Trigonometric Sum and Difference Formulas in \mathbb{C}

Matt McCarthy

June 2016

Problem. Show that for any $z, w \in \mathbb{C}$,

 $\sin(z+w) = \cos z \sin w + \sin z \cos w \quad and \quad \cos(z+w) = \cos z \cos w - \sin z \sin w.$

1 Background

In the world of \mathbb{C} , differentiability is a stronger condition than in \mathbb{R} . To be precise, once a function is differentiable in \mathbb{C} , it is infinitely differentiable. This happens because differentiability has more stringent requirements in \mathbb{C} . In order for a \mathbb{C} -valued function to be differentiable on a domain, it must be *analytic* on that domain.

Definition 1. Let $f: \mathbb{C} \to \mathbb{C}$, where f(x+iy) = u(x,y) + iv(x,y), be a function such that $\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$, and $\partial v/\partial y$ exist and are continuous on some disk $D \subseteq \mathbb{C}$ with a nonzero radius. If f satisfies the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

then f is said to be analytic on D. Furthermore, the largest subset of \mathbb{C} on which f is analytic is called f's domain of analyticity. If the domain of analyticity is \mathbb{C} , then f is said to be entire.

Since any analytic function is infinitely differentiable, its Taylor expansion exists as well. Furthermore, the Taylor series converges on any disk in the domain of analyticity.

Theorem 1. Let f be analytic on a disk $D(z_0, r)$, then f's Taylor series about z_0 converges for all $z \in D$.

2 Solution

Problem. Show that for any $z, w \in \mathbb{C}$,

$$\sin(z+w) = \cos z \sin w + \sin z \cos w \text{ and } \cos(z+w) = \cos z \cos w - \sin z \sin w.$$

Our solution will give $\sin z$ and $\cos z$ in terms of e^z . From there, we will show the sum formulas. However, before we can get to either of those steps, we need to show that e^z is entire.

2.1 Analyticity of e^z

Proposition 2. e^z is entire.

Proof. Let z = x + iy. We want to find \mathbb{R} -valued functions u, v such that $e^{x+iy} = u(x, y) + iv(x, y)$.

$$e^{z} = e^{x+iy}$$

$$= e^{x}e^{iy}$$

$$= e^{x}\cos y + ie^{x}\sin y$$

$$= u(x, y) + iv(x, y)$$

Taking partial derivatives yields the following.

$$\begin{array}{lll} \partial u/\partial x = & e^x \cos y & \partial v/\partial y = & e^x \cos y \\ \partial u/\partial y = & -e^x \sin y & -\partial v/\partial x = & -e^x \sin y \end{array}$$

Therefore e^z satisfies the Cauchy-Riemann equations. Furthermore, since the equations hold for all $z \in \mathbb{C}$, e^z is entire.

2.2 Complex Trigonometric Functions in Terms of the Complex Exponential

Our next step is to use the Taylor expansion of e^z to get the Taylor expansion of $\cos z$ and $\sin z$.

Proposition 3. Let $z \in \mathbb{C}$. Then

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Proof. Consider $(e^{iz} + e^{-iz})/2$. Since e^z is entire, its Taylor series converges everywhere in \mathbb{C} .

$$\begin{split} \frac{1}{2} \left(e^{iz} + e^{-iz} \right) &= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{1}{n!} i^n z^n + \frac{(-1)^n}{n!} i^n z^n \right) \\ &= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{n!} i^n z^n \right) \\ &= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{1 + (-1)^{2n}}{(2n)!} i^{2n} z^{2n} + \frac{1 + (-1)^{2n+1}}{(2n+1)!} i^{2n+1} z^{2n+1} \right) \\ &= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{2}{(2n)!} (i^2)^n z^{2n} \right) \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n!)} z^{2n} \\ &= \cos z \end{split}$$

Consider $(e^{iz} - e^{-iz})/(2i)$.

$$\frac{1}{2i} \left(e^{iz} - e^{-iz} \right) = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{1}{n!} i^n z^n - \frac{(-1)^n}{n!} i^n z^n \right)
= \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{1 - (-1)^n}{n!} i^n z^n \right)
= \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{1 - (-1)^{2n}}{(2n)!} i^{2n} z^{2n} + \frac{1 - (-1)^{2n+1}}{(2n+1)!} i^{2n+1} z^{2n+1} \right)
= \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{2i}{(2n+1)!} (i^2)^n z^{2n+1} \right)
= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}
= \sin z$$

2.3 Trigonometric Sum Identities

We will now use our new identities to show the sum formulas, and get the difference formulas as corollaries.

Theorem 4. Let $z, w \in \mathbb{C}$. Then $\sin(z+w) = \cos z \sin w + \sin z \cos w$.

Proof. Consider $\cos z \sin w + \sin z \cos w$.

$$\begin{aligned} \cos z \sin w + \sin z \cos w &= \left(\frac{e^{iz} + e^{-iz}}{2}\right) \left(\frac{e^{iw} - e^{-iw}}{2i}\right) + \left(\frac{e^{iz} - e^{-iz}}{2i}\right) \left(\frac{e^{iw} + e^{-iw}}{2}\right) \\ &= \frac{e^{i(z+w)} + e^{i(w-z)} - e^{i(z-w)} - e^{-i(z+w)}}{4i} + \frac{e^{i(z+w)} - e^{i(w-z)} + e^{i(z-w)} - e^{-i(z+w)}}{4i} \\ &= \frac{2e^{i(z+w)} - 2e^{-i(z+w)}}{4i} \\ &= \frac{e^{i(z+w)} - e^{-i(z+w)}}{2i} \\ &= \sin(z+w) \end{aligned}$$

Theorem 5. Let $z, w \in \mathbb{C}$. Then $\cos(z+w) = \cos z \cos w - \sin z \sin w$.

Proof. Consider $\cos z \cos w - \sin z \sin w$.

$$\begin{split} \cos z \cos w - \sin z \sin w &= \left(\frac{e^{iz} + e^{-iz}}{2}\right) \left(\frac{e^{iw} + e^{-iw}}{2}\right) - \left(\frac{e^{iz} - e^{-iz}}{2i}\right) \left(\frac{e^{iw} - e^{-iw}}{2i}\right) \\ &= \frac{e^{i(z+w)} + e^{i(w-z)} + e^{i(z-w)} + e^{-i(z+w)}}{4} + \frac{e^{i(z+w)} - e^{i(w-z)} - e^{i(z-w)} + e^{-i(z+w)}}{4} \\ &= \frac{e^{i(z+w)} + e^{-i(z+w)}}{2} \\ &= \cos(z+w) \end{split}$$

Corollary 6. Let $z, w \in \mathbb{C}$. Then

 $\sin(z-w) = \sin z \cos w - \cos z \sin w \text{ and } \cos(z-w) = \cos z \cos w + \sin z \sin w.$

Proof. Since $\sin w$ is an odd function, $\sin(-w) = -\sin w$. Since $\cos w$ is an even function, $\cos(-w) = \cos w$. These facts combined with the sum formulas for $\cos(z + (-w))$ and $\sin(z + (-w))$ yield the difference formulae.

References

[1] John M. Howie. Complex Analysis. Springer. ISBN: 978-1-85233-733-9.