POLYGON CONVEXITY: ANOTHER O(n) TEST

IOSIF PINELIS

ABSTRACT. An O(n) test for polygon convexity is stated and proved.

1. Definitions and results

A polygon is defined in this paper as any finite sequence of points (or, interchangeably, vectors) on the Euclidean plane \mathbb{R}^2 ; the same definition was used in [5,6]. Let here $\mathcal{P} := (V_0, \ldots, V_{n-1})$ be a polygon, which is sequence of n points; such a polygon is also called an n-gon. The points V_0, \ldots, V_{n-1} are called the vertices of \mathcal{P} . The smallest value that one may allow for the integer n is 0, corresponding to a polygon with no vertices, that is, to the sequence () of length 0. The segments, or closed intervals,

$$[V_i, V_{i+1}] := \text{conv}\{V_i, V_{i+1}\} \text{ for } i \in \{0, \dots, n-1\}$$

are called the edges of polygon \mathcal{P} , where

$$V_n := V_0$$
.

The symbol conv denotes, as usual, the convex hull [9, page 12]. Note that, if $V_i = V_{i+1}$, then the edge $[V_i, V_{i+1}]$ is a singleton set.

In general, our terminology corresponds to that in [9]. Here and in the sequel, we also use the notation

$$\overline{k,m} := \{i \in \mathbb{Z} : k \leqslant i \leqslant m\},\$$

where \mathbb{Z} is the set of all integers; in particular, $\overline{k,m}$ is empty if m < k.

Let us define the convex hull and dimension of polygon \mathcal{P} as, respectively, the convex hull and dimension of the set of its vertices: $\operatorname{conv} \mathcal{P} := \operatorname{conv} \{V_0, \dots, V_{n-1}\}$ and $\dim \mathcal{P} := \dim \{V_0, \dots, V_{n-1}\} = \dim \operatorname{conv} \mathcal{P}$.

Given the above notion of the polygon, a convex polygon can be defined as a polygon \mathcal{P} such that the union of the edges of \mathcal{P} coincides with the boundary $\partial \operatorname{conv} \mathcal{P}$ of the convex hull $\operatorname{conv} \mathcal{P}$ of \mathcal{P} ; cf. e.g. [11, page 5]. Thus, one has

1

Date: January 27, 2014; file convex-poly/test/mehlhorn/arxiv.tex.

²⁰⁰⁰ Mathematics Subject Classification. Primary 52C45, 51E12, 52A10; Secondary 52A37, 03D15, 11Y16.

Key words and phrases. Convex polygons, convexity tests, linear tests, O(n) tests, complexity of computation, combinatorial complexity.

Definition 1.1. A polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$ is convex if

$$\bigcup_{i \in \overline{0, n-1}} [V_i, V_{i+1}] = \partial \operatorname{conv} \mathcal{P}.$$

Let us emphasize that a polygon in this paper is a sequence and therefore ordered. In particular, even if all the vertices V_0, \ldots, V_{n-1} of a polygon $\mathcal{P} = (V_0, \ldots, V_{n-1})$ are the extreme points of the convex hull of \mathcal{P} , it does not necessarily follow that \mathcal{P} is convex. For example, consider the points $V_0 = (0,0)$, $V_1 = (1,0)$, $V_2 = (1,1)$, and $V_3 = (0,1)$. Then polygon (V_0, V_1, V_2, V_3) is convex, while polygon (V_0, V_2, V_1, V_3) is not.

Definition 1.2. Let us say that a polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$ is

- quasi-ordinary if for any i in the set $\overline{0, n-1}$, the vertices V_i and V_{i+1} are distinct;
- ordinary if for any two distinct i and j in $\overline{0, n-1}$, the vertices V_i and V_j are distinct;
- strict if for any three distinct i, j, and k in $\overline{0, n-1}$, the vertices V_i , V_j , and V_k are non-collinear;
- quasi-ordinarily convex if P is quasi-ordinary and convex;

similarly can be defined ordinarily convex and strictly convex polygons.

Obviously, any ordinary polygon is quasi-ordinary. Any n-gon with $n \leq 1$ is ordinary. Any n-gon with $n \leq 2$ is strictly convex. Any 3-gon is convex, and so, a 3-gon is strictly convex if and only if it is strict. Any strictly convex n-gon with $n \geq 3$ is ordinary.

For a polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$, let x_i and y_i denote the coordinates of its vertices V_i , so that

$$V_i = (x_i, y_i)$$
 for $i \in \overline{0, n-1}$.

