Let S be a scheme, $p:A\to S$ a ring scheme over S. Write $m:A\times_S A\to A$ for the multiplication morphism of A, $1_S:S\to A$ for the identity section of the multiplication, and $p_1:A\times_S A\to A$ for the first projection. For any ring R, we shall write $R^\times \stackrel{\text{def}}{=} \{r\in R|r\text{ is invertible}\}$. In this note, we prove that if $p:A\to S$ is flat and of finite presentation, then the functor $\text{Hom}_S(-,A)^\times$ is representable by an open subscheme of A.

It is clearly that the following lemma holds:

Lemma 0.1. The functor

$$\operatorname{Hom}_S(-,A)^{\times} : \operatorname{\mathsf{Sch}}_S \to \operatorname{\mathsf{Grp}}$$

$$T \mapsto \operatorname{\mathsf{Hom}}_S(T,A)^{\times}$$

is representable by $A^{\times} : \stackrel{def}{=} (A \times_S A) \times_{m,A,1_S} A$.

Write $i: A^{\times} \to A \times_S A$ for the first projection. Then, since $\operatorname{Hom}_S(T, A)^{\times}$ is a subset of $\operatorname{Hom}_S(T, A)$, the following assertions hold:

Lemma 0.2. The morphism $p_1 \circ i : A^{\times} \to A$ is a monomorphism of schemes.

For any S-scheme X and any S-scheme T, we shall write $X(T) :\stackrel{\text{def}}{=} \operatorname{Hom}_S(T,X)$ for the set of T-valued points. The following lemma follows from elementary scheme theory:

Lemma 0.3. Let

$$T_0 \xrightarrow{t_0} X$$

$$\downarrow \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{} S$$

be a commutative diagram of schemes such that i is a square nilpotent closed immersion, i.e., the ideal sheaf \mathcal{I} of i satisfies $\mathcal{I}^2=0$. Then

Proposition 0.4. Assume that $p: A \to S$ is flat and of finite presentation. Then the morphism $p_1 \circ i: A^{\times} \to A$ is an open immersion.

Proof. By Lemma 0.2, to prove Proposition 0.4, it suffices to prove that $p_1 \circ i$ is smooth. Let $a: T \to A$ be a morphism of S-schemes, $j: T_0 \to T$ a square nilpotent closed immersion, and $a_0: T_0 \to A^{\times}$ a morphism of A-schemes:

$$T_0 \xrightarrow{a_0} A^{\times}$$

$$j \downarrow \qquad \qquad \downarrow^{p_1 \circ i}$$

$$T \xrightarrow{a} A.$$