Studenti: Luca Barco 234929 - Stefano Bergia 233838

Esercitazione n.2 Misure – Risposta in frequenza di filtri passivi

Fase iniziale: preparazione della strumentazione

Attraverso il generatore di segnali si è inviato all'oscilloscopio un segnale sinusoidale di frequenza f=1 kHz e ampiezza Vpp=1 V.

Abbiamo misurato con l'oscilloscopio (per verifica) frequenza e tensione di picco picco, ottenendo le seguenti misure

$$V_{pp} = (1.00 \pm 0.19) V$$

$$f = (1000 \pm 200) Hz$$

(le incertezze calcolate come $\delta_T=\varepsilon_{timebase}*L+\delta_{divisioni}*K_0=\frac{25}{1000000}*5+0.2*0.001$ ($\varepsilon_{timebase}$ ricavata dal manuale; supponendo base tempi da 1ms) , e $\delta_f=\delta_T*\left(\frac{1}{T}\right)^2$ avendo prima misurato il periodo $T=(0.0010\pm0.0002)~s=(1.0\pm0.2)~ms$)

Avendo collegato il generatore di segnali all'oscilloscopio tramite un cavo coassiale BNC-BNC , si ha il seguente circuito equivalente, con $R_{\rm in}$ =50 Ohm

Uso dei generatori di segnali

<u>Frequenza dei segnali</u>

Il generatore di segnali da noi utilizzato prevede i seguenti valori massimi di frequenza per i rispettivi segnali qui indicati

Frequenza dei segnali		
Segnale Manuale (MAX)		
Sinusoide	30MHz	
Onda quadra 5MHz		
Triangolare	4MHz	
Delta	5MHz	

Utilizzando il multimetro numerico e l'oscilloscopio per misurare la frequenza di un segnale sinusoidale di frequenza f=1 kHz e ampiezza Vpp=1 V, si sono ottenute le seguenti misure

Segnali	Oscilloscopio	
	Multimetro (f=1kHz)	(f=1kHz)
Sinusoide	(1,00001 ± 0,00011) kOhm	(1,00 ± 0,2) kHz
Onda quadra	(1,00001 ± 0,00011) kOhm	(1,00 ± 0,2) kHz
Triangolare	(1,00001 ± 0,00011) kOhm	(1,00 ± 0,2) kHz
Delta	(1,00001 ± 0,00011) kOhm	(1,00 ± 0,2) kHz

Per le resistenze la formula dell'incertezza è (da manuale) pari a R*0.010%+R*0.001%

Le misure sono compatibili.

Tipo ed ampiezza dei segnali

Il generatore di segnali da noi utilizzato prevede i seguenti valori massimi di ampiezza per i rispettivi intervalli di frequenza qui indicati

f <= 20 MHz → 2mVpp - 20 Vpp
f <= 60 MHz → 2mVpp - 15 Vpp
f <= 80 MHz → 2mVpp - 10 Vpp
f <= 90 MHz → 2mVpp - 5 Vpp
f <= 100 MHz → 2mVpp - 2 Vpp

Per visualizzare sullo schermo dell'oscilloscopio un'ampiezza di 1V si è impostato un segnale con ampiezza pari a 1V.

Misurando le Vpp per varie frequenze si sono ottenute le seguenti misure

Frequenza	Vpp
100 Hz	(1,05 ± 0,2) V
1 kHz	(1,04 ± 0,2) V
10 kHz	(1,04 ± 0,2) V
100 KHz	(1,04 ± 0,2) V
1 MHz	(1,03 ± 0,2) V
30MHz	(0,96 ± 0,2) V

Per ottenere la frequenza tale per cui l'ampiezza del segnale si riduce di 1dB si parte da

 $-20 \log_{10} \left| \frac{V_f}{V_i} \right| = 1 \Rightarrow V_f = V_i 10^{-\frac{1}{20}} \Rightarrow V_f = 0.94 \ V \Rightarrow$ per frequenze tali per cui V_f sia superiore a questo valore si ha un'attenuazione di almeno 1dB \Rightarrow la frequenza (tra quelle per cui sono state effettuate le misure) che rispetta questa condizione è f=1kHz.

Offset

Impostando il generatore di segnali in modo tale che al segnale sinusoidale sia sommato anche un segnale continuo, si nota che impostando la modalità di accoppiamento dell'oscilloscopio in DC sullo schermo si osserva sia il segnale alternato che quello continuo, mentre per la modalità di accoppiamento in AC si osserva solo la componente alternata del segnale.

Scheda con filtro RC

Filtro Passa Basso

Circuito equivalente filtro passa basso

Posizione 2 → interruttore giù

R6= 1kOhm +/-5% → misura: R6 = 0,982 kOhm (compatibile con valore nominale)

La frequenza di taglio è calcolabile con la seguente formula $f_t = \frac{1}{2\pi\tau}$, dove τ è pari a R₆ C₄ se l'interruttore è aperto e a R₆ (C₄+C₅).

