graph theory notes*

The combinatorial nullstellensatz and Schauz's coefficient formula

In [2], Alon and Tarsi introduced a beautiful algebraic technique for proving the existence of list colorings. Alon [1] further developed this technique into the *Combinatorial Nullstellensatz*. Fix an arbitrary field \mathbb{F} . We write f_{k_1,\ldots,k_n} for the coefficient of $x_1^{k_1}\cdots x_n^{k_n}$ in the polynomial $f \in \mathbb{F}[x_1,\ldots,x_n]$.

Combinatorial Nullstellensatz (Alon). Suppose $f \in \mathbb{F}[x_1, \dots, x_n]$ and $k_1, \dots, k_n \in \mathbb{N}$ with $\sum_{i \in [n]} k_i = \deg(f)$. If $f_{k_1, \dots, k_n} \neq 0$, then for any $A_1, \dots, A_n \subseteq \mathbb{F}$ with $|A_i| \geq k_i + 1$, there exists $(a_1, \dots, a_n) \in A_1 \times \dots \times A_n$ with $f(a_1, \dots, a_n) \neq 0$.

Michałek [5] gave a very short proof of the Combinatorial Nullstellensatz just using long division. Schauz [6] sharpened the Combinatorial Nullstellensatz by proving the following coefficient formula. Versions of this result were also proved by Hefetz [3] and Lasoń [4]. Our presentation is similar to Lasoń's.

Coefficient Formula (Schauz). Suppose $f \in \mathbb{F}[x_1, \ldots, x_n]$ and $k_1, \ldots, k_n \in \mathbb{N}$ with $\sum_{i \in [n]} k_i = \deg(f)$. For any $A_1, \ldots, A_n \subseteq \mathbb{F}$ with $|A_i| = k_i + 1$, we have

$$f_{k_1,\dots,k_n} = \sum_{(a_1,\dots,a_n)\in A_1\times\dots\times A_n} \frac{f(a_1,\dots,a_n)}{N(a_1,\dots,a_n)},$$

where

$$N(a_1,\ldots,a_n) := \prod_{i\in[n]} \prod_{b\in A_i\setminus\{a_i\}} (a_i-b).$$

We first give Michałek's proof of the Combinatorial Nullstellensatz and use this to derive the coefficient formula.

Proof of Combinatorial Nullstellensatz. Suppose the result is false and choose $f \in \mathbb{F}[x_1, \ldots, x_n]$ for which it fails minimizing $\deg(f)$. Then $\deg(f) \geq 2$ and we have $k_1, \ldots, k_n \in \mathbb{N}$ with $\sum_{i \in [n]} k_i = \deg(f)$ and $A_1, \ldots, A_n \subseteq \mathbb{F}$ with $|A_i| \geq k_i + 1$ such that $f(a_1, \ldots, a_n) = 0$ for all $(a_1, \ldots, a_n) \in A_1 \times \cdots \times A_n$. By symmetry, we may assume that $k_1 > 0$. Fix $a \in A_1$ and divide f by $x_1 - a$ to get $f = (x_1 - a)Q + R$ where the degree of x_1 in R is zero. Then the

^{*}clarifications, errors, simplifications ⇒ landon.rabern@gmail.com

coefficient of $x_1^{k_1-1}x_2^{k_2}\cdots x_n^{k_n}$ in Q must be non-zero and $\deg(Q)<\deg(f)$. So, by minimality of $\deg(f)$ there is $(a_1,\ldots,a_n)\in (A_1\setminus\{a\})\times\cdots\times A_n$ such that $Q(a_1,\ldots,a_n)\neq 0$. Since $0=f(a_1,\ldots,a_n)=(a_1-a)Q(a_1,\ldots,a_n)+R(a_1,\ldots,a_n)$ we must have $R(a_1,\ldots,a_n)\neq 0$. But x_1 has degree zero in R, so $R(a,\ldots,a_n)=R(a_1,\ldots,a_n)\neq 0$. Finally, this means that $f(a,\ldots,a_n)=(a-a)Q(a,\ldots,a_n)+R(a,\ldots,a_n)\neq 0$, a contradiction.

