

WT931 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: WT931

描 述: 9 轴姿态角度传感器

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

传感器生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期:2019.1.18

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	章小宝	20190118

目录

1	产品	概述6
2	性能	参数
3	引胠	说明 7 -
4	轴向	说明8 -
5	硬件	连接方法8
	5.1	连接 PC(电脑)端8 -
		5.1.1 串口连接:
		5.1.2 手机数据线
	5.2	连单片机10-
	5.3	IIC 连接 10 -
6	PC 端	软件使用方法11
	6.1	使用方法11
	6.2	恢复出厂设置 14 -
	6.3	模块校准 15 -
		6.3.1 加计校准
		6.3.2 磁场校准 16 -
		6.3.3 Z 轴归 0
		6.3.4 陀螺仪自动校准18 -
	6.4	设置回传内容 19 -
	6.5	设置回传速率 19 -
	6.6	设置通信波特率 20 -
	6.7	记录数据21 -
	6.8	安装方向 22 -
	6.9	休眠及解休眠22 -
	6.10	测量带宽设置 23 -
	6.1	设置 IIC 地址23 -
	6.12	九轴算法与六轴算法
	6.13	设置报警状态24 -

7	串口迪信	言协议	- 25 -
	7.1 模均	央至上位机:	25 -
	7.1.	1 时间输出:	- 25 -
	7.1.	2 加速度输出:	- 26 -
	7.1.	3 角速度输出:	- 26 -
	7.1.	4 角度输出:	- 26 -
	7.1.	5 磁场输出:	- 27 -
	7.1.	6 端口状态数据输出:	- 28 -
	7.1.	7 气压、高度输出:	- 28 -
	7.1.	8 经纬度输出:	- 28 -
	7.1.	9 地速输出:	- 29 -
	7.1.	10 四元素输出:	- 29 -
	7.1.	11 卫星定位精度输出:	29 -
	7.2 上位	立机至模块	- 30 -
	7.2.	1 寄存器地址表	- 30 -
	7.2.	2 保持配置	- 32 -
	7.2.	3 设置校准	- 32 -
	7.2.	4 设置安装方向	- 32 -
	7.2.	5 休眠与解休眠	- 32 -
	7.2.	6 算法转换	- 32 -
	7.2.	7 陀螺仪自动校准	- 32 -
	7.2.	8 设置回传内容	- 33 -
	7.2.	9 设置回传速率	- 34 -
	7.2.	10 设置串口波特率	- 34 -
	7.2.	11 设置 X 轴加速度零偏	34 -
	7.2.	12 设置 Y 轴加速度零偏	35 -
	7.2.	13 设置 Z 轴加速度零偏	35 -
	7.2.	14 设置 X 轴角速度零偏	35 -
	7.2.	15 设置 Y 轴角速度零偏	35 -

		· · · · · · · · · · · · · · · · · · ·
	7.2.16 设置 Z 轴角速度零偏	- 35 -
	7.2.17 设置 X 轴磁场零偏	36 -
	7.2.18 设置 Y 轴磁场零偏	36 -
	7.2.19 设置 Z 轴磁场零偏	36 -
8	IIC 通信协议:	36 -
	8.1 IIC 写入	38 -
	8.2 IIC 读取	38 -
g	应用领域	40 -

1 产品概述

- ◆ 模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进 的 动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度静态 0.05 度,动态 0.1 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 工作电压 3.3V,连接方便。
- ◆ 最高 500Hz 数据输出速率。输入内容可以任意选择,输出速率 0.1~500HZ 可调节。
- ◆ 4层 PCB 板工艺, 更薄、更小、更可靠。
- ◆ PLCC-28 封装大小,方便嵌入用户 PCB 板子中,注意:要加底板或者嵌入到其他 PCB 板子上,磁场芯片下方不能布线,以免干扰到磁力计。

2 性能参数

1、电压: 3.3V

2、电流: <25mA

3、体积: 12mm X 12mm X 2mm

4、焊盘间距:上下 1.27mm,左右 12mm

5、测量维度:加速度:3维,角速度:3维,磁场:3维,角度:3维

6、量程: 加速度:±2/4/8/16 g(可选), 角速度:±250/500/1000/2000 °/s(可选), 角度 X Z±180° Y 轴 ±90°。

8、稳定性:加速度: 0.01g,角速度 0.05°/s。

9、姿态测量精度: XY 动态 0.1° , 静态 0.05° 、Z 轴 1° (无磁场干扰且校准后)。

10、数据输出内容:相对时间、加速度、角速度、角度、磁场。

11、数据输出频率 0.1Hz~500Hz、默认 500HZ。

12、数据接口: 串口 (TTL 电平, 波特率支持 2400、4800、9600、19200、38400、57600、115200、230400、460800、921600 (默认))。

3 引脚说明

序号	名称	功能					
1	VCC	模块电源,3.3V					
13	RX	串行数据输入,TTL 电平					
14	TX	串行数据输出,TTL 电平					
8	GND	地线					
11	SCL	I2C 时钟线					
12	SDA	I2C 数据线					

