UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATIONS - DECEMBER 1991 First Year, Program 5, Engineering Science CHE 150F - CHEMISTRY

Examiners: Prof. M.T. Kortschot, Prof. W.H. Burgess

Answer all seven questions. The marks are shown in the margin. No aids are permitted. Any non-programmable calculator may be used. Please read the paper carefully and make sure that your solutions are legible!

Given Information

 $R = 8.314 \ J/(mol \ K) = 0.08206 \ L. \ atm/(mol \ K)$

1 atm = 101.325 kPa

atomic masses (g/mol) C = 12.0, H = 1.0, O = 16.0, N = 14.0

$$G = H - TS$$
 $\ln \left[\frac{P_1^*}{P_2^*} \right] = \frac{\Delta H_{mp}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$ $E = E^* - \frac{.0592}{n} \log \Omega$

The composition of dry air is 21.0 mol % O₂ and 79.0 mol % N₂.

An electric kettle transfers heat to its contents at the rate of 1500 J/s. It is used to boil 1.00 kg of H₂O. The water is initially liquid at 25°C and ends up as steam at 100°C and 1.00 atm. Assuming that no heat is lost to the surroundings:

- a) How long does it take for the kettle to boil?
- b) What is the heat of vapourization of water at 100°C?

<u>;</u>

- c) How long does it take for the kettle to boil dry?
- d) How much work is done in vapourizing all of the water?

H₂O (t) C_p (J/mol K) AH_r (kJ/mol) -285.8 H₂O (g) 33.58 -241.8 a) A furnace burns methane (CH₄) in air at the rate of 1 kg of methane per hour producing CO₂ and H₂O. A 20% excess of air is required to achieve complete combustion. Calculate the volumente flowrate of air (at 1.0 atm, 25°C) required by the furnace if the relative humidity is 85%. The vapour pressure of water at 25°C is 3.17 kPa.

(b) — What is the molar composition of the product gas stream, assuming that the gases leave the furnace at a temperature of 305°C and 1.0 atm pressure.

erigiven the following information, calculate the solubility product (K_{sp}) of AgBr.

$$AgBr(s) + c \rightarrow Ag(s) + Br(aq)$$

 $Ag(aq) + c \rightarrow Ag(s)$

- Applicati

 $E^{\circ} = 0.07 \text{ V}$ $E^{\circ} = 0.80 \text{ V}$ The Diethyl ether in equilibrium with its vapour is stored in plastic bottles which are designed the printing a maximum pressure of 200 kPa. What is the maximum temperature to the bottles of ether can be safely exposed?

For the ether. n.b.p. is 34.6°C; AH, equals 27.0 kJ mol.1.

Carles A.

5. 150 g of supercooled water, held in a thermos bottle at -10°C, spontaneously freezes. The result is a mixture of ice and water at 0°C. Assuming that the process is adiabatic, calculate (a) the grams of ice formed and (b) ΔS for the process. Is the sign of the ΔS what you would expect? Briefly explain. Given: c_p of supercooled water is 4.18 J g⁻¹°C⁻¹, ΔH fusion of ice at 0°C is 333 J g⁻¹.

6. A study of the equilibrium, $N_2O_4(g) \Leftrightarrow 2NO_2(g)$, yielded the following results:

4. 4. Se 37. 48

Density at equilibrium g/L	3.166 2.577
Total pressure at equilibrium atm	1.000
Temperature °C	25 45

a) Calculate K_p , K_c and ΔG^{\bullet} at 45°C for the above reaction.

b) Determine ΔS^* and ΔH^* for the above reaction. You may assume that both ΔS^* and ΔH^* are independent of temperature.

-

Calculate the volume of tank required to store 500 kg of ethylene (C₂H₄) at 25°C and 75 atm, using (a) the ideal gas law and (b) the attached generalized compressibility chart.

For ethylene: $T_c = 283 \text{ K}$; $P_c = 50.5 \text{ atm.}$

GENERALIZED COMPRESSIBILITY CHART*

Reduced Pressure

* J.H. Smith and H.C. Van Ness, Introduction to Chemical Engineering