E - 41 - 2012

이동형 저압 발전기의 안전점검에 관한 기술지침

2012. 6

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 인천대학교 안전공학과 황명환 교수

o 개정자: 한국산업안전보건공단 산업안전보건연구원 안전연구실

o 제·개정 경과

- 2010년 8월 전기안전분야 제정위원회 심의(제정)

- 2012년 4월 전기안전분야 제정위원회 심의(개정)

o 관련규격 및 자료

- KOSHA GUIDE E-84-2011(비상전원의 선정 및 설치에 관한 기술지침)
- KOSHA GUIDE E-88-2011(감전방지용 누전차단기 설치에 관한 기술지침)
- KS C 4613-2002 누전차단기
- NFPA 110, Standard for emergency and standby power systems
- NFPA 111, Standard on stored electrical energy emergency and standby power systems
- o 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제308조(비상전원)
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

E - 41 - 2012

이동형 저압 발전기의 안전점검에 관한 기술지침

1. 목적

이 지침은 단기간 임시전원을 인출하기 위하여 사용되는 이동형 저압 교류발전기의 안전점검에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 단기간 임시전원을 인출하기 위하여 사용되는 저압 교류발전기의 안전점검에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "중성선"이라 함은 단상 3선식 또는 3상 변압기를 Y결선 하는 경우 그 중성점에 접속되는 전선을 말한다.
- (나) "보호도체"라 함은 감전보호를 위하여 노출 도전부, 기타 도전부, 주접지 단자, 전원측의 접지점 또는 기타 접지점에 접속·사용하는 도체를 말한다.
- (다) "기준점(Reference point)"이라 함은 전극에 전압을 가할 때 기준으로 하는 전위점을 말하며, 원칙적으로 접지를 한다.
- (라) "지락"이라 함은 전압이 인가된 전선이 직접 땅에 접촉되었을 때의 상태를 말하며, 이때 고장전류가 과도하게 흐르게 된다.
- (마) "단락"이라 함은 전기회로에서 전위차가 있는 두 점 사이를 저항이 극히 작은

E - 41 - 2012

도선으로 연결되거나, 절연불량으로 작은 저항회로가 형성된 것을 말하며, 이때 고장전류가 과도하게 흐르게 된다.

- (바) "부동(Floating)"이라 함은 발전기, 변압기 등의 상 권선에 대하여 접지, 기준점 설정 등 인위적으로 전위를 설정하지 않는 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 일반사항

- (1) 사용자는 제작자의 요구사양에 따라 발전기를 운전하여야 한다.
- (2) 발전기와 관련된 제어장치 이외에 최소한 다음의 장치가 제공되어야 한다.
- (가) 원동기 정지장치
- (나) 전력부하 연결을 위한 단자함(특히, 단자함이 금속인 경우 발전기 외함과 전기적으로 연결되어야 함)
- (다) 과전류 차단장치
- (라) 전원 차단장치
- (마) 발전기 외함의 접지장치

5. 이동형 저압 단상발전기

E - 41 - 2012

- (1) 발전기 권선은 소켓으로 연결되어 있고, 이에는 중성선 또는 보호도체가 발전기 외함과 내부적으로 연결되어 있다. 그러나 특별한 경우에는 발전기의 한 극이 내부적으로 발전기 외함과 연결되어 기준점을 형성하기도 한다.
- (2) 발전기의 용량이 작고, 외부 금속부분에 전원이 노출될 가능성이 없거나, 단상 계통 중 접지된 극이 다음의 조건을 만족하는 경우 발전기 권선을 분리시켜 고장 전류의 궤환회로를 구성하지 않는 것이 가능하다.
- (가) 외부 환경에 적합한 PVC로 절연된 케이블, 외장케이블 또는 시스 케이블 등이 사용되는 경우
- (나) 발전기 외함과 전원계통을 구성하는 모든 금속 외함간에 본딩을 한 경우
- (다) 외부의 충격에도 견딜 수 있고, 시스로 절연된 3가닥으로 된 케이블을 사용하여 전기적 연속성을 갖는 보호접지용 금속선을 갖는 경우
- (라) 모든 케이블 및 연결 부속장치를 자주 점검하는 경우
- (3) 접지되지 않은 단상발전기로부터 전원을 공급받는 부하는 매우 짧은 시간동안 분산되어 있지 않은 경우에만 가능하다.

6. 누전차단기의 추가 설치

6.1 일반 소형발전기

- (1) 단상계통의 한 극이 접지되어 있지 않으면, 고장전류가 발전기 권선으로 흐를 수가 없으므로 누전차단기가 동작하지 않는다.
- (2) 일반적으로 발전기의 기준점은 접지되어 있거나, 전원 공급계통의 모든 금속도체가 상호 본딩되어 기준점이 같다.

