第三章: 关系

- 3.1 关系的概念
- 3.2 关系的性质
- 3.3 关系的合成运算
- 3.4 关系的闭包
- 3.5 关系矩阵和关系图
- 3.6 等价关系和集合的划分
- 3.7 映射按等价关系分解
- 3.8 偏序关系与偏序集
- 3.9*良序集与数学归纳法

3.3 关系的合成运算

- (1) 关系合成运算的定义
- (2) 关系合成运算的性质
 - a. 合成运算不满足交换律
 - b. 合成运算满足结合律
 - c. 合成运算对并、交运算的分配关系
 - d. 合成运算对差运算不满足分配律
 - e. 关系的逆的合成
 - f.关系幂运算的定义

(1) 关系合成运算的定义

$$R=\{(a, 2), (b, 1), (c, 1), (c, 2)\}$$

$$S = \{ (1, \alpha), (1, \beta), (1, \gamma) \}$$

$$R^{\circ}S = \{ (b, \alpha), (b, \beta), (b, \gamma), (c, \alpha), (c, \beta), (c, \gamma) \}$$

定义3.3.1 设R是A到B, S是B到C的二元 关系。R与S的合成是A到C的一个二元关系,记成R°S,并且

$$R^{\circ}S = \{(x, z) \mid \exists y \in B \notin \mathcal{F} \times Ry \perp LySz\}$$
。

(1) 关系合成运算的定义

定义3.3.1 设R是A到B, S是B到C的二元 关系。R与S的合成是A到C的一个二元关系,记成R°S,并且

 $R^{\circ}S = \{(x, z) \mid \exists y \in B \notin \mathcal{F} x R y \perp y S z \}$ 。

(2) 关系合成运算的性质

- a. 合成运算不满足交换律
- b. 合成运算满足结合律
- c. 合成运算对并、交运算的分配关系
- d. 合成运算对差运算不满足分配律
- e. 关系的逆的合成
- f. 关系幂运算的定义

a. 合成运算不满足交换律

由合成定义可知 R°S≠ S°R

b. 合成运算满足结合律

定理3.3.1 设 R_1 , R_2 , R_3 分别是从A到B,B到C,C到D的二元关系,则 (R_1 ° R_2) ° R_3 = R_1 ° (R_2 ° R_3)

[证]

$$(1)$$
证 $(R_1 \circ R_2) \circ R_3 \subseteq R_1 \circ (R_2 \circ R_3)$

$$\forall$$
 (a, d) \in ($R_1 \circ R_2$) $\circ R_3$

$$∃$$
 c∈C, 使得(a,c)∈ R_1 ° R_2 且(c,d)∈ R_3

由
$$(a, c) \in R_1 \circ R_2$$
, 因 $b \in B$, $(a, b) \in R_1$ 且 $(b, c) \in R_2$,

由
$$(b, c) \in R_2$$
, 且 $(c, d) \in R_3$, 知 $(b, d) \in R_2 \circ R_3$;

又由
$$(a, b) \in R_1$$
, 因此 $(a, d) \in R_1^{\circ} (R_2^{\circ} R_3)$ 。

因此
$$(R_1 \circ R_2) \circ R_3 \subseteq R_1 \circ (R_2 \circ R_3)$$
, 反之亦然。

c. 合成运算对并、交运算的分配关系

定理3.3.2 设 R_1 是A到B的二元关系, R_2 , R_3 是从B到C的二元关系, 设 R_4 是从C到D的二元关系,则:

- (1) $R_1^{\circ} (R_2 \cup R_3) = (R_1^{\circ} R_2) \cup (R_1^{\circ} R_3)$
- (2) $R_1^{\circ} (R_2 \cap R_3) \subseteq (R_1^{\circ} R_2) \cap (R_1^{\circ} R_3)$
- (3) $(R_2 \cup R_3) \circ R_4 = (R_2 \circ R_4) \cup (R_3 \circ R_4)$
- (4) $(R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4)$

c. 合成运算对并、交运算的分配关系

定理3.3.2 设 R_1 是A到B的二元关系, R_2 , R_3 是从B到C的二元关系, 设 R_4 是从C到D的二元关系, 则:

 $(4) (R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4)$

[证]

