Prof. Dr. Zimmermann

Aufgabe 1 (17 Punkte)

Mengenlehre

Mengenlehre Seien A, B und C drei beliebige Mengen. Betrachten sie die sogenannte Bell' sehr

 $A \setminus C \subseteq (A \setminus B) \cup (B \setminus C)$

(1.1) (3 Punkte) Geben Sie die formalen Definitionen der Mengendifferenz, Vereinigung

11 AIC = GX XEA 1XECT 11 AUB = GXIXEAUXEBY 11 ASBC=> HXEA: XEB

(1.2) (6 Punkte) Beweisen Sie die Inklusion mittels eines Venn Diagramms.

(1.3) (2 Punkte) Warum ist ein Venn Diagramm für eine derartige Aussage ein gültiger

Will since villstandy Fallent schending gemalit

¹Nicht klausurrelevant: Diese von John Bell 1964 verwendete Beziehung hat für die Quantenphysik weitreichende Konsequenzen. Die Tatsache, dass Messungen von Quantenzuständen die Ungleichung nicht erfüllen, beweist, dass der Zufallscharakter von Messungen von Quantenzuständen nicht auf fehlenden Daten beruht, sondern dass das Ergebnis einer Messung tatsächlich vorher nicht feststeht. Einsteins berühmte Aussage

(1.4)	(6 Punkte)	Beweisen	Sie die A	Aussage	mit	einem	formalen	Beweis.	Tipp:	Verwen-
	den Sie eine Obermenge.	rallunter	scheidun	g für x	$\in B$	$\forall x \notin$	B und d	len Satz	Vereini	igung ist

In larger AIC & (AIB) U(BIC)

Si X & AIC beliabry. Nad Def I forlight

X & A and

X & C

A Foll X & B

Down it X & BIC end weger Verang

and Obbrushy X & (AIB) U (BIC)

2. Foll X & B

Down int X & AIB and Weger Verang

int Oberley X & (AIB) U (BIC)

Aufgaber 2 (27 Punkte) Fall X & (AIB) U (BIC) W76W.

(2.1) (7 Punkte) Geben Sie eine formale Definition der Fakultätsfunktion $n! = 1 \cdot 2 \cdot ... \cdot n$ mittels vollständiger Induktion.

0!=1 -2 du Ag +ne/No:(441)!=(n+1)u!, -2 du ant Prof. Dr. Zimmermann (2.2) (20 Punkte) Beweisen Sie durch vollständige Induktion $\sum_{k=0}^{\infty} (k \cdot k!) = (n+1)!$ Tipp: "Ergänzen" Sie zunächst die Aufgabenstellung. uemb: 2 le.h! = (u+1)! -1 udulition soldus Si ne No belieby del fist 12= 4M (u+1) (u+1)! aushlanum (u+1)!(1+ n+1)-1 = (n+1)!(n+2)-1

Shu ndy = (u+2)!-1

Klausur Mathematik 1. und 2. Semester Seite 3 von 8

ufgabe 3 (31 Punkte)

(3.1) (8 Punkte) Sei \sqsubseteq eine Ordnungsrelation in der Menge M. Geben Sie die formale Definition für größte und maximale Elemente und obere Schranken und Suprema einer Teilmenge $A \subseteq M$ an.

ggiphy Evont (=) get 1 H xet: xtg2-2 un maximalituant (=) me A 17 Jxet: Mtx1 m +x

S Oberc Schauhevout (SEM & YXET: X IS

S Supremum & Shinish obra Sdranke S Supremum & Shinish obra Sdranke & Step + XEA: XES 1

HOSEM: [YXEA: X TOS] => SIOS

(3.2) (8 Punkte) Beweisen Sie die Aussage: Sei \sqsubseteq eine Ordnungsrelation in der Menge M und $A\subseteq M$ beliebig. A hat höchstens ein größtes Element.

Sien grigg größte E- von A. Dam grief grigge A und Bekert x Egrund Bekert x Egr Daher grief g Egrada (K) end gre A end g Egrada (Kx) und gre A. Sur Phyr. Mony.

