# Machine learning approach to the inverse Ising problem

Martí Pedemonte Bernat

Universitat de Barcelona Faculty of Physics



Treball de Final de Grau 31st of January 2020

#### Introduction

Two different problems in physics:

- Direct\forward problem: Predict the behavior of a system applying a model with known parameters (e.g., weather forecasting).
- Reverse\inverse problem: Determine the parameters of a model from a set of observations (e.g., X-ray computed tomography).

2 / 24

## Introduction: The Ising model

#### Ising model

Mathematical model consisting of a set of binary variables (spins),  $\sigma \equiv \{\sigma_i\} \ i=1,\ldots,N$  with  $\sigma_i=\pm 1$ , subject to external fields  $h_i$  and coupled by pairwise couplings  $J_{ii}$ .

Hamiltonian:

$$H_{J,h}(\sigma) = -\sum_{i} h_i \sigma_i - \sum_{i < j} J_{ij} \sigma_i \sigma_j$$

Boltzmann distribution:

$$P(\sigma) = rac{\mathrm{e}^{-eta H_{m{J},m{h}}(\sigma)}}{Z(m{J},m{h})} \;, \qquad \qquad ext{with} \qquad \qquad Z(m{J},m{h}) = \sum_{m{\sigma}} \mathrm{e}^{-eta H_{m{J},m{h}}(m{\sigma})}$$

## Introduction: The Ising model

Origin and first solutions of the direct problem:

- 1920: Lenz proposes the Ising model to describe ferromagnetism.
- 1925: Ising solves the 1D direct pure case (h = h, J = J).
- 1944: Onsager solves the 2D direct pure case.

If  $\mathbf{h} = \{h_i\}$ ,  $\mathbf{J} = \{J_{ij}\}$  are random variables that can take both positive and negative values, it is called *Ising spin glass*.

- Originally proposed to describe frustrated magnets.
- Much harder, no exact solution known in 2D.

4 / 24

## Introduction: The inverse Ising problem and applications

## Inverse Ising problem

Determination of the couplings  $J_{ij}$  and local fields  $h_i$  of the Ising model, given a set of M observed spin configurations, assumed to be Boltzmann distributed.

Some applications of the inverse Ising problem:

- Modelling neural firing patterns in a biological network of cells
- Modelling interactions between species and individuals
- Combinatorial antibiotic treatment
- Protein structure determination
- Financial markets

## Theory behind the inverse Ising problem

Different methods of solving the inverse Ising problem:

- Mean-Field Theory
- Thouless-Anderson-Palmer (TAP) Reconstruction
- Bethe-Peierls approximation
- Maximum likelihood
- Maximum pseudolikelihood

## Theory behind the inverse Ising problem: Likelihood

#### Maximum likelihood estimator

Given a set of observations  $D = \{ \mathbf{s}^1, \mathbf{s}^2, \dots, \mathbf{s}^M \}$  from a statistical model  $p(D | \mathbf{J}, \mathbf{h})$ , where  $\mathbf{J}, \mathbf{h}$  are unknown, the *maximum likelihood estimator* is defined as  $(\widehat{\mathbf{J}}, \widehat{\mathbf{h}}) = \underset{\mathbf{J}, \mathbf{h}}{\operatorname{argmax}} \ p(D | \mathbf{J}, \mathbf{h})$ 

Applying the logarithm to the likelihood, assuming spin configurations were sampled independently from the Boltzmann distribution, given a set of observed spin configurations  $D = \{s^{\mu}\}, \ \mu = 1, \dots, M$ :

$$L_D(\boldsymbol{J}, \boldsymbol{h}) = \frac{1}{M} \ln p(D | \boldsymbol{J}, \boldsymbol{h}) = \frac{1}{M} \ln \left[ \prod_{\mu} \frac{1}{Z} e^{-\beta H_{\boldsymbol{J}, \boldsymbol{h}}(\boldsymbol{s}^{\mu})} \right]$$
$$= \beta \sum_{i < i} J_{ij} \langle \sigma_i \sigma_j \rangle^D + \beta \sum_{i} h_i \langle \sigma_i \rangle^D - \ln Z(\boldsymbol{J}, \boldsymbol{h})$$