- (1) \forall (b, d) \in (R₂ \cap R₃) \circ R₄
- =>∃ c∈C, 使得(b,c)∈ $R_2 \cap R_3$ 且(c,d)∈ R_4
- =>∃ c∈C, 使得(b, c)∈ R₂且(c, d)∈R₄, 同时 使得(b, c)∈ R₃且(c, d)∈R₄
- => $(b, d) \in (R_2 \circ R_4)$,同时 $(b, d) \in (R_3 \circ R_4)$
- \Rightarrow (b, d) \in (R₂°R₄) \cap (R₃°R₄)
- \Rightarrow $(R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4)$

d.一般说来,合成运算对差运算不满足分配律:

$$R_{1}^{\circ}(R_{2}\backslash R_{3}) \neq (R_{1}^{\circ}R_{2})\backslash (R_{1}^{\circ}R_{3})$$

$$(R_{2}\backslash R_{3})^{\circ}R_{4} \neq (R_{2}^{\circ}R_{4})\backslash (R_{3}^{\circ}R_{4})$$

$$\emptyset | 3.3.3 \quad \& X = \{a, b, c\}, R_{1} = \{(a, a), (a, b)\}, R_{2} = \{(a, a), (b, c)\}, R_{3} = \{(a, c), (b, b)\}$$

$$R_{2}\backslash R_{3} = \{(a, a), (b, c)\}$$

$$R_{1}^{\circ}(R_{2}\backslash R_{3}) = \{(a, a), (a, c)\}$$

$$(R_{1}^{\circ}R_{2}) = \{(a, a), (a, c)\}$$

$$(R_{1}^{\circ}R_{3}) = \{(a, c), (a, b)\}$$

$$(R_{1}^{\circ}R_{2})\backslash (R_{1}^{\circ}R_{3}) = \{(a, a)\}.$$

e. 关系的逆的合成:

定理3.3.3 设R,S是集合X上的两个二元 关系,则

(1) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

[证] $\forall (x, z) \in (R^{\circ}S)^{-1}$ => $(z, x) \in R^{\circ}$ S => $\exists y \in X, (z, y) \in R, (y, x) \in S$ => $(y, z) \in R^{-1}, (x, y) \in S^{-1}$ => $(x, z) \in S^{-1}^{\circ}$ R⁻¹ 因此 $(R^{\circ}S)^{-1} \subseteq S^{-1}^{\circ}R^{-1}$ 仿1可证S⁻¹ $\circ R^{-1} \subseteq (R^{\circ}S)^{-1}$ 。故命题成立

(2) R°R-1是对称的

[证] ∀(x, z) ∈ R°R⁻¹
=>∃y∈X, 使得(x, y) ∈ R, (y, z) ∈ R⁻¹
=> (y, x) ∈ R⁻¹, (z, y) ∈ R
=> (z, x) ∈ R°R⁻¹
因此: 命题成立

(1) 关系合成运算的定义

定理3.3.4 设R是X上的二元关系,则R 是传递的当且仅当: R°R_R。

需要证明:

(1)必要性(从左到右)

要证: $\forall (x, y) \in \mathbb{R}, (y, z) \in \mathbb{R}$ 则 $(x, z) \in \mathbb{R} = \mathbb{R} \cap \mathbb{R}$ _ R

证: 对于 $\forall (x, z) \in R^{\circ}R \Rightarrow \exists y, \ \phi(x, y) \in R, \ (y, z) \in R$

又:R是传递的,

∴对于∀(x, z) ∈ R°R, (x, z) ∈ R, 故R°R⊆R

(2) 充分性(从右到左)

要证: $\mathbb{R}^{\circ}\mathbb{R}_{\subseteq}\mathbb{R} \Rightarrow \forall (x, y) \in \mathbb{R}, (y, z) \in \mathbb{R}$ 则 $(x, z) \in \mathbb{R}$

证: $(x, y) \in R$, $(y, z) \in R \Rightarrow (x, z) \in R^{\circ}R$

 $R^{\circ}R \subseteq R$

 \therefore (x, z) \in R $^{\circ}$ R \in R

:.R是传递的

定义3.3.2 设R是X上的一个二元关系, R的n次幂记作Rⁿ,n为非负整数。

- (1) $R^0 = I_X$, $R^1 = R$, $R^2 = R \circ R$;
- $(2) R^{n+1} = R^{n} \circ R$

例: 设X={a, b, c, d}, R是X到X的一个二元 关系: R={(a,b),(b,a),(b,c),(c,d)}

- (1) $R^0 = I_x = \{(a, a), (b, b), (c, c), (d, d)\}$
- (2) $R^1=R = \{(a, b), (b, a), (b, c), (c, d)\}$
- (3) $R^2=R^\circ R=\{(a,a),(a,c),(b,b),(b,d)\}$
- (4) $R^3=R^2\circ R=\{(a,b), (a,d), (b,a), (b,c)\}$.