2	D0	扩展端口 0
3	D1	扩展端口 1
4	D2	扩展端口 2
5	D3	扩展端口 3
6	D4	扩展端口 4
7	D5	GPS 输入
9	SWCLK	下载时钟线
10	SWDIO	下载数据传输线

4 轴向说明

如上图所示,模块的轴向在上图的右上方,向右为 X 轴,向上 Y 轴,垂直模块向外为 Z 轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。 X 轴角度即为绕 X 轴旋转方向的角度,Y 轴角度即为绕 Y 轴旋转方向的角度, Z 轴角度即为绕 Z 轴旋转方向的角度。

5 硬件连接方法

51 连接 PC(电脑)端

5.1.1 串口连接:

需要把 WT931 嵌入到评估版内。

与计算机连接,需要 USB 转 TTL 电平的串口模块。推荐以下两款 USB 转串口模块:

1. USB-TTL 串口模块: 把模块和 USB-TTL 连接好,在插到电脑上。模块和 USB-TTL 连接方法 是: 评估板的 5V/3V3 TX RX GND 分别于 USB 串口模块的+5V/3V3 RX TX GND 对应相接,

注意 TX 和 RX 需要交叉,即 TX 接 RX, RX 接 TX。2. 六合一模块:模块拨码开关 1 拨至 ON, 拨码开关 2 拨至 2, 开关 S1 拨至 other(丝印)。评估板的 5V/3V3 TX RX GND 分别于六合一模块的+5V/3V3 RX TX GND 对应相接,**注意 TX** 和 RX 需要交叉,即 TX 接 RX, RX 接 TX。

为了方便用户连接电脑上位机测试使用,用户可购买 USB-TTL串口连接测试。

Is a focus on inclinanteer and attitude sensor, the rotary controller is to focus on inclinanteer and attitude sensor, the RC

产品接上位机测试立方图

3.3V接3.3V、TX接RX、RX接TX、GND接GND

5.1.2 手机数据线

需要把 WT931 嵌入到评估版内。

用手机数据线(OTG 接头)将评估板连接到电脑

注意:必须是手机数据线,可以传输文件、数据的那种,普通的充电线是识别 不到串口的。

5.2 连单片机

5.3 IIC 连接

WT931 可以通过 IIC 接口连接 MCU,连接方法如下图所示。注意,为了能在 IIC 总线上面挂接多个模块,模块的 IIC 总线是开漏输出的,MCU 在连接模块时需要将 IIC 总线通过一个 4.7K 的电阻上拉到 VCC。

注意:如果用连接线,VCC为3.3V,要另外接电源供电。直接用模块上面的电源供电,可能会产生压降,使模块实际电压没有3.3V。

6 PC 端软件使用方法

6.1 使用方法

注意,上位机无法运行的用户请下载安装.net framework4.0:

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

转串口模块连接上电脑打开上位机,安装好串口模块对应的驱动 CP210X 以后,通过手机数据线连接电脑,需安装 CH340 驱动后,可以再设备管理器中查询到对应的端口号, 如图 所示:

打开 MiniIMU.exe 软件,在【资料包/上位机】中,点击串口选择菜单,选择刚才设备管理器里面看到的 COM 号。

在上位机软件上点击型号菜单选择模块类别型号为"Normal"。

在上位机软件上点击波特率菜单选择波特率,921600 选择完成后,上位机软件上即可出现数据。

当本次采集数据与上一次采集数据间隔时间较长时,图表更新会比较慢,此时可以右键点击图像,弹出清图栏,点击清图选项加快数据刷新速率。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。

6.2 恢复出厂设置

- 1.短接VCC和D0
- 2.给模块供电
- 3.等待2-3秒后,完成

恢复出厂设置的方法有两种、短路法和指令法。

短路法操作方法:将模块的 D0 引脚和 VCC 引脚用导线短路,然后给模块上电,持续 2-3 秒左右,完成恢复出厂设置操作。

指令法操作方法:将 WT931 模块和电脑通过 USB-TTL 模块连接好,点击设置选项栏,确认**配置栏右下角显示在线(online)状态,**点击恢复默认即可。恢复出厂设置以后,需对模块重新上电。(此方法需要提前知道模块的波特率,如果波特率不匹配指令将无法生效,请尝试使用短路法进行恢复)。

6.3 模块校准

注意:模块校准和配置要在上位机配置栏右下角显示在线(online)状态下进行,如下 图 所示,离线说明上位机没有控制到模块。

模块使用前,需要对模块进行校准。JY901 模块的校准包括加计校准、磁场校准。 JY61P 模块校准包括 Z 轴归 0、加计校准。

6.3.1 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需 要手动进行校准后,测量才会准确。

加计校准方法如下:

- 1.首先使模块保持水平静止,点击配置栏里的加速度,会弹出一个校准界面。
- 2.把自动计算选项勾上,上位机会自动计算加速度零偏值,再点击写入参数。

点击上位机左侧"数据"可以看到角度数据如下图所示:

 $3.1\sim2$ 秒后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0 ° 左右。校准后 X Y 轴角度就跟精确了。

