

Outline

- The Planning Process
- Sales and Operations Planning
- The Nature of Aggregate Planning
- Aggregate Planning Strategies
- Methods for Aggregate Planning
- Aggregate Planning in Services (reading)
- Revenue Management (reading)

Learning Objectives

When you complete this chapter you should be able to:

- **6.1 Define** sales and operations planning
- 6.2 **Define** aggregate planning
- 6.3 Identify optional strategies for developing an aggregate plan
- 6.4 Prepare a graphical aggregate plan
- **6.5 Solve** an aggregate plan via the transportation method (reading)
- **6.6 Understand** and solve a revenue management problem (reading)

The Planning Process

Sales and Operations Planning

- Coordination of demand forecasts with functional areas and the supply chain
- Typically done by cross-functional teams
- Determine which plans are feasible
- Limitations must be reflected
- Provides warning when resources do not match expectations
- Output is an aggregate plan

Sales and Operations Planning

- Decisions must be tied to strategic planning and integrated with all areas of the firm over all planning horizons
- S&OP is aimed at
 - The coordination and integration of the internal and external resources necessary for a successful aggregate plan
 - Communication of the plan to those charged with its execution

Sales and Operations Planning

- Requires
 - ► A logical unit for measuring sales and output
 - A forecast of demand for a reasonable intermediate planning period in aggregate terms
 - A method to determine the relevant costs
 - A model that combines forecasts and costs so scheduling decisions can be made for the planning period

Aggregate Planning

The objective of aggregate planning is usually to meet forecast demand while minimizing cost over the planning period

Aggregate Planning

QUARTER 1			
Jan.	Feb.	March	
150,000 120,000 110,000			

QUARTER 2				
April May June				
100,000 130,000 150,000				

QUARTER 3			
July Aug. Sept.			
180,000 150,000 140,000			

Aggregate Planning

- Combines appropriate resources into general terms
- Part of a larger production planning system
- Disaggregation breaks the plan down into greater detail
- ▶ Disaggregation results in a master production schedule

Aggregate Planning Strategies

- 1. Should inventories be used to absorb changes in demand?
- 2. Should changes be accommodated by varying the size of the workforce?
- 3. Should part-timers be used, or should overtime or idle time absorb fluctuations?
- 4. Should subcontractors be used and maintain a stable workforce?
- 5. Should prices or other factors be changed to influence demand?

1. Changing inventory levels

- Increase inventory in low demand periods to meet high demand in the future
- Increases costs associated with storage, insurance, handling, obsolescence, pilferage, and capital investment
- Shortages may mean lost sales due to long lead times and poor customer service

- 2. Varying workforce size by hiring or layoffs
 - Match production rate to demand
 - Training and separation costs for hiring and laying off workers
 - ► New workers may have lower productivity
 - Laying off workers may lower morale and productivity

- 3. Varying production rates through overtime or idle time
 - Allows constant workforce
 - May be difficult to meet large increases in demand
 - Overtime can be costly and may drive down productivity
 - Absorbing idle time may be difficult

4. Subcontracting

- Temporary measure during periods of peak demand
- May be costly
- Assuring quality and timely delivery may be difficult
- Exposes your customers to a possible competitor

- 5. Using part-time workers
 - Useful for filling unskilled or low skilled positions, especially in services

Demand Options

1. Influencing demand

- Use advertising, promotion, selling, or price cuts to increase demand in low periods
- Attempt to shift demand to slow periods
- May not be sufficient to balance demand and capacity

Demand Options

- 2. Backordering during high-demand periods
 - Requires customers to wait for an order without loss of goodwill or the order
 - Most effective when there are few if any substitutes for the product or service
 - Often results in lost sales

Demand Options

- 3. Counterseasonal product and service mixing
 - Develop a product mix of counterseasonal items
 - May lead to products or services outside the company's areas of expertise

TABLE 6.1	Aggregate Planning Options		
OPTION	ADVANTAGES	DISADVANTAGES	COMMENTS
Changing inventory levels	Changes in human resources are gradual or none; no abrupt production changes.	Inventory holding cost may increase. Shortages may result in lost sales.	Applies mainly to production, not service, operations.
Varying workforce size by hiring or layoffs	Avoids the costs of other alternatives.	Hiring, layoff, and training costs may be significant.	Used where size of labor pool is large.

