0. Setup

Initialization:

- FieldTrip top-level folder for ft defaults.m
- MEGneto top level for megne2setup.m
- SPM T1 template visible
 - project_path
 - analysis_name
 - rawdata_path
 - mri_path
 - overwrite

MATLAB input

- Run ft defaults.m to add the right subfolders within FieldTrip.
- Create directories for project
- Initialize JSON config file

· ft defaults

path generation

save_to_json

path_check

megne2setup.m paths (struct) out

fcp 1 TaskEpoching.m

1. Setup

- Read in config settings
- Load and match PIDs from MEG and MRI
- · Create list of subjects with full sets of data

2. Plot triggers

Generate and save plot of event triggers

3. Epoch continuous data into trials

- Set up trial definitions for epoching
- Epoch events list to define time windows corresponding to each trial and overall number of trials; save to config

4. Head motion

- Identify trials with excessive head motion
- Reject those trials, save filtered version

5. Artifacts

- Check for muscle, jump artifacts
- · Reject those trials with artifacts, save filtered version

6. Bad channels

- Identify and save list of bad channels
- Throw warning if there are many

Outputs

- Plots:
 - Triggers for each event type
 - · Head motion visualization
- Epochs (into fcp 1 output JSON):
 - All trials
 - Filtered for head motion (HM)
 - Filtered for HM, muscle, jump
- · List of bad channels (saved to its own JSON)

fcp 2 PreprocessingICA.m

1. Setup

1,2. Processing

- As in fcp 1
- 2. Noise reduction
- Load gradiometer info, 3rd order gradients from CTF to account for noise

3. Bad channel repair

 Replace bad channel signal with average of neighbours

4. ICA

- Remove bad channel signals altogether from analysis (they are dependent on neighbor sensor signals, thus redundant to include in ICA)
- Run ICA
- Interactive decision on whether to keep or reject component
- Reject all selected components at once Save

load config

load participants

write_match_if_not_empty

ds pid match

save_to_json

Outputs

- Final preprocessed data output into *.mat
- fcp_2_output JSON tracking configurations, paths
- Bad ICA components to JSON file

1. Setup

- Read in config settings
- Load and match PIDs from MEG and MRI folders
- Create list of subjects with full sets of data; note that participants may be removed after preprocessing due to insufficient number of trials leftover (e.g., too much noise)

2. Head model preparation

- Load and segment T1 template brain
- Construct head model and do necessary unit conversions
- Construct dipole grid in template brain
- Load desired atlas and create binary masks to define valid voxels within head model

3. Check alignment

CHECKPOINT

Users should

examine preproc.

data output before

proceeding!

- Load and segment participant MRIs, load preproc. MEG data
- Construct subject-specific head, source models
- Check alignment between subject and template head model
- Check alignment source model and head model
- Save images

4. Source reconstruction

- Compute lead field matrix
- Run source analysis, reduce to dominant orientation
- Interpolate functional data onto anatomical data
- Return these results

Outputs

Source analysis output

- Source descriptives output

- Individual and template head model alignment, *.png Source and head model alignment, *.png
- - Source interpolation onto MRI data

out

fcp_3_beamforming_sourcegrid.m

3. Beamforming

1. Setup

As in fcp 1

2. Analysis

• Compute connectivity w/ FT code

4. Connectivity Analysis

fcp_4_connectivity.m

Outputs

· Connectivity statistics

- load config load participants
- ds pid match
- write match if not empty
- ft definetrial
- plotTriggers
- HeadMotionTool
- · ft artifact muscle
- ft_artifact_jump ft rejectartifact
- save_to_json
- detectBadChannels