3}{2}R + \frac{1}{4}(1+\gamma)R = \frac{37}{20}R.$$

10