EE 619 Project Report Cascode CS-LNA Design

Harsh Pal (18D070012) Anurag Kumar (18D070006) Shreya Laddha (180070054) Shrey Singhai (180070055)

July 9, 2022

The Schematic of the LNA is given in Figure 1. The value of V in is 900mV.

Figure 1: Schematics

Design Parameters	Required range	Simulations result
Noise Figure	$\leq 2dB$	$\leq 0.74 dB$
S_{21}	> 15dB	> 15dB
S_{11}	< -10dB	< -11.4dB
S_{22}	< -10dB	< -10.7dB
IIP3	> -8dBm	$7.187 \mathrm{dBm}$

Table 1: Table of simulation results over 2.3GHz to 2.4GHz.

The Noise figure vs frequency plot is given in Figure 2. For frequencies between $2.3\mathrm{GHz}$ and $2.4\mathrm{GHz}$, the noise figure is below $2\mathrm{dB}$.

Figure 2: Noise figure vs frequency

The plot for S_{21} parameter is given in Figure 3. The forward voltage gain is above 15dB for the frequency of operation.

Figure 3: Forward Voltage gain

The Input port and Output port voltage reflection coefficients are plotted in Figure 4. The value of these reflection coefficients is below -10dB for frequencies between $2.3\mathrm{GHz}$ and $2.4\mathrm{GHz}$

Figure 4: Input and Output Reflection Coefficients

The IIP3 for this LNA is $7.187 \mathrm{dBm} > 8 \mathrm{dBm}$. This can be seen in Figure 5. The 1dB compression point is $3.011 \mathrm{dBm}$ as shown in Figure 6

Figure 5: IIP3 calculation

Figure 6: 1dB compression point

The stability factor is plotted against frequency in Figure 7. Kf > 1 implies the circuit is stable for the desired frequency range

Figure 7: Stability Analysis