注意: Z 轴水平静止的时候是有 1 个 G 的重力加速度的。

6.3.2 磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角 Z 轴角度测量的准确性。

磁场校准方法如下:

- 1. 校准时,先连接好模块和电脑,将模块放置于远离干扰磁场的地方(**即远离磁和铁等** 物质 **20CM 以上**),再打开上位机软件。
- 2. 在设置页面中,点击校准栏下的磁场按钮,就可以进入磁场校准模式,这时弹出 MagCal 窗口,在此窗口下点击开始校准。

3. 然后缓慢绕三个轴转动模块,让数据点在三个平面内画点,可以多转几圈,等画出 比较规则的椭圆以后,就可以停止校准了。校准完成后点击写入参数。

注意:数据点尽量在椭圆以内,不能再椭圆外面,如果不能画出椭圆,请远离磁场干扰,再参考校准视频,把模块放在地球磁场南北轴线上缓慢转圈。

校准视频: https://pan.baidu.com/s/1kVN0EZP

6.3.3 Z轴归 0

注意: WT931 只有在 6 轴模式下才能进行 Z 轴归 0 WT931 Z 轴角度是绝对角度,以东北天为坐标系,不能相对归 0。

Z 轴归 0 是使模块 Z 轴角度初始状态为相对 0 度角,模块使用前和 Z 轴漂移较大的情况下可以进行 Z 轴归 0 校准,模块上电时 Z 轴会自动归 0。

上位机 Z 轴归 0 方法如下: 首先模块静止放置,点击配置打开配置栏,在配置栏里面的"Z 轴角度置零"选项,模块数据栏里面可以看到 Z 轴角度回到 0°。

6.3.4 陀螺仪自动校准

陀螺仪校准是校准角速度, 传感器默认是有进行校准的。 只有当模块是匀速旋转的情况下,可以把陀螺仪自动校准去掉。

6.4 设置回传内容

设置方法:数据回传的内容可以根据用户需要进行定制,点击配置选项栏,在需要输出的数据内容前面打钩即可。以 WT931 为例,模块默认输出为加速度、角速度、角度、磁场。

时间为模块内部的时间,默认是以上电初始时刻为 2015 年 1 月 1 日 0:0:0.0。如果连接 GPS 模块,将 GPS 接收到的时间作为模块的时间。注意 GPS 时间会比北京时间晚 8 小时。

经纬度和地速信息仅在模块连接了 GPS 模块后有效。要获得正确的数据还需要将设置内容里面的"经纬度"、"地速"、"定位精度"勾选上。注意:勾选上"GPS 原始"之后模块只输出 GPS 原始的信息了,其它数据都不会输出。

6.5 设置回传谏率

设置方法:点击上位机配置选项,在配置栏里选择回传速率 0.1~500HZ 可选。

模块默认的回传速率是 500Hz, 回传的速率最高支持 500Hz。

500HZ 指的是 1S 回传 500 个数据包,按默认回传 1 个数据包是 44 个字节。

注意:如果回传内容较多,同时通信的波特率又较低的情况下,可能没法传输这么多数据,此时模块会自动降频,并以允许的最大输出速率进行输出。简单点说就是回传速率高的话,波特率也要设置高一点,一般用 921600。

6.6 设置通信波特率

设置方法:模块支持多种波特率,默认波特率为 921600。设置模块的波特率需要在软件与模块正确连接的基础上,在**配置栏 (JY9Config)** 里的通信速率下拉框中选择需要更改 的波特率。

注意: 更改以后,模块在原来的波特率下已经不输出数据了,要重新在上位机主界面 重 新选择已经更改好的波特率,才会输出数据。

6.7 记录数据

传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。 使用方法:点记录按钮可以将数据保存为文件

保存的文件在上位机程序的目录下 Data.tsv: 文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴向上的加速度,wx wy wz 分别表示 x y z 三个轴向上的角速度,Anglex Angley Anglez 分别表示 x y z 三个轴向的角度,T 代表时间,hx hy hz 分别表示 x y z 三个轴向上的磁场。