Introduce the determinants

(1)
$$\Delta_{\alpha,i,j} := \begin{vmatrix} 1 & x_{\alpha} & y_{\alpha} \\ 1 & x_{i} & y_{i} \\ 1 & x_{j} & y_{j} \end{vmatrix}$$

for α , i, and j in the set $\overline{0, n-1}$. Let then

$$a_i := \operatorname{sign} \Delta_{i+1,i-1,i} = \operatorname{sign} \Delta_{i-1,i,i+1};$$

 $b_i := \operatorname{sign} \Delta_{0,i-1,i};$
 $c_i := \operatorname{sign} \Delta_{i,0,1} = \operatorname{sign} \Delta_{0,1,i}.$

The following theorem is the main result of [7], which provides an O(n) test of the strict convexity of a polygon.

Theorem 1.3. [7] An n-gon $\mathcal{P} = (V_0, \dots, V_{n-1})$ with $n \ge 4$ is strictly convex if and only if conditions

(2)
$$a_i b_i > 0, \\ a_i b_{i+1} > 0, \\ c_i c_{i+1} > 0$$

hold for all

$$i \in \overline{2, n-2}$$
.

Proposition 1.4. [7] None of the 3(n-3) conditions in Theorem 1.3 can be omitted without (the "if" part of) Theorem 1.3 ceasing to hold.

Thus, the test given by Theorem 1.3 is exactly minimal.

Remark 1.5. [7] Adding to the 3(n-3) conditions (2) in Theorem 1.3 the equality $b_2 = c_2$, which trivially holds for any polygon (convex or not), one can rewrite (2) as the following system of 3(n-3)+1 equations and one inequality:

$$a_2 = \dots = a_{n-2}$$

= $b_2 = \dots = b_{n-2} = b_{n-1}$
= $c_2 = \dots = c_{n-2} = c_{n-1} \neq 0$.

These results were used in [8].

For any vector $\vec{v} = (x, y) \in \mathbb{R}^2$ with $r := |\vec{v}| := \sqrt{x^2 + y^2} \neq 0$, define the (angle) argument of \vec{v} as usual, by the formula

$$\arg \vec{v} = \theta \iff (0 \leqslant \theta < 2\pi \& x = r \cos \theta \& y = r \sin \theta),$$

so that, for each nonzero vector $\vec{v} \in \mathbb{R}^2$, the "angle" $\arg \vec{v}$ is a uniquely defined number in the interval $[0, 2\pi)$. Moreover,

(3)
$$\arg \vec{v} = \begin{cases} \arccos \frac{x}{r} & \text{if } \vec{v} \in H_-, \\ 2\pi - \arccos \frac{x}{r} & \text{if } \vec{v} \in H_+, \end{cases}$$

where arccos is the branch of the inverse function \cos^{-1} with values in the interval $[0, \pi]$ and

$$H_{-} := \{(x, y) \in \mathbb{R}^2 : y > 0 \text{ or } (y = 0 \& x > 0)\},$$

 $H_{+} := \{(x, y) \in \mathbb{R}^2 : y < 0 \text{ or } (y = 0 \& x < 0)\};$

note that $H_- \cup H_+ = \mathbb{R}^2 \setminus \{\vec{0}\}$ and $H_- \cap H_+ = \emptyset$.

For any quasi-ordinary polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$, introduce also the sequence of the angle arguments the edge-vectors $\overrightarrow{V_0V_1}, \dots, \overrightarrow{V_{n-1}V_n}$ of \mathcal{P} , by the formula

$$\operatorname{arg} \mathcal{P} := (\operatorname{arg} \overrightarrow{V_0 V_1}, \dots, \operatorname{arg} \overrightarrow{V_{n-1} V_n}).$$

For any two nonzero vectors \vec{u} and \vec{v} in \mathbb{R}^2 , let us write

$$\vec{u} < \vec{v}$$
 iff $\arg \vec{u} < \arg \vec{v}$;

similarly defined is the relation > on $\mathbb{R}^2 \setminus \{\vec{0}\}$.