7 / 24

## Theory behind the inverse Ising problem: Likelihood

Differentiating the log-likelihood and setting the derivatives to zero:

$$\beta^{-1} \frac{\partial L_D}{\partial h_i} (\boldsymbol{J}, \boldsymbol{h}) = \langle \sigma_i \rangle^D - \langle \sigma_i \rangle = 0$$
$$\beta^{-1} \frac{\partial L_D}{\partial J_{ij}} (\boldsymbol{J}, \boldsymbol{h}) = \langle \sigma_i \sigma_j \rangle^D - \langle \sigma_i \sigma_j \rangle = 0$$

Boltzmann machine learning (ML):

$$h_i^{n+1} = h_i^n + \eta \frac{\partial L_D}{\partial h_i} (\boldsymbol{J}^n, \boldsymbol{h}^n)$$
  
$$J_{ij}^{n+1} = J_{ij}^n + \eta \frac{\partial L_D}{\partial J_{ii}} (\boldsymbol{J}^n, \boldsymbol{h}^n)$$

This method is impractical for bigger systems: averages over  $2^N$  spin configurations.

## Theory behind the inverse Ising problem: Pseudolikelihood

The pseudolikelihood is an approximation of the log-likelihood function that, when maximized, leads to the exact same parameters as the log-likelihood in the  $M \to \infty$  limit.

- Callen's identities:  $\langle \sigma_i \rangle = \langle \tanh(\beta h_i + \beta \sum_{k \neq i} J_{ik} \sigma_k) \rangle$  $\langle \sigma_i \sigma_j \rangle = \langle \sigma_j \tanh(\beta h_i + \beta \sum_{k \neq i} J_{ik} \sigma_k) \rangle$
- **Key assumption:** replacement of Boltzmann averages  $\langle \cdot \rangle$  in Callen's identities by the sample means  $\langle \cdot \rangle^D$ .

Pseudolikelihood function for  $\mu = 1, ..., M$  and i = 1, ..., N:

$$egin{aligned} PL_D(oldsymbol{J},oldsymbol{h}) &= \sum_i rac{1}{M} \sum_{\mu} \ln p(s_i^{\mu} | \{s_j^{\mu}\}_{j 
eq i}) \ &= rac{1}{M} \sum_{\mu,i} \ln rac{1}{2} \left[ 1 + s_i^{\mu} anh \left( eta h_i + eta \sum_{j 
eq i} J_{ij} s_j^{\mu} 
ight) 
ight]. \end{aligned}$$

## Methodology: Simulated annealing

- We chose simulated annealing (SA) in order to avoid local minima.
- We found the global minimum of  $-PL_D$ .

#### Simulated annealing pseudocode: Data: problem, a problem schedule, a function from time to the variable "temperature" Result: A solution node Local variables: current, a node next, a node T. a given "temperature" which regulates the probability $current \leftarrow getNode(initialState[problem])$ for $t \leftarrow 1$ to $\infty$ do $T \leftarrow schedule[t]$ if T = 0 then return current $next \leftarrow a$ randomly selected successor of current $\Delta E \leftarrow \text{value}[current] - \text{value}[next]$ if $\Delta E > 0$ then current $\leftarrow$ next else $current \leftarrow next$ with probability $e^{\Delta E/T}$ end

## Methodology: Simulated annealing

#### Considerations:

- Solution space:  $h_i \in [-1, 1], J_{ij} \in [-1, 1].$
- Since  $PL_D$  is a function of order 1,  $T_0 = 2$  was chosen.
- The temperature dependency is  $T(k) = \frac{T_0}{k}$ , where k is the current elementary move number.

## Results: Sherrington-Kirkpatrick model

## Sherrington-Kirkpatrick model

Ising model where each spin is coupled to every other spin in the system (infinite-range interactions).

- All configurations obtained and M sampled from Boltzmann distribution.
- · Random pairwise couplings and field.
- Only small systems  $(N \in \{4, 8, 12, 16\})$ .
- M=15000 spin configurations,  $\tau=500$  MCS.
- Each MCS is  $R = N + \frac{N(N-1)}{2}$  elementary moves.
- Relative squared error:  $\gamma = \sqrt{\frac{\sum_i (h_i^0 h_i)^2 + \sum_{i < j} (J_{ij}^0 J_{ij})^2}{\sum_i (h_i^0)^2 + \sum_{i < j} (J_{ij}^0)^2}}$

# Results: Sherrington-Kirkpatrick model



#### Relative errors:

| N (spins) | 4     | 8     | 12    | 16    |
|-----------|-------|-------|-------|-------|
| $\gamma$  | 0.022 | 0.054 | 0.085 | 0.083 |

### 2D short-range interaction model

2D Ising model where each spin is only coupled to its nearest neighbors.