Wegen de Aggenereter von E folgt

gr=gz wzbw

Probe: 560: 1083 = 606 480 = 184 56 ±

Aussti: Weitve lørg 1547 = 7-221 } 1) 1083+2221 = 1525

2) 1083 + 221 = 1304

27 1083

4) 1083-221 = 862

5) 1083-2221 = 641

6) 1083-3-221 - 420

7) 1083 -4-221 = 199

wich gehaf.

Viel Erfolg

(3.3) (9 Punkte) Beweisen Sie die Aussage: Sei \sqsubseteq eine Ordnungsrelation in der Menge und $A \subseteq M$ beliebig. Wenn $g \in A$ größtes Element ist, dann ist es auch Supremun von A

Si g EA graptis E. von A. De

VXE A: XEg foly & it obere Idrantevan

Ci Ds eine Jolishy Obere Schrante von

A, denn gilt: YXE A: X tos. Da g c A

il fogt g tos. g nil also bline als alle

Oberen Schrante und downt bleinst obere Schrante

g ist obere Solvater 3 P g vil blung oberskraf + 6 P

(3.4) (6 Punkte) Durch das folgende Hasse Diagramm sei eine Ordnungsrelation in der Menge $\{a,b,c,d,e,f,g,h\}$ gegeben.

	но	CHAGHULE BER WIRTECHAFT	N			
Bestimmen Sie obere S	ohr1				4.10.2010)
Bestimmen Sie obere S	chranke	n, Supremui	n und obere	e Grenzen der 1	Menge Ø.	
over Salve	Men	von \$:	abo	idie 1	20	
- Obere Gren	Hen	19,4			318	•
Canal						
Suprecun	· Uor	P	gull	as wider	. Falel.	ripler,
		a kalia			fulls	/
						rilt,
Aufgaba 4 (or p						
Aufgabe 4 (25 Punkte)						
(4.1) (4 Punkte) Verbalisierer	n Sie die	Aussage				
	$\forall a,b \in$	$\exists M: \exists x \in A$	$M: a \circ x =$	b		
Tipp: Nutzen Sie hierfür	die Beg	riffe Zeilen	/Spalten ur	nd Verkniinfun	mat - f 1	
7	7.		110	d verknuprun	gstaiel.	
Ju plu	tuk	u du	Millun	plungs tal	d	
Ju pile hormel	ndes	Eleme	nt uni	distus	Cin una	1
VVV						
	0.0-	- 4 - 0 -	0 [7]		1	
Kein Pun	he fus	Worth	in Mbig	ht de Oh	autor.	
(4.2) (5 Punkte) Geben Sie du algebraische Struktur übe	irch An	gabe einer	Verknüpfun	gstafel ein Be	ispiel für ein	ie
	$\forall a,b \in$	$M:\exists x\in I$	$M:a\circ x=$	b		
wahr ist, aber						
	$\forall a,b \in$	$M:\exists x\in N$	$M: x \circ a =$	b		
falsch. A)				Eder	0 1	1
		0	1			-
1 Mes Pollibie	0		1	7	1	0
2 Abny falli hich och spuln verbunder		U	6			
och Spale Ut burn the	1			1	1	0

Klausur Mathematik 1. und 2. Semester Seite 6 von 8

(4.4) (11 Punkte) Ist die Restklassengleichung $[560]_{1547} \otimes [x]_{1547} = [56]_{1547}$ lösbar? Wenn ja, geben Sie mindestens eine Lösung an.

1547 = 2-560+ 427

560 = 1.427 + 133

427 = 3.133 + 28

133 - 4-28 + 21

28 = 1.21 + = 37T (1547, 560)

21=3.7

Da 56 am beilferche von 7 itt die 61. Lösber. Pollt als Ergebrus berther

7=28-21-21-21-(458/133-4.28)

= 528 - 133

= 5 (427 - 3.133) -133

= 5.427-16.133

=5-427-16 (560-427)

= 21.427 - 16.560

-21(1547-2.566) - 16:560

= 21-1547 - 58. 560