Remark 1.6. Let $\vec{u} = (s,t)$ and $\vec{v} = (x,y)$ be any two vectors in $\mathbb{R}^2 \setminus \{\vec{0}\}$. Then, using (3), it is elementary but somewhat tedious to check that

(4)
$$\vec{u} < \vec{v} \iff \begin{cases} \vec{u} \in H_{-} \& \vec{v} \in H_{+} & \text{or} \\ \vec{u} \in H_{-} \& \vec{v} \in H_{-} \& \Delta > 0 & \text{or} \\ \vec{u} \in H_{+} \& \vec{v} \in H_{+} \& \Delta > 0, \end{cases}$$

where

$$\Delta := \begin{vmatrix} 1 & 0 & 0 \\ 1 & s & t \\ 1 & x & y \end{vmatrix} = \begin{vmatrix} s & t \\ x & y \end{vmatrix} = sy - tx.$$

Under the additional condition that \vec{u} and \vec{v} are non-collinear, it follows that either $\vec{u} < \vec{v}$ or $\vec{v} < \vec{u}$:

$$\Delta \neq 0 \implies (\vec{u} < \vec{v} \text{ or } \vec{v} < \vec{u}).$$

Note also that

(5)
$$\vec{u} < \vec{v} \implies (y \leqslant 0 \leqslant t \text{ or } \Delta > 0).$$

Definition 1.7. Let us say that a quasi-ordinary polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$ with $\arg \mathcal{P} =: (\alpha_0, \dots, \alpha_{n-1})$ is

- increasing if the sequence $\arg \mathcal{P}$ is increasing: $\alpha_0 < \cdots < \alpha_{n-1}$;
- decreasing if $\alpha_0 > \cdots > \alpha_{n-1}$;
- cyclically increasing or, briefly, c-increasing if

$$\alpha_k < \dots < \alpha_{n-1} < \alpha_0 < \dots < \alpha_{k-1},$$

for some $k \in \overline{0, n-1}$; (if k = 0 then this chain of inequalities is supposed to read simply as $\alpha_0 < \cdots < \alpha_{n-1}$, in which case polygon \mathcal{P} will be increasing):

• cyclically decreasing or, briefly, c-decreasing – similarly, if

$$\alpha_k > \dots > \alpha_{n-1} > \alpha_0 > \dots > \alpha_{k-1},$$

for some $k \in \overline{0, n-1}$;

• cyclically strictly monotone or, briefly, c-strictly monotone – if \mathcal{P} is either c-increasing or c-decreasing.

For any transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and any polygon $\mathcal{P} = (V_0, \dots, V_{n-1})$, define the corresponding transformation of \mathcal{P} as the polygon $T\mathcal{P} := (TV_0, \dots, TV_{n-1})$; if T is an orthogonal or homothetical transformation of the plane, let us say that the polygon $T\mathcal{P}$ is, respectively, an orthogonal or homothetical transformation of polygon \mathcal{P} . (A homothetical transformation is understood here as one of the form $\mathbb{R}^2 \ni \vec{v} \to \lambda \vec{v}$ for some $\lambda > 0$.) A rotation is any orthogonal (and hence linear) transformation with determinant 1; any rotation can be represented as the linear transformation R_{α} with matrix $\begin{bmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ for some real number α , so

that $R_{\alpha}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$. The reflection is denoted here by R and defined by the formula $\mathbb{R}^2 \ni (x,y) \mapsto R(x,y) := (x,-y)$. Any orthogonal transformation can be represented as $R_{\alpha}R$ (as well as RR_{β}) for appropriate α and β .

Proposition 1.8. The properties of being convex, quasi-ordinary, ordinary, and strict are each preserved for any polygon under any nonsingular affine transformation. The properties of being c-increasing and c-decreasing are each preserved under any rotation or homothetical transformation or a parallel translation. The properties of being c-increasing and c-decreasing are interchanged under the reflection.

Proof of Proposition 1.8. Suppose that an n-gon \mathcal{P} with $(\alpha_0, \ldots, \alpha_{n-1}) := \arg(\mathcal{P})$ is c-increasing, that is,

(Incr_k)
$$\alpha_k < \cdots < \alpha_{n-1} < \alpha_0 < \cdots < \alpha_{k-1}$$

for some $k \in \overline{0, n-1}$. Let $(\beta_0, \ldots, \beta_{n-1}) := \arg(R\mathcal{P})$, the argument sequence of the reflected polygon $R\mathcal{P}$. Then $\beta_i = 2\pi - \alpha_i$ for all $i \neq k$, while $\beta_k = 2\pi - \alpha_k$ if $\alpha_k \neq 0$ and $\beta_k = 0$ if $\alpha_k = 0$. It follows that

(Decr_k)
$$\beta_k > \dots > \beta_{n-1} > \beta_0 > \dots > \beta_{k-1}$$

if $\alpha_k \neq 0$, and the β_i 's satisfy ($\mathrm{Decr}_{k \oplus 1}$) if $\alpha_k = 0$, where $k \oplus 1 := k+1$ if $k \in \overline{0, n-2}$ and $k \oplus 1 := 0$ if k = n-1.