L'incertezza è pari a $\delta_{f_t}=\frac{1}{2\pi\tau^2}\delta_{\tau}$, dove $\delta_{\tau}=\varepsilon_{\tau}\tau$, ed $\varepsilon_{\tau}=\varepsilon_{R_6}+\varepsilon_{C_4}$ nel caso di interruttore aperto , mentre $\varepsilon_{\tau}=\varepsilon_{R_6}+\varepsilon_{(C_4+C_6)}$ nel caso di interruttore chiuso.

Si sono ottenuti i seguenti valori

INTERRUTTORE	IN (Volt)		OUT (Volt)	f taglio
Aperto		1,02	0,72	f = (15,9 ± 2,3) kHz
Chiuso		1,02	0,72	f = (7,96 ± 0,35) kHz

Risposta nel dominio del tempo di un filtro passa basso (posizione 1) - Diagrammi di Bode

Utilizzando il filtro passa basso con interruttore aperto si sono ottenuti i seguenti valori e i seguenti diagrammi di Bode

				20
Frequenza	Vin (mV)	Vout (mV)	diff fase	log()
100	870	870	0	0
300	870	870	0	0
500	900	870	3	-0,29447
1000	890	850	6	-0,39942
3000	880	810	19	-0,71995
5000	870	760	27	-1,17411
10000	784	552	47	-3,04754
30000	772	236	70	-10,2941
50000	770	156	71	-13,8673
100000	768	84	75	-19,2216
300000	760	38	*	-26,0206
500000	760	30	*	-28,0738
1000000	760	22	*	-30,7678

(Le misure di ampiezza sono affette da un errore di 0.2V, quelle di frequenza da un errore relativo di $10^{-4}f_0$)

In corrispondenza della frequenza di taglio abbiamo misurato

Modulo	580 mV
Fase	42°

La frequenza per cui ci si avvicina di più ad uno sfasamento di 45° è 16,4 kHz (compatibile con la frequenza di taglio nominale)

Risposta nel dominio del tempo di un filtro passa basso (posizione 2) - Diagrammi di Bode

Utilizzando il filtro passa basso con interruttore chiuso si sono ottenuti i seguenti valori e i seguenti diagrammi di Bode

		Vout		20
Frequenza	Vin (mV)	(mV)	diff fase	log()
100	870	870	0	0
300	870	870	0	0
500	870	870	0	0
1000	880	870	4	-0,09927
3000	890	825	9	-0,65872
5000	880	800	17	-0,82785
10000	870	724	32	-1,59561
30000	776	420	54	-5,33225
50000	768	274	65	-8,95221
100000	768	149	75	-14,2435
300000	760	56	76	-22,6525
500000	752	38	*	-25,9287
1000000	760	20	*	-31,5957

In corrispondenza della frequenza di taglio abbiamo misurato

Modulo	580 mV
Fase	43°

La frequenza per cui ci si avvicina di più ad uno sfasamento di 45° è 8,3 kHz (compatibile con la frequenza di taglio nominale)

Filtro Passa Alto

Circuito equivalente

R1= 1kOhm +/-5% C_4 = C_5 = 10nF ± 10%

La frequenza di taglio con la sua incertezza si calcola allo stesso modo del passa basso \rightarrow ft = (15,9 ± 2,3) kHz

Risposta nel dominio del tempo di un filtro passa basso (posizione 2) - Diagrammi di Bode

Utilizzando il filtro passa alto si sono ottenuti i seguenti valori e i seguenti diagrammi di Bode

Frequenza	Vin (mV)	Vout (mV)	diff fase	20 log()
100	890	16	*	-34,9054
300	890	25	*	-31,029
500	890	34	*	-28,3582
1000	890	56	92	-24,024
3000	890	147	78	-15,6415
5000	890	236	72	-11,5296
10000	870	410	60	-6,53471
30000	780	696	32	-0,98971
50000	768	744	21	-0,27577
100000	768	776	11	0,09001
300000	765	780	7	0,168663
500000	760	780	3	0,22562
1000000	770	766	1	-0,04524

In corrispondenza della frequenza di taglio abbiamo misurato

Modulo	740 mV
Fase	45°

La frequenza per cui ci si avvicina di più ad uno sfasamento di 45° è proprio la frequenza di taglio nominale.

COMMENTI

Gli andamenti ottenuti nei diagrammi di Bode sono compatibili con i relativi filtri.

In particolare, per le due configurazioni del filtro passa basso si osserva una frequenza di taglio nella posizione2 dell'interruttore pari alla metà di quella con l'interruttore nella posizione 1.