TABLE 6.1	Aggregate Planning Options		
OPTION	ADVANTAGES	DISADVANTAGES	COMMENTS
Varying production rates through overtime or idle time	Matches seasonal fluctuations without hiring/training costs.	Overtime premiums; tired workers; may not meet demand.	Allows flexibility within the aggregate plan.
Sub- contracting	Permits flexibility and smoothing of the firm's output.	Loss of quality control; reduced profits; loss of future business.	Applies mainly in production settings.

TABLE 6.1	Aggregate Planning Options		
OPTION	ADVANTAGES	DISADVANTAGES	COMMENTS
Using part- time workers	Is less costly and more flexible than full-time workers.	High turnover/ training costs; quality suffers; scheduling difficult.	Good for unskilled jobs in areas with large temporary labor pools.
Influencing demand	Tries to use excess capacity. Discounts draw new customers.	Uncertainty in demand. Hard to match demand to supply exactly.	Creates marketing ideas. Overbooking used in some businesses.

TABLE 6.1	Aggregate Planning Options		
OPTION	ADVANTAGES	DISADVANTAGES	COMMENTS
Backordering during high- demand periods	May avoid overtime. Keeps capacity constant.	Customer must be willing to wait, but goodwill is lost.	Many companies backorder.
Counter- seasonal product and service mixing	Fully utilizes resources; allows stable workforce.	May require skills or equipment outside the firm's areas of expertise.	Risky finding products or services with opposite demand patterns.

Mixing Options to Develop a Plan

- A mixed strategy may be the best way to achieve minimum costs
- There are many possible mixed strategies
- Finding the optimal plan is not always possible

Mixing Options to Develop a Plan

- Chase strategy
 - Match output rates to demand forecast for each period
 - Vary workforce levels or vary production rate
 - Favored by many service organizations

Mixing Options to Develop a Plan

- Level strategy
 - Daily production is uniform
 - Use inventory or idle time as buffer
 - Stable production leads to better quality and productivity
- Some combination of capacity options, a mixed strategy, might be the best solution

Methods for Aggregate Planning

- **▶** Graphical Methods
- Popular techniques
 - Easy to understand and use
 - Trial-and-error approaches that do not guarantee an optimal solution
 - Require only limited computations

Graphical Methods

- 1. Determine the demand for each period
- 2. Determine the capacity for regular time, overtime, and subcontracting each period
- 3. Find labor costs, hiring and layoff costs, and inventory holding costs
- Consider company policy on workers and stock levels
- Develop alternative plans and examine their total cost

TABLE 6.2	2 Monthly Forecas	Monthly Forecasts		
MONTH	EXPECTED DEMAND	PRODUCTION DAYS	DEMAND PER DAY (COMPUTED)	
Jan	900	22	41	
Feb	700	18	39	
Mar	800	21	38	
Apr	1,200	21	57	
May	1,500	22	68	
June	<u>1,100</u>	<u>20</u>	55	
	6,200	124		

$$=\frac{6,200}{124} = 50$$
 units per day

TABLE 6.3 Cost Information		
Inventory carrying cost	\$ 5 per unit per month	
Subcontracting cost per unit	\$20 per unit	
Average pay rate	\$10 per hour (\$80 per day)	
Overtime pay rate	\$17 per hour (above 8 hours per day)	
Labor-hours to produce a unit	1.6 hours per unit	
Cost of increasing daily production rate (hiring and training)	\$300 per unit	
Cost of decreasing daily production rate (layoffs)	\$600 per unit	

Plan 1 – constant workforce

MONTH	PRODUCTION DAYS	PRODUCTION AT 50 UNITS PER DAY	DEMAND FORECAST	MONTHLY INVENTORY CHANGE	ENDING INVENTORY
Jan	22	1,100	900	+200	200
Feb	18	900	700	+200	400
Mar	21	1,050	800	+250	650
Apr	21	1,050	1,200	-150	500
May	22	1,100	1,500	-400	100
June	20	1,000	1,100	-100	0
					1,850