Similarly, if $\arg \mathcal{P} =: (\beta_0, \dots, \beta_{n-1})$ satisfies condition (Decr_k) for some $k \in \overline{0, n-1}$, then $(\alpha_0, \dots, \alpha_{n-1}) := \arg(R\mathcal{P})$ satisfies condition (Incr_k) if $\alpha_{k-1} \neq 0$, and the α_i 's satisfy (Incr_{k\ightarrow1}) if $\alpha_{k-1} = 0$, where $k \ominus 1 := k-1$ if $k \in \overline{1, n-1}$ and $k \ominus 1 := n-1$ if k = 0.

Thus, reflection R interchanges the properties of being c-increasing and c-decreasing. Let us now verify the preservation of the c-increasing property under any rotation R_{α} . W.l.o.g., $0 \leqslant \alpha < 2\pi$. Suppose again that an n-gon \mathcal{P} with $(\alpha_0,\ldots,\alpha_{n-1}):= \arg(\mathcal{P})$ satisfies condition (Incr $_k$). Then the cyclic permutation $\mathcal{Q}:=\mathcal{P}\theta^k:= (V_k,\ldots,V_{n-1},V_0,\ldots,V_{k-1})$ of polygon \mathcal{P} with $(\beta_0,\ldots,\beta_{n-1}):= \arg(\mathcal{Q})= (\alpha_k,\ldots,\alpha_{n-1},\alpha_0,\ldots,\alpha_{k-1})$ is an increasing n-gon. Let $(\psi_0,\ldots,\psi_{n-1}):= \arg(R_{\alpha}\mathcal{Q})$. Let $J:=\{i\in\overline{0,n-1}:\beta_i+\alpha\geqslant 2\pi\}$, and let $j:=\min J$ if $J\neq\emptyset$ and j:=n if $J=\emptyset$. Then $\psi_i:=\beta_i+\alpha$ for $i\in\overline{0,j-1}$ and $\psi_i:=\beta_i+\alpha-2\pi$ for $i\in\overline{j,n-1}$. Hence, the sequence $\arg(R_{\alpha}\mathcal{Q}\theta^j)=:(\varphi_0,\ldots,\varphi_{n-1})$ is increasing, where $\varphi_i:=\beta_{i+j}+\alpha-2\pi$ for $i\in\overline{0,n-j-1}$, and $\varphi_i:=\beta_{i+j-n}+\alpha$ for $i\in\overline{n-j,n-1}$. Thus, the cyclic permutation $R_{\alpha}\mathcal{P}\theta^m=R_{\alpha}\mathcal{P}\theta^{k+j}=R_{\alpha}\mathcal{Q}\theta^j$ of polygon $R_{\alpha}\mathcal{P}$ is increasing, where m:=k+j if k+j< n and m:=k+j-n if $k+j\geqslant n$. Thus, $R_{\alpha}\mathcal{P}$ is c-increasing.

The preservation of the c-decreasing property under any rotation is verified quite similarly.

The other claims stated in Proposition 1.8 are only easier to check. \Box

The following theorem is the main result of this paper.

Theorem 1.9. An n-gon with $n \ge 3$ is strictly convex iff it is c-strictly monotone.

Remark 1.10. Any n-gon with $n \le 1$ is, trivially, both strictly convex and c-strictly monotone. Any 2-gon is, trivially, strictly convex; however, a 2-gon is c-strictly monotone only if it is quasi-ordinary (and hence ordinary). It is easy to see that any strict 3-gon is c-strictly monotone, so that Theorem 1.9 is trivial for n = 3. Note also that an n-gon is both c-increasing and c-decreasing iff it is quasi-ordinary and n = 2.

A suggestion to use c-strict monotonicity to test for polygon convexity was given in [3], without a proof. A result, similar to Theorem 1.9, with a non-strict version of c-monotonicy, was presented in [2, Lemma 5 in Section 10.3], with a very brief, heuristic proof.

