Lösungen zu 9. Arbeitsblatt Analysis (BA-INF022)

== Sommersemester 2023 ==

Aufgabe 1. Es sei $f: [-1,1] \to \mathbb{R}$ eine Funktion. Beweisen Sie die folgenden Aussagen und bestimmen Sie g'(0) und h'(0).

- (i) Ist f stetig in 0, so ist $g(x) := x \cdot f(x)$ differenzierbar in 0.
- (ii) Ist f beschränkt, so ist $h(x) := x^2 \cdot f(x)$ differenzierbar in 0.

Lösung:

(i) Es sei f stetig in 0 und $g(x) := x \cdot f(x)$. Dann ist

$$\frac{g(x) - g(0)}{x - 0} = \frac{x \cdot f(x) - 0}{x - 0} = f(x)$$

und somit, da f stetig in 0 ist.

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} f(x) = f(0).$$

(ii) Ist f beschränkt und $h(x) := x^2 \cdot f(x)$, dann ist

$$\frac{h(x) - h(0)}{x - 0} = \frac{x^2 \cdot f(x) - 0}{x - 0} = x \cdot f(x)$$

und somit, da f beschränkt ist.

$$h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} x f(x) = 0.$$

Aufgabe 2. Die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}$ sei gegeben durch

$$f(x) := \sqrt{x} \log x$$
.

- (i) Bestimmen Sie die Grenzwerte $\lim_{x \searrow 0} f(x)$ und $\lim_{x \to \infty} f(x)$.
- (ii) Bestimmen Sie die Nullstellen von f.
- (iii) Untersuchen Sie f auf Monotonie, bestimmen Sie alle lokalen Extrema von f und klären Sie für jedes Extremum, ob es sich um ein Maximum oder Minimum handelt.
- (iv) Geben Sie (mit Begründung!) an, für welche $\alpha \in \mathbb{R}$ die Gleichung

$$f(x) = \alpha$$

genau eine reelle Lösung x > 0 besitzt.

Lösung:

- (i) Nach Vorlesung ist $\lim_{x \to 0} \sqrt{x} \log x = 0$ und $\lim_{x \to \infty} f(x) = +\infty$.
- (ii) Für x > 0 ist $\sqrt{x} > 0$ und es ist

$$\log x = 0 \Leftrightarrow x = 1.$$

Also ist x = 1 die einzige Nullstelle von f.

(iii) Es ist

$$f'(x) = \frac{1}{\sqrt{x}} \left(\frac{1}{2} \log x + 1 \right).$$

Also ist f'(x) = 0 genau dann, wenn $\frac{1}{2} \log x + 1 = 0$ ist; also genau für $x = e^{-2}$. Ist $x > e^{-2}$, so ist f'(x) > 0 und f somit streng monoton wachsend. Für $0 < x < e^{-2}$ ist f'(x) < 0 und f streng monoton fallend. f hat also in $x = e^{-2}$ einen Tiefpunkt.

(iv) Es ist $f(e^{-2}) = -2e^{-1} < 0$. Da f stetig ist, nimmt f nach Zwischenwertsatz auf $]0, e^{-2}[$, wegen $\lim_{x\searrow 0} \sqrt{x} \log x = 0$ alle Werte im Intervall $]-2e^{-1}, 0[$ an. Auch auf dem Intervall $]e^{-2}, 1[$ nimmt f alle Werte im Intervall $]-2e^{-1}, 0[$ an.

Wegen $\lim_{x\to\infty} f(x) = +\infty$ nimmt f nach Zwischenwertsatz auf dem Intervall $[1,+\infty]$ alle Werte des Intervalls $[0,+\infty[$ an. Wegen der strengen Monotonie wird jeder dieser Werte genau einmal angenommen. D.h. für $\alpha = -2e^{-1}$ und alle $\alpha \geq 0$ besitzt die Gleichung $f(x) = \alpha$ genau eine Lösung.

Aufgabe 3. - logarithmische Ableitung und implizierte Differentiation

(i) Bestimmen Sie für x>0 mittels der logarithmischen Ableitung die Ableitung der Funktion

$$f(x) := \frac{(x+2)^3 (2x+1)^9}{x^8 (3x+1)^5}.$$

(ii) Bestimmen Sie die Steigung der Tangente an die Kurve $x^4 = y^2 + x^2$ im Punkt $(2, \sqrt{12})$ mittels implizierter Differentiation. Wie lautet die Geradengleichung der Tangente?

Lösung:

(i) Es ist

$$\log f(x) = 3\log(x+2) + 9\log(2x+1) - 8\log x - 5\log(3x+1).$$

Also haben wir

$$\frac{f'(x)}{f(x)} = (\log f(x))'$$

$$= 3 \cdot \frac{1}{x+1} + 9 \cdot \frac{2}{2x+1} - 8 \cdot \frac{1}{x} - 5 \cdot \frac{3}{3x+1}$$

und somit

$$f'(x) = f(x) \left(3 \cdot \frac{1}{x+1} + 9 \cdot \frac{2}{2x+1} - 8 \cdot \frac{1}{x} - 5 \cdot \frac{3}{3x+1} \right)$$
$$= \frac{(x+2)^3 (2x+1)^9}{x^8 (3x+1)^5} \left(\frac{3}{x+1} + \frac{18}{2x+1} - \frac{8}{x} - \frac{15}{3x+1} \right).$$

(ii) Wir können y als Funktion auffassen, die von x abhängt. Wir leiten die Gleichung $x^4 = y(x)^2 + x^2$ implizit ab und erhalten

$$4x^{3} = \frac{d}{dx}(x^{4}) = \frac{d}{dx}(y(x)^{2} + x^{2}) = 2y(x)y'(x) + 2x$$

bzw.

$$y'(x) = \frac{4x^3 - 2x}{2y(x)}.$$

Im Punkt $(2, \sqrt{12})$ ergibt sich

$$y'(2) = \frac{28}{2\sqrt{12}}.$$

Die Tangente an die Kurve im Punkt $(2, \sqrt{12})$ lautet

$$g(x) = \sqrt{12} + \frac{28}{2\sqrt{12}}(x-2).$$