E - 41 - 2012

- (3) 선로와 금속외함 사이에 사고전류가 흐르면 누전차단기가 즉시 동작하여 안전하게 된다.
- (4) 단상발전기의 케이블이 누전되어 기준점이 파괴된 상태에서 작업자가 접촉하게 되면 감전사고가 발생한다. 이때 누전차단기가 설치되어 있으면 감전의 위험을 최소화 할 수 있다.
- (5) 이때 설치되는 누전차단기는 차단용량 30 mA, 차단시간 0.03초 이내의 것을 사용하여야 한다.
- (6) 소용량 단상발전기에는 누전차단기가 일반적으로 설치되어 있지 않으므로, 추가적으로 누전차단기를 설치하는 경우 다음의 조건을 고려하여야 한다.
- (가) 누전차단기의 외함은 절연재질로 하거나, 금속인 경우 보호도체와 본딩시켜야 한다.
- (나) 누전차단기의 외함과 단상발전기의 보호도체와 발전기 내부에서 전기적으로 연결시켜야 한다.
- (7) 누전차단기가 지락사고시 동작할 수 있도록 발전기 외함을 접지시켜야 한다.
- (8) 일반적으로 3상 발전기에는 누전차단기가 설치되어 있고, 중성선은 발전기 외함과 보호도체에 내부적으로 연결되어 있다. 부하측에 누전차단기가 설치되어 있지 않으면, 별도의 누전차단기를 발전기 가까운 곳에 설치하여야 한다.
- (9) 누전차단기는 보호도체와 본딩된 금속외함과 상도체간에 절연이 파괴되어 누전이 되는 경우 즉시 동작하여 전로를 차단하게 된다.
- (10) 기준점이 접지되어 있는 경우에는 전로의 절연이 파괴되어 대지간에 지락이 발생 하거나 작업자를 통해 손상된 케이블과 대지간에 전로를 형성하는 경우에도 누전 차단기가 즉시 동작하도록 설치하여야 한다.

6.2 차량탑재형 저압 3상 발전기

E - 41 - 2012

- (1) 차량탑재형 발전기는 트롤리, 스키드, 차량 등에 설치되어 있으며, 일반적으로 발전기의 권선이 설비외함에 연결되어 있지 않으나, 단자함에는 3상 전원과 중성선 단자가 인출되어 있다.
- (2) 3상의 중성점을 기준점으로 사용하도록 연결되어 있어 중성선으로 전류가 흐르는 것을 방지하고, 1선 지락시 전원차단을 즉시 할 수 있도록 보호장치가 설치되어 있다.
- (3) 기준점은 발전기 외함, 지지구조물, 보호도체 등과 함께 전기적으로 연속적이어야 한다.
- (4) 3상 발전기의 경우에는 접지를 시켜야 한다.
- (5) 발전기 단자함에는 3상전원, 중성선, 보호도체를 연결하기 위한 단자대가 설치되어 있으므로, 3상 발전기에서 단상부하를 연결하는 경우에는 발전기 권선과 외함이 발전기 단자와 어떻게 연결되어 있는 지를 사전에 확인하여야 한다.

7. 3상 전원공급시의 케이블 선정

- (1) 3상 발전기에서 단상을 인출하는 것은 불평형부하를 형성하여 중성선 도체에 전류가 흐르게 된다.
- (2) 전선이 4가닥인 케이블은 불평형전류가 흐르지 않는 평형 3상 부하에 대해 사용하는 것이므로, 단상부하를 연결하는 경우에는 적합하지 않다.
- (3) 케이블을 사용하고자 할 때 유연 케이블, 금속외장 케이블, 금속편조 케이블 등의 선정은 부하형태, 케이블의 유용성, 전원공급시 케이블 유연성의 필요성에 따라 결정된다.

8. 3상 전원계통에서 금속외함 설비의 접지효과

E - 41 - 2012

- (1) 발전기에 의해 전원을 공급받는 설비는 보통 금속외함으로 구성되어 있으며, 이들은 대지 또는 철 구조물 위에 설치되어 있어 어느 정도 접지효과를 갖는다.
- (2) 대지 또는 철 구조물 위에 금속외함의 전기설비가 설치된 경우 모든 금속외함이 서로 연결되어 있지 않고, 발전기 중성선도 접지되어 있지 않더라도 누전차단기가 동작할 수 있다.
- (3) 인명을 손상할 수 있는 고장전류가 발생할 수 있는 경우에는 전로 사고시 누전 차단기가 반드시 동작하도록 설치하여야 한다.
- (4) 누전차단기가 금속외함에 의한 접지효과에 의해 동작하기가 힘든 경우에는 반드시 대지를 통해 고장전류를 차단할 수 있도록 조치하여야 한다.
- (5) 누전차단기를 확실하게 동작시키기 위하여 단상발전기의 한국 또는 3상발전기의 중성선을 금속외함 및 보호도체 등을 함께 접지시켜야 한다.