定理3.3.5设R是X上的一个二元关系。则对任意的非负整数m, n有:

 $(1) R^{m} \circ R^{n} = R^{m+n},$

用归纳法证明:

当n=1时,由幂运算的定义可有: Rm。R1=Rm+1。

假设当n=k时成立: Rm。Rk=Rm+k

则当n=k+1时:

 $R^{m} \circ R^{k+1} = R^{m} \circ R^{k} \circ R$ $= R^{m+k} \circ R$

=Rm+k+1 因此,命题成立

(2) $(R^m)^n = R^{mn}$.

 $(R^m)^0 = I_A = R^0 = R^{m \times 0}$ $(R^m)^{n+1} = (R^m)^n \circ R^m = R^{mn} \circ R^m = R^{m+m+m} = R^{m(n+1)}$ 14

复习定义

 $(1) R^0 = I_X,$

 $R^1=R$

 $R^2=R^\circ R$;

 $(2) R^{n+1} = R^n \circ R$

定理3.3.6 设X是一个有限集合且|X|=n,R为X上的任一二元关系,则存在非负整数s,t使得 $0 \le s < t \le 2^{n^2}$ 且 $R^s = R^t$ 。

[证]

因为|X|=n,

所以|X×X|=n²

从而|2X×X|=2n2

故X上共有2n2个不同的二元关系

列出R的各次幕 R^0 , R, R^2 , ... $R^{2^{n^2}}$, $R^{2^{n^2+1}}$, $R^{2^{n^2+2}}$, ... 观察其中的前 2^{n^2} +1个二元关系

由抽屉原理得到至少有两个是相等的,

从而有非负整数s,t,0≤s<t≤ 2n2, 使得Rs=Rt。

定理3.3.7 设R是X上的二元关系。如果存在非负整数s,t,s < t,使得 $R^s = R^t, 则$:

(2) R^{s+kp+i}=R^{s+i},其中p=t-s,而k,i为非负整数; 用归纳法证明: 当k=1时成立。 假设当k=m时成立,也就是: R^{s+mp+i}=R^{s+i}, 则当k=m+1时: R^{s+(m+1)p+i} =R^{s+mp+i+p}=R^{s+mp+i}。R^p=R^{s+i}。R^p=R^{s+i}。 因此,命题成立。

(3)令S={R⁰,R,...R^s,...,R^{t-1}},则对任意非负的整数q有R^q∈S。如果q < t,显然成立 否则,设q=s+kp+i, p=t-s, 0≤i<p则R^q=R^{s+kp+i}= R^{s+i} 由0≤i<p=t-s, 有s+i < t 因此, R^q∈S

例: 设s=3,t=10, R³=R¹⁰,则R³⁵=?

$$R^{35} = (R^{10})^3 \circ R^5 = (R^3)^3 \circ R^5$$
$$= R^9 \circ R^5 = R^{14} = R^{10} \circ R^4$$
$$= R^3 \circ R^4 = R^7$$

\mathbf{R}^{0}	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	\mathbb{R}^6	\mathbb{R}^7	\mathbb{R}^8	R ⁹	R ¹⁰	R ¹¹	\mathbb{R}^{12}
\mathbf{R}^{0}	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	R ⁶	\mathbb{R}^7	R ⁸	R ⁹	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5

周期为7

习题8. p98 是否存在X(|X|=n)上的二元关系R,使得R, R², R³, ..., Rⁿ两两不相同?

