

Risc-V在 高清云桌面终端领域的应用

THINPUTER TECHNOLOGY

青葡萄科技 万峰

Who Am I

我是谁

国内第一批开始接触云桌面的厂商,深耕 教育、政企行业,以提升硬件价值为使命, 不断优化产品,增强产品市场竞争力

高级程序员

青葡萄科技创始人/总经理

资深产品经理

青葡萄产品与业务模式

Product and Business Model

教育云桌面、政府云桌面、智算云桌面

整体产品方案出售/0EM/纯软件/合作运营

云桌面行业痛点

Industry pain points

- ✓ 可管理性更佳
- ✓ 安全性更佳
- ✓ 随时随地移动办公
- ✓ 资源可复用

- 但 使 用 体 验 不 如 P C -

有没有一种完美的方案

让云桌面得到更大范围的普及

云终端业务需求

Business requirements

高图形图像性能

客户需求不断发展,从1080P@30, 到2K144, 甚至更高 对处理时延提出了很高要求

SDK/系统支持

完善的系统,驱动,各外设的驱动支持,外设兼容性好

高性价比

产品相对于Intel架构终端,需要有较高性价比。

从开发自由理念到找到突破口

	图形图像性能	SDK完善程度	价格
N100(intel)	高(2K@240)	高	高
TH1520(Risc-v)	中高(2K@144)	低	中
RK3568 (arm)	中(2K@60)	中	低

性能媲美intel, 成本优于Intel

开发中遇到的困难

Difficulties in development

FFMPEG解码

零拷贝

DNA显示

YUV444合并与显示

困难--克服

Difficulties in development

研发能力

双方研发能力强,硬件驱动,性能调优无缝沟通

芯片匹配

架构开放开源,编解码能力强,内置DSP进一步提高动态双流合一的性能与效果

阶段成果

Stage achievements

▶ 业内首款支持高清/无损嵌入式(非X86)云桌面终端

- 终端实现视频再编码,摄像头、视频会议更流畅
- 终端实现2K@144显示,满足云网吧等高性能场景
- 终端支持YUV444硬解与显示,支持云设计类应用

Stage achievements

全栈自研云桌面,开启全场景,高清/无损云桌面

从轻办公PC到游戏独显PC,云桌面全面覆盖,用户甚至分辨不出是在云桌面

高清/无损嵌入式云终端

全栈自研云桌面软件

(高性能服务器虚拟化,协议,超融合等)

PCFARM服务器

Stage achievements

更清晰、更流畅、更跟手

➤ YUV444 无损画质传输: 更清晰

YUV444 保留了完整的色度信息,图像中的色彩过渡更加平滑,细节更为丰富, 尤其在高分辨率和对色彩细节要求高的场景中表现出色。彻底解决 "桌面糊、 字体虚、看久了晕"。

➤ GPU云+自研 NDX协议: 更流畅

GPU 云桌面解决方案适应全云桌面场景,随时随地移动办公,流畅运行视频剪辑 3D画图等软件。

自研 NDX 协议,可保障机房的灵活性和统一性,使机房管理不再进行架构区分,做到统一管理,高效运维。

▶ YUV444 无损画质传输: 更清晰

常规云桌面的操作延迟通常在100ms左右,而高清无损方案可以达到10ms。响应更快,操作更跟手。

— 使云桌面具备X86物理机的同等体验 —

应用场景	高清无损云桌面方案	常规云桌面方案	
专业图像编辑	✓ 最佳选择	🗶 不推荐	
电影制作	✔ 最佳选择	🗶 不推荐	
高端显示设备	✔ 最佳选择	🗶 不推荐	
视频流媒体	✔ 最佳选择	✔ 可用	
日常办公与浏览网页	✔ 最佳选择	✔ 可用	

Stage achievements

什么是YUV444无损画质

▶YUV444 代表画质在整个连路中进行无损传输

YUV 是一种用于视频和图像处理的色彩表示方法,将图像分解为亮度(Y)和两个色度(U和V)分量 YUV444 保留了完整的色度信息,每个像素都有独立的U和V分量,确保最高的色彩还原度 市面上主流的云桌面,通常采用 YUV420 采样格式,是一种有损传输,效果弱于无损

采样格式	每像素色度采样	亮度信息	水平色度分辨率	垂直色度分辨率	数据量
YUV444	每个像素都有U和V分量	100%	100%	100%	100%
YUV420	每2x2像素共享U和V分量	100%	50%	50%	25%

Stage achievements

文本清晰度对比

YUV444 无损方案能够提供更清晰和锐利的字符边缘 确保文字显示的高可读性和精确度,彻底解决"字体虚"的现象

4	А	В	С	the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
1	thinputer	thinputer	thinputer	the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
2	thinputer	thinputer	thinputer	the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
				the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
3	thinputer	thinputer	thinputer	the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
4	thinputer	thinputer	thinputer	the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
5	thinputer	thinputer	thinputer	TO LOSS BOOM BY JORGAN OWN THE 1975 MAY THE SUPPLEMBED AND EAST SHEET THE LOST STORE
6	thinputer	thinputer	thinputer	
j				

YUV444无损

YUV444 有 损

Stage achievements

图形效果对比

YUV444 无损方案能够呈现更加精细和平滑的图形细节, 彻底解决"桌面糊"的现象

YUV444无损

Y U V 4 4 4 有 损

Stage achievements

设计软件体验对比

YUV444 无损方案提供了最精确的色彩表现和细腻的图像细节

确保设计作品的高保真度和视觉效果

YUV444无损

YUV444有损

拖拽体验对比

Stage achievements

高清无损云桌面方案延迟通常在10ms以内,相较于常规方案的100ms左右延迟大幅优化 响应更快,操作"更跟手"

高清无损方案(视频演示)

YUV444有损

Stage achievements

视频流畅度对比

高清无损云桌面方案相较于常规方案,在整体流畅度上有明显提升

以下是播放流媒体视频时的流畅度对比,通过弹幕文字的流畅度可以感知到明显差异

高清无损方案(视频演示)

YUV444 有 损

Stage achievements

日常网页使用对比

高清无损云桌面方案相较于常规方案,在日常网页使用场景下同样具备较大的体验优势 以下测试环境为:延迟50ms±10ms,丢包1%

高清无损方案(视频演示)

常规方案

Stage achievements

项目	描述	备注
CPU	TH1520, 4 核玄铁 C910@1.85GHz Max.	高性能 RISC-V SoC
操作系统	Linux	
内存	LPDDR4, 1GB/2GB	可扩展4GB
存储	eMMC 8GB	可选16GB/32GB/64GB
以太网	2个千兆RJ45	支持内外网切换
无线网络	可选配支持 WiFi 5 2x2 MIMO	可选
USB 接口	3x USB2.0, 3x USB3.0	
显示接口	1x HDMI_OUT	可选配2x HDMI_OUT
耳机接口	4段式,兼容美标国标自动切换	二合一
电源	适配器 DC 12V/2A	
锁孔	1个防盗锁孔	
开机方式	按键开机,定时开机,上电开机,网络开机	
指示灯	上电橙色,进系统后蓝色	
外壳	塑胶外壳,支持壁挂	
颜色	黑色	
尺寸	170mm*105mm*29mm	

终端规格介绍

未来期望

future plan

感谢观赏

THANK YOU FOR YOUR ATTENTION