Total units of inventory carried over from one month to the next = 1,850 units

Workforce required to produce 50 units per day = 10 workers

COST		CALCULATIONS
Inventory carrying	\$ 9,250	(=1,850 units carried × \$5 per unit)
Regular-time labor	\$ 99,200	(=10 workers × \$80 per day × 124 days)
Other costs (overtime, hiring, layoffs, subcontracting)	0	
Total cost	\$108,450	

Total units of inventory carried over from one month to the next = 1,850 units

Workforce required to produce 50 units per day = 10 workers

In-house production = 38 units per day

× 124 days

= 4,712 units

Subcontract units = 6,200 - 4,712

= 1,488 units

COST		CALCULATIONS
Regular-time labor	\$ 75,392	(=7.6 workers × \$80 per day × 124 days)
Subcontracting	\$ 29,760	(=1,488 units × \$20 per unit)
Total cost	\$105,152	

Plan 2 – subcontracting

Roofing Supplier Example 3

Roofing Supplier

Plan 3 – hiring and layoffs

TABLE 6.4 Cost Computations for Plan 3										
MONTH	FORECAST (UNITS)	DAILY PROD RATE	BASIC PRODUCTION COST (DEMAND × 1.6 HRS/UNIT ×\$10/HR)	EXTRA COST OF INCREASING PRODUCTION (HIRING COST)	EXTRA COST OF DECREASING PRODUCTION (LAYOFF COST)	TOTAL COST				
Jan	900	41	\$ 14,400		<u>—</u>	\$ 14,400				
Feb	700	39	11,200	_	\$1,200 (= 2 × \$600)	12,400				
Mar	800	38	12,800	_	\$600 (= 1 × \$600)	13,400				
Apr	1,200	57	19,200	\$5,700 (= 19 × \$300)	_	24,900				
May	1,500	68	24,000	\$3,300 (= 11 × \$300)	_	24,300				
June	1,100	55	17,600	_	\$7,800 (= 13 × \$600)	25,400				
			\$99,200	\$9,000	\$9,600	\$117,800				

Roofing Supplier Example 4

Comparison of Three Plans

TABLE 6.5 Comparison of the Three Plans									
COST	PLAN 1	PLAN 2	PLAN 3						
Inventory carrying	\$ 9,250	\$ 0	\$ 0						
Regular labor	99,200	75,392	99,200						
Overtime labor	0	0	0						
Hiring	0	0	9,000						
Layoffs	0	0	9,600						
Subcontracting	0	29,760	0						
Total cost	\$108,450	\$105,152	\$117,800						

Plan 2 is the lowest-cost option

Mathematical Approaches (for reading)

- Useful for generating strategies
 - Transportation Method of Linear Programming
 - ► Produces an optimal plan
 - Works well for inventories, overtime, subcontracting
 - Does not work when nonlinear or negative factors are introduced
- **▶**Other Models
 - General form of linear programming

Transportation Method

TABLE 13.6	Farnsworth's Production, Demand, Capacity, and Cost Data								
		SALES PERIOD							
		MAR.	APR.	MAY					
Demand		800	1,000	750					
Capacity:									
Regular		700	700	700					
Overtime		50	50	50					
Subcontracting		150	150	130					
Beginning invento	ry	100 tires							

COSTS						
Regular time	\$40 per tire					
Overtime	\$50 per tire					
Subcontracting	\$70 per tire					
Carrying cost	\$ 2 per tire per month					

Transportation Example

Important points

- 1. Carrying costs are \$2/tire/month. If goods are made in one period and held over to the next, holding costs are incurred.
- 2. Supply must equal demand, so a dummy column called "unused capacity" is added.
- Because backordering is not viable in this example, cells that might be used to satisfy earlier demand are not available.