9. 접지의 시행

접지를 시행하기 위하여 다음의 방법을 사용할 수 있다.

- (1) 1 m 이하의 깊이에 접지봉을 설치
- (2) 주변 고정설비에 설치된 접지단자의 이용
- (3) 건물의 철 구조물을 이용
- (4) 콘크리트 또는 구조물에 설치된 노출 철근의 이용
- (5) 접지된 주변의 금속 구조물을 이용

10. 비접지 기준점을 갖는 저압 3상 발전기

- (1) 비접지 기준점을 갖는 계통은 기본적으로 중성선에 전류가 흐를 수 있는 부동 시스템은 아니다.
- (2) 본딩된 금속외함 속에서 전력부하와 전원연결이 이루어 진 경우, 사고가 발생하게 되면 내부 단락상태가 되고, 이로 인해 발생되는 고장전류는 외부에 위험을 초래 하지 않고, 발전기 내부의 과전류 보호장치에 의해 제거된다.
- (3) 만약 누전차단기가 설치된 경우에는 단락사고가 발생하기 전 절연열화로 인한 누전 상태를 좀 더 빨리 감지하여 단락사고를 예방할 수 있다.
- (4) 케이블 또는 전기설비의 외함이 비도전성 재질인 경우에는 절연의 상태에 따라 안전이 결정된다.
- (5) 만약 발전기 중성점을 접지하거나, 누전차단기를 설치하는 것이 현실적으로 불가 능한 경우 다음의 모든 조건을 만족하면 발전기를 사용하여도 된다.
- (가) 발전기와 전력부하간의 거리가 근접한 경우
- (나) 발전기와 전력부하간의 케이블 길이가 짧은 경우
- (다) 전력부하가 단상이고, 부하가 펌프, 압축기 등과 같이 간단한 경우
- (라) 전로의 모든 전기기기 절연상태를 전기담당자가 정기적으로 점검하는 경우
- (6) 금속외장이 없는 일반케이블이 임시 배전계통에서 사용되고 있으나, 이는 절연파괴의 가능성이 매우 높다. 이는 불완전한 접지상태의 금속외함에 의해 작업자가 위험해 질 수 있으므로, 금속외함은 반드시 발전기의 중성선과 본딩시켜야 한다.

11. 독립된 단상 또는 3상 발전기 전원계통의 폐회로(Loop) 임피던스

- (1) 단상회로에 대하여는 폐회로 임피던스의 적용이 불가능하나, 과전류 보호장치가 5초 이내에 동작할 수 있도록 회로 임피던스는 가능한 한 작아야 한다.
- (2) 3상 회로에 대하여는 기준점이 접지되어 있거나 비접지 상태에 있더라도 폐회로 임피던스는 과전류 보호장치가 5초 이내에 동작할 수 있도록 가능한 한 작아야 한다.
- (3) 감전방지용 누전차단기가 설치된 경우에는 단상이거나 3상 모두에서 상 도체와 대지간에 형성된 폐회로 임피던스는 누전차단기가 정격에서 동작할 수 있도록 충분히 작아야 한다.
- (4) 누전차단기의 정격전류와 대지 궤환회로의 폐회로 임피던스를 곱한 전압 값은 50 V를 초과하면 안 된다.

12. 기타사항

- (1) 플라스틱 재질의 외피와 금속외장을 갖는 케이블이 플라스틱 절연케이블보다 외부 충격에 의한 손상 가능성이 낮으므로 더 안전하다.
- (2) 독립된 단상 또는 3상발전기에 설치되는 누전차단기는 다음의 두 가지 목적을 위해 사용된다.
- (가) 금속외함에 대한 절연감시기능
- (나) 전로와 금속외함 간의 누전에 대한 감전예방 기능
- (3) 3상발전기의 권선은 중성선에 의한 기준점이 필요하고, 감전방지용 누전차단기가 설치된 경우에는 반드시 접지가 된 기준점이 필요하다.

E - 41 - 2012

- (4) 3상 발전기에서 3상 부하와 단상부하를 함께 공급하는 경우에는 4가닥의 전선과 보호도체용 전선이 필요하다.
- (5) 일반적으로 선정이 잘못된 임시케이블 및 부속장치가 발전기와 전력부하보다 더 위험한 위험원이 될 가능성이 높다.