- Company		550.tsv - 记 式(O) <u> </u>	#G190000	H)							×
		-09-08 1	- 10 200 1 1 1 1 2 2 2 2 2 2 2 2		520	454	1xdo	98-1 3129			
	ax(g)				5)	wv(deg/s	3)	wz(deg/s)	A	ngleX	
(deg)	AngleY(deg)	AngleZ(deg)	T(°)		hy	hz			
21, 502	0.0879	0.0859	0.8608	0.0000	0.0000			-5.7458 119	4269		
38. 4200		-38	36								
21.517	0.0879	0.0859	0.8604	0.0000	0.0000	0.0000	5.6250	-5.7458 119	4269		
38. 4200	76	-38	36								
21.517	0.0879	0.0859	0.8604	0.0000	0.0000	0.0000	5.6250	-5.7458 119	4269		
38. 4200		-38	36								
21. 533	0.0864	0.0854	0.8608	0.0000	0.0000	0.0000	5.6250	-5.7458 119	4324		
38. 4300	75	-38	36								
21. 533	0.0864	0.0854	0.8608	0.0000	0.0000	0.0000	5.6250	-5.7458 119	4324		
38. 4300	74	-37	37								
21.549	0.0869	0.0854	0.8618	0.0000	0.0000	-0.0610	5.6250	-5.7458 119	4324		
38. 4400	74	-38	37								
21.549	0.0869	0.0859	0.8599	-0.0610	0.0610	-0.0610	5.6250	-5.7458 119	4379		
38. 4300	74	-39	37								
21.564	0.0869	0.0859	0.8599	-0.0610	0.0610	-0.0610	5.6250	-5.7458 119	4434		
38. 4300	74	-39	37								
21.564	0.0869	0.0854	0.8613	-0.0610	0.1221	-0.0610	5.6250	-5.7404 119	4489		
38. 4300		-39	38	erection CoCoCoCoCoCoCoCoCoCoCoCoCoCoCoCoCoCoC		energe CoCVIII St	18688169765058		PROPERTY (1997)		
21.564	0.0864	0.0845	0.8608	-0.0610	0.1831	-0.0610	5.6250	-5.7404 119	4543		
38. 4400	75	-38	38								
21.580	0.0864	0.0845	0.8608	-0.0610	0.1831	-0.0610	5.6250	-5.7404 119	4543		
38. 4400	75	-38	39								

6.8 安装方向

模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。 垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面 "安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。

6.9 休眠及解休眠

休眠:模块暂停工作,进入待机状态。休眠后可以降低功耗。 解休眠:模块从待机状态进入工作状态。

使用方法:模块默认为工作状态,在上位机配置栏里面点击"休眠"选项,进入休眠 状态,再点击"休眠"选项,模块解除休眠。

6.10 测量带宽设置

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。 使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为 20HZ。

6.11 设置 IIC 地址

模块的 IIC 通信地址默认为 0x50,可以通过软件更改。设置模块的 IIC 地址需要在软件与模块正确连接的基础上,在设置选项的 IIC 地址文本框内输入新的 16 进制 IIC 地址,再点后面的"更改"按钮。

注意: 更改以后, 模块的 IIC 地址不会立即更改, 需要重新上电以后, 才会生效。

6.12 九轴算法与六轴算法

- 6 轴算法, Z 轴角度主要是根据角速度积分解算的。
- 9 轴算法, Z 轴角度主要是根据磁场解算的, 不会有漂移现象。
- 当 WT931 使用环境有磁场干扰时,可以尝试用 6 轴算法检测角度。

九轴算法转 6 轴算法使用方法: 在上位机配置栏里吧算法改成"Axis6", 再进行加计

校准和 Z轴归零校准。校准完成后就可以正常使用了。

6.13 设置报警状态

通过上位机报警设置可以将下面引脚设置成报警状态输出口。以下面设置为例,平常状态 4 个端口输出为低电平(0V),XY 轴角度值大于 10°或者小于-10°的时候,对应端口会输出高电平(3.3V)。

名称	功能
D0	输出 X + 的报警状态
D1	输出 X-的报警状态
D2	输出 Y + 的报警状态
D3	输出 Y-的报警状态

7 串口通信协议

电平: TTL 电平(非 RS232 电平, 若将模块错接到 RS232 电平可能造成模块损坏) 波特率: 2400、4800、9600、19200、38400、57600、115200、230400、460800、921600(默 认), 停止位 1, 校验位 0。

7.1 模块至上位机:

7.1.1 时间输出:

0-55	0.50	3737	101	DD	1111	101	CC	MOT	MOII	CLIM
0x55	0x50	YY	MM	DD	HH	MM	SS	MSL	MSH	SUM
YY	: 年, 20	YY 年								
MN	1: 月									
DD	: 日									
HH	: 时									
MM: 分										
SS:	秒									
MS	: 毫秒									

毫秒计算公式:

MS=((MSH << 8)|MSL)

Sum=0x55+0x50+YY+MM+DD+HH+MM+SS+MSL+MSH

7.1.2 加速度输出:

0x55 0x51 AxL AxH AyL AyH AzL AzH TL TH SUN

计算方法:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_z=((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

温度计算公式:

T=((TH<<8)|TL) /100 °C

校验和:

Sum=0x55+0x51+AxH+AxL+AyH+AyL+AzH+AzL+TH+TL 说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、每个数据分低字节和高字节依次传送,二者组合成一个有符号的short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下: 假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:

Data=(short)(DataH<<8|DataL)。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

 $\underline{\text{http://www.openedv.com/forum.php?mod=viewthread\&tid=79352\&page=1\&extra=\#pid450195}$

7.1.3 角速度输出:

0x55	0x52	wxL	wxH	wyL	wyH	wzL	wzH	TL	TH	SUM	
------	------	-----	-----	-----	-----	-----	-----	----	----	-----	--

计算方法:

 $w_x = ((wxH \le 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_v = ((wyH << 8)|wyL)/32768*2000(°/s)$

