

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

(Academic Session: 2020 – 21)

PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B.TECH	Semester:	III
Paper Title :	ELECTRONIC DEVICES	Paper Code:	EEC42101
Maximum Marks :	40	Time duration:	3 hours
Total No of questions:	08	Total No of Pages:	02
Note:	 All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. Submit scan copy of the answers on A4 sheet. 		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- **1. a)** What do you understand by compensated semiconductor??
 - **b**) Briefly explain the base width modulation of a BJT.
 - c) How to calculate the overall gain of a Multi-stage Amplifier?
 - d) Explain with suitable diagram n-MOSFET.
 - e) How to find out the efficiency of a solar cell?

GROUP-B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. Design and briefly explain the input and output characteristics of an amplifier operated in Common Base (CB) configurations.
- **3.** Write down the working principle of a PIN photo diode.
- **4.** Design a Direct Coupled Amplifier using transistor and also explain the class of its operation.
- 5. A Si p-n junction diode with doping concentration in p and n region $3x10^{17} \text{cm}^{-3}$ and 10^{15} cm^{-3} respectively is in equilibrium. Calculate the contact potential for it at room temperature.

GROUP-C

Answer *any two* of the following $2 \times 10 = 20$

- **6.** a) Draw and explain the working principle of an EMOSFET.
 - b) Explain working principle of CMOS inverter.

[5+5]

- 7. a) Draw and explain the working principle of Schottky barrier.
 - b) Derive the mathematical expression of depletion width in a p⁺-n junction diode.

[4+6]

8. a) Derive the one dimensional continuity equation for transport carriers in a semiconductor.

b) Design a Class AB amplifier and explain the working principle of it.

[7+3]