Imperial College London

Relativity – Lecture 3

Dr Caroline Clewley

Page 1

Key points of Lecture 2

- An inertial frame is a frame in which the law of inertia holds.
- Each reference frame contains an infinite number of observers with synchronised clocks who know their position.
- Events happen at a particular position AND at a particular time.
- The fact that observers in all inertial frames measure the same speed of light, *c*, leads to counterintuitive effects.

Synchronised clocks

Oscar sits at the origin of reference frame S(x = 0).

Meter sticks establish distances in S.

Local observers at x = -3 m (Lucy) & x = +3 m (Ricky).

Procedure to synchronize all clocks in S?

Page 6

Procedure to synchronize all clocks in frame S

Oscar emits a light flash at t = 0.

Light spreads outwards in a spherical wavefront.

At Dt = (+3 m)/c the wavefront reaches Lucy and Ricky.

Lucy & Ricky know to set their clocks to t = (0 + 3 m)/c!

Procedure to synchronize all clocks in frame S

Now, all three clocks run in synch with each other! To check, Lucy & Ricky both emit light flashes at t = 0Oscar receives both light flashes at t = (0 + 3 m)/c

Oscar concludes both flashes were sent simultaneously.

Page 13

Changing to a different inertial frame

It's revealed that Lucy, Oscar and Ricky are actually in a spaceship moving away from the Earth at a constant speed v.

What does this procedure look like in a different frame S'? Frame S moves to the right with speed *v* relative to frame S'.

• Oscar emits a light flash at $t = t^{\ell} = 0$ & $x = x^{\ell} = 0$.

What does this procedure look like in a different frame S'? Frame S moves to the right with speed *v* relative to frame S'.

- Oscar emits a light flash at t = t = 0 & x = x = 0.
- Light spreads outwards in a spherical wavefront.
- The wavefront reaches Lucy.

What does this procedure look like in a different frame S'? Frame S moves to the right with speed *v* relative to Frame S'.

- Oscar emits a light flash at $t = t^{\ell} = 0 \& x = x^{\ell} = 0$.
- Light spreads outwards in a spherical wavefront.
- The wavefront reaches Lucy.
- At some later time the wavefront reaches Ricky.

Remember this situation? Lucy & Ricky both emit light flashes at t = 0 in frame S.

Oscar receives both light flashes at t = (0 + 3 m)/c.

What does this procedure look like in a different frame S'? Frame S moves to the right with speed *v* relative to frame S'.

Important Point

If two events occur at the same point in space *and also* at the same point in time in frame S:

Event 1: Light from Lucy reaches Oscar -ct = +3 & x = 0Event 2: Light from Ricky reaches Oscar -ct = +3 & x = 0

...then they occur at the same point in spacetime in every inertial reference frame – only the coordinates are different.

A stationary light clock

5

	110	ne	\sim	10	٠.	\sim	-
- 1	- 11	$I \cap \square$	(11	11		1	rı
	- 11	\mathbf{I}	- CII	ıu	LI	v	

Page 25

Proper time

A stationary observer sees a moving clock run slow.

Stationary clocks measure the shortest time interval between two events.

Measuring the length of a rod

Summary of concepts

- Events that are simultaneous in one inertial frame and spatially separated, are non-simultaneous in another inertial frame.
- Time dilation: moving clocks run slow.
- Proper time: the time interval measured between 2 events by a stationary clock.
- Length contraction: moving objects are short.