- All data was given by the advisor.
- Three different samples for three different values of  $\beta$ :  $\beta_1 = 2.0$ ,  $\beta_2 = 0.92$ ,  $\beta_3 = 0.5$ .
- Two system sizes: N = 16 and N = 64.

• 
$$h_i = 0 \ \forall i \Rightarrow \gamma = \sqrt{\frac{\sum_{i < j} (J_{ij}^0 - J_{ij})^2}{\sum_{i < j} (J_{ij}^0)^2}}$$
.

- Toroidal boundary conditions  $\Rightarrow \#J_{ii} = 2N = R$ .
- M=25000 spin configurations for each sample and value of  $\beta$ , and  $\tau=200$  MCS.





Recall the pseudolikelihood function:

- SK model:  $PL_D(\textbf{\textit{J}},\textbf{\textit{h}}) = \sum_i \frac{1}{M} \sum_{\mu} \ln \frac{1}{2} [1 + s_i^{\mu} \tanh(\beta h_i + \beta \sum_{j \neq i} J_{ij} s_j^{\mu})], \ \mathcal{O}(MN^2)$
- Short-range:  $PL_D(\mathbf{J}, \mathbf{h}) = \sum_i \frac{1}{M} \sum_{\mu} \ln \frac{1}{2} [1 + s_i^{\mu} \tanh(\beta h_i + \beta \sum_{\langle i,j \rangle} J_{ij} s_j^{\mu})], \mathcal{O}(MN)$

Denoting a class like  $\omega_i^{\alpha}(\mathbf{J})$ , and the frequency of that class like  $C_i^{\alpha}$ , for a short-range interaction model with no field we have:

$$PL_D(\boldsymbol{J}, \boldsymbol{h}) = \frac{1}{M} \sum_{i} \sum_{\alpha=1}^{32} C_i^{\alpha} \ln \frac{1}{2} [1 + \omega_i^{\alpha}(\boldsymbol{J})], \text{ with } \mathcal{O}(N)$$

Using this faster way to computing the pseudolikelihood, we have done more simulations:

- We have done five runs of each sample with  $\tau = 2000$  MCS.
- The temperature schedule for the SA is  $T(t) = T_0 \cdot e^{-5\frac{t}{\tau}}$ , slower than before.
- The last 25% of MCS have been performed at T=0.





Bigger simulation:  $L=32 \Rightarrow N=32^2=1024$ , M=25000,  $\beta=\beta_2=0.92$ , exponential temperature dependency in SA.



Maximum offset: less than 0.04. Final error: 0.017.

Applying the class technique to the jacobian of the pseudolikelihood, we have been able to maximize  $PL_D$  using gradient descent, a convex optimization algorithm. The final results are shown in this table:

|                               | $\gamma(\beta_1=2)$ | $\gamma(\beta_2=0.92)$ | $\gamma(\beta_3=0.5)$ |
|-------------------------------|---------------------|------------------------|-----------------------|
| $L = 4 \ (M = 25000), \ SA$   | 0.036               | 0.020                  | 0.024                 |
| L = 4 (M = 25000), GD         | 0.026               | 0.020                  | 0.024                 |
| L = 8 (M = 25000), SA         | 0.064               | 0.018                  | 0.023                 |
| L = 8 (M = 25000), GD         | 0.060               | 0.018                  | 0.024                 |
| $L = 8 \ (M = 15000), \ SA$   | 0.097               | 0.025                  | 0.036                 |
| L = 8 (Nguyen <i>et al.</i> ) | >1.0                | 0.135                  | 0.158                 |

## Conclusions

- Small improvement with exponential schedule in SA.
- Much bigger system sizes could be solved using this new way to computing the PL<sub>D</sub>.
- Small differences between gradient descent and simulated annealing.
- For non-convex problems, better SA.

## Thank you!

Thank you for your attention!