 $w_z = ((wzH \le 8)|wzL)/32768*2000(^{\circ}/s)$

温度计算公式:

T=((TH<<8)|TL) /100 °C

校验和:

Sum = 0x55 + 0x52 + wxH + wxL + wyH + wyL + wzH + wzL + TH + TL

7.1.4 角度输出:

0x35 0x35 RollE RollII I RollII		0x55	0x53	RollL	RollH	PitchL	PitchH	YawL	YawH	TL	TH	SUM
---	--	------	------	-------	-------	--------	--------	------	------	----	----	-----

计算方法:

滚转角(x 轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y轴) Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

温度计算公式:

T=((TH<<8)|TL) /100 °C

校验和:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL

注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块,如下图所示向左为 X 轴,向前为 Y 轴,向上为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为为 z-y-x,即先绕 z 轴转,再绕 y 轴转,再绕 x 轴转。
- 2. 滚转角的范围虽然是±180 度,但实际上由于坐标旋转顺序是 Z-Y-X, 在表示姿态的时候,俯仰角(Y轴)的范围只有±90 度,超过 90 度后会变换到小于 90 度,同时让 X 轴的角度大于180 度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动,X 轴的角度也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

7.1.5 磁场输出:

0x55 0x54 HxL	HxH HyL		HzH TL TH	SUM
---------------	---------	--	-----------	-----

计算方法:

磁场(x轴)Hx=((HxH<<8)|HxL)

磁场 (y轴) Hy=((HyH <<8)|HyL)

磁场 (z 轴) Hz =((HzH<<8)| HzL)

温度计算公式:

T=((TH<<8)|TL) /100 ℃

校验和:

Sum=0x55+0x54+HxH+HxL+HyH+HyL+HzH+HzL+TH+TL

7.1.6 端口状态数据输出:

0x55	0x55	D0L	D0H	D1L	D1H	D2L	D2H	D3L	D3H	SUM

计算方法:

D0 = (D0H << 8)|D0L

D1 = (D1H << 8)|D1L

D2 = (D2H << 8)|D2L

D3 = (D3H << 8)|D3L

说明:

当端口模式设置为模拟输入时,端口状态数据表示模拟电压。实际电压的大小按照下 面公式计算:

U=DxStatus/1024*Uvcc

U_{vcc} 为芯片的电源电压,由于片上有 LDO,如果模块供电电压大于 3.5V, U_{vcc}为 3.3V。如果模块供电电压小于 3.5V, U_{vcc}=电源电压-0.2V。

当端口模式设置为数字量输入时,端口状态数据表示端口的数字电平状态,高电平为 1,低电平为 0。

当端口模式设置为高电平输出模式时,端口状态数据为 1。

当端口模式设置为低电平输出模式时,端口状态数据位 0。

当端口模式设置为 PWM 输出时,端口状态数据表示高电平宽度,以 us 为单位。

7.1.7 气压、高度输出:

	0x55	0x56	P0	P1	P2	Р3	Н0	H1	H2	Н3	SUM
- 1								1	1		I

计算方法:

= = ((P3 << 24) | (P2 << 16) | (P1 << 8) | P0 (Pa)

高度 H=((H3<<24)|(H2<<16)|(H1<<8)|H0 (cm)

校验和:

Sum=0x55+0x56+P0+P1+P2+P3+H0+H1+H2+H3

7.1.8 经纬度输出:

外接的 GPS 必须符合 NMEA-0813 协议(V2.0)

计算方法:

经度 Lon = ((Lon 3<<24)| (Lon 2<<16)| (Lon 1<<8)| Lon 0

NMEA8013 标准规定 GPS 的经度输出格式为 ddmm.mmmmm(dd 为度, mm.mmmmm 为分), JY-901 输出时去掉了小数点, 因此经度的度数可以这样计算:

dd=Lon/10000000;

经度的分数可以这样计算:

mm.mmmm=(Lon%10000000)/100000; (%表示求余数运算)

纬度 Lat = ((Lat 3<<24)| (Lat 2<<16)| (Lat 1<<8)| Lat 0

NMEA8013 标准规定 GPS 的纬度输出格式为 ddmm.mmmmm(dd 为度, mm.mmmmm 为分), JY-901 输出时去掉了小数点, 因此纬度的度数可以这样计算:

dd=Lat/10000000;

纬度的分数可以这样计算:

mm.mmmm=(Lat%10000000)/100000; (%表示求余数运算)
sprintf(str, "Longitude:%ldDeg%.5fm Lattitude:%ldDeg%.5fm\r\n", stcLo
nLat.1Lon/10000000, (double) (stcLonLat.1Lon %

10000000)/1e5, stcLonL

at. lLat/10000000, (double) (stcLonLat. lLat % 10000000)/1e5);

校验和:

Sum=0x55+0x57+ Lon 0+ Lon 1+ Lon 2+ Lon 3+ Lat 0+ Lat 1+ Lat 2+ Lat 3

7.1.9 地速输出:

0x55	0x58	GPSHeightL	GPSHeightH	GPSYawL	GPSYawH
GPSV0	GPSV 1	GPSV 2	GPSV 3	SUM	

计算公式:

GPSHeight = ((GPSHeightH<<8)| GPSHeightL)/10 (m)

GPSYaw = (GPSYawH << 8)|GPSYawL)/10 (°)

GPSV = (((GPSV3<<24)| (GPSV 2<<16)| (GPSV 1<<8)| GPSV 0)/1000 (km/h)

校验和:

 $Sum = 0x55 + 0x58 + GPSHeightL + GPSHeightH + GPSYawL + GPSYawH + GPSV0 + GPSV \\ 1 + GPSV \\ 2 + GPSV \\ 3$

7.1.10 四元素输出:

0x55 0x59 Q0L Q0H Q1L	Q1H Q2L	Q2H Q3L	Q3H SUM]
-----------------------	---------	---------	---------	---

计算方法:

Q0=((Q0H<<8)|Q0L)/32768

Q1=((Q1H<<8)|Q1L)/32768

Q2=((Q2H<<8)|Q2L)/32768

Q3=((Q3H << 8)|Q3L)/32768

校验和:

Sum=0x55+0x59+Q0L+Q0H+Q1L +Q1H +Q2L+Q2H+Q3L+Q3H

7.1.11 卫星定位精度输出:

|--|

计算方法:

卫星数: SN=((SNH<<8)|SNL)

位置定位精度: PDOP=((PDOPH<<8)|PDOPL)/10

水平定位精度: HDOP=((HDOPH<<8)|HDOPL)/100

垂直定位精度: VDOP=((VDOPH<<8)| VDOPL)/100

校验和:

Sum = 0x55 + 0x5A + SNL + SNH + PDOPL + PDOPH + HDOPL + HDOPH + VDOPL + VDOPH

7.2 上位机至模块

说明: s

1. 出厂默认设置使用串口,波特率 921600,帧率 500Hz。配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。

2. 数据格式

0xFF	0xAA	Address	DataL	DataH

7.2.1 寄存器地址表

地址	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	RSW	回传数据内容
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X轴加速度零偏
0x06	AYOFFSET	Y轴加速度零偏
0x07	AZOFFSET	Z轴加速度零偏
0x08	GXOFFSET	X轴角速度零偏
0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏
0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	D0PWMH	D0PWM 高电平宽度
0x13	D1PWMH	D1PWM 高电平宽度
0x14	D2PWMH	D2PWM 高电平宽度
0x15	D3PWMH	D3PWM 高电平宽度
0x16	D0PWMT	D0PWM 周期
0x17	D1PWMT	D1PWM 周期
0x18	D2PWMT	D2PWM 周期
0x19	D3PWMT	D3PWM 周期
0x1a	IICADDR	IIC 地址

		VV VV . VV IL-111C
0x1b	LEDOFF	关闭 LED 指示灯
0x1c	GPSBAUD	GPS 连接波特率
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	HY	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度
0x40	TEMP	模块温度
0x41	D0Status	端口 D0 状态
0x42	D1Status	端口 D1 状态
0x43	D2Status	端口 D2 状态
0x44	D3Status	端口 D3 状态
0x45	PressureL	气压低字
0x46	PressureH	气压高字
0x47	HeightL	高度低字
0x48	HeightH	高度高字
0x49	LonL	经度低字
0x4a	LonH	经度高字
0x4b	LatL	纬度低字
0x4c	LatH	纬度高字
0x4d	GPSHeight	GPS 高度
0x4e	GPSYaw	GPS 航向角
0x4f	GPSVL	GPS 地速低字
0x50	GPSVH	GPS 地速高字
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3
UAU I	42	H70% Y2

7.2.2 保持配置

0xFF	0x A A	0x00	SAVE	0x00
OALL	0/11/11/1	OAGO	DILVE	OAGO

SAVE: 设置

0: 保持当前配置

1: 恢复默认配置并保存

7.2.3 设置校准

0xFF	0xAA	0x01	CALSW	0x00
0.22	V	0.101	0.1.2.2.0.1.	0.1200

CALSW: 设置校准模式

0: 退出校准模式

1: 进入加速度计校准模式

2: 进入磁场校准模式

3: 高度置 0

7.2.4 设置安装方向

0xFF	0x A A	0x23	DIRECTION	0x00
0711	071111	07123	Difference	07100

DIRECTION: 设置安装方向

0: 设置为水平安装

1: 设置为垂直安装

7.2.5 休眠与解休眠

0xFF	0xAA	0x22	0x01	0x00

发送该指令模块进入休眠(待机)状态,再发送一次,模块从待机状态进入工作状态。

7.2.6 算法转换

0xFF	0xAA	0x24	ALG	0x00
0711 1	0.11.11.1	0712	1120	07100

ALG: 九轴算法与六轴算法设置

0: 设置成 9 轴算法

1: 设置成 6 轴算法

7.2.7 陀螺仪自动校准

0xFF 0xAA 0x63	GYRO	0x00
----------------	------	------

GYRO: 陀螺仪校准设置

0: 选择陀螺仪自动校准

1: 去掉陀螺仪自动校准

7.2.8 设置回传内容

0x	:FF	0xAA	0x02	RSWL	RSWH
----	-----	------	------	------	------

RSWL 位定义

位	7	6	5	4	3	2	1	0
名称	0x57 包	0x56 包	0x55 包	0x54 包	0x53 包	0x52 包	0x51 包	0x50 包
默认值	0	0	0	1	1	1	1	0