Proof of Coefficient Formula. Let $f \in \mathbb{F}[x_1,\ldots,x_n]$ and $k_1,\ldots,k_n \in \mathbb{N}$ with $\sum_{i\in[n]}k_i = \deg(f)$. Also, let $A_1,\ldots,A_n\subseteq\mathbb{F}$ with $|A_i|=k_i+1$. For each $(a_1,\ldots,a_n)\in A_1\times\cdots\times A_n$, let $\chi_{(a_1,\ldots,a_n)}$ be the characteristic function of the set $\{(a_1,\ldots,a_n)\}$; that is $\chi_{(a_1,\ldots,a_n)}\colon A_1\times\cdots\times A_n\to\mathbb{F}$ with $\chi_{(a_1,\ldots,a_n)}(x_1,\ldots,x_n)=1$ when $(x_1,\ldots,x_n)=(a_1,\ldots,a_n)$ and $\chi_{(a_1,\ldots,a_n)}(x_1,\ldots,x_n)=0$ otherwise. Consider the function

$$F = \sum_{(a_1,\dots,a_n)\in A_1\times\dots\times A_n} f(a_1,\dots,a_n)\chi_{(a_1,\dots,a_n)}.$$

Then F agrees with f on all of $A_1 \times \cdots \times A_n$ and hence f - F is zero on $A_1 \times \cdots \times A_n$. We will apply the Combinatorial Nullstellensatz to f - F to conclude that $(f - F)_{k_1,\dots,k_n} = 0$ and hence $f_{k_1,\dots,k_n} = F_{k_1,\dots,k_n}$ where F_{k_1,\dots,k_n} will turn out to be our desired sum. To apply the Combinatorial Nullstellensatz, we need to represent F as a polynomial, we can do so by representing each $\chi_{(a_1,\dots,a_n)}$ as a polynomial as follows. For $(a_1,\dots,a_n) \in A_1 \times \cdots \times A_n$, let

$$N(a_1,\ldots,a_n) := \prod_{i\in[n]} \prod_{b\in A_i\setminus\{a_i\}} (a_i-b).$$

Then it is readily verified that

$$\chi_{(a_1,\dots,a_n)}(x_1,\dots,x_n) = \frac{\prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (x_i - b)}{N(a_1,\dots,a_n)}.$$

Using this to define F we get

$$F(x_1, \dots, x_n) = \sum_{(a_1, \dots, a_n) \in A_1 \times \dots \times A_n} f(a_1, \dots, a_n) \frac{\prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (x_i - b)}{N(a_1, \dots, a_n)}.$$

Now $\deg(F) = \sum_{i \in [n]} (|A_i| - 1) = \sum_{i \in [n]} k_i = \deg(f)$. Since f - F is zero on $A_1 \times \cdots \times A_n$, applying the Combinatorial Nullstellensatz to f - F with k_1, \ldots, k_n and sets A_1, \ldots, A_n gives $(f - F)_{k_1, \ldots, k_n} = 0$ and hence

$$f_{k_1,\dots,k_n} = F_{k_1,\dots,k_n} = \sum_{(a_1,\dots,a_n)\in A_1\times\dots\times A_n} \frac{f(a_1,\dots,a_n)}{N(a_1,\dots,a_n)}.$$

1 Applications to graph coloring

Let G be a loopless multigraph with vertex set $V := \{x_1, \dots, x_n\}$ and edge multiset E. The graph polynomial of G is

$$p_G(x_1, \dots, x_n) := \prod_{\substack{\{x_i, x_j\} \in E \\ i < j}} (x_i - x_j).$$

2

To each orientation \vec{G} of G, there is a corresponding monomial $m_{\vec{G}}(x_1, \ldots, x_n)$ given by choosing either x_i or $-x_j$ from each factor $(x_i - x_j)$ according to \vec{G} . Precisely, given an orientation \vec{G} of G with edge multiset \vec{E} , put

$$m_{\vec{G}}(x_1,\ldots,x_n) := \left(\prod_{\substack{(x_i,x_j) \in \vec{E} \\ i < j}} x_i\right) \left(\prod_{\substack{(x_j,x_i) \in \vec{E} \\ i < j}} -x_j\right).$$