Transportation Example

- Quantities in each column designate the levels of inventory needed to meet demand requirements.
- In general, production should be allocated to the lowest-cost cell available without exceeding unused capacity in the row or demand in the column.

Transp Examp

		DEMAND FOR								TOTAL
	SUPPLY FROM		Period 1 (Mar)		Period 2 (Apr)		Period 3 (May)		used pacity mmy)	CAPACITY AVAILABLE (supply)
Be	Beginning inventory		0 00		2		4		0	100
P e	Regular time	7	40 00		42		44		0	700
r i o	Overtime	50			52 50		54		0	50
d 1	Subcontract		70	1	72 150		74		0	150
P e	Regular time		X	7	40		42		0	700
r i o	Overtime		X	!	50 50		52		0	50
d 2	Subcontract		X		70 50		72	1	.00	150
P e	Regular time		X		X	7	40 00		0	700
r i o	Overtime	X			X	!	50 50		0	50
d 3	Subcontract		X		X		70	1	0	130
	TOTAL DEMAND		00	1,	,000	7	50	2	230	2,780

Table 13.7

Aggregate Planning in Services (for reading)

- Most services use combination strategies and mixed plans
- Controlling the cost of labor is critical
 - Accurate scheduling of labor-hours to assure quick response to customer demand
 - 2. An on-call labor resource to cover unexpected demand
 - 3. Flexibility of individual worker skills
 - 4. Flexibility in rate of output or hours of work

Five Service Scenarios (for reading)

- Restaurants
 - 1) Smoothing the production process
 - 2) Determining the optimal workforce size
- ► Hospitals
 - Responding to patient demand
- National Chains of Small Service Firms
 - Planning done at national level and at local level

Five Service Scenarios

- Miscellaneous Services
 - Plan human resource requirements
 - Manage demand
- Airline industry
 - Extremely complex planning problem
 - 1) Number of flights
 - 2) Number of passengers on all flights
 - 3) Air and ground personnel at each hub and airport
 - 4) Allocation of seats to fare classes

Aggregate Planning in a Law Firm (for reading)

Develop an aggregate plan for the next quarter

32 legal professionals, 3 forecasts of billable hours for 5 categories of business

TABLE 13.8 Labor Allocation at Klasson and Avalon, Forecasts for Coming Quarter (1 lawyer = 500 hours of labor)									
FOREC	ASTED LABOR-	CAPACITY CONSTRAINTS							
(1) CATEGORY OF LEGAL BUSINESS	(2) BEST (HOURS)	(3) LIKELY (HOURS)	(4) WORST (HOURS)	(5) MAXIMUM DEMAND FOR PERSONNEL	(6) NUMBER OF QUALIFIED PERSONNEL				
Trial work	1,800	1,500	1,200	3.6	4				
Legal research	4,500	4,000	3,500	9.0	32				
Corporate law	8,000	7,000	6,500	16.0	15				
Real estate law	1,700	1,500	1,300	3.4	6				
Criminal law	3,500	3,000	2,500	7.0	12				
Total hours	19,500	17,000	15,000						
Lawyers needed	39	34	30						

Revenue Management (for reading)

- Allocating resources to customers at prices that will maximize revenue or yield
 - 1. Service or product can be sold in advance of consumption
 - 2. Demand fluctuates
 - 3. Relatively fixed resource (capacity)
 - 4. Segmentable demand
 - 5. Low variable costs; high fixed costs

Revenue Management Example

Revenue Management Example

Revenue Management Approaches (for reading)

- Airlines, hotels, rental cars, etc.
 - ► Tend to have predictable duration of service and use variable pricing to control availability and revenue
- Movies, arenas, performing arts centers
 - Tend to have predicable duration and fixed prices but use seating locations and times to manage revenue

Revenue Management Approaches

- ► Restaurants, golf courses
 - Generally have unpredictable duration of customer use and fixed prices, may use "offpeak" rates to shift demand and manage revenue

Making Revenue Management Work (for reading)

- Multiple pricing structures must be feasible and appear logical to the customer
- 2. Forecasts of the use and duration of use
- 3. Managing changes in demand