Proof of Theorem 1.9. Let $\mathcal{P} = (V_0, \dots, V_{n-1})$ be an n-gon with $n \geq 3$, vertices $V_i =: (x_i, y_i)$, and argument $(\alpha_0, \dots, \alpha_{n-1}) := \arg \mathcal{P}$. In view of Proposition 1.8, the rotation $R_{2\pi-\alpha_0}$ and any homothetical transformation will preserve both the convexity and c-monotonicity properties of \mathcal{P} . Therefore, assume without loss of generality (w.l.o.g.) that $\alpha_0 = 0$ and, moreover, $V_0 = (0,0)$ and $V_1 = (1,0)$.

"If" When proving this part, assume w.l.o.g. that \mathcal{P} is c-increasing, that is, $\alpha_k < \cdots < \alpha_{n-1} < \alpha_0 < \cdots < \alpha_{k-1}$. (Indeed, in view of Proposition 1.8, the reflection transformation R will preserve the convexity property of \mathcal{P} and interchange the property of \mathcal{P} being c-increasing with it being c-decreasing; also, R will preserve the property $\alpha_0 = 0$.) Then the conditions $\alpha_0 = 0$ and $\alpha_i \in [0, 2\pi) \ \forall i$ imply that k = 0 and $\alpha_0 = 0 < \cdots < \alpha_{n-1}$; that is, the sequence $\arg \mathcal{P}$ is increasing.

Hence, inequality $\alpha_1 \ge \pi$ would imply $\alpha_i \in (\pi, 2\pi)$ for all $i \in \overline{2, n-1}$. Hence and because $n \ge 3$, one would have $0 = y_1 \ge y_2 > y_3 > \cdots > y_n = y_0 = 0$, and at least one inequality here is strict (since $n \ge 3$), which is a contradiction.

The case $\alpha_1 < \pi$ is similar. In this case, $y_2 > 0$. To obtain a contradiction, suppose that the set $L := \{i \in \overline{2, n-1} \colon y_i \leqslant 0\}$ is non-empty and then let $\ell := \min L$, so that $\ell \in \overline{3, n-1}$, $y_{\ell-1} > 0$, and $y_{\ell} \leqslant 0$. Then $\alpha_{\ell-1} \in (\pi, 2\pi)$. Hence and because the sequence $\arg \mathcal{P}$ is increasing, one has $\alpha_i \in (\pi, 2\pi)$ for all $i \in \overline{\ell-1}, n-1$. Therefore, $0 \geqslant y_{\ell} > \cdots > y_n = y_0 = 0$, which is a contradiction. This contradiction means that $L = \emptyset$, so that $y_i > 0$ for all $i \in \overline{2, n-1}$; that is, according to [7, Definition 2.4], the polygon $\mathcal{P} = (V_0, \ldots, V_{n-1})$ is strictly to one side of its edge $[V_0, V_1]$.

Similarly it is proved that \mathcal{P} is strictly to one side of any other one of its edges; that is, \mathcal{P} is strictly to-one-side. To complete the proof of the "if" part of Theorem 1.9, it remains to refer to [7, Lemmas 2.6 and 2.11].

"Only if" Here is assumed that polygon \mathcal{P} is strictly convex. Again w.l.o.g. one has $\alpha_0 = 0$. Also, by Remark 1.10, w.l.o.g. $n \ge 4$. Again by the "reflection" part of Proposition 1.8, w.l.o.g. $y_2 \ge 0$. Moreover, because of the strictness of \mathcal{P} and the assumptions $V_0 = (0,0)$ and $V_1 = (1,0)$, one actually has $y_2 > 0$, so that $\alpha_0 = 0 < \alpha_1 < \pi$ and $\Delta_{0,1,2} = y_2 > 0$. So, the strict convexity of \mathcal{P} and Remark 1.5

yield $\Delta_{0,1,i} = y_i > 0$ for all $i \in \overline{2, n-1}$. The strictness of \mathcal{P} also implies that all the values $\alpha_0, \ldots, \alpha_{n-1}$ are distinct from one another.

Thus, it suffices to show that $\alpha_i \leq \alpha_{i+1}$ for all $i \in \overline{1, n-2}$. Suppose the contrary, that $\alpha_i > \alpha_{i+1}$ for some $i \in \overline{1, n-2}$. Consider separately the following three cases.

Case 1: i = 1. Then $\alpha_1 > \alpha_2$. By (5), this implies that $\Delta_{1,2,3} \leq 0$ or $y_2 - y_1 \leq 0 \leq y_3 - y_2$; but $y_2 - y_1 = y_2 > 0$, so that one must have $\Delta_{1,2,3} \leq 0$; now inequalities $\Delta_{1,2,3} \leq 0$ and $\Delta_{0,1,2} > 0$ contradict Remark 1.5.