一个元素显然

2个元素设为 x_1, x_2

$$R=\{(x_1, x_2), (x_2, x_1)\}\ R^2=\{(x_1, x_1), (x_2, x_2)\}$$

3个元素设为x1,x2,x3

$$R=\{(x_1, x_2), (x_2, x_3), (x_3, x_1)\}$$

$$R^2 = \{(x_1, x_3), (x_2, x_1), (x_3, x_2)\}$$

$$R^3 = \{(x_1, x_1), (x_2, x_2), (x_3, x_3)\}$$

• • • • •

n个元素设为 x_1, x_2, \ldots, x_n

$$R=\{(x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n), (x_n, x_1)\}.$$

本节主要问题

- (1) 关系的闭包的定义
- (2) 传递闭包
- (3) 自反传递闭包
- (4) 自反闭包
- (5) 对称闭包

(1) 关系的闭包的定义

关系的闭包的思想是想通过增加一些元 素,使原来的关系符合某种性质。

但增加的元素要最少。

例如: A={a,b}, 关系R={(a,a), (a,b)} 不是自 反的,可以通过增加元素使其变为自反的,以下哪一个 是R的自反闭包?

$$R_1 = \{(a, a), (a, b), (b, a), (b, b)\}$$

$$R_2 = \{(a, a), (a, b), (b, b)\}$$

$$R_2 = \{(a, a), (a, b), (b, b)\}$$

下面哪种关系可使用闭包扩充得到?

- 1、自反关系 √ 2、反自反关系 ×

- 5、传递关系 √ 6、相容关系 √

(2)传递闭包

令X={a,b,c},R={(a,b),(b,c)},求R的传递闭 包 增加最少的元素,使它符合传递性。增加(a,c)。 R+={(a,b),(b,c),(a,c)}是R的传递闭包。

定义3.4.1 设R是X上的一个二元关系。X上的一切包含R的传递关系的交称为R的传递闭包,用R⁺表示,也有用t(R)表示的,即: $R^+ = \bigcap_{R \subseteq R'} R'$. R'是传递的

换个说法, 更直观:

定义3.4.1* 设R是X上的一个二元关系。X上的一切包含R的传递关系为: R_1,R_2,\ldots,R_n , 则R的传递闭包用 R^+ 表示,也有用t(R)表示的,且: $R^+=R_1\cap R_2\cap\ldots\cap R_n$

(2)传递闭包

定义3.4.1* 设R是X上的一个二元关系。X上的一切包含R的传递关系为: $R_1, R_2,, R_n$, 则R的传递闭包用R⁺表示, 也有用 t(R)表示的, 且: $R^{+}=R_1 \cap R_2 \cap \cap R_n$

R+必须满足传递闭包的三个条件

- $(1) R^+ \supseteq R$
- (2) R+是 (二元) 传递关系
- (3) R+是包含R的(二元)传递关系中"最小的"。

证明:

(2) 传递闭包

定理3.4.2 设R为X上的二元关系,则:

$$R^{+} = \bigcup_{n=1}^{\infty} R^{n} = R \bigcup R^{2} \bigcup R^{3} \bigcup \dots$$

- $(1) R^+ \supseteq R$
- (2) R+是(二元)传递关系
- (3) R+是包含R的(二元)传递关系中"最小的"。

证明:

- $(1)\forall (x,y) \in \mathbf{R} \Rightarrow (x,y) \in \mathbf{R} \cup \mathbf{R}^2 \cup \mathbf{R}^3 \cup ... \Rightarrow \mathbf{R} \subseteq \mathbf{R}^{pp}(1) 成立$
- $(2) \forall (x, y) \in \mathbb{R}^+, (y, z) \in \mathbb{R}^+ \Rightarrow \exists m \geq 1, (x, y) \in \mathbb{R}^m \not \Delta \exists n \geq 1, (y, z) \in \mathbb{R}^n$ $\Rightarrow (x, z) \in \mathbb{R}^m \circ \mathbb{R}^n \Rightarrow (x, z) \in \mathbb{R}^{m+n} \Rightarrow (x, z) \in \mathbb{R}^+$ 即(2) 成立
- (3)即证: 对于 \forall 传递关系 R' ,如果 $R \subseteq R'$,就有 $R^+ \subseteq R'$ $\forall (x, y) \in R^+ \Rightarrow \exists m \geq 1, f(x, y) \in R^m \Rightarrow \exists x_1, (x, x_1) \in R, (x_1, y) \in R^{m-1} \Rightarrow \exists x_2, (x_1, x_2) \in R, (x_2, y) \in R^{m-2} \Rightarrow ...$
 - $\Rightarrow \exists x_{m-1}, (x_{m-2}, x_{m-1}) \in \mathbb{R}, (x_{m-1}, y) \in \mathbb{R}$
 - \Rightarrow (x, x₁), (x₁, x₂), ..., (x_{m-2}, x_{m-1}), (x_{m-1}, y) \in R'
 - "R'是传递的 ⇒(x, y)∈R' 即(3)成立

(2)传递闭包

定理3.4.3 设X为n元集,R为X上的二元 关系,则

$$R^+ = \bigcup_{i=1}^n R^i$$

定理3.4.4 设R,S是X上的二元关系,则

$$(1)\emptyset^+=\emptyset;$$

$$(2)R\subseteq R^+;$$

$$(3)(R^+)^+=R^+;$$

$$(4)(R \cup S)^+ \supseteq R^+ \cup S^+$$
.