Then $p_G(x_1, \ldots, x_n) = \sum_{\vec{G}} m_{\vec{G}}(x_1, \ldots, x_n)$, where the sum is over all orientations \vec{G} of G. Each $m_{\vec{G}}(x_1, \ldots, x_n)$ has coefficient either 1 or -1. We are interested in collecting up all monomials of the form $x_1^{k_1} \cdots x_n^{k_n}$. Let $DE_{k_1, \ldots, k_n}(G)$ be the orientations of G where $m_{\vec{G}}(x_1, \ldots, x_n) = x_1^{k_1} \cdots x_n^{k_n}$ and $DO_{k_1, \ldots, k_n}(G)$ the orientations of G where $m_{\vec{G}}(x_1, \ldots, x_n) = -x_1^{k_1} \cdots x_n^{k_n}$. Write $p_{k_1, \ldots, k_n}(G)$ for the coefficient of $x_1^{k_1} \cdots x_n^{k_n}$ in $p_G(x_1, \ldots, x_n)$. Then we have

$$p_{k_1,\dots,k_n}(G) = |DE_{k_1,\dots,k_n}(G)| - |DO_{k_1,\dots,k_n}(G)|.$$

This gives a combinatorial interpretation of the coefficients of p_G , but unfortunately it quantifies over all orientations of G. For applying the Combinatorial Nullstellensatz, it is useful to have a single orientation of G as a certificate that $p_{k_1,\dots,k_n}(G) \neq 0$. This can be achieved in terms of Eulerian subgraphs. A digraph is Eulerian if the in-degree and out-degree are equal at every vertex. Let $EE(\vec{G})$ be the spanning Eulerian subgraphs of \vec{G} with an even number of edges and let $EO(\vec{G})$ be the spanning Eulerian subgraphs of \vec{G} with an odd number of edges.

Eulerian Reduction. If \vec{G} is an orientation of G, then we have

$$\left| |EE(\vec{G})| - |EO(\vec{G})| \right| = \left| |DE_{d_{\vec{G}}^{+}(x_{1}), \dots, d_{\vec{G}}^{+}(x_{n})}(G)| - |DO_{d_{\vec{G}}^{+}(x_{1}), \dots, d_{\vec{G}}^{+}(x_{n})}(G)| \right|.$$

Proof. For $D \in DE_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G) \cup DO_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G)$, let $\vec{G} \oplus D$ be the spanning subgraph of \vec{G} with edge set

$$\left\{ (x_i, x_j) \in E(\vec{G}) \mid (x_j, x_i) \in E(D) \right\}.$$

Then $\vec{G} \oplus D$ is Eulerian since all vertices have the same out-degree in \vec{G} and D. If \vec{G} is even, this gives bijections between $DE_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G)$ and $EE(\vec{G})$ as well as between $DO_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G)$ and $EO(\vec{G})$. When \vec{G} is odd, the bijections are between $DE_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G)$ and $EO(\vec{G})$ as well as between $DO_{d^+_{\vec{G}}(x_1),\dots,d^+_{\vec{G}}(x_n)}(G)$ and $EE(\vec{G})$. In either case, we have

$$\left| |EE(\vec{G})| - |EO(\vec{G})| \right| = \left| |DE_{d_{\vec{G}}^{+}(x_{1}), \dots, d_{\vec{G}}^{+}(x_{n})}(G)| - |DO_{d_{\vec{G}}^{+}(x_{1}), \dots, d_{\vec{G}}^{+}(x_{n})}(G)| \right|.$$

Therefore, if \vec{G} is an orientation of G with $d_{\vec{G}}^+(x_i) = k_i$ for all $i \in [n]$, then

$$|p_{k_1,...,k_n}(G)| = ||EE(\vec{G})| - |EO(\vec{G})||.$$

References

- [1] N. Alon, Combinatorial nullstellensatz, Combinatorics Probability and Computing 8 (1999), no. 1–2, 7–29.
- [2] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), no. 2, 125–134.
- [3] Dan Hefetz, On two generalizations of the Alon-Tarsi polynomial method, Journal of Combinatorial Theory, Series B **101** (2011), no. 6, 403–414.
- [4] Michał Lasoń, A generalization of combinatorial nullstellensatz, The Electronic Journal of Combinatorics 17 (2010), no. 1, N32.
- [5] Mateusz Michałek, A short proof of combinatorial nullstellensatz, The American Mathematical Monthly 117 (2010), no. 9, 821–823.
- [6] Uwe Schauz, Algebraically solvable problems: describing polynomials as equivalent to explicit solutions, Electron. J. Combin 15 (2008), no. 1.