Case 2: i=n-2. Then $\alpha_{n-2}>\alpha_{n-1}$. This case is quite similar to Case 1. Indeed, by (5), here one has $\Delta_{0,n-2,n-1}=\Delta_{n-2,n-1,0}\leqslant 0$ or $0\leqslant y_0-y_{n-1}$; but $y_0-y_{n-1}=-y_{n-1}<0$, so that $\Delta_{0,n-2,n-1}\leqslant 0$; now inequalities $\Delta_{0,n-2,n-1}\leqslant 0$ and $\Delta_{0,1,2}>0$ contradict Remark 1.5.

Case 3: $i \in \overline{2, n-3}$ and $\alpha_i > \alpha_{i+1}$. Then the 5-gon $\mathcal{Q} := (V_0, V_1, V_i, V_{i+1}, V_{i+2})$ is a sub-polygon of \mathcal{P} , so that \mathcal{Q} is strictly convex, by [6, Corollary 1.17]. On the other hand, $\arg \mathcal{Q} = (\alpha_0, \beta, \alpha_i, \alpha_{i+1}, \gamma)$, for some real numbers β and γ . Thus, w.l.o.g. $\mathcal{P} = \mathcal{Q}$, n = 5, and so, one has all of the following: $\mathcal{P} = (V_0, V_1, V_2, V_3, V_4)$; i = 2; $\alpha_2 > \alpha_3$; and $\Delta_{0,1,i} = y_i > 0$ for all $i \in \overline{2,4}$. By Remark 1.5, one now also sees that the determinants $\Delta_{2,3,4}$, $\Delta_{0,2,3}$, and $\Delta_{0,3,4}$ are all strictly positive as well. Therefore, the condition $\alpha_2 > \alpha_3$ and implication (5) yield $y_3 - y_2 \leqslant 0 \leqslant y_4 - y_3$. One can verify the identity

$$(y_4 - y_3) \Delta_{0,2,3} + (y_2 - y_3) \Delta_{0,3,4} + \Delta_{2,3,4} \Delta_{0,1,3} = 0,$$

whose left-hand side is strictly positive, since all the determinants $\Delta_{\cdot,\cdot,\cdot}$ in this identity are strictly positive and because of the condition $y_3 - y_2 \leq 0 \leq y_4 - y_3$. Thus, one obtains a contradiction.

The proof of the "only if" part and thus of entire Theorem 1.9 is now complete.

Literature

- F. S. Hill, Jr. The pleasures of "perp dot" products. In Graphics Gems IV, P. S. Heckbert, ed., Academic Press, London, 138–148, 1994.
- St. Näher, LEDA Platform [2] K. Mehlhorn and The of Combinatorial Geometric Computing, Cambridge University Press. 1999. and http://www.mpi-sb.mpg.de/~mehlhorn/LEDAbook.html.
- [3] Mehlhorn, K. et al., Checking Geometric Programs or Verification of Geometric Structures. Computational Geometry, 12(1-2):85-103, 1999.
- [4] B. M. E. Moret and H. D. Shapiro, Algorithms from N to NP. Volume 1. Design and Efficiency, The Benjamin/Cummings Publishing Company, 1991.
- [5] I. Pinelis, Cyclic polygons with given edge lengths: existence and uniqueness. J. Geom. 82 (2005), no. 1-2, 156-171.
- [6] I. Pinelis, Convexity of sub-polygons of convex polygons. Preprint (2006), http://arxiv.org/abs/math.GM/0609698.
- [7] Pinelis, I., Polygon Convexity: A Minimal O(n) Test. Preprint (2006), http://arxiv.org/abs/cs.CG/0609141.
- [8] Pinelis, I., An order-refined and generalized version of the Erdös-Szekeres theorem on convex polygons. Preprint (2006), http://arxiv.org/abs/math.CO/0611802.

- [9] R. T. Rockafellar, Convex Analysis, Princeton University Press 1970.
- [10] E. W. Weisstein. Convex polygon. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/ConvexPolygon.html .
- [11] I. M. Yaglom and V. G. Boltyanskiĭ, Convex Figures, Holt, Rinehart and Winston 1961.

Department of Mathematical Sciences Michigan Technological University Houghton, MI 49931 USA

 $e\text{-}mail:\ ipinelis@mtu.edu$