(2)传递闭包

例3.4.1 设X为人的集合,R为X上的"父子"关系,看一看xR+y的实际关系是什么?

解:
$$R^+ = \bigcup_{i=1}^n R^i$$

xR+y当且仅当存在自然数m使得xRmy;

由关系合成的定义,存在 $x_1, x_2, ..., x_{m-1}$,使得: $xRx_1, x_1Rx_2, ..., x_{m-1}Ry$.

因此,R+为后代子孙关系。

(3) 自反传递闭包

定义3.4.2 设R为X上的二元关系。X上的一切包含R的自反且传递的二元关系的交称为R的自反传递闭包,记为R*。

由定义知, R*是(二元)自反且传递关系。

令 $X=\{a,b,c\},R=\{(a,b),(b,c)\},求R$ 的传递闭包,自反传递闭包。 $R^{+}=\{(a,b),(b,c),(a,c)\}$ 。

 $R^* = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$

定理3.4.5 设R为X上的二元关系。则 $R^*=R^0 \cup R^+$

易见

 $\mathbf{R} \cdot \mathbf{R}^* = \mathbf{R}^* \cdot \mathbf{R} = \mathbf{R}^+$ $(\mathbf{R}^*)^* = \mathbf{R}^*$

(3) 自反传递闭包

例3.4.2 设N为自然数集,R为N上的如下定义的二元关系—"后继"关系: aRb当且仅当a+1=b。 分析R+与R*的实际意义。

(1) 分析xR+y实际意义。 $R^+ = \bigcup_{i=1}^{n} R^i$

xR+y当且仅当存在自然数m使得xRmy;

由关系合成的定义, 存在 $x_1, x_2, \ldots, x_{m-1}$, 使得: $xRx_1, x_1Rx_2, \ldots, x_{m-1}Ry$ 。 $y=x+m, m \ge 1$ 。

(2) 分析xR*y实际意义。 $R^* = \bigcup_{i=0}^{\infty} R^i$

xR*y当且仅当存在自然数m使得 xR^my ; 由关系合成的定义,存在 $x_1, x_2, ..., x_{m-1}$,使得: $xRx_1, x_1Rx_2, ..., x_{m-1}Ry$ 。 $y=x+m, m \ge 0$ 。

(4) 自反闭包

定义3.4.3 设R为X上的二元关系。X上的一切包含R的自反的二元关系的交称为R的自反闭包,记为r(R)。

令
$$X=\{a,b,c\},R=\{(a,b),(b,c)\}$$

求R的自反闭包
 $r(R) = \{(a,a),(b,b),(c,c),(a,b),(b,c)\}$

定理3.4.6 设R是X上的二元关系,则 $r(R)=R^0 \cup R$ 。

- r(R)必须满足自反闭包的3个条件
 - $(1) r (R) \supseteq R$
 - (2) r(R) 是自反的
 - (3) r(R) 是包含R的自反关系中"最小的"。

(5) 对称闭包

定义3.4.4 设R为X上的二元关系。X上的一切包含R的对称的二元关系的交称为R的对称闭包,记为s(R)。

令 $X=\{a, b, c\}, R=\{(a, b), (b, c)\}$ 求R的对称闭包 $s(R) = \{(a, b), (b, c), (b, a), (c, b)\}$

定理3.4.7 设R是X上的二元关系,则 $s(R)=R \cup R^{-1}$ 。

s(R)必须满足对称闭包的3个条件

- (1) s (R) \supset R
- (2) s (R) 是对称的
- (3) s(R) 是包含R的对称关系中"最小的"。

定理3.4.6 设R是X上的二元关系,则:

- (1) r(s(R))=s(r(R))
- (2) $r(R^+)=r(R)^+=R^*$
- $(3) s(\mathbf{R})^+ \supseteq s(\mathbf{R}^+)$