RSWH 位定义

位	7	6	5	4	3	2	1	0
名称	X	X	X	X	X	0x5A 包	0x59 包	0x58 包
默认值	0	0	0	0	0	0	0	0

X为未定义名称。

0x50包:时间信息包

0: 不输出 0x50 数据包

1: 输出 0x50 数据包

0x51 包:加速度信息包

0: 不输出 0x51 数据包

1: 输出 0x51 数据包

0x52 包: 角速度信息包

0: 不输出 0x52 数据包

1: 输出 0x52 数据包

0x53 包:角度信息包

0: 不输出 0x53 数据包

1: 输出 0x53 数据包

0x54 包: 磁场信息包

0: 不输出 0x54 数据包

1: 输出 0x54 数据包

0x55 包: 端口状态

0: 不输出 0x55 数据包

1: 输出 0x55 数据包

0x56 包: 气压&高度包

0: 不输出 0x56 数据包

1: 输出 0x56 数据包

0x57 包: 经纬度包

0: 不输出 0x57 数据包

1: 输出 0x57 数据包

0x58包:地速数据包

0: 不输出 0x58 数据包

1: 输出 0x58 数据包

0x59包:四元素输出包

0: 不输出 0x59 数据包

1: 输出 0x59 数据包

0x5A:卫星定位精度

0: 不输出 0x5A 数据包

1: 输出 0x5A 数据包

7.2.9 设置回传速率

0xFF	Ων Λ. Λ	0×03	DATE	0200
OXI I	UXAA	UXUS	INAIL	UXUU

RATE: 回传速率

0x00: 0.1Hz

0x01: 0.2Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz

0x07: 20Hz

0x08: 50Hz

0x09: 100Hz

0x0a: 125Hz

0x0b: 250Hz

0x0c: 500Hz

0x0d: 单次输出

设置完成以后需要点保存配置按钮, 再给模块重新上电后生效

7.2.10 设置串口波特率

0xFF	0xAA	0x04	BAUD	0x00
------	------	------	------	------

BAUD: 波特率设置

0x00: 2400

0x01: 4800

0x02: 9600

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600 (默认)

7.2.11 设置 X 轴加速度零偏

0xFF 0xAA	0x05	AXOFFSETL	AXOFFSETH
-----------	------	-----------	-----------

AXOFFSETL: X 轴加速度零偏低字节

AXOFFSETH: X 轴加速度零偏高字节

AXOFFSET= (AXOFFSETH <<8) | AXOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.12 设置 Y 轴加速度零偏

0xFF 0xAA 0x06 AYOFFSETL AYOFFSETH

AYOFFSETL: Y 轴加速度零偏低字节

AYOFFSETH: Y 轴加速度零偏高字节

AYOFFSET= (AYOFFSETH <<8) | AYOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.13 设置 Z 轴加速度零偏

0xFF 0xAA 0x07 AZOFFSETL AZOFFSETH

AZOFFSETL: Z轴加速度零偏低字节 AZOFFSETH: Z轴加速度零偏高字节

AZOFFSET= (AZOFFSETH <<8) | AZOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.14 设置 X 轴角速度零偏

0xFF 0xAA 0x08 GXOFFSETL GXOFFSETH

GXOFFSETL: X轴角速度零偏低字节

GXOFFSETH: X 轴角速度零偏高字节

GXOFFSET= (GXOFFSETH <<8) | GXOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.15 设置 Y 轴角速度零偏

0xFF0xAA0x09GYOFFSETLGYOFFSETH

GYOFFSETL: Y轴角速度零偏低字节

GYOFFSETH: Y轴角速度零偏高字节

GYOFFSET= (GYOFFSETH <<8) | GYOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.16 设置 Z 轴角速度零偏

0xFF0xAA0x0AGXOFFSETLGXOFFSETH

GZOFFSETL: Z轴角速度零偏低字节

GZOFFSETH: Z轴角速度零偏高字节

GZOFFSET= (GZOFFSETH <<8) | GZOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.17 设置 X 轴磁场零偏

 0xFF
 0xAA
 0x0b
 HXOFFSETL
 HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.18 设置 Y 轴磁场零偏

 0xFF
 0xAA
 0x0c
 HXOFFSETL
 HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.19 设置 Z 轴磁场零偏

0xFF 0xAA 0x0d HXOFFSETL HXOFFSETH

HXOFFSETL: Z轴磁场零偏低字节 HXOFFSETH: Z轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,磁场的输出值为传感器测量值减去零偏值。

