Gabriel Emerson (gte0002)

COMP 3270-002

Homework 2

Due 2/16/21

- 1. Compare
 - a. $f(n) = \Theta(g(n))$
 - b. $f(n) = \Theta(g(n))$
 - c. $f(n) \in \Omega(g(n)), g(n) \in O(f(n))$
 - d. $f(n) = \Omega(g(n))$
 - e. f(n) = O(g(n))
- 2. Algorithm Mystery
 - a. The smallest integer in the array
 - b. Base Case: T(1) = 2 (compare i and j, and return it)
 T(n) if(i!=j) = 6 (compare i and j, then compute c2, c3, c4, c5, and return)
 [If statement is cost c1, then the rest under the else statement also cost c, this gives us
 T(c) which is T(n) == 4n+4

c. –

Level	Level Number	Total # of recursive executions at this level	Input size to each recursive execution	Work done by each execution, excluding recursive calls	Total work done by algorithm
Root	0	0	n/1	1/6	n/6
One level below	1	1	n/2	2/6	2n/6
Two level below	2	2	n/4	4/6	4n/6
One level above base	i-1	N^i/2	n/8	8/6	8n/6
Base case	i	N^i	n/16	16/6	16n/6

d. Order of complexity = T(n)+2

3. 7T(n/8) + cn; T(1) = c

Level	Level Number	Total # of recursive executions at this level	Input size to each recursive execution	Work done by each execution, excluding recursive calls	Total work done by algorithm
Root	0	0	Cn	С	Cn
One level below	1	1	7(n/16)	Cn	14(n/16)
Two level below	2	2	7(n/32)	Cn/2	28(n/32)
One level above base	i-1	N^i/2	7(n^2-1)	Cn/n-1	7nlog(n^2-1)
Base case	i	N^I	7(n^2)	Cn/n	7nlog(n^2)

$T(n) = 7nlog(n^2)$

4. Use substitution method

Statement of what you have to prove: T(n) = O(nlogn)

$$T(3) = 20$$

Inductive hypothesis: T(n) <= cnlog(n)

$$cnlog(n) - cnlog(3) + 5$$

$$cnlog(n) - n(c-5) \le nlog(n)$$

Value of C: c >= 5

5. Find counterexample: f(n) = O(s(n)) and g(n) = O(r(n)) imply f(n) - g(n) = O(s(n) - r(n))

If
$$s(n) = n^2$$
 and $r(n) = n$

Then
$$f(n) - g(n) = O(n^2) - O(n) == O(n^2)$$

But,
$$O(n^2 - n) = O(n)$$

6. Guess a plausible solution...:

7. Use substitution to prove previous answer

Statement what you have to prove: T(n) = T(n/2) + T(n/4) + T(n/8) + T(n/8) + n; $T(n) = O(n\log(n) + n)$

Base Case: T(1) = c <= cnlog(n) + n Inductive hypopthesis: T(n) <= cnlog(n)

Inductive step: cnlog(n)+n
cnlog(n) +n
cnlog(n) + n <= nlog(n) + n (if c >= 1)

- 8. Use Master Method
 - a. A = 2, B = 100/99, f(n) = 100n $n^{[\log_{1}(100/99)] \sim n^{69}$ $f(n) = \Omega(n^{[\log_{1}(100/99)]} 2 + \epsilon]$ $T(n) = \Theta(\Omega(n^{[\log_{1}(100/99)]} 2 + \epsilon)) == \Theta(100n)$
 - b. A = 16, B = 2, $f(n) = n^{3}\log(n)$ $n^{[\log_{2}]} = n^{4}$ $f(n) = \Omega(n^{[\log_{2}]} = 16 + \epsilon]$ $T(n) = \Theta(n^{3}\log(n))$
 - c. A = 16, B = 4, f(n) = n^2 n^[log_(4) 16] ~ n^2 f(n) = O(n^(log_4 16)-ε) T(n) = Θ(n^(log_4 16))
- 9. Use backward and forward substitution to solve the recurrence relations

$$T(n) = 2T(n-1) + 1$$

$$T(0) = 1$$

a. Reverse

=
$$2T((n-1)-1) + 1$$

= $2T(n-2) + 1 \rightarrow 2T((n-2)-1) + 1 \rightarrow 2T((n-3)-1) + 1$
= $1 + 2 + 3 + ...$
= $(n+1) == T(n)$

$$T(n) = (n+1)$$

$$T(0) = (0+1)$$

$$T(n-1) = (n-1)(n-1+1)$$
 is true

$$T(n) = T(n-1) + 1$$

$$= (n-1)(n-1+1) + 1$$

$$= (n-1)(n) + 1$$

$$= ((n^2)/2) ((n-n)/2) + 1$$

$$= (n-1) + 1$$

b. Forward

$$= 2T((n-1)-1) + 1$$

$$= 2T(n-2) + 1 \rightarrow 2T((n-2)-1) + 1 \rightarrow 2T((n-3)-1) + 1$$

$$= (n+1) == T(n)$$

Prove T(0) = 1
$$T(n) = (n+1)$$

$$T(0) = (0+1)$$

$$= 1$$

$$T(n-1) = (n-1)(n-1+1) \text{ is true}$$

$$T(n) = T(n-1) + 1$$

$$= (n-1)(n) + 1$$

$$= (n-1)(n) + 1$$

$$= ((n^2)/2) ((n-n)/2) + 1$$

$$= (n-1) + 1$$

c. This equals = $((n-1^n(n+1)) - 1)/((n-1) - 1)$
d. LHS reduces to $(n-1) + 1$

$$RHS \text{ reduces to } ((n-1^n(n+1)) - 1)/((n-1) - 1) \Rightarrow 1^n(n+1) = 0$$

$$= ((n-(-1) - 1) / (-1)$$

$$= (n-1) + 1$$
e. This means our complexity is $O(n^2)$

T(1) = 1(11-1) + (11)-2)
T(1) = 1
=
$$T((n-1)-1) + ((n-1)/2) \Rightarrow T(n-2) + (-n/2)$$

= $T((n-2)-1) + ((-n-1)/2) \Rightarrow T(n-3) + (n/2)$
= $T((n-3)-1) + ((n-1)/2) \Rightarrow T(n-4) + (-n/2)$
= $T((n-3)-1) + ((n-1)/2) \Rightarrow T(n-4) + (-n/2)$
= $T((n-1)/2) \Rightarrow T((n-1) + ((n-1)/2) \Rightarrow T((n-1)/2) \Rightarrow T((n-1$

11. Prove that T(n) satisfies $T(n) = O(n\log^2(n))$

Since 2T(n/2) goes to floor, we assume that the larger part of this function will be $2n\log^2 n$, which would satisfy the Big O notation, $O(n\log^2 n)$

$$T(n) = 2T(n/2) + 2n\log(n)$$

$$T(2) = 4$$

$$= 2T(n/2) + 2n\log(n)$$

$$= 2T((n/2)/2) + 2(n/2)\log(n/2) \rightarrow 2T(n/4) + (n/2)\log(n/2)$$

$$= 2T((n/4)/2) + ((n/2)/2)\log((n/2)/2) \rightarrow 2T(n/8) + (n/4)\log(n/4)$$

$$= 2n\log n + \log n$$

$$= n\log^2 2n$$

12. Problem 3.1-3

Big O gives the upper bound, or maximum running time of an algorithm. Using the words "at least" here is like abusing the Big O.