8 IIC 通信协议:

JY-901 模块可以完全通过 IIC 进行访问,IIC 通信速率最大支持 400khz,从机地址为为7bit,默认地址为 0x50,可以通过串口指令或者 IIC 写地址的方式更改。IIC 总线上面可以挂多个 GY-901 模块,但需提前将模块的 IIC 地址修改为不同的地址。

模块的 IIC 协议采用寄存器地址访问的方式。每个地址内的数据均为 16 位数据,占 2 个字节。寄存器的地址及含义如下表:

	114 111114					
地址 RegAddr	符号	含义				
0x00	SAVE	保存当前配置				
0x01	CALSW	校准				
0x02	RSW	回传数据内容				
0x03	RATE	回传数据速率				
0x04	BAUD	串口波特率				
0x05	AXOFFSET	X轴加速度零偏				
0x06	AYOFFSET	Y轴加速度零偏				
0x07	AZOFFSET	Z轴加速度零偏				
0x08	GXOFFSET	X轴角速度零偏				

0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏
0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	D0PWMH	D0PWM 高电平宽度
0x13	D1PWMH	D1PWM 高电平宽度
0x14	D2PWMH	D2PWM 高电平宽度
0x15	D3PWMH	D3PWM 高电平宽度
0x16	D0PWMT	D0PWM 周期
0x17	D1PWMT	D1PWM 周期
0x18	D2PWMT	D2PWM 周期
0x19	D3PWMT	D3PWM 周期
0x1a	IICADDR	IIC 地址
0x1b	LEDOFF	关闭 LED 指示灯
0x1c	GPSBAUD	GPS 连接波特率
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	HY	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度
0x40	TEMP	模块温度
0x41	D0Status	端口 D0 状态
0x42	D1Status	端口 D1 状态
0x43	D2Status	端口 D2 状态
0x44	D3Status	端口 D3 状态

PressureL	气压低字		
PressureH	气压高字		
HeightL	高度低字		
HeightH	高度高字		
LonL	经度低字		
LonH	经度高字		
LatL	纬度低字		
LatH	纬度高字		
GPSHeight	GPS 高度		
GPSYaw	GPS 航向角		
GPSVL	GPS 地速低字		
GPSVH	GPS 地速高字		
Q0	四元素 Q0		
Q1	四元素 Q1		
Q2	四元素 Q2		
Q3	四元素 Q3		
	PressureH HeightL HeightH LonL LonH LatL LatH GPSHeight GPSYaw GPSVL GPSVH Q0 Q1 Q2		

8.1 IIC 写入

IIC 写入的时序数据格式如下

IICAddr<<1 RegAd	r Data1L	Data1H	Data2L	Data2H	•••••	
------------------	----------	--------	--------	--------	-------	--

首先IIC 主机向JY-901 模块发送一个Start 信号,在将模块的 IIC 地址 IICAddr 写入,在写入寄存器地址 RegAddr,在顺序写入第一个数据的低字节,第一个数据的高字节,如果还有数据,可以继续按照先低字节后高字节的顺序写入,当最后一个数据写完以后, 主机向模块发送一个停止信号,让出 IIC 总线。

当高字节数据传入 JY-901 模块以后,模块内部的寄存器将更新并执行相应的指令,同时模块内部的寄存器地址自动加 1,地址指针指向下一个需要写入的寄存器地址,这样可以实现连续写入。

以设置端口 0 为高电平输出模式为例,RegAddr 为 0x0e,DataL 为 0x02,DataH 为 0x00。逻辑分析仪捕获的波形如下图所示:

通过寄存器对模块进行设置的方法与串口协议一致,寄存器说明参考 7.1 节。

8.2 IIC 读取

IIC 写入的时序数据格式如下

IICAddr<<1 RegAddr (IICAddr<<1) 1	Data1L	Data1H	Data2L	Data2H	•••••	
-----------------------------------	--------	--------	--------	--------	-------	--

首先 IIC 主机向 WT931 模块发送一个 Start 信号,在将模块的 IIC 地址 IICAddr 写入,在写入寄存器地址 RegAddr,主机再向模块发送一个读信号(IICAddr<<1)|1,如果是默认地址 0x51,那么发送的数据为 0xa1,此后模块将按照先低字节,后高字节的顺序输出数据,主机需在收到每一个字节后,拉低 SDA 总线,向模块发出一个应答信号,待接收完指定数量的数据以后,主机不再向模块回馈应答信号,此后模块将不再输出数据, 主机向模块再发送一个停止信号,以结束本次操作。

以读出模块的角度数据为例,RedAddr 为 0x3d、0x3e、0x3f,连续读取 6 个字节,逻辑分析仪捕获的波形如下图所示:

从 0x3d 开始读取出来的数据依次为 0x9C,0x82,0x28,0xFF,0xE6,0x24。也就是说 X 轴的角度为 0x829C,Y 轴的角度为 0xFF28,Z 轴的角度为 0x24E6。按照 7.2.4 节的公式可以求出转化出来的角度为: X 轴角度-176.33°,Y 轴角度为-1.19°,Z 轴角度为 51.89°。

9 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司 WitMotion ShenZhen Co., Ltd

WT931 姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